The final topic: Introduction to Machine Learning – overview

Min Zhang
<u>z-m@tsinghua.edu.cn</u>

Overview

- Basic concepts
- Machine learning approaches
- Selected advanced topics
- Theoretical analyses of learning
- Summary

2

What's machine learning?

- Learning
 - = improving with experience at some task
- T (Task)
- P (Performance)
- E (Experience)

introduction to machine learning: overview

A generic system

Control Parameters

Rewards/penalties ε, δ

Input Variables: $\mathbf{x} = (x_1, x_2, ..., x_N)$

Hidden Variables: $\mathbf{h} = (h_1, h_2, ..., h_K)$

Output Variables: $\mathbf{y} = (y_1, y_2, ..., y_K)$

II. Machine learning approaches

The branches of machine learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

8

The branches of machine learning

- Supervised Learning
- Unsupervised Learning
- Semi-supervised Learning
- Reinforcement Learning

introduction to machine learning: overview

Supervised, Unsupervised and Reinforcement

	Supervised	Unsupervised	Reinforcement
Instances for learning	(X, Y) pair, usually with human involvement	X only, usually without human involvement	X and rewards / penalties human involved either or not

10

introduction to machine learning; unsupervised learning

Supervised, Unsupervised and Reinforcement

	Supervised	Unsupervised	Reinforcement
Instances for learning	(X, Y) pair, usually with human involvement	X only, usually without human involvement	X and rewards / penalties human involved either or not
Goal of learning	Learning <i>relation</i> between <i>X</i> and <i>Y</i>	Learning structure of X	Learning good actions to get as much reward as possible

11

introduction to machine learning: unsupervised learning

Supervised, Unsupervised and Reinforcement

	Supervised	Unsupervised	Reinforcement
Instances for learning	(X, Y) pair, usually with human involvement	X only, usually without human involvement	X and rewards / penalties human involved either or not
Goal of learning	Learning <i>relation</i> between <i>X</i> and <i>Y</i>	Learning structure of X	Learning good actions to get as much reward as possible
Measure of success	Loss function	No	Rewards

12

introduction to machine learning: unsupervised learning

Supervised, Unsupervised and Reinforcement

	Supervised	Unsupervised	Reinforcement
Instances for learning	(X, Y) pair, usually with human involvement	X only, usually without human involvement	X and rewards / penalties human involved either or not
Goal of learning	Learning <i>relation</i> between <i>X</i> and <i>Y</i>	Learning structure of X	Learning good actions to get as much reward as possible
Measure of success	Loss function	No	Rewards
Application	Prediction: X=input, Y=output	Analysis: X=input	Decision-making: X=input, Y=rewards/penalties

introduction to machine learning: overview

II. Machine learning approaches (part I)

----- Supervised Learning

- Decision tree: use concepts/rules to represent hypothesis
- Intuitional, easy to get the explanation of the data by the learned hypothesis
- But what if we cannot find the obvious rules for the observed data?

Using statistical approaches

introduction to machine learning: overview

A2. Bayesian Learning

- Condition → Result
 - e.g. pneumonia \rightarrow lung cancer?
 - Hard to tell directly
- Reversed thinking

 $(Result \rightarrow Causal)$

 e.g. How many lung cancer patients have suffered from pneumonia?

18

Bayesian Learning

- Bayes theorem
- $P(h \mid D) = \frac{1}{2}$ • Use prior probability to inference posterior probability
- Max A Posterior, MAP, h_{MAP}, 极大后验假设
 - Generally we want the most probable hypothesis given the training data
- Maximum Likelihood, ML, hML, 极大似然假设
 - The smart man always learns the most from experiences if he knows p(h)
 - ML vs. LSE (Least Square Error)
- Naïve Bayes, NB, 朴素贝叶斯
 - Independent assumption
 - NB vs. MAP
- Minimum description length, MDL,最小描述长度
 - Tradeoff: hypothesis complexity vs. errors by h
 - MDL vs. MAP

introduction to machine learning: overview

A3. HMM

What if the observed data is indirect evidence? - hidden state exists

Property 1: Markov assumption

$$p(X_i | X_{i-1}...X_1) \equiv p(X_i | X_{i-1})$$

Property 2: time invariance assumption

$$p(X_{i+1} | X_i) = p(X_{j+1} | X_j)$$
, for any i,j

Property 3: independent observation assumption

$$p(\mathrm{O}_1, ..., \mathrm{O}_T \mid X_1, ..., X_T) \equiv \prod p(\mathrm{O}_t \mid X_t)$$

HMM basic Problem1 - Estimation

- Estimation problem: Compute the probability of a given observation sequence $p(\sigma | \mu)$
 - Define forward variable, backward variable
 - \bullet Dynamic programming forward algorithm, $\mathrm{O}(N^2T)$

$$P(O \mid \mu) = \sum_{i=1}^{N} \alpha_{T}(i)$$

21

introduction to machine learning: overview

HMM basic Problem2 - Decoding

- Given an observation sequence, compute the most likely hidden state sequence
- Dynamic programming Viterbi algorithm, $O(N^2T)$

$$\delta_t(j) = \max_{x_1...x_{t-1}} P(x_1...x_{t-1}, o_1...o_{t-1}, x_t = j, o_t)$$

$$\delta_{t+1}(j) = \max_{i} \left(\delta_{t}(i) a_{ij} b_{jo_{t+1}} \right)$$

$$\psi_{t+1}(j) = \arg\max_{i} \left(\delta_{t}(i) a_{ij} b_{jo_{t+1}} \right)$$

22

What we've learned from HMM

HMM

We use the special structure of this model to do a lot of neat math and solve problems that are otherwise not solvable.

introduction to machine learning: overview

A4. Probabilistic graphical models

- Bayesian networks
 - Generative model
 - Conditional independence and D-separation
- Markov random fields
 - Conditional independence and graph separation

Non-separable Case

- Minimizing training error
- $M = \frac{2}{\sqrt{w.w}}$ $W_{wx} = \frac{1}{\sqrt{w.w}}$

Non-separable Case

$$\min_{w,b} \frac{1}{2} < w, w > +C \sum_{i} \varepsilon_{i}$$
 $s.t. (< w, x_{i} > +b) y_{i} \geq 1 - \varepsilon_{i}$
 $\varepsilon_{i} \geq 0$

27

introduction to machine learning: overview

Non-linear SVM

- Input space \rightarrow feature space $\Phi(x): \mathbb{R}^n \mapsto F$
- Non-linear in low dim. → linear Hyperplane in higher dim.
- common kernels
 - Polynomials of degree d $K(x,y) = (\langle x,y \rangle)^d$
 - ullet Polynomials of degree up to d $K(x,y)=(< x,y>+1)^d$
 - Gauss Kernel $K(x,y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right)$
 - Sigmod Kernel $K(x,y) = \tanh (\eta < x, y > +v)$
- Software
 - LIBSVM http://www.csie.ntu.edu.tw/~cjlin/libsvm
 - SVMlight http://svmlight.joachims.org

KNN

- Main assumption
 - An effective distance metric exists
- Nonparametric
- Conceptually simple, yet can model any function
- Memory cost
- CPU cost
- Feature selection problem
 - Irrelevant features have negative impact on the distance metric
- Sensitive to representation

31

introduction to machine learning: overview

More on efficiency – KD-Tree (Construction)

We will keep around one additional piece of information at each node: The (tight) bounds of the points at or below this node.

32

Each time a new closest node is found, we can update the distance bounds.

introduction to machine learning: overview

More on efficiency – KD-Tree (Query)

Using the distance bounds and the bounds of the data below each node, we can prune parts of the tree that could NOT include the nearest neighbor.

A memory based learner: 4 factors

1. A distance metric

Euclidian / Scaled Euclidian /

2. How many nearby neighbors to look at?

1, k or all

3. A weighting function (optional)

$$w_i = \exp(-D(x_i, query)^2 / K_w^2)$$

4. How to fit with the local points?

Nearest neighbor, or

Voting among K neighbors, or

The weighted average of the outputs

 $predict = \sum w_i y_i / \sum w_i$

introduction to machine learning: overview

II. Machine learning approaches (part II)

—— Unsupervised Learning

III. Selected advanced topics —— 1. Overfitting problem

III. Selected advanced topics —— 2. Limited data

Learning on limited data (1): E2. Cross Validation

- When data is limited
 - what is the best way to use this data to both learn a hypothesis and estimate its accuracy?
- k- fold cross validation 交叉验证
 - Use average error to estimate error

46

Learning on limited data (2): E3. Boostrap sampling

- Bootstrap sampling
 - Given a set *D* containing *m* training examples
 - Create D_i by drawn m examples uniformly at random with replacement from D (drawn with replacement, 取出放回)

introduction to machine learning: overview

III. Selected advanced topics

—— 3. Ensemble learning

"Two heads are better than one." "三个臭皮匠,顶一个诸葛亮"

What is a good weak learner?

The set of weak rules (features) should be:

- Unstable: small change in training set cause large change in hypothesis produced
- Simple: allow efficient search for a rule with non-trivial weighted training error. Calculation of prediction from observations should be very fast
- Small: to avoid over-fitting.

Reweighting vs. Resampling

III. Selected advanced topics

—— 4. Deep learning

A13. Deep learning: When does it help?

- With massive amounts of computational power
- With sufficient data is available
 - Generally has complicate structure
- When you don't have ideas on how to select good features
- Deep = Deep nets (the network has many layers)
- Currently little in-depth knowledge has been leveraged in learning procedure in DL approaches

What we have briefly introduced

- Multi-layer perceptron
- · Convolutional neural nets

Supervised learning

· Restricted Boltzmann machine

Unsupervised learning

- Deep belief network
- Applications
- Remarks
 - Going deeper and deeper
 - Large models seems to be critical -- Parallel computing
 - Need more theoretical foundations
 - Unsupervised learning deserves further investigation

55

introduction to machine learning: overview

IV. Machine learning approaches (part III)

—— Reinforcement Learning

Markov Decision Process

- Components:
 - States s, beginning with initial state s_0
 - Actions *a*
 - Each state S has actions A(S) available from it
 - Transition model P(s'|s,a)
 - Markov assumption: the probability of going to S' from S
 depends only on S and a and not on any other past actions
 or states
 - Reward function $\rho(s)$
- The "solution" to an MDP
 - Policy $\pi(s)$: the action that an agent takes in any given state

Example: Grid world • The careful balancing of risk and reward is a characteristic of MDPs R(s) < -1.6284 R(s) < -1.6284 -0.4278 < R(s) < -0.0850 R(s) < -0.0221 < R(s) < 0 R(s) > 0

MDP vs RL

Regular MDP

- Given:
 - Transition model P(s'|s,a)
 - Reward function R(s)
- Find:
 - Policy $\pi(s)$

Reinforcement learning

- Transition model and reward function initially unknown
- Find
 - Policy $\pi(s)$
- "Learn by doing"

Imagine playing a new game whose rules you don't know; after a hundred or so moves, your opponent announces, "You lose." This is reinforcement learning.

Model-based learning vs. model-free learning

- Model-based
 - Learn the model of the MDP (transition probabilities P(s'|s,a) and rewards $\rho(s)$) and try to solve the MDP concurrently
- Model-free
 - Learn how to act without explicitly learning the transition probabilities P(s'|s,a) and rewards $\rho(s)$
 - Q-learning
- ← Value iteration in MDP
- Actor-critic learning
 Policy iteration in MDP

Reinforcement learning key points

- Markov decision process
 - Value iteration
 - Policy iteration
- Reinforcement learning
 - Model-based vs. model-free
 - Q-learning
 - Actor-critic learning

V. Theoretical analyses of learning

T2. Minimum Description Length (MDL)

$$h_{\mathsf{MDL}} = \underset{h \in \mathcal{H}}{argmin} \{L_{C_1}(h) + L_{C_2}(D|h)\}$$

- Tradeoff: complexity of hypothesis vs. the number of errors committed by the hypothesis
 - Prefer a shorter hypothesis that makes a few errors
 - Not a longer hypothesis that perfectly classifies the training data

65

T3. Hypotheses evaluation

- Performance estimation
 - Given the observed accuracy of a hypothesis over a limited sample of data
 - how well does this estimate its accuracy over additional data?

Hypotheses evaluation

1. Estimating hypothesis accuracy, confidence

Binomial Dist. → Normal Dist., Confidence interval

- 2. h_1 outperforms h_2 over some samples
 - In general, h₁ is better than h₂?
 Difference of hypotheses → to find one-sided c.i.
- 3. How to use limited data to learn and estimate?

Paired *t*-test, *k*-fold cross validation, c.i. with $t_{N,k-1}$

Important theoretical background: Central Limit Theorem

Distribution of sample mean Y_{mean} is known although distribution of Y_i is not

T4. PAC Learning Framework: PAC learnable

• For all

```
c \in C, distributions \mathcal{D} over X (instance length: n), \varepsilon such that 0 < \varepsilon < \frac{1}{2}
\delta such that 0 < \delta < \frac{1}{2}
```

• *L* will output a hypothesis $h \in H$ with

```
[1] probability \geq (1 - \delta) (probably)

error<sub>\mathcal{D}</sub>(h) \leq \varepsilon (approximately)

[2] in time that is polynomial in 1/\varepsilon, 1/\delta, n, and size(c).
```

→ C is PAC-learnable (PAC可学习的) by L using H

introduction to machine learning: overview

T5. Sample complexity

• How many training examples are sufficient to learn the target concept?

(Randomly generated instances, labeled by teacher, instance x generated randomly, teacher provides c(x)).

introduction to machine learning: computational learning theory

(1) Sample complexity: Finite hypothesis space

- How many training examples are sufficient to successfully learn the target function?
- Consistent learner (一致学习器)

$$|H|e^{-\varepsilon m} \le \delta \implies m \ge \frac{1}{\varepsilon} (\ln|H| + \ln\frac{1}{\delta})$$

• Agnostic learner (不可知学习器)

$$m \ge \frac{1}{2\varepsilon^2} (\ln |H| + \ln(1/\delta))$$

70

introduction to machine learning: overview

(2) Sample complexity: Infinite hypothesis space

$$m \ge \frac{1}{\varepsilon} \left(4\log_2(2/\delta) + 8VC(H)\log_2(13/\varepsilon) \right)$$

- The Vapnik-Chervonenkis Dimension VC(H) of hypothesis space H defined over instance space X
 - is the size of the largest finite subset of X shattered by H.
- A set of instances S is shattered by hypothesis space H
 - If and only if for every dichotomy of S there exists some hypothesis in H consistent with this dichotomy
- if arbitrarily large finite sets of X can be shattered by H, then $VC(H) \equiv \infty$

If we find ONE set of instances of size d that can be shattered, then $VC(H) \ge d$. To show that $VC(H) \le d$, we must show that **NO** set of size d can be shattered.

71

T6. Mistake bounds

- How many mistakes will the learner make before succeeding?
- E.g.
 - Halving: $\lfloor \log_2 |H| \rfloor$
 - Weighted majority:

$$\frac{k\log_2\frac{1}{\beta} + \log_2 n}{\log_2\frac{2}{1+\beta}}$$

72

introduction to machine learning; overview

V. Summary

Summary (1)

- Basic concepts
 - What's machine learning
 - Typical machine learning tasks
 - Inductive learning assumption
 - Inductive bias

74

introduction to machine learning: overview

Summary (2)

- Machine learning approaches
 - Supervised learning
 - Decision tree
 - Bayes learning (MAP, ML, Naïve Bayes)
 - HMM (forward, backward, viterbi) and graphical models (concepts, algorithms)
 - Kernel methods (max margin, SVM, kernel)
 - Instance based learning (KNN, implementation:KD-Tree)
 - Unsupervised learning
 - Clustering (Hierarchical agglomerative, K-means, K-mediods)
 - Reinforcement learning
 - MDP, Q-learning, Actor-critic learning

75

Summary (2) - final exam req.

- Machine learning approaches
 - Supervised learning
 - Decision tree
 - Bayes learning (MAP, ML, Naïve Bayes)
 - HMM (forward, backward, viterbi) and graphical models (concepts, algorithms)
 - Kernel methods (max margin, SVM, kernel)
 - Instance based learning (KNN, implementation:KD-Tree)
 - Unsupervised learning
 - Clustering (Hierarchical agglomerative, K-means, K-mediods)
 - Reinforcement learning
 - Basic concepts, algorithms

introduction to machine learning: overview

Summary (3)

- Selected advanced topics
 - Overfitting problem
 - Learning with limited data
 - K-fold cross validation
 - Boostrapping sampling
 - Ensemble learning
 - Weighted majority algorithm
 - Bagging
 - Boosting
 - Deep Learning

Summary (3) - final exam req.

- Selected advanced topics
 - Overfitting problem
 - Learning with limited data
 - K-fold cross validation
 - Boostrapping sampling
 - Ensemble learning
 - Weighted majority algorithm
 - Bagging
 - Boosting
 - Deep Learning

introduction to machine learning: overview

Summary (4)

- Theoretical analyses of learning
 - What algorithms are good?
 - Bayes statistics, MDL
 - Confidence degree of learning algorithm
 - Hypothesis evaluation
 - PAC learning framework
 - Possibility of learning (Sample complexity)
 - Finite hypo. space: Consistent learner, Agnostic learner
 - Infinite hypo. space: sample complexity, VC dimension
 - Efficiency of learning (Computational complexity)
 - Effectiveness of learning
 - Mistake bounds
- Experiments, design and analysis

Summary (4) – final exam req.

- Theoretical analyses of learning
 - What algorithms are good?
 - Bayes statistics, MDL
 - Confidence degree of learning algorithm
 - Hypothesis evaluation
 - PAC learning framework
 - Possibility of learning (Sample complexity)
 - Finite hypo. space: Consistent learner, Agnostic learner
 - Infinite hypo. space: sample complexity, VC dimension
 - Efficiency of learning (Computational complexity)
 - Effectiveness of learning
 - Mistake bounds
- Experiments, design and analysis

introduction to machine learning: overview

考试: 6月9日 同上课时间、地点

闭卷

可以带计算器

答疑:6月7日(周三) 14:00-17:00 FIT 1-507