Linear Algebra and Analytic Geometry

Conf.univ.,dr. Elena Cojuhari

elena.cojuhari@mate.utm.md
Technical University of Moldova

2020

- Vector Geometry
 - Vectors in the Plane
 - Vectors in Three Dimensions
 - Dot Product and Angle Between Vectors
 - The Cross Product
 - Planes in Three-Space
 - A Survey of Quadratic Surfaces
 - Cylindrical and Spherical Coordinates

Subsection 0

Vectors

Produced with a Trial Version of PDF Annotator - www.PDFAnno Vectors

• Vector quantities have a magnitude and a direction;

Examples are force, velocity, displacement etc.;

Definition of a Vector

A **vector** is a directed line segment; The length of the line segment is the **magnitude** of the vector and the **direction** is measured by an angle.

- The starting point A is called the **initial point** or **tail** and the ending point B is called the **terminal point** or the **head** of the vector;
- A vector with tail A and head B is denoted \overrightarrow{AB} or **AB**;
- The magnitude of this vector is denoted $\|\overrightarrow{AB}\| = \|\mathbf{AB}\|$;

Equivalence and Scalar Multiplication

- Two vectors are equivalent if they have the same magnitude and the same direction;
- Scalar multiplication is the multiplication of a vector by a real number; If the real number is positive, then the magnitude changes but the direction does not; If the number is negative then the magnitude changes and the direction is reversed;

Sum or Resultant Vector

- The resultant or sum of two vectors is the vector that has the same effect as the combined application of the two vectors;
- The resultant can be computed using
 - the triangle method; or
 - the parallelogram method;

Standard Position

- A vector can be moved in the plane as long as its magnitude and direction are not changed;
- For instance, the vector **AB** with A(2,-1) and B(-3,4) may be moved so that its initial point is at the origin O; Then its terminal point becomes P(-5,5);

 Because OP and AB have same magnitude and direction, they are equivalent: OP = AB;

Subsection 1

Vectors in the Plane

Produced with a Trial Version of PDF Annotator - www.PDFAnno Vectors

- A two-dimensional **vector** \mathbf{v} is determined by two points in the plane:
 - an initial point P (also called the tail or basepoint);
 - a **terminal point** *Q* (also called the **head**).

We write $\mathbf{v} = \overrightarrow{PQ}$ and we draw \mathbf{v} as an arrow pointing from P to Q. This vector is said to be **based at** P.

• The **length** or **magnitude** of v, denoted ||v||, is the distance from P to Q.

Produced with a Trial Version of PDF Annotator - www.PDFAnno Position Vectors

• The vector $\mathbf{v} = \overrightarrow{OR}$ pointing from the origin to a point R is called the position vector of R.

Example: The figure shows the position vector of R = (3, 5).

Parallel and Translate Vectors

- Two vectors v and w of nonzero length are called parallel if the lines through v and w are parallel.
 - Parallel vectors point either in the same or in opposite directions.
- A vector v is said to undergo a translation when it is moved parallel to itself without changing its length or direction.
 The resulting vector w is called a translate of v.

Translates have the same length and direction but different basepoints.

Equivalent Vectors

• Two vectors \mathbf{v} and \mathbf{w} are equivalent if \mathbf{w} is a translate of \mathbf{v} .

 Every vector can be translated so that its tail is at the origin. Therefore, every vector v is equivalent to a unique vector v₀ based at the origin.

Produced with a Trial Version of PDF Annotator - www.PDFAnnotator - www.pdf.

• The **components** of $\mathbf{v} = \overrightarrow{PQ}$, where $P = (a_1, b_1)$ and $Q = (a_2, b_2)$, are the quantities

$$a = a_2 - a_1$$
 (x-component),
 $b = b_2 - b_1$ (y-component).

The pair of components is denoted $\langle a, b \rangle$.

• The length of a vector in terms of its components (by the distance formula) is

$$\|\overrightarrow{PQ}\| = \sqrt{a^2 + b^2}.$$

• The **zero vector** (whose head and tail coincide) is the vector $\mathbf{0} = \langle 0, 0 \rangle$ of length zero.

Produced with a Trial Version of PDF Annotator - www.PDFAnnoRepresentation Convention

- The components $\langle a, b \rangle$ determine the length and direction of \mathbf{v} , but not its basepoint.
 - Two vectors have the same components if and only if they are equivalent.
- Nevertheless, the standard practice is to describe a vector by its components, and thus we write $\mathbf{v} = \langle a, b \rangle$.
 - Although this notation is ambiguous (because it does not specify the basepoint), it rarely causes confusion in practice.
 - In the sequel we assume all vectors are based at the origin unless otherwise stated.

Example I

• Determine whether $\mathbf{v}_1 = \overrightarrow{P_1Q_1}$ and $\mathbf{v}_2 = \overrightarrow{P_2Q_2}$ are equivalent, where $P_1 = (3,7), \ Q_1 = (6,5)$ and $P_2 = (-1,4), \ Q_2 = (2,1)$. What is the magnitude of \mathbf{v}_1 ?

We compare components:

$$\mathbf{v}_1 = \langle 6-3, 5-7 \rangle = \langle 3, -2 \rangle$$

and

$$\mathbf{v}_2 = \langle 2 - (-1), 1 - 4 \rangle = \langle 3, -3 \rangle.$$

Since \mathbf{v}_1 and \mathbf{v}_2 have different components, they are not equivalent vectors.

The magnitude of \mathbf{v}_1 is

$$\|\mathbf{v}_1\| = \sqrt{3^2 + (-2)^2} = \sqrt{13}.$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno Example II

• Sketch the vector $\mathbf{v} = \langle 2, -3 \rangle$ based at P = (1, 4) and the vector \mathbf{v}_0 equivalent to **v** based at the origin.

The vector $\mathbf{v} = \langle 2, 3 \rangle$ based at P =(1,4) has terminal point

$$Q = (1+2, 4-3) = (3, 1).$$

The vector \mathbf{v}_0 equivalent to \mathbf{v} based at O has terminal point (2, -3).

Addition of Two Vectors: Tail-to-Head Method

- The **vector sum** $\mathbf{v} + \mathbf{w}$ is defined when \mathbf{v} and \mathbf{w} have the same basepoint:
 - Translate w to the equivalent vector w' whose tail coincides with the head of v.
 - The sum $\mathbf{v} + \mathbf{w}$ is the vector pointing from the tail of \mathbf{v} to the head of $\mathbf{w'}$.

Addition of Two Vectors: Parallelogram Law

Another way to add vectors is to use the Parallelogram Law:
 v + w is the vector pointing from the basepoint to the opposite vertex of the parallelogram formed by v and w.

Addition of Multiple Vectors

- To add several vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$:
 - translate the vectors to $\mathbf{v}_1 = \mathbf{v}_1', \mathbf{v}_2', \dots, \mathbf{v}_n'$ so that they lie head to tail;
 - The vector sum $\mathbf{v} = \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_n$ is the vector whose terminal point is the terminal point of \mathbf{v}'_n .

Subtraction of Vectors

- Vector subtraction $\mathbf{v} \mathbf{w}$ is carried out by adding $-\mathbf{w}$ to \mathbf{v} .
- More simply:
 - draw the vector pointing from **w** to **v**;
 - translate it back to the basepoint to obtain $\mathbf{v} \mathbf{w}$.

Produced with a Trial Version of PDF Annotator - www.PDFAnno Scalar Multiplication

- The term **scalar** is another word for "real number".
- If λ is a scalar and \mathbf{v} is a nonzero vector, the scalar multiple $\lambda \mathbf{v}$ is defined as follows:
 - $\lambda \mathbf{v}$ has length $|\lambda| ||\mathbf{v}||$.
 - It points in the same direction as \mathbf{v} if $\lambda > 0$.
 - It points in the opposite direction if λ < 0.

- lack lac
 - Also $\|\lambda \mathbf{v}\| = |\lambda| \|\mathbf{v}\|$.

- \bullet - \mathbf{v} has the same length as \mathbf{v} but points in the opposite direction.
- A vector \boldsymbol{w} is parallel to \boldsymbol{v} if and only if $\boldsymbol{w} = \lambda \boldsymbol{v}$, for some nonzero scalar λ .

Vector Operations Using Components

- ullet To add or subtract two vectors $oldsymbol{v}$ and $oldsymbol{w}$, we add or subtract their components.
- To multiply \mathbf{v} by a scalar λ , we multiply the components of \mathbf{v} by λ .

Produced with a Trial Version of PDF Annotator - www.PDFAnno Vector Operations Using Component

- If $\mathbf{v} = \langle a, b \rangle$ and $\mathbf{w} = \langle c, d \rangle$, then:
 - (i) $\mathbf{v} + \mathbf{w} = \langle a + c, b + d \rangle$;
 - (ii) $\mathbf{v} \mathbf{w} = \langle a c, b d \rangle$;
 - (iii) $\lambda \mathbf{v} = \langle \lambda \mathbf{a}, \lambda \mathbf{b} \rangle$;
 - (iv) v + 0 = 0 + v = v.

• Also note that if $P = (a_1, b_1)$ and $Q = (a_2, b_2)$, then the components of the vector $\mathbf{v} = \overrightarrow{PQ}$ are conveniently computed as the difference

$$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP} = \langle a_2, b_2 \rangle - \langle a_1, b_1 \rangle = \langle a_2 - a_1, b_2 - b_1 \rangle.$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno Example

• For $\mathbf{v} = \langle 1, 4 \rangle$, $\mathbf{w} = \langle 3, 2 \rangle$, calculate

(a)
$$\mathbf{v} + \mathbf{w}$$
 (b) $5\mathbf{v}$

and sketch **v**, **w** and their sum.

$$\mathbf{v} + \mathbf{w} = \langle 1, 4 \rangle + \langle 3, 2 \rangle$$

= $\langle 1 + 3, 4 + 2 \rangle$
= $\langle 4, 6 \rangle$.

$$5\mathbf{v} = 5\langle 1, 4 \rangle = \langle 5, 20 \rangle.$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno Basic Properties of Vector Algebra

- For all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ and for all scalars λ ,
 - v + w = w + v; (Commutative Law)
 - u + (v + w) = (u + v) + w; (Associative Law)
 - $\lambda(\mathbf{v} + \mathbf{w}) = \lambda \mathbf{v} + \lambda \mathbf{w}$. (Distributive Law for Scalars)
- These properties are easily checked using components:
 - $\langle a,b\rangle + \langle c,d\rangle = \langle a+c,b+d\rangle = \langle c+a,d+b\rangle = \langle c,d\rangle + \langle a,b\rangle$;
 - $\langle a,b\rangle + (\langle c,d\rangle + \langle e,f\rangle) = \langle a,b\rangle + \langle c+e,d+f\rangle =$ $\langle a+(c+e),b+(d+f)\rangle = \langle (a+c)+e,(b+d)+f\rangle =$ $\langle a+c,b+d\rangle + \langle e,f\rangle = (\langle a,b\rangle + \langle c,d\rangle) + \langle e,f\rangle.$
 - $\lambda(\langle a,b\rangle+\langle c,d\rangle)=\lambda\langle a+c,b+d\rangle=\langle\lambda(a+c),\lambda(b+d)\rangle=$ $\langle \lambda a + \lambda c, \lambda b + \lambda d \rangle = \langle \lambda a, \lambda b \rangle + \langle \lambda c, \lambda d \rangle = \lambda \langle a, b \rangle + \lambda \langle c, d \rangle.$

Produced with a Trial Version of PDF Annotator -www.PDFAnno

(=) a + NB lingur samb

16R

Produced with a Trial Version of PDF Annotator - www.PDFAnnoLinear Combinations

- A linear combination of vectors v and w is a vector rv + sw, where r and s are scalars.
- If \mathbf{v} and \mathbf{w} are not parallel, then every vector \mathbf{u} in the plane can be expressed as a linear combination $\mathbf{u} = r\mathbf{v} + s\mathbf{w}$.
- The parallelogram \mathcal{P} whose vertices are the origin and the terminal points of \mathbf{v} , \mathbf{w} and $\mathbf{v} + \mathbf{w}$ is called the **parallelogram spanned** by \mathbf{v} and \mathbf{w} . It consists of the linear combinations $r\mathbf{v} + s\mathbf{w}$, with 0 < r < 1 and 0 < s < 1.

Produced with a Trial Version of PDF Annotator - www.PDFAnno Example

• Express the vector $\mathbf{u} = \langle 4, 4 \rangle$ as a linear combination of $\mathbf{v} = \langle 6, 2 \rangle$ and $\mathbf{w} = \langle 2, 4 \rangle$.

We must find r and s, such that $r\mathbf{v} + s\mathbf{w} = \langle 4, 4 \rangle$. This gives r(6,2) + s(2,4) = (6r + 2s, 2r + 4s) = (4,4). The components must be equal, so we have a system of two linear equations:

$$\begin{cases} 6r + 2s &= 4 \\ 2r + 4s &= 4 \end{cases} \Rightarrow \begin{cases} 6r + 2s &= 4 \\ -r - 2s &= -2 \end{cases}$$
$$\Rightarrow \begin{cases} s &= 2 - 3r \\ 5r &= 2 \end{cases} \Rightarrow \begin{cases} s &= 2 - 3 \cdot \frac{2}{5} = \frac{4}{5} \end{cases}.$$

Therefore, $\mathbf{u} = \langle 4, 4 \rangle = \frac{2}{5} \langle 6, 2 \rangle + \frac{4}{5} \langle 2, 4 \rangle$.

Produced with a Trial Version of PDF Annotator - www.PDFAnno Unit Vectors

 A vector of length 1 is called a unit vector.

The head of a unit vector **e** based at the origin lies on the unit circle and has components $e = \langle \cos \theta, \sin \theta \rangle$, where θ is the angle between e and the positive x-axis.

• We can always scale a nonzero vector $\mathbf{v} =$ $\langle a,b\rangle$ to obtain a unit vector pointing in the same direction: $e_{\mathbf{V}} = \frac{1}{\|\mathbf{V}\|} \mathbf{V}$. If $\mathbf{v} = \langle a, b \rangle$ makes an angle θ with the positive x-axis, then

$$\mathbf{v} = \langle a, b \rangle = \|\mathbf{v}\|\mathbf{e}_{\mathbf{v}} = \|\mathbf{v}\|\langle \cos \theta, \sin \theta \rangle.$$

Unit Vectors

- A unit vector is one whose magnitude is 1;
- Example: Verify that $\mathbf{v} = \langle \frac{3}{5}, -\frac{4}{5} \rangle$ is a unit vector;

We have

$$\|\mathbf{v}\| = \sqrt{\left(\frac{3}{5}\right)^2 + \left(-\frac{4}{5}\right)^2} = \sqrt{\frac{9}{25} + \frac{16}{25}} = \sqrt{1} = 1;$$

Example

• Find the unit vector in the direction of $\mathbf{v} = \langle 3, 5 \rangle$. Compute the magnitude

$$\|\mathbf{v}\| = \sqrt{3^2 + 5^2} = \sqrt{34}.$$

Then, we get

$$oldsymbol{e_{V}} = rac{1}{\|oldsymbol{v}\|}oldsymbol{v} = rac{1}{\sqrt{34}}\langle 3,5
angle = \langle rac{3}{\sqrt{34}}, rac{5}{\sqrt{34}}
angle.$$

Unit Vector in a Given Direction

Example: Find a unit vector u in the direction of the vector
 v = ⟨-4, 2⟩;

$$\mathbf{u} = \frac{1}{\|\mathbf{v}\|}\mathbf{v} = \frac{1}{\sqrt{(-4)^2 + 2^2}}\langle -4, 2 \rangle = \langle -\frac{4}{\sqrt{20}}, \frac{2}{\sqrt{20}} \rangle = \langle -\frac{2\sqrt{5}}{5}, \frac{\sqrt{5}}{5} \rangle;$$

Produced with a Trial Version of PDF Annotator - www.PDFAnno Standard Basis Vectors

• We introduce a special notation for the unit vectors in the direction of the positive x- and y-axes:

$$\mathbf{i} = \langle 1, 0 \rangle, \quad \mathbf{j} = \langle 0, 1 \rangle.$$

The vectors i and j are called the standard basis vectors.

• Every vector in the plane is a linear combination of i and j:

$$\mathbf{v} = \langle a, b \rangle = \langle a, 0 \rangle + \langle 0, b \rangle = a \langle 1, 0 \rangle + b \langle 0, 1 \rangle = a \mathbf{i} + b \mathbf{j}.$$

Example:
$$\langle 4, -2 \rangle = 4\mathbf{i} - 2\mathbf{j}$$
.

• Moreover vector addition is performed by adding the *i* and *j* coefficients:

$$(4i-2j)+(5i+7j)=(4+5)i+(-2+7)j=9i+5j.$$

Unit Vectors i and i

Definitions of Vectors i and i

$$\mathbf{i} = \langle 1, 0 \rangle, \qquad \mathbf{j} = \langle 0, 1 \rangle$$

• Example: Write the vector (3,7) in terms of the unit vectors **i** and **j**;

$$\langle 3,7 \rangle = \langle 3,0 \rangle + \langle 0,7 \rangle = 3\langle 1,0 \rangle + 7\langle 0,1 \rangle = 3\mathbf{i} + 7\mathbf{j};$$

Representation of a Vector in Terms of i and i

If **v** is a vector and $\mathbf{v} = \langle a_1, a_2 \rangle$, then $\mathbf{v} = a_1 \mathbf{i} + a_2 \mathbf{j}$.

• Example: Given $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$ and $\mathbf{w} = 5\mathbf{i} + 3\mathbf{j}$, find $3\mathbf{v} - 2\mathbf{w}$;

$$3\mathbf{v} - 2\mathbf{w} = 3(3\mathbf{i} - 4\mathbf{j}) - 2(5\mathbf{i} + 3\mathbf{j}) = (9\mathbf{i} - 12\mathbf{j}) - (10\mathbf{i} + 6\mathbf{j}) = (9 - 10)\mathbf{i} + (-12 - 6)\mathbf{j} = -\mathbf{i} - 18\mathbf{j};$$

Horizontal and Vertical Components

• Consider the vector $\mathbf{v} = \langle a_1, a_2 \rangle$;

- Its magnitude is $\|\mathbf{v}\| = \sqrt{a_1^2 + a_2^2}$;
- Recall the definitions of sine and cosine of the angle θ with initial side the positive x-axis and terminal side the vector \mathbf{v} :

$$\cos \theta = \frac{a_1}{\|\mathbf{v}\|}$$
 and $\sin \theta = \frac{a_2}{\|\mathbf{v}\|}$;

• Thus, we obtain $a_1 = \|\mathbf{v}\| \cos \theta$ and $a_2 = \|\mathbf{v}\| \sin \theta$;

Horizontal and Vertical Components of a Vector

If $\mathbf{v} = \langle a_1, a_2 \rangle$, with $\mathbf{v} \neq \mathbf{0}$, then

$$a_1 = \|\mathbf{v}\| \cos \theta$$
 and $a_2 = \|\mathbf{v}\| \sin \theta$;

The horizontal component of \mathbf{v} is $\|\mathbf{v}\| \cos \theta$ and the vertical component is $\|\mathbf{v}\| \sin \theta$.

Application: Air Speed

An airplane is traveling with an airspeed of 320 mph and a heading of 62°; A wind of 42 mph is blowing at a heading of 125°; Find the ground speed and the course of the airplane;

AB =
$$320 \cos 28^{\circ} \mathbf{i} + 320 \sin 28^{\circ} \mathbf{j}$$
;
AD = $42 \cos (-35^{\circ}) \mathbf{i} + 42 \sin (-35^{\circ}) \mathbf{j}$;
AC = $[320 \cos 28^{\circ} + 42 \cos (-35^{\circ})] \mathbf{i} + [320 \sin 28^{\circ} + 42 \sin (-35^{\circ})] \mathbf{j} \approx (282.5 + 34.4) \mathbf{i} + (150.2 - 24.1) \mathbf{j} = 316.9 \mathbf{i} + 126.1 \mathbf{j}$;

$$\|\mathbf{AC}\| = \sqrt{(316.9)^2 + (126.1)^2} \approx 340;$$

 $\alpha = 90^\circ - \theta \approx 90^\circ - \tan^{-1} \frac{126.1}{316.9} \approx 68^\circ;$

Triangle Inequality

- The vector sum $\mathbf{v} + \mathbf{w}$ for three different vectors \mathbf{w} of the same length is shown below.
 - Clearly, the length $\|\mathbf{v} + \mathbf{w}\|$ varies, depending on the angle between \mathbf{v} and \mathbf{w} .

So in general, $\|\mathbf{v} + \mathbf{w}\|$ is not equal to the sum $\|\mathbf{v}\| + \|\mathbf{w}\|$.

• Triangle Inequality: For any two vectors \mathbf{v} and \mathbf{w} ,

$$\|\mathbf{v} + \mathbf{w}\| \le \|\mathbf{v}\| + \|\mathbf{w}\|.$$

Equality holds only if $\mathbf{v} = \mathbf{0}$ or $\mathbf{w} = \mathbf{0}$, or if $\mathbf{w} = \lambda \mathbf{v}$, where $\lambda > 0$.