Introduction
Présentation de l'algorithme
Séquentiel
Multicœurs
Multinœuds
Conclusion

Présentation MPNA Méthode des itérations simultanées

Matthias Beaupère & Pierre Granger

M2 CHPS

20 février 2019

Plan

- 1 Introduction
- 2 Présentation de l'algorithme
- 3 Séquentiel
- 4 Multicœurs
- 6 Multinœuds
- 6 Conclusion

Introduction résentation de l'algorithme Séquentiel Multicœurs Multinœuds Conclusion

Introduction

Position du problème

- Calcul de vp de grandes matrices creuses \rightarrow matrice de Google.
- Seulement quelques vp dominantes.
- Algorithmes robustes.
- Algorithmes adaptés aux architectures massivement parallèles.

La méthode des itérations simultanées

Méthode de la puissance

- \bullet Extraction de la vp dominante d'une matrice A.
- \bullet Multiplication répétée d'un vecteur initial par A.
- Convergence en $\left(\frac{\lambda_2}{\lambda_1}\right)^N$

Méthode des itérations simultanées

- Espace invariant par A de dim k > 1.
- ullet Multiplication répétée du sous-espace par A.
- Orthonormalisation du sous-espace.

Description

Données d'entrée

- M: taille du sous-espace de Krylov
- k : nombre de vecteurs propres demandé
- p : précision demandé
- A : matrice de taille $N \times N$ donnée en entrée
- N_{iter} : nombre d'itérations

Description

Performances théoriques Performances pratiques Étude de convergence Locking

Description de l'algorithme

$$Q \leftarrow rand()$$

while $i=0..N_{iter}-1$ OU $\max(\text{precisions}) < p$ do $Z=AQ$
Gram-Schmidt Q
Projection $B=Z^tAZ$
Décomposition de Schur $B=Y^tRY$
Retour dans l'espace d'origine $Q=ZY$
Calcul de la précision des vecteurs de Q
Sélection des k vecteurs propres
end while

Performances théoriques

Produit AQ	$O(N^2M)$
Gram-Schmidt	O(NMlog(M))
Projection	$O(N^2M)$
Décomposition de S	chur $O(1)$
Précision	$O(NM^2)$
Sélection	O(1)
	$C^{tot} = O(N_{iter}N^2M)$

Nombre d'itérations

Evolution du temps de calcul en fonction du nombre d'itérations.

Taille du sous-espace de Krylov m

Evolution du temps de calcul en fonction de la taille du sous-espace de Krylov m.

Taille de la matrice M

Evolution du temps de calcul en fonction de la taille de la matrice M.

Introduction
Présentation de l'algorithme **Séquentiel**Multicœurs
Multinœuds

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Influence de m

Nombre d'itérations N nécessaires pour faire converger e valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision $p=10^{-6}$

Influence de p

Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p

Principe du locking

Justifications

- Vitesses de convergence différentes des vp.
- Perte de temps.
- Instabilités numériques.

Le locking

- On verrouille les vp lorsqu'ils ont convergé.
- On ne le multiplie par A.
- On diminue m.
- On l'utilise pour l'orthonormalisation.

Introduction
Présentation de l'algorithme
Séquentiel
Multicœurs
Multinœuds

Description
Performances théoriques
Performances pratiques
Étude de convergence
Locking

Performances du locking

Précision au cours des itérations N pour e=4 valeurs propres pour une taille de sous-espace de Krylov m=8

Performances du locking

Nombre d'itérations N nécessaires pour faire converger e=4 valeurs propres pour différentes tailles de sous-espace de Krylov m et une précision p avec et sans utilisation du locking

Multicœurs

Parallélisation OpenMP

- On parallélise les produits matriciels dans l'espace d'origine
- Pragmas devant les boucles parallélisables
- Pas de pénalité de communication
- Performance : $C \to \frac{C}{N_{\text{cores}}}$

Multicœurs : performances pratiques

Nœud avec 8 cœurs hyperthreadés pour un calcul de 4 valeurs propres avec $m=8~\grave{\rm a}~p=10^{-8}$

Accélération x7 avec 8 coeurs physiques!

Description
Performances théorique
Performances pratiques

Multinœuds

Parallélisation du calcul matriciel C = AB

- Rank 0 partage les matrices A et B aux autres processus
- Tous calculent une sous-matrice et renvoient le résultat
- Rank 0 assemble C

Performances théoriques

On pose N le nombre de processus

Temps de calcul processeur

Chaque cœur calcul $\frac{1}{N}$ de la matrice C

Accélération × N

Communication pour un calcul C = AB

• Aller : Toute la matrice B en broadcast

• Aller: $\frac{1}{\sqrt{N}}$ de la matrice A pour chaque processus

• Retour : $\frac{1}{N}$ de la matrice C

Multinœuds : performances pratiques

Sur le supercalculateur poincare						
taches	noeuds	N	threads	Μ	temps(s)	
1	1	1473	16	10	4.899005	
4	4	1473	16	10	9.844218	
6	1	1473	16	10	66.033455	
1	1	4929	16	10	29.481719	
4	4	4929	16	10	82.517647	

Conclusion

Algorithme

- Complexité pratique proche de la théorie.
- Importance du choix de m en fonction des autres paramètres.
- Meilleure convergence et efficacité avec locking.

Parallélisation

- Très bonne parallélisation intra-nœud.
- Mauvaise scalabilité sur inter-nœud \rightarrow communications trop couteuses.
- Méthodes hybrides probablement mieux adaptées à l'inter-nœud.