Bootstrap

A Key Technique in Random Forest

References

- Gareth James et. Al. (2017) An Introduction to Statistical Learning.
 - Section 5.2 The Bootstrap, pp. 187 190.
 - eTextbook download: https://www.statlearning.com/
- Chew C.H. (2022) Artificial Intelligence, Analytics and Data Science, Vol. 2.
 - Estimated Q4 2022

Bootstrap as an advanced underlying statistical technique for Machine Learning

- Bootstrap is a general statistical technique, not a model.
- An extremely creative way to use the given data sample.
- Allows one to infer from sample to unknown population without those assumptions.
- The basis for some advanced Machine Learning methods.
 - Essential for Random Forest (next topic).

Inference from Sample to Population (without bootstrap)

Target Population with unknown parameters

Example: Election

- Population: All eligible voters as listed in the voter registry
- Population Parameter: Proportion of all voters who voted for party A.
 Unknown constant.
- Sample: 100 eligible voters
- Sample Statistic: Proportion of all voters who voted for party A in the sample. Known, but varies from sample to sample.

Inference from Sample to Population (without bootstrap)

Population Parameter	Sample Statistic	Inference via Confidence Interval	Key Inference Assumption
Mean: μ	$ar{x}$	$ar{x}\pm z^*rac{\sigma}{\sqrt{n}}$, or $ar{x}\pm t^*rac{S}{\sqrt{n}}$	CLT applies (with sufficient sample size), or x has normal dist.
Standard Dev: σ	S	$\sqrt{\frac{(n-1)s^2}{\chi_{df,\frac{\alpha}{2}}^{2*}}} < \sigma < \sqrt{\frac{(n-1)s^2}{\chi_{df,1-\frac{\alpha}{2}}^{2*}}}$	x has normal dist.

For 95% CI:
$$z^* = 1.96$$
, $t^* = 2.776$, $\chi^{2*}_{df=n-1=39,0.975} = 23.65$, $\chi^{2*}_{df=39,0.025} = 58.12$

Inference from Sample to Population (without bootstrap)

Population Parameter	Sample Statistic	Inference via Confidence Interval	Key Inference Assumption
Proportion: π	р	$p \pm z^* \sqrt{\frac{p(1-p)}{n}}$	π is a binomial dist. parameter & np ≥ 5, n(1-p) ≥ 5
Correlation: ρ	r	Fisher Transform: $F = \frac{1}{2} \frac{1+r}{1-r}$ $F_{l} = F - \frac{z^{*}}{\sqrt{n-3}}$ $F_{u} = F + \frac{z^{*}}{\sqrt{n-3}}$ $\frac{e^{2F_{l}} - 1}{e^{2F_{l}} + 1} < \rho < \frac{e^{2F_{u}} - 1}{e^{2F_{u}} + 1}$	x _A and x _B have iid Bivariate Normal Dist.

Model-Based Inference

- Linear Regression
 - P-values of betas
 - Confidence Interval of betas
- Logistic Regression
 - P-values of betas
 - Confidence Interval of betas
 - P-values of Odds Ratios
 - Confidence Interval of Odds Ratios
- Inference assumptions typically involve z, t or χ^2
- Other models have inference results too

Non-standard Inference

- What if:
 - You are not sure whether assumptions are valid and do not want to assume.
 - Sample or domain knowledge suggests assumptions are not valid. E.g. not independent, not Normal dist.,...
 - There are no (or you do not know) standard inference formulas e.g. median, 99 percentile, 10% trimmed mean, parameters of newly invented model, etc.
- Then, how do you do inference e.g. confidence interval?
 - Ans: Bootstrap

Bootstrap Animation Video at YouTube

 https://www.youtube.com/w atch?v=Xz0x-8-cgaQ

