Министерство науки и высшего образования Российской Федерации НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ (НИ ТГУ)

Физический факультет

Лабораторная работа №1-8

Определение теплоёмкости твёрдых тел калориметрическим методом

Руководитель: канд. физ.-мат. наук Конов И. А. Работу выполнили: Левин Н. Н. Высоцкий М. Ю. гр. 052101

1 Теоретическое введение

Цель работы: определение теплоёмкости образцов металлов калориметрическим методом с использованием электрического нагрева.

1.1 Теория метода. Закон Дюлонга – Пти. Закон Джоуля – Коппа

Из теории идеального газа известно, что средняя кинетическая энергия, приходящаяся на одну степень свободы молекулы, равна:

$$\langle \varepsilon_i \rangle = \frac{1}{2} kT$$

Тогда среднее значение полной энергии частицы при колебательном движении в узлах кристаллической решётки будет равна:

$$\varepsilon = 3\left(\frac{kT}{2} + \frac{kT}{2}\right) = 3kT$$

Здесь учитывается факт, что атом в кристалле имеет три колебательные степени свободы, и на каждую приходится энергия, равная kT (по $\frac{kT}{2}$ на кинетическую и потенциальную соответственно).

Полную энергию одного моля газа можно найти, помножив среднюю энергию одной частицы на число Авогадро:

$$U_{\mu} = \varepsilon N_A = 3kN_A T = 3RT,\tag{1}$$

где R — универсальная газовая постоянная, равна 8,314 $\frac{\mathcal{Д}ж}{\text{моль}*K}$. Так как теплоёмкости C_V и C_P мало различимы для твердых тел, в

Так как теплоёмкости C_V и C_P мало различимы для твердых тел, в следствие малого коэффициента теплового расширения, молярная теплоёмкость твердого тела будет равна:

$$C_{\mu} = \frac{\partial U_{\mu}}{\partial T} = 3R = 29,94 \frac{Дж}{\text{моль} * K}$$
 (2)

Выражение (2) называется законом Дюлонга и Пти.

Для химических соединений справедлив закон Джоуля – Коппа - закон, описывающий теплоёмкость сложных (состоящих из нескольких химических элементов) кристаллических тел. Он основан на законе (2).

Формулировка закона такова: Каждый атом в молекуле имеет три колебательных степени свободы и обладает энергией $\varepsilon = 3kT$. Соответственно, молекула из n атомов обладает в n раз большей энергией:

$$\varepsilon = 3nkN_A = 3nR$$

Иными словами, молярная теплоёмкость вещества равна сумме теплоёмкостей составляющих его химических элементов. Важно отметить, что закон Джоуля – Коппа выполняется даже для кристаллов, содержащих в своей структуре не подчиняющиеся закону Дюлонга – Пти химические элементы.

При $T \to 0$, теплоёмкость также $C \to 0$. Вблизи абсолютного нуля, C_{μ} всех тел пропорциональна T^3 . И лишь при достаточного высокой температуре, характерной для каждого вещества, начинает выполняться закон (2). Данную особенность теплоёмкостей твердых тел при низких температурах описывают **квантовой теории теплоёмкости** Эйштейна и Дебая.

1.2 Калориметрический метод

Для экспериментального определения теплоёмкости исследуемое тело помещается в калориметр, нагреваемый электрическим током. Если температуру калориметра (без образца) медленно увеличивать, то энергия тока за время τ пойдет на нагревание пустого калориметра. Выполняется закон сохранения энергии:

$$IU_{\tau} = m_0 c_0 T + \Delta Q,\tag{3}$$

где I,U ток и напряжение нагревателя, τ - время нагревания, m_0 - масса пустого калориметра, c_0 - удельная теплоемкость пустого калориметра, ΔQ - потери тепла в теплоизоляцию калориметра и в окружающее пространство. Выразив τ из (3) и построив график зависимости $\tau(T)$, мы увидим, что тангенс угла наклона этой зависимости

$$\tau = \frac{m_0 c_0}{IU} T + \frac{\Delta Q}{IU}$$

$$tg(\alpha_0) = K_0 = \frac{m_0 c_0}{IU} = \frac{C_0}{IU}$$
(4)

позвляет нам найти теплоёмкость пустого калориметра:

$$C_0 = K_0 IU$$

Нагревая калориметр с образцом внутри, мы можем снова записать закон сохранения энергии:

$$IU\tau_0 = m_0 c_0 \Delta T + mc \Delta T + \Delta Q, \tag{5}$$

где m - масса образца, c - удельная теплоёмкость образца.

Также выразив τ из (5) и построив график, увидим, что у угловой коэффициент также связан с теплоёмкостью, только в этом случае - теплоёмкостью образца:

$$\tau = \frac{m_0 c_0 + mc}{IU} T + \frac{\Delta Q}{IU}$$

$$tg(\alpha) = K = \frac{m_0 c_0 + mc}{IU} T = \frac{C_0 + mc}{IU}$$
(6)

Из (4) и (6) получим выражения для удельной и молярной теплоёмкости образца:

$$KIU - C_0 = mc = C; c = \frac{KIU - C_0}{m}$$
 (7)

$$C_{\mu} = c * \mu = \frac{(KIU - C_0)\mu}{m}$$
 (8)

2 Ход эксперимента

Для определения теплоёмкостей представленных образцов мы пользовались калориметром. Для начала мы понизили температуру рабочей области установки посредством помещения в неё целофанового пакета со снегом. После установления температуры на отметке 35° C, мы начали нагревать пустой калориметр посредством включения соответствующего тумблера на установке, предварительно выставив значения напряжения и силы тока соответственно: $U=15~\mathrm{B};\ I=0.6~\mathrm{A}.$

Вышеперечисленная последовательность действий была произведена повторно для двух образцов: дюраль и латунь.

Образец	t_1, c	t_2, c	t_3, c	t_4, c	t_5, c	t_6, c	t_7, c	t_8, c	$t_{ m cp}, c$	$t_{\text{общ}}, c$
Пустой	13,83	13,71	12,1	11,32	10,23	10,85	10,74	9,75	11,56625	$92,\!53$
Дюраль	13,38	12,43	11,46	10,79	12,42	$10,\!28$	11,89	$12,\!56$	11,90125	$95,\!21$
Латунь	11,92	11,49	11,51	11,52	10,95	11,84	11,18	8,84	11,15625	$89,\!25$

Образец	Масса образца, кг	Атомная масса, $\frac{\text{кг}}{\text{моль}}$
Дюраль	0,04621	$26,98*10^{-3}$
Латунь	0,13857	$63,57*10^{-3}$

Используя полученные данные, мы построили три графика зависимости времени от температуры:

Рис. 1: График зависимости t от Т для пустого калориметра

Рис. 2: График зависимости t от T для дюралюминия

Рис. 3: График зависимости t от Т для латуни

Проанализировав полученные кривые, мы можем сказать, что в каждом конкретном случае образер нагревался неравномерно, что может быть связано с непостоянством отдачи тепла от нагревательного элемента калориметру.

Далее, по ходу работы, нам было необходимо определить тангенсы углов наклона полученных графиков. Для их нахождения мы использовали линии тренда, а также определение тангенса. Полученные значения для каждого из трех случаев представлены ниже:

Образец	$tg(\alpha)$
Пустой	11,56625
Дюраль	11,90125
Латунь	11,15625

После нахождения тангенса угла наклона мы определили C_0 из соотношения - $C_0 = K_0 IU$, а также, используя формулы (7) и (8), C_μ и c для дюрали и латуни соответственно:

$$C_0 \pm \Delta C_0 = 104 \pm 1 \frac{\Pi \times \Omega}{c}$$

Образец	$C_{\mu} \pm \Delta C_{\mu}, rac{\mathcal{I}_{Ж}}{_{МОЛЬ*c}}$	$c \pm \Delta c, \frac{Дж}{кг*c}$
Дюраль	$1,7 \pm 0,4$	65 ± 13
Латунь	$-1,6 \pm 0,3$	-26 ± 4

Если принять, что измерения, последовательность действий и расчеты верны, то данные значения будут конечными в данной работе, т.к. указанные выше величины являются искомыми. Однако, у нас появились некоторые сомнения, касательно результатов полученных для латуни.

В следуещем пункте мы оценим погрешности измерений, а после попробуем разобраться в вызвавшем сомнения моменте.

3 Погрешности измерений

Следуя рекомендациям из методических материалов, для определения погрешностей теплоемкостей мы будем учитывать систематические погрешности выставленных напряжения и силы тока, а также косвенные погрешности определенных с помощью графиков значений K и K_0 .

$$\Delta C_0 = \sqrt{\Delta K_0^2 + \Delta I^2 + \Delta U^2},$$

где $\Delta K_0 = 0.125, \, \Delta I = 0.01 \,\, \mathrm{A}, \, \Delta U = 1 \,\, \mathrm{B}.$

Откуда

$$\Delta C_0 = 1 \frac{\Pi_{\mathcal{K}}}{c}$$

Проведем идентичные действия для ΔKIU :

$$\Delta KIU = 1,17\frac{\text{Дж}}{\text{c}}$$

Далее, с помощью указанной в методических материалах формулы для определения ΔC , найдем необходимую погрешность.

$$\Delta C = \sqrt{(\Delta KIU)^2 - (\Delta C_0)^2}$$

Откуда

$$\Delta C = 0.6 \frac{\text{Дж}}{c}$$

С помощью простых вычислений частных производных соответственно найдем ΔC_{μ} и Δc .

$$\Delta c_1 = 13 \frac{\text{Дж}}{\text{KE * } c};$$

$$\Delta c_2 = 4 \frac{\text{Дж}}{\text{KE} * c};$$

$$\Delta C_{\mu 1} = 0, 4 \frac{\text{Дж}}{\text{моль} * c};$$

$$\Delta C_{\mu 2} = 0, 3 \frac{\text{Дж}}{\text{модь} * c},$$

где Δc_1 и Δc_2 - косвенные погрешности для удельных теплоемкостей дюрали и латуни соответственно, $\Delta C_{\mu 1}$ и $\Delta C_{\mu 2}$ - косвенные погрешности для молярных теплоемкостей дюрали и латуни соответственно.

4 Вывод

Даже с учетом погрешностей, полученные для латуни теплоемкости остаются среди отрицательных значений. Это говорит о том, следуя определению теплоемкости, что в данном случае при подведении тепла к образцу, температура уменьшается.

Заинтересованные данным фактом, мы изучили некоторые открытые источники в интернете, связанные с данной темой. Оказалось, что данное явление отрицательной теплоемкости свойственно газам в некоторых специфических условиях, что не подходит в нашем случае, т.к. мы работаем с металлами.

Также следует заметить, что из полученных результатов наблюдается явное невыполнение закона Дюлонга-Пти, а также закона Джоуля-Коппа, т.к. в случае его выполнения множитель n был бы дробным, что невозможно, потому что данный множитель обозначает количество атомов в молекуле вещества (очевидно, что данная величина не может быть дробной).

Учитывая вышесказанные заключения, было принято решение оценить выполнимость классического приближения, с точки зрения квантовой теории.

По принципу неопределенности Гейзенберга:

$$\Delta p_x \Delta a_x \gg \hbar$$
,

где Δp_x - импульс атома (характеризует кинетическую энергию), Δa_x - отклонение атома от положения равновесия (потенциальная энергия), \hbar - приведенная постоянная Планка.

Согласно теореме о распределении внутренней энергии, мы можем приравнять Δp_x и Δa_x к $\frac{1}{2}kT$ поочередно:

$$\Delta p_x = \frac{1}{2}kT$$

$$\Delta a_x = \frac{1}{2}kT$$

Откуда

$$<\Delta p_x> = \sqrt{mkT}$$

 $<\Delta a_x> = \sqrt{\frac{kT}{\alpha}}$

Перемножим получившиеся величины:

$$\Delta p_x \Delta a_x \cong kT \sqrt{\frac{m}{\alpha}}$$

Или

$$kT \gg \hbar\omega$$
,

где ω - частота колебаний атома около положения равновесия, α - коэффициент упругости.

Таким образом значение T должно быть много больше некоторого значения $\theta = \frac{\hbar \omega}{k}$ - характерной температуры. Здесь k - постоянная Больцмана.

Расчеты по данным формулам не привели к положительному результату, поэтому было рассмотрено представление данных рассуждений с помощью коэффициента изотермического сжатия γ . Представленное ниже соотношение выводится при рассмотрении упругой силы, действующей на один атом:

$$\alpha = \frac{3a}{\gamma}$$

Откуда

$$\omega = \sqrt{\frac{3a}{\gamma m}},$$

где a - межатомное расстояние, m - масса одного атома (в нашем случае молекулы).

Значение величины а будет определяться равенством:

$$a = \sqrt[3]{\frac{m}{\rho}},$$

где ρ - плотность вещества.

Таким образом для численной оценки θ нам понадобятся значения γ, ρ, m , которые представлены в таблице для каждого образца соответственно:

Образец	$\gamma * 10^-13, \frac{\text{см}^2}{\text{дин}}$	$ ho, \frac{\Gamma}{\mathrm{cm}^3}$	$m*10^{-}23,$ г
Дюраль	14,6	2,8	28,17
Латунь	12, 16	8,73	21,39

Все значения, представленные выше, были получены из соответствующих таблиц, найденных в интернете. Также, размерности дынных величин представлены в системе СГС для простоты вычислений.

После всех вышеперечисленных рассуждений и рассчетов, мы получили соответсвующие значения θ для каждого из образцов.

Образец	θ, K
Дюраль	140,66
Латунь	139,74

Таким образом, чтобы выполнялось классическое приближение, необходимо, чтобы температуры рассматриваемых образцов были выше, чем соответствующие характерные температуры, а именно:

$$T_1 > 140,66K$$

$$T_2 > 139,74K$$

Если перевести в шкалу Цельсия:

$$\bar{t}_1 > -132,34^{\circ}C$$

$$\bar{t}_2 > -133,26^{\circ}C$$

Если проанализировать получившиеся температуры, то можно сказать, что классические приближения начнут выполняться для обоих образцов примерно в одно и то же время (разность характерных температур равна порядка одного градуса).

Учитывая данное исследование, мы делаем вывод, что в данной лабораторной работе выполняются необходимые условия для справедливости классических приближений, однако ответ на поставленный в начале вывода вопрос, касательно отрицательной теплоемкости, так и не был найден.

Мы предполагаем, что объяснение данного явления может содержаться в более глубоких разделах квантовой механики, знаний о которых у нас пока что, к сожалению, нет.