Kernel Methods

David S. Rosenberg

Bloomberg ML EDU

October 26, 2017

Setup and Motivation

The Input Space $\mathfrak X$

- ullet Our general learning theory setup: no assumptions about χ
- But $\mathfrak{X} = \mathbf{R}^d$ for the specific methods we've developed:
 - Ridge regression
 - Lasso regression
 - Support Vector Machines
- Our hypothesis space for these was all affine functions on \mathbb{R}^d :

$$\mathcal{H} = \left\{ x \mapsto w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \right\}.$$

• What if we want to do prediction on inputs not natively in \mathbb{R}^d ?

Feature Extraction

Definition

Mapping an input from \mathfrak{X} to a vector in \mathbb{R}^d is called **feature extraction** or **featurization**.

Raw Input

Feature Vector

David S. Rosenberg (Bloomberg ML EDU)

Linear Models with Explicit Feature Map

- Input space: X (no assumptions)
- Introduce feature map $\psi: \mathcal{X} \to \mathbf{R}^d$
- The feature map maps into the feature space R^d .
- Hypothesis space of affine functions on feature space:

$$\mathcal{H} = \{x \mapsto w^T \psi(x) + b \mid w \in \mathbf{R}^d, b \in \mathbf{R}\}.$$

Geometric Example: Two class problem, nonlinear boundary

- With linear feature map $\phi(x) = (x_1, x_2)$ and linear models, can't separate regions
- With appropriate nonlinearity $\phi(x) = (x_1, x_2, x_1^2 + x_2^2)$, piece of cake.
- Video: http://youtu.be/3liCbRZPrZA

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Expressivity of Hypothesis Space

• Consider a linear hypothesis space with a feature map $\phi: \mathfrak{X} \to \mathsf{R}^d$:

$$\mathcal{F} = \left\{ f(x) = w^T \phi(x) \right\}$$

Question: does \mathcal{F} contain a good predictor?

We can grow the linear hypothesis space $\mathcal F$ by adding more features.

From Percy Liang's "Lecture 3" slides from Stanford's CS221, Autumn 2014.

Linear Models Need Big Feature Spaces

- To get expressive hypothesis spaces using linear models,
 - need high-dimensional feature spaces
- Suppose we start with $x = (1, x_1, \dots, x_d) \in \mathbb{R}^{d+1} = \mathfrak{X}$.
- We want to add all monomials up to degree $M: x_1^{p_1} \cdots x_d^{p_d}$, with $p_1 + \cdots + p_d \leq M$.
- How many features will we end up with?
- $\binom{M+d}{M}$ ("flower shop problem" from combinatorics)
- For d = 40 and M = 8, we get 377348994 features.
- That will make some extremely large matrices...

Big Feature Spaces

Very large feature spaces have two problems:

- Overfitting
- Memory and computational costs
- Overfitting we handle with regularization.
- "Kernel methods" can (sometimes) help with memory and computational costs.

Kernel Methods: Motivation

Review: Linear SVM and Dual

• The [featurized] SVM prediction function is the solution to

$$\min_{w \in \mathbf{R}^d, b \in \mathbf{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \left(1 - y_i \left[w^T \psi(x_i) + b \right] \right)_+.$$

• Found it is equivalent to solve the dual problem to get α^* :

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \psi(x_{j})^{T} \psi(x_{i})$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \quad i = 1, \dots, n.$$

• Notice: $\psi(x)$'s only show up as inner products with other x's.

Some Methods Can Be "Kernelized"

Definition

A method is **kernelized** if inputs only appear inside inner products: $\langle \psi(x), \psi(x') \rangle$ for $x, x' \in \mathcal{X}$.

 \bullet The kernel function corresponding to ψ and inner product $\langle\cdot,\cdot\rangle$ is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle.$$

- Why introduce this new notation k(x,x')?
- Turns out, we can often evaluate k(x, x') directly,
 - without explicitly computing $\psi(x)$ and $\psi(x')$.
- For large feature spaces, can be much faster.

Kernel Evaluation Can Be Fast

Example

Quadratic feature map for $x = (x_1, ..., x_d) \in \mathbb{R}^d$.

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

has dimension $O(d^2)$, but for any $x, x' \in \mathbb{R}^d$

$$k(x,x') = \langle \phi(x), \phi(x') \rangle = \langle x, x' \rangle + \langle x, x' \rangle^2$$

- Naively explicit computation of k(x,x'): $O(d^2)$
- Implicit computation of k(x,x'): O(d)

Kernels as Similarity Scores

- Often useful to think of the kernel function as a similarity score.
- But this is not a mathematically precise statement.
- There are many ways to design a similarity score.
 - We will use Mercer kernels, which correspond to inner products in some feature space.
 - Has many mathematical benefits.

What are the Benefits of Kernelization?

- Computational (e.g. when feature space dimension d larger than sample size n).
- Access to infinite-dimensional feature spaces.
- Allows thinking in terms of "similarity" rather than features.

Example: SVM

SVM Dual

• Recall the SVM dual optimization problem for training set $(x_1, y_1), \ldots, (x_n, y_n)$:

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}^{T} x_{i}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Can replace $x_i^T x_i$ by an arbitrary kernel $k(x_i, x_i)$.
- What kernel are we currently using?

Linear Kernel

- Input space: $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H} = \mathbf{R}^d$, with standard inner product
- Feature map

$$\psi(x) = x$$

• Kernel:

$$k(x,x') = x^T x'$$

The Kernel Matrix (or the Gram Matrix)

Definition

For points of $x_1, \ldots, x_n \in \mathcal{X}$ and an inner product $\langle \cdot, \cdot \rangle$ on \mathcal{X} , the **kernel matrix** or the **Gram matrix** is defined as

$$K = (\langle x_i, x_j \rangle)_{i,j} = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \cdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix}.$$

Then for the standard Euclidean inner product $\langle x_i, x_j \rangle = x_i^T x_j$, we have

$$K = XX^T$$

SVM Dual with Kernel Matrix

$$\sup_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K_{ji}$$
s.t.
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\alpha_{i} \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

- Once our algorithm works with kernel matrices, we can change kernel just by changing the matrix.
- Size of matrix: $n \times n$, where n is the number of data points.
- Recall with ridge regression, we worked with X^TX , which is $d \times d$, where d is feature space dimension.

Some Nonlinear Kernels

Quadratic Kernel in R^d

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Feature space: $\mathcal{H} = \mathbf{R}^D$, where $D = d + {d \choose 2} \approx d^2/2$.
- Feature map:

$$\phi(x) = (x_1, \dots, x_d, x_1^2, \dots, x_d^2, \sqrt{2}x_1x_2, \dots, \sqrt{2}x_ix_j, \dots, \sqrt{2}x_{d-1}x_d)^T$$

• Then for $\forall x, x' \in \mathbb{R}^d$

$$k(x,x') = \langle \phi(x), \phi(x') \rangle$$

= $\langle x, x' \rangle + \langle x, x' \rangle^2$

- Computation for inner product with explicit mapping: $O(d^2)$
- Computation for implicit kernel calculation: O(d).

Based on Guillaume Obozinski's Statistical Machine Learning course at Louvain, Feb 2014.

Polynomial Kernel in \mathbb{R}^d

- Input space $\mathfrak{X} = \mathbf{R}^d$
- Kernel function:

$$k(x,x') = (1 + \langle x,x' \rangle)^M$$

- \bullet Corresponds to a feature map with all monomials up to degree M.
- For any M, computing the kernel has same computational cost
- ullet Cost of explicit inner product computation grows rapidly in M.

Radial Basis Function (RBF) / Gaussian Kernel

• Input space $\mathfrak{X} = \mathbf{R}^d$. $\forall x, x' \in \mathbf{R}^d$,

$$k(w,x) = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right),\,$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

Kernel Trick: Overview

The "Kernel Trick"

- Given a kernelized ML algorithm.
- ② Can swap out the inner product for a new kernel function.
- New kernel may correspond to a high dimensional feature space.
- Once kernel matrix is computed, computational cost depends on number of data points, rather than the dimension of feature space.

Swapping out a linear kernel for a new kernel is called the kernel trick.

Inner Product Spaces and Projections (Hilbert Spaces)

Inner Product Space (or "Pre-Hilbert" Spaces)

An inner product space (over reals) is a vector space V and an inner product, which is a mapping

$$\langle \cdot, \cdot \rangle : \mathcal{V} \times \mathcal{V} \to \mathbf{R}$$

that has the following properties $\forall x, y, z \in \mathcal{V}$ and $a, b \in \mathbf{R}$:

- Symmetry: $\langle x, y \rangle = \langle y, x \rangle$
- Linearity: $\langle ax + by, z \rangle = a \langle x, z \rangle + b \langle y, z \rangle$
- Positive-definiteness: $\langle x, x \rangle \geqslant 0$ and $\langle x, x \rangle = 0 \iff x = 0$.

Norm from Inner Product

For an inner product space, we define a norm as

$$||x|| = \sqrt{\langle x, x \rangle}.$$

Example

 R^d with standard Euclidean inner product is an inner product space:

$$\langle x, y \rangle := x^T y \qquad \forall x, y \in \mathbf{R}^d.$$

Norm is

$$||x|| = \sqrt{x^T x}$$
.

What norms can we get from an inner product?

Theorem (Parallelogram Law)

A norm $\|\cdot\|$ can be written in terms of an inner product on \mathcal{V} iff $\forall x, x' \in \mathcal{V}$

$$2||x||^2 + 2||x'||^2 = ||x + x'||^2 + ||x - x'||^2,$$

and if it can, the inner product is given by the polarization identity

$$\langle x, x' \rangle = \frac{\|x\|^2 + \|x'\|^2 - \|x - x'\|^2}{2}.$$

Example

 ℓ_1 norm on R^d is NOT generated by an inner product. [Exercise]

Is ℓ_2 norm on \mathbb{R}^d generated by an inner product?

Pythagorean Theorem

Definition

Two vectors are **orthogonal** if $\langle x, x' \rangle = 0$. We denote this by $x \perp x'$.

Definition

x is orthogonal to a set S, i.e. $x \perp S$, if $x \perp s$ for all $x \in S$.

Theorem (Pythagorean Theorem)

If
$$x \perp x'$$
, then $||x + x'||^2 = ||x||^2 + ||x'||^2$.

Proof.

We have

$$||x+x'||^2 = \langle x+x', x+x' \rangle$$

$$= \langle x, x \rangle + \langle x, x' \rangle + \langle x', x \rangle + \langle x', x' \rangle$$

Projection onto a Plane (Rough Definition)

- Choose some $x \in \mathcal{V}$.
- Let M be a subspace of inner product space \mathcal{V} .
- Then m_0 is the projection of x onto M,
 - if $m_0 \in M$ and is the closest point to x in M.
- In math: For all $m \in M$,

$$||x-m_0||\leqslant ||x-m||.$$

Hilbert Space

- Projections exist for all finite-dimensional inner product spaces.
- We want to allow infinite-dimensional spaces.
- Need an extra condition called completeness.
- A space is **complete** if all Cauchy sequences in the space converge.

Definition

A **Hilbert space** is a complete inner product space.

Example

Any finite dimensional inner product space is a Hilbert space.

The Projection Theorem

Theorem (Classical Projection Theorem)

- H a Hilbert space
- ullet M a closed subspace of ${\mathfrak H}$ (picture a hyperplane through the origin)
- For any $x \in \mathcal{H}$, there exists a unique $m_0 \in M$ for which

$$||x-m_0|| \leq ||x-m|| \ \forall m \in M.$$

- This m_0 is called the **[orthogonal] projection of** \times **onto** M.
- Furthermore, $m_0 \in M$ is the projection of x onto M iff

$$x-m_0\perp M$$
.

Projection Reduces Norm

Theorem

Let M be a closed subspace of \mathfrak{H} . For any $x \in \mathfrak{H}$, let $m_0 = \operatorname{Proj}_{M} x$ be the projection of x onto M. Then

$$||m_0|| \leqslant ||x||,$$

with equality only when $m_0 = x$.

Proof.

$$||x||^2 = ||m_0 + (x - m_0)||^2$$
 (note: $x - m_0 \perp m_0$ by Projection theorem)
 $= ||m_0||^2 + ||x - m_0||^2$ by Pythagorean theorem
 $||m_0||^2 = ||x||^2 - ||x - m_0||^2$

Then $||x - m_0||^2 \ge 0$ implies $||m_0||^2 \le ||x||^2$. If $||x - m_0||^2 = 0$, then $x = m_0$, by definition of norm.

Representer Theorem

Generalize from SVM Objective

Featurized SVM objective:

$$\min_{w \in \mathbf{R}^d} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max(0, 1 - y_i [\langle w, \psi(x_i) \rangle]).$$

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**)
- and $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary. (Loss term)

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $w, \psi(x_1), \dots, \psi(x_n) \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to \mathbf{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

- What's "linear"?
- The prediction/score function $x \mapsto \langle w, \psi(x_i) \rangle$ is linear in what?
 - in parameter vector w, and
 - in the feature vector $\psi(x_i)$.
- Why? [Real-valued] inner products are linear in each argument.
- The important part is the linearity in the parameter w.
- When we discuss neural networks, we'll mention a "linear network" in which prediction functions are linear in the feature vector $\psi(x)$, but nonlinear in the parameter vector w. In other words, we have something like

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle f(w), \psi(x_1) \rangle, \dots, \langle f(w), \psi(x_n) \rangle),$$

for some (known) nonlinear function f. Our discussion will not apply to this situation.

David S. Rosenberg (Bloomberg ML EDU)

General Objective Function for Linear Hypothesis Space (Details)

• Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

- Ridge regression and SVM are of this form.
- What if we penalize with $\lambda ||w||_2$ instead of $\lambda ||w||_2^2$? Yes!.
- ullet What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem

Theorem (Representer Theorem)

Let

$$J(w) = R(||w||) + L(\langle w, \psi(x_1) \rangle, \dots, \langle w, \psi(x_n) \rangle),$$

where

- $w, \psi(x_1), \dots, \psi(x_n) \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathfrak{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R: \mathbb{R}^{\geqslant 0} \to \mathbb{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (Loss term).

If J(w) has a minimizer, then it has a minimizer of the form $w^* = \sum_{i=1}^n \alpha_i \psi(x_i)$. [If R is strictly increasing, then all minimizers have this form. (Proof in homework.)]

The Representer Theorem (Proof)

- Let w^* be a minimizer.
- 2 Let $M = \text{span}(\psi(x_1), \dots, \psi(x_n))$. [the "span of the data"]
- **1** Let $w = \operatorname{Proj}_{M} w^{*}$. So $\exists \alpha$ s.t. $w = \sum_{i=1}^{n} \alpha_{i} \psi(x_{i})$.
- **1** Then $w^{\perp} := w^* w$ is orthogonal to M.
- **5** Projections decrease norms: $||w|| \leq ||w^*||$.
- Since R is nondecreasing, $R(||w||) \leq R(||w^*||)$.

- ① Therefore $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$ is also a minimizer.

Q.E.D.

Using Representer Theorem to Kernelize

Kernelized Predictions

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$. (As representer theorem implies.)
- How do we make predictions for a given $x \in \mathfrak{X}$?

$$f(x) = \langle w, \psi(x) \rangle = \left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \psi(x) \right\rangle$$
$$= \sum_{i=1}^{n} \alpha_{i} \langle \psi(x_{i}), \psi(x) \rangle$$
$$= \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x)$$

Note: f(x) is a linear combination of $k(x_1, x), \ldots, k(x_n, x)$, all considered as functions of x.

Kernelized Regularization

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$||w||^{2} = \langle w, w \rangle$$

$$= \left\langle \sum_{i=1}^{n} \alpha_{i} \psi(x_{i}), \sum_{j=1}^{n} \alpha_{j} \psi(x_{j}) \right\rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} \langle \psi(x_{i}), \psi(x_{j}) \rangle$$

$$= \sum_{i,j=1}^{n} \alpha_{i} \alpha_{j} k(x_{i}, x_{j})$$

(You should recognize the last expression as a quadratic form.)

The Kernel Matrix (a.k.a. Gram Matrix)

Definition

The **kernel matrix** or **Gram matrix** for a kernel k on a set $\{x_1, \ldots, x_n\}$ is

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix} \in \mathbb{R}^{n \times n}.$$

Kernelized Regularization: Matrix Form

- Consider $w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$.
- What does R(||w||) look like?

$$||w||^2 = \sum_{i,j=1}^{n} \alpha_i \alpha_j k(x_i, x_j)$$
$$= \alpha^T K \alpha$$

• So $R(\|w\|) = R\left(\sqrt{\alpha^T K \alpha}\right)$.

Kernelized Predictions

- Write $f_{\alpha}(x) = \sum_{i=1}^{n} \alpha_{i} k(x, x_{i})$. (Switched from $k(x_{i}, x)$ by symmetry of inner product.)
- Predictions on the training points have a particularly simple form:

$$\begin{pmatrix} f_{\alpha}(x_{1}) \\ \vdots \\ f_{\alpha}(x_{n}) \end{pmatrix} = \begin{pmatrix} \alpha_{1}k(x_{1}, x_{1}) + \dots + \alpha_{n}k(x_{1}, x_{n}) \\ \vdots \\ \alpha_{1}k(x_{n}, x_{1}) + \dots + \alpha_{n}k(x_{n}, x_{n}) \end{pmatrix}$$

$$= \begin{pmatrix} k(x_{1}, x_{1}) & \dots & k(x_{1}, x_{n}) \\ \vdots & \ddots & \dots \\ k(x_{n}, x_{1}) & \dots & k(x_{n}, x_{n}) \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \vdots \\ \alpha_{n} \end{pmatrix}$$

$$= K\alpha$$

Kernelized Objective

Substituting

$$w = \sum_{i=1}^{n} \alpha_i \psi(x_i)$$

into generalized objective, we get

$$\min_{\alpha \in \mathbf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K\alpha).$$

- No direct access to $\psi(x_i)$.
- All references are via kernel matrix K.
- This is the kernelized objective function.

Kernelized SVM

The SVM objective:

$$\min_{w \in \mathcal{H}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^{n} (1 - y_i [\langle w, \psi(x_i) \rangle])_+.$$

Kernelizing yields

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{2} \alpha^T K \alpha + \frac{c}{n} \sum_{i=1}^n (1 - y_i (K \alpha)_i)_+$$

Kernelized Ridge Regression

• Ridge Regression:

$$\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2 + \lambda ||w||^2$$

Featurized Ridge Regression

$$\min_{w \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (\langle w, \psi(x_i) \rangle - y_i)^2 + \lambda ||w||^2$$

• Kernelized Ridge Regression

$$\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} ||K\alpha - y||^2 + \lambda \alpha^T K\alpha,$$

where
$$y = (y_1, ..., y_n)^T$$
.

Prediction Functions with RBF Kernel

Radial Basis Function (RBF) / Gaussian Kernel

• Input space $\mathfrak{X} = \mathbf{R}^d$

$$k(w,x) = \exp\left(-\frac{\|w-x\|^2}{2\sigma^2}\right),\,$$

where σ^2 is known as the bandwidth parameter.

- Does it act like a similarity score?
- Why "radial"?
- Have we departed from our "inner product of feature vector" recipe?
 - Yes and no: corresponds to an infinite dimensional feature vector
- Probably the most common nonlinear kernel.

RBF Basis

- Input space $\mathfrak{X} = \mathbf{R}$
- Output space: y = R
- RBF kernel $k(w,x) = \exp(-(w-x)^2)$.
- Suppose we have 6 training examples: $x_i \in \{-6, -4, -3, 0, 2, 4\}$.
- If representer theorem applies, then

$$f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x).$$

• f is a linear combination of 6 basis functions of form $k(x_i, \cdot)$:

David S. Rosenberg (Bloomberg ML EDU)

RBF Predictions

Basis functions

• Predictions of the form $f(x) = \sum_{i=1}^{6} \alpha_i k(x_i, x)$:

- When kernelizing with RBF kernel, prediction functions always look this way.
- (Whether we get w from SVM, ridge regression, etc...)

RBF Feature Space: The Sequence Space ℓ_2

- To work with infinite dimensional feature vectors, we need a space with certain properties.
 - an inner product
 - a norm related to the inner product
 - projection theorem: $x = x_{\perp} + x_{\parallel}$ where $x_{\parallel} \in S = \text{span}(w_1, \dots, w_n)$ and $\langle x_{\perp}, s \rangle = 0$ $\forall s \in S$.
- Basically, we need a Hilbert space.

Definition

 ℓ_2 is the space of all real-valued sequences: $(x_0, x_1, x_2, x_3, \dots)$ with $\sum_{i=0}^{\infty} x_i^2 < \infty$.

Theorem

With the inner product $\langle x, x' \rangle = \sum_{i=0}^{\infty} x_i x_i'$, ℓ_2 is a **Hilbert space**.

The Infinite Dimensional Feature Vector for RBF

- Consider RBF kernel (1-dim): $k(x,x') = \exp\left(-(x-x')^2/2\right)$
- \bullet We claim that $\psi: R \to \ell_2$ defined by

$$[\psi(x)]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$$

gives the "infinite-dimensional feature vector" corresponding to RBF kernel.

- Is this mapping even well-defined? Is $\psi(x)$ even an element of ℓ_2 ?
- Yes:

$$\sum_{n=0}^{\infty} \frac{1}{n!} e^{-x^2} x^{2n} = e^{-x^2} \sum_{n=0}^{\infty} \frac{\left(x^2\right)^n}{n!} = 1 < \infty$$

.

The Infinite Dimensional Feature Vector for RBF

- Does feature vector $[\psi(x)]_n = \frac{1}{\sqrt{n!}} e^{-x^2/2} x^n$ actually correspond to the RBF kernel?
- Yes! Proof:

$$\langle \psi(x), \psi(x') \rangle = \sum_{n=0}^{\infty} \frac{1}{n!} e^{-(x^2 + (x')^2)/2} x^n (x')^n$$

$$= e^{-(x^2 + (x')^2)/2} \sum_{n=0}^{\infty} \frac{(xx')^n}{n!}$$

$$= \exp(-[x^2 + (x')^2]/2) \exp(xx')$$

$$= \exp(-[(x - x')^2/2])$$

QED

When is k(x, x') a kernel function? (Mercer's Theorem)

How to Get Kernels?

- **1** Explicitly construct $\psi(x): \mathcal{X} \to \mathbf{R}^d$ and define $k(x, x') = \psi(x)^T \psi(x')$.
- ② Directly define the kernel function k(x,x'), and verify it corresponds to $\langle \psi(x), \psi(x') \rangle$ for some ψ .

There are many theorems to help us with the second approach

Positive Semidefinite Matrices

Definition

A real, symmetric matrix $M \in \mathbb{R}^{n \times n}$ is **positive semidefinite (psd)** if for any $x \in \mathbb{R}^n$,

$$x^T M x \geqslant 0$$
.

Theorem

The following conditions are each necessary and sufficient for M to be positive semidefinite:

- M has a "square root", i.e. there exists R s.t. $M = R^T R$.
- All eigenvalues of M are greater than or equal to 0.

Positive Semidefinite Function

Definition

A symmetric kernel function $k: \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ is **positive semidefinite (psd)** if for any finite set $\{x_1, \ldots, x_n\} \in \mathcal{X}$, the kernel matrix on this set

$$K = (k(x_i, x_j))_{i,j} = \begin{pmatrix} k(x_1, x_1) & \cdots & k(x_1, x_n) \\ \vdots & \ddots & \cdots \\ k(x_n, x_1) & \cdots & k(x_n, x_n) \end{pmatrix}$$

is a positive semidefinite matrix.

Mercer's Theorem

Theorem

A symmetric function k(x,x') can be expressed as an inner product

$$k(x,x') = \langle \psi(x), \psi(x') \rangle$$

for some ψ if and only if k(x,x') is **positive semidefinite**.

Generating New Kernels from Old

• Suppose $k, k_1, k_2 : \mathcal{X} \times \mathcal{X} \to \mathbf{R}$ are psd kernels. Then so are the following:

$$k_{\text{new}}(x,x') = k_1(x,x') + k_2(x,x')$$

$$k_{\text{new}}(x,x') = \alpha k(x,x')$$

$$k_{\text{new}}(x,x') = f(x)f(x') \text{ for any function } f(\cdot)$$

$$k_{\text{new}}(x,x') = k_1(x,x')k_2(x,x')$$

- See Appendix for details.
- Lots more theorems to help you construct new kernels from old...

Details on New Kernels from Old

Additive Closure

- Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2 , respectively.
- Then

$$k_1(x,x')+k_2(x,x')$$

is a psd kernel.

• Proof: Concatenate the feature vectors to get

$$\phi(x) = (\phi_1(x), \phi_2(x)).$$

Then ϕ is a feature map for $k_1 + k_2$.

Closure under Positive Scaling

- Suppose k is a psd kernel with feature maps ϕ .
- Then for any $\alpha > 0$,

 αk

is a psd kernel.

Proof: Note that.

$$\phi(x) = \sqrt{\alpha}\phi(x)$$

is a feature map for αk .

Scalar Function Gives a Kernel

• For any function f(x),

$$k(x,x') = f(x)f(x')$$

is a kernel.

• Proof: Let f(x) be the feature mapping. (It maps into a 1-dimensional feature space.)

$$\langle f(x), f(x') \rangle = f(x)f(x') = k(x, x').$$

Closure under Hadamard Products

- Suppose k_1 and k_2 are psd kernels with feature maps ϕ_1 and ϕ_2 , respectively.
- Then

$$k_1(x,x')k_2(x,x')$$

is a psd kernel.

• Proof: Take the outer product of the feature vectors:

$$\phi(x) = \phi_1(x) \left[\phi_2(x)\right]^T.$$

Note that $\phi(x)$ is a matrix.

Continued...

Closure under Hadamard Products

Then

$$\begin{split} \left\langle \Phi(x), \Phi(x') \right\rangle &= \sum_{i,j} \Phi(x) \Phi(x') \\ &= \sum_{i,j} \left[\Phi_1(x) \left[\Phi_2(x) \right]^T \right]_{ij} \left[\Phi_1(x') \left[\Phi_2(x') \right]^T \right]_{ij} \\ &= \sum_{i,j} \left[\Phi_1(x) \right]_i \left[\Phi_2(x) \right]_j \left[\Phi_1(x') \right]_i \left[\Phi_2(x') \right]_j \\ &= \left(\sum_i \left[\Phi_1(x) \right]_i \left[\Phi_1(x') \right]_i \right) \left(\sum_j \left[\Phi_2(x) \right]_j \left[\Phi_2(x') \right]_j \right) \\ &= k_1(x, x') k_2(x, x') \end{split}$$