Университет ИТМО

Отчёт по лабораторной работе №4 «Изучение свойств идеального газа на примере воздуха»

Выполнил: Федюкович С. А.

Факультет: МТУ "Академия ЛИМТУ"

Группа: S3100

Проверил: Пшеничников В. Е.

Цель работы

- 1. Экспериментальная проверка уравнения состояния идеального газа.
- 2. Определение температуры абсолютного нуля по шкале Цельсия.

Теоретические основы лабораторной работы

В том случае, когда состояние газа далеко от области фазовых превращений, его с достаточной степенью точности можно считать идеальным. В качестве идеального газа в работе используется обычный атмосферный воздух.

Для произвольной массы т идеального газа справедливо следующее уравнение состояния;

$$pV = -\frac{m}{\mu}RT,\tag{1}$$

где p — давление, V — объем, μ — молярная масса, T — абсолютная температура газа, R — универсальная газовая постоянная. Это уравнение называется уравнением Менделеева-Клапейрона.

Нулю абсолютной температуры по шкале Цельсия соответствует значение $273,15^{\circ}C$. Градусы шкалы абсолютной температуры (шкалы Кельвина) и шкалы Цельсия выбраны одинаковыми. Поэтому значение абсолютной температуры связано со значением температуры по шкале Цельсия формулой:

$$T(K) = t(^{\circ}C) - t_o = t(^{\circ}C) + 273, 15^{\circ}C.$$
 (2)

Пусть исследуемый газ находится в цилиндре с контролируемым рабочим объемом $V_{\rm ц}$, масса газа в цилиндре $m_{\rm ц}$. Температура t цилиндра с газом поддерживается постоянной.

Датчик давления, работающий при комнатной температуре, вынесен за пределеы рабочего объёма и соединён с последним трубкой. Объём газа V_x в этой трубке мал по сравнению с рабочим объёмом $V_{\rm L}$. В соединительной трубке также находится газ массой m_x при некоторой неизвестной средней температуре t_x , лежащей в интервале от комнатной температуры до температуры t рабочего объёма.

В работе измеряется зависимость давления р газа от велечины рабочего объёма $V_{\rm ц}$ при разных значениях температуры t (от $20^{\circ}C$ до $60^{\circ}C$). Выведем соотношение, связывающее рабочий объём и давление газа при постоянной температуре. Общее количество вещества в рабочем объёме и соединительной трубке в течение всей работы остаётся постоянным.

$$v = (m_{\rm II} + m_x)/\mu \tag{3}$$

Выражая массы газа m_{π} и m_x из уравнения состояния (1), абсолютную температуру из соотношения (2), и подставляя найденные выражения в формулу (3), получим:

$$v = \frac{pV_{\pi}}{R(t - t_o)} + \frac{pV_x}{R(t_x - t_o)}$$
 (4)

Из этого уравнения найдем искомое соотношение:

$$V_{\rm II} = \frac{vR(t - t_o)}{p} - \frac{V_x(t - t_o)}{(t_x - t_o)} \tag{5}$$

Из-за перераспределения газа между объёмами $V_{\rm q}$ и в процессе измерения температура может изменяться. Однако, при относительно малой величине изменением второго слагаемого в формуле (5) можно пренебречь. Поэтому при неизменной температуре t зависимость рабочего объёма $V_{\rm q}$ от обратного давления 1/p является линейной.

$$K = vR(t - t_o), (6)$$

Угловой коэффициент этой зависимости в свою очередь, линейно меняется с температурой и обращается в нуль при абсолютном нуле температур. Таким образом, изучение зависимости ${\rm K}(t)$ позволяет найти значение t_o .

Рассмотрим другой, более точный, способ определения величины t_o . Если для разных температур измерение давления проводить при одних и тех же значениях объёма, то полученные данные легко преобразуются в зависимость давления от температуры при разных значения рабочего объёма газа. Теоретический вид этой зависимости получается из уравнения (5):

$$p = \frac{vR(t - t_o)}{V_{\text{II}}(1 + x(t))} \approx \frac{vR(t - t_o)}{V_{\text{II}}}(1 + x(t)),\tag{7}$$

где $x(t) = \frac{V_x(t-t_o)}{V_{\rm L}(t_x-t_o)}$. Справедливость приближенного равенства в формуле (7) обусловлена тем, что значения функции x(t) малы, и для малых х можно воспользоваться формулой приближенных вычислений:

$$(1+x)^{\alpha} \approx 1 + \alpha x. \tag{8}$$

B данном случае $\alpha = -1$.

При неизменном рабочем объёме $V_{\rm II}$ график зависимости давления от температуры в соответствии с формулой (7) должен быть почти линейным. Причем давление должно обращаться в нуль как раз при $t=t_o$. Из-за малости функции x(t) отклонение от линейности невилико, и при измерении в ограниченном диапазоне температур практичечки незаметно. Но, если искать значение t_o с помощью линейной аппроксимации экспериментальной зависимости p(t), экстраполируя аппроксимирующую прямую до пересечения с осью t, то найденное приближенное значение окажется систематически смещённым влево относительно истинного значения . Причина этого в следующем. Величина x(t) в первом приближении линейно

растущая функция температуры, с учетом этого график функции p(t) из уравнения (7) оказывается параболой выпуклой вверх. Аппроксимирующая прямая, параметры которой найдены по точнкам в рабочем диапазоне температур, идет практически по касательной к этому графику, «промахиваясь» мимо истинного значения , как изображено на рис. 1. Однако, можно показать, что разность при малом отношении $V_x/V_{\rm q}$ должна убывать обратно пропорционально объёму $V_{\rm q}$. Поэтому, правильное значение температуры абсолютного нуля может быть найдено как предел:

$$t_o = \lim_{1/V_{\rm u} \to 0} \widetilde{t}_o \tag{9}$$

линейным продолжением графика зависимости \widetilde{t}_o от $1/V_{
m u}$ к значению $1/V_{
m u}=0.$

Экспериментальные данные

Приборные погрешности $\Delta V = 1$ мл, $\Delta p = 0, 1$ к Π а.

Атмосферное давление p_0 , определённое с помощью лабораторного барометра равно 756.8 мм ртутного столба.

Таблица 1.1. Зависимость давления от объёма при температуре $t_3=20^{\circ}C$

N_{0}	$V_{\rm II}$, мл	Δp_1 , к Π а	Δp_2 , кПа	P , к Π а	$1/p$, к Π а		
1	50	32,3	32,3	132,8	0,008		
2	60	12,8	15,2	114,5	0,009		
3	70	-1,8	0	99,6	0,010		
4	80	-12,1	-11,9	88,5	0,011		
5	90	-21,2	-21,3	79,2	0,013		
6	100	-28,8	-28,8	71,7	0,014		
7	110	-35,2	-35,3	62,2	0,015		
8	120	-40,6	-36,8	59,9	0,017		

Таблица 1.2. Зависимость давления от объёма при температуре $t_3=30^{\circ}C$

		, ,		1	1 31
$N_{\overline{0}}$	$V_{\mathrm{ц}}$, мл	Δp_1 , к Π а	Δp_2 , кПа	P , к Π а	$1/p$, к Π а
1	50	53,4	53,4	153,9	0,0065
2	60	29,5	29	129,7	0,0077
3	70	13,7	9,7	112,2	0,0089
4	80	-0,9	-3,5	98,3	0,0102
5	90	-11,7	-13,7	87,8	0,0114
6	100	-22,4	-22,5	78,0	0,0128
7	110	-30,8	-30,8	69,7	0,0143
8	120	-36,8	-36,8	63,7	0,0157

Таблица 1.3. Зависимость давления от объёма при температуре $t_3=40^{\circ}C$

		, ,		1	J
N_{0}	$V_{\rm ц}$, мл	Δp_1 , к Π а	Δp_2 , кПа	<i>P</i> , кПа	$1/p$, к Π а
1	50	50,2	51,7	151,4	0,0066
2	60	28	27,6	128,3	0,0078
3	70	3,7	5,1	104,9	0,0095
4	80	-7,8	-6,1	93,5	0,0107
5	90	-16,3	-16,5	84,1	0,0119
6	100	-24,4	-24,5	76,0	0,0132
7	110	-31,1	-31,1	69,4	0,0144
8	120	-36,7	-36,7	63,8	0,0157

Обработка результатов измерений

1. Переведем показания лабораторного барометра из миллиметров ртутного столба в паскали:

$$p_0(\Pi a) = p_0(\text{MM.pt.ct})10^{-3} \frac{M}{MM} \rho g = 100495(\Pi a) = 100,495(\kappa \Pi a).$$
 (10)

Здесь $\rho=13,55\cdot 10^3$ кг/м³ — плотность ртути, g=9,819м/ c^2 — ускорение свободного падения на широте Санкт-Петербурга.

2. Для каждой из 1.1-1.3 вычислим давление газа p по формуле

$$p = p_0 + \frac{\Delta p_1 + \Delta p_2}{2},\tag{11}$$

обратное давление 1/р и заполним пятую и шестую колонки таблиц.

3. По данным таблиц 1.1-1.3 для температур построим на одной координатной сетке графики зависимости рабочего объёма $V_{\rm пот}$ обратного давления 1/p .

- Рис. 2. Графики зависимости рабочего объёма $V_{\rm ц}$ от обратного давления 1/p. Из рис. 2 видно, что зависимость $V_{\rm ц}$ от 1/p во всех пяти случаях является прямолинейной. Кроме того, наблюдается рост углового коэффициента K с ростом t.
- 4. Перенесём значения рабочих температур во второй столбец таблицы 2.1. Для каждого из графиков $V_{\mathfrak{q}}$ от 1/p рассчитаем угловой коэффициент K, следующим образом: Пусть $X_1, X_2...X_n$ абсциссы, $Y_1, Y_2...Y_n$ ординаты графика некоторой экспериментально измеренной зависимости Y(X). Если предполагается, что эта зависимость линейна, т.е. Y(X) = AX + C, то наиболее вероятные значения углового коэффициента A и свободного слагаемого C можно найти из требования минимальности суммы квадратов отклонений ординат экспериментальных точек от искомой прямой:

$$\sum_{i=1}^{N} (Y_i - (AX_i + C))^2 = min.$$
 (12)

Исходя из условия (15) можно получить следующие выражения

$$A = \frac{1}{D} \sum_{i=1}^{N} (X_i - \overline{X}) Y_i, C = \overline{Y} - A \overline{X},$$
(13)

где

$$\overline{X} = \frac{\sum_{i=1}^{N} X_i}{N}, \overline{Y} = \frac{\sum_{i=1}^{N} Y_i}{N}, D = \sum_{i=1}^{N} (X_i - \overline{X})^2.$$
 (14)

Погрешности коэффициента и слагаемого вычисляются по формулам:

$$\Delta A = \sqrt{E/D}, \Delta C = \sqrt{\left(\frac{1}{N} + \frac{\overline{X^2}}{D}\right)E},\tag{15}$$

где

$$E = \frac{1}{N-2} \sum_{i=1}^{N} (Y_i - AX_i - C)^2.$$
 (16)

Значения К занесём в таблицу 2.1:

№	$t,^{\circ}C$	К, Дж
1	20	7622
2	30	7585
3	40	7718
4	50	8084
5	60	8513

5. По таблице 2.1. построим график зависимости K(t):

Рис. 3. График зависимости углового коэффициента К графика $V_{\pi}(1/p)$ от температуры газа. Как видим, в соответствии с формулой (6) график «идёт» прямолинейно. В теории график должен пересекать ось t при температуре абсолютного нуля. По найденным экспериментальным точкам найдём угловой коэффициент A и свободное слагаемое C для зависимости K(t) по формулам (13), (14).

$$A = 23(Дж/°C); C = 6992, 15(Дж);$$

Рассчитаем температуру абсолютного нуля: $t_o = \frac{-C}{A} = -306, 5(^{\circ}C);$

Вычислим погрешность температуры абсолютного нуля: $\Delta t_o = t_o \sqrt{\frac{\Delta A^2}{A} + \frac{\Delta C^2}{C}} = -77,9^{\circ}C;$

Таким образом, доверительный интервал найденного значения температуры абсолютного нуля: $t_o=306, 5.5\pm77, 9(^{\circ}C)$.

6. По данным таблиц 1.1 – 1.5 заполним таблицу 2.2:

V_{II} , мл	50	60	70	80	90	100	110	120
$T,^{\circ}C$	P , к Π а							
20	132,8	114,5	99,6	88,5	79,25	71,7	65,25	59,9
30	153,9	129,75	112,2	98,3	87,8	78,05	69,7	63,7
40	151,45	128,3	104,9	93,55	84,1	76,05	69,4	63,8
$1/V_{\rm II}$, мл $^{-1}$	0,02	0,017	0,014	0,013	0,011	0,01	0,009	0,0083
$\widetilde{t_o}$, C	-205,22	-192,91	-219,75	-235,1	-232,092	-246,442	-225,788	-251,691

Пользуясь таблицей 2.2 для значений объема цилиндра $50,\ 90,\ 120$ мл на одной координатной сетке построим графики p(t):

- Рис. 4. Графики зависимости давленияи от температуры. Как видим, графики «идут» прямолинейно.
- 7. Для каждого из объемов (покажем рассчеты только для $V_1=50$ мл) в таблице 2.2 найдём значение обратного объема $1/V_{\rm H}$ и рассчитаем величину $\widetilde{t_o}$ по формуле: $\widetilde{t_o}=-\frac{c}{a}=-205,219^{\circ}C$,

где a и c, соответственно, угловой коэффициент и свободное слагаемое для зависимости p(t), вычисляемые по формулам (13), (14). Занесём значения в таблицу 2.2.

8. Пользуясь таблицей 2.2, по формулам (13),(14) найдём угловой коэффициент A' и свободное слагаемое C' для зависимости $\widetilde{t_o}(1/V_{\rm ц})$. Величина C' фактически есть предел (9), т.е. совпадает со значением t_o . На координатной сетке $\widetilde{t_o}$ от $1/V_{\rm ц}$ отметим экспериментальные точки и проведём прямую, соответствующую найденным параметрам A' и C'. Продолжим прямую до пересечения с осью ординат.

- Рис. 5. Зависимость $\widetilde{t_o}(1/V_{\rm II})$. Точка пересечения с осью ординат есть температура абсолютного нуля t_o .
- 9. Рассчитаем погрешность Δt_o как $\Delta C'$ по формулам (15)–(16).

$$A' = 4151(°C/мл^{-1})$$

$$C' = -279(^{\circ}C);$$

Вычислим погрешность температуры абсолютного нуля:

$$\Delta C = \sqrt{(\frac{1}{N} + \frac{\overline{X^2}}{D})E} \approx 14,48^{\circ}C.$$

Вывод

Мы убедились, что зависимость объёма от величины обратного давления является линейной, а значит объём обратно пропорционален давлению при неизменной температуре, что согласуется с уравнением состояния идеального газа: $pV = \frac{m}{\mu}RT$.

Помимо этого мы рассчитали температуру абсолютного нуля двумя способами. Первый способ, основан на том, что угловой коэффициента K графика зависимости объёма от обратного давления обращается в нуль при температуре абсолютного нуля. Второй способ построен на анализе зависимости давления от температуры при постоянном объёме: при различных значениях объёма определяется $\widetilde{t_o}$ — приближенное значение температуры абсолютного нуля. Затем это значение уточняется как предел при $1/V_{\rm q} \to 0$. Как и ожидалось, этот способ дал более точный результат $t_o = -279 \pm 14,5 (^{\circ}C)$.

Тот факт, что полученные значения достаточно близки, подтверждает правильность расчетов и рассуждений, на основе которых были произведены расчеты.