Variational Inference via a Joint Latent Variable Model with Common Information Extraction

J. Jon Ryu¹, Young-Han Kim¹, Yoojin Choi², Mostafa El-Khamy², Jungwon Lee², Dept. of ECE, UCSD¹, SoC R&D, Samsung Semiconductor Inc.² {jongharyu,yhk}@ucsd.edu, {yoojin.c,mostafa.e,jungwon2.lee}@samsung.com

SANSUNG

Motivation: distributed simulation

- Given $q(\mathbf{x}, \mathbf{y})$, two distributed agents wish to generate \mathbf{X} and \mathbf{Y} separately from a shared common randomness and individual local randomnesses
- The least amount of common randomness: Wyner's common information

$$J(\mathbf{X}; \mathbf{Y}) = \min_{\mathbf{X} - \mathbf{Z} - \mathbf{Y}} I(\mathbf{X}, \mathbf{Y}; \mathbf{Z})$$

where the minimum is over all $q(\mathbf{z}|\mathbf{x}, \mathbf{y})$ subject to $\mathbf{X} - \mathbf{Z} - \mathbf{Y}$

- We call the minimizer **Z** by Wyner's common latent variable
- I(X, Y; Z) naturally quantifies the succinctness of the latent variable Z
- ullet Our approach: Use Wyner's common latent variable and the Markov chain ${\bf X}-{\bf Z}-{\bf Y}$ for inference tasks between high-dim. ${\bf X}$ and ${\bf Y}$

Varitional optimization of Wyner's CI

minimize $I(\mathbf{X}_{\theta}, \mathbf{Y}_{\theta}; \mathbf{Z}_{\theta})$ subject to $p_{\theta}(\mathbf{x}, \mathbf{y}) = q(\mathbf{x}, \mathbf{y})$ variables $p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x}|\mathbf{z})p_{\theta}(\mathbf{y}|\mathbf{z})$

- With variational bounds and some slackness in the equality constraint: $\min_{\theta,\phi} \frac{D(q(\mathbf{x},\mathbf{y})q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{y})||p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x},\mathbf{y}|\mathbf{z}))}{\|p_{\theta}(\mathbf{z})p_{\theta}(\mathbf{x},\mathbf{y}|\mathbf{z}))} + \lambda D(q(\mathbf{x},\mathbf{y})q_{\phi}(\mathbf{z}|\mathbf{x},\mathbf{y})||q(\mathbf{x},\mathbf{y})p_{\theta}(\mathbf{z}))$
- $\equiv \underset{\theta, \phi}{\text{minimize}} \ \mathsf{E}_{q(\mathbf{x}, \mathbf{y})} \left[(1 + \lambda) D \big(q_{\phi}(\mathbf{z} | \mathbf{X}, \mathbf{Y}) || p_{\theta}(\mathbf{z}) \big) + \int q_{\phi}(\mathbf{z} | \mathbf{X}, \mathbf{Y}) \log \frac{1}{p_{\theta}(\mathbf{X}, \mathbf{Y} | \mathbf{z})} \, \mathrm{d}\mathbf{z} \right]$
- When $\lambda = 0$: boils down to the joint VAE objective in the literature, but still contains $I(\mathbf{X}, \mathbf{Y}; \mathbf{Z}) (= \mathsf{E}_{q(\mathbf{x}, \mathbf{y})}[D(q_{\phi}(\mathbf{z}|\mathbf{X}, \mathbf{Y})||p_{\theta}(\mathbf{z}))])$

Refined joint latent variable model

• Reparameterization of the stochastic decoders

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = p_{\theta}(\mathbf{u})\delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{u}, \mathbf{z}))$$

- (+) Increase the expressivity of decoders
- (+) The latent randomness (e.g., **U**) can be explicitly inferred
- Additionally assume $q_{\phi}(\mathbf{u}, \mathbf{v}, \mathbf{z} | \mathbf{x}, \mathbf{y}) = q_{\phi}(\mathbf{u} | \mathbf{x}, \mathbf{y}) q_{\phi}(\mathbf{v} | \mathbf{x}, \mathbf{y}) q_{\phi}(\mathbf{z} | \mathbf{x}, \mathbf{y})$

Simple two-step training scheme

- Joint model objective
 - $\min_{\theta} \min_{\phi} D(q_{\text{emp}}(\mathbf{x}, \mathbf{y}) q_{\phi}(\mathbf{u}, \mathbf{v}, \mathbf{z} | \mathbf{x}, \mathbf{y}) || p_{\theta}(\mathbf{u}, \mathbf{v}, \mathbf{z}) \delta(\mathbf{x} \mathbf{x}_{\theta}(\mathbf{u}, \mathbf{z})) \delta(\mathbf{y} \mathbf{y}_{\theta}(\mathbf{v}, \mathbf{z})))$
- For training, delta function \approx Gaussian with small variance

$$\log \frac{1}{\delta(\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{u}, \mathbf{z}))} \approx \frac{1}{2\epsilon^2} \|\mathbf{x} - \mathbf{x}_{\theta}(\mathbf{u}, \mathbf{z})\|^2 + (\text{const.})$$

Applications

(a) Conditional generation. Generate Y given X = x

(b) Style transfer.

Generate \mathbf{X}_j conditionally from \mathbf{y}_j in the style of \mathbf{x}_0 $\begin{array}{c} \mathbf{x}_0 \\ \mathbf{y}_j \\ \\ q_{\phi}(\mathbf{u}|\mathbf{x}) \end{array} \qquad \mathbf{y}_j$

Experiments

• Synthetic dataset

- Take $\lambda = 0$ and $\mathbf{Z}, \mathbf{U}, \mathbf{V}$ as discrete random vectors
- Below: generated multiple \mathbf{Y}_i 's given \mathbf{x} for conditional generation
- 1. Varying |**Z**| with fixed |**U**|, |**V**| = (N, K) = (2, 10)

Can we control the amount of common information extraction by manipulating the size of \mathbf{Z} ?

- Too small |Z|: poor accuracy, i.e., cannot capture label information
- Too large |Z|: poor variability, i.e., results in degenerate style
- **2.** Varying |U|, |V| with fixed |Z| = (N, K) = (1, 100)

Can we control the amount of expressivity of decoders by manipulating the sizes of \mathbf{U} and \mathbf{V} ?

- Too small |U|, |V|: cannot capture style information
- \bullet Too large $|\mathbf{U}|, |\mathbf{V}|$: cannot be learned properly