Chapter 3: Vector spaces

Lecturer: Assoc. Prof. Nguyễn Duy Tân email: tan.nguyenduy@hust.edu.vn

School of Applied Mathematics and Informatics, HUST

October, 2023

Contents

- 3.1. Vector spaces
 - 3.1.1. Definitions, examples
 - 3.1.2. Some basic properties
- 2 3.2. Vector subspaces
 - 3.2.1. Definition
 - 3.2.2. Subspaces spanned by subsets
- 3.3. Basis and dimension
 - 3.3.1. Linear dependence, linear independence
 - 3.3.2. Basis, dimension
 - 3.3.3. Coordinates
 - 3.3.4. Rank of a set of vectors

3.1.1. Definitions, examples

Let K be the field of real numbers $\mathbb R$ or the field of complex numbers $\mathbb C$.

Definition

Let V be a nonempty set, together with two operations:

• Vector addition:

$$+: V \times V \to V$$
$$(u, v) \mapsto u + v$$

• Scalar multiplication:

$$\cdot: K \times V \to V$$

 $(a, v) \mapsto av$

The set V together with these two operations is called a *vector space* over K, or a K-vector space if the following conditions (axioms) are satisfied.

For every $u, v, w \in V$, and $a, b \in K$:

- **3** $\forall v \in V, \exists v' \in V: v + v' = v' + v =$ **0**,
- u + v = v + u,
- (a+b)v = av + bv,

- 1v = v.
- ullet An element of a vector space are called a vector. A element in K is called a scalar.
- ullet Conditions 1-4 say that V is a commutative group .
- The element **0** in Condition 2 is called the zero vector.
- Element v' in Condition 3 is called the opposite vector of v, denoted by -v.

- Consider $\mathbb{R}^n = \{(x_1, \dots, x_n) \mid x_1, \dots, x_n \in \mathbb{R}\}.$
- Consider the following operations:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n),$$

 $a(x_1,\ldots,x_n)=(ax_1,\ldots,ax_n).$

- The set \mathbb{R}^n together with these operations is a vector space over \mathbb{R} .
- The zero vector is $\mathbf{0} = (0, 0, \dots, 0)$.
- The opposite vector of $v = (x_1, \dots, x_n)$ is $-v = (-x_1, \dots, -x_n)$.

- The set $\mathcal{M}_{2,2}(\mathbb{R})$ of real matrices of size 2×2 , with the operations of matrix addition and scalar multiplication is a vector space (over \mathbb{R}).
 - Commutativity, associativity, distribution properties,.... are clear;
 - The zero vector is the zero matrix \mathcal{O}_2 ;
 - The opposite vector of vector $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is $-A = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}$.
- The set $\mathcal{M}_{m,n}(\mathbb{R})$ of real matrices of size $m \times n$, with the operations of matrix addition and scalar multiplication is a vector space (over \mathbb{R}).

• The set $P_2[x] = \{a_2x^2 + a_1x + a_0|a_0, a_1, a_2 \in \mathbb{R}\}$ of real polynomials of degree less than or equal to 2 together with two operations:

$$(a_2x^2 + a_1x + a_0) + (b_2x^2 + b_1x + b_0) = (a_2 + b_2)x^2 + (a_1 + b_1)x + (a_0 + b_0)$$
$$c(a_2x^2 + a_1x + a_0) = ca_2x^2 + ca_1x + ca_0$$

is a vector space over \mathbb{R} .

- These two operations are closed.
- Commutativity, associativity, distribution properties,.... are clear.
- The zero vector is the zero polynomial $\mathbf{0} = 0 \cdot x^2 + 0 \cdot x + 0$.
- The opposite (vector) of $a_2x^2 + a_1x + a_0$ is $-a_2x^2 a_1x a_0$.
- The set $P_n[x]$ of real polynomials of degree *not exceeding n* together with the usual polynomial addition and scalar multiplication, is a vector space over \mathbb{R} .

The set C[a, b] of real continuous functions on [a, b] is a vector space over \mathbb{R} , together with two natural operations,

$$(f+g)(x) = f(x) + g(x),$$

$$(cf)(x) = cf(x),$$

is a vector space.

- The operations are closed.
- Commutativity, associativity, distribution properties,.... are clear.
- The zero vector is $f_0 \equiv 0$
- The opposite of f is -f which is defined by (-f)(x) = -f(x), for all $x \in \mathbb{R}$.

- ullet The set $\mathbb Z$ of integers together with the usual operations, is not a vector space over $\mathbb R$.
- The set \mathbb{R}^+ of real numbers together with the usual operations, is not a vector space over \mathbb{R} .
- The set of real polynomials of degree *exactly n* together with the polynomial addition and scalar multiplication, is not a vector space over \mathbb{R} .
- The set \mathbb{R}^2 together with the usual addition and the following scalar multiplication:

$$c(x_1, x_2) = (cx_1, 0)$$

is not a vector spaces.

3.1.2. Some basic properties

Properties

Let V be a vector space over K. For every $u, v \in V$ and $c \in K$, the following statements are true.

- The zero vector **0** is unique.
- ② The opposite vector (-v) of vector v is unique.
- (-1)v = -v.
- **1** 0v = 0.
- **o** c**0** = **0**.
- **1** If $cv = \mathbf{0}$ then either c = 0 or $v = \mathbf{0}$.

3.2.1. Definition

Let V be a vector space over K.

Vector subspace

A nonempty subset W of V is a *vector subspace* (or simply called, a *subspace*) of V if W is closed under the operations inherited from V, that means if

$$\begin{cases} u + v \in W, & \forall u, v \in W \\ cv \in W, & \forall c \in K, v \in W, \end{cases}$$

and under the operations of V, W is a vector space over K.

Test for a subspace

A nonempty subset W of V is a vector subspace of V if and only if if W is closed under the operations inherited from V, that means

$$\begin{cases} u + v \in W, & \forall u, v \in W \\ cv \in W, & \forall c \in K, v \in W. \end{cases}$$

Examples: Let V be a vector space.

- $\{0\}$ (the subset of V consisting of the zero vector) is a subspace of V.
- V itself is a subspace of V.

Remark: If W is a subspace of V then $\mathbf{0} \in W$.

Consider the vector space $V = \mathbb{R}^3$ (with two usual operations).

The subset $W = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + 3z = 0\}$ is a subspace of \mathbb{R}^3 .

- Because $\mathbf{0} = (0,0,0)$ is in W, $W \neq \emptyset$.
- Consider $u=(x_1,y_1,z_1)\in W$ and $v=(x_2,y_2,z_2)\in W$, and let $c\in\mathbb{R}$.
- Then $u + v = (x_1 + x_2, y_1 + y_2, z_1 + z_2) \in W$ since

$$(x_1 + x_2) + 2(y_1 + y_2) + 3(z_1 + z_2) = (x_1 + 2y_1 + 3z_1) + (x_2 + 2y_2 + 3z_2)$$

= 0 + 0 = 0.

- Hence W is closed under vector addition.
- We have $cv = (cx_2, cy_2, cz_2) \in W$ since

$$cx_2 + 2cy_2 + 3cz_2 = c(x_2 + 2y_2 + 3z_2) = c \cdot 0 = 0.$$

- Hence W is closed under scalar multiplication.
- Therefore W is a subspace of \mathbb{R}^3 .

Solution spaces of homogenous linear systems

Consider the vector space \mathbb{R}^n (with usual operations). The subset W of \mathbb{R}^n consisting of all solutions of a homogenous linear system

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= 0 \\ \dots & \dots & \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= 0 \end{cases}$$

is a vector subspace of \mathbb{R}^n .

Intersection of subspaces

Tính chất

If U và W are subspaces of a vector space V then $U \cap W$ is a subspace of V.

Remark:

- More generally, the intersection of a finite number of subspaces is a subspace.
- The union of two subspaces is not (in general) a subspace.

3.2.2. Subspaces spanned by subsetss

Let V be a vector space over K. (If we write $V = \mathbb{R}^n$ then we assume implicitly that the operations are the usual (standard/canonical) ones on \mathbb{R}^n .)

Definition (linear combinations)

Let v_1, v_2, \ldots, v_n be vectors in V. A vector $v \in V$ of the form

$$v = c_1 v_1 + c_2 v_2 + \cdots + c_n v_n$$
, for $c_1, c_2, \ldots, c_n \in K$,

is a *linear combination* of the vectors v_1, v_2, \ldots, v_n .

Example: $V = \mathbb{R}^2$, $v_1 = (3,4)$, $v_2 = (1,1)$ and v = (1,2). Then

$$v = (1,2) = (3,4) - 2(1,1) = v_1 - 2v_2$$

and v is a linear combination of v_1 and v_2 .

$$V = \mathbb{R}^3$$
, $v_1 = (1, 2, 3)$, $v_2 = (0, 1, 2)$, $v_3 = (-1, 0, 1)$ and $v = (1, 1, 1)$. Is v a linear combination of v_1, v_2, v_3 ?

- Vector v is a linear combination of v_1, v_2, v_3 if and only if there exists real numbers c_1, c_2, c_3 such that $c_1v_1 + c_2v_2 + c_3v_3 = v$.
- This is equivalent to the condition that the following system of linear equations has a solution (where c_1, c_2, c_3 are variables)

$$\begin{cases} c_1 & -c_3 = 1 \\ 2c_1 + c_2 & = 1 \\ 3c_1 + 2c_2 + c_3 = 1 \end{cases}$$

- Solve this system we find that this system has infinitely many solutions: $c_1 = 1 + t, c_2 = -1 2t, c_3 = t \ (t \in \mathbb{R})$. In particular, v is a linear combination of v_1, v_2, v_3 .
- For example, choose t = 1, we obtain a representation of v as a linear combination of v_1, v_2, v_3 :

$$v = 2v_1 - 3v_2 + v_3$$
.

$$V = \mathbb{R}^3$$
, $v_1 = (1, 2, 3)$, $v_2 = (0, 1, 2)$, $v_3 = (-1, 0, 1)$ and $v = (1, -2, 2)$. Is v a linear combination of v_1, v_2, v_3 ?

- Vector v is a linear combination of v_1, v_2, v_3 if and only if there exists real numbers c_1, c_2, c_3 such that $c_1v_1 + c_2v_2 + c_3v_3 = v$.
- This is equivalent to the condition that the following system of linear equations has a solution (where c_1, c_2, c_3 are variables)

$$\begin{cases} c_1 & -c_3 = 1 \\ 2c_1 + c_2 & = -2 \\ 3c_1 + 2c_2 + c_3 = 2 \end{cases}$$

• This system has no solution. Hence v is not a linear combination of v_1, v_2, v_3 .

Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of vectors in a K-vector space V.

Definition

The set of all linear combinations of vectors in S is called the *(linear) span* of S and denoted by $\operatorname{span}(S)$ or $\operatorname{span}\{v_1, v_2, \dots, v_n\}$:

$$\mathrm{span}(S) = \{c_1v_1 + c_2v_2 + \cdots + c_nv_n \mid c_1, c_2, \dots, c_n \in K\} \subset V.$$

Theorem

The subset span(S) is a subspace of V. Moreover, span(S) is the smallest subspace of V that contains S.

Remark

 $\operatorname{span}(S)$ is also called the subspace spanned (generated) by S.

Example: $V = \mathbb{R}^2$, $v_1 = (1, 1)$, $v_2 = (1, 2)$. Then $\operatorname{span}\{v_1\} = \{c(1, 1) \mid c \in \mathbb{R}\} = \{(c, c) \mid c \in \mathbb{R}\}$. $\operatorname{span}\{v_1, v_2\} = \{a(1, 1) + b(1, 2) \mid a, b \in \mathbb{R}\} = \{(a + b, a + 2b) \mid a, b \in \mathbb{R}\} = \mathbb{R}^2$.

Spanning sets

Let $S = \{v_1, v_2, \dots, v_n\}$ be a se of vectors in a K-vector space V.

Định nghĩa

If $\operatorname{span}(S) = V$ then we say that S is a *spanning set* (or a *generating set*) of V. In this case we also say that V is spanned by S, or S spans V.

Hence, $S = \{v_1, v_2, \dots, v_n\}$ is a spanning set of V if and only if every vector $v \in V$ can be expressed a linear combination of vectors in S, that means there exist $c_1, \dots, c_n \in K$ such that

$$v = c_1 v_1 + \cdots + c_n v_n.$$

- $\{(1,1),(1,2)\}$ is a spanning set of \mathbb{R}^2 .
- $\{(1,1),(1,2),(1,3)\}$ is a spanning set of \mathbb{R}^2 .
- $\{(1,1)\}$ is not a spanning set of \mathbb{R}^2 .
- $\{(1,0),(0,1)\}$ is a spanning set of \mathbb{R}^2 .
- $\{(1,0,0),(0,1,0),(0,0,1)\}$ is a spanning set of \mathbb{R}^3 .
- $\{1, x, x^2\}$ is a spanning set of $P_2[x]$.
- The set of vectors consisting of

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)$$

is a spanning set of \mathbb{R}^n .

• $\{1, x, \dots, x^n\}$ is a spanning set of $P_n[x]$.

Let
$$v_1 = (1, 2, 3), v_2 = (0, 1, 2), v_3 = (-1, 1, 1)$$
. Is $S = \{v_1, v_2, v_3\}$ a spanning set of \mathbb{R}^3 ?

• Let v = (a, b, c) be any vector \mathbb{R}^3 . Consider the condition $v = c_1v_1 + c_2v_2 + c_3v_3$. This produces a system of linear equation

$$(a,b,c) = c_1(1,2,3) + c_2(0,1,2) + c_3(-1,1,1) \Leftrightarrow \begin{cases} c_1 - c_3 = a \\ 2c_1 + c_2 + c_3 = b \\ 3c_1 + 2c_2 + c_3 = c \end{cases}$$

- This system (with variable c_1, c_2, c_3) has the coefficient matrix with nonzero determinant
 - $\begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & 1 \\ 3 & 2 & 1 \end{vmatrix} \neq 0. \text{ Hence the system always has a solution for every } a, b, c.$
- Thus for every $v \in \mathbb{R}^3$, we always can find c_1, c_2, c_3 such that $v = c_1v_1 + c_2v_2 + c_3v_3$.
- Therefore $S = \{v_1, v_2, v_3\}$ is a spanning set of \mathbb{R}^3 .

Let $v_1 = (1, 2, 3), v_2 = (0, 1, 2), v_3 = (-1, 0, 1)$. Is $S = \{v_1, v_2, v_3\}$ a spanning set of \mathbb{R}^3 ?

NO

3.3.1. Linear dependence, linear independence

Let $S = \{v_1, v_2, \dots, v_n\}$ be a set of vectors in a K-vector space V.

Definition

• The set S is said to be *linearly dependent* if there are numbers c_1, c_2, \ldots, c_n , not all zero, such that

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = \mathbf{0}.$$

• The set *S* is said to be *linearly independent* if it is not linearly dependent. Thus, *S* is linearly independent if the equation

$$c_1v_1 + c_2v_2 + \cdots + c_nv_n = \mathbf{0}$$
 (với $c_1, c_2, \dots, c_n \in K$)

has only one solution $c_1 = c_2 = \cdots = c_n = 0$.

• $S = \{(1,1),(2,2)\} \subset \mathbb{R}^2$ is linearly dependent because

$$2 \cdot (1,1) + (-1) \cdot (2,2) = \mathbf{0} = (0,0).$$

• $S = \{(1,0), (0,1), (-2,4)\} \subset \mathbb{R}^2$ is linearly dependent because

$$2(1,0) - 4(0,1) + (-2,4) = (0,0).$$

• $S = \{(1,1),(1,2)\} \subset \mathbb{R}^2$ is linearly independent. In fact, equation $c_1(1,1) + c_2(1,2) = \mathbf{0}$ is equivalent to

$$(c_1+c_2,c_1+2c_2)=(0,0)\Leftrightarrow egin{cases} c_1+c_2=0 \ c_1+2c_2=0 \end{cases} \Leftrightarrow egin{cases} c_1=0 \ c_2=0 \end{cases}$$

• $S = \{(1,1),(1,2),(1,3)\} \subset \mathbb{R}^2$ is linearly dependent. In fact, equation $c_1(1,1) + c_2(1,2) + c_3(1,3) = \mathbf{0}$ is equivalent to

$$(c_1 + c_2 + c_3, c_1 + 2c_2 + 3c_3) = (0, 0) \Leftrightarrow \begin{cases} c_1 + c_2 + c_3 = 0 \\ c_1 + 2c_2 + 3c_3 = 0 \end{cases}$$
$$\Leftrightarrow \begin{cases} c_1 + c_2 + c_3 = 0 \\ c_2 + 2c_3 = 0 \end{cases}$$

This system has a nontrivial solution, for example $c_1 = 1$, $c_2 = -2$, $c_3 = 1$. Hence S is linearly dependent.

• In \mathbb{R}^n , the set of vectors consisting of

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1)$$

is linearly independent.

• In $P_n[x]$, the set $\{1, x, \dots, x^n\}$ is linearly independent.

In \mathbb{R}^3 , determine whether the following set of vectors is linearly independent of dependent: $S = \{v_1, v_2, v_3\}$, where $v_1 = (1, 2, 3)$, $v_2 = (1, 1, -2)$, $v_3 = (2, 3, 2)$.

• The relation $c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{0}$ is equivalent to

$$c_1(1,2,3) + c_2(1,1,-2) + c_3(2,3,2) = (0,0,0) \Leftrightarrow \begin{cases} c_1 + c_2 + 2c_3 = 0 \\ 2c_1 + c_2 + 3c_3 = 0 \\ 3c_1 - 2c_2 + 2c_3 = 0 \end{cases}$$

• The coefficient matrix of this homogeneous linear system has non-zero determinant:

$$\begin{vmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & -2 & 2 \end{vmatrix} \neq 0.$$

- Hence the system only has the trivial solution $(c_1, c_2, c_3) = (0, 0, 0)$.
- Hence, S is linearly independent.

In \mathbb{R}^3 , determine whether the following set of vectors is linearly independent of dependent: $S = \{v_1, v_2, v_3\}$, where $v_1 = (1, 2, 3)$, $v_2 = (1, 1, -2)$, $v_3 = (2, 3, 1)$.

• The relation $c_1v_1 + c_2v_2 + c_3v_3 = \mathbf{0}$ is equivalent to

$$c_1(1,2,3) + c_2(1,1,-2) + c_3(2,3,1) = (0,0,0) \Leftrightarrow \begin{cases} c_1 + c_2 + 2c_3 = 0 \\ 2c_1 + c_2 + 3c_3 = 0 \\ 3c_1 - 2c_2 + 1c_3 = 0 \end{cases}$$

- The coefficient matrix of this homogeneous linear system has zero determinant: $\begin{vmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & -2 & 1 \end{vmatrix} = 0.$
- Hence the system only has a nontrival solution $(c_1, c_2, c_3) \neq (0, 0, 0)$. (For example, $c_1 = 1, c_2 = 1, c_3 = -1$.)
- Hence, *S* is linearly dependent.

Properties

- Any (non empty) subset of a linearly independent set is linearly independent.
- 2 Any set containing a linearly dependent set is linearly dependent.
- **3** A set $\{v\}$ consisting of one vector is linearly independent if and only if $v \neq \mathbf{0}$.
- A set consisting two vectors are linearly dependent if one vector is a scalar multiple of the other.

Remark: A set containing the zero $\mathbf{0}$ is always linearly dependent.

Proposition

A set $S = \{v_1, \dots, v_k\}$, $k \ge 2$, linearly dependent if and only if at least one of the vector v_j can be written as a linear combination of the other vectors in S.

Theorem

Let V be a vector space. Suppose $\{v_1, \ldots, v_n\}$ is a linearly independent set of vectors in V and $\{w_1, \ldots, w_m\}$ is a spanning set of V. Then $n \leq m$.

3.3.2. Basis, dimension

Definition (basis)

A set $\mathcal{B} = \{v_1, \dots, v_n\}$ of vectors in a vector space V is called a *basis* for V if the following conditions are true:

- B is linearly independent;
- $\circled{\mathcal{B}}$ is a spanning set of V.

Example:

- $\{(1,1),(1,2)\}$ is a basis for \mathbb{R}^2 .
- $\{(1,0),(0,1)\}$ is a basis for \mathbb{R}^2 .
- $\{(1,1),(1,2),(1,3)\}$ is not a basis for \mathbb{R}^2 .

• Set $\{e_1, \ldots, e_n\}$ in \mathbb{R}^n consisting of the following vectors

$$e_1 = (1, 0, 0, \dots, 0), e_2 = (0, 1, 0, \dots, 0), \dots, e_n = (0, 0, \dots, 0, 1),$$

is a basis for \mathbb{R}^n . This basis is called the *standard basis* (or the canonical basis) for \mathbb{R}^n .

- Set $\{1, x, x^2, \dots, x^n\}$ is basis for $P_n[x]$. This basis is called the *standard basis* (or the canonical basis) for $P_n[x]$.
- A basis for $\mathcal{M}_{2\times 2}(\mathbb{R})$ is the following set, which consist of the following vectors

$$\left\{\begin{bmatrix}1 & 0\\0 & 0\end{bmatrix},\begin{bmatrix}0 & 1\\0 & 0\end{bmatrix},\begin{bmatrix}0 & 0\\1 & 0\end{bmatrix},\begin{bmatrix}0 & 0\\0 & 1\end{bmatrix}\right\}$$

Theorem

If V has one basis with n vector, then every basis for V has n vector.

Definition (dimension)

If V has a basis consisting of n vector then the number n is called the *dimension* of V, denoted by $\dim V = n$, and we say that V is an n-dimensional vector space.

Remark:

- If $V = \{0\}$, then we make a convention that dim V = 0, and \emptyset is a basis for V.
- If $V \neq \{0\}$ and V does not have a finite basis then we say that V is infinitely dimensional, and write dim $V = \infty$.

If dim V = n or dim V = 0 then we say that V is finite dimensional.

- dim $\mathbb{R}^n = n$.
- dim $P_n[x] = n + 1$.
- Let $P[x] := \mathbb{R}[x]$ be the vector of all real polynomials (with standard operations). Then dim $P[x] = \infty$.
- dim $\mathcal{M}_{m\times n}(\mathbb{R})=mn$.

Example

Find the dimension of the following subspace of \mathbb{R}^3 :

$$W = \{(a, a + b, b) \mid a, b \in \mathbb{R}\}.$$

- Let $v = (a, a + b, b) \in W$ be any vector in W. We have (a, a + b, b) = (a, a, 0) + (0, b, b) = a(1, 1, 0) + b(0, 1, 1).
- Hence W is spanned by $S = \{(1, 1, 0), (0, 1, 1)\}.$
- We can show that S is linearly independent.
- Hence S is a basis for W and dim W = 2.

Theorem (Dimension of the solution space of a homogeneous system)

Let V be the solution space of the homogeneous system $A\mathbf{x} = \mathbf{0}$, where n=number of variables=number of columns of A. Then

$$\dim V = n - \operatorname{rank}(A).$$

Example (CK20151)

Find m such that the solution space of the following system has dimension 2:

$$\begin{cases} 2x_1 + x_2 - x_3 + 3x_4 - 2x_5 &= 0 \\ x_1 - 2x_2 + 3x_3 + mx_4 + x_5 &= 0 \\ 3x_1 - x_2 + 2x_3 + 4x_4 - x_5 &= 0 \end{cases}$$

Properties

Let V be a vector space of dimension n.

- Every set having fewer than n vectors is not a spanning set of V.
- Every set having more than *n* vectors is linearly dependent.

In particular, for any set S of vectors in V, if S has m vectors and $m \not h$, then S is not a basis for V.

Theorem

Let V be a vector space of dimension n.

- Every linearly independent set having exactly n vectors is a basis for V.
- Every spanning set having exactly n vectors is a basis for V.

Some extra properties

Let V be a vector space of dimension n.

Theorem (Extending an independent set)

Let $S = \{v_1, \dots, v_k\} \subset V$ be a linearly independent set of k vectors in V. Then $k \leq n$. Moreover, if k < n then we can find n - k vectors v_{k+1}, \dots, v_n such that the set $\{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ is a basis for V.

Theorem (Extracting a spanning set)

Let $S = \{v_1, \dots, v_m\} \subset V$ be a spanning set of m vectors in V. Then $m \geq n$. Moreover, if $m \geq n$, we can remove m - n vectors from S such that the subset set of n remaining vectors is a basis for V.

Theorem (Dimension of a subspace)

If W is a vector subspace of V, then dim $W \leq \dim V$ with equality precisely when W = V.

3.3.3. Coordinates

Let $\mathcal{B} = \{v_1, \dots, v_n\}$ be a basis for K-vector space V.

Theorem - Definition

Let $v \in V$. Then there is a unique *n*-tuple $(c_1, c_2, \dots, c_n) \in K^n$, such that

$$v = c_1v_1 + c_2v_2 + \cdots + c_nv_n.$$

The numbers c_1, c_2, \ldots, c_n are called the coordinates of v with respect to (relative to) the basis \mathcal{B} . The n-tuple (c_1, c_2, \ldots, c_n) is called the (row) coordinate vector of v relative to \mathcal{B} , and denoted by

$$(v)_{\mathcal{B}}=(c_1,c_2,\ldots,c_n).$$

We also denote
$$[v]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$
, and call it the coordinate vector (or coordinate matrix)of v relative to \mathcal{B} .

Remarks: Coordinates of v depend on the order of the vectors in a basis.

Example

In \mathbb{R}^2 , find the coordinates of v = (1,4) relative to the basis $\mathcal{B} = \{v_1 = (1,1,), v_2 = (-1,2)\}$.

•
$$(v)_{\mathcal{B}} = (c_1, c_2) \Leftrightarrow v = c_1 v_1 + c_2 v_2 \Leftrightarrow (1, 4) = c_1 (1, 1) + c_2 (-1, 2) \Leftrightarrow \begin{cases} c_1 - c_2 = 1 \\ c_1 + 2c_2 = 4 \end{cases} \Leftrightarrow \begin{cases} c_1 = 2 \\ c_2 = 1 \end{cases}$$

• Hence $(v)_{\mathcal{B}} = (2,1)$, or $[v]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.

Change of basis

Problem

Le V be a K-vector space. Suppose we have two bases for V: $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ and $\mathcal{B}' = \{v'_1, v'_2, \dots, v'_n\}$. We want to find a relation between $[v]_{\mathcal{B}}$ and $[v]_{\mathcal{B}'}$.

For each j, we write v'_i as a linear combination of vectors in basis \mathcal{B} :

$$v'_{1} = p_{11}v_{1} + p_{21}v_{2} + \dots + p_{n1}v_{n}$$

$$v'_{2} = p_{12}v_{1} + p_{22}v_{2} + \dots + p_{n2}v_{n}$$

$$\dots$$

$$v'_{n} = p_{1n}v_{1} + p_{2n}v_{2} + \dots + p_{nn}v_{n}.$$

In other words,

$$[v_1']_{\mathcal{B}} = \begin{bmatrix} p_{11} \\ p_{21} \\ \vdots \\ p_{n1} \end{bmatrix}, [v_2']_{\mathcal{B}} = \begin{bmatrix} p_{12} \\ p_{22} \\ \vdots \\ p_{n2} \end{bmatrix}, \dots, [v_n']_{\mathcal{B}} = \begin{bmatrix} p_{1n} \\ p_{2n} \\ \vdots \\ p_{nn} \end{bmatrix}.$$

Definition (Change of basis matrix)

$$\mathsf{Matrix}\ P = [[v_1']_{\mathcal{B}}\ [v_2']_{\mathcal{B}}\cdots [v_n']_{\mathcal{B}}] = \begin{bmatrix} p_{11} & p_{12} & \dots & p_{1n} \\ p_{21} & p_{22} & \dots & p_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1} & p_{n2} & \dots & p_{nn} \end{bmatrix} \text{ is called the } transition\ matrix\ (\text{or the } change$$

of basis) from the basis \mathcal{B} to the basis \mathcal{B}' .

Theorem

We have

$$[v]_{\mathcal{B}} = P[v]_{\mathcal{B}'}, \quad \forall v \in V.$$

Moreover, if Q is a matrix such that $[v]_{\mathcal{B}} = Q[v]_{\mathcal{B}'}, \forall v \in V$, then Q = P.

Property

If P is the transition matrix from a basis \mathcal{B} to a basis \mathcal{B}' then P is invertible and P^{-1} is the transition matrix from \mathcal{B}' to \mathcal{B} , and

$$[v]_{\mathcal{B}'} = P^{-1}[v]_{\mathcal{B}}, \quad \forall v \in V.$$

Example

Let $\mathcal{B} = \{(1,1),(-1,2)\}$ and $\mathcal{B}' = \{(1,4),(-2,1)\}$ be two bases for \mathbb{R}^2 . Find the transition matrix P from \mathcal{B} to \mathcal{B}' .

For v = (-1, 5), compare $[v]_{\mathcal{B}}$ and $P[v]_{\mathcal{B}'}$.

- $v_1' = (1,4), [v_1']_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}.$
- $v_2' = (-2,1), [v_2']_{\mathcal{B}} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$
- ullet The transition matrix from ${\mathcal B}$ to ${\mathcal B}'$:

$$P = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix}$$

• $[v]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $[v]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and

$$P[v]_{\mathcal{B}'} = \begin{bmatrix} 2 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} = [v]_{\mathcal{B}}.$$

3.3.4. Rank of a set of vectors

Let $S = \{v_1, v_2, \dots, v_m\}$ be a set of vectors in a vector space V.

Định nghĩa

A subset T of S is said to be maximal linearly independent (in S) if the following conditions are true.

- T is linearly independent.
- ② If $T \subset T' \subset S$ and $T \not T'$ then T is linearly dependent. (Equivalently, if we add any vector v in $S \setminus T$ to T then the set $T \cup \{v\}$ is linearly dependent.)

Example

Consider $S = \{v_1, v_2, v_3, v_3\}$ where $v_1 = (1, 1, 1)$, $v_2 = (1, 2, 3)$, $v_3 = (2, 3, 4)$, $v_4 = (0, 1, 2)$. Then $T = \{v_1, v_2\}$ is a maximal linearly independent subset of S. Because

- $\{v_1, v_2\}$ is linearly independent, and
- If we add $v_3 \in S \setminus T$ to T we obtain the subset $\{v_1, v_2, v_3\}$, which is linearly dependent, and
- If we add $v_4 \in S \setminus T$ to T we obtain the subset $\{v_1, v_2, v_4\}$, which is linearly dependent.

Similarly, $\{v_1, v_3\}$ is also a maximal linearly independent subset of S.

Proposition

If T is a maximal linearly independent subset of S then T is a basis for span(S).

Corollary

Two maximal linearly independent subsets of S have the same number of vectors.

Definition (Rank of a set of vectors)

The number of vectors in a maximal linearly independent subset of $S = \{v_1, \dots, v_m\}$ is called the rank of S, denoted by

$$\operatorname{rank}(S) = \operatorname{rank}\{v_1, \ldots, v_m\}.$$

Remarks:

•

$$\dim \operatorname{span}(S) = \operatorname{rank}(S).$$

- $rank(S) = rank(v_1, ..., v_m) = r$ means that we can find r linearly independent vectors in S, and tính, every subset of r + 1 vectors in S, if any, is linearly dependent.
- $\operatorname{rank}\{v_1,\ldots,v_m\}=m\Leftrightarrow\{v_1,\ldots,v_m\}$ is linearly independent.

The row (column) coordinate matrix of a set of vectors

- Let $\mathcal B$ be a basis for V, dim V=n, and $S=\{v_1,\ldots,v_m\}$ a set of vectors in V.
- Suppose

$$(v_1)_{\mathcal{B}} = (a_{11}, a_{12}, \dots, a_{1n})$$

 $(v_2)_{\mathcal{B}} = (a_{21}, a_{22}, \dots, a_{2n})$
 \dots
 $(v_m)_{\mathcal{B}} = (a_{m1}, a_{m2}, \dots, a_{mn})$

• Then
$$(S)_{\mathcal{B}} := \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} = the \ row \ coordinate \ matrix \ of \ S \ relative \ to \ \mathcal{B}.$$

•
$$[S]_{\mathcal{B}} := \begin{bmatrix} a_{11} & a_{21} & \dots & a_{m1} \\ a_{12} & a_{22} & \dots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{mn} \end{bmatrix} = the (column) coordinate matrix of S relative to $\mathcal{B}$$$

Let V be an n-dimensional vector space, \mathcal{B} a basis for V.

Proposition (Finding the rank of a set of vectors)

Let $S = \{v_1, \dots, v_m\}$ be a set of vectors in V. Let A be the row coordinate matrix of S relative to \mathcal{B} . Then

$$\operatorname{rank}(S)=\operatorname{rank}(A).$$

Corollary

Let V be an n-dimensional vector space, \mathcal{B} a basis for V, and $S = \{v_1, \dots, v_n\}$ a set of n vectors in V. Let A be the row coordinate matrix of S relative to \mathcal{B} . Then

S is a basis for
$$V \Leftrightarrow \det(A) \neq 0$$
.

Finding a basis for span(S)

Let S be a set of vectors in V. To find a basis for span(S) we do the following.

- Find the row coordinate matrix A of S relative to some basis \mathcal{B} .
- Use **row** elementary operations to bring A to a row echelon matrix A'. Matrix A' has r nonzero rows u_1, \ldots, u_r .
- Let v'_1, \ldots, v'_r be vectors in V such that $(v'_i)_{\mathcal{B}} = u_i$, for $i = 1, \ldots, r$.
- Then $\{v'_1, \ldots, v'_r\}$ is a basis for span(S).

Example (CK20181-N2)

In $P_2[x]$, consider the following vectors: $v_1 = 1 + x + x^2$, $v_2 = 2 + mx - x^2$, $v_3 = 4 + 5x + x^2$, $v = 10 + 11x - 5x^2$.

- a) Find m such that $B = \{v_1, v_2, v_3\}$ is linearly dependent.
- b) For m = 2, show that B is basis for $P_2[x]$. Find coordinates of v relative to B.
- The row coordinate matrix of B relative to the standard basis $\{1, x, x^2\}$ is $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & m & -1 \\ 4 & 5 & 1 \end{bmatrix}$.
- B is linearly independent $\Leftrightarrow \operatorname{rank}(B) < 3 \Leftrightarrow \operatorname{rank}(A) < 3 \Leftrightarrow \det(A) = 0$.
- $det(A) = \begin{vmatrix} 1 & 1 & 1 \\ 2 & m & -1 \\ 4 & 5 & 1 \end{vmatrix} = 9 3m.$
- *B* is linearly independent $\Leftrightarrow 9 3m = 0 \Leftrightarrow m = 3$.

- When m = 2, $det(A) \neq 0$, hence B is a basis for so của $P_2[x]$.
- Let $(v)_B = (c_1, c_2, c_3)$ be the row coordinate vector of v relative to the basis B.

• We have
$$v = c_1 v_1 + c_2 v_2 + c_3 v_3 \Leftrightarrow \begin{cases} c_1 + 2c_2 + 4c_3 &= 10 \\ c_1 + 2c_2 + 5c_3 &= 11 \\ c_1 - c_2 + c_3 &= -5 \end{cases} \Leftrightarrow \begin{cases} c_1 = -2 \\ c_2 = 4 \\ c_3 = 1 \end{cases}.$$

• Thus $(v)_B = (-2, 4, 1)$.

Sum and intersection of subspaces

Let V_1 and V_2 be two subspaces of a vector space V.

The subset $V_1 + V_2 = \{v = v_1 + v_2 \mid v_1 \in V_1, v_2 \in V_2\}$ is a subspace of V, and it is called the *sum* of V_1 and V_2 .

Theorem

If V_1 and V_2 are finite dimensional then $V_1 + V_2$ is finite dimensional and

$$\dim(V_1 + V_2) = \dim(V_1) + \dim(V_2) - \dim(V_1 \cap V_2).$$

Example (CK20181)

In $P_3[x]$, consider the vectors $u_1 = 1 + 2x - x^3$, $u_2 = 2 - x + x^2 + 2x^3$, $u_3 = -1 + x - x^2 + x^3$, $u_4 = 4 + 2x^2$ and let $V_1 = \text{span}\{u_1, u_2\}$, $V_2 = \text{span}\{u_3, u_4\}$. Find the dimension and a basis of the subspace $V_1 + V_2$ and of the subspace $V_1 \cap V_2$.

Some exercises

- (CK20151) In \mathbb{R}^4 , consider the vectors $u_1 = (1, 3, -2, 1)$, $u_2 = (-2, 3, 1, 1)$, $u_3 = (2, 1, 0, 1)$, u = (1, -1, -3, m). Find m such that $u \in \text{span}\{u_1, u_2, u_3\}$.
- (CK20151-No.7) In \mathbb{R}^4 , consider the vectors $u_1 = (1,0,1,1)$, $u_2 = (-3,2,1,-1)$, $u_3 = (2,1,0,2)$, u=(1,2,1,m). Find m such that $S=\{u_1,u_2,u_3,u_4\}$ is linearly dependent.
- (CK20151) In $P_3[x]$, consider the vectors $v_1 = 1 + x + x^2$. $v_2 = x x^2 + x^3$. $v_3 = 1 + 2x + x^2 + x^3$. $v_4 = 2 + 2x + 4x^2$. $V_1 = \operatorname{span}\{v_1, v_2\}$, $V_2 = \operatorname{span}\{v_3, v_4\}$. Find the dimension and a basis of $V_1 + V_2$.
- (CK20181-N3) Consider the vectors $v_1 = (2, 1, 5, 8), v_2 = (1, -1, 3, 5), v_3 = (0, 2, 1, 6), v_4 = (-3, 5, 2, 1)$
 - a) Show that v_1, v_2, v_3, v_4 form a basis for \mathbb{R}^4 .
 - b) Find the coordinates of v = (-5, 15, 15, 13) relative to the basis in part (a).
- (CK20193-N2) Consider the vectors $u_1 = (2, -1, 3, 0, 2), u_2 = (1, -4, 2, 5, -1), u_3 = (3, 2, 4, 6, 0).$ $u_4 = (7, 0, 10, 6, 4)$ in \mathbb{R}^5 . Find a basis and the dimension of the subpace spanned by these vectors.