Contents

Pa	art I	测度论	
1	可测	 <mark>空间</mark>	3
	1.1	可测集	3
	1.2	正测度	4
	1.3	可测函数	7
	1.4	单调类	8
2	可测	 函数的积分	9
	2.1	非负函数的积分	9
	2.2	可积函数	11
Pa	art II	概率论	
3	概率	论基础	15
	3.1	一般定义	15
		3.1.1 概率空间	15
		3.1.2 随机变量	16
		3.1.3	17

Part I

测度论

可测空间

1.1 可测集

定义 1.1.集合 E 上的 σ -域 A 指的是 E 的一个子集族, 其满足下面的性质:

- 1. $E \in \mathcal{A}$;
- 2. $A \in \mathcal{A} \Rightarrow A^c \in \mathcal{A}$;
- 3. 如果一列子集 $A_n \in \mathcal{A}$,那么 $\bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$.

A 的元素被称为**可测集**, (E,A) 被称为**可测空间**. 根据定义,我们很容易得出下面的结果:

- $\emptyset = E^c \in \mathcal{A}$.
- 如果一列子集 $A_n \in A$, 那么

$$\bigcap_{n\in\mathbb{N}} A_n = \left(\bigcup_{n\in\mathbb{N}} A_n\right)^c \in \mathcal{A}.$$

• A 对有限并和有限交也是封闭的, 只需要从某一项 A_n 开始全部取空集即可.

例 1.2. 根据可测集的定义, 很容易构造出一些最简单的例子:

- 1. $A = \mathcal{P}(E)$, 当 E 是有限集或者可数集的时候我们通常会使用这样的 σ -域, 其他情况则很少使用.
- 2. $A = \{\emptyset, E\},$ 平凡 σ -域.
- 3. E 的所有至多可数的子集以及所有补集至多可数的子集构成 E 上的一个 σ -域.

为了产生更多的例子,我们注意到 E 上任意 σ -域的交集仍然是 σ -域,这导出了下面的定义.

定义 1.3. 令 \mathcal{C} 是 $\mathcal{P}(E)$ 的子集,E 上包含 \mathcal{C} 的最小的 σ -域被记为 $\sigma(\mathcal{C})$,不难看出其是 所有包含 \mathcal{C} 的 σ -域的交集. 我们称 $\sigma(\mathcal{C})$ 是由 \mathcal{C} 生成的 σ -域.

定义 1.4. 设 (E, \mathcal{O}) 是拓扑空间,所有开集 \mathcal{O} 生成的 σ -域 $\sigma(\mathcal{O})$ 被称为 E 上的 Borel σ -域,记为 $\mathcal{B}(E)$.

E 上的 Borel σ -域是包含所有开集的最小的 σ -域. $\mathcal{B}(E)$ 的元素被称为 E 的 **Borel 子集**. 显然, E 中的闭集也都是 Borel 子集.

例 1.5 (\mathbb{R} 上的 Borel σ -域). 记 \mathcal{C}_1 为 \mathbb{R} 中开区间的集合:

$$C_1 = \{(a, b) \mid a, b \in \mathbb{R}, a < b\},\$$

显然有 $\mathcal{C}_1 \subseteq \mathcal{B}(\mathbb{R})$,于是 $\sigma(\mathcal{C}_1) \subseteq \mathcal{B}(\mathbb{R})$. 下面我们说明 $\mathcal{B}(\mathbb{R}) \subseteq \sigma(\mathcal{C}_1)$. 我们不加证明 地使用一个结论 (Lindelöf 定理): \mathbb{R} 的任意开子集 U 都是开区间的可数并. 那么根据 σ -域的定义,任意开区间都在 $\sigma(\mathcal{C}_1)$ 中,故 $\mathcal{B}(\mathbb{R}) \subseteq \sigma(\mathcal{C}_1)$. 这表明 $\mathcal{B}(\mathbb{R})$ 可以由所有开区间生成.

此外, 如果注意到

$$(a,b) = (-\infty,b) \cap (-\infty,a)^c,$$

还可以证明 $\mathcal{B}(\mathbb{R})$ 由 \mathcal{C}_2 生成, 其中

$$C_2 = \{(-\infty, a) \mid a \in \mathbb{R}\}.$$

在后文中,每当我们考虑拓扑空间 (例如 $\mathbb R$ 或者 $\mathbb R^d$) 时,除非有特别说明,否则我们总是假设它们配备 Borel σ -域.

下一个非常重要的 σ -域是乘积 σ -域.

定义 1.6. 令 (E_1, A_1) 和 (E_2, A_2) 是可测空间, 定义 $E_1 \times E_2$ 上的 σ -域 $A_1 \otimes A_2$ 为

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = \sigma(\{A_1 \times A_2 \mid A_1 \in \mathcal{A}_1, A_2 \in \mathcal{A}_2\}).$$

引理 1.7. 设 E 和 F 是可分 (有可数的稠密子集) 的拓扑空间, $E \times F$ 配备积拓扑,那么 $\mathcal{B}(E \times F) = \mathcal{B}(E) \otimes \mathcal{B}(F)$.

1.2 正测度

定义 1.8. (E, A) 上的正测度指的是一个映射 $\mu: A \to [0, \infty]$,其满足下面的性质:

- 1. $\mu(\emptyset) = 0$;
- 2. $(\sigma$ -可加性) 对于任意可数个不相交的可测集序列 $(A_n)_{n\in\mathbb{N}}$,有

$$\mu\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg)=\sum_{n\in\mathbb{N}}\mu(A_n).$$

此时, 三元组 (E, A, μ) 被称为**测度空间**. 值 $\mu(E)$ 被称为测度 μ 的总质量.

需要注意的是,我们允许 μ 的值为 $+\infty$,此时级数 $\sum_{n\in\mathbb{N}}\mu(A_n)$ 作为正向级数在 $[0,\infty]$ 中总是有意义的. 根据 σ -可加性,如果我们令 $n>n_0$ 开始 $A_n=\emptyset$,便可以得到有限可加性.

命题 1.9 (测度的性质). 根据定义, 测度 μ 满足下面的性质:

1. 如果 $A \subseteq B$, 那么 $\mu(A) \le \mu(B)$. 此外, 如果还满足 $\mu(A) < \infty$, 那么

$$\mu(B \setminus A) = \mu(B) - \mu(A).$$

2. 如果 $A, B \in \mathcal{A}$, 那么

$$\mu(A) + \mu(B) = \mu(A \cup B) + \mu(A \cap B).$$

3. 如果 $A_n \in \mathcal{A}$ 且 $A_n \subseteq A_{n+1}$,那么

$$\mu\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg)=\lim_{n\to\infty}\mu(A_n).$$

4. 如果 $B_n \in \mathcal{A}$ 且 $B_{n+1} \subseteq B_n$, $\mu(B_1) < \infty$, 那么

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\lim_{n\to\infty}\mu(B_n).$$

5. 如果 $A_n \in \mathcal{A}$,那么

$$\mu\bigg(\bigcup_{n\in\mathbb{N}}A_n\bigg)\leq\sum_{n\in\mathbb{N}}\mu(A_n).$$

Proof. (1) 若 $A \subseteq B$, 那么 $B = A \cup (B \setminus A)$ 是无交并, 所以

$$\mu(B) = \mu(A) + \mu(B \setminus A) \ge \mu(A).$$

(2) 若 $\mu(A)$, $\mu(B)$ 中有至少一个为无穷, 那么根据 (1), $\mu(A \cup B)$ 为无穷, 所以结论成立. 下面假设 $\mu(A)$, $\mu(B)$ 均有限, 记 $C = A \cap B$, 那么 $A \cup B = (A \setminus C) \cup C \cup (B \setminus C)$ 是无交并, 所以

$$\mu(A \cup B) = \mu(A \setminus C) + \mu(C) + \mu(B \setminus C) = \mu(A) + \mu(B) - \mu(C),$$

结论 (2) 成立.

(3) \Diamond *C*₁ = *A*₁, 对于 *n* ≥ 2 的时候, \Diamond

$$C_n = A_n \setminus A_{n-1}$$

那么 $A_n = \bigcup_{k \le n} C_k$ 是无交并, 所以

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}}C_n\right) = \sum_{n\in\mathbb{N}}\mu(C_n) = \lim_{n\to\infty}\sum_{k=1}^n\mu(C_k) = \lim_{n\to\infty}\mu(A_n).$$

(4) 令 $A_n = B_1 \setminus B_n$, 那么 $A_n \subseteq A_{n+1}$, 此时

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right)=\mu(B_1)-\mu\left(B_1\setminus\bigcap_{n\in\mathbb{N}}B_n\right)=\mu(B_1)-\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right),$$

再根据 (3), 就有

$$\mu\left(\bigcap_{n\in\mathbb{N}}B_n\right) = \mu(B_1) - \lim_{n\to\infty}\mu(A_n) = \lim_{n\to\infty}\mu(B_1 \setminus A_n) = \lim_{n\to\infty}\mu(B_n).$$

(5) 令 $C_1 = A_1$, 对于 n > 2 的时候, 令

$$C_n = A_n \setminus \bigcup_{k=1}^{n-1} A_k,$$

那么 C_n 之间互不相交, 所以

$$\mu\left(\bigcup_{n\in\mathbb{N}}A_n\right) = \mu\left(\bigcup_{n\in\mathbb{N}}C_n\right) = \sum_{n\in\mathbb{N}}\mu(C_n) \le \sum_{n\in\mathbb{N}}\mu(A_n).$$

例 1.10 (常见的测度).

1. 令 $E = \mathbb{N}$, $A = \mathcal{P}(\mathbb{N})$, 定义计数测度为

$$\mu(A) = \operatorname{card}(A)$$
.

2. 如果 $A \in E$ 的子集, 定义 A 的指示函数 $\mathbf{1}_A : E \to \{0,1\}$ 为

$$\mathbf{1}_{A}(x) = \begin{cases} 1 & x \in A, \\ 0 & x \notin A. \end{cases}$$

令 (E, A) 是可测空间,固定 $x \in E$. 对于每个 $A \in A$, 令 $\delta_x(A) = \mathbf{1}_A(x)$, 这给出了 (E, A) 上的一个测度,被称为 x **处的 Dirac 测度**. 更一般的,如果 $(x_n)_{n \in \mathbb{N}}$ 是 中的点列, $(\alpha_n)_{n \in \mathbb{N}}$ 是 $[0, \infty]$ 中的点列,我们可以考虑测度 $\sum_{n \in \mathbb{N}} \alpha_n \delta_{x_n}$ 为

$$\left(\sum_{n\in\mathbb{N}}\alpha_n\delta_{x_n}\right)(A)=\sum_{n\in\mathbb{N}}\alpha_n\delta_{x_n}(A)=\sum_{n\in\mathbb{N}}\alpha_n\mathbf{1}_A(x_n),$$

这个测度被称为 E 上的点测度.

3. 可以证明, 在 (\mathbb{R} , $\mathcal{B}(\mathbb{R})$) 上存在唯一的正测度 λ 使得: 对于每个开区间 [a, b], 有 λ ([a, b]) = b – a. 这个测度 λ 被称为 Lebesgue 测度.

如果 μ 是 (E, A) 上的正测度, $C \in A$, 那么可以定义 μ 在 C 上的**限制** ν 为:

$$\nu(A) = \mu(A \cap C), \quad \forall A \in \mathcal{A}.$$

不难验证 ν 还是 (E, A) 上的正测度.

定义 1.11.

- 如果 $\mu(E) < \infty$, 那么我们说测度 μ 是**有限的**.
- 如果 $\mu(E) = 1$, 那么我们说测度 μ 是概率测度, (E, A, μ) 是概率空间.
- 如果存在一列可测集 $(E_n)_{n\in\mathbb{N}}$ 使得 $E=\bigcup_n E_n$ 以及每个 $\mu(E_n)<\infty$,那么我们 说测度 μ 是 σ -有限的.
- 如果 $x \in E$ 使得单点集 $\{x\} \in A$ 并且 $\mu(\{x\}) > 0$,那么我们说 x 是测度 μ 的一个**原子**.
- 如果测度 μ 没有原子,那么我们说 μ 是**扩散测度**.

如果 $(A_n)_{n\in\mathbb{N}}$ 是一列可测集, 类比数列的上下极限, 我们可以定义集合列的上下极限分别为:

$$\limsup A_n = \bigcap_{n=1}^{\infty} \left(\bigcup_{k=n}^{\infty} A_k \right), \quad \liminf A_n = \bigcup_{n=1}^{\infty} \left(\bigcap_{k=n}^{\infty} A_k \right).$$

注意到对于任意 m, 都有

$$\bigcup_{n=1}^{m} \left(\bigcap_{k=n}^{\infty} A_k \right) = \bigcap_{k=m}^{\infty} A_k, \quad \bigcap_{n=1}^{m} \left(\bigcup_{k=n}^{\infty} A_k \right) = \bigcup_{k=m}^{\infty} A_k,$$

所以显然有 $\liminf A_n \subseteq \limsup A_n$.

引理 1.12. 令 μ 是 (E, A) 上的测度, 那么

$$\mu(\liminf A_n) \leq \liminf \mu(A_n).$$

如果 μ 是有限测度,或者更一般地, $\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)<\infty$,那么

$$\mu(\limsup A_n) \ge \limsup \mu(A_n)$$
.

Proof. 对于任意的 n, 有

$$\mu\left(\bigcap_{k=n}^{\infty} A_k\right) \le \inf_{k \ge n} \mu(A_k),$$

所以

$$\mu(\liminf A_n) = \lim_{n \to \infty} \mu\left(\bigcap_{k=n}^{\infty} A_k\right) \le \lim_{n \to \infty} \inf_{k \ge n} \mu(A_k) = \liminf \mu(A_n).$$

第二个结论同理.

1.3 可测函数

定义 1.13. 令 (E, A) 和 (F, B) 是两个可测空间, 如果映射 $f: E \to F$ 满足:

$$\forall B \in \mathcal{B}, \ f^{-1}(B) \in \mathcal{A},$$

那么我们说 f 是**可测映射**. 当 E, F 是两个配备了 Borel σ -域的拓扑空间时,我们说 f 是 Borel **可测的**.

显然, 可测映射的复合是可测映射.

命题 **1.14.** 令 (E, A) 和 (F, B) 是两个可测空间,映射 $f: E \to F$. f 可测当且仅当对于某个生成 B 的子集族 C (即 $B = \sigma(C)$),有 $f^{-1}(B) \in A$ ($\forall B \in C$).

Proof. 只需证明充分性. 记

$$\mathcal{G} = \{ B \in \mathcal{B} \mid f^{-1}(B) \in \mathcal{A} \},\$$

直接验证可知 \mathcal{G} 是一个 σ -域,又因为 $\mathcal{C} \subseteq \mathcal{G}$,所以 $\mathcal{B} = \sigma(\mathcal{C}) \subseteq \mathcal{G} \subseteq \mathcal{B}$,所以 $\mathcal{G} = \mathcal{B}$,这就表明 f 是可测的.

例 1.15. 若 $(F, \mathcal{B}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$,要证明 f 是可测的,只需说明集合 $f^{-1}((a,b))$ 是可测的,或者 $f^{-1}((-\infty,a))$ 是可测的.

推论 1.16. 设 E, F 是两个配备 Borel σ -域的拓扑空间,那么连续映射 $f: E \to F$ 都是可测的.

引理 1.17. 令 (E, A), (F_1, B_1) 和 (F_2, B_2) 是可测空间,乘积 $F_1 \times F_2$ 配备乘积 σ -域 $B_1 \otimes B_2$,令映射 $f_1 : E \to F_1$ 和 $F_2 : E \to F_2$,定义 $f : E \to F_1 \times F_2$ 为 $f(x) = (f_1(x), f_2(x))$,那么 f 可测当且仅当 f_1 , f_2 都可测.

推论 1.18. \diamondsuit (E, A) 是可测空间,f, g 是从 E 到 \mathbb{R} 的可测函数,那么函数

$$f + g$$
, fg , min (f, g) , max (f, g)

都是可测的.

记扩充实数 $\bar{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, 其拓扑为序拓扑. 与 \mathbb{R} 类似, $\bar{\mathbb{R}}$ 的 Borel σ -域由区间 $[-\infty, a)$ 生成.

命题 1.19. 令 $(f_n)_{n\in\mathbb{N}}$ 是 $E\to\mathbb{R}$ 的可测函数列,那么

$$\sup f_n, \quad \inf f_n, \quad \limsup_{n \to \infty} f_n, \quad \liminf_{n \to \infty} f_n$$

都是可测函数. 特别地, 如果 (f_n) 逐点收敛, 那么极限 $\lim f_n$ 是可测函数.

定义 1.20. 令 (E, A) 和 (F, B) 是可测空间, $\varphi : E \to F$ 是可测映射, μ 是 (E, A) 上的测度,定义 (F, B) 上的测度 ν 为

$$\nu(B) = \mu(\varphi^{-1}(B)), \quad \forall B \in \mathcal{B}.$$

 ν 被称为 μ **在 \varphi 下的推前**,记为 $\varphi(\mu)$,有时也记为 $\varphi_*\mu$.

1.4 单调类

可测函数的积分

2.1 非负函数的积分

在本章中, 我们考虑配备正测度 μ 的可测空间 (E, A).

简单函数 如果可测函数 $f: E \to \mathbb{R}$ 的值域是有限集, 那么我们说 f 的**简单函数**. 假设 f 的所有可能的取值为 $\alpha_1, \ldots, \alpha_n$, 不妨假设 $\alpha_1 < \alpha_2 < \cdots < \alpha_n$. 那么 f 可以表示为

$$f(x) = \sum_{i=1}^{n} \alpha_i \mathbf{1}_{A_i}(x),$$

其中 $A_i = f^{-1}(\{\alpha_i\}) \in A$.注意到 $E \neq A_1, \ldots, A_n$ 的无交并.上述公式 $f = \sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}$ 被称为 f 的标准表示.

定义 2.1. 令 f 是取值在 \mathbb{R}_+ 中的简单函数,标准表示为 $f = \sum_{i=1}^n \alpha_i \mathbf{1}_{A_i}$. 定义 f 相对于 μ 的积分为

$$\int f \, \mathrm{d}\mu = \sum_{i=1}^n \alpha_i \mu(A_i).$$

在 $\alpha_i = 0$ 和 $\mu(A_i) = \infty$ 的情况下,约定 $0 \times \infty = 0$.

注意上述定义中 $\sum_{i=1}^n \alpha_i \mu(A_i)$ 的取值为 $[0,\infty]$. 所以在上述定义中我们只考虑非负的简单函数, 这是为了避免出现 $\infty-\infty$ 之类的表达式.

值得注意的是, 如果简单函数 f 有表达

$$f = \sum_{j=1}^{m} \beta_j \mathbf{1}_{B_j},$$

其中 B_i 仍然构成 E 的一个划分, 但是 β_i 不再是两两不同的. 此时 f 的积分仍然为

$$\int f \, \mathrm{d}\mu = \sum_{j=1}^m \beta_j \mu(B_j).$$

这是因为对于每个 A_i , 某些 B_i 构成了 A_i 的划分, 即

$$A_i = \bigcup_{\{j \mid \beta_j = \alpha_i\}} B_j,$$

那么

$$\alpha_i \mu(A_i) = \alpha_i \sum_{\{j \mid \beta_j = \alpha_i\}} \mu(B_j) = \sum_{\{j \mid \beta_j = \alpha_i\}} \beta_j \mu(B_j).$$

非负简单函数的积分满足下面的一些基本的性质.

命题 2.2. 令 $f, g \in E$ 上的非负简单函数.

1. 对于每个 $a,b \in \mathbb{R}_+$,有

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu.$$

2. 如果 $f \leq g$,那么

$$\int f \, \mathrm{d}\mu \le \int g \, \mathrm{d}\mu.$$

我们用 \mathcal{E}_+ 来表示 E 上的非负简单函数的集合.

定义 2.3. 令 $f: E \to [0, \infty]$ 是可测函数, 定义 f 相对于 μ 的积分为

$$\int f \, \mathrm{d}\mu = \sup_{h \in \mathcal{E}_+, h \le f} \int h \, \mathrm{d}\mu.$$

f 相对于 μ 的积分通常有很多写法, 下面的表达

$$\int f \, \mathrm{d}\mu, \, \int f(x) \, \mathrm{d}\mu(x), \, \int f(x)\mu(\mathrm{d}x), \, \int \mu(\mathrm{d}x) f(x)$$

表示的含义是完全相同的. 此外, 如果 $A \in E$ 的可测子集, 我们定义

$$\int_A f \, \mathrm{d}\mu = \int f \, \mathbf{1}_A \, \mathrm{d}\mu.$$

从现在开始, 我们用非负可测函数表示 $E \to [0, \infty]$ 的可测函数 (值可以为无穷). 需要注意的是, 我们前面定义的非负简单函数值必须有限.

命题 2.4. 令 f,g 是 E 上的非负可测函数.

- 1. 如果 $f \leq g$,那么 $\int f d\mu \leq \int g d\mu$.
- 2. 如果 $\mu(\{x \in E \mid f(x) > 0\}) = 0$, 那么 $\int f d\mu = 0$.

定理 2.5 (单调收敛定理). 令 $(f_n)_{n\in\mathbb{N}}$ 是 E 上的一列递增的非负可测函数,即 $f_n \leq f_{n+1}$,记 $f = \lim \uparrow f_n$,那么

$$\int f \, \mathrm{d}\mu = \lim_{n \to \infty} \uparrow \int f_n \, \mathrm{d}\mu.$$

命题 2.6.

- 1. 设 $f \in E$ 上的非负可测函数,那么存在一列递增的非负简单函数 $(f_n)_{n \in \mathbb{N}}$ 使得 $f = \lim \uparrow f_n$. 如果 f 有界,那么 $f_n \to f$ 一致收敛.
- 2. 令 f,g 是两个 E 上的非负可测函数, $a,b \in \mathbb{R}_+$, 那么

$$\int (af + bg) d\mu = a \int f d\mu + b \int g d\mu.$$

3. $\Diamond (f_n)_{n \in \mathbb{N}}$ 是一列 E 上的非负可测函数,那么

$$\int \left(\sum_{n \in \mathbb{N}} f_n\right) d\mu = \sum_{n \in \mathbb{N}} \int f_n d\mu.$$

推论 2.7. 令 g 是非负可测函数,对于 $A \in A$,令

$$v(A) = \int_A g \, \mathrm{d}\mu = \int g \, \mathbf{1}_A \, \mathrm{d}\mu,$$

那么 ν 是 E 上的正测度,被称为密度 g 相对于 μ 的测度,记为 $\nu=g\cdot\mu$. 此外,对于非负可测函数 f,有

$$\int f \, \mathrm{d}\nu = \int f g \, \mathrm{d}\mu.$$

命题 2.8. 令 f 是非负可测函数.

1. 对于每个 $a \in (0, \infty)$,有

$$\mu(\{x \in E \mid f(x) \ge a\}) \le \frac{1}{a} \int f \, \mathrm{d}\mu.$$

2. 我们有

$$\int f \, \mathrm{d}\mu < \infty \Rightarrow f < \infty, \ \mu \text{ a.e.}$$

3. 我们有

$$\int f \, \mathrm{d}\mu = 0 \Leftrightarrow f = 0, \, \mu \text{ a.e.}$$

4. 如果 g 是非负可测函数,

$$f = g, \ \mu \text{ a.e.} \Rightarrow \int f \ \mathrm{d}\mu = \int g \ \mathrm{d}\mu.$$

定理 2.9 (Fatou 引理). 令 $(f_n)_{n\in\mathbb{N}}$ 是一列非负可测函数,那么

$$\int \liminf f_n \, \mathrm{d}\mu \le \liminf \int f_n \, \mathrm{d}\mu.$$

命题 2.10. 令 (F, \mathcal{B}) 是可测空间, $\varphi : E \to F$ 是可测映射. 令 ν 是 μ 在 φ 下的推前. 那么,对于任意 F 上的非负可测函数 h,我们有

$$\int_{E} h(\varphi(x))\mu(\mathrm{d}x) = \int_{E} h(y)\nu(\mathrm{d}y).$$

2.2 可积函数

定义 2.11. 令 $f: E \to \mathbb{R}$ 是可测函数,如果

$$\int |f| \, \mathrm{d}\mu < \infty,$$

那么我们说 f 相对于 μ **可积**. 在这种情况下,我们定义

$$\int f d\mu = \int f^+ d\mu - \int f^- d\mu.$$

$$\int_A f d\mu = \int f \mathbf{1}_A d\mu.$$

如果 $A \in \mathcal{A}$, 记

$$\int_A f \, \mathrm{d}\mu = \int f \, \mathbf{1}_A \, \mathrm{d}\mu.$$

Part II

概率论

概率论基础

3.1 一般定义

3.1.1 概率空间

令 (Ω, A) 是可测空间, \mathbb{P} 是 (Ω, A) 上的概率测度, 我们说 (Ω, A, \mathbb{P}) 是**概率空间**. 因此, 概率空间是测度空间的一个特例. 然而, 概率论的观点与测度论有很大不同. 在概率论中, 我们的目标是一个"随机实验"的数学模型:

- Ω 表示实验的所有可能的结果的集合.
- A 是所有 "事件" 的集合. 这里的事件指的是 Ω 的一个子集, 其概率可以被计算 (也就是可测集). 我们应当把事件 A 视为满足某一属性的所有 $\omega \in \Omega$ 构成的子集.
- 对于每个 $A \in \mathcal{A}$, $\mathbb{P}(A)$ 表示事件 A 发生的概率.

当然,一个自然的疑问是,为什么需要考虑事件域 A? 换句话说,为什么不能对 Ω 的任意子集都计算一个概率? 原因在于,一般不可能在 Ω 的幂集 $\mathcal{P}(\Omega)$ 上定义我们感兴趣的概率测度 (除开 Ω 是可数集这一简单情况). 例如,取 $\Omega = [0,1]$,配备 Borel σ -域和 Lebesgue 测度,但是,可以证明不可能将 Lebesgue 测度扩展到 [0,1] 的任意子集上使得其仍然满足测度的定义.

例 3.1. 一些常见的概率模型.

1. 考虑扔两次骰子这一实验, 那么

$$\Omega = \{1, 2, \dots, 6\}^2, \quad \mathcal{A} = \mathcal{P}(\Omega), \quad \mathbb{P}(A) = \frac{\operatorname{card}(A)}{36}.$$

这里概率 \mathbb{P} 的选取意味着让所有结果都有相同的概率. 更一般地, 如果 Ω 是有限集, $A = \mathcal{P}(\Omega)$, 概率测度 $\mathbb{P}(\{\omega\}) = 1/\operatorname{card}(\Omega)$ 被称为 Ω 上的**均匀概率测度**.

2. 现在我们考虑实验: 扔骰子, 直到出现 6 为止. 由于得到 6 所需的投掷次数是无界的 (即使你扔了 1000 次骰子, 仍有可能没有得到 6), 所以 Ω 的正确选择是想象我们扔了无限次骰子:

$$\Omega = \{1, 2, \dots, 6\}^{\mathbb{N}}.$$

Ω 上的 σ-域 A 被定义为包含形如

$$\{\omega \in \Omega \mid \omega_1 = i_1, \ldots, \omega_n = i_n\}$$

3.1.2 随机变量

在本章的剩余部分,我们都考虑一个概率空间 $(\Omega, \mathcal{A}, \mathbb{P})$,并且所有随机变量都将在这个概率空间上定义.

定义 3.2. 令 (E, \mathcal{E}) 是可测空间,值在 E 中的**随机变量**指的是一个可测映射 $X: \Omega \to E$.

例 3.3. 回顾 (3.1) 中的模型.

- 1. X((i, j)) = i + j 定义了值在 $\{2, 3, ..., 12\}$ 中的随机变量.
- 2. $X(\omega) = \inf\{j \mid \omega_j = 6\}$, 约定 $\inf \emptyset = \infty$, 定义了值在 $\bar{\mathbb{N}} = \mathbb{N} \cup \{\infty\}$ 中的随机变量. 为了验证 X 的可测性, 只需要注意到

$$X^{-1}(\{k\}) = \{\omega \in \Omega \mid \omega_1 \neq 6, \dots, \omega_{k-1} \neq 6, \omega_k = 6\}.$$

定义 3.4. 令 X 是值在 (E, \mathcal{E}) 中的随机变量,定义随机变量 X 的 **分布律** \mathbb{P}_X 是概率测度 \mathbb{P} 在 X 下的推前. 也就是说, \mathbb{P}_X 是 (E, \mathcal{E}) 上的概率测度,满足

$$\mathbb{P}_X(B) = \mathbb{P}(X^{-1}(B)), \quad \forall B \in \mathcal{E}.$$

两个值在 (E,\mathcal{E}) 中的随机变量 Y,Y' 如果有相同的分布 $\mathbb{P}_Y=\mathbb{P}_{Y'}$,那么我们说 Y 和 Y' 是**同分布**的.

在概率论中,我们通常将 $\mathbb{P}_X(B)$ 写为 $\mathbb{P}(X \in B)$ 而不是 $\mathbb{P}(X^{-1}(B))$. 这里 $X \in B$ 是集合 $\{\omega \in \Omega \mid X(\omega) \in B\}$ 的简写,这是一个一般性的简写规则,在概率论中参数 ω 通常被隐藏.

离散型随机变量 当 E 是有限或者可数 ($\mathcal{E} = \mathcal{P}(E)$) 的时候, X 的分布是点测度, 这是因为

$$\mathbb{P}_X(B) = \mathbb{P}(X \in B) = \mathbb{P}\left(\bigcup_{x \in B} \{X = x\}\right) = \sum_{x \in B} \mathbb{P}(X = x) = \sum_{x \in E} p_x \delta_x(B),$$

其中 $p_x = \mathbb{P}(X = x)$. 这就表明

$$\mathbb{P}_X = \sum_{x \in E} p_x \delta_x$$

是 E 上的点测度.

例 3.5. 我们考虑 (3.1) 中的第二个例子, 随机变量为 $X(\omega) = \inf\{j \mid \omega_j = 6\}$. 那么

$$\mathbb{P}(X = k) = \mathbb{P}\left(\bigcup_{1 \le i_1, \dots, i_k \le 5} \{\omega \mid \omega_1 = i_1, \dots, \omega_{k-1} = i_{k-1}, \omega_k = 6\}\right)$$
$$= 5^{k-1} \left(\frac{1}{6}\right)^k = \frac{1}{6} \left(\frac{5}{6}\right)^{k-1}.$$

注意到

$$\sum_{k=1}^{\infty} \mathbb{P}(X=k) = \frac{1}{6} \frac{1}{1 - \frac{5}{6}} = 1$$

并且 $\{X = \infty\} \cup \bigcup_{k=1}^{\infty} \{X = k\} = \Omega$,所以

$$\mathbb{P}(X = \infty) = 1 - \sum_{k=1}^{\infty} \mathbb{P}(X = k) = 0,$$

但是 $\{X = \infty\} \neq \emptyset$.

具有密度的随机变量 \mathbb{R}^d 上的密度函数是一个非负的 Borel 函数 $p:\mathbb{R}^d\to\mathbb{R}_+$,其满足

$$\int_{\mathbb{R}^d} p(x) \, \mathrm{d}x = 1.$$

对于一个值在 \mathbb{R}^d 中的随机变量 X, 如果存在密度 p 使得

$$\mathbb{P}_X(B) = \int_B p(x) \, \mathrm{d}x$$

对于任意 Borel 子集 B 都成立, 那么我们说 X 有密度函数 p. 换句话说, p 是 \mathbb{P}_X 相对于 Lebesgue 测度的密度.

注意到密度 p 实际上是在相差一个 Lebesgue 零测集的意义下由 \mathbb{P}_X 确定的. 在我们遇到的大多数例子中, p 在 \mathbb{R}^d 上连续, 在这种情况下, p 由 \mathbb{P}_X 唯一确定.

在 d=1 的时候, 我们有

$$\mathbb{P}(\alpha \le X \le \beta) = \int_{\alpha}^{\beta} p(x) \, \mathrm{d}x.$$

3.1.3 数学期望

定义 3.6. 令 X 是定义在 (Ω, A, \mathbb{P}) 上的实随机变量,我们定义

$$\mathbb{E}[X] = \int_{\Omega} X(\omega) \mathbb{P}(d\omega) = \int X d\mathbb{P},$$

只要上述积分有意义,我们就说 $\mathbb{E}[X]$ 是 X 的**期望**.

根据前面的内容, 上述积分有意义的条件为下列二者之一:

- $X \ge 0$, 此时 $\mathbb{E}[X] \in [0, \infty]$.
- X 符号任意, 但是 $\mathbb{E}[|X|] = \int |X| d\mathbb{P} < \infty$.

上面的定义可以拓展到多元随机变量 $X = (X_1, ..., X_d) \in \mathbb{R}^d$,此时我们定义 $\mathbb{E}[X] = (\mathbb{E}[X_1], ..., \mathbb{E}[X_d])$. 类似的,如果 M 是随机矩阵(值在实矩阵空间中的随机变量),我们可以定义矩阵 $\mathbb{E}[M]$ 为对 M 的每个分量求期望构成的矩阵.

注意到若 $X = \mathbf{1}_B$, 那么

$$\mathbb{E}[X] = \int \mathbf{1}_B \, \mathrm{d}\mathbb{P} = \mathbb{P}(B).$$

对于一些特殊的随机变量,下面的命题被频繁地使用.

命题 3.7. 令 X 是值在 $[0,\infty]$ 中的随机变量,那么

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X \ge x) \, \mathrm{d}x.$$

令 Y 是值在 \mathbb{Z}_+ 中的随机变量,那么

$$\mathbb{E}[Y] = \sum_{k=0}^{\infty} k \, \mathbb{P}(X = k) = \sum_{k=1}^{\infty} \mathbb{P}(Y \ge k).$$

Proof. 根据 Fubini 定理, 我们有

$$\mathbb{E}[X] = \mathbb{E}\left[\int_0^\infty \mathbf{1}_{\{x \le X\}} \, \mathrm{d}x\right] = \int_0^\infty \mathbb{E}[\mathbf{1}_{\{x \le X\}}] \, \mathrm{d}x = \int_0^\infty \mathbb{P}(X \ge x) \, \mathrm{d}x.$$

对于随机变量Y,我们有

$$\mathbb{E}[Y] = \mathbb{E}\left[\sum_{k=0}^{\infty} k \mathbf{1}_{\{Y=k\}}\right] = \int \left(\sum_{k=0}^{\infty} k \mathbf{1}_{\{Y=k\}}\right) d\mathbb{P} = \sum_{k=0}^{\infty} k \mathbb{P}(Y=k).$$

对于第二个等式, 只需注意到

$$Y = \sum_{k=1}^{\infty} \mathbf{1}_{\{Y \ge k\}}.$$

下面的命题是命题 2.10 的特例, 其十分重要, 所以我们再次叙述一遍.

命题 3.8. 令 X 是值在 (E,\mathcal{E}) 中的随机变量,对于任意可测函数 $f:E\to [0,\infty]$,我们有

$$\mathbb{E}[f(X)] = \int_{E} f(x) \mathbb{P}_{X}(\mathrm{d}x).$$