Laboratorio 7 - Algoritmia y Complejidad

Alejandro Madrazo

4 de Octubre de 2018

1 Problema

Metodo de conteo

1) Supongamos que realizamos una serie de operaciones sobre un stack que nunca excede un tamaño K. Cuando realizamos K operaciones, el stack se copia como backup. Demuestren que el costo de las operaciones seria O(n) utilizando costos amortizados.

Respuesta:

Siguiento el analisis de costos amortizados y teniendo en cuenta que no podemos exceder O(n). Utilizando el método del conteo, si le asignamos un valor de 3 a cada push que hacemos cubriendo, el mismo push, un pop y otro push(copia a backup). Esto nos permite ahorrar el costo del proceso de hacer "back-up" a cada elemento, cada vez que alcanzamos K, k se convierte en k*2, esto nos permite que los elementos extra agregados despues de un backup, cubrirán el costo de sus antecesores.

2) Demuestren como implementar un queue con 2 stacks de tal manera que cada operacion de ENQUEUE o DEQUEUE tenga un O(1).

Respuesta:

Al tener 2 stacks, siguiendo la regla de LIFO (last in, fist out) podemos solucionar el problema simplemente efectuando los enqueues como un push al stack1 y los dequeues como un pop del stack 1 seguido de un push al stack2. Esto requiere que el costo amortizad ode cada push efecuado sea de 3, así cubriendo su pop y push hacia el stack2 cuando se le efectue un dequeue.

Analizando el costo de cada operación: Al realizar n operaciones 3n/n pertenece aun tiempo constante O(1).

Tablas1 y 2

X			
X	X		
X	X	X	
X	X	X	x

=4	Potencial	Costo
	2	3
	4	3
	6	3
	8	3

#		S1	S2	
1	Enqueue(1)			
2	Enqueue(2)	3		1
3	Enqueue(3)	2	2	
4	Dequeue()	1	3	

k = 4	Potencial	Costo	costo.tiempo
	2	3	1
	4	3	1
	6	3	1
		6	5

2 Problema

Metodo potencial

1) Utilicen el metodo potencial para demostrar que el tiempo de ejecucion del problema 1.1 es $\mathrm{O}(\mathrm{n}).$

K

Respuesta:

Podemos representar el potencial como 2*n Como podemos notar en la figura 1, el costo es de 2*n el cual pertenece a O(n)

2) Determine el tiempo de ejecucion de hacer K operaciones en el queue del problema 2 utilizando el metodo potencial.

Respuesta:

Como podemos notar en la tabla 2 en la cual utilizamos el método potencial, el tiempo de efectuar 4 operaciones, entre ellas 3 enqueue's y 1 dequeue, es de 8, esto es igual a 2*k, el cual pertenece al orden de k.