Espacios Vectoriales

Christian

24 de noviembre de 2014

Índice

Definición 1. Un espacio vectorial consta de lo siguiente

- 1. Un campo F de escalares
- 2. Un conjunto no vacio de objetos denominados vectores
- 3. Una operación de nominada suma o adición que asocia a cada par de vectores $\alpha, \beta \in V$ un vector $\alpha + \beta \in V$ llamado suma de α y β que cumple lo siguiente.

Definición 2. Un espacio vectorial, \mathcal{B} , es un conjunto de elementos x, y, z, etc., llamados vectores satisfaciendo los siguientes axiomas.

- a Para cadapar x y y, de vectores en \mathcal{B} corresponde un vector z, llamada la suma de x y y, z = x + y, de manera que
 - a) La adciòn es conmutativa, x + y = y + x;
 - b) La adición es asociativa, x + (y + z) = (x + y) + z;
 - c) Exite en \mathcal{B} un unico vector o (llamado el origen) de tal manera que para todo x en \mathcal{B} , x + 0 = 0;
 - *d*) Para cada $x \in \mathcal{B}$ corresponde a un unico vector, denotado por -x, con la propiedad x + (-x) = 0

Definición 3. Se dice $\beta \in V$ es una combinacion lineal de Vectores $\alpha_1, \ldots, \alpha_n$ si existen $C_1, \ldots, C_n \in \mathbb{F}$ tales que

$$\beta = \sum_{i=1}^{n}$$

Definición 4. Un subespacio de V en \mathbb{F} es un subconjunto W de V que con las operaciones heredadas de V, es el mismo un e.v. sobre \mathbb{F}

NOTA Si V es un e.v., V y $\{\vec{0}\}$ se denomina los subespacios triviales de V.

Proposición 1. Un subconjunto no vacio W de V es un subespacio vectorial ssi W es cerrado con respecto a las operaciones de V

Definición 5. Sean $\alpha_1, \ldots, \alpha_n$ en V y $\mathcal{L}(\alpha_1, \ldots, \alpha_n) = \{B | B \text{ es la combianciòn lineal de } \alpha_1, \ldots, \alpha_n \}$ esto es un s.e.v. de V y se llama subespacio generado por α_i $1 \le i \le k$, o bien se dice que $\alpha_1, \ldots, \alpha_k$ generan a $\mathcal{L}(\alpha_1, \ldots, \alpha_k)$

Proposición 2. La interseción de cualquier colección de subescaios de V es un subespacio de V

OBSERVACIÓN La unión de subespacios no necesariamente es s.e.v.

Definición 6. Sean S,T subespacios de V, definimos la suma de S y T como

$$S + T = \{s + t | s \in S, t \in T\}$$

Proposición 3. Si S y T son subesapcios de V, entonces S+T es s.e.v. de V

Definición 7. Si S y T son s.e.v. de V tales que S+T son s.e.v. de V tales que S + T = V y $S \cap T = \{0\}$ decimos que Ves la suma directa de S y T y lo denotamos como sigue:

$$V = S \oplus T$$

Proposición 4. Si $V = S \oplus T$ entoces $\forall \alpha \in V \exists n$ unicos s,t tales que

$$\alpha = s + t$$

Definición 8. Los vectores $\alpha_1, \ldots, \alpha_k$ se dicen lienalmente independientes si $\exists n$ escalares a_1, \ldots, a_k no todos ceros tales que

$$\sum_{i=1}^k \alpha_i a_i = 0$$

Definición 9. Un conjunto A de vectores se dice l.i. si cualquier subconjunto finito de A es l.i.

Definición 10. Un conjunto A de vectores de dice l.d. si existe un subconjunto finito de A no vacio que sea l.d.