Höhere Analysis I

Sommersemester 2015

Prof. Dr. D. Lenz

Blatt 3

Abgabe Dienstag 12.05.2015

- (1) Sei (X, \mathcal{A}, μ) ein Maßraum.
 - (a) Zeigen Sie für eine beliebige Folge $A_n \in \mathcal{A}, n \in \mathbb{N}$, dass die Ungleichung $\mu(\bigcup_{n\in\mathbb{N}}A_n) \leq \sum_{n\in\mathbb{N}}\mu(A_n)$ gilt.
 - (b) Zeigen Sie, dass für eine messbare Funktion $f:X\to\mathbb{C}$ die folgenden Aussagen äquivalent sind.
 - (i) Die Funktion $f: X \to \mathbb{C}$ verschwindet μ -fast überall.
 - (ii) Für ein $p \ge 1$ gilt $\int_X |f|^p d\mu = 0$.
 - (iii) Für alle $p \ge 1$ gilt $\int_X |f|^p d\mu = 0$.
- (2) Sei (X, \mathcal{A}, μ) ein Maßraum. Gegeben seien $f, g \in \mathcal{L}^1(X, \mathcal{A}, \mu)$ und $\alpha, \beta \in \mathbb{C}$. Zeigen Sie, dass die Gleichheit

$$\int\limits_X (\alpha f + \beta g) \ d\mu \ = \ \alpha \int\limits_X f \ d\mu + \beta \int\limits_X g \ d\mu$$

gilt.

(3) Für $0 definieren wir die Abbildung <math>\|\cdot\|_p : \mathbb{R}^2 \to [0,\infty)$ durch

$$\|(x,y)\|_p := \begin{cases} (|x|^p + |y|^p)^{\frac{1}{p}}, & \text{falls } 0$$

(i) Zeichnen Sie die Mengen

$$B_1^{(p)}(0) := \{(x,y) \in \mathbb{R}^2 : ||(x,y)||_p \le 1\}$$

für $p = \frac{1}{2}, 1, 2, \infty$.

(ii) Zeigen Sie, dass für beliebige $(x,y) \in \mathbb{R}^2$ die Gleichheit

$$\|(x,y)\|_{\infty} = \lim_{p \to \infty} \|(x,y)\|_{p}$$

gilt.

- (iii) Zeigen Sie, dass für $0 die Abbildung <math display="inline">\|\cdot\|_p$ keine Norm ist.
- (4) Sei (X, \mathcal{A}, μ) ein Maßraum. Zeigen Sie, dass der Raum $L^{\infty}(X, \mathcal{A}, \mu)$ vollständig ist.

\mathbf{Zusatz}

Gegeben sei ein meßbarer Raum (X, \mathcal{A}, μ) . Zeigen Sie, dass für eine meßbare Funktion $f: X \to \mathbb{C}$ mit $f \in L^p(X, \mathcal{A}, \mu)$ für alle $1 \le p \le \infty$ die Gleichheit

$$||f||_{\infty} = \lim_{p \to \infty} ||f||_p$$

gilt.