Project Inception

CSE 6324

Christoph Csallner

University of Texas at Arlington (UTA)

Project Title: Conkas 2.0 - Static Analysis Tool

Team - 6

Apoorva Siri Mattewada - 1002026609 Harshith Kannalli Sachidananda Murthy -1001949874 Manisha Sohanlal Jain - 1001869817 Vinayak Neemkar - 1002022438 Vignaan Erram - 1002032121

Project Vision

- Certain static analysis tools have low coverage to work with while dealing with smart contracts.
- Our goal is to increase the modules present in such tools, in order to help them find new vulnerabilities and add functionality to them.
- One such tool that exists is Conkas, which has 5 known vulnerabilities in total. [1]
- Our goal is to add additional modules to the existing Conkas tool.

Features and Workflow

There are 5 categories of vulnerabilities that Conkas deal with:

- 1. Reentrancy
- 2. Arithmetic
- 3. Unchecked Low-Level Calls
- 4. Front-Running
- 5. Time Manipulation

We would try to extend conkas to cover the following vulnerabilities: [2]

- Short Address Attacks
- Bad Randomness

Features & Workflow

<u>Iteration 1 Objective:</u>

To generate a vulnerability function for the existing code. Add a functionality to capture additional vulnerabilities in Conkas.

<u>Iteration 2 Objective:</u>

Further working on adding new vulnerabilities to the same modules and testing it.

<u>Iteration 3 Objective:</u>

Work on existing vulnerabilities which are not found by the existing modules. Finally, test all the modules and run it on the tool successfully.

Competitors

The Smartbugs framework was used to check vulnerabilities on few static analysis tools. In comparison to other tools, here's where Conkas stands.

[5]

No.	Tool	Avg. Execution Time	Total Execution Time
1	Conkas	0:00:32	1:14:37
2	HoneyBadger	0:01:12	2:49:03
3	Maian	0:03:47	8:52:25
4	Manticore	0:12:53	1 day, 6:15:28
5	Mythril	0:00:58	2:16:21

Table: Average execution time of each tool [1]

Risks

- Some contracts contain vulnerabilities on their own, however, when these contracts are compiled, those vulnerabilities are gone because the vulnerability is in dead code. [1]
- Updating our tool regularly to counter changes in the contract as smart contracts evolve through time is tough.

[6]

- People from different development backgrounds come together to build the tool, this leads to language barriers, and working with such contracts without experience might pose financial risks as well.
- Dealing with false positive vulnerabilities can be tough as they come as a part of any static analysis tool.

Customers and Users

- All smart contract developers in the business who need their contracts assessed for a variety of vulnerabilities can use this tool.
- Local entrepreneurs who deal in Ether and manage their own smart contracts.
- All professors and students who desire to do study on this type of tool are welcome to utilize it.
- People that want to modify it and add new features can adopt it.

References

- [1]https://www.semanticscholar.org/paper/Conkas%3A-A-Modular-and-Static-Analysis-Tool-for-Veloso/425e474177885f9ac9e57d44e8e2386d13f9c87d
- [2] https://dasp.co/#item-7
- [3]https://www.istockphoto.com/illustrations/clip-art-of-workflow
- [4]https://www.pngitem.com/middle/TRhRTm_competition-competitive-advantage-business-clip-art-competition-clipart/
- [5]https://www.wrike.com/blog/what-is-risk-identification-project-management/#What-is-risk-management

Acknowledgements

- Dr. Christoph Csallner
- Shovon Pereira
- Mohammad Rafiq Arefin

THANK YOU