NOM:

INTERRO DE COURS – SEMAINE 24

Exercice 1 – Soit $(X_n)_{n \in \mathbb{N}^*}$ une suite de variables aléatoires indépendantes qui suivent toutes la loi binomiale de paramètres N = 400 et $p = \frac{1}{4}$. On pose pour tout $n \in \mathbb{N}^*$,

$$M_n = \frac{1}{n} \sum_{k=1}^n X_k.$$

Montrer que pour tout $n \in \mathbb{N}^*$ et tout $\varepsilon > 0$,

$$P(|M_n-100|\geqslant \varepsilon)\leqslant \frac{75}{n\varepsilon^2}.$$

Solution : Je rappelle l'inégalité de Bienaymé-Tchebychev : pour toute variable aléatoire X admettant une variance et tout $\varepsilon > 0$,

$$P(|X - E(X)| \ge \varepsilon) \le \frac{V(X)}{\varepsilon^2}.$$

J'applique alors cette inégalité à la variable aléatoire $X=M_n$. Par linéarité de l'espérance,

$$E(M_n) = E\left(\frac{1}{n}\sum_{k=1}^{n}X_k\right) = \frac{1}{n}\sum_{k=1}^{n}E(X_k).$$

Or comme il s'agit de lois binomiales, pour tout $k \in [1, n]$, $E(X_k) = np = 400 \times \frac{1}{4} = 100$. Donc

$$E(M_n) = \frac{1}{n} \sum_{k=1}^{n} 100 = \frac{1}{n} \times n \times 100 = 100.$$

Par ailleurs, comme les variables aléatoires X_k sont indépendantes,

$$V(M_n) = V\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n^2}\sum_{k=1}^n V(X_k).$$

Or comme il s'agit de lois binomiales, pour tout $k \in [1, n]$, $V(X_k) = np(1-p) = 100 \times \frac{3}{4} = 75$. Donc

$$V(M_n) = \frac{1}{n^2} \sum_{k=1}^n 75 = \frac{1}{n^2} \times n \times 75 = \frac{75}{n}.$$

Ainsi en réinjectant ces valeurs dans l'inégalité de Bienaymé-Tchebychev, j'obtiens bien que

$$P(|M_n-100|\geqslant \varepsilon)\leqslant \frac{75}{n\varepsilon^2}.$$