559

- (b) La función (I) no es continua en (0, 0); la función (II) es diferenciable, pero la derivada no es continua.
- **37.** (a) $\sqrt{2}\pi/8$ (c) $-2\sqrt{2}e^{-2}$ (b) $-\sin\sqrt{2}$
- **39.** $(-4e^{-1},0)$
- **41.** (a) Véase el Teorema 11.
 - (b) $g(u) = (\sin 3u)^{2} + \cos 8u$ $g'(u) = 6 \sin 3u \cos 3u 8 \sin 8u$ g'(0) = 0

$$\nabla f = (2x, 1)$$

$$\nabla f(\mathbf{h}(0)) = \nabla f(0, 1) = (0, 1)$$

$$\mathbf{h}'(u) = (3\cos 3u, -8\sin 8u)$$

$$g'(0) = \nabla f(\mathbf{h}(0)) \cdot \mathbf{h}'(0)$$

43. $t = \sqrt{14}(-3 + \sqrt{359})/70 = (-3 + \sqrt{359})/5\sqrt{14}$

45.

$$\partial z/\partial x = 4(e^{-2x-2y+2xy})(1+y)/(e^{-2x-2y} - e^{2xy})^2$$
$$\partial z/\partial y = 4(e^{-2y-2x+2xy})(1+x)/(e^{-2x-2y} - e^{2xy})^2$$

- **47.** Observar que $y = x^2$, de modo que si y es constante, x no puede ser una variable.
- **49.** $[f'(t)g(t) + f(t)g'(t)] \exp[f(t)g(t)]$
- **51.** $d[f(\mathbf{c}(t))]/dt = 2t/[(1+t^2+2\cos^2t)(2-2t^2+t^4)]$ $-4t(t^2-1)\ln(1+t^2+2\cos^2t)/(2-2t^2+t^4)^2$ $-4\cos t \sin t/[(1+t^2+2\cos^2t)(2-2t^2+t^4)]$
- **53.** Sean x = f(t), y = t; utilizar la regla de la cadena para diferenciar u(x, y) con respecto a t.
- **55.** (a) n = PV/RT; P = nRT/V; T = PV/nR; V = nRT/P.
 - (b) $\partial V/\partial T = nR/P; \partial T/\partial P = V/nR;$ $\partial P/\partial V = -nRT/V^2.$

Multiplicar, recordando que PV = nRT.

57. (a) Se puede resolver para cualquiera de las variables en función de las otras dos.

(b)
$$\partial T/\partial P = (V - \beta)/R;$$

 $\partial P/\partial V = -RT/(V - \beta)^2 + 2\alpha/V^3;$
 $\partial V/\partial T = R/[(V - \beta)(RT/(V - \beta)^2 - 2\alpha/V^3)]$

- (c) Multiplicar y cancelar factores.
- **59.** (a) $(1/\sqrt{2}, 1/\sqrt{2})$.
 - (b) La derivada direccional es 0 en la dirección

$$(x_0\mathbf{i} + y_0\mathbf{j})/\sqrt{x_0^2 + y_0^2}$$

- (c) La curva de nivel que pasa por (x_0, y_0) tiene que ser tangente a la recta que pasa por (0,0) y (x_0,y_0) . Las curvas de nivel son rectas o semirrectas que parten del origen.
- **61.** G(x,y) = x y.

Capítulo 3

Sección 3.1

- **1.** $\frac{\partial^2 f}{\partial x^2} = 24 \frac{x^3 y xy^3}{(x^2 + y^2)^4}, \frac{\partial^2 f}{\partial y^2} = 24 \frac{-x^3 y + xy^3}{(x^2 + y^2)^4},$ $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{-6x^4 + 36x^2 y^2 - 6y^4}{(x^2 + y^2)^4}.$
- 3. $\frac{\partial^2 f}{\partial x^2} = -y^4 \cos(xy^2),$ $\frac{\partial^2 f}{\partial y^2} = -2x \sin(xy^2) 4x^2 y^2 \cos(xy^2),$ $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = -2y \sin(xy^2)$ $-2xy^3 \cos(xy^2).$
- 5. $\frac{\partial^2 f}{\partial x^2} = \frac{2(\cos^2 x + e^{-y})\cos 2x + 2\sin^2 2x}{(\cos^2 x + e^{-y})^3},$ $\frac{\partial^2 f}{\partial y^2} = \frac{e^{-y} \cos^2 x}{e^y (\cos^2 x + e^{-y})^3},$ $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{2\sin 2x}{e^y (\cos^2 x + e^{-y})^3}.$
- 7. (a) $f_x = -1$, $f_y = -\pi$, $f_{xx} = 0$, $f_{yy} = 0$, $f_{xy} = f_{yx} = -1$.
 - (b) $f_x = 5$, $f_y = -18$, $f_{xx} = 2$, $f_{yy} = 42$, $f_{xy} = f_{yx} = -8$.
 - (c) Todas las derivadas parciales segundas son cero.