# โจทย์ข้อที่ 1.1

บริษัทขายไอศกรีมต้องการทำนายยอดขาย (ถ้วย) จากอุณหภูมิสูงสุดของวัน (องศาเซลเซียส) โดยมีข้อมูล 5 วัน

ล่าสุดดังนี้

| อุณหภูมิ (X) | ยอดขาย (Y) |
|--------------|------------|
| 25           | 150        |
| 30           | 200        |
| 32           | 230        |
| 28           | 180        |
| 35           | 250        |

# คำสั่ง:

1. จงหาสมการ Linear Regression (y=mx+c) จากข้อมูลข้างต้น

$$\sum xy = (3*1.5) + (5*2) + (2*1) + (6*3) + (4*2.2) + (7*3.5) = 67.8$$

$$\sum x = 25 + 30 + 32 + 28 + 35 = 150$$

$$\sum x^2 = 25^2 + 30^2 + 32^2 + 28^2 + 35^2 = 4558$$

$$\bar{x} = \frac{25 + 30 + 32 + 28 + 35}{5} = 30$$

$$\sum y = 150 + 200 + 230 + 180 + 250 = 1010$$

$$\frac{-}{y} = \frac{(150 + 200 + 230 + 180 + 250)}{5} = 202$$

$$m = \frac{5(30,900) - (150*1010)}{5(4558) - (150)^2} = \frac{300}{29} = 10.3448$$

$$c = 202 - (10.3448 * 30) = -108.3448$$

**Ans:** y = 10.3448 \* x - 108.3448

2. ถ้าวันนี้อุณหภูมิ 33 องศาเซลเซียส คาดว่าจะขายไอศกรีมได้กี่ถ้วย?

$$10.3448*33-108.3448=233.0342$$

Ans:คาดว่าจะขายไอศกรีมได้233.0342ถ้วย

#### โจทย์ข้อที่ 1.2

ฟิตเนสแห่งหนึ่งต้องการวิเคราะห์ความสัมพันธ์ระหว่างจำนวนชั่วโมงที่ลูกค้าออกกำลังกายต่อสัปดาห์ (X) กับน้ำหนักที่ลดลงในหนึ่งเดือน (กก.) (Y)

| ชั่วโมง/สัปดาห์ (X) | น้ำหนักที่ลด (Y) |
|---------------------|------------------|
| 3                   | 1.5              |
| 5                   | 2.0              |
| 2                   | 1.0              |
| 6                   | 3.0              |
| 4                   | 2.2              |
| 7                   | 3.5              |

# คำสั่ง:

1. จงหาสมการ Linear Regression

$$\sum xy = (3*1.5) + (5*2) + (2*1) + (6*3) + (4*2.2) + (7*3.5) = 67.8$$

$$\sum x = 3 + 5 + 2 + 6 + 4 + 7 = 27$$

$$\sum x^2 = 3^2 + 5^2 + 2^2 + 6^2 + 4^2 + 7^2 = 139$$

$$\bar{x} = \frac{3+5+2+6+4+7}{6} = 4.5$$

$$\sum y = 1.5 + 2 + 1 + 3 + 2.2 + 3.5 = 13.2$$

$$\overline{y} = \frac{(1.5 + 2 + 1 + 3 + 2.2 + 3.5)}{6} = 2.2$$

$$m = \frac{6(67.8) - (27*13.2)}{6(139) - (27)^2} = \frac{50.4}{105} = 0.48$$

$$c = 2.2 - (0.48 * 4.5) = 0.04$$

Ans: y = 0.48 \* x + 0.04

2. หากลูกค้าออกกำลังกาย 8 ชั่วโมง/สัปดาห์ คาดว่าน้ำหนักจะลดลงกี่กิโลกรัม?

$$0.48*8+0.04=3.88$$

Ans: คาดว่าน้ำหนักจะลดลง 4.24 กิโลกรัม

# โจทย์ข้อที่ 2.1

ต้องการสร้างโมเดลทำนาย "ราคามือสอง" (Y, หน่วยเป็นพันบาท) ของสมาร์ทโฟน โดยพิจารณาจาก "อายุ การใช้งาน (เดือน)" (X1)

| อายุ (X1) | ราคา (Y) |
|-----------|----------|
| 6         | 18       |
| 12        | 14       |
| 24        | 9        |
| 8         | 17       |
| 18        | 11       |

$$\sum y = 18 + 14 + 9 + 17 + 11 = 69$$

$$\frac{-}{y} = \frac{18+14+9+17+11}{5} = 13.8$$

$$SD = 1712.409$$

$$SD = 3.4293$$

#### Unique X

$$(6+8)/2=7$$

$$(8+12)/2=10$$

$$(12+18)/2=15$$

$$(18+24)/2=21$$

X<=7

$$L(y):\{18\}$$

$$\omega_{L} = 1, SD_{L} = 0$$

$$SDR = 3.429 - \left[ \left( \frac{1}{5} * 0 \right) + \left( \frac{4}{5} * 3.031 \right) \right] = 1.004$$

X<=10

X<=15

$$L(y):\{18,17,14\} \qquad R(y):\{9,11\}$$

$$\omega_{L} = 3, \overline{y_{L}} = 16.333, SD_{L} = 1.7 \qquad \omega_{R} = 2, \overline{y_{R}} = 10, SD_{R} = 1$$

$$SDR = 3.429 - \left[ \left( \frac{3}{5} * 1.7 \right) + \left( \frac{2}{5} * 1 \right) \right] = 2.009$$

X<=21

L(y):{18,17,14,11} R(y):{9}
$$\omega_{L} = 4, \overline{y_{L}} = 15, SD_{L} = 2.739 \qquad \omega_{R} = 1, SD_{R} = 0$$

$$SDR = 3.429 - \left[ \left( \frac{4}{5} * 2.739 \right) + \left( \frac{1}{5} * 0 \right) \right] = 1.238$$

# Ans:ที่ดีที่สุดคือ X<=15

# โจทย์ข้อที่ 2.2 (โจทย์ท้าทาย)

บริษัทเกมต้องการสร้างโมเดลทำนาย "คะแนนในเกม" (Y) ของผู้เล่น โดยอ้างอิงจาก "ชั่วโมงที่เล่น" (X1) และ"เลเวลผู้เล่น" (X2) เงื่อนไข: หยุดแบ่ง Node (สร้าง Leaf) ก็ต่อเมื่อ Node นั้นมีข้อมูลน้อยกว่าหรือ เท่ากับ 3 ชิ้น

| ชั่วโมงที่เล่น (X1) | เลเวลผู้เล่น (X2) | คะแนนในเกม (Y) |
|---------------------|-------------------|----------------|
| 5                   | 10                | 1200           |
| 15                  | 25                | 3500           |
| 20                  | 30                | 4500           |
| 2                   | 5                 | 500            |
| 8                   | 15                | 1800           |
| 25                  | 40                | 6000           |
| 12                  | 20                | 2800           |
| 18                  | 35                | 4000           |

1. จงสร้าง Decision Tree จากข้อมูลทั้งหมดให้สมบูรณ์ตามขั้นตอน (แสดงการคำนวณเพื่อหาจุดแบ่งที่ดี ที่สุดในแต่ละ Node)

$$\sum y \frac{1200 + 3500 + 4500 + 500 + 1800 + 6000 + 2800 + 4000}{8} = 3037.5$$

$$SD = \sqrt{\frac{(1200 - 3037.5)^2 + (3500 - 3037.5)^2 + (4500 - 3037.5)^2 + (500 - 3037.5)^2 + (1800 - 3037.5)^2 + (6000 - 3037.5)^2 + (2800 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^2 + (4000 - 3037.5)^$$

SD = 1712.409

UniqueX1

UniqueX2

$$(2+5)/2=3.5$$

(5+10)/2=7.5

$$(5+8)/2=6.5$$

(10+15)/2=12.5

$$(8+12)/2=10$$

(15+20)/2=17.5

$$(12+15)/2=13.5$$

$$(20+25)/2=22.5$$

$$(15+18)/2=16.5$$

$$(20+25)/2=22.5$$

$$(35+40)/2=37.5$$

หาจุดแบ่งแรกที่ดีที่สุด

X1 <= 3.5

 $L(y):{500}$ 

R(y):{1200,3500,4500,1800,6000,2800,4000}

$$\omega_{L} = 1, SD_{L} = 0$$

$$\omega_R = 7$$
,  $\overline{y_R} = 3400$ ,  $SD_R = 1516.575$ 

$$SDR = 1712.409 - \left[ \left( \frac{1}{8} * 0 \right) + \left( \frac{7}{8} * 1516.575 \right) \right] = 385.406$$

X1 <= 6.5

L(y):{500,1200}

R(y):{3500,4500,1800,6000,2800,4000}

$$\omega_L = 2, y_L = 850, SD_L = 350$$

$$\omega_R = 6, \overline{y_R} = 3766.667, SD_R = 1319.933$$

$$SDR = 1712.409 - \left[ \left( \frac{2}{8} *843.727 \right) + \left( \frac{6}{8} *1319.933 \right) \right] = 634.959$$

X1<=10

L(v):{500,1200,1800}

R(y):{3500,4500,6000,2800,4000}

$$\omega_L = 3, \overline{y_L} = 1166.667, SD_L = 531.2459$$
  $\omega_R = 5, \overline{y_R} = 4160, SD_R = 1078.147$ 

$$\omega_R = 5, \overline{y_R} = 4160, SD_R = 1078.147$$

$$SDR = 1712.409 - \left[ \left( \frac{3}{8} * 531.246 \right) + \left( \frac{5}{8} * 1078.147 \right) \right] = 839.35$$

X1<=13.5

L(y):{500,1200,1800,2800}

R(y):{3500,4500,6000,4000}

$$\omega_L = 4, \overline{y}_L = 1575, SD_L = 843.727$$

$$\omega_R = 4, \overline{y_R} = 4500, SD_R = 935.414$$

$$SDR = 1712.409 - \left[ \left( \frac{4}{8} * 843.727 \right) + \left( \frac{4}{8} * 935.414 \right) \right] = 822.823$$

X1<=16.5

$$\mathsf{L}(\mathsf{y}) : \{500, 1200, 1800, 2800, 3500\}$$
 
$$\mathsf{R}(\mathsf{y}) : \{4500, 6000, 4000\}$$
 
$$\mathsf{\omega}_L = 5, \overline{\mathsf{y}_L} = 1960, SD_L = 1069.626$$
 
$$\mathsf{\omega}_R = 3, \overline{\mathsf{y}_R} = 4833.333, SD_R = 849.837$$
 
$$\mathsf{SDR} = 1712.409 - \left\lceil \left(\frac{5}{8} * 1069.626\right) + \left(\frac{3}{8} * 849.837\right) \right\rceil = 725.204$$

X1<=19

$$\begin{aligned} \mathsf{L}(\mathsf{y}) &: \{500, 1200, 1800, 2800, 3500, 4000\} \\ \boldsymbol{\omega}_L &= 6, \overline{\boldsymbol{y}_L} = 2300, \boldsymbol{SD}_L = 1226.784 \\ \boldsymbol{SDR} &= 1712.409 - \left[ \left( \frac{6}{8} * 1226.784 \right) + \left( \frac{2}{8} * 750 \right) \right] = 604.821 \end{aligned}$$

X1<=22.5

$$\begin{aligned} \mathsf{L}(\mathsf{y}) &: \{500, 1200, 1800, 2800, 3500, 4500\} \\ \boldsymbol{\omega}_{L} &= 7, \overline{\mathbf{y}_{L}} = 2614.286, SD_{L} = 1385.051 \\ SDR &= 1712.409 - \left[ \left( \frac{7}{8} * 1385.051 \right) + \left( \frac{1}{8} * 0 \right) \right] = 500.489 \end{aligned}$$

X2<=3.5

$$\mathsf{E}(\mathsf{y}) : \{500\}$$
 
$$\mathsf{R}(\mathsf{y}) : \{1200, 3500, 4500, 1800, 6000, 2800, 4000\}$$
 
$$\omega_{\scriptscriptstyle L} = 1, SD_{\scriptscriptstyle L} = 0$$
 
$$\omega_{\scriptscriptstyle R} = 7, \overline{y_{\scriptscriptstyle R}} = 3400, SD_{\scriptscriptstyle R} = 1516.575$$
 
$$SDR = 1712.409 - \left\lceil \left(\frac{1}{8} * 0\right) + \left(\frac{7}{8} * 1516.575\right) \right\rceil = 385.406$$

X2<=12.5

$$\mathsf{L}(\mathsf{y}) : \{500,1200\} \\ \boldsymbol{\omega}_L = 2, \overline{\boldsymbol{y}}_L = 850, SD_L = 350 \\ SDR = 1712.409 - \left[ \left( \frac{2}{8} * 843.727 \right) + \left( \frac{6}{8} * 1319.933 \right) \right] = 634.959$$

 $X2 \le 17.5$ 

X2<=22.5

$$\mathsf{L}(\mathsf{y}) : \{500, 1200, 1800, 2800\}$$
 
$$\mathsf{R}(\mathsf{y}) : \{3500, 4500, 6000, 4000\}$$
 
$$\mathsf{\omega}_L = 4, \overline{\mathsf{y}}_L = 1575, SD_L = 843.727$$
 
$$\mathsf{\omega}_R = 4, \overline{\mathsf{y}}_R = 4500, SD_R = 935.414$$
 
$$\mathsf{SDR} = 1712.409 - \left[ \left( \frac{4}{8} * 843.727 \right) + \left( \frac{4}{8} * 935.414 \right) \right] = 822.823$$

 $X2 \le 27.5$ 

$$\begin{aligned} \mathsf{L}(\mathsf{y}) &: \{500, 1200, 1800, 2800, 3500\} \\ \boldsymbol{\omega}_{L} &= 5, \overline{y_{L}} = 1960, SD_{L} = 1069.626 \\ SDR &= 1712.409 - \left[ \left( \frac{5}{8} * 1069.626 \right) + \left( \frac{3}{8} * 849.837 \right) \right] = 725.204 \end{aligned}$$

X2<=32.5

X2<=37.5

$$\begin{split} \mathsf{L}(\mathsf{y}) &: \{500, 1200, 1800, 2800, 3500, 4500\} \\ \boldsymbol{\omega}_{_{L}} &= 7, \overline{\boldsymbol{y}_{_{L}}} = 2614.286, SD_{_{L}} = 1385.051 \\ SDR &= 1712.409 - \left[ \left( \frac{7}{8} * 1385.051 \right) + \left( \frac{1}{8} * 0 \right) \right] = 500.489 \end{split}$$

# การแบ่งกลุ่มแรกที่ดีที่สุดคือ X1<=10และX2<=17.5

จะได้

# กลุ่มข้อมูล(L)

| ชั่วโมงที่เล่น(x1) | เลเวล(x2) | คะแนน(y) |
|--------------------|-----------|----------|
| 2                  | 5         | 500      |
| 5                  | 10        | 1200     |
| 8                  | 15        | 1800     |

# กลุ่มข้อมูล(R)

| ชั่วโมงที่เล่น(x1) | เลเวล(x2) | คะแนน(y) |
|--------------------|-----------|----------|
| 12                 | 20        | 2800     |
| 15                 | 25        | 3500     |
| 18                 | 35        | 4000     |
| 20                 | 30        | 4500     |
| 25                 | 40        | 6000     |

# หยุดแบ่ง Node (สร้าง Leaf) ก็ต่อเมื่อ Node นั้นมีข้อมูลน้อยกว่าหรือเท่ากับ 3 ชิ้น หาจุดแบ่งที่สองที่ดีที่สุดจากกลุ่มข้อมูล(L)

| UniqueX1       | UniqueX2       |
|----------------|----------------|
| (12+15)/2=13.5 | (20+25)/2=22.5 |
| (15+18)/2=16.5 | (25+30)/2=27.5 |
| (18+20)/2=19   | (30+35)/2=32.5 |
| (20+25)/2=22.5 | (35+40)/2=37.5 |

$$\frac{-}{y} = \frac{2800 + 3500 + 4000 + 4500 + 6000}{5} = 4160$$

$$SD = \sqrt{\frac{(2800 - 4160)^2 + (3500 - 4160)^2 + (4000 - 4160)^2 + (4500 - 4160)^2 + (6000 - 4160)^2}{5}}$$

SD = 1078.147

X1<=13.5

$$\begin{split} \mathsf{L}(\mathsf{y}) &: \{2800\} \\ \boldsymbol{\omega}_{\scriptscriptstyle L} &= 1, SD_{\scriptscriptstyle L} = 0 \\ \boldsymbol{\omega}_{\scriptscriptstyle R} &= 5, \overline{y_{\scriptscriptstyle R}} = 2760, SD_{\scriptscriptstyle R} = 1177.455 \\ SDR &= 1078.148 - \left[ \left( \frac{1}{5} * 0 \right) + \left( \frac{4}{5} * 1177.455 \right) \right] = 329.816 \end{split}$$

X1<=16.5

X1<=19

L(y):{2800,3500,4000} R(y):{4500,6000} 
$$\omega_{L} = 3, \overline{y}_{L} = 3433.333, SD_{L} = 492.161 \qquad \omega_{R} = 4, \overline{y}_{R} = 5250, SD_{R} = 750$$

$$SDR = 1078.147 - \left[ \left( \frac{3}{5} * 492.161 \right) + \left( \frac{2}{5} * 750 \right) \right] = 259.578$$

X1<=22.5

X2<=22.5

X2<=27.5

L(y):{2800,3500} R(y):{4000,4500,6000} 
$$\omega_{L} = 2, \overline{y}_{L} = 3150, SD_{L} = 350 \qquad \omega_{R} = 4, \overline{y}_{R} = 4833.333, SD_{R} = 849.837$$
$$SDR = 1078.147 - \left[ \left( \frac{2}{5} * 350 \right) + \left( \frac{3}{5} * 849.837 \right) \right] = 428.245$$

X2<=32.5

$$L(y):\{2800,3500,4500\}$$

$$\omega_{L} = 3, \overline{y}_{L} = 3600, SD_{L} = 697.615$$

$$SDR = 1078.147 - \left[ \left( \frac{3}{5} * 697.615 \right) + \left( \frac{2}{5} * 1000 \right) \right] = 259.578$$

# การแบ่งกลุ่มสองที่ดีที่สุดคือ X1<=22.5 หรือ X2<=37.5

# กลุ่มข้อมูล(L)

| ชั่วโมงที่เล่น(x1) | เลเวล(x2) | คะแนน(y) |
|--------------------|-----------|----------|
| 12                 | 20        | 2800     |
| 15                 | 25        | 3500     |
| 18                 | 35        | 4000     |
| 20                 | 30        | 4500     |

# กลุ่มข้อมูล(R)

| ชั่วโมงที่เล่น(x1) | เลเวล(x2) | คะแนน(y) |
|--------------------|-----------|----------|
| 25                 | 40        | 6000     |

$$\overline{y} = \frac{2800 + 3500 + 4000 + 4500}{4} = 3700$$

$$SD = \sqrt{\frac{(2800 - 3700)^2 + (3500 - 3700)^2 + (4000 - 3700)^2 + (4500 - 3700)^2}{4}}$$

SD = 628.49

UniqueX1 UniqueX2

(12+15)/2=13.5 (20+25)/2=22.5

(15+18)/2=16.5 (25+30)/2=27.5

(18+20)/2=19 (30+35)/2=32.5

X1<=13.5

X1<=16.5

L(y):{2800,3500} R(y):{4000,4500} 
$$\omega_{L} = 2, \overline{y}_{L} = 3150, SD_{L} = 350 \qquad \omega_{R} = 2, \overline{y}_{R} = 4250, SD_{R} = 250$$
$$SDR = 628.49 - \left[ \left( \frac{2}{4} * 350 \right) + \left( \frac{2}{4} * 250 \right) \right] = 328.49$$

X1<=19

X2<=22.5

X2<=27.5

L(y):{2800,3500} R(y):{4000,4500} 
$$\omega_{L} = 2, \overline{y}_{L} = 3150, SD_{L} = 350 \qquad \omega_{R} = 2, \overline{y}_{R} = 4250, SD_{R} = 250$$

$$SDR = 628.49 - \left[ \left( \frac{2}{4} * 350 \right) + \left( \frac{2}{4} * 250 \right) \right] = 328.49$$

การแบ่งกลุ่มสามที่ดีที่สุดคือ X1<=16.5 หรือ X2<=27.5

# กลุ่มข้อมูล(L)

| ชั่วโมงที่เล่น(x1) | เลเวล(x2) | คะแนน(y) |
|--------------------|-----------|----------|
| 12                 | 20        | 2800     |
| 15                 | 25        | 3500     |

# กลุ่มข้อมูล(R)

| ชั่วโมงที่เล่น(x1) | เลเวล(x2) | คะแนน(y) |
|--------------------|-----------|----------|
| 18                 | 35        | 4000     |
| 20                 | 30        | 4500     |

2. วาดแผนผังต้นไม้ (Decision Tree) ที่สร้างเสร็จแล้ว



- 3. หากมีผู้เล่นใหม่ที่มีชั่วโมงที่เล่น 10 ชั่วโมง และ เลเวล 18 จงทำนายคะแนนของเขา
- ∴หากมีผู้เล่นใหม่ที่มีชั่วโมงที่เล่น 10 ชั่วโมง และ เลเวล 18 จะมีคะแนนอยู่ที่ 4250

โจทย์ข้อที่ 3.1

นักวิเคราะห์สินเชื่อมีข้อมูลการอนุมัติสินเชื่อส่วนบุคคล โดยพิจารณาจาก "รายได้ต่อปี (แสนบาท)" (X1) และ"หนี้สินรวม (แสนบาท)" (X2)

| ID | รายได้ (X1) | หนี้สิน (X2) | ผลอนุมัติ (Y) |
|----|-------------|--------------|---------------|
| P1 | 5           | 1            | อนุมัติ       |
| P2 | 6           | 3            | อนุมัติ       |
| P3 | 2           | 2            | ไม่อนุมัติ    |
| P4 | 3           | 4            | ไม่อนุมัติ    |
| P5 | 7           | 2            | อนุมัติ       |
| P6 | 4           | 5            | ไม่อนุมัติ    |

คำสั่ง: ลูกค้าใหม่ (P\_new) มีรายได้ 6 แสนบาท และ หนี้สิน 4 แสนบาท จงใช้K-NN (K=3) ทำนายว่า ลูกค้าคนนี้จะได้รับการอนุมัติหรือไม่?

$$P_{\perp} = \sqrt{(5-6)^2 + (1-4)^2} = 3.162$$

$$P_{2} = \sqrt{(6-6)^{2} + (3-4)^{2}} = 1$$

$$P_3 = \sqrt{(2-6)^2 + (2-4)^2} = 4.472$$

$$P_{4} = \sqrt{(3-6)^{2} + (4-4)^{2}} = 3$$

$$P_{5} = \sqrt{(7-6)^{2} + (2-4)^{2}} = 2.236$$

$$P_6 = \sqrt{(4-6)^2 + (5-4)^2} = 2.236$$

จงใช้K-NN (K=3) ทำนายว่าลูกค้าคนนี้จะได้รับการอนุมัติหรือไม่?

| ID    | ระยะห่างจากP_New | ผลอนุมัติ          |
|-------|------------------|--------------------|
| P1    | 1                | อนุมัติ            |
| P5,P6 | 2.236            | อนุมัติ/ไม่อนุมัติ |
| P4    | 3                | ไม่อนุมัติ         |

∴P\_New อาจะอนุมัติหรือไม่อนุมัติก็ได้ก็ได้ หรืออิงจากระยะทางเฉลี่ยที่สุด

กลุ่มอนุมัติ P1,P5

(1+2.236)/2=1.618

กลุ่มไม่อนุมัติ P4,P6

(3+2.236)/2=2.618

∴P\_New จะจัดอยู่ในกลุ่มอนุมัติ

โจทย์ข้อที่ 3.2

มหาวิทยาลัยแห่งหนึ่งใช้ข้อมูล "เกรดเฉลี่ยตอน ม.ปลาย" (X1) และ "คะแนนสอบเข้า" (X2) เพื่อคัดกรอง นักศึกษาที่มีแนวใน้มจะ "เรียนต่อจนจบ" หรือ "ลาออก"

| ID | GPA (X1) | คะแนนสอบ (X2) | สถานะ (Y) |
|----|----------|---------------|-----------|
| S1 | 3.8      | 85            | เรียนจบ   |
| S2 | 2.5      | 60            | ลาออก     |
| S3 | 3.5      | 90            | เรียนจบ   |
| S4 | 2.8      | 75            | ลาออก     |
| S5 | 3.2      | 80            | เรียนจบ   |
| S6 | 2.2      | 65            | ลาออก     |
| S7 | 3.9      | 95            | เรียนจบ   |

คำสั่ง: นักเรียนใหม่ (S\_new) มีGPA 3.0 และ คะแนนสอบ 70 จงใช้K-NN (K=5) ทำนายสถานะของ นักเรียน

คนนี้

$$S_{1} = \sqrt{(3.8-3)^{2} + (85-70)^{2}} = 15.021$$

$$S_2 = \sqrt{(2.5-3)^2 + (60-70)^2} = 10.012$$

$$S_{3} = \sqrt{(3.5-3)^{2} + (90-70)^{2}} = 20.006$$

$$S_4 = \sqrt{(2.8-3)^2 + (75-70)^2} = 5.004$$

$$S_5 = \sqrt{(3.2-3)^2 + (80-70)^2} = 10.002$$

$$S_6 = \sqrt{(2.2-3)^2 + (65-70)^2} = 5.063$$

$$S_{7} = \sqrt{(3.9-3)^2 + (95-70)^2} = 25.016$$

| ID | ระยะห่างจากP_New | สถานะ   |
|----|------------------|---------|
| S4 | 5.004            | ลาออก   |
| S6 | 5.063            | ลาออก   |
| S5 | 10.002           | เรียนจบ |
| S2 | 10.012           | ลาออก   |
| S1 | 15.021           | เรียนจบ |

∴S\_New มีแนวโน้มว่าจะเรียนจบ

# โจทย์ข้อที่ 4.1

มีข้อมูล 2 คลาส คือ A (สีฟ้า) และ B (สีแดง)

- คลาส A: P1(2, 5), P2(3, 2)
- คลาส B: P3(6, 4), P4(7, 7)

มีคนเสนอเส้นแบ่ง (Hyperplane) H1 คือเส้นแนวดิ่ง x=4.5

# คำสั่ง:

- 1. จงคำนวณหาระยะห่างจากทุกจุดไปยังเส้น H1
- ∴ สมการหลักคือ 1x + 0y 4.5 = 0

กลุ่มA

$$P1 = \frac{\left|2 + 0 - 4.5\right|}{\sqrt{1^2 + 0^2}} = 2.5$$

$$P2 = \frac{\left|3 + 0 - 4.5\right|}{\sqrt{1^2 + 0^2}} = 1.5$$

กลุ่มB

$$P3 = \frac{\left|6+0-4.5\right|}{\sqrt{1^2+0^2}} = 1.5$$

$$P4 = \frac{\left|7 + 0 - 4.5\right|}{\sqrt{1^2 + 0^2}} = 2.5$$

- 2. เส้น H1 มี Support Vectors คือจุดใดบ้าง? และมี Margin กว้างเท่าใด?
- ∴ เส้น H1มี Support Vectors คือจุด P2และP3 และมี Margin = 3
- 3. จงหาเส้นแบ่งที่ดีที่สุด (Optimal Hyperplane) และ Margin สูงสุดที่เป็นไปได้สำหรับข้อมูลชุดนี้

∴ Xoptimal: 
$$\frac{3+6}{2} = 4.5$$
 และมี Margin = 3

# โจทย์ข้อที่ 4.2

จากข้อมูลชุดเดิมในข้อ 4.1 มีคนเสนอเส้นแบ่งใหม่ H2 คือ x+y=8=0 คำสั่ง:

- 1. จงคำนวณหาระยะห่างจากทุกจุดไปยังเส้น H2
- ∴. สมการหลักคือ 1x + 1y 8 = 0

กลุ่มA

$$P1 = \frac{\left|2 + 5 - 8\right|}{\sqrt{1^2 + 1^2}} = 0.707$$

$$P2 = \frac{\left|3 + 2 - 8\right|}{\sqrt{1^2 + 1^2}} = 2.121$$

กลุ่มB

$$P3 = \frac{\left|6+4-8\right|}{\sqrt{1^2+1^2}} = 1.414$$

$$P4 = \frac{|7+7-8|}{\sqrt{1^2+0^2}} = 6.364$$

- 2. เส้น H2 มี Support Vectors คือจุดใดบ้าง และ Margin กว้างเท่าใด?
- ∴ เส้น H2มี Support Vectors คือจุด P1และP3 และมี Margin = 2.121
- 3. เปรียบเทียบกับผลลัพธ์ในข้อ 4.1 เส้น H2 เป็นเส้นแบ่งที่ดีที่สุดหรือไม่ เพราะอะไร?
- ∴ เทียบกับH1แล้วH2ไม่ใช้เส้นแบ่งที่ดีที่สุดเพราะ H1 มี Margin สูงกว่าและมีระยะห่างระหว่างข้อมูลทั้ง สองกลุ่มเท่าๆกัน