Dynamic Programming & Optimal Control

Lecture 6
Solving the Bellman Equation (cont'd)

Fall 2023

Prof. Raffaello D'Andrea ETH Zurich

Learning Objectives

Topic: Solving the Bellman Equation (cont'd)

Objectives

- You know how to solve a stochastic shortest path problem using *Linear Programming*.
- You know how to combine Value Iteration and Policy Iteration.
- You know how to solve discounted infinite horizon problems.

DPOC Lec. 6, 2

Outline

Solving the Bellman Equation (cont'd)

Linear Programming (LP)

Discounted Problems

Additional reading material

Linear Programming (1/5)

Recall VI:

$$V_{l+1}(i) = \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u}) V_l(j) \right) \quad \forall i \in \mathcal{S}^+.$$

By VI, $V_l(i)$ converges to $J^*(\cdot)$, which satisfies the Bellman Equation:

$$J^*(i) = \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u}) J^*(j) \right) \quad \forall i \in \mathcal{S}^+.$$

Linear Programming (2/5)

The equalities in the previous slide are equivalent to the inequalities:

$$V_{l+1}(i) \leq \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u}) V_{l}(j) \right) \quad \forall i \in \mathcal{S}^{+},$$
$$J^{*}(i) \leq \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u}) J^{*}(j) \right) \quad \forall i \in \mathcal{S}^{+}.$$

Furthermore, we can write:

$$V_{l+1}(i) \leq q(i, \mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u}) V_{l}(j) \quad \forall i \in \mathcal{S}^{+}, \forall \mathbf{u} \in \mathcal{U}(i),$$
$$J^{*}(i) \leq q(i, \mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u}) J^{*}(j) \quad \forall i \in \mathcal{S}^{+}, \forall \mathbf{u} \in \mathcal{U}(i).$$

Linear Programming (3/5)

Suppose that we use value iteration to generate a sequence of vectors V_l starting with an initial vector V_0 that satisfies

$$V_0(i) \le \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u}) V_0(j) \right) \quad \forall i \in \mathcal{S}^+,$$

i.e.

$$V_0(i) \le q(i, \mathbf{u}) + \sum_{i=1}^n P_{ij}(\mathbf{u}) V_0(j) \quad \forall \mathbf{u} \in \mathcal{U}(i), \ \forall i \in \mathcal{S}^+.$$

Linear Programming (4/5)

By the VI
$$V_{l+1}(i) = \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i,\mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u}) V_l(j) \right)$$
 for all $i \in \mathcal{S}^+$. Thus, we have:

vertave: $V_0(i) \leq V_1(i) \,, \quad orall i \in \mathcal{S}^+.$

Therefore:

$$V_2(i) = \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u}) V_1(j) \right)$$

$$\geq \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u}) V_0(j) \right)$$

$$= V_1(i), \quad \forall i \in \mathcal{S}^+.$$

This leads to:

$$V_{l+1}(i) > V_l(i), \quad \forall i \in \mathcal{S}^+, \, \forall l.$$

Linear Programming (5/5)

By VI we know that $V_l(i)$ converges to $J^*(i)$ as l goes to infinity. We thus have:

$$J^*(i) \ge V_0(i), \quad \forall i \in \mathcal{S}^+.$$

Thus J^* is the "largest" V_0 that satisfies the constraint

$$V_0(i) \le \left(q(i, \mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u})V_0(j)\right), \quad \forall \mathbf{u} \in \mathcal{U}(i), \ \forall i \in \mathcal{S}^+.$$

We can write this as an optimization problem as in the following theorem.

Theorem 6.1: Linear Programming

The solution to the optimization problem

$$\begin{split} & \underset{V}{\text{maximize}} & & \sum_{i \in \mathcal{S}^+} V(i) \\ & \text{subject to} & & V(i) \leq \left(q(i,\mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u}) V(j)\right), \forall \mathbf{u} \in \mathcal{U}(i), \; \forall i \in \mathcal{S}^+ \end{split}$$

also solves the Bellman Equation and yields the optimal cost J^{\ast} for the SSP problem.

Note that in the optimization problem, both the objective function and the constraints are linear in V. This is known as a *Linear Program*.

In general, Linear Programs can be solved efficiently and can handle millions of variables, with many mature solvers available.

Proof of Theorem 6.1

Let V^* be the solution to the linear program and thus satisfies the inequality constraint

$$V(i) \le \left(q(i, \mathbf{u}) + \sum_{j=1}^{n} P_{ij}(\mathbf{u})V(j)\right), \forall \mathbf{u} \in \mathcal{U}(i), \ \forall i \in \mathcal{S}^{+}.$$

By contradiction, assume that $V^* \neq J^*$, thus there exists a state $\bar{i} \in \mathcal{S}^+$ such that:

$$V^*(\bar{i}) < J^*(\bar{i}).$$

Thus,

$$\sum_{i \in \mathcal{S}^+} V^*(i) < \sum_{i \in \mathcal{S}^+} J^*(i).$$

But since J^* also satisfies the inequality constraint as it solves the BE, V^* is not the solution to the linear program, which is a contradiction.

Outline

Solving the Bellman Equation (cont'd)

Linear Programming (LP)

Discounted Problems

Additional reading material

Discounted Problems (1/4)

We now consider a class of infinite horizon problems where future stage costs are discounted exponentially, and there is no assumption of a termination state.

We will show that this is equivalent to an associated stochastic shortest path problem.

Dynamics

$$\tilde{x}_{k+1} = \tilde{w}_k, \quad \tilde{x}_k \in \mathcal{S}^+, \ k = 0, \dots, N-1,$$
$$p_{\tilde{w}|\tilde{x},\tilde{u}}(j|i, \mathbf{u}) = \tilde{P}_{ij}(\mathbf{u}), \quad \mathbf{u} \in \tilde{\mathcal{U}}(\tilde{x}_k),$$

where $\mathcal{S}^+ = \{1, \dots, n\}$ is a finite set and $\tilde{\mathcal{U}}(x)$ is a finite set for all $x \in \mathcal{S}^+$, and the \tilde{w}_k are independent of all previous variables when conditioned on \tilde{x}_k, \tilde{u}_k .

Note that there is no explicit termination state required.

Discounted Problems (2/4)

As usual, the control inputs \tilde{u}_k are generated by an admissible policy $\tilde{\pi} \in \tilde{\Pi}$:

$$\tilde{\pi} = (\tilde{\mu}_0(\cdot), \tilde{\mu}_1(\cdot), \dots, \tilde{\mu}_{N-1}(\cdot)),$$

such that

$$\tilde{u}_k = \tilde{\mu}_k(\tilde{x}_k), \quad \tilde{u}_k \in \tilde{\mathcal{U}}(\tilde{x}_k), \ \forall \tilde{x}_k \in \mathcal{S}^+, \ k = 0, \dots, N-1.$$

Discounted Problems (3/4)

Cost

Given an initial state $i\in\mathcal{S}^+$, the expected closed loop cost of starting at i associated with policy $\tilde{\pi}\in\tilde{\Pi}$ is:

$$\tilde{J}_{\tilde{\pi}}(i) = \mathop{\mathbb{E}}_{(\tilde{X}_1, \tilde{W}_0 | \tilde{x}_0 = i)} \left[\sum_{k=0}^{N-1} \alpha^k \tilde{g}(\tilde{x}_k, \tilde{\mu}_k(\tilde{x}_k), \tilde{w}_k) \right],$$

where $\tilde{X}_1 := (\tilde{x}_1, \dots, \tilde{x}_N)$, $\tilde{W}_0 := (\tilde{w}_0, \dots, \tilde{w}_{N-1})$, and $\alpha \in (0,1)$ is called the discount factor, and subject to

$$\tilde{x}_{k+1} = \tilde{w}_k, \quad \tilde{x}_k \in \mathcal{S}^+, \ k = 0, \dots, N-1,$$
$$p_{\tilde{w}|\tilde{x},\tilde{u}}(j|i,\tilde{\mu}_k(i)) = \tilde{P}_{ij}(\tilde{\mu}_k(i)).$$

Discounted Problems (4/4)

Objective

Construct an optimal policy $\tilde{\pi}^*$ with associated optimal cost $\tilde{J}^*(i) = \tilde{J}_{\tilde{\pi}^*}(i)$ such that for all $i \in \mathcal{S}^+$,

$$\tilde{\pi}^* = \operatorname*{arg\,min}_{\tilde{\pi} \in \tilde{\Pi}} \tilde{J}_{\tilde{\pi}}(i),$$

and explore what happens as the time horizon N goes to infinity.

We will define an auxiliary stochastic shortest path problem and show that it is equivalent to the discounted problem.

Auxiliary SSP problem (1/5)

• State:

$$x_k \in \mathcal{S} = \mathcal{S}^+ \cup \{0\} = \{0, 1, \dots, n\},\$$

where 0 is a virtual terminal state.

• Control:

$$u_k \in \mathcal{U}(x_k), \ \forall x_k \in \mathcal{S},$$

where

$$\mathcal{U}(x_k) := \tilde{\mathcal{U}}(x_k) \ \forall x_k \in \mathcal{S}^+,$$

 $\mathcal{U}(0) := \{ \text{stay} \}.$

stay is a virtual control action that is applied when the state is the virtual termination state. The control inputs u_k are generated by an admissible policy $\pi \in \Pi$:

$$\pi = (\mu_0(\cdot), \mu_1(\cdot), \dots, \mu_{N-1}(\cdot)),$$

such that

$$u_k = \mu_k(x_k), \ u_k \in \mathcal{U}(x_k), \ \forall x_k \in \mathcal{S}, \ \forall k.$$

Auxiliary SSP problem (2/5)

• Dynamics:

$$x_{k+1} = w_k, \quad x_k \in \mathcal{S},$$

where the transition probabilities are generated from

$$\begin{split} p_{w|x,u}(j|i,\mathbf{u}) &= P_{ij}(\mathbf{u}) := \alpha \tilde{P}_{ij}(\mathbf{u}), \quad \mathbf{u} \in \mathcal{U}(i), \quad \forall i,j \in \mathcal{S}^+, \\ p_{w|x,u}(0|i,\mathbf{u}) &= P_{i0}(\mathbf{u}) := 1 - \alpha, \quad \mathbf{u} \in \mathcal{U}(i), \quad \forall i \in \mathcal{S}^+, \\ p_{w|x,u}(j|0,\mathbf{u}) &= P_{0j}(\mathbf{u}) := 0, \quad \mathbf{u} = \mathbf{stay}, \quad \forall j \in \mathcal{S}^+, \\ p_{w|x,u}(0|0,\mathbf{u}) &= P_{00}(\mathbf{u}) := 1, \quad \mathbf{u} = \mathbf{stay}. \end{split}$$

Note that this is a valid transition probability distribution since for any $i \in \mathcal{S}^+$, and for any $u \in \mathcal{U}(i)$,

$$\sum_{j \in \mathcal{S}} P_{ij}(\mathbf{u}) = \sum_{j \in \mathcal{S}^+} \alpha \tilde{P}_{ij}(\mathbf{u}) + P_{i0}(\mathbf{u}) = \alpha \cdot 1 + (1 - \alpha) = 1,$$

and for i = 0, u = stay,

$$\sum_{j \in \mathcal{S}} P_{0j}(\mathbf{u}) = \sum_{j \in \mathcal{S}^+} P_{0j}(\mathbf{u}) + P_{00}(\mathbf{u}) = 0 + 1 = 1.$$

Auxiliary SSP problem (3/5)

• Cost:

The stage costs are defined as:

$$g(x_k, u_k, w_k) = \alpha^{-1} \tilde{g}(x_k, u_k, w_k), \quad \forall u_k \in \mathcal{U}(x_k), \ \forall x_k, w_k \in \mathcal{S}^+,$$
$$g(x_k, u_k, 0) = 0, \quad \forall u_k \in \mathcal{U}(x_k), \ \forall x_k \in \mathcal{S}.$$

The total expected closed loop cost starting at $r \in \mathcal{S}$ associated with policy $\pi \in \Pi$ is:

$$J_{\pi}(r) = \mathop{\mathbf{E}}_{(X_1, W_0 | x_0 = r)} \left[\sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right],$$

where $X_1 := (x_1, \dots, x_N)$, $W_0 := (w_0, \dots, w_{N-1})$, and subject to

$$x_{k+1} = w_k, \quad x_k \in \mathcal{S},$$

 $\Pr(w_k = j | x_k = i, u_k = \mu_k(i)) = P_{ij}(\mu(i)).$

Auxiliary SSP problem (4/5)

Note that there is a one-to-one mapping between a policy π of the auxiliary problem to a policy $\tilde{\pi}$ of the discounted problem.

Indeed, the feedback law of the auxiliary problem just trivially assigns $\mu_k(0) = \mathtt{stay}$, and for the rest of the states $x_k \in \mathcal{S}$ they remain the same.

We proceed in three steps to prove $J_{\pi}(i) = \tilde{J}_{\tilde{\pi}}(i)$, $\forall i \in \mathcal{S}^+$ (see the Lecture Notes for the details):

1.
$$p_{x_k,w_k|x_0}(i,j|r) = \alpha^{k+1} p_{\tilde{x}_k,\tilde{w}_k|\tilde{x}_0}(i,j|r);$$

$$2. \ \ \mathop{\mathbf{E}}_{(X_1,W_0|x_0=r)} \left[g(x_k,\mu_k(x_k)\,,w_k) \right] = \mathop{\mathbf{E}}_{(\tilde{X}_1,\tilde{W}_0|\tilde{x}_0=r)} \left[\alpha^k \tilde{g}(\tilde{x}_k,\tilde{\mu}_k(\tilde{x}_k)\,,\tilde{w}_k) \right]; \text{ and }$$

3. $J_{\pi}(i) = \tilde{J}_{\tilde{\pi}}(i), \forall i \in \mathcal{S}^+$, using the above.

Auxiliary SSP problem (5/5)

Once we proved that $J_{\pi}(i) = \tilde{J}_{\tilde{\pi}}(i)$, $\forall i \in \mathcal{S}^+$, the mapping of the policy that minimizes $J_{\pi}(i)$ minimizes $\tilde{J}_{\tilde{\pi}}(i)$. Thus, by solving the Bellman Equation for the auxiliary problem, we also obtain an optimal policy and optimal cost-to-go for the infinite horizon discounted problem.

From the Bellman Equation for the auxiliary problem we can derive the Bellman Equation for the discounted problem:

$$J^*(i) = \min_{\mathbf{u} \in \mathcal{U}(i)} \left(q(i, \mathbf{u}) + \sum_{j=1}^n P_{ij}(\mathbf{u}) J^*(j) \right)$$
$$= \min_{\mathbf{u} \in \tilde{\mathcal{U}}(i)} \left(q(i, \mathbf{u}) + \alpha \sum_{j=1}^n \tilde{P}_{ij}(\mathbf{u}) J^*(j) \right), \quad \forall i \in \mathcal{S}^+,$$

where

$$q(i, \mathbf{u}) = \sum_{j=1}^{n} P_{ij}(\mathbf{u}) g(i, \mathbf{u}, j) = \sum_{j=1}^{n} (\alpha \tilde{P}_{ij}(\mathbf{u})) (\alpha^{-1} \tilde{g}(i, \mathbf{u}, j)) = \sum_{j=1}^{n} \tilde{P}_{ij}(\mathbf{u}) \tilde{g}(i, \mathbf{u}, j).$$

Outline

Solving the Bellman Equation (cont'd)

Linear Programming (LP)

Discounted Problems

Additional reading material

Additional reading material

The story of linear programming is tightly coupled with many branches of science, and it is rich in Nobel prizes and Fields medals.

- The origins date back to Gaspard Monge, who formulated the *Optimal Transport problem* in 1781.
- However, his formulation was too "hard", and no progress on the problem was made for almost 200 years!
- It was only in 1937 with the Soviet mathematician and economist Leonid Kantorovich (Nobel prize) that the theory was unlocked: Linear Programming was born.
- Nowadays, Optimal Transport has various applications in optimization, machine learning, image processing, biology, and many more.

An entertaining snapshot: https://www.imaginary.org/sites/default/files/snapshots/snapshots-2018-013.pdf