

Neural Architecture Search for Efficient Uncalibrated Deep Photometric Stereo

Francesco Sarno¹, Suryansh Kumar^{1*}, Berk Kaya¹, Zhiwu Huang¹, Vittorio Ferrari², Luc Van Gool^{1,3} Computer Vision Lab, ETH Zurich¹, Google Research², KU Leuven³

Problem Definition and Contributions

Motivation

- Calibrated settings are challenging to reproduce.
- Existing deep learning methods are suboptimal.

Goal

Explore applicability of NAS to deep uncalibrated photometric stereo.

Contributions

- Automatic network design for deep uncalibrated photometric stereo.
- Comparable or better performances than existing methods.
- Dramatically lower number of required parameters.

Proposed Method

Deep Uncalibrated Photometric Stereo

- Siamese architecture \rightarrow image specific and global information.
- Two-stage approach \rightarrow avoid GBR ambiguity.

Neural Architecture Search

- Algorithm: based on DARTS [1].
- Cell structure: 2 input nodes, 1 output node and 4 intermediate nodes.
- Search space: 1×1, 3×3, 5×5 separable convolutions, zero, identity.
- Cell typologies: normal (stride = 1) & reduction (stride = 2).

Pipeline

For both the networks independently:

- Fix modules to ensure physical constraints and feature dimensions (normalization layer, aggregation operation, fully connected layer).
- Choose where, the number and the typology of cells to stack.
- Search for optimal cells.
- Fix optimal architecture and train from scratch.

Network Architectures

Light Calibration Network Searched Architecture Searched Architecture

Feature Normal Cell Feature Reduction Cell Classifier Normal Cell Classifier Reduction Cell

- Estimation of light direction and intensity for each light source.
- $L_{light} = L_{la} + L_{le} + L_{e}$

Normal Estimation Network

- Estimation of surface normals.
- $L_n = \frac{1}{hw} \sum_{i}^{hw} (1 \widetilde{\boldsymbol{n}}_i^T \boldsymbol{n}_i)$

Experiments and Results

Visual Results on DiLiGenT Dataset (Normals) [2]

Quantitative Results on DiLiGenT Dataset (Normals) [2]

Method	Params[M]	Ball	Cat	Pot1	Bear	Pot2	Buddha	Goblet	Reading	Cow	Harvest	Average
UPS-FCN [3]	6,1	3,96	12,16	11,13	7,19	11,11	13,06	18,07	20,46	11,84	27,22	13,62
SDPS-Net [4]	6,6	2,77	8,06	8,14	6,89	7,50	8,97	11,91	14,90	8,48	17,43	9,51
GCNet+PS-FCN [15]	6,8	2,50	7,90	7,20	5,60	7,10	8,60	9,60	14,90	7,80	16,20	8,70
UNIR [6]	8,1	3,78	7,91	8,75	5,96	10,17	13,14	11,94	18,22	10,85	25,49	11,62
OURS	4,4	3,46	8,94	7,76	5,48	7,10	10,00	9,78	15,02	6,04	17,97	9,15
		·	·				<u>-</u>				·	

Visual Results on Gourd&Apple Dataset [7] and Light Stage Data Gallery [8]

Visual Results on DiLiGenT Dataset (Light) [2]

Key References:

- [1] DARTS [Liu et al., ICLR19]
- [2] DiLiGenT [Shi et al., TPAMI16]
- [3] UPS-FCN [Chen et al., ECCV18]
- [4] SDPS-Net [Chen et al., CVPR19]
- [5] GCNet+PS-FCN [Chen et al., ECCV20]
- [6] UNIR [Kaya et al., CVPR21]
- [7] Gourd&Apple [Alldrin et al., CVPR08]
- [8] Light Stage [Einarsson et al., EGSR06]