Series Tutorial

Dr. Nijat Aliyev

BHOS

Calculus

November 27, 2023

Strategy for Series Tests

It is not wise to apply a list of the tests in a specific order until one finally works. That would be a waste of time and effort. Instead, as with integration, the main strategy is to classify the series according to its *form*.

- **I.** If the series is of the form $\sum 1/n^p$, it is a *p*-series, which we know to be convergent if p > 1 and divergent if $p \le 1$.
- **2.** If the series has the form $\sum ar^{n-1}$ or $\sum ar^n$, it is a geometric series, which converges if |r| < 1 and diverges if $|r| \ge 1$. Some preliminary algebraic manipulation may be required to bring the series into this form.
- 3. If the series has a form that is similar to a p-series or a geometric series, then one of the comparison tests should be considered. In particular, if a_n is a rational function or an algebraic function of n (involving roots of polynomials), then the series should be compared with a p-series. Notice that most of the series in Exercises 12.4 have this form. (The value of p should be chosen as in Section 12.4 by keeping only the highest powers of n in the numerator and denominator.) The comparison tests apply only to series with positive terms, but if ∑ a_n has some negative terms, then we can apply the Comparison Test to ∑ |a_n| and test for absolute convergence.

- If you can see at a glance that lim_{n→∞} a_n ≠ 0, then the Test for Divergence should be used.
- **5.** If the series is of the form $\Sigma (-1)^{n-1}b_n$ or $\Sigma (-1)^nb_n$, then the Alternating Series Test is an obvious possibility.
- 6. Series that involve factorials or other products (including a constant raised to the nth power) are often conveniently tested using the Ratio Test. Bear in mind that |a_{n+1}/a_n|→1 as n→∞ for all p-series and therefore all rational or algebraic functions of n. Thus the Ratio Test should not be used for such series.
- **7.** If a_n is of the form $(b_n)^n$, then the Root Test may be useful.
- **8.** If $a_n = f(n)$, where $\int_1^\infty f(x) dx$ is easily evaluated, then the Integral Test is effective (assuming the hypotheses of this test are satisfied).

Test the series for convergence or divergence.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n+3^n}$$

3.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n+2}$$

5.
$$\sum_{n=1}^{\infty} \frac{n^2 2^{n-1}}{(-5)^n}$$

7.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{\ln n}}$$

9.
$$\sum_{k=1}^{\infty} k^2 e^{-k}$$

~ / a\u±1

2.
$$\sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}}$$

4.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 2}$$

6.
$$\sum_{n=1}^{\infty} \frac{1}{2n+1}$$

8.
$$\sum_{k=1}^{\infty} \frac{2^k k!}{(k+2)!}$$

10.
$$\sum_{n=1}^{\infty} n^2 e^{-n^3}$$

- 1. $\frac{1}{n+3^n} < \frac{1}{3^n} := \left(\frac{1}{3}\right)^n$ for all $n \ge 1$. $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ is a convergent geometric series $\lfloor |r| = \frac{1}{3} < \frac{1}{3}$, so $\sum_{n=1}^{\infty} \frac{1}{n+3^n}$ converges by the Comparison Test.
- $2. \lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} \sqrt[n]{\left[\frac{(2n+1)^n}{n^{2n}}\right]} = \lim_{n \to \infty} \frac{2n+1}{n^2} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = \lim_{n \to \infty} \left(\frac{2}{n} + \frac{1}{n^2}\right) = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{n=1}^{\infty} \frac{(2n+1)^n}{n^{2n}} = 0 < 1, \text{ so the series } \sum_{$
- 3. $\lim_{n\to\infty}|a_n|=\lim_{n\to\infty}\frac{n}{n+2}=1$, so $\lim_{n\to\infty}a_n=\lim_{n\to\infty}(-1)^n\frac{n}{n+2}$ does not exist. Thus, the series $\sum_{n=1}^{\infty}(-1)^n\frac{n}{n+2}$ diverges by the Test for Divergence.
- 4. $b_n = \frac{n}{n^2 + 2} > 0$ for $n \ge 1$. $\{b_n\}$ is decreasing for $n \ge 2$ since $\left(\frac{x}{x^2 + 2}\right)' = \frac{(x^2 + 2)(1) x(2x)}{(x^2 + 2)^2} = \frac{2 \cdot x^2}{(x^2 + 2)^2} < 0$ for $x \ge \sqrt{2}$. Also, $\lim_{n \to \infty} b_n = \lim_{n \to \infty} \frac{n}{n^2 + 2} = \lim_{n \to \infty} \frac{1/n}{1 + 2/n^2} = 0$. Thus, the series $\sum_{n=1}^{\infty} (-1)^n \frac{n}{n^2 + 2}$ converges by the

Alternating Series Test

5.
$$\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n + 1)^2 2^n}{(-5)^{n+1}} \cdot \frac{(-5)^n}{n^2 2^{n+1}} \right| = \lim_{n \to \infty} \frac{2(n + 1)^2}{5n^2} = \frac{2}{5} \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^2 + \frac{2}{5}(1) - \frac{2}{5} < 1$$
, so the series
$$\sum_{n \to \infty} \frac{n^2 2^{n+1}}{(-5)^n} \text{ converges by the Ratio Test.}$$

6. Use the Limit Comparison Test with $a_n = \frac{1}{2n-1}$ and $b_n = \frac{1}{n}$: $\lim_{n \to \infty} \frac{a_n}{b_n} = \lim_{n \to \infty} \frac{n}{2n+1} = \lim_{n \to \infty} \frac{1}{2+(1/n)} = \frac{1}{2} > 0$.

Since the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, so does $\sum_{n=1}^{\infty} \frac{1}{2n+1}$. [Or: Use the Integral Test.]

7. Let $f(x) = \frac{1}{\sqrt{|x|}}$. Then f is positive, continuous, and decreasing on $[2, \infty)$, so we can apply the Integral Test,

Since
$$\int \frac{1}{x\sqrt{\ln x}} dx \quad \begin{bmatrix} u = \ln x, \\ du = dx/x \end{bmatrix} = \int u^{-1/2} du = 2u^{1/2} + C = 2\sqrt{\ln x} + C, \text{ we find } dx = 2u^{1/2} + C = 2\sqrt{\ln x} + C$$

$$\int_{2}^{\infty} \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \int_{2}^{t} \frac{dx}{x\sqrt{\ln x}} = \lim_{t \to \infty} \left[2\sqrt{\ln x} \right]_{2}^{-t} = \lim_{t \to \infty} \left(2\sqrt{\ln t} - 2\sqrt{\ln 2} \right) = \infty. \text{ Since the integral diverges, the formula of the integral diverges, the formula of the integral diverges.}$$

given series $\sum_{n=0}^{\infty} \frac{1}{n \sqrt{\ln n}}$ diverges.

8.
$$\sum_{k=1}^{\infty} \frac{2^{k}k!}{(k+2)!} = \sum_{k=1}^{\infty} \frac{2^{k}}{(k+1)(k+2)}$$
. Using the Ratio Test, we get

$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left| \frac{2^{k+1}}{(k+2)(k+3)} \cdot \frac{(k+1)(k+2)}{2^k} \right| = \lim_{k \to \infty} \left(2 \cdot \frac{k+1}{k+3} \right) = 2 > 1, \text{ so the series diverges.}$$

Or: Use the Test for Divergence.

9.
$$\sum_{k=1}^{\infty} k^2 e^{-k} = \sum_{k=1}^{\infty} \frac{k^2}{e^k}$$
. Using the Ratio Test, we get

$$\lim_{k\to\infty}\left|\frac{a_{k+1}}{a_k}\right|=\lim_{k\to\infty}\left|\frac{(k+1)^2}{c^{k+1}}\cdot\frac{e^k}{k^2}\right|=\lim_{k\to\infty}\left[\left(\frac{k+1}{k}\right)^2\cdot\frac{1}{e}\right]=1^2\cdot\frac{1}{e}=\frac{1}{e}<1, \text{ so the series converges.}$$

10. Let
$$f(x) = x^2 e^{-x^3}$$
. Then f is continuous and positive on $[1, \infty)$, and $f'(x) = \frac{x(2-3x^3)}{e^{x^3}} < 0$ for $x \ge 1$, so f is decreasing on $[1, \infty)$ as well, and we can apply the Integral Test. $\int_1^\infty x^2 e^{-x^3} dx = \lim_{t \to \infty} \left[-\frac{1}{3}e^{-x^3} \right]_1^t = \frac{1}{3e}$, so the integral converges, and hence, the series converges.

Determine whether the series is absolutely convergent, conditionally convergent, or divergent.

2.
$$\sum_{n=1}^{\infty} \frac{n^2}{2^n}$$

3.
$$\sum_{n=0}^{\infty} \frac{(-10)^n}{n!}$$

$$\boxed{4.} \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$$

6.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$

7.
$$\sum_{k=1}^{\infty} k(\frac{2}{3})^k$$

8.
$$\sum_{n=1}^{\infty} \frac{n!}{100^n}$$

9.
$$\sum_{n=1}^{\infty} (-1)^n \frac{(1.1)^n}{n^4}$$

10.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n}{\sqrt{n^3+2}}$$

- 2. The series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ has positive terms and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \lim_{n\to\infty} \left[\frac{(n-1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \right] = \lim_{n\to\infty} \left(1 + \frac{1}{n} \right)^2 \cdot \frac{1}{2} = \frac{1}{2} < 1$, so the series is absolutely convergent by the Ratio Test.
- 3. $\sum_{n=0}^{\infty} \frac{(-10)^n}{n!}$. Using the Ratio Test, $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{(-10)^{n+1}}{(n+1)!} \cdot \frac{n!}{(-10)^n} \right| = \lim_{n\to\infty} \left| \frac{-10}{n+1} \right| = 0 < 1$, so the series is absolutely convergent.
- 4. $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{2^n}{n^4}$ diverges by the Test for Divergence. $\lim_{n\to\infty} \frac{2^n}{n^4} = \infty$, so $\lim_{n\to\infty} (-1)^{n-1} \frac{2^n}{n^4}$ does not exist.
- 5. $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt[4]{n}}$ converges by the Alternating Series Test, but $\sum_{n=1}^{\infty} \frac{1}{\sqrt[4]{n}}$ is a divergent p-series $(p=\frac{1}{4}\leq 1)$, so the given series is conditionally convergent.
- **6.** $\sum_{n=1}^{\infty} \frac{1}{n^4}$ is a convergent *p*-series (p=4>1), so $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$ is absolutely convergent.

7.
$$\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = \lim_{k \to \infty} \left[\frac{(k+1)\left(\frac{2}{3}\right)^{k+1}}{k(\frac{2}{3})^k} \right] := \lim_{k \to \infty} \frac{k+1}{k} \left(\frac{2}{3}\right)^1 = \frac{2}{3} \lim_{k \to \infty} \left(1 + \frac{1}{k}\right) = \frac{2}{3}(1) = \frac{2}{3} < 1$$
, so the series

 $\sum_{n=1}^{\infty} k(\frac{2}{3})^n \text{ is absolutely convergent by the Ratio Test. Since the terms of this series are positive, absolute convergence is the same as convergence.}$

8. $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left[\frac{(n+1)!}{100^{n+1}}\cdot\frac{100^n}{n!}\right]=\lim_{n\to\infty}\frac{n+1}{100}=\infty$, so the series $\sum_{n=1}^\infty\frac{n!}{100^n}$ diverges by the Ratio Test.

9.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left[\frac{(1.1)^{n+1}}{(n+1)^4} \cdot \frac{n^4}{(1.1)^n} \right] = \lim_{n \to \infty} \frac{(1.1)n^4}{(n+1)^4} = (1.1) \lim_{n \to \infty} \frac{1}{\frac{(n+1)^4}{n^4}} = (1.1) \lim_{n \to \infty} \frac{1}{(1+1/n)^4}$$

$$= (1.1)(1) = 1.1 > 1.$$

so the series $\sum_{n=1}^{\infty} (-1)^n \frac{(1.1)^n}{n^4}$ diverges by the Ratio Test.

Find the radius of convergence and interval of convergence of the series.

$$\mathbf{3.} \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

5.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$$

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

9.
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$$

$$11. \sum_{n=1}^{\infty} \frac{(-2)^n x^n}{\sqrt[4]{n}}$$

13.
$$\sum_{n=2}^{\infty} (-1)^n \frac{x^n}{4^n \ln n}$$

$$[15.] \sum_{n=0}^{\infty} \frac{(x-2)^n}{n^2+1}$$

4.
$$\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$$

$$6. \sum_{n=1}^{\infty} \sqrt{n} x^n$$

$$8. \sum_{n=1}^{\infty} n^n x^n$$

10.
$$\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$$

12.
$$\sum_{n=1}^{\infty} \frac{x^n}{5^n n^5}$$

14.
$$\sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$

16.
$$\sum_{n=0}^{\infty} (-1)^n \frac{(x-3)^n}{2n+1}$$

3. If $a_n = \frac{x^n}{\sqrt{n}}$, then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n-1}}{\sqrt{n+1}} \cdot \frac{\sqrt{n}}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{\sqrt{n+1}/\sqrt{n}} \right| = \lim_{n \to \infty} \frac{|x|}{\sqrt{1+1/n}} = |x|.$

By the Ratio Test, the series $\sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$ converges when |x| < 1, so the radius of convergence R = 1. Now we'll check the endpoints, that is, x = -1. When x = 1, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges because it is a p-series with $p = \frac{1}{2} \le 1$. When x = -1, the series $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ converges by the Alternating Series Test. Thus, the interval of convergence is I = [-1, 1).

4. If $a_n = \frac{(-1)^n x^n}{n+1}$, then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{n+2} \cdot \frac{n+1}{x^n} \right| = \lim_{n \to \infty} \frac{|x|}{1+1/(n+1)} = |x|$.

By the Ratio Test, the series $\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{n+1}$ converges when |x| < 1, so R = 1. When x = -1, the series diverges because it is the harmonic series; when x = 1, it is the alternating harmonic series, which converges by the Alternating Series Test.

Thus, I = (-1, 1].

5. If $a_n = \frac{(-1)^{n-1}x^n}{2x^3}$, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^n x^{n+1}}{(n+1)^3} \cdot \frac{n^3}{(-1)^{n-1} x^n} \right| = \lim_{n \to \infty} \left| \frac{(-1) x n^3}{(n+1)^3} \right| = \lim_{n \to \infty} \left| \left(\frac{n}{n+1} \right)^3 |x| \right| = 1^3 \cdot |x| = |x|$$
. By the

Ratio Test, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^n}{n^3}$ converges when |x| < 1, so the radius of convergence R = 1. Now we'll check the

endpoints, that is, $x = \pm 1$. When x = 1, the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^3}$ converges by the Alternating Series Test. When x = -1,

the series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}(-1)^n}{n^3} := -\sum_{n=1}^{\infty} \frac{1}{n^3}$ converges because it is a constant multiple of a convergent p-series $\{p=3>1\}$

Thus, the interval of convergence is I = [-1, 1].

6.
$$a_n = \sqrt{n} \, x^n$$
, so we need $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{\sqrt{n+1} \, |x|^{n+1}}{\sqrt{n} \, |x|^n} = \lim_{n \to \infty} \sqrt{1 + \frac{1}{n}} \, |x| = |x| < 1$ for convergence (by the

Ratio Test), so R=1. When $x=\pm 1$, $\lim_{n\to\infty}|a_n|=\lim_{n\to\infty}\sqrt{n}=\infty$, so the series diverges by the Test for Divergence,

Thus, I = (-1, 1).

7. If
$$a_n = \frac{x^n}{n!}$$
, then $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right| = \lim_{n \to \infty} \left| \frac{x}{n+1} \right| = |x| \lim_{n \to \infty} \frac{1}{n+1} = |x| \cdot 0 = 0 < 1$ for all real

8. Here the Root Test is easier. If $a_n = n^n x^n$ then $\lim_{n \to \infty} \sqrt[n]{|a_n|} = \lim_{n \to \infty} n |x| = \infty$ if $x \neq 0$, so R = 0 and $I = \{0\}$.

9. If
$$a_n = (-1)^n \frac{n^2 x^n}{2n}$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{(n+1)^2 x^{n+1}}{2^{n+1}} \cdot \frac{2^n}{n^2 x^n} \right| = \lim_{n \to \infty} \left| \frac{x(n+1)^2}{2n^2} \right| = \lim_{n \to \infty} \left| \frac{|x|}{2} \left(1 + \frac{1}{n} \right)^2 \right| = \frac{|x|}{2} (1)^2 = \frac{1}{2} |x|. \text{ By the proof of } x = \frac{1}{2} |x| = \frac{1}{2} |x|.$$

So, by the Ratio Test, $R = \infty$ and $J = (-\infty, \infty)$.

Ratio Test, the series $\sum_{n=1}^{\infty} (-1)^n \frac{n^2 x^n}{2^n}$ converges when $\frac{1}{2}|x| < 1 \Leftrightarrow |x| < 2$, so the radius of convergence is R = 2.

When $x = \pm 2$, both series $\sum_{n=1}^{\infty} (-1)^n \frac{n^2(\pm 2)^n}{2^n} = \sum_{n=1}^{\infty} (\mp 1)^n n^2$ diverge by the Test for Divergence since

 $\lim_{n\to\infty}\left|(\mp 1)^n n^2\right|=\infty$. Thus, the interval of convergence is I=(-2,2).

10. If
$$a_n = \frac{10^n \, x^n}{n^3}$$
, then

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{10^{n+1} \, x^{n+1}}{(n+1)^3} + \frac{n^3}{10^n \, x^n} \right| = \lim_{n \to \infty} \left| \frac{10 \, x \, n^3}{(n+1)^3} \right| = \lim_{n \to \infty} \frac{10 \, |x|}{(1+1/n)^3} = \frac{10 \, |x|}{13} = 10 \, |x|$$

By the Ratio Yest, the series $\sum_{n=1}^{\infty} \frac{10^n x^n}{n^3}$ converges when $10|x| < 1 \Leftrightarrow |x| < \frac{1}{10}$, so the radius of convergence is $R = \frac{1}{10}$.

When $x=-\frac{1}{10}$, the series converges by the Alternating Series Test; when $x=\frac{1}{10}$, the series converges because it is a *p-series* with p=3>1. Thus, the interval of convergence is $I=\frac{1}{10},\frac{1}{10}\frac{1}{10}$.