Assignment #6 due 11pm Monday Nov. 27th Assignment #7 due 11pm Monday Dec 4th.

The "Black box" representation for polynomials.

Let $f \in R[x_1, ..., x_n]$, R an integral domain eg. Z, $\mathbb{O}(\alpha)$, \mathbb{F}_{2} .

Sparse representation: $f = \underbrace{\xi}_{i=1} \underbrace{\alpha_i \cdot M_i(x_1, -\infty x_n)} \underbrace{\alpha_i \in \mathbb{R} \setminus \xi \delta \xi}_{monomial}$

Black-box representation: $B:R^n \to R$ is a computer program that on input of $\alpha \in R^n$ computes $f(\alpha)$ i.e. $B(\alpha) = f(\alpha)$.

od; od;

We cannot see inside B.

All we can do is evaluate

B at a point $\alpha \in \mathbb{R}^n$.

We "probe" the black-box

at a point $\alpha \in \mathbb{R}^n$.

Let d=deg(f), t=#f, for R=Z let $h=\|f\|_{\infty}=\max_{1\leq i\leq t}\|a_i\|$. We may or may not know bounds $D \geqslant d$, $T \geqslant t$, $H \geqslant h$.

Example. $f = \det(T_2) = \det(\left[\begin{matrix} u \lor w \\ \lor u \lor u \end{matrix}\right]) \in \mathbb{Z}[u_i v_i w].$

B:= proc(alpha: list(integer)) Notice $deg(f) \le 3 = D$ local T3, i, j; uses Linear Algebra; $lifloo \le 3! = T$ $lifloo \le 3! = H$ $lifloo \le 3! = H$

Determinant (T3);

How can we multiply two polynomials f, g ∈ R[sc, -, xn] given by black boxes Bf: R^->R and Bg: Ru->R? Let h=f.g.

Bh BBmultiply := proc(Bf, Bg) $\alpha \rightarrow Bf(\alpha) \cdot Bg(\alpha) \rightarrow h(\alpha)$ end

This costs O(1).

For R=Z it is needful to use the Chinese remainder theorem. A modular black-box representation for $f\in Z[x_0, x_1]$ is a black-box B:(Zp,p) that for $x\in Zp$ computes f(x) mod p.

of f(x1,7-)Xn) -> f(ox) mod p.

B := proc(alpha:: list(integer), p::prime)
local T;
uses Linear Algebra;
T:=ToeplitzMatrisc(alpha, symmetric);
Det(T) mod P;
end;

Eiven a black-box $B: R^n \rightarrow R$ for $f \in R[x_1, \dots, x_n]$ Is f = 0? What is deg(f)? $Aeg(f, x_i)$? What is t = f? What is t = f?

Interpolate f, i.e., find a cell and Michingxin).