visualize_sim_dist

Gabrielle Lemire

3/12/2021

Component Distribution for Simulated Genetic Networks

1 Unstandardized Visuals for Simulated Genetic Networks

Not divided by total number of nodes

Component Distribution for True Distribution

Component Distribution for Proportion 0.95 True Distribution in Red

Component Distribution for Proportion 0.9 True Distribution in Red

Component Distribution for Proportion 0.85 True Distribution in Red

Component Distribution for Proportion 0.8 True Distribution in Red

Component Distribution for Proportion 0.75 True Distribution in Red

Component Distribution for Proportion 0.7 True Distribution in Red

Component Distribution for Proportion 0.65 True Distribution in Red

Component Distribution for Proportion 0.6 True Distribution in Red

Component Distribution for Proportion 0.55 True Distribution in Red

Component Distribution for Proportion 0.5 True Distribution in Red

Component Distribution for Proportion 0.45 True Distribution in Red

Component Distribution for Proportion 0.4 True Distribution in Red

Component Distribution for Proportion 0.35 True Distribution in Red

Component Distribution for Proportion 0.3 True Distribution in Red

Component Distribution for Proportion 0.25 True Distribution in Red

Component Distribution for Proportion 0.2 True Distribution in Red

2 Standardized Visuals for Simulated Genetic Networks

Standardize # clusters/# nodes

Standardized Component Dist for True Dist

Visualizing - Log vs Log-Log Scales

Results - the true distribution looks linear(ish) on the log-log scale. What do we do with the 0's? leave them in? Will the skew our data downwards? Maybe not an issue for simulated data because there will be fewer 0's? are empties better though? Think about this..

Log-Log of Standardized Component Dist for 0.95 vs True Dist

Log-Log of Standardized Component Dist for 0.75 vs True Dist

Log-Log of Standardized Component Dist for 0.7 vs True Dist

Log(Cluster Size)

Log-Log of Standardized Component Dist for 0.65 vs True Dist

Log-Log of Standardized Component Dist for 0.45 vs True Dist

Log-Log of Standardized Component Dist for 0.4 vs True Dist

Log(Cluster Size)

0

Log(Cluster Size)

