Online

Section A2 / B1

Time: 40 Minutes

In Mamaland, there are many points of interest (POIs) and roads between the POIs. Each road has specific costs. The roads are one-directional. One of the POI's is very interesting (As it is 'Mamar bari', obviously!). Anyone starting from a specific POI and ending in another wants to at least visit Mamar bari.

You are to help recommend a trip (path, if you're confused) of the lowest cost between any two POI's, but your recommended trip must have *Mamar bari* as an intermediate visiting place. If there isn't any such trip, you must report this. Use Floyd-Warshall algorithm to solve this.

Input / Output

The first line of input consists of 2 integers N and M, the no. of input POIs and roads respectively. The next M lines contain 3 integers u, v and w indicating there is a road from POI u to POI v of cost w.

After these M lines, the immediate next line will contain an integer K, the POI no. of Mamar bari.

The next lines will contain two POI numbers X and Y respectively. You are to give output a trip of the lowest cost from POI X to POI Y with *Mamar bari* K as an intermediate visiting place.

The program terminates when -1 -1 is given as input for X and Y respectively.

Sample Input	Sample Output
79	Shortest Path Weight: 9
124	Path: 1> 2(4)> 3(3)> 7(2)
233	Shortest Path Weight: 14
3 4 -2	Path: 4> 5(2)> 1(3)> 2(4)> 3(3)> 7(2)
476	Shortest Path Weight: 3
372	Path: 2> 3(3)
513	Shortest Path Weight: 7
161	Path: 1> 2(4)> 3(3)
671	Shortest Path Weight: 10
452	Path: 5> 1(3)> 2(4)> 3(3)
3	Shortest Path Weight: 8
17	Path: 5> 1(3)> 2(4)> 3(3)> 4(-2)
47	
2 3	
13	
5 3	
5 4	
-1 -1	