1.2 长度与点积

1
$$v = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 与 $w = \begin{bmatrix} 4 \\ 5 \end{bmatrix}$ 的 "点积" 为 $v \cdot w = (1)(4) + (2)(5) = 4 + 10 = 14$ 。

2 因为
$$\mathbf{v} \cdot \mathbf{w}$$
 是 0: $(1)(4) + (3)(-4) + (2)(4) = \mathbf{0}$,所以 $\mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$ 与 $\mathbf{w} = \begin{bmatrix} 4 \\ -4 \\ 4 \end{bmatrix}$ 是垂直的。

$$3 \ \mathbf{v} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$
 长度的平方为 $\mathbf{v} \cdot \mathbf{v} = 1 + 9 + 4 = 14$ 。 **其长度为** $\|\mathbf{v}\| = \sqrt{14}$ 。

4 于是
$$u = \frac{v}{\|v\|} = \frac{v}{\sqrt{14}} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1\\3\\2 \end{bmatrix}$$
 的长度为 $\|u\| = 1$ 。检验 $\frac{1}{14} + \frac{9}{14} + \frac{4}{14} = 1$ 。

$$5 \ \boldsymbol{v} \$$
与 \boldsymbol{w} 的夹角 $\theta \$ 有 $\cos \theta = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\| \ \|\boldsymbol{w}\|}$ 。

7 所有角都有 $|\cos \theta| \le 1$ 。因此,所有向量都有 $|v \cdot w| \le ||v|| ||w||$

第一节放弃了讲向量相乘。现在我们继续来定义 \boldsymbol{v} 与 \boldsymbol{w} 的"点积"。这个乘法包含单独的积 v_1w_1 和 v_2w_2 ,但它并不止于此。这两个数加起来得出一个数 $\boldsymbol{v}\cdot\boldsymbol{w}$ 。

以下是几何部分 (向量长度及它们夹角的余弦)。

$$\boldsymbol{v}=(v_1,v_2)$$
与 $\boldsymbol{w}=(w_1,w_2)$ 的点积或者说内积是数 $\boldsymbol{v}\cdot\boldsymbol{w}$:
$$\boldsymbol{v}\cdot\boldsymbol{w}=v_1w_1+v_2w_2. \tag{1}$$

例 1 向量 v = (4,2) 与 w = (-1,2) 点积为零:

在数学中,0 总是一个特别的数。对于点积,它意味着这两个向量是垂直的。它们的夹角是 90°。当我们在图 1.1 中画出它们时,我们见到了一个矩形(不仅仅是任一平行四边形)。垂直向量最清晰的例子是沿 x 轴的 i=(1,0) 与沿 y 轴向上的 j=(0,1)。再一次地,点积为 $i\cdot j=0+0=0$ 。向量 i 与 j 呈直角。

 $\boldsymbol{v}=(1,2)$ 与 $\boldsymbol{w}=(3,1)$ 的点积是 5。马上, $\boldsymbol{v}\cdot\boldsymbol{w}$ 将揭露 \boldsymbol{v} 与 \boldsymbol{w} 的夹角(非 90°)。请检验 $\boldsymbol{w}\cdot\boldsymbol{v}$ 也是 5。

点积 $w \cdot v$ 等于 $v \cdot w \cdot v$ 与 w 的顺序没有差别。

例 2 在点 x = -1 (0 的左边) 置权重 4 且在点 x = 2 (0 的右边) 置权重 2。x 轴将在中点平衡(就像拉锯)。因为其点积为 (4)(-1) + (2)(2) = 0,所以权重平衡。

这是一个典型工程与科学的例子。权重向量是 $(w_1,w_2)=(4,2)$ 。距中点的距离向量为 $(v_1,v_2)=(-1,2)$ 。权重乘以距离, w_1v_1 及 w_2v_2 ,得出"力矩"。跷跷板平衡的方程为 $w_1v_1+w_2v_2=0$ 。

例 3 点积投入到经济与商业中。我们有三种商品要购买与销售。它们的单价为 (p_1, p_2, p_3) ——这是"价格向量"p。我们购买或销售的数量为 (q_1, q_2, q_3) ——当我们售出时为正、购入时为负。以价格 p_1 售出 q_1 个赚取 q_1p_1 。总收益 (数量 q 乘以价格 p) 是三维点积 $p\cdot q$:

收益 =
$$(q_1, q_2, q_3) \cdot (p_1, p_2, p_3) = q_1 p_1 + q_2 p_2 + q_3 p_3 = 点积$$
。

零点积意味着"账目平衡"。若 $q \cdot p = 0$ 则售出总计等于购入总计。于是 p 与 q 垂直(在三维空间)。一家有上千种商品的超市很快就进入高维度。

小注记: 电子表格在管理中变得至关重要。它们计算线性组合与点积。你在屏幕上见到的是个矩阵。

重点 对于 $\boldsymbol{v} \cdot \boldsymbol{w}$, 每个 v_i 乘以 w_i 。因此 $\boldsymbol{v} \cdot \boldsymbol{w} = v_1 w_1 + \cdots + v_n w_n$ 。

长度与单位向量

一个重要实例是向量与它自己的点积。在此情况下 v 等于 w。当向量是 v=(1,2,3) 时,与它自己的点积为 $v\cdot v=\|v\|^2=14$:

点积
$$\boldsymbol{v} \cdot \boldsymbol{v}$$
 长度平方
$$\|\boldsymbol{v}\|^2 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 4 + 9 = \mathbf{14} \ \text{向量夹角不是 } 90^\circ \ \text{m是 } 0^\circ \text{. 因为 } \boldsymbol{v} \ \text{不与它}$$

自己垂直,所以答案不是0。点积 $v \cdot v$ 得出v长度的平方。

定义 向量 v 的长度 ||v|| 是 $v \cdot v$ 的平方根:

长度 =
$$\|\mathbf{v}\| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = (v_1^2 + v_2^2 + \dots + v_n^2)^{1/2}$$
。

在二维中长度是 $\sqrt{v_1^2+v_2^2}$ 。 在三维中它是 $\sqrt{v_1^2+v_2^2+v_3^2}$ 。 通过上面的计算, $\boldsymbol{v}=(1,2,3)$ 的长度为 $\|\boldsymbol{v}\|=\sqrt{14}$ 。

这里 $\|\boldsymbol{v}\| = \sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}$ 就是表示向量的箭头的普通长度。假设分量为 1 和 2,则箭头是直角三角形的第 3 条边(图 1.6)。毕达哥拉斯定理 $a^2 + b^2 = c^2$ 关联着三条边: $1^2 + 2^2 = \|\boldsymbol{v}\|^2$ 。

对于 v = (1,2,3) 的长度,我们两次运用直角定理。基向量 (1,2,0) 的长度为 $\sqrt{5}$ 。这个基向量与直立向上的 (0,0,3) 垂直。因此这个盒子的对角线长度为 $||v|| = \sqrt{5+9} = \sqrt{14}$ 。

四维向量的长度应当是 $\sqrt{v_1^2 + v_2^2 + v_3^2 + v_4^2}$ 。于是向量 (1,1,1,1) 长度为 $\sqrt{1^2 + 1^2 + 1^2 + 1^2} = 2$ 。这是四维空间中穿过单位立方体的对角线。n 维立方体的对角线长度为 \sqrt{n} 。

图 1.6: 二维与三维向量长度 $\sqrt{v \cdot v}$ 。

"**单位**"一词总是说明一些度量值等于"1"。单位价格是一件的价格。一个立方体的边长为 1。一个单位圆是半径为 1 的圆。现在我们理解了"单位向量"的含义。

定义 一个单位向量 u 是一个长度等于 1 的向量。因此 $u \cdot u = 1$ 。

一个四维例子是 $\mathbf{u} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ 。于是 $\mathbf{u} \cdot \mathbf{u}$ 是 $\frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} = 1$ 。我们将 $\mathbf{v} = (1, 1, 1, 1)$ 除以它的长度 $\|\mathbf{v}\| = 2$ 以得出这个单位向量。

例 4 沿 x 轴和 y 轴的单位向量写为 i 和 j。在 xy 平面,与 x 轴成 " θ " 角的单位向量是 $(\cos \theta, \sin \theta)$:

单位向量
$$i = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 与 $j = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 与 $u = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$.

当 $\theta = 0$ 时,水平向量 \boldsymbol{u} 为 \boldsymbol{i} 。当 $\theta = 90^\circ$ 时,竖直向量为 \boldsymbol{j} 。因为 $\cos^2\theta + \sin^2\theta = 1$,所以在任何角度,其分量 $\cos\theta$ 和 $\sin\theta$ 都得出 $\boldsymbol{u} \cdot \boldsymbol{u} = 1$ 。这些向量延伸为图 1.7 中的单位圆。因此 $\cos\theta$ 和 $\sin\theta$ 仅 仅是单位圆在 θ 角上的坐标。

由于 (2,2,1) 长度为 3, 向量 $(\frac{2}{3},\frac{2}{3},\frac{1}{3})$ 长度为 1。检验 $\boldsymbol{u}\cdot\boldsymbol{u}=\frac{4}{9}+\frac{4}{9}+\frac{1}{9}=1$ 。为了得单位向量,将任意非零向量 \boldsymbol{v} 除以它的长度 $\|\boldsymbol{v}\|$ 。

单位向量 $u=v/\|v\|$ 是与 v 同方向的单位向量。

图 1.7: 坐标向量 i 与 j。v = (1,1) 除以它的长度 $||v|| = \sqrt{2}$ 为(左边)45° 角处的单位向量 u。单位向量 $u = (\cos \theta, \sin \theta)$ 在角 θ 处。

两向量的夹角

我们阐明了垂直向量具有 $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ 。当夹角为 90° 时,其点积为 0。为了解释这一点,我们得将角度与点积联系起来。然后我们演示 $\boldsymbol{v} \cdot \boldsymbol{w}$ 如何求出任意两非零向量的夹角。

直角 当 v 与 w 垂直时, 其点积为 $v \cdot w = 0$ 。

证明 当 v 与 w 垂直时,它们构成直角三角形的两条边。第三条边为 v-w (图 1.8 中横跨着的斜边)。 关于直角三角形边的毕达哥拉斯定理是 $a^2+b^2=c^2$:

垂直向量
$$\|v\|^2 + \|w\|^2 = \|v - w\|^2$$
 (2)

在二维中写出这些长度的公式, 此方程为

毕达哥拉斯
$$(v_1^2 + v_2^2) + (w_1^2 + w_2^2) = (v_1 - w_1)^2 + (v_2 - w_2)^2.$$
 (3)

右边以 $v_1^2 - 2v_1w_1 + w_1^2$ 开始。于是方程两边都有 v_1^2 与 w_1^2 然后它们消去了,剩下 $-2v_1w_1$ 。 v_2^2 与 w_2^2 也消去了,剩下 $-2v_2w_2$ 。(在三维中应当有 $-2v_3w_3$ 。) 立即除以-2 来看出 $\boldsymbol{v}\cdot\boldsymbol{w}=0$ (原书此处有误!):

$$0 = -2v_1w_1 - 2v_2w_2 \quad \text{##:} \quad v_1w_1 + v_2w_2 = 0 \tag{4}$$

结论 直角产生 $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ 。当夹角为 $\theta = 90^\circ$ 时,点积为 0。那时 $\cos \theta = 0$ 。因为 $\boldsymbol{0} \cdot \boldsymbol{w}$ 总是 0,所以 零向量 $\boldsymbol{v} = \boldsymbol{0}$ 与每个向量 \boldsymbol{w} 都垂直。

现假设 $\boldsymbol{v} \cdot \boldsymbol{w}$ 非零。它可能是正的也可能是负的。 $\boldsymbol{v} \cdot \boldsymbol{w}$ 的符号会立即向我们表明是小于直角还是大于直角。当 $\boldsymbol{v} \cdot \boldsymbol{w}$ 为正时,夹角小于 90°。当 $\boldsymbol{v} \cdot \boldsymbol{w}$ 为负时,夹角大于 90°。图 1.8 的右边展示了一个典型的向量 $\boldsymbol{v} = (3,1)$ 。因为 $\boldsymbol{v} \cdot \boldsymbol{w} = 6$ 为正,所以其与 $\boldsymbol{w} = (1,3)$ 的夹角小于 90°。

$$\mathbf{w} = \begin{bmatrix} -1\\2 \end{bmatrix} \underbrace{\sqrt{25}}_{\mathbf{v} \cdot \mathbf{w} = 0} v = \begin{bmatrix} 4\\2 \end{bmatrix}$$

$$\underbrace{\mathbf{v} \cdot \mathbf{w} = 0}_{5+20=25}$$

图 1.8: 垂直向量具有 $\boldsymbol{v} \cdot \boldsymbol{w} = 0$ 。因此 $\|\boldsymbol{v}\|^2 + \|\boldsymbol{w}\|^2 = \|\boldsymbol{v} - \boldsymbol{w}\|^2$ 。

分界线就是与 v 垂直的地方。在介于正和负之间的分界线上,(1,-3) 与 (3,1) 垂直。其点积为 0。 **点积反应了精确夹角** θ 。对于单位向量 u 与 U, $u \cdot U$ 的符号表明是 $\theta < 90^\circ$ 还是 $\theta > 90^\circ$ 。不仅如此,**点积** $u \cdot U$ 还是 θ 的余弦。这在 n 维中仍然正确。

单位向量 u 与 U 夹角为 θ , 有 $u \cdot U = \cos \theta$ 。无疑地, $|u \cdot U| \le 1$ 。

记住 $\cos\theta$ 绝不会大于 1。绝不会小于-1。单位向量的点积介于-1 和 1 之间。 θ 的余弦由 $u \cdot U$ 显示出。图 1.9 清晰展示了向量为 $u = (\cos\theta, \sin\theta)$ 与 i = (1,0) 时的情况。其点积为 $u \cdot i = \cos\theta$ 。这是它们夹角的余弦。

旋转任意 α 角之后,它们依然是单位向量。向量 i = (1,0) 旋转至 $(\cos \alpha, \sin \alpha)$ 。向量 u 旋转至 $(\cos \beta, \sin \beta)$,其中 $\beta = \alpha + \theta$ 。它们的点积为 $\cos \alpha \cos \beta + \sin \alpha \sin \beta$ 。这在三角学中是 $\cos(\beta - \alpha) = \cos \theta$ 。

图 1.9: 单位向量: $\mathbf{u} \cdot \mathbf{U} \in \theta$ (夹角) 的余弦。

倘若 v 和 w 不是单位向量呢?除以它们的长度来得出 $u=v/\|v\|$ 和 $U=w/\|w\|$ 。于是这些单位向量 u 和 U 的点积得出 $\cos\theta$ 。

余弦公式 若
$$v$$
 与 w 为非零向量,则 $\frac{v \cdot w}{\|v\| \|w\|} = \cos \theta.$ (5)

请勿商业交易! 仅交流学习! 邮箱: youth_eric@163.com 微信号: tengxunweixin_id

不论夹角多大,这个 $v/\|v\|$ 与 $w/\|w\|$ 的点积绝不会超过 1。这就是关于点积的"**施瓦茨不等式**" $|v\cdot w| \le \|v\| \|w\|$ ——或者更准确地称为柯西—施瓦茨—布尼亚科夫斯基不等式。它在法国、德国及俄罗斯(可能还有其它地方——它是数学中最重要的不等式)。

由于 $|\cos\theta|$ 一定不会超过 1,则余弦公式给出了两个重要不等式:

施瓦茨不等式 $|v \cdot w| \le ||v|| ||w||$

三角不等式 $||v+w|| \le ||v|| + ||w||$

例 5 对
$$\boldsymbol{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 与 $\boldsymbol{w} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 求 $\cos \theta$ 并检验两个不等式。

解 其点积为 $\mathbf{v} \cdot \mathbf{w} = 4$ 。 \mathbf{v} 和 \mathbf{w} 的长度都是 $\sqrt{5}$ 。其夹角余弦是 4/5。

$$\cos \theta = \frac{\boldsymbol{v} \cdot \boldsymbol{w}}{\|\boldsymbol{v}\| \|\boldsymbol{w}\|} = \frac{4}{\sqrt{5}\sqrt{5}} = \frac{4}{5}.$$

由施瓦茨不等式, $\boldsymbol{v} \cdot \boldsymbol{w} = 4$ 小于 $\|\boldsymbol{v}\| \|\boldsymbol{w}\| = 5$ 。由三角不等式,边 $3 = \|\boldsymbol{v} + \boldsymbol{w}\|$ 小于边 1+ 边 2。因为 $\boldsymbol{v} + \boldsymbol{w} = (3,3)$,则三条边为 $\sqrt{18} < \sqrt{5} + \sqrt{5}$ 。将这个三角不等式平方得出 18 < 20。

例 6 v = (a,b) 与 w = (b,a) 的点积为 2ab。两个向量长度都是 $\sqrt{a^2 + b^2}$ 。施瓦茨不等式 $v \cdot w \le ||v|| ||w||$ 说明 $2ad \le a^2 + b^2$ 。

如果我们写成 $x=a^2$ 与 $y=b^2$,那这就更著名了。 "几何平均" \sqrt{xy} 不大于 "代数平均" = 平均数 $\frac{1}{7}(x+y)$ 。

几何平均
$$\leq$$
 代数平均 $ab \leq \frac{a^2+b^2}{2}$ 变为 $\sqrt{xy} \leq \frac{x+y}{2}$.

例 5 有 a=2 和 b=1。于是 x=4 且 y=1。其几何平均 $\sqrt{xy}=2$ 小于其代数平均 $\frac{1}{2}(1+4)=2.5$ 。

计算说明

MATLAB,Python 及 Julia 直接处理整个向量,而不是它们的分量。当 v 与 w 被定义出来时,会立即获悉 v+w。按行输入 v 和 w-- ′ 将它们转置为列向量以做准备。2v+3w 变成 2*v+3*w。除非该行以分号结束,否则将会打印出结果。

MATLAB
$$v = \begin{bmatrix} 2 & 3 & 4 \end{bmatrix}'$$
; $w = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}'$; $u = 2 * v + 3 * w$

点积 $v \cdot w$ 是一个行向量乘以一个列向量 (用 * 而不是 \cdot):

我们经常见到
$$\begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$$
 或 $\boldsymbol{v'} * \boldsymbol{w}$ 而不是 $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 4 \end{bmatrix}$

v 的长度被 MATLAB 称为 norm(v)。这也是 sqrt(v'*v)。然后从点积 v'*w 求出余弦及具有此余弦的夹角(弧度):

余弦公式 \qquad 余弦 $=v'*w/(\mathrm{norm}(v)*\mathrm{norm}(w))$ 反余弦 \qquad 夹角 $=\mathrm{acos}($ 余弦)

M 文件将创建一个新函数 cosine(v, w)。 Python 和 Julia 都是开源的。

■ 复习关键点 ■

- 1. 点积 $\mathbf{v} \cdot \mathbf{w}$ 将每个分量 v_i 与 w_i 相乘然后将所有 $v_i w_i$ 加起来。
- 2. $\|v\|$ 的长度是 $v \cdot v$ 的平方根。因此 $u = v / \|v\|$ 是个单位向量:长度为 1。
- 3. 当向量 \mathbf{v} 与 \mathbf{w} 垂直时, 其点积为 $\mathbf{v} \cdot \mathbf{w} = 0$ 。
- 4. θ (任意非零 v 和 w 的夹角) 的余弦决不超过 1:

余弦 $\cos \theta = \frac{v \cdot w}{\|v\| \|w\|}$ 施瓦茨不等式 $\|v \cdot w\| \le \|v\| \|w\|$ 。