	Таблица производных	Таблица интегралов
1	$(C)' = 0, x' = 1, (x^2)' = 2x$	$\int dx = x + C$
2	$(x^a)' = ax^{a-1}$	$\int x^a dx = \frac{x^{a+1}}{a+1} + C, \qquad a \neq -1$
3	$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}, \qquad \left(\frac{1}{x}\right)' = -\frac{1}{x^2}$	$\int \frac{dx}{\sqrt{x}} = 2\sqrt{x} + C, \qquad \int \frac{dx}{x^2} = -\frac{1}{x} + C$
4	$(a^x)' = a^x \ln a, \ (e^x)' = e^x$	$\int a^x dx = \frac{a^x}{\ln a} + C, \qquad \int e^x dx = e^x + C$
5	$(\log_a x)' = \frac{1}{x \ln a'}, (\ln x)' = \frac{1}{x}$	$\int \frac{dx}{x} = \ln x + C$
6	$(\sin x)' = \cos x$	$\int \cos x \ dx = \sin x + C$
7	$(\cos x)' = -\sin x$	$\int \sin x \ dx = -\cos x + C$
8	$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$	$\int \frac{dx}{\cos^2 x} = \operatorname{tg} x + C$
9	$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$	$\int \frac{dx}{\sin^2 x} = -\operatorname{ctg} x + C$
10	$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}},$ $(\arccos x)' = -\frac{1}{\sqrt{1 - x^2}}$	$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin\frac{x}{a} + C$
11	$(\operatorname{arctg} x)' = \frac{1}{1+x^2}, (\operatorname{arcctg} x)' = -\frac{1}{1+x^2}$	$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \operatorname{arctg} \frac{x}{a} + C$
12	$(\operatorname{sh} x)' = \operatorname{ch} x$	$\int \operatorname{ch} x \ dx = \operatorname{sh} x + C$
13	$(\operatorname{ch} x)' = \operatorname{sh} x$	$\int \operatorname{sh} x dx = \operatorname{ch} x + C$
14	$(\operatorname{th} x)' = \frac{1}{\operatorname{ch}^2 x}$	$\int \frac{dx}{\cosh^2 x} = \tanh x + C$
15	$(\operatorname{cth} x)' = -\frac{1}{\operatorname{sh}^2 x}$	$\int \frac{dx}{\sinh^2 x} = -\coth x + C$
16	$(\operatorname{arsh} x)' = \frac{1}{\sqrt{x^2 + 1}}$	$\int \frac{dx}{\sqrt{x^2 + a^2}} = \ln\left x + \sqrt{x^2 + a^2}\right + C = \operatorname{arsh}\frac{x}{a} + C$
17	$(\operatorname{arch} x)' = \frac{1}{\sqrt{x^2 - 1}}$	$\int \frac{dx}{\sqrt{x^2 - a^2}} = \ln\left x + \sqrt{x^2 - a^2}\right + C = \operatorname{arch}\frac{x}{a} + C$
18	$(\operatorname{arth} x)' = (\operatorname{arcth} x)' = \frac{1}{1 - x^2}$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$