TALLER 2: Límites y continuidad

Cálculo en varias variables

Universidad Nacional de Colombia - Sede Medellín Escuela de matemáticas

- 1. Halle el límite, si existe, o demuestre que no existe
 - (I) $\lim_{(x,y) \longrightarrow (0,0)} \frac{(x+y)^2}{x^2 + y^2}$.
 - (II) $\lim_{(x,y) \longrightarrow (0,0)} \frac{x^3 y^2}{x^2 + y^2}$.
 - (III) $\lim_{(x,y,z) \to (0,0,0)} \frac{xy + yz + xz}{x^2 + y^2 + z^2}$.
 - (IV) $\lim_{(x,y)\longrightarrow(0,0)}\frac{xy}{x^2+y^2}$
 - (v) $\lim_{(x,y)\to(1,1)} \frac{x^2-y^2}{x-y}$
 - (VI) $\lim_{(x,y)\longrightarrow(0,1)} \frac{\sqrt{x+y} \sqrt{y}}{x}$
 - (VII) $\lim_{(x,y) \to (0,0)} \frac{x^2 y^2}{x^2 + y^2}$
 - (VIII) $\lim_{(x,y)\to(0,0)} \frac{x^2y^4}{x^4+y^8}$
 - (IX) $\lim_{(x,y) \longrightarrow (0,0)} \frac{x^3 + y^3}{x^2 + y^2}$
- 2. Dadas las funciones

$$f(x,y) = y \ln(x) \ y \ g(z) = \sin(z),$$

halle el conjunto más grande en el cual la función compuesta h(x,y) = g(f(x,y)) es continua.

3. Dada la función f definida por

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2 + xy}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

determine el conjunto en el cual f es continua.

4. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ la función definida por

$$f(x,y) = \begin{cases} x^4 \sin\left(\frac{1}{x^4 + y^4}\right), & (x,y) \neq (0,0) \\ c, & (x,y) = (0,0) \end{cases}.$$

Determine, si es posible, el valor de c para que f sea continua en todo \mathbb{R}^2 .

5. Sea $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ definida por

$$f(x,y) = \begin{cases} x^2 + y^2, & \text{si } x^2 + y^2 \ge 1 \\ 0, & \text{si } x^2 + y^2 < 1 \end{cases}.$$

Determine la continuidad de f.

6. Dada la función f definida por

$$f(x, y, z) = x + y\sqrt{x + z},$$

determine el conjunto más grande en el cual f es continua.

Nota: Ejercicio reto

- 7. Suponga que f y g son funciones de dos variables que cumplen las siguientes condiciones:
 - (i) $f(tx, ty) = t^n f(x, y); g(tx, ty) = t^n g(x, y)$ para algún $n \in \mathbb{N}$ y para todo $t \in \mathbb{R}$;
 - (ii) $g(1,1) \neq 0$ y $g(1,0) \neq 0$;
 - (iii) $g(1,1) \cdot f(1,0) \neq g(1,0) \cdot f(1,1)$.

Muestre que $\lim_{(x,y)\to(0,0)} \frac{f(x,y)}{g(x,y)}$ no existe.