Algebraic Independence

Let
$$A^2 = \{(x, y) \in (\mathbb{R} - \mathbb{Q})^2; \exists p \in \mathbb{Z}[x, y] - \{0\}; p(x, y) = 0\}.$$

 $\#A^2 = \#\mathbb{Q}^2$

We want a proof that A is dense in \mathbb{R}^2 , i.e., $\forall p \in \mathbb{R}^2 - A^2, \forall \epsilon > 0, \exists q \in A^2; |q - p| < \epsilon$.

For n = 1, we have the proof below.

There is a sequence of algebraic irrationals which converges to:

(i) algebraic numbers: $a_n = \sqrt{2}$ (constant sequence $c_n = c_0$);

(ii) rationals:
$$p(x) = nx^2 - 1 \Rightarrow a_n = \frac{1}{\sqrt{n}} \rightarrow 0$$
 and $q(x) = (nx^2 - 1 - a^2n)^2 - 4a^2n \Rightarrow b_n = \frac{1}{\sqrt{n}} + a \rightarrow a \in \mathbb{Q}$;

(iii) transcendentals:
$$a_n = \sqrt{2} \sum_{k=0}^n \frac{1}{k!} \to \sqrt{2} \exp 1 = e\sqrt{2}$$
. Each partial sum is an algebraic number y ;

$$y^2 = 2 \cdot \frac{r}{q} \in \mathbb{Q} \Leftarrow p(x) = qx^2 - 2r$$
. Analogously, we get any transcendental t . As the closure of \mathbb{Q} is \mathbb{R} , there is a sequence

of rationals q_n ; $\lim q_n = \frac{t}{\sqrt{2}}$. Therefore $b_n = q_n \sqrt{2}$ converges to t.

$$A^1 = \{x \in \mathbb{R} - \mathbb{Q}; \exists p \in \mathbb{Z}[x] - \{0\}; p(x) = 0\}$$
 is countable and dense in \mathbb{R} .

Generalizing for $A^n, n \geq 2$

Fix $p = (t_1, t_2, \dots, t_n)$, $t_i \neq t_j \in \mathbb{R} - \mathbb{Q} - A^1 = \mathbb{T}$ (transcendentals) and $\epsilon > 0$. Let the line α be $\alpha(x) = (t_1, t_2 + x, t_3, \dots, t_n)$

$$\exists y_0 = \frac{a}{b} \cdot t_1; a, b \in \mathbb{Z} - \{0\}; t_2 < y_0 < t_2 + \epsilon$$

The hyperplane β of equation $p(x_1, x_2, \dots, x_n) = x_2 - \frac{a}{b} \cdot x_1 = 0$ intersects α at $q = (t_1, y_0, t_3, \dots, t_n) \in A^n$ because q is root of p.

 $A^n = \{(x_1, \dots, x_n) \in (\mathbb{R} - \mathbb{Q})^n; \exists p \in \mathbb{Z}[x_1, \dots, x_n] - \{0\}; p(x_1, \dots, x_n) = 0\} \text{ is countable and dense in } \mathbb{R}^n, \text{ but it's not } \mathbb{R}^n \text{ but it's no$

Let
$$(e, e) \in A_e^2 = \{(x, e) \in (\mathbb{R} - \mathbb{Q})^2; \exists p \in \mathbb{Z}[x, y = e] - \{0\}; p(x, e) = 0\}.$$

Let $(\pi, \pi) \in A_\pi^2 = \{x \in \mathbb{R} - \mathbb{Q}; \exists p \in R[x] - \{0\}; p(x) = 0\} \times \{\pi\}.$

Let
$$(\pi, \pi) \in A_{\pi}^2 = \{x \in \mathbb{R} - \mathbb{Q}; \exists p \in R[x] - \{0\}; p(x) = 0\} \times \{\pi\}$$

 $\deg p(x,\pi) = g$

 $q_g \in \mathbb{Z}[x], \deg q_g = g$

$$p(x) = \sum_{i=0}^{g} q_{g-i}(\pi) x^{i}$$

$$p(x) \in \mathbb{Z}(\pi)[x] = R[x] \subset \mathbb{R}[x]$$

$$p(x) \in \mathbb{Z}(\pi)[x] = R[x] \subset \mathbb{R}[x]$$

In particular,
$$g = 2 \Rightarrow p(x,\pi) = a_0 + a_1x + a_2\pi + a_3x^2 + a_4x\pi + a_5\pi^2 = q_2(\pi) + q_1(\pi)x + q_0(\pi)x^2$$
.

$$T^2 = [\mathbb{R} - \mathbb{O} - A - \{a_1(t)\} - \{a_2(t)\} - \{a_2(t)\} - \cdots] \times \{t\}$$

In particular,
$$g = 2 \Rightarrow p(x,\pi) = a_0 + a_1x + a_2\pi + a_3x^2 + a_4x\pi + a_5\pi^2 = q_2(\pi) + q_1(\pi)x + q_0(\pi)x^2$$
. $T_t^2 = [\mathbb{R} - \mathbb{Q} - A - \{q_1(t)\} - \{q_2(t)\} - \{q_3(t)\} - \cdots] \times \{t\}$ $T_{t_1,t_2}^3 = [\mathbb{R} - \mathbb{Q} - A - \{q_1(t_1,t_2)\} - \{q_2(t_1,t_2)\} - \{q_3(t_1,t_2)\} - \cdots] \times \{t_1\} \times \{t_2\}, q_g \in \mathbb{Z}[x,y], \deg q_g = g$ Exchange $t_i \neq t_j$ above by $t_2 \notin \mathbb{Z}(t_1); t_3 \notin \mathbb{Z}(t_1,t_2); \cdots; t_n \notin \mathbb{Z}(t_1,\cdots,t_{n-1}).$ dim $T_{t_1,\cdots,t_n}^{n+1} = 1$. What about T^ω ?

How many are the algebraically independent numbers? n, \aleph_0 or \aleph_1 ?

We want a proof that $(e,\pi) \notin A_{\pi}^2$, which is countable and dense in $\mathbb{R} \times \{\pi\}$. So, $(e,\pi) \in T_{\pi}^2$. We want another proof that $(\pi,e) \notin A_e^2$, which is countable and dense in $\mathbb{R} \times \{e\}$. So, $(\pi,e) \in T_e^2$.