∢ Back

Hashing

Due: 9/22/2024 11:59 PM • Algorithms Analysis and Design

User 5 of 28

Attempt

Attempt 1

Question View

All questions

Attempt 1

Due on Sep 22, 2024 11:59 PM

Available on Sep 17, 2024 12:01 AM until Sep 22, 2024 11:59 PM

Written: Sep 22, 2024 5:03 PM - Sep 22, 2024 5:12 PM

Quizzes Event Log

Timing

Time Spent: 0:08:47

Time Limit: 1:00:00. Not exceeded

Evaluation Summary

Reset Evaluation

Attempt Grade

29 / 29

Student View Preview

29 / 29 - 100 %

∢ Back

Hashing

Due: 9/22/2024 11:59 PM • Algorithms Analysis and Design

User 5 of 28

Quiz Results

Match the definition with the most appropriate term

Expand section feedback

Question 1

Match the definition with the most appropriate term

✓ __1_ An array

Occurs when a hash function assigns a

- ✓ _ 9 _ disproportionate number of items to an index (or consecutive indices)
- ✓ <u>4</u> Zero collisions
- \checkmark __6__ hash table is

A collision resolution method where the collision

✓ _8_ is resolved by finding an address that is available (no key is stored there).

- 1. Hash table
- 2. Hash function
- 3. Collision
- 4. Perfect hash function
- 5. Uniform hash function
- **6**. Load factor alpha
- 7. Separate chaining
- 8. Open addressing
- 9. Primary clustering
- 10. Secondary clustering

Save Time

5:12 PM

Score

< Back

Hashing

Due: 9/22/2024 11:59 PM • Algorithms Analysis and Design

User 5 of 28

> Expand question 1 feedback

Question 2

Select each of the following operations that a hash table can NOT efficiently implement:

- ✓ Inserting a new item
- Retrieving the item with the largest value in the hash table
- Searching for an item
- ✓ Traversing all items (in order)

Save Time

5:12 PM

Score

4 / 4 (auto-graded)

> Expand question 2 feedback

Question 3

Match the AVERAGE case efficiency for the following operations:

- Inserting an item into a hash table
- Searching for an item into a hash table
- **1**. O(1)
- 2. O(n)
- 3. O(n log n)
- 4. O(n^2)
- 5. O(n!)

	Hashing		
		Update	Retract
Score 4	4 (auto-graded)		

Question 4

Select each of the following that are requirements for a good hash function:

- Evenly distributes items throughout the hash table
- ✓ Fast / easy to compute
- ✓ Involves the entire search key

Expand question 3 feedback

- Symmetrical (keys maps to locations and locations map to keys)
- Uses a prime base, if it uses modulo arithmetic
- ✓ Places items in sorted (ascending) order

Save Time

5:12 PM

Score

4 / 4 (auto-graded)

Expand question 4 feedback

Question 5

Match the collision handling technique with the scenario:

Analysis and Design

9/28/24

4, 3:20 PM	Grade Attempt - Algorithms Analysis and I	
∢ Back	Hashing	
Dack	Due: 9/22/2024 11:59 PM • Algorithms	
	at the beginning)	
	less insertions than the	
✓ 1	table size(and does not	
	need to support deletion	
	and keys are not known	
	ahead of time)	
	Need to allow for deleting	
✓ <u>5</u>	keys	
	More insertions than the	
✓ _ <u>5</u> _	table size (and keys are not	
	known ahead of time)	
Save Time		
5:12 PM		
Score		
6	/ 6 (auto-graded)	
1		

1. Double hashing

User 5 of 28

- 2. Linear probing
- 3. Perfect hashing
- 4. Quadratic probing
- 5. Separate chaining

> Expand question 5 feedback

WORST case efficiency

Expand section feedback

Question 6

Match the WORST case efficiency for the following operations (assuming the scenario is appropriate for each collision handling technique):

Inserting an item into a hash \checkmark _2_ table using double hashing

1. O(1)

2. O(n)

3. O(n log n)

∢ Back

Hashing

Due: 9/22/2024 11:59 PM • Algorithms Analysis and Design

User 5 of 28

6. Load factor alpha

Save Time

5:12 PM

Score

4 / 4 (auto-graded)

> Expand question 6 feedback