Generalized Additive Models

Dealing with non-linearity

Not everything is linear

Linearity in the parameters : $Y = \alpha + \beta_1 Z$

$$Y = lpha + eta_1 X + eta_2 X^2$$
 $Y = lpha + eta_1 (XW)$ $Y = lpha + eta_1 \log(X)$ $Y = lpha + eta_1 \exp(X)$

However: $Y=lpha+eta_1X_1e^{eta_2X_2+eta_3X_{3i}}$ is not linear

Not everything is linear

Inappropriate (Generalized) Linear Regression

What to do with non-linearity?

Include interactions

Include quadratic effect : $\alpha + \beta_1 X + \beta_2 X^2$

More explanatory variables

Transform to linearise (avoid)

Use a smoother

Smoothing methods

Beyond linearity

Polynomial regression

Step function, segmented / piecewise regression

Splines / smoothing

Generalized Additive Model

Polynomial regression

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

$$\eta = \mu = \beta_0 + \beta_1 x + \beta_2 x^2$$

Still linear model

Imposes a global structure

In R:

$$m1 \leftarrow glm(y \sim poly(x, 2), data = dd)$$

Non-linear regression

Difficult to specify

Reason for cubic polynomial?

In R:

```
stats::nls()
nlme::nlme()
```


1970's US census with polynomial: predicted a population crash in 2015!

Segmented / piecewise regression

Break range in bins

Fit LM in each bin

Splines / Smoothing

Split *X* in regions (bins)

Fit low-degree polynomial on each region of X

Compute fit at target x_0 with nearby observations

Possibly: smoothness penalty

Stable estimates, more flexible

Splines: LOESS smoothing

Target value x

Window around target

Value of y at target x?

Mean / median

Splines : LOESS smoothing

Value of *y* at target *x*?

(Weighted) linear regression

Predict y from regression

Repeat for sequence of x

In R:

```
loess(dist ~ speed,
  data = cars,
  span = 0.75, # degree of smoothing
  degree = 1 # linear / polynomial
  )
```


Splines: LOESS smoothing

Moving a window along X

What happens to the edges?

Not much to do...

Be careful with interpretation

What window size?

Trial and error: variance/bias trade-off

Residuals graph: pattern \rightarrow increase width

Compare models (e.g. with AIC)

Generalized Additive Models

Generalized Additive Models

Extension of GLMs

Allow non-linear function for each predictor

Maintain additivity

For quantitative and qualitative variables

Incorporating non-linear predictors

$$\mathsf{GLM}: \quad g(E(Y)) = eta_0 + eta_i x_i + \dots$$

Replace $\beta_i x_i$ with non-parametric function :

 $f_i(x_i)$: non-linear *smooth function* of covariates

LOESS, LOWESS, cubic splines etc.

Estimate each f_i and add them up

$$\mathsf{GAM}:\ g(E(Y))=\beta_0+f_1(x_{i1})+\ldots+f_p(x_{ip})$$

GAMs in R

```
Function gam::gam()
   Local regression and smoothing splines
Function mgcv::gam()
   Penalized regression splines / smoothers
   More technical (derivatives) but more flexible
   Cross-validation (GCV): automatic selection of smoothing
   parameters
```

Large collection of smoothers

Thin plate smoother

Generally quite good (not for large data sets)

Default in R

Cyclic cubic regression spline

Far left = far right *e.g.* X is *month*

Shrinkage smoothers

Smoothing "shrinks" towards $0 \rightarrow \text{variable selection}$

In practice, small differences...

GAM Smoothers: Cubic Spline

$$Y \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mu = lpha + f(X_i)$$

Divide into intervals

Cubic polynomial on each interval

Fitted values → smoothing curve

Conditions for smooth connections

More on splines

More knots → less smooth

Find optimal # of knots visually or AIC

General recommendation:

< 50 observations : 3 knots

> 100 observations : 5 knots

GAM smoothers : P-Spline

Approximate f(z) with polynomial spline and many knots

Introduce *penalty* on wiggliness

Penalized likelihood

Avoids overfitting

Don't accept cross-validation blindly...

GAMs with multiple predictors

Different smoothers for different variables

$$g(\mu) = lpha + f_1(X_i) + f_2(Z_i)$$

Hybrid models

$$g(\mu) = lpha + f_1(X_i) + eta Z_i + factor(W_i)$$

Random effects etc.

Some problems (may) remain

Violation of independence

Heterogeneity of variance

Collinearity (concurvity)

Nested data

Advantages of GAMs

Non-linear...

Very flexible

Additive:

Effect of X_i while holding other predictors constant

Interpretable

Extension with random effects etc.

Disadvantages of GAMs

Beware of over-fitting

Is added complexity (generality) necessary?

May be a bit "tricky"...

Going (a bit) further

Generalized Additive Models - Michael Clark