

# Introdução à Aerodinâmica Estacionária



### Introdução

Forças que atuam na Aeronave

### Forças que atuam em Aviões



### Forças que atuam na Helicópteros



#### Aeronave Flexível

- Passado → aeronaves superdimensionadas e mais pesadas e rígidas
- Hoje → aeronaves otimizadas, leves e flexíveis

Fenômenos Aeroelásticos

#### O que são fenômenos Aeroelásticos?



Figure 1.1 - Three-ring aeroelastic interaction Venn diagram

### Principais Fenômenos



### Visualização do Fenômeno

Busque no youtube – visualização do Flutter

Flutter - Tacoma

<u>Flutter</u>



#### Atmosfera



# Atmosfera Padrão – International Standard Atmosphere (ISA)

- Modelo empregado para padronização dos instrumentos das aeronaves
- Tabelas contendo temperaturas, pressões e densidades associadas a altitude



• Troposfera - nível do mar até 11.000 m  $T(K) = 288,15 - 0,0065 \text{ h(m)} = T_0 - \chi \text{h}$  Recordando  $\rightarrow$  g = 9,80665 m/s²

#### International Standard Atmosphere properties

| $T_0$ (sea level temperature)                                                                     | 288.16 K                                  | 518.69 R                               |  |
|---------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------|--|
| $P_0$ (sea level air pressure)                                                                    | 101325 N/m <sup>2</sup>                   | 21162 lbf/ft <sup>2</sup>              |  |
| $\rho_0$ (sea level air density)                                                                  | $1.225 \text{ kg/m}^3$                    | 0.0023769 slug/ft3                     |  |
| $a_0$ (speed of sound at sea level)                                                               | 340.29 m/s                                | 1116.43 ft/s                           |  |
| R (gas constant)                                                                                  | $287.05 \text{ m}^2/\text{s}^2 \text{ K}$ | 1716 ft <sup>2</sup> /s <sup>2</sup> R |  |
| $\gamma = \frac{c_p}{c_p} = \frac{\text{specific heat at constant pressure}}{1000 \text{ model}}$ | 1.4                                       | 1.4                                    |  |
| $c_v$ specific heat at constant volume                                                            |                                           |                                        |  |

- Considerações do modelo: atmosfera composta por gases perfeitos e aceleração da gravidade constante
- $T(K) = 288,15 0,0065 h(m) = T_0 \chi h$ -  $dT = T - T_0 = - \chi h$
- Gases perfeitos...p = ρ R T
- Pressão...p  $p_0 = \rho g h$

A relação entre pressão e temperatura podem ser expressas como:

$$\frac{p}{p_0} = \left(\frac{T}{T_0}\right)^{\frac{g}{R\chi}}$$

A relação entre as densidades pode ser obtida a partir da relação anterior

$$\frac{\rho}{\rho_0} = \left(\frac{T}{T_0}\right)^{\frac{g}{R\chi}-1}$$

A velocidade do som pode ser expressa como:

$$a = \sqrt{\gamma RT} = a_0 \sqrt{\frac{T}{T_0}}$$

#### Efeito da variação da altitude - Matlab

#### Calculate International Standard Atmosphere at One Height

Calculate the International Standard Atmosphere at 1000 m.

```
[T, a, P, rho] = atmosisa(1000)
```

Copyright 2015 The MathWorks, Inc.

#### Calculate International Standard Atmosphere at Multiple Heights

Calculate the International Standard Atmosphere at 1000, 11,000, and 20,000 m.

```
[T, a, P, rho] = atmosisa([1000 11000 20000])
```

Copyright 2015 The MathWorks, Inc.

#### Pressure altitude1

Calculate the pressure altitude at a static pressure of 101,325 Pa with warnings for out-of-range inputs.

h = atmospalt(101325)

Calcule por exemplo para o nível do mar ou 5000 m

#### Efeito da velocidade nos parâmetros aerodinâmicos

Número de Mach

$$M = \frac{V}{a}$$

#### Classificação do Escoamento (Wright and Cooper)

#### Flow regimes defined by Mach number

| M < 0.75       | Subsonic   | No shocks present in the flow                                                       | Gliders/propeller aircraft/some<br>jet transports |
|----------------|------------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| 0.75 < M < 1.2 | Transonic  | Shocks are attached to the aerofoil                                                 | Civil transports (typically $M = 0.8$ to 0.9)     |
| M = 1          | Sonic      | Flow at the speed of sound                                                          | Fighter aircraft                                  |
| 1.2 < M < 5    | Supersonic | Shocks present but not attached to<br>the aerofoil                                  | Fighter aircraft                                  |
| M > 5          | Hypersonic | Viscous interaction, entropy layer,<br>high temperature effects become<br>important | Missiles                                          |

#### Classificação do Escoamento (Anderson)

| Escoamento  | Mach          |                                                                                        |
|-------------|---------------|----------------------------------------------------------------------------------------|
| Subsônico   | M < 0,8       | $M_{\infty} < 0.8$                                                                     |
| Transônico  | 0,8 < M < 1,2 | $0.8 < M_{\infty} < 1$ $M > 1$                         |
|             | M > 1         | $M_{\infty} > 1.2$ Expansion wave                                                      |
| Hipersônico | M > 5         | $M_{\infty} > 5$ Thin, hot shock layer with viscous interaction and chemical reactions |

#### Efeito da velocidade nos parâmetros aerodinâmicos

Número de Reynolds

$$R_e = \frac{\rho VC}{\mu}$$

#### Efeito da velocidade nos parâmetros aerodinâmicos

 Número de Reynolds define se um escoamento viscoso, principalmente na camada limite, é laminar (velocidade varia gradualmente próximo a superfície do aerofólio) ou se é turbulento (variação randômica ou irregular)



#### Duas Classificações dos Tipos de Escoamento

- Escoamento não-viscoso não há atrito / viscosidade na passagem do ar pelo aerofólio. A velocidade do ar próximo ao perfil vai bruscamente a zero
- Escoamento viscoso demonstrado pela presença da camada limite onde o escoamento vai da velocidade do escoamento a zero na superfície do aerofólio



#### Duas Classificações dos Tipos de Escoamento

- Escoamento incompressível densidade do ar é constante e vale para M < 0,3
- Escoamento compressível efeitos de compressibilidade devem ser levados em conta e a densidade varia no escoamento

### Pressão Dinâmica

$$P_d = \frac{1}{2}\rho V^2$$

### Velocidade Equivalente

Velocidade Equivalente – mesma pressão dinâmica independente da altitude – V<sub>EAS</sub>

Velocidade Verdadeira – V<sub>TAS</sub> = V - velocidade em relação ao ar

$$P_{d} = \frac{1}{2}\rho V^{2} = \frac{1}{2}\rho_{0}V_{EAS}^{2}$$

$$V_{EAS} = \sqrt{\frac{\rho}{\rho_{0}}}V$$

Escoamento Estacionário – velocidade em qualquer ponto do escoamento é constante em relação ao tempo



Figure 5.1 Flow around a symmetric aerofoil at zero incidence.

### Ponto de Estagnação – S



Figure 5.2 Flow around a symmetric aerofoil at a small angle of incidence to the flow.

Pela Equação de Bernoulli, desprezando efeitos gravitacionais:

$$P + \frac{1}{2}\rho V^2 = cte$$



Figure 5.2 Flow around a symmetric aerofoil at a small angle of incidence to the flow.

Pela Equação de Bernoulli, desprezando efeitos gravitacionais e nos escoamentos compressíveis:

$$\left(\frac{\gamma}{\gamma-1}\right)\frac{P}{\rho} + \frac{1}{2}V^2 = cte$$



Figure 5.2 Flow around a symmetric aerofoil at a small angle of incidence to the flow.

Escoamento ao longo de uma linha de corrente livre na pressão P∞ e velocidade V∞ e a pressão ,muda em outro ponto do escoamento:

$$P + \frac{1}{2}\rho V^2 = P_{\infty} + \frac{1}{2}\rho V_{\infty}^2$$



$$P = P_{\infty} + \frac{1}{2} \rho \left( V_{\infty}^2 - V^2 \right)$$

Coeficiente de pressão é definido para um ponto no escoamento ou no aerofólio:

$$C_P = \frac{P - P_{\infty}}{\frac{1}{2} \rho V_{\infty^2}} = 1 - \left(\frac{V}{V_{\infty}}\right)^2$$

#### Distribuição de Pressões sobre um Aerofólio Simétrico



Figure 5.3 Typical pressure distribution for a symmetric aerofoil at a small angle of incidence.

Distribuição de Pressões sobre um aerofólio simétrico



### Centro de Pressão

# Ponto na corda onde age a resultante das forças aerodinâmicas



Figure 5.5 Resultant aerodynamic force acts at the centre of pressure.

### Centro de Pressão

O centro de pressão se altera na medida em que se modifica o ângulo de incidência:



Figure 5.5 Resultant aerodynamic force acts at the centre of pressure.

### Coeficientes da Forças Aerodinâmicas

$$C_L = \frac{Lift}{\frac{1}{2}\rho V^2 c}$$

$$C_D = \frac{Drag}{\frac{1}{2}\rho V^2 c}$$



$$C_{M} = \frac{PitchingMoment}{\frac{1}{2}\rho V^{2}c^{2}}$$

# Variação da Sustentação (Lift) com a ângulo de incidência



Figure 5.7 Variation of the lift coefficient with the angle of incidence.

# Variação da Sustentação (Lift) com a ângulo de incidência



Figure 5.7 Variation of the lift coefficient with the angle of incidence.

# Variação da Sustentação (Lift) com a ângulo de incidência

No ângulo de sustentação nula –  $\alpha_0$  - todos os aerofólios tem sustentação zero. Assim,  $\alpha_0$  = 0 no aerofólio simétrico.

$$C_{L} = a_{1} \left(\alpha - \alpha_{0}\right)$$

$$a_{1} = \frac{dC_{L}}{d\alpha} = 2 \pi / rad \approx entre \, 5,5 \, e \, 6$$

Mais comum  $a_{1} = 5.73/rad$ 

Stall

Figure 5.7 Variation of the lift coefficient with the angle of incidence.

## Curvas Sustentação, Arrasto e Momento

- Aplicação Airfoil Tools
- Exemplo NACA 0024



#### Curvas Coeficientes de Sustentação, Arrasto e Momento

- Aplicação <u>Airfoil Tools</u>
- Exemplo NACA 0024



#### **Airfoil**

Acessem a aplicação Airfoil:

http://www.airfoiltools.com/

E procurem as curvas do perfil

NACA 23012

#### Variação do Momento de Arfagem e o Centro Aerodinâmico



Figure 5.8 Variation of the moment coefficient about the leading edge with the lift coefficient and angle of incidence.

C<sub>MLE</sub> – no bordo de ataque do perfil C<sub>m0</sub> – sustentação zero

#### Centro Aerodinâmico

- Ponto no quarto de corda (¼ c) onde o momento aerodinâmico C<sub>Mx</sub> é igual a C<sub>M0</sub> e não varia com C<sub>L</sub> ou com a incidência
- No aerofólio simétrico C<sub>M0</sub> é zero e o centro de pressão está no quarto de corda



Figure 5.9 Forces and moments acting on an aerofoil for different reference points.

#### Sustentação em uma Asa Tridimensional

Área da asa em planta: S<sub>w</sub> = 2sc onde c é a corda média

A razão de aspecto é uma medida da esbeltez da asa (aeronaves comerciais...AR = 6 a 8)

$$AR = \frac{2s}{c} = \frac{(2s)^2}{S_w}$$
Figure 5.10 Dimensions of an unswept wing.

#### Inclinação da Curva de Sustentação de uma Asa Finita Tridimensional

A inclinação da curva é chamada de aw.

Considerando que a sustentação da asa tenha formato elíptico com zero nas pontas das asas:

$$a_W = \frac{a_1}{1 + a_1/(\pi AR)}$$

#### Coeficientes de Força e Momento para uma Asa Finita Tridimensional

$$C_{L} = \frac{Lift}{\frac{1}{2}\rho V^{2}S_{w}} \qquad C_{D} = \frac{Drag}{\frac{1}{2}\rho V^{2}S_{w}} \qquad C_{M} = \frac{Moment}{\frac{1}{2}\rho V^{2}S_{w}c}$$

$$M_{\infty} = \frac{V_{\infty}}{a_{\infty}} \qquad Re = \frac{\rho_{\infty}V_{\infty}c}{\mu_{\infty}}$$

$$C_{L} = f_{1}(\alpha, Re, M_{\infty})$$

$$C_{D} = f_{2}(\alpha, Re, M_{\infty})$$

$$C_{M} = f_{3}(\alpha, Re, M_{\infty})$$

$$C_M = \frac{Moment}{\frac{1}{2}\rho V^2 S_w c}$$

- número de faixas elementares (strips)
- coeficiente de sustentação dessas faixas é proporcional ao ângulo de incidência α(y)
- uma faixa não interfere nas demais
- efeitos de compressibilidade na raiz e na ponta são desprezados



Figure 5.11 Aerodynamic 'strip' on a continuous rectangular wing.

um elemento de faixa de largura dy e corda c



Figure 5.11 Aerodynamic 'strip' on a continuous rectangular wing.

Na asa com afilamento a corda c(y) entra na integral



$$dL = \frac{1}{2} \rho V^2 c(y) dy a_1 \alpha(y)$$



Leva em conta o efeito da descontinuidade na ponta da asa gerando vórtices de ponta de asa



Figure 5.12 Spanwise lift distribution for a realistic wing and strip theory model.

### Asas Elípticas e Afiladas

A sustentação na ponta é desprezada devido a corda ser reduzida na ponta. Assim, modifica-se a expressão da teoria de faixas com o emprego de:

$$a_{W} = \frac{a_{1}}{1 + a_{1} / (\pi AR)}$$

$$dL = \frac{1}{2} \rho V^{2} c dy a_{w} \alpha(y)$$

$$L_{TOTAL} = \int_{0}^{s} dL = \frac{1}{2} \rho V^{2} c a_{w} \int_{0}^{s} \alpha(y) dy$$

#### Asas com pouco Afilamento -> Teoria de Faixas Modificada

$$a_{W}(y) = a_{1} \left[ 1 - \left( \frac{y}{s} \right)^{2} \right] \quad \text{or} \quad a_{W}(y) = a_{1} \left[ 1 - \left( \frac{y}{s} \right) \right]^{2} \quad \text{or} \quad a_{W}(y) = a_{1} \cos \left( \frac{\pi y}{2s} \right)$$

$$dL = \frac{1}{2} \rho V^{2} c dy a_{W} \alpha \left( y \right)$$



#### Teoria de Faixas para uma Asa Discretizada

- asa é dividida em N seções finitas de largura ∆y
- k-ésima seção localizada a distância yk da raiz
- a sustentação agindo na k-ésima faixa L<sub>k</sub>:



$$L_{k} = \frac{1}{2} \rho V^{2} c a_{w} \alpha (y_{k}) \Delta y$$

$$L_{TOTAL} = \sum_{1}^{N} L_{k}$$

#### Método dos Painéis – Panel Methods

- imprecisões na teoria das faixas devido a falta de interação entre as diferentes seções (não pode ser usado para caudas em T)
- a indústria usa o método de painéis onde a superfície de sustentação é discretizada em painéis e são usados elementos de escoamento potencial agindo em cada painel (vórtices ou dipolos)
- NÃO SERÁ ESTUDADO NESTE CURSO

#### Arrasto em Asas Tridimensionais

 busca da maior razão sustentação/arrasto para ter maior alcance

$$D = \frac{1}{2}\rho V^2 SC_D$$

C<sub>D0</sub> arrasto de perfil C<sub>Di</sub> – arrasto induzido

e'- fator de eficiência da envergadura

e'=1 ..asa elíptica

0,85 < e' < 0,95 .. aeronaves comerciais

$$C_D = C_{D0} + C_{Di} = C_{D0} + \frac{C_{L^2}}{\pi e' AR}$$

#### Arrasto em Asas Tridimensionais

- para reduzir o arrasto induzido:
  - asas elípticas ... e'=1
  - aumentar a razão de aspecto .. AR = 2s/c
  - uso de Winglets aumenta AR

$$C_D = C_{D0} + C_{Di} = C_{D0} + \frac{C_{L^2}}{\pi e' AR}$$

## Influência dos Tipos de Arrasto

$$C_L = f_1(\alpha, Re, M_\infty)$$
  
 $C_D = f_2(\alpha, Re, M_\infty)$   
 $C_M = f_3(\alpha, Re, M_\infty)$ 



$$M_{\infty} = \frac{V_{\infty}}{a_{\infty}} \qquad Re = \frac{\rho_{\infty} V_{\infty} c}{\mu_{\infty}}$$

**RELEMBRANDO** 



Figure 5.14 Variation of drag with dynamic pressure q.

$$C_D = C_{D0} + C_{Di} = C_{D0} + \frac{C_{L^2}}{\pi e' AR}$$

### Relação C<sub>L</sub> x C<sub>D</sub>



Figure 5.15  $C_{\rm L}$  versus  $C_{\rm D}$  for different Mach numbers.

#### Manobras das Aeronaves





Usadas para manobrar a aeronave por mudar a distribuição de pressão no aerofólio

O aumento do arqueamento aumenta o coeficiente de sustentação

Increasing  $\beta$ 



Figure 5.16 Two-dimensional aerofoil with a control surface.

Aplicação da superfície de controle leva o centro de pressão para trás. E os coeficientes se alteram:

$$C_{\rm L} = a_0 + a_1\alpha + a_2\beta$$
 and  $C_{\rm M} = b_0 + b_1\alpha + b_2\beta$ ,



Pressure distribution for an aerofoil with an applied control surface.

$$C_{\rm L} = a_0 + a_1 \alpha + a_2 \beta$$
 and  $C_{\rm M} = b_0 + b_1 \alpha + b_2 \beta$ ,



a2...inclinação da curva de sustentação quando se aciona as superfícies de controle

b2 ....inclinação da curva de momento de arfagem quando se aciona as superfícies de controle

E...razão entre a corda da superfície de controle em relação a corda total do perfil

$$a_2 = \frac{a_1}{\pi} \left[ \cos^{-1} (1 - 2E) + 2\sqrt{E(1 - E)} \right]$$
 and  $b_2 = -\frac{a_1}{\pi} (1 - E)\sqrt{E(1 - E)}$ 

#### Teoria Pistão – Escoamento supersônico

A pressão agindo no perfil pode ser aproximada pela teoria pistão em altas velocidades M»1:



$$P = \rho a V \alpha = \frac{\rho V^2}{M} \alpha,$$

Figure 5.19 Supersonic flow over an aerofoil.

#### Escoamento Transônico

- -É caracterizado pela presença de ondas de choque na superfície da asa
- ondas de choque alteram a subitamente a pressão e sua posição é dependente da condição de voo e também da geometria da corda da asa
- não é possível prever a distribuição de pressões usando teoria de faixa ou método de painéis

#### Exercícios

- 1. An aerofoil of 2 m chord has  $C_{M0} = 0.02$ ,  $\alpha_0 = 1^\circ$ ,  $a_1 = 5.7/\text{rad}$ . The aerodynamic centre is at 0.25c behind the leading edge. It is at an incidence of  $5^\circ$  in a wind speed of 50 m/s ( $\rho = 1.225 \text{ kg/m}^3$ ). Find the lift and pitching moment about the leading edge per unit span when a trailing edge flap angle is set at  $10^\circ$ . Take  $b_1 = 2.0/\text{rad}$  and assume that the lift increment due to the flap acts through the midchord point.
- 2. For a rigid wing of root chord 2 m and semi-span 6 m with incidence 2°, write a MATLAB program to compare the different lift distributions obtained using strip theory and modified strip theory. Determine the taper ratio that gives the closest strip theory lift distribution compared to the modified strip theories.