Bedlam

Contents

1. Topology	4
2. Measure Theory	7
2.1. Lebesgue Measure	9
3. Probability Theory	
4. Optimal Transport	

1. Topology

Definition 1.1 (Topology):

Let X bet a set. A topology over X is a subset Σ of 2^X such that:

- 1. $A\subseteq\Sigma\Longrightarrow\bigcup_{E\in A}E$. Infinite or finite unions of sets. 2. $A,B\in\Sigma\Longrightarrow A\cap B\in\Sigma$. Finite intersections of sets.
- 3. $X \in \Sigma$

Definition 1.2 (Topological Space):

 (X, Σ) is a topological space iff. Σ is a topology of X.

Definition 1.3 (Everywhere dense):

Let (X, Σ) topological space, and $H \subseteq X$. H is said everywhere dense in Σ iff. $\forall E \in \Sigma, E \neq \emptyset : H \cap E = \emptyset$. We can find

Definition 1.4 (Separable):

Let (X, Σ) be a topological space. (X, Σ) is said separable iff $\exists H \subseteq X, H$ is countable : H is everywhere dense $\in \Sigma$.

Definition 1.5 (Metric Space):

(X,d) is a metric space iff.

- 1. $X \neq \emptyset$
- 2. $d: X \times X \longrightarrow \mathbb{R}_{>0}$ such that (d is a distance):
 - 1. $\forall x, y \in X : d(x, y) = 0 \Longrightarrow x = y$ there are no different elements at zero-distance.
 - 3. $\forall x, y \in X : d(x, y) = d(y, x)$. symmetry.
 - 2. $\forall x, y, z \in X : d(x, z) \leq d(x, y) + d(y, z)$. triangular inequality.

Definition 1.6 (open ε -ball):

Let (X,d) be a metric space, $x \in X$, and $\varepsilon \in \mathbb{R}_{>0}$. We call $B_{\varepsilon}(x) = \{y \in X \mid d(x,y) < \varepsilon\}$ an open ε -ball. A ball of ε radius

Definition 1.7 (Neighborhood):

Let (X,d) be a metric space, $S\subseteq X$, $x\in S$, and $\varepsilon\in\mathbb{R}_{>0}$ such that the open ε -ball $B_{\varepsilon}(x)\subseteq S$. Then S is said a neighbor**hood of** x. A neighborhood of an element is simply a set that contains an open ball containing the element.

Definition 1.8 (Open Set):

Let (X,d) be a metric space and $U\subseteq X$. U is an open set iff. $\forall u\in U: \exists \varepsilon\in \mathbb{R}_{>0}: B_{\varepsilon}(u)\subseteq U$. An open set is simply a set which is also neighborhood for all its points.

Definition 1.9 (Induced Topology):

Let (X,d) be a metric space. Σ is said an induced topology iff. $\Sigma = \{U \subseteq X \mid U \text{ is an open set in } (X,d)\}$

Definition 1.10 (Metrizable):

Let (X, Σ) be a topological space. (X, Σ) is said metrizable iff. $\exists (X, d)$ metric space : Σ is a topology induced by (X, d).

Definition 1.11 (Cauchy Sequence):

Let (X,d) be a metric space, $[x_n \in X]$ a sequence. $[x_n]$ is said a cauchy sequence iff. $\forall \varepsilon \in \mathbb{R}_{>0}: \exists N \in \mathbb{N}: \forall m,n \in \mathbb{N}: d(x_n,x_m) \leq \varepsilon$. There is a point after which all pairs of elements are close to each other.

Definition 1.12 (Convergent Sequence):

Let (X,d) be a *metric space*, $l \in X$, $[x_n \in X]$ a sequence. $[x_n]$ is said a **convergent sequence to the limit** l iff. $\forall \varepsilon \in \mathbb{R}_{>0}$: $\exists N \in \mathbb{R}_{>0} : \forall n > N : d(x_n, l) < \varepsilon$. If such a limit exists the sequence is simply said **convergent**.

Definition 1.13 (Complete Metric Space):

Let (X, d) be a metric space (X, d) is said a complete metric space iff. every cauchy sequence is convergent.

Definition 1.14 (Polish Space):

Let (X, Σ) be a topological space. (X, Σ) is said a Polish Space iff. (X, Σ) is separable, metrizable, and a complete metric space for some metric.

2. Measure Theory

Definition 2.1 (half open rectangle):

Let $a_0, b_0, ..., a_n, b_n \in \mathbb{R}$. The set $X_{i=0}^n[a_i, b_i)$ is called an n-dimensional half open rectangle. The collection of all n-dimensional half-open-rectangles is denoted with \mathcal{I}_b^n .

Definition 2.2 (restriction):

Let $f: X \longrightarrow Y$. Let $X' \subseteq X$. Let Y' such that $f(X') \subseteq Y' \subseteq Y$. A restriction of f over $X' \times Y'$, denoted $f|_{X' \times Y'}$ is a function $X' \longrightarrow Y'$ such that $f|_{X \times Y} = \{(x, f(x)) \mid x \in X, f(x) \in Y\}$

Example 2.1 (restriction):

Let $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$ power operator over the real numbers. Now, consider $g: \mathbb{N} \to \mathbb{N}$ such that $g(x) = x^2$ power operator over the natural number only. Then g is a restriction of f.

- 1. $\mathbb{N} \subseteq \mathbb{R}$.
- 2. $f(\mathbb{N}) \subseteq \mathbb{N} \subseteq \mathbb{R}$.
- 3. $\{(x, g(x)) | x \in \mathbb{N}, y \in \mathbb{N}\} \subseteq \{(x, f(x) | x \in \mathbb{R}, y \in \mathbb{R})\}$

Definition 2.3 (inverse function):

Let $f: X \longrightarrow Y$ be a function. The inverse function $f^{-1}: Y \longrightarrow X$ is a function such that $f^{-1}(y \in Y) = x \in X$ if f(x) = y.

Definition 2.4 (preimage):

Let $f: X \longrightarrow Y$ be a function. Let $E \subseteq Y$. The preimage is the set $f^{-1}(E) = \{x \in X \mid f(x) \in E\}$.

Definition 2.5 (σ -algebra):

Let X be a set. $\Sigma \subset 2^X$ is said a sigma algebra of X iff.:

- 1. $X \in \Sigma$
- 2. $E \in \Sigma \Longrightarrow X \setminus E \in \Sigma$. close under complement.
- 3. $\{A_n \in \Sigma\}_{n=1}^{\infty} \Longrightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma$ close under infinite unions.

Definition 2.6 (generate σ -algebra):

Let X be a set and $G\subseteq 2^X$. The σ -algebra generated by G, denoted $\sigma_X(G)$, is the smallest σ -algebra such that:

1. $G \subseteq \sigma_X(G)$.

2. $\forall \Sigma$ σ -algebra : $G \subseteq \Sigma \Longrightarrow \sigma_X(G) \subseteq \Sigma$. Every other σ -algebra that contains G contains also the generated one, $\sigma_X(G)$.

Definition 2.7 (borel σ -algebra):

Let (X,G) be a topological space. We refer to $\sigma_X(G)=\mathcal{B}(X,G)$ as a Borel σ -algebra.

Definition 2.8 (σ -algebra product):

Let Σ_1 and Σ_2 be σ -algebras on X_1 and X_2 respectively. The **product** σ -algebra denoted $\Sigma_1 \otimes \Sigma_2$ is defined as $\sigma_{X_1 \times X_2}(\{S_1 \times S_2 \mid S_1 \in \Sigma_1, S_2 \in \Sigma_2\})$

Definition 2.9 (measurable space):

 (X, Σ) is said **measurable** iff. Σ is a sigma-algebra of X.

Definition 2.10 (measure):

Given (X, Σ) measurable space. $\mu : \Sigma \longrightarrow \mathbb{R} \cup \{+\infty, -\infty\}$ is said a measure iff.

- 1. $E \in \Sigma \Longrightarrow \mu(E) \ge 0$. positive.
- 2. $\{E_n \in \Sigma\}_{n=1}^{\infty}$ such that $E_i \cap E_j$ for $i \neq j \Longrightarrow \mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$. The measure of disjoint sets is the sum of the measures of each set.
- 3. $\mu(\emptyset) = 0$.

Definition 2.11 (*measure* space):

 (X, Σ, μ) is said a *measure* space iff. (X, Σ) is a sigma algebra and μ is a measure of (X, Σ) .

Definition 2.12 (measurable function):

Let (X_1, Σ_1) and (X_2, Σ_2) be a *measurable spaces*. $f: X_1 \longrightarrow X_2$ is said a **measurable function** iff. $\forall E \in \Sigma_2 : f^{-1}(E) \in \Sigma_1$. The *preimage* of each measurable set is again measurable.

Definition 2.13 (pushforward):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. The **pushforwad of \mu under** f is the mapping $f_{\#}\mu: \Sigma_2 \longrightarrow \mathbb{R}_{>0}$ defined as:

$$\forall E \in \Sigma_2: f_\#\mu(E) = \mu(f^{-1}(E))$$

The *pushforward* is simply a function that generates a *measure* for a *measurable space* starting from a different *measure space* and a *measurable function* acting as bridge between the two spaces.

Proposition 2.1 (pushforward of a measure is a measure):

Let (X_1, Σ_1, μ) be a measure space. Let (X_2, Σ_2) be a measurable space. Let $f: X_1 \longrightarrow X_2$ be a measurable function. Then $(X_2, \Sigma_2, f_\# \mu)$ is a measure space.

Proof 2.1 (of *Proposition 2.1*):

To prove that statement, we need to prove only the axioms of a measure.

- 1. Let $E \in \Sigma_2$, we need to show that $f_{\#}\mu(E) \geq 0$. This is trivial by definition of *pushforward* and *measure*.
- 2. Let $[E_n \in \Sigma_2]_{n=1}^{\infty}$ be a sequence of pairwise disjoint sets. We need to show that: $f_{\#}\mu\left(\bigcup_{n=1}^{\infty}E_n\right)=\sum_{n=1}^{\infty}f_{\#}\mu(E_n)$.

$$\begin{split} f_{\#}\mu\bigg(\bigcup_{n=1}^{\infty}E_n\bigg) &= \mu\bigg(f^{-1}\bigg(\bigcup_{n=1}^{\infty}E_n\bigg)\bigg) \text{ definition of pushforward} \\ &= \mu\bigg(\bigcup_{n=1}^{\infty}f^{-1}(E_n)\bigg) \\ &= \sum_{n=1}^{\infty}\mu(f^{-1}(E_n)) \text{ definition of measure} \\ &= \sum_{n=1}^{\infty}f_{\#}\mu(E_n) \text{ definition of pushforward} \end{split}$$

3. We need to show that $\exists E \in \Sigma_1$ such that $f_\#(E) \ge 0$. Let $E' \in \Sigma_1$ such that $\mu(E') \ge 0$ (such E' exists by defintion of *measure*). Then, f(E') is a set that meets the requirements, that is

$$f_{\#}(f(E')) = \mu(f^{-1}(f(E'))) = \mu(E') \ge 0$$

Example 2.2 (pushforward example):

Consider the measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu(E) = |E|)$. Consider the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Consider the measurable function $f : \mathbb{N} \longrightarrow \mathbb{R}$ such that f(x) = x. Consider pushforward $f_{\#}\mu : \mathbb{R} \longrightarrow \mathbb{R}_{\geq 0}$. Then $f_{\#}\mu$ is a measure for the measurable space $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$ since:

2.1. Lebesgue Measure

Definition 2.1.1 (pre-measure):

Let (X, Σ) such that $\emptyset \in S$. Let $\mu : S \longrightarrow R_{>0} + \{+\infty\}$. μ is said a **pre-***measure* iff.

- 2. Given a collection of pairwise disjoint sets $\{A_n \in S\}_{n \in \mathbb{N}}$ such that $\bigcup_{n \in \mathbb{N}} A_n \in S \Longrightarrow \mu(\bigcup_{n \in \mathbb{N}} A_n) = \sum_{n \in \mathbb{N}} \mu(A_n)$.
- 3. $\forall A \in S : \mu(A) \geq 0$.

A pre-measure is a precursor of a full-fledge measure. The main difference is that a measure is defined on sigma algebras, meanwhile the pre-measure is defined on a simple collection of subsets. Further, given that this collection is not necessarily closed under unions as a sigma algebra does, we also need to check that, in the second requirement, the union of A_n is indeed contained in the collection.

Definition 2.1.2 (Lebesgue pre-measure):

The Lebesgue pre-measure is a mapping $\lambda^n: \mathcal{I}_h^n \longrightarrow \mathbb{R}_{\geq 0} \cup \{+\infty\}$ (\mathcal{I}_h^n denotes the set half open rectangle) such that $\lambda^n \left(\times_{i=1}^n [a_i, b_i) \right) = \prod_{i=1}^n (b_i - a_i) \text{ for } a_i, b_i \in \mathbb{R} \text{ and } a_i \leq b_i.$

Proposition 2.1.1:

The Lebesgue pre-measure is a pre-measure.

Proof 2.1.1 (of Proposition *Proposition 2.1.1*):

1.
$$\lambda^n(\emptyset) = \lambda^n \left(\times_{i=1}^n [a_i, a_i) \right) = \prod_{i=1}^n (a_i - a_i) = 0$$

2. Let $I= \bigotimes_{i=1}^n [a_i,b_i)$ and $I'= \bigotimes_{i=1}^n [a_i',b_i')$ be disjoint half open rectangles. The $I\cup I'$ belongs to \mathcal{I}_h^n if we can stitch one to the other. This can only happen if there is

1.
$$j = i \Longrightarrow b_i = a'_i$$

$$2. \ j \neq i \Longrightarrow b_j = b'_j.$$

$$\begin{aligned} &1. \ j=i \Longrightarrow b_j=a_j'. \\ &2. \ j\neq i \Longrightarrow b_j=b_j'. \\ &3. \ j\neq i \Longrightarrow a_j=a_j'. \end{aligned}$$

This can be intuitively visualized in Figure 1 where two 2-dimensional half open rectangles met at one side. The only difference between the rectangles is that one is shifted along a single dimension, in such a way that they met at the open and close edges.

Figure 1: Two half open rectangles that can be stitched together.

In this situation we have that:

$$\begin{split} \lambda^n(I) + \lambda^n(I') &= \prod_{j=1}^n \bigl(b_j - a_j\bigr) + \prod \bigl(j=1\bigr)^n \bigl(b_j', a_j'\bigr) \text{ Lebesgue pre-measure definition} \\ &= \bigl((b_i - a_i) + (b_i' - a_i')\bigr) \prod_{\substack{j=1\\j \neq i}}^n b_j - a_j \quad \text{factoring out } \prod_{\substack{j=1\\j \neq i}}^n b_j - a_j \\ &= \bigl((b_i - a_i')\bigr) \prod_{\substack{j=1\\j \neq i}}^n b_j - a_j \quad \text{stitching half open rectangles together} \\ &= \lambda^n(I \cup I') \end{split}$$

Thus it is verified that λ^n is finitely additive.

3. The $\forall E\in \mathcal{I}_h^n: \lambda^n(E)\geq 0$ since the product of positive terms is positive.

3. Probability Theory

Definition 3.1 (Probability Space):

 (Ω, Σ, p) is said a probability space iff.

- 1. (Ω, Σ, p) is a measure space.
- 2. $p(\Omega) = 1$.

Intuitively, Ω represents the set of all possible outcomes, it is also known as **sample space**. Σ represents the set of all possible events. These are nothing more than set of outcomes. It is also known as **event space**. p is a measure on the event space, it is also known as **probability function**. It maps events to their likelihood.

Example 3.1 (Fair Die):

Consider the *probability space* (Ω, Σ, p) , where:

- 1. $\Omega = \{1, 2, 3, 4, 5, 6\}$ is the sample space, representing the possible outcomes of rolling a standard six-sided die.
- 2. $\Sigma = 2^{\Omega}$ is the event space.
- 3. $p: \Sigma \longrightarrow [0,1]$ is the probability measure function, defined as $P(E) = \frac{|E|}{6}$ for any event $E \in \Sigma$.

For example, consider the event $A=\{1,2,3\}$, which represents rolling a 1, 2, or 3. This event is an element of Σ . The probability of event A occurring is $p(A)=\frac{|A|}{6}=\frac{3}{6}=\frac{1}{2}$.

Definition 3.2 (Coupling):

Let $(\Omega_1, \Sigma_1, \mu_1)$ and $(\Omega_2, \Sigma_2, \mu_2)$ be probability spaces. A coupling is a probability space $(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, \gamma)$ such that:

- 1. $\forall E \in \Sigma_1 : \gamma(E \times \Omega_2) = \mu_1(E)$. The left marginal of γ is μ_1 .
- 2. $\forall E \in \Sigma_2 : \gamma(\Omega_1 \times E) = \mu_2(E)$. The right marginal of γ is μ_2 .

Example 3.2 (Coupling a Dice and a Coin):

Consider a probability space $\mathcal{F}_1 = \left(\Omega_1 = \{1,2,3,4\}, \Sigma_1 = 2^{\Omega_1}, p_1 = A \mapsto \frac{|A|}{4}\right)$ (The probability space corresponding to a 4 sided die). Further, consider a probability space $\mathcal{F}_2 = \left(\Omega_2 = \{1,2\}, \Sigma_2 = 2^{\Omega_2}, p_2 = A \mapsto \frac{|A|}{2}\right)$ (The probability space corresponding to a coin). We can define a probability space $\mathcal{F} = \left(\Omega_1 \times \Omega_2, \Sigma_1 \otimes \Sigma_2, p\right)$ by coupling \mathcal{F}_1 and \mathcal{F}_2 . Here, sample space and event space are already decided, we need to provide only a proper measure p. Such a measure can be built by providing a coupling table:

$$\begin{pmatrix} p & \{1\} & \{2\} & \{3\} & \{4\} & p_1 \\ \{1\} & \frac{1}{4} & 0 & \frac{1}{4} & 0 & \frac{1}{2} \\ \{2\} & 0 & \frac{1}{4} & 0 & \frac{1}{4} & \frac{1}{2} \\ p_2 & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & 1 \end{pmatrix}$$

On the top row, we have the possible singleton events from \mathcal{F}_1 . On the left column, we have the possible singleton event from \mathcal{F}_2 . The last row and column corresponds to marginal distributions. These marginals match p_2 and p_1 as required by the definition of *coupling*. The central body of this matrix represents join probabilities of the die and coin. For example, $p(\{1\} \times \{3\}) = \frac{1}{4}$.

Note that we could fill this matrix in such a way that we have a *probability space* but not a *coupling* by breaking the marginal axioms.

Retrieving event probabilities from singleton events is only matter of applying traditional probability rules.

4. Optimal Transport