Workshop - OLS Python

In this workshop, we are going to:

- 1. perform backward selection on the class data set
 - A. fit the full model with $\%\Delta rGDP$ as the label
 - B. remove the feature with the highest p-value
 - C. refit the model
 - D. repeat steps B. and C. until all features have p-values below 0.05
- 2. evaluatate the model performance

Do not use interactions or polynomial terms in this workshop.

Preliminaries

- Load any necessary packages and/or functions
 - For backward select, I recommend using statsmodels.api instead of statsmodels.formula.api . Your choice.
- Load in the class data
- Define x and y
- Create a train-test split with
 - training size of two-thirds
 - random state of 490

```
import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.model_selection import train_test_split

import statsmodels.api as sm
from sklearn.model_selection import train_test_split

import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.model_selection import train_test_split

import pandas as pd
import numpy as np
import statsmodels.api as sm
from sklearn.model_selection import train_test_split

import statsmodels.api as sm
from sklearn.model_selection import train_test_split
```

```
df['year'] = df.index.get level values('year')
          df = pd.read pickle('/Users/liaohaitao/Desktop/ECON 490/Lecture 2.2/class data.pkl')
In [36]:
          df.columns
Out[36]: Index(['GeoName', 'pct d rgdp', 'urate bin', 'pos net jobs', 'emp estabs',
                'estabs entry rate', 'estabs exit rate', 'pop', 'pop pct black',
                'pop pct hisp', 'lfpr', 'density', 'year'],
               dtvpe='object')
In [38]: y = df['pct d rgdp']
          x = df.drop(columns = 'pct d rqdp')
          # Creating dummies
          x = x.join([pd.get dummies(x['year'], prefix = 'year', drop first = True),
                    pd.get dummies(x['urate bin'], prefix = 'urate', drop first = True)]).drop(columns = ['year', 'urate bin'])
          x = sm.add constant(x)
          # Sorting the columns for output
          x.sort index(axis = 'columns', inplace = True)
          # Dropping un
          x.columns
'pos net jobs', 'urate lower', 'urate similar', 'year 2003',
                'year_2004', 'year_2005', 'year_2006', 'year_2007', 'year_2008',
                'year_2009', 'year_2010', 'year_2011', 'year_2012', 'year_2013', 'year_2014', 'year_2015', 'year_2016', 'year_2017', 'year_2018'],
               dtype='object')
```

Backward Selection

```
In [39]: x_train, x_test, y_train, y_test = train_test_split(x, y, train_size = 2/3, random_state = 490)
In [40]: fit = sm.OLS(y_train, x_train.drop(columns = ['density',
```

Results: Ordinary least squares

Results: Ordinary least squares							
Model: Dependent Variable: Date: No. Observations: Df Model: Df Residuals: R-squared:	OLS pct_d_rgdp 2021-02-25 18:08 33889 21 33867 0.041		Adj. R-squared: AIC: BIC: Log-Likelihood: F-statistic: Prob (F-statistic) Scale:		2469 247 -1.2 69.3 ic): 1.6	0.041 246970.3167 247155.7953 -1.2346e+05 69.38 0: 1.65e-289 85.550	
	Coef. S	td.Err.	t	P> t	[0.025	0.975]	
const emp_estabs estabs_entry_rate estabs_exit_rate lfpr pop_pct_hisp pos_net_jobs urate_lower urate_similar year_2004 year_2006 year_2007 year_2008 year_2009 year_2010 year_2011 year_2011 year_2012 year_2014 year_2015 year_2016 year_2017 year_2018	-2.1414 -0.0434 0.2878 -0.2135 0.0433 0.0225 1.1354 1.2342 0.6491 -0.5085 1.6836 -1.5648 -1.7170 -2.5129 0.5159 -0.5958 -1.8647 -1.5355 -1.2351 -2.7089 -1.1367 -0.4968	0.5048 0.0108 0.0197 0.0226 0.0052 0.0039 0.1091 0.1334 0.2339 0.2409 0.2314 0.2344 0.2327 0.2357 0.2357 0.2357 0.2369 0.2369	-4.0255 14.6260 -9.4646 8.3381 5.7863 10.4029 9.2536 4.4017 -2.1739 6.9874 -6.7612 -7.3262 -10.5262 2.2010 -2.5604 -7.9128 -6.5694 -5.1554 -11.4366 -4.7941	0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0277 0.0105 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	-0.2577 0.0331 0.0149 0.9215 0.9728 0.3601 -0.9670 1.2113 -2.0185 -2.1763 -2.9808 0.0565 -1.0518 -2.3266 -1.9936 -1.7047	-0.0223 0.3263 -0.1693 0.0534 0.0301 1.3494 1.4956 0.9382 -0.0500 2.1558 -1.1112 -1.2576 -2.0450 0.9754 -0.1397 -1.4028 -1.0774 -0.7656 -2.2446 -0.6720	
Omnibus: Prob(Omnibus): Skew:	34634.651 0.000 4.490	Durbin-Watson: Jarque-Bera (JB): Prob(JB):			1069	1.994 10695929.309 0.000	

Kurtosis: 89.569 Condition No.: 872

Testing

Evaluate two RMSEs:

- 1. null model
- 2. backward-selected model

Then, determine the percent improvement of the backward-selected model from the null model.

```
rmse null = np.sqrt( np.mean((y test - np.mean(y train))**2) )
In [41]:
          rmse_null
Out[41]: 9.40322930944683
          yhat fit = fit.predict(x test.drop(columns = ['density',
In [42]:
                                                        'year_2005',
                                                        'pop pct black',
                                                        'year 2013',
                                                        'year 2003',
                                                        'pop']))
          rmse fit = np.sqrt( np.mean((y test - yhat fit)**2) )
          rmse fit
Out[42]: 9.216942512937898
          print(round((rmse_null - rmse_fit)/rmse_null*100, 3), '%')
In [43]:
         1.981 %
In [ ]:
```