1. Deformations of $Rep(G_{\mathbb{Z}})$ and integral Whittaker categories

There is an interest in considering topological twistings¹ of Langlands, as [7] and [8] in geometric and arithmetic setting respectively. Fundamental to this is an understanding of the moduli of \mathbb{E}_2 deformations of the representation category.

$$\mathcal{D}ef^{(2)}(\operatorname{Rep}_{\mathbb{C}}G):\operatorname{Art}_{\mathbb{C}}^{(4)}\to\mathcal{S}$$

$$R \mapsto \mathbb{E}_2(\mathrm{LCat}_R) \times_{\mathbb{E}_2(\mathrm{LCat}_{\mathbb{C}})} \{ \mathrm{Rep}_{\mathbb{C}} G \}$$

where $\operatorname{Art}_{\mathbb{C}}^{(4)}$ is the category of \mathbb{E}_4 Artinian \mathbb{C} -algebras. ² This is classically the moduli problem of *braided tensor deformations*, studied by Yetter and Crane [16], [3]. Its R-points consists of the groupoid of pairs

$$(\mathcal{C}, \alpha) : \mathcal{C} \otimes_R \mathbb{C} \simeq \operatorname{Rep}_{\mathbb{C}} G, \mathcal{C} \in \operatorname{LCat}_R$$

We will now describe this moduli problem from the perspective of geometric representation theory. The Whittaker construction/category yields an equivalence of stable (triangulated) categories, [4],

(1)
$$\operatorname{Rep}_{\mathbb{C}}(G) \simeq \operatorname{Whit}(\operatorname{Dmod}_{\mathbb{C}}(\operatorname{Gr}_{\check{G}}))$$

The Grothendieck group of the right hand side is the module of Whittaker functions, in the sense of B. Casselman and J. Shalika, [2].

Consider the topological parameter space of multiplicative \mathbb{G}_m -gerbes:

$$\operatorname{Ge}_{\mathbb{G}_m}(\operatorname{Gr}_{\check{G}}): R \mapsto \operatorname{Map}_{\mathbb{E}_2(\mathcal{S})}(\operatorname{Gr}_{\check{G}}, B^2\mathbb{G}_m(R))$$

where $\mathbb{G}_m(R) := (\Omega^{\infty} R)^{\times}$, the groupoid of invertible elements.

Theorem 1.1. [9, 10] The map on R-points given by twisting [7, 2]

$$\eta \mapsto \operatorname{Whit}^{\eta}(\operatorname{Dmod}_{\mathbb{C}}(\operatorname{Gr}_{\check{G}}))$$

yields an equivalence

$$\widehat{\operatorname{Ge}_{\mathbb{G}_m}(\operatorname{Gr}_{\check{G}})} \simeq \mathcal{D}ef^{(2)}\operatorname{Rep}_{\mathbb{C}}G$$

where the left hand side is the formal completion at the trivial gerbe.

¹there are *twists* of different flavours:

	algebro-geometric	differential geometric	Topological
Parameter Type	K-theoretic, [15]	Quantum, [5]	Metaplectic, [7].

The metaplectic version gives rise to *gerbes*, which exists in most sheaf theoretic context, see [17].

²The \mathbb{E}_4 condition is technical and it can be ignored: it is so that LCat_R is an \mathbb{E}_2 monoidal category.

2. Question: is there an integral version of whittaker category?

We describe some main obstructions in this setting in 3. Can one give

- an *integral* Whittaker category/ integral version of (1)?
- a topological description of the \mathbb{E}_2 deformations of $\text{Rep}_{\mathbb{Z}}G_{\mathbb{Z}}$?
- a $l \neq p$, mixed characteristic version (for the geometry) of the above construction? This is my current focus with Konrad Zou and Ashwin Iyengar.

Hints of this *rationally* are in the work of T. Richarz and J. Scholbach [13]. To a prestack X, one constructs presentable stable categories $\mathrm{DM}(X,\mathbb{Q})$ of motives, extending the theory of Ayoub and Cisinki-Déglise.

When $X = LG_{\mathbb{Z}}^+ \backslash LG_{\mathbb{Z}}^+$ is the automorphic Hecke stack, X is a stratified space. One has a full subcategory of *stratified Tate motives* $DTM(X; \mathbb{Q})$. This has a t structure whose heart is the *mixed (stratified) Tate motives*:

Theorem 2.1. [14, Thm. C] For each finite field \mathbb{F}_q , there is a symmetric monoidal equivalence,

$$\mathrm{MTM}(\mathrm{LG}_{\mathbb{F}_q}^+\backslash\mathrm{LG}_{\mathbb{F}_q}^+/\mathrm{LG}_{\mathbb{F}_q}^+)\simeq\mathrm{Rep}_{\mathbb{Q}}(\widehat{G}_1)^{\heartsuit}$$

where \widehat{G}_1 is the modified Langlands dual, [1, 5].

Our goal is to give a Whittaker construction/category in this context, obtaining a similar equivalence as (1) at the level of *stable (triangulated) categories*.

3. What are the obstructions?

Recall for GL₂ the universal principal series

$$\operatorname{Fun}(G/U) := \operatorname{Ind}_U^G k := \{ f: G \to \mathbb{C} \, : \, f(ug) = f(g) \, : \, u \in U, g \in G \}$$

the induction from the trivial representation of the unipotent, fails to contain the most interesting representations of GL_2 and being multiplicity free. Classically, he Whittaker module for GL_2 can address this phenomena via a twist

$$\operatorname{Fun}^{\chi}(G/U) := \operatorname{Ind}_{U}^{G} k_{\chi} \left\{ f : G \to k : f(ug) = \chi(u) f(g), \quad u \in U, v \in G \right\}$$

where χ is a nondegenerate character. The geomerization of this condition is easy in equal characteristic set up. The condition of a function being χ equivariant can be captured by a compatibility condition.

$$\operatorname{act}^*\mathcal{F} \simeq \mathcal{F} \boxtimes \mathcal{L}_{\psi}$$

where \mathcal{L}_{ψ} is often referred as the Artin-Schrier sheaf induced from the Lang isogeny

$$\mathbb{A} \to \mathbb{A}$$
 $x^q - x$, $|k| = q$

. To make sense of the above equation see the works of Ngô and Polo, in particular [11, Lem 11.1].

In defining the Whittaker category when the characteristic is zero. One can give a definition of Whittaker category, [6], using the Kirillov model. The basic object of study is sheaves on $\mathbb{G}_a \rtimes \mathbb{G}_m$, and the appropriate fourier transform.

3.1. Further questions. We may ask:

- (1) To what generalizing can we allow our geometric objects to be? In de Rham sheaf theory: \mathbb{G}_a canont be viewed as a \mathbb{E}_{∞} -group scheme over \mathbb{S} , [10, 1.6.20].
- (2) What the appropriate ³ sheaf theory? ⁴ In the Betti sheaf theory: we need a notion of *constructible sheaves* with *singular support* in Sp. This is unclear but seems more plausible. It may be possible to work out integral case using recent development in *motivic sheaves*.

³A litmus test to a correct sheaf theory, denoted Shv, is the property Whit($\operatorname{Shv}(G/B;\operatorname{Sp})$) $\simeq \operatorname{Shv}(T,\operatorname{Sp})$

for triplet (B, N, T) = (Borel, maximal unipotent subgroup, maximal torus subgroup). ⁴using terminology of [12].

Bibliography

- [1] Kevin Buzzard and Toby Gee, The conjectural connections between automorphic representations and Galois rep- resentations (2014).
- [2] B Casselman and J Shailka, The unramified principal series of p-adic groups. II. The Whittaker function (1980).
- [3] Crane and David N Yetter, *Deformations of (bi)tensor categories*, Cahiers de Topologie et Géométrie Différentielle Catégoriques (1998).
- [4] Edward Frenkel, Dennis Gaitsgory, and Kari Vilonen, Whittaker Patterns in the Geometry of Moduli Spaces of Bundles on Curves (1999).
- [5] Dennis Gaitsgory, Quantum geometric Langlands (2016).
- [6] _____, The local and global versions of the Whittaker category (2020).
- [7] D Gaitsgory and S Lysenko (2020).
- [8] Wee Teck Gan, Fan Gao, and Martin H. Weissman, L-groups and the Langlands program for covering groups: a historical introduction (2017).
- [9] Jacob Lurie, Moduli Space for ring spectra.
- [10] _____, Elliptic Cohomology II: Orientations (2018).
- [11] Ngô and P. Polo, Résolutions de Demazure affines et formule de Casselman-Shalika géométrique (2000).
- [12] David Nadler and Zhiwei Yun, Spectral Actions in Betti Langlands, Israel Journal of Mathematics (2019).
- [13] Timo Richarz and Jakob Scholbach, The intersection motive of the moduli stack of shtukas (2019).
- [14] _____, Motivic Satake equivalence (2021).
- [15] James Tao and Yifei Zhao, Central extensions by K2 and factorization line bundles, Mathematische Annalen (2021).
- [16] David Yetter, Braided deformations of monoidal categoires and Vassiliev invariants (1997).
- [17] Yifei Zhao, Geometric metaplectic parameters (2020).