Relatório - Exercício Programa 2 (EP2)

José Victor Santos Alves Nº USP: 14713085

abril de 2025

Resumo

Este relatório apresenta a solução para o segundo Exercício Programa (EP2) da disciplina MAP2212/2025 (Laboratório de Computação e Simulação) do Bacharelado em Matemática Aplicada e Computacional (BMAC) do IME-USP. O objetivo é implementar quatro variantes do método de Monte Carlo para calcular a integral da função $f(x) = e^{-ax}\cos(bx)$ no intervalo [0,1], onde a=0.RG e b=0.CPF, sendo RG e CPF dígitos do número de identificação do autor.

1 Introdução

Este trabalho visa explorar métodos estocásticos de integração numérica, com ênfase nas quatro variantes de Monte Carlo:

- Crude
- Hit or Miss
- Amostragem por importância (*Importance Sampling*)
- Variáveis de controle (Control Variates)

A função a ser integrada é:

$$f(x) = e^{-ax}\cos(bx), \quad x \in [0, 1]$$
 (1)

onde $a = 0.\overline{RG}$ e $b = 0.\overline{CPF}$ ficando a = 0.5296090 e b = 0.529809068

2 Metodologia

2.1 Implementação

Foram implementados em Python os seguintes métodos:

2.1.1 Método Crude (no python def crude())

$$I_{\text{crude}} = \frac{1}{N} \sum_{i=1}^{N} f(x_i), \quad x_i \sim \mathcal{U}(0, 1)$$
(2)

2.1.2 Método Hit or Miss (no python def hit or miss())

$$I_{\text{HM}} = \frac{\text{Acertos}}{N}, \quad \text{onde Acertos} = \sum_{i=1}^{N} \mathbb{I}(y_i \le f(x_i))$$
 (3)

2.1.3 Importance Sampling (no python def importance sampling())

Utilizando $g(x) = ae^{-ax}$ como distribuição de importância:

$$I_{\rm IS} = \frac{1}{N} \sum_{i=1}^{N} \frac{f(x_i)}{g(x_i)}, \quad x_i \sim g(x)$$
 (4)

2.1.4 Control Variates (no python def control_variates())

Com h(x) = x como variável de controle:

$$I_{\text{CV}} = \frac{1}{N} \sum_{i=1}^{N} \left[f(x_i) - \beta h(x_i) \right] + \beta C$$
 (5)

onde $C = \int_0^1 h(x) dx = 0.5$.

3 Cálculo do Erro Relativo

Para avaliar a precisão da estimativa obtida pelos métodos de Monte Carlo, utilizou-se o **erro relativo**, definido como:

Erro Relativo =
$$\frac{|\hat{\gamma} - \gamma|}{\gamma} < 0,0005$$
 (6)

onde:

- $\hat{\gamma}$ é a estimativa da integral
- $\bullet \ \gamma$ é o valor verdadeiro (desconhecido pelo enunciado do EP) da integral.

3.1 Calculo de n

Para garantir que o erro relativo da estimativa seja menor que $\epsilon=0.0005$, o número de amostras n é determinado pela relação fundamental:

$$n > \left(\frac{\sigma}{\epsilon \cdot \hat{\gamma}}\right)^2,\tag{7}$$

onde:

- σ é o desvio padrão das estimativas,
- $\hat{\gamma}$ é a média amostral da integral,
- ϵ é o erro relativo.

A Equação 7 deriva do **Teorema Central do Limite** , que estabelece que a distribuição das médias amostrais $\hat{\gamma}$ é aproximadamente normal para n grande:

$$\hat{\gamma} \sim \mathcal{N}\left(\gamma, \frac{\sigma^2}{n}\right),$$
 (8)

onde γ é o valor verdadeiro da integral. O erro absoluto é então:

$$|\hat{\gamma} - \gamma| \approx \frac{\sigma}{\sqrt{n}}.\tag{9}$$

3.2 Cálculo do Desvio Padrão por Método

3.2.1 Método Crude

Para f(x) com $x_i \sim \mathcal{U}(0,1)$:

$$\sigma^2 = \operatorname{Var}(f(x)) = \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2 \tag{10}$$

3.2.2 Método Hit-or-Miss

Para variáveis binárias $I_i = \mathbb{I}(y_i \leq f(x_i))$:

$$\sigma^2 = \hat{\gamma}(1 - \hat{\gamma}), \quad \hat{\gamma} = \frac{1}{n} \sum_{i=1}^n I_i$$
 (11)

3.2.3 Amostragem por Importância

Com amostras $x_i \sim g(x)$:

$$\sigma^2 = \operatorname{Var}\left(\frac{f(x)}{g(x)}\right) \tag{12}$$

3.2.4 Variáveis de Controle

Com função de controle h(x):

$$\sigma^2 = \operatorname{Var}(f(x) - \beta h(x)), \quad \beta = \frac{\operatorname{Cov}(f, h)}{\operatorname{Var}(h)}$$
(13)

4 Resultados

Os métodos foram testados com $N=10^3$ amostras obtendo os seguintes resultados:

Tabela 1: Comparação dos métodos para $N=10^3$ amostras

Método	Estimativa	Variância	n
Crude	0.7457778567215412	0.02035148643428586	146365
Hit or Miss	0.74595	0.1895085975	1365158
Importance Sampling	0.7270688621887386	0.7352583205886564	5563510
Control Variates	0.0.7451659518118909	0.42978898852212033	3096059

Os métodos foram testados com $N=10^5$ amostras obtendo os seguintes resultados:

Tabela 2: Comparação dos métodos para $N=10^5$ amostras

Método	Estimativa	Variância	n
Crude	0.7454976571593395	0.020327190667182693	146300
Hit or Miss	0.74864	0.18817815040000002	1355624
Importance Sampling	0.7254483754336972	0.7382258493272087	5610948
Control Variates	0.7451521970699198	0.4297644195692293	3095997

5 Conclusão

A partir dos dados obtidos, podemos observar que o método Crude apresentou a menor variância, indicando maior precisão com menos amostras. Os métodos Hit or Miss e Control Variates precisaram de 10 vezes mais amostras que o Crude, e o método Importance Sampling foi o menos eficiente. Um dos principais fatores que influenciou esse resultado foi a escolha da distribuição de importância $g(x) = ae^{-ax}$ (que se provou uma má escolha), pois o valor estimado da integral utilizando esse método ficou relativamente distante dos outros - enquanto os demais métodos convergiram para valores em torno de 0.74, este ficou em 0.72.