Optimizing Elligator 1 on Curve1174

Christopher Vogelsanger, Freya Murphy, Miro Haller

Introduction

Elligator

- Elligator: Elliptic-Curve points indistinguishable from uniform random strings. [1]
 - Helps prevent censorship of obvious curve points

[1] D. Bernstein et al. Elligator: Elliptic-curve points indistinguishable from uniform random strings. ACM Conference on Computer and Communications Security 2013. 2013.

Elligator mapping

$$egin{aligned} u &= (1-t)/(1+t), \ v &= u^5 + (r^2-2)u^3 + u, \ X &= \chi(v)u, \ Y &= (\chi(v)v)^{(q+1)/4}\chi(v)\chi(u^2+1/c^2), \ x &= (c-1)sX(1+X)/Y, \ y &= (rX-(1+X)^2)/(rX+(1+X)^2) \end{aligned}$$

Forward mapping (string to point)

$$egin{aligned} \eta &= rac{y-1}{2(y+1)}, \ ar{X} &= -(1+\eta r) + ((1+\eta r)^2 - 1)^{(q+1)/4}, \ z &= \chi((c-1)sar{X}(1+ar{X})x(ar{X}^2 + 1/c^2)), \ ar{u} &= zar{X}, \ ar{t} &= (1-ar{u})/(1+ar{u}) \end{aligned}$$

Inverse mapping (point to string)

Straightforward C Implementation

Build, Test, and Benchmark Environment

- Unit testing framework: Check [1]
 - Organized in test suites and test cases
 - Nice test result report
 - GitLab CI/CD Pipeline Integration

Build, Test, and Benchmark Environment

- Benchmarking Library
 - Takes prepare, benchmark, and cleanup function
 - Execute benchmark function in S sets each with R repetitions
 - Take median
- Benchmarks
 - Measure runtime of all functions
 - Count function calls
 - Count integer operations

```
egin{aligned} 	ext{for set in } \{1,2,...,S\} \ 	ext{prep()} \ t_0 = 	ext{tsc()} \ 	ext{for j in } \{1,2,...,R\} \ 	ext{bench\_fn}(j) \ T = T \cap \{(	ext{tsc()} - t_0)/R\} \ 	ext{cleanup()} \ 	ext{return median}(T) \end{aligned}
```

Reference Implementations

- Could not find any available implementations
- Elligator website mentions a Sage implementation [1].
- We made our own Sage implementation
- BigInt arithmetic:
 - o GMP (The GNU Multi Precision Library) [2]
 - Used to benchmark BigInt operations and Elligator mapping

Straightforward BigInt Library

- BigInt allocates alloc_size 64-bit chunks of memory
- size chunks are currently used
- Big integer arithmetics
 - "The Art of Computer Programming" [1]
- Clean code & convenient interface
 - Allows aliasing names, nested calls
 - Explicit error messages

```
typedef struct BigInts
{
    uint64_t sign : 1;
    uint64_t overflow : 1;
    uint64_t size : 62;
    uint64_t alloc_size : 62;
    dbl_chunk_size_t *chunks;
} BigInt;
```

Cost Analysis

Integer Operations

- Keep track of following iops
 - o Add/Sub
 - o Mul
 - o Div
 - Mod
 - o Shift
 - Bitwise
- Cost function:
 - \circ C(x) = \sum iops(x)
- Add up all integer operations

Roofline Plot

- Main optimization target:
 - MacBook Pro Mid 2015
 - Intel Haswell i7-4980HQ 2.8 GHz
 - \circ Apple clang version 12.0.0
- Ports with execution units for integers [1]

Port 0	Port 1	Port 5	Port 6
ALU Shift	ALU	ALU	ALU, Shift
Divide	Slow int		

Roofline Plot

- Peak performance
 - Without vectorization: 4 iops/cycle
 - With vectorization: 16 iops/cycle
 - Assuming 64-bit integers
- Memory bandwidth
 - O Novabench: ≅25 GB/s
 - 8.9 B/cycle

Roofline Plot

Non-Vector Optimizations

Memory Operations

Stack vs Heap

Basic Optimizations

- Replace 'mod power of 2' with bitwise AND
- Replace power of 2 divisions by right-shift
- Assume no aliasing in BigInt parameters
- Create specific functions
 - Single chunk multiplication
 - Power with integer exponent
- Remove multiplications by χ
- Loop unrolling
- Pre-computation
- Optimization flags
- Compile all at once

Algorithmic Optimizations – mod

- Normally, mod requires division with rest
- Special prime of Curvell74
 - Recursion necessary
 - Only works for $X \le 2^{256}$
- Binary search with precomputed values
 - Search a ∈ [1, 32] s.t. 0 ≤ X aq < q

$$egin{aligned} q &= 2^{251} - 9 \ \Rightarrow 2^{251} - 9 \equiv_q 0 \ \Rightarrow 2^{256} \equiv_q 288 \end{aligned}$$

$$X \in \{0,1\}^{512} \ X = X_1 \cdot 2^{256} + X_0 \ = X_1 \cdot 288 + X_0$$

Algorithmic Optimizations – Square

- Special case of multiplication
 - Reduce memory access
 - Only one operand
 - Can save around half the chunk multiplications

			a _o a ₃	a ₀ a ₂	a _o a ₁	a _o a _o
		a ₁ a ₃	a ₁ a ₂	a _l a _l	a ₁ a ₀	
	a ₂ a ₃	a ₂ a ₂	a ₂ a ₁	a ₂ a ₀		
a_3	a ₃ a ₂	a ₃ a ₁	a ₃ a ₀			

Algorithmic Optimizations – special pow

- Multiple special power operations
 - \circ Chi: $\chi(a) = a^{(q-1)/2}$
 - \circ Inverse mapping: $\mathbf{Q}^{(q+1)/4}$
 - Fermat inverse: a⁻¹ ≡ a^{q-2} (mod q)
- Exponents have prefix of 'ones':
 - \circ (q-1)/2 = 0b1111...11111011 (247 ones in prefix)
 - (q+1)/4 = 0b111111...111110 (248 ones in prefix)
 - o q-2 = 0b11111...1110101 (247 ones in prefix)
- Ensure suffix separately
- Remove branching from square-and-multiply
- Enables AVX optimizations (later)

```
egin{aligned} \mathsf{pow}(b,e): & r = 1 \ & 	ext{while } \mathrm{e} > 0 \ & 	ext{if } \mathrm{e} \ \& \ 1 \ & r \equiv_q r \cdot b \ & b \equiv_q b^2 \ & e = e/2 \end{aligned}
```



```
egin{aligned} 	extstyle 	extstyle
```

Algorithmic Optimizations – speedup

Vector Optimizations

AVX add, sub, mul

- Little benefit
- Carries
 - Manually over lanes
 - Needs #chunks ops
- Data movement
 - Costly in AVX

AVX mul 4 indep. inputs

- Linear dependency for square operations
- Result can use four variables r₁, r₂, r₃, r₄
 for independent partial products
- Combine at end $r = r_1 \times r_2 \times r_3 \times r_4$
- Loop unrolling to avoid aliasing

```
for (uint32_t i = 0; i < 30; ++i) {
   big_int_curve1174_square_mod(b_0_0, b_3_1);
   big int_curve1174 square mod(b 1 0, b 0 0);
   big_int_curve1174_square_mod(b_2_0, b_1_0);
   big_int_curve1174_square_mod(b_3_0, b_2_0);
   big int curve1174 mul mod 4(
       r_0_0, r_1_0, r_2_0, r_3_0,
       r_0_1, r_1_1, r_2_1, r_3_1,
       b_0_0, b_1_0, b_2_0, b_3_0
   big_int_curve1174_square_mod(b_0_1, b_3_0);
   big int curve1174 square mod(b 1 1, b 0 1);
   big_int_curve1174_square_mod(b_2_1, b_1_1);
   big_int_curve1174_square_mod(b_3_1, b_2_1);
   big_int_curve1174_mul_mod_4(
       r_0_1, r_1_1, r_2_1, r_3_1,
       r_0_0, r_1_0, r_2_0, r_3_0,
       b_0_1, b_1_1, b_2_1, b_3_1
```

AVX mul 4 indep. inputs

- Pack data
 - The same chunk from 4 different BigInts are adjacent
- Do the normal mul algorithm with vector instructions
 - No need to move data horizontally
- Unpack the data

- Moderate speed
 - Packing/Unpacking is an overhead

Conclusion

Overall speedup

44x

Comparison to GMP

Laptop Comparison

Devices:

- o MacBook Pro Mid 2015 with Intel Haswell i7-4980HQ 2.8 GHz, native clang
- o MacBook Pro 2020 with Apple M1, native clang
- o AMD Ryzen 9 3900X @4.1GHz, Win10 WSL Ubuntu and gcc