

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA SINTÉTICO

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA; (UPIIC), ESCUELA SUPERIOR DE COMPUTO (ESCOM), UNIDAD PROFESIONAL

INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA (UPIIT)

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

UNIDAD DE APRENDIZAJE: Big Data

SEMESTRE: VI, VII

procesamiento.				de minado de datos y herran	neritas de		
CONTENIDOS:	Modelo de Big D II. Preprocesamien III. Analítica de Big IV. Flujo continuo (s V. Visualización de	to de Bi Data treamin	g) de l				
	Métodos de enseñanza			Estrategias de aprendizaj	е		
	a) Inductivo		Х	a) Estudio de casos			
ORIENTACIÓN	b) Deductivo		Х	b) Aprendizaje basado en	problemas		
DIDÁCTICA:	c) Analógico		Х	c) Aprendizaje orientado	proyectos	X	
	d) Heurístico		X	d)			
	e)			e)			
	Diagnóstica			Saberes Previamente Ado	quiridos	X	
	Solución de casos			Organizadores gráficos	nizadores gráficos		
	Problemas resueltos			Problemarios			
EVALUACIÓN Y ACREDITACIÓN:	Reporte de proyectos			Exposiciones			
AUKEDITACION.	Reportes de indagación			Otras evidencias a evalua			
	Reportes de prácticas		Х	electrónica y reporte de exp	oosicion.		
	Evaluaciones escritas	-3-7					
	Autor(es)	Año		Título del documento	Editorial / I	~	
	*Alla, S.	2016	Big Data Analytics with Hadoop 3.		Packt Publishe 978178862884		
BIBLIOGRAFÍA	*Azarmi, B.	2016	Scalable Big Data Architecture: A Practitioner's Guide to Choosing Relevant Big Data Architecture.		Apress / 9781484213261		
BÁSICA:	Dasgupta, N.	2018	Practical Big Data Analytics.		Packt Publishe 978178355439		
	Luengo, J., García, D., Ramírez, S., García, S. & Herrera, F.	2020		ata Preprocessing: Enabling t Data.	Springer / 9783030391041		
	Mehta, R.	2017	Big D	ata Analytics with Java.			

clásica

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

PROGRAMA DE ESTUDIOS

UNIDAD DE APRENDIZAJE:

Big Data

HOJA

DE

UNIDAD ACADÉMICA: UNIDAD PROFESIONAL INTERDISCIPLINARIA EN INGENIERÍA CAMPUS COAHUILA:

(UPIIC), ESCUELA SUPERIOR DE COMPUTO (ESCOM), UNIDAD PROFESIONAL

INTERDISCIPLINARIA EN INGENIERÍA CAMPUS TLAXCALA (UPIIT)

PROGRAMA ACADÉMICO: Ingeniería en Inteligencia Artificial

SEMESTRE: VI, VII

ÁREA DE FORMACIÓN: Formación Profesional

MODALIDAD:

Escolarizada

TIPO DE UNIDAD DE APRENDIZAJE:

Teórica-práctica/Optativa

VIGENTE A PARTIR DE:

CRÉDITOS

Agosto 2022

Tepic: 7.5

SATCA: 6.3

INTENCIÓN EDUCATIVA

La unidad contribuye al perfil de egreso de la Ingeniería en Inteligencia Artificial con las habilidades de análisis, diseño, implementación, validación e implantación de sistemas inteligentes para manipular bases de datos de gran tamaño a partir de algoritmos de minado de datos y herramientas de procesamiento. Así mismo fomenta el trabajo en equipo, pensamiento lateral y el pensamiento crítico; asumiendo una actitud de responsabilidad y ética en su desempeño profesional y personal.

Esta unidad se relaciona de manera antecedente con Minería de datos y de manera lateral con Aplicaciones de sistemas multiagentes.

PROPÓSITO DE LA UNIDAD DE APRENDIZAJE

Manipula bases de datos de gran tamaño a partir de algoritmos de minado de datos y herramientas de procesamiento.

TIEM	POS	ASIG	NAD	os

HORAS TEORÍA/SEMANA: 3.0

HORAS PRÁCTICA/SEMANA: 1.5

HORAS TEORÍA/SEMESTRE: 54.0

HORAS PRÁCTICA/SEMESTRE:

27.0

HORAS APRENDIZAJE

EMESTRE: 81.0

UNIDAD DE APRENDIZAJE DISEÑADA POR: Comisión de Diseño del Programa Académico.

APROBADO POR:

Comisión de Programas Académicos del H. Consejo General Consultivo del IPN.

21/06/2022

AUTORIZADO Y VALIDADO POR:

> IONAL erio

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Big Data

HOJA

D

DE T

UNIDAD TEMÁTICA I CONTENIDO		HORA	HRS	
Modelo de Big Data		T	P	AA
UNIDAD DE COMPETENCIA Describe el procesamiento de	1.1 El modelo de Big Data 1.1.1 De las 3 Vs a más de 6 Vs 1.1.2 El porqué de grandes bases de datos 1.1.3 Más de 4 Vs	1.5		1.0
Big Data con base en sus herramientas, problemática, las fases del procesamiento y modelo.	1.2 Fases del Procesamiento de Big Data 1.2.1 Preprocesamiento 1.2.2 Analítica 1.2.3 Flujo continuo (streaming) 1.2.4 Visualización	1.5		1.0
	1.3 Tipos y fuentes de Big Data 1.3.1 Tipos 1.3.2 Fuentes 1.3.3 Conjuntos	1.5	1.5	1.0
	1.4 Administración e indexación de memoria 1.4.1 Indexación 1.4.2 Modelo vectorial	1.5	1.5	1.0
	1.5 Herramientas para Big Data 1.5.1 Ecosistema Hadoop 1.5.2 Ecosistema Spark 1.5.3 Ecosistema en la nube EC2	3.0	1.5	2.0
	Subtotal	9.0	4.5	6.0

UNIDAD TEMÁTICA II Preprocesamiento en Big	CONTENIDO		HORAS CON DOCENTE		
data		T	Р	AA	
UNIDAD DE COMPETENCIA	2.1 Manipulación de datos	1.5			
Emplea el paradigma de	2.2 Reducción de la dimensionalidad	3.0	1.5	1.0	
reducción en la manipulación de datos a partir de la	2.3 Reducción de datos	3.0	1.5	1.0	
dimensionalidad y el tamaño de los datos.	2.4 Paradigma de reducción 2.4.1 El marco MapReduce	3.0	1.5	1.0/	
	Subtotal	10.5	4.5	3.0	

INSTITUTO POLITÉCNICO NACIONAL

SECRETARÍA ACADÉMICA

UNIDAD DE APRENDIZAJE:

Big Data

HOJA

D

F 7

UNIDAD TEMÁTICA III Analítica de Big Data	CONTENIDO		HORAS CON DOCENTE		
		T	P	AA	
UNIDAD DE COMPETENCIA	3.1 Tablas NoSQL 3.1.1 Estructura 3.1.2 Operaciones	3.0	1.5	1.0	
Aplica algoritmos de minado					
de datos a grandes tablas de acuerdo con la estructura y	3.2 Algoritmos de minado de grandes tablas 3.2.1 Page rank	4.5	3.0	2.5	
las herramientas.	3.2.2 Similaridades 3.2.3 Agrupación y clasificación				
	3.3 Herramientas de minado en Hadoop 3.3.1 Mahout	4.5	1.5	2.5	
1, 1	3.3.2 MLlib 3.3.3 Minehashing				
	Subtotal	12.0	6.0	6.0	

UNIDAD TEMÁTICA IV Flujo continuo (streaming) de	CONTENIDO		HORAS CON DOCENTE		
Big Data		T	P	AA	
UNIDAD DE COMPETENCIA	4.1 Redes sociales 4.1.1 Estructura de las redes sociales	3.0	1.5	1.0	
Demuestra el minado de datos de flujos continuos a	4.2 Minado de datos en flujos continuos	6.0	3.0	2.0	
partir de su estructura y las herramientas.	4.3 Herramientas 4.3.1 Flink 4.3.2 FlinkML 4.3.3 BigDaPFlink	6.0	1.5	2.0	
	Subtotal	15.0	6.0	5.0	

UNIDAD TEMÁTICA V Visualización de Big Data	CONTENIDO		HORAS CON DOCENTE		
Visualización de big bata		T	P	AA	
UNIDAD DE COMPETENCIA	5.1 Visualización de datos 5.1.1 Objetivo de la visualización 5.1.2 Tableros de control	1.5			
Construye tableros de control					
a partir de las herramientas de visualización.	5.2 Visualización usando lenguaje R	1.5	1.5	1.0	
¥	5.3 Visualización usando Google Charts	1.5	1.5	10	
	5.4 Visualización usando Python	1.5			
	5.5 Visualización usando Tableau	1.5			
	Subtotal	7.5			

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA

DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Big Data

HOJA

5

DE

ESTRATEGIAS DE APRENDIZAJE

Estrategia de Aprendizaje Orientado a Proyectos

El estudiante desarrollará las siguientes actividades:

- Indagación documental de diferentes temas del programa con lo que elaborarán un mapa conceptual o mental.
- 2. Análisis de casos específicos de los temas vistos.
- 3. Desarrollo de proyectos donde se compruebe el aprendizaje de la unidad
 - I) Aplicación del Preprocesamiento en Big data
 - II) Minado a grandes Tablas
 - III) Minado de flujos continuos
 - IV) Tableros para la visualización de datos
- 4. Exposición de casos prácticos.
- 5. Exposición de proyecto.
- 6. Realización de prácticas.

EVALUACIÓN DE LOS APRENDIZAJES

Evaluación diagnóstica.

Portafolio de evidencias:

- 1. Mapa mental o conceptual.
- 2. Solución de casos.
- Reportes del proyecto. Entrega final del proyecto.
- 4. Presentación.
- 5. Reporte de exposición del proyecto.
- 6. Reporte de prácticas.

RELACIÓN DE PRÁCTICAS						
PRÁCTICA No.	NOMBRE DE LA PRÁCTICA	UNIDADES TEMÁTICAS	LUGAR DE REALIZACIÓN			
1	Instalación del ecosistema Hadoop	1				
2	MapReduce y su aplicación	11				
3	Operaciones con tablas NoSQL	Ш				
4	Minado en big data: encontrando similitudes	III				
5	Minado en big data: clasificación o agrupación	101	Laboratorio de			
6	Minado en redes sociales	IV	Cómputo			
7	R para visualización de datos	V				
8	Google Charts en la visualización de datos	V				
9	Python para visualizar datos	V				
10	El Desarrollo de tableros	V				
	2000	TOTAL DE HORAS:	27.0			

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Big Data

HO

DJA	6	DE	7
	_	-	,

		1	Bibliografía				
					Do	cume	ento
Tipo	Autor(es)	Año	Título del documento	Editorial/ISBN	Libro	Antología	Otros
В	*Alla, S.	2016	Big Data Analytics with Hadoop 3.	Packt Publisher Inc. / 9781788628846	X		Ī
В	*Azarmi, B.	2016	Scalable Big Data Architecture: A Practitioner's Guide to Choosing Relevant Big Data Architecture.	Apress / 9781484213261	x		
С	Caballero, R., Martín, E. & Riesco, A.	2018	BIG DATA con PYTHON. Recolección, almacenamiento y proceso.	RC Libros / 9788494897207			
С	Damji, S., Wenig, B., Das, T. & Lee, D.	2020	Learning Spark.	O'Reilly Media, Inc. / 9781492050049	х		
В	Dasgupta, N.	2018	Practical Big Data Analytics.	Packt Publisher Inc. / 9781783554393	Х		
С	Deitel, J. & Deitel, M.	2019	Intro to Python for Computer Science and Data Science: Learning to Program with AI, Big Data and The Cloud.	Pearson / 9780135404676	х		
С	Elahi, I.	2019	Scale Programming for Big Data Analytics : Get Started With Big Data Analytics Using Apache Spark	Apress / 9781484248102	х		
С	Lakshmanan, V. & Tigani, J.	2019	Google BigQuery: The Definitive Guide.	O'Reilly Media Inc. / 9781492044468	х		
В	Luengo, J., García, D., Ramírez, S., García, S. & Herrera, F.	2020	Big Data Preprocessing: Enabling Smart Data.	Springer / 9783030391041	х		
В	Mehta, R.	2017	Big Data Analytics with Java.	Packt Publisher Inc. / 9781787288980	х		
С	Ryzko, D.	2020	Modern Big Data Architectures: a multi-Agent Systems Perspective.	Wiley & sons / 9781119597933	х		
С	Weissman, B. & Van de Laar, E.	2020	SQL Server Big Data Clusters: Data Virtualization, Data Lake, and Al Platform.	Apress / 9781484259849	х		
С		2020	Virtualization, Data Lake, and Al		Х		

Autor, año, título y Dirección Electrónica		dor		ción	ē		
y actor, and, actor y birection Electronica	Texto	Simula					
Amazon. AWS (s/a). Elastic compute cloud (EC2) de capacidad modificable en la nube.							
). Anaconda. https://www.anaconda.com/products/individual.							
oundation. (2006). Apache Hadoop. https://hadoop.apache.org/							
. (s/a). Google Charts. https://developers.google.com/chart							
bundation. (2001). Welcome to python.Org. https://www.python.org			4				
(s/a). R: The R Project for Statistical Computing. https://www.r-						X	
udio. https://rstudio.com						X -	+

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN SUPERIOR

UNIDAD DE APRENDIZAJE:

Big Data

HOJA

7

7

DE

PERFIL DOCENTE: Ingeniería en Computación o áreas afines preferentemente con grado de Maestría y/o Doctorado en áreas afines a la Inteligencia Artificial.

EXPERIENCIA PROFESIONAL	CONOCIMIENTOS	HABILIDADES DIDÁCTICAS	ACTITUDES
Preferentemente dos años en el sector productivo. Al menos dos años de docencia a Nivel Superior y/o posgrado.	En Inteligencia Artificial, Big Data, minería de datos, Hadoop, Spark. Del Modelo Educativo Institucional (MEI).	Comunicación efectiva Capacidad de transmitir conocimientos Capacidad de organización y planificación Liderazgo Capacidad para el manejo de grupos	Ética Respeto Responsabilidad Honestidad Empatía Tolerancia Compromiso social e institucional Disponibilidad para trabajar en equipo

ELABORÓ

REVISÓ

AUTORIZÓ

Dr. Eric Manuel Rosales Peña Alfaro Coordinador

García

Subdirector Académico

Ing. Enrique Lima Morales Subdirector Académico UP