Mathematics Department

INTEGRAL CALCULUS: Learning Module No. 5

Topic	METHODS OF INTEGRATION
Sub-Topic	Integration By Parts
Duration	3 hours
Introduction Note: This module may contain copyrighted material. The use of which has not been specifically authorized by the copyright owner. This module is for educational purpose only for online instruction and is not used to generate profit. Thus this constitutes a "Fair Use" of the copyrighted material as provided by virtue of Republic Act No. 8293 otherwise known as Intellectual Property Code of the Philippines.	The method of Integration by Parts is specifically helpful when the integrand is a product of two kinds of functions such as the following: 1. Algebraic and Trigonometric $\int x^2 \sin x \ dx$ 2. Algebraic and Logarithmic $\int x^2 \ln x \ dx$ 3. Algebraic and Exponential $\int x \ e^x \ dx$ 4. Exponential and Trigonometric $\int e^x \cos x \ dx$
Theories/Concepts/Formulas	1. Integration by Parts
	From: $d(uv) = udv + vdu$ Integrating both sides of the equation: $\int d(uv) = \int udv + \int vdu$ $uv = \int udv + \int vdu$

	uv - vdu = udv
	Thus,
	$\int u dv = uv - \int v du$
	In choosing u and dv always remember the
	following:
	1. dx is always included in dv.
	2. It must be possible to integrate dv
	directly in some instances.
	3. It is best usually to choose the most
	complicated factor as dv.
YouTube Link/s	https://www.youtube.com/watch?v=bLhxQldbWW8
	https://www.youtube.com/watch?v=dqaDSIYdRcs https://www.youtube.com/watch?v=-5Qv7-nfVjI
Sample Problems	Ex. Evaluate the integrals of the following
pro i rossono	functions:
	$1. \int x e^x dx$
	Solution:
	$u = x$ $dv = e^x dx$
	$du = dx$ $v = e^x$
	$\int x e^x dx = x e^x - \int e^x dx$
	$=xe^x-e^x+C$ or
	$= e^{x}(x-1)+C$
	$2. \int x^2 \ln x \ dx$
	Solution:
	$u = \ln x \qquad dv = x^2 dx$
	$du = \frac{dx}{x} \qquad v = \frac{x^3}{3}$

$$= (\ln x)(\frac{x^3}{3}) - \int (\frac{x^{32}}{3})(\frac{dx}{x})$$

$$= \frac{x^3}{3}\ln x - \frac{1}{3}\int x^2 dx$$

$$= \frac{x^3}{3}\ln x - \frac{1}{3}(\frac{x^3}{3}) + C$$

$$= \frac{x^3}{3}\ln x - (\frac{x^3}{9}) + C \quad \text{or}$$

$$= \frac{x^3}{3}(\ln x - \frac{1}{3}) + C$$

3. Arctan 3x dx

Solution:

olution:

$$u = Arctan 3x$$
 $dv = dx$
 $du = \frac{3dx}{9x^2 + 1}$ $v = x$
 $= (Arctan 3x)(x) - \int (x)(\frac{3dx}{9x^2 + 1})$
 $= x Arctan 3x - 3 \int \frac{xdx}{9x^2 + 1}$
Let $u = 9x^2 + 1$
 $du = 18xdx$, $if = \frac{1}{18}$
 $= x Arctan 3x - \frac{3}{18} \int \frac{18xdx}{9x^2 + 1}$
 $= x Arctan 3x - \frac{1}{6} \ln(9x^2 + 1) + C$
 $= x Arctan 3x - \ln(9x^2 + 1)^{\frac{1}{6}} + C$

$4. \int x^2 \sin x \, dx$

Solution:

$$u = x^{2} dv = \sin x dx$$

$$du = 2xdx v = -\cos x$$

$$= (x^{2})(-\cos x) - \int (-\cos x) (2xdx)$$

$$= -x^{2} \cos x + 2 \int x \cos x dx$$

$$u = x dv = \cos x dx$$

$$du = dx v = \sin x$$

$$= -x^{2} \cos x + 2 [x \sin x - \int \sin x dx]$$

$$= -x^{2} \cos x + 2x \sin x - 2 \int \sin x dx$$

$$= -x^{2} \cos x + 2x \sin x + 2\cos x + C$$

$$= 2x \sin x + 2\cos x - x^{2} \cos x + C$$

$5. \int e^x \cos x \, dx$

Solution:

$$u = e^{x} dv = \cos x dx$$

$$du = e^{x} dx v = \sin x$$

$$\int e^{x} \cos x dx = e^{x} \sin x - \int (\sin x)(e^{x} dx)$$

$$\int e^{x} \cos x dx = e^{x} \sin x - \int (e^{x} \sin x dx)$$

$$u = e^{x} dv = \sin x dx$$

$$du = e^{x} dx v = -\cos x$$

$$\int e^{x} \cos x dx = e^{x} \sin x - [e^{x}(-\cos x)$$

$$-\int (-\cos x)(e^{x} dx)]$$

$$\int e^{x}\cos x \, dx = e^{x}\sin x + e^{x}\cos x$$

$$-\int e^{x}\cos x \, dx$$

$$\int e^{x}\cos x \, dx + \int e^{x}\cos x \, dx = e^{x}\sin x$$

$$+ e^{x}\cos x$$

$$2\int e^{x}\cos x \, dx = e^{x}\sin x + e^{x}\cos x$$

$$\int e^{x}\cos x \, dx = \frac{e^{x}\sin x + e^{x}\cos x}{2} + C$$

$$\int e^{x}\cos x \, dx = \frac{e^{x}}{2}(\sin x + \cos x) + C$$