Summary of distributions

Discrete distributions

1. Bernoulli distribution: Ber(p), where $0 \le p \le 1$.

$$P(X = 1) = p$$
 and $P(X = 0) = 1 - p$.
 $E[X] = p$ and $Var(X) = p(1 - p)$.

2. Binomial distribution: Bin(n, p), where $0 \le p \le 1$.

$$P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \text{ for } k = 0, 1, \dots, n.$$

$$E[X] = np \text{ and } Var(X) = np(1-p).$$

3. Geometric distribution: Geo(p), where 0 .

$$P(X = k) = p(1 - p)^{k-1}$$
 for $k = 1, 2, ...$
 $E[X] = 1/p$ and $Var(X) = (1 - p)/p^2$.

4. **Poisson distribution**: $Pois(\mu)$, where $\mu > 0$.

$$P(X = k) = \frac{\mu^k}{k!} e^{-\mu} \text{ for } k = 0, 1, \dots$$

 $E[X] = \mu \text{ and } Var(X) = \mu.$

Continuous distributions

1. Cauchy distribution: $Cau(\alpha, \beta)$, where $-\infty < \alpha < \infty$ and $\beta > 0$.

$$\begin{split} f(x) &= \frac{\beta}{\pi \left(\beta^2 + (x - \alpha)^2\right)} \quad \text{for } -\infty < x < \infty. \\ F(x) &= \frac{1}{2} + \frac{1}{\pi} \arctan\left(\frac{x - \alpha}{\beta}\right) \quad \text{for } -\infty < x < \infty. \\ \text{E}[X] \text{ and } \text{Var}(X) \text{ do not exist.} \end{split}$$

2. Exponential distribution: $Exp(\lambda)$, where $\lambda > 0$.

$$f(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$.

$$F(x) = 1 - e^{-\lambda x}$$
 for $x \ge 0$.

$$E[X] = 1/\lambda$$
 and $Var(X) = 1/\lambda^2$.

3. Gamma distribution: $Gam(\alpha, \lambda)$, where $\alpha > 0$ and $\lambda > 0$.

$$f(x) = \frac{\lambda (\lambda x)^{\alpha - 1} e^{-\lambda x}}{\Gamma(\alpha)}$$
 for $x \ge 0$.

$$F(x) = \int_0^x \frac{\lambda (\lambda t)^{\alpha - 1} e^{-\lambda t}}{\Gamma(\alpha)} dt \quad \text{for } x \ge 0.$$

$$E[X] = \alpha/\lambda$$
 and $Var(X) = \alpha/\lambda^2$.

4. Normal distribution: $N(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma > 0$.

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \quad \text{for } -\infty < x < \infty.$$

$$F(x) = \int_{-\pi}^{x} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{t-\mu}{\sigma}\right)^{2}} dt \quad \text{for } -\infty < x < \infty.$$

$$E[X] = \mu$$
 and $Var(X) = \sigma^2$.

5. Pareto distribution: $Par(\alpha)$, where $\alpha > 0$.

$$f(x) = \frac{\alpha}{x^{\alpha+1}}$$
 for $x \ge 1$.

$$F(x) = 1 - x^{-\alpha}$$
 for $x > 1$.

$$E[X] = \alpha/(\alpha - 1)$$
 for $\alpha > 1$ and ∞ for $0 < \alpha \le 1$.

$$\operatorname{Var}(X) = \alpha/((\alpha-1)^2(\alpha-2))$$
 for $\alpha > 2$ and ∞ for $0 < \alpha \le 1$.

6. Uniform distribution: U(a, b), where a < b.

$$f(x) = \frac{1}{b-a}$$
 for $a \le x \le b$.

$$F(x) = \frac{x-a}{b-a}$$
 for $a \le x \le b$.

$$E[X] = (a+b)/2$$
 and $Var(X) = (b-a)^2/12$.

Tables of the normal and t-distributions

Table B.1. Right tail probabilities $1 - \Phi(a) = P(Z \ge a)$ for an N(0,1) distributed random variable Z.

a	0	1	2	3	4	5	6	7	8	9
0.0	5000	4960	4920	4880	4840	4801	4761	4721	4681	4641
0.1	4602	4562	4522	4483	4443	4404	4364	4325	4286	4247
0.2	4207	4168	4129	4090	4052	4013	3974	3936	3897	3859
0.3	3821	3783	3745	3707	3669	3632	3594	3557	3520	3483
0.4	3446	3409	3372	3336	3300	3264	3228	3192	3156	3121
0.5	3085	3050	3015	2981	2946	2912	2877	2843	2810	2776
0.6	2743	2709	2676	2643	2611	2578	2546	2514	2483	2451
0.7	2420	2389	2358	2327	2296	2266	2236	2206	2177	2148
0.8	2119	2090	2061	2033	2005	1977	1949	1922	1894	1867
0.9	1841	1814	1788	1762	1736	1711	1685	1660	1635	1611
1.0	1587	1562	1539	1515	1492	1469	1446	1423	1401	1379
1.1	1357	1335	1314	1292	1271	1251	1230	1210	1190	1170
1.2	1151	1131	1112	1093	1075	1056	1038	1020	1003	0985
1.3	0968	0951	0934	0918	0901	0885	0869	0853	0838	0823
1.4	0808	0793	0778	0764	0749	0735	0721	0708	0694	0681
1.5	0668	0655	0643	0630	0618	0606	0594	0582	0571	0559
1.6	0548	0537	0526	0516	0505	0495	0485	0475	0465	0455
1.7	0446	0436	0427	0418	0409	0401	0392	0384	0375	0367
1.8	0359	0351	0344	0336	0329	0322	0314	0307	0301	0294
1.9	0287	0281	0274	0268	0262	0256	0250	0244	0239	0233
2.0	0228	0222	0217	0212	0207	0202	0197	0192	0188	0183
2.1	0179	0174	0170	0166	0162	0158	0154	0150	0146	0143
2.2	0139	0136	0132	0129	0125	0122	0119	0116	0113	0110
2.3	0107	0104	0102	0099	0096	0094	0091	0089	0087	0084
2.4	0082	0080	0078	0075	0073	0071	0069	0068	0066	0064
2.5	0062	0060	0059	0057	0055	0054	0052	0051	0049	0048
2.6	0047	0045	0044	0043	0041	0040	0039	0038	0037	0036
2.7	0035	0034	0033	0032	0031	0030	0029	0028	0027	0026
2.8	0026	0025	0024	0023	0023	0022	0021	0021	0020	0019
2.9	0019	0018	0018	0017	0016	0016	0015	0015	0014	0014
3.0	0013	0013	0013	0012	0012	0011	0011	0011	0010	0010
3.1	0010	0009	0009	0009	0008	0008	0008	0008	0007	0007
3.2	0007	0007	0006	0006	0006	0006	0006	0005	0005	0005
3.3	0005	0005	0005	0004	0004	0004	0004	0004	0004	0003
3.4	0003	0003	0003	0003	0003	0003	0003	0003	0003	0002

Table B.2. Right critical values $t_{m,p}$ of the t-distribution with m degrees of freedom corresponding to right tail probability p: $P(T_m \ge t_{m,p}) = p$. The last row in the table contains right critical values of the N(0,1) distribution: $t_{\infty,p} = z_p$.

	Right tail probability p							
m	0.1	0.05	0.025	0.01	0.005	0.0025	0.001	0.0005
1	3.078	6.314	12.706	31.821	63.657	127.321	318.309	636.619
2	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.599
3	1.638	2.353	3.182	4.541	5.841	7.453	10.215	12.924
4	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.286	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.252	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.222	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.197	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.174	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.153	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.135	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.119	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.104	3.485	3.768
24	1.318	1.711	2.064	2.492	2.797	3.091	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.078	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.067	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.057	3.421	3.690
28	1.313	1.701	2.048	2.467	2.763	3.047	3.408	3.674
29	1.311	1.699	2.045	2.462	2.756	3.038	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.030	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	2.971	3.307	3.551
50	1.299	1.676	2.009	2.403	2.678	2.937	3.261	3.496
∞	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Answers to selected exercises

3.3 b $P(S_2) = 1/4$.

3.4
$$P(B \mid T) = 9.1 \cdot 10^{-5}$$
 and $P(B \mid T^c) = 4.3 \cdot 10^{-6}$.

3.7 a $P(A \cup B) = 1/2$.

3.8 b $P(B) = 1/3$.

3.8 a $P(W) = 0.117$.

3.8 b $P(F \mid W) = 0.846$.

3.9 $P(B \mid A) = 7/15$.

3.14 a $P(W \mid R) = 0$ and $P(W \mid R^c) = 1$.

3.14 b $P(W) = 2/3$.

3.16 a $P(D \mid T) = 0.165$.

3.16 b 0.795 .

4.1 a a 0 1 2

\[\frac{p_Z(a)}{25/36} \] \frac{10/36}{1/36} \] \[\frac{1}{36} \] \]

2 has a $Bin(2, 1/6)$ distribution.

4.1 b $\{M = 2, Z = 0\} = \{(2, 1), (1, 2), (2, 2)\}, \{S = 5, Z = 1\} = \emptyset, \text{ and } \{S = 8, Z = 1\} = \{(6, 2), (2, 6)\}.$

P $(M = 2, Z = 0) = 1/12$, P $(S = 5, Z = 1) = 0$, and P $(S = 8, Z = 1) = 1/18$.

4.1 c The events are dependent.

4.3 \[\frac{a}{p(a)} \] \frac{1/2}{3/4} \[\frac{a}{p(a)} \] \frac{1/3}{1/6} \] \[\frac{1/2}{1/2} \]

 $p_{\bar{X}}(8/3) = 3/27, p_{\bar{X}}(5/3) = p_{\bar{X}}(7/3) =$

6/27, and $p_{\bar{X}}(2) = 7/27$.

4.6 b 6/27.

4.7 a *Bin* (1000, 0.001).

4.7 b P(X = 0) = 0.3677, P(X = 1) = 0.3681, and P(X > 2) = 0.0802.

4.8 a *Bin* (6, 0.8178).

4.8 b 0.9999634.

4.10 a Determine $P(R_i = 0)$ first.

4.10 b No!

4.10 c See the birthday problem in Section 3.2.

4.12 No!

4.13 a Geo(1/N).

4.13 b Let D_i be the event that the marked bolt was drawn (for the first time) in the *i*th draw, and use conditional probabilities in

$$P(Y = k) = P(D_1^c \cap \cdots \cap D_{k-1}^c \cap D_k).$$

4.13 c Count the number of ways the event $\{Z = k\}$ can occur, and divide this by the number of ways $\binom{N}{r}$ we can select r objects from N objects.

5.2 $P(1/2 < X \le 3/4) = 5/16$.

5.4 a P(X < 41/2) = 1/4.

5.4 b P(X = 5)=1/2.

5.4 c X is neither discrete nor continuous!

5.5 a c = 1.

5.5 b F(x) = 0 for $x \le -3$;

 $F(x) = (x+3)^2/2 \text{ for } -3 \le x \le -2;$

 $F(x) = 1/2 \text{ for } -2 \le x \le 2;$

 $F(x) = 1 - (3 - x)^2/2$ for $2 \le x \le 3$; F(x) = 1 for x > 3.

E 9. a(a) **1**/(**9 mai**)

5.8 a $g(y) = 1/(2\sqrt{ry}).$

5.8 b Yes.

5.8 c Consider F(r/10).

5.9 a 1/2 and $\{(x,y): 2 \le x \le 3, 1 \le y \le 3/2\}$.

5.9 b F(x) = 0 for x < 0;

 $F(x) = 2x \text{ for } 0 \le x \le 1/2;$

F(x) = 1 for x > 1/2.

5.9 c f(x) = 2 for $0 \le x \le 1/2$; f(x) = 0 elsewhere.

5.12 2.

5.13 a Change variables from x to -x.

5.13 b $P(Z \le -2) = 0.0228$.

6.2 a $1 + 2\sqrt{0.378 \cdots} = 2.2300795.$

6.2 b Smaller.

6.2 c 0.3782739.

6.5 Show, for $a \ge 0$, that $X \le a$ is equivalent with $U \ge e^{-a}$.

6.6 $U = e^{-2X}$.

6.7 $Z = \sqrt{-\ln(1-U)/5}$, or

 $Z = \sqrt{-\ln U/5}$.

6.9 a 6/8.

6.9 b Geo (6/8).

6.10 a Define $B_i = 1$ if $U_i \leq p$ and $B_i = 0$ if $U_i > p$, and N as the position in the sequence of B_i where the first 1 occurs.

6.10 b $P(Z > n) = (1 - p)^n$, for n = 0, 1, ...; Z has a Geo(p) distribution.

7.1 a Outcomes: 1, 2, 3, 4, 5, and 6. Each has probability 1/6.

7.1 b E[T] = 7/2, Var(T) = 35/12.

7.2 a E[X] = 1/5.

7.2 b y = 0 1P(Y = y) 2/5 3/5

and E[Y] = 3/5.

7.2 c $E[X^2] = 3/5$.

7.2 d Var(X) = 14/25.

7.5 E[X] = p and Var(X) = p(1-p).

7.6 195/76.

7.8 E[X] = 1/3.

7.10 a $E[X] = 1/\lambda$ and $E[X^2] = 2/\lambda^2$.

7.10 b $Var(X) = 1/\lambda^2$.

7.11 a 2.

7.11 b The expectation is infinite!

7.11 c $E[X] = \int_1^\infty x \cdot \alpha x^{-\alpha - 1} dx$.

7.15 a Start with

 $Var(rX) = E[(rX - E[rX])^2].$

7.15 b Start with Var(X + s) =

 $E\left[\left((X+s)-E\left[X+s\right]\right)^{2}\right].$

7.15 c Apply **b** with rX instead of X.

7.16 E[X] = 4/9.

7.17 a If positive terms add to zero, they must all be zero.

$$E[(V - E[V])^2] = Var(V).$$

8.1
$$y$$
 0 10 20 $P(Y=y)$ 0.2 0.4 0.4

8.2 a
$$y$$
 -1 0 1 $P(Y=y)$ 1/6 1/2 1/3

8.2 c
$$P(W = 1) = 1$$
.

8.3 a V has a
$$U(7,9)$$
 distribution.

8.3 b rU + s has a U(s, s + r) distribution if r > 0 and a U(s+r, s) distribution if r < 0.

8.5 a
$$x^2(3-x)/4$$
 for $0 \le x \le 2$.

8.5 b
$$F_Y(y) = (3/4)y^4 - (1/4)y^6$$
 for $0 \le y \le \sqrt{2}$.

8.5 c
$$3y^3 - (3/2)y^5$$
 for $0 \le y \le \sqrt{2}$, 0 elsewhere.

8.8
$$F_W(w) = 1 - e^{-\gamma w^{\alpha}}$$
, with $\gamma = \lambda^{\alpha}$.

8.10 0.1587.

8.11 Apply Jensen with -q.

8.12 a
$$y$$
 0 1 10 100 $P(Y=y)$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

8.12 b
$$\sqrt{\operatorname{E}[X]} \ge \operatorname{E}\left[\sqrt{X}\right]$$
.

8.12 c
$$\sqrt{E[X]} = 50.25$$
, but $E\left[\sqrt{X}\right] = 27.75$.

- **8.18** V has an exponential distribution with parameter $n\lambda$.
- 8.19 a The upper right quarter of the circle

8.19 b
$$F_Z(t) = 1/2 + \arctan(t)/\pi$$
.

8.19 c
$$1/[\pi(1+z^2)].$$

$$P(X = 2, Y = -1) = 1/6,$$

and
$$P(X = 2, Y = 1) = 0$$
.

- 9.2 b Dependent.
- **9.5** a $1/16 \le \eta \le 1/4$.
- **9.5** b No.
- 9.6a _

		u		
v	0	1	2	
0	1/4	0	1/4	1/2
1	0	1/2	0	1/2
	1/4	1/2	1/4	1

- 9.6 b Dependent.

9.8 b
$$z$$
 -2 -1 0 1 2 3 $p_{\tilde{X}}(z)$ $\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{8}$ $\frac{1}{8}$

9.9 a
$$F_X(x) = 1 - e^{-2x}$$
 for $x > 0$ and $F_Y(y) = 1 - e^{-y}$ for $y > 0$.

- **9.9 b** $f(x,y) = 2e^{-(2x+y)}$ for x > 0 and y > 0.
- **9.9 c** $f_X(x) = 2e^{-2x} x > 0$ and $f_Y(y) = e^{-y}$ for y > 0.
- 9.9 d Independent.
- **9.10** a 41/720.
- **9.10 b** $F(a,b) = \frac{3}{5}a^2b^2 + \frac{2}{5}a^2b^3$.
- **9.10 c** $F_X(a) = a^2$.
- **9.10 d** $f_X(x) = 2x$ for 0 < x < 1.
- 9.10 e Independent.
- **9.11** 27/50.
- **9.13** a $1/\pi$.
- **9.13 b** $F_R(r) = r^2 \text{ for } 0 \le r \le 1.$
- **9.13 c** $f_X(x) = \frac{2}{\pi} \sqrt{1 x^2} = f_Y(x)$ for x between -1 and 1.
- **9.15 a** Since $F(a,b) = \frac{\text{area}(\Delta \cap \square(a,b))}{\text{area of } \Delta}$, where $\square(a,b)$ is the set of points (x,y), for which $x \leq a$ and $y \leq b$, one needs to calculate the areas for the various cases.
- **9.15 b** f(x,y) = 2 for $(x,y) \in \Delta$, and f(x,y) = 0 otherwise.
- 9.15 c Use the rule on page 122.
- **9.19 a** $a = 5\sqrt{2}$, $b = 4\sqrt{2}$, and c = 18.

9.19 b Use that $\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$ is the probability density function of an $N(\mu, \sigma^2)$ distributed random variable.

9.19 c N(0, 1/36).

10.1 a Cov(X, Y) = 0.142. Positively correlated.

10.1 b $\rho(X, Y) = 0.0503$.

10.2 a E[XY] = 0.

10.2 b Cov(X, Y) = 0.

10.2 c Var(X + Y) = 4/3.

10.2 d Var(X - Y) = 4/3.

10.5 a

		a		
b	0	1	2	•
0	8/72	6/72	10/72	1/3
1	12/72	9/72		1/2
2	4/72	3/72	5/72	1/6
	1/3	1/4	5/12	1

10.5 b E[X] = 13/12, E[Y] = 5/6, and Cov(X, Y) = 0.

10.5 c Yes.

10.6 a E[X] = E[Y] = 0 and Cov(X, Y) = 0.

10.6 b E[X] = E[Y] = c; $E[XY] = c^2$.

10.6 c No.

10.7 a Cov(X, Y) = -1/8.

10.7 b $\rho(X,Y) = -1/2$.

10.7 c For ε equal to 1/4, 0 or -1/4.

10.9 a $P(X_i = 1) = (1 - 0.001)^{40} = 0.96$ and $P(X_i = 41) = 0.04$.

10.9 b $E[X_i] = 2.6$ and $E[X_1 + \cdots + X_{25}] = 65$.

10.10 a E[X] = 109/50,

E[Y] = 157/100, and E[X + Y] = 15/4.

10.10 b $E[X^2] = 1287/250$, $E[Y^2] = 318/125$, and

E[X + Y] = 3633/250.

10.10 c Var(X) = 989/2500, Var(Y) = 791/10000, and Var(X + Y) = 4747/10000.

10.14 a Use the alternative expression for the covariance.

 $10.14\,\mathrm{b}$ Use the alternative expression for the covariance.

10.14 c Combine parts a and b.

10.16 a Var(X) + Cov(X, Y).

10.16 b Anything can happen.

10.16 c X and X+Y are positively correlated.

10.18 Solve $0 = N(N-1)(N+1)/12 + N(N-1)\text{Cov}(X_1, X_2)$.

11.1 a Check that for k between 2 and 6, the summation runs over $\ell = 1, \ldots, k-1$, whereas for k between 7 and 12 it runs over $\ell = k-6, \ldots, 12$.

11.1 b Check that for $2 \le k \le N$, the summation runs over $\ell = 1, \dots, k-1$, whereas for k between N+1 and 2N it runs over $\ell = k-N, \dots, 2N$.

11.2 a Check that the summation runs over $\ell = 0, 1, ..., k$.

11.2 b Use that $\lambda^{k-\ell}\mu^{\ell}/(\lambda+\mu)^k$ is equal to $p^{\ell}(1-p)^{k-\ell}$, with $p=\mu/(\lambda+\mu)$.

11.4 a E[Z] = -3 and Var(Z) = 81.

11.4 b Z has an N(-3, 81) distribution.

11.4 c $P(Z \le 6) = 0.8413$.

11.5 Check that for $0 \le z < 1$, the integral runs over $0 \le y \le z$, whereas for $1 \le z \le 2$, it runs over $z - 1 \le y \le 1$.

11.6 Check that the integral runs over $0 \le y \le z$.

11.7 Recall that a $Gam(k, \lambda)$ random variable can be represented as the sum of k independent $Exp(\lambda)$ random variables.

11.9 a $f_Z(z) = \frac{3}{2} \left(\frac{1}{z^2} - \frac{1}{z^4} \right)$, for $z \ge 1$.

11.9 b $f_Z(z) = \frac{\alpha \beta}{\beta - \alpha} \left(\frac{1}{z^{\beta + 1}} - \frac{1}{z^{\alpha + 1}} \right),$ for z > 1.

12.1 e 1: no, 2: no, 3: okay, 4: okay, 5: okay.

12.5 a 0.00049.

12.5 b 1 (correct to 8281 decimals).

12.6 0.256.

12.7 a $\lambda \approx 0.192$.

12.7 b 0.1583 is close to 0.147.

12.7 c $2.71 \cdot 10^{-5}$.

12.8 a $E[X(X-1)] = \mu^2$.

12.8 b $Var(X) = \mu$.

12.11 The probability of the event in the hint equals $(\lambda s)^n e^{-\lambda 2s}/(k!(n-k)!)$.

12.14 a Note: $1-1/n \to 1$ and $1/n \to 0$.

12.14 b $E[X_n] = (1 - 1/n) \cdot 0 + (1/n) \cdot 7n = 7.$

13.2 a $E[X_i] = 0$ and $Var(X_i) = 1/12$.

13.2 b 1/12.

13.4 a $n \ge 63$.

13.4 b $n \ge 250$.

13.4 c n > 125.

13.4 d n > 240.

13.6 Expected income per game €1/37; per year: €9865.

13.8 a $Var(\bar{Y}_n/2h) = 0.171/h\sqrt{n}$.

13.8 b $n \ge 801$.

13.9 a T_n is the average of a sequence of independent and identically distributed random variables.

13.9 b $a = E[X_i^2] = 1/3.$

13.10 a $P(|M_n - 1| > \varepsilon) = (1 - \varepsilon)^n$ for $0 \le \varepsilon \le 1$.

13.10 b No.

14.2 0.9977.

14.3 17.

14.4 1/2.

14.5 Use that X has the same probability distribution as $X_1 + X_2 + \cdots + X_n$, where X_1, X_2, \ldots, X_n are independent Ber(p) distributed random variables.

14.6 a $P(X \le 25) \approx 0.5$, $P(X < 26) \approx 0.6141$.

14.6 b $P(X \le 2) \approx 0$.

14.9 a 5.71%.

14.9 b Yes!

14.10 a 91.

14.10 b Use that $(\bar{M}_n - c)/\sigma$ has an N(0,1) distribution.

15.3 a _

Bin	Height
(0,250]	0.00297
(250,500]	0.00067
(500,750]	0.00015
(750,1000]	0.00008
(1000,1250]	0.00002
(1250,1500]	0.00004
(1500,1750]	0.00004
(1750,2000]	0
(2250,2500]	0
(2250,2500]	0.00002

15.3 b Skewed.

 $15.4\,\mathrm{a}$

Bin	Height
[0,500]	0.0012741
(500,1000]	0.0003556
(1000, 1500]	0.0001778
(1500,2000]	0.0000741
(2000, 2500]	0.0000148
(2500,3000]	0.0000148
(3000, 3500]	0.0000296
(3500,4000]	0
(4000, 4500]	0.0000148
(4500,5000]	0
(5000, 5500]	0.0000148
(5500,6000]	0.0000148
(6000,6500]	0.0000148

15.4 b

t	$F_n(t)$	t	$F_n(t)$
0	0	3500	0.9704
500	0.6370	4000	0.9704
1000	0.8148	4500	0.9778
1500	0.9037	5000	0.9778
2000	0.9407	5500	0.9852
2500	0.9481	6000	0.9926
3000	0.9556	6500	1

15.4 c Both are equal to 0.0889.

15.5

Bin	Height
(0, 1]	0.2250
(1, 3]	0.1100
(3, 5]	0.0850
(5, 8]	0.0400
(8, 11]	0.0230
(11, 14]	0.0350
(14, 18]	0.0225

15.6
$$F_n(7) = 0.9$$
.

15.11 Use that the number of x_i in (a, b] equals the number of $x_i \leq b$ minus the number of $x_i \leq a$.

15.12 a Bring the integral into the sum, change the integration variable to $u = (t - x_i)/h$, and use the properties of kernel functions.

15.12 b Similar to **a**.

16.1 a Median: 290.

16.1 b Lower quartile: 81; upper quartile: 843; IQR: 762.

16.1 c 144.6.

16.3 a Median: 70; lower quartile: 66.25; upper quartile: 75.

16.3 b

16.3 c Note the position of 31 in the boxplot.

16.4 a Yes, they both equal 7.056.

16.4 b Yes.

16.4 c Yes.

16.6 a Yes.

16.6 b In general this will not be true.

16.6 c Yes.

16.8 MAD is 3.

16.10 a The sample mean goes to infinity, whereas the sample median changes to 4.6.

 ${\bf 16.10\; b}\;$ At least three elements need to be replaced.

16.10 c For the sample mean only one; for the sample median at least $\lfloor (n+1)/2 \rfloor$ elements.

16.12 $\bar{x}_n = (N+1)/2$; $\text{Med}_n = (N+1)/2$.

16.15 Write $(x_i - \bar{x}_n)^2 = x_i^2 - 2\bar{x}_n x_i + \bar{x}_n^2$.

17.1 _

N(3, 1)	N(0, 1)	N(0, 1)
N(3, 1)	Exp(1/3)	Exp(1)
N(0, 1)	N(0, 9)	Exp(1)
N(3,1)	N(0, 9)	Exp(1/3)
N(0, 9)	Exp(1/3)	Exp(1)

Exp(1/3)	N(0, 9)	Exp(1/3)
N(0, 1)	N(3, 1)	Exp(1)
N(0, 9)	N(0, 9)	N(3, 1)
Exp(1)	N(3, 1)	Exp(1)
N(0, 1)	N(0, 1)	Exp(1/3)

17.3 a Bin(10, p).

17.3 b p = 0.435.

17.5 a One possibility is p = 93/331; another is p = 29/93.

17.5 b p = 474/1285 or p = 198/474.

17.5 c 0.6281 or 0.6741 for smokers and

17.7 a An exponential distribution.

0.7486 or 0.8026 for nonsmokers.

17.7 b One possibility is $\lambda = 0.00469$.

17.9 a Recall the formula for the volume of a cylinder with diameter d (at the base) and height h.

17.9 b $\bar{z}_n = 0.3022$; $\bar{y}/\bar{x} = 0.3028$; least squares: 0.3035.

18.1 $5^6 = 15625$. Not equally likely.

18.3 a 0.0574.

18.3 b 0.0547.

18.3 c 0.000029.

18.4 a 0.3487.

18.4 b $(1-1/n)^n$.

18.5 values 0, ± 1 , ± 2 , and ± 3 with probabilities 7/27, 6/27, 3/27, and 1/27.

18.7 Determine from which parametric distribution you generate the bootstrap datasets and what the bootstrapped version is of $\bar{X}_n - \mu$.

18.8 a Determine from which \hat{F} you generate the bootstrap datasets and what the bootstrapped version is of $\bar{X}_n - \mu$.

18.8 b Similar to a.

18.8 c Similar to a and b.

18.9 Determine which normal distribution corresponds to $X_1^*, X_2^*, \ldots, X_n^*$ and use this to compute $P(|\bar{X}_n^* - \mu^*| > 1)$.

19.1 a First show that $E[X_1^2] = \theta^2/3$, and use linearity of expectations.

19.1 b \sqrt{T} has negative bias.

19.3 a = 1/n, b = 0.

19.5 c = n.

19.6 a Use linearity of expectations and plug in the expressions for $E[M_n]$ and $E[\bar{X}_n]$.

19.6 b $(nM_n - \bar{X}_n)/(n-1)$.

19.6 c Estimate for δ : 2073.5.

19.8 Check that $E[Y_i] = \beta x_i$ and use linearity of expectations.

20.2 a We prefer T.

20.2 b If a < 6 we prefer T; if $a \ge 6$ we prefer S.

20.3 *T*₁.

20.4 a E[3L-1] = 3E[N+1-M]-1 = N.

20.4 b (N+1)(N-2)/2.

20.4 c 4 times.

20.7 $Var(T_1) = (4 - \theta^2)/n$ and $Var(T_2) = \theta(4 - \theta)/n$. We prefer T_2 .

20.8 a Use linearity of expectations.

20.8 b Differentiate with respect to r.

20.11 MSE $(T_1) = \sigma^2 / (\sum_{i=1}^n x_i^2),$ MSE $(T_2) = (\sigma^2 / n^2) \cdot \sum_{i=1}^n (1/x_i^2),$ MSE $(T_3) = \sigma^2 n / (\sum_{i=1}^n x_i)^2.$

21.1 D_2 .

21.2 $\hat{p} = 1/4$.

21.4 a Use that X_1, \ldots, X_n are independent $Pois(\mu)$ distributed random variables.

21.4 b $\ell(\mu) = \left(\sum_{i=1}^{n} x_i\right) \ln(\mu) - \ln(x_1! \cdot x_2! \cdots x_n!) - n\mu, \ \hat{\mu} = \bar{x}_n.$

21.4 c $e^{-\bar{x}_n}$.

21.5 a \bar{x}_n .

21.5 b $\sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2}$.

21.7 $\sqrt{\frac{1}{2n}\sum_{i=1}^n x_i^2}$.

21.8 a
$$L(\theta) = \frac{C}{4^{3839}} \cdot (2+\theta)^{1997} \cdot \theta^{32} \cdot (1-\theta)^{1810}; \ \ell(\theta) = \ln(C) - 3839 \ln(4) + 1997 \ln(2+\theta) + 32 \ln(\theta) + 1810 \ln(1-\theta).$$

21.8 b 0.0357.

21.8 c
$$(-b+\sqrt{D})/(2n)$$
, with $b=-n_1+n_2+2n_3+2n_4$, and $D=(n_1-n_2-2n_3-2n_4)^2+8nn_2$.

21.9
$$\hat{\alpha} = x_{(1)}$$
 and $\hat{\beta} = x_{(n)}$.

21.11 a $1/\bar{x}_n$.

21.11 b $y_{(n)}$.

22.1 a
$$\hat{\alpha} = 2.35$$
, $\hat{\beta} = -0.25$.

22.1 b
$$r_1 = -0.1, r_2 = 0.2, r_3 = -0.1.$$

22.1 c The estimated regression line goes through (0, 2.35) and (3, 1.6).

22.5 Minimize
$$\sum_{i=1}^{n} (y_i - \beta x_i)^2$$
.

22.6 2218.45.

22.8 The model with no intercept.

22.10 a
$$\hat{\alpha} = 7/3$$
, $\hat{\beta} = -1$, $A(\hat{\alpha}, \hat{\beta}) = 4/3$.

22.10 b
$$17/9 < \alpha < 7/3, \ \alpha = 2.$$

22.10 c $\alpha = 2, \beta = -1.$

22.12 a Use that the denominator of $\hat{\beta}$ and that $\sum x_i$ are numbers, *not* random variables.

22.12 b Use that $E[Y_i] = \alpha + \beta x_i$.

22.12 c Simplify the expression in b.

22.12 d Combine a and c.

23.1 (740.55, 745.45).

23.2 (3.486, 3.594).

23.5 a (0.050, 1.590).

23.5 b See Section 23.3.

23.5 c (0.045, 1.600).

23.6 a Rewrite the probability in terms of L_n and U_n .

23.6 b $(3l_n + 7, 3u_n + 7)$.

23.6 c $\tilde{L}_n = 1 - U_n$ and $\tilde{U}_n = 1 - L_n$. The confidence interval: (-4,3).

23.6 d (0,25) is a conservative 95% confidence interval for θ .

23.7 $(e^{-3}, e^{-2}) = (0.050, 0.135).$

23.11 a Yes.

23.11 b Not necessarily.

23.11 c Not necessarily.

24.1 (0.620, 0.769).

24.4 a 609.

24.4 b No.

24.6 a $(1.68, \infty)$.

24.6 b [0, 2.80).

24.8 a (0.449, 0.812).

24.8 b (0.481, 1].

24.9 a See Section 8.4.

24.9 b $c_l = 0.779, c_u = 0.996.$

24.9 c (3.013, 3.851).

24.9 d $(m/(1-\alpha/2)^{1/n}, m/(\alpha/2)^{1/n}).$

25.2 $H_1: \mu > 1472.$

25.4 a The difference or the ratio of the average numbers of cycles for the two groups.

25.4 b The difference or the ratio of the maximum likelihood estimators \hat{p}_1 and \hat{p}_2 .

25.4 c $H_1: p_1 < p_2$.

25.5 a Relevant values of T_1 are in [0, 5]; those close to 0, or close to 5, are in favor of H_1 .

25.5 b Relevant values of T_2 are in [0, 5]; only those close to 0 are in favor of H_1 .

25.6 a The p-value is 0.23. Do not reject.

25.6 b The p-value is 0.77. Do not reject.

25.6 c The *p*-value is 0.968. Do not reject.

25.6 d The p-value is 0.019. Reject.

25.6 e The p-value is 0.99. Do not reject.

25.6 f The p-value is smaller than 0.019. Reject.

25.6 g The *p*-value is smaller than 0.200. We cannot say anything about rejection of H_0 .

25.10 a $H_1: \mu > 23.75$.

25.10 b The *p*-value is 0.0344.

25.11 0.0456.

26.3 a 0.1.

26.3 b 0.72.

26.5 a The *p*-value is 0.1050. Do not reject H_0 ; this agrees with Exercise 24.8 b.

26.5 b $K = \{16, 17, \dots, 23\}.$

26.5 c 0.0466.

26.5 d 0.6950.

26.6 a Right critical value.

26.6 b Right critical value c = 1535.1; critical region [1536, ∞).

26.8 a For T we find $K = (0, c_l]$ and for T' we find $K' = [c_u, 1)$.

26.8 b For T we find $K = (0, c_l] \cup [c_u, \infty)$ and for T' we find $K' = (0, c'_l] \cup [c'_u, 1)$.

26.9 a For T we find $K = [c_u, \infty)$ and for T' we find $K' = [c'_l, 0) \cup (0, c'_u]$.

26.9 b For T we find $K = [c_u, \infty)$ and for T' we find $K' = (0, c'_u]$.

27.2 a H_0 : $\mu = 2550$ and H_1 : $\mu \neq 2550$.

27.2 b t = 1.2096. Do not reject H_0 .

27.5 a $H_0: \mu = 0; H_1: \mu > 0; t = 0.70.$

27.5 b *p*-value: 0.2420. Do not reject H_0 .

27.7 a $H_0: \beta = 0$ and $H_1: \beta < 0$; $t_b = -20.06$. Reject H_0 .

27.7 b Same testing problem; $t_b = -11.03$. Reject H_0 .

28.1 a $H_0: \mu_1 = \mu_2$ and $H_1: \mu_1 \neq \mu_2$; $t_p = -2.130$. Reject H_0 .

28.1 b $H_0: \mu_1 = \mu_2 \text{ and } H_1: \mu_1 \neq \mu_2; t_d = -2.130.$ Reject H_0 .

28.1 c Reject H_0 . The salaries differ significantly.

28.3 a $t_p = 2.492$. Reject H_0 .

28.3 b Reject H_0 .

28.3 c $t_d = 2.463$. Reject H_0 .

28.3 d Reject H_0 .

28.5 a Determine $E\left[aS_X^2 + bS_Y^2\right]$, using that S_X^2 and S_Y^2 are both unbiased for σ^2 .

28.5 b Determine $E\left[aS_X^2 + (1-a)S_Y^2\right]$, using that S_X^2 and S_Y^2 are independent, and minimize over a.

Full solutions to selected exercises

- **2.8** From the rule for the probability of a union we obtain $P(D_1 \cup D_2) \leq P(D_1) + P(D_2) = 2 \cdot 10^{-6}$. Since $D_1 \cap D_2$ is contained in both D_1 and D_2 , we obtain $P(D_1 \cap D_2) \leq \min\{P(D_1), P(D_2)\} = 10^{-6}$. Equality may hold in both cases: for the union, take D_1 and D_2 disjoint, for the intersection, take D_1 and D_2 equal to each other.
- $2.12\,\mathrm{a}$ This is the same situation as with the three envelopes on the doormat, but now with ten possibilities. Hence an outcome has probability 1/10! to occur.
- **2.12 b** For the five envelopes labeled 1, 2, 3, 4, 5 there are 5! possible orders, and for each of these there are 5! possible orders for the envelopes labeled 6, 7, 8, 9, 10. Hence in total there are $5! \cdot 5!$ outcomes.
- **2.12 c** There are $32 \cdot 5! \cdot 5!$ outcomes in the event "dream draw." Hence the probability is $32 \cdot 5! \cdot 5! \cdot 10! = 32 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 / (6 \cdot 7 \cdot 8 \cdot 9 \cdot 10) = 8/63 = 12.7$ percent.
- **2.14 a** Since door a is never opened, P((a, a)) = P((b, a)) = P((c, a)) = 0. If the candidate chooses a (which happens with probability 1/3), then the quizmaster chooses without preference from doors b and c. This yields that P((a, b)) = P((a, c)) = 1/6. If the candidate chooses b (which happens with probability 1/3), then the quizmaster can only open door c. Hence P((b, c)) = 1/3. Similarly, P((c, b)) = 1/3. Clearly, P((b, b)) = P((c, c)) = 0.
- **2.14 b** If the candidate chooses a then she or he wins; hence the corresponding event is $\{(a, a), (a, b), (a, c)\}$, and its probability is 1/3.
- **2.14 c** To end with a the candidate should have chosen b or c. So the event is $\{(b,c),(c,b)\}$ and $P(\{(b,c),(c,b)\}) = 2/3$.
- **2.16** Since $E \cap F \cap G = \emptyset$, the three sets $E \cap F$, $F \cap G$, and $E \cap G$ are disjoint. Since each has probability 1/3, they have probability 1 together. From these two facts one deduces $P(E) = P(E \cap F) + P(E \cap G) = 2/3$ (make a diagram or use that $E = E \cap (E \cap F) \cup E \cap (F \cap G) \cup E \cap (E \cap G)$).
- **3.1** Define the following events: B is the event "point B is reached on the second step," C is the event "the path to C is chosen on the first step," and similarly we define D and E. Note that the events C, D, and E are mutually exclusive and that one of them must occur. Furthermore, that we can only reach B by first going to C

or D. For the computation we use the law of total probability, by conditioning on the result of the first step:

$$\begin{split} \mathbf{P}(B) &= \mathbf{P}(B \cap C) + \mathbf{P}(B \cap D) + \mathbf{P}(B \cap E) \\ &= \mathbf{P}(B \mid C) \, \mathbf{P}(C) + \mathbf{P}(B \mid D) \, \mathbf{P}(D) + \mathbf{P}(B \mid E) \, \mathbf{P}(E) \\ &= \frac{1}{3} \cdot \frac{1}{3} + \frac{1}{4} \cdot \frac{1}{3} + \frac{1}{3} \cdot 0 = \frac{7}{36}. \end{split}$$

3.2 a Event A has three outcomes, event B has 11 outcomes, and $A \cap B = \{(1,3),(3,1)\}$. Hence we find P(B) = 11/36 and $P(A \cap B) = 2/36$ so that

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{2/36}{11/36} = \frac{2}{11}.$$

- **3.2 b** Because P(A) = 3/36 = 1/12 and this is not equal to $2/11 = P(A \mid B)$ the events A and B are dependent.
- **3.3 a** There are 13 spades in the deck and each has probability 1/52 of being chosen, hence $P(S_1) = 13/52 = 1/4$. Given that the first card is a spade there are 13-1=12 spades left in the deck with 52-1=51 remaining cards, so $P(S_2 \mid S_1) = 12/51$. If the first card is not a spade there are 13 spades left in the deck of 51, so $P(S_2 \mid S_1^c) = 13/51$.
- **3.3 b** We use the law of total probability (based on $\Omega = S_1 \cup S_1^c$):

$$P(S_2) = P(S_2 \cap S_1) + P(S_2 \cap S_1^c) = P(S_2 \mid S_1) P(S_1) + P(S_2 \mid S_1^c) P(S_1^c)$$
$$= \frac{12}{51} \cdot \frac{1}{4} + \frac{13}{51} \cdot \frac{3}{4} = \frac{12 + 39}{51 \cdot 4} = \frac{1}{4}.$$

3.7 a The best approach to a problem like this one is to write out the conditional probability and then see if we can somehow combine this with P(A) = 1/3 to solve the puzzle. Note that $P(B \cap A^c) = P(B \mid A^c) P(A^c)$ and that $P(A \cup B) = P(A) + P(B \cap A^c)$. So

$$P(A \cup B) = \frac{1}{3} + \frac{1}{4} \cdot \left(1 - \frac{1}{3}\right) = \frac{1}{3} + \frac{1}{6} = \frac{1}{2}.$$

- **3.7 b** From the conditional probability we find $P(A^c \cap B^c) = P(A^c \mid B^c) P(B^c) = \frac{1}{2}(1 P(B))$. Recalling DeMorgan's law we know $P(A^c \cap B^c) = P((A \cup B)^c) = 1 P(A \cup B) = 1/3$. Combined this yields an equation for P(B): $\frac{1}{2}(1 P(B)) = 1/3$ from which we find P(B) = 1/3.
- **3.8 a** This asks for P(W). We use the law of total probability, decomposing $\Omega = F \cup F^c$. Note that $P(W \mid F) = 0.99$.

$$P(W) = P(W \cap F) + P(W \cap F^{c}) = P(W \mid F) P(F) + P(W \mid F^{c}) P(F^{c})$$

= 0.99 \cdot 0.1 + 0.02 \cdot 0.9 = 0.099 + 0.018 = 0.117.

3.8 b We need to determine P(F | W), and this can be done using Bayes' rule. Some of the necessary computations have already been done in \mathbf{a} , we can copy $P(W \cap F)$ and P(W) and get:

$$P(F \mid W) = \frac{P(F \cap W)}{P(W)} = \frac{0.099}{0.117} = 0.846.$$

4.1 a In two independent throws of a die there are 36 possible outcomes, each occurring with probability 1/36. Since there are 25 ways to have no 6's, 10 ways to have one 6, and one way to have two 6's, we find that $p_Z(0) = 25/36$, $p_Z(1) = 10/36$, and $p_Z(2) = 1/36$. So the probability mass function p_Z of Z is given by the following table:

The distribution function F_Z is given by

$$F_Z(a) = \begin{cases} 0 & \text{for } a < 0\\ \frac{25}{36} & \text{for } 0 \le a < 1\\ \frac{25}{36} + \frac{10}{36} = \frac{35}{36} & \text{for } 1 \le a < 2\\ \frac{25}{36} + \frac{10}{36} + \frac{1}{36} = 1 & \text{for } a \ge 2. \end{cases}$$

Z is the sum of two independent Ber(1/6) distributed random variables, so Z has a Bin(2, 1/6) distribution.

- **4.1 b** If we denote the outcome of the two throws by (i,j), where i is the outcome of the first throw and j the outcome of the second, then $\{M=2,Z=0\}=\{(2,1),(1,2),(2,2)\},\{S=5,Z=1\}=\emptyset,\{S=8,Z=1\}=\{(6,2),(2,6)\}$. Furthermore, P(M=2,Z=0)=3/36, P(S=5,Z=1)=0, and P(S=8,Z=1)=2/36.
- **4.1 c** The events are dependent, because, e.g., $P(M=2,Z=0)=\frac{3}{36}$ differs from $P(M=2)\cdot P(Z=0)=\frac{3}{36}\cdot \frac{253}{36}$.
- **4.10** a Each R_i has a Bernoulli distribution, because it can only attain the values 0 and 1. The parameter is $p = P(R_i = 1)$. It is not easy to determine $P(R_i = 1)$, but it is fairly easy to determine $P(R_i = 0)$. The event $\{R_i = 0\}$ occurs when none of the m people has chosen the ith floor. Since they make their choices independently of each other, and each floor is selected by each of these m people with probability 1/21, it follows that

$$P(R_i = 0) = \left(\frac{20}{21}\right)^m.$$

Now use that $p = P(R_i = 1) = 1 - P(R_i = 0)$ to find the desired answer.

- **4.10 b** If $\{R_1 = 0\}, \ldots, \{R_{20} = 0\}$, we must have that $\{R_{21} = 1\}$, so we cannot conclude that the events $\{R_1 = a_1\}, \ldots, \{R_{21} = a_{21}\}$, where a_i is 0 or 1, are independent. Consequently, we cannot use the argument from Section 4.3 to conclude that S_m is Bin(21,p). In fact, S_m is not Bin(21,p) distributed, as the following shows. The elevator will stop at least once, so $P(S_m = 0) = 0$. However, if S_m would have a Bin(21,p) distribution, then $P(S_m = 0) = (1-p)^{21} > 0$, which is a contradiction.
- **4.10 c** This exercise is a variation on finding the probability of no coincident birth-days from Section 3.2. For m=2, $S_2=1$ occurs precisely if the two persons entering the elevator select the same floor. The first person selects any of the 21 floors, the second selects the same floor with probability 1/21, so $P(S_2=1)=1/21$. For m=3, $S_3=1$ occurs if the second and third persons entering the elevator both select the same floor as was selected by the first person, so $P(S_3=1)=(1/21)^2=1/441$. Furthermore, $S_3=3$ occurs precisely when all three persons choose a different floor. Since there are $21 \cdot 20 \cdot 19$ ways to do this out of a total of 21^3 possible ways, we

find that $P(S_3 = 3) = 380/441$. Since S_3 can only attain the values 1, 2, 3, it follows that $P(S_3 = 2) = 1 - P(S_3 = 1) - P(S_3 = 3) = 60/441$.

- **4.13 a** Since we wait for the first time we draw the marked bolt in independent draws, each with a Ber(p) distribution, where p is the probability to draw the bolt (so p = 1/N), we find, using a reasoning as in Section 4.4, that X has a Geo(1/N) distribution.
- **4.13 b** Clearly, P(Y = 1) = 1/N. Let D_i be the event that the marked bolt was drawn (for the first time) in the *i*th draw. For k = 2, ..., N we have that

$$P(Y = k) = P(D_1^c \cap \cdots \cap D_{k-1}^c \cap D_k)$$

= $P(D_k | D_1^c \cap \cdots \cap D_{k-1}^c) \cdot P(D_1^c \cap \cdots \cap D_{k-1}^c)$.

Now $P(D_k | D_1^c \cap \cdots \cap D_{k-1}^c) = \frac{1}{N-k+1}$,

$$P(D_1^c \cap \cdots \cap D_{k-1}^c) = P(D_{k-1}^c | D_1^c \cap \cdots \cap D_{k-2}^c) \cdot P(D_1^c \cap \cdots \cap D_{k-2}^c),$$

and

$$P(D_{k-1}^c \mid D_1^c \cap \dots \cap D_{k-1}^c) = 1 - P(D_{k-1} \mid D_1^c \cap \dots \cap D_{k-1}^c) = 1 - \frac{1}{N-k+2}.$$

Continuing in this way, we find after k steps that

$$P(Y = k) = \frac{1}{N - k + 1} \cdot \frac{N - k + 1}{N - k + 2} \cdot \frac{N - k + 2}{N - k + 3} \cdots \frac{N - 2}{N - 1} \cdot \frac{N - 1}{N} = \frac{1}{N}.$$

See also Section 9.3, where the distribution of Y is derived in a different way.

4.13 c For $k=0,1,\ldots,r$, the probability $\mathrm{P}(Z=k)$ is equal to the number of ways the event $\{Z=k\}$ can occur, divided by the number of ways $\binom{N}{r}$ we can select r objects from N objects, see also Section 4.3. Since one can select k marked bolts from m marked ones in $\binom{m}{k}$ ways, and r-k nonmarked bolts from N-m nonmarked ones in $\binom{N-m}{r-k}$ ways, it follows that

$$P(Z = k) = \frac{\binom{m}{k} \binom{N-m}{r-k}}{\binom{N}{r}}, \text{ for } k = 0, 1, 2, \dots, r.$$

- **5.4 a** Let T be the time until the next arrival of a bus. Then T has U(4,6) distribution. Hence $P(X \le 4.5) = P(T \le 4.5) = \int_4^{4.5} 1/2 dx = 1/4$.
- **5.4 b** Since Jensen leaves when the next bus arrives after more than 5 minutes, $P(X=5) = P(T>5) = \int_5^6 \frac{1}{2} dx = 1/2$.
- **5.4 c** Since P(X = 5) = 0.5 > 0, X cannot be continuous. Since X can take any of the uncountable values in [4,5], it can also not be discrete.
- **5.8 a** The probability density $g(y) = 1/(2\sqrt{ry})$ has an asymptote in 0 and decreases to 1/2r in the point r. Outside [0, r] the function is 0.
- **5.8 b** The second darter is better: for each 0 < b < r one has $(b/r)^2 < \sqrt{b/r}$ so the second darter always has a larger probability to get closer to the center.
- **5.8 c** Any function F that is 0 left from 0, increasing on [0, r], takes the value 0.9 in r/10, and takes the value 1 in r and to the right of r is a correct answer to this question.

- **5.13 a** This follows with a change of variable transformation $x \mapsto -x$ in the integral: $\Phi(-a) = \int_{-\infty}^{-a} \phi(x) \, \mathrm{d}x = \int_{a}^{\infty} \phi(-x) \, \mathrm{d}x = \int_{a}^{\infty} \phi(x) \, \mathrm{d}x = 1 \Phi(a)$.
- **5.13 b** This is straightforward: $P(Z \le -2) = \Phi(-2) = 1 \Phi(2) = 0.0228$.
- **6.5** We see that

$$X \le a \Leftrightarrow -\ln U \le a \Leftrightarrow \ln U \ge -a \Leftrightarrow U \ge e^{-a}$$

and so $P(X \le a) = P(U \ge e^{-a}) = 1 - P(U \le e^{-a}) = 1 - e^{-a}$, where we use $P(U \le p) = p$ for $0 \le p \le 1$ applied to $p = e^{-a}$ (remember that $a \ge 0$).

6.7 We need to obtain F^{inv} , and do this by solving F(x) = u, for $0 \le u \le 1$:

$$1 - e^{-5x^2} = u \quad \Leftrightarrow \quad e^{-5x^2} = 1 - u \quad \Leftrightarrow \quad -5x^2 = \ln(1 - u)$$

 $\Leftrightarrow \quad x^2 = -0.2\ln(1 - u) \quad \Leftrightarrow \quad x = \sqrt{-0.2\ln(1 - u)}$

The solution is $Z = \sqrt{-0.2 \ln U}$ (replacing 1 - U by U, see Exercise 6.3). Note that Z^2 has an Exp(5) distribution.

6.10 a Define random variables $B_i = 1$ if $U_i \leq p$ and $B_i = 0$ if $U_i > p$. Then $P(B_i = 1) = p$ and $P(B_i = 0) = 1 - p$: each B_i has a Ber(p) distribution. If $B_1 = B_2 = \cdots = B_{k-1} = 0$ and $B_k = 1$, then N = k, i.e., N is the position in the sequence of Bernoulli random variables, where the first 1 occurs. This is a Geo(p) distribution. This can be verified by computing the probability mass function: for $k \geq 1$,

$$P(N = k) = P(B_1 = B_2 = \dots = B_{k-1} = 0, B_k = 1)$$

= $P(B_1 = 0) P(B_2 = 0) \dots P(B_{k-1} = 0) P(B_k = 1)$
= $(1 - p)^{k-1} p$.

- **6.10 b** If Y is (a real number!) greater than n, then rounding upwards means we obtain n+1 or higher, so $\{Y>n\}=\{Z\geq n+1\}=\{Z>n\}$. Therefore, $P(Z>n)=P(Y>n)=\mathrm{e}^{-\lambda n}=\left(\mathrm{e}^{-\lambda}\right)^n$. From $\lambda=-\ln(1-p)$ we see: $\mathrm{e}^{-\lambda}=1-p$, so the last probability is $(1-p)^n$. From P(Z>n-1)=P(Z=n)+P(Z>n) we find: $P(Z=n)=P(Z>n-1)-P(Z>n)=(1-p)^{n-1}-(1-p)^n=(1-p)^{n-1}p$. Z has a Geo(p) distribution.
- **6.12** We need to generate stock prices for the next five years, or 60 months. So we need sixty U(0,1) random variables U_1, \ldots, U_{60} . Let S_i denote the stock price in month i, and set $S_0 = 100$, the initial stock price. From the U_i we obtain the stock movement, as follows, for $i = 1, 2, \ldots$:

$$S_i = \begin{cases} 0.95 \, S_{i-1} & \text{if } U_i < 0.25, \\ S_{i-1} & \text{if } 0.25 \le U_i \le 0.75, \\ 1.05 \, S_{i-1} & \text{if } U_i > 0.75. \end{cases}$$

We have carried this out, using the realizations below:

1-10:	0.72	0.03	0.01	0.81	0.97	0.31	0.76	0.70	0.71	0.25
11-20:	0.88	0.25	0.89	0.95	0.82	0.52	0.37	0.40	0.82	0.04
21-30:	0.38	0.88	0.81	0.09	0.36	0.93	0.00	0.14	0.74	0.48
31-40:	0.34	0.34	0.37	0.30	0.74	0.03	0.16	0.92	0.25	0.20
41-50:	0.37	0.24	0.09	0.69	0.91	0.04	0.81	0.95	0.29	0.47
51-60:	0.19	0.76	0.98	0.31	0.70	0.36	0.56	0.22	0.78	0.41

We do not list all the stock prices, just the ones that matter for our investment strategy (you can verify this). We first wait until the price drops below ≤ 95 , which happens at $S_4 = 94.76$. Our money has been in the bank for four months, so we own $\leq 1000 \cdot 1.005^4 = \leq 1020.15$, for which we can buy 1020.15/94.76 = 10.77 shares. Next we wait until the price hits ≤ 110 , this happens at $S_{15} = 114.61$. We sell the our shares for $\leq 10.77 \cdot 114.61 = \leq 1233.85$, and put the money in the bank. At $S_{42} = 92.19$ we buy stock again, for the $\leq 1233.85 \cdot 1.005^{27} = \leq 1411.71$ that has accrued in the bank. We can buy 15.31 shares. For the rest of the five year period nothing happens, the final price is $S_{60} = 100.63$, which puts the value of our portfolio at ≤ 1540.65 .

For a real simulation the above should be repeated, say, one thousand times. The one thousand net results then give us an impression of the probability distribution that corresponds to this model and strategy.

- **7.6** Since f is increasing on the interval [2,3] we know from the interpretation of expectation as center of gravity that the expectation should lie closer to 3 than to 2. The computation: $E[Z] = \int_2^3 \frac{3}{19} z^3 dz = \left[\frac{3}{76} z^4\right]_2^3 = 2\frac{43}{76}$.
- 7.15 a We use the change-of-units rule for the expectation twice:

$$Var(rX) = E[(rX - E[rX]^2)] = E[(rX - rE[X])^2]$$
$$= E[r^2(X - E[X])^2] = r^2E[(X - E[X])^2] = r^2Var(X).$$

7.15 b Now we use the change-of-units rule for the expectation once:

$$Var(X + s) = E[((X + s) - E[X + s])^{2}]$$

= E[((X + s) - E[X] + s)^{2}] = E[(X - E[X])^{2}] = Var(X).

- **7.15 c** With first **b**, and then **a**: $Var(rX + s) = Var(rX) = r^2 Var(X)$.
- **7.17 a** Since $a_i \geq 0$ and $p_i \geq 0$ it must follow that $a_1p_1 + \cdots + a_rp_r \geq 0$. So $0 = \mathrm{E}[U] = a_1p_1 + \cdots + a_rp_r \geq 0$. As we may assume that all $p_i > 0$, it follows that $a_1 = a_2 = \cdots = a_r = 0$.
- **7.17 b** Let $m = E[V] = p_1b_1 + \dots + p_rb_r$. Then the random variable $U = (V E[V])^2$ takes the values $a_1 = (b_1 m)^2, \dots, a_r = (b_r m)^2$. Since E[U] = Var(V) = 0, part a tells us that $0 = a_1 = (b_1 m)^2, \dots, 0 = a_r = (b_r m)^2$. But this is only possible if $b_1 = m, \dots, b_r = m$. Since m = E[V], this is the same as saying that P(V = E[V]) = 1.
- **8.2 a** First we determine the possible values that Y can take. Here these are -1, 0, and 1. Then we investigate which x-values lead to these y-values and sum the probabilities of the x-values to obtain the probability of the y-value. For instance,

$$P(Y = 0) = P(X = 2) + P(X = 4) + P(X = 6) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2}.$$

Similarly, we obtain for the two other values

$$P(Y = -1) = P(X = 3) = \frac{1}{6}, \qquad P(Y = 1) = P(X = 1) + P(X = 5) = \frac{1}{3}.$$

8.2 b The values taken by Z are -1, 0, and 1. Furthermore

$$P(Z = 0) = P(X = 1) + P(X = 3) + P(X = 5) = \frac{1}{6} + \frac{1}{6} + \frac{1}{6} = \frac{1}{2},$$

and similarly P(Z = -1) = 1/3 and P(Z = 1) = 1/6.

- **8.2 c** Since for any α one has $\sin^2(\alpha) + \cos^2(\alpha) = 1$, W can only take the value 1, so P(W = 1) = 1.
- **8.10** Because of symmetry: $P(X \ge 3) = 0.500$. Furthermore: $\sigma^2 = 4$, so $\sigma = 2$. Then Z = (X 3)/2 is an N(0, 1) distributed random variable, so that $P(X \le 1) = P((X 3)/2) \le (1 3)/2 = P(Z \le -1) = P(Z \ge 1) = 0.1587$.
- **8.11** Since -g is a convex function, Jensen's inequality yields that $-g(E[X]) \le E[-g(X)]$. Since E[-g(X)] = -E[g(X)], the inequality follows by multiplying both sides by -1.
- **8.12 a** The possible values Y can take are $\sqrt{0} = 0$, $\sqrt{1} = 1$, $\sqrt{100} = 10$, and $\sqrt{10000} = 100$. Hence the probability mass function is given by

$$\frac{y}{P(Y=y)} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4} \quad \frac{1}{4}$$

- **8.12 b** Compute the second derivative: $\frac{d^2}{dx^2}\sqrt{x} = -\frac{1}{4}x^{-3/2} < 0$. Hence $g(x) = -\sqrt{x}$ is a convex function. Jensen's inequality yields that $\sqrt{\operatorname{E}[X]} \ge \operatorname{E}\left[\sqrt{X}\right]$.
- **8.12 c** We obtain $\sqrt{E[X]} = \sqrt{(0+1+100+10000)/4} = 50.25$, but

$$E\left[\sqrt{X}\right] = E[Y] = (0 + 1 + 10 + 100)/4 = 27.75.$$

- **8.19 a** This happens for all φ in the interval $[\pi/4, \pi/2]$, which corresponds to the upper right quarter of the circle.
- **8.19 b** Since $\{Z \leq t\} = \{X \leq \arctan(t)\}$, we obtain

$$F_Z(t) = P(Z \le t) = P(X \le \arctan(t)) = \frac{1}{2} + \frac{1}{\pi}\arctan(t).$$

8.19 c Differentiating F_Z we obtain that the probability density function of Z is

$$f_Z(z) = \frac{\mathrm{d}}{\mathrm{d}z} F_Z(z) = \frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{2} + \frac{1}{\pi} \arctan(z) \right) = \frac{1}{\pi (1 + z^2)}$$
 for $-\infty < z < \infty$.

- **9.2 a** From P(X = 1, Y = 1) = 1/2, P(X = 1) = 2/3, and the fact that P(X = 1) = P(X = 1, Y = 1) + P(X = 1, Y = -1), it follows that P(X = 1, Y = -1) = 1/6. Since P(Y = 1) = 1/2 and P(X = 1, Y = 1) = 1/2, we must have: P(X = 0, Y = 1) and P(X = 2, Y = 1) are both zero. From this and the fact that P(X = 0) = 1/6 = P(X = 2) one finds that P(X = 0, Y = -1) = 1/6 = P(X = 2, Y = -1).
- **9.2 b** Since, e.g., P(X = 2, Y = 1) = 0 is different from $P(X = 2) P(Y = 1) = \frac{1}{6} \cdot \frac{1}{2}$, one finds that X and Y are dependent.
- **9.8 a** Since X can attain the values 0 and 1 and Y the values 0 and 2, Z can attain the values 0, 1, 2, and 3 with probabilities: P(Z=0) = P(X=0,Y=0) = 1/4, P(Z=1) = P(X=1,Y=0) = 1/4, P(Z=2) = P(X=0,Y=2) = 1/4, and P(Z=3) = P(X=1,Y=2) = 1/4.
- **9.8 b** Since $\tilde{X} = \tilde{Z} \tilde{Y}$, \tilde{X} can attain the values -2, -1, 0, 1, 2, and 3 with probabilities

$$\begin{split} & P\left(\tilde{X} = -2\right) = P\left(\tilde{Z} = 0, \tilde{Y} = 2\right) = 1/8, \\ & P\left(\tilde{X} = -1\right) = P\left(\tilde{Z} = 1, \tilde{Y} = 2\right) = 1/8, \\ & P\left(\tilde{X} = 0\right) = P\left(\tilde{Z} = 0, \tilde{Y} = 0\right) + P\left(\tilde{Z} = 2, \tilde{Y} = 2\right) = 1/4, \\ & P\left(\tilde{X} = 1\right) = P\left(\tilde{Z} = 1, \tilde{Y} = 0\right) + P\left(\tilde{Z} = 3, \tilde{Y} = 2\right) = 1/4, \\ & P\left(\tilde{X} = 2\right) = P\left(\tilde{Z} = 2, \tilde{Y} = 0\right) = 1/8, \\ & P\left(\tilde{X} = 3\right) = P\left(\tilde{Z} = 3, \tilde{Y} = 0\right) = 1/8. \end{split}$$

We have the following table:

9.9 a One has that $F_X(x) = \lim_{y \to \infty} F(x, y)$. So for $x \le 0$: $F_X(x) = 0$, and for x > 0: $F_X(x) = F(x, \infty) = 1 - e^{-2x}$. Similarly, $F_Y(y) = 0$ for $y \le 0$, and for y > 0: $F_Y(y) = F(\infty, y) = 1 - e^{-y}$.

9.9 b For
$$x > 0$$
 and $y > 0$: $f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y) = \frac{\partial}{\partial x} \left(e^{-y} - e^{-(2x+y)} \right) = 2e^{-(2x+y)}$.

9.9 c There are two ways to determine $f_X(x)$:

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{\infty} e^{-(2x+y)} dy = 2e^{-2x}$$
 for $x > 0$

and

$$f_X(x) = \frac{d}{dx} F_X(x) = 2e^{-2x}$$
 for $x > 0$.

Using either way one finds that $f_Y(y) = e^{-y}$ for y > 0.

- **9.9 d** Since $F(x,y) = F_X(x)F_Y(y)$ for all x,y, we find that X and Y are independent.
- **9.11** To determine P(X < Y) we must integrate f(x, y) over the region G of points (x, y) in \mathbb{R}^2 for which x is smaller than y:

$$P(X < Y) = \iint_{\{(x,y) \in \mathbb{R}^2; x < y\}} f(x,y) dx dy$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{y} f(x,y) dx \right) dy = \int_{0}^{1} \left(\int_{0}^{y} \frac{12}{5} xy(1+y) dx \right) dy$$

$$= \frac{12}{5} \int_{0}^{1} y(1+y) \left(\int_{0}^{y} x dx \right) dy = \frac{12}{10} \int_{0}^{1} y^{3}(1+y) dy = \frac{27}{50}.$$

Here we used that f(x,y) = 0 for (x,y) outside the unit square.

9.15 a Setting $\square(a,b)$ as the set of points (x,y), for which $x\leq a$ and $y\leq b$, we have that

$$F(a,b) = \frac{\operatorname{area} (\Delta \cap \Box (a,b))}{\operatorname{area of } \Delta}.$$

• If a < 0 or if b < 0 (or both), then area $(\Delta \cap \Box(a,b)) = \emptyset$, so F(a,b) = 0,

- If $(a,b) \in \Delta$, then area $(\Delta \cap \Box(a,b)) = a(b-\frac{1}{2}a)$, so F(a,b) = a(2b-a),
- If $0 \le b \le 1$, and a > b, then area $(\Delta \cap \Box(a,b)) = \frac{1}{2}b^2$, so $F(a,b) = b^2$,
- If $0 \le a \le 1$, and b > 1, then area $(\Delta \cap \Box(a,b)) = a \frac{1}{2}a^2$, so $F(a,b) = 2a a^2$,
- If both a > 1 and b > 1, then area $(\Delta \cap \Box(a,b)) = \frac{1}{2}$, so F(a,b) = 1.
- **9.15 b** Since $f(x,y) = \frac{\partial^2}{\partial x \, \partial y} F(x,y)$, we find for $(x,y) \in \Delta$ that f(x,y) = 2. Furthermore, f(x,y) = 0 for (x,y) outside the triangle Δ .
- **9.15 c** For x between 0 and 1,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{x}^{1} 2 \, dy = 2(1 - x).$$

For y between 0 and 1,

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dy = \int_{0}^{y} 2 \, dx = 2y.$$

10.6 a When c = 0, the joint distribution becomes

		a		
b	-1	0	1	P(Y = b)
-1	2/45	9/45	4/45	1/3
0	7/45	5/45	3/45	1/3
1	6/45	1/45	8/45	1/3
P(X = a)	1/3	1/3	1/3	1

We find $E[X] = (-1) \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = 0$, and similarly E[Y] = 0. By leaving out terms where either X = 0 or Y = 0, we find

$$E[XY] = (-1) \cdot (-1) \cdot \frac{2}{45} + (-1) \cdot 1 \cdot \frac{4}{45} + 1 \cdot (-1) \cdot \frac{6}{45} + 1 \cdot 1 \cdot \frac{8}{45} = 0,$$

which implies that Cov(X, Y) = E[XY] - E[X]E[Y] = 0.

10.6 b Note that the variables X and Y in part **b** are equal to the ones from part **a**, shifted by c. If we write U and V for the variables from **a**, then X = U + c and Y = V + c. According to the rule on the covariance under change of units, we then immediately find Cov(X,Y) = Cov(U+c,V+c) = Cov(U,V) = 0.

Alternatively, one could also compute the covariance from $\operatorname{Cov}(X,Y) = \operatorname{E}[XY] - \operatorname{E}[X] \operatorname{E}[Y]$. We find $\operatorname{E}[X] = (c-1) \cdot \frac{1}{3} + c \cdot \frac{1}{3} + (c+1) \cdot \frac{1}{3} = c$, and similarly $\operatorname{E}[Y] = c$. Since

$$\begin{split} \mathbf{E}\left[XY\right] &= (c-1)\cdot(c-1)\cdot\frac{2}{45} + (c-1)\cdot c\cdot\frac{9}{45} + (c+1)\cdot(c+1)\cdot\frac{4}{45} \\ &+ c\cdot(c-1)\cdot\frac{7}{45} + c\cdot c\cdot\frac{5}{45} + c\cdot(c+1)\cdot\frac{3}{45} \\ &+ (c+1)\cdot(c-1)\cdot\frac{6}{45} + (c+1)\cdot c\cdot\frac{1}{45} + (c+1)\cdot(c+1)\cdot\frac{8}{45} = c^2, \end{split}$$

we find $Cov(X, Y) = E[XY] - E[X]E[Y] = c^2 - c \cdot c = 0$.

10.6 c No, X and Y are not independent. For instance, P(X = c, Y = c + 1) = 1/45, which differs from P(X = c) P(Y = c + 1) = 1/9.

10.9 a If the aggregated blood sample tests negative, we do not have to perform additional tests, so that X_i takes on the value 1. If the aggregated blood sample tests positive, we have to perform 40 additional tests for the blood sample of each person in the group, so that X_i takes on the value 41. We first find that $P(X_i = 1) = P(\text{no infections in group of } 40) = (1 - 0.001)^{40} = 0.96$, and therefore $P(X_i = 41) = 1 - P(X_i = 1) = 0.04$.

10.9 b First compute $E[X_i] = 1 \cdot 0.96 + 41 \cdot 0.04 = 2.6$. The expected total number of tests is $E[X_1 + X_2 + \cdots + X_{25}] = E[X_1] + E[X_2] + \cdots + E[X_{25}] = 25 \cdot 2.6 = 65$. With the original procedure of blood testing, the total number of tests is $25 \cdot 40 = 1000$. On average the alternative procedure would only require 65 tests. Only with very small probability one would end up with doing more than 1000 tests, so the alternative procedure is better.

10.10 a We find

$$E[X] = \int_{-\infty}^{\infty} x f_X(x) dx = \int_0^3 \frac{2}{225} (9x^3 + 7x^2) dx = \frac{2}{225} \left[\frac{9}{4} x^4 + \frac{7}{3} x^3 \right]_0^3 = \frac{109}{50},$$

$$E[Y] = \int_{-\infty}^{\infty} y f_Y(y) dy = \int_1^2 \frac{1}{25} (3y^3 + 12y^2) dy = \frac{1}{25} \left[\frac{3}{4} y^4 + 4y^3 \right]_1^2 = \frac{157}{100},$$

so that E[X + Y] = E[X] + E[Y] = 15/4.

10.10 b We find

$$E[X^{2}] = \int_{-\infty}^{\infty} x^{2} f_{X}(x) dx = \int_{0}^{3} \frac{2}{225} (9x^{4} + 7x^{3}) dx = \frac{2}{225} \left[\frac{9}{5} x^{5} + \frac{7}{4} x^{4} \right]_{0}^{3} = \frac{1287}{250},$$

$$E[Y^{2}] = \int_{-\infty}^{\infty} y^{2} f_{Y}(y) dy = \int_{1}^{2} \frac{1}{25} (3y^{4} + 12y^{3}) dy = \frac{1}{25} \left[\frac{3}{5} y^{5} + 3y^{4} \right]_{1}^{2} = \frac{318}{125},$$

$$E[XY] = \int_{0}^{3} \int_{1}^{2} xy f(x, y) dy dx = \int_{0}^{3} \int_{1}^{2} \frac{2}{75} (2x^{3} y^{2} + x^{2} y^{3}) dy dx$$

$$= \frac{4}{75} \int_{0}^{3} x^{3} \left(\int_{1}^{2} y^{2} dy \right) dx + \frac{2}{75} \int_{0}^{3} x^{2} \left(\int_{1}^{2} y^{3} dy \right) dx$$

$$= \frac{4}{75} \int_{0}^{3} x^{3} dx + \frac{2}{75} \int_{0}^{15} \int_{0}^{3} x^{2} dx = \frac{171}{50},$$

so that $E[(X+Y)^2] = E[X^2] + E[Y^2] + 2E[XY] = 3633/250.$

$10.10\,c$ We find

$$\operatorname{Var}(X) = \operatorname{E}\left[X^{2}\right] - (\operatorname{E}[X])^{2} = \frac{1287}{250} - \left(\frac{109}{50}\right)^{2} = \frac{989}{2500},$$

$$\operatorname{Var}(Y) = \operatorname{E}\left[Y^{2}\right] - (\operatorname{E}[Y])^{2} = \frac{318}{125} - \left(\frac{157}{100}\right)^{2} = \frac{791}{10\,000},$$

$$\operatorname{Var}(X+Y) = \operatorname{E}\left[(X+Y)^{2}\right] - (\operatorname{E}[X+Y])^{2} = \frac{3633}{250} - \left(\frac{15}{4}\right)^{2} = \frac{939}{2000}.$$

Hence, Var(X) + Var(Y) = 0.4747, which differs from Var(X + Y) = 0.4695.

 $10.14\,\mathrm{a}$ By using the alternative expression for the covariance and linearity of expectations, we find

$$\begin{aligned} & \text{Cov}(X+s,Y+u) \\ &= \text{E}[(X+s)(Y+u)] - \text{E}[X+s] \, \text{E}[Y+u] \\ &= \text{E}[XY+sY+uX+su] - (\text{E}[X]+s)(\text{E}[Y]+u) \\ &= (\text{E}[XY]+s\text{E}[Y]+u\text{E}[X]+su) - (\text{E}[X] \, \text{E}[Y]+s\text{E}[Y]+u\text{E}[X]+su) \\ &= \text{E}[XY] - \text{E}[X] \, \text{E}[Y] \\ &= \text{Cov}(X,Y) \, . \end{aligned}$$

 $10.14\,\mathrm{b}$ By using the alternative expression for the covariance and the rule on expectations under change of units, we find

$$\begin{aligned} \operatorname{Cov}(rX, tY) &= \operatorname{E}[(rX)(tY)] - \operatorname{E}[rX] \operatorname{E}[tY] \\ &= \operatorname{E}[rtXY] - (r\operatorname{E}[X])(t\operatorname{E}[Y]) \\ &= rt\operatorname{E}[XY] - rt\operatorname{E}[X] \operatorname{E}[Y] \\ &= rt\left(\operatorname{E}[XY] - \operatorname{E}[X] \operatorname{E}[Y]\right) \\ &= rt\operatorname{Cov}(X, Y) \,. \end{aligned}$$

10.14 c First applying part a and then part b yields

$$Cov(rX + s, tY + u) = Cov(rX, tY) = rtCov(X, Y)$$
.

10.18 First note that $X_1 + X_2 + \cdots + X_N$ is the sum of all numbers, which is a nonrandom constant. Therefore, $\operatorname{Var}(X_1 + X_2 + \cdots + X_N) = 0$. In Section 9.3 we argued that, although we draw without replacement, each X_i has the same distribution. By the same reasoning, we find that each pair (X_i, X_j) , with $i \neq j$, has the same joint distribution, so that $\operatorname{Cov}(X_i, X_j) = \operatorname{Cov}(X_1, X_2)$ for all pairs with $i \neq j$. Direct application of Exercise 10.17 with $\sigma^2 = (N-1)(N+1)$ and $\gamma = \operatorname{Cov}(X_1, X_2)$ gives

$$0 = \operatorname{Var}(X_1 + X_2 + \dots + X_N) = N \cdot \frac{(N-1)(N+1)}{12} + N(N-1)\operatorname{Cov}(X_1, X_2).$$

Solving this identity gives $Cov(X_1, X_2) = -(N+1)/12$.

11.2 a By using the rule on addition of two independent discrete random variables, we have

$$P(X + Y = k) = p_Z(k) = \sum_{\ell=0}^{\infty} p_X(k - \ell) p_Y(\ell).$$

Because $p_X(a) = 0$ for $a \le -1$, all terms with $\ell \ge k + 1$ vanish, so that

$$P(X + Y = k) = \sum_{\ell=0}^{k} \frac{1^{k-\ell}}{(k-\ell)!} e^{-1} \cdot \frac{1^{\ell}}{\ell!} e^{-1} = \frac{e^{-2}}{k!} \sum_{\ell=0}^{k} {k \choose \ell} = \frac{2^{k}}{k!} e^{-2},$$

also using $\sum_{\ell=0}^{k} {k \choose \ell} = 2^k$ in the last equality.

11.2 b Similar to part **a**, by using the rule on addition of two independent discrete random variables and leaving out terms for which $p_X(a) = 0$, we have

$$\mathrm{P}(X+Y=k) = \sum_{\ell=0}^k \frac{\lambda^{k-\ell}}{(k-\ell)!} \mathrm{e}^{-\lambda} \cdot \frac{\mu^\ell}{\ell!} \mathrm{e}^{-\mu} = \frac{(\lambda+\mu)^k}{k!} \mathrm{e}^{-(\lambda+\mu)} \sum_{\ell=0}^k \binom{k}{\ell} \frac{\lambda^{k-\ell} \mu^\ell}{(\lambda+\mu)^k}.$$

Next, write

$$\frac{\lambda^{k-\ell}\mu^\ell}{(\lambda+\mu)^k} = \left(\frac{\mu}{\lambda+\mu}\right)^\ell \left(\frac{\lambda}{\lambda+\mu}\right)^{k-\ell} = \left(\frac{\mu}{\lambda+\mu}\right)^\ell \left(1-\frac{\mu}{\lambda+\mu}\right)^{k-\ell} = p^\ell (1-p)^{k-\ell}$$

with $p = \mu/(\lambda + \mu)$. This means that

$$P(X + Y = k) = \frac{(\lambda + \mu)^k}{k!} e^{-(\lambda + \mu)} \sum_{\ell=0}^k {k \choose \ell} p^{\ell} (1 - p)^{k-\ell} = \frac{(\lambda + \mu)^k}{k!} e^{-(\lambda + \mu)},$$

using that $\sum_{\ell=0}^{k} {k \choose \ell} p^{\ell} (1-p)^{k-\ell} = 1$.

11.4 a From the fact that X has an N(2,5) distribution, it follows that $\mathrm{E}[X]=2$ and $\mathrm{Var}(X)=5$. Similarly, $\mathrm{E}[Y]=5$ and $\mathrm{Var}(Y)=9$. Hence by linearity of expectations,

$$E[Z] = E[3X - 2Y + 1] = 3E[X] - 2E[Y] + 1 = 3 \cdot 2 - 2 \cdot 5 + 1 = -3.$$

By the rules for the variance and covariance,

$$Var(Z) = 9Var(X) + 4Var(Y) - 12Cov(X, Y) = 9 \cdot 5 + 4 \cdot 9 - 12 \cdot 0 = 81,$$

using that Cov(X, Y) = 0, due to independence of X and Y.

- 11.4 b The random variables 3X and -2Y + 1 are independent and, according to the rule for the normal distribution under a change of units (page 106), it follows that they both have a normal distribution. Next, the sum rule for independent normal random variables then yields that Z = (3X) + (-2Y + 1) also has a normal distribution. Its parameters are the expectation and variance of Z. From \mathbf{a} it follows that Z has an N(-3,81) distribution.
- **11.4 c** From **b** we know that Z has an N(-3,81) distribution, so that (Z+3)/9 has a standard normal distribution. Therefore

$$P(Z \le 6) = P\left(\frac{Z+3}{9} \le \frac{6+3}{9}\right) = \Phi(1),$$

where Φ is the standard normal distribution function. From Table B.1 we find that $\Phi(1) = 1 - 0.1587 = 0.8413$.

11.9 a According to the product rule on page 160,

$$f_Z(z) = \int_1^z f_Y\left(\frac{z}{x}\right) f_X(x) \frac{1}{x} dx = \int_1^z \frac{1}{\left(\frac{z}{x}\right)^2} \frac{3}{x^4} \frac{1}{x} dx$$
$$= \frac{3}{z^2} \int_1^z \frac{1}{x^3} dx = \frac{3}{z^2} \left[-\frac{1}{2} x^{-2} \right]_1^z = \frac{3}{2} \frac{1}{z^2} \left(1 - \frac{1}{z^2} \right)$$
$$= \frac{3}{2} \left(\frac{1}{z^2} - \frac{1}{z^4} \right).$$

11.9 b According to the product rule,

$$f_Z(z) = \int_1^z f_Y\left(\frac{z}{x}\right) f_X(x) \frac{1}{x} dx = \int_1^z \frac{\beta}{\left(\frac{z}{x}\right)^{\beta+1}} \frac{\alpha}{x^{\alpha+1}} \frac{1}{x} dx$$

$$= \frac{\alpha\beta}{z^{\beta+1}} \int_1^z x^{\beta-\alpha-1} dx = \frac{\alpha\beta}{z^{\beta+1}} \left[\frac{x^{\beta-\alpha}}{\beta-\alpha}\right]_1^z = \frac{\alpha\beta}{\alpha-\beta} \frac{1}{z^{\beta+1}} \left(1 - z^{\beta-\alpha}\right)$$

$$= \frac{\alpha\beta}{\beta-\alpha} \left(\frac{1}{z^{\beta+1}} - \frac{1}{z^{\alpha+1}}\right).$$

- 12.1 e This is certainly open to discussion. Bankruptcies: no (they come in clusters, don't they?). Eggs: no (I suppose after one egg it takes the chicken some time to produce another). Examples 3 and 4 are the best candidates. Example 5 could be modeled by the Poisson process if the crossing is not a dangerous one; otherwise authorities might take measures and destroy the homogeneity.
- **12.6** The expected numbers of flaws in 1 meter is 100/40 = 2.5, and hence the number of flaws X has a Pois(2.5) distribution. The answer is $P(X = 2) = \frac{1}{2!}(2.5)^2 e^{-2.5} = 0.256$.
- **12.7 a** It is reasonable to estimate λ with (nr. of cars)/(total time in sec.) = 0.192.
- **12.7 b** 19/120 = 0.1583, and if $\lambda = 0.192$ then $P(N(10) = 0) = e^{-0.192 \cdot 10} = 0.147$.
- **12.7 c** P(N(10) = 10) with λ from **a** seems a reasonable approximation of this probability. It equals $e^{-1.92} \cdot (0.192 \cdot 10)^{10}/10! = 2.71 \cdot 10^{-5}$.
- **12.11** Following the hint, we obtain:

$$P(N([0, s] = k, N([0, 2s]) = n) = P(N([0, s]) = k, N((s, 2s]) = n - k)$$

$$= P(N([0, s]) = k) \cdot P(N((s, 2s]) = n - k)$$

$$= (\lambda s)^{k} e^{-\lambda s} / (k!) \cdot (\lambda s)^{n-k} e^{-\lambda s} / ((n - k)!)$$

$$= (\lambda s)^{n} e^{-\lambda 2s} / (k!(n - k)!).$$

So

$$P(N([0, s]) = k | N([0, 2s]) = n) = \frac{P(N([0, s]) = k, N([0, 2s]) = n)}{P(N([0, 2s]) = n)}$$
$$= n!/(k!(n - k)!) \cdot (\lambda s)^n/(2\lambda s)^n$$
$$= n!/(k!(n - k)!) \cdot (1/2)^n.$$

This holds for k = 0, ..., n, so we find the $Bin(n, \frac{1}{2})$ distribution.

- **13.2 a** From the formulas for the U(a,b) distribution, substituting a=-1/2 and b=1/2, we derive that $\mathrm{E}[X_i]=0$ and $\mathrm{Var}(X_i)=1/12$.
- **13.2 b** We write $S = X_1 + X_2 + \cdots + X_{100}$, for which we find $E[S] = E[X_1] + \cdots + E[X_{100}] = 0$ and, by independence, $Var(S) = Var(X_1) + \cdots + Var(X_{100}) = 100 \cdot \frac{1}{12} = 100/12$. We find from Chebyshev's inequality:

$$P(|S| > 10) = P(|S - 0| > 10) \le \frac{Var(S)}{10^2} = \frac{1}{12}.$$

13.4 a Because X_i has a Ber(p) distribution, $E[X_i] = p$ and $Var(X_i) = p(1-p)$, and so $E[\bar{X}_n] = p$ and $Var(\bar{X}_n) = Var(X_i)/n = p(1-p)/n$. By Chebyshev's inequality:

$$P(|\bar{X}_n - p| \ge 0.2) \le \frac{p(1-p)/n}{(0.2)^2} = \frac{25p(1-p)}{n}.$$

The right-hand side should be at most 0.1 (note that we switched to the complement). If p=1/2 we therefore require $25/(4n) \le 0.1$, or $n \ge 25/(4 \cdot 0.1) = 62.5$, i.e., $n \ge 63$. Now, suppose $p \ne 1/2$, using n=63 and $p(1-p) \le 1/4$ we conclude that $25p(1-p)/n \le 25 \cdot (1/4)/63 = 0.0992 < 0.1$, so (because of the inequality) the computed value satisfies for other values of p as well.

13.4 b For arbitrary a > 0 we conclude from Chebyshev's inequality:

$$P(|\bar{X}_n - p| \ge a) \le \frac{p(1-p)/n}{a^2} = \frac{p(1-p)}{na^2} \le \frac{1}{4na^2},$$

where we used $p(1-p) \le 1/4$ again. The question now becomes: when a=0.1, for what n is $1/(4na^2) \le 0.1$? We find: $n \ge 1/(4 \cdot 0.1 \cdot (0.1)^2) = 250$, so n=250 is large enough.

- **13.4 c** From part **a** we know that an error of size 0.2 or occur with a probability of at most 25/4n, regardless of the values of p. So, we need $25/(4n) \le 0.05$, i.e., $n \ge 25/(4 \cdot 0.05) = 125$.
- 13.4 d We compute $P(\bar{X}_n \leq 0.5)$ for the case that p = 0.6. Then $E[\bar{X}_n] = 0.6$ and $Var(\bar{X}_n) = 0.6 \cdot 0.4/n$. Chebyshev's inequality cannot be used directly, we need an intermediate step: the probability that $\bar{X}_n \leq 0.5$ is contained in the event "the prediction is off by at least 0.1, in either direction." So

$$P(\bar{X}_n \le 0.5) \le P(|\bar{X}_n - 0.6| \ge 0.1) \le \frac{0.6 \cdot 0.4/n}{(0.1)^2} = \frac{24}{n}$$

For $n \ge 240$ this probability is 0.1 or smaller.

- 13.9 a The statement looks like the law of large numbers, and indeed, if we look more closely, we see that T_n is the average of an i.i.d. sequence: define $Y_i = X_i^2$, then $T_n = \bar{Y}_n$. The law of large numbers now states: if \bar{Y}_n is the average of n independent random variables with expectation μ and variance σ^2 , then for any $\varepsilon > 0$: $\lim_{n \to \infty} P(|\bar{Y}_n \mu| > \varepsilon) = 0$. So, if $a = \mu$ and the variance σ^2 is finite, then it is true.
- **13.9 b** We compute expectation and variance of Y_i : $E[Y_i] = E[X_i^2] = \int_{-1}^1 \frac{1}{2}x^2 dx = 1/3$. And: $E[Y_i^2] = E[X_i^4] = \int_{-1}^1 \frac{1}{2}x^4 dx = 1/5$, so $Var(Y_i) = 1/5 (1/3)^2 = 4/45$. The variance is finite, so indeed, the law of large numbers applies, and the statement is true if $a = E[X_i^2] = 1/3$.
- **14.3** First note that $P(|\bar{X}_n p| < 0.2) = 1 P(\bar{X}_n p \ge 0.2) P(\bar{X}_n p \le -0.2)$. Because $\mu = p$ and $\sigma^2 = p(1 p)$, we find, using the central limit theorem:

$$P(\bar{X}_n - p \ge 0.2) = P\left(\sqrt{n} \frac{\bar{X}_n - p}{\sqrt{p(1-p)}} \ge \sqrt{n} \frac{0.2}{\sqrt{p(1-p)}}\right)$$
$$= P\left(Z_n \ge \sqrt{n} \frac{0.2}{\sqrt{p(1-p)}}\right) \approx P\left(Z \ge \sqrt{n} \frac{0.2}{\sqrt{p(1-p)}}\right),$$

where Z has an N(0,1) distribution. Similarly,

$$P(\bar{X}_n - p \le -0.2) \approx P\left(Z \ge \sqrt{n} \frac{0.2}{\sqrt{p(1-p)}}\right),$$

so we are looking for the smallest positive integer n such that

$$1 - 2P\left(Z \ge \sqrt{n} \frac{0.2}{\sqrt{p(1-p)}}\right) \ge 0.9,$$

i.e., the smallest positive integer n such that

$$P\left(Z \ge \sqrt{n} \frac{0.2}{\sqrt{p(1-p)}}\right) \le 0.05.$$

From Table B.1 it follows that

$$\sqrt{n} \frac{0.2}{\sqrt{p(1-p)}} \ge 1.645.$$

Since $p(1-p) \le 1/4$ for all p between 0 and 1, we see that n should be at least 17.

14.5 In Section 4.3 we have seen that X has the same probability distribution as $X_1 + X_2 + \cdots + X_n$, where X_1, X_2, \ldots, X_n are independent Ber(p) distributed random variables. Recall that $E[X_i] = p$, and $Var(X_i) = p(1-p)$. But then we have for any real number a that

$$P\left(\frac{X - np}{\sqrt{np(1 - p)}} \le a\right) = P\left(\frac{X_1 + X_2 + \dots + X_n - np}{\sqrt{np(1 - p)}} \le a\right) = P(Z_n \le a);$$

see also (14.1). It follows from the central limit theorem that

$$P\left(\frac{X-np}{\sqrt{np(1-p)}} \le a\right) \approx \Phi(a),$$

i.e., the random variable $\frac{X-np}{\sqrt{np(1-p)}}$ has a distribution that is approximately standard normal.

14.9 a The probability that for a chain of at least 50 meters more than 1002 links are needed is the same as the probability that a chain of 1002 chains is shorter than 50 meters. Assuming that the random variables $X_1, X_2, \ldots, X_{1002}$ are independent, and using the central limit theorem, we have that

$$P(X_1 + X_2 + \dots + X_{1002} < 5000) \approx P\left(Z < \sqrt{1002} \cdot \frac{\frac{5000}{1002} - 5}{\sqrt{0.04}}\right) = 0.0571,$$

where Z has an N(0,1) distribution. So about 6% of the customers will receive a free chain.

14.9 b We now have that

$$P(X_1 + X_2 + \cdots + X_{1002} < 5000) \approx P(Z < 0.0032)$$

which is slightly larger than 1/2. So about half of the customers will receive a free chain. Clearly something has to be done: a seemingly minor change of expected value has major consequences!

15.6 Because $(2-0) \cdot 0.245 + (4-2) \cdot 0.130 + (7-4) \cdot 0.050 + (11-7) \cdot 0.020 + (15-11) \cdot 0.005 = 1$, there are no data points outside the listed bins. Hence

$$F_n(7) = \frac{\text{number of } x_i \le 7}{n}$$

$$= \frac{\text{number of } x_i \text{ in bins } (0, 2], (2, 4] \text{ and } (4, 7]}{n}$$

$$= \frac{n \cdot (2 - 0) \cdot 0.245 + n \cdot (4 - 2) \cdot 0.130 + n \cdot (7 - 4) \cdot 0.050}{n}$$

$$= 0.490 + 0.260 + 0.150 = 0.9.$$

15.11 The height of the histogram on a bin (a, b] is

$$\frac{\text{number of } x_i \text{ in } (a, b]}{n(b - a)} = \frac{(\text{number of } x_i \le b) - (\text{number of } x_i \le a)}{n(b - a)}$$
$$= \frac{F_n(b) - F_n(a)}{b - a}.$$

15.12 a By inserting the expression for $f_{n,h}(t)$, we get

$$\int_{-\infty}^{\infty} t \cdot f_{n,h}(t) dt = \int_{-\infty}^{\infty} t \cdot \frac{1}{nh} \sum_{i=1}^{n} K\left(\frac{t - x_i}{h}\right) dt$$
$$= \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{t}{h} K\left(\frac{t - x_i}{h}\right) dt.$$

For each i fixed we find with change of integration variables $u = (t - x_i)/h$,

$$\int_{-\infty}^{\infty} \frac{t}{h} K\left(\frac{t - x_i}{h}\right) dt = \int_{-\infty}^{\infty} (x_i + hu) K(u) du$$
$$= x_i \int_{-\infty}^{\infty} K(u) du + h \int_{-\infty}^{\infty} u K(u) du = x_i,$$

using that K integrates to one and that $\int_{-\infty}^{\infty} uK\left(u\right) du = 0$, because K is symmetric. Hence

$$\int_{-\infty}^{\infty} t \cdot f_{n,h}(t) dt = \frac{1}{n} \sum_{i=1}^{n} \int_{-\infty}^{\infty} \frac{t}{h} K\left(\frac{t - x_i}{h}\right) dt = \frac{1}{n} \sum_{i=1}^{n} x_i.$$

15.12 b By means of similar reasoning

$$\int_{-\infty}^{\infty} t^2 \cdot f_{n,h}(t) dt = \int_{-\infty}^{\infty} t^2 \cdot \frac{1}{nh} \sum_{i=1}^n K\left(\frac{t - x_i}{h}\right) dt$$
$$= \frac{1}{n} \sum_{i=1}^n \int_{-\infty}^{\infty} \frac{t^2}{h} K\left(\frac{t - x_i}{h}\right) dt.$$

For each i:

$$\int_{-\infty}^{\infty} \frac{t^2}{h} K\left(\frac{t - x_i}{h}\right) dt$$

$$= \int_{-\infty}^{\infty} (x_i + hu)^2 K(u) du = \int_{-\infty}^{\infty} (x_i^2 + 2x_i hu + h^2 u^2) K(u) du$$

$$= x_i^2 \int_{-\infty}^{\infty} K(u) du + 2x_i h \int_{-\infty}^{\infty} u K(u) du + h^2 \int_{-\infty}^{\infty} u^2 K(u) du$$

$$= x_i^2 + h^2 \int_{-\infty}^{\infty} u^2 K(u) du,$$

again using that K integrates to one and that K is symmetric.

16.3 a Because n=24, the sample median is the average of the 12th and 13th elements. Since these are both equal to 70, the sample median is also 70. The lower quartile is the pth empirical quantile for p=1/4. We get $k=\lfloor p(n+1)\rfloor=6$, so that

$$q_n(0.25) = x_{(6)} + 0.25 \cdot (x_{(7)} - x_{(6)}) = 66 + 0.25 \cdot (67 - 66) = 66.25$$

Similarly, the upper quartile is the pth empirical quantile for p = 3/4:

$$q_n(0.75) = x_{(18)} + 0.75 \cdot (x_{(19)} - x_{(18)}) = 75 + 0.75 \cdot (75 - 75) = 75.$$

16.3 b In part **a** we found the sample median and the two quartiles. From this we compute the IQR: $q_n(0.75) - q_n(0.25) = 75 - 66.25 = 8.75$. This means that

$$q_n(0.25) - 1.5 \cdot IQR = 66.25 - 1.5 \cdot 8.75 = 53.125,$$

 $q_n(0.75) + 1.5 \cdot IQR = 75 + 1.5 \cdot 8.75 = 88.125.$

Hence, the last element below 88.125 is 88, and the first element above 53.125 is 57. Therefore, the upper whisker runs until 88 and the lower whisker until 57, with two elements 53 and 31 below. This leads to the following boxplot:

- 16.3 c The values 53 and 31 are outliers. Value 31 is far away from the bulk of the data and appears to be an *extreme* outlier.
- **16.6 a** Yes, we find $\bar{x} = (1+5+9)/3 = 15/3 = 5$, $\bar{y} = (2+4+6+8)/4 = 20/4 = 5$, so that $(\bar{x} + \bar{y})/2 = 5$. The average for the combined dataset is also equal to 5: (15+20)/7 = 5.
- **16.6 b** The mean of $x_1, x_2, ..., x_n, y_1, y_2, ..., y_m$ equals

$$\frac{x_1+\cdots+x_n+y_1+\cdots+y_m}{n+m} = \frac{n\bar{x}_n+m\bar{y}_m}{n+m} = \frac{n}{n+m}\,\bar{x}_n + \frac{m}{n+m}\,\bar{y}_m.$$

In general, this is not equal to $(\bar{x}_n + \bar{y}_m)/2$. For instance, replace 1 in the first dataset by 4. Then $\bar{x}_n = 6$ and $\bar{y}_m = 5$, so that $(\bar{x}_n + \bar{y}_m)/2 = 5\frac{1}{2}$. However, the average of the combined dataset is $38/7 = 5\frac{2}{7}$.

- **16.6 c** Yes, m = n implies n/(n+m) = m/(n+m) = 1/2. From the expressions found in part **b** we see that the sample mean of the combined dataset equals $(\bar{x}_n + \bar{y}_m)/2$.
- 16.8 The ordered combined dataset is 1, 2, 4, 5, 6, 8, 9, so that the sample median equals 5. The absolute deviations from 5 are: 4, 3, 1, 0, 1, 3, 4, and if we put them in order: 0, 1, 1, 3, 3, 4, 4. The MAD is the sample median of the absolute deviations, which is 3.
- 16.15 First write

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}_n)^2=\frac{1}{n}\sum_{i=1}^{n}(x_i^2-2\bar{x}_nx_i+\bar{x}_n^2)=\frac{1}{n}\sum_{i=1}^{n}x_i^2-2\bar{x}_n\frac{1}{n}\sum_{i=1}^{n}x_i+\frac{1}{n}\sum_{i=1}^{n}\bar{x}_n^2.$$

Next, by inserting

$$\frac{1}{n}\sum_{i=1}^{n}x_{i} = \bar{x}_{n}$$
 and $\frac{1}{n}\sum_{i=1}^{n}\bar{x}_{n}^{2} = \frac{1}{n}\cdot n\cdot \bar{x}_{n}^{2} = \bar{x}_{n}^{2}$,

we find

$$\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{x}_n)^2=\frac{1}{n}\sum_{i=1}^{n}x_i^2-2\bar{x}_n^2+\bar{x}_n^2=\frac{1}{n}\sum_{i=1}^{n}x_i^2-\bar{x}_n^2.$$

- 17.3 a The model distribution corresponds to the number of women in a queue. A queue has 10 positions. The occurrence of a woman in any position is independent of the occurrence of a woman in other positions. At each position a woman occurs with probability p. Counting the occurrence of a woman as a "success," the number of women in a queue corresponds to the number of successes in 10 independent experiments with probability p of success and is therefore modeled by a Bin(10,p) distribution.
- 17.3 b We have 100 queues and the number of women x_i in the *i*th queue is a realization of a Bin(10,p) random variable. Hence, according to Table 17.2, the average number of women \bar{x}_{100} resembles the expectation 10p of the Bin(10,p) distribution. We find $\bar{x}_{100} = 435/100 = 4.35$, so an estimate for p is 4.35/10 = 0.435.
- 17.7 a If we model the series of disasters by a Poisson process, then as a property of the Poisson process, the interdisaster times should follow an exponential distribution (see Section 12.3). This is indeed confirmed by the histogram and empirical distribution of the observed interdisaster times; they resemble the probability density and distribution function of an exponential distribution.
- 17.7 b The average length of a time interval is $40\,549/190=213.4$ days. Following Table 17.2 this should resemble the expectation of the $Exp(\lambda)$ distribution, which is $1/\lambda$. Hence, as an estimate for λ we could take $190/40\,549=0.00469$.
- 17.9 a A (perfect) cylindrical cone with diameter d (at the base) and height h has volume $\pi d^2 h/12$, or about $0.26 d^2 h$. The effective wood of a tree is the trunk without the branches. Since the trunk is similar to a cylindrical cone, one can expect a linear relation between the effective wood and $d^2 h$.

17.9 b We find

$$\begin{split} \bar{z}_n &= \frac{\sum y_i/x_i}{n} = \frac{9.369}{31} = 0.3022 \\ \bar{y}/\bar{x} &= \frac{(\sum y_i)/n}{(\sum x_i)/n} = \frac{26.486/31}{87.456/31} = 0.3028 \\ \text{least squares} &= \frac{\sum x_i y_i}{\sum x_i^2} = \frac{95.498}{314.644} = 0.3035. \end{split}$$

- **18.3 a** Note that generating from the empirical distribution function is the same as choosing one of the elements of the original dataset with equal probability. Hence, an element in the bootstrap dataset equals 0.35 with probability 0.1. The number of ways to have exactly three out of ten elements equal to 0.35 is $\binom{10}{3}$, and each has probability $(0.1)^3(0.9)^7$. Therefore, the probability that the bootstrap dataset has exactly three elements equal to 0.35 is equal to $\binom{10}{3}(0.1)^3(0.9)^7 = 0.0574$.
- 18.3 b Having at most two elements less than or equal to 0.38 means that 0, 1, or 2 elements are less than or equal to 0.38. Five elements of the original dataset are smaller than or equal to 0.38, so that an element in the bootstrap dataset is less than or equal to 0.38 with probability 0.5. Hence, the probability that the bootstrap dataset has at most two elements less than or equal to 0.38 is equal to $(0.5)^{10} + \binom{10}{1}(0.5)^{10} + \binom{10}{2}(0.5)^{10} = 0.0547$.
- **18.3 c** Five elements of the dataset are smaller than or equal to 0.38 and two are greater than 0.42. Therefore, obtaining a bootstrap dataset with two elements less than or equal to 0.38, and the other elements greater than 0.42 has probability $(0.5)^2 (0.2)^8$. The number of such bootstrap datasets is $\binom{10}{2}$. So the answer is $\binom{10}{2} (0.5)^2 (0.2)^8 = 0.000029$.
- **18.7** For the parametric bootstrap, we must estimate the parameter θ by $\hat{\theta} = (n+1)m_n/n$, and generate bootstrap samples from the $U(0,\hat{\theta})$ distribution. This distribution has expectation $\mu_{\hat{\theta}} = \hat{\theta}/2 = (n+1)m_n/(2n)$. Hence, for each bootstrap sample $x_1^*, x_2^*, \ldots, x_n^*$ compute $\bar{x}_n^* \mu_{\hat{\theta}} = \bar{x}_n^* (n+1)m_n/(2n)$.

Note that this is different from the *empirical* bootstrap simulation, where one would estimate μ by \bar{x}_n and compute $\bar{x}_n^* - \bar{x}_n$.

- 18.8 a Since we know nothing about the distribution of the interfailure times, we estimate F by the empirical distribution function F_n of the software data and we estimate the expectation μ of F by the expectation $\mu^* = \bar{x}_n = 656.8815$ of F_n . The bootstrapped centered sample mean is the random variable $\bar{X}_n^* 656.8815$. The corresponding empirical bootstrap simulation is described as follows:
- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \ldots, x_n^*$ from F_n , i.e., draw with replacement 135 numbers from the software data.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_n^* - 656.8815$$

where \bar{x}_n is the sample mean of $x_1^*, x_2^*, \dots, x_n^*$.

Repeat steps 1 and 2 one thousand times.

18.8 b Because the interfailure times are now assumed to have an $Exp(\lambda)$ distribution, we must estimate λ by $\hat{\lambda} = 1/\bar{x}_n = 0.0015$ and estimate F by the distribution

function of the Exp(0.0015) distribution. Estimate the expectation $\mu = 1/\lambda$ of the $Exp(\lambda)$ distribution by $\mu^* = 1/\hat{\lambda} = \bar{x}_n = 656.8815$. Also now, the bootstrapped centered sample mean is the random variable $\bar{X}_n^* - 656.8815$. The corresponding parametric bootstrap simulation is described as follows:

- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from the Exp(0.0015) distribution.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_{n}^{*} - 656.8815,$$

where \bar{x}_n is the sample mean of $x_1^*, x_2^*, \dots, x_n^*$.

Repeat steps 1 and 2 one thousand times. We see that in this simulation the bootstrapped centered sample mean is the *same* in both cases: $\bar{X}_n^* - \bar{x}_n$, but the corresponding simulation procedures differ in step 1.

- **18.8 c** Estimate λ by $\hat{\lambda} = \ln 2/m_n = 0.0024$ and estimate F by the distribution function of the Exp(0.0024) distribution. Estimate the expectation $\mu = 1/\lambda$ of the $Exp(\lambda)$ distribution by $\mu^* = 1/\hat{\lambda} = 418.3816$. The corresponding parametric bootstrap simulation is described as follows:
- 1. Generate a bootstrap dataset $x_1^*, x_2^*, \dots, x_n^*$ from the Exp(0.0024) distribution.
- 2. Compute the centered sample mean for the bootstrap dataset:

$$\bar{x}_{n}^{*} - 418.3816,$$

where \bar{x}_n is the sample mean of $x_1^*, x_2^*, \dots, x_n^*$.

Repeat steps 1 and 2 one thousand times. We see that in this parametric bootstrap simulation the bootstrapped centered sample mean is different from the one in the empirical bootstrap simulation: $\bar{X}_n^* - (\ln 2)/m_n$ instead of $\bar{X}_n^* - \bar{x}_n$.

19.1 a From the formulas for the expectation and variance of uniform random variables we know that $\mathrm{E}[X_i] = 0$ and $\mathrm{Var}(X_i) = (2\theta)^2/12 = \theta^2/3$. Hence $\mathrm{E}[X_i^2] = \mathrm{Var}(X_i) + (\mathrm{E}[X_i])^2 = \theta^2/3$. Therefore, by linearity of expectations

$$E[T] = \frac{3}{n} \left(\frac{\theta^2}{3} + \dots + \frac{\theta^2}{3} \right) = \frac{3}{n} \cdot n \cdot \frac{\theta^2}{3} = \theta^2.$$

Since $E[T] = \theta^2$, the random variable T is an unbiased estimator for θ^2 .

19.1 b The function $g(x) = -\sqrt{x}$ is a strictly convex function, because $g''(x) = (x^{-3/4})/4 > 0$. Therefore, by Jensen's inequality, $-\sqrt{\operatorname{E}[T]} < -\operatorname{E}\left[\sqrt{T}\right]$. Since, from part **a** we know that $\operatorname{E}[T] = \theta^2$, this means that $\operatorname{E}\left[\sqrt{T}\right] < \theta$. In other words, \sqrt{T} is a biased estimator for θ , with negative bias.

19.8 From the model assumptions it follows that $E[Y_i] = \beta x_i$ for each i. Using linearity of expectations, this implies that

$$E[B_{1}] = \frac{1}{n} \left(\frac{E[Y_{1}]}{x_{1}} + \dots + \frac{E[Y_{n}]}{x_{n}} \right) = \frac{1}{n} \left(\frac{\beta x_{1}}{x_{1}} + \dots + \frac{\beta x_{n}}{x_{n}} \right) = \beta,$$

$$E[B_{2}] = \frac{E[Y_{1}] + \dots + E[Y_{n}]}{x_{1} + \dots + x_{n}} = \frac{\beta x_{1} + \dots + \beta x_{n}}{x_{1} + \dots + x_{n}} = \beta,$$

$$E[B_{3}] = \frac{x_{1}E[Y_{1}] + \dots + x_{n}E[Y_{n}]}{x_{1}^{2} + \dots + x_{n}^{2}} = \frac{\beta x_{1}^{2} + \dots + \beta x_{n}^{2}}{x_{1}^{2} + \dots + x_{n}^{2}} = \beta.$$

- **20.2** a Compute the mean squared errors of S and T: $\mathrm{MSE}(S) = \mathrm{Var}(S) + [\mathrm{bias}(S)]^2 = 40 + 0 = 40$; $\mathrm{MSE}(T) = \mathrm{Var}(T) + [\mathrm{bias}(T)]^2 = 4 + 9 = 13$. We prefer T, because it has a smaller MSE.
- **20.2 b** Compute the mean squared errors of S and T: MSE(S) = 40, as in **a**; $MSE(T) = Var(T) + [bias(T)]^2 = 4 + a^2$. So, if a < 6: prefer T. If $a \ge 6$: prefer S. The preferences are based on the MSE criterion.
- **20.3** $Var(T_1) = 1/(n\lambda^2)$, $Var(T_2) = 1/\lambda^2$; hence we prefer T_1 , because of its smaller variance.
- 20.8 a This follows directly from linearity of expectations:

$$E[T] = E[r\bar{X}_n + (1-r)\bar{Y}_m] = rE[\bar{X}_n] + (1-r)E[\bar{Y}_m] = r\mu + (1-r)\mu = \mu.$$

20.8 b Using that \bar{X}_n and \bar{Y}_m are independent, we find $MSE(T)=Var(T)=r^2Var(\bar{X}_n)+(1-r)^2Var(\bar{Y}_m)=r^2\cdot\sigma^2/n+(1-r)^2\cdot\sigma^2/m$.

To find the minimum of this parabola we differentiate with respect to r and equate the result to 0: 2r/n - 2(1-r)/m = 0. This gives the minimum value: 2rm - 2n(1-r) = 0 or r = n/(n+m).

21.1 Setting $X_i = j$ if red appears in the ith experiment for the first time on the jth throw, we have that X_1 , X_2 , and X_3 are independent Geo(p) distributed random variables, where p is the probability that red appears when throwing the selected die. The likelihood function is

$$L(p) = P(X_1 = 3, X_2 = 5, X_3 = 4) = (1 - p)^2 p \cdot (1 - p)^4 p \cdot (1 - p)^3 p$$

= $p^3 (1 - p)^9$,

so for D_1 one has that $L(p) = L(\frac{5}{6}) = \left(\frac{5}{6}\right)^3 \left(1 - \frac{5}{6}\right)^9$, whereas for D_2 one has that $L(p) = L(\frac{1}{6}) = \left(\frac{1}{6}\right)^3 \left(1 - \frac{1}{6}\right)^9 = 5^6 \cdot L(\frac{5}{6})$. It is very likely that we picked D_2 .

21.4 a The likelihood $L(\mu)$ is given by

$$L(\mu) = P(X_1 = x_1, \dots, X_n = x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$
$$= \frac{\mu^{x_1}}{x_1!} \cdot e^{-\mu} \cdots \frac{\mu^{x_n}}{x_n!} \cdot e^{-\mu} = \frac{e^{-n\mu}}{x_1! \cdots x_n!} \mu^{x_1 + x_2 + \dots + x_n}.$$

21.4 b We find that the loglikelihood $\ell(\mu)$ is given by

$$\ell(\mu) = \left(\sum_{i=1}^{n} x_i\right) \ln(\mu) - \ln\left(x_1! \cdots x_n!\right) - n\mu.$$

Hence

$$\frac{\mathrm{d}\ell}{\mathrm{d}\mu} = \frac{\sum x_i}{\mu} - n,$$

and we find—after checking that we indeed have a maximum!—that \bar{x}_n is the maximum likelihood estimate for μ .

21.4 c In **b** we have seen that \bar{x}_n is the maximum likelihood estimate for μ . Due to the invariance principle from Section 21.4 we thus find that $e^{-\bar{x}_n}$ is the maximum likelihood estimate for $e^{-\mu}$.

21.8 a The likelihood $L(\theta)$ is given by

$$L(\theta) = C \cdot \left(\frac{1}{4}(2+\theta)\right)^{1997} \cdot \left(\frac{1}{4}\theta\right)^{32} \cdot \left(\frac{1}{4}(1-\theta)\right)^{906} \cdot \left(\frac{1}{4}(1-\theta)\right)^{904}$$
$$= \frac{C}{4^{3839}} \cdot (2+\theta)^{1997} \cdot \theta^{32} \cdot (1-\theta)^{1810},$$

where C is the number of ways we can assign 1997 starchy-greens, 32 sugary-whites, 906 starchy-whites, and 904 sugary-greens to 3839 plants. Hence the loglikelihood $\ell(\theta)$ is given by

$$\ell(\theta) = \ln(C) - 3839\ln(4) + 1997\ln(2+\theta) + 32\ln(\theta) + 1810\ln(1-\theta).$$

21.8 b A short calculation shows that

$$\frac{\mathrm{d}\ell(\theta)}{\mathrm{d}\theta} = 0 \qquad \Leftrightarrow \qquad 3810\theta^2 - 1655\theta - 64 = 0,$$

so the maximum likelihood estimate of θ is (after checking that $L(\theta)$ indeed attains a maximum for this value of θ):

$$\frac{-1655 + \sqrt{3714385}}{7620} = 0.0357.$$

21.8 c In this general case the likelihood $L(\theta)$ is given by

$$L(\theta) = C \cdot \left(\frac{1}{4}(2+\theta)\right)^{n_1} \cdot \left(\frac{1}{4}\theta\right)^{n_2} \cdot \left(\frac{1}{4}(1-\theta)\right)^{n_3} \cdot \left(\frac{1}{4}(1-\theta)\right)^{n_4} \cdot$$

$$= \frac{C}{4^n} \cdot (2+\theta)^{n_1} \cdot \theta^{n_2} \cdot (1-\theta)^{n_3+n_4},$$

where C is the number of ways we can assign n_1 starchy-greens, n_2 sugary-whites, n_3 starchy-whites, and n_4 sugary-greens to n plants. Hence the loglikelihood $\ell(\theta)$ is given by

$$\ell(\theta) = \ln(C) - n\ln(4) + n_1\ln(2+\theta) + n_2\ln(\theta) + (n_3 + n_4)\ln(1-\theta).$$

A short calculation shows that

$$\frac{\mathrm{d}\ell(\theta)}{\mathrm{d}\theta} = 0 \qquad \Leftrightarrow \qquad n\theta^2 - (n_1 - n_2 - 2n_3 - 2n_4)\theta - 2n_2 = 0,$$

so the maximum likelihood estimate of θ is (after checking that $L(\theta)$ indeed attains a maximum for this value of θ):

$$\frac{n_1 - n_2 - 2n_3 - 2n_4 + \sqrt{(n_1 - n_2 - 2n_3 - 2n_4)^2 + 8nn_2}}{2n}$$

21.11 a Since the dataset is a realization of a random sample from a Geo(1/N) distribution, the likelihood is $L(N) = P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$, where each X_i has a Geo(1/N) distribution. So

$$L(N) = \left(1 - \frac{1}{N}\right)^{x_1 - 1} \frac{1}{N} \left(1 - \frac{1}{N}\right)^{x_2 - 1} \frac{1}{N} \cdots \left(1 - \frac{1}{N}\right)^{x_n - 1} \frac{1}{N}$$
$$= \left(1 - \frac{1}{N}\right)^{\left(-n + \sum_{i=1}^{n} x_i\right)} \left(\frac{1}{N}\right)^n.$$

But then the loglikelihood is equal to

$$\ell(N) = -n \ln N + \left(-n + \sum_{i=1}^{n} x_i\right) \ln \left(1 - \frac{1}{N}\right).$$

Differentiating to N yields

$$\frac{\mathrm{d}}{\mathrm{d}N}(\ell(N)) = \frac{-n}{N} + \left(-n + \sum_{i=1}^{n} x_i\right) \frac{1}{N(N-1)},$$

Now $\frac{\mathrm{d}}{\mathrm{d}N}(\ell(N)) = 0$ if and only if $N = \bar{x}_n$. Because $\ell(N)$ attains its maximum at \bar{x}_n , we find that the maximum likelihood estimate of N is $\hat{N} = \bar{x}_n$.

21.11 b Since P(Y = k) = 1/N for k = 1, 2, ..., N, the likelihood is given by

$$L(N) = \left(\frac{1}{N}\right)^n$$
 for $N \ge y_{(n)}$,

and L(N) = 0 for $N < y_{(n)}$. So L(N) attains its maximum at $y_{(n)}$; the maximum likelihood estimate of N is $\hat{N} = y_{(n)}$.

22.1 a Since $\sum x_i y_i = 12.4$, $\sum x_i = 9$, $\sum y_i = 4.8$, $\sum x_i^2 = 35$, and n = 3, we find (c.f. (22.1) and (22.2)), that

$$\hat{\beta} = \frac{n \sum x_i y_i - (\sum x_i)(\sum y_i)}{n \sum x_i^2 - (\sum x_i)^2} = \frac{3 \cdot 12.4 - 9 \cdot 4.8}{3 \cdot 35 - 9^2} = -\frac{1}{4},$$

and $\hat{\alpha} = \bar{y}_n - \hat{\beta}\bar{x}_n = 2.35$.

22.1 b Since $r_i = y_i - \hat{\alpha} - \hat{\beta}x_i$, for i = 1, ..., n, we find $r_1 = 2 - 2.35 + 0.25 = -0.1$, $r_2 = 1.8 - 2.35 + 0.75 = 0.2$, $r_3 = 1 - 2.35 + 1.25 = -0.1$, and $r_1 + r_2 + r_3 = -0.1 + 0.2 - 0.1 = 0$.

22.1 c See Figure D.1.

Fig. D.1. Solution of Exercise 22.1 c.

22.5 With the assumption that $\alpha = 0$, the method of least squares tells us now to minimize

$$S(\beta) = \sum_{i=1}^{n} (y_i - \beta x_i)^2.$$

Now

$$\frac{dS(\beta)}{d\beta} = -2\sum_{i=1}^{n} (y_i - \beta x_i)x_i = -2\left(\sum_{i=1}^{n} x_i y_i - \beta \sum_{i=1}^{n} x_i^2\right),\,$$

so

$$\frac{\mathrm{d}S(\beta)}{\mathrm{d}\beta} = 0 \quad \Leftrightarrow \quad \beta = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}.$$

Because $S(\beta)$ has a minimum for this last value of β , we see that the least squares estimator $\hat{\beta}$ of β is given by

 $\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}.$

22.12 a Since the denominator of $\hat{\beta}$ is a number, *not* a random variable, one has that

$$\mathrm{E}\left[\hat{\beta}\right] = \frac{\mathrm{E}\left[n(\sum x_i Y_i) - (\sum x_i)(\sum Y_i)\right]}{x \sum x_i^2 - (\sum x_i)^2}.$$

Furthermore, the numerator of this last fraction can be written as

$$E\left[n\sum x_iY_i\right] - E\left[(\sum x_i)(\sum Y_i)\right],$$

which is equal to

$$n\sum(x_i \operatorname{E}[Y_i]) - (\sum x_i) \sum \operatorname{E}[Y_i].$$

22.12 b Substituting $E[Y_i] = \alpha + \beta x_i$ in the last expression, we find that

$$E\left[\hat{\beta}\right] = \frac{n\sum(x_i(\alpha + \beta x_i)) - (\sum x_i)\left[\sum(\alpha + \beta x_i)\right]}{x\sum x_i^2 - (\sum x_i)^2}.$$

22.12 c The numerator of the previous expression for $E\left[\hat{\beta}\right]$ can be simplified to

$$\frac{n\alpha \sum x_i + n\beta \sum x_i^2 - n\alpha \sum x_i - \beta(\sum x_i)(\sum x_i)}{n\sum x_i^2 - (\sum x_i)^2},$$

which is equal to

$$\frac{\beta(n\sum x_i^2 - (\sum x_i)^2)}{n\sum x_i^2 - (\sum x_i)^2}.$$

- **22.12 d** From **c** it now follows that $E\left[\hat{\beta}\right] = \beta$, i.e., $\hat{\beta}$ is an unbiased estimator for β .
- **23.5 a** The standard confidence interval for the mean of a normal sample with unknown variance applies, with $n=23, \bar{x}=0.82$ and s=1.78, so:

$$\left(\bar{x} - t_{22,0.025} \cdot \frac{s}{\sqrt{23}}, \, \bar{x} + t_{22,0.025} \cdot \frac{s}{\sqrt{23}}\right).$$

The critical values come from the t(22) distribution: $t_{22,0.025} = 2.074$. The actual interval becomes:

$$\left(0.82 - 2.074 \cdot \frac{1.78}{\sqrt{23}}, 0.82 + 2.074 \cdot \frac{1.78}{\sqrt{23}}\right) = (0.050, 1.590).$$

23.5 b Generate one thousand samples of size 23, by drawing with replacement from the 23 numbers

$$1.06, \quad 1.04, \quad 2.62, \quad \dots, \quad 2.01.$$

For each sample $x_1^*, x_2^*, \dots, x_{23}^*$ compute: $t^* = \bar{x}_{23}^* - 0.82/(s_{23}^*/\sqrt{23})$, where $s_{23}^* = \sqrt{\frac{1}{22}\sum(x_i^* - \bar{x}_{23}^*)^2}$.

23.5 c We need to estimate the critical value c_l^* such that $P(T^* \le c_l^*) \approx 0.025$. We take $c_l^* = -2.101$, the 25th of the ordered values, an estimate for the 25/1000 = 0.025 quantile. Similarly, c_l^* is estimated by the 976th, which is 2.088.

The bootstrap confidence interval uses the c^* values instead of the t-distribution values $\pm t_{n-1,\alpha/2}$, but beware: c_l^* is from the *left tail* and appears on the *right-hand side* of the interval and c_u^* on the left-hand side:

$$\left(\bar{x}_n - c_u^* \frac{s_n}{\sqrt{n}}, \, \bar{x}_n - c_l^* \frac{s_n}{\sqrt{n}}\right).$$

Substituting $c_l^* = -2.101$ and $c_u^* = 2.088$, the confidence interval becomes:

$$\left(0.82 - 2.088 \cdot \frac{1.78}{\sqrt{23}}, 0.82 + 2.101 \cdot \frac{1.78}{\sqrt{23}}\right) = (0.045, 1.600).$$

- **23.6** a Because events described by inequalities do not change when we multiply the inequalities by a positive constant or add or subtract a constant, the following equalities hold: $P(\tilde{L}_n < \theta < \tilde{U}_n) = P(3L_n + 7 < 3\mu + 7 < 3U_n + 7) = P(3L_n < 3\mu < 3U_n) = P(L_n < \mu < U_n)$, and this equals 0.95, as is given.
- **23.6 b** The confidence interval for θ is obtained as the realization of $(\tilde{L}_n, \tilde{U}_n)$, that is: $(\tilde{l}_n, \tilde{u}_n) = (3l_n + 7, 3u_n + 7)$. This is obtained by transforming the confidence interval for μ (using the transformation that is applied to μ to get θ).
- **23.6 c** We start with $P(L_n < \mu < U_n) = 0.95$ and try to get 1μ in the middle: $P(L_n < \mu < U_n) = P(-L_n > -\mu > -U_n) = P(1 L_n > 1 \mu > 1 U_n) = P(1 U_n < 1 \mu < 1 L_n)$, where we see that the minus sign causes an interchange: $\tilde{L}_n = 1 U_n$ and $\tilde{U}_n = 1 L_n$. The confidence interval: (1 5, 1 (-2)) = (-4, 3).
- **23.6 d** If we knew that L_n and U_n were always positive, then we could conclude: $P(L_n < \mu < U_n) = P(L_n^2 < \mu^2 < U_n^2)$ and we could just square the numbers in the confidence interval for μ to get the one for θ . Without the positivity assumption, the sharpest conclusion you can draw from $L_n < \mu < U_n$ is that μ^2 is smaller than the maximum of L_n^2 and U_n^2 . So, $0.95 = P(L_n < \mu < U_n) \le P(0 \le \mu^2 < \max\{L_n^2, U_n^2\})$ and the confidence interval $[0, \max\{l_n^2, u_n^2\}) = [0, 25)$ has a confidence of at least 95%. This kind of problem may occur when the transformation is not one-to-one (both -1 and 1 are mapped to 1 by squaring).
- **23.11 a** For the 98% confidence interval the same formula is used as for the 95% interval, replacing the critical values by larger ones. This is the case, no matter whether the critical values are from the normal or t-distribution, or from a bootstrap experiment. Therefore, the 98% interval contains the 95%, and so must also contain the number 0.

- **23.11 b** From a new bootstrap experiment we would obtain new and, most probably, different values c_u^* and c_l^* . It therefore could be, if the number 0 is close to the edge of the first bootstrap confidence interval, that it is just outside the new interval.
- 23.11 c The new dataset will resemble the old one in many ways, but things like the sample mean would most likely differ from the old one, and so there is no guarantee that the number 0 will again be in the confidence interval.
- **24.6** a The environmentalists are interested in a lower confidence bound, because they would like to make a statement like "We are 97.5% confidence that the concentration exceeds 1.68 ppm [and that is much too high.]" We have normal data, with σ unknown so we use $s_{16} = \sqrt{1.12} = 1.058$ as an estimate and use the critical value corresponding to 2.5% from the t(15) distribution: $t_{15,0.025} = 2.131$. The lower confidence bound is $2.24 2.131 \cdot 1.058 / \sqrt{16} = 2.24 0.56 = 1.68$, the interval: $(1.68, \infty)$.
- **24.6 b** For similar reasons, the plant management constructs an *upper* confidence bound ("We are 97.5% confident pollution does not exceed 2.80 [and this is acceptable.]"). The computation is the same except for a minus sign: $2.24 + 2.131 \cdot 1.058/\sqrt{16} = 2.24 + 0.56 = 2.80$, so the interval is [0, 2.80). Note that the computed upper and lower bounds are in fact the endpoints of the 95% two-sided confidence interval.
- **24.9 a** From Section 8.4 we know: $P(M \le a) = [F_X(a)]^{12}$, so $P(M/\theta \le t) = P(M \le \theta t) = [F_X(\theta t)]^{12}$. Since X_i has a $U(0,\theta)$ distribution, $F_X(\theta t) = t$, for $0 \le t \le 1$. Substituting this shows the result.
- **24.9 b** For c_l we need to solve $(c_l)^{12} = \alpha/2$, or $c_l = (\alpha/2)^{1/12} = (0.05)^{1/12} = 0.7791$. For c_u we need to solve $(c_u)^{12} = 1 \alpha/2$, or $c_u = (1 \alpha/2)^{1/12} = (0.95)^{1/12} = 0.9958$.
- **24.9 c** From **b** we know that $P(c_l < M/\theta < c_u) = P(0.7790 < M/\theta < 0.9958) = 0.90$. Rewriting this equation, we get: $P(0.7790 \theta < M < 0.9958 \theta) = 0.90$ and $P(M/0.9958 < \theta < M/0.7790) = 0.90$. This means that (m/0.9958, m/0.7790) = (3.013, 3.851) is a 90% confidence interval for θ .
- **24.9 d** From **b** we derive the general formula:

$$P\left((\alpha/2)^{1/n} < \frac{M}{\theta} < (1 - \alpha/2)^{1/n}\right) = 1 - \alpha.$$

The left hand inequality can be rewritten as $\theta < M/(\alpha/2)^{1/n}$ and the right hand one as $M/(1-\alpha/2)^{1/n} < \theta$. So, the statement above can be rewritten as:

$$P\left(\frac{M}{(1-\alpha/2)^{1/n}} < \theta < \frac{M}{(\alpha/2)^{1/n}}\right) = 1 - \alpha,$$

so that the general formula for the confidence interval becomes:

$$\left(\frac{m}{(1-\alpha/2)^{1/n}}, \frac{m}{(\alpha/2)^{1/n}}\right).$$

25.4 a Denote the observed numbers of cycles for the smokers by $X_1, X_2, \ldots, X_{n_1}$ and similarly $Y_1, Y_2, \ldots, Y_{n_2}$ for the nonsmokers. A test statistic should compare estimators for p_1 and p_2 . Since the geometric distributions have expectations $1/p_1$

and $1/p_2$, we could compare the estimator $1/\bar{X}_{n_1}$ for p_1 with the estimator $1/\bar{Y}_{n_2}$ for p_2 , or simply compare \bar{X}_{n_1} with \bar{Y}_{n_2} . For instance, take test statistic $T = \bar{X}_{n_1} - \bar{Y}_{n_2}$. Values of T close to zero are in favor of H_0 , and values far away from zero are in favor of H_1 . Another possibility is $T = \bar{X}_{n_1}/\bar{Y}_{n_2}$.

- **25.4 b** In this case, the maximum likelihood estimators \hat{p}_1 and \hat{p}_2 give better indications about p_1 and p_2 . They can be compared in the same way as the estimators in \mathbf{a} .
- **25.4 c** The probability of getting pregnant during a cycle is p_1 for the smoking women and p_2 for the nonsmokers. The alternative hypothesis should express the belief that smoking women are *less likely* to get pregnant than nonsmoking women. Therefore take $H_1: p_1 < p_2$.
- **25.10** a The alternative hypothesis should express the belief that the gross calorific exceeds 23.75 MJ/kg. Therefore take $H_1: \mu > 23.75$.
- **25.10 b** The *p*-value is the probability $P(\bar{X}_n \geq 23.788)$ under the null hypothesis. We can compute this probability by using that under the null hypothesis \bar{X}_n has an $N(23.75, (0.1)^2/23)$ distribution:

$$P(\bar{X}_n \ge 23.788) = P\left(\frac{\bar{X}_n - 23.75}{0.1/\sqrt{23}} \ge \frac{23.788 - 23.75}{0.1/\sqrt{23}}\right) = P(Z \ge 1.82),$$

where Z has an N(0,1) distribution. From Table B.1 we find $P(Z \ge 1.82) = 0.0344$.

25.11 A type I error occurs when $\mu = 0$ and $|t| \ge 2$. When $\mu = 0$, then T has an N(0,1) distribution. Hence, by symmetry of the N(0,1) distribution and Table B.1, we find that the probability of committing a type I error is

$$P(|T| \ge 2) = P(T \le -2) + P(T \ge 2) = 2 \cdot P(T \ge 2) = 2 \cdot 0.0228 = 0.0456.$$

- **26.5** a The *p*-value is $P(X \ge 15)$ under the null hypothesis $H_0: p = 1/2$. Using Table 26.3 we find $P(X \ge 15) = 1 P(X \le 14) = 1 0.8950 = 0.1050$.
- **26.5 b** Only values close to 23 are in favor of $H_1: p > 1/2$, so the critical region is of the form $K = \{c, c+1, \ldots, 23\}$. The critical value c is the smallest value, such that $P(X \ge c) \le 0.05$ under $H_0: p = 1/2$, or equivalently, $1 P(X \le c 1) \le 0.05$, which means $P(X \le c 1) \ge 0.95$. From Table 26.3 we conclude that c 1 = 15, so that $K = \{16, 17, \ldots, 23\}$.
- **26.5 c** A type I error occurs if p=1/2 and $X\geq 16$. The probability that this happens is $P(X\geq 16\mid p=1/2)=1-P(X\leq 15\mid p=1/2)=1-0.9534=0.0466$, where we have used Table 26.3 once more.
- **26.5 d** In this case, a type II error occurs if p=0.6 and $X\leq 15$. To approximate $P(X\leq 15\mid p=0.6)$, we use the same reasoning as in Section 14.2, but now with n=23 and p=0.6. Write X as the sum of independent Bernoulli random variables: $X=R_1+\cdots+R_n$, and apply the central limit theorem with $\mu=p=0.6$ and $\sigma^2=p(1-p)=0.24$. Then

$$P(X \le 15) = P(R_1 + \dots + R_n \le 15)$$

$$= P\left(\frac{R_1 + \dots + R_n - n\mu}{\sigma\sqrt{n}} \le \frac{15 - n\mu}{\sigma\sqrt{n}}\right)$$

$$= P\left(Z_{23} \ge \frac{15 - 13.8}{\sqrt{0.24}\sqrt{23}}\right) \approx \Phi(0.51) = 0.6950.$$

26.8 a Test statistic $T = \bar{X}_n$ takes values in $(0, \infty)$. Recall that the $Exp(\lambda)$ distribution has expectation $1/\lambda$, and that according to the law of large numbers \bar{X}_n will be close to $1/\lambda$. Hence, values of \bar{X}_n close to 1 are in favor of $H_0: \lambda = 1$, and only values of \bar{X}_n close to zero are in favor $H_1: \lambda > 1$. Large values of \bar{X}_n also provide evidence against $H_0: \lambda = 1$, but even stronger evidence against $H_1: \lambda > 1$. We conclude that $T = \bar{X}_n$ has critical region $K = (0, c_l]$. This is an example in which the alternative hypothesis and the test statistic deviate from the null hypothesis in opposite directions.

Test statistic $T' = e^{-\bar{X}_n}$ takes values in (0,1). Values of \bar{X}_n close to zero correspond to values of T' close to 1, and large values of \bar{X}_n correspond to values of T' close to 0. Hence, only values of T' close to 1 are in favor $H_1: \lambda > 1$. We conclude that T' has critical region $K' = [c_u, 1)$. Here the alternative hypothesis and the test statistic deviate from the null hypothesis in the same direction.

26.8 b Again, values of \bar{X}_n close to 1 are in favor of $H_0: \lambda = 1$. Values of \bar{X}_n close to zero suggest $\lambda > 1$, whereas large values of \bar{X}_n suggest $\lambda < 1$. Hence, both small and large values of \bar{X}_n are in favor of $H_1: \lambda \neq 1$. We conclude that $T = \bar{X}_n$ has critical region $K = (0, c_l] \cup [c_u, \infty)$.

Small and large values of \bar{X}_n correspond to values of T' close to 1 and 0. Hence, values of T' both close to 0 and close 1 are in favor of $H_1: \lambda \neq 1$. We conclude that T' has critical region $K' = (0, c'_l) \cup [c'_u, 1)$. Both test statistics deviate from the null hypothesis in the same directions as the alternative hypothesis.

26.9 a Test statistic $T=(\bar{X}_n)^2$ takes values in $[0,\infty)$. Since μ is the expectation of the $N(\mu,1)$ distribution, according to the law of large numbers, \bar{X}_n is close to μ . Hence, values of \bar{X}_n close to zero are in favor of $H_0: \mu=0$. Large negative values of \bar{X}_n suggest $\mu<0$, and large positive values of \bar{X}_n suggest $\mu>0$. Therefore, both large negative and large positive values of \bar{X}_n are in favor of $H_1: \mu\neq 0$. These values correspond to large positive values of T, so T has critical region $K=[c_u,\infty)$. This is an example in which the test statistic deviates from the null hypothesis in one direction, whereas the alternative hypothesis deviates in two directions.

Test statistic T' takes values in $(-\infty, 0) \cup (0, \infty)$. Large negative values and large positive values of \bar{X}_n correspond to values of T' close to zero. Therefore, T' has critical region $K' = [c'_l, 0) \cup (0, c'_u]$. This is an example in which the test statistic deviates from the null hypothesis for small values, whereas the alternative hypothesis deviates for large values.

26.9 b Only large positive values of \bar{X}_n are in favor of $\mu > 0$, which correspond to large values of T. Hence, T has critical region $K = [c_u, \infty)$. This is an example where the test statistic has the *same type* of critical region with a one-sided or two-sided alternative. Of course, the critical value c_u in part **b** is different from the one in part **a**.

Large positive values of \bar{X}_n correspond to small positive values of T'. Hence, T' has critical region $K' = (0, c'_u]$. This is another example where the test statistic deviates from the null hypothesis for small values, whereas the alternative hypothesis deviates for large values.

27.5 a The interest is whether the inbreeding coefficient exceeds 0. Let μ represent this coefficient for the species of wasps. The value 0 is the a priori specified value of the parameter, so test null hypothesis $H_0: \mu = 0$. The alternative hypothesis should express the belief that the inbreeding coefficient exceeds 0. Hence, we take alternative hypothesis $H_1: \mu > 0$. The value of the test statistic is

$$t = \frac{0.044}{0.884/\sqrt{197}} = 0.70.$$

27.5 b Because n=197 is large, we approximate the distribution of T under the null hypothesis by an N(0,1) distribution. The value t=0.70 lies to the right of zero, so the p-value is the right tail probability $P(T \ge 0.70)$. By means of the normal approximation we find from Table B.1 that the right tail probability

$$P(T \ge 0.70) \approx 1 - \Phi(0.70) = 0.2420.$$

This means that the value of the test statistic is not very far in the (right) tail of the distribution and is therefore not to be considered exceptionally large. We do not reject the null hypothesis.

27.7 a The data are modeled by a simple linear regression model: $Y_i = \alpha + \beta x_i$, where Y_i is the gas consumption and x_i is the average outside temperature in the *i*th week. Higher gas consumption as a consequence of smaller temperatures corresponds to $\beta < 0$. It is natural to consider the value 0 as the a priori specified value of the parameter (it corresponds to no change of gas consumption). Therefore, we take null hypothesis $H_0: \beta = 0$. The alternative hypothesis should express the belief that the gas consumption increases as a consequence of smaller temperatures. Hence, we take alternative hypothesis $H_1: \beta < 0$. The value of the test statistic is

$$t_b = \frac{\hat{\beta}}{s_b} = \frac{-0.3932}{0.0196} = -20.06.$$

The test statistic T_b has a t-distribution with n-2=24 degrees of freedom. The value -20.06 is smaller than the left critical value $t_{24.0.05}=-1.711$, so we reject.

27.7 b For the data after insulation, the value of the test statistic is

$$t_b = \frac{-0.2779}{0.0252} = -11.03,$$

and T_b has a t(28) distribution. The value -11.03 is smaller than the left critical value $t_{28,0.05} = -1.701$, so we reject.

28.5 a When $aS_X^2 + bS_Y^2$ is unbiased for σ^2 , we should have $\operatorname{E}\left[aS_X^2 + bS_Y^2\right] = \sigma^2$. Using that S_X^2 and S_Y^2 are both unbiased for σ^2 , i.e., $\operatorname{E}\left[S_X^2\right] = \sigma^2$ and $\operatorname{E}\left[S_Y^2\right] = \sigma^2$, we get

$$\mathrm{E}\left[aS_X^2 + bS_Y^2\right] = a\mathrm{E}\left[S_X^2\right] + b\mathrm{E}\left[S_Y^2\right] = (a+b)\sigma^2.$$

Hence, $\mathrm{E}\left[aS_X^2+bS_Y^2\right]=\sigma^2$ for all $\sigma>0$ if and only if a+b=1.

28.5 b By independence of S_X^2 and S_Y^2 write

$$Var(aS_X^2 + (1-a)S_Y^2) = a^2 Var(S_X^2) + (1-a)^2 Var(S_Y^2)$$
$$= \left(\frac{a^2}{n-1} + \frac{(1-a)^2}{m-1}\right) 2\sigma^4.$$

To find the value of a that minimizes this, differentiate with respect to a and put the derivative equal to zero. This leads to

$$\frac{2a}{n-1} - \frac{2(1-a)}{m-1} = 0.$$

Solving for a yields a = (n-1)/(n+m-2). Note that the second derivative of $Var(aS_X^2 + (1-a)S_Y^2)$ is positive so that this is indeed a minimum.

References

- 1. J. Bernoulli. Ars Conjectandi. Basel, 1713.
- 2. J. Bernoulli. The most probable choice between several discrepant observations and the formation therefrom of the most likely induction. ():3–33, 1778. With a comment by Euler.
- 3. P. Billingsley. *Probability and measure*. John Wiley & Sons Inc., New York, third edition, 1995. A Wiley-Interscience Publication.
- L.D. Brown, T.T. Cai, and A. DasGupta. Interval estimation for a binomial proportion. Stat. Science, 16(2):101–133, 2001.
- 5. S.R. Dalal, E.B. Fowlkes, and B. Hoadley. Risk analysis of the space shuttle: pre-Challenger prediction of failure. J. Am. Stat. Assoc., 84:945–957, 1989.
- J. Daugman. Wavelet demodulation codes, statistical independence, and pattern recognition. In *Institute of Mathematics and its Applications, Proc. 2nd IMA-IP:* Mathematical Methods, Algorithms, and Applications (Blackledge and Turner, Eds), pages 244–260. Horwood, London, 2000.
- 7. B. Efron. Bootstrap methods: another look at the jackknife. Ann. Statist., 7(1):1-26, 1979.
- 8. W. Feller. An introduction to probability theory and its applications, Vol. II. John Wiley & Sons Inc., New York, 1971.
- R.A. Fisher. On an absolute criterion for fitting frequency curves. Mess. Math., 41:155–160, 1912.
- R.A. Fisher. On the "probable error" of a coefficient of correlation deduced from a small sample. Metron, 1(4):3–32, 1921.
- 11. H.S. Fogler. *Elements of chemical reaction engineering*. Prentice-Hall, Upper Saddle River, 1999.
- 12. D. Freedman and P. Diaconis. On the histogram as a density estimator: L_2 theory. Z. Wahrsch. Verw. Gebiete, 57(4):453–476, 1981.
- 13. C.F. Gauss. Theoria motus corporum coelestium in sectionis conicis solem ambientum. In: Werke. Band VII. Georg Olms Verlag, Hildesheim, 1973. Reprint of the 1906 original.
- P. Hall. The bootstrap and Edgeworth expansion. Springer-Verlag, New York, 1992
- R. Herz, H.G. Schlichter, and W. Siegener. Angewandte Statistik für Verkehrsund Regionalplaner. Werner-Ingenieur-Texte 42, Werner-Verlag, Düsseldorf, 1992.

- 16. J.L. Lagrange. Mémoire sur l'utilité de la méthode de prendre le milieu entre les résultats de plusieurs observations. Paris, 1770–73. Œvres 2, 1886.
- 17. J.H. Lambert. *Photometria*. Augustae Vindelicorum, 1760.
- R.J. MacKay and R.W. Oldford. Scientific method, statistical method and the speed of light. Stat. Science, 15(3):254–278, 2000.
- J. Moynagh, H. Schimmel, and G.N. Kramer. The evaluation of tests for the diagnosis of transmissible spongiform encephalopathy in bovines. Technical report, European Commission, Directorate General XXIV, Brussels, 1999.
- 20. V. Pareto. Cours d'economie politique. Rouge, Lausanne et Paris, 1897.
- E. Parzen. On estimation of a probability density function and mode. Ann. Math. Statist., 33:1065–1076, 1962.
- 22. K. Pearson. Philos. Trans., 186:343-414, 1895.
- 23. R. Penner and D.G. Watts. Mining information. The Amer. Stat., 45:4-9, 1991.
- Commission Rogers. Report on the space shuttle Challenger accident. Technical report, Presidential commission on the Space Shuttle Challenger Accident, Washington, DC, 1986.
- M. Rosenblatt. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist., 27:832–837, 1956.
- S.M. Ross. A first course in probability. Prentice-Hall, Inc., New Jersey, sixth edition, 1984.
- R. Ruggles and H. Brodie. An empirical approach to economic intelligence in World War II. *Journal of the American Statistical Association*, 42:72–91, 1947.
- 28. E. Rutherford and H. Geiger (with a note by H. Bateman). The probability variations in the distribution of α particles. *Phil.Mag.*, 6:698–704, 1910.
- D.W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610, 1979.
- S. Siegel and N.J. Castellan. Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York, second edition, 1988.
- 31. B.W. Silverman. Density estimation for statistics and data analysis. Chapman & Hall, London, 1986.
- 32. K. Singh. On the asymptotic accuracy of Efron's bootstrap. *Annals of Statistics*, 9:1187–1195, 1981.
- 33. S.M. Stigler. The history of statistics the measurement of uncertainty before 1900. Cambridge, Massachusetts, 1986.
- 34. H.A. Sturges. J. Amer. Statist. Ass., 21, 1926.
- 35. J.W. Tukey. Exploratory data analysis. Addison-Wesley, Reading, 1977.
- 36. S.A. van de Geer. Applications of empirical process theory. Cambridge University Press, Cambridge, 2000.
- 37. J.G. Wardrop. Some theoretical aspects of road traffic research. *Proceedings of the Institute of Civil Engineers*, 1, 1952.
- 38. C.R. Weinberg and B.C. Gladen. The beta-geometric distribution applied to comparative fecundability studies. *Biometrics*, 42(3):547–560, 1986.
- H. Westergaard. Contributions to the history of statistics. Agathon, New York, 1968.
- 40. E.B. Wilson. Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc., 22:209–212, 1927.
- 41. D.R. Witte et al. Cardiovascular mortality in Dutch men during 1996 European foolball championship: longitudinal population study. *British Medical Journal*, 321:1552–1554, 2000.

List of symbols

Ø	empty set, page 14
α	significance level, page 384
A^c	complement of the event A , page 14
$A \cap B$	intersection of A and B , page 14
$A \subset B$	A subset of B , page 15
$A \cup B$	union of A and B , page 14
Ber(p)	Bernoulli distribution with parameter p , page 45
Bin(n,p)	binomial distribution with parameters n and p , page 48
c_l, c_u	left and right critical values, page 388
$Cau(\alpha,\beta)$	Cauchy distribution with parameters α en β , page 161
Cov(X, Y)	covariance between X and Y , page 139
$\mathrm{E}\left[X ight]$	expectation of the random variable X , page 90, 91
$Exp(\lambda)$	exponential distribution with parameter λ , page 62
Φ	distribution function of the standard normal distribution, page 65
ϕ	probability density of the standard normal distribution, page 65
f	probability density function, page 57
f	joint probability density function, page 119
F	distribution function, page 44
F	joint distribution function, page 118
F^{inv}	inverse function of distribution function F , page 73
F_n	empirical distribution function, page 219
$f_{n,h}$	kernel density estimate, page 213
$Gam(\alpha, \lambda)$	gamma distribution with parameters α en λ , page 157
Geo(p)	geometric distribution with parameter p , page 49
H_0, H_1	null hypothesis and alternative hypothesis, page 374

 z_p

$L(\theta)$	likelihood function, page 317
$\ell(heta)$	loglikelihood function, page 319
Med_n	sample median of a dataset, page 231
n!	n factorial, page 14
$N(\mu, \sigma^2)$	normal distribution with parameters μ and σ^2 , page 64
Ω	sample space, page 13
$Par(\alpha)$	Pareto distribution with parameter α , page 63
$Pois(\mu)$	Poisson distribution with parameter μ , page 170
$P(A \mid C)$	conditional probability of A given C , page 26
P(A)	probability of the event A , page 16
$q_n(p)$	pth empirical quantile, page 234
q_p	pth quantile or $100p$ th percentile, page 66
$\rho(X,Y)$	correlation coefficient between X and Y , page 142
s_n^2	sample variance of a dataset, page 233
S_n^2	sample variance of random sample, page 292
t(m)	t-distribution with m degrees of freedom, page 348
$t_{m,p}$	critical value of the $t(m)$ distribution, page 348
$U(\alpha, \beta)$	uniform distribution with parameters α and β , page 60
Var(X)	variance of the random variable X , page 96
\bar{x}_n	sample mean of a dataset, page 231
\bar{X}_n	average of the random variables X_1, \ldots, X_n , page 182

critical value of the ${\cal N}(0,1)$ distribution, page 345

\mathbf{Index}

addition rule	scatterplot of 221
continuous random variables 156	black cherry trees example 267
discrete random variables 152	t-test for intercept 409
additivity of a probability function 16	data 266
Agresti-Coull method 364	scatterplot 267
alternative hypothesis 374	bootstrap
asymptotic minimum variance 322	confidence interval 352
asymptotically unbiased 322	dataset 273
average see also sample mean	empirical see empirical bootstrap
expectation and variance of 182	parametric see parametric boot-
	strap
ball bearing example 399	principle 270
data 399	for \bar{X}_n 270
one-sample t -test 401	for $\bar{X}_n - \mu$ 271
two-sample test 421	for $Med_n - F^{inv}(0.5)$ 271
bandwidth 213	for $T_{\rm ks}$ 278
data-based choice of 216	random sample 270
Bayes' rule 32	sample statistic 270
Bernoulli distribution 45	Bovine Spongiform Encephalopathy
expectation of 100	30
summary of 429 variance of 100	boxplot 236
bias 290	constructed for
Billingsley, P. 199	drilling data 238
bimodal density 183	exponential data 261
bin 210	normal data 261
bin width 211	Old Faithful data 237
data-based choice of 212	software data 237
binomial distribution 48	Wick temperatures 240
expectation of 138	outlier in 236
summary of 429	whisker of 236
variance of 141	BSE example 30
birthdays example 27	buildings example 94
bivariate dataset 207, 221	locations 174

Cauchy distribution 92, 110, 114, 161	versus independent 140
summary of 429	correlation coefficient 142
center of a dataset 231	dimensionlessness of 142
center of gravity 90, 91, 101	under change of units 142
central limit theorem 197	covariance 139
applications of 199	alternative expression of 139
for averages 197	under change of units 141
for sums 199	coverage probabilities 354
Challenger example 5	Cramér-Rao inequality 305
data 226, 240	critical region 386
change of units 105	critical values
correlation under 142	in testing 386
covariance under 141	of t-distribution 348
expection under 98	of $N(0,1)$ distribution 433
variance under 98	of standard normal distribution 345
change-of-variable formula 96	cumulative distribution function 44
two-dimensional 136	
Chebyshev's inequality 183	darts example 59, 60, 69
chemical reactor example 26, 61, 65	dataset
cloud seeding example 419	bivariate 221
data 420	center of 231
two-sample test 422	five-number summary of 236
coal example 347	outlier in 232
data 347, 350	univariate 210
coin tossing 16	degrees of freedom 348
until a head appears 20	DeMorgan's laws 15
coincident birthdays 27	density see probability density
complement of an event 14	function
concave function 112	dependent events 33
conditional probability 25, 26	discrete random variable 42
confidence bound	discrete uniform distribution 54
lower 367	disjoint events 15, 31, 32
upper 367	distribution
confidence interval 3, 343	t-distribution 348
bootstrap 352	Bernoulli 45
conservative 343	binomial 48
equal-tailed 347	Cauchy 114, 161
for the mean 345	discrete uniform 54
large sample 353	Erlang 157
one-sided 366, 367	exponential 62
relation with testing 392	gamma 157
confidence level 343	geometric 49
confidence statements 342	hypergeometric 54
conservative confidence interval 343	normal 64
continuous random variable 57	Pareto 63
convex function 107	Poisson 170
correlated	uniform 60
negatively 139	Weibull 86
positively 139	distribution function 44
1 · · · · · · · · · · · · · · · · · · ·	

joint	disjoint 15
bivariate 118	independent 33
multivariate 122	intersection of 14
marginal 118	mutually exclusive 15
properties of 45	union of 14
drill bits 89	Example
drilling example 221, 415	alpha particles 354
boxplot 238	ball bearings 399
data 222	birthdays 27
scatterplot 223	black cherry trees 409
two-sample test 418	BSE 30
durability of tires 356	buildings 94
	Challenger 5, 226, 240
efficiency	chemical reactor 26
arbitrary estimators 305	cloud seeding 419
relative 304	coal 347
unbiased estimators 303	darts 59
efficient 303	drilling $221,415$
empirical bootstrap 272	Euro coin 369, 388
simulation	freeway 383
for centered sample mean 274, 275	iris recognition 1
for nonpooled studentized mean	Janka hardness 223
difference 421	jury 75
for pooled studentized mean	killer football 3
difference 418	Monty Hall quiz 4,39
for studentized mean 351, 403	mortality rate 405
empirical distribution function 219	network server 285, 306
computed for	Old Faithful 207, 404
exponential data 260	Rutherford and Geiger 354
normal data 260	Shoshoni Indians 402
Old Faithful data 219	software reliability 218
software data 219	solo race 151
law of large numbers for 249	speed of light 9, 246
relation with histogram 220	tank 7, 299, 373
empirical percentile 234	Wick temperatures 231
empirical quantile 234, 235	expectation
law of large numbers for 252	linearity of 137
of Old Faithful data 235	of a continuous random variable 91
envelopes on doormat 14	of a discrete random variable 90
Erlang distribution 157	expected value see expectation
estimate 286	explanatory variable 257
nonparametric 255	exponential distribution 62
estimator 287	expectation of 93, 100
biased 290	memoryless property of 62
unbiased 290	shifted 364
Euro coin example 369, 388	summary of 429
events 14	variance of 100
complement of 14	factorial 14
dependent 33	factorial 14

talse negative 30	discrete 125
false positive 30	propagation of 126
Feller, W. 199	pairwise 35
1500 m speedskating 357	physical 34
Fisher, R.A. 316	statistical 34
five-number summary 236	stochastic 34
of Old Faithful data 236	versus uncorrelated 140
of Wick temperatures 240	independent identically distributed
football teams 23	sequence 182
freeway example 383	indicator random variable 188
neeway enampre eee	interarrival times 171
gamma distribution 157, 172	intercept 257
summary of 429	1
Gaussian distribution see normal	Interquartile range see IQR intersection of events 14
distribution	
Geiger counter 167	interval estimate 342
geometric distribution 49	invariance principle 321
expectation of 93, 153	IQR 236
	in boxplot 236
memoryless property of 50	of Old Faithful data 236
summary of 429	of Wick temperatures 240
geometric series 20	iris recognition example 1
golden rectangle 402	isotropy of Poisson process 175
gross calorific value 347	
ltt	Janka hardness example 223
heart attack 3 heteroscedasticity 334	data 224
v v	estimated regression line 258
histogram 190, 211 bin of 210	regression model 256
	scatterplot 223, 257, 258
computed for	Jensen's inequality 107
exponential data 260	joint
normal data 260	continuous distribution 118, 123
Old Faithful data 210, 211	bivariate 119
software data 218	discrete distribution 115
constructed for	of sum and maximum 116
deviations T and M 78	distribution function
juror 1 scores 78	bivariate 118
height of 211	multivariate 122
law of large numbers for 250	relation with marginal 118
reference point of 211	
relation with F_n 220	probability density
homogeneity 168	bivariate 119
homoscedasticity 334	multivariate 123
hypergeometric distribution 54	relation with marginal 122
	probability mass function
independence	bivariate 116
of events 33	drawing without replacement 123
three or more 34	multivariate 122
of random variables 124	of sum and maximum 116
continuous 125	iury example 75

kernel 213	mad cow disease 30
choice of 217	marginal
Epanechnikov 213	distribution 117
normal 213	distribution function 118
triweight 213	probability density 122
kernel density estimate 215	probability mass function 117
bandwidth of 213, 215	maximum likelihood estimator 317
computed for	maximum of random variables 109
exponential data 260	mean see expectation
normal data 260	mean integrated squared error 212,
Old Faithful data 213, 216, 217	216
software data 218	mean squared error 305
construction of 215	measuring angles 308
example	median 66
software data 255	of a distribution 267
with boundary kernel 219	of dataset see sample median
of software data 218, 255	median of absolute deviations see
killer football example 3	MAD
Kolmogorov-Smirnov distance 277	memoryless property 50, 62 method of least squares 329
large sample confidence interval 353	Michelson, A.A. 181
law of large numbers 185	minimum variance unbiased estimator
for $F_n = 249$	305
for empirical quantile 252	minimum of random variables 109
for relative frequency 253	mode
for sample standard deviation 253	of dataset 211
for sample variance 253	of density 183
for the histogram 250	model
for the MAD 253	distribution 247
for the sample mean 249	parameters 247, 285
strong 187	validation 76
law of total probability 31	Monty Hall quiz example 4,39
leap years 17	sample space 23
least squares estimates 330	mortality rate example 405
left critical value 388	data 406
leverage point 337	MSE 305
likelihood function	" $\mu \pm a \text{ few } \sigma$ " rule 185
continuous case 317	multiplication rule 27
discrete case 317	mutually exclusive events 15
linearity of expectations 137	
loading a bridge 13	network server example 285, 306
logistic model 7	nonparametric estimate 255
loglikelihood function 319	nonpooled variance 420
lower confidence bound 367	normal distribution 64
	under change of units 106
MAD 234	bivariate 159
law of large numbers for 253	expectation of 94
of a distribution 267	standard 65
of Wick temperatures 234	summary of 429

variance of 97	of dataset see empirical percentile
null hypothesis 374	permutation 14
•	physical independence 34
O-rings 5	point estimate 341
observed significance level 387	Poisson distribution 170
Old Faithful example 207	expectation of 171
boxplot 237	summary of 429
data 207	variance of 171
empirical bootstrap 275	Poisson process
empirical distribution function 219,	k-dimensional 174
254	higher-dimensional 174
empirical quantiles 235	isotropy of 175
estimates for f and F 254	locations of points 173
five-number summary 236	one-dimensional 172
	points of 172
histogram 210, 211	*
IQR 236	simulation of 175
kernel density estimate 213, 216,	pooled variance 417
217, 254	probability 16
order statistics 209	conditional 25, 26
quartiles 236	of a union 18
sample mean 208	of complement 18
scatterplot 229	probability density function 57
statistical model 254	of product XY 160
t-test 404	of quotient X/Y 161
order statistics 235	of sum $X + Y = 156$
of Old Faithful data 209	probability distribution 43, 59
of Wick temperatures 235	probability function 16
outlier 232	on an infinite sample space 20
in boxplot 236	additivity of 16
	probability mass function 43
p-value 376	joint
as observed significance level 379,	bivariate 116
387	multivariate 122
one-tailed 390	marginal 117
relation with critical value 387	of sum $X + Y$ 152
two-tailed 390	products of sample spaces 18
pairwise independent 35	
parameter of interest 286	quantile
parametric bootstrap 276	of a distribution 66
for centered sample mean 276	of dataset see empirical quantile
for KS distance 277	quartile
simulation	lower 236
for centered sample mean 277	of Old Faithful data 236
for KS distance 278	upper 236
Pareto distribution 63, 86, 92	T.T
expectation of 100	random sample 246
summary of 429	random variable
variance of 100	continuous 57
percentile 66	discrete 42
F	

1	realization	of black cherry trees 267
	of random sample 247	of drill times 223
	of random variable 72	of Janka hardness data 223, 257,
1	regression line 257, 329	258
	estimated	of Old Faithful data 229
	for Janka hardness data 258, 330	of Wick temperatures 232
	intercept of 257, 331	second moment 98
	slope of $257,331$	serial number analysis 7, 299
1	regression model	shifted exponential distribution 364
	general 256	Shoshoni Indians example 402
	linear 257, 329	data 403
1	relative efficiency 304	significance level 384
1	relative frequency	observed 387
	law of large numbers for 253	of a test 384
1	residence times 26	simple linear regression 257, 329
1	residual 332	simulation
1	response variable 257	of the Poisson process 175
1	right continuity of F 45	run 77
1	right critical value 388	slope of regression line 257
1	right tail probabilities 377	software reliability example 218
	of the $N(0,1)$ distribution $65,345,$	boxplot 237
	433	data 218
	Ross, S.M. 199	empirical distribution function 219,
1	run, in simulation 77	256
		estimated exponential 256
5	sample mean 231	histogram 255
	law of large numbers for 249	kernel density estimate 218, 255,
	of Old Faithful data 208	256
	of Wick temperatures 231	order statistics 227
\$	sample median 232	sample mean 255
	of Wick temperatures 232	solo race example 151
:	sample space 13	space shuttle Challenger 5
	bridge loading 13	speed of light example 9, 181
	coin tossing 13	data 246
	twice 18	sample mean 256
	countably infinite 19	speeding 104
	envelopes 14	standard deviation 97
	months 13	standardizing averages 197
	products of 18	stationarity 168
	uncountable 17	weak 168
5	sample standard deviation 233	statistical independence 34
	law of large numbers for 253	statistical model
	of Wick temperatures 233	random sample model 247
5	sample statistic 249	simple linear regression model 257,
	and distribution feature 254	329
5	sample variance 233	stochastic independence 34
	law of large numbers for 253	stochastic simulation 71
	sampling distribution 289	strictly convex function 107
5	scatterplot 221	strong law of large numbers 187

studentized mean 349, 401	type II error 378, 390
studentized mean difference	tires 8
nonpooled 421	total probability, law of 31
pooled 417	traffic flow 177
sum of squares 329	true distribution 247
sum of two random variables	true parameter 247
binomial 153	type I error 378
continuous 154	probability of committing 384
discrete 151	type II error 378
exponential 156	probability of committing 391
geometric 152	
normal 158	UEFA playoffs draw 23
summary of distributions 429	unbiased estimator 290
	uniform distribution
t-distribution 348	expectation of 92, 100
<i>t</i> -test 399	summary of 429
one sample	variance of 100
large sample 404	uniform distribution 60
nonnormal data 402	union of events 14
normal data 401	univariate dataset 207, 210
test statistic 400	upper confidence bound 367
regression	apper commence sound so.
intercept 408	validation of model 76
slope 407	variance 96
two samples	alternative expression 97
large samples 422	nonpooled 420
nonnormal with equal variances	of average 182
418	of the sum
normal with equal variances 417	of n random variables 149
with unequal variances 419	of two random variables 140
tail probability	pooled 417
left 377	pooled III
right 345, 377	Weibull distribution 86, 112
tank example 7, 299, 373	as model for ball-bearings 265
telephone	whisker 236
calls 168	Wick temperatures example 231
exchange 168	boxplot 240
test statistic 375	corrected data 233
testing hypotheses	data 231
alternative hypothesis 373	five-number summary 240
critical region 386	MAD 234
critical values 386	order statistics 235
null hypothesis 373	sample mean 231
<i>p</i> -value 376, 386, 390	sample median 232
relation with confidence intervals	sample standard deviation 233
392	scatterplot 232
significance level 384	Wilson method 361
_	
test statistic 375 type I error 377, 378	work in system 83 worngly spelled words 176