Introduction to Machine Learning

L0 Regularization

Learning goals

- Know LQ norm regularization
- Understand that L0 norm realization simply counts the number of non-zero parameters

LQ NORM REGULARIZATION

Besides L_1 and L_2 norm we could use any L_q norm for regularization.

Figure: *Top:* Ridge and Lasso loss contours and feasible regions. *Bottom:* Different feasible region shapes for L_q norms $\sum_i |\theta_i|^q$.

LO REGULARIZATION

• Consider the L_0 -regularized risk of a model $f(\mathbf{x} \mid \theta)$

$$\mathcal{R}_{\text{reg}}(oldsymbol{ heta}) = \mathcal{R}_{\text{emp}}(oldsymbol{ heta}) + \lambda \|oldsymbol{ heta}\|_0 := \mathcal{R}_{\text{emp}}(oldsymbol{ heta}) + \lambda \sum_j | heta_j|^0.$$

• Unlike the L_1 and L_2 norms, the L_0 "norm" simply counts the number of non-zero parameters in the model.

Figure: L_p norm penalties for a parameter θ according to different values of p.

LO REGULARIZATION

- For any parameter θ , the L_0 penalty is zero for $\theta = 0$ (defining $0^0 := 0$) and is constant for any $\theta \neq 0$, no matter how large or small it is.
- L₀ regularization induces sparsity in the parameter vector more aggressively than L₁ regularization, but does not shrink concrete parameter values as L1 and L2 does.
- Model selection criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) are special cases of L₀ regularization (corresponding to specific values of λ).
- The L₀-regularized risk is neither continuous, differentiable or convex.
- It is computationally hard to optimize (NP-hard) and likely intractable. For smaller n and p we might be able to solve this nowadays directly, for larger scenarios efficient approximations of the L₀ are still topic of current research.