

Tools for plagiarism detection

Kristian Wahlroos April 23, 2017

University of Helsinki
Department of Computer Science

Introduction

Problem

Plagiarism

Motivation

Methodology

Literature review

Results

Overview

Data

Methodologies

Feature extraction

Discussion

- MOOC's have gained popularity in recent years
 - Especially programming related MOOC's¹
 - Independent assignments
 - No live-presence required
- Number of students often large
- Trust is thus usually one-sided
 - Belief that students do tasks by themselves
 - Not actively monitored
 - Cheating is in form of plagiarism
 - Many potential plagiarism scenarios

http://blog.edx.org/

- Source code plagiarism is a problem consisting many forms
 - Straight plagiarism
 - Too intense group work
 - Code sharing
 - Obfuscation
- Lots of students → impossible to detect manually in reasonable time
 - Lot of data available
 - Need for automated tools

- Finding a suitable machine learning tool set for detecting source code plagiarism
- Motivated by
 - Could be used in University of Helsinki's course Introduction to programming
 - Interesting topic
 - Machine learning methods benefit from a lot of data
- Results reflected to the usage in a academic course

Methodology

- Performing literature review with Google Scholar
- Collected 8 papers
- Two-step search process
 - Limit by overall keywords occurrences
 - Limit by title/abstract/keywords
- Keywords
 - Direct matches: machine learning, plagiarism, code, programming
 - Non-direct: authorship, identification

- Limited years starting from 2006
 - Believed to contain more recent programming languages
 - MOOC's are relatively new concept
 - Machine learning methods have changed
- Doing comparison between papers
 - Model accuracy
 - Data
 - Machine learning methodology
 - Feature extraction

- 8 papers from 2007 to 2015
 - 1) A machine learning based tool for source code plagiarism detection, 2011
 - De-anonymizing programmers via code stylometry, 2015
 - Detecting outsourced student programming assignments, 2008
 - 4) Pde4java: Plagiarism detection engine for java source code: a clustering approach, 2008

- 5) A probabilistic approach to source code authorship identification, 2007
- 6) Using code metric histograms and genetic algorithms to perform author identification for software forensics, 2007
- 7) Who wrote this code? identifying the authors of program binaries, 2011
- An application for plagiarized source code detection based on a parse tree kernel, 2013

- Studies divide into two categories
 - Attribute counting
 - Structure based
- Model accuracies are reported in two ways
 - Traditional classification accuracy
 - How close the model was to human labeling
- Accuracies ranged from 69% to over 90%
 - Highest used mixture of stylistic and structural approach
 - E.g. 93% same results compared to human validator

- Plagiarism detection is close to authorship identification
 - Classifying anonymous source code
 - Clustering similar documents together
 - Finding stylistic nuances
 - Trying to capture the logical structure

Yet another slide

content