Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

18	3,				
			٠.		
•					
	79				
			•		
m².					
				*	

NORTHERN FOREST EXPERIMENT STATION
JUNEAU, ALASKA
U. S. DEPARTMENT OF AGRICULTURE

U. S. FOREST SERVICE

U. S. DEPT. OF AGRICATES EARCH NOTE NOR-5

FEB 2 7 1964

CURRENT SERIAL RECORDS

September 1963

VOLUME TABLES FOR TREES OF INTERIOR ALASKA

Paul M. Haack, Jr., Research Forester

The attached volume tables are derived from 695 tree measurements obtained in 1957 and 1960. Nine general areas were sampled north and south of the Alaska Range and on the Kenai Peninsula. Data were gathered for white spruce (Picea glauca), quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), and balsam poplar (Populus balsamifera), including black cottonwood (P. trichocarpa) to a limited extent. Most tree measurements came from randomly located 1/50-acre plots within stands comprising at least one acre of the same type and stand-size class.

Smalian's formula was used to determine cubic-foot volume of sample trees at least 5.0 inches d.b.h. (diameter breast high). Volume was found between a one-foot stump and a minimum merchantable top of 4.0 inches inside bark (d.i.b.). Points of measurement were generally at 8.15-foot intervals.

The International 1/4-inch rule and Scribner rule were used to find board-foot volume of sample trees in 16-foot logs. The minimum d.b.h. of sawtimber-size spruce was 9.0 inches; for hardwoods, 11.0 inches. Limits were from a one-foot stump to a top equaling 40 percent of d.b.h., but not less than 6.0 inches d.i.b. in spruce and 8.0 inches d.i.b. in hardwoods.

Initial plottings of volume classes over $D^2H^{1/2}$ were linear over most of the range except those for paper birch cubic-foot and balsam poplar

 $[\]underline{1}$ / The combined variable reported by Spurr where

D = d.b.h. in inches

H = total tree height in feet.

Spurr, Stephen H. Forest Inventory. 476 pp. New York: The Ronald Press Co. 1952.

board-foot. These lines dropped slightly at the upper ends--zones of few data. Variability increased with increasing values of D^2H for all plottings. Since the standard deviation of residuals was proportional to volume and volume proportional to D^2H , the variance of residuals was proportional to $(D^2H)^2$. Therefore, $\frac{1}{(D^2H)^2}$ was used in weighting the equations. Independent variables tested were D^2H , D, D^2 , $1/D^2$, and H.

Cubic-foot and board-foot tree volume equations for the four species were obtained by regression analyses 2/3. The F-test indicated that quaking aspen and paper birch data could be pooled. The best predictive equation is footnoted beneath each table in this report. Standard errors of estimate were approximated by (standard error of estimate, weighted form) $\overline{(D^2H)}$.

The table presented here with respect to paper birch cubic-foot volume differs from one published by Gregory $\frac{4}{2}$ in that: (1) paper birch and quaking aspen data were pooled herein; (2) volume was found by Smalian's formula, not graphically; and, (3) whole-inch d.b.h. classes (e.g., $5.0 \le 5 < 6.0$), not mid-point classes (e.g., $4.6 \le 5 < 5.6$) were used.

²/ Furnival, George M. Regression routines. Yale School of Forestry and Northeastern Forest Expt. Sta., 28 pp., mimeo. 1961

³/ Boles, James N. 40-series--stepwise regression system. Calif. Agr. Expt. Sta., Dept. of Agr. Econ., U. of Calif., Berkeley, 43 pp. dittoed. 1962.

⁴/ Gregory, Robert A. Cubic-foot volume tables for paper birch in Alaska. U. S. Forest Serv., Alaska Forest Res. Ctr., Tech. Note No. 49, 1 p. plus 4 tables. 1960.

Table 1.--Volume table for white spruce in Alaska 1/

$\overline{}$
ule
\equiv
2
ß
_
Smalia <mark>n</mark> '
-
-
Ø
Ε
Ś
by
Р
_
_
_
feet,
_
cubic feet,
feet,
cubic feet,

Basis: trees	ured 4/	Number			20									8	7	2	2	_	2		;	7	1	!	i i	1	1
	120 :															8.98		0	\vdash		4	5		~	6	207	2
	115													9	74.3	.2		0	113	2	$^{\circ}$	146	5	7	∞	198	
	110													63.1	1	9.64	88.5	97.8	108	_	\sim	4	5	9	1	190	0
	105											9	53.0		7	75.9	4.	93.3	0	1	2	134	4	2	9	181	
	100									32.6	38.2	4.	50.5	7	4.	2	0		7	0	\vdash	2	3	4	9	172	∞
	95								26.1	-	9		•	4.		φ			2	0	\Box	2	\mathcal{C}	4	2	164	7
	9.0					1	16.7	20.	24.	29.	34.	39.	45.	51.	58.	65.		79.	87.	96	10	11	12	13	14	15	16
3/	85				0	7 12.5	15.	19.	23.	27.	32.	37.	42.	48.	54.	61.	68.2	75.	83.	91.	96	10	11	12	13	14	15
otal height, H $(\underline{\text{feet}})^3$	80				1 9.0	•	14.	18.	5 21.9	26.	30	35.	4	5.		57.	1 64.1	70.	78.	85.	93.	0	\vdash	\vdash	2	\sim	4
ight,	75		8	9	7 8.4	10.	13.	17.	20.	24.	28.	32.	37.	42.	8	54.	.09	9	ж,	•	7						
otal he	70		•	5.		10.	12.	15.	19.	22.	26.	30.	35.	39.	45.	50.	56.										
Ē	65			5	5 7.	6	11,	14.	17.	21.	24.	28.	32.	37.	41.	46.											
	09				.9 6		-	П	8 1	6 1		2	5 3	2 34.	.2 38.	4 43.											
	0 55				.3 5.		6	1 12	.4 14.	.0 17.	.7 20.	7 24.	2	.3 31.	9 35												
	5 5(.7 5		.0	.9 11	7	.3 16	I	.5 21	3 2	4.	31												
	0 4		6.	6.	.1 4	.5		3.7 9	.6 1	.7 1		.2 1	22														
	5 4				.5 4			<u></u>]=		1,																
	0 3		.2	0	.9	6	0.	ε.	6																		
	9		1	2	2	8	2	9																			
D.b.h.)	Inches	S	9	7	∞	6	10	11	12	13	14	15				19										

Volume, inside bark, between a one-foot stump and a minimum merchantable top of 4.0 inches inside bark. 1/ From weighted regression: V= -0.69934+0.002, 129, 464, 6 $\rm D^2H$. Standard error of estimate around mean volume = 2.08 cu.ft. = 9.7%; $\rm R^2$ = 0.983.

Table 2.--Volume table for white spruce in Alaska 1/

(In board feet, International 1/4-inch)

Basis: trees	ured4/	Number			23					80	7	2	2	7	2	П	1	1	1	1	1	i i	;
	120											504	266	631	869	770	845	923	-	1,090	1,178	1,269	1,364
	115									373	425	481	540	602	299	735	807	882	096	1,042	2	1,213	1,304
	110								308	355	404	457	514	573	635	701	692	841		994	7		1,245
	105							251	292	336	384	434	488	544	603	999	732	800	871	946	1,023		1,185
	100					168	201	$^{\circ}$		318	9	410	462	515	572	3	0	2	826	9	7	1,047	1,126
	95				130	2	188	2	2	9	342	∞	3	487	4	262	2	Τ	∞	4	\sim	6	1,066
eet) 3/	9.0		82		121	147	7	0	242	280	321	364	410	458	509	563	618	229	738	801		936	1,007
Total height, H (feet) 3	85		7.5	92	112	136	163	193	226	262	300	340	384	429	477	528	581	989	694	753	816	881	948
height	80		69	84	103	126	151	179	210	243	_	317	358	400	446	493	543	594	649	705	764	825	888
Total	7.5				94			9	193	224	5	6	\sim	372	\vdash	2	0						
	7.0		57	69	85	104	126	150	177	206	237	270	306										
	65		51	62	97	93		$^{\circ}$	9	∞	216	4	∞										
	09		44	54	29	83	101	2	4	9	195	2											
	55		38	46	58	72	88	107	2	150	174	0											
	50		32	39		61		93		131													
	45		26	31	40	51	63	78	94	113													
	40		20	24	31	40	20	63															
	35		13	16	21																		
D.b.h.	1	Inches	6	10	11	12	13	14	15					20									

1/ From weighted regression: $V = -67.1116 + 0.013,663,011 \, D^2H + 3344.33/D^2$ Standard error of estimate around mean volume = 19.2 bd. ft. = 12.1%; $R^2 = 0.951$.

Volume, in 16-foot logs, between a one-foot stump and a merchantable top equal to 40% of d.b.h. but not less than 6.0 inches inside bark.

 $\frac{2}{}$ Whole-inch class (e.g., 11.0 $\le 11 < 12.0$).

 $\frac{3}{}$ Mid-point class (e.g., 57.6 \le 60 < 62.6).

/ Lines contain basic data for 162 trees at least 9.0 inches d.b.h.

U. S. Forest Service, Research Note NOR-5

Table 3.--Volume table for white spruce in Alaska 1/

(In board feet, Scribner)

D.b.h.								Tota	l heig	ht, H	1 height, H (<u>feet)</u> 3/							•••	Basis: trees
	35 40 4	2	50	55	09	65	70	75	80	85	9.0	9.5	100	105	110	115	120		ured 4/
Inches																			Number
6	(10) (16) (2)	(21)	(32)	(30)	40	(44)	(47)	(20)	(23)	(26)	(23)								27
10		(38)	(32)	(42)	49	52	52	58	19	64	29	20							26
11	\sim	_	(42)	(51)	59	64	69	74	80	85	06	9.2							23
12	(31) (4	42)	54	62	69	77	84	92	100	107	115	2	130						14
13		ł	09	20	80	91	101	111	122	132	142	152	163						21
14	40 5	4	29	80	93	106	119	132	145	158	171	184	198	211					14
15	5	8	74		106	122	138	154	170	187	203	219	235	251	267				11
16	9	2	81		120	3	159	178	197	217	236	256	275	294	314	333			80
17			89	112	135	158	180	203	226	249	272	294	317	340		386			7
18					150	177	203	230	256	283	309	336	362	388	415	441	468	~	2
19						9	228	258	288	318	349	379	409	440	470	500	530		2
20								288	322	356	390	425	2	494	528	562	597	_	1
21								319	357	39.6	434	473	512	550	589	627	999	٠,	2
22								351	394	437	480	523	266	609	652	695	738	~	1
23								382	433	480	528	276	624	7	$\overline{}$	767	814		1
24										526	218	631	683	3	∞	841	894		1
25									515	573	630	889	746	803	861	918		٠,	1
2.6									559	622	∞	748	810	/	936	666	1,062	01	!
27									604	673	741	808	878	946	1,014	1,083	1,151	_	!
28										726	800	873	4	1,021	1,095	1,169	1,243	~	1
29										780	860	940	1,020	1,100	1,179	1,259	1,339	_	!

^{1/} From weighted regression: $V = 98.7701 + 0.02022 D^2H - 0.77651 D^2 - 1.63023 H$ Standard error of estimate around mean volume = 19.6 bd. ft. = 14.8%

Volume, in 16-foot logs, between a one-foot stump and a merchantable top equal to 40% of d.b.h. but not less than 6.0 inches inside bark. $\frac{2}{3}$ Whole-inch class (e.g., 11.0 \le 11 <12.0) $\frac{3}{3}$ Mid-point class (e.g., 57.6 \le 60 <62.6)

Lines contain basic data for 162 trees at least 9.0 inches d.b.h. Volumes in parentheses hand adjusted.

(In cubic feet, by Smalian's rule)

: Basis: : trees : measured 4	: Aspen/birch Number	18/5	23/20 $22/15$	27/17	7	13/	/	/	/	-/5	-/3	-/1	1	!	!
	80			14.9			31.1	9	41.4		59.4	0.99	73.1	80.5	88.2
	75	0.9	8.3	13.9		•	•	•	38.7		55.6	61.8	68.5	75.4	82.7
	7.0	5.5	7.7	12.9		23.1	7	31.4	36.1	. 9	51.8	57.7	63.8	70.3	77.1
	65	3.3	7.1	11.9		21.4	25.1	•	33.4		48.0	53.5	59.2	65.2	71.5
et) ³ /	09	3.0	6.4	10.9		19.7		•	30.8		44.2	49.3	54.6	60.1	0.99
Total height, H $(feet)^3$	55	2.7	5.8	9.9	• •		•	24.5	28.1		40.5	45.1			
ıl heigh	50	2.3	5.2	8.9	•	•	6	2 .	25.5	,					
Tota	45	2.0		0.8	1 1	14.5									
	40	1.7	4.0	7.0	•										
	35	1.3	3.3	5.9	•										
	: 30	1.0	3.8												
D.b.h.,	Inches	9	7	9	11	12	13	14	15 16	17	18	19	20	21	22

Standard error of estimate around mean volume = 1.71 cu.ft. = 13.8%; $R^2 = 0.960$. From weighted regression: $V = -1.024, 11 + 0.002, 203, 407, 5 D^2H$.

Volume, inside bark, between a one-foot stump and a minimum merchantable top of 4.0 inches inside bark.

Whole-inch class (e.g., $11.0 \le 11 < 12.0$). 3/ Mid-point class (e.g., $57.6 \le 60 < 62.6$). 4/ Lines contain basic data for 154 aspen and 14

Lines contain basic data for 154 aspen and 147 birch at least 5.0 inches d.b.h.

Table 5.--Volume table for quaking aspen and paper birch in Alaska L (In board feet, International 1/4-inch)

							, ,			Basis:
D.b.h,			Ĭ	Total height, H ($\underline{\text{feet}}$) $\frac{3}{4}$	ight,	H (feet	ન ન		••	trees //
D 4/									••	measured =/
	: 40	45	50	52	09	65	7.0	7.5	80:	Aspen-birch
Inches										Number
11	33	41	49	57	65	73	81	. 88	96	12/13
12		54	63	73	82	91	101	110	119	13/3
13			79	06	100	111	122	133	144	4/4
14			96	109	121	133	146	158	171	6/3
15			113	128	142	156	171	185	199	1/2
16			132	149	165	181	197	214	230	-/7
17				171	189	208	226	244	262	-/5
18				194	215	235	256	276	296	-/3
19					242	265	287	310	322	-/1
20					271	296	321	346	371	!
21					301	328	356	383	411	i i
22					332	362	392	423	455	i

1/ From weighted regression: V = -29.8848 + 0.011,913,084 D²H Standard error of estimate around mean volume $\doteq 25.4$ bd. ft. $\doteq 21.1\%$; R² = 0.806.

Volume, in 16-foot logs, between a one-foot stump and a merchantable top equal to 40% of d.b.h. but not less than 8.0 inches inside bark.

Whole-inch class (e.g. 11.0 \le 11 < 12.0).

Mid-point class (e.g. 57.6 \le 60 < 62.6).

Lines contain basic data for 36 aspen and 41 birch at least 11.0 inches d.b.h.

Table 6. -- Volume table for quaking aspen and paper birch in Alaska

(In board feet, Scribner)

Total height, H (feet) $3/$: Basis: trees : measured $4/$	65 70 75 80 : aspen/birch	Number	65	74 82 89 97 13 / 3		130		149 162 176 190 -/7	1	228	219 238 257 276 -/1	266 286	272 295 318 341 -/-	300 325 351 376 -/-
ght, H	0.9		52	99	82	98 1	116 1	135 1	156 1		200	224 2	249 2	
otal hei	55		45	58	73	88	104	122	140	160				
Ĭ	50		39	51	64	77	92	108						
	45		32	43										
	40		26											
D.b.h.	-: / 7 O	Inches	11	12	13	14	15	16	17	18	19	20	21	2.2

Volume, in 16-foot logs, between a one-foot stump and a merchantable top equal to 40% of d.b.h. but not less than 8.0 inches inside bark. $\frac{2}{}$ Whole-inch class (e.g., 11.0 \le 11 < 12.0) $\frac{3}{}$ Mid-point class (e.g., 57.6 \le 60 < 62.6) $\frac{4}{}$ Lines contain basic data for 36 aspen and 41 birch at least 11.0 Standard error of estimate around mean volume = 21.0 bd. ft. = 21.2%. From weighted regression: $V = -27.163 + .00995 D^2H$.

U. S. Forest Service, Research Note NOR-5

Table 7.--Volume table for balsam poplar in Alaska 1/ (In cubic feet, by Smalian's rule)

												`	\ \							••	Basis:
D.b.h.									Total	heigh	t, H (height, H (<u>feet)</u> 3	ગ								
) D	30	35	40	45	50	55)9	9 0	5	7.0	75	80	85	9.0	9.5	100	105	110	115	120 :	ured 4
Inches																					Number
2	0.8	1.1	1.3	1.6	1.9	2.	2 2	.4	.7												8
9		٠.	•		3.0	3.	3	-	٦.	•											2
7	2.2	•	•	3.7	•	4.	5	.3 5	8.	6.3	8.9										4
ω		•	•	5.0	5.7	9	4 7	.0 7	.7		0.6	•	0								7
6			•	6.5	•	φ	1 9	0.	.8		1.4	12.2	3.								8
10		6.1	7.1	8.1	9.1	10.	$\overline{}$	7	.1	3.1	4.1	15.1	16.2								15
11		•	•	6.6	• 1	12.	13	_	.7 1		7.1	8	6	0							7
12			0	11.9	3	14.	16	_	.6	0	0.4		3.	4.	•						10
13					•	17.	3 19	.0 20	.6 2	8	3.9	25.6	7	28.9	30.5	32.2	33.8	35.5	37.1		2
14				16.3	18.2	20.	1 22) 2	.9 2	8	7.7	9		$^{\circ}$		7	39.2	41.2	43.1		9
15				8	0	23.	1 25	2	.4 2	9	1.8	4.	9	8			44.9	7			8
					23.7	26.	2 28	.7 [31	.2 3	-	6.2	8		3,		ω	51.0	53.4	55.9		5
17					9	29.	7 32	4 3	.2 3	0.	0.8	3	9	6		•	7	60.2	8		9
18						33.	9		.5 4	9	5.7	· ω		•		-	4.	67.4	70.5		7
19							0 40	.5 43	9.	4	0.8	4.	7			•		4.	ω.	-	4
20							44	.8 48	.65		6.2		3	· _		5.	6	82.9	86.7		7
2.1							49	.4 53	.65	ω.	2.0	9	0	•		2.	•	-	5	9.	8
2.2							54	2 5	8		8.0	2.	7	81.7		90.9	5	0	0	109	3
23							59	9	.2	. 2	4.2	0		•	•	9	\circ	0	114	119	i i
24									7		0.7	9	Ţ.	7	102	0	$\overline{}$	-	124	0	8
25									8	9.	7.5	93.4	9	0	111	$\overline{}$	\sim	\sim	$^{\circ}$		က
26									8	. 2	4.		107	114	120	2	133	139	4	5	Ŋ
2.7									6		\circ	109	\vdash	2	2	136	4	5	157	9	2
28										\sim		-	2	\sim		4	5	161	168	176	2
29												2	133		4	157	9	7	∞	∞	I I
30												\odot	4		159		_	∞	6	0	က
31													S	161	170		∞	197	206	-	1 1
32												2	9	171	∞	5	0	-		\sim	1 1
33												162		182	9		212	223	$^{\circ}$	4	i
34												/	182		204	\neg	\sim	∞	4	5	
1/	From	From weighted	1	regression	= \(\):	-0.87	22+0	.001,	811,5	$22 D^2$, ² H.										

Volume, inside bark, between a one-foot stump and a minimum merchantable top of 4.0 inches inside bark. Standard error of estimate around mean volume = 4.30 cu. ft. = 10.1%; $R^2 = 0.986$.

Whole-inch class (e.g. $11.0 \le 11 < 12.0$). 3/ Mid-point class (e.g. $57.6 \le 60 < 62.6$). 4/ Lines contain basic data for 131 trace at land

Lines contain basic data for 131 trees at least 5.0 inches d.b.h.

Table 8.--Volume table for balsam poplar in Alaska 1/

(In board feet, International 1/4-inch)

Standard error of estimate around mean volume = 47.7 bd. ft. = 15.2%; $R^2 = 0.954$. $1/\sqrt{1}$ From weighted regression: V = -49.1199 + 0.010,941,441 D²H.

Volume, in 16-foot logs, between a one-foot stump and a merchantable top equal to 40% of d.b.h. but not less than 8.0 inches inside bark.

2/ Whole-inch class (e.g., 11.0 $\le 11 < 12.0$).

3/ Mid-point class (e.g. 57.6 $\le 60 < 62.6$).

4/ Lines contain basic data for 89 trees at least 11.0 inches d.b.h.

Table 9.--Volume table for balsam poplar in Alaska 1/

(In board feet, Scribner)

01 001 06 0	75 80 85 9	0
7 7	8 54 61 6	42
8	5 73 80 8	ω
I	4 93 101 11	
4 144 154 1	04 114 124 13	٦
0 172 183 19	26 137 148 16	1
8 200 214 2	8 162 174 18	
7 231 246 26	73 188 202 21	_
8 264 280 29	99 215 231 24	_
0 299 317 33	26 244 262 28	1
5 335 355 37	55 275 295 31	1
1 373 395 41	85 307 329 35	1
9 413 437 46	16 340 365 38	1
8 454 481 50	49 376 402 42	
0 498 527 55	84 412 441 47	~~
3 544 575 60	20 451 482 51	
8 591 625 65	57 490 524 55	
4 640 676 71	6 532 568 60	
2 691 730 76	36 574 613 65	
2 744 785 82	77 619 660 70	
4 798 843 88	65 709 75	
7 854 902 94	12 760 80	
2 912 963 1,01	61 812 86	
19 972 1,026 1,080	812 865 91	
7 1,034 1,091 1,14	64 920 97	

^{1/} From weighted regression: $V = -46.7415 + 0.00956 D^2H$

U. S. Forest Service, Research Note NOR-5

Volume, in 16-foot logs, between a one-foot stump and a merchantable top equal to 40% of d.b.h. but not less than 8.0 inches inside bark. Standard error of estimate around mean volume = 40.1 bd. ft. = 14.6%

Whole-inch class (e.g. 11.0 \le 11 < 12.0) \le Mid-point class (e.g. 57.6 \le 60 < 62.6) \le Lines contain basic data for 89 trees at lea

Lines contain basic data for 89 trees at least 11.0 inches d.b.h.