▼ Regression Analysis

```
import warnings
warnings.filterwarnings('ignore')
```

▼ I. 단일회귀분석

→ 1) Load Data

DF.head()

	Family	Father	Mother	Gender	Height	Kids
() 1	78.5	67.0	М	73.2	4
	1 1	78.5	67.0	F	69.2	4
2	2 1	78.5	67.0	F	69.0	4
3	3 1	78.5	67.0	F	69.0	4
4	1 2	75.5	66.5	М	73.5	4

▼ 2) 남자 데이터만 분리

DFS = DF.loc[DF.Gender == 'M', :]

```
DFS.head()

Family Father Mother Gender Height Kids

1 78.5 67.0 M 73.2 4
```

0	1	78.5	67.0	М	73.2	4
4	2	75.5	66.5	М	73.5	4
5	2	75.5	66.5	М	72.5	4
8	3	75.0	64.0	М	71.0	2
10	4	75.0	64.0	М	70.5	5

▼ 3) pearson 상관계수

```
from scipy import stats
stats.pearsonr(DFS.Father, DFS.Height)[0]
0.3913173581417901
```

▼ 4) 회귀선 시각화

▼ 5) Modeling

→ 6) Model Summary

- 잔차(residual) 검증
 - Prob(Omnibus) & Prob(JB) : 0.05보다 크면 정규분포
 - 。 왜도(Skew) : 정규분포는 '0', '0'보다 크면 오른쪽 자락이 길어짐
 - 첨도(Kurtosis) : 정규분포는 '3'
 - Durbin-Watson : 잔차의 자기상관 체크 지표 '2' 전후

Model_Im.summary(alpha = 0.05)

```
OLS Regression Results
 Dep. Variable: Height
                                 R-squared: 0.153
    Model:
                OLS
                               Adj. R-squared: 0.151
                Least Squares
                                 F-statistic: 83.72
    Method:
     Date:
                Sun, 09 Jul 2023 Prob (F-statistic): 1.82e-18
                               Log-Likelihood: -1070.6
     Time:
                02:43:10
No. Observations: 465
  Df Residuals: 463
                                    BIC:
                                              2153.
   Df Model: 1
Covariance Type: nonrobust
         coef std err t P>|t| [0.025 0.975]
Intercept 38.2589 3.387 11.297 0.000 31.604 44.914
 Father 0.4477 0.049 9.150 0.000 0.352 0.544
  Omnibus: 8.699 Durbin-Watson: 1.481
Prob(Omnibus): 0.013 Jarque-Bera (JB): 13.007
    Skew:
             -0.112 Prob(JB):
                                   0.00150
   Kurtosis: 3.788 Cond. No. 2.09e+03
```

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.09e+03. This might indicate that there are strong multicollinearity or other numerical problems.

▼ II. 모델의 선형성

▼ 1) 예측값(fitted) 계산

fitted = Model_Im.predict(DFS.Father)

▼ 2) 잔차(residual) 계산

• 실제값과 예측값의 차이

residual = DFS.Height - fitted

▼ 3) 예측값과 잔차 비교

- 모든 예측값에서 잔차가 비슷하게 있어야 함
- 잔차의 추세 : 빨간실선
- 빨간실선이 회색점선을 크게 벗어난다면 예측값에 따라 잔차가 크게 달라지는 것을 의미

▼ 1) 잔차의 정규성

• 잔차가 정규분포를 따른다는 가정 검증

```
import scipy.stats
sr = scipy.stats.zscore(residual)
(x, y), _ = scipy.stats.probplot(sr)
```

• Q-Q 플롯

。 잔차가 정규분포를 띄면 Q-Q 플롯에서 점들이 점선을 따라 배치

- shapiro Test
 - ∘ p값이 0.05보다 작아 잔차의 정규성을 따른다는 귀무가설을 기각
 - 유의수준 5%에서 잔차의 정규성 위반

scipy.stats.shapiro(residual)[1]

0.049906473606824875

Residual Visualization

sns.distplot(residual)
plt.show()

▼ 2) 잔차의 등분산성

- 예측된 값이 크던 작던, 모든 값들에 대하여 잔차의 분산이 동일하다는 가정
 - 。 예측값(가로축)에 따라 잔차가 어떻게 달라지는지 시각화
 - 빨간실선이 수평선을 그리는 것이 이상적

3) 잔차의 독립성

- 회귀분석에서 잔차는 정규성, 등분산성 그리고 독립성을 가지는 것으로 가정
- 자료 수집 시 Random Sampling을 하였다면, 잔차의 독립성은 만족하는 것으로 봄

▼ 4) 극단값

- · Cook's distance
 - ㅇ 극단값을 나타내는 지표

cd, _ = OLSInfluence(Model_Im).cooks_distance

```
from statsmodels.stats.outliers_influence import OLSInfluence
```

• 59번자료가 예측에서 많이 벗어남을 확인

```
cd.sort_values(ascending = False).head()
```

```
0.050149
59
22
     0.026499
868 0.023930
     0.020738
125 0.019052
dtype: float64
```

▼ IV. 다중회귀분석

→ 1) Load Data

```
import seaborn as sns
DF2 = sns.load_dataset('iris')
DF2.info()
      <class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
      Data columns (total 5 columns):
                           Non-Null Count Dtype
       # Column
       0 sepal_length 150 non-null
1 sepal_width 150 non-null
                                               float64
       2 petal_length 150 non-null
                                               float64
```

DF2.head()

	sepal_length	sepal_width	petal_length	petal_width	species
C	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

float64

object

▼ 2) pearson 상관계수

3 petal_width 150 non-null

dtypes: float64(4), object(1)
memory usage: 6.0+ KB

150 non-null

4 species

DF2.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

→ 3) Visualization

```
import matplotlib.pyplot as plt
import seaborn as sns
sns.pairplot(hue = 'species', data = DF2)
plt.show()
```


4) Modeling

```
import statsmodels.formula.api as smf
{\tt Model = smf.ols(formula = 'sepal\_length \sim sepal\_width + petal\_length + petal\_width',}
                 data = DF2)
Model_mr = Model.fit()
```

▼ 5) Model Summary

Model_mr.summary(alpha = 0.05)

OLS Regression Results **Dep. Variable:** sepal_length **R-squared:** 0.859 Model: OLS Adj. R-squared: 0.856 Method: F-statistic: 295.5 Least Squares Date: Sun, 09 Jul 2023 **Prob (F-statistic):** 8.59e-62 Log-Likelihood: -37.321 Time: 02:46:47 AIC: 82.64 No. Observations: 150 BIC: **Df Residuals:** 146 94.69 **Df Model:** 3 Covariance Type: nonrobust coef std err t P>|t| [0.025 0.975] **Intercept** 1.8560 0.251 7.401 0.000 1.360 2.352 **sepal_width** 0.6508 0.067 9.765 0.000 0.519 0.783 petal_length 0.7091 0.057 12.502 0.000 0.597 0.821 **petal_width** -0.5565 0.128 -4.363 0.000 -0.809 -0.304 Omnibus: 0.345 Durbin-Watson: 2.060 Prob(Omnibus): 0.842 Jarque-Bera (JB): 0.504 **Skew:** 0.007 **Prob(JB):** 0.777 **Kurtosis:** 2.716 **Cond. No.** 54.7

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

▼ V. 다중공선성(Multicollinearity)

- 공선성(Collinearity) : 독립변수가 다른 독립변수로 잘 예측되는 경우
 - 또는 서로 상관이 높은 경우
- 다중공선성(Multicollinearity) : 독립변수가 다른 여러 개의 독립변수들로 잘 예측되는 경우

 $from\ statsmodels.stats.outliers_influence\ import\ variance_inflation_factor$

▼ 1) 독립변수 확인

Model.exog_names

['Intercept', 'sepal_width', 'petal_length', 'petal_width']

▼ 2) 다중공선성 진단

- 분산팽창계수(VIF:Variance Inflation Factor)
 - 엄밀한 기준은 없으나 보통 10보다 크면 다중공선성이 있다고 판단
 - 5를 기준으로 하기도 함
- 'sepal_width'의 VIF

1.270814929344654

• 'petal_length'의 VIF

variance_inflation_factor(Model.exog, 2)

15.097572322915717

• 'petal_width'의 VIF

variance_inflation_factor(Model.exog, 3)

14.234334971742083

• pearson 상관계수

DF2.corr()

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal width	0.817941	-0.366126	0.962865	1.000000

▼ 3) 다중공선성 해결

- VIF가 큰 독립변수를 제거 후 모델링
 - ∘ 'petal_width' 제거

• 다중공선성 처리 후

Model_VIF.summary()

```
OLS Regression Results
 Dep. Variable: sepal_length R-squared: 0.840
    Model: OLS
                            Adj. R-squared: 0.838
   Method:
              Least Squares F-statistic: 386.4
    Date:
              Sun, 09 Jul 2023 Prob (F-statistic): 2.93e-59
              02:46:47 Log-Likelihood: -46.513
    Time:
                    AIC: 99.03
No. Observations: 150
 Df Residuals: 147
                              BIC:
                                         108.1
  Df Model: 2
Covariance Type: nonrobust
         coef std err t P>|t| [0.025 0.975]
Intercept 2.2491 0.248 9.070 0.000 1.759 2.739
sepal_width 0.5955 0.069 8.590 0.000 0.459 0.733
petal_length 0.4719 0.017 27.569 0.000 0.438 0.506
  Omnibus: 0.164 Durbin-Watson: 2.021
Prob(Omnibus): 0.921 Jarque-Bera (JB): 0.319
   Skew: -0.044 Prob(JB): 0.853
  Kurtosis: 2.792 Cond. No. 48.3
```

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

###

End Of Document

###