Study Notes

1 One-way Analysis of Variance

Proposition 1.1

$$\frac{1}{\sigma^2} \sum_{g=1}^{G} \sum_{k=1}^{n_g} (X_{gk} - X_{\bullet \bullet})^2 = \frac{1}{\sigma^2} \sum_{g=1}^{G} \sum_{j=1}^{n_g} (X_{gk} - X_{g\bullet})^2 + \frac{1}{\sigma^2} \sum_{g=1}^{G} \sum_{k=1}^{n_g} (X_{g\bullet} - X_{\bullet \bullet})^2$$

$$= \frac{1}{\sigma^2} \sum_{g=1}^{G} n_g \left(\frac{1}{n_g} \sum_{j=1}^{n_g} (X_{gk} - X_{g\bullet})^2 \right) + \frac{1}{\sigma^2} \sum_{g=1}^{G} n_g (X_{g\bullet} - X_{\bullet \bullet})^2$$

Remark 1.2

• Single-mean model (Null Model or Reduced Model):

$$X_{gk} = \mu + \epsilon_{gk}, \quad X_{gk} \sim N(\mu, \sigma^2)$$

• Multiple-mean model (Full Model):

$$X_{gk} = \mu_g + \epsilon_{gk}, \quad X_{gk} \sim N(\mu_g, \sigma^2)$$

- The dimension of **observation space** is $N := \sum_{g=1}^{G} n_g$, which is simply the number of observed values we have collected. The dimension of the single-mean model space is of course just 1. Hence, the dimension of the error subspace for the single-mean model is N-1.
- Similarly, the dimension of the multiple-mean model space is G, which is (rather obviously) the number of parameters $(\mu_1, \mu_2, \dots, \mu_G)$ in this model. Consequently, the dimension of the error subspace for the multiple-mean model is N-G.
- Hence, the degree of freedom of the "error reduction" term

$$\frac{1}{\sigma^2} \sum_{g=1}^G \sum_{k=1}^{n_g} (X_{g\bullet} - X_{\bullet \bullet})^2$$

when going from the single-mean (reduced) model to the multiple-mean (full) model is

$$N - G = (N - 1) - (N - G)$$

• The F-statistic is:

$$F = \frac{SSBG/\mathrm{df}(SSBG)}{SSWG/\mathrm{df}(SSWG)} = \frac{\text{null-to-full model sum-of-squared-error reduction}}{\text{square of Euclidean norm of full-model error}} \sim F_{N-G}^{G-1}$$

	degree of free- dom (dimen- sion of error subspace)	•	common ANOVA nomen- clature
$\frac{1}{\sigma^2} \sum_{g=1}^G \sum_{k=1}^{n_g} (X_{gk} - X_{\bullet \bullet})^2$	N-1	square of Euclidean norm of single-mean model error	total sum of squares
$\frac{1}{\sigma^2} \sum_{g=1}^{G} \sum_{j=1}^{n_g} (X_{gk} - X_{g\bullet})^2$	N-G	square of Euclidean norm of multiple-mean model error	$\begin{array}{c} within\text{-}group\\ sum\ of\ squares,\\ \frac{1}{\sigma^2}SSWG \end{array}$
$\frac{1}{\sigma^2} \sum_{g=1}^G \sum_{k=1}^{n_g} (X_{g \bullet} - X_{\bullet \bullet})^2$	G-1	error reduction from single- to multiple- mean model	between-group sum of squares, $\frac{1}{\sigma^2}SSBG$

References