Reconocimiento de Patrones y Aprendizaje Automatizado

Práctica 3. Normalización, Funciones de activación, EarlyStopping, Red Neuronal Artificial Multicapa

Profesor: Miguel Daniel Garrido Reyes Ayudante: Melissa Vázquez González Ayud. Lab.: Luis Emilio González Covarrubias

16 de febrero de 2024

Proporcionar un enlace a una carpeta en un repositorio de GitHub que contenga el cuaderno de la práctica (notebook).

Ejercicio

Desarrolla un clasificador binario utilizando el conjunto de datos MNIST. El objetivo es diferenciar entre dígitos que son "cincos" (clase 1) y dígitos que "no son cincos" (clase 0). Se debe implementar una red neuronal artificial multicapa con las siguientes características:

- 1. Preparación de Datos:
 - Utilizar la base de datos MNIST.
 - Normalizar los datos para escalarlos entre 0 y 1.
 - Balancear los datos para tener aproximadamente el mismo número de cincos y dígitos que no son cincos.
- 2. Implementar una red neuronal multicapa con las siguientes especificaciones:
 - Dos neuronas en la primera capa.
 - Una neurona en la segunda capa (salida).
- 3. Entrenamiento del Modelo:

- Utilizar Early Stopping monitoreando la métrica que consideres adecuada (por ejemplo accuracy o loss).
- Elegir los hiperparámetros para batch size y validation split que consideres adecuados.

4. Evaluación del Modelo:

- Graficar el histórico de accuracy y loss para el entrenamiento y validación.
- Muestra las imágenes de al menos 80 errores de clasificación de tu modelo.
- Reportar accuracy, precisión, recall y f1-score para ambas clases.
- 5. **Punto extra:** Grafica la curva ROC de tu modelo, obtén el área sobre la curva ROC (qué les indica este valor), y determina el umbral que usarías (justifica tu respuesta).