Probabilities

We begin by making a note of all the information provided to us.

Probability of receiving correctly = 1 - δ

Probability of receiving flipped = δ

Also it is given that the probability of flipping is independent of the previous or future outcomes

Probability of a bit being '1' = 1-pProbability of a bit being '0' = p

Part A

As the probabilities linked with consecutive symbols are independent of each other, the probability that we are required to calculate is independent of the position (k)

$$P(k^{th} \ symbol \ being \ '0') = P(transmit = \ '0' \cap \overline{flipping}) + P(transmit = \ '1' \cap flipping)$$

$$\Rightarrow P(required) = p.(1 - \delta) + (1 - p).\delta$$

$$\Rightarrow P(required) = p + \delta - 2p\delta$$

Part B

In the given part, the encoding and decoding schemes for transmission and reception are changed.

$$\therefore P(receiving\ correct\ '0') = P(zero\ was\ decoded\ |\ zero\ was\ transmitted)$$

$$\Rightarrow P(required) = P(\overline{F1} \cap \overline{F2} \cap \overline{F2}) + P((F1 \cap \overline{F2} \cap \overline{F3}) \cup (\overline{F1} \cap F2 \cap \overline{F3}) \cup (\overline{F1} \cap \overline{F2} \cap F3))$$

$$\vdots$$

$$P(required) = (1 - \delta)^3 + 3(1 - \delta)^2 \delta = (1 - \delta)^2 (1 + 2\delta)$$

Part C

Let the decoding strategy $D: \{0,1\} \to \{0,1,\bot\}$ be such that we choose the output to be \bot at every N^{th} input at the destination. Now, we calculate the expectation of the penalty inccurred as:

$$E(penalty) = \frac{2 \times P(Getting, wrong \ output) \times (N-1) + 1 \times (N-(N-1))}{N}$$

$$= \frac{2 \times (p * \delta + (1-p)\delta) \times (N-1) + 1}{N} = \frac{2\delta(N-1) + 1}{N}$$

$$= 2\delta + (1-2\delta) \times \frac{1}{N}$$

The above obatined equation obtains its minima at $N \to \infty$ for $\delta \le \frac{1}{2}$. As we can note, the above equation is independent of p, therefore the solution holds for every value of $p \in [0,1]$. This means that \bot should never be the output for the given scenario. The decoding must be the simplest, i.e. giving out what is received at the input. Note that this will change if $\delta \ge \frac{1}{2}$.