Komutativna algebra - 6. domača naloga

Benjamin Benčina, 27192018

20. april 2020

<u>Nal. 1:</u> Naj bo M R-modul in $\{m_{\lambda}; \lambda \in \Lambda\} \subset M$ neka podmnožica. Pokažimo, da ta množica generira modul M natanko tedaj, ko njena slika $\{\frac{m_{\lambda}}{1}; \lambda \in \Lambda\}$ generira $R_{\mathbf{m}}$ -modul $M_{\mathbf{m}}$ za vsak $\mathbf{m} \in \mathrm{mSpec}\,R$.

Najprej privzemimo $m = \sum_{i=1}^{n} r_i m_i$ in računajmo

$$\frac{m}{s} = \frac{\sum_{i=1}^{n} r_i m_i}{s} = \frac{s^{n-1}}{s^{n-1}} \frac{\sum_{i=1}^{n} r_i m_i}{s} = \frac{\sum_{i=1}^{n} s^{n-1} r_i m_i}{s^n} = \sum_{i=1}^{n} \frac{r_i m_i}{s} = \sum_{i=1}^{n} \frac{r_i}{s} \frac{m_i}{1}.$$

Ta stranski račun nam je že pokaza implikacijo iz leve v desno. Sedaj pokažimo ekvivalenco. Modul, generiran z množico A, bo označen z Lin A.

Ker je $\operatorname{Lin}\{m_{\lambda};\ \lambda\in\Lambda\}\leq M$, bo enakost veljala natanko tedaj, ko bo kvocient $M/\operatorname{Lin}\{m_{\lambda};\ \lambda\in\Lambda\}=0$. Po trditvi 5.16 iz predavanj, je to res natanko tedaj, ko za vsak $\mathbf{m}\in\operatorname{mSpec} R$ velja $(M/\operatorname{Lin}\{m_{\lambda};\ \lambda\in\Lambda\})_{\mathbf{m}}=0$. Seveda pa je lokalizacija kvocienta kar kvocient lokalizacij, zato bo to veljalo natanko tedaj, ko bo $M_{\mathbf{m}}=(\operatorname{Lin}\{m_{\lambda};\ \lambda\in\Lambda\})_{\mathbf{m}}$. Množica na desni, je po prejšnjem stranskem računu enaka $\operatorname{Lin}\{\frac{m_{\lambda}}{1};\ \lambda\in\Lambda\}$ (stranski račun pokaže vsebovanost v desno, druga vsebovanost je trivialna). S tem je trditev dokazana.

<u>Nal. 2:</u> Naj bo M Noetherski R-modul. Pokažimo, ekvivalence.

Privzemimo (a). Ker je M Noetherski s končno dolžino, je po trditvi 6.7 Artiniski. Modul $R/\operatorname{Ann} M$ je njegov podmodul, zato je po ekzaktnosti tudi Artiniski. S tem smo dokazali točko (d). Od tukaj nadaljujemo. Ker je $R/\operatorname{Ann} M$ Artiniski, po trditvi 6.11a iz predavanj obstajajo $P_1, \ldots, P_n \in \operatorname{mSpec}(R/\operatorname{Ann} M)$, da je produkt $P_1 \cdots P_n = (0)$. Ko naredimo kontrakcijo s kvocientno preslikavo $q \colon R \to R/\operatorname{Ann} M$, dobimo končen produkt maksimalnih idealov $q^{-1}(P_1) \cdot q^{-1}(P_n) \subseteq \operatorname{Ann} M$. S tem smo dokazali točko (b). Sedaj smo spomnimo, da smo pri dokazu trditve 6.11b zares potrebovali le trditev 6.11a Torej iz (b) sledi, da $\operatorname{Spec}(R/\operatorname{Ann} M) = \operatorname{mSpec}(R/\operatorname{Ann} M)$. Kontrakcija s kvocientno preslikavo q dokaže še točko (c). (Trenutno shema je (a) \Longrightarrow (d) \Longrightarrow (b) \Longrightarrow (c)). Ker je $R/\operatorname{Ann} M$ Noetherski kot podmodul v M, po 6.12 (Hopkinsov izrek) iz (c) sledi (d). (Trenutno shema je (a) \Longrightarrow (d) \Longleftrightarrow (b) \Longleftrightarrow (c))

Dokazati moramo le še, da iz katerekoli izmed drugih točk sledi (a). Najlažje bo, če privzamemo (d). Ker je M Noetherski, je po trditvi 6.3c tudi končno generiran R-modul, jasno pa ga lahko ekvivalentno vidimo kot končno generiran R/Ann M (saj smo le faktorizirali elemente, ki uničijo M). Potem pa je M nek kvocient modula $(R/\operatorname{Ann} M)^n$ za nek $n \in \mathbb{N}$, ki pa je Artinski, saj je Artinski tudi modul $(R/\operatorname{Ann} M)^n$ kot končna vsota po predpostavki Artinskih modulov (trditev 6.6a). Modul M je torej Artinski in po predpostavki Noetherski, zato ima po trditvi 6.7 končno dolžino. To zaključi dokaz ekvivalenc.