

Pricing des options via différents modèles discrets et continus

Réalisé par:

Bel Hadj Slimen Nada Faydi Mariem Smari Mariem Achour Salma

Plan

- 1. Introduction
- 2. Le modèle discret : Cox-Ross Rubinstein
- 3. Le modèle stochastique : Black and scholes
- 4. Convergence de Cox-Ross Rubinstein vers le modèle Black and Scholes
- 5. Conclusion

Introduction

- Une option de call/put est en finance de marché un produit dérivé qui donne le droit mais pas l'obligation de vendre ou d'acheter un actif financier avec un prix d'exercice K pendant un temps donnée T.
- Dans le marché financier, il existe plusieurs types d'options:
 - Les options européennes
 - Les options américaines
 - Les options asiatiques

Modèle de Cox-Ross Rubinstein

Le modèle de Cox-Ross-Rubinstein, proposé en 1979, est un modèle discret qui permet l'évaluation des prix des options.

$$S_T = \frac{1}{R}(qS_{T+1}^u + (1-q)S_{T+1}^d)$$

Avec:

 $q=rac{R-d}{u-d}$ la probabilité risque neutre de gain

1-q la probabilité de perte

Initialisation Des paramètres

Pour implémenter le modèle de Cox-Ross-Rubinstein, on a opté pour 2 méthodes:

1) CRRBinomialTreeOption()

2) Fonction personnalisé (from Scratch)

Dans les deux cas on initialise les paramètres du modèle comme suit:

- Le prix du strike (d'exercice) **K=50**,
- Le prix initial du sous-jacent S=50,
- L'horizon de temps
 T=0.4167,
- Le taux sans risque r=0.1,
- Le nombre de périodes N=110
- La volatilité
 Sigma= 0.4

Résultats obtenus pour une option Américaine (1/2)

• Cas d'une option d'achat (Call)


```
Title:
    CRR Binomial Tree Option

Call:
    CRRBinomialTreeOption(TypeFlag = "ca", S = 50, X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)

Parameters:
    Value:
    TypeFlag ca
    S     50
    X     50
    Time     0.4167
    r     0.1
    b     0.1
    sigma     0.4
    n     120

Option Price:
    6.106187

Description:
    Sat Dec    5 17:51:34 2020
```

Figure 1: Valeur de l'option pour un call américain

Résultats obtenus pour une option Américaine (2/2)

Cas d'une option de vente (Put)


```
Title:
    CRR Binomial Tree Option

Call:
    CRRBinomialTreeOption(TypeFlag = "pa", S = 50, X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)

Parameters:
    Value:
    TypeFlag pa
    S     50
    X     50
    Time    0.4167
    f     0.1
    b     0.1
    sigma    0.4
    n     120

Option Price:
    4.279254

Description:
    Sat Dec    5 17:51:47 2020
```

Figure 2: Valeur de l'option pour un put américain

Arbre d'un Call Américain

```
Title:
CRR Binomial Tree Option
Call:
CRRBinomialTreeOption(TypeFlag = "ca", S = 50, X = 50, Time = 0.4167,
    r = 0.1, b = 0.1, sigma = 0.4, n = 5)
Parameters:
         Value:
 TypeFlag ca
         50
          58
 Time
         8.4167
         8.1
         8.1
         8.4
Option Price:
6.359834
Description:
Sat Dec 5 17:42:28 2020
```

Arbre Binomial pour un Call Américain

Figure 3: Arbre d'un call Américain pour N=5

Résultats obtenus pour une option Européenne (1/2)

• Cas d'une option d'achat (Call)


```
Title:
    CRR Binomial Tree Option

Call:
    CRRBinomialTreeOption(TypeFlag = "ce", S = 50, X = 50, Time = 0.4167, r = 0.1, b = 0.1, sigma = 0.4, n = n)

Parameters:
    Value:
    TypeFlag ce
    S     50
    X     50
    Time    0.4167
    r     0.1
    b     0.1
    sigma    0.4
    n     120

Option Price:
    6.106187

Description:
    Sat Dec    5 17:51:56 2020
```

Figure 4: Valeur de l'option pour un call Européen

Résultats obtenus pour une option Européenne (2/2)

Cas d'une option de vente (Put)

Figure 5: Valeur de l'option pour un put Européen

Arbre Binomial pour un Call Européen :

```
Title:
CRR Binomial Tree Option
Call:
CRRBinomialTreeOption(TypeFlag = "ce", S = 50, X = 50, Time = 0.4167,
    r = 0.1, b = 0.1, sigma = 0.4, n = 5)
Parameters:
         Value:
TypeFlag ce
Time
         8.4167
          0.1
         0.1
         0.4
Option Price:
6.359834
Description:
Sat Dec 5 17:43:36 2020
```

Arbre Binomial pour un Call Européen

Figure 6: Arbre d'un call Européen pour N=5

Modèle de Black-Scholes

Le modèle de Black-Scholes, proposé en 1973, est un modèle continu qui estime le prix des options Européennes.

La formule de Black-Scholes pour une option d'achat (Call) est données par :

$$C(S,t) = SN(d_1) - Ke^{-r(T-t)}N(d_2)$$

La formule de Black-Scholes pour une option de vente (Put) est donnée par :

$$P(S,t) = Ke^{-r(T-t)}N(-d_2) - SN(-d_1)$$

Résultats obtenus pour une option Européenne

On a implémenter le modèle de Black-Scholes en développant la formule sous R.

Prix d'un call

6.11

Prix d'un put

4.07

Modèle de Black-Scholes pour les options européennes avec dividendes

La formule de Black-Scholes pour une action d'achat avec dividende est donnée par :

$$C(S,t) = Se^{-q(T-t)}N(d_1) - Ke^{-r(T-t)}N(d_2)$$

La formule de Black-Scholes pour une action de vente avec dividende est donnée par :

$$P(S,t) = Ke^{-r(T-t)}N(-d_2) - Se^{-q(T-t)}N(-d_1)$$

Ensuite, d1 et d2 sont légèrement modifiés pour inclure les dividendes continus :

$$d_1 = \frac{\ln\left(\frac{S}{K}\right) + \left(r - \frac{\mathbf{q}}{t} + \frac{\sigma^2}{2}\right)(T - t)}{\sigma\sqrt{T - t}}$$

$$d_2 = \frac{\ln(\frac{S}{K}) + (r - \frac{\sigma}{2} - \frac{\sigma^2}{2})(T - t)}{\sigma\sqrt{T - t}} = d_1 - \sigma\sqrt{T - t}$$

Modèle de Black-Scholes pour les options européennes avec dividendes

• Prix d'un call

5.85

• Prix d'un put

4.24

Convergence du modèle de Cox-Ross-Rubinstein vers le modèle de Black-Scholes

Après avoir présenter les deux modèles Cox-Ross-Rubinstein et Black-Scholes, il est important de voir le lien entre ces deux en terme de convergence. Il est essentiel que ces deux modèles coïncident à un certain moment puisqu'il décrivent le même phénomène.

Convergence du modèle CRR vers le modèle stochastique

Convergence du modèle CRR vers le modèle stochastique d'un call Européen.

Correction de la convergence

La question que l'on peut se poser maintenant c'est la forme de cette convergence ? Est-elle monotone, ou non, et surtout est-elle rapide ?

Correction de la convergence

$$u = e^{\sigma\sqrt{\tau/n} + (1/n)\ln(X/S)}, \qquad d = e^{-\sigma\sqrt{\tau/n} + (1/n)\ln(X/S)}$$

Les facteurs spécifiques Up et Down corrigés

Convergence du modèle CRR pour une option call Européenne

Conclusion

MERCI POUR VOTRE ATTENTION