Basket options and control variates

Damien LAMBERTON and Bernard LAPEYRE

July 20, 2007

We consider a d-dimensional basket model. We assume that each of the d assets has a price S_t^i following a Black-Scholes model driven par a brownian motion W^i

$$\frac{dS_t^i}{S_t^i} = rdt + \sigma dW_t^i, S_0^i = x_i.$$

For the numerical examples we will consider that d = 10 and $x_i = 100$.

In order to completly specify the model we assume that

$$d < W^i, W^j >_t = \rho_{ij} dt,$$

where ρ_{ij} is a given constant matrix. Note that this matrix is necessarily a positive matrix (i.e. $\lambda . \rho \lambda \ge 0$, for every $\lambda \in \mathbf{R}^d$).

We will assume that $\rho_{ij} = 0.5$ for $i \neq j$ and $\rho_{ii} = 1$ (why?).

1. Prove that the variance-covariance matrix of the vector (W_1^1, \ldots, W_1^d) is equal to ρt . Montrer (à l'aide de SciLab) qu'elle est définie positive.

Correction

2. Proposer une méthode de simulation pour les vecteurs (W_T^1, \ldots, W_T^d) et (S_T^1, \ldots, S_T^d) .

Correction

3. On s'intéresse maintenant au calcul du prix d'un call sur un indice de prix I_t donnée par

$$I_t = a_1 S_t^1 + \dots + a_d S_t^d.$$

On prendra dans les applications numériques $a_1 = \cdots = a_d = 1/d$. Calculer par simulation la valeur du call de payoff à l'instant T

$$(I_T-K)_+\,,$$

et estimer l'erreur commise pour différentes valeurs de K ($K=0.8I_0,\,K=I_0,\,K=1.2I_0,\,K=1.5I_0$ par exemple).

Reprendre les simulations pour un put sur indice de payoff $(K - S_T)_+$.

Correction

4. Montrez que $\mathbf{E}(I_T) = I_0 \exp(rT)$ et utilisez I_T comme variable de contrôle. Quand cette méthode est elle efficace ?

Correction

5. En supposant que r et σ tendent vers 0 se convaincre que l'on peut approximer $\log(I_t/I_0)$ par :

$$Z_T = \frac{a_1 S_0^1}{I_0} \log(S_t^1 / S_0^1) + \dots + \frac{a_d S_0^d}{I_0} \log(S_t^d / S_0^d).$$

Montrer que Z_T est un gaussienne de moyenne

$$T\sum_{i=1}^{d} \frac{a_i S_0^i}{I_0} \left(r - \sigma_i^2 / 2\right)$$

et de variance

$$T\frac{1}{I_0^2} \sum_{i=1}^d \sum_{j=1}^d J_i \rho_{ij} J_j$$

où
$$J_i = a_i S_0^i \sigma_i$$
.

On rappelle que (exercice):

$$\mathbf{E}\left(\left(e^{Z} - K\right)_{+}\right) = e^{\mathbf{E}(Z) + \frac{1}{2}\mathbf{Var}(Z)}N(d + \sqrt{\mathbf{Var}(Z)}) - KN(d)$$

où
$$d = \frac{\mathbf{E}(Z) - \log(K)}{\sqrt{\operatorname{Var}(Z)}}$$
.

En déduire une expression explicite de $\mathbf{E}\left(\left(e^{Z_T}-K\right)_+\right)$ et une technique de variable de contrôle pour le calcul du prix du call. Évaluez par simulation le gain de la méthode pour différentes valeurs de K.

Correction

Modèle de Paniers et fonctions d'importance On revient un moment au modèle de Black et Scholes unidimensionnel :

$$S_t = S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

On suppose que $S_0=100,\,\sigma=0.3$ (volatilité annuelle) et r=0.05 (taux d'intérêt exponentiel annuel).

2

1. On se place dans la cas d'un call de strike K grand devant S_0 . Montrez par simulation que la précision relative du calcul au fur et à mesure que K/S_0 décroit. On prendra $S_0=100$ et $K=100,\,150,\,200,\,250$. Que se passe t'il pour K=400?

Correction

2. Montrer en utilisant le théorème de Girsanov que :

$$\mathbf{E}\left(f(W_T)\right) = \mathbf{E}\left(e^{-\lambda W_T - \frac{\lambda^2 T}{2}} f(W_T + \lambda T)\right).$$

On se place dans le cas du call avec $S_0 = 100$ et K = 150. Proposer une valeur de λ permettant de réduire la variance de la simulation.

Correction

3. En utilisant le théorème de Girsanov pour les d mouvements browniens proposer une technique de réduction de variance basé sur les mêmes idées dans le cas où I_0 est petit devant K.

Option sur moyenne On s'intéresse à l'option sur moyenne de payoff donné par :

$$\left(\frac{1}{T}\int_0^T S_s ds - K\right)_+.$$

- 1. Proposer une (ou plusieurs) méthode de discrétisation de $\int_0^T S_s ds$.
- 2. En s'inspirant de la partie précedente proposer une variable de contrôle pour cette option (approximer la moyenne de l'exponentielle par l'exponentielle de la moyenne).
- 3. Ecrire le théorème de Girsanov pour $W_t + \lambda t$. Expliquer comment l'utiliser lorsque S_0 est très petit devant K.