

Results

- Block Graph 1
- Block Graph 2
- Block Graph 3
- Block Graph 4
- Block Graph 5

Formulation

- Minimize the packing area:
 - Assume that one dimension W is fixed.
 - Minimize the other dimension Y.
- Need to have constraints so that blocks do not overlap.
- Associate each block B_i with 4 variables:
 - x_i and y_i: coordinates of its lower left corner.
 - w_i and h_i: width and height.

Non-overlapping Constraints

For two non-overlapping blocks B_i and B_j, at least one of the following four linear constraints must be satisfied:

(1)
$$x_i + w_i \le x_j$$
 if B_i is to the left of B_j
or (2) $x_i - w_j \ge x_j$ if B_i is to the right of B_j
or (3) $y_i + h_i \le y_j$ if B_i is below B_j
or (4) $y_i - h_j \ge y_j$ if B_i is above B_j

$$\begin{array}{c|cccc}
h_i & B_i & h_j & B_j \\
(x_i, y_i) & W_i & (x_i, y_i) & W_i
\end{array}$$

Non-overlapping Constraints (hard blocks)

• Use integer (0 or 1) variables x_{ii} and y_{ii}:

$$x_{ii}=0$$
 and $y_{ii}=0$ if (1) is true.

$$x_{ii}=0$$
 and $y_{ii}=1$ if (2) is true.

$$x_{ii}=1$$
 and $y_{ii}=0$ if (3) is true.

$$x_{ij}=1$$
 and $y_{ij}=1$ if (4) is true.

 Let W and H be upper bounds on the total width and height. Non-overlapping constraints:

(1')
$$x_i + w_i \le x_j + W(x_{ij} + y_{ij})$$

(2') $x_i - w_j \ge x_j - W(1 + x_{ij} - y_{ij})$
(3') $y_i + h_i \le y_j + H(1 - x_{ij} + y_{ij})$
(4') $y_i - h_j \ge y_j - H(2 - x_{ij} - y_{ij})$

Min.	Y	
s.t.	$0 \le x_i, x_i + w_i \le W$	$1 \le i \le n$
	$0 \le y_i, y_i + h_i \le Y$	$1 \le i \le n$
	$x_i + w_i \le x_j + W(x_{ij} + y_{ij})$	$1 \le i < j \le n$
	$x_i - w_j \ge x_j - W(1 + x_{ij} - y_{ij})$	$1 \le i < j \le n$
	$y_i + h_i \le y_j + H(1 - x_{ij} + y_{ij})$	$1 \le i < j \le n$
	$y_i - h_j \ge y_j - H(2 - x_{ij} - y_{ij})$	$1 \le i < j \le n$
	$x_{ij} = 0 \text{ or } 1$	$1 \le i < j \le n$
	$y_{ij} = 0 \text{ or } 1$	$1 \le i < j \le n$

.

Block Graph 1

Block Area Info 1

```
num_blocks 2
block_1 1
block_1 width 4 height 1 area 4
block_2 1
block_2 width 3 height 2 area 6
```

- Two hard blocks.
- We decreases width from 7 to 2 and see how minimized height changes.

Width = $7 \rightarrow Y = 2$

Width = 6, 5, $4 \rightarrow Y = 3$

Width =
$$2 \rightarrow Y = 7$$

Block Graph 2

Block Area Info 2

```
num_blocks 3
block_1 1
block_1 width 4 height 1 area 4
block_2 1
block_2 width 3 height 2 area 6
block_3 1
block_3 width 1 height 2 area 2
```

- Three hard blocks
- We decreases width from 8 to 2 and see how minimized height changes.

Width = $7 \rightarrow Y = 2$

Width = 6, 5, $4 \rightarrow Y = 3$

Width = $3 \rightarrow Y = 4$

Width = $2 \rightarrow Y = 7$