Apuntes de C.A. Trifásica

Tensión compuesta U_C o de línea U_{L_s} es la tensión existente entre fases: V_{1-2} , V_{1-3} , V_{2-3} . Tensión simple U_S o de fase U_f , es la tensión existente entre cualquier fase y el conductor Neutro: U_1 , U_2 , U_3 .

Circuito en estrella:

 $V_1 = U_{f1} 0$ Fase L_1 ; $V_2 = U_{f2} = Fase L_2$; $V_3 = U_{f3} = Fase L_3$

Equilibrio: Cuando $\vec{I}_N = \vec{I}_{L1} + \vec{I}_{L2} + \vec{I}_{L3} = 0$; $I_{\text{fase}} = I_{\text{Linea}}$; $U_L = \sqrt{3} \cdot U_{\text{fase}}$

Desequilibrio: Cuando $\vec{I}_N = \vec{I}_{L1} + \vec{I}_{L2} + \vec{I}_{L3} \neq 0$; en este caso es necesario el Neutro y, $\varphi_1 = \arctan g \frac{X_1}{Z_1}$; $\varphi_2 = \arctan g \frac{X_2}{Z_2}$; $\varphi_3 = \arctan g \frac{X_3}{Z_3}$

$$I_{L1} = \frac{U_{L1}}{Z_1}; I_{L2} = \frac{U_{L2}}{Z_2}; \quad I_{L3} = \frac{U_{L3}}{Z_3}; \quad Z_1 = \sqrt{R_1^2 + X_1^2}; \\ Z_2 = \sqrt{R_2^2 + X_2^2}; \quad Z_3 = \sqrt{R_3^2 + X_3^2}; \quad Z_4 = \sqrt{R_2^2 + X_2^2}; \quad Z_5 = \sqrt{R_3^2 + X_3^2}; \quad Z_7 = \sqrt{R_2^2 + X_2^2}; \quad Z_8 = \sqrt{R_2^2 +$$

Circuito en triángulo:

Circuito en equilibrio: $U_f = U_L$; $I_{L1} = \sqrt{3} \cdot I_{L1-L2}$

Circuito en desequilibrio: Los φ de cada fase son diferentes en cada receptor por tanto,

$$I_L \neq \sqrt{3} \cdot I_f$$

$$I_{L1} = I_{L1-L2} - I_{L3-L1}; \quad I_{L2} = I_{L2-L3} - I_{L1-L2}; \quad I_{L3} = I_{L3-L1} - I_{L2-L3}$$

Tensión de la L₁: $V_{1-2} = U_{L1} - U_{L2}$

Tensión de la L₂: $V_{2-3} = U_{L2} - U_{L3}$

Tensión de la L₃: $V_{3-1} = U_{L3} - U_{L1}$

Potencias

Circuito en equilibrio:

 $\begin{array}{ll} P = \text{Potencia activa (se mide en W, Kw) ;} & P_T = P_{L1} + P_{L2} + P_{L3} \\ Q = \text{Potencia reactiva (se mide en VAR, KVAR) ;} & Q_T = Q_{L1} + Q_{L2} + Q_{L3} \end{array}$

S = Potencia aparente (se mide en VA, KVA); $S = \sqrt{P_r^2 + Q_r^2}$

Circuito en desequilibrio:

$$\begin{array}{l} \mathbf{L}_{1} \ \, \begin{cases} P_{L1} = U_{L1} \cdot I_{L1} \cdot Cos\phi_{1} \\ Q_{L1} = U_{L1} \cdot I_{L1} \cdot Sen\phi_{1} \\ S_{L1} = U_{L1} \cdot I_{L1} \end{cases} \quad \mathbf{L}_{2} \ \begin{cases} P_{L2} = U_{L2} \cdot I_{L2} \cdot Cos\phi_{2} \\ Q_{L2} = U_{L2} \cdot I_{L2} \cdot Sen\phi_{2} \\ S_{L2} = U_{L2} \cdot I_{L2} \end{cases} \quad \mathbf{L}_{3} \ \begin{cases} P_{L3} = U_{L3} \cdot I_{L3} \cdot Cos\phi_{3} \\ Q_{L3} = U_{L3} \cdot I_{L3} \cdot Sen\phi_{3} \\ S_{L3} = U_{L3} \cdot I_{L3} \end{cases}$$