Analisis Hasil Dataset RegresiUTSTelkom dengan Model TensorFlow

A. MLP Regression TensorFlow

1. Analisis Training

Tidak terlihat nilai loss per epoch (output training tidak ditampilkan sebelumnya), namun asumsinya model telah belajar secara stabil hingga akhir epoch.

2. Evaluasi Matriks

- MSE: 422.51

- RMSE: 20.56

- R² Score: -2.423

3. Catatan

- Hasil cukup mirip dengan MLP PyTorch: RMSE cukup kecil, tapi R² tetap negatif
 → model gagal menggeneralisasi di data uji.
- Indikasi overfitting tetap ada, meskipun nilai error tidak terlalu tinggi.

B. MLP Classification TensorFlow

1. Analisis Training

Tidak ditampilkan loss per epoch, tapi evaluasi akhir menunjukkan hasil yang cukup baik.

2. Evaluasi Matriks

- Accuracy: 0.8832

- Precision: 0.8835

- Recall: 0.8832

- F1-Score: 0.8832

3. Catatan

- Performa sangat baik dan stabil di semua metrik evaluasi klasifikasi.
- Berarti model berhasil menangkap pola penting pada data klasifikasi, dan tidak ada indikasi overfitting maupun underfitting parah.

C. CNN Regression Tensorflow

1. Analisis Training

Tidak terlihat loss per epoch, tapi metrik akhir menunjukkan hasil buruk.

2. Evaluasi Matriks

- MSE: 1655.59

- RMSE: 40.69 - R² Score: -12.61

3. Catatan

- Sama seperti versi PyTorch, CNN di sini tidak cocok untuk data tabular, sehingga performa buruk tidak mengejutkan.
- RMSE paling tinggi, dan R² sangat negatif → prediksi sangat meleset dari kebenaran.

D. Kesimpulan

Model	RMSE	R ² Score	Catatan
MLP Regressor	20.56	-2.423	Overfitting, tapi
			cukup stabil
MLP Classifier	-	-	Performa
			klasifikasi sangat
			baik
CNN Regressor	40.69	-12.61	Sangat buruk, tidak
			cocok

Model terbaik adalah MLP Classification, karena:

- Akurasi tinggi (88%) dengan precision dan recall seimbang → model sangat baik dan andal untuk klasifikasi.
- Tidak menunjukkan masalah imbalance atau kegagalan klasifikasi, berbeda dengan versi PyTorch.
- Ini adalah satu-satunya model TensorFlow yang benar-benar generalisasi dengan baik.

Rekomendasi Perbaikan:

1. Unutuk Regression:

- Tambahkan teknik regularisasi.
- Gunakan dropout, atau EarlyStopping untuk cegah overfitting.
- Eksplorasi fitur lebih lanjut, termasuk feature selection.

2. Untuk Classification:

- Sudah sangat baik, tetapi bisa ditingkatkan dengan:
 - o Data augmentation jika kelas tidak seimbang.
 - o Ensemble beberapa model MLP.
 - o Tuning jumlah neuron/layer untuk menguji peningkatan.

3. Untuk CNN:

- CNN tidak cocok untuk data tabular kecuali diubah ke bentuk grid atau citra.
- Jika ingin menggunakan CNN, buat representasi spasial logis.

Perbandingan dengan PyTorch:

Model	Terbaik di	Terbaik di
	PyTorch	TensorFlow
Regression	MLP (RMSE:	MLP (RMSE:
	19.74)	20.56)
Classification	Buruk (10%	Sangat baik (88%)
	akurasi)	
CNN Regression	RMSE: 39.48	RMSE: 40.69
		(keduanya buruk)

TensorFlow unggul untuk klasifikasi, sedangkan PyTorch unggul tipis pada regresi, tapi secara keseluruhan TensorFlow memberikan hasil lebih baik dalam hal generalisasi dan stabilitas model.