# Chapitre 9 ■

## Séries entières

#### Notation.

- $\blacksquare \mathscr{B}(0,\rho)$  désigne la boule euclidienne (sur  $\mathbb{C}$ ) centrée en 0 et de rayon  $\rho$ .
- I. Rayon de convergence des séries entières
- I.1 Définition

#### Définition 1 (Série entière).

Soit  $(a_n)$  une suite de nombres complexes. La série  $\sum a_n z^n$  est la série entière de la variable complexe z. Les nombres  $a_n$  sont les coefficients de la série entière.

## Exercice 1. Montrer que

**1.** 
$$\frac{1}{1-z} = \sum_{n=0}^{+\infty} z^n, \ \forall \ z \in \mathcal{B}(0,1).$$

3. 
$$\ln(1-x) = -\sum_{n=1}^{+\infty} \frac{x^n}{n}, \forall x \in ]-1,1[.$$

**2.** 
$$\arctan(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \forall x \in ]-1,1[.$$
 **4.**  $e^z = \sum_{n=0}^{+\infty} \frac{z^k}{k!}, \forall z \in \mathbb{C}.$ 

**4.** 
$$e^z = \sum_{n=0}^{+\infty} \frac{z^k}{k!}, \forall z \in \mathbb{C}.$$

## Lemme 1 (Lemme d'ABEL).

Soient  $\sum a_n z^n$  une série entière et  $z_0 \in \mathbb{C}$ . Si  $(a_n z_0^n)_{n \in \mathbb{N}}$  est bornée, alors pour tout nombre complexe z,

$$|z| < |z_0| \implies \sum a_n z^n$$
 converge absolument.

Soit  $\sum a_n z^n$  une série entière. L'ensemble  $I = \{r \in \mathbb{R}_+ ; (a_n r^n) \text{ est bornée}\}$  est un intervalle de  $\mathbb{R}_+$  contenant 0.

## Définition 2 (Rayon de convergence).

Le rayon de convergence de la série  $\sum a_n z^n$  est le réel

$$\rho = \sup \{ r \in \mathbb{R}_+ ; (a_n r^n) \text{ est bornée} \},$$

où  $\rho = +\infty$  si l'ensemble n'est pas borné.

Dans le cas où la variable est complexe, le disque ouvert de convergence est le disque  $\mathcal{B}(0,\rho)$ . Dans le cas où la variable est réelle, l'intervalle ouvert de convergence est l'intervalle  $]-\rho,\rho[$ .

# Exercice 2.

- 1. Déterminer les rayons de convergence des séries exponentielle et géométrique.
- **2.** Déterminer le rayon de convergence de  $\sum nz^n$  et de  $\sum \frac{1}{n}z^n$ .
- **3.** Déterminer le rayon de convergence de  $\sum n!z^n$  et de  $\sum \sin(n)z^n$ .

## Propriété 2 (Convergence & Rayon de convergence).

Soit  $\sum a_n z^n$  une série entière de rayon de convergence  $\rho$ . Alors, pour tout  $z_0 \in \mathbb{C}$ ,

- (i). si  $z_0 \in \mathcal{B}(0,\rho)$ , alors la série  $\sum a_n z_0^n$  converge absolument.
- (ii). si  $|z_0| > \rho$ , alors  $\sum a_n z_0^n$  diverge grossièrement.



**Exercice 3.** Étudier les séries  $\sum nz^n$ ,  $\sum \frac{z^n}{n^2}$  et  $\sum \frac{z^n}{n}$  sur les extrémités de leur intervalle de convergence.

#### I.2 Détermination pratique du rayon de convergence

#### Théorème 1 (Théorème de comparaison).

Soient  $\sum a_n z^n$  et  $\sum b_n z^n$  deux séries entières de rayons de convergence respectifs  $\rho_a$  et  $\rho_b$ .

- (i). Si  $a_n = O(b_n)$ , alors  $\rho_a \geqslant \rho_b$ . (ii). Si  $a_n \sim b_n$ , alors  $\rho_a = \rho_b$ . (iii). Si  $a_n = nb_n$ , alors  $\rho_a = \rho_b$ .

**Exercice 4.** Déterminer les rayons de convergence et la somme des séries  $\sum \frac{n^3}{n!} z^n$  et  $\sum \frac{n!}{n!} z^n$ .

Rayon de convergence de  $\sum \frac{n^n}{n!} z^n$ ? Ici avec Stirling, plus loi avec d'Alembert.

## Propriété 3 (Règle de d'ALEMBERT).

Soit  $\sum a_n z^n$  une série entière. On suppose que, à partir d'un certain rang, le coefficient  $a_n$ est non nul et qu'il existe  $\ell \in \mathbb{R}_+ \cup \{+\infty\}$  tel que  $\left(\left|\frac{a_{n+1}}{a_n}\right|\right)$  tende vers  $\ell$ . Alors, le rayon de convergence de  $\sum a_n z^n$  vaut  $\frac{1}{\ell}$ .

#### Exercice 5.

- 1. Reprendre les exemples précédents.
- **2.** Soit  $\theta \in \mathbb{R} \setminus \{0\}$ . Déteminer le rayon de convergence des séries entières de coefficient

a) 
$$\frac{\sinh(n)}{\cosh(n)^2}$$

**b)** 
$$\frac{\sin(\theta/n)}{n!}$$



- **3.** Soit  $(a_n)$  la suite définie pour tout n entier naturel par  $a_{2n} = \frac{1}{2^{2n}}$  et  $a_{2n+1} = \frac{1}{3^{2n+1}}$ . Déterminer le rayon de convergence de  $\sum a_n z^n$  et étudier le comportement asymptotique de  $(a_{n+1}/a_n)$ .
- **4.** Déterminer le rayon de convergence de la série  $\sum 2^n \ln(n) z^{2n}$ .

## I.3 Propriétés algébriques

## Théorème 2 (Somme & Produit de CAUCHY de séries entières).

Soient  $\sum a_n z^n$  et  $\sum b_n z^n$  deux séries entières de rayons de convergence respectifs  $\rho_a$  et  $\rho_b$ . Pour tout entier naturel n, on pose  $c_n = \sum_{k=0}^{n} a_k b_{n-k}$ . Alors,

- (i).  $\sum (a_n + b_n)z^n$  a un rayon de convergence supérieur ou égal à  $\min\{\rho_a, \rho_b\}$ .
- (ii).  $\sum c_n z^n$  a un rayon de convergence supérieur ou égal à min $\{\rho_a, \rho_b\}$ .

De plus, pour tout  $z \in \mathbb{C}$  tel que  $|z| < \min\{\rho_a, \rho_b\}$ , alors

$$\sum_{n=0}^{+\infty} (a_n + b_n) z^n = \sum_{n=0}^{+\infty} a_n z^n + \sum_{n=0}^{+\infty} b_n z^n \text{ et } \sum_{n=0}^{+\infty} c_n z^n = \left(\sum_{n=0}^{+\infty} a_n z^n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n z^n\right).$$

#### Exercice 6.

1. Déterminer un exemple où  $\sum (a_n + b_n)z^n$  a un rayon de convergence strictement plus grand que le minimum entre  $\rho_a$  et  $\rho_b$ .



- **2.** Déterminer les rayons de convergence des séries f(z) = 1 z,  $g(z) = \sum_{n=0}^{+\infty} z^n$  et  $f \cdot g$ .
- **3.** Monter que  $\sum (n+1)z^n$  est un produit de séries entières de rayon de convergence égal à 1 et que son rayon est égal à 1.

#### II. Séries entières de la variable réelle

Dans toute cette partie, les séries entières sont considérées comme étant de la variable réelle.

#### II.1 Régularité

#### Propriété 4 (Convergence normale sur tout segment).

Soit  $\sum a_n x^n$  une série entière de rayon de convergence  $\rho$ . Pour tout  $(a,b) \in ]-\rho, \rho[^2$  tels que a < b, la série entière  $\sum a_n x^n$  est normalement convergente sur [a,b].



**Exercice 7.** Montrer qu'il n'y a pas nécessairement convergence normale sur  $]-\rho,\rho[$ .

## Théorème 3 (Continuité, Primitive, Dérivée).

Soit  $\sum a_n x^n$  une série entière réelle de rayon de convergence  $\rho > 0$  et de somme f.

- (i). f est continue sur  $]-\rho,\rho[$ .
- (ii). Pour tout segment  $[a,b] \subset ]-\rho, \rho[$ , la fonction f est intégrable sur [a,b].
- (iii). Si F est une primitive de f, alors

$$\forall x \in ]-\rho, \rho[, F(x) - F(0) = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}.$$

(iv). f est de classe  $\mathscr{C}^{\infty}$  sur  $]-\rho,\rho[$  et

$$\forall x \in ]-\rho, \rho[, \forall k \in \mathbb{N}, f^{(k)}(x) = \sum_{n=k}^{+\infty} \frac{n!}{(n-k)!} a_n x^{n-k}.$$

**Exercice 8.** Pour tout  $x \in ]-1,1[$ , déterminer  $\sum_{n=0}^{+\infty} \frac{x^{2n}}{4n^2-1}$ .

#### Propriété 5 (Continuité, Admis).

La série de la variable complexe  $\sum a_n z^n$  est continue sur son disque ouvert de convergence.

#### Propriété 6 (Coefficients & Dérivation).

Soit  $\sum a_n z^n$  une série entière de la variable réelle de rayon de convergence non nul et de somme f. Alors, pour tout entier naturel n,

$$a_n = \frac{f^{(n)}(0)}{n!}.$$

#### Théorème 4 (Unicité).

Soient  $\sum a_n x^n$  et  $\sum b_n x^n$  deux séries entières de rayons de convergence non nuls. S'il existe r>0 tel que

$$\forall x \in ]-r, r[, \sum_{n=0}^{+\infty} a_n x^n = \sum_{n=0}^{+\infty} b_n x^n,$$

alors pour tout entier naturel n,  $a_n = b_n$ .

### II.2 Développement en série entière au voisinage de 0

#### Définition 3 (Fonction développable en série entière).

Soit f une fonction d'un intervalle I de  $\mathbb{K}$  contenant 0 en son intérieur et r > 0. La fonction f est développable en série entière sur l'intervalle ]-r,r[ s'il existe une suite  $(a_n)$  telle que

$$\forall x \in ]-r, r[, f(x) = \sum_{n=0}^{+\infty} a_n x^n.$$

Exercice 9. Déterminer la forme du développement en série entière d'une fonction paire (resp. impaire) développable en série entière.

#### Définition 4 (Série de TAYLOR).

Soit f une fonction de classe  $\mathscr{C}^{\infty}$  de I (intervalle contenant 0) dans  $\mathbb{R}$ . La série de Taylor de f (en 0) est  $\sum \frac{f^{(n)}(0)}{n!} x^n$ .

#### Théorème 5 (Série entière & Série de TAYLOR).

Soit f une fonction développable en série entière sur un intervalle ]-r,r[. Alors, f est de classe  $\mathscr{C}^{\infty}$  sur ]-r,r[, sa série de Taylor a un rayon de convergence supérieur à r et f est égale à la somme de sa série de Taylor.

Réciproquement, pour toute fonction f de classe  $\mathscr{C}^{\infty}$  sur ]-r,r[,f] est développable en série entière sur ]-r,r[ si et seulement si elle est la somme de sa série de Taylor, i.e. si et seulement si

$$\forall x \in ]-r, r[, \lim_{N \to +\infty} \int_0^x \frac{(x-t)^N}{N!} f^{(N+1)}(t) dt = 0.$$

#### Exercice 10.

1. Reprendre l'exemple de la fonction exponentielle.



**2.** La fonction  $x \mapsto \exp(-1/x^2)$  est-elle développable en série entière?

### III. Détermination pratique

#### III.1 Exemples de développements en séries entières

- **1. a)** Soit  $a \in \mathbb{C}^*$ . Déterminer le développement en série entière et le rayon de convergence de  $z \mapsto \frac{1}{z-a}$ .
  - **b)** En déduire le développement en série entière de  $x \mapsto \frac{1}{1-2x\cos(\alpha)+x^2}$ .
- **2.** Déterminer le développement en série entière de  $x \mapsto \ln(1+x+x^2)$ .
- 3. Déterminer le développement en série entière de  $x\mapsto \frac{2x}{(1+x^2)^2}$ .
- **4.** Soit  $f: x \mapsto \frac{\arcsin(x)}{\sqrt{1-x^2}}$ . Déterminer une équation différentielle linéaire d'ordre 1 satisfaite par f, puis en déduire le développement en série entière de f.

#### III.2 Formulaire

Soient  $z \in \mathbb{C}$  et  $\alpha \in \mathbb{R}$ .

$$\begin{array}{lll} \mathrm{e}^{z} & = \sum\limits_{n=0}^{+\infty} \frac{z^{n}}{n!} & , \, \rho = +\infty \\ \sin(x) & = \sum\limits_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{(2n+1)!} & , \, \rho = +\infty \\ \cos(x) & = \sum\limits_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n}}{(2n)!} & , \, \rho = +\infty \\ \sinh(x) & = \sum\limits_{n=0}^{+\infty} \frac{x^{2n+1}}{(2n+1)!} & , \, \rho = +\infty \\ \cosh(x) & = \sum\limits_{n=0}^{+\infty} \frac{x^{2n}}{(2n)!} & , \, \rho = +\infty \\ \frac{1}{1-z} & = \sum\limits_{n=0}^{+\infty} z^{n} & , \, \rho = 1 \\ \ln(1+x) & = \sum\limits_{n=1}^{+\infty} (-1)^{n+1} \frac{x^{n}}{n} & , \, \rho = 1 \\ (1+x)^{\alpha} & = 1 + \sum\limits_{n=1}^{+\infty} \frac{\alpha \cdots (\alpha - n + 1)}{n!} x^{n} & , \, \rho = 1 \\ \arctan(x) & = \sum\limits_{n=0}^{+\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1} & , \, \rho = 1 \\ \arcsin(x) & = \sum\limits_{n=0}^{+\infty} \frac{(2n)!}{2^{2n}(n!)^{2}(2n+1)} x^{2n+1} & , \, \rho = 1. \end{array}$$

**Exercice 11.** Déterminer  $\sum_{n=0}^{+\infty} \frac{(-1)^n 2^{2n-1}}{(2n)!}.$ 

## IV. Fonctions génératrices

#### Notation.

■ Les variables aléatoires sont réelles, discrètes, à valeurs dans N.

#### **Définition 5 (Fonction génératrice).**

Soit X une variable aléatoire discrète à valeurs dans  $\mathbb N.$  La fonction génératrice de X est la série entière

$$G_X : t \mapsto \mathbb{E}[t^X] = \sum_{k=0}^{+\infty} \mathbb{P}(X = k) \cdot t^k.$$

#### Exercice 12.

- 1. Déterminer les fonctions génératrices d'une variable aléatoire de loi...
  - a) ... constante presque sûrement.
- **d)** ... Binomiale.

**b)** ...de Bernoulli.

e) ... de Poisson

**c)** ... uniforme sur [0, n].

- **f)** . . . géométrique
- **2.** Montrer que, si X est bornée, alors  $G_X$  est une fonction polynomiale.

#### Propriété 7 (Rayon de convergence).

Le rayon de convergence d'une fonction génératrice est supérieur ou égal à 1.

#### Propriété 8 (Fonctions génératrices & Loi).

Soient X et Y deux variables aléatoires discrètes à valeurs dans N. On suppose qu'il existe un réel r > 0 tel que pour tout  $t \in [-r, r]$ ,  $G_X(t) = G_Y(t)$ . Alors, X et Y suivent la même loi et

$$\forall n \in \mathbb{N}, \mathbb{P}(X=n) = \frac{1}{n!} G_X^{(n)}(0).$$

#### Théorème 6 (Espérance & Variance).

Soit X une variable aléatoire discrète à valeurs dans  $\mathbb{N}$  de fonction génératrice  $G_X$ .

- (i). X admet une espérance finie si et seulement si  $G_X$  est dérivable en 1. Alors,  $\mathbb{E}[X] = G'_X(1)$ .
- (ii). X admet une variance finie si et seulement si  $G_X$  est deux fois dérivable en 1. Alors,  $\mathbb{E}[X(X-1)] = G_X''(1)$ .

#### Exercice 13.

- **1.** Lorsqu'elle existe, exprimer la variance de X en fonction de  $G'_X(1)$  et  $G''_X(1)$ .
- 2. Reprendre les exemples concernant les lois classiques.

## Propriété 9 (Indépendance & Fonction génératrice).

Soient X, Y deux variables aléatoires indépendantes de fonctions génératrices  $G_X$  et  $G_Y$ . Alors,  $G_{X+Y} = G_X \cdot G_Y$ .



**Exercice 14.** Soient X et Y deux variables aléatoires à valeurs dans [0,2] de loi conjointe

$$\mathbb{P}(X = 0, Y = 0) = \mathbb{P}(X = 1, Y = 1) = \mathbb{P}(X = 2, Y = 2) = \frac{1}{9}$$

$$\mathbb{P}(X = 0, Y = 2) = \mathbb{P}(X = 1, Y = 0) = \mathbb{P}(X = 2, Y = 1) = \frac{2}{9}$$

$$\mathbb{P}(X = 0, Y = 1) = \mathbb{P}(X = 1, Y = 2) = \mathbb{P}(X = 2, Y = 0) = 0$$

Déterminer les lois de X et de Y. En déduire les fonctions génératrices  $G_X$ ,  $G_Y$  et  $G_{X+Y}$ .

#### Théorème 7 (Somme de variables aléatoires indépendantes).

- (i). Soient  $p \in [0,1]$  et  $(X_1, \ldots, X_n)$  des variables aléatoires discrètes indépendantes et de même loi de Bernoulli de paramètre p. Alors,  $\sum_{k=1}^{n} X_k$  suit une loi binomiale de paramètres (n,p).
- (ii). Soient X, Y deux variables aléatoires indépendantes de loi de Poisson de paramètres respectifs  $\lambda$  et  $\mu$ . Alors, X+Y suit une loi de Poisson de paramètre  $\lambda + \mu$ .

#### Exercice 15.

- **1.** Soient X une variable aléatoire de loi  $\mathscr{B}(n,p)$  et Y une variable aléatoire de loi  $\mathscr{B}(m,p)$ . Si X et Y sont indépendantes, déterminer la loi de X+Y.
- **2.** Soient  $n \in \mathbb{N}$ ,  $(X_k)_{k \in [\![1,n]\!]}$  une suite variables aléatoires indépendantes et de mêmes lois et T une variable aléatoire à valeurs dans  $[\![1,n]\!]$  indépendante des  $(X_k)$ .
- a) Déterminer la fonction génératrice de  $S: \omega \mapsto \sum_{k=1}^{T(\omega)} X_k(\omega)$  en fonction des fonctions génératrices de  $X_1$  et de T.

- b) Identité de WALD. Si  $X_1$  et T sont d'espérances finies, montrer que S est d'espérance finie et  $\mathbb{E}[S] = \mathbb{E}[X_1] \mathbb{E}[T]$ .
- c) Déterminer la valeur moyenne obtenue en sommant le résultat de T lancers de dés, lorsque T suit une loi uniforme sur [1, 6].

# 6/3

### Un cas particulier du théorème d'ABEL

**Exercice 16.** Soit  $(a_n) \in \mathbb{R}^{\mathbb{N}}$  et  $R \in \mathbb{R}_+^*$  tels que  $\sum a_n x^n$  soit de rayon de convergence R. Pour tout  $x \in ]-R, R[$ , on pose  $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ . On suppose que  $\sum a_n R^n$  est convergente, on note  $S_n = \sum_{k=0}^n a_k R^k$  et S sa limite.

- **1.** Montrer que f est continue sur ]-R,R[.
- **2.** En considérant une fonction  $\widetilde{f}$ , montrer que l'on peut se ramener au cas où R=1 sans perdre de généralité.

On supposera dans la suite que R=1.

- **3.** Montrer, pour tout  $x \in ]-1,1[$ , la relation  $f(x)=(1-x)\sum_{n=0}^{+\infty}S_nx^n$ .
- **4.** En déduire que f est prolongeable par continuité 1.



### ■ Programme officiel (PSI)

Suites et séries - C - Séries entières (p. 16)

Probabilités - B - Variables aléatoires discrètes - c) Variables aléatoires à valeurs dans N.

#### Mathématiciens

TAYLOR Brook (18 août 1685 à Edmonton-29 déc. 1731 à Londres).

ALEMBERT Jean Le Rond d' (17 nov. 1717 à Paris-29 oct. 1783 à Paris).

CAUCHY Augustin-Louis (21 août 1789 à Paris-23 mai 1857 à Sceaux).

ABEL Niels Henrik (5 août 1802 à Frindöe-6 avr. 1829 à Froland).

Wald Abraham (31 oct. 1902 à Kolozsvàr-13 déc. 1950 à Travancore).