Feuille d'exercices nº 2 :

Révisions algèbre linéaire (bases, dimension, changement de bases)

Exercice 1

1. Résoudre dans \mathbb{R}^3 le système suivant :

$$\begin{cases} 3x + y - z = 0 \\ 2x - 4y + 2z = 0 \\ x + 2y + z = 0 \end{cases}$$

2. Soient u_1 , u_2 et u_3 les vecteurs de \mathbb{R}^3 donnés par :

$$u_1 = \begin{pmatrix} 3\\2\\1 \end{pmatrix}, \quad u_2 = \begin{pmatrix} 1\\-4\\2 \end{pmatrix} \quad \text{et} \quad u_3 = \begin{pmatrix} -1\\2\\1 \end{pmatrix}.$$

La famille (u_1, u_2, u_3) est-elle une famille libre? Est-elle une base de \mathbb{R}^3 ?

- 3. Soit E le sous-espace vectoriel de \mathbb{R}^3 engendré par u_1 et u_2 et soit F le sous-espace vectoriel de \mathbb{R}^3 engendré par u_3 .
 - (a) Quelle est la dimension de E?
 - (b) Quelle est la dimension de F?
 - (c) Les sous-espaces E et F sont-ils supplémentaires dans \mathbb{R}^3 ?
- 4. Donner un système d'équations cartésiennes de F.
- 5. Même question pour E.

Exercice 2 On considère dans \mathbb{R}^4 les sous-espaces vectoriels suivants :

$$V = \text{Vect}((v_1, v_2, v_3)), \quad v_1 = \begin{pmatrix} 3 \\ -1 \\ 2 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} -7 \\ 3 \\ 1 \\ -1 \end{pmatrix}, v_3 = \begin{pmatrix} -9 \\ 5 \\ 11 \\ 1 \end{pmatrix}$$

$$W = \left\{ (x, y, z, t) \in \mathbb{R}^4 : x + 2y - t = 0 \text{ et } x + 3y - z + 2t = 0 \right\}.$$

- 1. La famille (v_1, v_2, v_3) est-elle libre de \mathbb{R}^4 ? Est-elle une famille génératrice de \mathbb{R}^4 ? Est-elle une base de \mathbb{R}^4 ?
- 2. Trouver une base de V. Quelle est sa dimension?
- 3. Trouver une base de W. Quelle est sa dimension?
- 4. A-t-on $V \subset W$?
- 5. Soit $V + W = \{v + w \mid v \in V \text{ et } w \in W\}$. Montrer que V + W est un sous-espace vectoriel de \mathbb{R}^4 .

Exercice 3 On considère, dans \mathbb{R}^3 les vecteurs suivants :

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$ et $v_3 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$.

- 1. Montrer que la famille (v_1, v_2, v_3) est une base de \mathbb{R}^3 .
- 2. Déterminer les coordonnées de tout vecteur $u = \begin{pmatrix} a \\ b \end{pmatrix}$ dans la base (v_1, v_2, v_3) .
- 3. Calculer la matrice de passage P de la base canonique à la base (v_1, v_2, v_3) . Calculer P^{-1} . Soit $\binom{a}{b} \in \mathbb{R}^3$. Calculer $P^{-1} \binom{a}{b}$. Que remarque-t-on?

4. Refaire les questions précédentes avec

1)
$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
, $v_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$
2) $v_1 = \begin{pmatrix} -3 \\ -1 \\ 1 \end{pmatrix}$, $v_2 = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}$ et $v_3 = \begin{pmatrix} 6 \\ 2 \\ 1 \end{pmatrix}$.

Exercice 4 Soit E l'espace vectoriels des fonctions définies sur $\mathbb R$ à valeurs réelles. Posons

$$E_1 := \{ f \in E , f \text{ est paire } \}, E_2 := \{ f \in E , f \text{ est impaire } \}$$

Montrer que E_1 et E_2 sont des sous espaces vectoriels de E tels que $E = E_1 \oplus E_2$. Expliciter la projection de E sur E_1 parallèlement à E_2 .

Exercice 5 Soit E un \mathbb{R} -espace vectoriel et f un endomorphisme de E tel que

$$f^2 + 2f - 3id_E = 0$$
 ici $f^2 = f \circ f$.

- 1. Vérifier que $\Im m(f \mathrm{id}_E) \subset \ker(f + 3\mathrm{id}_E)$ et $\Im m(f + 3\mathrm{id}_E) \subset \ker(f \mathrm{id}_E)$.
- 2. Montrer que $E = \ker(f \mathrm{id}_E) \oplus \ker(f + 3\mathrm{id}_E)$.

Exercice 6 Soit f un endomorphisme de \mathbb{R}^3 tel que $f^3 = 0$ et $f^2 \neq 0$ (on dit que u est nilpotent d'indice de nilpotence 3).

- 1. Soit w un vecteur qui n'appartient pas à $\ker(f^2)$. Posons v = f(w) et $u = f^2(w)$. Montrer que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Quelle est la matrice de f dans cette base?
- 3. Montrer que

$$\ker f = \Im m f^2$$
 et $\ker f^2 = \Im m f$

Exercice 7 Soit $E = \mathcal{M}_2(\mathbb{R})$ l'espace vectoriel des matrices carrées réelles 2×2 . On se donne des réels a, b, c, d et posons $\Lambda = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. On considère l'application

$$\psi: E \longrightarrow E$$

$$A \longmapsto \psi(A) = \Lambda \cdot A$$

1. Vérifier que les matrices

$$E_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, E_2 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, E_3 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, E_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

forment une base de $\mathcal{M}_2(\mathbb{R})$.

- 2. Vérifier que ψ est un endomorphisme de E. Donner sa matrice dans la base (E_1, E_2, E_3, E_4) .
- 3. Donner une condition nécessaire et suffisante sur Λ pour que ψ soit bijective.
- 4. Dans le cas où ψ n'est pas injective trouver son noyau et son image.

Exercice 8 Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré au plus 2. Pour tout $P \in E$ on définit

$$u(P) = P(X + 2) + P(X) - P(X + 1).$$

- 1. Montrer que u est un endomorphisme de E.
- 2. Quelle est la matrice de u dans la base canonique $(1, X, X^2)$ de E?
- 3. Déterminer le noyau et l'image de u.
- 4. Existe-il un base dans laquelle la matrice de u est

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} ?$$

Exercice 9 On rappelle que la trace d'une matrice $X = (x_{ij}) \in \mathcal{M}_n(\mathbb{R})$ est la somme de ses éléments diagonaux notée par $\text{Tr}(X) = \sum_{i=1}^n x_{ii}$.

1. Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que l'ensemble

$$H = \{ X \in \mathcal{M}_n(\mathbb{R}) / \operatorname{Tr}(XA) = 0 \}$$

est un sous espace vectoriel de $\mathcal{M}_n(\mathbb{R})$. Quelle est sa dimension?

- 2. Dans cette question, on suppose que A est la matrice identité. Donner une base de H dans les cas où n=2 puis n=3.
- 3. Dans cette question on suppose que n=2 et soit $a=\binom{1}{1}$. Montrer que l'ensemble

$$V = \{ X \in \mathcal{M}_2(\mathbb{R}) / Xa = 0 \}$$

est un sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Quelle est sa dimension?

4. Dans cette question on suppose que n=3 et soit $a=\begin{pmatrix}1\\1\\1\end{pmatrix}$. Montrer que l'ensemble

$$V = \{ X \in \mathcal{M}_3(\mathbb{R}) / Xa = 0 \}$$

est un sous espace vectoriel de $\mathcal{M}_3(\mathbb{R})$. Quelle est sa dimension?

Exercice 10 Soit $u: \mathbb{R}^3 \to \mathbb{R}^3$ l'application linéaire dont la matrice dans la base canonique de \mathbb{R}^3 est

$$A = \begin{pmatrix} 5 & -7 & 3 \\ 2 & -3 & 2 \\ 2 & -5 & 4 \end{pmatrix}.$$

1. L'application u est-elle un automorphisme de \mathbb{R}^3 ?

On pose

$$\mathbf{v}_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

- 2. Vérifier que $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ forme une base de \mathbb{R}^3 .
- 3. Calculer la matrice de passage P de la base canonique vers la base $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ ainsi que son inverse P^{-1} .
- 4. En utilisant la formule de changement de base, calculer la matrice A' de u dans la base $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$.
- 5. Calculer directement $u(\mathbf{v}_1)$, $u(\mathbf{v}_2)$ et $u(\mathbf{v}_3)$ et vérifier le résultat obtenu à la question précédente.

Exercice 11 On introduit les vecteurs dans $E = \mathbb{R}^5$ et la matrice suivants :

$$\mathbf{v}_{1} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \ \mathbf{v}_{2} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \ \mathbf{v}_{3} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \ \mathbf{v}_{4} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix} \ \mathbf{v}_{5} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \text{et} \quad A = \begin{pmatrix} -2 & -4 & -2 & 4 & 2 \\ 1 & 1 & 0 & -1 & -1 \\ 2 & 3 & 0 & -2 & 0 \\ 1 & -1 & 0 & 1 & -1 \\ -2 & -1 & -2 & 2 & 2 \end{pmatrix}$$

On désignera par $u \colon E \to E$ l'application linéaire dont la matrice dans la base canonique est A.

- 1. Montrer que $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$ est une base de E.
- 2. Soit F (resp. G) le sous-espace de E engendré par \mathbf{v}_1 et \mathbf{v}_2 (resp. \mathbf{v}_3 et \mathbf{v}_4). Vérifier que F et G sont en somme directe.
- 3. Montrer que \mathbf{v}_5 n'appartient pas à F+G; en déduire que si l'on note H la droite engendrée par \mathbf{v}_5 , alors $E=F\oplus G\oplus H$.
- 4. Montrer que les sous-espaces F, G et H sont stables par l'application u (i.e. $\forall x \in F, u(x) \in F$ etc.).
- 5. Écrire la matrice de passage P de la base canonique vers la base $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$ et calculer son inverse P^{-1} .
- 6. En utilisant la formule de changement de base, calculer A' la matrice de u dans la base $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5)$.

7. Comment lit-on sur la matrice A' le fait que F, G et H sont stables par u?

Exercice 12 Soit $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré au plus 2. Soit u l'endomorphisme de E dont la matrice dans la base canonique $B = (1, X, X^2)$ est

$$\begin{pmatrix} 5 & -4 & 2 \\ 14 & -10 & 4 \\ 16 & -10 & 3 \end{pmatrix}.$$

Soit $P_1 = 1 + 2X + X^2$, $P_2 = 1 + 2X + 2X^2$, $P_3 = X + 2X^2$.

- 1. Montrer que $B' = (P_1, P_2, P_3)$ est une base de E.
- 2. Donner la matrice de passage de B à B', que l'on notera M.
- 3. Soit $Q = a + bX + cX^2 \in E$. Calculer les coordonnées de Q dans la base (P_1, P_2, P_3) .
- 4. Calculer la matrice de u dans la base (P_1, P_2, P_3) de deux fa \tilde{A} §ons différentes.

Exercice 13 Soit E l'ensemble des polynômes à coefficients dans \mathbb{R} de degré ≤ 2 , F le sous-ensemble des polynômes de degré inférieur ou égal à 1 et G celui des polynômes $P \in E$ tels que P(1) = 3. On considère aussi les applications

- 1. Vérifier que E, muni de la multiplication par un réel et de l'addition usuelles des polynômes, est un \mathbb{R} -espace vectoriel.
- 2. F et G sont-ils des sous-espaces vectoriels de E?
- 3. Les applications f, g et h sont-elles linéaires?
- 4. On appelle $\mathcal{C}_E := (1, X, X^2)$ la base canonique de E. Vérifier que $\mathcal{B}_E = (1, X+1, \frac{(X+1)^2}{2})$ est également une base de E.
- 5. À partir de vecteurs de \mathcal{B}_E (respectivement de \mathcal{C}_E), constituer une base \mathcal{B}_F (resp. \mathcal{C}_F) de F.
- 6. Quelle est la dimension de l'espace E? de F?
- 7. Écrire dans les bases \mathcal{C}_E , \mathcal{C}_F la matrice A de f et la matrice B de g.
- 8. Calculer $(f \circ g)(1)$ et $(f \circ g)(X)$. En déduire la matrice C de $f \circ g$ dans la base \mathcal{C}_F .
- 9. Vérifier par le calcul que l'on a bien AB = C.
- 10. Écrire dans les bases \mathcal{B}_E , \mathcal{B}_F la matrice A' de f, la matrice B' de g et la matrice C' de $f \circ g$.
- 11. Quelles applications et dans quelles bases représentent les matrices BA, B'A' et C^2 ?
- 12. Écrire la matrice de passage P de la base \mathcal{C}_F à la base \mathcal{B}_F . En déduire la matrice D de f dans les bases \mathcal{B}_E , \mathcal{C}_F .
- 13. Écrire la matrice de passage Q de la base \mathcal{C}_E à la base \mathcal{B}_E . Justifier la relation D = AQ.
- 14. Justifier la relation $C = PC'P^{-1}$.

Exercice 14 On considère l'équation différentielle :

$$y'' - 5y' + 6y = 0, (D)$$

et on note E le \mathbb{R} -espace vectoriel des fonctions réelles indéfiniment dérivables sur \mathbb{R} et f, g les endomorphismes de E définis par : f(y) = y' - 2y, g(y) = -y' + 3y.

- 1. Montrer que $Ker(f \circ g)$ est l'ensemble des solutions réelles de l'équation (D).
- 2. Montrer que $g \circ f = f \circ g$. En déduire que ker f et ker g sont des sous-espaces vectoriels de ker $(f \circ g)$ puis, à l'aide de la relation f(y) + g(y) = y: ker $(f \circ g) = \ker f \oplus \ker g$.
- 3. Déterminer une base de ker f, une base de ker g, puis l'ensemble des solutions réelles de (D).