动态规划的应用举例

一、资源分配问题

把有限的资源(如资金、材料、设备、人力等)分配给若干使用者,而使某一指标为最优的问题即为资源分配问题。

资源可以有一种或若干种,

只有一种资源可供分配的问题称之为一维资源分配问题。

设有某种资源(如电、煤等)可用于n项活动,假设资源数量为a,已知用于第i项活动的资源数为 x_i ,

可以得到收益
$$g_i(x_i), i = 1, 2, \dots, n$$

试确定资源分配方案使总收益最大。

该问题的数学模型可以表示为:

$$\max z = g_{1}(x_{1}) + g_{2}(x_{2}) + \dots + g_{n}(x_{n})$$

$$\begin{cases} x_{1} + x_{2} + \dots + x_{n} = a \\ x_{1}, x_{2}, \dots, x_{n} \ge 0 \end{cases}$$

当 $g_i(x_i)$, $i=1,2,\cdots,n$ 是线性函数时,上述问题是线性规划问题;而当是非线性函数时,如果采用非线性规划的方法是比较麻烦的。

然而这类问题可以将其看成是一个多阶段决策问题,并采用动态规划的方法求解。

在用动态规划方法处理这类一维资源分配问题时,通常将资源分给每项活动的过程看是一个阶段,每个阶段都要确定对一种资源的投放量。

设状态变量 s_k表示分配用于生产第k种产品至第n种产品原料的数量。

决策变量 u_k 表示分配给生产第k种产品的原料量,即 $u_k = x_k$

状态转移方程:
$$S_{k+1} = S_k - u_k = S_k - x_k$$

允许决策集合:
$$D_k(s_k) = \{u_k \mid 0 \le u_k = x_k \le s_k\}$$

 $f_k(s_k)$ 表示以数量 s_k 的原料分配给第k种产品至第n种产品 所得到的最大利润 ,则有

$$\begin{cases} f_k(s_k) = \max_{0 \le x_k \le s_k} \{g_k(x_k) + f_{k+1}(s_k - x_k)\}, k = n-1, n-2, \dots, 1 \\ f_n(s_n) = \max_{x_n = s_n} g_n(x_n) \end{cases}$$

例7-6:某工业部门按国家计划的安排,拟将某高效率的设备五台,分配给所属的甲、乙、丙三个工厂,各工厂若获得这种设备之后,可以为国家提供的盈利如下表所示。问:这五台设备如何分配给各工厂,才能使国家得到的盈利最大。

五厂 盈利/万元 备设 台数	甲	Z	丙
0	0	0	0
1	3	5	4
2	7	10	6
3	9	11	11
4	12	11	12
5	13	11	12

动态规划的数学模型

将三个分厂看作是三个阶段,即阶段变量 k=1,2,3;

状态变量 s_k 表示第k阶段初可分配的设备台数, $0 \le s_k \le 5$;

决策变量 x_k 表示第k阶段分配给分厂k的设备台数,

允许决策集合 $X_k(s_k)=\{x_k \mid 0 \le x_k \le s_k\};$

状态转移方程为 $s_{k+1} = s_k - x_k$;

阶段指标 $P_k(s_k, x_k)$ 表示第k 阶段从 s_k 台设备中分配给k 分厂 x_k 台设备的阶段效益;

最优指数函数 $f_k(s_k)$ 表示第k阶段从 s_k 开始到最后阶段采用最优分配策略取得的最大的效益值;

递推方程函数式

逆序求解

第三阶段:设将 S_3 台设备(S_3 = 0,1,2,3,4,5)全部分配给丙厂时,此时只有一个工厂,有多少台设备就全部分配给工厂丙,故它的盈利值就是该段的最大盈利值。最大盈利值为: $f_3(S_3) = max[P_3(X_3)]$ 其中 X_3 = S_3 = 0,1,2,3,4,5 X_3 *表示使得 $f_3(S_3)$ 为最大值时的最优决策。

表7 - 1

X_3			P ₃	(X_3)			e (C)	X ₃ *
S_3	0	1	2	3	4	5	f ₃ (S ₃)	
0	0						0	0
1		4					4	1
2			6				6	2
3				11			11	3
4		1 25	15.36		12		12	4
5						12	12	5

第二阶段: 设将 S_2 台设备(S_2 =0,1,2,3,4,5)分配给乙厂和丙厂时,对每一个 S_2 值,都有一种最优分配方案.

如果给乙工厂 x_2 台,其盈利为 $P_2(x_2)$,余下 s_2 - x_2 台就是给丙厂的,则丙的盈利最大值

为: $f_3(s_2-x_2)$,现在要选择 x_2 的值,使得 $P_2(x_2)+f_3(S_2-x_2)$ 取最大值.

即将 s 2台设备分给乙丙获得最大盈利值为:

 $f_2(S_2) = max[P_2(x_2) + f_3(S_2 - x_2)]$, $x_2 = 0,1,2,3,4,5$ 计算过程如下.

乙厂在不同设 备台数下所获利润

第丙厂在设备台数为**s**3下所获得的最大利润

X_2			$P_2(x_2)$	+f ₃ (s ₂ -	x ₂)		$f_2(s_2)$	X*2
s ₂	0	1	2	3	4	5	12(32)	X 2
0	0						0	0
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1,2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

利润	甲	乙	丙
0	0	0	0
1	3	5	4
2	7	10	6

利润	甲	乙	丙
3	9	11	11
4	12	12	11
5	13	11	12

表7 - 2

X ₂			$P_2(X_2) +$	$f_3(S_2-X)$	2)		e (C)	X ₂ *
S ₂	0	1	2	3	4	5	12(82)	
0	0						0	0
1	0+4	5+0					5	1
2	0+6	5+4	10+0				10	2
3	0+11	5+6	10+4	11+0			14	2
4	0+12	5+11	10+6	11+4	11+0		16	1,2
5	0+12	5+12	10+11	11+6	11+4	11+0	21	2

第一阶段:设将 S_1 台设备(S_1 = 5)分配给甲厂、乙厂和丙厂时,因为给甲工厂 x_1 台,其盈利值为 $p_1(x_1)$,剩下的5- x_1 台设备就分别给乙和丙工厂,则它的盈利值为 $f_2(5$ - $x_1)$,现要选择 x_1 的值,使 $P_1(x_1)$ + $f_2(5$ - x_1)最大值,则最大盈利值为: $f_1(S_1)$ = $max[P_1(X_1)$ + $f_2(5$ - X_1)] 其中, x_1 = 0, 1, 2, 3, 4, 5

甲厂在不同设 备台数下所获利润

乙厂在设备台数为**s**₂下 所获得的最大利润

	X_1		P	$(X_1)+$	$f_2(5-X)$	1)		0 (7)	***
S_1	1	0	1	2	3	4	5	f ₁ (5)	Λ_1
5		0+21	3+16	7+14	9+10	12+5	13+0	21	0,2

利润	甲	乙	丙
0	0	0	0
1	3	5	4
2	7	10	6

利润	甲	乙	丙
3	9	11	11
4	12	12	11
5	13	11	12

按计算表格的顺序反推,可知最优分配方案有两个:

- 1)由 $X_1*=0$, $S_2=S_1-X_1*=5-0=5$ 。 再由表7-2,可知 $X_2*=2$ 。 $S_3=S_2-X_2*=5-2=3$,故 $X_3*=S_3=3$ 。即得甲厂分得0台,乙厂分得2台,丙厂分得3台。
- 2)由 $X_1*=2$, $S_2=S_1-X_1*=5-2=3$ 。再由表7-2,可知 $X_2*=2$ 。 $S_3=S_2-X_2*=3-2=1$,故 $X_3*=S_3=1$ 。即得甲厂分得2台,乙厂分得2台,丙厂分得1台。以上两种最优方案的总盈利均为21万元。

如果原设备台数不是5台,而是4台或3台, 用其它方法解时,往往要从头再算。但用动态规划解时,这些列出的表仍然有用,只需修改最后的表格,就可以得到。

X_1		$P_1(X_1) + f_2(5 - X_1)$								
S_1	0	1	2	3	4	5	f ₁ (5)	Λ_1		
5	0+21	3+16	7+14	9+10	12+5	13+0	21	0,2		

X_1		$P_1(X_1) + f_2(4 - X_1)$					
S_1	0	1	2	3	4	$\mathbf{f_1}(4)$	X_1
4	0+16	3+14	7+10	9+5	12+0	17	1,2

X_1	$P_1(X_1) + f_2(3 - X_1)$							V *
S_1	0	1	2	3			f ₁ (3)	Λ_1
3	0+14	3+10	7+5	9+0			13	1

