Date Introduction to Computer Science: (Sheet # 02) Problem 2.1: $a \in \mathbb{Z}$, if a^{32} is odd, then a^4 is odd as well. $\neg \bigcirc \rightarrow \neg P$? Contrapositive So, $P = a^{3\lambda}$ is odd TP= a32 is even. Q = a4 is odd 7 Q= a4 is even and tran in bounitres (* To prove - q Assume that at is even, then there would be an integer 4 k such that, a4 = ak if we raise the power of both sides by the power of 8, $(a^4)^8 = (ak)^8$ $a^{3\lambda} = a^8 k^8$ $a^{3\lambda} = a^{3\lambda} = a^{3\lambda} k^8$ $a^{2\lambda} = a(1a8k^8)$ Row lets factor this by a. let $128 k^8 = m$, So, $q^{32} = 2m$

*) Problem 2.2:

 $n \in \mathbb{N}$, $n \geqslant 1$, $n^3 + (n+1)^3 + (n+2)^3$, divisible by 9.

So, To show that it is divisible by 9

we can equate it by 9L, where L is a total variable

and 9 would divide the left-hand-side of the equation.

This is as such:

Man to prove if with industion:

So, to prove the basis = $\frac{1}{n}$ shifted as $\frac{1}{n}$ to $\frac{1}{n}$ to $\frac{1}{n}$

So, $n^{3} + (n+1)^{3} + (n+\lambda)^{3} = 9L$ $(1)^{2} + (1+1)^{2} + (1+\lambda)^{3} = 9L$ $1 + (2)^{3} + (3)^{3} = 9L$ 1 + 8 + 27 = 9L36 = 9L

Hence, proving that it is divisible by 9 with n=1 proving the base case.

Nav, to prove if with induction:

let, n=k.

Through this we'll substitute as such:

$$(k)^3 + (k+1)^3 + (k+a)^3 = 9L$$

Lets assume this inductive hypothesis is true & divisible by

Now, let n= k+1 and substitute these values:

$$n^3 + (n+1)^3 + (n+a)^3 = 9L$$

$$\frac{(k+1)^3 + (k+1+1)^3 + (k+1+2)^3}{(k+1)^3 + (k+2)^3 + (k+3)^3}$$
Lets only expand $(k+3)^3$,

lets only expand (k+3)3,

$$[(k+1)^3 + (k+d)^3] + (k^2 + 6k + 9)(k+3)$$

$$[(k+1)^{3}+(k+a)^{3}]+(k^{3}+9k^{2}+a7k+27)$$

$$[k^3 + (k+1)^3 + (k+2)^3] + 9k^2 + 27k + 27 - 38$$

let
$$9L = k^3 + (k+1)^3 + (k+d)^3$$
 from inductive hypothesis.

Dat hence,	
	9L + 9k2 + 27k +27
	$9(L + k^2 + 3k + 3)$
Since	$(L + k^2 + 3k + 3) \in \mathbb{N}$, we can say that
	The statement is true for n=k+1 as it is a natural number divisible by 9.
Hen ce	forth, the statement has been proven by mathematical Induction.
*) Prob	lem 2.3.
a)	Return the list of positive divisors of an integer n divisors:: Int \rightarrow [Int] divisors $n = [x \mid x < -[1n], n \mod x == 0]$
b) -	Return the sum of divisors of n takento the power of z sigma:: Int -> Int -> Int sigma z n = sum [x^z x<-[1n],n`mod>