Spike-Train Statistics

Figure 1.15: (A) Interspike interval distribution from an MT neuron responding to a moving random dot image. The probability of interspike intervals falling into the different bins, expressed as a percentage, is plotted against interspike interval. B) Interspike interval histogram generated from a Poisson model with a stochastic refractory period. (Adapted from Bair et al., 1994.)

Where does the stochasticity come from?

- Channel noise
- Presynaptic sources are noisy

Impact of channel noise on spike generation threshold

Neurons in vitro respond reliably to fluctuating stimulus

Fig. 1. Reliability of firing patterns of cortical neurons evoked by constant and fluctuating current. (**A**) In this example, a superthreshold dc current pulse (150 pA, 900 ms; middle) evoked trains of action potentials (approximately 14 Hz) in a regular-firing layer-5 neuron. Responses are shown superimposed (first 10 trials, top) and as a raster plot of spike times over spike times (25 consecutive trials, bottom). (**B**) The same cell as in (A) was again stimulated repeatedly, but this time with a fluctuating stimulus [Gaussian white noise, $\mu_s = 150$ pA, $\sigma_s = 100$ pA, $\tau_s = 3$ ms; see (14)].

Where does the stochasticity come from?

- Channel noise
- Presynaptic sources are noisy

Integrate and Fire Neuron with K=1000 uncorrelated Poisson synaptic inputs

Simulating synaptic inputs in-vitro

CV=0.28

Fano factor=0.06

Two possible solutions

- Correlated Inputs
- Balanced Excitation and Inhibition to push the membrane potential near threshold

Large Fluctuations due to Correlated Inputs

Integrate and Fire Neuron with K=1000 Poisson inputs with c=0.1 correlations

Membrane potential near threshold

The following slides are adapted from Professor Yu Hu's lectures from HKUST

Irregular neural activity

Noise: stochastic opening of ion channels, spontaneous vesicle release,

Example: input from Poisson neurons

$$I(t) = \frac{1}{N} \sum_{j=1,\dots,N} y_j(t), \qquad y_j(t) \sim Poisson(r)$$

Puzzle: central limit theorem: in large N limit, the variance becomes negligible vs. the mean, I(t) no longer fluctuates in time.

E-I balanced network

Local cortical circuits

Randomly connected to K neurons

$$W_{ij}^{ee} = 0 \ or \frac{w_{ee}}{\sqrt{K}}$$

- (1) Individual connections are strong (vs. weak connections $\frac{w_{ee}}{K}$)
- (2) K is large

$$\tau \frac{dI_i}{dt} = -I_i + \sum_{j} W_{ij}^{ee} y_j^e(t) - \sum_{j} W_{ij}^{ei} y_j^i(t) + \sum_{j} W_{ij}^{x} y_j^{x}(t)$$

$$\tau \frac{dI_i}{dt} = -I_i + \sum_{j} W_{ij}^{ee} y_j^e(t) - \sum_{j} W_{ij}^{ei} y_j^i(t) + \sum_{j} W_{ij}^{ex} y_j^x(t)$$

average over time:

$$\left\langle \sum_{j}^{N_e} W_{ij}^{ee} y_j^e(t) \right\rangle_t = \sum_{j}^{N_e} W_{ij}^{ee} r_j^e$$

average over different neurons j:

$$\left\langle \sum_{j}^{N_{e}} W_{ij}^{ee} r_{j}^{e} \right\rangle_{j} \approx \sum_{j}^{N_{e}} \langle W_{ij}^{ee} \rangle \langle r_{j}^{e} \rangle$$

$$\langle W_{ij}^{ee} \rangle = \frac{K}{N_{e}} \frac{w_{ee}}{\sqrt{K}} \qquad \langle r_{j}^{e} \rangle = r^{e}$$

$$\left\langle \sum_{i}^{N_{e}} W_{ij}^{ee} r_{j}^{e} \right\rangle \approx \sqrt{K} w_{ee} r^{e}$$

average input to an excitatory neuron:

$$\left\langle \sum_{j} W_{ij}^{ee} y_{j}^{e}(t) - \sum_{j} W_{ij}^{ei} y_{j}^{i}(t) + \sum_{j} W_{ij}^{x} y_{j}^{x}(t) \right\rangle_{t,j} \approx$$

$$\sqrt{K} (w_{ee} r^{e} - w_{ei} r^{i} + w_{ex} r^{x})$$

average input to an inhibitory neuron:

$$\sqrt{K}(-w_{ii}r^i + w_{ie}r^e + w_{ix}r^x)$$

Since the input should be O(1), we must have the E-I balanced condition

$$\mathbf{E}: w_{ee}r^e - w_{ei}r^i + w_{ex}r^x = 0$$

$$\mathbf{I}: w_{ie}r^e - w_{ii}r^i + w_{ix}r^x = 0$$

$$r^e \ge 0, r^i \ge 0, r^e \ge 0$$

E
$$w_{ee}r^{e} - w_{ei}r^{i} + w_{ex}r^{x} = 0$$

I $w_{ie}r^{e} - w_{ii}r^{i} + w_{ix}r^{x} = 0$

- Solve for population firing rates $r = -W^{-1}w_{\chi}r_{\chi}$
- Predict linear population response to input!

E, filled and green
I, open and yellow

Vreeswijk and Sompolinsky 1996