Espaces probabilisés généraux

Introduction et motivation

Jusqu'à maintenant, nous avons étudié des expériences aléatoires avec un nombre fini d'issues possibles. Celles-ci correspondaient donc à un univers Ω fini :

- On lance un dé à 6 faces : $\Omega = [1, 6]$.
- On tire p boules avec remise dans une urne qui en contient $n: \Omega = [1, n]^p$.
- On lance une pièce n fois consécutives : $\Omega = \{Pile, Face\}^n$.

Une expérience aléatoire pouvait ainsi être modélisée par un **espace probabilisé fini** : $(\Omega, \mathcal{P}(\Omega), P)$.

Un évènement A étant un ensemble d'issue, c'est une partie de $\Omega: A \in \mathcal{P}(\Omega)$.

L'ensemble $\mathcal{P}(\Omega)$ était donc l'ensemble des évènements que l'on peut considérer.

À présent, on souhaiterait s'intéresser à des expériences aléatoires ayant une infinité d'issues possibles, c'est à dire pour lesquelles l'univers Ω est infini! Deux exemples :

• On lance une pièce (éventuellement biaisée) une infinité de fois consécutivement :

$$\Omega = \left\{ (x_n)_{n\geqslant 1} \mid \forall n\geqslant 1, \ x_n \in \{Pile, Face\} \right\} = \{Pile, Face\}^{\mathbb{N}^*}.$$

Par exemple, l'issue $\omega = (Pile, Pile, Pile, Pile, \dots) \in \Omega$ correspond au fait de n'obtenir que des Piles.

• Le prochain bus arrivera dans 5 minutes maximum. On s'intéresse au temps d'attente (en minutes) :

$$\Omega = [0, 5].$$

Lorsque l'univers Ω est infini, il devient en fait compliqué et souvent inutile (voire parfois impossible!) de considérer n'importe quelle partie de Ω comme un événement. L'ensemble des évènements que l'on peut considérer ne sera donc pas nécessairement $\mathcal{P}(\Omega)$ tout entier, mais seulement un sous-ensemble $\mathcal{A} \subset \mathcal{P}(\Omega)$!

1 Ensemble des évènements sur un univers quelconque

\blacksquare Définition 1 (Ensemble des évènements sur $\Omega)$

Soit Ω un ensemble (fini ou infini) s'interprétant comme l'univers associé à une expérience aléatoire.

Un "ensemble des évènements sur Ω " est un ensemble $\mathcal{A} \subset \mathcal{P}(\Omega)$ satisfaisant :

- $\Omega \in \mathcal{A}$
- 2 Stabilité par passage au complémentaire : Si $A \in \mathcal{A}$, alors $\overline{A} \in \mathcal{A}$
- 3 Stabilité par union dénombrable :

Si
$$I \subset \mathbb{N}$$
 et si $(A_i)_{i \in I}$ est une famille d'éléments de \mathcal{A} , alors $\bigcup_{i \in I} A_i \in \mathcal{A}$.

Tout élément $A \in \mathcal{A}$ est alors appelé évènement.

Remarque 1

Le terme dénombrable signifie : fini ou "infini comme N" (l'infini des nombres entiers).

Plus précisément, un ensemble infini E est dit dénombrable s'il existe une bijection de $\mathbb N$ dans E: chaque élément de E peut être "étiqueté" par un entier.

Exemples: Les ensembles \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , \mathbb{N}^2 , \mathbb{Q} sont dénombrables. \mathbb{R} ou même [0,1] ne le sont pas!

Si A_1, A_2, \ldots sont des éléments de \mathcal{A} on pourra ainsi considérer des unions finies ou infinies :

$$\bullet \ \underline{\text{Avec} \ I = [\![1,n]\!]}: \quad \bigcup_{i \in I} A_i = \bigcup_{i=1}^n A_i = A_1 \cup \ldots \cup A_n \qquad \bullet \ \underline{\text{Avec} \ I = \mathbb{N}^*}: \quad \bigcup_{i \in I} A_i = \bigcup_{i=1}^{+\infty} A_i$$

Interprétation probabiliste de ces opérations :

- 1 On peut considérer l'évènement certain Ω .
- $\overline{2}$ Si A est un évènement, on peut considérer l'évènement contraire \overline{A} .
- $\boxed{2}$ Si A_1, A_2, \ldots, A_n sont des évènements, on peut considérer l'évènement :

$$A_1 \cup A_2 \cup \ldots \cup A_n = "A_1 \text{ ou } A_2 \text{ ou } \ldots \text{ ou } A_n \text{ est réalisé"} (OU INCLUSIF).$$

De manière plus générale, pour une infinité d'évènements $(A_i)_{i\in\mathbb{N}^*}$, on peut à présent considérer :

$$\bigcup_{i=1}^{+\infty}A_i=$$
 "L'un des A_i (au moins) est réalisé".

À partir des propriétés [1], [2], [3], on a aussi "gratuitement" les propriétés suivantes :

Proposition 1 (Autres opérations avec les évènements)

Soit A un ensemble des évènements sur Ω . Alors on a :

1 bis $\emptyset \in \mathcal{A}$.

2 bis Stabilité par "privé de" : Si $A \in \mathcal{A}$ et $B \in \mathcal{A}$, alors $A \setminus B \in \mathcal{A}$.

3 bis Stabilité par intersection dénombrable :

Si $I \subset \mathbb{N}$ et si $(A_i)_{i \in I}$ est une famille d'éléments de \mathcal{A} , alors $\bigcap_{i \in I} A_i \in \mathcal{A}$.

Preuve:

$$\boxed{1 \text{ bis}} : \emptyset = \boxed{\Omega}_{\in \mathcal{A}} \in \mathcal{A}.$$

 $\overline{2 \text{ bis}}$: Si $A, B \in \mathcal{A}$, on a $A \setminus B = A \cap \overline{B} = \overline{\overline{A} \cup B} \in \mathcal{A}$.

 $\boxed{3 \text{ bis}}: \text{Si } (A_i)_{i \in I} \text{ est une famille d'éléments de } \mathcal{A}, \quad \text{on a } \bigcap_{i \in I} A_i = \overline{\bigcup_{i \in I} \overline{A_i}} \in \mathcal{A}.$

Interprétation probabiliste de l'intersection :

 $\fbox{3}$ bis Si A_1,A_2,\ldots,A_n sont des évènements, on peut considérer l'évènement :

$$A_1 \cap A_2 \cap \ldots \cap A_n = "A_1 \text{ et } A_2 \text{ et } \ldots \text{ et } A_n \text{ sont réalisés"}$$

De manière plus générale, pour une infinité d'évènements $(A_i)_{i\in\mathbb{N}^*}$, on peut à présent considérer :

$$\bigcap_{i=1}^{+\infty} A_i = \text{"Tous les } A_i \text{ sont réalisés"}.$$

Exemples

Pour un univers Ω fixé, plusieurs choix sont a priori possibles pour l'ensemble des évènements \mathcal{A} ! Donnons quelques exemples :

- $\mathcal{A} = \mathcal{P}(\Omega)$ est un "ensemble des évènements" sur Ω . (On choisit souvent cela lorsque Ω est fini!)
- $\mathcal{A} = \{\emptyset, \Omega\}$ est un "ensemble des évènements" sur Ω (Pas très intéressant...)
- Si $A \in \mathcal{P}(\Omega)$, alors : $\mathcal{A} = \{\emptyset, A, \overline{A}, \Omega\}$ est un "ensemble des évènements" sur Ω .
- Si $\Omega = [\![1,6]\!]$ (expérience de lancer de dé) alors

 $\mathcal{A} = \Big\{\emptyset, \{6\}, \{2,4\}, \{1,3,5\}, \{2,4,6,\}, \{1,3,5,6\}, \{1,2,3,4,5\}, \Omega\Big\} \text{ est un "ensemble des évènements" sur } \Omega.$

En pratique : lorsque l'univers Ω est infini, il est très rare que l'on décrive explicitement l'ensemble des évènements \mathcal{A} considéré! On se contentera souvent d'admettre que certains évènements intéressants A_1, A_2, \ldots appartiennent bien à \mathcal{A} . On sait alors que l'on peut considérer tous les évènements construits comme union, intersection, complémentaire de ceux-ci.

Exercice 1

On lance une pièce une infinité de fois consécutivement. (On peut donc considérer $\Omega = \{Pile, Face\}^{\mathbb{N}^*}$).

On admet qu'il existe un ensemble des évènements \mathcal{A} adéquat, de sorte que pour tout $k \in \mathbb{N}^*$, $A_k =$ "Obtenir Pile au k-ème lancer" appartient à \mathcal{A} . Exprimer les évènements :

- A = "N'obtenir que des Faces à partir du 10-ème lancer"
- B = "Obtenir au moins un Pile"
- C_k = "Obtenir Pile pour la première fois au k-ème lancer". (pour $k \in \mathbb{N}^*$)
- D = "On obtient le premier Pile après un nombre pair de lancers".

•
$$A = \overline{A_{10}} \cap \overline{A_{11}} \cap \ldots = \bigcap_{k=10}^{+\infty} \overline{A_k} \in \mathcal{A}.$$
 • $B = \bigcup_{k=1}^{+\infty} A_k \in \mathcal{A}.$

• Pour tout
$$k \in \mathbb{N}^*$$
, $C_k = \overline{A_1} \cap \ldots \cap \overline{A_{k-1}} \cap A_k = \left(\bigcap_{i=1}^{k-1} \overline{A_i}\right) \cap A_k \in \mathcal{A}$.

•
$$D = C_2 \cup C_4 \cup C_6 \cup \ldots = \bigcup_{k=1}^{+\infty} C_{2k} \in \mathcal{A}.$$

Pour finir, maitenant que l'on dispose d'unions infinies d'ensembles, on peut aussi généraliser la notion de système complet d'évènements à une infinité d'évènements :

Définition 2 (Système complet d'évènements)

Soit Ω un univers et \mathcal{A} un "ensemble des évènements" sur Ω .

Soit $I \subset \mathbb{N}$ et $(A_i)_{i \in I}$ une famille d'éléments de \mathcal{A} .

(Il peut donc y avoir un nombre fini ou infini d'évènements!)

On dit que $(A_i)_{i\in I}$ est un système complet d'événements (S.C.E) lorsque :

- 1 Ils sont deux à deux incompatibles : $\forall (i,j) \in I^2, i \neq j \Rightarrow A_i \cap A_j = \emptyset$
- $\boxed{2}$ Leur réunion donne Ω tout entier : $\Omega = \bigcup_{i \in I} A_i$.

Cela revient à dire : Quelle que soit l'issue de l'expérience, un et un seul des A_i est réalisé.

Exemples

• On lance une pièce indéfiniment. Notons, comme dans l'Exercice 1,

 $\forall k \in \mathbb{N}^*, \ C_k =$ "Obtenir Pile pour la première fois au k-ème lancer".

Rajoutons C_0 = "Ne pas obtenir de Pile".

Alors : $(C_i)_{i \in \mathbb{N}} = (C_0, C_1, C_2, \dots)$ est un système complet d'évènements.

(car il y a toujours un et un seul de ces évènements qui se réalise...)

• On lance une pièce indéfiniment. Notons, pour tout $i \in \mathbb{N}$, $A_i =$ "Obtenir exactement i Piles".

Rajoutons A_{∞} = "Obtenir une infinité de Piles".

Alors $(A_{\infty}, A_0, A_1, A_2, ...)$ est un système complet d'événements.

$\mathbf{2}$ Espace probabilisé général

2.1Probabilité sur un univers quelconque

Rappel : Dans le cas d'un univers Ω <u>fini</u>, une probabilité P sur $\mathcal{P}(\Omega)$ satisfaisait la propriété d'additivité :

Si
$$A_1, \ldots, A_n$$
 sont deux à deux incompatibles, $P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i)$.

On va maintenant demander ce que cette propriété soit valable non seulement pour une union finie mais aussi pour une union infinie (dénombrable) d'évènements! On parle de σ -additivité.

\blacksquare Définition 3 (Probabilité sur \mathcal{A} , espace probabilisé)

Soit Ω un univers (fini ou infini) et \mathcal{A} un "ensemble des évènements" sur Ω .

Une probabilité sur \mathcal{A} est une application $P: \begin{array}{ccc} \mathcal{A} & \to & [0,1] \\ A & \mapsto & P(A) \end{array}$ satisfaisant les propriétés :

 $\boxed{1}$ σ -additivité: Pour $I \subset \mathbb{N}$, si $(A_i)_{i \in I}$ est une famille d'évènements deux à deux incompatibles,

$$P\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}P(A_i)$$

|2| Proba de l'évènement certain : $|P(\Omega)| = 1$

Lorsque Ω est un ensemble (fini ou infini), \mathcal{A} un "ensemble des évènements" sur Ω et P une probabilité sur \mathcal{A} , on dit que le triplet (Ω, \mathcal{A}, P) est un **espace probabilisé.**

Remarque 2

Dans le cas d'une famille infinie d'ensemble $(A_i)_{i\in I}$ la somme $\sum_{i\in I} P(A_i)$ est une somme infinie! Pour que celle-ci soit bien définie, il faut que la série associée soit convergente...

Preuve du fait que $\sum_{i \in I} P(A_i)$ est bien définie :

Soit $I \subset \mathbb{N}$ et $(A_i)_{i \in I}$ une famille d'évènements deux à deux incompatibles.

- Si I est une partie finie de \mathbb{N} , la somme $\sum_{i\in I} P(A_i)$ est finie, donc bien définie!
- Soit I une partie infinie de \mathbb{N} : disons $I = \{i_1, i_2, \dots, \} = \{i_n, n \geqslant 1\}$.

On doit montrer que la somme $\sum_{i \in I} P(A_i) = P(A_{i_1}) + P(A_{i_2}) + \ldots = \sum_{n=1}^{+\infty} P(A_{i_n})$ est bien définie,

c'est à dire que la série $\sum P(A_{i_n})$ converge. Or, pour tout $N \geqslant 1$:

 $\sum_{n=1}^{N} P(A_{i_n}) = P\left(\bigcup_{n=1}^{N} A_{i_n}\right) \quad (\text{car } A_{i_1}, \dots, A_{i_N} \text{ sont 2 à 2 incompatibles}) \quad \text{donc } \sum_{n=1}^{N} P(A_{i_n}) \leqslant 1.$

Ainsi la série $\sum P(A_{i_n})$ est à termes positifs et majorée (par 1), donc elle converge.

Par suite, on a toutes les propriétés habituelles pour le calcul des probabilités.

Proposition 2 (Propriétés d'une probabilité)

Soit (Ω, \mathcal{A}, P) un espace probabilisé. Pour tous évènements $A, B \in \mathcal{A}$,

- $P(\overline{A}) = 1 P(A)$ $P(\emptyset) = 0$ $P(A \setminus B) = P(A) P(A \cap B)$
- Si $A \subset B$ alors $P(A) \leqslant P(B)$ $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- $\bullet \ P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C).$

Sur un univers fini, on avait vu qu'une probabilité P était entièrement déterminée par la donnée des probabilité des évènements élémentaires $P(\{\omega\})$ pour $\omega \in \Omega$. (cf. Chapitre #11, Théorème 1) C'est toujours le cas sur un univers infini dénombrable :

★ Théorème 1 (Probabilité sur un univers dénombrable)

Soit Ω un univers infini <u>dénombrable</u> : on peut donc écrire $\Omega = \{\omega_1, \omega_2, \ldots\}$.

Soient p_1, p_2, \ldots des réels <u>positifs</u> tels que la série $\sum p_n$ est convergente et $\sum_{n=1}^{+\infty} p_n = 1$.

Alors il existe une unique probabilité P sur $\mathcal{P}(\Omega)$ telle que $\forall n \geq 1, \ P(\{\omega_n\}) = p_n$. Précisément, cette probabilité est donnée par :

$$\forall A \in \mathcal{P}(\Omega), \quad P(A) = \sum_{n \text{ tel que } \omega_n \in A} p_n$$

Preuve:

La même que dans le cas fini, sauf que les ensemble/unions/sommes peuvent être infinis... □

Exercice 2

On considère l'univers $\Omega = \mathbb{N}$ avec l'ensemble des évènements $\mathcal{A} = \mathcal{P}(\mathbb{N})$.

On munit (Ω, \mathcal{A}) d'une probabilité P satisfaisant : $\forall n \in \mathbb{N}, \ P(\{n\}) = \frac{a}{2^n}$ où $a \in \mathbb{R}$.

- 1. Déterminer la valeur de la constante a.
- 2. On choisit un entier "au hasard", selon la probabilité P. Quelle est la probabilité que cet entier soit pair?
- 1. Pour que P soit une probabilité, on doit avoir :

$$P(\mathbb{N}) = 1 \Longleftrightarrow P\left(\bigcup_{n=0}^{+\infty} \{n\}\right) = 1 \Longleftrightarrow \sum_{n=0}^{+\infty} P(\{n\}) = 1 \Longleftrightarrow \sum_{n=0}^{+\infty} \frac{a}{2^n} = 1 \Longleftrightarrow a \sum_{n=0}^{+\infty} \left(\frac{1}{2}\right)^n = 1$$

puique $\sum_{n=0}^{+\infty} \left(\frac{1}{n}\right)^n = \frac{1}{1-1/2} = 2$, il faut que 2a = 1, c'est à dire $a = \frac{1}{2}$.

2. On veut calculer P(A), où $A = \{2n, n \in \mathbb{N}\} \in \mathcal{P}(\mathbb{N})$ (ensemble des entiers pairs).

$$P(A) = P\left(\bigcup_{n=0}^{+\infty} \{2n\}\right) = \sum_{n=0}^{+\infty} P(\{2n\}) = \sum_{n=0}^{+\infty} a \frac{1}{2^{2n}} = a \sum_{n=0}^{+\infty} \left(\frac{1}{4}\right)^n = a \frac{1}{1 - 1/4} = \frac{1}{2} \times \frac{4}{3} = \frac{2}{3}.$$

2.2 Théorème de la limite monotone

Énonçons à présent quelques résultats permettant de calculer un bon nombre de probabilités d'union/d'intersection infinies d'évènements.

★ Théorème 2 (Théorème de la limite monotone)

Soit (Ω, \mathcal{A}, P) un espace probabilisé et $(A_n)_{n \in \mathbb{N}}$ une famille d'événements.

• Union croissante : Si $(A_n)_{n\in\mathbb{N}}$ est croissante, c'est à dire si $\forall n\in\mathbb{N}, A_n\subset A_{n+1}$,

alors
$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n).$$

• Intersection décroissante : Si $(A_n)_{n\in\mathbb{N}}$ est décroissante, c'est à dire si $\forall n\in\mathbb{N},\ A_{n+1}\subset A_n$,

alors
$$P\left(\bigcap_{n=0}^{+\infty} A_n\right) = \lim_{n \to +\infty} P(A_n).$$

Remarques 3

- Bien-sûr cela tient toujours pour des unions/intersections démarrant à l'indice n=1 ou n=2...
- Rappelons l'interprétation de l'inclusion d'évènements :

$$A_n \subset A_{n+1}$$
 signifie que "la réalisation de A_n implique celle de A_{n+1} "

On a bien-sûr l'inverse pour une famille décroissante d'évènements.

Preuve du Théorème 2:

• Soit $(A_n)_{n\in\mathbb{N}}$ une famille croissante d'évènements.

On pose $B_0 = A_0$ et $\forall n \in \mathbb{N}^*, B_n = A_n \setminus A_{n-1}$.

<u>Dessin</u>:

On voit que les $(B_n)_{n\geqslant 0}$ sont $\underline{2}$ à $\underline{2}$ disjoints et que $\bigcup_{n=0}^{+\infty} B_n = \bigcup_{n=0}^{+\infty} A_n$. On en déduit, par σ -additivité :

$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = P\left(\bigcup_{n=0}^{+\infty} B_n\right) = \sum_{n=0}^{+\infty} P(B_n) = \lim_{N \to +\infty} \sum_{n=0}^{N} P(B_n).$$

Or:
$$\sum_{n=0}^{N} P(B_n) = P(A_0) + \sum_{n=1}^{N} P(A_n \setminus A_{n-1}) = P(A_0) + \sum_{n=1}^{N} (P(A_n) - P(A_{n-1})) = P(A_N)$$

d'où
$$P\left(\bigcup_{n=0}^{+\infty}A_n\right)=\lim_{N\to+\infty}P(A_N)=\lim_{n\to+\infty}P(A_n).$$

• Soit $(A_n)_{n\in\mathbb{N}}$ une famille décroissante d'évènements.

Il en résulte que $(\overline{A_n})_{n\in\mathbb{N}}$ est une famille croissante d'évènements, donc en lui appliquant le résultat précédent :

$$P\left(\sum_{n=0}^{+\infty} A_n\right) = P\left(\bigcup_{n=0}^{+\infty} \overline{A_n}\right) = 1 - P\left(\bigcup_{n=0}^{+\infty} \overline{A_n}\right) = 1 - \lim_{n \to +\infty} P(\overline{A_n}) = \lim(1 - P(\overline{A_n})) = \lim P(A_n).$$