

Comparative Inhalation Toxicology of Selected Materials

Final Report for Phase III Studies

M. B. Snipes, Ph.C.

D. E. Bice, Ph.D.

D. G. Burt, D.V.M.

E. G. Damon, Ph.D.

A. F. Eidson, Ph.D.

F. F. Hahn, D.V.M., Ph.D.

J. R. Harkema, D.V.M., Ph.D.

R. F. Henderson, Ph.D.

J. L. Mauderly, D.V.M.
J. A. Pickrell, D.V.M., Ph.D.

F. A. Seiler, Ph.D.

H. C. Yeh, Ph.D.

SDTIC ELECTE MAR 2 8 1989

June, 1988

# Supported by

U.S. Army Medical Research and Development Command Fort Detrick, Frederick, MD 21701-5012

Project Order 85PP5805

Inhalation Toxicology Research Institute
Lovelace Biomedical and Environmental Research Institute
P.O. Box 5890
Albuquerque, NM 87185

Approved for public release; distribution unlimited.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

89 3 27 059 \* 89 3 27 05

| REPORT DOCUMENTATION PAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Form Approved<br>OMB No. 0704-0188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 18 REPORT SECURITY CLASSIFICATION UNCLASSIFIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16 RESTRICTIVE MARKINGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
| LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| R(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5 MONITORING                                                                                                                                                                                                                                                                                                                                                        | ORGANIZATION F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REPORT NU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MBER(S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| 6b. OFFICE SYMBOL<br>(If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U.S. Army                                                                                                                                                                                                                                                                                                                                                           | Biomedical                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Researc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | th and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
| <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 76 ADDRESS (Cit                                                                                                                                                                                                                                                                                                                                                     | ty, State, and ZIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 8b. OFFICE 37MBOL<br>(If applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                     | I INSTRUMENT IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ENTIFICATI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ON NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     | UNDING NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PROGRAM<br>ELEMENT NO                                                                                                                                                                                                                                                                                                                                               | PROJECT<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TASK<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | WORK UNIT<br>ACCESSION NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |
| GY OF SELECTED N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MATERIALS - F                                                                                                                                                                                                                                                                                                                                                       | PHASE III S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TUDIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| .E. Bice, D.G. B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Burt, E.G. Da                                                                                                                                                                                                                                                                                                                                                       | amon, A.F. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Eidson,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F.F.Hahn,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| OVERED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14 DATE OF REPO                                                                                                                                                                                                                                                                                                                                                     | RT (Year, Month,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ler and<br>Day) 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PAGE COUNT 185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| 18. SUBJECT TERMS (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Continue on reverse                                                                                                                                                                                                                                                                                                                                                 | e if necessary and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | d identify b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y block number)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Rats, inhal<br>toxicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ation, subch                                                                                                                                                                                                                                                                                                                                                        | ronic, copp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oer, zin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | c, alloy,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 19. ABSTRACT (Continue on reverse if necessary and identify by block number)  A subchronic inhalation study of powdered Cu-Zn alloy (Cu-Zn) was conducted with F344/N rats. Exposures were 1.5 hours/day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 mg Cu-Zn/m³ for 13 weeks, followed by a 4-week recovery period. Rats were exposed nose-only to aerosols with average mass median aerodynamic diameters of 1.1 µm (geometric standard deviation 2.7). The Cu-Zn alloy did not accumulate in lungs, indicating that it cleared rapidly and reached equilibrium concentrations in tissues of the respiratory tract after a few days of exposure. The 13-week exposures produced adverse biological changes only in the respiratory tract. Focal atrophy (mild severity) of olfactory epithelium occurred in 14 percent of the rats exposed to 1.0 or 3.2 mg Cu-Zn/m³, and in 68 percent of rats exposed to 10 mg Cu-Zn/m³. This lesion resolved during the recovery period in rats exposed to 1.0 mg Cu-Zn/m³, but was still present in 2 percent and 32 percent, respectively, of the rats exposed to 3.2 or 10 mg Cu-Zn/m³. A mild alveolar macrophage hyperplasia occurred in 50 percent of the rats exposed to 3.2 mg Cu-Zn/m³, and a mild to moderate macrophage hyperplasia occurred in 82 percent of the rats exposed to 10 mg Cu-Zn/m³. After the recovery 20 DISTRIBUTION/AVAILABUTY OF ABSTRACT  A DINCLASSIFIED DINCLASSIFICATION  UNCLASSIFIED DINCLASSIFICATION  120 DISTRIBUTION/AVAILABUTY OF ABSTRACT  21 ABSTRACT SECURITY CLASSIFICATION  UNCLASSIFIED DINCLASSIFICATION  220 DISTRIBUTION/AVAILABUTY OF ABSTRACT  221 ABSTRACT SECURITY CLASSIFICATION  UNCLASSIFIED DINCLASSIFICATION  222 DISTRIBUTION/AVAILABUTY OF ABSTRACT  223 DISTRIBUTION/AVAILABUTY OF ABSTRACT  224 DISTRIBUTION/AVAILABUTY OF ABSTRACT  225 DISTRIBUTION/AVAILABUTY OF ABSTRACT  226 DISTRIBUTION/AVAILABUTY OF ABSTRACT  227 DISTRIBUTION/AVAILABUTY OF ABSTRACT  228 DISTRIBUTION/AVAILABUTY OF ABSTRACT  229 DISTRIBUTION/AVAILABUTY OF ABSTRACT |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| <del>-,</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (301) 663-7                                                                                                                                                                                                                                                                                                                                                         | 325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SGR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )-RMI-S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GY OF SELECTED I  L. Bice, D.G. L. Mauderiv, J. DVERED  TO 10/87  18. SUBJECT TERMS (A. Rats, inhal toxicity)  and identify by block in powdered Cu-Zn day, 4 days/wee ecovery period. and in diameters cumulate in luns in tissues of produced advertity) of olfact -Zn/m³, and in during the recoin 2 percent and L. A mild alveous 2 mg Cu-Zn/m³, nt of the rats | Approved f distribution Approved f distribution Approved f distribution Approved f distribution State of the province of the p | 16 RESTRICTIVE MARKINGS  3 DISTRIBUTION AVAILABILITY OF Approved for public or distribution unlimited as the distribution unlimited and supplicable)  66 OFFICE SYMBOL (If applicable)  70 NAME OF MONITORING ORGANIZATION OF ADDRESS (City, State, and ZIP)  Fort Detrick Frederick, MD 21701-5  96 OFFICE SYMBOL (If applicable)  85PP5805  10 SOURCE OF FUNDING NUMBED PROGRAM PROJECT (If applicable)  85PP5805  10 SOURCE OF FUNDING NUMBED PROGRAM PROJECT NO PROJECT (If applicable)  85PP5805  14 DATE OF REPORT (Year, Month, 1988, June)  18 SUBJECT TERMS (Continue on reverse if necessary and Rats, inhalation, subchronic, copputation, subchronic, copputation, and including the produced adverse biological changes or ity) of olfactory epithelium occurred produced adverse biological changes or rity) of olfactory epithelium occurred curring the recovery period in rats exponed uring the recovery period in rats exponed in 2 percent and 32 percent, respective A mild alveolar macrophage hyperplaced and the responsed to 10 mg Cu-Zn/m3, and a mild to moderate and the responsed to 10 mg Cu-Zn/m3, and a mild to moderate and the responsed to 10 mg Cu-Zn/m3, and a mild to moderate and the responsed to 10 mg Cu-Zn/m3, and and a mild to moderate and the responsed to 10 mg Cu-Zn/m3, and and a mild to moderate and the responsed to 10 mg Cu-Zn/m3, and and a mild to moderate and and applicable approach and sexposed to 10 mg Cu-Zn/m3 and a mild to moderate and and applicable approach and applicable and and applicable approach and applicable and applicable applicable and app | 3 DISTRIBUTION AVAILABILITY OF REPORT Approved for public release; distribution unlimited  5 MONITORING ORGANIZATION REPORT NU U.S. Army Biomedical Research Development Laboratory 76 ADDRESS (City, State, and ZIP Code) Fort Detrick Frederick, MD 21701-5010  96 OFFICE SYMBOL (If applicable)  9 OFFICE SYMBOL (If applicable)  10 SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO PROJECT TASK  10 SOURCE OF FUNDING NUMBERS PROGRAM ELEMENT NO PROJECT TASK NO  14 DATE OF REPORT (Year, Month, Day) 15 15 16 SUBJECT TERMS (Continue on reverse if necessary and identify be applicated by block number) 19 powdered Cu-Zn alloy (Cu-Zn) was conducted we day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3.2, or 10 to day, 4 days/week to 0, 0.32, 1.0, 3. |  |  |

19. ABSTRACT (Cont.) period, macrophage hyperplasia (mild severity) persisted in 23 percent of the rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup> and in all of the rats exposed to 10 mg  $Cu-Zn/m^3$ . A mild type II pneumonocyte hyperplasia occurred in 27 percent of rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>, and a mild to moderate hyperplasia occurred in 77 percent of rats exposed to 10 mg Cu-Zn/m<sup>3</sup>. Recovery from type II pneumocyte hyperplasia was comparable to that observed for alveolar macrophage hyperplasia. Mild alveolitis was produced in 25 percent of the rats exposed to 3.2 mg  $Cu-Zn/m^3$ , and mild to moderately severe alveolitis was produced in 82 percent of the rats exposed to 10 mg Cu-Zn/m<sup>3</sup>. Alveolitis resolved during the 4-week recovery period. After exposure to 10 mg Cu-Zn/m<sup>3</sup>, changes in bronchoalveolar lavage fluid (BALF) constituents corresponded closely to the histological changes. Changes in BALF included increased total cells, macrophages, neutrophils, lymphocytes, collagenous peptides, and beta-glucuronidase. The only significant changes produced in BALF by exposures to 3.2 mg Cu-Zn/m<sup>3</sup> were (1) increased numbers of neutrophils, and (2) an increase in alkaline phosphatase that was not seen in rats exposed to 10 mg Cu-Zn/m<sup>3</sup>. These changes in BALF were all relatively small and represented a mild inflammatory response that resolved during the recovery period. Exposures to 3.2 or 10 mg Cu-Zn/m<sup>3</sup> resulted in increased numbers of lymphoid cells in lung-associated lymph nodes. Although the number of antibody-forming cells/million lymphocytes was significantly depressed after recovery from exposures to 3.2 and 10 mg Cu-Zn/m<sup>3</sup>, the total number of antibody-forming cells was not different from what was observed in shamexposed rats. The only effect of inhaled Cu-Zn on respiratory function was reduced carbon monoxide diffusing capacity, produced by exposure to 10 mg Cu-Zn/m<sup>3</sup>. This suggested responses to the inhaled Cu-Zn resulted in impaired alveolar-capillary gas exchange at the membrane level. The magnitude of this functional change was small. In summary, exposures to 3.2 or 10 mg Cu-Zn/m<sup>3</sup>, 1.5 hours/day, 4 days/week for 13 weeks produced significant lesions and functional changes in the respiratory tracts of F344/N rats. The only lesion produced by exposure to 1.0 mg Cu-Zn/m<sup>3</sup> was a mild focal atrophy of olfactory epithelium in 14 percent of the rats; this lesion resolved within 4 weeks after exposure to Cu-Zn ended. No effects were detected after exposure to  $0.32 \text{ mg Cu-Zn/m}^3$ . Considering the cumulative results of this study, the no observable adverse effects level (NOAEL) for exposures of F344/N rats is defined as exposures equivalent to inhalation of 0.32 mg  $Cu-Zn/m^3$ , 1.5 hours/day, 4 days/week.

A-1

#### I. EXECUTIVE SUMMARY

The U. S. Army Biomedical Research and Development Laboratory (USABRDL) sponsored the Lovelace Inhalation Toxicology Research Institute (LITRI) to study the inhalation toxicity of respirable aerosols of powdered Cu-Zn alloy (Cu-Zn). Toxicological information was limited for this material and the LITRI responded to the need for information by studying the inhalation toxicity of this material in F344 rats.

Studies of the inhalation toxicity of Cu-Zn were conducted in three phases. Phase I included (1) standardization of methods for generation and delivery of aerosols of test materials, (2) physical/chemical characterization of the aerosols, (3) comparisons of nose-only versus whole-body exposure systems, (4) an assessment of stress imposed on the rats during nose-only versus whole-body exposure to 100 mg Cu-Zn/m3, and (5) preliminary evaluations of toxicity of inhaled Cu-Zn. Phase II consisted of repeated intermittent exposures to determine subacute toxic effects from exposure to different aerosol concentrations of the Cu-Zn. In Phase III, a 13-week subchronic exposure of rats to selected levels of Cu-Zn was used to determine a no observable adverse effects level (NOAEL) of exposure and estimate the reversibility of any toxic lesions. This report is for Phase III studies.

F344/N rats were exposed by inhalation in nose-only exposure tubes. Exposures were 1.5 hours per day, four days per week, for 13 weeks. Aerosol concentrations of Cu-Zn were 0 (sham), 0.32, 1.0, 3.2, or 10 mg Cu-Zn/m³. The aerosols had average mass median aerodynamic diameters of 1.1  $\mu$ m and geometric standard deviations of 2.7. Rats were weighed twice weekly during the 13-week exposure series. Pulmonary function evaluations were made before starting the exposures, midway through the exposure series, after the last exposure, and again after a 4-week recovery period. Additional evaluations were made after the exposure series and again after a 4-week recovery period to determine the

kinds and magnitudes of biological responses to the inhaled Cu-Zn alloy. The evaluations quantitated indicators of biochemical and cytological changes in bronchoalveolar lavage fluid (BALF), immunologic responses, phagocytic ability of pulmonary alveolar macrophages, collagen content of lung, and histopathological changes in the respiratory tract. Table ES-1 contains a summary of significant adverse effects observed in Phase III.

No rats died during the exposures as a result of inhalation of the test material. Body weight, an indicator of morbidity or toxicity, was decreased in rats exposed to 10 mg Cu-Zn/m<sup>3</sup>. A change in pulmonary function was noted at the end of exposure only in rats exposed to 10 mg  $Cu-Zn/m^3$ . Rats in this group had decreased carbon monoxide diffusing capacity that did not completely resolve during the 4-week recovery period. Exposures to 3.2 and 10 mg Cu-Zn/m<sup>3</sup> produced changes in biochemical/cytological indicators of toxicity in bronchoalveolar lavage fluid (BALF). Specifically, β-glucuronidase and protein increased. Alkaline phosphatase increased in rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>, but not in rats exposed to 10 mg Cu-Zn/m<sup>3</sup>. Lactate dehydrogenase in BALF was not different from values for sham-exposed rats. These changes were resolved during the 4-week recovery period. Exposures to 3.2 or 10 mg Cu-Zn/m<sup>3</sup> caused increased numbers of lymphoid cells in lung-associated lymph nodes, and exposure to 10 mg Cu-Zn/m<sup>3</sup> significantly increased the total number of antibody-forming cells. These changes resolved during the 4-week recovery period. The concentration of antibody-forming cells in these lymph nodes was normal at the end of exposure in all groups of rats, but was depressed after the 4-week recovery period in rats exposed to 3.2 or 10 mg Cu-Zn/m<sup>3</sup>. Exposure to 10 mg Cu-Zn/m<sup>3</sup> resulted in decreased phagocytic ability of pulmonary alveolar macrophages. No significant changes in pulmonary function, immunology, or phagocytic ability of macrophages resulted from the exposures to 0.32 or 1.0 mg  $Cu-Zn/m^3$ .

Table ES-1 Summary of Significant Adverse Effects Observed in Phase III

|                                                                                                                                                    | Aerosol Concentration of Powdered Cu-Zn Alloy |     |                         |                        |                         |                |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|-----|-------------------------|------------------------|-------------------------|----------------|
|                                                                                                                                                    | 1.0 mg/m <sup>3</sup> 3.2 mg                  |     |                         |                        | mg/m <sup>2</sup>       |                |
| Measure                                                                                                                                            | EOEa                                          | REC | EOE                     |                        | EOE                     | REC            |
| Body Weights                                                                                                                                       |                                               |     |                         |                        | Dρ                      |                |
| Bronchoalveolar Lavage Fluid Analyses Total Cells Neutrophils Lymphocytes Macrophages Beta-Glucuronidase Alkaline Phosphatase Collagenous Peptides |                                               |     | I                       |                        | I<br>I<br>I<br>I        |                |
| Immunology, Lung-Associated Lymph Nodes Total Lymphoid Cells Antibody-Forming Cells per Million Lymphocytes Total Antibody-Forming Cells           |                                               |     | I                       | D                      | I                       | D              |
| Macrophage Phagocytosis                                                                                                                            |                                               |     |                         |                        | D                       |                |
| Respiratory Function<br>Carbon Monoxide Diffusing Capacity                                                                                         |                                               |     |                         |                        | D                       | D              |
| Histopathology <sup>C</sup><br>Lung Weights<br>Nasal Epithelial Atrophy                                                                            | 3/22                                          |     | 6/44                    | 1/43<br>(1.0)          | I<br>15/22<br>(1.2)     | 7/22<br>(1.1)  |
| Alveolar Macrophage Hyperplasia                                                                                                                    | (1.0)                                         |     | (1.0)<br>24/44          | 10/43                  | 18/22                   | 22/22          |
| Type II Pneumocyte Hyperplasia                                                                                                                     |                                               |     | (1.0)<br>12/44          | (1.0)<br>8/43          | (1.4)<br>17/22          | (1.0)<br>22/22 |
| Alveolitis                                                                                                                                         |                                               |     | (1.0)<br>11/44<br>(1.0) | (1.0)<br>1/43<br>(1.0) | (1.2)<br>18/22<br>(1.4) | (1.0)<br>0/22  |

a EOE signifies measurements after the 13-week exposure; REC signifies measurements after the 4-week recovery period.

bThere was a statistically significant (p < 0.05) increase (I) or decrease (D) in

these measures, as compared with the sham-exposed rats.

COnly the data for lung weight are presented on the basis of statistical differences. Data for the respiratory tract lesions represent frequency of lesions, (number of rats with lesion)/(number of rats observed), and the average severity of the lesions for rats that had lesions. Average severity scores of 1.0 to 1.4 in this table indicate slight to moderate severity.

The Cu-Zn did not accumulate in lungs during the 13 weeks of exposure, indicating that it cleared rapidly. This suggests that an equilibrium concentration of the material in the respiratory tract was reached within days after the start of the 13-week subchronic exposure.

Histopathological lesions were limited to nasal airways and the pulmonary region of the respiratory tract. The nasal airways contained lesions after inhalation of 1.0, 3.2 and 10 mg Cu-Zn/m³ for 13 weeks. Focal atrophy (mild severity) of the olfactory epithelium occurred in 15 of 22 rats exposed to 10 mg Cu-Zn/m³, in 6 of 44 rats exposed to 3.2 mg Cu-Zn/m³ and in 3 of 22 rats exposed to 1.0 mg Cu-Zn/m³. After the recovery period, this lesion in the nasal airways persisted in 7 of 22 rats exposed to 10 mg Cu-Zn/m³ and in 1 of 43 rats exposed to 3.2 mg Cu-Zn/m³. It was not present after the recovery period in rats exposed to 1.0 mg Cu-Zn/m³.

Lung weights were increased at the end of exposure in rats exposed to 10 mg Cu-Zn/m³, but were normal after the recovery period. Multifocal type II pneumocyte hyperplasia, alveolitis, and alveolar macrophage hyperplasia were the principal alterations found in the lungs. All three types of lesions (mild severity) were produced in rats exposed to 3.2 and 10 mg Cu-Zn/m³, but not in rats exposed to 0.32 or 1.0 mg Cu-Zn/m³. The alveolar macrophage hyperplasia and type II pneumocyte hyperplasia persisted, but the alveolitis resolved during the 4-week recovery period.

No lesions occurred in rats exposed for 13 weeks to 0.32 mg  $Cu-Zn/m^3$ , and the nasal epithelial atrophy observed after exposure to 1.0 mg  $Cu-Zn/m^3$  resolved during the 4-week recovery period. We conclude that the no observable adverse effects level (NOAEL) for exposure of F344/N rats to Cu-Zn alloy powder is equivalent to daily inhalation exposures of 0.32 mg  $Cu-Zn/m^3$  for 1.5 hours per day, 4 days/week.

#### II. FOREWORD

Citations of commercial organizations and trade names in this report do not constitute an official Department of the Army endorsement or approval of the products or services of these organizations.

In conducting the research described in this report, the investigator(s) adhered to the "Guide for the Care and Use of Laboratory Animals," prepared by the Committee on Care and Use of Laboratory Animals of the Institute of Laboratory Animal Resources Commission of Life Sciences, National Research Council (NIH Publication No. 85-23, Revised 1985).

# TABLE OF CONTENTS

|       |                                                       | <u>Page</u> |
|-------|-------------------------------------------------------|-------------|
| I.    | EXECUTIVE SUMMARY                                     | 4           |
| II.   | FOREWORD                                              | 8           |
| III.  | LIST OF FIGURES                                       | 10          |
| IV.   | LIST OF TABLES                                        | 11          |
| ٧.    | EXPERIMENTAL METHODS                                  | 13          |
|       | A. Test Material                                      | 13          |
|       | B. Experimental Design for Phase III                  | 13          |
|       | C. Animals: Source, Identification and Housing        | 16          |
|       | D. Animal Surveillance                                | 19          |
|       | E. Aerosol Generation and Exposure Systems            | 20          |
|       | 1. Aerosol Generation and Delivery Systems            | 20          |
|       | 2. Animal Exposure Chambers                           | 22          |
|       | 3. Aerosol Physical Characterization                  | 22          |
|       | 4. Exposure Chamber Aerosol Distribution Evaluations  | 23          |
|       | F. Animal Exposure Procedures                         | 23          |
|       | G. Aerosol Characterization During Animal Exposures   | 24          |
|       | H. Biological Observations During and After Exposures | 25          |
|       | I. Atomic Absorption Analyses for Cu and Zn           | 37          |
|       | J. Statistical Comparisons                            | 37          |
| VI.   | RESULTS                                               | 40          |
|       | A. Exposure Aerosol Chamber Distribution Evaluations  | 40          |
|       | B. Aerosol Characterization During Animal Exposures   | 42          |
|       | C. Biological Observations During and After Exposures | 42          |
| VII.  | GENERAL DISCUSSION AND CONCLUSIONS                    | 69          |
| VIII. | NO OBSERVABLE ADVERSE EFFECTS LEVEL OF EXPOSURE       | 76          |
| IX.   | QUALITY ASSURANCE STATEMENT                           | 77          |
| Х.    | REFERENCES                                            | 79          |
| XI.   | ACKNOWLEDGMENTS                                       | 84          |
| XII.  | APPENDICES                                            | 84          |
| XIII. | LIST OF PUBLICATIONS                                  | 181         |
| XIV.  | PERSONNEL SUPPORTED BY PROJECT                        | 182         |
| XV.   | DISTRIBUTION LIST                                     | 183         |

# III. LIST OF FIGURES

|           |                                                                                                           | Page |
|-----------|-----------------------------------------------------------------------------------------------------------|------|
| Figure 1. | Aerosol Concentrations of Cu-Zn Alloy Powder During 13 Weeks of Rat Exposures in Phase III, Parts 1 and 2 | 42   |
|           | Parts I and 2                                                                                             | 43   |
| Figure 2. | Body Weights (Mean ± SE) for Rats in Phase III, Parts 1 and 2                                             | 45   |

# IV. LIST OF TABLES

|       |     |                                                                                                                                                    | <u>Page</u> |
|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table | 1.  | Exposure Groups of F344/N Rats for Phase III, Parts 1 and 2                                                                                        | 15          |
| Table | 2.  | Summary of Biological Evaluations Scheduled for Phase III, Parts 1 and 2                                                                           | 17          |
| Table | 3.  | Tissue and Organs Grossly Examined, Weighed, Saved in Fixative, and Examined Microscopically in Phase III, Parts 1 and 2                           | 36          |
| Table | 4.  | Quality Control Information for Atomic Absorption Analyses in Phase III, Part 1                                                                    | 38          |
| Table | 5.  | Exposure Chamber Aerosol Distribution Evaluations Without Animals Present in Exposure Chambers                                                     | 41          |
| Table | 6.  | Summary of Cu-Zn Alloy Powder Exposure Atmosphere Concentrations and Size Distributions During 13 Weeks of Exposure for Phase III, Parts 1 and 2   | 44          |
| Table | 7.  | Summary of Body Weights for Selected Times During 13-Weeks Exposure of F344/N Rats to Powdered Cu-Zn Alloy                                         | 46          |
| Table | 8.  | Total Cells in Lung Lavage Fluid                                                                                                                   | 48          |
| Table | 9.  | Neutrophil, Lymphocyte, and Macrophage<br>Differentials in Lung Lavage Fluid                                                                       | 49          |
| Table | 10. | Biochemical Analyses of Bronchoalveolar Lavage<br>Fluid from F344/N Rats that Inhaled Powdered<br>Cu-Zn Alloy                                      | 50          |
| Table | 11. | Collagenous Peptides in Bronchoalveolar Lavage Fluid<br>After 13-Weeks Exposure to Powdered Cu-Zn Alloy<br>Powder and After 4-Week Recovery Period | 51          |
| Table | 12. | Total Lung Collagen After 13-Week Exposure to Powdered Cu-Zn Alloy and After 4-Week Recovery Period                                                | 53          |
| Table | 13. | Immunology Results for Tracheobronchial Lymph Nodes from Rats in Phase III                                                                         | 55          |
| Table | 14. | Macrophage Phagocytosis of Opsonized Sheep Red                                                                                                     | 56          |

|           |                                                                                                                                             | <u>Page</u> |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Table 15. | Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 (Baseline Measurements)                                            | 58          |
| Table 16. | Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 (Week Seven of Exposures)                                          | 59          |
| Table 17. | Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 (End of Exposure)                                                  | 60          |
| Table 18. | Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 (After 4-Week Recovery Period)                                     | 61          |
| Table 19. | Body and Organ Weight Summary for Phase III, Parts 1 and 2 for End of Exposure (EOE) and After Recovery (REC)                               | 63          |
| Table 20. | Summary of Respiratory Tract Lesions in F344/N Rats After 13-Week Exposure to Aerosols of Powdered Cu-Zn and After a 4-Week Recovery Period | 65          |
| Table 21. | Lung Content of Cu and Zn in F344/N Rats Exposed Nose-Only in Phase III, Part 1                                                             | 68          |

#### V. EXPERIMENTAL METHODS

#### A. <u>Test Material</u>

We obtained Atlantic Brass Richgold fine 1800 from Atlantic
Powdered Metals, Inc., New York, NY. This powdered metal alloy was from lot
number T-7464. We mixed the bulk material in a plastic-lined 55 gallon drum,
then transferred part of the powder to 9 approximately 2-liter sub-lots in
Teflon bottles for convenience of storage and use. The remainder of the bulk
material was returned to its shipping containers. This metal powder contained
approximately 2/3 Cu and 1/3 Zn by weight. In Phase I of this project we
determined the projected area diameter of bulk and aerosolized powder.
Results indicated that most of the particles in this powder were flakes,
having projected area diameters in the range 0.6 to 16.4 mm. We also
estimated the thickness of the flakes to be one-thirtieth to one-fourtieth of
the projected area diameter. Aerosols generated using this powder typically
had mass median aerodynamic diameters of approximately 0.9 to 1.2 mm, with
geometric standard deviations in the range of 3.1 to 3.5.

### B. <u>Experimental Design for Phase III</u>

Fischer-344/N rats were used in this study to allow comparisons with specific results from other related studies and to make general comparisons with the growing inhalation toxicology data base for rats. This laboratory animal species was suitable for pulmonary function evaluations during and after exposure to the test material, and procedures for evaluating specific endpoints have been well defined for rats.

Rats were 17 weeks old at the start of their exposures. The rats were weighed during the week prior to exposure and those body weights were used to randomize them for assignment to their study groups. The

randomization procedure made use of the LITRI Path/Tox Data System (Xybion Medical Systems, Inc., Cedar Knolls, NJ) and RS/1 Computer Software (BBN Software Products Corporation, Cambridge, MA). The result of the randomization procedure was assignment of rats to the experimental groups as indicated in Table 1.

The study was conducted in two parts because of a technical problem that caused the death of the sham-exposed rats in Phase III, Part 1.

Preliminary results were available from Phase III, Part 1 at the time Phase III, Part 2 was planned. On the basis of the preliminary results, exposures to 10 mg Cu-Zn/m³ and some of the endpoint evaluations were not repeated in Phase III, Part 2. However, one additional exposure group was included in Phase III, Part 2, to extend the lowest exposure concentration to 0.32 mg Cu-Zn/m³.

Exposures were nose-only and target aerosol concentrations were 0, 0.32, 1.0, 3.2, and 10 mg Cu-Zn/m<sup>3</sup>. Exposure durations were 1.5 hr/day, exposure frequencies were 4 times per week (usually Monday thru Thursday), and the exposure series was continued for 13 weeks, followed by a recovery period of 4 weeks. Sham-exposed rats are referred to as "shams", and were exposed 1.5 hr/day, 4 times per week to filtered air.

Previous observations in Phases I and II (Snipes et al., 1986, 1988) of this project and by others (Thomson et al., 1986) indicated that the most likely responses in Phase III would involve the nasopharynx and pulmonary region of the respiratory tract. Observations and endpoints of interest therefore emphasized the respiratory tract.

The lung is a primary route of entry into the body for airborne materials. Some inhaled materials cause responses in the lung which can be

Table 1

Exposure Groups of F344/N Rats for Phase III, Parts 1 and 2<sup>a</sup>

|                         | Part 1     |           | Part 2     |                |  |
|-------------------------|------------|-----------|------------|----------------|--|
| Target                  | Experiment | Number of | Experiment | Number of      |  |
| mg_Cu-Zn/m <sup>3</sup> | Number     | Animals   | Number     | <u>Animals</u> |  |
| O (sham)                | b          |           | 4442       | 76             |  |
| 0.32                    |            |           | 4443       | 44             |  |
| 1.0                     | 4371       | 76        |            |                |  |
| 3.2                     | 4372       | 76        | 4444       | 76             |  |
| 10                      | 4373       | 76        |            |                |  |

aExposures 1.5 hours/day, 4 days/week, for 13 weeks; equal numbers
 of males and females.

<sup>&</sup>lt;sup>b</sup>Animals died due to technical problem during exposure.

measured by changes in composition of the lung tissue or by changes in the fluids and cells lining the bronchoalveolar airways. Since fibrosis of the lung was a possible response to the inhaled Cu-Zn, the lung tissue was analyzed for indications of developing fibrosis. Analysis of bronchoalveolar lavage fluid was used to detect an inflammatory response in the lung. This method has proven useful in previous studies on the toxicity of inhaled mineral dusts, coal combustion fly ash, and other toxicants (Beck et al., 1981, 1982; Henderson et al., 1978a, 1978b, 1979a, 1979b; Moores et al., 1980, 1981).

The measurements and endpoints (Table 2) included in Phase III of this project were selected to determine changes in important indicators of general health, the respiratory tract, or specific organ functions as a consequence of the exposures. Rats were observed daily and their body weights were recorded twice weekly during the 13-week exposure period.

Rats were randomly assigned for evaluations and for whether they would be evaluated at the end of the exposure or after the 4-week recovery period. The first groups of rats were killed three days after their last exposure to the Cu-Zn, the rest were killed 4 weeks later. The exceptions to this sacrifice schedule were the rats used for pulmonary function evaluations. Pulmonary function measurements were made prior to starting the exposures, midway through the 13 week exposure series, after the last exposure, and again after the 4-week recovery period.

### C. Animals: Source, Identification and Housing

Rats were obtained from Charles River Laboratories, Kingston, NY.

They were shipped from a viral-antibody-free facility in filter crates and were 13 weeks old when they arrived at the LITRI. Prior to the animals'

Table 2
Summary of Biological Evaluations Scheduled for Phase III, Parts 1 and 2

| Endpoint Category         | Part 1 | Part 2ª |
|---------------------------|--------|---------|
| Lavage Fluid Analyses     | X      | X       |
| Clinical Chemistry        | X      |         |
| Connective Tissue         | X      | X       |
| Hematology                | X      |         |
| Histopathology            | x      | Х       |
| Immunology                | X      | X       |
| Lung Burdens of Cu and Zn | X      |         |
| Phagocytosis              | X      | X       |
| Pulmonary Function        | x      | X       |
|                           |        |         |

 $<sup>^{\</sup>rm a}{\rm Evaluations}$  were limited to sham-exposed rats and rats exposed to 3.2 mg Cu-Zn/m³ for all categories other than histopathology. All groups were evaluated for the presence of histological lesions.

arrival, the room selected for their housing was disinfected. This was accomplished by sponging or mopping all surfaces of the room with diluted Johnson's Expose (National Sanitary Supply Co., Albuquerque, NM), then fumigating the room with AN-FA-CIDE-S® (Pharmaceutical Research Laboratories, Greenwich, CT). Thereafter, quarantine procedures were followed for personnel, food, cages, bedding, and equipment taken into the room. Personnel donned shoe covers, clean laboratory coveralls, hair covers, and respiratory protection as they entered the room. All work was done while wearing disposable rubber gloves. Fcod, cages, and bedding were sterilized prior to placement in the room. Any equipment, such as analytical balances, was disinfected prior to placing it in the room. Access to the room was restricted to the limited number of personnel required for animal maintenance and handling animals for exposures. The rats were maintained under these quarantine conditions throughout the study.

All animals assigned to the project had unique individual identification numbers. The numbers were affixed to the animals' ears in the form of permanent metal ear tags. Ear tags were attached during the week before inhalation exposures were started. Missing ear tags were replaced as necessary to maintain positive identification of each animal.

Rats were housed two or three per cage in polycarbonate cages 20 cm H x 25 cm W x 45 cm L. Cages had polyester filter caps to reduce possible spread of disease and parasites. Cages and filter caps for the sham group were kept separate from cages and filter caps used for the rats exposed to the Cu-Zn. Also, the cages used for this study were not mixed with similar cages being used in the same housing area for other studies. Normal cage washing procedures were used, but control and exposed cages were washed separately from each other and from other cages in the building.

Cages had hardwood chip bedding which was changed twice weekly.

Certified Rodent Blox pellets (Allied Mills, Chicago, IL) and water were available ad libitum in the housing area. Food was analyzed by the Continental Grain Company, Libertyville, IL. Data sheets from analysis of Lot P07236-1 of this feed by the Continental Grain Company are included in the Appendix. This analysis was representative of the feed used during Phase III, Parts 1 and 2.

Light was provided on a 12-hour daily cycle (0600-1800). Room temperature was maintained at 20 to 24 C, and relative humidity was 30 to 50 percent.

#### D. Animal Surveillance

The rats for Phase III, Parts 1 and 2 were 13 weeks old when they arrived at the Institute. They were placed directly into a quarantine room where they were maintained throughout the study. Their exposures to Cu-Zn started when they were 17 weeks old. The surveillance procedures described below were the same for rats in Phase III, Parts 1 and 2.

Within 48 hours of arrival at ITRI, 5 male and 5 female rats were examined for pinworm ova by the cellophane tape preparation method. All rats were negative for pinworm ova.

Prior to beginning exposures, 5 male and 5 female rats were killed for disease surveillance, which included gross necropsy, parasitology screening, and serology. Samples of the serum were sent to Microbiological Associates, Inc. (Bethesda, MD) for serologic testing for the following diseases: pneumonia virus of mice (PVM), kilham rat virus (KRV), Toolan's H-1 virus (H-1), sendai virus, rat coronavirus-sialodacryoadeniti virus (RCV-SDA), lymphocytic choriomeningitis virus (LCM), reovirus type 3 (Reo3), mouse

adenovirus (MAD), GDVII, and Mycoplasma pulmonis. A cellophane tape preparation was also done on each of the 10 rats to examine for pinworm ova (Syphacia muris). Fecal samples from 5 males and 5 females were submitted for fecal flotation analysis.

No gross lesions were observed in any of the rats. All rats were negative for parasites on fecal flotation and cellophane tape preparations. On serology, all rats were negative for antibodies to <a href="Mycoplasma">Mycoplasma</a> and all viruses tested.

Periodically throughout the study, 10 sentinel animals (5 male, 5 female) from Phase III, Part 1 and Phase III, Part 2 were tested for pinworm ova via the anal tape technique. All sentinel rats tested negative for pinworms prior to the conclusion of the study. At the conclusion of the study, the sentinel rats were subjected to the disease surveillance procedures described above. No gross lesions were observed, and all rats were serologically negative for Mycoplasma and all viruses tested. The majority of sentinel rats were positive for ova of Syphacia muris at this final sacrifice.

#### E. Aerosol Generation and Exposure Systems

#### Aerosol Generation and Delivery Systems

One requirement for this project was to minimize changes in physical and chemical characteristics of the powdered Cu-Zn alloy. This required using an aerosol generator which would not grind or otherwise alter the size and shape of the powder. In addition, a suspension of the powder was not possible, since this would require a solvent which might alter the test material physically or alter the exposure patterns for the rats. Testing in Phase I (Snipes et al., 1986) of this project indicated that the Model 0101-C6S Jet-O-Mizer aerosol generator (Fluid Energy Corp., Hatfield, PA)

would be appropriate for this study. The Jet-O-Mizer, with its Accurate bulk materials feeder produced aerosols of the Cu-Zn having the desired exposure concentrations, stability, and volume production.

In all cases where aerosols of the Cu-Zn were used, the aerosol generation systems were enclosed to protect the operator(s) from exposure. These enclosures were made of 1.3 cm thick plexiglass and were equipped with glove ports and pass boxes. The enclosures were maintained at a relative negative internal pressure of 0.5-0.75 inches (1.3-1.9 cm) of hydrostatic pressure. This ensured that any leaks in the system would result in room air being drawn into the enclosure rather than test material escaping from the enclosure to contaminate the work environment and result in personnel exposures.

Each daily operation of this aerosol generation system started with a fresh supply of bulk Cu-Zn. The bulk powder was stored in 2-liter Teflon containers. Containers were physically mixed by turning them end over end 25 times prior to transfer of the bulk material. This procedure was done to obviate daily variations in aerosols due to differential settling of particles in the storage containers.

Aerosols were produced by the Jet-O-Mizer aerosol generation system using filtered air that was humidified to maintain relative humidity in the range 30 to 50 percent. Aerosols were passed through the exposure chambers or through a bypass as excess aerosol. Excess aerosol flow was drawn through a high efficiency particulate air (HEPA) filter via the exposure chamber exhaust system; the exposure chambers were exhausted through a separate HEPA filtered vacuum exhaust system.

### 2. Animal Exposure Chambers

Three 96-port nose-only exposure chambers were used for exposing rats to the Cu-Zn; an 80-port nose-only chamber was used to expose the shams. These multiport small animal exposure systems were similar to those described by Raabe et al. (1973). During exposures, rats were in polycarbonate nose-only exposure tubes. These tubes were designed to allow inhalation exposures of rats, while minimizing external contamination of the animals. The wall thickness of the Lexan tubes was 2.3 mm and the tube diameter was adequate to restrain the rats, but allow them space for thoracic expansion during breathing. The front end of each tube was tapered internally to conform to the shape of the rat's head and the rear end of the tube was closed by an adjustable plunger. The rats were secured in these tubes during exposure, with their noses projecting slightly past the end of the exposure tube and into the aerosol passing through the exposure chamber.

### 3. Aerosol Physical Characterization

Three types of aerosol samples were collected. Filter samples were collected to determine aerosol concentrations, Lovelace Multijet (LMJ) cascade impactors were used to collect samples for aerosol size determinations, and point-to-plane electrostatic precipitator (ESP) samples were collected for routine aerosol morphology evaluations.

A RAM-S real-time aerosol monitor (GCA Corporation, Bedford, MA) was used to continuously monitor the aerosol concentrations during testing and exposures. The primary use of this monitoring device was to provide real-time indications of the functional state of the aerosol generation and delivery systems. This information was used by the exposure technician to make any necessary adjustments within the systems to maintain the desired exposure conditions.

### 4. Exposure Chamber Aerosol Distribution Evaluations

The following procedures were used to quantitate uniformity of aerosol generator output and aerosol concentration within the exposure chambers. Three nose-only exposure systems were used for Cu-Zn and all three systems required testing prior to animal exposures. One system (10 mg Cu-Zn/m<sup>3</sup>) had been used in Phase II of this project (Snipes et al., 1988) and testing for that chamber was not repeated prior to starting exposures for Phase III. Part 1. Chambers designated for producing aerosols and exposing rats to 0.32, 1.0, and 3.2 mg  $Cu-Zn/m^3$  were tested prior to inhalation exposures of rats. Tests of generator output, stability, and uniformity of chamber distribution of the aerosols of Cu-Zn were conducted four hours per day, on three separate days with no animals in the exposure chambers. Previously identified exposure ports (Snipes et al., 1988) were sampled simultaneously to evaluate the aerosol concentration at each port. The amounts of test material were determined by weighing the filters before and after the aerosol collection intervals. Twelve simultaneous filter samples were collected, six from each side of each exposure chamber. Aerosols were collected on these filters for 40 minutes with 1 liter/minute sampling flow rates. A total of 144 samples were collected for each nose-only exposure chamber and used in the evaluation of spatial and temporal distribution patterns for the test aerosols of Cu-Zn. Lovelace Multijet impactor samples were also collected during these daily tests for aerosol size determinations.

## F. Animal Exposure Procedures

It had been determined that the aerosols were almost uniformly distributed in the nose-only chambers. However, to minimize variability, a randomization procedure was used to assign each rat to its exposure location

for each exposure. A different list of exposure locations was produced for each group of rats, for every exposure. The procedure used computer software which randomized the list of rats to be exposed in each chamber and overlaid the random list of rats on the list of exposure ports available. Exposure ports were identified by a 3-digit code where each port of an exposure chamber was assigned a unique number. The procedure not only randomly assigned the rats to their exposure locations each day, the computer output file was used to generate labels which were placed on the exposure tubes at the time the rats were loaded into them. The labels facilitated accounting for each rat and reduced errors associated with handling rats for nose-only exposures and returning them to their assigned housing cages. The exposure location history for each rat in the study is in a master computer file for examination if needed.

The animals were housed in a room almost directly across a hallway from the exposure room. On exposure days, the rats were loaded into their polycarbonate exposure tubes in their housing room and transported to the exposure room in the exposure tubes. Animals to be sham-exposed were always handled and transported first. After the nose-only exposures, the rats were transported back to the housing room in the exposure tubes, and were unloaded from the tubes directly into their cages.

## G. <u>Aerosol Characterization During Animal Exposures</u>

During the animal exposures, three types of aerosol samples were collected for each exposure. These included (1) the Lovelace Multijet (LMJ) impactor samples for determining aerodynamic size distributions of the aerosols, (2) filter samples for aerosol concentration determinations, and (3) a point-to-plane electrostatic (ESP) sample for electron microscope

observations. The flow rates were set at 16.4 liters/minute for impactors, 1 liter per minute for filter samplers, and 0.2 liters/minute for the ESP. One sample each of the LMJ and ESP were collected at the beginning and end of each exposure. Three or four filter samples were collected for the entire 1.5 hour exposures.

# H. <u>Biological Observations During and After Exposures</u>

#### General

The rat housing area was inspected twice daily for dead or moribund rats. More thorough examinations occurred twice per week when all of the rats were weighed. Personnel handling rats for exposures recorded any unusual behavior, coat color, excretions, and overall general appearance, if the rats did not appear normal. Any dead or moribund rats were to be necropsied as "unscheduled deaths", as indicated in ITRI Protocols FY86-016 and FY87-009.

After their last scheduled exposure, the rats were returned to their housing as usual. Three days later, excluding the rats assigned for pulmonary function evaluations, immunology, and tissue analysis for Cu and Zn, rats to be used for biochemistry, hematology, phagocytosis, connective tissue, and histopathology analyses were transported to the LITRI necropsy facility. The rats were anesthetized with halothane, then exsanguinated by cardiac puncture. Halothane anesthesia was chosen because it resulted in the least change in baseline parameters used in a screening test for lung injury (Henderson and Lowrey, 1983). Blood was collected in syringes containing 100 units of heparin and used for hematology evaluations. Details of analytical procedures are presented below.

Rats used for immunology and evaluation of lung content of Cu and Zn were immunized 7 days prior to sacrifice. At their scheduled sacrifice time, they were anesthetized with  $CO_2$ , exsanguinated via the brachial artery, and the lungs and lymph nodes were removed for analysis as detailed below.

The same procedures were repeated four weeks later with the other rats assigned for these endpoint evaluations. Specific procedures are given below. Rats assigned to the pulmonary function evaluations were killed and discarded as biological waste after their final pulmonary function tests.

#### Lavage Fluid Biochemistry and Cytology

Evaluations were made in groups of rats killed at the end of the exposures and additional groups of rats killed after allowing 4 weeks for recovery. Rats were anesthetized with halothane and killed by exsanguination. The heart and lungs were removed en bloc. The left lung was isolated from the right lung and was used for evaluation of histopathology. The right lung of each rat was lavaged with physiological saline (2 washes of 4 mL each for females and 2 washes of 5 mL each for males). The two recovered lavage fluid washes from individual rats were combined and centrifuged at 1000 x g for 15 minutes to separate the cells from the supernatant fluid.

The supernatant was analyzed for lactate dehydrogenase (indicator of cell death), beta-glucuronidase (lysosomal enzyme indicating high phagocytic activity and/or lysis of phagocytic cells), alkaline phosphatase (measure of type II lung cell response), and potein content (indicator of damage to the alveolar/capillary barrier). The cells in the pellet were resuspended in physiological saline and evaluated using a Coulter counter (Coulter Electronics, Hialeah, FL). An aliquot of the cell suspension was processed using a cytocentrifuge and differential cell counts were made.

Total airway collagen was measured as an indicator of possible remodeling of lung structural protein (Pickrell et al., 1975). To measure airway collagen, lavage fluid collagenous peptides were measured. These are soluble hydroxyproline-containing compounds which have leaked into alveoli and small airways and are recovered from the lung by endobronchial saline lavage. They reflect turnover of the extracellular collagenous matrix.

An aliquot of the lavage fluid supernatant was hydrolyzed in 6 N HC1 (sealed under  $N_2$ ) for 16 to 18 hours at 110°C to convert proteins to their individual amino acids. The acid solution was evaporated to dryness, samples were resuspended in 0.001 N HC1, and a colorimetric procedure was used to quantitate the amount of hydroxyproline present (Grant, 1965). Right lungs were hydrolyzed using the same procedure as for the lavage fluid. The acid was evaporated, the material was resuspended in 0.001 N HC1, samples were decolorized with charcoal filtration, evaporated to dryness again, and finally suspended in 0.001 N HC1. Next, the samples were analyzed for hydroxyproline using the colorimetric assay procedure. The collagen content of the samples was calculated by multiplying the lavage fluid hydroxyproline content by 7.46 to convert to collagen content. This conversion is based on the fact that collagen is approximately 13 percent hydroxyproline by weight (Neuman and Logan, 1950).

Based on data available at the time total lung collagen analyses were done, the only exposed group of rats likely to be different from controls was the group exposed to 10 mg Cu-Zn/m<sup>3</sup>. We therefore elected to evaluate total lung collagen in two steps, doing the second step only if necessary. The first step included analysis of selected groups of rats killed at the end of the 13-week exposure, and only sham-exposed rats and rats

exposed to 10 mg Cu-Zn/m<sup>3</sup> from the animals allowed the 4-week recovery period. One half of the control animals from the group killed at the end of exposure was pooled with one half of the control animals killed after the recovery period. This was done to provide controls for these analyses, and to have controls available for additional analyses if they would have been justified.

Total lung collagen was measured for rats killed at the end of exposure to 0, 3.2, and 10 mg  $Cu-Zn/m^3$ . This included rats from Phase III, Parts 1 and 2 that had been exposed to 3.2 mg  $Cu-Zn/m^3$ , which was the only exposure level common to Parts 1 and 2. The only exposed group in which rats were evaluated after the 4-week recovery period was the group exposed to 10 mg  $Cu-Zn/m^3$ .

Additional lungs would have been analyzed as a second step in these evaluations if justified on the basis of observing significant changes in lung collagen for rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>. Results for collagen content of lung were normalized and presented as amount of collagen per gram control lung, and amount per kilogram body weight.

#### 3. Hematology and Serum Chemistry

Limited clinical tests were selected on the basis of results from previous phases of this study to determine effects, if any, in the hematopoietic system, and in other organ systems of the rats. Hematological analyses were performed at the end of inhalation exposures and 4 weeks later using a Coulter Model S-550 Hematology Analyzer. The following parameters were measured:

Hematocrit

Hemoglobin concentration

Erythrocyte count

Erythrocyte indices

Mean corpuscular volume (MCV)

Mean corpuscular hemoglobin (MCH)

Mean corpuscular hemoglobin concentration (MCHC)

Leukocyte count, total and differential

Chemistry parameters were also measured at the end of inhalation exposures and 4 weeks later using a centrifugal analyzer (Multistat, Fisher Instrumentation Laboratories, Lexington, MA). The following serum parameters were measured:

Alkaline phosphatase

Serum glutamic pyruvic transaminase (alanine aminotransferase)

Blood urea nitrogen

Total bilirubin

Total protein

Albumin

#### 4. Immunology

A portion of inhaled particulates translocate to the lung-associated lymph nodes which receive lymphatic drainage from the lung. The results of studies on the effects of inhaled particulates indicate that insoluble materials which reach the lung-associated lymph nodes are retained in these tissues with a long half-life, and that this exposure can alter the immune function of these lymphoid tissues (Bice et al., 1985, 1987). Therefore, the effects of inhaled Cu-Zn on immune response in the lung-associated lymph nodes was evaluated.

Immunization was by intratracheal instillation of antigen (Bice et al., 1979) seven days prior to killing the rats. The rats were anesthetized with halothane, and the trachea was intubated with a catheter. The placement of the catheter in the trachea was verified by ventilating the lungs after placement. Particulate antigen (sheep red blood cells) was instilled just above the bifurcation of the trachea. A total of 100 million red blood cells (SRBC) obtained from a single sheep were used for each rat.

The number of lymphoid cells producing IgM anti-SRBC antibody were determined in the lung-associated lymph nodes and the spleen by the Cunningham modification of the Jerne plaque assay (Cunningham and Szenberg, 1968). Evaluation of the number of anti-SRBC in the spleen after lung immunization was necessary to determine if exposure to the Cu-Zn altered the antigen-trapping capacity of the lung-associated lymph nodes. Instilled SRBC that leave the lung via the lymphatics are normally removed in the lung-associated lymph nodes. This antigen does not reach distant lymphoid tissues, since the number of antigen-forming cells in the spleen is not significantly elevated above background level (Bice et al., 1979).

Antibody-forming cell data were expressed as the number of IgM anti-SRBC antibody-forming cells per million lymphoid cells in the lung-associated lymph nodes or in the spleen. A statistical comparison of the level of immunity in control rats and in exposed rats was made. Results of past studies indicated that the data are log-normally distributed (Gottlieb, 1974). Therefore, a logarithmic transformation of the data was done and the transformed data were evaluated using an unpaired Student's t-test with a BMDP computer program (BMDP, 1979).

### 5. Phagocytosis

As described above, lavage fluid was centrifuged and the supernatant used for biochemical analyses. The free alveolar cell fraction (pellet from the centrifugation step) was used for evaluation of phagocytosis by pulmonary alveolar macrophages (PAM). Smears of the cytocentrifuge pellets were made to allow differential cell counts. Phagocytosis of SRBC by PAM from the pellets was tested with and without surface-bound antibody (Harmsen et al., 1980).

The SRBC used in the phagocytosis assay were sensitized by incubation with anti-SRBC antibody (EA). A one percent suspension of EA was added to the alveolar macrophages obtained by lung lavage and incubated at 37°C for 60 minutes to allow time for phagocytosis. The EA and alveolar macrophages were then centrifuged, and the pellet was resuspended in distilled water to lyse any EA not phagocytized. Slides were prepared from the resuspended cells, and the number of SRBC phagocytized by 100 alveolar macrophages was counted using oil immersion with light microscopy.

## 6. Respiratory Function Measurements

Tests included a spectrum of measured and calculated parameters, allowing evaluation of the different facets of respiratory function: ventilation, lung mechanics, gas distribution, and alveolar-capillary gas transfer. The tests included assays that are sensitive and used most commonly in humans.

Rats were intubated with tracheal catheters, 5.5 cm long x 1.78 mm I.D., fabricated from 14 gauge intravenous catheters (Cathlon IV, No, 4428, Jelco, Raritan, NJ) as previously described (Mauderly, 1977). The breathing port in the plethysmograph wall was a Luer fitting (No, 6161,

Popper, New York, NY) drilled to 2.5 mm I.D. The frequency response of the plethysmograph-respirator-tracheal catheter system was tested and found adequate to record forced expirations of rats. The phasing of flow, volume, and transpulmonary pressure (Ptp) signals was tested by oscillating volumes into and out of the plethysmograph; no significant phase lag was detected within the frequency range of spontaneous breathing, the only condition in which phasing is critical.

Respiratory function measurements were similar to those previously published (Harkema et al., 1982; Likens and Mauderly, 1982; Mauderly, 1982). Tests were conducted using a 1.4 L combination flow (volume displacement) and pressure (constant volume) plethysmograph. Flows were determined by measuring differential pressures (MP45 transducer, Validyne, Northridge, CA) across 6 layers of 400-mesh wire cloth covering a 1.3 cm hole in the plethysmograph wall. Volumes were calculated by integrating flow (Model 6 pulmonary mechanics analyzer, Buxco, Sharon, CT). In the pressure mode, used only for measurement of functional residual capacity, the hole was sealed and volume changes were measured as pressure changes, using the same transducer. The plethysmograph was heated by a resistance element and maintained at approximately 37°C.

Transpulmonary (Ptp) pressure was measured using transducers (P23ID, Gould, Hato Rey, Puerto Rico) connected to the external airway and to a 2.2 mm O.D. esophageal catheter by liquid-filled tubes. The transducer outputs were conditioned by a differential amplifier (Buxco), which produced outputs for both transpulmonary and airway pressures.

A positive-negative pressure respirator system was used to induce quasistatic and forced expiratory movements. Reservoirs (4.6 L)

maintained at +40 and -50 cm  $H_2O$  were connected to the airway by solenoid valves. Inspiratory and quasistatic expiratory flow rates were limited by needle valves to 5 and 3 mL/second, respectively.

Inspiration was stopped automatically at a Ptp of  $+30~cm~H_2O$ . Forced expiration was induced by opening a valve having a 9.5 mm diameter orifice (V52DA3012, Skinner, New Britain, CT) without intentional flow restriction between the valve and the low pressure reservoir.

The measurement sequence was as follows. The rats were anesthetized with halothane in air, intubated with the tracheal catheter, and placed prone in the plethysmograph. The esophageal catheter was inserted and adjusted to maximize the Ptp signal. Anesthetic depth was standardized by adjusting the halothane concentration to yield a respiratory frequency of 55 ± 5 breaths/minute. Respiratory frequency, tidal volume, minute volume, dynamic lung compliance, and total pulmonary resistance were measured during spontaneous breathing by the mechanics analyzer, averaged for 15-20 breaths by a data logger (DL-12, Buxco) and displayed on a teletype terminal. The measurement of dynamic lung mechanics by the mechanics analyzer was identical in principle to the method of Amdur and Mead (1958).

Prior to each subsequent test procedure, the rats were hyperventilated with a syringe to induce temporary apnea and to establish a uniform lung volume history. A quasistatic exhalation was performed by inflating the lungs to +30 cm H<sub>2</sub>O Ptp, then slowly deflating the lungs until expiratory flow stopped. Volume and Ptp signals were recorded on a strip-chart recorder. The inspired volume was defined as inspiratory capacity, the expired volume as vital capacity, and the difference as the expiratory reserve volume. Quasistatic pressure-volume relationships were

analyzed by a microprocessor contained within the data logger, and results were displayed on a teletype terminal. Quasistatic lung compliance was measured as the chord compliance between the apneic lung volume and that volume  $\pm 10$  cm  $\pm 10$  Ptp.

Functional residual capacity was measured using Boyle's Law (DuBois et al., 1956) by inducing apnea, blocking the breathing port, and measuring airway pressure and lung volume changes as breathing resumed.

Residual volume was calculated by subtracting expiratory reserve volume from functional residual capacity, and total lung capacity was calculated by adding residual volume to vital capacity.

A forced expiration was induced by inflating the lungs to +30 cm  $H_2O$  Ptp and rapidly deflating the lung until expiratory flow stopped. The event was analyzed by a microprocessor contained within the data logger, and both the flow-volume curve and several calculated variables were displayed on a teletype terminal. These variables included forced vital capacity, peak expiratory flow rate, percent of forced vital capacity expired in 0.1 second, mean mid-expiratory flow rate, and the maximal expiratory flow rates at 10, 25, and 50 percent of forced vital capacity.

Diffusing capacity for CO was measured by a single-breath method (Ogilvie et al., 1957). The gas volume required to increase Ptp from functional residual capacity to 20 cm  $H_2O$  was determined, and that volume of test gas containing 0.4 percent CO and 0.5 percent Ne in air was injected into the lung with a syringe. After approximately six seconds, one-half the injected volume was withdrawn from the lung and the remainder (alveolar sample) was withdrawn into a second syringe. Gas concentrations in the alveolar gas sample were determined by gas chromatography (Carle Model 111).

A single-breath  $N_2$  washout was performed as described above for quasistatic exhalation, except that the test was started by deflating the lungs to residual volume and the subsequent inflation was with  $O_2$  instead of air. An X-Y plot of volume exhaled versus  $N_2$  concentration (percent) of the expirate was constructed and analyzed to calculate the slope of Phase III, the alveolar plateau.

# 7. Necropsy and Histopathology

Eleven male and II female rats from each exposure group listed in Table I were evaluated at the end of the exposure series, and another II male and II female rats were evaluated after the 4-week recovery period. The rats were anesthetized with halothane and exsanguinated, as indicated above. Some of the rats were shared for several evaluations. For shared rats, after removal of the heart-lung bloc, the left lung and carcass were subjected to gross examination and sampling for histopathology. For other rats, the entire lung was available for gross and histopathology evaluations. Organs grossly examined, weighed, saved in fixative, and examined microscopically are listed in Table 3.

The lungs were instilled intratracheally with 10 percent neutral buffered formalin (NBF) to approximately their normal inspiratory volume. The nasal cavity was perfused with 1-3 mL of 10 percent NBF to remove air before immersion in additional fixative. The stomach was injected with 10 percent NBF and fixed for gross examination. The other tissues listed in Table 3 were fixed by immersion in 10 percent NBF.

After allowing adequate time for complete fixation, tissues were trimmed, embedded in paraffin, and sectioned at 5 microns with a microtome. The sections were mounted on glass slides, stained with

Table 3

Tissues and Organs Grossly Examined, Weighed, Saved in Fixative and Examined Microscopically in Phase III, Parts 1 and 2

|                              |                | Routine Histology |        |  |
|------------------------------|----------------|-------------------|--------|--|
| Tissue or Organ <sup>a</sup> | <u>Weighed</u> | <u>Part 1</u>     | Part 2 |  |
| Thymus                       |                | X                 |        |  |
| Tracheobronchial Lymph Nodes |                | X                 | Χ      |  |
| Spleen                       |                | X                 |        |  |
| Femur                        |                | X                 |        |  |
| Larynx                       |                | X                 | X      |  |
| Nasal Cavity                 |                | X                 | X      |  |
| Trachea                      |                | X                 | X      |  |
| Lung                         | X              | X                 | Х      |  |
| Heart                        |                | X                 |        |  |
| Stomach                      |                | X                 |        |  |
| Liver                        | X              | X                 |        |  |
| Kidneys                      | X              | X                 |        |  |
| Urinary Bladder              |                | X                 |        |  |
| Testes                       | X              | X                 |        |  |
| Ovaries                      | X              | X                 |        |  |
| Adrenals                     |                | X                 |        |  |
| Thyroid                      |                | X                 |        |  |
| Brain                        | X              | X                 |        |  |
| Lesions (if present)         |                | X                 | Х      |  |

aAll grossly examined and fixed in 10% neutral buffered formalin.

hematoxylin and eosin, and examined for lesions. Comparisons were made among the exposure groups for presence of lesions, types of lesions, and their severity. Results are discussed below and details for individual rats are included in the Appendix.

# I. Atomic Absorption Analyses for Cu and Zn

These analyses were done only for Phase III, Part 1. Lungs were individually dried for about 15 hours at ~ 120°C, then transferred to Teflon digestion vessels containing 3.0 mL of ultrapure concentrated HNO3, 1.0 mL of ultrapure concentrated HC1, and 0.1 mL of ultrapure concentrated HF. Samples were next placed in a microwave oven, heated for 6 minutes, then cooled in an ice water bath. Cooled digestates were added to 5.0 mL of 5 percent boric acid and the solution diluted to 25 mL with 0.06 M citric acid. The diluted solutions were assayed for Cu and Zn by atomic absorption spectroscopy using an Instrumentation Laboratories IL 951 graphite furnace atomic absorption instrument. The limits of detection and quantitation (American Chemical Society Committee on Environmental Improvement, 1983), and average recoveries of standard Cu and Zn are shown in Table 4. Attempts to measure recovery of the metal powder added directly to animal tissues were not successful because of difficulty in quantitatively transferring small amounts of the Cu-Zn.

#### J. <u>Statistical Comparisons</u>

Body weight and respiratory function data were available for comparisons among groups of rats before exposures to Cu-Zn started and midway through the 13-week exposure series. Sham-exposed rats in Phase III, Part 1 were accidentally killed one day before their exposures were to end. Also, some of the endpoint evaluations in Phase III, Part 1 were not repeated in Phase III, Part 2. Therefore, some of the comparisons in Phase III, Part 1

Table 4

Quality Control Information for Absorption Analyses in Phase III, Part 1

| Evaluation                                                          | Cu            | Zn            |
|---------------------------------------------------------------------|---------------|---------------|
| Reagent blank (n = 9)<br>$\mu$ g/mL, mean $\pm$ SD                  | 0.009 ± 0.006 | 0.006 ± 0.003 |
| Limit of Detection <sup>a</sup> , μg/mL                             | 0.028         | 0.015         |
| Limit of Quantitation <sup>b</sup> , μg/mL                          | 0.072         | 0.035         |
| Percent Recovery, Mean ± SE  Cu - NBS393, n = 8  Zn - NBS728, n = 8 | 92 ± 3.9      | 100 ± 2.2     |

<sup>&</sup>lt;sup>a</sup>Limit of detection is defined as the mean value plus 3 times the standard deviation for the reagent blank.

<sup>&</sup>lt;sup>b</sup>Limit of quantitation is defined as the mean plus 10 times the standard deviation for the reagent blank.

were of necessity made between groups of rats exposed to 3.2 or 10 mg Cu-Zn/m<sup>3</sup> and rats exposed to 1.0 mg Cu-Zn/m<sup>3</sup>. These comparisons are indicated at the appropriate places in text. Results for rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup> in Phase III, Parts 1 and 2 were statistically compared and the judgement was made that all data from Phase III, Parts 1 and 2 could be presented as one set (Appendix I) and data for rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup> could be combined. Statistical comparisons were then possible between groups of rats exposed to 0.32, 1.0, 3.2, and 10 mg  $Cu-Zn/m^3$  and the sham-exposed rats from Phase III, Part 2. Therefore, with the exception of the body weight and respiratory function results, the immediate family of comparisons was limited to (1) groups of rats exposed to 3.2 or 10 mg Cu-Zn/m<sup>3</sup> in Phase III, Part 1, compared with the group of rats exposed to 1.0 mg Cu-Zn/m<sup>3</sup>, (2) comparisons between rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup> in Phase III, Parts 1 and 2, and (3) data from all exposed groups from Phase III, Parts 1 and 2 combined where possible and comparisons made with the sham-exposed rats from Phase III, Part 2. Comparisons were made between sets of data collected at the end of exposure or collected after the recovery period. Comparisons were not made between results from end of exposure and after recovery.

Unless specified otherwise, comparisons presented in this report included analysis of variance to detect overall group differences in mean and variance. Specific differences were measured using the Student's t-statistic with appropriate corrections for multiple comparisons according to the inequality of Bonferroni. We used the Levene test for equal variance to determine if we should use separate or pooled variance t values in our comparisons. If p > 0.05 for the Levene test, we used pooled variance values; for p < 0.05, we used the separate variance t.

#### VI. RESULTS

## A. Exposure Aerosol Chamber Distribution Evaluations

In Phase III, Part 1, three aerosol concentrations of Cu-Zn were used (1.0, 3.2, and 10 mg Cu-Zn/m³). In Phase III, Part 2, two aerosol concentrations were used (0.32 and 3.2 mg Cu-Zn/m³). Temporal and spatial variation of aerosol concentrations was measured in each exposure system prior to exposures of animals. Results for the exposure system used to expose rats to 10 mg Cu-Zn/m³ were obtained as part of Phase II of this project (Snipes et al., 1988). The other three aerosols were tested in Phase III, Part 1 (1.0 and 3.2 mg Cu-Zn/m³) or Phase III, Part 2 (0.32 mg Cu-Zn/m³).

Table 5 summarizes the results for tests of the temporal and spatial variation for the target concentrations of 0.32, 1.0, and 3.2 mg Cu-Zn/m³. Temporal variation is the variation with time at a given position, and the spatial variation is the variation from location to location at a given time, or average over a given time period. The temporal variation was calculated from data for a given position from all test runs; the spatial variation was calculated from average concentrations of all sampling locations. The variation for the aerosol containing 0.32 mg Cu-Zn/m³ was larger than for the other aerosols. This was anticipated since the lower concentration of particles in the aerosol dictated a greater degree of uncertainty in quantitating the aerosol. However, the coefficient of variation was less than the acceptable value of 20 to 25 percent. We conclude (1) that all aerosol concentrations were near the target levels, and (2) the aerosols for 3.2 mg Cu-Zn/m³ were essentially identical for Phase III, Parts 1 and 2.

The aerosol size distributions as determined using the Lovelace Multijet cascade impactor during the chamber aerosol distribution evaluations

Table 5

Exposure Chamber Aerosol Distribution Evaluations
Without Animals Present in Exposure Chambera

| Target<br>Concentration<br>of Cu-Zn<br>Alloy Powder | Measurement                                  | Phase III, Part 1              | Phase III, Part 2                  |
|-----------------------------------------------------|----------------------------------------------|--------------------------------|------------------------------------|
| $0.32 \text{ mg/m}^3$                               | Temporal Variation<br>(Range)                | ND<br>ND                       | 7.9% ± 4.3%<br>(1.5% ~ 14%)        |
|                                                     | Spatial Variation                            | ND                             | 7.6%                               |
|                                                     | Mean Concentration                           | ND                             | 0.31 mg/m <sup>3</sup>             |
|                                                     | Particle Size:<br>MMAD ± SD (μm)<br>GSD ± SD | ND<br>ND                       | 1.13 ± 0.17<br>3.41 ± 1.2          |
| 1.0 mg/m <sup>3</sup>                               | Temporal Variation<br>(Range)                | 4.9% ± 0.7%<br>(4.4% ± 5.4%)   | ND<br>ND                           |
|                                                     | Spatial Variation                            | 5.1%                           | ND                                 |
|                                                     | Mean Concentration                           | $0.97 \pm 0.05 \text{ mg/m}^3$ | ND                                 |
|                                                     | Particle Size:<br>MMAD ± SD (μm)<br>GSD ± SD | 1.07 ± 0.045<br>3.00 ± 0.55    | ND<br>ND                           |
| $3.2 \text{ mg/m}^3$                                | Temporal Variation<br>(Range)                | 2.5% ± 1.6%<br>(1.1% - 6.2%)   | $2.6\% \pm 1.8\%$<br>(0.9% - 5.9%) |
|                                                     | Spatial Variation                            | 2.5%                           | 0.9%                               |
|                                                     | Mean Concentration                           | $3.23 \text{ mg/m}^3$          | $3.28 \text{ mg/m}^3$              |
|                                                     | Particle Size:<br>MMAD ± SD (μm)<br>GSD ± SD | 0.984 ± 0.064<br>2.51 ± 0.13   | 0.982 ± 0.024<br>2.53 ± 0.058      |

 $<sup>^{\</sup>rm a}$ Aerosol distribution expressed as mean  $\pm$  standard deviation (range) of the coefficient of variation for temporal variation, and as coefficient of variation for spatial variation.

ND = not done MMAD = mass median aerodynamic diameter in  $\mu m$  GSD = geometric standard deviation SD = standard deviation

are also indicated in Table 5. These results were similar for all three aerosol concentrations and were comparable to those from Phase I (Snipes et al., 1986) and Phase II (Snipes et al., 1988) of this project, where we generated aerosols having 10, 40, and 100 mg Cu-Zn/m<sup>3</sup>.

# B. Aerosol Characterization During Animal Exposures

Figure 1 shows the mean weekly aerosol concentrations ( $\pm$  SD) for the three exposure chambers over the 13 week period of rat exposures. The overall mean aerosol concentrations were close to the target concentrations of 0.32, 1.0, 3.2, and 10 mg Cu-Zn/m³ as shown in Table 6. The overall coefficient of variation was less than 15 percent. Also listed in Table 6 are the aerosol size distributions as determined by the LMJ cascade impactor samples during the 13 weeks of exposure. There were no significant size differences either among chambers or between exposure groups (f = 2.49; p > 0.10).

## C. Biological Observations During and After Exposures

#### 1. Animal Body Weights

Body weight results throughout the exposure period are summarized in Figure 2. The typical pattern for body weight was an initial drop during the first few days of the exposure series, followed by stabilization and gradual increase. Results for individual rats are in the Appendix.

Table 7 presents results for body weights taken at 5 selected times during the exposures. The only observed differences from sham-exposed rats occurred in rats exposed to 10 mg  $Cu-Zn/m^3$ . At the 13th week of exposure, the body weights for these rats (male and female) were statistically reduced, indicating a morbidity response associated with exposures to 10 mg  $Cu-Zn/m^3$ , 1.5 hours/day.



Figure 1. Aerosol concentrations (mean  $\pm$  SD) of Cu-Zn alloy powder during 13 weeks of rat exposures in Phase III, Parts 1 and 2. The upper 3 sets of data were from Part 1, and the lower two sets of data were from Part 2. Individual values are in the Appendix.

Table 6

Summary of Cu-Zn Alloy Powder Exposure Atmosphere
Concentrations and Size Distributions During 13 Weeks
of Exposure for Firase III, Parts 1 and 2

| Target<br>Concentration<br>of Cu-Zn<br>Alloy Powder | <u> Measurement</u>                     | Phase III,<br>Part l | Phase III,<br>Part 2 |
|-----------------------------------------------------|-----------------------------------------|----------------------|----------------------|
| $0.32 \text{ mg/m}^3$                               | Concentration, Mean ± SD                | ND                   | 0.318 ± 0.041        |
|                                                     | Particle Size:                          |                      |                      |
|                                                     | MMAD ± SD                               | ND.                  | $1.10 \pm 0.16$      |
|                                                     | GSD ± SD                                | ND                   | $2.43 \pm 0.43$      |
| 1.0 mg/m <sup>3</sup>                               | Concentration, Mean ± SD Particle Size: | 1.03 ± 0.11          | ND                   |
|                                                     | MMAD ± SD                               | 0.99 ± 0.18          | ND                   |
|                                                     |                                         |                      |                      |
|                                                     | GSD ± SD                                | 2.91 ± 0.44          | ND                   |
| 3.2 mg/m <sup>3</sup>                               | Concentration, Mean ± SD Particle Size: | 3.33 ± 0.33          | $3.24 \pm 0.40$      |
|                                                     | MMAD ± SD                               | 1.00 ± 0.15          | $1.19 \pm 0.14$      |
|                                                     | GSD ± SD                                | $2.78 \pm 0.37$      | 2.67 ± 0.38          |
| 10.0 mg/m <sup>3</sup>                              | Concentration, Mean ± SD Particle Size: | 10.25 ± 1.30         | ND                   |
|                                                     | MMAD ± SD                               | $1.09 \pm 0.20$      | ND                   |
|                                                     | GSD ± SD                                | 2.91 ± 0.36          | ND                   |

ND = not done

MMAD = mass median aerodynamic diameter in  $\mu m$ 

GSD = geometric standard deviation

SD = standard deviation

# PHASE III, PART 1



Figure 2. Body weights (mean  $\pm$  SE) for rats in Phase III, Parts 1 and 2.

Table 7

Summary of Body Weights for Selected Times During 13 Weeks Exposure of F344/N Rats to Powdered Cu-Zn Alloy (Values are Mean ± SE)

| Part 1    | •                       |       | Di          | Day of Study Relative to First Exposure | ative to First | exposure Day       |                          |
|-----------|-------------------------|-------|-------------|-----------------------------------------|----------------|--------------------|--------------------------|
|           | mg Cu-Zn/m <sup>3</sup> | Z     | -           | 13                                      | 34             | 55                 | 83                       |
| Females   | 0 (Sham)                | 36    | 174.9 ± 1.0 | 173.0 ± 0.9                             | 177.9 ± 1.0    | 182.4 ± 1.0        | 188.0 ± 1.0              |
|           | 1.0                     | 36-38 | 174.8 ± 1.0 | 172.7 ± 1.1                             | 175.9 ± 1.2    | 179.0 ± 1.1        | 185.4 ± 1.2              |
|           | 3.2                     | 38    | 175.2 ± 1.0 | 172.5 ± 1.0                             | 177.2 ± 1.0    | 181.7 ± 1.0        | 186.8 ± 1.1              |
|           | 10                      | 38    | 175.1 ± 1.0 | 169.6 ± 1.4                             | 174.5 ± 1.2    | 180.0 ± 1.1        | 183.5 ± 1.2a             |
| Males (   | 0 (Sham)                | 36    | 279.0 ± 1.6 | 279.7 ± 1.6                             | 286.6 ± 1.7    | 296.7 ± 1.9        | 308.1 ± 1.9              |
|           | 1.0                     | 35-37 | 280.1 ± 1.6 | 277.9 ± 1.5                             | 283.5 ± 1.8    | 293.4 ± 1.9        | 304.4 ± 2.3              |
|           | 3.2                     | 37-38 | 283.0 ± 1.7 | 278.2 ± 1.7                             | 285.5 ± 1.5    | 296.7 ± 1.8        | 308.7 ± 1.9              |
|           | 10                      | 38    | 280.7 ± 1.5 | 275.1 ± 1.5                             | 279.5 ± 1.5    | 290.2 ± 1.6        | 299.2 ± 2.0 <sup>b</sup> |
| Part 2    | mg Cu-Zn/m <sup>3</sup> | Z     |             | Day of Study Relative to First Exposure | ative to First | Exposure Day<br>54 | 98                       |
| Females ( | 0 (Sham)                | 38    | 180.6 ± 1.0 | 181.2 ± 1.0                             | 183.7 ± 1.0    | 187.9 ± 1.1        | 191.2 ± 1.1              |
|           | 0.32                    | 21-22 | 179.9 ± 1.4 | 180.3 ± 1.4                             | 184.0 ± 1.5    | 187.5 ± 1.3        | 191.2 ± 1.6              |
|           | 3.2                     | 38    | 180.0 ± 0.9 | 180.5 ± 1.1                             | 181.7 ± 0.9    | 186.8 ± 0.8        | 191.8 ± 0.9              |
| Males (   | 0 (Sham)                | 37–38 | 303.8 ± 1.2 | 301.9 ± 1.2                             | 308.9 ± 1.3    | 315.4 ± 1.3        | 325.2 ± 1.8              |
|           | 0.32                    | 22    | 305.1 ± 1.6 | 301.0 ± 2.7                             | 309.0 ± 2.1    | 317.6 ± 2.0        | 327.1 ± 2.1              |
|           | 3.2                     | 38    | 301.7 ± 1.2 | 299.5 ± 1.2                             | 306.8 ± 1.2    | 313.8 ± 1.4        | 322.5 ± 1.5              |

<sup>a</sup>The treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.05.

bp < 0.01.

# 2. Lavage Fluid Biochemistry and Cytology

As indicated in Tables 8 through 10, there was a definite inflammatory response in the highest level exposure group (10 mg  $Cu-Zn/m^3$ ), for which the lavage fluid had increased total cells, macrophages, neutrophils, lymphocytes, protein, and beta-glucuronidase activity. There were also small, but significant increases in alkaline phosphatase in rats exposed to 3.2 mg  $Cu-Zn/m^3$ . These changes in alkaline phosphatase were questionable and did not appear to have biological significance, since there was no increase in alkaline phosphatase associated with exposures to 10 mg  $Cu-Zn/m^3$ .

It is important to note that all biochemical and cytological indicators of an inflammatory response had returned to normal by 4 weeks after the end of the exposure. This suggests an initial inflammatory response to the metal powder, followed by rapid clearance of the material from the lung and recovery from the inflammatory response.

3. Airway Collagenous Peptides and Total Lung Collagen

Table 11 shows the effects of 13 weeks of exposure, and exposure followed by a 4-week recovery period, on airway (lavage fluid) collagenous peptides. Rats exposed to 10 mg Cu-Zn/m³ had increased airway collagen at the end of exposure, but not following 4 weeks recovery. No other exposures produced increased airway collagenous peptides at the end of exposure. Rats exposed to 1.0 mg Cu-Zn/m³ had increased airway collagenous peptides following 4 weeks of recovery and the biological importance of this change was nil. Rats exposed to 0.32, 3.2, and 10 mg Cu-Zn/m³ had airway collagenous peptide levels indistinguishable from those of sham-exposed rats after the recovery period.

Table 8

Total Cells in Lung Lavage Fluid<sup>a</sup>

(Values are Mean ± SE)

| Aerosol<br>Concentration<br>of Cu-Zn Alloy | N                  | End of Exposure     | After Recovery  |
|--------------------------------------------|--------------------|---------------------|-----------------|
| O (Sham)                                   | 12                 | $1.04 \pm 0.07$     | $1.04 \pm 0.05$ |
| $0.32 \text{ mg/m}^3$                      | 12                 | $0.94 \pm 0.03$     | $0.95 \pm 0.07$ |
| 1.0 mg/m <sup>3</sup>                      | 12                 | $0.88 \pm 0.09$     | 1.17 ± 0.08     |
| $3.2 \text{ mg/m}^3$                       | 23-24 <sup>c</sup> | 1.35 ± 0.10         | 1.07 ± 0.08     |
| 10.0 mg/m <sup>3</sup>                     | 12                 | $3.15 \pm 0.38^{b}$ | 0.94 ± 0.11     |
|                                            |                    |                     |                 |

<sup>&</sup>lt;sup>a</sup>Mean  $\pm$  SE of the total cells in the lavage fluid cell pellet  $(x \ 10^{-6})$ .

bThe treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.01.

CTwenty-four rats evaluated at the end of exposure, 23 rats after the recovery period.

Table 9

Neutrophil, Lymphocyte, and Macrophage Differentials in Lung Lavage Fluida (Values are Mean  $\pm\mbox{ SE})$ 

| Aerosol                         | 0]                                         |          | Neutrophils                                        | hils                                                 | Lymphocytes                           | ytes                               | Macrophages                                         | lages                              |
|---------------------------------|--------------------------------------------|----------|----------------------------------------------------|------------------------------------------------------|---------------------------------------|------------------------------------|-----------------------------------------------------|------------------------------------|
| of Cu-Zn Alloy                  | Alloy                                      | z        | End of Exposure                                    | After Recovery                                       | End of Exposure                       | After Recovery                     | End of Exposure                                     | After Recovery                     |
| O (Sham)                        | <pre>(percent)   (total)</pre>             | 12       | $0.4 \pm 0.1 \\ 0.004 \pm 0.001$                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 9.5 ± 1.8<br>0.11 ± 0.03              | $6.9 \pm 0.9$ $0.07 \pm 0.01$      | 90.1 ± 1.9<br>0.93 ± 0.05                           | $92.1 \pm 1.0$ $0.96 \pm 0.04$     |
| 0.32 mg/m³ (percent)<br>(total) | <pre>(percent)   (total)</pre>             | 12       | $0.4 \pm 0.1$ $0.004 \pm 0.001$                    | 0.6 ± 0.2<br>0.006 ± 0.002                           | $7.1 \pm 1.2$ $0.07 \pm 0.01$         | 7.8 ± 1.4<br>0.07 ± 0.01           | 92.4 ± 1.1<br>0.87 ± 0.02                           | 91.6 ± 1.3<br>0.87 ± 0.07          |
| 1.0 mg/m <sup>3</sup>           | 1.0 mg/m <sup>3</sup> (percent)<br>(total) | 12       | $3.5 \pm 0.9^{b}$ $0.032 \pm 0.010$                | 0.8 ± 0.2<br>0.009 ± 0.003                           | $5.7 \pm 1.0$ $0.05 \pm 0.01$         | $7.6 \pm 1.2$ $0.09 \pm 0.01$      | 90.3 ± 1.5<br>0.80 ± 0.08                           | 91.6 ± 1.2<br>1.07 ± 0.08          |
| 3.2 mg/m <sup>3</sup>           | 3.2 mg/m³ (percent)<br>(total)             | 24<br>24 | $3.3 \pm 0.5^{\circ}$ $0.043 \pm 0.007^{\circ}$    | $0.5 \pm 0.1$ $0.005 \pm 0.001$                      | 9.9 ± 0.8<br>0.13 ± 0.02              | 10.1 ± 0.8<br>0.11 ± 0.02          | 86.5 ± 0.7<br>1.17 ± 0.09                           | $89.4 \pm 0.9$ $0.96 \pm 0.07$     |
| 10.0 mg/m³ (percent) (total)    | (percent)<br>(total)                       | 12       | $8.8 \pm 1.2^{\circ}$<br>$0.273 \pm 0.044^{\circ}$ | 0.8 ± 0.3<br>0.007 ± 0.002                           | 9.6 ± 1.0<br>0.30 ± 0.04 <sup>b</sup> | $12.7 \pm 1.4^{\circ}$ 0.11 ± 0.01 | 81.0 ± 1.4 <sup>c</sup><br>2.56 ± 0.31 <sup>c</sup> | $86.2 \pm 1.5^{b}$ $0.82 \pm 0.11$ |

 $^{
m d}$ The above values are differentials taken from the lavage fluid cell pellets (x 10<sup>-6</sup>).

bThe treated groups were compared with the sham—exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.05.

 $^{C}p < 0.01$ .

Table 10

Biochemical Analyses of Bronchoalveolar Lavage Fluid From F344/N Rats That Inhaled Powdered Cu-Zn Alloy

|                             |                 | 0 (Sham)           |                    | Aerosol Concentration of Powdered Cu-Zn Alloy, mg/m <sup>3</sup><br>0.32 1.0 3.2 | oncentrat<br>32    | ion of Pow         | wdered Cu          | -Zn Alloy<br>3.3             | mg/m <sup>3</sup>  | 10                        |                    |
|-----------------------------|-----------------|--------------------|--------------------|----------------------------------------------------------------------------------|--------------------|--------------------|--------------------|------------------------------|--------------------|---------------------------|--------------------|
| Lavage Fluid Constituent    | Measure         | E0E <sup>a</sup>   | RECª               | EOE                                                                              | REC                | EOE                | REC                | EOE                          | REC                | EOE                       | REC                |
| ß-Glucuronidase (mIU)       | Mean<br>SE<br>N | 1.27<br>0.15<br>12 | 1.13<br>0.13<br>12 | 1.62<br>0.26<br>12                                                               | 1.25<br>0.16<br>12 | 1.42<br>0.13<br>12 | 1.86<br>0.31<br>12 | 1.61<br>0.16<br>23           | 1.44<br>0.16<br>24 | 7.08 <sup>b</sup><br>1.11 | 1.36<br>0.28<br>12 |
| Alkaline Phosphatase (mIU)  | Mean<br>SE<br>N | 285<br>23<br>12    | 269<br>21<br>12    | 321<br>22<br>12                                                                  | 284<br>23<br>12    | 411<br>42<br>12    | 360<br>51<br>12    | 426 <sup>b</sup><br>28<br>23 | 254<br>15<br>24    | 336<br>38<br>12           | 279<br>35<br>12    |
| Lactate Dehydrogenase (mIU) | Mean<br>SE<br>N | 385<br>32<br>12    | 446<br>21<br>12    | 389<br>26<br>12                                                                  | 488<br>38<br>12    | D D D N            | NU<br>NU<br>NU     | 571<br>63<br>12              | 406<br>30<br>12    | N N N                     | ח ח ח              |
| Protein (mg)                | Mean<br>SE<br>N | 1.54<br>0.09<br>12 | 1.55<br>0.15<br>12 | 1.30<br>0.09<br>12                                                               | 1.51<br>0.21<br>12 | 1.65<br>0.03<br>12 | 1.16               | 1.70                         | 1.19<br>0.09<br>24 | 2.82b<br>0.20<br>12       | 1.21 0.15 12       |

aEOE means the sampling time was at the end of the 13-week exposure; REC means the sampling time was after the 4-week recovery period. bThe treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's Student's t-test for equal variances was used. inequality; p < 0.01. CNU = Results not used. No control values were available for Phase III, Part land the values for LDH were considered invalid. Only the values from Phase III, Part 2 are presented for LDH in this table.

Table 11

Collagenous Peptides in Bronchoalveolar Lavage Fluid After 13-Week Exposure to Powdered Cu-Zn Alloy and After 4-Week Recovery Period (Values are Mean ± SE)

| Aerosol                      |           | Coll                    |                       | les in Lavage Flu<br>After Re |                      |
|------------------------------|-----------|-------------------------|-----------------------|-------------------------------|----------------------|
| Concentration of Cu-Zn Alloy | <u>N_</u> | μg/g<br>Control Lung    | µg/kg<br>Body Weight  | μg/g<br>Control Lung          | μg/kg<br>Body Weight |
| O (Sham)                     | 12        | 45.4 ± 2.8              | 216 ± 18              | 47.6 ± 4.2                    | 199 ± 25             |
| $0.32 \text{ mg/m}^3$        | 12        | 48.6 ± 2.3              | 223 ± 15              | 61.4 ± 9.7                    | 249 ± 33             |
| 1.0 mg/m <sup>3</sup>        | 12        | 63.5 ± 6.0              | 313 ± 34              | $68.0 \pm 6.8^{a}$            | 306 ± 32ª            |
| $3.2 \text{ mg/m}^3$         | 23        | 57.5 ± 3.1              | 276 ± 18              | 54.5 ± 2.9                    | 235 ± 15             |
| 10.0 mg/m <sup>3</sup>       | 12        | 84.4 ± 6.2 <sup>b</sup> | 437 ± 38 <sup>b</sup> | 57.4 ± 3.0                    | <b>265</b> ± 20      |

aThe treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.05.

 $b_p < 0.01$ .

Table 12 shows the effect of 13 weeks of exposure, followed by a 4-week recovery period, on total lung collagen. No statistically significant changes in total lung collagen were detected for the two exposure levels measured, which were 3.2 and 10 mg Cu-Zn/m<sup>3</sup>, the two highest level exposures in Phase III.

# 4. Immunology and Phagocytosis

The exposure of rats to 10 mg  $Cu-Zn/m^3$  significantly increased the total number of cells present in the lavage fluid (Table 8). However, the increased number of cells in lavage fluid of rats exposed to 10 mg  $Cu-Zn/m^3$  was temporary and returned to normal during the 4-week recovery period.

The increase in the number of cells in lung lavage fluid from rats exposed to 10 mg Cu-Zn/m³ was due in part to an elevated number of polymorphonuclear leukocytes (neutrophils). Exposures to 0.32 or 1.0 mg Cu-Zn/m³ did not produce increased numbers of neutrophils in lung lavage fluids, but exposures to 3.2 and 10 mg Cu-Zn/m³ (Table 9) did increase neutrophil levels. The percentages of neutrophils were normal in all exposed rats after the 4-week recovery period.

The total number of lymphocytes was elevated only in rats exposed to 10 mg Cu- $Zn/m^3$  (Table 9). This change in numbers of lung lymphocytes present in lavage fluid returned to normal during the 4-week recovery period.

A reduction in the percent and numbers of macrophages in lung lavage fluids was also observed after exposure to 10 mg  $Cu-Zn/m^3$  (Table 9). Even though the percentage of macrophages was reduced, the total number was elevated. The percent of macrophages in lung lavage fluid was still low at the end of the 4-week recovery period, but the number had returned to normal.

Table 12

Total Lung Collagen After 13-Week Exposure to Powdered Cu-Zn Alloy and After 4-Week Recovery Period (Values are Mean ± SE)

|                              |          |                      | Total Lung           | Collagen <sup>a</sup> |                      |
|------------------------------|----------|----------------------|----------------------|-----------------------|----------------------|
| Aerosol                      |          | End of Ex            |                      | After Re              | ecovery              |
| Concentration of Cu-Zn Alloy | <u>N</u> | mg/g<br>Control Lung | mg/kg<br>Body Weight | mg/g<br>Control Lung  | mg/kg<br>Body Weight |
| O (Sham)                     | 12b      | $17.4 \pm 0.8$       | 76.9 ± 5.7           |                       |                      |
| O (Sham)                     | 6        | 17.2 ± 1.2           | 81.5 ± 7.6           | 17.6 ± 1.3            | $72.3 \pm 8.7$       |
| $3.2 \text{ mg/m}^3$         | 20       | 18.7 ± 0.6           | 89.1 ± 2.9           |                       |                      |
| $10 \text{ mg/m}^3$          | 10       | $18.9 \pm 0.8$       | 97.3 ± 5.5           | 17.5 ± 1.1            | 79.8 ± 6.2           |

<sup>&</sup>lt;sup>a</sup>All samples analyzed as a batch after collection of samples for Phase III, Parts 1 and 2.

Note: The treated groups were compared with the sham-exposed group using the Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality.

bResults combined for shams evaluated at the end of exposure and shams evaluated after the 4-week recovery period.

Total lymphoid cells in lung-associated lymph nodes were increased with exposures to 3.2 and 10 mg Cu-Zn/m³ (Table 13). This increase was resolved during the recovery period. The only other significant change reflected in the immunology data at the end of exposure was a significant increase in total antibody-forming cells in rats exposed to 10 mg Cu-Zn/m³, which also returned to normal during the recovery period. The reasons for the observed decrease in antilody-forming cells per million lymphocytes and in total antibody-forming cells after the recovery period for rats exposed to 3.2 and 10 mg Cu-Zn/m³ are not clear and may have no biological importance relative to inhalation of powdered Cu-Zn alloy.

The results of evaluations of the phagocytic function of macrophages obtained by lung lavage indicated that exposure to 10 mg Cu-Zn/m<sup>3</sup> reduced phagocytic capacity (Table 14). Rats exposed to 0.32 or 1.0 mg Cu-Zn/m<sup>3</sup> had slight, but significantly increased, phagocytic indices at the end of exposure. The reason for this is not known, but probably was associated with a normal response of the respiratory tract defences and had no adverse effects on the rats. There were no significant differences in phagocytosis by alveolar macrophages from any of the groups after the recovery period.

#### 5. Hematology and Serum Chemistry

No significant differences relative to the appropriate comparison (comparisons between groups at the end of exposure, and between groups after four weeks recovery) were noted in the following hematology parameters:

- a. Erythrocytes (RBC)
- b. Hematocrit (PCV)
- c. Hemoglobin

Table 13

Immunology Results for Tracheobronchial Lymph Nodes from Rats in Phase III (Values are Mean ± SE)

| Aerosol                |      |                                         |                        | Antibody-Fc | Antibody-Forming Cells  |                              |               |
|------------------------|------|-----------------------------------------|------------------------|-------------|-------------------------|------------------------------|---------------|
| Concentration          |      | Total Lymphoid Cells x 10 <sup>-6</sup> | Cells $\times 10^{-6}$ | Per Million | Per Million Lymphocytes | Total Antibody-Forming Cells | Forming Cells |
| of Cu-Zn Alloy         | Z    | EOE <sup>a</sup>                        | RECa                   | EOE         | REC                     | EOE                          | REC           |
| O (Sham)               | 80   | $8.78 \pm 0.71$                         | 10.00 ± 0.71           | 517 ± 104   | 1110 ± 237              | 4840 ± 1170                  | 11200 ± 2740  |
| 1.0 mg/m <sup>3</sup>  | q1-9 | 8.21 ± 1.11                             | 9.40 ± 1.72            | 1080 ± 327  | 907 ± 313               | 9360 ± 3490                  | 10250 ± 5020  |
| 3.2 mg/m <sup>3</sup>  | 15   | 15.58 ± 1.39 <sup>c</sup>               | 8.06 ± 0.73            | 598 ± 103   | 447 ± 94 <sup>d</sup>   | 9810 ± 2020                  | 4210 ± 1100   |
| 10.0 mg/m <sup>3</sup> | 7-8e | 27.09 ± 3.43 <sup>c</sup>               | 10.09 ± 0.51           | 884 ± 115   | 369 ± 115d              | 23300 ± 3540 <sup>C</sup>    | 3930 ± 1290   |

dEOE means the sampling time was at the end of the 13-week exposure; REC means the sampling time was after the 4-week recovery period.

 $^{b}N$  = 7 at end of exposure; N = 8 for recovery.

<sup>C</sup>The treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.01.

 $d_0 < 0.05$ .

 $e_N = 7$  at end of exposure; N = 6 for recovery.

Table 14

Macrophage Phagocytosis of Opsonized Sheep Red Blood Cellsa (Values are Mean ± SE)

| Aerosol                      |           | Numbe                 | ers                      | Percen                  | tages                    |
|------------------------------|-----------|-----------------------|--------------------------|-------------------------|--------------------------|
| Concentration of Cu-Zn Alloy | <u>N_</u> | End of<br>Exposure    | After<br><u>Recovery</u> | End<br>of Exposure      | After<br><u>Recovery</u> |
| O (Sham)                     | 12        | $367 \pm 20$          | 404 ± 27                 | 74.4 ± 1.9              | 81.8 ± 2.5               |
| $0.32 \text{ mg/m}^3$        | 12        | 490 ± 25 <sup>b</sup> | 395 ± 32                 | 79.9 ± 1.2              | 82.0 ± 2.2               |
| 1.0 mg/m <sup>3</sup>        | 12        | 481 ± 30 <sup>b</sup> | 341 ± 30                 | 80.5 ± 1.5              | 76.0 ± 2.1               |
| $3.2 \text{ mg/m}^3$         | 24        | 405 ± 21              | 362 ± 28                 | 72.4 ± 1.9              | 80.1 ± 2.2               |
| 10.0 mg/m <sup>3</sup>       | 12        | 251 ± 16b             | 299 ± 16                 | 60.2 ± 3.6 <sup>c</sup> | 73.2 ± 1.9               |

aThe above values show the numbers of opsonized sheep red blood cells phagocytized by 100 macrophages and the percentages of macrophages that phagocytized the cells.

bThe treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.05.

 $c_p < 0.01$ .

- d. Mean corpuscular volume
- e. Leukocyte (WBC) count
- f. Differential cells of the blood smear (neutrophils, eosinophils, lymphocytes, monocytes, and nucleated erythrocytes [NRBC])

Also, there were no significant dose-related responses in any of the parameters analyzed for serum chemistry. These parameters were:

- a. Alkaline phosphatase
- b. Serum glutamic pyruvic transaminase
- c. Total bilirubin
- d. Blood urea nitrogen
- e. Protein and albumin

Data for individual rats for the hematology and serum chemistry results are included in Appendix E. Since there were no differences to discuss, tabulated results for these parameters were not included in the text of the report.

# 6. Respiratory Function Measurements

Tables 15 through 18 summarize selected results of respiratory function evaluations. Detailed results for all of the measurements are included in the Appendix. Few statistically significant differences (p  $\leq$  0.05) or consistent trends related to the exposures were observed. Therefore, parameters representing key indices of respiratory function were selected for display in Tables 15 through 18. These parameters included lung volume (total lung capacity, vital capacity and functional residual capacity), lung stiffness (dynamic and quasistatic compliance), alveolar-capillary gas

Table 15

Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 Combined (Baseline Measurements) (Mean ± SE)

|                                                                |                        | 0     | Aerosol Concentration of Powdered Cu-Zn Alloy, mg/m <sup>3</sup> 0 (Sham) 1.0 3.2 | oncentra<br>1 | ation of Po       | owdered ( | 1 Cu-Zn Allo<br>3.2 | oy, mg/m | 3                        |
|----------------------------------------------------------------|------------------------|-------|-----------------------------------------------------------------------------------|---------------|-------------------|-----------|---------------------|----------|--------------------------|
| Parameter                                                      | Units                  | N)    | $(N = 32)^{d}$                                                                    | (N = 16)      | = 16)             | N)        | (N = 32)            | N        | $\langle N = 16 \rangle$ |
| Total Lung Capacity (TLC)                                      | mL                     | 10.4  | ± 0.3                                                                             | 11.1          | ± 0.3             | 10.8      | ± 0.3               | 1.1      | ± 0.3                    |
| Vital Capacity/TLC                                             | percent                | 88.7  | € 0.0                                                                             | 87.7          | ≠ 0.8             | 87.0      | # 1.1               | 87.4     | ± 0.7                    |
| Functional Residual Capacity                                   | mL                     | 2.2   | ± 0.1                                                                             | 2.3           | ± 0.1             | 2.4       | ± 0.1               | 2.4      | ± 0.1                    |
| Dynamic Lung Compliance                                        | mL/cm H <sub>2</sub> 0 | 0.43  | ≠ 0.03                                                                            | 0.42          | <b>±</b> 0.03     | 0.46      | ± 0.04              | 0.41     | ± 0.03                   |
| Quasistatic Chord Compliance                                   | mL/cm H <sub>2</sub> O | 0.59  | ≠ 0.02                                                                            | 0.64          | ± 0.02            | 0.61      | <b>±</b> 0.02       | 0.63     | ± 0.02                   |
| CO Diffusing Capacity (DLCO)                                   | m∟/min/mm Hg           | 0.18  | 0.18 ± 0.01                                                                       | 0.19          | $0.19 \pm 0.01$   | 0.18      | 0.18 ± 0.01         | 0.19     | ± 0.01                   |
| DLCO/Lung Volume                                               | DLCO/mL                | 0.018 | 0.018 ± 0.001                                                                     | 0.017         | $0.017 \pm 0.001$ | 0.017     | $0.017 \pm 0.001$   | 0.017    | $0.017 \pm 0.001$        |
| DLCO/kg Body Weight                                            | DLCO/kg                | 0.80  | 0.80 ± 0.02                                                                       | 0.85          | $0.85 \pm 0.03$   | 08.0      | ± 0.02              | 0.83     | ± 0.02                   |
| Forced Vital Capacity Exhaled<br>in O.1 Second                 | percent                | 73.8  | <del>.</del> 1. 1.                                                                | 72.8          | ± 2.0             | 70.9      | ± 1.9               | 71.9     | ± 2.8                    |
| Mean Midexpiratory Flow (MMEF)                                 | mL/sec                 | 67.2  | ± 2.2                                                                             | 72.6          | ± 4.1             | 67.4      | ± 3.5               | 70.9     | ± 5.3                    |
| MMEF/Forced Vital Capacity                                     | mL/sec/mL              | 7.3   | <b>±</b> 0.2                                                                      | 7.3           | ≠ 0.4             | 7.0       | ± 0.3               | 7.1      | <b>9.0</b> ≠             |
| Slope of Phase III of Single-<br>Breath N <sub>2</sub> Washout | percent/N2/mL          | 85.8  | ± 8.5                                                                             | 97.3          | ± 5.5             | 80.7      | ± 4.9               | 98.7     | ± 6.1                    |
|                                                                |                        |       |                                                                                   |               |                   |           |                     |          |                          |

<sup>a</sup>Shams from Phase III, Parts 1 and 2 were all used for comparisons of baseline measurements.

The treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality. Note:

Table 16

Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 Combined (Week Seven of Exposures) (Mean ± SE)

|                                                                |                        |       | Aerosol Concentration of Powdered Cu-Zn Alloy, mg/m <sup>3</sup> | oncentra | tion of P         | owdered  | Cu-Zn All         | oy. mg/m | ر_ع               |
|----------------------------------------------------------------|------------------------|-------|------------------------------------------------------------------|----------|-------------------|----------|-------------------|----------|-------------------|
|                                                                |                        | 0     | 0 (Sham)                                                         |          | 1.0               | 3        | 3.2               |          | 10                |
| Parameter                                                      | Units                  | N)    | $(N = 32)^{d}$                                                   | (N = 16) | = 16)             | (N = 32) | = 32)             | S        | (N = 16)          |
| Total Lung Capacity (TLC)                                      | mt                     | 12.1  | ± 0.5                                                            | 11.4     | ± 0.4             | 12.5     | ± 0.4             | 11.1     | ± 0.3             |
| Vital Capacity/TLC                                             | percent                | 92.8  | ± 0.4                                                            | 91.6     | ± 0.7             | 92.2     | ± 0.5             | 90.9     | ± 0.7             |
| Functional Residual Capacity                                   | m.                     | 2.4   | ± 0.1                                                            | 2.2      | ± 0.1             | 2.4      | ± 0.1             | 2.3      | ± 0.1             |
| Dynamic Lung Compliance                                        | mL/cm H <sub>2</sub> O | 0.46  | ± 0.03                                                           | 0.41     | ± 0.03            | 0.48     | ± 0.03            | 0.39     | ± 0.02            |
| Quasistatic Chord Compliance                                   | mL/cm H20              | 0.72  | ± 0.03                                                           | 99.0     | ± 0.03            | 0.74     | <b>±</b> 0.03     | 0.64     | ± 0.02            |
| CO Diffusing Capacity (DLCO)                                   | mL/min/mm Hg           | 0.21  | $0.21 \pm 0.01$                                                  | 0.21     | $0.21 \pm 0.01$   | 0.21     | $0.21 \pm 0.01$   | 0.19     | $0.19 \pm 0.01$   |
| DLCO/Lung Volume                                               | DLCO/mL                | 0.018 | $0.018 \pm 0.001$                                                | 0.018    | $0.018 \pm 0.001$ | 0.017    | $0.017 \pm 0.001$ | 0.017    | $0.017 \pm 0.001$ |
| DLCO/kg Body Weight                                            | DLCO/kg                | 0.89  | <b>±</b> 0.02                                                    | 0.92     | <b>±</b> 0.02     | 0.91     | ± 0.02            | 0.83     | ± 0.02            |
| Forced Vital Capacity Exhaled in 0.1 Second                    | percent                | 71.1  | 1.0                                                              | 69.4     | ± 2.3             | 68.8     | ± 1.4             | 72.7     | + 1.5             |
| Mean Midexpiratory Flow (MMEF)                                 | mL/sec                 | 78.6  | ± 2.9                                                            | 76.4     | ± 4.5             | 77.5     | ± 3.2             | 78.1     | ± 2.3             |
| MMEF/Forced Vital Capacity                                     | mL/sec/mL              | 6.9   | ± 0.2                                                            | 8.9      | ± 0.4             | 6.7      | <b>±</b> 0.3      | 7.4      | ± 0.3             |
| Slope of Phase III of Single-<br>Breath N <sub>2</sub> Washout | percent/N2/mL          | 71.8  | ± 3.3                                                            | 82.6     | ± 5.8             | 71.7     | ± 3.3             | 81.4     | ± 4.8             |
|                                                                |                        |       |                                                                  |          |                   |          |                   |          |                   |

<sup>a</sup>Shams from Phase III, Parts 1 and 2 were all used for comparisons of baseline measurements.

The treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality. Note:

Table 17

Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 Combined (End of Exposure) (Mean  $\pm$  SE)

|                                                                |                            |       | Aerosol (            | Concentr | Aerosol Concentration of Powdered Cu-2n Alloy, mg/m <sup>3</sup> | owdered | Cu-Zn Al               | loy, mq/r | ຄຼ                    |
|----------------------------------------------------------------|----------------------------|-------|----------------------|----------|------------------------------------------------------------------|---------|------------------------|-----------|-----------------------|
| Parameter                                                      | Units                      | 0 N   | 0 (Sham)<br>(N = 16) | L N      | 1.0<br>(N = 16)                                                  | (N)     | $\frac{3.2}{(N = 32)}$ | N         | 10<br>(N = 16)        |
| Total Lung Capacity (TLC)                                      | mL                         | 11.4  | ± 0.5                | 11.7     | ± 0.4                                                            | 11.7    | ± 0.3                  | 11.2      | ± 0.4                 |
| Vital Capacity/TLC                                             | percent                    | 91.8  | ± 1.1                | 93.2     | ± 0.9                                                            | 93.6    | <b>±</b> 0.6           | 92.1      | ± 0.7                 |
| Functional Residual Capacity                                   | ШĹ                         | 2.2   | ± 0.1                | 2.1      | ± 0.1                                                            | 2.1     | ± 0.1                  | 2.1       | ± 0.1                 |
| Dynamic Lung Compliance                                        | mL/cm H <sub>2</sub> 0     | 0.41  | ± 0.03               | 0.40     | ± 0.02                                                           | 0.43    | ± 0.02                 | 0.37      | ± 0.03                |
| Quasistatic Chord Compliance                                   | mL/cm H <sub>2</sub> 0     | 0.68  | ± 0.02               | 0.71     | ± 0.03                                                           | 0.72    | ± 0.02                 | 0.68      | ± 0.03                |
| CO Diffusing Capacity (DLCO)                                   | mL/min/mm Hg               | 0.25  | $0.25 \pm 0.01$      | 0.22     | ± 0.01                                                           | 0.25    | $0.25 \pm 0.01$        | 0.20      | $0.20 \pm 0.01$       |
| DLCO/Lung Volume                                               | DLCO/mL                    | 0.022 | $0.022 \pm 0.001$    | 0.019    | $0.019 \pm 0.001$                                                | 0.021   | $0.021 \pm 0.001$      | 0.017     | $0.017 \pm 0.001^{a}$ |
| DLCO/kg Body Weight                                            | DLCO/kg                    | 96.0  | $0.96 \pm 0.03$      | 0.92     | $0.92 \pm 0.04$                                                  | 96.0    | $0.96 \pm 0.02$        | 0.81      | ± 0.03ª               |
| Forced Vital Capacity Exhaled<br>in 0.1 Second                 | percent                    | 73.1  | ± 1.8                | 67.5     | ± 2.2                                                            | 67.1    | ± 1.4                  | 64.8      | ± 2.5                 |
| Mean Midexpiratory Flow (MMEF)                                 | mL/sec                     | 73.7  | ± 2.0                | 73.8     | ± 5.2                                                            | 68.4    | ± 3.0                  | 63.6      | ± 5.0                 |
| MMEF/Forced Vital Capacity                                     | mL/sec/mL                  | 7.4   | ± 0.4                | 6.4      | ± 0.4                                                            | 6.2     | ± 0.3                  | 5.9       | ± 0.5                 |
| Slope of Phase III of Single-<br>Breath N <sub>2</sub> Washout | percent/N <sub>2</sub> /mL | 70.0  | ± 5.4                | 67.4     | ± 5.9                                                            | 69.5    | ± 4.9                  | 69.4      | ± 6.6                 |

The treated groups were compared with the sham—exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality. Note:

 $^{a}p < 0.01.$ 

Table 18

Respiratory Function Results for F344/N Rats in Phase III, Parts 1 and 2 Combined (After Recovery)

(Mean ± SE)

|                                                                |               |       | Aerosol              | Concentr | Aerosol Concentration of Powdered Cu-Zn Alloy, mg/m <sup>3</sup> | Powdered | Cu-Zn Al               | lov. mg/ | <sub>∞</sub> =                                |
|----------------------------------------------------------------|---------------|-------|----------------------|----------|------------------------------------------------------------------|----------|------------------------|----------|-----------------------------------------------|
| Parameter                                                      | Units         | O     | 0 (Sham)<br>(N = 16) | - N      | 1.0<br>(N = 16)                                                  | (N 3     | $\frac{3.2}{(N = 32)}$ | Z        | $\begin{array}{c} 10 \\ (N = 16) \end{array}$ |
| Total Lung Capacity (TLC)                                      | mL            | 11.2  | ± 0.4                | 12.5     | ± 0.5                                                            | 12.4     | ± 0.4                  | 12.7     | ± 0.5                                         |
| Vital Capacity/TLC                                             | percent       | 92.8  | ± 0.7                | 88.7     | ± 0.9ª                                                           | 90.5     | <b>9.0 ±</b>           | 9.88     | ± 0.6a                                        |
| Functional Residual Capacity                                   | mL            | 2.1   | ± 0.1                | 2.7      | ± 0.1b                                                           | 2.5      | ± 0.1ª                 | 2.7      | ± 0.1b                                        |
| Dynamic Lung Compliance                                        | mL/cm H20     | 0.39  | ± 0.03               | 0.43     | ± 0.04                                                           | 0.44     | ± 0.03                 | 0.40     | ≠ 0.04                                        |
| Quasistatic Chord Compliance                                   | mL/cm H20     | 0.68  | ± 0.02               | 0.75     | <b>±</b> 0.03                                                    | 0.74     | ± 0.02                 | 0.78     | ± 0.03                                        |
| CO Diffusing Capacity (DLCO)                                   | m∟/min/mm Hg  | 0.24  | ± 0.01               | 0.23     | ± 0.02                                                           | 0.22     | ± 0.01                 | 0.22     | ≠ 0.01                                        |
| DLCO/Lung Volume                                               | DLCO/mL       | 0.022 | $0.022 \pm 0.001$    | 0.018    | $0.018 \pm 0.001$                                                | 0.018    | $0.018 \pm 0.001$      | 0.017    | $0.017 \pm 0.001^{a}$                         |
| DLCO/kg Body Weight                                            | DLCO/kg       | 0.88  | ₹ 0.03               | 0.88     | <b>±</b> 0.06                                                    | 0.83     | ± 0.04                 | 0.84     | ≠ 0.05                                        |
| Forced Vital Capacity Exhaled<br>in O.1 Second                 | percent       | 67.8  | ± 2.5                | 67.9     | 1.7                                                              | 65.4     | ± 1.8                  | 70.8     | + 1.8                                         |
| Mean Midexpiratory Flow (MMEF)                                 | mL/sec        | 65.8  | ± 4.6                | 77.7     | ± 2.7                                                            | 71.0     | ± 4.2                  | 84.7     | ± 2.5ª                                        |
| MMEF/Forced Vital Capacity                                     | mL/sec/mL     | 6.5   | ≠ 0.5                | 6.4      | ± 0.3                                                            | 0.9      | ± 0.3                  | 7.0      | ± 0.3                                         |
| Slope of Phase III of Single-<br>Breath N <sub>2</sub> Washout | percent/N2/mL | 65.0  | ± 4.5                | 63.2     | ± 5.4                                                            | 63.7     | ± 3.8                  | 57.0     | ± 4.4                                         |
|                                                                |               |       |                      |          |                                                                  |          |                        |          |                                               |

The treated groups were compared with the sham-exposed group using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's" -test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality. Note:

 $^{a}p < 0.05$ .

bp < 0.01.

exchange (CO diffusing capacity), airflow restriction (percentage of forced vital capacity exhaled in 0.1 second and mean midexpiratory flow), and intrapulmonary gas distribution (slope of single-breath nitrogen washout). Detailed results for all of the measurements are included in the Appendix.

There were no statistically significant differences among the mean values of respiratory function parameters of the four groups before exposures began (Table 15) or after seven weeks of exposure (Table 16).

After 13 weeks of exposure (Table 17), the only significant differences between control and exposed groups were increased DLCO/lung volume and DLCO/body weight ratios in the rats exposed to 10 mg Cu-Zn/m³. The CO diffusing capacity, lung weight, and body weight of the 10 mg/m³ group were slightly, but nonsignificantly lower than that of the other groups; therefore the significant difference was a statistical result of the combination of nonsignificant differences in lung and body weights and CO diffusing capacity. Since CO diffusing capacity is affected by lung volume, the most useful size-normalized parameter is the diffusing capacity divided by lung volume (DLCO/lung volume). This parameter was significantly reduced in the group exposed to 10 mg Cu-Zn/m³ at the end of exposure (Table 17) and after the recovery period (Table 18).

## 7. Necropsy and Histopathology

Table 19 presents results for body and organ weights at the time of sacrifice for rats used for histopathologic evaluations in Phase III, Parts 1 and 2. Results for individual animals are detailed in the Appendix. Comparisons among these subsets of rats from the 3 exposure groups in Part 1 indicated no significant differences in body weights at the end of exposure or after the recovery period. The same result was seen for the 3 subsets of rats

lable 19

Body and Organ Weight Summary for Phase III, Parts 1 and 2 for End of Exposure (EOE) and After Recovery (REC)<sup>a</sup>
(Values are Mean ± 5L)

| Animal | Body and Organ | SAC            | Р                             | hase III, Part                      | ncentration of                          | F                            | hase III, Part                                       | 2                            |
|--------|----------------|----------------|-------------------------------|-------------------------------------|-----------------------------------------|------------------------------|------------------------------------------------------|------------------------------|
| Sex    | Weights (q)    | <u>Code</u> b  | 1.0                           | 3.2                                 | 10                                      | 0 (Sham)                     | 0.32                                                 | 3.2                          |
| Female | Body Weight    | €0E<br>R€C     | 189 ± 4.9<br>192 ± 1.9        | 188 ± 2.0 <sup>c</sup><br>198 ± 3.2 | 183 ± 2.1<br>190 ± 2.4                  | 195 ± 1.4<br>206 ± 2.0       | 195 ± 2.3<br>205 ± 2.5                               | 194 ± 1.6<br>203 ± 1.4       |
|        | Lung           | E O E<br>REC   | 0.97 ± 0.03<br>0.94 ± 0.03    | 1.06 ± 0.03<br>0.96 ± 0.02          | 1.14 ± 0.02 <sup>d</sup><br>1.00 ± 0.03 | 1.05 ± 0.03<br>1.01 ± 0.03   | 0.99 ± 0.04<br>1.05 ± 0.04                           | 1.05 ± 0.02<br>1.11 ± 0.04   |
|        | Brain          | E O E<br>R E C | 1.75 ± 0.02<br>1.77 ± 0.01    | 1.16 ± 0.01<br>1.76 ± 0.01          | 1.74 ± 0.01<br>1.74 ± 0.03              | 1.79 ± 0.03<br>1.80 ± 0.01   | 1.14 ± 0.01<br>1.81 0.01                             | 1.75 ± 0.01<br>1.83 ± 0.01   |
|        | Kidneys        | E O E<br>REC   | 1.39 ± 0.03<br>1.43 ± 0.03    | 1.39 ± 0.01<br>1.46 ± 0.04          | 1.39 ± 0.02<br>1.39 ± 0.02              | 1.39 ± 0.02<br>1.45 ± 0.08   | 1.40 t 0.03<br>1.43 t 0.08                           | 1.39 ± 0.02<br>1.51 ± 0.02   |
|        | Liver          | E DE<br>RE C   | 5.31 ± 0.08<br>5.49 ± 0.11    | 5.51 ± 0.08<br>5.72 ± 0.13          | 5.49 ± 0.01<br>5.39 ± 0.15              | 5.11 ± 0.09<br>6.30 ± 0.17   | 5.80 ± 0.14<br>6.40 ± 0.10                           | 5.72 ± 0.12<br>6.31 ± 0.10   |
|        | Ovaries        | E O E<br>R E C | 0.06 t 0.006<br>0.005 t 0.003 | 0.05 ± 0.003<br>0.06 ± 0.004        | 0.06 ± 0.004<br>0.05 ± 0.003            | 0.05 ± 0.004<br>0.06 ± 0.003 | 0.05 ± 0.004<br>0.06 ± 0.004                         | 0.06 ± 0.00<br>0.06 ± 0.00   |
| Male   | Body Weight    | E O E<br>R E C | 312 ± 4.5<br>325 ± 5.5        | 313 ± 3.9<br>335 ± 4.0 <sup>c</sup> | 296 ± 2.8<br>329 ± 3.8                  | 331 ± 2.4<br>367 ± 5.4       | 334 ± 3.2<br>358 ± 5.2                               | 329 ± 2.5°<br>361 ± 3.7      |
|        | Lung           | E DE<br>RE C   | 1.34 ± 0.07<br>1.28 ± 0.04    | 1.36 ± 0.03<br>1.31 ± 0.02          | 1.55 ± 0.04 <sup>e</sup><br>1.45 ± 0.03 | 1.42 ± 0.03<br>1.50 ± 0.04   | 1.46 ± 0.04 <sup>c</sup><br>1.51 ± 0.07 <sup>c</sup> | 1.47 ± 0.07<br>1.52 ± 0.04   |
|        | Brain          | E D E<br>R E C | 1.93 ± 0.01<br>1.86 ± 0.07    | 1.90 ± 0.02<br>1.89 ± 0.01          | 1.88 ± 0.02<br>1.91 ± 0.01              | 1.93 ± 0.01<br>2.00 ± 0.01   | 1.90 ± 0.01<br>1.95 ± 0.01                           | 1.91 ± 0.01<br>1.97 ± 0.02   |
|        | Kidneys        | EOE<br>REC     | 2.11 ± 0.05<br>2.13 ± 0.05    | 2.12 ± 0.04<br>2.22 ± 0.05          | 2.05 ± 0.03<br>2.24 ± 0.06              | 2.21 ± 0.04<br>2.49 ± 0.06   | 2.15 ± 0.03<br>2.21 ± 0.12                           | 2.19 ± 0.04<br>2.28 ± 0.12   |
|        | Liver          | E O E<br>R E C | 9.86 ± 0.23<br>9.73 ± 0.27    | 9.11 ± 0.19<br>10.40 ± 0.25         | 9.53 ± 0.15<br>10.08 ± 0.26             | 10.24 ± 0.28<br>12.04 ± 0.22 | 10.39 ± 0.10<br>11.51 ± 0.34                         | 10.15 ± 0.24<br>11.66 ± 0.19 |
|        | Testes         | E O E<br>REC   | 1.39 ± 0.05<br>1.38 ± 0.04    | 1.38 ± 0.04<br>1.39 ± 0.05          | 1.39 ± 0.02<br>1.41 ± 0.02              | 1.41 ± 0.04<br>1.53 ± 0.04   | 1.48 ± 0.01<br>1.71 ± 0.09 <sup>c</sup>              | 1.53 ± 0.03<br>1.67 ± 0.09   |

Resposures were for 13 weeks, the recovery period was 4 weeks after the last nose only inhalation exposure. Exposures were to aerosols containing 0 (sham), 0.32, 1.0, 3.2, or 10 mg Cu-2n alloy powder $2m^3$ .

 $b_{EOE}$  means the sampling time was at the end of the 13-week exposure; REC means the sampling time was after the 4-week recovery period.

 $c_N = 10$ ; N = 11 for all other groups.

dishe treated groups were compared with the lowest-level exposure group (Part 1) or with the sham-exposed group (Part 2) using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.01.

 $e_p \leq 0.05$ .

from Phase III, Part 2. The rats exposed to 10 mg  $Cu-Zn/m^3$  had body weights that appeared low relative to the other two groups in Phase III, Part 1. However, these apparent decreased body weights (for both males and females) were not statistically different from the other two groups.

Body weight comparisons using body weights for all of the rats in Phase III, Part 1 indicated exposure to 10 mg Cu-Zn/m<sup>3</sup> caused a decreased body weight by the end of the 13-week exposure (Table 7). Rats in all exposure groups showed increased body weight during the 4-week recovery period and were not significantly different from each other after the recovery period.

Organ weights, with the exception of lung, showed no exposure-related changes. The organ weights were slightly elevated after the 4-week recovery period, reflecting the increases in animal body weight during the recovery period. As compared with rats exposed to 1.0 mg Cu-Zn/m³, the lung weights of rats exposed to 10 mg Cu-Zn/m³ were significantly increased at the end of the 13-week exposure period (p  $\leq$  0.05 for males and p  $\leq$  0.01 for females). In both sexes, the lung weights were not significantly different from the other two exposure groups in Phase III, Part 1 at the end of the 4-week recovery period. There were no significant differences at the end of exposure or after the recovery period in lung weights of rats sham-exposed, or exposed to Cu-Zn in Phase III, Part 2.

Lesions produced by Cu-Zn inhaled by rats were produced only in nasal epithelium and lungs (Table 20). A summary of the fractions of rats in each exposure group with induced lesions, the average severity of those specific lesions, and the overall average severity scores for the lesions are presented in Table 20. The principal microscopic lesions were atrophy of the olfactory epithelium in a focal region of the nasal cavity, alveolar

Table 20
Summary of Respiratory Tract Lesions in F344/N Rats After 13-Weeks Exposure to Aerosols of Powdered Cu-Zn Alloy and After a 4-Week Recovery Period

| Lesion                          | Measure                                                                                             | 0 (Sham)                   | osol Concentra<br>0.32     | tion of Cu-Zn<br>1.0       | Alloy Powder, m<br>3.2                   | g/m <sup>2</sup>                         |
|---------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------------------|------------------------------------------|
| Ceston                          | Heasare                                                                                             | U (Sham)                   | 0.32                       |                            | 3.2                                      | 10                                       |
| End of Exposure                 |                                                                                                     |                            |                            |                            |                                          |                                          |
| Nasal Epithelium Atrophy        | Frequency of Lesions <sup>a</sup><br>Average Severity <sup>b</sup><br>Overall Severity <sup>c</sup> | 0/22                       | 0/22                       | 3/22<br>1.0<br>0.14 ± 0.08 | 6/44<br>1.0<br>0.14 ± 0.05               | 15/22<br>1.2<br>0.82 ± 0.14 <sup>d</sup> |
| Alveolar Macrophage Hyperplasia | Frequency of Lesions<br>Average Severity<br>Overall Severity                                        | 1/22<br>1.0<br>0.05 ± 0.05 | 0/22                       | 0/22                       | 24/44<br>1.0<br>0.55 ± 0.08 <sup>d</sup> | 18/22<br>1.4<br>1.14 ± 0.15 <sup>d</sup> |
| Type II Pneumocyte Hyperplasia  | Frequency of Lesions<br>Average Severity<br>Overall Severity                                        | 0/22                       | 0/22                       | 0/22                       | 12/44<br>1.0<br>0.27 ± 0.07 <sup>d</sup> | 17/22<br>1.2<br>0.91 ± 0.13 <sup>d</sup> |
| Alveolitis                      | Frequency of Lesions<br>Average Severity<br>Overall Severity                                        | 0/22                       | 0/22                       | 0/22                       | 11/44<br>1.0<br>0.25 ± 0.07              | 18/22<br>1.4<br>1.14 ± 0.15              |
| After Recovery                  |                                                                                                     |                            |                            |                            |                                          |                                          |
| Nasal Epithelium Atrophy        | Frequency of Lesions<br>Average Severity                                                            | 0/22                       | 0/22                       | 0/22                       | 1/43<br>1.0<br>0.02 ± 0.02               | 7/22<br>1.1<br>0.36 ± 0.12               |
| Alveolar Macrophage Hyperplasia | Frequency of Lesions<br>Average Severity<br>Overall Severity                                        | 3/22<br>1.0<br>0.14 ± 0.08 | 1/22<br>1.0<br>0.05 ± 0.05 | 0/22                       | 10/43<br>1.0<br>0.23 ± 0.07              | 22/22<br>1.0<br>1.05 ± 0.05 <sup>d</sup> |
| Type II Pneumocyte Hyperplasia  | Frequency of Lesions<br>Average Severity<br>Overall Severity                                        | 0/22                       | 1/22<br>1.0<br>0.05 ± 0.05 | 1/22<br>1.0<br>0.05 ± 0.05 | 8/43<br>1.0<br>0.19 ± 0.06 <sup>e</sup>  | 22/22<br>1.0<br>1.05 ± 0.05d             |
| Alveolitis                      | Frequency of Lesions<br>Average Severity<br>Overall Severity                                        | 0/22                       | 1/22<br>1.0<br>0.05 ± 0.05 | 0/22                       | 1/43<br>1.0<br>0.02 ± 0.02               | 0/22                                     |

afraction of rats in each group that developed the lesion.

bAverage severity score for rats with lesions having a rating of 1 or more. The lesion rating was: 0 = no change relative to normal, lesion not present; 1 = slight degree of change, or small amount present; 2 = moderate, median, or middle severity or amount; 3 = marked severity or degree of change, large amount present.

COverall severity represents the mean  $\pm$  SE for the severity rating for each rat, including those rats with severity ratings of zero.

dThe treated groups were compared with the sham-exposed group using Student's t-test for unequal variances if Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality; p < 0.01.

e<sub>p</sub> < 0.05.

macrophage hyperplasia, type II pneumocyte hyperplasia, and a focal necrotizing alveolitis. Fifteen of 22 rats exposed to 10 mg Cu-Zn/m<sup>3</sup>, 6 of 44 rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>, and 3 of 22 rats exposed to 1.0 mg Cu-Zn/m<sup>3</sup> had nasal epithelial atropy at the end of exposure. Although the number of rats with this lesion was greater in the group exposed to 10 mg Cu-Zn/m<sup>3</sup>, as compared with rats exposed to 3.2 or 1.0 mg/m<sup>3</sup>, there were no significant differences in the severity of the lesion. After the recovery period, this lesion was present in 7 of 22 rats exposed to 10 mg Cu-Zn/m<sup>3</sup> and 1 of 43 rats exposed to 3.2 mg  $Cu-Zn/m^3$ . At the end of the exposure period, alveolar macrophage hyperplasia was found in 18 of 22 rats exposed to 10 mg Cu-Zn/m<sup>3</sup> and 24 of 44 rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>. This lesion did not resolve during the 4-week recovery period in rats exposed to 10 mg Cu-Zn/m<sup>3</sup>, but appeared to partially resolve in rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>. Type II pneumocyte hyperplasia was observed at the end of the exposure in 17 of 22 rats exposed to 10 mg  $Cu-Zn/m^3$  and 12 of 44 rats exposed to 3.2 mg  $Cu-Zn/m^3$ . This lesion also persisted during the recovery period. Alveolitis was present at the end of exposure in 18 of 22 rats exposed to 10 mg Cu-Zn/m<sup>3</sup> and in 11 of 44 rats exposed to 3.2 mg Cu-Zn/m<sup>3</sup>. This lesion resolved during the recovery period. Type II pneumocyte hyperplasia, macrophage hyperplasia, and alveolitis were not present in rats after exposure to 1.0 or 0.32 mg Cu-Zn/m<sup>3</sup> for 13 weeks. However, the lesions were observed in a small number of rats after the recovery period. The numbers were not statistically significant and the lesion severity score was "slight degree of change". The reason these lesions were observed after the recovery period is not known, but we conclude that they were not progressively developing or delayed lesions produced by exposures to Cu-Zn since (1) they were not present in rats evaluated at the

end of the exposure period, and (2) the lesions were seen in sham-exposed rats to the same extent as they were seen in rats exposed to Cu-Zn alloy.

No exposure-induced lesions or alterations were evident in the tissue sections of larynx, trachea, or tracheobronchial lymph nodes of any of the experimental groups.

## 8. Lung Burdens of Cu and Zn

Results for lung content of Cu and Zn for rats analyzed at the end of the 13-week exposure series and 4 weeks later are presented in Table 21. The amounts of Cu and Zn in rats exposed to 1.0, 3.2 and 10 mg Cu-Zn/m³ were not significantly different from controls and were not significantly different from each other at the end of exposure or after the 4-week recovery period.

Table 21

Lung Content of Cu and Zn in F344/N Rats Exposed
Nose-Only in Phase III, Part 1

| Aerosol                      |                  |         |             | μg At   |                            |      | μg Afte  | r              |
|------------------------------|------------------|---------|-------------|---------|----------------------------|------|----------|----------------|
| Concentration of Cu-Zn Alloy | N                | Measure | End<br>_Cu_ | of Expo | sure <sup>a</sup><br>Cu+Zn | 4 W  | eeks Rec | overy<br>Cu+Zn |
| O (Sham)                     | 12               | Mean    | 2.12        | 23.85   | 25.96                      | NSb  | NS       | NS             |
|                              |                  | SE      | 0.16        | 0.84    | 0.88                       |      |          |                |
| 1.0 mg/m <sup>3</sup>        | 6-7 <sup>C</sup> | Mean    | 1.74        | 20.84   | 22.57                      | 0.99 | 18.74    | 19.73          |
|                              |                  | SE      | 0.22        | 2.17    | 2.28                       | 0.11 | 0.55     | 0.62           |
| 3.2 mg/m <sup>3</sup>        | 7-8 <sup>d</sup> | Mean    | 2.36        | 21.14   | 23.50                      | 1.25 | 17.52    | 18.77          |
|                              |                  | SE      | 0.36        | 1.01    | 1.03                       | 0.18 | 0.74     | 0.86           |
| 10 mg/m <sup>3</sup>         | 8                | Mean    | 2.31        | 21.87   | 24.18                      | 1.23 | 18.08    | 19.32          |
| -                            |                  | SE      | 0.28        | 1.70    | 1.79                       | 0.18 | 0.75     | 0.84           |
|                              |                  |         |             |         |                            |      |          |                |

<sup>&</sup>lt;sup>a</sup>Samples for shams taken from rats that died during exposure one day before the last scheduled exposure.

Note: The treated groups were compared with the sham-exposed group using Student's t-test for unequal variances if Levene's test indicated the variances were not the same. When Levene's test did show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality.

bNo samples for shams after the recovery period, since no animals were available for this evaluation.

 $<sup>^{</sup>C}N = 7$  for end of exposure; N = 6 for after recovery.

dN = 7 for end of exposure; N = 8 for after recovery.

#### VII. GENERAL DISCUSSION AND CONCLUSIONS

Phase I of this project used exposures of F344/N rats to 100 mg  $Cu-Zn/m^3$ , with exposures 2.5 hours/day, for 2 or 5 days (Snipes et al., 1987). The weekly concentration x time (C x T) product in Phase I was 1250 mg·hr Cu-Zn/m<sup>3</sup>. Adverse effects were produced in the upper respiratory tracts and pulmonary regions of those rats after 2 days of exposure. Similar responses to inhaled Cu-Zn were noted in Phase II (Snipes et al., 1988), where experimental conditions included aerosol concentrations of 10 or 40 mg Cu-Zn/m<sup>3</sup> and exposures 2 or 4 days/week, 1.5 or 3 hours/day for 4 weeks. The weekly C x T products in Phase II were O (sham), 30, 60, 120, 240, and 480 mg·hr Cu-Zn/m<sup>3</sup>. The 60, 120, and 240 weekly C x T product exposures were produced using both 2 and 4 exposures/week. This provided the opportunity to compare effects of exposure frequency on biological responses for the same C x T product. Results of Phase II showed that exposures to Cu-Zn alloy 4 days/week were more detrimental to the rats than exposures 2 days/week for the same C x T product. Also, exposures to at least 60 mg·hr Cu-Zn/week were generally needed to produce significant biological responses in F344/N rats exposed for a period of 4 weeks.

Based primarily on the results from Phase II, the subacute exposures of F344/N rats in Phase III were designed to have a maximum weekly exposure of 60 mg·hr Cu-Zn/m³. The rats were exposed 1.5 hours/day, 4 days/week for 13 weeks to aerosols of Cu-Zn alloy containing 0 (sham), 0.32, 1.0, 3.2, or 10 mg/m³. The purpose of Phase III was to determine adverse effects of exposures to the defined air concentrations of Cu-Zn alloy by measuring specific biological parameters after the 13 weeks of exposure. In addition to evaluating the rats after the 13-week exposures, additional rats were evaluated 4 weeks later to determine if biological damage would resolve during that time period.

The Cu-Zn alloy did not accumulate in the lungs of rats. The aerosol size distributions were in the range of sizes that would be highly respirable by rats. Even with a small deposition fraction for the inhaled material, the daily lung deposition for rats inhaling 10 mg Cu-Zn/m³ would have been several  $\mu g$ . During the 13-week exposure, rats would have deposited mg quantities of Cu-Zn in their lungs. The absence of significant amounts of either metal after 13 weeks of exposure to aerosol concentrations as high as 10 mg Cu-Zn/m³ indicated rapid clearance of the particles of metal powder from the rat lung.

No exposure-related changes were seen in any of the serum chemistry data (alkaline phosphatase, serum glutamic pyruvic transaminase, total bilirubin, blood urea nitrogen, protein, and albumin). Values were all considered to be within the normal range for these blood serum parameters, and we conclude that the exposures to Cu-Zn had no effect on the rats that could be detected by these blood serum chemistry analyses. Bronchoalveolar lavage fluid analyses indicated a transient, exposure related inflammatory response to the inhaled Cu-Zn. The lowest exposure concentration producing significant evidence of the inflammatory response was 3.2 mg Cu-Zn/m<sup>3</sup>. The inflammatory response was completely resolved within 4 weeks after the last inhalation exposure to Cu-Zn.

Airway (lavage fluid) collagenous peptides were increased in rats after 13 weeks of exposure to 10 mg  $Cu-Zn/m^3$ . Since airway collagenous peptides are soluble hydroxyproline-containing compounds which have leaked into alveoli and small airways, they probably represent turnover of the extracellular collagenous matrix associated with alveolitis and macrophage hyperplasia. Following 4 weeks of recovery, this increase in collagenous peptides had disappeared in rats exposed to 10 mg  $Cu-Zn/m^3$  but was seen in rats exposed to 1.0 mg  $Cu-Zn/m^3$ . The reason for this is unknown and it was not thought to represent an adverse effect related to the aerosol exposures.

At the end of the exposures to 10 mg Cu-Zn/m³, the total numbers of lymphocytes were increased in bronchoalveolar lavage fluid. This has been observed after inhalation of other aerosols, such as diesel exhaust, fly ash, and silica (Bice et al., 1985, 1987). However, the lymphocyte levels returned to normal during the four-week recovery period, indicating that the response was quickly resolved after exposures to Cu-Zn ended. In contrast, exposure to fly ash and silica resulted in permanently increased numbers of lymphocytes in the lung-associated lymph nodes (Bice et al., 1987). Immunology results all indicated that inhalation of Cu-Zn had minimal effects on the lung-associated lymph nodes, showing increased immune responses rather than immune suppression. The elevated immune response at the end of exposure to 10 mg Cu-Zn/m³ was not permanent and returned to normal during the 4-week recovery period following the 13-week inhalation exposure series.

Macrophage phagocytic ability was significantly increased by exposures to 0.32 or 1.0 mg  $Cu-Zn/m^3$ , and was decreased by exposure to 10 mg  $Cu-Zn/m^3$ . This response at the lower concentrations was not considered detrimental and may represent a normal response to inhaled materials, where the presence of foreign particles in the lung stimulates phagocytic activity. The exposures to 10 mg  $Cu-Zn/m^3$  depressed phagocytic ability of pulmonary macrophages, which represents an adverse effect. No significant differences existed among the sham-exposed and Cu-Zn-exposed rats after the 4-week recovery period.

Exposure to 10 mg Cu-Zn/m<sup>3</sup> resulted in reduced carbon monoxide diffusing capacity in these rats, which persisted and did not resolve during the 4-week recovery period. The reduced DLCO/lung volume and DLCO/body weight ratios suggested an impairment of alveolar-capillary gas exchange at the membrane level. These findings are consistent with pathology of the lung parenchyma,

but are not specific for a single type of lesion. The magnitudes of the functional changes were small. A human subject with respiratory functional changes of a similar nature and magnitude would not likely present symptoms.

Thirteen weeks of inhalation exposure 1.5 hours/day, 4 days/week to 3.2 or 10 mg Cu-Zn/m³ produced histologic evidence of olfactory epithelial atrophy, alveolitis, macrophage hyperplasia, and type II pneumocyte hyperplasia in lung parenchyma. The focal alveolitis was associated with terminal bronchioles, proximal alveolar ducts, and adjacent alveoli. Following 4 weeks of recovery, olfactory epithelial atrophy and alveolitis had partially resolved. In contrast, alveolar macrophage hyperplasia and type II pneumocyte hyperplasia did not resolve rapidly, and these lesions were still seen after the recovery period.

The only significant lesion produced in these F344/N rats by inhalation of less than 3.2 mg Cu-Zn/m³ was nasal epithelial atrophy, produced in 3 of 22 rats exposed to 1.0 mg Cu-Zn/m³. The lesion fully resolved by the end of the 4-week recovery period. The lesions observed in sham-exposed rats and rats exposed to 0.32 or 1.0 mg Cu-Zn/m³ did not appear to be related to the inhalation of Cu-Zn and did not appear to have long-term adverse health implications. For example, one of 22 sham-exposed rats had a slight alveolar macrophage hyperplasia at the end of exposure, but none of the rats exposed to 0.32 or 1.0 mg Cu-Zn/m³ had the lesion at that time. After the 4-week recovery period, alveolar macrophage hyerplasia was observed in 3 of 22 sham-exposed rats and 1 of 22 rats exposed to 0.32 mg Cu-Zn/m³. Neither type II pneumocyte hyperplasia nor alveolitis was observed at the end of exposure in sham-exposed rats or rats exposed to 0.32 or 1.0 mg Cu-Zn/m³; after the 4-week recovery period, alveolar macrophage hyperplasia was again not seen in

sham-exposed rats, but was seen in 1 of 22 rats exposed to 0.32 or 1.0 mg  $Cu-Zn/m^3$ . Also, after the recovery period, 1 of 22 rats exposed to 0.32 mg  $Cu-Zn/m^3$  had evidence of a slight degree of alveolitis, but none of the sham-exposed rats or rats exposed to 1.0 mg  $Cu-Zn/m^3$  had the lesion. All of these lesions in rats exposed to less than 3.2 mg  $Cu-Zn/m^3$  had a slight severity rating, and with the exception of the nasal epithelial atrophy produced by exposure to 1.0 mg  $Cu-Zn/m^3$ , and were not observed at the end of the 13-week exposure period. Therefore, they did not appear to represent adverse biological responses to inhaled Cu-Zn alloy powder.

This study was conducted with F344/N rats to provide data to help predict the consequences of human inhalation exposures to this metal powder. It is reasonable to assume that the same or similar biological effects would be produced in the same target tissues and organs of rats and humans if the exposures of those anatomical structures were similar. Using available information about differences in the deposition of inhaled materials in the respiratory tracts of rats and humans (Schlesinger, 1985; Snipes, 1988), it is possible to estimate the relative exposure conditions needed to produce the same or similar tissue exposures and biological effects in rats and humans exposed to powdered Cu-Zn alloy. Since the Cu-Zn alloy powder clears very rapidly from the respiratory tract, this estimate does not include known differences between rats and humans in the rates of physical clearance of materials after their deposition in the respiratory tract. The assumption was made that the amount of deposited Cu-Zn dictates the type and magnitude of biological responses to the inhaled Cu-Zn.

The respiratory minute volume of F344/N rats is about 0.2 L; the minute respiratory volume of humans involved in "light activity" is about 20 L. Per

kilogram body weight, rats have minute respiratory volumes about 2.8 times greater than humans. In addition, regional deposition patterns result in markedly different exposure patterns for materials inhaled by rats and humans. Rats are obligatory nose-breathers, whereas humans breathe through their mouths or noses. Mouth-breathing humans would have a total deposition of about 50 percent (Morrow et al., 1966) of the Cu-Zn alloy aerosols used in this project, with most of the deposition in the pulmonary region. Nose-breathing humans would also deposit about 50 percent of the inhaled aerosol in the respiratory tract, but the deposition would be about equally divided between the upper respiratory tract and the pulmonary region. Rats would deposit about 40 percent of the inhaled material in the upper respiratory tract and about 5 to 10 percent of the material in the pulmonary region. Therefore, rats breathing an aerosol containing 1 mg Cu-Zn/m<sup>3</sup> would be expected to deposit about 0.01 to 0.02  $\mu g$  Cu-Zn/minute in a 1.5 gram lung (0.007 to 0.013 µg Cu-Zn/g lung/minute). Mouth-breathing humans would deposit about 10 µg of Cu-Zn/minute in a 1000 gram lung (0.010 µg Cu-Zn/g lung/minute); and nose-breathing humans would deposit about 0.05 µg Cu-Zn/q lung/minute and about 5  $\mu$ g Cu-Zn/minute in the upper respiratory tract. Because of the species differences in respiratory minute volume, fractional pulmonary deposition, and lung size, rats would have pulmonary deposition (µg Cu-Zn/g lung) comparable to that of mouth-breathing humans and about twice as high as that of nose-breathing humans.

While pulmonary deposition ( $\mu g$  Cu-Zn/g lung/minute) for the same aerosol of Cu-Zn would be similar for rats and humans, deposition in the upper respiratory tract would be quite different. A rat with a respiratory minute volume of 0.2 L, breathing an aerosol containing 1 mg Cu-Zn/m<sup>3</sup>, would deposit

about 40 percent of the inhaled Cu-Zn (0.4  $\mu$ g/minute) in the upper respiratory tract. A nose-breathing human would deposit about 5  $\mu$ g/minute in the upper respiratory tract. Scaling the body weights of humans (70 kg) to body weights of rats (0.25 kg), and assuming the weights of nasal epithelium scale accordingly, the relative deposition of Cu-Zn in the rat's nasal epithelium could be about 20 times higher than for humans.

These comparisons for pulmonary and upper respiratory tract deposition of inhaled Cu-Zn alloy suggest that comparable exposures of the pulmonary region would result in rats and humans exposed to the same aerosol of powdered Cu-Zn alloy. The exposure of the tissues of the upper respiratory tract was estimated to be about 20 times higher for rats than for humans exposed to the same aerosol. Therefore, while lesions seen in the pulmonary region in this project might be similar for rats and humans exposed to the same aerosol of powdered Cu-Zn alloy, aerosol concentrations of Cu-Zn alloy would have to be much higher for human exposures to produce the same effects in the upper respiratory tracts as were observed in the F344/N rats.

## VIII. NO OBSERVABLE ADVERSE EFFECTS LEVEL OF EXPOSURE

The no observable adverse effects level of exposure, for F344/N rats exposed to this respirable powder of Cu-Zn, is concluded on the basis of results of these studies to be an exposure equivalent to 0.32 mg  $Cu-Zn/m^3$ , 1.5 hours/day, 4 days/week.

### IX. QUALITY ASSURANCE STATEMENT

Test Chemical: Cu-Zn Alloy Powder

Study Type: Phase III: Subchronic Inhalation Exposures in F344/N Rats

This research was conducted in accordance with the Good Laboratory Practice Regulations for Nonclinical Laboratory Studies (FDA, 1978). The study phases were inspected by the LITRI Quality Assurance Unit and findings reported to study scientists and to LITRI management. The final report is in accordance to the experimental methods described in study protocols and in standard operating procedures.

Documentation records, raw data, and pathology specimens pertaining to this study shall be archived and retained at the LITRI in accordance with 21 CFR Part 58 Good Laboratory Practice for Nonclinical Laboratory Studies.

OA Unit Schedule

| Experimental Phase           | <u>Inspection Date</u> | Report Date |
|------------------------------|------------------------|-------------|
| Protocol FY86-016 Audit      | 04/02/86               | 04/02/86    |
| Protocol FY86-016 Approval   | 06/09/86               | 06/09/86    |
| Path/Tox Protocol Approval   | 06/10/86               | N/A         |
| Animal Quarantine Room       | 06/24/86               | 06/30/86    |
| Facility Clin Path Lab       | 07/08/86               | 07/15/86    |
| Exposure Room Prestudy       | 06/24/86               | 06/30/86    |
| Exposure Room (Dosing)       | 07/10/86               | 07/30/86    |
| Animal Weighing/Observations | 07/24/86               | 07/30/86    |
| Necropsy                     | 09/23/86               | 09/23/86    |
| Protocol FY87-009 Audit      | 11/21/86               | 11/21/86    |
| Protocol FY87-009 Approval   | 01/22/87               | 01/22/87    |
| Path/Tox Protocol Approval   | 01/13/87               | N/A         |
| Animal Quarantine/Weights    | 01/14/87               | 01/30/87    |
| Exposure Room (Dosing)       | 02/18/87               | 02/28/87    |
| Animal Weighing/Observations | 03/12/87               | 03/12/87    |
| Necropsy                     | 04/29/87               | 04/30/87    |
|                              | 05/27/87               | 05/27/87    |

# QA Unit Schedule (Cont.)

| Experimental Phase                                  | <u>Inspection Date</u>                    | Report Date                      |
|-----------------------------------------------------|-------------------------------------------|----------------------------------|
| Data Audit<br>Data Audit<br>Final Report Data Audit | 12/10-11/87<br>02/04-09/88<br>06/16-20/88 | 12/31/87<br>02/10/88<br>06/20/88 |
| Final Report Audit                                  | 06/20/88                                  | 06/20/88                         |
| LITRI Quality Assurance Officer:                    | D. L. Harris                              | 8-1-88                           |
| LITRI Study Director:                               | M. B. Snipes, Ph.D.                       | FT- 8/1/98                       |

#### X. REFERENCES

- Amdur, M. O. and J. Mead. Mechanics of Respiration in Unanesthetized Guinea Pigs. Am. J. Physiol. 192: 364-368, 1958.
- American Chemical Society Committee on Environmental Improvement,

  Subcommittee on Environmental Monitoring and Analysis. Principles

  of Environmental Analysis. Anal. Chem. 55: 2210-2218, 1983.
- Beck, B. D., J. D. Brain, and D. E. Bohannon. The Pulmonary Toxicity of an Ash Sample from the Mount St. Helens Volcano. <a href="Exp. Lung Res">Exp. Lung Res</a>. <a href="2">2:</a>289-301, 1981.
- Beck, B. D., J. D. Brain, and D. E. Bohannon. An <u>In Vivo</u> Hamster

  Bioassay to Assess the Toxicity of Particulates for the Lungs.

  <u>Toxicol. Appl. Pharmacol.</u> 66: 9-29, 1982.
- Bice, D. E., F. F. Hahn, J. Benson, R. L. Carpenter, and C. H. Hobbs.

  Comparative Lung Immunotoxicity of Inhaled Quartz and Coal

  Combustion Fly Ash. <u>Environ. Res. 43</u>: 374-389, 1987.
- Bice, D. E., D. L. Harris, C. T. Schnizlein, and J. L. Mauderly.

  Methods to Evaluate the Effects of Toxic Materials Deposited in the

  Lung on Immunity in Lung-associated Lymph Nodes. <u>Drug Chem. Tox</u>.

  2: 35-47, 1979.
- Bice, D. E., Mauderly, J. L., R. K. Jones, and R. O. McClellan. Effects of Inhaled Diesel Exhaust on Immune Responses after Lung Immunization. <u>Fundam. Appl. Toxicol.</u> 5: 1075-1086, 1985.
- BBN Software Products Corporation, Cambridge, MA. RS/1 for VAX and MicroVax: Release 2, 1985.
- BMDP. Biomedical Computer Programs, P-Series, 1979. (Dixon, W. J. and M. B. Brown, eds.), University of California Press, 1979.

- Cunningham, A. J. and A. Szenberg. Further Improvements in the Plaque

  Technique for Detecting Single Antibody-forming Cells. <u>Immunology</u>

  14: 599-600, 1968.
- DuBois, A. B., S. Y. Botelho, G. N. Bedell, R. Marshall, and J. H. Comroe. A Rapid Plethysmographic Method for Measuring Thoracic Gas Volume: A Comparison with a Nitrogen Washout Method for Measuring Functional Residual Capacity in Normal Subjects. J. Clin. Invest. 35: 322-326, 1956.
- Gottlieb, C. F. Application of Transformations to Normalize the

  Distribution of Plaque-forming Cells. <u>J. Immunol</u>. <u>113</u>: 51-57, 1974.
- Crant, R. A. Estimation of Hydroxyproline by the AutoAnalyzer. <u>J.</u>

  <u>Clin. Pathol.</u> <u>17</u>: 685-686, 1965.
- Harkema, J. R., J. L. Mauderly, and F. F. Hahn. Effect of Oxygen

  Toxicity and Elastase-induced Emphysema on Pulmonary Function and

  Morphology. Am. Rev. Respir. Dis. 126: 1058-1065, 1982.
- Harmsen, A. G. and E. L. Jeska. Surface Receptors on Porcine Alveolar Macrophages and Their Role in Phagocytosis. <u>J. Reticuloendoth.</u> <u>Soc. 27</u>: 631-637, 1980.
- Henderson, R. F., E. G. Damon, and T. R. Henderson. Early Damage

  Indicators in the Lung. I. Lactate Dehydrogenase Activity in the

  Airways. <u>Toxicol. Appl. Pharmacol.</u> 44: 291-297, 1978a.
- Henderson, R. F., B. A. Muggenburg, J. L. Mauderly, and W. A. Tuttle

  Early Damage Indicators in the Lung. II. Time Sequence of Protein

  Accumulation and Lipid Loss in the Airways of Beagle Dogs with Beta

  Irradiation of the Lung. Radiat. Res. 76: 145-158, 1978b.

- Henderson, R. F., A. H. Rebar, J. A. Pickrell, and G. J. Newton. Early

  Damage Indicators in the Lung. III. Biochemical and Cytological

  Response of the Lung to Inhaled Metal Salts. <u>Toxicol. Appl.</u>

  <u>Pharmacol.</u> 50: 123-136, 1979a.
- Henderson, R. F., A. H. Rebar, and D. B. DeNicola. Early Damage
  Indicators in the Lungs. IV. Biochemical and Cytologic Response
  of the Lung to Lavage with Metal Salts. <u>Toxicol. Appl. Pharmacol.</u>
  51: 129-135, 1979b.
- Henderson, R. F. and J. S. Lowrey. Effect of Anesthetic Agents on
  Lavage Fluid Parameters Used as Indicators of Pulmonary Injury.

  <u>Lab. Anim. Sci. 33</u>: 60-62, 1983.
- Likens, S. A. and J. L. Mauderly. Effect of Elastase or Histamine on Single-breath N<sub>2</sub> Washouts in the Rat. <u>J. Appl. Physiol.</u> <u>52</u>: 141-146, 1982.
- Mauderly, J. L. Bronchopulmonary Lavage of Small Laboratory Animals.

  <u>Lab. Anim. Sci. 27</u>: 255-261, 1977.
- Mauderly, J. L. The Effect of Age on Respiratory Function of Fischer-344 Rats. Exp. Aging Res. 8: 31-36, 1982.
- Moores, S. R., A. Black, J. C. Evans, N. Holmes, and A. Morgan. The

  Effect of Quartz Admiristered by Intratracheal Instillation on the

  Rat Lung. II. The Short-term Biochemical Response. Environ. Res.

  24: 275-285, 1981.
- Moores, S. R., S. E. Sykes, A. Morgan, N. Evans, J. C. Evans, and A. Holmes. The Short-term Cellular and Biochemical Response of the Lung to Toxic Dusts: An "In Vivo" Cytotoxicity Test. In <a href="In the In Vitro Effect of Mineral Dusts">The In The In Vitro Effect of Mineral Dusts</a> (Brown, R. C., I. P. Gormley, M. Chamberlain, and R. Davis, eds.), Academic Press, pp. 297-303, 1980.

- Morrow, P. E., D. V. Bates, B. R. Fish, T. F. Hatch, and T. T. Mercer.

  Deposition and retention models for internal dosimetry of the human respiratory tract. <u>Health Phys. 12</u>: 173-207, 1966.
- Neuman, R. E. and M. A. Logan. The Determination of Hydroxyproline. <u>J.</u>

  <u>Biol. Chem.</u> 184: 299-306, 1950.
- Ogilvie, C. M., R. E. Forster, W. S. Blakemore, and J. W. Morton. A

  Standardized Breath Holding Technique for the Clinical Measurement
  of the Diffusing Capacity of the Lung for Carbon Monoxide. <u>J.</u>

  <u>Clin. Invest.</u> 36: 1-17, 1957.
- Pickrell, J. A., D. L. Harris, R. C. Pfleger, S. A. Benjamin, J. J. Belasich, R. K. Jones, and R. O. McClellan. Biological Alterations Resulting from Chronic Lung Irradiation. II. Connective Tissue Alterations Following Inhalation of <sup>144</sup>Ce Fused Clay Aerosol in Beagle Dogs. Radiat. Res. 63: 299-309, 1975.
- Raabe, O. G., J. E. Bennick, M. E. Light, C. H. Hobbs, R. L. Thomas, and M. I. Tillery. An Improved Apparatus for Acute Inhalation Exposure of Rodents to Radioactive Materials. <u>Toxicol. Appl. Pharmacol.</u> 26: 264-273, 1973.
- Schlesinger, R. B. Comparative Deposition of Inhaled Aerosols in Experimental Animals and Humans: A Review. <u>J. Toxicol. Environ.</u>

  Health 15: 197-214, 1985.
- Snipes, M. B. Species Comparisons for Pulmonary Retention of Inhaled Particles. In <u>Concepts in Inhalation Toxicology</u> (McCleilan, R. O. and R. F. Henderson, eds.), Hemisphere Publishing Corporation, Washington, DC, pp. 195-229, 1988.

- Snipes, M. B., D. G. Burt, A. F. Eidson, F. F. Hahn, A. G. Harmsen, J. A. Pickrell, F. A. Seiler, and H. C. Yeh. Comparative Inhalation Toxicology of Selected Materials: Final Report for Phase I Studies, September, 1986, AD No. A176250.
- Snipes, M. B., D. E. Bice, D. G. Burt, E. G. Damon, A. F. Eidson, F. F. Hahn, J. R. Harkema, A. G. Harmsen, R. F. Henderson, J. L. Mauderly, J. A. Pickrell, F. A. Seiler, and H. C. Yeh. Comparative Inhalation Toxicology of Selected Materials: Final Report for Phase II Studies, May, 1988.
- Thomson, S., D. C. Burnett, J. D. Bergmann, and C. J. Hixson.

  Comparative Inhalation Hazards of Aluminum and Brass Powders Using Bronchopulmonary Lavage as an Indicator of Lung Damage. <u>J. Appl. Toxicol</u>. 6: 197-209, 1986.
- Xybion Medicai Systems, Inc., Cedar Knolls, New Jersey, Path/Tox Database.

#### XI. ACKNOWLEDGMENTS

The authors acknowledge the outstanding contributions of a number of staff members of the Lovelace Inhalation Toxicology Research Institute, without whose help these studies could not be done. Research was supported by the U. S. Army Biomedical Research and Development Laboratory, under a Memorandum of Understanding Agreement No. AT(29-2)-2138 with the Lovelace Inhalation Toxicology Research Institute, which is operated for the U. S. Department of Energy (DOE) Office of Health and Environmental Research (OHER) under DOE Contract No. DE-ACO4-76EV01013. The facilities used for this research were fully accredited by the American Association for Accreditation of Laboratory Animal Care.

### XII. APPENDICES

- A. Explanation of Symbols and Abbreviations.
- B. Daily Aerosol Concentrations of Cu-Zn Alloy Powder in Phase III.
- C. Body Weights (Grams) for Individual Animals.
- D. Animal Weights and Selected Tissue Weights at Time of Sacrifice.
- E. Endpoint Evaluation Results for Individual Animals (Hematology, Chemistry, Phagocytosis, Immunology).
- F. Atomic Absorption Analysis Results for Individual Animals.
- G. Results for Individual Animal Pulmonary Function Evaluations.
- H. Group Summaries of Histopathology Observations.
- I. Summary Tables of Endpoint Evaluations and Statistical Comparisons Between Phase III, Parts 1 and 2 for F344/N Rats Exposed to 3.2 mg Cu-Zn Alloy Powder/m<sup>3</sup>.
- J. Miscellaneous.

#### APPENDIX A: EXPLANATION OF SYMBOLS AND ABBREVIATIONS

#### (Defined in alphabetical order)

- 1. AFC = Antibody-forming cells per million lymphocytes in lung-associated lymph nodes.
- AIRC = Airway collagen expressed as micrograms present in the lavage fluid.
- 3. ALB ≈ Albumin in grams/dL serum.
- 4. ALKP = Alkaline phosphatase activity in international units/L serum.
- 5. ALKPL = Alkaline phosphatase in lung lavage fluid; milli-international units.
- 6. Animal Number = Animal number. Metal eartags were used in this study for permanent animal identification.
- 7. Assign Code = Assignment code, indicating the fate of the animals used in this study.
  - EOE = Animals killed for endpoint evaluations after the exposure period.
  - REC = Animals killed for endpoint evaluations after the recovery period following aerosol exposures.
- 8. BGLUL = Beta glucuronidase in lung lavage fluid; milli-international units.
- 9. BWBC = Leukocyte (WBC) numbers per  $mm^3$  of blood.
- 10. BUN Blood urea nitrogen in milligrams/dL serum.
- 11. CCORD = Quasistatic cord compliance (mL per cm water).
- 12. CDYN = Dynamic lung compliance (mL per cm of water).
- 13. DLCO = Carbon monoxide diffusing capacity (mL per minute per millimeter of mercury).
- 14. EA/100 Cells = Number of opsonized sheep red blood cells (SRBC) phagocytized per 100 pulmonary alveolar macrophages.
- 15. EF10 = Forced expiratory flow rate at 10 percent of FVC (mL per second).
- 16. EOSI = Eosinophils in blood, expressed as numbers of eosinophils per 100 leukocytes.

#### 17. Exposure Code:

- SHAM Exposures of rats to humidified, filtered air using the same kind of nose-only exposure system as used for the Cu-Zn alloy powder. Exposures were 1.5 hr/day, 4 days/week.
- Other exposure groups are expressed as mg Cu-Zn/m3 to indicate the exposure atmosphere they breathed.
- 18. Expt Number = LITRI experiment number.
- 19. FEV1 = Percent of FVC exhaled in 0.1 second.
- 20. FRC = Functional residual capacity (mL).
- 21. FVC = Forced vital capacity (mL).
- 22. HEMA = Hematocrit = The percentage ratio of volume of packed cells to red blood cells volume of whole blood.
- 23. HGB = Hemoglobin levels in blood, expressed as grams per dL of blood.
- 24. Histopathology codes:
  - 0 = No changes relative to normal; lesion not present.
  - 1 = Slight degree of change, or small amount present; mild response.
  - 2 = Moderate, median, or middle severity or amount.
  - 3 = Marked severity or degree of change, large amount present.
- 25. LDHL = Lactic dehydrogenase in lung lavage fluid; milli-international units.
- 26. LYMP = Lymphocytes in blood, expressed as numbers of lymphocytes per 100 leukocytes.
- 27. MCHV = Mean corpuscular hemoglobin concentration. The average concentration of hemoglobin in red blood cells in percent.
- 28. MCV = Mean corpuscular volume. The average volume of red blood cells in units of cubic micrometers.
- 29. MMEF = Mean mid-expiratory flow rate (mL per second).
- 30. MONO = Monocytes in blood, expressed as numbers of monocytes per 100 leukocytes.
- 31. MV = Minute volume (mL per minute).
- 32. NCELL = Total cells in centrifuge pellet from lavage fluid.
- 33. NEA = Number of erythrocytes phagocytized by 100 pulmonary alveolar macrophages.

- 34. NEOS Total number of eosinophils in lavage fluid.
- 35. NLYM = Total number of lymphocytes in lavage fluid.
- 36. NMAC = Total number of macrophages in lavage fluid.
- 37. NPMN = Total number of neutrophils in lavage fluid.
- 38. NRBC = Nucleated erythrocytes per 100 leukocytes in blood.
- 39. PAMN = Pulmonary alveolar macrophages per  $mm^3$  of lavage fluid.
- 40. PEFR = Peak expiratory flow rate (mL per second).
- 41. PEOS = Percentage of cells in lavage fluid that were eosinophils.
- 42. PLYM = Percentage of cells in lavage fluid that were lymphocytes.
- 43. PMAC = Percentage of cells in lavage fluid that were macrophages.
- 44. PMNN = Polymorphonuclear leukocytes per mm<sup>3</sup> of lavage fluid.
- 45. PPAM = Percentage of pulmonary alveolar macrophages that phagocytized one or more erythrocytes.
- 46. PPMN = Percentage of cells in lavage fluid that were neutrophils.
- 47. RBC = Erythrocytes (RBC) per  $mm^3$  of blood.
- 48. RL = Total pulmonary resistance (cm water per mL per second).
- 49. RV = Residual volume (mL).
- 50. SBWT = Body weights of rats at the time they were killed for endpoint evaluations.
- 51. SEGM = Segmenter (neutrophil) levels in blood, expressed as numbers of neutrophils per 100 leukocytes.
- 52. SGPT Serum glutamic pyruvic transaminase (alanine aminotransferase) activity in international units/L serum.
- 53. SIII = Slope of Phase III of a single-breath nitrogen washout (percentage of nitrogen per mL).
- 54. TBIL = Total bilirubin in milligrams/dL serum.
- 55. TLC = total lung capacity (mL).
- 56. Total AFC = Total IgM anti-SRBC antibody-forming cells in lung-associated lymph nodes.

- 57. Total Cells = Number of lymphoid cells in lung-associated lymph nodes  $(x \ 10^{-}6)$ .
- 58. TPROL Milligrams of protein in lung lavage fluid.
- 59. TPRO = Total serum protein in grams/dL serum.
- 60. VC = Vital capacity (mL).
- 61. WBCN White blood cells per mm<sup>3</sup> of lavage fluid (x  $10^{-3}$ ).

APPENDIX B: DAILY AEROSOL CONCENTRATIONS OF Cu-Zn ALLOY POWDER

| EXPOSURE<br>DATE                                                                                                                            | EXPERIMENT<br>NUMBER                                         | Cu-Zn ALLOY<br>CONCENTRATION<br>( mg/m3 )                                                                         | NUMBER OF<br>FILTERS                           | SAMPLING<br>TIME<br>(Minutes)                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------|
|                                                                                                                                             |                                                              | CONCENTRATION                                                                                                     |                                                | TIME                                               |
| 8-19-86<br>8-20-86<br>8-21-86<br>8-25-86<br>8-26-86<br>8-27-86<br>8-28-86<br>9-02-86<br>9-03-86<br>9-04-86<br>9-05-86<br>9-08-86<br>9-09-86 | 4371<br>4371<br>4371<br>4371<br>4371<br>4371<br>4371<br>4371 | 0.826<br>1.059<br>0.953<br>1.059<br>1.074<br>1.051<br>1.021<br>1.046<br>1.230<br>1.076<br>1.076<br>1.001<br>0.989 | 4<br>4<br>4<br>4<br>3<br>4<br>4<br>4<br>4<br>3 | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90 |
| 9-10-86<br>9-11-86                                                                                                                          | 4371<br>4371                                                 | 0.915<br>0.978                                                                                                    | 4<br>4                                         | 90<br>90                                           |

| EXPOSURE<br>DATE   | EXPERIMENT<br>NUMBER | Cu-Zn ALLOY<br>CONCENTRATION<br>( mg/m3 ) | NUMBER OF<br>FILTERS | SAMPLING<br>TIME<br>(Minutes) |
|--------------------|----------------------|-------------------------------------------|----------------------|-------------------------------|
| 9-15-86            | 4271                 | 1 100                                     |                      |                               |
|                    | 4371                 | 1.109                                     | 4                    | 90                            |
| 9-16-86<br>9-17-86 | 4371                 | 0.983                                     | 4                    | 90                            |
| 9-18-86            | 4371                 | 1.175                                     | 4                    | 90                            |
| 9-22-86            | 4371                 | 1.061                                     | 4                    | 90                            |
| 9-23-86            | 4371                 | 1.023                                     | 4                    | 90                            |
| 9-24-86            | 4371                 | 0.994                                     | 4                    | 90                            |
| 9-25-86            | 4371<br>4371         | 1.126                                     | 4                    | 90                            |
| 6-30-86            | 4371                 | 0.922                                     | 4                    | 90                            |
| 7-01-86            | 4372                 | 3.256                                     | 4                    | 90                            |
| 7-01-86            | 4372                 | 3.456                                     | 4                    | 90                            |
| 7-03-86            | 4372                 | 3.273<br>2.559                            | 4                    | 90                            |
| 7-07-86            | 4372                 | 3.566                                     | 4                    | 90                            |
| 7-08-86            | 4372                 | 3.483                                     | 4<br>4               | 90                            |
| 7-09-86            | 4372                 | 2.992                                     |                      | 90                            |
| 7-10-86            | 4372                 | 3.230                                     | 4<br>4               | 60                            |
| 7-14-86            | 4372                 | 3.727                                     | 4                    | 90                            |
| 7-15-86            | 4372                 | 3.366                                     | 4                    | 90                            |
| 7-16-86            | 4372                 | 3.190                                     | 4                    | 90                            |
| 7-17-86            | 4372                 | 2.994                                     | 4                    | 90                            |
| 7-21-86            | 4372                 | 3.834                                     | 4                    | 90<br>90                      |
| 7-22-86            | 4372                 | 3.198                                     | 4                    | 90                            |
| 7-23-86            | 4372                 | 3.431                                     | 4                    | 90                            |
| 7-24-86            | 4372                 | 2.851                                     | 4                    | 90                            |
| 7-28-86            | 4372                 | 3.366                                     | 4                    | 90                            |
| 7-29-86            | 4372                 | 3.326                                     | 4                    | 90                            |
| 7-30-86            | 4372                 | 3.016                                     | 4                    | 90                            |
| 7-31-86            | 4372                 | 2.685                                     | 4                    | 90                            |
| 8-04-86            | 4372                 | 3.175                                     | 4                    | 90                            |
| 8-05-86            | 4372                 | 3.600                                     | 4                    | 90                            |
| 8-06-86            | 4372                 | 3.218                                     | 4                    | 90                            |
| 8-07-86            | 4372                 | 3.154                                     | 3                    | 90                            |
| 8-11-86            | 4372                 | 3.646                                     | 4                    | 90                            |
| 8-12-86            | 4372                 | 4.050                                     | 4                    | 90                            |
| 8-13-86            | 4372                 | 3.195                                     | 4                    | 90                            |
| 8-14-86            | 4372                 | 3.350                                     | 3                    | 90                            |
| 8-15-86            | 4372                 | 3.325                                     | 4                    | 90                            |
| 8-18-86            | 4372                 | 2.797                                     | 3                    | 90                            |
| 8-19-86            | 4372                 | 4.160                                     | 4                    | 90                            |
| 8-20-86            | 4372                 | 3.236                                     | 3                    | 90                            |
| 8-21-86            | 4372                 | 3.079                                     | 4                    | 90                            |
| 8-25-86            | 4372                 | 3.108                                     | 3                    | 90                            |
| 8-26-86            | 4372                 | 2.966                                     | 4                    | 90                            |
| 8-27-86            | 4372                 | 3.663                                     | 4                    | 90                            |
|                    |                      |                                           |                      | -                             |

| EXPOSURE<br>DATE                                    | EXPERIMENT<br>NUMBER                 | Cu-Zn ALLOY<br>CONCENTRATION<br>( mg/m3 )     | NUMBER OF<br>FILTERS  | SAMPLING<br>TIME<br>(Minutes) |
|-----------------------------------------------------|--------------------------------------|-----------------------------------------------|-----------------------|-------------------------------|
| 8-28-86<br>9-02-86<br>9-03-86<br>9-04-86            | 4372<br>4372<br>4372<br>4372         | 3.367<br>2.922<br>3.311<br>3.563              | 3<br>4<br>4<br>4      | 90<br>90<br>90<br>90          |
| 9-05-86<br>9-08-86<br>9-09-86<br>9-10-86<br>9-11-86 | 4372<br>4372<br>4372<br>4372<br>4372 | 3.376<br>3.659<br>3.249<br>3.190<br>3.459     | 4<br>4<br>3<br>4<br>4 | 90<br>90<br>90                |
| 9-15-86<br>9-16-86<br>9-17-86<br>9-18-86            | 4372<br>4372<br>4372<br>4372         | 4.145<br>3.134<br>3.858<br>3.066              | 4<br>4<br>4<br>4      | 90<br>90<br>90<br>90          |
| 9-22-86<br>9-23-86<br>9-24-86<br>9-25-86<br>6-30-86 | 4372<br>4372<br>4372<br>4372<br>4373 | 3.391<br>3.210<br>3.125<br>3.661<br>6.570     | 4<br>4<br>4<br>4      | 90<br>90<br>90<br>90<br>90    |
| 7-01-86<br>7-02-86<br>7-03-86<br>7-07-86<br>7-08-86 | 4373<br>4373<br>4373<br>4373<br>4373 | 9.882<br>7.841<br>10.754<br>10.638<br>10.580  | 4<br>4<br>4<br>4      | 90<br>90<br>90<br>90          |
| 7-09-86<br>7-10-86<br>7-14-86<br>7-15-86<br>7-16-86 | 4373<br>4373<br>4373<br>4373<br>4373 | 10.086<br>10.664<br>8.842<br>10.357<br>10.379 | 4<br>4<br>4<br>4      | 90<br>90<br>90<br>90          |
| 7-17-86<br>7-21-86<br>7-22-86<br>7-23-86<br>7-24-86 | 4373<br>4373<br>4373<br>4373<br>4373 | 11.296<br>10.772<br>10.382<br>11.864<br>8.642 | 4<br>4<br>4<br>4      | 90<br>90<br>90<br>90          |
| 7-28-86<br>7-29-86<br>7-30-86<br>7-31-86            | 4373<br>4373<br>4373<br>4373         | 10.057<br>8.909<br>10.820<br>10.944           | 4<br>4<br>4           | 90<br>90<br>90                |
| 8-04-86<br>8-05-86<br>8-06-86<br>8-07-86<br>8-11-86 | 4373<br>4373<br>4373<br>4373<br>4373 | 13.748<br>12.665<br>13.030<br>11.019<br>8.286 | 4<br>4<br>4<br>4      | 90<br>90<br>90<br>90<br>90    |
| 8-12-86<br>8-13-86<br>8-14-86                       | 4373<br>4373<br>4373                 | 11.951<br>8.609<br>9.706                      | 4<br>4<br>4           | 90<br>90<br>90                |

| EXPOSURE<br>DATE                                                                                | EXPERIMENT<br>NUMBER                                         | Cu-Zn ALLOY<br>CONCENTRATION<br>( mg/m3 )                                          | NUMBER OF<br>FILTERS            | SAMPLING<br>TIME<br>(Minutes)          |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|
| 8-15-86<br>8-18-86<br>8-19-86<br>8-20-86<br>8-21-86<br>8-25-86<br>8-26-86<br>8-27-86<br>8-28-86 | 4373<br>4373<br>4373<br>4373<br>4373<br>4373<br>4373<br>4373 | 10.191<br>12.127<br>9.242<br>8.954<br>9.241<br>11.740<br>10.160<br>8.039<br>10.308 | 4<br>4<br>4<br>3<br>4<br>4<br>3 | 90<br>90<br>90<br>90<br>90<br>90<br>90 |
| 9-02-86<br>9-03-86<br>9-04-86<br>9-05-86<br>9-08-86<br>9-09-86<br>9-10-86                       | 4373<br>4373<br>4373<br>4373<br>4373<br>4373<br>4373         | 8.983<br>10.929<br>9.247<br>10.046<br>10.845<br>10.359                             | 4<br>4<br>3<br>4<br>4<br>4      | 90<br>90<br>90<br>90<br>90<br>90       |
| 9-11-86<br>9-15-86<br>9-16-86<br>9-17-86<br>9-18-86<br>9-22-86<br>9-23-86                       | 4373<br>4373<br>4373<br>4373<br>4373<br>4373                 | 8.964<br>10.006<br>10.863<br>10.514<br>10.267<br>10.637                            | 3<br>4<br>3<br>4<br>4<br>4<br>3 | 90<br>90<br>90<br>90<br>90<br>90       |
| 9-24-86<br>9-25-86<br>1-27-87<br>1-28-87<br>1-29-87<br>1-30-87<br>2-02-87<br>2-03-87            | 4373<br>4373<br>4443<br>4443<br>4443<br>4443<br>4443         | 10.341<br>9.997<br>0.445<br>0.181<br>0.313<br>0.325<br>0.319<br>0.294              | 4<br>4<br>4<br>3<br>3<br>3<br>3 | 90<br>90<br>90<br>90<br>90<br>90       |
| 2-04-87<br>2-05-87<br>2-09-87<br>2-10-87<br>2-11-87<br>2-12-87<br>2-17-87                       | 4443<br>4443<br>4443<br>4443<br>4443<br>4443                 | 0.294<br>0.329<br>0.330<br>0.287<br>0.308<br>0.336<br>0.316<br>0.297               | 3<br>4<br>3<br>4<br>4<br>4      | 90<br>90<br>90<br>90<br>90<br>90<br>90 |
| 2-18-87<br>2-19-87<br>2-20-87<br>2-23-87<br>2-24-87<br>2-25-87<br>2-26-87                       | 4443<br>4443<br>4443<br>4443<br>4443<br>4443                 | 0.317<br>0.316<br>0.309<br>0.230<br>0.399<br>0.373<br>0.300                        | 4<br>4<br>3<br>3<br>4<br>4<br>4 | 90<br>90<br>90<br>90<br>90<br>90       |

| EXPOSURE<br>DATE              | EXPERIMENT<br>NUMBER                 | Cu-Zn ALLOY<br>CONCENTRATION<br>( mg/m3 ) | NUMBER OF<br>FILTERS | SAMPLING<br>TIME<br>(Minutes) |
|-------------------------------|--------------------------------------|-------------------------------------------|----------------------|-------------------------------|
| 3-02-87<br>3-03-87<br>3-04-87 | 4443<br>4443<br>4443                 | 0.283<br>0.358<br>0.376                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 3-05-87<br>3-09-87            | 4443<br>4443                         | 0.360<br>0.297                            | 4                    | 90<br>90                      |
| 3-10-87<br>3-11-87<br>3-12-87 | 4443<br>4443<br>4443                 | 0.364<br>0.348<br>0.335                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 3-16-87<br>3-17-87            | 4443<br>4443                         | 0.365<br>0.336                            | 4                    | 90<br>90                      |
| 3-18-87<br>3-19-87<br>3-23-87 | 4443<br>4443<br>4443                 | 0.317<br>0.306<br>0.261                   | 3<br>4<br>4          | 90<br>90<br>90                |
| 3-24-87<br>3-25-87<br>3-26-87 | 4443<br>4443                         | 0.321<br>0.322                            | 4<br>4               | 90<br>90                      |
| 3-30-87<br>3-31-87            | 4443<br>4443<br>4443                 | 0.318<br>0.306<br>0.271                   | 4<br>3<br>4          | 90<br>90<br>90                |
| 4-01-87<br>4-02-87<br>4-06-87 | 4443<br>4443<br>4443                 | 0.312<br>0.317<br>0.335                   | 3<br>4<br>4          | 90<br>90                      |
| 4-07-87<br>4-08-87            | 4443<br>4443                         | 0.330<br>0.314                            | 4<br>4<br>4          | 90<br>90<br>90                |
| 4-09-87<br>4-13-87<br>4-14-87 | 4443<br>4443<br>4443                 | 0.287<br>0.268<br>0.297                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 4-15-87<br>4-16-87            | 4443<br>4443                         | 0.309<br>0.271                            | 4<br>3               | 90<br>90                      |
| 4-20-87<br>4-21-87<br>4-22-87 | 4443<br>4443<br>4443                 | 0.322<br>0.326<br>0.306                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 4-23-87<br>1-27-87<br>1-28-87 | 4443<br>4444<br>4444                 | 0.358<br>3.999                            | 4<br>4               | 90<br>90                      |
| 1-29-87<br>1-30-87            | 4444<br>4444                         | 3.618<br>3.158<br>3.047                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 2-02-87<br>2-03-87<br>2-04-87 | 4444<br>4444<br>4444                 | 3.743<br>3.450<br>3.143                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 2-05-87<br>2-09-87<br>2-10-87 | 4444<br>4444                         | 3.099<br>2.570                            | 4<br>4               | 90<br>90                      |
| 2-11-87<br>2-12-87            | <b>4</b> 444<br><b>4</b> 444<br>4444 | 2.960<br>3.715<br>3.722                   | 4<br>4<br>4          | 90<br>90<br>90                |
| 2-17-87                       | 4444                                 | 3.375                                     | 4                    | 90                            |

| EXPOSURE<br>DATE | EXPERIMENT<br>NUMBER | Cu-Zn ALLOY<br>CONCENTRATION<br>( mg/m3 ) |   |    |
|------------------|----------------------|-------------------------------------------|---|----|
|                  |                      |                                           |   |    |
| 2-18-87          | 4444                 | 3.155                                     | 4 | 90 |
| 2-19-87          | 4444                 | 3.072                                     | 4 | 90 |
| 2-20-87          | 4444                 | 3.002                                     | 4 | 90 |
| 2-23-87          | 4444                 | 3.119                                     | 3 | 90 |
| 2-24-87          | 4444                 | 3.217                                     | 4 | 90 |
| 2-25-87          | 4444                 | 3.909                                     | 3 | 90 |
| 2-26-87          | 4444                 | 2.459                                     | 4 | 90 |
| 3-02-87          | 4444                 | 3.099                                     | 4 | 90 |
| 3-03-87          | 4444                 | 3.477                                     | 4 | 90 |
| 3-04-87          | 4444                 | 3.360                                     | 4 | 90 |
| 3-05-87          | 4444                 | 3.085                                     | 4 | 90 |
| 3-09-87          | 4444                 | 3.347                                     | 4 | 75 |
| 3-10-87          | 4444                 | 3.341                                     | 4 | 90 |
| 3-11-87          | 4444                 | 2.574                                     | 4 | 90 |
| 3-12-87          | 4444                 | 2.982                                     | 4 | 90 |
| 3-13-87          | 4444                 | 3.274                                     | 3 | 90 |
| 3-16-87          | 4444                 | 3.440                                     | 4 | 90 |
| 3-17-87          | 4444                 | 3.585                                     | 4 | 90 |
| 3-18-87          | 4444                 | 2.614                                     | 4 | 90 |
| 3-19-87          | 4444                 | 4.023                                     | 4 | 90 |
| 3-23-87          | 4444                 | 3.795                                     | 4 | 90 |
| 3-24-87          | 4444                 | 3.650                                     | 4 | 90 |
| 3-25-87          | 4444                 | 3.445                                     | 4 | 90 |
| 3-26-87          | 4444                 | 3.200                                     | 4 | 90 |
| 3-30-87          | 4444                 | 3.433                                     | 4 | 90 |
| 3-31-87          | 4444                 | 3.307                                     | 4 | 90 |
| 4-01-87          | 4444                 | 2.431                                     | 4 | 90 |
| 4-02-87          | 4444                 | 3.553                                     | 4 | 90 |
| 4-06-87          | 4444                 | 2.937                                     | 4 | 90 |
| 4-07-87          | 4444                 | 3.120                                     | 3 | 90 |
| 4-08-87          | 4444                 | 2.748                                     | 4 | 90 |
| 4-09-87          | 4444                 | 2.896                                     | 4 | 90 |
| 4-13-87          | 4444                 | 2.917                                     | 4 | 90 |
| 4-14-87          | 4444                 | 2.735                                     | 4 | 90 |
| 4-15-87          | 4444                 | 3.687                                     | 4 | 90 |
| 4-16-87          | 4444                 | 3.041                                     | 4 | 90 |
| 4-20-87          | 4444                 | 2.429                                     | 4 | 90 |
| 4-21-87          | 4444                 | 3.208                                     | 4 | 90 |
| 4-22-87          | 4444                 | 3.645                                     | 4 | 90 |
| 4-23-87          | 4444                 | 3.617                                     | 4 | 90 |
|                  |                      |                                           |   |    |

\_\_\_\_\_\_\_

APPENDIX C: BODY WEIGHTS (GRAMS) FOR INDIVIDUAL ANIMALS

|                                                                           |                                                                |                                                                        | \$<br>1<br>1<br>1<br>1<br>2<br>1<br>2                          |                                                        |                                                    |                                | ایم                                     |          | -   |       | R.             |      |     |       | VEI   | GH T |      | AAMS  | NO  | STUD  | V DAY |         | 9      | 9 9    | 7.3      | 78     |           | 9 9            |
|---------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------|-----------------------------------------|----------|-----|-------|----------------|------|-----|-------|-------|------|------|-------|-----|-------|-------|---------|--------|--------|----------|--------|-----------|----------------|
| NI SEX -1 3 6 10 13 17 20 24 27                                           | X -1 3 6 10 13 17 20 24 2                                      | 1 3 6 10 13 17 20 24 2                                                 | 3 6 10 13 17 20 24 2                                           | 10 13 17 20 24 2                                       | 0 13 17 20 24 2                                    | 3 17 20 24 2                   | 7 20 24 2                               | 0 24 2   | 4 2 |       |                | 31   | 32  | 34    | 8 1   |      | 5 1  | 8 I   |     |       |       |         |        |        |          | ,      |           | , ;            |
|                                                                           |                                                                |                                                                        |                                                                |                                                        |                                                    |                                | 000000000000000000000000000000000000000 |          | ,   | •     |                | 6    | •   |       | 307   | 60   | 305  | 308   | 305 | 310   | 305   | 309 3   | 0.53   | 02.3   | 10 3     | 0.8 30 | 06 31     | •              |
| 1 M 78/ 290 208 292 293 293 295 297 297 297 297 297 297 297 297 297 297   | 23                                                             | 8/ 280 268 282 289 289 280 281 29<br>68 369 360 361 368 367 364 360 36 | 90 268 292 299 299 296 297 29<br>69 360 361 366 367 364 300 39 | 69 Z9Z Z93 Z99 Z90 Z97 Z9<br>60 201 202 207 204 30N 20 | 92 233 233 233 234 231 23<br>01 305 307 304 30N 39 | 93                             | 93 236 237 23                           | 4 300 29 | , , | 0     | . <del>.</del> |      |     |       | 306   | 60   | 80   |       | 313 | 317   | 316   | 316 3   | 18 3   | 16 3   | 2.1      | n      | 19 3      | 26             |
| 2 M 275 273 274 275 274 277 275 279 2                                     | 375 373 373 375 379 377 275 279 2                              | K 212 273 274 276 274 277 275 279 2                                    | 72 273 276 279 277 275 279 2                                   | 73 276 279 277 275 279 2                               | 76 279 277 275 279 2                               | 79 277 275 279 2               | 77 275 279 2                            | 5 279 2  | . 6 |       |                | •    | ••  | 281   | 288   | 292  | 284  | 283   | 293 | 2 8 2 | 298 2 | 299 3   | 02 2   | 97 3   | 0.5      | e      | 07 3      | 12             |
| 270 266 268 259 271 272 271 27                                            | 270 266 268 269 271 272 271 272                                | 0 266 268 269 271 272 271 272                                          | 66 268 269 271 272 271 272                                     | 68 269 271 272 271 272                                 | 69 271 272 271 272                                 | 71 272 271 272                 | 72 271 272                              | 71 272   | ~   | ~     | 29             | 272  |     | 274   | 275   | 278  | 271  | 275   | 281 | 278   | 278   |         |        | 4      | 8.0      | 3 2    | 8         |                |
| 5 M 282 277 277 278 281 28                                                | 282 277 277 278 281 281 278 29                                 | 2 277 277 278 281 281 278 29                                           | 77 277 278 281 281 278 29                                      | 77 278 281 281 278 29                                  | 78 281 281 278 29                                  | 81 281 278 29                  | 81 278 29                               | 8 29     |     |       | 281            | 282  | - • | 286   | 1 6 7 | 292  | 287  | 293   | 296 | 297   |       |         | 89 2   | _      | 3 5      | 4      | 2 2       | <b>9</b>       |
| 6 M 289 285 288 288 290 2                                                 | 289 285 288 288 290 288 289 28                                 | 9 285 288 288 290 288 289 28                                           | 85 288 288 290 288 289 28                                      | 88 288 290 288 289 28                                  | 88 290 288 289 28                                  | 90 288 289 28                  | 88 289 28                               | 9 28     |     |       | 285            | 290  |     | 293   | 2 9 2 | 282  | 294  | 295   | 298 | 297   | on .  | 6       |        | _      | ල<br>න   | e .    | m (       |                |
| 7 M 284 283 285 785 285 2                                                 | 284 283 285 785 285 286 286 28                                 | 84 283 285 785 285 286 286 28                                          | 83 285 745 285 286 286 28                                      | 85 785 285 286 286 28                                  | AS 285 286 286 28                                  | 85 286 286 28                  | 86 286 28                               | 6 28     |     |       | 280            | 289  | - • | 285   | 2 6 2 | 295  | 286  | 290   | 6   | 6     | ٠.    | 6       | 96 2   |        | -        | m .    | e .       |                |
| 8 M 263 264 264 266 269 271 271 272                                       | 263 264 264 266 269 271 271 272                                | 3 264 264 266 269 271 271 272                                          | 64 264 266 269 271 271 272                                     | 64 266 269 271 271 272                                 | 66 269 271 271 272                                 | 69 271 271 272                 | 71 271 272                              | 71 272   | ~   | • •   | 273            | 277  |     | 275   | 284   | 285  | 9 8  | 80    | Ø   | 293   | ø     |         |        |        |          | er i   | יי<br>ומי | <u>.</u>       |
| 9 M 272 271 270 269 273 275 274 278                                       | 272 271 270 269 273 275 274 278                                | 2 271 270 269 273 275 274 278                                          | 71 270 269 273 275 274 278                                     | 70 269 273 275 274 278                                 | 69 273 275 274 278                                 | 73 275 274 278                 | 75 274 278                              | 4 278    | 80  | •••   | 273            | 279  |     | 282   | 283   | 289  | 96   | 289   | g)  | 295   | €0    | - 6     | න<br>ග | 60     | 6        | 2 / 6  |           | <b>.</b>       |
| 0 M 286 284 285 289 29                                                    | 286 284 285 289 290 290 29                                     | 6 284 285 289 290 290 29                                               | 84 285 289 290 290 29                                          | 285 289 290 290 29                                     | 85 289 290 290 29                                  | 89 290 290 29                  | 90 290 29                               | 0 29     |     |       | 291            | 296  |     | 294   | 302   | 306  | 305  | 7 6 7 |     | 308   | 60    | -       | _      | 0      | 5        | 9      | <b>T</b>  |                |
| 1 M 271 270 270 270 272 2                                                 | 271 270 270 270 272 273 272 273                                | 1 270 270 270 272 273 272 273                                          | 70 270 270 272 273 272 273                                     | 70 270 272 273 272 273                                 | 70 272 273 272 273                                 | 72 273 272 273                 | 73 272 273                              | 2 273    | 6   | ~     | 6.7            | 275  |     | 277   | 282   | 4    | 82   |       | æ   |       | 9.5   | <br>60  | -      |        | •        | 99 2   | 9         |                |
| M 269 261 263 261 264 262 263 261                                         | 269 261 263 261 264 262 263 261                                | 9 261 263 261 264 262 263 261                                          | 61 263 261 264 262 263 261                                     | 63 261 264 262 263 261                                 | 61 264 262 263 261                                 | 64 262 263 261                 | 62 263 261                              | 3 261    | _   | •••   | 259            | 265  | •   | 3 6 6 | 268   | 270  | 268  | 270   | 272 | 274   | ~     |         |        | _      | 6        | 7.9 2  | 8         |                |
| M 274 271 265 267 271 271 273 276                                         | 274 271 265 267 271 271 273 276                                | 4 271 265 267 271 271 273 276                                          | 71 265 267 271 271 273 276                                     | 65 267 271 271 273 276                                 | 67 271 271 273 276                                 | 71 271 273 276                 | 71 273 276                              | 73 276   | 9 / | • •   | 273            | 277  | - • | 277   | 282   | 289  | 287  | 291   | 6   | 301   | 00    | <br>66  | -      | 9.7    |          | 60     | . 3       |                |
| M 274 271 270 269 273 271 273 279                                         | 274 271 270 269 273 271 273 279                                | 4 271 270 269 273 271 273 279                                          | 71 270 269 273 271 273 279                                     | 70 269 273 271 273 279                                 | 69 273 271 273 279                                 | 73 271 273 279                 | 71 273 279                              | 3 279    | 7.9 | • • • | 279            | 284  | - • | 284   | 290   | 293  | 290  | 290   | 9   | 2 9 2 | 0 1   | 66      | 00     | 9 6    | =        | e<br>  | 06 3      |                |
| S M 297 295 299 299 304 30                                                | 297 295 299 299 304 303 305 30                                 | 7 295 299 299 304 303 305 30                                           | 95 299 299 304 303 305 30                                      | 99 299 304 303 305 30                                  | 99 304 303 305 30                                  | 303 305 30                     | 03 305 30                               | 05 30    |     | • •   | 303            | 310  |     | 200   | 312   | 311  | 309  | 312   | 315 | 318   | 6     | 0       | 2      | 12     | 5        | _      |           | 22             |
| 6 M 277 276 276 276 277 281 282 286                                       | 277 276 276 276 277 281 282 286                                | 77 276 276 276 277 281 282 286                                         | 76 276 276 277 281 282 286                                     | 76 276 277 281 282 286                                 | 76 277 281 282 286                                 | 281 282 286                    | 81 282 286                              | 2 286    | 9   |       | 282            | 294  |     | 289   | 299   | 298  | 297  | 301   | 308 | 308   |       | 302 3   | 0      |        | 0        | 90     | en .      | <del>-</del> : |
| 7 M 274 273 276 274 277 277 274 279                                       | 274 273 276 274 277 277 274 279                                | 74 273 276 274 277 277 274 279                                         | 73 276 274 277 277 274 279                                     | 76 274 277 277 274 279                                 | 74 277 277 274 279                                 | 277 274 279                    | 77 274 279                              | 4 279    | 6   | -     | 276            | 278  |     | 279   | 281   | 279  | 277  | 277   | 283 | 282   | 40    | 0       | 8 8    | 8 4    | 06       | 90 2   | 6         |                |
| 8 M 281 278 281 279 282 284 286 288                                       | 281 278 281 279 282 284 286 288                                | 1 278 281 279 282 284 286 288                                          | 78 281 279 282 284 286 288                                     | 81 279 262 284 286 288                                 | 79 282 284 286 288                                 | 284 286 288                    | 84 286 288                              | 86 288   | 60  | •     | 286            | 289  | •   | 267   | 167   | 295  | 293  | 562   | 303 | 303   | 0.4   | 00      | 00     | 9 22   | 4        | 02 3   |           | 0              |
| 9 M 276 273 273 273 274 27                                                | 276 273 273 273 274 275 279 27                                 | 6 273 273 273 274 275 279 27                                           | 73 273 273 274 275 279 27                                      | 73 273 274 275 279 27                                  | 73 274 275 279 27                                  | 4 275 279 27                   | 75 279 27                               | 79 27    |     |       | 280            | 283  | -   | 283   | 287   | 288  | 382  | 285   | Ø   | 272   | 8 2   | €       | 87     | 8 5    | က<br>6   | 96 2   | <b>4</b>  |                |
| 0 M 272 273 271 275 279 2                                                 | 272 273 271 275 279 280 282 28                                 | 2 273 271 275 279 280 282 28                                           | 73 271 275 279 280 282 28                                      | 71 275 279 280 282 28                                  | 75 279 280 282 28                                  | 9 280 282 28                   | 80 282 28                               | 82 28    |     |       | 280            | 284  |     | 282   | 287   | 286  | 281  | 287   | 6   |       | 9 5   | 9 2     | - 5    | 8 2    | 4        | 95 2   | 3         |                |
| 1 M 278 277 274 280 282 28                                                | 278 277 274 280 282 288 289 29                                 | 8 277 274 280 282 288 289 29                                           | 77 274 280 282 288 289 29                                      | 74 280 282 288 289 29                                  | 80 282 288 289 29                                  | 82 288 289 29                  | 88 289 29                               | 89 29    |     |       | 297            | 287  | -   | 298   | 303   | _    | 9    | 0     | 0   | 0     | و     | 4       | <br>ഇ  | C '    |          | 2 7    | n (       |                |
| 2 M 272 268 270 273 2                                                     | 272 268 270 273 277 276 277 28                                 | 2 268 270 273 277 276 277 28                                           | 68 270 273 277 276 277 28                                      | 70 273 277 276 277 28                                  | 3 277 276 277 28                                   | 77 276 277 28                  | 76 277 28                               | 77 28    | €   |       | 280            |      |     | 283   | 289   | 295  | ۵    | 5     | Ö   |       | 90    |         | 4      | ლ<br>ი | <u>~</u> | 12 3   | თ (<br>თ  | 5              |
| 3 M 296 295 296 295 295 29                                                | 296 295 296 295 295 299 301 30                                 | 6 295 296 295 295 299 301 30                                           | 95 296 295 295 299 301 30                                      | 96 295 295 299 301 30                                  | 95 295 299 301 30                                  | 95 299 301 30                  | 99 301 30                               | 01 30    | 0   |       | 303            | 306  |     | 306   | 311   | 314  | 306  | 0     | -   | -     | 6     | 6       | 20     | -      | 7        | 24 3   | m (       |                |
| 4 M 274 270 270 269 272 27                                                | 274 270 270 269 272 273 272 27                                 | 74 270 270 269 272 273 272 27                                          | 70 270 269 272 273 272 27                                      | 70 269 272 273 272 27                                  | 59 272 273 272 27                                  | 72 273 272 27                  | 73 272 27                               | 72 27    |     |       | 273            | 616  | -   | 280   | 279   | 284  | 279  | 285   |     | Ø     | 0 6   | €       | ~      | œ      | 0        | 7 -    | 7 .       |                |
| 5 M 273 269                                                               | 273 269 262 271 278 281 28                                     | 73 269 262 271 278 281 28                                              | 69 262 271 278 281 28                                          | 62 271 278 281 28                                      | 62 271 278 281 28                                  | 71 278 281 28                  | 78 281 28                               | 1 28     |     |       | 281            | 285  |     |       | 80    |      |      | 60    | 6   | 9     | 26    |         | ~      | 100    | · ·      | 99 2   |           | 4 (            |
| M 266 263 264 265 269 2                                                   | 266 263 264 265 269 274 271 27                                 | 66 263 264 265 269 274 271 27                                          | 63 264 265 269 274 271 27                                      | 64 265 269 274 271 27                                  | 65 269 274 271 27                                  | 69 274 271 27                  | 74 271 27                               | 71 27    |     |       | 274            | 274  | -   | 274   | 277   | 280  | 276  | 276   | 283 | 280   | €     |         | <br>on | ~      | 4        | 7 06   | 7         |                |
| 7 M 271 267 272 272 278 27                                                | 271 267 272 272 278 279 282 28                                 | 71 267 272 272 278 279 282 28                                          | 67 272 272 278 279 282 28                                      | 2 272 278 279 282 28                                   | 72 278 279 282 28                                  | 78 279 282 28                  | 79 282 28                               | 2 28     | •   | •     | 279            | 285  | -   | 280   | 286   | 288  | 283  | 282   | 6   | 6     | 9 8   | ð       | _      | 3 5    | 0        | 9      | e .       | ٠,             |
| A M 271 262 266 266 270 2                                                 | 271 262 266 266 270 273 275 28                                 | 71 262 266 266 270 273 275 28                                          | 62 266 266 270 273 275 28                                      | 6 266 270 273 275 28                                   | 66 270 273 275 28                                  | 70 273 275 28                  | 73 275 28                               | 75 28    | 8   |       | 278            | 284  | ,   | 286   | 290   | 289  | 287  | 888   | 293 | 295   | 295   | 288 2   | 91 2   | 83 2   | 3 9 6    | 97 2   | <b>6</b>  | -              |
| 9 M 277 275 275 278 282 284 287 28                                        | 277 275 275 278 282 284 287 28                                 | 77 275 275 278 282 284 287 28                                          | 75 275 278 282 284 287 28                                      | 75 278 282 284 287 28                                  | 78 282 284 287 28                                  | 82 284 287 28                  | 84 287 28                               | 87 28    | 8   | • • • | 88             |      |     | 293   | 290   | 291  | 290  | 292   | 287 | 299   | 300   | 298 2   | 97 2   | 94 2   | 99 3     | 3      | 98 3      |                |
| n M 301 288 289 287 289 290 292 29                                        | 201 28R 289 287 289 290 292 29                                 | 01 288 289 287 289 290 292 29                                          | AR 284 287 289 290 292 29                                      | A9 287 289 290 292 29                                  | 87 289 290 292 29                                  | 89 290 292 29                  | 90 292 29                               | 92 29    | 6   |       |                | 0    |     | 0     | 304   | 306  | 304  | 303   | 312 | 310   | 310   | 306     | 10 3   | 0.5    | 112 3    | 16 3   | = 3       | 20             |
| 4 M 280 270 273 273 274 283 283 283 283 283 283 283 283 283 283           | 251 202 203 203 203 203 203 203 203 203 203                    | 31 100 103 101 103 100 103 103 103 103 1                               | 70 273 273 274 283 283 283 28                                  | 73 273 274 283 283 28                                  | 73 279 283 283 28                                  | 79 283 283 28                  | 83 283 28                               | 83 28    | •   |       |                | •    | -   |       | 291   | 293  | 291  | 294   | 300 | 298   | 303   | 300     | 03 2   | 96     | 0.6      | 05 31  | 0.4 3     | <u>-</u>       |
| . T 200 2/0 2/0 2/0 1/0 1/0 1/0 1/0 2/0 2/0 2/0 2/0 2/0 2/0 2/0 2/0 2/0 2 | 200 210 210 210 210 210 200 200 200 200                        | 00 210 213 113 113 113 100 100 100 100 100 100 1                       | 70 280 278 281 284 285 28                                      | 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                | 78 781 784 785 78                                  | 81 284 285 28                  | 84 285 28                               | 2 2 2    | -   |       | 28.5           | - 60 |     |       |       | 294  | 294  | 294   | 302 | 301   | 304   | 302 2   | 99 2   | 95 3   | 03 3     | 0.4    | 0.5 3(    | 60             |
| 2 M 200 2/3 200 2/3 02/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/ 20/               | 00 213 20 213 20 213 00 20 20 20 20 20 20 20 20 20 20 20 20    | 06 213 200 210 201 201 202 200 00 00 00 00 00 00 00 00 00 00 0         | 13 200 210 201 201 200 200 200 200 200 200                     | 20 1 10 10 1 10 1 10 1 10 10 10 10 10 10               | RG 295 297 296 30                                  | 95 297 296 30                  | 97 296 30                               | 900      |     |       |                | 0    | - 7 | 0     |       | 312  | 308  | 317   | 314 | 311   | 313   | 318 3   | 17 3   | 318 3  | 120 3    | 26 3   | 22 3:     | 5 8            |
| 00 000 000 000 000 000 000 E D                                            | 00 000 000 000 000 000 000 000                                 | 33 703 703 703 703 703 703 703 703 703 7                               |                                                                |                                                        |                                                    |                                |                                         | , ,      |     |       |                |      |     |       |       |      | 29.8 | 302   | 308 | 305   | 312   | 311 3   | 13     | 308 3  | 113 3    | 20 3   | 21 3      | 2.4            |
| 4 M 0 285 286 287 291 293 291 2                                           | 0 285 286 287 291 293 291 29<br>350 351 358 363 365 367 367 37 | 0 285 286 287 291 293 291 29<br>60 161 168 163 165 267 267 27          | 85 286 287 291 293 291 29<br>e: 3es 3e3 3es 3e7 3e7 27         | 86 287 291 293 291 29<br>58 363 366 367 367 37         | 8/ 291 293 291 29<br>69 365 367 367 37             | 91 293 291 29<br>EE 267 267 27 | 72 787 77                               | 7 27     | א ת |       | 269            |      |     |       | n 60  |      | 8    | 285   | •   | •     | 85    | 285 2   | 5      |        | 87 2     | 89 28  | 83 21     | 9.0            |
| 268 261 258 263 265 261 281 25                                            | 268 261 258 263 265 261 281 25                                 | 2 /82 /82 /83 /83 /83 /84                                              | 20 202 102 102 102 102 103                                     | 28 783 783 781 781 7                                   | 63 263 261 261 2:                                  | 7 707 707 50                   | 7 107 10                                |          |     |       |                |      | •   |       |       |      |      |       |     | ø     | . 666 | 2 9 9 3 | 0 0    | 9.4    | 03 3     | 04 2   | 99 3(     | 0.5            |
| 6 M 279 280 279 277 277 28                                                | 279 280 279 277 277 280 280 2                                  | 79 280 279 277 277 280 280 2                                           | 80 279 277 277 280 280 2                                       | 79 277 277 280 280 2                                   | 77 277 280 280 2                                   | 77 280 280 2                   | 80 280 2                                | 7 0      |     |       | 187            | 783  |     | 6/7   | 007   |      |      |       |     | 1     |       |         |        |        |          | ı      |           |                |

PHASE III, PART 1 ---- BODY WEIGHT IN GRAMS ON STUDY DAY:

| EXPT | ANI        | SEX      | -     | 3   | 9     | 0-                                      | 13.1     | 17 2                                    |              | 24 2  | 7 31             | 32 | 34          | 38  | 4.1 | 4 5              | 8 4    | 2 5         | ,<br>SS          | 9 65  | 2 6    | 9 9          | 9 73      | 9/  | 80         | 83    | 87    |
|------|------------|----------|-------|-----|-------|-----------------------------------------|----------|-----------------------------------------|--------------|-------|------------------|----|-------------|-----|-----|------------------|--------|-------------|------------------|-------|--------|--------------|-----------|-----|------------|-------|-------|
| 1    | 1 1        |          | 1   1 | !!! | 1     | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1        | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | į            | !     | f<br>1<br>1<br>1 | 1  | !<br>!<br>! |     | 1   | ;<br>;<br>;<br>; | !<br>! | 1<br>6<br>6 | ;<br>{<br>1<br>1 | <br>  | i<br>i |              |           |     |            |       |       |
| 4370 | C          |          | 190   | 183 |       | =                                       | 9        | 82 18                                   | - 2          | 9 18  | 6 185            |    | 192         | 187 | 192 | 191              | 94 1   | 94 1        | -                | 93 19 | 1 19   | 3 193        | 3 198     |     | 195        |       |       |
|      |            |          | 180   |     | 182   | 7                                       | 2        | 71 67                                   | - 6          | 72 17 | 9 180            |    | 182         | 181 | 186 | 184              | 63 1   | 9.2         | 93 19            | 91 18 | 7 18   | 7 186        | 1619      |     | 181        |       |       |
| ٠.   |            |          |       | 176 |       | -                                       | 7        | 67 17                                   | -            | 74 17 | 6 180            |    | 182         | 183 | 186 | 186              | 83 1   | 85 1        | 86 18            | 87 18 | 3 18   |              | 3 189     |     |            |       | 98    |
|      | 504        |          | 172   |     | 167   | -                                       | -        |                                         | 9            | 64 17 | 1 174            |    | 178         | 181 | 183 | 183              | 1 80 1 | 85 1        | 84 18            | 89 18 | 6 18   |              |           |     | 189        | 193   |       |
| ~    | 0          | "        |       | 174 |       | -                                       | 0        | 73 17                                   | 0            | 1.7   | 3 176            |    | 177         | 177 | 177 | 111              | 181    | 80          | 81 18            | 82 18 | 1 1 7  | 17.          | 184       |     | 182        |       |       |
| 4370 | 506        | Ĺ.       | 172   | 173 | 168   | -                                       |          | 1.5                                     | 7            | 57 16 | 9 174            |    | 168         | 166 | 175 | 178              | 1 6/   | 80 1        | 81 16            | -     | 0 18   |              | -0        | 184 |            | 9 9   |       |
| ~    | 0          | Œ        |       | 163 |       | Ξ                                       | 3        | 63 16                                   | 3 1          | 60 16 | 3 164            |    | 176         | 166 | 170 | 168              | 7.1    | 73 1        | 78 17            | 17    | 2 1 7  |              | 1         |     |            | 177   |       |
| . ~  | . 0        |          |       |     | 173   | -                                       | 4        |                                         | 6            | 67 17 | 3 177            |    | 178         | 185 | 186 | 186              | 184 1  | 8.7 1       | 87 19            | 91 18 | 7 18   |              | 6         |     |            |       |       |
|      |            | . 4      | 175   | 172 |       | -                                       | -        |                                         | 8            | 65 16 | 9 176            |    | 173         | 178 | 1.8 | 179              | 182 1  | 86 1        | 35 18            | 87 18 | 1.8    | 2 180        | 0 182     | 188 | 185        |       |       |
|      | - د        |          | 177   | 173 | 176   | -                                       | 74 17    | . 2                                     | 3            | -     | 5 179            |    | 179         | 186 | 187 | 40               | 86 1   | 88 1        | 89 18            | 88 18 | 9 1.8  |              | 8 192     |     |            |       |       |
|      |            |          |       | 172 | 174   | -                                       | 1 1      | 71 17                                   | <br>m        | 1 18  | 0 182            |    | 184         | 184 | 186 | 186              | 188    | 91 1        | 88 18            | 87 18 | 9 18   | 9 187        | 7 192     |     | 190        |       | 8.4   |
| ٠.   |            | . 4      |       |     |       | _                                       | 7        |                                         | -            | 57 16 | 1 16             |    | 167         | 172 | 170 | 170              | 100    | 74 1        | 74 17            | 74 17 | 3 17   | 2 169        | 9 175     | 175 | 172        |       |       |
|      | -          |          | . 4   | 6   | 166   | -                                       | -        | 2                                       | -            | 67 16 | 7 17             |    | 175         | 176 | 175 | 174              | 73 1   | 80 1        | 79 18            | 81 18 | 17     | 171          | 181       |     | 181        |       |       |
|      | -          | ٠ .      |       |     | 173   | _                                       | _        | _                                       | 4            | 71 17 | 7 182            |    | 184         | 185 | 184 | 183              | 83 1   | 87 1        | 85 18            | 87 18 | 1 18   | 7 185        | 188       |     | 186        |       | 184   |
| . ~  | -          |          |       |     | 178   | -                                       | -        | 80 17                                   | 7            | 73 17 | 8 179            |    | 181         | 183 | 184 | 187              | 188    | 92 1        | 92 19            | 92 19 | 1 19   | 1 18         | 194       |     |            | 197   |       |
|      | -          |          |       | 174 | 175   | <del>-</del>                            | _        |                                         | 2 1          | 64 17 | 1 171            |    | 177         | 177 | 180 | 180              | 181    | 83 1        | 19 18            | 84 18 | 2 18   | 3 179        | 9 184     |     |            |       |       |
| ٠.   | -          |          | 172   |     | 170   | -                                       | -        |                                         | -            | 67 17 | 3 176            |    | 176         | 177 | 174 | 178              | 177 1  | 82 1        | 76 18            | 84 18 | 2 18   | 0 176        | 6 183     | -   |            |       |       |
|      |            |          | 187   |     | 183   | 7                                       | <u>-</u> |                                         | 4            | 78 18 | 7 187            |    | 190         | 193 | 195 | 194              | 192 1  | 96          | 92 19            | 94 19 | 6 19   | 3 188        | 8 195     | 197 |            |       |       |
| , `  | -          | . u      | 8     |     | 172   | 17                                      | -        | 3                                       | 4            | 70 17 | 8 180            |    | 182         | 182 | 186 | 184              | 181    | 85 1        | 86 18            | 88 18 | 9 18   | 7 186        | 191       | 197 | 193        |       |       |
|      | . ~        |          |       | 172 | 172   | -                                       | 3        | 67 17                                   | - 0          | 63 17 | 1 173            |    | 173         | 177 | 177 | 177              | 178 1  | 8.2 1       | 79 18            | 84 18 | 3 18   | 1 186        | 5 183     |     |            |       |       |
| - ~  | ~ ~        |          |       | 182 | 184   | Ē                                       | -        | 83 17                                   | 9            | 80 18 | 4 186            |    | 189         | 193 | 193 | 191              | 186 1  | 96          | 5                | 97 19 | -      |              | 19        |     |            | 199   |       |
|      | . ~        |          |       | 178 | 172   | 11                                      | -        |                                         | 4            | 68 17 | 3 178            |    | 182         | 182 | 178 | 177              | 170 1  | 78 1        | 18 18            | 81 18 | 0 17   |              | _         |     |            |       |       |
| 4370 | ~          |          |       |     | 173   | Ē                                       | - 6      | 71 16                                   | 65 1         | 67 17 | 1 17             |    | 173         | 177 | 174 | 175              | 173 1  | 76 1        | 7                | 0     | -      | 17           | -         | 1.8 | 179        |       |       |
| . ~  | ~          | · LL     |       | 170 | 167   | F                                       | - 6      | 64 16                                   | 9            | 65 16 | 171              |    | 172         | 173 | 174 | 172              | 1 20 1 | 7.5         | 74 1             | 78 17 | -      | 17           | 17        |     |            |       |       |
|      |            |          | 172   | 168 | 168   | Ē                                       | 7        | -                                       | 64 1         | 66 17 | 2 176            |    | 178         | 177 | 182 | 180              | 177 1  | 82 1        | 2 1              | 88 18 | 3 18   |              | 1 186     |     |            |       |       |
| . ~  | . ~        |          | 165   | 165 | 162   | Ĩ.                                      | -        | 65 16                                   | 4            | 62 16 | 5 169            |    | 170         | 169 | 171 | 168              | 167 1  | 74 1        | 7.1              | 76 17 | 5 17   | -            | 1 181     |     |            | 184   |       |
| . ~  |            | ٤.       |       |     | 174   | -                                       | 2 1      | 69 17                                   | 2 1          | 67 17 | 1 17             |    | 178         | 176 | 178 | 176              | 1 8 1  | 82 1        | 8                | 82 18 | -      | -            | <b>60</b> |     |            | 185   |       |
|      | 528        |          | 168   | 162 | 163   | -                                       | 7 1      | 61 16                                   | 6.4          | 59 16 | 7 17             |    | 174         | 174 | 175 | 172              | 17.1   | 77 1        | 4                | 7     | -      | 1 2          | -         |     |            |       |       |
| ~    | ~          | ı.       |       | 166 | 169   | -                                       | _        | 70 17                                   | 0            | 58 16 | 8 167            |    | 173         | 175 | 111 | 1 7 6            | 175 1  | 78 1        | -                | 7     | -      | 17           | _         |     |            |       |       |
| 4370 | 530        | <b>.</b> |       | 172 | 167   | 11                                      | 5        | 71 17                                   | 2 1          | 69 17 | 7 17             |    |             |     |     |                  |        |             | 9                | ~     | -      | <b>6</b> 0   | •         | 187 | <b>4</b> ( | 5 P   |       |
| ~    | ~          | <u>.</u> |       | 174 |       | -                                       | 73 1     | 72 17                                   | <del>-</del> | 68 17 | 4 17             |    | 177         | 176 | 171 |                  | 180    |             | _                | 9     | _      | <del>-</del> | -         |     | 6 / -      |       |       |
| ~    | m          | ıı       | 182   | 179 | 180   | 17                                      |          | 79 17                                   | - 9          | 72 17 | 7 18             |    | 186         |     | 189 |                  | 181    |             | 9                | 7     | -      | <b>~</b>     | 6         |     |            |       |       |
| -    | n          | u.       |       | 171 | 171   | 17                                      | 75 1     | 12 11                                   | 73 1         | 61 16 | 021 6:           |    | 175         | 177 | 183 | 179              | 1 8 1  | 84 1        | 80 1             | 87 18 | =      |              | -         | 6   |            | 1 9 2 |       |
|      | 6          | Ŀ        | 5.8   | 165 | 167   | -                                       | 1 0      | 71 16                                   | 69           | 67 16 | 9 174            |    | 176         | 176 | 178 | 176              | 176 1  | 82 1        | -                | 84 18 | -      | 17           | -         | -   |            |       |       |
|      | ۳.         | 44.      |       | 171 | 164 1 | 1 1 1 1                                 | -        | 70 16                                   | 69           | 66 16 | 9 16             |    | 174         | 172 | 173 | 176              | 174 1  | 82 1        | -                | 82 17 | 7 17   | 7 17         | 4 179     | -   |            |       |       |
| 3    | _          | <b>L</b> |       | 172 | 173   | -                                       | 72.1     | 73 17                                   | 74 1         | 68 17 | 1 172            |    | 178         | 175 | 178 | 176              | 175 1  | 80 1        | 80 18            | 80 18 | 3 17   | 9 17         | 4 182     | -   |            |       |       |
| 37   | 037        | 2        | 302   |     | 6     | 288 2                                   | 7        | 4 2                                     | 97 2         | 96 29 | 98 302           |    | 295         | 302 | 306 | 303              | 302 3  | 0.8         | 07 3             | 11 30 | 7 30   | 06 6         | 311       | _   |            |       |       |
| . 6  | <b>—</b> — | Σ        | 40    |     | 8 5   | 7                                       | 6 2      | 89 28                                   | 89 2         | 94 2  | 95 296           |    | 300         | 302 | 306 | 304              | 306    | 0.6         | 07 3             | 14 31 | 1 31   | 4 30         |           |     | _          |       | 320   |
|      |            | Σ        | 282   |     | 80    | 8 2                                     | 3 2      | 83 28                                   | 85 2         | 84 28 | 85 286           |    | 289         | 285 |     | 167              | 192 2  | 4           | 7 2              |       | 5 29   | 6            |           | 30  | 301        | 308   | 305   |
|      |            | Σ        |       | 265 |       | 7                                       | 2 69     | 7.1 28                                  | 67 2         | 67 28 | 66 267           |    | 270         |     | 270 | 270              | 2 0 2  | 7.1 2       | 71 27            | 74 27 | 2 27   | 4 26         | 7 278     | 278 | 277        | 286   | 2 7 9 |

|            |      | i        | <br>    | !<br>!<br>! | 1          |     | PHA     | SE I  | 11, P | ART   |     | <br>        | 8007 | WEIG  | H H I | N 1   | AMS   | S NO  | TUDY    | DAY   |        |        | <br>     | 1                 | 1            | 1      |            | ١.         |
|------------|------|----------|---------|-------------|------------|-----|---------|-------|-------|-------|-----|-------------|------|-------|-------|-------|-------|-------|---------|-------|--------|--------|----------|-------------------|--------------|--------|------------|------------|
| Z          | I SE | ×        | _       | 3 6         | -          | -   | -       | 7 2   | 0 24  | 2.7   | 31  | 3.2         |      | 38    | - 4   | 45    | 4 8   | 5.2   | 5.5     | 5.9   | 6.2    | 9 99   | 9 7      | 3 7               | 9 9          | 60 i   | 8          |            |
| 1 0        | ! _  |          | 76 27   | 5 27        | 27         | 27  | 1 28    | 28    | 3 286 | 287   |     | !<br>!<br>! | 06   | 291 2 | 66    |       | 95 2  | 9 5   | 0.1     | 2     |        | 05 29  | 8        | 30                |              | 310    | 6 307      | ~          |
|            | . ~  | 7        | 87 28   | 7           | 7          | 28  | 1 28    |       | 29    | 29    | 289 |             | 290  | (*)   | 301 2 | 9 6   | 03    | Ö     | 000     | 0.0   | 0.4    | 7      | 4        | 30                | m (          | _      | 5          |            |
| 4          | _    | 7        | 89 28   | 2 8         | 28         | 28  | 28      | 5 28  | 4 292 |       |     |             | 6    | (°)   | 03    |       | . 50  | 90    |         | 7     | ٠<br>0 | ۳<br>م | ი<br>ი   |                   | · m          |        | 3 0        |            |
| 4          | _    | 7        | 56 26   | 1 26        | 26         | 26  | 1 26    | ~     | 26    | 2 6   | 268 |             | 272  | . •   | 80    |       | 11    | 18    |         | 4     |        | 8      | 7        | 7                 | 2.9          | D (    | 6 7        |            |
| 4          |      | 7        | 76 27   | 3 27        | 27         | 27  | 2.7     | 8 27  | 3 278 | -     |     |             | 0    | 281 2 | 8 5   | 281 2 |       | 80    | 91 2    | _     | 84 2   | 9      |          |                   | ю 6          | 7      | 2 2 2      | <b>.</b>   |
|            |      | 7        | 97 29   | 5 29        | 29         | 5 9 | 30      | 7     | 7 301 | 292   | 301 |             | 8    | 4     | 5     | = -   | £ 3   | 60    | <br>    | <br>6 | 12 3   | e<br>0 | 4<br>W   | , n               | 35           | •      | , (        | . ,        |
|            |      | 7        | 74 26   | 3 27        | 2.7        | 27  | 1 27    | 4 27  | 5 278 | 275   | 278 |             | 8.0  | ~     | 98    |       | 80    | 98    | 06      | 92 2  | 88 2   | 90 28  | 9        |                   | 7            | - 0    | ס פ        | ٠,         |
| 4          | _    | ~        | 71 27   | 3 2 6       | 26         | 26  | 27      | 0 26  | 9 272 | 271   | 272 |             | 0    | ~     | 281   | 274 2 | 9     | 80    | 11      | 4     | 82 2   | 7 7    | 6        | ~                 |              | æ .    | 20         | + (        |
| . વ        |      | 7        | 76 28   | 1 27        | 2.7        | 28  | 1 27    | 9 27  | 8 283 | 275   | 284 |             | 283  | 285 2 | 282   |       | 87 2  | 6     | 66      | 2 26  | 9.8    | ë<br>0 | 3        | ന                 | 30           | -<br>- | 3 310      |            |
| . 0        |      | 7        | 36 28   | 7 28        | 28         | 28  | 1 28    | 9 29  | 0 296 | 295   | 299 |             | 2 6  |       |       | 297 3 | 40    | 305 3 | 20      | 60    | 0      | 07 30  |          | 30                | <del>-</del> | 32     | 9          | ۰ م        |
| ď          |      | ٠ ،      | 75 27   | 5 26        | 26         | 2.7 | 27      | 7     |       | 267   | 276 |             | 7    | 9     | 282   | 11    | 1 8   | 8.7   | 98      |       | ဆ      | 4 2    | 1 2      | 29                | 8            | 5      | σ          | ი .        |
| , ,,       |      |          | 75 27   | 2 27        | 27         | 27  | 27      | 1 27  | 4 270 | 27    |     |             | 7.2  | 1.5   | 81    | 0     | -     | 286 2 | 86 2    | 84    | 8.7    | 5 2    | 2 2      | ø)                | 28           | 29     | 2 8        | ത          |
| ) u        |      | , ,      | 8 6 7 8 | 28          | 28         | 2.8 | 28      | 5 2   | 7 289 | ~     | 293 |             | _    | 298 3 | 302   | 301 2 | 66    | 309 3 | 60      |       | 12 3   | 7 3    | 9        | <del>-</del>      | 32           | 35     | -          | 60         |
| ט כ        |      | • •      | 77 27   | 2 2 2 2     | 2.7        | 2.7 | 26      | 8     |       | 2.7   |     |             | 8 1  | 60    | 6     |       | 284 2 | 285 2 | 86 2    | 89 2  | 0.6    | 93 26  | 88 29    | 2 2               | 29           |        | ō          | 0          |
| ) u        |      | ' '      | 82 27   | 28          | 2.7        | 2.7 | 1 27    | 8 27  | 5 277 | 27    |     |             | 4    | 276 2 | 11    | 7.5   | 11    | 280 2 | 2.5     |       | 18     | 7      | 7 2      | 4                 | 28           |        | 7 8        | ~          |
| , ,        |      | , ,      | 28 28   | 28          | 27         | 28  | 1 28    | 0 2   | 7     | 28    | 287 |             | 16   | 290 2 |       | .,    | 2 6   | 297   |         | 99 2  | 6      | 96 29  | 7        | 7 2               | 53           | m      | 0          | -          |
| ď          |      |          | 68 26   | 4 26        | 26         | 26  | 1 26    | 2     | 6 268 | 265   |     |             | 2.0  | _     | m     | 272   | 73    | 0     | 287 2   |       | 8      | 1 2    | 2 2      | 7 29              | 29           | m      | 30         | 4          |
| v          |      |          | 74 27   | 27          | 2.7        | 27  | 1 27    | 3 2   | 7     | 2.7   | ~   |             | 9 2  | 276   | 6     |       | 6 /   | S     | 85      | 83    | Ø      | 4      | 2 2      | ~                 | 28           |        | 28         | m          |
| י ע        |      |          | 62 26   | 0 26        | 26         | 26  | 1 26    | 5 26  | ~     | ~     | 268 |             | 6 2  | 9     | 6     | 7     | 2 9   | 272   | 275 2   | 77 2  | ~      | 8 2    | 6 2      | 3                 | 2.7          | ~      | 2 8        | 4          |
| , ע        |      |          | 8 6     | 1 29        | 28         | 29  | 29      |       | 4 294 | 292   | 294 |             | 9 6  | ~     | 80    |       | 297   | • •   | 0.5     |       | 0      | 7      | က        | <del>ღ</del><br>⊷ | 29           | 30     | 30         | e          |
| ى د        |      | ٠ ^      | 98      | 8 28        | 28         | 28  | 3 28    | 9 2   | 9 292 | 7     | 29  |             | 16   | _     | 296   | 9.7   | 96    | m     | 4       | 0 7   | 0      | 8      |          | n                 | 30           | e<br>e | 30         | € 0        |
| ) ц        |      | , ,      |         | 27          | 26         | 2.7 | 27      | 5 27  | 5 27  | 27    | 2.7 |             | 7.4  | 6 9   | 4     | 4     |       | 92    | 279 2   |       | ~      | 7 2    | 9 2      | 7                 | ~            | 2.7    | 27         | 60         |
| o u        |      | 4 (      | , ,     |             | 27         | 28  | 28      | 6 29  | 0 29  |       | က   |             | 0.2  | 60    | 314   | 112   | П     |       | 16 3    | 22 3  | 14 3   |        | e        | 0                 | 32           |        | 33         | 0          |
| <b>5</b> 6 |      | , ,      | 7 7 7   | 27          | 2.7        | 28  | 28      | _     | ~     | 2.7   | 2.7 |             | ~    | S     | 280   | ~     | 285   | 285   | 86 2    | 88 2  | 89 2   | 8 2    | 9        |                   | 28           | 7      | 2 9        | 0          |
| o 4        |      | • •      |         | , ,         | 26         | 26  | 2 2 6   | . 6   | 7 27  | 26    | 26  |             | 269  | 271 2 | 271   |       |       | e     | 284 2   |       | 85 2   | ~      | 0 2      | 7 2               | 28           | 8 29   | 29         | _          |
| ou         |      | , ,      | , ,     | , 6         | 2 8        | 28  | 2 8 2 8 | 9 2 8 | 5     | 29    | 29  |             | 6    | 8 8   | 70    | 03    | 90    | 306   | 306 3   | 11 3  | 0.9    | 1 3    | e        | 2                 | _            | m      | 35         | 0          |
| <b>5</b> 4 | - a  | , ,      |         |             | 27         | 27  | 3 27    | 5 2   | 5 27  | 7     | 28  |             | 60   | 18    | 286   |       | 280 2 | 283   | 89 2    | 6     | 91 2   | 90 28  | _        | 1 29              | 29           | ñ      | n          | _          |
| <b>)</b> ( |      | ' '      | . 4     | 6 27        | 28         | 2 8 | 2 8     | 6 28  | 8 28  | 28    | 7   |             | 284  |       | m     | 288   | 89    | 293   | 95 2    | 9.7   |        | 4      | ო        | 0                 | 0            | 0      | n          | CO.        |
| , ~        | , .  | . ~      | . 60    | 4 27        | 27         | Ø   | 1 28    | 0 2   | 2 28  |       | 28  |             | 280  | ~     | 289   | 6     | 80    | 262   | e       | 66    | 95 2   | 8      | 37 29    | e<br>S            | 29           | 33     |            | - (        |
| . 0        | -    | ~        | 77 2    | 9 25        | 25         | ~   | 1 2     | 6 26  | 7 268 | ~     | 5 6 |             | 270  | 274   | 80    | 277   | 275   | 283   |         | 9 8   |        | 2      | 7        | 3                 | 53           | ~      | 7          | so .       |
|            | . ~  | ~        | 91      | 7 28        | 28         | 28  | 7       | 0 28  | 9 285 | 29    | 285 |             | 287  | 285   | 6     | , 982 | 4     | . 365 | . 86    | œ     | 0      | 9      | <b>4</b> | ਨ<br>ਨ            | 30           |        | m (        | - 4        |
|            |      | ~        | 84      | 2 28        | 2.7        | 27  | 8       | 2 28  | 3 284 | 7     | 28  |             | 286  | 287   | S     | 291   | 60    | 297   | 96      | ~     |        | 0      | 5        | m<br>m            | 30           | m      | <b>7</b>   | Sn .       |
|            | 4    | ~        | 74 2    | 9 27        | 26         | 27  | 1 2     | 1 27  | 2 276 | 27    | 278 |             | 283  | 278   | 286   | 281   |       | 285   | 88 2    | 93 2  | 92 2   | 4      | 7        | რ<br>~            | - 29         | m      | ω,         |            |
|            |      | _        | 81 1    | 0           |            | 8   | -       | 1 17  | 8 174 | 179   | 18  |             | 183  | 183   |       | . 781 | 19    |       |         | 86 1  | 85 1   | 83 1   | 30 18    |                   | æ<br>₩       | 5 - 8  | 9          | ď          |
| (7)        | 60   | _        | 4       | 4           |            | 1.7 | 1 16    | 7 15  | 7     |       |     |             |      |       |       |       |       |       |         |       |        |        |          | ,                 | •            | •      | •          |            |
| ~~         | 6    | -        | -       | 2 18        |            | 8   | -       |       | 6 169 | 175   | 173 |             | 178  | 178   | 180   | 179   |       |       |         |       | 4      | 48     | _        | ۰ م               | 2 !          | n 1    |            |            |
| •          | 0    | -        | -       | 5 16        | 4          | 16  | 5 16    | 7 16  | 4 158 | 191 ( | 166 |             | 170  |       | 171   | . 7.7 |       |       | 73 1    |       | 73 1   | 4      | •        | 4                 | - :          | · ·    | - •        | <b>+</b> ( |
| - 4        | _    | <u> </u> | 2 1     | _           | 80         | 17  | 4 17    |       | 7 164 | 168   | -   |             | 173  | 177   |       |       | . 571 |       | 1 6 2 1 |       | 81     | - ·    | <b>.</b> | e .               | 9            |        |            | •          |
| 5          |      | -        |         | 8           | <b>o</b> n | 1.7 | -       | 9 16  | 9 167 | 7 167 | 16  |             | 170  |       |       | 173   |       |       | 177     |       |        | E .    |          | - ·               | - •          | 9 4    | <b>5</b> 6 | - •        |
| •          | m    | <u>_</u> | 9       | - 6         | ~          |     | 0 15    |       | 6 152 | 154   | 152 |             | 158  |       | 163   | 162   | . 091 | 991   | 162 1   | 66    | 65 1   | 6.4    | 76 16    |                   | 9 9          | 9 .    | 9 .        | o e        |
| ٠,         | 4    |          | -       | 1           | €0         | 17  | 7       | 2 17  | 4 165 | 176   | 169 |             | 180  | 180   | 182   | 180   | 8 / 1 | 182   | 181     | 81    | 84     | 1 6 2  | 77 18    | 2 18              | 4 18         |        | 4<br>2     | ~          |
|            | -    |          | ·       |             |            |     |         |       |       |       |     |             |      |       |       |       |       |       |         |       |        |        |          |                   |              |        |            |            |

PHASE III, PART 1 ---- BODY WEIGHT IN GRAMS ON STUDY DAY:

| EXPT    | AN 1       | SEX        | 1     |     | 9     | 10  | 13    | 17   | 20  | 2.4  | 27    | 31               | 32    |                                         | 38       | 4        |              | ( ()<br> <br>  (0)<br>  (1) | 5.2.5  | 5 5         | 9 62         | ٩            | 69 9  | 7.3          | 16             | 8   | 83   | 18   |
|---------|------------|------------|-------|-----|-------|-----|-------|------|-----|------|-------|------------------|-------|-----------------------------------------|----------|----------|--------------|-----------------------------|--------|-------------|--------------|--------------|-------|--------------|----------------|-----|------|------|
| 1       | 1          |            | !     | 1   | 1     | -   |       |      |     | 1 1  | <br>  | ;<br>!<br>!<br>! |       | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | !        | 1        | 1            | 1                           | 1      |             | :            |              | 1     | 1 1          |                |     | <br> | 1    |
| 4371    | 545        |            | 180   | 178 | 180   |     | 181   | 175  | 174 | 168  | 171   | 167              | _     | 180 1                                   | 80 1     | 6        | 80 18        | 7                           | 18 18  | 3 18        | 5 182        | -            | 181   | 60           | 186            | 183 | 187  |      |
| , m     | 4          |            |       | 178 |       |     | 179   | 182  | 177 | 174  | 177   |                  | _     | 181                                     | 2        | 81 18    | 81 17        | 9 18                        | 4      | 5 18        | 4 185        | 18           | 5 182 | 18           | 18             |     |      | 188  |
| 4371    | 4          | 14.        |       |     | 185   |     | 185   |      | 184 | 178  | 173   |                  | _     | 186 1                                   | 90 1     | 2 1      | 88 18        | 35 18                       | 89 18  | 5 19        | 3 189        | -            | 0 189 | 194          | 195            | 191 |      |      |
| _       | 4          | <b>L</b> . |       |     |       |     | 168   | 165  | 166 | 168  |       | 165              | _     | 175 1                                   | 9        | 17 17    | 78 17        | 75 18                       | 3      | 4 18        | -            | 18           | 17    | -            | 18             |     | 187  |      |
|         | 4          | 14.        | 182   | 179 | 178   |     | 180   | 179  | 177 | 176  | 179   |                  | _     | 186 1                                   | 87 1     | 7        | 90 18        | 37 19                       | 15 19  | 1 19        | 3 191        |              | 2 194 | 19           | 6              |     |      |      |
| (       | S          | L          |       | 176 | 175   |     | 177   | 176  | 177 | 171  | 178   | 173              | _     | 181                                     | 2 1      | 9        | 83 18        |                             | 7      | 4 18        | -            | -            |       | -            |                |     |      | 185  |
|         |            | u.         | 170   | 168 | 167   |     | 170   | 165  | 165 | 161  | 169   | 164              | _     | 74 1                                    | 76 1     | 78 17    | 79 17        | 9 18                        | 11 17  | 9 180       | 0 178        | <del>-</del> | 1 176 | 181          | 179            | 182 | 8 4  | 184  |
| 4371    | 552        | u.         | 183   | 182 | 179   |     | 183   |      |     |      |       |                  |       |                                         |          |          |              |                             |        |             |              |              |       |              |                |     |      |      |
| 4371    | 553        | <b>L</b> . | 175   | 173 | 172   |     | 172   | 170  | 169 | 163  | 173   | 165              | _     | 1 9 1                                   | 8        | -        | 78 17        |                             | -      | 2 18        | -            |              |       | <del>-</del> | <u>~</u>       |     |      |      |
| ຕ       | 90         | 14.        | 176   | 173 | 173   |     | 172   | 172  | 173 | 166  | 171   | 166              | _     | 178 1                                   | 7.5 1    | 78 17    | 78 17        | 8 18                        | 10     | 2 18        | 2 181        |              |       | _            | 18             | 186 |      |      |
| ~       | S          | u          |       | 166 | 167   |     | 171   | 170  | 171 | 168  | 174   | 167              | _     | 176 1                                   | 75 1     | 76 17    | 77 17        | 4 18                        | 10 18  | 0 17        | 7 177        | 178          | 8 176 | 179          | 184            | 179 | 183  |      |
| ~       | v.         | L          |       |     | 174   |     | 175   | 175  | 176 | 170  | 172   | 169              | _     | 1 8 1                                   | 78 10    | 80 17    | 78 17        | 6 18                        | 11 18  | 0 184       | 4 181        | 181          | 17    | 181          | 184            | 182 | 188  | 189  |
| , ,     | , ,        | . 44       | 17.2  |     |       |     | 166   | 162  | 162 | 161  | 165   |                  | _     | 172 1                                   | 72 1     | 75 17    | 73 17        | 70 17                       | 4 17   | 4 17        | 6 177        | 17           | 9 172 | 176          | 183            | 178 | 184  | 181  |
| ٠ ٣     | י נ        |            |       |     |       |     | 179   | 180  | 180 | 175  | 176   |                  | _     | 184 1                                   | 85 1     | 85 18    | 87 18        | 36 18                       | 18     | 7 19        | 6 190        | 19           | 185   | 192          | 195            | 189 | 198  | 194  |
| , (     | , 4        | . ц        |       |     | 8 4   |     | 171   | 169  |     | 164  |       | 164              | _     | 1 9 2 1                                 | 76 1     | 9 2      | 17           | 15 17                       | 9 18   | 1 18        | 1 178        | 181          | 175   | 179          | 182            | 179 | 185  | 182  |
| , ,     | י נ        | - 4        |       |     | 7 6 6 |     | 184   | 18.5 |     |      | 168   |                  | _     |                                         | 92 1     | 5        | 90 18        |                             | 12 19  | 0 19        | 5 190        | 19           | 0 183 | 189          | 189            | 193 | 198  | 195  |
| ~ (     | 0 (        |            |       |     | 7 0   |     |       |      |     | 16.0 |       |                  | _     |                                         | -        |          | 0            |                             | 4      | 6 17        | 5 176        | 17           | 7 174 | 180          | 183            | 179 | 182  | 178  |
| ~ (     | ۰ م        |            |       |     |       |     |       |      |     |      |       | 15.2             | _     |                                         | 4        | -        | 3            |                             | 9      | 5 16        | 16           | 4 168        | 8 163 | 167          | 168            | 168 | 169  | 170  |
| 1 / 5 4 | •          |            |       |     |       |     |       |      |     |      |       |                  | . 47  |                                         | -        | -        | - 1          | -                           | -      | 2 18        | 180          | 181          | 1 172 | 178          | 183            | 179 | 183  | 181  |
| n (     | ، م        |            | 2 .   |     |       |     |       |      |     |      | 1 7 7 |                  | 7 2   |                                         |          |          | . ~          | -                           |        | 4 18        | 18           | ÷            | 6 182 | 186          | 188            | 186 | 190  | 187  |
| n (     | 0          |            |       |     | - 4   | 4   | 1 7 7 | 170  |     |      | 1 7 0 | _                |       |                                         | · -      |          | -            |                             | 7      | 5 18        | 100          | 18           |       | 189          | 191            | 186 | 191  | 191  |
| ~       | ۰          | . 1        |       |     | •     | 0   |       |      |     |      |       | •                |       |                                         |          |          | -            |                             |        | 5 17        | _            | 17           | 6 168 | 176          | 175            | 174 | 179  | 175  |
| m       | ω          | <b>L</b>   |       |     |       |     | 200   | 0 0  |     |      | 0 0   | . •              |       |                                         | - «      | -        | -<br>-       | · -                         |        |             | 1 2          | 1            | 17    | 1            | - <del>-</del> | 179 |      |      |
| n       | ø          | <b>L</b> . | 174   |     | •     |     | 50 1  |      |     | n 1  |       | •                | 2 .   |                                         |          |          |              | - +                         |        |             | . «          |              |       |              | -              | 182 | 190  | 186  |
| 4371    |            | L.         |       |     |       |     | 1 / 8 |      |     |      |       | •                |       |                                         | - •      | - ·      |              |                             |        | - ·         |              |              |       | - <b>-</b>   | · •            |     |      |      |
| 4371    | 869        | L.         | 167   | 166 | 167   |     | 164   | 163  |     |      | 165   | -                | 164   |                                         | - ·      | _        | 7            |                             | n (    |             |              |              |       |              |                |     | - 4  |      |
| 4371    | 570        | <b>L</b>   | 172   | 169 |       |     |       |      |     |      | 167   | -                | m     |                                         | -        | _        |              | _                           | - ·    | 9           |              | - 0          | - :   |              |                |     |      |      |
| 4371    | 571        | ш,         | 173   | 171 | 170   |     | 171   | 169  | 172 |      | 171   | -                |       | 176 1                                   | <b>~</b> | <b>-</b> | 80           | -                           | -<br>- | 2 1 2       | <del>-</del> | 2            | _     | <b>2</b>     | 0              |     |      |      |
| 4371    | 572        | Ŀ          | 168   | 160 | 162   |     | 165   | 159  | 160 | 157  | 163   |                  | 162 1 |                                         | 9        | -        | <del>-</del> | -                           | 6      | 6 17        | 9            | 1            |       | 1            | -              |     |      | \$ . |
| 4371    | 573        | ١.         | 170   | 172 | 171   |     | 171   | 173  | 173 | 171  | 174   |                  | 6     | 9                                       | -        | 2        | -            | 9                           | 80 17  | &<br>-<br>8 | - 8          | - 0          | 17    | -            | œ              | 181 |      |      |
| 4371    | ~          | u.         | 170   | 170 | 169   |     | 168   | 170  | 168 | 164  | 165   |                  | 0     | 173 1                                   | 77 1     | 4        | 9            |                             |        | 5 18        | 17           | 17           | 17    | 60           | 18             | ø   | Ø    |      |
| 4372    | -          | Y          | 308   | 297 | 293   | 294 | 297   | 296  | 294 | 967  | 289   | 295              | •     | 290 2                                   | 95 3     | 03 25    | 99 30        | 30                          | 2      | 296         | 30           | 30           | 0     | 5            | 3              | 0   |      | -    |
| 3.7     | ~          | Σ          | σ     | 291 | 289   | 290 | 292   | 294  | 291 | 293  | 294   |                  | ••    | 299 3                                   | 0 0 2    | 95 3     | 04 30        | 06 30                       | 08 30  | 7 30        | 8 306        | <u>.</u>     | 2 308 | 316          | <u>.</u>       |     | ~    | _    |
| . ~     | . ~        | Σ          | 293   | 60  | 60    | 8   |       |      |     | 294  | 295   | 295              |       | 297 2                                   | 97 2     | 99 2     | 6 3          | 04 30                       | 04 30  | 5 30        | 906 /        | 30           | 8 302 | 306          | 310            | 304 | 312  | 306  |
|         |            | <b>.</b> 3 | •     |     | ~     | ~   | 7     | 279  |     | 286  | 284   |                  | .•    |                                         | 89 2     | 90 2     | 85 29        | 94 29                       | 92 29  | 0 29        | 4 289        | 9 295        | 5 290 | 1 299        | 301            | 299 |      | 295  |
|         | - 1        | : 3        | ۰ ۱   | . ن |       |     | •     | ~    |     | 276  | 275   |                  | 14    | 9 2                                     | 85 2     | 1 2      | 80 28        | 81 28                       | 85 28  | 7 29        | 0 293        | 3 291        | 1 286 | 295          | 299            | 293 | 301  | 299  |
|         | . a        | . 3        | σ     | •   |       | 285 | 60    | 282  |     | 285  | 284   | 285              | . •   | 286 2                                   | 89 2     | 88 2     | 90 29        | 97 29                       | 97 30  | 2 30        | 6 305        | 5 303        | 3 302 | 310          | 313            | 310 | 316  | 311  |
|         | ) <b>«</b> | Ξ.         |       | •   | 60    | 60  | 80    |      |     | 290  | 288   |                  |       | 292 2                                   | 91 2     | 92 2     | 90 29        | 93 29                       | 96 29  | 7 30        | 3 303        | 30           | 2 296 | 308          | 311            | 302 | 314  | 311  |
| , ,     | ) «        | : 3        |       | · • | 9     | •   | ဖ     | 269  | ဖ   | 7    |       | 269              | • •   | 273 2                                   | 71 2     | 78 2     | 74 26        | 69 28                       | 80 28  | 1 28        | 5 278        | 8 286        | 6 279 | 1 2 9 1      | 289            | 291 | 294  | 295  |
|         | ) ec       | Σ          |       | , i | . ~   | ·   | ~     | ~    | ~   | •    |       | 60               | • •   | 68                                      | 90 2     | 97 2     | 94 29        | 95 29                       | 99 30  | 1 30        | 3 305        | 5 303        | 3 298 | 3 308        | 308            | 308 | 314  | 313  |
| , ,     | 9          | : 3        | 2 0 0 |     | 286   | 286 | . eo  |      |     | 291  | 286   | 291              | .4    | 291 2                                   | 92 2     | 6 2      | 93 29        | 99 29                       | 97 30  | 0 30        | 7 305        | 5 302        | 2 299 | 306          | 309            | 304 | 309  | 306  |
| 5       | 20         | Ε          | ת     | 0   | 0     | 0   | •     |      |     |      | )     |                  | •     |                                         | ,        | )        |              |                             |        |             |              |              |       |              |                |     |      |      |

PHASE III, PART 1 ---- BODY WEIGHT IN GRAMS ON STUDY DAY:

6 10

6

EXPT ANI SEX -1

83 87

80

| :        |      |      |     | 1    | 1   | 1   | 1   | 1 1 | 1   | 1 1 1 | 1         | 1 1 1  | 1     | 1     | 1   |     | 1     | 1   | 1      | 1    |              | 1 1 1 1 | 1 1 1 1 |       | !   | 1        |
|----------|------|------|-----|------|-----|-----|-----|-----|-----|-------|-----------|--------|-------|-------|-----|-----|-------|-----|--------|------|--------------|---------|---------|-------|-----|----------|
| 4372 087 |      | σ    | 294 | 293  | 294 | က   | 29  | 295 | 298 | 293   | 296       | 2 9    | 3 29( | 6 298 | 298 | 311 | 310   | 313 | 312 3  | 16 3 | 11 30        | 08 31   | 7 321   | 314   | 329 |          |
| 372 08   |      |      | ~   |      | 281 |     | 80  | 283 | 284 | 288   | 283       | 28     | 7 28  | 8 292 | 291 | 299 | 298   | 301 | 305 3  | 03 2 | 96 29        | 96 30   | 3 30    | n     | -   |          |
| 372 08   |      | 9    | ယ   | ဖ    | 9   | 26  | 262 | 263 | 268 | 270   | 271       | 2.7    | 1 27  | 8 283 | 279 | 285 | 283   | 285 | 289 2  | 86 2 | 88 28        | 84 29   | 3 297   | 7     |     |          |
| 372 09   |      | 6    | 290 |      |     | 2 8 | 60  |     | 288 | 288   | 288       | 28     | 8 29  | 4 301 | 562 | 301 | 304   | 9   | 308 3  | 0    | 7 3          | 5       | 3 31    | 90    | ~   | -        |
| 372 09   |      | 40   | ~   |      | 278 | ~   | ~   | 279 | 279 | 282   | 285       |        | 1 28  | 9 292 |     | 781 | 5 6 2 | 00  | 26     | 0.0  | 9 2          | 9       | 30      | 30    | _   | 0        |
| 72 09    |      | 292  | 291 | 60   | 6   | 292 | 6   | 293 | 297 | 297   | 297       | 2 9    | 3 30  | 3 310 | 30  |     | 311   | 4   | ₹      | 2    | 9            | е<br>С  | 1 32    | 35    | 329 |          |
| 72 09    |      | _    | 268 |      | 266 | 269 | ~   | 272 | 275 | 276   | 281       |        | 4 28  | 7 289 | 7 8 |     | 294   | ~   | 86     | 26   | 2            | 0       | 0 30    | 5 3   | 306 | 304      |
| 2 09     |      | 60   | 281 | 7    | ~   | 281 | 283 | 285 | 288 | 289   | 293       | 29     | 5 29  | 4 302 | 29  | 305 | 308   | 6   | 5      | 60   | 2            | 7       | 3 31    | 31    | ~   | 31.      |
| 72 09    |      | ~    | 271 | ~    | 272 | 251 | 261 | 266 | 279 | 267   | 276       |        | 8 27  | 6 275 | 27  | 278 | 285   | _   | 9 8    | 8    | 9            | 2 2     | 8 29    | 7 3 ( | Ö   | 294      |
| 372 09   |      | ~    | 272 | 270  |     | 273 | 276 | 277 | 270 | 278   | 279       |        | 9 28  | 3 283 | 7   | 289 | 273   | 6   | 288 2  | 06   | 8            | 8 2     | 2 29    | 2 9   |     | 295      |
|          |      | ဖ    | 264 |      | 264 | 264 | 797 | 267 | 272 | 269   | 272       |        | 3 27  | 3 277 | 273 | 279 | 279   | 0   | 83     | Ø    | 1 2          | 6 2     | 5 29    | 28    | 6   |          |
| 72 09    |      | •    | σ   | 6    | 292 | 293 | 296 | 295 | 298 | 296   | 303       | 30     | 3 30  | 8 310 | 306 | 314 | 315   | 316 | 319 3  |      |              | 6       | 7 33    | 32    | ~   | 328      |
| 72 09    |      | 284  |     |      | 277 | 280 | 60  | 282 | 281 | 282   | 286       |        | 5 28  | 7 288 | 289 | 295 | 292   | 298 | 297 2  | 99 2 | 9 2          | 9       | 3 30    | 30    |     |          |
| 72 10    |      | -    | ~   | 271  |     | 278 | 40  | 285 | 294 | 293   | 292       | 28     | 9 29  | 6 297 | 7   | 306 | 302   | 306 | 307 3  | 0.6  | ල<br>ස       |         | 4 31    | • •   | ~   | 320      |
| 72 10    |      |      | 276 | 7    | 272 | 274 | ~   | 279 | 276 | 280   | 284       | 28     | 7 29  | 1 290 | 7   | 295 | 299   | 301 | 300    | 013  |              | က       | 6 30    | 30    | 0   |          |
| 72 10    |      | - 10 | S   | 2    | S   | ø   | 261 | 262 | 268 | 269   | 273       | 2.7    | 5 27  | 6 282 | 281 | 288 | 290   | 289 | 236.2  | 94 2 | 85 27        |         | 8 29    | 29    |     |          |
| 7 10     |      | 276  | 270 |      |     |     | 9   | 269 | 269 | 268   | 270       | 26     | 8 26  | 9 275 | 7   | 274 | 275   | 80  | 276 2  | 77 2 | 76 27        | 73 28   | 0 283   |       |     | 283      |
| 7.2 1.0  |      |      | 259 | 9    |     | 261 | ø   |     | 267 | 266   | 265       | 26     | 8 26  | 9 272 | ~   | 277 | 278   | 279 | 283 2  | 82 2 | 80 27        | 7       | 60      |       |     | 967      |
| 72 10    |      | 279  | 265 | 264  |     | ~   | ~   |     | 284 | 285   | 288       | 28     | 9 29  | 0 293 | 7   | 282 | 181   | 301 | 302 3  | 03 3 | 05 29        | 9       | 1 314   | 310   | 315 | 317      |
|          |      | . 00 | 2.7 | 276  | 2.7 | 284 | €   |     |     |       |           | 2 9    | 0 29  | 1 291 | 294 | 291 | 299   | 297 | 300 2  | 94 2 | 97 29        | 95 30   | 2 301   | 2 9   |     | 302      |
| 373 10   |      | -    |     | 273  | ~   | 7   | ~   |     | 283 | 285   | 286       | 28     | 6 28  | 9 290 | 7   | 296 | 299   | 0   |        | σ    | 4 2          |         | 9       | 296   |     | 303      |
| 4372 108 |      | 272  | 26  | 269  | 27  | 278 | 277 |     | €   |       |           | 28     | 4 28  | 5 289 | 287 | 286 | 289   | 297 | 293 2  | 95 2 | 7 2          | 97 29   | 7 30    | 30    |     |          |
| 373 10   |      | . 00 | 27  |      | ~   | 288 | €0  |     | 286 | 285   | 288       |        | 2 28  | 5 287 | 7   | 286 | 291   | 289 | 294 2  |      | 4 2          | 39 29   | 9 302   | 2.9   | 301 | 298      |
| 7        |      | . 40 | 28  | . 60 | 28  | 28  | 6   | 293 | 300 | 299   | 303       | 2 9    | 9 30  | 4 309 | 305 | 304 | 308   | 310 | 311 3  | 10 3 | 11 30        | 08 31   | 7 317   | 313   |     | 289      |
| 7.5      |      | , α  | 2 8 |      | 2.7 | 28  | €0  | 286 | 285 | 286   | 284       | 28     | 5 28  | 4 289 | 288 | 291 | 291   | 50  | 297 2  | 94 2 | 93 2         | 88 29   | 5 30    | 7     |     | 297      |
|          |      |      | 27  | 272  | 2.7 | 2.7 | ~   |     | 283 | 283   | 282       |        | 2 28  | 1 287 | 285 | 287 | 292   | 294 | 295 2  | 94 2 | 93 2         | 93 30   | 0 307   | 300   | 31  | 305      |
| 72 57    |      | ٠ م  | - 8 | - 40 | -   | _   | Ø   | 186 | 184 | 184   | -         | 86 19  | 0 19  | 0 190 | 192 | 188 | 194   | 192 | 199 1  | 94 1 | 96 15        | 92 19   | 9 199   |       | 201 | 202      |
| 72 57    |      | , r  | 1   | 173  | 1   | 17  | 173 | 171 | 172 | 176   | _         |        | 9 18  | 0 182 | 180 | 179 | 182   | 182 | 182 1  | 83 1 | 83 17        | 78 18   | 5 188   | 183   | 189 | 186      |
| 72 57    |      | . 60 | 17  |      | 17  | 17  | 174 | 175 | 173 |       | _         | 76 18  | 0 18  | 3 185 | 183 | 180 | 184   | 183 | 185 1  | 82 1 | 82 17        |         | 0 183   | 17    | 182 | 183      |
| 72 57    | . LL | 172  | 17  |      | 169 | 170 | 166 | 168 | 167 | 171   | _         | 171 17 | 6 17  | 9 180 | 177 | 173 | 178   | 181 | 181    |      | 9            | 2       | 8 17    | 17    |     |          |
| 72 57    |      | 177  | 175 | 176  | 17  | 17  | 179 | 173 | 170 | 179   | -         | 9      | 9 18  |       | 18  | 184 | 187   | 188 | 191    |      | 7            | 4       | 2 19    | 6     | 193 | 196      |
| 72 58    |      | 167  |     | 163  | 16  | 16  | 160 | 159 | 160 | 162   | _         | 65 16  |       | 170   | 16  | 168 | 174   |     | 174 1  |      | 4            | -       | 2       | -     |     | 179      |
| 72 58    |      | 191  | 188 | 187  | 18  | 18  | 183 | 187 | 185 | 188   | _         | 9      | 2 19  | 5 196 | -   | 191 | 198   | 192 | 1 102  |      | -            | 4       | 0 20    | 20    |     | 203      |
| 72 58    |      | 176  | 171 | 174  | 17  | 17  | 175 | 176 | 174 | 175   | _         | 115 17 | 6 18  | 0 182 | 178 | 175 | 181   | 181 | 184 1  | 80 1 | 7            | 7       | 2 18    | - 3   |     |          |
| 72 58    |      | 187  | _   |      | 18  | 18  | 182 | 178 | 179 | 178   | _         |        | 6 18  | 9 189 | 187 | 187 | 195   | 192 | 194 1  |      | 4            | 9       | 6 19    | 6     | 202 |          |
| 72 58    |      |      | 10  | 17   | 17  | 17  | 171 | 173 | 174 | 172   | <b></b> - | 71 67  | 7 17  | -     | 176 | 178 | 181   | 179 | 183 1  |      | 7            | 6       | 2 18    | 6     |     |          |
| 72 58    |      | 188  | 186 | _    | _   | -   | 181 | 183 | 182 | 182   | -         | 86 18  | 8 19  | 0 193 | 193 | 188 | 195   | 961 | 1 96 1 |      | 4            | 2       | 19      | -     |     | 195      |
| 72 58    |      |      | _   | 171  | 17  | 17  | 165 | 169 | 171 | 167   | <b>-</b>  | 6. 17  | 1 17  | 3 172 | 175 | 172 | 180   | 178 | 180 1  | 76 1 | 7 1          | 4       | 9 17    | 178   | 183 | 180      |
| 72 58    |      | 175  | 174 |      | 175 | 175 | 173 | 172 | 169 | 171   | _         | 74 17  | 4 17  | 8 179 | 181 | 175 | 182   | 180 | 182 1  | 81   | <del>۔</del> | 7       | 80      | 185   | 187 | 80       |
| 372 58   |      |      | -   | 16   | 16  | 17  | 167 | 164 | 166 | 169   | -         | e)     | 2 17  | 6 178 | 178 | 177 | 179   | 177 |        |      | 7            | _       |         | 178   | 180 | <b>∞</b> |
| 2 5      |      | 169  | 16  | 168  | 169 | 169 | 169 | 164 | 166 | 167   | -         | 170 17 | 2 17  | 5 171 | 175 | 176 | 180   | 177 | 183    | 80 1 | 78 17        | 73 18   | 0 184   | - 8   | 184 | 178      |

8 7 8 6 9.0 8 2 8 5 8 1 9 / 1 6 7 29) 27, 28.1 7.8 1 7 8 8.4 1 3 1 8 2 6.2 7.9 9.4 BODY WEIGHT IN GRAMS ON STUDY DAY 8 5 7.9 8 2 8 7 8 2 8 2 8.4 8 5 8 2 5 2 8 1 4 8 4.5 6.8 6 9 3. PHASE III, PART 1 ø 8 2 6 9 SEX EXPT ANI . 25 

8.5 8.7 6 2 BODY WEIGHT IN GRAMS ON STUBY DAY: 6 9 5 5 4 5 7.9 6.9 5.8 6 8 7.9 PHASE III, PART 1 m -6.4 8 1 SEX EXPT ANI 6 1 5 6 2 9 

8.7

8 7 9 / 9 9 6 9 6 2 5 9 5 5 2 5 4 6 2.3 က 8 8 EXPT ANI SEX 0.44 

BODY WEIGHT IN GRAMS ON STUDY DAY:

PHASE III, PART 1

PHASE III, PART 2 ---- BODY WEIGHT IN GRAMS ON STUDY DAY:

19 23 26

16

EXPT ANI SFX

6 5

58 61

|       | 35     | 3.1      | 32     |       | 33     | 33           | 34   | 33       | 30     | 3    | 34     | 32   | 32       | 327   | 32      | 32    | 30     | 31       | 32     | 32   | 32   | 31   |        | 32    | 32      | 9        | 3            | 3            | 33   | 3     | 33           | 32    | m       | ~     | ~        | 337   | 328    | 177 |
|-------|--------|----------|--------|-------|--------|--------------|------|----------|--------|------|--------|------|----------|-------|---------|-------|--------|----------|--------|------|------|------|--------|-------|---------|----------|--------------|--------------|------|-------|--------------|-------|---------|-------|----------|-------|--------|-----|
| 30    | 35     |          | 332    | 3     | 33     | n            | 3.4  | 33       | n      | 29   | 32     | 30   | 32       | 32    | 32      | 32    | 30     | 31       | 32     | 32   | 33   | 31   | 33     | 329   | 33      | 33       | 32           | 32           | 33   | 30    | 33           | 32    | က       | 32    | n        | n     | 325    | •   |
| 30    | e      | 309      | 331    | -     | က      |              | 33   | (C)      | 0      | 6    | 32     | 3    | 32       | n     | 35      | 32    | 30     | 3        | 32     | n    | 33   | 31   | 33     | n     | 33      | 33       | 32           | 31           | 34   | _     | 33           | 33    | က       | 33    | 33       |       | 326    | •   |
| 30    | 6 324  | •        | 8 325  | n     | 327    | 342          | 34   | n        | n      | C    | 32     | 6    | 32       | 32    | 32      | က     | e      | 31       | m      | 32   | 33   | 31   | 32     | 328   | 33      | 33       | 32           | 93           | 33   | n     | 33           | 33    | က       | 32    | 33       | n     | 324    |     |
| 5 3   | _      | 30       | 5      | 31    | 32     | က            | 33   | 32       | n      | 30   | 31     | 31   | က        | 32    | 32      | 31    | m      | 31       | 3      | C    | 33   | 31   | 32     | 325   | 33      | 33       | n            | 3            | 33   | m     | 32           | 32    | e       | 32    | m        | 334   | 325    |     |
| 5 9   | 5 32(  | 30       | 31     | 31    | 32     | 33           | 33   | 33       | 30     | 30   | 31     | 30   | 31       |       | 32      | 31    | 30     | 31       | 31     | 32   | 33   | 31   | 32     | 325   | 33      | 33       | <del>-</del> |              | 33   | 9     | 32           | 3.2   | က       | 3     | 33       | ë     | 324    |     |
| 29    | -      | 30       | 31     | 30    | 32     | 32           | 32   | 7        | 30     | 0    | _      | 30   | 3        | -     | 31      | 31    | 30     | 30       | 31     | 32   | 32   | 30   | 2      | က     | 32      | 32       | 31           | 31           | 32   | _     | ~            | 31    | 32      | 31    | 32       |       | 320    |     |
| 30    | 31     | 30       | 31     | 30    | 32     | ~            | 33   | 33       | 30     | က    | -      | 30   | 31       | -     | 32      | 31    | 0      | 30       | က      | 32   | 33   | 30   | 32     | 5 323 | 3       | 32       | 32           | က            | 33   |       | m            | 31    | e       | 32    | 32       | 5 326 | 1 319  |     |
| 30    | 9 31.  | 30       | _      | 0     | 32     | 32           | 33   | ~        | 3.1    | 30   | _      | 30   | 0        | 31    | 3       | 31    | 30     | 30       | -      | 32   | 32   | 0    | 32     | 6 325 | 3 2     | 32       | 31           | 0            | 3.2  | 0     | 32           | 3     | 3 317   | 3 1   | 32       | 32    | 9 324  |     |
| 2 30  | 30     | 7 31     |        | က     | က      | 32           | 33   |          | 31     | C    | က      |      | 3        | -     | 31      | 31    | 30     | 31       | 31     | 31   | ~    | က    | 8      | 2 326 | 32      | 33       | 31           | _            | 33   |       | 32           | -     | 32      | 31    | 7        | 32    |        |     |
| 2     | _      | 4        | 5      | 2 3   | 8      | က            | c    | 8 32     | 31     |      | 3.1    | 30   | 31       | _     | 31      | 31    | 30     | 30       | 31     | 32   | 3.2  | 30   | 32     | 3 32  | 32      | 32       | <u>۔</u>     | 9            | 33   | 31    | 32           | -     | 31      | 31    | 7        | 32    | 5 31   |     |
|       | 4      | 9        | 30     | 7     | 2 3    |              |      |          | က      | က    | 30     | 30   | 31       | _     | 30      | 30    | 30     | 30       | 31     | 31   | 32   | 30   | 31     | 32    | 32      | 32       | 31           | 0            | 32   |       | 32           | 31    | -       | 31    | 32       | ~     | 0 31   |     |
|       | ñ      | 2 29     | 9      | 4 28  | 31     | 4            | 4    | 9 31     |        |      | က      | က    | e        |       | က       | e     | 7      | က        | က      | 6    |      | 7    | m      | 0 31  |         | က        | က            |              | 32   | 30    | 31           | 31    | n       | 8 31  | 1 31     | 3.    | 8 31   |     |
| 80    | -31    | ~        | 8 31   | 4 29  | 6      | 9            | ••   | 2 31     | • •    | 0    | 0      | 29   | 30       | 30    | 30      | 30    | 30     | 30       | 31     | 31   | 3.1  | 31   | 31     | 6 32  | 31      | 31       | _            | 30           | 32   | 30    | 7            | 31    | 0       |       | 1 32     | e     | 0 30   |     |
| 3 2   | 9      | 3 30     | 5      | 5     |        | က            | က    | 9 32     | 1      | 3 30 | 2 3    | 4    | 7 3      | 0     | 5       | 2 3   | 7 3    | 7        | 10     | 0    | _    | 4    |        | 4 31  |         |          |              |              | m    |       | ~            | က     | 5 32    | က     |          | m     | 0 31   |     |
| _     | 4 31   | 6 3      | 6      | 0     | 4      | 7 3          | 80   | 8        | 3      | 9    | 5      | 9    | 2        | 6     | 2 3     | 7 3   | 8 2    | 4        | 6      | 2 3  | 7 3  | 0    | 9      | 3 31  | ~       | 9        | 6            | 29           | 3    | 7 2   | 9            | 6     | 7 31    |       |          |       | 4 31   |     |
| 5 30  | 5 31   | 3 2      | 6      | 7     | 80     | 6 3          | 7 3  | S        | က      | 8 2  | 3      | 5 2  | <b>4</b> | 7 3   | 5 3     | 2 3   | 5      | 8        | 8      | 9    | 7 31 | 30   | 9      | 6 31  | 1 3     | 7 3      | n            |              | 4 3  |       |              |       |         |       | 6 31     |       | 4 30   |     |
| 02 30 | 0 31   | 29       | 4      | ~     | 0      | 7 3          | S    | 4        |        | 0 2  | 1 3    | 0    | 9        |       | 3 3     | 6     | 8 2    | 6 3      | 8      | 7    | 7    |      | 5 3    | 7 3   | 4       | 5        | _            | 4            | 9    | 7 3   | <b>o</b> n   | 60    | ~       | ~     | 4 31     | ~     | 6      |     |
| m     | 07 31  | 40       | 1 3    | 16 29 | 8      | 3            | 9 32 |          |        | 6 3  | 7 3    | 2 3  | 9 2      | 80    | 4 3     | 9     | 3 2    | 3        | 6 3    | 4    | . 3  | 7 3  | 6 3    | 8     | 6       | 2 3      | 5            | 7            | -3   | 4 2   | 1 3          | S     | 4       | 80    | ~        | 9     | 6 29   |     |
| 94 30 | 6 3    | <b>4</b> | 9 2    | 12 29 | 0      | 8            | 8 31 | 15 31    | 5 31   | 8 2  | 8      | 9    | 9 2      |       | 2 3     | 2 3   | 7      | <b>4</b> |        | 2 3  | 0    | 8 2  | 3      | 1 31  | 6       | 8        | 7 3          | _            | 0    | 1 2   | 3 3          | 2 3   | 9       | 8     | 9        | 7 3   |        |     |
| 5 2   | -3     | 4        | 0      | 9     | 8      | <del>۔</del> | 1    | و<br>د   | S      | 2 2  | 3      | 9    | 0        | 3     | 3       | 9     | 9      | 0        | ر<br>د | 9    |      | 1 2  | ω<br>ω | 08 31 | е<br>С  | <b>4</b> | 9            | <sub>0</sub> | 9    | 8     | <del>Δ</del> | 7 3   |         | S.    | 9        | 9     | 4      |     |
| -     | 0      | 3        | 0      | 3     | 3 2    | n            | 0    | ري<br>دي | ص<br>ص | 7 2  | 2 3    | 9 2  | 9 2      | 3     | 3 2     | 9 2   | 3 2    | 0        | 0      | 0    | 7 3  | 5 2  | 6 2    | 6     |         | 9        | 2            | 2            | 6 3  | 4     | 0            | 3 2   |         | 3     | 8        | -3    | 96 29  |     |
| 4 2   | 3      | 7        | 2      | 7 2   | 0      | 1 3          | 4 3  | 5 3      | 7 3    | 9    | 7 3    | 1 2  | 9        | 9     | 0 2     | 1 2   | 9      | ω.       | 3      | 5    | 2 3  | 9 2  | 3 2    | 06 30 | 2 3     | 9        | <del>۔</del> | 8            | 0    | 9 2   | 2 3          | 2 3   | 3       | 8     | 2 3      | 0     | 92 28  |     |
| 5 2   | 6 2    | 2 2      | 5 2    | 4     | 9      | 4            | -3   | 8        | 0      | 1 2  | 5 2    | 4 2  | 7 2      | 8 2   | 4 2     | 9     | 4 2    | 5 2      | 1 2    | 9 2  | - 0  | 4 2  | 2 2    | 02 30 | ω.      | 8 2      | 9            | 7 2          | 9    | 2 2   | 9            | 7 3   | 6 3     |       | <b>4</b> | 5     | 2 2    |     |
| 93 2  | 99 2   | 93 2     | 95 2   | 89 2  | 96 2   | 043          | 023  | 17 3     | 08 3   | 91 2 | 96 2   | 98 2 | 95 2     | 0 1 2 | 99 2    | 0 1 2 | 98 2   | 00 2     | 82 2   | 01 2 | 03 3 | 98 2 | 97 2   | 05 3  | 05 3    | 04 2     | 05 2         | 11 2         | 05 3 | 0 1 2 | 22 3         | 98 2  | 11 3    | n     | 9        | က     | 7 2    |     |
| 4 2   | 9 2    | 9 2      | 2 2    | 9 2   | 0      | 9            | 5    | 9        | e<br>G | 6 2  | 0      | 0    | 5 2      | 5     | 8 2     | 3     | 2 2    | 8        | 5 2    | 2 3  | 3    | 7 2  | 2 2    | 11 30 | 3       | 7 3      | 8            | 8            | 3    | 3     | 3            | 1 2   | 5       | 1 3   | e        | 1 3   | 95 29  |     |
| 7     | 7      | ~        | 7      | 7     | 6      | 7            | n    | e        | n      | 7    | ო      | က    | 7        | က     | 8       | 6     | က      | n        | m      | က    | C    | 7    | e      | es    | c       | က        | E            | n            | e    | e     | e            | e     | က       | m     | n        | ო     | 7<br>Z |     |
| 01    | 7      | 6        | 4      |       | 9      | ~            | 60   | 6        |        | _    |        | e    |          |       |         | 7     | 60     | G1       |        | _    | ~    | 6    | 4      | 2 5 N |         |          | _            | 6            | 0    | -     | 7            | 6     |         | N.    | 10       |       | •      |     |
| 42 1  | 442 10 | 42 1     | 442 10 | 42 1  | 442 10 | _            | 42 1 | 42 1     | 42 1   | 42 1 | 442 11 | 42 1 | -        | 442 1 | 4442 11 | 442 1 | 442 11 | 42 1     | 42 1   | -    | 42 1 | -    | 442 1  | 442 1 | 4442 12 | 442 1    | 442 1        | 442 1        | 42 1 | 42 1  | 42 1         | 442 1 | 4442 13 | 442 1 | 442 1    | 442 1 | 442 1  |     |

19. 0.2 8.5 8.5 9 1 9 9 8.5 8 2 9.4 8.7 7 9 9 5 9.4 9 8 8 7 8 6 2 5 9 6 9 5 1 8 1 1 6 1 9.0 8.0 6 1 8 5 9.4 5.4 9.2 5 1 4 4 8.5 1 9 1 9 1 7.7 8 7 8 5 6.8 7.9 7.9 8 2 9 5 8.5 8 5 - 7 7.8 7.1 8 2 SEX 1.14 EXPT ANI 5 10 £ 12 £ 15 5 2 8 5 3 1 

STUDY DAY:

N O

BODY WEIGHT IN GRAMS

PHASE III, PART

9 8

9 6

PHASE III, PARI 2 ---- BOUY WEIGHT IN GRAMS ON STUDY DAY:

4

40

2:

EXPT ANI SEX

| 71          |              | 8        |        | 23         |     | 90       |      |        | 32     |          |      | 1 9 |     | 46     |     | 16           |            | 2.2 |     |     | 94  |      | 9.2   |       | 84   |       | 9.5  |      |       |        |                                         |      | න<br>න | 89      | 9 2     | 9.4 | 9.0       | 8 1            | 9.5      |
|-------------|--------------|----------|--------|------------|-----|----------|------|--------|--------|----------|------|-----|-----|--------|-----|--------------|------------|-----|-----|-----|-----|------|-------|-------|------|-------|------|------|-------|--------|-----------------------------------------|------|--------|---------|---------|-----|-----------|----------------|----------|
| 23 3        | •            | 4<br>w   | 0      | က          | 7   | S<br>3   | 4    | 5 3    | ص<br>ص | <b>4</b> | 24 3 | 0   | 7   | 7 3    | 4   | <del>د</del> | 3          | _   | 2 1 | _   | 9   | 5    | 92 1  | -     | -    | 4     | - 0  | 9    | -     | ۍ<br>د | -                                       | -    | -      | 9       | 82 1    | 6   | 3 1       | 88 1           | 78 1     |
| <b>60</b> 6 | 2            | <b>4</b> | e<br>O | 0          | 3   | 2 3      | 2 3  | 8      | 9      | 4 3      | 2 3  | 8   | 9   | 8      | 9   | 3            | 2 3        | -   | 7 1 | _   | 2 1 | - 0  | -     | 1 2   | 0    | 5     | 8 2  | 2    | 7     | 8      | <b>-</b>                                | 8    | 9      | _       | 7       | 7   | 9         | 94             | 80 1     |
| о r         | 7            | 4<br>()  | 7      | 7          | 8   | 8        | 2 3  | 9      | 9      | 3        | 0    | 1   | 5   | 4 3    | 0   | 3            | 4 3        | 2   | 9   | _   | 0 2 | 3 1  | ღ     | 0 2   | 6 1  | 7     | 2 1  | 2    | _     | -      | _                                       | 9    | 9      | 0       | -       | 8   | 3         | 6              | 7        |
| m (         |              |          | n      | က          | က   | e        | 9 32 | က      | ന      | n        | ຕ    | က   | n   | က      | က   | က            |            | -   | _   | _   | 7   | -    | 2 19  | 7     |      |       | 7    |      |       | ~      | -                                       | -    | -      | -       | 6 18    | -   | -         | 4 18           | 0 18     |
| 31          | <del>,</del> | m        | 33     | ~          | 33  | 32       | 8 32 | 32     | 33     | 33       | 31   | -   | 33  | 3.4    | 3   | 32           | 7          | 18  | 1.8 | 17  | 20  | - 6  | 5 19  | 19    | _    | ~     | 1 9  | 13   |       | - 6    | 19                                      | 19   |        | 18      | 117     | 19  | -8        | 1 18           | 1.8      |
| 3.          | 3.5          | 3        | 33     | 32         | 32  | 3        | 9    | 32     | 33     | 32       | 31   | 3.1 | C   | 3.4    | 3   | 3            | 5 9        | 18  | 18  | 17  | 1 9 | 6    | 19    | 1 9   | 18   | 18    | - 3  | 1 9  | 1 9   | 1.8    | 1 9                                     | 19   | 18     | 17      | -       | 6   | 1 9       | 19             | 18       |
| 315         | _            | -        | c      | -          | 7   | 0        | 318  | _      | 7      | ~        | 0    |     |     | 33     | 30  | 31           | 29         | 17  | 18  | -   | 20  | 18   | 195   | 19    |      | 18    | -    | 18   | 0     | - 6    | 18                                      | -    | 19     | 18      | 173     | 18  | <b>60</b> | 179            | 177      |
| 314         | 314          |          | က      | 7          | 7   | 0        | 315  | 7      | က      | ~        | 0    | 0   | 7   | C      | _   | 311          | 9          | 8   | 180 | 177 | 200 | 186  | 184   | 198   | 186  |       |      |      |       |        |                                         |      |        |         | 179     |     |           | 189            | 177      |
| -           | 309          |          | 323    | ~          |     |          | _    | ~      | ~      | ~        | 300  | 0   | 7   | 3      | 0   | -            | 6          | 7   | 185 | 176 | 197 | 187  | 188   | 196   | 189  | 185   | 194  | 187  | 182   | 194    | 185                                     | 193  | 192    | 184     | 176     | 191 | 185       | 182            | 178      |
| -           | 315          | 315      | 3      |            |     | O        |      | က      |        | ~        | 291  | 0   | ~   | n      | _   | -            | 0          | ~   | æ   | 178 | 178 | 188  | 190   | 200   | 188  | 187   | 197  | 191  | Ø     | 202    | 187                                     | 196  | 195    | 185     | 179     | 195 | 190       | 185            | 180      |
| -           | _            |          | C      | ~          | ~   | 0        | 319  | ~      | ~      | ~        | -    | 0   | ~   | က      | -   | -            | 6          | 7   | 60  |     | 196 | 190  | 190   | 196   | 186  | 190   | 194  | 188  | 186   |        |                                         |      |        |         | 177     |     |           |                | 180      |
| 0           | -            | 308      |        | 316        | 316 | 0        | 318  | _      |        | -        |      | 0   | ~   | n      | _   | 307          | 6          | ~   | 6   | 175 | 195 | 188  | 190   | 198   | 184  | 187   | 194  | 187  | 186   | 200    | 185                                     | 193  |        |         | 177     |     | 184       | 186            | 179      |
| 0           | Ö            |          | ~      | _          | •   | 6        |      | -      | -      | -        | -    | 0   | က   | 31     | 90  | 90           | 86         | 9 / | 84  | 170 | 189 | 186  | 184   | 194   | 181  | 184   | 191  | 184  | 183   | 194    | 183                                     | 189  | 189    | 182     | 171     | 189 | 179       | 180            |          |
| 20          | 0 4          | 90       | 5 9    | 6          | 8   | 7 6      | 4    | 9      |        |          |      | 0 2 | 17  | 3.5    | 0.4 | 0.5          | 86         | 7.8 | 6   | 173 | 6   | 6    | 187   | 9 5   | 181  | 85    | 193  | 184  | 183   | 197    |                                         | 192  |        | 184     |         |     | 181       |                | 180      |
| 0.5         | 4            | 90       | 24     | 19         | 9   | 00       |      | 9      | - 4    |          |      | 90  | 6   | 3.1    | 0 7 | 1 2          | 06         | 7.3 | 8.7 | . 7 | 40  | 9    | 87    | 96    | 81   | 8 2   | . ~  | 87   | 18    |        | 8 5                                     |      |        | - KS    |         |     | . 18      |                |          |
| <b>7</b>    | . 1          | 40       | 4      |            | 5   | 9        | , -  | -      |        |          |      |     |     | 5      | 90  | 03           |            | 6 6 |     |     | . ~ |      | . E   | 92 1  | 83.1 | 7 9 7 | 93   |      | 86 1  | 96     | 86 1                                    | 94   | 9.5    | 8,      | 7 6 1   | . 6 | , =       |                | 80       |
| 033         | _            | 01 3     | 6      | 17 3       | •   | σ        | , 6  |        |        |          | , c  |     |     |        |     |              |            |     |     |     | . 4 |      | 82 1  | 1 1 6 | 83   | . C8  | 92 1 | 85 1 | 78 1  | 92 1   | 84 1                                    | 91   | 06     |         | . 4     |     | 82        | . 4            | 6 /      |
| 0.4         | 6            | 6        | 0      | 18 3       | _   | ۰        |      |        | ח ה    | , ,      | ם כ  |     | - m | . ~    |     | , m          | , ,        | , - | , . |     |     |      | 2 6   |       | · -  |       |      | - ~  | _     | e0<br> | 7                                       | 2    | -      |         | , -     |     | , ~       |                |          |
| 3           | 9 2          | 2        |        | , 6        |     | , ,      |      | , ,    |        | , ,      | י ר  | , , | , " |        |     |              | , ,        | , , |     |     |     |      | -     | . «   |      |       |      | -    | -     | 5      | _                                       | 7    |        |         |         | •   |           |                | - 00     |
| ب<br>8      | 2 30         | <u>د</u> | · «    | , 4        |     |          | 0 6  | · •    | ٠ ،    |          |      |     |     | , ,    | , , | , ,          | ; <b>.</b> |     | - • |     |     |      | · ~   |       | , ,  |       | <br> | , ,  |       | <br>ع  |                                         |      |        |         |         |     |           | - <del>-</del> |          |
| ~           | 7 31         | ~        | •      | , ,        | . č |          | 7 7  | , (    | m (    | 2 (      | , .  | n 1 | , , | , ,    |     | , ,          | , ,        | •   | - • | - • | - • |      | 0 K   |       |      |       |      |      | _     | _      |                                         |      |        | •       | 9 6     |     |           |                | <br>n 60 |
| e<br>E      | ω.           |          |        | , ,        | , , |          | , ,  | ? (    |        |          | ~ .  | , . | , , | , ,    | , , |              | , ,        | · · |     |     | - · | <br> |       |       |      | - ·   |      |      |       | . ~    |                                         |      |        | <br>n ( | <br>, , | ,   |           |                | , ,      |
| 7           | ~            | _        |        |            |     | ٠ ،      | N (  | " (    | m (    | 30       | 30   | 9 6 |     | - (    | , , | , ,          | , ,        | 7   |     |     | - : | - •  |       |       |      |       |      |      |       |        |                                         |      |        |         |         |     | 3 18      | - :            | 9 - 6    |
| 2 9         | 0            | ,        | , ,    | י כ        | , , | ה<br>ה   | 28   | 5      | 30     | 30       | 30   | 30  | 2 6 | - i    | ,   | ה<br>ה       | 7          | 2 8 | £ . | - 2 | 9 9 | 20 0 | 4 4   |       | - :  | - :   | - :  |      | -     |        |                                         |      |        |         | - :     | - : | <b>.</b>  | - ;            |          |
| 2.9         | 3.0          | , ,      | , ,    | י ר        | , , |          | 2 8  | ה<br>ה | 30     | 30       | 8    | 29  | 2 8 | 2 .    | 2 6 | ,            | 9          | 28  | 8   | 9 ; | 9 . |      |       | - :   | - :  | - :   | - :  |      |       |        |                                         |      | - :    | - :     | - ;     | - : | 5 .       | - '            |          |
| 2 9         | 2            |          | , ,    | ה<br>ה     | ,   | 5 7      | 28   | 3      | 30     | 30       | 29   | 29  | 2 9 | ה<br>ה | - 6 | 5 6          | 67         | 29  |     | 9 : | 9 : | ~    | 178   | - :   | - :  | - :   | - :  |      |       | - 0    |                                         |      | - :    | 9       | - :     | - ' | 8 .       | 1 /            | 17       |
| 0           | 0            |          | n c    | 9          | 9 0 | <b>5</b> | 296  | 0      | _      | -        | 0    | 0   | 0   | - 1    | 7 ( | 9            | 5          |     |     | 170 |     |      | 177   |       | 181  | 172   | 176  | 2 :  | 1 4 6 | - :    | - •                                     | - :  | -      | - 8     | -       | 1 7 | -         | 1              | 176      |
| 301         | 204          |          | n c    | <b>5</b> • | - ( | י תכ     | 299  | 0      | -      | 0        | 303  | 0   | σ,  | - (    | ٧ ( |              | 9          | σ . | ~   | 176 | 168 | 186  | 185   |       |      | -     |      | 50.  | 1 4 5 |        | F 6                                     | 0 0  | 192    | 86      | 180     | ~   | <b>8</b>  | 175            | 177      |
| I           |              |          |        |            |     |          |      |        |        |          |      |     |     |        |     |              |            |     |     |     |     |      |       |       |      |       |      |      |       |        |                                         |      |        |         |         |     |           |                | L L      |
| 143         | 144          |          |        | 146        | 14/ | 4 2      | 149  | 20     | 151    | 1 5 2    | 153  | 154 | 55  | 156    | 2 5 | 158          | 2.5        | ω   | n   | 4   | ₹ . | 542  | 4     | ₹ '   | ₹ '  | ₹ .   | 547  |      | - 4   | 000    | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ., . | 4,     | ٠,      | ٠,      | •   |           |                | 559      |
| 4 4 3       | •            | :        | ė.     | 4          | 4   | 4        |      | 4      | 4      | 4        | 443  | 4 4 | 443 | 4      | 4   | 4            | 4          | 4   | 4   | 4   | 4   | 4    | 4 4 3 | 4     | 4 4  | 4     | 4    | ₫ .  | 4     | ė,     | 4                                       | 4    | 4      | 4       | 4       | 4   | 4         | 4              | 1443     |
| 4           | •            |          |        | *          | 4   | 4        | 4    | 4      | 4      | •        | 4    | 4   | 4   | *      | 4   | 4            | 4          | 4   | 4   | 4   | 4   | 4    | 4     | 4     |      |       |      | 4 .  | * '   | 4 ,    | 4                                       | 4    | 4      | 4       | 4       | 4   | 4         | 4              | 4 4      |

7 5 STUDY DAY: Z O BODY WEIGHT IN GRAMS 5 1 4 4 PHASE III, PART 2 -2 SEX ANI EXPT 

  6 9 9 8 9.6 9.4 8.4 9.7 8 2 7 9 2 5 8 5 9 5 7.2 8 5 6.8 8 1 5.8 9 5 9 2 5 4 8.9 WEIGHT IN GRAMS 9.5 8 5 9 1 8 9 8.4 8 8 8 5 8 1 4 7 7.5 8.4 8 2 7.8 8 2 8 5 8 1 8 5 8. 8 9 BODY 3, 8.5 8.5 8 5 1 9 1 9 2 PHASE III, PART 2 6 -- 2 8 5 8.2 8.5 - 6 8 4 8.4 SEX EXPT ANI 1 4 4 4 \* \* \* 1

DAY:

ON STUDY

APPENDIX D: ANIMAL WEIGHTS AND SELECTED TISSUE WEIGHTS AT 11ME OF SACRIFICE

|                                         |                                         |        |        |           |                            |                            | WE I GHT | N GRA |       |        | 1       |
|-----------------------------------------|-----------------------------------------|--------|--------|-----------|----------------------------|----------------------------|----------|-------|-------|--------|---------|
| EXPT                                    | CONCENTRATION<br>OF Cu-Zn               | ANIMAL | SEX    | SACRIFICE | ANIMAL                     | BRAIN                      | KIDNEYS  | LIVER | LUNG  | TESTES | OVARIES |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        |        |           | ,<br>,<br>,<br>,<br>,<br>, | 1<br>1<br>1<br>1<br>1<br>1 |          |       |       |        |         |
| 4371                                    | 1.0 mg/m3                               | 037    | MALE   | EOE       | 322.5                      | 1.94                       | 2.23     | 10.4  | 1.217 | 1.48   |         |
| 4371                                    |                                         |        | MALE   | EOE       | 4                          |                            | 2.22     |       |       |        |         |
| 4371                                    |                                         |        | MALE   | ш         | 298.1                      | 1.88                       | 1.95     |       | 1.158 | 1.33   |         |
| 4371                                    |                                         | 043    | MALE   | EOE       | 311.2                      | 1.93                       | 1.84     | 9.0   | 1.359 | 1.47   |         |
| 4371                                    | 0                                       |        | MALE   | EOE       | 299.0                      | 1.96                       | 1.92     | 9.8   | 1.479 | 1.50   |         |
| (                                       |                                         |        | MALE   | EOE       | 325.4                      | 1.93                       | 2.08     | 9.6   |       | 1.43   |         |
| 4371                                    | 0                                       |        | MALE   | REC       | 305.8                      |                            | 1.91     | •     | 1.218 |        |         |
| 4371                                    |                                         |        | MALE   | EOE       | 314.2                      | 1.92                       | 2.41     | ٠     | 1.946 |        |         |
| 4371                                    | 0                                       | 0 2 0  | MALE   | REC       | 340.0                      | 1.95                       | 2.21     | 10.8  | 1.206 | 1.36   |         |
| 4371                                    | 0                                       |        | MALE   | REC       | 322.8                      | 1.88                       | 1.99     | 9.6   | 1.411 |        |         |
| 4371                                    | 0                                       | 052    | MALE   | EOE       | 294.6                      | 2.00                       | 2.09     | 8.4   | 1.153 | 1.32   |         |
| 4371                                    | 0                                       |        | MALE   | REC       | 313.3                      |                            | 1.90     | 8.8   | 1.198 |        |         |
| 4371                                    |                                         |        | MALE   | REC       | 326.7                      | 1.20                       | 2.10     | •     | 1.549 |        |         |
| 4371                                    | 0                                       |        | MALE   | EOE       | 285.8                      |                            | 2.09     | •     | . 10  | ٠      |         |
| 4371                                    | 0                                       | 090    | MALE   | REC       | 343.9                      | 1.91                       | 2.20     | 10.5  | 1.204 | ٥.     |         |
| 4371                                    |                                         | 061    | MALE   | EOE       | 311.9                      | 1.87                       | 2.16     | 9.8   | 1.284 | 6.     |         |
| 4371                                    | 0                                       | 062    | MALE   | REC       | 304.7                      |                            | Ξ.       | •     | 3     |        |         |
| 4371                                    |                                         | 063    | MALE   | EOE       | 336.4                      | 1.98                       | 2.11     | 10.7  |       | . 2    |         |
| 4371                                    |                                         | 990    | MALE   | REC       | 331.0                      | 1.90                       | ۲,       |       | . 26  | 1.47   |         |
| 4371                                    |                                         | 067    | MALE   | REC       | 356.8                      | 1.98                       | 2.32     |       | . 36  |        |         |
| 4371                                    | 1.0 mg/m3                               |        | MALE   | REC       | 334.8                      | 1.88                       | 2.38     | •     | . 29  |        |         |
| 4371                                    | 0                                       | 072    | MALE   | EOE       | 309.3                      | 1.94                       | ٥.       | •     | c     | 1.38   |         |
| 4371                                    |                                         | 537    | FEMALE | EOE       | 187.0                      | 1.76                       |          | 5.4   | . 06  |        | . 02    |
| 4371                                    |                                         | 540    | FEMALE | REC       | 188.7                      | 1.78                       |          | •     | .98   |        | . 0 5   |
| 4371                                    | 0                                       | 541    | FEMALE | REC       | 188.2                      | 1.81                       | 1.37     | •     | .86   |        | ~       |
| 4371                                    | 1.0 mg/m3                               |        | FEMALE | EOE       | 168.2                      | 1.71                       | 1.33     | •     | . 81  |        | 90.     |
| 4371                                    | 0                                       | 544    | FEMALE | REC       | 191.8                      | 1.78                       | 1.46     | 9.9   | Ξ     |        | ٥.      |
| 4371                                    |                                         |        | FEMALE | EOE       | 194.5                      | 1.88                       | 1.54     | •     | 1.045 |        | 90.     |
| 4371                                    | 0                                       | 548    | FEMALE | EOE       | 184.3                      | 1.78                       | 1.32     | •     | 0.938 |        | .08     |
| 4371                                    |                                         | 549    | FEMALE | 0         | 195.0                      |                            | 1.57     | 5.7   | . 94  |        |         |
| 4371                                    | 0                                       | 550    | FEMALE | REC       | 195.0                      | 1.75                       | 1.38     | 5.6   | 1.038 |        | . 05    |
| 4371                                    | 0                                       | 554    | FEMALE | EOE       | 232.3                      | 1.73                       | 1.28     | 5.2   | 96.   |        | . 03    |
| 4371                                    |                                         | 555    | FEMALE | w         | 4.                         | 1.78                       | 1.36     | 5.4   | 0.904 |        | . 0.5   |
| 4371                                    | 0                                       | 556    | FEMALE | ш         | 198.0                      | 1.80                       | 1.57     | 5.5   | 0.998 |        | . 03    |
| 4373                                    |                                         | 558    | FEMALE | REC       | 199.8                      |                            | 1.44     | 6.3   | 1.007 |        | . 0 5   |
| 4371                                    |                                         |        | FEMALE | w         | 200.9                      | 1.73                       | 1.51     | 5.3   | 0.804 |        | 0.044   |
|                                         |                                         |        |        |           |                            |                            |          |       |       |        |         |

|                 |                                         | OVARIES                                        |
|-----------------|-----------------------------------------|------------------------------------------------|
|                 |                                         | TESTES OVARIES                                 |
|                 |                                         | LUNG                                           |
| N GRAMS         |                                         | LIVER                                          |
| WEIGHT IN GRAMS |                                         | ANIMAL BRAIN KIONEYS LIVER LUNG TESTES OVARIES |
|                 | 1 1 1 1 1 1 1 1                         | BRAIN                                          |
|                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ANIMAL                                         |
|                 | SACRIFICE                               | CODE                                           |
|                 |                                         | SEX                                            |
|                 | ANIMAL                                  | NUMBER SEX CODE                                |
|                 | CONCENTRATION                           | 0F Cu-2n                                       |
|                 | Ī                                       | œ                                              |

| EXPT      | CONCENTRATION | ANIMAL                     | ••        | SACRIFICE | 1     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |       |       | 1      | i       |
|-----------|---------------|----------------------------|-----------|-----------|-------|-----------------------------------------|---------|-------|-------|--------|---------|
| NUMBER    | 0F Cu-2n      | NUMBER                     | SEX       | CODE      |       | BRAIN                                   | KIONEYS | LIVER | LUNG  | TESTES | OVARIES |
| 1 1 1 1 1 |               | 1<br>1<br>1<br>1<br>1<br>1 | 1 1 1 1 1 |           |       | <br>                                    |         |       |       |        |         |
| 4371      | 1.0 mg/m3     | 562                        | FEMALE    | REC       | 181.6 | 1.78                                    | 1.37    | 5.2   | 0.831 |        | . 04    |
| 437       | 1.0 mg/m3     | 563                        | FEMALE    | REC       | 192.1 | 1.73                                    | 1.38    | •     | 0.933 |        | 90.     |
| 4371      |               |                            | FEMALE    | EOE       | 190.2 | 1.79                                    | 1.38    | 5.2   | œ     |        | . 05    |
| 4371      | 0             |                            | FEMALE    | REC       | 182.9 | 1.77                                    | 1.33    | 6.4   | 0.890 |        | . 0 4   |
| 4371      | 0             | 567                        | FEMALE    | EOE       | 184.0 | 1.70                                    | 1.50    | •     | 1.121 |        | 0.044   |
| 4371      | 0             | 569                        | FEMALE    | EOE       | 182.3 | 1.76                                    | 1.37    | 5.2   | 0.988 |        | . 09    |
| 4371      | _             | 570                        | FEMALE    | EOE       | 178.2 | 1.71                                    | 1.23    | 5.2   | 0.943 |        | 0.042   |
| 4371      |               | 571                        | FEMALE    | EOE       | 187.7 | 1.70                                    | 1.25    | 5.3   | 0.931 |        | 0.053   |
| 4372      | . ~           | 075                        | MALE      | EOE       | 320.6 | 1.95                                    | ٦.      |       | 1.349 | 1.02   |         |
| 4372      | ~             | 076                        | MALE      | REC       | 356.5 | 1.96                                    | 2.21    | •     | 6     | 1.52   |         |
| 4372      | ~             | 0 7 9                      | MALE      | REC       | 332.2 | 1.89                                    | 2.29    | 11.3  | 1.267 | 1.42   |         |
| 4372      | . 2           | 080                        | MALE      | EOE       | 319.8 | 1.95                                    | 2.06    | 9.6   | 1.299 | 1.47   |         |
| 4372      | ~             | 180                        | MALE      | EOE       | 313.5 | 1.98                                    | 2.14    | 9.6   | ~     | 1.49   |         |
| 4372      | ~             | 0.85                       | MALE      | EOE       | 313.0 | 1.85                                    | -       | 4.6   |       |        |         |
| 4372      | ~             | 086                        | MALE      | REC       | 330.6 | 1.91                                    | . 2     | 10.2  |       |        |         |
| 4372      | ~             | 087                        | MALE      | EOE       | 330.6 | 1.89                                    | 2.23    | 10.7  | 1.574 | 1.25   |         |
| 4372      | ~             | 0.89                       | MALE      | REC       | 328.5 | 1.86                                    | 2.39    | 10.3  | ~     | 1.39   |         |
| 4372      | ~             | 060                        | MALE      | EOE       | 322.1 | 1.90                                    | 2.08    | 10.2  | 1.153 | 1.47   |         |
| 4372      | 7             | 092                        | MALE      | REC       | 365.4 | 1.92                                    | 2.57    | 11.7  | æ     | 1.44   |         |
| 4372      | ~             | 093                        | MALE      | REC       | 331.5 | 1.91                                    | 2.14    | 10.3  | æ     | 1.50   |         |
| 4372      | ~             | 960                        | MALE      | REC       | 323.2 | 1.90                                    | . 2     | 8.8   | 60    |        |         |
| 4372      | ~             | 960                        | MALE      | REC       | 329.7 | 1.89                                    | 2.04    | 9.5   | S     | 1.33   |         |
| 4372      | ~             | 100                        | MALE      | EOE       | 323.1 | 1.83                                    | σ.      | •     | 1.381 | 1.32   |         |
| 4372      | 3.2 mg/m3     | 101                        | MALE      | EOE       | 310.9 | 1.88                                    | ٥.      | 9.5   | 1.403 | 1.45   |         |
| 4372      | 3.2 mg/m3     | 102                        | MALE      | REC       | 323.3 | 1.82                                    | . 2     |       | _     | 4 °    |         |
| 4372      | 3.2 mg/m3     | 103                        | MALE      | EOE       | 285.6 | 1.94                                    | 6.      | •     | Ø     | 1.40   |         |
| 4372      | 3.2 mg/m3     | 104                        | MALE      | EOE       | 98    | 1.85                                    | . 7     | •     | 0     | <br>   |         |
| 4372      | 3.2 mg/m3     | 109                        | MALE      | EOE       | 03.   | 1.89                                    | 2.34    | •     | 4     | 1.42   |         |
| 4372      | 3.2 mg/m3     | 111                        | MALE      | REC       | 30.   | 1.87                                    | ٥.      | ٠     | ω ,   | Ñ      |         |
| 4372      | 3.2 mg/m3     | 112                        | MALE      | REC       | ю     | 1.90                                    | 2.16    | ٠     | 1.335 | 1.04   | ,       |
| 4372      | 3.2 mg/m3     | 575                        | FEMALE    | EOE       | 199.4 | 1.76                                    | 1.38    | ٠     | 1.021 |        | 40      |
| 4372      |               | 576                        | FEMALE    | REC       | 192.2 | 1.79                                    | 1.40    | •     | . 97  |        | . 05    |
| 4372      |               | 578                        | FEMALE    | REC       | 189.3 | 1.74                                    | 1.30    |       | . 89  |        | •       |
| 4372      | 3.2 mg/m3     | 579                        | FEMALE    | REC       | 213.7 | 1.71                                    | 1.73    | 6.5   | . 0 2 |        | . 0 .   |
| 4372      | ~             | 580                        | FEMALE    | EOE       | 183.0 | 1.71                                    | 1.38    | •     | .00   |        | . 03    |
| 4372      | ~             | 584                        | FEMALE    | REC       | 197.5 | 1.72                                    | 1.52    | 5.2   | .01   |        | . 04    |
| 4372      | 7             | 585                        | FEMALE    | REC       | 207.2 | 1.82                                    | 1.59    | 6.4   | 0.936 |        | 90.     |
| 4372      | ~             | 8                          | FEMALE    | EOE       | 182.9 | 1.74                                    | 1.37    | 5.2   | 0.955 |        | .04     |
| 4372      |               | 290                        | FEMALE    | EOE       | 192.8 | 1.79                                    | 1.42    | 6.0   | 1.166 |        | 0.056   |
|           |               |                            |           |           |       |                                         |         |       |       |        |         |

| 2      |                                         |                                         |             |                     | 1      | 1     | -       |                       | 1     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|--------|-----------------------------------------|-----------------------------------------|-------------|---------------------|--------|-------|---------|-----------------------|-------|-----------------------------------------|-----------------------------------------|
| NUMBER | OF CU-Zn                                | NUMBER                                  | SEX         | CODE                | Z      | BRAIN | KIDNEYS |                       | Z     | STES                                    | VAR                                     |
| <br>   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 1 1 1 1 1 1 | <br>                | 1      | <br>  | <br>    | !<br>!<br>!<br>!<br>! | <br>  | !<br>!<br>!<br>!<br>!<br>!<br>!<br>!    |                                         |
| 4372   | 3.2 mg/m3                               | 5.91                                    | FEMALE      | REC                 | 213.7  | 1.77  | 1.53    | 5.6                   | .98   |                                         | .05                                     |
| 4372   | ~                                       | 592                                     | FEMALE      | EOE                 | 180.0  | 1.75  | 1.40    | •                     | . 19  |                                         | 2                                       |
| 4372   |                                         | 693                                     | FEMALE      | EOE                 | 1.88.1 | 1.67  | 1.42    |                       | Ξ.    |                                         | . 03                                    |
| 4372   |                                         |                                         | FEMALE      | REC                 | 206.3  | 1.79  | 1.40    | •                     | . 94  |                                         | . 04                                    |
| 4372   |                                         | 6                                       | FEMALE      | EOE                 | 191.8  | 1.78  | 1.44    | •                     | . 06  |                                         | 90.                                     |
| 4372   |                                         | 600                                     | FEMALE      | REC                 | 189.9  | 1.75  | 1.44    | 5.3                   | 6.    |                                         | .03                                     |
| 4372   |                                         | 0                                       | FEMALE      | REC                 | 189.0  | 1.76  | 1.42    | 5.4                   | 1.026 |                                         | 9                                       |
| 4372   |                                         | 603                                     | FEMALE      | EOE                 |        | 1.82  | 1.39    | 5.8                   | 1.006 |                                         | . 05                                    |
| 4372   | ~                                       | 0                                       | FEMALE      | REC                 | 184.4  | 1.71  | 1.31    | 5.7                   | 86    |                                         | •                                       |
| 4372   |                                         | 0                                       | FEMALE      | EOE                 | 182.7  | 1.71  | 1.34    | 5.3                   | 6.    |                                         | . 04                                    |
| 4372   |                                         | 909                                     | FEMALE      | REC                 | 195.5  | 1.77  | 1.42    | 5.9                   | 0.970 |                                         | .07                                     |
| 4372   |                                         | 608                                     | FEMALE      | EOE                 | 184.9  | 1.76  | 1.33    | 5.5                   | 0.968 |                                         | . 04                                    |
| 4372   |                                         | 0                                       | FEMALE      | EOE                 | 193.7  | 1.82  | 1.40    | 5.7                   | 1.231 |                                         | 0.062                                   |
| 4373   | 10 mg/m3                                | -                                       | MALE        | EOE                 | 299.2  | 1.90  | 2.13    | 10.1                  | 1.810 | 1.36                                    |                                         |
| 4373   | 10 mg/m3                                | 116                                     | MALE        | REC                 |        | 1.87  | 2.80    | 9.6                   | 1.593 | 1.44                                    |                                         |
| 4373   | 10 mg/m3                                | 111                                     | MALE        | REC                 | 328.8  | 1.94  | ~       | 9.7                   | 1.410 | 1.36                                    |                                         |
| 4373   |                                         | 119                                     | MALE        | REC                 | 317.4  | 1.96  | 2.19    | 10.9                  | 1.390 | 1.34                                    |                                         |
| 4373   |                                         | 122                                     | MALE        | REC                 | 360.1  | 1.9.1 | 2.25    | 11.4                  | 1.568 | 1.47                                    |                                         |
| 4373   | 10 mg/m3                                | 125                                     | MALE        | EOE                 | 302.6  | 1.80  | ٦.      | 9.8                   | 1.431 | 1.49                                    |                                         |
| 4373   |                                         | 126                                     | MALE        | EOE                 | 291.9  | 1.88  | 2.04    | 9.5                   | 1.661 | 1.46                                    |                                         |
| 4373   | 10 mg/m3                                | 127                                     | MALE        | REC                 | 322.6  | 1.92  | 2.25    | 10.7                  | 0     | 1.39                                    |                                         |
| 4373   | 10 mg/m3                                | 128                                     | MALE        | <b>E</b> 0 <b>E</b> | 304.9  | 1.93  | 2.20    | 9.7                   | 1.598 | 1.46                                    |                                         |
| 4373   | 10 mg/m3                                | 130                                     | MALE        | EOE                 | 294.7  | 1.83  | 1.91    | 9.4                   | 1.604 | 1.21                                    |                                         |
| 4373   | 10 mg/m3                                | 132                                     | MALE        | EOE                 | 283.1  |       | 1.91    | -                     | 1.443 | 1.36                                    |                                         |
| 4373   | 10 mg/m3                                | 133                                     | MALE        | EOE                 | 289.9  | 1.94  | 2.06    | 6.4                   | ∞     | 1.35                                    |                                         |
| 4373   | 10 mg/m3                                | 134                                     | MALE        | REC                 | 335.2  | 1.94  | . 7     | 10.8                  | S     | 1.40                                    |                                         |
| 4373   | 10 mg/m3                                | 135                                     | MALE        | REC                 | 2 4    | 1.88  | 2.22    | 10.5                  | 434   | 1.45                                    |                                         |
| 4373   | 10 mg/m3                                | 136                                     | MALE        | EOE                 | 93     | 1.94  | 2.04    | ი<br>ი                | 1.515 | 1.32                                    |                                         |
| 4373   | 10 mg/m3                                | 140                                     | MALE        | EOE                 | 284.0  |       | σ.      | ж.<br>Ю               | 1.336 | . 4.                                    |                                         |
| 4373   | 10 mg/m3                                | 141                                     | MALE        | EOE                 | 312.0  | 1.89  | -       | ED :                  | 1.520 | 0 40                                    |                                         |
| 4373   | 10 mg/m3                                | 142                                     | MALE        | EOE                 | 304.8  | 1.91  | ٥.      | 10.2                  | 4     | n :                                     |                                         |
| 4373   | 10 mg/m3                                | 144                                     | MALE        | REC                 | 330.2  | 1.89  | 2.29    |                       | 1.542 | 1.45                                    |                                         |
| 4373   | 10 mg/m3                                | 147                                     | MALE        | REC                 | 323.5  | 1.87  | ٥.      | ღ                     | S.    | 1.44                                    |                                         |
| 4373   | 10 mg/m3                                | 148                                     | MALE        | REC                 | 329.0  | 1.87  | 2.04    | 9.7                   | S     | 1.46                                    |                                         |
| 4373   | 10 mg/m3                                | 149                                     | MALE        | REC                 | 322.4  | 1.91  |         | •                     | LC    | 1.25                                    |                                         |
| 4373   | 10 mg/m3                                | 615                                     | FEMALE      | EOE                 | 182.6  |       | 1.42    | •                     | Ξ.    |                                         | . 0 .                                   |
| 4373   | 10 mg/m3                                | 616                                     | FEMALE      | REC                 | 192.1  | 1.75  | 1.45    | 6.3                   | m     |                                         | . 0 5                                   |
| 4373   | 10 mg/m3                                | 617                                     | FEMALE      | EOE                 | 182.5  | 1.76  | 1.45    | 9.6                   |       |                                         | . 04                                    |
| 4373   | 10 mg/m3                                | 618                                     | FEMALE      | REC                 | 185.1  | 1.75  | 1.40    | 5.4                   | 0.994 |                                         | 0.059                                   |
|        |                                         |                                         |             |                     |        |       |         |                       |       |                                         |                                         |

| 1              |       |                           |        |                                         |                       |        |                                         |         |         | 1             | 1 1 1 1 1 1 1 | 1 1 4 2 1 1 1                           |
|----------------|-------|---------------------------|--------|-----------------------------------------|-----------------------|--------|-----------------------------------------|---------|---------|---------------|---------------|-----------------------------------------|
| EXPT<br>NUMBER | CONCE | CONCENTRALION<br>OF CU-Zn | ANIMAL | SEX                                     | CODE                  | ANIMAL | BRAIN                                   | KIDNEYS | LIVER   | LUNG          | TESTES        | <u> </u>                                |
| 1              | 1     |                           | !      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | :<br>!<br>!<br>!<br>! | <br>   | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |         | 1       | 1 1 1 1 1 1 1 | <br>          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 4373           | 10    | ma/m3                     | 620    | FEMALE                                  | EOE                   | 186.1  | 1.74                                    | 1.39    | 5.8     | 1.305         |               | . 0 5                                   |
| 4373           |       | ma/m3                     | ~      | FEMALE                                  | REC                   | 192.8  | 1.75                                    | 1.38    | ъ.<br>З | 1.082         |               | .05                                     |
| 4373           |       | mg/m3                     | ~      | FEMALE                                  | EOE                   | •      | 1.74                                    | 1.44    | 9.9     |               |               | . 0 5                                   |
| 4373           | 10    | ma/m3                     | 626    | FEMALE                                  | REC                   | 199.5  | 1.78                                    | 1.50    | 5.7     | 1.120         |               | . 03                                    |
| 4373           | . 0   | ma/m3                     | 627    | FEMALE                                  | REC                   |        | 1.49                                    | 1.45    | 5.8     | 1.062         |               | 90.                                     |
| 4373           | 10    | mg/m3                     | 628    | FEMALE                                  | EOE                   | 175.0  | 1.79                                    | 1.43    | 5.5     | 1.166         |               | . 08                                    |
| 4373           | 10    | mg/m3                     | 630    | FEMALE                                  | EOE                   | 187.5  | 1.72                                    | 1.35    | 5.3     | 1.156         |               | . 05                                    |
| 4373           |       | mg/m3                     | 631    | FEMALE                                  | REC                   | 189.0  | 1.79                                    | 1.36    | 5.1     | 1.056         |               | . 03                                    |
| 4373           |       | mg/m3                     | 632    | FEMALE                                  | EOE                   | 179.6  | 1.72                                    | 1.31    | 5.4     | 1.011         |               | .05                                     |
| 4373           |       | mg/m3                     | 633    | FEMALE                                  | E 0 E                 | 178.3  | 1.77                                    | 1.26    | 5.3     | 1.158         |               | . 04                                    |
| 3.7            |       | mg/m3                     | 634    | FEMALE                                  | REC                   | 199.8  | 1.74                                    | 1.42    | 5.3     | 1.050         |               | . 03                                    |
| 4373           |       | mg/m3                     | 636    | FEMALE                                  | EOE                   | 197.0  | 1.75                                    | 1.42    | •       | 1.184         |               | .04                                     |
| 4373           |       | mg/m3                     | 638    | FEMALE                                  | EOE                   | 176.5  | 1.67                                    | 1.35    | 5.3     | 1.087         |               | ٥.                                      |
| 4373           | 10    | mg/m3                     | 639    | FEMALE                                  | REC                   | 197.7  | 1.78                                    | 1.37    | 5.4     | 0.994         |               | . 03                                    |
| 4373           | 10    | mg/m3                     | 642    | FEMALE                                  | REC                   | 174.3  | 1.70                                    | 1.22    | 4.3     | 0.821         |               | ٥.                                      |
| 4373           |       | mg/m3                     | 643    | FEMALE                                  | EOE                   | 175.4  | 1.75                                    | 1.44    | •       | 1.041         |               | . 05                                    |
| 4373           |       |                           | 648    | FEMALE                                  | REC                   | 181.4  | 1.78                                    | 1.32    | •       | . 95          |               | . 03                                    |
| 4373           | 10    | mg/m3                     | 650    | FEMALE                                  | REC                   | 184.3  | 1.78                                    | 1.45    | •       | 9             |               | 0.058                                   |
| 4442           | 0     | (SHAM)                    | 109    | MALE                                    | REC                   | 380.7  | 2.04                                    | 2.86    | •       | 6             | 1.55          |                                         |
| 4442           | 0     | (SHAM)                    | 110    | MALE                                    | REC                   | 372.5  | 2.00                                    | 2.45    | ٠       | 1.394         | 1.52          |                                         |
| 4442           | 0     | (SHAM)                    | 111    | MALE                                    | EOE                   | 315.0  | 1.90                                    | 2.24    | •       | 9             | 1.36          |                                         |
| 4442           | 0     | (SHAM)                    | 112    | MALE                                    | EOE                   | 331.0  | 1.94                                    | 1.94    | •       | 1.293         | 1.47          |                                         |
| 4442           | 0     | (SHAM)                    | 114    | MALE                                    | REC                   | 362.3  | 1.97                                    | 2.64    | •       | S             | 1.48          |                                         |
| 4442           | 0     | (SHAM)                    | 115    | MALE                                    | EOE                   | 339.6  | 1.98                                    | 2.33    | •       | 1.464         | 2             |                                         |
| 4442           | 0     | (SHAM)                    | 116    | MALE                                    | EOE                   | 40     | 1.84                                    | 2.07    |         | . 50          |               |                                         |
| 4442           | 0     | (SHAM)                    | 118    | MALE                                    | REC                   | 338.5  | 1.95                                    | 2.41    | •       | 1.515         | 3.38          |                                         |
| 4442           | 0     | (SHAM)                    | 119    | MALE                                    | EOE                   | 321.2  | 1.99                                    | . 7     | •       | 1.408         | 1.37          |                                         |
| 4442           | 0     | (SHAM)                    | 120    | MALE                                    | EOE                   | 333.5  | 1.88                                    | ۳.      | •       | 1.332         | 1.25          |                                         |
| 4442           | 0     | (SHAM)                    | 121    | MALE                                    | REC                   | 364.1  | 1.93                                    | 2.45    | •       | 1.632         | 76.1          |                                         |
| 4442           | 0     | (SHAM)                    | 122    | MALE                                    | EOE                   | 336.2  | σ.                                      | 2.16    | 11.3    | o ·           | 60.           |                                         |
| 4442           | 0     | (SHAM)                    | 123    | MALE                                    | REC                   | 352.1  | 2.00                                    | -       | ٠       | 1.539         | 44.           |                                         |
| 4442           | 0     | (SHAM)                    | 127    | MALE                                    | EOE                   | 338.0  | 1.95                                    | . 7     | •       | -             | .58           |                                         |
| 4442           | 0     | (SHAM)                    | 128    | MALE                                    | EOE                   | 328.9  | 1.98                                    | 2.39    | •       | S             |               |                                         |
| 4442           | 0     | (SHAM)                    | 130    | MALE                                    | REC                   | 384.8  | 2.00                                    | ۲.      | •       | 40            |               |                                         |
| 4442           | 0     | (SHAM)                    | 131    | MALE                                    | REC                   | 336.5  | 1.99                                    | 2.30    | 1.3     | ~             | 1.45          |                                         |
| 4442           | 0     | (SHAM)                    | 132    | MALE                                    | REC                   | 392.0  | 2.04                                    | ".      | ٠       | 1.490         | 1.52          |                                         |
| 4442           | 0     | (SHAM)                    | 134    | MALE                                    | REC                   | 374.1  | 2.00                                    | 2.48    | 11.7    | 1.697         | 1.60          |                                         |
| 4442           | 0     | (SHAM)                    | 136    | MALE                                    | EOE                   | 341.3  | 1.89                                    | 2.24    | 10.8    | 1.432         | 1.50          |                                         |
|                |       |                           |        |                                         |                       |        |                                         |         |         |               |               |                                         |

| !      |      |                           |        |        |                     |        |       | WEIGHT  | IN GRAMS  |       |        |         |
|--------|------|---------------------------|--------|--------|---------------------|--------|-------|---------|-----------|-------|--------|---------|
| NUMBER | 0.00 | CONCENIKATION<br>OF CU-Zn | NUMBER | SEX    | CODE                | ANIMAL | BRAIN | KIDNEYS | L 1 V E B | LUNG  | TESTES | OVARIES |
|        |      | i                         |        |        |                     |        |       |         |           |       |        |         |
| 4442   | 0    | (SHAM)                    | 137    | MALE   | REC                 | 375.4  | 2.02  | 2.52    | 11.5      | 1.467 | 1.42   |         |
| 4442   | 0    | (SHAM)                    | 138    | MALE   | EOE                 | 333.0  | 1.91  | 2.11    | 3.6       | 1.569 | 1.49   |         |
| 4442   | 0    | (SHAM)                    | 509    | FEMALE | <b>E</b> 0 <b>E</b> | 193.9  | 1.78  | 1.31    | 5.8       | 0.955 |        | . 0.8   |
| 4442   | 0    | (SHAM)                    | 510    | FEMALE | ш                   | 204.6  | 1.75  | 1.39    | 6.1       | 1.198 |        | 0.048   |
| 4442   | 0    | (SHAM)                    | 511    | FEMALE | REC                 | 201.6  | 1.79  | 1.52    | 6.3       | 1.020 |        | . 0 5   |
| 4442   | 0    | (SHAM)                    | 512    | FEMALE | REC                 | 192.1  | 1.80  | 1.45    | 5.2       | 1.053 |        | 90.     |
| 4442   | 0    | (SHAM)                    | 513    | FEMALE | REC                 | 213.4  | 1.79  |         | 6.1       | 1.123 |        | 0.064   |
| 4442   | 0    | (SHAM)                    | 515    | FEMALE | REC                 | 206.1  | 1.81  | 0.70    | 6.1       | 1.042 |        | . 0 5   |
| 4442   | 0    | (SHAM)                    | 516    | FEMALE | REC                 | 210.1  | 1.85  | 1.57    | 8.9       | 1.251 |        | 0.062   |
| 4442   | 0    | (SHAM)                    | 517    | FEMALE | EOE                 | 199.2  | 2.03  | 1.38    | 5.8       | 1.204 |        | 0.068   |
| 4442   | 0    | (SHAM)                    | 518    | FEMALE | REC                 | 216.2  | 1.79  | 1.58    | •         | 1.021 |        | .07     |
| 4442   | 0    | (SHAM)                    | 519    | FEMALE | EOE                 | 200.0  | 1.81  | 1.51    |           | 1.037 |        | . 05    |
| 4442   | 0    | (SHAM)                    | 520    | FEMALE | EOE                 | 190.1  | 1.75  |         |           | 1.058 |        | 0.046   |
| 4442   | 0    | (SHAM)                    | 522    | FEMALE | REC                 | 10     | 1.83  |         | 9.9       | 1.043 |        | 0.078   |
| 4442   | 0    | (SHAM)                    | 523    | FEMALE | REC                 | 206.3  | 1.80  | 1.57    | 6.2       | 1.003 |        | 0.061   |
| 4442   | 0    | (SHAM)                    | 524    | FEMALE | EOE                 | 191.2  | 1.71  | 1.44    | 5.8       | 0.933 |        | . 04    |
| 4442   | 0    | (SHAM)                    | 526    | FEMALE | EOE                 | Ø      | 1.76  | 1.42    | 5.4       | 0.962 |        | . 0 5   |
| 4442   | 0    | (SHAM)                    | 527    | FEMALE | EOE                 | 198.7  | 1.78  | 1.39    | 6.4       | 1.108 |        | 0.049   |
| 4442   | 0    | (SHAM)                    | 530    | FEMALE | REC                 | 200.9  | 1.81  | 1.57    | 6.4       | 0.931 |        | 90.     |
| 4442   | 0    | (SHAM)                    | 531    | FEMALE | EOE                 | 00     | 1.77  | 1.34    | 6.1       | 1.043 |        | . 04    |
| 4442   | 0    | (SHAM)                    |        | FEMALE | EOE                 | 9 6    | 1.83  | 1.38    | 5.7       | 1.060 |        | •       |
| 4442   | •    | (SHAM)                    |        | FEMALE | EOE                 | 190.7  | 1.76  | 1.27    | 5.5       | 0.970 |        | . 04    |
| 4442   | _    | (SHAM)                    | 535    | FEMALE | REC                 | 0      | 1.77  | 1.47    |           | 1.038 |        | ٥.      |
| 4442   | 0    | (SHAM)                    | 538    | FEMALE | EOE                 | 9      | 1.7.1 | 1.45    | •         | 1.183 |        | 0.051   |
| 4443   | 0.3  | .32 mg/m3                 | 139    | MALE   | ш                   | 57     | 1,98  | 2.48    | 12.1      | 1.553 |        |         |
| 4443   | 0.3  | .32 mg/m3                 |        | MALE   | REC                 | 364.2  | 1.98  | 2.38    | 12.4      | 1.699 | 2.26   |         |
| 4443   | 0.3  | 32 mg/m3                  |        | MALE   | EOE                 | 4      | 1.94  | 2.10    | •         | 1.589 | 4.     |         |
| 4443   | 0    | .32 mg/m3                 | 142    | MALE   | ш                   | 76.    | 1.99  | 1.16    | 12.5      | 1.169 | 4      |         |
| 4443   | 0.3  | 32 mg/m3                  |        | MALE   | REC                 | ~      | 1.92  | ຕ.      | •         | 1.526 | ٥.     |         |
| 4443   | 0.3  | 32 mg/m3                  | 144    | MALE   | 303                 | 328.2  | 1.90  | 2.29    |           |       |        |         |
| 4443   | 0.3  | 32 mg/m3                  |        | MALE   | EOE                 | 28     | 1.87  | 2.05    | •         | 1.536 | 1.43   |         |
| 4443   | 0.3  | 32 mg/m3                  |        | MALE   | EOE                 | က      | 1.96  | 2.26    | •         | 1.475 | 1.53   |         |
| 4443   | 0.3  | 32 mg/m3                  |        | MALE   | REC                 | 370.1  | 1.98  | 2.60    | 12.2      | 1.343 |        |         |
| 4443   | 0    | .32 mg/m3                 | 148    | MALE   | EOE                 | 37.    | 1.84  | 1.98    | 10.1      | 1.349 | 1.47   |         |
| 4443   | 0.3  | 32 mg/m3                  |        | MALE   | EOE                 | 15.    | 1.88  | ٦.      | •         | 1.473 | 4      |         |
| 4443   | 0.3  | 12 mg/m3                  |        | MALE   | REC                 | •      | 1.95  | 2.19    | 8.7       | 1.348 | 1.51   |         |
| 4443   | 0.3  | 32 mg/m3                  | 151    | MALE   | REC                 | 367.7  | 1.99  | 2.36    | •         | 1.536 | 1.49   |         |
| 4443   | 0.3  | 12 mg/m3                  | 152    | MALE   | REC                 | 375.8  | 1.90  | 2.29    | 11.5      | 1.931 |        |         |
| 4443   | 0.3  | 12 mg/m3                  | 153    | MALE   | EOE                 | 333.8  | 1.95  | 2.21    | 10.4      | 1.476 | 1.49   |         |
|        |      |                           |        |        |                     |        |       |         |           |       |        |         |

|          |            |                                       |        | 1         |           |       |         |       | 1            | <br>                                    | 1<br>1<br>1<br>1<br>1                   |
|----------|------------|---------------------------------------|--------|-----------|-----------|-------|---------|-------|--------------|-----------------------------------------|-----------------------------------------|
| EXPT     |            | ANIMAL                                | 2      | SACRIFICE | - AN - NA | BBAIN | KIDNEYS | LIVER | LUNG         | TESTES                                  | OVARIES                                 |
| MOMBEN I |            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | u 1    |           |           |       |         |       |              | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|          |            |                                       |        |           |           |       |         |       | i            |                                         |                                         |
| 4443     | 0.32 mg/m3 | 154                                   | MALE   | E 0 E     | ~         | 1.81  | 7.      |       |              | ?                                       |                                         |
| 4443     | 0.32 mg/m3 | 155                                   | MALE   | REC       | 350.7     | 1.93  | ۳.      | •     | . 65         | σ.                                      |                                         |
| 4443     | 0.32 mg/m3 | 156                                   | MALE   | EOE       | 340.7     | 1.89  | 2.10    | ٠     | . 7          | 4                                       |                                         |
| 4443     |            | 157                                   | MALE   | EOE       | 354.0     | 1.89  | 2.26    | 10.9  | 40           | 4                                       |                                         |
| 4443     | . 32       | 158                                   | MALE   | REC       | 361.8     | 1.93  | 2.08    | 11.9  | 1.314        | 1.70                                    |                                         |
| 4443     | 32         | 159                                   | MALE   | EOE       | 327.6     | 1.92  | 2.12    | 10.2  | 1.365        |                                         |                                         |
| 4443     | .32        | 160                                   | MALE   | REC       | 323.3     | 1.94  | 2.01    | 10.1  |              | 1.51                                    |                                         |
| 4443     | 32         | 539                                   | FEMALE | REC       | 203.5     | 1.77  | 1.49    | 6.8   | . 22         |                                         | .07                                     |
| 4443     | 32         | 540                                   | FEMALE | EOE       | 193.9     | 1.75  | 1.45    | 9.9   | 0.984        |                                         | .03                                     |
| 4443     | 32         | 541                                   | FEMALE | REC       | 190.5     | 1.77  | 0.65    | 6.1   | . 89         |                                         | 90.                                     |
| 4443     |            | 542                                   | FEMALE | EOE       | 207.5     | 1.80  | 1.49    | 5.8   | . 92         |                                         | . 06                                    |
| 4443     | 32         |                                       |        | REC       | 206.3     | 1.86  | 1.64    | 6.7   | 1.217        |                                         | .08                                     |
| 4443     | 33         | 544                                   | FEMALE | EOE       | 196.2     | 1.71  | 1.35    | 5.5   | 0.972        |                                         | . 0 4                                   |
| 4443     |            |                                       | FEMALE | REC       | 220.7     | 1.80  | 1.55    | 6.7   | 0.970        |                                         | . 04                                    |
| 4443     |            |                                       |        | 0         | 193.0     | 1.73  | 1.34    | 5.5   | 1.027        |                                         | 0.050                                   |
| 4443     | 32         |                                       | FEMALE | EOE       | 183.9     | 1.72  | 1.40    | 5.1   | 0.951        |                                         | . 0 5                                   |
| 4440     |            | 84.8                                  |        | REC       | 216.8     | 1.82  | 1.40    | 6.5   | 1.014        |                                         |                                         |
| 4443     | 32         |                                       | FEMALE | EOE       | 200.1     | 1.78  | 1.34    | 5.5   | 1.019        |                                         | ٥.                                      |
| 443      | 32         | 550                                   | FEMALE | REC       | 204.1     | 1.77  | 1.46    | 6.1   | 90.          |                                         | .04                                     |
| 4443     | . 32       | 551                                   | FEMALE | EOE       | 208.3     | 1.70  | 1.51    | 6.4   | . 92         |                                         | ٥.                                      |
| 4443     | .32        | 552                                   | FEMALE | REC       | 204.6     | 1.81  | 1.38    | •     | 96.          |                                         | 90.                                     |
| 4443     | . 32       | 553                                   | FEMALE | REC       | 267.1     | 1.81  | 1.49    | •     | - 1          |                                         | . 0 5                                   |
| 4443     | . 32       | 554                                   | FEMALE | REC       | 201.0     | 1.77  | 1,56    | •     | . 15         |                                         | . 08                                    |
| 4443     | .32        | 555                                   | FEMALE | EOE       | 192.4     | 1.69  | 1.32    | 5.4   | . 83         |                                         | 0.044                                   |
| 4443     | . 32       | 556                                   | FEMALE | REC       | 198.5     | 1.83  | 1.53    | 6.4   | . 85         |                                         | 90.                                     |
| 4443     | .32        | 557                                   | FEMALE | REC       | 206.7     | 1.84  | 1.53    | 6.5   |              |                                         | 90.                                     |
| 4443     |            | 558                                   | FEMALE | EOE       | 194.6     | 1.80  | 1.54    |       | .03          |                                         | . 0 5                                   |
| 4443     |            | 559                                   | FEMALE | EOE       | 191.5     | 1.73  | 1.31    | ٠     | 9.           |                                         | ۰.                                      |
| 4443     |            | 560                                   | FEMALE | EOE       | 7 .       | 1.68  |         | •     |              |                                         | 0.041                                   |
| 4444     | 3.2 mg/m3  | 170                                   | MALE   | REC       | 368.5     |       |         |       | 9            | 9                                       |                                         |
| 4444     | 3.2 mg/m3  | 171                                   | MALE   | REC       | 332.4     | 2.11  |         | •     | <del>.</del> | 'n.                                     |                                         |
| 4444     | 7          | 173                                   | MALE   | REC       | 365.8     | 1.91  | 2.37    | •     | ~            | ۳.                                      |                                         |
| 4444     | ~          | 174                                   | MALE   | REC       | 351.3     | 1.97  | 4.      |       | . 51         | •                                       |                                         |
| 444      | 7          | 175                                   | MALE   | E 0 E     | 344.2     | 1.89  | Ξ.      | •     | . 38         | 9.                                      |                                         |
| 4444     | ~          | 177                                   | MALE   | BEC       | 366.7     | 1.93  | 2.26    |       | 9            |                                         |                                         |
| 444      | ~          | 179                                   | MALE   | REC       | 378.8     | 2.05  | 9.      |       | . 50         | ო.                                      |                                         |
| 444      | 7          | 180                                   | MALE   | EOE       | 325.5     | 1.86  | 2.03    | •     | . 40         | 4                                       |                                         |
| 4444     | 7          | 181                                   | MALE   | EOE       | 329.3     | 1.89  | 2.22    | •     | 1.406        | 1.52                                    |                                         |
| 4444     | 7          | 182                                   | MALE   | EOE       | 323.8     | 1.91  | 2.30    | 1.1   | 1.488        | 1.53                                    |                                         |
| •        |            |                                       |        |           |           |       |         |       |              |                                         |                                         |

WEIGHT IN GRAMS

| EXPT<br>NUMBER                          | CONCENTRATION<br>OF CU-Zn | ANIMAL           | SEX    | SACRIFICE<br>CODE | ANIMAL | BRAIN | KIDNEYS                                 | LIVER   |       |                            | ABI                             |
|-----------------------------------------|---------------------------|------------------|--------|-------------------|--------|-------|-----------------------------------------|---------|-------|----------------------------|---------------------------------|
| !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |                           | ;<br>;<br>;<br>; | <br>   | !<br>!<br>!<br>!  |        | :     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | <br>    | <br>  | !<br>!<br>!<br>!<br>!<br>! | 1<br>1<br>1<br>1<br>1<br>1<br>1 |
| 4444                                    | 3.2 mg/m3                 | 184              | MALE   | REC               | 356.3  | 2.01  | 2.39                                    | 11.5    | 1.542 | 1.51                       |                                 |
| 4444                                    | 7.                        | 185              | MALE   | EOE               | 323.5  | 1.89  | 2.34                                    | 9.0     | 1.407 |                            |                                 |
| 4444                                    | ~                         | 186              | MALE   | REC               | 359.1  | 1.97  | 2.52                                    | 11.3    | က     | 1.55                       |                                 |
| 4444                                    | 7                         | 187              | MALE   | EOE               | 334.3  | 1.88  | 2.20                                    | 9.<br>8 | 2     | 1.47                       |                                 |
| 4444                                    | 3.2 mg/m3                 | 188              | MALE   | REC               | 357.9  | 1.92  | 2.24                                    | 11.4    | 1.380 | 1.58                       |                                 |
| 4444                                    | 7.                        | 189              | MALE   | EOE               | 329.7  | 1.98  | 2.48                                    | 10.3    | 1.896 | 1.67                       |                                 |
| 4444                                    | 7                         | 190              | MALE   | EOE               |        | 1.94  | 2.18                                    | €0<br>• |       | 1.58                       |                                 |
| 4444                                    | 7                         | 191              | MALE   | EOE               | 314.8  | 1.90  | 2.06                                    | 8.7     | 1.235 | 1.54                       |                                 |
| 4444                                    | ~                         | 192              | MALE   | EOE               | 332.2  | 1.94  | 2.12                                    | 10.9    | 1.842 | 1.52                       |                                 |
| 4444                                    | 7                         | 195              | MALE   | REC               | 366.8  | 1.94  | 1.19                                    | 11.7    | 1.359 | 1.50                       |                                 |
| 4444                                    | ~                         | 196              | MALE   | REC               | 370.2  | 1.94  | 2.58                                    | 12.8    | 1.557 | 1.58                       |                                 |
| 4444                                    | 7                         | 197              | MALE   | EOE               | 330.9  | 1.91  | 2.02                                    | 10.5    | 1.552 | 1.28                       |                                 |
| 4444                                    | ~                         | 69 5             | FEMALE | REC               | 208.5  | 1.80  | 1.51                                    | 6.1     | 1.150 |                            |                                 |
| 444                                     | ~                         | 570              | FEMALE | REC               | 196.0  | 1.87  | 1.47                                    | 5.8     | 1.093 |                            | 0.064                           |
| 4444                                    | . ~                       | 573              | FEMALE | EOE               |        | 1.74  | 1.37                                    | 6.3     | 1.093 |                            | 0.071                           |
| 4444                                    | . ~                       | 574              | FEMALE | EOE               | V)     | 1.73  | 1.34                                    | 9.9     | 0.938 |                            | . 05                            |
| 444                                     | . ~                       | 575              | FEMALE | REC               | 197.2  | 1.92  | 1.52                                    | 6.1     | 1.235 |                            | .08                             |
| 444                                     |                           | 576              | FEMALE | REC               | 204.0  | 1.86  | 1.47                                    | 6.2     | 1.091 |                            | ٥.                              |
| 4444                                    |                           | 577              | FEMALE | REC               | 205.4  | 1.78  | 1.54                                    | 6.5     | 0.989 |                            | 90.                             |
| 4444                                    | ~                         | 578              | FEMALE | EOE               | 187.3  | 1.70  | 1.32                                    | 2 . 3   | 0.907 |                            | ٥.                              |
| 4444                                    | 7                         | 580              | FEMALE | REC               | 204.4  | 1.84  | 1.34                                    | 6.4     | 1.003 |                            | ٥.                              |
| 4444                                    | 3.2 mg/m3                 | 581              | FEMALE | EOE               | 193.1  | 1.79  | 1.46                                    | 4.      | 1.072 |                            | ٥.                              |
| 4444                                    | ~                         | 582              | FEMALE | REC               | 210.1  | 1.83  | 1.55                                    | 6.9     | 1.110 |                            | ۰.                              |
| 4444                                    |                           | 583              | FEMALE | EOE               | 195.8  | 1.73  | 1.49                                    | 6.3     | 0.984 |                            | .06                             |
| 4444                                    | 7                         | 585              | FEMALE | REC               | 205.0  | 1.77  | 1.61                                    | 6.5     | 0.960 |                            | .05                             |
| 4444                                    | ~                         | 586              | FEMALE | EOE               | 199.4  | 1.82  | 1.32                                    | 5.5     | 1.057 |                            | ۰.                              |
| 4444                                    | 7                         | 588              | FEMALE | EOE               | 202.7  | 1.78  | 1.38                                    | 8.8     | 1.080 |                            | . 0 5                           |
| 4444                                    |                           | 589              | FEMALE | EOE               | 195.5  | 1.72  | 1.32                                    | 5.7     | 1.048 |                            | . 0 5                           |
| 4444                                    | 7                         | 590              | FEMALE | EOE               | 198.5  | 1.77  | 1.38                                    | 6.0     | 1.171 |                            | .05                             |
| 444                                     | ~                         | 591              | FEMALE | REC               | 196.7  | 1.82  | 1.51                                    | 6.6     | 1.470 |                            | ٠.                              |
| 444                                     | . 2                       | 592              | FEMALE | REC               | 201.5  | 1.85  | 1.56                                    | 6.5     | 1.026 |                            | 0.045                           |
| 444                                     |                           | 594              | FEMALE | EOE               | 195.4  | 1.75  | 1.45                                    | 5.7     | 1.092 |                            | 0.077                           |
| 444                                     | . ~                       | 595              | FEMALE | REC               | 206.0  | 1.82  | 1.50                                    | 6.5     | 0.995 |                            | 0.063                           |
| 4444                                    |                           |                  | FEMALE |                   | 189.5  | 1.74  | 1.40                                    | 5.4     | 1.141 |                            | 0.075                           |

APPENDIX E. ENDPOINT EVALUATION RESULTS FOR INDIVIDUAL ANIMALS (HEMATOLOGY, CHEMISTRY, IMMUNOLOGY, PHAGOCYTOSIS)

1. HEMATOLOGY DATA

| ш | EXPT   | ANIMAL | ANIMAL | SACRIFICE | ,    | :    | 4                                                                                                | Š                          | 2       | 3            | 7        | F 0 S 1 | AX A     | O NO | N 80 K O   |
|---|--------|--------|--------|-----------|------|------|--------------------------------------------------------------------------------------------------|----------------------------|---------|--------------|----------|---------|----------|------|------------|
|   | NUMBER | NUMBER |        | CODE      | 386  | HEMA | 1<br>1<br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1<br>2<br>1<br>2<br>1<br>3 | 3 C T V | 1111111      | E 1      |         |          |      |            |
|   | 4371   | 0.38   | I WALE | E 0 E     | 86.7 | 41.9 | 15.0                                                                                             | 53                         | 35.8    | 2.0          | 20       | 7       | 7.8      | 0    | 4          |
|   | 4371   | 0.46   | MALE   | EOE       | 8.10 | 41.8 | 15.2                                                                                             | 52                         | 36.4    | 4.5          | 18       | -       | 80       | -    | 0          |
|   | 4371   | 0 2 0  | MALE   | REC       | 7.94 | 40.4 | 15.5                                                                                             | 5.1                        | 38.4    | 4.7          | 30       | -       | 29       | 7    | 6          |
|   | 4371   | 0.51   | MALE   | . BE      | 8.26 | 42.4 | 15.6                                                                                             | 52                         | 36.8    | 4.6          | 31       | 7       | 99       | -    | ~          |
|   | 4371   | 052    | MALE   | E 0 E     | 8.09 | 42.2 | 15.1                                                                                             | 53                         | 35.8    | 2.8          | 15       | m       | 8 2      | 0    | 0          |
|   | 4371   | 055    | MALE   | REC       | 8.06 | 42.3 | 16.3                                                                                             | 23                         | 38.8    | 4.           | 19       | 40      | 9 /      | 0    | 40         |
|   | 4371   | 056    | MALE   | REC       | 7.94 | 40.6 | 15.8                                                                                             | 2 9                        | 38.9    | 4.3          | 29       | -       | 6.8      | 7    | -          |
|   | 4371   | 0.59   | MALE   | EOE       | 7.89 | 40.7 | 14.6                                                                                             | 5.2                        | 35.9    | 3.7          | 2.5      | -       | 73       | -    | -          |
|   | 4371   | 090    | MALE   | REC       | 8.17 | 41.7 | 16.0                                                                                             | 5.2                        | 38.4    | 3.6          | 36       | e       | 9        | -    | 4          |
|   | 4371   | 061    | MALE   | E 0 E     | 8.16 | 42.2 | 15.4                                                                                             | 2 9                        | 36.5    | 4.1          | 43       | 7       | 52       | 0    | 0          |
|   | 4371   | 547    | FEMALE | EOE       | 7.45 | 41.5 | 14.9                                                                                             | 5.7                        | 35.9    | 2.8          | 16       | m       | 4 9      | ~    | e          |
|   | 4371   | 548    | FEMALE | EOE       | 7.41 | 41.2 | 14.7                                                                                             | 56                         | 35.7    | 3.0          | 9        | 0       | 8 2      | ~    | ဖ          |
|   | 4371   | 650    | FEMALE | REC       | 7.81 | 42.3 | 16.0                                                                                             | 5.5                        | 37.8    | <b>4</b> . 6 | 31       | 4       | 63       | 7    | <b>6</b> 0 |
|   | 4371   | 554    | FEMALE | EOE       | 7.69 | 40.4 | 14.9                                                                                             | 53                         | 36.9    | 2.9          | 9        | -       | 83       | -    | ~          |
|   | 4371   | 555    | FEMALE | REC       | 7.37 | 39.6 | 15.5                                                                                             | 5.4                        | 39.1    | 3.6          | 20       | -       | 11       | ~    | 4          |
|   | 4371   | 560    | FEMALE | REC       | 7.23 | 39.0 | 15.4                                                                                             | 5.5                        | 39.5    | 4.7          | 19       | -       | 4 9      | -    | _          |
|   | 4371   | 562    | FEMALE | REC       | 7.66 | 41.5 | 15.8                                                                                             | 5.5                        | 38.1    | 4.3          | 31       | -       | 68       | 0    | ~          |
|   | 4371   | 563    | FEMALE | REC       | 7.96 | 42.5 | 16.2                                                                                             | 5.4                        | 38.1    | 5.0          | 4        | 7       | 83       | -    | 6          |
|   | 4371   | 570    | FEMALE | EOE       | 7.71 | 41.7 | 15.3                                                                                             | 5.5                        | 36.7    | 4.0          | 3.5      | -       | 63       | -    | 9          |
|   | 4371   | 571    | FEMALE | 1.0E      | 7.64 | 42.4 | 15.1                                                                                             | 56                         | 35.6    | 3.5          | Ξ        | -       | 8.7      | -    | ო          |
|   | 4372   | 075    | MALE   | EOE       | 8.18 | 42.7 | 15.3                                                                                             | 53                         | 35.8    | 3.1          | 30       | -       | <b>6</b> | -    | 0          |
|   | 4372   | 081    | MALE   | E O E     | 8.30 | 42.3 | 15.6                                                                                             | 52                         | 36.9    | 3.5          | 20       | _       | 11       | 7    | -          |
|   | 4372   | 085    | MALE   | EOE       | 7.87 | 40.3 | 15.2                                                                                             | 5.2                        | 37.7    | 3.2          | 2.5      | -       | 7.4      | 0    | -          |
|   | 4372   | 086    | MALE   | REC       | 8.01 | 40.9 | 15.9                                                                                             | 52                         | 38.9    | 4.8          | 42       | -       | 9 5      | -    | ∢          |
|   | 4372   | 060    | MALE   | EOE       | 7.76 | 39.5 | 14.7                                                                                             | 52                         | 37.2    | 3.7          | 39       | -       | 5.9      | -    | 7          |
|   | 4372   | 092    | MALE   | REC       | 8.42 | 42.6 | 16.3                                                                                             | 5.1                        | 38.3    | 5.0          | 31       | -       | 2 9      | -    | ∞          |
|   | 4372   | 960    | MALE   | REC       | 7.59 | 39.0 | 15.6                                                                                             | 5 2                        | 40.0    | 6.4          | 3.<br>4. | 0       | 64       | 7    | ıo.        |
|   | 4372   | 100    | MALE   | EOE       | 7.90 | 40.6 | 14.9                                                                                             | 5.2                        | 36.7    | 9.<br>6.     | 36       | 7       | 62       | 0    | m          |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONCENTRATION<br>OF CU-Zn | EXPT<br>NUMBER | ANIMAL<br>NUMBER | ANIMAL      | SACRIFICE<br>CODE | RBC | HEMA | <b>8</b> 95 <b>3</b>                    | ¥ C | MCHV                                    | BWBC                                    | SEGM | EOSI                  | LYMP             | ONOM                  | 8 2  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|----------------|------------------|-------------|-------------------|-----|------|-----------------------------------------|-----|-----------------------------------------|-----------------------------------------|------|-----------------------|------------------|-----------------------|------|
| mg/m3         4372         111         MALE         REC         7.62         39.5         15.6         52         39.5         6.4           mg/m3         4372         112         MALE         REC         7.41         39.5         15.6         52         30.6         6.5           mg/m3         4372         576         FEMALE         REC         7.40         42.0         15.4         56         30.6         37.6         37.6           mg/m3         4372         598         FEMALE         REC         7.40         42.0         15.4         56         30.7         17.2           mg/m3         4372         698         FEMALE         REC         7.45         42.4         16.2         56         30.7         7.7           mg/m3         4372         602         FEMALE         REC         7.45         32.4         14.9         56         30.7         31.0           mg/m3         4372         603         FEMALE         REC         7.45         32.4         14.9         56         30.7         31.0           mg/m3         4372         603         FEMALE         REC         7.87         41.2         15.6         56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 1 1 1 1 1 1 1 1 1 1     |                |                  |             |                   |     |      | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      | !<br>!<br>!<br>!<br>! | l<br>1<br>1<br>1 | f<br>1<br>1<br>1<br>1 | <br> |
| MACE         REC         8.15         16.1         52         38.0         6.5           MG/M3         4372         112         MALE         REC         7.41         39.5         16.1         52         38.0         3.3           MG/M3         4372         556         FEMALE         REC         7.41         39.5         15.2         56         30.7         3.3           MG/M3         4372         590         FEMALE         REC         7.79         42.4         16.2         56         30.7         7.4           MG/M3         4372         603         FEMALE         REC         7.46         30.4         14.9         56         30.2         7.4           MG/M3         4372         603         FEMALE         REC         7.41         30.4         14.9         65         30.2         7.4           MG/M3         4372         603         FEMALE         REC         7.41         30.4         14.9         65         30.0         7.3           MG/M3         4372         603         FEMALE         REC         7.41         30.4         14.9         65         30.0         7.3           MG/M3         4372 <t< td=""><td></td><td>4372</td><td>111</td><td>MALE</td><td>BEC</td><td></td><td></td><td>•</td><td>5 2</td><td>9</td><td></td><td>2.2</td><td>ო</td><td>69</td><td>ø</td><td>4</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 4372           | 111              | MALE        | BEC               |     |      | •                                       | 5 2 | 9                                       |                                         | 2.2  | ო                     | 69               | ø                     | 4    |
| May May 172                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • •                       | 4372           | 112              | MALE        | 386               | -   | _    | 16.1                                    |     | 8                                       | •                                       | 16   | -                     | <b>8</b> 0       | 7                     | m    |
| Mg/mg/mg         4372         686         FEMALE         REC         7.80         42.0         15.9         56         37.6         3.1           mg/mg         4372         690         FEMALE         RCE         7.79         42.0         16.4         56         36.7         1.2           mg/m3         4372         690         FEMALE         RCE         7.43         41.2         16.9         56         36.9         7.4           mg/m3         4372         602         FEMALE         RCE         7.45         41.2         16.9         56         36.9         7.9           mg/m3         4372         603         FEMALE         RCE         7.43         41.3         16.1         57         36.3         3.3           mg/m3         4372         603         FEMALE         RCE         7.67         44.3         16.1         57         36.3         3.5           mg/m3         4372         608         FEMALE         RCE         7.67         44.3         16.1         57         36.3         3.5           mg/m3         4372         102         FEMALE         RCE         7.67         44.3         16.1         57         36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 4373           | 3.7              | FEMALE      | . E               | 4   | 6    | •                                       |     | 80                                      | •                                       | 13   | 0                     |                  | -                     | -    |
| Mayor         Mayor <th< td=""><td></td><td>7</td><td>- 4<br/>- 4</td><td></td><td></td><td>. «</td><td></td><td></td><td></td><td>~</td><td>3.1</td><td></td><td>~</td><td>7.5</td><td>7</td><td>~</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           | 7              | - 4<br>- 4       |             |                   | . « |      |                                         |     | ~                                       | 3.1                                     |      | ~                     | 7.5              | 7                     | ~    |
| May may a sign of the matter of th | ٠,                        | 7154           | n (              | 1           | ) L               |     |      | •                                       |     |                                         | 1.2                                     |      | -                     | 11               | 0                     | ო    |
| 2 mg/m3 4372 599 FEMALE REC 7.49 42.2 15.0 56 36.4 3.3 2 mg/m3 4372 603 FEMALE REC 7.46 30.4 14.9 62 36.8 4.9 3.3 2 mg/m3 4372 603 FEMALE REC 7.67 43.3 16.1 65 36.8 35.9 3.3 2 mg/m3 4372 603 FEMALE REC 7.67 44.3 16.1 67 36.3 3.3 3.0 3.3 3.0 mg/m3 4372 603 FEMALE REC 7.67 44.3 16.1 67 36.3 3.0 3.3 3.0 mg/m3 4372 603 FEMALE REC 7.80 39.2 16.1 67 36.3 3.6 3.5 3.0 mg/m3 4373 122 MALE REC 8.03 40.5 15.5 51 39.5 5.0 3.0 mg/m3 4373 130 MALE REC 8.03 40.7 14.9 52 36.6 5.3 mg/m3 4373 130 MALE REC 8.03 14.5 6.3 15.6 5.3 36.6 37.0 mg/m3 4373 130 MALE REC 8.03 14.5 15.9 51 37.8 4.8 mg/m3 4373 130 MALE REC 8.11 41.4 16.9 52 36.6 5.3 mg/m3 4373 130 MALE REC 8.11 41.4 16.9 52 36.9 3.1 mg/m3 4373 149 MALE REC 8.11 41.4 16.9 52 36.9 3.1 mg/m3 4373 149 MALE REC 8.11 41.4 16.3 52 36.9 3.1 mg/m3 4373 149 MALE REC 8.11 41.4 16.3 52 36.9 3.1 mg/m3 4373 15.8 FEMALE REC 8.11 41.2 16.3 52 36.9 3.1 mg/m3 4373 616 FEMALE REC 7.08 37.0 15.3 55 37.0 mg/m3 4373 623 FEMALE REC 7.08 37.0 15.3 55 37.0 mg/m3 4373 633 FEMALE REC 7.08 37.0 15.3 56 37.0 mg/m3 4373 633 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 633 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 633 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 37.7 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 54 39.3 3.6 mg/m3 4373 650 FEMALE REC 7.11 57.0 59.4 15.1 57.0 59.3 39.3 39.3 39.3 39.3 39.3 39.3 39.3            | ~                         | 4372           | D (              | FEMALE      | <br>              | •   |      | •                                       |     | 60                                      | 7.4                                     |      | ٣                     | 5.7              | 7                     | 4    |
| 2         mg/m3         4372         699         FEMALE         FOOR         7.43         41.2         15.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         40.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0         50.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~                         | 4372           | 5.98             | FEMALE      | H<br>EC           | `.  | •    | •                                       |     |                                         |                                         |      | ,                     | 8                | 6                     | 6    |
| 2 mg/m3 4372 602 FEMALE REC 7.46 38.4 14.9 62 38.8 4.9 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.                        | 4372           | 669              | FEMALE      | EOE               | 4   | _    | •                                       |     |                                         | •                                       | - 6  | • (                   |                  |                       | , ,  |
| 2 mg/m3 4372 603 FEMALE EOE 7.87 43.3 15.5 56 35.8 3.3 2 mg/m3 4372 608 FEMALE REC 7.67 41.3 15.5 56 35.8 3.3 3.8 2 mg/m3 4372 608 FEMALE REC 7.67 41.3 16.4 55 36.8 3.5 8 3.5 8 3.5 8 mg/m3 4372 609 FEMALE REC 7.80 39.2 15.5 51 36.8 3.6 0 3.6 mg/m3 4373 122 MALE REC 8.03 40.5 15.5 51 38.3 4.1 0 mg/m3 4373 128 MALE REC 8.03 40.5 15.5 51 38.3 4.1 0 mg/m3 4373 130 MALE REC 8.19 41.5 15.9 51 37.8 4.0 0 mg/m3 4373 130 MALE REC 8.19 41.5 15.9 51 37.8 4.0 0 mg/m3 4373 141 MALE REC 8.19 41.5 15.9 51 36.8 3.0 0 mg/m3 4373 149 MALE REC 8.19 41.5 15.9 51 36.8 3.0 0 mg/m3 4373 149 MALE REC 8.19 41.5 15.9 51 36.8 3.0 0 mg/m3 4373 149 MALE REC 8.19 41.5 15.9 51 36.9 51 0 mg/m3 4373 149 MALE REC 8.11 41.4 15.3 52 36.8 3.0 0 mg/m3 4373 615 FEMALE REC 8.01 17.7 19.9 52 36.9 3.1 0 mg/m3 4373 615 FEMALE REC 7.08 7.08 77.0 15.1 15.0 57 50 0 mg/m3 4373 615 FEMALE REC 7.08 77.8 15.0 57 50 30.0 0 mg/m3 4373 633 FEMALE REC 7.08 7.08 70.7 15.1 5.0 57 50 0 mg/m3 4373 632 FEMALE REC 7.08 7.08 7.0 15.0 54 39.3 50 0 mg/m3 4373 633 FEMALE REC 7.08 7.08 7.0 15.1 5.0 57 50 0 mg/m3 4373 639 FEMALE REC 7.08 7.01 15.1 54 30.3 3.6 50 mg/m3 4373 650 FEMALE REC 7.08 7.01 15.1 54 30.3 3.6 50 mg/m3 4373 650 FEMALE REC 7.08 7.01 15.1 54 30.3 3.6 50 mg/m3 4373 650 FEMALE REC 7.08 7.08 7.01 15.1 54 30.3 3.6 50 mg/m3 4373 650 FEMALE REC 7.08 7.08 7.08 7.01 15.1 54 30.3 3.6 50 mg/m3 4373 650 FEMALE REC 7.08 7.08 7.08 7.08 7.08 7.08 7.08 7.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ~                         | 4372           | 602              | FEMALE      | REC               | 4.  | 8    |                                         |     |                                         | •                                       | 7.7  | <b>5</b> •            |                  | - 6                   | 4 6  |
| 2 mg/m3         4372         606         FEMALE         REC         7.67         41.3         15.4         55         37.3         5.1           2 mg/m3         4372         608         FEMALE         EOE         7.92         44.3         16.1         57         36.3         3.9           2 mg/m3         4372         603         FEMALE         EOE         6.73         36.7         13.5         51         39.5         2.8           2 mg/m3         4373         122         MALE         RC         7.80         30.7         15.5         51         39.5         2.8           0 mg/m3         4373         124         MALE         RCE         8.03         42.3         15.5         51         39.5         5.3         4.1           0 mg/m3         4373         136         MALE         RCE         8.03         42.1         15.9         51         37.8         4.1           0 mg/m3         4373         136         MALE         RCE         8.03         42.3         15.9         51.8         4.1           0 mg/m3         4373         141         MALE         RCE         8.03         42.3         15.9         51.8         52.8<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~                         | 4372           | 603              | FEMALE      | EOE               | ۳.  | ش    | •                                       |     | Ω                                       |                                         |      | <u> </u>              | 4 -              | <b>-</b>              | ٠ .  |
| 2         mg/m3         4372         608         FEMALE         EOE         7.92         44.3         16.1         57         36.3         3.8           2         mg/m3         4372         609         FEMALE         EOE         6.73         36.7         13.5         55         36.8         3.5           10         mg/m3         4373         122         MALE         REC         7.06         42.3         15.5         51         39.5         2.8           10         mg/m3         4373         130         MALE         EOE         8.05         40.7         14.9         52         36.6         3.2           10         mg/m3         4373         130         MALE         ECE         8.03         40.7         14.9         52         36.6         3.2           10         mg/m3         4373         136         MALE         ECE         8.19         41.5         16.9         51         36.6         3.2           10         mg/m3         4373         142         MALE         ECE         8.19         41.5         16.9         51         36.9         3.9           10         mg/m3         4373         142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ~                         | 4372           | 909              | FEMALE      | REC               |     | _:   |                                         |     | ٠.                                      | ٠                                       | 22   |                       | 11               | <b>,</b>              | - •  |
| 2         male         FEMALE         EOE         6.73         36.7         13.5         55.8         35.8         3.5           10         mg/m3         4372         122         MALE         REC         7.80         39.2         15.5         51         39.5         2.8           10         mg/m3         4373         122         MALE         REC         8.03         40.5         15.5         51         39.5         2.8           10         mg/m3         4373         130         MALE         ROE         8.06         42.3         15.5         51         36.6         5.3           10         mg/m3         4373         130         MALE         RC         8.01         41.5         15.9         51         37.8         4.8           10         mg/m3         4373         136         MALE         RC         8.03         41.5         16.0         53         36.8         3.9           10         mg/m3         4373         141         MALE         RC         8.03         41.5         16.0         53         36.8         3.9           10         mg/m3         4373         142         MALE         RC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~                         | 4372           | 608              | FEMALE      | EOE               |     | 4.   | 16.1                                    |     | 9                                       | •                                       | 22   | _                     | 9                | <b>-</b>              |      |
| 10         mg/m3         4373         122         MALE         REC         7.80         39.2         15.5         51         39.5         2.8           10         mg/m3         4373         127         MALE         REC         8.03         40.5         15.5         51         38.3         4.1           10         mg/m3         4373         128         MALE         EOE         7.95         40.7         14.9         52         36.6         5.3           10         mg/m3         4373         134         MALE         RC         8.19         40.7         14.9         52         36.6         5.3           10         mg/m3         4373         141         MALE         RC         8.19         41.5         15.9         51         36.8         3.9           10         mg/m3         4373         141         MALE         RC         8.17         41.4         15.9         51         36.8         3.9           10         mg/m3         4373         142         MALE         RC         8.17         41.4         15.3         51.9         51         36.8         3.9           10         mg/m3         4373         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . ^                       | 4372           | 609              | FEMALE      | EOE               | ۲.  | 9    |                                         |     | 9                                       | •                                       | 2.7  | -                     | 7.2              | 0                     | -    |
| MALE         REC         8.03         40.5         15.5         51         38.3         4.1           MALE         FERMALE         BCE         8.06         42.3         15.5         53         36.6         5.3           MG/M3         4373         128         MALE         EOE         7.95         40.7         14.9         52         36.6         5.3           Mg/M3         4373         134         MALE         REC         8.19         41.5         15.9         51         37.8         4.8           Mg/M3         4373         141         MALE         EOE         7.95         41.5         15.9         51         37.8         4.8           Mg/M3         4373         143         MALE         EOE         7.67         39.3         14.6         5.2         36.8         37.8           Mg/M3         4373         142         MALE         EOE         7.37         41.2         16.3         52         36.8         37.9           Mg/M3         4373         615         FEMALE         EOE         7.37         41.2         16.3         52         36.8         53.9           Mg/M3         4373         615         FE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           | 4373           | 122              | MALE        | REC               | 8   | 6    |                                         | 5.1 | 6                                       |                                         | 21   | 0                     |                  | 0                     | w    |
| Mayor         MALE         EOE         42.3         15.5         53         36.6         5.3           Mayor         MALE         REC         8.06         42.3         15.5         53         36.6         3.2           Mg/m3         4373         130         MALE         REC         8.19         41.5         15.9         51         37.8         4.8           Mg/m3         4373         134         MALE         REC         8.19         41.5         16.9         51         37.8         4.8           Mg/m3         4373         143         MALE         REC         8.19         41.5         16.9         51         37.8         4.8           Mg/m3         4373         143         MALE         EOE         8.11         41.4         16.3         52         36.9         3.1           Mg/m3         4373         142         MALE         RC         8.11         41.4         16.3         52         36.9         3.1           Mg/m3         4373         615         FEMALE         RC         8.05         41.2         16.3         52         36.9         3.1           Mg/m3         4373         616         FEMALE <td></td> <td>4373</td> <td>127</td> <td>MAIF</td> <td>REC</td> <td>0</td> <td></td> <td></td> <td></td> <td>а</td> <td>٠</td> <td>2.2</td> <td>7</td> <td></td> <td>0</td> <td>0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 4373           | 127              | MAIF        | REC               | 0   |      |                                         |     | а                                       | ٠                                       | 2.2  | 7                     |                  | 0                     | 0    |
| mg/m3         4373         130         MALE         EOE         7.95         40.7         14.9         52         36.6         3.2           mg/m3         4373         134         MALE         REC         8.31         42.1         15.9         51         37.8         4.8           mg/m3         4373         135         MALE         REC         8.19         41.5         15.9         51         37.8         4.8           mg/m3         4373         143         MALE         EOE         7.67         39.3         14.5         52         36.8         3.9           mg/m3         4373         143         MALE         EOE         7.67         39.3         14.5         52         36.9         3.1           mg/m3         4373         143         MALE         EOE         7.67         39.3         14.6         52         36.9         3.1           mg/m3         4373         615         FEMALE         EOE         7.37         41.2         16.3         52         36.9         3.1           mg/m3         4373         616         FEMALE         EOE         7.35         39.4         15.1         54         39.3         57<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                           | 4373           | 128              | MALE        | EOE               | 0   | 2    |                                         |     | 9                                       | •                                       | 2.0  | -                     | 7.8              | -                     | ~    |
| Machina (Mail Color)         Mail Color (Mail                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 4373           | 0.1              | MALE        | EOE               | 6.  | 0    |                                         |     | œ.                                      | ٠                                       | 33   | 7                     | <b>£</b>         | -                     | -    |
| MALE         REC         8.19         41.5         15.9         51         38.3         3.8         2           Mg/m3         4373         135         MALE         REC         8.19         41.5         15.9         51         38.3         3.9         3.9           Mg/m3         4373         141         MALE         EOE         7.67         39.3         14.6         52         36.9         3.9         3.1         39           Mg/m3         4373         142         MALE         EOE         7.37         41.2         16.3         52         36.9         3.1         3           Mg/m3         4373         615         FEMALE         EOE         7.37         41.3         15.0         57         36.3         3.9         3.9           Mg/m3         4373         616         FEMALE         RC         7.37         41.3         15.0         57         36.3         3.9         3.9           Mg/m3         4373         628         FEMALE         RC         7.45         39.4         15.5         54         40.2         1.7         1           Mg/m3         4373         628         FEMALE         RC         7.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 4373           | 134              | H I W       | . S               | e.  |      |                                         | 51  | ۲.                                      | ٠                                       | 4 8  | -                     | 4 9              | 7                     | 4    |
| mg/m3         4373         43.5         16.0         53         36.8         3.9         3           mg/m3         4373         136         MALE         EOE         7.67         39.3         14.5         52         36.9         3.1         3           mg/m3         4373         142         MALE         EOE         6.11         41.4         16.3         52         36.9         3.1         3           mg/m3         4373         615         FEMALE         EOE         7.37         41.3         15.0         57         36.3         3.9         3           mg/m3         4373         616         FEMALE         EOE         7.37         41.3         15.2         54         40.2         1.7         1           mg/m3         4373         616         FEMALE         EOE         7.45         39.4         15.5         54         40.2         1.7         1           mg/m3         4373         628         FEMALE         EOE         7.58         40.7         15.3         55         37.6         1.2         36.3         36.3         36.3         36.3         36.3         37.6         1.2         36.3         37.6         36.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 4273           |                  | 1 A M       | . C               | -   |      |                                         | 5.1 | 8                                       | •                                       | 2.7  | 4                     |                  | ĸ                     | -    |
| mg/m3         4373         130         MALE         ECC         7.67         39.3         14.5         52         36.9         3.1         3           mg/m3         4373         142         MALE         EOE         7.67         39.3         14.5         52         37.0         5.4         2           mg/m3         4373         615         FEMALE         EOE         7.37         41.3         15.0         57         36.3         3.9         3           mg/m3         4373         615         FEMALE         RC         7.08         37.8         15.2         54         40.2         1.7         1           mg/m3         4373         627         FEMALE         RC         7.45         39.4         15.5         54         39.3         4.8         2           mg/m3         4373         628         FEMALE         ROE         7.84         40.7         15.3         55         37.6         1.2         3           mg/m3         4373         632         FEMALE         ROE         7.84         40.7         15.3         55         37.6         1.2         3           mg/m3         437.         632         FEMALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 2 6            |                  | 1 4 7       | ) U               | . " |      |                                         |     | 9                                       | •                                       | 35   | -                     | 62               | ~                     | ო    |
| mg/m3     43/3     141     MALE     EOE     0.11     41.4     16.3     62     37.0     6.4     2       mg/m3     4373     142     MALE     REC     8.05     41.2     16.3     52     39.6     5.2     3       mg/m3     4373     615     FEMALE     REC     7.37     41.3     15.0     57     36.3     3.9     3       mg/m3     4373     616     FEMALE     REC     7.45     39.4     15.5     54     40.2     1.7     1       mg/m3     4373     628     FEMALE     EOE     7.82     43.1     15.8     56     36.7     5.0     2       mg/m3     4373     632     FEMALE     EOE     7.84     40.7     15.3     55     37.6     1.2     3       mg/m3     437     639     FEMALE     RC     7.11     37.7     15.1     54     40.1     3.6     3       mg/m3     437     642     FEMALE     RC     7.35     39.3     15.1     54     39.4     2.8     1       mg/m3     437     643     FEMALE     RC     7.35     39.3     15.1     54     39.4     2.8     1       mg/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           | 5 × 5 F        | o .              | 1           | u u               | . 4 | • •  |                                         |     | 9                                       | •                                       | 37   | က                     | 0 9              | 0                     | 60   |
| mg/m3         4373         142         MALE         REC         6.05         41.2         16.3         52         39.6         5.2         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         3         4         3         3         4         3         3         4         3         3         4         3         3         4         3         3         4         3         4         3 <th< td=""><td></td><td>4373</td><td>- 4 -</td><td>MALE</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td>•</td><td>26</td><td>0</td><td>7.2</td><td>7</td><td>~</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 4373           | - 4 -            | MALE        |                   |     | •    |                                         |     |                                         | •                                       | 26   | 0                     | 7.2              | 7                     | ~    |
| mg/m3     4373     615     FEMALE     FEO     7.37     41.3     15.0     57     36.3     3.9     3       mg/m3     4373     615     FEMALE     REC     7.08     37.8     15.2     54     40.2     1.7     1       mg/m3     4373     627     FEMALE     REC     7.45     39.4     15.5     54     39.3     4.8     2       mg/m3     4373     628     FEMALE     EOE     7.84     40.7     15.3     55     37.6     1.2     3       mg/m3     4373     633     FEMALE     EOE     7.84     43.5     15.8     56     36.3     5.7     3       mg/m3     437.     639     FEMALE     REC     7.11     37.7     15.1     54     10.1     3.1     2       mg/m3     437.     642     FEMALE     RC     7.35     39.3     15.5     54     39.4     2.8     1       mg/m3     437.     643     FEMALE     RC     7.35     39.3     15.1     54     39.4     2.8     3       mg/m3     437.     650     FEMALE     RC     7.36     39.4     15.1     54     38.3     3.6     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           | 4373           | 142              | MALE        | E C E             | - 6 | •    |                                         |     | 9                                       | •                                       | 3.5  | 7                     | 62               | -                     | 7    |
| mg/m3     4373     615     FEMALE     REC     7.08     37.8     15.2     54     40.2     1.7     1       mg/m3     4373     627     FEMALE     REC     7.45     39.4     15.5     54     39.3     4.8     2       mg/m3     4373     628     FEMALE     EOE     7.58     40.7     15.3     55     37.6     1.2     3       mg/m3     4373     633     FEMALE     EOE     7.84     43.5     15.8     56     36.3     5.7     3       mg/m3     437.     639     FEMALE     REC     7.11     37.7     15.1     54     10.1     3.1     2       mg/m3     437.     642     FEMALE     EOE     7.35     39.3     15.5     54     39.4     2.8     1       mg/m3     437.     643     FEMALE     ROE     7.64     41.0     15.1     54     36.3     3.6       mg/m3     437.     650     FEMALE     ROE     7.36     39.4     15.1     54     38.3     3.6       mg/m3     437.     650     FEMALE     ROE     7.36     39.4     15.1     54     38.3     3.6     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                           | 4373           | 5) to            | 3 . 4 % L   | ) u               |     | : _  |                                         |     | 9                                       | •                                       | 30   | -                     | 8 9              | -                     | -    |
| mg/m3     4373     616     PEMALE     REC     7.45     39.4     15.5     54     39.3     4.8     2       mg/m3     4373     628     FEMALE     E0E     7.82     43.1     15.8     56     36.7     5.0     2       mg/m3     4373     632     FEMALE     E0E     7.84     43.5     15.8     56     36.3     5.7     3       mg/m3     437.     639     FEMALE     RC     7.11     37.7     15.1     54     10.1     3.1     2       mg/m3     437.     642     FEMALE     RC     7.35     39.3     15.5     54     39.4     2.8     1       mg/m3     437.     643     FEMALE     RC     7.64     41.0     15.1     54     36.3     3.6     3       mg/m3     437.     650     FEMALE     RC     7.36     39.4     15.1     54     38.3     3.6     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 5 / 5 4        | C (              | 1 2 3 4 1 5 | 9 6               | ? . |      |                                         |     |                                         |                                         | 1.7  | -                     | 8 1              | -                     | S    |
| mg/m3     4373     628     FEMALE     EOE     7.82     43.1     15.8     56     36.7     5.0     2       mg/m3     4373     632     FEMALE     EOE     7.84     43.5     15.8     56     36.3     5.7     3       mg/m3     437.     639     FEMALE     REC     7.11     37.7     15.1     54     10.1     3.1     2       mg/m3     437.     642     FEMALE     REC     7.35     39.3     15.5     54     39.4     2.8     1       mg/m3     437.     643     FEMALE     REC     7.64     41.0     15.1     54     36.8     3.6     3       mg/m3     4373     650     FEMALE     REC     7.36     39.4     15.1     54     38.3     3.6     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                           | 43/3           | 9 5              | FEMALE      | ט נ<br>נ<br>נ     | •   |      |                                         |     | 9.                                      | •                                       | 2.7  | ო                     | 67               | ო                     | ٥    |
| mg/m3     4373     628     FEMALE     EOE     7.58     40.7     15.3     55     37.6     1.2     3       mg/m3     4373     632     FEMALE     EOE     7.84     43.5     15.8     56     36.3     5.7     3       mg/m3     437.     639     FEMALE     REC     7.11     37.7     15.1     54     10.1     3.1     2       mg/m3     437.     642     FEMALE     FOE     7.64     41.0     15.1     54     39.4     2.8     1       mg/m3     437.     650     FEMALE     REC     7.36     39.4     15.1     54     38.3     3.6     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 5/54           | /79              | 1 1 2 2 1   | ) t               | •   |      |                                         |     | 9                                       | ٠                                       |      | 0                     | 69               | က                     | 6    |
| mg/m3     4373     632     FEMALE     EOE     7.84     43.5     15.8     56     36.3     5.7     3       mg/m3     437.     639     FEMALE     REC     7.11     37.7     15.1     54     10.1     3.1     2       mg/m3     437.     642     FEMALE     REC     7.54     41.0     15.1     54     39.4     2.8     1       mg/m3     4373     650     FEMALE     REC     7.36     39.4     15.1     54     38.3     3.6     2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                           | 4373           | 628              | r EMALE     | n r<br>O 0        | . 4 |      |                                         |     | 7                                       |                                         |      | ~                     | 6                | -                     | -    |
| mg/m3 4373 633 FEMALE RUE 7.11 37.7 15.1 54 10.1 3.1 2 mg/m3 437. 639 FEMALE REC 7.11 37.7 15.1 54 10.1 3.1 2 mg/m3 437 642 FEMALE REC 7.35 39.3 15.5 54 36.8 3.6 3 mg/m3 4373 650 FEMALE REC 7.36 39.4 15.1 54 38.3 3.6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                           | 43/3           | 632              | FEMALE      | u 1               |     |      |                                         |     | 9                                       | •                                       |      | _                     | 6 2              | က                     | ო    |
| mg/m3 437, 639 FEMALE REC 7.35 39.3 15.5 54 39.4 2.8 1 mg/m3 437 642 FEMALE REC 7.35 39.3 15.5 54 36.8 3.6 3 mg/m3 4373 650 FEMALE REC 7.36 39.4 15.1 54 38.3 3.6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 4373           | 633              | FEMALE      | u (               | •   |      | •                                       |     | 0                                       | 3.1                                     | 20   | €0                    | 7.0              | 7                     | φ    |
| mg/m3 437 642 FEMALE Nec 7.35 33.3 55 3 3 6 3 mg/m3 4372 643 FEMALE EOE 7.64 41.0 15.1 54 36.8 3.6 3 mg/m3 4373 650 FEMALE REC 7.36 39.4 15.1 54 38.3 3.6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                           | 437.           | 623              | FEMALE      | 3 E               | -   |      | •                                       |     |                                         |                                         | 16   | e                     | 6.2              | 7                     | 0    |
| mg/m3 4372 643 FEMALE EOE 7.64 41.0 13.1 37 7.7 7.3 7.6 7.36 39.4 15.1 54 38.3 3.6 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                           | 437            | 642              | FEMALE      | KE                | 7 ( |      |                                         |     |                                         |                                         |      | ~                     | 63               | -                     | e    |
| mg/m3 4373 650 FEMALE REC 7.36 39.4 15.1 54 30.3 3.0 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           | 4373           | 643              | FEMALE      | EOE               | ٥   |      |                                         |     |                                         | •                                       |      | •                     |                  | -                     | œ    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 mg/m3                  | 4373           | 650              | FEMALE      | REC               | ຕ.  | o    | 15.1                                    |     |                                         | ٠                                       |      | •                     | :                | -                     | •    |

2. SERUM CHEMISTRY DATA

| CONCENTRATION                                                                                    | EXPT   | ANIMAL | ANIMAL | SACRIFICE |      |      |      |              |              |              |
|--------------------------------------------------------------------------------------------------|--------|--------|--------|-----------|------|------|------|--------------|--------------|--------------|
| OF Cu-Zn                                                                                         | NUMBER | NUMBER | SEX    | CODE      | ALKP | SGPT | BUN  | TB1L         | TPRO         | ALB          |
| ,<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <br>   |        |        |           |      |      |      |              |              |              |
| 1.0 mg/m3                                                                                        | 4371   | 038    | MALE   | EOE       | 90.0 | 51.6 | 19.8 | 0.3          | 6.8          | 4.7          |
| 0                                                                                                | 4371   | 046    | MALE   | EOE       | 85.2 | 44.2 | 25.5 | 0.2          | 5.7          | 4<br>8.      |
|                                                                                                  | 4371   | 050    | MALE   | REC       | 9.06 | 49.5 | 21.9 | 0.1          | 6.7          | 4.4          |
|                                                                                                  | 4371   | 051    | MALE   | REC       | 76.7 | 42.2 | 25.5 | 0.5          | 6.3          | <b>4</b> .   |
|                                                                                                  | 4371   | 052    | MALE   | EOE       | 82.2 | 42.7 | 18.0 | 0.2          | . s          | 8.<br>B      |
|                                                                                                  | 4371   | 055    | MALE   | REC       | 79.2 | 55.9 | 25.8 | 0.0          | 5.7          | <b>4</b> . 6 |
|                                                                                                  | 4371   | 056    | MALE   | REC       | 73.0 | 59.2 | 22.4 | 0.1          | 6.3          | 4.           |
| 0                                                                                                | 4371   | 059    | MALE   | EOE       | 80.0 | 35.2 | 30.7 | 0.0          | 9.9          | 8.4          |
|                                                                                                  | 4371   | 090    | MALE   | REC       | 88.0 | 52.1 | 22.1 | 0.2          | 4.           | 4.3          |
|                                                                                                  | 4371   | 190    | MALE   | EOE       | 83.4 | 37.9 | 27.4 | ٥. ٢         | 6.4          | 4.<br>8.     |
| 0                                                                                                | 4371   | 547    | FEMALE | EOE       | 91.8 | 35.3 | 23.2 | ٥. ١         | 8·9          | 6.9          |
|                                                                                                  | 4371   | 548    | FEMALE | EOE       | 97.2 | 37.5 | 22.4 | 1.0          | 6.5          | S. D         |
| 0                                                                                                | 4371   | 550    | FEMALE | REC       | 8.77 | 38.6 | 21.6 | 0.2          | 6.9          | <b>4</b> . 0 |
|                                                                                                  | 4371   | 554    | FEMALE | EOE       | 86.7 | 41.8 | 23.9 | 0.2          | 7.6          | . s          |
|                                                                                                  | 4371   | 555    | FEMALE | REC       | 72.5 | 43.8 | 25.6 | 0.3          | 4.           | 4<br>8.      |
|                                                                                                  | 4371   | 560    | FEMALE | REC       | 64.9 | 37.0 | 21.6 | 0.3          | . 6          | 4.2          |
|                                                                                                  | 4371   | 562    | FEMALE | REC       | 7.67 | 41.4 | 23.7 | 0.5          | 5.6          | 4.5          |
|                                                                                                  | 4371   | 563    | FEMALE | REC       | 75.4 | 41.6 | 24.1 | 0.2          | 8.5          | 8.4          |
| 1.0 mg/m3                                                                                        | 4371   | 570    | FEMALE | EOE       | 8.86 | 71.1 | 22.8 | 0.5          | e.3          | 5.0          |
|                                                                                                  | 4371   | 571    | FEMALE | EOE       | 82.8 | 33.7 | 31.3 | 0.2          | 4.8          | 4.           |
|                                                                                                  | 4372   | 075    | MALE   | EOE       | 80.1 | 49.6 |      | ٠. ٥         | 5.7          | 6.4          |
| 3.2 mg/m3                                                                                        | 4372   | 180    | MALE   | EOE       | 95.2 | 40.3 | 18.9 | 0.0          | ٠.           | 4.7          |
| 3.2 mg/m3                                                                                        | 4372   | 0.85   | MALE   | EOE       | 72.1 | 40.7 | 22.1 | <b>-</b> . 0 | 6.3          | 9.9          |
| 3.2 mg/m3                                                                                        | 4372   | 086    | MALE   | REC       | 0.96 | 48.1 | •    | 0.2          | <b>6</b> . 1 | 4.7          |
| 7                                                                                                | 4372   | 060    | MALE   | EOE       | 79.9 | 40.8 | •    | 0.3          | 9.9          | 4.7          |
| ~                                                                                                | 4372   | 092    | MALE   | REC       | 83.1 | 50.5 | •    | 0.5          | 6.4          | 5.1          |
| 3.2 mg/m3                                                                                        | 4372   | 960    | MALE   | REC       | 70.0 | 40.9 | 23.3 | 0.2          | 5.7          | 4.2          |
| 7                                                                                                | 4372   | 100    | MALE   | EOE       | 94.2 | 44.1 | 21.9 | 0.5          | 8            | 9.4          |
| 7                                                                                                | 4372   | 111    | MALE   | REC       | 63.0 | 50.9 | 23.8 | 0.1          | 0.9          | 4.2          |
| 7.                                                                                               | 4372   | 112    | MALE   | REC       | 69.1 | 58.5 | 18.2 | 0.2          | <b>6</b>     | 0.4          |
| ı                                                                                                |        |        |        |           |      |      |      |              |              |              |

| COL-Zn         NUMBER         SEA         COLE           May/ma         4372         556         FEMALE         REC         69.6         43.7         22.6         6.3         6.3           May/ma         4372         565         FEMALE         REC         69.6         43.7         22.7         6.0         6.3         6.3           May/ma         4372         596         FEMALE         REC         69.5         41.8         6.0         1.0         6.9           May/ma         4372         602         FEMALE         REC         89.5         34.7         22.3         0.1         6.6           May/ma         4372         602         FEMALE         REC         89.5         34.7         22.3         0.1         6.6           May/ma         4372         606         FEMALE         REC         89.5         34.7         22.3         0.1         5.6           May/ma         4372         606         FEMALE         REC         80.3         47.1         22.3         0.1         5.6           May/ma         4372         608         FEMALE         REC         80.3         47.1         22.3         0.1         5.6                                                                                                                                                                                                                                                                                                                                                            | CONCENTRATION                         | EXPT   | ANIMAL                               | ANIMAL | SACRIFICE | A .  | 190                                     | 2    | 1811            | TPRO | ALB         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------|--------------------------------------|--------|-----------|------|-----------------------------------------|------|-----------------|------|-------------|
| May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OF Cu-Zn                              | NUMBER | NCMB RR                              | SEX    | CODE      |      | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 |      | 3 4 9 4 4 7 7 7 |      |             |
| mg/m3         4372         576         FEMALE         REC         69.7         36.2         25.6         0.2         5.7         4           mg/m3         4372         596         FEMALE         REC         69.6         43.7         22.7         0.3         6.3         6.3           mg/m3         4372         596         FEMALE         REC         93.3         44.5         28.6         0.1         6.3         49.6           mg/m3         4372         599         FEMALE         REC         93.3         34.2         28.6         0.1         6.5         4           mg/m3         4372         603         FEMALE         REC         93.3         34.2         28.6         0.1         6.5         4           mg/m3         4372         603         FEMALE         REC         93.0         31.9         23.4         0.1         6.5         4           mg/m3         4372         608         FEMALE         REC         93.5         38.7         31.6         0.1         5.6         6         6         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                              | ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | <br>   | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | <br>   |           |      |                                         |      |                 |      |             |
| Mayor         4372         588         FEMALE         REC         69.5         43.7         21.7         0.3         6.3         6.3           Mayor         4372         590         FEMALE         REC         93.5         41.8         29.4         0.1         6.9           Mayor         4372         590         FEMALE         REC         93.5         34.2         28.5         0.1         6.9           Mayor         4372         602         FEMALE         REC         93.0         34.2         28.5         0.1         6.9           Mayor         4372         603         FEMALE         REC         93.0         31.9         22.2         0.1         6.6         6.0           Mayor         4372         603         FEMALE         REC         83.5         86.0         31.9         23.5         0.1         7.6         9.0           Mayor         4372         603         FEMALE         REC         80.3         87.1         20.7         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         3.0         <                                                                                                                                                                                                                                                                                                                                        | •                                     | 4372   | 576                                  | FEMALE | ш         | 87.7 | 38.2                                    | -    | 0.3             | 5.7  | 4.6         |
| mg/m3         4372         590         FEMALE         EOE         91.5         41.8         29.4         0.1         5.9         5           mg/m3         4372         590         FEMALE         EOE         93.3         44.5         2.4.6         0.1         5.9         6           mg/m3         4372         603         FEMALE         EOE         93.3         44.2         28.6         0.1         6.5         4           mg/m3         4372         603         FEMALE         EOE         93.0         31.9         25.2         0.1         6.5         6           mg/m3         4372         603         FEMALE         EOE         93.0         47.1         22.3         0.1         5.0         6           mg/m3         4372         603         FEMALE         EOE         83.1         25.4         22.1         0.1         5.0         6         6           mg/m3         4372         102         FEMALE         EOE         83.1         25.4         22.1         0.1         5.0         6         6           mg/m3         4373         112         MALE         EOE         83.1         23.1         0.1         5.0                                                                                                                                                                                                                                                                                                                                                            |                                       | 4372   | 585                                  | FEMALE | REC       | δ.   | 43.7                                    | 22.7 | 0.3             | 6.3  | 4.7         |
| 2         mg/m3         4972         598         FEMALE         REC         93.3         46.5         24.6         0.1         6.5         4           2         mg/m3         4372         699         FEMALE         RC         73.3         40.1         22.5         0.1         6.6         6.6           2         mg/m3         4372         600         FEMALE         RC         92.0         31.9         25.2         0.1         7.6         6.6           2         mg/m3         4372         606         FEMALE         RC         60.3         47.1         25.2         0.1         7.6         6.6           2         mg/m3         4372         606         FEMALE         RC         60.3         47.1         25.2         0.1         7.6         6.6         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0         7.0 <td></td> <td>4372</td> <td>590</td> <td>FEMALE</td> <td>EOE</td> <td></td> <td>_</td> <td></td> <td>0.1</td> <td>•</td> <td>5.1</td>                                                                                                                                                                                                   |                                       | 4372   | 590                                  | FEMALE | EOE       |      | _                                       |      | 0.1             | •    | 5.1         |
| 2         mg/m3         4372         599         FEMALE         EOE         69.5         34.2         28.5         0.1         6.6         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.2         6.3         7.2         6.3         7.2         7.3         6.3         7.3         6.3         7.3         6.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.4         7.2         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3         7.3                                                                                                                                                                                                                                                                                                                       | . ~                                   | 4372   | 598                                  | FEMALE | REC       | 93.3 | 48.5                                    |      |                 | •    | 4 . 2       |
| 2         match         med         penale         med         penale         med         penale         penale <t< td=""><td>. ~</td><td>4372</td><td>599</td><td>FEMALE</td><td>EOE</td><td>6</td><td></td><td>•</td><td>0.1</td><td>•</td><td>4.0</td></t<>                                                                   | . ~                                   | 4372   | 599                                  | FEMALE | EOE       | 6    |                                         | •    | 0.1             | •    | 4.0         |
| 2         mg/m3         4372         603         FEMALE         FOR         92.0         31.9         25.2         0.1         7.6         4           2         mg/m3         4372         606         FEMALE         FOR         80.5         38.7         25.9         0.1         7.6         3.6           2         mg/m3         4372         608         FEMALE         FOR         80.1         25.4         22.1         0.2         7.0         5.6           1         mg/m3         4372         122         MALE         RC         73.6         41.2         20.7         0.1         5.6         5.6           10         mg/m3         4373         120         MALE         RC         95.0         23.1         0.1         5.6         5.6           10         mg/m3         4373         130         MALE         RC         91.9         53.2         23.1         0.1         5.6         5.6           10         mg/m3         4373         141         MALE         RC         91.9         53.2         0.1         6.5         5.6         0.1         17.2         0.1         6.6         5.6         0.1         17.2         0.                                                                                                                                                                                                                                                                                                                                                     | •                                     | 4372   | 602                                  | FEMALE | REC       | •    |                                         | 22.3 | 0.2             | 6.2  | 5.2         |
| 2         mg/m3         4372         606         FEMALE         REC         63.5         36.7         23.5         0.1         5.8         3           2         mg/m3         4372         608         FEMALE         FO         60.3         47.1         25.9         0.1         5.8         5.8           2         mg/m3         4372         608         FEMALE         FO         70.7         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         7.0         1.5         9.0         1.5         9.0         1.5         9.0         1.5         9.0         1.5         9.0         1.5         9.0         1.5         9.0                                                                                                                                                                                                                                                                                                                                   | : ^                                   | 4372   | 603                                  | FEMALE | EOE       | 7    |                                         | •    |                 |      | <b>4</b> .0 |
| TEMALE         FEMALE         FOR SALE         FOR SALE <th< td=""><td>• •</td><td>4372</td><td>909</td><td>FEMALE</td><td>REC</td><td>ω.</td><td>60</td><td>•</td><td>0.1</td><td></td><td>3.9</td></th<> | • •                                   | 4372   | 909                                  | FEMALE | REC       | ω.   | 60                                      | •    | 0.1             |      | 3.9         |
| MALE         REG         84.1         25.4         22.1         0.2         7.0         6           0 mg/m3         4373         122         MALE         REC         73.6         41.2         20.7         0.1         5.8         2           1 mg/m3         4373         127         MALE         REC         98.0         33.9         21.0         0.0         6.9         3           10 mg/m3         4373         130         MALE         REC         98.0         37.8         23.0         0.1         7.2         4           10 mg/m3         4373         136         MALE         REC         98.0         53.2         23.1         0.1         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.9         6.0         6.0         6.0         6.9         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.0         6.                                                                                                                                                                                                                                                                                                                                     | • •                                   | 4372   | 608                                  | FEMALE | EOE       |      |                                         | •    | 0.1             | s. s | 5.2         |
| mg/m3         4373         122         MALE         REC         73.6         41.2         20.7         0.1         5.8         2           10 mg/m3         4373         127         MALE         REC         86.5         68.0         23.6         0.1         7.2         3           10 mg/m3         4373         136         MALE         ECE         82.8         37.9         21.0         0.0         6.9         6.9         10         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         9.0         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         6.9         0.0         0.0         6.9         0.0         6.9         0.0         0.0         6.9         0.0         0.0         6.9         0.0         0.0         6.9         0.0         0.0         6.9         0.0         0.0         6.9         0.0         0.0         6.9         0.0         0.0         6.9         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                                            | . ~                                   | 4372   | 609                                  | FEMALE | EOE       | 84.1 | 25.4                                    |      | 0.2             |      | . s         |
| mg/m3         4373         127         MALE         REC         68.5         68.0         23.6         0.1         7.2         3           mg/m3         4373         126         MALE         EOE         98.0         33.9         21.0         0.0         6.9         4           mg/m3         4373         136         MALE         RC         91.9         53.2         23.1         0.1         6.9         4           mg/m3         4373         136         MALE         RC         91.9         53.2         23.1         0.1         6.1         45           mg/m3         4373         141         MALE         EOE         73.0         40.9         27.2         0.3         7.2         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.1         6.2         6.2         6.2         6.3         6.2         6.3         6.2         6.3         6.3         6.2         6.3         7.3         6.8         7.3         6.8         7.3         6.8         7.3         6.8         7.3         7.3                                                                                                                                                                                                                                                                                                                                            |                                       | 4373   | 122                                  | MALE   | REC       | •    | -                                       | 20.7 |                 |      | 2.9         |
| MALE         EOE         98.0         33.9         21.0         0.0         6.9         4           MINALE         EOE         98.0         37.8         21.0         0.0         6.9         4           MINALE         REC         91.9         53.2         23.1         0.1         6.3         6.5         5           MINALE         REC         91.9         53.2         27.8         0.1         6.1         4         6.5         5         6         6         8         6         5         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         7         7 </td <td>, ,</td> <td>4373</td> <td>127</td> <td>MALE</td> <td>REC</td> <td>₩.</td> <td>æ</td> <td></td> <td></td> <td></td> <td>3.1</td>                                                                                                                                                                                                                                                    | , ,                                   | 4373   | 127                                  | MALE   | REC       | ₩.   | æ                                       |      |                 |      | 3.1         |
| mg/m3         4373         130         MALE         EGE         82.8         37.8         29.2         0.3         6.5         5           mg/m3         4373         134         MALE         REC         91.9         53.2         23.1         0.1         6.5         6.5           mg/m3         4373         135         MALE         REC         91.9         53.2         23.1         0.1         6.8         3           mg/m3         4373         141         MALE         EOE         73.0         40.9         27.2         0.3         7.2         6.8           mg/m3         4373         142         MALE         EOE         93.4         40.9         27.2         0.3         7.2         6.8           mg/m3         4373         142         MALE         EOE         83.4         40.9         27.2         0.3         7.3         6.8           mg/m3         4373         615         FEMALE         RC         63.4         40.9         27.2         0.0         1         7.7         6           mg/m3         4373         616         FEMALE         RC         62.2         46.2         26.0         0.1         7.3                                                                                                                                                                                                                                                                                                                                                              |                                       | 4373   | 128                                  | MALE   | EOE       |      |                                         |      | 0.0             |      | 4 . 6       |
| MALE         REC         91.9         53.2         23.1         0.1         6.1         4           MALE         REC         86.2         52.4         27.8         0.1         6.8         3           MG/M3         4373         136         MALE         EOE         73.0         40.9         27.2         0.3         7.2         5           Mg/M3         4373         141         MALE         EOE         93.4         40.9         27.2         0.3         7.2         5           Mg/M3         4373         142         MALE         EOE         83.4         40.9         25.2         0.1         6.8         5           Mg/M3         4373         615         FEMALE         EOE         83.4         40.9         25.2         0.1         6.8         5           Mg/M3         4373         616         FEMALE         EOE         93.9         46.2         26.6         0.1         7.3         5           Mg/M3         4373         623         FEMALE         EOE         91.5         40.8         27.2         0.0         1         7.3         6           Mg/M3         4373         639         FEMALE                                                                                                                                                                                                                                                                                                                                                                              |                                       | 4373   | 130                                  | MALE   | EOE       | ~    | 37.8                                    | •    | 0.3             | 6.5  | 5.4         |
| MALE         REC         88.2         52.4         27.8         0.1         6.8         3           Mg/m3         4373         135         MALE         ECE         73.0         40.9         27.2         0.3         7.2         5           mg/m3         4373         141         MALE         ECE         73.0         40.9         27.2         0.3         7.2         5           mg/m3         4373         142         MALE         ECE         83.4         40.9         25.2         0.1         6.8         5           mg/m3         4373         615         FEMALE         ECE         83.9         35.1         29.9         0.1         7.7         5           mg/m3         4373         616         FEMALE         REC         68.2         46.2         26.6         0.1         7.7         5           mg/m3         4373         628         FEMALE         REC         68.2         46.2         26.6         0.1         7.7         5           mg/m3         4373         628         FEMALE         ECE         91.5         40.8         27.2         0.0         7.3         6           mg/m3         4373                                                                                                                                                                                                                                                                                                                                                                          |                                       | 4373   | 134                                  | MALE   | REC       | •    |                                         | 23.1 | 0.1             | 6.1  | 4.5         |
| MALE         EOE         73.0         40.9         27.2         0.3         7.2         5           Mg/m3         4373         141         MALE         EOE         93.4         39.1         19.8         0.2         7.3         5           mg/m3         4373         142         MALE         EOE         93.4         40.9         25.2         0.1         7.3         5           mg/m3         4373         615         FEMALE         REC         63.4         49.8         23.0         0.2         7.7         4           mg/m3         4373         616         FEMALE         REC         68.2         46.2         26.6         0.2         7.7         5           mg/m3         4373         616         FEMALE         REC         68.2         46.2         26.6         0.1         7.7         5           mg/m3         4373         628         FEMALE         REC         68.2         46.2         26.6         0.2         7.3         5           mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5           mg/m3         4373                                                                                                                                                                                                                                                                                                                                                                        |                                       | 4373   | 135                                  | MALE   | REC       | 88.2 |                                         | 27.8 | 0.1             | 6.8  | 3.5         |
| mg/m3         4373         141         MALE         EOE         93.4         39.1         19.8         0.2         7.3         5           mg/m3         4373         142         MALE         EOE         83.4         40.9         25.2         0.1         6.8         5           mg/m3         4373         615         FEMALE         EOE         83.9         35.1         29.9         0.1         7.7         4           mg/m3         4373         616         FEMALE         EOE         83.9         35.1         29.9         0.1         7.7         4           mg/m3         4373         616         FEMALE         EOE         92.5         54.0         20.1         0.2         7.3         5           mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5           mg/m3         4373         63         FEMALE         EOE         94.8         46.3         33.0         0.2         6.7         5           mg/m3         4373         63         FEMALE         RC         63.0         37.9         23.9         0.1         7.1         4     <                                                                                                                                                                                                                                                                                                                                                         |                                       | 4373   | 136                                  | MALE   | EOE       | ω.   | ó                                       | •    | 0.3             | 7.2  | 6.<br>6.    |
| mg/m3         4373         142         MALE         EOE         83.4         40.9         25.2         0.1         6.8         5           mg/m3         4373         149         MALE         REC         63.4         49.8         23.0         0.1         7.7         4           mg/m3         4373         615         FEMALE         EOE         83.9         35.1         29.9         0.1         7.7         5           mg/m3         4373         616         FEMALE         RC         68.2         46.2         26.6         0.1         7.7         5           mg/m3         4373         627         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5           mg/m3         4373         63         FEMALE         EOE         94.6         46.3         33.0         0.0         7.3         5           mg/m3         4373         63         FEMALE         RC         63.0         37.9         27.4         0.1         7.1         4           mg/m3         4373         642         FEMALE         RC         63.0         37.9         23.9         0.2         5.7         1 <td></td> <td>4373</td> <td>141</td> <td>MALE</td> <td>EOE</td> <td>ω.</td> <td>9</td> <td>•</td> <td></td> <td></td> <td>•</td>                                                                                                                                                                                                                                |                                       | 4373   | 141                                  | MALE   | EOE       | ω.   | 9                                       | •    |                 |      | •           |
| mg/m3         4373         149         MALE         REC         63.4         49.8         23.0         0.2         5.7         4           mg/m3         4373         615         FEMALE         EOE         83.9         35.1         29.9         0.1         7.7         5           mg/m3         4373         616         FEMALE         REC         68.2         46.2         26.6         0.2         7.9         3           mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5           mg/m3         4373         632         FEMALE         EOE         94.8         46.3         33.0         0.2         6.7         5           mg/m3         4373         633         FEMALE         EOE         94.8         46.3         33.0         0.2         6.7         5           mg/m3         4373         639         FEMALE         RC         63.0         37.9         23.9         0.1         7.1         4           mg/m3         4373         642         FEMALE         RC         63.0         37.9         23.9         0.2         5.7         1                                                                                                                                                                                                                                                                                                                                                            |                                       | 4373   | 142                                  | MALE   | EOE       |      |                                         | •    | 0.1             | 6.8  | 4.6         |
| mg/m3         4373         615         FEMALE         EOE         83.9         35.1         29.9         0.1         7.7         5           mg/m3         4373         616         FEMALE         REC         62.5         54.0         20.1         0.2         7.9         3           mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5           mg/m3         4373         632         FEMALE         EOE         94.8         46.3         33.0         0.0         7.3         5           mg/m3         4373         633         FEMALE         EOE         93.8         36.7         27.4         0.1         7.1         4           mg/m3         4373         639         FEMALE         RC         63.0         37.9         23.9         0.2         5.7         1           mg/m3         4373         642         FEMALE         RC         63.0         37.9         23.9         0.2         5.7         1           mg/m3         4373         642         FEMALE         RC         85.5         49.7         24.7         0.1         6.4         3                                                                                                                                                                                                                                                                                                                                                           |                                       | 4373   | 149                                  | MALE   | REC       | ς,   | 8.64                                    | 23.0 | 0.2             | 5.7  | 4.4         |
| mg/m3         4373         616         FEMALE         REC         68.2         46.2         26.6         0.2         7.9         3.           mg/m3         4373         628         FEMALE         REC         92.5         54.0         20.1         0.2         7.3         4.           mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         4.           mg/m3         4373         632         FEMALE         EOE         93.8         36.7         27.4         0.1         7.1         4.           mg/m3         4373         642         FEMALE         REC         63.0         37.9         23.9         0.2         5.7         1.           mg/m3         4373         642         FEMALE         REC         63.0         37.9         23.9         0.2         5.7         1.           mg/m3         4373         642         FEMALE         REC         63.0         37.9         23.9         0.0         6.4         3.           mg/m3         4373         643         FEMALE         REC         85.5         49.7         24.7         0.1         6.7 <t< td=""><td></td><td>4373</td><td>5 5</td><td>w</td><td>EOE</td><td>ص</td><td>35.1</td><td>•</td><td>0.1</td><td>7.7</td><td>5.6</td></t<>                                                                                                                                                                                                              |                                       | 4373   | 5 5                                  | w      | EOE       | ص    | 35.1                                    | •    | 0.1             | 7.7  | 5.6         |
| mg/m3         4373         627         FEMALE         REC         92.5         54.0         20.1         0.2         5.2         4.           mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5.           mg/m3         4373         632         FEMALE         EOE         93.6         36.7         27.4         0.1         7.1         4.           mg/m3         4373         642         FEMALE         RC         63.0         37.9         23.9         0.2         5.7         1.           mg/m3         4373         642         FEMALE         EOE         85.5         49.7         24.7         0.1         6.4         3.           mg/m3         4373         643         FEMALE         EOE         85.5         49.7         24.7         0.1         6.7         4.           mg/m3         4373         650         FEMALE         RC         82.7         41.6         25.0         0.0         6.7         4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 4373   | 616                                  | FEMALE | REC       | €.   | 46.2                                    | 26.6 | 0.2             | 6.7  |             |
| mg/m3         4373         628         FEMALE         EOE         91.5         40.8         27.2         0.0         7.3         5.5           mg/m3         4373         632         FEMALE         EOE         94.8         46.3         33.0         0.2         6.7         5.           mg/m3         4373         633         FEMALE         REC         63.0         37.9         23.9         0.2         5.7         1.         4.           mg/m3         4373         642         FEMALE         REC         71.6         40.2         18.6         0.0         6.4         3.           mg/m3         4373         650         FEMALE         REC         85.5         49.7         24.7         0.1         6.7         4.           mg/m3         4373         650         FEMALE         REC         82.7         41.6         25.0         0.0         6.7         4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 4373   | 627                                  | FEMALE | REC       | 5    | 4                                       | 20.1 | 0.2             | 5.2  |             |
| mg/m3     4373     632     FEMALE     EOE     94.8     46.3     33.0     0.2     6.7     5.7       mg/m3     4373     633     FEMALE     EOE     93.6     36.7     27.4     0.1     7.1     4.       mg/m3     4373     642     FEMALE     REC     63.0     37.9     23.9     0.2     5.7     1.       mg/m3     4373     642     FEMALE     EOE     85.5     49.7     24.7     0.1     6.4     3.       mg/m3     4373     650     FEMALE     REC     82.7     41.6     25.0     0.0     6.7     4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 4373   | 628                                  | FEMALE | EOE       | •    | <u>.</u>                                |      | 0.0             | 7.3  | - ·         |
| mg/m3     4373     633     FEMALE     E0E     93.8     36.7     27.4     0.1     7.1     4.       mg/m3     4373     639     FEMALE     REC     63.0     37.9     23.9     0.2     5.7     1.       mg/m3     4373     642     FEMALE     E0E     85.5     49.7     24.7     0.1     6.4     3.       mg/m3     4373     650     FEMALE     REC     82.7     41.6     25.0     0.0     6.7     4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                       | 4373   | 632                                  | FEMALE | EOE       | 4.   | 9                                       | •    |                 | 6.7  |             |
| mg/m3 4373 639 FEMALE REC 63.0 37.9 23.9 0.2 5.7 1.<br>mg/m3 4373 642 FEMALE RC 71.6 40.2 18.6 0.0 6.4 3.<br>mg/m3 4373 643 FEMALE ROE 85.5 49.7 24.7 0.1 6.7 5.<br>mg/m3 4373 650 FEMALE REC 82.7 41.6 25.0 0.0 6.7 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | 4373   | 633                                  | FEMALE | EOE       |      | 9                                       | •    |                 | 7.1  | 4.6         |
| mg/m3 4373 642 FEMALE REC 71.6 40.2 18.6 0.0 6.4 3.0 mg/m3 4373 643 FEMALE EOE 85.5 49.7 24.7 0.1 6.7 5.1 mg/m3 4373 650 FEMALE REC 82.7 41.6 25.0 0.0 6.7 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 4373   | 639                                  | FEMALE | REC       | •    | 7.                                      | •    | 0.2             | 5.7  | 6.          |
| mg/m3 4373 643 FEMALE EOE 85.5 49.7 24.7 0.1 6.7 5.<br>mg/m3 4373 650 FEMALE REC 82.7 41.6 25.0 0.0 6.7 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                       | 4373   | 642                                  | FEMALE | REC       |      | ö                                       | •    | •               | 6.4  | 3.3         |
| mg/m3 4373 650 FEMALE REC 82.7 41.6 25.0 0.0 6.7 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | 4373   | 643                                  | FEMALE | EOE       |      |                                         | •    | 0.1             | 6.7  | •           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 4373   | 650                                  | FEMALE | REC       | 82.7 | 41.6                                    |      | 0.0             | 6.7  | 8.8         |

## 3. IMMUNOLOGY DATA FROM EVALUATIONS WITH LUNG-ASSOCIATED LYMPH NODES

| 1.0 mg/m3                                 | CONCENTRATION<br>OF Cu-Zn | EXPT.<br>NUMBER | ANIMAL<br>NUMBER | SEX | SAC<br>CODE | TOTAL LYMPHOID -6 CELLSX10 | ANTIBODY-<br>FORMING<br>CELLS PER<br>MILLION<br>LYMPHYCYTES | TOTAL<br>ANTIBODY-<br>FORMING<br>CELLS |
|-------------------------------------------|---------------------------|-----------------|------------------|-----|-------------|----------------------------|-------------------------------------------------------------|----------------------------------------|
| 1.0 mg/m3                                 |                           |                 | 042              | M   | REC         | 14.7                       | 2235                                                        | 32861                                  |
| 1.0 mg/m3                                 |                           |                 |                  | M   | EOE         | 6.6                        |                                                             |                                        |
| 1.0 mg/m3                                 | _                         |                 |                  | М   |             | 7.6                        | 1080                                                        |                                        |
| 1.0 mg/m3                                 |                           |                 |                  | М   |             | 9.9                        | 2925                                                        |                                        |
| 1.0 mg/m3                                 |                           |                 |                  | M   |             |                            | 812                                                         |                                        |
| 1.0 mg/m3                                 |                           |                 |                  |     |             |                            | 1203                                                        |                                        |
| 1.0 mg/m3                                 |                           |                 |                  |     |             |                            | 404                                                         | 1333                                   |
| 1.0 mg/m3                                 |                           |                 |                  |     |             |                            | 829                                                         |                                        |
| 1.0 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             | 139                                    |
| 1.0 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             | 6861                                   |
| 1.0 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             | 5028                                   |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             | 5833                                   |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             | 13292                                  |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             | 3583                                   |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 3.2 mg/m3                                 |                           |                 |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3                                |                           |                 |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3                                |                           |                 |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3                                |                           |                 |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3                                | 10.0 mg/m3                | 4373            |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3                                |                           | 4373            | 123              | М   |             |                            |                                                             |                                        |
| 10.0 mg/m3                                |                           |                 | 129              | М   |             |                            |                                                             |                                        |
| 10.0 mg/m3                                |                           | 4373            | 131              | М   |             |                            |                                                             |                                        |
| 10.0 mg/m3 4373 619 F REC 9.1 49 444      |                           |                 | 138              | M   | REC         |                            |                                                             |                                        |
| 10.0 mg/m3 4373 621 5 505 40 5            |                           |                 |                  | F   |             |                            |                                                             |                                        |
|                                           |                           | 4373            | 621              | F   | EOE         | 18.8                       | 758                                                         | 14250                                  |
| 10.0 mg/m3 4373 622 F REC 12.2 779 9500   |                           |                 | 622              | F   | REC         |                            |                                                             |                                        |
| 10.0 mg/m3 4373 637 F EOE 25.4 1453 36917 | _                         |                 |                  | F   | EOE         |                            |                                                             |                                        |
| 10.0 mg/m3 4373 641 F EOE 17.1 950 16250  |                           |                 |                  |     | EOE         |                            |                                                             |                                        |
| 10.0 mg/m3 4373 645 F REC 10.8 496 5361   |                           |                 |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3 4373 646 F REC 7.4 71 528      |                           |                 |                  |     |             |                            |                                                             |                                        |
| 10.0 mg/m3 4373 649 F EOE 31.1 466 14500  | 10.0 mg/m3                | 4373            | 649              | F   | EOE         | 31.1                       |                                                             |                                        |

| CONCENTRATION<br>OF Cu-Zn | EXPT.<br>NUMBER | ANIMAL<br>NUMBER | SEX   | SAC<br>CODE | TOTAL<br>LYMPHOID<br>-6<br>CELLS×10 | ANTIBODY-<br>FORMING<br>CELLS PER<br>MILLION<br>LYMPHYCYTES | TOTAL<br>ANTIBODY-<br>FORMING<br>CELLS |
|---------------------------|-----------------|------------------|-------|-------------|-------------------------------------|-------------------------------------------------------------|----------------------------------------|
| O (SHAM)                  | 4442            | 113              | <br>М | EOE         | 6.2                                 | 63                                                          | 389                                    |
| O (SHAM)                  | 4442            | 117              | M     | REC         | 13.3                                | 357                                                         | 4750                                   |
| O (SHAM)                  | 4442            | 124              | M     | EOE         | 7.8                                 | 435                                                         | 3389                                   |
| O (SHAM)                  | 4442            | 125              | M     | REC         | 9.9                                 | 1395                                                        | 13806                                  |
| O (SHAM)                  | 4442            | 126              | M     | REC         | 7.6                                 | 826                                                         | 6278                                   |
| O (SHAM)                  | 4442            | 129              | M     | REC         | 11.2                                | 2556                                                        | 28625                                  |
| O (SHAM)                  | 4442            | 133              | M     | EOE         | 9.3                                 | 287                                                         | 2667                                   |
| O (SHAM)                  | 4442            | 135              | M     | EOE         | 6.9                                 | 390                                                         | 2692                                   |
| C (SHAM)                  | 4442            | 514              | F     | REC         | 9.4                                 | 1333                                                        | 12528                                  |
| O (SHAM)                  | 4442            | 521              | F     | REC         | 9.6                                 | 822                                                         | 7889                                   |
| O (SHAM)                  | 4442            | 525              | F     | EOE         | 11.3                                | 492                                                         | 5556                                   |
| O (SHAM)                  | 4442            | 528              | F     | REC         | 7.4                                 | 777                                                         | 5750                                   |
| O (SHAM)                  | 4442            | 529              | F     | EOE         | 11.9                                | 896                                                         | 10667                                  |
| O (SHAM)                  | 4442            | 534              | F     | REC         | 11.6                                | 826                                                         | 9583                                   |
| O (SHAM)                  | 4442            | 536              | F     | EOE         | 9.0                                 | 910                                                         | 8194                                   |
| O (SHAM)                  | 4442            | 537              | F     | EOE         | 7.8                                 | 662                                                         | 5167                                   |
| 3.2 mg/m3                 | 4444            | 169              | М     | EOE         | 6.2                                 | 67                                                          | 417                                    |
| 3.2 mg/m3                 | 4444            | 172              | M     | EOE         | 16.7                                | 391                                                         | 6528                                   |
| 3.2 mg/m3                 | 4444            | 176              | M     | REC         | 10.3                                | 833                                                         | 8583                                   |
| 3.2 mg/m3                 | 4444            | 178              | М     | EOE         | 17.3                                | 300                                                         | 5194                                   |
| 3.2 mg/m3                 | 4444            | 183              | М     | REC         | 12.7                                | 954                                                         | 12111                                  |
| 3.2 mg/m3                 | 4444            | 193              | М     | REC         | 3.6                                 | 85                                                          | 306                                    |
| 3.2 mg/m3                 | 4444            | 194              | М     | EOE         | 18.8                                | 284                                                         | 5333                                   |
| 3.2 mg/m3                 | 4444            | 198              | M     | REC         | 7.4                                 | 188                                                         | 1389                                   |
| 3.2  mg/m3                | 4444            | 571              | F     | EOE         | 18.0                                | 315                                                         | 5667                                   |
| 3.2 mg/m3                 | 4444            | 572              | F     | REC         | 14.2                                | 921                                                         | 13083                                  |
| 3.2 mg/m3                 | 4444            | 579              | F     | REC         | 7.4                                 | 556                                                         | 4111                                   |
| 3.2 mg/m3                 | 4444            | 584              | F     | REC         | 7.0                                 | 302                                                         | 2111                                   |
| 3.2 mg/m3                 | 4444            | 587              | F     | EOE         | 12.5                                | 307                                                         | 3833                                   |
| 3.2 mg/m3                 | 4444            | 593              | F     | EOE         | 17.0                                | 225                                                         | 3833                                   |
| 3.2 mg/m3                 | 4444            | 597              | F     | EQE         | 15.7                                | 876                                                         | 13750                                  |
| 3.2 mg/m3                 | 4444            | 598              | F     | REC         | 5.7                                 | 107                                                         | 611                                    |
| -                         |                 |                  |       |             |                                     |                                                             |                                        |

4. PYAGOCYTOSIS AND BRONCHOPULMONARY LAVAGE FLUID CELL DIFFERENTIAL DATA

| CONCENTRATION | EXPT | ANIMAL |           | SACRIFICE | <b>144</b> |     |      |      |         |      |          |          |       |       |          |
|---------------|------|--------|-----------|-----------|------------|-----|------|------|---------|------|----------|----------|-------|-------|----------|
| OF Cu-Zn      | 2    | NUMBER | SEX       | CODE      | NCELL      | NEA | PPAM | PLYM | P P W I | PMAC | PEOS     | NLYM     | NPMN  | NMAC  | NEOS     |
|               |      |        |           |           |            |     |      |      |         |      |          |          |       |       | ,        |
| 1.0 mg/m3     | 4371 | 038    | Σ         | EOE       | 0.73       | 492 | 8 2  | ٠    | •       | 93.7 | 0        | 4.       | . 7   | 58.4  | 0        |
| 1.0 mg/m3     | 4371 | 043    | ¥         | EOE       | 0.82       |     |      | 1.7  | •       | 9    | ċ        |          | €.    |       |          |
| 1.0 mg/m3     | 4371 | 046    | Σ         | EOE       | ~          | 619 | 80   | •    | 4.0     | 2.   | <u>-</u> |          | 4.80  | 111.2 | 1.2      |
| 1.0 mg/m3     | 4371 | 048    | X         | REC       | n          |     |      | •    | •       | 94.0 | 0        | 9.<br>9. | ۲.    | ~     |          |
| 0             | 4371 | 0 2 0  | Σ         | REC       | 1.10       | 484 | 8 2  | •    | 0       | 4.   | 0.3      | 6.3      | 0     | 103.4 | 0.3      |
|               | 4371 | 051    | Σ         | REC       | 1.50       | 183 | 7.4  | •    | 0       |      | 0        | 7.5      | 0     |       | 0        |
| 0             | 4371 | 052    | I         | EOE       | 1.00       | 399 | 7.5  |      |         | 11.1 | 1.0      | 9.0      | ۳.    | ۲.    | 0        |
| 0             | 4371 | 055    | Σ         | REC       | 1.00       | 308 | 7.7  |      | 7.0     | ë.   | 0        | 15.7     | 0.70  | 83.7  | 0        |
| 0             | 4371 | 950    | Σ         | REC       | _          | 312 | 6.2  | •    |         | 5.   | 0        | 15.1     | 4     |       | 0        |
| 0             | 4371 | 059    | Σ         | EOE       | 0.44       | 411 | 80   |      | •       |      | 0.3      | 2.8      | 4     | φ.    | 0.1      |
| 1.0 mg/m3     | 4371 | 090    | Σ         | REC       | 4          | 514 | 8.5  |      |         | 2    | 0        | 4.6      | 8     | •     | 0        |
|               | 4371 | 061    | Σ         | EOE       | 0          | 470 | 6.2  |      |         |      |          | 8.0      | ٥.    | 88.7  | •        |
| 1.0 mg/m3     | 4371 | 541    | L         | REC       | 9          |     |      |      |         | 6    |          | 6.3      | 4.    | 9     |          |
| 0             | 4371 | 547    | L.        | EOE       | ₹          | ø   | 1.1  |      | •       | 0    | 0.7      | 9.1      | 9     | 9     | 0.3      |
| 0             | 4371 | 548    | u.        | EOE       | 0.54       | 2   | 7.4  |      |         | è.   |          | 4.7      | ۲.    | •     | •        |
| 0             | 4371 | 550    | <b>L</b>  | REC       | က          | _   | 7.1  |      |         |      | 0        | 11.7     | €.    | ~     | 0        |
| 1.0 mg/m3     | 4371 | 554    | <b>L</b>  | EOE       | 3          | 0   | 82   |      |         | е.   | 0        | 1.3      | ₩.    | 121.8 | 0        |
| 1.0 mg/m3     | 4371 | 555    | u.        | REC       | 4          | 315 | 80   | •    | 0       | 4.   | 0        | 8.0      | 0     | 2.    | 0        |
| 1.0 mg/m3     | 4371 | 560    | <b>u.</b> | REC       | 4          | ce  | 80   |      | 2.3     |      | 0        | 9.2      |       | ۲.    | 0        |
| 1.0 mg/m3     | 4371 | 562    | u         | REC       | 0.71       | 361 | 7.8  |      |         |      | 0        | 2.3      | . 2   |       | 0        |
| 1.0 mg/m3     | 4371 | 563    | <b>L</b>  | REC       | ~          | 299 | 7.1  |      | 0       |      | 0        | 12.0     | 0     |       | 0        |
| 1.0 mg/m3     | 4371 | 564    | <b>L</b>  | EOE       | 6          |     |      |      | •       | •    | 0        | 3.3      | ω.    | Š     |          |
| 1.0 mg/m3     | 4371 | 570    | <b>L</b>  | EOE       | 0.94       | 8   | 98   |      |         | Э.   | 0.7      | 4.7      | 1.22  |       | 0.7      |
| 1.0 mg/m3     | 4371 | 571    | <b>L</b>  | EOE       | 1.20       | g   | 06   |      |         | δ.   | 0        | 9        | 0     |       | 0        |
| 3.2 mg/m3     | 4372 | 075    | Σ         | EOE       | 1.60       | 359 | 7.2  | 6.3  | 5.7     | 88.0 | 0        | 10.1     | 9.12  | 140.8 | 0        |
| 3.2 mg/m3     | 4372 | 081    | Σ         | EOE       | 4          | 4   | 9.2  |      |         | ٠.   | •        | 14.0     | Ξ.    |       | <u>-</u> |
| 3.2 mg/m3     | 4372 | 085    | I         | E 0 E     | 9          | ~   | 6.2  |      |         | 4    | 7.0      | ^        | 2.76  |       |          |
| 3.2 mg/m3     | 4372 | 086    | Σ         | REC       | 1.70       | -   | 93   |      |         | 6    |          | 16.5     | Ξ.    |       | . s      |
| 3.2 mg/m3     | 4372 | 087    | I         | E 0 E     | 9          |     |      |      |         | •    |          | 26.8     | er.   |       | ٠.       |
| 3.2 mg/m3     | 4372 | 060    | Σ         | EOE       | _          | 3   |      |      |         | ۲.   | 0        | 1.4      | 12.43 |       |          |
| 3.2 mg/m3     | 4372 | 092    | Σ         | REC       | 6          | 212 | 73   |      |         |      | 0.3      | 20.3     | ຕ.    |       | 9.0      |
| 3.2 mg/m3     | 4372 | 660    | I         | REC       | 1.00       |     |      |      | 0       | _:   | 0        | 8.3      | 0     | _     | 0        |
| 3.2 mg/m3     | 4372 | 960    | Σ         | REC       | 6.         | 0   |      |      |         |      |          | 10.4     | 7     |       | 0        |
| 3.2 mg/m3     | 4372 | 100    | Σ         | EOE       | 2.20       | 381 | 7.2  |      | 4.3     | ٠    | 1.7      | 2.2      | 9.48  | 204.6 | 3.7      |
| 7             | 4372 | 111    | Σ         | REC       |            | 0   |      | 8.3  |         | 91.3 | 0        | 12.5     | ₹.    |       | 0        |
| 3.2 mg/m3     | 4372 | 112    | Σ         | REC       |            |     |      |      |         | 80.3 | 0.3      |          |       |       |          |
|               |      |        |           |           |            |     |      |      |         |      |          |          |       |       |          |

| CONCENTRATION                                                                                              | EXPT   | ANIMAL | S          | ACRIFICE                   |       |                     |      |      |       |         |       |      |       | •        |              |
|------------------------------------------------------------------------------------------------------------|--------|--------|------------|----------------------------|-------|---------------------|------|------|-------|---------|-------|------|-------|----------|--------------|
| Cu-2                                                                                                       | NUMBER | NUMBER | SEX        | CODE                       | NCELL | NEA                 | PPAM | PLYM | PPMN  | PMAC    | PEOS  | NLYM | Z 1   | XMAC     | N I N I      |
| 7<br>6<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>4<br>4<br>4<br>4<br>4 | <br>   | <br>   | <br>       | ;<br>;<br>;<br>;<br>;<br>; |       |                     |      |      |       |         | ,     |      | •     |          | c            |
| 3.2 mg/m3                                                                                                  | 4372   | 576    | ı.         | REC                        | ø     | 285                 | 63   |      | 0     | ٠.<br>و | Ð     | 4    | י כ   |          |              |
| 7.                                                                                                         | 4372   | 585    | u.         | REC                        | 0.77  | 141                 | 6 9  | •    |       | Ţ.      |       | 12.3 |       |          |              |
| . 2<br>E                                                                                                   | 4372   | 590    | u.         | EOE                        | S     | 324                 | 7.1  | 10.7 | •     |         | 6.3   | •    | ۰.    |          | ٠            |
| ~                                                                                                          | 4372   | 593    | <u>.</u>   | E 0 E                      | 1.20  |                     |      | 8.3  | 5.0   | ·.<br>2 | e . o | 10.0 | 0     |          | <del>.</del> |
| 7                                                                                                          | ~      | 6      | 14.        | REC                        | ۲.    | 133                 | 6.2  | •    |       |         | 0     |      | ٥.    | •        |              |
| 2.                                                                                                         | 4372   | 6      | ы.         | EOE                        | 1.86  | 283                 | 5.5  | 11.3 | 3.7   | 4       | 0.7   | ⁻.   | B.    | 9        | F            |
| ~                                                                                                          | 4372   | 602    |            | REC                        |       | 373                 | 8 1  |      | 0.3   | 88.7    | 0     | 19.8 | S.    |          |              |
| . Z                                                                                                        | 37     | 0      | Ŀ          | EOE                        |       | 366                 | 9    | 11.0 | •     | ٠.<br>ص |       |      | 4.    |          | 6.<br>O      |
| 3.2 mg/m3                                                                                                  | 4372   | 604    | u.         | REC                        |       |                     |      | 10.7 | •     | ٠.      | •     | 6.4  | ∞.    | _:       | ٠            |
| . ~                                                                                                        | 4372   | 909    | <b>.</b>   | REC                        | 1.10  | 339                 | 90   | 16.0 | 0.3   | 83.3    | 0.3   | •    | ۳.    | _        |              |
| . ~                                                                                                        | 3      | 608    | <b>L</b>   | E0E                        | 0.85  |                     | 7.9  | •    | 0.4   |         | 0.7   | •    | 3.40  | ω .      | 9.0          |
| . ~                                                                                                        | 4372   | 0      | ĮL.        | EOE                        | n     | 6                   | 63   | 14.7 | ٠     | 82.0    | 0     |      | ۳.    | 109.1    | 0            |
|                                                                                                            |        | 122    | 3          | REC                        | -     | 246                 | 63   |      | 1.0   | 81.0    | 0     | •    | 1.10  | 6        | 0            |
|                                                                                                            | 3      | 127    | Σ          | REC                        | 0.73  | 271                 |      | 6.9  | 0     |         | •     | 6.8  |       | ٠.<br>وو | 0.5          |
|                                                                                                            | 4373   | ~      | Σ          | EOE                        | ~     | 241                 |      |      | 12.7  | 80.7    | 0.3   | •    | ٠.    | 82.      | 0.7          |
|                                                                                                            | 4373   |        | Σ          | FOE                        | S.    |                     | 7.5  | 13.3 | 3.7   | _:      | •     | 6    | •     |          | 7.7          |
|                                                                                                            | 4373   | 132    | Ξ          | 30 E                       | ~     |                     |      | 11.7 | 9.0   |         | 1.7   | 25.7 | ₩.    |          | 3.7          |
|                                                                                                            |        |        | <b>=</b>   | 1 C                        |       | 331                 | 9 /  | 9.0  | 0     | 91.7    | 0.3   | 8.0  | 0     | 91.7     | 0.3          |
|                                                                                                            | , ,    |        | : 3        | ) L                        | ی د   | - 40                | 7.9  | 13.6 | 0.3   | 85.7    | 0     | B.3  | 0.18  | 52.3     | 0            |
|                                                                                                            | , ,    | , 4    | : 3        | , m                        |       | ~                   | 7.1  |      |       |         | 0.7   | 11.2 | 21.56 | 245.6    | 2.0          |
|                                                                                                            | , ,    |        | <b>:</b> 3 | ב<br>ה<br>ה                |       | 234                 | 29   | 7.0  | 8.7   | 84.3    | 0     |      | 43.50 | 421.5    | 0            |
| E / 6 E                                                                                                    | , ,    |        | Ε 3        |                            |       | •                   | 7 4  |      | 18.0  |         | 0.3   | 20.7 | 42.84 | 173.7    | 0.7          |
|                                                                                                            | 7 6    | 7 5    | E 12       | ם ה<br>ה                   | . "   | ·<br>·              | •    | 8.3  | 2.0   | 1.68    | 0     | 10.8 | 2.60  | 116.6    | 0            |
|                                                                                                            | "      | 9 4    | ٤ 2        |                            |       | 296                 | 6    |      | 0.3   | 92.0    | 0     | 14.6 | 0.57  | 174.8    | 0            |
|                                                                                                            | ~ t    | 7 t    | E          | ) u                        |       | 25.4                |      |      | 6.7   | n       | 0.7   | 20.9 | ٥.    | 187.4    | 1.6          |
|                                                                                                            | ,      | n .    |            | ם<br>ה<br>ה                |       | 284                 | 9 40 | 17.0 | 0     | 7       | 0     | 0    | 09.0  | 49.2     | 0            |
|                                                                                                            | 7 1    | 9 10   |            | יי<br>ניי                  |       |                     |      |      | e e   | ~       | 0     | 22.5 | . 2   | 219.3    | 0            |
|                                                                                                            | 37     | 625    | <b>.</b> I | ה<br>ה<br>ה                |       | ,                   | 7.6  |      | . e.  |         | 0     | ~    | 0.25  | 64.5     | 0            |
| 0                                                                                                          | 3.7    | 2      | ۱ ۵        | י<br>נו<br>בי              | •     | 2 4                 | o «  | . «  | 10.0  | _       | 1.0   | 46.2 | 7     | 467.4    | 5.8          |
| 0                                                                                                          |        | 628    | ۱ ۵        | 4 0                        |       | <b>*</b> 0 <b>*</b> |      | •    |       |         | 0     | ص    | 0     | 8.96     | 0            |
| 0                                                                                                          | -      | 77 (   |            | יו<br>ביו                  |       | ***                 | 7.1  |      | 11.7  | 4       | 0     | •    | 38.61 | 245.1    | 0            |
| 0                                                                                                          | 7.5    | 632    |            | 1 C                        |       | † •                 | - 4  | 6    |       | m       | 0.3   | 29.5 | •     | 273.2    | 1.0          |
| <b>.</b>                                                                                                   |        | າ ເ    |            | 9 6                        |       | ) a                 |      |      | 0.7   |         | 0     |      | 9.    | 70.2     | 0            |
|                                                                                                            | , r    | n (    | . u        | ) (                        |       |                     | . 60 | 7.7  | 0     | 92.3    | 0     | 5.9  | 0     | 71.1     | 0            |
| ,                                                                                                          | , ,    | 0 4 7  |            | ) i                        |       | •                   | . 60 |      | 6.3   |         | 0.7   |      | 4     | 116.6    | 1.1          |
| 0                                                                                                          | 7      | 4      | ٠ ـ        | u (                        | •     | •                   | 9 6  |      |       | 2       | 3.3   |      | 1.92  | 39.4     | 1.6          |
| 10 mg/m3                                                                                                   | σ.     | 0 2 9  | ٠ :        | י<br>בי<br>בי              |       |                     |      |      | 7 . 0 | 40      | 0     |      | 0.84  | 114.4    | 0            |
| _                                                                                                          | 4      | 109    | Σ:         |                            | •     | ٠ د                 |      |      |       | , m     | 0     | •    | 3.22  | 130.6    | 0            |
| _                                                                                                          | 4      | 10     | Σ:         | א<br>ה<br>ה                | •     |                     | n 0  |      |       |         | 0     |      | 5     | 98.6     | 0            |
|                                                                                                            | 4      | 112    | Σ:         | 0 1                        | - '   | 705                 |      | •    | •     |         | 0     |      | ø.    | 105.6    | 0            |
| _                                                                                                          | 4      | 4.     | Σ:         | REC                        | 1.20  | 246                 | 2 6  |      | · ·   |         | 0     | 12.1 |       | 1.16     | 0            |
| 0 (SHAM)                                                                                                   | 4442   | 119    | ¥          | 0                          | 1.10  | 253                 | 2    | •    | •     | ;       | ı     |      |       |          |              |

| CONCENTRATION | EXPT   | ANIMAL |                                         | FIC                                     | w     |       |        |                   |                                         |                       |            |             |       |            | 9             |
|---------------|--------|--------|-----------------------------------------|-----------------------------------------|-------|-------|--------|-------------------|-----------------------------------------|-----------------------|------------|-------------|-------|------------|---------------|
| 7-n           | NUMBER | NUMBER | SEX                                     |                                         | NCELL | NEA   | PPAM   | PLYM              | P W W                                   | PMAC                  | PEOS       | M L         | Σ     | Z Z Z      | 2 1           |
| !!!!          |        |        | : ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |       | !     |        | 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1<br>!<br>!<br>!<br>! | <br>       |             |       |            |               |
|               | 44     | 122    | 3                                       | F.O.F.                                  | 0.83  | 316   | 7.5    | 5.0               | 0.1                                     | 94.3                  | 0          | 4.2         | 0.58  |            | 0             |
|               | . 4    | 127    | : 3                                     | . H                                     | -     | 357   | 80     |                   | 0                                       | 92.7                  | 0          | <b>8</b>    | 0     | 102.0      | 0             |
|               | •      |        | : 3                                     | . u                                     |       | 9 6   | . sc   |                   | 0                                       | 91.0                  | 0          | 6.6         | 0     | 1001       | ၁             |
|               | 7      | 0 7 7  | : 3                                     | 1 C                                     |       | 324   | 9.2    |                   | 0                                       | 4                     | 0          | . s         | 0     | 91.5       | 0             |
|               | •      | , ,    | : 3                                     |                                         | •     | 445   | 8.5    |                   | 1.1                                     | 92.7                  | 0          | 5.7         | 1.70  | 92.7       | 0             |
| ( MARC) 0     | •      | , ,    | : 3                                     | ) L                                     | . 4   |       |        |                   |                                         |                       | 0          | 13.6        | 0     |            | 0             |
|               | ;      | , ,    | : 3                                     | ) L                                     | •     | , ~   |        | 15.               | 6                                       | 92.5                  | 0          | 7.4         | 0     | 7.06       | 0             |
|               | •      | າ ເ    | E 4                                     | ) u                                     |       |       |        | •                 | 2.0                                     | 60                    | 0          | 4.6         | 0.85  | 74.8       | 0             |
|               | 4      | 6 O C  | <b>L</b> 1                              | э і                                     | •     | - (   |        |                   |                                         | ,                     |            |             | 0.54  | 73.7       | 0             |
|               | 4      | -      | <b>L</b>                                | ш                                       | 0.7   | 20    | 9.0    |                   | · ·                                     | · · ·                 | • •        |             | . ^   | ď          | 0             |
|               | 4      | •      | <b>LL.</b>                              | REC                                     | 1.10  | 406   | 885    | 12.3              | ٥.٧                                     |                       | <b>o</b> ( | •           | . •   | , ,        | , c           |
|               | 4      | _      | Ŀ                                       | 0                                       | 1.20  | 378   | 6.2    | 6.9               | 2.0                                     | 0.06                  | 0          |             |       | 0.80       | <b>&gt;</b> ( |
|               | 4 4    | 522    | 14                                      | ш                                       | 1.10  | 489   | 86     | 11.3              | 2.0                                     | 86.7                  | 0          | 12.4        | 7.    |            | 5             |
|               | 4 4    | ~      | ш.                                      | REC                                     | 0.88  | 535   | 83     | 8.2               | 0.3                                     | 91.5                  | 0          | 7.2         | •     |            | 0             |
|               | 4      | 5.26   | L                                       | 0                                       | 0.75  | 521   | 81     | 6.4               | 0                                       | 95.1                  | 0          | 3.7         | 0     | 71.3       | 0             |
|               | •      |        | . 14                                    |                                         | 6     | 325   | 7.0    | 3.3               | 0                                       | 96.7                  | 0          | 3.1         | 0     | 6.68       | o             |
|               | ; ;    | , (    |                                         |                                         |       | 184   | 7.4    | G                 | •                                       | 97.0                  | 0          | 2.0         | 0     | 63.1       | 0             |
|               | *      | າ (    |                                         |                                         | •     | 4 6   |        |                   | · -                                     | 71.0                  | c          | 42.0        | 1.50  | 106.5      | 0             |
|               | 4      |        | ۸.                                      | E U E                                   | •     |       | 7 - 0  |                   | · ·                                     |                       |            |             | 6.6   | 88.3       | 0             |
|               | 4 4    | m      | <b>L.</b>                               | REC                                     | •     | 475   | O 1    | n                 |                                         |                       |            | <br>. u     |       | 84.5       | 0             |
| 0             | 4      | 538    | L.                                      | EOE                                     |       | 420   | 4      | 5.7               |                                         | 94.0                  | <b>o</b> ( | •           | • •   |            | · c           |
| 33            | 4 4    | 4      | I                                       | REC                                     | ٠     | 551   | 86     | <b>9</b> . 0      | 0.7                                     | 93.3                  | 0          |             | 0 . 0 | ? .<br>? . | <b>o</b> (    |
| 0.32          | 4443   | 142    | ĭ                                       | REC                                     | 1.50  | 266   | 7.2    | 2.3               | 0.7                                     | 97.0                  | 0          | 3.5         | •     | 145.5      | <b>-</b> (    |
| 3             | 4      | 4      | Σ                                       | EOE                                     | 06.0  | 351   | 11     | 4.0               | o                                       | 96.0                  | 0          | 3.6         |       | 8. S. S.   | <b>ə</b> (    |
| 32            | 4      | 146    | Σ                                       | EOE                                     | 1.00  | 675   | 84     | 4.0               | 900.0                                   | 95.0                  | 0          | <b>4</b> .0 | ٥.    |            | 0             |
| 32 mg/m       | 4      | 4      | Σ                                       | REC                                     | 0.85  | 336   | 83     | 12.0              | 7.0                                     | 87.3                  | 0          | 10.2        | 0.60  | 74.2       | 0             |
|               | 4      | 148    | Σ                                       | EOE                                     |       | 472   | 73     | 8.3               | 1.0                                     | 90.7                  | 0          |             | 96.0  | 87.1       | 0             |
| E/5E 66       | . 4    |        | Σ                                       | w                                       | •     | 227   | 7.1    | 5.0               | 0.3                                     | 94.7                  | 0          | 5.0         | 0.30  | 93.8       | 0             |
|               | 4443   | 151    | Σ                                       | BEC                                     | ۳.    | 477   | 9.0    | 10.7              | 0.7                                     | 88.7                  | 0          | 13.9        | 0.91  | 115.3      | 0             |
| ; ;           | 4      | 154    | >                                       | 0                                       |       | 502   | 80     | 15.6              | 0                                       | 84.4                  | 0          | 17.2        | 0     | 92.8       | 0             |
| , ,           | 4443   | 951    | Σ                                       | EOE                                     | 0.94  | 475   | 7.5    | 3.3               | 0                                       | 1.96                  | 0          | 3.1         | 0     |            | 0             |
|               | 4      | 158    | Σ                                       | ш                                       | •     | 401   | 83     | 11.0              | 0                                       | 88.7                  | 0.3        | 8.7         | 0     |            | 0.7           |
|               | . 4    | • 40   | Σ                                       | 0                                       | 1.10  | 808   | 84     | 8.7               | 0.7                                     | 7.06                  | 0          | 9.6         | •     | 8.66       | 0             |
|               | 4      | ~ ₹    | u                                       | BEC                                     | 0.81  | 355   | 8 4    | 3.3               | 0.7                                     | 0.96                  | 0          | 2.7         | •     | 77.8       | 0             |
| m/m           | 4443   | - 4    | u.                                      | 0                                       |       | 604   | 84     | 8.0               | 0.003                                   | 92.0                  | 0          | 7.7         |       | 88.3       | 0             |
|               | 4      | - 4    |                                         | L.                                      | •     | 526   | 87     | 4.7               | 0.3                                     | 95.0                  | 0          | 4.1         | 0.26  | 83.6       | 0             |
| ? '           | •      |        | . ц                                     |                                         |       |       | 11     | 3.7               | 0.3                                     | 96.0                  | 0          | 3.0         | 0.24  | 76.8       | 0             |
| 7 6           | •      |        | . L                                     |                                         | •     | 88    | 82     | 4.6               |                                         | 94.0                  | 0          | 3.7         | 1.04  | 75.2       | 0             |
| 75.           | ; ;    | •      |                                         | ) L                                     | . «   |       | 8 2    | 0.4               | 0.3                                     | 95.7                  | 0          | 3.5         | 0.26  | 83.3       | 0             |
| . 32          | 4      | * 1    |                                         |                                         | •     |       | 4 C    | . 4               |                                         | 40                    | 0          | 3.5         |       | 82.7       | 0             |
| . 32          | 4      | ρ (    | ۱ ۵                                     | י כ                                     | ٠     | - 6   | 2 6    |                   |                                         |                       | C          |             |       | 63.2       | 0             |
| . 32          | 4443   | 552    | <b>.</b> I                              | 7 E                                     | •     | 6 7 4 | 0 6    |                   | ,                                       |                       | , ,        | 7.1         | 0.29  |            | 0             |
| .32 mg/m      | 4      | 2      | •                                       | _                                       | •     | 0 / 0 | n (    | · 1               |                                         |                       | , ,        |             | 100 6 | 28.9       | 0             |
|               | 4443   | S.     | L.                                      | S<br>S<br>S                             | 0.87  | 2 / 0 | D<br>D | 9.                | ۲.۶                                     |                       | •          |             |       | •          |               |
|               |        |        |                                         |                                         |       |       |        |                   |                                         |                       |            |             |       |            |               |

| 117-D2 10                               | NUMBER                                  | NUMBER     | SEX      | CODE        | NCELL  | NEA                                     | PPAM                                    | P.L.YM     | N<br>N<br>N                             | PMAC | ۲ ا        | 2 1     | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                 | 2 1           |
|-----------------------------------------|-----------------------------------------|------------|----------|-------------|--------|-----------------------------------------|-----------------------------------------|------------|-----------------------------------------|------|------------|---------|-----------------------------------------|-------------------|---------------|
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |            |          |             |        | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |            | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |      |            |         |                                         |                   |               |
|                                         |                                         |            | ų        | 0           | 7.     | 639                                     | -                                       | 7.8        | 0.3                                     | 91.0 | 0          | 9.9     | 0.23                                    | 69.2              | 0             |
|                                         | 7 7 7 7                                 | ~ C        |          | יים<br>ביים |        | ) u                                     | - u                                     |            | e .                                     | 86.3 | 0          | 12.1    | 0.27                                    | 78.5              | 0             |
|                                         | 7 7 7 7                                 |            | - :      | u 6         | - u    | , ,                                     | ) e                                     | . 6        | 6.0                                     | 0.06 | 0          | 8.3     | 0.26                                    | 11.4              | 0             |
| 7.                                      | # ·                                     | - (        | Σ:       | ) (         | •      |                                         | ) «                                     | . e.       | 2.0                                     | 90.0 | 0          | 8<br>.3 | 0.62                                    | 80.1              | 0             |
|                                         | 4 4                                     | 7 L        | ε :      |             | n 60 . |                                         | 2 6                                     |            | 0                                       | 88.0 | 0          | 11.0    | 1.00                                    | 88.0              | 0             |
|                                         | d                                       | 6          | Σ 2      | ב<br>ה<br>ה |        | 6 4 5                                   | : <del>-</del>                          | 0          | 0.003                                   | 93.0 | 0          | 7.7     | 0.0033                                  | 102.3             | 0             |
|                                         | 4 4 4                                   | 001        | Ε :      |             |        | 477                                     |                                         |            | 2.0                                     | 87.7 | 0          | 12.4    | 2.40                                    | 105.2             | 0             |
| 3.2 mg/m3                               | 4 4 4 4                                 |            | Σ:       | H 0         | 0 7    | 7 .                                     | ? C                                     |            |                                         | 4.00 | 0          | 0.6     | 0                                       | 76.0              | 0             |
| 3.2 mg/m3                               | 444                                     | 184        | Σ        | 3 E         | 8      | - 6                                     | 7 .                                     |            | , ,                                     |      | •          | 17.6    | 3.68                                    | 139.2             | 0             |
| 3.2 mg/m3                               | 4444                                    | 187        | X        | E O E       | 1.60   | 009                                     | <b>*</b> 1                              | - <i>i</i> |                                         |      |            | 6.2     | 0.26                                    | 78.5              | 0             |
| 3.2 mg/m3                               | 4444                                    | 188        | ¥        | REC         | 0.85   | 265                                     | 0 /                                     | ٠.١        | ? <i>!</i>                              |      |            | 30.5    | 1.40                                    | 166.2             | 0             |
| 3.2 mg/m3                               | 4444                                    | 190        | Σ        | EOE         | 2.00   | 413                                     | 80                                      | 16.3       | 7 . 0                                   | 23.  | <b>5</b> ( |         |                                         | 7 60              | _             |
| 3.2 mg/m3                               | 4444                                    | 195        | Σ        | REC         | 1.00   | 235                                     | 7.2                                     | 6.3        | 0                                       | 93.7 | 5          | ٠٠.     |                                         |                   | , ,           |
|                                         | 4444                                    | 196        | Σ        | REC         | 1.30   | 478                                     | 89                                      | 8.0        | 0.3                                     | 91.7 | 0          | 10.4    | 66.0                                    | 1.9.2             | <b>5</b> (    |
|                                         |                                         | 197        | 3        | EOF         | 1.40   | 457                                     | 7.5                                     | 12.0       | 7.0                                     | 80.0 | 0          | 16.8    | 9.80                                    | 112.0             | <b>5</b>      |
|                                         |                                         | - 0<br>- u |          |             | 0 73   | 523                                     | 89                                      | 5.0        | 0                                       | 95.0 | 0          | 3.7     | 0                                       | 69.4              | 6             |
|                                         | ° '                                     | n •        | . L      | 2 1         |        | 346                                     | 7.6                                     | 7 . 0      | 3.1                                     | 89.3 | 0          | 6.9     | 3.66                                    | 88.4              | 0             |
| 3.2 mg/m3                               | 4 4                                     | # / n      | ۱ م      | u 6         |        |                                         | . 6                                     |            |                                         | 63.3 | 0          | 5.6     | 0                                       | 78.4              | 0             |
|                                         | 4 4 4 4                                 | 9/9        | ٠,       | 2 G         |        | 7 7 0                                   | , u                                     |            | G .                                     |      | 0          | 4.3     | 0.62                                    | 57.0              | 0             |
|                                         | 4 4 4 4                                 | 116        | ۱ ،      | ) L         | 70.0   | 9 4                                     |                                         |            | 2.0                                     | 0.88 | 0          | 13.0    | 2.60                                    | 114.4             | 0             |
|                                         | <b>4</b> 4 4 <b>4</b>                   | 8/6        | . 1      | n 1         | 9      | , ,                                     |                                         |            |                                         | 0    | 0          | 12.1    | 1.10                                    | 96.8              | 0             |
| 3.2 mg/m3                               | \$ \$ \$ <b>\$</b>                      | 580        | <b>L</b> | REC         | 0      | 7 6 4                                   |                                         | - (        |                                         | 0 0  | -          | 6       | 0.92                                    | 80.0              | 1.2           |
| 3.2 mg/m3                               | 4444                                    | 581        | L.       | EOE         | 0.92   | 382                                     | m ·                                     |            | - (                                     |      |            | . 4     |                                         | 75.6              | 0             |
| 3.2 mg/m3                               | 4444                                    | 582        | u.       | REC         | 0.84   | 420                                     | - 60                                    | 10.0       | 5                                       | o .  | , (        |         |                                         | 9 371             | c             |
| 3.2 mg/m3                               | 4444                                    | 583        | L.       | EOE         | 1.60   | 471                                     | 8.1                                     | 9.9        | g.9                                     | 91.0 | o ,        | o .     | 0 4                                     | 0 0<br>0 0<br>7 F |               |
|                                         | 4444                                    | 5.85       | <b>L</b> | REC         | 0.85   | 425                                     | 36                                      | 7.0        | 0.3                                     | 92.7 | o          | D . 9   | 97.0                                    | 9.01              |               |
|                                         | 4444                                    | 586        | u        | EOE         | 1.30   | 365                                     | 88                                      | 14.0       | 0.3                                     | 85.7 | 0          | 18.2    | 66.0                                    | 4.                | <b>&gt;</b> ' |
| • •                                     | 4444                                    | 065        |          | EOE         | 0.73   | 419                                     | 6.4                                     | 11.0       | 1.0                                     | 88.0 | 0          | 8.0     | 0.73                                    | 64.2              | 5             |

5. BRONCHOALVEOLAR LAVAGE FLUID BIOCHEMISTRY DATA

| TPROL                     |           | 1.70 | 7         |           | 1.20           | 9  | 0.                    | 0        | 2.26     | ٦. | .5 | <b>ن</b> | 9.       | 9  | 9.                    | 0   | ۲. | ω.                    | 5  | 0.         | თ.        | σ,        | 1.81      | 1.95        |
|---------------------------|-----------|------|-----------|-----------|----------------|----|-----------------------|----------|----------|----|----|----------|----------|----|-----------------------|-----|----|-----------------------|----|------------|-----------|-----------|-----------|-------------|
| LDHL                      | _         | 1588 | 4         | 0         | 0              | 4  | $\infty$              |          | 2        | 4  | 7  | /        | $\infty$ | 47 | 5                     | 0   | ω  | $\boldsymbol{\omega}$ |    | $^{\circ}$ | 2         | σ         | 9         | <del></del> |
| ALKPL                     | /         | 502  | 9         | 2         | σ              | 3  | 5                     | $\infty$ | $\infty$ | 2  | 4  | _        | 2        | S  | 0                     | 0   | Θ  | $\boldsymbol{\omega}$ |    | 2          | 5         | 0         | က         | -           |
| BGLUL                     | က         | 1.76 | 0         | 2         | $\alpha$       | ς. | $\boldsymbol{\omega}$ | ღ        | ۲.       | Ξ. | ς. | 0        | 7        | -  | $\boldsymbol{\omega}$ |     | က  |                       | S  | _          |           | _         | 9         |             |
| SAC                       | 0         | EOE  | 0         | ш         | ш              | ш  | 0                     | ш        | Ū        | 0  | ш  | 0        | ш        | 0  | 0                     | ш   | 0  | ш                     | ш  | Ш          | ш         | 0         | 0         | 0           |
| ANIMAL                    | Σ         | Σ    | Σ         | Σ         | Σ              | Σ  | Σ                     | Σ        | Σ        | Σ  | Σ  | Σ        | L        | Ŀ  | ш                     | LL. | Ŀ  | Ŀ                     | ΙL | ᄕ          | ட         | L         | L         | iL.         |
| AN IMAL<br>NUMBER         | r         | 043  | 4         | 4         | S              | S  | 5                     | Ç        | S        | S  | Θ  | Θ        | 4        | 4  | 4                     | S   | 2  | S                     | 9  | 9          | 9         | ဖ         | /         | 7           |
| EXPT.<br>NUMBER           | က         | 4371 | က         | က         | $\mathfrak{C}$ | က  |                       | n        | m        | က  | က  | က        | 9        | က  | က                     |     | က  | က                     |    | က          | Ö         | n         |           |             |
| CONCENTRATION<br>OF CU-Zn | 1.0 mg/m3 | Ε    | 1.0 mg/m3 | 1.0 mg/m3 |                | Ε  | 1.0 mg/m3             |          |          |    |    |          |          |    | 1.0 mg/m3             |     |    | 1.0 mg/m3             | Ε  |            | 1.0 mg/m3 | 1.0 mg/m3 | 1.0 mg/m3 | 1.0 mg/m3   |

| CONCENTRATION<br>OF CU-Zn            | EXPT.<br>NUMBER                          | ANIMAL   | AN I MAL<br>SEX | SAC  | BGLUL                           | ALKPL                                    | LDHL  | TPROL |
|--------------------------------------|------------------------------------------|----------|-----------------|------|---------------------------------|------------------------------------------|-------|-------|
| ;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | :<br> <br> <br> <br> <br> <br> <br> <br> | <br>     |                 | <br> | i<br>i<br>i<br>i<br>i<br>i<br>i | 1<br> <br> <br> <br> <br> <br> <br> <br> | :<br> | <br>  |
| •                                    | 37                                       | 1        | Σ               | 0    | 3                               | 4                                        | 93    | က     |
| 3.2 mg/m3                            | 4372                                     | 081      | Σ               | EOE  | 2.78                            | 687                                      | 1799  | 1.85  |
| •                                    | 37                                       | ω        | Σ               | 0    | ω.                              | 9                                        | _     | 6     |
| 7                                    | 37                                       | α        | Σ               | ш    | 9.                              | 4                                        | 9     | _     |
| ۲.                                   | 37                                       | $\infty$ | Σ               | 0    |                                 | ω                                        | 9     | რ     |
| 7                                    | 37                                       | ത        | Σ               | 0    | 0.                              | Ω                                        | 9     | က     |
| 7.                                   | 37                                       | 6        | Σ               | ш    | ი.                              | 9                                        | 9     | . 7   |
| •                                    | 37                                       | တ        | Σ               | ш    | 1.26                            | 9                                        | ω     | 0     |
| 7                                    | 37                                       | တ        | Σ               | ш    | 2.14                            | 7                                        | 9     | 4     |
| 8                                    | 37                                       | 0        | Σ               | 0    | 5                               | σ                                        | ത     | 7     |
| 7                                    | 37                                       | _        | Σ               | ш    | 1.51                            | 4                                        | ω     | 9     |
| 7.                                   | 37                                       | _        | Σ               | ū    | 9                               | ω                                        | ω     | 0     |
| 7.                                   | 37                                       | 1        | L               | ш    | 4                               | 9                                        | က     | თ     |
| ς.                                   | 37                                       | ω        | L               | ū    | 8.                              | 9                                        | σ     | _     |
| ۲,                                   | 37                                       | 0        | <b>L</b> L      | 0    | 0.                              | က                                        | 47    | 7     |
| ο.                                   | 37                                       | Ø        | ᄕ               | ũ    | Ŋ                               | က                                        | _     | -     |
| 8                                    | 37                                       | တ        | L               | 0    | ۲.                              | 4                                        | 0     | 4     |
| 7                                    | 37                                       | 0        | Ŀ               | Й    | 0                               | თ                                        | 0     | 0     |
|                                      | 37                                       | 0        | <b>L</b> .      | 0    | ი.                              | 6                                        | 6     | ß     |
| 7                                    | 37                                       | 0        | ட               | ũ    | /                               | თ                                        | Q     | 2     |
| ۲,                                   | 37                                       | 0        | ட               | Ш    | Ō                               | ω                                        | 5     | ω     |
| .2 mg/m                              | 37                                       | 0        | L               | 0    | რ.                              | 9                                        | 5     | 1.65  |
| 3.2 mg/m3                            | 7                                        | 0        | L.              | 0    | S                               | 0                                        | S     | ω     |

| TPROL                     | <br> | . 7      | 2.25     | ω.      | .5       | 9        | 4    | 4   | თ.       | 3.01    | 0       | . 7      | <u>.</u> | Θ.       | 2.05     | თ       | .5       | 0        | 0.  | 2.07       | ი.       | 0   | 4   | 9.       | 1        |
|---------------------------|------|----------|----------|---------|----------|----------|------|-----|----------|---------|---------|----------|----------|----------|----------|---------|----------|----------|-----|------------|----------|-----|-----|----------|----------|
| ГОНГ                      |      | თ        | 78       | _       | 54       | 03       | 0    | 7   | 04       | -       | 72      | 6        | 7        | 0        | 978      | က       | 6        | _        | -   | 4          | 6        | _   | 0   | _        | 4        |
| ALKPL                     |      | ω        | N        | S       | Φ        | က        | N    | တ   | ω        | 1       | 4       | S        | 0        | ထ        | 210      | က       | ~        | ത        | 2   | ဖ          | /        | 9   | α   | 0        | -        |
| BGLUL                     |      | 2.01     | 0        | თ.      | ი.       | 4        | δ.   | ۲.  |          | რ       | 3       | 0.       | 0.       | .5       | 1.91     | 9.      | ო        | 2        | Ġ   | ٠.         | ς.       | ů.  | Ç   | 4        | 1.62     |
| SAC                       |      | 111      | 111      | $\circ$ | $\circ$  | $\circ$  | Li I | ш   | $\circ$  | $\circ$ | $\circ$ | ЫI       | iı l     | $\circ$  | REC      | $\circ$ | 111      | $\circ$  | 111 | $\circ$    | $\circ$  | 111 | 111 | $\sim$   | 111      |
| AN IMAL<br>SEX            |      | Σ        | Σ        | Σ       | Σ        | Σ        | Σ    | Σ   | Σ        | Σ       | Σ       | Σ        | Σ        | Щ        | LL.      | IL.     | L        | L        | LL. | L          | LL.      | L   | ட   | Ŀ        | ட        |
| AN I MAL<br>NUMBER        |      | 122      | 127      | 128     | 130      | 132      | 134  | 135 | 136      | 141     | 142     | 148      | 149      | _        | 616      | 0       | 2        | 0        | က   | $^{\circ}$ | က        | က   | 4   | 4        | S        |
| EXPT.<br>NUMBER           |      | 37       | 7        | 37      | 37       | 7        | 37   | 37  | 7        | 37      | 37      | 37       | /        | 37       | 4373     | 37      | 37       | 37       | 37  | 37         | 37       | 37  | 37  | 37       | 37       |
| CONCENTRATION<br>OF CU-IN |      | 10 mg/m3 | 10 mg/m3 | _       | 10 mg/m3 | 10 mg/m3 | _    | _   | 10 mg/m3 | _       | _       | 10 mg/m3 | _        | 10 mg/m3 | 10 mg/m3 |         | 10 mg/m3 | 10 mg/m3 | _   | 10 mg/m3   | 10 mg/m3 | _   |     | 10 mg/m3 | 10 mg/m3 |

| TPROL                     | <br> <br> <br> <br> <br> <br> |          |          |          |             | 1.86     |          |          |          |          |          |          |          |          | σ        | 6        | 4        |          |          | 5        |          |          |          | 1.51     |          |
|---------------------------|-------------------------------|----------|----------|----------|-------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| LDHL                      |                               | 9        | ω        | ω        | 5           | 5        | 0        | 2        | ω        | က        | ω        | ω        | S        | S        | က        | ω        | _        | 5        | ω        | ω        | 6        | က        | ω        | 431      | 9        |
| ALKPL                     |                               | က        | ω        | 0        | တ           | σ        | 0        | თ        | 0        | σ        | 6        | 9        | 5        | 0        | 0        | 0        | 2        | 0        | တ        | 4        | 2        | 7        | 4        | 219      | 4        |
| BGLUL                     |                               |          | 1.51     | Ď        |             |          | 1.64     | 7        |          |          |          |          | 0        | 0        | დ        | 2.02     | რ.       | . 7      | რ.       |          | .5       | ς.       |          | 1.31     |          |
| SAC                       |                               | ш        | ш        | 0        | ш           | О        | О        | 0        | О        | Ш        | ш        | 0        | ш        | 0        | ш        | ш        | О        | ш        | ш        | 0        | ш        | О        | О        | REC      | 0        |
| ANIMAL                    |                               | Σ        | Σ        | Σ        | Σ           | Σ        | Σ        | Σ        | Σ        | Σ        | Σ        | Σ        | Σ        | L        | ـىا      | ட        | L        | LL       | L        | ഥ        | Щ        | LL.      | ᄕ        | L        | LL.      |
| ANIMAL                    |                               | 109      | 110      | 112      | 1<br>4<br>4 | 119      | 122      | 127      | 128      |          |          |          |          | 0        | _        | -        | -        | 0        | Ø        | 0        | က        | က        | က        | 535      | က        |
| EXPT.<br>NUMBER           |                               | 4        | 4442     | 4442     | 4442        | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4442     | 4        | 4442     |
| CONCENTRATION<br>OF CU-Zn |                               | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM)    | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) | O (SHAM) |
|                           |                               |          |          |          |             |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |

| 835<br>377<br>480       |
|-------------------------|
| 440<br>481<br>323<br>48 |
| . 53 48<br>. 53 32      |
| 5                       |
| ם<br>ה<br>ה             |
| M                       |
| 147                     |
|                         |
|                         |

| OF Cu-Zn | NUMBER | ANIMAL<br>NUMBER | ANIMAL<br>SEX | SAC | BGLUL | ALKPL                 | LDHL     | TPROL      |
|----------|--------|------------------|---------------|-----|-------|-----------------------|----------|------------|
|          |        |                  |               |     |       |                       |          |            |
| m3       | 4      | 171              | Σ             | ш   | 7     | 4                     | ω        |            |
| m3       |        | 173              | Σ             | ш   | 5     | က                     | 0        |            |
| m3       | 4444   | 175              | Σ             | О   | 9     | $\boldsymbol{\omega}$ | 0        | 7          |
| m3       | 4444   | 180              | Σ             | О   |       | -                     | 0        |            |
| ш3       | 4444   | 182              | Σ             | О   | 0     | 7                     | σ        | $\epsilon$ |
| m3       | 4444   | 184              | Σ             | ш   | 9.    | 5                     | က        | က          |
| ш3       | 4444   | 187              | Σ             | EOE |       | 388                   | 501      |            |
| /m3      | 4444   | 188              | Σ             | ш   | 9     | _                     | 9        | 0          |
| п3       | 4444   | 190              | Σ             | О   | რ.    | $\infty$              | 0        | 7 .        |
| n3       | 4444   | σ                | Σ             | ш   | ٦.    | 9                     | 5        | 4          |
| n3       | 4444   | თ                | Σ             | ш   | რ.    | 4                     | 7        | 0.         |
| n3       | 4444   | တ                | Σ             | О   | ω.    | 0                     | Ø        | 0          |
| /m3      | 4444   | မ                | L             | ш   | 4     | 6                     | 9        | Ξ.         |
| m3       | 4444   | 1                | ட             | О   | 7     | 0                     | 0        | Ξ.         |
| n3       | 4444   | ~                | L             | ш   | 0     | 9                     | 7        | ω.         |
| п3       | 4444   | 7                | L.            | ш   | œ     | S                     | တ        | -          |
| m3       | 4444   | /                | LL.           | O   | 4     | 7                     | 4        | 0          |
| шЗ       | 4444   | ω                | Ŀ             | ш   | 9     | -                     | 4        | Ø          |
| m3       | 4444   | ω                | ш.            | O   | ۲.    | 0                     | 5        | N          |
| шЗ       | 4444   | α                | Ŀ             | ш   | 4     | σ                     | $\infty$ | N          |
| m3       | 4444   | ω                | ட             | O   |       | 0                     | 9        | 0          |
| шЗ       | 4444   | ω                | L             | ш   | 0     | 0                     | 7        | Ξ.         |
| m3       | 4444   | 586              | ட             | O   | 1.62  | 9                     | 9        |            |
| m3       | 4444   | 0                | ட             | C   |       | 4                     | σ        |            |

6. DATA FOR BRONCHOALVEOLAR LAVAGE FLUID CONTENT OF COLLAGEN

|                           |                |        |        |                   | Ö                           | LUNG PER:             |
|---------------------------|----------------|--------|--------|-------------------|-----------------------------|-----------------------|
| CONCENTRATION<br>Of CU-Zn | EXPT<br>NUMBER | ANIMAL | ANIMAL | SACRIFICE<br>CODE | GRAM CONTROL<br>LUNG (ug/g) | kg BODY WT<br>(ug/kg) |
|                           |                |        |        |                   | 1<br>                       | <br>                  |
| mg/m                      | 4371           | Э      | MALE   | EOE               |                             | 169.5                 |
|                           | 4371           | 043    | MALE   | EOE               |                             | 289.9                 |
| mg/m                      | 4371           | 046    | MALE   | EOE               | 55.44                       | 241.1                 |
| 1.0 mg/m3                 | 4371           | 052    | MALE   | EOE               |                             | 188.4                 |
| mg/m                      | 4371           | 690    | MALE   | EOE               | 45.33                       | 224.4                 |
| E                         | 4371           |        | MALE   | О                 | 47.96                       | 217.5                 |
| E                         | 4371           | 547    | FEMALE | EOE               |                             | 529.1                 |
| E                         | 4371           | 548    | FEMALE | EOE               | 75.52                       | 409.7                 |
| E                         | 4371           | 554    | FEMALE | EOE               | 87.88                       | 378.3                 |
| E                         | 4371           | 564    | FEMALE | EOE               | 49.96                       | 262.7                 |
|                           | 4371           | 570    | FEMALE | EOE               | 80.85                       | 451.2                 |
| E                         | 4371           | 571    | FEMALE | EOE               | 74.92                       | 399.2                 |
| E                         | 4371           | 048    | MALE   | REC               | 107.84                      | 456.3                 |
| E                         | 4371           | 090    | MALE   | REC               | 65.68                       | 250.0                 |
| E                         | 4371           | 051    | MALE   | REC               | 70.04                       |                       |
| E                         | 4371           | 055    | MALE   | REC               | 37.62                       | 155.4                 |
| E                         | 4371           | 056    | MALE   | REC               | 83.11                       | 329.2                 |
| E                         | 4371           | 090    | MALE   | REC               | 75.68                       | 284.8                 |
| E                         | 4371           | 541    | FEMALE | REC               | 41.89                       | 217.4                 |
|                           | 4371           | 550    | FEMALE | REC               | 36.09                       | 180.8                 |
| mg/m                      | 4371           | 555    | FEMALE | REC               | 61.25                       | 307.7                 |
| Ε                         | 4371           |        | FEMALE | REC               | 62.02                       | 301.6                 |
| mg/m                      | 4371           | 9      | FEMALE | REC               | 68.26                       | 367.2                 |
| 1.0 mg/m3                 | 4371           | 563    | FEMALE | REC               | 107.04                      | 544.3                 |

COLLAGEN IN LUNG PER:

|                        |                            |                                      |                            |                    | COLLAGEN IN                 | LUNG PER:             |
|------------------------|----------------------------|--------------------------------------|----------------------------|--------------------|-----------------------------|-----------------------|
| CONCENTRATION of Cu-Zn | EXPT<br>NUMBER             | AN IMAL<br>NUMBER                    | AN IMAL<br>SEX             | SACR IFICE<br>CODE | GRAM CONTROL<br>LUNG (ug/g) | kg BODY WT<br>(ug/kg) |
| <br>                   | 1<br>1<br>1<br>1<br>1<br>1 | ;<br>;<br>;<br>;<br>;<br>;<br>;<br>; | !<br>!<br>!<br>!<br>!<br>! | <br>               | <br>                        | ]<br>]<br>]<br>       |
| .2<br>E                | 7                          | 075                                  | MALE                       | 0                  |                             |                       |
| 3.2 mg/m3              | 7                          | 081                                  | MALE                       | EOE                | 70.73                       | _                     |
| .2 m                   | 7                          | 085                                  | MALE                       | EOE                | 41.00                       | $\infty$              |
| 8                      | 4372                       | 087                                  | MALE                       | EOE                | 53.93                       | 230.8                 |
| 7                      | 7                          | 060                                  | MALE                       | EOE                | 3.6                         | က                     |
| 7.                     | 7                          | 100                                  | MALE                       | EOE                | .3                          | 312.4                 |
| .2 mg                  | 7                          | 290                                  | FEMALE                     | 0                  | 57.34                       | 297.3                 |
| .2 mg                  | 7                          | 599                                  | FEMALE                     | EOE                | 5.5                         | 394.1                 |
| •                      | 4372                       | 603                                  | FEMALE                     | EOE                | 66.74                       | 353.4                 |
| .2 mg                  | 7                          | 809                                  | FEMALE                     | EOE                | 3.9                         | 237.7                 |
| .2 mg                  | /                          | 609                                  | FEMALE                     | EOE                | 0.3                         | 414.8                 |
| .2 mg                  | /                          | 086                                  | MALE                       | REC                | 58.08                       | 2                     |
| .2 mg                  | 1                          | 092                                  | MALE                       | REC                | 4°.3                        | 9                     |
| .2 mg                  | 1                          | 660                                  | MALE                       | REC                | 2.5                         | 322.1                 |
| .2 mg                  | 7                          | 960                                  | MALE                       | REC                | 72.75                       | 285.5                 |
| .2 mg                  | 4372                       | 111                                  | MALE                       | REC                | 8.4                         | 268.0                 |
| .2 mg                  | /                          | 112                                  | MALE                       | REC                | 9.6                         | 189.8                 |
| .2 mg/m                | 4372                       | 576                                  | FEMALE                     | REC                | 1.7                         | 9                     |
| .2 mg/m                | /                          | 585                                  | FEMALE                     | REC                |                             | 232.0                 |
| 7                      | 7                          | 598                                  | FEMALE                     | REC                | 3.0                         | 298.6                 |
| .2 mg/m                | _                          | 602                                  | FEMALE                     | REC                | <u>б</u>                    | 439.2                 |
| .2 mg/m                | 7                          | 604                                  | FEMALE                     | REC                | 2.5                         |                       |
| 3.2 mg/m3              | 4372                       | 909                                  | FEMALE                     | REC                | 61.99                       | 309.8                 |

COLLAGEN IN LUNG PER:

| CONCENTRATION of CU-Zn | EXPT | ANIMAL                        | ANIMAL | SACR                                          | GRAM CONTROL<br>LUNG (ug/g) | kg BODY WT<br>(ug/kg) |
|------------------------|------|-------------------------------|--------|-----------------------------------------------|-----------------------------|-----------------------|
| !<br>                  | <br> | <br> <br> <br> <br> <br> <br> | <br>   | /<br> <br> <br> <br> <br> <br> <br> <br> <br> | <br>                        | <br>                  |
| Ε                      | 7    |                               | MALE   | 0                                             |                             | $\infty$              |
| Ε                      | 7    |                               | MALE   |                                               | 61.28                       | 94.                   |
| 10 mg/m3               | 4373 | 132                           | MALE   | EOE                                           |                             | 391.3                 |
| Ε                      | 4373 | 136                           | MALE   | EOE                                           | 68.61                       | 331.2                 |
|                        | 4373 | 141                           | MALE   | EOE                                           | 104.14                      | 472.3                 |
| Ε                      | 4373 |                               | MALE   | EOE                                           |                             |                       |
| Ε                      | 4373 | 615                           | FEMALE | 0                                             | 102.16                      | 559.5                 |
| E                      | 7    |                               | FEWALE | EOE                                           | 4.5                         | 388.8                 |
|                        | 4373 | 628                           | FEMALE | 0                                             | 135.90                      | 776.5                 |
| E                      | /    |                               | FEMALE | 0                                             | 9.0                         | 440.1                 |
| E                      | 4373 | က                             | FEMALE | EOE                                           | 90.04                       | Ò                     |
|                        | /    | 4                             | FEMALE | 0                                             | 9.9                         |                       |
| Шg                     | 4373 |                               | MALE   | ш                                             | 0.0                         |                       |
| D<br>E                 |      |                               | MALE   | Ш                                             | 7.3                         | 270.2                 |
| 10 mg/m3               | 7    |                               | MALE   | Ш                                             | 2.8                         | 204.0                 |
|                        | 7    | 135                           | MALE   | REC                                           | 3.7                         | 254.7                 |
|                        | /    |                               | MALE   | ш                                             | 5.6                         |                       |
|                        |      | 149                           | MALE   | Ш                                             | 2.0                         | 128.7                 |
|                        | 4373 | 616                           | FEMALE | ш                                             | 5.7                         | ω                     |
| 10 mg/m3               | 4373 | 0                             | FEMALE | REC                                           | 59.66                       | 308.7                 |
| Ε                      | /    |                               | FEMALE | ш                                             | 9.0                         |                       |
| Ε                      | 4373 | 639                           | FEMALE | ш                                             | 9.3                         | 351.4                 |
| mg/m                   | 7    | 642                           | FEMALE | ш                                             | 4.                          |                       |
| 10 mg/m3               | 4373 | 650                           | FEMALE | ш                                             | 8.6                         | 311.1                 |

COLLAGEN IN LUNG PER:

| CONCENTRATION<br>of Cu-Zn | EXPT<br>NUMBER | ANIMAL | AN I MAL<br>SEX | ANIMAL SACRIFICE<br>SEX CODE | GRAM CONTROL<br>LUNG (ug/g) | kg BODY WT<br>(ug/kg) |
|---------------------------|----------------|--------|-----------------|------------------------------|-----------------------------|-----------------------|
|                           |                |        |                 |                              |                             | <br>                  |
| O (SHAM)                  | 4442           | 112    | MALE            |                              | 38.78                       | 165.8                 |
| O (SHAM)                  | 4442           | 119    | MALE            | 0                            | 44.39                       | 195.5                 |
| O (SHAM)                  | 4442           | 122    | MALE            | EOE                          | 34.84                       | 146.6                 |
| O (SHAM)                  | 4442           | 127    | MALE            | EOE                          | 42.19                       | 176.6                 |
| O (SHAM)                  | 4442           | 128    | MALE            | EOE                          | 30.24                       | 130.1                 |
| O (SHAM)                  | 4442           | 136    | MALE            | EOE                          | 44.31                       | 183.7                 |
| O (SHAM)                  | 4442           | 509    | FEMALE          | EOE                          | 43.69                       | 225.3                 |
| O (SHAM)                  | 4442           | 519    | FEMALE          | EOE                          | 59.39                       | 297.0                 |
| $\overline{}$             | 4442           | 526    | FEMALE          | EOE                          | 65.85                       | 349.3                 |
| O (SHAM)                  | 4442           |        | FEMALE          |                              | 51.72                       | 257.7                 |
| O (SHAM)                  | 4442           | 533    | FEMALE          | EOE                          | 45.49                       | 238.5                 |
| _                         | 4442           | 538    | FEMALE          | EOE                          | 44.17                       | 230.7                 |
| O (SHAM)                  | 4442           | 109    | MALE            | REC                          | 39.28                       | 133.5                 |
| _                         | 4442           |        | MALE            | REC                          | ω.                          | 132.7                 |
| O (SHAM)                  | 4442           | 114    | MALE            | REC                          | 41.70                       | 148.9                 |
| O (SHAM)                  | 4442           | 130    | MALE            | REC                          | 40.51                       | 136.2                 |
| O (SHAM)                  | 4442           | 132    | MALE            | REC                          | 36.46                       | 120.4                 |
| O (SHAM)                  | 4442           | 137    | MALE            | REC                          | 43.84                       | 151.1                 |
| O (SHAM)                  | 4442           | 513    | TEMALE          | REC                          | 38.24                       | 175.1                 |
| _                         | 4442           | _      | I.EMALE         | REC                          | 57.48                       | 259.7                 |
| O (SHAM)                  | 4442           | 522    | FEMALE          | REC                          | 40.18                       | 191.5                 |
| _                         | 4442           | 523    | FEMALE          | REC                          | 50.38                       | 238.6                 |
| O (SHAM)                  | 4442           | 530    | FEMALE          | Ш                            | 87.18                       | 423.9                 |
| _                         | 4442           | 535    | FEMALE          | REC                          | 57.93                       | 272.7                 |

COLLAGEN IN LUNG PER:

| CONCENTRATION<br>Of CU-Zn | EXPT<br>NUMBER | AN I MAL<br>NUMBER | ANIMAL | ANIMAL SACRIFICE<br>SEX CODE | GRAM CONTROL<br>LUNG (ug/g) | kg BODY WT<br>(ug/kg) |
|---------------------------|----------------|--------------------|--------|------------------------------|-----------------------------|-----------------------|
|                           |                |                    |        |                              |                             |                       |
| .32 mg/m                  | 4443           | 145                | MALE   | 0                            |                             | 243.1                 |
| ε.                        | 4443           | 146                | MALE   |                              | 52.88                       | 221.3                 |
| .32 mg/m                  | 4443           | 148                | MALE   | EOE                          |                             | 177.0                 |
| ω.                        | 4443           | 154                | MALE   | EOE                          | 42.96                       | 187.4                 |
| .32 mg/m                  | 4443           | 156                | MALE   | 0                            | 52.36                       | 217.4                 |
| .32 mg/m                  | 4443           | 159                | MALE   | EOE                          | 32.99                       | 142.5                 |
| .32 mg/m                  | 4443           | 542                | FEMALE | EOE                          | 46.64                       | 224.7                 |
| .32 mg/m                  | 4443           | 546                | FEMALE | EOE                          | 54.62                       | 283.0                 |
| .32 mg/m                  | 4443           | 547                | FEMALE | 0                            | 1.3                         | 333.6                 |
| .32 mg/m                  | 4443           |                    | FEMALE | 0                            | 40.60                       | 194.9                 |
| 0.32 mg/m3                | 4443           | 555                | FEMALE | EOE                          | 8.5                         | 252.1                 |
| .32 mg/m                  | 4443           | 560                | FEMALE | $\circ$                      | 51.64                       | 276.1                 |
| .32 mg/m                  | 4443           |                    | MALE   | ш                            | 51.52                       | 183.0                 |
| .32 mg/m                  | 4443           |                    | MALE   | REC                          | 5.                          | 260.6                 |
| .32 mg/m                  | 4443           | 147                | MALE   | Ш                            | 51.65                       | 180.6                 |
| .32 m                     | 4443           |                    | MALE   | ш                            | 40.09                       | 157.3                 |
| .32 mg/m                  | 4443           | 151                | MALE   | REC                          | 43.74                       | 153.9                 |
| .32 mg/m                  | 4443           | 158                | MALE   | Ш                            | 163.19                      | 583.7                 |
| რ.                        | 4443           | 541                | FEMALE | ш                            | 54.06                       | 277.3                 |
| .32 mg m                  | 4443           |                    | FEMALE | REC                          | 51.00                       | 225.8                 |
| .32 mg/m                  | 4443           | 4                  | FEMALE | ш                            | 66.80                       | 301.0                 |
| .32 mg/m                  | 4443           | 552                | FEMALE | REC                          | 44.35                       | 211.8                 |
| .32 mg/m                  | 4443           | 2                  | FEMALE | REC                          | 48.06                       | 236.5                 |
| .32 m                     | 4443           | 2                  | FEMALE | REC                          | 46.96                       | 221.9                 |

COLLAGEN IN LUNG PER:

| CONCENTRATION<br>of Cu-Zn | EXPT<br>NUMBER | AN IMAL<br>NUMBER | AN IMAL<br>SEX | ANIMAL SACRIFICE<br>SEX CODE | GRAM CONTROL<br>LUNG (ug/g) | kg BODY WT (ug/kg) |
|---------------------------|----------------|-------------------|----------------|------------------------------|-----------------------------|--------------------|
|                           |                |                   |                |                              |                             |                    |
| .2 mg/m                   | 4444           | 175               | MALE           | 0                            | 41.67                       | 171.3              |
| E                         | 4444           | 180               | MALE           | EOE                          | 48.10                       | 209.1              |
| .2 mg/m                   | 4444           | 187               | MALE           | 0                            | 50.66                       | 214.4              |
| . 2<br>E                  | 4444           | 190               | MALE           | EOE                          | 49.57                       | 216.3              |
| .2 mg/m                   | 4444           | 197               | MALE           | EOE                          | 42.32                       | 181.0              |
| .2 mg/m                   | 4444           | 7                 | FEMALE         | EOE                          | 64.22                       | 27.                |
| .2 mg                     | 4444           | 578               | FEMALE         | EOE                          | 6.2                         | 300.5              |
| .2 E                      | 4444           | 581               | FEMALE         | EOE                          | 57.68                       | 98.                |
| .2 mg                     | 4444           | ω                 | FEMALE         | 0                            | 0.8                         |                    |
| .2 mg                     | 4444           | Ø                 | FEMALE         | EOE                          | 8.9                         | 446.4              |
| .2 mg                     | 4444           | Ø                 | FEMALE         | 0                            |                             | 181.6              |
| .2 mg                     | 4444           | 171               | MALE           | ш                            | 5.2                         | 137.1              |
| .2 mg                     | 4444           | 173               | MALE           | ш                            | 6.6                         | 165.0              |
| .2 mg                     | 4444           | 184               | MALE           |                              | 32.69                       | 118.7              |
| .2 mg                     | 4444           |                   | MALE           | ш                            | 6.3                         | 167.6              |
| .2 mg                     | 4444           |                   | MALE           | Ш                            |                             | 176.9              |
| .2 mg                     | 4444           |                   | MALE           | REC                          | _                           | 150.7              |
| .2 mg/m                   | 4444           | 9                 | FEMALE         | Ш                            | 43.13                       | 202.1              |
| .2 mg/m                   | 4444           | 7                 | FEMALE         | ш                            | 42.77                       | 04.                |
| .2 mg/m                   | 4444           | 577               | FEMALE         | ш                            | თ.                          | 218.7              |
| .2 mg/m                   | 4444           | ω                 | FEMALE         | ш                            | 62.96                       | 301.0              |
| 3.2 mg/m3                 | 4444           | 582               | FEMALE         | REC                          | 40.35                       | 187.7              |
| .2 mg/m                   | 4444           |                   | FEMALE         | REC                          | 49.20                       | 234.5              |
|                           |                |                   |                |                              |                             |                    |

7. DATA FOR TOTAL COLLAGEN CONTENT OF LUNG

| 1                                       | 1                                       |                   |                                         | 4           | BODY     | LUNG     | mg/g CONTROL | mg/kg       |
|-----------------------------------------|-----------------------------------------|-------------------|-----------------------------------------|-------------|----------|----------|--------------|-------------|
| CONCENTRATION<br>of Cu-Zn               | EXPT<br>NUMBER                          | ANIMAL            | SEX                                     | CODE        | IN GRAMS | IN GRAMS | IUNG         | BODY WEIGHT |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |             | [        |          |              |             |
|                                         | 4373                                    | 3.7.0             | MA                                      | E0 E        | 320.6    | 1.90     | 17.20        | 75.91       |
| •                                       | 4372                                    | ? • d             | 1 4 X                                   | 50E         | 313.5    | 1.60     | 20.97        | 94.64       |
| •                                       | 4372                                    | - u               | MAIR                                    | E 0 E       |          | 1.29     | 18.58        | 83.98       |
|                                         | 43.6                                    | 2 0               | MALE                                    | FOE         | 322.1    | 1.37     | 17.03        | 74.82       |
| ٠,                                      | 4372                                    | 060               | MAIR                                    | E 0 E       | 323.1    | 1.47     | 19.49        | 85.38       |
| • •                                     | 4372                                    | 0 0 0             | FEMALE                                  | EOE         | 192.8    | 1.05     | 16.95        | 87.92       |
| 3.2 mg/m3                               | 4372                                    | 5 6<br>6 6<br>7 6 | FEMALE                                  | EOE         | 191.8    | 1.19     | 19.84        | 103.47      |
|                                         | 4372                                    | , 0               | FEMALE                                  | EOE         | 188.9    | 1.08     | 18.34        | •           |
| ٠ ،                                     | 4372                                    | 608               | FEMALE                                  | EOE         | 184.9    | 0.88     | 16.23        |             |
| . ~                                     | 4372                                    | 609               | FEMALE                                  | EOE         | 193.7    | 1.05     | 16.35        | 4           |
| : =                                     | 4373                                    | 122               | MALE                                    | REC         | 360.1    | 1.52     | 17.52        | 6           |
|                                         | 4373                                    | 127               | MALE                                    | REC         | 322.6    | 1.39     | 12.81        | ۳.          |
|                                         | 4373                                    | 128               | MALE                                    | E0E         | 304.9    | 1.86     | 19.74        | 91.63       |
|                                         | 4373                                    | 130               | MALE                                    | EOE         | 294.7    | 1.59     | 16.13        | 77.44       |
| 10 mg/m3                                | 4373                                    | 134               | MALE                                    | REC         | 335.2    | 1.67     | 22.09        | 85.29       |
|                                         | 4373                                    | 135               | MALE                                    | REC         | 324.1    | 1.30     | 15.26        | •           |
|                                         | 4373                                    | 136               | MALE                                    | EOE         | 293.1    | 1.41     | 19.14        | 2.          |
|                                         | 4373                                    | 141               | MALE                                    | EDE         | 312.0    | 1.73     | 20.91        | 94.81       |
|                                         | 4373                                    | 142               | MALE                                    | EOE         | 304.8    | 1.82     | 17.95        | 83.32       |
|                                         | 43.43                                   | . 4               | MALE                                    | BEC         | 322.4    | 1.36     | 20.91        | 83.93       |
|                                         | 4373                                    | 5 1 5             | FEMALE                                  | <b>E</b> 0E | 182.6    | 1.25     | 21.47        | 117.60      |
|                                         | 4373                                    | 9 4               | FEMALE                                  | REC         | 192.1    | 0.93     | 18.19        | 92.51       |
|                                         | 4373                                    | 627               | FEMALE                                  | REC         | 188.8    | 1.15     | 12.04        | 62.32       |
| 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m 2 m | 4373                                    | 8.28              | FEMALE                                  | EOE         | 175.0    | 1.31     | 21.96        | 125.46      |

BODY WEIGHT 103.96 mg/kg 87.46 97.86 71.17 93.51 73.57 57.73 65.37 73.23 112.53 96.81 87.55 114.33 66.18 40.78 107.59 84.75 79.28 100.77 68.03 114.87 79.09 80.26 107.17 105.79 105.20 80.87 62.21 TOTAL LUNG COLLAGEN mg/g CONTROL 19.10 18.23 14.12 15.38 19.80 11.83 21.52 17.78 20.79 19.29 18.10 21.00 15.62 16.62 17.67 18.47 15.12 16.55 26.42 20.43 21.56 18.96 LUNG IN GRAMS . 09 0.94 0.89 . 54 WEIGHT 06.0 0.89 . 16 . 24 . 29 . 43 .35 . 24 . 20 1.21 18.0 0.98 0.97 . 49 . 62 .35 . 29 1.9 . 24 . 05 .98 00. LUNG IN GRAMS 178.3 174.3 372.5 328.9 392.0 341.3 200.0 205.0 206.3 207.6 191.4 323.8 195.9 195.8 WEIGHT 175.4 184.3 321.2 375.4 190.7 325.5 344.2 193.1 334.3 324.3 BODY SACRIFICE CODE EOE REC REC EOE REC REC EOE EOE REC EOE REC REC REC EOE REC EOE ANIMAL MALE FEMALE EMALE NUMBER ANIMAL 639 538 643 650 519 522 523 533 535 581 119 128 132 136 137 175 182 187 190 642 180 574 583 NUMBER EXPT 4373 1373 4442 4442 4442 4442 4442 4442 4442 4442 4442 1442 4444 1444 1444 4373 4373 4373 4442 4442 4444 1444 1444 1444 1444 CONCENTRATION mg/m3 mg/m3 10 mg/m3 10 mg/m3 10 mg/m3 (SHAM) 3.2 mg/m3 3.2 mg/m3 mg/m3 mg/m3 mg/m3 10 mg/m3 mg/m3 mg/m3 (SHAM) O (SHAM) O (SHAM) O (SHAM) 3.2 mg/m3 mg/m3 mg/m3 (SHAM) (SHAM) (SHAM) (SHAM) (SHAM) (SHAM) (SHAM) of Cu-Zn

APPENDIX F: ATOMIC ABSORPTION ANALYSIS RESULTS FOR INDIVIDUAL ANIMALS

|                           |                |                       |                                         |           | LUNG               | MICROG | MICROGRAMS METAL IN | IN LUNG | MICROGRA                                  | MICROGRAMS METAL/G LUNG | LUNG  |
|---------------------------|----------------|-----------------------|-----------------------------------------|-----------|--------------------|--------|---------------------|---------|-------------------------------------------|-------------------------|-------|
| CONCENTRATION<br>Of Cu-Zn | EXPT<br>NUMBER | ANIMAL                | ANIMAL                                  | SACRIFICE | WEIGHT<br>IN GRAMS | 70     | zn                  | Cu+Zn   | 70                                        | Zn                      | Cu+Zn |
|                           | 1 1 1 1 1 1 1  | :<br>!<br>!<br>!<br>! | ( ) ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | <br>      |                    | <br>   | <br>                | #       | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |                         |       |
| O (SHAM)                  | 4370           | 900                   | Σ                                       | EOE       | 1.15               | 2.99   | 26.8                | 29.8    | 2.59                                      | 23.3                    | 26.0  |
| O (SHAM)                  | 4370           | 100                   | Σ                                       | EOE       | 1.15               | 2.20   | 21.3                | 23.5    | 1.91                                      | 18.4                    | 20.3  |
| O (SHAM)                  | 4370           | 010                   | Σ                                       | EOE       | 1.15               | 1.88   | 27.5                | 29.4    | 1.63                                      | 23.8                    | 25.5  |
| O (SHAM)                  | 4370           | 016                   | Σ                                       | EOE       | 1.15               | 2.57   | 21.9                | 24.4    | 2.23                                      | 19.0                    | 21.2  |
| O (SHAM)                  | 4370           | 025                   | Σ                                       | E0E       | 1.15               | 2.08   | 26.0                | 28.1    | 1.80                                      | 22.6                    | 24.4  |
| O (SHAM)                  | 4370           | 029                   | I                                       | EOE       | 1.15               | 1.97   | 28.3                | 30.2    | 1.71                                      | 24.5                    | 26.2  |
| O (SHAM)                  | 4370           | 504                   | L.                                      | £0£       | 0.89               | 2.73   | 24.7                | 27.4    | 3.07                                      | 27.8                    | 30.8  |
| O (SHAM)                  | 4370           | 509                   | L                                       | EOE       | 0.89               | 1.67   | 21.9                | 23.6    | 1.88                                      | 24.6                    | 26.5  |
| O (SHAM)                  | 4370           | 515                   | L                                       | EOE       | 0.89               | 2.75   | 21.7                | 24.5    | 3.09                                      | 24.4                    | 27.5  |
| O (SHAM)                  | 4370           | 525                   | L                                       | EOE       | 0.89               | 1.14   | 19.8                | 21.0    | 1.28                                      | 22.3                    | 23.6  |
| O (SHAM)                  | 4370           | 532                   | <b>L</b>                                | EOE       | 0.89               | 1.90   | 21.1                | 23.0    | 2.14                                      | 23.7                    | 25.8  |
| O (SHAM)                  | 4370           | 534                   | L.                                      | EOE       | 0.89               | 1.53   | 25.3                | 26.8    | 1.72                                      | 28.4                    | 30.2  |
| 1.0 mg/m3                 | 4371           | 045                   | Σ                                       | EOE       | 66.0               | 2.04   | 26.6                | 28.7    | 2.06                                      | 26.9                    | 28.9  |
| 1.0 mg/m3                 | 4371           | 053                   | Σ                                       | EOE       | 1.14               | 2.33   | 21.7                | 24.1    | 2.04                                      | 19.1                    | 21.1  |
| 1.0 mg/m3                 | 4371           | 054                   | Σ                                       | EOE       | 1.05               | 1.33   | 25.6                | 26.9    | 1.27                                      | 24.3                    | 25.6  |
|                           | 4371           | 058                   | X                                       | EOE       | 0.99               | 2.52   | 25.5                | 28.0    | 2.55                                      | 25.7                    | 28.3  |
| 1.0 mg/m3                 | 4371           | 042                   | I                                       | REC       | 1.12               | 1.13   | 19.2                | 20.3    | 1.01                                      | 17.1                    | 18.1  |
| 1.0 mg/m3                 | 4371           | 065                   | x                                       | REC       | 1.16               | 1.10   | 20.8                | 21.9    | 0.95                                      | 17.9                    | 18.9  |
| 1.0 mg/m3                 | 4371           | 073                   | I                                       | REC       | 1.14               | 0.69   | 18.7                | 19.4    | 0.61                                      | 16.4                    | 17.0  |
| 1.0 mg/m3                 | 4371           | 539                   | L.                                      | E06       | 96.0               | 1.77   | 13.5                | 15.2    | 1.81                                      | 13.7                    | 15.5  |
| 1.0 mg/m3                 | 4371           | 561                   | Ŀ                                       | EOE       | 0.76               | 1.05   | 12.8                | 13.8    | 1.38                                      | 16.8                    | 18.2  |
| 1.0 mg/m3                 | 4371           | 574                   | L.                                      | EOE       | 0.76               | 1.12   | 20.3                | 21.4    | 1.47                                      | 26.7                    | 28.2  |
| 1.0 mg/m3                 | 4371           | 545                   | L.                                      | REC       | 0.78               | 0.62   | 16.6                | 17.3    | 0.79                                      | 21.3                    | 22.1  |
| 1.0 mg/m3                 | 4371           | 546                   | L                                       | REC       | 0.85               | 1.33   | 18.5                | 19.9    | 1.56                                      | 21.8                    | 23.4  |
| 1.0 mg/m3                 | 4371           | 568                   | L                                       | REC       | 0.79               | 1.04   | 18.6                | 19.7    | 1.32                                      | 23.6                    | 24.9  |

|                           |                |        |           |                   | LUNG               | MICROGE | MICROGRAMS METAL                       |                                        | MICA | Σ    | LUNG  |
|---------------------------|----------------|--------|-----------|-------------------|--------------------|---------|----------------------------------------|----------------------------------------|------|------|-------|
| CONCENTRATION<br>OF CU-Zn | EXPT<br>NUMBER | ANIMAL | ANIMAL    | SACRIFICE<br>CODE | WEIGHT<br>IN GRAMS | 20      | Z                                      | Cu+Zn                                  |      | Zn   | Cu+2n |
| <br>                      |                |        |           |                   |                    |         |                                        |                                        | ;    |      |       |
| 3.2 mg/m3                 | 4372           | 077    | ¥         | EOE               | 1.12               | 3.38    | 27.2                                   |                                        | 7    | ٠    |       |
| 3.2 mg/m3                 | 4372           | 0.91   | I         | EOE               | 1.09               | 4.05    | 18.8                                   | 22.9                                   | 3.72 | ٠    |       |
| 3.2 mg/m3                 | 4372           | 094    | ¥         | EOE               | 1.12               | 2.08    | 23.7                                   | 25.8                                   | 1.86 |      | 23.0  |
| 3.2 mg/m3                 | 4372           | 097    | Σ         | EOE               | 1.09               | 1.97    | 22.5                                   | 24.4                                   | 1.81 | 20.6 | 22.4  |
| 7.                        | 4372           | 078    | I         | REC               | 1.17               | 2.43    | 20.4                                   | 22.9                                   | 2.08 | 17.5 | 19.5  |
| 7                         | 4372           | 088    | Σ         | REC               | 1.12               | 1.22    | 19.0                                   | 20.2                                   | 1.09 | 16.9 | 18.0  |
| 7                         | 4372           | 106    | X         | REC               | 1.11               | 1.06    | 17.4                                   | 18.4                                   | 96.0 | 15.7 | 16.6  |
| ~                         | 4372           | 101    | I         | REC               | 1.06               | 1.38    | 19.6                                   | 20.9                                   | 1,30 | 18.5 | 19.8  |
| 7                         | 4372           | 595    | u.        | EOE               | 0.86               | 1.71    | 24.2                                   | 25.9                                   | 1.99 | 28.1 | 30.1  |
| ~                         | 4372           | 596    | 14.       | EOE               | 0.87               | 1.45    | 17.2                                   | 18.7                                   | 1.67 | 19.8 | 21.5  |
| 7                         | 4372           | 597    | <b>L</b>  | EOE               | 0.86               | 1.93    | 19.4                                   | 21.3                                   | 2.24 | 22.5 | 24.8  |
| ~                         | 4372           | 577    | u.        | REC               | 0.83               | 0.87    | 16.7                                   | 17.5                                   | 1.05 | 20.1 | 21.1  |
| 7                         | 4372           | 583    |           | REC               | 96.0               | 92.0    | 17.6                                   | 18.4                                   | 0.79 | 18.3 | 19.1  |
| ~                         | 4372           | 589    | L         | REC               | 08.0               | 1.11    | 14.4                                   | 15.6                                   | 1.39 | 18.1 | 19.4  |
| ~                         | 4372           | 610    | <b>L</b>  | REC               | 0.83               | 1.15    | 15.1                                   | 16.3                                   | 1.39 | 18.2 | 19.6  |
| 10 mg/m3                  | 4373           | 120    | Σ         | EOE               | 1.33               | 2.59    | 23.0                                   | 25.6                                   | 1.95 | 17.3 | 19.2  |
| 10 mg/m3                  | 4373           | 121    | I         | EOE               | 1.39               | 3.65    | 19.8                                   | 23.4                                   | 2.63 | 14.2 | 16.8  |
| 10 mg/m3                  | 4373           | 123    | Σ         | EOE               | 1.23               | 1.98    | 20.3                                   | 22.3                                   | 1.61 | 16.5 | 18.1  |
| 10 mg/m3                  | 4373           | 137    | I         | EOE               | 1.41               | 3.20    | 31.1                                   | 34.3                                   | 2.27 | 22.1 | 24.3  |
| 10 mg/m3                  | 4373           | 115    | Σ         | REC               | 1.30               | 2.18    | 20.3                                   | 22.5                                   | 1.68 | 15.6 | 17.3  |
| 10 mg/m3                  | 4373           | 129    | I         | REC               | 1.17               | 96.0    | 1.02                                   | 21.0                                   | 0.81 | 17.1 | 18.0  |
| 10 mg/m3                  | 4373           | 131    | Σ         | REC               | 1.08               | 1.66    | 17.6                                   | 19.2                                   | 1.53 | 16.3 | 17.8  |
| 10 mg/m3                  | 4373           | 138    | Σ         | REC               | 1.15               | 1.19    | 21.0                                   | 22.2                                   | 1.03 | 18.3 | 19.3  |
| 10 mg/m3                  | 4373           | 621    | ·         | EOE               | 96.0               | 2.00    | 20.1                                   | 22.1                                   | 2.11 | 21.1 | 23.2  |
| 10 mg/m3                  | 4373           | 637    | Ŀ         | EOE               | 66.0               | 1.37    | 26.4                                   | 27.8                                   | 1.38 | 76.7 | 28.0  |
| 10 mg/m3                  | 4373           | 641    | u,        | EOE               | 1.02               | 1.64    | 17.1                                   | 18.7                                   | 1.61 | 16.8 | 18.4  |
| 10 mg/m3                  | 4373           | 649    | 14        | EOE               | 1.01               | 2.04    | 17.3                                   | 19.3                                   | 2.02 | 17.1 | 19.1  |
| 10 mg/m3                  | 4373           | 619    | Ŀ         | REC               | 0.92               | 1.31    | 17.8                                   | 19.1                                   | 1.42 | 19.3 | 20.8  |
| 10 mg/m3                  | 4373           | 622    | L         | REC               | 0.85               | 0.64    | 16.5                                   | 17.1                                   | 0.75 | 19.4 | 20.1  |
| 10 mg/m3                  | 4373           | 645    | Ŀ         | REC               | 1.16               | 0.73    | 15.7                                   | 16.5                                   | 0.63 | 13.6 | 14.2  |
| 10 mg/m3                  | 4373           | 646    | <b>LL</b> | REC               | 0.84               | 1.21    | 15.7                                   | 17.0                                   | 1.44 | 18.7 | 20.5  |
|                           |                |        |           |                   |                    |         | 11 11 11 11 11 11 11 11 11 11 11 11 11 | 11 11 11 11 11 11 11 11 11 11 11 11 11 |      |      |       |

Note: For the sham-exposed rats which died prior to the last exposure lung weights used for calculation purposes were the means of the exposed rats for males and females, respectively.

APPENDIX G: RESULTS FOR INDIVIDUAL ANIMAL PULMONARY FUNCTION EVALUATIONS

| IME    | EXPT | ANIMAL                                  | GRAMS       | ž                     | CDYN             | R L  | CCORD | 110   | ۷>         | FRC      | ۶.<br>ا      | DICO   | FVC      | FEV1 | PEFR     | MMEF     | EF10          | \$111 |
|--------|------|-----------------------------------------|-------------|-----------------------|------------------|------|-------|-------|------------|----------|--------------|--------|----------|------|----------|----------|---------------|-------|
|        |      | ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | !<br>!<br>! | !<br>!<br>!<br>!<br>! | !<br>!<br>!<br>! |      | <br>  | t<br> |            |          |              |        |          |      |          |          |               |       |
| BASE-1 | 4370 | 003                                     | 273         | 87.9                  | 0.54             | 0.12 | 0.73  | 12.6  | 11.5       | 2.6      | -:           | 0.21   | 11.5     | 2.0  | 104.0    | 80.3     | 4.4           | 0.75  |
| ASE    | (7)  | 200                                     | 284         | 4                     |                  | 0.22 | 0.71  | 12.7  | 1.1        | 2.8      | 1.6          | 0.23   | 11.5     | 7.0  | 119.8    | 74.2     | 4.2           | 0.84  |
| . W    | 37   | 010                                     | €0          | 4                     | ₹.               | 0.16 | 0.73  | 12.7  | 10.6       | 2.4      | 2.2          | 0.18   | 10.3     | 9 2  | 121.3    | •        | <b>4</b><br>6 | 1.25  |
| W      |      | 017                                     | 9           |                       | ۳.               | 0.17 | 0.64  | 12.1  | 10.5       | 2.5      | 1.6          | 0.20   | 10.4     | 7.1  | 101.4    | •        | 3.4           | -     |
| - W    | 3.7  | 023                                     | 6           | 60                    | 9.               | 0.14 | 0.74  | 12.5  | 11.0       | 2.6      | 1.5          | 0.25   | 11.6     | 7.1  | 116.6    | 80.6     | 4.2           |       |
| , w    | 37   | 0.25                                    | 272         | ص                     | •                | 0.14 | 0.75  | 12.8  | 10.9       | 2.9      | 2.0          | 0.18   | 11.3     | 19   | 109.4    | Б        | න<br>භ        |       |
| . W    |      | 027                                     | 270         | _:                    | 4.               | 0.14 | 0.77  | 12.9  | 11.3       | 2.7      | 9.1          | 0.23   | 10.2     | 11   | 8.96     | •        | <b>₹</b>      | 06.0  |
|        | 37   | 034                                     | 277         | 0                     | 4                | 0.29 | 0.72  | 13.0  | 10.5       | 3.3      | 2.5          | 0.20   | 10.6     | 7.   | 108.0    | 73.6     | 9.<br>6.      | 0.74  |
|        | 4371 |                                         | 281         | 6                     | .5               | 0.14 | 0.71  | 12.5  | 11.1       | 2.7      | 4.           | 0.23   | 11.6     | 6 9  | 109.5    | 7.8.7    | 4.0           | = :   |
| , 4    | 4371 | 041                                     | ~           | 4                     | ₹.               | 0.14 | 17.0  | 12.6  | 11.2       | 2.6      | 4.4          | 0.24   | 11.5     | 20   | 100.0    | 82.5     | 4.5           | 1.02  |
| ASE    | 4371 | 047                                     | 274         | ø                     | •                | 0.26 | 0.72  | 11.6  | 10.4       | 2.0      | 1.2          | 0.21   | 11.0     | 63   | 104.2    | 59.8     | 3.<br>9       | 99.0  |
| W .    | 4371 | 057                                     | 266         | m                     | ٤.               | 0.22 | 0.69  | 11.8  | 10.5       | 2.0      | 1.2          | 0.22   | 10.7     | 7.4  | 109.5    | •        | 4.6           | .0.   |
| ASE    | 4371 | 068                                     | 278         | 0                     |                  | 0.14 | 0.73  | 12.5  | 10.8       | 2.9      | 8.1          | 0.18   | 1.1      | 7.1  | 116.0    | 73.2     | 9.6           | •     |
| A      | 4371 | 9                                       | 278         | ~                     | 0.44             | 0.16 | 0.74  | 12.7  | 10.8       | 2.5      | 2.0          | 0.24   | 11.5     | 7.1  | 124.0    | 6.77     | <b>4</b> .    | 46.0  |
| ASE    | 4371 | ~                                       | 274         | 83.5                  | 0.46             | 0.17 | 0.67  | 12.5  | 10.2       | 3.1      | 2.2          | 0.21   | 10.3     | 11   | 115.5    |          | s.            | 00.   |
| ASE    | 4371 | 074                                     | 172         | 10                    | •                | 0.03 | 0.70  | 11.9  | 10.9       | 2.2      | 1.0          | 0.24   | 11.2     | 1.2  | 106.9    |          | •             | 1.24  |
|        | 37   | 082                                     | 266         | 74.:                  | ₹.               | 0.17 | 0.77  | 12.2  | 10.9       | 2.7      | 1.3          | 0.24   | 11.6     | 7.4  | 112.8    | 87.8     | 9.<br>9.      |       |
| ASE    | 3    | €0                                      | 274         | 711.7                 | €0.              | 0.08 | 77.0  | 13.9  | 10.8       | 3.9      | 3.1          | 0.21   | 11.7     | 64   | 116.9    | 4        | 3.7           | •     |
| ASF    | 4372 | 60                                      | 287         | 92.1                  | . 5              | 0.13 | 0.76  | 13.5  | 11.2       | 3.3      | 2.3          | 0.23   | 11.6     | 7.2  | 113.4    | •        | 4.2           | 0.49  |
| ASE    | 3    | 860                                     | 295         | 64.7                  | 9.               | 0.14 | 0.74  | 13.1  | 11.3       | 2.7      | 1.7          | 0.23   | 11.6     | 73   | 117.8    |          | 4.7           | 0.92  |
|        | 4372 | 660                                     | 285         | 10                    | 4                | 0.61 | 0.78  | 13.2  | 11.2       | 2.9      | 2.1          | 0.21   | 11.4     | 29   | 2.       | <u>-</u> | 6.            | 0.81  |
| ASE    | 4372 | 105                                     | ~           | 77.0                  | ₹.               | 0.18 | 0.74  | 12.3  | =:         | 2.2      | -:           | 0.19   |          | 7.4  |          | 4        | 4             | 08.0  |
| AS     | 4372 | 108                                     | 275         |                       | 0.38             | 0.16 | 0.72  | 12.3  | 10.5       | 2.7      | 8.           | 0.23   | 10.9     | 7.4  | 110.6    |          | <b>4</b> .    | 96.0  |
| AS     | 4372 | 110                                     | 283         | 88.1                  | 4.               | 0.15 | 0.73  | 12.5  | 10.9       | 2.7      | . 5          | 0.22   | 11.3     | 2.0  |          | 4        | 4             | 1.06  |
| A S    | 4373 | 113                                     | 6           | 88.7                  | 0.51             | 0.12 | 0.72  | 12.9  | 11.3       | 1.1      | 9.1          | 0.23   | 11.6     | 99   | 108.0    |          | 3.7           | 0.80  |
| BASE-1 | 4373 | 118                                     | 284         |                       | 0.43             | 0.24 | 0.69  | 12.4  | 10.4       | 2.8      | 2.0          | 0.24   | 10.6     | 69   |          | ;        |               |       |
| AS     | 4373 | 124                                     | 271         | •                     | ٠.               | 0.14 | 0.74  | 12.6  | 11.2       | 1.1      | 4.           |        | 11.6     | 73   | 124.6    |          | 4 .           | 99.0  |
| BASE-1 | 4373 | 139                                     | 276         | •                     | ۳.               | 0.15 | 0.75  | 13.0  | 1.1        | 5.9      | 1.9          | ٠      | 9        | - 3  | 0.111    |          | 7.            |       |
| BASE-1 | 4373 | 143                                     | 280         | 91.7                  | 0.51             | 0.14 | 0.71  | 11.5  | 10.2       | 2.1      | 1.2          |        | •        | 7.4  | 108.9    | N 1      | •             | 70.0  |
| BASE-1 | 4373 | 145                                     | 270         | •                     | ٠.               | 0.09 | 0.68  | 1.1   | 10.1       | 2.0      | 0.           | 0.21   |          | 9    |          | 4        | 9.7           |       |
| BASE-1 | 4373 | 146                                     | 271         |                       | 0.32             | 0.21 | 0.70  | 12.6  | 10.8       | 2.9      | 1.7          | •      | 10.9     | 9 /  | 10.8     |          | <b>a</b> .    | 60.0  |
| ⋖      | 4373 | 150                                     | 271         | •                     | . 2              | 0.19 | 69.0  | 12.0  | 10.8       | 2.4      | -:           | 0.21   |          | 7.1  |          |          | 0.4           | 0.63  |
| AS     | 4370 | 503                                     | 181         | •                     | . 2              | 0.57 | 0.60  | 6.6   | 8<br>6 .   | 2.2      | 1.0          | 0.17   | 6.9      | 73   | 102.6    |          | 3,2           | •     |
| S      | 4370 | 508                                     | 177         | •                     | 0.42             | 0.14 | 0.69  | 11.0  | 9.7        | 2.3      | 6.1          | 0.17   | •        | 7.5  | 115.2    | 75.7     | 4. i          | . 63  |
| BASE-1 | 4370 | 521                                     | 187         | •                     | ς.               | 0.28 | 99.0  | 10.8  | 9.5        | 2.3      | 7.5          | 0.17   | න<br>ග   | *    | 103.8    |          | 7.6           |       |
| BASE-1 | 4370 | 523                                     | 177         | •                     | e.               | 0.15 | 0.54  | 10.0  | <b>8</b> 0 | 2.1      | 1.2          | 0.18   | 9.5      | 73   | 60 ·     | 66.2     | 4.2           | 70.0  |
| BASE-1 | 4370 | ~                                       | 168         | 65.8                  | 0.41             | 0.14 | 0.50  | 4.6   | 7.1        | 2.7      | 2.3          | 0.10   | 9.9      | \$ · | 51.2     | 23.5     | 7.7           | 3.32  |
| AS     | 4370 | 529                                     | 176         | •                     | 0.46             | 0.14 | 0.57  | 4.0   | <b>8</b>   | <b>.</b> | <del>.</del> | 0 . 14 | <b>8</b> | 11   | 9.<br>9. | 64.3     | ת<br>•        | 96.0  |

| TIME                                    | EXPT        | EXPT ANIMAL      | GRAMS | ¥     | CDYN | . B. | CCORD | 11.C     | ۸۵       | FRC        | ) H            | 070  | FVC        | FEVI   | PEFR    | MMEF     | EF10        | 5111       |
|-----------------------------------------|-------------|------------------|-------|-------|------|------|-------|----------|----------|------------|----------------|------|------------|--------|---------|----------|-------------|------------|
| !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | !<br>!<br>! | ;<br>;<br>;<br>; | <br>  |       |      |      |       |          |          |            | ,              | •    | ,          | ;      |         |          | •           |            |
| BASE-1                                  | 4370        | 532              | 185   | 66.2  | 0.27 | 7    |       | 6.<br>6. | •        | 2.2        | 0.             | 8 .  | 2 . 6      | : :    | 1.66    | n .      | •           | •          |
| BASE-1                                  | 4370        | 536              | 179   | 9.09  | 0.30 |      | Š.    | 10.0     | <b>€</b> | 2.2        | <del>د</del> . |      | 7 . 6      |        |         | ∴,       | ,           |            |
| BASE-1                                  | 4371        | 542              | 170   | 65.2  | 0.24 | 0.42 | 0.49  | - 0-     | <b>.</b> | 4.4        | . 5            | 0.14 | - ·        | o (    | ;       | n (      | •           | •          |
| BASE-1                                  | 4371        | 551              | 173   | 80.4  | 0.28 |      | 0.59  | 10.4     | 9.5      | 2.2        | •              |      | eo .       | 20     | •       | 10       | •           | - ;        |
| BASE-1                                  | 4371        | 553              | 178   | 68.4  | 0.42 | 0.53 | 0.57  | 9.6      | 8.7      | 1.7        | 6.0            | 0.15 | <b>6</b> 0 | 7.4    |         |          |             | ٠,         |
| BASE-1                                  | 4371        | 557              | 171   | 69.5  | 4.   | ٥.   | 09.0  | 9.3      | 8.7      | 9.         | 9.0            | Ξ.   | 9.1        | 4 9    | •       | 76.4     |             | 1.04       |
| BASE-1                                  | 4371        | - 40<br>- 40     | 177   |       | 0.26 | 0.20 | 0.56  | 8.<br>8  | 9.6      | 2.0        | 1.2            | 0.18 | 8.8        | 83     | _       |          |             | _          |
| DASE -                                  | 4371        | , re             |       |       | e.   | •    | 9     | 11.1     | 9.1      | 2.8        | 2.0            | -    | 9.6        | 8 2    |         |          | 6.1         |            |
| A P S E . 1                             | 4371        | 572              | 69    |       | ~    | \$   | 0.57  | €0<br>•  | 8.3      | 2.3        | . 5            | 0.16 | 8.7        | 11     | ٠       | 68.3     | 9.          | Ξ.         |
| RAGELL                                  | 4371        | 2 6              | 176   | . 6   | •    | Ξ.   | •     | 4.6      |          | 2.0        | 1.0            | 0.12 | 8.7        | 7.8    | 94.4    |          | •           | €.         |
| RASE-1                                  | 4372        | 581              | 190   |       | 9    | ٥.   | 0.63  | 10.5     | 9.4      | 2.1        | -:             | Ξ.   | 10.1       | 2.2    | •       | 74.5     | 5.0         | <u>ب</u>   |
| BASE-1                                  | 4372        | 582              | 182   | n     | 0.29 | 0.35 | 0.53  | 10.0     | 8.2      | 2.5        | 1.7            | 0.14 | 8.5        |        |         | •        | •           | ø.         |
| BASE-1                                  | 4372        | 586              | 170   | 65.8  | 0.35 | . 2  | 0.62  | 10.6     | 9.0      | 2.5        | 1.7            | Ξ.   | •          |        | 79.4    | 10       | •           |            |
| BASE-1                                  | 4372        | 587              | 180   | 96.5  | 0.32 | 0.20 | 0.57  | 9.5      | 8.3      | 2 . 0      | 1.2            | -    |            | 84     | •       | ື.<br>ຕ  | •           | m.         |
| RASE-1                                  | 4372        | 594              | 177   | 50.0  | 0.31 | ٠,   | 0.54  | e.<br>6  | 8.2      | 2.3        | -:             | 0.15 | 8.5        | 49     |         | ੌ.<br>ਰਾ | ٠           | ٩.         |
| MANE-1                                  | 4372        | 601              | 180   |       | 0.37 | Ξ.   | 0.62  | 10.3     | 9.1      | 2.4        | 1.3            | 0.15 | 9.4        | 80     | 102.8   | 5        |             | 0.79       |
| BASE-1                                  | 4372        | 607              | 176   |       |      | •    | 0.55  | ٠.       | 8.1      | 2.0        | 1.0            | Ξ.   | 8.3        | 7.8    |         | Ğ.       | <br>        | 1.44       |
| BA66-1                                  | 4372        |                  | 173   |       | _ ო  | 0.18 | 0.54  | 4.       |          | 1.9        | 1.2            | 0.16 | 8.4        | 80     | ~       |          | •           | 1.16       |
|                                         | 4373        |                  | 184   |       |      | 7    |       | 6.6      | 8.4      | 2.2        | 1.5            | 0.17 | 8.7        | 6.4    | 88.8    | •        | 1.5         | 1.27       |
| 1 1 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 4373        | 4                | 178   |       | ~    | . 2  | 0.48  | 9.6      |          | 2.1        | 1.0            | -    | 9.8        | 38     |         | 0        | 1.5         | 1.49       |
| PASE -                                  | 4373        | R 2 3            | 681   |       | 4    | -    | 0.61  | 10.7     | 9.1      | 2.0        | 1.0            | 0.17 | 10.0       | 7.4    | ٠.      | -        | •           | <b>-</b> - |
| BASE 1                                  | 4373        | 62.9             | 176   | . 6   | ~    | •    |       | 8.6      | 8.4      | 2.4        | 1.0            | 0.12 | 8.9        | 86     | -       |          | 9.9         | ۲.         |
| BASELL                                  | 4373        |                  | 172   | ; -   | ຕ    |      | •     | 10.4     |          | 2.4        | 1.5            | Τ.   | 9.1        | 9 2    | 91.8    | 71.3     | 4.5         |            |
|                                         | 4273        | 4.0              | 1 1 2 | 82.0  | ₹.   |      | 0.49  | 9.7      | 8.4      | 2.3        | 1.4            | 0.16 | 8.8        |        | · ·     |          | -           | ٣.         |
| BASE-1                                  | 4373        | 644              | 83    | 67.3  | 0.38 | ٥.   | 09.0  | 11.0     | 9.0      | 3.0        | 2.0            | ٦.   | •          |        | 9       | <br>€0   |             |            |
| BASE-1                                  | 4373        | 647              | 181   |       | •    | -    | 0.53  | 9.1      | 3.2      | <b>6</b> . | 6.0            | Ξ.   | 9.6        | 8 5    |         | •        | <b>9</b> .0 | Ξ.         |
| M10-1                                   | 4370        | 003              | 286   | ~     | 0.30 | 0.18 | 0.80  | 13.1     | 12.4     | 2.2        | 7.0            | . 7  | •          |        | 118.5   | 4        |             | ₹ '        |
| M10-1                                   | 4370        | 200              | 286   | 82.0  | 0.38 | 0.17 | 0.82  | 12.8     | 12.3     | •          | 9.0            | 0.26 | •          |        | Ģ.      |          | ლ           | ٠.         |
| 1-01X                                   | 4370        | 010              | 294   | 100.3 | 09.0 | 0.10 | 0.78  | 12.7     | 11.9     | •          | 8.0            | . 7  | 12.5       | &<br>& |         | 60 (     | 27.0        | ۲. ۱       |
| M10-1                                   | 4370        | 017              | 276   | 94.9  | 0.74 | 0.12 | 0.73  | 12.9     | •        | •          | 2.0            | . 7  |            | 7.0    | 101     |          | •           |            |
| MIO-1                                   | 4370        | 023              | 302   | 81.9  | 0.54 | 0.13 | ₩.    | •        | 12.7     | 2.7        | 0.             | 7    | •          | 6 ·    |         | - (      | - ·         |            |
| MID-1                                   | 4370        | 0 2 5            | 281   | 83.6  | 99.0 | 0    | 0.73  | 12.3     | •        | 7.4        | <u>-</u>       |      |            |        |         | •        | •           |            |
| MID-1                                   | 4370        | 027              | 287   | 64.8  | 0.64 | 90.0 | 0.85  | 13.3     | 12.9     | 2.3        |                | 7.   | 13.7       | 29     |         |          |             |            |
| M10-1                                   | 4370        | 034              | 296   | 89.5  | 0.73 |      | 0.72  | 12.8     | •        | 2 . 5      |                | ~    | •          |        |         | •        | o :         | ė.         |
| MID-1                                   | 4371        | 039              | 290   | 78.6  | 0.74 |      | 0.75  | 12.9     | 11.6     | 2.3        | 6.1            | 7    | •          |        | 6       |          | •           | <b>.</b>   |
| 110-1                                   | 4371        | 041              | 292   | 77.0  | 0.40 | 0.16 | 0.79  | 13.2     | ٦.       | ٠.         | 9.0            | ~    | •          |        | •       | ·.       |             | ۰          |
| 1 - 0 1 3                               | 4371        | 047              | 279   | 75.9  | 0.38 |      | 0.73  | 13.0     | 11.7     | 2.9        | 1.3            | 7    | •          | 63     | _       | 5        | •           | 3          |
| 1 2 3                                   | 4371        | 057              | 270   | 67.5  | 0.34 | 0.18 | 0.75  | 11.6     | 1.1      | 2.0        | 0.5            | ~    | 12.3       | 7.0    | 4.      | 10       | •           |            |
| - C - C                                 | 4371        | 0.68             | 280   | 58.1  | 0.35 |      | 97.0  | 12.8     | 11.8     | 2.2        | 1.0            | ~    | 12.8       |        | ~.<br>O | 6        | •           | •          |
| M 10+1                                  | 4371        | 690              | 2.89  | 6     | 0.38 | 0.15 | 0.84  | 13.6     | 12.6     | 2.4        | 0.             | 0.27 | 13.4       | 69     | 118.1   | 9.0      | •           | •          |
| M10-1                                   | 4371        | 071              | ~     |       | 09.0 | 0    | 0.73  | 12.4     | 10.9     | 2.4        | ÷.             | 0.25 | 9.         | 0      | 4.0.    | 76.9     | 16.0        | 30.        |

| T I ME    | EXPT | EXPT ANIMAL | GRAMS | <b>∑</b> | CDYN | RL   | CCORD | 110  | ر د  | FRC    | > : | 0100 | FVC  | FEV1     | PEFB     | MMEF | E; 10           | \$111 |
|-----------|------|-------------|-------|----------|------|------|-------|------|------|--------|-----|------|------|----------|----------|------|-----------------|-------|
| <br>      |      |             | <br>  |          |      |      |       |      |      |        |     |      |      |          |          |      |                 | •     |
| MID-1     | 4371 | 074         | 279   | 78.2     | 0.44 | 0.17 | 0.79  | 13.3 | 12.0 | 2.5    | 1.3 | 0.25 | 12.3 | 69       | •        | 10   |                 | n .   |
| M I 0 - 1 | 4372 | 082         | 267   | 93.3     | 0.52 | Ξ.   | ₩.    | •    |      | 5.5    | -:  | 0.28 | •    | 47       |          |      | •               | •     |
| MID-1     | 4372 | 0.83        | 281   | 78.6     | 0.56 | 0.17 | 0.85  | 13.5 | 13.0 | 2.4    | 0.5 | 7    | •    | 69<br>90 |          |      | •               |       |
| M I O - 1 | 4372 | 084         | 301   | 99.0     | 0.62 | 90.0 | 0.68  | 12.4 | 11.8 | 1.8    | 9.0 | 0.22 | •    | 62       | 6        |      | 2: .0           |       |
| M10-1     | 4372 | 098         | 309   | 84.6     | 0.43 | 0.15 | 0.84  | 13.8 | 12.8 | 2.6    | 1.0 | 0.24 | 13.5 | 7.2      |          | -    | •               | •     |
| M10-1     | 37   | 660         | 290   | 101.1    | 0.68 | 0.08 | 0.78  | 13.8 | 12.5 | 2.8    | 1.3 | 0.29 | 13.2 | 29       | ٠.       | 9.68 | ٠               | EC .  |
| ¥ 10 - 1  | 4372 | 105         | 282   | ,<br>10  | S.   | 0.10 | 0.78  | 12.9 | 12.1 | 2.3    | 8.0 | 0.20 | 12.9 | 7.1      |          | 90.3 | •               | vo.   |
| 1 D 1     | 4372 | 108         | 286   |          | 9    |      | 0.78  | 13.4 | 12.6 | 2.4    | 6.0 | 0.24 | 12.7 | 6.7      | •        | 86.4 | •               | . 7   |
| 1011      | 4372 | 110         | 304   |          | ۳.   | ~    | 0.75  | 13.2 | 12.3 | 2.5    | 6.0 | 0.26 | 13.7 | 63       | 117.6    | 82.0 | 12.0            | 96.0  |
|           | 4373 | 113         | 294   | . 60     | ຕ    |      | 0.68  | 12.3 | 11.0 | 2.5    | 1.2 | 0.22 | 11.5 | 6.4      | 110.4    | 58.6 | ٠               | 1.02  |
|           | 4373 | 1.18        | 305   | , ,      |      |      | 7     | 12.4 | 11.5 | 2.3    | 6.0 | •    | 12.0 | 6.4      | 111.2    | 70.0 | 22.0            | 0.17  |
|           | 3 .  | 124         | 286   |          | 4    | 0.12 | . 7   |      | 11.2 | 2.1    | 1.2 | 0.18 | 12.1 | 7.5      | 124.4    | 95.1 | 16.0            | ٠.    |
|           | 4373 | · ·         | 283   | - 60     | 4    |      | 0.67  | 12.3 | 10.9 | 3.0    | 1.3 | 0.22 | 11.7 | 2.0      | 107.3    | 83.9 | ٠               |       |
| 1 2       | . 6  | 143         | 286   | 6        | S    |      | •     | 11.7 | 11.3 | 2.1    | 4.0 | 0.21 | 11.7 | 6.7      | 115.8    | •    | 23 0            | o.    |
| 1         | . ~  | 145         | 285   | 4        | 4    | ٦.   | 0.73  | 11.8 | 1.1  | 2.0    | 9.0 | 0.24 | 12.1 | 69       | 113.4    |      | 15 0            |       |
|           | 3,   | 146         | 271   |          | ຕ.   | 0.23 | 0.57  | 11.6 | 10.2 | 3.2    | 4.  | 0.24 | 11.8 | 7        | 112.5    | 84.5 | 7 0             | 1.15  |
| 2 2       | 4373 | 150         | 284   |          | ٠.   | -    | 7     | 12.7 | 11.4 |        | 1.3 | 0.22 | 12.5 | 63       | 112.3    | 66.2 |                 | •     |
|           | . ~  | 503         | 184   |          | 7    | 7    | 0.62  | 10.0 | 6.9  | . 8    | 8.0 | 0.17 | 10.4 | 7.8      | 115.4    | 87.2 | •               | 6     |
|           | 4370 | 508         | 183   |          |      | •    | 0.63  | 9.01 | 9.6  | 6.1    | 0.7 | 0.17 | 10.1 | 7.1      | -        | 88.8 |                 | €0.   |
| M 10-1    | 4370 |             | 190   | Ξ.       | ۳.   | ~    | 0.63  | 10.7 | 8.6  | 2.2    | 6.0 | 0.23 | 10.3 | 7.8      | 115.2    |      | 18 0            | წ.    |
|           | 4370 |             | 175   |          | ຕ.   |      | 99.0  | 11.3 | 10.4 | 2.4    | 0.1 | 0.20 | = :- | 7.2      | 116.2    | 77.2 | 14.0            | 0.69  |
| Z Z       | 37   | 526         | 166   | 8        | ₹.   | 0.14 | 0.54  | 9.3  | 6.8  | 1.7    | 0.5 | 0.16 | 9.3  | 6.1      | 87.4     | 37.4 | <b>4</b><br>0 . | 0.94  |
|           | 4370 |             | 175   | ,<br>6   | ~    |      | 3     | 9.1  | 8.6  | 1.7    | 0.5 | 0.16 | 8.8  | 80       | 104.5    | 71.4 | 20.0            | 1.17  |
|           | 4370 |             | 186   |          |      |      | 0.65  | 10.8 | 9.7  | 2.1    | 1.1 | 0.21 | 10.1 | 7.5      | 105.2    | 5.62 |                 | 0.88  |
| 1 2 2     | 4370 | 536         | 177   |          | 0.38 | 0.18 | 0.58  | 8.6  | 1.6  | 9.1    | 7.0 | 0.15 | 6.6  | 7.4      | 108.3    | 73.2 | 14.0            | ٦.    |
| X 10-1    | 4371 | 542         | 173   | د        | 0.24 | 0.23 | 0.54  | 9.5  | 8.8  | 2.0    | 0.7 | 0.15 | 9.3  | 80       | 104.0    | 78.4 | •               | õ.    |
| M 10-1    | 4371 | 551         | 181   | 7        | 0.30 | ~    | 0.59  | 10.4 | 9.7  | 9.1    | 0.7 | 0.17 | 10.8 | 7.5      | 112.0    | 82.2 | •               |       |
| M10-1     | 4371 | 553         | 180   | 68.3     | 0.34 | ~    | 0.50  | 9.5  | 8.0  | 2.0    | 1.2 | 0.17 | 8.7  | 4 4      | 4.       | 20.5 | •               | •     |
| MI0-1     | 4371 | 557         | 173   | 72.0     | 0.37 | 0.19 | 0.58  | 9.6  | 9.1  | -<br>8 | 0.7 | 0.16 | 6.6  | 63       | ;        | 49.1 | •               | 68.0  |
| M10-1     | 4371 | 559         | 177   | 80.2     | 0.27 | 0.21 | 0.51  | 9.3  | 8.8  | 1.8    | 0.5 | 0.19 | 4.6  | 7.9      | ``.<br>• |      | •               | 0     |
| M10-1     | 4371 | 565         | 182   | 57.6     | 0.61 | 90.0 | 0.56  | 10.8 | 4.6  | 2.9    | 4.  | 0.17 | 10.4 | 80       |          | •    | 0.9             | 1.15  |
| M10-1     | 4371 | 572         | 165   | 62.4     | 0.30 | 0.25 | 0.52  | 9.5  | 9.6  | 9.     | 9.0 | Ξ.   | 9.4  | 9.       |          | 76.5 |                 | •     |
| M10-1     | 4371 | 573         | 180   | 70.0     | 0.43 | 0.10 | 0.59  | 10.6 | 9.6  | 2.0    | 1.0 | Ξ.   | 10.1 | 11       |          |      | 26.0            | ص ۱   |
| M10-1     | 4372 | 581         | 194   | 58.5     | 0.45 | 0.11 | 9     | 11.7 | 10.5 | 7.6    | 1.2 | 0.21 | 11.0 | 7.0      | ٦.       | -    | ٠               | 0.75  |
| M10-1     | 4372 |             | 178   | 7.       | 0.35 | 0.19 | 99.0  | 10.3 | 10.0 | 1.7    | 4.0 | 0.17 | 10.8 | 7.0      | 107.8    | 71.5 | •               | ۲.    |
| M 10-1    | 4372 |             | 175   | 0        | 0.37 | 0.22 | 0.65  | 1.1  | 9.6  | 9.2    | 9.  | 0.17 | 10.3 | 54       | •        | •    | 7.0             | €.    |
| M10-1     | 4372 | 10          | 177   | 85.0     | 0.34 | 0.20 | 0.62  | 10.1 | 4.6  | 9.     | 9.0 | 0.19 | 3.6  | 7.9      | 107.2    | 78.6 | -               |       |
| M10-1     | 4372 |             | 174   | 6        |      |      | 09.0  | 9.3  | 8.6  | 1.9    | 0.7 | 0.16 | 8.4  | 6 2      |          | 44.4 | •               |       |
| M10-1     | 4372 | 9           | 170   | 9        | 0.27 |      | 0.49  | 9.5  | 8.6  | 2.3    | 6.0 | 0.16 | 8.8  | 8 5      | 110.5    | 86.2 | •               | ٥.    |
| M10.1     | 4372 | φ           | 178   | 63.5     | 0.31 | 0.23 | 0.54  | 9.5  | 8.6  | 2.0    | 6.0 | 0.18 | 9.5  | 11       | 101.3    | 75.1 | 14.0            | 0.83  |
| M 10 - 1  | 4372 |             | 168   | 9        | 19.0 | 0.12 | 0.52  |      |      | 1.7    | 9.0 | 0.15 | e.   | 4.       | 94.6     | 13.3 | 15.0            | 86.0  |

| EXPT ANIMAL GRAMS MV COYN RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | GRAMS MV CDYN R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRAMS MV CDYN R         | COYN R             | <b>E</b>     |          |      | CCORD | 11.0 | )<br>> | FRC        | ) A -       | 0010 | FVC     | FEV1 | P E F 38 | MMEF     | EF10  | \$111    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--------------|----------|------|-------|------|--------|------------|-------------|------|---------|------|----------|----------|-------|----------|
| 8 3 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 3 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 8 85.5 0.33 0.15 0.56   | 5.5 0.33 0.15 0.56 | 33 0.15 0.56 | .15 0.56 | 99.  | 3,    | •    |        | 2.0        | 8.0         |      | •       |      | · .      | 84.2     | 0. 1  | 86.0     |
| 73 614 188 80.3 0.25 0.27 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 614 188 80.3 0.25 0.27 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 80.3 0.25 0.27 0.5      | 0.3 0.25 0.27 0.5  | .25 0.27 0.5 | .27 0.5  | ٧6.  |       | 9.6  | 89.08  | 2.0        | 8.0         | ٦.   | 9.5     | 7.9  | 106.6    | 80.7     | 1, .0 | ~        |
| 3 623 190 67.9 0.30 0.19 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 623 190 67.9 0.30 0.19 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67.9 0.30 0.19 0.6      | 7.9 0.30 0.19 0.6  | .30 0.19 0.6 | .19 0.6  | 9.   |       | 9.0  | •      | 2.2        | 1.0         | 0.17 | •       | 8.2  | 7        | 84.2     | 2: .0 | 1.01     |
| 3 629 181 68.8 0.34 0.19 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 629 181 68.8 0.34 0.19 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.8 0.34 0.19 0.5      | 8.8 0.34 0.19 0.5  | .34 0.19 0.5 | .19 0.5  | ς.   |       | 6.6  | 8.7    | 2.3        |             | Ξ.   | •       | 8    | ~        | •        | •     | 0.       |
| 3 635 176 67.5 0.30 0.17 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 635 176 67.5 0.30 0.17 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67.5 0.30 0.17 0.6      | 7.5 0.30 0.17 0.6  | .30 0.17 0.6 | .17 0.6  | 9    |       | 9.1  | 9.3    | . 8        | •           | ~    | ა.<br>ზ | 11   | •        |          | •     | ~        |
| 3 640 187 74.3 0.37 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 640 187 74.3 0.37 0.13 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74.3 0.37 0.13 0.5      | 4.3 0.37 0.13 0.5  | .37 0.13 0.5 | .13 0.5  | ٠,   |       | 6.6  | 9.1    | 2.1        | 8.0         | 0.17 | •       | 7.7  |          | •        | 15.0  | ٠.       |
| 3 644 180 68.9 0.28 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 644 180 68.9 0.28 0.22 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68.9 0.28 0.22 0.6      | 8.9 0.28 0.22 0.6  | .28 0.22 0.6 | .22 0.6  | 9.   |       | 10.6 | 4.6    | 2.3        | 1.2         | Ξ.   | 10.3    | 7.2  |          |          | •     | <b>6</b> |
| 3 647 178 69.0 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 647 178 69.0 0.34 0.22 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69.0 0.34 0.22 0.6      | 9.0 0.34 0.22 0.6  | .34 0.22 0.6 | .22 0.6  | ٠.   |       | 10.1 | •      | 2.3        |             | 0.16 | •       | 7.4  | 6        | ε<br>Θ   | •     |          |
| 1 039 309 112.5 0.60 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 039 309 112.5 0.60 0.14 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 112.5 0.60 0.14 0.8     | 2.5 0.60 0.14 0.8  | .60 0.14 0.8 | .14 0.8  | 8    |       | 14.1 | 11.9   | 2.4        | 2.3         | . 2  | 12.9    | 29   | 8        | •        |       | . 2      |
| 71 041 313 65.9 0.42 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 041 313 65.9 0.42 0.18 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 313 65.9 0.42 0.18 0.8  | 5.9 0.42 0.18 0.8  | .42 0.18 0.8 | .18 0.8  | 80   |       | 14.2 | •      | •          | •           | 7.   | 13.9    | 65   | •        | 89.2     | •     | ₹.       |
| 1 047 289 111.1 0.42 0.19 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 289 111.1 0.42 0.19 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 289 111.1 0.42 0.19 0.8 | .1 0.42 0.19 0.8   | .42 0.19 0.8 | .19 0.8  | 80   |       | 13.2 | 12.3   | 2.5        | 6.0         | . 2  | 12.9    | 99   |          | ٠        |       | ۳.       |
| 71 057 299 142.9 0.36 0.21 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7 299 142.9 0.36 0.21 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 142.9 0.36 0.21 0.8     | .9 0.36 0.21 0.8   | .36 0.21 0.8 | .21 0.8  | €.   |       | 13.4 | 13.1   | 2.2        | 0.3         | 0.20 | 13.4    | 6.8  | 4        |          | •     | ₹.       |
| 71 068 307 53.8 0.36 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8 307 53.8 0.36 0.17 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.8 0.36 0.17 0.7      | 3.8 0.36 0.17 0.7  | .36 0.17 0.7 | .17 0.7  | . 7  |       | 13.2 | 12.3   | 2.4        | 6.0         | 7    | •       | 68   | 25.      |          | •     | 4        |
| 1 069 311 103.2 0.38 0.25 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 311 103.2 0.38 0.25 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 103.2 0.38 0.25 0.8     | 3.2 0.38 0.25 0.8  | .38 0.25 0.8 | .25 0.8  | 80   |       |      | 13.2   | 2.4        | <b>8</b> .0 | . 7  | •       | 6.5  | 21.      | 82.3     | 22.0  | 4        |
| 1 071 304 104.8 0.31 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 304 104.8 0.31 0.18 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 104.8 0.31 0.18 0.7     | 4.8 0.31 0.18 0.7  | .31 0.18 0.7 | .18 0.7  | ~    |       | 11.7 | •      |            |             | 7    | 11.6    |      | œ.       | •        | •     | ٠        |
| 71 074 309 99.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 074 309 99.4 0.41 0.07 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 99.4 0.41 0.07 0.7      | .4 0.41 0.07 0.7   | .41 0.07 0.7 | 7.0 70.  | ٠.   |       | 11.5 | •      | •          | 0.0         | ۲.   |         | 7.5  | 119.8    |          |       |          |
| 082 300 140.4 0.65 0.10 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 082 300 140.4 0.65 0.10 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 140.4 0.65 0.10 0.8     | .4 0.65 0.10 0.8   | .65 0.10 0.8 | 8.0 01.  | 8    |       | 14.6 | 13.6   | •          | 0.          | . 7  |         | 6.2  |          |          |       |          |
| 2 083 310 118.7 0.67 0.13 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 083 310 118.7 0.67 0.13 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.7 0.67 0.13 0.9     | .7 0.67 0.13 0.9   | .67 0.13 0.9 | .13 0.9  | σ.   |       | 14.3 | 14.1   | 2.7        | 0.3         | 0.33 | 14.1    | 6.2  | _:       | 80.2     |       | 4        |
| 2 084 329 93.5 0.67 0.11 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 084 329 93.5 0.67 0.11 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.5 0.67 0.11 0.9      | 3.5 0.67 0.11 0.9  | .67 0.11 0.9 | .11 0.9  | 6.   |       | 14.6 | 13.8   | 2.5        |             | ۲.   |         | 6.2  |          |          | •     | ٩.       |
| 098 336 111.0 0.38 0.20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 098 336 111.0 0.38 0.20 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 111.0 0.38 0.20 0.8     | .0 0.38 0.20 0.8   | .38 0.20 0.8 | .20 0.8  | €.   |       | 13.1 | 12.8   | 2.1        |             | ۳.   |         | 99   | 126.8    | ٠.       | 25.0  | 47       |
| 372 099 308 113.5 0.55 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 099 308 113.5 0.55 0.10 0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113.5 0.55 0.10 0.9     | 3.5 0.55 0.10 0.9  | .55 0.10 0.9 | .10 0.9  | 6    |       | 13.4 | 13.1   | 2.5        | 0.3         | 0.34 |         | 2 2  | •        | 42.8     | m     | ຕ.       |
| 372 105 328 113.0 0.49 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 105 328 113.0 0.49 0.09 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113.0 0.49 0.09 0.8     | 3.0 0.49 0.09 0.8  | .49 0.09 0.8 | 8.0 60.  | €.   |       | 13.3 | 12.5   | 2.2        | •           | £.   |         | 64   | 124.8    |          |       | ω.       |
| 372 108 310 123.7 0.43 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 108 310 123.7 0.43 0.14 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 123.7 0.43 0.14 0.8     | 3.7 0.43 0.14 0.8  | .43 0.14 0.8 | .14 0.8  | €.   |       | 12.7 | 12.2   | 2.0        | 0.5         | 0.32 |         | 69   | 127.0    | ~        |       | 5        |
| 372 110 315 125.5 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 110 315 125.5 0.34 0.25 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 125.5 0.34 0.25 0.8     | 5.5 0.34 0.25 0.8  | .34 0.25 0.8 | .25 0.8  | €.   |       | 14.5 | 13.1   | 2.6        | •           | ۳.   | 13.5    | 63   | ~        | 60       | 28.0  | 6        |
| 373 113 291 120.0 0.71 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 113 291 120.0 0.71 0.10 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 120.0 0.71 0.10 0.7     | .0 0.71 0.10 0.7   | 71 0.10 0.7  | .10 01.  | ٠.   |       | 12.5 | 12.0   | 2.4        | 0.5         | 0.20 |         | 6.0  | 109.2    | e0       |       | ₹.       |
| 373 118 329 118.8 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 118 329 118.8 0.45 0.13 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.8 0.45 0.13 0.7     | .8 0.45 0.13 0.7   | .45 0.13 0.7 | .13 0.7  | ۲.   |       | 13.0 | 11.7   | 2.4        | 1.2         | ۳.   | 12.0    | 65   |          |          | 20.0  | 0.50     |
| 3 124 295 104.8 0.29 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 124 295 104.8 0.29 0.21 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 104.8 0.29 0.21 0.7     | .8 0.29 0.21 0.7   | .29 0.21 0.7 | .21 0.7  | . 7  |       | 12.9 | 11.6   | 2.4        | •           | . 7  |         | 7.5  | 119.0    | 104.3    |       | ٠.       |
| 3 139 310 88.3 0.38 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 139 310 88.3 0.38 0.18 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 88.3 0.38 0.18 0.7      | .3 0.38 0.18 0.7   | .38 0.18 0.7 | .18 0.7  | ٠.   |       | 12.9 | 12.1   |            | •           | . 2  |         | 69   | 5        |          | •     | ₹.       |
| 3 143 304 108.8 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 143 304 108.8 0.41 0.18 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108.8 0.41 0.18 0       | 8.8 0.41 0.18 0    | .41 0.18 0   | .18      | 0.77 |       | 11.8 | -:-    | 2.1        | 7.0         | Ξ.   | •       | 6.5  | •        | •        | 25.0  | S.       |
| 3 145 295 117.6 0.41 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 145 295 117.6 0.41 0.22 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.6 0.41 0.22 0.7     | .6 0.41 0.22 0.7   | .41 0.22 0.7 | 7.0 22.  | ٠.   |       | 12.7 | 11.5   | 2.7        | 1.2         | Ξ.   |         | 38   | 83       | _        |       | 4        |
| 3 146 286 115.1 0.27 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 146 286 115.1 0.27 0.22 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 115.1 0.27 0.22 0.8     | 5.1 0.27 0.22 0.8  | .27 0.22 0.8 | .22 0.8  | €0   |       | 13.4 | 11.5   |            | 6           | 0.25 | •       | 62   | 25.      | <u>.</u> |       | 47       |
| 3 150 303 117.9 0.57 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150 303 117.9 0.57 0.15 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 303 117.9 0.57 0.15 0.8 | 7.9 0.57 0.15 0.8  | .57 0.15 0.8 | .15 0.8  | ₩.   |       | 13.1 | 12.6   | 2.2        | 0.5         | 0.25 | 12.7    | 58   | 107.0    | 55.5     | •     | 4        |
| 1 542 182 83.1 0.52 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 542 182 83.1 0.52 0.15 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 182 83.1 0.52 0.15 0.6  | .1 0.52 0.15 0.6   | .52 0.15 0.6 | .15 0.6  | 9    |       | 10.3 | •      | 1.9        | •           | Ξ.   | 10.2    | 69   | 87.4     | 67.3     | •     | ٠.       |
| 71 551 181 92.6 0.48 0.14 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 551 181 92.6 0.48 0.14 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 181 92.6 0.48 0.14 0.6  | 2.6 0.48 0.14 0.6  | .48 0.14 0.6 | .14 0.6  | 9    |       | 10.9 | 10.0   | 6.         | 6.0         |      | 10.7    | 53   | 86.2     | •        | 5.0   | 1.12     |
| 71 883 188 78 9 0.49 0.19 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25. 18. 75.9 0.49 0.19 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 185 75 9 0 49 0 19 0 6  | 5 9 0 49 0 19 0.6  | 49 0.19 0.6  | 19 0.6   | 9    |       | •    | •      | 2.1        |             | 0.19 | 10.0    | 4 9  | 106.4    | 87.3     | 22.0  | 98.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C OT C OF C & Ut West Face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |                    | A C          | 9 0 61   | "    |       |      | •      | 8.         |             | 0.17 | 4.6     | 5.7  | 0.07     | 42.4     | 16.0  | 96.0     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                    |              |          | . "  |       | •    |        |            |             | -    | 6       | 7.8  | 106.0    |          | 18.0  | 0.91     |
| 71 559 189 106.5 0.28 0.30 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 559 189 106.5 0.28 0.30 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 189 106.5 0.28 0.30 0.3 | .5 0.28 0.30 0.9   | .28 0.30 0.5 | 6.0 06.  |      |       | , ,  | •      |            |             |      |         |      |          |          |       | 4        |
| 565 190 107.5 0.26 0.23 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 565 190 107.5 0.26 0.23 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 190 107.5 0.26 0.23 0.6 | .5 0.26 0.23 0.6   | .26 0.23 0.6 | . 23 0.6 | 9    |       | •    | •      | - (        | •           | •    |         |      |          |          |       |          |
| 672 184 90.9 0.34 0.22 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 672 184 90.9 0.34 0.22 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 184 90.9 0.34 0.22 0.5  | 9 0.34 0.22 0.5    | .34 0.22 0.5 | .22 0.5  | 5    |       | s    | D (    | <u>.</u> . |             |      |         | 0 ^  |          |          |       | . "      |
| 1 573 185 67.3 0.30 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 573 185 67.3 0.30 0.15 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5 67.3 0.30 0.15 0.6    | .3 0.30 0.15 0.6   | .30 0.15 0.6 | .15 0.6  | ω.   |       | •    |        | 7 . 1      | •           | 07.0 |         | - :  |          |          |       |          |
| 1 205 95.5 0.56 0.09 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 581 205 95.5 0.56 0.09 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 95.5 0.56 0.09 0.     | .5 0.56 0.09 0.    | .56 0.09 0.  | .09 0.   | •    |       | 11.5 | 11.0   | 2.0        | 9.0         | . 7  | •       | 63   | 2 . 96   | 54.2     |       | •        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |                    |              |          |      |       |      |        |            |             |      |         |      |          |          |       |          |

| TIME    | EX9T  | ANIMAL       | GRAMS         | >     | CDYN     | J.   | CCORD | 11.0 | ن<br>> | FRC | . B.       | 070    | FVC     | FEV1     | PE F B   | MMEF  | :F10 | 1118         |
|---------|-------|--------------|---------------|-------|----------|------|-------|------|--------|-----|------------|--------|---------|----------|----------|-------|------|--------------|
|         |       |              |               |       |          |      |       |      |        |     | •          |        |         | ;        | 9        | 43    | 0    | 88.0         |
| E0E-1   | 4372  | 582          | 190           | 78.1  | 0        | 0.24 | ۲.    | 9.01 | 10.2   |     |            | 17.0   | ŧ.<br>⊃ | <u>.</u> |          |       |      | 0.59         |
| E0E-1   | 4372  | 586          | e<br>85<br>85 | 13.1  | <u>س</u> | 0.17 | •     | 1.1  | · ·    | 5.4 |            |        | •       | 4        | 85.4     | 40.0  | 15.0 |              |
| E0E-1   | 4372  | 587          | 184           | 0.1.0 | 0.59     | 9.16 |       | - 0  |        |     |            |        |         |          |          |       | 8.0  | 1.35         |
| E0E-1   | 4372  | <b>9</b> 0 0 | 186           | 67.0  |          | ~ (  | •     | o •  | 7.6    |     |            |        | 9       | 0.2      | 6.00     | 61.6  |      |              |
| E0E-1   | 4372  | 0 0          | - v           |       | •        | 12.0 |       | o r  | 7. 6   |     |            | : -    | 4.      | 9.       | 104.8    | 11.0  | •    | 0.82         |
| E0E-1   | 43/2  | 200          | 0 .           | e     |          | ٠.   | . "   |      |        |     |            | : -    | 6.9     | 7.0      | 104.0    | 68.5  | 18.0 | 0.83         |
| E0E-1   | , r   | - :          |               | -     | , ·      |      | •     |      |        |     | 9          | : -    | , eo    | 7.4      | 74.5     | 61.4  | 20.0 | 1.42         |
| E0E-1   | 4373  | 5            | / 8 .         |       | າ ເ      | - •  |       |      | . «    |     | 4          | -      |         | 7.5      | 87.1     | 64.5  | 0.8  |              |
| E0E-1   |       | <b>9</b> 4   | 0 0           | - 68  |          |      | . 4   |      | - 60   | 6.1 | . 0.       | -      |         | 7.0      | 89.9     | 62.4  | •    | 66.0         |
| 101     | 7 7 7 | 6 6 9        | n (           | 7. 8. |          | 76.0 | . "   |      | . 6    | 8.  |            | -      | •       | 7.5      | 102.6    | 70.2  | 16.0 | 0.81         |
|         | 4373  | 9 50         | 179           | 9 49  | . 4      |      |       |      | 6      |     | 7.0        | 0.15   | 9.8     | 5.8      | 68.5     | 43.1  | 13.0 | 0.62         |
| F 0 F 1 | 4373  | 6.40         | 190           |       | . ~      | 0.40 | Ξ,    |      |        | 1.8 | 7.0        | 0.16   | 8.6     | 7.4      | 97.2     |       | •    | ۲.           |
| E0E-1   | 4373  | 644          | 192           | 70.3  | ۳.       | 0.15 | ٠.    | 11.0 | 6.6    | 2.1 | 1.2        | -      | 10.5    | 52       | 81.4     |       |      |              |
| F.0F-1  | 3     | 6.4          | 188           | 78.4  | ~        | 0.27 | 0.59  | 9.7  | 8.8    | ₽.  | 6.0        | 0.15   | 9.5     | 20       | 89.8     | 62.4  |      | <u>თ</u>     |
| BEC-1   | 4371  | 03           | 331           | ÷     |          | 0.33 | €.    | 12.2 | 11.3   | 2.3 | 6.0        | 0.23   | 12.9    | 9        | 119.8    | 75.2  |      |              |
| BEC-1   | 4371  | 0.4          | 329           | 88.8  | ₹.       | -    | •     | 15.4 | 13.6   | •   | 8.         | 0.19   | 15.8    | 6.4      | 140.6    | 4     |      | •            |
| BEC-1   | 4371  |              | 314           | 8.06  | 9.       | 0.10 |       | 13.3 | 11.6   | 2.6 | 1.7        | 0.22   | 12.8    | 26       | 108.5    |       |      |              |
| B. C. 1 | . 6   | 057          | 332           |       |          | 0.13 | 96.0  | 14.8 | 13.9   | 2.7 | 6.0        | 0.22   | 14.8    | 62       | 135.4    | 0     |      |              |
| BEC-1   | 4371  | 068          | 327           | 71.1  | 0.78     | 90.0 | 0.86  | 16.2 | 12.8   | 3.6 | 2.4        |        | 14.4    | 99       | 127.5    | 0     | •    | 0.41         |
| REC-1   | 4371  | 690          | 359           | 91.1  | ₹.       | 0.12 | 0.88  | 15.0 | 13.1   | 3.2 | ٠.         | 0.37   | 14.5    | 09       | 124.9    | 73.7  | m    | 4 (          |
| REC-1   | 4371  | 071          | 336           | 94.8  | 0.56     | 0.05 | 0.78  | 13.3 | 11.5   | 2.7 | 8.         | Э.     |         | 99       | 126.8    | 78.0  | e .  | ٠ <u>.</u>   |
| BEC-1   | 4371  |              | 331           | 86.2  | 0.33     | 0.26 |       |      | 11.1   | 2.0 | 6.0        | ۲.     |         | 5 B      | 106.7    | 62.5  | - 1  | m •          |
| REC-1   | 4372  |              | 329           | 53.6  | 05.0     | 0.13 | 0.79  | 16.3 | 15.2   | 3.4 | 1.2        | 0.19   | 16.2    | 61       | ~        | •     | ٠.   | •            |
| REC-1   | 4372  | 083          | 334           | 97.6  | 99.0     | 0.08 | 0.98  |      | 14.7   | 3.1 | 6.         | 0.24   | •       | 63       | E        |       | n :  | 7.           |
| REC-1   | 4372  | 084          | S             | 83.4  | 0.59     | 0.12 | 0.93  |      | 14.0   | 3.2 | 2.4        | . 2    | •       | 5.0      |          |       |      | •            |
| REC-1   | 4372  | 098          | 5             | 74.3  | 0.50     | 0.14 | 1.00  | 15.5 | 14.1   | 2.8 | 4.         | 0.22   |         | 99       |          |       | 25.0 | •            |
| REC-1   | 4372  | 660          | 335           | 103.0 | 0.71     | 0.15 | 0.87  | •    | 13.4   | 3.0 | <u>:</u>   | Ξ.     |         |          |          | 7     | 34.0 |              |
| REC-1   | 4372  | 105          | 345           | 78.5  | 0.75     | 0.07 | 6.    | 15.3 | 13.6   | 3.2 | 1.7        | . 7    | 14.8    | 6 9      |          |       | 0.07 | ח ה          |
| REC-1   | 4372  | 108          | 325           | 66.7  | 0.45     | 0.11 | 0.97  |      | 13.7   | 3.1 | 4.         | 0 . 20 |         |          |          |       | 0.67 | ? '          |
| REC-1   | 4372  | 110          | 345           | 89.8  | 0.62     | 0.05 | 0.60  | 14.9 | 13.3   | 3.2 | 2.5        | •      |         | 4 6      | <br>EO ( |       |      | 00.0         |
| REC-1   | 4373  | 113          | 332           | 0.62  | 0.63     | 0.05 | 0.82  | 14.3 | 12.4   | 3.2 | 2.0        | ۳.     | 14.1    |          | 116.2    |       |      | •            |
| REC-1   | 4373  | 118          | 7             | 120.1 | 0.34     | 0.19 | 0.95  | 14.6 | 13.3   | 3.0 | e.         |        | 14.2    | 50<br>0  | <u>.</u> |       | · ·  | 4 (          |
| REC-1   | 4373  | 124          | 333           | 108.5 | 0.67     | 0.13 | 1.06  | 16.0 | 15.1   | 2.8 | 0.         | •      | 16.5    |          | on       | -     | ,    | າ ເ          |
| REC-1   | 4373  | 13           | 4             | 85.0  |          | 0.11 | 0.80  | 13.5 | 11.7   | 3.4 | -<br>8     | 0.33   | 12.8    |          | ·.       | 4     | 25.0 | Ξ,           |
| BEC-1   | 4373  | 143          | 4             | 7.96  | 0.31     | 0.18 | 0.85  | 13.9 | 12.4   | 2.5 | <b>4</b> . | 0.21   | •       | 99       | 6        | 7     |      | ٩.           |
| S       | 4373  | 145          | 321           | 89.4  | 0.34     | 0.19 | 06.0  | 12.9 | 11.4   | 2.8 | 1.5        | •      | 12.5    | 20       | m        | ٠.    |      | - 1          |
| REC-1   | 37    | 146          | 0             | 73.9  | 4        | 0.12 | 0.80  | 13.9 | 12.3   | 3.0 | 1.6        | ٠      | 13.3    | 7.2      | ٠.<br>س  | 60    | 27.0 | 0.51         |
| REC-1   | 4373  | 150          | 335           | 1.96  | 0.71     | 0.09 | 0.90  | 15.3 | 13.8   | 3.2 | 5.         | 0.21   | 15.1    | - 1      |          | on .  |      |              |
| REC-1   | 4371  | 542          | 194           | 85.3  | 0.43     | 0.07 | 0.64  | 10.4 | 10.0   | 2.1 | 4.0        | 0.24   | 10.8    | 78       |          | 91.2  | 25.0 |              |
| REC-i   | 4371  | 651          | 205           | 71.8  | 7.       | •    | 0.73  | 12.3 | 10.5   | 2.4 | 1.7        | 0.16   | 3.      |          | 122.0    | 7.8.7 | 0.   | <del>7</del> |

| TIME                                    | EXPT             | EXPT ANIMAL | GRAMS            | ¥       | CDYN | RL          | CCORD      | 11.0        | ۸ د      | FRC        | ) H | 070      | FVC  | FEV1       | PEFR  | MMEF | EF10  | 1118     |
|-----------------------------------------|------------------|-------------|------------------|---------|------|-------------|------------|-------------|----------|------------|-----|----------|------|------------|-------|------|-------|----------|
| ;<br>;<br>;<br>;<br>;                   | :<br>:<br>:<br>: | ;<br>;<br>; | i<br>i<br>i<br>i |         |      |             |            |             |          | ,          | ,   | •        | ;    | ;          |       | ·    | •     | -        |
| REC-1                                   | 4371             | 553         | 198              |         | •    | 0.15        | 0.67       | 4.          | •        | 2.8        | o . |          | 7.1. | 2 ;        | 0.00  | , d  |       | 2 0      |
| REC-1                                   | 4371             | 557         | 197              | 63.6    | •    | ٥.          | φ.         |             | ٠.       | •          | 9 . | 7.       | n 0  | ? ;        |       |      |       | •        |
| REC-1                                   | 4371             | 559         | 197              | 77.0    | ۳.   | Ξ.          | •          | 10.3        | 7 . 5    | 2.4        | - ( | 77.0     | o .  | - ;        | , c   |      | •     | •        |
| REC-1                                   | 4371             | 565         | 204              | 4.67    | 0.32 | Ξ.          | ٠          | ٠           | - 0      | 2.9        | 6.  | 7.       | 5. · | 7 6        | 9. 9  |      |       | •        |
| REC-1                                   | 4371             | 572         | 192              | 64.5    | •    | 0.32        |            | 9.5         | 8.3      | . 3<br>. 3 | - 1 | ~ .      | - ·  | ים פו<br>ס |       | . ·  |       | •        |
| REC-1                                   | 4371             | 573         | 192              | 48.5    | 0.30 | ۲.          | •          | •           | €0<br>60 | ٠.         | . 5 | <u> </u> | 10.7 | 9 1        | *     | 7.6  |       |          |
| REC-1                                   | 4372             | 581         | 220              | 74.0    | 0.31 | 0.19        | 0.81       | 11.9        | 11.2     | 2.4        | 7.0 | -        | •    |            |       |      |       | •        |
| BEC-1                                   | 4372             | 582         | 203              | 72.9    | 0.21 | 0.39        | 0.57       | 9.2         | 9        | 1.7        | 6.0 | 61.0     | 9.6  | 53         |       | 24.5 |       | 0        |
| 1 2 2                                   | 4372             | 80          | 190              | 53.6    | 0.61 |             | 0.63       | 10.2        | 9.1      | 2.2        | -:  | 0.18     | 6.6  | 7.5        | 110.2 | 75.4 | 26.0  | ٠        |
| 1 C L C L L                             | 4372             | 587         | 196              | ~       | 0.23 | 0.26        | 0.69       | 11.2        | 9.8      | 2.2        | 1.7 | 0.17     | 10.8 | 8 /        | ٠     | 91.0 |       |          |
| 1000                                    | 4373             | 4 6 5       | 195              | 74.1    | ~    |             | 9.65       | 10.5        | 9.5      | 2.0        | ٠.  | 0.14     | 10.4 |            | 121.3 | m    | •     | 76.0     |
| 1 0 10                                  | 4372             | 601         | 196              | 6.3     | 0.27 | 0.22        | 0.72       | 11.6        | 9.3      | 2.9        | 2.3 |          | 9.5  | 5.5        |       | 35.8 |       | ٠        |
|                                         | 4372             | 607         | 198              |         | 0.27 | 0.25        | 09.0       | 6.6         | 8.8      | 2.2        | -:  | 0 24     | 9.5  | 4 9        |       |      | ٠     | 4        |
|                                         | 4373             | 119         | 185              | 52.3    | ٤.   | 0.10        | 0.65       | 10.5        | 9.0      | 2.4        | 1.5 |          | 10.3 | 90         |       |      | ٠,    |          |
|                                         | 4373             |             | 6 6              |         | ຕ    | 7           | 0.65       | 10.2        | 9.4      | 2.2        | 8.0 | 0.18     | 10.1 | 9 2        | 111.2 | •    | 6,    | •        |
| 7 1 1                                   | 0 0              | 2 4         |                  |         |      |             | 6          | 11.0        | 9.8      | •          | 1.5 | 0.17     | 10.3 | 11         | 163.1 | 83.7 | 23.0  | •        |
| RECT                                    | 5 / 5 4          | † (         |                  | 7 9 6 7 | . "  | -           | 08.0       |             | 1.1      | 2.5        | 1.2 | 0.18     | 11.8 | 7.2        | 123.4 | 84.7 | 2., 0 | 0.72     |
| REC-1                                   | 43/3             | 679         |                  |         |      |             | 6 6        |             | 0.6      | 2.6        | 1.1 | 0.23     | 10.2 | 7.9        | 109.6 | 92.4 | 21.0  | 0.94     |
| REC-1                                   | 4373             | 679         | n (              | - 0     | 4 4  | : -         |            |             | 6.       | 2.4        | 9.1 | 0.14     | 10.9 | 7.7        | 122.0 | 85.8 | 20.0  | 0.63     |
| REC-1                                   | 7 5              | n (         | 2 6              |         |      | . <b>-</b>  | ٠          | 10.5        | 9.2      | 2.3        | 1.3 | ~        | 10.3 | 18         | 123.7 | 93.1 | 22.0  | 0.70     |
| REC-1                                   | 5 / 5 4          | 2 4         | 707              |         | : "  |             |            | 11.8        | 10.3     | 2.5        | 1.5 | 0.17     | 11.4 | 7.8        | 122.2 | 95.7 |       | 0.68     |
| 23 -                                    | 2 / 2 4          | 4 4         | 707              |         | 0.28 | : -         | 0.65       | 10.7        | 9.8      | 2.5        | 1.2 | 0.23     | 10.3 | 7.2        | 115.7 | 72.1 |       | 0.62     |
| RECT                                    | 2 4 4 4          | * *         | n 0              | - 4     | . "  |             | . 40       | 11.2        | 10.0     | 2.3        |     | 0.24     | 10.7 | 7.0        | 101.7 | 72.7 | •     | φ.       |
| BASE - Z                                | 7 5 5 5          |             | 9 6              |         | . "  | •           |            | 11.5        | 9.6      | 2.6        | 1.9 | 0.19     | 6.6  | 7.0        | 99.5  | 65.6 |       | 7.       |
| BASE-Z                                  | 7 * * *          | 70.         | 9 6              |         | 0.61 | 0           | ٠.         | 10.4        | 9.7      | 9.1        | 9.0 | 0.22     | 9.1  | 7.5        | 95.9  | 71.4 | 22.0  | •        |
| BASE-2                                  | 7 * * *          | 2 5         |                  |         | 0.29 | -           | •          | 10.4        | 10.6     | 2.1        | 9.0 | 0.26     | 10.2 | 7.4        | 111.6 | 75.4 | •     | <b>S</b> |
| BASE-Z                                  | 7 7 7 7          | , ,         | 787              |         | . 4  | •           | •          |             | 9.0      | 2.0        | 8.0 | 0.24     | 8.9  | 9.2        | 89.9  | 72.6 | •     | 9.       |
| DASE-1                                  | 4442             | 2 4         | 300              | . ~     | 0.69 | •           | 9.         | 11.6        | 10.5     | 2.2        | 1.0 | 0.21     | 6.6  | 7.5        |       | 6.02 | 26.0  | ۲.       |
| 212648                                  | 4442             | 10.7        | 292              | 72.1    | ິ.   | ~           | 09.0       | 10.0        | 10.4     | 1.5        | 0.2 | 0.23     | 10.3 | 2.0        | 102.7 | •    | •     | s.       |
| 2 2 2 2 2 2 2 3 2 3 2 3 3 3 3 3 3 3 3 3 | 4442             | 108         | 295              | 67.1    | 0.64 | 0.13        | 0.58       | 10.2        | 8.9      | 1.8        | 4.  | 0.14     | 9.0  | 67         | •     |      |       | Š.       |
| DASE 1                                  | 4444             | 181         | 566              | 83.1    | 0.58 | 0.05        | 0.65       | 11.6        | 10.7     | 6          | 6.0 | 0.19     | 10.4 | 99         | 105.9 | 58.9 | 22.0  | φ.       |
| 1 1 1 1 1 1                             | 4444             | 15.7        | 288              | 71.1    | 0.51 | 0.10        | 0.59       | 9.8         | 9.0      | 1.5        | 8.0 | 0.19     | 9.5  | 7.2        |       | 9    | €     | ٠.       |
| DA 3E - 2                               | 4444             | 1 2 2       | 29.              | 82.6    | 0.41 | 0.08        | 0.67       | 10.8        | 10.2     | 4.9        | 9.0 | 0.21     | 6.6  | 11         |       |      |       | ۲.       |
| 7 - 10 - 6                              |                  |             |                  |         | 0,61 | 0           | 0.54       | 10.6        | 9.4      | 2.2        | 1.3 | 0.23     | 10.3 | 73         | 97.7  | 78.7 | ٠     | Ġ,       |
| BASE-2                                  | * *              |             | ) u              |         | - 10 | 0           |            | 11.0        | 10.1     | 9.1        | 0.1 | 0.22     | 8.6  | 69         | 98.4  | 63.2 | •     | 6.       |
| BASE-2                                  | *                |             | , ,              | • «     | . 4  | -           | . 6        | 11.2        | 10.5     | 2.3        | 8.0 | 0.25     | 10.3 | 7.         | 96.8  | 74.0 | 19.0  | 0.97     |
| BASE-2                                  |                  | 0 1         | 0 0              |         | •    | -           | ^          | 12.9        | 11.6     |            | 1.2 | 0.25     | 11.  | 67         | 9.66  | 71.3 | 19 0  | 0.54     |
| BASE-2                                  | 4                | / 0         | 705              | h e     |      | -           | 0 7.3      | 12.5        | 11.5     |            |     | 0.22     | 10.9 | 7.2        | 95.4  | 85.7 | 26.0  | 0.49     |
|                                         | 4 4 4            | 168         | F 1              |         |      | . `         | . <b>v</b> | ,           | 7.6      |            | 4.0 | ٦.       | 7.4  | 84         | 93.8  | 72.6 | 16.0  | 06.0     |
| BASE-2                                  | 4442             | 501         | 6/1              |         | , ,  | •           | . 4        |             | 2 9      | 9          | 8.0 | 0.14     | 6.7  | 84         | 82.1  | •    | 17.0  | 0.81     |
|                                         | 4442             | 50          |                  |         |      |             |            |             | . 40     | 2.0        | 0.8 |          | ٦.   | 7.9        | 96.8  | 0.99 | 22.0  | 97.0     |
| BASE-2                                  | 4442             | 203         | 1.61             | 4.5     |      | )<br>-<br>- |            | )<br>-<br>) |          | I          | i   |          |      |            |       |      |       |          |

| 1 I ME                                  | EXPT  | ANIMAL           | GRAMS | ×     | COYR | RL   | CCORO | 11.0 | >          | FRC   | . B      | DLCO | FVC      | FEV1 | PEFR         | MMEF    | Fr10 | 1118     |
|-----------------------------------------|-------|------------------|-------|-------|------|------|-------|------|------------|-------|----------|------|----------|------|--------------|---------|------|----------|
|                                         | ;<br> | ;<br>;<br>;<br>; | <br>  | <br>  |      |      |       |      |            |       |          |      |          |      |              |         |      |          |
| RACE - 2                                | 4442  | 408              | 171   | 67.1  | 0.28 | 0.21 | 0.53  | 9.3  | 8.3        | 1.9   | <u>.</u> | 0.11 | 7.8      | 18   | 95.3         |         | •    | 0.73     |
|                                         | 4442  | 505              | 193   | -     | 4    |      | •     | 9.8  | 8.7        | 2.1   | 8.0      | 0.19 | 8.2      | 7.4  |              | 60      | 18.0 | 0.47     |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2   | 4442  |                  | 181   | 63.7  | 0.25 | 0.25 |       | 7.4  | 6.3        | 9.1   |          | 0.16 | 4.6      | 7.1  |              |         | •    | •        |
|                                         | 4442  |                  | 178   |       | 0.25 | . 2  | 0.54  | 9.1  | 8.1        | 2.0   | 6.0      | 0.18 | ₽.       | 13   | 0.06         | 70.3    | 20.0 | 0.69     |
| BASE-2                                  | 4442  |                  | 173   | €0    | 0.25 | 0.22 | 0.41  | 7.5  | 9.9        | 9.    | 6.0      | 0.15 | 7.0      | 90   | •            | 74.1    | •    | 0.72     |
|                                         | 4444  |                  | 177   | €.    | 7    | 0.26 | 0.50  | 9.3  | 8.1        | 1.9   | 1.2      | 0.16 | 8.2      | 80   |              | 71.7    | •    | ~        |
|                                         | 4444  | 562              | 173   | €0    | 0.34 | 0.14 | 0.55  | 9.6  | 8.7        | 2.2   | n.8      | 0.15 | 8.3      | 7.9  | 97.0         | 67.3    |      | 0.65     |
| BASE-2                                  | 444   |                  | 175   | S.    | 0.14 | 0.13 | 0.48  | 9.1  | 7.4        | 2.5   | 9.       | 0.13 | 9.7      | 15   | 80.6         | 58.0    |      |          |
| RASE - 2                                | 444   |                  | 179   | 8     | ۲.   | 0.14 | 0.58  | 7.6  | 8.7        | 2.1   | 1.0      | 0.23 | 8.9      | 7.2  | 6.97         | 67.6    |      |          |
| RASE-2                                  | 4444  | 565              | 186   | 9     | . 2  | 0.19 | 0.44  | 0.6  |            | 2.0   | 6.0      | 0.16 | 8.3      | 81   | 90.9         | 77.8    | •    |          |
| RASE-2                                  | 444   | 999              | 182   | 5.    | 0.34 | 0.18 | 0.46  | 8.4  | 7.3        | 1.9   | -:       | 0.13 | 9.7      | 82   | 94.8         |         | 19.0 | 0.36     |
| BASE-2                                  | 444   | 567              | 181   | ₩.    | 0.21 | 0.36 | 0.32  | 10.1 | 6.3        | 4.5   | 4.2      | 0.11 | 6.1      | 43   | 32.3         | ٠       | ٠    | •        |
| BASE-2                                  | 444   | 80 90            | 183   |       | 0.28 | 0.17 | 0.53  | 9.5  | 9.7        | 2.3   | 9.       | 0.12 | 7.1      | 62   |              |         | •    | 0.65     |
| 21017                                   | 4442  | -                | 294   | 74.2  | 0.49 | 0.09 | 0.65  | 12.2 | 11.1       | 5.9   | -:       | 0.24 | 11.6     | 7.0  | 112.0        | 80.7    | 21.0 | ٠        |
| 1 2 2 2                                 | 4442  |                  | 310   | 109.7 | ۲.   | 0.04 | 96.0  | 19.1 | 18.5       | 3.7   | 9.0      | 0.26 | 17.7     | 10   | 177.7        | 123.5   | 41.0 | 0.48     |
|                                         | 4442  | •                | 303   | _     | 0.48 |      | •     | 13.4 | 12.5       | 5 . 6 | 6.0      | 0.25 | 12.4     | 6.8  | 115.5        | 57.5    |      | 0.64     |
| 7 - 0 - 12                              | 4442  |                  | 303   | 105.2 | ٠.   |      | ۲.    | 13.2 | 12.0       | 2.8   | 1.2      | 0.28 | 11.9     | 6.7  | 118.2        | 72.6    | 27.0 | 0.83     |
| 7 0 1 2                                 | 4442  | -                | 297   |       | ٠.   | •    | 1.11  | 18.5 | 17.2       | 4.0   | 1.3      | 0.23 | 16.9     | 29   | 137.1        | 112.1   |      | 0.63     |
|                                         | 4447  | . =              | 322   | 161.7 | 0.80 | 0.05 | 1.13  | 18.2 | 17.3       | 3     | 6.0      | 0.23 | 16.1     | 6.5  | 148.1        | 91.8    |      | 0.44     |
| Z 20 Z                                  | 4442  |                  | 309   | 55.9  | 0.50 | Ξ.   | 0.79  | 12.4 | 11.3       | 2.4   | -:       | 0.23 | 12.2     | 29   | 111.0        | 76.5    | 19.0 | 0.68     |
| 1017                                    | 4442  | _                | 329   |       | 9    |      | 0.74  | 12.2 | 11.3       | 2.3   | 6.0      | 0.23 | 11.9     | 6.1  | 111.7        | 63.4    | 24.0 | Š        |
| Z 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4444  | -                | 290   |       | 0.59 |      | 0.77  | 13.4 | 12.1       | 5.6   | 1.3      | 0.23 | 11.8     | 69   | 117.7        | 77.8    | 24.0 | က        |
|                                         | 4444  | -                | 294   |       | ۲.   | ٥.   | Ξ.    | 18.3 | 16.9       | 3.2   | 1.4      | 0.24 | 16.4     | 7.3  | 168.4        | 121.5   | 33.0 | 09.0     |
| 7 - 0 - 1                               | 444   |                  | 298   | 89.7  | ۳.   |      | 0.92  | 15.3 | 13.3       | 3.2   | 2.0      |      | 13.2     | 64   | 123.9        | •       | . 9  | 5        |
| Z 10 1                                  | 444   | _                | 310   | 89.0  | ۳.   | 0.21 | 4     | 13.8 | 12.5       | 2.7   | 1.3      | 0.29 | 12.3     | 9 9  | 110.3        | 77.0    | θ.   | Ģ        |
| 21012                                   | 444   | _                | 309   | 73.2  | 0.82 | 0.03 | Ø     | 14.2 | 13.0       | 9.8   | 1.3      | 0.26 | 13.1     | 69   | 123.5        | 91.3    |      | 99.0     |
| K10-2                                   | 4444  | 16               | 293   | 96.5  | 0.43 | 0.10 | 0.79  | 12.8 | 12.5       | 2.5   | 0.3      | 0.26 | 12.0     | 64   | 113.2        | 66.7    | 9    | 99.0     |
| M10-2                                   | 4444  | _                | 303   | 89.8  | 0.52 | 0.13 | 0.82  | 13.5 | 12.5       | 7.6   | 1.0      | 0.21 | 12.7     | 61   | 91.0         |         |      |          |
| M10-2                                   | 4444  |                  | 297   | 103.8 | 0.55 | 0.09 | 0.81  | 14.4 | 12.8       | 2.8   | 1.6      | 0.26 | 12.6     | 99   | 119.3        |         | 23.0 | 0.39     |
| M10-2                                   | 4442  |                  | 174   | 8.99  | 0.46 | 0.13 | 0.55  | 9.0  | 8.5        | 1.8   | 0.5      | Ξ.   | 8.4      | 80   | 9<br>6.9     | ٠.      | 21.0 | •        |
| M10-2                                   | 4442  |                  | 185   | 74.5  | 0.31 | 0.15 | 40    | 4.6  | 8.8        | 1.9   | 9.0      | Ξ.   | 8.7      | 1.1  | •            |         |      | <b>ε</b> |
| M 10-2                                  | 4442  |                  | 196   | 50.9  | 0.32 | 0.21 | 0.60  | 9.7  | 9.1        | 2.0   | 9.0      | 0.19 | 9.5      | 9 /  | 102.6        |         | •    | 0.78     |
| M10-2                                   | 4442  |                  | 181   | 6.69  | 0.38 | 0.18 | 0.59  | 10.1 | æ          | 2.4   | 1.2      | 0.19 | 89<br>6. | 8.2  | ٠.<br>ق      | •       | 25.0 | •        |
| M10-2                                   | 4442  |                  | 195   | 80.8  | 0.31 | 0.19 | 0.63  | 6.6  | <b>.</b> ⊅ | 1.8   | 7.0      | 0.19 | 9.1      | 7.1  | <del>.</del> |         |      | €0.      |
| MID-2                                   | 4442  |                  | 182   | 95.9  | 0.39 | 0.16 | 0.90  | 14.2 | 13.1       | 2.8   | -:       | 0.17 | 12.7     | 11   | ິ.           | ີ.<br>ຕ | 27.0 | 9        |
| Z 1017                                  | 4442  |                  | 184   | 81.3  | 0.32 | 0.29 | 99.0  | 10.4 | 9.7        | 1.8   | 0.7      | 0.16 | 9.1      | 7.5  | 89.6         | 6       |      | 0.62     |
| MID-2                                   | - 4   |                  | 184   | 65.1  | 0.39 | 0.21 | 4     | 9.3  | 8.1        | 2.8   | 1.2      | ۲.   | 8.5      | 9 /  | 102.1        | ٠.<br>و |      | •        |
| 212                                     | 444   |                  | 181   | 92.1  | 0.45 | 0.14 | 0.94  | 15.9 | 14.3       | 3.7   | 1.6      | 0.15 | 14.0     | 7.2  | 4            |         | 25.0 |          |
| M10-2                                   | 4444  |                  | 186   | ~     | 0.49 | 0.09 | 1.00  | 16.1 | 14.8       | 2.9   | 1.3      | 4 0  | 14.7     | 99   | €.           | 85.5    |      | •        |
| 2-013                                   | . 4   | 99               | 177   | 6.66  | 0.53 | 90.0 | 0.67  | 10.2 | 9.7        | 6.1   | 9.0      | 0.20 | 9.3      | 16   | 105.3        | 73.2    | 23.0 | •        |
| M10-2                                   | 4444  |                  | 190   | 4     | 0.52 | 0.14 | 0.59  | 10.5 | 9.5        | 2.2   | 0.1      | 0.18 | €0.      | 4.5  | 93.2         | 76.8    |      | 0.82     |

| 1 IME                      | EXPT | EXPT ANIMAL | GRAMS                 | <b>&gt;</b>                | CDYN   | A.   | CCORD | 110  | ن د            | FRC        | 2   | 0100 | ) \ L          | FEVI   | PEFA     | MMEF      | E " 10 | S I I I  |
|----------------------------|------|-------------|-----------------------|----------------------------|--------|------|-------|------|----------------|------------|-----|------|----------------|--------|----------|-----------|--------|----------|
| 1<br>1<br>1<br>1<br>1<br>1 |      | <br>        | 1<br>1<br>1<br>1<br>1 | 1<br>1<br>1<br>1<br>1<br>1 | !<br>! | 1    | !     |      |                | ,          | •   | ;    |                | ,      | ۰        | 40        | - E    |          |
| M10-2                      | 4444 | 9           | 182                   | 119.6                      | •      | _    | •     | 15.3 | ٠              | e.         | - : | 0.21 | 4 6            | n .    |          |           | . 4    | 0 . 70   |
| MID-2                      | 4444 | 999         | 183                   | 48.7                       |        | 0.14 |       | 9.5  | 6.<br>6.       | 4.         | 6.9 | - '  | р (<br>(       |        |          |           |        |          |
| M10-2                      | 4444 | 567         | 184                   | 65.4                       | . 2    | 0.19 | ۲.    | •    |                | 7.7        | •   | - '  | •              |        | n r      | • •       | •      |          |
| M10-2                      | 4444 | 568         | 187                   | 66.7                       | 0.53   |      | 0.64  | •    | <del>-</del> . | 2.1        | 6.0 | 0.18 | e .            | 0 0    |          |           | •      | 2        |
| E0E-2                      | 4442 | 101         | 303                   | 78.3                       | 0.45   | C.15 |       | •    | •              | 2 . 6      | •   | 7.   |                | 0 1    | ,        |           |        | . ^      |
| - 1                        | 4442 | 102         | 331                   | 79.2                       | 0.65   | 0.10 | ۲.    |      | 1.4            | 2.7        | •   |      | 9.0            | 7.5    | S        |           |        | •        |
| - 1                        | 4442 | 103         | 314                   | 72.3                       | 0.44   | 0.17 | 0.72  | 11.7 | 11.4           | 8.         | 0.3 | 7.   | •              |        |          | ;         | ٠.     |          |
| E0E-2                      | 4442 |             | 328                   | 80.8                       | 0.34   | 0.14 | 0.83  | 13.1 | 1.2.1          | 2.2        | •   | ຕ.   | 3 5            | 7.0    | Ģ.       |           | 25.0   | •        |
| - 1                        | 4442 | 105         | 319                   | 6                          | 95.0   | 0.07 | 0.70  | 13.4 | 12.4           | 2.2        | 1.0 | 0.31 | 12.1           | 29     |          | 74.1      | •      | ۰.       |
| 0.5                        | •    |             | 340                   | 80                         | C . 43 | 0    | 0.65  | 11.8 | 11.0           | 2.1        | 8.0 | ۳.   | •              | 09     | ī.<br>On |           |        | <b>0</b> |
| E0E-2                      | 4442 | 107         | 333                   | 68.3                       | 0.37   | 0.12 | 0.64  | 12.2 | 11.0           | 2.5        | 1.2 | ۳.   | 10.6           | 70     |          | 74.1      | 20.02  | 95.0     |
| E0E-2                      | 4442 | 108         | 344                   | 9                          | 09.0   | 0.11 | 0.91  | 14.2 | 12.6           | 2.8        | 9.  | 0.32 |                | 59     |          | •         |        | 9 0      |
| - 1                        | 444  |             | 317                   | 64.3                       | 95.0   | 0.10 | 9     | 10.8 | 10.4           | 9.         | 4.0 | ۲.   | -              | 7.0    |          |           |        | 7        |
| E0E-2                      | 4444 | 162         | 313                   | 4                          | 5      | 0.15 | 0.70  | 11.9 | 10.5           | 2 . 1      | 4.  |      | 10.5           | 7.1    |          | ີ.<br>ຕ ( | 17.0   | 4 (      |
| 1                          | 4444 | 163         | 337                   | 78.9                       | 0.42   | 0.17 | 0.77  | 13.0 | 11.7           | 2.4        | 1.3 | 0.28 |                | 69     |          |           |        | ? '      |
| 0 5                        | 4444 | 164         | 333                   | 96.6                       | 0.35   | 0.14 | 0.74  | 13.8 | 12.4           | 2.9        | 4.  | 0.34 | 12.2           | &<br>9 | •        |           |        | ٠.       |
| E0E-2                      | 4444 | 165         | 325                   | <u>.</u> :                 |        | -    | 0.75  | 12.6 | 11.3           | 7.6        | 1.3 | 0.27 | 12.1           | 29     |          | 9         | 4      | · ·      |
| - 1                        | 4444 | 166         | 314                   | 68.7                       | ຕ.     | 0.18 | 0.78  | 12.8 | 12.0           | 2.3        | 8.0 | 0.30 | 12.3           | 2 9    | -        | <u>.</u>  |        | ر<br>ب   |
|                            | 444  | 167         | 324                   | 8                          | 4      | 0.22 | 0.74  | 11.1 | 10.9           | 2.1        | 0.2 | 0.29 | 11.5           | 99     |          | 4         | ~      |          |
|                            | 4444 | 15.8        | 329                   | 9                          | ۳.     | 0.16 | 0.78  | 13.5 | 12.3           | 2.6        | 1.3 | 0.27 | 11.9           | 8      | 114.2    | 79.0      |        | œ. ۱     |
| FOF - 2                    | 4442 | 501         | 188                   | ₩.                         | 0.39   | 0.17 | 0.58  | 4.6  | 8.6            | 2.0        | 7.0 | 0.21 | 6.8            | 49     | •        |           |        | <b>.</b> |
|                            | 4442 | 502         | 193                   | 4                          | ິ.     | 0.19 |       | 9.1  | 8.8            | •          |     | 0.19 | 8.7            | 9.2    | •        | 60        | σ.     | ō        |
|                            | 4442 | 503         | 208                   |                            |        | 0.14 | •     | 10.3 | 10.1           | 1.8        | 0.2 | 0.23 | 9.4            | 11     | 99.7     |           | ë      | 4        |
| 1                          | 4442 | · ĸ         | 6                     |                            | ۳.     | 0.17 | 0.68  | 10.2 | 4.6            | 2.1        | 7.0 | •    | 9.4            | 7.8    | 97.4     | 79.0      | ~      |          |
|                            | 4442 |             | 206                   | φ.                         | N      | 0.22 | 19.0  | 13.1 | 10.5           | 3.9        | 5.6 | 0.21 | 10.3           | 11     | 109.2    | 84.1      | 22.0   | * '      |
| F0F-2                      | 4442 |             | 193                   | -                          |        | _    | 0.54  | 9.1  | 8.1            | 1.8        | 1.0 | 0.17 | 7.6            | 8 5    | 93.1     |           | 6      | <u> </u> |
| E0E-2                      | 4442 |             | 200                   | 72.7                       | ۳.     | 0.15 | 0.65  | 10.4 | 9.5            | 2.2        | 6.0 | . 7  | 9.5            | 7.5    | 99.5     | 72.4      | •      |          |
| E0E-2                      | 4442 | 508         | 197                   | 58.4                       | 0.23   |      | ς.    | 8.9  | 8.3            | 1.7        | 9.0 | ۲.   | 8.2            | 8 2    |          |           | •      | •        |
| E0E-2                      | 4444 |             | 201                   | 63.6                       | 0.28   | 0.22 | 0.61  | 10.4 | 10.0           | 1.9        | 4.0 | Ξ.   | - 6            | 6 /    | 103.8    |           | o . 6  | n c      |
| E0E-2                      | 4444 | 562         | 200                   | 60.3                       | 0.51   |      | 0.61  | 9.7  | 9.2            | 6.         | 9.0 | ۲.   | 8.5            | ÷ ;    |          |           | n      | •        |
|                            | 4444 | 563         | 189                   | 84.5                       | 0.32   | 0.19 | 0.68  | 10.4 | 4.6            | 2 . 1      | 6.0 | . 7  | <del>4</del> . | 6 /    | •        | ກໍ        |        |          |
| E0E-2                      | 4444 |             | 204                   | 66.4                       | 0.38   |      | 0.67  | 11.5 | 10.4           | 2.3        | -:  | 0.22 | 10.3           | 9 /    | ٠.       | •         | : ,    |          |
| E0E-2                      | 4444 | 565         | 190                   | 62.3                       | 0.31   | 0.14 | 0.58  | 8.7  | 8.5            | 1.5        | 0.5 | 7.   | 8.5            | 73     |          | - 1       |        | •        |
|                            | 4444 | 566         | 199                   | 57.9                       | 0.28   | 0.17 | 0.59  | 9.6  | 8.9            | 8.         | 6.0 | Ξ.   | 8.7            | 7.2    |          |           |        |          |
| - 1                        | 4    | 287         | 200                   | 40.3                       | 0.28   | 0.20 | 0.65  | 10.5 | 9.3            | 2.0        | -:  | 0.16 | 9.3            | 89     |          | . e       | ζ,     |          |
| - 1                        | 4    | 5.58        | 198                   |                            | ۳.     | 0.31 | 0.63  |      | 9.4            | 6.7        |     | 0.19 | - 6            | 11     | -        | 4         | 4      | •        |
| , U                        | 4    | 101         |                       | 75.5                       | ۳.     | _    | 0.79  | 12.6 | •              | 5.5        | 8.0 | 0.26 | 11.6           | 69     | •        | 74.5      | . ص    |          |
| E C.                       | 4    | 102         | 355                   | •                          | 7.     | 0.07 |       |      | 11.3           | <b>6</b> . | ♥.0 | 0.31 | 11.4           | 69     | •        | 77.1      | ζ,     | EO (     |
| C                          | 4    | -           | *                     | -:                         | 0.33   | 0.14 | 0.81  | 13.2 | 12.3           | 2.3        | 6.0 |      | 12.0           | 7.0    | •        | •         | ٠.     |          |
| ECT                        | 4    | -           |                       | 96.3                       | 4.     | 0.12 | 0.85  | 13.6 | 12.5           | 2.8        | -:  | 0.28 | 12.0           | 67     | 117.6    | 45.4      | 21.0   |          |
| EC-                        | 4    | 105         | 347                   | 70.3                       | 0.34   | 0.25 | 0.75  | 11.6 | 11.3           | 2.2        | 0.3 | 0.31 | 11.7           | 63     | 97.2     | 9.99      | •      | •        |
|                            |      |             |                       |                            |        |      |       |      |                |            |     |      |                |        |          |           |        |          |

| 4442       106       371       74.6       0.41       0.15         4442       107       375       60.7       0.40       0.10       0.44         4444       161       336       78.8       0.45       0.13       0.0         4444       163       358       81.2       0.38       0.13       0.0         4444       164       366       90.5       0.66       0.09       0.0         4444       168       346       81.1       0.45       0.10       0.0         4444       168       349       100.4       0.20       0.0       0.0       0.0         4442       502       202       202       93.3       0.29       0.17       0.0         4442       503       221       105.5       0.20       0.17       0.17       0.17         4442       503       201       53.2       0.29       0.17       0.17       0.17         4444       503       208       73.4       0.29       0.20       0.19       0.17         4444       561       208       201       73.7       0.29       0.20       0.20         4444       562                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T I ME        | EXPT | EXPT ANIMAL                             | GRAMS | ž     | CDYN | F.    | CCORD | 110  | ۸c          | FRC         | ۶.<br>ا | DICO | FVC  | FEV1 | PEFR  | MMEF | EF 10 | \$111 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------|-----------------------------------------|-------|-------|------|-------|-------|------|-------------|-------------|---------|------|------|------|-------|------|-------|-------|
| 4442         106         371         74.6         0.41         0.15         0.62         12.1         11.0         2.1         11.0         0.20         11.4         63         97.1         63.2           4442         107         375         60.7         0.10         0.72         11.2         11.6         0.20         11.4         63         97.1         63.1           4444         161         336         0.46         0.16         0.75         12.7         11.4         2.6         11.7         70         110.0         63.1           2444         162         337         0.46         0.13         0.73         12.2         1.4         1.7         70         110.0         63.1           2444         162         366         0.12         0.73         1.2         1.4         1.7         1.0         0.70         11.6         0.74         1.7         1.0         0.70         11.6         0.75         1.1         0.74         1.7         1.0         0.74         1.7         1.0         0.74         1.1         0.74         1.7         1.0         0.74         1.1         0.74         1.7         0.74         1.7         0.74         1.7<                                                                                                                                                                                                                                                                                              | 1 1 1 1 1 1 1 |      | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |       |       |      | !     |       |      | !<br>!<br>! |             | 1       |      |      |      |       |      |       |       |
| 4442         107         375         60.7         0.14         0.72         11.5         11.2         1.6         0.3         0.34         10.0         77         93.6         77.5         11.4         2.4         11.0         0.2         11.0         0.3         11.7         0.3         11.6         0.3         11.6         0.3         11.7         70         110.0         0.3         11.6         0.3         11.6         0.3         11.7         70         110.0         0.3         11.6         0.3         11.6         0.3         11.7         70         110.0         0.3         11.6         0.3         11.7         70         110.0         0.3         0.1         0.3         0.74         13.0         11.6         2.4         1.4         0.27         11.2         0.3         11.6         0.3         11.6         0.3         0.3         11.6         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3                                                                                                                                                                                                                                                                        | 6.019         | 4442 | 105                                     | 371   |       |      | 0. 15 | 0.63  | 12.1 | 11.0        | 2.1         | 1.0     | 0.30 | 11.4 | 63   | 97.1  | 63.3 | 25.0  | 0.81  |
| 4444         161         322         793         0.54         0.14         0.56         12.7         11.4         2.4         11.5         63         11.5         63         108.0         63.1           4444         161         326         78.6         0.44         0.16         0.75         12.3         11.4         2.5         0.30         11.7         70         110.0         0.16           2         4444         162         35         70.2         0.13         0.74         13.0         11.6         2.6         11.7         70         110.0         0.20         0.77         11.6         2.6         11.7         70         110.0         0.20         0.77         11.6         2.6         11.7         70         110.0         0.77         11.6         0.20         0.77         11.6         0.20         0.77         11.6         0.20         0.77         11.6         0.20         0.77         11.6         0.20         0.77         11.6         0.74         0.77         11.6         0.74         0.77         11.6         0.74         0.77         0.77         11.6         0.74         0.77         11.6         0.74         0.77         11.6         0.72 </td <td></td> <td>4442</td> <td></td> <td>375</td> <td>2.09</td> <td>. 4</td> <td></td> <td>0.72</td> <td></td> <td>11.2</td> <td>1.6</td> <td>0.3</td> <td>0.34</td> <td>10.8</td> <td>7.1</td> <td>93.8</td> <td>17.6</td> <td>20.0</td> <td>0.82</td>             |               | 4442 |                                         | 375   | 2.09  | . 4  |       | 0.72  |      | 11.2        | 1.6         | 0.3     | 0.34 | 10.8 | 7.1  | 93.8  | 17.6 | 20.0  | 0.82  |
| 4444         161         336         78.8         0.44         0.16         0.75         11.3         11.4         2.5         0.9         0.30         11.7         70         110.0         0.16           4444         162         337         69.3         0.44         0.13         0.73         11.6         2.4         14         0.27         11.2         74         116.2         77.1           4444         163         36.8         91.2         0.13         0.73         11.6         2.4         14.6         0.27         11.7         70         111.0         0.00           24444         164         36.8         97.8         0.10         0.77         14.2         12.6         12.6         12.6         17.7         17.1         17.7         17.1         17.7         17.7         17.7         17.7         17.7         17.7         11.6         2.4         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         17.7         1                                                                                                                                                                                                                                                                             | 4 6           | 6442 |                                         | 322   | 79.3  | 5.4  | 0.14  | 0.58  | 12.7 | 11.4        | 2.4         | 1.3     | 0.28 | 11.6 | 63   | 108.0 | 63.1 | 24.0  | 0.50  |
| 4444         162         337         63.3         0.45         0.13         0.74         11.0         11.6         2.4         1.4         0.27         11.2         74         11.6         2.4         1.4         0.23         11.2         77.1           4444         163         366         81.2         0.36         0.13         0.74         13.0         11.6         2.6         1.2         0.23         12.0         69         11.2         0.77         13.1         12.1         12.1         0.26         11.2         0.77         13.1         12.1         0.23         12.0         69         11.2         0.77         13.2         12.1         0.20         12.0         69         11.2         0.20         12.0         0.20         12.0         0.77         11.2         12.1         0.20         12.0         0.77         11.2         12.0         0.20         12.0         0.77         12.0         0.20         0.72         12.0         0.73         12.0         0.73         12.0         0.73         12.0         0.73         12.0         0.73         12.0         0.74         12.0         0.72         12.0         0.74         12.0         0.74         12.0 <t< td=""><td>1 C L</td><td>4444</td><td>181</td><td>33.5</td><td></td><td>0.44</td><td>0.16</td><td>0.75</td><td>12.3</td><td>11.4</td><td>2.5</td><td>6.0</td><td>0.30</td><td>11.7</td><td>7.0</td><td>110.0</td><td>81.5</td><td>24.0</td><td>0.68</td></t<>   | 1 C L         | 4444 | 181                                     | 33.5  |       | 0.44 | 0.16  | 0.75  | 12.3 | 11.4        | 2.5         | 6.0     | 0.30 | 11.7 | 7.0  | 110.0 | 81.5 | 24.0  | 0.68  |
| 444         163         366         91.2         0.74         13.0         11.5         2.6         1.5         0.29         12.0         69         112.6         77.1           4444         164         366         90.5         0.66         0.09         0.77         13.2         12.1         2.7         1.1         0.30         12.4         69         16.9         90.4         90.9         90.9         90.7         13.2         12.1         2.7         1.1         0.30         12.4         69         11.7         7         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9         90.9 <th< td=""><td>2 2 2 2 2 2</td><td>4444</td><td>162</td><td>337</td><td></td><td>0.45</td><td>0.13</td><td>0.73</td><td>12.9</td><td>11.6</td><td>2.4</td><td>4.1</td><td>0.27</td><td>11.2</td><td>7.4</td><td>116.2</td><td>82.8</td><td>21.0</td><td></td></th<> | 2 2 2 2 2 2   | 4444 | 162                                     | 337   |       | 0.45 | 0.13  | 0.73  | 12.9 | 11.6        | 2.4         | 4.1     | 0.27 | 11.2 | 7.4  | 116.2 | 82.8 | 21.0  |       |
| 4444         165         366         90.5         0.66         0.99         0.77         13.2         12.1         2.7         1.1         0.30         12.4         69.7         90.3           4444         165         346         90.5         0.66         0.10         0.71         14.5         12.6         3.0         12.6         17.7         90.3           2444         165         346         80.1         0.65         0.10         0.71         14.5         12.6         3.0         12.6         17.0         17.7         90.3         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0         17.0                                                                                                                                                                                                                                                                       | 2 2 2 2 2     | 4444 | 163                                     | 30.00 |       | 0.38 | 0.13  | 0.74  | 13.0 | 11.5        | 2.5         | 1.5     | 0.29 | 12.0 | 69   | 112.6 | 77.1 | 22.0  | 0.89  |
| 444         165         358         77.8         0.45         0.10         0.71         14.5         12.4         1.2         0.26         12.6         12.6         3.5         17.8         0.44         165         358         77.8         0.10         0.71         14.5         12.6         3.5         2.1         0.30         12.5         61         106.7         63.8           2.4         166         346         10.1         0.71         14.5         12.6         3.2         1.1         0.26         12.6         6.9         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0<                                                                                                                                                                                                                                                                               | B F C 1 2     | 4644 | 164                                     | 366   |       |      | 60.0  | 0.77  | 13.2 | 12.1        | 2.7         |         | 0.30 | 12.4 | 6 9  | 116.9 | 84.4 | 24.0  | 0.57  |
| 4444         166         346         81.1         0.56         0.10         0.71         14.5         12.6         3.5         2.1         0.30         12.5         61         106.7         63.8           4444         166         346         10.1         0.20         0.73         12.9         12.0         2.8         0.9         0.20         12.0         64         99.4         68.4           2         4444         168         349         100.4         0.59         0.07         0.64         10.4         9.2         2.2         1.1         0.20         6.2         6.9         44.1           2         4442         501         194         10.4         0.7         10.4         10.4         10.4         10.4         10.4         10.6         10.7         10.9         0.9         0.7         10.9         44.2         501         10.4         0.7         10.4         0.2         10.7         0.0         10.4         0.0         0.7         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0                                                                                                                                                                                                                                                                                                 | BEC. 2        | 4444 |                                         | 358   | 77.8  | 0.45 | 0.10  | 0.82  | 13.6 | 12.4        | 2.4         | 1.2     | 0.28 | 12.6 | 7.0  | 117.7 | 90.3 | 26.0  | 0.74  |
| 4444         167         347         102.0         0.44         0.20         0.73         12.9         12.0         2.8         0.20         12.0         6.44         9.20         0.70         0.00         14.2         12.0         2.8         0.20         12.0         6.4         10.2         12.0         14.0         0.20         12.0         6.4         10.4         0.20         12.0         11.0         0.20         12.0         6.4         10.4         9.2         2.2         1.1         0.20         12.0         6.0         9.0         1.1         0.20         0.20         0.20         0.1         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0                                                                                                                                                                                                                                                                         | B F C - 2     | 444  | 166                                     | 346   | 81.1  | 0.55 | 0.10  | 0.71  | 14.5 | 12.5        | 3.5         | 2.1     | 0.30 | 12.5 | 6.1  | 106.7 | 63.8 | 17.0  | 0.54  |
| 444         168         349         100.4         0.59         0.07         0.80         14.2         12.8         3.1         1.4         0.26         12.8         69.0           2         4444         168         349         100.4         0.55         10.0         9.1         1.9         0.20         8.3         69.0           2         4442         502         202         93.3         0.29         0.20         0.65         10.0         9.1         1.9         0.9         0.17         9.0         49.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.0         69.                                                                                                                                                                                                                                                                     | BFC-2         | 4444 | 167                                     | 347   | 102.0 | 0.44 | 0.20  | 0.73  | 12.9 | 12.0        | 2.8         | 6.0     | 0.28 | 12.0 | 6.4  | 4.66  | 68.4 | 17.0  | 0.70  |
| 4442         501         194         74.1         0.49         0.15         0.64         10.4         9.2         2.2         1.1         0.20         8.3         63.7         74.9         44.1           2         4442         502         202         93.3         0.29         0.20         0.65         10.0         9.1         1.3         0.9         0.17         9.0         49.2         50.2         10.2         49.3         6.6         10.4         10.1         2.3         0.2         0.27         10.2         66.9         10.4         10.1         2.3         0.2         0.27         10.2         76.9         10.2         76.1         10.2         76.9         10.2         66.9         10.4         10.1         2.3         0.2         0.17         67.9         10.4         10.1         2.3         0.2         0.17         67.9         10.2         0.17         0.6         10.6         10.6         10.6         10.7         10.7         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6         10.6<                                                                                                                                                                                                                                                             | 1 6           | 4444 | 15.8                                    | 9 6   | 100.4 |      | 0.07  | 0.80  | 14.2 | 12.8        | 3.1         | 4.      | 0.26 | 12.8 | 6.8  | 112.8 | 89.0 | 25.0  | 0.65  |
| 4442         502         203         0.29         0.20         0.65         10.0         9.1         1.9         0.9         0.17         9.0         49         60.5         26.1           2         4442         503         221         105.5         0.37         0.17         0.69         10.4         10.1         2.3         0.2         0.23         10.2         76         102.6         65.9           2         4442         504         201         53.2         0.29         0.17         0.69         11.5         10.3         2.1         0.7         0.17         65.9         9.3         8.5         2.1         0.7         0.17         4.6         9.3         8.5         2.1         0.7         0.17         9.6         9.3         1.4         0.5         0.15         9.7         47         72.1         25.7         24.6         26.6         1.8         1.4         0.5         0.16         9.7         47         72.1         25.7         24.6         9.8         9.7         47         72.1         25.7         24.6         9.9         9.9         9.9         9.9         9.9         9.9         9.9         9.9         9.9         9.9         <                                                                                                                                                                                                                                                                                   | 4 6 1 2       | 4447 | 501                                     | 194   |       | 4    | 0.15  | 0.64  | 10.4 | 9.5         | 2.2         | 1.1     | 0.20 | 8.3  | 63   | 74.9  | 44.1 | 11.0  | 0.55  |
| 4442         503         221         105.5         0.37         0.17         0.69         10.4         10.1         2.3         0.2         0.23         10.2         76         102.8         65.9           4442         504         201         53.2         0.29         0.17         0.54         9.3         8.5         2.1         0.7         0.17         8.2         82         97.0         77.4           2         4442         505         208         73.4         0.30         0.18         0.69         11.5         10.3         2.5         1.2         0.19         9.7         47         72.1         25.7           2         4442         506         188         73.2         0.25         0.27         0.63         8.6         8.7         1.6         0.9         0.21         75         81.2         64.6           2         4442         501         208         0.10         9.6         9.6         9.7         1.6         0.9         0.21         100.0         69.4           2         4442         561         208         81.6         8.8         8.8         8.8         8.8         8.8         1.6         9.7         9.4                                                                                                                                                                                                                                                                                                               | 4 6 1 2 1 2   | 4442 | 502                                     | 202   | 93.3  | . ~  | 0.20  | 0.65  | 10.0 | 9.1         | 1.9         | 6.0     | 0.17 | 9.0  | 4 9  | 60.5  | 26.1 | 4.0   | 0.67  |
| 4442         504         201         53.2         0.29         0.17         0.54         9.3         8.5         2.1         0.7         0.17         8.2         97.0         77.4           4442         505         208         73.4         0.30         0.18         0.69         11.5         10.3         2.5         1.2         0.19         9.7         47         72.1         25.7           2         4442         505         188         73.2         0.27         0.58         8.8         8.3         1.4         0.5         0.16         8.2         75         10.0         69.4           2         4442         507         210         70.8         0.30         0.19         0.60         9.6         8.7         1.6         0.9         0.21         79         10.0         69.4           2         4442         560         206         9.6         9.6         9.7         1.6         0.9         0.21         10.0         9.1         1.6         0.9         1.3         0.21         10.0         9.1         1.6         1.3         0.21         10.0         9.1         1.3         0.21         10.0         1.3         1.3         1.3                                                                                                                                                                                                                                                                                                       | BEC. 2        | 4442 | 503                                     | 221   | 105.5 | 0.37 | 0.17  | 0.69  | 10.4 | 10.1        | 2.3         | 0.2     | 0.23 | 10.2 | 9 /  | 102.8 | 85.9 | 26.0  | 0.49  |
| 4442         505         208         73.4         0.18         0.69         11.5         10.3         2.5         1.2         0.19         9.7         47         72.1         25.7           4442         506         188         73.2         0.25         0.27         0.58         8.8         8.3         1.4         0.5         0.16         8.2         75         81.2         64.6           2         4442         507         210         70.8         0.30         0.19         0.60         9.6         8.7         1.6         0.9         0.21         6.5         79         100.8         69.4           2         4444         561         208         81.6         0.41         0.17         0.62         9.6         8.1         1.6         0.9         0.21         8.9         91.6         75.1           2         4444         561         208         90.4         0.47         0.17         0.66         9.7         9.4         1.6         0.2         10.1         9.4         10.6         9.7         9.4         1.0         9.2         10.0         9.4         10.6         9.4         1.6         0.2         10.2         10.2                                                                                                                                                                                                                                                                                                                | BFC-2         | 4442 |                                         | 201   | 53.2  | 0.29 | 0.17  | 0.54  | 6.3  | 8.5         | 2.1         | 2.0     | 0.17 | 8.2  | 8 2  | 97.0  | 77.4 | 21.0  | •     |
| 4442         506         168         73.2         0.25         0.27         0.58         8.8         8.3         1.4         0.5         0.16         8.2         75         81.2         64.6           4442         507         210         70.8         0.30         0.19         0.60         9.6         8.7         1.6         0.9         0.21         6.5         79         100.8         69.4           2         4442         561         208         81.6         0.41         0.17         0.65         10.4         9.1         2.2         1.3         0.21         10.8         69.4           2         4444         561         208         91.2         0.65         10.4         9.1         2.2         1.3         0.21         10.8         69.4           2         4444         562         201         73.7         0.29         0.22         0.60         9.7         9.4         1.6         0.9         0.21         10.9         20.1         10.2         10.9         2.1         0.2         10.9         2.1         0.2         10.9         2.1         0.2         10.9         2.1         0.2         10.9         10.9         10.9                                                                                                                                                                                                                                                                                                           | B F C - 2     | 4442 |                                         | 208   | 73.4  | 0.30 | 0.18  | 0.69  | 11.5 | 10.3        | 2.5         | 1.2     | 0.19 | 9.7  | 4.7  | 72.1  | 25.7 | 9.0   | 0.85  |
| 4442         507         210         70.8         0.30         0.19         0.60         9.6         8.7         1.6         0.9         0.21         8.5         79         100.8         69.4           2         4442         508         208         81.6         0.41         0.17         0.62         9.6         8.8         1.6         0.9         0.21         8.6         79         91.6         75.1           2         4444         561         201         73.7         0.29         0.20         0.66         9.7         9.4         1.6         0.3         0.18         63         74.9         77.9           2         4444         562         201         73.7         0.29         0.22         0.66         11.5         10.6         2.4         1.0         0.20         10.2         77.9         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10.3         10                                                                                                                                                                                                                                                                                      | BFC-2         | 4442 | 206                                     | 188   | 73.2  | ~    | 0.27  | 0.58  | 8.8  | 8.3         | 1.4         | 9.0     | 0.16 | 8.2  | 7.5  | 81.2  | 64.6 | 18.0  | 0.68  |
| 4442         508         208         81.6         0.41         0.17         0.65         10.4         9.1         2.2         1.3         0.21         10.6         44         76.8         20.1           2         4444         561         208         93.3         0.22         0.65         10.4         9.1         2.2         1.3         0.21         10.6         44         76.8         20.1           2         4444         562         201         73.7         0.29         0.22         0.66         11.5         10.6         2.4         1.0         0.20         10.2         70.9         44.1           2         4444         563         201         64.2         0.36         0.76         11.6         10.9         2.1         0.6         99.1         71.3           2         4444         565         201         64.2         0.33         0.25         0.76         1.6         1.9         0.7         0.2         10.6         58         89.4         42.7           2         4444         565         201         64.2         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7         0.7                                                                                                                                                                                                                                                                                                               | מונים א       | 4442 | 507                                     | 210   | 70.8  | 0.30 | 0.19  | 0.60  | 9.6  | 8.7         | 1.6         | 6.0     | 0.21 | 8.5  | 13   | 100.8 | 69.4 | 19.0  | 0.39  |
| 4444     561     208     93.3     0.29     0.20     0.60     9.7     9.4     1.8     0.3     0.18     8.3     63     74.9     44.1       -2     4444     562     201     73.7     0.29     0.22     0.60     9.7     9.4     1.8     0.3     0.18     8.3     63     74.9     44.1       -2     4444     563     194     90.4     0.47     0.17     0.66     11.5     10.9     2.1     0.0     0.20     10.2     70       -2     4444     564     201     64.2     0.33     0.25     0.50     7.8     7.5     1.2     0.3     0.25     89.4     42.7       -2     4444     565     208     67.1     0.49     0.18     0.67     10.3     9.6     1.9     0.7     0.21     9.1     76.7       -2     4444     566     208     67.1     0.46     0.63     10.2     9.9     1.9     0.3     0.20     9.5     38     70.6       -2     4444     568     201     58.9     0.46     0.63     10.2     9.9     1.9     0.7     0.21     9.5     38     70.6       -4     4444     568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 F. C - 2    | 4442 | 508                                     | 208   | 81.6  | 0.41 | 0.17  | 0.62  | ø.   | 8.8         | 1.6         | 0.8     | 0.21 | 9.6  | 7.9  | 91.6  | 75.1 | 19.0  | 0.88  |
| -2     4444     562     201     73.7     0.29     0.22     0.66     11.5     10.6     2.4     1.0     0.20     10.2     70     99.1     71.3       -2     4444     563     194     90.4     0.47     0.17     0.66     11.5     10.6     2.4     1.0     0.20     10.2     70     99.1     71.3       -2     4444     564     211     60.4     0.33     0.25     0.50     7.6     7.5     1.2     0.3     0.25     89.4     42.7       -2     4444     565     208     67.1     0.49     0.18     0.67     10.3     9.6     1.9     0.7     0.21     9.1     76.7       -2     4444     567     211     77.1     0.39     0.46     0.63     10.2     9.9     1.9     0.3     0.20     9.5     38     70.6     9.7       -4444     568     201     58.9     0.26     0.63     10.2     9.9     1.9     0.3     0.20     9.5     38     70.6     9.7       -4444     568     201     58.9     0.63     9.6     8.9     2.0     0.7     0.17     9.0     76     9.7       -4444     568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REC-2         | 4444 | 561                                     | 208   | 93.3  | 0.29 | 0.30  | 0.65  | 10.4 | 9.1         | 2.2         | 1.3     | 0.21 | 10.6 | 4    | 76.8  | 20.1 | 0.9   | 0.48  |
| -2     4444     563     194     90.4     0.47     0.17     0.66     11.5     10.6     2.4     1.0     0.20     10.2     70     99.1     71.3       -2     4444     564     211     60.4     0.36     0.76     11.6     10.9     2.1     0.8     0.21     10.6     58     89.4     42.7       -2     4444     565     201     64.2     0.33     0.25     0.50     7.8     7.5     1.2     0.3     0.25     8.1     76     80.3     64.2       -2     4444     566     208     67.1     0.49     0.18     0.67     10.3     9.6     1.9     0.7     0.21     9.1     78     70.6     9.7       -4     4444     567     211     77.1     0.39     0.46     0.63     10.2     9.9     1.9     0.7     0.21     9.5     38     70.6     9.7       -4     4444     568     201     58.9     0.63     9.6     8.9     2.0     0.7     0.17     9.0     76     96.5     70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REC-2         | 4444 | 562                                     | 201   | 73.7  | 0.29 | 0.22  | 09.0  | 9.7  | 4.6         | <b>1</b> .8 | 0.3     | 0.18 | 8.3  | 63   | 74.9  | 44.1 | 1.0   | 0.77  |
| -2     4444     564     211     60.4     0.36     0.22     0.76     11.6     10.9     2.1     0.8     0.21     10.6     58     89.4     42.7       -2     4444     565     201     64.2     0.33     0.25     0.50     7.8     7.5     1.2     0.3     0.25     8.1     76     80.3     64.2       -2     4444     566     208     67.1     0.49     0.18     0.67     10.3     9.6     1.9     0.7     0.21     9.1     78     10.2     9.7       -2     4444     567     211     77.1     0.39     0.46     0.63     10.2     9.9     1.9     0.3     0.20     9.5     38     70.6     9.7       -4     4444     568     201     58.9     0.63     9.6     8.9     2.0     0.7     0.17     9.0     76     96.5     70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REC-2         | 4444 | ω                                       | 194   | 90.4  | 0.47 | 0.17  | 99.0  | 11.5 | 10.5        | 2.4         | 1.0     | 0.20 | 10.2 | 7.0  | 99.1  | 71.3 | 22.0  | 95.0  |
| -2 4444 565 201 64.2 0.33 0.25 0.50 7.8 7.5 1.2 0.3 0.25 8.1 76 80.3 64.2 -2 4444 566 208 67.1 0.49 0.18 0.67 10.3 9.6 1.9 0.7 0.21 9.1 78 102.0 76.7 -2 4444 567 211 77.1 0.39 0.46 0.63 10.2 9.9 1.9 0.3 0.20 9.5 38 70.6 9.7 4444 568 201 58.9 0.26 0.28 0.63 9.6 8.9 2.0 0.7 0.17 9.0 76 96.5 70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BEC-2         | 4444 | ú                                       | 211   | 60.4  | 0.36 | 0.22  | 0.76  | 11.6 | 10.9        | 2.1         | 8.0     | 0.21 | 10.6 | 58   | 4.68  | 42.7 | 13.0  | 0.51  |
| -2 4444 566 208 67.1 0.49 0.18 0.67 10.3 9.6 1.9 0.7 0.21 9.1 78 102.0 76.7 -2 4444 567 211 77.1 0.39 0.46 0.63 10.2 9.9 1.9 0.3 0.20 9.5 38 70.6 9.7 444 568 201 58.9 0.26 0.28 0.63 9.6 8.9 2.0 0.7 0.17 9.0 76 96.5 70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BEC-2         | 4444 | 9                                       | 201   | 64.2  | 0.33 | 0.25  | 0.50  | 7.8  | 7.5         | 1.2         | 0.3     | 0.25 | 8.1  | 9.2  | 80.3  | 64.2 | 19.0  | 0.77  |
| -2 4444 567 211 77.1 0.39 0.46 0.63 10.2 9.9 1.9 0.3 0.20 9.5 38 70.6 9.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | B F C - 2     | 4444 | ဖ                                       | 208   | 67.1  | 0.49 | 0.18  | 0.67  | 10.3 | 9.6         | 9.          | 7.0     | 0.21 | 9.1  | 7.8  | 102.0 | 7.97 | 24.0  | 98.0  |
| 4444 568 201 58.9 0.26 0.28 0.63 9.6 8.9 2.0 0.7 0.17 9.0 76 96.5 70.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BEC. 1        | 4444 | 567                                     | 211   | 77.1  | 0.39 | 0.46  | 0.63  | 10.2 | 6.6         | 1.9         | 0.3     | 0.20 | 9.5  | 38   | 9.02  | 9.7  | 3.0   | 0.43  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BEC-2         | 4444 | 563                                     | 201   | 58.9  | 0.26 | 0.28  | 0.63  | 9.6  | 8.9         | 2.0         | 0.7     | 0.17 | 9.0  | 9 /  | 96.5  | 70.9 | 18.0  | 0.88  |

NOTE: Time codes are defined as BASE = base level evaluations made prior to exposure; MID = evaluations made mid-way through the 13-week exposure; EOE = evaluations made after the last exposure; and REC = evaluations made after the 4-week recovery period. The code with -1 and -2 indicate evaluations relate to Phase III, Part 1 or Phase III, Part 2, respectively.

APPENDIX H: GROUP SUMMARIES OF HISTOPATHOLUGY OBSERVATIONS

|                                         |               |      |                                         |        |           | RESPI      | TRACT LESI  | ON CATEGORY AND | ) SEVERITY 0 | r reston    |
|-----------------------------------------|---------------|------|-----------------------------------------|--------|-----------|------------|-------------|-----------------|--------------|-------------|
|                                         |               |      |                                         |        |           | NASAL      | ALVEOLAR    |                 |              | NASAL       |
| EXPT                                    | CONCENTRATION | EAR  | ANIMAL                                  | ANIMAL | SACRIFICE | EPITHELIAL | ACROPHAG    | PNEUMOCYTE      |              | ပ           |
| NUMBER                                  | OF Cu-Zn      | TAG  | NUMBER                                  | SEX    | CODE      | ATROPHY    | HYPERPLASIA | HYPERPLASIA     | ALVEOLITIS   | HYPERPLASIA |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |               | <br> | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |        | <br>      | <br>       |             |                 |              |             |
| 4371                                    | 1.0 mg/m3     | o    | 037                                     | MALE   | EOE       | 0          | 0           | 0               | o            | 0           |
| 4371                                    |               | o    | 038                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    |               | •    | 040                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    |               | •    | 043                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    |               | o    | 044                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    |               | a    | 046                                     | MALE   | EOE       | o          | 0           | 0               | o            | 0           |
| 4371                                    | 1.0 mg/m3     | σ    | 048                                     | MALE   | REC       | 0          | 0           | -               | 0            | 0           |
| 4371                                    | 0             | •    | 049                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | o    | 050                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    |               | o    | 051                                     | MALE   | REC       | 0          | 0           | 0               | o            | o           |
| 4371                                    | 1.0 mg/m3     | σ    | 052                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | •    | 055                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 0             | o    | 056                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 0             | σ    | 0.59                                    | MALE   | EOE       | -          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | σ    | 090                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 6           |
| 4371                                    | 1.0 mg/m3     | o    | 061                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | 0    | 062                                     | MALE   | REC       | 0          | 0           | 6               | 0            | 0 '         |
| 4371                                    | 1.0 mg/m3     | đ    | 063                                     | MALE   | EOE       | 0          | 0           | 0               | 0            | 6           |
| 4371                                    | 1.0 mg/m3     | 0    | 990                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | σ    | 790                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | σ    | 070                                     | MALE   | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | o    | 072                                     | MALE   | EOE       | -          | 0           | 0               | 0            | 0           |
| 4371                                    |               | o    | 537                                     | FEMALE | EOE       | <b></b>    | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | 0    | 540                                     | FEMALE | REC       | 0          | 0           | 0               | 0            | C           |
| 4371                                    | 1.0 mg/m3     | o    | 541                                     | FEMALE | REC       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | 0    | 543                                     | FEMALE | EOE       | 0          | 0           | 6               | 0            | 0           |
| 4371                                    |               | o    | 544                                     | FEMALE | REC       | 0          | 0           | 6               | 0            | 0           |
| 4371                                    |               | o    | 547                                     | FEMALE | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | σ    | 548                                     | FEMALE | E0E       | 0          | 0           | 0               | c            | 0           |
| 4371                                    | 1.0 mg/m3     | c    | 549                                     | FEMALE | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | o    | 550                                     | FEMALE | REC       | 0          | 0           | 6               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | o    | 554                                     | FEMALE | EOE       | 0          | 0           | 0               | 0            | 0           |
| 4371                                    | 1.0 mg/m3     | σ    | 55.55                                   | FEMALE |           | 0          | 0           | O               | o            | o           |
| 4371                                    | 1.0 mg/m3     | o    | 556                                     | FEMALE | REC       | 0          | 0           | 0               | ဇ            | 0           |

RESPIRATORY TRACT LESION CATEGORY AND SEVERITY OF LESION

|       |                           |     |          |        |              | HE SP I               | T INACI LESTON                          | THE GOOD INT              |                                         |                            |
|-------|---------------------------|-----|----------|--------|--------------|-----------------------|-----------------------------------------|---------------------------|-----------------------------------------|----------------------------|
|       |                           |     |          |        |              | NASAL                 | ALVEOLAR                                | TYPE                      |                                         | ا ب                        |
| EXPT  | CONCENTRATION<br>OF CH-79 | EAR | ANIMAL   | ANIMAL | SACRIFICE    | EPITHELIAL<br>ATROPHY | MACROPHAGE<br>HYPERPLASIA               | PNEUMOCYTE<br>HYPERPLASIA | ALVEOLITIS                              | GOBLEI CELL<br>HYPERPLASIA |
|       | 1                         |     |          |        |              |                       | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1                         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | †<br>†<br>†<br>!<br>!<br>! |
| 1 2 2 | 1 0 mg/m3                 | 0   | 50<br>50 | FEMALE | BEC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  |                           | •   | 9        |        | ш            | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0                         | 0   | 562      | FEMALE | REC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0                         | o   | 563      | FEMALE | REC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0.                        | σ   | 564      | FEMALE | <b>E</b> 0 E | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0.                        | σ   | 566      | FEMALE | REC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0                         | σ   | 567      | FEMALE | EOE          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0                         | o   | 569      | FEMALE | EOE          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0                         | o   | 570      | FEMALE | EOE          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4371  | 0                         | o   | 571      | FEMALE | EOE          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | ~                         | σ   | 0.7.5    | MALE   | EOE          | 0                     | _                                       | -                         | -                                       | 0                          |
| 4372  | 3.2 mg/m3                 | 0   | 9 2 0    | MALE   | REC          | 0                     | 0                                       | 0                         | ۵                                       | 0                          |
| 4372  | 7                         | o   | 6 2 0    | MALE   | REC          | 0                     | _                                       | -                         | 0                                       | 0                          |
| 4372  | ~                         | o   | 080      | MALE   | EOE          | 0                     | _                                       | -                         | o                                       | 0                          |
| 4372  | 3.2 mg/m3                 | 0   | 0.81     | MALE   | EOE          | -                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | 3.2 mg/m3                 | a   | 085      | MALE   | EOE          | 0                     | 0                                       | 0                         | 0                                       | 0 '                        |
| 4372  | 3.2 mg/m3                 | œ   | 086      | MALE   | REC          | -                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | 7.                        | o   | 087      | MALE   | EOE          | 0                     | -                                       | 0                         | 0                                       | 0 (                        |
| 4372  | ۲.                        | o   | 060      | MALE   | EOE          | -                     | -                                       | -                         | -                                       | 0 (                        |
| 4372  |                           | 0   | 092      | MALE   | REC          | 0                     | 0                                       | 0                         | 0                                       | 0 '                        |
| 4372  | ~                         | 0   | 0 9 3    | MALE   | REC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | 7                         | o   | 095      | MALE   | REC          | 0                     | _                                       | 0                         | 0                                       | 0                          |
| 4372  | ۲.                        | 0   | 960      | MALE   | REC          | 6                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | 3.2 mg/m3                 | o   | 100      | MALE   | EOE          | 0                     | -                                       | -                         | -                                       | 0                          |
| 4372  | 3.2 mg/m3                 | o   | 101      | MALE   | EOE          | o                     | 0                                       | 0                         | 0                                       | 0 (                        |
| 4372  | 3.2 mg/m3                 | œ   | 102      | MALE   | REC          | 0                     | -                                       | -                         | 0                                       | 0 (                        |
| 4372  | 3.2 mg/m3                 | o   | 103      | MALE   | EOE          | 0                     | -                                       | 0                         | 0                                       | <b>o</b> (                 |
| 4372  | 3.2 mg/m3                 | o   | 104      | MALE   | EOE          | 0                     | 0                                       | 0                         | 0                                       | <b>.</b>                   |
| 4372  | 3.2 mg/m3                 | o   | 109      | MALE   | EOE          | 0                     | -                                       | -                         | _                                       | o (                        |
| 4372  | 7.                        | o   | 11       | MALE   | REC          | 0                     | 0                                       | 0                         | 0                                       | 0 (                        |
| 4372  | 3.2 mg/m3                 | σ   | 112      | MALE   | REC          | 0                     | 0                                       | 0                         | 0                                       | 0 (                        |
| 4372  | 3.2 mg/m3                 | œ   | 575      | FEMALE | £0 E         | 0                     | -                                       | o                         | ø                                       | o ·                        |
| 4372  | 3.2 mg/m3                 | σ   | 576      | FEMALE | REC          | 0                     | -                                       | -                         | 0                                       | 0 '                        |
| 4372  | 3.2 mg/m3                 | σ   | 578      | FEMALE | REC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | 3.2 mg/m3                 | σ   | 579      | FEMALE | REC          | 0                     | 0                                       | 0                         | 0                                       | 6                          |
| 4372  | 3.2 mg/m3                 | σ   | 580      | FEMALE | EOE          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
| 4372  | 7.                        | σ   | 584      | FEMALE | REC          | 0                     | 0                                       | 0                         | 0                                       | 0                          |
|       |                           |     |          |        |              |                       |                                         |                           |                                         |                            |

|       |               |      |                                 |                            |           | RESPI      | Y TRACT LESION | CATEGOR     | SE         | LESION      |
|-------|---------------|------|---------------------------------|----------------------------|-----------|------------|----------------|-------------|------------|-------------|
|       |               |      |                                 |                            |           | NASAL      |                | TYPE II     | †<br> <br> | NASAL       |
| EXPT  | CONCENTRATION | EAR  | ANIMAL                          | ANIMAL                     | SACRIFICE | EPITHELIAL | MACROPHAGE     | PNEUMOCYTE  |            | ET CEL      |
| UMBER | OF Cu-Zn      | TAG  | NUMBER                          | SEX                        | CODE      | ATROPHY    | HYPERPLASIA    | HYPERPLASIA | ALVEOLITIS | HYPERPLASIA |
| 1     | .             | <br> | 1<br>1<br>1<br>1<br>1<br>1<br>1 | !<br>!<br>!<br>!<br>!<br>! |           |            |                |             |            |             |
| 4372  | 3.2 mg/m3     | o    | 585                             | FEMALE                     | REC       | 0          | -              | -           | 0          | 0           |
| 4372  | ~             | σ    | 538                             | FEMALE                     | EOE       | 0          | -              | o           | o          | 0           |
| 4372  | ~             | đ    | 590                             | FEMALE                     | EOE       | 0          | -              | 0           |            | 0           |
| 4372  | ~             | o    | 591                             | FEMALE                     | REC       | 0          | 0              | 0           | 0          | 0           |
| 4372  | ~             | o    | 592                             | FEMALE                     | EOE       | 0          | 0              | 0           | 0          | 0           |
| 4372  | 7.            | đ    | 593                             | FEMALE                     | EOE       | 0          | 0              | 0           | 0          | 0           |
| 4372  | 7             | o    | 598                             | FEMALE                     | REC       | 0          | 0              | 0           | 0          | 0           |
| 4372  | ~             | σ    | 599                             | FEMALE                     | EOE       | 0          | -              | -           | -          | 0           |
| 4372  | ~             | o    | 009                             | FEMALE                     | REC       | 0          | 0              | 0           | 0          | 0           |
| 4372  | 7             | œ    | 602                             | FEMALE                     | REC       | 0          | 0              | 0           | 0          | 0           |
| 4372  | ~             | o    | 603                             | FEMALE                     | EOE       | -          | -              | -           | •          | 0           |
| 4372  | ~             | σ    | 604                             | FEMALE                     | REC       | 0          | 0              | 0           | 0          | 0           |
| 4372  | ~             | o    | 608                             | FEMALE                     | EOE       | 0          | -              | 0           | 0          | 0           |
| 4372  | ~             | o    | 909                             | FEMALE                     | REC       | 0          | o              | 0           | 0          | 0           |
| 4372  | 7.            | đ    | 809                             | FEMALE                     | EOE       | 0          | 0              | 0           | 0          | 0           |
| 4372  | ~             | œ    | 609                             | FEMALE                     | EOE       | 0          | -              | 0           | 0          | 0           |
| 4373  | 0             | ø    | 114                             | MALE                       | EOE       | -          | 7              | -           | ~          | 0           |
| 4373  |               | σ    | 116                             | MALE                       | REC       | -          | -              | -           | 0          | 0           |
| 4373  |               | o    | 117                             | MALE                       | REC       | ~          | -              | -           | 0          | 0           |
| 4373  |               | o    | 119                             | MALE                       | REC       | 0          | -              | -           | 0          | 0           |
| 4373  |               | o    | 122                             | MALE                       | REC       | 0          | -              | -           | 0          | 0           |
| 4373  |               | σ    | 125                             | MALE                       | EOE       | -          | 0              | 6           | 0          | 0           |
| 37    |               | œ    | 126                             | MALE                       | EOE       | 7          | 0              | 0           | 0          | 0           |
| 4373  | 10 mg/m3      | o    | 127                             | MALE                       | REC       | 0          | -              | -           | 0          | 0           |
| 4373  | 10 mg/m3      | σ    | 128                             | MALE                       | EOE       | -          | -              | -           | -          | 0           |
| 4373  | 10 mg/m3      | σ    | 130                             | MALE                       | EOE       | -          | -              | -           | -          | 0           |
| 4373  | 10 mg/m3      | σ    | 132                             | MALE                       | EOE       | -          | _              | _           | -          | 0           |
| 4373  | 10 mg/m3      | o    | 133                             | MALE                       | EOE       | -          | -              | -           | _          | 0           |
| 4373  | 10 mg/m3      | σ    | 134                             | MALE                       | REC       | 0          | -              | -           | 0          | 0           |
| 4373  | 10 mg/m3      | o    | 135                             | MALE                       | REC       | -          | 7              | 7           | 0          | 0 :         |
| 4373  | 10 mg/m3      | o    | 136                             | MALE                       | EOE       | -          | 7              | 2           | 7          | 0           |
| 4373  | 10 mg/m3      | o    | 140                             | MALE                       | EOE       | 0          | -              | -           | <b>-</b>   | 0           |
| 4373  | 10 mg/m3      | œ    | 141                             | MALE                       | EOE       | 2          | 2              | 7           | ~          | 0           |
| 4373  |               | ø    | 142                             | MALE                       | EOE       | 2          | 2              | -           | 7          | <b>o</b>    |
| 4373  | 10 mg/m3      | σ    | 144                             | MALE                       | REC       | 0          | -              | -           | 0          | 0           |
| 4373  | 10 mg/m3      | o    | 147                             | MALE                       |           | -          | -              | -           | 0          | 0           |
| 4373  | 10 mg/m3      | o    | 148                             | MALE                       | REC       | 0          | -              | -           | 0          | •           |
|       |               |      |                                 |                            |           |            |                |             |            |             |

RESPIRATORY TRACT LESION CATEGORY AND SEVERITY OF LESION

|                                         |                           |     |                   |                  |           | :                                       |                                         |                           |            | 1 1 1 1 1 1             |
|-----------------------------------------|---------------------------|-----|-------------------|------------------|-----------|-----------------------------------------|-----------------------------------------|---------------------------|------------|-------------------------|
|                                         |                           |     |                   |                  |           | NASAL                                   | ALVEOLAR                                | TYPE 11                   |            | NASAL                   |
| E XPT<br>NUMBER                         | CONCENTRATION<br>OF CU-Zn | EAR | AN IMAL<br>NUMBER | ANIMAL<br>SEX    | SACRIFICE | EPITHELIAL<br>Atrophy                   | MACROPHAGE<br>Hyperplasia               | PNEUMOCYTE<br>HYPERPLASIA | ALVEOLITIS | GOBLET CELL HYPERPLASIA |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                           |     |                   | ;<br>;<br>;<br>; | <br>      | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | 111111111111111111111111111111111111111 | <br>                      |            |                         |
| 4373                                    | 10 mg/m3                  | o   | 149               | MALE             | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 0 ~ C <b>*</b>                          |                           | ø   | 615               | FEMALE           | EOE       | -                                       | 7                                       | 7                         | 7          | 0 1                     |
| 40.4                                    |                           | •   | 616               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | •                       |
| 4373                                    |                           | •   | 617               | FEMALE           | EOE       | -                                       | 2                                       | -                         | 2          | 0                       |
| 43.73                                   |                           | œ   | 618               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 43.73                                   |                           | ď   | 620               | FEMALE           | EOE       | 0                                       | 7                                       | -                         | 7          | 0                       |
| 7 6                                     |                           | •   | 624               | FEMALE           | REC       | <b>-</b>                                | -                                       | _                         | 0          | 0                       |
| 4373                                    |                           | • • | 625               | FEMALE           | EOE       | 0                                       | -                                       | -                         | -          | 0                       |
| 40.4                                    |                           | ø   | 626               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 7 - 7                                   |                           | 0   | 627               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 4373                                    |                           | σ   | 628               | FEMALE           | EOE       | -                                       | -                                       | -                         | -          | <b>o</b> (              |
| 4373                                    |                           | o   | 630               | FEMALE           | EOE       | 0                                       | -                                       | -                         |            | 0                       |
| 4373                                    |                           | a   | 631               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 4373                                    |                           | a   | 632               | FEMALE           | EOE       | 0                                       | -                                       | _                         | _          | Ø :                     |
| 0 to 4                                  |                           | •   | 633               | FEMALE           | EOE       | -                                       | -                                       | -                         | -          | 0                       |
| 40.0                                    |                           | • • | 634               | FEMALE           | REC       | -                                       | -                                       | -                         | 0          | 0                       |
| 0 C C C                                 |                           | · o | 636               | FEMALE           | EOE       | -                                       | 0                                       | 0                         | 0          | 0                       |
| 40.40                                   |                           | •   | 638               | FEMALE           | EOE       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 0 - 0 - 0                               |                           | •   | 639               | FEMALE           | REC       | -                                       | -                                       | -                         | 0          | 0                       |
| 0 0                                     |                           | •   | 642               | FEMALE           | REC       | 0                                       | _                                       | -                         | 0          | 0                       |
| 7 6                                     |                           | •   | 643               | FEMALE           | EOE       | 0                                       | -                                       | 0                         | -          | 6                       |
| 4070                                    |                           | , 0 | 648               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 7 6                                     |                           | ď   | 650               | FEMALE           | REC       | 0                                       | -                                       | -                         | 0          | 0                       |
| 4442                                    | ~                         | G   | 109               | MALE             | REC       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 4442                                    | _                         | o   | 110               | MALE             | REC       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 4442                                    | _                         | G   | 111               | MALE             | EOE       | 0                                       | 6                                       | 0                         | •          | o ·                     |
| 4442                                    | · •                       | G   | 112               | MALE             | EOE       | 0                                       | 0                                       | 0                         | 0          | o (                     |
| 4442                                    |                           | 9   | 114               | MALE             | REC       | 0                                       | 0                                       | 6                         | •          | <b>-</b>                |
| 4442                                    |                           | 9   | 115               | MALE             | EOE       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 4447                                    |                           | G   | 116               | MALE             | EOE       | 0                                       | 0                                       | 0                         | 0          | <b>D</b> (              |
| 4442                                    | O (SHAM)                  | G   | 118               | MALE             | REC       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 6442                                    |                           | G   | 119               | MALE             | EOE       | 0                                       | 0                                       | 0                         | 0          | 0 '                     |
| 4442                                    | O (SHAM)                  | 5   | 120               | MALE             | E O E     | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 4442                                    | -                         | 5   | 121               | MALE             | REC       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| 4442                                    | G (SHAM)                  | 9   | 122               | MALE             | EOE       | 0                                       | 0                                       | 0                         | 0          | ο ,                     |
| 4442                                    | _                         | O   | 123               | MALE             | REC       | 0                                       | 0                                       | 0                         | 0          | 6                       |
| 4447                                    | O (SHAM)                  | G   | 127               | MALE             | £0£       | 0                                       | 0                                       | 0                         | 0          | 0                       |
| !                                       | •                         |     |                   |                  |           |                                         |                                         |                           |            |                         |

RESPIRATORY TRACT LESION CATEGORY AND SEVERITY OF LESION

| MASS      |                |             |                            |      |                       |                                 |                   | 1 1 1 1 1 1 1 1 1 1 1 1 1 | : : : : : : : : : : : : : : : : : : : : |             |            |             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|----------------------------|------|-----------------------|---------------------------------|-------------------|---------------------------|-----------------------------------------|-------------|------------|-------------|
| CONCENTRATION EAR ANNIAL AND SACRIFICE EPITISTAL MYCERPLANTS ANY ENGLANCY IN COLUMN STATE AND SACRIFICATION OF COLUMN STATE AND SACRIFICATION  |                |             |                            |      |                       |                                 |                   | NASAL                     | ALVEOLAR                                | TYPE II     |            | NASAL       |
| 4442 0 (584A4) 0 0 128 MALE RCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EXPT<br>NUMBER | CONCE       | NTRATION<br>Cu-Zn          | EAR  | ANIMAL                | ANIMAL                          | SACRIFICE<br>CODE | EPITHELIAL<br>ATROPHY     | MACROPHAGE<br>HYPERPLASIA               | HYPERPLASIA | ALVEOLITIS | HYPERPLASIA |
| 0 (SHAM) 0 (133 MALE FEE CE (134 MALE FE |                | !<br>!<br>! | !<br>!<br>!<br>!<br>!<br>! | <br> | t<br>!<br>!<br>!<br>! | 1<br>1<br>1<br>1<br>1<br>1<br>1 |                   |                           | •                                       | ,           | c          | c           |
| 0 (5844) 0 (130 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4442           | 0           | (SHAM)                     | G    | 128                   | MALE                            | EOE               | 6                         | >                                       | 5           | <b>.</b>   | > (         |
| 0 (34A4) 0 (131 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4442           | 0           | (SHAM)                     | g    | 130                   | MALE                            | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SMAM) 0 132 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4442           | -           | (SHAM)                     | G    | 131                   | MALE                            | REC               | 0                         | 0                                       | 0           | 6          | 0           |
| 0 (SMAM) 0 134 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4442           |             | (SHAM)                     | G    | 132                   | MALE                            | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SMAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4447           |             | (SHAM)                     |      | 134                   | MALE                            | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4447           | • •         | (SHAM)                     | g    | 136                   | MALE                            | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4447           |             | (SHAM)                     | · ·  | 137                   | MALE                            | REC               | 0                         | 0                                       | 8           | 0          | 0           |
| 0 (SHAM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4447           |             | (SHAM)                     | G    | 138                   | MALE                            | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 511 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4447           |             | (SHAM)                     | o    | 509                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 511 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           |             | (SHAM)                     | G    | 510                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (584M) G 512 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4447           |             | (SHAM)                     | g    | 511                   | FEMALE                          | REC               | 0                         | -                                       | 0           | 0          | 0           |
| 0 (SHAM) G 513 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           |             | (SHAM)                     | G    | 512                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 515 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           |             | (SHAM)                     | G    | 513                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 516 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | •           | (SHAM)                     | G    | 515                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 516 FEMALE EOE 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           |             | (SHAM)                     | G    | 516                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 510 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | 0           | (SHAM)                     | G    | 517                   | FEMALE                          | EOE               | 0                         | -                                       | 0           | 0          | 0           |
| 0 (SHAM) G 520 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | G    | 518                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 520 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | o    | 519                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 522 FEMALE REC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | 0           | (SHAM)                     | G    | 520                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 524 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | 0           | (SHAM)                     | G    | 522                   | FEMALE                          | 3<br>EC           | 0                         | <b>-</b> -                              | 0           | 0          | 0           |
| 0 (SHAM) G 524 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | o    | 523                   | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 526 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | G    | 524                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | o           |
| 0 (SHAM) G 527 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | G    | 526                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 530 FEMALE REC 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | 0           | (SHAM)                     | G    | 527                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 532 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | U    | 530                   | FEMALE                          | REC               | 0                         | -                                       | 0           | 0          | 0           |
| 0 (SHAM) G 532 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4442           | 0           | (SHAM)                     | G    | 531                   | FEMALE                          | E O E             | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 535 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | 0           | (SHAM)                     | G    | 532                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0 (SHAM) G 536 FEMALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           | 0           | (SHAM)                     | G    | 533                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0.32 mg/m3 G 538 FEMALE EOE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4442           |             | (SHAM)                     | G    | 53                    | FEMALE                          | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0.32 mg/m3 G 139 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4442           |             | (SHAM)                     | G    | 538                   | FEMALE                          | EOE               | 0                         | 0                                       | 0           | 0          | 0           |
| 0.32 mg/m3 G 140 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4443           | 0.32        |                            | G    | 139                   | MALE                            | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0.32 mg/m3 G 141 MALE E0E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4443           | 0.32        |                            | G    | 140                   | MALE                            | REC               | 0                         | o                                       | 0           | •          | 0           |
| 0.32 mg/m3 G 142 MALE REC 0 0 0 0 0 0 0 0.32 mg/m3 G 144 MALE EOE 0 0 0 0 0 0.32 mg/m3 G 144 MALE EOE 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4443           | 0.32        |                            | G    | 141                   | MALE                            | EOE               | 0                         | 0                                       | 0           | o          | 0           |
| 0.32 mg/m3 G 143 MALE REC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4443           | 0.32        |                            | 5    | 142                   | MALE                            | REC               | 0                         | 0                                       | 0           | 0          | •           |
| 0.32 mg/m3 G 144 MALE EOE O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4443           | 0.32        |                            | G    | 143                   | MALE                            | REC               | 0                         | 0                                       | 0           | 0          | 0           |
| 0.32 mg/m3 G 145 MALE E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4443           | 0.32        |                            | ی    | 144                   | MALE                            | E 0 E             | 0                         | 0                                       | 0           | •          | 0           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4443           | 0.32        |                            | ၒ    | 145                   | MALE                            | EOE               | 0                         | 0                                       | 0           | 0          | 0           |

RESPIRATORY TRACT LESION CATEGORY AND SEVERITY OF LESION

|           |               |     |        |        |           |                       | AIVEDIAB                  | TYPE         | !          | NASAL                      |
|-----------|---------------|-----|--------|--------|-----------|-----------------------|---------------------------|--------------|------------|----------------------------|
| EXPT      | CONCENTRATION | EAR | ANIMAL | ANIMAL | SACRIFICE | EPITHELIAL<br>ATROPHY | MACROPHAGE<br>HYPERPLASIA | ე ∢.         | ALVEOLITIS | GOBLET CELL<br>Hyperplasia |
|           |               |     |        |        | 1         |                       |                           |              |            |                            |
|           | (w/ cu )      | ď   | 146    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
|           | , ,           |     |        | MALE   | REC       | 0                     | 0                         | 0            | 0          | 0                          |
| ? .       |               |     | . 4    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
| 7 4       | , ,           | . c | 149    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
| 7 7 7     | ; ;           |     | 150    | MALE   | REC       | 6                     | 0                         | 0            | o          | ٥                          |
| 7 7 7     | , ,           | ; c | 151    | MALE   | REC       | 0                     | 0                         | 0            | 0          | 0                          |
| 2 4 4 4 5 | 3 6           | . c |        | MALE   | REC       | 0                     | 0                         | 0            | 0          | 0                          |
| 7 4 4 4   |               |     | 153    | MALE   | EOE       | ø                     | o                         | 0            | 0          | 0                          |
| 4443      |               | , , | 154    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
| 4443      | 3             | •   |        | MALE   | REC       | 0                     | 0                         | 0            | 0          | 0                          |
| 4443      | 3 2           |     | 156    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
| 4443      | .32           | 5   | 157    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
| 4443      | 32            | G   | 158    | MALE   | REC       | 0                     | 0                         | 0            | 0          | 0                          |
| 4443      | .32           | G   | 159    | MALE   | EOE       | 0                     | 0                         | 0            | 0          | 0 (                        |
| 4443      | .32           | G   | 160    | MALE   | REC       | 0                     | 0                         | 0            | 0          | <b>o</b> (                 |
| 4443      | ~             | 9   | 539    | FEMALE | REC       | 0                     | 0                         | 0            | 0 1        | <b>o</b> (                 |
| 4443      | 0.32 mg/m3    | 9   | 540    | FEMALE | EOE       | 0                     | 0                         | 0 '          | 0 (        | o (                        |
| 4443      | 0.32 mg/m3    | G   | 541    | FEMALE | REC       | 0                     | 0                         | <b>o</b> 1   | 0 (        | > (                        |
| 4443      | 0.32 mg/m3    | G   | 542    | FEMALE | EOE       | 0                     | 0                         | 0 (          | <b>-</b> ( | <b>&gt;</b> (              |
| 4443      | 0.32 mg/m3    | G   | 543    | FEMALE | REC       | 0                     | 0                         | 0            | 0 (        | <b>o</b> (                 |
| 4443      |               | G   | 544    | FEMALE | EOE       | 0                     | 0                         | 0 (          | 0 (        | <b>&gt;</b> •              |
| 4443      | 0.32 mg/m3    | G   | 545    | FEMALE | REC       | 0                     | 0                         | 0            | <b>o</b> ( | <b>5</b> (                 |
| 4443      | 0.32 mg/m3    | o   | 546    | FEMALE | E 0 E     | •                     | 0                         | <b>o</b> (   | o (        | <b>.</b>                   |
| 4443      | 0.32 mg/m3    | G   | 547    | FEMALE | EOE       | 0                     | 0                         | o (          | <b>ɔ</b> ( | <b>&gt; c</b>              |
| 4443      | 0.32 mg/m3    | G   | 548    | FEMALE | REC       | 0                     | 0 (                       | o (          | > <        | <b>.</b>                   |
| 4443      | 0.32 mg/m3    | 9   | 549    | FEMALE | EOE       | 0                     | <b>o</b> (                | <b>5</b> (   | - 6        |                            |
| 4443      | 0.32 mg/m3    | o   | 550    | FEMALE | REC       | 0                     | 0                         | <b>o</b> (   | <b>-</b>   | <b>-</b>                   |
| 4443      | 0.32 mg/m3    | 9   | 551    | FEMALE | EOE       | 0                     | 0                         | 0            | <b>D</b>   | <b>&gt;</b> (              |
| 4443      | 0.32 mg/m3    | G   | 552    | FEMALE | REC       | 0                     | 0                         | 0            | <b>o</b> • | <b>.</b>                   |
| 4443      | 0.32 mg/m3    | G   | 553    | FEMALE | REC       | 0                     | _                         | <u>-</u> - ( | - (        | <b>,</b>                   |
| 4443      | 0.32 mg/m3    | G   | 554    | FEMALE | REC       | 0                     | 0                         | 0 (          | 0 (        | <b>5</b> (                 |
| 4443      | 0.32 mg/m3    | G   | 555    | FEMALE | E06       | 0                     | 0                         | o (          | <b>.</b>   | <b>-</b>                   |
| 4443      | 0.32 mg/m3    | G   | 556    | FEMALE | REC       | 0                     | 0                         | 0            | <b>o</b> ( | <b>-</b>                   |
| 4443      |               | G   | 557    | FEMALE | REC       | 0                     | 0                         | <b>o</b> ,   | <b>o</b> ( | <b>&gt;</b> (              |
| 4443      |               | G   | 558    | FEMALE | EOE       | 0                     | 0                         | 0            | 0          | <b>.</b>                   |
| 4443      |               | G   | 559    | FEMALE | E O E     | 0                     | 0                         | •            | 0          | 0                          |
| 4443      |               | G   | 960    | FEMALE | EOE       | 0                     | 0                         | 0            | 0          | 0                          |
|           |               |     |        |        |           |                       |                           |              |            |                            |

|       |                           |       |        |        |           |                       |             | 1 1 1 1 1 1 1 |            |                      |
|-------|---------------------------|-------|--------|--------|-----------|-----------------------|-------------|---------------|------------|----------------------|
|       |                           |       |        | ,      |           |                       | ALVEOLAR    | TYPE 11       |            | NASAL<br>Goblet Cell |
| EXPT  | CONCENTRATION<br>Of Cu-2n | E A B | ANIMAL | ANIMAL | SACRIFICE | EPITHELIAL<br>ATROPHY | HYPERPLASIA | HYPERPLASIA   | ALVEOLITIS | HYPERPLASIA          |
|       |                           |       |        | 1      | <br>      | <br>                  |             |               |            |                      |
| 4444  | 3.2 mg/m3                 | G     | 170    | MALE   | REC       | 0                     | 0           | 0             | 0          | 0                    |
| 444   | . ~                       | ی ن   | 121    | MALE   | w         | 0                     | •           | 0             | 0          | 0                    |
| 444   |                           |       | 173    | MALE   | REC       | 0                     | -           | 0             | 0          | ο .                  |
| 444   |                           | G     | 174    | MALE   | REC       | 0                     | 0           | 0             | 0          | 0                    |
| 444   | ~                         | •     | 175    | MALE   | EOE       | 0                     | 0           | 0             | 0          | 0                    |
| 4444  |                           |       | 177    | MALE   | REC       | 0                     | -           | -             | -          | 0                    |
| 777   |                           |       | 179    | MALE   | REC       | 0                     | 0           | 0             | 0          | 0                    |
| 8444  |                           |       | 180    | MALE   | EOE       | 0                     | -           | 0             | 0          | 0                    |
| 4444  |                           |       | 181    | MALE   | EOE       | 0                     | -           | -             | 0          | 0                    |
|       |                           |       | 182    | MALE   | EOE       | 0                     | 0           | 0             | 0          | 0                    |
|       | • •                       | , c   | 46.    | MALE   | 3 6       | 0                     | -           | -             | 0          | 0                    |
| , ,   |                           | , .   |        | MALE   | EOE       | 0                     |             | -             | -          | 0                    |
| †     | , ,                       | , ,   |        | MALE   | 3 E       | 0                     | 0           | 0             | 0          | 0                    |
|       | : .                       | , ,   | 187    | MALE   | EOE       | 0                     | 0           | 0             | 0          | 0                    |
| • • • | • •                       | , .   | . 60   | MALE   | 3 2       | 0                     | o           | 0             | o          | o                    |
|       |                           | , c   | 9 61   | MALE   | EOE       | -                     | 0           | 0             | 0          | 0                    |
| 7 7 7 | • •                       |       | 0 6    | MALE   | EOE       | 0                     | -           | -             | -          | 0                    |
| 4444  |                           |       | 191    | MALE   | EOE       | -                     | -           | -             | -          | 0                    |
| 4444  | . ~                       |       | 192    | MALE   | EOE       | -                     | -           | 0             | 0          | 0                    |
| 4444  | . ~                       |       | 195    | MALE   | REC       | 0                     | 0           | 0             | 0          | 0                    |
| 4444  | . ~                       | ی     | 196    | MALE   | REC       | 0                     | 0           | 0             | 0          | 0                    |
| 4     |                           | G     | 197    | MALE   | EOE       | •                     | -           | 0             | -          | 0                    |
| 444   | ~                         | G     | 569    | FEMALE | REC       | 0                     |             | 0             | 0          | 0                    |
| 4444  | 7                         | G     | 570    | FEMALE | REC       | 0                     | -           | -             | 0          | <b>o</b>             |
| 4444  | ~                         | G     | 573    | FEMALE | EOE       | 0                     | 0           | 0             | 0          | o (                  |
| 444   | 7                         | G     | 574    | FEMALE | EOE       | 0                     | -           | 0             | •          | <b>D</b>             |
| 4444  | ~                         | G     | 575    | FEMALE | REC       | 0                     | -           | -             | 0          | 0                    |
| 444   | ~                         | G     | 576    | FEMALE | REC       | •                     | 0           | 0             | 0          | ο .                  |
| 4     | ~                         | G     | 577    | FEMALE | REC       | 0                     | 0           | 0             | 0          | 0 (                  |
| 4444  | ~                         | G     | 578    | FEMALE | EOE       | 0                     | 0           | 6             | 0          | <b>.</b>             |
| 4     | ~                         | ی     | 580    | FEMALE | REC       | o                     | o           | 0             | o          | 0 (                  |
| 4     | 7                         | G     | 581    | FEMALE | EOE       | 0                     | 0           | 0             | 0          | <b>o</b> (           |
| 4444  | . 2 E                     | G     | 582    | FEMALE | REC       | 0                     | 0           | 0             | 6          | <b>.</b>             |
| 4444  | ~                         | v     | 583    | FEMALE | EOE       | 0                     | 0           | 6             | 0          | <b>.</b>             |
| 4     | 7                         | G     | 585    | FEMALE | REC       | 0                     | 0           | 0             | 0          | <b>.</b>             |
| 4444  | ~                         | 9     | 586    | FEMALE | EOE       | 0                     | 0           | 0             | 0          | •                    |
| 4444  | 7                         | 9     | 588    | FEMALE | EOE       | 0                     | -           | 0             | 6          | 0                    |
|       |                           |       |        |        |           |                       |             |               |            |                      |

RESPIRATORY TRACT LESION CATEGORY AND SEVERITY OF LESION

| EXPT   | CONCENTRATION              | EAR |        | ANIMAL | ANIMAL SACRIFICE | ш       | ALVEOLAR<br>Macrophage       | TYPE II<br>PNEUMOCYTE |            | NASAL<br>GOBLET CELL   |
|--------|----------------------------|-----|--------|--------|------------------|---------|------------------------------|-----------------------|------------|------------------------|
| NUMBER | NUMBER OF CU-Zn TAG NUMBER | TAG | NUMBER |        | CODE             | ATROPHY | SEX CODE ATROPHY HYPERPLASIA | HYPERPLASIA           | ALVEOLITIS | ALVEOLITIS HYPERPLASIA |
| 4 4    | 3.2 mg/m3                  | g   | 8<br>8 | FEMALE | EOE              | 0       | -                            | -                     | 0          | 0                      |
| 4444   | 3.2 mg/m3                  | G   | 590    | FEMALE | £0.              | 0       | 0                            | 0                     | 0          | 0                      |
| 144    | 3.2 mg/m3                  | G   | 591    | FEMALE | REC              | 0       | 0                            | 0                     | 0          | 6                      |
| 4 4    | 3.2 mg/m3                  | U   | 592    | FEMALE | REC              | 0       | 0                            | 0                     | 0          | 0                      |
| 44     | 3.2 mg/m3                  | G   | 594    | FEMALE | <b>E</b> 0 E     | 0       | 0                            | 0                     | 0          | 0                      |
| 144    | 3.2 mg/m3                  | G   | 595    | FEMALE | REC              | 0       | 0                            | 0                     | 0          | 0                      |
| 44     | 3.2 mg/m3                  | g   | 969    | FEMALE | EOE              | 0       | 0                            | 0                     | 0          | 0                      |

## APPENDIX I. SUMMARY TABLES OF ENDPOINT EVALUATIONS AND STATISTICAL COMPARISONS BETWEEN PHASE III, PARTS 1 AND 2 FOR F344/N RATS EXPOSED TO 3.2 mg Cu-Zn ALLOY POWDER/m<sup>3</sup>

This appendix presents tabulated data for Phase III, Parts 1 and 2, and a summary table of statistical comparisons between the results for rats exposed to 3.2 mg Cu-Zn in Phase III, Parts 1 and 2. With few exceptions, results were the same for exposures to 3.2 mg Cu-Zn/m³ in Phase III, Parts 1 and 2. Overall, we felt justified in combining results for the two parts of Phase III wherever possible and comparing all exposed groups of rats with the sham-exposed rats from Phase III, Part 2.

Table I-1 Biochemical Analyses of Bronchoxlveolar Lavage Fluid<sup>a</sup> From F344/N Rats That Inhaled Fowdered Cu-Zn Alloy

|                             |                 |                    |                    |                         | 0                  | oncentrati         | on of Pow          | tion of Powdered Cu-Zn Alloy, mg/m | Zn Alloy.          | mg/m <sup>3</sup>        | -                  |                    |                    |
|-----------------------------|-----------------|--------------------|--------------------|-------------------------|--------------------|--------------------|--------------------|------------------------------------|--------------------|--------------------------|--------------------|--------------------|--------------------|
| Lavage Fluid Constituent    | Measure         | 1.0<br>EQE         | REC                | Phase III.<br>3.<br>EOE | Part 1<br>REC      | 10<br>E0E          | REC                | O (Sham)<br>EQE R                  | am)<br>REC         | Phase 111<br>0.37<br>EOE | REC REC            | 3.                 | 2<br>REC           |
| β—Glucuronidase (mIU)       | Mean<br>SE<br>N | 1.42<br>0.18<br>12 | 1.86<br>0.31<br>12 | 1.84<br>0.23<br>11      | 1.79<br>0.26<br>12 | 7.08<br>1.11<br>12 | 1.36<br>0.28<br>12 | 1.27<br>0.15<br>12                 | 1.13<br>0.13<br>12 | 1.62<br>0.26<br>12       | 1.25<br>0.16<br>12 | 1.39<br>0.22<br>12 | 1.11<br>0.13<br>12 |
| Alkaline Phosphatase (mIU)  | Mean<br>SE<br>N | 411 42 12          | 360<br>51<br>12    | 469<br>39<br>11         | 293<br>18<br>12    | 336<br>38<br>12    | 279<br>35<br>12    | 285<br>23<br>12                    | 269<br>21<br>12    | 321<br>22<br>12          | 284<br>23<br>12    | 387<br>38<br>12    | 215<br>17<br>12    |
| Lactate Dehydrogenase (mIU) | Mean<br>SE<br>N | 1124<br>186<br>12  | 793<br>213<br>12   | 1658<br>165<br>11       | 827<br>144<br>12   | 2047<br>316<br>12  | 839<br>99<br>12    | 385<br>32<br>12                    | 446<br>21<br>12    | 389<br>26<br>12          | 488<br>38<br>12    | 571<br>63<br>12    | 406<br>30<br>12    |
| Protein (mg)                | Mean<br>SE<br>N | 1.66<br>0.09<br>12 | 1.16               | 1.87<br>0.10<br>11      | 1.04<br>0.14<br>12 | 2.82<br>0.20<br>12 | 1.21<br>0.15<br>12 | 1.54<br>0.09<br>12                 | 1.55<br>0.15<br>12 | 1.30<br>0.09<br>12       | 1.51<br>0.21<br>12 | 1.54<br>0.12<br>12 | 1.34<br>0.11<br>12 |
|                             |                 |                    |                    |                         |                    |                    |                    |                                    |                    |                          |                    |                    |                    |

ATotal amount of B-glucuronidase, alkaline phosphatase, lactate dehydrogenase, and protein in lavage fluid from right lung of F344/N rats in this study.

Table I-2

Total Cells in Lung Lavage Fluida
(Mean ± SE)

| Aerosol                | Evaluati        | on Time         |
|------------------------|-----------------|-----------------|
| Concentration of       | End of Exposure | After Recovery  |
| Phase III, Part !      |                 |                 |
| 1.0 mg/m <sup>3</sup>  | $0.88 \pm 0.09$ | 1.17 ± 0.08     |
| $3.2 \text{ mg/m}^3$   | 1.44 ± 0.16     | 1.26 ± 0.14     |
| 10.0 mg/m <sup>3</sup> | 3.15 ± 0.38     | 0.94 ± 0.11     |
| Phase III, Part 2      |                 |                 |
| Sham                   | $1.04 \pm 0.07$ | $1.04 \pm 0.05$ |
| $0.32 \text{ mg/m}^3$  | $0.94 \pm 0.03$ | $0.95 \pm 0.07$ |
| $3.2 \text{ mg/m}^3$   | 1.26 ± 0.10     | 0.89 ± 0.05     |

<sup>&</sup>lt;sup>a</sup>The above values show the mean and SE of the total cells counted for the alveolar macrophage phagocytosis assay  $\times$  10<sup>6</sup> (N = 12 per group).

| Aerosol                          | Evaluati          | on Time           |
|----------------------------------|-------------------|-------------------|
| Concentration of Cu-Zn Alloy     | End of Exposure   | After Recovery    |
| Phase III, Part 1                |                   |                   |
| 1.0 mg/m <sup>3</sup> (percent)  | $3.49 \pm 0.89$   | $0.75 \pm 0.22$   |
| (total)                          | $0.032 \pm 0.010$ | $0.009 \pm 0.003$ |
| 3.2 mg/m <sup>3</sup> (percent)  | 4.48 ± 0.70       | 0.59 ± 0.24       |
| (total)                          | $0.060 \pm 0.009$ | $0.007 \pm 0.002$ |
| 10.0 mg/m <sup>3</sup> (percent) | 8.79 ± 1.17       | $0.80 \pm 0.34$   |
| (total)                          | $0.273 \pm 0.044$ | $0.007 \pm 0.002$ |
| Phase III, Part 2                |                   |                   |
| Sham (percent)                   | $0.41 \pm 0.12$   | $1.01 \pm 0.29$   |
| (total)                          | $0.004 \pm 0.001$ | $0.012 \pm 0.004$ |
| 0.32 mg/m <sup>3</sup> (percent) | 0.41 ± 0.14       | 0.58 ± 0.17       |
| (total)                          | $0.004 \pm 0.001$ | $0.006 \pm 0.002$ |
| 3.2 mg/m <sup>3</sup> (percent)  | 2.03 ± 0.56       | 0.33 ± 0.11       |
| (total)                          | $0.027 \pm 0.008$ | 0.003 ± 0.001     |

<sup>&</sup>lt;sup>a</sup>The above values are differentials taken from the lavage of rats used for the alveolar macrophage phagocytosis assay. N=12 per group and the total numbers are given x  $10^6$  cells.

Table I-4 Lymphocyte Differential for Lung Lavage Fluida (Mean  $\pm$  SE)

| Aerosol                          | Evaluation      | on Time         |
|----------------------------------|-----------------|-----------------|
| Concentration of Cu-Zn Alloy     | End of Exposure | After Recovery  |
| Phase III, Part 1                |                 |                 |
| 1.0 mg/m <sup>3</sup> (percent)  | $5.7 \pm 1.0$   | 7.6 ± 1.2       |
| (total)                          | $0.05 \pm 0.01$ | $0.09 \pm 0.01$ |
| 3.2 mg/m <sup>3</sup> (percent)  | 9.2 ± 1.3       | 12.0 ± 1.4      |
| (total)                          | 0.13 ± 0.02     | $0.15 \pm 0.03$ |
| 10.0 mg/m <sup>3</sup> (percent) | 9.6 ± 1.0       | 12.7 ± 1.4      |
| (total)                          | $0.30 \pm 0.04$ | $0.11 \pm 0.01$ |
| Phase III, Part 2                |                 |                 |
| Sham (percent)                   | $9.5 \pm 1.8$   | $6.9 \pm 0.9$   |
| (total)                          | $0.11 \pm 0.03$ | $0.07 \pm 0.07$ |
| 0.32 mg/m <sup>3</sup> (percent) | 7.1 ± 1.2       | 7.8 ± 1.4       |
| (total)                          | $0.07 \pm 0.01$ | $0.07 \pm 0.01$ |
| 3.2 mg/m <sup>3</sup> (percent)  | 10.5 ± 0.9      | 8.2 ± 0.6       |
| (total)                          | $0.14 \pm 0.02$ | $0.07 \pm 0.01$ |

<sup>&</sup>lt;sup>a</sup>The above values are differentials taken from the lavage of rats used for the alveolar macrophage phagocytosis assay (N=12 per group), and the total numbers are given x  $10^6$  cells.

Table I-5  $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabula$ 

| Aerosol                          | Evaluati        | on Time         |
|----------------------------------|-----------------|-----------------|
| Concentration of<br>Cu-Zn Alloy  | End of Exposure | After Recovery  |
| Phase III, Part 1                |                 |                 |
| 1.0 mg/m <sup>3</sup> (percent)  | $90.3 \pm 1.5$  | 91.6 ± 1.2      |
| (total)                          | $0.80 \pm 0.08$ | 1.07 ± 0.08     |
| 3.2 mg/m <sup>3</sup> (percent)  | 85.8 ± 1.0      | 87.2 ± 1.4      |
| (total)                          | 1.25 ± 0.15     | 1.11 ± 0.12     |
| 10.0 mg/m <sup>3</sup> (percent) | 81.0 ± 1.4      | 86.2 ± 1.5      |
| (total)                          | $2.56 \pm 0.31$ | $0.82 \pm 0.11$ |
| Phase III, Part 2                |                 |                 |
| Sham (percent)                   | 90.1 ± 1.9      | 92.1 ± 1.0      |
| (total)                          | $0.93 \pm 0.05$ | $0.96 \pm 0.04$ |
| 0.32 mg/m <sup>3</sup> (percent) | 92.4 ± 1.1      | 91.6 ± 1.3      |
| (total)                          | $0.87 \pm 0.02$ | $0.87 \pm 0.07$ |
| 3.2 mg/m <sup>3</sup> (percent)  | 87.3 ± 1.0      | 91.5 ± 0.6      |
| (total)                          | $1.10 \pm 0.08$ | $0.82 \pm 0.05$ |

<sup>&</sup>lt;sup>a</sup>The above values are differentials taken from the lavage of rats used for the alveolar macrophage phagocytosis assay. N=12 per group and the total numbers are given x  $10^6$  cells.

Table I-6

Collagen in Lavage Fluid After 13-Week Exposure to Cu-Zn Alloy Powder and After 4-Week Recovery Period (N = 12, Values are Mean ± SE)

|                                 |                             | Evaluati                    | on Time                     |                      |
|---------------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------|
| Aerosol                         | End of E                    |                             | After Re                    | covery               |
| Concentration of<br>Cu-Zn Alloy | μg/g Control<br>Lung Weight | μg/kg<br><u>Body Weight</u> | μg/g Control<br>Lung Weight | μg/kg<br>Body Weight |
| <u>Phase III, Part 1</u>        |                             |                             |                             |                      |
| 1.0 mg/m <sup>3</sup>           | $63.5 \pm 6.0$              | 313 ± 34                    | $68.0 \pm 6.8$              | 306 ± 32             |
| $3.2 \text{ mg/m}^3$            | $59.8 \pm 4.2^{a}$          | $288 \pm 24^{a}$            | 64.1 ± 3.6                  | 281 ± 18             |
| 10.0 mg/m <sup>3</sup>          | 84.4 ± 6.2                  | 437 ± 38                    | 57.4 ± 3.0                  | 265 ± 20             |
| Phase III. Part 2               |                             |                             |                             |                      |
| O (Sham)                        | $45.4 \pm 2.8$              | 216 ± 18                    | $47.6 \pm 4.2$              | 199 ± 25             |
| $0.32 \text{ mg/m}^3$           | $48.6 \pm 2.3$              | 229 ± 15                    | $61.4 \pm 9.7$              | 249 ± 33             |
| $3.2 \text{ mg/m}^3$            | $55.1 \pm 4.6a$             | $264 \pm 27^{a}$            | 44.9 ± 2.2                  | 189 ± 14             |
|                                 |                             |                             |                             |                      |

 $a_N = 11.$ 

Table I-7

Total Lung Collagen<sup>a</sup> After 13-Week Exposure to Cu-Zn
Alloy Powder and After 4-Week Recovery Period
(Mean ± SE)

|                                 |           |                             | Evaluat:             | ion Time                    |                      |
|---------------------------------|-----------|-----------------------------|----------------------|-----------------------------|----------------------|
| Aeroso1                         |           | End of Ex                   |                      | After R                     | ecovery              |
| Concentration of<br>Cu-Zn Alloy | <u>N_</u> | mg/g Control<br>Lung Weight | mg/kg<br>Body Weight | mg/g Control<br>Lung Weight | mg/kg<br>Body Weight |
| Phase III, Part 1               |           |                             |                      |                             |                      |
| $3.2 \text{ mg/m}^3$            | 10        | 18.1 ± 0.5                  | 88 ± 3               |                             |                      |
| 10.0 mg/m <sup>3</sup>          | 10        | $18.9 \pm 0.8$              | 97 ± 5               | 17.5 ± 1.1                  | 80 ± 6               |
| Phase III. Part 2               |           |                             |                      |                             |                      |
| O (Sham)                        | 6         | 17.2 ± 1.2                  | 82 ± 8               | 17.6 ± 1.3                  | 72 ± 9               |
| O (Sham)b                       | 12        | 17.4 ± 0.8                  | 77 ± 6               |                             |                      |
| $3.2 \text{ mg/m}^3$            | 10        | 19.3 ± 1.0                  | 91 ± 5               |                             |                      |
|                                 |           |                             |                      |                             |                      |

<sup>&</sup>lt;sup>a</sup>All samples analyzed as a batch after collection of samples for Phase III, Part 2.

bResults combined for shams evaluated at the end of exposure and after the 4-week recovery period.

Table I-8

Immunology Results for Tracheobronchial Lymph Nodes from Rats in Phase III, Parts 1 and 2 (Values are Mean  $\pm$  SE; N = 6-8)

| Aerosol<br>Concentration | Total Lymphoid Cells x 10 <sup>-6</sup> | Cells x 10 <sup>-6</sup><br>REC | Antibody-Forming Cells  Per Million Lymphocytes EOE | Antibody-Forming Cells  er Million Lymphocytes EOE | Total Antibody-<br>Forming Cells<br>EOE | tibody-<br>Cells<br>REC |
|--------------------------|-----------------------------------------|---------------------------------|-----------------------------------------------------|----------------------------------------------------|-----------------------------------------|-------------------------|
| Phase III, Part 1        |                                         |                                 |                                                     |                                                    |                                         |                         |
| 1.0 mg/m <sup>3</sup>    | 8.21 ± 1.11                             | $9.40 \pm 1.72$                 | 1080 ± 327                                          | 907 ± 313                                          | 9360 ± 3490                             | 10250 ± 5020            |
| 3.2 mg/m <sup>3</sup>    | 15.93 ± 2.60                            | 7.51 ± 0.66                     | 887 ± 133                                           | 394 ± 144                                          | 14700 ± 3280                            | 2980 ≠ 992              |
| 10.0 mg/m <sup>3</sup>   | 27.09 ± 3.43                            | $10.09 \pm 0.51$                | 884 ± 115                                           | 369 ± 115                                          | 23300 ± 3540                            | 3927 ± 1290             |
| Phase III, Part 2        |                                         |                                 |                                                     |                                                    |                                         |                         |
| 0 (Sham)                 | $8.78 \pm 0.71$                         | 10.00 ± 0.71                    | 517 ± 104                                           | 1110 ± 237                                         | 4840 ± 1170                             | 11200 ± 2740            |
| 3.2 mg/m <sup>3</sup>    | 15.28 ± 1.46                            | $8.54 \pm 1.27$                 | 346 ± 83                                            | 493 ± 131                                          | 5570 ± 1340                             | 5290 ± 1850             |
|                          |                                         |                                 |                                                     |                                                    |                                         |                         |

Table I-9

Macrophage Phagocytosis of Erythrocytes<sup>a</sup>
(Mean ± SE)

| Aerosol                         | <u>Evaluati</u> | on Time        |
|---------------------------------|-----------------|----------------|
| Concentration of<br>Cu-Zn Alloy | End of Exposure | After Recovery |
| Phase III, Part 1               |                 |                |
| 1.0 mg/m <sup>3</sup>           | 481 ± 30        | 341 ± 30       |
| $3.2 \text{ mg/m}^3$            | 331 ± 12        | 289 ± 39       |
| 10.0 mg/m <sup>3</sup>          | 251 + 16        | 299 ± 16       |
| Phase III, Part 2               |                 |                |
| O (Sham)                        | 367 ± 20        | 404 ± 27       |
| $0.32 \text{ mg/m}^3$           | 490 ± 25        | 395 ± 32       |
| $3.2 \text{ mg/m}^3$            | 467 ± 26        | 417 + 31       |

<sup>&</sup>lt;sup>a</sup>The above values show the mean and SE of number of erythrocytes phagocytized by 100 macrophages (N = 12).

Table I-10  $\label{eq:contages} \mbox{Percentages of Macrophages that Phagocytized Erythrocytes} \mbox{a} \mbox{(Mean $\pm$ SE)}$ 

| Aerosol                      | Evaluati                | on Time        |
|------------------------------|-------------------------|----------------|
| Concentration of Cu-Zn Alloy | End of Exposure         | After Recovery |
| Phase III, Part 1            |                         |                |
| $1.0 \text{ mg/m}^3$         | 80.5 ± 1.5              | 76.0 ± 2.1     |
| $3.2 \text{ mg/m}^3$         | 67.3 ± 2.5 <sup>b</sup> | 72.9 ± 2.8     |
| 10.0 mg/m <sup>3</sup>       | $60.2 \pm 3.6^{b}$      | 73.2 ± 1.9     |
| Phase III, Part 2            |                         |                |
| O (Sham)                     | 74.4 ± 1.9              | 81.8 + 2.5     |
| $0.32 \text{ mg/m}^3$        | 79.9 ± 1.2              | 82.0 ± 2.2     |
| $3.2 \text{ mg/m}^3$         | 76.6 ± 2.1              | $85.6 \pm 2.2$ |

<sup>&</sup>lt;sup>a</sup>The above values show the mean and SE of the percent macrophages that have phagocytized one or more erythrocytes (N=12 per group).

Table I-11

Pulmonary Function Results for Rats in Phase III, Parts 1 and 2 (Baseline Measurements) (Values are Mean  $\pm$  SE; N = 16)

| Total Lung Capacity (TLC) mL 11.4 ±  Vital Capacity/TLC percent 86.4 ±  Functional Residual Capacity mL 2.5 ±  Dynamic Lung Compliance mL/cm H <sub>2</sub> O 0.43 ±  Quasistatic Chord Compliance mL/cm H <sub>2</sub> O 0.65 ±  CO Diffusing Capacity (DLCO) mL/min/mm Hg 0.18 ±  DLCO/Lung Volume DLCO/ML 0.017 ± | 4 4 4<br>43                             | 11.1 ± 0.4<br>87.7 ± 0.8<br>2.3 ± 0.1<br>0.42 ± 0.03 | # #               |                 |                |               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------|-------------------|-----------------|----------------|---------------|
| percent       86.4         mL       2.5         mL/cm H <sub>2</sub> O       0.43         mL/cm H <sub>2</sub> O       0.65         mL/min/mm Hg       0.18         DLCO/mL       0.017         DLCO/kg       0.81                                                                                                   | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | # # # #                                              | #                 | 11.1 ± 0.3      | 9.5 ± 0.4      | 10.3 ± 0.3    |
| mL/cm H <sub>2</sub> O 0.43 mL/cm H <sub>2</sub> O 0.43 mL/cm H <sub>2</sub> O 0.65 mL/min/mm Hg 0.18 DLCO/mL 0.017                                                                                                                                                                                                  | 5 ±                                     | + + +                                                |                   | 87.6 ± 0.7      | 91.2 ± 1.4     | 83.5 ± 0.9    |
| mL/cm H <sub>2</sub> 0 0.43 mL/cm H <sub>2</sub> 0 0.65 mL/min/mm Hg 0.18 DLCO/mL 0.017                                                                                                                                                                                                                              | 43 ±                                    | # #                                                  | 2.6 ± 0.1         | 2.4 ± 0.1       | 1.9 ± 0.1      | 2.1 ± 0.1     |
| mL/cm H <sub>2</sub> O 0.65 mL/min/mm Hg 0.18 DLCO/mL 0.017                                                                                                                                                                                                                                                          |                                         |                                                      | $0.45 \pm 0.04$   | $0.41 \pm 0.03$ | 0.43 ± 0.05    | 0.48 ± 0.06   |
| mL/min/mm Hg 0.18 DLCO/mL 0.017 DLCO/kg 0.81                                                                                                                                                                                                                                                                         | 9                                       |                                                      | 0.66 ± 0.03       | 0.63 * 0.02     | 0.53 ± 0.02    | 3.58 ± 0.02   |
| DLCO/mL 0.017                                                                                                                                                                                                                                                                                                        | 8                                       | $0.19 \pm 0.01$                                      | 0.18 ± 0.01       | 0.19 \$ 0.01    | 0.19 \$ 0.01   | 0.19 ± 0.01   |
| DLCO/kg 0.81                                                                                                                                                                                                                                                                                                         | 017                                     | $0.017 \pm 0.001$                                    | $0.017 \pm 0.001$ | 0.018 ± 0.001   | 0.018 \$ 0.001 | 0.018 ± 0.001 |
|                                                                                                                                                                                                                                                                                                                      | 18                                      | 0.85 ± 0.03                                          | 0.81 * 0.02       | 0.83 * 0.02     | 0.80 \$ 0.03   | 0.78 ± 0.04   |
| Forced Vital Capacity Exhaled in 0.1 Second percent 71.8 ±                                                                                                                                                                                                                                                           | <b>&amp;</b>                            | 72.8 ± 2.0                                           | 70.5 ± 3.1        | 71.9 ± 2.8      | 75.8 ± 1.5     | 73.2 ± 1.5    |
| Mean Midexpiratory Flow (MMEF) mL/sec 68.5 ±                                                                                                                                                                                                                                                                         |                                         | 72.6 ± 4.1                                           | 69.5 ± 5.5        | 70.9 ★ 5.3      | 65.9 ± 2.8     | 68.8 ± 2.9    |
| MMEF/Forced Vital Capacity mL/sec/mL 6.9 ±                                                                                                                                                                                                                                                                           | 6                                       | 7.3 ± 0.4                                            | 9.0 ≠ 6.9         | 7.1 ± 0.6       | 7.9 ± 0.4      | 7.5 ± 0.4     |
| Slope of Phase III of<br>Single-Breath N2 Mashout percent N2/mL 102.6 ±                                                                                                                                                                                                                                              |                                         | 97.3 ± 5.5                                           | 95.4 ± 7.5        | 98.7 ± 6.1      | 68.9 ± 4.0     | 66.1 ± 3.9    |

Table I-12

Pulmonary Function Results for Rats in Phase III, Parts 1 and 2 (Week Seven of Exposures) (Values are Mean  $\pm$  SE; N  $\approx$  16)

| 30                                                | -<br>-<br>-<br>-<br>-  | (mc43) (        | Phase II        | Aerosol Concentration of Powdered Cu-fil Ailoy, ms/m<br>Phase III, Part 1 | ון וויד-עט טון    | Phase III       | 1, Part 2<br>3.2  |
|---------------------------------------------------|------------------------|-----------------|-----------------|---------------------------------------------------------------------------|-------------------|-----------------|-------------------|
| rarameter                                         | 51110                  | U Validini      | 7               | 4.8                                                                       |                   |                 |                   |
| Total Lung Capacity (TLC)                         | m<br>Tu                | 11.6 ± 0.4      | 11.4 ± 0.4      | 11.7 ± 0.5                                                                | 11.1 ± 0.3        | 12.6 \$ 0.9     | 13.1 ± 0.7        |
| Vital Capacity/TLC                                | percent                | 93.2 ± 0.5      | 91.6 ± 0.7      | 92.4 ± 0.7                                                                | 91.1 ± 0.7        | 92.4 ± 0.6      | 91.5 ± 0.7        |
| Functional Residual Capacity                      | ᆔ                      | 2.2 ± 0.1       | 2.2 \$ 0.1      | 2.3 ± 0.1                                                                 | 2.3 ± 0.1         | 2.5 ± 0.2       | 2.6 ± 0.1         |
| Oynamic Lung Compliance                           | mL/cm H <sub>2</sub> 0 | $0.45 \pm 0.04$ | $0.41 \pm 0.04$ | 0.46 ± 0.04                                                               | 0.39 ± 0.03       | $0.47 \pm 0.04$ | $0.51 \pm 0.04$   |
| Quasistatic Chord Compliance                      | mL/cm H <sub>2</sub> 0 | $0.70 \pm 0.03$ | $0.66 \pm 0.03$ | 0.69 ± 0.03                                                               | 0.64 ± 0.02       | $0.74 \pm 0.05$ | $0.79 \pm 0.05$   |
| CO Diffusing Capacity (DLCO)                      | mL/min/mm Hg           | 0.21 ± 0.01     | $0.21 \pm 0.01$ | 0.21 ± 0.01                                                               | 0.18 ± 0.02       | 0.21 ± 0.01     | 0.21 ± 0.01       |
| DLCO/Lung Volume                                  | DLCO/mL                | 0.018 ± 0.001   | 0.019 ± 0.001   | 0.018 ± 0.001                                                             | $0.016 \pm 0.001$ | 0.019 \$ 0.001  | $0.018 \pm 0.001$ |
| DLCO/kg Body Weight                               | DLCO/kg                | 0.92 ± 0.03     | $0.92 \pm 0.02$ | 0.93 ± 0.03                                                               | 0.83 ± 0.02       | 0.86 ± 0.03     | 0.89 ± 0.03       |
| Forced Vital Capacity<br>Exhaled in O.1 Second    | percent                | 70.8 ± 1.3      | 69.4 ± 2.3      | 67.4 ± 2.4                                                                | 72.7 * 1.6        | 71.4 ± 1.5      | 70.8 ± 1.3        |
| Mean Midexpiratory Flow (MMEF)                    | mL/sec                 | 78.3 ± 3.2      | 76.4 ± 4.5      | 72.4 ± 4.9                                                                | 78.1 ± 2.3        | 80.3 ± 4.6      | 81.9 ± 3.8        |
| MMEF/Forced Vital Capacity                        | mL/sec/mL              | 6.9 ± 0.3       | 6.8 ± 0.4       | 6.5 ± 0.5                                                                 | 7.4 ± 0.3         | 7.0 ± 0.3       | 7.0 ± 0.2         |
| Slope of Phase III of<br>Single-Breath N2 Washout | percent N2/mL          | 75.7 ± 5.6      | 82.6 ± 5.8      | 79.4 ± 4.6                                                                | 81.4 ± 4.9        | 67.9 ± 3.4      | 65.6 ± 4.3        |
|                                                   |                        |                 |                 |                                                                           |                   |                 |                   |

Table I-13 Pulmonary Function Results for Rats in Phase III, Parts 1 and 2 (End of Exposure) (Values are Mean  $\pm$  SE; N = 16)

| Parameter                                                     | Units                      | 1.0           | Aerosol Concentration of Powdered Cu-Zn Alloy, mg/m <sup>3</sup> Phase III, Part 1 Phase III Pha | tion of Powdered | Cu-Zn Alloy, mg/m.<br>Phase III<br>O (Sham) | oy, mg/m³<br>Phase III, Part 2<br>ham) 3.2 |
|---------------------------------------------------------------|----------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------------------------------|--------------------------------------------|
| Total Lung Capacity (TLC)                                     | JW                         | 11.7 ± 0.4    | 12.0 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11.2 ± 0.5       | 11.4 ± 0.5                                  | 11.2 ± 0.4                                 |
| Vital Capacity/TLC                                            | percent                    | 93.3 ± 0.9    | 94.4 ± 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92.2 * 0.7       | 91.9 ± 1.1                                  | 92.7 ± 0.8                                 |
| Functional Residual Capacity                                  | mL                         | 2.1 ± 0.1     | 2.1 ± 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1 ± 0.1        | 2.2 \$ 0.1                                  | 2.1 ± 0.1                                  |
| Dynamic Lung Compliance                                       | mL/cm H <sub>2</sub> O     | 0.40 ± 0.02   | $0.47 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.37 \pm 0.03$  | $0.41 \pm 0.03$                             | 0.39 ± 0.03                                |
| Quasistatic Chord Compliance                                  | mL/cm H2O                  | 0.71 ± 0.03   | $0.77 \pm 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.68 \$ 0.03     | 0.68 ± 0.03                                 | 0.68 ± 0.02                                |
| CO Diffusing Capacity (DLCO)                                  | mL/min/mm Hg               | 0.22 ± 0.01   | $0.25 \pm 0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20 \$ 0.01     | 0.25 ± 0.01                                 | $0.24 \pm 0.01$                            |
| DLCO/Lung Volume                                              | DLCO/mL                    | 0.018 ± 0.001 | 1 0.019 ± 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.016 ± 0.001    | 0.020 ± 0.001                               | 0.020 ± 0.001                              |
| DLCO/kg Body Weight                                           | DLCO/kg                    | 0.92 ± 0.04   | $0.97 \pm 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.80 \$ 0.03     | 0.96 ± 0.03                                 | 0.95 ± 0.03                                |
| Forced Vital Capacity<br>Exhaled in O.1 Second                | percent                    | 67.5 ± 2.2    | 64.6 ± 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 64.8 ± 2.5       | 73.1 ± 1.8                                  | 69.4 ± 2.2                                 |
| Mean Midexpiratory Flow (MMEF)                                | mL/sec                     | 73.8 ± 5.2    | 67.0 ± 3.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 63.6 ★ 5.0       | 73.7 * 2.0                                  | 69.6 ± 4.6                                 |
| MMEF/Forced Vital Capacity                                    | mL/sec/mL                  | 6.4 ± 0.4     | 5.7 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.9 ± 0.5        | 7.4 ± 0.4                                   | $6.7 \pm 0.4$                              |
| Slope of Phase III of<br>Single-Breath N <sub>2</sub> Washout | percent N <sub>2</sub> /mL | 67.4 ± 5.9    | 69.4 ± 8.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 69.4 ± 6.6       | 70.0 ± 5.4                                  | 69.6 ± 5.4                                 |

Pulmonary function Results for Rats in Phase III, Parts 1 and 2 (After 4-Week Recovery Period) (Values are Mean  $\pm$  SE; N = 16) Table I-14

| Parameter                                                     | Units                  |       | 0.            | Aerosol Col<br>Phase III,<br>3.2 | Concentra<br>II, Part 1<br>3.2 | tion of | Aerosol Concentration of Powdered Cu-Zn Alloy, mg/m <sup>3</sup><br>Phase III, Part 1 Plase III Plase III Part 1 Plase III Plase III Plase III Part 1 Plase III Pl | Cu-Zn A1 | Alloy, mg/m <sup>3</sup> Phase III, O (Sham) | 3<br>1. Part 2<br>3. | 2.            |
|---------------------------------------------------------------|------------------------|-------|---------------|----------------------------------|--------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------------------------------|----------------------|---------------|
| Total Lung Capacity (TLC)                                     | mL                     | 12.5  | ± 0.5         | 13.1                             | ± 0.7                          | 12.7    | ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 11.2     | ± 1.4                                        | 11.7                 | * 0.5         |
| Vital Capacity/TLC                                            | percent                | 88.9  | ≠ 0.9         | 88.9                             | € 0.0                          | 98.6    | ₹ 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93.1     | ₹ 0.8                                        | 92.0                 | <b>±</b> 0.8  |
| Functional Residual Capacity                                  | mL                     | 2.7   | ± 0.1         | 2.7                              | ± 0.1                          | 2.7     | <b>±</b> 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.1      | ± 0.1                                        | 2.3                  | <b>±</b> 0.1  |
| Dynamic Lung Compliance                                       | mL/cm H <sub>2</sub> O | 0.43  | ± 9.04        | 0.45                             | ₹ 0.05                         | 0.40    | ± 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.39     | ₹ 0.03                                       | 0.43                 | ± 0.03        |
| Quasistatic Chord Compliance                                  | mL/cm H <sub>2</sub> 0 | 0.75  | ± 0.03        | 0.77                             | <b>±</b> 0.04                  | 0.78    | <b>±</b> 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.68     | <b>±</b> 0.02                                | 0.70                 | <b>±</b> 0.02 |
| CO Diffusing Capacity (DLCO)                                  | mL/min/mm Hg           | 0.26  | <b>±</b> 0.02 | 0.26                             | ≠ 0.02                         | 0.25    | <b>±</b> 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.24     | <b>±</b> 0.02                                | 0.24                 | ± 0.01        |
| DLCO/Lung Volume                                              | DLCO/mL                | 0.021 | 0.021 ± 0.001 | 0.019                            | 0.019 ± 0.001                  | 0.020   | 0.020 ± 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.019    | 0.019 ± 0.001                                | 0.019                | 0.019 # 0.001 |
| OLCO/kg Body Weight                                           | DLCO/kg                | 0.88  | <b>₹</b> 0.06 | 0.74                             | 0.0€                           | 0.84    | 0.84 ± 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.88     | 0.88 ± 0.03                                  | 0.91                 | 0.91 ± 0.03   |
| Forced Vital Capacity<br>Exhaled in O.l Second                | percent                | 67.9  | 1.7           | 65.4                             | ± 2.4                          | 70.8    | ± 1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.8     | ± 2.5                                        | 65.5                 | ± 2.8         |
| Mean Midexpiratory Flow (MMEF)                                | mL/sec                 | 77.7  | ± 2.7         | 77.2                             | ± 5 8                          | 84.7    | ± 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65.8     | ± 4.7                                        | 64.8                 | € 6.0         |
| MMEF/Forced Vital Capacity                                    | mL/sec/mL              | 6.4   | ± 0.3         | 6.1                              | ± 0.5                          | 7.0     | ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.5      | ± 0.5                                        | 6.0                  | ± 0.5         |
| Slope of Phase III of<br>Single-Breath N <sub>2</sub> Washout | percent N2/mL          | 63.2  | ± 5.4         | 9.09                             | ± 6.8                          | 57.0    | ± 4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65.0     | ± 4.5                                        | 66.8                 | <b>*</b> 3.6  |
|                                                               |                        |       |               |                                  |                                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                                              |                      |               |

Table I-15

Summary of Respiratory Tract Lesions in F344/N Rats
After 13-Week Exposure to Aerosols of Cu-Zn Alloy Powder
(End of Exposure)

|                     | Phas             | e III, Pa | rt 1  | Pha  | se III. Pa | art 2 |
|---------------------|------------------|-----------|-------|------|------------|-------|
| Lesion              | <u>1.0ª</u>      | 3.2       | _10_  | Sham | 0.32       | 3.2   |
| Nasal Epithelium    | 3/22b            | 3/22      | 15/22 | 0    | 0          | 3/22  |
| Atrophy             | (1) <sup>c</sup> | (1)       | (1.2) |      |            | (1)   |
| Alveolar Macrophage | 0                | 14/22     | 18/22 | 1/22 | 0          | 10/22 |
| Hyperplasia         |                  | (1)       | (1.4) | (1)  |            | (1)   |
| Type II Pneumocyte  | 0                | 7/22      | 17/22 | 0    | 0          | 5/22  |
| Hyperplasia         |                  | (1)       | (1.2) |      |            | (1)   |
| Alveolitis          | 0                | 7/22      | 18/22 | 0    | 0          | 4/22  |
|                     |                  | (1)       | (1.4) |      |            | (1)   |

a Concentration of exposure atmosphere of Cu-Zn alloy powder,  $mg/m^3$ .

bFraction of rats with lesion.

CAverage severity score for animals with induced lesions: 0 = no changes relative to normal, lesion not present; l = slight degree of changes, or small amount present, mild response; 2 = moderate, median, or middle severity or amount; 3 = marked severity or degree of changes, large amount present.

Table I-16

Summary of Respiratory Tract Lesions in F344/N Rats
After 4-Week Recovery Period Following Exposure to
Aerosols of Cu-Zn Alloy Powder (After Recovery)

|                                    | Pha                    | se III. Pa               | irt I         | Phas        | <u>e III. Par</u> | t 2         |
|------------------------------------|------------------------|--------------------------|---------------|-------------|-------------------|-------------|
| Lesion                             | <u>1.0<sup>a</sup></u> | 3.2                      | _10           | <u>Sham</u> | 0.32              | 3.2         |
| Nasal Epithelium<br>Atrophy        | Ор                     | 1/21<br>(1) <sup>c</sup> | 7/22<br>(1.4) | 0           | 0                 | 0           |
| Alveolar Macrophage<br>Hyperplasia | 0                      | 5/21<br>(1)              | 22/22         | 3/22<br>(1) | 1/22              | 5/22<br>(1) |
| Type II Pneumocyte<br>Hyperplasia  | 1/22<br>(1)            | 4/21<br>(1)              | 22/22         | 0           | 1/22              | 4/22<br>(1) |
| Alveolitis                         | 0                      | 0                        | 0             | 0           | 1/22              | 1/22        |

aConcentration of exposure atmosphere of Cu-Zn alloy powder, mg/m<sup>3</sup>.

bFraction of rats with lesions.

<sup>&</sup>lt;sup>C</sup>Average severity score for animals with induced lesions: defined in Table I-15.

Table I-17

Summary Results for Statistical<sup>a</sup> Comparisons for Endpoint Evaluations at the End of Exposure and After a 4-Week Recovery Period for F344/N Rats Exposed to 3.2 mg Cu- $2n/m^3$  in Phase III, Parts 1 and 2

|                                                |                |       |    | End of | f Exposure | ا ا  | S     | Sacrifice | e Time |    | After | r Recovery | ح  |       | İ        |
|------------------------------------------------|----------------|-------|----|--------|------------|------|-------|-----------|--------|----|-------|------------|----|-------|----------|
| Evaluation                                     | Q <sub>N</sub> | Part  | -  |        |            | rt 2 |       | Sic       | Par    | -  |       | P          | t  |       | Sig      |
| B-Glucuronidase in BALF, mIU                   | 12             | 1.84  | #  | 0.23   | 1.39       | #    | 0.22  | NS        | 1.79   | 44 | 0.26  | 1.11       | ++ | 0.13  | NS       |
| Alkaline Phosphatase in BALF, mIU              | 12             | 469   | #  | 39     | 387        | +    | 38    | NS        | 293    | 44 | 18    | 215        | #  | 17    | SN S     |
| Lactate Dehydrogenase in BALF, mIU             | 12             | 1658  | +  | 165    | 175        | +    | 63    | 0.01      | 827    | +4 | 44    | 406        | #  | 30    | 0.02     |
| Total Protein in BALF, mg                      | 12             | 1.87  | H  | 0.10   | 1.54       | ++   | 0.12  | NS        | 1.04   | 44 | 0.14  | 1.34       | #  | 0.11  | NS       |
| Fotal Cells in BALF x $10^{-6}$                | 12             | 1.44  | #  | 91.0   | 1.26       | н    | 0.13  | NS        | 1.26   |    | 0.14  | 0.89       | #  | 0.05  | SN       |
| Neutrophils in BALF, Percent                   | 12             | 4.48  | #  | 0.70   | 2.03       | #    | 0.56  | NS        | 0.59   |    | 0.24  | 0.33       | #  | 0.11  | NS.      |
| Neutrophils in BALF, Total x $10^{-6}$         | 12             | 090.0 | H  | 0.009  | 0.027      | #    | 0.008 | NS        | 0.007  |    | 0.002 | 0.00       | #  | 0.001 | NS       |
| Lymphocytes in BALF, Percent                   | 12             | 9.5   | H  | 1.3    | 10.5       | #    | 6.0   | NS        | 12.0   |    | 1.4   | 8.2        | #  | 9.0   | NS       |
| Lymphocytes in BALF, Total $	imes$ $10^{-6}$   | 12             | 0.13  | H  | 0.02   | 0.14       | #    | 0.05  | NS        | 0.15   |    | 0.03  | 0.07       | #  | 0.01  | SN       |
| Macrophages in BALF, Percent                   | 12             | 85.8  | #  | 6.0    | 87.3       | #    | 1.0   | SN        | 87.2   |    | 1.4   | 91.5       | #  | 9.0   | NS       |
| Macrophages in BALF, Total $	imes$ $10^{-6}$   | 12             | 1.25  | +1 | 0.15   | 1.10       | #    | 0.08  | NS        | 1.11   |    | 0.12  | 0.82       | H  | 0.05  | NS<br>NS |
| Collagen in BALF, µg/g Control Lung            | 70             | 59.8  | #  | 4.2    | 55.1       | #    | 4.6   | NS        | 64.1   |    | 3.6   | 44.9       | #  | 2.2   | 0.01     |
| Collagen in BALF, µg/kg Body Weight            | 0              | 288.3 | #  | 23.7   | 264.4      | #1   | 56.9  | SN        | 281.4  |    | 17.9  | 188.7      | #  | 14.1  | 0.05     |
| Total Lung Collagen, mg/g Control Lung         | 10             | 18.1  | H  | 0.5    | 19.3       | #    | 1.0   | NS        |        |    |       |            |    |       |          |
| Total Lung Collagen, mg/kg Body Weight         | 0              | 88    | #  | m      | 16         | ++   | 2     | NS        |        |    |       |            |    |       |          |
| Total Lymphoid Cells, x 10 <sup>-6</sup>       | 15             | 15.9  | #  | 5.6    | 15.3       | #    | 1.5   | SI        |        | #  | 0.7   |            | #  | 1.3   | SN       |
| Antibody-Forming Cells per Million Lymphocytes | 15             | 887   | H  | 133    | 346        | #    | 83    | 0.01      | 394    | #  | ± 144 | 493        | #  | ± 131 | SN       |
| Total Antibody-Forming Cells                   | 15             | 14650 | #  | 77.2   | 5569       |      | 340   | 0.01      |        | #  | 92    |            | #  | 1850  | Ş        |
| RBC Phagocytized per 100 Macrophages           | 12             | 331   | #  | 12     | 467        | #1   | 56    | 0.01      |        | #1 | 39    |            | #1 | 31    | S.       |
| Percent of Macrophages that Phagocytized RBC   | 15             | 67.3  | #  | 2.5    | 9.92       | #    | 2.1   | NS        |        | #  | 2.8   | 85.6       | #  | 2.2   | NS       |

Table I-17 (Cont.)

Summary Results for Statistical<sup>a</sup> Comparisons for Endpoint Evaluations at the End of Exposure and After a 4-Week Recovery Period for F344/N Rats Exposed to 3.2 mg Cu- $2n/m^3$  in Phase III, Parts 1 and

|                                                                  |          |         |      |                 |        | Sai          | Sacrifice Time | Тіте  |        |       |                |      | !     |      |
|------------------------------------------------------------------|----------|---------|------|-----------------|--------|--------------|----------------|-------|--------|-------|----------------|------|-------|------|
|                                                                  |          |         | End  | End of Exposure | re     |              |                |       |        | After | After Recovery | ح    |       |      |
| Evaluation                                                       | o<br>Z   | Part    |      | d               | Part 2 |              | Sig            | Pa    | Part 1 | ł     | Pa             | Part |       | Sig  |
| Total Lung Capacity (TLC), mL                                    | 16       | 12.0 #  | 0.5  | 11.3            | ± 0.   | 4            | NS             | 13.1  | #      | 1.0   | 11.7           | #    | 0.5   | NS   |
| Vital Capacity/ILC (VC/ILC), Percent                             | 16       | 94.6 ±  | 0.7  | 95.6            | ± 0.8  | <b>&amp;</b> | NS             | 0.68  | #      | 6.0   | 92.0           | +1   | 0.8   | SN   |
| Functional Residual Capacity (FRC), mL                           | 16       | 2.] ±   | 0.1  | 2.1             | ± 0.1  | _            | NS             | 2.7   | #      | ١.0   | 2.3            | #    | 0.1   | NS   |
| Dynamic Lung Compliance (CDYN), mL/cm H <sub>2</sub> D           | 16       | 0.47 ±  | 0.03 | 0.39            | #      | 0.03         | NS             | 0.45  | +      | 0.05  | 0.43           | ++   | 0.03  | SN   |
| Quasistatic Chord Compliance (CCORD), mL/cm H20                  | 16       | 0.77 ±  | 0.04 | 0.68            | +      | 0.02         | NS             | 0.11  | #      | 0.04  | 0.70           | +1   | 0.02  | NS   |
| CO Diffusing Capacity (DLCO), mL/min/mm Hg                       | 16       | 0.25 ±  | 0.05 | 0.24            | +      | 0.01         | NS             | 0.19  | #      | 10.0  | 0.24           | +    | 0.01  | 0.0  |
| OLCO/Lung Volume, OLCO/mL                                        | 16       | 0.020 ± | 0.00 | 1 0.022         | +      | 0.001        | NS             | 0.015 | #1     | 0.001 | 0.021          | #    | 0.001 | 0.01 |
| . DLCO/kg Body Weight, DLCO/kg                                   | 16       | 0.97 ±  | 0.03 | 0.95            | #      | 0.03         | NS             | 0.74  | +      | 90.0  | 16.0           | #    | 0.03  | NS   |
| Forced Vital Capacity Exhaled in 0.1 Second (FEV), Percent       | 16       | 64.6 ±  | 1.5  | 69.4            | ± 2.   | 2.2          | NS             | 65.4  | +      | 2.4   | 65.5           | +    | 2.8   | SN   |
| Mean Midexpiratory Flow (MMEF), mL/Second                        | 16       | €7.0    | 4.0  | 9.69            | ± 4.6  | 9            | NS             | 11.2  | #      | 5.8   | 64.8           | +    | 0.9   | NS   |
| MMEF/Forced Vital Capacity, mL/Second/mL                         | 16       | 5.7 ±   | 0.3  | 6.7             | ± 0.   | 0.4          | NS             | 6.1   | #      | 0.5   | 6.0            | #    | 0.5   | NS   |
| Slope of Phase III of Single-Breath N2<br>Washout, Percent N2/mL | 91       | 69.4 ±  | 8.3  | 9.69            | ±      | 4            | NS             | 9.09  | #      | 6.8   | 8.99           | #    | 3.6   | NS   |
| Nasal Epithelium Atrophy, Severity Score                         | 21 or 22 | 0.14 ±  | 0.08 | 0.14            | ++     | 80 0         | NS             | 0.05  | #      | 0.05  |                | 0    |       | NS   |
| Alveolar Macrophage Hyperplasia, Severity Score                  | 21 or 22 | 0.64 ±  | 0.11 | 0.46            | #      | 0.11         | NS             | 0.24  | #      | 01.0  | 0.23           | #    | 0.09  | NS   |
| Type II Pneumocyte Hyperplasia, Severity Score                   | 21 or 22 | 0.32 ±  | 0.10 | 0.23            | #      | 0.09         | NS             | 0.19  | #      | 0.09  | 0.18           | #    | 0.08  | NS   |
| Alveolitis, Severity Score                                       | 21 or 22 | 0.32 ±  | 0.10 | 0.18            | #      | 80.0         | NS             |       | 0      |       | 0.05           | #    | 0.05  | SN   |
|                                                                  |          |         |      |                 |        |              |                |       |        |       |                |      |       |      |

<sup>a</sup>The groups exposed to 3.2 mg Cu-Zn/m<sup>3</sup> in Parts 1 and 2 were compared using Student's t-test for unequal variances when Levene's test indicated the variances were not the same. When Levene's test did not show differences between the variances, Student's t-test for equal variances was used. Probability values were adjusted for multiple comparisons using Bonferroni's inequality.

 $b_N$  = The same for Phase III, Parts 1 and 2.

CThe values for lactate dehydrogenase (LDH) were higher for all groups in Phase III, Part I than they were for groups in Phase III, Part 2. The values for LDH in the sham-exposed rats in Phase III, Part 2 were in agreement with historical control values. Therefore, the LDH values for Phase III, Part 1 were considered invalid and were ignored in evaluating the combined results from Phase III, Parts 1 and 2.

 $d_N = 11$  at end of exposure; N = 12 after the recovery period.

## Continental Grain Co.

| CERTIFICATE O                           | FFEED      | ANALYSIS             |
|-----------------------------------------|------------|----------------------|
| PLANT NO 010 /738                       | _          |                      |
| FEED NO. 8728.00                        | _ CATEGOR  | V NO BLY             |
| ROUTINE SPE                             |            |                      |
| DATE MFG. 7/23/86 RI                    | JN OR BATC | HNO. PC7236-1        |
| ANALYSIS:                               |            | LAB NO. 5665         |
| GUAR   CALC.                            | 45544      |                      |
| PROT.                                   | 25.3       | Plane guid<br>1-513  |
| MOIST.                                  | 9.55       | 1-113                |
| ASH                                     | 6.90       |                      |
| FAT                                     | 4.51       |                      |
| FIBER                                   | 4.09       |                      |
| Ca                                      | 1.19       |                      |
| Р                                       | .92        |                      |
| SALT                                    | - 76       |                      |
| N.P.N                                   |            |                      |
| VITA                                    |            | AR S                 |
| THIAMINE                                |            | REMARKS              |
|                                         | <u></u>    | <b>5</b> -           |
| . * * * * * * * * * * * * * * * * * * * | DA<br>RE   | TE<br>CEIVED 1-24-86 |
| ANALVET                                 | DA         |                      |
| ANALYST                                 |            |                      |

RES-190

RECEIPT

ASSAY DONE
APPROVED BY RED LAB MGR: 1222\_
DISTRIBUTE TO ROB BEVERLY

27-061-80

---- ASSAY = R5665

DATE

AS FED

PLANT FEED TYPE MFG-DATE BATCH NO COMMENT------COMMENT 010 872800 SPECIAL 860723 PD7236-1

|                       |              | RESUL             | . T S |       |          |
|-----------------------|--------------|-------------------|-------|-------|----------|
| TEST                  | UNITS        | FED               | •     | C-VAL | GUAR-VAL |
| VITAMIN A<br>THIAMINE | IU/L<br>MG/L | 8998.000<br>4.400 | 0.000 |       |          |

178

| SPECIMEN              | SF          | PECIMEN I.D. NUMBER | ACCESSION NO         |
|-----------------------|-------------|---------------------|----------------------|
| R-5665                |             | 0390775             | <b>39</b> 0775       |
| . REFERRING CLIENT    | DATE COLLEC | TED TIME COLLECTED  | RECEIVED             |
| nerenning Client      | 07/24/86    | CLIENT LAB NO.      | 07/25/86<br>REPORTED |
| CONTINENTAL GRAIN CO. | 0775        | 00000               | 08/04/86             |
| TEST                  | RESULT      | REFERENCE LIMITS    | UNITS                |
| TOTAL FEED SCREEN     |             |                     |                      |
| ARSENIC               | 0. 55       |                     | PPM                  |
| CADMIUM               | 0. 35       |                     | PPM                  |
| LEAD                  | 0. 20       |                     | PPM                  |
| MERCURY               | <0.01       |                     | PPM                  |
| SELENIUM              | 0. 25       |                     | PPM                  |
| AFLATOXIN ±1          | <0.01       |                     | PPM                  |
| AFLATOXIN B2          | <0.01       |                     | PPM                  |
| AFLATOXIN G1          | <0.01       |                     | PPM                  |
| AFLATOXIN G2          | <0.01       |                     | PPM                  |
| ALDRIN                | <0.01       |                     | PPM                  |
| DIELDRIN              | <0.01       |                     | PPM                  |
| ENDRIN                | <0.01       |                     | PPM                  |
| HEPTACHLOR            | <0.01       |                     | PPM                  |
| HEPTACHLOREPOXIDE     | <0.01       |                     | PPM                  |
| LINDANE               | <0.01       |                     | PPM                  |
| CHLORDANE             | <0.01       |                     | PPM                  |
| DDT RELATED SUBS.     | <0.01       |                     | • • • • •            |
| TOXAPHENE             | <0.10       |                     | PPM                  |
| PCBS                  | <0.10       |                     | PPM                  |
| DIAZINON              | <0.10       |                     | PPM                  |
| DISULFATON            | <0.10       |                     | PPM                  |
| ETHION                | <0.10       |                     | PPM                  |
| MALATHION             | 0. 33       |                     | PPM                  |
| METHYL PARATHION      | <0.10       |                     | PPM                  |
| PARATHION             | <0.10       |                     | PPM                  |
| THIMET                | <0.10       |                     | PPM                  |
| THIODAN               | <0.10       |                     | PPM                  |
| TRITHION              | <0 10       |                     | PPM                  |
| CAROTENE              | 5. 91       |                     | PPM                  |
| NITROGEN, NITRATE     | 74          |                     | PPM                  |
| NITROGEN, NITRITE     | <1          |                     | PPM                  |
| STANDARD PLATE COUNT  | 34000       |                     |                      |
| COLIFORMS, FECAL      | . 0         |                     | COL/DL               |
| E. COLI               | Ö           | •                   | MPN                  |
| ВНА                   | <1          |                     | PPM                  |
| BHT                   | <1          |                     | FPM                  |
| NITROSAMINES          | <1          |                     | MCG/L                |
| ALPHA BHC             | <0.01       |                     | PPM                  |

| SPECIMEN                                                                                                   | SP                                                                                               | ECIMEN I.D. NUMBER |                | ACCESSION N                             |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------|----------------|-----------------------------------------|
| R-5665                                                                                                     |                                                                                                  | 0390775            |                | 390775                                  |
| . REFERRING CLIENT                                                                                         | DATE COLLECT                                                                                     | TED TIME           | COLLECTED      | RECEIVED                                |
|                                                                                                            | 07/24/86                                                                                         | CLIENT LAB NO.     | <u>0</u> 0: 00 | 07/25/86<br>REPORTED                    |
| CONTINENTAL GRAIN CO.                                                                                      | 0775                                                                                             | 00000              |                | 08/04/8                                 |
| TEST                                                                                                       | RESULT                                                                                           | REFERENC           | CE LIMITS      | UNITS                                   |
| BETA BHC DELTA BHC 4,4'DDE 4,4'DDD HCB MIREX METHOXYCHLOR TELODRIN RONNEL ETHYL PARATHION ALPHA ENDOSULFAN | <0. 01<br><0. 01<br><0. 01<br><0. 01<br><0. 10<br><0. 10<br><0. 10<br><0. 10<br><0. 10<br><0. 10 |                    |                | PPM |
| BETA ENDOSULFAN<br>ENDOSULFAN SULFATE                                                                      | <0.10<br><0.10                                                                                   |                    |                | PPM<br>PPM                              |

## XIII. LIST OF PUBLICATIONS None

| Name                           | Duty                                                                                    |
|--------------------------------|-----------------------------------------------------------------------------------------|
| Snipes, M. B., Ph.D.           | Principal investigator responsible for coordination of activities in the project.       |
| Bice, D. E., Ph.D.             | Immunology and phagocytosis evaluations.                                                |
| Burt, D. G., D.V.M.            | Small animal care operations.                                                           |
| Damon, E. G., Ph.D.            | Data management in Path/Tox Data Base System.                                           |
| Eidson, A. F., Ph.D.           | Coordinator for activities associated with analytical techniques used in this project.  |
| Hahn, F. F., D.V.M., Ph.D.     | Pathology evaluations.                                                                  |
| Harkema, J. R., D.V.M., Ph.D.  | Pathology evaluations.                                                                  |
| Harris, D. L., M.S.            | Quality Assurance                                                                       |
| Henderson, R. F., Ph.D.        | Biochemistry evaluations                                                                |
| Hobbs, C. H., D.V.M.           | Veterinarian for project and member of the ITRI Directorate in charge of this research. |
| Mauderly, J. L., D.V.M., Ph.D. | Respiratory function evaluations.                                                       |
| Pickrell, J. A., D.V.M., Ph.D. | Blood chemistry evaluations.                                                            |
| Seiler, F. A., Ph.D.           | Statistician for project.                                                               |
| Yeh, H. C., Ph.D.              | Responsible for aerosol science activities.                                             |

## XV. DISTRIBUTION LIST

| Number of Copies | Address                                                                                                                                                    |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6                | Project Manager for Smoke/Obscurants<br>Bldg. 324<br>ATTN: AMCPEO-CNS (Mr. Smalley)<br>Aberdeen Proving Ground, MD 21005-5001                              |
| 1                | Commander/Director Chemical Research, Development and Engineering Center ATTN: SMCCR-MUS-P (Mr. Young) Aberdeen Proving Ground, MD 21010-5423              |
| 1                | Commander/Director Chemical Research, Development and Engineering Center ATTN: SMCCR-RST-E (Mr. Weimer) Aberdeen Proving Ground, MD 21010-5423             |
| 1                | Officer-in-Charge<br>Naval Medical Research Institute<br>Toxicology Detachment<br>Building 433<br>Wright Patterson AFB, OH 45433                           |
| 1                | HQDA (DASG-PSP-O)<br>5111 Leesburg Pike<br>Falls Church, VA 22041-3258                                                                                     |
| 1                | Commander<br>U.S. Air Force Aerospace Medical<br>Research Laboratory<br>ATTN: Toxic Hazards Division<br>Bldg. 79, Area B<br>Wright Patterson AFB, OH 45433 |
| 1                | Commander U.S. Army Medical Research and Development Command ATTN: SGRD-PLC Fort Detrick Frederick, MD 21701-5012                                          |
| 1                | Commander<br>U.S. Army Health Services Command<br>Fort Sam<br>Houston, TX 78234-6000                                                                       |

| 1 | Commander U.S. Army Armament Munitions and Chemical Command ATTN: AMSMC-SG Rock Island, IL 61299-6000                     |
|---|---------------------------------------------------------------------------------------------------------------------------|
| 1 | Commander<br>U.S. Army Environmental Hygiene Agency<br>ATTN: HSHB-AD-L<br>Aberdeen Proving Ground, MD 21020-5422          |
| 1 | Commander<br>USACACDA<br>ATTN: ATZL-CAM<br>Fort Leavenworth, KS 66027                                                     |
| 1 | Commander<br>U.S. Army Environmental Hygiene Agency<br>ATTN: HSHB-OA<br>Aberdeen Proving Ground, MD 21010-5422            |
| 1 | Commander U.S. Army Training and Doctrine Command ATTN: ATMD Fort Monroe, VA 23651-5000                                   |
| 1 | Commander<br>U.S. Army Forces Command<br>ATTN: AFMD<br>Fort McPherson, GA 30330                                           |
| 1 | Commanding Officer<br>Naval Weapons Support Center<br>ATTN: Code 5601 (D. Haas)<br>Crane, IN 47522                        |
| 1 | HQ U.S. Army Material Command<br>ATTN: AMCSG-S<br>5001 Eisenhower Ave.<br>Alexandria, VA 22333-5001                       |
| 1 | Commanding Officer<br>Naval Weapons Support Center<br>ATTN: Code 5063 (Dr. Kennedy)<br>Crane, IN 47522                    |
| 8 | Commander U.S. Army Biomedical Research and Development Laboratory ATTN: SGRD-UBZ-C Fort Detrick Frederick, MD 21701-5010 |

| 1 | U.S. Army Medical Research and<br>Development Command<br>ATTN: SGRD-RMI-S<br>Fort Detrick<br>Frederick, MD 21701-5012               |
|---|-------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Defense Technical Information Center<br>ATTN: DTIC-DDA<br>Cameron Station<br>Alexandria, VA 22314                                   |
| 1 | Dean, School of Medicine<br>Uniformed Services University of the<br>Health Sciences<br>4301 Jones Bridge Road<br>Bethesda, MD 20014 |