```
In [1]: import pandas as pd
import seaborn as sns
```

In [2]: df=pd.read_csv('diabetes.csv')

In [3]: df

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	Pedigree	Age	Outcom
0	6	148	72	35	0	33.6	0.627	50	
1	1	85	66	29	0	26.6	0.351	31	
2	8	183	64	0	0	23.3	0.672	32	
3	1	89	66	23	94	28.1	0.167	21	
4	0	137	40	35	168	43.1	2.288	33	
763	10	101	76	48	180	32.9	0.171	63	
764	2	122	70	27	0	36.8	0.340	27	
765	5	121	72	23	112	26.2	0.245	30	
766	1	126	60	0	0	30.1	0.349	47	
767	1	93	70	31	0	30.4	0.315	23	

768 rows × 9 columns

In [4]: x=df.drop('Outcome',axis=1)
y=df['Outcome']

```
In [5]: sns.countplot(x=y)
```

Out[5]: <Axes: xlabel='Outcome', ylabel='count'>


```
In [6]: from sklearn.preprocessing import scale
x=scale(x)
```

In []:

In []:

In [8]: from sklearn.neighbors import KNeighborsClassifier

In [9]: knn=KNeighborsClassifier(n_neighbors=5)

```
In [10]:
         knn.fit(x_train,y_train)
Out[10]:
          KNeighborsClassifier
          KNeighborsClassifier()
In [11]: y_pred=knn.predict(x_test)
         from sklearn import metrics
In [12]:
In [13]:
         cs=metrics.confusion_matrix(y_test,y_pred)
         print(cs)
         [[115 15]
          [ 22 40]]
In [14]: print("Accuracy", metrics.accuracy_score(y_test,y_pred))
         Accuracy 0.807291666666666
In [15]: | total_misclassified=cs[0,1]+cs[1,0]
         print(total_misclassified)
         total_examples=cs[0,0]+cs[0,1]+cs[1,0]+cs[1,1]
         print(total_examples)
         print("Error rate",total_misclassified/total_examples)
         print("Error rate",1-metrics.accuracy_score(y_test,y_pred))
         37
         192
         Error rate 0.19270833333333334
         Error rate 0.1927083333333333
In [16]: print("Precision score", metrics.precision_score(y_test,y_pred))
         Precision score 0.72727272727273
In [17]: print("Recall score", metrics.recall_score(y_test,y_pred))
         Recall score 0.6451612903225806
In [21]: print("Classification Report", metrics.classification_report(y_test,y_pred))
         Classification Report
                                                           recall f1-score
                                              precision
                                                                               support
                            0.84
                                       0.88
                                                 0.86
                                                            130
                    1
                            0.73
                                       0.65
                                                 0.68
                                                             62
                                                 0.81
                                                            192
             accuracy
            macro avg
                            0.78
                                       0.76
                                                 0.77
                                                            192
                                                            192
         weighted avg
                            0.80
                                       0.81
                                                 0.80
```

In []: