МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Факультет прикладной математики и физики Кафедра вычислительной математики и программирования

Лабораторная работа №4 по курсу «Программирование графических процессоров»

Работа с матрицам. Метод Гаусса.

Выполнил: Н.И. Забарин

Группа: 8О-408Б

Преподаватели: К.Г. Крашенинников,

А.Ю. Морозов

Условие

1. Цель работы:

Использование объединения запросов к глобальной памяти.

Реализация метода Гаусса с выбором главного элемента по столбцу. Ознакомление с библиотекой алгоритмов для параллельных расчетов Thrust.

2. Вариант задания:

Вариант 2. LU-разложение.

Программное и аппаратное обеспечение

Спецификации GPU

Name: GeForce GT 620M

Compute capability: 2.1
Warp size: 32
Max threads per block: 1024
Clock rate: 1250000

Multiprocessor count: 2

Max threads dim: 1024 1024 64

Max grid size: 65535 65535 65535

Спецификации видеопамяти

Total global memory: 1024 MB Shared memory per block: 48 KB Registers per block: 32 KB Total constant memory: 64 KB

Спецификации СРИ

Процессор Intel Core i5-3317U

Ядер 4

Базовая частота 1.7 GHz

Спецификация оперативной памяти

Объем памяти 10 Гб Частота 1600 МГц

Спецификация жесткого диска

 Тип
 SSD

 Интерфейс
 M.2

 Объём
 240Gb

Спецификация программного обеспечения

CUDA Toolkit 7.5

OS Ubuntu 16.10

IDE Vim

Compiler nvcc V7.5.17

Метод решения

Необходимо вычислить LU-разложение квадратной матрицы: A = LU, где A - матрица $n \times n$, L -- нижняя треугольная матрица, c единичными элементами на диагонали, U -- верхняя треугольная матрица. Так же нужно получить вектор перестановок строк p, где p[i] содержит номер строки которой будет i-ая.

Описание программы

Матрица хранится как одномерный массив размера n * n, причем значения группируются по столбцам, то есть cols[col * n + row] (или cols[col][row]) — значение коэффициента в col ctonбце и row строке. Такая организация хранения данных нужна для того, чтобы эффективно находить максимум в ctonбце.

Максимум ищется с помощью функции thrust::max_element, которая возвращает указатель на максимальный элемент. Зная указатель на первый элемент в столбце, можно найти индекс максимального элемента в столбце.

В программе есть два ядра:

- __global__ void k_swapcolumns(double *dlu, const int n, const int fr, const int to)
- Меняет в матрице dlu элементы в fr строке с элементами в to строке.
- __global__ void k_lucol(double *dlu, const int n, const int i) производит i-тую итерацию алгоритма Гаусса

В матрице dlu после работы программы мы получаем матрицу U, что бы получить матрицу L нужно все элементы ниже диагонали разделить на диагоналные элементы, это вычисляется на CPU.

Результаты

Замеры времени работы для матрицы n * n

n	Параметры ядра	Время
100	<<<8, 8>>>	21.103489
100	<<<16, 16>>>	21.261696
1000	<<<8, 8>>>	894.11
1000	<<<16, 16>>>	883.22

Выводы

Объем глобальной памяти самый большой из всех типов памяти, но в тоже время эта память — самая медленная по скорости считывания и записи, поэтому при работе с глобальной памятью применяются оптимизации.

Выравнивание размеров используемых типов:

позволяет скомпилировать запрос в глобальную память в одну команду GPU, в противном случае компилятор сгенерирует дополнительный код, что может значительно понизить производительность. Для оптимальной производительности тип данных должен иметь размерность 4, 8 или 16 байт.

Использование объединенных запросов (coalescing):

GPU имеет возможность объединять несколько запросов к глобальной памяти в один. Все обращения MP к памяти происходят независимо для каждой половины warp'a. Максимальное объединение получается, когда все запросы одного полу-warp'a удается объединить в один большой запрос на чтение из глобальной памяти.