



# NICE: NoIse-modulated Consistency rEgularization for Data-Efficient GANs

Yao Ni<sup>†</sup> Piotr Koniusz<sup>§,†</sup>

†The Australian National University §Data61♥CSIRO

NeurIPS 2023

#### Background: Challenges in training GANs on limited data

- Discriminator overfitting on limited training data.
- Training instability.

Goal: To improve the generalization of GAN.

#### Methods: Generalization error of GAN

n: dataset size.  $\mathcal{H}/\mathcal{G}$ : discriminator/generator sets.  $\forall h \in \mathcal{H}, \|h\|_{\infty} \leq \Delta$ .  $\mu/\nu$ : measures on real/fake data.  $\hat{\mu}_n/\nu_n$ : empirical measures. Assume  $d_{\mathcal{H}}(\hat{\mu}_n, \nu_n) - \inf_{\nu \in \mathcal{G}} d_{\mathcal{H}}(\hat{\mu}_n, \nu) \leq \epsilon$ .

$$\underbrace{d_{\mathcal{H}}(\mu,\nu_n) - \inf_{\nu \in \mathcal{G}} d_{\mathcal{H}}(\mu,\nu)}_{\ell \in \mathcal{G}} \leq \underbrace{2 \sup_{h \in \mathcal{H}} \left| \mathbb{E}_{\mu}[h] - \mathbb{E}_{\hat{\mu}_n}[h] \right|}_{\ell \in \mathcal{H}} + \epsilon$$

How far the fake data is from the real unseen data.

Discrepancy between seen and unseen real data.

$$\leq \underbrace{2R_n^{(\mu)}(\mathcal{H})} + 2\Delta\sqrt{\frac{2\log(1/\delta)}{n} + \epsilon}$$

Rademacher complexity of the discriminator.

Lower Rademacher complexity of discriminator  $\rightarrow$  better generalization  $\ \odot$ 

## Methods: Rademacher complexity of a neural network

For  $\forall i \in \{1, ..., n\}$ ,  $\|\boldsymbol{x}^{(i)}\|_2 \leq q$  and a t-layer fully-connected network parameterized from set  $\mathcal{V} = \{v_{\boldsymbol{\theta}} : \|\boldsymbol{W}_i\|_{\text{lip}} \leq k_i, \|\boldsymbol{W}_i^T\|_{2.1} \leq b_i\}$ :

$$R_n^{(\mu)}(\mathcal{V}) \leq \frac{q}{\sqrt{n}} \cdot \bigg(\prod_{i=1}^t k_i\bigg) \cdot \bigg(\sum_{i=1}^t \frac{\overbrace{b_i^{2/3}}^{2/3}}{k_i^{2/3}}\bigg)^{3/2}$$

Smaller weight norms  $\rightarrow$  lower complexity  $\rightarrow$  better generalization  $\odot$ 

## Methods: Regularization through multiplicative noise

 $w_k$ : the k-th column vector of the second layer weight  $W_2$ .  $\hat{a}_k$ : mean feature norm  $\geq 0$ .  $\beta^2$ : variance of noise. y: label. Multiplicative noise modulation z on the latent feature  $a^{(i)}$  in a two-layer net induces weight regularization.

Noise modulation with latent feature.

$$egin{aligned} \hat{L}_{\mathrm{noise}}(w) := \hat{\mathbb{E}}_i \mathbb{E}_{oldsymbol{z}} ig[ \| oldsymbol{y}^{(i)} - oldsymbol{W}_2 ( oldsymbol{z} \odot oldsymbol{a}^{(i)}) \|_2^2 ig] \ = \hat{\mathbb{E}}_i ig[ \| oldsymbol{y}^{(i)} - oldsymbol{W}_2 oldsymbol{a}^{(i)} \|_2^2 ig] + eta^2 \sum_k \hat{a}_k \| oldsymbol{w}_k \|_2^2 \ & \text{Implicit regularization on } \| oldsymbol{w}_k \|_2^2 \end{aligned}$$

Noise modulation o smaller weight norms o better generalization o

#### Methods: Noise incurs gradient issue

Noise modulation has the potential to amplify gradient

$$\begin{split} \min_{\boldsymbol{\theta}_{d}} L_{D}^{\text{AN}} := & \mathbb{E}_{\tilde{\boldsymbol{a}}} \mathbb{E}_{\boldsymbol{z}} \big[ h(\boldsymbol{z} \odot \tilde{\boldsymbol{a}}) \big] - \mathbb{E}_{\boldsymbol{a}} \mathbb{E}_{\boldsymbol{z}} \big[ h(\boldsymbol{z} \odot \boldsymbol{a}) \big] \\ \approx & \mathbb{E}_{\tilde{\boldsymbol{a}}} \big[ h(\tilde{\boldsymbol{a}}) \big] - \mathbb{E}_{\boldsymbol{a}} \big[ h(\boldsymbol{a}) \big] + \frac{\beta^{2}}{2} \big( \mathbb{E}_{\tilde{\boldsymbol{a}}} \big[ \sum_{k} \tilde{a}_{k}^{2} H_{kk}^{(h)}(\tilde{\boldsymbol{a}}) \big] - \mathbb{E}_{\boldsymbol{a}} \big[ \sum_{k} a_{k}^{2} H_{kk}^{(h)}(\boldsymbol{a}) \big] \big) \\ \min_{\boldsymbol{\theta}_{\boldsymbol{a}}} L_{G}^{\text{AN}} := - \mathbb{E}_{\boldsymbol{z}} \mathbb{E}_{\tilde{\boldsymbol{a}}} \big[ h(\boldsymbol{z} \odot \tilde{\boldsymbol{a}}) \big] \approx - \mathbb{E}_{\tilde{\boldsymbol{a}}} \big[ h(\tilde{\boldsymbol{a}}) \big] - \frac{\beta^{2}}{2} \mathbb{E}_{\tilde{\boldsymbol{a}}} \big[ \sum_{k} \tilde{a}_{k}^{2} H_{kk}^{(h)}(\tilde{\boldsymbol{a}}) \big] \end{split}$$

a: real feature,  $\tilde{a}$ : fake feature.

 $H^{(h)}(a)$ : Hessian matrix of discriminator h evaluated at a.

Noise modulation  $\rightarrow$  greater gradient norms  $\rightarrow$  unstable training  $\odot$ 

#### Methods: Consistency regularization

Enforces the discriminator to be consistent for same input under different noises.

$$\ell^{\text{NICE}}(\boldsymbol{a}) := \mathbb{E}_{\boldsymbol{z}_1, \boldsymbol{z}_2} \left[ \left( f(\boldsymbol{z}_1 \odot \boldsymbol{a}) - f(\boldsymbol{z}_2 \odot \boldsymbol{a}) \right)^2 \right]$$

$$\approx 2\beta^2 \sum_k a_k^2 \nabla_k^2 f(\boldsymbol{a}) + \beta^4 \sum_{j,k} a_j^2 a_k^2 (H_{jk}^{(f)}(\boldsymbol{a}))^2$$

 $\nabla f(a)$ ,  $H^{(f)}(a)$ : gradient and Hessian matrix of feature extractor f evaluated at a.

 $NICE \approx Gradient \ penalization \rightarrow smaller \ gradient \ norms \ \odot$ 

NICE: weight regularization  $\to$  smaller weight norms  $\to$  better generalization NICE: gradient penalization  $\to$  smaller gradient norms  $\to$  stable training

## Pipeline



d': feature dim.  $\odot$ : expands Z to  $d' \times d^H \times d^W$  then performs element-wise product.  $B_l$ :l-th block.  $C_S$ : Conv. in skip branch. f: feat. extractor.  $x/\tilde{x}$ : real/fake image.  $\eta$ : a threshold.

Update  $\beta$ : control the variance of noise by monitoring  $r(\boldsymbol{x}) = \mathbb{E}[\text{sign}(D(\boldsymbol{x}))]$ . Update  $\beta_{t+1} = \beta_t + \Delta_{\beta} \cdot \text{sign}(r(\boldsymbol{x}) > \eta)$ .

#### Experiments: Analysis



# **Experiments: Results**

|                                 |                           |                                | CIFAR-100                |                                |      |                             |            |                                      |                           |                                       |                         |                   |                          |
|---------------------------------|---------------------------|--------------------------------|--------------------------|--------------------------------|------|-----------------------------|------------|--------------------------------------|---------------------------|---------------------------------------|-------------------------|-------------------|--------------------------|
| Method                          | 100% data                 | 20% data                       | 10% dat                  | 100% d                         | lata | ta 20% da                   |            | 10% data                             | M-41 1                    |                                       | FID ↓ on Ima            |                   | igeNet                   |
|                                 |                           | IS↑/tFID↓                      |                          |                                | D↓   | IS†/tF                      | ID↓        | IS↑/tFID↓                            | Method                    |                                       | 10%                     | 5%                | 2.5%                     |
| BigGAN<br>+NICE                 | 9.21/5.48<br>9.50/4.19    | 8.74/16.20<br><b>8.96/8.51</b> |                          |                                |      | 9.94/25<br>10.32/1          |            | 7.58/50.79<br><b>8.96/19.53</b>      | BigGAN<br>ADA<br>DA       |                                       | 38.30<br>31.89<br>32.82 | 43.21             | 133.80<br>56.83<br>63.49 |
| LeCam+DA<br>+NICE               | 9.45/4.32<br>9.52/3.72    | 9.01/8.53<br>9.12/6.92         | 8.81/12.64<br>8.99/9.86  |                                |      |                             |            | 9.17/22.75<br>9.35/14.95             | MaskedG<br>KDDLGA<br>NICE | AN                                    | 26.51<br>20.32<br>21.44 | 22.35             | 38.62<br>28.79<br>31.45  |
| OmniGAN+ADA<br>+NICE            | 10.24/4.95<br>10.38/2.25  |                                | 7.86/40.05<br>10.08/5.49 |                                |      | 12.07/1<br><b>12.75</b> /0  |            | 8.95/44.65<br>12.04/9.32             | ADA+NI                    |                                       | 18.29                   |                   | 24.41                    |
| Method (FID↓)                   | Obama                     | GrumpyCat                      | Panda Ar                 | nimalCat .                     | Anin | nalDog                      | Me         | thod (FID↓                           | on FFHQ)                  | 100                                   | 1K                      | 2K                | 5 <i>K</i>               |
| StyleGAN2<br>StyleGAN2+NICE     | 80.20<br>24.56            | 48.90<br><b>18.78</b>          |                          | 71.71<br>25.25                 |      | 1.90<br>5.56                | ΑÏ         |                                      |                           | 179<br>85.8                           |                         | 29 15.3           | 9 10.96                  |
| ADA<br>LeCam+KDDLGA<br>ADA+NICE | 45.69<br>N 29.38<br>20.09 | 26.62<br>19.65<br><b>15.63</b> | 8.41                     | 40.77<br>31.89<br><b>22.70</b> | 50   | 5.83<br>0.22<br><b>3.65</b> | Ins<br>Fal | OA-Linear<br>Gen<br>keCLR<br>OA+NICE |                           | 82<br>45.75<br>42.56<br><b>38.4</b> 2 | 5 15.9                  | 21 11.4<br>92 9.9 | 7.83<br>0 7.25           |

#### Conclusions



- The noise modulation regularizes the weight norm
  - $\rightarrow$  improved generalization.
- The consistency regularization penalizes the gradient norm
  - $\rightarrow$  stable GAN training.