

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁷ : C12N 9/00		A2	(11) International Publication Number: WO 00/18889 (43) International Publication Date: 6 April 2000 (06.04.00)
(21) International Application Number: PCT/US99/22231 (22) International Filing Date: 24 September 1999 (24.09.99)		(81) Designated States: CA, JP, MX, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Priority Data: 60/101,939 25 September 1998 (25.09.98) US		Published <i>Without international search report and to be republished upon receipt of that report.</i>	
(71) Applicant: CALGENE LLC [US/US]; 1920 Fifth Street, Davis, CA 95620 (US).			
(72) Inventors: LASSNER, Michael, W.; 721 Falcon Avenue, Davis, CA 95616 (US). EMIG, Robin, A.; 901 Sara Court, Vacaville, CA 95687 (US). RUEZINSKY, Diane, M.; 849 Bourn Drive, Woodland, CA 95776 (US). VAN EENENNAAM, Alison; 856 Burr Street, Davis, CA 95616 (US).			
(74) Agents: SCHWEDLER, Carl, J. et al.; Patent Dept. Central, Monsanto/G.D. Searle, P.O. Box 5110, Chicago, IL 60680-5110 (US).			

(54) Title: NOVEL PLANT ACYLTRANSFERASES**(57) Abstract**

By this invention, novel nucleic acid sequences encoding for acyltransferase related proteins are provided, wherein said acyltransferase-like protein is active in the transfer of a fatty acyl group from a fatty acyl donor to a fatty acyl acceptor. Also considered are amino acid and nucleic acid sequences obtainable from AT-like nucleic acid sequences and the use of such sequences to provide transgenic host cells capable of producing modified lipid content and composition.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

NOVEL PLANT ACYLTRANSFERASES

5

INTRODUCTION

This application claims the benefit of U.S. Provisional Application Serial No. 60/101,939 filed September 25, 1998.

10

Technical Field

The present invention is directed to nucleic acid and amino acid sequences and constructs, and methods related thereto.

15 Background

Through the development of plant genetic engineering techniques, it is now possible to produce transgenic varieties of plant species to provide plants which have novel and desirable characteristics. For example, it is now possible to genetically engineer plants for tolerance to environmental stresses, such as resistance to pathogens and tolerance to herbicides and to 20 improve the quality characteristics of the plant, for example improved fatty acid compositions. However, the number of useful nucleotide sequences for the engineering of such characteristics is thus far limited and the speed with which new useful nucleotide sequences for engineering new characteristics is slow.

The characterization of various acyltransferase proteins is useful for the further study 25 of plant fatty acid synthesis systems and for the development of novel and/or alternative oils sources. Studies of plant mechanisms may provide means to further enhance, control, modify, or otherwise alter the total fatty acyl composition of triglycerides and oils. Furthermore, the elucidation of the factor(s) critical to the natural production of fatty acids in 30 plants is desired, including the purification of such factors and the characterization of element(s) and/or cofactors which enhance the efficiency of the system. Of particular interest are the nucleic acid sequences of genes encoding proteins which may be useful for applications in genetic engineering.

SUMMARY OF THE INVENTION

5 The present invention provides nucleic acid encoding for amino acid sequences for a class of proteins which are related to acyltransferase proteins. Such proteins are referred to herein as acyltransferase related or acyltransferase like proteins.

By this invention, nucleic acid sequences encoding these acyltransferase related proteins may now be characterized with respect to enzyme activity. In particular,
10 identification and isolation of nucleic acid sequences encoding for acyltransferase related proteins from *Arabidopsis*, yeast, corn, and soybean are provided.

Thus, this invention encompasses acyltransferase related nucleic acid sequences and the corresponding amino acid sequences, and the use of these nucleic acid sequences in the preparation of oligonucleotides containing such acyltransferase related encoding sequences
15 for analysis and recovery of plant acyltransferase related gene sequences. The acyltransferase related encoding sequence may encode a complete or partial sequence depending upon the intended use. All or a portion of the genomic sequence, or cDNA sequence, is intended.

Of special interest are recombinant DNA constructs which provide for transcription or transcription and translation (expression) of the acyltransferase related sequences in host
20 cells. In particular, constructs which are capable of transcription or transcription and translation in plant host cells are preferred. For some applications a reduction in sequences encoding acyltransferase related sequences may be desired. Thus, recombinant constructs may be designed having the acyltransferase related sequences in a reverse orientation for expression of an anti-sense sequence or use of co-suppression, also known as "transwitch",
25 constructs may be useful. Such constructs may contain a variety of regulatory regions including transcriptional initiation regions obtained from genes preferentially expressed in plant seed tissue. For some uses, it may be desired to use the transcriptional and translational initiation regions of the acyltransferase related gene either with the acyltransferase related encoding sequence or to direct the transcription and translation of a heterologous sequence.

30 Also considered in this invention are the plants and seeds containing the constructs and polynucleotides of this invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 provides the 204 amino acid conserved sequence profile identified from 5 comparisons of glycerol-3-phosphate acyltransferase and various lysophosphatidic acid acyltransferase using PSI-BLAST.

Figure 2 provides an amino acid sequence alignment for the acyltransferase sequences. The alignment shown is of the regions of the protein extending from about 30 10 amino acids prior to the conserved H in the conserved sequence HXXXXD to 100 amino acids after, or downstream, of the P in the conserved PEG sequence motif of the acyltransferase-like sequences.

Figure 3 provides schematics showing the relationship of the identified acyltransferases. The relationships described are derived from an alignment of the regions of 15 the protein extending from about 30 amino acids prior to the conserved H in the conserved sequence HXXXXD to 100 amino acids after, or downstream, of the P in the conserved PEG sequence motif of the acyltransferase-like sequences. Figure 3A provide a phylogenetic tree showing the relationship of several acyltransferases. Figure 3B provides a table showing the percent similarities and percent divergence of the novel acyltransferases and known acyltransferases using the Clustal method with PAM250 residue weight table.

20

DETAILED DESCRIPTION OF THE INVENTION

In accordance with the subject invention, nucleotide sequences are provided which are 25 capable of coding sequences of amino acids, such as, a protein, polypeptide or peptide, which are related to nucleic acid sequences encoding acyltransferase proteins, referred to herein as acyltransferase-like or acyltransferase related. The novel nucleic acid sequences find use in the preparation of constructs to direct their expression in a host cell. Furthermore, the novel nucleic acid sequences may find use in the preparation of plant expression constructs to 30 modify the fatty acid composition of a plant cell.

In one embodiment of the present invention, nucleic acid sequences, also referred to herein as polynucleotides, are identified from databases which are related to acyltransferases.

Isolated proteins, Polypeptides and Polynucleotides

A first aspect of the present invention relates to isolated acyltransferase polynucleotides. The polynucleotide sequences of the present invention include isolated polynucleotides that encode the polypeptides of the invention having a deduced amino acid sequence selected from the group of sequences set forth in the Sequence Listing and to other polynucleotide sequences closely related to such sequences and variants thereof.

The invention provides a polynucleotide sequence identical over its entire length to each coding sequence as set forth in the Sequence Listing. The invention also provides the coding sequence for the mature polypeptide or a fragment thereof, as well as the coding sequence for the mature polypeptide or a fragment thereof in a reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, pro-, or prepro- protein sequence. The polynucleotide can also include non-coding sequences, including for example, but not limited to, non-coding 5' and 3' sequences, such as the transcribed, untranslated sequences, termination signals, ribosome binding sites, sequences that stabilize mRNA, introns, polyadenylation signals, and additional coding sequence that encodes additional amino acids. For example, a marker sequence can be included to facilitate the purification of the fused polypeptide. Polynucleotides of the present invention also include polynucleotides comprising a structural gene and the naturally associated sequences that control gene expression.

The invention also includes polynucleotides of the formula:

wherein, at the 5' end, X is hydrogen, and at the 3' end, Y is hydrogen or a metal, R₁ and R₃ are any nucleic acid residue, n is an integer between 1 and 3000, preferably between 1 and 1000 and R₂ is a nucleic acid sequence of the invention, particularly a nucleic acid sequence selected from the group set forth in the Sequence Listing and preferably SEQ ID NOs: 1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 22, and 226-233. In the formula, R₂ is oriented so that its 5' end residue is at the left, bound to R₁, and its 3' end residue is at the right, bound to R₃. Any stretch of nucleic acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.

The invention also relates to variants of the polynucleotides described herein that encode for variants of the polypeptides of the invention. Variants that are fragments of the polynucleotides of the invention can be used to synthesize full-length polynucleotides of the

invention. Preferred embodiments are polynucleotides encoding polypeptide variants wherein 5 to 10, 1 to 5, 1 to 3, 2, 1 or no amino acid residues of a polypeptide sequence of the invention are substituted, added or deleted, in any combination. Particularly preferred are substitutions, additions, and deletions that are silent such that they do not alter the properties 5 or activities of the polynucleotide or polypeptide.

Nucleotide sequences encoding acyltransferases may be obtained from natural sources or be partially or wholly artificially synthesized. They may directly correspond to an acyltransferase endogenous to a natural source or contain modified amino acid sequences, such as sequences which have been mutated, truncated, increased or the like. Acyltransferases 10 may be obtained by a variety of methods, including but not limited to, partial or homogenous purification of protein extracts, protein modeling, nucleic acid probes, antibody preparations and sequence comparisons. Typically an acyltransferase will be derived in whole or in part from a natural source. A natural source includes, but is not limited to, prokaryotic and eukaryotic sources, including, bacteria, yeasts, plants, including algae, and the like.

15 Of special interest are acyltransferases which are obtainable from eukaryotic sources, including those which are obtained, from plants, or from acyltransferases which are obtainable through the use of these sequences. "Obtainable" refers to those acyltransferases which have sufficiently similar sequences to that of the sequences provided herein to provide a biologically active protein of the present invention.

20 Further preferred embodiments of the invention that are at least 50%, 60%, or 70% identical over their entire length to a polynucleotide encoding a polypeptide of the invention, and polynucleotides that are complementary to such polynucleotides. More preferable are polynucleotides that comprise a region that is at least 80% identical over its entire length to a polynucleotide encoding a polypeptide of the invention and polynucleotides that are 25 complementary thereto. In this regard, polynucleotides at least 90% identical over their entire length are particularly preferred, those at least 95% identical are especially preferred. Further, those with at least 97% identity are highly preferred and those with at least 98% and 99% identity are particularly highly preferred, with those at least 99% being the most highly preferred.

30 Preferred embodiments are polynucleotides that encode polypeptides that retain substantially the same biological function or activity as the mature polypeptides encoded by the polynucleotides set forth in the Sequence Listing.

The invention further relates to polynucleotides that hybridize to the above-described sequences. In particular, the invention relates to polynucleotides that hybridize under stringent conditions to the above-described polynucleotides. As used herein, the terms "stringent conditions" and "stringent hybridization conditions" mean that hybridization will generally occur if there is at least 95% and preferably at least 97% identity between the sequences. An example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising 50% formamide, 5x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/milliliter denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1x SSC at approximately 65°C. Other hybridization and wash conditions are well known and are exemplified in Sambrook, *et al.*, Molecular Cloning: A Laboratory Manual, Second Edition, cold Spring Harbor, NY (1989), particularly Chapter 11.

The invention also provides a polynucleotide consisting essentially of a polynucleotide sequence obtainable by screening an appropriate library containing the complete gene for a polynucleotide sequence set forth in the Sequence Listing under stringent hybridization conditions with a probe having the sequence of said polynucleotide sequence or a fragment thereof; and isolating said polynucleotide sequence. Fragments useful for obtaining such a polynucleotide include, for example, probes and primers as described herein.

As discussed herein regarding polynucleotide assays of the invention, for example, polynucleotides of the invention can be used as a hybridization probe for RNA, cDNA, or genomic DNA to isolate full length cDNAs or genomic clones encoding a polypeptide and to isolate cDNA or genomic clones of other genes that have a high sequence similarity to a polynucleotide set forth in the Sequence Listing. Such probes will generally comprise at least 15 bases. Preferably such probes will have at least 30 bases and can have at least 50 bases. Particularly preferred probes will have between 30 bases and 50 bases, inclusive.

The coding region of each gene that comprises or is comprised by a polynucleotide sequence set forth in the Sequence Listing may be isolated by screening using a DNA sequence provided in the Sequence Listing to synthesize an oligonucleotide probe. A labeled oligonucleotide having a sequence complementary to that of a gene of the invention is then used to screen a library of cDNA, genomic DNA or mRNA to identify members of the library which hybridize to the probe. For example, synthetic oligonucleotides are prepared which correspond to the N-terminal sequence of the polypeptide. The partial sequences so prepared can then be used as probes to obtain acyltransferase clones from a gene library prepared from

a cell source of interest. Alternatively, where oligonucleotides of low degeneracy can be prepared from particular peptides, such probes may be used directly to screen gene libraries for gene sequences. In particular, screening of cDNA libraries in phage vectors is useful in such methods due to lower levels of background hybridization.

5 Typically, a sequence obtainable from the use of nucleic acid probes will show 60-70% sequence identity between the target acyltransferase sequence and the encoding sequence used as a probe. However, lengthy sequences with as little as 50-60% sequence identity may also be obtained. The nucleic acid probes may be a lengthy fragment of the nucleic acid sequence, or may also be a shorter, oligonucleotide probe. When longer nucleic acid
10 fragments are employed as probes (greater than about 100 bp), one may screen at lower stringencies in order to obtain sequences from the target sample which have 20-50% deviation (i.e., 50-80% sequence homology) from the sequences used as probe.
Oligonucleotide probes can be considerably shorter than the entire nucleic acid sequence
encoding an acyltransferase enzyme, but should be at least about 10, preferably at least about
15 15, and more preferably at least about 20 nucleotides. A higher degree of sequence identity is desired when shorter regions are used as opposed to longer regions. It may thus be desirable to identify regions of highly conserved amino acid sequence to design oligonucleotide probes
for detecting and recovering other related genes. Shorter probes are often particularly useful
20 for polymerase chain reactions (PCR), especially when highly conserved sequences can be identified. (See, Gould, *et al.*, *PNAS USA* (1989) 86:1934-1938).

The skilled artisan will appreciate that, in many cases, an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide is truncated with respect to the 5' terminus of the cDNA. This is a consequence of the reverse transcriptase, an enzyme with low 'processivity' (a measure of the ability of the enzyme to remain attached to the
25 template during the polymerization reaction) employed during the first strand cDNA synthesis.

There are several methods available and are well known to the skilled artisan to obtain full-length cDNAs, or extend short cDNAs, for example those based on the method of Rapid Amplification of cDNA Ends (RACE) (see, for example, Frohman *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:8998-9002). Recent modifications of the technique, exemplified by the Marathon™ technology (Clontech Laboratories, Inc.) for example, have significantly simplified obtaining full-length cDNA sequences.

Another aspect of the present invention relates to isolated acyltransferase polypeptides. Such polypeptides include isolated polypeptides set forth in the Sequence Listing, as well as polypeptides and fragments thereof, particularly those polypeptides which exhibit acyltransferase activity and also those polypeptides which have at least 50%, 60% or 5 70% identity, preferably at least 80% identity, more preferably at least 90% identity, and most preferably at least 95% identity to a polypeptide sequence selected from the group of sequences set forth in the Sequence Listing, and also include portions of such polypeptides, wherein such portion of the polypeptide preferably includes at least 30 amino acids and more preferably includes at least 50 amino acids.

10 "Identity", as is well understood in the art, is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences. In the art, "identity" also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as determined by the match between strings of such sequences. "Identity" can be readily calculated by known methods including, but not limited 15 to, those described in *Computational Molecular Biology*, Lesk, A.M., ed., Oxford University Press, New York (1988); *Biocomputing: Informatics and Genome Projects*, Smith, D.W., ed., Academic Press, New York, 1993; *Computer Analysis of Sequence Data, Part I*, Griffin, A.M. and Griffin, H.G., eds., Humana Press, New Jersey (1994); *Sequence Analysis in Molecular Biology*, von Heinje, G., Academic Press (1987); *Sequence Analysis Primer*, 20 Gribskov, M. and Devereux, J., eds., Stockton Press, New York (1991); and Carillo, H., and Lipman, D., *SIAM J Applied Math*, 48:1073 (1988). Methods to determine identity are designed to give the largest match between the sequences tested. Moreover, methods to determine identity are codified in publicly available programs. Computer programs which can be used to determine identity between two sequences include, but are not limited to, GCG 25 (Devereux, J., et al., *Nucleic Acids Research* 12(1):387 (1984); suite of five BLAST programs, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, *Trends in Biotechnology*, 12: 76-80 (1994); Birren, et al., *Genome Analysis, 1*: 543-559 (1997)). The BLAST X program is publicly available from NCBI and other sources 30 (BLAST Manual, Altschul, S., et al., NCBI NLM NIH, Bethesda, MD 20894; Altschul, S., et al., *J. Mol. Biol.*, 215:403-410 (1990)). The well known Smith Waterman algorithm can also be used to determine identity.

Parameters for polypeptide sequence comparison typically include the following:

Algorithm: Needleman and Wunsch, *J. Mol. Biol.* 48:443-453 (1970)

Comparison matrix: BLOSSUM62 from Hentikoff and Hentikoff, *Proc. Natl. Acad. Sci USA* 89:10915-10919 (1992)

5 Gap Penalty: 12

Gap Length Penalty: 4

A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison Wisconsin. The above parameters along with no penalty for end gap are the default parameters for peptide comparisons.

10 Parameters for polynucleotide sequence comparison include the following:

Algorithm: Needleman and Wunsch, *J. Mol. Biol.* 48:443-453 (1970)

Comparison matrix: matches = +10; mismatches = 0

Gap Penalty: 50

Gap Length Penalty: 3

15 A program which can be used with these parameters is publicly available as the "gap" program from Genetics Computer Group, Madison Wisconsin. The above parameters are the default parameters for nucleic acid comparisons.

The invention also includes polypeptides of the formula:

20 wherein, at the amino terminus, X is hydrogen, and at the carboxyl terminus, Y is hydrogen or a metal, R₁ and R₃ are any amino acid residue, n is an integer between 1 and 1000, and R₂ is an amino acid sequence of the invention, particularly an amino acid sequence selected from the group set forth in the Sequence Listing and preferably SEQ ID NOs: 2, 4, 6, 8, 11, 13, 15, 17, 19, 21, 23, and 218-225. In the formula, R₂ is oriented so that its amino terminal residue is at the left, bound to R₁, and its carboxy terminal residue is at the right, bound to R₃. Any stretch of amino acid residues denoted by either R group, where R is greater than 1, may be either a heteropolymer or a homopolymer, preferably a heteropolymer.

25 Polypeptides of the present invention include isolated polypeptides encoded by a polynucleotide comprising a sequence selected from the group of a sequence contained in SEQ ID NOs: 1, 3, 5, 7, 9, 10, 12, 14, 16, 18, 20, 22, and 226-233.

30 The polypeptides of the present invention can be mature protein or can be part of a fusion protein.

Fragments and variants of the polypeptides are also considered to be a part of the invention. A fragment is a variant polypeptide which has an amino acid sequence that is entirely the same as part but not all of the amino acid sequence of the previously described polypeptides. The fragments can be "free-standing" or comprised within a larger polypeptide of which the fragment forms a part or a region, most preferably as a single continuous region. Preferred fragments are biologically active fragments which are those fragments that mediate activities of the polypeptides of the invention, including those with similar activity or improved activity or with a decreased activity. Also included are those fragments that are antigenic or immunogenic in an animal, particularly a human.

10 Variants of the polypeptide also include polypeptides that vary from the sequences set forth in the Sequence Listing by conservative amino acid substitutions, substitution of a residue by another with like characteristics. In general, such substitutions are among Ala, Val, Leu and Ile; between Ser and Thr; between Asp and Glu; between Asn and Gln; between Lys and Arg; or between Phe and Tyr. Particularly preferred are variants in which 5 to 10; 1 to 5; 1 to 3 or one amino acid(s) are substituted, deleted, or added, in any combination.

15 Variants that are fragments of the polypeptides of the invention can be used to produce the corresponding full length polypeptide by peptide synthesis. Therefore, these variants can be used as intermediates for producing the full-length polypeptides of the invention.

20 The polynucleotides and polypeptides of the invention can be used, for example, in the transformation of various host cells, as further discussed herein.

25 The invention also provides polynucleotides that encode a polypeptide that is a mature protein plus additional amino or carboxyl-terminal amino acids, or amino acids within the mature polypeptide (for example, when the mature form of the protein has more than one polypeptide chain). Such sequences can, for example, play a role in the processing of a protein from a precursor to a mature form, allow protein transport, shorten or lengthen protein half-life, or facilitate manipulation of the protein in assays or production. It is contemplated that cellular enzymes can be used to remove any additional amino acids from the mature protein.

30 A precursor protein, having the mature form of the polypeptide fused to one or more prosequences may be an inactive form of the polypeptide. The inactive precursors generally are activated when the prosequences are removed. Some or all of the prosequences may be removed prior to activation. Such precursor protein are generally called proproteins.

The polynucleotide and polypeptide sequences can also be used to identify additional sequences which are homologous to the sequences of the present invention. The most preferable and convenient method is to store the sequence in a computer readable medium, for example, floppy disk, CD ROM, hard disk drives, external disk drives and DVD, and then to use the stored sequence to search a sequence database with well known searching tools.

5 Examples of public databases include the DNA Database of Japan (DDBJ)(<http://www.ddbj.nig.ac.jp/>); Genebank (<http://www.ncbi.nlm.nih.gov/web/Genbank/Index.html>); and the European Molecular Biology Laboratory Nucleic Acid Sequence Database (EMBL) (http://www.ebi.ac.uk/ebi_docs/embl_db.html). A number of different search algorithms are available to the skilled artisan, one example of which are the suite of programs referred to as BLAST programs. There are five implementations of BLAST, three designed for nucleotide sequences queries (BLASTN, BLASTX, and TBLASTX) and two designed for protein sequence queries (BLASTP and TBLASTN) (Coulson, *Trends in Biotechnology*, 12: 76-80 10 (1994); Birren, *et al.*, *Genome Analysis*, 1: 543-559 (1997)). Additional programs are available in the art for the analysis of identified sequences, such as sequence alignment programs, programs for the identification of more distantly related sequences, and the like, 15 and are well known to the skilled artisan.

20 **Plant Constructs and Methods of Use**

Of interest in the present invention, is the use of the nucleotide sequences, or polynucleotides, in recombinant DNA constructs to direct the transcription or transcription and translation (expression) of the acyltransferase sequences of the present invention in a host 25 cell.

Of particular interest is the use of the nucleotide sequences, or polynucleotides, in recombinant DNA constructs to direct the transcription or transcription and translation (expression) of the acyltransferase sequences of the present invention in a host cell. The expression constructs generally comprise a promoter functional in a host cell operably linked 30 to a nucleic acid sequence encoding an acyltransferase of the present invention and a transcriptional termination region functional in a host cell.

By "host cell" is meant a cell which contains a vector and supports the replication, and/or transcription or transcription and translation (expression) of the expression construct.

Host cells for use in the present invention can be prokaryotic cells, such as *E. coli*, or eukaryotic cells such as yeast, plant, insect, amphibian, or mammalian cells. Preferably, host cells are monocotyledenous or dicotyledenous plant cells.

Of particular interest in the present invention is the use of the polynucleotides of the present invention for the preparation of constructs to direct the transcription or transcription and translation of the nucleotide sequences encoding an acyltransferase in a host plant cell. Plant expression constructs generally comprise a promoter functional in a plant host cell operably linked to a nucleic acid sequence of the present and a transcriptional termination region functional in a host plant cell.

Those skilled in the art will recognize that there are a number of promoters which are functional in plant cells, and have been described in the literature. Chloroplast and plastid specific promoters, chloroplast or plastid functional promoters, and chloroplast or plastid operable promoters are also envisioned.

One set of promoters are constitutive promoters such as the CaMV35S or FMV35S promoters that yield high levels of expression in most plant organs. Enhanced or duplicated versions of the CaMV35S and FMV35S promoters are useful in the practice of this invention (Odell, *et al.* (1985) *Nature* 313:810-812; Rogers, U.S. Patent Number 5,378,619). In addition, it may also be preferred to bring about expression of the protein of interest in specific tissues of the plant, such as leaf, stem, root, tuber, seed, fruit, etc., and the promoter chosen should have the desired tissue and developmental specificity.

Of particular interest is the expression of the nucleic acid sequences of the present invention from transcription initiation regions which are preferentially expressed in a plant seed tissue. Examples of such seed preferential transcription initiation sequences include those sequences derived from sequences encoding plant storage protein genes or from genes involved in fatty acid biosynthesis in oilseeds. Examples of such promoters include the 5' regulatory regions from such genes as napin (Kridl *et al.*, *Seed Sci. Res.* 1:209:219 (1991)), phaseolin, zein, soybean trypsin inhibitor, ACP, stearoyl-ACP desaturase, soybean α' subunit of β -conglycinin (soy 7s, (Chen *et al.*, *Proc. Natl. Acad. Sci.*, 83:8560-8564 (1986))) and oleosin.

It may be advantageous to direct the localization of proteins conferring acyltransferase to a particular subcellular compartment, for example, to the mitochondrion, endoplasmic reticulum, vacuoles, chloroplast or other plastidic compartment. For example, where the genes of interest of the present invention will be targeted to plastids, such as chloroplasts, for

expression, the constructs will also employ the use of sequences to direct the gene to the plastid. Such sequences are referred to herein as chloroplast transit peptides (CTP) or plastid transit peptides (PTP). In this manner, where the gene of interest is not directly inserted into the plastid, the expression construct will additionally contain a gene encoding a transit peptide to direct the gene of interest to the plastid. The chloroplast transit peptides may be derived from the gene of interest, or may be derived from a heterologous sequence having a CTP. Such transit peptides are known in the art. See, for example, Von Heijne *et al.* (1991) *Plant Mol. Biol. Rep.* 9:104-126; Clark *et al.* (1989) *J. Biol. Chem.* 264:17544-17550; della-Cioppa *et al.* (1987) *Plant Physiol.* 84:965-968; Romer *et al.* (1993) *Biochem. Biophys. Res Commun.* 196:1414-1421; and, Shah *et al.* (1986) *Science* 233:478-481. Additional transit peptides for the translocation of the protein to the endoplasmic reticulum (ER), or vacuole may also find use in the constructs of the present invention.

Depending upon the intended use, the constructs may contain the nucleic acid sequence which encodes the entire acyltransferase protein, or a portion thereof. For example, where antisense inhibition of a given acyltransferase protein is desired, the entire sequence is not required. Furthermore, where acyltransferase sequences used in constructs are intended for use as probes, it may be advantageous to prepare constructs containing only a particular portion of a acyltransferase encoding sequence, for example a sequence which is discovered to encode a highly conserved acyltransferase region.

The skilled artisan will recognize that there are various methods for the inhibition of expression of endogenous sequences in a host cell. Such methods include, but are not limited to antisense suppression (Smith, *et al.* (1988) *Nature* 334:724-726), co-suppression (Napoli, *et al.* (1989) *Plant Cell* 2:279-289), ribozymes (PCT Publication WO 97/10328), and combinations of sense and antisense, such as those described by Waterhouse, *et al.* (1998) *Proc. Natl. Acad. Sci. USA* 95:13959-13964. Methods for the suppression of endogenous sequences in a host cell typically employ the transcription or transcription and translation of at least a portion of the sequence to be suppressed. Such sequences may be homologous to coding as well as non-coding regions of the endogenous sequence.

Regulatory transcript termination regions may be provided in plant expression constructs of this invention as well. Transcript termination regions may be provided by the DNA sequence encoding the acyltransferase or a convenient transcription termination region derived from a different gene source, for example, the transcript termination region which is naturally associated with the transcript initiation region. The skilled artisan will recognize

that any convenient transcript termination region which is capable of terminating transcription in a plant cell may be employed in the constructs of the present invention.

Alternatively, constructs may be prepared to direct the expression of the acyltransferase sequences directly from the host plant cell plastid. Such constructs and methods are known in the art and are generally described, for example, in Svab, *et al.* (1990) *Proc. Natl. Acad. Sci. USA* 87:8526-8530 and Svab and Maliga (1993) *Proc. Natl. Acad. Sci. USA* 90:913-917 and in U.S. Patent Number 5,693,507.

A plant cell, tissue, organ, or plant into which the recombinant DNA constructs containing the expression constructs have been introduced is considered transformed, transfected, or transgenic. A transgenic or transformed cell or plant also includes progeny of the cell or plant and progeny produced from a breeding program employing such a transgenic plant as a parent in a cross and exhibiting an altered genotype resulting from the presence of an introduced acyltransferase nucleic acid sequence.

The term "introduced" in the context of inserting a nucleic acid sequence into a cell, means "transfection", or "transformation" or "transduction" and includes reference to the incorporation of a nucleic acid sequence into a eukaryotic or prokaryotic cell where the nucleic acid sequence may be incorporated into the genome of the cell (for example, chromosome, plasmid, plastid, or mitochondrial DNA), converted into an autonomous replicon, or transiently expressed (for example, transfected mRNA).

Plant expression or transcription constructs having an acyltransferase as the DNA sequence of interest for increased or decreased expression thereof may be employed with a wide variety of plant life, particularly, plant life involved in the production of vegetable oils for edible and industrial uses. Plants of interest in the present invention include monocotyledenous and dicotyledenous plants. Most especially preferred are temperate oilseed crops. Plants of interest include, but are not limited to, rapeseed (Canola and High Erucic Acid varieties), sunflower, safflower, cotton, soybean, peanut, coconut and oil palms, and corn. Depending on the method for introducing the recombinant constructs into the host cell, other DNA sequences may be required. Importantly, this invention is applicable to dicotyledyons and monocotyledons species alike and will be readily applicable to new and/or improved transformation and regulation techniques.

As used herein, the term "plant" includes reference to whole plants, plant organs (for example, leaves, stems, roots, etc.), seeds, and plant cells and progeny of same. Plant cell, as used herein includes, without limitation, seeds suspension cultures, embryos, meristematic

regions, callus tissue, leaves roots shoots, gametophytes, sporophytes, pollen, and microspores. The class of plants which can be used in the methods of the present invention is generally as broad as the class of higher plants amenable to transformation techniques, including both monocotyledenous and dicotyledenous plants. Particularly preferred plants of interest include, but are not limited to, rapeseed (Canola and High Erucic Acid varieties), sunflower, safflower, cotton, soybean, peanut, coconut and oil palms, and corn. Most especially preferred plants include *Brassica*, soybean, and corn.

As used herein, "transgenic plant" includes reference to a plant which comprises within its genome a heterologous polynucleotide. Generally, the heterologous polynucleotide is stably integrated within the genome such that the polynucleotide is passed on to successive generations. The heterologous polynucleotide may be integrated into the genome alone or as part of a recombinant expression cassette. "Transgenic" is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acid including those transgenics initially so altered as well as those created by sexual crosses or asexual propagation from the initial transgenic.

Thus a plant having within its cells a heterologous polynucleotide is referred to herein as a transgenic plant. The heterologous polynucleotide can be either stably integrated into the genome, or can be extra-chromosomal. Preferably, the polynucleotide of the present invention is stably integrated into the genome such that the polynucleotide is passed on to successive generations. The polynucleotide is integrated into the genome alone or as part of a recombinant expression cassette. "Transgenic" is used herein to include any cell, cell line, callus, tissue, plant part or plant, the genotype of which has been altered by the presence of heterologous nucleic acids including those transgenics initially so altered as well as those created by sexual crosses or asexual reproduction of the initial transgenics.

As used herein, "heterologous" in reference to a nucleic acid is a nucleic acid that originates from a foreign species, or, if from the same species, is substantially modified from its native form in composition and/or genomic locus by deliberate human intervention. For example, a promoter operably linked to a heterologous structural gene is from a species different from that from which the structural gene was derived, or, if from the same species, one or both are substantially modified from their original form. A heterologous protein may originate from a foreign species, or, if from the same species, is substantially modified from its original form by deliberate human intervention.

As used herein, a "recombinant expression cassette" is a nucleic acid construct, generated recombinantly or synthetically, with a series of specified nucleic acid elements which permit transcription of a particular nucleic acid in a target cell. The recombinant expression cassette can be incorporated into a plasmid, chromosome, mitochondrial DNA, 5 plastid DNA, virus, or nucleic acid fragment. Typically, the recombinant expression cassette portion of an expression vector includes, among other sequences, a nucleic acid sequence to be transcribed and a promoter.

It is contemplated that the gene sequences may be synthesized, either completely or in part, especially where it is desirable to provide plant-preferred sequences. Thus, all or a 10 portion of the desired structural gene (that portion of the gene which encodes the acyltransferase protein) may be synthesized using codons preferred by a selected host. Host-preferred codons may be determined, for example, from the codons used most frequently in the proteins expressed in a desired host species.

One skilled in the art will readily recognize that antibody preparations, nucleic acid 15 probes (DNA and RNA) and the like may be prepared and used to screen and recover "homologous" or "related" acyltransferase from a variety of plant sources. Homologous sequences are found when there is an identity of sequence, which may be determined upon comparison of sequence information, nucleic acid or amino acid, or through hybridization reactions between a known acyltransferase and a candidate source. Conservative changes, 20 such as Glu/Asp, Val/Ile, Ser/Thr, Arg/Lys and Gln/Asn may also be considered in determining sequence homology. Amino acid sequences are considered homologous by as little as 25% sequence identity between the two complete mature proteins. (See generally, Doolittle, R.F., *OF URFS and ORFS* (University Science Books, CA, 1986.)

Thus, other acyltransferase sequences can be obtained from the specific exemplified 25 sequences provided herein. Furthermore, it will be apparent that one can obtain natural and synthetic sequences, including modified amino acid sequences and starting materials for synthetic-protein modeling from the exemplified sequences and from acyltransferases which are obtained through the use of such exemplified sequences. Modified amino acid sequences include sequences which have been mutated, truncated, increased and the like, whether such 30 sequences were partially or wholly synthesized. Sequences which are actually purified from plant preparations or are identical or encode identical proteins thereto, regardless of the method used to obtain the protein or sequence, are equally considered naturally derived.

For immunological screening, antibodies to the acyltransferase protein can be prepared by injecting rabbits or mice with the purified protein or portion thereof, such methods of preparing antibodies being well known to those in the art. Either monoclonal or polyclonal antibodies can be produced, although typically polyclonal antibodies are more useful for gene isolation. Western analysis may be conducted to determine that a related protein is present in a crude extract of the desired plant species, as determined by cross-reaction with the antibodies to the acyltransferase protein. When cross-reactivity is observed, genes encoding the related proteins are isolated by screening expression libraries representing the desired plant species. Expression libraries can be constructed in a variety of commercially available vectors, including lambda gt11, as described in Sambrook, *et al.* (*Molecular Cloning: A Laboratory Manual*, Second Edition (1989) Cold Spring Harbor Laboratory, Cold Spring Harbor, New York).

The nucleic acid sequences associated with acyltransferase proteins will find many uses. For example, recombinant constructs can be prepared which can be used as probes, or which will provide for expression of the acyltransferase protein in host cells to produce a ready source of the enzyme and/or to modify the composition of triglycerides found therein. Other useful applications may be found when the host cell is a plant host cell, either *in vitro* or *in vivo*.

The modification of fatty acid compositions may also affect the fluidity of plant membranes. Different lipid concentrations have been observed in cold-hardened plants, for example. By this invention, one may be capable of introducing traits which will lend to chill tolerance. Constitutive or temperature inducible transcription initiation regulatory control regions may have special applications for such uses.

As discussed above, nucleic acid sequence encoding an acyltransferase of this invention may include genomic, cDNA or mRNA sequence. By "encoding" is meant that the sequence corresponds to a particular amino acid sequence either in a sense or anti-sense orientation. By "extrachromosomal" is meant that the sequence is outside of the plant genome of which it is naturally associated. By "recombinant" is meant that the sequence contains a genetically engineered modification through manipulation via mutagenesis, restriction enzymes, and the like.

Once the desired acyltransferase nucleic acid sequence is obtained, it may be manipulated in a variety of ways. Where the sequence involves non-coding flanking regions, the flanking regions may be subjected to resection, mutagenesis, etc. Thus, transitions,

transversions, deletions, and insertions may be performed on the naturally occurring sequence. In addition, all or part of the sequence may be synthesized. In the structural gene, one or more codons may be modified to provide for a modified amino acid sequence, or one or more codon mutations may be introduced to provide for a convenient restriction site or other purpose involved with construction or expression. The structural gene may be further modified by employing synthetic adapters, linkers to introduce one or more convenient restriction sites, or the like.

The nucleic acid or amino acid sequences encoding an acyltransferase of this invention may be combined with other non-native, or "heterologous", sequences in a variety of ways. By "heterologous" sequences is meant any sequence which is not naturally found joined to the acyltransferase, including, for example, combinations of nucleic acid sequences from the same plant which are not naturally found joined together.

The DNA sequence encoding an acyltransferase of this invention may be employed in conjunction with all or part of the gene sequences normally associated with the acyltransferase. In its component parts, a DNA sequence encoding acyltransferase is combined in a DNA construct having, in the 5' to 3' direction of transcription, a transcription initiation control region capable of promoting transcription and translation in a host cell, the DNA sequence encoding plant acyltransferase and a transcription and translation termination region.

Potential host cells include both prokaryotic cells, such as *E.coli* and eukaryotic cells such as yeast, insect, amphibian, or mammalian cells. A host cell may be unicellular or found in a multicellular differentiated or undifferentiated organism depending upon the intended use. Preferably, host cells of the present invention include plant cells, both monocotyledenous and dicotyledenous. Cells of this invention may be distinguished by having a sequence foreign to the wild-type cell present therein, for example, by having a recombinant nucleic acid construct encoding an acyltransferase therein.

The methods used for the transformation of the host plant cell are not critical to the present invention. The transformation of the plant is preferably permanent, i.e. by integration of the introduced expression constructs into the host plant genome, so that the introduced constructs are passed onto successive plant generations. The skilled artisan will recognize that a wide variety of transformation techniques exist in the art, and new techniques are continually becoming available. Any technique that is suitable for the target host plant can be employed within the scope of the present invention. For example, the constructs can be

introduced in a variety of forms including, but not limited to as a strand of DNA, in a plasmid, or in an artificial chromosome. The introduction of the constructs into the target plant cells can be accomplished by a variety of techniques, including, but not limited to calcium-phosphate-DNA co-precipitation, electroporation, microinjection, *Agrobacterium* infection, liposomes or microprojectile transformation. The skilled artisan can refer to the literature for details and select suitable techniques for use in the methods of the present invention.

Normally, included with the DNA construct will be a structural gene having the necessary regulatory regions for expression in a host and providing for selection of transformant cells. The gene may provide for resistance to a cytotoxic agent, e.g. antibiotic, heavy metal, toxin, etc., complementation providing prototrophy to an auxotrophic host, viral immunity or the like. Depending upon the number of different host species the expression construct or components thereof are introduced, one or more markers may be employed, where different conditions for selection are used for the different hosts.

Where *Agrobacterium* is used for plant cell transformation, a vector may be used which may be introduced into the *Agrobacterium* host for homologous recombination with T-DNA or the Ti- or Ri-plasmid present in the *Agrobacterium* host. The Ti- or Ri-plasmid containing the T-DNA for recombination may be armed (capable of causing gall formation) or disarmed (incapable of causing gall formation), the latter being permissible, so long as the *vir* genes are present in the transformed *Agrobacterium* host. The armed plasmid can give a mixture of normal plant cells and gall.

In some instances where *Agrobacterium* is used as the vehicle for transforming host plant cells, the expression or transcription construct bordered by the T-DNA border region(s) will be inserted into a broad host range vector capable of replication in *E. coli* and *Agrobacterium*, there being broad host range vectors described in the literature. Commonly used is pRK2 or derivatives thereof. See, for example, Ditta, *et al.*, (*Proc. Nat. Acad. Sci. U.S.A.* (1980) 77:7347-7351) and EPA 0 120 515, which are incorporated herein by reference. Alternatively, one may insert the sequences to be expressed in plant cells into a vector containing separate replication sequences, one of which stabilizes the vector in *E. coli*, and the other in *Agrobacterium*. See, for example, McBride and Summerfelt (*Plant Mol. Biol.* (1990) 14:269-276), wherein the pRiHRI (Jouanin, *et al.*, *Mol. Gen. Genet.* (1985) 201:370-374) origin of replication is utilized and provides for added stability of the plant expression vectors in host *Agrobacterium* cells.

Included with the expression construct and the T-DNA will be one or more markers, which allow for selection of transformed *Agrobacterium* and transformed plant cells. A number of markers have been developed for use with plant cells, such as resistance to chloramphenicol, kanamycin, the aminoglycoside G418, hygromycin, or the like. The 5 particular marker employed is not essential to this invention, one or another marker being preferred depending on the particular host and the manner of construction.

For transformation of plant cells using *Agrobacterium*, explants may be combined and incubated with the transformed *Agrobacterium* for sufficient time for transformation, the bacteria killed, and the plant cells cultured in an appropriate selective medium. Once callus 10 forms, shoot formation can be encouraged by employing the appropriate plant hormones in accordance with known methods and the shoots transferred to rooting medium for regeneration of plants. The plants may then be grown to seed and the seed used to establish repetitive generations and for isolation of vegetable oils.

There are several possible ways to obtain the plant cells of this invention which 15 contain multiple expression constructs. Any means for producing a plant comprising a construct having a nucleic acid sequence of the present invention, and at least one other construct having another DNA sequence encoding an enzyme are encompassed by the present invention. For example, the expression construct can be used to transform a plant at the same time as the second construct either by inclusion of both expression constructs in a single 20 transformation vector or by using separate vectors, each of which express desired genes. The second construct can be introduced into a plant which has already been transformed with the first expression construct, or alternatively, transformed plants, one having the first construct and one having the second construct, can be crossed to bring the constructs together in the same plant.

25 In general, acyltransferase proteins are active in the transfer of acyl groups from a donor to a variety of different substrates. For example, diacylglycerol acyltransferases add acyl groups to diacylglycerol to form triacylglycerol (TAG), or acyl:CoA:cholesterol acyltransferase uses an acyl-CoA as a donor to transfer an acyl group to a sterol to form a sterol ester. Typically, the substrates include, but are not limited to glycerides, including 30 mono and diglycerides, sterols, stanols, phosphatides, and the like. Donors include, but are not limited to acyl-CoA and acyl-ACP molecules.

The invention now being generally described, it will be more readily understood by reference to the following examples which are included for purposes of illustration only and are not intended to limit the present invention.

5

EXAMPLES

Example 1: RNA Isolations

10 Total RNA from the inflorescence and developing seeds of *Arabidopsis thaliana* is isolated for use in construction of complementary (cDNA) libraries. The procedure is an adaptation of the DNA isolation protocol of Webb and Knapp (D.M. Webb and S.J. Knapp, (1990) Plant Molec. Reporter, 8, 180-185). The following description assumes the use of 1g fresh weight of tissue. Frozen seed tissue is powdered by grinding under liquid nitrogen. The
15 powder is added to 10ml REC buffer (50mM Tris-HCl, pH 9, 0.8M NaCl, 10mM EDTA, 0.5% w/v CTAB (cetyltrimethyl-ammonium bromide)) along with 0.2g insoluble polyvinylpolypyrrolidone, and ground at room temperature. The homogenate is centrifuged for 5 minutes at 12,000 xg to pellet insoluble material. The resulting supernatant fraction is extracted with chloroform, and the top phase is recovered.

20 The RNA is then precipitated by addition of 1 volume RecP (50mM Tris-HCL pH9, 10mM EDTA and 0.5% (w/v) CTAB) and collected by brief centrifugation as before. The RNA pellet is redissolved in 0.4 ml of 1M NaCl. The RNA pellet is redissolved in water and extracted with phenol/chloroform. Sufficient 3M potassium acetate (pH 5) is added to make the mixture 0.3M in acetate, followed by addition of two volumes of ethanol to precipitate the
25 RNA. After washing with ethanol, this final RNA precipitate is dissolved in water and stored frozen.

Alternatively, total RNA may be obtained using TRIzol reagent (BRL-Lifetechnologies, Gaithersburg, MD) following the manufacturers protocol. The RNA precipitate is dissolved in water and stored frozen.

30

Example 2: Identification of Acyltransferase Homology Sequences

Searches are performed on a Silicon Graphics Unix computer using additional Bioaccelerator hardware and GenWeb software supplied by Compugen Ltd. This software and hardware enables the use of the Smith-Waterman algorithm in searching DNA and protein databases using profiles as queries. The program used to query protein databases is profilesearch. This is a search where the query is not a single sequence but a profile based on a multiple alignment of amino acid or nucleic acid sequences. The profile is used to query a sequence data set, i.e., a sequence database. The profile contains all the pertinent information for scoring each position in a sequence, in effect replacing the "scoring matrix" used for the standard query searches. The program used to query nucleotide databases with a protein profile is tprofilesearch. Tprofilesearch searches nucleic acid databases using an amino acid profile query. As the search is running, sequences in the database are translated to amino acid sequences in six reading frames. The output file for tprofilesearch is identical to the output file for profilesearch except for an additional column that indicates the frame in which the best alignment occurred.

The Smith-Waterman algorithm, (Smith and Waterman (1981) *supra*), is used to search for similarities between one sequence from the query and a group of sequences contained in the database. E score values as well as other sequence information, such as conserved peptide sequences of HXXXXD and PEG are used to identify related sequences. By using the conserved peptide sequence information, E score values of greater than E-12 and E-8 are considered. For example, the EST sequence originally used to identify ATAT2 had an E score of 0.0094, while the EST sequence originally used to identify ATLPAAT1 had an E score of 0.0868.

A protein sequence of glycerol-3-phosphate from *E. coli* (Swiss Prot Accession P00482) is used to search the NCBI non-redundant protein database using BLAST. In the first round of searches, other membrane forms of G3PAAT are identified. In subsequent PSI-BLAST searches (Altschul, *et al.* (1997) *Nucleic Acids Res* 25:3389-3402), LPAATs and other acyltransferases are identified. Using sequence alignment software programs, G3PAAT and different LPAAT amino acid sequences are aligned, and a profile is generated using a homologous sequence region, between amino acids 256 and 459 of the *E. coli* sequence.

The identified 204 amino acid is used to query the protein database using PSI-BLAST. After 5 iterations of PSI-BLAST, the profile generated from this new query (Figure 1)

identified soluble forms of G3PAAT. Prior to this identification, no sequence homology had been identified between the membrane and soluble forms of G3PAAT.

5 **Example 3: Excision of PSI-BLAST Profile**

The profile generated from the queries using PSI-BLAST is excised from the hyper text markup language (html) file. The worldwide web (www)/html interface to psiblast at ncbi stores the current generated profile matrix in a hidden field in the html file that is 10 returned after each iteration of psiblast. However, this matrix has been encoded into string62 (s62) format for ease of transport through html. String62 format is a simple conversion of the values of the matrix into html legal ascii characters.

The encoded matrix width (x axis) is 26 characters, and comprise the consensus characters, the probabilities of each amino acid in the order A,B,C,D,E,F,G,H,I,K,L,M,N, 15 P,Q,R,S,T,V,W,X,Y,Z (where B represents D and N, and Z represents Q and E, and X represents any amino acid), gap creation value, and gap extension value.

The length (y axis) of the matrix corresponds to the length of the sequences identified by PSI-BLAST. The order of the amino acids corresponds to the conserved amino acid sequence of the sequences identified using PSI-BLAST, with the N-terminal end at the top of 20 the matrix. The probabilities of other amino acids at that position are represented for each amino acid along the x axis, below the respective single letter amino acid abbreviation.

Thus, each row of the profile consists of the highest scoring (consensus) amino acid, followed by the scores for each possible amino acid at that position in sequence matrix, the score for opening a gap at that position, and the score for continuing a gap at that position.

25 The string62 file is converted back into a profile for use in subsequent searches. The gap open field is set to 11 and the gap extension field is set to 1 along the x axis. The gap creation and gap extension values are known, based on the settings given to the PSI-BLAST algorithm. The matrix is exported to the standard GCG profile form. This format can be read by GenWeb.

30 The algorithm used to convert the string62 formatted file to the matrix is outlined in Table 1.

Table 1

1. if encoded character z then the value is blast score min
 2. if encoded character Z then the value is blast score max
 5 3. else if the encoded character is uppercase then its value is (64-(ascii # of char))
 4. else if the encoded character is a digit the value is ((ascii # of char)-48)
 5. else if the encoded character is not uppercase then the value is ((ascii # of char) - 87)
 6. ALL B positions are set to min of D and N amino acids at that row in sequence matrix
 7. ALL Z positions are set to min of Q and E amino acids at that row in sequence matrix
 10 8. ALL X positions are set to min of all amino acids at that row in sequence matrix
 9. kBLAST_SCORE_MAX=999;
 10. kBLAST_SCORE_MIN=-999;
 11. all gap opens are set to 11
 12. all gap lens are set to 1

15

Example 4: Identification of Novel Acyltransferase Related Amino Acid Sequences

20 The profile (Figure 1) is used in further queries to identify a number of previously unidentified proteins from yeast as novel acyltransferases. A protein is identified from an *Arabidopsis* protein sequence database (ATAT1) (SEQ ID NO:2). Sequences are also identified from nucleic acid databases (Table 2)

25

Table 2

Database ID Number	BLAST Search Hits	Log probability
<i>Saccharomyces cerevisiae</i>		
gi 1078509 NO:217)	Limnanthes putative LPAAT	e-10 (SEQ ID
gi 586485 NO:218)	Limnanthes putative LPAAT	e-13 (SEQ ID

gi 320748 NO:219)	Limnanthes putative LPAAT	e-19 (SEQ ID
gi 2506920	SUPPRESSES CTR1 (choline transport mutant) (SEQ ID NO:220)	
gi 549627 NO:221)	similar to CTR1	e-118 (SEQ ID
gi 2133031 NO:222)	unidentified	(SEQ ID
gi 2132939 NO:223)	unidentified	(SEQ ID
gi 2132299 NO:224)	TAFAZZIN	e-14 (SEQ ID

In Table 2, the gi number is the database identifier, the middle column shows the results of BLAST searches against the NCBI NR protein database, and the log probability number shows represents the log of the probability of such a match occurring by random chance. These proteins, including the ATAT1 protein sequence, are identified using the original PSI-BLAST search of the NCBI NR protein database. Thus, these proteins are novel acyltransferase related proteins with unidentified activities.

The *Arabidopsis* acyltransferase sequence, herein referred to as ATAT1, is also identified using the original PSI-BLAST search of the NCBI NR protein database, and did not have an annotated function.

Additional *Arabidopsis* amino acid sequences related to acyltransferases are identified from the databases, referred to as ATAT2est, ATAT3est, ATAT4est, ATAT5est, ATAT6est, ATAT7est, ATAT8est, ATAT9, ATAT10, and ATAT11est. Furthermore, *Arabidopsis* amino acid sequences are identified which demonstrate sequence similarity to known lysophosphatidic acid, referred to as ATLPAAT1. The sequences of ATAT9 and ATAT10 are identified from the database as genomic sequences, all other *Arabidopsis* sequences are identified as ESTs.

30

Example 5: Sequence Analysis of the Novel Acyltransferases

To obtain the entire coding region corresponding to the *Arabidopsis* acyltransferase sequences, synthetic oligo-nucleotide primers are designed to amplify the 5' and 3' ends of partial cDNA clones containing acyltransferase related sequences. Primers are designed according to the respective *Arabidopsis* acyltransferase related sequences (Table 3) and used 5 in Rapid Amplification of cDNA Ends (RACE) reactions (Frohman *et al.* (1988) *Proc. Natl. Acad. Sci. USA* 85:8998-9002) using the Marathon cDNA amplification kit (Clontech Laboratories Inc, Palo Alto, CA). Primers with an R designation are used for 5' RACE reactions, and primers with an F designation are used for 3' RACE reactions.

Table 3

ATAT2

ATAT2R1 CCATCCGCTTCAAGGGAACGACACCCATCA (SEQ ID NO:135)
 ATAT2R2 TCCCTGTCTGCTTGATGAACTTAAAGCTTG (SEQ ID NO:136)
 ATAT2R3 ACAGCAGGAGTGTCTGATGATGGCAGATTC (SEQ ID NO:137)

ATAT3

ATAT3R1 ACTGGAGTTCCAGCCAAAAATGCACCTGTC (SEQ ID NO:138)
 ATAT3R2 GATACACCCCTGAAATCAGGCGATTTGCT (SEQ ID NO:139)

ATAT4

ATAT4R1 TTGCAAATTCAATTCCCTGTTCACCGGGCC (SEQ ID NO:140)
 ATAT4R2 GTTTCTGCTATTCCAGAAGGCGTCAACAA (SEQ ID NO:141)

ATAT5

ATAT5R1 CATTGAAGATCCGTCCGTGAAGTTNCCTTACC (SEQ ID NO:142)
 ATAT5R2 TCGAGCTGTGATCGATGATTGGCTGTGAAG (SEQ ID NO:143)
 ATAT5F1 GTCTCTTCAAAAACACACACACACACGTCTCT (SEQ ID NO:144)
 ATAT5F2 GTCTCTTCAAAAACACACACACACACGTCTCT (SEQ ID NO:145)

ATAT6

H76348-F1 GTAGAGAGCCTTACTTGCTTCGGTTAGTC (SEQ ID NO:146)
 H76348-F2 ACGTCATCGTACCTGTTGCTATTGACTCAC (SEQ ID NO:147)
 H76348-R1 ACTTTCCATTGTCAGGGACTCCTCGACAC (SEQ ID NO:148)
 H76348-R2 ACGGTGTAGGAAGGGAAAGGATTCAAAAGG (SEQ ID NO:149)

ATAT7

ATTS0193-F1 GCGATGAACTACAGAGTCGGATTCTCCTC (SEQ ID NO:150)
 ATTS0193-F2 CCGGTTACGAGATTACGTTCTGAACCGAG (SEQ ID NO:151)
 ATTS0193-R1 CAATGGAGACAAGGCTGAAAGTGCTAACCC (SEQ ID NO:152)
 ATTS0193-R2 ATTCTCTGAACATAGTTGCCACGGTCATG (SEQ ID NO:153)

ATAT8

AA042618-F1 GAAATCCAACGCCTTCCCAATATCACTCTG (SEQ ID NO:154)

AA042618-F2 CTTCAACTTCCATCAGGATCTGGCACGT (SEQ ID NO:155)

AA042618-R1 ACCACTTGTAGAGACCTTACCTGCTTAGG (SEQ ID NO:156)

5 AA042618-R2 TCCTACCTACACCATCCAATTCTCGACCC (SEQ ID NO:157)

ATAT11

ATAT11R1 CTGCGTCAAGTGAGCAACTCAGTTCTTGCA (SEQ ID NO:158)

ATAT11R2 TGGGAAGCAGCACGTTGTTAGTATCGGAA (SEQ ID NO:159)

10 ATAT11R3 TAGCCTCTGTGTAATCTGTGCCCTCGGGGA (SEQ ID NO:160)

From the nucleic acid sequences obtained from the RACE reactions, protein sequence is predicted for each nucleic acid sequence using Macvector software. Nucleic acid sequences are provided for ATAT1 (SEQ ID NO:1), ATAT2 (SEQ ID NO:3), ATAT3 (SEQ ID NO:5), 15 ATAT4 (SEQ ID NO:7), ATAT5 (SEQ ID NO:9), ATAT6 (SEQ ID NO:10), ATAT7 (SEQ ID NO:12), ATAT8 (SEQ ID NO:14), ATAT9 (SEQ ID NO:16), ATAT10 (SEQ ID NO:18), ATAT11 (SEQ ID NO:20) and ATLPAAT1 (SEQ ID NO:22), respectively.

The protein sequence derived from the ATAT1 (SEQ ID NO:2) nucleic acid sequence 20 from Arabidopsis has a predicted molecular mass of 32.5 kDa, and a PI of 9.74. Alignment of the Arabidopsis acyltransferase with several LPAAT and G3PAAT shows that some of the domains that are conserved between LPAAT and G3PAAT are conserved in the new acyltransferase protein.

The ATAT2 nucleic acid sequence is predicted to encode a 312 amino acid protein 25 (SEQ ID NO:4), with a molecular weight of 34.6 kD, and a pI of 9.99. The ATAT2 protein may also contain 2 to 3 transmembrane domains. However, the protein encoded by the ATAT2 nucleic acid sequence may be longer than predicted because of the absence of an inframe stop codon upstream of the ATG start codon used.

The ATAT3 nucleic acid sequence is predicted to encode a 398 amino acid protein 30 (SEQ ID NO:6), with a molecular weight of 44.7 kD, and a pI of 5.62. The ATAT3 protein may contain 1 to 4 transmembrane domains. The ATAT4 nucleic acid sequence is predicted to encode a 317 amino acid protein (SEQ ID NO:8), with a molecular weight of 36.5 kD, and a pI of 9.67. The ATAT4 protein is predicted to have 2 to 5 transmembrane domains.

The ATLPAAT1 nucleic acid sequence is predicted to encode a 389 amino acid protein (SEQ ID NO:23), with a molecular weight of 43.7 kD, and a pI of 9.52. The ATLPAAT1 protein is predicted to have up to 3 transmembrane domains. The protein predicted from the ATLPAAT1 nucleic acid sequence is similar to LPAATs reported for 5 *Brassica*, maize, and meadowfoam (described in PCT Publication WO 94/13814). The ATAT11 nucleic acid sequence is predicted to encode a 375 amino acid protein (SEQ ID NO:21), with a molecular weight of 43.5 kD, and a pI of 9.45. The deduced amino acid sequences of ATAT6 (SEQ ID NO:11), ATAT7 (SEQ ID NO:13), ATAT8 (SEQ ID NO:15), ATAT9 (SEQ ID NO:17), and ATAT10 (SEQ ID NO:19) are also provided

10 A sequence region approximately 30 amino acids upstream through approximately 100 amino acids downstream of the conserved amino acid sequences HXXXXD (Heath and Rock, (1998) *J. Bacteriol.* 180(6):1425-1430) and PEG (Neuwald (1997) *Curr Biol* 7:R465-R466) of the predicted amino acid sequences derived from the nucleic acid sequences of ATAT1, ATAT2, ATAT3, ATAT4, ATAT6, ATAT7, ATAT8, ATAT9, ATAT10, 15 ATLPAAT1, and ATAT11 are compared to the amino acid sequences of lysophosphatidic acid acyltransferase (Jojoba AT (SEQ ID NO:162, the nucleic acid sequence is provided in SEQ ID NO:161), maize AT (PCT Publication WO 94/13814), PLSC coco(GenBank accession 1098605), PLSC Lim(GenBank accession 1209507), PLSC, Ecoli (GenBank accession 1209507), and PLSC Yeast(GenBank accession 464422)) and glycerol-3-phosphate 20 acyltransferase (PLSB Ecoli(GenBank accession 130326) and PLSB Mouse(GenBank accession 2498786)) (Figure 2), and similarities are identified (Figure 2 and Figure 3).

Sequence comparisons reveal several classes of acyltransferases exist based on conserved amino acid sequences identified in the comparisons in Figure 2. For example, ATAT1, ATAT6, ATAT7, ATAT8, and ATAT9, contain the conserved amino acid 25 sequences of VTYSXS(SEQ ID NO: 128), VXLTRXR(SEQ ID NO: 129), LXXGDLV(SEQ ID NO: 132) between the HXXXXD and PEG sequences. In addition, ATAT1, ATAT6, ATAT7, ATAT8, and ATAT9 also contain the conserved sequences CPEGT(SEQ ID NO: 130) which comprises the PEG sequence, as well as IVPVA(SEQ ID NO: 131) and VANXXQ (SEQ ID NO: 134)(Figure 2) downstream of the PEG sequence. The sequences 30 corresponding to ATAT1, ATAT7, and ATAT9 are the most closely related in this class, with similarities between ATAT1 and ATAT9 of 67.0%, between ATAT1 and ATAT7 of 58.2% and between ATAT9 and ATAT7 of 63.9% (Figure 3B).

Sequence comparisons also demonstrate that the sequence of ATLPAAT1 is most closely related to the jojoba LPAAT (82.3% similar), and maize (78.0% similar).

Furthermore, sequence analysis demonstrates that ATAT4 is the most divergent sequence with the highest similarity to ATAT10 (18.5%). The highest similarity (15.3%) to a 5 known sequence is with a meadowfoam (*Limnanthes douglassii*) LPAAT. However, the sequences of ATAT4 and ATAT10 share several conserved peptide sequences with the amino acid sequences of ATAT2 and ATAT3 (Figure 2), VXNHXS (SEQ ID NO: 127) where the H comprises the conserved H of the HXXXXD sequence and FXXGAF (SEQ ID NO: 133) downstream of the PEG sequence.

10

Example 6: Identification of Additional Acyltransferase Sequences

The novel *Arabidopsis* sequences identified above are used to search proprietary 15 databases containing soybean and corn EST sequences. The results of this search identifies EST sequences from soybean (SEQ ID NO:24 through SEQ ID NO: 85) as well as from corn (SEQ ID NO: 86 through SEQ ID NO:126) as encoding acyltransferase related proteins.

Sequence comparisons between the various EST sequences and the complete 20 *Arabidopsis* sequences reveals that the identified EST sequences demonstrate higher similarity to the various *Arabidopsis* sequences as determined by BLAST scores.

Expressed Sequence Tag (EST) sequences from soybean and corn databases are identified which are most closely related by BLAST score to ATAT1 (SEQ ID NOS:24-29 and SEQ ID NOS:86-88, respectively), ATAT2 (SEQ ID NO: 30 and SEQ ID NO:89, respectively), ATAT3 (SEQ ID NOS:31-35 and SEQ ID NOS:90-94, respectively), ATAT4 25 (SEQ ID NOS:36-44 and SEQ ID NOS:95-100, respectively), ATAT6 (SEQ ID NOS:45-49 and SEQ ID NO:101, respectively), ATAT7 (SEQ ID NOS:50-54 and SEQ ID NOS:102-103, respectively), ATAT8 (SEQ ID NOS:55-56 and SEQ ID NO:104, respectively), ATAT9 (SEQ ID NOS:57-79 and SEQ ID NOS:105-111, respectively), ATAT10 (SEQ ID NOS:80-81 and SEQ ID NO:112, respectively), ATAT11, (SEQ ID NOS:82-85 and SEQ ID 30 NOS:123-126, respectively), and ATLPAAT1 (SEQ ID NOS: 113-122 respectively).

Example 7: Expression Construct Preparation

A series of synthetic oligo nucleotide primers were prepared for use in Polymerase Chain Reactions (PCR) to amplify the entire DNA sequences encoding the various acyltransferase sequences identified above. The sequences are listed in Table 3.

Table 3

Primer	Sequence (listed 5'-3')	SEQ ID NO:
ATAT1F	AAGCTTGCATGCGTCGACACAATGGTCATGCGACCAAGT CAG	163
ATAT1R	GGTACCGTCGACTCACTTCTTGGTGTGTTGATAG	164
ATAT2F	GGATCCGGGCCGCACAATGACGAGCTTACTACTTCCCT TCAT	165
ATAT2R	GGATCCCCTGCAGGTTAGAGATCCATTGATTCTGCAAT	166
ATAT3F	GGATCCGGGCCGCATAATGGAATCAGAGCTAAAGAT	167
ATAT3R	GGATCCCCTGCAGGTCAATTCTCTTCTGATGGAAATC	168
ATAT4F	GGATCCGGGCCGCACAATGACTCGTTACAAGATGTTTC A	169
ATAT4R	GGATCCCCTGCAGGTCACTTCTCTTCCAATCTAGCCAG	170
ATAT6F	GGATCCGGGCCGCACAATGTCCGGTAATAAGATCTCGAC TCTTCA	171
ATAT6R	GGATCCCCTGCAGGTTATTTTCTTGACAACCTCCGTTAT TACCGG	172
ATAT7F	ATATCCGGGCCGCACAATGGTTATGGAGCAAGCTGGAA	173
ATAT7R	GGATCCCCTGCAGGTCAATGGAGACAAGGCTCGAAAGT	174
ATAT8F	GGATCCGGGCCGCACAATGTCCGCCAAGATTTCAATATT CC	175
ATAT8R	GGATCCCCTGCAGGTTAATTCTTAACACTCCATT	176
ATAT9F	GGATCCGGGCCGCACAATGGGAGCTCAGGAGAACGGCG CC	177
ATAT9R	GGATCCCCTGCAGGTACGTCTCCTCTTCACCAGG	178
ATAT10F	GGATCCGGGCCGCACAATGGCGGATCCTGATCTGTCTTC TCCT	179
ATAT10R	GGATCCCCTGCAGGTTATGTTGGGGCCAAGTCAGGTGCAA AGAT	180
ATAT11F	GGATCCGGGCCGCAAAATGGAAAAAAAGAGTGTACCAAA	181

	TTCT	
ATAT11R	GGATCCCCTGCAGGTTATTGTTACTAATTGAGGAAAT	182
	TTTTG	
ATLPAAT	TCGACCTGCAGGAAGCTTAAGGATGGTGATTGCTGC	183
1F		
ATLPAAT	GGATCCGCCCGCTTACTTCTCCTTCTCCG	184
1R		
YSCAT1F	GGATCCGCCCGCACAATGTCTTTAGGGATGTCCTAG	185
YSCAT1R	GGATCCCCTGCAGGTCAATCATCCTTACCCCTTGTTAC	186
	C	
YSCAT 1	ATGTCTTTAGGGATGTCCTAGAAAGAGGAGATGAATT	187
KO F	CTGTGCGGTATTCACACCG	
YSCAT 1	TCAATCATCCTTACCCCTTGTTACCCCTCTGGAGGCAGA	188
KO R	AGATTGTACTGAGAGTGCAC	
YSCAT2F	GGATCCGCCCGCACAATGAAGCATTCCAAAAATACCG	189
	TAGG	
YSCAT2R	GGATCCCCTGCAGGTCAATGATTTTTCATCACAAATA	190
	C	
YSCAT 2	ATGAAGCATTCCAAAAATACCGTAGGTATGGAATTATG	191
KO F	CTGTGCGGTATTCACACCG	
YSCAT 2	TCAATGATTTTTTCATCACAAATACAAGAATAAGAAA	192
KO R	AGATTGTACTGAGAGTGCAC	
YSCAT	GGATCCGCCCGCACAATGGGTTTGTTGATTCCTCGA	193
3F	AAC	
YSCAT	GGATCCCCTGCAGGTTATTGGTCTCAATTAAATATT	194
3R	TTTGC	
YSCAT 3	ATGGGTTTGTTGATTCTCGAACATATATGGTCGGTT	195
KO F	CTGTGCGGTATTCACACCG	
YSCAT 3	TTATTTGGTCTCAATTAAATATTTTGCAAGGACTCG	196
KO R	AGATTGTACTGAGAGTGCAC	
YSCAT	GGATCCGCCCGCACAATGGAAAAGTACACCAATTGGAG	197
4F	AGAC	
YSCAT	GGATCCCCTGCAGGCTACTTCCTTTACGTTGATCGC	198
4R	TG	
YSCAT 4	ATGGAAAAGTACACCAATTGGAGAGACAATGGTACGGAA	199
KO F	CTGTGCGGTATTCACACCG	
YSCAT 4	CTACTCCTTTTACGTTGATCGCTGATATATTCCCTC	200
KO R	AGATTGTACTGAGAGTGCAC	

YSCAT	GGATCCGCGGCCGCACAATGCCTGCACCAAAACTCACCGA	201
5F	G	
YSCAT	GGATCCCCTGCAGGCTACGCATCTCCTTCTTCCTTC	202
5R		
YSCAT 5	ATGCCTGCACCAAAACTCACGGAGAAATCTGCCTCTCCA	203
KO F	CTGTGCGGTATTCACACCG	
YSCAT 5	CTACGCATCTCCTTCTTCCCTCTTCTTCTTCTCCTCT	204
KO R	AGATTGTACTGAGAGTCAC	
YSCAT	GGATCCGCGGCCGCACAATGTCTGCTCCGCTGCCGATCA	205
6F	TAACGCC	
YSCAT	GGATCCCCTGCAGGTCAATTCTTCTTTCTGTGTTCTCTT	206
6R	TCTG	
YSCAT 6	ATGTCTGCTCCGCTGCCGATCATAACGCTGCCAACCTA	207
KO F	CTGTGCGGTATTCACACCG	
YSCAT 6	TCATTCTTTCTTTCTGTGTTCTCTTCTGTCTTACCAAGC	208
KO R	AGATTGTACTGAGAGTCAC	
YSCAT	GGATCCGCGGCCGCACAATGCTGCATCAAAAAATAGCTCA	209
7F	TAAAGTTCG	
YSCAT	GGATCCCCTGCAGGTCAAAAATAAAACAATAAAGTTAT	210
7R	AAACTAACCC	
YSCAT 7	ATGCTGCATCAAAAATAGCTCATAAAGTTCGAAAAGTCG	211
KO F	CTGTGCGGTATTCACACCG	
YSCAT 7	TCAAAAATAAAACAATAAAGTTATAAACTAACCAAATT	212
KO R	AGATTGTACTGAGAGTCAC	
YSCAT	GGATCCGCGGCCGCACAATGAGTGTGATAGGTAGGTTCTT	213
8F	G	
YSCAT	GGATCCCCTGCAGGTTAATGCATCTTTTACAGATGAAC	214
8R	C	
YSCAT 8	ATGAGTGTGATAGGTAGGTTCTGTATTACTTGAGGTCCG	215
KO F	CTGTGCGGTATTCACACCG	
YSCAT 8	TTAATGCATCTTTTACAGATGAACCTCGTTATGGGTAA	216
KO R	AGATTGTACTGAGAGTCAC	

The entire coding regions for each of the acyltransferase sequences were amplified using the respective primers listed in the Table 3 above, cloned into the vector pCR2.1Topo (Invitrogen) or pZero (Invitrogen), and labeled as pCGN8558 (ATAT1), pCGN8564

33-1

(ATAT2), pCGB8565 (ATAT3), pCGN8566 (ATAT4), pCGN8918 (ATAT6), pCGN8913 (ATAT7), pCGN8904 (ATAT8), pCGN9970 (ATAT9), pCGN9940 (ATAT10), pCGN8567 (ATAT11), pCGN8632 (ATLPAAT1), pCGN9901 (YSCAT1 also referred to as gi2132299), pCGN9902 (YSCAT2, also referred to as gi1078509), pCGN9903 (YSCAT3, also referred to as gi2132939), pCGN9904 (YSCAT4, also referred to as gi2133031), pCGN9905 (YSCAT5, also referred to as gi320748), pCGN9906 (YSCAT6, also referred to as gi549627), pCGN9907 (YSCAT7, also referred to as gi586485), and pCGN9908 (YSCAT8, also referred to as gi464422). The nucleic acid sequences for the respective yeast acyltransferase are provided YSCAT1 (SEQ ID NO:225), YSCAT2 (SEQ ID NO:226), YSCAT3 (SEQ ID NO:227), YSCAT4 (SEQ ID NO:228), YSCAT5 (SEQ ID NO:229), YSCAT6 (SEQ ID NO:230), YSCAT7 (SEQ ID NO:231), and YSCAT8 (SEQ ID NO:232).

7A. Baculovirus Expression Constructs

Constructs are prepared to direct the expression of the *Arabidopsis* ATAT sequences in cultured insect cells. The entire coding regions of ATAT1, 2, 3, 4, 6, 7, 8, 9, 10, and 11 are cloned into the vector pFastBac1 (Gibco-BRL, Gaithersburg, MD) digested with *NotI* and 5 *PstI*. The respective coding sequences were cloned as *NotI/Sse8387I* fragments. Double stranded DNA sequence was obtained to verify that no errors were introduced by PCR amplification. The resulting plasmid were designated pCGN9723 (ATAT1), pCGN9724 (ATAT2), pCGN9725 (ATAT3), pCGN9726 (ATAT4), pCGN9727 (ATAT5), pCGN9728 (ATAT7), pCGN9729 (ATAT8), pCGN9991 (ATAT9) pCGN9730 (ATAT10), pCGN9731 10 (ATAT11).

7B. Plant Expression Construct Preparation

A plasmid containing the napin cassette derived from pCGN3223 (described in USPN 5,639,790, the entirety of which is incorporated herein by reference) was modified to make it 15 more useful for cloning large DNA fragments containing multiple restriction sites, and to allow the cloning of multiple napin fusion genes into plant binary transformation vectors. An adapter comprised of the self annealed oligonucleotide of sequence CGCGATTAAATGGCGGCCCTGCAGGCAGGCCCTGCAGGGCGGCCATTAA (SEQ ID NO:233) AT was ligated into the cloning vector pBC SK+ (Stratagene) after 20 digestion with the restriction endonuclease BssHII to construct vector pCGN7765. Plamids pCGN3223 and pCGN7765 were digested with *NotI* and ligated together. The resultant vector, pCGN7770, contains the pCGN7765 backbone with the napin seed specific expression cassette from pCGN3223.

The cloning cassette, pCGN7787, essentially the same regulatory elements as 25 pCGN7770, with the exception of the napin regulatory regions of pCGN7770 have been replaced with the double CAMV 35S promoter and the tml polyadenylation and transcriptional termination region.

A binary vector for plant transformation, pCGN5139, was constructed from pCGN1558 (McBride and Summerfelt, (1990) Plant Molecular Biology, 14:269-276). The 30 polylinker of pCGN1558 was replaced as a HindIII/Asp718 fragment with a polylinker containing unique restriction endonuclease sites, *AscI*, *PacI*, *XbaI*, *SwaI*, *BamHI*, and *NotI*. The Asp718 and HindIII restriction endonuclease sites are retained in pCGN5139.

A series of turbo binary vectors are constructed to allow for the rapid cloning of DNA sequences into binary vectors containing transcriptional initiation regions (promoters) and transcriptional termination regions.

The plasmid pCGN8618 was constructed by ligating oligonucleotides 5'-

5 TCGAGGATCCGGCCGCAAGCTCCTGCAGG-3') (SEQ ID NO:234) and 5'-
TCGACCTGCAGGAAGCTTGCAGGCCGGATCC-3') (SEQ ID NO:235) into SalI/XhoI-digested pCGN7770. A fragment containing the napin promoter, polylinker and napin 3' region was excised from pCGN8618 by digestion with Asp718I; the fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert oriented so that the napin promoter was closest to the blunted Asp718I site of pCGN5139 and the napin 3' was closest to the blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated pCGN8622.

10 15 The plasmid pCGN8619 was constructed by ligating oligonucleotides 5'-
TCGACCTGCAGGAAGCTTGCAGGCCGGATCC -3') (SEQ ID NO:236) and 5'-
TCGAGGATCCGGCCGCAAGCTCCTGCAGG-3') (SEQ ID NO:237) into SalI/XhoI-digested pCGN7770. A fragment containing the napin promoter, polylinker and napin 3' region was removed from pCGN8619 by digestion with Asp718I; the fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert oriented so that the napin promoter was closest to the blunted Asp718I site of pCGN5139 and the napin 3' was closest to the blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated pCGN8623.

20 25 The plasmid pCGN8620 was constructed by ligating oligonucleotides 5'-

TCGAGGATCCGGCCGCAAGCTCCTGCAGGAGCT -3') (SEQ ID NO:238) and 5'-
CCTGCAGGAAGCTTGCAGGCCGGATCC-3') (SEQ ID NO:239) into SalI/SacI-digested pCGN7787. A fragment containing the d35S promoter, polylinker and tml 3' region was removed from pCGN8620 by complete digestion with Asp718I and partial digestion with NotI. The fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert

oriented so that the d35S promoter was closest to the blunted Asp718I site of pCGN5139 and the tml 3' was closest to the blunted HindIII site was subjected to sequence analysis to confirm both the insert orientation and the integrity of cloning junctions. The resulting plasmid was designated pCGN8624.

5 The plasmid pCGN8621 was constructed by ligating oligonucleotides 5'-
TCGACCTGCAGGAAGCTTGC GGCCGGATCCAGCT -3') (SEQ ID NO:240) and 5'-
GGATCCGGCCGCAAGCTT CCTGCAGG-3') (SEQ ID NO:241) into SalI/SacI-
digested pCGN7787. A fragment containing the d35S promoter, polylinker and tml 3' region
was removed from pCGN8621 by complete digestion with Asp718I and partial digestion with
10 NotI. The fragment was blunt-ended by filling in the 5' overhangs with Klenow fragment
then ligated into pCGN5139 that had been digested with Asp718I and HindIII and blunt-
ended by filling in the 5' overhangs with Klenow fragment. A plasmid containing the insert
oriented so that the d35S promoter was closest to the blunted Asp718I site of pCGN5139 and
the tml 3' was closest to the blunted HindIII site was subjected to sequence analysis to
15 confirm both the insert orientation and the integrity of cloning junctions. The resulting
plasmid was designated pCGN8625.

The coding regions of the various acyltransferase sequences were cloned as
NotI/Sse8387I fragments into pCGN8622, pCGN8623, pCGN8624, and pCGN8625, for
expression in sense or antisense orientations from a tissue preferential promoter, napin, or the
20 35S promoter. Fragments which were cloned into the pCGN8622 vector created the
constructs pCGN8901 (ATAT1), pCGN8571 (ATAT2), pCGN8909 (ATAT3), pCGN8596
(ATAT4), pCGN8919 (ATAT6), pCGN8914 (ATAT7), pCGN8905 (ATAT8), pCGN9973
(ATAT9), pCGN9942 (ATAT10), pCGN8575 (ATAT11), and pCGN8633 (ATLPAAT1) for
the sense expression of the respective coding sequences from the napin promoter. Fragments
25 which were cloned into the pCGN8623 vector created the constructs pCGN8900 (ATAT1),
pCGN8572 (ATAT2), pCGN8910 (ATAT3), pCGN8597 (ATAT4), pCGN8920 (ATAT6),
pCGN8915 (ATAT7), pCGN8906 (ATAT8), pCGN9972 (ATAT9), pCGN9943 (ATAT10),
pCGN8576 (ATAT11), and pCGN8634 (ATLPAAT1) for the antisense expression of the
respective coding sequences from the napin promoter. Fragments which were cloned into the
30 pCGN8624 vector created the constructs pCGN8903 (ATAT1), pCGN8573 (ATAT2),
pCGN8911 (ATAT3), pCGN8598 (ATAT4), pCGN8921 (ATAT6), pCGN8916 (ATAT7),
pCGN8907 (ATAT8), pCGN9971 (ATAT9), pCGN9944 (ATAT10), pCGN8577 (ATAT11),
and pCGN8635 (ATLPAAT1) for the sense expression of the respective coding sequences

from the 35S promoter. Fragments which were cloned into the pCGN8625 vector created the constructs pCGN8902 (ATAT1) and pCGN9974 (ATAT9) for the antisense expression of the respective coding sequences from the 35S promoter.

In addition, the yeast acyltransferase coding sequences were cloned into the vector pCGN8624 creating the constructs pCGN9926 (YSCAT1), pCGN9927 (YSCAT2), pCGN9928 (YSCAT3), pCGN9929 (YSCAT4), pCGN9930 (YSCAT5), pCGN9931 (YSCAT6), pCGN9932 (YSCAT7), and pCGN9933 (YSCAT8). These constructs allow for the sense expression of the respective acyltransferase coding sequences from the 35S promoter in plant cells.

10

Example 8: Plant Transformation

A variety of methods have been developed to insert a DNA sequence of interest into the genome of a plant host to obtain the transcription or transcription and translation of the sequence to effect phenotypic changes.

Transgenic *Brassica* plants are obtained by *Agrobacterium*-mediated transformation as described by Radke *et al.* (*Theor. Appl. Genet.* (1988) 75:685-694; *Plant Cell Reports* (1992) 11:499-505). Transgenic *Arabidopsis thaliana* plants may be obtained by 20 *Agrobacterium*-mediated transformation as described by Valverkens *et al.*, (*Proc. Nat. Acad. Sci.* (1988) 85:5536-5540), or as described by Bent *et al.* ((1994), *Science* 265:1856-1860), or Bechtold *et al.* ((1993), *C.R.Acad.Sci, Life Sciences* 316:1194-1199) or Clough, *et al.* (1998) *Plant J.*, 16:735-43. Other plant species may be similarly transformed using related techniques.

25 Alternatively, microprojectile bombardment methods, such as described by Klein *et al.* (*Bio/Technology* 10:286-291) may also be used to obtain nuclear transformed plants.

The above results demonstrate that the nucleic acid sequences identified encode proteins which are related to protein sequences encoding acyltransferase proteins. Such 30 acyltransferase sequences find use in preparing expression constructs for plant transformations.

All publications and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains. All

publications and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

Although the foregoing invention has been described in some detail by way of
5 illustration and example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claim.

Claims

What is Claimed is:

1. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like

5 proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 127
(VxNHxS) wherein the H is the conserved Histidine residue in the conserved peptide
sequence HXXXXD of said acyltransferase-like protein, x representing any amino acid.

10 2. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like
proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 128
(VTYSxS) within about 30 amino acids downstream from the conserved amino acid sequence
HXXXXD of said acyltransferase-like protein, x representing any amino acid.

15 3. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like
proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 129
(VxLTRxR) within about 60 amino acids downstream from the conserved amino acid
sequence HXXXXD of said acyltransferase-like protein, x representing any amino acid.

20 4. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like
proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 132
(LxxGDLV) within about 20 amino acids upstream of the conserved amino acid sequence
PEG of said acyltransferase-like protein, x representing any amino acid.

25 5. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like
proteins,

30 wherein said enzyme includes the amino acid sequence of SEQ ID NO: 130 (CPEGT)
containing the conserved amino acid sequence PEG of said acyltransferase-like protein.

6. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 133 (FxxGAF) within about 20 amino acids downstream from the conserved amino acid sequence PEG of said acyltransferase-like protein, x representing any amino acid.

7. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 131 (IVPVA) within about 40 amino acids downstream from the conserved amino acid sequence PEG of said acyltransferase-like protein.

8. An isolated DNA sequence encoding an enzyme of the class of acyltransferase-like proteins,

wherein said enzyme includes the amino acid sequence of SEQ ID NO: 134 (VANxxQ) within about 110 amino acids downstream from the conserved amino acid sequence PEG of said acyltransferase-like protein, x representing any amino acid.

20 9. A DNA sequence encoding an enzyme of the class of acyltransferase-like proteins, said DNA sequence obtainable by the steps comprising:

- (a) using the profile of Figure 1 to search a nucleic acid sequence database;
- (b) obtaining a probability score for nucleic acid sequences in said sequence database using the Smith-Waterman algorithm; and

25 (c) selecting a nucleic acid sequence having a probability score of less than about 1.

10. The DNA encoding sequence according to Claim 9, wherein said DNA sequence is an encoding sequence.

30 11. The DNA encoding sequence according to Claim 9, wherein said DNA sequence is an EST.

12. The DNA encoding sequence according to any one of Claims 1 to 11, wherein said acyltransferase-like protein is from a plant.

13. A construct comprising a DNA sequence of any one of Claims 1 to 11 linked to a
5 heterologous transcriptional and translational initiation region functional in a host cell.

14. The construct according to Claim 13 wherein said host cell is a plant cell.

15. A plant cell comprising a DNA construct according to Claim 13.

10

16. A plant comprising a cell according to Claim 15.

17. The DNA encoding sequence of any one of 1 to 11 wherein said acyltransferase-
15 like protein is from *Arabidopsis thaliana*.

18. The DNA encoding sequence of any one of 1 to 11 wherein said acyltransferase-
like protein is from corn.

20 19. The DNA encoding sequence of Claim 18 wherein said sequence comprises and
EST selected from the group consisting of SEQ ID NO: 86 through SEQ ID NO: 126.

20 20. The DNA encoding sequence of any one of 1 to 11 wherein said acyltransferase-
like protein is from soybean.

25

21. The DNA encoding sequence of Claim 20 wherein said sequence comprises and
EST selected from the group consisting of SEQ ID NO: 24 through SEQ ID NO: 85.

30 22. The DNA encoding sequence of any one of Claims 2, 3, 4, 5, 7 and 8 wherein
said acyltransferase-like protein is selected from the group consisting of SEQ ID NO: 1, SEQ
ID NO: 10, SEQ ID NO: 12, SEQ ID NO: 14 and SEQ ID NO: 16.

23 . The DNA encoding sequence of either of Claim 1 and Claim 6 wherein said acyltransferase-like protein is selected from the group consisting of SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7 and SEQ ID NO: 18.

Con	A	B	C	D	E	F	G	H	I	J	K	L	M	N	P	Q	R	S	T	V	W	X	Y	Z	Gap	Len
S	0	-1	-1	-1	-2	-2	-3	-1	-1	-1	-2	-2	-1	0	-1	0	-1	0	-2	-3	-2	-3	-1	0	11	1
K	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0	11	1
O	1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	11	1
I	G	I	T	N	K	F	W	P	E	E	K	E	F	Y	K	F	W	P	E	I	A	A	R	L	S	0
T	!10	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	K	1
E	!20	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	1

2/10

SUBSTITUTE SHEET (RULE 26)

Figure 2/5

3/10

F	1	-5	-4	3	-4	-4	0	-3	-3	-3	-3	-3	1
W	0	-3	-1	2	-4	-1	2	-1	0	2	0	3	1
R	0	-1	0	0	-2	0	2	0	-1	1	1	1	1
H	0	0	2	1	-2	1	0	-1	1	0	0	-1	1
C	-3	-1	4	-1	2	0	0	-4	4	0	-4	1	1
C	-3	-2	3	0	-4	-1	-4	0	-3	0	-4	1	-2
P	0	-4	-5	-4	-3	3	2	0	-2	0	-4	0	-2
P	0	-5	0	-4	4	-3	5	-4	0	6	-4	0	-2
Y	-2	-5	0	-4	0	-4	5	0	-2	-4	-5	1	-4
M	-3	-5	-4	-4	0	-5	0	-2	2	2	-4	0	-4
A	5	-5	-3	-5	-4	0	-5	-3	-4	-4	-2	0	-2
K	0	-1	-5	-1	1	-5	2	0	2	-4	2	0	-4
G	0	0	-1	0	0	-5	0	0	0	-1	0	-1	0
E	0	0	0	1	4	-4	1	0	-4	3	2	0	-2
I	-3	-2	-4	-2	-4	-3	0	-4	1	3	2	0	-2
I	100	0	-5	-4	-3	3	0	1	-2	0	-4	2	0
F	W	-4	-1	-2	-4	-2	-1	-4	-1	0	-2	-3	0
I	T	-3	-4	-5	-4	0	-4	1	-2	1	-4	0	-2
P	F	-2	-2	-4	-5	-4	0	-4	1	-2	-3	0	-1
F	F	0	-5	-4	-3	4	-5	1	-4	2	-4	0	-2
F	F	-1	-3	-5	-4	0	-4	1	-2	1	-4	0	-2
G	G	-1	-3	-5	-4	0	-4	1	-2	1	-4	0	-2
W	W	-2	-4	-4	-2	-1	-1	0	0	-1	-2	1	0
M	M	0	-2	-5	0	-5	-2	0	-4	0	-4	2	0
M	M	110	-1	-4	-5	-4	0	-3	0	-1	-2	1	0
L	L	0	0	-4	0	-5	-4	-1	0	-4	-4	0	-2
H	H	2	-5	3	-5	1	-1	-5	5	2	-2	1	0
G	G	-3	0	-5	0	-3	0	3	-1	-1	-2	1	0
C	C	1	0	4	0	-3	0	-6	-5	0	-2	-2	1
F	F	-3	-5	-4	-5	-4	5	5	-5	0	-2	-2	1
F	F	-1	-5	-4	-5	0	-4	8	-5	-3	-4	-3	0
I	I	-2	-5	0	-5	0	-3	-6	-5	6	-4	0	-2
D	D	2	-5	5	0	-5	0	-3	-5	1	-4	0	-2
R	R	-3	-4	-5	-4	-2	-1	0	-5	0	-3	-2	1
N	N	-3	0	-5	0	-3	2	0	-4	1	-2	1	0
W	W	0	-3	-4	-1	-4	0	-5	3	-3	-5	-1	-2
K	K	0	-1	-4	0	-5	3	-3	-5	3	-4	0	-2
D	D	-2	1	-5	4	0	-5	3	-3	-2	-2	-5	0
R	R	-2	0	-4	0	-5	2	0	-4	3	-3	-2	1
K	K	2	-2	-4	0	-5	0	-4	-1	0	-2	-3	0
A	A	2	-1	-4	-1	-4	-1	-1	-1	-1	-4	2	-2

WO 00/18889

4 / 10

Y	H	A	I	M	K	E	H	A	H	R	L	L	L	R	Q	G	Y	W	V	W	W	T	F	P	E	G	T	R	S	R	S	G	N	L	L
1130	0	0	-1	-3	-3	-1	0	-2	-1	-2	-1	0	-1	-2	0	0	1	0	-1	0	-1	1	0	-1	0	0	1	0	0	1	1	1	1		
I	M	K	E	H	A	H	R	L	L	L	R	P	E	G	T	R	S	R	S	G	N	L	L	L	P	F	K	W	G	A	F	H	M		
!140	-1	0	-4	2	-5	1	-4	2	-2	-1	0	-3	-4	0	-5	-4	-1	0	-4	0	-5	-4	0	-4	0	-5	-4	-1	0	-4	1	-1	0		
R	Q	G	Y	W	V	W	W	T	F	P	E	G	T	R	S	R	S	G	N	L	L	L	P	E	G	T	R	S	R	S	G	N	L	L	
!150	-1	0	-1	0	-2	-1	0	-3	-4	0	-7	-4	0	-3	-5	-3	-4	0	-4	0	-5	-4	0	-4	0	-5	-4	-1	0	-4	1	-1	0		
E	W	V	W	W	T	F	P	E	G	T	R	S	R	S	G	N	L	L	P	E	G	T	R	S	R	S	G	N	L	L	L	L	L		
!160	0	1	-2	-1	0	-4	-2	6	-1	-4	0	-5	-1	-2	0	-4	0	-1	0	-2	-3	-1	0	-1	1	2	-2	-3	-2	-4	-2	-1	-2	-1	

5 / 10

SUBSTITUTE SHEET (RULE 26)

ATAT1	Y - -	T Y E M L G ! H L T	I R G H R -	P P P P S P G T	L G N L Y V L	N H R T A L D P
ATAT9	V - -	N Y K L T G I K L V	V N G H P -	P P P P K P G Q	C N H R T V L D P	
ATAT7	V - -	S - Q ! F G G H I	K G K P -	P Q P P A A G K S G V L	C N H R T L M D P	
ATAT8	V -	F S G C R L T V T N D Y	V S S Q K -	K P S Q R K G C L	C N H R T L L D P	
ATAT6	A F S G I H L T L T	N R L Y Q G I N V H N A	D L I S A D R K R G C L	L F V C N H R T L L D P		
PLSB_ECOLI		S - F F W N I Q I H K G Q L E M V K A	A T E T N L P L L F L P	V C N H R S H I D Y		
ATLPAAT1		I V D W W A G V K I Q V F A D N E T F	- N R M G K E H A L V	C N H R S D I D W		
Jojoba AT		V - D W W A S V K I K L F T D P D T F	- R L M G K E H A L V	S N H R S D I D W		
Maize AT		V - D W W A G V K V Q L H A D E E T Y	- R S M G K E H A L V	S N H R S D I D W		
ATAT11	L - -	W P F L F E K I N K T K V I F S G D	K V P C E D R V L L	A N H Q S T L D I		
PLSC_COCO		V T G R M L M W I L G N P I T	- I E G S E F S N T R A Y	C N H A S P I D A		
PLSC_LIM		I I G G L V I W I Y G I P I K	- I Q G S E H T K K R A Y	S N H A S P I D A		
PLSC_ECOLI		F - G R L A P L - F G L K N I E	- K V V G E E N L A K K P Y I M A N H Q S T L D I	N Y D M		
PLSB_YEAST	F - Y H V M K L M L G L D V	W A S I S I Y P F Y K I N	- G L E N L P S S D T P A V V Y V S N H Q S F L D I			
ATAT2		M D S N P K T T S T E	- I N Q - K G E A A T E E P E R P G A I V S N H V S Y L D I			
ATAT3		R C I L F S F G - Y Q W	- I R R - K G K P A R - R E I A P T V V S N H V S Y I E P			
ATAT10		M I C S F F V A S - . W	- T G V V K Y H G P R P S I R P K Q			
ATAT4						

ATAT1						
ATAT9						
ATAT7						
ATAT8						
ATAT6						
PLSB_ECOLI						
ATLPAAT1						
Jojoba AT						
Maize AT						
ATAT11						
PLSC_COCO						
PLSC_LIM						
PLSC_ECOLI						
PLSB_YEAST						
ATAT2						
ATAT3						
ATAT10						
ATAT4						

Figure 1/3

ATAT1	TVR GVK FWDPYFF	PSYEAATF	DRLPEEM	-TVNG-
ATAT9	TTR GYKL LDPPYFA	[REDACTED]	TCKG	-
ATAT7	TAR GWKGL DPPIFF	[REDACTED]	TCC	-
ATAT8	TAS GLKAL DPLFFL	[REDACTED]	TCODP	-
ATAT6	TAS GLKA FDPFL	[REDACTED]	DPVGD	-
PLSB_ECOLI	MEVG	-	-	-
PLSB_MOUSE	IE-G	-	-	-
ATLPAAT1	VSNMRSFVPAIYDM	-	-	-
Jojoba AT	VSHMRSFFVPAIYDT	-	-	-
Maize AT	VSS1MRDFFVPAIYDV	-	-	-
ATAT11	LQELSCSSLDAVYD	-	-	-
PLSC_COCCO	SL-RVRPAP1	-	-	-
PLSC_LIM	TF-RVRPVPI	-	-	-
PLSC_ECOLI	LN-RLHNGLV	-	-	-
PLSC_YEAST	SEGILNHGNV	-	-	-
ATAT2	WDTISGARHILFL	-	-	-
ATAT3	WNSRKQSFTMHLL	-	-	-
ATAT4	WNTS	SWAVVCEVWYLEPQTIRP	-	-

ATAT1	GCKTPIEVANYYVQK	VIGAVVLGFECTE	TRKDLYULLG	-
ATAT9	G-KSP1EVANYYVQR	VLGGEPM	PLMT	-
ATAT7	PGRARMTVANYYVQR	[REDACTED]	PLPEADDVAQ	-
ATAT8	DGKLKFEVANHVVQH	[REDACTED]	DDVSK	-
ATLPAAT1	NGKVNFFEVANHVVQH	[REDACTED]	QEWLDINAWL	-
PLSB_MOUSE	LSKLRNLLGGYYV	[REDACTED]	MNTF	-
ATAT6	VIRMRLRKNYGYV	[REDACTED]	-	-
ATAT11	E-	-	-	-
PLSC_COCCO	H-	-	-	-
PLSC_LIM	D-	-	-	-
PLSC_ECOLI	E-	-	-	-
PLSC_YEAST	E-	-	-	-
ATAT2	V-	-	-	-
ATAT3	V-	-	-	-
ATAT4	G-	-	-	-

9 / 10

Figure 3 1/2

10 / 10

Percent Similarity

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19				
1	67.0	58.2	47.2		11.6	11.5	12.0	10.5	12.4	13.4	12.9	12.8	12.3	12.3	11.8	16.3	14.4	14.4	1				
2	31.4	63.9	44.8	42.8	12.9	12.4	14.9	14.4	13.9	16.5	11.3	12.4	12.4	11.3	11.2	13.4	13.7	14.4	2				
3	40.2	35.8		44.8	44.8	12.9	14.4	14.9	13.4	11.3	12.9	12.4	12.9	11.9	13.9	13.4	13.4	17.1	14.4	3			
4	49.7	50.0	50.3		67.2	10.8	13.3	11.8	11.8	10.8	16.4	11.8	11.8	12.8	13.3	12.3	17.4	15.1	12.8	4			
5	50.3	50.3	48.6	25.7		12.3	12.3	13.8	12.8	12.3	12.3	12.3	12.8	12.8	12.8	15.9	13.7	15.9	5				
6	85.6	85.6	85.6	86.2	86.1		28.5	12.6	12.1	11.6	9.7	13.9	14.3	14.8	11.8	17.6	13.5	12.3	10.6	6			
7	83.8	86.8	82.8	82.7	84.3	66.2		12.6	13.9	12.9	13.1	12.4	13.3	14.3	13.8	15.0	11.7	11.6	10.0	7			
8	82.9	78.4	81.2	83.1	81.2	83.6	85.1		82.3	78.0	31.6	12.4	12.8	13.3	15.8	13.9	12.2	16.4	14.4	8			
9	83.5	77.8	81.8	85.9	84.6	85.6	87.1	18.2		77.5	32.1	11.9	14.3	13.3	16.3	15.5	12.4	15.1	12.0	9			
10	83.5	82.4	84.1	87.6	85.1	84.4	87.1	22.5		30.6	13.9	16.7	12.8	16.3	14.4	12.9	16.4	12.0	10	10			
11	84.1	81.4	83.1	85.1	85.1	90.3	87.4	65.4		65.0	67.5		14.4	14.8	11.8	12.8	13.4	14.6	15.8	12.9	11		
12	83.6	84.6	84.6	83.3	83.2	84.6	86.8	80.9		82.2	81.1	82.4		66.7	27.9	28.4	23.5	14.9	17.1	12.9	12		
13	82.1	84.0	81.7	81.0	82.0	87.6	86.9	79.5		80.5	79.5	81.6		33.3		26.1	19.3	14.8	14.4	15.3	13		
14	83.2	81.4	85.0	83.6	82.9	89.1	86.8	82.1		81.6	80.5	84.3		71.3		71.6		19.3	18.7	17.8	14		
15	83.1	80.6	83.0	79.3	81.0	88.2	87.4	81.4		82.0	79.8	84.1		70.3		70.1	62.8		20.3	15.3	15		
16	82.7	82.6	83.9	78.4	78.8	80.8	86.1	82.9		82.2	81.6	84.5		72.3		75.0	76.5	73.5		18.2	15.8	16	
17	83.7	82.0	86.6	78.4	80.2	86.7	89.8	86.4		85.5	85.5	84.4		80.1		78.2	78.6	80.6	77.8		30.8	17.2	17
18	78.5	82.5	81.7	81.8	88.7	87.1	79.1	80.5		78.9	82.8	81.8		78.1		76.1	78.1	79.3	64.8		18.5	18	
19	84.7	84.8	84.8	84.7	85.5	86.5	83.6	87.4		86.5	87.6	91.0		85.0		83.1	85.7	81.8	83.7	79.4	74.1	19	
	1	2	3	4	5	6	7	8		9	10	11		12		13	14	15	16	17	18	19	

Percent Difference

Figure 3 2/2

1

SEQUENCE LISTING

<110> Lassner, Michael W
Emig, Robin A
Ruezinsky, Diane
Van Eenennaam, Alison

<120> Novel Plant Acyltransferases

<130> 17029/00/WO

<140>
<141>

<150> 60/101,939
<151> 1998-09-25

<160> 241

<170> PatentIn Ver. 2.0

<210> 1
<211> 869
<212> DNA
<213> Arabidopsis sp.

<400> 1
atggttcatg cgaccaagtc agccacaacg attccaaaag aacgcttaaa gaaccgcata 60
gtcttccatg atgggcgtt agcgcaacgt ccaactccgt taaaacgcctat tatcacatac 120
ctatggcttc cttttggttt catctctcca tcatttcgtt ctacttcaac ctccccttac 180
ctgaaagatt tggcggttac acttacgaga tgctcggtat ccacttaacc attctgtggtc 240
atcgctctcc acctcccttc ccttggaaactc ttggcaacact ctatgtccctt aaccaccgtt 300
ccgcgcgttga tcccatcatc gtcgttattt ctcttggacg taagatctgt tgctgtcaactt 360
acagtgttcc tcgttcttcc cttatgtctt ctccttattcc tgctgttgcc ctcacccgtt 420
accgtgccac cgatgtgtcc aacatgagaa aacttctcgaa gaaaggcgac ttggtgatat 480
gtccggaaagg cacgacgtgt agagaagagt atctactgtgat attagcgct ctattcgac 540
agctaagcga ccggatttgtt ccagtagcgaa tgaactgtaa acaaggaatg ttcaacggga 600
ccacagttag ggggtgttgaag ttttgggacc cttacttctt cttcatgaac ccaagaccaa 660
gctatgaagc cactttcttgc gatcggttgc ctgaagaaat gactgtcaac ggtgggtggca 720
agactccttat agaggtggctt aattacgtcc agaaagtat ccggcgccgtt ttgggcttcg 780
aatgcaccga acttactcgc aaggataaat atctttgtt tggaggtaaat gacggcaagg 840
tggagtcttat caacaacacc aagaagtga 869

<210> 2
<211> 289
<212> PRT
<213> Arabidopsis sp.

<400> 2
Met Val His Ala Thr Lys Ser Ala Thr Thr Ile Pro Lys Glu Arg Leu
1 5 10 15
Lys Asn Arg Ile Val Phe His Asp Gly Arg Leu Ala Gln Arg Pro Thr
20 25 30
Pro Leu Asn Ala Ile Ile Thr Tyr Leu Trp Leu Pro Phe Gly Phe Ile
35 40 45
Leu Ser Ile Ile Arg Val Tyr Phe Asn Leu Pro Leu Pro Glu Arg Phe
50 55 60
Val Arg Tyr Thr Tyr Glu Met Leu Gly Ile His Leu Thr Ile Arg Gly
65 70 75 80
His Arg Pro Pro Pro Ser Pro Gly Thr Leu Gly Asn Leu Tyr Val
85 90 95
Leu Asn His Arg Thr Ala Leu Asp Pro Ile Ile Val Ala Ile Ala Leu
100 105 110

SEQUENCE LISTING

<110> Lassner, Michael W
Emig, Robin A
Ruezinsky, Diane
Van Eenennaam, Alison

<120> Novel Plant Acyltransferases

<130> 17029/00/WO

<140>
<141>

<150> 60/101,939
<151> 1998-09-25

<160> 241

<170> PatentIn Ver. 2.0

<210> 1
<211> 869
<212> DNA
<213> Arabidopsis sp.

<400> 1
atggttcatg cgaccaagtc agccacaacg attccaaaag aacgcttaaa gaaccgcata 60
gtctccatg atggcggtt agcgcaacgt ccaactccgt taaacgcat tatcacatac 120
ctatggcttc ctttggttt catctctcca tcattcgcgt ctacttcaac ctccctttac 180
ctgaaaagatt tgcgcgttac acttacgaga tgctcggat ccacttaacc attcgtggtc 240
atcgcttcc acctccccc cctggaaactc ttggcaacct ctatgcctt aaccaccgta 300
ccgcgttga tcccatatc gtcgcatttgc ctcttggacg taagatctgt tgcgtcaatt 360
acagtgttcc tcgtcttcc ctatgcatttgc ctccatttcc tgctgttgcc ctcacccgtg 420
accgtggccac cgatgtgcc aacatgagaa aacttctga gaaaggcgac ttggtgatat 480
gtccggaaagg cacgacgtgt agagaagagt atctactgag atttagcgct ctattcgcag 540
agctaagcga ccggatttgt ccagtagcga tgaactgtaa acaaggaatg ttcaacggga 600
ccacagttag ggggtgtgaag ttttgggacc cttacttctt cttcatgtaa ccaagaccaa 660
gctatgaagc cactttcttg gatcggttgc ctgaagaaat gactgtcaac ggtgggtggca 720
agactccttat agaggtggct aattacgtcc agaaagttat cggcgcgggtt ttgggcttcg 780
aatgcaccga acttactcgc aaggataat atcttttgct tggaggtat gacggcaagg 840
tggagtcttat caacaacacc aagaagtga 869

<210> 2
<211> 289
<212> PRT
<213> Arabidopsis sp.

<400> 2
Met Val His Ala Thr Lys Ser Ala Thr Thr Ile Pro Lys Glu Arg Leu
1 5 10 15
Lys Asn Arg Ile Val Phe His Asp Gly Arg Leu Ala Gln Arg Pro Thr
20 25 30
Pro Leu Asn Ala Ile Ile Thr Tyr Leu Trp Leu Pro Phe Gly Phe Ile
35 40 45
Leu Ser Ile Ile Arg Val Tyr Phe Asn Leu Pro Leu Pro Glu Arg Phe
50 55 60
Val Arg Tyr Thr Tyr Glu Met Leu Gly Ile His Leu Thr Ile Arg Gly
65 70 75 80
His Arg Pro Pro Pro Pro Ser Pro Gly Thr Leu Gly Asn Leu Tyr Val
85 90 95
Leu Asn His Arg Thr Ala Leu Asp Pro Ile Ile Val Ala Ile Ala Leu
100 105 110

Gly	Arg	Lys	Ile	Cys	Cys	Val	Thr	Tyr	Ser	Val	Ser	Arg	Leu	Ser	Leu
115							120					125			
Met	Leu	Ser	Pro	Ile	Pro	Ala	Val	Ala	Leu	Thr	Arg	Asp	Arg	Ala	Thr
130							135				140				
Asp	Ala	Ala	Asn	Met	Arg	Lys	Leu	Leu	Glu	Lys	Gly	Asp	Leu	Val	Ile
145					150					155					160
Cys	Pro	Glu	Gly	Thr	Thr	Cys	Arg	Glu	Glu	Tyr	Leu	Leu	Arg	Phe	Ser
				165				170					175		
Ala	Leu	Phe	Ala	Glu	Leu	Ser	Asp	Arg	Ile	Val	Pro	Val	Ala	Met	Asn
				180				185					190		
Cys	Lys	Gln	Gly	Met	Phe	Asn	Gly	Thr	Thr	Val	Arg	Gly	Val	Lys	Phe
				195			200				205				
Trp	Asp	Pro	Tyr	Phe	Phe	Phe	Met	Asn	Pro	Arg	Pro	Ser	Tyr	Glu	Ala
					210		215				220				
Thr	Phe	Leu	Asp	Arg	Leu	Pro	Glu	Glu	Met	Thr	Val	Asn	Gly	Gly	Gly
					225		230			235					240
Lys	Thr	Pro	Ile	Glu	Val	Ala	Asn	Tyr	Val	Gln	Lys	Val	Ile	Gly	Ala
				245				250					255		
Val	Leu	Gly	Phe	Glu	Cys	Thr	Glu	Leu	Thr	Arg	Lys	Asp	Lys	Tyr	Leu
				260				265					270		
Leu	Leu	Gly	Gly	Asn	Asp	Gly	Lys	Val	Glu	Ser	Ile	Asn	Asn	Thr	Lys
				275			280				285				

```
<210> 3
<211> 939
<212> DNA
<213> Arabidopsis sp.
```

<210> 4
<211> 312
<212> PRT
<213> *Arabidopsis* sp.

```

<400> 4
Met Thr Ser Phe Thr Thr Ser Leu His Ala Val Pro Ser Glu Lys Phe
      1           5           10          15

Met Gly Glu Thr Arg Arg Thr Gly Ile Gln Trp Ser Asn Arg Ser Leu

```

20

25

30

Arg His Asp Pro Tyr Arg Phe Leu Asp Lys Lys Ser Pro Arg Ser Ser			
35	40	45	
Gln Leu Ala Arg Asp Ile Thr Val Arg Ala Asp Leu Ser Gly Ala Ala			
50	55	60	
Thr Pro Asp Ser Ser Phe Pro Glu Pro Glu Ile Lys Leu Ser Ser Arg			
65	70	75	80
Leu Arg Gly Ile Phe Phe Cys Val Val Ala Gly Ile Ser Ala Thr Phe			
85	90	95	
Leu Ile Val Leu Met Ile Ile Gly His Pro Phe Val Leu Leu Phe Asp			
100	105	110	
Pro Tyr Arg Arg Lys Phe His His Phe Ile Ala Lys Leu Trp Ala Ser			
115	120	125	
Ile Ser Ile Tyr Pro Phe Tyr Lys Ile Asn Ile Glu Gly Leu Glu Asn			
130	135	140	
Leu Pro Ser Ser Asp Thr Pro Ala Val Tyr Val Ser Asn His Gln Ser			
145	150	155	160
Phe Leu Asp Ile Tyr Thr Leu Leu Ser Leu Gly Lys Ser Phe Lys Phe			
165	170	175	
Ile Ser Lys Thr Gly Ile Phe Val Ile Pro Ile Ile Gly Trp Ala Met			
180	185	190	
Ser Met Met Gly Val Val Pro Leu Lys Arg Met Asp Pro Arg Ser Gln			
195	200	205	
Val Asp Cys Leu Lys Arg Cys Met Glu Leu Leu Lys Lys Gly Ala Ser			
210	215	220	
Val Phe Phe Pro Glu Gly Thr Arg Ser Lys Asp Gly Arg Leu Gly			
225	230	235	240
Ser Phe Lys Lys Gly Ala Phe Thr Val Ala Ala Lys Thr Gly Val Ala			
245	250	255	
Val Val Pro Ile Thr Leu Met Gly Thr Gly Lys Ile Met Pro Thr Gly			
260	265	270	
Ser Glu Gly Ile Leu Asn His Gly Asn Val Arg Val Ile Ile His Lys			
275	280	285	
Pro Ile His Gly Ser Lys Ala Asp Val Leu Cys Asn Glu Ala Arg Ser			
290	295	300	
Lys Ile Ala Glu Ser Met Asp Leu			
305	310		

<210> 5

<211> 1197

<212> DNA

<213> Arabidopsis sp.

<400> 5

atggaatcag agctcaaaga tttgaattcg aattcgaatc ctccgtcgag caaagaggac 60
 cggccgttac tgaaatcaga atccgatttg gccccgtgcca ttgaagagtt agacaaaaag 120
 ttcgcacctt acgcgaggac cgatttgtat gggacgatgg gtttgggtcc tttcccgtat 180
 acggagaata ttaaattggc ggttgcattg gtgactcttg ttccattgcg gtttcttctc 240
 tcgatgagca tcttgcttctt ctattacttg attttaggg tatattacgt gttttctgct 300
 ccttatcgtg ggccagagga agaggaagat gaaggtggag ttgttttca ggaagattat 360
 gctcacatgg aagggtggaa acggactgtt atcgtccggcgt ctgggaggtt tctctctagg 420

gtttgctt tcgttttgg gtttattgg attcacgaga gctgtccaga tcgagattca 480
 gacatggatt ctaatcctaa aactacttct acagagatta accagaaaagg ggaagccgcc 540
 acggaggaac ctgaaagacc tggagccatt gtgtccaatc atgtttcgta cttggacatt 600
 ttgtatcata tgtctgcctc tttccaagt ttgttgcca agagatcaat gggcaaactt 660
 cctcttggc gcctcattag caaatgcctt gggtgtct atgttcaag agaagcaaaa 720
 tcgcctgatt tcaagggtgt atctggcaca gtaaatgaaa gagttcgaga agctcatagc 780
 aataaatctg ctccaactat tatgctttt ccagaaggaa caactaccaa tggagactac 840
 ttacttatcat tcaagacagg tgcattttt gctggactc cagttcttc ggtatatatta 900
 aaatatccgt atgagcgctt cagtgtggca tggataccat tattccggggc acgccccatt 960
 ttatccctc tctgtcaagt cgtaaatcac ttggaaagtca tacgggttacc tgtatactac
 1020
 ccatcccaag aagagaaaaga cgatccaaa ctttatgcta gcaatgttcg gaaattaatg
 1080
 gccaccgagg gtaacttgat tctatcgag ttgggactta gcgacaaaaag gatataatcac
 1140
 gcaactctca atggtaatct tagtcaaacc cgtgatttcc atcagaaaaga agaatga
 1197

<210> 6
 <211> 398
 <212> PRT
 <213> *Arabidopsis* sp.

<400> 6															
Met	Glu	Ser	Glu	Leu	Lys	Asp	Leu	Asn	Ser	Asn	Ser	Asn	Pro	Pro	Ser
1					5				10					15	
Ser Lys Glu Asp Arg Pro Leu Leu Lys Ser Glu Ser Asp Leu Ala Ala															
20 25 30															
Ala Ile Glu Glu Leu Asp Lys Lys Phe Ala Pro Tyr Ala Arg Thr Asp															
35 40 45															
Leu Tyr Gly Thr Met Gly Leu Gly Pro Phe Pro Met Thr Glu Asn Ile															
50 55 60															
Lys Leu Ala Val Ala Leu Val Thr Leu Val Pro Leu Arg Phe Leu Leu															
65 70 75 80															
Ser Met Ser Ile Leu Leu Tyr Tyr Leu Ile Cys Arg Val Phe Thr															
85 90 95															
Leu Phe Ser Ala Pro Tyr Arg Gly Pro Glu Glu Glu Asp Glu Gly															
100 105 110															
Gly Val Val Phe Gln Glu Asp Tyr Ala His Met Glu Gly Trp Lys Arg															
115 120 125															
Thr Val Ile Val Arg Ser Gly Arg Phe Leu Ser Arg Val Leu Leu Phe															
130 135 140															
Val Phe Gly Phe Tyr Trp Ile His Glu Ser Cys Pro Asp Arg Asp Ser															
145 150 155 160															
Asp Met Asp Ser Asn Pro Lys Thr Thr Ser Thr Glu Ile Asn Gln Lys															
165 170 175															
Gly Glu Ala Ala Thr Glu Glu Pro Glu Arg Pro Gly Ala Ile Val Ser															
180 185 190															
Asn His Val Ser Tyr Leu Asp Ile Leu Tyr His Met Ser Ala Ser Phe															
195 200 205															
Pro Ser Phe Val Ala Lys Arg Ser Val Gly Lys Leu Pro Leu Val Gly															
210 215 220															
Leu Ile Ser Lys Cys Leu Gly Cys Val Tyr Val Gln Arg Glu Ala Lys															
225 230 235 240															
Ser Pro Asp Phe Lys Gly Val Ser Gly Thr Val Asn Glu Arg Val Arg															

245	250	255
Glu Ala His Ser Asn Lys Ser Ala Pro Thr Ile Met Leu Phe Pro Glu		
260	265	270
Gly Thr Thr Thr Asn Gly Asp Tyr Leu Leu Thr Phe Lys Thr Gly Ala		
275	280	285
Phe Leu Ala Gly Thr Pro Val Leu Pro Val Ile Leu Lys Tyr Pro Tyr		
290	295	300
Glu Arg Phe Ser Val Ala Trp Asp Thr Ile Ser Gly Ala Arg His Ile		
305	310	315
Leu Phe Leu Leu Cys Gln Val Val Asn His Leu Glu Val Ile Arg Leu		
325	330	335
Pro Val Tyr Tyr Pro Ser Gln Glu Glu Lys Asp Asp Pro Lys Leu Tyr		
340	345	350
Ala Ser Asn Val Arg Lys Leu Met Ala Thr Glu Gly Asn Leu Ile Leu		
355	360	365
Ser Glu Leu Gly Leu Ser Asp Lys Arg Ile Tyr His Ala Thr Leu Asn		
370	375	380
Gly Asn Leu Ser Gln Thr Arg Asp Phe His Gln Lys Glu Glu		
385	390	395

<210> 7
<211> 1131
<212> DNA
<213> Arabidopsis sp.

<400> 7
atgagcgtt cggcaggag gctcgtact tcaaatccg agcttgaccc cgatcaccc 60
aacatcgaa attaccttc ttctggttct tccatcaatg aaccctcgcc caagctcagc 120
ctgcgtgatt tgcttagacat ctctccaacg ctcactgaag ctgctggc catttgtat 180
gactcgttca caagatgttt caaatcaaat cttccagaac cttggaaactg gaatattttac 240
ttatcccac tatactgtt tgggggtgtt gttagatact gtatccctt tcccttgagg 300
tgcttcatt tagcttttgg gtggattatt ttcccttcat tgtttatccc tgtaaatgcg 360
ttgctgaaag gtcaagatag gttgaggaaa aagatagaga gggtcttggg gggaaatgatt 420
tgcagctttt ttgtcgccctc atggaccgga gttgtcaaat atcacgggcc acgtccttagc 480
atccgtcccta agcagggtctt tggccaaac catacttcaa tgattgatt catcgattt 540
gagcagatga ccgcatttgc tggataatg cagaagcatc ctgggtgggt tggcttctg 600
caaagcacaa tattagagag tggggatgt atctggttca atcgttcaga ggcaaaaggat 660
cgtgaaattt tagaaaaaaa gttaagggac catgtccaag gagctgacag taatcccttt 720
ctcattttcc cggagggtatgtt aataattaca cagtgtatgg taagaagggt 780
gcttttgaat tggactgcac tggatgttca attgcaatta aataacaacaa gattttgtt 840
gacgccttctt ggaatagcag aaaacaatca tttactatgc acttgctgca actcatgaca 900
tcatgggctg ttgtatgtga agtgtggtac ttggaccac aaaccataag gccccgtgaa 960
acagaattt aatttgcaga gaggttcaga gacatgatat ctcttcgggc ggtctcaaa
1020
aaggccccctt gggatggata cttgaagtat tcgagaccaa gccccaaagca tagtgaacgc
1080
aagcaacaga gtttcgcaga gtcgatcctg gctagattgg aagagaagtg a
1131

<210> 8
<211> 376
<212> PRT
<213> Arabidopsis sp.

<400> 8
Met Ser Ser Thr Ala Gly Arg Leu Val Thr Ser Lys Ser Glu Leu Asp
1 5 10 15
Leu Asp His Pro Asn Ile Glu Asp Tyr Leu Pro Ser Gly Ser Ser Ile
20 25 30

Asn Glu Pro Arg Gly Lys Leu Ser Leu Arg Asp Leu Leu Asp Ile Ser
 35 40 45
 Pro Thr Leu Thr Glu Ala Ala Gly Ala Ile Val Asp Asp Ser Phe Thr
 50 55 60
 Arg Cys Phe Lys Ser Asn Pro Pro Glu Pro Trp Asn Trp Asn Ile Tyr
 65 70 75 80
 Leu Phe Pro Leu Tyr Cys Phe Gly Val Val Val Arg Tyr Cys Ile Leu
 85 90 95
 Phe Pro Leu Arg Cys Phe Thr Leu Ala Phe Gly Trp Ile Ile Phe Leu
 100 105 110
 Ser Leu Phe Ile Pro Val Asn Ala Leu Leu Lys Gly Gln Asp Arg Leu
 115 120 125
 Arg Lys Lys Ile Glu Arg Val Leu Val Glu Met Ile Cys Ser Phe Phe
 130 135 140
 Val Ala Ser Trp Thr Gly Val Val Lys Tyr His Gly Pro Arg Pro Ser
 145 150 155 160
 Ile Arg Pro Lys Gln Val Tyr Val Ala Asn His Thr Ser Met Ile Asp
 165 170 175
 Phe Ile Val Leu Glu Gln Met Thr Ala Phe Ala Val Ile Met Gln Lys
 180 185 190
 His Pro Gly Trp Val Gly Leu Leu Gln Ser Thr Ile Leu Glu Ser Val
 195 200 205
 Gly Cys Ile Trp Phe Asn Arg Ser Glu Ala Lys Asp Arg Glu Ile Val
 210 215 220
 Ala Lys Lys Leu Arg Asp His Val Gln Gly Ala Asp Ser Asn Pro Leu
 225 230 235 240
 Leu Ile Phe Pro Glu Gly Thr Cys Val Asn Asn Asn Tyr Thr Val Met
 245 250 255
 Phe Lys Lys Gly Ala Phe Glu Leu Asp Cys Thr Val Cys Pro Ile Ala
 260 265 270
 Ile Lys Tyr Asn Lys Ile Phe Val Asp Ala Phe Trp Asn Ser Arg Lys
 275 280 285
 Gln Ser Phe Thr Met His Leu Leu Gln Leu Met Thr Ser Trp Ala Val
 290 295 300
 Val Cys Glu Val Trp Tyr Leu Glu Pro Gln Thr Ile Arg Pro Gly Glu
 305 310 315 320
 Thr Gly Ile Glu Phe Ala Glu Arg Val Arg Asp Met Ile Ser Leu Arg
 325 330 335
 Ala Gly Leu Lys Lys Val Pro Trp Asp Gly Tyr Leu Lys Tyr Ser Arg
 340 345 350
 Pro Ser Pro Lys His Ser Glu Arg Lys Gln Gln Ser Phe Ala Glu Ser
 355 360 365
 Ile Leu Ala Arg Leu Glu Glu Lys
 370 375

<212> DNA
 <213> *Arabidopsis sp.*

<400> 9
 gttgttaagt tacaaggcttc ttcaaaaaca cacacacacg tctctttca cagccaatca 60
 tcgatcagc ctcgatttc ctttattgtt ccgtgggtt tcttgagnat tttttttct 120
 tggatcatc aaactngtc gtaaggwaac ttcacggacg gatctcaat gttgagctgt 180
 tctaattgtt ccgtcgat cgcaaccgcc atggttgtt caagcaccgc tctgttttc 240
 gccatggctc gtcaattcca tggaaatcat caaaatccta aggttcttga tcagactcta 300
 cgaccatc tccgttcttgc tctatcttca gaggaaacga agaaacaggg gaagaagata 360
 aagaaagtgc ggttcgcca taatgtgaaa gatacggaaag gtaacggggg agagtagccg 420
 aggagggat tgaaccggaa aagcgatccg aagccgttca ctaaaccggg aaagaccgg 480
 tctatgttca gaatcttac catgcccacg aaccggatgg ctctgttacaa tgggatttt 540
 agagaccgag atcacagagt tcaatattct tattgacttt ttcttcttga tttagtcaata 600
 gatttagtt ttgttaatct ttctttgtt ttccgttaat attagatttt ttcttggaaa 660
 ttccagatat ttagacttt ttagttgggt ggtcttctt ttctccctt ttgtgtctca 720
 tagtagtagg tggtttctt atgctccact tatctactta cttgttttaaa atcaagtgt 780
 gatgttaataa attgacatgt aagttagtcat tagaaatttg aaaaggccaa tgaaagaata 840
 taaattgtt aaaaatgtt gtccttattt tacatataaa ctcttttttgc ttggggat 900
 ctatggatt tatattgtt gttgtgaaaa aacaaaaaaaaaaa aaaaaaaaaaaa 960
 aaaaaa 965

<210> 10
 <211> 1593
 <212> DNA
 <213> *Arabidopsis sp.*

<400> 10
 atgtccggta ataagatctc gactcttcaa gctcttgtct tttttttgtt ccgggttttc 60
 attctccgtc gttgggtgtca tcgtggccct aaacaaaaat accaaaaatg cccttctcac 120
 ggcctccacc aatatcaaga cctatcgat cacactttaa tattcaacgt cgaaggagct 180
 ctactcaaat caaaatctt attcccttac ttcatgttgc tggcattcga agccggaggg 240
 gtgataaggt cacttttctt cttagttttt tatccattta taagcttgc gaggctacgaa 300
 atgggcttgc agacgtatggt gatgtcgatc ttctttggag taaaaaagga aagcttccga 360
 gtggggaaat cagtttgcc taagtattttt ctagaagatg ttgggctcga gatgttccag 420
 gttttgaaaa gaggaggcaaa gagatgttgc gtgaggttgcattt taccacaagt tatgattgt 480
 gtattcttgc gagattactt ggagatagaa gttgtgttgc gaagagacat gaaaatggc 540
 ggtggttact accttagggat cgtggggat aagaagaacc ttggaaatttc ttttgataaa 600
 gtgttcaag aagaaagactt tggtagtgc tggcgttta ttggcatcac ttcccttaac 660
 tcgccaagtc acagatctt cttctcttcaa ttttggcagg aaattttactt cgtcagaaat 720
 tcagacaaga aaagttggca aacccttacca caagatcaat accctaaacc attgattttc 780
 cacgatggtc gtttagccgt taagccaaaca cttttaaaca cactcgatattt attcatgtgg 840
 gccccatcgcc cgcgttgc tggcgttgc agactcgatc tggcctaaa cttaccttac 900
 tcccttagcca atcccttccctt cgccttttcc ggtatccacc ttactctcac cgtcaacaac 960
 cacaacgacc taatatccgc cgacagaaaaa agagggttgc tttttgttgc taaccataga 1020
 acgttattgg acccaacttta catttcatac gctctaagaa agaaaaacat gaaagccgtg 1080
 acgtatagtc taagcagatt atctgagctt ctggctccga tcaagaccgt tagattgt 1140
 cgtatcgag tcaaagatgg tcaagccatg gagaattgc tgagccaggg agatctcg 1200
 gtttgcggg aagggactac gttagatggat ctttacttgc ttccgttttag tccactttc 1260
 tctgagggtt gtgacgtcat cgtacgttgc gctattgtact cacacgtgac tttcttctat 1320
 ggcacgacgg ctagtggatc taaggcattt gatcccattt ttttttttgc gatcccttc 1380
 ccttccatca ccgtcaaattt gcttggccct gtctctggaa gtagctcgatc cacgtgtcga 1440
 ggagttccctg acaatggaaa agttaacttc gaggtggctt atcacgtgca gcatgagatc 1500
 gggaaatgcct tgggtttga gtgcaccaac ctcacgagaa gagataagta cttgatcttgc 1560
 gccggtaata acggagttgtt caagaaaaaa taa 1593

<210> 11
 <211> 530
 <212> PRT

<213> *Arabidopsis* sp.

<400> 11
Met Ser Gly Asn Lys Ile Ser Thr Leu Gln Ala Leu Val Phe Phe Leu
1 5 10 15
Tyr Arg Phe Phe Ile Leu Arg Arg Trp Cys His Arg Ser Pro Lys Gln
20 25 30
Lys Tyr Gln Lys Cys Pro Ser His Gly Leu His Gln Tyr Gln Asp Leu
35 40 45
Ser Asn His Thr Leu Ile Phe Asn Val Glu Gly Ala Leu Leu Lys Ser
50 55 60
Asn Ser Leu Phe Pro Tyr Phe Met Val Val Ala Phe Glu Ala Gly Gly
65 70 75 80
Val Ile Arg Ser Leu Phe Leu Leu Val Leu Tyr Pro Phe Ile Ser Leu
85 90 95
Met Ser Tyr Glu Met Gly Leu Lys Thr Met Val Met Leu Ser Phe Phe
100 105 110
Gly Val Lys Lys Glu Ser Phe Arg Val Gly Lys Ser Val Leu Pro Lys
115 120 125
Tyr Phe Leu Glu Asp Val Gly Leu Glu Met Phe Gln Val Leu Lys Arg
130 135 140
Gly Gly Lys Arg Val Ala Val Ser Asp Leu Pro Gln Val Met Ile Asp
145 150 155 160
Val Phe Leu Arg Asp Tyr Leu Glu Ile Glu Val Val Val Gly Arg Asp
165 170 175
Met Lys Met Val Gly Gly Tyr Tyr Leu Gly Ile Val Glu Asp Lys Lys
180 185 190
Asn Leu Glu Ile Ala Phe Asp Lys Val Val Gln Glu Glu Arg Leu Gly
195 200 205
Ser Gly Arg Arg Leu Ile Gly Ile Thr Ser Phe Asn Ser Pro Ser His
210 215 220
Arg Ser Leu Phe Ser Gln Phe Cys Gln Glu Ile Tyr Phe Val Arg Asn
225 230 235 240
Ser Asp Lys Lys Ser Trp Gln Thr Leu Pro Gln Asp Gln Tyr Pro Lys
245 250 255
Pro Leu Ile Phe His Asp Gly Arg Leu Ala Val Lys Pro Thr Pro Leu
260 265 270
Asn Thr Leu Val Leu Phe Met Trp Ala Pro Phe Ala Ala Val Leu Ala
275 280 285
Ala Ala Arg Leu Val Phe Gly Leu Asn Leu Pro Tyr Ser Leu Ala Asn
290 295 300
Pro Phe Leu Ala Phe Ser Gly Ile His Leu Thr Leu Thr Val Asn Asn
305 310 315 320
His Asn Asp Leu Ile Ser Ala Asp Arg Lys Arg Gly Cys Leu Phe Val
325 330 335
Cys Asn His Arg Thr Leu Leu Asp Pro Leu Tyr Ile Ser Tyr Ala Leu
340 345 350
Arg Lys Lys Asn Met Lys Ala Val Thr Tyr Ser Leu Ser Arg Leu Ser

355	360	365
Glu Leu Leu Ala Pro Ile Lys	Thr Val Arg Leu Thr Arg Asp Arg Val	
370	375	380
Lys Asp Gly Gln Ala Met Glu Lys	Leu Leu Ser Gln Gly Asp Leu Val	
385	390	395
400		
Val Cys Pro Glu Gly Thr Thr Cys Arg	Glu Pro Tyr Leu Leu Arg Phe	
405	410	415
Ser Pro Leu Phe Ser Glu Val Cys Asp Val Ile Val Pro Val Ala Ile		
420	425	430
Asp Ser His Val Thr Phe Phe Tyr Gly Thr Thr Ala Ser Gly Leu Lys		
435	440	445
Ala Phe Asp Pro Ile Phe Phe Leu Leu Asn Pro Phe Pro Ser Tyr Thr		
450	455	460
Val Lys Leu Leu Asp Pro Val Ser Gly Ser Ser Ser Thr Cys Arg		
465	470	475
480		
Gly Val Pro Asp Asn Gly Lys Val Asn Phe Glu Val Ala Asn His Val		
485	490	495
Gln His Glu Ile Gly Asn Ala Leu Gly Phe Glu Cys Thr Asn Leu Thr		
500	505	510
Arg Arg Asp Lys Tyr Leu Ile Leu Ala Gly Asn Asn Gly Val Val Lys		
515	520	525
Lys Lys		
530		

<210> 12
<211> 1509
<212> DNA
<213> Arabidopsis sp.

<400> 12

atggttatgg	agcaagctgg	aacgacatcg	tattcggtcg	tgtcagagtt	tgaaggaaca	60
atactgaaga	acgcagattc	attctttaac	ttcatgctcg	tagccttcga	agcagctgg	120
ctaattcggt	tcgctatctt	gttgttcta	tggcccgtaa	tcacactcct	tgacgtttc	180
agctacaaaa	acgcagctct	caagctcaag	atttttgttag	ccactgttgg	tctacgtgaa	240
ccggagatcg	aatcagtggc	tagagccgtt	ctgccaaaat	tctacatggc	cgacgtaagc	300
atggacacgt	ggagggtttt	cagctcggt	aagaagaggg	tctgtggcac	gagaatgcct	360
cgaggatcg	tggagaggtt	tgcttaaggag	catcttagag	cagatgaggt	catcggtacg	420
gaactgattt	taaacccgtt	cgggtttgtc	accgggttga	ttcgcgaaac	ggatgttgat	480
cagtcgtt	tgaaccgtgt	cgctaatttg	tttgttggtc	ggaggcctca	actaggtctt	540
ggaaaaccgg	ctttgaccgc	ctctacaaat	ttcttatcgt	tatgtgagga	gcatattcat	600
gcaccaatcc	cggagaacta	caaccacgg	gaccaacaac	ttcagctacg	tccacttccg	660
gtgatatttc	acgacggaa	actagtgaag	cggccaaacgc	cggccaccgc	tctcatcatc	720
ctccatttgg	tcccattttgg	aatcattctc	gcccgtatcc	ggatcttttgc	tggagccgtc	780
ctccattgt	ggggccaccc	ttacgtctct	cagatattcg	gtggccatat	catcgtaaaa	840
ggaaaaggctc	ctcagccacc	ggccgctgg	aaatccggcg	tctctttgt	gtgtactcac	900
agaaccctaa	tggaccctgt	ggtattatct	tatgtcctcg	gacgtagcat	cccagccgtt	960
acttactcaa	tctcgcgtt	atcagagatc	ttatctccca	ttccaaccgt	ccgattgaca	1020
agaatccgag	atgtggatgc	ggctaagatc	aaacaacaac	tgtcaaaagg	agatctagtg	1080
gtttgtctg	agggAACAC	ttgtcgtgaa	ccgtttttgt	taagattcag	cgcgttttc	1140
gctgagttaa	cggataggat	tgtccgggtt	gcgtatgaa	acagagtcgg	attcttccac	1200
gcgactacag	cgagaggctg	gaagggtttg	gacccaattt	tcttcttcat	gaacccaaga	1260
ccgggtttacg	agattacgtt	cttgaaccag	cttcctatgg	aggcaacatg	ttcggtccggg	1320

aagagccgc atgacgtggc gaactatgtt cagagaatct tggcggctac gtttagggtt
 1380
 gagtgcacca acttcacaag aaaagataag tatagggttc tcgctggaaa cgatgaaaca
 1440
 gtgtcgtaact tgtcgttgct agaccaattg aagaagggtgg ttagcacttt cgagccttgt
 1500
 ctccattga
 1509

 <210> 13
 <211> 502
 <212> PRT
 <213> Arabidopsis sp.

 <400> 13
 Met Val Met Glu Gln Ala Gly Thr Thr Ser Tyr Ser Val Val Ser Glu
 1 5 10 15
 Phe Glu Gly Thr Ile Leu Lys Asn Ala Asp Ser Phe Ser Tyr Phe Met
 20 25 30
 Leu Val Ala Phe Glu Ala Ala Gly Leu Ile Arg Phe Ala Ile Leu Leu
 35 40 45
 Phe Leu Trp Pro Val Ile Thr Leu Leu Asp Val Phe Ser Tyr Lys Asn
 50 55 60
 Ala Ala Leu Lys Leu Lys Ile Phe Val Ala Thr Val Gly Leu Arg Glu
 65 70 75 80
 Pro Glu Ile Glu Ser Val Ala Arg Ala Val Leu Pro Lys Phe Tyr Met
 85 90 95
 Asp Asp Val Ser Met Asp Thr Trp Arg Val Phe Ser Ser Cys Lys Lys
 100 105 110
 Arg Val Val Val Thr Arg Met Pro Arg Val Met Val Glu Arg Phe Ala
 115 120 125
 Lys Glu His Leu Arg Ala Asp Glu Val Ile Gly Thr Glu Leu Ile Val
 130 135 140
 Asn Arg Phe Gly Phe Val Thr Gly Leu Ile Arg Glu Thr Asp Val Asp
 145 150 155 160
 Gln Ser Ala Leu Asn Arg Val Ala Asn Leu Phe Val Gly Arg Arg Pro
 165 170 175
 Gln Leu Gly Leu Gly Lys Pro Ala Leu Thr Ala Ser Thr Asn Phe Leu
 180 185 190
 Ser Leu Cys Glu Glu His Ile His Ala Pro Ile Pro Glu Asn Tyr Asn
 195 200 205
 His Gly Asp Gln Gln Leu Gln Leu Arg Pro Leu Pro Val Ile Phe His
 210 215 220
 Asp Gly Arg Leu Val Lys Arg Pro Thr Pro Ala Thr Ala Leu Ile Ile
 225 230 235 240
 Leu Leu Trp Ile Pro Phe Gly Ile Ile Leu Ala Val Ile Arg Ile Phe
 245 250 255
 Leu Gly Ala Val Leu Pro Leu Trp Ala Thr Pro Tyr Val Ser Gln Ile
 260 265 270
 Phe Gly Gly His Ile Ile Val Lys Gly Lys Pro Pro Gln Pro Pro Ala
 275 280 285
 Ala Gly Lys Ser Gly Val Leu Phe Val Cys Thr His Arg Thr Leu Met

290	295	300
Asp Pro Val Val Leu Ser Tyr Val Leu Gly Arg Ser Ile Pro Ala Val		
305	310	315
Thr Tyr Ser Ile Ser Arg Leu Ser Glu Ile Leu Ser Pro Ile Pro Thr		
325	330	335
Val Arg Leu Thr Arg Ile Arg Asp Val Asp Ala Ala Lys Ile Lys Gln.		
340	345	350
Gln Leu Ser Lys Gly Asp Leu Val Val Cys Pro Glu Gly Thr Thr Cys		
355	360	365
Arg Glu Pro Phe Leu Leu Arg Phe Ser Ala Leu Phe Ala Glu Leu Thr		
370	375	380
Asp Arg Ile Val Pro Val Ala Met Asn Tyr Arg Val Gly Phe Phe His		
385	390	395
Ala Thr Thr Ala Arg Gly Trp Lys Gly Leu Asp Pro Ile Phe Phe Phe		
405	410	415
Met Asn Pro Arg Pro Val Tyr Glu Ile Thr Phe Leu Asn Gln Leu Pro		
420	425	430
Met Glu Ala Thr Cys Ser Ser Gly Lys Ser Pro His Asp Val Ala Asn		
435	440	445
Tyr Val Gln Arg Ile Leu Ala Ala Thr Leu Gly Phe Glu Cys Thr Asn		
450	455	460
Phe Thr Arg Lys Asp Lys Tyr Arg Val Leu Ala Gly Asn Asp Gly Thr		
465	470	475
Val Ser Tyr Leu Ser Leu Leu Asp Gln Leu Lys Lys Val Val Ser Thr		
485	490	495
Phe Glu Pro Cys Leu His		
500		

<210> 14
<211> 1563
<212> DNA
<213> *Arabidopsis* sp.

<400> 14

```

atgtccgcca agatttcaat attccaagct cttgtctttc tattctaccg gtttatccctc 60
cggcgatatac ggaactctaa accaaaatac caaaatggcc cttcttcctt cctccaatcc 120
gacctatcac gccacacatt gatcttcaac gtagaaggag ctcttctcaa atccgactct 180
ctcttcctt acttcatgtt agtagcattt gaggcgggag gcgttaataag gtcatttctc 240
ctcttcattt tctatccatt gataagcttg atgagccatg agatgggtgt caaatgtatg 300
gtaatggta gcttcttcgg gatcaaaaaa gaagggtttc gagcggggag agcgttttg 360
cctaaatact ttcttagaga tgcggactc gagatcttcg aagtgttgaag gagaggagg 420
aagaaaatcg gaggatgtt tgatcttcctt caagttatgatc tcgaagggtt cttgagat 480
tacttggaga ttgacgttgtt ggtcgggaga gaaatgaaag tcgttggagg ttattatcta 540
ggtatcatgg aggataaaac caaacatgtat cttgtctttt atgagttatg tcgtaaagag 600
agactaaaca ccggtcgtgt tattggcatac acttccttca atacatctt tcaccgatat 660
ctattcttc agttttgcca gggaaatttat ttcgtgaaga aatcagacaa gcgaagctgg 720
caaaccctac cacgaagccca gtacccttaaa ccattgttccatgtt ccgttctcgcc 780
atcaaaccctt ccctaataatgaa cactttggtc ttgttcatgtt ggggtccttt cgcagccgca 840
gccgagcag ccagactttt cgtctcttccatgtt ccgttccatgtt actcttttata aatcccgatc 900
ctcgccctttt ccgggttgcag actaaccgtc actaaccgtact acgtttcatc tcaaaaacaa 960
aaaccaagtc aacgcaaaagg ttgtctctttt gtatgtacc ataggactttt attggaccct
1020
ctctatgttg cattcgctttt gagaagaaaa aacatcaaaa ctgttaacgtt tagtttgagt
1080
agggtatctg agattttggc tccgatcaag acggtgagac tgacccgtga tcgggtgagc
1140

```

gacggtaag ccatggagaa attgttaacc gaaggagatc tcgttggttg tcctgaagga
 1200
 accactgtta gagaacctta cctgcttagg tttagccctt tgttcaccga gtttagtgat
 1260
 gtcatcggttcccggtgt gacggtacac gtgacccttct tctacggtac aacggcgagt
 1320
 ggtcttaagg cacttgaccc gctttcttc ctcttggatc cttatcctac ctacaccatc
 1380
 caatttctcg accctgtctc cggtgccacg tgccaagatc ctgatggaaa gttgaagttt
 1440
 gaggtggcca acaatgttca gagtgatatt gggaaaggcgc tggatttcga gtgcacaagt
 1500
 ctcactagaa aagacaagta tttgatcttgcgc gcccgtata atggagtagt taagaaaaat
 1560
 taa
 1563

<210> 15
 <211> 520
 <212> PRT
 <213> *Arabidopsis* sp.

<400> 15
 Met Ser Ala Lys Ile Ser Ile Phe Gln Ala Leu Val Phe Leu Phe Tyr
 1 5 10 15
 Arg Phe Ile Leu Arg Arg Tyr Arg Asn Ser Lys Pro Lys Tyr Gln Asn
 20 25 30
 Gly Pro Ser Ser Leu Leu Gln Ser Asp Leu Ser Arg His Thr Leu Ile
 35 40 45
 Phe Asn Val Glu Gly Ala Leu Leu Lys Ser Asp Ser Leu Phe Pro Tyr
 50 55 60
 Phe Met Leu Val Ala Phe Glu Ala Gly Gly Val Ile Arg Ser Phe Leu
 65 70 75 80
 Leu Phe Ile Leu Tyr Pro Leu Ile Ser Leu Met Ser His Glu Met Gly
 85 90 95
 Val Lys Val Met Val Met Val Ser Phe Phe Gly Ile Lys Lys Glu Gly
 100 105 110
 Phe Arg Ala Gly Arg Ala Val Leu Pro Lys Tyr Phe Leu Glu Asp Val
 115 120 125
 Gly Leu Glu Ile Phe Glu Val Leu Lys Arg Gly Gly Lys Lys Ile Gly
 130 135 140
 Val Ser Asp Asp Leu Pro Gln Val Met Ile Glu Gly Phe Leu Arg Asp
 145 150 155 160
 Tyr Leu Glu Ile Asp Val Val Gly Arg Glu Met Lys Val Val Gly
 165 170 175
 Gly Tyr Tyr Leu Gly Ile Met Glu Asp Lys Thr Lys His Asp Leu Val
 180 185 190
 Phe Asp Glu Leu Val Arg Lys Glu Arg Leu Asn Thr Gly Arg Val Ile
 195 200 205
 Gly Ile Thr Ser Phe Asn Thr Ser Leu His Arg Tyr Leu Phe Ser Gln
 210 215 220
 Phe Cys Gln Glu Ile Tyr Phe Val Lys Lys Ser Asp Lys Arg Ser Trp
 225 230 235 240
 Gln Thr Leu Pro Arg Ser Gln Tyr Pro Lys Pro Leu Ile Phe His Asp
 245 ~50 255

Gly Arg Leu Ala Ile Lys Pro Thr Leu Met Asn Thr Leu Val Leu Phe
 260 265 270

Met Trp Gly Pro Phe Ala Ala Ala Ala Ala Arg Leu Phe Val
 275 280 285

Ser Leu Cys Ile Pro Tyr Ser Leu Ser Ile Pro Ile Leu Ala Phe Ser
 290 295 300

Gly Cys Arg Leu Thr Val Thr Asn Asp Tyr Val Ser Ser Gln Lys Gln
 305 310 315 320

Lys Pro Ser Gln Arg Lys Gly Cys Leu Phe Val Cys Asn His Arg Thr
 325 330 335

Leu Leu Asp Pro Leu Tyr Val Ala Phe Ala Leu Arg Lys Lys Asn Ile
 340 345 350

Lys Thr Val Thr Tyr Ser Leu Ser Arg Val Ser Glu Ile Leu Ala Pro
 355 360 365

Ile Lys Thr Val Arg Leu Thr Arg Asp Arg Val Ser Asp Gly Gln Ala
 370 375 380

Met Glu Lys Leu Leu Thr Glu Gly Asp Leu Val Val Cys Pro Glu Gly
 385 390 395 400

Thr Thr Cys Arg Glu Pro Tyr Leu Leu Arg Phe Ser Pro Leu Phe Thr
 405 410 415

Glu Val Ser Asp Val Ile Val Pro Val Ala Val Thr Val His Val Thr
 420 425 430

Phe Phe Tyr Gly Thr Thr Ala Ser Gly Leu Lys Ala Leu Asp Pro Leu
 435 440 445

Phe Phe Leu Leu Asp Pro Tyr Pro Thr Tyr Thr Ile Gln Phe Leu Asp
 450 455 460

Pro Val Ser Gly Ala Thr Cys Gln Asp Pro Asp Gly Lys Leu Lys Phe
 465 470 475 480

Glu Val Ala Asn Asn Val Gln Ser Asp Ile Gly Lys Ala Leu Asp Phe
 485 490 495

Glu Cys Thr Ser Leu Thr Arg Lys Asp Lys Tyr Leu Ile Leu Ala Gly
 500 505 510

Asn Asn Gly Val Val Lys Lys Asn
 515 520

<210> 16
<211> 1506
<212> DNA
<213> *Arabidopsis* sp.

<400> 16

atggagactc	aggagaaaacg	gcgccgttcc	gagcagatata	caaagtgcga	tgttaaggac	60
cggccaacc	ataccgtggc	cgctgtatcta	gacggaaacac	tactaatctc	tctgtacgcgc	120
ttcccttact	atttcctcggt	agccctcgag	gcagggagct	tgctccgagc	gttgatccta	180
cttgtgtccg	taccattcgt	ttatcttacg	tacttgacca	tctccgagac	tttagccatc	240
aacgtatttg	tcttcatcac	gttcgcgggt	ctcaagatcc	gagacgttga	gctagtggtc	300
cgttccgtcc	tcccggaggt	ctatgcggag	gacgtgaggc	ccgataacctg	gcgttatcttc	360
aacacgttccg	ggaaaacggtta	cataataact	gcgagccctc	gaattatgggt	cgagccattc	420
gtgaaaacat	tccttaggagt	tgataaagtt	cttggAACAG	agcttagaggt	ctccaaatcg	480
ggtcccccaa	ccggggttcac	cagaaaaacca	ggtattctcg	tgggtcagta	caaacgtgac	540
gtcggtttga	gagagtttgg	tggcttagcg	tctgatttac	ctgatttggg	gctcggcgat	600
agcaagacgg	accacgactt	catgtccatc	tgcaaggaag	ttacatgggt	gccacgtacg	660

aaatgcgaac cattaccaag aaacaaaactc ttaagccca taatattcca cgagggcaga 720
 ttagtccaac gcccAACGCC gttagttgct ctgttaactt tcctctggct tcccgtcggt 780
 ttctgtcctct ctatcatccg cgtctacacg aatattccgt taccggAACG tatcgccccgt 840
 tacaactaca agcttaactgg catcaagcta gtcgtcaacg gccaccctcc tccggcccca 900
 aaacctggcc agccaggcca tctttggtc tgcaaccacc gcaccgttct cgatctgtg 960
 gtcacagctg tcgcaactccg cggaaaatc agctgcgtca cttacagcat cagaagttc
 1020
 tctgagctaa tctcaccaat caaAGCCGTT gcgttgactc gtcaacgtga gaaagacgca
 1080
 gcgaacatca agcgtcttt ggaggaaggc gatctcgtga tatgtcccga ggaaaccacg
 1140
 tgccgtgagc ctttccttct ccggtttagt gctctttcg ctgagctcac ggaccggatc
 1200
 gttcccgtgg cgatcaacac aaagcagagc atgttcaatg gtaccaccac acgtggatac
 1260
 aagcttcttg atccttactt tcggttcatg aacccgaggc cgacgtatga gatcacgttc
 1320
 ctcaaacaga ttccagctga gctgacgtgt aaaggaggca aatctccgat agaggttgcg
 1380
 aattacatac agagggtttt gggaggaacc ttaggtttt agtgcaccaa tttcacaaga
 1440
 aaggataagt acgcaatgct tgctggtaact gacggtaggg ttccggtgaa gaaggagaag
 1500
 acgtga
 1506

<210> 17
 <211> 500
 <212> PRT

<213> *Arabidopsis* sp.

<400> 17
 Met Gly Ala Gln Glu Lys Arg Arg Arg Phe Glu Gln Ile Ser Lys Cys
 1 5 10 15

Asp Val Lys Asp Arg Ser Asn His Thr Val Ala Ala Asp Leu Asp Gly
 20 25 30

Thr Leu Leu Ile Ser Arg Ser Ala Phe Pro Tyr Tyr Phe Leu Val Ala
 35 40 45

Leu Glu Ala Gly Ser Leu Leu Arg Ala Leu Ile Leu Leu Val Ser Val
 50 55 60

Pro Phe Val Tyr Leu Thr Tyr Leu Thr Ile Ser Glu Thr Leu Ala Ile
 65 70 75 80

Asn Val Phe Val Phe Ile Thr Phe Ala Gly Leu Lys Ile Arg Asp Val
 85 90 95

Glu Leu Val Val Arg Ser Val Leu Pro Arg Phe Tyr Ala Glu Asp Val
 100 105 110

Arg Pro Asp Thr Trp Arg Ile Phe Asn Thr Phe Gly Lys Arg Tyr Ile
 115 120 125

Ile Thr Ala Ser Pro Arg Ile Met Val Glu Pro Phe Val Lys Thr Phe
 130 135 140

Leu Gly Val Asp Lys Val Leu Gly Thr Glu Leu Glu Val Ser Lys Ser
 145 150 155 160

Gly Arg Ala Thr Gly Phe Thr Arg Lys Pro Gly Ile Leu Val Gly Gln
 165 170 175

Tyr Lys Arg Asp Val Val Leu Arg Glu Phe Gly Gly Leu Ala Ser Asp
 180 185 190

Leu Pro Asp Leu Gly Leu Gly Asp Ser Lys Thr Asp His Asp Phe Met
 195 200 205

Ser Ile Cys Lys Glu Gly Tyr Met Val Pro Arg Thr Lys Cys Glu Pro
 210 215 220
 Leu Pro Arg Asn Lys Leu Leu Ser Pro Ile Ile Phe His Glu Gly Arg
 225 230 235 240
 Leu Val Gln Arg Pro Thr Pro Leu Val Ala Leu Leu Thr Phe Leu Trp
 245 250 255
 Leu Pro Val Gly Phe Val Leu Ser Ile Ile Arg Val Tyr Thr Asn Ile
 260 265 270
 Pro Leu Pro Glu Arg Ile Ala Arg Tyr Asn Tyr Lys Leu Thr Gly Ile
 275 280 285
 Lys Leu Val Val Asn Gly His Pro Pro Pro Pro Lys Pro Gly Gln
 290 295 300
 Pro Gly His Leu Leu Val Cys Asn His Arg Thr Val Leu Asp Pro Val
 305 310 315 320
 Val Thr Ala Val Ala Leu Gly Arg Lys Ile Ser Cys Val Thr Tyr Ser
 325 330 335
 Ile Ser Lys Phe Ser Glu Leu Ile Ser Pro Ile Lys Ala Val Ala Leu
 340 345 350
 Thr Arg Gln Arg Glu Lys Asp Ala Ala Asn Ile Lys Arg Leu Leu Glu
 355 360 365
 Glu Gly Asp Leu Val Ile Cys Pro Glu Gly Thr Thr Cys Arg Glu Pro
 370 375 380
 Phe Leu Leu Arg Phe Ser Ala Leu Phe Ala Glu Leu Thr Asp Arg Ile
 385 390 395 400
 Val Pro Val Ala Ile Asn Thr Lys Gln Ser Met Phe Asn Gly Thr Thr
 405 410 415
 Thr Arg Gly Tyr Lys Leu Leu Asp Pro Tyr Phe Ala Phe Met Asn Pro
 420 425 430
 Arg Pro Thr Tyr Glu Ile Thr Phe Leu Lys Gln Ile Pro Ala Glu Leu
 435 440 445
 Thr Cys Lys Gly Gly Lys Ser Pro Ile Glu Val Ala Asn Tyr Ile Gln
 450 455 460
 Arg Val Leu Gly Gly Thr Leu Gly Phe Glu Cys Thr Asn Phe Thr Arg
 465 470 475 480
 Lys Asp Lys Tyr Ala Met Leu Ala Gly Thr Asp Gly Arg Val Pro Val
 485 490 495
 Lys Lys Glu Lys
 500

<210> 18
 <211> 1620
 <212> DNA
 <213> Arabidopsis sp.

<400> 18
 atggcggatc ctgatctgtc ttctcccttg atccaccatc aatcctccga tcaacctgaa 60
 gtttttatct ctagccgcga cgacgacgac gacgagtcag gactaatct tcttccagcc 120
 gttttgacc ctcgtgttcc acgagggttt gagtttgacc atcttaatcc ttatggcttt 180
 ctcagcgagt cagagccctcc ggttctcggt ccgacgacgg tggatccatt ccgaaacaat 240
 acacctggag ttagcggatt gtacgaagcg attaagctcg tgatttgtct tccgattgct 300

ctgattagac ttgttcttt tgctgctagc ttagctgttg gttacttggc tacaaaattg 360
 gcacctgctg gctggaaaga taaagagaac cctatgcctc tttggagatg cagaatcatg 420
 tggattactc ggatctgtac cagatgtatc ctcttctt ttggctatca gtggataaga 480
 agggaaaggga aacctgctcg gagagagatt gctccgattt ttgttatcaa tcatgtttct 540
 tatattgaac caatcttcta cttctatgaa ttatcacca ccattgttgc atcgagtc 600
 catgattcac ttccatttgtt tggaaactt atcaggcga tgcaaggatgat atatgtaat 660
 agattctcac agacatcaag gaagaatgct gtgcataaaa taaagagaaa agcttcctgc 720
 gatagatttc ctcgtctgtc gttaattcccc gaaggaacca cgactaatgg gaaagttctt 780
 atttccttcc aactcggtgc tttcateccct gtttacccta ttcaacctgt agtagtccgg 840
 tatccccatg tacatttga tcaatcttgg gggaaatatct ctttgggtac gctcatgtt 900
 agaaatgtca ctcagttca caatttcatg gaggttgaat atcttcctgt aatctatccc 960
 agtggaaaagc aaaagcagaa tgctgtgcgt ctctcacaga agactagtca tgcaattgca
 1020
 acatcttga atgtcggtcca aacatcccat tcttttgcgg acttgatgct actcaacaaa
 1080
 gcaactgagt taaagcttggaa gaacccctca aattacatgg ttgaaatggc aagagttgag
 1140
 tcgcttattcc atgtaagcag ctttagaggca acgcgatattt tggatacatt tgttccatg
 1200
 attccggact cgagtggacg tggtaggcta catgactttc ttccgggtct taaaactgaaa
 1260
 ccttgcctc ttctaaaag gatatttgag ttcatcgatg tggagaaggt cgatcaatc
 1320
 acttcaaac agttcttggtt tgccctggc cacgtgttga cacagccgct ttttaagcaa
 1380
 acatgcgagc tagcctttc ccattgcgt gcagatggag atggctatat tacaattcaa
 1440
 gaactcggag aagctctcaa aaacacaatc ccaaacttga acaaggacga gattcgagga
 1500
 atgtaccatt tgcttagacga cgaccaagat caaagaatca gccaaaatgaa ctttgggtcc
 1560
 tgcttaagaa gaaaccctct tctcatagcc atcttgcac ctgacttggc cccaaacataa
 1620

<210> 19

<211> 539

<212> PRT

<213> Arabidopsis sp.

<400> 19

Met	Ala	Asp	Pro	Asp	Leu	Ser	Ser	Pro	Leu	Ile	His	His	Gln	Ser	Ser
1					5				10					15	

Asp	Gln	Pro	Glu	Val	Val	Ile	Ser	Ile	Ala	Asp	Asp	Asp	Asp	Glu
			20					25					30	

Ser	Gly	Leu	Asn	Leu	Leu	Pro	Ala	Val	Val	Asp	Pro	Arg	Val	Ser	Arg
					35			40				45			

Gly	Phe	Glu	Phe	Asp	His	Leu	Asn	Pro	Tyr	Gly	Phe	Leu	Ser	Glu	Ser
					50			55			60				

Glu	Pro	Pro	Val	Leu	Gly	Pro	Thr	Thr	Val	Asp	Pro	Phe	Arg	Asn	Asn
					65			70		75		80			

Thr	Pro	Gly	Val	Ser	Gly	Leu	Tyr	Glu	Ala	Ile	Lys	Leu	Val	Ile	Cys
					85			90					95		

Leu	Pro	Ile	Ala	Leu	Ile	Arg	Leu	Val	Leu	Phe	Ala	Ala	Ser	Leu	Ala
					100			105				110			

Val	Gly	Tyr	Leu	Ala	Thr	Lys	Leu	Ala	Leu	Ala	Gly	Trp	Lys	Asp	Lys
					115			120			125				

Glu	Asn	Pro	Met	Pro	Leu	Trp	Arg	Cys	Arg	Ile	Met	Trp	Ile	Thr	Arg
					130			135			140				

Ile	Cys	Thr	Arg	Cys	Ile	Leu	Phe	Ser	Phe	Gly	Tyr	Gln	Trp	Ile	Arg
					145			150		155		160			

Arg Lys Gly Lys Pro Ala Arg Arg Glu Ile Ala Pro Ile Val Val Ser
165 170 175

Asn His Val Ser Tyr Ile Glu Pro Ile Phe Tyr Phe Tyr Glu Leu Ser
180 185 190

Pro Thr Ile Val Ala Ser Glu Ser His Asp Ser Leu Pro Phe Val Gly
195 200 205

Thr Ile Ile Arg Ala Met Gln Val Ile Tyr Val Asn Arg Phe Ser Gln
210 215 220

Thr Ser Arg Lys Asn Ala Val His Glu Ile Lys Arg Lys Ala Ser Cys
225 230 235 240

Asp Arg Phe Pro Arg Leu Leu Leu Phe Pro Glu Gly Thr Thr Asn
245 250 255

Gly Lys Val Leu Ile Ser Phe Gln Leu Gly Ala Phe Ile Pro Gly Tyr
260 265 270

Pro Ile Gln Pro Val Val Val Arg Tyr Pro His Val His Phe Asp Gln
275 280 285

Ser Trp Gly Asn Ile Ser Leu Leu Thr Leu Met Phe Arg Met Phe Thr
290 295 300

Gln Phe His Asn Phe Met Glu Val Glu Tyr Leu Pro Val Ile Tyr Pro
305 310 315 320

Ser Glu Lys Gln Lys Gln Asn Ala Val Arg Leu Ser Gln Lys Thr Ser
325 330 335

His Ala Ile Ala Thr Ser Leu Asn Val Val Gln Thr Ser His Ser Phe
340 345 350

Ala Asp Leu Met Leu Leu Asn Lys Ala Thr Glu Leu Lys Leu Glu Asn
355 360 365

Pro Ser Asn Tyr Met Val Glu Met Ala Arg Val Glu Ser Leu Phe His
370 375 380

Val Ser Ser Leu Glu Ala Thr Arg Phe Leu Asp Thr Phe Val Ser Met
385 390 395 400

Ile Pro Asp Ser Ser Gly Arg Val Arg Leu His Asp Phe Leu Arg Gly
405 410 415

Leu Lys Leu Lys Pro Cys Pro Leu Ser Lys Arg Ile Phe Glu Phe Ile
420 425 430

Asp Val Glu Lys Val Gly Ser Ile Thr Phe Lys Gln Phe Leu Phe Ala
435 440 445

Ser Gly His Val Leu Thr Gln Pro Leu Phe Lys Gln Thr Cys Glu Leu
450 455 460

Ala Phe Ser His Cys Asp Ala Asp Gly Asp Gly Tyr Ile Thr Ile Gln
465 470 475 480

Glu Leu Gly Glu Ala Leu Lys Asn Thr Ile Pro Asn Leu Asn Lys Asp
485 490 495

Glu Ile Arg Gly Met Tyr His Leu Leu Asp Asp Asp Gln Asp Gln Arg
500 505 510

Ile Ser Gln Asn Asp Leu Leu Ser Cys Leu Arg Arg Asn Pro Leu Leu
515 520 525

Ile Ala Ile Phe Ala Pro Asp Leu Ala Pro Thr

530

535

<210> 20
<211> 1128
<212> DNA
<213> Arabidopsis sp.

<400> 20
atggaaaaaa agagtgtacc aaattctgat aagttgtctc tgattagagt gttaagaggt 60
ataatatgtc ttagtgggtt agttcaaca gcttttatga tgttgatatt ctgggggttc 120
ttatcagctg tagtgggttag gctttcagc attcgctata gccgtaaatg tgtttccttc 180
ttctttggct cgtggctcgc cttgtggcct ttcctcttg agaagattaa caaaacccaa 240
gttatacttc ctgggtataa ggttccttgc gaggatcgag tattgctcat tgcaaaccac 300
cgaacagaag ttgattggat gtacttcgg gatcttcgcac tgctgtaaaagg ccagattggg 360
aatatcaaat atgtcttaa gagtagtttg atgaaaattac ctctcttttg ttggcggtt 420
caccttttg agtttattcc tggttagagg agatggaaag tcgtatgaagc aaacctgaga 480
cagatagttt cgagttttaa ggatccccga gacgctttat ggcttgctct tttccccgag 540
ggcacagatt acacagaggg taaatgcca aggagtaaga aatttgcgc tgaaaatggc 600
cttccgatac tgaacaacgt gctgcttccc aggacaaaag gtttcgtctc ctgcttgcac 660
gaactgagg tgcacttgc cgcagttat gatgtgacca tcgggtataa aaccggctgc 720
ccatcttct tagacaacgt ttatggatt gagccatcag aagttcacat ccacatccgt 780
cgtatcaacc tgaccat cccaaatcaa gaaaaggaca tcaatgcttg gttaatgaac 840
acattccagc tcaaagacca gctgctcaat gactttact ccaatggtca tttccctaacc 900
gaaggaacag agaaagagtt caacacaaaag aagtacctca taaactgttt ggcagtgtt 960
gccttcacca ccatctgtac acatctcacc ttcttctcat caatgatttg gttcaggatt
1020
tatgtctctt tggcctgtgt ctacttgacc tctgctacgc atttcaatct tcgttctgtt
1080
ccacattgttg agactgcaaa aaattccctc aaatttagtää acaaataaa
1128

<210> 21
<211> 375
<212> PRT
<213> Arabidopsis sp.

<400> 21
Met Glu Lys Lys Ser Val Pro Asn Ser Asp Lys Leu Ser Leu Ile Arg
1 5 10 15
Val Leu Arg Gly Ile Ile Cys Leu Met Val Leu Val Ser Thr Ala Phe
20 25 30
Met Met Leu Ile Phe Trp Gly Phe Leu Ser Ala Val Val Leu Arg Leu
35 40 45
Phe Ser Ile Arg Tyr Ser Arg Lys Cys Val Ser Phe Phe Phe Gly Ser
50 55 60
Trp Leu Ala Leu Trp Pro Phe Leu Phe Glu Lys Ile Asn Lys Thr Lys
65 70 75 80
Val Ile Phe Ser Gly Asp Lys Val Pro Cys Glu Asp Arg Val Leu Leu
85 90 95
Ile Ala Asn His Arg Thr Glu Val Asp Trp Met Tyr Phe Trp Asp Leu
100 105 110
Ala Leu Arg Lys Gly Gln Ile Gly Asn Ile Lys Tyr Val Leu Lys Ser
115 120 125
Ser Leu Met Lys Leu Pro Leu Phe Gly Trp Ala Phe His Leu Phe Glu
130 135 140
Phe Ile Pro Val Glu Arg Arg Trp Glu Val Asp Glu Ala Asn Leu Arg
145 150 155 160
Gln Ile Val Ser Ser Phe Lys Asp Pro Arg Asp Ala Leu Trp Leu Ala
165 170 175

Leu Phe Pro Glu Gly Thr Asp Tyr Thr Glu Ala Lys Cys Gln Arg Ser
 180 185 190
 Lys Lys Phe Ala Ala Glu Asn Gly Leu Pro Ile Leu Asn Asn Val Leu
 195 200 205
 Leu Pro Arg Thr Lys Gly Phe Val Ser Cys Leu Gln Glu Leu Ser Cys
 210 215 220
 Ser Leu Asp Ala Val Tyr Asp Val Thr Ile Gly Tyr Lys Thr Arg Cys
 225 230 235 240
 Pro Ser Phe Leu Asp Asn Val Tyr Gly Ile Glu Pro Ser Glu Val His
 245 250 255
 Ile His Ile Arg Arg Ile Asn Leu Thr Gln Ile Pro Asn Gln Glu Lys
 260 265 270
 Asp Ile Asn Ala Trp Leu Met Asn Thr Phe Gln Leu Lys Asp Gln Leu
 275 280 285
 Leu Asn Asp Phe Tyr Ser Asn Gly His Phe Pro Asn Glu Gly Thr Glu
 290 295 300
 Lys Glu Phe Asn Thr Lys Lys Tyr Leu Ile Asn Cys Leu Ala Val Ile
 305 310 315 320
 Ala Phe Thr Thr Ile Cys Thr His Leu Thr Phe Phe Ser Ser Met Ile
 325 330 335
 Trp Phe Arg Ile Tyr Val Ser Leu Ala Cys Val Tyr Leu Thr Ser Ala
 340 345 350
 Thr His Phe Asn Leu Arg Ser Val Pro Leu Val Glu Thr Ala Lys Asn
 355 360 365
 Ser Leu Lys Leu Val Asn Lys
 370 375

<210> 22
 <211> 1170
 <212> DNA
 <213> Arabidopsis sp.

<400> 22
 atgggtgattt ctgcagctgt catcggtcct ttgggccttc ttttcttcat atctggcttc 60
 gctgtcaatc tctttcaggc agttgttat gtactcattc gaccactgtc taagaacaca 120
 tacagaaaaaa ttaaccgggt ggttgcagaa accttgggt tggagcttgt atggatagtt 180
 gactgggtggg ctggagttaa gatccaagtg tttgctgata atgagacctt caatcgaatg 240
 ggaaagaacat atgctctgt cgttgtaat caccgaagtg attattgattt gcttgggaa 300
 tggattctgg ctcagcggc aggttgcctg ggaagcgcatt tagctgtat gaagaagtct 360
 tccaaattcc ttccagtcattt aggttggtca atgtgggtctt cggagttatctt ctttctggaa 420
 agaaaattggg ccaaggatga aaggactcta aagtcaaggc ttcagcgctt gagcgacttc 480
 cctcgacctt tctgggttagc cctttttgtt gagggaactc gctttacaga agccaaactt 540
 aaaggccgcac aaggtatgc agcctccctt gaatttgcata tccctcgaaa tgtgttgattt 600
 cctcgcacca aagggttgcgt gtcaagctgtt agtaatatgc gtcatttttcccagcaattt 660
 tatgatatga cagtgtactat tccaaaaacc ttcacccac ccacgatgtt aagacttattc 720
 aaaggacaac cttcagttgtt gcatgttacatca atcaagtgtc actcgatgaa agacttacat 780
 gaatcagatg acgcaattgc acagtgggtc agagatcagt ttgtggctaa ggatgctctg 840
 tttagacaac acatagctgc agacacttcc cccggtaac aagaacagaa cattggccgt 900
 cccataaaatgttcccttgcgtt ggttctatca tgggcattgcg tactaactt tggagcaata 960
 aagttccctac actgggcacaca actcttttct tcatggaaag gtatcacgtt atcggcgctt
 1020
 ggtcttagtta tcatacactt ctgtatgtcag atcctgatac gctcgatctca gtcagagcgt
 1080
 tcgaccccccag ccaaagtgcgt cccagccaaag cccaaagaca atcaccaccc agaatcatcc
 1140

tcccaaacag aaacggagaa ggagaagtaa
1170

<210> 23
<211> 389
<212> PRT
<213> Arabidopsis sp.

<400> 23
Met Val Ile Ala Ala Ala Val Ile Val Pro Leu Gly Leu Leu Phe Phe
1 5 10 15

Ile Ser Gly Leu Ala Val Asn Leu Phe Gln Ala Val Cys Tyr Val Leu
20 25 30

Ile Arg Pro Leu Ser Lys Asn Thr Tyr Arg Lys Ile Asn Arg Val Val
35 40 45

Ala Glu Thr Leu Trp Leu Glu Leu Val Trp Ile Val Asp Trp Trp Ala
50 55 60

Gly Val Lys Ile Gln Val Phe Ala Asp Asn Glu Thr Phe Asn Arg Met
65 70 75 80

Gly Lys Glu His Ala Leu Val Val Cys Asn His Arg Ser Asp Ile Asp
85 90 95

Trp Leu Val Gly Trp Ile Leu Ala Gln Arg Ser Gly Cys Leu Gly Ser
100 105 110

Ala Leu Ala Val Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile Gly
115 120 125

Trp Ser Met Trp Phe Ser Glu Tyr Leu Phe Leu Glu Arg Asn Trp Ala
130 135 140

Lys Asp Glu Ser Thr Leu Lys Ser Gly Leu Gln Arg Leu Ser Asp Phe
145 150 155 160

Pro Arg Pro Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe Thr
165 170 175

Glu Ala Lys Leu Lys Ala Ala Gln Glu Tyr Ala Ala Ser Ser Glu Leu
180 185 190

Pro Ile Pro Arg Asn Val Leu Ile Pro Arg Thr Lys Gly Phe Val Ser
195 200 205

Ala Val Ser Asn Met Arg Ser Phe Val Pro Ala Ile Tyr Asp Met Thr
210 215 220

Val Thr Ile Pro Lys Thr Ser Pro Pro Pro Thr Met Leu Arg Leu Phe
225 230 235 240

Lys Gly Gln Pro Ser Val Val His Val His Ile Lys Cys His Ser Met
245 250 255

Lys Asp Leu Pro Glu Ser Asp Asp Ala Ile Ala Gln Trp Cys Arg Asp
260 265 270

Gln Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Ile Ala Ala Asp
275 280 285

Thr Phe Pro Gly Gln Gln Glu Gln Asn Ile Gly Arg Pro Ile Lys Ser
290 295 300

Leu Ala Val Val Leu Ser Trp Ala Cys Val Leu Thr Leu Gly Ala Ile
305 310 315 320

Lys Phe Leu His Trp Ala Gln Leu Phe Ser Ser Trp Lys Gly Ile Thr

325

330

335

Ile Ser Ala Leu Gly Leu Gly Ile Ile Thr Leu Cys Met Gln Ile Leu
 340 345 350

Ile Arg Ser Ser Gln Ser Glu Arg Ser Thr Pro Ala Lys Val Val Pro
 355 360 365

Ala Lys Pro Lys Asp Asn His His Pro Glu Ser Ser Ser Gln Thr Glu
 370 375 380

Thr Glu Lys Glu Lys
 385

<210> 24

<211> 269

<212> DNA

<213> Glycine max

<400> 24

```
gaccactga acgcttcat cacccttacg tggctccct tcggcttcat cctctccatc 60
ataagggtct acttcaacct ccctctccca gaacncattg tccgctacac ctacgagatg 120
ctcgccatca acctcgtcat ccgcggccac cgcccttcctc cgcccttcccc cggcacccccc 180
ggcaacctct acgtctgcaa ccacccgacc gctctcgacc ccatctgtcat cgccattgcc 240
ctcgcccgca aggtctccctg cgtcaccta 269
```

<210> 25

<211> 242

<212> DNA

<213> Glycine max

<400> 25

```
tgtatcttcca cgacggccgt ttctgtcaga ggccagaccc actgaacgct ctcatcacct 60
tcacgtggct ccccttcggc ttcatccctt ccatcataag ggtctacttc aaccttcctc 120
tcccaagaacg cattgtccgc tacacctacg agatgctcg catcaacctc gtcatccgcg 180
gccaccggccc ttctccgcct tccccggca ccccccggcaa cctctacgtc tgcaaccacc 240
gc 242
```

<210> 26

<211> 272

<212> DNA

<213> Glycine max

<400> 26

```
gtttgttcaa aggccaactc ctcttagcagc cctcttgacc ttccatatgg tgccaattgg 60
catcatactc tccatncta agggcttacc ttaacatccc ttgcctgaa agaattgttt 120
ggtaactaata taagtattta ggaatcagag ttattgtgaa ggttacccct ccaccacccc 180
caaagaaggg tcaaagtgtt gtcctatttgg tttgttaacca ccgcacagtt ttagaccctg 240
tggttactgc agttgcacctt ggaagaaaaa tt 272
```

<210> 27

<211> 218

<212> DNA

<213> Glycine max

<400> 27

```
atagcacagg agggttacat ggtgcctccg agcaaattcag caaaggcagt cccacaggag 60
cgtctgaaga gcagaatgtat cttccacgac gggcgttcg tgagaggcc agacccaatg 120
aatgcctca tcacccatc atggctccct ttgggtttcg tcctctccat cataagggtc 180
tacttcaacc tccctctccc agaacgcattt gtccgcta 218
```

<210> 28

<211> 270

<212> DNA

<213> Glycine max

<400> 28

```
gtgcctgttg ctgtgaactg caagcagaac atgttctttg gaaccaccgt tcgtggcg 60
aagtctggg acccttaact tacttcttac atgaacccta ggcctgtgttta cgaggttacc 120
```

ttaccttgat acctttgccg aggagatgtc ggtaaggct gggggaaagt cgtccattga 180
ggtggccaac cacgtggcag aagggtctgg gggatgtt agggttttag tgcaccgggt 240
tgactaggaa ggataagtat atgttggg 270

<210> 29
<211> 252
<212> DNA
<213> Glycine max

<400> 29
catgagggtt gggttgc aaggccaact cctctagctg ccctcttgac cttccttatgg 60
ctggcaattt gcatcatact ctccatcta agggcttacc ttaacatccc tttgcctgaa 120
agaatttgtt gtacaactac aagcttttag gaatcagagt tatttgtaag ggtacccctc 180
cacggcccc aaaaagggtt caaatgggt tctattttgtt tgtaaccacc gcacagtatt 240
agaccctgtt gt 252

<210> 30
<211> 272
<212> DNA
<213> Glycine max

<400> 30
ctgggactgc cttaaacat gcatggatct tatcaagaaa ggagcctctg tttttttctt 60
tccagaggga acacgcgat aagatggaa actaggcaca ttcaagaagg gtgcatttcag 120
tgttgcgtca aagacaaatg caccatgtt accaattacc cttattttgtt ctggtcaaat 180
catgcgtca gggaaaggagg gaatagtgtaa cataggttct gtggaaagtgg ttatacataa 240
acctattttgtt gggaaaggatc ctgacatgtt at 272

<210> 31
<211> 239
<212> DNA
<213> Glycine max

<400> 31
cggaatcaa ggtcatcaga cttcaagggt gtttcagctg ttgtcactga cagaattcga 60
gaagctcatc agaatgagtc tgctccatta atgatgttat ttccagaagg tacaaccaca 120
aatggagagt tcctccttcc attcaagact ggtggtttt tggcaaaaggc accggtaactt 180
cctgtgatatacgatataca ttaccagaga ttttagccctg cctgggattc catatctgg 239

<210> 32
<211> 242
<212> DNA
<213> Glycine max

<400> 32
gaacggcaac ggcaacagcg ttgcgtatga ccgtcctctg ctgaagccgg agcctccgg 60
cttccggcga cagcatcgcc gatatggaga agaagttcgc cgcttacgtc cgccgtacg 120
tgtacggcac catgggacgc ggcgagttgc ctcccaagga gaagctcttgc ctgggtttcg 180
cgttggtcac tcttctcccc attcgagtcg ttctcgccgt caccatatttgc ctcttttattt 240
ac 242

<210> 33
<211> 248
<212> DNA
<213> Glycine max

<400> 33
ttcttccttct ctcaactcttctt aaaaaccctaa ctctatacat ggaagggaaa nctcaaatttct 60
natgactaat taattaatcc atcgatcaag catggagttcc gaactcaaag acctcaatttcc 120
gaagccggc aacggcaacg gcaacagcgt tcgcgtatgac cgtcctctgc tgaagccgg 180
gcctccggtc tccggccaca gcatcgccga tatggagaag aagttcgccg cttacgtccg 240
ccgcgacg 248

<210> 34
<211> 217
<212> DNA
<213> Glycine max

<400> 34
aaaaccctaa ttctatacat ggaagggaaa tctcaaatttctt aatgactaat taattaatcc 60

atcgatcaag catggaggcc gaactcaaag acctcaattc gaagccgccc aacggcaacg 120
gcaacagcgt tcgcgatgac cgtcctctgc tgaagccgga gcctccggtc tccggcaca 180
gcatcgccga tatggagaag aagttcgccg cttacgt 217

<210> 35
<211> 257
<212> DNA
<213> Glycine max

<400> 35
atctctgtct ctgcatttcc ctccctaaaa ccctaattct acatttgaaa aggaaatctc 60
aaatctaattg actaattaat caatcaatcg tattaataat ccatcgatca agtatggagt 120
ccgaactcaa agacctcaat tcgaagccac ccaactgcaa cggcaacgccc aacagcgaaa 180
gacgacgaccg tcctctgtc aagccggagc ctccggctc ctccgacagc atcggcaga 240
tggagaagaa gttcgcc 257

<210> 36
<211> 284
<212> DNA
<213> Glycine max

<400> 36
cccgacccaa acagggtttt gtggccaatc atacttccat gattgatttc attatcttag 60
aacagatgac tgcatttgct gtattatgc agaagcatcc tgatgggtt ggattattgc 120
agagcaccat tntggagagt gtaggggtta tctggtcaa cctgtacagag gcaaaggatc 180
gagaagttgt ggcaaggaaa ttgagggatc atgtccctggg agctaacaac aaccctcttc 240
ttatatttcc tgaaggaact tggtaataat atcactactc gtca 284

<210> 37
<211> 246
<212> DNA
<213> Glycine max

<400> 37
ggagatccgc ataagcaaat caatcatcct gtcccttcct tatctctgtc tctgcatttc 60
cctccctaaa accctaattc tacatttggaa aaggaantct caaatctaattt gataattaaat 120
caatcaatcg tattaataat ccatcgatca agtatggagt ccaactgcaa agacctcaat 180
tcgaagccac ccaactgcaa cggcaacgccc aacagcgaaa gcgacgaccg tcctctgtc 240
aagccg 246

<210> 38
<211> 278
<212> DNA
<213> Glycine max

<400> 38
gttttctatt gcccacgttgtt ggaagcgtaa cgaagatgaa tggcattggg aaactcaaatt 60
cgatcgatcc tgaattggac cttcacattt aagattacat accttctggaa tccagtgttc 120
aacaagaacg gcatggcaag ctccgactgt gtgatttgct agacattttt cctagtctat 180
ctgaggcagc acgtgccatt ttagatgata cattcacaag gtgcttcaag caaatccccc 240
agaaccttgg aactggaatg tttatggtt tcctttgtt 278

<210> 39
<211> 312
<212> DNA
<213> Glycine max

<400> 39
ttaactttgg cacattctcc ttttggatcat caatgtgtgt tgtaaattgt ncatttcctt 60
cagaggcttt tggtaganat gatgtgcagt ttctgtgggt catcttggac tgnngntgtt 120
aagnatcatg gacccagggcc tagcaggaga ccaaagcagg tttttgttagc caaccataact 180
tcatgattga tntcattatn tnagaacaga tgactgttt tgcngttatn atgcagaagc 240
atccctggatg ggttggtaag cttacagnat gtcacacngt gntacacnnn 300
acttgcgtct tc 312

<210> 40
<211> 255
<212> DNA
<213> Glycine max

<400> 40
ggattattgn ngnanatgca gtcatctgtt ctaagataat ganatcnatc atggaagtat 60
gattggncac anaaacctgt ytttggttg gatacttagt cttggccat ggtacttgac 120
naccggcgtc catgatgcaa canaganact gnacatcatc tccaccaaaac ccctctgana 180
ganacgagaa ttgagcaatt tagagtacct tggtttgatg caagtcagta tattcaagtt 240
tctattcatc aaagg 255

<210> 41
<211> 291
<212> DNA
<213> Glycine max

<400> 41
caacctccca tgcaatcgct caccctctcc gtcacacctgaa tctgttttct attccctccg 60
tcgcgttaaca aggtgaatg gcattggaa actcaaatcg tcgagttctg aattggacct 120
tcacattgaa gattacctgc cttctggatc cagtgttcaa caagaacggc atggcaagct 180
ccgcctgtgt gatttgctag acatttctcc tagtctatct gaggcagcac gtgcattgt 240
agatgataca ttcacaagg gcttcaagtc aaatcccca gaaccttggaa a 291

<210> 42
<211> 284
<212> DNA
<213> Glycine max

<400> 42
ctgcaaccta ccatgcaatt cctcacctga atccgttttct tattgccacg ttgttggaaagc 60
gtaacgaaga tgaatggcat tggaaaactc aaatcgatc gttctgaatt ggacccatc 120
attgaagatt acctacccctc tggatccagt gttcaacaag aacggcatgg caagctccga 180
ctgtgtgatt tgcttagacat ttctccttagt ctatctgagg cagcacgtgc catgttagatg 240
atacatcaca aggtgctcaa gtcaaatctc cagaaccttg gaat 284

<210> 43
<211> 268
<212> DNA
<213> Glycine max

<400> 43
ctgaagtatt ctgcgtccatg cccaaagcat agagaaaggm agcaacagaa ctttgctgag 60
tcagtgctgc ggcgatggga ggaaaaagtga tttgttacctt tatgtgggtt ttttttttaat 120
tatttttagt aatgcatttgc cttcgacccc tttttttgtt tttttttgtt cattgctaac 180
tatttatttt taacactttt attaaagata tggcatatat ncacttcagt anacaaagtt 240
gtncaggtaa ttttttttcc aaaaaaaaaa 268

<210> 44
<211> 241
<212> DNA
<213> Glycine max

<400> 44
gancaaaatt gcccctccatc actttccttg ttagagttgg tttctgcnaa ctaccatgca 60
attccctcac ctgaatccgt tttctatttg cacgtgtgg aacgtaaacg aagatgaatg 120
gcattggaa actcaaatcg tcgagttctg aattggacct tcacattgaa gattacctac 180
cttctggatc cagtgttcaa caagaacggc atggcaagct ccgactgtgt gatttgctag 240
a 241

<210> 45
<211> 247
<212> DNA
<213> Glycine max

<400> 45
gtaggatgtc tgagatcctt gccccaaatca aaacggtgcg gtttaactaga aaccggcgacg 60
aggatgcaaa aatgatgaaa aatttgctgg ggcaaggggga cctgggtgggtt tgtctctgaa 120
ggaccacatg tagagaacct tattttatgtt ggttcagccc tctgttctca gagatgtgca 180
atgagattgt ccccggttggc agttgattcc cagttatatg ttccacggaa ccactgctgg 240
tgganta 247

<210> 46
<211> 271
<212> DNA

<213> Glycine max

<400> 46

tgcagggggg cttgttagag ccatacgaaaaat gggtcttcta tacccttttgcgt 60
 aggaaaagag atggggttga agataatggt catggcatgc ttcttcggga tcaaagcatc 120
 gagcttcaga gttggaaaggc ccgttttgcc cnaattcttc tnggaggacg ttngtgcaga 180
 aatgtttgag gcactcaaaa aaggagggaa gacagtggga gttaccaatt taccacgt 240
 gatggtgaa agttcttga gagagtattt g 271

<210> 47

<211> 242

<212> DNA

<213> Glycine max

<400> 47

ttcacagctg tcacggcgtn aacggaaaaat ggcaacggcg agacgcagg tcccgccat 60
 caccgaatgc aacggAACGA cnccgtgcga ntctgtngnc gccgacctcg agggtaacgct 120
 cctcatctcc cgtnctcg tcccgactt catgctcg tcgcgtcgaag ccggcagcnt 180
 ctcccgccgc ctcatgctnc tcctctccct tccgttcgtc atnatgcct acctttcat 240
 ct 242

<210> 48

<211> 244

<212> DNA

<213> Glycine max

<400> 48

acatattctt cagtttagctc ccccaaccta tacacttcac caccacacca caacccttacc 60
 ctctctctt gtcatggtca ttggaggagc ctccctcg ttcgacccaa tcaccaaattg 120
 tagacccaag accgctccaa ccagaccatc gcctcgacc tcgatggcac ctccttgtc 180
 tcccgagtg cttccctca ctacttcctc gtcgcctcg aagccggcag cgtctccga 240
 gcct 244

<210> 49

<211> 230

<212> DNA

<213> Glycine max

<400> 49

caacattcca cctagctccc caatcacatc ttccaccacac cataaacctt cttaaatttct 60
 ctcttcattt tctccctctt tgcataatc atggggaccc tccctcgctt cgacccaatc 120
 accacccaag accggtccaa ccagaccatc gcctccgacc ttgacggcac ctcctcg 180
 tcccgagcg cttccctca ctacccctc gttgcctcg aagccggcag 230

<210> 50

<211> 265

<212> DNA

<213> Glycine max

<400> 50

ctggtaata atcctaagtt atggagtctg tgggtgtgtga gctagaaggc acgcttgtga 60
 aggacaagga tgcgttctca tacattcatgt tgggtgcgtt tgaagcttca gttttgggtc 120
 gtttcgcctt gttgctaaca ctattgcccc tgattcggtt ctttgacatg gttggcatga 180
 acgatgcata tctcaagctt ntnatcttcg tggctgtggc tgggtgttcca aagtccgaga 240
 ttgaatcagt ggctaggc gtttt 265

<210> 51

<211> 252

<212> DNA

<213> Glycine max

<400> 51

ctggtaata atcctaagtt atggagtctg tgggtgtgtga gctagaaggc acgcttgtga 60
 aggacaagga tgcgttctca tacattcatgt tgggtgcgtt tgaagcttca gttttgggtc 120
 gtttcgcctt gttgctaaca ctattgcccc tgattcggtt ctttgacatg gttggcatga 180
 acgatgcata tctcaagctt atgatcttcg tggctgtggc tgggttcca agtccgagat 240
 ttgaatcagt gc 252

<210> 52

<211> 218

<212> DNA
<213> Glycine max

<400> 52
aactgcaact acaaacaacat tcattcattc acagctgtca cgccgtgaac ggaaaatggc 60
aacggcgaga cgcgcgttac ccgcctatac accgaatgca acggaacgac accgtgcgag 120
tctgtggccg ccgacacctga cggtaacgctc ctcatntccc gtagctcggtt cccgtacttc 180
atgctcgctcg ccgtcgaagc cggcagcctc ctccgcgg 218

<210> 53
<211> 262
<212> DNA
<213> Glycine max

<400> 53
gtttaaggac attgagatgg tcgnntcctc ggtgctgccc aagttctaca ccgaggacgt 60
gcnccccggag agctggagag tcttcaatcc ttccggaaagc gtacattgt cactgctagt 120
ctagggtgat ggtggagcan ttgtttaaga cgtttcttgg ggctgataag gtgcttggg 180
ctgagcttga ggcacacgaaa tcggggaggt tcatgggtt gtaaggagc ctggtgtgtc 240
tggtgggag cacaagaaag tg 262

<210> 54
<211> 212
<212> DNA
<213> Glycine max

<400> 54
gcaactacaa caacattccat tcattcacag ctgtcacgccc gtgaacggaa aatggcaacg 60
gcgagacgca gtttccgccc tatcaccgaa tgcaacggaa cgacgcccgtg cgagtctgtg 120
gccggccgacc tcgacggtac gctcctcatac tcccgtagn cgttcccgta cttcatgctc 180
gtngccgtcg aagccggcag cctccctccgc gg 212

<210> 55
<211> 273
<212> DNA
<213> Glycine max

<400> 55
catggtttc ttgagcttct ttggcctcag aaaggacaca ttcagaacag gatcagctgt 60
tctggcaaaag ttcttcttag aagatgttgg attggaaaggc ttgaggccg taatatgtt 120
tgagagaaaa gttggcatcta gtaagttgcc aagggtcatg gttgaaaatt tcctcaagga 180
ctatttaggg gttgatgtcgt ttatagcaag agaatttgaag tcctttagtg gcttctttt 240
gggagttttt gagagtaaga agccaattaa aat 273

<210> 56
<211> 257
<212> DNA
<213> Glycine max

<400> 56
ctctcaaaaaa aggagggaaag acagtgggag tcaccaatct accccatgtg atgggtggaaa 60
gctctttag agagtatttgc gacatttgc ttgttggg cagggagctg aaagtttct 120
gtggatacta cgtaggatttgc atgatgaca caaaaactat gcatgcctt gagctggta 180
aagaaggaaa aggatgtcc gacatgatcg gaatcacaag gtttcgcaac atacgcgacc 240
atgatgattt ttctcc 257

<210> 57
<211> 240
<212> DNA
<213> Glycine max

<400> 57
gaactaagtg tgaaccacta ccaagaaaca agcttttaag tccaatttattt tttcatgagg 60
gtaggtttgc tcaaaggccaa actcctctag ctgnnctctt gaccccttca tggctgccaa 120
ttggcatcat actctccatc ttaagggtct accttaacat ccctttgcct gaaagaattt 180
cttggtacaa ctacaagtc ttaggaatca gagttattgt gaagggtacc cctccaccgc 240

<210> 58
<211> 254
<212> DNA

<212> DNA
<213> Glycine max

<400> 64
ccgagaaccg gtctaaccaa accgtggcct cggacttgg a cggcacccctc ctgggtgtccc 60
ccagcgatt tccttactac atgctggtcg ccatcgaaagc cggcagcttc ctccgtggcc 120
ttgtcctcct tgcctccgtc ccttcgtgt attcacgtac atattcctct ccgagaccgc 180
ggccatcaag tccctgatct tcacgcctt cgcggccctg aaggtcaggg acgttgagat 240
ggtcgcgtgc tcgggtgtgc ccaagttcta cggcgcacata ttcttcgtt agctccccca 300
acctatacac ttcaccacca caccacaacc ctaccctctc tctctgtcat ggtcattgg 360
ggagcctcc tcggttgc cccaatcacc aaatgttagca cccaaagaccg ctccaaaccag 420
accatcgcc cggacctcga tggcaccctc ttgtctccc ggagtgcctt cccctactac 480
ttcctcgatc ccctcgaaagc cggcagcgat ttccgagccc tccttcgtt a 531

<210> 65
<211> 256
<212> DNA
<213> Glycine max

<400> 65
acatattctt cagtttagctc ccccaaccta tacacttcac caccacacca caaccctacc 60
ctctctctc gtcatggtca ttggaggagc ctccctcgt ttcgacccaa tcaccaaatg 120
tagcacccaa gaccgccttca accagaccat cgcctcggac ctcgatggca ccctccttgt 180
ctcccgagt gcctccctt actacttctt cgtgcctcga gaagccggca ggcgtcttccg 240
agccctcctt ctetta 256

<210> 66
<211> 260
<212> DNA
<213> Glycine max

<400> 66
ccatccaaca tattcttcag ttagctcccc caacctatac acttcaccac cacaccacaa 60
ccctaccctc tctctctgtc atggtcattt gaggagcctt ccctcgttt gacccaaatca 120
ccaaatgttag caccctaaagac cgctccaaacc agactatcgc ctcggacccctc gatggcacc 180
tccttgcgtc ccggagtgcc ttccctactt acttcctcgt cgcctcgaa gccggcagcg 240
tcttcgagc cctccttc 260

<210> 67
<211> 248
<212> DNA
<213> Glycine max

<400> 67
caccctaaacc acctcactct cccttctcc cctgaccctc tccctgccat ggtcatgg 60
gccttggcc acttcgaacc ggttccaaa tgcagcaccg agaaccggc taaccaaacc 120
gtggcctcggt acttggacgg caccctctgt gtgtccccc ggcattttc ttactacatg 180
ctgggcgcca tcgaagccgg cagttcttc cgtggccttgc tcccttcgtc ctccgtccct 240
ttcgtgtta 248

<210> 68
<211> 283
<212> DNA
<213> Glycine max

<400> 68
ttctttccca ccattcacacc aancaaaccc cactctncct ggccatggc atgnnngcc 60
ttccggccact tcgaacccgg ttcctaaatgc agcaccgaaa accggtttaa ccaaaccgtg 120
gcctcggact tggacggcac cttctgggt tcccttagcg ctttccttta ctacatgctc 180
gtgcgcacatcg aagccggcag cttctccgt ggccttgcc tccctggatc cgtcccttc 240
gtgtacttca cgtacatatt ttctccgag accgcggcca tca 283

<210> 69
<211> 258
<212> DNA
<213> Glycine max

<400> 69
ctcttcttcc ccaccatcnn accaaccctt cctcactctc cctgaccatg gtcatggag 60
ccttcgcca ttgcgaaccg gttccaaat gcagcaccga aaaccgggtt aaccaaaccg 120

tggcctcgga cttggacggc accctcctgg tgtcccctag cgcccttcct tactacatgc 180
tcgtcgccat cgaagccggc agcttcctcc gtggccttgc ctccttgga tccgtccctt 240
tcgtgtactt cacgtaca 258

<210> 70
<211> 256
<212> DNA
<213> Glycine max

<400> 70
tgcaactaca acaacatcca ttcatcaca gctgtcacgc cgtgaacgga aaatggcaac 60
ggcgagacgc agttccccgc ctatcaccga atgcaacgga acgacaccgt gcgagtctgt 120
ggccggccac ctcgacggtta cgctcctcat ctccctgtac tcgttccctgt acttcatgct 180
cgtcgccgac gaagccggca gcntcctccg cggcctcatac ctccctctng ccantccgtt 240
cgtcatcanc gcctac 256

<210> 71
<211> 259
<212> DNA
<213> Glycine max

<400> 71
cttccccacc atcacaccan ggcnAACCTC anttccctt tctccacnnga cccttcctt 60
gccatngtca tggancctt tgccacttc gaaccggctt ccaaattgcag caccgagaac 120
cggnctaacc aaaccgtggc ctccgacttg gacggcaccc tcctgggtgc ccnicagcgca 180
tttccttact acatgctggc nccatcgaa gccggcagct tcctccgtgg ctttgtcctc 240
cttgccctcg tcccttcg 259

<210> 72
<211> 249
<212> DNA
<213> Glycine max

<400> 72
ccaacatatt cttagtttag ctcccccaac ctatacactt caccaccaca ccacaaccct 60
accctctctc tctgtcatgg tcattggagg agccttcctt cgtttcgacc caatcaccaa 120
atgtagcacc caagaccgc ccaaccagac catcgccctcg gacctcgatg gcacctnct 180
tgttccctgg agtgccttcc cctactactt ctcgtcgcc ctcgaagccg gcagcgtctt 240
ncgaccctt 249

<210> 73
<211> 257
<212> DNA
<213> Glycine max

<400> 73
caaccctctt ctccccacc atcacaccaa ncaaaccctca ctctccctt ctccctgac 60
cctcccttg ccatggtcat gggagcctt ggccacttcg aaccggcttc caaatgcagc 120
accgagaacc ggtctaacc aaccgtggcc tcggacttgg acggcaccc cctgggtgtcc 180
cccagcgcac ntccctacta catgctggc gccatcgaag ccggcagctt ctcctcggtc 240
cttgccctcc ttgcctg 257

<210> 74
<211> 255
<212> DNA
<213> Glycine max

<400> 74
gccgaagacg tgcacccgga gagttggaga gtgttcaact ctttcgggaa gcgttacatt 60
gtcacggcta gtccttaggt gatggtggag cggttgtta aggctttctt cggggctgac 120
aagggtcttgg ggactgaact tgaggccacc aaatcgggaa cgttcacttg gtttggtaag 180
aaggcctgggtg tgcttgggg ggagcataag aaagtggctc tggtaagga gtttcagggt 240
aattacctga ctgg 255

<210> 75
<211> 244
<212> DNA
<213> Glycine max

<400> 75

caacaacatt cattcattca cagctgtcac gccgtgaacg gaaaatggca acggcgagac 60
gcaggttccc gccttatcacc gaatgcaacg gaacgacacc gtgcgagtc gtggccgccc 120
acctcgacgg tacgctcctc atcncccgta gctcgcccc gtacttcatg ctcgtcgcgg 180
tcgaagccgg cagcctcctc cgccgcctca tgcnttccctg gttttanttt gagnaccct 240
gagg 244

<210> 76
<211> 240
<212> DNA
<213> Glycine max

<400> 76
gctggctacc ctcttcttcc ccaccatcac accaatcaaa cctcaactcta ccctggccat 60
ggcatggga gcctttnncgc cacttcgaac cggtttccaa atgcagcacc gaanaccgg 120
ttnaccanac cgtggccctcg gncttgacg gcaccctctt ggtgtccctt agcgcctttc 180
cttactacat gtcgtcgcc atcgaagccg gcagcttccctt ccgtggcttg tcctccttgg 240

<210> 77
<211> 263
<212> DNA
<213> Glycine max

<400> 77
gttctcggg gctgacaagg tgcttggac tgaactttag gcccaccaa at cggggacgtt 60
caactgggtt gttttaagaagc ctggtgtgtc ttgttggggat cataagaaag tggctctgg 120
gaaggagttt cagggttaatt tacctgactt gggtcttagt gatagtaaaa gtgattatga 180
cttcatgtca atttgcaagg aagggtacat ggtgcacaaga actaagtgtg aaccactacc 240
aagaacaag cttttaagtc caa 263

<210> 78
<211> 258
<212> DNA
<213> Glycine max

<400> 78
ggccacgaaa tcggggaggt tcactgggtt ttttaaggag cctgggtgtc ttgttgggg 60
gcacaagaaa gtggctgttgc tgaaggagtt tcagggttaat ttacctgact tggactagg 120
agatagtaaa agtgattatg acttcatgtc aatttgcaag gaagggtaca tggtgcac 180
gactaagtgtt gaaccactac caagaaacaa acttttaagt ccaatttattt ntcatgaggg 240
tagtttggcaaa 258

<210> 79
<211> 260
<212> DNA
<213> Glycine max

<400> 79
ctcttcttcc ccaccatcac accaancaaa cctcaactctc ctttctccc ctgaccctct 60
ccctgccatg gtcatggag ctttggca cttcgaaccg gtctccaaat gcagcaccga 120
gaaccggctt aaccaaaaccg tggcctcgga cttggacggc accctcttgg tgcctccctt 180
cgcatttctt tactacatgtc tggtcgcctt cgaagccggc agcttcttcc gtggccctt 240
tcctccttgc ctccgtccct 260

<210> 80
<211> 257
<212> DNA
<213> Glycine max

<400> 80
gggaacaaca acaaattggca ngtacccat ctccttccaa cttgggtgcatttacccctgg 60
atacccaatc cagcctgttaa ttgtacgtaa tcctcatgtc cactttgacc aatcctgggg 120
tcatgtntct ttggaaagc ttatgttcag aatgttactt caatttcaca actttttga 180
ggttagaatat cttcctgtca tttatcccctt ggtatgataag gaaactgctg tancttntcg 240
ggagaggact agccggg 257

<210> 81
<211> 272
<212> DNA
<213> Glycine max

<400> 81
 catacctttt gttggcacca ttatttagagc aatgcagggtc atatatgtta acagatttt 60
 accatcatca aggaagcagg ctgttaggaa aataaaggaa ctgataaacca gagaaggccc 120
 tcttgatata aatttcctcg agtactatta ttcccgagg gaacaacaac taatggcagg 180
 aaccttatct ctttccaatct tggtcattt atccctggat acccaatcca gcctgttaatt 240
 atacgctatc cttatgtaca ctttaccatca tc 272

<210> 82
 <211> 245
 <212> DNA
 <213> Glycine max

<400> 82
 gggcatttca catacttagag ttcatcccaag tgaaaagaaaa gtgggaggct gatgaatcaa 60
 tcatgcgcca tatgcttctt acattcaagg atccacaaga tcctctctgg cttgcgttt 120
 tcccaagg cactgattc actgagcaaa agtgccttcg gagtcaaaaaa tatgtgtctg 180
 aacataagtt accggttctg aaaaatgttt tacttccaag gacaaagggg cttctgtgcc 240
 gcttg 245

<210> 83
 <211> 268
 <212> DNA
 <213> Glycine max

<400> 83
 cagtgtcctt cctttcttggaa caatgtttt ggtgttgacc cttcagaatgcaccc 60
 gtgcggcgta ttccgggttggaa ggagattcca gttctgtaaa ccaaagctgc ttcttggta 120
 atcgacacat tccagatcaa ggaccaattt ctttcggatt tcaagattca aggccatttc 180
 cctaaccacaa taaatgaaaa tgaatttttct agatttaaaga gcctactctc ttttatggtg 240
 atagtttctt ttactgcattt gtttattt 268

<210> 84
 <211> 265
 <212> DNA
 <213> Glycine max

<400> 84
 gaaagagact gggcaaaaga taaaacatca ctgaagtcag gttttaggca tctagagcac 60
 atgcattcc ctttctgtttt ggcctttt gttgaaggaa ctcgtttcac gcagacaaag 120
 ctttacaag ctcaagatgt tgctgtttca aaagggtctgc ctataacctag aatgtttt 180
 attcctcgta ctaagggttt tgcacagca gnacaaagcc ttcggccatt tcgttccagc 240
 cattatgtatc ctttgcacatatg cagtt 265

<210> 85
 <211> 265
 <212> DNA
 <213> Glycine max

<400> 85
 gaaagagact gggcaaaaga taaaacatca ctgaagtcag gttttaggca tctagagcac 60
 atgcattcc ctttctgtttt ggcctttt gttgaaggaa ctcgtttcac gcagacaaag 120
 ctttacaag ctcaagatgt tgctgtttca aaagggtctgc ctataacctag aatgtttt 180
 attcctcgta ctaagggttt tgcacagca gnacaaagcc ttcggccatt tcgttccagc 240
 cattatgtatc ctttgcacatatg cagtt 265

<210> 86
 <211> 301
 <212> DNA
 <213> Zea mays

<400> 86
 ctcgtcgta agggcaccccc gccgcccggc cccaaagg gcccacccggg cgtccttcc 60
 gtctgcaacc accgcacccgt gctcgacccc gtcgagggtgg ccgtggcgct ggcggcaag 120
 gtcagctcgatc acatcttccaaat ttctccggatc tcatctcgcc catcaaggcc 180
 gtcggcgatgtt cgccggaggc gacaaggacg ccgagaaat cccggccctg ctggaggagg 240
 ggcacccgtt catctgcccc gagggnacaacttgcgaa gccccttccgt ctgcgttcag 300
 g 301

<210> 87
 <211> 309

<212> DNA
<213> Zea mays

<400> 87
cgctcatgct gtgtacatca acctgccgct gcccggcgc atcgctactt acacccataaa 60
gctcatggc atcaggctcg tcgtcaaggg caccggccg cccggcccca agaaggccca 120
ccggggcgcc ctcttcgtct gcaaccaccg caccgtgtc gacccggcgt aggtggccgt 180
ggcgctgctc cgcaagggtca gctcgctac ctacagcatc tccaagttct ccgagctcat 240
ctcgccatc aaggccgtcg cgctgtcgaa gaggcgacaa ggacggccgag aacatccgccc 300
gcctgctgg 309

<210> 88
<211> 304
<212> DNA
<213> Zea mays

<400> 88
tggctgtgca ggaggccctac ctgggtacgt caaggaagta cagccgggtg cccaggaacc 60
agctgctgag cccgctgatt cgtgcacgac ggccggctcg tgcagccccc gacggccgtc 120
gtcgccgtcg tcaccttcct ctggatggcc ttccggcttcg cgctggccgt catggcggtg 180
tacatcaacc tgccgctgcc cgagcgcatac gtctactaca cttacaagct catgggcatac 240
aggctcggtcg tcaagggcac cccggccccc ccggcccaaga agggccaccc ggggtccctc 300
ttcg 304

<210> 89
<211> 312
<212> DNA
<213> Zea mays

<400> 89
ggtcatcca cttgtgttgc tatngaccg gtaccgtagg agagcacagc actancatcg 60
caaagattt gggctacgg gacaatctcc atgttctaca atcttnaggt cgaaggaatg 120
gagaatctgc ctccaaatag ctgcctgtt gtctatgtt ctaaccatca gagcttctt 180
gatatttata cccttctaacc tttagggagg tgcttcaaat ttataagcaa gaccagcatac 240
tttatgttcc ctattatagg gtgggcaatg tatcttttgg gtgtgattcc tctggccgt 300
atggacagca gg 312

<210> 90
<211> 264
<212> DNA
<213> Zea mays

<400> 90
ggtgctgtat ctgaaagaat ccatcggtct catcaacaga aaaatgcacc aatgtatgtca 60
ctctccccct gagggcacaa ctacaaatgg ggattatctc ttccatca aaacagggtgc 120
ttttcttgca aaggccacag ttcaaccatg cattttgaga ttttttataca aaagattttaa 180
tgcacgtgg gattccatgt caggggcacg tcatgttattt ctgctgtct gtcaatttgt 240
aaattaccta gaggtgttcc gttt 264

<210> 91
<211> 212
<212> DNA
<213> Zea mays

<400> 91
aaatgtcttg gatgcatttt tggtcagcgg gagtcgaaaa caccagattt cttttttttt 60
tcaggtgtcg tatttggaaat aatccatgt gctcatcaac agaaaaatgc accaatgtatg 120
ctacttttcc ctgagggcac aactacaaat ggggattatc ttccatcaaa cttttttttt 180
gcttttttgc cttttttttt cttttttttt cttttttttt cttttttttt cttttttttt 212

<210> 92
<211> 267
<212> DNA
<213> Zea mays

<400> 92
gtctaaagaa atnngaaaggc gtggggnaat tttttttttt tttttttttt tttttttttt 60
tctttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 120
gcctctgtttt ggtctatcaa gcaaatgtct tggatgttcc tttttttttt tttttttttt 180
aatncanatt tcaaaagggtgtt tttttttttt tttttttttt tttttttttt tttttttttt 240

cagaaaaatg caccaatgat gctactc 267
<210> 93
<211> 152
<212> DNA
<213> Zea mays

<400> 93
ctacaaaatgg ggattacattt cttccatatta agactggagc ctttnttgca ggtgcaccag 60
tgcagccagt cattttgaaa tacccttaca ggagatttag tccagcatgg gattcaatgg 120
atggagcacg tcatgttta ttgctgtct gt 152

<210> 94
<211> 274
<212> DNA
<213> Zea mays

<400> 94
aaaatataaa ttaatatggt cttaatcccc caatataaaat aacgttctct ttctgcaggg 60
caatttagtt ctttctaata ttgggctggc agagaagcgc gtgtaccatg cagcaactgac 120
tggtagtagt ctacctggcg ctagacatga gaaagatgtat tgaaagacgt tgcgtcgctt 180
tttctgtAAC agacagccga ggaacactta aaaatgtAAC tttgtgcgtg ttttataacc 240
tgaatgttgg cagtttattt gtttgaggag gctg 274

<210> 95
<211> 295
<212> DNA
<213> Zea mays

<400> 95
aatacgatc aagtacaata aaatatttgt tgatgcctt tggAACAGTA agaAGCAATC 60
ttttacaatg cacttgggcc ggctgtatgac atcatggct gtgtgtgtg atgttggta 120
cttacccctt caatatctga gggagggaga gacggcaatt gcatttgctg agagagtaag 180
ggacatgata gctgctagag ctggactaaa gaagggttc tggatggct atctgaaaca 240
caaccgttcc agtcccAAAC acactgaaga gaacaacgca tattgcccgt ctgtc 295

<210> 96
<211> 273
<212> DNA
<213> Zea mays

<400> 96
gngccatctc accggcggn ggcctgcggc cggcaaccgg aggcgatggc gagctngtct 60
gtggggcgac acatggagca ntaccggccc aacctggagg actacccccc gcccgactcg 120
ctcccgagg aggcgcccgg gaatctccat ctgcgcgatc tgcttgcacat ctgcgggtg 180
ctaacccgagg cagcgggtgc catagtcgtat gattcattca cccgttgctt taagtcaat 240
tctccagaac catggaaatgg aacatataatt tgt 273

<210> 97
<211> 127
<212> DNA
<213> Zea mays

<400> 97
ctcaaatctt ganggaggga gagactgcaa ttgcgtttgc tgagagagta agggacatga 60
tagcagctag agctggcttt aagaagggtcc cgtggatgg ctatctgaag cacaaccgccc 120
ctagtc 127

<210> 98
<211> 286
<212> DNA
<213> Zea mays

<400> 98
gaaccgtacg cgcccttattt cggccatcca cgtgctcgcc tctcccccattt gcataatTTT 60
nctccggcgcc gtcgcccattt ccancggcng cnngcctgcn gccggcaacc ggaggcgatg 120
gcgagctcgat ctgtggcgcc ggacatggag ctggaccggc ccaacctggaa ggactacntc 180
ccggcccgant cgctccccca ggaggcgacc aggaatctcc atctgngcga tctgcttgan 240
atctcgccgg tgcttaaccga ggcagcgggtt gccatagtcg atgatt 286

<210> 99
<211> 308
<212> DNA
<213> Zea mays

<400> 99
cgccatctca tcggcggcgg gcgtgcggcc ggcggcngag gcgaggngcg attggcgagc 60
tcgtctgtgg cgccggacat ggagctggac cgccccanacc tgaggacta nctcccgccc 120
gactcgnncc cgcagaggcg ccccgaaatc tccancgtcg cgatctgtcg gacatcnccg 180
cggtgctcac cgaggcagcg ggtgccattg tcgatgactc ctccacacgg ngctttaagt 240
caaattctcc agagccatgg aattggaaca tatatctgtt ccccttatgt gctttggtgt 300
ataataag 308

<210> 100
<211> 282
<212> DNA
<213> Zea mays

<400> 100
cagaaactag angtttagtca cagcatggca ttaaaattgtc atagtaaaca acancnact 60
gagcaactat gcaatttaat gccatgtgt gactaacttc tagtttctgg cattaaatta 120
ctgttggct actaggaaga ccgaggtaga gaagcaaata taagaatacc ctccaacgca 180
canccaaatg acagagtaaa tgaaggtagg gttcaccttc ttaaacatga ccgtatactg 240
gttgttaaca caagttccctc tggaaaatc agagaggtt tt 282

<210> 101
<211> 282
<212> DNA
<213> Zea mays

<400> 101
ggcgcggcgtg gccgtggcgc tggcctgcc gtacagtaact cgacgcccgt cctggcngcg 60
acnngcatgt cgtggcgct caaagggtng cgcccnngc ttgcnnngcc gtgctccggc 120
ggcgctgnc agctgttgcgt gtgcaacnac cggacgctga tcgacccngt gtacgtgtcc 180
gtagcgtgga cccggaaatg cgcgnctgt nctacagnct gangcggntn tcggagctca 240
tctcccccatt ngnccgaang tgcacctgan accggaaacg gg 282

<210> 102
<211> 290
<212> DNA
<213> Zea mays

<400> 102
ggacgcccga ccatgcgcgc cgagctggcc agtggcgacg tggccgtgtg ccccgagggc 60
accacgtgcc gggagccctt cctgtccgc ttctccaagc ttctcgccga gctcagcgac 120
aggatcgtgc cctgtggcgat gaactaccgc gtggggctct tccacccgac gacggcgcgc 180
gggtggaaag ccatggaccc catcttcttc ttcatgaacn gcggccctgt tacgaggtga 240
cgttcctgaa ccantccccg caaagcgacg tgcgcggcgg ggaagagccc 290

<210> 103
<211> 279
<212> DNA
<213> Zea mays

<400> 103
acgaggtgac gttcctgaac cagctccccg cagaggcgac gtgcgcggcg gggaaagagcc 60
ccgtgtatgt agccaactac gttcagcgga tactcgtgc cacgctcggtt ttcgagtgca 120
ccacccctcac aaggaaggac aaatacacgg tgctcgccgg caacgacggc gtcctgaacg 180
ccaagccggc ggcggcccg aagccggctt ggcagagccg cgtgaaggaa gtcctcggtt 240
tctgctccac taacaattac accttgccca gatctggac 279

<210> 104
<211> 315
<212> DNA
<213> Zea mays

<400> 104
gccccagcgc atcgtctact acacctacaa gctcatggc atcaggctcg tcgtcaaggg 60
caccggcccg cgcggccca agaaggccca cccggcgctc ctttcgtct gcaaccaccg 120
caccgtgctc gaccccgctcg aggtggccgt ggcgctgccc cgcaangtca gtcgcgtcac 180

tacagcatct ccaagttctc cgagctcatc tcgcccata aggccgtgc agnaaagcag 240
 gtcgaaatg gagcagnagc gagtcgatgg aangnaattg gcgactggc atctgcncga 300
 aggnacactg cggag 315

<210> 105
 <211> 314
 <212> DNA
 <213> Zea mays

<400> 105
 cgagacaccg agcacgtact accagcaaga tggtggcgta tcccaattc aagccatcg 60
 aggagtctg ctccggggg cggcgagc agacggggc cgccgacctg gacggcacgc 120
 tgctcatctc caggagcgcg ttccccact acctccctgt ggctctcgag gccggcagcg 180
 tcctccgcgc cgcgctgtg ctccgtccg tgccgtctgt ctacgtcacc tacgccttct 240
 tctccgagtc gctggccatc agcacgtgg tgtacatctc cgtgggggg cttaagggtgc 300
 gcanatcgag atgg 314

<210> 106
 <211> 291
 <212> DNA
 <213> Zea mays

<400> 106
 ctctgggtct gggggcggaga caccgagcac gtactaccag caagatggtg gcgtctcca 60
 gattcaagcc catcgaggag tgctgctcg agggggcggtc ggagcagacg gtggggcccg 120
 acctggacgg cacgctgtc atntccagga ggcgcgttccc ctactaccc ctcgtggctc 180
 tcgaggccgg cagcgtcctc cgcgcgcgc tgctgctct gtccgtgccg ttctgtctacg 240
 tcacctacgc ttcttctcc gagtcgctgg ccatcagcac gctgggtgtac a 291

<210> 107
 <211> 300
 <212> DNA
 <213> Zea mays

<400> 107
 gcacgcagca gtacgacgtc tctccctctgg gtctggggcc gagacaccga gcacgtacta 60
 ccagaaatg ggtggcgctc cccagattca agcccatcg a g g a g t g c t g c t c g g a g g g g c 120
 ggtggagca gacggtgccc gcccacctgg acggcacgct gctcatctcc aggagcgcgt 180
 tcccctacta cctccctgtg gctctcgagg ccggcagcgt cctccgcgc gcgcgtctgc 240
 tcctgtccgt gccgttcgtc tacgtcacct acgccttctt ctccgagtcg ctggccatca 300

<210> 108
 <211> 284
 <212> DNA
 <213> Zea mays

<400> 108
 gngggcgaga caccgagcac gtactaccag canatggtg gcgtctcca gattcangcc 60
 antcgaggag tgctgctcg agggggcggtc ggagcagacg gtggggcccg acctggacgg 120
 cacgctgtc atctccagga ggcgcgttccc ctacnaccc ctcgtggctc tcgaggccgg 180
 cagcgtcctc cgcgcgcgc tgctgctct gtccgtgccg ttctgtctacg tcaactacgcc 240
 ttcttctccg agtcgctggc catcaanacg ctgggttaca tctc 284

<210> 109
 <211> 280
 <212> DNA
 <213> Zea mays

<400> 109
 ctcctctggg tctggggccg agacaccgag cacgtactac cagcaagatg gtggcgctc 60
 ccagattcaa gcccattcgag gatgtgtgtc cggaggggcg gtcggagcag acggtgcccg 120
 ccgacctgga cggcacgtc ctcatctcc g g a g c g c g t t c n c t a c t a c c t c g t g g 180
 ctctcgaggc cggcagcgtc ctccgcgcgg cgctgtgtc cctgtccgtt ccgttcgtct 240
 acgtcaccta cgcnttttc tccgagtcgc tggccatcag 280

<210> 110
 <211> 287
 <212> DNA
 <213> Zea mays

<400> 110
 cgtctctcct ctgggtctgg ggcggagaca ccgagcacgt actaccagca agatggtggc 60
 gtctccaga ttcaagccca tcgaggagtg ctgctcgag gggcggtcgg agcagacgg 120
 ggccgcccac ctggacggca gctgctcatc tccaggagcg cgttccctta ctacctcctc 180
 gtggctctcg aggccggcag cgttccctcgcc gccgcgtgc tgctccctgtc cgtggcggtc 240
 gtctacgtca ctacggcttc ttctccgagt cgctggccat cagcacg 287

<210> 111
 <211> 286
 <212> DNA
 <213> Zea mays

<400> 111
 cgcacagttt cgacgtctct cctctgggtc tggggccgag acaccgagca cgtactacca 60
 gcaagatggt gggtctcccc agattcaagc ccattcgagga gtgtctgtc gagggggcggt 120
 cggagcagac ggtggccgccc gacctggacg gcacgcgtgt catctccagg agcgcgttcc 180
 cctactactc ctcgtctct ctaggtccggc aggtccctcgcc cgccgcgtgc tgctccctgtc 240
 gtgcgttcgt ctatgtacta cgcttttctc gancgtggca ataana 286

<210> 112
 <211> 323
 <212> DNA
 <213> Zea mays

<400> 112
 gttatccctt gaagggtacca caacaaatgg gagattcctg atttcggttcc aacatggtgc 60
 attcataccat gggttccctg ttcaacctgt ttttgtccgt tatccacatg tgcactttga 120
 tcaatcatgg gggnatatat cgttattaaa gctcatgttt aagatgttca cccaaatttca 180
 taatttcatg gaggttagagt accttcctgt tttttttttt cctgagatca agcaagagaa 240
 tggcccttcat ttgcggagg ataccagcta tgctatggca cgtggccctca atgtcttgcc 300
 aacttccttat tcatatggtg att 323

<210> 113
 <211> 312
 <212> DNA
 <213> Zea mays

<400> 113
 cgataaggcc cttttcgaag agtttctacc gtcggatcaa cagattcttgc gcccggctgc 60
 tggccctca gtttttctgg gttttttttt gttttttttt tttttttttt tttttttttt 120
 cagatggagga aacttacaga tcaatgggtt aagagcatgc actcatcata tcaaatcatc 180
 ggaggatatat tgattggctc attggatggta tattggccca gcgttcaggg tgccttggaa 240
 gtacacttgc tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 300
 gtttttgcaga gt 312

<210> 114
 <211> 279
 <212> DNA
 <213> Zea mays

<400> 114
 agtgggggtct ccaaagggtt aaagacttcc ttagaccatt ttggctatgt ctttttgg 60
 agggactcg cttaactcca gcaaagcttc tcgcgtctca ggatgtatgcg gcttccagg 120
 gcttaccaggc tccttagaaat gtacttattt cacgtaccaa gggatttgtt tctgccgtaa 180
 gtattatgcg agatttgtt ccagccattt acgatacaac tgtaatagtt cctaaagatt 240
 cccctcaacc aacaatgtcg cgatgttgc aaggcaat 279

<210> 115
 <211> 304
 <212> DNA
 <213> Zea mays

<400> 115
 cgtcaacgccc atccaggccg tccttatttgc gacgataagg cccttttgcg agagcttcta 60
 ccgtcgatc aacagattct tggccgagct gctgtggctt cagcttgcgt ggggtggg 120
 ctggggccca ggtgttaagg tacaactgcg tgcagatgg gaaacttaca gatcaatggg 180
 taaagagcat gcactcatca tatcaaattca tcggagtgat attgttggc tcatggatgg 240
 atattggccc agcgttcagg gtgccttggc agtacattgc tgcgtatggc aagtcatcca 300
 agtt 304

<210> 116
<211> 259
<212> DNA
<213> Zea mays

<400> 116
cttcctcctg tccggcctca tcgtcaacgc catccaggcc gtcctatttg tgacgataag 60
gcccnnttcg aagagcttct aacgtcgat caacagattc ntggccgagc tgctgtggct 120
tcagcttgc tgggtgtgg acnggtggc aggtgttaag gtacaactgc atgcngatga 180
ggaaacttac agatcnatgg gtanagagca tgcactcatc atatcaaatac atcgaggatga 240
tattgattgg cncattgga 259

<210> 117
<211> 235
<212> DNA
<213> Zea mays

<400> 117
attccacgta ccaagggatt tttatctgct gtaagtatta tgcgagattt tgccagcc 60
atttatgata caactgtaat agttcctaaa gattcccctc aaccaacaat gctgcggatt 120
ttgaaaggc aatcatcagt gatacatgtc cgcatgaaac gtcatgcaat gaggatg 180
ccaaaatcag atgaggatgt ttcaaatgg tgtaaagaca ttttgtggc aaagg 235

<210> 118
<211> 282
<212> DNA
<213> Zea mays

<400> 118
tgagatgcca aaatcagatg atgacgtttca aaaatgggtt aaagacattt ttgtgacaaa 60
ggatgcctta ctggacaaac atttggcaac aggcaacttc gatgaggaga ttagacctat 120
cggccgccccca gtgaaatcat tgcgtgtac cctgtttgg tcgtgcctgc tggtgtttgg 180
tgccatcggat ttctcaagt ggacgcagct cctatccaca tggagaggag tggcattcac 240
tgcccgagga tggcgctcgat gacaggggtt atgcacgtct tc 282

<210> 119
<211> 166
<212> DNA
<213> Zea mays

<400> 119
ctgggtggca ggcgttaagg tacaactaca tgcggatgag gacacttacc gatcaatggg 60
taaagagcat gcactcgtca tatcaaatca tcgaagtgtat attgattggc ttattggatg 120
gatattggcc cagcgctcag ggtgccttgg aagtacgctc gctgtc 166

<210> 120
<211> 234
<212> DNA
<213> Zea mays

<400> 120
agtcanccaa gntccttcca gtcattggct ggtcaatgtg gtttgcagag tacctctttt 60
nggagaggag ctgggccaag gatgaaaaga cactaaatgt gggctccaa aggttggaaag 120
actcccttag accatttngg ctagctctt tttgtngagg gnantcgctt tactccagca 180
angntntnng aggnncagn agnnncgggn ttcccanggg ttaacagncc cana 234

<210> 121
<211> 210
<212> DNA
<213> Zea mays

<400> 121
gtgagatgcn aaaatcagat gatgacgttt caaaatggtg taaagacatt tttgtggaca 60
aaggatgcct tactggacaa acatttggca acaggcactt tcgatgagga gattagacct 120
atccggccgccc cagtgaatc atngctgggtt accctgtntt ggtcgtgcct gctgtgttt 180
ggtgcctcgatc agntctcaa gtggacgcag 210

<210> 122
<211> 274
<212> DNA

<213> Zea mays

<400> 122

acncccgaat ccgcccgcgc cgcnccgtcc tcgtcgccgg cggaggcgcc cgcnaccgcc 60
 cacagcagcc tatcgccgga gaaggaacgc cgccccggc ttttccacng ccatctccc 120
 tctgaccctt ccgagatcgn aagcggcgcc catggcgatc cgcgtcggtc tcgtcggtc 180
 cccgctcggc ctcccttc tcctgtccgg cctcatcgta aacaccatcc aggccatcct 240
 atttgtgaca ataaggccct ttccaagag ctgt 274

<210> 123

<211> 305

<212> DNA

<213> Zea mays

<400> 123

ttgcaactgag gaaaggccat tagggatata tcaagtacat acataagagc agcttgatga 60
 agttgcctat ttttagctgg gcatttcaca tttttgagtt tatcccggtt gaacggaaat 120
 gggagattga tgaagcaatt attcagaaca agctatcaa atttaagaac ccgagagatc 180
 ctatctggtt ggcgggtttt cctgaaggca cggattatac tgagaagaaa tgcatcatga 240
 gtcaagagta tgcttcagaa catggcttgc ctatgttgc acatgttcctc ctccaaaga 300
 caagg 305

<210> 124

<211> 279

<212> DNA

<213> Zea mays

<400> 124

ccagattttc tggacaatgt gatatggcggtt gatccttctg aagtccacat ccacgtcaga 60
 atgggtcagc tccatcacat ccccacaca gaagacaaga taacagaatg gatggncgag 120
 aggtttaggc agaaggacca gctcctggca gatttcttca tgaagggca tttcttgatg 180
 aaagaactg aaaggagatc tgcgacgccc gagtgccctgg caaactttt taaccagtag 240
 tatgttgc ggcnatctg gtttgtaccc aaactcttt 279

<210> 125

<211> 219

<212> DNA

<213> Zea mays

<400> 125

agatttttg gacaatgtgt atggngttga tccttntgaa gtncacatcc acgttnagaat 60
 ggttcagtc catcacatcc ccacacaacagn agacaagata acagaangga tggttagagag 120
 gtttaggcag aaggaccagc tcctggcaga tttcttcatg aaggggcact ttccttgatg 180
 aggaactgaa ggagatctgt cgacgccc gtcgttgc 219

<210> 126

<211> 293

<212> DNA

<213> Zea mays

<400> 126

taccatagtgatcg acatcacatcg cgcntacaaa caccggcngc ngacatttct 60
 ngacaacgtc tacngcggtt ntcccttcggaa agtccacatc cacatcancg gcatccagg 120
 ctccgacata ncggcgccgg aaaaacgggg tggctggcng gtnnngtggaa gcggttcaag 180
 gcntnganna acgacttngc tggcgccggc tttctaccgc ggctggggcc aatttcnccc 240
 cgaacgaaag ggaaaaaggg gaaccgaagg ggggaacctg ttngaacggg ncc 293

<210> 127

<211> 6

<212> PRT

<213> conserved sequence

<400> 127

Val Xaa Asn His Xaa Ser

1 5

<210> 128

<211> 6

<212> PRT

<213> conserved sequence

<400> 128

Val Thr Tyr Ser Xaa Ser
1 5

<210> 129

<211> 7

<212> PRT

<213> conserved sequence

<400> 129

Val Xaa Leu Thr Arg Xaa Arg
1 5

<210> 130

<211> 5

<212> PRT

<213> conserved sequence

<400> 130

Cys Pro Glu Gly Thr
1 5

<210> 131

<211> 5

<212> PRT

<213> conserved sequence

<400> 131

Ile Val Pro Val Ala
1 5

<210> 132

<211> 7

<212> PRT

<213> conserved sequence

<400> 132

Leu Xaa Xaa Gly Asp Leu Val
1 5

<210> 133

<211> 6

<212> PRT

<213> conserved sequence

<400> 133

Phe Xaa Xaa Gly Ala Phe
1 5

<210> 134

<211> 6

<212> PRT

<213> Synthetic Oligonucleotide

<400> 134

Val Ala Asn Xaa Xaa Gln
1 5

<210> 135

<211> 30

<212> DNA

<213> Synthetic Oligonucleotide
<400> 135
ccatccgctt caaggaaacg acacccatca 30
<210> 136
<211> 31
<212> DNA
<213> Synthetic Oligonucleotide
<400> 136
tccctgtctt gcttgatgaa cttaaagctt g 31
<210> 137
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide
<400> 137
acagcaggag tgtctgatga tggcagattc 30
<210> 138
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide
<400> 138
actggagttc cagccaaaaa tgcacctgtc 30
<210> 139
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide
<400> 139
gatacacccct tgaaatcagg cgattttgct 30
<210> 140
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide
<400> 140
ttgcaaattc aattcctgtt tcaccgggcc 30
<210> 141
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide
<400> 141
gttttctgct attccagaag gcgtcaacaa 30
<210> 142
<211> 32
<212> DNA
<213> Synthetic Oligonucleotide
<400> 142
cattgaagat ccgtccgtga agtnccctta cc 32
<210> 143
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide
<400> 143
tcgagctgtg atcgatgatt ggctgtgaag 30
<210> 144

<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 144
gtctttcaa aaacacacac acacgtctct 30

<210> 145
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 145
gtctttcaa aaacacacac acacgtctct 30

<210> 146
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 146
gttagagagcc ttacttgctt cggttagtc 30

<210> 147
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 147
acgtcatcgt acctgttgct attgactcac 30

<210> 148
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 148
actttccat tgtcagggac tcctcgacac 30

<210> 149
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 149
acgggttagg aaggaaagg attcaaaagg 30

<210> 150
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 150
gcgatgaact acagagtcgg attttcctc 30

<210> 151
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 151
ccggtttacg agattacgtt cttgaaccag 30

<210> 152
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 152
caatggagac aaggctcgaa agtgctaacc 30

<210> 153
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 153
attctctgaa catagttcgc cacggtcatg 30

<210> 154
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 154
gaaatccaac gccttcccaa tatcaactctg 30

<210> 155
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 155
cttcaacttt ccatcaggat cttggcacgt 30

<210> 156
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 156
accaccttgtt agagaccta cctgcttagg 30

<210> 157
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 157
tcctacctac accatccaat ttctcgaccc 30

<210> 158
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 158
ctgcgtcaag tgagcaactc agttcttgca 30

<210> 159
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 159
tgggaagcag cacgttgttc agtatacgaa 30

<210> 160
<211> 30
<212> DNA
<213> Synthetic Oligonucleotide

<400> 160
tagcctctgt gtaatctgtg ccctcgaaaa 30

<210> 161
<211> 1702
<212> DNA
<213> Simmondsia chinensis

<400> 161
gaattcttagc ctctctcc tcgcaattct acttgcttc tacatcttt ccctctctct 60
ctctaaaacc taaaattgg aatggaatcg ttaaaaata tgatctttt gtaattgaat 120
tagtataatt atatctggg aatcttgaat ttgttgggtga ggccatgggg atcccagctg 180
cggctgtat tgcaccgtt ggcttgcctc tttcttc tggctcttc atcaactca 240
ttcaggcaat ttgtttgt ctcgtcgcc cactgtcaaa gnntacatac agaaggatta 300
acagggtgct ggttgaattt ttgtggctt agctgatatg gctcgtagat ttgtggccaa 360
gtgttaagat caagttgtt acagatcctg ataccttgc gctaattggg aaagagcatg 420
cacttgtat atcaaaccac agaagtata ttgatggct ttgtggatgg gtgttggccc 480
agagatcagg ctgcctggg agcacactgg ctgtcatgaa gaaatcatca aagtttctcc 540
cggtcatagg ttggctatg tgggttctg agtaccttt tcttgagaga agctggccaa 600
aggatgaaa cacattgaag tttagtctt aacgcctcaa ggactaccct ctgccttct 660
ggttggctt ttctgttagaa ggaacacgat ttacccaacg taaacttta gcagctcaag 720
aatatgtac ttcaatggg ttgcacgttc ctgaaatatac ttgtatcccc ctgtactaagg 780
gatttggttc agccgtgagc catatgcgtt cgtttgcctt ggccatatat gatgtAACGG 840
tggccatccc taaatcttct tcgcagccctt caatgctcaag actttcaaa ggccagccat 900
ccacgggtca tgtacacatc aagcggcgt cgatgaaaga tctccctgaa gcagcagatg 960
atgttgcaca atgggtgtcga gacacattcg tcgcaaaaggga tgcaactcctg gacaaggata
1020
atgttagatga cactttcgga gatgaggatc tgcaggacac tggccggct ttgaaatctc
1080
tctttgttagc agtctcttgg gcattgattc tcattcctggg aggtttgaaa ttcctacat
1140
ggtcgtccct tctatcatca tggaaaggggg tcgccttctc agccgcattc cttgtgtcg
1200
tcaccattct tatgcagatc ttaatccat tttctcaatc cgagcgctcg actcctgtca
1260
aggtagcccc aggaaagccc aagaacatgg tatcagaacc cacgaaacg caacgacata
1320
agcagcacta aaagtatata tggacccaa ctaagaagat tcagacgaa gccacagttg
1380
attcaactgt tcagaatgtc aaatatagtt tgagaaacaa aagatcaaga ttagctgtat
1440
aagagcctaa tgaacctaca tacttggatc tgctcgcc accgtctgt gctagctcg
1500
tatcagaatt cgtgattccg ggaccgatcc cggatcttag cttctatgc atggattatg
1560
atagtatctt aaatttctt aatgtatgtac cggaaattata atgttagtta attagggga
1620
tgagcattgt ttgggtttat atcgtggtaa atccttgtat tgtttataag atttgaagaa
1680
aattcgattc gagtgctctg aa
1702

<210> 162

<211> 387

<212> PRT

<213> *Simmondsia chinensis*

<400> 162

Met Gly Ile Pro Ala Ala Ala Val Ile Val Pro Leu Gly Leu Leu Phe
 1 5 10 15

Phe Phe Ser Gly Leu Phe Ile Asn Phe Ile Gln Ala Ile Cys Phe Val
20 25 30

Leu Val Arg Pro Leu Ser Lys Thr Tyr Arg Arg Ile Asn Arg Val Leu
35 40 45

Val Glu Leu Leu Trp Leu Glu Leu Ile Trp Leu Val Asp Trp Trp Ala
50 55 60

Ser Val Lys Ile Lys Leu Phe Thr Asp Pro Asp Thr Phe Arg Leu Met
 65 70 75 80

Gly Lys Glu His Ala Leu Val Ile Ser Asn His Arg Ser Asp Ile Asp
85 90 95

Trp Leu Val Gly Trp Val Leu Ala Gln Arg Ser Gly Cys Leu Gly Ser
100 105 110

Thr Leu Ala Val Met Lys Lys Ser Ser Lys Phe Leu Pro Val Ile Gly
 115 120 125
 Trp Ser Met Trp Phe Ser Glu Tyr Leu Phe Leu Glu Arg Ser Trp Ala
 130 135 140
 Lys Asp Glu Ser Thr Leu Lys Leu Gly Leu Gln Arg Leu Lys Asp Tyr
 145 150 155 160
 Pro Leu Pro Phe Trp Leu Ala Leu Phe Val Glu Gly Thr Arg Phe Thr
 165 170 175
 Gln Ala Lys Leu Leu Ala Ala Gln Glu Tyr Ala Thr Ser Met Gly Leu
 180 185 190
 Pro Val Pro Arg Asn Thr Leu Ile Pro Arg Thr Lys Gly Phe Val Ser
 195 200 205
 Ala Val Ser His Met Arg Ser Phe Val Pro Ala Ile Tyr Asp Val Thr
 210 215 220
 Val Ala Ile Pro Lys Ser Ser Ser Gln Pro Thr Met Leu Arg Leu Phe
 225 230 235 240
 Lys Gly Gln Pro Ser Thr Val His Val His Ile Lys Arg Arg Ser Met
 245 250 255
 Lys Asp Leu Pro Glu Ala Ala Asp Asp Val Ala Gln Trp Cys Arg Asp
 260 265 270
 Thr Phe Val Ala Lys Asp Ala Leu Leu Asp Lys His Asn Val Asp Asp
 275 280 285
 Thr Phe Gly Asp Glu Tyr Leu Gln Asp Thr Gly Arg Pro Leu Lys Ser
 290 295 300
 Leu Phe Val Ala Val Ser Trp Ala Leu Ile Leu Ile Leu Gly Gly Leu
 305 310 315 320
 Lys Phe Leu Arg Trp Ser Ser Leu Leu Ser Ser Trp Lys Gly Val Ala
 325 330 335
 Phe Ser Ala Ala Cys Leu Val Leu Val Thr Ile Leu Met Gln Ile Leu
 340 345 350
 Ile Gln Phe Ser Gln Ser Glu Arg Ser Thr Pro Ala Lys Val Ala Pro
 355 360 365
 Gly Lys Pro Lys Asn Met Val Ser Glu Pro Thr Glu Thr Gln Arg His
 370 375 380
 Lys Gln His
 385

<210> 163
 <211> 43
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 Oligonucleotide

<400> 163
 aagcttgcacat gcgtcgacac aatggttcat gcgaccaagt cag

<210> 164
 <211> 35

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 164
ggtaccgtcg actcaactct tggtgttggatag 35

<210> 165
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 165
ggatccgcgg ccgcacaatg acgagctta ctactccct tcat 44

<210> 166
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 166
ggatccccctg caggtagatc atccattgtat tctgcaat 38

<210> 167
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 167
ggatccgcgg ccgcataatg gaatcagagc tcaaagat 38

<210> 168
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 168
ggatccccctg caggtagatc ttctttctga tggaaatc 38

<210> 169
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 169
ggatccgcgg ccgcacaatg actcgttcac aagatgttca a 41

<210> 170
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 170
ggatccccctg caggtcactt ctcttccaaat ctagccag 38

<210> 171
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 171
ggatccgcgg ccgcacaatg tccggtaata agatctcgac tcttca 46

<210> 172
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 172
ggatccccctg caggttatcc ttcttgaca actccgttat taccgg 46

<210> 173
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 173
atatccgcgg ccgcacaatg gttatggagc aagctggaa 39

<210> 174
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 174
ggatccccctg caggtcaatg gagacaaggc tcgaaaagt 38

<210> 175
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 175

ggatccgcgg ccgcacaatg tccgccaaga tttcaatatt cc 42
<210> 176
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 176
ggatccccctg caggttaatt tttcttaact actccatt 38
<210> 177
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 177
ggatccgcgg ccgcacaatg ggagctcagg agaaacggcg cc 42
<210> 178
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 178
ggatccccctg caggtcacgt cttctccttc ttcaccgg 38
<210> 179
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 179
ggatccgcgg ccgcacaatg gcggtatcctg atctgtcttc tcct 44
<210> 180
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 180
ggatccccctg caggttatgt tggggccaag tcaggtgcaa agat 44
<210> 181
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 181
ggatccgcgg ccgcaaaatg gaaaaaaaaaga gtgtacccaa ttct 44
<210> 182
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 182
ggatccccgt caggttattt gttactaat ttgagggaat ttttg 46
<210> 183
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 183
tcgacacctgca ggaagcttaa ggatgggtat tgctgc 36
<210> 184
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 184
ggatccgcgg ccgcttactt ctcccttctcc g 31
<210> 185
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 185
ggatccgcgg ccgcacaatg tccttttaggg atgtcctag 39
<210> 186
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 186
ggatccccgt caggtaatc atcccttaccc tttggtttac c 41
<210> 187
<211> 60
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 187
atgtcttta gggatgtcct agaaagagga gatgaatttt ctgtgcggta tttcacacccg 60

<210> 188

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 188

tcaatcatcc ttacccttg gtttaccctc tggaggcaga agattgtact gagagtgcac 60

<210> 189

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 189

ggatccgcgg ccgcacaatg aagcattccc aaaaataccg tagg

44

<210> 190

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 190

ggatccctcg caggtcaatg atttttttc atcacaaaata c

41

<210> 191

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 191

atgaagcatt cccaaaaata ccgtaggtat ggaatttatg ctgtgcggta tttcacacccg 60

<210> 192

<211> 60

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 192

tcaatgattt tttttcatca caaatacaag aataagaaaa agattgtact gagagtgcac 60

<210> 193

<211> 43

<212> DNA

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 193
ggatccgcgg ccgcacaatg gggtttgtt atttcttcga aac 43

<210> 194
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 194
ggatccccctg caggttattt ggtctcaatt ttaatatttt ttgc 45

<210> 195
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 195
atgggttttg ttgatttctt cgaaacatat atggtcggtt ctgtgcggta tttcacaccg 60

<210> 196
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 196
ttatgggtc tcaattttaa tatttttttcaaggactcg agattgtact gagagtgcac 60

<210> 197
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 197
ggatccgcgg ccgcacaatg gaaaagtaca ccaattggag agac 44

<210> 198
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence:Synthetic Oligonucleotide

<400> 198
ggatccccctg caggctactt cctctttta cgttgatcgc tg 42

<210> 199
<211> 60

<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 199
atggaaaagt acaccaattg gagagacaat ggtacggaa ctgtgcggta tttcacacccg 60

<210> 200
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 200
ctacttcctc ttttacgtt gatcgctgat atattccttc agattgtact gagagtgcac 60

<210> 201
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 201
ggatccgcgg ccgcacaatg cctgcaccaa aactcacgga g 41

<210> 202
<211> 38
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 202
ggatccccctg caggctacgc atctccttct ttccccttc 38

<210> 203
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 203
atgcctgcac caaaactcac ggagaaatct gcctcttcca ctgtgcggta tttcacacccg 60

<210> 204
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 204
ctacgcatct ctttcttcc cttttcttc ttcttcctct agattgtact gagagtgcac 60

<210> 205
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 205
ggatccgcgg ccgcacaatg tctgctcccg ctgccgatca taacgc 46

<210> 206
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 206
ggatccccctg caggtcattc tttctttcg tgttctctt tctg 44

<210> 207
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 207
atgtctgctc ccgctgccga tcataacgct gccaaaccta ctgtgcggta tttcacacccg 60

<210> 208
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 208
tcattcttc tttcgtgtt ctctttctg tcttaccaggc agattgtact gagagtgcac 60

<210> 209
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 209
ggatccgcgg ccgcacaatg ctgcatcaaa aaatagctca taaaagttcg 49

<210> 210
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 210

ggatccccctg caggtcaaaa aataaaacaa taaagtttat aaactaacc 49
<210> 211
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 211
atgctgcattt aaaaaatagc tcataaaagtt cgaaaagtctg ctgtgcggta tttcacacccg 60

<210> 212
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 212
tcaaaaaata aaacaataaa gtttataaac taaccaaatt agattgtact gagagtgcac 60

<210> 213
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 213
ggatccgcgg ccgcacaaatg agtgtgatag gtaggttctt g 41

<210> 214
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 214
ggatccccctg caggtaatg catttttt acagatgaac c 41

<210> 215
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 215
atgagtgtga tagtaggtt cttgttattac ttgagggtccg ctgtgcggta tttcacacccg 60

<210> 216
<211> 60
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 216
ttaatgcata tttttacag atgaaccttc gttatggta agattgtact gagagtgcac 60

<210> 217
<211> 381
<212> PRT
<213> *Saccharomyces* sp.

<220>

<400> 217
Met Ser Phe Arg Asp Val Leu Glu Arg Gly Asp Glu Phe Leu Glu Ala
1 5 10 15

Tyr Pro Arg Arg Ser Pro Leu Trp Arg Phe Leu Ser Tyr Ser Thr Ser
20 25 30

Leu Leu Thr Phe Gly Val Ser Lys Leu Leu Leu Phe Thr Cys Tyr Asn
35 40 45

Val Lys Leu Asn Gly Phe Glu Lys Leu Glu Thr Ala Leu Glu Arg Ser
50 55 60

Lys Arg Glu Asn Arg Gly Leu Met Thr Val Met Asn His Met Ser Met
65 70 75 80

Val Asp Asp Pro Leu Val Trp Ala Thr Leu Pro Tyr Lys Leu Phe Thr
85 90 95

Ser Leu Asp Asn Ile Arg Trp Ser Leu Gly Ala His Asn Ile Cys Phe
100 105 110

Gln Asn Lys Phe Leu Ala Asn Phe Phe Ser Leu Gly Gln Val Leu Ser
115 120 125

Thr Glu Arg Phe Gly Val Gly Pro Phe Gln Gly Ser Ile Asp Ala Ser
130 135 140

Ile Arg Leu Leu Ser Pro Asp Asp Thr Leu Asp Leu Glu Trp Thr Pro
145 150 155 160

His Ser Glu Val Ser Ser Leu Lys Lys Ala Tyr Ser Pro Pro Ile
165 170 175

Ile Arg Ser Lys Pro Ser Trp Val His Val Tyr Pro Glu Gly Phe Val
180 185 190

Leu Gln Leu Tyr Pro Pro Phe Glu Asn Ser Met Arg Tyr Phe Lys Trp
195 200 205

Gly Ile Thr Arg Met Ile Leu Glu Ala Thr Lys Pro Pro Ile Val Val
210 215 220

Pro Ile Phe Ala Thr Gly Phe Glu Lys Ile Ala Ser Glu Ala Val Thr
225 230 235 240

Asp Ser Met Phe Arg Gln Ile Leu Pro Arg Asn Phe Gly Ser Glu Ile
245 250 255

Asn Val Thr Ile Gly Asp Pro Leu Asn Asp Asp Leu Ile Asp Arg Tyr
260 265 270

Arg Lys Glu Trp Thr His Leu Val Glu Lys Tyr Tyr Asp Pro Lys Asn
275 280 285

Pro Asn Asp Leu Ser Asp Glu Leu Lys Tyr Gly Lys Glu Ala Gln Asp
290 295 300

Leu Arg Ser Arg Leu Ala Ala Glu Leu Arg Ala His Val Ala Glu Ile

305	310	315	320
Arg Asn Glu Val Arg Lys Leu Pro Arg Glu Asp Pro Arg Phe Lys Ser			
325	330	335	
Pro Ser Trp Trp Lys Arg Phe Asn Thr Thr Glu Gly Lys Ser Asp Pro			
340	345	350	
Asp Val Lys Val Ile Gly Glu Asn Trp Ala Ile Arg Arg Met Gln Lys			
355	360	365	
Phe Leu Pro Pro Glu Gly Lys Pro Lys Gly Lys Asp Asp			
370	375	380	

<210> 218

<211> 396

<212> PRT

<213> *Saccharomyces* sp.

<220>

<400> 218

Met Lys His Ser Gln Lys Tyr Arg Arg Tyr Gly Ile Tyr Glu Lys Thr			
1	5	10	15
Gly Asn Pro Phe Ile Lys Gly Leu Gln Arg Leu Leu Ile Ala Cys Leu			
20	25	30	
Phe Ile Ser Gly Ser Leu Ser Ile Val Val Phe Gln Ile Cys Leu Gln			
35	40	45	
Val Leu Leu Pro Trp Ser Lys Ile Arg Phe Gln Asn Gly Ile Asn Gln			
50	55	60	
Ser Lys Lys Ala Phe Ile Val Leu Leu Cys Met Ile Leu Asn Met Val			
65	70	75	80
Ala Pro Ser Ser Leu Asn Val Thr Phe Glu Thr Ser Arg Pro Leu Lys			
85	90	95	
Asn Ser Ser Asn Ala Lys Pro Cys Phe Arg Phe Lys Asp Arg Ala Ile			
100	105	110	
Ile Ile Ala Asn His Gln Met Tyr Ala Asp Trp Ile Tyr Leu Trp Trp			
115	120	125	
Leu Ser Phe Val Ser Asn Leu Gly Gly Asn Val Tyr Ile Ile Leu Lys			
130	135	140	
Lys Ala Leu Gln Tyr Ile Pro Leu Leu Gly Phe Gly Met Arg Asn Phe			
145	150	155	160
Lys Phe Ile Phe Leu Ser Arg Asn Trp Gln Lys Asp Glu Lys Ala Leu			
165	170	175	
Thr Asn Ser Leu Val Ser Met Asp Leu Asn Ala Arg Cys Lys Gly Pro			
180	185	190	
Leu Thr Asn Tyr Lys Ser Cys Tyr Ser Lys Thr Asn Glu Ser Ile Ala			
195	200	205	
Ala Tyr Asn Leu Ile Met Phe Pro Glu Gly Thr Asn Leu Ser Leu Lys			
210	215	220	
Thr Arg Glu Lys Ser Glu Ala Phe Cys Gln Arg Ala His Leu Asp His			
225	230	235	240
Val Gln Leu Arg His Leu Leu Leu Pro His Ser Lys Gly Leu Lys Phe			
245	250	255	

Ala Val Glu Lys Leu Ala Pro Ser Leu Asp Ala Ile Tyr Asp Val Thr
 260 265 270
 Ile Gly Tyr Ser Pro Ala Leu Arg Thr Glu Tyr Val Gly Thr Lys Phe
 275 280 285
 Thr Leu Lys Lys Ile Phe Leu Met Gly Val Tyr Pro Glu Lys Val Asp
 290 295 300
 Phe Tyr Ile Arg Glu Phe Arg Val Asn Glu Ile Pro Leu Gln Asp Asp
 305 310 315 320
 Glu Val Phe Phe Asn Trp Leu Leu Gly Val Trp Lys Glu Lys Asp Gln
 325 330 335
 Leu Leu Glu Asp Tyr Tyr Asn Thr Gly Gln Phe Lys Ser Asn Ala Lys
 340 345 350
 Asn Asp Asn Gln Ser Ile Val Val Thr Thr Gln Thr Thr Gly Phe Gln
 355 360 365
 His Glu Thr Leu Thr Pro Arg Ile Leu Ser Tyr Tyr Gly Phe Phe Ala
 370 375 380
 Phe Leu Ile Leu Val Phe Val Met Lys Lys Asn His
 385 390 395

<210> 219
 <211> 479
 <212> PRT
 <213> *Saccharomyces* sp.

<220>

<400> 219
 Met Gly Phe Val Asp Phe Phe Glu Thr Tyr Met Val Gly Ser Arg Val
 1 5 10 15
 Gln Phe Lys Gln Leu Asp Ile Ser Asp Trp Leu Ser Leu Thr Pro Arg
 20 25 30
 Leu Leu Ile Leu Phe Gly Tyr Phe Tyr Leu His Ser Phe Phe Thr Ala
 35 40 45
 Ile Asn Gln Phe Leu Gln Phe Ile Asn Thr Asn Ser Phe Cys Leu Arg
 50 55 60
 Leu His Leu Leu Tyr Asp Arg Phe Trp Ser His Val Pro Ile Ile Gly
 65 70 75 80
 Glu Tyr Lys Ile Arg Leu Leu Ser Arg Ala Leu Thr Tyr Ser Lys Leu
 85 90 95
 Lys Ile Ile Pro Thr Leu Asp Lys Val Leu Glu Ala Ile Glu Ile Trp
 100 105 110
 Phe Gln Leu His Leu Val Glu Met Thr Phe Glu Lys Lys Asn Val
 115 120 125
 Gln Ile Phe Ile Thr Glu Gly Ser Asp Asp Leu Asn Phe Phe Lys Asp
 130 135 140
 Ser Lys Phe Gln Thr Thr Leu Met Ile Cys Asn His Arg Ser Val Asn
 145 150 155 160
 Asp Tyr Thr Leu Ile Asn Tyr Leu Phe Leu Lys Ser Cys Pro Thr Lys
 165 170 175

Phe Tyr Thr Lys Trp Glu Phe Leu Gln Lys Leu Arg Lys Gly Glu Asp
 180 185 190

Leu Ala Glu Trp Pro Gln Leu Lys Phe Leu Gly Trp Gly Lys Met Phe
 195 200 205

Asn Phe Pro Arg Leu Asp Leu Leu Lys Asn Ile Phe Phe Lys Asp Glu
 210 215 220

Thr Leu Ala Leu Ser Ser Asn Glu Leu Arg Asp Ile Leu Glu Arg Gln
 225 230 235 240

Asn Asn Gln Ala Ile Thr Ile Phe Pro Glu Val Asn Ile Met Ser Leu
 245 250 255

Glu Leu Ser Ile Ile Gln Arg Lys Leu His Gln Asp Phe Pro Phe Val
 260 265 270

Ile Asn Phe Tyr Asn Leu Leu Tyr Pro Arg Phe Lys Asn Phe Thr Thr
 275 280 285

Leu Met Ala Ala Phe Ser Ser Ile Lys Asn Ile Lys Arg Lys Lys Asn
 290 295 300

Arg Asn Asn Ile Ile Lys Glu Ala Arg Tyr Leu Phe His Arg Glu Leu
 305 310 315 320

Asp Lys Leu Val His Lys Ser Met Lys Met Glu Ser Ser Lys Val Ser
 325 330 335

Asp Lys Thr Thr Pro Pro Met Ile Val Asp Asn Ser Tyr Leu Leu Thr
 340 345 350

Lys Lys Glu Glu Ile Ser Ser Gly Lys Pro Lys Val Val Arg Ile Asn
 355 360 365

Pro Tyr Ile Tyr Asp Val Thr Ile Ile Tyr Tyr Arg Val Lys Tyr Thr
 370 375 380

Asp Ser Gly His Asp His Thr Asn Gly Asp Leu Arg Leu His Lys Gly
 385 390 395 400

Tyr Gln Leu Glu Gln Ile Ser Pro Thr Ile Phe Glu Met Ile Gln Pro
 405 410 415

Glu Met Glu Ser Glu Asn Asn Ile Lys Asp Lys Asp Pro Ile Val Val
 420 425 430

Met Val Asn Val Lys Lys His Gln Ile Gln Pro Leu Leu Ala Tyr Asn
 435 440 445

Asp Glu Ser Leu Glu Lys Trp Leu Glu Asn Arg Trp Ile Glu Lys Asp
 450 455 460

Arg Leu Ile Glu Ser Leu Gln Lys Asn Ile Lys Ile Glu Thr Lys
 465 470 475

<210> 220

<211> 300

<212> PRT

<213> Saccharomyces sp.

<400> 220

Met Glu Lys Tyr Thr Asn Trp Arg Asp Asn Gly Thr Gly Ile Ala Pro
 1 5 10 15

Phe Leu Pro Asn Thr Ile Arg Lys Pro Ser Lys Val Met Thr Ala Cys
 20 25 30

Leu Leu Gly Ile Leu Gly Val Lys Thr Ile Ile Met Leu Pro Leu Ile
 35 40 45
 Met Leu Tyr Leu Leu Thr Gly Gln Asn Asn Leu Leu Gly Leu Ile Leu
 50 55 60
 Lys Phe Thr Phe Ser Trp Lys Glu Glu Ile Thr Val Gln Gly Ile Lys.
 65 70 75 80
 Lys Arg Asp Val Arg Lys Ser Lys His Tyr Pro Gln Lys Gly Lys Leu
 85 90 95
 Tyr Ile Cys Asn Cys Thr Ser Pro Leu Asp Ala Phe Ser Val Val Leu
 100 105 110
 Leu Ala Gln Gly Pro Val Thr Leu Leu Val Pro Ser Asn Asp Ile Val
 115 120 125
 Tyr Lys Val Ser Ile Arg Glu Phe Ile Asn Phe Ile Leu Ala Gly Gly
 130 135 140
 Leu Asp Ile Lys Leu Tyr Gly His Glu Val Ala Glu Leu Ser Gln Leu
 145 150 155 160
 Gly Asn Thr Val Asn Phe Met Phe Ala Glu Gly Thr Ser Cys Asn Gly
 165 170 175
 Lys Ser Val Leu Pro Phe Ser Ile Thr Gly Lys Lys Leu Lys Glu Phe
 180 185 190
 Ile Asp Pro Ser Ile Thr Thr Met Asn Pro Ala Met Ala Lys Thr Lys
 195 200 205
 Lys Phe Glu Leu Gln Thr Ile Gln Ile Lys Thr Asn Lys Thr Ala Ile
 210 215 220
 Thr Thr Leu Pro Ile Ser Asn Met Glu Tyr Leu Ser Arg Phe Leu Asn
 225 230 235 240
 Lys Gly Ile Asn Val Lys Cys Lys Ile Asn Glu Pro Gln Val Leu Ser
 245 250 255
 Asp Asn Leu Glu Glu Leu Arg Val Ala Leu Asn Gly Gly Asp Lys Tyr
 260 265 270
 Lys Leu Val Ser Arg Lys Leu Asp Val Glu Ser Lys Arg Asn Phe Val
 275 280 285
 Lys Glu Tyr Ile Ser Asp Gln Arg Lys Lys Arg Lys
 290 295 300

<210> 221
 <211> 759
 <212> PRT
 <213> *Saccharomyces* sp.

<400> 221
 Met Pro Ala Pro Lys Leu Thr Glu Lys Phe Ala Ser Ser Lys Ser Thr
 1 5 10 15
 Gln Lys Thr Thr Asn Tyr Ser Ser Ile Glu Ala Lys Ser Val Lys Thr
 20 25 30
 Ser Ala Asp Gln Ala Tyr Ile Tyr Gln Glu Pro Ser Ala Thr Lys Lys
 35 40 45
 Ile Leu Tyr Ser Ile Ala Thr Trp Leu Leu Tyr Asn Ile Phe His Cys
 50 55 60

Phe Phe Arg Glu Ile Arg Gly Arg Gly Ser Phe Lys Val Pro Gln Gln
65 70 75 80

Gly Pro Val Ile Phe Val Ala Ala Pro His Ala Asn Gln Phe Val Asp
85 90 95

Pro Val Ile Leu Met Gly Glu Val Lys Lys Ser Val Asn Arg Arg Val
100 105 110

Ser Phe Leu Ile Ala Glu Ser Ser Leu Lys Gln Pro Pro Ile Gly Phe
115 120 125

Leu Ala Ser Phe Phe Met Ala Ile Gly Val Val Arg Pro Gln Asp Asn
130 135 140

Leu Lys Pro Ala Glu Gly Thr Ile Arg Val Asp Pro Thr Asp Tyr Lys
145 150 155 160

Arg Val Ile Gly His Asp Thr His Phe Leu Thr Asp Cys Met Pro Lys
165 170 175

Gly Leu Ile Gly Leu Pro Lys Ser Met Gly Phe Gly Glu Ile Gln Ser
180 185 190

Ile Glu Ser Asp Thr Ser Leu Thr Leu Arg Lys Glu Phe Lys Met Ala
195 200 205

Lys Pro Glu Ile Lys Thr Ala Leu Leu Thr Gly Thr Thr Tyr Lys Tyr
210 215 220

Ala Ala Lys Val Asp Gln Ser Cys Val Tyr His Arg Val Phe Glu His
225 230 235 240

Leu Ala His Asn Asn Cys Ile Gly Ile Phe Pro Glu Gly Ser His
245 250 255

Asp Arg Thr Asn Leu Leu Pro Leu Lys Ala Gly Val Ala Ile Met Ala
260 265 270

Leu Gly Cys Met Asp Lys His Pro Asp Val Asn Val Lys Ile Val Pro
275 280 285

Cys Gly Met Asn Tyr Phe His Pro His Lys Phe Arg Ser Arg Ala Val
290 295 300

Val Glu Phe Gly Asp Pro Ile Glu Ile Pro Lys Glu Leu Val Ala Lys
305 310 315 320

Tyr His Asn Pro Glu Thr Asn Arg Asp Ala Val Lys Glu Leu Leu Asp
325 330 335

Thr Ile Ser Lys Gly Leu Gln Ser Val Thr Val Thr Cys Ser Asp Tyr
340 345 350

Glu Thr Leu Met Val Val Gln Thr Ile Arg Arg Leu Tyr Met Thr Gln
355 360 365

Phe Ser Thr Lys Leu Pro Leu Pro Leu Ile Val Glu Met Asn Arg Arg
370 375 380

Met Val Lys Gly Tyr Glu Phe Tyr Arg Asn Asp Pro Lys Ile Ala Asp
385 390 395 400

Leu Thr Lys Asp Ile Met Ala Tyr Asn Ala Ala Leu Arg His Tyr Asn
405 410 415

Leu Pro Asp His Leu Val Glu Glu Ala Lys Val Asn Phe Ala Lys Asn
420 425 430

Leu Gly Leu Val Phe Phe Arg Ser Ile Gly Leu Cys Ile Leu Phe Ser
 435 440 445
 Leu Ala Met Pro Gly Ile Ile Met Phe Ser Pro Val Phe Ile Leu Ala
 450 455 460
 Lys Arg Ile Ser Gln Glu Lys Ala Arg Thr Ala Leu Ser Lys Ser Thr
 465 470 475 480
 Val Lys Ile Lys Ala Asn Asp Val Ile Ala Thr Trp Lys Ile Leu Ile
 485 490 495
 Gly Met Gly Phe Ala Pro Leu Leu Tyr Ile Phe Trp Ser Val Leu Ile
 500 505 510
 Thr Tyr Tyr Leu Arg His Lys Pro Trp Asn Lys Ile Tyr Val Phe Ser
 515 520 525
 Gly Ser Tyr Ile Ser Cys Val Ile Val Thr Tyr Ser Ala Leu Ile Val
 530 535 540
 Gly Asp Ile Gly Met Asp Gly Phe Lys Ser Leu Arg Pro Leu Val Leu
 545 550 555 560
 Ser Leu Thr Ser Pro Lys Gly Leu Gln Lys Leu Gln Lys Asp Arg Arg
 565 570 575
 Asn Leu Ala Glu Arg Ile Ile Glu Val Val Asn Asn Phe Gly Ser Glu
 580 585 590
 Leu Phe Pro Asp Phe Asp Ser Ala Ala Leu Arg Glu Glu Phe Asp Val
 595 600 605
 Ile Asp Glu Glu Glu Asp Arg Lys Thr Ser Glu Leu Asn Arg Arg
 610 615 620
 Lys Met Leu Arg Lys Gln Lys Ile Lys Arg Gln Glu Lys Asp Ser Ser
 625 630 635 640
 Ser Pro Ile Ile Ser Gln Arg Asp Asn His Asp Ala Tyr Glu His His
 645 650 655
 Asn Gln Asp Ser Asp Gly Val Ser Leu Val Asn Ser Asp Asn Ser Leu
 660 665 670
 Ser Asn Ile Pro Leu Phe Ser Ser Thr Phe His Arg Lys Ser Glu Ser
 675 680 685
 Ser Leu Ala Ser Thr Ser Val Ala Pro Ser Ser Ser Glu Phe Glu
 690 695 700
 Val Glu Asn Glu Ile Leu Glu Glu Lys Asn Gly Leu Ala Ser Lys Ile
 705 710 715 720
 Ala Gln Ala Val Leu Asn Lys Arg Ile Gly Glu Asn Thr Ala Arg Glu
 725 730 735
 Glu
 740 745 750
 Glu Gly Lys Glu Gly Asp Ala
 755

<210> 222

<211> 743

<212> PRT

<213> Saccharomyces sp.

<400> 222

Met Ser Ala Pro Ala Ala Asp His Asn Ala Ala Lys Pro Ile Pro His
1 5 10 15

Val Pro Gln Ala Ser Arg Arg Tyr Lys Asn Ser Tyr Asn Gly Phe Val
20 25 30

Tyr Asn Ile His Thr Trp Leu Tyr Asp Val Ser Val Phe Leu Phe Asn
35 40 45

Ile Leu Phe Thr Ile Phe Phe Arg Glu Ile Lys Val Arg Gly Ala Tyr
50 55 60

Asn Val Pro Glu Val Gly Val Pro Thr Ile Leu Val Cys Ala Pro His
65 70 75 80

Ala Asn Gln Phe Ile Asp Pro Ala Leu Val Met Ser Gln Thr Arg Leu
85 90 95

Leu Lys Thr Ser Ala Gly Lys Ser Arg Ser Arg Met Pro Cys Phe Val
100 105 110

Thr Ala Glu Ser Ser Phe Lys Lys Arg Phe Ile Ser Phe Phe Gly His
115 120 125

Ala Met Gly Gly Ile Pro Val Pro Arg Ile Gln Asp Asn Leu Lys Pro
130 135 140

Val Asp Glu Asn Leu Glu Ile Tyr Ala Pro Asp Leu Lys Asn His Pro
145 150 155 160

Glu Ile Ile Lys Gly Arg Ser Lys Asn Pro Gln Thr Thr Pro Val Asn
165 170 175

Phe Thr Lys Arg Phe Ser Ala Lys Ser Leu Leu Gly Leu Pro Asp Tyr
180 185 190

Leu Ser Asn Ala Gln Ile Lys Glu Ile Pro Asp Asp Glu Thr Ile Ile
195 200 205

Leu Ser Ser Pro Phe Arg Thr Ser Lys Ser Lys Val Val Glu Leu Leu
210 215 220

Thr Asn Gly Thr Asn Phe Lys Tyr Ala Glu Lys Ile Asp Asn Thr Glu
225 230 235 240

Thr Phe Gln Ser Val Phe Asp His Leu His Thr Lys Gly Cys Val Gly
245 250 255

Ile Phe Pro Glu Gly Gly Ser His Asp Arg Pro Ser Leu Leu Pro Ile
260 265 270

Lys Ala Gly Val Ala Ile Met Ala Leu Gly Ala Val Ala Ala Asp Pro
275 280 285

Thr Met Lys Val Ala Val Val Pro Cys Gly Leu His Tyr Phe His Arg
290 295 300

Asn Lys Phe Arg Ser Arg Ala Val Leu Glu Tyr Gly Glu Pro Ile Val
305 310 315 320

Val Asp Gly Lys Tyr Gly Glu Met Tyr Lys Asp Ser Pro Arg Glu Thr
325 330 335

Val Ser Lys Leu Leu Lys Lys Ile Thr Asn Ser Leu Phe Ser Val Thr
340 345 350

Glu Asn Ala Pro Asp Tyr Asp Thr Leu Met Val Ile Gln Ala Ala Arg
355 360 365

Arg Leu Tyr Gln Pro Val Lys Val Arg Leu Pro Leu Pro Ala Ile Val

370	375	380
Glu	Ile	Asn Arg Arg
385	390	Leu Leu Phe Gly Tyr Ser Lys Phe Lys Asp Asp
		395
		400
Pro	Arg	Ile Ile His
		Leu Lys Lys Leu Val Tyr Asp Tyr Asn Arg Lys
		405
		410
		415
Leu	Asp	Ser Val Gly
		Leu Lys Asp His Gln Val Met Gln Leu Lys Thr
		420
		425
		430
Thr	Lys	Leu Glu Ala Leu Arg Cys Phe Val Thr Leu Ile Val Arg Leu
		435
		440
		445
Ile	Lys	Phe Ser Val Phe Ala Ile Leu Ser Leu Pro Gly Ser Ile Leu
		450
		455
		460
Phe	Thr	Pro Ile Phe Ile Ile Cys Arg Val Tyr Ser Glu Lys Lys Ala
		465
		470
		475
		480
Lys	Glu	Gly Leu Lys Lys Ser Leu Val Lys Ile Lys Gly Thr Asp Leu
		485
		490
		495
Leu	Ala	Thr Trp Lys Leu Ile Val Ala Leu Ile Leu Ala Pro Ile Leu
		500
		505
		510
Tyr	Val	Thr Tyr Ser Ile Leu Leu Ile Ile Leu Ala Arg Lys Gln His
		515
		520
		525
Tyr	Cys	Arg Ile Trp Val Pro Ser Asn Asn Ala Phe Ile Gln Phe Val
		530
		535
		540
Tyr	Phe	Tyr Ala Leu Leu Val Phe Thr Thr Tyr Ser Ser Leu Lys Thr
		545
		550
		555
		560
Gly	Glu	Ile Gly Val Asp Leu Phe Lys Ser Leu Arg Pro Leu Phe Val
		565
		570
		575
Ser	Ile	Val Tyr Pro Gly Lys Ile Glu Glu Ile Gln Thr Thr Arg
		580
		585
		590
Lys	Asn	Leu Ser Leu Glu Leu Thr Ala Val Cys Asn Asp Leu Gly Pro
		595
		600
		605
Leu	Val	Phe Pro Asp Tyr Asp Lys Leu Ala Thr Glu Ile Phe Ser Lys
		610
		615
		620
Arg	Asp	Gly Tyr Asp Val Ser Ser Asp Ala Glu Ser Ser Ile Ser Arg
		625
		630
		635
		640
Met	Ser	Val Gln Ser Arg Ser Arg Ser Ser Ile His Ser Ile Gly
		645
		650
		655
Ser	Leu	Ala Ser Asn Ala Leu Ser Arg Val Asn Ser Arg Gly Ser Leu
		660
		665
		670
Thr	Asp	Ile Pro Ile Phe Ser Asp Ala Lys Gln Gly Gln Trp Lys Ser
		675
		680
		685
Glu	Gly	Glu Thr Ser Glu Asp Glu Asp Glu Phe Asp Glu Lys Asn Pro
		690
		695
		700
Ala	Ile	Val Gln Thr Ala Arg Ser Ser Asp Leu Asn Lys Glu Asn Ser
		705
		710
		715
		720
Arg	Asn	Thr Asn Ile Ser Ser Lys Ile Ala Ser Leu Val Arg Gln Lys
		725
		730
		735
Arg	Glu	His Glu Lys Lys Glu
		740

<210> 223

<211> 397

<212> PRT

<213> *Saccharomyces* sp.

<400> 223

Met	Leu	His	Gln	Lys	Ile	Ala	His	Lys	Val	Arg	Lys	Val	Val	Val	Pro
1				5					10					15	

Gly	Ile	Ser	Leu	Leu	Ile	Phe	Phe	Gln	Gly	Cys	Leu	Ile	Leu	Leu	Phe
			20					25					30		

Leu	Gln	Leu	Thr	Tyr	Lys	Thr	Leu	Tyr	Cys	Arg	Asn	Asp	Ile	Arg	Lys
			35				40					45			

Gln	Ile	Gly	Leu	Asn	Lys	Thr	Lys	Arg	Leu	Phe	Ile	Val	Leu	Val	Ser
			50				55				60				

Ser	Ile	Leu	His	Val	Val	Ala	Pro	Ser	Ala	Val	Arg	Ile	Thr	Thr	Glu
			65			70			75			80			

Asn	Ser	Ser	Val	Pro	Lys	Gly	Thr	Phe	Phe	Leu	Asp	Leu	Lys	Lys	Lys
			85				90					95			

Arg	Ile	Leu	Ser	His	Leu	Lys	Ser	Asn	Ser	Val	Ala	Ile	Cys	Asn	His
			100				105					110			

Gln	Ile	Tyr	Thr	Asp	Trp	Ile	Phe	Leu	Trp	Trp	Leu	Ala	Tyr	Thr	Ser
			115			120			125						

Asn	Leu	Gly	Ala	Asn	Val	Phe	Ile	Ile	Leu	Lys	Ser	Leu	Ala	Ser	
			130			135			140						

Ile	Pro	Ile	Leu	Gly	Phe	Gly	Met	Arg	Asn	Tyr	Asn	Phe	Ile	Phe	Met
			145			150			155			160			

Ser	Arg	Lys	Trp	Ala	Gln	Asp	Lys	Ile	Thr	Leu	Ser	Asn	Ser	Leu	Ala
			165				170					175			

Gly	Leu	Asp	Ser	Asn	Ala	Arg	Gly	Ala	Gly	Ser	Leu	Ala	Gly	Lys	Ser
			180				185					190			

Pro	Glu	Arg	Ile	Thr	Glu	Glu	Gly	Glu	Ser	Ile	Trp	Asn	Pro	Glu	Val
			195			200				205					

Ile	Asp	Pro	Lys	Gln	Ile	His	Trp	Pro	Tyr	Asn	Leu	Ile	Leu	Phe	Pro
			210			215			220						

Glu	Gly	Thr	Asn	Leu	Ser	Ala	Asp	Thr	Arg	Gln	Lys	Ser	Ala	Lys	Tyr
			225			230			235			240			

Ala	Ala	Lys	Ile	Gly	Lys	Lys	Pro	Phe	Lys	Asn	Val	Leu	Leu	Pro	His
			245			250			255						

Ser	Thr	Gly	Leu	Arg	Tyr	Ser	Leu	Gln	Lys	Leu	Lys	Pro	Ser	Ile	Glu
			260			265			270						

Ser	Leu	Tyr	Asp	Ile	Thr	Ile	Gly	Tyr	Ser	Gly	Val	Lys	Gln	Glu	Glu
			275			280			285						

Tyr	Gly	Glu	Leu	Ile	Tyr	Gly	Leu	Lys	Ser	Ile	Phe	Leu	Glu	Gly	Lys
			290			295			300						

Tyr	Pro	Lys	Leu	Val	Asp	Ile	His	Ile	Arg	Ala	Phe	Asp	Val	Lys	Asp
			305			310			315			320			

Ile	Pro	Leu	Glu	Asp	Glu	Asn	Glu	Phe	Ser	Glu	Trp	Leu	Tyr	Lys	Ile
			325			330			335						

Trp Ser Glu Lys Asp Ala Leu Met Glu Arg Tyr Tyr Ser Thr Gly Ser
 340 345 350
 Phe Val Ser Asp Pro Glu Thr Asn His Ser Val Thr Asp Ser Phe Lys
 355 360 365
 Ile Asn Arg Ile Glu Leu Thr Glu Val Leu Ile Leu Pro Thr Leu Thr.
 370 375 380
 Ile Ile Trp Leu Val Tyr Lys Leu Tyr Cys Phe Ile Phe
 385 390 395

<210> 224
 <211> 303
 <212> PRT
 <213> *Saccharomyces* sp.

<400> 224
 Met Ser Val Ile Gly Arg Phe Leu Tyr Tyr Leu Arg Ser Val Leu Val
 1 5 10 15
 Val Leu Ala Leu Ala Gly Cys Gly Phe Tyr Gly Val Ile Ala Ser Ile
 20 25 30
 Leu Cys Thr Leu Ile Gly Lys Gln His Leu Ala Gln Trp Ile Thr Ala
 35 40 45
 Arg Cys Phe Tyr His Val Met Lys Leu Met Leu Gly Leu Asp Val Lys
 50 55 60
 Val Val Gly Glu Glu Asn Leu Ala Lys Lys Pro Tyr Ile Met Ile Ala
 65 70 75 80
 Asn His Gln Ser Thr Leu Asp Ile Phe Met Leu Gly Arg Ile Phe Pro
 85 90 95
 Pro Gly Cys Thr Val Thr Ala Lys Lys Ser Leu Lys Tyr Val Pro Phe
 100 105 110
 Leu Gly Trp Phe Met Ala Leu Ser Gly Thr Tyr Phe Leu Asp Arg Ser
 115 120 125
 Lys Arg Gln Glu Ala Ile Asp Thr Leu Asn Lys Gly Leu Glu Asn Val
 130 135 140
 Lys Lys Asn Lys Arg Ala Leu Trp Val Phe Pro Glu Gly Thr Arg Ser
 145 150 155 160
 Tyr Thr Ser Glu Leu Thr Met Leu Pro Phe Lys Lys Gly Ala Phe His
 165 170 175
 Leu Ala Gln Gln Gly Lys Ile Pro Ile Val Pro Val Val Ser Asn
 180 185 190
 Thr Ser Thr Leu Val Ser Pro Lys Tyr Gly Val Phe Asn Arg Gly Cys
 195 200 205
 Met Ile Val Arg Ile Leu Lys Pro Ile Ser Thr Glu Asn Leu Thr Lys
 210 215 220
 Asp Lys Ile Gly Glu Phe Ala Glu Lys Val Arg Asp Gln Met Val Asp
 225 230 235 240
 Thr Leu Lys Glu Ile Gly Tyr Ser Pro Ala Ile Asn Asp Thr Thr Leu
 245 250 255
 Pro Pro Gln Ala Ile Glu Tyr Ala Ala Leu Gln His Asp Lys Lys Val
 260 265 270

Asn Lys Lys Ile Lys Asn Glu Pro Val Pro Ser Val Ser Ile Ser Asn
275 280 285

Asp Val Asn Thr His Asn Glu Gly Ser Ser Val Lys Lys Met His
290 295 300

<210> 225
<211> 1146
<212> DNA
<213> *Saccharomyces* sp.

<400> 225
 atgtctttta gggatgtcctt agaaaagagga gatgaatttt tagaaggccta tccdcagaaga 60
 agcccccttt ggagattttc ttcatacagt acatcatac tgacccttcgg tgcataaaaa 120
 ctgctttttt tcacatgcta taatgtcaaa ttgaatgttt ttgaaaaatt agaaaactgcc 180
 ttggaaacctt cccaaaaggga aaatagaggc ctttatgcgg tcatgaacca tatgagatgt 240
 gtcgtatgtc cgttagttt ggcaaacacta ccatataagt tatttacgtc tttggacaac 300
 ataagatggt ctttgggtgc acataaatatt tgctttcaaa ataaatttct ggccaacttt 360
 ttctcaactt gccaagtcct ttcaacagaa agatttgccc tggcccccatt tcaaggttct 420
 atagatgttt caataagatt gttaagccct gacgacactt tagacttggg atggaccctt 480
 cactctgagg tctctttttc gctaaaaaaaaa gcctactccc cgccccataat aaggtcgaag 540
 ccacatctggg tccatgtttt tccagaagga ttgttactac aatttatatcc gccttttgaa 600
 aatttcgtatgaa ggtatTTTAA atgggggttt accagaatgaa tcctagaagc aacaaagccg 660
 cccatttttag taccaatatt tgctacaggg ttgaaaaaaa tagcatccga agcagtcaca 720
 gattcaatgt ttagacaaaat tctaccaaga aactttgct ctgaaataaaa ttttaccata 780
 ggggatcctt taaatgtatgaa tttaatcgac aggtatagaa aagaatggac acattttgtt 840
 gaaaaaataact atgatcccaa aaatcttacac gacctctcg acaattgtt atatgttaaa 900
 gagggcgaag atttaagaag cagatttagcc gctgaactga gagcccatgt tgctgaaatt 960
 agaaatgaag ttccgcaattt accacgcgaa gacccttaggt tcaatcccc ctcatgggtgg
 1020
 aagcggttca acaccacggaa aggtaaaatcg gacccagatg ttaaagtcat tggcgaaaaat
 1080
 tggggcaataa ggaggatgca aaagtttctg cctccagagg gtaaaccaaa gggtaaggat
 1140
 gattga
 1146

<210> 226
<211> 1191
<212> DNA
<213> *Saccharomyces* sp.

<400> 226
atgaaggcatt cccaaaata ccgttaggtat ggaatttatg aaaagactgg taatcccttt 60
ataaaaagggt tgcaaaggct gcttacgtc tgcttgtca tttcaggcgc gctgagttatt 120
gtcgttttc agatctgtct acagggtgctt ctcccgttgg acaagattag atttcaaaat 180
ggtataatac aaagaataaga ggctttttatc gttttatat gcatgtatcc gaacatggtg 240
gctcccttctt ctgttaatgt cactttgtaa acatcgccgc cattgaagaa ctcttcataac 300
gccaaggccat gcttttagatt taaagacagg gctataataa ttgcaaatca tcaaataatgtat 360
gcagactgga ttatctctg gtggcttcc tttgtttcaaa atttgggtgg taacgtttat 420
atcatctcga agaaagctct gcagtgacata ccattactgg gattggcat gcgaaatttt 480
aagtttatat ttttaagtat gaactggcaa aaggatgaga aagtttaac aaatagttt 540
gtttctatgg acttaaacgc gaggtgcaag gggcccccta caaattataa gagttgttat 600
tccaagacaa atgaatccat tgccgcttat aatttaatca tgtccctga gggtacaataat 660
ctaagcctca agacaagaga aaaaagcgag gcattctgtc aaagagcaca ttggaccat 720
gtccaaatcaa gacatttgtt attaccgcac tcttaaaggt tgaatgttgc agtagaaaaaa 780
ctagctccctt gtttagatgc tatctacgtat gtcactattt gatattctcc cgcccttgaga 840
acggaaatcgt tcggcaccaa attcaccttg aaaaaaatat tcttaatggg tgtctatccg 900
gagaaagtag atttttatat tagggattt agagttaatg agatccctt gcaagatgac 960
gaagttttt tcaattgggtt actggcggtg tggaaagaaa aagatcaact gctagaagac
1020
tactacaaca caggccaaatt taaaagtaat gctaaaaatg acaaccaatc catcggttgc
1080
acgacacacaaa cgactggatt tcagcacgaa acattgacac cccgtatcct ttcataattac
1140
gggttcttcg cttttcttat tcttgtatcc gtgtgaaaaaaaatcattg a
1191

<210> 227
 <211> 1440
 <212> DNA
 <213> *Saccharomyces* sp.

 <400> 227
 atgggttttg ttgatttctt cgaacatat atggtcgggtt cttagggtcca gttcaaacag 60
 ttagatattt ctgattgtt gagtctgacc ccaagggtgc ttattcttt tggctatttt 120
 tacccattt cttttttac tgcaatcaat caattcctac agttcattaa cacgaattcc 180
 ttctgtctta gactgcattt actatatgac agattttgtt cgcatgtgcc cataataggt 240
 gagtacaaaaa ttccggctgtt ctcgaggggca ctgacatata gtaaactgaa aataatacca 300
 acttttagaca aggtgctgga ggcgattgaa atttggttt agctacattt agttgaaatg 360
 accttcgaaa aaaaaaaaaa cgtccaaattt ttcataaccg agggaaagtga tgacctaaac 420
 ttttttaaag atagcaaattt ccaaaccaca ttaatgatat gtaatcatcg atcagtgaat 480
 gactacacat tgattaatta ctttttctc aaaagttgtc ccaccaagtt ttataactaa 540
 tgggaaattt tacaaaaagct gaggaaagggg gaagatctag ctgaatggcc tcagttaaaa 600
 tttcttggtt gggggaaaat gtttaacttt cctcgattgg atctactaaa gaacatattc 660
 ttcaagatg aaacactccgc acttctatcg aatgagttaa gagatattt agaaagacaa 720
 aacaatcaag ctattactat tttcccgaa gtcaatataca tgagtttggaa actatcaatt 780
 attcaaagaa aattacacca agatttccc tttgttataa acttctataa tttattatac 840
 ccaagattt aaaaactttac cacttgcgt gctgctttt catcaattaa aaacatcaaa 900
 agaaagaaaa accgtAACAA tataatcaaa gaggccccat acctgtttca cagagaactt 960
 gacaaattt tagtccacaagag catgaaaatg gagtcttcca aggtatccga taagacgacg
 1020
 ccgccccatga tcgttagataa ttcataactta cttacaaaaa aggaagaaat cagcagcggc
 1080
 aagcccaagg tggtagataat caatccatac atatatgtatg tcaccataat ttattaccga
 1140
 gtcaaatata ctgatagtgg gcatgatcat accaacggag atttgagact tcataaaggt
 1200
 tatcaatttag agcaaataatc tccgacaatc tttgagatga ttcaaccaga aatggagtct
 1260
 gaaaacaaca taaaggataa ggacccatt gttgtatgg taaatgtaaa aaagcatcaa
 1320
 attcaaccat tactcgacata caatgatgag agtttagaaa agtggcttga aaatagggtgg
 1380
 atagaaaaag atagattaat cgagtccttgc caaaaaataa ttaaaattga gaccaaaataa
 1440

<210> 228
 <211> 903
 <212> DNA
 <213> *Saccharomyces* sp.

<400> 228
 atggaaaagt acaccaattt gagagacaat ggtacggaa tagtccatt tctaccaaac 60
 acaatcagga aaccttagtaa ggtatgaca gcgtgtttgt tggtatctt aggggtgaaa 120
 accattataa tgcatttgcattt gattatgtctg taccttctaa ctggccagaa caacttactg 180
 ggtttagat tgaagtttac attcagttgg aaagagggaa taccgtgcga aggaatcaag 240
 aaacgtgacg taaggaaatc caagcattat ccacagaagg gcaagctta tatttgcatt 300
 tgtacccatc ctttagatgc ttttcagtg gtgttattag ctcaagggcc ttttgcgtt 360
 ttggtcccat ccaatgacat tgtatacaaa gttccatataa gagaattcat caacttcatc 420
 ctcggccgtt ggttagat taaaactctat ggccacgagg tagcagagct atctcaattt 480
 ggcaataccg tgaattttat gttgtcttag ggtacccat gtaatggtaa aagcgtctt 540
 ccgttttagt taacccggaa aaaaacttaaa gaattccatag acccttcaat aaccacaatg 600
 aaccccgcaa tggccaaac taaaaattt gaattcaga ccatccaaat caaaactaat 660
 aaaactgcca tcaccacatt gcccatctcc aatatggagt atttatctag atttctgaac 720
 aaggcatta atgttaatg caagatcaac gagccacaag tactctcgga taatttagag 780
 gaattacgcg ttgcattaaa cggtggcgac aaatataaac tagtctcacg gaagtttagat 840
 gttgaatcta agaggaattt tgtgaaggaa tatatcagcg atcaacgtaa aaagaggaag 900
 tag 903

<210> 229
 <211> 2280
 <212> DNA
 <213> *Saccharomyces* sp.

<400> 229
 atgcctgcac caaaaactcac ggagaaaattt gccttttcca agagcacaca gaaaactacg 60
 aattacagtt ccatcgaggc caaaaagcgtc aagacgtcgg ctgatcaggc atacatctac 120

caagagccta gcgctaccaa gaagatactt tactccatcg ccacatggct gttgtacaac 180
 atcttccact gcttcttag agaaatcaga ggccggggca gttcaagggt accgcaacag 240
 ggaccggta tctttgtgc ggctccgcat gctaaccagt tcgtcgaccc tctaattcctt 300
 atggcgagg tgaagaatc tgtcaacaga cgtgtgtct tcttgattgc ggagagctca 360
 ttaaagcaac cccccatagg gttttggct agtttcttca tggccatagg cgtgttaagg 420
 ccgcaggata atttgaaaccc ggcaagaagg actatcccg tagatccaac agactacaag 480
 agagttatcg gccacgacac gcatttctt actgattgt tgccaaagggt tctcatcg 540
 ttacccaaat caatggatt tggagaaatc cagtcctatag aaagtgcacac gagtttgacc 600
 ctaagaaaag agttcaaaat ggc当地acca gagattaaaa ctgtgttactt caccggact 660
 acttataat atgcccgtaa agtcgacca tcttgcgtt accatagat ttttgagcat 720
 ttggccata acaactcgat tggatctt cctgaagggt ggtcccacga cagaacaaac 780
 ttgttcccc tggacagg tggcgtt atggcttctt gtgcatttga taagcatcct 840
 gacgtcaatg ttaagattgt tccctgcgtt atgaattatt tccatccaca taagttcagg 900
 tcgagagcgg ttgttgaatt cggtgacccc attgaaatac cgaaggaact agtcgccaag 960
 taccacaacc cgaaaaccaa cagagatgca gtgaaaagat tattagatac catatcgaa
 1020
 gtttacaat ccgttaccgt tacatgttct gattatgaaa ctttgatggt gtttcaaacg
 1080
 ataagaagac tatatatgac acaatttagc accaagttac cgttgcctt gattgtggaa
 1140
 atgaacagaa gaatggtcaa aggttacgaa ttctatagaa acgtatcctaa aatagcggac
 1200
 ttgacccaaag atataatggc atataatgcc gccttgagac actataatct tcctgatcac
 1260
 ctttgtggagg aggcaaaagg aaatttcgca aaaaacctcg gacttgggg ttttagatcc
 1320
 atcgggctct gcattctt ttcgttagcc atgcccgtt tcattatgtt ctcacctgtc
 1380
 ttcatattag ccaagagaat ttctcaagaa aaggcccgtt ccgtttgtc caagtctaca
 1440
 gttaaaaataa aggctaacga tgcatttgc acgtggaaaa tcttgattgg gatgggattt
 1500
 gcgccttgc ttacatctt ttggccgtt ttaatcactt attacctcg acataaaacca
 1560
 tggaaaaataa tatatgttt ttccgggtct tacatctcg gtgttatagt cacgtattcc
 1620
 gcctaatcg tgggtgat tggatggat gtttcaaattt ctttgagacc actgggttt
 1680
 tctcttacat ctccaaagggtt ctgc当地agg ctacaaaagg atcgttagaaa tctggcagaa
 1740
 agaataatcg aagttgtaaa taacttttggaa agcgaattat tcccccgtt cgatagtgcc
 1800
 gcccacgtg aagaattcga cgtcatcgat gaagaggaag aagatcgaaa aacctcagaa
 1860
 ttgaatcgca ggaaaatgct aagaaaacag aaaataaaaaa gacaagaaaa agattcgta
 1920
 tcacctatca tcagccaaacg tgacaaccac gatgcctatg aacaccataa ccaagattcc
 1980
 gatggcgtct cattggtcaa tagtgacaaat tccctctcta acattccatt attctttct
 2040
 acttttcatc gtaagtcaga gtcttcctta gttcgacat ccgttgcacc ttcttcttcc
 2100
 tccgaatttgg aggtgaaaaa cgaaatcttgg gaggaaaaaa atggatttagc aagtaaaaatc
 2160
 gcacaggccg tcttaaacaa gagaattggt gaaaatactg ccagggaaaga ggaagaggaa
 2220
 gaagaagagg aagaagaaga agaggaagaa gaagaagaag ggaaagaagg agatgcgtag
 2280

<210> 230

<211> 2232

<212> DNA

<213> *Saccharomyces* sp.

<400> 230

atgtctgctc ccgctggcga tcataacgct gccaacacca ttcctcatgt acctcaagcg 60
 tccgcacggt acaaaaattc atacaatggaa ttcgtatatac atatacatac atggctgtat 120
 gatgtgtctg tatttctgtt taatatttttgg ttcactatcc tcttcagaga aattaaggta 180
 cgtgtgtcat ataacgttcc cgaagttggg gtgc当地acca tccttgcgtt tgcccctcat 240
 gcaaatcgtt tcatcgaccc ggcttggta atgtcgcaaa cccgtttgtt gaaagacatca 300

gcgggaaagt cccgatccag aatgccttgt tttgttactg ctgagtcgag ttttaaaaaaa 360
agatttatct ctttctttgg tcacgcaatg ggcggatttc ccgtgcctag aattcaggac 420
aacttgaagc cagtggatga gaatcttgag atttacgctc cggacttgcga gaaccacccg 480
gaaatcatca agggccgctc caagaaccca cagactacac cagtgaactt tacgaaaagg 540
tttctgcca agtccttgc tggatggccc gactactaa gtaatgctca aatcaaggaa 600
atcccgatg atgaaacatg aatcttgc tctccattca gaacatcgaa atcaaaaatgt 660
gtggagctct tgactaatgg tactaatttt aaatatgcag agaaaatcga caatacgaa 720
actttccaga gtgttttgc tcacttgcac acgaagggtc gtgttaggtat ttccccgag 780
ggtggttctc atgaccgtcc ttcttacta cccatcaagg caggtgttgc cattatggct 840
ctgggcgcag tagccgctga tccttaccatg aaagttgttgc ttgttaccctg tggtttgc 900
tatttcacaca gaaataaaattt cagatctaga gctgttttag aatacggcga acctatagtg 960
gtggatggga aatatggcga aatgtataag gactccccac gtgagaccgt ttccaaacta
1020
ctaaaaaaga tcaccaattc tttgtttct gttaccggaaa atgctccaga ttacgatact
1080
ttgatggtca ttcaggctgc cagaagacta tatcaaccgg taaaagtcag gctaccccttgc
1140
cctgccattt tagaaatcaa cagaaggta ctttcgggtt attccaagtt taaagatgat
1200
ccaagaatta ttcaactaaa aaaactggta tatgactaca acaggaaattt agattcagtg
1260
ggtttaaaag accatcagg t gatcaatta aaaactacca aattagaagc attgaggtgc
1320
tttgcactt tgatcgttcg attgattttt ttttctgtct ttgtctatact atcggttaccg
1380
ggttctattt tcttcactcc aattttcattt atttgcgcg tataactcaga aaagaaggcc
1440
aaagagggtt taaagaaatc attggtaaaa attaaggta ccgattttgtt ggccacatgg
1500
aaacctatcg tggcgtaat attggcacca attttatacg ttacttactc gatcttgc
1560
attattttgg caagaaaaca acactattgt cgcatctggg ttcccttccaa taacgcattc
1620
atacaatttg tctattttt tgcgttattt gttttcacca cgtattccctc tttaaagacc
1680
ggtgaaatcg gtgttgaccc tttcaaatct ttaagaccac ttttgcattt tattgtttac
1740
cccggttaaga agatcgaaaga aatccaaaca acaagaaaga attaagtct agagttgact
1800
gctgtttgtt acgatttagg acctttgggtt ttccctgatt acgataaaattt agcgactgag
1860
atattctcta agagagacgg ttatgtatgtc tcttctgtatc cagagtcttc tataagtcgt
1920
atgagtgtaatctagaag ccgcctttct tctatacattt ctattggctc gctagcttct
1980
aacgccttat caagagtgaa ttcaagaggc tcggttgcaccg atattccat ttttgcattt
2040
gcaaagcaag gtcaatggaa aagtgaaggt gaaaactagtg aggatgagga tgaatttgat
2100
gagaaaaatc ctgccatagt acaaaccgca cgaagttctg atctaaataa ggaaaacagt
2160
cgacacacaa atatatcttc gaagattgtc tcgctggtaa gacagaaaag agaacacgaa
2220
aagaaaagaat ga
2232
<210> 231
<211> 1194
<212> DNA
<213> Saccharomyces sp.

<400> 231
atgctgcata aaaaaatagc tcataaaagtt cgaaaaagtcg tcgtccagg tatttcctta 60
ttgattttct tccagggtat ccttattttt ttgtttctcc aactcaccata taagactctt 120
tactgttagaa atgatataag gaaacaaaat ggtctcaata aaacccaaaag attattttttt 180
gtcttgcattt catccattttt gcatgttgc gcaccatctg cagtgagaat taccactgaa 240
aattccatgt ttccctaaagg tactttttt ttagacttgc agaagaaaag gattttttct 300
catctaaagt ccaattcggtt ggccatttgc aatcacccaa tatacacggc ttggatattt 360
ttatgttgcgtt tggcttacac atcgaactta ggggctaatg tcttcattat tttaaaaaaa 420
tcggttgcattt ccattccat tcccggttgc ggtatgagaa actataattt cattttttatg 480

agtagaaaagt gggcacaaga caaaaataacc ctaagcaaca gccttgctgg ccttgattcg 540
 aatgcaaggg ggcgcggctc acttgctgga aagtccacccg agccataac tgaggaaagga 600
 gagagcatat ggaatcccgga ggttattgtat ccaaaaacaaa tcattggcc atacaatctt 660
 atcctattcc ctgaaggtaaaatctcgt gctgatacta ggcaaaaaag tgctaaatat 720
 gctgccaatgggaaatggcaag aatgtgtac tgcccttcatt tacaggccta 780
 agatactcgtaaaaaatggcaag aatggcaagttt gatggctgtat tttatgtat tacgatcgcc 840
 tactccgggtg taaaacagga ggaatatggt gagcttatat atgggctgaa gagcatattt 900
 tttagaaggaa aatacccgaa gttagtcgtt attcacatca gacgatttga tgtaaagat 960
 attccatttag aggacgagaa tgaatttca gaatggctgtt ataaaatttggatgagaag
 1020
 gatgctctaa tggaaaggta ctattccact ggatcattcg taagtgtatcc tgaaacaaac
 1080
 cattcagttt ccgatagttt caagatcaat cgtattgagt taactgaagt gctaataattt
 1140
 ccaactctaa caataatggatggatattttaattt gtttattttttt ttga
 1194

<210> 232
 <211> 912
 <212> DNA
 <213> *Saccharomyces* sp.

<400> 232
 atgagtgtga taggttagttt ctgttattac ttgaggccg tttgggtcg actggcgctt 60
 gcaggctgtg gctttacgg ttaatcgcc tctatcctt gcacgtaat cgtaagcaa 120
 catttggctc agtggattac tgcgcgttgtt tttaccatg tcatgaaattt gatgcttggc 180
 cttgacgtca aggtcggtgg cgaggagaat ttggccaaaga agccatataat tatgattgcc 240
 aatcacaat ccacccgttga tatcttcatg ttaggttagga tttccccccc tggttgcaca 300
 gttactgcca agaagtctt gaaatacgtc cccttctgg gttggttcat ggctttgagt 360
 ggtacatatttcttagacatctaaaagg caagaagcca ttgacacccgtt gaataaagg 420
 ttagaaaaatg ttaagaaaaaa caagcgtgctt ctatgggtt ttcctgaggg taccaggct 480
 tacacgatg agctgacaat gttgccttc aagaagggtt cttccattt ggcacaacag 540
 ggtaagatcc ccattgttcc agtgggtgtt tccaataacca gtacttttagt aagtccctaaa 600
 tatgggtct tcaacagagg ctgtatgattt gttagaattt taaaacctat ttcaaccgag 660
 aacttaacaa aggacaaaat tggtaattt gctgaaaaag ttagagatca aatgggtgac 720
 actttgaagg agatggctt ctcctcccgcc atcaacgata caaccctccc accacaagct 780
 atttagtgcgttcc acatgacaag aaagtgaaca agaaaatcaa gaatgagcct 840
 gtccttctgtc tagcatttag caacgtatgtc aataccata acgaagggttc atctgtaaaa 900
 aagatgcatt aa 912

<210> 233
 <211> 54
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 Oligonucleotide

<400> 233
 cgcgatttaa atggcgccctgcaggccg ccgcctgcag ggccgcggcat ttaa 54

<210> 234
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 Oligonucleotide

<400> 234
 tcgaggatcc gcggccgcaa gtttcctgca gg 32

<210> 235
 <211> 32
 <212> DNA
 <213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 235
tcgacacctgca ggaagcttgc ggccgcggat cc 32

<210> 236
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 236
tcgacacctgca ggaagcttgc ggccgcggat cc 32

<210> 237
<211> 32
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 237
tcgaggatcc gcggccgcaa gtttcctgca gg 32

<210> 238
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 238
tcgaggatcc gcggccgcaa gtttcctgca ggagct 36

<210> 239
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 239
cctgcaggaa gtttgcggcc gcggatcc 28

<210> 240
<211> 36
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic Oligonucleotide

<400> 240
tcgacacctgca ggaagcttgc ggccgcggat ccagct 36

<210> 241
<211> 28
<212> DNA
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
Oligonucleotide

<400> 241

ggatccgcgg ccgcaagctt cctgcagg

28

