Hackathon 2023

Sound of Silence

8 października 2023

Założenia

Identyfikujemy obiekty, które mogą wydawać dźwięki. Przez obiekt rozumiemy zbiór pikseli/kostek w przestrzeni 3D. Każdy z pikseli ma przypisaną wagę w_j z przedziału [0; 1]. Wagę obiektu O_i definiujemy jako

$$W_i = \sum_{j \in J_i} w_j,$$

gdzie J_i jest zbiorem indeksów dla pikseli należących do O_i . Dodatkowo każdemu obiektowi O_i przypisujemy położenie środka ciężkości:

$$x_i = \sum_{j \in J_i} x_j w_j, \quad y_i = \sum_{j \in J_i} y_j w_j, \quad z_i = \sum_{j \in J_i} z_j w_j.$$

Trajektoria wycieczki w świecie 3D

Niech $\gamma(t) = (x(t), y(t), z(t)) = (x, y, z)$ oznacza trajektorię wycieczki po zadanej przestrzeni 3D.

Definiujemy płaszczyznę prostopadłą do wektora prędkości punktu poruszającego się po krzywej γ jako

$$L: \dot{x}(X-x) + \dot{y}(Y-y) + \dot{z}(Z-z) = 0.$$

Będąc w punkcie $\gamma(t)$ wyznaczamy odległości obiektów O_i od płaszczy L jako:

$$d_i = \frac{L(x_i, y_i, z_i)}{\sqrt{\dot{x}^2 + \dot{y}^2 + \dot{z}^2}}.$$

Jeżeli $|d_i| < \varepsilon$ dla pewnej zadanej wielkości ε , to przyjmujemy, że obiekt O_i powinien wyemitować dźwięk. Ponowna emisja dźwięku przez obiekt O_i może nastąpić jeżeli kolejne zdarzenie $|d_i| < \varepsilon$ zostanie poprzedzone zdarzeniem $|d_i| \ge \varepsilon$.

Amplituda dźwięku

Określamy wektor łączący punkt trajektorii z każdym obiektem mającym emitować dźwięk jako

$$r_i = (r_{i,x}, r_{i,y}, r_{i,z}) = (x - x_i, y - y_i, z - z_i).$$

Pozwala to zdefiniować amplitudę/głośność dźwięku jako wartość

$$A_i = \frac{W_i}{|r_i|^2}.$$

Wysokość dźwięku

Wysokość dźwięku zależy od tego, jak bardzo obiekt, który mijamy jest *powyżej*, czy *poniżej* trajektorii ruchu. Do ustalenia kierunku pionowego wykorzystujemy wzory Freneta. Jest nim kierunek wektora binormalnego:

$$b = (b_x, b_y, b_z) = \rho(\dot{y}\ddot{z} - \dot{z}\ddot{y}, \dot{z}\ddot{x} - \dot{x}\ddot{z}, \dot{x}\ddot{y} - \dot{y}\ddot{x}),$$

gdzie $\rho=(\ddot{x}^2+\ddot{y}^2+\ddot{z}^2)^{-\frac{1}{2}}$. Jeżeli γ posiada fragmenty prostych, to wektor b jest definiowany w taki sposób, aby \dot{b} było ciągłe. Kąt $\alpha_i\in[0;2\pi)$ pomiędzy kierunkiem obiektu O_i , a wektorem pionowym b wyznaczamy z zależności:

$$\cos \alpha_i = \frac{b_x r_{i,x} + b_y r_{i,y} + b_z r_{i,z}}{|b| \cdot |r_i|}.$$

Obiekty o emisji ciągłej

Wśród obiektów O_i można wyróżnić te, które będą emitowały dźwięk w sposób ciągły. W takiej sytuacji regulowane jest tylko natężenie dźwięku, które zmienia się wraz ze zmianą odległości od obiektu.