Assignment 1. Computation of Elementary Function Values

Objective:

To gain practical experience in analyzing computational errors when calculating the values of elementary functions.

- 1. Based on the specified accuracy (ε = 10⁻⁶), solve the inverse problem of error theory for the given function $z(x) = \sqrt{(1+x^2)}(\sin(3x+0.1) + \cos(2x+0.3))$.
- 2. Develop a program to compute the values of the function z(x) over the specified interval [0.2, 0.3], h = 0.01. Where x = a(h) b, and $x_{i+1} = x_i + h$.

Note:

To compute the values of elementary functions, use their power series expansions (see Appendix 1).

For the square root (\sqrt{c}), use Heron's formula: $\rho_{i+1} = \frac{1}{2} \left(\rho_i + \frac{c}{\rho_i} \right)$, where ρ_0 is an approximate value of \sqrt{c} taken with an excess.

3. For the function $z(x) = f(\varphi(x), \psi(x), \omega(x), ...)$ (and all its component functions $\varphi(x), \psi(x), \omega(x), ...$), construct the table "**Final Results**" showing the computed values at the nodes $x = x_i$, i = 1,...,k, with the required precision.

Note:

 Δ_{ϕ} — the error estimate obtained in item 1;

 $\overline{\phi}(x_i)$ — the value of the function Δ_{ϕ} at point x_i , computed using the built-in programming language functions;

 $\overline{\Delta_{\phi}}$ — the absolute error of computing $\phi(x)$.

For error analysis, the "exact" solution is taken as $\overline{\phi}(x_i)$.

Analogous notation applies to the functions z(x), $\psi(x)$, $\omega(x)$, etc.

4. Evaluate the obtained results by comparing the function values computed using your program with those obtained using built-in functions.

Table "Final Results"

x	$\phi(x)$	Δ_ϕ	$\overline{\phi}(x)$	$\overline{\Delta_\phi}$	 z(x)	$\Delta_z=arepsilon$	$\overline{z}(x)$	$\overline{\Delta}_z$
$x_1=a$								
$oxed{x_{i+1} = x_i + h}$								
$x_k = b$								