TD 24 : corrigé de l'exercice 13

Exercice 22.13:

- Si φ est de la forme indiquée, c'est clairement un endomorphisme du groupe $(\mathbb{Z}^p, +)$. De plus, $det(A) = \pm 1$, donc $A^{-1} = \pm^t Cof(A)$. Ainsi, A^{-1} est une matrice dont les coefficients sont aussi dans \mathbb{Z} . L'application $X \longmapsto A^{-1}X$ est donc un endomorphisme de \mathbb{Z}^p , qui est clairement l'inverse de φ , donc φ est un automorphisme du groupe $(\mathbb{Z}^p, +)$.
- Réciproquement, supposons que φ est un automorphisme du groupe $(\mathbb{Z}^p,+)$. Soit $X\in\mathbb{Z}^p$. On montre par récurrence sur $n\in\mathbb{N}$ que $\varphi(nX)=n\varphi(X)$. De plus, $\varphi(-X)=-\varphi(X)$, donc, pour tout $n\in\mathbb{Z},\,\varphi(nX)=n\varphi(X)$. Notons $e=(e_1,\ldots,e_p)$ la base canonique de \mathbb{R}^p .

Si
$$X = \sum_{i=1}^{p} x_i e_i \in \mathbb{Z}^p$$
, $\varphi(X) = \sum_{i=1}^{p} x_i \varphi(e_i)$. Notons A la matrice de $\mathcal{M}_p(\mathbb{R})$ dont la $j^{\text{ème}}$

colonne est constituée par $\varphi(e_j)$. Ainsi, $\varphi(X) = AX$. Clairement, les coefficients de A sont dans \mathbb{Z} .

De même, il existe $B \in \mathcal{M}_p(\mathbb{R})$ telle que, pour tout $X \in \mathbb{Z}^p$, $\varphi^{-1}(X) = BX$, les coefficients de B étant dans \mathbb{Z} .

Pour tout $i \in \mathbb{N}_p$, $ABe_i = \varphi(\varphi^{-1}(e_i)) = e_i$, donc les matrices AB et I_p ont la même image de la base canonique. Ainsi, $AB = I_p$. En particulier, det(A)det(B) = 1, mais det(A) et det(B) sont des entiers relatifs, donc $det(A) = \pm 1$.