ElasticNet Regression | Intuition

ElasticNet Regression is a **powerful hybrid** of **Ridge** and **Lasso Regression**. If you're just stepping into regularization techniques, this model offers **flexibility** and **balance** by combining both **L1** (**Lasso**) and **L2** (**Ridge**) penalties.

What Is ElasticNet?

ElasticNet adds both L1 and L2 regularization terms to the linear regression cost function:

$$ext{Loss} = ext{RSS} + \lambda_1 \sum |w_j| + \lambda_2 \sum w_j^2$$

- RSS: Residual Sum of Squares (regular loss)
- λ1 * sum(|w|): Lasso penalty (L1) encourages sparsity (drives some weights to 0)
- λ2 * sum(w²): Ridge penalty (L2) reduces magnitude of weights (shrinks them)

ElasticNet helps when:

- Features are correlated (Lasso fails here)
- You want both sparsity and shrinkage

ElasticNet Parameters

- alpha: Total strength of regularization (like λ)
- l1_ratio: Controls mix of Lasso and Ridge:
 - 1. $l1_{ratio} = 0 \rightarrow Ridge only$
 - 2. l1_ratio = 1 → Lasso only
 - 3. $l1_{ratio} = 0.5 \rightarrow 50\%$ Ridge + 50% Lasso

Key Takeaways

✓ Why Use ElasticNet?

- Better when features are correlated: Lasso may randomly select one of them;
 ElasticNet distributes weights better.
- Sparsity + Shrinkage: It gives us both the feature selection of Lasso and the stability
 of Ridge.
- Flexibility: You can tune the l1_ratio depending on the problem.

Visual Intuition

coefficients.

Think of the ElasticNet penalty as a **mix between a diamond (Lasso)** and **a circle (Ridge)** — it creates a **smooth but still sparse model**, unlike Lasso which is aggressive in zeroing