Conformalizing an LSTM to Optimize Revenue for a Renewable Energy Operator using Conditional Value at Risk

Energy Markets and Data Analytics, Rutgers, Spring 2024, Dr. Robert Mieth

Daniel Moore, Laila Saleh

2024-05-08

We optimized the market trading of a renewable energy generation operator with conditional value at risk based on probabilistic forecasts made with a conformalized Long Short-term Memory (LSTM) recurrent neural network. This work demonstrates an end-to-end work flow of how field data can be ingested, analyzed, and exploited to reduce risk exposure for the operator. Obviously this is financially beneficial to the individual operator, but taken to a larget scale this methodology increases the incentive for renewable generation participation which should drive cost and emmissions down. This work carried out on a small number of features with great results, so it is expected that further studies and more advance models with the same architecture would provide better yield.

Table of contents

1	Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Literature Review
2	Data Analysis
	2.1 Data Summary
	2.2 Data Visualizations
3	Long Short-Term Memory Model
4	Conformalizing LSTM
	4.1 Performance

5	Conditional Value at Risk	5
	5.1 Implementation	5
	5.2 Performance	5
6	Conclusions	5
Li	st of Figures	
	1 March 2024 Energy Prices	4
Li	st of Tables	
	1 Data from RebaseAPI	3
	2 Ennergy Data Summary	3
	3 Data from VisualCrossing	3
	4 Weather Data Summary	4
	Introduction hat is the problem	
1.	1 Motivation	
W	hy do we want to do this	
1.	2 Objectives	
W	hat are we going to do	
1.	3 Literature Review	
W	hat have other people done	

2 Data Analysis

What do we know?

Table 1: Data from RebaseAPI

	DateTime	Solar	Wind	TotalEnergy	DAP	SSP
	DateTime	Float32	Float32	Float32	Float32	Float32
1	2024-03-09T07:00:00	102.87	737.58	840.45	45.53	43.65
2	2024-03-09T08:00:00	512.099	739.36	1251.46	42.13	10.0
3	2024-03-09T09:00:00	870.875	751.816	1622.69	38.01	86.9
4	2024-03-09T10:00:00	1211.29	768.994	1980.28	38.05	86.9
5	2024-03-09T11:00:00	1443.02	773.194	2216.21	39.97	85.676

Table 2: Ennergy Data Summary

	variable	mean	\min	median	max
	Symbol	Float32	Float32	Float64	Float32
1	Solar	236.681	0.0	0.381154	1443.02
2	Wind	518.782	0.0	665.679	826.22
3	TotalEnergy	755.463	0.0	778.769	2216.21
4	DAP	59.4672	-18.2	62.015	112.23
5	SSP	61.9252	-65.0	63.195	175.844

2.1 Data Summary

2.2 Data Visualizations

What do we see?

Table 3: Data from VisualCrossing

	DateTime	$_{\mathrm{temp}}$	windspeed	winddir	cloudcover
	DateTime	Float32	Float32	Float32	Float32
1	2024-03-09T07:00:00	6.0	22.2	72.0	100.0
2	2024-03-09T08:00:00	6.1	25.9	74.0	100.0
3	2024-03-09T09:00:00	6.2	25.5	74.0	100.0
4	2024-03-09T10:00:00	6.7	23.5	72.0	100.0
5	2024-03-09T11:00:00	6.9	26.3	82.0	100.0

Table 4: Weather Data Summary

	variable	mean	min	median	max
	Symbol	Union	Any	Any	Any
1	DateTime		2024-02-29T23:00:00	2024-03-19T10:30:00	2024-04-06T23:00:00
2	temp	8.21836	-2.3	7.7	19.0
3	windspeed	16.0126	0.9	15.3	41.2
4	winddir	172.188	3.0	178.0	359.0
5	cloudcover	73.9165	0.0	93.7	100.0

Figure 1: March 2024 Energy Prices

3 Long Short-Term Memory Model

What is an LSTM ## Training How did we make one? ## Performance Is it any good?

4 Conformalizing LSTM

What are conforal predictions? Why are they good ## How to? How did we conformalize the LSTM?

4.1 Performance

Is it any good?

5 Conditional Value at Risk

What is CVAR

Why do we do it?

5.1 Implementation

How did we do it?

5.2 Performance

Was it any good?

6 Conclusions

Was any of this worth while?

What did we learn?

What could others do?