実験系生物学者のための 数理・統計・計算生物学入門コース

バイオマーカー・統計・多変量解析 網羅的解析・遺伝子発現解析 (1/2)

大羽成征(おおばしげゆき) 情報学研究科 講師

講義資料 https://github.com/shigeyukioba/biostat

連絡先 Email: oba@i.kyoto-u.ac.jp, Twitter: @shigepong

バイオマーカーとは

- ■生体の状態を知るための計測情報
- 医師による診断の手がかり
- 例:
 - □血糖値・コレステロール値
 - □遺伝子異常
 - □遺伝子発現量

インフォマティクスによる 診断マーカー探索

ベストな単一遺伝子は? ベストな組み合わせは?

診断用バイオマーカーの性能

- ■コストが低いこと
 - □金額・時間・労力・侵襲性
- ■正解率が高いこと
 - □2種類の正解と2種類の誤り

2種類の誤りと2種類の正解率

		真実	
		正例(異常あり)	負例(異常なし)
判定	陽	TP	FP
	性	正解	偽陽性
	陰	FN	TN
	性	偽陰性	正解

		, 真実	
		正例	負例
判_ 定	陽	TP/(TP+FN)	
	性	sensitivity	
	陰		TN/(FP+TN)
	性		specificity

新型インフルエンザ (A/H1N1)

の診断

- ■迅速診断キットによる診断
 - □鼻やのどの粘液に試薬を加えて約10分で判定
 - □A型(+/-)B型(+/-)が分かる
 - 特異度(specificity) 90%程度
 - 感度(sensitivity) 90%程度
- ■ウィルス学的診断
 - □RT-PCR法
 - (温める→待つ→冷やす→待つ)×40回
 - □A/H1N1 であるか否かが確実に分かる

アークレイ社HPより

出典: 国立感染症研究所 感染症情報センター

国内医療機関における新型インフルエンザ(A/H1N1)診断の流れ ver. 1₆ 2009/5/6 GSK社リレンザのページ http://relenza.jp/clinic/kit.html

余談クイズ

- (仮定1)現在インフルエンザに罹っている患者は、 1000人中で1人だとする
- (仮定2)迅速診断キットによるインフルエンザ診断の精度は感度 sensitivity(正例中の陽性率)90%特異度 specificity(負例中の陰性率)90% だとする
- Q:あなたを診断した結果が陽性だったとして、 あなたがインフルエンザに罹っている確率は?

A: 90% B:約10% C:約1% D:それ以下

■ Q:あなたを診断した結果が陰性だった場合は? A: 90% B:約10% C:約1% D:それ以下

連続値をとるマーカー

- 例: コレステロール値、γ GDP値
- ■大きい値(小さい値)であるほど危険
- ■しきい値で二値化して診断

連続値マーカーの性能を診断する

どのマーカーが最も良いマーカか?

t 統計量

有限のデータからマーカーの良さを見積もる方法

■ データに基づく t 統計量を求める

$$t = \frac{m_1 - m_2}{S}$$

*m*₁: ● に関する *x* の平均

*m*₂: ●に関する *x* の平均

s: 群内標準偏差(の定数倍)

■ t 統計量の絶対値が大きいほど、良いマーカー

「統計量 statistic(s)」とは?

- 定義:
 - 標本データ数値から計算によって得られる値

何でも統計量? 平均とか、分散とか、標準偏差とかも?

統計量とは

- ■定義
 - □ a statistic (単数) は標本データ数値から計算によって得られる値
 - □参考:
 statistics(非加算名詞)=統計学
- ■覚えておきたい周辺概念
 - □記述統計学・記述統計量・要約統計量 descriptive statistics
 - □検定統計量 test statistics
 - □順序統計量 order statistics

分散 variance

$$Var[x] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - m)^2$$

■データ値のばらつきの程度を表す

分散大きい

分散小さい

標準偏差 standard deviation SD. std

$$SD = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (x_i - m)^2}$$

■データ値のばらつきの程度を表す

標準偏差大きい

標準偏差小さい

共分散 covariance

$$cov[x,y] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - m_x)(y_i - m_y)$$
$$= cov[y,x]$$

$$Var[x] = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - m_x)^2$$

$$Var[y] = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - m_y)^2$$

相関係数 correlation coefficient

$$r[x,y] = \frac{\text{cov}[x,y]}{\sqrt{Var[x]Var[y]}}$$

相関係数

もうすこし正確な定義 等分散仮定のもとでの

t 統計量

$$x_{1}, ..., x_{N1}$$

$$X_{o1}, ..., X_{oN2}$$

$$t = \frac{m_1 - m_2}{m_1 - m_2}$$

*m*₁: ・に関する *x* の平均

*m*₂: ●に関する *x* の平均

s: 群内標準偏差(の定数倍)

$$S = SD_* \sqrt{\left(\frac{1}{N_1} + \frac{1}{N_2}\right)}$$

$$SD_{*} = SD_{*} \sqrt{\left(\frac{1}{N_{1}} + \frac{1}{N_{2}}\right)} \qquad SD_{1} = \sqrt{\frac{1}{N_{1} - 1} \sum_{i=1}^{N} (x_{i} - m)^{2}}$$

$$SD_{*} = \sqrt{\frac{(N_{1} - 1)SD_{1}^{2} + (N_{2} - 1)SD_{2}^{2}}{N_{1} + N_{2} - 2}} \qquad SD_{2} = \sqrt{\frac{1}{N_{1} - 1} \sum_{i=1}^{N} (x_{i} - m)^{2}}$$

$$SD_2 = \sqrt{\frac{1}{N_2 - 1} \sum_{i=1}^{N} (x_i - m)^2}$$

群内標準偏差

次回!

統計的仮説検定

サンプル数 N=12 でドヤ顔していいの?

t 統計量の絶対値が大きな値 *T*=2.0 であったとする。 その良さそうなマーカーは本当に良いマーカーか?

ゼロでない標準偏差 と 有限の標本数 のせいで偶然に 良さそうなマーカーに見えただけではないか?

偶然ではないことを t 検定で確かめる

連続値マーカーの二値化とマーカー性能の評価

- ■sensitivity(感度・敏感性: 正例中の正解率)
 - ■tp / (tp+fn)
- ■specificity (特異性: 負例中の正解率)
 - □tn / (fp+tn)

ROC 曲線と AUC 基準

- 受信者動作特性曲線 Receiver Operating Characteristic
- 曲線下面積 Area Under the Curve
- とくに正例数と負例数がアンバランスである場合に使われる

多変量マーカーを作る!

例) 脳腫瘍診断データの解析

Cancer Science

Using gene expression profiling to identify a prognostic molecular spectrum in gliomas

Mitsuaki Shirahata^{1,2}, Shigeyuki Oba³, Kyoko lwao-Koizumi2, Sakae Saito2, Noriko Ueno2, Masashi Oda1, Nobuo Hashimoto¹, Shin Ishii³, June A. Takahashi1, Kikuya Kato2,*

Article first published online: 25 NOV 2008 DOI: 10.1111/j.1349-7006.2008.01002.x

© 2008 Japanese Cancer Association

Cancer Science Volume 100, Issue 1, pages 165-172, January 2009

静岡大学病院(当時京大医)

遺伝子発現の高次元ベクトルの 主成分分析の結果から 脳腫瘍の既知4分類の違いや、 予後(死亡率)の違いが読み取れる!

共同研究者 加藤菊也 大阪成人病センター研究所長

脳腫瘍診断データの解析

- ■脳腫瘍患者の臨床データ
 - □予後
 - 無再発生存期間 再発後生存期間
 - □手術の種類
 - ・(完全切除、部分切除、細胞診断のみ)
- ■脳腫瘍の病理分類 (Histology)
 - □GB glioblastoma
 - ■AA anaplastic astrocytoma
 - ■AO anaplastic oligodendroglioma
 - DA diffuse astrocytoma

脳腫瘍:遺伝子発現プロファイル

ATAC法(マイクロアレイ代替手法)による 脳腫瘍200症例×3000遺伝子の発現プロファイル

24

脳腫瘍診断データ解析結果

58遺伝子の発現量に基づく脳腫瘍マーカの再現性がとても良かった

オリジナル: ATAC-PCR法と、

移行先: RT-PCR法との間の再現性は

相関係数 r = 0.7 程度だったが、

指標同士の再現性は r = 0.94

BMC Medical Genomics

Conversion of a molecular classifier obtained by gene expression profiling into a classifier based on real-time PCR: a prognosis predictor for gliomas

Satoru Kawarazaki¹, ², Kazuya Taniguchi¹, Mitsuaki Shirahata², Yoji Kukita¹, Manabu Kanemoto¹, ², Nobuhiro Mikuni², Nobuo Hashimoto³, Susumu Miyamoto², Jun A Takahashi⁴ and Kikuya Kato¹*

* Corresponding author: Kikuya Kato katou-ki@mc.pref.osaka.jp

Author Affiliations

For all author emails, please log on.

BMC Medical Genomics 2010, 3:52 doi:10.1186/1755-8794-3-52

The electronic version of this article is the complete one and can be found online at: http://www.biomedcentral.com/1755-8794/3/52

高次元多変量パターンデータの 可視化法

- そのいち:ヒストグラムと散布図
- **>>>**
- そのに: 色つき行列
- ■>>>(越えられない壁)>>>
- ■うまい可視化法
 - ■MDS, PCA, ほか…

心得のそのいち:なにはともあれ ヒストグラムと散布図

よくあるタイプの異常値 ~ヒストグラム見れば分かる~

<u>外れ値(outlier)</u>: 外れ値を除いた場合の標準偏差の3~5倍以上外側

<u>欠測値(missing value):</u> (例)欠測扱いとした値に 999 が入っている

<u>上下打ち切り値(censored value)</u>: (例)-1.3 未満の値はすべて -1.3

1.3 以上の値はすべて 1.3 として扱う

<u>飽和値 (saturated value) :</u>(例) 計測装置の限界により値に上限がある

<u>デジタル化・量子化 (quantization):</u> (例) A/D変換の限界により値の小さいところで 分布が間欠的になる

> ヒストグラム・散布図で初めて気づくこと多大! データを得たら、まずヒストグラム書くこと

ばらつきの可視化方法いろいろ

ヒストグラムと散布図を並べる

心得そのに:なにはともあれ **色つき行列にしてただ眺める** 例: 小児がん150症例のラベルデータ

- - □縦軸はラベル(ラベルの重要度順にソート)
 - □ 横軸は症例 (ラベルの値を使ってソート)
 - □白: 予後悪関連、橙: 予後良関連、黒:欠測

コツ:ラベルデータには、目的に沿った意味がある。

独断・偏見・議論に基づき、重要度をつけると 分かりやすく可視化できる。

色つき行列形データを眺める

- 1. 数値に色付けしてただ並べる
- 2. 上手に並べる(階層クラスタリング)

演習:ヒストグラムを描いてみよう 平均と標準偏差を示してみよう

演習資料

https://github.com/shigeyukioba/biostat/

サンプル用遺伝子発現データ行列 NBLexpression.dat

演習:散布図を描いてみよう 共分散楕円を加えてみよう

因子化 factorization

■ 高次元ベクトル $\mathbf{y} \subseteq \mathfrak{N}^M$ の変動を、 少数 K (K < M) の成分(因子)の変動で表したい

主成分分析

principal component analysis

■多変量の変動を、少数個の「成分」の変動に分解

主成分分析の方法

$$\mathbf{W} = \left(\mathbf{w}_1 \ \mathbf{w}_2 \dots \ \mathbf{w}_K\right)$$

■ データ点 y 毎に、主成分得点を求める

$$x_k = \lambda_k^{-1/2} \mathbf{w}_k \mathbf{y}$$

脳腫瘍発現データのPCA結果

演習:主成分分析を行ってみよう

判別と判別関数

■判別関数

$$h(\mathbf{x}) \in \mathfrak{R}$$

■判別関数による判別

$$h(\mathbf{x}) < 0$$
 $tight f(\mathbf{x}) = -1$

$$h(\mathbf{x}) \ge 0$$
 tisis $f(\mathbf{x}) = +1$

線形判別器

- 線形判別関数 = ベクトル x の線形射影
- 射影方向次第で、判別性能が異なる

$$h(\mathbf{X}) = \langle \mathbf{W}, \mathbf{X} \rangle + b = b + \sum_{i=1}^{K} w_i x_i$$

□ 最も適切な射影 w を l=1 ラベル付きデータから学習によって決める。

まとめ

- ■バイオマーカーの正解率は2種類
 - □感度 Sensitivity, 特異度 Specificity
- ■統計量はいろいろある
 - □連続値マーカーの性能を示す「統計量」の例 t-statistic, AUC score
- 多変量データに出会ったら 1にヒストグラム、2に散布図、3,4が無くて、 5に色行列
- ■共分散楕円が分かれば主成分分析が分かる

レポート課題(1/2)

- ■データ可視化の練習
 - □ 遺伝子の任意の2つ組について、発現量の散布図を描きます。このさい予後良症例を青色で、予後悪症例を赤色で描いてください。
 - □書き方は、

http://ishiilab.jp/member/oba/seimeidoutai2013
の Exercise 4. を参考にしてください。

- □これに、赤と青の共分散楕円を重ねて描いてください。
- □ 遺伝子の2つ組を、6組ほど任意に試してみて、同様の図 を描いてみましょう。

レポート課題(2/2)

■統計量

- □遺伝子2つを用いて予後予測を行います。 可視化した6組のなかで比較したとき、どの組を用いるの がベストでしょうか?まずは目で見て直感的に評価してみ てください。
- □予後予測の良さを評価した基準を定式化するために、ど のような統計量を用いるのが良さそうでしょうか?考えて みてください。それを、まずは言葉もしくは図や絵で、可能 ならば数式で表現してみてください。

