

CS201 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

Dr. QI WANG

Department of Computer Science and Engineering

Office: Room903, Nanshan iPark A7 Building

Email: wangqi@sustech.edu.cn

Applications of Number Theory in Cryptography

- Introduction
- Symmetric cryptography
- Asymmetric cryptography
- RSA Cryptosystem
- DLP and El Gamal cryptography
- Diffie-Hellman key exchange protocol
- Crytocurrency, e.g., bitcoin

Theorem (Fermat's little theorem): Let p be a prime, and let x be an integer such that $x \not\equiv 0 \mod p$. Then

$$x^{p-1} \equiv 1 \pmod{p}$$
.

Theorem (Fermat's little theorem): Let p be a prime, and let x be an integer such that $x \not\equiv 0 \mod p$. Then

$$x^{p-1} \equiv 1 \pmod{p}.$$

Example: Find $7^{222} \pmod{11}$

Theorem (Fermat's little theorem): Let p be a prime, and let x be an integer such that $x \not\equiv 0 \mod p$. Then

$$x^{p-1} \equiv 1 \pmod{p}$$
.

Example: Find $7^{222} \pmod{11}$

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} 7^2 = 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

■ Theorem (Fermat's little theorem): Let p be a prime, and let x be an integer such that $x \not\equiv 0 \mod p$. Then

$$x^{p-1} \equiv 1 \pmod{p}$$
.

Example: Find $7^{222} \pmod{11}$

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} 7^2 = 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

Q: How to prove Fermat's little theorem?

■ Theorem (Fermat's little theorem) : Let p be a prime, and let x be an integer such that $x \not\equiv 0 \mod p$. Then

$$x^{p-1} \equiv 1 \pmod{p}$$
.

Example: Find $7^{222} \pmod{11}$

$$7^{222} = 7^{22 \cdot 10 + 2} = (7^{10})^{22} 7^2 = 1^{22} \cdot 49 \equiv 5 \pmod{11}$$

Q: How to prove Fermat's little theorem?

$$\{1, 2, \dots, p-1\} = \{x, 2x, \dots, x(p-1) \pmod{p}\}$$

• Euler's *totient* function: $\phi(n)$ the number of positive integers coprime to n in \mathbb{Z}_n

■ Euler's *totient* function: $\phi(n)$ the number of positive integers coprime to n in \mathbb{Z}_n

$$\phi(p)=p-1$$
 $\phi(pq)=(p-1)(q-1)$
 $\phi(p^i)=p^i-p^{i-1}$

• Euler's *totient* function: $\phi(n)$ the number of positive integers coprime to n in \mathbb{Z}_n

$$\phi(p) = p-1$$
 $\phi(pq) = (p-1)(q-1)$
 $\phi(p^i) = p^i - p^{i-1}$

■ Theorem (Euler's theorem) : Let n be a positive integer, and let x be an integer such that gcd(x, n) = 1. Then

$$x^{\phi(n)} \equiv 1 \pmod{n}$$
.

• Euler's *totient* function: $\phi(n)$ the number of positive integers coprime to n in \mathbb{Z}_n

$$\phi(p)=p-1$$
 $\phi(pq)=(p-1)(q-1)$
 $\phi(p^i)=p^i-p^{i-1}$

■ Theorem (Euler's theorem) : Let n be a positive integer, and let x be an integer such that gcd(x, n) = 1. Then

$$x^{\phi(n)} \equiv 1 \pmod{n}$$
.

Q: How to prove Euler's theorem?

Primitive Roots

■ A *primitive root* modulo a prime p is an integer $r \in \mathbb{Z}_p$ such that every nonzero element of \mathbb{Z}_p is a power of r.

Primitive Roots

■ A *primitive root* modulo a prime p is an integer $r \in \mathbb{Z}_p$ such that every nonzero element of \mathbb{Z}_p is a power of r.

Example: 3 is a primitive root of \mathbb{Z}_7 . 2 is not a primitive root of \mathbb{Z}_7 .

Primitive Roots

■ A *primitive root* modulo a prime p is an integer $r \in \mathbb{Z}_p$ such that every nonzero element of \mathbb{Z}_p is a power of r.

Example: 3 is a primitive root of \mathbb{Z}_7 . 2 is not a primitive root of \mathbb{Z}_7 .

Theorem * There is a primitive root modulo n if and only if $n = 2, 4, p^e$ or $2p^e$, where p is an odd prime.

Q : proof? The number of primitive roots? *

History of almost 4000 years (from 1900 B.C.)

Cryptography = kryptos + graphos

History of almost 4000 years (from 1900 B.C.)

```
Cryptography = kryptos + graphos (secret) (writing)
```


History of almost 4000 years (from 1900 B.C.)

```
Cryptography = kryptos + graphos
(secret) (writing)
```

The term was first used in *The Gold-Bug*, by Edgar Allan Poe (1809 - 1849).

History of almost 4000 years (from 1900 B.C.)

$$Cryptography = kryptos + graphos$$

(secret) (writing)

The term was first used in *The Gold-Bug*, by Edgar Allan Poe (1809 - 1849).

"Human ingenuity cannot concoct a cipher which human ingenuity cannot resolve." - 1941

One-sentence definition:

"Cryptography is the practice and study of techniques for secure communication in the presence of third parties called adversaries." — Ronald L. Rivest

Some Examples

■ In 405 BC, the Greek general LYSANDER OF SPARTA was sent a coded message written on the inside of a servant's belt.

Some Examples

The Greeks also invented a cipher which changed letters to numbers. A form of this code was still being used during World War I.

	1	2	3	4	5
1	Α	В	С	D	Е
2	F	G	Н	I/J	K
3	L	Μ	Ν	0	Ρ
4	Q	R	S	T	U
5	V	ŵ	X		Z

Some Examples

■ Enigma, Germany coding machine in World War II.

History (until 1970's)"Symmetric" cryptography

History (until 1970's)
"Symmetric" cryptography
Alice Insecure Channel

History (until 1970's)"Symmetric" cryptography

History (until 1970's)

"Symmetric" cryptography

Alice

Insecure Channel

Bob

History (until 1970's)

"Symmetric" cryptography

Alice

Insecure Channel

Bob

History (until 1970's)

"Symmetric" cryptography

Alice

Insecure Channel

Bob

They need agree in advance on the secret key k.

History (until 1970's)

"Symmetric" cryptography

They need agree in advance on the secret key k.

Q: How can they do this?

History (until 1970's)

"Symmetric" cryptography

They need agree in advance on the secret key k.

Q: How can they do this?

Q: What if Bob could send Alice a "special key" useful only for encryption but no help for decryption?

History (from 1976)

♦ W. Diffie, M. Hellman, "New direction in cryptography", IEEE Transactions on Information Theory, vol. 22, pp.

644-654, 1976.

"We stand today on the brink of a revolution in cryptography."

Bailey W. Diffie

Martin E. Hellman

History (from 1976)

♦ W. Diffie, M. Hellman, "New direction in cryptography", *IEEE Transactions on Information Theory, vol. 22, pp.*

644-654, 1976.

"We stand today on the brink of a revolution in cryptography."

2015 **Turing Award**

Bailey W. Diffie

Martin E. Hellman

2015

Martin E. Hellman Whitfield Diffie For fundamental contributions to **modern cryptography**. Diffie and Hellman's groundbreaking 1976 paper, "New Directions in Cryptography," introduced the ideas of public-key cryptography and digital signatures, which are the foundation for most regularly-used security protocols on the internet today. [40]

Public Key Cryptography

Alice wants to send a message to Bob

Ronald L. Rivest

Adi Shamir Leonard M. Adleman

R. Rivest, A. Shamir, L. Adleman, "A method for obtaining digital signatures and public-key cryptosystems", Communications of the ACM, vol. 21-2, pages 120-126, 1978.

Rivest-Shamir-Adleman

2002 **Turing Award**

2002

Ronald L. Rivest,
Adi Shamir and
Leonard M. Adleman

For <u>their ingenious contribution</u> for making <u>public-key cryptography</u> useful in practice.

Rivest-Shamir-Adleman

2002 Turing Award

2002

Ronald L. Rivest,
Adi Shamir and
Leonard M. Adleman

For <u>their ingenious contribution</u> for making <u>public-key cryptography</u> useful in practice.

Pick two large primes, p and q. Let n=pq, then $\phi(n)=(p-1)(q-1)$. Encryption and decryption keys e and d are selected such that

- $gcd(e, \phi(n)) = 1$
- $ed \equiv 1 \pmod{\phi(n)}$

Rivest-Shamir-Adleman

2002 Turing Award

2002

Ronald L. Rivest,
Adi Shamir and
Leonard M. Adleman

For <u>their ingenious contribution</u> for making <u>public-key cryptography</u> useful in practice.

Pick two large primes, p and q. Let n = pq, then $\phi(n) = (p-1)(q-1)$. Encryption and decryption keys e and d are selected such that

- $gcd(e, \phi(n)) = 1$
- $ed \equiv 1 \pmod{\phi(n)}$

$$C = M^e \mod n$$
 (RSA encryption)

$$M = C^d \mod n$$
 (RSA decryption)

• $C = M^e \mod n$ (RSA encryption)

$$M = C^d \mod n$$
 (RSA decryption)

Theorem (*Correctness*): Let p and q be two odd primes, and define n = pq. Let e be relatively prime to $\phi(n)$ and let d be the multiplicative inverse of e modulo $\phi(n)$. For each integer x such that $0 \le x < n$,

$$x^{ed} \equiv x \pmod{n}$$
.

• $C = M^e \mod n$ (RSA encryption)

 $M = C^d \mod n$ (RSA decryption)

Theorem (*Correctness*): Let p and q be two odd primes, and define n = pq. Let e be relatively prime to $\phi(n)$ and let d be the multiplicative inverse of e modulo $\phi(n)$. For each integer x such that $0 \le x < n$,

$$x^{ed} \equiv x \pmod{n}$$
.

Q: How to prove this?

RSA Public Key Cryptosystem: Example

Parameters: $p = q = n = \phi(n) = e = d$ 5 11 55 40 7 23

RSA Public Key Cryptosystem: Example

Parameters: p q n $\phi(n)$ e d

5 11 55 40 7 23

Public key: (7,55)

Private key: 23

RSA Public Key Cryptosystem: Example

Parameters: $p = q = n = \phi(n) = e = d$ 5 11 55 40 7 23

Public key: (7,55)

Private key: 23

Encryption: $M = 28, C = M^7 \mod 55 = 52$

Decryption: $M = C^{23} \mod 55 = 28$

Parameters: p q n $\phi(n)$ e d

Public key: (e, n)

Private key: d

p, q, $\phi(n)$ must be kept secret!

Parameters: p q n $\phi(n)$ e d

Public key: (e, n)

Private key: d

p, q, $\phi(n)$ must be kept secret!

Q: Why?

Parameters: $p q n \phi(n) e d$

Public key: (e, n)

Private key: d

p, q, $\phi(n)$ must be kept secret!

Q: Why?

Comment: It is believed that determining $\phi(n)$ is equivalent to factoring n. Meanwhile, determining d given e and n, appears to be at least as time-consuming as the integer factoring problem.

Parameters: p q n $\phi(n)$ e d

Public key: (e, n)

Private key: d

p, q, $\phi(n)$ must be kept secret!

Q: Why?

Comment: It is believed that determining $\phi(n)$ is equivalent to factoring n. Meanwhile, determining d given e and n, appears to be at least as time-consuming as the integer factoring problem.

CS 208 – Algorithm Design and Analysis

The Security of the RSA

In practice, RSA keys are typically 1024 to 2048 bits long.

The Security of the RSA

In practice, RSA keys are typically 1024 to 2048 bits long.

Remark: There are some suggestions for choosing p and q.

A. Salomaa, *Public-Key Cryptography*, 2nd Edition, Springer, 1996, pp. 134-136.

The Security of the RSA

In practice, RSA keys are typically 1024 to 2048 bits long.

Remark: There are some suggestions for choosing p and q.

A. Salomaa, *Public-Key Cryptography*, 2nd Edition, Springer, 1996, pp. 134-136.

Q: Consider the RSA system, where n=pq is the modulus. Let (e,d) be a key pair for the RSA. Define

$$\lambda(n) = \operatorname{lcm}(p-1, q-1)$$

and compute $d' = e^{-1} \mod \lambda(n)$. Will decryption using d' instead of d still work?

Key exchange/agreement and authentication

Algorithm	SSL 2.0	SSL 3.0	TLS 1.0	TLS 1.1	TLS 1.2	TLS 1.3
RSA	Yes	Yes	Yes	Yes	Yes	No
DH-RSA	No	Yes	Yes	Yes	Yes	No
DHE-RSA (forward secrecy)	No	Yes	Yes	Yes	Yes	Yes
ECDH-RSA	No	No	Yes	Yes	Yes	No
ECDHE-RSA (forward secrecy)	No	No	Yes	Yes	Yes	Yes

Key exchange/agreement and authentication

Algorithm	SSL 2.0	SSL 3.0	TLS 1.0	TLS 1.1	TLS 1.2	TLS 1.3
RSA	Yes	Yes	Yes	Yes	Yes	No
DH-RSA	No	Yes	Yes	Yes	Yes	No
DHE-RSA (forward secrecy)	No	Yes	Yes	Yes	Yes	Yes
ECDH-RSA	No	No	Yes	Yes	Yes	No
ECDHE-RSA (forward secrecy)	No	No	Yes	Yes	Yes	Yes

CS 305 – Computer Networks

SSL/TLS protocol

Key exchange/agreement and authentication

Algorithm	SSL 2.0	SSL 3.0	TLS 1.0	TLS 1.1	TLS 1.2	TLS 1.3
RSA	Yes	Yes	Yes	Yes	Yes	No
DH-RSA	No	Yes	Yes	Yes	Yes	No
DHE-RSA (forward secrecy)	No	Yes	Yes	Yes	Yes	Yes
ECDH-RSA	No	No	Yes	Yes	Yes	No
ECDHE-RSA (forward secrecy)	No	No	Yes	Yes	Yes	Yes

CS 305 – Computer Networks

CS 403 – Cryptography and Network Security

Using RSA for Digital Signature

```
S = M^d \mod n (RSA signature)
```

$$M = S^e \mod n$$
 (RSA verification)

Why?

The Discrete Logrithm

■ The discrete logarithm of an integer y to the base b is an integer x, such that

$$b^{x} \equiv y \mod n$$
.

The Discrete Logrithm

■ The discrete logarithm of an integer y to the base b is an integer x, such that

$$b^{x} \equiv y \mod n$$
.

Discrete Logarithm Problem:

Given n, b and y, find x.

The Discrete Logrithm

■ The discrete logarithm of an integer y to the base b is an integer x, such that

$$b^{x} \equiv y \mod n$$
.

Discrete Logarithm Problem:

Given n, b and y, find x.

This is very hard!

El Gamal Encryption

• **Setup** Let p be a prime, and g be a generator of \mathbb{Z}_p . The private key x is an integer with 1 < x < p - 2. Let $y = g^x \mod p$. The public key for *El Gamal encryption* is (p, g, y).

El Gamal Encryption

• **Setup** Let p be a prime, and g be a generator of \mathbb{Z}_p . The private key x is an integer with 1 < x < p - 2. Let $y = g^x \mod p$. The public key for *El Gamal encryption* is (p, g, y).

El Gamal Encryption: Pick a random integer k from \mathbb{Z}_{p-1} ,

$$a = g^k \mod p$$

 $b = My^k \mod p$

The ciphertext C consists of the pair (a, b).

El Gamal Decryption:

$$M = b(a^x)^{-1} \mod p$$

Using El Gamal for Digital Signature

```
a = g^k \mod p

b = k^{-1}(M - xa) \mod (p - 1)

(El Gamal signature)
```

$$y^a a^b \equiv g^M \pmod{p}$$
(El Gamal **verification**)

Using El Gamal for Digital Signature

$$a = g^k \mod p$$

 $b = k^{-1}(M - xa) \mod (p - 1)$
(El Gamal **signature**)

$$y^a a^b \equiv g^M \pmod{p}$$
(El Gamal **verification**)

Q: How to verify it?

An Example

Choose p = 2579, g = 2, and x = 765. Hence $y = 2^{765} \mod 2579 = 949$.

An Example

Choose p = 2579, g = 2, and x = 765. Hence $y = 2^{765} \mod 2579 = 949$.

- ightharpoonup (Public key) $k_e = (p, g, y) = (2579, 2, 949)$
- ▶ (Private key) $k_d = x = 765$

An Example

Choose p = 2579, g = 2, and x = 765. Hence $y = 2^{765} \mod 2579 = 949$.

- ightharpoonup (Public key) $k_e = (p, g, y) = (2579, 2, 949)$
- ▶ (Private key) $k_d = x = 765$

Encryption: Let M = 1299 and choose a random k = 853,

$$(a, b) = (g^k \mod p, My^k \mod p)$$

= $(2^{853} \mod 2579, 1299 \cdot 949^{853} \mod 2579)$
= $(435, 2396).$

Decryption:

$$M = b(a^{x})^{-1} \mod p = 2396 \times (435^{765})^{-1} \mod 2579 = 1299.$$

Question 1: Is it feasible to derive x from (p, g, y)?

Question 1: Is it feasible to derive x from (p, g, y)?

It is equivalent to solving the DLP. It is believed that there is NO polynomial-time algorithm. *p* should be large enough, typically 160 bits.

Question 1: Is it feasible to derive x from (p, g, y)?

It is equivalent to solving the DLP. It is believed that there is NO polynomial-time algorithm. *p* should be large enough, typically 160 bits.

Question 2: Given a ciphertext (a, b), is it feasible to derive the plaintext M?

Question 1: Is it feasible to derive x from (p, g, y)?

It is equivalent to solving the DLP. It is believed that there is NO polynomial-time algorithm. *p* should be large enough, typically 160 bits.

Question 2: Given a ciphertext (a, b), is it feasible to derive the plaintext M?

Attack 1: Use $M = by^{-k}$. However, k is randomly picked.

Attack 2: Use $M = b(a^x)^{-1} \mod p$, but x is secret.

Diffie-Hellman Key Exchange Protocol

User A

Generate random

$$X_A < p$$

calculate

$$Y_A = \alpha^{X_A} \bmod p$$

Calculate $k = (Y_B)^{X_A} \mod p$

User B

Generate random

$$X_B < p$$

Calculate

$$Y_B = \alpha^{X_B} \bmod p$$

Calculate

$$k = (Y_A)^{X_B} \bmod p$$

Next Lecture

induction ...

