inference on a binomial proportion

Dr. David Banks Duke University

RU-486 morning-after contraceptive

$$H_3C$$
 CH_3
 CH_3

clinical trial details

- > 800 women
- sexual intercourse in previous72 hours
- randomly assigned

RU-486 treatment

0 pregnancies

standard treatment

4 pregnancies

frequentist approach

$$H_0: p \ge 0.5 \text{ vs } H_A: p < 0.5$$

P-value =
$$0.5^4 = 0.0625 > 0.05$$

do not reject null hypothesis

Bayesian approach

uniform distribution posterior probability

beta(
$$| , |)$$
 beta($| + 0, | + 4)$

Bayesian mean

the mean of a beta (α, β) distribution $\alpha/(\alpha+\beta)$

Bayesian standard deviation

the standard deviation of a beta (α, β) distribution

before data: p = 0.71

after data: p = 0.13

0.96875

summary

- how to build a statistical model
- frequentist vs. Bayesian approaches lead
 to different conclusions
- Bayesian approaches learn from data
- yesterday's posterior is today's prior