- 1. Parallele Systeme
- 2. Leistungsmaße für parallele Systeme
- 3. Gesetze von Amdahl und Gustafson-Barsis

1. Parallele Systeme

- 2. Leistungsmaße für parallele Systeme
- 3. Gesetze von Amdahl und Gustafson-Barsis

Parallele Systeme

- Ein **paralleles System** beseht aus einem parallelem Algorithmus und einer Parallelrechnerarchitektur auf der der Algorithmus ausgeführt wird.
 - Die Ausführungszeit eines parallelen Programms hängt wesentlich von der Anzahl der Prozessoren und der Leistungsfähigkeit des Verbindungsnetzwerks ab.
 - Konsequenz: Parallele Programme können nicht isoliert von einer konkreten Parallelrechnerarchitektur quantitativ untersucht werden.
- **Ziel:** Quantitative Beschreibung der Gesamtleistung eines parallelen Systems.

Overhead in parallelen Systemen

Interprocess Interactions

- Interaktionen zwischen den Prozessen (Kommunikation, Synchronisation)

Excess Computation

- Zusätzlicher Programmcode zur Realisierung von Parallelität
- Paralleler Algorithmus beruht nicht auf dem besten sequentiellen Verfahren

Process Idling

- Synchronisation zwischen den Prozessen
- Ungleichmäßige Lastverteilung
- Sequentielle Abschnitte im parallelen Algorithmus

Overhead in parallelen Systemen

- 1. Parallele Systeme
- 2. Leistungsmaße für parallele Systeme
- 3. Gesetze von Amdahl und Gustafson-Barsis

Laufzeit

- Die sequentielle Laufzeit T_s eines Programms ist die Zeit, die zwischen dem Programmstart und dem Programm-ende bei der Ausführung auf einem sequentiellen Rechner verstreicht.
- Die **parallele Laufzeit T**_p ist die Zeit zwischen dem Start und dem Ende der parallelen Programmausführung auf p Prozessoren.
- Es wird grundsätzlich die tatsächlich verstrichene Zeit (Wall-Clock Time) betrachtet, nicht die CPU Zeit.

Absoluter paralleler Overhead

- Definition absoluter paralleler Overhead: T_O = p T_P T_S
- Der absolute parallele Overhead To eines parallelen Systems ist die zusätzliche Zeit gegenüber der Laufzeit des besten sequentiellen Algorithmus, die alle Prozessoren zusammengenommen zur parallelen Berechnung benötigen.

Speedup (Beschleunigung)

- Speedup S ist ein wichtiges Maß für den Nutzen der Parallelisierung eines Problems gegenüber der sequentiellen Programmausführung.
- Definition Speedup: S := T_S / T_P
 - T_s: Sequentielle Laufzeit des besten bekannten Algorithmus für das Problem auf einem Prozessor.
 - T_p: Parallele Laufzeit des betrachteten parallelen Algorithmus zur Lösung des Problems auf p Prozessoren.
- Voraussetzungen:
 - Der verwendete Parallelrechner ist aus identischen Prozessoren aufgebaut.
 - Die sequentielle Laufzeit wird auf einem der Prozessoren bestimmt.

Superlineare Speedups

- In einigen Situationen können superlineare Speedups
 (S > p) beobachtet werden.
- Mögliche Ursachen:
 - Cache-Effekte
 - Durch Verteilung der Daten auf mehrere Prozesse arbeitet ein einzelner Prozess auf einer kleineren Datenmenge.
 - Bei kleinerer Datenmenge kann sich die Cache-Hit Rate erhöhen; es ergibt sich dann eine schnellere Befehlsabarbeitung.
 - Algorithmische Effekte bei paralleler Suche
 - Ein paralleler Such-Task startet seine Suche "sehr dicht" bei einer Lösung.
 - Die Arbeit zur Berechnung einer Lösung kann dann im parallelen Fall kleiner sein, als im sequentiellen Fall.

Superlineare Speedups bei paralleler Depth-First Baumsuche

- Sequentielle Laufzeit: 14 Schritte
- Parallele Laufzeit: 5 Schritte, parallele Arbeit: 9 Schritte
- Speedup: 14/5 = 2.8

Effizienz

- Die Effizienz E eines parallelen Systems gibt den Anteil der Laufzeit an, in dem die Prozesse keine Overhead-Instruktionen ausführen.
- Definition Effizienz: E := S / p
 - S: Speedup
 - p: Anzahl der Prozessoren
- In einem idealen parallelen System beträgt die Effizienz 1 (bzw. 100%).

Kosten und Problemgröße

• Die **Kosten C**_p eines parallelen Systems beschreiben die gesamte Rechenzeit der einzelnen Prozessoren.

$$C_p := p T_p$$

 Die Kosten C_s zur sequentiellen Lösung des Problems entsprechen der Ausführungszeit des besten sequentiellen Algorithmus auf einem Prozessor.

$$C_S := T_S$$

- Ein paralleles System hat **optimale Kosten**, falls $C_s(n)$ und $C_p(n)$ (n = Größe der Eingabe) asymptotisch gleich sind.
- Die Problemgröße W ist definiert als die sequentiellen Kosten C_S.

$$W := C_S = T_S$$

Skalierbarkeit paralleler Systeme

- Ein paralleles System heißt **skalierbar**, falls sich seine Effizienz nicht verschlechtert, wenn die Anzahl der Prozessoren und die Problemgröße (gleichzeitig) erhöht werden.
 - Anzahl der Prozessoren und Problemgröße müssen nicht im selben Verhältnis erhöht werden.
- Ein paralleles System ist **gut skalierbar**, wenn relativ kleine Erhöhungen der Problemgröße ausreichen, um eine größere Anzahl von Prozessoren effizient einsetzen zu können.
 - Die **Isoeffizienzfunktion W(p)** quantifiziert diese Aussage.

Motivation für die gegebene Definition der Skalierbarkeit

• Es gilt:
$$E=\frac{S}{p}=\frac{T_s}{pT_p}=\frac{1}{1+\frac{T_O}{W}}$$
 mit $T_O=pT_p-T_S$ und $T_s=W$

- Der absolute parallele Overhead T_O wächst mit zunehmender Prozessorzahl p bei konstanter Problemgröße.
 - Typischerweise enthält jedes parallele Programm eine sequentielle Komponente, z.B. Einlesen der Eingabe oder Zugriff auf gemeinsame Variablen.
 - Sei t_{ser} die Ausführungszeit der sequentiellen Komponente.
 - Dann ist (p 1) t_{ser} eine untere Schranke für T_O.
- Folgerung: Die Effizienz E nimmt bei konstanter Problem-größe
 W mit zunehmender Prozessorzahl p ab.

Isoeffizienzfunktion

- Es gilt: $E = \frac{S}{p} = \frac{T_s}{pT_p} = \frac{1}{1 + \frac{T_O(W, p)}{W}}$ Daraus folgt: $W = \frac{E}{1 E}T_O(W, p)$
- Bei einem skalierbaren parallelen System ist $K := \frac{E}{1 E}$ für geeignetes W und p konstant.
- Die Isoeffizienzfunktion W(p) eines skalierbaren parallelen Systems ergibt sich dann bei gegebenem k (bzw. E) aus $W(p) = k T_O(W,p)$
 - Die Isoeffizienzfunktion zeigt das Maß der Skalierbarkeit eines parallelen Systems an.
 - Oft kann kein geschlossener Ausdruck angegeben werden.

- 1. Parallele Systeme
- 2. Leistungsmaße für parallele Systeme
- 3. Gesetze von Amdahl und Gustafson-Barsis

Gesetz von Amdahl (1967)

Vereinfachtes Modell:

- T₁: Ausführungszeit des parallelen Algorithmus auf einem Prozessor (T₁\$T_S)
- T_p: Ausführungszeit des parallelen Algorithmus auf p Prozessoren
- $S_R = T_1/T_p$ (relativer Speedup)
- β: sequentieller Anteil (nicht parallelisierbarer Anteil) des sequentiellen Verfahrens.
- $T_p = \beta T_1 + (1 \beta) T_1 / p$
 - Berechnungsdauer für sequentiellen Anteil: β T₁
 - Berechnungsdauer für parallelen Anteil: (1-β) T₁ / p

• Gesetz von Amdahl:
$$S_R = \frac{p}{\beta p + (1-\beta)} = \frac{1}{\beta + \frac{1-\beta}{p}}$$

Maximaler relativer Speedup nach Amdahl

- $S_{max} := S_{R}(p \rightarrow 4) = 1/\beta$
 - $\beta = 50\% \rightarrow S_{max} = 2$
 - β = 10% → S_{max} = 10
 - $\beta = 5\% \rightarrow S_{max} = 20$
 - β = 1% → S_{max} = 100
- Mögliche Schlussfolgerung: "Da selbst triviale parallele Programme immer einen sequentiellen Anteil aufweisen, lohnt sich Parallelisierung nicht wirklich."
- **Einwand:** Das Gesetz von Amdahl betrachtet nicht skalierbare parallele Systeme; hier sind im p und β nicht mehr unabhängig.

Gesetz von Gustafson-Barsis (1988)

- Komplementärer Ansatz:
 - α : sequentieller Anteil des parallelen Verfahrens.
 - $T_p := 1$ (konstant)
 - "Stehen mehr Prozessoren zur Verfügung können größere Probleme berechnet werden".
 - ←→ Amdahl: "Die Laufzeit eines Programms wird durch Parallelisierung bei konstanter Problemgröße verringert".
- Für T_1 ergibt sich: $T_1 = \alpha + (1 \alpha) p$
- Gesetz von Gustafson-Barsis: $S_R = \alpha + (1 \alpha) p$