Op-Amp Circuits: Feedback

S. Lodha

References: L. Bobrow's book and Prof. M. B. Patil's slides

What is feedback?

- Output of circuit/system returned back to input
- Four possible connections
 - Above is an example of series-parallel feedback
 - Output of feedback in series with input of amp, input of feedback in parallel with output of amp
 - Most beneficial for voltage amplification applications

Example of series-parallel feedback

Negative feedback

$$v_1 = v_{in} - v_f$$

$$A_F = \frac{v_o}{v_{in}} = 1 + \frac{R_2}{R_1}$$

$$B = \frac{v_f}{v_o} = \frac{R_1}{R_1 + R_2} = \frac{1}{A_F}$$

For Ideal Op-Amp

- -Infinite gain
- -Infinite Input Resistance
- -Zero Output Resistance

10/13/2014

S. Lodha

Feedback with non-ideal Op Amp

Assume A is finite, but $R_{in} = \infty$ and $R_{o} = 0$

$$v_f = Bv_o$$

$$v_o = A(v_{in} - v_f) = Av_{in} - ABv_o$$

$$A_F = \frac{v_o}{v_{in}} = \frac{A}{1 + AB}$$

$$A_F = \frac{A}{1 + AB} \approx \frac{A}{AB} = \frac{1}{B} = 1 + \frac{R_2}{R_1}$$

For large A

Trade-off gain with increase in stability!

A=200000, R₁=1 kΩ, R₂=100 kΩ
$$\rightarrow$$
 A_F=100.959

$$\rightarrow$$
 A_F=100.959

Suppose A changes by 10% to 220,000
$$\rightarrow$$
 A_F=100.964 Only 0.005% change!

$$\rightarrow$$
 A_r=100.964

Feedback effect on input R

Assume A and R_{in} are both finite, but R_o=0

Negative feedback can be used to increase the input resistance of an amplifier.

Feedback effect on output R

Assume A, R_{in} and R_o are all finite

Negative feedback can be used to decrease the output resistance of an amplifier.

Example

• A=200000, R_{in} =2 M Ω , R_{o} =75 Ω , R_{1} = 1 k Ω , R_{2} = 100 k Ω

$$-B=R_1/R_1+R_2=0.0099$$

$$-R_{iF}$$
=(1+AB) R_{in} =3960 MΩ

$$-R_{oF}=R_{o}/1+AB=0.038 \Omega$$

Frequency Response

$$\mathbf{A} = \frac{A}{1 + j\omega/\omega_H}$$

 $\mathbf{A} = \frac{A}{1 + i\omega/\omega_{H}}$ A is called the "open-loop" gain (frequency dependent), A is the dc gain

$$\mathbf{A}_{\mathsf{F}} = \frac{\mathbf{A}}{1 + \mathbf{A}B} = \frac{\left[\frac{A}{1 + j\omega/\omega_H}\right]}{1 + \left[\frac{A}{1 + j\omega/\omega_H}\right]B}$$
 For the example, A_F=A/1+AB

$$\mathbf{A}_{\mathsf{F}} = \frac{A}{1 + AB} \frac{1}{1 + j \left[\frac{\omega}{(1 + AB)\omega_{H}}\right]} = \frac{A_{F}}{1 + j\omega/\omega_{HF}}$$

$$\omega_{HF} = (1 + AB)\omega_{H}$$
 Upper cut-off frequency

- Lower cut-off frequency is 0
- Internal transistor capacitances determine upper cut-off frequency
 - Acts like a low-pass filter
- With feedback, upper-cut off frequency multiplied by (1+AB)
 - Large increase in bandwidth

Gain-Bandwidth Product

$$f_T = A f_H$$

Product of dc gain with upper cut-off frequency in Hz

$$f_{HF} = A_F f_{HF} = \frac{A}{1 + AB} (1 + AB) f_H = A f_H = f_T$$

- Addition of feedback does not change the gain-bandwidth product
 - Feedback amplifier and op-amp have the same product
 - What you lose in gain is made up in bandwidth

Feedback: Inverting Amplifier

$$V_{o} = A_{V}(V_{+} - V_{-})$$
 Eq. 1
$$V_{-} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
 Eq. 2
$$V_{i} \uparrow \rightarrow V_{-} \uparrow \rightarrow V_{o} \downarrow \rightarrow V_{-} \downarrow$$

Eq. 2 Eq. 1 Eq. 2

Stable equilibrium is reached

$$V_{+} = V_{i} \frac{R_{2}}{R_{1} + R_{2}} + V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$
 Eq. 3
$$V_{i} \uparrow \rightarrow V_{+} \uparrow \rightarrow V_{o} \uparrow \rightarrow V_{+} \uparrow$$
Eq. 3 Eq. 1 Eq. 3

V_o rises (or falls) indefinitely till saturation → positive feedback

Feedback: Non-Inverting Amplifier

 $V_{+} = V_{o} \frac{R_{1}}{R_{1} + R_{2}}$

$$V_{o} = A_{V}(V_{+} - V_{-})$$

$$V_{-} = V_{o} \frac{R_{1}}{R_{1} + R_{2}}$$

$$V_i \uparrow \longrightarrow V_o \uparrow \longrightarrow V_- \uparrow \longrightarrow V_o \downarrow$$

Eq. 1 Eq. 2 Eq. 1

Stable equilibrium is reached

V_o rises (or falls) indefinitely till saturation → positive feedback

Eq. 3

Feedback

Inverting amplifier with $+ \longleftrightarrow V_{i} \stackrel{\nearrow}{\longleftarrow} R_{1}$ $\stackrel{\nearrow}{\longleftarrow} R_{1}$

Noninverting amplifier with $+ \longleftrightarrow -$

- Both circuits exhibit positive feedback
- Output is limited by saturation, i.e. V_o=±V_{sat}

Inverting Schmitt Trigger

 V_0 is either +10V ($V_+>V_-$) or -10V ($V_+<V_-$) because of positive feedback

Case 1

 $V_i=5V$, Assume $V_o=10V$, $V_+=1V \rightarrow V_+-V_-=1-5=-4 V \rightarrow V_o=-10V$ Inconsistent!

Case 2

 V_i =5V, Assume V_o =-10V, V_+ =-1V \rightarrow V_+ - V_- =-1-5=-6 V \rightarrow V_o =-10V consistent!

Inverting Schmitt Trigger

For decreasing values of V_i , V_o =-10V and V_+ =-1V till V_i goes below -1V

When $V_i = V_- < V_+ = -1V$ $V_o = +V_{sat} = 10V$ V_+ becomes +1V

Decreasing V_i further does not change V_o , since $V_+-V_-=1-V_i>0$

Coming back (increasing V_i) threshold voltage for flipping is +1V.

Inverting Schmitt trigger

- The threshold (tripping) voltages V_{TL} and V_{TH} are $\pm \left(\frac{R_1}{R_1 + R_2}\right) V_{sat}$
- Tripping point depends on position on V_o axis → MEMORY!
- $\Delta V_T = V_{TH} V_{TL}$ is called hysteresis width

Non-inverting Schmitt Trigger

 V_0 is either +10V ($V_+>V_-$) or -10V ($V_+<V_-$) because of positive feedback

Case 1

 V_i =5V, Assume V_o =-10V, V_+ =(R_2/R_1+R_2) $V_i+V_o(R_1/R_1+R_2)$ =3.5V \rightarrow V_+-V_- =3.5-0=3.5 V \rightarrow V_o =-10V Inconsistent!

Case 2

 V_i =5V, Assume V_o =+10V, V_+ =5.5V \rightarrow V_+ - V_- =5.5-0=5.5 V \rightarrow V_o =+10V consistent!

Non-inverting Schmitt Trigger

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9}{10} V_{i} + \frac{1}{10} V_{sat}$$

As V_i decreases and till $V_+>0$ $V_o=V_{sat}$ For $V_+=0$ V, $V_i=-(R_1/R_2)V_{sat}=-1.11$ V, $V_o=-V_{sat}$

$$V_{+} = \frac{R_{2}}{R_{1} + R_{2}} V_{i} + \frac{R_{1}}{R_{1} + R_{2}} V_{o} = \frac{9}{10} V_{i} - \frac{1}{10} V_{sat}$$

Further reduction of V_i does not change V_o =- V_{sat} , since V_+ <0 V_o again flips to + V_{sat} when V_+ =0 V_o , when V_i =1.11 V_o

Non-inverting Schmitt Trigger

- The threshold (tripping) voltages V_{TL} and V_{TH} are $\pm \left(\frac{R_1}{R_2}\right)V_{sa}$
- Tripping point depends on position on V_o axis → MEMORY!
- $\Delta V_T = V_{TH} V_{TL}$ is called hysteresis width

Schmitt Triggers

Schmitt Trigger: Application -> Astable multivibrator

- With a suitable RC circuit, Schmitt trigger can be made to freely oscillate between L⁺ and L⁻
 - Called an "astable multivibrator" (oscillator, wave-form generator)
- Produces oscillations where the frequency is controlled by component values (f_{max} ~10 kHz)
- Other vibrator circuits
 - Monoshot (Timer)
 - Bistable (Flip-flop)

Astable MV

At t=0,
$$V_o = L^+$$
 and $V_c = 0$

Capacitor starts charging towards L^+ As V_c (= V_i) crosses V_{TH} , V_o flips to L^-

Capacitor starts discharging towards L^- As $V_c(=V_i)$ crosses V_{TL} , V_o flips to L^+

Circuit oscillates on its own.

Also called a "relaxation oscillator".

