F	2 dimensional flow matrix
	3 dimensional flow matrix
$f_{i,j,k}$	Flow on day i , time slot j and location k
nLoc	Number of locations where charging stations are located.
\$l\in {1, 2, L }	Layers of neural network, L total number of layers
x_i, y_i	i_{th} instance of input and output vector
$\begin{bmatrix} w_{j,i}^l \\ net_j^l \end{bmatrix}$	Weight between j_{th} neuron in layer l and i_{th} neuron in layer $l-1$
net_j^l	Net input to j_{th} neuron in layer l
O_i^{l-1}	Output of i_{th} neuron in layer $l-1$
f	Activation function
E	Error
$\delta w_{j,i}^l$	Incremental change in weight
η	Learning rate
p,q,r	Coordinates of flow matrix where traffic need to be predicted
l, n	Historical l and n time slots
\overline{m}	Spatial locations
S	Historical weeks
I, Y	Input and target output matrix
IO	number of elements in input or target output matrix
iter	Number of iterations
n_h^l	Number of neurons in hidden layer l

N	Number of charging requests
M	Number of charging stations
$\frac{l_j^c}{R_i^t}$	Location of j_{th} charging station
R_i^t	i_{th} PEV request made at time t
t_i	Time at which request i is generated
l_i	Location of PEV i when request is made
γ_i	Direction of travel for request i
s_i^{avg}	Average speed of PEV with request i
$SOC_i^{curr} \sim SOC_i^{min}, SOC_i^{req}$	Current, minimum, and required status of charge for PEV
r_i^{dc}	Rate of discharge for PEV i
d_i^{max}	Maximum distance a PEV can travel with current status of ch
au	Optimization interval
$ au_n$	Time slot at which PEV reaches j_{th} charging station
$egin{array}{c} au^w_{j,n} \ au^c_j \ au\{\mathrm{i,j}\} \end{array}$	Wait time at j_{th} charging station at time slot n
r_j^c	Charging rate of EVSE at charging station j
$T_{-}\{i,j\}$	Sum of travel time and wait time for PEV i at charging station
M_i	Set of potential charging stations for request R_i^t
M	Tuple containing every M_i
$ \begin{array}{c c} t_c^{i,j} \\ \hline N_a^i \end{array} $	Effective charging time of i_{th} request in j_{th} element of potentia
N_a^i	Assigned station to request i
S_a	Set of assigned station