A generalized POD space-time Galerkin scheme for parameter dependent dynamical systems

Manuel Baumann¹, Peter Benner², Jan Heiland²

¹Delft Institute of Applied Mathematics, Delft, The Netherlands

²Max Planck Institute for Dynamics of Complex Technical Systems, Computational Methods in Systems and Control Theory, Magdeburg, Germany

Exemplary Setup

We consider a parameter μ -dependent PDE

 $\dot{\upsilon}(t,x) = \mathcal{F}(\upsilon(t,x);\mu), \quad \text{on } (0,T) \times \Omega, \quad \upsilon(0,\cdot) = \upsilon_0 \in \mathcal{V}$

and a finite element discretization with the *FEM* space $Y = \text{span}\{\nu_1, \dots, \nu_q\}$ that leads to

 $M_Y\dot{y}(t)=f(y(t);\mu)$ on (0,T), $y(0)=y(0)\in\mathbb{R}^q,$

where M_Y is the mass matrix of Y.

Generalized Measurements and POD modes

Fix a $\mu = \mu_0$. Let $S = \text{span}\{\psi_1, \dots, \psi_s\} \subset L^2(0, T)$ and consider the generalized measurement matrix

$$Y_{gen} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}, \quad \text{cf.} \quad Y_{POD} := \begin{bmatrix} y_1(t_1) & \dots & y_1(t_s) \\ \vdots & \ddots & \vdots \\ y_q(t_1) & \dots & y_q(t_s) \end{bmatrix}$$

- the snapshot matrix known from POD.

Generalized spatial POD modes

From the measurement matrix Y_{gen} , we can obtain an optimal (in the sense of Lemma 1) reduced basis $\{\hat{\nu}_1, \dots, \hat{\nu}_q\}$ for a space discretization via

$$\hat{\nu}_j := V_j^\mathsf{T} \begin{bmatrix} \nu_1 \\ \vdots \\ \nu_q \end{bmatrix},$$

where V_j is the *j*-th leading singular vector of $Y_{gen}M_S^{-1/2}$.

Generalized time POD modes

With the same arguments we can obtain an optimal reduced basis $\{\hat{\psi}_1, \cdots, \hat{\psi}_{\hat{s}}\}$ for the time discretization via

$$\hat{\psi}_k := U_k^\mathsf{T} \begin{bmatrix} \psi_1 \\ \vdots \\ \psi_s \end{bmatrix},$$

where V_i is the j-the leading singular vector of $M_S^{-1} Y_{qen}^{T} M_Y^{1/2}$.

Adding the parameter dependency

A discretization of the parameter domain with p degrees of freedom adds another dimension to the generalized measurement matrix turning it into a tensor $\mathbf{Y} \in \mathbb{R}^{q \times s \times p}$.

$$\begin{bmatrix} \langle y_{1}, \psi_{1} \rangle_{\mathcal{S}} & \dots & \langle y_{1}, \psi_{s} \rangle_{\mathcal{S}} \\ \vdots & \dots & \ddots & \vdots \\ \langle y_{n}, \psi_{1} \rangle_{\mathcal{S}} & \dots & \langle y_{n}, \psi_{s} \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_{0}} \\ \begin{bmatrix} \langle y_{1}, \psi_{1} \rangle_{\mathcal{S}} & \dots & \langle y_{n}, \psi_{s} \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_{0}} \\ \vdots & \dots & \langle y_{n}, \psi_{1} \rangle_{\mathcal{S}} & \dots & \langle y_{n}, \psi_{s} \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_{1}} \\ \vdots & \dots & \langle y_{n}, \psi_{1} \rangle_{\mathcal{S}} & \dots & \langle y_{n}, \psi_{s} \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_{2}}$$

Then, optimal bases are obtained via a *higher-order SVD*, i.e. via SVDs of tensor unfoldings with respect to the space dimension

$$\mathbf{Y}^{(\nu)} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_0} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_1} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_1, \psi_s \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_q, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_2} ,$$

and with respect to the time dimension

$$\mathbf{Y}^{(\psi)} := \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_1 \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_1, \psi_s \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_0} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_1 \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_1, \psi_s \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_1} \begin{bmatrix} \langle y_1, \psi_1 \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_1 \rangle_{\mathcal{S}} \\ \vdots & \ddots & \vdots \\ \langle y_1, \psi_s \rangle_{\mathcal{S}} & \dots & \langle y_q, \psi_s \rangle_{\mathcal{S}} \end{bmatrix}_{\mu = \mu_2},$$

respectively, cf. Lemma 1.

References

- [1] M. BAUMANN, J. HEILAND, AND M. SCHMIDT, *Discrete input/output maps and their relation to proper orthogonal decomposition*, in Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory, P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel, eds., Springer International Publishing, 2015, pp. 585–608.
- [2] L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, *A multilinear singular value decomposition*, SIAM J. Matrix Anal. Appl., 21 (2000), pp. 1253–1278.
- [3] J. HEILAND, spacetime-genpod-burgers Python module for spacetime-genpod-burgers. https://gitlab.mpi-magdeburg.mpg.de/heiland/spacetime-genpod-burgers, 2015.
- [4] S. Volkwein and S. Weiland, *An algorithm for Galerkin projections in both time and spatial coordinates*, Proc. 17th MTNS, (2006).

The basic theory

L² projections onto the measurements

Lemma 1 (See Chapter 3.3 in [1]) The $L^2(0, T)$ -orthogonal projection $\tilde{y}(t)$ of the state vector y(t) onto the space spanned by the measurements is given as

$$\tilde{y}(t) = Y_{gen}M_{\mathcal{S}}^{-1}\psi(t),$$

where $\psi := [\psi_1, ..., \psi_s]^T$, and where $[M_S]_{i,j} := \langle \psi_i, \psi_j \rangle_S$. The generalized POD basis can be computed via a (truncated) SVD of

$$Y_{gen}M_S^{-1/2}$$
.

Higher order SVDs [2]

For a third-order tensor like $\mathbf{Y} \in \mathbb{R}^{q \times s \times p}$ there exists a HOSVD

$$\mathbf{Y} = \mathbf{C} \times_1 U^{(\psi)} \times_2 U^{(\nu)} \times_3 U^{(\mu)}, \tag{1}$$

with the *core tensor* $\mathbf{C} \in \mathbb{R}^{q \times s \times p}$ satisfying some orthogonality properties and with unitary matrices $U^{(\psi)} \in \mathbb{R}^{s \times s}$, $U^{(\nu)} \in \mathbb{R}^{q \times q}$, and $U^{(\mu)} \in \mathbb{R}^{p \times p}$. Here, $\mathbf{x}_1, \dots, \mathbf{x}_3$ denote tensor-matrix multiplications. We define a *matrix unfolding* $\tilde{\mathbf{Y}}^{(\psi)} \in \mathbb{R}^{s \times qp}$ of the tensor $\tilde{\mathbf{Y}}$ via putting all elements belonging to $\psi_1, \psi_2, \dots, \psi_s$ into one respective row. Similarly, we define the unfoldings $\mathbf{Y}^{(\nu)} \in \mathbb{R}^{q \times ps}$ and $\mathbf{Y}^{(\mu)} \in \mathbb{R}^{p \times sq}$. Then we can calculate $U^{(\psi)}$, $U^{(\nu)}$ and $U^{(\mu)}$ in (1) by means of three SVDs like $\mathbf{Y}^{(\psi)} = U^{(\psi)} \Sigma^{(\psi)} (W^{(\psi)})^{\mathsf{T}}$, with $\Sigma^{(\psi)}$ diagonal with entries $\sigma_1^{(\psi)} \geq \sigma_2^{(\psi)} \geq \dots \sigma_s^{(\psi)} \geq 0$ and $W^{(\psi)}$ column-wise orthonormal. The $\sigma_i^{(\psi)}$ are the *n-mode singular values* of the tensor \mathbf{Y} .

From these SVDs, we derive an approximation $\hat{\mathbf{Y}} \in \mathbb{R}^{q \times s \times p}$ of \mathbf{Y} by discarding the smallest n-mode singular values. i.e. by setting the corresponding parts of \mathbf{C} to zero. Then we have

$$\|\mathbf{Y} - \hat{\mathbf{Y}}\|_F^2 \le \sum_{i=\hat{s}+1}^s \sigma_i^{(\psi)} + \sum_{k=\hat{q}+1}^q \sigma_k^{(\nu)} + \sum_{l=\hat{p}+1}^p \sigma_l^{(\mu)}.$$

Numerical tests

We consider the Burgers equation with the viscosity parameter μ

$$\partial_t z(t,x) + \partial_x \left(\frac{1}{2} z(t,x)^2 - \mu \partial_x z(t,x)\right) = 0, \tag{2}$$

with the spatial coordinate $x \in (0,1)$, the time variable $t \in (0,1]$, completed by zero Dirichlet boundary conditions and a step function as initial conditions as illustrated in Fig. 1(a).

Assembling the measurement matrices

The spatial discretization is done through piecewise linear finite elements on an equidistant grid of q nodes. For fixed choices of μ , the solution trajectories are obtained via a Runge-Kutta solver and then tested against the basis functions of a $S \in L^2(0, 1)$ chosen as the span of s equidistantly distributed linear hat functions.

Test setups

We use the parameter values $\mu_0 = 10^{-2}$, $\mu_1 = 3 \cdot 10^{-3}$, $\mu_2 = 10^{-3}$ to set up the measurement tensor **Y** and to compute the space and time POD modes. These POD modes are then used in a space-time Galerkin scheme for Equation (2). Thus the solution of the reduced model is obtained via the solution of a nonlinear equation system with $s \times q$ degrees of freedom. As the error measure, we use the space time L^2 difference between a solution of the full and the reduced model.

Figure 1: Burger setup for $\mu = 3 \cdot 10^{-3}$: The full solution, the reduced solution, and the approximation error.

Space vs. time resolution We set the overall number of POD modes to K := q + s and consider various space time resolutions $q = f \cdot K$ and $s = (1 - f) \cdot K$, for $f \in [0.2, 0.8]$. Examining the time-space approximation vs. f, one sees that f = 0.5, e.g., q = s = seems the best choice over the whole parameter range, cf. Figure 2(a).

Approximation error vs. parameter We investigate the error for reduced systems of order $K = \{20, 30, 40\}$ in a parameter range within and slightly outside the trainings set, see Figure 2(b).

Implementation The code is available from the author's public git repository [3].

Figure 2: (a) the error for various numbers of f. (b): the error in the reduced model over the parameter range for various K.