

Aurce by \$0 for all m let
$M = \min \{ 1b_1, 1b_2,, 1b_{N_1-1}, \frac{1b_1}{2} \}$
Then we have that bm > M for all m > 1
Now let us prove flust lun an a M-00 bm b
Gneu E>0 we must choose $N = N(E) > 0$
Ao flust for $m \ge N$ $\left \frac{a_m - a}{b_m} \right < \varepsilon$
to let E>0 se gren, we write
$\frac{ a_m - a }{ b_m } = \frac{ a_m - a_m }{ b_m } + \frac{ a_m - a }{ b_m } = \frac{ a_m - a_m }{ b_m } + \frac{ a_m - a }{ b_m } = \frac{ a_m - a }{ a_m - a } = \frac{ a_m - a }{ b_m } = \frac{ a_m - a }{ a_m - a } = a_m -$
$ a_m $ $\frac{1}{b_m}$ $\frac{1}{b_1}$ $ a_m-a $
$= a_{m} b_{m} - b + a_{m} - a $ $ b_{m} b_{m} b_{m} $
(Note flust by hypothesis by \$0 for all m and b \$0)

0 0 10 0. 1 1
Consider the first term. Juice an - a by
Proposition 2,2,1 we have that an is BOUNDED.
That is there exists some constant A>0
such that am < A for all n.
On the offer hand we have proved at the
beginning that 3 M > 0 such that bm > M
for all m. There fore we have that
$\frac{ a_m b_m - b }{ b_m b } \leq \frac{A}{M b }$
(Note that A is a constant indep. of n). MIbl
But since by -> b given E>0 we can find N, such that $1b_m - b < E (M b)$ for all $M > N_1$.

45 / 5

For Ile second term we choose No 80	
$\frac{1}{2} \left \frac{1}{2} - \frac{1}{2} \right < \frac{1}{2} \left \frac{1}{2} \right = \frac{1}{2} \left \frac{1}{2} \right $	J 2
Which can be done since an -> a.	
Finally let N= mox {N, N2}; +	lien
for all n > N we have that	
$\frac{\left \frac{a_{m}}{b_{m}} - \frac{a}{b}\right \leq a_{m} b_{m} - b }{ b_{m} b_{l} } + \frac{1}{ b } a_{m} - a }$	۹
$\frac{A}{M16} \frac{ b_m-b +1}{ b } \frac{ a_m-a }{ b }$	٤
$\leq A \leq (M bt) + 1 \leq 1$ $M b 2 A bt 2$	bt
$\langle \underline{\varepsilon} + \underline{\varepsilon} - \underline{\varepsilon}$	
as desired.	*