Complex Analysis

107021211 鄭竣元

June 2022

1 Cauchy-Riemann equation

A function f(z)=u(x,y)+iv(x,y), z=x+iy is complex differentiable at $z_0=x_0+iy_0$ if and only if u and v are real differentiable at (x_0,y_0) . 也就是說 $u_x=v_y$ 且 $u_y=-v_x$ 等價於 f(z) 在 z_0 可微分。

2 Entire

f(x) is called entire if it is differentiable in all $\mathbb C$ fields.

differentiable 是對點 (z_0) , analytic 是對區域 (open set), entire 是對整個 $\mathbb C$

Ex1. show e^z is entire.

$$e^{z} = e^{x+iy}$$

$$= e^{x}(\cos y + i\sin y)$$

$$= e^{x}\cos y + ie^{x}\sin y$$

check by Cauchy-Riemann equation $u_x=v_y$ and $u_y=-v_x$ is hold on all $\mathbb R$ fields. thus e^z is entire.

Ex2. show e^z is only entire function satisfied

$$f(z_1) + f(z_2) = f(z_1)f(z_2)$$
$$f(x) = e^x, x \in \mathbb{R}$$

let
$$f(z) = g(x,y) + ih(x,y)$$

$$f(z)$$
 is entire, $f'(0) = e^0 = 1$
 $g'(0) + ih'(0) = 1$
then $g'(0) = 1, h'(0) = 0$

thus
$$g(x, y) = x, h(x, y) = 0$$

反向用 Cauchy-Riemann equation,得到:

$$g_x = h_y$$
$$g_y = -h_x$$

we get

$$f''(x) + f(x) = 0$$

所以 $f(x)=c_1sin(x)+c_2cos(x)$,(微分兩次等於自己相反也只有 sin,cos 的產物) 帶入 f'(0)=1,得到 $c_1=1,c_2=i\longrightarrow f(z)=e^z$

3 Convergence of complex series

Thm1

$$\sum a_n z^n = A(z)$$
 is Convergence at radius R_1
 $\sum b_n z^n = B(z)$ is Convergence at radius R_2
 $\Rightarrow \sum_{n=0}^{\infty} (\sum_{k=0}^{n} a_n \cdot b_{n-k}) z^n = A(z) \cdot B(z)$ is Convergence at radius $min(R_1, R_2)$ proof: 爆破斜線排在一起

Thm2

power series 微分後收斂半徑不變,且無限可微 hint: 展開微分用原本的 R 作 Convergence test

Thm3 (uniqueness) 當 $f(z) = \sum_{n=0}^{\infty} c_n z^n$ 满足

- 1. 存在非 0 數列 $\{z_n\}$, 且 $\lim_{n\to\infty}z_n=0$
- 2. 對於所有 z_n , $f(z_n) = 0$

則 $f(z) \equiv 0$ (identical zero) ($\{c_n\} = 0$ 對所有 n) * 推廣: 到任何常數 c 也可以 (g(z) = f(z) + c)

*** 他告訴了我們如果兩個 analytic function 在一個 accumulated point 相等, 則兩個 function 相等

Thm3.1: uniqueness of analytic function 如果兩個 analytic function 在一個收斂數列處處相等,則兩個 function 相等。

4 Accumulated point

A point z_0 is called an accumulated point of a set E if every neighborhood of z_0 contains at least one point of E different from z_0 itself. (可透過收縮 open set 找到一串收斂數列即 $\{d_n\}$, d_{n+1} 在半徑為 $d(d_n, z_0)$ 的 openball 裡面找)

5 M-L formula

if f(z) is continuous on a curve γ with length L, and if $|f(z)| \leq M$ on γ , then

$$|\int_{\gamma} f(z)dz| \le ML$$

6 analytic function

幾個 analytic function 的性質

- 1. f(z) is analytic at z_0 if and only if f(z) can be represented by a convergent power series in some neighborhood of z_0 .
- 2. 如果 f(z) 在一個區域 z_0 內解析,則 f(z) 在 z_0 內無限可微。(power series 微分後收斂半徑不變,且無限可微)

所以解析函數 == 無限可微函數 = power series (複數空間的微分超強特性)

7