Aerodynamics-TD4

Viscid and Incompressible Flow

Exercise 1: Pipe flow

The water and the oil flow in the pipes.

Flow speed: V = 0.5m/s

Pipes' diameter: d = 100mm

Viscidity coefficient: $v_{water} = 1.79 \times 10^{-6} m^2 / s$, $v_{oil} = 30 \times 10^{-6} m^2 / s$

1. Determine flow models (Laminar or turbulence).

2. Calculate the maximum velocity of flow, if the pipes are rectangular pipes and the flow models keep laminar.

Rectangle width: B = 10mm

Rectangle length: H = 15mm

Exercise 2: Plate flow

The figure below is a cylindrical sliding bearing, and between the shaft and bearing is oil. Determine: (a) The shaft torque T_s ; (b) The shaft power W_s .

Shaft diameter: d = 80mm

Shaft length: l = 30mm

Shaft speed: $n = 3600n / \min$

The clearance between shaft and bearing: b = 0.06mm

Viscidity coefficient of the oil: $\mu = 0.12Pa \cdot s$

Exercise 3: Plane Flow

Velocity distribution in a viscid and incompressible flow is:

$$\begin{cases} V_x = Ax \\ V_y = -Ay \end{cases}$$

$$A = Cons$$

Determine:

- 1. Stress p_{xx} , p_{yy} , τ_{xy} , τ_{yx} .
- 2. Pressure distribution. If $p = p_0(x = y = 0)$, and ignore the external force.