Msc Eduardo Verri

Questão 1

a) Com a linguagem R é facilitado o uso de ferramentas já prontas para a análise estatística, facilitando a criação de modelos para análise. O set.seed(seed) por exemplo permite a criação de uma amostra randomizada padrão, que pode ser replicada utilizando o mesmo número fornecido como parâmetro (dentro dos parênteses). Podemos também analisar de forma sucinta a nossa amostra com o summary(objeto) e outras funções disponíveis em R.

summary(notas)

>notas

	Matricula	ac1	ac2	prova final	notaFinal
1	11640	9	9	5	8.2
2	12689	5	1	2	2.8
3	12235	5	8	10	7.2
4	12015	10	3	5	6.2
5	12464	2	1	4	2.0
6	11985	6	8	10	7.6
7	11601	6	10	1	6.6
8	11797	3	4	6	4.0
9	12431	5	3	3	3.8
10	12107	9	5	8	7.2
11	12479	1	5	3	3.0
12	12000	1	3	8	3.2
13	11930	6	2	4	4.0
14	11654	2	2	5	2.6
15	12443	6	6	1	5.0
16	12455	10	8	6	8.4
17	11939	6	4	8	5.6
18	11531	4	1	7	3.4
19	11578	10	7	9	8.6
20	12710	2	7	5	4.6
21	12680	7	4	6	5.6
22	12151	1	1	5	1.8
23	12891	10	1	5	5.4
24	12212	6	6	1	5.0
25	11883	1	1	5	1.8
26	11720	7	8	8	7.6
27	11988	7	3	5	5.0
28	12978	1	7	2	3.6
29	11807	3	2	10	4.0
30	12453	3	7	6	5.2

Msc Eduardo Verri

>summary(notas) Matricula

, camanary (modac)			
Matricula	ac1	ac2	prova_final
Min. :11531	Min. : 1.000	Min. : 1.000	Min. : 1.000
1st Qu.:11826	1st Qu.: 2.250	1st Qu.: 2.000	1st Qu.: 4.000
Median :12061	Median : 5.500	Median : 4.000	Median : 5.000
Mean :12148	Mean : 5.133	Mean : 4.567	Mean : 5.433
3rd Qu.:12454	3rd Qu.: 7.000	3rd Qu.: 7.000	3rd Qu.: 7.750
Max. :12978	Max. :10.000	Max. :10.000	Max. :10.000
notaFinal			

notaFinal
Min. :1.800
1st Qu.:3.450
Median :5.000
Mean :4.967
3rd Qu.:6.500
Max. :8.600

b) As funções disponibilizadas pelo R, tais como *barplot*, *plot* e *hist* para citar algumas facilitam a visualização de *data.frames* assim como seu tratamento e facilitador de desenho gráfico.

Frequência amostral

Msc Eduardo Verri

c) A linguagem R facilita a criação de fórmulas e funções, o que é vantajoso para a criação de modelos matemáticos (como por exemplo criação de funções de 1º grau entre outros). Funções também de modelos matemáticos estão disponíveis com variadas bibliotecas, o que auxilia na análise da amostra.

```
a <- 15.9
b <- -0.005
x <- c(1:15, 0.05)

f1 <- a*x + b
plot(f1)</pre>
```


Questão 2

 $\verb|notas| notas| ac1*0.4 + \verb|notas| ac2*0.4 + \verb|notas| prova_final*0.2|$

Msc Eduardo Verri

```
#criação do subset com os aprovados
aprovados <- subset(notas, notas$notaFinal >= 7.0)
#resultados dos alunos aprovados em forma gráfica
plot(aprovados$notaFinal,
        main = "Alunos aprovados",
        xlab = "no. matrícula",
        ylab = "nota final")
axis(1, at=1:7, labels = aprovados$Matricula)
```


Questão 3
Junção primeiramente no excel e primeiras análises

Quadro 1 - produtos x vendedor									
Vendedor	Dia	Produto	Quantidade						
Ana	1	saia	1						
Flavia	1	casaco	2						
Pedro	1	vestido	1						
Mariana	1	meia	5						
Ana	2	calçaFlaire	3						
Flavia	2	calçaSkinny	0						
Pedro	2	calçaSkinny	3						
Mariana	2	manta	4						

Msc Eduardo Verri

Quadro 2 - Preços unitários										
Produto	Preço	Unitário	Custo	Unitário	Marg	em				
calça	R\$	240,00	R\$	210,00	R\$	30,00				
vestido	R\$	320,00	R\$	160,00	R\$	160,00				
blusa	R\$	98,00	R\$	60,00	R\$	38,00				
manta	R\$	69,00	R\$	39,00	R\$	30,00				
saia	R\$	145,00	R\$	89,00	R\$	56,00				
casaco	R\$	289,00	R\$	144,00	R\$	145,00				
meia	R\$	39,00	R\$	15,00	R\$	24,00				

Quadro 3 - preço e custo x vendedor											
Vendedor	Dia	Produto	Quantidade	Custo	Unitário	Preço	Unitário	Total /dia	Lucro / dia		
Ana	1	saia	1	R\$	145,00	R\$	89,00	R\$ 145,00	R\$ 56,00		
Flavia	1	casaco	2	R\$	289,00	R\$	144,00	R\$ 578,00	R\$ 290,00		
Pedro	1	vestido	1	R\$	320,00	R\$	160,00	R\$ 320,00	R\$ 160,00		
Mariana	1	meia	5	R\$	39,00	R\$	15,00	R\$ 195,00	R\$ 120,00		
Ana	2	calçaFlaire	3	R\$	240,00	R\$	210,00	R\$ 720,00	R\$ 90,00		
Flavia	2	calçaSkinny	0	R\$	240,00	R\$	210,00	R\$ -	R\$ -		
Pedro	2	calçaSkinny	3	R\$	240,00	R\$	210,00	R\$ 720,00	R\$ 90,00		
Mariana	2	manta	4	R\$	69,00	R\$	39,00	R\$ 276,00	R\$ 120,00		

Quadro 4 - faturamento médio por vendedor										
Vendedor Faturamento Lucro / dia Dias trabalhados Faturamento médio Lucro m								médio		
Ana	R\$	865,00	R\$ 146,00	2	R\$	432,50	R\$	73,00		
Flavia	R\$	578,00	R\$ 290,00	2	R\$	289,00	R\$	145,00		
Pedro	R\$	1.040,00	R\$ 250,00	2	R\$	520,00	R\$	125,00		
Mariana	R\$	471,00	R\$ 240,00	2	R\$	235,50	R\$	120,00		

Msc Eduardo Verri

Questão 4

```
valor1 <- as.numeric(readline(prompt = "Digite um valor: "))
valor2 <- as.numeric(readline(prompt = "Digite um segundo valor: "))
if(!is.na(valor1) && !is.na(valor2)){
  valorMax <- max(c(valor1, valor2))
  cat("o valor máximo digitado é:",valorMax)
}else{
  print("Erro! Você digitou um ou mais caracteres!")
}</pre>
```

```
Console Terminal × Jobs ×

> Source('~/.active-rstudio-document', encoding = 'UTF-8')
Digite um valor: 12
Digite um segundo valor: 3
o valor máximo digitado é: 12
> source('~/.active-rstudio-document', encoding = 'UTF-8')
Digite um valor: 2
Digite um valor: 2
Digite um segundo valor: a
[1] "Erro! Você digitou um ou mais caracteres!"
Warning message:
In eval(ei, envir): NAs introduced by coercion
> |
```

Questão 5

```
set.seed(10)
vetorNumerico <- sample(x = 1:25, size = 800, replace = TRUE)
hist(vetorNumerico,
    main = "Frequência amostral",
    xlab = "Número",
    ylab = "Frequência",
    col = "orange")</pre>
```


Questão 6

```
vendas < -data.frame(Qtd = sample(x = 28:52, size = 30, replace = TRUE),
                      DiaMes = seq(from=as.Date("2021-09-01"),
                                   to=as.Date("2021-09-30"),
                                   by="day"),
                      DiaSemana = weekdays(seq(from=as.Date("2021-09-01"),
                                                to=as.Date("2021-09-30"),
                                               by="day")))
plot(vendas$DiaMes, vendas$Qtd,
     main = "Frequência da Qtd de vendas",
     xlab = "Dia",
     ylab = "Qtd vendas")
#Variação das vendas no mês analisado
varmes <- max(vendas$Qtd) - min(vendas$Qtd)</pre>
#Média de quantidade de vendas
medven <- round(mean(vendas$Qtd))</pre>
hist(vendas$Qtd,
     main = "Frequência da Qtd de vendas",
     xlab = "Qtd vendas",
     ylab = "Frequência",
     col = "green")
```


Msc Eduardo Verri

Questão 7

```
x1 <- c(1:4)
x2 <- c(2,5,8,11)
x3 <- c('A','B','C','D')
x4 <- c('a','b','c','d')
x5 <- c('A','C','E','G')
x6 <- c(10:7)
x7 <- c(10,8,6,4)
x8 <- sort(rep(c(2,5,8), times = 4), decreasing = FALSE)
x9 <- c(x1,x2,x3,x4,x5,x6,x7,x8)</pre>
```

x1	int [1:4] 1 2 3 4
x2	num [1:4] 2 5 8 11
x3	chr [1:4] "A" "B" "C" "D"
x4	chr [1:4] "a" "b" "c" "d"
x5	chr [1:4] "A" "C" "E" "G"
хб	int [1:4] 10 9 8 7
x7	num [1:4] 10 8 6 4
x8	num [1:12] 2 2 2 2 5 5 5 5 8 8
x9	chr [1:40] "1" "2" "3" "4" "2" "5" "8" "11" "A

Msc Eduardo Verri

Questão 8

```
x <- as.Date("2022-09-22")
y <- as.Date("1991-06-16")

idadeEmDias <- x - y
idadeEmAnos <- round(as.integer(idadeEmDias)/365,0)</pre>
```

Questão 9

Utilizaremos a tabela criada no exercício 3

	Quadro 3 - preço e custo x vendedor										
Vendedor		Dia	Produto	Quantidade	Custo	Unitário	Preço	Unitário	Total /dia	Lucro / dia	
Ana		1	saia	1	R\$	145,00	R\$	89,00	R\$ 145,00	R\$ 56,00	
Flavia		1	casaco	2	R\$	289,00	R\$	144,00	R\$ 578,00	R\$ 290,00	
Pedro		1	vestido	1	R\$	320,00	R\$	160,00	R\$ 320,00	R\$ 160,00	
Mariana		1	meia	5	R\$	39,00	R\$	15,00	R\$ 195,00	R\$ 120,00	
Ana		2	calçaFlaire	3	R\$	240,00	R\$	210,00	R\$ 720,00	R\$ 90,00	
Flavia		2	calçaSkinny	0	R\$	240,00	R\$	210,00	R\$ -	R\$ -	
Pedro		2	calçaSkinny	3	R\$	240,00	R\$	210,00	R\$ 720,00	R\$ 90,00	
Mariana		2	manta	4	R\$	69,00	R\$	39,00	R\$ 276,00	R\$ 120,00	

```
library(readxl)
vendas <- read excel("C:/Users/Lenovo/Desktop/Backup-</pre>
{\tt Lenovo/SPTech/ACADEMICO/CALCULO/\_R/01 - Tabelas \ Atividade \ 22.09.2022.xlsx",}
sheet = "Planilha2")
calcas <- subset(vendas, vendas$Geral=='calça')</pre>
#quantidade de calças vendidas (questão A)
calcasQtde <- aggregate(calcas$Quantidade~calcas$Geral, FUN = sum)</pre>
#Faturamento total em calças (questão A)
calcasLucro <- aggregate(calcas$`Total /dia`~calcas$Geral, FUN = sum)</pre>
vendedorStatus <- aggregate(vendas$`Total /dia`~vendas$Vendedor, FUN = sum)</pre>
colnames(vendedorStatus) <- c('vendedor','faturamento')</pre>
vendedorStatus <- vendedorStatus[order(vendedorStatus$faturamento),]</pre>
#Maior e menor desempenho de vendas (questão B)
head(vendedorStatus, n=1)
tail(vendedorStatus, n=1)
#Faturamento do Pedro (questão C)
faturamentoPedro <- subset(vendedorStatus, vendedorStatus$vendedor == 'Pedro')</pre>
```


Msc Eduardo Verri

Questão 10

```
set.seed(20)
#criando a base de dadosw de vendas
vendas <- data.frame(dia = rep(c(1:30), each = 4),
                    vendedor = rep(c('Ana','Flavia','Pedro','Mariana'),times = 30),
                     calcaflaire = sample(x = 0:5, size = 120, replace = TRUE),
                     calcaskinny = sample(x = 0:5, size = 120, replace = TRUE),
                     vestido = sample(x = 0:5, size = 120, replace = TRUE),
                    blusa = sample(x = 0:5, size = 120, replace = TRUE),
                     manta = sample(x = 0:5, size = 120, replace = TRUE),
                     saia = sample(x = 0:5, size = 120, replace = TRUE),
                     casaco = sample(x = 0:5, size = 120, replace = TRUE),
                     meia = sample(x = 0:5, size = 120, replace = TRUE))
#criando um suset por um vendedor por exemplo
vendasAna <- subset(vendas, vendas$vendedor == 'Ana')</pre>
Questão 11
Variação 1
vetor1 <- c(1,3,8,2,1,3)
```

```
vetor2 <- c()
x <- 1
while (x \le length(vetor1)){
 vetor2 <- append(vetor2, sum(vetor1[1:x]))</pre>
 x < -x + 1
}
```

```
Console Terminal × Jobs ×
~/ @
> vetor1
[1] 1 3 8 2 1 3
> vetor2
[1] 1 4 12 14 15 18
Console Terminal × Jobs ×
                                                                                     =
~/ @
> vetor1
[1] 5 3 21 -2 8 6
> vetor2
[1] 5 8 29 27 35 41
```

Variação 2

```
somaVetor <- function(){</pre>
  print("Digite os números do vetor - aperte 2 ENTER para finalizar")
  vetor1 <- as.double(scan())</pre>
 vetor2 <- c()</pre>
  x < -1
  while (x <= length(vetor1)) \{
   vetor2 <- append(vetor2, sum(vetor1[1:x]))</pre>
    x < -x + 1
  }
```



```
Msc Eduardo Verri
```

```
print(vetor1)
print(vetor2)
```

```
Console Terminal × Jobs ×

-/ >

> source('~/.active-rstudio-document', encoding = 'UTF-8')
> somavetor()

[1] "Digite os números do vetor - aperte 2 ENTER para finalizar"

1: 10
2: -23
3: 55
4: 64
5: 78
6: 1
7: 2
8:
Read 7 items

[1] 10 -23 55 64 78 1 2

[1] 10 -13 42 106 184 185 187

> |
```

Questão 12 - Projeto

```
#importar planilha de dados
library(readr)
city temperature <- read csv("C:/Users/Lenovo/Desktop/Backup-
Lenovo/SPTech/ACADEMICO/CALCULO/ R/city temperature.csv/city temperature.csv")
#transformando o arquivo importado em uma tabela (data frame)
city temperature <- data.frame(city temperature)</pre>
#verificando qual o ultimo ano de coleta das temperaturas
#max(city temperature$Year)
#Criando um subconjunto da amostra cujo ano seja 2020
coleta2020 <- data.frame(subset(city_temperature,city_temperature$Year ==</pre>
max(city temperature$Year)))
#Agrupando por cidade, com a media de temperatura
coleta2020Cidade <-
{\tt aggregate} (\texttt{coleta2020\$AvgTemperature} \sim \texttt{coleta2020\$City} + \texttt{coleta2020\$Country} + \texttt{coleta2020\$Region}) = \texttt{coleta2020\$Region} + \texttt{coleta20208Region} + \texttt{coleta20208Region}
, coleta2020, mean)
#Criando uma coluna com a temperatura em C
\verb|coleta| 2020 \texttt{Cidade} \texttt{temp\_C} < - (\verb|coleta| 2020 \texttt{Cidade} \texttt{`coleta} 2020 \texttt{AvgTemperature`} - 32) / 1.8 \\
#Ajustando nome de colunas e valores das medias de temperatura
colnames(coleta2020Cidade) <- c("cidade", "pais", "regiao", "temp F", "temp C")</pre>
coleta2020Cidade$temp F <- round(coleta2020Cidade$temp F,2)</pre>
coleta2020Cidade$temp_C <- round(coleta2020Cidade$temp_C,2)</pre>
#Criando um subconjunto com as 5 cidades com as maiores medias anuais de temperatura
cidadesQuentes <- coleta2020Cidade[order(-coleta2020Cidade$temp_C),]</pre>
cidadesQuentes <- cidadesQuentes[1:5,]</pre>
#criando um plot (pontos) das 5 cidades mais quentes
par(mar = c(5, 5, 4, 2))
plot(cidadesQuentes$temp C,
             xaxt = "n",
             main = "Media anual de temperatura",
             ylab = "Temp [C]",
             xlab = "Cidade",
             ylim = c(27, 32),
             col = "red")
grid(nx = NULL, ny = NULL,
```


Msc Eduardo Verri

```
lty = 2,
    col = "grey",
    lwd = 0.3)
axis(1, at=1:5, labels = cidadesQuentes$cidade)
#criando um plot (barra) das 5 cidades mais quentes
barplot(cidadesQuentes$temp_C,
    names.arg = cidadesQuentes$cidade,
    main = "Media anual de temperatura",
    ylab = "Temp [C]",
    xlab = "Cidade",
    ylim = c(0,35),
    col = "red",
    space = 0.1)
grid(nx = NA, ny = NULL,
    lty = 2,
    col = "grey",
    lwd = 0.3)
```


