Introduction to MapReduce/Hadoop

Thomas Heinis

Imperial College London

Typical Large-Data Problem

- Iterate over a large number of records
- Extract something of interest from each
- Shuffle and sort intermediate results
- Aggregate intermediate results
- Generate final output
- The problem:
 - Diverse input format (data diversity & heterogeneity)
 - Large Scale: Terabytes, Petabytes
 - Parallelization

How to leverage a number of cheap off-the-shelf computers?

Divide and Conquer

Parallelization Challenges

- How do we assign work units to workers?
- What if we have more work units than workers?
- What if workers need to share partial results?
- How do we aggregate partial results?
- How do we know all the workers have finished?
- What if workers die?

Parallelization

- Parallelization problems arise from:
 - Communication between workers (e.g., to exchange state)
 - Access to shared resources (e.g., data)
- Thus, we need a synchronization mechanism

Managing Multiple Workers

Difficult because

- We don't know the order in which workers run
- We don't know when workers interrupt each other
- We don't know the order in which workers access shared data

Thus, we need:

- Semaphores (lock, unlock)
- Conditional variables (wait, notify, broadcast)
- Barriers

• Still, lots of problems:

Deadlock, livelock, race conditions...

Current Tools

- Programming models
 - Shared memory (pthreads)
 - Message passing (MPI)
- Design Patterns
 - Master-slaves
 - Producer-consumer flows
 - Shared work queues

Concurrency Challenge!

- Concurrency is difficult to reason about
- Concurrency is even more difficult to reason about
 - At the scale of datacenters (even across datacenters)
 - In the presence of failures
 - In terms of multiple interacting services
- Not to mention debugging...
- The reality:
 - Lots of one-off solutions, custom code
 - Write you own dedicated library,
 then program with it
 - Burden on the programmer to explicitly manage everything

What's the point?

It's all about the right level of abstraction

- The traditional architecture has served us well, but is no longer appropriate for the multi-core/cluster environment
- Hide system-level details from the developers
 - No more race conditions, lock contention, etc.

Separating the what from how

- Developer specifies the computation that needs to be performed
- Execution framework ("runtime") handles actual execution

Key Ideas

- Scale "out", not "up"
 - Limits of single machines and large shared-memory machines
- Move processing to the data
 - Cluster have limited bandwidth
- Process data sequentially, avoid random access
 - Seeks are expensive, disk throughput is reasonable
- Seamless scalability
 - From the mythical man-month to the tradable machine-hour

Apache Hadoop

Scalable fault-tolerant distributed system for Big Data:

- Data Storage
- Data Processing
- A virtual Big Data machine
- Borrowed concepts/Ideas from Google; Open source under the Apache license

Core Hadoop has two main systems:

- Hadoop/MapReduce: distributed big data processing infrastructure (abstract/paradigm, fault-tolerant, schedule, execution)
- HDFS (Hadoop Distributed File System):
 fault-tolerant, high-bandwidth, high availability
 distributed storage

MapReduce: Big Data Processing Abstraction

Typical Large-Data Problem

- Iterate over a large number of records
 - Extract something of interest from each
 - Shuffle and sort intermediate results
 Aggregate intermediate results

 - Generate final output

Key idea: provide a functional abstraction for these two operations

Roots in Functional Programming

MapReduce

Programmers specify two functions:

```
map (k, v) \rightarrow [(k', v')]
reduce (k', [v']) \rightarrow [(k', v')]
```

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

Key Observation from Data Mining Algorithms

- Popular algorithms have a common loop
- Can be used as the basis for supporting a common middleware
- Target distributed memory parallelism, shared memory parallelism, and combination
- Ability to process large
 and disk-resident datasets

```
while() {
 forall( data instances d) {
    I = process(d)
   R(I) = R(I) <u>op</u> d
```


MapReduce

Programmers specify two functions:

```
map (k, v) \rightarrow \langle k', v' \rangle^*
reduce (k', v') \rightarrow \langle k', v' \rangle^*
```

- All values with the same key are sent to the same reducer
- The execution framework handles everything else...

What's "everything else"?

MapReduce "Runtime"

- Handles scheduling
 - Assigns workers to map and reduce tasks
- Handles "data distribution"
 - Moves processes to data
- Handles synchronization
 - Gathers, sorts, and shuffles intermediate data
- Handles errors and faults
 - Detects worker failures and restarts
- Everything happens on top of a distributed filesystem (later)

MapReduce

Programmers specify two functions:

```
map (k, v) \rightarrow [(k', v')]
reduce (k', [v']) \rightarrow [(k', v')]
```

- All values with the same key are reduced together
- The execution framework handles everything else...
- Not quite...usually, programmers also specify:

```
partition (k', number of partitions) \rightarrow partition for k'
```

- Often a simple hash of the key, e.g., hash(k') mod n
- Divides up key space for parallel reduce operations **combine** $(k', [v']) \rightarrow [(k', v'')]$
- Mini-reducers that run in memory after the map phase
- Used as an optimization to reduce network traffic

MapReduce can refer to...

- The programming model
- The execution framework (aka "runtime")
- The specific implementation

Usage is usually clear from context!

"Hello World": Word Count

```
Map(String docid, String text):
    for each word w in text:
        Emit(w, 1);

Reduce(String term, Iterator<Int> values):
    int sum = 0;
    for each v in values:
        sum += v;
    Emit(term, sum);
```

MapReduce Implementations

- Google has a proprietary implementation in C++
 - Bindings in Java, Python
- Hadoop is an open-source implementation in Java
 - Development led by Yahoo, used in production
 - Now an Apache project
 - Rapidly expanding software ecosystem
- Lots of custom research implementations
 - For GPUs, cell processors, etc.

Hadoop History

- Dec 2004 Google GFS paper published
- Feb 2006 Becomes Lucene subproject
- Apr 2007 Yahoo! on 1000-node cluster
- Jan 2008 An Apache Top Level Project
- Jul 2008 A 4000 node test cluster
- Sept 2008 Hive becomes a Hadoop subproject
- **Feb 2009** The Yahoo! Search Webmap is a Hadoop application that runs on more than 10,000 core Linux cluster and produces data that is now used in every Yahoo! Web search query.
- June 2009 On June 10, 2009, Yahoo! made available the source code to the version of Hadoop it runs in production.
- In 2010 Facebook claimed that they have the largest Hadoop cluster in the world with 21 PB of storage. On
- ²⁶ July 27, 2011 they announced the data has grown to 30 PB.

Who uses Hadoop?

- Amazon/A9
- Facebook
- Google
- IBM
- Joost
- Last.fm
- New York Times
- PowerSet
- Veoh
- Yahoo!

Example Word Count (Map)

```
public static class TokenizerMapper
   extends Mapper<Object, Text, Text, IntWritable>{
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();
  public void map(Object key, Text value, Context context
           ) throws IOException, InterruptedException {
   StringTokenizer itr = new StringTokenizer(value.toString());
   while (itr.hasMoreTokens()) {
    word.set(itr.nextToken());
    context.write(word,one);
```

Example Word Count (Reduce)

```
public static class IntSumReducer
   extends Reducer<Text,IntWritable,Text,IntWritable> {
 private IntWritable result = new IntWritable();
 public void reduce(Text key, Iterable<IntWritable> values,
            Context context
            ) throws IOException, InterruptedException {
  int sum = 0;
  for (IntWritable val : values) {
   sum += val.get();
  result.set(sum);
  context.write(key, result);
```

Example Word Count (Driver)

```
public static void main(String[] args) throws Exception {
 Configuration conf = new Configuration();
 String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
 if (otherArgs.length != 2) {
  System.err.println("Usage: wordcount <in> <out>");
  System.exit(2);
 Job job = new Job(conf, "word count");
 job.setJarByClass(WordCount.class);
 job.setMapperClass(TokenizerMapper.class);
 job.setCombinerClass(IntSumReducer.class);
 job.setReducerClass(IntSumReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);
 FileInputFormat.addInputPath(job, new Path(otherArgs[0]));
 FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));
 System.exit(job.waitForCompletion(true) ? 0 : 1);
```

Word Count Execution

An Optimization: The Combiner

- A combiner is a local aggregation function for repeated keys produced by same map
- For associative ops. like sum, count, max
- Decreases size of intermediate data

Example: local counting for Word Count:

```
def combiner(key, values):
  output(key, sum(values))
```

Output

Word Count with Combiner

Input Map & Combine Shuffle & Sort Reduce the, 1 brown, 1 the quick brown, 2 fox, 1 Map brown fox fox, 2 how, 1 Reduce now, 1 the, 3 the, 2 fox, 1 the fox ate Map the mouse quick, 1 how, 1 ate, 1 now, 1 ate, 1 cow, 1 brown, 1 mouse, 1 Reduce mouse, 1 how now quick, 1 Map cow, 1 brown cow

How do we get data to the workers?

Distributed File System

- Don't move data to workers... move workers to the data!
 - Store data on the local disks of nodes in the cluster
 - Start up the workers on the node that has the data local

Why?

- Not enough RAM to hold all the data in memory
- Disk access is slow, but disk throughput is reasonable
- A distributed file system is the answer
 - GFS (Google File System) for Google's MapReduce
 - HDFS (Hadoop Distributed File System) for Hadoop

GFS: Assumptions

- Commodity hardware over "exotic" hardware
 - Scale "out", not "up"
- High component failure rates
 - Inexpensive commodity components fail all the time
- "Modest" number of huge files
 - Multi-gigabyte files are common, if not encouraged
- Files are write-once, mostly appended to
 - Perhaps concurrently
- Large streaming reads over

random access

High sustained throughput over low latency

GFS: Design Decisions

- Files stored as chunks
 - Fixed size (64MB)
- Reliability through replication
 - Each chunk replicated across 3+ chunkservers
- Single master to coordinate access, keep metadata
 - Simple centralized management
- No data caching
 - Little benefit due to large datasets, streaming reads
- Simplify the API
 - Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas)

From GFS to HDFS

- Terminology differences:
 - GFS master = Hadoop namenode
 - GFS chunkservers = Hadoop datanodes
- Functional differences:
 - HDFS performance is (likely) slower

For the most part, we'll use the Hadoop terminology...

HDFS Workflow

HDFS Architecture

SecondaryNameNode: Periodic merge of Transaction log

40

Distributed File System

- Single Namespace for entire cluster
- Data Coherency
 - Write-once-read-many access model
 - Client can only append to existing files
- Files are broken up into blocks
 - Typically 64MB block size
 - Each block replicated on multiple DataNodes
- Intelligent Client
 - Client can find location of blocks
 - Client accesses data directly from DataNode

HDFS Architecture

NameNode Metadata

Meta-data in Memory

- The entire metadata is in main memory
- No demand paging of meta-data

Types of Metadata

- List of files
- List of Blocks for each file
- List of DataNodes for each block
- File attributes, e.g creation time, replication factor

A Transaction Log

Records file creations, file deletions. etc

Namenode Responsibilities

- Managing the file system namespace:
 - Holds file/directory structure, metadata, file-to-block mapping, access permissions, etc.
- Coordinating file operations:
 - Directs clients to datanodes for reads and writes
 - No data is moved through the namenode
- Maintaining overall health:
 - Periodic communication with the datanodes
 - Block re-replication and rebalancing
 - Garbage collection

DataNode

A Block Server

- Stores data in the local file system (e.g. ext3)
- Stores meta-data of a block (e.g. CRC)
- Serves data and meta-data to Clients

Block Report

 Periodically sends a report of all existing blocks to the NameNode

Facilitates Pipelining of Data

Forwards data to other specified DataNodes

Block Placement

- Current Strategy
 - One replica on local node
 - Second replica on a remote rack
 - Third replica on same remote rack
 - Additional replicas are randomly placed
- Clients read from nearest replica
- Would like to make this policy pluggable

Data Correctness

Use Checksums to validate data

- Use CRC32

File Creation

- Client computes checksum per 512 byte
- DataNode stores the checksum

File access

- Client retrieves the data and checksum from DataNode
- If Validation fails, Client tries other replicas

NameNode Failure

- A single point of failure
- Transaction Log stored in multiple directories
 - A directory on the local file system
 - A directory on a remote file system (NFS/CIFS)
- Need to develop a real decentralized solution

Putting everything together...

MapReduce Data Flow

