Лабораторная работа 4.6.2 ТУННЕЛИРОВАНИЕ НА СВЕРХВЫСОКИХ ЧАСТОТАХ

Александр Нехаев, гр 654 22 марта 2018 г.

Содержание

1.	Введение	2			
2.	Экспериментальная установка	6			
3.	Ход работы				
	3.1. Подготовока приборов к работе	7			
	3.2. Зависимости коэффициентов отражения и прохождения вол-				
	ны от величины зазора	8			
	3.3. Интерферометр Майкельсона				
4.	Вывод	12			

1. Введение

Цель работы: изучение явления проникновения электромагнитного поля во вторую среду при полном внутреннем отражении (туннелирование) и использование этого явления для создания интерференционных схем в СВЧ-диапазоне.

В работе используются: генератор СВЧ-колебаний; излучающая и приемная рупорные антенны; детектор; две фторопластовые призмы; металлические зеркала; микроамперметр; плоскопа- раллельная пластина из фторопласта.

Теоретические основы: Плоские электромагнитные волны, распространяющиеся в однородной изотропной среде, описываются выражением

$$\boldsymbol{E} = \boldsymbol{a}e^{-i(\omega t - \boldsymbol{k}\boldsymbol{r})} = \boldsymbol{a}e^{i(k_x x + k_y y + k_z z)}e^{-i\omega t} = \boldsymbol{A}(x, y, z)e^{-\omega t}.$$
 (1)

В данном выражении:

- 1) a амплитуда вектора напряженности электрического поля
- 2) $\boldsymbol{E}, \boldsymbol{r}$ радиус-вектор точки наблюдения
- 3) ω круговая частота волны
- $4) \ {m k}$ волновой вектор

Направление вектора ${\pmb k}$ совпадает с направлением распространения волны, а модуль этого вектора:

$$k = \frac{2\pi}{\lambda} = \frac{\omega}{v}$$

где v — фазовая скорость распространения волн в рассматриваемой среде. Комплексна запись (1) позволяет вместо тригонометрических функций использовать более удобную экспоненциальную форму

$$\mathbf{A}(x,y,z) = \mathbf{a}e^{i(k_x x + k_y y + k_z z)}$$
(2)

Эта векторная величина называется комплексной амплитудой волны.

Значения k_x , k_y и k_z могут быть как действительными (однородная плоская волна), так и мнимыми (неоднородные волны).

Рассмотрим волну вида (1) с мнимым значением $k_z = \pm i\varkappa$:

$$\boldsymbol{E} = \boldsymbol{a}^{\pm \varkappa} e^{i(k_x x + k_y y)} e^{-i\omega t} \tag{3}$$

Выражение (3) описывает бегущую волну, амплитуда которой экспоненциально затухает (или нарастает) по оси Z. Неоднородные волны возникают и вблизи границы раздела двух сред при полном внутреннем отражении света.

На границе раздела двух сред происходит преломление и отражение световых волн. Формулы для интенсивности, направления распространения, поляризации отраженных и преломленных волн, могут быть получены из граничных условий для векторов E, D, H и B:

$$E_{1\tau} = E_{2\tau}, \quad D_{1n} = D_{2n}, H_{1\tau} = H_{2\tau}, B_{1n} = B_{2n}$$
 (4)

au — тангенциальные, n — нормальные составляющие.

1 — первая среда, 2 — вторая среда. В электромагнитной волне элекрическая и магнитная составляющие связаны между собой, из четырех соотношений в (4) независимыми остаются только два. Используем условия для тангенциальных компонент полей.

Выберем координатную систему так, как это изображено на рис. 1. Ось Z совпадает с нормалью к поверхности раздела сред. Ось X лежит в плоскости падения светового луча. E_1 , E_1' и E_2 — электрические поля в падающей, отраженной и преломленной волнах соответственно:

$$\boldsymbol{E}_1 = \boldsymbol{a}_1 e^{i(k_1 x \sin \varphi_1 + k_1 z \cos \varphi_1)} e^{-i\omega_1 t}; \qquad (5)$$

$$\boldsymbol{E}_{1}' = \boldsymbol{a}_{1}' e^{i\left(k_{1}'x\sin\varphi_{1}' + k_{1}'z\cos\varphi_{1}'\right)} e^{-i\omega_{1}'t}; \tag{6}$$

$$\boldsymbol{E}_2 = \boldsymbol{a}_2 e^{i(k_2 x \sin \varphi_1 + k_2 z \cos \varphi_1)} e^{-i\omega_2 t};$$

Здесь

- 1) φ_1 угол падения
- 2) φ_1' угол отражения
- 3) φ_2 угол преломления

(7) Рис. 1. Преломление волн на границе раздела двух сред

На границе раздела (при z=0) должны выполняться граничные условия (5, 6, 7). Первое из них дает: $E_{1\tau} + E'_{1\tau} = E_{2\tau}$, или

$$a_1 e^{ik_1 x \sin \varphi_1} e^{-i\omega_1 t} + a_1' e^{ik_1' x \sin \varphi_1'} e^{-i\omega_1' t} = a_2 e^{ik_2 x \sin \varphi_2} e^{-i\omega_2 t}$$

Это равенство выполняется при любых значениях t и x. Поэтому:

$$\omega_1 = \omega_1' = \omega_2 \tag{8}$$

$$k_1 \sin \varphi_1 = k_1' \sin \varphi_1' = k_{2x} \tag{9}$$

Равенство (8) показывает, что частоты отраженной и преломленной волн равны по частоте падающей волны.

Падающая и преломленная волна распространяются в одной среде, значит

$$k_1' = k_1 \tag{10}$$

Учитывая (9):

$$\sin \varphi_1 = \sin \varphi_1' \tag{11}$$

то есть угол падения равен углу отражения.

Пусть волна во второй среде однородна, тогда $k_2 = k_2 \sin \varphi_2$ и, следовательно, на основании (9):

$$\frac{\sin \varphi_1}{\sin \varphi_2} = \frac{k_2}{k_1} = \frac{v_1}{v_2} = \frac{n_2}{n_1} = \frac{1}{n} \tag{12}$$

 n_1 и n_2 — показатели преломления первой и второй сред соответственно. Получили закон преломления световых лучей. Накладывая граничные условия (например $H_{1\tau}=H_{2\tau}$, на (5-7) можно получить соотношение между амплитудами a_1 , a_1' и a_2 всех трёх волн (формулы Френеля).

Легко показать, что при падении света на границу раздела со стороны оптически более плотной среды $(n_1 > n_2)$ формула (12) теряет смысл, когда угол падения φ_1 превышает некоторое критическое значение $\varphi_{\rm пр}$, которое носит название *предельного угла полного внутреннего отражения:*

$$\sin \varphi_{\rm np} = \frac{n_2}{n_1} = \frac{k_2}{k_1} \tag{13}$$

При $\varphi_1 > \varphi_{\text{пр}}$ в формуле (12) $\sin \varphi_2$ оказывается больше единицы. Это означает, что наше предположение об однородности волны во второй среде в случае полного внутреннего отражения оказывается несправедливым.

Попытаемся теперь удовлетворить граничным условиям и вытекающему из них соотношению (9), предположив:, что волна во второй среде является неоднородной. При $\varphi_1 > \varphi_{\rm пр}$ получим

$$k_1 \sin \varphi_1 > k_1 \sin \varphi_{\pi p} = k_1 \frac{k_2}{k_1} = k_2$$
 (14)

При сравнении с (9) найдем

$$k_{2x} > k_2 \tag{15}$$

Но

$$k_2^2 = k_{2x}^2 + k_{2z}^2 \tag{16}$$

Разрешая уравнение относительно k_{2z} , найдем

$$k_{2z} = \pm \sqrt{k_2^2 - k_{2x}^2} = \pm i\sqrt{k_{2x}^2 - k_2^2} = \pm i\sqrt{k_1^2 \sin^2 \varphi_1 - k_2^2}$$
 (17)

 k_{2z} называется мнимой величиной. Волна во второй среде неоднородна и описывается выражением виде (3), где $k_y = k_{2y} = 0$, $k_x = k_{2x} = k_1 \sin \varphi_1$, а величина \varkappa :

$$\varkappa = \sqrt{k_1^2 \sin^2 \varphi_1 - k_2^2} \tag{18}$$

Экспоненциальную функцию, описывающую затухание волны с удалением от поверхности раздела, удобно записать в виде $\exp{(-z/2\Lambda)}$. Тогда интенсивность волны изменяется с расстоянием по закону

$$I \sim e^{-z/\Lambda} \tag{19}$$

Длина затухания Λ равна

$$\Lambda = \frac{1}{2\sqrt{k_1^2 \sin^2 \varphi_1 - k_2^2}} = \frac{1}{2k_2 \sqrt{n^2 \sin^2 \varphi_1 - 1}} = \frac{\lambda_2}{4\pi \sqrt{n^2 \sin^2 \varphi_1 - 1}}$$
(20)

Эти две формулы позволяют количественно исследовать затухание электромагнитных колебаний во второй среде.

Отметим, что при полном внутреннем отражении сдвиг фаз между отраженной и падающей волнами не равен нулю и зависит от поляризации падающей волны. Вследствие этого изменяется поляризация света: плоскополяризованная волна после отражения оказывается поляризованной по эллипсу.

Формулы Френеля

$$R + T = 1 \tag{21}$$

- 1) $T \to 1$ и $R \to 0$ при ширине, стремящейся к нулю.
- 2) $R \to 1$ и $T \to 0$ при увеличении ширины прослойки

Проникновение электромагнитных волн в менее плотную среду при полном внутреннем отражении — явление той же природы, что и проникновение частиц в область, где их полная энергия оказывается меньше потенциальной энергии. Это явление изучается в квантовой физике и носит название mynhenbhoro эффекта. Классическим примером является α -распад радиоактивных ядер. По аналогии, прохождение электромагнитных волн через узкий зазор при углах падения, превосходящих угол полного внутреннего отражения, часто называют mynhenupoeahuem.

2. Экспериментальная установка

Рис. 2. Схема установки для исследования явления туннелировния СВЧрадиоволн

Туннелирование СВЧ-радиоволн через тонкий воздушный зазор переменной толщины изучается по схеме на рис. 2. На пути радиоволн устанавливаются две призмы Π_1 и Π_2 , изготовленные из фторпласта — диэлектрика с малыми потерями на высоких радиочастотах.

Источником радиоволн служит СВЧ-генератор Г4-115, работающий в непрерывном режиме. Основным элементом генерачтора является специальная лампа — клистрон, генерирующая СВЧ-колебания. От клистрона к рупорной антенне A_1 энергия СВЧ-колебаний передается по прямоугольному волноводу. Клистрон возбуждает в волноводе линейно поляризованную электромагнитную волну, которая с помощью рупорной антенны излучается в пространство. Электрический вектор волны, бегущей вдоль волновода и излучаемый антенной, перпендикулярен широкой стенке волновода. Вторая рупорная антенна A_2 служит приёмником волн. Попадая в антенну A_2 , электромагнитная волна распространяется далее в волноводе. Детектор D, расположенный в волноводе, подсоединяется к микроамперметру. Ток детектора пропорционален интенсивности принимаемого антенной электромагнитного излучения. Аттенюатор $A_{\rm T}$ ослабляет сигнал.

В положении I антенна A_2 принимает сигнал, прошедший воздушный промежуток, в положении II — сигнал, отраженной от воздушного промежутка.

Установка позволяет смоделировать интерферометр Майкельсона (рис. 3). В качестве делителя используется воздушный зазор между диагональными гранями призм; зеркало 3_1 установлено неподвижно, зеркало 3_2 может перемещаться с помощью микрометрического винта M.

Для измерения показателя преломления материала призм интерференционным методом перед неподвижным зеркалом устанавливается пластинка из фторпласта известной толщины d. В этом плече интерферометра возникает приращение длины оптического пути $\Delta = 2d(n-1)$. Можно скомпенси-

Рис. 3. Схема, моделирующая интерферометр Майкельсона

ровать это приращение, передвинув зеркало на необходимое расстояние x_0 . Показатель преломления определяется из условия

$$x_0 = d\left(n - 1\right). \tag{22}$$

Для толстых пластин, когда $\Delta > \lambda$, необходимо учесть изменение порядка интерференции. Это можно сделать, зная приближённое значение показателя преломления фторпласта ($n \simeq 1, 5$).

3. Ход работы

3.1. Подготовока приборов к работе

- 1) Настроим генератор, руководствуясь техническим описанием, расположенном на установке.
- 2) Установим столик с призмами так, чтобы воздушный зазор был ориентирован под углом 45° к падающему лучу. Вращением винта правого микрометра (M_2) уберем воздушный промежуток.
- 3) Расположим приёмную антенну на одной прямой с передатчиком. Снимем металлическое зеркало, стоящее на пути луча. Методом последовательных приближений добьемся максимального отклика микроамперметра.

- 4) Настроим генератор на максимальную выходную мощность клистрона.
- 5) Добъемся загорания красной лампочки и определим рабочую частоту клистрона по шкале. Рассчитаем соответствующую длину волны. $\lambda=8.58$ мм.

3.2. Зависимости коэффициентов отражения и прохождения волны от величины зазора

1) Снимем зависимость интенсивности прошедшей волны от величины зазора l, используя правый микрометр.

l, мм (без вычета)	l, mm	I, MKA	<i>I</i> , мкА (нормированная)
7	2	82	0,82
7,5	2,5	62	0,62
8	3	47	$0,\!47$
8,5	3,5	37	0,37
9	4	29	$0,\!29$
9,5	4,5	22	$0,\!22$
10	5	17	$0,\!17$
10,5	5,5	14	0,14

2) Переставим приёмник для измерения отражённого сигнала. Снимем зависимость интенсивности отражёнvй волны от величины зазора.

l, mm	l, mm	I, MKA	<i>I</i> , мкА (нормированная)	
5,5	0,5	0	0	
6	1	9	$0,\!09$	
6,5	1,5	27	$0,\!27$	
7	2	47	$0,\!47$	
7,5	2,5	65	$0,\!65$	
8	3	78	0,78	
8,5	3,5	88	0,88	
9	4	93	0,93	
9,5	4,5	95	$0,\!95$	
10	5	100	1	
10,5	5,5	98	0,98	

- 3) Установим такую величину зазора, при которой ток равен половине максимального. Убедимся в том, что $T \simeq R \simeq 0, 5$.
- 4) Построим на одном листе графики зависимости коэффициентов T и R от величины зазора l, пронормировав токи на величину $I_{\rm max}$. Проверим выполнения соотношения T+R=1.

Рис. 4. Зависимость I(l)

5) Построим график $\log T = f(z)$, где z — показания микрометра. Проверим, лежит ли полученные точки на одной прямой согласно требованию формулы (19) По наклону прямой рассчитаем длину затухания Λ , а затем по формуле (20) — величину $n \sin \varphi_1$ (n — показатель преломления материала призм, φ_1 — угол падения волны на воздушный промежуток, λ_2 — длина СВЧ-волны в воздухе). Рассчитаем величину n; при этом в условиях нашего опыта можно не учитывать, что входная плоскость призмы Π_1 наклонена на угол $\varphi = 8^\circ$ по отношению к фронту падающей волны.

Puc. 5. Зависимость $\log T(l)$

Полученная методом наименьших квадратов формула линии аппроксимации:

$$y = 5.39821 - 0.508671x \tag{23}$$

To есть $\Lambda = 0.508671$.

Формула для расчета $n \sin \varphi_1$:

$$n = \frac{\sqrt{16\pi\Lambda^2 + \lambda_2^2}}{4\pi\Lambda\sin\varphi_1} = 1.67383 \tag{24}$$

3.3. Интерферометр Майкельсона

- 1) Соберем схему интерферометра Майкельсона (рис. 3), используя в качестве делителя воздушный зазор между призмами. Оптимальный размер зазора соответствует равенству $T\simeq R\simeq 0,5$. Установим на место неподвижное металлическое зеркало.
- 2) Снимем зависимость тока от координаты x подвижного зеркала. По графику $I=f\left(x\right)$ определим экспериментальное значение длины волны СВЧ-излучения.

Обычно максимумы размыты, поэтому определение длины волны будет более точным, если взять координаты, соответствующие максимальным производным dI/dx. Сравним экспериментальную длину волны с величиной, рассчитанной по частоте.

l, мм (без вычета)	x, MM	I, MKA
5	0	45
5,05	$0,\!05$	50
5,1	0,1	52
5,15	$0,\!15$	55
5,2	0,2	59
5,25	$0,\!25$	62
5,3	0,3	66
5,35	0,35	70

3) Для измерения показателя преломления фторопласта интерференционным методом настроим интерферометр на максимальную интенсивность и поместим пластину известной толщины d перед неподвижным зеркалом. Скомпенсируем возникшее увеличение оптической длины пути, передвинув (удалив от призм) подвижное зеркало на необходимое расстояние x_0 . Рассчитаем показатель преломления фторопласта по формуле (22).

 $d=0.62~{
m mm},\,x_0=0.35~{
m mm}$

$$x_0 = d(n-1) \Rightarrow n = \frac{x_0}{d} + 1 = 1.5645$$
 (25)

4) Сравним результаты измерения n интерференционным методом и методом туннелирования

$$n_{\text{интер}} = 1.5645 \quad n_{\text{туннел}} = 1.67383$$
 (26)

4. Вывод

Мы изучили явление полного отражения при проникновении электромагнитного поля в во вторую среду те туннелирование и использование данного метода для создания СВЧ волн. Сравнили полученные показатели преломления при туннелировании и интерференции и получили маленькое расхождение.