

Lecture 10

topic: Clustering

material: Chapters 15 (book "Data Mining for Business Intelligence")

https://www.youtube.com/watch?v=4Q0kUCvhmAk

Steps in the DM Process:

Business understanding → Data preparation → Model building → Testing & Evaluation → Deployment

Agenda

Date	Lecture contents		Lecturer	Lab topics		Test		
Jan-27	1	Intro. to BI+ Data Management	Caron					
Jan-30					SQL-1	1		
Jan-28	2	Data warehousing	Caron					
Feb-06					SQL-2 2			
Feb-03	3	OLAP business databases & dashboard	Caron					
Feb-13				SQL		0 21		
Feb-10	4	Data mining introduction	loannou			1		
	5	Regression models	Ioannou	A	leaves some more tim			
Feb-17	6	Naïve Bayes	Ioannou	1	for o	for discussing the exam		
	7	k nearest neighbors	Ioannou		during the last lecture			
Feb-20				ne ne		nng m	e last lecture	
Feb-27	8	Performance measures	lo: nnou					
Mar-02	9	Decision trees	.oannou					
Mar-05				D	ec. trees	5		
Mar-09	19	Association rules	Ioannou					
Mar- 11,12&13				Ass. Rules		6		
Mar-16		Clustering (+20 mins exam preparation)	loannou					
Mar-19				Clustering		7		

Cluster Analysis

- The process of grouping a set of objects into <u>not</u> <u>predefined categories</u> or 'classes' of similar objects
- Objects in a group will be similar/related to one another and different from the objects of all the other groups
- The most common form of unsupervised learning
 - I.e. learning from raw data
 - In contrast to supervised learning where we are given examples of classification (labels)
- Many applications, e.g., summarization, navigation

Cluster Analysis

Create groups of objects, such that the objects within a group will be similar (or related) between them, and different from (or unrelated to) the objects in other groups

Applications

Finance

- Balanced portfolios: Given various stocks, find clusters based on financial performance variables, such as return (daily, weekly, or monthly), volatility, etc.
- Industry analysis: Find groups of similar firms based on measures, such as growth rate, profitability, market size, product range, and presence in various markets
- Market segmentation
 - Create groups of customers based on past purchasing behavior, demographic characteristics, or other customers' features (examples)
- Medical, e.g., divide data in healthy and suspicious clusters
- Etc.

Applications

- Better navigation of search results
- Grouping of search results thematically

Issues for clustering

Representation

- Record/item representation
- Need a notion of similarity/distance

How many clusters?

- Fixed a priori?
- Completely data driven?
 - Avoid "trivial" clusters too large or small

What makes objects "related"?

- Ideal: semantic similarity
- Practical: statistical similarity
 - Objects (users, patients, etc.) as vectors
 - For many algorithms, easier to think in terms of a *distance* (rather than <u>similarity</u>) between objects

Representation & Distance Hierarchical Clustering Partitional Algorithms

Similar / Dissimilar

- The goal is to group together "similar" data
 - But what does this mean?
- The similarity measure is often more important than the used clustering algorithm
- Define a distance function like in k nearest neighbours without the class label available

Notation

- ullet d_{ij} is the distance metric between records i and j
- $(x_{i1}, x_{i2}, ..., x_{ip})$ is the vector for record i
- $(x_{i1}, x_{i2}, ..., x_{ip})$ is the vector for record j

Distance

- For numerical attributes:
 - Euclidean distance (blue line):

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Manhattan distance (red line):

$$d_{ij} = |\mathbf{x}_{i1} - \mathbf{x}_{j1}| + |\mathbf{x}_{i2} - \mathbf{x}_{j2}| + \dots + |\mathbf{x}_{ip} - \mathbf{x}_{jp}|$$

vector for record A is (x_{A1}, x_{A2}) vector for record B is (x_{B1}, x_{B2})

Distance

- For nominal / binary attributes:
 - Proportion of unequal attributes out of the total number of attributes

Example

```
x<sub>A</sub>: ('young', 'myope', 'no', 'reduced', 'none')
```

 x_B : ('young', 'hypermetrope', 'no', 'reduced', 'none')

$$\rightarrow$$
 d(A,B) = 1 / 5

- Already discussed in previous lectures
- Today's lecture contains just the ones needed for following the presentation

 Cluster is a set of records

- → How do we measure distance between clusters?
- We extend measures of distance between records into distance between clusters

Notation

- Cluster A includes records A1, A2, ..., Am
- Cluster B includes records B1, B2, ..., Bn

d(A1 ... Am) = ?

Minimum Distance:

- The distance between Ai and Bj that are closer
- min(distance(Ai, Bj)), i=1, ..., m & j=1, ..., n

Maximum Distance:

- The distance between Ai and Bj that are farthest
- max(distance(Ai, Bj)), i=1, ..., m & j=1, ..., n

Average Distance:

- The average of all possible object distances
- avg(distance(Ai, Bj)), i=1, ..., m & j=1, ..., n

$$(x_{i1}, x_{i2}, \dots, x_{ip})$$
 $d(A_1, \dots, A_m)$ $A_i \dots B_n) = ?$

- Cluster centroid is the vector of measurements averages across all records in that cluster
- This is also a vector, as all objects of the cluster
- Centroid vector for cluster A:

$$(\frac{1}{m}\sum_{i=1}^{m} x_{i1}, ..., \frac{1}{m}\sum_{i=1}^{m} x_{ip})$$

- Compute distance between centroids:
 d(centroid(A), centroid(B))
- Minimum, maximum, etc., see previous slides

Example of different distances

Two Types of Clustering

- Partitional algorithms: Construct various partitions and then evaluate them by some criterion
- Hierarchical algorithms: Create a hierarchical decomposition of the objects using some criterion

Partitional

Hierarchical Clustering

(How-to) Hierarchical Clustering

We begin with a distance matrix that contains the distances between every pair of records

- Starting with each item in its own cluster, find the best pair to merge into a new cluster
- Repeat until all clusters are fused together

- Starting with each item in its own cluster, find the best pair to merge into a new cluster
- Repeat until all clusters are fused together

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

Consider all possible merges...

Choose the best

- Single linkage (nearest neighbor):
 - Determined by the distance of the two closest records (nearest neighbors) in the different clusters
- Complete linkage (farthest neighbor):
 - Determined by the maximum distance between any two records in the different clusters
- Centroid linkage:
 - Calculated as the average distance between all pairs of records between the different clusters

Ward's method:

- Considers "loss of information"
- When records are joined together (i.e., cluster) their individual information is replaced by the information of the cluster
- Uses the "Error Sum of Squares" (ESS)
- Measures the difference between individual records and a group mean

Dendrograms

- A treelike diagram that summarizes the process of clustering
- *x*-axis are the records
- Similar records are joined by lines
- Vertical length of a line reflects the distance between the records
- Cutoff on the y-axis, i.e., choosing the distance
- Records with connections below the cutoff are placed into the same cluster

Dendrograms

NY

- Idaho, Puget
- Nevada
- Central
- San Diego
 Arizona, etc.

Validating clusters

- Our goal is to create meaningful clusters
- Many possible variations can be chosen
- → Are the resulting clusters valid?
- → Do they really generate some insight?

Aspects that can/should be considered:

- Cluster interpretability
 - I.e., Reasonable interpretation of the resulting clusters
 - Obtaining summary statistics
 - Labeling the clusters using the interpatation

Validating clusters

Aspects that can/should be considered:

- Cluster interpretability
- Cluster stability

I.e., clusters that do not change significantly if some of the inputs are slightly altered

Cluster separation

I.e., examine the ration of between-cluster variation to within-cluster variation to see whether the separation is reasonable

Number of clusters

I.e., the process should generate useful number of cluster, that is valuable for the purpose of the analysis

Advantages

- Does not require specification of the number of clusters
- Purely data-driven
- Dendrograms make it easy to understand and interpret of the clustering

Limitations

- Requires the computation and storage of an nxn distance matrix
 - Expensive and slow for very large datasets
- Makes only one pass through the data
 - I.e., records that are allocated incorrectly early in the process cannot be reallocated subsequently
- Tends to have low stability
 - l.e., reordering data or dropping a few records can lead to a different solution

Limitations

 Issue with respect to the choice of distance between clusters

For example:

- Single linkage
 - Robust to changes in the distance metric as long as the relative ordering is kept
- Average linkage
 - More influenced by the choice of distance metric
 - Might lead to completely different clusters when the metric is changed
- Hierarchical clustering is sensitive to outliers

Partitional

- just k-means for this course

Partitional

- Pre-specify a desired number of clusters, i.e., k
- Divide the records into *k* non-overlapping clusters
- Conditions that must be satisfied:
 - Minimise sum of distances within clusters
 - Maximise sum of distances between clusters

k-means clustering

- Partitional clustering approach
- Each cluster is associated with a centroid (center point of the cluster)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple!
 - 1: Select K points as the initial centroids.
 - 2: repeat
 - 3: Form K clusters by assigning all points to the closest centroid.
 - 4: Recompute the centroid of each cluster.
 - 5: **until** The centroids don't change

How can we tell the right number of clusters?

In general, this is a unsolved problem. But many methods to approximate do exist.

- Plot the objective function for k=1, 2, ...
- The abrupt change at k
 = 2, suggests there are
 two clusters in the data
- knee/elbow finding

Weakness

- Need to specify the number of clusters in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex

