Learning First-Order Rules with Differentiable Logic Program Semantics

Kun Gao¹, Katsumi Inoue², Yongzhi Cao¹, Hanpin Wang^{3, 1} ¹ Peking University ² National Institute of Informatics ³ Guangzhou University

Motivation

Lessthan, Increase → predicate

 $X, Y \longrightarrow \text{variable}$

Background Knowledge

increase(0,1) increase(1,2) increase(2,3)

B

Positive Example

lessthan(0,1) lessthan(1,2) lessthan(2,3)

lessthan(0,3) lessthan(0,2)...

lt(X,Y) :- inc(X,Y).

Solution

Negative Example

lessthan(1,0) lessthan(2,0) lessthan(3,1).

2

Preliminaries Differential logic program semantics

Matrix representations for logic program

• P with the head atom p(X, Y), 5 possible body atoms, and 3 different rules, and one of matrix embedding $M_P \in [0,1]^{3\times 5}$ is:

$$p(X,Y) \leftarrow p(Y,Z) \land p(Z,X).$$

$$p(X,Y) \leftarrow p(X,Z) \land p(Z,Y).$$

$$p(X,Y) \leftarrow p(X,Z) \land p(Z,Y).$$

$$p(X,Y) \leftarrow p(Y,X).$$

$$\mathbf{M}_{P} = \begin{bmatrix} 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Preliminaries Differential logic program semantics

Vector interpretations:

• An interpretation vector $v \in \{0,1\}^m$ represents an interpretation in a logic program. If the Boolean value of α_k is True, then $a_k = 1$; otherwise, $a_k = 0$

$$p(X,Y) \leftarrow p(Y,Z) \land p(Z,X).$$

 $p(X,Y) \leftarrow p(X,Z) \land p(Z,Y).$
 $p(X,Y) \leftarrow p(Y,X).$

 $F_{body} = \{p(X, Z), p(Y,X), p(Y, Z), p(Z,X), p(Z, Y)\}$

Interpretation 1

p(Y,Z), p(Z,X)

$$\mathbf{v}_1 = [0,0,1,1,0]$$

Interpretation 2

$$\mathbf{v}_2 = [1,0,0,0,1]$$

Preliminaries Differential logic program semantics

Sakama et al., ASPOCP, 2018; Gao et al., Mach. Learn., 2022;

Deduction reasoning:

$$\mathbf{v}_o = \bigvee_{k=1}^m \theta(\mathbf{M}_P[k, \cdot] \times \mathbf{v}_i^T)$$

$$\mathbf{v}_{o} = \vee_{k=1}^{m} \theta(\mathbf{M}_{P}[k, \cdot] \times \mathbf{v}_{i}^{T}) \quad \begin{bmatrix} 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix} \quad \times [0, 0, 1, 1, 0]^{T} \ (\mathbf{v}_{i}) = [1, 0, 0]^{T} \ (\mathbf{v}_{o})$$

$$\times [0,0,1,1,0]^T (\mathbf{v}_i) = [1,0,0]^T (\mathbf{v}_o)$$

Differentiable deduction:

- Differentiable threshold function
- Differentiable fuzzy logic (product-t norm)

$$\theta \Rightarrow \phi = \frac{1}{1 + e^{-\alpha(x-1)}} \qquad x \lor y \Rightarrow 1 - (1-x)(1-y)$$

Methods

- Propositionalization method
 - Data preprocessing for relational facts
- Differentiable inductive learning
 - Learn parameters in matrix embeddings through neural networks
- Logic rules extraction
 - Interpret symbolic logic programs from matrix embeddings

Propositionalization

- Transfer the relational data into neural network readable attributevalued data;
- Input: The training relational facts;
- Output: The trainable pairs of interpretation vectors;

1. **Preparation**: Allocate constants to variables

Propositionalization

$$X \times Y \times Z = S$$

$$S = \{(0,1,0), (0,1,1), \dots, (2,3,3)\}$$

$$P_F = \{lt(X,Z), lt(Y,X), lt(Y,Z), lt(Z,X), lt(Z,Y), inc(X,Y), inc(X,Z), inc(Y,X), inc(Y,Z), inc(Z,X), inc(Z,Y)\}$$

$$v_i = [0,0,0,0,1,1,0,0,0,0,1]$$

$$v_o = [1]$$

$$\vdots$$

2. **Generation**: Compute all substitutions and generate all input and output vector interpretation

3. Examination: Delete the noisy data and features

Propositionalization

- number of valid first-order features: $|v_i| = C$;
- $I_o = T_P(I_i)$ iff $v_o = D_P(v_i)$, where D_P is the differentiable deduction reasoning of a logic program P.

Differentiable Inductive Learning Matrix Representation

- Trainable matrix $\mathbf{M}_P^S \in [0,1]^{m_1 \times C}$
 - m_1 the number of rules headed by target predicate
 - *C* valid first-order features
- Trainable matrix $\mathbf{M}_P^A \in [0,1]^{m_2 \times n_a \times C}$
 - m_2 number of rules headed by target predicate $n_a = 3$
 - n_a number of rules headed by auxiliary predicates

auxiliary predicate target predicate

 m_2

Differentiable Inductive Learning Matrix Representation

- The reason for applying average operation:
 - Keep the non-zero values index information from M_P^A to $\mathsf{M}_P^{A'}$
 - Increase the trainable parameters

Differentiable Inductive Learning Constraint Functions

Inference loss:

Differentiable Inductive Learning Forward-chained formats

Generate rules with the forward-chained format:

$$p_t(X, Y) \leftarrow p_1(X, Z_1) \land p_2(Z_1, Z_2) \land \dots \land p_{n+1}(Z_n, Y)$$

Head variables

Body variables

- Basic constraint: The body of each rule in an LP contains all variables that appear in the head atom.
- Occurrence constraint: In the body of each rule, the number of occurrences of each variable that does not appear in the header atom is not one.

Differentiable Inductive Learning Forward-chained formats

Generate rules with the forward-chained format:

$$n(Z_1) \ge 2$$

$$p_t(X, Y) \leftarrow p_1(X, Z_1) \land p_2(Z_1, Z_2) \land \dots \land p_{n+1}(Z_n, Y)$$

- Basic constraint: The body of each rule in an LP contains all variables that appear in the head atom.
- Occurrence constraint: In the body of each rule, the number of occurrences of each variable that does not appear in the header atom is not one.

Differentiable Inductive Learning Constraint Functions

- Number of variables in head predicate a;
 Number of variable depth d.
 - Basic embedding: Atom -> $\{0,1\}^a$
 - Occurrence embedding: Atom -> $\{0,1\}^d$

$$p_t(X, Y) \Rightarrow [1,1]$$
 $p_t(X, Y) \Rightarrow [0]$
 $p_t(X, Z) \Rightarrow [1,0]$ $p_t(X, Z) \Rightarrow [1]$
 $p_t(Z, Y) \Rightarrow [0,1]$ $p_t(Z, Y) \Rightarrow [1]$

Basic embeddings Occurrence embeddings

Basic Loss, Occurrence Loss

Differentiable Inductive Learning Constraint Functions

Sum loss:

$$L_S = \sum_{k=1}^{m} MSE(\sum_{i}^{C} M_P[k, i], 1)$$

• Similar loss:

- Each row in M_P have more dissimilarities.
- The rows in trainable matrix M_P and trained-well correct matrix M_{prior} have more dissimilarities.

Logical Rules Extraction

- Use a series of thresholds called τ_f to extract rules from M_P , and use Datalog to check the **precision** $\frac{n_r}{n_b}$ of a rule:
 - n_r the number of substitutions meet both **head** and **body** of a rule
 - n_b the number of substitutions meet only **body** of a rule
- Use τ_s to select the rules which precision values are larger than it.
- Use accuracy (recall) to indicate the ratio of the covered positive test examples.

$$\mathbf{M}_{P} = \begin{bmatrix} 0 & 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ \frac{1}{2} & 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\nabla \tau_{f} = \{0,0.2,...,0.9\}$$

$$p(X,Y) \leftarrow p(Y,Z) \wedge p(Z,X). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(X,Z) \wedge p(Z,Y). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(Y,X). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(Y,X). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(X,X) \quad \mathbf{0.2}$$

$$\nabla \tau_{s} = 0.5$$

$$p(X,Y) \leftarrow p(X,Z) \wedge p(Z,X). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(X,Z) \wedge p(Z,X). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(X,Z) \wedge p(Z,Y). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(X,Z) \wedge p(Z,Y). \quad \mathbf{1.0}$$

$$p(X,Y) \leftarrow p(Y,X). \quad \mathbf{1.0}$$

Experimental Results

- From ILP datasets, the generated rules have:
 - $\tau_s = 1$, so the precision values are 1.
 - Accuracy value is 100%.

Figure 6: Learning curve in the lessthan task.

- even(X) :- zero(X).
- 2) even(X) := succ(X,Z)& succ(Z,Y)& even(Y).

The program in **Even** dataset

Domain	Task	∂ILP	NeuralLP	DFOL
Arithmetic	Predecessor	✓	✓	✓
	Odd	✓	_	✓
	Even / Succ2 (10)	✓	_	✓
	Even / Succ2 (20)	_	<u> </u>	✓
	Lessthan	✓	✓	✓
	Fizz	✓	_	✓
	Buzz	✓	_	✓
Lists	Member	✓	*	✓
	Length	✓	_	✓
Family Tree	Son	✓	*	✓
	Grandparent	✓	✓	✓
	Husband	✓	_	_
	Uncle	✓	_	_
	Relatedness	✓	*	✓
	Father	✓	_	✓
Graphs	Directed Edge	✓	*	✓
	Adjacent to Red	✓	_	✓
	Two Children	✓	_	✓
	Graph Coloring (6)	√	_	✓
	Graph Coloring (10)	_	_	✓
	Connectedness	✓	*	✓
	Cyclic	✓	_	✓

The program in **Grandparents** dataset

Experimental Results

- From fuzzy data, we let $\varepsilon \sim N(0, \sigma^2)$
 - $p_i^+ = min(1 \varepsilon, 1)$
 - $p_i^- = max(\varepsilon, 0)$
- For the **mislabeled data**, both positive and negative training examples are mislabeled:
 - μ ranging from 0.05 to 1 with step 0.05.

Figure 4: The distribution of examples in the *lessthan* task when $\sigma = 3$.

Table 1: The results on ambiguous datasets. The notations *Con* and *DE* represent *connectedness* and *directed edge* tasks, respectively.

	Lt	Pre	Member	Son	Con	DE
σ	3	3	3	3	2	3
μ	0.95	0.95	0.90	0.95	0.95	0.95

When $\tau_s=1$ and accuracy is 100%, the largest standard deviation σ and mislabeling rate μ

Experimental Results

- From knowledge graph datasets,
 - Set $\tau_s = 0.3$;
 - Check the HIT@n and MRR on three knowledge graph datasets.

Table 3: The descriptions of the knowledge bases.

Dataset	#Object	#Relation	#Fact
Countries Nations	252 14	2 56	1158 2565
UMLS	135	49	6529

```
1) locatedIn(X,Y) :- locatedIn(Z,Y)& neighbor0f(X,Z)& neighbor0f(Z,X). \#(0.68, 714, 1053)
```

The program in **Country**-S1 dataset

Table 2: Comparison on knowledge bases. The results in bold indicate the highest accuracy on the corresponding test datasets. The ACC@Sn represent the accuracy of the generated LP on the Sn subset of Countries. The ACC@h represent the accuracy of LP with the head predicate h. Besides, blo, int, neg, and intw denote the relations of blockpositionindex, intergovorgs3, negativecomm, and interacts_with.

Dataset	Metrics	$NTP\lambda$	NeuralLP	DFOL
Countries	ACC@S1	100.00	100.00	100.00
	ACC@S2	100.00	100.00	100.00
	ACC@S3	100.00	_	_
Nations	MRR	41.79	56.49	78.88
	HITS@1	41.79	52.49	73.88
	HITS@3	41.79	60.95	84.58
	HITS@10	41.79	61.19	85.07
	ACC@blo	100.00	50.00	100.00
	ACC@int	84.62	84.62	84.62
	ACC@neg	37.50	75.00	75.00
UMLS	MRR	30.03	66.69	74.96
	HITS@1	29.95	61.27	71.41
	HITS@3	30.11	72.31	78.82
	HITS@10	30.11	72.31	78.97
	ACC@isa	65.96	63.83	91.48
	ACC@intw	83.67	86.67	100.00

²⁾ locatedIn(X,Y) :- locatedIn(Z,Y)& neighborOf(X,Z). #(0.68, 723, 1067)

³⁾ locatedIn(X,Y) :- locatedIn(X,Z)& locatedIn(Z,Y). #(0.81, 187, 231)

⁴⁾ locatedIn(X,Y) :- locatedIn(Z,Y)& neighborOf(Z,X). #(0.68, 723, 1068)

Conclusion and Future Work

Conclusion

- DFOL generates first-order logic programs usually with variable depth 1 or 2;
- DFOL is a fast, precise, robust, scalable rule learner.

Future Work

- Larger variable depth
- Support negation and function in logic programs

Thanks for your attention!

