

Licenciatura em Engenharia Biomédica

MATEMÁTICA 1 (2023/2024) ÉPOCA NORMAL: 1ª PROVA DE AVALIAÇÃO

26 de janeiro de 2024

Aluno no:

Nome:

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.
- Todos os cálculos que efetuar e todas as conclusões que obtiver terão de ser devidamente justicados.
- Boa sorte!

Duração: 75 minutos

Cotações:	1.1 (15)	$1.2 \\ (20)$	$1.3 \\ (15)$	1.4(i) (20)	1.4(ii) (15)	1.4(iii) (15)	2. (15)	3. (45)	4. (40)	Total) (200)
cotagoes.										

1. Considere as funções, $f \in g$, reais de variável real, definidas por,

$$f(x) = \frac{2}{7\log_3(\sqrt{5-4x})}$$
 e $g(x) = \pi + |\arccos(5-2x)|$.

- 1.1 Determine o domínio de f.
- 1.2 Determine a expressão $f^{-1}(x)$.
- 1.3 Calcule o domínio e o contradomínio da função g.
- 1.4 Seja $h(x) = \arctan(x-3)$.
 - (i) Resolva a seguinte equação:

$$h^{-1}(0) + \cos\left(\frac{7\pi}{2}\right) - \operatorname{cosec}\left(g(3)\right) = 3^{\left(\log_7\left(\frac{2}{f(x)}\right)\right)}.$$

- (ii) Escreva uma equação da reta tangente à curva de h, no ponto (3,0).
- (iii) Aplicando o conceito de diferencial, e **usando a função** h(x), determine o valor aproximado de arctg(1.01).
- 2. Seja h(x) tal que, $\int h(x) dx = \cos^2(x^3 3x^2) + C$, $C \in \mathbb{R}$. Prove que $h(x) = (3x^2 6x) \operatorname{sen}(2x^3 6x^2)$.
- 3. Aplicando o método de integração por partes, determine a expressão analítica da função real de variável real f(x), tal que,

$$f'(x) = x^3 \, 3^{2x^2 - 1}$$

e que passa no ponto (0,0).

4. Resolva o integral $\int \frac{\sqrt{x}}{\sqrt[4]{4-\sqrt{x^3}}} dx$, fazendo a substituição $t=\sqrt{x}$.

Licenciatura em Engenharia Biomédica

MATEMÁTICA 1 (2023/2024)

ÉPOCA NORMAL: 2ª PROVA DE AVALIAÇÃO

26 de janeiro de 2024

Aluno no: Nome:

- Não é permitida a consulta de dispositivos eletrónicos (máquina de calcular, telemóvel, etc.).
- Só poderá consultar os formulários validados no início da prova.
- Todos os cálculos que efetuar e todas as conclusões que obtiver deverão ser devidamente justificados.
- Boa sorte!

Duração: 1h15m

Cotações:	1. (30)	2. (35)	3.1 (20)	3.2 (15)	3.3 (10)	3.4 (5)	4. (20)	5. (20)	6.1 (25)	6.2 (10)	6.3 (10)	Total) (200)

1. Calcule o integral da função real de variável real, f, no intervalo $[1, +\infty[$, sendo

$$f(x) = \begin{cases} \frac{\sqrt{\sqrt{x}}}{\sqrt[4]{x^2 + x}} & \text{se} \quad 1 \le x \le e \\ \frac{1}{x \ln^3(x)} & \text{se} \quad x > e \end{cases}.$$

2. Considere a região abaixo limitada por ramos das curvas indicadas. Escreva a expressão integral que permite calcular a área da região assinalada.

- 3. Considere as sucessão $u_n = \frac{7^{5-n} 5^{\frac{n-3}{2}}}{9^{2n+2}}, v_n = \sqrt[4]{n^{-\frac{a+1}{2}}} \ (a \in \mathbb{R})$ e a série desconhecida $\sum_{n=1}^{\infty} b_n$ convergente $(b_n > 0)$:
 - 3.1 Estude a convergência da série geométrica $\sum_{n=1}^{\infty} u_n$.
 - 3.2 Determine o valor de a para que a série $\sum_{n=1}^{\infty} v_n$ seja divergente.
 - 3.3 Estude a convergência da série $\sum_{n=1}^{\infty} \frac{5^{\frac{n}{2}}}{1000^n}.$
 - 3.4 Comente, **justificando**, o valor lógico da seguinte afirmação, "A série $\sum_{n=1}^{\infty} (-1)^n b_n$ é absolutamente convergente".
- 4. Analise a convergência da série $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}.$
- 5. Considere a série de potências, $\sum_{n=1}^{\infty} \frac{(-1)^n (n-1)!}{n^2} (x-5)^n$, representaiva de uma dada função f. Indique o centro de convergência e calcule o intervalo e o raio de convergência da série.
- 6. Seja dada a função $f(x)=\ln\left(\frac{1}{1+2x}\right)$, representável por um desenvolvimento em série de MacLaurin. Sabendo que o intervalo de convergência é $\left]-\frac{1}{2},\frac{1}{2}\right]$, determine:
 - 6.1 A expressão da referida série.
 - 6.2 A expressão do polinómio de MacLaurin de ordem n=3, da função y=f(x).
 - 6.3 Um valor aproximado de $\ln\left(\frac{2}{3}\right)$, com base na expressão do polinómio obtida na alínea anterior.