# ΑΝΑΦΟΡΑ ΗΛΕΚΤΡΟΝΙΚΗΣ Ι

ΑΣΚΗΣΗ 1 : ΔΙΟΔΟΙ ΕΠΑΦΗΣ pn

#### ΟΜΑΔΑ

Γιώργος Βιριράκης **2016030035** Χρήστος Μπεχτσούδης **2016** Μιχάλης Γαλάνης **2016030036** 

# Ερώτημα 1°

Οι τιμές  $V_R$  και  $V_D$  είναι οι μετρήσεις που λάβαμε από την εργαστηριακή άσκηση. Τα αποτελέσματα  $I_D$  παράγονται από το νόμο του Ohm ( $I_D = V_R / R$ ) με  $R = 1 K \Omega$ .

| Δίοδος Πυριτίου (1N4148) |        |        |        |        |        |        |        |        |        |        |
|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| $V_{R}$                  | 0.1V   | 0.3V   | 0.5V   | 0.7V   | 0.9V   | 2V     | 3V     | 5V     | 7V     | 10V    |
| $V_D$                    | 0.508V | 0.558V | 0.581V | 0.604V | 0.616V | 0.656V | 0.676V | 0.703V | 0.721V | 0.743V |
| $I_D$                    | 0.1mA  | 0.3mA  | 0.5mA  | 0.7mA  | 0.9mA  | 2mA    | 3mA    | 5mA    | 7mA    | 10mA   |



#### Ερώτημα 2°

Το LT Spice σύμφωνα με το κύκλωμα που κατασκευάσαμε για τη δίοδο πυριτίου, δημιούργησε το παρακάτω γράφημα:



Παρατηρούμε οτι στη πειραματική γραφική παράσταση, η μέγιστη τιμή τάσης VD που μπορεί να πάρει με τις ίδιες τιμές ρεύματος είναι μεγαλύτερη. Αυτό πιστεύουμε ότι οφείλεται στις εσωτερικές αντιστάσεις των διόδων και στις στρογγυλοποιήσεις των μετρήσεών μας.

# Ερώτημα 3°

Παρόμοια με το Ερώτημα 1, οι τιμές  $\mathbf{V_R}$  και  $\mathbf{V_D}$  είναι οι μετρήσεις που λάβαμε από την εργαστηριακή άσκηση. Τα αποτελέσματα  $\mathbf{I_D}$  παράγονται από το νόμο του Ohm ( $\mathbf{I_D} = \mathbf{V_R} / \mathbf{R}$ ) με  $\mathbf{R} = \mathbf{1}\mathbf{K}\mathbf{\Omega}$ .

| Δίοδος Γερμανίου (1N34A) |        |        |        |        |        |        |        |        |        |       |
|--------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|
| $V_R$                    | 0.1V   | 0.3V   | 0.5V   | 0.7V   | 0.9V   | 2V     | 3V     | 5V     | 7V     | 10V   |
| $V_D$                    | 0.156V | 0.211V | 0.237V | 0.257V | 0.271V | 0.321V | 0.348V | 0.383V | 0.406V | 0.43V |
| $I_D$                    | 0.1mA  | 0.3mA  | 0.5mA  | 0.7mA  | 0.9mA  | 2mA    | 3mA    | 5mA    | 7mA    | 10mA  |



# Ερώτημα 4°

Το LT Spice σύμφωνα με το κύκλωμα που κατασκευάσαμε για τη δίοδο πυριτίου, δημιούργησε το παρακάτω γράφημα:



Και στην περίπτωση της διόδου γερμανίου η μέγιστη τιμή τάσης VD που μπορεί να πάρει με τις ίδιες τιμές ρεύματος στη γραφική παράσταση επεκτείνεται περισσότερο. Αυτό πιστεύουμε ότι οφείλεται στις εσωτερικές αντιστάσεις των διόδων και στις στρογγυλοποιήσεις των μετρήσεών μας.

#### Ερώτημα 5°

Μελετώντας τα παραπάνω διαγράμματα, παρατηρούμε ότι η κλίση της διόδου πυριτίου είναι πιο απότομη από αυτή της γερμανίου. Επίσης, στις ίδιες τιμές των **Ι<sub>ο</sub>** το εύρος τιμών VD είναι διαφορετικό μεταξύ των δύο διόδων. Οι καμπύλες των διόδων είναι της ίδιας μορφής.

### Ερώτημα 6°

α) Ο υπολογισμός της στατικής (dc) αντίστασης, για τα ρεύματα που δίνονται από την εκφώνηση, έγινε με τον τύπο Rdc=VD/ID. Έτσι, προέκυψαν τα εξής:

| Δίοδος Πυριτίου (1N4148) |        |        |        |        |  |  |  |  |  |  |
|--------------------------|--------|--------|--------|--------|--|--|--|--|--|--|
| $V_D$                    | 0.558V | 0.616V | 0.703V | 0.743V |  |  |  |  |  |  |
| I <sub>D</sub>           | 0.3mA  | 0.9mA  | 5mA    | 10mA   |  |  |  |  |  |  |
| RDC                      | 1860Ω  | 684,4Ω | 140,6Ω | 74,3Ω  |  |  |  |  |  |  |

| Δίοδος Γερμανίου (1N4148) |        |         |        |        |        |        |        |        |        |       |
|---------------------------|--------|---------|--------|--------|--------|--------|--------|--------|--------|-------|
| $V_{D}$                   | 0.156V | 0.211V  | 0.237V | 0.257V | 0.271V | 0.321V | 0.348V | 0.383V | 0.406V | 0.43V |
| I <sub>D</sub>            | 0.1mA  | 0.3mA   | 0.5mA  | 0.7mA  | 0.9mA  | 2mA    | 3mA    | 5mA    | 7mA    | 10mA  |
| RDC                       |        | 703.33Ω |        |        | 301,1Ω |        |        | 76,6Ω  |        | 43Ω   |

β)

γ)