

Multidimensional data analysis

Joe Donovan

MPI of Neurobiology

Most data is multidimensional

- Multi-factor measurements
 - E.g. patient data age, blood pressure, pulse

Age	Blood pressure	Weight
24	120	65
48	140	100
27	130	70
32	90	55

Most data is multidimensional

What about image data?

What is the dimension of a 1 pixel gray image?

Most data is multidimensional

- In "image" space, each point is a different image
- What is the image-space dimension of a 100 x 100 grayscale image?

10,000 dimensions

Numpy n-dimensional arrays

Data is 'wrapped', in row major / C order

Memory

- What about labeled arrays?
- Pandas in multiple dimensions?
 - Works, but dimension labeling and access gets awkward
- xarray multi-dimensional pandas
 - Dimension names (dim='time' instead of axis=3)
 - DataArray labeled n-dim array (≅ pandas.Series)
 - Dataset aligned DataArrays (≅ pandas.DataFrame)
 - Compatibility with Pandas, netCDF, dask
- <notebook intro>

Challenges of dimensionality

- Unintuitive mathematical features
- Visualization is difficult
- Computational costs/complexity
 - Worst case complexity: x^{n_dim}

- Volume of hypercube = length^{ndim}
- Volume of hypersphere => it's complicated
 - For odd dimensions (1, 3, 5...):

$$Volume_{ndim} (radius) =$$

$$2*\left(\frac{ndim-1}{2}\right)!*(4*pi)^{(ndim-1)/2}/ndim!*radius^{ndim}$$

• Hypersphere volume decreases with high dimension!

$$2 * \left(\frac{ndim - 1}{2}\right)! * (4 * pi)^{(ndim - 1)/2} / ndim! * radius^{ndim}$$

- It's not that the radius changes
- Volume gets weird

- Volume becomes concentrated in the outer 'skin'
 - Because of the *radius* ndim term

 Volume becomes concentrated towards corners and outer 'skin'

- At higher dimensions:
 - Spheres have little volume
 - Volume becomes concentrated in the corners and skin
 - Small changes in radius/length change volume greatly
- Practical impact:
 - Few 'nearby' points (using Euclidean distance)

Gaussian/normal distribution in high dimensions?

- Density is still always highest at the center
 - But there's not much volume in the center
- Probability mass becomes concentrated at the skin
 - Distributions become more 'bubble' like

Visualization issues

Why is visualization important?

All four have same mean and variance!

Visualization issues

• Why is visualization important?

Mean image (from 1000 samples)

Visualization strategies

'Overload' with color, size, and shape

Best for sparse data

Visualization strategies

Scatter plot matrix

from pandas.plotting import scatter_matrix

Visualization strategies

Parallel coordinate plot

from pandas.plotting import parallel_coordinates

Dimensionality reduction

- Why?
 - Less dimensions can be nicer to work with
- Justification:
 - Often data isn't fully distributed in it's n-dimensional space
 - Equivalently correlations in the data

PCA – Principal Component Analysis

Isn't just dimensionality reduction

- Can be thought of as:
 - Capturing covariance
 - Fitting an ellipsoid to the data
 - Rotation + scaling
 - Read up on SVD for details
 - Eigenvectors of the covariance matrix

PCA – Principal Component Analysis

PCA – Principal Component Analysis

- Output: Principal Component (PC) vectors
- PCs always orthogonal

PCA

- Dimensionality reduction truncate # PCs
- Explained variance
 - fraction of total variance explained per component

Visualization: t-SNE

- t-distributed Stochastic Neighbor Embedding
- Tries to preserve local structure
- Perplexity" parameter balances local and global

- Cluster sizes/shapes not meaningful
- Different random seeds can change output!
- Not ideal for use beyond visualization

Thanks!

Thanks to JetBrains for hosting/sponsoring

Deeper questions/discussion – come find me later!

- Our lab is always looking for programmers and those interested in computation + neuroscience:
 - joe@neuro.mpg.de

Misc. further references

High dimensional spaces

t-SNE

PCA explained variance