

Features

- · High speed
 - —10 ns
- Fast t_{DOE}
- · CMOS for optimum speed/power
- Low active power
 - 467 mW (max, 12 ns "L" version)
- · Low standby power
 - -0.275 mW (max, "L" version)
- 2V data retention ("L" version only)
- Easy memory expansion with $\overline{\text{CE}}$ and $\overline{\text{OE}}$ features
- . TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C199 is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is

32K x 8 Static RAM

provided by an active LOW chip enable (CE) and active LOW output enable (OE) and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 81% when deselected. The CY7C199 is in the standard 300-mil-wide DIP, SOJ, and LCC packages.

An active LOW write enable signal (WE) controls the writing/reading operation of the memory. When $\overline{\text{CE}}$ and $\overline{\text{WE}}$ inputs are both LOW, data on the eight data input/output pins (I/O₀ through I/O₇) is written into the memory location addressed by the address present on the address pins (A₀ through A₁₄). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\text{CE}}$ and $\overline{\text{OE}}$ active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins are present on the eight data input/output pins.

The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to improve alpha immunity.

Selection Guide

		7C199-8	7C199-10	7C199-12	7C199-15	7C199-20	7C199-25	7C199-35	7C199-45
Maximum Access Time (ns)		8	10	12	15	20	25	35	45
Maximum Operating		120	110	160	155	150	150	140	140
Current (mA)	L		90	90	90	90	80	70	
Maximum CMOS		0.5	0.5	10	10	10	10	10	10
Standby Current (mA)	L		0.05	0.05	0.05	0.05	0.05	0.05	

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied –55°C to +125°C

Supply Voltage to Ground Potential

(Pin 28 to Pin 14)......-0.5V to +7.0V

DC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V $_{\rm CC}$ + 0.5V

DC Input $Voltage^{[1]}$-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Range	Ambient Temperature ^[2]	V _{CC}
Commercial	0°C to +70°C	$5V \pm 10\%$
Industrial	-40°C to +85°C	5V ± 10%
Military	−55°C to +125°C	5V ± 10%

Electrical Characteristics Over the Operating Range^[3]

					199-8	7C1	99-10	7C1	99-12	7C199-15		
Parameter	Description	Test Conditio	Test Conditions		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-4.	V _{CC} =Min., I _{OH} =–4.0 mA			2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =8.0	mA		0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$		- 5	+5	-5	+5	- 5	+5	- 5	+5	μΑ
I _{OZ}	Output Leakage Current	$\begin{array}{c} \text{GND} \leq \text{V}_{\text{O}} \leq \text{V}_{\text{CC}}, \\ \text{Output Disabled} \end{array}$		-5	+5	-5	+5	- 5	+5	- 5	+5	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,	Com'l		120		110		160		155	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	L				85		85		100	mA
		I - IMAX - IMRC	Mil								180	mA
I _{SB1}	Automatic CE	Max. V _{CC} , CE ≥	Com'l		5		5		30		30	mA
	Power-Down Current— TTL Inputs	$ \begin{vmatrix} V_{IH}, \\ V_{IN} \ge V_{IH} \text{ or } \\ V_{IN} \le V_{IL}, f = f_{MAX} \end{vmatrix} $	L				5		5		5	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		0.5		0.5		10		10	mA
	Power-Down Current—CMOS	00 - 1			0.05		0.05		0.05		0.05	mA
	Inputs	or $V_{IN} \le 0.3V$, $f = 0$	Mil								15	mA

Shaded area contains preliminary information.

- 1. V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. 2. T_A is the "instant on" case temperature.
- 3. See the last page of this specification for Group A subgroup testing information.

$\textbf{Electrical Characteristics} \ \, \text{Over the Operating Range}^{[3]} \ \, \text{(continued)}$

				7C1	99-20	7C1	99-25	7C1	99-35	7C19	99-45	
Parameter	Description	Test Conditio	ns	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} =Min., I _{OH} =-4.	V _{CC} =Min., I _{OH} =-4.0 mA			2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	V _{CC} =Min., I _{OL} =8.0 mA			0.4		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	2.2	V _{CC} +0.3V	V
V _{IL}	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_1 \le V_{CC}$		-5	+5	- 5	+5	-5	+5	- 5	+5	μА
l _{OZ}	Output Leakage Current	$\begin{aligned} &\text{GND} \leq V_{I} \leq V_{CC}, \\ &\text{Output Disabled} \end{aligned}$		-5	+5	-5	+5	-5	+5	-5	+5	μА
I _{CC}	V _{CC} Operating		Com'l		150		150		140		140	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	L		90		80		70		70	mA
		- IVIAX MRC	Mil		170		150		150		150	mA
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE} \ge V_{IH}$, Com'l		30		30		25		25	mA
	Power-Down Current— TTL Inputs	$V_{IN} \ge V_{IH}$ or $V_{IN} \le V_{IL}$, $f = f_{MAX}$	L		5		5		5		5	mA
I _{SB2}	Automatic CE	Max. V _{CC} ,	Com'l		10		10		10		10	mA
	Power-Down Current—	$\overline{CE} \ge V_{CC} - 0.3V$ $V_{IN} \ge V_{CC} - 0.3V$ or	L		0.05		0.05		0.05		0.05	μΑ
	CMOS Inputs	$V_{IN} \le 0.3V, f=0$	Mil		15		15		15		15	mA

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1 \text{ MHz}$,	8	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	8	pF

AC Test Loads and Waveforms^[5]

THÉVENIN EQUIVALENT Equivalent to: $167\,\Omega$

OUTPUT •

Data Retention Characteristics Over the Operating Range (L version only)

-• 1.73∨

Parameter	Description		Conditions ^[6]	Min.	Max.	Unit
V _{DR}	V _{CC} for Data Retention			2.0		V
I _{CCDR}	Data Retention Current	Com'l	$V_{CC} = V_{DR} = 2.0V,$			μΑ
		Com'l L	$\begin{array}{l} V_{CC} = V_{DR} = 2.0V, \\ \overline{CE} \geq V_{CC} - 0.3V, \\ V_{IN} \geq V_{CC} - 0.3V \text{ or} \end{array}$		10	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		$V_{IN} \le 0.3V$	0		ns
t _R ^[5]	Operation Recovery Time	Operation Recovery Time		t _{RC}		ns

Data Retention Waveform

- 4. Tested initially and after any design or process changes that may affect these parameters.
 5. t_R ≤ 3 ns for the -12 and -15 speeds. t_R ≤ 5 ns for the -20 and slower speeds.
 6. No input may exceed V_{CC} + 0.5V.

Switching Characteristics Over the Operating Range^[3, 7]

		7C1	99-8	7C199-10		7C199-12		7C199-15		
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	<u> </u>		•				•		•	
t _{RC}	Read Cycle Time	8		10		12		15		ns
t _{AA}	Address to Data Valid		8		10		12		15	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		8		10		12		15	ns
t _{DOE}	OE LOW to Data Valid		4.5		5		5		7	ns
t _{LZOE}	OE LOW to Low Z ^[8]	0		0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[8, 9]		5		5		5		7	ns
t _{LZCE}	CE LOW to Low Z ^[8]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[8,9]		4		5		5		7	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		8		10		12		15	ns
WRITE CYCL	E ^[10, 11]	•	•		•		•		•	
t _{WC}	Write Cycle Time	8		10		12		15		ns
t _{SCE}	CE LOW to Write End	7		7		9		10		ns
t _{AW}	Address Set-Up to Write End	7		7		9		10		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	7		7		8		9		ns
t _{SD}	Data Set-Up to Write End	5		5		8		9		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[9]		5		6		7		7	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		3		3		3		ns

Shaded area contains preliminary information.

Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

^{8.} At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{LZCE}, and t_{HZWE} is less than t_{LZCE}, that t_{LZCE} is less than t_{LZCE}, that t_{LZCE} is less than t_{LZCE}, that t_{LZCE} is less than t_{LZCE} is less than t_{LZCE}, that t_{LZCE} is less than t_{LZCE} is less than t_{LZCE}, that t_{LZCE} is less than t_{LZCE} is less than t_{LZCE}, that the time of the memory is defined by the overlap of the tollow it is measured ±500 mV from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of the time of the time of the time of the time of the memory is defined by the overlap of the time of t

$\textbf{Switching Characteristics} \ \, \text{Over the Operating Range}^{[3,7]} \, (\text{continued})$

		7C19	99-20	7C1	99-25	7C1	99-35	7C1	99-45	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE			•			•	•		•	
t _{RC}	Read Cycle Time	20		25		35		45		ns
t _{AA}	Address to Data Valid		20		25		35		45	ns
t _{OHA}	Data Hold from Address Change	3		3		3		3		ns
t _{ACE}	CE LOW to Data Valid		20		25		35		45	ns
t _{DOE}	OE LOW to Data Valid		9		10		16		16	ns
t _{LZOE}	OE LOW to Low Z ^[8]	0		0		0		0		ns
t _{HZOE}	OE HIGH to High Z ^[8,9]		9		11		15		15	ns
t _{LZCE}	CE LOW to Low Z ^[8]	3		3		3		3		ns
t _{HZCE}	CE HIGH to High Z ^[8,9]		9		11		15		15	ns
t _{PU}	CE LOW to Power-Up	0		0		0		0		ns
t _{PD}	CE HIGH to Power-Down		20		20		20		25	ns
WRITE CYCLE	[10,11]			•		•				
t _{WC}	Write Cycle Time	20		25		35		45		ns
t _{SCE}	CE LOW to Write End	15		18		22		22		ns
t _{AW}	Address Set-Up to Write End	15		20		30		40		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		0		0		ns
t _{PWE}	WE Pulse Width	15		18		22		22		ns
t _{SD}	Data Set-Up to Write End	10		10		15		15		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[9]		10		11		15		15	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	3		3		3		3		ns

Switching Waveforms

Read Cycle No. 1^[12, 13]

^{12.} Device is continuously selected. OE, CE = V_{IL}.
13. WE is HIGH for read cycle.

Switching Waveforms (continued)

Read Cycle No. 2 $^{[13,\ 14]}$

Write Cycle No. 1 (WE Controlled)^[10, 15, 16]

Write Cycle No. 2 (CE Controlled)^[10, 15, 16]

- 14. Address valid prior to or coincident with CE transition LOW.
 15. Data I/O is high impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 (WE Controlled OE LOW)[11, 16]

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

CE	WE	OE	Inputs/Outputs	Mode	Power		
Н	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})		
L	L H L Data Out		Data Out	Read	Active (I _{CC})		
L	L	Х	Data In	Write	Active (I _{CC})		
L	Н	Н	High Z	Deselect, Output Disabled	Active (I _{CC})		

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7C199-8VC	V21	28-Lead Molded SOJ	Commercial
	CY7C199-8ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-8VC	V21	28-Lead Molded SOJ	
	CY7C199L-8ZC	Z28	28-Lead Thin Small Outline Package	
10	CY7C199-10VC	V21	28-Lead Molded SOJ	Commercial
	CY7C199-10ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-10VC	V21	28-Lead Molded SOJ	
	CY7C199L-10ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199-10VI	V21	28-Lead Molded SOJ	Industrial
	CY7C199-10ZI	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-10VI	V21	28-Lead Molded SOJ	
	CY7C199L-10ZI	Z28	28-Lead Thin Small Outline Package	
12	CY7C199-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-12VC	V21	28-Lead Molded SOJ	
	CY7C199-12ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C199L-12VC	V21	28-Lead Molded SOJ	
	CY7C199L-12ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199-12VI	V21	28-Lead Molded SOJ	Industrial
	CY7C199-12ZI	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-12VI	V21	28-Lead Molded SOJ	
	CY7C199L-12ZI	Z28	28-Lead Thin Small Outline Package	

Shaded area contains preliminary information. Contact your Cypress sales representative for availability

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C199-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-15VC	V21	28-Lead Molded SOJ	
	CY7C199-15ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C199L-15VC	V21	28-Lead Molded SOJ	
	CY7C199L-15ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199-15VI	V21	28-Lead Molded SOJ	Industrial
	CY7C199-15ZI	Z28	28-Lead Thin Small Outline Package	
	CY7C199-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
	CY7C199L-15DMB	D22	28-Lead (300-Mil) CerDIP	
	CY7C199L-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C199-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-20VC	V21	28-Lead Molded SOJ	
	CY7C199-20ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-20PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C199L-20VC	V21	28-Lead Molded SOJ	
	CY7C199L-20ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199-20VI	V21	28-Lead Molded SOJ	Industrial
	CY7C199-20ZI	Z28	28-Lead Thin Small Outline Package	
	CY7C199-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
	CY7C199L-20DMB	D22	28-Lead (300-Mil) CerDIP	
	CY7C199L-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C199-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-25SC	S21	28-Lead Molded SOIC	
	CY7C199-25VC	V21	28-Lead Molded SOJ	
	CY7C199-25ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199L-25ZI	Z28	28-Lead Thin Small Outline Package	Industrial
	CY7C199-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C199-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-35SC	S21	28-Lead Molded SOIC	
	CY7C199-35VC	V21	28-Lead Molded SOJ	
	CY7C199-35ZC	Z28	28-Lead Thin Small Outline Package	
	CY7C199-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
45	CY7C199-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains preliminary information. Contact your Cypress sales representative for availability

MILITARY SPECIFICATIONS Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V _{OH}	1, 2, 3
V _{OL}	1, 2, 3
V _{IH}	1, 2, 3
V _{IL} Max.	1, 2, 3
I _{IX}	1, 2, 3
I _{OZ}	1, 2, 3
I _{CC}	1, 2, 3
I _{SB1}	1, 2, 3
I _{SB2}	1, 2, 3

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t _{RC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{OHA}	7, 8, 9, 10, 11
t _{ACE}	7, 8, 9, 10, 11
t _{DOE}	7, 8, 9, 10, 11
WRITE CYCLE	
t _{WC}	7, 8, 9, 10, 11
t _{AA}	7, 8, 9, 10, 11
t _{AW}	7, 8, 9, 10, 11
t _{HA}	7, 8, 9, 10, 11
t _{SA}	7, 8, 9, 10, 11
t _{PWE}	7, 8, 9, 10, 11
t _{SD}	7, 8, 9, 10, 11
t _{HD}	7, 8, 9, 10, 11

Document #: 38-00239-E

Package Diagrams

28-Lead (300-Mil) CerDIP D22 MIL-STD-1835 D-15 Config.A

28-Pin Rectangular Leadless Chip Carrier L54 MIL-STD-1835 C-11A

Package Diagrams (continued)

28-Lead (300-Mil) Molded DIP P21

28-Lead (300-Mil) Molded SOIC S21

MAX.

Package Diagrams (continued)

28-Lead (300-Mil) Molded SOJ V21

28-Lead Thin Small Outline Package Z28

DIMENSION IN MM (INCH)

