

N-CHANNEL ENHANCEMENT-MODE POWER MOSFET

Low gate-charge Simple drive requirement Fast switching

 $\begin{array}{ll} {\rm BV}_{\rm DSS} & 30{\rm V} \\ {\rm R}_{\rm DS(ON)} & 9{\rm m}\Omega \\ {\rm I}_{\rm D} & 60{\rm A} \end{array}$

Description

The SSM70T03H is in a TO-252 package, which is widely used for commercial and industrial surface-mount applications, and is well suited for low voltage applications such as DC/DC converters. The through-hole version, the SSM70T03J in TO-251, is available for low-footprint vertical mounting. These devices are manufactured with an advanced process, providing improved on-resistance and switching performance. The devices have a maximum junction temperature rating of 175°C for improved thermal margin and reliability.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±20	V
I _□ @ T _A =25°C	Continuous Drain Current, V _{GS} @ 10V	60	А
I _□ @ T _A =100°C	Continuous Drain Current, V _{GS} @ 10V	43	Α
I _{DM}	Pulsed Drain Current ¹	195	Α
P _□ @ T _A =25°C	Total Power Dissipation	53	W
	Linear Derating Factor	0.36	W/°C
E _{AS}	Single Pulse Avalanche Energy ³	29	mJ
T _{STG}	Storage Temperature Range	-55 to 175	°C
T_J	Operating Junction Temperature Range	-55 to 175	°C

Thermal Data

Symbol	Parameter		Value	Units	
Rthj-c	Thermal Resistance Junction-case	Max.	2.8	°C/W	
Rthj-a	Thermal Resistance Junction-ambient	Max.	110	°C/W	

Electrical Characteristics@T_j=25°C(unless otherwise specified)

	<u> </u>	=				
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	V
Δ BV _{DSS} / Δ T j	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I⊡=1mA	-	0.032	1	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V_{GS} =10V, I_D =33A	-	ı	9	mΩ
		V _{GS} =4.5V, I _D =20A	-	-	18	mΩ
$V_{\text{GS(th)}}$	Gate Threshold Voltage	V _{DS} =V _{GS} , I _D =250uA	1	-	3	V
g_{fs}		V_{DS} =10V, I_D =33A	-	35	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	$V_{\rm DS}$ =30V, $V_{\rm GS}$ =0V	-	ı	1	uA
	Drain-Source Leakage Current (T _j =175°C)	V _{DS} =24V ,V _{GS} =0V	-	ı	250	uA
I_{GSS}	Gate-Source Leakage	V _{GS} = ±20V	-	ı	±100	nA
$Q_{ m g}$	Total Gate Charge ²	I _D =33A	ı	16.5	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =20V	-	5	-	nC
$Q_{ m gd}$	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	10.3	-	nC
$t_{d(on)}$	Turn-on Delay Time ²	V _{DS} =15V	-	8.2	-	ns
t _r	Rise Time	I _D =33A	ı	105	-	ns
$t_{d(off)}$	Turn-off Delay Time	$ bracket{R_G=3.3\Omega, V_{GS}=10V}$	-	21.4	-	ns
t _f	Fall Time	R _D =0.45Ω	-	8.5	_	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	1485	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	-	245	_	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	170	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
$V_{ ext{SD}}$	Forward On Voltage ²	I_S =60A, V_{GS} =0V	-	-	1.3	V
t _{rr}	Reverse Recovery Time ²	I_S =30A, V_{GS} =0V,	-	29	1	ns
Q _{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	12	-	nC

Notes:

- 1. Pulse width limited by safe operating area.
- 2.Pulse width <300us, duty cycle <2%.
- $3.V_{DD}\text{=}25V$, L=100uH , $R_{G}\text{=}25\Omega$,I_AS=24A.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. On-Resistance vs. Gate Voltage

Fig 4. Normalized On-Resistance vs. Junction Temperature

Fig 5. Forward Characteristic of Reverse Diode

Fig 6. Gate Threshold Voltage vs. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

Fig 11. Switching Time Waveform

Fig 8. Typical Capacitance Characteristics

Fig10. Effective Transient Thermal Impedance

Fig 12. Gate Charge Waveform

Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.