

davidcorzo@ufm.edu (sign out)

Home My Assignments Grades

Communication Calendar

My eBooks

← MC 113, section A, Spring 2020

INSTRUCTOR

Christiaan Ketelaar

Universidad Francisco Marroquin

12.5 Rectas y Planos (Homework)

Current Score QUESTION 11 12 13 15 16 17 -/2 -/2 -/2 -/2 -/2 -/2 -/2 -/2 -/2 **POINTS** -/2 -/2 -/2 **TOTAL SCORE** -/350.0% **Due Date SUN, FEB 23, 2020** 11:59 PM CST

Assignment Submission & Scoring

Assignment Submission

Request Extension

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

1. —/2 points V SCALC8 12.5.003. Ask Your Teacher V

Find a vector equation and parametric equations for the line. (Use the parameter t.)

The line through the point (4, 2.1, 3.1) and parallel to the vector $3\mathbf{i} + 2\mathbf{j} - \mathbf{k}$

$$\mathbf{r}(t) = \begin{bmatrix} x(t), y(t), z(t) \end{bmatrix} = \begin{bmatrix} x(t), y(t), z(t) \end{bmatrix}$$

Find a vector equation and parametric equations for the line. (Use the parameter t.)

The line through the point (1, 0, 9) and perpendicular to the plane x + 2y + z = 7

SCALC8 12.5.006.

My Notes

Ask Your Teacher 🗸

Find parametric equations for the line. (Use the parameter t.)

The line through the origin and the point (7, 5, -1)

$$(x(t), y(t), z(t)) = \left(\begin{array}{c} \\ \\ \\ \\ \end{array}\right)$$

Find the symmetric equations.

$$\bigcirc_{7}^{X} - \frac{y}{5} - = -z$$

$$x - 7 = y - 5 = z + 1$$

$$\bigcirc_{7}^{x} - \frac{y}{5} - = z$$

$$0_5^X - \frac{y}{7} - = -z$$

$$x + 7 = y + 5 = z - 1$$

SCALC8 12.5.010.

Ask Your Teacher

Find parametric equations and symmetric equations for the line. (Use the parameter t.)

The line through (5, 1, 0) and perpendicular to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$

$$\left(x(t), y(t), z(t)\right) = \left($$

The symmetric equations are given by

$$x + 5 = -(y + 1), z = 0.$$

$$x - 5 = y - 1 = -z$$
.

$$-(x-5) = y-1 = z$$
.

$$x + 5 = -(y + 1) = z$$
.

$$x - 5 = -(y - 1) = z$$
.

SCALC8 12.5.011.

My Notes

Ask Your Teacher 🗸

Find parametric equations for the line. (Use the parameter t.)

The line through (-8, 6, 7) and parallel to the line $\frac{1}{2}x = \frac{1}{3}y = z + 1$

$$(x(t), y(t), z(t)) = \left($$

Find the symmetric equations.

$$x - 8 = y + 6 = z$$

$$+ 7$$

$$0_2^{x} - \frac{y}{3} - = z + 7$$

$$\frac{x+8}{2} = \frac{y-6}{3} = z-$$

$$0_2^{X} - \frac{y}{3} - = z - 7$$

$$x + 8 \over 2 = y + 6 \over 3 = z + 6$$

6. −/2 points **∨**

SCALC8 12.5.013.

My Notes

Ask Your Teacher >

Is the line through (-4, -6, 1) and (-2, 0, -3) parallel to the line through (12, 11, 5) and (9, 2, 11)?

- Yes
- O No

(a) Find parametric equations for the line through (2, 1, 6) that is perpendicular to the plane x - y + 3z = 4. (Use the parameter t.)

$$(x(t), y(t), z(t)) = \left($$

(b) In what points does this line intersect the coordinate planes?

Find an equation of the plane.

The plane through the point (8, 9, 1) and with normal vector 8i + j - k

9	SCALC8 12.5.026.	My Notes Ask Your Teacher >	
Find an equation The plane	of the plane. e through the point (8, 0, 1) and perpendicular to the I	line $x = 3t$, $y = 3 - t$, $z = 9 + 5t$	
10.	SCALC8 12.5.027.		
Find an equation of the plane. The plane through the point $(4, -2, -7)$ and parallel to the plane $2x - y - z = 1$			
11.	✓ SCALC8 12.5.031.	Ask Your Teacher >	
Find an equation The plane	of the plane. e through the points (0, 3, 3), (3, 0, 3), and (3, 3, 0)		

12. -/1 points ➤

SCALC8 12.5.041.

My Notes

Ask Your Teacher

Use intercepts to help sketch the plane.

$$2x + 5y + z = 10$$

13.

-/2 points ∨

SCALC8 12.5.045.

My Notes

Ask Your Teacher

Find the point at which the line intersects the given plane.

$$x = 2 - 2t$$
, $y = 3t$, $z = 1 + t$; $x + 2y - z = 4$
 $(x, y, z) = ($

14. -/2 points SCALC8 12.5.049.	My Notes	Ask Your Teacher 🗸		
Find direction numbers for the line of intersection of the planes $x + y + z = 5$ and $x + z = 0$. (Enter your answers as a commaseparated list.)				
15.	My Notes	Ask Your Teacher 🗸		
Consider the following planes. $x + y + z = 5, x + 5y + 5z = 5$ (a) Find parametric equations for the line of intersection of the planes. (Let $(x(t), y(t), z(t)) = ($)		
16.	My Notes	Ask Your Teacher 🗸		
Find an equation for the plane consisting of all points that are equidistant from the points (7, 0, -2) and (9, 12, 0).				
17/2 points > SCALC8 12.5.065.	My Notes	Ask Your Teacher 🗸		
Find parametric equations for the line through the point $(0, 3, 2)$ that is parallel to the line $x = 1 + t$, $y = 3 - t$, $z = 2t$. (Use the parameter t .) $(x(t), y(t), z(t)) = \begin{pmatrix} & & & & & & & & & & & & & & & & & &$	to the plane $x + y$	+z=1 and perpendicular		

SCALC8 12.5.071.

My Notes

Ask Your Teacher 🗸

Find the distance from the point to the given plane.

$$(1, -4, 9), \quad 3x + 2y + 6z = 5$$

SCALC8 12.5.019.

Ask Your Teacher >

Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting.

$$L_1$$
: $x = 9 + 6t$, $y = 12 - 3t$, $z = 3 + 9t$
 L_2 : $x = 1 + 4s$, $y = 3 - 2s$, $z = 4 + 5s$

- parallel
- skew
- intersecting

If they intersect, find the point of intersection. (If an answer does not exist, enter DNE.)

$$(x, y, z) = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

SCALC8 12.5.020.

Ask Your Teacher >

Determine whether the lines L_1 and L_2 are parallel, skew, or intersecting.

$$L_1$$
: $x = 9 - 3t$, $y = 8 + 9t$, $z = 7 - 6t$
 L_2 : $x = 8 + 2s$, $y = -6s$, $z = 7 + 4s$

- parallel
- skew
- intersecting

If they intersect, find the point of intersection. (If an answer does not exist, enter DNE.)

$$(x, y, z) = \left(\begin{array}{c} \\ \\ \\ \end{array}\right)$$

Home My Assignments Request Extension

Copyright 2020 Cengage Learning, Inc. All Rights Reserved