Physics of the Early Universe (SC1.415) IIIT-H, Semester Monsoon 24, Assignment 3:

Submission deadline: 21st November 2024

 $Submit\ codes\ also.$

1. Calculate the age of the universe in years in the Λ CDM model using the following density parameters measured by the Planck experiment

$$\Omega_{\Lambda}^{0} = 0.6911$$
, $\Omega_{K} = 0$, $\Omega_{M}^{0} = 0.308$, $\Omega_{R}^{0} = 10^{-5}$.

Hint: The Λ CDM model lecture note has been uploaded with some notational changes and updated numbers.

2. The number density of photon between frequency ν and $\nu + d\nu$ in thermal equilibrium at temperature T is given by the Planck's distribution formula

$$n_T(\nu)d\nu = \frac{8\pi\nu^2}{c^3} \frac{d\nu}{\exp(h\nu/k_BT) - 1} .$$

Make a plot of energy density between ν and $\nu + d\nu$ as a function of frequency ν for different temperatures T. Hint: Unlike in the class note, the speed of light c is explicitly kept. The numerical values of different parameters can be found in the notes or the internet.

3. During the recombination process the ionization fraction is given as

$$X = \frac{-1 + \sqrt{1 + 4S}}{2S}, \quad S = n_{\gamma} \eta \left(\frac{m_e k_B T}{2\pi \hbar^2}\right)^{-3/2} \exp\left(\frac{B_1}{k_B T}\right) \tag{1}$$

where n_{γ} is the number density of photons at equilibrium temperature T. Make the following two plots: a) the isonization fraction X as a function of T, and b) the isonization fraction X as a function of T. Calculate the temperature and redshift at which X = 1/2.

4. Using the redshift $z_{\text{dec}} = 1090$ at the time of decoupling obtain the *i*) horizon distance of light d_{hor} and *i*) the horizon distance of soundwave d_{hor}^S . Calculate the angular diameter distance subtended by d_{hor} and d_{hor}^S at the present universe. If two points in the CMB makes an angle θ in the present universe, then show that if the angle $\theta > 1.9^o$ then the two points are not causally connected.