Serial No.: 09/539,032 Filed: March 30, 2000

Page : 2 of 10

Amendments to the Claims:

Please amend claims 1, 5 and 8. This listing of claims replaces all prior versions and listings of claims in the application:

Listing of Claims:

- 1. (Currently Amended) A computer-based method for identifying conserved peptide motifs useful as drug targets for use in a host organism, wherein the said method comprises the steps of:
- i) providing electronic data representing peptide libraries from the protein sequences of selected organisms,
- ii) from the data of step (i), generating computationally overlapping peptide sequences from selected organisms of length 'N',-and
- (ii) sorting computationally the peptide sequences of length 'N' according to amino acid sequence,
- (iii) matching computationally the sorted peptide sequences of length 'N' of the selected organisms to produce matched common peptide sequences,
- (iv) locating computationally the matched common peptide sequences in the protein sequences of step i) and subsequently labeling the matched common peptide sequences with their origin and location,
- (v) joining computationally overlapping common peptide sequences to obtain extended conserved peptide sequences,
- (vi) annotating secondary structure of extended conserved peptide sequences based on a crystal structure database, and
- vii) comparing known proteins of a pathogenic organism with those of non-pathogenic organisms using the aforementioned steps (i) to (v), to select at least one conserved peptide

Serial No.: 09/539,032 Filed: March 30, 2000

Page : 3 of 10

sequence not commonly conserved in both the pathogenic organism and in non-pathogenic organisms, to obtain a conserved peptide sequence,

viii) validating computationaly the conserved peptide sequences obtained in step (vii) as a potential drug target sequences by searching for the conserved peptide sequence in a host organism identifying conserved sequences not present in the host organism.

- 2. (Previously Presented) The method of claim 1 wherein 'N' is at least 4.
- 3. (Previously Presented) The method of claim 1 wherein the selected organisms include at least one of: Mycoplasma pneumoniae, Helicobacter pylori, Hemophillus influenzae, Mycobacterium tuberculosis, Mycoplasma genitalium, Bacillus subtillis, and Escherichia coli.
- 4. (Previously Presented) A method as claimed in claim 1 where conserved peptide motifs as modified comprising sequences include one or more of:

	• • •		
1.	AAQSIGEPGTQLT (SEQ ID NO:1) 35.	KMSKSKGN (SEQ ID NO:35)
2.	AGDGTTTAT (SEQ ID NO:2)	36.	KMSKSLGN (SEQ ID NO:36)
3.	AGRHGNKG (SEQ ID NO:3)	37.	KNMITGAAQMDGAILVV (SEQ
			ID NO:37)
4.	AHIDAGKTTT (SEQ ID NO:4)	38.	KPNSALRK (SEQ ID NO:38)
5.	CPIETPEG (SEQ ID NO:5)	39.	LFGGAGVGKTV (SEQ ID NO:39)
6.	DEPSIGLH (SEQ ID NO:6)	40.	LGPSGCGK (SEQ ID NO:40)
7.	DEPTSALD (SEQ ID NO:7)	41.	LHAGGKFD (SEQ ID NO:41)
8.	DEPTTALDVT (SEQ ID NO:8)	42.	LIDEARTPLIISG (SEQ ID NO:42)
9.	DHAGIATQ (SEQ ID NO:9)	43.	LLNRAPTLH (SEQ ID NO:43)
10.	DHPHGGGEG (SEQ ID NO10)	44.	LPDKAIDLIDE (SEQ ID NO:44)
11.	DLGGGTFD (SEQ ID NO:11)	45.	LPGKLADC (SEQ ID NO:45)
12.	DVLDTWFSS (SEQ ID NO:12)	46.	LSGGQQQR (SEQ ID NO:46)
13.	ERERGITI (SEQ ID NO:13)	47.	MGHVDHGKT (SEQ ID NO:47)

Serial No.: 09/539,032 Filed : March 30, 2000 Page : 4 of 10

14.	ERGITITSAAT (SEQ ID NO:14)	48.	NADFDGDQMAVH (SEQ ID
			NO:48)
15.	ESRRIDNQLRGR (SEQ ID NO:15)	49.	NGAGKSTL (SEQ ID NO:49)
16.	FSGGQRQR (SEQ ID NO:16)	50.	NLLGKRVD (SEQ ID NO:50)
17.	GEPGVGKTA (SEQ ID NO:17)	51.	NTDAEGRL (SEQ ID NO:51)
18.	GFDYLRDN (SEQ ID NO:18)	52.	PSAVGYQPTLA (SEQ ID NO:52)
19.	GHNLQEHS (SEQ ID NO:19)	53.	QRVALARA (SEQ ID NO:53)
20.	GIDLGTTNS (SEQ ID NO:20)	54.	QRYKGLGEM (SEQ ID NO:54)
21.	GINLLREGLD (SEQ ID NO:21)	55.	RDGLKPVHRR (SEQ ID NO:55)
22.	GIVGLPNVGKS (SEQ ID NO:22)	56.	SALDVSIQA (SEQ ID NO:56)
23.	GKSSLLNA (SEQ ID NO:23)	57.	SGGLHGVG (SEQ ID NO:57)
24.	GLTGRKIIVDTYG(SEQ ID NO:24)58.	SGSGKSSL (SEQ ID NO:58)
25.	GPPGTGKTLLA (SEQ ID NO:25)	59.	SGSGKSTL (SEQ ID NO:59)
26.	GPPGVGKT (SEQ ID NO:26)	60.	SVFAGVGERTREGND (SEQ ID
			NO:60)
27.	GSGKTTLL (SEQ ID NO:27)	61.	TGRTHQIRVH (SEQ ID NO:61)
28.	GTRIFGPV (SEQ ID NO:28)	62.	TGVSGSGKS (SEQ ID NO:62)
29.	IDTPGHVDFT (SEQ ID NO:29)	63.	TLSGGEAQRI (SEQ ID NO:63)
30.	ILAHIDHGKSTL (SEQ ID NO:30)	64.	TNKYAEGYP (SEQ ID NO:64)
31.	INGFGRIGR (SEQ ID NO:31)	65.	TPRSNPATY (SEQ ID NO:65)
32.	IREGGRTVG (SEQ ID NO:32)	66.	VEGDSAGG (SEQ ID NO:66) and
33.	IVGESGSGKS (SEQ ID NO:33)	67.	VRKRPGMYIG (SEQ ID NO:67).
34.	KFSTYATWWI (SEQ ID NO:34)		

(Currently Amended) A method as claimed in claim 1 comprising increasing the 5. number of [invariant] conserved peptide sequences by increasing the relatedness among the organisms being compared.

Serial No.: 09/539,032 Filed: March 30, 2000

Page : 5 of 10

6. (Previously Presented) A method as claimed in any one of claims 1-4 wherein the invariant sequences belong to at least one of the following proteins:

- I DNA DIRECTED RNA POLYMERASE BETA CHAIN
- II EXCINUCLEASE ABC SUBUNIT A
- III EXCINUCLEASE ABC SUBUNIT B
- IV DNA GYRASE SUBUNIT B
- V ATP SYNTHASE BETA CHAIN
- VI S-ADENOSYLMETHIONINE SYNTHETASE
- VII GLYCERALDEHYDE 3-PHOSPHATE DEHYDROGENASE
- VIII ELONGATION FACTOR G (EF-G)
- IX ELONGATION FACTOR TU (EF-TU)
- X 30S RIBOSOMAL PROTEIN S12
- XI 50S RIBOSOMAL PROTEIN L12
- XII 50S RIBOSOMAL PROTEIN L14
- XIII VALYL tRNA SYNTHETASE (VALRS)

Serial No.: 09/539,032 Filed: March 30, 2000

Page : 6 of 10

XIV CELL DIVISION PROTEIN FtSH HOMOLOG

XV DnaK PROTEIN (HSP70)

XVI GTP BINDING PROTEIN LepA

XVII TRANSPORTER and

XVIII OLIGOPEPTIDE TRANSPORT ATP BINDING PROTEIN OPPF.

- 7. (Previously Presented) A method as claimed in claim 1 wherein the said method of comparing the peptide libraries as given in step (iii) of claim 1 is carried out by following the steps:
 - selecting organism names from a menu;
- iteratively comparing peptide sequences of a first organism to peptide sequences of a second organism and for matching sequences, writing sequences to a file for the first organism and to a file for the second organism.
- 8. (Currently Amended) A method as claimed in claim 1 wherein the said method of locating the common peptides in the original protein sequences as given in step (iv) of claim 1 is carried out by following the steps:
 - selecting protein sequences;
 - iteratively comparing matched peptide sequences to protein sequences;
- if the peptide is found in a protein sequence, <u>labeling</u> the peptide sequence in a file associated with the protein with: a) a protein identification number (PID), b) a location in the protein sequence, and c) a name of the organism.

Serial No.: 09/539,032 Filed: March 30, 2000

Page : 7 of 10

9. (Previously Presented) A method as claimed in claim 1 wherein the said method of creating a common peptide of variable length after removing the overlapping as given in step (v) of claim 1 is carried out by following the steps:

- · iteratively comparing data on matched peptide locations;
- determining overlapping matched peptides; and
- determining extended peptide sequences based on overlapping matched peptide sequences.
 - 10. (CANCELLED)
 - 11. (CANCELLED)
 - 12. (CANCELLED)