学号	• *			挂名:		/	得分。	:			
1. j	清画出 R 型	指令、口	型指令和	J型指令的	的字段划分,	请注明字	2段名、	所占位	立数,按量	最高	
	为在左,最何	氐位在右	边的布局	号绘制。		1: [OP	rs	1 rt	constant	araddr
R: I	op Irs	rt	Ird	Shamt	(tunct)		6	2	2	16	
	6 5	3	I	2	6	Т. Г	OD		addre	33	
						J . L	-1,-		. /		

2. 对于一下 C 语句:a=b+c; 其中 a/b/c 为整形变量,保存在一块连续内存中,t0 保存了 上述内存的起点地址。请写出相应的 MIPS 汇编代码。

0 ln \$50, 4(\$to)

3) add \$53,\$50,\$51.

2 h \$51, 8(\$t1) @ sw \$53. P(\$t0)

3. 已知寄存编号方案和指令编码(见所附表格)。请写出 lw \$t0,16(\$t1)指令的机器码。

4. 当执行位于地址 0x1000 的指令 bne \$t0,\$t1, 100 时, t0=10,t1=11, 请问:下一条指令 将从什么地址获取?

 $\mathcal{O}_{\times}(000 + \psi + ((00 \times \psi)_{(10)} = \mathcal{O}_{\times}(000 + \mathcal{O}_{\times}190 = \mathcal{O}_{\times}119\psi).$

5. 请补充完善下面的 8bit x 8bit 乘法器结构, 1) 完成 ALU 的输入连线; 2) 在带问号的方 框中写上寄存器宽度;3) 如果有部件需要移位功能,请在部件上方画出移位方向

6. 请补充完成下面的浮点加法器的结构图 1) 补充必要的数据连线;2) 请在图中两个带 问号的方框中填写上其功能。

7.

- 9. 将以下代码翻译成 C 代码,假定 t1 存放 c 语言整数变量 i,s2 存放整数变量 result,s0 存放整数数组 MemArray 起始地址。

addi \$t1, \$0, \$0
LOOP:
$$lw$$
 \$s1, $0($s0)$
add \$s2, \$s2, \$s1
addi \$s0, \$s0, 4

addi \$t1, \$t1, 1
slti \$t2, \$t1. 100
bne \$t2, \$zero LOOP

for ($i=0$; $i < loo$; $i+t$)

result $t=0$ mem for any $[i]$;

10. 对于第7题给出的在单周期数据通路,请完成控制部件的真值表:

Input or output	Signal name	R-format	1พ	SW	beq
Inputs	Op5	0	1	1	0
	Op4	0	Ω	0	V
	ОрЗ	0	Ö	1	0
	Op2	D	0	0	1
	Op1	Ö	i	1	0
	Op0	0	1	1	0
Outputs	RegDst		0	×	\sim
	ALUSrc	Ò	1	1	D
	MemtoReg	D	1	×	×
	RegWrite	1	1	0	D
	MemRead	0	1	0	0
	MemWrite	0	0	1	0
	Branch	0	0	0	1
	ALUOp1	1	0	0	0
	ALUOp0	0	0	0	1

11. 有三种不同处理器 P1/P2/P3 执行同样的指令集, P1 的时钟频率 3Ghz, CPI=1.5; P2 为2.5Ghz,CPI=1.0; P3 为4Ghz, CPI=2.2。1)如果按每秒执行的指令数为标准,那个处理器性能最高?2)如果每个处理器都执行10秒的程序,它们的执行的时钟周期数和指令数是多少?3)我们试图将时间减少30%,但这会引起CPI增加20%。问:时钟频率应该多少才能达到减少30%的目的?

Name	Register number	Usage	Preserved on call?
\$zero	0	The constant value 0	n.a.
\$v0-\$v1	2-3	Values for results and expression evaluation	no
\$a0-\$a3	4-7	Arguments	no
\$t0-\$t7	8-15	Temporaries	no
\$s0-\$s7	16-23	Saved	yes
\$t8-\$t9	24-25	More temporaries	no
\$ gp	28	Global pointer	yes
\$sp	29	Stack pointer	yes
\$fp	30	Frame pointer	yes
\$ra	31	Return address	yes

(1)
$$\frac{3}{1.5}$$
 $\frac{3}{1.5}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$ $\frac{3}{1.5}$

四 树种园期散:

(3)
$$CPVMiO = 75 & x & CPI/MPSSS$$

$$0 C = \frac{1 \times CPI}{F} \Rightarrow 1 = \frac{C \times F}{CPI}$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0.7C = \frac{1 \times (.2CPI)}{F'} \Rightarrow 1 = \frac{0.7C \times F'}{(.2CPI)}$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

$$0 = 0 : F' = \frac{1}{7}F \approx 171.4\%F$$

