Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского»

Институт Информационных Технологий, Математики и Механики

Направление: Прикладная математика и информатика

Магистерская программа: Компьютерные науки и приложения

ОТЧЕТ

по лабораторной работе №2

Тема:

«Разработка полностью связанных нейронных сетей»

Вн	ыполнили: студенты группы 381803-4м Котова О.А.
	Подпись Лицов А.
	Подпись Синицкая О.
	Подпись
	Преподаватель: доцент, к.т.н. Кустикова В.Д.
	Подпись

Оглавление

1. Постановка задачи	3
2. Тренировочные и тестовые наборы данных	
3. Метрика качества решения	5
4. Разработанные программы	5
5. Тестовые конфигурации сетей	5
6. Результаты экспериментов	9
7. Анализ результатов	11

Постановка задачи

Цели

Цель настоящей работы состоит в том, чтобы получить базовые навыки работы с одной из библиотек глубокого обучения (Caffe, Torch, TensorFlow, MXNet или какая-либо другая библиотека на выбор студента) на примере полностью связанных нейронных сетей.

Задачи

Выполнение практической работы предполагает решение следующих задач:

- 1. Выбор библиотеки для выполнения практических работ курса.
- 2. Установка выбранной библиотеки на кластере (параметры аутентификации и инструкция по работе с кластером выложена в отдельной задаче в системе redmine).
- 3. Проверка корректности установки библиотеки. Разработка и запуск тестового примера сети, соответствующей логистической регрессии, для решения задачи классификации рукописных цифр набора данных MNIST (пример разобран в лекционных материалах).
- 4. Выбор практической задачи компьютерного зрения для выполнения практических работ.
- 5. Разработка программ/скриптов для подготовки тренировочных и тестовых данных в формате, который обрабатывается выбранной библиотекой.
- 6. Разработка нескольких архитектур полностью связанных нейронных сетей (варьируются количество слоев и виды функций активации на каждом слое) в формате, который принимается выбранной библиотекой.
 - 7. Обучение разработанных глубоких моделей.
 - 8. Тестирование обученных глубоких моделей.
- 9. Публикация разработанных программ/скриптов в репозитории на GitHub.
- 10. Подготовка отчета, содержащего минимальный объем информации по каждому этапу выполнения работы.

Тренировочные и тестовые наборы данных

Выбранная задача - Intel Image Classification: https://www.kaggle.com/puneet6060/intel-image-classification.

Исходные данные хранятся в директориях seg_pred, seg_test, seg_train в формате jpg и размера 150x150.

- seg_pred содержит 7301 изображений
- seg test 3000 изображений, которые распределены по папкам
 - buildings
 - forest
 - glacier
 - o mountain
 - o sea
 - o street
- seg train 14034 изображений, которые распределены по папкам
 - buildings
 - o forest
 - glacier
 - o mountain
 - o sea
 - street

Данные содержат около 25 тыс. цветных изображений размером 150х150, распределенных по 6 категориям: здания, лес, ледник, гора, море, улица. Изображения хранятся в формате jpg.

Тренировочная выборка содержит 14034 изображений.

Тестовая выборка содержит 3000 изображений.

Размер каждого изображения 150х150.

Nº	Категории	Размер тренировочной выборки	Размер тестовой выборки
1	mountain	2512	525
2	street	2382	501
3	glasier	2404	553
4	buildings	2191	437
5	sea	2274	510
6	forest	2271	474

Процентное соотношение категорий. Тренировочная выборка:

Процентное соотношение категорий. Тестовая выборка:

Метрика качества решения

Для оценки качества решения задачи выбрана метрика "Точность" ("Ассигасу"). Она вычисляет, как часто прогнозы соответствуют меткам. Иными словами, частота с которой у pred совпадает с у true.

$$accuracy(y_{pred}, y_{true}) = \frac{1}{N} \sum_{i=1}^{N} 1(y_{pred_i} == y_{true_i})$$

Разработанные программы

Lab2.ipynb – скрипт для обучения полносвязных нейронных сетей.

Тестовые конфигурации сетей

С помощью класса ImageDataGenerator и его метода flow_from_directory() генерируем пакеты. Данные возвращаются в формате (x, y), где x, y - numpy массивы.

```
Форма х: (batch_size, 150, 150, 3). Форма у: (batch_size, 6).
```

Методу fit_generator подается на вход генератор данных в формате (x, y). Сети подается на вход массив numpy формата (150, 150, 3), который "сглаживается" сетью с помощью метода Flatten().

- Сеть 1: 1 скрытый слой ReLU
- Сеть 2: 2 скрытых слоя ReLU
- Сеть 3: 3 скрытых слоя ReLU
- Сеть 4: 2 скрытых слоя Linear
- Сеть 5: 2 скрытых слоя tanh
- Сеть 6: 3 скрытых слоя tanh
- Сеть 7: 6 скрытых слоя tanh
- Сеть 8: 6 скрытых слоя tanh

Результаты экспериментов

В таблице приведены конфигурация системы и программное обеспечение, с помощью которых проводилось обучение и тестирование построенных моделей.

Параметры	Версия				
Операционная система	Windows 10				
GPU	NVIDIA GeForce GTX 750 Ti; Intel Core i5-6400 CPU @ 2.70 GHz				
Python	3.7.5				
TensorFlow	2.0.0				

Параметры обучения:

Скорость обучения	0.001
Количество эпох	10/15
Размер пачки	128

Результаты экспериментов:

Номер сети	1	2	3	4	5	6	7	8
Количество скрытых нейронов	100	100	100	100	100	100	100	512 256 128 64 32
Количество скрытых слоев	1	2	3	2	2	3	6	6
Функция активации	relu	relu	relu	linear	tanh	tanh	tanh	tanh
Инициализация весов	he_nor- mal	he_nor- mal	he_nor- mal	glorot_ uniform	he_nor- mal	glorot_ uniform	he_nor- mal	he_nor- mal
Батч	128	128	128	128	128	128	128	128
Количество эпох	10	10	10	15	15	15	15	15
Скорость обучения	0.001	0.001	0.001	0.1	0.001	0.001	0.001	0.001
Оптимизатор	rmsprop	rmsprop	rmsprop	rmsprop	rmsprop	rmsprop	rmsprop	rmsprop
Общее время	06:48	06:45	06:43	10:47	10:10	11:35	10:44	38:12
Точность (Ассигасу) на тренировочном наборе, %	16.97	17.90	16.97	16.97	42.67	41.90	37.12	36.09
Ошибка на тренировочном наборе	13.38	13.23	13.38	13.38	1.530	1.506	1.567	1.570

Точность (Ассигасу) на тестовом наборе, %	16.7	17.50	16.70	16.70	43.73	43.83	40.97	36.80
Ошибка на тестовом наборе	13.45	13.289	13.415	13.449	1.556	1.515	1.578	1.627

Анализ результатов

- 1. Для текущей задачи не является оптимальным использование полностью связанных нейронных сетей. Сверточные или другие нейронные сети обеспечат лучшие результаты
- 2. Небольшое количество изображений на каждую категорию