### **Aula 14: Circuitos com MOSFETs**

### **Objetivos**

- Aprender a testar MOSFETs e identificar suas regiões de operação.
- Implementar MOSFETs como chave eletrônica.
- Implementar circuitos de polarização com MOSFETs.
- Implementar um amplificador emissor comum com MOSFETs.

#### Lista de material

- Osciloscópio, gerador de sinais e multímetro;
- Resistores:  $1 \text{ k}\Omega$ ,  $1,2 \text{ k}\Omega$ ,  $2,7 \text{ k}\Omega$ ,  $1 \text{ M}\Omega$ ;
- Transistor BS170.

## Instruções



# Roteiro da experiência

#### 1) Teste do transistor MOSFET.

- a) Posicione a chave seletora do multímetro na escala de medir diodo/continuidade e faça os seguintes testes preenchendo a Tabela 1:
  - A. Coloque a ponteira vermelha (positiva) na fonte (S) e a ponteira preta (negativa) no dreno (D). Espera-se uma tensão entre 0,3 e 0,9 V.
  - B. Coloque a ponteira preta (negativa) na fonte (S) e a ponteira vermelha (positiva) no dreno (D). Espera-se a indicação de circuito aberto.
  - C. Coloque a ponteira vermelha (positiva) na porta (G) e a ponteira preta (negativa) na fonte (S). Espera-se a indicação de circuito aberto.
  - D. Coloque a ponteira preta (negativa) na porta (G) e a ponteira vermelha (positiva) na fonte (S). Espera-se a indicação de circuito aberto.
  - E. Coloque a ponteira vermelha (positiva) na porta (G) e a ponteira preta (negativa) no dreno (D). Espera-se a indicação de circuito aberto.
  - F. Coloque a ponteira preta (negativa) na porta (G) e a ponteira vermelha (positiva) no dreno (D). Espera-se a indicação de circuito aberto.

Tabela 1

| Teste | Confere? | Teste | Confere? |
|-------|----------|-------|----------|
| A     |          | D     |          |
| В     |          | Е     |          |
| С     |          | F     |          |

2) Considere o circuito abaixo, em que  $V_{DD} = 10 \text{ V}$ .



- a) Com o multímetro, meça a tensão V<sub>AB</sub> indicada, mantendo o circuito aberto.
- b) Em seguida, calcule a tensão de limiar (threshold) V<sub>t</sub> a partir de:

$$\mathbf{V}_{\mathrm{t}} = \mathbf{V}_{\mathrm{DD}} - \mathbf{V}_{\mathrm{AB}}.$$

| c) | Inclua um resistor de 1 k0 entre os terminais A e B |  |
|----|-----------------------------------------------------|--|

e) Calcule o parâmetro  $k_t$  a partir da equação:

d) Meça a tensão  $V_{GS}$  e a corrente  $I_D$ .

$$I_{D} = k_{t} \left( V_{GS} - V_{t} \right)^{2}.$$

3) Considere o circuito abaixo, em que  $V_{DD}$  = 12 V,  $R_D$  = 2,7  $k\Omega$ ,  $R_S$  = 1,2  $k\Omega$  e  $R_G$  = 1  $M\Omega$ .



- a) Identifique, no circuito acima, os três terminais do transistor: porta (G), dreno (D) e fonte (S). Rotule também as tensões  $V_{GS}$  (porta-fonte) e  $V_{DS}$  (dreno-fonte), assim como as tensões  $V_{RG}$  (queda de tensão no resistor  $R_G$ ) e  $V_{RD}$  (queda de tensão no resistor  $R_D$ ).
- b) Monte o circuito usando  $V_{GG}=0$  V. Preencha a Tabela 2 realizando medições com o multímetro. Baseado nos resultados obtidos, identifique a região de operação em que o transistor se encontra. Justifique na janela abaixo.

| c) | Faça agora $V_{GG}$ = 4 V. Novamente preencha a Tabela 2 realizando medições com o    |
|----|---------------------------------------------------------------------------------------|
|    | multímetro. Baseado nos resultados obtidos, identifique a região de operação em que o |
|    | transistor se encontra. Justifique na janela abaixo.                                  |

| d) | Faça agora $V_{GG}$ = 8 V. Novamente preencha a Tabela 2 realizando medições com o    |
|----|---------------------------------------------------------------------------------------|
|    | multímetro. Baseado nos resultados obtidos, identifique a região de operação em que o |
|    | transistor se encontra. Justifique na janela abaixo.                                  |

#### Tabela 2

| $\mathbf{V}_{\mathbf{GG}}$ | $I_G = V_{RG}/R_G$ | V <sub>GS</sub> | $I_D = V_{RD}/R_D$ | V <sub>DS</sub> | Região |
|----------------------------|--------------------|-----------------|--------------------|-----------------|--------|
| 0 V                        |                    |                 |                    |                 |        |
| 4 V                        |                    |                 |                    |                 |        |
| 8 V                        |                    |                 |                    |                 |        |