Amendments to the Specification:

Please amend the specification as follows:

On page 41, please replace the paragraph that starts on line 15 with the word 'Foam' and ends on page 42, line 22 with the word 'megards' with the following amended paragraph:

-- Foam samples containing embedded thermoplastic filaments were prepared by a continuous extrusion which was carried out using a specially designed co-extrusion die as disclosed in a U.S. Patent Application filed July 30, 1999, entitled POLYMERIC ARTICLES HAVING EMBEDDED PHASES, having the following named inventors: Scott G. Norquist, Dennis L. Krueger, Alan J. Sipinen, Robert H. Menzies, Thomas P. Hanschen, Ronald P. Leseman, Sharon N. Mitchell, James C. Nygard, Victor P. Thalacker and Jan Ockeloen, being assigned to the same assignee as the present application, and having an Attorney Docket number of 54324USA4A, No. 6,447,875 which is incorporated herein by reference in its entirety. A schematic diagram of these samples are shown in Fig. 4. The continuous foam matrix consisted of Hot Melt Composition 1 with IOTG concentration of 0.1 wt% and 2 pph F100D expandable microspheres. The adhesive was added to zone 1 of a 34 mm LeistritzTM fully intermeshing, corotating twin screw extruder available from American Leistritz Extruder Corp., Somerville, New Jersey, fitted with a gear pump. The microspheres were added using a Gericke feeder (GMD-60) into zone 9 of the twin screw extruder. The temperature profile of the twin screw extruder was: zone 1 = 93°C (200°F) and zones 2-12 = 104°C (220°F). The screw configuration of this extruder had two kneading sections prior to microsphere addition and one kneading section after microsphere addition, while the remainder of the screw was conveying elements. The twin screw extruder had a screw speed of 100 rpm, a gear pump speed of 7 rpm, and a head pressure of 9.1 MPa (1320 psi) which provided flow rates of 13.6 kg/h (30 lb/hr). The filament material was a polyethylene-polyoctene copolymer (Engage™ 8200) that was fed to the coectrusion die using a 32 mm (1.25-inch) Killion™ single screw extruder (Model KTS-125 available from Davis-Standard Killion Systems, Cedar Grove, New Jersey) with a length to diameter ratio of 24:1 and three barrel zones that were operated with a temperature profile of zone 1-193 °C (380°F), zone 2-210°C (410°F) and zones 3 and 4-232°C (450°F). The screw had a Saxton mixing element with a compression ratio of 3:1. The 32 mm extruder was run at 10 rpm with a head pressure of

5.1 MPa (740 psi) which provided flowrates of .9 Kg/hr (2 lb/h). The filaments were co-extruded so as to be embedded into the foam using a 45 cm (18 in) wide CloerenTM two-layer multi-manifold die (available as Model 96-1502 from Cloeren Co., Orange, Texas) that had been modified. The vane had been hollowed out as shown in the previously incorporated case Attorney Docket No. 54324USA4A U.S. Patent No. 6,447,875, and the leading edge or tip had been cut off to make a vane manifold. The vane tip had circular orifices each having a diameter of 508 microns (20 mils) and separated by a space of 4.1 mm (0.160 in) and extended from the vane tip 2.5 mm (0.100 in) into the matrix flow. The die was operated at 193°C (380°F). The foam was cast onto a paper liner at a take-away speed of 1.2 m/min (4 fpm) resulting in an overall thickness of 625 microns (25 mils). The samples were subsequently electron beam cured using ESI Electrocure e-beam at an accelerating voltage of 300 keV and dosage of 6 megarads. --