

Lecture 3: Phase Plane Analysis

Dagmar Iber

Lecture 2 - Biochemical Reaction Kinetics

Content

- Mass Balance
- Half-lives for linear decay reactions
- Michaelis-Menten
- Allosteric and competitive inhibition
- Hill equation
- MWC model
- Signaling cascades (Heinrich Model)

Technical

- Formulation of chemical reaction models
- Analytical solution of simple ODEs
- Singular perturbation methods (matching)

Elementary Reactions

- Constant Production
- Linear Decay
- Dimer Formation
- Monomolecular Conversions
- Bimolecular Conversions

Complex Reactions

- Michaelis-Menten
- Hill-type
- MWC

I) Simple dynamical models

- Qualitative Analysis of dynamical Models
- Define steady states
- Define stability
- Define trajectories

II) Biological Responses

- Linear, hyperbolic, sigmoidal
- Adaptation
- Oscillation
- Switches

ODE models

dx/dt = f(x(t), u(t), p, t)

- x(t) system states
- u(t) time-varying inputs
- p parameters
- t time

Solution Methods

- Analytical: only for very simple models
- Numerical: method of choice, but harder to gain insight into parameter dependencies of qualitative behaviours
- <u>Graphical</u>: qualitative analysis method for simple systems

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

$$R = \frac{k_0 + k_1 S}{k_2}$$

Definition

A steady state is stable if the system returns to the steady state upon a perturbation.

Example

$$\frac{dx}{dt} = f(x) \qquad \frac{dx}{dt}|_{x_s} = f(x_s) = 0$$

has a stable steady state x_s if

$$\frac{dx}{dt}|_{x_s+p} < 0 \qquad \forall p > 0$$

$$\frac{dx}{dt}|_{x_s+p} > 0 \qquad \forall p < 0$$

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

$$\frac{dR}{dt} = k_0 + k_1 S - k_2 R$$

$$\frac{dR_P}{dt} = k_1 S(R_T - R_P) - k_2 R_P$$

with steady state

$$R_{P,ss} = \frac{R_T S}{(k_2/k_1) + S}$$

Michaelis-Menten Type

$$\frac{dR_P}{dt} = \frac{k_1 S(R_T - R_P)}{K_{m1} + R_T - R_P} - \frac{k_2 R_P}{k_{m2} + R_P}$$

Tyson et al (2003), Curr Opin Cell Biol, 15, 221ff

Sigmoidal Responses - 'Goldbeter-Koshland' function

$$\frac{dR_P}{dt} = \frac{k_1 S(R_T - R_P)}{K_{m1} + R_T - R_P} - \frac{k_2 R_P}{k_{m2} + R_P}$$

Steady-state condition:

$$k_1 S(R_T - R_P)(K_{m2} + R_P) =$$

$$k_2 R_P(K_{m1} + R_T - R_P)$$

Biophysically acceptable solution:

$$\frac{R_{P_{ss}}}{R_T} = G(k_1, k_2 S, \frac{K_{m1}}{R_T}, \frac{K_{m2}}{R_T})$$

Hill Type (cooperative, allosteric regulation)

COUPLED SYSTEMS

Reaction scheme

Equations

$$\frac{dx}{dt} = y - \lambda x$$

$$\frac{dy}{dt} = \nu + x - y$$

Equations

$$\frac{dx}{dt} = y - \lambda x$$

$$\frac{dy}{dt} = \nu + x - y$$

Nullclines

$$y = \lambda x$$

$$y = \nu + x$$

Nullclines

$$y = \lambda x$$

$$y = \nu + x$$

Steady states are given by the intersection of the nullclines

$$x = \frac{\nu}{\lambda - 1}$$

Equations

Nullclines

Steady State

$$\frac{dx}{dt} = y - \lambda x$$

$$y = \lambda x$$

$$x = \frac{\nu}{\lambda - 1}$$

$$\frac{dy}{dt} = \nu + x - y$$

$$y = \nu + x$$

Equations

$$\frac{dx}{dt} = y - \lambda x$$

$$\frac{dy}{dt} = \nu + x - y$$

Quiver plot

- shows tangent vectors to the trajectories
- Length denotes speed

$$\frac{dx}{dt} = y - \lambda x$$

$$\frac{dy}{dt} = \nu + x - y$$

Matlab Code

```
[x,y]=meshgrid(-3:0.475: 3, -3:0.475:3);
z1=-x+y;
z2= x-0.25*y;
quiver(x,y,z1,z2, 'k')
grid
```

Nullclines

```
x1 = linspace(-3, 3)

x2 = linspace(-1, 1)

plot(x1,x1, 'r') %nullcline for x1

plot(x2, 4*x2, 'g') %nullcline for x2
```

Stability of Steady States - algebraic

1. Rewrite set of ODE as

$$\dot{x} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} x + \begin{pmatrix} b_1 \\ b_2 \end{pmatrix} = Ax + b$$

2. Determine steady states

$$\dot{x} = Ax + b = 0 \qquad Ax = -b$$

3. Determine eigenvalues

$$|Ax - \lambda I| = 0$$

For details see script!

Characteristic polynomial

$$P(\lambda) = \lambda^2 + a_1\lambda + a_0$$

Steady State Classification

Higher dimensional systems

$$\dot{x} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} x + \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix} = Ax + b$$

1. Determine steady states

$$\dot{x} = Ax + b = 0$$
 $Ax = -b$

2. Determine eigenvalues

$$|Ax - \lambda I| = 0$$

Characteristic polynomial

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n$$

Descartes' Rule of Signs

Consider the polynomial
$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + ... + a_n = 0$$

Let N be the number of sign changes in the sequence of coefficients $\{a_n, a_{n-1}, ..., a_o\}$, ignoring any that are zero.

Then there are at most N roots of $P(\lambda)$ which are real and positive, and further, there are N, N-2 or N-4, ... real positive roots.

By setting $\omega = -\lambda$ and again applying this rule, information is obtained about possible negative roots.

Ruth-Hurwitz condition

- Provides necessary and sufficient condition that the real parts of all eigenvalues are negative
- Derived using complex variable methods

The real parts of all zeros of $P(\lambda)$

$$P(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_n = 0$$

are negative as long as the following condition is met for all i = 0, 1,..., n

$$D_k = \begin{vmatrix} a_1 & a_3 & \cdot & \cdot & \cdot & \cdot \\ 1 & a_2 & a_4 & \cdot & \cdot & \cdot \\ 0 & a_1 & a_3 & \cdot & \cdot & \cdot \\ 0 & 1 & a_2 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & 0 & \cdot & \cdot & \cdot & a_k \end{vmatrix} > 0, k = 1, 2, ..., n$$

NONLINEAR DYNAMICS

Reaction scheme

protein (x) $\frac{\lambda x^2/(x^2+1)}{\delta y}$

Equations

$$\frac{dx}{dt} = y - \lambda \frac{x^2}{x^2 + 1}$$

$$\frac{dy}{dt} = x - y$$

Equations

$$\frac{dx}{dt} = y - \lambda \frac{x^2}{x^2 + 1}$$

$$\frac{dy}{dt} = x - y$$

Nullclines

$$y = \lambda \frac{x^2}{x^2 + 1}$$

$$y = x$$

Nullclines

$$y = \lambda \frac{x^2}{x^2 + 1}$$

$$y = x$$

Steady states are given by the intersection of the nullclines

$$x = \lambda \frac{x^2}{x^2 + 1}$$

Solve the cubic polynomial... or take a graphical approach

Equations

$$\frac{dx}{dt} = y - \lambda \frac{x^2}{x^2 + 1}$$

$$\frac{dy}{dt} = x - y$$

Equations

$$\frac{dx}{dt} = y - \lambda \frac{x^2}{x^2 + 1}$$

$$\frac{dy}{dt} = x - y$$

Linear Stability Analysis

Eigenvalues

- Linearize system at ODEs at all steady states
- Proceed as before with linear system
- For details see script

Definitions

- Define symbolic matrices and vectors A = sym([8/9 1/2 1/3; 1/2 1/3 1/4; 1/3 1/4 1/5])
- Convert a matrix to symbolic format by writing A = sym(A)
- Define symbolic variables as syms x

Linear Algebra

 Determine eigenvectors and eigenvalues with

$$[T, E] = eig(A)$$

- Determine determinant with det(A)
- Solve linear system of equation Ax = b by writing

$$x = A b$$

BIFURCATION

Reaction Scheme

$$\frac{dx}{dt} = \nu + \frac{x^2}{1 + x^2} - \delta x$$

Steady States

$$\frac{dx}{dt} = 0 \qquad \nu + \frac{x^2}{1+x^2} - \delta x = 0$$

Would need to solve cubic polynomial to determine steady states.

It is easier to use a graphical approach.

Reaction scheme

$$\frac{dx}{dt} = \nu + \frac{x^2}{1+x^2} - \delta x$$

Graphical Representation

3 steady states

Definition

A steady state is stable if the system returns to the steady state upon a perturbation.

$$\frac{dx}{dt} = \nu + \frac{x^2}{1+x^2} - \delta x$$

Reaction scheme

$$\frac{dx}{dt} = \nu + \frac{x^2}{1+x^2} - \delta x$$

Graphical Representation

2 steady states disappear as ν increases from 0 to 0.1

Graphical Analysis

$\frac{dx}{dt} = \nu + \frac{x^2}{1 + x^2} - \delta x$

Impact of perturbation v

Network

Progesterone Receptor Mos MEK p42 MAPK Plx Cdc25, Myt1 Cyc B/Cdc2

Wash-out experiments

Wen Xiong & James E. Ferrell Jr (2003) Nature

A bistable switch

Bifurcation Diagram

Input intensity

Bifurcation Parameter

As the value of a bifurcation parameter is changed the stability of at least one equilibrium point changes

Bifurcation Diagram

- Determine the stability of each steady state over a range of the bifurcation parameter
- Plot the values of the steady states and indicate the stability of the steady states

Saddle-Node

 Occurs when two fixed points collide and annihilate each other

Transcritical Bifurcation

- At least one steady state changes its stability
- In the example, this is the case for r = 0

Example

$$\frac{dx}{dt} = rx - x^2.$$

Pitchfork (supercritical) Pitchfork (subcritical) X

Hopf Bifurcation

- Imaginary part of eigenvalues becomes non-zero
- Limit cycles (oscillations)

Phase Plane

Egwald Nonlinear Dynamics

Summary

- Steady states (graphical)
- Phase Plane Analysis
 - Steady states
 - Nullclines
 - Phase vector diagram
- Stability of steady states
 - Characteristic polynomial
 - Stable & unstable node
 - Saddle point
 - Spiral
 - center

- Linearization of non-linear systems
 - Jacobian
- Bifurcations
 - Saddle node
 - Transcritical
 - Pitchfork
 - Hopf