Viewing Pipeline 2D/3D

Maria Cristina F. de Oliveira Rosane Minghim 2008

Viewing Pipeline 2D

- Processo de determinar quais objetos da cena serão exibidos na tela, e como
- Transformação da cena, definida no sistema de coordenadas do mundo (WCS, ou SRU), para um sistema de coordenadas de observação, normalizado
 - VCS viewing coordinate system, ou SRV sistema de referência de observação (ou de visualização)
- E depois para o sistema de coordenadas do dispositivo
 - Visão geral do pipeline: v. Hearn & Baker, Fig. 6-2

Viewing (onde estamos no pipeline)

Pipeline:

3

Viewing Pipeline 2D

- No SRU, define "janela" ("window") de interesse
- Mapeia para janela normalizada no SRV ("viewport")
- Transformação "window-viewport": aplicada a todos os objetos contidos na janela de interesse
- Tudo o que está fora da "window" é descartado (clipping, ou recorte)

Viewing Pipeline 2D

- Dado
 - window retangular, alinhada aos eixos principais do SRU, coord's w_{min}, w_{max}
 - viewport coord's V_{min}, V_{max}
- Buscamos a transformação que mapeia as coordenadas de um ponto (w_p,w_p)_{SRU} no ponto (v_p,v_p)_{SRV}. Duas abordagens:
 - Seqüência de transformações que 'alinha' a window com a viewport (translação + escala + translação inversa)
 - Regra de três que mantém as proporções relativas dos objetos em ambas window e viewport
 ₅

OpenGL

```
glOrtho2D(GLfloat xwmin, GLfloat xwmax,
GLfloat ywmin, GLfloat ywmax);
```

Define janela de visualização em 2D

$$\begin{aligned} \text{CIE} &= \mathbf{w}_{\text{min}} = (\mathbf{x} \mathbf{w}_{\text{min}}, \mathbf{y} \mathbf{w}_{\text{min}}) \\ \text{CSD} &= \mathbf{w}_{\text{max}} = (\mathbf{x} \mathbf{w}_{\text{max}}, \ \mathbf{y} \mathbf{w}_{\text{max}}) \end{aligned}$$

glViewport(GLint xvmin, Glint Width, GLint
yvmin, GLint Height);

CIE em xv_{min},yv_{min} Width – largura viewport Height – altura viewport

Viewing Pipeline 2D

THE COLUMN TWO IS NOT THE OWNER.

- Observe que
 - Mudando a posição da viewport pode-se exibir a mesma cena em posições diferentes do dispositivo
 - Mudando o tamanho da viewport pode-se alterar o tamanho e as proporções dos objetos exibidos
 - Zoom in/out: obtido mapeando-se sucessivamente windows de tamanhos distintos (menores/maiores) em viewport de tamanho fixo
 - Pan: obtido movendo uma window de tamanho fixo na cena
 - Viewport normalizada: quadrado de dimensão unitária, com canto inferior esquerdo (cie) na origem do SRV

9

Bibliografia

- Hearn & Baker, Computer Graphics C Version, Cap. 6
- Apostila CG Transformações 2D

Viewing Pipeline 3D

- No caso 3D, o pipeline requer:
 - A definição de um volume de interesse na cena 3D (SRU)
 - O mapeamento de seu conteúdo para o SRV (transformação de visualização)
 - A projeção do conteúdo do volume de interesse em um plano (transformação de projeção)
 - Mapeamento da janela resultante na viewport normalizada e depois para coordenadas do dispositivo

11

Viewing Pipeline 3D: Analogia Câmera

Observação:	posiciona câmera	posiciona volume de observação
Cena:	posiciona modelo	posiciona modelo
Projeção:	escolhe lentes	escolhe formato vv
Viewport:	escolhe tamanho foto	escolhe porção da tela
fonte: curso CG Arizona State University,		

Dianne Hansford

Viewing Pipeline 3D: Analogia Câmera

- Imaginamos um observador que vê a cena através das lentes de uma câmera virtual
 - "fotógrafo" pode definir a posição da câmera, sua orientação e ponto focal, abertura da lente...
 - câmera real obtém uma projeção de parte da cena em um plano de imagem 2D (o filme)
- Analogamente, a imagem obtida da cena sintética depende de vários parâmetros que determinam como esta é projetada para formar a imagem 2D no monitor
 - posição da câmera, orientação e ponto focal, tipo de projeção, posição dos "planos de recorte" (clipping planes), ...

13

Viewing Pipeline 3D: Analogia Câmera

- Três parâmetros definem completamente a câmera
 - Posição: aonde a câmera está
 - Ponto focal: para onde ela está apontando
 - Orientação: controlada pela posição, ponto focal, e um vetor denominado view up
- Outros parâmetros
 - Direção de projeção: vetor que vai da posição da câmera ao ponto focal
 - Plano da imagem: plano no qual a cena será projetada, contém o ponto focal e, tipicamente, é perpendicular ao vetor direção de projeção

Viewing Pipeline 3D: Analogia Câmera

PROPERTY OF THE PROPERTY OF TH

Fonte Figura: Schröeder, The Visualization Toolkit, 1998

15

Viewing Pipeline 3D: Analogia Câmera

- O método de projeção controla como os objetos da cena (atores) são mapeados no plano de imagem
 - Projeção ortográfica, ou paralela: processo de mapeamento assume a câmera no infinito, i.e., os raios de luz que atingem a câmera são paralelos ao vetor de projeção
 - Projeção perspectiva: os raios convergem para o ponto de observação, ou centro da projeção. Nesse caso, é necessário determinar o ângulo de visão da câmera
 - Os planos de recorte delimitam a região de interesse na cena
 - Anterior: elimina objetos muito próximos da câmera
 - Posterior: elimina objetos muito distantes

Manipulação da Câmera

Fonte Figura: Schröeder, The Visualization Toolkit, 1998

17

Manipulação da Câmera

- Azimuth: rotaciona a posição da câmera ao redor do seu vetor view up, com centro no ponto focal
- Elevation: rotaciona a posição ao redor do vetor dado pelo produto vetorial entre os vetores view up e direção de projeção, com centro no ponto focal
- Roll (Twist): rotaciona o vetor view up em torno do vetor normal ao plano de projeção

Manipulação da Câmera

Fonte Figura: Schröeder, The Visualization Toolkit, 1998

19

Manipulação da Câmera

- Yaw: rotaciona o ponto focal em torno do vetor view up, com centro na posição da câmera
- Pitch: rotaciona o ponto focal ao redor do vetor dado pelo produto vetorial entre o vetor view up e o vetor direção de projeção, com centro na posição da câmera
- Dolly (in, out): move a posição ao longo da direção de projeção (mais próximo ou mais distante do ponto focal)
- Zoom (in, out): altera o ângulo de visão, de modo que uma região maior ou menor da cena fique potencialmente visível

Viewing Pipeline 3D

- V. Figura 12.2, Hearn & Baker
- Retomando: o pipeline requer a transformação da cena especificada no SRU para o SRV (ou VCS)
 - O SRV descreve a cena como vista pela câmera...
 - O primeiro passo nesse processo consiste em especificar o SRV. Como?
 - Necessário especificar origem e os três eixos de referência...

Especificação do SRV

- Origem do sistema
 - Posição da câmera (VRP: View Reference Point, ou PRO)
- Associados à câmera:
 - Vetor direção de projeção (N), que dá a direção do ponto focal, e vetor view-up (V), que indica o 'lado de cima' da câmera (ambos devem ser perpendiculares entre si!)
 - Plano de imagem, no qual a cena 3D será projetada, perpendicular ao vetor direção de projeção
- Eixos:
 - eixo z associado ao vetor direção de projeção, eixo y associado ao vetor view-up, eixo x...

Especificação do SRV

Dados os vetores N e V, os vetores unitários podem ser calculados como indicado ao lado

$$y_w$$

$$Y_v$$

$$\mathbf{n} = \frac{\mathbf{N}}{|\mathbf{N}|} = (n_1, n_2, n_3)$$

$$\mathbf{u} = \frac{\mathbf{V} \times \mathbf{N}}{|\mathbf{V} \times \mathbf{N}|} = (u_1, u_2, u_3)$$

$$\mathbf{v} = \mathbf{n} \times \mathbf{u} = (v_1, v_2, v_3)$$

Conversão SRU->SRV

- Temos 2 espaços vetoriais (sist. coordenadas) em \Re^3 , definidos por duas bases ortonormais
 - SRU, espaço x_w,y_w,v_w (i,j,k)
 - SRV, espaço x_v, y_v, z_v ($\mathbf{u}, \mathbf{v}, \mathbf{n}$)
- Queremos inicialmente coincidir as origens. Isso se faz transladando a origem do S_v para a origem do S_w (lembrando transf. Entre sistemas de coordenadas). Sendo P_o as coordenadas da origem de S_v em S_w

25

Conversão SRU->SRV

Matriz de translação:

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & -x_0 \\ 0 & 1 & 0 & -y_0 \\ 0 & 0 & 1 & -z_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

 Queremos obter a matriz de rotação R que alinha os 2 sistemas, i.e., transforma de um espaço vetorial para o outro (p.ex. de x_v,y_v,z_v para x_w,y_w,v_w)

Conversão SRU->SRV

 Matriz de rotação pode ser formada diretamente a partir ddos vetores, já que eles definem uma base ortonormal (e uma matriz ortogonal)

$$\mathbf{R} = \begin{bmatrix} u_x & u_y & u_z & 0 \\ v_x & v_x & v_x & 0 \\ n_x & n_y & n_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

27

Lembrando...

- Matriz R é ortogonal:
 - Cada linha descreve um vetor unitário e os vetores são mutuamente ortogonais: definem uma base ortonormal
 - Analogamente, as colunas da matriz também definem uma base ortonormal
 - Na verdade, dada qualquer base ortonormal, a matriz cujas linhas (ou colunas) são formadas pelos seus versores é ortogonal

Lembrando...

- Consequentemente:
 - R é normalizada
 - a soma dos quadrados dos elementos em qqr linha/coluna é 1
 - R é ortogonal
 - produto escalar de qqr par de linhas ou colunas é zero
 - inversa de R é igual à sua transposta

29

Conversão SRU->SRV

A matriz completa de transformação é

$$\mathbf{M}_{wc,vc} = \mathbf{R} \cdot \mathbf{T} = \begin{bmatrix} u_x & u_y & u_z & -u\mathbf{P}_0 \\ v_x & v_x & v_x & -v\mathbf{P}_0 \\ n_x & n_y & n_z & -n\mathbf{P}_0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Essa matriz, aplicada ao SRV alinha os eixos x_v,y_v,z_v (u,v,n) do SRV aos eixos x_w,y_w,v_w (i,j,k) do SRU
- A componente de translação alinha as origens

Transformação de Projeção

- Tendo a cena descrita no SRV, o próximo passo no pipeline consiste em projetar o conteúdo do volume de visualização no plano de imagem
 - Volume de visualização: 'viewing frustum': define a região de interesse na cena
 - Antes da projeção é aplicado um processo de 'recorte' (clipping), em que as partes dos objetos que estão fora do VF são descartadas
 - Recorte 3D em relação aos planos de recorte (clipping planes)

31

Viewing Frustum

Volume de visualização, projeção perspectiva

Taxonomia das projeções

Projeções paralela e perspectiva

Projeção perspectiva um ponto de fuga

35

Projeção perspectiva dois pontos de fuga

Projeção perspectiva três pontos de fuga

37

Características da Perspectiva

- Encurtamento perspectivo
 - Objetos ficam menores a medida que se distanciam do centro de projeção

Características da Perspectiva

- Pontos de Fuga
 - Retas não paralelas ao plano de projeção parecem se interceptar em um ponto no horizonte
- Confusão Visual
 - Objetos situados atrás do centro de projeção são projetados de cima para baixo e de trás para a frente
- Distorção Topológica
 - Pontos contidos no plano que contém o centro de projeção e é paralelo ao plano de projeção são projetados no infinito

39

Transformação de Projeção

- PRP: Projection Reference Point
 - o centro de projeção...
 - Alguns sistemas assumem que coincide com a posição da câmera (a origem do SRV)
- Problema
 - determinar as coordenadas (x_p, y_p, z_p) do ponto P = (x, y, z) projetado no plano de projeção (Figura)

Transformação de Projeção

Suponha o centro de projeção posicionado em z_{prp}, um ponto no eixo z_v, e que o plano de projeção, normal ao eixo z_v, está posicionado em z_{vp},

41

Transformação de Projeção

 Coordenadas projetadas (x', y', z') de um ponto (x,y,z) ao longo da linha de projeção

$$x' = x - x^*u$$

 $y' = y - y^*u$
 $z' = z - (z - z_{prp})^*u, u \in [0, 1]$

- Para u = 0 estamos em P = (x, y, z), para u = 1 temos o centro de projeção (0, 0, z_{pro}).
- No plano de projeção: z' = z_{vp.}Podemos resolver z' para obter o valor de u nessa posição...

Transformação de Projeção

■ Valor de *u* no plano de projeção:

$$u = \frac{z_{vp} - z}{z_{prp} - z}$$

- Substituir nas eqs. de x' e y'
- d_p: distância do plano de projeção ao centro de projeção, i.e.,

$$d_p = Z_{vp} - Z$$

43

Transformação de Projeção

Substituindo nas eqs. de x' e y'

$$x_{p} = x(\frac{z_{prp} - z_{vp}}{z_{prp} - z}) = x(\frac{d_{p}}{z_{prp} - z})$$

$$y_{p} = y(\frac{z_{prp} - z_{vp}}{z_{prp} - z}) = y(\frac{d_{p}}{z_{prp} - z})$$

$$w_{p} = w(\frac{z_{prp} - z_{vp}}{z_{prp} - z}) = w(\frac{d_{p}}{z_{prp} - z})$$

Fator homogêneo:

$$h = \frac{z_{prp} - z}{d_p}$$

Normalizar em relação a w = 1 (dividir por h) para obter as coordenadas projetadas no plano:

 $x_p = \frac{x_h}{h}, \quad y_p = \frac{y_h}{h}$

45

Transformação de Projeção

Na forma matricial homogênea

$$\begin{bmatrix} x_h \\ y_h \\ z_h \\ h \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -z_{vp}/d_p & z_{vp}(z_{prp}/d_p) \\ 0 & 0 & -1/d_p & z_{prp}/d_p \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Transformação de Projeção

- Observações:
 - Valor original da coordenada z (no VCS) deve ser mantido para uso posterior por algoritmos de remoção de superfícies ocultas
 - Centro de projeção não precisa necessariamente estar posicionado ao longo do eixo z_v. Eqs. podem ser generalizadas para considerar o centro um ponto qualquer
 - Alguns pacotes gráficos (e nós tb.!) assumem z_{prp} = 0,
 i.e., centro de projeção coincide com origem do VCS
 - Casos especiais: plano de projeção coincide com pano x_vy_v, i.e., z_{vp} = 0 (e d_p = z_{prp})

47

Projeções Paralelas

- No caso de projeções ortográficas, matrizes de transformação são triviais
- Ex. projeção em plano paralelo a x_vy_v (VCS):

$$M_{ortgraf} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

Paralela vs. Perspectiva

- Projeção perspectiva
 - Tamanho varia inversamente com distância: aparência realística
 - Distâncias e ângulos não são preservados
 - Linhas paralelas não são preservadas
- Projeção paralela
 - Boa para medidas exatas
 - Linhas paralelas são preservadas
 - Ângulos não são preservados
 - Aparência menos realística

49

Bibliografia

- Capítulo 6 da apostila
- Cap. 12 Hearn & Baker
- Cap. 2 Conci e Azevedo
- http://escience.anu.edu.au/lecture/cg/Tran sformation/index.en.html
- Curso CG da ACM (link na pág. GBDI)

...