Random Complexes and Persistent Homology

Zimin Fedor Vladimirovich

 $_{\mathrm{HSE}}$

Introduction

The Bobrowski and Skraba's conjecture

For percolation models on tori dimension $d \geq 3$

$$t_k^{perc} < t_k^{ec}$$

for k < d/2 and

$$t_k^{perc} > t_k^{ec}$$

for k > d/2.

Topological background

Cloud; Čech and Rips complexes

3/27

Filtration

$$\emptyset = \mathbb{X}_0 \subset \mathbb{X}_1 \subset \cdots \subset \mathbb{X}_m = X$$

$$0 = H(\mathbb{X}_0) \to H(\mathbb{X}_1) \to \cdots \to H(\mathbb{X}_m) \to H(X)$$

$$0 \to \dots \to 0 \to F \to \cdots \to F \to 0 \to \dots \to 0$$

Filtration

Lattices

Root Systems

Root system:

- $\Phi \cap \mathbb{R}\alpha = \{\alpha, -\alpha\} \ \forall \alpha \in \Phi$
- $S_{\alpha}\Phi = \Phi \ \forall \alpha \in \Phi$

Reflection:

- $S_{\alpha}\alpha = -\alpha$
- $S_{\alpha}\beta = \beta \ \forall \beta \perp \alpha$

$$S_{\alpha}(\beta) = \beta - 2 \frac{\langle \alpha, \beta \rangle}{\langle \alpha, \alpha \rangle} \alpha$$

Equivalence

Z^n , A_n , D_n

$$\mathbb{Z}^{n} = \{(x_{1}, ..., x_{n}) \in \mathbb{R}^{n} : x_{k} \in \mathbb{Z} \ \forall k\} \subset \mathbb{R}^{n}$$

$$A_{n} = \{(x_{0}, ..., x_{n}) \in \mathbb{Z}^{n+1} : x_{0} + \dots + x_{n} = 0\} \subset \mathbb{Z}^{n+1}$$

$$D_{n} = \{(x_{1}, ..., x_{n}) \in \mathbb{Z}^{n} : x_{1} + \dots + x_{n} = 0 \ (\text{mod } 2)\} \subset \mathbb{Z}^{n}$$

Dual Lattices

$$\Gamma \subset \mathbb{R}^n$$
:

$$\Gamma^* = \{ x \in \mathbb{R}^n : \ \langle x, y \rangle \in \mathbb{Z} \ \forall y \in \Gamma \}$$

About Voronoi Cells

X - metric space

Cloud $P \subset X$

Voronoi cell of $p \in P$ is

$$V_p = \{x \in X : \rho(x, p) \le \rho(x, \hat{p}) \forall \hat{p} \in P/p\}$$

Voronoi cells of lattices

b. Voronoi Cells of A_2

Voronoi cells of fcc and bcc-lattices

Extension of the Torus definition

Torus definition and Notation

Torus definition:
$$\mathbb{T} = \mathbb{R}^n/\mathbb{Z}^n$$

$$\mathbb{T} = \mathbb{R}^n/\mathbb{Z}^n = (\mathbb{R}/\mathbb{Z})^n \equiv (\mathbb{R}/\nu_1\mathbb{Z}) \times \cdots \times (\mathbb{R}/\nu_1\mathbb{Z})$$

Notation:

$$\mathbb{T}_{(3,4)} = (\mathbb{R}/3\mathbb{Z}) \times (\mathbb{R}/4\mathbb{Z})$$
$$\mathbb{T}_5^4 = (\mathbb{R}/5\mathbb{Z})^4$$

Lattice on Torus

$$\Gamma \subset \mathbb{R}^n$$

$$\mathbb{T}_{\textit{v}} = (\mathbb{R}/\textit{v}_1\mathbb{Z}) \times \cdots \times (\mathbb{R}/\textit{v}_1\mathbb{Z})$$

$$a, b \in \mathbb{T}_{v}$$
. $a \equiv b \Leftrightarrow \exists k \in \mathbb{Z} : a - b = kv$

 Γ on \mathbb{T}_{ν} means for $a, b \in \Gamma$ this equivalence relation is useble.

Percolation on Cells

Voronoi Cell Continuum Percolation Model

$$P = \{p_1, ..., p_n\} \subset X$$
 - cloud.
$$V = \{V_p\}_{p \in P}$$
 $T = \{t_p\}_{p \in P}$ iid randomly uniformly distributed in $[0, 1]$.
$$\{D_{t_p} = V_p\}_{p \in P}$$

$$\bigcup_{p \in P} D_{t_p} = X$$

$$X_t = \bigcup_{t_p < t} D_{t_p}$$

Notation

$$H_k(t) = H_k(X_t)$$
$$\beta_k(t) = \beta_k(X_t)$$
$$\chi(t) = \chi(X_t)$$

PVLM(Γ , m) means the Voronoi cell continuum percolation model for lattice Γ on $\mathbb{T}_m^{\dim \Gamma}$.

$\mathsf{PVLM}(Z^2,8)\ \mathsf{EXAMPLE}$

Review of the article of Boroski and

Skraba

Examples of models, which Boborwski and Skraba researched

The Bobrowski and Skraba's conjecture

For percolation models on tori dimension $d \geq 3$

$$t_k^{perc} < t_k^{ec}$$

for k < d/2 and

$$t_k^{perc} > t_k^{ec}$$

for k > d/2.

Analyze PVLM models

$\mathsf{PVLM}(Z^2,m)$

For m=128 the mean 1st giant cycle birth is $t_1^{perc}\approx 0.400494$ and also the mean 2nd giant cycle birth ≈ 0.410593 .

$\mathsf{PVLM}(Z^2,m)$

$$t_1^{perc} > t_1^{ec}$$

$PVLM(A_2, m)$

For m=128 the mean 1st giant cycle birth is $t_1^{perc}\approx 0.475112$ and also the mean 2nd giant cycle birth ≈ 0.519803 .

$\mathsf{PVLM}(A_2, \overline{m})$

$$t_1^{perc} < t_1^{ec}$$

$\mathsf{PVLM}(\mathbb{Z}^3,m)$

k				(m = 69)
	Mean	1st k -cycle birth	2nd k -cycle birth	3d k -cycle birth
1		$t_1^{perc} = 0.097873$	0.099265	0.100511
2		$t_2^{perc} = 0.683935$	0.686005	0.688288

$\mathsf{PVLM}(\mathbb{Z}^3,m)$

$$t_1^{perc} < t_1^{EC}$$
 $t_2^{EC} > t_1^{EC}$

$\mathsf{PVLM}(\mathsf{fcc},2m)$

k				(m = 27)
	Mean	1st k -cycle birth	2nd k -cycle birth	3d k -cycle birth
1		$t_1^{perc} = 0.135780$	0.138391	0.141021
2		$t_2^{perc} = 0.794358$	0.797446	0.801073
		_		26/27

$\mathsf{PVLM}(\mathsf{fcc},2m)$

$$t_1^{perc} < t_1^{EC}$$
 $t_2^{EC} > t_1^{EC}$

Thank you for your attention