Fonction de transfert en z d'un processus analogique bloqué et échantillonné

$G_a(p)$	$G_{\epsilon}(z) = \frac{z-1}{z} Z\left[\frac{G_{\sigma}(p)}{p}\right]$
$\frac{1}{Tp}$	$\frac{\Delta}{T} \frac{1}{z - 1} \qquad z_0 = e^{-\Delta T}$
$\frac{1}{(T_P)^2}$	$\frac{1}{2} \left(\frac{\Delta}{T} \right)^2 \frac{z+1}{(z-1)^2}$
$K\frac{1}{1+Tp}$	$K \frac{1-z_0}{z-z_0}$
$K\frac{1}{1+Tp}e^{-p\wedge\Delta}$ n: entier	$K \frac{1 - z_0}{z - z_0} z^{-\kappa}$
$K \frac{1}{1 + Tp} e^{-p\tau}$ $\tau < \Delta \qquad \tau = (1 - m)\Delta$	$K_{1} \frac{z - \alpha}{z - z_{0}} z^{-1} \text{avec} \begin{cases} \alpha = \frac{z_{0} - z_{0}}{1 - z_{0}^{m}} \\ K_{1} = K(1 - z_{0}^{m}) \end{cases}$
$\frac{1}{T'p(1+Tp)}$	$\frac{\frac{\Delta}{T'}(z-z_0) - \frac{T}{T'}(z-1)(1-z_0)}{(z-1)(z-z_0)} = \frac{K_1(z-a)}{(z-1)(z-z_0)}$ $K_1 = \frac{\Delta - T(1-z_0)}{T'}; \ a = \frac{z_0(\Delta/T) - (1-z_0)}{(\Delta/T) - (1-z_0)}$
$\frac{1}{(1+T_1p)(1+T_2p)}$	$1 + \frac{T_1 T_2}{T_1 - T_2} \left(-\frac{1}{T_2} \frac{z - 1}{z - z_1} + \frac{1}{T_1} \frac{z - 1}{z - z_2} \right) \begin{cases} z_1 = e^{-\Delta T_1} \\ z_2 = e^{-\Delta T_2} \end{cases}$
$\frac{1}{1 + 2\xi \frac{p}{\omega_n} + \left(\frac{p}{\omega_n}\right)^2}$ on posera $\omega_p = \omega_n \sqrt{1 - \xi^2}$ on a $0 < \xi < 1$	like forme: $\frac{b_1z + b_0}{z^2 + a_1z + a_0}$ avec: $a_0 = e^{-2\xi\omega_\kappa\Delta}, a_1 = -2\sqrt{a_0}\cos(\omega_p\Delta)$ $b_0 = a_0 + \sqrt{a_0} \left[\xi \frac{\omega_\kappa}{\omega_p} \sin(\omega_p\Delta) - \cos(\omega_p\Delta) \right],$ $b_1 = 1 - \sqrt{a_0} \left[\xi \frac{\omega_\kappa}{\omega_p} \sin(\omega_p\Delta) + \cos(\omega_p\Delta) \right].$ $2^{\text{tenc}} \text{ forme: } \frac{b_1z + b_0}{(z - z_1)(z - z_1^*)}$ $z_1, z_1^* = e^{-\xi\omega_\kappa\Delta} e^{\pm j\omega_p\Delta}$