Sistemas de Recomendação

Filtragem Colaborativa

Memory-based

Premissa: as preferências passadas dos usuários revelam seus interesses.

- Memory-based: usa os ratings dos usuários para computar similaridades entre usuários e itens.
- Model-based: constrói-se modelos de mineração de dados, machine learning e outros com base nas interações entre usuários e itens.

Memory-based

Utiliza as informações passadas para correlacionar 'coisas'.

- User-based CF:
 - Como os usuários similares a mim avaliaram o item i?
- Item-based CF:
 - Como eu avaliei itens similares ao item *i*?

User-based CF

Existem 5 passos fundamentais para definir modelos user-based:

- 1. Definir a vizinhança
- 2. Agregar os ratings
- 3. Normalizar os dados
- Computar similaridades
- Avaliar opções adicionais

Vizinhança refere-se aos usuários que serão utilizados para gerar a recomendação

Podemos considerar como vizinhos:

- Todos os usuários.
- Usuários aleatórios.
- Todos os usuários com um nível de similaridade acima de um threshold pré-definido.
- Os top-k usuários ranqueados pela similaridade.

Quem são os vizinhos de **u** (i.e., que avaliaram o item i)?

			i					
х 🚯			1	3		2		
<i>y</i> 🚨	1	2	5		4		1	
P	4			3	5		4	
u 🤰		2	?		5	4		4
z 🙎		3	4		5		3	

$$sim(\vec{u}, \vec{x}) = 0.27$$

 $sim(\vec{u}, \vec{y}) = 0.45$

$$sim(\vec{u}, \vec{z}) = 0.52$$

Como encontrar vizinhos?

				i						
	8			1	3		2			
y		1	2	5		4		1		sir
	P	4			3	5		4		
u	8		2	?		5	4		4	
Z	2		3	4		5		3		sir

 $sim(\vec{u}, \vec{y}) = 0.45$

2-NN

 $sim(\vec{u}, \vec{z}) = 0.52$

Como encontrar vizinhos?

E se nós precisamos predizer os itens i e j?

Global nearest neighbors don't necessarily cover all items that could be recommended

Quantos vizinhos?

- Na teoria, quanto mais melhor...
 - ... se você tiver uma boa métrica de similaridade!
 - o O custo computacional é alto.
- Na prática:
 - Mais vizinhos significa mais ruídos.
 - Menos vizinhos significa menos cobertura.
- É comum definir entre 25 a 100 vizinhos.
 - o 30 a 50 é suficiente para o cenário de filmes.

2. Agregar ratings

Como predizer se o usuário u vai gostar do item i?

				i					
				1	3		2		
y		1	2	5		4		1	
	1	4			3	5		4	
u	2		2	?		5	4		4
Z	2		3	4		5		3	

$$sim(\vec{u}, \vec{y}) = 0.45$$
 $r_{vi} = 5$

$$sim(\vec{u}, \vec{z}) = 0.52$$
 $r_{zi} = 4$

Como predizer o rating?

				i					
				1	3		2		
y		1	2	5		4		1	
	1	4			3	5		4	
u	2		2	4.5		5	4		4
Z	2		3	4		5		3	

$\hat{r} = \sum_{v \in N} sim(\vec{u}, \vec{v}) \times r_{vi}$
$\sum_{v \in N} \left sim(\vec{u}, \vec{v}) \right $
$\hat{r} = \frac{0.45 \times 5 + 0.52 \times 4}{1}$
0.45 + 0.52
$\hat{r}_{ui} = 4.5$

3. Normalizar os Dados

Em geral, as notas dos usuários têm diferentes significados:

- Alguns usuários dão notas altas, outros baixas
- Alguns usam mais opções da escala de notas que outros

Técnicas de normalização compensam essas diferenças:

- Mean-center normalization
- Z-score normalization

Mean-centering

$$\hat{r}_{ui} = \frac{\sum_{v \in N} sim(\vec{u}, \vec{v}) \times r_{vi}}{\sum_{v \in N} \left| sim(\vec{u}, \vec{v}) \right|}$$

$$\hat{r}_{ui} = \frac{\sum_{v \in N} sim(\vec{u}, \vec{v}) \times (r_{vi} - \vec{r}_{v})}{\sum_{v \in N} \left| sim(\vec{u}, \vec{v}) \right|}$$

(subtract neighbor's mean)

Consiste em duas etapas:

- Subtrai o valor pela média dos ratings
- Divide pelo desvio padrão dos ratings

$$Z = rac{X - \mathrm{E}[X]}{\sigma(X)}$$

Possui um melhor desempenho que o mean-centering

Existem diversas abordagens para definir similaridades:

- Correlação de Pearson
- Similaridade de Cosseno

$$sim(\vec{u}, \vec{v}) = \frac{cov(u, v)}{\sigma_u \sigma_v} \approx \frac{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})(r_{vi} - \overline{r_v})}{\sqrt{\sum_{i \in I_{uv}} (r_{ui} - \overline{r_u})^2} \sqrt{\sum_{i \in I_{uv}} (r_{vi} - \overline{r_v})^2}}$$

- Usada apenas sobre ratings em comum
- Considera a normalização pela média do usuário

Similaridade de Cosseno

Cosseno do ângulo entre os vetores dos usuários:

$$sim(\vec{u}, \vec{v}) = \cos(\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|} = \frac{\sum_{i \in I} r_{ui} r_{vi}}{\sqrt{\sum_{i \in I} r_{ui}^2} \sqrt{\sum_{i \in I} r_{vi}^2}}$$

- Em geral essa similaridade varia de -1 a 1.
- Para ratings não negativos, a similaridade varia de 0 a 1.
- Com ratings normalizados é quase equivalente a Pearson.

Problemas?

- Como lidar com poucos dados?
 - Similaridade de dois usuários com um rating em comum = 1.
 - Eles são realmente similares?
- Solução: penalizar a similaridade pela confiança
 - Abordagem simples: multiplicar por min(c, 50) / 50
 - c é o número de ratings em comum
 - c < 50: as similaridades são penalizadas por c / 50
 - c > 50: as similaridades não são penalizadas

5. Opções Adicionais

- Pode-se utilizar estratégias de clustering
 - o Clusterizar usuários e utilizar esses grupos para predição.
 - Não funciona muito bem na maioria dos casos.
- Pré-computar as similaridades entre todos os usuários
 - É caro computacionalmente.
 - É instável, pois um sistema real se atualiza diariamente.

Limitações

- O user-based sofre com o mal da esparsidade
 - Existem muitos itens (~ 10M) e poucas avaliações (~ 100)
 - É difícil definir bons vizinhos, devido a esse viés
- O user-based é pouco eficiente
 - Computar as correlações é $O(m^2n)$
 - É totalmente inviável fazer isso em tempo real (online)
 - Correlações offline são instáveis

Memory-based

"Diga-me o que é popular entre meus amigos."

Item-based CF

O processo é muito similar ao user-based:

- 1. Normalizar os dados
- 2. Computar similaridades
- Selecionar os melhores vizinhos
- 4. Agregar as informações

1. Normalizar os dados

- Mean-centering (para ratings em uma escala)
 - Subtrair a média das notas do usuário
 - Subtrair a média das notas recebidas pelo item
- Unit-centering (para feedback binário)
 - Dividir pela norma Euclidiana do usuário

2. Computar Similaridades

- Correlação de Pearson
 - Utilizada para valores em uma escala de ratings
- Similaridade de Cosseno
 - Utilizada para uma escala binária de valores
 - Após um processo de normalização

Avaliamos os outros itens consumidos por u.

			X	i		y	Z		W	
				1	3		2			$sim(\vec{i},\vec{x}) = 0.82$
		1	2	5		4		1		$sim(\vec{i}, \vec{y}) = 0.65$
	1	4			3	5		4		$sim(\vec{i},\vec{z}) = 0.07$
u	3		2	?		5	4		4	$sim(\vec{i}, \vec{w}) = 0.00$
	2		3	4		5		3		

3. Selecionar a Vizinhança

- Encontrar os k itens mais similares aos...
 - ... itens avaliados por *u*
 - ... itens visualizados por *u*
- Qual o melhor valor para k?
 - Poucos vizinhos geram predições incoerentes
 - Muitos vizinhos introduzem muito ruído
 - k = 20, é um bom ponto de partida!

3. Selecionar a Vizinhança

Exemplo com dois vizinhos (k = 2)

$sim(\vec{i}, \vec{x}) = 0.82$
$sim(\vec{i}, \vec{y}) = 0.65$
2-NN

Existem algumas abordagens clássicas:

- Min / max / média / mediana dos ratings
- Média ponderada pela similaridade
- Estratégias de agregação supervisionada

4. Agregar informações

			X	i		y			
				1	3		2		
		1	2	5		4		1	
	1	4			3	5		4	
u	8		2	?		5	4		4
	2		3	4		5		3	

$sim(\vec{i},\vec{x}) = 0.82$	$r_{ux} = 2$
$sim(\vec{i}, \vec{y}) = 0.65$	r = 5

4. Agregar informações

			X	i		y			
									ð
				1	3		2		
		1	2	5		4		1	
	1	4			3	5		4	
u	2		2	3.3		5	4		4
	2		3	4		5		3	

$\hat{r} = 0.82 \times 2 + 0.65 \times 5$	$\hat{r}_{ui} = \frac{\sum_{j \in N} sim(\vec{i}, \vec{j}) \times r_{uj}}{\sum_{j \in N} \left sim(\vec{i}, \vec{j}) \right }$
	$\hat{r} = 0.82 \times 2 + 0.65 \times 5$
	$\hat{r}_{ui} = 3.33$

Vantagens

- Item-based é mais efetivo
 - O modelo é mais resiliente a esparsidade dos dados
- Item-based é mais eficiente
 - A similaridade entre os itens é mais estável que entre usuários
- Item-based é mais flexível
 - Pode ser aplicado em:
 - cenários de *profile-based*
 - cenários de session-based
 - cenários de basket-based

Em suma...

- Modelos memory-based são simples e eficazes estratégias de CF
 - a. User-based
 - b. Item-based