STT 861 Compendium

Kenyon Cavender

September 18, 2019

Definitions

<u>Def</u> A **random experiment** is an action which will result in one of the many possible outcomes.

<u>Def</u> A sample space is the collection of all possible outcomes of a random experiment. We shall denote by S.

<u>Def</u> An **Event** is a subset of sample space **S** for which we can define probability.

<u>Def</u> Suppose A and B are two sets. $A \subset B$ (A is a **subset** of B) if $x \in A$ implies $x \in B$. If $A \subset B$ and $B \subset A$ then A = B.

<u>Def</u> A set is called an empty set (or **null set**) if it contains no elements.

Notation: $\{\emptyset\}$

Convention: $\emptyset \subset A$, for any set A

Corrolary: $\forall A, \emptyset \subset A \subset \mathbf{S}$

<u>Def</u> Complement A^c is the set such that $x \in A^c \Rightarrow x \notin A$.

In other words, $A^c = \{x : x \notin A\}$

Notation: A^c or A' or \overline{A}

Def Intersection A, B are two events.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

<u>Def</u> Union A, B are two events.

$$A \cup B = \{x : x \in A \text{ or } x \in B \text{ or both}\}\$$

Def A and B are **disjoint** if $A \cap B = \emptyset$

Properties of set theory

Commutative

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

Associative

$$(A \cup B) \cup C = A \cup (B \cup C) =: A \cup B \cup C$$
$$(A \cap B) \cap C = A \cap (B \cap C) =: A \cap B \cap C$$

Distributive

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$
$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$\underline{\mathrm{Def}}$ Set Difference

$$A \setminus B = \{x : x \in A, \text{ but } x \notin B\}$$

Def Symmetric Difference

$$A \triangle B = \{x : x \in A \setminus B, \text{ or } x \in B \setminus A\}$$

<u>Def</u> A set A is **finite** if there exists a 1-1 fn $A \mapsto \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$

<u>Def</u> A set A is **finite** if there exists a 1-1 fn $A \mapsto \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$

Def A set A is **countably infinite** if there exists a one-to-one function from $A \mapsto \mathbb{N}$.

<u>Def</u> A set is called **coutable** if it is either finite or countably infinite.

<u>Def</u> $\mathscr A$ is a collection of subsets of $\mathbf S[\neq\emptyset]$ satisfying:

- i) $\mathbf{S} \in \mathscr{A}$
- ii) if $A \subset \mathscr{A}$, then $A^c \in \mathscr{A}$
- iii) if $A_1, A_2, ... \in \mathscr{A}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$

We call \mathscr{A} a σ - algebra (or σ - field)

Any domain should be a σ - field

 $\underline{\mathbf{Def}}$ (**S**, \mathscr{A} , P) is a (probability) measure space

<u>Def</u> Given sample space $\mathbf{S}(\neq \emptyset)$, and the measurable space $(\mathbf{S}, \mathscr{A})$

A function $P: \mathscr{A} \mapsto \mathbb{R}$ is called probability if it satisfies:

- a. $P(A) \ge 0$ for any $A \in mathscr A$
- b. P(S) = 1
- c. if A_1, A_2 ... are disjoint sets from \mathscr{A} , then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

<u>Def</u> A collection of sets $\{E_1, E_2, ...\}$ is called a **partition** of event A if:

- i) $E_i \cap E_j = \emptyset$, $\forall i \neq j \ (pairwise \ disjoint)$
- ii) $\bigcup_{i=1}^{\infty} E_i = A \ (exhaustive)$

<u>Def</u> A sequence of events $\{A_1, A_2...\}$ is increasing to event A if:

$$A_1 \subset A_2 \subset \dots$$

and
$$A = \bigcup_{n=1}^{\infty} A_n$$

Notation: $A_n \uparrow A$

<u>Def</u> Similarly, $B_n \downarrow B$ if $B_1 \supset B_2 \supset \dots$ and $B = \bigcap_{n=1}^{\infty} B_n$

 $\underline{\mathbf{Def}}$ Counting Methods

	WOR	$\mathbf{W}\mathbf{R}$
Ordered	$\frac{n!}{(n-r)!}$	n^r
Unordered	$\frac{n!}{r!(n-r)!} = \binom{n}{r}$	$\binom{n+r-1}{r}$

Results

a.
$$(A^c)^c = A$$

b.
$$\mathbf{S}^c = \emptyset$$

c.
$$\emptyset^c = \mathbf{S}$$

d. if
$$A \subset B$$
, then $B^c \subset A^c$

Remark Proving Distributive Property:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Proof. Prove left direction:

$$x \in (A \cup B) \cap C \Rightarrow x \in A \cup B \text{ and } x \in C$$

$$\Rightarrow (x \in A \text{ or } x \in B) \text{ and } x \in C$$

$$\Rightarrow$$
 $(x \in A \text{ and } x \in C) \text{ or } (x \in A \text{ and } x \in C) \text{ or both }$

$$\Rightarrow x \in A \cap C$$
 or $x \in B \cap C$ or both

$$\Rightarrow x \in (A \cap C) \cup (B \cap C)$$

Right direction is reverse of above.

- a. $A \cap B \subset A$ and $A \cap B \subset B$
- b. $A \cap A = A$
- c. if $A \subset B$ then $A \cap B = A$
- d. $A \subset A \cup B$ and $B \subset A \cup B$
- e. $A \cup A = A$
- f. if $A \subset B$ then $A \cup B = B$
- g. $A \cup A^c = \mathbf{S}$ and $A \cap A^c = \emptyset$
- h. if $A \subset C$ and $B \subset C$ then $A \cap B \subset A \cup B \subset C$
- i. \emptyset is disjoint to all events
- j. if $a \cap B = \emptyset$ then $A \subset B^c$ and $B \subset A^c$
- k. if $A \subset B$, then $B^c \subset A^c$
- 1. $A \setminus B = A \cap B^c$ and $B \setminus A = A^c \cap B$
- m. $A \triangle B = (A \cup B) \setminus (A \cap B)$

Remark Consider $\mathbf{S} = \{H, T\}$ and $\mathscr{P}(\mathbf{S}) = \{\emptyset, \{H\}, \{T\}, \mathbf{S}\}$

If **S** is countable, we can take $\mathscr{P}(\mathbf{S})$ as the domain for probability function P.

However, if **S** is uncountable, then **S** is too large, and it is not possible to define a function for $\mathscr{P}(\mathbf{S})$

Remark Desired Properties of P(.)

- a. $P(\emptyset) = 0$
- b. If A and B are disjoint then $P(A \cup B) = P(A) + P(B)$
- c. $P(A^c) = 1 P(A)$
- d. If $A \subset B$ then $P(A) \leq P(B)$
- e. $P(A) \le 1$

Remark Partition $\{E_1, ..., E_n\}$ is a finite partition

Remark For S, $\{A, A^c\}$ is a partition

Remark If $E_n : n \ge 1$ is a partition of A, then $P(A) = \sum_{i=1}^{\infty} P(E_i)$

a. Suppose A and B are two events. Then $\{A \cap B, A^c \cap B\}$ is a partition of B. Also, $P(A^c \cap B) = P(B) - P(A \cap B)$

Proof.
$$(A \cap B) \cap (A^c \cap B) = (A \cap A^c) \cap (B \cap B) = 0$$
 (pairwise disjoint) $(A \cap B) \cup (A^c \cap B) = (A \cup A^c) \cap B = B$ (exhaustive)

- b. A and B are two events. $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (This is the generalized version of b))
- c. if $\{C_1, C_2, ...\}$ is a partition of **S**, then $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$
- d. Boole's Inequality

$$P(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} P(A_i)$$

e. Bonferroni's Inequality

$$P(\cap_{i=1}^{\infty} A_i) \ge 1 - \sum_{i=1}^{\infty} P(A_i^c)$$

Remark Proving Bonferroni from Boole:
$$P(\cup_{i=1}^{\infty}A_i^c) \leq \sum_{i=1}^{\infty}P(A_i^c) \\ 1 - P(\cup_{i=1}^{\infty}A_i^c) \geq 1 - \sum_{i=1}^{\infty}P(A_i^c) \\ = P[(\cup_{i=1}^{\infty}A_i^c)^c] \geq \dots \\ = P[\cap_{i=1}^{\infty}(A_i^c)^c] \geq \dots \\ = P(\cap_{i=1}^{\infty}A_i) \geq 1 - \sum_{i=1}^{\infty}P(A_i^c) \\ \text{a. If } A_n \uparrow A, \text{ then } P(A) = \lim_{n \to \infty}P(A_n)$$

b. If $B_n \downarrow B$ then $P(B) = \lim_{n \to \infty} P(B_n)$

Remark Suppose for some set A, P(A) = 1 Does this imply A = S? Does P(B) = 0 imply $B \neq \emptyset$? Does $P(A \cap B) = 0$ imply A, B are disjoint? Not necessarily for all above!