Latent Force Models: Introduction

Neil D. Lawrence

LFM Workshop 13th June 2013

Outline

Motivation

Motion Capture Example

Outline

Motivation

Motion Capture Example

Styles of Machine Learning

Background: interpolation is easy, extrapolation is hard

- ▶ Urs Hölzle keynote talk at NIPS 2005.
 - ► Emphasis on massive data sets.
 - ► Let the data do the work—more data, less extrapolation.
- Alternative paradigm:
 - Very scarce data: computational biology, human motion.
 - How to generalize from scarce data?
 - Need to include more assumptions about the data (e.g. invariances).

Broadly Speaking: Two approaches to modeling

let the data "speak" data driven adaptive models

mechanistic modeling

impose physical laws knowledge driven differential equations

Broadly Speaking: Two approaches to modeling

data modeling

let the data "speak" data driven adaptive models digit recognition

mechanistic modeling

impose physical laws knowledge driven differential equations

Broadly Speaking: Two approaches to modeling

data modeling

let the data "speak" data driven adaptive models digit recognition

mechanistic modeling

impose physical laws knowledge driven differential equations climate, weather models

Broadly Speaking: Two approaches to modeling

data modeling

let the data "Speak"
data driven
adaytive models
weight recognition

mechanistic modeling

impose physical laws knowledge driven differential equations climate, weather models

Broadly Speaking: Two approaches to modeling

data modeling mechanistic modeling let the data 18

weather models

Weakly Mechanistic vs Strongly Mechanistic

- ► Underlying data modeling techniques there are *weakly mechanistic* principles (e.g. smoothness).
- ► In physics the models are typically *strongly mechanistic*.
- ► In principle we expect a range of models which vary in the strength of their mechanistic assumptions.
- Latent Force Models are one part of this spectrum: add further mechanistic ideas to weakly mechanistic models.

Dimensionality Reduction

▶ Linear relationship between the data, $\mathbf{X} \in \mathfrak{R}^{n \times p}$, and a reduced dimensional representation, $\mathbf{F} \in \mathfrak{R}^{n \times q}$, where $q \ll p$.

$$X = FW + \epsilon,$$

 $\epsilon \sim \mathcal{N}(0, \Sigma)$

- ► Integrate out **F**, optimize with respect to **W**.
- ▶ For Gaussian prior, $\mathbf{F} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - and $\Sigma = \sigma^2 \mathbf{I}$ we have probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998).
 - and Σ constrained to be diagonal, we have factor analysis.

Dimensionality Reduction: Temporal Data

- ▶ Deal with temporal data with a temporal latent prior.
- ► Independent Gauss-Markov priors over each $f_i(t)$ leads to : Rauch-Tung-Striebel (RTS) smoother (Kalman filter).
- ► More generally consider a Gaussian process (GP) prior,

$$p(\mathbf{F}|\mathbf{t}) = \prod_{i=1}^{q} \mathcal{N}\left(\mathbf{f}_{:,i}|\mathbf{0}, \mathbf{K}_{f_{:,i},f_{:,i}}\right).$$

Joint Gaussian Process

- ▶ Given the covariance functions for $\{f_i(t)\}$ we have an implied covariance function across all $\{x_i(t)\}$ —(ML: semi-parametric latent factor model (Teh et al., 2005), Geostatistics: linear model of coregionalization).
- ► Rauch-Tung-Striebel smoother has been preferred
 - ▶ linear computational complexity in *n*.
 - Advances in sparse approximations have made the general GP framework practical. (Titsias, 2009; Snelson and Ghahramani, 2006; Quiñonero Candela and Rasmussen, 2005).

Mechanical Analogy

Back to Mechanistic Models!

- ► These models rely on the latent variables to provide the dynamic information.
- We now introduce a further dynamical system with a mechanistic inspiration.
- ► Physical Interpretation:
 - ▶ the latent functions, $f_i(t)$ are q forces.
 - ▶ We observe the displacement of *p* springs to the forces.,
 - ► Interpret system as the force balance equation, $XD = FS + \epsilon$.
 - ► Forces act, e.g. through levers a matrix of sensitivities, $S \in \Re^{q \times p}$.
 - ▶ Diagonal matrix of spring constants, $\mathbf{D} \in \Re^{p \times p}$.
 - Original System: $W = SD^{-1}$.

Extend Model

Add a damper and give the system mass.

$$FS = \ddot{X}M + \dot{X}C + XD + \epsilon.$$

- Now have a second order mechanical system.
- ▶ It will exhibit inertia and resonance.
- ► There are many systems that can also be represented by differential equations.
 - ▶ When being forced by latent function(s), $\{f_i(t)\}_{i=1}^q$, we call this a *latent force model*.

Marionette

Mathematical Model

Method

Open Access

Ranked prediction of p53 targets using hidden variable dynamic modeling

Martino Barenco*†, Daniela Tomescu*, Daniel Brewer*†, Robin Callard*†, Jaroslav Stark†† and Michael Hubank*†

Addresses: "Institute of Child Health, University College London, Guilford Street, London WC1N 1EH, UK. "CoMPLEX (Centre for Mathematics and Physics in the Life Sciences and Experimental Biology), University College London, Stephenson Way, London, NW1 2HE, UK. "Department of Mathematics, Imperial College London, London SW7 2AZ, UK.

Correspondence: Michael Hubank, Email; m.hubank@ich.ucl.ac.uk

Published: 31 March 2006

Genome Biology 2006, 7:R25 (doi:10.1186/gb-2006-7-3-r25)

Received: 24 November 2005 Revised: 30 January 2006 Accepted: 21 February 2006

Gaussian Process priors and Latent Force Models

Driven Harmonic Oscillator

- ► For Gaussian process we can compute the covariance matrices for the output displacements.
- ► For one displacement the model is

$$m_k \ddot{x}_k(t) + c_k \dot{x}_k(t) + d_k x_k(t) = b_k + \sum_{i=0}^q s_{ik} f_i(t),$$
 (1)

where, m_k is the kth diagonal element from \mathbf{M} and similarly for c_k and d_k . s_{ik} is the i, kth element of \mathbf{S} .

► Model the latent forces as *q* independent, GPs with exponentiated quadratic covariances

$$k_{f_i f_l}(t, t') = \exp\left(-\frac{(t - t')^2}{2\ell_i^2}\right) \delta_{il}.$$

Covariance for ODE Model

► Exponentiated Quadratic Covariance function for *f* (*t*)

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j (t - \tau)) d\tau$$

▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t). Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1

Covariance for ODE Model

Analogy

$$x = \sum_{i} \mathbf{e}_{i}^{\top} \mathbf{f}_{i} \quad \mathbf{f}_{i} \sim \mathcal{N}(\mathbf{0}, \Sigma_{i}) \rightarrow x \sim \mathcal{N}\left(0, \sum_{i} \mathbf{e}_{i}^{\top} \Sigma_{i} \mathbf{e}_{i}\right)$$

▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t). Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1

Covariance for ODE Model

► Exponentiated Quadratic Covariance function for *f* (*t*)

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j (t - \tau)) d\tau$$

▶ Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t). Damping ratios:

ζ_1	ζ_2	ζ_3
0.125	2	1

Joint Sampling of x(t) and f(t)

▶ lfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of x(t) and f(t)

▶ lfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of x(t) and f(t)

▶ lfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Joint Sampling of x(t) and f(t)

▶ lfmSample

Figure: Joint samples from the ODE covariance, *black*: f(t), *red*: $x_1(t)$ (underdamped), *green*: $x_2(t)$ (overdamped), and *blue*: $x_3(t)$ (critically damped).

Covariance for ODE

► Exponentiated Quadratic Covariance function for *f* (*t*)

$$x_j(t) = \frac{1}{m_j \omega_j} \sum_{i=1}^q s_{ji} \exp(-\alpha_j t) \int_0^t f_i(\tau) \exp(\alpha_j \tau) \sin(\omega_j (t-\tau)) d\tau$$

- ► Joint distribution for $x_1(t)$, $x_2(t)$, $x_3(t)$ and f(t).
- ▶ Damping ratios:

ζ_1	ζ_2	ζ_3	
0.125	2	1	

Outline

Motivation

Motion Capture Example

- ► Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.
- Objective: generalize from training data to realistic motions.
- Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

- ► Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.
- Objective: generalize from training data to realistic motions.
- Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

- ► Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.
- Objective: generalize from training data to realistic motions.
- Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

- ► Motion capture data: used for animating human motion.
- Multivariate time series of angles representing joint positions.
- Objective: generalize from training data to realistic motions.
- Use 2nd Order Latent Force Model with mass/spring/damper (resistor inductor capacitor) at each joint.

Prediction of Test Motion

- Model left arm only.
- ▶ 3 balancing motions (18, 19, 20) from subject 49.
- ▶ 18 and 19 are similar, 20 contains more dramatic movements.
- Train on 18 and 19 and testing on 20
- ▶ Data was down-sampled by 32 (from 120 fps).
- Reconstruct motion of left arm for 20 given other movements.
- Compare with GP that predicts left arm angles given other body angles.

Mocap Results

Table: Root mean squared (RMS) angle error for prediction of the left arm's configuration in the motion capture data. Prediction with the latent force model outperforms the prediction with regression for all apart from the radius's angle.

	Latent Force	Regression
Angle	Error	Error
Radius	4.11	4.02
Wrist	6.55	6.65
Hand X rotation	1.82	3.21
Hand Z rotation	2.76	6.14
Thumb X rotation	1.77	3.10
Thumb Z rotation	2.73	6.09

Mocap Results II

Figure: Predictions from LFM (solid line, grey error bars) and direct regression (crosses with stick error bars).

Motion Capture Experiments

- ▶ Data set is from the CMU motion capture data base¹.
- ► Two different types of movements: golf-swing and walking.
- Train on a subset of motions for each movement and test on a different subset.
- This assesses the model's ability to extrapolate.
- ► For testing: condition on three angles associated to the root nodes and first five and last five frames of the motion.
- Golf-swing use leave one out cross validation on four motions.
- ► For the walking train on 4 motions and validate on 8 motions.

Motion Capture Results

Table: RMSE and R² (explained variance) for golf swing and walking

Movement	Method	RMSE	R ² (%)
Golf swing	IND GP	21.55 ± 2.35	30.99 ± 9.67
	MTGP	21.19 ± 2.18	45.59 ± 7.86
	SLFM	21.52 ± 1.93	49.32 ± 3.03
	LFM	18.09 ± 1.30	72.25 ± 3.08
Walking	IND GP	8.03 ± 2.55	30.55 ± 10.64
	MTGP	7.75 ± 2.05	37.77 ± 4.53
	SLFM	7.81 ± 2.00	36.84 ± 4.26
	LFM	7.23 ± 2.18	48.15 ± 5.66

References I

- M. A. Álvarez, D. Luengo, and N. D. Lawrence. Latent force models. In van Dyk and Welling (2009), pages 9–16. [PDF].
- M. A. Álvarez, D. Luengo, and N. D. Lawrence. Linear latent force models using Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013. [PDF]. In press.
- J. Quinonero Candela and C. E. Rasmussen. A unifying view of sparse approximate Gaussian process regression. Journal of Machine Learning Research, 6:1939–1959, 2005.
- S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.
- E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. In Y. Weiss, B. Schölkopf, and J. C. Platt, editors, Advances in Neural Information Processing Systems, volume 18, Cambridge, MA, 2006. MIT Press.
- Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In R. G. Cowell and Z. Ghahramani, editors, Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics, pages 333–340, Barbados, 6-8 January 2005. Society for Artificial Intelligence and Statistics.
- M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. *Journal of the Royal Statistical Society, B*, 6 (3):611–622, 1999. [PDF]. [DOI].
- M. K. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In van Dyk and Welling (2009), pages 567–574.
- D. van Dyk and M. Welling, editors. Artificial Intelligence and Statistics, volume 5, Clearwater Beach, FL, 16-18 April 2009. JMLR W&CP 5.