Simulación de diseño y operación de un clúster Cassandra

Contexto: 🙌

Comprender cómo se estructura Cassandra y cómo se define un keyspace es clave para operar correctamente en entornos distribuidos. Esta actividad busca aplicar conceptos como replicación, escalabilidad y organización de datos.

Consigna: 🔬

Diseña un esquema básico de clúster Cassandra para una app de streaming global. Incluye keyspaces, nodos, estrategia de replicación y tipos de consultas frecuentes.

Ø Paso a paso:

- **1.** Definan el número de centros de datos y nodos por región (mínimo 2 regiones).
- 2. Seleccionen la estrategia de replicación adecuada (NetworkTopologyStrategy).
- Propongan un keyspace y una tabla que registre visualizaciones de contenido (usuario, episodio, timestamp).
- Escriban al menos dos consultas en CQL optimizadas para ese modelo.
- **5.** Expongan brevemente su diseño y justificación al grupo.

Ejercicio 1: Simulación de diseño y operación de un clúster Cassandra

1. Estructura de centros de datos y nodos

- Región 1: Sudamérica (SCL-DC) 3 nodos
- Región 2: Norteamérica (US-DC) 3 nodos

2. Estrategia de replicación

Se utiliza 'NetworkTopologyStrategy' para definir el número de réplicas por data center.

SCL-DC: 2 réplicasUS-DC: 2 réplicasUS-DC: 2 réplicas

3. Keyspace y tabla

```
CREATE KEYSPACE streaming_app
WITH REPLICATION = {
  'class': 'NetworkTopologyStrategy',
  'SCL-DC': 2,
  'US-DC': 2
};

USE streaming_app;

CREATE TABLE visualizaciones (
  user_id UUID,
  episodio_id UUID,
```

```
timestamp TIMESTAMP,
dispositivo TEXT,
duracion_segundos INT,
PRIMARY KEY ((user_id), timestamp)
);
```

user_id como clave de partición permite agrupar las visualizaciones por usuario. timestamp como clustering key permite ordenar por fecha.

4. Consultas CQL optimizadas

```
-- a) Visualizaciones de un usuarioSELECT * FROM visualizacionesWHERE user_id = aaaa-bbbb-cccc-dddd;
```

-- b) Visualizaciones de un usuario en un día
SELECT * FROM visualizaciones
WHERE user_id = aaaa-bbbb-cccc-dddd
AND timestamp >= '2025-07-01' AND timestamp < '2025-07-02';</pre>

-- c) Agregación del lado del cliente # Se obtienen los registros y se suman en la aplicación

Análisis de rendimiento de operaciones CRUD en Cassandra

Contexto: 🙌

Las operaciones CRUD en Cassandra tienen particularidades por su arquitectura basada en columnas y sistema distribuido. Esta actividad ayuda a explorar sus efectos en el rendimiento.

Consigna: 羔

Analiza un conjunto de operaciones CRUD y determina cuáles están correctamente diseñadas para Cassandra. Identifica mejoras en rendimiento según claves de partición y uso de índices.

Tiempo 1: 30 minutos

Paso a paso:

- El docente compartirá 4 consultas: una de inserción, una de lectura, una de actualización y una de borrado.
- En parejas, identifiquen si usan claves de partición adecuadas, si son eficientes y si afectan negativamente al rendimiento.
- 3. Propone mejoras para cada caso (reorganización de tabla, uso o eliminación de índices, ajuste en clave primaria, etc.).
- 4. Comparte tus conclusiones con otra dupla.

Ejercicio 2: Análisis de rendimiento de operaciones CRUD en Cassandra

1. Análisis de consultas

Operación	Consulta	Evaluación
Inserción	INSERT INTO tabla () VALUES ()	Eficiente, Cassandra optimiza escritura
Lectura	SELECT * FROM tabla WHERE campo_secundario = 'x'	Ineficiente si no se usa la clave de partición
Actualización	UPDATE tabla SET campo = valor WHERE id =	Eficiente si <i>id</i> es clave primaria
Borrado	DELETE FROM tabla WHERE campo_secundario = 'x'	Ineficiente si no usa la clave de partición

2. Mejoras sugeridas

- Lectura y borrado ineficientes: rediseñar clave primaria para incluir campo_secundario o agregar índice secundario si es lectura frecuente.
- Reorganización de tabla: considerar desnormalización para adaptarse a consultas frecuentes.
- Ajuste de clave primaria: crear nuevas tablas si las consultas requieren otro enfoque (modelo orientado a consultas).
- Evitar múltiples índices: solo usarlos cuando la cardinalidad lo justifique.