OPERASI BINER

Definisi Operasi Biner

Operasi biner pada himpunan tidak kosong S adalah pemetaan dari $S \times S$ ke S.

Notasi yang digunakan untuk menyatakan operasi biner adalah +, \times , *, \bullet , \oplus , \otimes , dan sebagainya.

Hasil dari sebuah operasi, misalnya \otimes , pada elemen a dan b akan ditulis sebagai $a\otimes b$.

Contoh Operasi Biner

- Operasi pembagian pada bilangan riil.
- Warna rambut anak yang ditentukan oleh warna rambut orang tuanya.
- Operasi biner ⊕ yang didefinisikan sebagai

$$a \oplus b = a + b - 2ab$$
.

Sifat Operasi Biner

Misalkan * dan ⊕ adalah operasi biner.

Operasi * dikatakan:

1. KOMUTATIF,

jika a * b = b * a, untuk setiap a, b.

2. ASOSIATIF,

jika (a*b)*c = a*(b*c), untuk setiap a, b, c.

3. Mempunyai IDENTITAS,

jika terdapat e sedemikian hingga a * e = e * a = a, untuk setiap a.

IDENTITAS KIRI,

jika terdapat e_1 sedemikian hingga $e_1 * a = a$, untuk setiap a.

IDENTITAS KANAN,

jika terdapat e_2 sedemikian hingga $a * e_2 = a$, untuk setiap a.

4. Mempunyai sifat INVERS,

jika untuk setiap a terdapat a^{-1} sedemikian hingga

$$a * a^{-1} = a^{-1} * a = e$$

dimana e adalah elemen identitas untuk operasi *. a^{-1} disebut invers dari elemen a.

5. DISTRIBUTIF terhadap operasi \oplus dan *, jika untuk setiap a, b, c berlaku

$$a*(b\oplus c) = (a*b) \oplus (a*c)$$
dan

$$(b \oplus c) * a = (b * a) \oplus (c * a).$$

Contoh

Operasi biner penjumlahan biasa adalah sebuah operasi yang bersifat komutatif, karena untuk sembarang bilangan x dan y berlaku x + y = y + x.

Operasi penjumlahan bersifat asosiatif, karena untuk sembarang x, y, z berlaku (x + y) + z = x + (y + z).

Identitas untuk operasi penjumlahan adalah 0.

Invers penjumlahan untuk sembarang bilangan p adalah -p, karena p + (-p) = 0.

Contoh

Operasi perkalian bersifat distributif terhadap operasi penjumlahan, karena untuk setiap bilangan *a, b* dan *c* berlaku

$$a \times (b + c) = (a \times b) + (a \times c)$$

dan

$$(b+c)\times a=(b\times a)+(c\times a).$$

Operasi penjumlahan tidak bersifat distributif terhadap operasi perkalian, karena terdapat p, q dan r dimana

$$p + (q \times r) \neq (p + q) \times (p + r).$$

Contoh:

$$2 + (3 \times 4) \neq (2 + 3) \times (2 + 4).$$

Definisi Sifat Tertutup

Himpunan S dikatakan tertutup terhadap terhadap operasi biner *, jika untuk setiap $a, b \in S$ berlaku $a * b \in S$.

Contoh

- 1. Himpunan bilangan bulat Z tertutup terhadap operasi penjumlahan biasa, karena untuk setiap $x, y \in Z$ berlaku $x + y \in Z$.
- 2. Himpunan bilangan bulat Z tidak tertutup terhadap operasi pembagian biasa, karena terdapat $2, 3 \in Z$ dimana $2:3 \notin Z$.
- 3. Misalkan $A = \{0,1\}$.

A tertutup terhadap operasi perkalian biasa karena:

$$0 \times 0 = 0 \in A$$

$$0 \times 1 = 0 \in A$$

$$1 \times 0 = 0 \in A$$

$$1 \times 1 = 1 \in A$$

A tidak tertutup terhadap operasi penjumlahan biasa karena $1 + 1 = 2 \notin A$.

4. Misalkan $A = \{0,1\}$. Didefinisikan operasi biner sebagai berikut:

$$a * b = (a \times b) + b$$

dengan × dan + masing-masing adalah operasi perkalian dan penjumlahan biasa.

A tidak tertutup terhadap operasi biner * karena

$$1 * 1 = (1 \times 1) + 1 = 2 \notin A$$
.

5. Misalkan $B = \{4, 5\}$.

B tertutup tidak tertutup terhadap operasi perkalian biasa karena $4 \times 5 = 20 \notin B$.

B tertutup tidak tertutup terhadap operasi penjumlahan biasa karena $4 + 4 = 8 \notin B$.