

Hai Pham*1, Thomas Manzini*1, Paul Pu Liang2, Barnabás Póczos2

¹ Language Technologies Institute, ² Machine Learning Department School of Computer Science, Carnegie Mellon University

Introduction

- Research Problem
 - Does representing multiple modalities jointly improve sentiment prediction for the CMU-MOSI dataset?

Introduction

- Research Problem
 - Does representing multiple modalities jointly improve sentiment prediction for the CMU-MOSI dataset?
- Dataset
 - Multimodal Corpus of Sentiment Intensity and Subjectivity Analysis in Online Opinion Videos (MOSI)
 - Modalities: Video, Audio, Text Transcripts
 - 89 speakers, 93 videos split into 2199 labeled opinion segments
 - Labels for Sentiment: {-1, 1} or {-3, -2, -1, 0, 1, 2, 3}

Baseline & Metrics

- LSTM Multi Modal Baseline
 - Concatenates all modalities together and predicts sentiment from these modalities.
 - 75% Accuracy (Chen et. al.)

- Metrics
 - For both {-1, 1} or {-3, -2, -1, 0, 1, 2, 3} cases
 - Precision/Recall (Test)
 - F1 Score (Test)

Related Work

- Word-level Temporal Methods
 - o Gu et al. ACL 2018, Chen et al. ICMI 2017
- Context-Dependent Methods
 - o Poria et al. ACL 2017
- Memory-based Methods
 - Zadeh et al. AAAI 2018
- Tensor-based Methods
 - o Liu et al. ACL 2018, Zadeh et al. EMNLP 2017
- Conditional Approaches
 - Mirza et al. 2014, Kingma et al. 2014, & Pandey et al. 2017
- Attention-based Methods
 - o Bahdanau et al. 2014, Luong et al. 2015

Dataset Modalities Encoder Model Decoder Model Hidden Representation Target Variable

Sentiment

(-1, +1)

Hidden Representation Target Variable

Hierarchical Seq2Seq Modality Translation

Denoted as $A \rightarrow B$

Experiments

Denoted as $Concat(A,B) \rightarrow C$

Experiments

Denoted as $A \rightarrow Concat(B,C)$

Experiments

Experiments

$\begin{array}{c} \text{Denoted as} \\ \text{Concat(A,B)} \rightarrow \text{Concat(B,C)} \end{array}$

Denoted as $Embed(A, B) \rightarrow C$

Experiments

Experiments

Unimodal Baseline

Method	Feature	BINARY (-1, +1) Prec Recall F1			7-CLASS (-3,, +3) Prec Recall F1			
		Ticc	Recair	1.1	ricc	Recair	1.1	
UniModal-Baseline	Text (T)	0.77	0.76	0.76	0.32	0.35	0.33	
	Audio (A)	0.56	0.56	0.56	0.12	0.19	0.14	
	Video (V)	0.57	0.47	0.48	0.12	0.19	0.12	

Results (Bi-Modal)

Bimodal Baseline & Experimental Results

Method	Feature	BINARY (-1, +1)			7-CLASS (-3,, +3)		
1,10thod	reature	Prec	Recall	F1	Prec	Recall	F1
BiModal-Baseline	concat(T + V)	0.78	0.67	0.55	0.01	0.16	0.05
	concat(T + A)	0.44	0.66	0.53	0.02	0.15	0.04
	concat(A + V)	0.55	0.47	0.48	0.13	0.16	0.11
BiModal-Seq2Seq	$T \rightarrow V$	0.67	0.67	0.67	0.26	0.22	0.22
	$T \rightarrow A$	0.66	0.64	0.65	0.28	0.24	0.18
	$A \rightarrow T$	0.55	0.60	0.56	0.17	0.34	0.11
	$A \rightarrow V$	0.55	0.55	0.54	0.16	0.18	0.16
	$V \rightarrow T$	0.58	0.58	0.58	0.05	0.16	0.08
	$V \rightarrow A$	0.58	0.62	0.58	0.12	0.17	0.01

Results (Bi-Modal)

Bimodal Baseline & Experimental Results

Method	Feature	BIN Prec	ARY (-1, Recall	, +1) F1	7-CLA Prec	ASS (-3, Recall	, +3) F1
BiModal-Baseline	concat(T+V) $concat(T+A)$ $concat(A+V)$	0.78 0.44 0.55	0.67 0.66 0.47	0.55 0.53 0.48	0.01 0.02 0.13	0.16 0.15 0.16	0.05 0.04 0.11
BiModal-Seq2Seq	$T \rightarrow V$ $T \rightarrow A$ $A \rightarrow T$ $A \rightarrow V$ $V \rightarrow T$ $V \rightarrow A$	0.67 0.66 0.55 0.55 0.58 0.58	0.67 0.64 0.60 0.55 0.58 0.62	0.67 0.65 0.56 0.54 0.58	0.26 0.28 0.17 0.16 0.05 0.12	0.22 0.24 0.34 0.18 0.16 0.17	0.22 0.18 0.11 0.16 0.08 0.01

10 Point Boost

Results (Bi-Modal)

Bimodal Baseline & Experimental Results

Method	Feature	BIN Prec	ARY (-1. Recall	, +1) F1	7-CLA Prec	ASS (-3, Recall	, +3) F1
BiModal-Baseline	$\frac{\text{concat}(T+V)}{\text{concat}(T+A)}$ $\text{concat}(A+V)$	0.78 0.44 0.55	0.67 0.66 0.47	0.55 0.53 0.48	0.01 0.02 0.13	0.16 0.15 0.16	0.05 0.04 0.11
BiModal-Seq2Seq	$T \rightarrow V$ $T \rightarrow A$ $A \rightarrow T$ $A \rightarrow V$ $V \rightarrow T$ $V \rightarrow A$	0.67 0.66 0.55 0.55 0.58 0.58	0.67 0.64 0.60 0.55 0.58 0.62	0.67 0.65 0.56 0.54 0.58 0.58	0.26 0.28 0.17 0.16 0.05 0.12	0.22 0.24 0.34 0.18 0.16 0.17	0.22 0.18 0.11 0.16 0.08 0.01

T = Text Modality, A = Audio Modality, V = Visual (facial) modality

12 Point Boost

Results (Tri-Modal)

• Trimodal Baseline & Experimental Results

Method	Feature	BINARY (-1, +1) Prec Recall F1			7-CLASS (-3,, +3)		
Method	Touture		Recall	F1	Prec	Recall	F1
TriModal-Baseline	concat(T + V + A)	0.75	0.75	0.75	0.24	0.27	0.24
	$embed(T, V) \rightarrow A$	0.56	0.60	0.57	0.10	0.16	0.09
	$embed(T, A) \rightarrow V$	0.60	0.55	0.56	0.26	0.15	0.07
TriModel CoalCoa	$embed(A, V) \rightarrow T$	0.66	0.53	0.44	0.16	0.04	0.09
TriModal-Seq2Seq	$embed(A, T) \rightarrow V$	0.59	0.51	0.52	0.13	0.15	0.09
	$embed(V, T) \rightarrow A$	0.59	0.60	0.59	0.11	0.17	0.10
	$embed(V, A) \rightarrow T$	0.57	0.61	0.58	0.11	0.17	0.09
	$concat(T, V) \rightarrow A$	0.67	0.66	0.65	0.22	0.17	0.18
	$concat(A, T) \rightarrow V$	0.54	0.55	0.63	0.19	0.15	0.21
	$concat(V, A) \rightarrow T$	0.59	0.59	0.58	0.16	0.12	0.12
	$T \rightarrow \text{concat}(A, V)$	0.70	0.65	0.66	0.23	0.22	0.18
	$A \rightarrow \text{concat}(T, V)$	0.55	0.53	0.54	0.18	0.20	0.18
	$concat(T, A) \rightarrow concat(T, V)$	0.62	0.60	0.61	0.23	0.24	0.22
	$\texttt{concat}(T,V) \to \texttt{concat}(T,A)$	0.68	0.70	0.67	0.31	0.24	0.19

Results - Takeaways

- We clearly outperform the baselines in the <u>bi-modal</u> domain
 - In the 7-class paradigm we often outperform by a large margin
 - For datasets without transcripts this approach may result in significant gains
- Slightly outperform baseline in tri-modal multiclass setting
- Significantly longer training times than the baseline alone

Future Work

- Our method is unsupervised, we will pre-train seq2seq model with external dataset
- Use variational seq2seq to refine the training
- Further explore end-to-end training
- Explore additional methods for encoding sequences with 2 modalities
 - Multi-view LSTM

Acknowledgements

- Amir Zadeh
- Volkan Cirik
- Louis-Philippe Morency
- Somya Wadhwa
- Minghai Chen
- Hieu Pham
- Workshop Reviewers
- *AWS*

Thank you!

Appendix

Problem Formulation

- Input: $X = (X_1, X_2, \dots, X_n)$ where $X_i = (X_i^{text}, X_i^{audio}, X_i^{video})$
- Output : $Y = (Y_1, Y_2, ..., Y_n), Y_i \in \mathbb{R}$
- Align based on word-level

$$X_{i}^{text} = (w_{i}^{(1)}, w_{i}^{(2)}, ..., w_{i}^{(T_{i})})$$

$$X_{i}^{audio} = (a_{i}^{(1)}, a_{i}^{(2)}, ..., a_{i}^{(T_{i})})$$

$$X_{i}^{video} = (v_{i}^{(1)}, v_{i}^{(2)}, ..., v_{i}^{(T_{i})})$$

• Goal: Learn the embedding representation

$$\widetilde{X_i} = f(X_i) = f((X_i^{text}, X_i^{audio}, X_i^{video}))$$

$$\widetilde{X}_i = f(X_i) = Seq2Seq_Encoder(X_i)$$

Problem Formulation (cont'd)

- Transformed input: $\widetilde{X} = (\widetilde{x}^1, \widetilde{x}^2, ..., \widetilde{x}^T)$ with output $Y = (y^1, y^2, ..., y^T)$
- Using RNN with K hidden layers:

$$h = (h^1, h^2, \dots, h^K)$$

 $h^k = (h_1^k, h_2^k, \dots, h_D^k), k \in [1, K]$

- First layer: $h^1_t = H(W_{xh^1}\widetilde{x_t} + W_{h^1h^1}h^1_{t-1} + b_{h^1})$
- Layer $k : h^k_t = H(W_{h^{t-1}h^t}h_t^{k-1} + W_{h^kh^k}h^k_{t-1} + b_{h^k})$
- Using soft attention at last hidden layer K:

$$\alpha = softmax \left(\begin{bmatrix} W_{\alpha}h_1^K \\ W_{\alpha}h_2^K \\ \dots \\ W_{\alpha}h_T^K \end{bmatrix} \right)$$

Problem Formulation (cont'd)

- Output of last hidden layer: $A = [h_1^K, h_2^K, ..., h_T^K]\alpha = H^K\alpha$
- Final output: $\widetilde{y_t} = W_{Ay}A + b_y$
- Mean Absolute Error Loss: $\mathbb{L}_{MAE}(\widetilde{Y}, Y) = \mathbb{E}[|\widetilde{Y} Y|]$
- Model is trained with SGD

Algorithm 1 Seq2Seq Modality Translation

X, Y, S are 2 modalities and sentiment sequences

```
1: Phase 1: Train Seq2Seq
```

- 2: $\mathcal{E}_{XY} \leftarrow Seq2Seq_RNN_Encode(X)$
- 3: $\widetilde{Y} \leftarrow Seq2Seq_RNN_Decode(\mathcal{E}_{XY})$
- 4: $loss = cross_entropy(\widetilde{Y}, Y)$
- Backprop to update params

6: Phase 2: Sentiment Regression

- 7: $\mathcal{E}_{XY} \leftarrow Seq2Seq_RNN_Encode(X)$ \triangleright trained encoder in Seq2Seq model
- 8: $R = RNN(\mathcal{E}_{XY})$
- 9: $score \leftarrow Regression(R)$
- 10: $loss \leftarrow MAE(score, S)$
- 11: Backprop to update params

Hierarchical Seq2Seq Modality Translation

Algorithm 2 Hierarchical Seq2Seq Modality

Translation: X, Y, Z, S are 3 modalities and sentiment sequences

- 1: Phase 1: Train Seq2Seq for 2 modalities
- 2: $\mathcal{E}_{XY} \leftarrow Seq2Seq_RNN_Encode(X)$
- 3: $\widetilde{Y} \leftarrow Seq2Seq_RNN_Decode(\mathcal{E}_{XY})$
- 4: $loss = cross_entropy(\widetilde{Y}, Y)$
- Backpropagate to update parameters

6: Phase 2: Train Seq2Seq for 3 modalities

- 7: $\mathcal{E}_{XYZ} \leftarrow Seq2Seq_RNN_Encode(\mathcal{E}_{XY})$
- 8: $\widetilde{Z} \leftarrow Seq2Seq_RNN_Decode(\mathcal{E}_{XYZ})$
- 9: $loss = cross_entropy(\widetilde{Z}, Z)$
- Backpropagate to update parameters

11: Phase 3: Sentiment Regression

- 12: $\mathcal{E}_{XYZ} \leftarrow Seq2Seq_RNN_Encode(\mathcal{E}_{XY})$
- 13: $R = RNN(\mathcal{E}_{XYZ})$
- 14: $score \leftarrow Regression(R)$
- 15: $loss \leftarrow MAE(score, S)$
- 16: Backpropagate to update parameters