Εισαγωγή στην Αριθμητική Ανάλυση

Σταμάτης Σταματιάδης stamatis@materials.uoc.gr

Τμήμα Επιστήμης και Τεχνολογίας Υλικών, Πανεπιστήμιο Κρήτης

ΤΡΙΤΗ ΔΙΑΛΕΞΗ

Μέθοδος Müller (1/2)

Μέθοδος Müller για την επίλυση της f(x) = 0

- Η μέθοδος προσεγγίζει τη συνάρτηση με παραβολή (εξίσωση της μορφής $y = ax^2 + bx + c$).
- Χρειάζεται τρία σημεία $(x_i, f(x_i))$ για τον προσδιορισμό της καμπύλης, δηλαδή για τον προσδιορισμό των τριών συντελεστών της. Οι τιμές x_0, x_1, x_2 που επιλέγουμε θεωρούνται οι τρεις πρώτες προσεγγίσεις στη ρίζα.
- Ως αποτέλεσμα της μεθόδου θεωρείται η ρίζα της παραβολής που είναι πιο κοντά στην προηγούμενη προσέγγιση. Είναι η προσέγγιση x₃.
- Επαναλαμβάνουμε τη διαδικασία για τα σημεία x_1, x_2, x_3 ώστε να υπολογίσουμε μια ακόμα καλύτερη προσέγγιση (τη x_4) κοκ.
- Η μέθοδος Müller έχει τάξη σύγκλισης σε απλή ρίζα, $\alpha \approx 1.84$.

Μέθοδος Müller (2/2)

Αλγόριθμος επίλυσης της f(x) = 0 με τη μέθοδο Müller

- 1. Επιλέγουμε τρεις διαφορετικές τιμές x_0 , x_1 , x_2 στην περιοχή της αναζητούμενης ρίζας. Τα σημεία $(x_i, f(x_i))$ δεν πρέπει να ανήκουν στην ίδια ευθεία.
- 2. Ορίζουμε τις ποσότητες

$$\begin{split} w_0 &= \frac{f(x_2) - f(x_0)}{x_2 - x_0} \qquad w_1 = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \\ a &= \frac{w_1 - w_0}{x_1 - x_0} \;, \quad b = w_0 + a(x_2 - x_0) \;, \quad c = f(x_2) \;. \end{split}$$

3. Η επόμενη προσέγγιση της ρίζας δίνεται από τη σχέση

$$x_3 = x_2 - \frac{2c}{d} ,$$

όπου d ο, εν γένει μιγαδικός, αριθμός που έχει το μεγαλύτερο μέτρο μεταξύ των $b+\sqrt{b^2-4ac}$, $b-\sqrt{b^2-4ac}$.

- 4. Αν η νέα προσέγγιση είναι ικανοποιητική, πηγαίνουμε στο βήμα 6.
- 5. Θέτουμε $x_0 \leftarrow x_1, x_1 \leftarrow x_2, x_2 \leftarrow x_3$. Επαναλαμβάνουμε τη διαδικασία από το βήμα 2.
- 6. Τέλος.

Προσέξτε ότι όλες οι μεταβλητές είναι μιγαδικές.

Σταθερό σημείο συνάρτησης (1/3)

Ορισμός

Μια συνάρτηση g(x) λέμε ότι έχει σταθερό σημείο στο διάστημα [a,b] αν υπάρχει $\varrho\in[a,b]$ ώστε $g(\varrho)=\varrho.$ Το ϱ είναι το σταθερό σημείο.

Σταθερό σημείο συνάρτησης (1/3)

Ορισμός

Μια συνάρτηση g(x) λέμε ότι έχει σταθερό σημείο στο διάστημα [a,b] αν υπάρχει $\varrho \in [a,b]$ ώστε $g(\varrho)=\varrho$. Το ϱ είναι το σταθερό σημείο.

Κριτήριο ύπαρξης σταθερού σημείου

Έστω g(x) συνεχής συνάφτηση στο [a,b], με $a \leq g(x) \leq b$, $\forall x \in [a,b]$. Τότε η g(x) έχει τουλάχιστον ένα σταθεφό σημείο στο [a,b].

Απόδειξη

- Ισχύει $g(a) \ge a$, $g(b) \le b$.
- Ορίζουμε τη συνεχή συνά
ρτηση h(x) = g(x) x. Τότε $h(a) \ge 0$, $h(b) \le 0$.
- Το θεώρημα Bolzano εξασφαλίζει ότι υπάρχει τουλάχιστον ένα $\varrho \in [a,b]$ ώστε $h(\varrho)=g(\varrho)-\varrho=0.$

Σταθερό σημείο συνάρτησης (1/3)

Ορισμός

Μια συνάρτηση g(x) λέμε ότι έχει σταθερό σημείο στο διάστημα [a,b] αν υπάρχει $\varrho \in [a,b]$ ώστε $g(\varrho)=\varrho$. Το ϱ είναι το σταθερό σημείο.

Κριτήριο ύπαρξης σταθερού σημείου

Έστω g(x) συνεχής συνάφτηση στο [a,b], με $a \le g(x) \le b$, $\forall x \in [a,b]$. Τότε η g(x) έχει τουλάχιστον ένα σταθεφό σημείο στο [a,b].

Απόδειξη

- Ισχύει $g(a) \ge a$, $g(b) \le b$.
- Ορίζουμε τη συνεχή συνάρτηση h(x) = g(x) x. Τότε $h(a) \ge 0$, $h(b) \le 0$.
- Το θεώρημα Bolzano εξασφαλίζει ότι υπάρχει τουλάχιστον ένα $\varrho \in [a,b]$ ώστε $h(\varrho)=g(\varrho)-\varrho=0.$

Μοναδικότητα σταθερού σημείου

Μπορεί να αποδειχθεί ότι το σταθερό σημείο μιας συνάρτησης g(x) (η οποία ικανοποιεί το κριτήριο ύπαρξης) είναι μοναδικό αν |g'(x)|<1, $\forall x\in [a,b]$. Τότε, οποιαδήποτε αρχική τιμή στο [a,b] δίνει ακολουθία που συγκλίνει σε αυτό.

Σταθερό σημείο συνάρτησης: (2/3)

• Έστω μια συνά
ρτηση g(x) που είναι συνεχής σε σημείο \bar{x} , δηλαδή ικανοποιεί τη σχέση

$$\lim_{x \to \bar{x}} g(x) = g(\lim_{x \to \bar{x}} x) = g(\bar{x}) .$$

Επιλέγουμε μια αρχική τιμή x₀ στο πεδίο ορισμού της.
 Κατασκευάζουμε την ακολουθία x₀, x₁, x₂, ..., x_n ως εξής:

$$x_1 = g(x_0), \quad x_2 = g(x_1), \quad x_3 = g(x_2), \quad \dots, \quad x_n = g(x_{n-1}).$$

Αν η ακολουθία συγκλίνει σε ένα σημείο ρ, δηλαδή,

$$\lim_{n\to\infty} x_n = \varrho \; ,$$

τότε

$$\varrho \equiv \lim_{n \to \infty} x_n = \lim_{n \to \infty} g(x_{n-1}) = g(\lim_{n \to \infty} x_{n-1}) \equiv g(\varrho) .$$

Άρα, η g(x) έχει σταθερό σημείο το $\lim_{n\to\infty} x_n = \varrho$.

Σταθερό σημείο συνάρτησης: (3/3)

Αλγόριθμος υπολογισμού σταθερού σημείου της g(x)

- 1. Θέτουμε στο x την αρχική προσέγγιση του σταθερού σημείου.
- 2. Ελέγχουμε αν η προσέγγιση είναι ικανοποιητική με τουλάχιστον ένα από τα κριτήρια (με ε κατάλληλα μικρή τιμή)

$$|x - g(x)| < \varepsilon,$$

$$\left|\frac{x_i - x_{i-1}}{x_i}\right| < \varepsilon,$$

$$|x_i - x_{i-1}| < \varepsilon.$$

Αν ναι, πηγαίνουμε στο βήμα 4.

- 3. Θέτουμε $x \leftarrow g(x)$ και επαναλαμβάνουμε από το βήμα 2.
- 4. Τέλος.

Μέθοδος Σταθερού Σημείου x = g(x)

Κατάλληλη μετατροπή της εξίσωσης f(x)=0 σε x=g(x) ανάγει το πρόβλημα εντοπισμού ρίζας της f(x) σε πρόβλημα εύρεσης σταθερού σημείου της g(x).

Παράδειγμα

Έστω $f(x) = x^2 - 6x + 5$. Γνωρίζουμε ότι έχει ρίζες τα 1, 5. Ας δούμε κάποιες μετατροπές της εξίσωσης f(x) = 0:

$$x^2 - 6x + 5 = 0 \Leftrightarrow x = \frac{x^2 + 5}{6}$$
.

Παρατηρούμε ότι |g'(x)|<1 όταν -3< x<3. Για αυτά τα x, 5/6< g(x)<14/6, άρα $g(x)\in (-3,3)$. Επομένως, υπάρχει μοναδικό σταθερό σημείο στο (-3,3). Οποιαδήποτε αρχική τιμή |x|<3 (αλλά όχι μόνο) δίνει ακολουθία που συγκλίνει σε αυτό (στο 1). Μόνο τα ± 5 οδηγούν στη ρίζα 5. Με |x|>5 αποκλίνει.

Μέθοδος Σταθερού Σημείου x = g(x)

Παράδειγμα (συνέχεια)

•

$$x^{2} - 6x + 5 = 0 \Leftrightarrow x = \sqrt{6x - 5}$$
.

Όταν x>7/3 έχουμε |g'(x)|<1 και g(x)>3>7/3. Για οποιοδήποτε άνω όριο $b\geq 5$ του $x,\,g(x)\leq x\leq b$. Άρα, στο (7/3,b] με $b\geq 5$, υπάρχει ένα μόνο σταθερό σημείο. Οποιαδήποτε αρχική τιμή μεγαλύτερη του 7/3 οδηγεί στη ρίζα 5. Μόνο το 1 καταλήγει στη ρίζα 1.

Άλλες επιλογές της g(x)

$$g(x) = \frac{5}{6-x},$$

 $g(x) = 6 - \frac{5}{x},$
 $g(x) = x(x^2 + 6x - 6),$
 \vdots

Μέθοδος Newton-Raphson (1/3)

Η Μέθοδος Newton–Raphson για την επίλυση της f(x)=0 βασίζεται στο Θεώρημα Taylor.

Θεώρημα Taylor

Έστω ότι η συνάρτηση f(x), με $x \in [a,b]$, έχει παραγώγους μέχρι τάξης n+1 και η $f^{(n+1)}(x)$ είναι συνεχής στο [a,b]. Αν $x_0 \in [a,b]$, τότε υπάρχει ξ μεταξύ των x_0,x ώστε

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \cdots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \frac{f^{(n+1)}(\xi)}{(n+1)!}(x - x_0)^{n+1}.$$

Mέθοδος Newton-Raphson (2/3)

Έστω ότι η f(x) είναι συνεχής και διαφορίσιμη σε διάστημα [a,b]. Έστω ότι η ρίζα σε αυτό είναι η \bar{x} και γνωρίζουμε την τιμή αυτής και των παραγώγων της σε κάποιο σημείο $x_0 \in [a,b]$. Το ανάπτυγμα Taylor της $f(\bar{x})$ είναι

$$f(\bar{x}) = f(x_0) + f'(x_0)(\bar{x} - x_0) + \frac{f''(\xi)}{2!}(\bar{x} - x_0)^2$$

όπου ξ μεταξύ \bar{x}, x_0 .

Αγνοώντας τον όρο του υπολοίπου, θεωρώντας ότι
 n απόσταση $|\bar{x}-x_0|$ είναι μικρή, και καθώς ισχύει ότι $f(\bar{x})=0$, έχουμε

$$0 \approx f(x_0) + f'(x_0)(\bar{x} - x_0) \Rightarrow \bar{x} \approx x_0 - \frac{f(x_0)}{f'(x_0)}.$$

Mέθοδος Newton-Raphson (3/3)

Καταλήξαμε ότι η συνάφτηση g(x)=x-f(x)/f'(x) μπορεί να παραγάγει επαναληπτικά την εξής ακολουθία διαδοχικών προσεγγίσεων στη ρίζα (αρκεί να έχουμε $f'(x_n)\neq 0$):

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, \dots$$

Μπορεί να αποδειχθεί ότι η ακολουθία αυτή συγκλίνει αν η f(x) είναι συνεχής και τουλάχιστον δύο φορές παραγωγίσιμη στο [a,b], με συνεχή τη δεύτερη παράγωγό της.

Mέθοδος Newton–Raphson (3/3)

Καταλήξαμε ότι η συνάφτηση g(x) = x - f(x)/f'(x) μπορεί να παραγάγει επαναληπτικά την εξής ακολουθία διαδοχικών προσεγγίσεων στη ρίζα (αρκεί να έχουμε $f'(x_n) \neq 0$):

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, \dots$$

Μπορεί να αποδειχθεί ότι η ακολουθία αυτή συγκλίνει αν η f(x) είναι συνεχής και τουλάχιστον δύο φορές παραγωγίσιμη στο [a,b], με συνεχή τη δεύτερη παράγωγό της.

Παρατηρήσεις

- σε κάθε επανάληψη πρέπει να υπολογίσουμε τις τιμές δύο συναρτήσεων (f(x), f'(x)).
- Η ακρίβεια της μεθόδου, $\varepsilon_n \equiv |x_n \bar{x}|$, δείχνεται εύκολα ότι είναι

$$\varepsilon_{n+1} = \left| \frac{f''(\xi)}{2f'(x_n)} \right| \varepsilon_n^2,$$

με ξ μεταξύ των x_n και \bar{x} . Επομένως, η μέθοδος είναι γενικά δεύτερης τάξης.

Μέθοδοι Newton-Raphson για ρίζες με πολλαπλότητα (1/2)

Ρίζα με πολλαπλότητα m

Το \bar{x} είναι
 είναι είζα της f(x) με πολλαπλότητα m όταν

$$f(\bar{x}) = f'(\bar{x}) = \dots = f^{(m-1)}(\bar{x}) = 0$$
,

$$\mu\varepsilon f^{(m)}(\bar{x})\neq 0.$$

Σε πολλαπλή ρίζα η μέθοδος Newton–Raphson έχει γραμμική σύγκλιση. Πώς μπορεί να επανέλθει η τετραγωνική σύγκλιση;

Α' τρόπος

Αναζητούμε φίζα της $f^{(m-1)}(x)=0$ καθώς σε αυτή το $\bar x$ είναι απλή φίζα. Απαιτείται όμως υπολογισμός παραγώγου υψηλής τάξης.

Μέθοδοι Newton-Raphson για ρίζες με πολλαπλότητα (2/2)

Β' τρόπος

Η συνά
ρτηση f(x) με ρίζα το \bar{x} , πολλαπλότητας m, πάντα μπο
ρεί να γραφεί στη μορφή

$$f(x) = (x - \bar{x})^m g(x) ,$$

όπου g(x) συνάφτηση για την οποία το \bar{x} δεν είναι φίζα. Επομένως, η συνάφτηση $h_1(x)=\sqrt[m]{f(x)}$ έχει $a\pi\lambda \acute{n}$ φίζα το \bar{x} . Ο τύπος Newton–Raphson για την $h_1(x)$ έχει τετραγωνική σύγκλιση. Καταλήγει στον επαναληπτικό τύπο

$$x_{n+1} = x_n - m \frac{f(x_n)}{f'(x_n)} .$$

Γ' τρόπος

Εύκολα δείχνεται ότι
 η συνάφτηση $h_2(x)=f(x)/f'(x)$ έχει απλή φίζα το $\bar x$. Η εφαφμογή του τύπου Newton–Raphson καταλήγει στον

$$x_{n+1} = x_n - \frac{f(x_n)f'(x_n)}{[f'(x_n)]^2 - f(x_n)f''(x_n)}.$$

Μέθοδος Halley

- Έστω ότι η συνάρτηση f(x) έχει απλές ρίζες σε κάποιο διάστημα, δεν μηδενίζονται δηλαδή ταυτόχρονα οι f(x), f'(x). Τότε οι συναρτήσεις f(x) και $g(x) = f(x)/\sqrt{|f'(x)|}$ έχουν τις ίδιες ρίζες.
- Η εφαρμογή της μεθόδου Newton–Raphson για την εύρεση ρίζας της g(x) δίνει

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)} = x_n - \frac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}.$$

• Μπορεί να δειχθεί ότι η μέθοδος είναι τρίτης τάξης.

Οικογένεια μεθόδων Householder

- Οι μέθοδοι εφαρμόζονται για την εύρεση ρίζας μιας συνάρτησης με συνεχείς παραγώγους τουλάχιστον μέχρι την τάξη d+1.
- Είναι επαναληπτικές, με τάξη σύγκλισης d+1.
- Η γενική σχέση που παράγει την ακολουθία $x_0, x_1, x_2, ...$ είναι

$$x_{n+1} = x_n + d \frac{(1/f)^{(d-1)}(x_n)}{(1/f)^{(d)}(x_n)},$$

και για να ξεκινήσει χρειάζεται μία αρχική προσέγγιση x_0 .

• Ο γενικός τύπος για d=1 καταλήγει στον τύπο Newton–Raphson. Για d=2 δίνει τον τύπο Halley.