UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

HIGOR PARIZI STRAZZI LETICIA IARA DE SOUZA LUCAS RADUY GOMES DE CAMARGO SÉRGIO HENRIQUE ZANFORLIM FILHO

MANUAL DO USUÁRIO DA PLACA DE INTERFACE DA PLANTA DIDÁTICA DE VAZÃO E NÍVEL

CURITIBA

HIGOR PARIZI STRAZZI LETICIA IARA DE SOUZA LUCAS RADUY GOMES DE CAMARGO SÉRGIO HENRIQUE ZANFORLIM FILHO

MANUAL DO USUÁRIO DA PLACA DE INTERFACE DA PLANTA DIDÁTICA DE VAZÃO E NÍVEL

FLOW AND LEVEL DIDACTIC PLANT INTERFACE BOARD USER MANUAL

Trabalho de Conclusão de Curso de Graduação apresentado como requisito para obtenção do título de Bacharel em Engenharia de Controle e Automação da Universidade Tecnológica Federal do Paraná (UTFPR)

Orientador: Prof. Dr. Thiago Alberto Rigo

Passarin

Co-orientador: Prof. Dr. Alexandre José Tuoto

Silveira Mello

CURITIBA

2022

Esta licença permite remixe, adaptação e criação a partir do trabalho, para fins não comerciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados por terceiros, citados e referenciados nesta obra não são cobertos pela licença.

4.0 Internacional

SUMÁRIO

1 A PLACA DE INTERFACE	3
1.1 INSTALAÇÃO ELÉTRICA	3
1.2 CONEXÃO COM O RASPBERRY	4
2 COMUNICAÇÃO	8
2.1 MODO MODBUS TCP	
2.1.1 Utilizando o supervisório fornecido	9
2.2 MODO UDP	12
3 ANEXO A - CIRCUITO	14

1 A PLACA DE INTERFACE

1.1 INSTALAÇÃO ELÉTRICA

Conectar os transmissores e válvulas aos respectivos pinos bananas da placa de interface e colocar as chaves presentes na planta na posição "CALIBR.". Conectar a fonte 5Vcc e a fonte 24Vcc a placa de interface, conforme o esquemático do sistema apresentado a seguir.

Figura 1: Esquemático da placa de interface

1.2 CONEXÃO COM O RASPBERRY

Conectar um monitor e mouse ao Raspberry, ou utilizar VNC para se conectar ao Raspberry. Caso opte pelo uso de VNC, seguir os passos:

- 1. Baixar e instalar o programa VNC Viewer;
- 2. Configurar o IP e sub-rede do computador para um IP da mesma faixa da placa de interface. IP do Raspberry: 10.2.0.100, máscara de sub-rede: 255.255.255.0.
- 3. Criar uma nova conexão com as seguintes configurações:

4. Ao conectar-se com o Raspberry utilizar as seguintes informações para o login:

V2 10.2.0.100 - VNC Viewer **№** Autenticação × Autentique-se no VNC Server 10.2.0.100::5900 (TCP) Insira as credenciais do VNC Server (Dica: NÃO use os detalhes da sua conta da RealVNC) Nome de usuário: pi 0 Senha: raspberry Lembrar senha Esqueceu a senha? Frase: Cello corner drink. Method bottle roger. d5-96-cd-88-07-5e-c5-9e Assinatura: Cancelar OK Interromper

Figura 3: Configurações conexão VNC Viewer

Fonte: Autoria Própria.

Para iniciar a comunicação, abrir o script "Comunicacao UDP ModbusTCP.py" presente no Desktop utilizando o programa Thonny. Apos a abertura do arquivo, clique em Run.

Figura 4: Local do script de comunicação

V2 10.2.0.100 (raspberrypi) - VNC Viewer V2 ∦ **1↓ ∗**) 06:57 File Edit View Run Tools Help Comunicacao_UDP_ModbusTCP.py 🗶 Assistant ⋈ 1 # encoding: utf-8 # Importa as bibliotecas necessarias 4 import time 5 import Adafruit_ADS1x15 6 import RPi.GPIO as gpio import threading import signal 9 import socket 10 import struct 11 import decimal from queue import Queue
from pyModbusTCP.server import ModbusServer, DataBank 14 from simple_pid import PID 15 **import** sys 16 18 # Configura os pinos de IO 19 dpio.setwarnings(False) Python 3.7.3 (/usr/bin/python3) >>>

Figura 5: Local do script de comunicação

Fonte: Autoria Própria.

Com o script em execução, realize a escolha do protocolo de comunicação por meio da chave presente na placa de interface.

2 COMUNICAÇÃO

A placa oferece dois protocolos de comunicação: Modbus TCP e UDP. Ambos são realizados por meio da placa Ethernet presente no Raspberry Pi. Os scripts e arquivos utilizados encontram-se disponíveis para download no GitHub: github.com/lucasraduy/tccPlantaDidatica.

2.1 MODO MODBUS TCP

Utilizando o protocolo Modbus TCP é possível realizar a comunicação por meio do supervisório disponibilizado, ou por meio de outra aplicação compatível utilizando os seguintes registradores Modbus:

Tabela 1: Lista de registradores Modbus da placa de interface

Holding Register	Leitura/Escrita	Descrição	Valores
100	Escrita	Setpoint Válvula 1 0 a 100	
102	Escrita	Setpoint Válvula 2 0 a 100	
104	Escrita	Kp - PID1	0 a 100 - Padrão: 0,4
106	Escrita	Ti - PID1	0 a 100 - Padrão: 0,3
108	Escrita	Td - PID1	0 a 100 - Padrão: 0,01
110	Escrita	Kp - PID2	0 a 100 - Padrão: 30
112	Escrita	Ti - PID2	0 a 100 - Padrão: 2
114	Escrita	Td - PID2	0 a 100 - Padrão: 0
300	Leitura	Sensor 1	0 a 100
301	Leitura	Sensor 2	0 a 100
302	Leitura	Válvula 1	0 a 100
303	Leitura	Válvula 2	0 a 100
500	Escrita	Modo de operação	0 ou 1

2.1.1 UTILIZANDO O SUPERVISÓRIO FORNECIDO

- 1. Baixar e instalar o software Elipse E3;
- 2. Baixar e descompactar o supervisório disponibilizado no GitHub. Salvar o arquivo no caminho: "C:\TCC_PlantaDidatica";
- 3. Abrir o Elipse E3 e carregar o dominio presente em: "C:\TCC_PlantaDidatica\tcc_elipse_project.dom";
- 4. Apos abrir e carregar o dominio, execute a aplicação pressionando o botão na tela, ou a tecla F9.

Fonte: Autoria Própria.

5. Com a aplicação em execução, escolha entre modo manual ou modo automático.

Figura 7: Tela inicial

Fonte: Autoria Própria.

6. Modo automático: No canto superior direito é possível enviar os comandos de setpoint para as malhas de vazão e nível, abaixo é possível realizar a parametrização e ajuste dos controladores PIDs. E acima do gráfico na legenda é mostrado os valores atuais das válvulas e dos sensores. Para que o controle automático da malha de nível ocorra corretamente, é necessário que a malha de vazão esteja com o valor de setpoint configurado em 10%.

Figura 8: Modo automático

Fonte: Autoria Própria.

7. Modo manual: Nessa tela é possível alterar os valores de setpoint das válvulas sem a interação do controlador PID. Também são mostrados os valores dos sensores.

2.2 MODO UDP

Nesse modo o Raspberry aguarda o recebimento de um pacote de dados para iniciar a transmissão de valores da planta. Nesse modo a placa funciona em modo manual, sem controlador PID, ou seja, em malha aberta.

Pacote de dados a ser enviado para o Raspberry:

Tabela 2: Pacote de dados enviados ao Raspberry

float (4 bytes)	float (4 bytes)	
SetpointSaida01	SetpointSaida02	

Fonte: Autoria Própria.

Pacote de dados enviados pelo Raspberry:

Tabela 3: Pacote de dados enviados pelo Raspberry

Unsigned Long Long	float	float	float	float
(8 bytes)	(4 bytes)	(4 bytes)	(4 bytes)	(4 bytes)
Timestamp	Sensor01	(4 bytes)	Saida01	Saida02

Fonte: Autoria Própria.

O funcionamento desse modo pode ser resumido pelo diagrama abaixo:

Figura 10: Funcionamento no modo de comunicação utilizando UDP

3 ANEXO A - CIRCUITO

Fonte: Autoria Própria.