Notes on Physics 415 Statistical and Thermal Physics

Harry Luo

1 Basic Statistical Methods: Binomial distribution and the Emergence of Gaussian	2
1.1 Random walk	2
1.2 General Notions from probability:	2

1 Basic Statistical Methods: Binomial distribution and the Emergence of Gaussian

1.1 Random walk

• Example: We introduce important ideas from Probability via an example of 1D random walk:

Consider a drunkard walking along a straight line, starting from Origin x=0, and taking randoms steps of length l at regular intervals. Each step is independent of the last. He takes a probability p of steping to the left, and 1-p to step to the right. After taking N steps, what is the probability that the walker is at position x=ml?

Let $P_N(m)$ be the position x=ml of the drunkard after N steps; denote $n_1=$ number of steps to the left, $n_2=N-n_1$ number of steps to the right. Notice that $-N\leq m\leq N, N=n_1+n_2, m=n_1-n_2$.

Then the number of walking combinations, indexed with either direction left (n_1) or right (n_2) , is given by the binomial coefficient:

$$\binom{N}{n_1} = \frac{N!}{n_1!(N-n_1)!} = \frac{N!}{n_1!\,n_2!} = \binom{N}{n_2}. \tag{1}$$

Then the probability of the walker taking n_1 steps to the left and n_2 steps to the right is given by the **binomial distribution**:

$$P_N(n_1) = \frac{N!}{n_1! n_2!} p^{n_1} q^{n_2}. \tag{2}$$

Noticing $n_1=\left(\frac{N+m}{2}\right)$ and $n_2=\left(\frac{N-m}{2}\right)$:

$$P_N(m) = \frac{N!}{\left[\frac{N+m}{2}\right]! \left[\frac{N-m}{2}\right]!} p^{\frac{N+m}{2}} (1-p)^{\frac{N-m}{2}}.$$
 (3)

1.2 General Notions from probability:

Let X be a random variable, taking N possible values $x_1, x_2, ..., x_N$ with associated probabilities $P(x_1), P(x_2),$

• Mean: