Theory of Computation

MIEIC, 2nd Year

João M. P. Cardoso

Dep. de Engenharia Informática Faculdade de Engenharia (FEUP) Universidade do Porto Porto Portugal

Email: jmpc@acm.org

Outline

- ▶ Non-Deterministic Finite Automata with ε transitions (ε -NFAs)
- \triangleright Conversion of ϵ -NFAs into DFAs

Finite Automata with ε Transitions

- Example: ε-NFA which recognizes decimal numbers
 - ► Signal + or optional
 - ► Sequence of digits
 - ► A decimal point
 - Another sequence of digits (At least one of the sequences of digits is nonempty) 0,...,9 0,...,9

Exercise 6

- ► Modify the previous state diagram in order to unrecognize inputs like: 3, .5, and -.1; and to recognize inputs like: 1.
- ► More precise, this new definition of a decimal number is:
 - ► Signal + or optional
 - A sequence of digits with length greater or equal 1
 - A decimal part consisting of a "." followed by an optional sequence of digits x, such that $|x| \ge 0$.

Formal Notation ε-NFA

- \triangleright ε-NFA E = (Q, Σ , δ, q₀, F)
 - The major difference is in the transition function δ to deal with ϵ
 - ▶ $\delta(q, a)$: state $q \in Q$ and $a \in \Sigma \cup \{\epsilon\}$
- ► Example: E = ({q₀, q₁, q₂, q₃, q₄, q₅}, {.,+,-,0,..,9}, δ , q₀, {q₅})
- The symbol representing the empty-string, ε , is not visible in the sequence of digits
 - It represents spontaneous transitions
 - We deal with it in the same way as with the nondeterminism, i.e., considering that the automaton can be in all the states before and after the ε transition
- ► To know which are the states we can reach from a state q with ε , we calculate the ε -close(q)
 - \triangleright ε -close(q_0)= { q_0 , q_1 }; ε -close(q_3)= { q_3 , q_5 }

δ	3	+,-	•	0,,9
$\rightarrow q_0$	$\{q_1\}$	$\{q_1\}$	Ø	Ø
q_1	Ø	Ø	{q ₂ }	$\{q_1 q_4\}$
q_2	Ø	Ø	Ø	{q ₃ }
q_3	$\{q_5\}$	Ø	Ø	$\{q_3\}$
q_4	Ø	Ø	{q ₃ }	Ø
*q ₅	Ø	Ø	Ø	Ø

Extended Transitions

- \triangleright ε -close(q) or Eclose(q)
 - ▶ Basis: State q is in EClose(q)
 - ▶ Induction: if p is in EClose(q) and exists an ε transition from p to r com with label ε , then r is also in EClose(q)
- \blacktriangleright Extended transition $\widehat{\delta}$
 - ▶ Basis: $\hat{\delta}$ (q, ε) =EClose(q)
 - Induction: w=xa, a ∈ Σ (so, a ≠ ε)
 - ▶ 1. let's $\hat{\delta}(q,x)=\{p_1, p_2, ..., p_k\}$

 - $\delta(q, w) = \bigcup_{j=1}^{m} Eclose(r_j)$
 - ▶ (1) gives the states reached from q following a path representing \mathbf{x} that can include (and/or terminate) one or more ε

Eliminating ε Transitions

- ▶ Given an ε -NFA E there exists always an equivalent DFA D
 - ▶ E and D accept the same language
- ► Technique of subsets construction

►
$$\varepsilon$$
-NFA E = (Q_E, Σ , δ _E, q_O, F_E) \rightarrow DFA D = (Q_D, Σ , δ _D, q_D, F_D)

- \triangleright Q_D is the set of subsets of Q_F closed in ϵ
 - ► S= EClose(S)
- ► State of start: $q_D = EClose(q_0)$
- $ightharpoonup F_D = \{S \mid S \text{ is in } Q_D \text{ and } S \cap F_F \neq \emptyset \}$
- ► Transition δ_D (S,a), with a in Σ and S in Q_D
 - \triangleright S={ $p_1, p_2, ..., p_k$ }
 - Calculate

$$\bigcup_{i=1}^{k} \delta_{E}(p_{i}, a) = \{r_{1}, ..., r_{m}\}$$

► Terminate with

$$\delta_D(S, a) = \bigcup_{j=1}^m EClose(r_j)$$

Example of the Recognizer of Decimals

Exercise 7

 \triangleright Consider the following ϵ -NFA:

	3	a	b	c
→p	Ø	{p}	{q}	{r}
q	{p}	{q}	{r}	Ø
*r	{q}	{r}	Ø	{p}

- ► Calculate the ε-close for each state
- ▶ Indicate all the strings with length \leq 3 accepted by the automaton
- ► Convert the NFA into an ε-DFA