Exercícios Recomendados da Semana-4 Gabarito

NÍVEL 2

- 25ª) Um aquecedor elétrico fornece, a taxa constante, energia a uma substância contida num recipiente termicamente isolado. A temperatura da substância é medida como função do tempo.
 - a) A partir dessas informações, discuta um método pelo qual podemos estudar como a capacidade térmica da substância varia com a temperatura.
 - b) Considere que em certo intervalo de temperatura verifica-se que a temperatura é proporcional a t^3 , onde t é o tempo. Como a capacidade térmica depende de t nesse intervalo?

Resposta: a) $C = \frac{P_{ot}}{\left(\frac{dT}{dt}\right)}$; b) $C \propto t^{-2}$.

Segrification do aquecedor e

Q = Segrification do aquecedor e

Q = Color trocado ple substancia, entre

Q = So At

Q = So At

C = Lim (Q AT)

C = Lim (Por AT)

C = Por Lim (AT)

C = Por Lim (AT)

T \times to At \times entre

C = Por (AT)

AT \times T = cre t^3

$$dT = 3 (cre) t^2$$

$$C \times t^{-2}$$

 26^{a}) Mostre que a taxa de calor que se transmite radialmente através de uma substância, de condutividade térmica constante k, entre duas superfícies cilíndricas coaxiais é dada por

$$\frac{dQ}{dt} = \frac{2\pi l k (T_1 - T_2)}{\ln\left(\frac{\rho_2}{\rho_1}\right)},$$

onde a superfície interna tem raio ρ_1 e temperatura T_1 e a superfície externa tem raio ρ_2 e temperatura T_2 e l é o comprimento das superfícies.

H =
$$\frac{dQ}{dt}$$
 = $- \frac{dQ}{dx}$

O pluso de calar atrovis de una casca de se presentational de s' doda por H = $- \frac{2\pi g L}{d\rho}$.

Note que H = ete atrovis de 49 super La presentation de 40 super L

 27^{a}) Duas barras, 1 e 2, têm uma de suas extremidades em contato com um reservatório de calor à temperatura T_q , enquanto a outra está em contado um reservatório de calor à temperatura T_F , como mostra a figura. As barras têm áreas das secções transversais iguais a A_1 e A_2 e condutividades térmicas iguais a k_1 e k_2 , respectivamente. Determine a condutividade térmica equivalente do sistema.

Resposta:
$$k_{eq} = \frac{k_1 A_1 + k_2 A_2}{A_1 + A_2}$$
.

$$\frac{dQ_1}{dt} = H_1 = -K_1 A_1 \frac{dT}{dx}$$

$$\frac{dQ_2}{dt} = H_2 = -K_2 A_2 \frac{dT}{dx}$$

$$\frac{dQ}{dt} = \frac{d(Q_1 + Q_2)}{dt} = H_1 + H_2 = H$$

$$H = -\left(K_1 A_1 + U_2 A_2\right) \frac{dT}{dx} = -K_1 A_1 \frac{dT}{dx}$$

$$A = A_1 + A_2 \implies K_{e_1} = \frac{1}{A} \left(U_1 A_1 + K_2 A_2\right)$$

$$K_{e_2} = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2}$$