Unit 13 Electrochemistry
Electrochemistry

Page 1 of 8

Date		
LINTA		
Date		

What is Oxidation?

Where does the name come from?

What is Reduction?

Where does the name come from?

What is a redox reaction?

Oxidizing Agent

Reducing agent

$$Zn(s) + 2HCl(aq) \rightleftharpoons Zn^{2+}(aq) + 2Cl^{-}(aq) + H2(g)$$

How can we know if something is being oxidized or reduced?

y

Page 2 of 8

T .		
Date		

Oxidation Numbers

The imaginary charge an atom would have if the shared electrons were divided equally between identical atoms bonded covalently to each other.

D 1	o		• 1 4•	
Killes	tor	assigning	oxidation	numbers
110100			Ommende	II CHIIIN CI D

1)

2)

3)

4)

5)

Assign Oxidation numbers to bromine in the following species:

Br-

 ${\rm BrO_4^-}$

BrO-

 $Br_2 \\$

 BrO_2^-

NaBr

BrO₃-

KBrO

Which of the following are oxidation-reduction reactions? Identify how each species is changing and the agents involved in the change.

Oxidized	Oxidizing Agent	
Reduced	Reducing Agent	
	$HCl + NaOH \rightleftharpoons NaCl + H_2O$	
Oxidized	Oxidizing Agent	
Reduced	Reducing Agent	
	$CH_4 + O_2 \rightleftharpoons CO_2 + H_2O$	
Oxidized	Oxidizing Agent	
Reduced	Reducing Agent	
	$N_2 + 2O_2 \rightleftharpoons 2NO_2$	
Oxidized	Oxidizing Agent	
Reduced	Reducing Agent	
	$Cr_2O_7^{2-} + OH^- \rightleftharpoons 2CrO_4^{2-} + H_2O$	
Oxidized	Oxidizing Agent	
Reduced	Reducing Agent	

Unit 13 Electrochem	istrv
---------------------	-------

Page 4 of 8

Date_____

Balancing Redox Equations

Rules for Balancing Redox Equations in Acid

1)

2)

3)

4)

5)

6)

7)

Balance the following redox equations in acid:

1)
$$Cr + NO_3^- \rightleftharpoons Cr^{3+} + NO$$

2) Al +
$$MnO_4^- \rightleftharpoons Al^{3+} + Mn^{2+}$$

3)
$$SO_3^{2-} + MnO_4^- \rightleftharpoons SO_4^{2-} + Mn^{2+}$$

4)
$$Cr_2O_7^{2-} + Br^- \rightleftharpoons Cr^{3+} + Br_2$$

5)
$$Cl_2 \rightleftharpoons ClO^- + Cl^-$$

Balancing Redox Equations

Rules for Balancing Redox Equations in base

- 1)
- 2)
- 3)
- 4)
- 5)
- 6)
- 7)

Balance the following redox equation in base:

$$PO_3^{3-} + MnO_4^- \rightleftharpoons PO_4^{3-} + MnO_2$$

y

Page 7 of 8

Date		

Electrochemical Cells

Any device in which a redox reaction occurs is an Electrochemical Cell

The Daniell Cell

	Left side	Right side
Half Reaction		
Change		
Electrode		
Charge on electrode		
Ion Flow from Salt Bridge		

What is the purpose of the salt bridge?

$$Zn + Cu^{2+} \rightleftarrows Cu + Zn^{2+}$$

Page 8 of 8 Standard Reduction Potentials @ 25°C

Half – Reaction E° (Volts)				
F_2	+2e⁻ →	2F-	+ 2.87	
$H_2O_2 + 2H^+$	+2e⁻ →	$2H_2O$	+ 1.77	
$4H^+ + SO_4^{2-} + PbO_2$	+2e⁻ →	$PbSO_4 + 2H_2O$	+ 1.68	
MnO ₄ -+ 8H+	+5e⁻ →	$Mn^{2+} + 4H_2O$	+ 1.52	
Au ³⁺	+3e⁻ →	Au	+ 1.50	
$Cl_{2(g)}$	+2e⁻ →	2Cl-	+ 1.36	
$Cr_2O_7^{2-} + 14H^+$	+6e⁻ →	$2Cr^{3+} + 7H_2O$	+ 1.33	
$MnO_2 + 4H^+$	+2e⁻ →	$Mn^{2+} + 2 H_2O$	+ 1.28	
$1/2O_{2(g)} + 2H^+$	+2e⁻ →	H_2O	+ 1.23	
Br _{2(l)}	+2e⁻ →	2Br-	+ 1.06	
$NO_3^- + 4H^+$	+3e ⁻ →	$NO_{(g)} + 2 H_2O$	+ 0.96	
Ag ⁺	+ e ⁻ →	Ag	+ 0.80	
$NO_3^- + 2H^+$	+ e ⁻ →	$NO_{2(g)} + H_2O$	+ 0.78	
Fe ³⁺	+ e ⁻ →	Fe ²⁺	+ 0.77	
$O_{2(g)} + 2H^+$	+2e⁻ →	H_2O_2	+ 0.68	
I_2	+2e⁻ →	2I-	+ 0.53	
Cu+	+ e⁻ →	Cu	+ 0.52	
Cu^{2+}	+2e⁻ →	Cu	+ 0.34	
$SO_4^{2-} + 4H^+$	+2e⁻ →	$SO_{2(g)} + 2H_2O$	+ 0.17	
Cu^{2+}	+ e⁻ →	Cu ⁺	+ 0.15	
Sn ⁴⁺	+2e⁻ →	Sn ²⁺	+ 0.15	
$1/8S_8 + 2H^+$	+2e⁻ →	$H_2S_{(g)}$	+ 0.14	
2H ⁺	+2e⁻ →	$H_{2(g)}$	0.00	
Pb ²⁺	+2e ⁻ →	Pb	-0.13	
Sn ²⁺	+2e ⁻ →	Sn	-0.14	
Ni ²⁺	+2e⁻ →	Ni	-0.25	
Co ²⁺	+2e ⁻ →	Со	-0.28	
PbSO ₄	+2e⁻ →	$Pb + SO_4^{2-}$	-0.36	
Cr ³⁺	+ e ⁻ →	Cr ²⁺	-0.41	
Fe ²⁺	+2e ⁻ →	Fe	-0.44	
Ag_2S	+2e⁻ →	$2Ag + S^{2-}$	- 0.69	
Cr ³⁺	+3e ⁻ →	Cr	-0.74	
Zn ²⁺	+2e⁻ →	Zn	-0.76	
2H ₂ O	+2e⁻ →	$H_{2(g)} + 2OH^-$	-0.83	
Mn ²⁺	+2e⁻ →	Mn	- 1.18	
Al ³⁺	+3e ⁻ →	Al	- 1.66	
Ti ²⁺	+2e⁻ →	Ti	- 1.75	
Mg ²⁺	+2e⁻ →	Mg	-2.37	
Na ⁺	+ e ⁻ →	Na	- 2.71	
Ca ²⁺	+2e⁻ →	Ca	- 2.87	
Sr ²⁺	+2e⁻ →	Sr	- 2.89	
Ba ²⁺	+2e⁻ →	Ba	- 2.90	
Cs+	+ e ⁻ →	Cs	- 2.92	
K ⁺	+ e⁻ →	K	- 2.92	
Li ⁺	+ e⁻ →	Li	- 3.00	