Session 1: Vector spaces

Optimization and Computational Linear Algebra for Data Science

Léo Miolane

Contents

- 1. Subspaces
- 2. Linear dependency
- 3. Properties of the dimension
- 4. Coordinates
- 5. Why do we care about all these things?
 Application to data science: image compression

Questions? 2/22

Questions? 2/22

Subspaces

Subspaces 3/22

What are the subspaces of \mathbb{R}^2 ?

Subspaces 4/22

The span is always a subspace

Proposition

Let $x_1, \ldots, x_k \in V$. Then, $\operatorname{Span}(x_1, \ldots, x_k)$ is a subspace of V.

Subspaces 5/22

Linear dependency

Linear dependency 6/22

A useful lemma

Lemma

```
Let v_1, \ldots, v_n \in V and let x_1, \ldots, x_k \in \operatorname{Span}(v_1, \ldots, v_n).
Then, if k > n, x_1, \ldots, x_k are linearly dependent.
```

Abuse of language: Instead of saying (x_1,\ldots,x_k) are linearly dependent, we should have said (the family (x_1,\ldots,x_k)) is linearly dependent.

Linear dependency 7/22

Basis, dimension

Basis, dimension 8/22

The dimension is well defined!

Theorem

If V admits a basis (v_1, \ldots, v_n) , then every basis of V has also n vectors. We say that V has dimension n and write $\dim(V) = n$.

Proof.

Basis, dimension 9/22

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

Any family of vectors of V that are linearly independent contains at most n vectors.

```
i.e. if x_1, \ldots, x_k \in V are linearly independent, then k \leq n.
```

Any family of vectors of V that spans V contains at least n vectors.

```
i.e. if x_1, \ldots, x_k \in V are such that \mathrm{Span}(x_1, \ldots, x_k) = V, then k \geq n.
```

Proof.

Basis, dimension 10/

Properties of the dimension

Proposition

Let V be a vector space that has dimension $\dim(V) = n$. Then

Any family of vectors of V that are linearly independent contains at most n vectors.

```
i.e. if x_1, \ldots, x_k \in V are linearly independent, then k \leq n.
```

Any family of vectors of V that spans V contains at least n vectors.

```
i.e. if x_1, \ldots, x_k \in V are such that \mathrm{Span}(x_1, \ldots, x_k) = V, then k \geq n.
```

Proof.

Basis, dimension 10/

Properties of the dimension

Proposition

Let V be a vector space of dimension n and let $x_1, \ldots, x_n \in V$.

- 1. If x_1, \ldots, x_n are linearly independent, then (x_1, \ldots, x_n) is a basis of V.
- 2. If $\operatorname{Span}(x_1,\ldots,x_n)=V$, then (x_1,\ldots,x_n) is a basis of V.

Very useful to show that a family of vector forms a basis!

Proof.

Basis, dimension 11/22

An inequality

Proposition

Let U and V be two subspaces of \mathbb{R}^n . Assume that $U \subset V$. Then

$$\dim(U) \le \dim(V) \le n.$$

If **moreover** $\dim(U) = \dim(V)$, then U = V.

Basis, dimension 12/22

A bit of vocabulary

Definition

Let S be a subspace of \mathbb{R}^n .

- We call S a *line* if $\dim(S) = 1$.
- We call S an hyperplane if $\dim(S) = n 1$.

Basis, dimension 13/22

Coordinates

Coordinates 14/22

Coordinates of a vector in a basis

Definition

If (v_1, \ldots, v_n) is a basis of V, then for every $x \in V$ there exists a unique vector $(\alpha_1, \ldots, \alpha_n) \in \mathbb{R}^n$ such that

$$x = \alpha_1 v_1 + \dots + \alpha_n v_n.$$

We say that $(\alpha_1, \ldots, \alpha_n)$ are the coordinates of x in the basis (v_1, \ldots, v_n) .

Proof.

Coordinates 15,

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Coordinates 16/22

Exercise

- 1. Show that the vectors $v_1=(1,1)$ and $v_2=(1,-1)$ form a basis of \mathbb{R}^2 .
- 2. Express the coordinates of u=(x,y) in the basis (v_1,v_2) in terms of x and y.

Coordinates 16/22

Why do we care about this?

Application to image compression

- Image = Grid of pixels
- Represented as a vector $v \in \mathbb{R}^n$, for some large n.
- One need to store *n* numbers.

$$n = 44 \times 55 = 2420$$

Can we do better?

If we were storing an arbitrary image, NO!

«Random» image

Can we do better?

- If we were storing an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Random» image

Can we do better?

- If we were storing an arbitrary image, NO!
- However, we are mainly storing images coming from the « real world »
- These images have some structure.

«Real» image

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

- There exists a basis (w_1, \ldots, w_n) of \mathbb{R}^n in which «real» images $v \in \mathbb{R}^n$ are (approximately) **sparse**.
- This means that the coordinates $(\alpha_1, \ldots, \alpha_n)$ of v in the basis (w_1, \ldots, w_n) contains a lot of zeros.

What do we mean by « structure »?

Neighboring pixels are very likely to have similar colors.

- There exists a basis (w_1, \dots, w_n) of \mathbb{R}^n in which «real» images $v \in \mathbb{R}^n$ are (approximately) **sparse**.
- This means that the coordinates $(\alpha_1, \ldots, \alpha_n)$ of v in the basis (w_1, \ldots, w_n) contains a lot of zeros.

Store only the $k \ll n$ non-zero coordinates of v (in the w_i 's basis')!

A toy example

Consider n=2, that is images $v\in\mathbb{R}^2$ with only 2 pixels.

Examples of good bases

Fourier bases (used in .jpeg, .mp3)

- JPEG2000 uses wavelet bases, and achieves better performance than JPEG.
- In **Homework 4**, you will use wavelets to compress/denoise images.

Why do we care about this? 22/22