Lab Exercise 10: Pre-trained Models

In this lab exercise, we will create document vectors from pre-trained models.

- 1. Download the pre-trained models for the following word embedding models check the notebooks uploaded.
 - a. GloVe
 - b. Word2Vec
- 2. Create document vectors by the following formula: doc_Veci = sum(wj)
 - a. doc_Veci: ith document in the corpus.
 - b. wj : word vector of jth word in the document. The word vector is taken model.
 - c. (Out-Of-Vocabulary) OOV words can be ignored.
- 3. (Optional) For fastText, download a non-English language. Test few words similarities.

```
In [28]: import warnings
   warnings.simplefilter("ignore", UserWarning)
   from glove import Corpus, Glove
   import re
   import glob
   from nltk.tokenize import word_tokenize
   import string
   import pandas as pd
   import codecs
   from gensim.scripts.glove2word2vec import glove2word2vec
   from gensim.models import KeyedVectors
   from gensim.models import FastText
```

```
import string
In [2]:
         def preprocess(text):
             text = text.lower()
             text = text.replace('\n',' ')
             text = text.replace("-"," ")
             p = string.punctuation
             text = text.translate(str.maketrans('', '', p))
             printable = set(string.printable)
             text = ''.join(filter(lambda x: x in printable, text))
             lines = word tokenize(text)
             stop words = set(stopwords.words('english'))
             filtered new toekns = [w for w in lines if not w.lower() in stop words]
             lines = list(filter(None, filtered new toekns))
             return lines
In [3]:
         document list = []
         with open("AI_corpus.txt") as f:
             document list = f.readlines()
         document list tokens = []
         for d in document list:
             filtered new toekns = preprocess(d)
             document list tokens.append(filtered new toekns)
         print(document list tokens)
        [['supervised', 'learning', 'data', 'point', 'labeled', 'associated', 'category', 'value', 'interest', 'example', 'categorical', 'label', 'as
        signing', 'image', 'either', 'cat', 'dog', 'example', 'value', 'label', 'sale', 'price', 'associated', 'used', 'car', 'goal', 'supervised',
        'learning', 'study', 'many', 'labeled', 'examples', 'like', 'able', 'make', 'predictions', 'future', 'data', 'points', 'example', 'identifyin
        g', 'new', 'photos', 'correct', 'animal', 'assigning', 'accurate', 'sale', 'prices', 'used', 'cars', 'popular', 'useful', 'type', 'machine',
        'learning'], ['unsupervised', 'learning', 'data', 'points', 'labels', 'associated', 'instead', 'goal', 'unsupervised', 'learning', 'algorith
        m', 'organize', 'data', 'way', 'describe', 'structure', 'unsupervised', 'learning', 'groups', 'data', 'clusters', 'k', 'means', 'finds', 'dif
        ferent', 'ways', 'looking', 'complex', 'data', 'appears', 'simpler'], ['reinforcement', 'learning', 'algorithm', 'gets', 'choose', 'action',
        'response', 'data', 'point', 'common', 'approach', 'robotics', 'set', 'sensor', 'readings', 'one', 'point', 'time', 'data', 'point', 'algorit
        hm', 'must', 'choose', 'robots', 'next', 'action', 'also', 'natural', 'fit', 'internet', 'things', 'applications', 'learning', 'algorithm',
```

from nltk.corpus import stopwords

'also', 'receives', 'reward', 'signal', 'short', 'time', 'later', 'indicating', 'good', 'decision', 'based', 'signal', 'algorithm', 'modifie s', 'strategy', 'order', 'achieve', 'highest', 'reward'], ['deep', 'learning', 'subset', 'machine', 'learning', 'thats', 'based', 'artificia l', 'neural', 'networks', 'learning', 'process', 'deep', 'structure', 'artificial', 'neural', 'networks', 'consists', 'multiple', 'input', 'o utput', 'hidden', 'layers', 'layerⁱ, 'contains', 'units', 'transform', 'input', 'data', 'information', 'next', 'layer', 'use', 'certain', 'pr edictive', 'task', 'thanks', 'structure', 'machine', 'learn', 'data', 'processing'], ['training', 'deep', 'learning', 'models', 'often', 'req uires', 'large', 'amounts', 'training', 'data', 'high', 'end', 'compute', 'resources', 'gpu', 'tpu', 'longer', 'training', 'time', 'scenario s', 'dont', 'available', 'shortcut', 'training', 'process', 'using', 'technique', 'known', 'transfer', 'learning'], ['machine', 'learning', 'subset', 'artificial', 'intelligence', 'uses', 'techniques', 'deep', 'learning', 'enable', 'machines', 'use', 'experience', 'improve', 'task s', 'learning', 'process', 'based', 'following', 'steps', '1', 'feed', 'data', 'algorithm', 'use', 'data', 'train', 'model', 'test', 'deplo y', 'model', 'consume', 'deployed', 'model', 'automated', 'predictive', 'task', 'words', 'call', 'use', 'deployed', 'model', 'receive', 'pred ictions', 'returned', 'model'], ['artificial', 'intelligence', 'ai', 'technique', 'enables', 'computers', 'mimic', 'human', 'intelligence', 'includes', 'machine', 'learning'], ['text', 'analytics', 'based', 'deep', 'learning', 'methods', 'involves', 'analyzing', 'large', 'quantiti es', 'text', 'data', 'example', 'medical', 'documents', 'expenses', 'receipts', 'recognizing', 'patterns', 'creating', 'organized', 'concis e', 'information'], ['artificial', 'neural', 'networks', 'formed', 'layers', 'connected', 'nodes', 'deep', 'learning', 'models', 'use', 'neur al', 'networks', 'large', 'number', 'layers'], ['feedforward', 'neural', 'network', 'simple', 'type', 'artificial', 'neural', 'network', 'fee dforward', 'network', 'information', 'moves', 'one', 'direction', 'input', 'layer', 'output', 'layer', 'feedforward', 'neural', 'networks', 'transform', 'input', 'putting', 'series', 'hidden', 'layers', 'every', 'layer', 'made', 'set', 'neurons', 'layer', 'fully', 'connected', 'ne urons', 'layer', 'last', 'fully', 'connected', 'layer', 'output', 'layer', 'represents', 'generated', 'predictions'], ['recurrent', 'neural', 'networks', 'widely', 'used', 'artificial', 'neural', 'network', 'networks', 'save', 'output', 'layer', 'feed', 'back', 'input', 'layer', 'he lp', 'predict', 'layers', 'outcome', 'recurrent', 'neural', 'networks', 'great', 'learning', 'abilities', 'theyre', 'widely', 'used', 'comple x', 'tasks', 'time', 'series', 'forecasting', 'learning', 'handwriting', 'recognizing', 'language'], ['convolutional', 'neural', 'network', 'particularly', 'effective', 'artificial', 'neural', 'network', 'presents', 'unique', 'architecture', 'layers', 'organized', 'three', 'dimens ions', 'width', 'height', 'depth', 'neurons', 'one', 'layer', 'connect', 'neurons', 'next', 'layer', 'small', 'region', 'layers', 'neurons', 'final', 'output', 'reduced', 'single', 'vector', 'probability', 'scores', 'organized', 'along', 'depth', 'dimension'], ['generative', 'adver sarial', 'networks', 'generative', 'models', 'trained', 'create', 'realistic', 'content', 'images', 'made', 'two', 'networks', 'known', 'gene rator', 'discriminator', 'networks', 'trained', 'simultaneously', 'training', 'generator', 'uses', 'random', 'noise', 'create', 'new', 'synth etic', 'data', 'closely', 'resembles', 'real', 'data', 'discriminator', 'takes', 'output', 'generator', 'input', 'uses', 'real', 'data', 'det ermine', 'whether', 'generated', 'content', 'real', 'synthetic', 'network', 'competing', 'generator', 'trying', 'generate', 'synthetic', 'con tent', 'indistinguishable', 'real', 'content', 'discriminator', 'trying', 'correctly', 'classify', 'inputs', 'real', 'synthetic', 'output', 'used', 'update', 'weights', 'networks', 'help', 'better', 'achieve', 'respective', 'goals'], ['transformers', 'model', 'architecture', 'suit ed', 'solving', 'problems', 'containing', 'sequences', 'text', 'time', 'series', 'data', 'consist', 'encoder', 'decoder', 'layers', 'encode r', 'takes', 'input', 'maps', 'numerical', 'representation', 'containing', 'information', 'context', 'decoder', 'uses', 'information', 'encod er', 'produce', 'output', 'translated', 'text', 'makes', 'transformers', 'different', 'architectures', 'containing', 'encoders', 'decoders', 'attention', 'sub', 'layers', 'attention', 'idea', 'focusing', 'specific', 'parts', 'input', 'based', 'importance', 'context', 'relation', 'i nputs', 'sequence', 'example', 'summarizing', 'news', 'article', 'sentences', 'relevant', 'describe', 'main', 'idea', 'focusing', 'key', 'wor ds', 'throughout', 'article', 'summarization', 'done', 'single', 'sentence', 'headline'], ['automated', 'machine', 'learning', 'also', 'refer red', 'automated', 'ml', 'automl', 'process', 'automating', 'time', 'consuming', 'iterative', 'tasks', 'machine', 'learning', 'model', 'devel opment', 'allows', 'data', 'scientists', 'analysts', 'developers', 'build', 'ml', 'models', 'high', 'scale', 'efficiency', 'productivity', 's ustaining', 'model', 'quality']]

Glove

```
import numpy as np
path = "G:\spark_big_files\\"
fn = "glove.6B\glove.6B.50d.txt"
g_file = open(path+fn, encoding="utf-8")
```

```
model glove={}
         for line in g file:
             parts = line.split()
             word = parts[0]
             embedding = np.array([float(val) for val in parts[1:]])
             model glove[word] = embedding
In [5]:
         model glove['logistic']
Out[5]: array([ 1.3974
                       , -0.14533 , 0.0031009, 0.20223 , 0.10888 ,
               -0.37115 , 0.81565 , -0.029923 , 1.1535
                                                           , -1.4118
                0.76681 , 0.21901 , -0.16761 , -0.61186
                                                           , -1.5716
               -0.49697 , -0.42153 , 0.30808
                                               , 0.59776
                                                           , -0.32651
                0.035977 , -0.47536 , -0.62235
                                               , -0.22975
                                                           . -0.54818
                0.62333 , -0.41482 , -0.59224
                                               . 0.68942
                                                           . 0.97883
                1.4524
                        , 0.88615 , -0.15822
                                               , -0.36141
                                                           , 0.4336
                1.2251
                        . -0.15228
                                   , 0.22974
                                               , -0.32081 , 0.85588
                0.8408
                        , -0.26906 , 0.22466
                                               , -0.4583
                                                           , -0.42407
               -0.28703
                                               , 0.32464
                        , 0.39841 , 1.2724
                                                           , 0.38978 ])
In [6]:
         with open(path+fn, encoding="utf-8") as f:
             for line in f:
                  word, *vector = line.split()
                  print(line)
                  print(word)
                  print(vector)
                  break
        the 0.418 0.24968 -0.41242 0.1217 0.34527 -0.044457 -0.49688 -0.17862 -0.00066023 -0.6566 0.27843 -0.14767 -0.55677 0.14658 -0.0095095 0.0116
        58 0.10204 -0.12792 -0.8443 -0.12181 -0.016801 -0.33279 -0.1552 -0.23131 -0.19181 -1.8823 -0.76746 0.099051 -0.42125 -0.19526 4.0071 -0.18594
        -0.52287 -0.31681 0.00059213 0.0074449 0.17778 -0.15897 0.012041 -0.054223 -0.29871 -0.15749 -0.34758 -0.045637 -0.44251 0.18785 0.0027849 -
        0.18411 -0.11514 -0.78581
        ['0.418', '0.24968', '-0.41242', '0.1217', '0.34527', '-0.044457', '-0.49688', '-0.17862', '-0.00066023', '-0.6566', '0.27843', '-0.14767',
        '-0.55677', '0.14658', '-0.0095095', '0.011658', '0.10204', '-0.12792', '-0.8443', '-0.12181', '-0.016801', '-0.33279', '-0.1552', '-0.2313
        1', '-0.19181', '-1.8823', '-0.76746', '0.099051', '-0.42125', '-0.19526', '4.0071', '-0.18594', '-0.52287', '-0.31681', '0.00059213', '0.007
        4449', '0.17778', '-0.15897', '0.012041', '-0.054223', '-0.29871', '-0.15749', '-0.34758', '-0.045637', '-0.44251', '0.18785', '0.0027849',
        '-0.18411', '-0.11514', '-0.78581']
In [7]:
         doc_wv_glove = []
```

```
for d in document list tokens:
              list wv glove = []
              for w in d:
                   try:
                        wv = model glove[w]
                   except Exception as e:
                        print(w, " not available in pre-trained model")
                        continue
                   list_wv_glove.append(list(wv))
              doc wv glove.append(list wv glove)
          print(doc wv glove[0][0])
         automl not available in pre-trained model
         [0.38869, -0.6629, -0.26774, -0.73281, -0.34786, -0.10755, -0.41984, 0.068642, 0.27751, -0.16855, 0.3003, -0.32924, 0.018467, 0.21328, 0.3851
        1, -0.13537, 0.4288, 0.24974, 0.95216, 0.14078, 0.74774, 0.45853, 0.08173, -0.30055, -0.65179, -0.21313, 0.3142, -0.6973, -0.57879, 0.32603,
        1.5068, -0.91617, -1.0854, -0.9522, 0.38002, 0.57362, 0.73149, 0.93065, -0.21461, 0.2159, -0.51239, -0.43315, 0.14123, -0.064009, -0.83072, -
        1.1617, -0.27445, 0.25408, -0.68674, 0.48642]
In [8]:
          sum_doc_wv_glove = []
          for doc in doc wv glove:
              1 = [0]*50
              1 = list(map(sum, zip(*doc)))
              sum_doc_wv_glove.append(1)
In [9]:
          df_glove = pd.DataFrame(sum_doc_wv_glove)
          df_glove
Out[9]:
                   0
                             1
                                       2
                                                3
                                                                                         7
                                                                                                  8
                                                                                                            9 ...
                                                                                                                        40
                                                                                                                                   41
                                                                                                                                             42
                                                                                                                                                       43
                       4.374460 11.993935 -5.158415 14.766697 11.392416 -20.005113 -29.203114
                                                                                            5.262224 13.857550 ...
                                                                                                                                        8.520857 18.389585
          0 12.101104
                                                                                                                   8.184116
                                                                                                                             -5.746854
          1 13.159370
                       3.038464
                                          -0.537000
                                                    9.670194
                                                              3.561177
                                                                                            2.061678
                                                                                                      6.368808 ...
                                 6.036460
                                                                        -7.233797 -12.321832
                                                                                                                   1.961826
                                                                                                                             -9.315479
                                                                                                                                        -1.189058
                                                                                                                                                 18.020984
          2 16.422890
                                                   16.635664
                       0.116132 11.596643
                                           0.896830
                                                              3.371303
                                                                        -0.918356 -14.077522
                                                                                            8.042710
                                                                                                      9.784653 ...
                                                                                                                   6.085037
                                                                                                                             -5.879490
                                                                                                                                        -7.870552 15.872896
          3 19.553503
                                                                                -21.575368 14.119812
                                                                                                      6.427718 ...
                       4.763946
                               14.721760 11.510947
                                                    5.782216
                                                            15.857914
                                                                         6.332519
                                                                                                                   9.855202 -13.177338
                                                                                                                                        -3.793389 21.025968
          4 12.320516
                       2.111690
                                 1.804296 -3.991555 -0.584747
                                                             -0.802747
                                                                        -4.935597
                                                                                   -9.984762
                                                                                            7.997035
                                                                                                      2.584212 ...
                                                                                                                   2.946719
                                                                                                                             -6.756342
                                                                                                                                        2.085694 14.076605
```

	0	1	2	3	4	5	6	7	8	9	. 40	41	42	43
5	22.807088	-3.900397	16.441416	-2.635218	1.599845	4.707943	-5.181038	-24.854554	12.571613	0.299524	11.309626	-9.596195	4.312019	13.691593
6	4.764424	-1.891360	3.829040	1.878524	1.383179	1.577710	1.407910	-8.010710	3.982017	3.588680	3.639742	-1.615224	1.758908	6.101352
7	9.840030	1.926859	0.023040	-0.598059	5.568762	5.264467	-4.900165	-12.576323	9.636665	3.300239	8.492799	-4.738453	3.646483	10.930028
8	11.239430	4.968602	7.406865	6.011796	-3.260736	13.061140	0.722734	-9.380602	2.226385	-0.346118	1.745879	-4.783351	-1.827847	11.646055
9	19.852918	6.724471	24.297293	21.338611	0.225416	23.502331	14.284390	-17.924339	12.782282	6.788219	8.606146	-9.058993	-11.265004	17.786900
10	17.642795	0.854866	9.151886	8.017561	-4.534959	16.691555	0.713951	-14.555997	7.361738	9.843209	0.900690	-6.122775	-8.348763	16.703587
11	18.284240	13.456778	11.535860	11.850854	6.958950	18.814811	14.269279	-16.078769	8.311665	-1.238126	0.804451	-8.650185	-2.633244	10.964907
12	26.904500	-7.925407	28.415070	12.690781	6.427418	13.193917	1.179658	-34.411169	8.271911	39.370404	22.780720	-9.241697	-3.214502	22.440325
13	13.264192	7.959192	13.946187	11.420411	16.142531	18.327509	16.158288	-39.025083	6.957113	14.274446	27.902520	-1.281909	-7.319446	16.151506
14	12.500854	-4.376278	13.218348	-0.944837	-2.189072	4.623822	-1.292360	-21.266274	7.628481	7.603994	0.844215	-9.947371	-1.067155	11.956501

15 rows × 50 columns

```
In [10]: #df_glove = pd.DataFrame(list_wv_glove)
    #df_glove = df_glove.T
    #df_glove.columns = filtered_new_toekns
    #df_glove['dov_Vec'] = df_glove.sum(axis=1)
    #first_column = df_glove.pop('dov_Vec')
    #df_glove.insert(0, 'dov_Vec', first_column)
    #df_glove.head()
```

Word2Vec

```
Wall time: 16.9 s
In [12]:
                                  model word2vec = KeyedVectors.load('glove50 word2vec.model')
In [13]:
                                  model word2vec.get vector('logistic')
Out[13]: array([ 1.3974
                                                                                     , -0.14533
                                                                                                                        , 0.0031009, 0.20223
                                                                                                                                                                                                                 0.10888
                                                      -0.37115
                                                                                  , 0.81565
                                                                                                                        , -0.029923 , 1.1535
                                                                                                                                                                                                         , -1.4118
                                                        0.76681 , 0.21901
                                                                                                                        , -0.16761 , -0.61186
                                                                                                                                                                                                         , -1.5716
                                                      -0.49697 , -0.42153
                                                                                                                         , 0.30808
                                                                                                                                                                  , 0.59776
                                                                                                                                                                                                         , -0.32651
                                                        0.035977 , -0.47536
                                                                                                                          , -0.62235
                                                                                                                                                                 , -0.22975
                                                                                                                                                                                                         , -0.54818
                                                        0.62333 , -0.41482
                                                                                                                         , -0.59224
                                                                                                                                                                 , 0.68942
                                                                                                                                                                                                         . 0.97883
                                                        1.4524
                                                                                      . 0.88615
                                                                                                                        , -0.15822
                                                                                                                                                                 , -0.36141
                                                                                                                                                                                                        , 0.4336
                                                        1.2251
                                                                                     , -0.15228
                                                                                                                         , 0.22974
                                                                                                                                                                 , -0.32081
                                                                                                                                                                                                       , 0.85588
                                                        0.8408
                                                                                      , -0.26906
                                                                                                                        , 0.22466
                                                                                                                                                                 , -0.4583
                                                                                                                                                                                                         , -0.42407
                                                                                  , 0.39841 , 1.2724
                                                     -0.28703
                                                                                                                                                                  , 0.32464
                                                                                                                                                                                                       . 0.38978
                                                  dtype=float32)
In [14]:
                                  doc_w2v_glove = []
                                  for d in document list tokens:
                                                list_w2v_glove = []
                                                for w in d:
                                                               try:
                                                                             w2v = model word2vec.get vector(w)
                                                               except Exception as e:
                                                                             print(w, " not available in pre-trained model")
                                                                             continue
                                                               list_w2v_glove.append(list(w2v))
                                                doc w2v glove.append(list w2v glove)
                                  print(doc_w2v_glove[0][0])
                               automl not available in pre-trained model
                                \lceil 0.38869, -0.6629, -0.26774, -0.73281, -0.34786, -0.10755, -0.41984, 0.068642, 0.27751, -0.16855, 0.3003, -0.32924, 0.018467, 0.21328, 0.3851
                              1, -0.13537, 0.4288, 0.24974, 0.95216, 0.14078, 0.74774, 0.45853, 0.08173, -0.30055, -0.65179, -0.21313, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.57879, 0.32603, 0.3142, -0.57879, 0.32603, 0.3142, -0.6973, -0.57879, 0.32603, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, 0.3142, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -0.57879, -
                              1.5068, -0.91617, -1.0854, -0.9522, 0.38002, 0.57362, 0.73149, 0.93065, -0.21461, 0.2159, -0.51239, -0.43315, 0.14123, -0.064009, -0.83072, -0.83072, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.91617, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, -0.917, 
                              1.1617, -0.27445, 0.25408, -0.68674, 0.48642]
```

In [15]:

```
sum_doc_w2v_glove = []
for doc in doc_w2v_glove:
    1 = [0]*50
    1 = list(map(sum, zip(*doc)))
    sum_doc_w2v_glove.append(1)
df_word2vec = pd.DataFrame(sum_doc_w2v_glove)
df_word2vec
```

3

Out[15]:

٠		<u> </u>												
	o 12.10110	4.374460	11.993935	-5.158415	14.766697	11.392416	-20.005113	-29.203115	5.262224	13.857550	8.184116	-5.746854	8.520857	18.389585
	1 13.159370	3.038464	6.036460	-0.537000	9.670194	3.561177	-7.233797	-12.321832	2.061678	6.368808	1.961826	-9.315479	-1.189058	18.020984
	2 16.422890	0.116132	11.596643	0.896830	16.635664	3.371303	-0.918356	-14.077522	8.042710	9.784653	6.085037	-5.879490	-7.870552	15.872896
	3 19.553503	3 4.763946	14.721760	11.510947	5.782216	15.857914	6.332519	-21.575368	14.119812	6.427718	9.855202	-13.177338	-3.793389	21.025968
	4 12.320516	2.111690	1.804296	-3.991555	-0.584747	-0.802747	-4.935597	-9.984762	7.997035	2.584212	2.946719	-6.756342	2.085694	14.076605
	5 22.807088	3 -3.900397	16.441416	-2.635218	1.599845	4.707943	-5.181038	-24.854554	12.571613	0.299524	11.309626	-9.596195	4.312019	13.691593
	6 4.764424	1 -1.891360	3.829040	1.878524	1.383179	1.577710	1.407910	-8.010710	3.982017	3.588680	3.639742	-1.615224	1.758908	6.101352
	7 9.840030	1.926859	0.023040	-0.598059	5.568762	5.264467	-4.900165	-12.576323	9.636665	3.300239	8.492799	-4.738453	3.646483	10.930028
	3 11.239430	4.968602	7.406865	6.011796	-3.260736	13.061140	0.722734	-9.380602	2.226385	-0.346118	1.745879	-4.783351	-1.827847	11.646055
	9 19.852918	6.724471	24.297293	21.338611	0.225416	23.502331	14.284390	-17.924339	12.782282	6.788219	8.606146	-9.058993	-11.265004	17.786900 -
1	1 7.64279	0.854866	9.151886	8.017561	-4.534959	16.691556	0.713951	-14.555997	7.361738	9.843209	-0.900690	-6.122775	-8.348763	16.703587

8

40

41

42

43

	11	18.284240	13.456778	11.535860	11.850854	6.958950	18.814811	14.269279	-16.078769	8.311665	-1.238126	0.804451	-8.650185	-2.633244	10.964907	
	12	26.904500	-7.925407	28.415070	12.690781	6.427418	13.193917	1.179658	-34.411169	8.271911	39.370405	22.780720	-9.241697	-3.214502	22.440325	
	13	13.264192	7.959192	13.946187	11.420411	16.142531	18.327509	16.158288	-39.025083	6.957113	14.274446	27.902520	-1.281909	-7.319446	16.151506	
	14	12.500854	-4.376278	13.218348	-0.944837	-2.189072	4.623822	-1.292360	-21.266274	7.628481	7.603994	0.844215	-9.947371	-1.067155	11.956501	
1	15 rows × 50 columns															
16]:	45	uond?vo	chana													
	αт_	_word2ved	. Snape													
16]:	(15,	50)														
F	FastText															
17]:	fro	om gensin	n.test.ut	tils i mpo	rt datap	ath										
	fro	from gensim.test.utils import get_tmpfile														
18]:	cor	rpus_file	e = datap	path(path	+'FastTe	xt NBs\sa	anskrit\c	c.sa.300.	vec')							
19]:		odel_fast_text = FastText(window=3, min_count=1)														
	mod	odel_fast_text.build_vocab(corpus_file=corpus_file)														
20]:	C		C-1.	- / II C++-		II \										
].		ŭ		e("fastte ve(fname)												
	IIIOC	dei_Tast_		ve(Triame)												
21]:	moc	del fast	text = F	astText.	load(fna	me)										
22]:	mac	del_fast_	text.wv	 'ਗਿ¤ਗ'1												
			_ cexter wv													

7

8

9 ...

40

41

42

43

0

In [1

Out[1

In [1

In [1

In [19

In [2

In [2

In [2

2

Out[22]: array([1.0589060e-03, 2.3311132e-03, 1.2368697e-03, -5.6811981e-04,

3

5

```
1.9011724e-05, 7.9339748e-04, -3.9136652e-03, -1.5236739e-03,
 -6.7840185e-05, -2.5255696e-03, 1.0558382e-03, 6.0761982e-04,
 -1.3082168e-03, -7.8758696e-04, 1.5887890e-03, 9.1723900e-04,
 -2.0566678e-03, -3.2919311e-04, -1.0627214e-03, -2.1360822e-04,
  6.1727501e-04, -1.6938419e-04, -9.5880288e-04, -1.5526972e-03,
  2.2240897e-04, -1.0421999e-03, -1.2042557e-03, 1.1058887e-03,
  6.4493570e-04, 1.6196573e-04, 1.3850558e-03, -4.7308364e-04,
 1.1558679e-03, 6.2220579e-04, 1.7621431e-03, 2.8883219e-03,
  2.1022796e-03, 9.5493335e-05, 1.7296150e-03, 3.5035043e-04,
 -1.9055633e-03, -5.1811081e-04, -6.6972163e-04, 9.9916087e-06,
 -2.4443311e-03, 2.9190325e-03, 1.9951249e-04, 1.6525466e-03,
 1.3114263e-03, -1.9119360e-03, -6.2612497e-04, 2.0028788e-03,
 -6.7243283e-04, -1.7746652e-03, 1.7546925e-03, -5.4100860e-04,
  1.0678092e-03, 7.2115799e-04, 1.2923736e-03, 1.7911096e-03,
 9.8867575e-05, 2.7720253e-03, -4.5825762e-04, -7.7944729e-05,
 3.2207672e-04, 8.6252351e-04, -1.2073311e-03, -1.2600464e-04,
 -3.7638543e-04, -1.7092064e-03, 2.8064859e-04, 2.0554147e-03,
 -2.3641607e-03, -6.8713882e-04, -6.7771022e-04, 2.4890662e-03,
 9.3570584e-04, 6.2817929e-04, -5.6937855e-04, 3.8494830e-04,
 -4.0240097e-03, 4.8071845e-05, -1.0736110e-03, 3.3048175e-03,
 -2.1023052e-04, 1.0820535e-03, -1.8144501e-03, -1.1398678e-03,
 1.7038188e-03, -7.6009909e-04, -1.6537205e-03, 1.2892865e-03,
 6.4688997e-04, -1.1777059e-03, -7.9556368e-04, 8.9986867e-04,
  1.1268969e-03, -3.9036767e-04, -8.8770037e-05, -1.0880316e-04]
dtype=float32)
```

```
In [23]: words = ['dgd']
for i in range(len(words)):
    print(words[i], end="\t==> ")
    similar = model_fast_text.wv.most_similar(words[i], topn = 100)
    for j in range(len(similar)):
        print(similar[j][0],end =", ")
    print("\n")
```

तिष्ठति ==> उपितष्ठति, तिष्ठत, प्रतिष्ठति, तिष्ठत्, अधितष्ठति, नावतिष्ठति, तिष्ठत्, अवतिष्ठति, तिष्ठता, तिष्ठता, विष्ठता, पर्यवितष्ठति, तिष्ठतः, तिष्ठतु, प्रतितिष्ठति, तिष्ठतीति, समिधितष्ठ ति, तथैवितष्ठति, योऽवितष्ठति, अनुतिष्ठति, तिष्ठते, नानुतिष्ठति, व्यास्तिष्ठति, प्ररस्तिष्ठति, योऽवितष्ठति, योऽवितष्ठति, अनुतिष्ठति, तिष्ठते, नानुतिष्ठति, व्यास्तिष्ठति, प्ररस्तिष्ठति, प्रतिष्ठति, तिष्ठतः, शयनादुत्तिष्ठति, यथोक्तमनुतिष्ठति, परितस्तिष्ठति, सम्बन्धस्तिष्ठति, प्रतिष्ठति, तिष्ठतः, शयनादुत्तिष्ठति, अप्रतिष्ठतः, पर्याकुलस्तिष्ठति, आतिष्ठत्, राजोत्तिष्ठति, सम्बन्धस्तिष्ठति, प्रतिष्ठतः, शयनाद्वतिष्ठतं, तिष्ठतः, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, तिष्ठतं, प्रतिष्ठतं, तिष्ठतं, प्रतिष्ठतं, तिष्ठतं, प्रतिष्ठतं, प्रतिष्ठतं, प्रतिष्ठितां, प्रतिष्ठतं, नावतिष्ठतं, परिमाणादं साविधकोऽस्ति, सन्तेष्ठतं, तिष्ठतं, तिष्ठतं, तिष्ठतं, त्रतिष्ठतं, पादाःसम्मधिपादः, घनिष्ठतमः, रवेदार, जागितिकैः,

```
In [24]:
sim_score = model_fast_text.wv.similarity('तिष्ठत', 'अधितिष्ठति')
print('तिष्ठत and ', 'अधितिष्ठति', " = ", sim_score)
```

```
sim score = model fast text.wv.similarity('तिष्ठत', 'नावतिष्ठति')
            print('तिष्ठत and ', 'नावतिष्ठति', " = ", sim score)
           तिष्ठत and अधितिष्ठति = 0.48580906
           तिष्ठत and नावतिष्ठति = 0.4587452
In [25]:
            new document sanskrit list = ["यथैतानि विशिष्टानि जात्यां जात्यां वकोदर", "तन्तिपाल इति ख्यातो नाम्ना विदितमस्तू ते", "एवमेतन्महाबाहो यथा स
            भगवान्प्रभुः", "सदा क्षुतं च वातं च ष्ठीवनं चाचरेच्छनैः", "एवमुक्तस्ततो राज्ञा धौम्योऽथ द्विजसत्तमः".
                                                    "तथैतान्पातियष्यामि यथा यास्यन्ति न क्षयम", "ितज्ञां षण्ढकोऽस्मीति करिष्यामि महीपते", "यच्च भर्तानुयुञ्जीत
            तदेवाभ्यनुवर्तयेत्", "अन्यस्मिन्प्रेष्यमाणे तु पुरस्ताद्यः समुत्पतेत्", "क्वायुधानि समासज्य प्रवेक्ष्यामः पुरं वयम्",
                                                    "बद्धगोधाङगुलित्राणाः कालिन्दीमभितो ययुः", "अनुशिष्टाः स्म भद्रं ते नैतद्वक्तास्ति कश्चन", "श्रेयः सदात्मनो दृष्ट्रा परं राज्ञा न
            संवदेत्", "कस्तस्य मनसापीच्छेदनर्थं प्राज्ञसंमतः", "अनुकूलो भवेच्चास्य सर्वार्थेषु कथासु च"]
            document list tokens sanskrit = []
            for d in new document sanskrit list:
                 filtered_new_toekns = d.split(' ')
                 document list tokens sanskrit.append(filtered new toekns)
            print(document list tokens sanskrit)
           [['यथैतानि', 'विशिष्टानि', 'जात्यां', 'जात्यां', 'वृकोदर'], ['तन्तिपाल', 'इति', 'ख्यातो', 'नाम्ना', 'विदितमस्तु', 'ते'], ['एवमेतन्महाबाहो', 'यथा', 'स', 'भगवान्प्रभुः'],
           ['सदा', 'क्षुतं', 'च', 'वातं', 'च', 'ष्ठीवनं', 'चाचरेच्छनैः'], ['एवमुक्तस्ततो', 'राज्ञा', 'धौम्योऽथ', 'द्विजसत्तमः'], ['तथैतान्पातयिष्यामि', 'यथा', 'यास्यन्ति', 'न', 'क्षय
           म्'], ['्रतिज्ञां', 'षण्ढकोऽस्मीति', 'करिष्यामि', 'महीपते'], ['यच्च', "भर्तानुयुञ्जीत', 'तदेवाभ्यनुवर्तयेत्'], ['अन्यस्मिन्प्रेष्यमाणे', 'तु', 'पुरस्ताद्यः', 'समुत्पतेत्'], ['क्वायुधानि',
           'समासज्य', 'प्रवेक्ष्यामः', 'पुरं', 'वयम्'], ['बद्धगोधाङ्गुलित्राणाः', 'कालिन्दीर्मभितो', 'ययुः'], ['अनुशिष्टाः', 'स्म', 'भद्रं', 'ते', 'नैतद्वक्तास्ति', 'कश्चन'], ['श्रेयः', 'सदात्म
           नो', 'दृष्ट्वा', 'परं', 'राज्ञा', 'न', 'संवदेत्'], ['कस्तस्य', 'मनसापीच्छेदनर्थं', 'प्राज्ञसंमतः'], ['अनुकृलो', 'भवेच्चास्य', 'सर्वार्थेषु', 'कथासु', 'च']]
In [26]:
```

```
#df_fastText.head()

doc_fastText_sanskrit = []
for d in document_list_tokens:
    list_fastText_sanskrit = []
    for w in d:
        try:
            s_vec = model_fast_text.wv[w]
        except Exception as e:
            print(w, " not available in pre-trained model")
            continue
        list_fastText_sanskrit.append(list(s_vec))
        doc_fastText_sanskrit.append(list_fastText_sanskrit)
print(doc_fastText_sanskrit[0][0])
```

[-0.0009527995, -8.804027e-05, 0.0009892479, -0.0003704267, 0.0006932408, 0.0009536738, 0.0007528288, -0.0013706625, -0.00077991746, 0.000951 03896, -0.00044674528, -0.0004967448, 0.0019182435, -0.00085308694, -0.00017296587, 0.00042593974, -0.0004441517, -0.0010759244, -0.000662766 16, -0.00067316095, 0.00056647765, -0.0014014114, 0.000988022, 0.00025770074, 0.0023065438, 3.0562755e-05, -0.00025505826, -0.0015365044, -0.0007660524, -0.0005755527, 0.0006458222, 0.00035174677, -0.0009929893, -0.0011454197, 0.0011482273, -0.00038082743, 0.00029289786, -0.0002704 8143, 0.0016051602, 0.00053378876, -0.0009835734, 0.00057035836, -0.0005911308, -0.0017213552, 0.00067084713, 0.0005278702, -4.115245e-05, 0.0006972772, 0.000642024, -0.00037818606, -0.00062766945, -0.0006355875, -0.0009206987, 0.0009033149, 0.0005846131, 0.0011772407, 0.001595686 7, -0.0005367631, -0.002192059, -0.0003436258, 0.00019506218, 0.0012934171, 0.0008296852, -0.00036039238, 0.00042453996, -0.00044631417, 0.00 06095406, 0.0003739861, 0.00032086964, 0.00081291434, 0.001009208, -0.0005448937, -0.0024045631, -0.0021047168, -0.0001739436, -3.6310845e-0 5, -0.0013692296, 0.0021046132, 0.0010130139, 0.00039858106, -0.00031125668, -0.0008717673, 0.00067347003, -0.0019555, 0.00017445923, 0.00020 668749, 0.0011603308, 0.0014312329, 0.0014757626, -0.0012484716, -0.0009742587, -0.00064827903, 0.0022910319, 1.0857957e-05, 0.0007939271, -0.00045857407, -0.00011124509, -0.0022032738, -0.0014112333, 0.00010914261]

```
In [27]: sum_doc_fastText_sanskrit = []
    for doc in doc_fastText_sanskrit:
        1 = [0]*50
        1 = list(map(sum, zip(*doc)))
        sum_doc_fastText_sanskrit.append(1)

        df_fastText_sanskrit = pd.DataFrame(sum_doc_fastText_sanskrit)
        df_fastText_sanskrit
```

Out[27]: 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94

	0	1	2	3	4	5	6	7	8	9	 90	91	92	93	94
0	-0.004782	0.025757	-0.013505	-0.001444	-0.008244	-0.020082	-0.001362	-0.010701	0.029740	-0.016900	 -0.006636	-0.015261	-0.007624	0.001961	-0.020096
1	0.001806	-0.000180	-0.010639	-0.002363	0.001843	-0.005168	-0.001772	-0.008569	0.012185	-0.009944	0.026366	0.004711	-0.014789	-0.007607	-0.001361
2	0.005629	0.011824	0.005164	0.011099	-0.021485	-0.010498	0.007124	0.017100	0.029697	-0.007888	-0.027472	0.006225	-0.032664	-0.015042	-0.007745
3	-0.008209	0.016274	0.001326	0.008406	-0.015311	-0.000690	-0.007610	-0.007799	0.001651	-0.010490	0.023103	0.010331	-0.027182	0.015567	0.005497
4	-0.001768	0.002920	-0.011951	-0.000104	-0.011378	0.006874	-0.010834	-0.002150	-0.005779	-0.000514	-0.016875	-0.005024	0.004225	0.012178	-0.009797
5	-0.014022	-0.010216	-0.003657	-0.016005	-0.004598	0.011711	-0.006307	0.001205	0.014059	0.000473	0.003456	0.021676	-0.028886	0.023999	-0.017386
6	-0.004802	0.003829	0.004152	-0.007269	-0.000218	-0.002605	-0.004873	0.000380	0.001809	-0.000099	-0.007424	-0.003221	0.002436	-0.004582	0.002408
7	-0.003524	-0.001668	-0.011860	-0.002639	0.006061	-0.000403	0.016374	-0.000862	0.010125	-0.010359	0.003498	0.006846	-0.003140	0.000796	0.006829
8	-0.010301	0.011073	0.000279	-0.000136	-0.007597	0.007614	-0.004365	0.001407	-0.001337	-0.006448	-0.001829	0.002193	-0.004662	0.008821	0.006471
9	-0.029451	0.025667	0.008558	0.013790	-0.006232	-0.014753	-0.013256	-0.002057	0.016449	0.002467	0.007265	0.015723	-0.054601	0.014858	0.022098
10	-0.011766	-0.001325	0.009882	0.005051	-0.005197	-0.000145	0.007991	0.017023	-0.000228	0.009955	-0.009088	0.012368	-0.025528	0.006299	0.011829
11	-0.017896	0.011651	0.011171	0.005331	-0.000002	0.004772	-0.007014	-0.013918	0.000284	0.014109	-0.011071	0.010431	-0.028047	-0.005674	0.004549
12	-0.022391	0.018524	0.019718	-0.040489	0.020233	0.013534	0.001084	0.002147	0.039319	-0.019687	-0.021535	-0.008808	-0.032174	-0.001503	0.006515
13	-0.020882	0.033106	0.005284	0.026708	0.018098	0.014738	-0.000414	-0.037031	0.020591	-0.018923	0.007289	0.002370	-0.022399	0.031443	-0.006315
14	-0.012251	-0.010717	-0.009857	0.006058	-0.006042	0.007698	-0.004003	-0.004103	-0.000220	-0.003288	-0.018464	0.005216	0.007212	0.000753	-0.011329

15 rows × 100 columns