CAS ML - Einführung in MLOps

01 ABLAUF UND ORGANISATORISCHES

Tobias Mérinat teaching2025@fsck.ch

Lucerne University of Applied Sciences and Arts

HOCHSCHULE LUZERN

DEPARTMENT OF INFORMATION TECHNOLOGY Lucerne University of Applied Sciences and Arts 6343 Rotkreuz, Switzerland

14. und 15. Februar 2025

Fundamentals of MLOps

Bringing Machine Learning Models to Production

Lucenne University of Applied Sciences and Arts
HOCHSCHULE
LUZERN

Ablauf

Themen

- Herausforderungen, Experiment Tracking, Model Registry, Processing und Prediction Modes, Feature Typen, Batch Inference, Stream Processing, FTI Architektur, Monitoring, Model Drift, Feature Stores, Data Contracts, Orchestration
- Sehr viel Abwechslung zwischen Theorie und Praxis:
 - 10 Theorie-Blöcke
 - 10 vorbereitete Übungen
 - Ein Block mit freien Übungen

- 01 Ablauf <- you are here
- 02 Über mich
- 03 Warm-Up Diskussion
- 04 Was ist MLOps, Herausforderungen beim Betrieb von ML Modellen
- 05 Codespaces und Docker Kurzeinführung

HOCHSCHULE LUZERN

- 06 Übung Einführung in die Übungs-Infrastruktur
- 07 Übung Ein einfaches Machine Learning Modell
- 08 Model Registry und Experiment Tracking mit MLFlow
- 09 Übung Model Registry Service aufsetzen
- 10 Übung Ein einfaches Modell mit MLFlow

- 11 Processing- und Prediction Modes, Features
- 12 Übung Batch Inference Pipeline

Lucenne University of Applied Sciences and Arts HOCHSCHULE LUZERN

- 13 Stream Processing
- 14 Übung Stream Processing Infrastruktur
- 15 FTI Pipeline Architektur
- 16 Übung Streaming Inference Pipeline

- 17 Data Drift
- 18 **Übung** Monitoring Infrastruktur
- 19 Übung Drift Detection Pipeline

Lucenne University of Applied Sciences and Arts
HOCHSCHULE LUZERN

- 20 Orchestrierung
- 21 Data Validation
- 22 Feature Stores und Feature Plattform

■ 23 **Übung** Freie Übungen

24 Feedback

