Evaluation of SARS-CoV-2 infections in white-tailed deer in NYS, 2020-2021

Cornell University, Wildlife Health Lab
Md Sohel Ahmed, Racheal C Abbort, Brenda Hanley, Nick
Hollingshead, and Krysten Schuler
Postdoctoral Associate
10 August 2022

• Outline

- Introduction of SARS-CoV-2 in White-Tailed Deer(WTD) across New York State
- Purpose of this study
- Sampling and testing of WTD in NYS, 2020-2022
- Scan statistics or Cluster Analysis
- Demographic results of WTD by using of logistic regression.
- Discussion and summary

Sample Collection

Statewide surveillance of WTD for chronic wasting disease

- Retropharyngeal lymph nodes collected by the NYS Dept. of Environmental Conservation from hunter-harvested WTD
- Emphasis on adult animals so few young-of-year (i.e., fawns) are included in sample set

Lymph nodes were also tested for SARS-CoV-2 (Diel Lab)

- Real time RT-PCR followed by virus isolation in cell culture
- Sequencing to identify Variants of Concern

• Objective:

- Examine the geographic distribution of SARS-CoV-2 in WTD case for 2021-22 using spatial scan Statistics.
- Identify high/low SARS-CoV-2 incidence areas and further examine whether potential covariates could explain outcome.
- Beneficial for transmission route spillback to human.

Cornell University
College of Veterinary Medicine

SARS-CoV-2 Testing of Retropharyngeal Lymph Nodes from WTD across NYS.

- Tan color indicates Season 1
- Red bar indicates Season 2
- Number of Sample Season 1 and Season 2 almost same
- But the Positive number and Proportion Season 2 to rapidly increase.

Spatial distribution of WTD samples tested for SARS-CoV-2 in NYS, 2020-2022

- ➤ Red dot indicate Positive case
- ➤ Grey dot indicates Negative Case
- ➤ More Case detected Season 2 than Season 1

Spatial Scan Statistics Using SaTScan

- SaTScan is a freely available software that uses spatial scan statistic to detect clusters in space, time or space time.
- https://www.satscan.org/
- Developed by Martin Kulldorff.
- Scanning window set up from 0 to 50% of the population can consider are risk of disease spread.

Data for input using SaTScan

Data for input vary depending on the analysis and model

- Coordinate files: X, Y location
- Number of cases/ controls
- Population size/ Expected counts
- Time precision: Year, month, day
- Study period

Output by SaTScan

- Result file: Summary of results
- Cluster and location information
- Risk estimates and log likelihood ratio for each location.

Clustering Maps- need GIS and other mapping system.

Primary Cluster or transmission route

$$RR = \frac{c/e}{(C-c)/(C-e)}$$

c represented the total number of observed cases in the town,

e represents the total number of expected cases in a town, and

C represented the total number of observed cases in NYS.

Cluster No:1

Coordinates / radius..: (41.370000 N, 74.690000 W) / 55.31 km

Number of cases.....: 89

Expected cases.....: 36.86

Relative risk.....: 2.68

Log likelihood ratio..: 41.029402

P-value....: < 0.001

The presence of SARS-CoV-2 in deer in New York State has been observed in spatial clusters in 2021-221

Cluster	Total IUMPS ²	Radius (Km)	Observed (O)	Expected (E)	O/E	Relative Risk (RR)	Log-Likelihood Ratio	p-Value ³
C1	29	55.31	89	36.86	2.41	2.68	41.029	<0.001
C2	14	21.70	56	22.12	2.53	2.70	27.62	<0.001
C3	57	67.98	0	20.85	0	0	23.91	<0.001
C4	22	34.75	0	19.59	0	0	22.43	<0.001
C5	26	80.43	1	19.80	0.049	1.1	18.42	<0.001
C6	20	64.38	0	15.38	0	0	17.53	<0.001
C7	17	21.17	30	11.79	2.54	2.63	14.58	<0.001
C8	6	17.89	14	4.21	3.32	3.38	11.11	0.016
C9	12	25.18	0	9.27	0	0	10.50	0.040
C10	24	36.33	1	10.95	0.091	0.090	8.79	0.154
C11	20	28.30	2	13.06	0.15	0.15	8.60	0.164
C12	17	27.21	50	29.49	1.70	1.76	8.42	0.187
C13	7	16.99	13	4.63	2.81	2.85	7.54	0.404
C14	12	22.57	7	6.11	0	0	6.90	0.585
C15	8	19.84	0	5.05	0	0	5.70	0.921
C16	12	29.41	0	4.63	0	0	5.22	0.983
C17	10	20.02	1	6.5	0.14	0.14	4.68	0.996
C18	3	10.66	8	2.95	2.71	2.74	4.83	0.999
C19	13	46.33	1	6.53	0.15	0.15	4.26	0.999

¹Results of the spatial clusters model

² IUMPS (Internal database ID for unique towns from the IPUMS geospatial dataset, which is based on the US Census TIGER data)

³ Statistically significant at p≤0.005.

WTD Clusters based on RR

Spatial analysis of SARS-CoV-2 infections in deer high cluster based on the RR \geq 1.76 in New York State for 2021-2022 Season.

Results of the logistic regression model using demographic and seasonal factors for SARS-CoV-2 testing in deer positive in New York State, Season 1 and Season 2².

Response Variable	Predictor variables	OR ³	95% C.I ⁴	P- Value ⁵
Testing Result	Season 2021-22 Yearling Male	59.04 0.865 1.952	34.83-111.08 0.70-1.059 1.591-2.407	<0.01 0.164 <0.01
Testing Result	Yearling Male	0.876 1.906	0.711-1.07 1.55-2.355	0.210 <0.01

Male have high Prevalence rate than Yearling.

²Outcome (N= 589 SARS-Cov-2 cases from 5,434 deer samples)

³ OR- Odds ratio

⁴ CI- Confidence Interval of the OR.

⁵ Statistically significant at P≤0.05.

Discussion and Summary

- ➤ Our method to detect SARS-CoV-2 infections cluster in WTD is helpful for wildlife and future disease management.
- Through the utilization of a geospatial analysis to identify the geographic characteristics of SARS-CoV-2, with improved cluster detection.
- The spatial scan statistics are able to provide information on the approximate location and size of each cluster.
- ➤ SARS-CoV-2 infection among males and females differed (p<0.01), and that the highest transmission rate (82%) was observed in 1.5-year-old animals.
- ➤ We have planning to characteristic landscape characteristic features like wastewater to figure out more transmission route.
- This fall also conduct sample test again and give more clear vision of the transmission route and give more information wildlife disease management.

Thank you very much for your attention.

Any Questions, Comments?

