Gliederung

- 1. Einführung
- 2. Berechenbarkeitsbegrif
- 3. LOOP-, WHILE-, und GOTO-Berechenbarkeit
- 4. Primitive und partielle Rekursior
- 5. Grenzen der LOOP-Berechenbarkeit
- (Un-)Entscheidbarkeit, Halteproblem
- 7. Aufzählbarkeit & (Semi-)Entscheidbarkeit
- 8. Reduzierbarkeit
- 9. Satz von Rice
- 10. Das Postsche Korrespondenzproblem
- 11. Komplexität Einführung
- 12. NP-Vollständigkeit
- 13 PSPACE

Polynomzeitreduktion I

Vielleicht das wichtigste Konzept der Komplexitätstheorie!

Definition

Eine Sprache $A\subseteq \Sigma^*$ heißt **polynomiell reduzierbar auf** eine Sprache $B\subseteq \Pi^*$ (**in Zeichen** $A\leq_m^p B$), wenn es eine totale, in Polynomzeit berechenbare Funktion $f\colon \Sigma^*\to \Pi^*$ gibt, sodass für alle $x\in \Sigma^*$ gilt

$$x \in A \Leftrightarrow f(x) \in B$$
.

Wir nennen f eine **Polynomzeit-Reduktion** von A auf B

(**Beachte**: *f* muss weder surjektiv noch injektiv sein).

Bemerkung: "m" in \leq_m^p steht für "many-one-Reduktion".

Mitteilungen:

- (a) $A \leq_m^p B \Rightarrow A \leq B$
- (b) \leq_m^p ist transitiv, d.h. wenn $A \leq_m^p B$ und $B \leq_m^p C$, dann auch $A \leq_m^p C$ (Konkatenation der Reduktionen ist Polynomzeitreduktion von A auf C)

Transitivität der Polynomzeitreduktion

Beweis (für (b))

Sei f die Reduktionsfunktion für $A \leq_m^p B$, die in polynomieller Zeit p(n) berechnet werden kann, und sei g die Reduktionsfunktion für $B \leq_m^p C$, die in polynomieller Zeit q(n) berechnet werden kann.

Dann ist $g \circ f$ eine Reduktionsfunktion von A auf C, denn es gilt:

$$\forall x \in \Sigma^* : x \in A \Leftrightarrow f(x) \in B \Leftrightarrow g(f(x) \in C.$$

Die Berechnung von f(x) kann in p(|x|) Schritten durchgeführt werden, also gilt auch $|f(x)| \le p(|x|)$. Daher kann g(f(x)) mit höchstens q(p(|x|)) Schritten berechnet werden. Somit ist $g \circ f$ also polynomzeitberechenbar.

Polynomzeitreduktion II

Lemma

Gilt $A \leq_{m}^{p} B$ und ist $B \in P$ (bzw. $B \in NP$), so ist auch $A \in P$ (bzw. $A \in NP$).

Beweis

- 1. $A \leq_m^p B \sim$ "Reduktionsfunktion" f in p(n) Schritten berechenbar durch TM M_f
- 2. $B \in P$ (bzw. $B \in NP$) $\sim B$ in q(n) Schritten entscheidbar durch TM M_B (wobei p und q Polynome)

Wie zuvor gilt $\chi_A = \chi_B \circ f$

 $\sim \chi_A$ berechnet in p(|x|) + q(p(|x|)) (also polynomiell viele) Schritten.

INDEPENDENT SET, VERTEX COVER und DOMINATING SET

Vertex Cover

Independent Set

Dominating Set

Eingabe: ungerichteter Graph G, Zahl k > 0

Frage: gibt es k Knoten in G, sodass . . .

Vertex Cover: ... jede Kante in *G* mindestens einen dieser *k* Knoten als Endpunkt hat?

Independent Set: ... keine 2 dieser *k* Knoten mit einer Kante verbunden sind?

Dominating Set: ... jeder andere Knoten eine Kante zu mindestens einem dieser Knoten hat?

VERTEX COVER und INDEPENDENT SET

Theorem

VERTEX COVER \leq_m^p INDEPENDENT SET.

Beweis

Definiere Reduktionsfunktion f vermöge $f(\langle G, k \rangle) := \langle G, |V(G)| - k \rangle$. (offensichtlich ist f in polynomieller Zeit berechenbar) Dann gilt:

 $\langle G, k \rangle \in \mathrm{VERTEX}\ \mathrm{COVER} \Leftrightarrow G$ hat eine Knotenmenge $X \subseteq V(G)$ mit $|X| \leq k$, so dass jede Kante mindestens einen Endpunkt in X hat $\Leftrightarrow G$ hat eine Knotenmenge $X \subseteq V(G)$ mit $|X| \leq k$, so dass keine Kante beide Endpunkte in $V(G) \setminus X$ hat $\Leftrightarrow \langle G, |V(G)| - k \rangle \in \mathrm{INDEPENDENT}\ \mathrm{SET}.$

NP-Vollständigkeit

Definition

Eine Sprache $A \subseteq \Sigma^*$ heißt...

- a) ... **NP-schwer**, falls $\forall_{L \in \mathbb{NP}} L \leq_m^p A$.
- b) ... **NP-vollständig**, wenn A NP-schwer ist und $A \in NP$ gilt.

Anschaulich: (mit "polynomieller Unschärfe")

- 1. NP-schwere Sprachen sind "mindestens so schwer" zu entscheiden wie jede Sprache in NP
- 2. NP-vollständige Sprachen sind "genau so schwer" wie jede NP-vollständige Sprache

Lemma

Ist A NP-schwer und $A \leq_m^p B$, so ist auch B NP-schwer

Beweis

Für jede Sprache $L \in NP$ gilt $L \leq_m^p A \leq_m^p B$.

Somit gilt wegen Transitivität auch $L \leq_m^p B$. Also ist B auch NP-schwer.

NP-Vollständigkeit II

Theorem

Für jede NP-vollständige Sprache A gilt: $A \in P \Leftrightarrow P = NP$.

Beweis

"⇒":
$$(\forall_{L \in NP} \ L \leq_m^p A) \land (A \in P) \Rightarrow \forall_{L \in NP} \ L \in P \Rightarrow NP = P$$

"←": $(A \in NP) \land (P = NP) \Rightarrow A \in P$

"Geglaubte" (d.h. Annahme $P \neq NP$) Situation:

Erfüllbarkeitsproblem I

SAT

Eingabe: aussagenlogische Formel *F*

Frage: Ist F erfüllbar, d.h. gibt es eine $\{0,1\}$ -wertige Belegung der in F verwendeten Boo-

leschen Variablen derart, dass F zu wahr (d.h. 1) ausgewertet wird?

Beispiele

 $0,1, x_1, x_2, \overline{x_3},$

 $(x_1 \wedge \overline{x_2}),$

 $(\overline{(x_1 \wedge \overline{x_2})} \vee x_2 \vee \overline{x_3})$

Theorem (Satz von Cook und Levin)

SAT ist NP-vollständig.

Beweis (Idee, Details später)

Teil 1: "SAT ∈ NP": rate erfüllende Belegung (Zertifikat) und verifiziere sie.

Teil 2: "SAT ist NP-schwer": mit $L \in NP$ beliebig,

transformiere NTM N mit T(N) = L in Formel $\varphi(x)$ sodass $x \in L \Leftrightarrow \varphi(x) \in SAT$.