Security and Risk: Quick Summary

Gabriel Rovesti

Contents

1. Disclaimer	3
2. M1.1 - Basic concepts	4
2.1. Key terms	4
2.2. Cybersecurity objectives and dilemmas	4
2.3. Risk assessment	5
2.4. Governance structure terms	5
2.5. Standards and Best Practices documents	6
2.6. Standard of Good Practice (SOGP)	6
2.7. ISO/IEC 27000	7
2.8. ISO/IEC 27001	7
2.9. ISO/IEC 27002	8
2.10. IEC 62443	8
3. M1.2 - Basic concepts	10
3.1. aaa	
4. M2.1 - Planning for Cybersecurity	11
4.1. aaa	
5. M2.2 - Planning for Cybersecurity	
5.1. aaa	
6. M3.1 - Cybersecurity Operations and Management	13
6.1. Human Resource Security	
6.2. Hiring process	
6.3. During and after employment	
6.4. Security awareness	
6.5. Hardware management	14
6.6. Office equipment	
6.7. Equipment disposal	
6.8. Industrial Control System (ICS) security	15
6.9. Mobile device security	15
7. M3.2 - Cybersecurity Operations and Management	17
7.1. System access and its functions	17
7.2. Authentication factors and means	
7.3. Authenticators	17
7.4. Vulnerability of a password	17
7.5. Hashed password and salt	18
7.6. Password cracking	
7.7. Password file access control	
7.8. Possession-based authentication	
7.9. Biometric authentication	
7.10. Access control	
7.11. Access control elements	
7.12. Access control policies	

7.13. Access control structures	19
7.14. Customer access	20
8. M3.3 - Cybersecurity Operations and Management	21
8.1. Computer Security Incident Response Team (CSIRT)	21
8.2. Security Incidents	21
8.3. Managing, detecting and responding to incidents	21
8.4. Malware and protection	22
8.5. Intrusion Detection	22
8.6. Data Loss Prevention	23

1. Disclaimer

Given the course has so much content, a complete notes file is available, basically an extended transcript of file, here I will give a full revised short summary to avoid the unreadable sets of slides of this course. Hope this could be useful, between all of my other works.

2. M1.1 - Basic concepts

2.1. Key terms

Cyberspace

- · Consists of:
 - artifacts
 - information
 - ► interconnections

CyBOK - Cyber Security Body of Knowledge

- It aims to codify the foundational and generally recognised knowledge on cyber security
- It's grouped into five broad categories

Cybersecurity

- Collection of tools, policies, security concepts, security safeguards, guidelines, risk management approaches used to protect environment and assets
- It's grouped into five broad categories

Asset

- Data contained inside an information system or a system capability
- Generally hardware, software, etc.

Risk

- Possibility that human actions may lead to consequences or have an impact to humans value
- Estimate the likelihood of events, measuring their impact

Threat

• A potential for violation of security, exploiting a vulnerability and getting danger

Vulnerablity

• A flaw or weakness in a system's design that can be exploited violating security policies

<u>Information security</u>

- Preservation of confidentiality, integrity and availability of information
- In addition, other properties, such as authenticity, accountability, non-repudiation, and reliability

2.2. Cybersecurity objectives and dilemmas

Objectives:

- Confidentiality: property of data not disclosed to unauthorized entities
- Integrity: Property of data not been changed
- Availability: Resource or property being accessible or usable upon demand
- Authenticity: Property of being genuine and being able to verify that users are who they say they are
- *Accountability*: Property ensuring that the actions of a system entity may be traced uniquely to that entity, which can then be held responsible for its actions

Dilemmas:

- Scale and Complexity of Cyberspace
- · Nature of Threat
- User needs vs Security implementation
- · Difficulty estimating costs and benefits

2.3. Risk assessment

Risk:

• is the possibility that human actions or events lead to consequences that have an impact on what humans value

Many processes regard risk:

- · Risk assessment
 - a process of collating observations and perceptions of the world that can be justified by logical reasoning or comparisons with actual outcomes
- · Risk management
 - the process of developing and evaluating options to address the risks in a manner that is agreeable to people whose values may be impacted
- Risk governance
 - set of ongoing processes and principles that aims to ensure an awareness and education of the risks faced when certain actions occur, and to inspire a sense of responsibility

Risk assessment:

- has to use analytic and structured processes to capture the potential for desirable and undesirable events, and a measure of the likely outcomes and impact
- it involves reviewing information collected as part of the risk (and concern) assessments
- this information forms the basis of decisions leading

It's important for many reasons:

- Identification and, if possible, estimation of hazard
- Assessment of exposure and/or vulnerability
- Estimation of risk combining the likelihood and severity (impact)
- Handle all cases inside the cyberspace
- · Number of global standards aiming to formalise that

2.4. Governance structure terms

- Standards
 - Mandatory requirements regarding processes, actions and configurations that are designed to satisfy Control Objectives
- Control Objectives
 - Targets or conditions to be met

• Policies

- High-level statements of management intent from an organization's executive leadership that are designed to influence decisions and guide the organization to achieve the desired outcomes
- ▶ Policies are enforced by standards and further implemented by procedures

• Procedures

- Documented set of steps necessary to perform a specific task or process in conformance with an applicable standard
- There help address the question of how the organization actually operationalizes a policy, standard or control

• Guidelines

- Recommended practices that are based on industry-recognized secure practices
- We apply the guidelines where we cannot apply the standard

2.5. Standards and Best Practices documents

A number of organizations, based on wide professional input, have developed best practices types of documents as well as standards for implementing and evaluating cybersecurity (just to quote here)

- National Institute of Standards and Technology (NIST)
- International Organization for Standardization (ISO)
- International Electrotechnical Commission (IEC)
- International Telecommunication Union Telecommunication Standardization Sector (ITU-T)
- Internet Society (ISOC)
- Internet Engineering Task Force (IETF)
- International Society of Automation (ISA)
- Information Security Forum (ISF)
- Control Objectives for Information and Related Technology (COBIT) for information security issued by Information Systems Audit and Control Association (ISACA)
- Center for Internet Security (CIS)

2.6. Standard of Good Practice (SOGP)

A security policy:

- is a set of rules and practices that specify or regulate how a system or organization provides security services to protect sensitive and critical system resources
- it includes associated responsibilities, security principles followed by all relevant individuals
- it applies to all employees
- has many different types (e.g., access control, network security, etc.)

SOGP:

- is issued by the Information Security Forum (ISF). The goal of the ISF is the development of best practice methodologies, processes, and solutions
- is a business-focused comprehensive guide to identifying and managing information security risks

- is based on research projects and input from ISF members as well as analysis of the leading standards on cybersecurity
- is of particular interest to business manager or chief information security officers
- has several categories broken down into several topics, consistent with the structure of the standards
- has 3 main activities:
 - planning for cybersecurity
 - managing the cybersecurity function
 - security assessment

2.7. ISO/IEC 27000

The ISO and IEC have developed a growing family of standards in the ISO/IEC 27000 series that deal with ISMS - Information Security Management System.

- Information security management system (ISMS) consists of the policies, procedures, guidelines with the scope of protecting its information assets
- Systematic approach for establishing, implementing, operating, monitoring, reviewing, maintaining and improving an organization's information security to achieve business objectives
- Based upon a risk assessment and the organization's risk acceptance levels designed to effectively treat and manage risks

ISO 27000 suite has principles which contribute to the successful implementation of an ISMS:

- · raising awareness
- · assigining resposibilities
- · incorporating security
- · ensuring a comprehensive approach
- preventing and detecting

It is composed by 4 categories:

- · Overview and vocabulary
- Requirements
- Guidelines
- Sector-specific guidelines

2.8. ISO/IEC 27001

ISO 27001 is a management standard initially designed for the certification of organizations. It's composed by:

- Certification Audit
- Qualified individuals to develop and maintain an ISMS
- Obtaining certifications (third-party assessments) to enhance the value
- It can be mapped easily to meet ISF SOGP

2.9. ISO/IEC 27002

It provides the broadest treatment of ISMS topics in the ISO 27000 series and allows for selection of controls for ISMS.

- Allows to choose the controls needed to satisfy ISMS requirements
- Grants specific security controls to protect confidentiality, integrity and availability of information
- Uses a checklist of topics to map ISF SOGP correctly

2.10. IEC 62443

IEC 62443 deals with security of the industrial control system, popularly known as the Industrial Automation and Control System (IACS)

• It ensures that a product supplier, integrator or an asset owner follows an efficient method for secured process with a key aspect on safety of the personnel

It's divided into four *parts*:

- General: basic terminologies and concepts
- Policies: required to implement a cybersec system
- System: describes security requirements for systems
- Component: same but for components

Different from normal IT systems given they are rarely patched or changed, but time dependency here is critical, less awareness overall.

It defines also some roles:

- product supplier
 - responsible for development and testing of the control system, embedded device and host device
- system integrator
 - responsible for the integration and starting up, with conformance to specific security levels
- · asset owner
 - responsible for operational and maintenance capabilities

Let's list some *concepts*:

- · Defense in depth
 - ► Layered security mechanism that enhances security of the whole system
 - ► Layers to be found here: data, application, host, internal network, perimeter, physical, policies
 - ▶ If one layer gets affected, the others will work anyway
- Security zones
 - ▶ Physical or logical groupings of assets that share common security requirements
 - E.g. demilitarized zone

- Conduits
 - Special type of security zone that groups communications that can be logically organized into information flows within and also external to a zone
 - ▶ They control access to the zone

Finally, its security levels:

- It focuses on the zones, making decisions on the use of countermeasures and can be applied to Defense in Depth
- Different ones to list:
 - ► SL1 = Prevents eavesdropping
 - ► SL2 = Prevents unauthorized disclosure
 - ► SL3 = Prevents information to an entity searching for it using sophisticated means moderate resources
 - ► SL4 = Prevents unauthorized disclosure of information with extended resources

And also maturity levels:

- They define the benchmarks
- They are required to identify the maturity level associated with the implementation of each requirement
- Different ones to list:
 - ► ML1 = Initial
 - ► ML2 = Managed
 - ► ML3 = Defined
 - ► ML4 = Improved

- 3. M1.2 Basic concepts
- 3.1. aaa

4. M2.1 - Planning for Cybersecurity

4.1. aaa

5. M2.2 - Planning for Cybersecurity

5.1. aaa

6. M3.1 - Cybersecurity Operations and Management

6.1. Human Resource Security

- Includes hiring, training, monitoring and handling employees
- Not only a technical challenge, also employees have to be aware of incidents and problems
- · Harmful behaviors can occur, being both malicious and non-malicious

6.2. Hiring process

- ISO 27002 specifies "the hiring process ensures employees and contractors understand their responsibilities, suitable for their roles"
- They should be fully capable of perform the intended job, without making unfounded claims and avoiding "negligent hiring"
- Ask applicants as much detail as possible and in case get even criminal/credit record check, according to the country's law
- Employees should agree and sign the terms and conditions of contracts, including non-disclosure agreement and ensuring assets are confidential, agreeing to respect both the policy and confidentiality

6.3. During and after employment

- · Each job should have specific cybersec tasks associated
- Employers and contractors should be aware of responsibilities, policy and training programs
- Several principles for personnel security:
 - ▶ Least privilege
 - Separation of duties
 - Mandatory vacations
 - Limited reliance on key employees
 - Dual operator policy
- During the termination of employment phase, organization's interests should be protected and all data/accounts/codes/assets regarding specific individuals will be removed

6.4. Security awareness

- Having a good security awareness and appropriate security training is as important as any other security countermeasure or control
- Activities that explain and promote security should develop into secure practices according to the specific role, accompanying good education/certification
- All employees have security responsibilities which the awareness program should constantly push, being focused on all people and categories
- A good program should include all aspects (e.g., communication, responsibility, help, security culture)

- According to ENISA we should have:
 - ► Plan/Assess/Design
 - ► Execute/Manage
 - ► Evaluate/Adjust
- Good communication materials should be available:
 - ▶ both in-house
 - and externally obtained
- Good education/certification programs should be also available, considering specialized training
- Role-based training also should encompass:
 - Manage
 - ▶ Design
 - Implement
 - ► Evaluate

6.5. Hardware management

- Hardware = any physical asset used to support corporate information or systems, including the software embedded within them and the operating systems
- Hardware Asset Management (HAM) deals specifically with hardware portion of IT assets, managing the physical components
- Its lifecycle is composed by:
 - ► Planning
 - Acquiring
 - Deploying
 - Managing
 - Disposing
- Destruction is important to handle data safely

6.6. Office equipment

- Every hardware inside an office, containing sensitive information processed by or stored inside of it
- Could be also multifunction devices (MFD)
- Each contains some processing power and each is an asset to protect opportunities for threat and protection
- Could be exposed to several threats:
 - Network services
 - Information disclosure
 - DoS attacks
 - Physical security

- ► OS security
- They can have a checklist containing organization measures

6.7. Equipment disposal

- SOGP recommends sensitive information should be securely destroyed
- Three main actions:
 - ► Clear = sanitize storage locations
 - ► Purge = apply logical/physical techniques to destoy encryption key on devices
 - ► Destroy = renders target data recovery infeasible

6.8. Industrial Control System (ICS) security

- Used in control industrial processes, including Supervisory Control and Data Acquisition (SCADA)
- Consists of a combination of control components used to achieve industrial objectives
 - ► HMI Human-Machine Interface
 - Remote diagnostics and maintenance
 - Sensors
 - Actuators
 - Control
- They are distributed in insecure locations, often with microcontrollers with limited processing power
- There could be several threats:
 - Blocked/delayed flow of information
 - Unauthorized changes to instructions
 - ► Inaccurate information
 - ICS software or settings modified
 - Interference with operation of equipment protection systems, safety systems and system settings

6.9. Mobile device security

- Mobile device = Portable computing and communications device
- Prior to the use of smartphones, user devices were clearly confined over defined perimeters
- Now devices are constantly connected and there's always the need for more
- Each has a full stack, from hardware/firmware/mobile OS/application, being an entire ecosystem
- Millions of apps are available and each should conform to the organization security requirements; some examples
 - ▶ Rooting/Jailbreaking
 - Sideloading
- Many vulnerabilities to list, given they are outside of the corporate perimeter

- *Bring Your Own Device (BYOD)* many organizations find convenient to have such a policy, inspecting devices and their features
 - configuring devices in such a way it's possible to access, protect and wipe data from them safely, even remotely

7. M3.2 - Cybersecurity Operations and Management

7.1. System access and its functions

- Capability that restricts access to business applications, denying or limiting access to specific users
- Functions:
 - Authentication
 - Verifying the identity of user
 - Authorization
 - Granting of access by a security administrator, based on a security policy
 - Access control
 - Granting or denying specifing access requests
- Functions to establish rules and privileges and moderate access to an object in the system
- Each user has to be authorized properly, defining access privileges

7.2. Authentication factors and means

- · Simplest way to access, including an identification and verification step
- Authentication factors are methods
 - ► The user has (possession factor) tokens/smart cards/wireless tags
 - ► The user knows (knowledge factor) passwords/PINs/tokens
 - ► The user is or does (inherence factor) biometrics

7.3. Authenticators

- Means used to confirm a user/process/device
- Can be:
 - Multi-factor: use of one or more authentication means
 - Password-based: use of an ID and a password

7.4. Vulnerability of a password

- Instead of using a file retrieved by ID, to avoid storing password one can use a one-way hash function of the password
- · Different kinds of attacks exist
 - Dictionary attacks
 - ► Specific account
 - Popular password
 - Password guessing
 - Hijacking
 - Monitoring/Exploiting
- Rely on hardware/SSO/password managers to avoid problems
- Select password not too short or easy to guess, eliminating guessable passwords

7.5. Hashed password and salt

- Combine the password with a fixed length salt value using an hashing algorithm
- In verification, the ID is used to see if result matches, therefore password is accepted
- Salt usage
 - prevents duplicate password
 - increases difficulty for attacks
 - nearly impossible to use same password for more systems
 - ► is non-deterministic

7.6. Password cracking

- Process of recovering secret password stored in a system
- Many approaches like developing a dictionary to crack all words or precomputing hash values

7.7. Password file access control

- · Deny the attacker access to the password file
- · Allowing it only for a privieged user
- File can become readable or physical security might be a problem, to use a policy to force users selecting passwords difficult to guess

7.8. Possession-based authentication

- Object the user possess for user authentications = hardware tokens
- *Memory cards*: have an electronic memory, store but do not process data, used for physical access alone
 - May require specific requirements and can be lost
- *Smart tokens*: have some specific physical characteristics, user interface, electronic interface and authentication protocol
 - ▶ Have a smart card, a microprocessor and a processing circuit
- *Electronic identity cards*: also called eID, they provide stronger proofs of identity, given thy are verified by a government
- One-Time Password (OTP) device: it generates one time passwords, using a seed embedded

7.9. Biometric authentication

- Based on the specific individual characteristics
- Technically complex and expensive
- Nature and requirements should be considered, being universal, distinct, permanent and collectable
- Should meet some criteria:
 - Performance and accuracy
 - Difficulty of circumventing
 - Acceptability by users

7.10. Access control

• Gaining the ability to communicate or interact with a system. In other words, the process of granting or denying specific requests, via specific services and mechanisms

- ACCESS CONTROL = AUTHENTICATION + AUTHORISATION
- Has different inputs
 - ▶ Who issued the request
 - What is requires
 - What rules apply
- *System access* deals with moderating access to system objects via authentication (establishing user identity) and authorisation (defining user privileges)

7.11. Access control elements

- Subject
 - Entity capable of accessing objects
 - Typically considered accountable for their actions
 - ► Can be creators of resources, groups of users or every user possible to access
- Object
 - ▶ Resource which access is controlled and used to contain and/or receive information
- Access rights
 - ► The ways in which a subject can access an object

7.12. Access control policies

- Dictates what types of access are permitted
- Different categories exist:
 - Discretionary access control (DAC)
 - Based on requestor identity and on access rules, granting specific permissions
 - ► Mandatory access control (MAC)
 - Comparison between security labels (sensitiveness of resources) with security clearances (which resources to access)
 - Has to be mandatory, so not to enable user wishes
 - ▶ Role-based access control (RBAC)
 - Access control based on user roles
 - Role permissions can be inherited through an hierarchy
 - Can apply to a single or several individuals
 - ► Attribute-based access control (ABAC)
 - Access control based on attributes associated with and abot subjects and objects, combining attributes under which an access takes place

7.13. Access control structures

- Access matrix = using access control lists (ACLs) or capability tickets
- Governed by a set of rules granting the subject access

7.14. Customer access

- Each customer needs to be uniquely approved and identified, both indivodual and in groups, responding to organization's business requirements
- Each one should be aware and trained
- Balance between customer satisfaction and meeting security requirements
- Subject to the same types of technical controls, defining access privileges and selecting an appropriate authentication procedure

8. M3.3 - Cybersecurity Operations and Management

8.1. Computer Security Incident Response Team (CSIRT)

- Responsible for rapidly detecting incidents
- Minimizing loss and destruction
- · Mitigating the weaknesses that were exploited
- Restoring computing services
- Calculates the added value to invest in safety resources
- In small organizations can be the security team, in large ones they are two separate entities

8.2. Security Incidents

- Any action that threatens one or more of the classic security services
- Unauthorized access or modification
- Procedures to manage them
 - Sorting, detecting, identifying, documenting

8.3. Managing, detecting and responding to incidents

- Should be detected and reported
 - ► Manually (reports)
 - ► Automatically (with integrity/log tools)
- Triage
 - find the single point of contact for services and request additional information to categorize the incident and notify parts of the enterprise
- Documentation to respond to them
 - ► Detail/Describe/Identify categories, personnel, circumstances
 - ▶ Should immediately follow a response to the incidents
 - What
 - How
 - Details
 - Impact
 - ► Allows for reviewing the risk assessment and strengthening controls
- Once an incident is opened, has to go through a number of states until no further action is required and is considered closed

Security controls are in place throughout:

- Hardware
- Software
- Firmware

8.4. Malware and protection

- · Program inserted into others compromising confidentiality, integrity, availability
- Many types and should be protected against them as much as possible
 - Clickless
 - ► Fileless
 - Adwares
 - Worms/Viruses, etc.
- Businesses are experiencing more and more
- · Practical steps to take, avoiding attack and defending against different attack surfaces
- Protection software to use to protect against them, automating actions as much as possible, verifying all defenses and collecting results from all points of attack
 - Scanning
 - Monitoring
 - Identifying
 - Disinfecting
- Software has to be accompanied by other measures like whitelist, firewalls and virtualization

8.5. Intrusion Detection

- The sooner the intrusion is detected, the less damage can be done
- When an intrusion happens, confidentiality is lost on all levels and collecting informations can help assessing risks and other means of security
- No exact distinction between an attack and normal use of resource: some overlap might happen
- · Identification between legitimate and new user
- Approaches
 - *Misuse detection*: take the strange behaviour and consider it as normal attack, via usage of patterns and signatures. It cannot detect novel/unknown attacks
 - *Anomaly detection*: detect activities different from normal behavior and be able to detect previously unknown attacks, having a trade-off between false positives and false negatives
- Intrusion Detection System
 - ▶ Sensors: collecting data and inputs
 - ► Analyzers: receive data from sensors and support evidence
 - User interface: give user output
- Techniques
 - Host-based
 - Layer of security to detect intrusions, events and send alerts
 - Detect thresholds and profiles

- Network-based
 - Monitor the traffic on the networks and see if packets match signatures
 - Can use sensors to gather data and feed information
 - It can see data inside the network but also outside of firewalls

8.6. Data Loss Prevention

- Information leakage can happen in an untrusted environment
- Monitor, and protect data in use and data at rest through deep content inspection
- Often includes unencrypted content
- Sensitive data should be precisely identified in an enterprise via different means
 - rule-based/fingerprinting/exact-partial file matching
- Data states
 - ► Data at rest = big risk with info stored throughout the enterprise
 - ► Data in motion = data trasmitted over enterprise networks, subject to active/passive monitoring of information across enterprise networks
 - Data in use = part of media and saved physically somewhere, controlling the movement in enduser systems