

# Community assembly responses to warming and increased precipitation in an early successional forest

Christine R. Rollinson, 1, † Margot W. Kaye, 1,2 and Laura P. Leites<sup>2</sup>

<sup>1</sup>Intercollege graduate degree program in Ecology, The Pennsylvania State University,
University Park, Pennsylvania 16802 USA
<sup>2</sup>Ecosystem Science and Management, The Pennsylvania State University, University Park, Pennsylvania 16802 USA

Citation: Rollinson, C. R., M. W. Kaye, and L. P. Leites. 2012. Community assembly responses to warming and increased precipitation in an early successional forest. Ecosphere 3(12):122. http://dx.doi.org/10.1890/ES12-00321.1

**Abstract.** Experimental climate manipulations provide the opportunity to link predicted changes in climate to the process of community assembly. We studied plant community assembly of a recently harvested forest exposed to three years of experimental 2°C warming and 20% increased precipitation. By the end of the experiment, trees were the only functional group that shifted composition in response to warming and precipitation treatments (p = 0.03), while the composition of the grass, forbs, and shrub/small tree/vine functional groups were unresponsive. Individual species within groups were associated with specific treatments, but did not result in a predictable community composition shift. Temporal dynamics of functional group cover were more sensitive to treatment effects than single, static measures of plant community responses such as biomass. Both static and dynamic plant analyses revealed interactive effects of warming and increased precipitation on cover and biomass of grass and all plants together (grass cover p < 0.01, grass biomass p = 0.02, total cover p < 0.01, total biomass p = 0.05). Short forb cover was negatively affected by increased precipitation throughout our experiment (p = 0.03). Grass, tree, and shrub/ small tree/vine functional groups showed independent year effects on cover that can be attributed to successional development of the forest community (all  $p \le 0.01$ ). Random forest modeling indicated that cover of other plant functional groups and static plot-level variables such as plot location and components of soil texture were often the most important predictors of cover for a given functional group, while temperature and moisture availability measures were the least important. Importance of predictors of functional group cover varied greatly among random forest models from different treatments, suggesting that diverse environmental factors constrain functional group cover and may provide resilience of community assembly to climate change.

Key words: climate experiment; community ecology; forest succession; GAMM; random forest.

Received 18 October 2012; accepted 22 October 2012; final version received 5 December 2012; published 27 December 2012. Corresponding Editor: D. P. C. Peters.

Copyright: © 2012 Rollinson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits restricted use, distribution, and reproduction in any medium, provided the original author and sources are credited.

† E-mail: crollinson@gmail.com

#### Introduction

Plant community composition is determined by species responses to both the biotic and abiotic environment. The role of climate in structuring communities and ecosystems is evident in paleobotanic records as well as modern shifts in species distribution that correlate with warming temperatures (Bugmann 1996, Jackson and Overpeck 2000, Woodall et al. 2009). Recent research on climate-induced changes in species distribution focuses on ecotones such as alpine tree lines where climate restrictions of species survival and community assembly are clear (e.g.,

Beckage et al. 2008, Hudson and Henry 2010). In more temperate climates, such as in the eastern United States, plant responses to climate are mediated by many biotic and abiotic factors. Climate envelope models based on correlative species-climate relationships have been used to predict potential future species distributions in this region, but are unable to address the processes that influence species selection and community assembly (Iverson et al. 2011). Research on processes that impact tree species selection early in forest regeneration is necessary to understand temperate forest community assembly.

Community assembly immediately following disturbance is a critical phase in forest development and response to climate variability. Young tree regeneration is not only more sensitive to climate than its mature counterparts, but regeneration today is likely experiencing a climate significantly warmer than the previous generation (Jackson et al. 2009). Non-tree vegetation can be equally sensitive to climate variability and act as an ecological filter that indirectly affects climate-related shifts in tree species assembly (George and Bazzaz 1999). Patterns of survival and dominance early in succession can be used to infer the long-term tree community composition. Climate manipulation experiments can also be effectively implemented in this phase to understand how predicted climate change may alter future forest composition.

Field climate manipulation studies have been used in a variety of ecosystems over the past two decades to understand ecosystem and community responses to warming and altered precipitation regimes. Despite the generally short-term and small-scale nature of these experiments, they allow us to attribute changes in ecosystem structure or function to climate. Past studies of climate effects on community composition compared dominance of broad plant groups such as C3 and C4 grasses at key stages in the experiment (Hudson and Henry 2010, Kardol et al. 2010a, Yang et al. 2011). The use of plant functional groups allows comparison of climate treatment sensitivities in the face of varying species composition. However, differences in species composition within those functional groups may be a response to climate change that maintains the dominance of certain plant functional groups and overall ecosystem structure. Consideration of both seasonal and annual changes in the plant community is essential to understanding how climate influences community dynamics in short term experiments within rapidly changing systems such as early successional forests.

Our study analyzes early successional forest community composition at species and functional group scales, considering both the community endpoint after three years of warming and increased precipitation as well as changes in the relative importance of biotic and abiotic drivers of community assembly through the course of the experiment. We address three hypotheses: (1) Climate treatments will result in unique community species assemblages because individual species are differentially favored by warming and increased precipitation. Furthermore, we predict that functional groups are also responsive to climate and the relative importance of individual functional groups will change with warming and precipitation treatments. (2) Functional group cover responses to warming and increased precipitation depend on community development at seasonal and annual time frames. (3) The cover of functional groups within the climate change experiment is moderated by other non-climate environmental factors such as soils, plot location within the harvested area, and biotic interactions within the plant community. We test these hypotheses using empirical plant community data and statistical models of the effects of field-based climate manipulations on temporal trends (generalized additive mixed models, GAMM) and relative importance of biotic, abiotic, and temporal variables in determining functional group cover (random forest, Breiman 2001).

#### **M**ETHODS

#### Site and experiment description

Our climate manipulation experiment took place following a 2007 whole-tree clear-cut harvest of 2 hectares of a second-growth oak-hickory forest in central Pennsylvania (40°41′ N, 77°54′ W). Experimental plots were located on a 10% slope with a southeast aspect and Berk series soils. Mean annual temperature is 9°C and mean precipitation is approximately 100 cm per year.

Dominant tree species prior to harvest were *Quercus rubra* L., *Q. alba* L., *Q. velutina* Lam., *Carya alba* L., *Fraxinus americana* L., and *Acer rubrum* L. Harvesting resulted in a 34% decrease in the soil O horizon (48.0  $\pm$  3.4 kg/ha [mean  $\pm$  SE] pre-harvest, 31.9  $\pm$  5.0 kg/ha post-harvest) and a 20% increase in soil bulk density (0.61  $\pm$  0.05 g/cm<sup>3</sup> pre-harvest, 0.73  $\pm$  0.02 g/cm<sup>3</sup> post-harvest). However, harvesting increased the spatial heterogeneity of soils. The coefficient of variation for the O horizon increased 5.7 times while the coefficient of variation for bulk density more than doubled (2.2 times). Following harvest, a 2-m high large mammal exclosure fence was erected to deter deer browsing.

The factorial experimental design consisted of the following climate treatments: ambient, 2°C warming, 20% increase in precipitation, and warming plus increased precipitation. Treatments were randomly assigned to  $2 \times 2$  m plots in a block design that was replicated four times within the site (n = 4 for each treatment) from May 2008 to August 2010. The experimental design of four blocks with randomly selected treatment plots accounts for potential differences in previous community composition across the site. Hourly mean surface temperatures in each plot were measured with infrared radiometers (IRR; model IRR-P Apogee Instruments Inc., Logan, UT, USA) and soil temperature and moisture with Decagon ECH2O EC-TM sensors (Decagon Devices, Inc, Pullman, WA, USA). Plots were warmed with infrared lamps hung 1.5 m above the ground and controlled through a realtime proportional-integrative-derivative (PID) feedback programmed to maintain a 2°C surface temperature differential between warmed and not warmed plots (Kimball 2005, 2011). Warming only treatments received an effective  $1.8^{\circ} \pm 0.0^{\circ}$ C increase in surface temperature above ambient, while temperatures in the warming + precipitation treatment were elevated 1.7° ± 0.0°C relative to ambient (Rollinson and Kaye 2012). Soil temperature in warming only and warming + precipitation was increased above ambient by  $2.5^{\circ} \pm 0.0^{\circ}$ C and  $1.8^{\circ} \pm 0.0^{\circ}$ C, respectively. Precipitation treatments consisted of a weekly application of 20% of the long-term (1882–2005) monthly mean record for State College, PA (Easterling et al. 1996). Even though plots receiving precipitation treatments received an

effective 23% increase in precipitation over the duration of the experiment, this did not translate into an overall increase in soil moisture (repeated measures ANOVA,  $\alpha = 0.05$ ).

Community composition of all treatment plots was inventoried from March through November in 2009 and March through the end of the experiment in August in 2010. Vegetation inventories were conducted weekly during the spring green up period (March through June) and biweekly thereafter. A total of 22 vegetation inventories were conducted in 2009 and 14 were conducted in 2010. For each inventory, we visually estimated the percent cover of each species or genus if species identification was not possible. For some analyses, species were aggregated into functional groups based on general plant form based on descriptions in Rhoads and Block (2007): short forbs with maximum height <1 m, tall forbs with maximum height greater than 1m, trees that can occupy the canopy at maturity, grasses (not identified to genus or species), and a group that included shrubs, small trees, and vines (Appendix A). At the end of the experiment in August 2010, all above ground vegetation in each plot was harvested, separated by functional group, dried and weighed.

### **Analyses**

We analyzed community composition at two temporal and three organizational scales. Time was treated as a single point in time at the end of the experiment as well as a time series over the course of two growing seasons. Vegetation was analyzed at the species, functional group, and whole-community levels.

The effects of warming and increased precipitation on species composition in the final year of the experiment in 2010 were evaluated with the following analyses: (1) treatment effects on species assembly, (2) treatment effects on individual species associations, (3) treatment effects on end-of-experiment biomass. Treatment effects on species assembly were evaluated using a permutation multiple analysis of variance (PERMANOVA, adonis function, vegan R package, R Development Core Team 2008, Oksanen et al. 2012). In this analysis, cover of each species was calculated as the sum of observed cover across all sample dates for 2010 to ensure

Table 1. Variables used in random forest modeling grouped in to five predictor classes. Predictor classes represent factors that help drive community assembly and success of a plant functional type. The randomized decision tree approach of random forest accommodates many variables that may or may not be interdependent. GDD5 indicates growing degree-days with a base temperature of 5°C. GDD5\_year is the cumulative growing degree-days in the year, while GDD5\_sum are the growing degree-days between vegetation inventories. SoilH2O indicates the average, maximum, and minimum soil moisture content.

| Plot                                                                             | Time                            | Plant cover                                                   | Temperature                                                                   | Moisture                                                   |
|----------------------------------------------------------------------------------|---------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|
| Block Soil density Soil pH Soil clay content Soil sand content Soil silt content | GDD5_year<br>Julian Day<br>Year | Short forbs Tall forbs Grasses Trees Shrubs/small trees/vines | GDD5_sum Tsoil_Avg Tsoil_Max Tsoil_Min Tsurface_Avg Tsurface_Max Tsurface_Min | Precipitation<br>SoilH2O_Avg<br>SoilH2O_Max<br>SoilH2O_Min |

representation of spring ephemerals while allowing greater weight to be assigned to dominant species that persisted throughout the growing season. PERMANOVA analysis included a block effect to account for spatially related variation in composition as well as an interaction term between warming and precipitation. Treatment effects on individual species associations were evaluated using the Defrene-Legendre indicator species analysis (labdsv, R package, Roberts 2012). Grasses were excluded from the PERMANOVA and indicator species analyses because we did not identify them beyond the functional group level. All results presented for these and another analyses are significant at  $\alpha =$ 0.05 unless otherwise noted. Treatment effects on final biomass of individual functional groups were evaluated by modeling final biomass as a function of warming, precipitation and block effects using linear mixed effects model techniques (LMM, lme4 R package, Bates and Maechler 2012). Warming, precipitation, and an interaction term between the two were included as fixed effects while block was included as a random effect.

A second set of analyses evaluated the effects of warming and precipitation over the 2009 and 2010 growing seasons. First, we modeled the trend of functional group cover during the growing seasons and evaluated the effects of warming and precipitation on these trends using a generalized additive mixed modeling (GAMM) framework. The functional group cover trend through time (Julian day) was modeled with a cubic smoothing spline, whereas the year, warming, precipitation, and interaction effects were

included as fixed effects. Block and plot nested within block were incorporated as random effects adjusting the intercept. Autocorrelation among observations within the same plot were modeled using a continuous autoregressive correlation structure. GAMMs were fit using the *mgcv* R package (Wood 2012)

Second, we evaluated the treatment effects on the relative importance of potential biotic and abiotic drivers of functional group cover using the regression tree-based approach, random forest (Breiman 2001). We used 25 predictor variables classified into the following five groups, herein referred to as "predictor classes", to predict functional group cover in each plot at each of the inventory dates: (1) soil characteristics, (2) plant cover, (3) time, (4) temperature, and (5) moisture availability (Table 1). Plot characteristics are static through time and included soil texture, density, and pH as well as a block effect to represent relative plot locations. Soil properties were determined by analyzing samples taken at the beginning of the experiment. Plant cover included the estimated cover of each functional group at each survey and represents the influence of competition or other potential biotic interactions among plant functional groups. Time included year, Julian day, and cumulative growing degree-days with a base temperature of 5°C (GDD5\_sum) within a growing season. The temperature class variables were measured at the plot level and included mean, maximum, and minimum surface (Tsurface) and soil temperatures (Tsoil) between vegetation surveys. Measures of moisture availability included the recorded mean, maximum, and minimum soil moisture (SoilH2O) from each plot as well as received precipitation between vegetation surveys. Received precipitation included the ambient precipitation recorded on-site and weekly experimental precipitation additions.

We assessed the effects of treatments on functional group cover by running each treatment and functional group combination independently so that four plots with 36 observations each were used in each model. Random forest is a robust statistical technique particularly suited for characterization of drivers of ecological patterns because it uses numerous iterations of randomized subsets of both predictors and observations to reach a stable solution (De'ath and Fabricius 2000, De'ath 2002). This approach is also less sensitive to correlation among predictor variables (Cutler et al. 2007). Modeling each treatment independently is a similar conceptual framework as modeling changes in vegetation distribution with predicted climate changes (Miller and Franklin 2002, Prasad et al. 2006). Model fit is assessed through the mean square error (MSE) and the pseudo-R2 statistic that is calculated by: 1 - MSE/variance(y), where y is the response variable. We assessed the relative importance of potential drivers of functional group cover by comparing the improvement in model accuracy attributed to a predictor variable. This is quantified through the percent increase in MSE if a variable is excluded from the model and is reported as variable "importance" in the results.

# **R**ESULTS

#### Plant community composition

Of the four functional groups that we used to analyze community composition, only tree species assemblages were affected by the interaction of warming and increased precipitation, although all functional groups had individual species with specific treatment associations. Tree species associations were influenced by interactions of heat and water (PERMANOVA, p = 0.03), but also varied spatially, as indicated by the block effect (PERMANOVA, p = 0.05). Community compositions of the remaining functional groups, as well as the entire community in aggregate (all species analyzed together), were not affected by treatments or block (Appendix B). Trees had a

higher proportion of species associated with specific treatments, with the following three of 16 species showing significant associations: Carya ovata (Mill.) K. Koch (warming+precipitation, p = 0.03), Prunus serotina Ehrh. (warming only, p =0.048), and Populus tremuloides Michx. (precipitation only, p < 0.01). Short forbs that showed treatment associations (3 of 35 species) were Gallium triflorum Mich. (ambient, p = 0.01), Potentilla canadensis L. (ambient, p = 0.046), and Taraxacum officionale F.H. Wigg (precipitation only, p = 0.04). Only one vine (of six species), *Vitis* spp. (warming, p < 0.01), and one tall forb (of 18 species) Symphyotrichum lavae (no precipitation, p = 0.03) showed non-interactive treatment associations.

Final above ground biomass of most functional groups was not affected by warming or increased precipitation (Fig. 1). Across all treatments, the shrub/small tree/vine functional group accounted for the majority of the biomass ( $44\% \pm 5\%$  [mean  $\pm$  SE] of the total). Within this functional group, *Rubus* spp. accounted for most of the biomass ( $66\% \pm 6\%$  across all treatments). However, grass was the only functional group to have a statistically significant treatment effect: the interaction between warming and precipitation (GLMM, p = 0.02). Increased total biomass from an interaction of warming and precipitation was of questionable significance (p = 0.05).

## Temporal community dynamics

While GAMM analyses detected effects of warming and increased precipitation on functional group cover over the course of the growing seasons, random forest models indicated that these effects were often indirect (Fig. 2, Appendices C, D). The treatment-specific random forest models were able to explain a large portion of the variance with an average pseudo- $R^2$  of 0.81  $\pm$ 0.03 (Table 2). However, when variables were grouped by predictor class, temperature and moisture availability, the two predictor classes altered by our experimental treatments, were generally the least important predictors of functional group cover, as indicated by the low importance values when removed from the model (importance [mean ± SE] across all models:  $17.9 \pm 0.9$  temperature,  $13.8 \pm 0.9$ moisture; Fig. 3). In contrast, cover of cooccurring functional groups, an indicator of



Fig. 1. Final dried above ground biomass for each plant functional group: (a) short forbs, (b) tall forbs, (c) grasses, (d) trees, (e) shrubs/small trees/vines, as well as (f) total live biomass in each treatment (n = 4 plots for each treatment). Grass and total biomass showed significant warming  $\times$  precipitation effects (ANOVA, p = 0.02 and p = 0.05, respectively). Treatment codes are as follows: A = ambient, P = precipitation only, W = warming only, WP = warming + precipitation. Values presented are mean  $\pm$  SE and n = 4 for each treatment. Note the different scale for total biomass (f).

competition dynamics, had relatively high importance for most models (importance: 37.8 ± 2.8). The interaction of warming and precipitation affected total cover (GAMM, p < 0.01) and appears to be driven by changes in the balance of functional group cover. Mean importance value of the functional group cover predictor class was of greater importance for explaining total cover than in other random forest models  $60.6 \pm 6.5$ and was much higher than the next highest class (time, importance:  $26.3 \pm 5.1$ ). However minimum surface temperatures had a higher influence on the ambient (82.8), warming only (65.2), and warming + precipitation (49.5) total cover models relative to functional group-specific models (24.3 ± 2.4). Surprisingly, plot-based predictor variables had little effect on total cover models (importance:  $7.0 \pm 0.8$ ).

Precipitation decreased cover of short forbs during the course of our experiment (GAMM,  $-49.3 \pm 21.9$ , p = 0.03). The significant precipitation effect coincided with decreased influence of plot predictors, and in particular block, in

precipitation treatment random forest models. In these models, block importance dropped form 133.2 in ambient to 43.8 in precipitation only and 93.1 warming only to 15.9 in warming + precipitation. At the same time, variables in the time predictor class appeared to gain in mean importance with precipitation, going from 25.1  $\pm$  6.0 in ambient to 29.6  $\pm$  8.4 in precipitation only and 16.8  $\pm$  1.7 to 32.0  $\pm$  20.5 in warming + precipitation. In the warming + precipitation treatment, year is of particularly strong influence with an importance value of 72.9.

Grass cover was also affected by the interaction of warming and increased precipitation (GAMM,  $33.5 \pm 11.5$ , p < 0.01), with warming alone associated with decreased cover and warming + precipitation associated with an increase. Random forest models showed relatively little influence of the cover of other functional groups (importance:  $27.7 \pm 2.4$ ). Instead, time, and particularly year, were of higher influence in the warming models (year importance: 92.5 warming only, 69.4 warming + precipitation



Fig. 2. Average cover of the five plant functional groups and total cover used for time series mixed modeling and random forest modeling: (a) short forbs, (b) tall forbs, (c) grasses, (d) trees, (e) shrubs/small trees/vines, and (f) total cover. Time is in experimental day where day  $1 = \text{Jan } 1\ 2009$  and cover is summed percent cover of all species belonging to a functional group. Significant fixed effects ( $\alpha = 0.05$ ) from GAMM time series analysis are denoted using the following code: P = precipitation only, P = model interaction of warming precipitation, P = model and error bars were not included to improve graph clarity. Note the different scale of the y-axis for total cover (f).

versus 34.6 in ambient and 45.8 in precipitation only), which coincides with a significant year effect in the GAMM model (p < 0.01). Moisture availability had slightly higher influence in the warming models (importance:  $23.9 \pm 3.5$ ) relative to other treatments (importance:  $13.7 \pm 2.3$ ) and may have contributed to the significant warming by precipitation interaction effect in

the time series.

Both the tree and shrub/small tree/vine functional groups only had significant year effects in the GAMM models (tree cover: p=0.01; shrub/small tree/vine: p<0.01). In both of these models, cover of other functional groups and time were the predictor classes with the highest importance across models from different treat-

Table 2. Measure of random forest (RF) model fit for each treatment and functional group. R2 is the pseudo-R2 measure and MSE is mean square error for the model. Separate models for each functional group-treatment combination were developed from cover estimates from 36 vegetation inventories from 2009 and 2010 in each of 4 plots per treatment.

|                          | Am   | bient | W    | arm   | Pr   | ecip  | Warm | + Precip |
|--------------------------|------|-------|------|-------|------|-------|------|----------|
| Functional group         | R2   | MSE   | R2   | MSE   | R2   | MSE   | R2   | MSE      |
| Short forbs              | 0.91 | 353.3 | 0.84 | 326.4 | 0.80 | 267.6 | 0.87 | 268.3    |
| Tall forbs               | 0.66 | 44.7  | 0.83 | 46.8  | 0.85 | 69.6  | 0.80 | 89.3     |
| Grasses                  | 0.74 | 184.6 | 0.43 | 210.3 | 0.43 | 199.1 | 0.66 | 208.8    |
| Trees                    | 0.81 | 63.6  | 0.89 | 89.1  | 0.83 | 82.3  | 0.88 | 31.9     |
| Shrubs/small trees/vines | 0.91 | 127.3 | 0.90 | 199.4 | 0.90 | 101.7 | 0.89 | 164.3    |
| Total                    | 0.92 | 700.9 | 0.91 | 647.0 | 0.93 | 450.3 | 0.89 | 685.2    |



Fig. 3. Predictor variable importance in random forest models of functional group cover as measured by improvement in model accuracy attributed to predictor variables for each plant functional type and treatment combination. Each functional group-treatment combination was modeled separately based on 36 observations from 4 replicate plots between 2009 and 2010. Individual predictor variable (Table 1) scores are represented by circles that are grouped by climate treatment (columns of circles), class (boxed columns), and functional group (rows). Raw importance scores for each predictor variable and model combination can be found in Appendix D. Treatment codes for climate models are as follows: A = ambient, P = precipitation only, W = ambient, P = ambient,

ments (tree model:  $cover = 34.8 \pm 5.2$ ,  $time = 29.0 \pm 4.5$ ; shrub/small tree/vine:  $cover = 43.1 \pm 10.9$ ,  $time = 34.4 \pm 6.3$ ). Within these two classes, cumulative growing degree-days (importance:  $55.1 \pm 11.8$ ) and cover of large trees ( $99.3 \pm 23.5$ ) had particularly high predictor importance in the shrub/small tree/vine models. For trees, no functional group predictor variable consistently had the highest importance value across models, but year increased in model influence in warmed treatments (importance: 14.4 ambient, 5.3 precipitation only, 48.2 warming only, 43.4 warming + precipitation).

Tall forbs were the only group to show no

treatment effects in the GAMM models. In random forest modeling, predictor classes were relatively similar among models with plant cover and plot having the highest average importance value across models (26.0  $\pm$  3.3 and 24.8  $\pm$  3.6, respectively).

#### DISCUSSION

Changes in both species assembly and functional group cover demonstrate that warming and increased precipitation can alter the composition of an early successional temperate forest community. Our experiment had higher diversity

than many previous studies (e.g., Hudson and Henry 2010, Kardol et al. 2010a, Hoeppner and Dukes 2012), but the treatment associations of individual species and an overall shift in tree community composition demonstrates that changes in climate can lead to detectible shifts in the early successional plant community of eastern forests. The available species pools as well as the biotic and abiotic soil properties were not directly manipulated in our experiment, which allowed natural plant-soil feedbacks to mediate community responses to warming and increased precipitation. For example, direct effects of temperature can alter plant composition, which in turn affects soil nutrient availability and soil biotic communities (Lovett et al. 2004, Kardol et al. 2010b, Heil 2011). These changes in belowground dynamics can reinforce shifts in the above ground plant community (Bezemer et al. 2010, Eisenhauer et al. 2010).

Sensitivity of tree species regeneration to direct and indirect effects of climate perturbation highlights the importance of regeneration dynamics in determining long-term forest composition. Adult tree species distribution is often constrained by abiotic and biotic pressure during the regeneration phase (Poorter 2007, Jackson et al. 2009). Two explanations exist for why we did not observe similar climate sensitivity of other plant functional groups. First, high diversity and scattered distribution of non-tree species among plots makes it hard to detect both shifts in community composition or associations of individual species with treatments. Higher replication would allow us to better detect treatment effects but was not possible in our experiment. Second, many of the herbaceous species and shrubs in our community are considered early successional generalists. These species are unlikely to persist following canopy closure and are likely adapted to grow in a wide variety of climates as long as there is an abundance of light. In this case, the degree of warming or increased precipitation in our experiment is of less influence on these species than other factors such as canopy closure and competition for resources from other species and functional groups.

Plant communities are influenced by both seasonal and annual cycles of climate and community development. Species establishment can be highly influenced by both the climate and competitive environment during the year of germination (Noe and Zedler 2001). Even though seedling survival constrains future community composition, effects of climate on seedling growth are often age-dependent (Pérez-Ramos et al. 2010). Spring phenology of trees and tall forbs was advanced by warming in our study (Rollinson and Kaye 2012). Earlier leaf out of these two functional groups did not cause increased biomass or cover during our experiment but may have been a mechanism influencing changes in species composition associated with warming treatments. Species with greater advance in leaf out in response to warming may have been able to out-compete less phenologically plastic species early in the growing season during the initial establishment phase. This competitive advantage could lead to shifts in species composition. However, because we were unable to compare species phenology across treatments, we cannot determine if phenology is directly linked to shifts in community composition.

Short forbs, tall forbs, trees, and shrubs/small trees/vines in our early successional temperate forest community all appear resilient to climate perturbation. There are three potential sources of this resilience within the plant community. The first is that changes in species composition may confer resilience at the functional group level (Hector et al. 2010). Documented treatmentbased changes in species composition of our tree community may explain lack of treatment effects in final biomass or time series analysis of cover. However, this explanation does not apply to functional groups without shifts in species composition. Furthermore, the lack of control in species composition prevents us from separating direct influences of warming or increased precipitation on functional group biomass from those related to variation in species composition.

Functional group resilience may also be the product of lack of climate sensitivity of the many generalist species that dominate our non-tree functional groups. Many of the woody and herbaceous species found in our study are known to have a broad distribution that encompasses the degree of warming and increased precipitation used in our study (Rhoads and Block 2007). These species are likely greater affected by the competitive environment, particularly light avail-

ability. The high importance of cover of competing functional groups for predicting cover of the forb and shrub/small tree/vine functional groups supports this explanation.

Finally, community resilience to warming and increased precipitation may be the result of ecosystem- and community-level feedbacks that constrain functional group cover (Myers and Harms 2011). Both species interactions and soil properties can constrain functional group cover and sensitivity to warming and increased precipitation (Menge et al. 2011, Fridley et al. 2011). Our random forest approach to analysis of codependent variables such as time, temperature, and functional group cover allows us to determine that all of these predictor classes are important for determining plant community dynamics. However, a key limitation of this approach is that we cannot determine how these variables are mechanistically related to each other or to functional group cover.

Climate influences on community composition early in succession can have long-lasting impacts on forest development. Both shifts in tree community composition and individual species treatment associations correspond to climateenvelope model predictions of changes in suitable habitat for our study area (Prasad et al. 2007). Our research illustrates that direct effects of predicted climate change can cause these shifts, but functional group level responses are mediated by environmental constraints as well as plant community feedbacks. Even though many processes can affect species survival past the time scale of our study, the changes in community composition that we observed may persist into the future.

# **A**CKNOWLEDGMENTS

J. Kaye contributed to experiment design. R. Wagner and M. McDaniel conducted additional research at the site. B. Frazier, C. Hone, L. Fabian, and S. Johnson helped with data collection. Discussions with E. Smithwick and E. Crisfield contributed to the use of random forest modeling. This research was funded by the Northeastern Region of the Department of Energy's National Institute of Climate Change Research and the College of Agricultural Sciences, The Pennsylvania State University.

#### LITERATURE CITED

- Bates, D., and M. Maechler. 2012. lme4: linear mixedeffects models using S4 classes.
- Beckage, B., B. Osborne, D. G. Gavin, C. Pucko, T. Siccama, and T. Perkins. 2008. A rapid upward shift of a forest ecotone during 40 years of warming in the Green Mountains of Vermont. Proceedings of the National Academy of Sciences USA 105:4197–202.
- Bezemer, T. M., M. T. Fountain, J. M. Barea, S. Christensen, S. C. Dekker, H. Duyts, R. van Hal, J. A. Harvey, M. Maraun, J. Mikola, A. G. Mladenov, C. Robin, P. C. de Ruiter, S. Scheu, H. Setälä, P. Smilauer, and W. H. van der Putten. 2010. Divergent composition but similar function of soil food webs beneath individual plants: plant species and community effects. Ecology 91:3027–3036.
- Breiman, L. E. O. 2001. Random forests. Machine Learning 45:5–32.
- Bugmann, H. K. M. 1996. A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074.
- Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, K. T. Hess, J. Gibson, and J. J. Lawler. 2007. Random forests for classification in ecology. Ecology 88:2783–92.
- De'ath, G. 2002. Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117.
- De'ath, G., and K. E. Fabricius. 2000. Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192.
- Easterling, D. R., T. C. Peterson, and T. R. Karl. 1996. On the development and use of homogenized climate datasets. Journal of Climate 9:1429–1434.
- Eisenhauer, N., H. Bessler, C. Engels, G. Gleixner, M. Habekost, A. Milcu, S. Partsch, A. C. W. Sabais, C. Scherber, S. Steinbeiss, A. Weigelt, W. W. Weisser, and S. Scheu. 2010. Plant diversity effects on soil microorganisms support the singular hypothesis. Ecology 91:485–96.
- Fridley, J. D., J. P. Grime, A. P. Askew, B. Moser, and C. J. Stevens. 2011. Soil heterogeneity buffers community response to climate change in species-rich grassland. Global Change Biology 17:2002–2011.
- George, L. O., and F. A. Bazzaz. 1999. The fern understory as an ecological filter: Growth and survival of canopy-tree seedlings. Ecology 80:846– 856.
- Hector, A., Y. Hautier, P. Saner, L. Wacker, R. Bagghi, J. Joshi, M. Scherer-Lorenzen, E. M. Spehn, E. Bazeley-White, M. Weilenmann, M. C. Caldeira, P. G. Dimitrakopoulos, J. A. Finn, K. Huss-Danell, A. Jumpponen, C. P. H. Mulder, C. Palmborg, J. A. Pereira, A. S. D. Siamantziouras, A. C. Terry, A. Y. Troumbis, B. Schmid, and M. Loreau. 2010. General

- stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding. Ecology 91:2213–2220.
- Heil, M. 2011. Plant-mediated interactions between above- and below-ground communities at multiple trophic levels. Journal of Ecology 99:3–6.
- Hoeppner, S. S., and J. S. Dukes. 2012. Interactive responses of old-field plant growth and composition to warming and precipitation. Global Change Biology 18:1754–1768.
- Hudson, J. M. G., and G. H. R. Henry. 2010. High Arctic plant community resists 15 years of experimental warming. Journal of Ecology 98:1035–1041.
- Iverson, L. R., A. M. Prasad, S. N. Matthews, and M. P. Peters. 2011. Lessons learned while integrating habitat, dispersal, disturbance, and life-history traits into species habitat models under climate change. Ecosystems 14:1005–1020.
- Jackson, S. T., J. L. Betancourt, R. K. Booth, and S. T. Gray. 2009. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proceedings of the National Academy of Sciences USA 106(Supplement):19685–19692.
- Jackson, S. T., and J. T. Overpeck. 2000. Responses of plant populations and communities to environmental changes of the Late Quaternary. Paleobiology 26:194–220.
- Kardol, P., C. E. Campany, L. Souza, R. J. Norby, J. F. Weltzin, and A. T. Classen. 2010a. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental oldfield ecosystem. Global Change Biology 16:2676– 2687.
- Kardol, P., M. A. Cregger, C. E. Campany, and A. T. Classen. 2010b. Soil ecosystem functioning under climate change: plant species and community effects. Ecology 91:767–81.
- Kimball, B. A. 2005. Theory and performance of an infrared heater for ecosystem warming. Global Change Biology 2041–2056.
- Kimball, B. A. 2011. Comment on the comment by Amthor et al. on "Appropriate experimental ecosystem warming methods" by Aronson and McNulty. Agricultural and Forest Meteorology 151:420–424.
- Lovett, G. M., K. C. Weathers, M. A. Arthur, and J. C. Schultz. 2004. Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry 67:289–308.
- Menge, B. A., S. D. Hacker, T. Freidenburg, J. Lubchenco, R. Craig, G. Rilov, M. Noble, and E. Richmond. 2011. Potential impact of climate-related changes is buffered by differential responses to recruitment and interactions. Ecology 81:493–509.
- Miller, J., and J. Franklin. 2002. Modeling the distribu-

- tion of four vegetation alliances using generalized linear models and classification trees with spatial dependence1. Ecological Modelling 157:227–247.
- Myers, J. A., and K. E. Harms. 2011. Seed arrival and ecological filters interact to assemble high-diversity plant communities. Ecology 92:676–86.
- Noe, G. B., and J. B. Zedler. 2001. Spatio-temporal variation of salt marsh seedling establishment in relation to the abiotic and biotic environment. Journal of Vegetation Science 12:61.
- Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O'Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner. 2012. vegan: community ecology package.
- Poorter, L. 2007. Are species adapted to their regeneration niche, adult niche, or both? American Naturalist 169:433–42.
- Prasad, A. M., L. R. Iverson, and A. Liaw. 2006. Newer classification and regression tree techniques: bagging and random forests for ecological prediction. Ecosystems 9:181–199.
- Prasad, A. M., L. R. Iverson, S. Matthews, and M. Peters. 2007. A climate change atlas for 134 forest tree species of the eastern United States. http://www.nrs.fs.fed.us/atlas/tree
- Pérez-Ramos, I. M., L. Gómez-Aparicio, R. Villar, L. V. García, and T. Marañón. 2010. Seedling growth and morphology of three oak species along field resource gradients and seed mass variation: a seedling age-dependent response. Journal of Vegetation Science 21:419–437.
- R Development Core Team. 2008. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
- Rhoads, A. F., and T. A. Block. 2007. The plants of Pennsylvania. Second edition. University of Pennsylvania Press, Philadelphia, Pennsylvania, USA.
- Roberts, D. W. 2012. labdsv: ordination and multivariate analysis for ecology.
- Rollinson, C. R., and M. W. Kaye. 2012. Experimental warming alters spring phenology of certain plant functional groups in an early successional forest community. Global Change Biology 18:1108–1116.
- Wood, S. 2012. mgcv: GAMs with GCV/AIC/REML smoothness estimation and GAMMs by PQL.
- Woodall, C. W., C. M. Oswalt, J. A. Westfall, C. H. Perry, M. D. Nelson, and A. O. Finley. 2009. An indicator of tree migration in forests of the eastern United States. Forest Ecology and Management 257:1434–1444.
- Yang, H., M. Wu, W. Liu, Z. Zhang, N. Zhang, and S. Wan. 2011. Community structure and composition in response to climate change in a temperate steppe. Global Change Biology 17:452–465.

# SUPPLEMENTAL MATERIAL

# APPENDIX A

Table A1. Species distribution among treatments. Total annual cover of all species observed in 2009 and 2010. Values presented are mean  $\pm$  SE (n = 4).

| Species                                           | Ambient                        | Precip                           | Warm                           | Warm + Precip                   |
|---------------------------------------------------|--------------------------------|----------------------------------|--------------------------------|---------------------------------|
| Short forbs                                       |                                |                                  |                                |                                 |
| Allium vineale                                    | $0.6 \pm 0.6$                  | $1.8 \pm 1.8$                    | $1.7 \pm 1.3$                  | $0.0 \pm 0.0$                   |
| Anemone americana                                 | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.1 \pm 0.1$                  | $0.0 \pm 0.0$                   |
| Asclepias quadrifolia                             | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.3 \pm 0.3$                  | $0.0 \pm 0.0$                   |
| Circaea canadensis                                | $1.7 \pm 1.7$                  | $1.1 \pm 1.1$                    | $0.0 \pm 0.0$                  | $32.6 \pm 19.4$                 |
| Clinopodium vulgare                               | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.0 \pm 0.0$                  | $28.3 \pm 28.3$                 |
| Desmodium nudiflorum                              | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $1.1 \pm 1.1$                  | $0.0 \pm 0.0$                   |
| Desmodium paniculatum                             | $0.0 \pm 0.0$                  | $2.9 \pm 2.9$                    | $0.0 \pm 0.0$                  | $1.6 \pm 1.6$                   |
| Dianthus ameria                                   | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.0 \pm 0.0$                  | $3.0 \pm 3.0$                   |
| Fragaria virginiana                               | $0.0 \pm 0.0$                  | $6.3 \pm 3.8$                    | $31.4 \pm 31.4$                | $27.3 \pm 25.9$                 |
| Galium circaezans                                 | $0.8 \pm 0.8$                  | $0.2 \pm 0.2$                    | $13.6 \pm 6.7$                 | $6.9 \pm 6.9$                   |
| Galium triflorum                                  | $136.1 \pm 60.0$               | $31.7 \pm 9.3$                   | $28.1 \pm 7.9$                 | $37.8 \pm 15.4$                 |
| Geum canadense                                    | $19.5 \pm 13.2$                | $16.8 \pm 10.3$                  | $31.1 \pm 17.0$                | $43.6 \pm 15.2$                 |
| Geranium maculatum                                | $22.9 \pm 22.9$                | $1.6 \pm 1.6$                    | $14.8 \pm 8.7$                 | $29.4 \pm 29.4$                 |
| Hieracium caepitosum                              | $1.0 \pm 1.0$                  | $0.0 \pm 0.0$                    | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                   |
| Hypericum punctatum                               | $16.8 \pm 5.9$                 | $1.9 \pm 1.9$                    | $8.7 \pm 6.9$                  | $6.1 \pm 6.1$                   |
| Lysimachia quadrifolia                            | $0.4 \pm 0.4$                  | $8.5 \pm 6.8$                    | $7.4 \pm 2.8$                  | $11.7 \pm 7.8$                  |
| Maianthemum canadense                             | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.7 \pm 0.7$                  | $0.0 \pm 0.0$                   |
| Maianthemum racemosum                             | $0.0 \pm 0.0$                  | $1.0 \pm 1.0$                    | $0.0 \pm 0.0$                  | $21.9 \pm 12.7$                 |
| Melampyrum lineare                                | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.0 \pm 0.0$                  | $0.2 \pm 0.2$                   |
| Oxalis stricta                                    | $10.1 \pm 4.5$                 | $10.2 \pm 9.8$                   | $15.8 \pm 13.4$                | $9.2 \pm 9.2$                   |
| Plantago major                                    | $0.4 \pm 0.4$                  | $0.7 \pm 0.7$                    | $2.7 \pm 1.6$                  | $1.9 \pm 1.9$                   |
| Potentilla canadensis                             | $625.8 \pm 194.5$              | $272.1 \pm 136.4$                | $128.0 \pm 81.9$               | $154.4 \pm 112.9$               |
| Potentilla norvegica                              | $0.0 \pm 0.0$                  | $7.4 \pm 7.4$                    | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                   |
| Podophyllum peltatum                              | $5.4 \pm 3.7$                  | $9.2 \pm 9.2$                    | $7.6 \pm 5.2$                  | $3.6 \pm 3.6$                   |
| Ranunculus abortivis                              | $0.2 \pm 0.2$                  | $1.8 \pm 1.8$                    | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                   |
| Sisynchium mucronatum                             | $3.8 \pm 3.8$<br>$1.5 \pm 1.0$ | $0.0 \pm 0.0$                    | $1.6 \pm 1.6$                  | $7.1 \pm 7.1$                   |
| Solidago nemoralis                                | $1.5 \pm 1.0$ $10.2 \pm 7.1$   | $4.8 \pm 2.4$<br>$39.2 \pm 11.1$ | $5.4 \pm 2.9$                  | $0.0 \pm 0.0$                   |
| Taraxacum officionale<br>Thalictrum thalictroides | $3.1 \pm 2.0$                  | $2.9 \pm 2.9$                    | $9.7 \pm 7.5$<br>$3.9 \pm 2.3$ | $11.7 \pm 7.1$<br>$0.7 \pm 0.7$ |
| Trifolium aureum                                  | $1.2 \pm 1.2$                  | $1.9 \pm 1.6$                    | $0.0 \pm 0.0$                  | $12.6 \pm 12.6$                 |
| Uvularia perfoliata                               | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $2.6 \pm 2.6$                  | $0.0 \pm 0.0$                   |
| Veronica officinalis                              | $349.7 \pm 135.7$              | $238.1 \pm 95.3$                 | $414.0 \pm 326.4$              | $40.8 \pm 26.8$                 |
| Viola blanda                                      | $0.0 \pm 0.0$                  | $10.6 \pm 10.6$                  | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                   |
| Viola hirsutula                                   | $0.0 \pm 0.0$                  | $7.7 \pm 4.7$                    | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$<br>$0.1 \pm 0.1$  |
| Viola spp.                                        | $10.4 \pm 4.5$                 | $35.6 \pm 13.2$                  | $35.3 \pm 14.2$                | $10.5 \pm 7.3$                  |
| Tall forbs                                        | 10.4 = 4.5                     | 00.0 = 10.2                      | 00.0 = 14.2                    | 10.5 = 7.5                      |
| Actea racemosa                                    | $18.0 \pm 16.1$                | $51.3 \pm 51.3$                  | $24.7 \pm 12.5$                | $31.0 \pm 31.0$                 |
| Arctium minus                                     | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $0.5 \pm 0.5$                  | $0.0 \pm 0.0$                   |
| Cirsium arvense                                   | $10.7 \pm 9.5$                 | $22.0 \pm 11.5$                  | $8.4 \pm 5.0$                  | $56.6 \pm 53.2$                 |
| Cirsium vulgare                                   | $14.8 \pm 14.8$                | $0.0 \pm 0.0$                    | $0.0 \pm 0.0$                  | $18.6 \pm 18.6$                 |
| Epilobium ciliatum                                | $0.1 \pm 0.1$                  | $2.0 \pm 1.9$                    | $0.0 \pm 0.0$                  | $0.5 \pm 0.5$                   |
| Erigeron anuus                                    | $1.1 \pm 1.0$                  | $0.0 \pm 0.0$                    | $0.8 \pm 0.8$                  | $0.4 \pm 0.4$                   |
| Euthamia gramanifolia                             | $11.2 \pm 7.8$                 | $21.7 \pm 11.1$                  | $29.4 \pm 21.0$                | $16.1 \pm 9.0$                  |
| Galium aparine                                    | $1.1 \pm 0.6$                  | $2.8 \pm 1.4$                    | $3.2 \pm 1.9$                  | $27.4 \pm 19.5$                 |
| Oenethera biennis                                 | $0.0 \pm 0.0$                  | $2.4 \pm 2.4$                    | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                   |
| Phytolacca americana                              | $5.3 \pm 5.3$                  | $30.9 \pm 13.9$                  | $29.3 \pm 22.9$                | $42.8 \pm 16.7$                 |
| Solidago canadensis                               | $52.2 \pm 19.1$                | $37.9 \pm 22.7$                  | $67.4 \pm 13.8$                | $80.7 \pm 36.2$                 |
| Solidago caesia                                   | $0.0 \pm 0.0$                  | $5.0 \pm 5.0$                    | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                   |
| Solidago rugosa                                   | $0.0 \pm 0.0$                  | $45.1 \pm 36.9$                  | $40.7 \pm 21.6$                | $44.2 \pm 39.4$                 |
| Symphyotrichum lateriflorum                       | $14.6 \pm 8.5$                 | $20.4 \pm 8.8$                   | $11.8 \pm 11.8$                | $9.1 \pm 8.0$                   |
| Symphyotrichum lavae                              | $12.6 \pm 7.5$                 | $0.0 \pm 0.0$                    | $32.1 \pm 17.4$                | $1.6 \pm 1.6$                   |
| Symphyotrichum pilosum                            | $5.3 \pm 5.3$                  | $0.0 \pm 0.0$                    | $7.8 \pm 7.8$                  | $5.8 \pm 5.8$                   |
| Verbascum thapsus                                 | $0.0 \pm 0.0$                  | $0.0 \pm 0.0$                    | $2.6 \pm 2.6$                  | $3.6 \pm 2.7$                   |
| Verbena urticifolia                               | $0.0 \pm 0.0$                  | $0.1 \pm 0.1$                    | $0.0 \pm 0.0$                  | $2.4 \pm 1.4$                   |
| Grass                                             |                                |                                  |                                |                                 |
| Grass spp.                                        | $479.8 \pm 131.3$              | $437.3 \pm 45.9$                 | $282.6 \pm 39.0$               | $670.3 \pm 130.7$               |
| Microstegium vimineum                             | $77.7 \pm 72.5$                | $13.9 \pm 10.7$                  | $7.2 \pm 6.2$                  | $18.8 \pm 18.8$                 |

Table A1. Continued.

| Species                    | Ambient           | Precip            | Warm              | Warm + Precip     |
|----------------------------|-------------------|-------------------|-------------------|-------------------|
| Trees                      |                   |                   |                   |                   |
| Acer rubrum                | $3.4 \pm 3.4$     | $0.0 \pm 0.0$     | $16.5 \pm 14.0$   | $4.3 \pm 4.3$     |
| Acer saccharum             | $37.1 \pm 30.1$   | $1.0 \pm 1.0$     | $20.0 \pm 16.6$   | $19.4 \pm 10.7$   |
| Betula lenta               | $0.0 \pm 0.0$     | $3.4 \pm 2.1$     | $1.5 \pm 0.9$     | $0.0 \pm 0.0$     |
| Carya ovata                | $1.1 \pm 1.1$     | $0.6 \pm 0.6$     | $18.0 \pm 7.3$    | $0.0 \pm 0.0$     |
| Carya tomentosa            | $1.6 \pm 1.6$     | $6.2 \pm 6.2$     | $0.0 \pm 0.0$     | $13.8 \pm 9.2$    |
| Fraxinus spp.              | $56.2 \pm 33.4$   | $33.0 \pm 13.0$   | $52.6 \pm 40.9$   | $33.2 \pm 21.6$   |
| Liriodendron tulipifera    | $27.1 \pm 23.9$   | $43.7 \pm 18.0$   | $34.7 \pm 20.3$   | $3.5 \pm 2.0$     |
| Pinus spp.                 | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.1 \pm 0.1$     | $0.0 \pm 0.0$     |
| Populus grandidentata      | $0.0 \pm 0.0$     | $7.5 \pm 3.7$     | $23.7 \pm 23.7$   | $43.1 \pm 43.0$   |
| Populus tremuloides        | $0.0 \pm 0.0$     | $14.3 \pm 9.2$    | $0.3 \pm 0.3$     | $0.0 \pm 0.0$     |
| Prunus serotina            | $74.7 \pm 48.5$   | $0.0 \pm 0.0$     | $17.9 \pm 17.9$   | $120.2 \pm 44.0$  |
| Quercus alba               | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $12.8 \pm 11.4$   |
| Ouercus rubra              | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $15.2 \pm 15.2$   | $9.0 \pm 9.0$     |
| Quercus velutina           | $6.5 \pm 6.5$     | $0.0 \pm 0.0$     | $15.9 \pm 15.9$   | $20.2 \pm 12.1$   |
| Sassafras albidum          | $0.0 \pm 0.0$     | $1.5 \pm 1.5$     | $6.3 \pm 6.3$     | $0.0 \pm 0.0$     |
| Ulmus rubra                | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $32.2 \pm 32.2$   |
| Shrubs                     |                   |                   |                   |                   |
| Amelanchier spp.           | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $5.4 \pm 5.4$     | $0.0 \pm 0.0$     |
| Ceanothus americana        | $26.7 \pm 26.7$   | $6.1 \pm 2.7$     | $0.8 \pm 0.8$     | $9.7 \pm 5.9$     |
| Cornus racemosa            | $4.7 \pm 3.0$     | $4.0 \pm 4.0$     | $46.7 \pm 32.7$   | $29.2 \pm 17.6$   |
| Ilex verticillata          | $0.0 \pm 0.0$     | $3.7 \pm 3.7$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     |
| Lindera benzoin            | $6.4 \pm 6.4$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     |
| Lonicera spp.              | $0.3 \pm 0.3$     | $0.7 \pm 0.7$     | $9.9 \pm 9.9$     | $7.1 \pm 7.1$     |
| Rosa multiflora            | $0.4 \pm 0.4$     | $22.8 \pm 22.1$   | $0.0 \pm 0.0$     | $13.6 \pm 7.9$    |
| Rubus spp                  | $361.4 \pm 185.0$ | $573.1 \pm 130.4$ | $565.5 \pm 142.2$ | $510.1 \pm 156.0$ |
| Viburnum spp.              | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $2.8 \pm 2.8$     | $0.0 \pm 0.0$     |
| Small trees                |                   |                   |                   |                   |
| Cornus florida             | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $7.3 \pm 7.3$     |
| Crataegus spp.             | $18.1 \pm 6.1$    | $6.6 \pm 5.6$     | $6.4 \pm 4.9$     | $85.7 \pm 42.4$   |
| Hamamelis virginiana       | $14.5 \pm 14.5$   | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     |
| Rhus glabra                | $0.0 \pm 0.0$     | $12.2 \pm 12.2$   | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     |
| Sambucus canadensis        | $11.2 \pm 11.2$   | $0.0 \pm 0.0$     | $4.3 \pm 4.3$     | $0.0 \pm 0.0$     |
| Viburnum prunifolium       | $0.0 \pm 0.0$     | $4.5 \pm 4.5$     | $0.0 \pm 0.0$     | $30.7 \pm 30.7$   |
| Vines                      |                   |                   |                   |                   |
| Amphicarpa bracteata       | $0.6 \pm 0.6$     | $0.0 \pm 0.0$     | $4.6 \pm 4.6$     | $0.0 \pm 0.0$     |
| Celastrus orbiculatus      | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $1.7 \pm 1.7$     |
| Clematis virginiana        | $0.0 \pm 0.0$     | $11.0 \pm 11.0$   | $3.0 \pm 3.0$     | $0.0 \pm 0.0$     |
| Dioscorea spp.             | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $2.4 \pm 2.4$     | $0.0 \pm 0.0$     |
| Parthenocissus quiquefolia | $0.0 \pm 0.0$     | $0.0 \pm 0.0$     | $3.4 \pm 3.4$     | $4.4 \pm 3.6$     |
| Vitis spp.                 | $37.5 \pm 20.6$   | $3.7 \pm 1.9$     | $170.1 \pm 63.0$  | $114.7 \pm 46.9$  |

# APPENDIX B

Table B1. Additional results from analysis of community composition: p-values from PERMANOVA community composition analysis. PERMANOVA was run with a Bray-Curtis distance measure and 1000 permutations.

| Fixed effect         | Short forbs | Tall forbs | Trees | Shrubs/Small trees/Vines | All species |
|----------------------|-------------|------------|-------|--------------------------|-------------|
| Block                | 0.67        | 0.55       | 0.05  | 0.28                     | 0.27        |
| Warm                 | 0.11        | 0.89       | 0.07  | 0.33                     | 0.11        |
| Precip               | 0.61        | 0.37       | 0.88  | 0.38                     | 0.37        |
| $Warm \times Precip$ | 0.63        | 0.75       | 0.03  | 0.25                     | 0.15        |

# APPENDIX C

Table C1. Additional GAMM results: p-values from GAMM analysis of functional group cover over time.

| Fixed effect                     | Short forbs           | Tall forbs     | Grass                 | Trees          | Shrubs/Small Trees/Vines | Total cover             |
|----------------------------------|-----------------------|----------------|-----------------------|----------------|--------------------------|-------------------------|
| Warming<br>Precipitation         | 0.163<br><b>0.025</b> | 0.144<br>0.164 | 0.081<br>0.519        | 0.811<br>0.361 | 0.092<br>0.706           | 0.262<br>< <b>0.001</b> |
| Year                             | 0.092                 | 0.833          | 0.001                 | 0.010          | 0.001                    | 0.661                   |
| Warm × Precip<br>Warm × Year     | 0.288<br>0.481        | 0.870<br>0.253 | <b>0.004</b><br>0.689 | 0.242<br>0.632 | 0.453<br>0.491           | <b>0.002</b><br>0.757   |
| Precip × Year                    | 0.150<br>0.454        | 0.973          | 0.931                 | 0.747          | 0.287<br>0.229           | 0.335                   |
| Warm × Precip × Year<br>Model R2 | 0.454                 | 0.651<br>0.459 | 0.589<br>0.364        | 0.628<br>0.475 | 0.534                    | 0.798<br>0.800          |

# APPENDIX D

Table D1. Predictor importance scores for short forb random forest models.

|             |                          |         | T      | reatment |               |      |
|-------------|--------------------------|---------|--------|----------|---------------|------|
| Class       | Variable                 | Ambient | Precip | Warm     | Warm + Precip | Mean |
| Plot        | Block                    | 133     | 44     | 93       | 16            | 71   |
|             | Soil density             | 12      | 22     | 41       | 19            | 23   |
|             | Soil pH ´                | 12      | 23     | 23       | 47            | 26   |
|             | Soil clay                | 16      | 19     | 13       | 21            | 17   |
|             | Soil sand                | 15      | 45     | 32       | 18            | 27   |
|             | Soil silt                | 13      | 21     | 19       | 48            | 26   |
| Time        | GDD5_year                | 35      | 43     | 20       | 12            | 27   |
|             | Julian day               | 26      | 14     | 15       | 11            | 16   |
|             | Year                     | 14      | 32     | 16       | 73            | 34   |
| Plant cover | Short forbs              |         |        |          |               |      |
|             | Tall forbs               | 40      | 24     | 35       | 12            | 28   |
|             | Grass                    | 30      | 8      | 13       | 11            | 15   |
|             | Trees                    | 22      | 34     | 28       | 83            | 42   |
|             | Shrubs/Small trees/Vines | 39      | 46     | 17       | 18            | 30   |
| Temperature | GDD5_sum                 | 15      | 15     | 15       | -2            | 11   |
| 1           | Tsoil_Avg                | 30      | 18     | 16       | 15            | 20   |
|             | Tsoil Max                | 17      | 14     | 15       | 18            | 16   |
|             | Tsoil Min                | 29      | 22     | 19       | 29            | 25   |
|             | Tsurface_Avg             | 14      | 12     | 9        | 11            | 11   |
|             | Tsurface_Max             | 3       | 10     | -2       | 16            | 7    |
|             | Tsurface Min             | 33      | 12     | 32       | 22            | 25   |
| Moisture    | Precipitation            | 1       | 5      | 2        | -6            | 1    |
|             | SoilH20_Avg              | 7       | 24     | 6        | 7             | 11   |
|             | SoilH20 Max              | 16      | 24     | 25       | 4             | 17   |
|             | SoilH20 Min              | 4       | 21     | 19       | 12            | 14   |

Table D2. Predictor importance scores for tall forb random forest models.

|             |                           |         | T      | reatment |               |      |
|-------------|---------------------------|---------|--------|----------|---------------|------|
| Class       | Variable                  | Ambient | Precip | Warm     | Warm + Precip | Mean |
| Plot        | Block                     | 23      | 84     | 40       | 36            | 46   |
|             | Soil density              | 21      | 4      | 39       | 33            | 24   |
|             | Soil pH                   | 22      | 28     | 40       | 28            | 29   |
|             | Soil clay                 | 10      | 27     | 11       | 30            | 19   |
|             | Soil sand                 | 15      | 3      | 12       | 27            | 14   |
|             | Soil silt                 | 11      | 4      | 13       | 35            | 16   |
| Time        | GDD5_year                 | 22      | 20     | 29       | 27            | 24   |
|             | Julian day                | 23      | 12     | 30       | 29            | 24   |
|             | Year                      | 3       | 0      | 15       | 15            | 8    |
| Plant cover | Short forbs<br>Tall forbs | 28      | 14     | 21       | 24            | 22   |
|             | Grass                     | 17      | 6      | 4        | 20            | 12   |
|             | Trees                     | 26      | 50     | 41       | 30            | 37   |
|             | Shrubs/Small trees/Vine   | 47      | 36     | 24       | 28            | 34   |
| Temperature | GDD5 sum                  | 9       | 1      | 12       | 11            | 8    |
| 1           | Tsoil Avg                 | 18      | 22     | 40       | 25            | 26   |
|             | Tsoil Max                 | 13      | 46     | 26       | 22            | 26   |
|             | Tsoil_Min                 | 17      | 46     | 42       | 29            | 34   |
|             | Tsurface_Avg              | 17      | 13     | 13       | 23            | 16   |
|             | Tsurface_Max              | 9       | 9      | 6        | 17            | 10   |
|             | Tsurface Min              | 18      | 37     | 30       | 39            | 31   |
| Moisture    | Precipitation             | 2       | -5     | 5        | 8             | 2    |
|             | SoilH20_Avg               | 24      | 23     | 15       | 28            | 22   |
|             | SoilH20 Max               | 23      | 19     | 8        | 22            | 18   |
|             | SoilH20_Min               | 27      | 19     | 6        | 31            | 21   |

Table D3. Predictor importance scores for grass random forest models.

|             |                          |         | T      | reatment |               |      |
|-------------|--------------------------|---------|--------|----------|---------------|------|
| Class       | Variable                 | Ambient | Precip | Warm     | Warm + Precip | Mean |
| Plot        | Block                    | 48      | 19     | 18       | 42            | 32   |
|             | Soil density             | 21      | 10     | 13       | 11            | 14   |
|             | Soil pH                  | 21      | 11     | 7        | 13            | 13   |
|             | Soil clay                | 49      | 9      | 16       | 63            | 34   |
|             | Soil sand                | 27      | 11     | 11       | 15            | 16   |
|             | Soil silt                | 24      | 11     | 18       | 13            | 16   |
| Time        | GDD5_year                | 20      | 26     | 45       | 18            | 27   |
|             | Julian day               | 23      | 25     | 28       | 21            | 24   |
|             | Year                     | 35      | 35     | 92       | 69            | 58   |
| Plant Cover | Short forbs              | 48      | 25     | 26       | 30            | 32   |
|             | Tall forbs               | 32      | 27     | 31       | 13            | 26   |
|             | Grass                    |         |        |          |               |      |
|             | Trees                    | 26      | 23     | 14       | 17            | 20   |
|             | Shrubs/Small trees/Vines | 27      | 24     | 32       | 47            | 33   |
| Temperature | GDD5_sum                 | 8       | 18     | 12       | 8             | 11   |
| 1           | Tsoil_Avg                | 31      | 20     | 16       | 13            | 20   |
|             | Tsoil_Max                | 21      | 19     | 16       | 13            | 17   |
|             | Tsoil_Min                | 28      | 22     | 15       | 12            | 19   |
|             | Tsurface_Avg             | 15      | 21     | 13       | 12            | 15   |
|             | Tsurface_Max             | 8       | 16     | 8        | 7             | 10   |
|             | Tsurface_Min             | 17      | 24     | 14       | 3             | 15   |
| Moisture    | Precipitation            | 3       | 20     | 9        | 11            | 11   |
|             | SoilĦ20_Avg              | 21      | 21     | 8        | 25            | 19   |
|             | SoilH20_Max              | 18      | 19     | 11       | 25            | 18   |
|             | SoilH20_Min              | 17      | 25     | 22       | 46            | 27   |

Table D4. Predictor importance scores for tree random forest models.

|             |                          |         | T      | reatment |               |      |
|-------------|--------------------------|---------|--------|----------|---------------|------|
| Class       | Variable                 | Ambient | Precip | Warm     | Warm + Precip | Mean |
| Plot        | Block                    | 36      | 35     | 56       | 17            | 36   |
|             | Soil density             | 16      | 14     | 14       | 7             | 13   |
|             | Soil pH ´                | 16      | 11     | 25       | 14            | 16   |
|             | Soil clay                | 34      | 18     | 5        | 5             | 16   |
|             | Soil sand                | 19      | 13     | 5        | 14            | 13   |
|             | Soil silt                | 16      | 15     | 5        | 5             | 10   |
| Time        | GDD5_year                | 26      | 33     | 37       | 59            | 39   |
|             | Julian day               | 17      | 27     | 18       | 19            | 20   |
|             | Year                     | 14      | 5      | 48       | 43            | 28   |
| Plant Cover | Short forbs              | 18      | 14     | 49       | 71            | 38   |
|             | Tall forbs               | 33      | 47     | 37       | 14            | 33   |
|             | Grass                    | 29      | 14     | 7        | 17            | 17   |
|             | Trees                    |         |        |          |               |      |
|             | Shrubs/Small trees/Vines | 30      | 44     | 67       | 64            | 52   |
| Temperature | GDD5_sum                 | 15      | 19     | 8        | 11            | 13   |
| 1           | Tsoil_Avg                | 10      | 24     | 31       | 15            | 20   |
|             | Tsoil_Max                | 9       | 15     | 16       | 10            | 12   |
|             | Tsoil Min                | 14      | 40     | 27       | 16            | 24   |
|             | Tsurface_Avg             | 8       | 14     | 11       | 13            | 12   |
|             | Tsurface Max             | 2       | 7      | 10       | 4             | 6    |
|             | Tsurface Min             | 21      | 25     | 25       | 45            | 29   |
| Moisture    | Precipitation            | 2       | 9      | 1        | 7             | 5    |
|             | SoilH20_Avg              | 13      | 20     | 4        | 15            | 13   |
|             | SoilH20_Max              | 17      | 13     | 8        | 17            | 14   |
|             | SoilH20_Min              | 9       | 18     | 0        | 11            | 9    |

Table D5. Predictor importance scores for shrub/small tree/vine random forest models.

|             |                          |         | T      | reatment |               |      |
|-------------|--------------------------|---------|--------|----------|---------------|------|
| Class       | Variable                 | Ambient | Precip | Warm     | Warm + Precip | Mean |
| Plot        | Block                    | 37      | 78     | 38       | 24            | 44   |
|             | Soil density             | 36      | 4      | 6        | 25            | 17   |
|             | Soil pH                  | 35      | 23     | 59       | 20            | 34   |
|             | Soil clay                | 5       | 6      | 4        | 12            | 7    |
|             | Soil sand                | 19      | 46     | 27       | 32            | 31   |
|             | Soil silt                | 6       | 7      | 32       | 24            | 17   |
| Time        | GDD5_year                | 32      | 84     | 65       | 40            | 55   |
|             | Julian day               | 25      | 20     | 23       | 17            | 21   |
|             | Year                     | 9       | 32     | 17       | 49            | 27   |
| Plant Cover | Short forbs              | 17      | 46     | 16       | 25            | 26   |
|             | Tall forbs               | 81      | 35     | 14       | 22            | 38   |
|             | Grass                    | 12      | 5      | 2        | 18            | 9    |
|             | Trees                    | 38      | 151    | 98       | 110           | 99   |
|             | Shrubs/Small Trees/Vines |         |        |          |               |      |
| Temperature | GDD5_sum                 | 17      | 10     | 18       | 15            | 15   |
| 1           | Tsoil_Avg                | 19      | 19     | 22       | 12            | 18   |
|             | Tsoil Max                | 19      | 15     | 24       | 12            | 18   |
|             | Tsoil Min                | 31      | 20     | 22       | 14            | 22   |
|             | Tsurface_Avg             | 12      | 16     | 26       | 15            | 17   |
|             | Tsurface Max             | 5       | 12     | 17       | 11            | 11   |
|             | Tsurface_Min             | 25      | 8      | 41       | 20            | 23   |
| Moisture    | Precipitation            | 4       | 13     | 3        | 16            | 9    |
|             | SoilH20_Avg              | 21      | 25     | 6        | 12            | 16   |
|             | SoilH20 Max              | 15      | 22     | 20       | 14            | 18   |
|             | SoilH20_Min              | 13      | 16     | 15       | 14            | 14   |

Table D6. Predictor importance scores for total cover random forest models.

|             |                          |         | T      | reatment |               |      |
|-------------|--------------------------|---------|--------|----------|---------------|------|
| Class       | Variable                 | Ambient | Precip | Warm     | Warm + Precip | Mean |
| Plot        | Block                    | 12      | 6      | 15       | 16            | 12   |
|             | Soil Density             | 6       | 5      | 7        | 6             | 6    |
|             | Soil pH                  | 6       | 2      | 5        | 5             | 4    |
|             | Soil clay                | 10      | 1      | 4        | 11            | 6    |
|             | Soil sand                | 5       | 2      | 7        | 6             | 5    |
|             | Soil silt                | 10      | 6      | 6        | 8             | 8    |
| Time        | GDD5_year                | 49      | 67     | 37       | 20            | 43   |
|             | Julian Day               | 21      | 16     | 23       | 33            | 23   |
|             | Year                     | 9       | 10     | 8        | 22            | 12   |
| Plant cover | Short forbs              | 132     | 80     | 90       | 88            | 98   |
|             | Tall forbs               | 38      | 56     | 49       | 38            | 45   |
|             | Grass                    | 39      | 70     | 32       | 39            | 45   |
|             | Trees                    | 37      | 116    | 41       | 86            | 70   |
|             | Shrubs/Small trees/Vines | 48      | 32     | 47       | 53            | 45   |
| Temperature | GDD5 sum                 | 11      | 16     | 5        | 10            | 10   |
| 1           | Tsoil_Avg                | 18      | 12     | 15       | 13            | 15   |
|             | Tsoil Max                | 7       | 14     | 12       | 13            | 12   |
|             | Tsoil Min                | 18      | 24     | 21       | 28            | 23   |
|             | Tsurface_Avg             | 13      | 10     | 25       | 15            | 16   |
|             | Tsurface Max             | 3       | 17     | 8        | 8             | 9    |
|             | Tsurface Min             | 83      | 20     | 65       | 50            | 54   |
| Moisture    | Precipitation            | 12      | 11     | 14       | 7             | 11   |
|             | SoilH20_Avg              | 19      | 10     | 5        | 17            | 13   |
|             | SoilH20 Max              | 17      | 9      | 26       | 9             | 15   |
|             | SoilH20_Min              | 13      | 7      | 13       | 17            | 12   |