K-means

with hyperparameter tuning

How do we learn from data?

Types of machine learning

- Supervised learning
 Learn a model F from pairs of (x,y)
- Unsupervised learning
 Discover the hidden structure in unlabeled data x (no y)
- Reinforcement learning
 Train an agent to take appropriate actions in an environment by maximizing rewards

Our first unsupervised learning

Discover the hidden structure in unlabeled data X (no y)

- Customer/product segmentation
- Data analysis for ...
- Identify number of speakers in a meeting recording
- Helps supervised learning in some task

Example - Customer analysis

Brand royalty

Example - Customer analysis

Brand royalty

What should be the input feature of this?

What should be the input feature of this?

K-mean clustering

Clustering - task that tries to automatically discover groups within the data

Too hard...

Brand royalty

K-mean clustering

Clustering - task that tries to automatically discover groups within the data

Too hard...

Easier if we know the grouping beforehand (supervised)

How?

Nearest Neighbour classification

Find the closest training data, assign the same label as the training data

Given query data

For every point in the training data

Brand royalty

Compute the distance with the query Assign label of the smallest distance

K-Nearest Neighbour (kNN) classification

Nearest Neighbour is susceptible to noise in the training data

Use a voting scheme instead

Brand royalty

K-Nearest Neighbour (kNN) classification

Nearest Neighbour is susceptible to noise in the training data

Use a voting scheme instead

Given query data

For every point in the training data

Compute the distance with the query

Find the K closest data points

Assign label by voting

Brand royalty

K-Nearest Neighbour (kNN) classification

Nearest Neighbour is susceptible to noise in the training data

Use a voting scheme instead

Given query data

For every point in the training data

Compute the distance with the query

Find the K closest data points

Assign label by voting

The votes can be weighted by the inverse distance (weighted k-NN)

Brand royalty

Centroids

Basically the representative of the cluster

Find the mean location of the cluster by averaging

Can use mode or median depending on the data

Brand royalty

K-mean clustering

- 1. Randomly k centroids by picking from data points
- 2. Assign each data points to centroids
- 3. Update centroids for each cluster
- 4. Repeat 2-3 until centroids does not change

Brand royalty

An Illustration Of K-Mean Clustering

Characteristics of K-means

- The number of clusters, *K*, is specified in advance.
- Always converge to a (local) minimum.
 - Poor starting centroid locations can lead to incorrect minima.

Image from https://en.wikipedia.org/wiki/K-means_clustering

- The model has several implicit assumptions:
 - Data points scatter around cluster's centers.
 - Boundary between adjacent clusters is always halfway between the cluster centroids.

Effect of bad initializations

Solution, try different randomization and pick the best

Selecting K - Using Elbow method

All-data centroid

From https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

fraction of explained variance =

between-cluster variance all-data variance

between-cluster variance =
$$\sum_{i=1}^{K} \frac{n_i (M_i - M)^2}{N-1}$$
, where n_i = size of ith cluster, M_i = centroid of ith cluster, and M = all-data centroid.

all-data variance = $\sum_{i=1}^{N} \frac{(x_i - M)^2}{N-1}$, where $x_i = i^{th}$ data point and N = # of data.

Fraction of explained variance

The elbow method chooses K where increasing complexity doesn't yield much in return.

Number of cluster, K

Selecting K - other methods

Fraction of explained variance

95% explained variance

Choose minimal K that explains at least 95% of the all-data variance.

Lab

Hyperparameter tuning

K-means

Effect of initialization

Effect of k

Effect of features

Hyperparameter

Parameter - a variable in the model that the model automatically learns from data

Hyperparameter - a variable in the model that you set

How to set?

Use validation set

Three sets: training, test, and validation.