An Upload-Efficient Scheme for Transferring Knowledge From a Server-Side Pre-trained Generator to Clients in Heterogeneous Federated Learning

Jianqing Zhang¹

Yang Liu²

Yang Hua³

Jian Cao¹

Data shortage

• Data shortage persistently challenges AI model training for individuals and companies.

Data shortage

• Additional data and knowledge can mitigate this challenge.

Public datasets

- Additional data need to be task-related.
- It can be challenging to extract such data from **public datasets**.

Generated labeled data

• Transmitting human-readable information, e.g., semantics of labels, about the client's task to the generator raises **privacy concerns**.

Generated unlabeled data

- The generated **unlabeled data** belongs to the **generator's output domain**, which is not naturally related to the client's task.
- Utilizing unlabeled data is **challenging**.

Knowledge from others

- Additional knowledge need to be task-related.
- Leveraging knowledge from others involved in similar tasks.

Our method

- Propose a federated learning (FL) method for sharing task-related (abstract) knowledge.
- Adapt a large pre-trained generator to produce images based on task-related knowledge.
- Transfer common and shared knowledge to each participant via an additional supervised task.

Heterogeneous Federated Learning (HtFL)

• Data heterogeneity, model heterogeneity, communication cost, intellectual property, etc.

Heterogeneous Federated Learning (HtFL)

• Data heterogeneity, model heterogeneity, communication cost, intellectual property, etc.

Heterogeneous Federated Learning (HtFL)

• Transmits **lightweight knowledge carriers** instead of exposing model parameters

Task-related prototypes

• Clients upload **task-related** prototypes **O** to the server.

Prototype aggregation

• The server aggregates client prototypes on the server.

Image generation

• The server maps \bigcirc to **latent vectors** \triangle , and generates images \bigcirc .

Image-vector pairs

• The server sends image-vector pairs to each client for an additional supervised task.

Overview

1 Prototype Calculation (inference)

Server ① Prototype Calculation (inference) ① Prototype Calculation (inference)

② Upload

3 Domain Alignment

3 Domain Alignment

• The architecture of the feature transformer *F* .

3 Domain Alignment

• A domain alignment example.

4 Image Generation (inference)

5 Download

• Original local task: classification.

• Heterogeneous models produce biased prototypes due to their divergent capabilities.

• Replace the original classifier part by an **ETF classifier**[1] to produce unbiased prototypes.

• Transfer knowledge through an additional supervised task.

• The image-vector pairs brings both **common (from the pre-trained generator)** and **shared (from participating clients) knowledge** to the **feature extractor part** of each client model.

• We transfer knowledge to enhance the overall feature extraction capability.

• Thus, the **semantic relationship** between the generated images and local data is **insignificant**.

Support for various pre-trained generators

• In other words, generators pre-trained on any image datasets are applicable.

Support for various pre-trained generators

• In other words, generators pre-trained on any image datasets are applicable.

Support for various pre-trained generators

• In other words, generators pre-trained on any image datasets are applicable.

	$\lambda = 0.05$	$\lambda = 0.1$	$\lambda = 0.5$
	26.82 ± 0.32	27.05 ± 0.26	26.32 ± 0.52
Bench	27.71 ± 0.25	28.36 ± 0.42	27.56 ± 0.50
FFHQ-U	27.28 ± 0.23	27.21 ± 0.35	26.59 ± 0.47
WikiArt	27.37 ± 0.51	27.48 ± 0.33	27.30 ± 0.15

Table 6. The test accuracy (%) on Tiny-ImageNet in the practical setting using HtFE₈ with different pre-trained StyleGAN3s, which are represented by the names of the pre-training datasets.

Ablation study

• Each component plays a vital role, and none can be omitted.

• Experiment on four datasets using 14 kinds of models.

Settings	Pathological Setting			Practical Setting				
Datasets	Cifar10	Cifar100	Flowers 102	Tiny-ImageNet	Cifar10	Cifar100	Flowers 102	Tiny-ImageNet
LG-FedAvg	86.82±0.26	57.01±0.66	58.88 ± 0.28	32.04 ± 0.17	84.55±0.51	40.65 ± 0.07	45.93 ± 0.48	24.06 ± 0.10
FedGen	82.83 ± 0.65	58.26 ± 0.36	59.90 ± 0.15	29.80 ± 1.11	82.55 ± 0.49	38.73 ± 0.14	45.30 ± 0.17	19.60 ± 0.08
FedGH	86.59 ± 0.23	57.19 ± 0.20	59.27 ± 0.33	32.55 ± 0.37	84.43 ± 0.31	40.99 ± 0.51	46.13 ± 0.17	24.01 ± 0.11
FML	87.06 ± 0.24	55.15 ± 0.14	57.79 ± 0.31	31.38 ± 0.15	85.88 ± 0.08	39.86 ± 0.25	46.08 ± 0.53	24.25 ± 0.14
FedKD	87.32 ± 0.31	56.56 ± 0.27	54.82 ± 0.35	32.64 ± 0.36	86.45 ± 0.10	40.56 ± 0.31	48.52 ± 0.28	25.51 ± 0.35
FedDistill	87.24 ± 0.06	56.99 ± 0.27	58.51 ± 0.34	31.49 ± 0.38	86.01 ± 0.31	41.54 ± 0.08	49.13 ± 0.85	24.87 ± 0.31
FedProto	83.39±0.15	53.59 ± 0.29	55.13 ± 0.17	29.28 ± 0.36	82.07±1.64	36.34 ± 0.28	41.21 ± 0.22	19.01 ± 0.10
FedKTL	88.43±0.13	62.01±0.28	64.72±0.62	34.74±0.17	87.63±0.07	46.94±0.23	53.16±0.08	28.17±0.18

Table 1. The test accuracy (%) on four datasets in the pathological and practical settings using HtFE₈.

• Experiment on four datasets using 14 kinds of models including CNNs and ViTs.

Settings	Different Degrees of Model Heterogeneity				Large Client Amount ($\rho = 0.5$)			
	HtFE ₂	$HtFE_3$	$HtFE_4$	$HtFE_9$	HtM_{10}	50 Clients	100 Clients	200 Clients
LG-FedAvg	46.61±0.24	45.56 ± 0.37	43.91 ± 0.16	42.04 ± 0.26		37.81±0.12	35.14 ± 0.47	27.93 ± 0.04
FedGen	43.92 ± 0.11	43.65 ± 0.43	40.47 ± 1.09	40.28 ± 0.54	1 – 1	37.95 ± 0.25	34.52 ± 0.31	28.01 ± 0.24
FedGH	46.70 ± 0.35	45.24 ± 0.23	43.29 ± 0.17	43.02 ± 0.86		37.30 ± 0.44	34.32 ± 0.16	29.27 ± 0.39
FML	45.94 ± 0.16	43.05 ± 0.06	43.00 ± 0.08	42.41 ± 0.28	39.87 ± 0.09	38.47 ± 0.14	36.09 ± 0.28	30.55 ± 0.52
FedKD	46.33 ± 0.24	43.16 ± 0.49	43.21 ± 0.37	42.15 ± 0.36	40.36 ± 0.12	38.25 ± 0.41	35.62 ± 0.55	31.82 ± 0.50
FedDistill	46.88 ± 0.13	43.53 ± 0.21	43.56 ± 0.14	42.09 ± 0.20	40.95 ± 0.04	38.51 ± 0.36	36.06 ± 0.24	31.26 ± 0.13
FedProto	43.97±0.18	38.14 ± 0.64	34.67 ± 0.55	32.74 ± 0.82	36.06 ± 0.10	33.03 ± 0.42	28.95 ± 0.51	24.28 ± 0.46
FedKTL	48.06±0.19	49.83±0.44	47.06±0.21	50.33±0.35	45.84±0.15	43.16±0.82	39.73±0.87	34.24±0.45

Table 2. The test accuracy (%) on Cifar100 in the practical setting with different degrees of model heterogeneity or large client amounts.

• Our FedKTL outperforms counterparts by up to **7.31%**.

Settings	Different Degrees of Model Heterogeneity					Large Client Amount ($\rho = 0.5$)		
	HtFE ₂	HtFE ₃	HtFE ₄	HtFE ₉	HtM_{10}	50 Clients	100 Clients	200 Clients
LG-FedAvg	46.61±0.24	45.56 ± 0.37	43.91±0.16	42.04 ± 0.26	_	37.81±0.12	35.14 ± 0.47	27.93 ± 0.04
FedGen	43.92 ± 0.11	43.65 ± 0.43	40.47 ± 1.09	40.28 ± 0.54		37.95 ± 0.25	34.52 ± 0.31	28.01 ± 0.24
FedGH	46.70 ± 0.35	45.24 ± 0.23	43.29 ± 0.17	43.02 ± 0.86		37.30 ± 0.44	34.32 ± 0.16	29.27 ± 0.39
FML	45.94 ± 0.16	43.05 ± 0.06	43.00 ± 0.08	42.41 ± 0.28	39.87 ± 0.09	38.47 ± 0.14	36.09 ± 0.28	30.55 ± 0.52
FedKD	46.33 ± 0.24	43.16 ± 0.49	43.21 ± 0.37	42.15 ± 0.36	40.36 ± 0.12	38.25 ± 0.41	35.62 ± 0.55	31.82 ± 0.50
FedDistill	46.88 ± 0.13	43.53 ± 0.21	43.56 ± 0.14	42.09 ± 0.20	40.95 ± 0.04	38.51 ± 0.36	36.06 ± 0.24	31.26 ± 0.13
FedProto	43.97±0.18	38.14 ± 0.64	34.67 ± 0.55	32.74 ± 0.82	36.06 ± 0.10	33.03 ± 0.42	28.95 ± 0.51	24.28 ± 0.46
FedKTL	48.06±0.19	49.83±0.44	47.06±0.21	50.33±0.35	45.84±0.15	43.16±0.82	39.73±0.87	34.24±0.45

Table 2. The test accuracy (%) on Cifar100 in the practical setting with different degrees of model heterogeneity or large client amounts.

• Our FedKTL is **upload-efficient** (lowest upload communication cost)

	Upload	Download	Accuracy
LG-FedAvg	1.03M	1.03M	40.65 ± 0.07
FedGen	1.03M	7.66M	38.73 ± 0.14
FedGH	0.46M	1.03M	40.99 ± 0.51
FML	18.50M	18.50M	39.86 ± 0.25
FedKD	16.52M	16.52M	40.56 ± 0.31
FedDistill	0.09M	0.20M	41.54 ± 0.08
FedProto	0.46M	1.02M	36.34 ± 0.28
FedKTL	0.09M	7.17M	46.94±0.23

Table 5. The upload and download overhead per iteration using HtFE₈ on Cifar100 with 20 clients in the practical setting. "M" is short for million. The accuracy column is referred from Tab. 1.

Using Stable Diffusion

• Several concepts in various generators, such as **StyleGAN** and **Stable Diffusion**, share similarities when generating contents, thus **they are all applicable** in our FedKTL.

Generator StyleGAN-XL		Stable Diffusion	
Accuracy	87.63	87.71	

Table 8. The test accuracy (%) of our FedKTL with different pretrained generators on Cifar10 in the practical setting using HtFE₈.

The cloud-edge scenario

- Our knowledge transfer scheme (KTL) is also applicable in scenarios with only one edge client.
 - No collaboration
 - Few-shot learning

Settings	100-way 23-shot	100-way 9-shot	100-way 2-shot
Client Data Our KTL	$12.53 \pm 0.39 \\ 13.02 \pm 0.43$	7.55 ± 0.41 8.88 ± 0.62	$4.44\pm1.66 \\ 8.76\pm2.25$
Improvement Improvement Ratio	0.49 3.91%	1.33 17.61%	4.32 97.29%

Table 9. The test accuracy (%) with Cifar100's subsets on a single client using a small model *i.e.*, the 4-layer CNN.

Feel free to contact me!

Home page: https://github.com/TsingZ0

Paper with code: https://github.com/TsingZ0/FedKTL

Thanks!