디지털시스템설계 Lab 6

손량(20220323)

Last compiled on: Saturday 27th May, 2023, 07:22

1 개요

수업 시간에 배운 counter를 베릴로그 코드로 구현하고 시뮬레이션을 수행해 본다.

2 이론적 배경

2.1 D Flip-Flop

D flip-flop은 클럭 신호에 따라 D 입력에 맞추어 Q가 반영되는 회로이다. Excitation table 은 다음과 같이 그릴 수 있다.

D	Q	Q^+
0	0	0
0	1	0
1	0	1
1	1	1

2.2 Counter

Counter는 clock 신호에 맞춰 미리 정의된 규칙에 따라 데이터를 저장하고 출력한다.

2.2.1 Synchronous Counter

모든 flip-flop에 클럭 신호가 동시에 입력되는 회로를 synchronous counter라고 부른다. Flip-flop에 의한 clock delay가 없기 때문에 속도가 빠르지만, 회로가 더 복잡하다는 단점이 존재한다.

2.2.2 Decade Counter

Decade counter는 10진수의 숫자 0, 1, 2, 3, 4, 5, 6, 7, 8, 9를 순차적으로 세는 회로이다.

3 실험 준비

3.1 Synchronous Decade BCD Counter

3.1.1 State Diagram

State diagram은 다음과 같이 그릴 수 있다.

3.1.2 State Transition Table

State transition diagram과 JK flip-flop의 입력은 다음과 같다.

Q_3	Q_2	Q_1	Q_0	Q_3^+	Q_2^+	Q_1^+	Q_0^+	J_3	K_3	J_2	K_2	J_1	K_1	J_0	K_0
0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	X
0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	X
0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
1	0	0	1	0	0	0	0	X	1	0	X	0	X	X	1
1	0	1	0	_	-	-	-	X	X	X	X	X	X	X	X
1	0	1	1	_	-	-	-	X	X	X	X	X	X	X	X
1	1	0	0	_	-	-	-	X	X	X	X	X	X	X	X
1	1	0	1	_	-	-	-	X	X	X	X	X	X	X	X
1	1	1	0	_	-	-	-	X	X	X	X	X	X	X	X
1	1	1	1	-	-	-	-	X	X	X	X	X	X	X	X

J, K 입력의 K-map을 그리면

단순화하면

$$J_0 = 1 \quad K_0 = 1$$

$$J_1 = Q_0 Q_3' \quad K_1 = Q_0$$

$$J_2 = Q_0 Q_1 \quad K_2 = Q_0 Q_1$$

$$J_3 = Q_0 Q_1 Q_2 \quad K_3 = Q_0$$

3.1.3 Circuit Diagram

회로도는 다음과 같다.

3.2 Synchronous Decade BCD Counter (두 자릿수)

3.2.1 State Diagram

State transition diagram은 다음과 같다.

$\overline{Q_7}$	Q_6	Q_5	Q_4	Q_3	Q_2	Q_1	Q_0	Q_7^+	Q_6^+	Q_5^+	Q_4^+	Q_3^+	Q_2^+	Q_1^+	Q_0^+
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	0	0	0	1	0	1
0	0	0	0	0	1	0	1	0	0	0	0	0	1	1	0
0	0	0	0	0	1	1	0	0	0	0	0	0	1	1	1
0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	1
0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0
0	0	0	0	1	0	1	0	-	-	-	-	-	-	-	-
0	0	0	0	1	0	1	1	-	-	-	-	-	-	-	-
0	0	0	0	1	1	0	0	-	-	-	-	-	-	-	-
0	$0 \\ 0$	0	0	1	1	0	1	-	-	-	-	-	-	-	-
$0 \\ 0$	0	0	0	1	1	1 1	0	-	-	-	-	-	-	-	-
0	0	$0 \\ 0$	0 1	$\frac{1}{0}$	$\frac{1}{0}$	0	$\frac{1}{0}$	0	0	0	- 1	0	0	0	- 1
								0							1
÷	:	:	÷	÷	:	:	÷	:	:	:	:	÷	÷	÷	:
0	0	0	1	1	0	0	0	0	0	0	1	1	0	0	1
0	0	0	1	1	0	0	1	0	0	1	0	0	0	0	0
0	0	0	1	1	0	1	0	-	-	-	-	-	-	-	-
0	0	0	1	1	0	1	1	-	-	-	-	-	-	-	-
0	0	0	1	1	1	0	0	-	-	-	-	-	-	-	-
0	0	0	1	1	1	0	1	_	-	-	-	-	-	-	-
0	0	0	1	1	1	1	0	-	-	-	-	-	-	-	-
0	0	0	1	1	1	1	1	-	-	-	-	-	-	-	-
:	:	:	:	:	:	:	:	:	:	:	:	:	:	:	:
1	0	0	1	0	0	0	0	1	0	0	1	0	0	0	1
:	÷	:	÷	:	:	:	:	:	:	:	÷	:	:	;	:
1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1
1	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0
1	0	0	1	1	0	1	0	_	_	_	_	_	_	_	-
1	0	0	1	1	0	1	1	_	_	_	_	_	_	_	_
1	0	0	1	1	1	0	0	_	_	_	_	-	_	_	_
1	0	0	1	1	1	0	1	_	_	_	_	_	_	_	-
1	0	0	1	1	1	1	0	_	_	-	_	_	_	_	-
1	0	0	1	1	1	1	1	_	-	-	-	-	-	-	-

3.2.2 Circuit Diagram

회로도는 다음과 같다.

3.3 369 계수기

3.3.1 State Diagram

State diagram은 다음과 같이 그릴 수 있다.

3.3.2 State Transition Table

State transition diagram은 다음과 같다.

Q_3	Q_2	Q_1	Q_0	Q_3^+	Q_2^+	Q_1^+	Q_0^+	D_3	D_2	D_1	D_0
0	0	0	0	0	0	1	1	0	0	1	1
0	0	0	1	_	-	-	-	X	X	X	X
0	0	1	0	_	-	-	-	X	X	X	X
0	0	1	1	0	1	1	0	0	1	1	0
0	1	0	0	_	-	-	-	X	X	X	X
0	1	0	1	-	-	-	-	X	X	X	X
0	1	1	0	1	0	0	1	1	0	0	1
0	1	1	1	_	-	-	-	X	X	X	X
1	0	0	0	_	-	-	-	X	X	X	X
1	0	0	1	1	1	0	1	1	1	0	1
1	0	1	0	-	-	-	-	X	X	X	X
1	0	1	1	_	-	-	-	X	X	X	X
1	1	0	0	_	-	-	-	X	X	X	X
1	1	0	1	0	1	1	0	0	1	1	0
1	1	1	0	_	-	-	-	X	X	X	X
1	1	1	1	_	-	-	-	X	X	X	X

D 입력의 K-map을 그리면

D_3					D_2					$D_{\mathfrak{l}}$					D _o				
Q2Q3	00	0	(1	10	Q2Q1	00	0	(1	10	Q2Q	00	0	(1	10	0,01	00	0	(1	10
00	O	X	X	X	00	O	X	×	X	00	1	Χ	Χ	Χ	00	I	Χ	X	Χ
ØI	X	Χ	Х	1	0	×	X	×	0	01	Χ	Χ	Х	O	0	Χ	Χ	X	1
(1	O	X	×	X	(1	l	Χ	X	X	(1	×	Х	X	(1	0	χ	X	χ
10	Χ	1	0	X	10	Χ	1	1	X	10	Χ	0	1	Χ	10	X	1	0	Χ

단순화하면

$$D_0 = Q'_0 + Q'_2 Q_3$$

$$D_1 = Q'_2 Q'_3 + Q_2 Q_3$$

$$D_2 = Q_0$$

$$D_3 = Q'_0 Q_1 + Q'_2 Q_3$$

3.3.3 Circuit Diagram

회로도는 다음과 같다.

4 실험 결과

우선 lab6_tb.v에서 생성된 전체 파형은 다음과 같다.

4.1 lab6_1.v - Synchronous Decade BCD Counter

Vivado에서 생성된 회로는 다음과 같다.

테스트벤치 실행 결과 중 lab6_1.v와 관계있는 부분은 다음과 같다.

0부터 시작해서 9에 도달한 다음 다시 0으로 돌아가는 정상 작동을 함을 알 수 있다.

4.2 lab6_2.v - Synchronous Decade BCD Counter (두 자릿수)

Vivado에서 생성된 회로는 다음과 같다.

테스트벤치 실행 결과 중 lab6_2.v와 관계있는 부분은 다음과 같다.

0부터 시작해서 99에 도달한 다음 다시 0으로 돌아가는 정상 작동을 함을 알 수 있다.

4.3 lab6_3.v - 369 계수기

Vivado에서 생성된 회로는 다음과 같다.

테스트벤치 실행 결과 중 lab6_3.v와 관계있는 부분은 다음과 같다.

0, 3, 6, 9, 13, 6, 9, …순서로 출력이 나오는 것을 확인할 수 있다.

5 논의

수업 시간에 학습한 counter를 직접 구현하고 작동을 확인할 수 있는 시간이었다. BCD coutner의 경우 수업 시간에는 ripple counter와 비슷한 구조를 보여주었는데, 지금까지 배운 내용으로 synchronous counter를 만든 것이 특히 의미 있었다고 생각한다.