1. 1

WHAT IS CLAIMED IS:

1

3

4

5

6

7

8

9

12

13

14

15

16

17

1	A	radio	on	a	single	IC	chip,	comprising:
4 -		TOOTO	~	•				

an antenna section for transmitting and receiving a plurality of high frequency signals, said radio including means for transmitting and receiving said plurality of high frequency signals in a time division duplex mode;

- a down-conversion section coupled to said antenna section, for down-converting a first high frequency signal of said plurality of high frequency signals to a low intermediate frequency signal;
- a bandpass filter coupled to said down-conversion section;
 - a discriminator coupled to said bandpass filter;
 - an up-conversion section coupled to said antenna section, for up-converting an information signal to a second high frequency signal of said plurality of high frequency signals, said up-conversion section comprising a portion of said down-conversion section; and
- a shaping filter coupled to an input of said upconversion section.

ı	2.	The radio of Claim 1, wherein said low intermediat
2	fremiency	signal is centered at about 3 MHz.

- 3. The radio of Claim 1, wherein said down-conversion section includes a variable controlled oscillator.
- 5 4. The radio of Claim 1, wherein said up-conversion section includes a variable controlled oscillator.
- 5. The radio of Claim 1, wherein said up-conversion section includes a directly modulated variable controlled oscillator.
- 10 6. The radio of Claim 1, wherein said down-conversion section includes an image rejection mixer stage.
- 7. The radio of Claim 1, wherein said shaping filter
 comprises a Gaussian shaping filter.
- 14 8. The radio of Claim 1, further comprising a binary 15 frequency shift keying modulation means.

1	9. The ra	dio of Cl	aim 1,	further	comp	rising	auto	natic
2	re-transmission	request	error	correct	ion	means	for	data
3	transfer.	•		•				

- 10. The radio of Claim 1, further comprising continuous variable slope delta modulation means for voice transfer.
- 6 11. The radio of Claim 1, wherein said discriminator comprises a frequency modulation discriminator.
- 8 12. The radio of Claim 1, further comprising frequency 9 hopping means for providing interference immunity.
- 13. The radio of Claim 1, further comprising autotuning
 means for autotuning a plurality of filters and an FM
 discriminator.
- 14. The radio of Claim 1, wherein all active components

 are integrated on the single IC chip, and at least one of a

 passive loop filter and a passive VCO resonator is located

 external to the single IC chip.

low

1	15. A short-range radio on a semiconductor chip,
2	comprising:
3	receiver input means for down-converting a high
4	frequency signal to a low intermediate frequency signal and
5	rejecting an image signal;
6	a bandpass filter coupled to said receiver input means,
7	said bandpass filter tuned to pass said low intermediate
8	frequency signal;
9	a frequency modulated discriminator stage coupled to an
10	output of said bandpass filter, for information recovery;
11	a variable controlled oscillator coupled to a power-
12	amplifier stage for up-conversion, and coupled to said
13	receiver input means for down-conversion, said variable
14	controlled oscillator modulated by an information signal to
15	be transmitted.
16	16. The radio of Claim 15, wherein said variable

controlled oscillator includes a phase locked loop.

intermediate frequency is about 3 MHz.

17. The radio of Claim 15, wherein said

17

18

19

- 1 18. The radio of Claim 15, wherein said variable
 2 controlled oscillator comprises a portion of a frequency
 3 synthesizer.
- 19. The radio of Claim 15, wherein said variable controlled oscillator uses bondwires as resonators.

an antenna section for transmitting and receiving a
plurality of high frequency signals, said radio architecture
including means for transmitting and receiving said plurality
of high frequency signals in a time division duplex mode;
a down-conversion section coupled to said antenna
section, for down-converting a first high frequency signal
of said plurality of high frequency signals to a low
intermediate frequency signal;
a bandpass filter coupled to said down-conversion
section;
a discriminator coupled to said bandpass filter;
an up-conversion section coupled to said antenna
section, for up-converting an information signal to a second
high frequency signal of said plurality of high frequency

20. A radio architecture, comprising:

a shaping filter coupled to an input of said upconversion section.

signals, said up-conversion section [comprising a portion of

said down-conversion section; and

1	21. A method of using a short-range radio transceiver
2	on a semiconductor chip, comprising the steps of:
3	modulating said short-range radio transceiver in a time
4	division duplex mode;
5	down-converting a received signal from a high frequency
6	to a low intermediate frequency;
7	channel filtering said low intermediate frequency
8	signal;
9	detecting a first information signal from said channel
10	filtered signal;
11	gaussian shaping a second information signal; and
12	up-converting said shaped second information signal to
13	said high frequency.
14	22. The method of Claim 21, wherein said low
76	intermediate framency is about 3 MHz