Plano de Aula: Ensinando Química dos compostos de carbono através de exemplos relacionados

ao clima

Como professor de química do ensino médio, você pode usar este conjunto de ferramentas computacionais para ajudá-lo a ensinar a química do

carbono e seus compostos, a interação das moléculas de gases de efeito estufa com a radiação eletromagnética e a química ambiental.

Este plano de aula permite aos alunos visualizar a estrutura molecular dos gases atmosféricos e entender o efeito da radiação eletromagnética

nessas moléculas. A atividade também apresentará o tópico de gases de efeito estufa e seu papel nas mudanças climáticas.

Assim, o uso deste plano de aula permite integrar o ensino de um tópico de ciências climáticas com um tópico central em Química. Use este

plano de aula para ajudar seus alunos a encontrar respostas para:

Como as moléculas de gases interagem com a radiação eletromagnética?

Como as moléculas atmosféricas de dióxido de carbono (CO₂) interagem com fótons infravermelhos?

Qual é o efeito estufa na atmosfera da Terra?

Um aumento nas emissões de metano afetaria a temperatura da Terra? Por quê?

Sobre o Plano de Aula

Nível de Ensino: Ensino Médio

Disciplina: Química

Topico(s) na Disciplina: Interação de Moléculas com Radiação Eletromagnética, Vibrações Moleculares, Estrutura Molecular de Compostos de Carbono (CO2, CH4), Gases de Efeito Estufa

Tópico Climático: O efeito estufa, o clima e a atmosfera

Localização: Global

Acesso: Online

Língua(s): Português

Tempo Necessário Aproximado: 100 – 120 minutos.

1 Conteúdos

1. **Leitura (5 – 10 minutos)**

Uma leitura que fornece uma visão geral da interação entre radiação infravermelha e moléculas de diferentes gases atmosféricos.

https://scied.ucar.edu/carbon-dioxide-absorbs-and-re-emits-infrared-radiation

2. Mini Palestra (Aprox. 8 minutos)

Uma micro palestra (vídeo) que explica a interação de moléculas como CO_2 e CH_4 com a radiação eletromagnética e as vibrações moleculares resultantes que levam ao efeito estufa na atmosfera.

https://www.coursera.org/lecture/global-warming/greenhouse-gas-physics-SvfZD

3. Visualização e atividade associada (45 – 60 minutos)

Visualização e atividade associada para observar, entender, explorar e analisar a estrutura molecular dos compostos de carbono (CO₂, CH₄), o efeito da radiação eletromagnética nas moléculas e o papel dos gases de efeito estufa nas mudanças climáticas. https://phet.colorado.edu/en/simulation/greenhouse

A versão em português do Brasil dessa visualização esta disponible em:

https://phet.colorado.edu/en/simulations/translated/pt_BR

4. Perguntas / tarefas sugeridas para avaliação da aprendizagem

- Como as moléculas de gases interagem com a radiação eletromagnética?
- Como as moléculas atmosféricas de dióxido de carbono (CO2) interagem com fótons infravermelhos?
- Qual é o efeito estufa da atmosfera da Terra?
- Um aumento nas emissões de metano afetaria a temperatura da Terra? Por quê?

Passo a passo Guia do Usuário

Aqui está um guia passo a passo para usar este plano de aula na sala de aula / laboratório. Sugerimos essas etapas como um possível plano de ação. Você pode personalizar o plano de aula de acordo com suas preferências e requisitos.

1. Introduza o tópico através de uma leitura online

- Discuta as fontes de carbono e seus compostos.
- Discuta a estrutura molecular de alguns compostos de carbono, como dióxido de carbono (CO₂) e metano (CH₄).
- Introduza o tópico 'atmosfera e sua composição'. Nomeie os gases atmosféricos (incluindo CO₂ e CH₄) e suas porcentagens típicas.
- Discuta o fenômeno da luz solar atingindo a Terra e a radiação infravermelha emitida pela Terra.
- Use material de leitura on-line para fornecer uma visão geral de como o CO₂ e outras moléculas de gás atmosférico interagem com a radiação eletromagnética. O material de leitura está disponível em:
 https://scied.ucar.edu/carbon-dioxide-absorbs-and-re-emitsinfrared-radiation.

2. Passe uma micro Palestra (Vídeo)

Agora, reproduza esta micro palestra (vídeo, aprox. 8 min) para explicar a interação de moléculas como o CO2 com a radiação eletromagnética e as vibrações moleculares resultantes que levam ao efeito estufa na atmosfera.

A micro palestra em vídeo de David Archer, Universidade de Chicago, está disponível em:

https://www.coursera.org/lecture/global-warming/greenhouse-gas-physics-SvfZD

3. Conduza uma atividade usando uma visualização interativa

Em seguida, explore este tópico de maneira interativa e envolvente, usando uma ferramenta de visualização, "The Greenhouse Effect", do PhET.

A ferramenta ajudará seus alunos a visualizar a estrutura molecular dos compostos de carbono (CO₂, CH₄), explorar o efeito da radiação eletromagnética nas moléculas e entender o papel dos gases de efeito estufa nas mudanças climáticas.

- Faça o download da ferramenta PhET, "The Greenhouse Effect", em https://phet.colorado.edu/en/simulation/greenhouse.
 A versão em português do Brasil dessa visualização esta disponible em:
 https://phet.colorado.edu/en/simulations/translated/pt BR.
- Inicie a ferramenta.
- Vá para o painel Absorção de fótons.
- Para cada gás atmosférico (selecione as opções em Gases atmosféricos) CH₄, CO₂, H₂O, N₂, O₂ observe a estrutura molecular e o efeito do fóton infravermelho na molécula. O controle deslizante da Fonte de Luz pode ser ajustado para controlar a taxa de emissão de fótons.
- Use a opção Criar atmosfera para definir o número de moléculas de cada gás atmosférico.

Visualize o efeito dos fótons infravermelhos nas moléculas na atmosfera.

- A absorção de fótons infravermelhos por gases como CO₂ e CH₄ na atmosfera resulta no aquecimento da superfície do planeta. Esse efeito é chamado de efeito estufa.
- Vá para o painel Efeito estufa.
- Selecione diferentes cenários (Atmosfera durante...), observe a composição do gás de efeito estufa para cada cenário e a temperatura da superfície correspondente mostrada no termômetro à esquerda. Desenhe inferências.

4. Perguntas / Tarefas

Use as ferramentas e os conceitos aprendidos até agora para discutir e determinar respostas para as seguintes perguntas:

- Como as moléculas de gases interagem com a radiação eletromagnética?
- Como as moléculas atmosféricas de dióxido de carbono (CO2) interagem com fótons infravermelhos?
- Qual é o efeito estufa da atmosfera da Terra?

• Um aumento nas emissões de metano afetaria a temperatura da Terra? Por quê?

Resultados da Aprendizagem

As ferramentas deste plano de aula permitirão aos alunos:

- Visualizar a estrutura molecular dos gases atmosféricos
- Descrever o efeito da radiação eletromagnética nessas moléculas
- Identificar gases de efeito estufa e examinar seu papel nas mudanças climáticas

4 Recursos Adicionais

Se você ou seus alunos quiserem explorar mais o assunto, esses recursos adicionais serão úteis.

1. Vídeo

Um vídeo no qual Iain Stewart demonstra a absorção de radiação infravermelha por CO₂ em uma cena do documentário da BBC "Earth: The Climate Wars":

https://www.youtube.com/watch?v=kGaV3PiobYk

2. Visualização

Uma ferramenta de visualização interativa, "Greenhouse Gases" da Concord Consortium's Innovative Technology in Science Inquiry:

https://concord.org/stem-resources/greenhouse-gases

3. Leitura

Material de leitura da UCAR:

https://www.ucar.edu/learn/1_3_1.htm

5 Créditos/Direitos Autorais

Todas as ferramentas de ensino em nossa lista pertencem aos criadores / autores / organizações correspondentes, listados em seus sites. Veja os detalhes individuais de direitos autorais e propriedade de cada ferramenta seguindo os links individuais fornecidos. Selecionamos e analisamos as ferramentas que se alinham ao objetivo geral do nosso projeto e fornecemos os links correspondentes. Não reivindicamos propriedade ou responsabilidade por qualquer uma das ferramentas listadas.

1. Leitura, "Dióxido de carbono absorve e reemite radiação infravermelha"

UCAR Center for Science Education

2. Micro Palestra Video

David Archer, the University of Chicago

3. Recursos Adicionais

lain Stewart;

Concord Consortium;

UCAR Center for Science Education