第7章 二次型

§ 7.1 二次型及其表示

1.
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & -2 & 2 \\ 0 & 2 & 3 \end{pmatrix}$$
 , $:: r(A) = 3 \implies 二次型的秩为3.$

2. $f = x_1^2 - 3x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 - 2x_2x_3$.

§ 7.2 二次型的标准形

1. 二次型对应的矩阵 $A = \begin{pmatrix} 3 & -1 & -1 \\ -1 & 3 & -1 \\ -1 & -1 & 3 \end{pmatrix}$

 $\therefore |\lambda E - A| = (\lambda - 1)(\lambda - 4)^2 \Rightarrow \lambda_1 = 1, \lambda_{2,3} = 4$,对应的特征向量分别是:

$$\xi_1 = (1,1,1)^T$$
; $\xi_2 = (1,-1,0)^T$; $\xi_3 = (1,0,-1)^T$, $\xi_2 = \xi_3 = \xi_2$, $\xi_3 = \xi_3 = \xi_3$

$$\xi_{3} - \frac{(\eta_{2}, \xi_{3})}{(\eta_{2}, \eta_{2})} \eta_{2} = (\frac{1}{2}, \frac{1}{2}, -1)^{T}, \quad \mathbf{Q} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{pmatrix}, \quad 经过正交变换 X = QY, \quad 二次$$

型可化为: $f = y_1^2 + 4y_2^2 + 4y_3^2$

2. ::二次型
$$f$$
 的矩阵为 $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 3 & a \\ 0 & a & 3 \end{pmatrix}$

它的特征方程为: $|\lambda E-A|=(\lambda-2)(\lambda^2-6\lambda+9-a^2)=0$,因为 A 的特征值为 $\lambda_1=1$, $\lambda_2=2$, $\lambda_3=5$,将 $\lambda=1$ 代入特征方程,可得 a=2 .

当
$$\lambda_1=1$$
 时,解 $(E-A)X=O$,得 $\xi_1=\begin{pmatrix}0&1&-1\end{pmatrix}^T$; 当 $\lambda_2=2$ 时,解 $(2E-A)X=O$,

得
$$\xi_2 = \begin{pmatrix} 1 & 0 & 0 \end{pmatrix}^T$$
; 当 $\lambda_3 = 5$ 时,解 $(5E - A)X = O$,得 $\xi_3 = \begin{pmatrix} 0 & 1 & 1 \end{pmatrix}^T$.

单位化特征向量后,可得正交变换矩阵为
$$Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 1 & 0 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$
.

§ 7.3 正定二次型

1. 二次型对应矩阵是
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -3 \\ 0 & -3 & 1 \end{pmatrix}$$
, $\therefore |A| = -8 < 0$, \therefore 二次型非正定.

2. 二次型对应矩阵是
$$A = \begin{pmatrix} t & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & t & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & t \end{pmatrix}$$
, 则 $t > 0$, $t^2 - \frac{1}{4} > 0$, $(t+1)(t-\frac{1}{2})^2 > 0 \implies t > \frac{1}{2}$.

- 3. 二次型对应矩阵是 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & k & 1 \\ 0 & 1 & 1 \end{pmatrix}$,则
- (1) 若 f = 1 表示椭球面, \Rightarrow 二次型 f 正定,即 k > 0, k 1 > 0
- (2) 若 f=1表示柱面, \Rightarrow A 的特征值有且仅有一个为零

$$|\lambda E - A| = (\lambda - 1)[\lambda^2 - (k+1)\lambda + k - 1], \text{ if } k = 1.$$

4. (1): A 为n阶正定矩阵, $\Rightarrow A$ 的n个特征值 $\lambda_i > 0$, $i = 1, 2, \dots, n$, 又A 为实 对称矩阵时, $(A^{-1})^T = (A^T)^{-1} = A^{-1}$,故 A^{-1} 也是实对称矩阵,且 A^{-1} 的特征值 $\lambda_i^{-1} > 0$ $(i=1,2,\dots,n)$, 故 A^{-1} 是正定矩阵.

同样可以证明 A^* 、 A^2 也是正定矩阵.

(2) :: A, B 为 n 阶正定矩阵, $\Rightarrow A^T = A, B^T = B$,且对 $\forall X \neq 0$,有 $X^T A X > 0$, $X^TBX > 0$,又 $(A+B)^T = A^T + B^T = A + B$,故A+B是实对称矩阵,且对 $\forall X \neq 0$, $X^{T}(A+B)X = X^{T}AX + X^{T}BX > 0$,所以,A+B 也是正定矩阵.

(3) :
$$A^T = -A$$
, $\Rightarrow (E - A^2)^T = E^T - A^T A^T = E - (-A)(-A) = E - A^2$,

$$= X^T X + (AX)^T (AX) \ge X^T X > 0$$
 (内积的非负性)

A²是正定矩阵,从而也是可逆矩阵.

第七章 总习题

一、填空题

1.
$$t = 0$$
 2. $-\sqrt{2} < t < \sqrt{2}$ 3. $a = 2$ 4. $t > n$

3.
$$a = 2$$

$$4. \quad t > n$$

二、选择题

三、计算与证明

1. **解**: (1) 二次型
$$f$$
 的矩阵 $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & a \\ 0 & a & 2 \end{pmatrix}$, 由条件知: $5 = b + 5 \Rightarrow b = 0$.

则 $|A|=0 \Rightarrow a=-2$ (正值舍去).

(2) A的特征值分别为 $\lambda_1 = 0$, $\lambda_2 = 1$, $\lambda_3 = 4$.

$$\boxplus (A-E)X = O \implies \xi_2 = (1,0,0)^T$$

故所用正交变换矩阵是
$$Q = \begin{pmatrix} 0 & 1 & 0 \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \end{pmatrix}$$
.

2. 解: (1) 二次型
$$f$$
 的矩阵 $A = \begin{pmatrix} 1-a & 1+a & 0 \\ 1+a & 1-a & 0 \\ 0 & 0 & 2 \end{pmatrix}$, 由条件知: $|A| = 0 \Rightarrow a = 0$

(2) 当
$$a=0$$
时, $|A-\lambda E|=\lambda(\lambda-2)^2$ ⇒ 特征值 $\lambda_1=\lambda_2=2,\lambda_3=0.$

特征向量分别是 $\xi_1 = (1,1,0)^T$, $\xi_2 = (0,0,1)^T$, $\xi_3 = (-1,1,0)^T$.

故正交变换矩阵
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$
,经过变换 $X = QY$,标准形是 $f = 2y_1^2 + 2y_2^2$.

故正交变换矩阵
$$Q = \begin{pmatrix} \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ 0 & 1 & 0 \end{pmatrix}$$
, 经过变换 $X = QY$, 标准形是 $f = 2y_1^2 + 2y_2^2$.

(3) 由于 $f = (x_1 + x_2)^2 + 2x_3^2 = 0$ \Rightarrow $\begin{cases} x_1 + x_2 = 0 \\ x_3 = 0 \end{cases}$ \Rightarrow $X = k \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$, $k \in R$.