P1 de Álgebra Linear I -2011.1

2 de Abril de 2011.

Nome:	_ Matrícula:
Assinatura:	_ Turma:

Preencha CORRETA e COMPLETAMENTE todos os campos (nome, matrícula, assinatura e turma).

Provas sem nome não serão corrigidas e terão nota <u>ZERO</u>. Provas com os campos matrícula, assinatura e turma não preenchidos ou preenchidos de forma errada serão penalizadas com a perda de 1 ponto por campo.

Duração: 1 hora 50 minutos

Q	1.a	1.b	1.c	2.a	2.b	3.a	3.b	3.c	4.a	4.b	4.c	soma
\mathbf{V}	1.0	0.5	1.0	1.0	1.0	1.0	0.5	1.0	1.0	1.5	0.5	10.0
N												

<u>Instruções – leia atentamente</u>

- Não é permitido usar calculadora. Mantenha o celular desligado.
- É proibido desgrampear a prova. Prova com folhas faltando terá nota zero.
- O desenvolvimento de cada questão deve estar a seguir **Resposta**. Desenvolvimentos fora do lugar (p. ex. no meio dos enunciados, nas margens, etc) <u>não serão corrigidos</u>!!.
- Escreva de forma clara e legível. Justifique de forma <u>ordenada</u> e <u>cuidadosa</u> suas respostas. Respostas sem justificativa não serão consideradas.

Observação

justificar: Legitimar. Dar razão a. Provar a boa razão do seu procedimento. cuidado: Atenção, cautela, desvelo, zelo. cuidadoso: Quem tem ou denota cuidado. fonte: mini-Aurélio

1)

a) Considere os vetores

$$\overrightarrow{v}_1 = (1, -2, 2)$$
 e $\overrightarrow{v}_2 = (1, 0, 1)$.

Determine vetores \overrightarrow{w}_1 e \overrightarrow{w}_2 que satisfaçam simultaneamente as seguintes três propriedades:

- \overrightarrow{w}_1 é paralelo a \overrightarrow{v}_1 ,
- \overrightarrow{w}_2 é ortogonal a \overrightarrow{v}_1 ,
- $\bullet \ \overrightarrow{v}_2 = \overrightarrow{w}_1 + \overrightarrow{w}_2.$

b) Considere vetores \overrightarrow{w} e \overrightarrow{v} de \mathbb{R}^3 tais que seus módulos verificam

$$||\overrightarrow{w}|| = 1, \quad ||\overrightarrow{v}|| = 4, \quad e \quad ||\overrightarrow{w} \times \overrightarrow{v}|| = 4.$$

Calcule o produto escalar $\overrightarrow{w} \cdot \overrightarrow{v}$.

c) Considere os vetores de \mathbb{R}^3

$$\overrightarrow{v}_3 = (1, 2, 0)$$
 e $\overrightarrow{v}_4 = (0, 2, 1)$.

Determine, se possível, um vetor \overrightarrow{w} tal que

$$\overrightarrow{v}_3 \times \overrightarrow{w} = (2, -1, 1)$$
 e $\overrightarrow{v}_4 \times \overrightarrow{w} = (-1, 1, -2).$

a) Considere os pontos $A=(3,1,1),\,B=(2,1,2)$ e a reta r de equações paramétricas

$$r: (0,3,2) + t(1,0,-1), \quad t \in \mathbb{R}.$$

Para cada ponto C da reta r calcule a área de triângulo de vértices $A, B \in C$.

b) Considere o plano π de equação cartesiana

$$\pi$$
: $y=1$

e os pontos A' = (1, 1, 2) e B' = (2, 1, 1) de π .

Determine um ponto C' do plano π tal que A', B', C' sejam os vértices de um triângulo retângulo isósceles cujos catetos são A'B' e A'C' (observe que |A'B'| = |A'C'|).

3) Considere a reta r_1 de equações paramétricas

$$r_1: (2t, 1+t, -1-t), t \in \mathbb{R},$$

e a reta r_2 de equações cartesianas

$$x + 2y - 2z = 1$$
, $x - y = 2$.

- a) Escreva a reta r_1 como interseção de dois planos π e ρ (escritos em equações cartesianas) tais que π seja paralelo ao eixo \mathbb{X} e ρ seja paralelo ao eixo \mathbb{Z} .
- b) Determine uma equação paramétrica da reta r_2 .
- c) Considere o ponto P = (0, 1, -1) da reta r_1 . Encontre <u>todos</u> os pontos Q da reta r_1 tal que a distância entre P e Q seja $2\sqrt{6}$ (isto é, de forma que o comprimento do segmento \overline{PQ} seja $2\sqrt{6}$).

4) Considere o sistema de equações linerares

$$x + y + 2z = 1,$$

 $2x + y + 0z = b,$
 $x + 2y + az = 3.$

- a) Determine, se possível, a e b para que o sistema não tenha solução.
- b) Determine, se possível, a e b para que o sistema tenha solução única.
- c) Determine, se possível, a e b para que o sistema tenha infinitas soluções.