AMENDMENTS TO THE CLAIMS

1. (Previously Presented) A method for induction of apoptosis of cancer cells, comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each neutral or negatively charged, and are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -OSO₂ or -SO₃;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C₁-C₆)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

R₁₃ is -(C₁-C₆)alkyl;

each X^p is independently a pharmaceutically acceptable counter-ion;

m is an integer ranging from -3 to 5;

p is an integer ranging from -3 to 3;

n is equal to the absolute value of m/p; and

a pharmaceutically acceptable carrier.

2. (Original) The method of claim 1, wherein R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H.; X^p is Cl⁻; m is 1; and n is 1.

- 3. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -phenyl.
- 4. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methylphenyl.
 - 5. (Cancelled).
- 6. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-bromophenyl.
- 7. (Original) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -4-chlorophenyl.
 - 8. (Cancelled).
- 9. (Previously Presented) The method of claim 2, wherein R_1 , R_4 , R_7 and R_{10} are each -pentafluorophenyl.
- 10. (Original) The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -H; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -ethyl; X^p is Cl^- ; m is 1; and n is 1.
- 11. (Original) The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -H; and R_2 and R_{11} are each -ethyl; R_3 , R_5 , R_9 and R_{12} are each -methyl; R_6 and R_8 are each -methyl-3-propanoate; X^p is Cl^- ; m is 1; and n is 1.
 - 12. (Cancelled).
- 13. (Previously Presented) The method of claim 1, wherein R_1 , R_4 , R_7 and R_{10} are each -4-sulfonatophenyl; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H; X^p is Na^+ ; m is +3; and n is 3.

Application No. 10/663,894 Docket No.: V9661.0041

14-24. (Cancelled).

25. (Previously Presented) A method for inhibition of reverse transcriptase of Human Immunodeficiency virus-1, comprising administering to a patient in need thereof a composition comprising an effective amount of a gold(III) complex of formula:

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each neutral or negatively charged, and are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -OSO₂ or -SO₃;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

R₁₃ is -(C₁-C₆)alkyl; each X^p is independently a pharmaceutically acceptable counter-ion; m is an integer ranging from -3 to 5; p is an integer ranging from -3 to 3; n is equal to the absolute value of m/p; and

a pharmaceutically acceptable carrier.

- 26. (Original) The method of claim 25, wherein R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H.; X^p is CI; m is 1; and n is 1.
- 27. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -phenyl.
- 28. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-methylphenyl.
 - 29. (Cancelled).
- 30. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-bromophenyl.
- 31. (Original) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -4-chlorophenyl.
 - 32. (Cancelled).
- 33. (Previously Presented) The method of claim 26, wherein R_1 , R_4 , R_7 and R_{10} are each -pentafluorophenyl.
- 34. (Original) The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -H; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -ethyl; X^p is Cl^- ; m is 1; and n is 1.
- 35. (Original) The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -H; and R_2 and R_{11} are each -ethyl; R_3 , R_5 , R_9 and R_{12} are each -methyl; R_6 and R_8 are each -methyl-3-propanoate; X^p is Cl⁻; m is 1; and n is 1.
 - 36. (Cancelled).

Application No. 10/663,894

37. (Previously Presented) The method of claim 25, wherein R_1 , R_4 , R_7 and R_{10} are each -4-sulfonatophenyl; R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each -H; X^p is Na^+ ; m is =3; and n is 3.

38-54. (Cancelled).

55. (Previously Presented) The method of claim 25, wherein said composition further comprises 3'-azido-2',3'-dideoxythymidine.

56-57. (Cancelled).

58. (Previously Presented) A complex formed between a ligand and a gold(III) complex of formula:

or a pharmaceutically acceptable salt thereof, wherein:

 R_1 , R_4 , R_7 and R_{10} are each neutral or negatively charged, and are each independently -H, -halo, -(C_1 - C_6)alkyl or -O(C_1 - C_6)alkyl, -(6-membered)aryl or -(5 to 10-membered)heteroaryl, each of which may be substituted with one or more -halo, -(C_1 - C_6)alkyl, -OSO₂ or -SO₃;

 R_2 , R_3 , R_5 , R_6 , R_8 , R_9 , R_{11} and R_{12} are each independently -H, -(C_1 - C_6)alkyl, each of which may be substituted with one or more -C(O)OR₁₃, -halo or =O groups;

R₁₃ is -(C₁-C₆)alkyl;

each Xp is independently a pharmaceutically acceptable counter-ion;

Docket No.: V9661.0041

m is an integer ranging from -3 to 5; p is an integer ranging from -3 to 3; and n is equal to the absolute value of m/p.

59. (Original) The complex of claim 58, wherein the ligand is selected from the group consisting of porphyrins, metalloporphyrins, amino acids, peptides, polypeptides, proteins, nucleotides, polynucleotides, deoxyribonucleic acid, and ribonucleic acid.

60-63. (Cancelled).