

18PYB101J MODULE-5 LECTURE 10

Solving Problems

1. Two layers of glass are placed on top of each other. The light is travelling from n = 1.45 to n = 1.40. Find the range of angles θ_{j} for which total internal reflection takes place.

$$n_1 = 1.45$$
 and $n_2 = 1.40$.

We know that
$$\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right)$$

Substituting the values of n₁ and n₂

$$\theta_c = \sin^{-1} \left(\frac{1.4}{1.45} \right) 74.9^{\circ}$$

Thus, for the critical case $\theta_x = 90 - 74.9 = 15.1^{\circ}$, and for all angles θ_x less than 15.1°, total internal reflection takes place.

2. A fiber has the following characteristics: $n_1 = 1.35$ (core index) and $\Delta = 2\%$. Find the N.A and the acceptance angle.

$$n_1 = 1.35$$
; $\Delta = 2\% = 0.02$
W.K.T $N.A = n_1 \times (2\Delta)^{1/2}$
 $= 1.35 \times (2 \times 0.02)^{1/2} = 0.27$
 $\theta_a = \sin^{-1}(N.A) = \sin^{-1}(0.27) = 15.66^{\circ}$

Acceptance angle = $2\theta_a = 31.33^{\circ}$

3. A silica optical fiber has a core refractive index of 1.50 and a cladding refractive index of 1.47. Determine (i) the critical angle at the core – cladding interface, (ii) the N.A for the fiber and (iii) the acceptance angle for the fiber. $n_1 = 1.50$; $n_2 = 1.47$

The critical angle
$$\theta_c = \sin^{-1}\left(\frac{n_2}{n_1}\right) = \sin^{-1}\left(\frac{1.47}{1.50}\right) = 78.5^{\square}$$

The numerical aperture $N.A = (n_1^2 - n_2^2)^{1/2}$

$$(1.50^2 - 1.47^2)^{1/2} = 0.30$$

The acceptance angle = $2\theta_a = 2 \sin^{-1}(N.A) = 2 \sin^{-1}(0.30) = 34.9^{\circ}$

Critical angle = 78.5° ; N.A = 0.30; Acceptance angle = 34.9°

4. Calculate the numerical aperture and acceptance angle of fiber with a core index of 1.52 and a cladding index of 1.50.

Hint:
$$n_1 = 1.52$$
; $n_2 = 1.50$

$$N.A = (n_1^2 - n_2^2) 0.246$$
 and

$$\theta_a = \sin^{-1}(N.A) = 14^{\circ}14';$$

Acceptance angle =
$$2\theta_a = 28^{\circ}28'$$