1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \sin(\frac{1}{x})$ if $x \neq 0$ and f(0) = 0. Prove that f is not continious at 0.

Solution:

Let $x_n = \frac{1}{n}$ for all $n \in \mathbb{N}$. Note that $\frac{1}{n} > 0$ for all n. Thus $f(x_n) = \sin\left(\frac{1}{x_n}\right) = \sin(n)$. We proved in class that $\lim_{n \to \infty} \frac{1}{n} = 0$. Now consider

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \sin(n)$$

which we proved in class diverges. Thus we have that (x_n) converges to 0 but $(f(x_n))$ does not converge to f(0), thus f is not continuous at x = 0.

2. Suppose that $f: D \to \mathbb{R}, g: D \to \mathbb{R}$ and $h: D \to \mathbb{R}$ are 3 functions and that

$$f(z) \le g(z) \le h(z)$$

for all $z \in D$. Show that if f and h are both continious at $x \in D$ and f(x) = h(x), then g is also continious at x.

Solution:

Let (x_n) be a sequence in D that converges to x. By continuity of f and h and that f(x) = h(x) we know

$$\lim_{n \to \infty} f(x_n) = f(x) = \lim_{n \to \infty} h(x_n) = h(x)$$

by given assumption $f(x_n) \leq g(x_n) \leq h(x_n)$ since $x_n \in D$ for all n. Because $f(x_n)$ and $h(x_n)$ converge to the same value, call it s, by the squeeze theorem we can say $g(x_n)$ converges to that same value s. Furthermore

$$f(x) \le g(x) \le h(x)$$
$$s \le g(x) \le s$$

Thus s = g(x). Hence we have that (x_n) converges to x and $(g(x_n))$ converges to g(x), thus g is continious at x.

3. Exhibit a continious function $f:(0,1]\to\mathbb{R}$ so that f((0,1]) is not bounded. Prove all your claims

Solution:

I claim $f(x) = \frac{1}{x}$ works. Let (x_n) be a sequence in (0,1] that converges to some real number x. Now consider

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{x_n} = \frac{1}{x}$$

which we proved in the HW (note that $x_n \in (0,1]$ so all values of x_n are non-zero). So (x_n) converges to x and $f(x_n)$ converges to f(x), thus f is continious over the interval (0,1]. To prove f((0,1]) is unbounded we want to show for any $M \in \mathbb{R}$ there is some $x \in (0,1]$ such that $\frac{1}{x} > M$. Assume by contradiction f((0,1]) is bounded, thus there exists some $M_0 \in \mathbb{R}$ such that $\frac{1}{x} \leq M_0$ for all $x \in (0,1]$. Note that M_0 must be positive as $\frac{1}{x} > 0$ for all $x \in (0,1]$. Choose $x_0 = \frac{1}{M_0 + 1} \in (0,1]$, then we get $\frac{1}{x_0} = \frac{1}{\frac{1}{M_0 + 1}} = M_0 + 1 < M_0$, where the last inequality is by assumption. We have reached a contradiction thus, f((0,1]) is unbounded.

4. Prove that if $f: D \to \mathbb{R}$ is continous and $C \subset D$ is compact, then f(C) is bounded.

Solution:

Suppose f(C) is not bounded then there exists $x_n \in C$ such that $f(x_n) > n$ for all $n \in \mathbb{N}$. Let $M \in \mathbb{R}$ then there exists some $N \in \mathbb{N}$ such that N > M (by archimedean principle), then for all n > N we have $f(x_n) > n > N > M$. Thus $\lim_{n \to \infty} f(x_n) = \infty$. $x_n \in C$ for all $n \in \mathbb{N}$, since C is compact we know there exists some convergent subsequence (x_{n_k}) that converges to some $x \in C$. By continuity of f, $\lim_{n \to \infty} f(x_{n_k}) = f(x)$. However this contradicts that $\lim_{n \to \infty} f(x_n) = \infty$, as we proved in class that if a sequence diveges then all of its subsequences must also diverge. Thus f(C) must be bounded.