

Protein Hypernetworks

Johannes Köster, Eli Zamir, Sven Rahmann

TU Dortmund, Informatik LS 11 Max-Planck-Institute of Molekular Physiology Dortmund

June 12, 2011

9th Int. Conference on Pathways, Networks, and Systems Medicine

Differential equations (Law of Mass Action), Bayesian Networks, ...

$$\frac{d[C]}{dt} = k[A][B]$$

Differential equations (Law of Mass Action), Bayesian Networks, ...

$$\frac{d[C]}{dt} = k[A][B]$$

Interaction maps (undirected graphs)

Differential equations (Law of Mass Action), Bayesian Networks, ...

$$\frac{d[C]}{dt} = k[A][B]$$

Interaction maps (undirected graphs)

Differential equations (Law of Mass Action), Bayesian Networks, ...

$$\frac{d[C]}{dt} = k[A][B]$$

Protein Hypernetworks

Interaction maps (undirected graphs)

Structure

Protein Hypernetworks

2 Prediction of Protein Complexes

3 Prediction of Functional Importance

Idea

Protein Network (P,I) A B C F D

Idea

Idea

Mining Protein Hypernetworks

Protein Hypernetwork (P, I, C)

Mining Protein Hypernetworks

Mining Protein Hypernetworks

Prediction of Protein Complexes

Network based complex prediction

e.g. dense regions

Prediction of Protein Complexes

Network based complex prediction

e.g. dense regions

Maximal combinations of minimal network states

Prediction of Protein Complexes

Network based complex prediction

e.g. dense regions

Maximal combinations of minimal network states

Refined complexes

no violated constraints

Results on the Yeast Protein Network

- Network: CYGD (4579 proteins, 12576 interactions)
- Constraints: Competition on binding sites (Jung et al. 2010)
- Complexes: CYGD (55 connected complexes)
- Network based complex prediction: LCMA (Li et al. 2005)

Prediction of Functional Importance

Prediction of Functional Importance

Prediction of Functional Importance

Perturbation Impact Score

$$\mathit{PIS}_{(P,I,C)}(\mathit{Q}_{\downarrow}) := \sum_{q \in \mathit{reach}_{\mathit{Q}_{\downarrow}}^{\mathsf{BFS}}} \mathit{dist}_{\mathit{Q}_{\downarrow}}^{\mathsf{BFS}}(q)$$

Results

- Network: CYGD (4579 proteins, 12576 interactions)
- Constraints: Competition on binding sites (Jung et al. 2010)
- Perturbations classified as lethal/sick and viable: SGD

Conclusion

Protein Hypernetworks

- extension of graph model
- boolean logic constraints
- minimal network states

Improvements in complex prediction quality

Improvements in functional importance prediction quality

