VOLTAJE DE REFERENCIA

Guia de aprendizaje

GUIA DE APRENDIZAJE

Voltaje de Referencia

¿Qué es un circuito de referencia de voltaje y por qué te interesa?

Imagina que estás trabajando en un proyecto electrónico y necesitas que cierta parte del circuito siempre funcione con el mismo voltaje, sin importar si la batería está más o menos cargada o si la fuente de alimentación fluctúa. Un circuito de **referencia de voltaje** es la solución que garantiza un voltaje constante y preciso, esencial para el correcto funcionamiento de muchos dispositivos electrónicos.

En esta guía, te enseñaremos cómo implementar un sencillo y útil **circuito de referencia de voltaje** utilizando componentes básicos. Te explicaremos paso a paso para que puedas construirlo, entender cómo funciona y adaptarlo a tus necesidades.

¿Cómo funciona este circuito?

El circuito que vamos a construir está diseñado para proporcionar un **voltaje fijo de 5V**. Este voltaje es muy común en dispositivos como microcontroladores o sensores, que necesitan alimentarse de una fuente constante y precisa para evitar fallos.

Usaremos un **diodo regulador TL431**, un componente especial que se asegura de mantener un voltaje estable (en este caso, 2.5V) en su salida. Sin embargo, a veces 2.5V no son suficientes, y queremos **aumentar** ese voltaje a un nivel más útil, como 5V. Aquí es donde entra en juego un **amplificador operacional** (op-amp), que nos permite amplificar ese voltaje base de 2.5V a cualquier valor que deseemos (en nuestro caso, ¡5V!).

GUIA DE APRENDIZAJE

Voltaje de Referencia

¿Qué necesitas para construir este circuito?

Aquí tienes los principales componentes que utilizarás:

- Amplificador operacional (op-amp): Este se encargará de amplificar el voltaje de 2.5V a 5V.
- **Diodo regulador TL431:** Un pequeño pero poderoso componente que genera un voltaje de referencia de 2.5V.
- Resistencias R1 y R2 (1 k Ω cada una): Estas resistencias son clave para ajustar el voltaje de salida.(se utilizan iguales para obtener una ganancia de 2 como se verá mas adelante)
- Fuente de alimentación: Puede ser una fuente de 10V o cualquier otra que esté disponible.

Paso a paso: Entendiendo el circuito

1. El corazón del circuito: el diodo TL431

El **TL431** es el protagonista de nuestro circuito, entregando un voltaje base de **2.5V** en su salida. ¿Por qué esto es importante? Porque nos proporciona una base estable sobre la cual trabajar. Sabemos que siempre nos dará 2.5V sin importar pequeñas variaciones en la fuente de alimentación.

2. La magia del amplificador operacional

El siguiente paso es aumentar ese voltaje a **5V**, y lo hacemos con el **amplificador operacional**. Este dispositivo toma el voltaje de referencia de 2.5V y lo compara con un valor interno. Dependiendo de las resistencias que conectemos (en nuestro caso, R1 y R2), el op-amp amplificará el voltaje hasta llegar a un nivel deseado.

PIN CONNECTIONS

GUIA DE APRENDIZAJE

_____ Voltaje de Referencia

3. Las resistencias: Ajustando el voltaje de salida

Las resistencias R1 y R2 son como los "controladores" del amplificador. De acuerdo a su valor, podemos ajustar el voltaje de salida del circuito. Usando la fórmula:

$$V_o=2.5\,V\left(1+rac{R_1}{R_2}
ight)$$

Si seleccionamos R1=R2=1 k Ω la fórmula nos da un voltaje de salida de **5V**. Esto es justo lo que necesitamos para alimentar microcontroladores o sensores que funcionan a este voltaje.

4. Mediciones de Vo (Voltaje de salida)

Una vez armado el circuito, podrás medir el voltaje de salida VoV_oVo para ver si todo funciona correctamente. Por ejemplo, al alimentar el circuito con una fuente de 10V, obtendrás un **voltaje de salida de 5V**. Si reduces la alimentación a 4V, notarás que el voltaje de salida baja a **2.5V**, lo que indica que la amplificación depende también de la fuente de alimentación.

¿Por qué este circuito es valioso?

- **Estabilidad:** Garantiza que el voltaje de salida sea constante, sin importar las variaciones de la alimentación.
- **Precisión:** Es ideal para aplicaciones que requieren una referencia de voltaje muy precisa.
- **Facilidad de implementación:** Usando componentes sencillos y accesibles, puedes construir un circuito confiable en poco tiempo.

Este circuito es una excelente opción si estás buscando un diseño eficiente y preciso para tus proyectos electrónicos. Además, es una alternativa rentable frente a otras soluciones comerciales más costosas. ¡Con este diseño tendrás una fuente de voltaje que te ahorrará tiempo y evitará problemas en tus dispositivos!

Voltaje de Referencia.