Статистическое исследование случайного поиска

Кушербаева Виктория Тимуровна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., проф. Сушков Ю.А. Рецензент: Прудникова Ю.А.

Санкт-Петербург 2007г.

Глобальная оптимизация

"В мире не происходит ничего, в чем бы не был виден смысл какого-нибудь максимума или минимума."

Леонард Эйлер.

Цель работы

Обобщенная постановка:

создание диалоговой системы принятия решения по выбору параметров глобального поиска и решения задачи оптимизации, как на основе статистического исследования, так и на основе эмпирических данных.

Цель данной работы:

статистическое исследование алгоритма глобальной оптимизации и его модернизация на базе логистической кривой:

- исследование результатов в зависимости от параметров алгоритма и параметров логистической кривой;
- с помощью многокритериальной оптимизации выявление наилучшего параметра (множества наилучших параметров), универсального для всех классов функций;
- сравнение с показательным законом.

Постановка задачи оптимизации

Пространство оптимизации: $X = [0,1]^n$ – компактное метрическое пространство.

Целевая функция : Φ – ограниченная снизу функция, заданная на X, непрерывная в окрестности точки x^* .

Требуется определить такой вектор $x^* = (x_1^*, x_2^*, ..., x_n^*)$, где $0 < x_i < 1, i \in 1:n$, при котором целевая функция $\Phi(x^*)$ принимает минимальное значение:

$$\Phi(x) \to \min_{x \in X},$$

где
$$x^* = (x_1^*, x_2^*, ..., x_n^*) \in [0, 1]^n$$
.

Адаптивный случайный поиск

Параметры:

 n_{step} — число шагов;

 $\epsilon=q_{eps}$ – точность, с которой ищется минимум;

 p_{min} — значение, до которого уменьшается вероятность в процессе поиска;

 q_{min} — определяет n-мерный объем $s_{min}\colon$ пока $s_j>s_{min}$, плотность h_j не меняется.

Адаптивный случайный поиск

Параметры:

 n_{step} — число шагов;

 $\epsilon=q_{eps}$ – точность, с которой ищется минимум;

 p_{min} — значение, до которого уменьшается вероятность в процессе поиска;

 q_{min} — определяет n-мерный объем $s_{min}\colon$ пока $s_j>s_{min}$, плотность h_j не меняется.

Адаптивный случайный поиск

Параметры:

 n_{step} — число шагов;

 $\epsilon=q_{eps}$ – точность, с которой ищется минимум;

 p_{min} — значение, до которого уменьшается вероятность в процессе поиска;

 q_{min} — определяет n-мерный объем s_{min} : пока $s_j>s_{min}$, плотность h_j не меняется.

Логистическая кривая и ее параметры

Логистическое уравнение:

$$\frac{dv}{dt} = \mu \left(1 - \frac{v}{V_{\infty}} \right) v,$$

 μ — мальтузианский параметр (скорость изменения знаний о задаче). В данном исследовании логистическая кривая имеет вид:

$$q = \frac{1}{2} \left(1 - \frac{1}{1 + (\frac{1}{V_0} - 1)e^{-\frac{\mu}{n_{step}}K_{step}}} \right).$$

3ависимость параметра V_0 логистической кривой от q_{eps} :

Схема решения

Таблица вероятностей для функций внутри каждого класса:

	f_1^i	 f_n^i
<i>T</i> .	p_1^1	p_1^n
F_i :		 :
	p_m^1	p_m^n

i = 1:3

унимодальные

многоэкстремальные

овражные

Задача многокритериальной оптимизации для нескольких функций одного класса. Критерии – функции.

Условие оптимальности для нахождения множества Парето:

$$\Phi(f(x), \lambda) = \sum_{i \in 1:l} \lambda_i f_i(x) \to \min_{\mu \in \mathcal{M}},$$

где
$$\lambda_i \geq 0, \; \sum_{i=1}^l \lambda_i = 1$$

МПР (табличный метод)

F_1	F_2	F_3
μ_{j_1}	μ_{k_1}	μ_{l_1}
μ_{j_m}	μ_{k_m}	μ_{l_m}

$$\{\mu_i\}_{i=1}^k = \{4, 5\}.$$

Задача многокритериальной оптимизации ДЛЯ нескольких функций одного класса. Критерии – функции.

Условие оптимальности для нахождения множества Парето:

$$\Phi(f(x), \lambda) = \sum_{i \in 1:l} \lambda_i f_i(x) \to \min_{\mu \in \mathcal{M}}, \left| \Longrightarrow \right|$$

где
$$\lambda_i \geq 0, \; \sum_{i=1}^l \lambda_i = 1$$

Таблица упорядочений параметров для классов функций-критериев:

F_1	F_2	F_3
μ_{j_1}	μ_{k_1}	μ_{l_1}
:	:	
μ_{j_m}	μ_{k_m}	μ_{l_m}

$$\{\mu_i\}_{i=1}^k = \{4, 5\}.$$

Задача многокритериальной оптимизации для нескольких функций одного класса. Критерии – функции.

Условие оптимальности для нахождения множества Парето:

$$\Phi(f(x), \lambda) = \sum_{i \in 1:l} \lambda_i f_i(x) \to \min_{\mu \in \mathcal{M}}, \left| \Longrightarrow \right|$$

где
$$\lambda_i \geq 0, \; \sum_{i=1}^l \lambda_i = 1$$

Таблица упорядочений параметров для классов функций-критериев:

F_1	F_2	F_3
μ_{j_1}	μ_{k_1}	μ_{l_1}
:	:	:
μ_{j_m}	μ_{k_m}	μ_{l_m}

$$\{\mu_i\}_{i=1}^k = \{4, 5\}.$$

Задача многокритериальной оптимизации для нескольких функций одного класса. Критерии – функции.

Условие оптимальности для нахождения множества Парето:

$$\Phi(f(x), \lambda) = \sum_{i \in 1:l} \lambda_i f_i(x) \to \min_{\mu \in \mathcal{M}}, \left| \Longrightarrow \right|$$

где
$$\lambda_i \geq 0, \; \sum_{i=1}^l \lambda_i = 1$$

МПР (табличный метод)

Таблица упорядочений параметров для классов функций-критериев:

F_1	F_2	F_3
μ_{j_1}	μ_{k_1}	μ_{l_1}
:	:	
μ_{j_m}	μ_{k_m}	μ_{l_m}

$$\{\mu_i\}_{i=1}^k = \{4, 5\}.$$

Результаты и выводы

Графики вероятности в зависимости от числа шагов для оптимального μ и показательного закона:

унимодальная

многоэкстремальная

овражная

Параметр $\mu(n_{step})$

Параметр μ в зависимости от n_{step} на примере некоторых функций:

Параметры p_{min}, q_{min}

Некоторые результаты исследования вероятности сходимости поиска в зависимости от p_{min}, q_{min} :

На данном этапе исследования предлагается брать $p_{min} \simeq 0.95,$ $q_{min} \simeq 0.4.$

Результаты и перспективы

Проведено статистическое исследование алгоритма глобальной оптимизации, его модернизация на базе логистической кривой:

- выявлены закономерности в результатах в зависимости от параметров алгоритма и параметров логистической кривой;
- сравнение с показательным законом;
- выявлены наилучшие параметры, универсальные для всех классов функций;
- разработаны рекомендации по использованию параметров для различных классов функций.

В дальнейшем планируется создать диалоговую систему по выбору параметров глобального случайного поиска и решения задачи оптимизации.