Linguaggi regolari

a.a. 2021-2022

Corso di Fondamenti di Informatica - 1 modulo Corso di Laurea in Informatica Università di Roma "Tor Vergata"

Prof. Giorgio Gambosi

Sia L un linguaggio su $\{a,b\}$ tale che per ogni stringa $w \in L$:

- 1. w non contiene coppie di a adiacenti
- 2. ognib in w è adiacente ad un'altra b
- 3. | *w* | è pari.

Dimostrare che L è regolare.

(Prova d'esame del 30-1-2006). Dimostrare che il linguaggio $L=\{a^nb^m|n\leq m\}$ non è regolare.

(Prova d'esame del 24-2-2006). Dimostrare che il linguaggio $L=\{a^nb^{2n}\}$ non è regolare.

(Prova d'esame del 4-7-2006). Illustrare come sia possibile verificare, date due espressioni regolari r_1 e r_2 , se esse definiscono lo stesso linguaggio. Mostrare come tale procedimento possa essere applicato per verificare che $a^*(ab+ba)^*b$ e $a^*b(a+ab)^*b^*$ non definiscono uno stesso linguaggio.

Il linguaggio $\{a^ib^j|i+j\geq 4\}$ è regolare? Dimostrare la propria risposta.

Il linguaggio $\{a^ib^j|i-j\geq 4\}$ è regolare? Dimostrare la propria risposta.

Dimostrare che le espressioni regolari $r_1=ab+c^*$, $r_2=(ab+c)^*$, $r_3=a(b+c)^*$ descrivono linguaggi diversi.

Sia dato l'ASFND $\mathcal A$ con $\Sigma=\{0,1\}, Q=\{q_0,q_1,q_2,q_3\}, F=\{q_3\}$ e δ definita dalla tabella seguente:

	qo	q_1	q_2	q_3
0		q_1	q_3	
1		$\{q_1,q_2\}$	q_3	
\mathcal{E}	$\{q_1,q_3\}$			

Derivare una espressione regolare che descriva il linguaggio accettato da $\mathcal A$

Per ognuna delle seguenti proposizioni, dire se è vera o falsa, giustificando obbligatoriamente la risposta data.

- 1. Se L è un linguaggio regolare allora ogni $L' \subseteq L$ è regolare
- 2. Se L e L' sono linguaggi regolari allora L-L' è regolare
- 3. 11000 appartiene al linguaggio 0*1(11)*10*
- 4. 01110 appartiene al linguaggio 0*1(11)*10*

Dimostrare che il linguaggio $L = \{a^i b^j \mid i < j\}$ non è regolare.

Fornire le espressioni regolari che descrivono i seguenti linguaggi.

- 1. $L = \{a^{2i} \mid i > 0\}$
- 2. $L = {\sigma \in {a,b} | \sigma \text{ contiene esattamente 2 caratteri } a}$
- 3. $L = {\sigma \in {a,b} | \sigma \text{ contiene un numero pari di caratteri } a}$
- 4. $L = \{ \sigma \in \{a, b\} \mid \sigma \text{ contiene un numero dispari di caratteri } a \}$

Sia dato l'ASFD $\mathcal A$ con $\Sigma=\{0,1\}, Q=\{q_0,q_1,q_2\}, F=\{q_2\}$ e δ definita dalla tabella seguente:

Derivare una espressione regolare che descriva il linguaggio $L(\mathcal{A})$ riconosciuto dall'automa.

Dimostrare che il linguaggio $L = \{a^nb^mc^n \mid n, m > o\}$ non è regolare.

Sia dato il linguaggio $L = \{\sigma \in \{a,b,c\}^* \mid \#a(\sigma) = \#b(\sigma) = \#c(\sigma)\}$, dove $\#x(\sigma)$ indica il numero di caratteri x nella stringa σ . Il linguaggio L è regolare? Dimostrare la risposta data.

Data l'espressione regolare $r=a(b^*+a)$, derivare un automa a stati finiti deterministico che riconosca il linguaggio L(r).

Si consideri il linguaggio $L=\{a^rb^sc^t|t=r-s\}$. Dimostrare che questo linguaggio non è regolare.

Dimostrare che il seguente linguaggio è regolare $L=\{a^kb^jc^i|i,j,k>0\}$ dove k è dispari e i>2, oppure j è dispari e $i\leq 3$.

Si definisca una grammatica di tipo 3 che generi il linguaggio $L = \{xoy | x \in \{0,1\}^*, y \in \{0,1\}^3\}.$

Sia dato il linguaggio

$$L = \{w \in \{a, b\}^* | w \text{ non è della forma } vv\}$$

Mostrare se L è regolare o meno.

Si definisca una grammatica di tipo 3 che generi il seguente linguaggio

$$L = \{a^n b^m c^k | n + m + k \text{ dispari}\}\$$

Definire una grammatica regolare che generi il seguente linguaggio

 $L = \{w \in \{0,1\}^* : w \text{ non contiene la sottostringa 101}\}$

descrivendo e giustificando le scelte effettuate.

Si determini se i linguaggi

$$L = \{a^i b^j c^i | i, j \ge 1\}$$

e

$$L = \{a^i b^j c^k | i, j, k \ge 0\}$$

sono regolari.

Definire una grammatica di tipo 3, priva di simboli inutili, che generi il linguaggio descritto dall'espressione regolare $a^*bc^*+a(ab+c^*b)$

Si definisca una grammatica regolare che generi il linguaggio L composto da tutte le stringhe su $\Sigma=\{a,b\}$ non contenenti la sequenza aba