Grundbegriffe der Informatik Aufgabenblatt 8

Matr.nr.:						
Nachname:						
Vorname:						
Tutorium:	Nr.		N	ame	e des Tutors:	
Ausgabe:	10. Deze	ember 2	2014			
Abgabe:	19. Deze	Dezember 2014, 12:30 Uhr				
	im GBI-Briefkasten im Untergeschoss					
	von Gebäude 50.34					
Lösungen werden nur korrigiert, wenn sie						
• rechtzeitig,						
• in Ihrer eigenen Handschrift,						
 mit dieser Seite als Deckblatt und 						
• in der oberen linken Ecke zusammengeheftet						
abgegeben we	rden.					
Vom Tutor auszufüllen:						
erreichte Pu	nkte					
Blatt 8:			/ 20 +	0		
Blätter 1 – 8	:	/	134 + 1	7		

Aufgabe 8.1 ((0.5 + 0.5 + 1 + 1 + 1 + 1) + 2 = 7 Punkte)

Für einen gerichteten Graphen G = (V, E) bezeichnet Aut(G) die Menge aller Isomorphismen von G nach G, das heißt,

$$Aut(G) = \{ f \colon V \to V \text{ bijektiv } | \ \forall x \in V \ \forall y \in V \colon (x,y) \in E \iff (f(x),f(y)) \in E \}.$$

Jedes Element von $\operatorname{Aut}(G)$ heißt *Automorphismus von G* und das Tupel $(\operatorname{Aut}(G), \circ)$ heißt *Automorphismengruppe von G*.

i) Geben Sie die Automorphismen der folgenden Graphen an:

ii) Es sei n eine ganze Zahl mit $n \ge 2$. Geben Sie vier verschiedene Graphen $G_i = (V_i, E_i), i \in \{1, 2, 3, 4\}$, an so, dass für jedes $i \in \{1, 2, 3, 4\}$ gilt: $|V_i| = n$ und Aut $(G_i) = \{f : V_i \to V_i \mid f \text{ ist bijektiv}\}$.

Lösung 8.1

i) a) Der einzige Automorphismus ist die Identität:

$$f \colon \{1\} \to \{1\},$$
$$v \mapsto v.$$

b) Der einzige Automorphismus ist die Identität:

$$f \colon \{1,2\} \to \{1,2\},$$
$$v \mapsto v.$$

c) Jede bijektive Abbildung zwischen V und sich selbst ist ein Automorphismus:

$$\left\{ \begin{array}{l}
f_1 \colon \{1,2\} \to \{1,2\}, \\
v \mapsto v,
\end{array} \right\} \text{ und } \left\{ \begin{array}{l}
f_2 \colon \{1,2\} \to \{1,2\}, \\
1 \mapsto 2, \\
2 \mapsto 1.
\end{array} \right\}$$

d) Die Automorphismen sind die drei "Drehungen um das Zentrum":

$$\left\{ \begin{array}{l} f_1 \colon \{1,2,3\} \to \{1,2,3\}, \\ v \mapsto v, \end{array} \right\}, \left\{ \begin{array}{l} f_2 \colon \{1,2,3\} \to \{1,2,3\}, \\ 1 \mapsto 2, \\ 2 \mapsto 3, \\ 3 \mapsto 1, \end{array} \right\}, \left\{ \begin{array}{l} f_3 \colon \{1,2,3\} \to \{1,2,3\}, \\ 1 \mapsto 3, \\ 2 \mapsto 1, \\ 3 \mapsto 2. \end{array} \right\}$$

e) Der einzige Automorphismus ist die Identität:

$$f: \{1,2,3\} \to \{1,2,3\},\ v \mapsto v.$$

f) Die Automorphismen sind die zwei Spiegelungen an der vertikalen Achse:

$$\left\{ \begin{array}{l} f_1 \colon \{1,2,3\} \to \{1,2,3\}, \\ v \mapsto v, \end{array} \right\} \text{ und } \left\{ \begin{array}{l} f_2 \colon \{1,2,3\} \to \{1,2,3\}, \\ 1 \mapsto 1, \\ 2 \mapsto 3, \\ 3 \mapsto 2. \end{array} \right\}$$

ii) Für jedes $i \in \{1,2,3,4\}$ sei $V_i = V = \{v \in \mathbb{Z} \mid 1 \le v \le n\}$. Die vier gesuchten Graphen sind gegeben durch die Knotenmengen V_1, V_2, V_3 und V_4 , und die Kantenmengen $E_1 = \{\}$, $E_2 = \{(v,v) \mid v \in V\}$, $E_3 = \{(v,w) \in V \times V \mid v \ne w\}$ und $E_4 = V \times V$.

Aufgabe 8.2 (1+1+1+1=4) Punkte)

Für einen gerichteten Graphen G = (V, E) heißt ein Teilgraph G' = (V', E') von G genau dann *strenge Zusammenhangskomponente von G*, wenn G' streng zusammenhängend ist und für jeden streng zusammenhängenden Teilgraphen G'' = (V'', E'') von G entweder $V' \cap V'' = \emptyset$ oder $V'' \subseteq V' \wedge E'' \subseteq E'$ gilt.

Geben Sie die strengen Zusammenhangskomponenten der folgenden Graphen an:

Lösung 8.2

- a) Es gibt nur eine strenge Zusammenhangskomponente, nämlich der Graph selbst.
- b) Es gibt nur eine strenge Zusammenhangskomponente, nämlich der Graph selbst.
- c) Es gibt genau drei strenge Zusammenhangskomponenten, nämlich

d) Es gibt genau zwei strenge Zusammenhangskomponenten, nämlich

Aufgabe 8.3 (1 + 1 = 2 Punkte)

Für einen ungerichteten Graphen G = (V, E) heißt ein Teilgraph G' = (V', E') von G genau dann aufspannender Baum, wenn G' ein Baum ist und V' = V gilt.

a) Geben Sie einen aufspannenden Baum des folgenden Graphen an:

b) Geben Sie für jede Zusammenhangskomponente des folgenden Graphen einen aufspannenden Baum an:

Dabei heißt ein Teilgraph G' eines ungerichteten Graphen G genau dann Zusammenhangskomponente von G, wenn der zu G' gehörige gerichtete Graph eine strenge Zusammenhangskomponente des zu G gehörigen gerichteten Graphen ist.

Lösung 8.3

Achtung: Die angegebenen Bäume sind nicht die einzig möglichen!

Aufgabe 8.4 (1 + 1 + 1 + 2 + 2 = 7 Punkte)

Für jedes $n \in \mathbb{N}$ sei der gerichtete Graph $G_n = (V_n, E_n)$ gegeben durch

$$V_n = \{ i \in \mathbb{Z} \mid 1 \le i \le n \},$$

$$E_n = \{ (i, j) \in V_n \times V_n \mid (i \le n - 1 \land j = i + 1) \lor (i = n \land j = 1) \}.$$

a) Zeichnen Sie G_1 , G_2 und G_5 .

Für jedes $n \in \mathbb{N}$ und jedes $k \in \mathbb{N}$ sei $E_{n,k}$ induktiv definiert durch

$$E_{n,1} = E_n,$$
 $\forall k \in \mathbb{N} \setminus \{1\} : E_{n,k} = E_n \circ E_{n,k-1};$

Ferner sei $G_{n,k}$ der gerichtete Graph $(V_n, E_{n,k})$.

- b) Zeichnen Sie $G_{5,2}$ und $G_{6,2}$.
- c) Geben Sie $E_{n,2}$ in einer Form analog zur Definition von E_n an.
- d) Beweisen Sie, dass für jedes $n \in \mathbb{N}$ gilt: Der Graph $G_{n,2}$ ist genau dann streng zusammenhängend, wenn die Knotenanzahl n ungerade ist.
- e) Wie viele strenge Zusammenhangskomponenten hat $G_{n,3}$ und wie viele Knoten und Kanten haben diese jeweils?

Lösung 8.4

c)
$$E_{n,2} = \{(i,j) \in V_n \times V_n \mid (i \le n - 2 \land j = i + 2) \lor (i = n - 1 \land j = 1) \lor (i = n \land j = 2)\}.$$

d) *Intuition*: Ist n ungerade, so ist $G_{n,2}$ ein Kreis, also streng zusammenhängend. Ist n gerade, so besteht $G_{n,2}$ aus zwei Kreisen, ist also nicht streng zusammenhängend.

Beweis: Es sei $n \in \mathbb{N}$. Der Graph $G_{n,2}$ hat genau n Kanten. Für jedes Knotenpaar $(x,y) \in V_n \times V_n$ gilt genau dann $(x,y) \in E_{n,2}$, wenn y-x=2 oder $x=n-1 \wedge y=1$ oder $x=n \wedge y=2$. Für jedes Knotenpaar $(x,y) \in V_n \times V_n$ gibt es somit einen Pfad von x nach y, wenn y-x nicht-negativ und gerade ist (im Falle y-x=0 ist dies der Pfad der Länge 0).

Zunächst sei n = 1. Dann ist $G_{n,2}$ streng zusammenhängend.

Jetzt sei n ungerade und $n \ge 2$. Weiter seien x und y zwei Knoten von $G_{n,2}$.

Fall 1: x ist ungerade und y ist gerade. Da n-x nicht-negativ und gerade ist, existiert ein Pfad $p=(v_0,v_1,\ldots,v_k)$ von x nach n. Dann ist $(v_0,v_1,\ldots,v_k,2)$ ein Pfad von x nach 2. Da y-2 nicht-negativ und

- gerade ist, existiert ein Pfad $q = (w_0, w_1, ..., w_l)$ von 2 nach y. Dann ist $(v_0, v_1, ..., v_k, w_0, w_1, ..., w_l)$ ein Pfad von x nach y.
- Fall 2: x ist gerade und y ist ungerade. Da (n-1)-x nicht-negativ und gerade ist, existiert ein Pfad $p=(v_0,v_1,\ldots,v_k)$ von x nach n-1. Dann ist $(v_0,v_1,\ldots,v_k,1)$ ein Pfad von x nach 1. Da y-1 nicht-negativ und gerade ist, existiert ein Pfad $q=(w_0,w_1,\ldots,w_l)$ von 1 nach y. Dann ist $(v_0,v_1,\ldots,v_k,w_0,w_1,\ldots,w_l)$ ein Pfad von x nach y.
- Fall 3: $x \le y$ und x und y sind beide gerade oder beide ungerade. Dann ist y x nicht-negativ und gerade. Also gibt es einen Pfad von x nach y. Fall 4: x > y und x und y sind beide gerade oder beide ungerade.
 - Fall 4.1: x und y sind gerade. Da (n-1)-x nicht-negativ und gerade ist, existiert ein Pfad $p=(v_0,v_1,\ldots,v_k)$ von x nach n-1. Dann ist $(v_0,v_1,\ldots,v_k,1)$ ein Pfad von x nach 1. Da n-1 nicht-negativ und gerade ist, existiert ein Pfad $q=(w_0,w_1,\ldots,w_l)$ von 1 nach n. Dann ist $(w_0,w_1,\ldots,w_l,2)$ ein Pfad von x nach 2. Da y-2 nicht-negativ und gerade ist, existiert ein Pfad $r=(x_0,x_1,\ldots,x_m)$ von 2 nach y. Insgesamt ist $(v_0,v_1,\ldots,v_k,w_0,w_1,\ldots,w_l,x_0,x_1,\ldots,x_m)$ ein Pfad von x nach y.
 - Fall 4.2: x und y sind ungerade. Ähnlich zu eben finden wir Pfade $(v_0, v_1, \ldots, v_k, 2)$, $(w_0, w_1, \ldots, w_l, 1)$ und (x_0, x_1, \ldots, x_m) von x nach 2 bzw. 2 nach 1 bzw 1 nach y. Damit ist $(v_0, v_1, \ldots, v_k, w_0, w_1, \ldots, w_l, x_0, x_1, \ldots, x_m)$ ein Pfad von x nach y.

In jedem Fall finden wir einen Pfad von x nach y. Damit ist $G_{n,2}$ streng zusammenhängend.

Nun sei n gerade. Dann ist $n \geq 2$. Also enthält V_n die Knoten 1 und 2. Angenommen es existiert ein Pfad $p = (v_0, v_1, \ldots, v_k)$ von $v_0 = 1$ nach $v_k = 2$. Für jedes $i \in \mathbb{Z}_k$ ist $(v_i, v_{i+1}) \in E_{n,2}$, also $v_{i+1} - v_i = 2$ oder $v_i = n \wedge v_{i+1} = 2$, und somit $v_{i+1} - v_i$ gerade (beachte, dass n gerade ist). Da $v_0 = 1$ ungerade ist, ist für jedes $i \in \mathbb{Z}_k$ der Knoten $v_{i+1} = 2 + v_i$ ungerade (dies sieht man per vollständige Induktion ein). Insbesondere ist v_k ungerade. Dies steht im Widerspruch zu $v_k = 2$. Somit existiert kein Pfad von 1 nach 2. Damit ist $G_{n,2}$ nicht streng zusammenhängend.

Insgesamt gilt also die behauptete Äquivalenz.

e) Falls n ein Vielfaches von 3 ist, so hat $G_{n,3}$ genau drei strenge Zusammenhangskomponenten, jede dieser Komponenten hat n/3 Knoten und ebenso viele Kanten.

Falls n kein Vielfaches von 3 ist, so hat $G_{n,3}$ genau eine strenge Zusammenhangskomponente und diese hat n Knoten und ebenso viele Kanten.