概率论与数理统计

第九章

韩潇 xhan011@ustc.edu.cn

第九章: 非参数假设检验

大纲:

- ▶拟合优度检验
- ➤Wilcoxon秩和检验
- ▶符号检验
- ▶其他非参数检验概述

9.1拟合优度检验

- ▶ 第8章讨论的假设检验问题:总体分布已知,部分参数未知
- ▶ 总体分布未知时,可以先判断总体是否来自于某种类型的分布
- \triangleright 例: H_0 :总体为正态分布
- ▶样本对于原假设的总体分布"拟合"较好:不拒绝原假设.反之 拒绝原假设. -拟合优度检验(goodness of fit test)

- ▶ 总体的值域为有限集 $\{a_1, ..., a_k\}$
- \triangleright 简单随机样本,样本量为n, 其中有 n_i 次取值 a_i , i=

1, ...
$$k$$
. $\sum_{i=1}^{k} n_i = n$. 给定一个分布律为

$$P(X = a_i) = p_i, i = 1, ... k. p_i$$
 已知

讨论如下检验问题

$$H_0: P(X = a_i) = p_i, i = 1, ... k \leftrightarrow H_1: \exists j \ s. \ t. P(X = a_j) \neq p_j$$

- ▶ 由大数定律, $f_{n_i} \approx np_i \rightarrow a_i$ 这个类的理论值或期望值
- $> n_i \rightarrow 观测值$

类别	a_1	a_2	 a_i		a_k
理论值 (E)	np_1	np_2	 np_i	* * *	np_k
观测值(O)	n_1	n_2	 n_i	• • • •	n_k
$np_i - n_i$	np_1-n_1	$np_2 - n_2$	 $np_i - n_i$		$np_k - n_k$

 \triangleright 检验的想法: 最后一行的值越小,则与 H_0 的相似程度越高 – 用差值来构造统计量

$$Z = \sum \frac{(O-E)^2}{E} = \sum_{i=1}^k \frac{(np_i - n_i)^2}{np_i} = \sum_{i=1}^k \frac{n_i^2}{np_i} - n,$$

定理 9.1 $Pearson - \chi^2$ 检验

如果原假设 H_0 成立,则当样本量 $n \to \infty$ 时,Z 的分布趋于自由度为 k-1 的 χ^2 分布,即 χ^2_{k-1} .

由定理9.1,可以对 H_0 做检验。显然,当Z > C时拒绝 H_0 , $Z \le C$ 时不拒绝 H_0 . Z在原假设下近似分布为 χ^2_{k-1} ,则 $C = \chi^2_{k-1}(\alpha)$. 因此检验为

 $\varphi: Z > \chi^2_{k-1}(\alpha)$ 时拒绝 H_0 ,否则不能拒绝 H_0

- ▶ 假定根据一组数据算得 $Z = Z_0$:如果原假设成立,出现像 Z_0 这样大的差异或更大差异的概率有多大?
- ▶ 近似地,我们有

$$p(Z_0) = P(Z \ge Z_0) = 1 - F_{\chi_{k-1}^2}(Z_0)$$

- $ightharpoonup p(Z_0)$ 越大,说明在原假设成立时,出现 Z_0 这样大的差异就越不奇怪,从而就越使人们相信原假设的正确性-"拟合优度"
- \triangleright 因此检验 φ 等价于 $p(Z_0) < \alpha$ 时,拒绝原假设.

例 9.1 在一个三班制生产的工厂中,本月出了 30 次事故,其中早、中、晚班事故数分别为 12, 6, 12 次. 问事故与班次是否有关?

例 9.2 考虑一个骰子是否均匀问题. 设随机变量 X 取值 $1, \ldots, 6$, 事件 $\{X = i\}$ 表示 郑出 i 点. 如果骰子是均匀的, 相当于

$$H_0: \mathbb{P}(X=i) = 1/6, i = 1, \dots, 6,$$

设已作了 $n=6\times10^{10}$ 次投掷, 设得到各点出现的次数分别为

$$n_1 = 10^{10} - 10^6,$$
 $n_2 = 10^{10} + 1.5 \times 10^6,$ $n_3 = 10^{10} - 2 \times 10^6,$ $n_4 = 10^{10} + 4 \times 10^6,$ $n_5 = 10^{10} - 3 \times 10^6,$ $n_6 = 10^{10} + 10^6/2.$ (9.5)

能否认为骰子是均匀的?

例 9.3 孟德尔 (Mendel) 豌豆杂交试验. 纯黄和纯绿品种杂交, 因为黄色对绿色是显性的, 在 Mendel 第一定律 (自由分离定律) 的假设下, 二代豌豆中应该有 75%是黄色的, 25%是绿色的. 在产生的 n=8023 个二代豌豆中, 有 $n_1=6022$ 个黄色, $n_2=2001$ 个绿色. 我们的问题是检验这些这批数据是否支持 Mendel 第一定律, 要检验的假设是

 $H_0: p_1 = 0.75, p_2 = 0.25$

 \triangleright 总体的值域为有限集 $\{a_1, ..., a_k\}$,但分布中有r个未知参数 $\theta_1, ..., \theta_r$

$$H'_0: P(X = a_i) = p_i(\theta_1, ..., \theta_r), i = 1, ... k$$

其中 a_i , i = 1, ... k已知,且两两不同r < k - 1

- \blacktriangleright 样本为($X_1,...,X_n$), 在原假设下,记 $\hat{\theta}_1,...,\hat{\theta}_r$ 为 $\theta_1,...,\theta_r$ 的最大似然估计,从而 p_i 的最大似然估计为 $\hat{p}_i = p_i(\hat{\theta}_1,...,\hat{\theta}_r)$, i = 1,...k
- ightharpoonup n_i 为样本取 a_i 的次数, i=1,...k.

▶构造统计量

$$Z = \sum \frac{(O - \hat{E})^2}{\hat{E}} = \sum_{i=1}^k \frac{(n_i - n\hat{p}_i)^2}{n\hat{p}_i} = \sum_{i=1}^k \frac{n_i^2}{n\hat{p}_i} - n$$

▶我们有如下定理

定理 9.2

在一定的条件下, 若原假设 H'_0 成立, 则当 $n \to \infty$ 时, Z 的分布趋于自由度为 k-r-1 的 χ^2 分布, 即 χ^2_{k-r-1} .

▶此时检验为

$$\phi'$$
: 当 $Z > \chi^2_{k-r-1}(\alpha)$ 时, 拒绝 H_0 , 否则不能拒绝 H'_0

例 9.4 从某人群中随机抽取 100 个人的血液,并测定他们在某基因位点处的基因型. 假设该位点只有两个等位基因 A 和 a, 这 100 个基因型中 AA, Aa 和 aa 的个数分别为 30, 40, 30, 则能否在 0.05 的水平下认为该群体在此位点处达到 Hardy-Weinberg 平衡态?

▶总体X有无穷多个取值,但其分布仅含有有限个未知参数:

$$H_0^{\prime\prime}: X \sim F_\theta(x), x \in R$$

- $> \theta = (\theta_1, ..., \theta_r)$ 为未知参数. 例: $X \sim N(\mu, \sigma^2)$
- ▶离散化:将总体的取值分割为k段

$$(x_0, x_1], \dots, (x_{k-2}, x_{k-1}], (x_{k-1}, x_k), x_0 = -\infty, x_k = \infty$$

▶ 则定义离散型随机变量, $Y = a_i$, 若 $x_{i-1} \le X \le x_i$, i = 1, ... k. 当 原假设成立时,Y的分布为

$$P(Y = a_i) = p_i(\theta_1, ..., \theta_r) = F_{\theta}(x_i) - F_{\theta}(x_{i-1})$$

 \triangleright 转换(非等价)为 H'_0 的检验问题-拒绝 H'_0 ,则有理由拒绝 H''_0

例 9.5 在一高速路的收费站记录了 106 分钟内在每一分钟内到达收费站的车辆个数. 数据如下表 9.1, 若用 X 表示每一分钟内到达收费站的车辆个数, 试问 X 是否服从某个 Poisson 分布?

表 9.1: 一分钟内达到的车辆个数

车辆个数 $(x_i)/m$	出现的次数	x_i /m	出现的次数	x_i /m	出现的次数
0	0	7	12	14	4
1	0	8	8	15	5
2	1	9	9	16	4
3	3	10	13	17	0
4	5	11	10	18	1
5	7	12	5		n=106
6	13	13	6		

例 9.6 调查某企业 745 人的收入 (元) 状况如下:

每月收入	≤ 1500	(1500, 2500]	(2500, 3500]	(3500, 5000]	(5000, 7500]	> 7500
人数	150	200	220	100	50	25

问该企业的收入能否用正态分布来拟合? ($\alpha = 0.05$)

- ▶理论分布类型已知,但有若干参数未知的检验常用于列联表 (contingency table)检验
- ▶ 列联表是一种按两个属性作双向分类的表-例:一群人按照吸烟和不吸烟(属性A)和是否患肺癌(属性B)分类
- ▶记属性A有a个不同水平,属性B有b个不同水平,则有

$$n_{i.} = \sum_{j=1}^{b} n_{ij}, \quad n_{.j} = \sum_{i=1}^{a} n_{ij}$$

分别为A处于水平i和属性B处于水平j的个体数.

- > X:属性A的水平, X = 1, ..., a; Y:属性B的水平, Y = 1, ..., a
- >将他们的频数罗列出来,可以得到列联表
- \triangleright 目的: H_0 : A, B两属性独立

表 9.3: a×b 列联表

B	1	2	• • •	i	• • •	a	和
1	n_{11}	n_{21}	• • •	n_{i1}	• • •	n_{a1}	$n_{\cdot 1}$
2	n_{12}	n_{22}		n_{i2}	• • •	n_{a2}	$n_{\cdot 2}$
• •	:	•	:	•	•	:	:
j	n_{1j}	n_{2j}	• • •	n_{ij}	:•0: • :•	n_{aj}	$n_{\cdot j}$
:	:	•	:	•	•	•	:
b	n_{1b}	n_{2b}	• • •	n_{ib}	• • •	n_{ab}	$n_{oldsymbol{\cdot}oldsymbol{b}}$
和	n_1 .	n_2 .	• • •	n_i .	• • •	n_a .	n

 $> H_0$ 成立时,我们有

$$p_{ij} = \mathbb{P}(X = i)\mathbb{P}(Y = j) = p_{i} \cdot p_{i}, \quad i = 1, \dots, a, j = 1, \dots, b$$

- $> H_0$ 成立时,独立参数的个数: r = (a-1) + (b-1) = a + b 2
- ightharpoonup 最大似然估计法可以得到 \hat{p}_i . $=\frac{n_i}{n}$, $\hat{p}_{.j}=\frac{n_{.j}}{n}$
- ightharpoonup 统计量Z为 $Z = \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(n_{ij} n_{i.} n_{.j}/n)^2}{n_{i.} n_{.j}/n}$

$$= \sum_{i=1}^{a} \sum_{j=1}^{b} \frac{(nn_{ij} - n_{i.}n_{.j})^{2}}{nn_{i.}n_{.j}}.$$

▶ 当 $n \to \infty$ 时, Z的渐近分布是自由度为k-1-r=ab-1- (a+b-2)=(a-1)(b-1)的 χ^2 分布,即 $\chi^2_{(a-1)(b-1)}$.

例 9.7 为了了解吸烟是否与患肺癌有关, 在 6000 人中作了调查, 数据如下:

	不吸烟	吸烟	n_i .
无肺癌	3397	2585	5982
患肺癌	3	15	18
$\overline{n_{\cdot j}}$	3400	2600	6000

问根据以上数据, 吸烟是否与患肺癌有关? ($\alpha = 0.001$)

例 9.8 据报道,不同时代出生的人在请朋友吃饭时的人均消费是不同的,大体上是 60 岁以上倾向于人均低一点的消费. 为了证实这一报道是否正确,某机构作了如下一个关于请朋友吃饭人均消费(元)的调查:

人均消费 年龄段	[50.80)	[80,120)	[120,150)	[150,200)	>200	n_i .
(25,45]	11	26	35	20	9	101
(45,60]	21	35	50	30	5	141
>60	20	38	30	15	1,	104
n.j	52	99	115	65	15	346

问报道的消息是否正确? ($\alpha = 0.05$)