一、实验目的

- 1. 掌握含源二端网络戴维南等效电路参数的测定方法。
- 2. 验证戴维南定理,叠加定理。

二、实验环境

南区信工大楼 N101。

三、实验内容与步骤

图 3

任务一 测有源二端网络的等效电阻

- (1) 接图 3 线路,从电工原理(二) EEL-53 中选用,接入恒压源 Us1=12V 和恒流源 Is=20mA(注意 Is 的接入方向)及可变电阻 RL。
- (2) S₁ 往上拨, S₂ 往右拨(注意保持断开此实验箱上固定的负载 R_L,选择 专用元件挂箱 EEL-51 的可变电阻 R 接入),用电压表测量开路电压 Uoc (Uab),将数据记入表一中。
- (3) S₁往下拨(将负载 R_L 短路), S₂往右拨(注意保持断开此实验箱上固定的负载 R_L),用电流表测量短路电流 I_{sc},将数据记入表 1 中。

at Table	表1	
Uoc (V)	Isc(mA)	Rs=Uoc/Isc
1.689	3. 22	525

任务二 测有源二端网络的外特性

- (1) 在图 3 电路中, RL 用元件箱(一) EEL-51 的 R 接入, 并注意 S2 往右拨;
- (2) 改变负载电阻 RL 的阻值,逐点测量对应的电压,电流,将数据记入表 2中。并计算有源二端网络的等效参数 Rs。

				ā	表 2				
$R_L(\Omega)$	900	800	700	600	500	400	300	200	100
U _L (V)	1.066	1.019	0.965	0.900	0.823	0.730	0.613	0.464	0, 267
IL(mA)	1.17	1.25	1.37	1.49	1.64	1.82	2.04	2.32	2.70

任务三 验证戴维南定理

(a)

3-1. 测有源二端网络等效电压源的外特征:

步 3-1-a. 图 4 (a) 电路是图 3 的等效电压源电路,图中,电压源 Us 表一中的 Uoc 数值,内阻 Rs 按表 1 中计算出来的 Rs(取整)选取固定电阻(从元件箱 EEL-51 中选 $570\,\Omega/8W$ 的电阻接入)。并改变负载 RL(从元件箱 EEL-51 中选可变电阻)的阻值,逐点测量对应的电压,电流,将数据记入表 3 中。

表 3 有源二端网络等效电压源的外特性

$R_L(\Omega)$	900	800	700	600	500	400	300	200	100
U _L (V)	1.077	1.029	0.975	0.909	0.832	0.737	0.619	0.470	0.271
I _L (mA)	1.19	1.28	1.38	1.51	1.66	1.84	2.07	2. 35	2.74

任务四 验证叠加原理

图 5

(1) 按图 5 接线,图中的电源 U_{S1} 用恒压源 I 路($0\sim+30V$)可调电压输出端,选择 20V 挡,并将输出电压跳到+12V, U_{S2} 用恒压源 II 路($0\sim+30V$)可调电压输出端,选择 10V 挡,并将输出电压线条到+6V(以直流数字电压表读数为准),开关 S_3 往上拨(投向 R_3 侧).

(2) U_{s1} 电源单独作用,将开关 S_1 往上拨 (投向 U_{s1} 侧),开关 S_2 往下拨 (短

- (3) Us2电源单独作用,将开关S1往下拨(投向短路侧),开关S2往上拨(投 路侧),测量各电压记录于表5中。 向 S₂侧),测量各电压记录于表 5 中。
- (4) Us1和 Us2共同作用时, 开关 S1往上拨(投向 S1侧)和 S2往上拨(投向 S₂侧),测量各电压记录于表5中。

			表	5(注意	数据的止	(负号)
测量云	Ust	U _{s2}	I 1	I 2	[3	UAB

			表 5	(注意数	放据 的 止	贝马厂				* TT3 A
实验,国项目	U_{s1}	U _{s2}	I 1 (mA)	I 2 (mA)	I 3 (mA)	UAB (V)	UCD (V)	UAD (V)	UDE (V)	UFA (V)
容)	8.68	-2.43	-6.29	2.34	0.76	3.12	4.34	4.34
U _{s1} 单独作 用	12	0		3.60	-2.43	-3.54	-1.14	1.19	-0.61	-0.61
U _{s2} 单独作 用	0	6	-1.22			-1.18	-0.40	4. 33	3.74	3,74
U _{s1} , U _{s2} 共同 作用	12	6	7.47	1.18	-8.71	-1.10				

四、实验结果与数据分析

电流源单独作用:

$$\begin{cases} U_{0c'} = 510 i + 330i \\ i = \frac{12}{10 + 510 + 330} A \end{cases} \Rightarrow U_{0c'} = 11.858$$

= 22.811 mA

$$\begin{cases} U_{0c}'' = -10iz - 510i \\ i = I_{s} = 20 \text{ mA} \Rightarrow U_{0c}'' = -10.27 \\ i_{2} = i \times \frac{350}{350 + (10 + 510)} \end{cases}$$

端口短路,记忆=0V(C接地)

据任务一.可将电路等效为以下等效 电路.

据公式①图,将值100.200.300.400.500.600.700.800.900代入计算,可得:

						, 1	/.	2	2:00	100
	D. 1.2	900	800	700	600	700	400	300	0111	0.270
	~_/-	1-067	1.020	0.965	0.901	0.824	0.7307	0.578	0.439	0.255
任务主数据	UL/V	1.007	0.758	10/10/	1.501	1.649	1.826	21047	2.330/	2702
蓝色笔	IL/mA	1.113	1.198	1.296	1.41	したけ	1-719	1.928	2.196	2.55

单独作用:
$$U_{51}$$
 = 8.642 mA
 I_{1} = $R_{1} + R_{4} + I R_{3} / (R_{2} + R_{5})$] = 8.642 mA

$$I_{z'} = -I_{1} \times \frac{R_{3}}{(R_{2} + R_{5}) + R_{3}} = -2.395 \text{ mA}$$

(接貨面)

$$' = -I_2' \times R_2 = 2.395 V$$

 $' = -I_2' \times R_5 = 0.79 V$

$$5' = -I_3' \times R_3 = 3.186 \text{ V}$$

2单独作用时.

$$R_2 + R_5 + [R_3 + (R_1 + R_4)] = 3.593 \text{ mA}$$

$$R_{3}'' = -I_{2} \times \frac{R_{3}}{R_{3} + (R_{1} + R_{4})} = -1.198 \text{ mA}$$

$$co'' = -I_2'' \times R_5 = -1.18 \, b \, V$$

$$P_{AD}'' = -I_3'' \times R_3 = 1.222V$$

1、Usz 芝同作用时.

实验数据(测量值和理论计算值)如下所示: 任务一:

表 1

	Uoc(V)	Isc(mA)	Rs=Uoc/Iso
实测值	1. 689	3. 22	525
理论值	1. 581	3. 042	519. 882

任务二:

表 2

				1	文 乙				
$\mathrm{RL}\left(\Omega ight)$	900	800	700	600	500	400	300	200	100
UL(V)	1.066	1.019	0.965	0.900	0.823	0.730	0.613	0. 464	0. 267
UL(V) 理论值	1. 002	0. 958	0. 907	0.847	0. 775	0. 687	0. 578	0. 439	0. 255
IL(mA)	1. 17	1. 25	1. 37	1.49	1.64	1.82	2.04	2. 32	2.70
IL(mA) 理论值	1. 113	1. 198	1. 296	1. 41	1. 55	1. 719	1. 928	2. 196	2. 55

任务三:

表 3

				衣ら					
$R_L(\Omega)$	900	800	700	600	500	400	300	200	100
$U_L(V)$	1.077	1.029	0.975	0.909	0.832	0.737	0. 619	0. 470	0. 271
U _L (V) 理论值	1.002	0.958	0.965	0.90)	0.824 0.775	0.730 0.687	0.614	0.439	0.270
$I_L(mA)$	1.19	1.28	1.38	1.51	1.66	1.84	2.07	2.35	2.74
I _L (mA) 理论值	人/85 1.113	1.275 1.198	1.379	1.50	1.55	1.719	2.047 1.928	2.33° 2.196	2.702 2.55

刚开始任务二、三一起草了,后来反应过来做任务三的时候用的电压、电阻值是任务一的测量值而非理论值,数据改了之后与UL、L的测量值更接近了.

					表 4					
实验内容	U _{s1} (V	U _{s2} (V)	I 1 (mA)	I 2 (mA)	I 3 (mA)	UAB (V)	UCD (V)	UAD (V)	UDE (V)	UFA (V)
Usı单独作用	12	0	8.68	-2.43	-6. 29	2. 34	0.76	3. 12	4. 34	4.34
理论值	12	0	8. 642	-2. 395	-6. 246	2. 395	0. 79	3. 186	4. 407	4. 407
U _{s2} 单独作用	0	6	-1.22	3.60	-2. 43	-3. 54	-1.14	1. 19	-0.61	-0.61
理论值	0	6	-1. 198	3. 593	<i>−2. 395</i>	-3. 593	-1. 186	1. 222	-0. 611	-0. 611
U _{s1} , U _{s2} 共同作 用	12	6	7.47	1.18	-8.71	-1.18	-0.40	4. 33	3.74	3. 74
理论值	12	6	7. 444	1. 198	-8. 641	-1. 198	<i>−0. 396</i>	4. 408	3. 796	3. 796

数据分标根据表中数据,可以看出测量值与理论计算值稍有差别,但都在 没差的正常范围内,误差产生的原因可能为:

- 1.仪器的测量值不够精确.
- 2. 电阻的阻值精确度不高.
- 3.读数时精确度不高.

五、实验心得

放电路实验一定要例心,注意纲节,注意十、一接线柱等.接电压源的时候可以先调出所需电压值,再将其接入电路。但接电沧源的时候要先把它接入电路,再调电泛值、刚开始做的时候没接线就调,结果电流示数一直为0,还傻傻地以为仪器杯3.

通过这次实验,亲自动手,以直观的数据验证了戴维南是理和叠加定程理论十实践,加深了对这些电路远理的理解