

§ 3.5 解析函数的高阶导数

- 一、高阶导数定理
- 二、柯西不等式
- 三、刘维尔定理

一、高阶导数定理

分析 如果函数 f(z) 在区域 D 内解析, 在 $\overline{D} = D + C$ 上连续,

则由柯西积分公式有
$$f(z) = \frac{1}{2\pi i} \oint_C \frac{f(\zeta)}{\zeta - z} d\zeta$$
, $(z \in D)$.

$$\mathbb{Z}\left[\left(\zeta-z\right)^{-1}\right] = \left(\zeta-z\right)^{-2}, \quad \frac{d^2}{dz^2}\left[\left(\zeta-z\right)^{-1}\right] = 2\left(\zeta-z\right)^{-3},$$

$$\cdots \qquad \frac{\mathrm{d}^n}{\mathrm{d}z^n} \left(\frac{1}{\zeta - z}\right) = n! (\zeta - z)^{-(n+1)} = \frac{n!}{(\zeta - z)^{n+1}},$$

$$\Rightarrow f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \ (z \in D).$$

一、高阶导数定理

定理 如果函数 f(z) 在区域 D 内解析,在 $\overline{D} = D + C$ 上连续,则 f(z) 的各阶导数均在 D 上解析,且

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta, \quad (z \in D).$$

意义 解析函数的导数仍解析。

应用 • 反过来计算积分 $\oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz = \frac{2\pi i}{n!} f^{(n)}(z_0).$

• 推出一些理论结果。

例 计算 $\int_{|z-i|=1} \frac{\cos z}{(z-i)^3} dz$.

$$\iint_{|z-i|=1} \frac{\cos z}{(z-i)^3} dz = \frac{2\pi i}{2!} \cos'' z \Big|_{z=i}$$

$$= -\pi i \cos i = -\frac{\pi i}{2} (e + e^{-1}).$$

例 计算 $I = \oint_{|z|=2} \frac{e^z}{(z^2+1)^2} dz$.

$$\mathbf{P}(z) = \frac{\mathbf{e}^z}{(z^2+1)^2} = \frac{\mathbf{e}^z}{(z-i)^2(z+i)^2}.$$

如图,作 C_1 , C_2 两个小圆,

则
$$I = \oint_{C_1} f(z) dz + \oint_{C_2} f(z) dz$$
 (复合闭路定理)

$$= \oint_{C_1} \frac{e^z}{(z+i)^2} \cdot \frac{dz}{(z-i)^2} + \oint_{C_2} \frac{e^z}{(z-i)^2} \cdot \frac{dz}{(z+i)^2}$$

$$\frac{$$
记为}{} I_1+I_2 .

例 计算 $I = \oint_{|z|=2} \frac{e^z}{(z^2+1)^2} dz$.

解 (2)
$$I_1 = \oint_{C_1} \frac{e^z}{(z+i)^2} \cdot \frac{dz}{(z-i)^2}$$

$$\frac{(高阶导数公式)}{1!} \cdot \left[\frac{e^z}{(z+i)^2}\right]' \bigg|_{z=i}$$

$$=\frac{\pi}{2}(1-i)e^{i}.$$

同样可求得 $I_2 = -\frac{\pi}{2}(1+i)e^{-i}$.

(3)
$$I = I_1 + I_2 = \frac{\pi}{2} [(1-i)e^i - (1+i)e^{-i}] = \sqrt{2}\pi i \sin(1-\frac{\pi}{4}).$$

二、柯西不等式

定理 设函数 f(z)在 $|z-z_0| < R$ 内解析,且 |f(z)| < M,则

$$|f^{(n)}(z_0)| \le \frac{n!M}{R^n}, (n=1,2,\cdots). \quad (\underline{M} = 1,2,\cdots).$$

证明 $\forall R_1: 0 < R_1 < R$, 函数 f(z) 在 $|z-z_0| \le R_1$ 上解析,

$$\Rightarrow f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{|z-z_0|=R_1} \frac{f(z)}{(z-z_0)^{n+1}} dz, (n=1,2,\cdots).$$

$$\Rightarrow |f^{(n)}(z_0)| \leq \frac{n!}{2\pi} \oint_{|z-z_0|=R_1} \frac{|f(z)|}{|z-z_0|^{n+1}} ds \leq \frac{n!M}{R_1^n},$$

$$\Rightarrow R_1 \to R$$
, 即得 $|f^{(n)}(z_0)| \le \frac{n!M}{R^n}$, $(n=1,2,\cdots)$.

三、刘维尔定理

定理 设函数 f(z) 在全平面上解析且有界,则 f(z) 为一常数。

证明 设 20 为平面上任意一点,

 $\forall R > 0$, 函数 f(z) 在 $|z - z_0| < R$ 上解析,且 |f(z)| < M,

根据<u>柯西不等式</u>有 $|f'(z_0)| \leq \frac{M}{R}$,

由 z_0 的任意性, 知在全平面上有 $f'(z) \equiv 0$,

则 f(z) 为一常数。

休息一下

定理 如果函数 f(z) 在区域 D 内解析,在 $\overline{D} = D + C$ 上连续,则 f(z) 的各阶导数均在 D 上解析,且

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz, \ (z_0 \in D).$$

证明 由函数 f(z)在 $\overline{D} = D + C$ 上连续,有

$$|f(z)|$$
在 $\overline{D} = D + C$ 上有界,即 $|f(z)| \leq M$.

设边界C的长度为L。

(1) 先证
$$n=1$$
 的情形,即证 $f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$.

证明 (1) <u>先证 n=1的情形</u>,即证 $f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$.

根据柯西积分公式有
$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$
,

$$\frac{\Delta f}{\Delta z} = \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$=\frac{1}{2\pi i\Delta z}\oint_C f(z)\left(\frac{1}{z-z_0-\Delta z}-\frac{1}{z-z_0}\right)dz$$

$$\frac{\Delta f}{\Delta z} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0-\Delta z)(z-z_0)} dz,$$

证明 (1) <u>先证 n=1的情形</u>,即证 $f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$.

$$\frac{\Delta f}{\Delta z} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0-\Delta z)(z-z_0)} dz,$$

$$\frac{\Delta f}{\Delta z} - \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$$

$$=\frac{\Delta z}{2\pi i}\oint_C\frac{f(z)}{(z-z_0-\Delta z)(z-z_0)^2}\,\mathrm{d}z\stackrel{i \in \mathcal{H}}{=} I.$$

• <u>下面需要证明</u>: 当 $\Delta z \rightarrow 0$ 时, $I \rightarrow 0$.

证明 (1) <u>先证 n=1 的情形</u>,即证 $f'(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^2} dz$.

$$I = \frac{\Delta z}{2\pi i} \oint_C \frac{f(z)}{(z - z_0 - \Delta z)(z - z_0)^2} dz.$$
如图,设 d 为 z_0 到 C 的最短距离,

即
$$|z-z_0| \geq d$$
,

$$||z-z_0|| \geq d,$$

取
$$\Delta z$$
 适当小,使其满足 $|\Delta z| < \frac{d}{2}$,则

$$|z-z_0-\Delta z| \ge |z-z_0|-|\Delta z| > \frac{d}{2}$$

即得
$$|I| \leq \frac{|\Delta z|}{2\pi} \cdot \frac{2}{d} \cdot \frac{1}{d^2} \cdot ML \rightarrow 0, (\Delta z \rightarrow 0),$$

证明 (2) 对于 n=2 的情形

由于前面已经证明了解析函数的导数仍是解析函数, 因此将 f'(z) 作为新的函数,用同样的方法求极限:

$$\lim_{\Delta z\to 0}\frac{f'(z_0+\Delta z)-f'(z_0)}{\Delta z},$$

即可得
$$f''(z_0) = \frac{2!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^3} dz$$
.

(3) 依此类推,则可以证明

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz, \quad (z_0 \in D).$$