Lesson 1 (A Brief Introduction to MATLAB, Matrix Operations and Solving Linear Systems)

Some matrix operations:

The following are some basic MATLAB commands to perform operations on matrices A and B:

A(i, j)	the (i; j)-entry of A
A(i,:)	the i th row of A
A(:, j)	the j th column of A
A+B	matrix addition
A-B	matrix subtraction
t*A	scalar multiplication if t is a real number,
	i.e. tA
A*B	matrix multiplication.
A^n	raising a square matrix A to a positive
	integral power n, i.e. A ⁿ
A'	transpose of A, i.e. A ^T
inv(A)	inverse of an invertible square matrix A, i.e.
	A-1
zeros(n)	the n x n zero matrix, i.e. 0_{nxn}
zeros(m, n)	the m x n zero matrix, i.e. 0_{mxn}
eye(n)	the n x n identity matrix, i.e. I _n
rref(A	the reduced row echelon form of A
det(A)	the determinant of A, i.e. det(A)

Change Precision:

All numeric computations in MATLAB are performed with about 16 decimal digits of precision. The format of the displayed output can be controlled by the following commands:

format short	scaled fixed point format with 5 digits (default setting)	
format long	scaled fixed point format with 15 digits	Scaled fixed point format (E.g. 2.00 000 000 000 000 000)
format short	floating point format with 5 digits	Scaled fixed point format (E.g. 1.0000)
format long	floating point format with 15 digits	
format rat	Approximate fractions	rational format (E.g. 1/10)
format	Reset precision to default format	

Warning: MATLAB will approximate decimals with rational numbers when you use **format rat**. Sometimes, this may cause unexpected results. Occasionally, an asterisk * may appear when you expect the quantity to be 0.

Other controls:

ans	Display value in current answer
-----	---------------------------------

Questions:

Why $C^{-1} = [\inf]_{3 \times 4}$?	Error message, since C is not invertible.
--------------------------------------	---

Methods of solving systems of linear equations: **Ax=b** where A, b are matrices.

- 1) Solution for system: inv(A)*b
- 2) **A\b**
- 3) Most reliable method: rref([Ab]) and solve the system for x

Lesson 2(The Geometrical Interpretation of Elementary Row Operations and the Computation of Powers of Square Matrices)

We use the MATLAB command ezplot which is used to plot the graph of a line or curve:

ezplot('E(x, y)')	plot points satisfying the equation E(x, y)
	for $-2\pi < x < 2\pi$
ezplot('E(x, y)', [xmin, xmax])	plot points satisfying the equation E(x, y)
	for xmin < x < xmax
ezplot('f(x)')	plot the function $y=f(x)$ for $-2\pi < x < 2\pi$
ezplot('f(x)', [xmin, xmax])	plot the function $y=f(x)$
	for xmin < x < xmax
ezplot('x(t)', 'y(t)')	plot points (x(t), y(t)) for $-2\pi < t < 2\pi$
ezplot('x(t)', 'y(t)', [tmin, tmax])	plot points $(x(t), y(t))$ for tmin $< t < t$ max

Other controls:

hold on	tells MATLAB to keep all the old lines when
	a new ezplot command is executed

What elementary row operation has been done? Is there any change in the graph of the new system compared with the original?	Multiply first row by ½ (1/2 R ₁)	The first equation of the new system gives us the same line as that of the first equation of the (*) system. The graph of is the same as
	Interchange rows	Although the positions of the 2 eqns are interchanged , the 2 lines are still the same (only rep. different eqns).
	Add a multiple of a row to another.	Though the new line is different from the original second line of the system (*), it still intersects the first line at the same point. Rmk: Refer to page 3.

We use the MATLAB command ezsurf which is used to draw the graph of a surface:

ezsurf('f(x, y)')

draw the graph of the function z=f(x, y) for $-2\pi < x < 2\pi$ and $-2\pi < y < 2\pi$

ezsurf('f(x, y)', [xmin, xmax], [ymin, ymax])

draw the graph of the function z=f(x, y) for xmin < x < xmax and ymin < y < ymax

ezsurf('x(s,t)', 'y(s,t), 'z(s,t)')

draw the surface with points (x(s, t), y(s, t), z(s, t)) for $-2\pi < s < 2\pi$ and $-2\pi < t < 2\pi$

ezsurf('x(s,t)', 'y(s,t), 'z(s,t)', [smin, smax], [tmin, tmax])

draw the surface with points (x(s, t), y(s, t), z(s, t)) for smin < s < smax and tmin < t < tmax

Other controls:

clf	tells MATLAB to clear all the graphical
	figures in the graphic window

*** Rewrite the equations in terms of a variable!

E.g)
$$x + 2y - z = 5 -> z = -5 + x + 2y -> ezsurf('-5 + x + 2*y')$$

What elementary row operation has been done? Is there any change in the graph of the new system	Multiply first row by ½ (1/2 R ₁)	The first equation of the new system gives us the same plane as that of the first equation of the (*) system.
compared with the original?		The graph of is the same as
	Interchange rows	Although the positions of the 2 eqns are interchanged , the 2 planes are still the same (only rep. different eqns).
		Same graph.

Add a multiple of a row to	Though the new plane is
another.	different from the original
	second plane of the
	system (*), it still
	intersects the first plane
	on the same <u>line</u>
	(solutions of the system
	remains the same).
	Rmk: Refer to page 5.

For Activity 3, for finding limit of a matrix C^n as n tends to ∞ , refer to worksheet.

Reference of eigenvalues and computation of powers of square matrices.

```
>> Enter matrix C 
>>format short 
>> [P, D] = eig(C) : to return two matrices P and D where P-1CP = D 
## Write down: Cn = PDnP-1 
## Find \lim_{n\to\infty} D^n (*) 
## if a^2 + b^2 < 1, then \lim_{n\to\infty} (a+bi)^n = 0
```

Find
$$\lim_{n\to\infty} C^n = P(*)P^{-1}$$

You can use the MATLAB command " diag ($[a\ b\ c]$) " to enter a 3 x 3 diagonal matrix with diagonal entries a, b, c. Also use " format long" here.

Lesson 3 (Vector Spaces)

Determine whether a vector v is a linear	Activity 1 (pg 1 -2)
combination of a given set of vectors.	
	 Input vectors as column matrix
	forms
	2) Input A = [u1 u2 u3]
	3) Apply rref ([A v])
	4) System Ax = v consistent? Any zero
	row? If consistent, linear
	combination. Else, not.
Check whether a given set of vectors is	Activity 2 (pg 2 – 3)
linearly independent.	
	1) Input vectors as column matrices
	and z, a zero column matrix
	2) Form matrix A = [u1 u2 u3]
	3) Apply rref ([A z])
	4) Homogeneous system Ax = 0 has
	- non-pivot columns in rref (non-
	trival soln): linearly dependent
	- only pivot columns (only trivial
	soln): linearly independent
How to identify redundant vectors in a	Activity 2 (pg 4 – 5)
given set of vectors.	
	1) Input vectors as column matrices.
	2) Form matrix A = [u1 u2 u3]
	3) Apply rref (A)
	4) Identify non-pivot columns in rre-
	form
	5) Redundant vectors: columns in A
	corresponding to the non-pivot
	columns identified in the rre-form
How to write the redundant vectors as	Activity 2 (pg 4 – 5)
linear combination of the non-redundant	Activity 2 (pg 4 – 3)
vectors.	
	1) Observe the entries on the non-
	pivot columns
	2) Refer to worksheet **

How to show span(S) \subseteq span(T) given sets of vectors S and T?	Activity 3: Linear spans (pg 5 – 7)
How to show span(S)=span(T)?	
How to show span(S) is not a subset of span(T)? i.e span(S) \nsubseteq span (T)	
	For example, 1) Let S = { u1, u2, u3 } and T = { v1, v2, v3, v4 } 2) Form matrices A = [u1 u2 u3] for set S and B = [v1 v2 v3 v4] for set T whether vectors are in column form
	To show span(S) ⊆ span(T): 3) Apply rref ([B A]) 4) Shown if 3 systems are consistent, i.e. system Bx = ui is consistent for all i = 1, 2, 3 (Tell from rre-form: no zero row for rref (B)/ all non-pivot columns for columns corr. to vectors in set T in the rref ([B A]/ look at the last few augmented columns in the rref)
How to find a basis for a dimension of a subspace V=span(S) for a given set S of vectors?	Activity 4: Bases and Dimensions (pg 7 – 8)
	 Input vectors as column matrices. Form matrix A = [u1 u2 u3] Apply rref (A) Identify pivot columns in rref. Columns in A corr. to pivot columns in rref gives largest set of linearly independent vectors in S (that spans V). Basis for V = set of these vectors Dimension of V, dim (V) = # vectors in basis
How to show that a given set T is a basis for a subspace V=span(S) for a given set S?	Activity 4: (pg 8)
and the second of the second o	 Check that T is linearly independent Show that span (T) = span (S), i.e. T spans V If both 1) and 2) are true, T is a basis for V.

** How to express a vector v in V=span(S) as	Activity 4: (pg 9)
a linear combination of a given basis \top of \vee ?	
	1) Input vectors (v1 v2 v3) in basis of
	T and vector v as column vectors.
	2) Form matrix B = [v1 v2 v3 v]
	3) Apply rref ([B v])
	4) Similar to writing redundant
	vectors as linear combinations of
	non-redundant vectors in a set,
	write v as a linear combination of
	vectors (of the basis \top)
	i.e. $v = av1 + bv2 + cv3 +$
	5) Using 4), write down the coordinate
	vector [v]⊤ of v wrt. basis T
	i.e. $[v]_T = [a \ b \ c]^T$
	** in column form
Is set S a basis for R ⁿ ? (where n is given)	Activity 5: (pg 10)
	1) Is S linearly independent?
	2) Is the # of vectors in S,
	S = dim (R^n), where dim(R^n) = n?
	3) If true for 1) and 2), S a basis for R ⁿ .

Lesson 4 (Row space, Column space, Nullspace, Dot product and Orthogonal sets)

Find basis for the row space of a matrix.	Activity 1: (pg 1)
Time basis for the row space of a matrix.	1) Input matrix A
	2) Apply rref (A)
	3) From rref of A, get basis for row
	space of A
	i.e. rows with leading entries/ pivot
	points/all rows that are non-zero
	are vectors in the basis
Find basis for the column space of a matrix.	Activity 1: (pg 2)
This basis for the column space of a matrix.	1) Input matrix A
	2) Apply rref (A)
	3) Identify pivot columns of rref (A)
	4) Basis for column space of A is the
	corresponding columns in A itself
	** write vectors in column vector form
Find the rank of a matrix.	Activity 1: (pg 2)
(Rank of a matrix = dimension of the row	Ποιντός Ι. (ρε 2)
space/column space of that matrix)	
space of that marmy	1) Rank (A) = # vectors in basis of
	row/column space of A
	OR
	Apply command rank(A)
Checking for invertibility of a matrix C.	Activity 1: (pg 3)
	True if:
	1) det (C) ≠ 0
	2) rref (C) is an identity matrix
	3) C: n x n matrix
	and Rank (C) = n
Find a basis for a linear span where span(S)	Activity 2: (pg 3 - 4)
= V vector space	, 40
1	Similar to above:
	1) Form a matrix D using vectors in S
	as COLUMNS
	2) *Observe that V = col (D)
	3) Basis for V same as finding basis for
	col (D)
	` '

Extend a linearly independent set to a basis for R^n .	Activity 2: (pg 4)	
101 17 .	*** Refer to worksheet	
	For example: 1) Basis S' has 3 vectors and need to extend it to a basis for R ⁵ . Need 2 more vectors. 2) Form a matrix E using the vectors in S' as ROWS. 3) Apply rref (E) and observe which columns do not have leading entries (i.e. non-pivot columns) E.g.	
	4) Complete the rref (E) by adding rows to make it into a 5 x 5 matrix such that every column has a leading entry. E.g.	
	5) These 2 row (vectors) extend the set S' to a basis for R ⁵ .	
Find basis for the nullspace of a matrix.	Activity 3: (pg 4 - 5)	
	*** Refer to worksheet 1) Input matrix A 2) Use the rref (A) to find the general solution (by hand) of the system Ax = 0 3) Derive a basis for the solution space and hence a basis for the nullspace of A *** WRITE IN COLUMN FORM OR 4) Type N = null(A,'r') using command null where columns of N gives a basis for nullspace of A	

Pre-multiply A to N. What is the product?	**Activity 3: (pg 5)
Give an explanation to the answer.	Where A is a matrix and $N = null(A,'r')$
	1) >>A*N
	2) The product is a zero matrix
	3) Reason: (k) columns n1, n2nk of N
	are vectors in nullspace
	so An1=0, An2=0, Ank=0
	so matrix multiplication of
	AN= (An1 An2 Ank)=0

Controls:

Perform <u>dot product</u> on 2	u·v	1) Input u and v as
vectors u and v		ROW matrices.
		2) >> u*v' OR v*u'
		NOT: u*v nor u'*v
Find the norm of a vector u	Norm (u)	1) Input u as row
		matrix
		2) >> sqrt(u*u')
		OR >> norm(u)

Check that a set of vectors (a, b, c) is orthogonal/orthonormal.	Activity 5: (pg 6 - 7)
Can you explain why?	 Form matrix F using vectors a,b,c, as ROWS. Pre-multiply F to F^T: FF^T >> F*F' 3) If the product is a diagonal matrix, the set is orthogonal. 4) ALSO If the product is an identity matrix, the set is orthonormal. 5) OTHERWISE, it is neither. For: "If the product is a diagonal matrix, the set is orthogonal."
	For: "If the product is an identity matrix, the set is orthonormal."

Find an orthonormal basis for a subspace	Activity 5: (pg 6 - 7)
V=span(S), given set S = {w1, w2, w3}.	1) Form matrix G using vectors w1, w2,
	w3 as COLUMNS (not rows).
	2) Check that S is a basis for vector
	space V: apply rref(G)
	3) Check that S is not orthogonal by
	multiplying G ^T G
	>> G'*G
	(order different from FF [™] above as
	vectors are arranged as columns in G)
	4) Obtain an orthonormal basis for V:
	>> Q = orth(G)
	5) Columns of Q give an orthonormal basis for V
	6) Verify that basis obtained is orthonormal: Q^TQ
	>> Q'*Q
	Where it is if the matrix is an identity
	matrix.