# GSERM - St. Gallen 2024 Analyzing Panel Data

June 12, 2024

#### Data on Github

#### Download via the "Raw" button...



#### Can also use (e.g.) read\_csv (in readr):

- > install.packages("readr")
- > library(readr)
- > Data<-read\_csv("https://raw.githubusercontent.com/PrisonRodeo/GSERM-Panel-2024/main/ Exercises/GSERM-Panel-Exercise-June-2024.csv")

### Generalized Least Squares Models

Start with a focus on residuals... For:

$$Y_{it} = \mathbf{X}_{it}\beta + u_{it}$$

i.i.d. OLS *uits* require:

$$\mathbf{u}\mathbf{u}' \equiv \mathbf{\Omega} = \sigma^2 \mathbf{I}$$

$$= \begin{pmatrix} \sigma^2 & 0 & \cdots & 0 \\ 0 & \sigma^2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sigma^2 \end{pmatrix}$$

#### **GLS Models**

#### This means that within units:

- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$  (temporal homoscedasticity)
- $Cov(u_{it}, u_{is}) = 0 \ \forall \ t \neq s$  (no within-unit autocorrelation)

#### and between units:

- $Var(u_{it}) = Var(u_{it}) \ \forall \ i \neq j$  (cross-unit homoscedasticity)
- Cov $(u_{it}, u_{jt}) = 0 \ \forall \ i \neq j$  (no between-unit / spatial correlation)

### The Key: $\Omega$

Estimator:

$$\hat{\beta}_{\textit{GLS}} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})^{-1} \mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{Y}$$

with:

$$\widehat{\mathsf{V}(\beta_{\mathit{GLS}})} = (\mathsf{X}'\Omega^{-1}\mathsf{X})^{-1}$$

Two approaches:

- ullet Use OLS  $\hat{u}_{it}$ s to get  $\hat{\Omega}$  ("feasible GLS" / "weighted least squares")
- $\bullet$  Use substantive knowledge about the data to structure  $\Omega$

### Getting to Know WLS

The variance-covariance matrix is:

$$Var(\hat{\beta}_{WLS}) = \sigma^2 (\mathbf{X}' \mathbf{W}^{-1} \mathbf{X})^{-1}$$
$$\equiv (\mathbf{X}' \Omega^{-1} \mathbf{X})^{-1}$$

A common case is:

$$\mathsf{Var}(u_i) = \sigma^2 \frac{1}{N_i}$$

where  $N_i$  is the number of observations upon which (aggregate) observation i is based.

### "Robust" Variance Estimators

Recall that, if  $\sigma_i^2 \neq \sigma_i^2 \ \forall \ i \neq j$ ,

$$\begin{aligned} \mathsf{Var}(\beta_{\mathsf{Het.}}) &= & (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\Omega^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\ &= & (\mathbf{X}'\mathbf{X})^{-1}\,\mathbf{Q}\,(\mathbf{X}'\mathbf{X})^{-1} \end{aligned}$$

where  $\mathbf{Q} = (\mathbf{X}' \mathbf{\Omega}^{-1} \mathbf{X})$  and  $\mathbf{\Omega} = \sigma^2 \mathbf{W}$ .

We can rewrite **Q** as

$$\mathbf{Q} = \sigma^{2}(\mathbf{X}'\mathbf{W}^{-1}\mathbf{X})$$
$$= \sum_{i=1}^{N} \sigma_{i}^{2}\mathbf{X}_{i}\mathbf{X}'_{i}$$

### Huber's Insight

Estimate **Q** as:

$$\widehat{\mathbf{Q}} = \sum_{i=1}^{N} \widehat{u}_i^2 \mathbf{X}_i \mathbf{X}_i'$$

Yields:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Robust}} = (\mathbf{X}'\mathbf{X})^{-1}(\mathbf{X}'\widehat{\mathbf{Q}}^{-1}\mathbf{X})(\mathbf{X}'\mathbf{X})^{-1} \\
= (\mathbf{X}'\mathbf{X})^{-1} \left[ \mathbf{X}' \left( \sum_{i=1}^{N} \hat{u}_{i}^{2}\mathbf{X}_{i}\mathbf{X}_{i}' \right)^{-1} \mathbf{X} \right] (\mathbf{X}'\mathbf{X})^{-1}$$

### Practical Things

#### "Robust" VCV estimates:

- are heteroscedasticity-consistent, but
- are biased in small samples, and
- are less efficient than "naive" estimates when  $Var(u) = \sigma^2 I$ .

### "Clustering"

Huber / White

????????

WLS / GLS

I know very little about my error variances... I know a great deal about my error variances...

### "Clustering"

A common case:

$$Y_{ij} = \mathbf{X}_{ij}\boldsymbol{\beta} + u_{ij}$$

with

$$\sigma_{ij}^2 = \sigma_{ik}^2$$
.

"Robust, clustered" estimator:

$$\widehat{\mathsf{Var}(\boldsymbol{\beta})}_{\mathsf{Clustered}} = (\mathbf{X}'\mathbf{X})^{-1} \left\{ \mathbf{X}' \left[ \sum_{i=1}^{N} \left( \sum_{j=1}^{n_j} \hat{u}_{ij}^2 \mathbf{X}_{ij} \mathbf{X}_{ij}' \right) \right]^{-1} \mathbf{X} \right\} (\mathbf{X}'\mathbf{X})^{-1}$$

### Robust / Clustered SEs: A Simulation

url\_robust <- "https://raw.githubusercontent.com/IsidoreBeautrelet/economictheoryblog/master/robust\_summary.R" eval(parse(text = getURL(url\_robust, ssl.verifypeer = FALSE)), envir=.GlobalEnv) > set.seed(3844469) > X <- rnorm(10) > Y <- 1 + X + rnorm(10) > df10 <- data.frame(ID=seq(1:10),X=X,Y=Y) > fit10 <- lm(Y~X,data=df10) > summary(fit10) Call. lm(formula = Y ~ X, data = df10) Residuals: Min 10 Median 30 Max -1.318 -0.766 0.195 0.378 1.590 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 0.954 0.311 3.06 0.016 \* Y 0.589 0.291 2.03 0.077 . Signif, codes: 0 \*\*\* 0.001 \*\* 0.01 \* 0.05 . 0.1 1 Residual standard error: 0.985 on 8 degrees of freedom Multiple R-squared: 0.339, Adjusted R-squared: 0.257 F-statistic: 4.11 on 1 and 8 DF, p-value: 0.0772 > rob10 <- vcovHC(fit10,type="HC1") > sqrt(diag(rob10))

(Intercept) 0.315

0.285

### Robust / Clustered SEs: A Simulation (continued)

```
> # "Clone" each observation 100 times:
> df1K <- df10[rep(seq_len(nrow(df10)),each=100),]
> df1K <- pdata.frame(df1K, index="ID")
> fit1K <- lm(Y~X,data=df1K)
> summary(fit1K)
Call:
lm(formula = Y ~ X, data = df1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
                        0.0279
                                  34.2 <2e-16 ***
(Intercept) 0.9536
             0.5893
                        0.0260
                                22.6 <2e-16 ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.882 on 998 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.339
F-statistic: 513 on 1 and 998 DF, p-value: <2e-16
> summarv(fit1K, cluster="ID")
Call:
lm(formula = Y ~ X, data = df1K)
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              0.954
                         0.297
                                  3.21 0.0014 **
Y
              0.589
                         0.269
                                  2.19 0.0286 *
Signif, codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 0.882 on 998 degrees of freedom
Multiple R-squared: 0.339, Adjusted R-squared: 0.339
F-statistic: 4.8 on 1 and 9 DF, p-value: 0.0561
```

#### Serial Residual Correlation

Example:

$$Y_t = \beta_0 + \beta_1 X_t + u_t$$
  
$$u_t = \rho u_{t-1} + e_t$$

with  $e_t \sim i.i.d. N(0, \sigma_u^2)$  and  $\rho \in [-1, 1]$  (typically).

 $\rightarrow$  "First-order autoregressive" ("AR(1)") errors.

### Serially Correlated Errors and OLS

#### Detection

- Plot of residuals vs. lagged residuals
- Runs test (Geary test)
- Durbin-Watson d
  - · Calculated as:

$$d = \frac{\sum_{t=2}^{N} (\hat{u}_t - \hat{u}_{t-1})^2}{\sum_{t=1}^{N} \hat{u}_t^2}$$

- · Non-standard distribution  $(d \in [0,4])$
- · Null: No autocorrelation
- · Only detects first-order autocorrelation

### Serially Correlated Errors and OLS

#### What to do about it?

- GLS, incorporating  $\rho$  /  $\hat{\rho}$  into the equation
- First-difference models (regressing changes of Y on changes of X)
- Cochrane-Orcutt / Prais-Winsten:
  - 1. Estimate the basic equation via OLS, and obtain residuals
  - 2. Use the residuals to consistently estimate  $\hat{\rho}$  (i.e. the empirical correlation between  $u_t$  and  $u_{t-1}$ )
  - 3. Use this estimate of  $\hat{\rho}$  to estimate the difference equation:

$$(Y_t - \rho Y_{t-1}) = \beta_0(1 - \rho) + \beta_1(X_t - \rho X_{t-1}) + (u_t - \rho u_{t-1})$$

- 4. Save the residuals, and use them to estimate  $\hat{\rho}$  again
- 5. Repeat this process until successive estimates of  $\hat{\rho}$  differ by a very small amount

### Running Example Redux

#### The World Development Indicators:

- Cross-national country-level time series data
- N = 215 countries, T = 64 years (1960-2023) + missingness
- Full descriptions are listed in the Github repo here

#### Regression model:

```
\begin{split} \mathsf{WBLI}_{it} &= \beta_0 + \beta_1 \mathsf{Population Growth}_{it} + \beta_2 \mathsf{Urban Population}_{it}^2 + \beta_3 \mathsf{Fertility Rate}_{it} + \\ & \beta_4 \mathsf{In} \big(\mathsf{GDP \ Per \ Capita}\big)_{it} + \beta_5 \mathsf{Natural \ Resource \ Rents}_{it} + \beta_6 \mathsf{Post-Cold \ War}_t + u_{it} \end{split}
```

#### Descriptive Statistics:

|                      | vars | n    | mean  | sd    | median | min    | max    | range | skew  |
|----------------------|------|------|-------|-------|--------|--------|--------|-------|-------|
| WomenBusLawIndex     | 1    | 8127 | 60.64 | 18.98 | 60.62  | 17.50  | 100.00 | 82.50 | -0.03 |
| PopGrowth            | 2    | 8127 | 1.65  | 1.54  | 1.65   | -16.88 | 19.36  | 36.24 | 1.18  |
| UrbanPopulation      | 3    | 8127 | 51.64 | 23.82 | 51.50  | 2.85   | 100.00 | 97.16 | 0.07  |
| FertilityRate        | 4    | 8127 | 3.61  | 1.90  | 3.07   | 0.77   | 8.61   | 7.83  | 0.52  |
| NaturalResourceRents | 5    | 8127 | 7.03  | 10.76 | 2.45   | 0.00   | 88.59  | 88.59 | 2.52  |
| PostColdWar          | 6    | 8127 | 0.70  | 0.46  | 1.00   | 0.00   | 1.00   | 1.00  | -0.86 |
| lnGDPPerCap          | 7    | 8127 | 8.30  | 1.44  | 8.20   | 4.92   | 11.68  | 6.76  | 0.14  |

### A Digression: Rescaling Covariates

#### A la Gelman (2008) (and an updated blog post here):

- Continuous = divide by one standard deviation
- Binary = recode to  $\{-1,1\}$

#### Doing this yields:

|                      | vars | n    | mean  | sd    | median | min    | max    | range | skew  |
|----------------------|------|------|-------|-------|--------|--------|--------|-------|-------|
| WomenBusLawIndex     | 1    | 8127 | 60.64 | 18.98 | 60.62  | 17.50  | 100.00 | 82.50 | -0.03 |
| PopGrowth            | 2    | 8127 | 1.07  | 1.00  | 1.07   | -10.94 | 12.55  | 23.49 | 1.18  |
| UrbanPopulation      | 3    | 8127 | 2.17  | 1.00  | 2.16   | 0.12   | 4.20   | 4.08  | 0.07  |
| FertilityRate        | 4    | 8127 | 1.90  | 1.00  | 1.62   | 0.41   | 4.54   | 4.13  | 0.52  |
| NaturalResourceRents | 5    | 8127 | 0.65  | 1.00  | 0.23   | 0.00   | 8.23   | 8.23  | 2.52  |
| PostColdWar          | 6    | 8127 | 0.40  | 0.92  | 1.00   | -1.00  | 1.00   | 2.00  | -0.86 |
| lnGDPPerCap          | 7    | 8127 | 5.78  | 1.00  | 5.71   | 3.43   | 8.13   | 4.70  | 0.14  |

#### How Much Autocorrelation in *Y*?

Note that:

$$d = 2(1 - \rho)$$

which means that we can calculate:

$$\rho=1-\frac{d}{2}.$$

So:

- > WI<-pdwtest(WomenBusLawIndex~1,data=smol)
- > WT

Durbin-Watson test for serial correlation in panel models

data: WomenBusLawIndex ~ 1
DW = 0.099, p-value <2e-16</pre>

alternative hypothesis: serial correlation in idiosyncratic errors

> print(paste("Rho =",round(1 - (WI\$statistic/2),3)))
[1] "Rho = 0.951"

### How Much Autocorrelation in **X**?

Table: WDI Data - Autocorrelation in the Predictors

| Variable               | Rho   |
|------------------------|-------|
| Population Growth      | 0.851 |
| Urban Population       | 0.974 |
| Fertility Rate         | 0.966 |
| GDP Per Capita         | 0.977 |
| Natural Resource Rents | 0.911 |
| Post Cold War          | 0.916 |
|                        |       |

### Baseline Model: OLS (+ D-W Test)

> OLS<-plm(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lngDPPerCap+NaturalResourceRents+ PostColdWar,data=smol,model="pooling") > summary(OLS) Pooling Model Call: plm(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + lnGDPPerCap + NaturalResourceRents + PostColdWar, data = smol, model = "pooling") Unbalanced Panel: n = 187, T = 1-52, N = 8127 Coefficients: Estimate Std. Error t-value Pr(>|t,|) (Intercept) 55.024 1.755 31.36 < 2e-16 \*\*\* -3.601 0.202 -17.84 PopGrowth < 2e-16 \*\*\* UrbanPopulation -1.348 0.251 -5.38 0.000000076 \*\*\* FertilityRate -4.854 0.301 -16.10 < 2e-16 \*\*\* 1nGDPPerCap 3.793 0.279 13.58 < 2e-16 \*\*\* NaturalResourceRents -3.691 0.167 -22.10 < 2e-16 \*\*\* PostColdWar 5 403 0.185 29.15 < 2e-16 \*\*\* Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 Total Sum of Squares: 2930000 Residual Sum of Squares: 1470000 R-Squared: 0.499 Adi. R-Squared: 0.499 F-statistic: 1348.85 on 6 and 8120 DF, p-value: <2e-16 > pdwtest(OLS) Durbin-Watson test for serial correlation in panel models

data: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + ...
DW = 0.13, p-value <2e-16
alternative hypothesis: serial correlation in idiosyncratic errors

#### Residual Autocorrelation?



### Unit-Specific Autocorrelation...

Fit N=187 country-specific regressions, and examine the  $\hat{\rho}_i$ s...



#### Another Model: Prais-Winsten

 $> \ Prais Winsten <-panel AR (Women Bus Law Index "Pop Growth + Urban Population + Fertility Rate + ln GDPPer Cap + Natural Resource Rents + ln GDPPer Cap + Natural Rents + ln GDPPer Cap + ln GDPPer Cap + ln GDPPer Cap + ln GDPPer Cap +$ 

PostColdWar, data=smol,panelVar="ISO3",timeVar="Year",autoCorr="ar1",panelCorrMethod="none",

+ rho.na.rm=TRUE)

> summary(PraisWinsten)

Panel Regression with AR(1) Prais-Winsten correction and homoskedastic variance

#### Unbalanced Panel Design:

Total obs.: 8127 Avg obs. per panel 43.46 Number of panels: 187 Max obs. per panel 52 Number of times: 52 Min obs. per panel 1

#### Coefficients:

|                      | Estimate | Std. Error | t value | Pr(> t ) |     |
|----------------------|----------|------------|---------|----------|-----|
| (Intercept)          | 68.3780  | 3.0007     | 22.79   | < 2e-16  | *** |
| PopGrowth            | -0.0640  | 0.0612     | -1.04   | 0.30     |     |
| UrbanPopulation      | -0.1410  | 0.5756     | -0.24   | 0.81     |     |
| FertilityRate        | -9.8500  | 0.4445     | -22.16  | < 2e-16  | *** |
| 1nGDPPerCap          | 2.0281   | 0.4997     | 4.06    | 0.000050 | *** |
| NaturalResourceRents | -0.0483  | 0.0856     | -0.56   | 0.57     |     |
| PostColdWar          | 0.4674   | 0.1079     | 4.33    | 0.000015 | *** |

---

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' 1

R-squared: 0.319

Wald statistic: 1071.481, Pr(>Chisq(6)): 0

> PraisWinsten\$panelStructure\$rho

### Better in a Table

WBLI Regressions

|                        | 01.0   | D : \\\/:     |
|------------------------|--------|---------------|
|                        | OLS    | Prais-Winsten |
| Intercept              | 55.02* | 68.38*        |
|                        | (1.76) | (3.00)        |
| Population Growth      | -3.60* | -0.06         |
|                        | (0.20) | (0.06)        |
| Urban Population       | -1.35* | -0.14         |
|                        | (0.25) | (0.58)        |
| Fertility Rate         | -4.85* | -9.85*        |
|                        | (0.30) | (0.44)        |
| In(GDP Per Capita)     | 3.79*  | 2.03*         |
|                        | (0.28) | (0.50)        |
| Natural Resource Rents | -3.69* | -0.05         |
|                        | (0.17) | (0.09)        |
| Post-Cold War          | 5.40*  | 0.47*         |
|                        | (0.19) | (0.11)        |
| $\hat{\rho}$           |        | 0.95          |
| $R^2$                  | 0.499  | 0.32          |
| Adj. R <sup>2</sup>    | 0.499  |               |
| NT                     | 8100   | 8100          |
| N panels               |        | 187           |
|                        |        |               |

Variables are standardized a la Gelman (2009).  $^{*}p < 0.05$ 

### Some Panel Data Challenges

Consider the error terms in the model:

In Marda

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta} + u_{it}$$

#### Issues:

| <u>in vvoras</u> :                           | <u>in a Formula</u> :          |  |  |
|----------------------------------------------|--------------------------------|--|--|
| Variances:                                   |                                |  |  |
| Unit-Wise Heteroscedasticity                 | $Var(u_{it}) \neq Var(u_{jt})$ |  |  |
| Temporal Heteroscedasticity                  | $Var(u_{it}) \neq Var(u_{is})$ |  |  |
| Covariances:                                 |                                |  |  |
| Contemporary Cross-Unit Correlation          | $Cov(u_{it}, u_{jt}) \neq 0$   |  |  |
| Within-Unit Serial Correlation               | $Cov(u_{it}, u_{is}) \neq 0$   |  |  |
| Non-Contemporaraneous Cross-Unit Correlation | $Cov(u_{it},u_{js}) \neq 0$    |  |  |

### Parks' (1967) Approach

#### Assume:

- $Var(u_{it}, u_{jt}) = \sigma^2$  or  $\sigma_i^2$  (Common or unit-specific error variances)
- $Var(u_{it}) = Var(u_{is}) \ \forall \ t \neq s$  (Temporal homoscedasticity)
- $Cov(u_{it}, u_{it}) = \sigma_{ii} \ \forall \ i \neq j$  (Pairwise contemporaneous cross-unit correlation)
- Cov $(u_{it}, u_{is}) = \rho$  or  $\rho_i$  (Common or unit-specific temporal correlation)
- Cov $(u_{it}, u_{js}) = 0 \ \forall \ i \neq j, t \neq s$  (No non-contemporaneous cross-unit correlation)

(B&K: "panel error assumptions").

#### Then:

- 1. Use OLS to generate  $\hat{u}$ s  $\rightarrow \hat{\rho} \ (\rightarrow \hat{\Omega})$ ,
- 2. Use  $\hat{\rho}$  for Prais-Winsten.

This method was widely used prior to Beck & Katz (1995)

### Parks' Problems

$$\boldsymbol{\Omega} = \begin{pmatrix} \boldsymbol{\Sigma} & \boldsymbol{0} & \cdots & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\Sigma} & \cdots & \boldsymbol{0} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{0} & \boldsymbol{0} & \cdots & \boldsymbol{\Sigma} \end{pmatrix} = \boldsymbol{\Sigma} \otimes \boldsymbol{I}_{\mathcal{T}}$$

where

$$\sum_{N\times N} = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1N} \\ \sigma_{12} & \sigma_2^2 & \cdots & \sigma_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{1N} & \sigma_{2N} & \cdots & \sigma_N^2 \end{pmatrix}$$

#### Means:

- $\frac{N(N-1)}{2}$  distinct contemporaneous covariances  $\sigma_{ij}$ ,
- NT observations.
- ullet ightarrow 2T/(N+1) observations per  $\hat{\sigma}$

#### More Parks Problems

#### From PROC PANEL in SAS:

#### Standard Corrections

For the PARKS option, the first-order autocorrelation coefficient must be estimated for each cross section. Let  $\rho$  be the  $N \times 1$  vector of true parameters and  $R = (r_1, \dots, r_N)'$  be the corresponding vector of estimates. Then, to ensure that only range-preserving estimates are used in PROC PANEL, the following modification for R is made:

$$r_i = \begin{cases} r_i & \text{if } |r_i| < 1\\ \max(.95, \text{rmax}) & \text{if } r_i \ge 1\\ \min(-.95, \text{rmin}) & \text{if } r_i \le -1 \end{cases}$$

where

$$\operatorname{rmax} = \begin{cases} 0 & \text{if} \quad r_i < 0 \quad \text{or} \quad r_i \ge 1 \quad \forall i \\ \max_j [r_j : 0 \le r_j < 1] & \text{otherwise} \end{cases}$$

and

$$\mathrm{rmin} = \begin{cases} 0 & \text{if} \quad r_i > 0 \quad \text{or} \quad r_i \leq -1 \quad \forall i \\ \max_j [r_j: -1 < r_j \leq 0] & \text{otherwise} \end{cases}$$

Whenever this correction is made, a warning message is printed.

### Panel-Corrected Standard Errors

Key to PCSEs:

$$\hat{\sigma}_{ij} = \frac{\sum_{t=1}^{T} \hat{u}_{it} \hat{u}_{jt}}{T}$$

Define:

$$\mathbf{U}_{T \times N} = \begin{pmatrix} \hat{u}_{11} & \hat{u}_{21} & \cdots & \hat{u}_{N1} \\ \hat{u}_{12} & \hat{u}_{22} & \cdots & \hat{u}_{N2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{u}_{1T} & \hat{u}_{2T} & \cdots & \hat{u}_{NT} \end{pmatrix}$$

$$\hat{\mathbf{\Sigma}} = \frac{(\mathbf{U}'\mathbf{U})}{T}$$

$$\hat{\Omega}_{\textit{PCSE}} = \frac{(\textbf{U}'\textbf{U})}{\textit{T}} \otimes \textbf{I}_{\textit{T}}$$

### Panel-Corrected Standard Errors

#### Correct formula:

$$\mathsf{Cov}(\hat{\beta}_{\mathit{PCSE}}) = (\mathbf{X}'\mathbf{X})^{-1}[\mathbf{X}'\hat{\boldsymbol{\Omega}}_{\mathit{PCSE}}\mathbf{X}](\mathbf{X}'\mathbf{X})^{-1}$$

#### General Issues:

- PCSEs do not fix unit-level heterogeneity (a la "fixed" / "random" effects)
- They also do not deal with dynamics
- They depend critically on the "panel data assumptions" of Park / Beck & Katz

### Panel Assumptions and Numbers of Parameters

| Panel Assumptions                                                   | No AR(1)                   | Common $\hat{ ho}$             | Separate $\hat{ ho}_i$ s    |
|---------------------------------------------------------------------|----------------------------|--------------------------------|-----------------------------|
| $\sigma_i^2 = \sigma^2$ , $Cov(\sigma_{it}, \sigma_{jt}) = 0$       | k+1                        | k + 2                          | k + N + 1                   |
| $\sigma_i^2 \neq \sigma^2$ , $Cov(\sigma_{it}, \sigma_{jt}) = 0$    | k + N                      | k + N + 1                      | k + 2N                      |
| $\sigma_i^2 \neq \sigma^2$ , $Cov(\sigma_{it}, \sigma_{jt}) \neq 0$ | $\frac{N(N-1)}{2} + k + N$ | $\frac{N(N-1)}{2} + k + N + 1$ | $\frac{N(N-1)}{2} + k + 2N$ |

### Example: GLS with Homoscedastic AR(1) Errors

```
> GLS<-gls(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lngDPPerCap+NaturalResourceRents+
          PostColdWar,data=smol,correlation=corAR1(form=~1|ISO3),na.action="na.omit")
> summary(GLS)
Generalized least squares fit by REML
 Model: WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + lnGDPPerCap + NaturalResourceRents + PostColdWar
 Data: smol
   AIC BIC logLik
 38224 38287 -19103
Correlation Structure: AR(1)
Formula: ~1 | ISO3
Parameter estimate(s):
  Phi
0 9897
Coefficients:
                   Value Std.Error t-value p-value
(Intercept)
                   48.14
                             3.997 12.044 0.0000
PopGrowth
                 -0.02 0.057 -0.320 0.7486
UrbanPopulation
                  5.81 0.972 5.977 0.0000
FertilityRate
                 -6.79 0.556 -12.211 0.0000
1nGDPPerCap
                    2.41 0.604 3.989 0.0001
NaturalResourceRents 0.23 0.077 3.009 0.0026
PostColdWar
                  0.22 0.102 2.145 0.0320
Residual standard error: 16.94
Degrees of freedom: 8127 total; 8120 residual
```

### Example: PCSEs

 $> \verb|PCSE<-panelAR(WomenBusLawIndex"|PopGrowth+UrbanPopulation+FertilityRate+lngDPPerCap+NaturalResourceRents+|PCM-variable | PCM-variable |$ 

+ PostColdWar,data=smol,panelVar="ISO3",timeVar="Year",autoCorr="ar1",

Fetimate Std Frrom t value Dr(>|t|)

panelCorrMethod="pcse",rho.na.rm=TRUE)

#### > summary(PCSE)

Panel Regression with AR(1) Prais-Winsten correction and panel-corrected standard errors

#### Unbalanced Panel Design:

Total obs.: 8127 Avg obs. per panel 43.46 Number of panels: 187 Max obs. per panel 52 Number of times: 52 Min obs. per panel 1

#### Coefficients:

|                      | TO CIME CO | Did. Liloi | c varue | 11(>101) |     |  |
|----------------------|------------|------------|---------|----------|-----|--|
| (Intercept)          | 68.3780    | 4.5026     | 15.19   | <2e-16   | *** |  |
| PopGrowth            | -0.0640    | 0.0692     | -0.92   | 0.3551   |     |  |
| UrbanPopulation      | -0.1410    | 0.6265     | -0.22   | 0.8220   |     |  |
| FertilityRate        | -9.8500    | 0.6900     | -14.28  | <2e-16   | *** |  |
| 1nGDPPerCap          | 2.0281     | 0.6714     | 3.02    | 0.0025   | **  |  |
| NaturalResourceRents | -0.0483    | 0.1296     | -0.37   | 0.7095   |     |  |
| PostColdWar          | 0.4674     | 0.2932     | 1.59    | 0.1109   |     |  |
|                      |            |            |         |          |     |  |

Signif. codes: 0 '\*\*\* 0.001 '\*\* 0.01 '\* 0.05 '.' 0.1 ' ' 1

R-squared: 0.319

Wald statistic: 407.5469, Pr(>Chisq(6)): 0

#### > PCSE\$panelStructure\$rho

[1] 0.9526

### **Estimate Comparisons**



## Dynamics!

### Time Series: Stationarity

Stationarity: A constant d.g.p. over time.<sup>1</sup>

Mean stationarity:

$$E(Y_t) = \mu \ \forall \ t$$

Variance stationarity:

$$Var(Y_t) = E[(Y_t - \mu)^2] \equiv \sigma_Y^2 \ \forall \ t$$

Covariance stationarity:

$$Cov(Y_t, Y_{t-s}) = E[(Y_t - \mu)(Y_{t-s} - \mu)] = \gamma_s \ \forall \ s$$

 $<sup>^1</sup>A$  stricter form of stationarity requires that the joint probability distribution (in other words, all the moments) of series of observations  $\{Y_1,Y_2,...Y_t\}$  is the same as that for  $\{Y_{1+s},Y_{2+s},...Y_{t+s}\}$  for all t and s.

# The "ARIMA" Approach

"ARIMA" = Autoregressive Integrated Moving Average...

A (first-order) integrated series ("random walk") is:

$$Y_t = Y_{t-1} + u_t, \ u_t \sim i.i.d.(0, \sigma_u^2)$$

...a/k/a a "random walk":

$$Y_{t} = Y_{t-2} + u_{t-1} + u_{t}$$

$$= Y_{t-3} + u_{t-2} + u_{t-1} + u_{t}$$

$$= \sum_{t=0}^{T} u_{t}$$

# I(1) Series Properties

### I(1) series are not stationary.

Variance:

$$Var(Y_t) \equiv E(Y_t)^2 = t\sigma^2$$

Autocovariance:

$$Cov(Y_t, Y_{t-s}) = |t - s|\sigma^2.$$

Both depend on t...

# I(1) series (continued)

### More generally:

- $|\rho| > 1$ 
  - Series is nonstationary / explosive
  - Past shocks have a greater impact than current ones
  - Uncommon
- $|\rho| < 1$ 
  - Stationary series
  - ullet Effects of shocks die out exponentially according to ho
  - Is mean-reverting
- $\bullet$   $|\rho|=1$ 
  - Nonstationary series
  - Shocks persist at full force
  - Not mean-reverting; variance increases with t

# Time Series Types, Illustrated



# I(1) Series: Differencing

For an I(1) series:

$$Y_t - Y_{t-1} = u_t$$

which we often write in terms of the difference operator  $\Delta$  (or sometimes  $\nabla$ ):

$$\Delta Y_t = u_t$$

The differenced series is just the (stationary, ergoditic) white-noise process  $u_t$ .

# Unit Root Tests Review: Dickey-Fuller

#### Two steps:

- Estimate  $Y_t = \rho Y_{t-1} + u_t$ ,
- test the hypothesis that  $\hat{\rho} = 1$ , but
- this requires that the *u*s are uncorrelated.

### But suppose:

$$\Delta Y_t = \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

which yields

$$Y_t = Y_{t-1} + \sum_{i=1}^{p} d_i \Delta Y_{t-i} + u_t.$$

D.F. tests will be incorrect.

### Unit Root Alternatives

### Augmented Dickey-Fuller Tests:

Estimate

$$\Delta Y_t = \rho Y_{t-1} + \sum_{i=1}^p d_i \Delta Y_{t-i} + u_t$$

• Test  $\hat{
ho}=0$  (vs. alternative that  $\hat{
ho}<0$ )

### Phillips-Perron Tests:

• Estimate:

$$\Delta Y_t = \alpha + \rho Y_{t-1} + u_t$$

- Calculate modified test statistics ( $Z_{\rho}$  and  $Z_{t}$ )
- Test  $\hat{\rho} = 0$

### Issues with Unit Roots in Panel Data

- Short series + Asymptotic tests → "borrow strength"
- Requires uniform unit roots across cross-sectional units
- Many tests require balanced panels...
- Various alternatives:
  - Maddala and Wu (1999)
  - Hadri (2000)
  - Levin, Lin and Chu (2002)
  - Im, Pesaran, and Shin (2003)
- What to do?
  - Difference the data...
  - Error-correction models

### Panel Unit Root Tests: R

```
[data wrangling...]
> purtest(WBLI.W,exo="trend",test="levinlin",pmax=2)
Levin-Lin-Chu Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLT.W
z = -2.5, p-value = 0.007
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="hadri",pmax=2)
 Hadri Test (ex. var.: Individual Intercepts and Trend) (Heterosked, Consistent)
data: WBLI.W
z = 200, p-value <2e-16
alternative hypothesis: at least one series has a unit root
> purtest(WBLI.W,exo="trend",test="madwu",pmax=2)
Maddala-Wu Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLI.W
chisq = 336, df = 376, p-value = 0.9
alternative hypothesis: stationarity
> purtest(WBLI.W,exo="trend",test="ips",pmax=2)
 Im-Pesaran-Shin Unit-Root Test (ex. var.: Individual Intercepts and Trend)
data: WBLT.W
Wtbar = 2.9, p-value = 1
alternative hypothesis: stationarity
```

### A Better Table

Table: Panel Unit Root Tests: WBRI

| Test            | Alternative                         | Statistic         | Estimate | P-Value  |
|-----------------|-------------------------------------|-------------------|----------|----------|
| Levin-Lin-Chu   | stationarity                        | Z                 | -2.476   | 0.0066   |
| Hadri           | at least one series has a unit root | z                 | 199.634  | < 0.0001 |
| Maddala-Wu      | stationarity                        | $\chi^2$          | 335.94   | 0.9321   |
| Im-Pesaran-Shin | stationarity                        | $\dot{\bar{W}}_t$ | 2.851    | 0.9978   |

Note: All assume individual intercepts and trends.

"Lagged dependent variable":

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \beta_{LDV} + \epsilon_{it}$$

If  $\epsilon_{it}$  is perfect, then:

- $\hat{\beta}_{LDV}$  is biased (but consistent),
- O(bias) =  $\frac{-1+3\beta_{LDV}}{T}$

If  $\epsilon_{it}$  is autocorrelated...

- $\hat{\beta}_{LDV}$  is biased and inconsistent
- IV is one (bad) option...

### Lagged Ys and GLS-ARMA

Can rewrite:

$$Y_{it} = \mathbf{X}_{it} \boldsymbol{\beta}_{AR} + u_{it}$$
  
 $u_{it} = \phi u_{it-1} + \eta_{it}$ 

as

$$Y_{it} = \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \phi u_{it-1} + \eta_{it}$$

$$= \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \phi(\mathbf{Y}_{it-1} - \mathbf{X}_{it-1}\boldsymbol{\beta}_{AR}) + \eta_{it}$$

$$= \phi \mathbf{Y}_{it-1} + \mathbf{X}_{it}\boldsymbol{\beta}_{AR} + \mathbf{X}_{it-1}\psi + \eta_{it}$$

where  $\psi = \phi \beta_{AR}$  and  $\psi = 0$  (by assumption).

# Lagged Ys and World Domination

In:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta}_{LDV} + \epsilon_{it}$$

Achen: Bias "deflates"  $\hat{\beta}_{LDV}$  relative to  $\hat{\phi}$ , "suppress" the effects of **X**...

Keele & Kelly (2006):

- Contingent on  $\epsilon$ s having autocorrelation
- Key: In LDV, long-run impact of a unit change in X is:

$$\hat{eta}_{LR} = rac{\hat{eta}_{LDV}}{1 - \hat{\phi}}$$

# Long-Run Impact for $\hat{eta}=1$



# Lagged Ys and Unit Effects

Consider:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + \alpha_i + u_{it}.$$

If we omit the unit effects, we have:

$$Y_{it} = \phi Y_{it-1} + \mathbf{X}_{it} \boldsymbol{\beta} + u_{it}^*$$

with

$$u_{it}^* = \alpha_i + u_{it}$$

Lagging yields:

$$Y_{it-1} = \phi Y_{it-2} + \mathbf{X}_{it-1} \boldsymbol{\beta} + \alpha_i + u_{it-1}$$

which means

$$Cov(Y_{it-1}, u_{it}^*) \neq 0. \rightarrow bias in \hat{\phi}, \hat{\beta}$$

### "Nickell" Bias

Bias in  $\hat{\phi}$  is

- toward zero when  $\phi > 0$ ,
- increasing in  $\phi$ .

Including unit effects still yields bias in  $\hat{\phi}$  of  $O(\frac{1}{T})$ , and bias in  $\hat{\beta}$ .

#### Solutions:

- Difference/GMM estimation
- Bias correction approaches

### First Difference Estimation

$$Y_{it} - Y_{it-1} = \phi(Y_{it-1} - Y_{it-2}) + (\mathbf{X}_{it} - \mathbf{X}_{it-1})\beta + (\alpha_i - \alpha_i) + (u_{it} - u_{it-1})$$
  
$$\Delta Y_{it} = \phi\Delta Y_{it-1} + \Delta \mathbf{X}_{it}\beta + \Delta u_{it}$$

Anderson/Hsiao: If  $\nexists$  autocorrelation, then use  $\Delta Y_{it-2}$  or  $Y_{it-2}$  as instruments for  $\Delta Y_{it-1}$ ...

- Consistent in theory,
- in practice, the former is preferred, and both have issues if  $\phi$  is high;
- both are inefficient.

### $A&H \rightarrow A&B$

Arellano & Bond (also Wawro): Use *all* lags of  $Y_{it}$  and  $\mathbf{X}_{it}$  from t-2 and before.

- "Good" estimates, better as  $T \to \infty$ ,
- Easy to handle higher-order lags of Y,
- Easy software (plm in R , xtabond in Stata ).
- Model is fixed effects...
- $\mathbf{Z}_i$  has T-p-1 rows,  $\sum_{i=p}^{T-2} i$  columns  $\rightarrow$  difficulty of estimation declines in p, grows in T.

### Bias-Correction Models

Kiviet (1995, 1999; Bun and Kiviet 2003; Bruno 2005a,b): Derive the bias in  $\hat{\phi}$  and  $\hat{\beta}$ , then correct it...

- $\bullet$  More accurate than the instrumental-variables/GMM estimators of A&H/A&B...
- ...especially when T is small; but not as T gets reasonably large (  $T \approx 20$  )

# Some Dynamic Models

|                        | OLS     | Lagged Y   | First Difference | Fixed Effects | $FE + Lagged \; Y$ | Anderson-Hsaio |
|------------------------|---------|------------|------------------|---------------|--------------------|----------------|
| (Intercept)            | 55.024  | 2.041      | 0.636            |               |                    | -0.156         |
|                        | (1.755) | (0.330)    | (0.039)          |               |                    | (0.279)        |
| Population Growth      | -3.601  | -0.073     | -0.001           | -0.163        | -0.077             | 0.038          |
|                        | (0.202) | (0.037)    | (0.056)          | (0.147)       | (0.045)            | (0.328)        |
| Urban Population       | -1.348  | 0.075      | -0.791           | 7.049         | 0.308              | 2.268          |
|                        | (0.251) | (0.045)    | (1.515)          | (0.472)       | (0.147)            | (23.435)       |
| Fertility Rate         | -4.854  | -0.159     | -1.427           | -3.802        | -0.499             | -0.969         |
|                        | (0.301) | (0.055)    | (0.637)          | (0.307)       | (0.094)            | (9.045)        |
| In(GDP Per Capita)     | 3.793   | -0.055     | 1.225            | 12.691        | 0.234              | -2.451         |
|                        | (0.279) | (0.050)    | (0.639)          | (0.431)       | (0.139)            | (10.302)       |
| Natural Resource Rents | -3.691  | -0.098     | 0.290            | 0.715         | -0.033             | -0.111         |
|                        | (0.167) | (0.031)    | (0.076)          | (0.185)       | (0.057)            | (0.792)        |
| Post-Cold War          | 5.403   | 0.138      | 0.014            | 3.515         | 0.197              | 0.124          |
|                        | (0.185) | (0.035)    | (0.101)          | (0.147)       | (0.046)            | (1.383)        |
| Lagged WBLI            |         | 0.986      |                  |               | 0.952              | 1.182          |
|                        |         | (0.002)    |                  |               | (0.003)            | (0.265)        |
| Num.Obs.               | 8127    | 7924       | 7940             | 8127          | 7924               | 7731           |
| R2                     | 0.499   | 0.985      | 0.003            | 0.533         | 0.958              | 0.003          |
| R2 Adj.                | 0.499   | 0.985      | 0.002            | 0.521         | 0.957              | 0.003          |
| Log.Lik.               |         | -18033.445 |                  |               |                    |                |
| RMSE                   | 13.43   | 2.36       | 2.39             | 7.80          | 2.31               | 3.57           |

### Anderson-Hsiao, Arellano-Bond, etc.

#### In R:

- Anderson-Hsiao can be fit using Im or (more easily) plm in the plm package
- Arellano-Bond is most easily fit using pgmm ("panel gmm") in the plm package
- See Criossant and Millo (2018, Chapter 7) for statistics + code details
- This post is also useful...

#### Stata:

- xtabond / xtdpdsys / xtdpd fit both A-H and A-B / Blundell-Bond models (among others)
- This is also a good (slightly dated) reference

### Another Approach: Orthogonalization

Note: We're rarely substantively interested in the fixed effects  $\hat{\alpha}...$ 

- $\rightarrow$  reparameterize the  $\alpha$ s so that they are *information-orthogonal* to the other parameters in the model (including the  $\beta$ s and  $\phi$ )
- Key idea: Transform the  $\alpha$ s so that (for example):

$$\mathsf{E}\left(\frac{\partial^2 L_i}{\partial \alpha \partial \beta}\right) = 0$$

- Can do this via imposition of priors, in a Bayesian framework...
- In general, this approach is less assumption-laden and more efficient than the IV/GMM-based approaches discussed above.
- Provides consistent-in-N estimates for T as low as 2...

#### References:

- Lancaster, T. 2002. "Orthogonal Parameters and Panel Data." Review of Economic Studies 69:647-666.
- Pickup et al. (2017) [the "orthogonalized panel model" ("OPM")]

# FE + Dynamics Using Orthogonalization

- > library(OrthoPanels)
- > set.seed(7222009)
- > OPM.fit <- opm(WomenBusLawIndex"PopGrowth+UrbanPopulation+FertilityRate+ InGDPPerCap+NaturalResourceRents+PostColdWar,data=smol, index=c("ISO3","Year"),n.samp=1000)



# OPM Results: Short- and Long-Run Effects

For  $\hat{\phi} \approx 0.98$ :

| Parameter              | Short-Run | Long-Run |
|------------------------|-----------|----------|
| Population Growth      | -0.05     | -3.93    |
| Urban Population       | 0.10      | 6.87     |
| Fertility Rate         | -0.34     | -24.90   |
| In(GDP Per Capita)     | -0.34     | -25.27   |
| Natural Resource Rents | -0.06     | -4.55    |
| Post-Cold War          | 0.12      | 9.22     |

### Trends!

### What if *Y* is *trending* over time?

- First Question: Why?
  - · Organic growth (e.g., populations)
  - · Temporary / short-term factors
  - · Covariates...
- Second question: Should we care? (A: Yes, usually...  $\rightarrow$  "spurious regressions")
- Third question: What to do?
  - · Ignore it...
  - · Include a counter / trend term...

In general, adding a trend term will decrease the magnitudes of  $\hat{\beta}$ ...

### Trends Matter, Illustrated

#### Data generating processes:

$$Y_{1t} = 10 + (1 \times X_t) + u_t$$

$$Y_{2t} = 5 + (1 \times X_t) + (0.5 \times T) + u_t$$



|                         | $Y_1$           | Y <sub>2</sub>  |                 |  |
|-------------------------|-----------------|-----------------|-----------------|--|
|                         |                 | No Trend        | Trend           |  |
| X                       | 0.921***        | -0.382          | 0.874***        |  |
|                         | (0.245)         | (0.786)         | (0.255)         |  |
| т                       |                 |                 | 0.482***        |  |
|                         |                 |                 | (0.026)         |  |
| Constant                | 10.300***       | 20.200***       | 5.860***        |  |
|                         | (0.917)         | (2.950)         | (1.200)         |  |
| Observations            | 40              | 40              | 40              |  |
| R <sup>2</sup>          | 0.272           | 0.006           | 0.905           |  |
| Adjusted R <sup>2</sup> | 0.253           | -0.020          | 0.900           |  |
| Residual Std. Error     | 1.800 (df = 38) | 5.790 (df = 38) | 1.810 (df = 37) |  |

### Trends Matter, Part II

Table: FE Models of WBLI

|                         | FE                   | FE.trend             | FE.intx              |
|-------------------------|----------------------|----------------------|----------------------|
| Population Growth       | -0.163<br>(0.147)    | -0.425***<br>(0.123) | -0.369***<br>(0.122) |
| Urban Population        | 7.049***<br>(0.472)  | 0.198<br>(0.409)     | 0.580<br>(0.411)     |
| Fertility Rate          | -3.802***<br>(0.307) | 2.424***<br>(0.276)  | 2.303***<br>(0.275)  |
| In(GDP Per Capita)      | 12.690***<br>(0.431) | 3.114***<br>(0.393)  | 2.831***<br>(0.393)  |
| Natural Resource Rents  | 0.715***<br>(0.185)  | 0.393**<br>(0.154)   | 0.421***<br>(0.153)  |
| Post-Cold War           | 3.515***<br>(0.147)  | -0.845***<br>(0.143) | -4.076***<br>(0.461) |
| Trend (1950=0)          |                      | 0.746***<br>(0.013)  | 0.675***<br>(0.016)  |
| Post-Cold War x Trend   |                      |                      | 0.094***<br>(0.013)  |
| Observations            | 8,127                | 8,127                | 8,127                |
| $R^2$                   | 0.533                | 0.677                | 0.679                |
| Adjusted R <sup>2</sup> | 0.521                | 0.669                | 0.671                |
|                         |                      |                      |                      |

<sup>\*</sup>p<0.1; \*\*p<0.05; \*\*\*p<0.01

### Another Approach: FEIS

### "Fixed Effects Individual Slope" models

- Cite: Bruederl, Josef, and Volker Ludwig. 2015. "Fixed-Effects Panel Regression." In *The Sage Handbook of Regression Analysis* and Causal Inference, Eds. Henning Best and Christof Wolf. Los Angeles: Sage, pp. 327-357.
- FE + unit-level slopes for (some / all) predictor variables
- Equivalent to including N-1 interactions between a predictor  ${\bf X}$  and each of the  $\alpha_i{\bf s}$
- Also can test for homogeneity of estimated slopes (Hausman-like test)
- See the feisr R package, and its accompanying vignette, or xtfeis in Stata

### FEIS Example: Post-Cold War

```
> FEIS<-feis(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lnGDPPerCap+NaturalResourceRents | PostColdWar.
            data=(smol),id="ID",robust=FALSE)
Warning in feis(WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + :
  FEIS needs at least n(slopes)+1 observations per group.
You specified 1 slope parameter(s) plus intercept, all groups with t <= 2 dropped
> summary(FEIS)
Call:
feis(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
    FertilityRate + lnGDPPerCap + NaturalResourceRents | PostColdWar.
    data = (smol), id = "ID", robust = FALSE)
Residuals:
    Min. 1st Qu. Median 3rd Qu.
                                      Max.
-26.3890 -3.3153 0.0469 3.2897 49.3952
Coefficients:
                    Estimate Std. Error t-value Pr(>|t|)
PopGrowth
                    -0.4100 0.1204 -3.41 0.00066 ***
UrbanPopulation
                    8.8151 0.5559 15.86 < 2e-16 ***
                    -7.5893 0.3363 -22.57 < 2e-16 ***
FertilityRate
lnGDPPerCap
                    16.0464 0.4823 33.27 < 2e-16 ***
NaturalResourceRents 0.0894
                             0.1620 0.55 0.58130
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Normal standard errors
Slope parameters: PostColdWar
Total Sum of Squares:
                        509000
Residual Sum of Squares: 294000
R-Squared:
               0.423
Adi. R-Squared: 0.423
```

### FEIS: Testing

```
> FEIS.test<-feistest(FEIS)
> summarv(FEIS.test)
Call:
feis(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
    FertilityRate + lnGDPPerCap + NaturalResourceRents | PostColdWar,
    data = (smol), id = "ID", robust = FALSE)
Artificial Regression Test
FFIS we FF.
HO: FFIS and FF estimates consistent
Alternative H1: FE inconsistent
Model constraints: PopGrowth_hat, UrbanPopulation_hat, FertilityRate_hat, lnGDPPerCap_hat,
NaturalResourceRents_hat = 0
Chi-squared test:
Chisa = 1386.6, df = 5, P(> X2) = 0.0
FF we RF.
HO: FE and RE estimates consistent
Alternative H1: RE inconsistent
Model constraints: PopGrowth_mean, UrbanPopulation_mean, FertilityRate_mean, lnGDPPerCap_mean,
NaturalResourceRents_mean, PostColdWar_mean = 0
Chi-squared test:
Chisa = 422.2, df = 6, P(> X2) = 0.0
FEIS vs. RE:
HO: FEIS and RE estimates consistent
Alternative H1: RE inconsistent
Model constraints: PopGrowth hat. UrbanPopulation hat. FertilityRate hat. lnGDPPerCap hat.
NaturalResourceRents hat = 0
Chi-squared test:
Chisq = 1568.6, df = 5, P(> X2) = 0.0
```

# FEIS: Unit-Specific Slopes

### Distribution of Unit-Specific Slopes for Post-Cold War



### FEIS: Unit-Specific Trends

```
> FEIS2<-feis(WomenBusLawIndex~PopGrowth+UrbanPopulation+FertilityRate+lngDPPerCap+NaturalResourceRents+PostColdWar | Year.
            data=(smol),id="ID",robust=FALSE)
Warning in feis(WomenBusLawIndex ~ PopGrowth + UrbanPopulation + FertilityRate + :
  FEIS needs at least n(slopes)+1 observations per group.
 You specified 1 slope parameter(s) plus intercept, all groups with t <= 2 dropped
> summary(FEIS2)
Call:
feis(formula = WomenBusLawIndex ~ PopGrowth + UrbanPopulation +
    FertilityRate + lnGDPPerCap + NaturalResourceRents + PostColdWar |
    Year, data = (smol), id = "ID", robust = FALSE)
Residuals:
    Min. 1st Qu. Median 3rd Qu.
                                      Max.
-18,2791 -2,4844 -0,0043 2,3942 41,1899
Coefficients:
                    Estimate Std. Error t-value
                                                    Pr(>|t|)
PopGrowth
                    -0.3784
                                0.0917 -4.13 0.00003722458 ***
                    -0.1996 0.7490 -0.27
UrbanPopulation
                                                        0.79
                    -0.2623 0.3527 -0.74
FertilityRate
                                                        0.46
lnGDPPerCap
                      5.1171
                             0.5587
                                         9.16
                                                     < 20-16 ***
                             0.1219 -1.20
NaturalResourceRents -0.1468
                                                        0.23
PostColdWar
                     -0.6833
                                0.1059 -6.45 0.00000000012 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Normal standard errors
Slope parameters: Year
Total Sum of Squares:
                        162000
Residual Sum of Squares: 159000
```

R-Squared:

Adj. R-Squared: 0.0184

0.0191

# FEIS: Unit-Specific Trends

### Distribution of Unit-Specific Trend Estimates



# Dynamic Models: Software

#### R:

- the plm package (purtest for unit roots; plm for first-difference models; pgmm for Arellano-Bond)
- the panelAR package (GLS-ARMA models)
- the gls package (GLS)
- the pdynmc package (GMM models via moment conditions)
- the dynpanel package (A&H, A&B; minimal...)

#### Stata:

- xtgls (GLS)
- xtpcse (PCSEs)
- xtabond / xtdpd (A&H A&B dynamic models)
- Others...

# Final Thoughts: Dynamic Panel Models

# Things to consider:

- N vs. T...
- Are dynamics nuisance or substance?
- What problem(s) do you *really* care about?