(7) Redes geradoras

Redes Neurais e Aprendizado Profundo

Moacir Ponti CeMEAI/ICMC, Universidade de São Paulo MBA em Ciência de Dados

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

October 5, 2022

Agenda

Modelos geradores

Autoencoders variacionais (VAEs)

Redes adversárias geradoras (GANs)

Modelos baseados em Difusão

Agenda

Modelos geradores

Autoencoders variacionais (VAEs)

Redes adversárias geradoras (GANs)

Modelos baseados em Difusão

Geração de dados

Interpretação: aprender a distribuição

Aprender a distribuição que "gera" os dados permite amostrar a partir dela

Interpretação: aprender a gerar dados

Mas podemos querer apenas dados, não uma distribuição...

Tipos de métodos

Funções densidade explícitas

- ► Fully Visible Belief Nets
- ► Boltzmann Machines
- Variational Autoencoders

Funções densidade implícitas

- ► Métodos de Monte Carlo
- ► Likelihood-free inference via classification
- Generative Adversarial Networks

Autoencoders

Autoencoders convencionais tentam codificar atributos de forma discreta

Autoencoders variacionais (VAEs)

Autoencoders variacionais aprendem distribuições (seus parâmetros) de cada variável, a partir do qual se amostram valores

Autoencoders variacionais (VAEs)

VAE: função de perda ELBO

ELBO (Evidence Lower Bound)

 $\mathcal{L} = \text{reconstrução} + \text{divergência de Kullback-Leibler}$

 $\mathcal{L} = \mathsf{MSE} \; / \; \mathsf{Binary} \; \mathsf{Cross} \; \mathsf{Entropy} + \mathsf{diverg\hat{e}ncia} \; \mathsf{de} \; \mathsf{Kullback\text{-}Leibler}$

VAE: função de perda ELBO

ELBO (Evidence Lower Bound) com MSE para reconstrução

$$egin{aligned} \mathcal{L} &= ||x - ilde{x}||^2 + D_{\mathcal{KL}}\left(q_\phi(z|x), \mathcal{N}(0, 1)
ight) \ &= ||x - ilde{x}||^2 + D_{\mathcal{KL}}\left(\mathcal{N}(\mu, \sigma), \mathcal{N}(0, 1)
ight) \ &= ||x - ilde{x}||^2 - rac{1}{2}\sum\left(1 + \log(\sigma^2) - \mu^2 - \sigma^2
ight) \end{aligned}$$

- ► Adversária pois há dois componentes que "disputam"
- ► Geradora pois o objetivo central é aprender a gerar dados

Gerador \mathcal{G}

- recebe um exemplo z' obtido de uma distribuição, i.e. $z' \sim q(z)$
- lacktriangle gera x por meio de uma função $x=\mathcal{G}_{\Theta}(z')$

Discriminador \mathcal{D}

 recebe x e classifica se esse foi produzido pela distribuição original ou pela aproximação do gerador

Formulação

$$\begin{aligned} \min_{G} \max_{D} V(G, D) &= W E_{x \sim p_{data}(x)}[\log(D(x))] \\ &+ E_{z \sim p_{g}(z)}[\log(1 - D(G(z)))] \end{aligned}$$

Função original

$$-(1/2)E_{x \sim p_{data}(x)}[\log(D(x))] - (1/2)E_{z}[\log(1 - D(G(z)))]$$

Aritmética no espaço latente

Exemplos gerados por uma GAN de 2017

2019 (SAGAN)

2021 (StyleGAN)

2021 (Diffusion-based Model)

Agenda

Modelos geradores

Autoencoders variacionais (VAEs)

Redes adversárias geradoras (GANs)

Modelos baseados em Difusão

Difusão

Difusão: forward

Difusão: forward

$$x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_T$$

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

Difusão: forward

forward

$$x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_T$$

$$q(\mathbf{x}_T | \mathbf{x}_0) \approx \mathcal{N}(0, I)$$

Difusão: reverse

$$x_{0} \leftarrow \cdots \leftarrow x_{T-1} \leftarrow x_{T}$$

$$p_{\theta}(x_{0:T}) := p(x_{T}) \prod_{t=1}^{T} p_{\theta}(x_{t-1} | x_{t})$$

$$p(x_{T}) = \mathcal{N}(x_{T}; 0, I)$$

Difusão vs VAEs

Diffusion model

$$x_0 \longrightarrow x_1 \longrightarrow \cdots \longrightarrow x_T \longrightarrow x_{T-1} \longrightarrow \cdots \longrightarrow x_0$$
forward "encoding"

reverse "decoding"

Perda: analogia com VAEs

$$\mathbb{E}_{q(x_{1:T} \mid x_0)}[\log p_{\theta}(x_0 \mid x_{1:T})] - D_{\mathrm{KL}}(q(x_{1:T} \mid x_0) \parallel p_{\theta}(x_{1:T}))$$

Difusão: perda

$$\operatorname{loss_{simple}} = \mathbb{E}_{x_0, \epsilon, t} \big[\| \epsilon - \epsilon_{\theta}(x_t, t) \|^2 \big]$$

Difusão vs BigGAN

