ESERCITAZIONE STATISTICA

Lezione 10 - Statistica (Regressione lineare semplice)

Regressione lineare semplice & Soluzioni in R

- 1. E' stata stimata una retta ai minimi quadrati da un insieme di punti. Se la somma totale dei quadrati è $\sum (y_i \bar{y})^2 = 181.2$ e la somma dei quadrati dei residui è $\sum (y_i \hat{y_i})^2 = 33.9$:
 - (a) calcolare il coefficiente di determinazione R^2 ;
 - (b) calcolare la correlazione tra le due variabili;
 - (c) come varia il coefficiente di determinazione se si dimezzano i valori della variabile indipendente?

2. Per molti prodotti chimici la quantità che si dissolve in un dato volume di acqua dipende dalla temperatura. La seguente tabella riassume i risultati della stima di un modello lineare $y = \beta_0 + \beta_1 x + \epsilon$ dove il numero di grammi di un determinato prodotto chimico dissolti in un litro di acqua (y) è spiegato in termini della temperatura in °C (x).

β	Stima	std	Т	Pr(> t)
Costante	1.4381	0.62459	2.30	0.083
Temperatura	0.30714	0.02063	14.9	0.000

- (a) Se ci sono n=6 osservazioni quanti gradi di libertà ha la statistica T di student?
- (b) Trovare un intervallo di confidenza a livello di fiducia 95% per β_1 ;
- (c) Trovare un intervallo di confidenza a livello di fiducia 95% per β_0 ;
- (d) Qualcuno afferma che se la temperatura dell'acqua fosse incrementata di 1 C, allora la media del numero di grammi dissolti aumenterebbe di esattamente 0.40. Utilizzare i risultati a disposizione per effettuare un test per determinare se questa affermazione possa essere confutata.
- (e) Se la settima osservazione è tale che $x = \bar{x}$ e $y = \bar{y}$ come cambiano le stime dei parametri della retta di regressione?

3. L'articolo "Resistenza al ritiro dei chiodi filettati" (D. Rammer, S. Winistorfer, and D. Bender, Journal of Structural Engineering 2001:442–449) descrive un esperimento per studiare la relazione tra il diametro di un chiodo (x) e la sua resistenza al ritiro (y) N/mm. Sono stati ottenuti i seguenti risultati per 10 chiodi di differenti diametri (in mm).

X	2.52	2.87	3.05	3.43	3.68	3.76	3.76	4.50	4.50	5.26
У	54.74	59.01	72.92	50.85	54.99	60.56	69.08	77.03	69.97	90.70

- (a) Calcolare la retta dei minimi quadrati per prevedere la resistenza dal diametro.
- (b) Calcolare la stima della deviazione standard degli errori s.
- (c) Calcolare l'intervallo di confidenza a livello di fiducia del 95% per il coefficiente angolare della retta.
- (d) Trovare l'intervallo di confidenza a livello di fiducia del 95% per la media della resistenza quando il diametro del chiodo è di 4 mm.
- (e) Si può concludere che la media della resistenza al ritiro per chiodi del diametro di 4mm è maggiore di 60 N/mm? Impostare una verifica d'ipotesi e riportare il p-value.
- (f) Trovare l'intervallo di previsione per la resistenza al ritiro di un particolare chiodo con un diametro di 4 mm.

- 4. È stato svolto uno studio sulla relazione esistente tra la vita utile di un cuscinetto a sfere (Y) e la sua relazione con la viscosità dell'olio lubrificante (X). Dall'analisi dei dati di un campione di 8 cuscinetti si sono ottenuti i seguenti risultati: $\sum x = 185.1$, $\sum y = 1284$, $\sum x_i^2 = 5914$, $\sum y_i^2 = 222008$, $\sum x_i y_i = 25300$.
 - (a) Stimare i parametri del modello di regressione lineare $Y = \beta_0 + \beta_1 x + \epsilon$.
 - (b) Noto $SSE = \sum (y_i \hat{y}_i)^2 = 4016.5$, costruire un intervallo di confidenza per β_0 e verificare l'ipotesi $H_0: \beta_1 = 0$ contro l'alternativa $H_1: \beta_1 \neq 0$ (con $\alpha = 0.05$).
 - (c) Valutare la bontà del modello stimato, utilizzando il coefficiente di determinazione \mathbb{R}^2 .

5. Si vuole studiare il carico di rottura di un certo materiale metallico. A tal fine sono state eseguite n=8 prove a diverse temperature. Indicando con y il carico di rottura (in kg/mm²) e con x la temperatura (in C), si sono ottenuti i seguenti risultati

Ipotizzando un modello di regressione lineare del tipo $y = \beta_0 + \beta_1 x + \epsilon$:

- (a) stimare, con il metodo dei minimi quadrati, i coefficienti β_0, β_1 ;
- (b) verificare se il parametro β_1 è significativamente diverso da zero con $\alpha = 0.05$;
- (c) stimare il carico di rottura del materiale metallico ad una temperatura di 40 C;
- (d) valutare la bontà del modello stimato calcolando il coefficiente di determinazione \mathbb{R}^2 .