- Ενδιαφέρουσα κίνηση:
 - Αρκετά περίπλοκη
 - Δεν καταλήγει σε κίνηση ενός βαθμού ελευθερίας
- Τι είναι το στερεό σώμα:
 - > Συλλογή υλικών σημείων των οποίων οι αποστάσεις παραμένουν σταθερές
 - ♦ Διακριτή ή συνεχή κατανομή των υλικών σημείων
 - Ιδανικός ορισμός μια και δεν υπάρχουν τέτοια συστήματα
 - Τα άτομα που αποτελούν ένα στερεό κινούνται Μικροσκοπική κίνηση
- □ Ενδιαφερόμαστε για την μακροσκοπική κίνηση στερεών σωμάτων
 - Θα αγνοήσουμε μακροσκοπικές παραμορφώσεις του στερεού μέγεθος/σχήμα

- Θεωρήστε ένα στερεό σώμα το οποίο κινείται ελεύθερα στο χώρο
- \square Η δυναμική του σώματος αυτού περιγράφεται από την Lagrangian: L=T
 - ightharpoonup Κινείται ελεύθερα ightharpoonup V=0
- $lue{}$ Πρέπει επομένως να μελετήσουμε την κινητική ενέργεια T
- Έστω ότι έχουμε ένα υλικό σημείο που υπόκειται σε περιστροφή
 - ightharpoonup Το διάνυσμα θέσης του σώματος έστω: \vec{r}

$$\vec{r} = \sum r_i' \vec{e}_i'$$
 σταθερό σύστημα σύστημα συντεταγμένων

$$\vec{r} = \sum_i^i r_i \vec{e}_i$$
 περιστρεφόμενο σύστημα σύστημα συντεταγμένων

- Για να υπολογίσουμε την ταχύτητα του υλικού σημείου:
 - ightharpoonup Θεωρούμε το σύστημα συντεταγμένων τέτοιο ώστε: $r_i = \sigma \tau \alpha \theta$.

$$\dot{\vec{r}} = \frac{d}{dt} \left(\sum_{i} r_{i} \vec{e}_{i} \right) \implies \dot{\vec{r}} = \sum_{i} r_{i} \dot{\vec{e}}_{i} \implies \dot{\vec{r}} = \sum_{i} r_{i} \left(\vec{\omega} \times \vec{e}_{i} \right) \implies \dot{\vec{r}} = \vec{\omega} \times \vec{r}$$

- lacktriangle Θεωρήστε τώρα ένα στερεό αντί του υλικού σημείου συλλογή N υλικών σημείων
 - Όλα τα σημεία περιστρέφονται μαζί:
 - ightharpoonup Η κινητική ενέργεια θα είναι: $T = \sum_{a=1}^{N} \frac{1}{2} m_a \left(\vec{\omega}^2 \vec{r}_a^2 \left(\vec{\omega} \cdot \vec{r}_a \right)^2 \right)$
 - Η κινητική ενέργεια είναι 2ου βαθμού συνάρτηση της γωνιακής ταχύτητας ω
- \Box Μπορούμε να την γράψουμε σε πιο απλή μορφή: $T = \frac{1}{2} \sum_{i=1}^{3} \omega_i I_{ij} \omega_j$
 - ightharpoonup όπου: $\vec{\omega} = \sum_{i=1}^{3} \omega_i \vec{e}_i$ οι συνιστώσες της ω στο περιστρεφόμενο σύστημα
 - και: $I_{ij} = \sum_{a=1}^{N} m_a \left(\vec{r}_a^2 \delta_{ij} r_i^a r_j^a \right)$ ένα αντικείμενο με 9 στοιχεία $(i_i j = 1...3)$ που ορίζεται ως ο τανυστής της ροπής αδράνειας του στερεού σώματος

- Η κινητική ενέργεια είναι 2ου βαθμού συναρτήσει της γωνιακής ταχύτητας
 - > Ο ρόλος της μάζας στην γραμμική κίνηση ασκείται από τον τανυστή αδράνειας

$$T=rac{1}{2}\sum_{i,j}^{3}oldsymbol{\omega}_{i}I_{ij}oldsymbol{\omega}_{j}$$
 опои: $I_{ij}=\sum_{a=1}^{N}m_{a}ig(ec{r}_{a}^{2}oldsymbol{\delta}_{ij}-r_{i}^{a}r_{j}^{a}ig)$

- Ο τανυστής αδράνειας είναι μια συλλογή 9 παραμέτρων που μπορούν να προσδιοριστούν για οποιοδήποτε στερεό σώμα
- Αποτελεί ιδιότητα του στερεού σώματος ανεξάρτητα της κίνησής του
- Ο τανυστής αδράνειας περιέχει 2 ξεχωριστές ιδιότητες:
 - \triangleright Συμμετρικός 3×3 πίνακας: $I_{ij} = I_{ji}$
 - \diamond δ_{ii} είναι συμμετρικό
 - \Rightarrow το γινόμενο $r_i^a r_j^a$ είναι συμμετρικό: $r_i^a r_j^a = r_j^a r_i^a$
 - ightharpoonup Χρονικά ανεξάρτητος $I_{ij} = \sigma \tau \alpha \theta$.
- Ο τανυστής αδράνειας ορίζεται και για συνεχείς κατανομές μάζας:
 - ightharpoonup Έστω $ho(ec{r})$ η πυκνότητα μάζας του σώματος

$$I_{ij} = \int d^3\vec{r} \, \rho(\vec{r}) \Big\{ \vec{r}^2 \delta_{ij} - (\vec{r} \cdot \vec{e}_i) (\vec{r} \cdot \vec{e}_j) \Big\} \qquad \text{ικανοποιεί τις 2 ιδιότητες του τανυστή αδράνειας}$$

Κατανόηση ιδιοτήτων του τανυστή αδράνειας

- Θα πρέπει να κατανοήσουμε πως μοιάζει ο τανυστής της αδράνειας για διάφορα σώματα και περιπτώσεις

σώματα και περιπτώσεις
Ο τανυστής μπορεί να γραφεί με την μορφή:
$$I_{ij} = \sum_{a=1}^{N} m_a \left(\vec{r}_a^2 \delta_{ij} - r_i^a r_j^a \right)$$

$$\Rightarrow \mathbf{I} = \begin{bmatrix} \sum_a m_a \left(r_{a,2}^2 + r_{a,3}^2 \right) & -\sum_a m_a r_{a,1} r_{a,2} & -\sum_a m_a r_{a,1} r_{a,3} \\ -\sum_a m_a r_{a,2} r_{a,1} & \sum_a m_a \left(r_{a,1}^2 + r_{a,3}^2 \right) & -\sum_a m_a r_{a,2} r_{a,3} \\ -\sum_a m_a r_{a,3} r_{a,1} & -\sum_a m_a r_{a,3} r_{a,2} & \sum_a m_a \left(r_{a,1}^2 + r_{a,2}^2 \right) \end{bmatrix}$$

- Τα διαγώνια στοιχεία ονομάζονται ροπές αδράνειας
- Τα μή διαγώνια στοιχεία ονομάζονται γινόμενα αδράνειας
- Αφού ο τανυστής είναι συμμετρικός υπάρχουν 6 ανεξάρτητα στοιχεία
- Μπορεί να θεωρηθεί ότι αποτελεί το άθροισμα τανυστών αδράνειας διαφόρων τμημάτων του σώματος
 - ♦ Αυτό εξηγεί την μορφή του τανυστή για μια συνεχή κατανομή μάζας

Υπολογισμός του τανυστή αδράνειας ομογενούς κύβου

- Θεωρούμε μια κορυφή του κύβου ως την αρχή του συστήματος συντεταγμένων
- Οι άξονες του συστήματος είναι κατά μήκος των τριών ακμών του:
 - ightharpoonup Η πυκνότητα μάζας είναι ρ=σταθ.= $M/V=M/b^3$:

Για συνεχή κατανομή μάζας, ο τανυστής αδράνειας είναι:

$$I_{ij} = \int d^3 \vec{r} \, \rho(\vec{r}) \left\{ \vec{r}^2 \delta_{ij} - (\vec{r} \cdot \vec{e}_i) (\vec{r} \cdot \vec{e}_j) \right\}$$

$$\hat{e}_{2} I_{11} = \rho \int_{0}^{b} dr_{3} \int_{0}^{b} dr_{2} \left(r_{2}^{2} + r_{3}^{2} \right) \int_{0}^{b} dr_{1} = \frac{2}{3} \rho b^{5} = \frac{2}{3} M b^{2}$$

$$I_{12} = -\rho \int_{0}^{b} r_{1} dr_{1} \int_{0}^{b} dr_{2} r_{2} \int_{0}^{b} dr_{3} = -\frac{1}{4} \rho b^{5} = -\frac{1}{4} M b^{2}$$

$$I_{12} = -\rho \int_0^b r_1 dr_1 \int_0^b dr_2 r_2 \int_0^b dr_3 = -\frac{1}{4} \rho b^5 = -\frac{1}{4} Mb^2$$

$$I_{11} = I_{22} = I_{33} = \frac{2}{3}Mb^2$$
 kai $I_{12} = I_{13} = I_{23} = -\frac{1}{4}Mb^2$

Διαγωνοποίηση του τανυστή αδράνειας

- Ο τανυστής αδράνειας είναι πραγματικός και συμμετρικός
 - Μπορεί να διαγωνοποιηθεί
- □ Υπάρχει ένας ορθογώνιος πίνακας, **O**, τέτοιος ώστε: **OIO**[™] διαγώνιος
 - ♦ Θυμηθείτε ότι ένας ορθογώνιος πίνακας αντιπροσωπεύει περιστροφή
 - $ightharpoonup Συγκεκριμένα: <math>\mathbf{OIO}^{\mathrm{T}} = \left(\begin{array}{c} I_1 \\ I_2 \\ I_3 \end{array}\right)$
 - Ο ορθογώνιος πίνακας, Ο, αντιπροσωπεύει την απαραίτητη περιστροφή τέτοια ώστε ο πίνακας I να έρθει σε διαγώνια μορφή
- Ορίσαμε τον τανυστή αδράνειας μέσω συστήματος συντεταγμένων, \vec{e}_i που περιστρέφονταν μαζί με το σώμα
- Μπορούμε να ορίσουμε ένα νέο σύστημα αναφοράς με άξονες $\hat{\vec{e}}_i$ ως προς το οποίο ο τανυστής αδράνειας είναι διαγώνιος
 - ightarrow Συγκεκριμένα: $\hat{\vec{e}}_i = O_{ij}\vec{e}_j$ και ο πίνακας Ο δεν εξαρτάται από τον χρόνο
 - ightarrow Δηλαδή αν υπολόγιζα τον τανυστή αδράνειας απευθείας στο σύστημα αναφοράς των $\hat{\vec{e}}_i$ ο τανυστής, I_{ii} , θα ήταν διαγώνιος
 - ightharpoonup Οι άξονες $\hat{\vec{e}}_i$ ονομάζονται κύριοι άξονες του στερεού σώματος

Διαγωνοποίηση του τανυστή αδράνειας

- 🗖 Δεν υπάρχει τρόπος να ξέρουμε τους άξονες που διαγωνοποιούν τον Ι
 - Χρειάζεται να βρεθεί ο Ι ως προς κάποιο σύστημα αναφοράς
 - Μετά διαγωνοποιείται σύμφωνα με τους τρόπους διαγωνοποίησης
 - Οι τρεις στήλες ή γραμμές του ορθογώνιου πίνακα που διαγωνοποιεί τον Ι αποτελούν τους άξονες ως προς τους οποίους ο Ι είναι διαγώνιος
- 🔲 Ωστόσο οι κύριοι άξονες είναι οι άξονες συμμετρίας του στερεού σώματος
 - Τα διαγώνια στοιχεία του διαγωνοποιημένου τανυστή αδράνειας είναι οι ιδιοτιμές του τανυστή
 - Οι άξονες ως προς τους οποίους διαγωνοποιείται ο τανυστής είναι τα ιδιοδιανύσματα του τανυστή
 - Οι ιδιοτιμές του τανυστή αδράνειας είναι πραγματικές και θετικές σταθερές
 - Αυτό ισχύει γιατί:
 - \Leftrightarrow Έστω το μοναδιαίο διάνυσμα c_i : $c^2 = \sum c_i^2 = 1$

♦ Επομένως όλες οι κύριες τιμές της ροπής αδράνειας είναι θετικές

Ιδιότητες του διαγωνοποιημένου τανυστή αδράνειας

□ Είδαμε ότι οι κύριες τιμές της ροπής αδράνειας είναι θετικές

$$\sum_{i,j} I_{ij} c_i c_j = \sum_a m_a \left(\vec{r}_a^2 \vec{c}^2 - \left(\vec{r}_a \cdot \vec{c} \right)^2 \right) \Rightarrow \sum_a m_a \left(\ge 0 \right) \Rightarrow \sum_{ij} I_{ij} c_i c_j \ge 0$$

- \Leftrightarrow Θυμηθείτε επίσης ότι εφόσον τα $\hat{\vec{e}}_i$ είναι ιδιοδιανύσματα του τανυστή αδράνειας (από γραμμική άλγεβρα) η σχέση $\hat{\vec{e}}^{\rm T} \mathbf{I} \hat{\vec{e}}$ δίνει την αντίστοιχη ιδιοτιμή
- \square Συνέπεια της σχέσης $\sum_a m_a (\ge 0)$ είναι ότι: όταν η σχέση στην παρένθεση είναι 0 τότε μια κύρια τιμή της ροπής αδράνειας είναι μηδέν
 - > Τότε όμως όλες οι μάζες ή κατανομή μάζας είναι κατά μήκος ενός κύριου άξονα
- Μπορείτε να αποδείξετε ότι δυο κύριες τιμές της ροπής αδράνειας είναι μηδέν αν το στερεό είναι υλικό σημείο

Παράδειγμα υπολογισμού τανυστή αδράνειας

Έστω σημειακή μάζα σε θέση R από την αρχή του συστήματος συντεταγμένων. Θέλουμε να υπολογίσουμε την ροπή αδράνειας ως προς την αρχή και την T

- Ο τανυστής αδράνειας θα είναι: $I_{ij}=m\left(R^2\delta_{ij}-R_iR_j\right)$ $I_z=m\left(R^2-R_zR_z\right)=0$ η κύρια τιμή της ροπής αδράνειας απαλείφεται ως προς τον z-άξονα
 - Οι καρτεσιανές συντεταγμένες για την περίπτωση αυτή είναι οι κύριοι άξονες του τανυστή αδράνειας.

$$I_x = m(R^2 - R_x R_x) = mR^2 = I_y$$

Λεπτή ράβδος

lacktriangle Ράβδος μήκους L με γραμμική πυκνότητα ho = M/L κατά μήκος του z-άξονα. Ποια η ροπή αδράνειας ως προς το κέντρο της

ightharpoonup Οι κύριοι άξονες θα είναι οι τρεις άξονες x,y και z:

$$I_z = \int_{-L/2}^{L/2} dz \left(r^2 - (\vec{r} \cdot \hat{z})^2 \right) = \int_{-L/2}^{L/2} dz \left(z^2 - z^2 \right) = 0$$

ightharpoon Η I_z της ροπής αδράνειας μηδενίζεται γιατί η κατανομή της μάζας είναι συγγραμμική με τον κύριο άξονα

$$I_{x} = \frac{M}{L} \int_{-L/2}^{L/2} dz \left(z^{2} - x^{2}\right) = \frac{M}{L} \int_{-L/2}^{L/2} z^{2} dz = \frac{ML^{2}}{12} = I_{y}$$