Matemáticas

Lester Iván Hernández 29 de junio de 2025

Índice

L.	Cál	culo Multivariable
	1.1.	Derivadas parciales
	1.2.	Derivada Total
		1.2.1. Regla de la cadena
	1.3.	Gradiente
	1.4.	Derivada direccional
	1.5.	Integrales dobles
		1.5.1. Teorema de Fubini
	1.6.	Integrales triples
	1.7.	Cambios de coordenadas
		1.7.1. Integrales dobles
		1.7.2. Integrales triples
	1.8.	Cálculo de áreas y volúmenes

1. Cálculo Multivariable

1.1. Derivadas parciales

Son las derivadas de funciones de varias variables. Se denotan por:

$$\frac{\partial f}{\partial x}$$
 y $\frac{\partial f}{\partial y}$

Estas se leería como "derivada parcial de f con respecto a x" y "derivada parcial de f con respecto a y", respectivamente.

Cuando se deriva una función con varias variables, se debe hacer con respecto a una sola de las variables Al calcular la derivada con respecto a una variable, el resto se consideran como constantes.

1.2. Derivada Total

Considere una función de varias variables que llamaremos z. La derivada total de z, denotada por dz, es la suma de las derivadas parciales de z con respecto a cada variable, multiplicadas por el diferencial de esa variable.

Por ejemplo, si z es una función de x e y, la derivada total se expresa como:

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

1.2.1. Regla de la cadena

La regla de la cadena se utiliza para calcular la derivada de una función compuesta. Si z es una función de x e y, y x e y son funciones de t, entonces la derivada total de z es:

$$dz = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

Y si en lugar de depender de $t,\ y$ depende de u y de v, la expresión se convierte en:

$$dz = \frac{\partial z}{\partial x}\frac{dx}{dt}dt + \frac{\partial z}{\partial y}\left(\frac{\partial y}{\partial u}du + \frac{\partial y}{\partial v}dv\right)$$

Y así sucesivamente, dependiendo de cuántas variables dependan de otras.

Y si queremos la derivada de z con respecto a t, podemos escribir:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

1.3. Gradiente

El gradiente de una función f(x, y) es un vector que contiene las derivadas parciales de f con respecto a cada variable. Se denota como:

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

Si f es una función de varias variables, el gradiente se extiende a más dimensiones:

 $\nabla f = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, \dots, \frac{\partial f}{\partial x_n}\right)$

1.4. Derivada direccional

La derivada direccional de una función f en la dirección de un vector unitario \vec{u} se define como:

$$D_{\vec{u}}f = \nabla f \cdot \vec{u}$$

Donde ∇f es el gradiente de f y · representa el producto punto.

Es importante que el vector \vec{u} sea unitario, es decir, que su norma sea 1. Si \vec{u} no es unitario, se puede normalizar dividiendo por su norma.

1.5. Integrales dobles

Las Integrales dobles o integrales iteradas son una extensión de la integral definida a funciones de varias variables. Para una función f(x, y) definida en un dominio D, puede ser de tipo I o II.

$$\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx$$

Siendo esta primera la de tipo I, donde $g_1(x)$ y $g_2(x)$ son funciones que definen los límites de integración en y para cada x en el intervalo [a, b].

Y la segunda de tipo II, donde $h_1(y)$ y $h_2(y)$ son funciones que definen los límites de integración en x para cada y en el intervalo [c,d]:

$$\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) \, dx \, dy$$

Para calcular una integral doble, se integra primero con respecto a una variable y luego con respecto a la otra. Mientras se integra con respecto a una variable, la otra se considera constante. El orden de integración puede cambiar dependiendo de la función y del dominio de integración.

1.5.1. Teorema de Fubini

El teorema de Fubini establece que, bajo ciertas condiciones de continuidad, el orden de integración en una integral doble puede cambiar. Es decir:

$$\iint_R f(x,y) \, dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x,y) \, dy \, dx = \int_c^d \int_{h_1(y)}^{h_2(y)} f(x,y) \, dx \, dy$$

Donde R es el dominio de integración y dA representa el elemento diferencial de área, que se puede expresar como $dA = dx \, dy$ o $dA = dy \, dx$, dependiendo del orden de integración.

1.6. Integrales triples

Las integrales triples son una extensión de las integrales dobles a funciones de tres variables. Para una función f(x, y, z) definida en un dominio D, la integral triple se expresa como:

$$\iiint_D f(x,y,z)\,dV$$

Donde dV es el elemento diferencial de volumen, que puede expresarse como $dV = dx\,dy\,dz,\,dV = dy\,dz\,dx,$ o cualquier otra combinación de variables.

Para el cálculo de volúmenes, se pueden utilizar coordenadas cartesianas, cilíndricas o esféricas, dependiendo de la simetría del dominio. Además de poderse considerar que f(x, y, z) = 1 y pasar la integral doble a una integral triple, para calcular el volumen del dominio D:

$$V = \iint_R f(x, y) dA = \iiint_D f(x, y, z) dV$$

1.7. Cambios de coordenadas

Los cambios de coordenadas son útiles para simplificar el cálculo de integrales en dominios complicados.

1.7.1. Integrales dobles

Se suelen cambiar de coordenadas cartesianas (o rectangulares) a coordenadas polares, donde:

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$

Y viceversa:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

El elemento diferencial de área:

$$dA = \underbrace{dx \, dy}_{\text{cartesianas}} = \underbrace{r \, dr \, d\theta}_{\text{polares}}$$

1.7.2. Integrales triples

Para integrales triples, se pueden utilizar coordenadas cartesianas (o rectangulares), cilíndricas o esféricas.

En coordenadas cilíndricas, las relaciones son:

$$x = r\cos(\theta)$$
$$y = r\sin(\theta)$$
$$z = z$$

Y viceversa:

$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$
$$z = z$$

En coordenadas esféricas, las relaciones son:

$$x = \rho \sin(\phi) \cos(\theta)$$
$$y = \rho \sin(\phi) \sin(\theta)$$
$$z = \rho \cos(\phi)$$

Y viceversa:

$$\rho = \sqrt{x^2 + y^2 + z^2}$$

$$\phi = \cos^{-1}\left(\frac{z}{\sqrt{x^2 + y^2 + z^2}}\right)$$

$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Y el elemento diferencial de volumen:

$$dV = \underbrace{dx \, dy \, dz}_{\text{cartesianas}} = \underbrace{r \, dr \, d\theta \, dz}_{\text{cilíndricas}} = \underbrace{\rho^2 \sin(\phi) \, d\rho \, d\phi \, d\theta}_{\text{esféricas}}$$

1.8. Cálculo de áreas y volúmenes

Para calcular áreas y volúmenes, se utilizan integrales dobles y triples, respectivamente. Para el área de una región R en el plano, se utiliza la integral doble:

$$A = \iint_R dA$$

Para el volumen de un sólido D en el espacio, se utiliza la integral triple:

$$V = \iiint_D dV$$

En estos casos R y D son los dominios de integración en el plano y en el espacio, respectivamente. Lo que quiere decir que representan regiones o sólidos normalmente delimitados por funciones o superficies.