

General Description

The AMS1117-ADJ and AMS1117-1.2,-1.5,-1.8,-2.5,-2.85, -3.3 and-5 are low dropout three-terminal regulators with 1A output current capability. These devices have been optimized for low voltage where transient response and minimum input voltage are critical. The 2.85V version is designed specifically to be used in Active Terminators for SCSI bus.

On-chip thermal limiting provides protection against any combination of overload and ambient temperatures that would create excessive junction temperatures.

Unlike PNP type regulators where up to 10% of the output current is wasted as quiescent current, the quiescent current of the AMS1117 flows into the load, increasing efficiency.

The AMS1117 series regulators are available in the industry-standard SOT-223 and TO-252 power packages.

Key Features

- Low dropout voltage
- Load regulation: 0.2% typical
- Optimized for Low Voltage
- On-chip thermal limiting
- Standard SOT-223 and TO-252 packages
- Three-terminal adjustable or fixed low dropout 1.2V,1.5V,1.8V, 2.5V, 2.85V, 3.3V, 5V. Regulators

Applications

- Active SCSI terminators
- High efficiency linear regulators
- Post regulators for switching supplies
- Battery chargers
- 12V to 5V linear regulators
- -Motherboard clock supplies

Typical Application

Figure 1. Typical Applications of AMS1117

Notice: The distance between Vout pin and Capacitor should not exceed 4cm for excellent performance

Pin Assignments

Figure 2. Pin Assignments of AMS1117

Absolute Maximum Ratings

Parameter	Min.	Max.	Unit
$V_{\scriptscriptstyle \rm IN}$		18	V
$(V_{\scriptscriptstyle \mathrm{IN}} - V_{\scriptscriptstyle \mathrm{OUT}}) * I_{\scriptscriptstyle \mathrm{OUT}}$		See Figure 3	
Operating Junction Temperature Range	-20	125	°C
Storage Temperature Range	-65	150	°C
Lead Temperature (Soldering, 10 sec.)		300	°C

^{*}With package soldered to 0.5 square inch copper area over backside ground plane or internal power plane, Θ_{JA} can vary from 30°C/W to more than 50°C/W. Other mounting techniques may provide better thermal resistance than 30°C/W.

Block Diagram

Figure 3. Block Diagram of AMS1117

Electrical Characteristic

Typicals and limits appearing in normal type apply for T_J =25 °C. Limits appearing in Boldface type apply over the entire junction temperature for operation, -20 °C to 125 °C.

Symbol	Parameter	Conditions		Min (Note 2)	Typ (Note 1)	Max (Note 2)	Units	
V_{REF}	Reference Voltage	1.5V<	AMS1117 1.5V<=(V _{IN} -V _{OUT})<=7V,10mA<=I _{OUT} <=1A		1.250	1.275	V	
	V _{OUT} Output Voltage		$I_{OUT} = 10 \text{mA}, V_{IN} = 3.2 \text{V}$ AMS1117-1.2 ,2.7V<= V_{IN} <=8.2V	1.176 1.152	1.200 1.200	1.224 1.248	V	
				AMS1117-1.5 ,3.0V $=$ V_N $<=8.5V$	1.470	1.500	1.530	V
				AMS1117-1.8 ,3.3V \leq = $V_N \leq$ =8.8V	1.764	1.800	1.836	V
V_{OUT}		$I_{OUT} \le 1A$ AMS1117-2.85, 4.35V $\le V_{IN} \le 1$	AMS1117-2.5 ,4V<= V_N <= 9.5V	2.450	2.500	2.550	V	
			AMS1117-2.85 , $4.35V \le V_{IN} \le 9.85V$	2.793	2.850	2.907	V	
			AMS1117-3.3 , $4.8V \le V_N \le 10.3V$	3.234	3.300	3.366	V	
			AMS1117-5.0,6.5V $\leq V_N \leq 12V$	4.900	5.000	5.100	V	

Electrical Characteristic (Continued)

Typicals and limits appearing in normal type apply for T_J =25 °C. Limits appearing in Boldface type apply over the entire junction temperature for operation, -20 °C to 125 °C.

Symbol	Parameter	Conditions	Min (Note 2)	Typ (Note 1)	Max (Note 2)	Units
	Line Regultion (Note 3)	$I_{OUT}=10\text{mA}, (V_{OUT}+1.5V) \le V_{IN} \le 12V$		0.035	0.2	%
$\triangle V_{OUT}$	Land Damilting	$V_{IN}-V_{OUT}=2V,10mA \le I_{OUT} \le 1A,$		0.2	0.7	%
	Load Regultion (Note 3)	AMS1117-1.2 $V_{IN}-V_{OUT}=2V,10mA \le I_{OUT} \le 1A,$		0.2	1	%
V_{IN} - V_{OUT}	Dropout Volage	I_{OUT} =1A, $\triangle V_{REF}$ =1%		1.100	1.250	V
	Current Limit	V_{IN} - V_{OUT} = 2V, T,=25°C	1.1	1.5		A
	Minimum Load Current (Note 4)	AMS1117-ADJ 1.5V<= $(V_{IN}-V_{OUT})$ <=10V	10			mA
	Quiescent Curent	$V_{IN}=V_{OUT}+1.25V$		5	13	mA
	Thermal Regulation	$T_A = 25$ °C, 30ms pulse		0.01	0.1	%/W
$ m I_{Limit}$	Ripple Rejection	$f=120Hz, V_{IN}-V_{OUT}=3V, V_{Ripple}=1V_{PP}$	60	72		dB
	Adjust Pin Current			50	120	μΑ
	Adjust Pin Current Change	1.5V<=V _{IN} -V _{OUT} <=7V, 10mA<=I _{OUT} <=1A		0.2	5	μА
	Temperature Stability			0.5		%
	Long Term Stability	T _A = 125°C, 1000hrs.		0.3		%

Electrical Characteristic (Continued)

Typicals and limits appearing in normal type apply for T_J =25 °C. Limits appearing in Boldface type apply over the entire junction temperature for operation, -20 °C to 125 °C.

Symbol	Parameter	Conditions	Min (Note 2)	Typ (Note 1)	Max (Note 2)	Units
	RMS Output Noise(% of V_{OUT})	$T_A = 25$ °C, 10 Hz $<= f <= 10$ kHz		0.003		%
	Thermal Resistance, Junction to Case	SOT-223		15		°C/W
I_{Limit}		TO-252		3		°C/W
	Thermal Shutdown	Junction Temperature		155		$^{\circ}$
	Thermal Shutdown Hysteresis			25		$^{\circ}\!$

Note 1: Typical Values represent the most likely parametric norm.

Note 2: All limits are guaranteed by testing or statistical analysis.

Note 3: Load and line regulation are measured at constant junction room temperature.

Note 4: The minimum output current required to maintain regulation.

Typical Performance Characteristics

Figure 4. Dropout Voltage VS. Output Current

Typical Performance Characteristics

Figure 5. Reference Voltage VS. Temperature

(Continued)

Figure 6. Output Voltage VS. Temperature

Figure 7. Minimum Load Current VS. Temperature

Figure 8. ADJ Pin Current VS. Temperature

Mechanical Dimensions

4-Lead SOT-223 Package

C	Inc	hes	Millimeters		Nadan
Symbol	Min.	Max.	Min.	Max.	Notes
A	Ñ	. 071	Ñ	1.80	
A1	Ñ	. 181	Ñ	4.80	
В	. 025	. 033	. 064	. 840	
c	Ñ	0.90	Ñ	2.29	
D	. 248	. 264	6.30	6.71	
Е	. 130	. 148	3.30	3.71	
e	. 115	. 124	2.95	3.15	
F	. 033	. 041	. 840	1.04	
Н	. 264	. 287	6.71	7.29	
I	. 0121	Ñ	. 310	Ñ	
J	Ñ	10°	Ñ	10°	
K	10°	16°	10°	16°	
L	. 0008	. 0040	. 0203	. 1018	
M	10°	16°	10°	16°	
N	. 010	. 014	. 250	. 360	

Figure 9. 4-Lead SOT-223 Package

Mechanical Dimensions (Continued)

3-Lead TO-252 Package

G . 1. 1	Inc	ches	Millimeters		Millimeters		NT
Symbol	Min.	Max.	Min.	Max.	Notes		
A	. 086	. 094	2.19	2.39			
b	. 025	. 035	0.64	0.89			
b2	. 030	. 045	0.76	1.14			
b3	. 205	. 215	5.12	5.46	4		
с	. 018	. 024	0.46	0.61			
c2	. 018	. 023	0.46	0.58			
D	. 210	. 245	5.33	6.22	1		
Е	. 250	. 265	6.35	6.73	1		
e	. 090 BSC		2.29	BSC			
Н	. 370	. 410	9.40	10.41			
L	. 055	. 070	1.40	1.78	3		
L1	. 108	REF	2.74 REF				
L3	. 035	. 080	0.89	2.03	4		
L4	. 025	. 040	0.64	1.02			

Notes:

- 1. Dimensions are exclusive of mold flash, metal burrs or interlead protrusion.
- 2. Stand off-height is measured from lead tip with ref. to Datum –B-.
- 3. Foot length is measured with ref. to Datum -A- with lead surface.
- 4. Thermal pad contour optional within dimension b3 and L3.
- 5. Formed leads to be planar with respect to one another at seating place –C-.
 - 6. Dimensions and tolerances.

Figure 10. 3-Lead TO-252 Package

Ordering Information

Package	Temperature Range	Part Number	Output Voltage	Packing Marking	Transport Media
	-20℃ - +125℃	AMS1117-1.2	1.2V	AMS1117 1.2	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-1.5	1.5V	AMS1117 1.5	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-1.8	1.8V	AMS1117 1.8	2.5K Tape and Reel
SOT-223	-20°C - +125°C	AMS1117-2.5	2.5V	AMS1117 2.5	2.5K Tape and Reel
501 223	-20°C - +125°C	AMS1117-2.85	2.85V	AMS1117 2.8	2.5K Tape and Reel
	-20℃ - +125℃	AMS1117-3.3	3.3V	AMS1117 3.3	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-5	5V	AMS1117 5	2.5K Tape and Reel
	-20°C - +125°C	AMS1117	Adjust	AMS1117	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-1.2	1.2V	AMS1117 1.2	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-1.5	1.5V	AMS1117 1.5	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-1.8	1.8V	AMS1117 1.8	2.5K Tape and Reel
TO 252	-20°C - +125°C	AMS1117-2.5	2.5V	AMS1117 2.5	2.5K Tape and Reel
TO-252	-20°C - +125°C	AMS1117-2.85	2.85V	AMS1117 2.8	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-3.3	3.3V	AMS1117 3.3	2.5K Tape and Reel
	-20°C - +125°C	AMS1117-5	5.0V	AMS1117 5	2.5K Tape and Reel
	-20℃ - +125℃	AMS1117CD	Adjust	AMS1117CD	2.5K Tape and Reel

Advanced Monolithic Systems

http://www.ams-semitech.com

Disclaimer:

- AMS reserves the right to make changes to the information herein for the improvement of the design and performance
 without further notice! Customers should obtain the latest relevant information before placing orders and should verify
 that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using AMS products
 in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety
 standards strictly and take essential measures to avoid situations in which a malfunction or failure of such AMS products
 could cause loss of body injury or damage to property.
- AMS will supply the best possible product for customers!

The "\$" logo is a registered trademark of Advanced Monolithic Systems.

All other company and product names are trademarks of their respective owners