Modelowanie ustrojów maszyn projekt

Ustrój nośny naczepy

Prowadzący:

Mgr. inż. Dominik Gunia

1. Wstęp

Przedmiotem projektu była rama naczepy zdolna do przewozu 40t ładunku i wykonana ze stali S315.

Rys. 1.1 rama naczepy - wymiary

W projekcie dążono do zredukowania maksymalnych naprężeń w konstrukcji (liczona statycznie), tak aby spełnić następujący warunek:

$$MoS = 0.5 = 1 - \frac{\sigma_{MES}}{R_e}$$

 $MoS=0.5=1-\frac{\sigma_{MES}}{R_e}$ co oznacza że dla stali S315, gdzie R_e=315 MPa, naprężenia uzyskane w toku obliczeń powinny być niższe niż 157,5 MPa:

$$\sigma_{MES} \leq 157,5 \, [MPa]$$

Naczepę zamodelowano, nałożono siatkę oraz obliczono w programie Siemens NX 9.0.

2. Model

Ze względu na specyfikę konstrukcji naczep do pojazdów ciężarowych model został stworzony powierzchniowo. Pozwoli to na uzyskanie bardziej wiarygodnych wyników w stosunku do modelu bryłowego, gdzie może pojawić się znacznie więcej błędów. Najważniejszym elementem naczep i przyczep są podłużnice. To na nich opiera się przewożony ładunek i powinny one być wykonane z elementu dobrze przenoszącego naprężenia zginające i ściskające. Takim profilem jest dwuteownik, i taki został zastosowany do projektu.

Rys. 2.1 rama naczepy - model

Ważnym elementem w projekcie jest także element który mocowany będzie bezpośrednio do osi pojazdu. Elementów takich w projekcie będzie aż 6 - gdyż w wymaganiach projektowych naczepa jest trójosiowa. Do ramy będzie on mocowany za pomocą śrub.

Rys. 2.2 element mocowany do osi

Rys. 2.3 złożenie ramy naczepy

3. Nakładanie siatki

Następnym krokiem jest nałożenie siatki na cały model.

Rys. 3.1 model z nałożoną siatką

Model podzielony został na 9 rożnych siatek, o innych grubościach. Wszystkie siatki mają wielkość elementu ustawioną na 15 mm, oraz stworzone są z siatki CQUAD4.

☐ ✓ ◇ 2D Collectors	
⊕ 🗹 🎼 teo	(Filter : Off)(Sort
⊕ 🗹 🍇 wzm_teo	(Filter : Off)(Sort
🕀 🗹 🍇 poprzeczki	(Filter : Off)(Sort
🕀 🗹 🎼 tyl	(Filter : Off)(Sort
🕀 🗹 🎼 profile	(Filter : Off)(Sort
🕀 🗹 🍇 prostokaty	(Filter : Off)(Sort
⊕ 🗹 🍇 moc_osi	(Filter : Off)(Sort
⊕ 🗹 🎼 zebra_os	(Filter : Off)(Sort
⊕ 🗹 🍇 os_profil	(Filter : Off)(Sort
± □ № C	

Rys. 3.2 siatki nałożone na model

Na podłużnice o kształcie dwuteownika nałożono siatkę o nazwie teo o grubości 10 mm. Wzmocnienia dwuteownika - 6 mm.

Rys. 3.3 siatka wzmocnienia dwuteownika

Siatka nałożona na poprzeczki - 5 mm.

Rys. 3.4 siatka poprzeczek

Na blachę tylną - 2 mm.

Rys. 3.5 siatka blachy tylnej

Na połączenia z przodu nałożono siatkę 2 mm.

Rys. 3.6 siatka profili

Siatka nałożona na prostokątne profile to 2 mm

Rys. 3.7 siatka profili prostokątnych

Kolejne elementy siatki to te związane z elementem mocowanym do osi. Ich grubości to kolejno:10 mm, 10 mm oraz 3 mm.

Rys. 3.8 siatka mocowania do osi

Rys. 3.9 siatka żeber wzmacniających

Rys. 3.10 siatka profilu łączącego

Masa całkowita konstrukcji wyniosła zatem 930 kg.

Rys. 3.11 masa całkowita

Kolejnym elementem tworzonym w module .fem jest stworzenie połączeń 1D. Jak wspomniano wcześniej element mocowany do osi jest połączony z ramą za pomocą śrub. Zostało to zasymulowane dwoma połączeniami 1D Connection RBAR (wersja point to face).

Rys. 3.11 połączenie śrubowe

Elementem symulującym połączenie całej konstrukcji z osią jest połączenie RBAR - podwójne face to point symulujące sworzeń łączący te 2 elementy. Od środkowego punktu tego połączenia mamy dalsze połączenie RBAR point to point już do punktu bezpośrednio utwierdzanego w symulacji. Do tego punktu zamodelowane zostało także w sposób uproszczony zawieszenie - elementami 1D Connection CELAS2 (edge to point), które ma za zadanie symulować sztywność i tłumienie zawieszenia. Jedno połączenie jest od elementu mocowanego do osi a drugie bezpośrednio do ramy (symulują sztywność i tłumienie miechów pneumatycznych mocowanych w tego typu naczepach).

Rys. 3.12 połączenie z osią

Rys. 3.12 połączenie sprężynowe

Rys. 3.13 połączenie sprężynowe (miechy pneumatyczne)

Połączenia sprężynowe w każdym miejscu zamodelowane są trzykrotnie (obsługują wszystkie 3 osie $X,\,Y,\,Z$).

Aby obliczyć sztywność zawieszenia na przednią oś (niezależne) skorzystano z tzw. modelu ćwiartki pojazdu.

Rys 3.14 model ćwiartki pojazdu

Opisany jest on wzorem na pulsację drgań własnych pojazdu.

$$\omega_{01}^{2} = \frac{1}{2} \left[\frac{(k_{w} + k)m + km_{w}}{m_{w}m} \right] - \frac{1}{2} \sqrt{\left[\frac{(k_{w} + k)m + km_{w}}{m_{w}m} \right]^{2} - 4 \left[\frac{k_{w}k}{m_{w}m} \right]} \quad \text{[rad/s]}$$

Rys 3.15 wzór na pulsację drgań własnych

Skąd obliczyć można częstotliwość drgań własnych:

$$f=\frac{\omega}{2\pi},$$

która dla zachowania komfortu jazdy kierowcy i pasażerów powinna zawierać się w przedziale od 0,8 do 1,5 Hz.

Zakładając dane

Masa ładunku	40000	kg
Masa nieresorowana mw	30	kg
Sztywność masy		
nieresorowanej k _w	120000	N/m

Tabela 3.1 założone dane

Obliczono:

k_{F}		
[N/m]	$\omega_{01}^{2} [rad^{2}/s^{2}]$	$f_{F}[Hz]$
280000	25,09	0,79

Tabela 3.2 obliczenia

We wzorze na pulsację drgań własnych należy uwzględnić że przez jeden element nie jest przenoszona cała masa, tylko jej część - naczepa jest trójosiowa i podparta jeszcze na zaczepie, wobec tego masa przypadająca na jedno koło jest odpowiednio mniejsza. Tłumienie policzono:

$$b = 2\xi * \sqrt{mk}$$

przyjmując wartość ξ =0,2 i masę przypadającą na jedną oś:

$$b = 2 * 0.2 * \sqrt{40000 \div 12 * 280000} = 12220 \frac{kg}{s}$$

Rys 3.15 dane wpisane w sztywność i tłumienie sprężyny

Dobierając standardowe wymiary miechów dobrano ich D=200 mm, dla którego sztywność jest dana jako 110 N/mm. Z pokazanego wcześniej wzoru obliczono tłumienie.

Rys 3.16 dane wpisane w sztywność i tłumienie sprężyny od miechów

4. Dane do symulacji

Po nałożeniu siatki można zająć się obliczeniami. Należy zdefiniować siły przyłożone do modelu - do podłużnic o wartości 400000 N, wynikające z masy obciążającej. Dodano także siłę grawitacji.

Rys 4.1 obciążenia

Utwierdzenia zostały odebrane w 7 miejscach. Zwrócono uwagę na fakt, aby nie przesztywnić konstrukcji, co mogłoby sfałszować rzeczywiste wyniki (uzyskane naprężenia).

Rys 4.2 utwierdzenia z jednej strony - zablokowana tylko oś Z translacja i wszystkie rotacje

Rys 4.3 utwierdzenia z drugiej strony - zablokowane wszystkie osie (translacje i rotacje)

Rys 4.4 utwierdzenia z drugiej strony - zablokowane osie X i Z translacje i wszystkie rotacje Przednia część spoczywa na ciągniku - jej oś Z jest zablokowana.

Rys 4.5 utwierdzenia części przedniej - zablokowana oś Z translacja i wszystkie rotacje Tak przygotowany model można poddać obliczeniom.

5. Wyniki

Obliczenia to Solution SOL 101 Linear Statics - Global Constraints. Parametr AutoMPC został ustawiony na YES.

Ustawiono odpowiednio styl wyświetlania wyników (shell - top and bottom, nodal combination - average).

Rys 5.1 ustawienia wyświetlania wyników

Stopień deformacji ustawiono na 1% oraz wyłączono siatkę. Odczytane naprężenia:

$$\sigma_{MES} = 155,35 [MPa]$$

które zgadzają się z wcześniej założonymi:

$$\sigma_{MES} \leq 157,5 \, [MPa]$$

Rys 5.2 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Rys 5.2 przemieszczenia - wyświetlanie uśrednione (magnitiude) [mm]

Rys 5.3 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Na rysunkach 5.3, 5.4 oraz 5.5 widoczne są miejsca w modelu gdzie występują największe naprężenia w całej konstrukcji. Jest ona jednak bezpieczna ze względu na ich dopuszczalną wielkość. Tak jak widać najbardziej obciążone są przednie elementy mocowane do osi. Najwięcej obciążeń przejmują podłużnice co zgadza się z teorią.

Rys 5.4 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Rys 5.5 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

6. Porównanie wyników

Poniżej przedstawiono model i wyniki symulacji przed optymalizacją.

Rys 6.1 siatka nałożona na model

Rys 6.2 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Rys 6.3 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Rys 6.4warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Rys 6.5 warstwice naprężeń zredukowanych wg. Hubera-Misesa [MPa]

Na wycinkach pokazano najbardziej narażone na zniszczenie miejsca. Zostały one wzmocnione żebrami - wstawione w dwuteownik a także w element mocowany do osi. Ponadto zmodyfikowano utwierdzenie dodając sprężyny. Zmniejszono znacząco także masę całkowitą konstrukcji. Wynosiła ona w początkowym przypadku 1289 kg.

Rys 6.6 masa początkowa