Full Title Of Presentation

Author Name

authoremail@stanford.edu

Department of Mechanical Engineering Stanford University

June 16, 2020

Overview

Introduction

Examples

Introduction

Itemize example

- ▶ Item 1
- ▶ Item 2

Table 1: Example of Table - Taxonomy of human intent prediction

Human		Execution Strategy (Action)		
		Observer	Observer	
		Knows	Unknown	
Objective Function	Observer	All is Known (e.g. Ping Pong)	Human Action Model is unclear	
	Knows	where both objective and actions are clear	or suboptimal (e.g. chess)	
	Observer Unknown	Human action model is well known, but objective is not (e.g. joy-riding in car or free running, where destination or direction is unclear)	Poor action model and objective function (e.g. Poor / good cook, no idea of final dish)	

► Tables can be referenced as Table 1

Introduction (cont.)

Example of a figure, shown in Figure 2.

Figure 2: Example Figure

Example of Horizontal Subfigures

(b) Multiple Kinects calibration for fall prediction[2]

Figure 3: Examples of Horizontal Subfigures

Example of Horizontal Alignment

Example of Horizontal Alignment of a table and a figure.

Table 2: Environment limitations on data collection

	Kinect	Stereo	Kinect + Stereo
Indoor	✓	✓	✓
Outdoor	Х	✓	✓
High number of features	1	1	1
Low number of features	1	×	1

Example of resizable equations

$$J = \int (a_{real} - \hat{a})^2$$

human kinematics

no collision

no falling

Example of Regular Equations

$${}^{A}R_{B}(t_{0}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \sin(\theta) \begin{bmatrix} 0 & -v_{3} & v_{2} \\ v_{3} & 0 & -y_{1} \\ -v_{2} & v_{1} & 0 \end{bmatrix} + (1 - \cos(\theta)) \begin{bmatrix} 0 & -v_{3} & v_{2} \\ v_{3} & 0 & -v_{1} \\ -v_{2} & v_{1} & 0 \end{bmatrix}^{2}$$
(1)

$${}^{A}R_{B}(t) = \Delta R^{A}R_{B}(t_{0}) \tag{2}$$

$$\Delta R = {}^{A}R_{B}(t)^{A}R_{B}^{T}(t_{0}) \tag{3}$$

Example of Video

9 / 10

Bibliography

- [1] E. E. Stone and M. Skubic, "Fall detection in homes of older adults using the Microsoft Kinect," IEEE journal of biomedical and health informatics, vol. 19, no. 1, pp. 290-301, 2014. DOI: 10.1109/JBHI.2014.2312180. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/6774430.
- [2] A. N. Staranowicz, C. Ray, and G.-L. Mariottini, "Easy-to-use, general, and accurate multi-Kinect calibration and its application to gait monitoring for fall prediction," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, 2015, pp. 4994–4998. DOI: 10.1109/EMBC.2015.7319513. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/7319513/.