My grades for A2

SFAC
$$\exists s \in S: \gamma < S$$
 $\gamma \in \mathbb{R} \Leftrightarrow \int_{\gamma} \in \mathbb{R}$

By Anchimidean Property $\exists n \in \mathbb{N}: n > \int_{\delta} \int_{\gamma} \int_{\gamma} \langle \gamma \rangle \langle \gamma$

```
By the Archimidean Property, \varepsilon \in \mathbb{R} \Rightarrow \exists n_{\varepsilon} \in \mathbb{N} : \varepsilon \in \mathbb{N} \in \mathbb{N}

Let S = \xi n_{\varepsilon} \in \mathbb{N} : n_{\varepsilon} > \varepsilon \mathcal{J}

Since S \subseteq \mathbb{N}, S must be well ordered.

Let the smallest element of S be so \Rightarrow S_0 - 1 < \varepsilon

If not S_0 - 1 < \varepsilon. This forms a contradiction (s_0 = 1 \text{ is trivial and has been proved above})

\therefore \forall \varepsilon > 0 \exists n_{\varepsilon} \in \mathbb{N} : n_{\varepsilon} - 1 \leqslant \varepsilon \leqslant n_{\varepsilon}

When (s_0 = 1 \text{ is trivial and has been proved above})

We can assume (s_0 = 1 \text{ is trivial and has been proved above})

If (s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and has been proved above})

(s_0 = 1 \text{ is trivial and h
```

```
We can take new x_0 = -y, y_0 = -x, r_0 = -r
      20 < 40 < 40
  Showing I roe @ proves Ire@: x<r<y
x>0 > r>0
 :. we can write r as \frac{a}{b} where a, b \in \mathbb{N}
  a < a < y
since x \angle y, Let y = x + \varepsilon, \varepsilon > 0
  \alpha < \frac{a}{b} < y \Rightarrow b\alpha < a < b(\alpha + \epsilon)
baka is arbitrary because of the Archimidean Property
\exists b \in \mathbb{N} : b \cdot \varepsilon > 2 \Leftrightarrow b > \frac{2}{\varepsilon}
Due to the Archimidean Property, we know there
exists a b that satisfies this.
    bx < q < bx + 2
 We know there exists an a = \lfloor b \cdot x \rfloor + 1
that satisfies this.
                               incomplete
                                -1.5
```

Q2 Problem 2. (parts (i) and (ii)) 2. $\begin{array}{ll} \hbox{\bf \dot{U}} & \text{Let } \{a_n\} \text{ be a bounded sequence of real numbers and let } s = \sup\{a_n: n \in \mathbb{N}\}. \text{ Show} \\ & \text{that if } s \notin \{a_n: n \in \mathbb{N}\} \text{ then there is a subsequence of } \{a_n\} \text{ that converges to } s. \end{array}$ Let B be a subsequence of Ean's such that B = {ak, kenstak > an, then s.t. nck} this set is not properly defined/doesn't B isn't empty a, belongs to it (trivial) make sense B is infinite. We can prove this using contradict If B is finite, let its largest element be bo $b_0 \in \{a_n : n \in [N]\}$ (trivial since it's a subsequence) If B is finite > Zan, nell s.t. an > bo This would mean sup Ean's = bo, but that contradicts se (an). .. B is infinite. B is non decreasing (trivial the N_{th} element by definition is larger than the elements before it MCT B conveyes to sup(B) = s

where
$$a_n = -2$$
 if $n = 1 \pmod{3}$
 $a_n = 0$ if $n = 2 \pmod{3}$
 $a_n = 3$ if $n = 0 \pmod{3}$

The subsequence B, M and P as defined below converge to -2, 0, 3 respectively

Q3

15 / 15

Problem 3. (parts (i), (ii) and (iii))

3

Show that every contractive sequence is a Cauchy sequence. (and hence, convergent

Cauchy Sequence

We say that a sequence $\{a_n\}$ is Cauchy if for every $\epsilon>0$, there exists some $N\in\mathbb{N}$ such that if $m,n\geq N$, then $|a_n-a_m|<\epsilon$.

$$|a_{n+2} - a_{n+1}| \le c |a_{n+1} - a_n| \le c^2 |a_n - a_{n-1}| \le \cdots$$

By
$$\Delta$$
 ineq.

$$\leq C_{|a_2-a_1|+C_{|a_2-a_1|+\cdots}}^{n-1} C_{|a_2-a_1|+\cdots}^{n-1} C_{|a_2-a_1|}^{n-1}$$

$$= C^{m-1} \left(\frac{1-C^{m-n}}{1-C} \right) \mid a_2 - a_1 \mid$$

$$\leq C^{m-1}\left(\frac{1}{1-C}\right)|a_2-a_1|$$
 (Since $0< C^{m-n}<1$)

Let
$$p$$
 be a constant = $\frac{19.91}{1-C}$

$$= \beta \cdot C^{m-1}$$
Since $\lim_{M \to \infty} C^{m-1} = 0$ (trivial since $0 < C < 1$)
$$\forall \quad \xi > 0 \quad \exists \quad m \in \mathbb{N} : \quad \beta \cdot C^{m-1} < \xi \quad (take \quad N > \log_c \frac{\xi}{\beta} + 1)$$

$$\therefore \quad \text{Every contractive seq. is } \quad \text{Cauchy.}$$

 $\begin{tabular}{ll} $\grave{\mathcal{U}}$ Let $f_1=f_2=1$, and $f_n=f_{n-1}+f_{n-2}$, $n\geq 3$ be the Fibonacci sequence. The first few terms of the sequence are $\{1,1,2,3,5,8,13,21,\ldots\}$. Now define$

$$a_n = \frac{f_n}{f_{n+1}}$$
.

Show that $\{a_n\}$ satisfies the recursive relation $a_1=1$ and $a_n=\frac{1}{1+a_{n-1}}$ for all $n\geq 2$, and then prove that $\frac{1}{2}\leq a_n\leq 1$.

We will prove this relation using induction.

Base case
$$a_1 = 1 \stackrel{\wedge}{f_1} = \frac{1}{f_2} = 1 \stackrel{\circ}{\ldots} a_1 = \frac{f_1}{f_2}$$

$$a_{k+1} = \frac{1}{1+a_k} = \frac{1}{1+\frac{f_k}{f_{k+1}}} = \frac{f_{k+1}}{f_k + f_{k+1}} = \frac{f_{k+1}}{f_{k+2}}$$

:. By Induction
$$a_n = \frac{f_n}{f_{n+1}}$$

To prove that
$$\frac{1}{2} \le a_n \le 1$$
 $a_1 = 1$, $a_2 = \frac{1}{2}$ (Base Case)

if $\frac{1}{2} \le a_k \le 1$
 $a_{k+1} = \frac{1}{1+a_k}$, Since $\frac{1}{2} \le a_k \le 1$
 $\frac{1}{2} \le a_{k+1} \le 1$
 $\frac{1}{2} \le a_{k+1} \le 1$

Hence by Induction $\frac{1}{2} \le a_n \le 1$
 $\frac{1}{2} \le a_{k+1} \le 2$
 $\frac{1$

 $= \frac{|a_{n} - a_{n-1}|}{(1+a_{n})(1+a_{n-1})}$

 a_n , $a_{n-1} \gg \frac{1}{2}$

Since $(1+a_n)$, $(1+a_{n-1}) > 0$ and 1-x = |x|

Problem 4. (parts (i), (ii) and (iii))

4.

i) Prove that the sequences $\{s_n\}$ and $\{t_n\}$ converge where $s_n = \sup\{x_k : k \ge n\}$ and $t_n = \inf\{x_k : k \ge n\}$.

Firstly we'll prove $\{s_n\}$ is non-increasing by contradiction

SFAC \exists m, k \in \mathbb{N} : m \in k \land \Sm \in \mathbb{S}_k \rangle \mathbb{X}_L : L \rangle k \left(L \in \mathbb{N}) \rangle

SFAC \exists m, k \in \mathbb{N} : m \in k \land \Sm \in \mathbb{S}_k \rangle \mathbb{X}_L : L \rangle k \left(L \in \mathbb{N}) \rangle

Note $S_m > x_L : L > m \land \sin k \rangle \mathbb{S}_m \rangle \mathbb{X}_L : L > k \left(L \in \mathbb{N}) \rangle

Note <math>S_m > x_L : L > m \land \sin k \rangle \mathbb{S}_m \rangle \mathbb{X}_L : L > k \rangle

Sm \sin \mathbb{S}_m \rangle \mathbb{X}_L : L > m \land \sin \mathbb{S}_m \rangle \mathbb{S}_L : L > k \rangle

Sm \sin \mathbb{S}_m \rangle \mathbb{S}_m \rangle \mathbb{S}_m \rangle \mathbb{S}_L : L > k \rangle

Sm \sin \mathbb{S}_m \rangle \$

Note: Now that we have proved that isn'y converges we can similarly prove the same for it to I by negating

& Sny converges to inf (Sn)

all χ_n and showing the same or showing that $\{t_n\}$ is non-decreasing and bounded by $I=t_1\leqslant t_n\leqslant S$. By MCT if converges to sup $\{t_n\}$.

Find \limsup and \liminf of the sequence $a_n = \frac{3(-1)^n n^2}{n^2 - n + 1}$.

For
$$a_n = \frac{3 \cdot (-1)^n n^2}{n^2 \cdot n + 1}$$
, $a_n < 0$ when n is odd and $n > 0$ when n is even

There is always another bigger n that happens to

be odd/even. Since all an where n is even

are bigger than all an where n is odd.

Since Esny cannot be an odd , we can write it as

we can see that (Sny is decreasing.

: Lt sup
$$(a_k:k>_N)$$
 = Lt $\frac{3 \cdot n^2}{N^2 - N} \cdot \left(\begin{array}{ccc} \text{Note}(-1)^n = 1 \\ \text{if } n \text{ is even} \end{array} \right)$

We can see that this converges to 3 (tr(vial))

Similarly we can show that

We inf
$$\{a_k : k > n\} = Lt - 3 \cdot n^2 = -3$$

The inf $\{a_k : k > n\} = Lt - 3 \cdot n^2 = -3$

The inf $\{a_k : k > n\} = Lt - 3 \cdot n^2 = -3$

Move generally

At sup = $a_2 = 2 \cdot 1$

The converges to 3

The inf $\{a_k : k > n\} = Lt - 3 \cdot n^2 = -3$

Move generally

At sup = $a_2 = 2 \cdot 1$

The inf $\{a_n = a_n =$

At sup
$$(a_n + b_n) = \lambda t \sup \{a_k + b_k, k > n\}$$
 $a_k + b_k \text{ is a case of } a_{k_1} + b_{k_2} \text{ where } k_1 = k_2$
 $\therefore a_{k_1} + b_{k_2} \langle \alpha_n + \beta_n \rangle \Rightarrow \lambda t \sup (a_n + b_n) \leqslant \lambda t \sup a_n + \lambda t \sup b_n$

The equality of the two sides doesn't had when one seq. is increasing and the other is decreasing.

The eg. $\{a_n = \frac{1}{n} \text{ V neith }\}$ and $\{b_n = \frac{1}{n} \text{ V ne in }\}$
 $\{a_n + b_n = 0 \text{ V neith }\} \Rightarrow \lambda t \sup (a_n + b_n) = 0$

But $\lambda t \sup a_n = a_{\lambda_1} \lambda t \sup b_k = 0$

Their sum is always $\{a_n + b_n \} \in 0$
 $\{a_n + b_n = 0 \text{ V neith }\} \Rightarrow \{a_n + b_n \} \in 0$

Their sum is always $\{a_n + b_n \} \in 0$

15 / 15 Q5 Problem 5. (parts (i), (ii) and (iii)) Prove that if the series $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$. $\sum_{n=1}^{\infty} a_n \qquad \text{converges} \qquad \therefore \qquad \underset{N \neq 0}{\longleftarrow} \sum_{n=1}^{\infty} a_n = S$ $\sum_{n=1}^{k} a_n = \sum_{n=1}^{k-1} a_n + a_k$ $\lim_{k \to \infty} \sum_{n=1}^{k} a_n = S = \lim_{n \to \infty} \sum_{n=1}^{k-1} (a_n + a_k) \Rightarrow S = S + \lim_{n \to \infty} a_n$: Lt an=0 $\ddot{\mathbf{U}}$) Determine whether the series $\sum_{n=1}^{\infty}\cos(\pi n)$ converges or diverges. If it converges, find the limit, if not, justify your answer. $COS(\Pi N)$ $\begin{cases} 1, \text{when } n \text{ is even} \\ -1, \text{when } n \text{ is odd} \end{cases}$ $\left(-1\right)^{n}$ has the same piecewise definition for $n \in \mathbb{N}$: if we prove $\sum_{n=1}^{\infty} (-1)^n$ diverges that implies that $\sum_{n=1}^{\infty} \cos(\pi n)$ also diverges. $\sum_{n=1}^{\infty} \cos(\pi n) = \sum_{n=1}^{\infty} (-1)^n = S_h$

When n is odd,
$$\sum_{n=1}^{2k+1} (-1)^n = (-1) + \sum_{n=1}^{k} (-1) + \sum_{n=1}^{k} (1)$$

$$= -(+0 = -)$$

When N is even
$$\sum_{N=1}^{2k} (-1)^N = \sum_{N=1}^{k} (-1) + \sum_{N=1}^{k} (1) = 0$$

 $\therefore S_{k} = \begin{cases} 0 & \text{if } k \text{ is even} \\ -1 & \text{if } k \text{ is odd} \end{cases}$

:.
$$\{S_K\}$$
 diverges $\rightarrow \sum_{n=1}^{\infty} (-1)^n$ diverges $\rightarrow \sum_{n=1}^{\infty} \cos(\pi n)$ diverges

Let $r \in \mathbb{R}$ be such that |r| < 1. The series $\sum_{n=0}^{\infty} r^n$ is called the geometric series.

Prove that $S_n = \frac{1-r^{n+1}}{1-r}$, conclude that $\sum_{n=0}^{\infty} r^n$ converges and find the sum of the geometric series.

$$S_{k} = \sum_{n=0}^{k} \gamma^{n}$$
, $S_{k} \cdot \gamma = \sum_{n=0}^{k} \gamma^{n+1} = \sum_{n=1}^{k+1} \gamma^{n}$

$$S_k \cdot V - S_K = \sum_{k=1}^{N+1} k_n + \sum_{k=0}^{N+0} k_n \Rightarrow S_K (k-1) = k_{k+1} - k_0$$

$$\Rightarrow$$
 $S_k = \frac{r^{k+1}-1}{r-1} \cdot \frac{-1}{-1} = \frac{1-r^{k+1}}{1-r}$

We can show that
$$r(11]$$
 implies that $\{S_n\}$ is contractive \rightarrow cauchy \rightarrow converges

$$S_{k+1} - S_k = \sum_{n=0}^{k+1} r^n - \sum_{n=0}^{k} r^n = r^{k+1} = r \cdot r^k$$

$$S_k - S_{k-1} = \sum_{n=0}^{k} r^n - \sum_{n=0}^{k} r^n = r^k$$

$$\therefore S_{k+1} - S_k = r \cdot (S_k - S_{k-1})$$
Taking abs value on both sides
$$|S_{k+1} - S_k| = |r(S_k - S_{k-1})| = |r| \cdot |S_k - S_{k-1}|$$

$$Since -|C_n C| \cap |r| > 0 \quad \forall r$$

$$\Rightarrow O < |r| < |r|$$
Let $C = |r|$; $|S_{k+1} - S_k| < C |S_k - S_{k-1}|$

$$\therefore \delta S_n J \text{ is contractive } \rightarrow \text{Cavely } \rightarrow \text{Converges}$$
From (i) this implies $L + r^n = 0$, $L + r^{n+1} = 0$

$$N \rightarrow \infty$$

$$\int |C_n - C_n| = \int |C_n -$$

Q6 10 / 10

Problem 3. (parts (i) and (ii))

6.

i) $\lim_{x\to 1} \frac{e^2-x+1}{x+1}$ First we'll try to plug in 1

we get $\frac{|^2-|_+|}{|_+|} = \frac{1}{2}$. Since this function is continuous at x=1, Limit should be $\frac{1}{2}$ we will confirm using the ξ -8 definition

Given ξ >0 \rightarrow P.T. \exists δ >0 : $O(|x-1|) < \delta$ \Rightarrow $O(|x-1|) < \delta$ \Rightarrow $O(|x-1|) < \delta$ \Rightarrow $O(|x-1|) < \delta$ $|f(x) - \frac{1}{2}| = \left| \frac{x^2-x+1}{x+1} - \frac{1}{2} \right| = \left| \frac{(x-1)(2x-1)}{(x+1)} \right|$ $= |x-1| \cdot \left| \frac{2x-1}{x+1} \right| = |x-1| \cdot \left| \frac{2}{2} - \frac{3}{x+1} \right|$ Let's take $\delta = \frac{1}{2} \Rightarrow O(x) \Rightarrow 0$ $\Rightarrow |x-1| < \frac{3}{2} + \frac{3}{2} = 0$ $\Rightarrow -3 < \frac{-3}{x+1} < \frac{3}{2} = 0$ $\Rightarrow -1 < \frac{-3}{(x+1)} < \frac{1}{2} = 0$ $\Rightarrow |x-1| < \frac{3}{2} = 0$ $\Rightarrow -1 < \frac{3}{(x+1)} < \frac{3}{2} = 0$

$$\begin{aligned} & : \quad |f(x) - \frac{1}{2}| = |x - 1| \cdot \left| 2 - \frac{3}{(x + 1)} \right| < |x - 1| \cdot | = |x - 1| \end{aligned}$$

$$\begin{aligned} & \text{For} \quad |x - 1| < \varepsilon \quad , \quad \delta = \min\left(\frac{1}{2}, \varepsilon\right) \end{aligned}$$

$$\begin{aligned} & \text{if} \quad 0 < |x - 1| < \delta \quad , \quad \text{then} \end{aligned}$$

$$\begin{aligned} & |f(x) - \frac{1}{2}| < |x - 1| < \varepsilon \\ & \quad \text{for} \quad \delta \leqslant \varepsilon \end{aligned}$$

$$\begin{aligned} & \text{Hence} \quad \text{At} \quad \frac{x^2 - x + 1}{x + 1} &= \frac{1}{2} \end{aligned}$$

$$\lim_{x\to 0} \sin\left(\frac{1}{x^2}\right)$$

$$f(x) = \sin\left(\frac{1}{x^2}\right)$$

We will prove limit does not exist by seq. characterisation of Limits

We observe that
$$\forall$$
 $n \in \mathbb{N}$, $\sin\left(\frac{11}{2} + 2\pi n\right) = 1$

and $\sin\left(\frac{3\pi}{2} + 2\pi n\right) = -1$

$$\chi_{\eta} = \frac{1}{\sqrt{\frac{3\pi}{2} + 2\pi n}}, \quad y_{\eta} = \frac{1}{\sqrt{\frac{3\pi}{2} + 2\pi n}}$$

Good work

$$10$$

$$\sin\left(\frac{1}{2n^2}\right) = 1 \quad \forall \quad \chi_{\eta}, \quad \sin\left(\frac{1}{y_{\eta}^2}\right) = -1 \quad \forall \quad y_{\eta}$$

As
$$N \to \infty$$
 , χ_N , $y_N \longrightarrow 0$ (trivial)

However as
$$f(x_n) = 1$$
, $f(y_n) = -1 \forall n \in \mathbb{N}$

we get
$$f(x_n) \longrightarrow 1$$
 and $f(y_n) \longrightarrow -1$

This is sufficient to show that
$$f(x)$$
 diverges $At \sin\left(\frac{1}{\chi^2}\right)$ DNE