YaleNUSCollege

YSC2239 Lecture 4

Today's class

- Census data
- Charts
- Histograms

• Reading: Chapter 6.3, 6.4, 7

Census Data

The Decennial Census

- Every ten years, the Census Bureau counts how many people there are in the U.S.
- In between censuses, the Bureau estimates how many people there are each year.
- Article 1, Section 2 of the Constitution:
 - "Representatives and direct Taxes shall be apportioned among the several States ... according to their respective Numbers ..."

Census Table Description

- Values have column-dependent interpretations
 - The SEX column: 1 is Male, 2 is Female
 - The POPESTIMATE 2010 column: 7/1/2010 estimate
- In this table, some rows are sums of other rows
 - The SEX column: 0 is Total (of Male + Female)
 - The AGE column: 999 is *Total* of all ages
- Numeric codes are often used for storage efficiency
- Values in a column have the same type, but are not necessarily comparable (AGE 12 vs AGE 999)

Analyzing Census Data

Leads to the discovery of interesting features and trends in the population

(Demo)

Numerical Data

Plotting Two Numerical Variables

Line graph: plot

Scatter plot: scatter

When to use a line vs scatter plot?

- Use line plots for sequential data: if...
 - ...your x-axis has an order
 - ...sequential differences in y values are meaningful
 - ...there's only one y-value for each x-value
 - Usually: x-axis is time or distance

- Use scatter plots for non-sequential data
 - When you're looking for associations

Categorical Data

(Demo)

How Do You Generate This Chart?

Terminology

- Individuals: those whose features are recorded
- Variable: a feature, an attribute
- A variable has different values
- Values can be numerical or categorical, and of many subtypes within these
- Each individual has exactly one value of the variable
- Distribution: For each different value of the variable, the frequency of individuals that have that value

Categorical Distributions

Visualization

- Bar charts are commonly used to visualize categorical distributions
- One axis is categorical, one numerical

(Demo)

Displaying a Categorical Distribution

- The distribution of a variable (a column, e.g. Studios) describes the frequencies of its different values
- The group method counts the number of rows for each value in the column (e.g. the number of top movies released by each studio)
- Bar charts can display the distribution of a categorical variable (e.g. studios):
 - One bar for each category
 - Length of bar is the count of individuals in that category
 - You can choose the order of the bars

Binning a Numerical Variable

Binning Numerical Values

Binning is counting the number of numerical values that lie within ranges, called bins.

- Bins are defined by their lower bounds (inclusive)
- The upper bound is the lower bound of the next bin

Area Principle

Area Principle

Areas should be proportional to the values they represent.

For example

If you represent 20% of a population by

Then 40% can be represented by:

But not by:

Drawing Histograms

Histogram

- Chart that displays the distribution of a numerical variable
- Uses bins; there is one bar corresponding to each bin
- Uses the area principle:
 - The area of each bar is the percent of individuals in the corresponding bin

(Demo)

Bar Chart or Histogram?

To display a distribution:

Bar Chart

- Distribution of categorical variable
- Bars have arbitrary (but equal) widths and spacings
- height (or length) of bars proportional to the percent of individuals

Histogram

- Distribution of numerical variable
- Horizontal axis is numerical: to scale, no gaps, bins can be unequal
- Area of bars proportional to the percent of individuals; height measures density

Summary: charts

- Scatter plot: relation between numerical variables
- Line graph: sequential data (over time, etc.)

- Bar chart: distribution of categorical data
- Histogram: distribution of numerical data

To do

- Assignment 1 due on Friday
- No Lecture on next Monday (due to CNY)
- No Lab next week (due to CNY)
- Assignment 2 will be uploaded before this weekend and due on Next Friday