Automatic Number Plate Recognition

1.Introduction

Automatic Number Plate Recognition (ANPR) is one of the most widely used applications of computer vision, particularly in **traffic management**, **law enforcement**, **parking automation**, **and toll collection systems**. ANPR systems automatically detect and read vehicle license plates from images or video streams.

While ANPR is often used for identification, this project demonstrates a **privacy-preserving variant**: instead of reading or storing the plate numbers, the system detects number plates and **masks them** (**via blurring**) to anonymize the vehicle's identity.

This project is implemented using:

- Python –for implementation and scripting.
- OpenCV for image processing and plate detection.
- Haar Cascade Classifier a pre-trained model for license plate detection.

By combining these, the system achieves accurate detection and effective anonymization of license plates in static images.

2.Methodology

The project methodology is structured into five stages:

1. Data Acquisition

- Input car images are provided to the system.
- o Images may contain one or more vehicles with visible number plates.

2. Preprocessing

- o Convert the input image to **grayscale** to reduce computational complexity.
- Grayscale images require less memory and processing power, making detection faster.

3. License Plate Detection

- Use the Haar Cascade Classifier (haarcascade_russian_plate_number.xml) pretrained on thousands of plate images.
- The classifier applies feature-based pattern matching to localize number plates within the image.

4. Masking/ Anonymization

- Extract the **Region of Interest (ROI)** corresponding to the detected plate.
- Apply a Gaussian Blur filter to obscure the plate details, ensuring the plate content is unreadable.
- o Optionally, draw a **bounding box** around the plate for visualization.

5. Output Generation

Display the processed image with masked plates. Save the output as a new image

3.Workflow

Below is the structured workflow of the project:

- 1. Load Resources Import libraries and load Haar Cascade XML model.
- 2. **Read Input Image** Capture or load a vehicle image.
- 3. **Preprocess Image** Convert to grayscale.
- 4. **Detect Plates** Use detectMultiScale() for plate localization.
- 5. **Apply Masking** Blur the detected region(s).
- 6. **Display & Save Results** Output the anonymized image.