VIỆN ĐIỆN TỬ VIỄN THÔNG BỘ MÔN ĐIỆN TỬ VÀ KỸ THUẬT MÁY TÍNH

MÔN HỌC: KỸ THUẬT VI XỬ LÝ

Học kỳ: 2 Năm học: 2012-2013

ĐÁP ÁN BÀI TẬP VỀ NHÀ SỐ 3

Bài 1 (20 điểm): So sánh EPROM, EEPROM, Flash, SRAM, DRAM

Bộ nhớ	EPROM	EEPROM	Flash	SRAM	DRAM
Cấu trúc 1 bít nhớ	1 Transistor cho 1 bit	2 Transistors cho 1 bit	1 Transistor cho 1 bit	6 Transistors cho 1 bit	1 Transistor và 1 tụ cho 1 bit
Giá thành/ bit	Vừa phải	Vừa phải	Vừa phải	Đắt	Ré
Thời gian đọc	45ns	40 ns	35ns	5ns	50ns
Thời gian ghi	1ms/bit	10ms/page	1μs/2KB	5ns	50ns
Mức tiêu thụ năng lượng	Thấp	Thấp	Thấp	Liên tục tiêu thụ năng lượng	Thấp, chỉ tiêu thụ năng lượng khi làm tươi và truy nhập
Kích thước tối đa của 1 IC	16Mbits	Mbit	GB	16Mbits	4Gbits

Khả năng lưu	Không bị mất	Không bị mất	Không bị mất	Bị mất dữ	Bị mất dữ
giữ thông tin	dữ liệu khi	dữ liệu khi	dữ liệu khi	liệu khi mất	liệu khi mất
	mất nguồn,	mất nguồn,	mất nguồn,	nguồn , có	nguồn , có
	lưu trữ cho	lưu trữ cho	lưu trữ cho	thể xóa và	thể xóa và
	đến khi bị	đến khi bị	đến khi bị	ghi vô hạn	ghi vô hạn
	xóa bởi tia	xóa bởi điện,	xóa bời điện,	lần	lần
	cực tím, có	có thể ghi	có thể ghi		
	thể ghi được	được 10000	được 1 triệu		
	3 lần	lần	lần		
Úng dụng	Làm ROM	Dùng làm	Thẻ nhớ,	Cache, không	Dùng làm bộ
	Bios cho các	ROM BIOS	USB flash	nên dùng	nhớ chính
	máy tính của	cho các máy		cho thiết bị	trong các hệ
	những năm	tính ngày		chạy pin	vi xử lý
	80, 90.	nay. Dùng			
		làm bộ nhớ			
		chương trình			
		của các thiết			
		bị nhúng			

Bài 2: Datasheet EPROM M2716

a. Giải thích Sơ đồ thời gian Figure 5 (Read Mode AC Waveforms)

Trong chế độ đọc, EPROM cần 2 tín hiệu EP = $V_{\rm IL}$ và $G = V_{\rm IL}$ để thực hiện cho phép dữ liệu được đưa ra ngoài.

- t_{AVQV} : Khi EP = V_{IL} và $G = V_{IL}$, t_{AVQV} là thời gian kể từ khi có tín hiệu địa chỉ là hợp lệ (Address Valid) cho đến khi dữ liệu bắt đầu được xuất ra (Output Valid) tối đa là 350ns đối với M2716-1, hay 450ns đối với M2716.
- t_{AXQX}: Thời gian kể từ khi có sự thay đổi của tín hiệu địa chỉ (Address Transiton) cho đến khi bị mất dữ liệu ở đầu ra tối thiểu là 0ns (nghĩa là dữ liệu ở đầu ra của EPROM có thể mất ngay sau khi tín hiệu địa chỉ thay đổi).
- t_{ELQV}: Khi G=V_{IL}, t_{ELQV} là thời gian kể từ khi có tín hiệu chọn chip (Chip Enable Low) đến khi dữ liệu ra bắt đầu được xuất ra (Output Valid) tối đa là 350ns đối với M2716-1, hay 450ns đối với M2716.
- t_{EHQZ}: Thời gian kể từ khi ngắt tín hiệu chọn chip (Chip Enable High) đến khi bị mất dữ liệu ở đầu ra (Output Hi-Z) tối thiểu là 0ns và tối đa là 100ns.
- t_{GLQV} : Khi $EP = V_{IL}$, t_{GLQV} là thời gian kể từ khi có tín hiệu cho phép dữ liệu ra (Output Enable Low) đến khi dữ liệu bắt đầu được xuất ra (Output Valid) tối đa là 120ns.
- t_{GHQZ}: Thời gian kể từ khi ngắt tín hiệu cho phép dữ liệu ra (Output Enable High) đến khi bị mất dữ liệu ra (Output Hi-Z) tối thiểu là 0ns và tối đa là 100ns.
- b. EPROM có thời gian truy cập 450ns không thể ghép trực tiếp với 8088 làm việc ở tần số 5MHz vì:

8088 làm việc ở tần số 5MHz, mỗi chu kì T_i kéo dài 200ns.

Theo biểu đồ thời gian biểu diễn chu kì đọc bộ nhớ của 8088 thì việc truy cập bộ nhớ kéo dài từ T_1 đến T_3 tức là mất 600ns

Do có : Trễ địa chỉ $T_{CLAV} = 110$ ns

Thời gian giữ của dữ liệu khi đọc $T_{DVCL} = 30$ ns

Nên thời gian truy cập bộ nhớ của 8088 là : $T_{AC} = 600 - 110 - 30 = 460 ns$ Tuy nhiên còn có trễ khi truyền dữ liệu qua các mạch đệm và giải mã địa chỉ: $T_{trễ \ dêm} = 40 ns$

 \rightarrow Do đó bộ nhớ ghép nối trực tiếp với 8088 cần có thời gian truy cập $T_{mem} \leq 460-40=420 ns$

Vì vậy EPROM có thời gian truy cập 450ns (>420ns) sẽ không thể ghép nối trực tiếp với 8088 làm việc ở tần số 5MHz.

(Muốn ghép nối thì phải báo cho CPU chèn thêm thời gian đợi)

Bài 3: Datasheet IC SST29EE010

FIGURE 4: READ CYCLE TIMING DIAGRAM

TABLE 10: READ CYCLE TIMING PARAMETERS FOR \$\$T29EE010

		SST29	EE010-70	SST29E	E010-90	
Symbol	Parameter	Min	Max	Min	Max	Units
TRC	Read Cycle Time	70		90		ns
TCE	Chip Enable Access Time	1	70		90	ns
TAA	Address Access Time	1	70		90	ns
Toe	Output Enable Access Time	1	30		40	ns
T _{CLZ} ¹	CE# Low to Active Output	0		0		ns
Touz1	OE# Low to Active Output	0		0		ns
T _{CHZ} ¹	CE# High to High-Z Output		20		30	ns
Tonz ¹	OE# High to High-Z Output	1	20		30	ns
T _{OH} 1	Output Hold from Address Change	0		0		ns

- T_{RC} (Read Cycle Time): Chu kỳ đọc tối thiểu là 70ns (tín hiệu địa chỉ phải hợp lệ ít nhất là 70 ns).
- T_{AA} (Address Access Time): Khoảng thời gian kể từ khi có tín hiệu địa chỉ hợp lệ đến khi có dữ liệu ở đầu ra tối đa là 70ns.
- T_{CE} (Chip Enable Access Time): Khoảng thời gian kể từ khi có tín hiệu chọn chip (Chip Enable Low) đến khi có dữ liệu ở đầu ra tối đa là 70ns.
- T_{CLZ} (CE# Low To Active Output): Khoảng thời gian kể từ khi có tín hiệu chọn chip (Chip Enable Low) đến khi có tín hiệu kích hoạt dữ liệu ra, tối thiểu là 0ns (tức là thể kích hoạt dữ liệu ra trước khi có tín hiệu chọn chip)
- T_{CHZ} (CE# High To High-Z Output): Khoảng thời gian kể từ khi ngắt tín hiệu chọn chip (Chip Enable High) đến khi dữ liệu ra lần 2 không còn được truyền đi (Output High-Z), tối đa 20ns đối với SST29EE010-70 hay 30ns đối với SST29EE010-90

- T_{OE} (Output Enable Access Time): Khoảng thời gian kể từ khi bắt đầu có tín hiệu cho phép dữ liệu ra (Output Enable Low) đến khi có dữ liệu ở đầu ra tối đa là 30ns
- T_{OLZ} (OE# Low To Active Output): Khoảng thời gian kể từ khi có tín hiệu cho phép dữ liệu ra (Output Enable Low) đến khi có tín hiệu kích hoạt dữ liệu ra, tối thiểu Ons (tức là không thể kích hoạt dữ liệu ra trước khi có tín hiệu cho phép dữ liệu ra)
- T_{OHZ} (OE# High To High-Z Output) : Khoảng thời gian kể từ khi ngắt tín hiệu cho phép dữ liệu ra (Output Enable High) đến khi dữ liệu ra lần 2 không còn được truyền đi (Output High-Z) , tối đa 20ns đối với SST29EE010-70 hay 30ns đối với SST29EE010-90
- T_{OH} (Output Hold From Address Change): Khoảng thời gian từ khi chuyển tiếp địa chỉ (kết thúc chu trình đọc) cho đến khi dữ liệu ra lần 1 không còn được truyền đi, tối thiểu Ons (tức là không được ngắt dữ liệu trước khi kết thúc chu trình đọc)

<u>Bài 4:</u> (Bài 31-Tr360-STK) EPROM 2764 8k × 8

- Số đường địa chỉ của EPROM:

 $8k \times 8 = 2^{13} \times 8$

→ Có 13 đường địa chỉ A0 ÷ A12

- Số IC nhớ cần dung: 8 IC

- Xác định dải địa chỉ của các IC:

A_{19} 0 0 0 0	A ₁₈ 0 0 0 0	A ₁₇ 0 0 0 0 0	A ₁₆ 1 1 1 1	A_{15} 0 0 0 0	A_{14} 0 0 0 0	A ₁₃ 0 0 1 1	0	A_{11} 0 1 .	A_{10} 0 1 .	A ₉ 0 1 .		A_6 0 1	A_{5} 0 1	A_4 0 1	A ₃ 0 1	A_{2} 0 1	A_1 0 1 .	A_0 0 1 0 1
				1 1	1 1	1 1	0 1											0

Bài 5 : (Bài 32-Tr360-STK)

SRAM 62256 32k × 8

Xác định số đường địa chỉ : $32k \times 8 = 2^{15} \times 8$

 \rightarrow Có 15 đường địa chỉ : $A_0 \div A_{14}$ Số SRAM cần thêm : 8 SRAM

Xác định dải địa chỉ của các SRAM:

A_{9}	A_{8}	A_7	A_{6}	A_5	A_{4}	A_3	A_{2}	A_{1}	A_0	$A_{\!\scriptscriptstyle 9}$	$A_{\!\!8}$	A_{7}	$A_{\!$	$A_{\!\!\!5}$	$A_{\!\scriptscriptstyle 4}$	A_3	A_{2}	Ą	$A_{\!\scriptscriptstyle{0}}$
1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
•		•	•			•		•			•	•		•	•	•	•		
1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Dùng bộ giải mã U4 để chọn 3 bộ giải mã U6, U7, U8:

- Một địa chỉ bắt đầu với 00 thì chọn bộ giải mã U6
- Một địa chỉ bắt đầu với 01 thì chọn bộ giải mã U7
- Một địa chỉ bắt đầu với 11 thì chọn bộ giải mã U8

Bài 6: (Bài 46-Tr361-STK)

Phát triển bộ nhớ có độ rộng 32bit từ các EPROM Chon EPROM 27128 (16k × 8) ghép nối với 80486

Kích thước bộ nhớ : FFFFFFFF – FFFF0000 + 1 = 64KB Xác định số đường địa chỉ của EPROM : $16k \times 8 = 2^{14} \times 8$

 \rightarrow Có 14 đường địa chỉ : $A_0 \div A_{13}$

Xác định số IC nhớ cần dùng : $64k \div 16k = 4$ IC chia làm 4 bank

Xác định dải địa chỉ của các IC nhớ:

A_{31}								A_{16}	A_{15}						A_2	$A_{\rm l}$	A_0
1								1	0						0	0	0
1								1	1						1	0	0
1								1	0						0	0	1
1								1	1						1	0	1
1								1	0						0	1	0
1								1	1						1	1	0
1								1	0						0	1	1
1								1	1						1	1	1
									I							l	

Sử dụng bộ giải mã AMD 16L8 PAL để giải mã địa chỉ:

<u>Bài 7 :</u> (Bài 47-Tr361-STK)

Phát triển bộ nhớ có độ rộng 64bit từ EPROM và SRAM

Chọn EPROM 27512 (64k × 8) và SRAM M48Z512A 06 (512k × 8)

EPROM ở địa chỉ FFF00000H ÷ FFFFFFFH

Kích thước vùng nhớ chứa EPROM: FFFFFFF – FFF00000 + 1 = 1MB

Xác định số đường địa chỉ của EPROM : $64k \times 8 = 2^{16} \times 8$

 \rightarrow Có 16 đường địa chỉ $A_0 \div A_{15}$

Xác định số IC nhớ cần dùng : $1MB \div 64KB = 16$ IC

→ Chia làm 8 bank, mỗi bank gồm 2 IC nhớ

Xác đinh dải đia chỉ của các IC nhớ:

A_{31}	 A_{20}	A_{19}	A_{18}	 					A_3	A_{2}	$A_{\rm l}$	A_{0}
1	1	0	0						0	0	0	0
1	1	0	1						1	0	0	0
1	1	1	0						0	0	0	0
1	1	1	1						1	0	0	0
1	1	0	0						0	0	0	1
1	1	0	1						1	0	0	1
1	1	1	0						0	0	0	1
1	1	1	1						1	0	0	1
1	1	0	0						0	1	1	1
1	1	0	1						1	1	1	1
1	1	1	0						0	1	1	1
1	1	1	1						1	1	1	1

SRAM ở địa chỉ 00000000H ÷ 003FFFFFH

Kích thước vùng nhớ chứa SRAM : 003FFFFF - 0 + 1 = 4MB

Xác định số đường địa chỉ của SRAM : $512k \times 8 = 2^{19} \times 8$

 \rightarrow Có 19 đường địa chỉ : $A_0 \div A_{18}$

Xác định số IC nhớ cần dùng : $4MB \div 512KB = 8$ IC

→Chia làm 8 bank, mỗi bank gồm 1 IC

Xác định dải địa chỉ của các IC

A_{31}	A_{23}	$A_{\!$	A_{21}							$A_{\!\scriptscriptstyle 3}$	$A_{\!\scriptscriptstyle 2}$	$A_{\!\scriptscriptstyle I}$	$A_{\!\scriptscriptstyle 0}$
0	0	0	0							0	0	0	0
0	0	0	1							1	0	0	0
0	0	0	0							0	0	0	1
0	0	0	1							1	0	0	1
		•							•				
0	0	0	0							0	1	1	1
0	0	0	1							1	1	1	1


```
Chương trình cho PAL 16L8 U1
;pins
                  3
                                                       10
        1
                       4
                             5
                                  6
                                      7
                                            8
                 A<sub>21</sub> NC NC NC NC NC NC
       A_{19} A_{20}
                         14
                               15
                                    16
                                          17
                                                18
                                                      19
        11
            12
                   13
                                                            20
;pins
       U21 EB1
                   EB0 NC
                               NC
                                     NC NC
                                                 NC
                                                      NC
                                                            VCC
EOUATIONS
/EB0 = /U21 * /A_{19} * A_{20} * A_{21}
/EB1 = /U21 * A_{19} * A_{20} * A_{21}
Chương trình cho PAL 16L8 U2
;pins
        1
             2
                  3
                       4
                             5
                                  6
                                       7
                                            8
                                                       10
       A_{22} A_{23} A_{24} A_{25} A_{26} A_{27} A_{28} A_{29} A_{30}
                                                        GND
;pins
       11
             12
                   13
                         14
                               15
                                    16
                                          17
                                                18
                                                      19
                                                            20
       A31 NC
                  NC
                         NC
                               NC
                                    NC
                                          NC
                                               U23 U21 VCC
EQUATIONS
/U21 = A_{22} * A_{23} * A_{24} * A_{25} * A_{26} * A_{27} * A_{28} * A_{29} * A_{30} * A_{31}
/U23 = /A_{22} * /A_{23} * /A_{24} * /A_{25} * /A_{26} * /A_{27} * /A_{28} * /A_{29} * /A_{30} * /A_{31}
Chương trình cho PAL 16L8 U3
;pins
                  3
                             5
                                  6
    MWTC BE0 BE1 BE2 BE3 BE4 BE5 BE6 BE7 GND
                                                18
;pins
        11
             12
                   13
                         14
                               15
                                     16
                                          17
                                                      19
                                                            20
       NC WR0 WR1 WR2 WR3 WR4 WR5 WR6 WR7 VCC
EOUATIONS
/WR0 = /MWTC * /BE0
/WR1 = /MWTC * /BE1
/WR2 = /MWTC * /BE2
/WR3 = /MWTC * /BE3
/WR4 = /MWTC * /BE4
/WR5 = /MWTC * /BE5
/WR6 = /MWTC * /BE6
/WR7 = /MWTC * /BE7
```

Bài 8: Thiết kế bộ nhớ cho 8086:

a . Bộ nhớ 80kB từ SRAM (8k \times 8) bắt đầu từ địa chỉ 0C000H Xác định số đường địa chỉ của SRAM : $8k \times 8 = 2^{13} \times 8$

 \rightarrow Có 13 đường địa chỉ : $A_0 \div A_{12}$

Xác định số IC nhớ cần dùng : $80k \div 8k = 10$ IC

→Chia làm 2 bank, mỗi bank gồm 5 IC

Xác định dải địa chỉ của các IC:

A_{19}	A_{18}	A_{17}	A_{16}	A_{15}	A_{14}	A_{13}				•				•		$A_{\rm l}$	A_0
0	0	0	0	1	1	0										0	0
0	0	0	0	1	1	1		•	•	•						1	0
0	0	0	1	0	0	0									•	0	0
0	0	0	1	0	0	1	•			•		•				1	0
	•	•	•	•						•						•	
0	0	0	1	1	1	0										0	0
0	0	0	1	1	1	1										1	0
0	0	0	0	1	1	0										0	1
0	0	0	0	1	1	1										1	1
•	·	•		•		•				•	•	•	•	•		•	
0	0	0	1	1	1	0										0	1
0	0	0	1	1	1	1										1	1

b. Bộ nhớ 128kB từ ROM ($32k\times 8)$ kết thúc ở địa chỉ FFFFH

Xác định số đường địa chỉ của ROM : $32k \times 8 = 2^{15} \times 8$

 \rightarrow Có 15 đường địa chỉ : $A_0 \div A_{14}$

Xác định số IC nhớ cần dung : $128k \div 32k = 4$ IC

Chia làm 2 bank, mỗi bank gồm 2 IC

Xác định dải địa chỉ của cá IC nhớ:

 \rightarrow Địa chỉ đầu = FFFFF – 128kB + 1 = FFFFF – 20000 + 1 = E0000H

$A_{_{1 9}}$	$A_{\scriptscriptstyle 18}$	$A_{\scriptscriptstyle 17}$	$A_{\scriptscriptstyle 16}$	$A_{_{15}}$	$A_{_1}$	A
1	1	1	0	0	0	0
1	1	1	0	1	1	0
1	1	1	1	0	0	0
1	1	1	1	1	1	0
1	1	1	0	0	0	1
1	1	1	0	1	1	1
1	1	1	1	0	0	1
1	1	1	1	1	1	1

Dùng bộ giải mã 74LS139 để giải mã địa chỉ:

