1) Publication number:

0 089 167

A2

(12)

EUROPEAN PATENT APPLICATION

(1) Application number: 83301227.1

(5) Int. Cl.³: **C** 07 **D** 211/90 A 61 K 31/44

(22) Date of filing: 08.03.83

30 Priority: 11.03.82 GB 8207180

Date of publication of application: 21.09.83 Bulletin 83/38

Designated Contracting States:
 AT BE CH DE FR GB IT LI LU NL SE

Applicant: Pfizer Limited
 Ramsgate Road
 Sandwich Kent CT13 9NJ(GB)

Designated Contracting States:

Applicant: Pfizer Corporation
 Calle 15 1/2 Avenida Santa Isabel
 Colon(PA)

Designated Contracting States:
 BE CH DE FR IT LI LU NL SE AT

(2) Inventor: Campbell, Simon Fraser Grey Friars Upper Street Kingsdown Deal Kent(GB)

(2) Inventor: Cross, Peter Edward 21 Cherry Avenue Canterbury Kent(GB)

(72) Inventor: Stubbs, John Kendrick 111 Blenheim Road Deal Kent(GB)

(4) Representative: Wood, David John et al, Pfizer Limited Ramsgate Road Sandwich Kent CT13 9NJ(GB)

- (5) Dihydropyridine anti-ischaemic and antihypertensive agents, processes for their production, and pharmaceutical compositions containing them.
- 57 Dihydropyridines of the formula:-

and their pharmaceutically acceptable acid addition salts wherein Y is $-(CH_2)_2-$, $-(CH_2)_3-$, $-CH_2CH(CH_3)-$ or $-CH_2C(CH_3)_2-$;

R is aryl or heteroaryl;

 R^1 and R^2 are each independently C_1 – C_4 alkyl or 2-methoxyethyl; and

 R^3 is hydrogen, C_1-C_4 alkyl, $2-(C_1-C_4$ alkoxy) ethyl, cyclopropylmethyl, benzyl, or $-\{CH_2\}_m$ COR 4 where m is 1, 2 or 3 and R^4 is hydroxy, C_1-C_4 alkoxy or $-NR^85^6$ where R^5 and R^6 are each independently hydrogen or C_1-C_4 alkyl, pharmaceutical compositions containing them, and processes for their production.

The compounds are particularly useful in the treatment or prevention of a variety of cardiac conditions, e.g. angina pectoris.

Ш

This invention relates to certain dihydropyridines,

specifically to certain 1,4-dihydropyridines having a basic

amino-containing group attached to the 2-position,

which have utility as anti-ischaemic and antihypertensive agents.

5

10

15

20

The compounds of the invention reduce the movement of calcium into the cell and they are thus able to delay or prevent the cardiac contracture which is believed to be caused by an accumulation of intracellular calcium under ischaemic conditions. Excessive calcium influx during ischaemia can have a number of additional adverse effects which would further compromise the ischaemic myocardium. These include less efficient use of oxygen for ATP production, activation of mitochondrial fatty acid oxidation and possibly, promotion of cell necrosis. Thus the compounds are useful in the treatment or prevention of a variety of cardiac conditions, such as angina pectoris, cardiac arrythmias, heart attacks and cardiac hypertrophy. The compounds also have vasodilator activity since they can inhibit calcium influx in cells of vascular tissue and they are thus also useful as antihypertensive agents and for the treatment of coronary vasospasm.

According to the invention, there are provided novel 1,4-dihydropyridine derivatives of the formula:-

$$R^{1}OOC$$
 N
 CH_{3}
 N
 CH_{2}
 CH_{2}
 CH_{2}
 CH_{3}
 CH_{2}
 CH_{3}
 CH_{3}

wherein Y is $-(CH_2)_2$ -, $-(CH_2)_3$ -, $-CH_2CH(CH_3)$ - or $-CH_2C(CH_3)_2$ -;

R is aryl or heteroaryl;

R¹ and R² are each independently C_1 - C_4 alkyl or

2-methoxyethyl;

R³ is hydrogen, C₁-C₄ alky1, 2-(C₁-C₄ alkoxy)ethy1, cyclopropylmethyl, benzyl, or -(CH₂)_mCOR⁴ where m is 1, 2 or 3 and R⁴ is hydroxy, C₁-C₄ alkoxy or -NR⁵R⁶ where R⁵ and R⁶ are each independently hydrogen or C₁-C₄ alkyl;

10 and their pharmaceutically acceptable acid addition salts.

15

20

25

The compounds of the formula (I) containing one or more asymmetric centres will exist as one or more pairs of enantiomers, and such pairs or individual isomers may be separable by physical methods, e.g. by fractional crystallisation of the free bases or suitable salts or chromatography of the free bases. The invention includes the separated pairs as well as mixtures thereof, as racemic mixtures or as separated d- and 1- optically-active isomeric forms.

The pharmaceutically acceptable acid addition salts of the compounds of the formula (I) are those formed from acids which form non-toxic acid addition salts containing pharmaceutically acceptable anions, such as the hydrochloride, hydrobromide, sulphate, phosphate or acid phosphate, acetate, maleate, fumarate, lactate, tartrate, citrate and gluconate salts. The preferred salts are maleates.

The term "aryl" as used in this specification, includes, for example, phenyl optionally substituted by one or two substituents

selected from nitro, halo, C_1-C_4 alkyl, C_1-C_4 alkoxy, hydroxy, trifluoromethyl, and cyano. It also includes 1- and 2-naphthyl.

The term "heteroaryl" as used in this specification includes, for example, benzofuranyl; benzothienyl; pyridyl optionally monosubstituted by methyl or cyano; quinolyl; benzoxazolyl; benthiazolyl; furyl; pyrimidinyl; thiazolyl; 2,1,3-benzoxadiazol-4-yl; 2,1,3-benzthiadiazol-4-yl; and thienyl optionally monosubstituted by halo or C₁-C₄ alkyl.

"Halo" means fluoro, chloro, bromo or iodo.

C₃ and C₄ alkyl and alkoxy groups can be straight or branched chain.

 R^3 is preferably H, CH₃, benzyl, 2-methoxyethyl, -CH₂COOCH₃, -CH₂COOC₂H₅, -CH₂CONH₂, -CH₂CONHCH₃, or -CH₂COOH. R^3 is most preferably H or CH₃.

R is preferably 2-chlorophenyl, 2-fluorophenyl, 2-methoxyphenyl, 3-chlorophenyl, 2-chloro-3-hydroxyphenyl, 2-chloro-6-fluorophenyl, unsubstituted phenyl or 2,3-dichlorophenyl.

R¹ is preferably CH₃.

5

20

R² is preferably C₂H₅.

Y is preferably $-(CH_2)_2$ - or $-CH_2CH(CH_3)$ -.

"m" is preferably 1.

Most preferably, R is 2-chlorophenyl.

Most preferably, Y is $-(CH_2)_2$.

The most preferred compounds have the formula (I) wherein R is 2-chlorophenyl, R^1 is CH_3 , R^2 is C_2H_5 , R^3 is H or CH_3 , and Y is $-(CH_2)_2$.

The compounds of the formula (I) are primary or secondary amines and in one method they can be prepared by the removal of the amino-protecting group from the corresponding amino-protected dihydropyridines.

5 This general method can be illustrated in more detail as follows:-

(Q = an amino-protecting group and R, R^1 , R^2 , R^3 and Y are as defined for formula [I]);

$$\frac{OR}{OR}$$

$$\frac{OR}{CH_3}$$

$$\frac{CH_2-O-Y-N}{H}$$

$$\frac{Removal of protecting}{R}$$

$$\frac{Compound}{R}$$

$$\frac{R}{R}$$

$$\frac{R}{R}$$

 $[R, R^1, R^2]$ and Y are as defined for formula (I).

15

One preferred amino-protecting group is benzyl. It is typically removed by hydrogenation, using e.g. $\rm H_2/Pd$ on charcoal under acidic conditions in a suitable organic solvent, e.g.

methanol. The acidic conditions are preferably obtained by using compound (II) in the form of an organic acid addition salt, e.g. as an oxalate or acetate salt.

A typical procedure involving the removal of a benzyl group is as follows. Compound (II) as an oxalate salt in methanol is added to a suspension of 10% pre-hydrogenated palladium on charcoal in methanol, and the mixture is then stirred under hydrogen at 50 p.s.i. for up to about 18 hours, e.g. overnight, and at room temperature. If necessary, heating at up to about 60°C can be provided. The product can then be isolated and purified by conventional procedures.

5

10

15

20

When both Q and R³ are benzyl, hydrogenation under the above conditions normally only removes one of the benzyl groups. Further hydrogenation of the resulting monobenzyl product under the above conditions with fresh catalyst can then be used to remove the remaining benzyl group.

Many of the starting materials of the formula (II) in which Q is benzyl are described and claimed in our European patent application publication no. 0060674. Typical methods to the N-benzyl starting materials of the formula (II) are as follows:-

(a) The benzyl-protected intermediates (II) can be prepared by the Hantzsch synthesis, as follows:-

In a typical procedure, the ketoester (IV) and aldehyde are heated under reflux in a suitable organic solvent, e.g. a C₁-C₄ alkanol solvent such as ethanol, for about 15 minutes, and then the aminocrotonate (III) is added. Alternatively the aminocrotonate (III), ketoester (IV) and aldehyde can be heated together in the solvent. Preferably a small amount of a lower alkanoic acid such as acetic acid is added to neutralise the solution. The resulting solution can then be heated at 60°-130°C, preferably under reflux, until the reaction is essentially complete, typically in 24 hours or less. The product of the formula (II) can then be isolated and purified by conventional procedures.

5

10

Ş

The ketoesters (IV) are either known compounds or can be prepared by methods analogous to those of the prior art, such as the method illustrated in the Preparations hereinafter, which are essentially the method of Troostwijk and Kellogg, J. C. S. Chem.

Comm., 1977, page 932. Similarly the amino-crotonates (III) are either known compounds or can be prepared by conventional procedures. Also the aldehydes are either known or can be prepared by known methods.

(b) The benzyl-containing intermediates (II) can also be prepared by the following process:-

$$R^{1}OOC$$
 CH
 CH_{3}
 CH_{2}
 CH_{2}

The crotonate (VI) is typically prepared \underline{in} \underline{situ} by reaction of the corresponding acetoacetate (IV):-

with ammonium acetate, e.g. by refluxing in a suitable organic solvent, e.g. a C_1 - C_4 alkanol such as ethanol, for, say, up to an

hour. The crotonate (VI) is then reacted with compound (V), typically by heating in the solvent for up to about 5 hours at 60°C-130°C, e.g. under reflux. The product (II) can then be isolated and purified by conventional procedures.

The starting materials (V) are either known compounds or may be prepared by methods analogous to those of the prior art, see e.g. Can. J. Chem., 1967, 45, 1001.

The compounds of the formula (I) in which R³ is H can be prepared from the corresponding phthalimido derivatives according to conventional procedures, e.g.:-

or (c) an alkali metal hydroxide

followed by HCl or H_2 SO₄.

5

10

20

The preferred primary amine is methylamine. The preferred alkali metal hydroxide is potassium hydroxide.

The reaction using methylamine is typically carried out in ethanol at room temperature, with heating if necessary. The reaction using hydrazine hydrate is typically carried out in ethanol at the reflux temperature or below. The reaction using potassium hydroxide is typically carried out at room temperature

(although with heating if necessary) in tetrahydrofuran, following by the addition of the acid and heating at the reflux temperature or below. In all cases the product can be isolated conventionally.

The phthalimido starting materials can again be obtained conventionally, e.g.:-

(b)
$$\begin{array}{c}
R^{1} \text{OOC} \\
CH \\
CH_{3}
\end{array}$$

$$\begin{array}{c}
CH \\
R^{1} \text{OOC}
\end{array}$$

$$\begin{array}{c}
CH_{2} \\
CH_{2$$

. This is again the Hantzsch reaction.

Compounds of the formula (I) in which R³ is H can also be purified to very high levels by reacting them with phthalic anhydride to form the phthalimido derivatives which can then be converted back to the compounds in which R³ is H by the methods previously described.

5

10

To prepare compounds in which R³ is C₁-C₄ alkyl, -COOCH₂CCl₃ can be used as the amino-protecting group. This can be removed in a conventional manner using zinc and either formic or acetic acid. The N-protected starting materials necessary for this process can be prepared as follows:-

$$\sim_{\text{CH}_2-\text{O-Y-N}(C_1-C_4 \text{ alky1})_2} \underbrace{\text{C1.cooch}_2\text{CCl}_3}_{\text{C00ch}_2\text{CCl}_3} \xrightarrow{\text{Ch}_2-\text{O-Y-N-(C}_1-C_4 \text{ alky1)}}_{\text{c00ch}_2\text{CCl}_3}$$

OI

$$\begin{array}{c|c} \sim \text{CH}_2^{-O-Y-N-(C_1-C_4 \text{ alky1})} & \underline{\text{C1.COOCH}}_2\underline{\text{CC1}}_3 \\ & \downarrow \\ & \text{benzy1} \end{array}$$

Typically the reaction with 2,2,2-trichloroethyl

chloroformate is carried by heating the reactants at up to reflux temperature in e.g. toluene. Many of the dialkylamino and N-alkyl-N-benzylamino starting materials needed to prepared these N-protected intermediates are described and claimed in our corresponding European patent application publication no. 0060674, and others can be prepared analogously.

The compounds of the formula (I) where R^3 = H can also be obtained from the corresponding azido compounds, the azido group being convertable to -NH₂ by reduction, e.g. with triphenyl-phosphine, or zinc and hydrochloric acid, or H₂/Pd, under conventional conditions.

5

10

In a typical procedure using zinc dust, the reaction is carried out in methanol/aqueous hydrochloric acid. Heating is possible but is not generally necessary. Similarly hydrogenation can be carried out in e.g. methanol or ethanol in the presence of a catalyst such as Pd/CaCO₃ at room temperature.

Again the azido starting materials can be prepared by the Hantzsch synthesis under conditions similar to those previously described:-

$$R^{1}OOC$$
 C C C $COOR^{2}$ CH_{2} $COOR^{2}$ CH_{2} C

The azido-containing acetoacetates can also be obtained by conventional procedures:-

5

Similarly the azido starting materials can also be prepared analogously to route (b) above for preparing the N-benzyl starting materials.

Some of the compounds of the invention can be prepared from other compounds of the invention by conventional techniques, e.g.:-

The ability of the compounds to inhibit the movement of calcium into the cell is shown by their effectiveness in reducing the response of isolated heart tissue to an increase in calcium ion concentration in vitro. The test is performed by mounting spirally cut strips of rat aorta with one end fixed and the other attached to a force transducer. The tissue is immersed in a bath of physiological saline solution containing potassium ions at a concentration of 45 millimolar and no calcium. Calcium chloride is added to the bath with a pipette to give a final calcium ion concentration of 2 millimolar. The change in tension caused by the resulting contraction of the tissue is noted. The bath is drained and replaced with fresh saline solution and, after 45 minutes, the test is repeated with the particular compound under

5

10

test present in the saline solution. The concentration of compound required to reduce the response by 50% is recorded.

5

10

15

20

The antihypertensive activity of the compounds is also evaluated after oral administration by measuring the fall in blood pressure in spontaneously hypertensive rats or renally hypertensive dogs.

For administration to man in the curative or prophylactic treatment of cardiac conditions and hypertension, oral dosages of the compounds will be in the range of from 2-50 mg daily for an average adult patient (70 kg). Thus for a typical adult patient, individual tablets or capsules are likely to contain from 1 to 10 mg of active compound, in a suitable pharmaceutically acceptable vehicle or carrier. Dosages for intravenous administration would be within the range 1 to 10 mg per single dose as required.

In a further aspect the invention provides a pharmaceutical composition comprising a compound of the formula (I), or a pharmaceutically acceptable acid addition salt thereof, together with a pharmaceutically acceptable diluent or carrier.

The invention also provides a compound of the formula (I), or a pharmaceutically acceptable acid addition salt thereof, for use in treating ischaemic heart disease, especially angina, or hypertension, in a human being.

The following Examples illustrate the invention: all temperatures are in °C:-

Preparation of 4-(2-chloropheny1)-2-[2-(methylamino)ethoxymethy1]-3-ethoxycarbony1-5-methoxycarbony1-6-methyl-1,4-dihydropyridine, oxalate salt

5
$$CH_3OOC$$
 H
 $COOCH_2CH_3$
 $CH_2OCH_2CH_2$
 CH_2
 $CH_$

A solution of 2-[2-(N-benzyl-N-methylamino)ethoxymethyl]-4[2-chlorophenyl]-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4dihydropyridine, oxalate salt (4.3 g) in methanol (220 ml) was
added to a suspension of 10% (by weight) palladium on charcoal
(0.4 g) pre-hydrogenated in methanol (50 ml). Stirring under
hydrogen at 50 p.s.i. and room temperature overnight resulted in
complete removal of the benzyl group. After removal of the
catalyst by filtration, the methanol was removed by evaporation
and the residue crystallised from a little methanol to give the
title compound (2.4 g), m.p. 211°.

Analysis %:-

10

15

Calculated for C₂₁H₂₇ClN₂O₅.C₂H₂O₄ : C,53.85; H,5.70; N,5.46; Found : C,53.99; H,5.76; N,5.60.

The free base had a m.p. of 88-90° (from ether).

EXAMPLES 2 - 10

The following compounds were prepared similarly to the method described in Example 1 and were characterised in the form indicated, starting from the appropriate N-substituted dihydropyridine oxalate and $\rm H_2/Pd$. It should be noted that hydrogenation of the N,N-dibenzyl starting material in Example 8 produced the monobenzyl product which was in turn used as the starting material in Example 9.

5

	r				
ckets) N	7.09	5.60	6.56	5.57 5.46)	5.29 5.30)
Analysis % (Theoretical in brackets) C H	7.33	5.84	7.60	5.71 5.70	5.68
A (Theoret C	65.14 (64.93	55.35	63.87 (63.14	54.14 (53.85	52.14
(0°)	79-80	205-7	103-5	204-5	203-4
	frec base	oxalate	free base	oxalate	oxalate
E. W.	-c _H 3	-сн ₃	-cH ₃	-CH ₃	-cH ₃
æ	hq-	Et.	OCH	<u>a</u>	C1
Example No.	2	en .	4	٥	.

_				
kets) N	5.06 5.30)	4.86	5.34)	4.91 5.03)
Analysis % (Theoretical in brackets) C H	5.41	5.75	5.55	6.10
Ar (Theoret) C	52.03 (52.03	59.18 (59.13 ·	54.83	53.57 (53.91
m.p.	197-9	185	169	105-7
Form Characterised	oxalate	oxalate	maleate	oxalate
R 3	-chj	-Cil ₂ Ph	Ŧ	-си2сн2осн3
«	F C1	£	5	12
Example No.	,	. co	6	10

Preparation of 2-[(2-aminoethoxy)methy1]-4-(2-chloropheny1)-3ethoxycarbony1-5-methoxycarbony1-6-methy1-1,4-dihydropyridine maleate

5

10

15

20

2-Azidoethanol (3 g) was converted to ethyl 4-(2-azidoethoxy)acetoacetate similarly to the method described in Preparation 3 hereinafter using ethyl 4-chloroacetoacetate, and the crude ketoester (not characterised) was used in the Hantzsch reaction using the method described in Preparation 9, i.e. by reacting it with methyl 3-aminocrotonate and 2-chlorobenzaldehyde. The crude Hantzsch product (not characterised) dissolved in methanol (250 ml) and 3N hydrochloric acid (200 ml) was stirred on a water bath at room temperature while zinc dust (15 g) was added portionwise over 10 minutes. After stirring a further 10 minutes the solution was decanted from excess zinc, the methanol evaporated and the aqueous acid residue washed with toluene (100 ml), basified with concentrated ammonia and extracted with methylene chloride (2 \times 100 ml). The extracts were dried $(Na_{\gamma}CO_{\gamma})$, filtered and evaporated to dryness. The residue in toluene was chromatographed on a medium pressure column of silica

(T.L.C. grade, Merck "Kieselgel" [Trade Mark] 60H, 7 g) eluting initially with toluene, changing gradually to methylene chloride and then to methylene chloride plus 3% methanol. Appropriate fractions were combined and converted to the maleate salt in ethyl acetate. Recrystallisation from acetone and ethyl acetate (1:1) gave the title compound (maleate salt) (190 mg, 1% yield from 2-azido ethanol) as a white solid, m.p. 169°, identical by t.l.c. with the product obtained in Example 9.

5

15

EXAMPLE 12

Preparation of 2-[2-aminoethoxy)methy1]-4-(2-chloropheny1)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine maleate

A suspension of 2-(2-azidoethoxy)methyl-4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine (103 g) in ethanol (2.5 l) was stirred for 16 hours at room temperature under an atmosphere of hydrogen in the presence of 5% palladium on calcium carbonate (40 g). The reaction mixture was filtered and evaporated and the residue treated with a solution of maleic

acid (22 g) in ethanol (100 ml). The reaction mixture was stirred at room temperature for two hours and then the resulting solid collected, washed with ethanol, and dried to give the title compound (100 g), m.p. 169-170.5°.

5 Analysis %:-

Found:

C,54.82; H,5.62; N,5.46

 $^{\rm C}_{20}{}^{\rm H}_{25}{}^{\rm ClN}_{2}{}^{\rm O}_{5}.{}^{\rm C}_{4}{}^{\rm H}_{4}{}^{\rm O}_{4}$ requires: C,54.91; H,5.57; N,5.34.

EXAMPLES 13-15

The following compounds were prepared similarly to Example 12 from the appropriate azide and $\rm H_2/Pd:-$

Example No.	R	Form characterised	m.p. (°C)	Ana (Theoretic	alysis : cal in H	
13	cı cı	اع fumarate اع hydrate	171- 173		5.3 5.3	5.5 5.5)
14		fumarate 's hydrate	158- 168	57.6 (57.7	6.2	5.8 5.6)
15	F	fumarate	152	56.95 (56.68	6.02 5.75	5.93 5.5)

Methyl N-(2-{[4-(2,3-dichlorophenyl)-3-ethoxycarbonyl-5-methoxy-carbonyl-6-methyl-1,4-dihydropyrid-2-yl]methoxy}ethyl)aminoacetate

$$\begin{array}{c} \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{CM}_{2} \\ \text{COCC}_{2^{\text{H}}5} \\ \text{CH}_{2} \\ \text{COCC}_{2^{\text{H}}5} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{COCC}_{2^{\text{H}}5} \\ \text{C1} \\ \text{C1} \\ \text{COCC}_{2^{\text{H}}5} \\ \text{CH}_{3} \\ \text{C1} \\ \text{C1} \\ \text{COCC}_{2^{\text{H}}5} \\ \text{C2} \\ \text{C1} \\ \text{C1} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C4} \\ \text{C5} \\ \text{C6} \\ \text{C6} \\ \text{C7} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C2} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C1} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C1} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C2} \\ \text{C3} \\ \text{C4} \\ \text{C4} \\ \text{C4} \\ \text{C5} \\ \text{C6} \\ \text{C6} \\ \text{C7} \\ \text{C6} \\ \text{C7} \\ \text{C7} \\ \text{C7} \\ \text{C8} \\ \text{C8}$$

5

10

15

A solution of methyl bromoacetate (1.53 g) in acetonitrile (20 ml) was added dropwise over 30 minutes to a stirred, refluxing mixture of 2-[(2-aminoethoxy)methyl]-4-(2,3-dichlorophenyl)-3-ethoxycarbonyl-5- methoxycarbonyl-6-methyl-1,4-dihydropyridine (5.01 g) and potassium carbonate (2.76 g) in acetonitrile (60 ml). The mixture was then heated under reflux for 3 hours, filtered, and evaporated. The residue was partitioned between ethyl acetate and water and the organic layer washed with water, dried (Na₂SO₄), and evaporated. The residue was chromatographed on silica (t.l.c. grade Merck Kieselgel 60H, [Trade Mark] 40 g) eluting with dichloromethane plus 0-3% methanol. Appropriate fractions were combined and evaporated to give the title compound (2.10 g), m.p. 96-98°.

Analysis %:-

Found:

C,53.25; H,5.49; N,5.48;

 $^{\text{C}}_{23}^{\text{H}}_{28}^{\text{Cl}}_{2}^{\text{N}}_{2}^{\text{O}}_{7}$ requires: C,53.60; H,5.48; N,5.44.

EXAMPLES 17 AND 18

5 The following compounds were prepared by the method described in Example 16 using appropriate starting materials.

Example No.	 ₹3	m.p. (°C)	Analysis % or n.m.r. (Theoretical in brackets) C H N
17	-CH ₂ CO ₂ CH ₂ CH ₃	7880	58.26 6.30 5.65 (58.24 6.31 5.66)
18	-СЖ ₂ CO ₂ CH ₃	oil	n.m.r. (CDCl ₃). 7 values: 7.72 (1H, broad s); 6.96-7.51 (4H, m); 5.43 (1H, s); 4.78 (2H, s); 4.10 (2H, q); 3.78 (3H, s); 3.63 (3H, s); 3.3-3.7 (6H, m); 2.38 (3H, s); 1.20 (3H, t);

2-(2-{[4-(2-Chloropheny1)-3-ethoxycarbony1-5-methoxycarbony1-6-methy1-1,4-dihydropyrid-2-y1]methoxy}ethylamino)acetamide

5

10

15

Ethyl N-(2-{[4-(2-chlorophenyl)-3-ethoxycarbonyl-5-methoxy-carbonyl-6-methyl-1,4-dihydropyrid-2-yl]methoxy}ethyl)aminoacetate (2.50 g) in a mixture of ethanol (40 ml) and 0.880 aqueous ammonia (30 ml) was stirred at room temperature for four days and then evaporated. The residue was partitioned between ethyl acetate and water and the organic layer washed with water, dried (MgSO₄), and evaporated. The residue was chromatographed on silica (t.1.c. grade Merck Kieselgel 60H, [Trade Mark] 30 g) eluting with dichloromethane plus 0-5% methanol. Appropriate fractions were combined and evaporated. The residue was triturated with ethyl acetate and the resulting solid collected, washed with ethyl acetate, and dried to give the title compound (1.23 g), m.p. 126-129°.

Analysis %:-

Found:

C,56.78; H,6.06; N,8.68;

C₂₂H₂₈ClN₃O₆ requires: C,56.71; H,6.06; N,9.02.

EXAMPLE 20

5. The following compound was prepared by the method described in Example 19 using the same dihydropyridine and methylamine.

Example No.	R ³	m.p. (°C)	Analysis % or n.m.r. (Theoretical in brackets) C H N
20	-сн ₂ соинсн ₃	123- 124	57.80 6.55 8.73 (57.56 6.30 8.76)

N-(2-\frac{1}{4-(2-Chloropheny1)-3-ethoxycarbony1-5-methoxycarbony1-6methyl-1,4-dihydropyrid-2-y1]methoxy}ethyl)aminoacetic acid

A solution of methyl N-(2-{[4-(2-chlorophenyl)-3-ethoxy-carbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyrid-2-yl]methoxy} ethyl)aminoacetate (2.40 g) in dioxane (80 ml) was treated with lM aqueous sodium hydroxide solution (10 ml) and the mixture stirred at room temperature for 2 hours and then evaporated. The residue was purified by ion exchange chromatography (Bio-Rad AG 50W-X8, [Trade Mark], 200-400 mesh, cation form, 40 g) eluting with dioxane initially followed by 2% pyridine in water. Appropriate fractions were combined and evaporated to give the title compound as a herihydrate (0.56 g), m.p. 140-150° (decomp.).

Analysis %:-

5

10

15

Found: C,55.52; H,5.95; N,5.92;

 $c_{22}H_{27}CIN_2O_7._2H_2O$ requires: C,55.52; H,5.93; N,5.89.

PLC 338

Preparation of 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-3-ethoxy-carbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine maleate

Method A (using ethanolic methylamine)

5

10

15

4-(2-Chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-2-(2-phthalimidoethoxy)methyl-1,4-dihydropyridine (80 g) was stirred in 33% ethanolic methylamine solution (1067 ml) at room temperature for three hours. The solvent was then evaporated and the residue was slurried in industrial methylated spirits (300 ml) then filtered. To the filtrate was added maleic acid (17.4 g) and after stirring a precipitate was produced. This was collected by filtration and was washed with industrial methylated spirits.

The solid was crystallised from industrial methylated spirits (430

ml) and dried at 55° to give the title compound (38.4 g) as a white solid confirmed spectroscopically to be identical with the products of Examples 9 and 12.

Method B (using hydrazine hydrate)

5

10

15

20

25

4-(2-Chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-2-(2-phthalimidoethoxy)methyl-1,4-dihydropyridine (383 g) was stirred in refluxing ethanol containing hydrazine hydrate (106.7 g). After two hours, the reaction mixture was cooled and filtered. The filtrate was evaporated and the residue was dissolved in methylene chloride (2000 ml) and the solution was washed with water (2000 ml). The organic solution was evaporated and the residual oil was dissolved in industrial methylated spirit (1120 ml). To this solution was added maleic acid (82.5 g) and the resulting precipitate was collected, washed with industrial methylated spirit and dried at 55° to give the title compound (304 g) as a white solid, again confirmed spectroscopically to be the desired product.

Method C (using KOH followed by HCl).

4-(2-Chlorophenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-2-(2-phthalimidoethoxy)methyl-1,4-dihydropyridine (15 g) was dissolved in a mixture of tetrahydrofuran (150 ml) and water (100 ml) containing potassium hydroxide (3.13 g). After stirring at room temperature for 1.5 hours 2N hydrochloric acid (100 ml) was added and the resulting slurry was refluxed for 2.5 hours. The solution was extracted twice with methylene chloride (2 x 100

ml) and the combined extracts were dried (MgSO₄) and evaporated to leave an oil which was dissolved in industrial methylated spirits (57 ml). Maleic acid (3.24 g) was added and the resulting precipitate was collected, washed with industrial methylated spirits and dried at 55° to give the title compound (10.2 g) as an off-white solid, again confirmed spectroscopically to be the desired product.

EXAMPLE 23

Preparation of 4-(2-Chlorophenyl)-2-[2-(N-methylamino)ethoxy
methyl]-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4
dihydropyridine maleate

5

$$\begin{array}{c} \text{C1} \\ \text{CH}_{3}\text{O}_{2}\text{C} \\ \text{CH}_{3}\text{O}_{2}\text{C} \\ \text{CH}_{3}\text{O}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{3} \\ \text{CH}_{2}\text{OCH}_{2}\text{CH}_{2}\text{N-CH}_{3} \\ \text{CH}_{2}\text{Ph} \end{array}$$

A mixture of 2-[2-(N-benzyl-N-methylamino)ethoxymethyl]-4[2-chlorophenyl]-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine (4.8 g) and 2,2,2-trichloroethyl chloroformate
(2.7 g) was heated in toluene at reflux for 20 hours. After
cooling to room temperature, the mixture was stirred with 1N
hydrochloric acid (50 ml) and extracted with ether. The extracts

were evaporated to leave a crude oil (6.9 g) containing the corresponding 2-[2-(N-2,2,2-trichloroethoxycarbonyl-N-methyl-amino)ethoxymethyl] derivative.

5

10

15

The said oil (3.0 g) was dissolved in dimethylformamide (13.5 mi) and formic acid (0.5 g) and at 5° zinc (0.7 g) was added.

The mixture was allowed to warm to room temperature and kept for three days at this temperature. The reaction mixture was then decanted and poured into water (100 ml) and acidified to pH1 with concentrated hydrochloric acid. The aqueous solution was washed with n-hexane (50 ml) then 0.88 ammonia solution was added to give a precipitate. This was collected and dried before dissolving in ethyl acetate. Maleic acid (0.34 g) was added followed by ether. After trituration, the solid was collected and dried to give a solid confirmed by NMR and IR to be (apart from the salt form) identical to the product of Example 1.

EXAMPLE 24

Preparation of 4-(2-chlorophenyl)-2-[2-(N-methylamino)ethoxy-methyl]-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine maleate

4-[2-Chloropheny1]-2-[2-(N,N-dimethylamino)ethoxymethy1]-3-ethoxycarbony1-5-methoxycarbony1-6-methyl-1,4-dihydropyridine (147.6 g) and 2,2,2-trichloroethylchloroformate (98.7 g) were stirred together in refluxing toluene for 20 hours. The reaction mixture was then cooled to room temperature and 1N hydrochloric acid (1147 ml) was added. The mixture was extracted twice with ether (2 x 1147 ml) and the extracts were bulked and evaporated to leave a crude oil (201.6 g) containing the corresponding 2-[2-(N-2,2,2-trichloroethoxycarbonyI-N-methylamino)ethoxymethyl] derivative.

5

10

15

20

This oil (196 g) was dissolved in dimethylformamide (686 ml) and formic acid (35.5 g) and the mixture was cooled to 5°. Zinc (50.5 g) was added in portions over 20 minutes and then the mixture was stirred at room temperature for 90 hours. The reaction mixture was decanted, added to water (1500 ml), and then taken to pHl with concentrated hydrochloric acid. The aqueous solution was washed with n-hexane (500 ml) and the remaining aqueous phase was adjusted to pHl0 with 0.88 ammonia solution. The resulting mixture was granulated and the solid was collected and dried to give the crude product (138 g). This solid was dissolved in hot ethyl acetate containing maleic acid (37.1 g) and on cooling the title compound was obtained (82.3 g) as a white solid confirmed spectroscopically to be identical to the product of Example 23.

Preparation of 2-(2-aminoprop-1-oxymethyl)-4-(2-chlorophenyl)-3ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine hemifumarate hemihydrate

A mixture of ethyl 4-(2-azidoprop-l-oxy)acetoacetate (13.05 g), 2-chlorobenzaldehyde (8.3 g) and methyl 3-aminocrotonate (6.8 g) in methanol (80 ml) was heated under reflux for 19 hours,

reduced to half-volume, and then cooled overnight at -20°. The

resulting precipitate was collected, washed with a little cold

methanol, and dried to give 2-(2-azidoprop-l-oxymethyl)-3
ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine (4.0 g) as a pale yellow solid, m.p. 115°, characterised spectro
scopically.

A suspension of the above product (4.0 g) in methanol (100 ml) was stirred under one atmosphere of hydrogen at room temperature in the presence of palladium on calcium carbonate (1.0 g) for 18 hours. The mixture was then filtered through

"Solkafloc" (Trademark) and evaporated. The residue was dissolved in methanol (20 ml), treated with a warm solution of fumaric acid (1.00 g) in methanol (10 ml), and stored overnight at 0°. The resulting solid was collected, recrystallised from ethanol, and dried to give the title hemifumarate hemihydrate (2.4 g), m.p.

10 180-183°

Analysis %:-

Found:

C,56.46; H,6.63; N,5.68:

Calculated for C₂₁H₂₇ClN₂O₅.4₂C₄H₄O₄.4₃H₂O: C,56.38; H,6.17; N,5.72.

The following Preparations illustrate the preparation of certain starting materials. All temperatures are in °C:-

PREPARATION 1

Preparation of Ethyl 4-[2-(N-benzyl-N-methylamino)ethoxy]aceto-acetate

$$\begin{array}{c} \text{CH}_3\text{NCH}_2\text{CH}_2\text{OH}+\text{C1CH}_2\text{COCH}_2\text{CO}_2\text{C}_2\text{H}_5 \xrightarrow{\text{NaH}} \\ \text{CH}_2\text{Ph} \end{array} \\ \begin{array}{c} \text{CH}_3\text{NCH}_2\text{CH}_2\text{OCH}_2\text{COCH}_2\text{CO}_2\text{C}_2\text{H}_5 \\ \text{CH}_2\text{Ph} \end{array}$$

Sodium hydride (60% (by weight) in oil, 8 g) was stirred in dry tetrahydrofuran (THF) (100 ml) under nitrogen while 2-(N-benzyl-N-methylamino)ethanol (17 g) was added slowly. The warm mixture was stirred for I hour, then kept cool on a water bath at room temperature (20°) while a solution of ethyl 4-chloroacetoacetate (16.5 g) in dry THF (100 ml) was added dropwise over 3.5 hours. The mixture was stirred overnight at room temperature under nitrogen, then quenched with a little ethanol and poured onto ice (100 g) and concentrated hydrochloric acid (30 ml). The THF was removed by evaporation, and the residue 10 washed with light petroleum (b.p. 60-80°) to remove mineral oil. The residue was basified with solid sodium carbonate and extracted with ethyl acetate (200 ml and 100 ml). The combined extracts were dried (Na₂CO₃), filtered and evaporated to give the title compound as an oil (30 g), sufficiently pure for further use. N.m.r. spectrum in CDCl₃, & values: 7.27 (5H,s); 4.12 (2H,q); 4.06 (2H,s); 3.45-3.70 (6H,m); 2.61 (2H,t); 2.25 (3H,s); 1.23 (3H,t).

The following acetoacetates were prepared similarly to the

20 above, starting from the appropriate N-substituted 2-aminoethanol

and ethyl 4-chloroacetoacetate, and were used directly without

characterisation:-

 R^3 NCH₂CH₂OCH₂COCH₂CO₂C₂H₅ where $R^3 = -CH_2$ Ph or $-CH_2$ CH₂OCH₃. CH₂Ph

PREPARATION 2

Preparation of 2-[2-(N-benzyl-N-methylamino)ethoxymethyl]-4-(2-chloro-phenyl)-3-ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-di-hydropyridine, oxalate salt

Method (a)

5

10

Ethyl 4-[2-(N-benzyl-N-methylamino)ethoxy]acetoacetate (25 g), 2-chlorobenzaldehyde (11 g), methyl 3-aminocrotonate (9.1 g) and acetic acid (5 ml) in ethanol (100 ml) were mixed and heated under reflux for 3.5 hours. The cooled reaction mixture was then evaporated to dryness and the residue partitioned between 2N hydrochloric acid (200 ml) and methylene chloride (300 ml). The methylene chloride solution was washed with saturated sodium

carbonate solution (200 ml), dried (MgSO₄), filtered and evaporated to dryness. The residue in ether was treated with an excess of oxalic acid dissolved in ether to precipitate the crude product. The precipitate was recrystallised from methanol to give the title compound (6.5 g) as a white solid, m.p. 181°.

Analysis :-

5

15

Calculated for C₂₈H₃₃ClN₂O₅.C₂H₂O₄ : C,59.75; H,5.85; N,4.65 Found : C,59.42; H,5.85; N,4.39.

Method (b)

Ethyl 4-[2-(N-benzyl-N-methylamino)ethoxy]acetoacetate (141 g) and ammonium acetate (37.3 g) in ethanol (280 ml) were heated gently under reflux for 20 minutes. The methyl 2-(2-chlorobenzyl-idine) acetoacetate (115 g) was added and heating under reflux continued for 4 hours. The cooled reaction mixture was evaporated to dryness, re-dissolved in toluene (200 ml), and extracted with

2N hydrochloric acid (2 x 150 ml). The thick oily layer in the aqueous phase, and the aqueous phase itself, were extracted with methylene chloride (400 ml and 200 ml), and the combined extracts were washed with excess saturated sodium carbonate solution and dried (Na₂CO₃). The methylene chloride was removed by evaporation and the residue in toluene plus 20% petrol was filtered through a medium pressure column of silica (T.L.C. grade, Merck "Kieselgel" [Trade Mark] 60H, 100 g) eluting with toluene plus 20% petrol (500 ml) and then toluene (1 litre). The combined eluates were evaporated to dryness to give the crude title compound as the free base, an oil (177 g), sufficiently pure by t.l.c. for use in the subsequent hydrogenation step.

5

10

15

The following starting materials were also prepared similarly to (b) above, starting from the appropriate N-substituted acetoacetates and ammonium acetate, and were used directly without characterisation:-

$$\begin{array}{c} \text{CH}_3\text{OOC} \\ \text{CH}_3 \\ \text{CH}_3 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{CH}_2 \\ \text{Ph} \end{array} \qquad \begin{array}{c} \text{where } \mathbb{R}^3 = -\text{CH}_2 \\ \text{Ph} \\ \text{or} \\ -\text{CH}_2 \\ \text{CH}_2 \\ \text{OCH}_3 \\ \end{array}.$$

PREPARATION 3

2-(2-Azidoethoxy)methyl-4-(2-chlorophenyl)-3-ethoxycarbonyl-5methoxycarbonyl-6-methyl-1,4-dihydropyridine

5

10

15

A solution of 2-azidoethanol (160 g) in tetrahydrofuran (300 ml) was added over 40 minutes to a suspension of sodium hydride (114 g; 80% dispersion in oil) in tetrahydrofuran (500 ml). The mixture was stirred at room temperature for 1 hour, then cocled in ice water and treated dropwise with a solution of ethyl 4-chloro-acetoacetate (276 g) in tetrahydrofuran (250 ml) over 2 hours.

The mixture was stirred at room temperature for 16 hours, diluted with ethanol (150 ml), and the pH adjusted to 6-7 with 4M hydrochloric acid. Sufficient water was added to dissolve the solid present and the layers were separated. The organic layer was evaporated and the residue diluted with water (600 ml) and evaporated. The residue was partitioned between ethyl acetate and water and the aqueous layer extracted twice with ethyl acetate. The combined ethyl acetate extracts were dried (MgSO₄) and evaporated to give ethyl 4-(2-azidoethoxy)acetoacetate as a brown

oil, which was shown by g.l.c. to be 73% pure. A mixture of this crude product and ammonium acetate (92.3 g) in ethanol (600 ml) was heated under reflux for 1 hour, allowed to cool to room temperature, and treated with methyl 2-(2-chlorobenzylidene)
acetoacetate (286.6 g). The mixture was heated under reflux for 5.5 hours and then evaporated. The residue was stirred with methanol (2.5 l) for 16 hours and the resulting solid collected, washed twice with methanol, dried, and recrystallised from methanol to give the title compound (78 g), m.p. 145-146°.

10 Analysis %:-

Found:

C,55.39; H,5.37; N,13.01

Calculated for C₂₀H₂₃ClN₄O₅: C,55.23; H,5.33; N,12.88.

PREPARATIONS 4 TO 6

The following azides were prepared similarly to Preparation 3

from approxiate starting materials:-

Preparation No.	R	m.p. (°C)	Analysis % (Theoretical in brackets) C H N
4		141	50.88 4.78 11.73 (51.18 4.73 11.94)
5		124	59.64 6.11 13.98 (59.99 6.04 13.99)
6	F	129- 130	n.m.r. in CDC1 ₃ : δ = 7.14 (5H,m); 5.28(1H,s); 4.80(2H,s); 4.04(2H,q); 3.65(4H,m); 3.62(3H,s); 2.35(3H,s); 1.20(3H,t).

Preparation 7

Preparation of ethyl 4-[2-(phthalimido)ethoxy]acetoacetate

Sodium hydride (57% [by weight] in oil, 66.1 g) was stirred in dry tetrahydrofuran (500 ml) under nitrogen at -10° while N-(2-hydroxyethyl)phthalimide (150 g) was added. To this slurry

was added at -10° a solution of ethyl 4-chloroacetoacetate (129.3 g), in dry tetrahydrofuran, over 1 hour. The reaction mixture was then allowed to warm to room temperature and stirring was continued for 18 hours. This mixture was poured into 1N hydrochloric acid (800 ml) and ethyl acetate was added (750 ml). The aqueous layer was washed with ethyl acetate (300 ml) and the organic solutions were combined. After washing with water (300 ml), the ethyl acetate was evaporated to give the title compound as a crude oil (243 g), sufficiently pure for further use.

10 N.m.r. spectrum in CDCl₃, δ values: 7.80 (4H, m); 4.15 (2H, s);
4.10 (2H, q); 3.92 (2H, t); 3.78 (2H, t); 3.49 (2H, s); 1.22
(3H, t).

Preparation 8

Preparation of 4-(2-Chlorophenyl)-3-ethoxycarbonyl-5-methoxy-carbonyl-6-methyl-2-(2-phthalimidoethoxy)methyl-1,4-dihydro-pyridine

(A.) From 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-3ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine

2-[2-Aminoethoxy)methyl]-4-(2-chlorophenyl)-3-ethoxy
carbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine (2.0 g)

and phthalic anhydride (0.73 g) were stirred in refluxing acetic

acid (20 ml) for 2.5 hours. After cooling, the insoluble material

was collected and stirred in methanol (10 ml). Filtration gave

the title compound (1.0 g) as a white solid, m.p. 146-147°.

Analysis %:-

Found:

10

C,62.18; H,5.02; N,5.20

Calculated for $C_{28}H_{27}ClN_2O_7$: C,62.39; H,5.05; N,5.20.

(B.) From ethyl 4-[2-(phthalimido)ethoxy]acetoacetate

Ethyl 4-[2-(phthalimido)ethoxy]acetoacetate (200 g) was dissolved in isopropanol (1000 ml) and to this was added 2-chlorobenzaldehyde (88.1 g) and methyl 3-aminocrotonate (72.2 g). The mixture was refluxed for 21 hours then the methanol was evaporated to leave an oil which was dissolved in acetic acid (1000 ml). After granulating overnight, the precipitate was collected, washed with acetic acid then slurried in methanol (300

ml). Filtration gave the title compound the n.m.r. and ir of which were identical with those of the material prepared by part (A) above.

Preparation 9

Preparation of 2-(2-Azidoethoxy)methyl-4-(2-chlorophenyl)-3ethoxycarbonyl-5-methoxycarbonyl-6-methyl-1,4-dihydropyridine

Ethyl 4-(2-azidoethoxy)acetoacetate (46.4 g), prepared from 2-azidoethanol similarly to the method described in Preparation 3, was reacted with methyl 3-aminocrotonate (24.8 g) and 2-chlorobenzaldehyde (30.3 g) in methanol (150 ml) at reflux for 18 hours. After cooling to room temperature, the resulting solid was collected, washed twice with methanol and dried to give the

10

title compound (28 g). The product could be crystallised from methanol, acetone or ethyl acetate. It was used directly.

Preparation 10

Preparation of ethyl 4-(2-azidoprop-1-oxy)acetoacetate

- 5 (a) $CH_3CH(Br)CH_2OH + NaN_3 \longrightarrow CH_3CH(N_3)CH_2OH$
 - (b) CH₃CH(N₃)CH₂OH + C1CH₂COCH₂COOC₂H₅ 1) NaH ii) HC1

 $CH_3CH(N_3)CH_2OCH_2COCH_2COOC_2H_5$

10

A mixture of 2-bromopropan-1-ol (J. Am. Chem. Soc., 7681, 96, [1974]) (19.75 g) and sodium azide (10.0 g) was heated on a steam-bath for four days, allowed to cool to room temperature, and then washed four times with ether. The combined ether washings were filtered and evaporated to give 2-azidopropan-1-ol (12.3 g) as a pale brown oil which was shown by g.l.c. to be 98% pure.

A solution of the 2-azidopropan-1-ol (10.1 g) in

tetrahydrofuran (100 ml) was added over two minutes to a stirred,
ice-cooled suspension of sodium hydride (6.6 g; 80% dispersion in
oil) in tetrahydrofuran (50 ml). The mixture was stirred for 15
minutes with ice-cooling and then treated over 20 minutes with a
solution of ethyl 4-chloroacetoacetate (16.4 g) in tetrahydrofuran
(150 ml). The mixture was stirred at room temperature for 16
hours and evaporated. The residue was diluted with water, washed

twice with ether, acidified with 2M hydrochloric acid, and extracted three times into ether. The combined ether extracts were dried (Na₂SO₄) and evaporated to give crude ethyl 4-(2-azidoprop-1-oxy)acetoacetate (20 g), used directly.

Activity Data

The molar concentration of the compounds required to reduce the response by 50% in the test specified on pages 14-15 is given below (IC₅₀ values) (IM = 1 gm.mole/litre). The smaller the concentration the more active the compound, i.e., the most active compounds are the products of Examples 1, 9, 11, 12, 22, 23 and 24.

IC₅₀ Values

	Compound	<u>ic</u> 50
	Product of Example 1	$3.2 \times 10^{-9} M$
10	Product of Example 2	$3.2 \times 10^{-8} \text{ M}$
	Product of Example 3	2 x 10 ⁻⁸ M
	Product of Example 4	6.3 x 10 ⁻⁸ M
	Product of Example 5	$4 \times 10^{-8} \text{ M}$
	Product of Example 6	$2 \times 10^{-7} M$
15	Product of Example 7	$1.3 \times 10^{-8} M$
	Product of Example 8	5 x 10 ⁻⁸ M
	Product of Example 9	$3.2 \times 10^{-9} \text{ M}$
	- Product of Example 10	2.5 x 10 ⁻⁸ M
	Product of Example 11	$3.2 \times 10^{-9} \text{ M}$
20	Product of Example 12	$3.2 \times 10^{-9} M$
	Product of Example 13	$6.3 \times 10^{-9} M$
٠	Product of Example 14	$1.6 \times 10^{-7} M$
	Product of Example 15	$1.8 \times 10^{-8} M$
	Product of Example 19	$4 \times 10^{-9} M$
25	Product of Example 20	$2.2 \times 10^{-8} M$
	Product of Example 22	$3.2 \times 10^{-9} \text{ M}$
	Product of Example 23	$3.2 \times 10^{-9} \text{ M}$
	Product of Example 24	$3.2 \times 10^{-9} \text{ M}$
		PLC 338

CLAIMS

1. A dihydropyridine of the formula:-

or a pharmaceutically acceptable acid addition salt thereof wherein Y is $-(CH_2)_2$ -, $-(CH_2)_3$ -, $-CH_2CH(CH_3)$ - or $-CH_2C(CH_3)_2$ -; R is aryl or heteroaryl; R¹ and R² are each independently C_1 - C_4 alkyl or 2-methoxyethyl; R³ is hydrogen, C_1 - C_4 alkyl, 2- $(C_1$ - C_4 alkoxy)ethyl,

and R^3 is hydrogen, C_1 - C_4 alkyl, 2- $(C_1$ - C_4 alkoxy)ethyl, cyclopropylmethyl, benzyl, or $-(CH_2)_m COR^4$ where m is 1, 2 or 3 and R^4 is hydroxy, C_1 - C_4 alkoxy or $-NR^5R^6$ where R^5 and R^6 are each independently hydrogen or C_1 - C_4 alkyl.

2. A compound as claimed in claim 1, wherein (a) said aryl group is a phenyl group optionally substituted by one or two substituents selected from nitro, halo, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, hydroxy, trifluoromethyl, and cyano, or is a 1- or 2-naphthyl group, and (b) said heteroaryl group is benzofuranyl; benzothienyl; pyridyl optionally monosubstituted by methyl or cyano; quinolyl; benzoxazolyl; benthiazolyl; furyl; pyrimidinyl; thiazolyl; 2,1,3-benzoxadiazol-4-yl; 2,1,3-benzthiadiazol-4-yl; or thienyl optionally monosubstituted by halo or C_1 - C_4 alkyl.

- 3. A compound as claimed in claim 1 or 2, wherein R is phenyl, 2-chlorophenyl, 2-fluorophenyl, 2-methoxyphenyl, 3-chlorophenyl, 2-chloro-3-hydroxyphenyl, 2-chloro-6-fluorophenyl, or 2,3-dichlorophenyl.
- 4. A compound as claimed in any one of the preceding claims, wherein Y is $-(CH_2)_2$ or $-CH_2CH(CH_3)$ -.
- 5. A compound as claimed in any one of the preceding claims, wherein R^3 is H, CH_3 , benzyl, 2-methoxyethyl, $-CH_2COOCH_3$, $-CH_2COOC_2H_5$, $-CH_2CONH_2$, $-CH_2CONHCH_3$ or $-CH_2COOH$.
- 6. A compound as claimed in claim 5, wherein \mathbb{R}^3 is H or CH_3 .
- 7. A compound as claimed in claim 1, wherein R is 2-chlorophenyl, R^1 is CH_3 , R^2 is C_2H_5 , Y is $-(CH_2)_2$ and R^3 is H or CH_3 .
- 8. A compound as claimed in any one of the preceding claims, which is in the form of a maleate salt.
- 9. A pharmaceutical composition comprising a compound of the formula (I) or a pharmaceutically acceptable acid addition salt thereof together with a pharmaceutically acceptable diluent or carrier.
- 10. A compound of the formula (I) or a pharmaceutically acceptable acid addition salt thereof as claimed in any one of claims 1 to 8, for use in treating ischaemic heart disease, especially angina, or hypertension, in a human being.

CLAIMS FOR AUSTRIA

1. A process for the preparation of a 1,4-dihydropyridine of the formula:-

$$R^{1}$$
coc H R $COOR^{2}$ --- (I)

 CH_{3} CH_{2} -O-Y-NHR³

or a pharmaceutically acceptable acid addition salt thereof,

wherein Y is $-(CH_2)_2$ -, $-(CH_2)_3$ -, $-CH_2CH(CH_3)$ - or $-CH_2C(CH_3)_2$ -;

R is aryl or heteroaryl;

R¹ and R² are each independently C_1 - C_4 alkyl or 2-methoxyethyl;

and R^3 is hydrogen, C_1-C_4 alkyl, $2-(C_1-C_4$ alkoxy)ethyl, cyclopropylmethyl, benzyl, or $-(CH_2)_mCOR^4$ where m is 1, 2 or 3 and R^4 is hydroxy, C_1-C_4 alkoxy or $-NR^5R^6$ where R^5 and R^6 are each independently hydrogen or C_1-C_4 alkyl,

characterised by the removal of the amino-protecting group from an amino-protected 1,4-dihydropyridine of the formula:-

$$R^{1}OOC$$
 H
 $R^{1}OOC$
 CH_{3}
 H
 $CH_{2}-O-Y-X$
 CH_{3}
 H
 $CH_{2}-O-Y-X$

where R, R¹, R² and Y are as defined above, and X is, as appropriate, a protected primary or secondary amino group, said secondary amino group having the formula -NHR³ where R³ is as defined for formula (I) except for hydrogen, said process being followed by, optionally, one or more of the following steps:-

- (a) conversion of a compound of the formula (I) in which R³ is H into a compound of the formula (I) in which R³ is $-(CH_2)_mCOO(C_1-C_4 \text{ alkyl}) \text{ where m is 1, 2 or 3 by reaction with a compound of the formula Hal-(CH₂)_m COO(C₁-C₄ alkyl) where "Hal" is Cl or Br;$
- (b) conversion of a compound of the formula (I) in which R^3 is $-(CH_2)_m$ $COO(C_1-C_4$ alkyl) where m is 1, 2 or 3 into a compound of the formula (I) in which R^3 is $-(CH_2)_m$ COOH or $-(CH_2)_m$ CONR⁵R⁶, m, R⁵ and R⁶ being as defined for formula (I), by, respectively, hydrolysis or reaction with an amine of the formula R^5R^6NH ; and
- (c) conversion of a compound of the formula (I) into a pharmaceutically acceptable acid addition salt by reaction with a non-toxic acid.
- 2. A process according to claim 1, wherein X is $-NR^3$ (benzy1) where R^3 is as defined for formula (I), $-NR^3$ (CQOCH₂CCl₃) where R^3 is C_1-C_4 alkyl, or a group of the formula:-

- 3. A process according to claim 2, wherein X is -NR³(benzyl), said benzyl group being removed by treating compound (IA) with hydrogen.
- 4. A process according to claim 3, which is carried out in the presence of a palladium catalyst under acidic conditions.
- 5. A process according to claim 2, wherein X is

 -NR³(COOCH₂CCl₃) and said -COOCH₂CCl₃ group is removed by

 treatment of the compound (IA) with zinc in formic or acetic acid.
- 6. A process according to claim 1, wherein X is a group of the formula:

, the phthaloyl group being removed by
$$0$$

treating compound (IA) with either (a) a primary amine (b)
hydrazine hydrate or (c) an alkali metal hydroxide and then with
hydrochloric or sulphuric acid.

- 7. A process according to claim 6, wherein said primary amine is methylamine, and said alkali metal hydroxide is potassium hydroxide.
- 8. A process for the prepartion of a 1,4-dihydropyridine of the formula:-

$$R^{1}OOC$$
 CH_{3}
 H
 $CH_{2}-O-Y-NHR^{3}$
 $---$ (I)

or a pharmaceutically acceptable acid addition salt thereof,
wherein Y is -(CH₂)₂-, -(CH₂)₃-, -CH₂CH(CH₃)- or -CH₂C(CH₃)₂-;
R is aryl or heteroaryl;
R¹ and R² are each independently C₁-C₄ alkyl or
2-methoxyethyl;
and R³ is H or -(CH₂)_mCOR⁴ where m is 1, 2 or 3
and R⁴ is hydroxy, C₁-C₄ alkoxy or -NR⁵R⁶ where R⁵ and R⁶
are each independently hydrogen or C₁-C₄ alkyl,

characterise by reducing an azido compound of the formula:-

where R, R^1 , R^2 and Y are as defined for formula (I) so as to produce a compound of the formula (I) in which R^3 is H, said process being followed by, optionally, one or more of the following steps:-

- (a) conversion of a compound of the formula (I) in which R^3 is H into a compound of the formula (I) in which R^3 is $-(CH_2)_m COO(C_1-C_4 \text{ alkyl}) \text{ where m is 1, 2 or 3 by reaction with a compound of the formula <math>Hal-(CH_2)_m COO(C_1-C_4 \text{ alkyl}) \text{ where } Hal' \text{ is Cl or Br;}$
- (b) conversion of a compound of the formula (I) in which R^3 is $-(CH_2)_m \ \ COO(C_1-C_4 \ alkyl) \ where m is 1, 2 or 3 into a compound of the formula (I) in which <math>R^3$ is $-(CH_2)_m \ COOH \ or <math display="block">-(CH_2)_m \ CNR^5 R^6, \ m, \ R^5 \ and \ R^6 \ being as defined for formula$

- (I), by, respectively, hydrolysis or reaction with an amine of the formula ${\rm R}^5{\rm R}^6{\rm NH}$; and
- (c) conversion of a compound of the formula (I) into a pharmaceutically acceptable acid addition salt by reaction with a non-toxic acid.
- A process according to claim 8, wherein the reduction is carried out with hydrogen.
- 10. A process according to claim 9, wherein the hydrogenation is carried out in the presence of a palladium catalyst.
- 11. A process according to claim 8, wherein the reduction is carried out with zinc and hydrochloric acid.
- 12. A process according to any one of claims 1 to 7, characterised in that it is used to prepared compounds of the formula (I) in which R is 2-chlorophenyl, R^1 is CH_3 , R^2 is C_2H_5 , Y is $-(CH_2)_2$ and R^3 is H or CH_3 .
- 13. A process according to any one of claims 8 to 11, characterised in that it is used to prepare compounds of the formula (I) in which R is 2-chlorophenyl, R^1 is CH_3 , R^2 is C_2H_5 , Y is $-(CH_2)_2$ and R^3 is H.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.