

MODEL NO: N133HSE SUFFIX: EA3

Customer:	
APPROVED BY	SIGNATURE
Name / Title Note	
Please return 1 copy for your signature and comments.	confirmation with your

Approved By	Checked By	Prepared By
曾淑郁	蕭志宏	陳文政
2014-05-06	2014-05-05	2014-05-02
16:24:22 CST	14:04:28 CST	09:31:21 CST

Version 3.0 6 May 2014 1 / 48

CONTENTS

1. GENERAL DESCRIPTION	5
1.1 OVERVIEW	5
1.2 GENERAL SPECIFICATIONS	5
2. MECHANICAL SPECIFICATIONS	6
2.1 CONNECTOR TYPE	6
3. ABSOLUTE MAXIMUM RATINGS	7
3.1 ABSOLUTE RATINGS OF ENVIRONMENT	7
3.2 ELECTRICAL ABSOLUTE RATINGS	8
3.2.1 TFT LCD MODULE	8
4. ELECTRICAL SPECIFICATIONS	9
4.1 FUNCTION BLOCK DIAGRAM	9
4.2. INTERFACE CONNECTIONS	9
4.3 ELECTRICAL CHARACTERISTICS	11
4.3.1 LCD ELETRONICS SPECIFICATION	11
4.3.2 LED CONVERTER SPECIFICATION	13
4.3.3 BACKLIGHT UNIT	15
4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION	16
4.4.1 DISPLAY PORT INTERFACE	16
4.5 DISPLAY TIMING SPECIFICATIONS	18
4.6 POWER ON/OFF SEQUENCE	19
5. OPTICAL CHARACTERISTICS	22
5.1 TEST CONDITIONS	22
5.2 OPTICAL SPECIFICATIONS	22
6. RELIABILITY TEST ITEM	26
7. PACKING	27
7.1 MODULE LABEL	27
7.2 CARTON	28
7.3 PALLET	29
7.4 UN-PACK METHOD	30
8. PRECAUTIONS	31
8.1 HANDLING PRECAUTIONS	31
8.2 STORAGE PRECAUTIONS	31
8.3 OPERATION PRECAUTIONS	31
Appendix. EDID DATA STRUCTURE	32
Appendix. OUTLINE DRAWING	35

Appendix. SYSTEM COVER DESIGN GUIDANCE	3	,7
Appendix. LCD MODULE HANDLING MANUAL	4	14

Version 3.0 6 May 2014 3 / 48

REVISION HISTORY

Version	Date	Page	Description
3.0	May. 2, 2014	All	Approval Spec Ver.3.0 was first issued.

Version 3.0 6 May 2014 4 / 48

1. GENERAL DESCRIPTION

1.1 OVERVIEW

N133HSE-EA3 is a 13.3" (13.3" diagonal) TFT Liquid Crystal Display module with LED Backlight unit and 30 pins EDP interface. This module supports 1920 x 1080 FHD model and can display 16,777,216 colors. The optimum viewing angle is at 6 o'clock direction.

1.2 GENERAL SPECIFICATIONS

Item	Specification	Unit	Note
Screen Size	13.3 diagonal		
Driver Element	a-si TFT active matrix	-	-
Pixel Number	1920 x R.G.B. x 1080	pixel	-
Pixel Pitch	0.1529 (H) x 0.1529 (V)	mm	-
Pixel Arrangement	RGB vertical stripe	-	-
Display Colors	16,777,216	color	-
Transmissive Mode	Normally black	-	-
Surface Treatment	Hard coating (3H), Anti-Glare	-	-
Color Gamma	72%	NTSC	typ
Luminance, White	350	Cd/m2	
Response Time	Typ:T _R 14 / T _F 11	ms	
Contrast Ratio	Typ:700/Min:500		
View Angle(U/D/R/L)	89/89/89	Deg	
Blacklight Unit	LEDs 9 strings x 6 parallel		
Electrical Interface	eDP		
RoHs Compliance	Yes		
Power Consumption	Total 5.16 W (Max.) @ cell 0.96 W(Max.), BL	_4.2 W(Max.)	(1)

Note (1) The specified power consumption (with converter efficiency) is under the conditions at VCCS = 3.3 V, fv = 60 Hz, LED_VCCS = Typ, fPWM = 200 Hz, Duty=100% and Ta = $25 \pm 2 \,^{\circ}\text{C}$, whereas mosaic pattern is displayed.

2. MECHANICAL SPECIFICATIONS

	Item	Min.	Тур.	Max.	Unit	Note
	Horizontal (H)	304.85	305.35	305.85	mm	
	Vertical (V)	177.61	178.11	178.61	mm	(1)
Module Size	Vertical (V) with PCB & Bracket	193.27	193.77	194.27	mm	(2)
	Thickness (T)	NA	2.85	3.00	mm	
Polarizer	Horizontal	296.17	296.42	296.67	mm	
Area	Vertical	167.77	167.97	168.17	mm	
Active Area	Horizontal	293.66	293.76	293.86	mm	
Active Alea	Vertical	165.14	165.24	165.34	mm	
	Weight	-	245	260	g	

Note (1) Please refer to the attached drawings for more information of front and back outline dimensions.

Note (2) Dimensions are measured by caliper.

2.1 CONNECTOR TYPE

Please refer Appendix Outline Drawing for detail design.

Connector Part No.: IPEX-20455-030E-12

User's connector Part No: IPEX-20453-030T-01

3. ABSOLUTE MAXIMUM RATINGS

3.1 ABSOLUTE RATINGS OF ENVIRONMENT

Item	Symbol	Value		Unit	Note	
item	Symbol	Min.	Max.	Offic	NOLE	
Storage Temperature	T _{ST}	-20	+60	°C	(1)	
Operating Ambient Temperature	T _{OP}	0	+50	°C	(1), (2)	
Shock (Non-Operating)	S _{NOP}		220/2	G/ms	(3),(4),(5)	
Vibration (Non-Operating)	V_{NOP}		1.5	G	(3),(4),(6)	

Note (1) (a) 90 %RH Max. (Ta < 40 °C).

(b) Wet-bulb temperature should be 39 °C Max. (Ta < 40 °C).

(c) No condensation.

Note (2) The temperature of panel surface should be 0 °C min. and 60 °C max.

Note (3) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (4) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

Note (5) half sine wave,1 time for each direction of ±X,±Y,±Z

Note (6) 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z

3.2 ELECTRICAL ABSOLUTE RATINGS

3.2.1 TFT LCD MODULE

Item	Symbol	Value		Unit	Note
item	Oymboi	Min.	Max.	5	14010
Power Supply Voltage	VCCS	-0.3	+4.0	V	(1)
Logic Input Voltage	V _{IN}	-0.3	VCCS+0.3	V	(1)
Converter Input Voltage	LED_VCCS	-0.3	26	V	(1)
Converter Control Signal Voltage	LED_PWM,	-0.3	5	V	(1)
Converter Control Signal Voltage	LED_EN	-0.3	5	V	(1)

Note (1) Stresses beyond those listed in above "ELECTRICAL ABSOLUTE RATINGS" may cause permanent damage to the device. Normal operation should be restricted to the conditions described in "ELECTRICAL CHARACTERISTICS".

4. ELECTRICAL SPECIFICATIONS

4.1 FUNCTION BLOCK DIAGRAM

4.2. INTERFACE CONNECTIONS

PIN ASSIGNMENT

Pin	Symbol	Description	Polarity	Remark
1	NC	No Connection (Reserved for LCD test)		
2	H_GND	High Speed Ground		
3	ML1-	Complement Signal-Lane 1	-	
4	ML1+	True Signal-Main Lane 1	+	
5	H_GND	High Speed Ground		
6	ML0-	Complement Signal-Lane 0	-	
7	ML0+	True Signal-Main Lane 0	+	
8	H_GND	High Speed Ground		
9	AUX+	True Signal-Auxiliary Channel	+	
10	AUX-	Complement Signal-Auxiliary Channel	-	
11	H_GND	High Speed Ground		
12	VCCS	Power Supply +3.3 V (typical)		
13	VCCS	Power Supply +3.3 V (typical)		
14	NC	No Connection (Reserved for LCD test)		
15	GND	Ground		
16	GND	Ground		
17	HPD	Hot Plug Detect		
18	BL_GND	BL Ground		
19	BL_GND	BL Ground		
20	BL_GND	BL Ground		
21	BL_GND	BL Ground		
22	LED_EN	BL_Enable Signal of LED Converter		
23	LED_PWM	PWM Dimming Control Signal of LED Converter		
24	NC	No Connection (Reserved for LCD test)		
25	NC	No Connection (Reserved for LCD test)		

26	LED_VCCS	BL Power	
27	LED_VCCS	BL Power	
28	LED_VCCS	BL Power	
29	LED_VCCS	BL Power	
30	NC	No Connection (Reserved for LCD test)	

Note (1) The first pixel is odd as shown in the following figure.

Version 3.0 6 May 2014 **10 / 48**

4.3 ELECTRICAL CHARACTERISTICS

4.3.1 LCD ELETRONICS SPECIFICATION

Para	meter		Symbol		Value		Unit	Note
Falai	Helei		Symbol	Min.	Тур.	Max.	Offic	NOLE
Power Supply Volta	age		VCCS	3.0	3.3	3.6	V	(1)-
HPD High Level			2.25	-	2.75	V	(4)	
Low Level			0	-	0.4	V	(4)	
HPD Impedance			R _{HPD}	30K			ohm	(4)
Ripple Voltage			V_{RP}	-	50	-	mV	(1),(2)
Inrush Current		I _{RUSH}	-	-	1.5	Α	(3)a	
Power Supply Current Mosaic		Mosaic	lcc	-	270	290	mA	(3)a
White		White	100	-	300	320	mA	(3)b

Note (1) The ambient temperature is $Ta = 25 \pm 2$ °C.

Note (2) I_{RUSH}: the maximum current when VCCS is rising

I_{IS}: the maximum current of the first 100ms after power-on

Measurement Conditions: Shown as the following figure. Test pattern: White.

VCCS rising time is 0.5ms

Note (3) The specified power supply current is under the conditions at VCCS = 3.3 V, Ta = 25 \pm 2 °C, DC Current and f_v = 60 Hz, whereas a specified power dissipation check pattern is displayed

a. Mosaic Pattern

Active Area

b. White Pattern

Active Area

Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. Please refer to Note (4) of 4.3.2 LED CONVERTER SPECIFICATION to obtain more information.

4.3.2 LED CONVERTER SPECIFICATION

Dover		Cymahal		Value		l lait	Note
Parar	neter	Symbol	Min.	Тур.	Max.	Unit	Note
Converter Input pow	er supply voltage	LED_Vccs	5.0	12.0	21.0	V	
Converter Inrush Cu	rrent	ILED _{RUSH}	-	-	1.5	Α	(1)
EN Control I and	Backlight On		2.2	-	5.0	V	
EN Control Level Backlight Off			0	-	0.6	V	
LED_EN Impedance)	R _{LED_EN}	30K	-		ohm	(4)
DWW Control Lovel	PWM High Level		2.2	-	5.0	V	
PWM Control Level	PWM Low Level		0	-	0.6	V	
PWM Impedance		R_{PWM}	30K	-		ohm	(4)
PWM Control Duty F	Ratio		5	-	100	%	
PWM Control Permissive Ripple Voltage		VPWM_pp	-	-	100	mV	
PWM Control Frequ	f _{PWM}	190	-	1K	Hz	(2)	
LED Power Current	LED_VCCS =Typ.	ILED	267	335	350	mA	(3)

Note (1) ILED_{RUSH}: the maximum current when LED_VCCS is rising,

ILED_{IS}: the maximum current of the first 100ms after power-on,

Measurement Conditions: Shown as the following figure. LED_VCCS = Typ, Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.

Note (2) If PWM control frequency is applied in the range less than 1KHz, the "waterfall" phenomenon on the screen may be found. To avoid the issue, it's a suggestion that PWM control frequency should follow the criterion as below.

PWM control frequency
$$f_{\text{PWM}}$$
 should be in the range
$$(N+0.33)*f \leq f_{\text{PWM}} \leq (N+0.66)*f$$

$$N: \text{Integer} \ \ (N\geq 3)$$

$$f: \text{Frame rate}$$

- Note (3) The specified LED power supply current is under the conditions at "LED_VCCS = Typ.", Ta = 25 \pm 2 °C, f_{PWM} = 200 Hz, Duty=100%.
- Note (4) The specified signals have equivalent impedances pull down to ground in the LCD module respectively. Customers should keep the input signal level requirement with the load of LCD module. For example, the figure below describes the equivalent pull down impedance of LED_EN (If it exists). The rest pull down impedances of other signal (eg. PWM) are in the same concept.

Version 3.0 6 May 2014 14 / 48

4.3.3 BACKLIGHT UNIT

Ta = 25 ± 2 °C

Dovernator	Cumahal		Value		l lmit	Nata
Parameter	Symbol	Min. Typ. Max.			Unit	Note
LED Light Bar Power Supply Voltage	VL	23.4	26.1	28.8	V	(1)(2)(Dut)(100%)
LED Light Bar Power Supply Current	lL		126		mA	(1)(2)(Duty100%)
Power Consumption	PL	-	3.2886	3.6288	W	(3)
LED Life Time	L_BL	15000	-	ı	Hrs	(4)

Note (1) LED current is measured by utilizing a high frequency current meter as shown below:

- Note (2) For better LED light bar driving quality, it is recommended to utilize the adaptive boost converter with current balancing function to drive LED light-bar.
- Note (3) $P_L = I_L \times V_L$ (Without LED converter transfer efficiency)
- Note (4) The lifetime of LED is defined as the time when it continues to operate under the conditions at Ta = 25 \pm 2 $^{\circ}$ C and I_L = 21 mA (Per EA) until the brightness becomes \leq 50% of its original value.

Version 3.0 6 May 2014 15 / 48

4.4 DISPLAY PORT SIGNAL TIMING SPECIFICATION

4.4.1 DISPLAY PORT INTERFACE

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Differential Signal Common Mode Voltage(MainLink and AUX)	VCM	0		2	V	(1)(3)
AUX AC Coupling Capacitor	C_{AUX}	75		200	nF	(2)

- Note (1)Display port interface related AC coupled signals should follow VESA DisplayPort Standard Version1. Revision 1a and VESA Embedded DisplayPort[™] Standard Version 1.2. There are many optional items described in eDP1.2. If some optional item is requested, please contact us.
 - (2) The AUX AC Coupling Capacitor should be placed on Source Devices.
 - (3)The source device should pass the test criteria described in DisplayPortCompliance Test Specification (CTS) 1.1

4.4.2 COLOR DATA INPUT ASSIGNMENT

The brightness of each primary color (red, green and blue) is based on the 8-bit gray scale data input for the color. The higher the binary input the brighter the color. The table below provides the assignment of color versus data input.

												D	ata	Sig	nal										
	Color				Re								Gre	een							BI	ue			
		R7	R6	R5	R4	R3	R2	R1	R0	G7	G6	G5	G4	G3	G2	G1	G0	В7	B6	B5	B4	В3	B2	B1	B0
	Black	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
Basic	Blue	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
Colors	Cyan	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Magenta	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	Yellow	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	White	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Red(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(1)	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gray	Red(2)	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Red	Red(253)	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(254)	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Red(255)	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Green(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Gray	Green(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Green	Green(253)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1	0	0	0	0	0	0	0	0
	Green(254)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
	Green(255)	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
	Blue(0)/Dark	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Blue(1)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Gray	Blue(2)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Scale	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Of	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
Blue	Blue(253)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	0	1
	Blue(254)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	0
	Blue(255)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1

Note (1) 0: Low Level Voltage, 1: High Level Voltage

4.5 DISPLAY TIMING SPECIFICATIONS

The input signal timing specifications are shown as the following table and timing diagram.

Refresh rate 60Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	131.84	138.78	143.2	MHz	-
	Vertical Total Time	TV	1103	1112	1299	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	32	TV-TVD	TH	-
DE	Horizontal Total Time	TH	2065	2080	3856	Тс	-
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Тс	-

Refresh rate 40Hz

Signal	Item	Symbol	Min.	Тур.	Max.	Unit	Note
DCLK	Frequency	1/Tc	87.90	92.52	97.15	MHz	-
	Vertical Total Time	TV	1103	1112	1299	TH	-
	Vertical Active Display Period	TVD	1080	1080	1080	TH	-
DE	Vertical Active Blanking Period	TVB	TV-TVD	32	TV-TVD	TH	-
DE	Horizontal Total Time	TH	2065	2080	3856	Тс	-
	Horizontal Active Display Period	THD	1920	1920	1920	Тс	-
	Horizontal Active Blanking Period	THB	TH-THD	160	TH-THD	Тс	-

INPUT SIGNAL TIMING DIAGRAM

4.6 POWER ON/OFF SEQUENCE

Timing Specifications:

Parameter	Description	Reqd.		lue	Unit	Notes
t1	Power rail rise time, 10% to 90%	By Source	Min 0.5	Max 10	me	
t2	Delay from LCD,VCCS to black video generation	Sink	0.5	200	ms ms	Automatic Black Video generation prevents display noise until valid video data is received from the Source (see Notes:2 and 3 below)
t3	Delay from LCD,VCCS to HPD high	Sink	0	200	ms	Sink AUX Channel must be operational upon HPD high (see Note:4 below)
t4	Delay from HPD high to link training initialization	Source	-	-	ms	Allows for Source to read Link capability and initialize
t5	Link training duration	Source	-	-	ms	Dependant on Source link training protocol
t6	Link idle	Source	-	-	ms	Min Accounts for required BS-Idle pattern. Max allows for Source frame synchronization
t7	Delay from valid video data from Source to video on display	Sink	0	50	ms	Max value allows for Sink to validate video data and timing. At the end of T7, Sink will indicate the detection of valid video data by setting the SINK_STATUS bit to logic 1 (DPCD 00205h, bit 0), and Sink will no longer generate automatic Black Video
t8	Delay from valid video data from Source to backlight on	Source	-	-	ms	Source must assure display video is stable
t9	Delay from backlight off to end of valid video data	Source	-	-	ms	Source must assure backlight is no longer illuminated. At the end of T9, Sink will indicate the detection of no valid video data by setting the SINK_STATUS bit to logic 0 (DPCD 00205h, bit 0), and Sink will automatically display Black Video. (See Notes: 2 and 3 below)
t10	Delay from end of valid video data from Source to power off	Source	0	500	ms	Black video will be displayed after receiving idle or off signals from Source
t11	VCCS power rail fall time, 90% to 10%	Source	0.5	10	ms	-
t12	VCCS Power off time	Source	500	-	ms	-
t _A	LED power rail rise time, 10% to 90%	Source	0.5	10	ms	-
t _B	LED power rail fall time, 90% to 10%	Source	0	10	ms	-

t _C	Delay from LED power rising to LED dimming signal	Source	1	-	ms	-
t _D	Delay from LED dimming signal to LED power falling	Source	1	ı	ms	-
t _E	Delay from LED dimming signal to LED enable signal	Source	1	ı	ms	-
t _F	Delay from LED enable signal to LED dimming signal	Source	1	ı	ms	-

- Note (1) Please don't plug or unplug the interface cable when system is turned on.
- Note (2) The Sink must include the ability to automatically generate Black Video autonomously. The Sink must automatically enable Black Video under the following conditions:
 - Upon LCDVCC power-on (within T2 max)
 - When the "NoVideoStream_Flag" (VB-ID Bit 3) is received from the Source (at the end of T9)
- Note (3) The Sink may implement the ability to disable the automatic Black Video function, as described in Note (2), above, for system development and debugging purposes.
- Note (4) The Sink must support AUX Channel polling by the Source immediately following LCDVCC power-on without causing damage to the Sink device (the Source can re-try if the Sink is not ready). The Sink must be able to response to an AUX Channel transaction with the time specified within T3 max.

Version 3.0 6 May 2014 21 / 48

5. OPTICAL CHARACTERISTICS

5.1 TEST CONDITIONS

Item	Symbol	Value	Unit
Ambient Temperature	Та	25±2	°C
Ambient Humidity	На	50±10	%RH
Supply Voltage	V _{cc}	3.3	V
Input Signal	According to typical v	alue in "3. ELECTRICAL	CHARACTERISTICS"
LED Light Bar Input Current	IL	126	mA

The measurement methods of optical characteristics are shown in Section 5.2. The following items should be measured under the test conditions described in Section 5.1 and stable environment shown in Note (5).

5.2 OPTICAL SPECIFICATIONS

Ite	m	Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast Ratio		CR		500	700	-	-	(2),(5),(7)
Pospopos Timo		T _R		-	14	19	ms	
Response Time	;	T_F		-	11	16	ms	(3),(7)
Average Lumina	ance of White	LAVE		295	350	-	cd/m ²	(4),(6),(7)
	Red	Rx			0.640		-	
	Neu	Ry			0.340		-	
	Green	Gx	θ_x =0°, θ_Y =0°		0.308		-	
Color	Green	Gy	Viewing Normal Angle	Тур –	0.615	Typ +	-	(1) (5) (7)
Chromaticity	ematicity Blue			0.03	0.150	0.03	-	(1),(5),(7)
	blue	Ву			0.070		-	
	White	Wx			0.313		-	
	vviiite	Wy			0.329		-	
NTS	SC	CG		-	72	-	%	(5),(8),(9)
Cross	talk	CT		-	-	4	%	(5),(7),(9)
	Horizontol	θ_x +		80	89	-		
Viewing Angle	Horizontal	θ_{x} -	OD: 40	80	89	-	Dag	(4) (5) (7)
Viewing Angle		θ _Y +	CR≥10	80	89	-	Deg.	(1),(5),(7)
Vertical		θ _Y -		80	89	-		
White Variation		δW_{5p}	θ _x =0°, θ _Y =0°	80	90	-	%	(5),(6),(7)

Note (1) Definition of Viewing Angle (θx , θy):

Note (2) Definition of Contrast Ratio (CR):

The contrast ratio can be calculated by the following expression.

Contrast Ratio (CR) = L63 / L0

L63: Luminance of gray level 63

L 0: Luminance of gray level 0

CR = CR(1)

CR (X) is corresponding to the Contrast Ratio of the point X at Figure in Note (6).

Note (3) Definition of Response Time (T_R, T_F):

Note (4) Definition of Average Luminance of White (L_{AVE}):

Measure the luminance of gray level 63 at 5 points

$$L_{AVE} = [L(1) + L(2) + L(3) + L(4) + L(5)] / 5$$

L (x) is corresponding to the luminance of the point X at Figure in Note (6)

Note (5) Measurement Setup:

The LCD module should be stabilized at given temperature for 20 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 20 minutes in a windless room.

Note (6) Definition of White Variation (δW):

Measure the luminance of White at 5 points

 $\delta W_{5p} = \{Minimum [L (1)~L (5)] / Maximum [L (1)~L (5)]\}*100\%$

Version 3.0 6 May 2014 **24 / 48**

Note (7) Cross Talk (CT):

CT=
$$| Y_B - Y_A | / Y_A \times 100\%$$

Where

Y_A=Luminance of measured location in left figure

Y_B=Luminance of measured location in right figure

Note (8) Definition of color gamut (C.G%):

R₀, G₀, B₀: CIE1931 coordinates of red, green, and blue defined by NTSC.

R, G, B: CIE1931 coordinates of red, green, and blue in module at 63 gray level.

Area (R₀, G₀, B₀): Area of the triangle defined by coordinate R0, G0, B0.

Area(R, G, B): Area of the triangle defined by coordinate R, G, B

Note (9) The listed optical specifications refer to the initial value of manufacture, but the condition of the specifications after long-term operation will not be warranted.

6. RELIABILITY TEST ITEM

Test Item	Test Condition	Note
High Temperature Storage Test	60°C, 240 hours	
Low Temperature Storage Test	-20°C, 240 hours	
Thermal Shock Storage Test	-20°C, 0.5hour←→60°C, 0.5hour; 100cycles, 1hour/cycle	
High Temperature Operation Test	50°C, 240 hours	
Low Temperature Operation Test	0°C, 240 hours	(4) (2)
High Temperature & High Humidity Operation Test	50°C, RH 80%, 240hours	(1) (2)
High Temperature & High Humidity Storage Test	40°C, RH 90%, 240hours	
ESD Test (Operation)	150pF, 330Ω, 1sec/cycle Condition 1 : Contact Discharge, ±8KV Condition 2 : Air Discharge, ±15KV	(1)
Shock (Non-Operating)	220G, 2ms, half sine wave,1 time for each direction of ±X,±Y,±Z	(1)(3)
Vibration (Non-Operating)	1.5G / 10-500 Hz, Sine wave, 30 min/cycle, 1cycle for each X, Y, Z	(1)(3)

Note (1) criteria: Normal display image with no obvious non-uniformity and no line defect.

Note (2) Evaluation should be tested after storage at room temperature for more than two hour

Note (3) At testing Vibration and Shock, the fixture in holding the module has to be hard and rigid enough so that the module would not be twisted or bent by the fixture.

7. PACKING

7.1 MODULE LABEL

The barcode nameplate is pasted on each module as illustration, and its definitions are as following explanation.

- (a) Model Name: N133HSE EA3
- (b) Revision: Rev. XX, for example: C1, C2 ...etc.

- (d) Production Location: MADE IN XXXX.
- (e) UL Logo: XXXX is UL factory ID.

Serial ID includes the information as below:

(a) Manufactured Date: Year: 0~9, for 2010~2019

Month: 1~9, A~C, for Jan. ~ Dec.

Day: 1~9, A~Y, for 1st to 31st, exclude I, O and U

(b) Revision Code: cover all the change

(c) Serial No.: Manufacturing sequence of product

(d) Product Line: 1 -> Line1, 2 -> Line 2, ...etc.

7.2 CARTON

(1)Box Dimensions : 540(L)*450(W)*320(H) (2)40 Modules/Carton

Figure. 7-1 Packing method

7.3 PALLET

Figure. 7-2 Packing method

7.4 UN-PACK METHOD

Figure. 7-3 Un-Packing method

8. PRECAUTIONS

8.1 HANDLING PRECAUTIONS

- (1) The module should be assembled into the system firmly by using every mounting hole. Be careful not to twist or bend the module.
- (2) While assembling or installing modules, it can only be in the clean area. The dust and oil may cause electrical short or damage the polarizer.
- (3) Use fingerstalls or soft gloves in order to keep display clean during the incoming inspection and assembly process.
- (4) Do not press or scratch the surface harder than a HB pencil lead on the panel because the polarizer is very soft and easily scratched.
- (5) If the surface of the polarizer is dirty, please clean it by some absorbent cotton or soft cloth. Do not use Ketone type materials (ex. Acetone), Ethyl alcohol, Toluene, Ethyl acid or Methyl chloride. It might permanently damage the polarizer due to chemical reaction.
- (6) Wipe off water droplets or oil immediately. Staining and discoloration may occur if they left on panel for a long time.
- (7) If the liquid crystal material leaks from the panel, it should be kept away from the eyes or mouth. In case of contacting with hands, legs or clothes, it must be washed away thoroughly with soap.
- (8) Protect the module from static electricity, it may cause damage to the C-MOS Gate Array IC.
- (9) Do not disassemble the module.
- (10) Do not pull or fold the LED wire.
- (11) Pins of I/F connector should not be touched directly with bare hands.

8.2 STORAGE PRECAUTIONS

- (1) High temperature or humidity may reduce the performance of module. Please store LCD module within the specified storage conditions.
- (2) It is dangerous that moisture come into or contacted the LCD module, because the moisture may damage LCD module when it is operating.
- (3) It may reduce the display quality if the ambient temperature is lower than 10 °C. For example, the response time will become slowly, and the starting voltage of LED will be higher than the room temperature.

8.3 OPERATION PRECAUTIONS

- (1) Do not pull the I/F connector in or out while the module is operating.
- (2) Always follow the correct power on/off sequence when LCD module is connecting and operating. This can prevent the CMIS LSI chips from damage during latch-up.
- (3) The startup voltage of Backlight is approximately 1000 Volts. It may cause electrical shock while assembling with converter. Do not disassemble the module or insert anything into the Backlight unit.

Appendix. EDID DATA STRUCTURE

The EDID (Extended Display Identification Data) data formats are to support displays as defined in the VESA Plug & Display and FPDI standards.

Byte	Byte	Field Name and Comments	Value	Value
<u> </u>	#(hex)	I I a a dans	(hex)	(binary) 00000000
0	01	Header	FF	11111111
2	02	Header	FF	111111111
3	03	Header	FF	111111111
4	03	Header Header	FF	111111111
5	05		FF	111111111
6	06	Header	FF	111111111
7	07	Header	00	00000000
8	08	Header EISA ID manufacturer name ("CMN")	0D	00000000
9	09	EISA ID manufacturer name	AE	10101110
10	0A	ID product code (LSB)	61	01100001
11	0B	ID product code (LSB)	13	00010011
12	0C	ID S/N (fixed "0")	00	00000000
13	0D	ID S/N (fixed '0')	00	00000000
14	0E	ID S/N (fixed '0')	00	00000000
15	0F	ID S/N (fixed "0")	00	00000000
16	10	Week of manufacture (fixed week code)	07	00000000
17	11	Year of manufacture (fixed year code)	18	000111000
18	12	EDID structure version ("1")	01	00000001
19	13	EDID structure version (17)	04	00000001
20	14	Video I/P definition ("Digital")	A5	10100101
21	15	Active area horizontal ("29.376cm")	1D	00011101
22	16	Active area vertical ("16.524cm")	11	00010001
23	17	Display Gamma (Gamma = "2.2")	78	01111000
24	18	Feature support ("RGB, Non-continous")	02	00000010
25	19	Rx1, Rx0, Ry1, Ry0, Gx1, Gx0, Gy1, Gy0	CE	11001110
26	1A	Bx1, Bx0, By1, By0, Wx1, Wx0, Wy1, Wy0	85	10000101
27	1B	Rx=0.64	A3	10100011
28	1C	Ry=0.34	57	01010111
29		Gx=0.308	4E	01001110
30	1E	Gy=0.615	9D	10011101
31	1F	Bx=0.15	26	00100110
32	20	By=0.07	12	00010010
33	21	Wx=0.313	50	01010000
34	22	Wy=0.329	54	01010100
35	23	Established timings 1	00	00000000
36	24	Established timings 2	00	00000000
37	25	Manufacturer's reserved timings	00	00000000
38	26	Standard timing ID # 1	01	00000001
39	27	Standard timing ID # 1	01	00000001
40	28	Standard timing ID # 2	01	00000001
41	29	Standard timing ID # 2	01	00000001

	1	1		1
42	2A	Standard timing ID # 3	01	00000001
43	2B	Standard timing ID # 3	01	00000001
44	2C	Standard timing ID # 4	01	00000001
45	2D	Standard timing ID # 4	01	00000001
46	2E	Standard timing ID # 5	01	00000001
47	2F	Standard timing ID # 5	01	00000001
48	30	Standard timing ID # 6	01	00000001
49	31	Standard timing ID # 6	01	00000001
50	32	Standard timing ID # 7	01	00000001
51	33	Standard timing ID # 7	01	00000001
52	34	Standard timing ID # 8	01	00000001
53	35	Standard timing ID # 8	01	00000001
54	36	Detailed timing description # 1 Pixel clock ("138.78MHz, According to VESA CVT Rev1.4")	36	00110110
55	37	# 1 Pixel clock (hex LSB first)	36	00110110
56	38	# 1 H active ("1920")	80	10000000
57	39	# 1 H blank ("160")	A0	10100000
58	3A	# 1 H active : H blank ("1920 :160")	70	01110000
59	3B	# 1 V active ("1080")	38	00111000
60	3C	# 1 V blank ("32")	20	00100000
61	3D	# 1 V active : V blank ("1080 :32")	40	01000000
62	3E	# 1 H sync offset ("46")	2E	00101110
63	3F	# 1 H sync pulse width ("30")	1E	00011110
64	40	# 1 V sync offset : V sync pulse width ("2:4")	24	00100100
65	41	# 1 H sync offset : H sync pulse width : V sync offset : V sync width ("46: 30 : 2 : 4")	00	00000000
66	42	# 1 H image size ("293 mm")	25	00100101
67	43	# 1 V image size ("165 mm")	A5	10100101
68	44	# 1 H image size : V image size	10	00010000
69	45	# 1 H boarder ("0")	00	00000000
70	46	# 1 V boarder ("0")	00	00000000
71	47	# 1 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
72	48	Detailed timing description # 2 Pixel clock ("92.52MHz", According to VESA CVT Rev1.4)	24	00100100
73	49	# 2 Pixel clock (hex LSB first)	24	00100100
74	4A	# 2 H active ("1920")	80	10000000
75	4B	# 2 H blank ("160")	A0	10100000
76	4C	# 2 H active : H blank ("1920 :160")	70	01110000
77	4D	# 2 V active ("1080")	38	00111000
78	4E	# 2 V blank ("32")	20	00100000
79	4F	# 2 V active : V blank ("1080 :32")	40	01000000
80	50	# 2 H sync offset ("46")	2E	00101110
81	51	# 2 H sync pulse width ("30")	1E	00011110
82	52	# 2 V sync offset : V sync pulse width ("2 : 4")	24	00100100
83	53	# 2 H sync offset : H sync pulse width : V sync offset : V sync width ("46: 30 : 2 : 4")	00	00000000
84	54	# 2 H image size ("293 mm")	25	00100101
85	55	# 2 V image size ("165 mm")	A5	10100101

Version 3.0 6 May 2014 33 / 48

86	56	# 2 H image size : V image size	10	00010000
87	57	# 2 H boarder ("0")	00	00000000
88	58	# 2 V boarder ("0")	00	00000000
89	59	# 2 Non-interlaced, Normal, no stereo, Separate sync, H/V pol Negatives	18	00011000
90	5A	Detailed timing description # 3	00	00000000
91	5B	# 3 Flag	00	00000000
92	5C	# 3 Reserved	00	00000000
93	5D	# 3 ASCII string Vendor	FE	11111110
94	5E	# 3 Flag	00	00000000
95	5F	# 3 Character of string ("C")	43	01000011
96	60	# 3 Character of string ("M")	4D	01001101
97	61	# 3 Character of string ("N")	4E	01001110
98	62	# 3 New line character indicates end of ASCII string	0A	00001010
99	63	# 3 Padding with "Blank" character	20	00100000
100	64	# 3 Padding with "Blank" character	20	00100000
101	65	# 3 Padding with "Blank" character	20	00100000
102	66	# 3 Padding with "Blank" character	20	00100000
103	67	# 3 Padding with "Blank" character	20	00100000
104	68	# 3 Padding with "Blank" character	20	00100000
105	69	# 3 Padding with "Blank" character	20	00100000
106	6A	# 3 Padding with "Blank" character	20	00100000
107	6B	# 3 Padding with "Blank" character	20	00100000
108	6C	Detailed timing description # 4	00	00000000
109	6D	# 4 Flag	00	00000000
110	6E	# 4 Reserved	00	00000000
111	6F	# 4 ASCII string Model Name	FE	11111110
112	70	# 4 Flag	00	00000000
113	71	# 4 Character of Model name ("N")	4E	01001110
114	72	# 4 Character of Model name ("1")	31	00110001
115	73	# 4 Character of Model name ("3")	33	00110011
116	74	# 4 Character of Model name ("3")	33	00110011
117	75	# 4 Character of Model name ("H")	48	01001000
118	76	# 4 Character of Model name ("S")	53	01010011
119	77	# 4 Character of Model name ("E")	45	01000101
120	78	# 4 Character of Model name ("-")	2D	00101101
121	79	# 4 Character of Model name ("E")	45	01000101
122	7A	# 4 Character of Model name ("A")	41	01000001
123	7B	# 4 Character of Model name ("3")	33	00110011
124	7C	# 4 New line character indicates end of ASCII string	0A	00001010
125	7D	# 4 Padding with "Blank" character	20	00100000
126	7E	Extension flag	00	00000000
127	7F	Checksum	A1	10100001
	<u> </u>	1		<u> </u>

Version 3.0 6 May 2014 34 / 48

Appendix. OUTLINE DRAWING

Version 3.0 6 May 2014 35 / 48

DRIVER IC, FPC, AND TCON LOCATIONS SEE NOTES FOR EXPLANATION

NOTES :

- NUTES:

 1. LCD MODULE INPUT CONNECTOR: I-PEX 20455-030E-12.

 2. IN ORDER TO AVOID ABNORMAL DISPLAY, PODLING AND WHITE SPOT,
 NO OVERLAPPING IS SUGGESTED AT CABLES, ANTENNAS, CAMERA, WLAN, WAN OR
 FOREIGN OBJECTS OVER FPC, AND T-CON LOCATIONS.

 3. EDP CONNECTOR IS MEASURED AT PINI AND ITS MATING LINE.

 4. MODULE FLATNESS SPEC 2.00 mm MAX.

 5. "()" MARKS THE REFERENCE DIMENSION.

Appendix. SYSTEM COVER DESIGN GUIDANCE

Version 3.0 6 May 2014 **37 / 48**

Version 3.0 6 May 2014 38 / 48

Version 3.0 6 May 2014 39 / 48

Befinition Definition Definition Definition Definition System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss height design Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height it smaller. As result while fastening screw.	Definition	test, tape/sponge should be well covered under panel rear-cover. Because tape/sponge in separate location may act as pressure concentration location.				
Definition System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad System rear-cover System base unit design near keyboard and mouse pad System rear-cover System base unit design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss height design Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel listeff. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw.						
Definition System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad System rear-cover System base unit design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss height design Screw boss height design Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel listeff. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw.	8					
Definition System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad System rear-cover Backlight System rear-cover System rear-cover System rear-cover System rear-cover System rear-cover System tear-cover System rear-cover Screw boss height design Screw boss height design Screw boss System rear-cover Screw boss sheight should be designed with respect to the height of bracket bottom surface to panel bottoms surface + flatness change of panel tiself. Because gap will exist between screw boss height is smaller. As result while flastening screw.		material used for system rear-cover				
System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad System front-cover System front-cover System base unit selected to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in the part of the nearby surface. 10 Screw boss height design Screw boss height design Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface the flatness change of panel itself. Because gap will exist between sorew boss and bracket, if the screw boss height is smaller. As result while fastening screw,		Backlight				
System rear-cover material with high rigidity is needed to resist deformation during scuffing test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad System front-cover System front-cover System base unit selected to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design in the part of the nearby surface. 10 Screw boss height design Screw boss height design Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface the flatness change of panel itself. Because gap will exist between sorew boss and bracket, if the screw boss height is smaller. As result while fastening screw,		Ourton room cours				
test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's boss positioning for module's bracket are deformed during open-close test. Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference. 9 System base unit design near keyboard and mouse pad System rear-cover System rear-cover System rear-cover System rear-cover System sae unit To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss height design Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface the panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw, screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,) Afinition					
Panel rear-cover Screw boss height design Screw boss height designs of bottom surface Screw boss height story of panel bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist betweer screw boss and bracket, if the screw boss height is smaller. As result while fastening screw.	Schrittori	test, hinge test, pogo test, or backpack test. Abnormal display, white spot, pooling issue may occur if low rigidity material is used. Pooling issue may occur because screw's bos				
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. Screw boss height design Screw boss System rear-cover Backlight Screw boss System rear-cover Screw boss System rear-cover Screw boss System rear-cover Cefinition Screw boss height de designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw.		Solid structure design of system rear-cover may also influence the rigidity of system rear-cover. The deformation of system rear-cover should not caused interference.				
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. Screw boss height design Screw boss height design Screw boss System rear-cover Screw boss System rear-cover Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw.	9					
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. Screw boss height design Screw boss System rear-cover Screw boss System rear-cover Screw boss height designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		rear-cover				
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss system rear-cover Backlight Screw boss Screw boss System rear-cover Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,	System					
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss System rear-cover Panel rear-cover Screw boss System rear-cover Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,						
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss System rear-cover Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		base unit				
Definition To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from the nearby surface. 10 Screw boss height design Screw boss System rear-cover Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		Sharp edge Keyboard/Mouse pad				
Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,	Definition	To prevent abnormal display & white spot after scuffing test, hinge test, pogo test, backpack test, sharp edge design in keyboard surface may damage panel during the test. We suggest to use slope edge design, or to reduce the thickness difference of keyboard/mouse pad from				
Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,	10	Screw boss height design				
Panel rear-cover Backlight Backlight Screw boss System rear-cover Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		LCD Gap Backlight Screw boss				
Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,	rear-cover					
Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		Screw				
Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		Backlight				
Definition Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw,		Panel rear cover				
- action and action growing records	Definition	Screw boss height should be designed with respect to the height of bracket bottom surface to panel bottom surface + flatness change of panel itself. Because gap will exist between screw boss and bracket, if the screw boss height is smaller. As result while fastening screw, bracket will deformed and pooling issue may occur.				
11 Assembly SOP examination for system front-cover with Hook design	11	Assembly SOP examination for system front-cover with Hook design				

Version 3.0 6 May 2014 41 / 48

Definition

For using in Touch Application: to prevent White Line appears between TP and LCD module combination, the maximum inspection angle location must not fall onto LCD polarizer edge, otherwise light line near edge of polarizer will be appear.

Parameters such as TP VA to LCD AA distance, TP assembly tolerance, TP Ink printing tolerance, Sponge thickness and tolerance, and Maximum Inspection/Viewing Angle, must be considered with respect to LCD module's Polarizer edge location and tolerance. This consideration must be taken at all four edges separately.

The goal is to find parameters combination that allow maximum inspection angle falls inside polarizer black margin area.

Note: Information for Polarizer edge location and its tolerance can be derived from INX 2D Outline Drawing ("AA ~Outline" - "CF Pol~Outline").

Note: Please feel free to contact INX FAE Engineer. By providing value of parameters above on each side, we can help to verify and pass the white line risk assessment for customer reference.

Version 3.0 6 May 2014 43 / 48

Α

Appendix. LCD MODULE HANDLING MANUAL					
Purpose	 This SOP is prepared to prevent panel dysfunction possibility through incorrect handling procedure. This manual provides guide in unpacking and handling steps. Any person which may contact / related with panel, should follow guide stated in this manual to prevent panel loss. 				
1.	Unpacking				
		Open carton	Remove EPE Cushion		
Open	plastic bag	Cut Adhesive Tape	Remove EPE Cushion		
2.	Panel Lifting				

Do:

- Handle with both hands.
- Handle panel at left and right edge.

Don't:

- Lifting with one hand.

- Handle at PCBA side.

Don't:

- Stack panels.

- Press panel.

Don't:

- Put foreign stuff onto panel

- Put foreign stuff under panel

Don't:

 Paste any material unto white reflector sheet

Don't:

 Pull / Push white reflector sheet

Don't:

Hold at panel corner.

Don't:

Twist panel.

Do:

 Hold panel at top edge while inserting connector.

Don't:

 Press white reflector sheet while inserting connector.

Do:

 Remove panel protector film starts from side tape.

Don't:

 Remove panel protector film from film corner directly before side tape is removed.

