EE210: Microelectronics-I

Lecture-28 : Output Stage-2

Instructor - Y. S. Chauhan

Slides - B. Mazhari Dept. of EE, IIT Kanpur

Class A Amplifier

$$\eta = \frac{1}{4} \times \left(\frac{v_{op}}{V_{CC}}\right) \left(\frac{v_{op}}{I_E \times R_L}\right) < 25\%$$

An efficient amplifier should take power from the supply only when power is to be delivered to the load!

Maximum Efficiency

$$P_L = \frac{v_{op}^2}{2R_L}$$

$$i_{CN} = \frac{v_{op\sin(\omega t)}}{R_L} \text{ for } 0 \le t \le T/2$$
$$= 0 \text{ for } T/2 \le t \le T$$

$$P_S = 2\frac{1}{T} \int_{Q}^{T} V_{CC} \times i_{CN} dt$$

$$P_S = 2 \frac{V_{CC} \times v_{op}}{\pi R_L}$$

$$\eta = \frac{\pi}{4} \times \frac{v_{op}}{V_{CC}} \times 100$$

For two supplies

 $v_{op} \leq V_{CC} - V_{CEsat}$

$$v_{CE} > V_{CEsat}$$

$$v_{CE} > V_{CEsat}$$
 $V_{CC} - v_{op} \sin(\omega t) > V_{CEsat}$

 $\eta_{\text{max}} \cong 78.5\%$

$$v_{op} \leq V_{CC}$$
 –

 $v_{op} \leq V_{CC} - V_{BE}$

Cross-over Distortion

G-Number

$$V_{CC} = 5V$$
; $V_{in} = 5V$

Solution

Voltages V_{B1} and V_{B2} are chosen such that both transistors are ON but conducting small current.

The amplifier now works from $V_{IN} = 0$ onwards

Class AB Amplifier

Current sourced by each transistor

$$V_{CC} = 5V; V_{in} = 1V; V_{B} = 0.7V$$

Each transistor conducts for more than half the cycle

There is some standby power dissipation and efficiency is a little lower.

How do we realize the battery?

We need to bias the transistors at about ~0.7 Volts.

A slight increase in voltage would significantly increase standby power dissipation

A lower value of bias voltage may result in some crossover distortion

Solution

$$V_{BN} - V_{BP} \cong 0.65 + 0.65 = 1.3V$$

 $V_{dc} \sim 0.65 V; V_{B} \sim 1.3 V$

Solution

 $V_{BN} - V_{BP} \cong 0.65 + 0.65 = 1.3V$

Simplified 741 opamp schematic from Gray & Meyer

Simplified 741 opamp schematic from Gray & Meyer

Figure 6.35 Simplified schematic of the 741 with idealized biasing current sources.

Summary

