Key to Tutorial 4 Encoded Integers

Exercise 1: Signed Numbers

1. Encode the following negative integers into 8-bit signed words:

Here is the method of encoding a negative integer into *n*-bit signed words:

- Convert its absolute value into its *n*-bit binary form.
- Work out the *n*-bit two's complement of the absolute value.

Two's complement

- 2. Write down the hexadecimal form of the 8-bit signed binary words used to encode the smallest and largest values of positive and negative integers.
 - $00_{16} \le \text{positive integers} \le 7F_{16}$ (MSB = 0)
 - $80_{16} \le \text{negative integers} \le FF_{16}$ (MSB = 1)

Exercise 2: 8-bit Signed Operations

1. Perform the following 8-bit binary operations (the two operands and the result are 8 bits wide). Then, convert the result into unsigned and signed decimal values. If an overflow occurs, write down 'ER-ROR' instead of the decimal value.

Key to Tutorial 4

Operation Binary Re	Dinamy Dagult	Decimal Value	
	Binary Result	Unsigned	Signed
11110101 + 11111010	1110 1111	ERROR	-17
11101000 - 11000110	0010 0010	34	34
01011110 – 10011110	1100 0000	ERROR	ERROR
01111110 + 00000101	1000 0011	131	ERROR
11001011 - 00011010	1011 0001	177	-79
10000000 + 11111010	0111 1010	ERROR	ERROR
10000011 - 00001010	0111 1001	121	ERROR

Method for unsigned integers:

- Addition: if the expected result is 9 bits wide → overflow.
- Subtraction: if the left operand is smaller than the right one \rightarrow overflow.

Method for signed integers:

If the sign of the 8-bit result is wrong \rightarrow overflow (just compare the signs).

For instance:

- Positive + Positive = Positive only \rightarrow If the result is negative \rightarrow overflow
- Positive Positive = Positive or Negative \rightarrow Whatever the result \rightarrow no overflow
- · Etc.
- 2. When it comes to adding 8-bit signed binary words, find a way to detect any overflow by comparing the sign bit of the result and those of both operands. Be careful not to confuse this overflow with the carry, which is an unsigned overflow (the 9th bit of the result).

Let us consider all the possibilities:

1 st operand	+	2 nd operand	=	Result	Signed Overflow
Positive	+	Positive	=	Positive	No
Positive	+	Positive	=	Negative	Yes
Positive	+	Negative	=	Positive	No
Positive	+	Negative	=	Negative	No
Negative	+	Negative	=	Positive	Yes
Negative	+	Negative	=	Negative	No

According to the above table, a signed overflow occurs when:

- Both of the operands are positive (sign bits = 0) and the result is negative (sign bit = 1).
- Both of the operands are negative (sign bits = 1) and the result is negative (sign bit = 0).

Key to Tutorial 4 2/5

Exercise 3: Gray Code

1. Write down the Gray code numbers from 0 to 15 and deduce the Gray code of 17, 24 and 31.

Decimal	Natural Binary	Gray Code	
0	0000	0000	1 ↑
1	0001	0001	Axis of symmetry
2	0010	0011	for the LSB
3	0011	0010	▼ Axis of symmetry
4	0100	0110	for the 2 LSBs
5	0101	0111	
6	0110	0101	
7	0111	0100	▼ Axis of symmetry
8	1000	1100	for the 3 LSBs
9	1001	1101	
10	1010	1111	
11	1011	1110	
12	1100	1010	
13	1101	1011	
14	1110	1001	
15	1111	1000	↓

To encode numbers from 0 to 31, five bits are required. From the table above, we can conclude that there is an axis of symmetry for the four LSBs. This axis is located between the values 15 and 16:

- The four LSBs of 15 are equal to the four LSBs of 16 (and the MSB of 16 is one).
- The four LSBs of 14 are equal to the four LSBs of 17 (and the MSB of 17 is one).
- •
- The four LSBs of 7 are equal to the four LSBs of 24 (and the MSB of 24 is one).
- ...
- The four LSBs of 0 are equal to the four LSBs of 31 (and the MSB of 31 is one).

Therefore:

 $\bullet \quad 14_{10} \ = \ 0\textbf{1001}_{Gray} \qquad \rightarrow \qquad 17_{10} \ = \ 1\textbf{1001}_{Gray}$

• $7_{10} = 00100_{Gray} \rightarrow 24_{10} = 10100_{Gray}$

• $0_{10} = 00000_{Gray} \rightarrow 31_{10} = 10000_{Gray}$

Key to Tutorial 4

2. To encode a binary number (Xb) into a Gray code number (Xg), we can apply the following method:

Assuming that:

• $Xb = b_n b_{n-1} b_{n-2} \dots b_1 b_0$

• $Xg = g_n g_{n-1} g_{n-2} \dots g_1 g_0$

We have:

• $g_n = b_n$

• $g_{n-1} = 0$ if and only if $b_n = b_{n-1}$

• $g_{n-2} = 0$ if and only if $b_{n-1} = b_{n-2}$

• $g_0 = 0$ if and only if $b_0 = b_1$

In other words, two consecutive bits are compared: if they are equal, we write down '0'; otherwise, we write down '1'.

Example: $11001011_2 \rightarrow 10101110_{Gray}$

Convert the following decimal numbers into Gray code numbers: 42, 109, 128.

Decimal	Natural Binary	Gray Code
42	0010 1010	0011 1111
109	0110 1101	0101 1011
128	1000 0000	1100 0000

3. To encode a Gray code number into a binary number, you can apply the following method:

Count the number of 1s from the most significant bit up to the same position as the bit we are looking for: if the number of 1s is even, the value of the bit is 0; otherwise, it is 1.

Example: $1011_{Gray} \rightarrow 1101_2$

Convert the following Gray code numbers into decimal numbers:

• 11001000

11101011

• 10000001

Gray Code	Natural Binary	Decimal
1100 1000	1000 1111	143
1110 1011	1011 0010	178
1000 0001	1111 1110	254

Key to Tutorial 4 4/5

Exercise 4: Binary Coded Decimal (BCD)
Convert the following decimal numbers into BCD numbers: 421; 404; 3,009; 7,408.

Decimal	BCD
421	0100 0010 0001
404	0100 0000 0100
3,009	0011 0000 0000 1001
7,408	0111 0100 0000 1000

Key to Tutorial 4 5/5