Instrumentos computacionais para a questão do acento no Português Brasileiro

Bruno Ferrari Guide

Orientador: Marcelo Barra

Contexto

• Acento no PB: Comportamento previsível em partes.

• Teorias: Bisol (1992) e Lee (1995)

- Pergunta 1: É possível criar um modelo que explique o comportamento do acento no PB sem se valer da marcação lexical?
- Pergunta 2: É possível identificar outras variáveis que tem relação com o comportamento do acento além de Categoria Morfossintática e Peso silábico?

Trabalhando com dados linguísticos

Linguística computacional -> Análise de grandes quantidades de dados linguísticos

O que implica na formatação de grande quantidade de dados linguísticos:

palavra -> [&pa-la-vra*, &pa-l1-vra*, &CV-CV+CCV*, nome, V, 1203, 203, 1000]

Corpus ABG - montagem

- Corpus Oral
 - C-oral do Brasil (UFMG)
 - Iboruna (UNESP Rio Preto)
 - Projeto SP 2010(USP)

- Corpus Escrito
 - Textos Jornalísticos
 - Textos de Blogs
 - Textos Científicos

• Palavras foram transcritas, etiquetadas e acentuadas automaticamente e manualmente

Dados do Corpus ABG

Corpus Escrito		Corpus Oral	
Estadão	397.869	C-oral	12.079
Artigos	342.871	Iboruna	734.991
Blogs	215.126	ProjetoSP2010	1.216.728
Folha	819.381		
TOTAIS PARCIAIS			
Ocorrências	1.775.247	Ocorrências	1.963.798
Tipos	104.364	Tipos	40.586
TOTAL GERAL			
Ocorrências		3.739.045	
Tipos		123.245	

Análise Quantitativa

Dados do corpus

CAT-ACENTUAL	% DE TYPES	% DE TOKENS
Monossílabas	2,39%	32,16%
Oxítonas	30,21%	27,31%
Paroxítonas	63,46%	38,89%
Proparoxítonas	3,90%	1,62%
4-sílabas	0,04%	0,03%
Total	100,00%	100,00%

N-Gramas

• But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

N-Gramas

• But it must be recognized that the notion "probability of a sentence" is an entirely useless one, under any known interpretation of this term.

Noam Chomsky

N-Gramas: Explicação

Puramente Empírico.

N-gramas são sequências de tamanho N a que são atribuídas probabilidades.

Se extrai as frequências dos n-gramas do corpus de treinamento.

Aqui temos dois tipos de modelos:

Modelo Baseado em Tokens – 'para' > 'paralelepípedo'

Modelo Baseado em Types – 'para' = 'paralelepípedo'

N-Gramas: Acento

A probabilidade associada a uma atribuição de acento surge das cadeias de segmentos que a compõe:

Modelo de Trigramas (como uma cadeia de Markov):

$$P1(pa-la) \approx P(pa-|pa) \times P(a-l|a-) \times P(-la|-l) \times P(la*|la)$$

$$P2(p\underline{a}-la) \approx P(p\underline{a}-|p\underline{a}) \times P(\underline{a}-l|\underline{a}-) \times P(-la|-l) \times P(la*|la)$$

Modelo = Argmax(P1,P2)

Classificador Bayesiano Ingênuo: Explicação

- Classificador probabilístico, pode conter conhecimento a priori, usado na área de aprendizado de máquina.
- Exige treinamento em um corpus para começar a funcionar.
- Classifica baseado na transformação do que se quer classificar em um vetor de características.
- Ingênuo pois assume que não existe nenhum tipo de relação entre as variáveis.

Classificador Bayesiano Ingênuo: Acento

• Uma palavra w é representada pelo vetor de traços v

```
palavra -> [&pa-la-vra*, &CV-CV+CCV*, nome, V, 1203, 203, 1000]
```

• A cada traço se atribui uma probabilidade em relação as classes:

Nome -> Oxítona:0.3 | Paroxítona: 0.6 | Proparoxítona: 0.1

V -> Oxítona: 0.1 | Paroxítona: 0.8 | Proparoxítona: 0.1

. . .

Classificador Bayesiano Ingênuo: Acento

- Com a regra de Bayes simplificada temos:
 - P(c|w) = P(w|c) * P(c)c = categoria, w = palavra

• Logo, podemos atribuir uma probabilidade da palavra pertencer a uma categoria levando em conta o vetor de traços que a compõe.

Conclusão

• Rodar aplicações baseadas nos modelos descritos.

Coletar e analisar resultados.

• Testar novas versões do modelo CBI usando outros conjuntos de variáveis.

Referências

Corpus:

- C-oral
 - Raso, Tommaso, and Heliana Mello, eds. *C-oral-Brasil: corpus de referência do português brasileiro falado informal. I.* 2012.
- Projeto SP
 - Mendes, Ronald Beline, and Lívia Oushiro. "O paulistano no mapa sociolinguístico brasileiro." ALFA: Revista de Linguística 56.3 (2012).
- Iboruna
 - GONÇALVES, SCL. "Banco de dados Iboruna: amostras eletrônicas do português falado no interior paulista." São José do Rio Preto:[sn] (2007).
- Linguistica computacional e acento:
 - BIRD, S., KLEIN, E. and LOPER, E. (2009). *Natural Language Processing with Python*. Sebastopol, CA: O'Reilly.
 - JURAFSKY, D. and MARTIN, J. (2008). Speech and Language Processing. Upper Saddle River, NJ: Prentice Hall.
 - Bisol, Leda. "O acento e o pé métrico binário." *Cadernos de estudos lingüísticos* 22 (2012).
 - LEE, S.H (1995) "Morfologia e Fonologia lexical do Português Brasileiro" Tese de Doutorado UNICAMP

Muito Obrigado!

bruno.fguide@gmail.com