REDES DE COMPUTADORES 1

Nome: Iuri Dantas da Silva

Capítulo 1

Hosts (Sistemas Finais)

- Executados na borda da rede.
- Exemplos: PCs, celulares, etc.

Comutadores de Pacotes (Parte do Núcleo da Rede)

- Encaminhamento de pacotes (partes de dados).
- Exemplos: Roteadores, switches, etc.

Links de Comunicação

- Exemplos: Fibra ótica, rádio (telefone), cobre e satélite.
- **Taxa de transmissão:** Medida em bits por segundo (bps), que indica a velocidade de transmissão.

Redes

• São conexões de dispositivos para troca de dados.

Componentes Básicos da Internet

• IPs conectados: A junção dos componentes de borda e núcleo da rede.

Protocolos

- Controlam o envio e o recebimento de mensagens.
- Exemplos: HTTP (Web), streaming de vídeo, Skype, TCP, IP, Wi-Fi, 4G/5G, Ethernet.

Padrões da Internet:

- IEEE: Institute of Electrical and Electronics Engineers.
- **RFC**: Request For Comments.
- **IETF**: Internet Engineering Task Force.

Serviços na Rede

• São oferecidos através da infraestrutura da rede.

Interfaces de Programação de Aplicações (APIs)

- Permitem que aplicações enviem e recebam dados.
- Fornecem serviços semelhantes aos de um serviço postal, como o envio e recebimento de pacotes de dados.

O que é um Protocolo?

- Conjunto de regras que define a estrutura e o significado dos bits dentro de uma mensagem.
- Protocolo de Rede: Toda a comunicação na internet é regida por protocolos, que permitem a troca de dados entre dispositivos. Se os protocolos humanos não forem usados, a comunicação ainda pode ocorrer entre pessoas. Mas, sem os protocolos de rede, os dispositivos não se comunicam.

Bordas de Rede

• Hosts: Clientes de servidores (exemplo: centros de dados).

Como Conectar Sistemas Finais ao Roteador de Borda

- Acesso baseado em cabo: Os dados trafegam por fios de cobre, com diferentes comprimentos de banda.
- **Assimetria:** No 5G, você pode fazer upload de dados, enquanto no 4G você recebe mais dados do que envia.

Tecnologias de Conexão:

• **DSL:** Dados trafegam por linhas telefônicas, mas são suscetíveis a ruídos eletromagnéticos.

Redes Domésticas

• Redes usadas em casas ou apartamentos, geralmente com Wi-Fi.

Redes de Acesso Sem Fio

• WLANs (Redes Locais Sem Fio): Conectam sistemas finais ao roteador. Alcance geralmente de 50 a 100 metros (sem obstáculos).

Redes Móveis

• 4G e 5G: Conexões móveis com alcance de até 10 km.

Redes de Acesso Corporativas

 Usadas por empresas, universidades, etc., conectando vários switches por cabos estruturados.

Redes de Data Center

Conectam centenas ou milhares de servidores entre si.

Host

- O host envia todo ou parte do pacote de dados.
- Utiliza pacotes de bits, que podem ser fragmentados em diferentes formatos (por exemplo, uma imagem).
- Os pacotes são enviados com capacidade limitada.
- Na camada 2, os pacotes são chamados de **quadros** ou **frames**.

Mídia Física

- Guiada: Sinais se propagam por meios sólidos (exemplo: fibra ótica).
- Não Guiada: Sinais se propagam livremente (exemplo: rádio).

Fibra Óptica: É a melhor opção porque é imune a interferências eletromagnéticas.

Tipos de Redes

- LAN (Local Area Network): 10 metros a 50 metros.
- MAN (Metropolitan Area Network): 50 km a 100 km.
- WAN (Wide Area Network): Redes de grande alcance, como a internet.
- PAN (Personal Area Network): Alcance de 1 a 10 metros.
- BAN (Body Area Network): Alcance de 1 a 2 metros.

Núcleo da Rede

- Comutação de Pacotes: O processo de dividir os dados em pacotes com origem e destino específicos.
- Problema dos Pacotes: Como os pacotes podem chegar fora de ordem, os protocolos são usados para garantir que os pacotes sejam reorganizados corretamente no destino final.

Roteadores:

- São responsáveis por determinar o melhor caminho para os pacotes.
- Atualizam suas tabelas de roteamento com informações dos pacotes recebidos, trocando dados com outros roteadores da rede.

Comutação de Pacotes

• **Armazenamento e Encaminhamento:** Processamento dos pacotes, que podem ser armazenados temporariamente e encaminhados ao destino correto.

Atraso na Transmissão de Pacotes

- Enfileiramento: Pode causar atrasos se a fila estiver cheia.
- Atraso devido ao Buffer: Quando a rede está sobrecarregada, o buffer pode não dar conta do tráfego, levando à perda de pacotes.

Tipos de Atrasos:

- **Processamento Nodal:** Tempo gasto no armazenamento e processamento dos pacotes.
- Enfileiramento: O tempo que o pacote passa na fila para ser transmitido.
- Transmissão: Conversão de dados na entrada e saída do roteador.
- **Propagação:** Atraso devido à distância percorrida pelo sinal (exemplo: fibra ótica tem um tempo de propagação maior).