PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

Lecture SLIDES Lecture 28 (November 01, 2019)

Example

Example 1:

$$P = \begin{bmatrix} 0 & 0 & 1/2 & 1/2 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

Example 2:

$$P = \begin{bmatrix} 1/2 & 1/2 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 1/2 & 1/2 & 0 \\ 1/4 & 1/4 & 0 & 0 & 1/2 \end{bmatrix}$$

Example

Example 3: Consider a simple random walk: $S = \{0, \pm 1, \pm 2, \ldots\}$, $p_{i,i-1} = p = 1 - p_{i,i+1}$.

- 1 The chain is irreducible.
- ② If $p \neq 1/2$, the state 0 is transient.
- 3 If p = 1/2, the state 0 is recurrent.

$$[n! \sim n^{n+1/2}e^{-n}\sqrt{2\pi}]$$

Period

Def: The period of a state i is defined by the greatest common divisor of all integers $n \ge 1$ for which $p_{ii}^{(n)} > 0$, *i.e.*,

$$d(i) = \begin{cases} \gcd \left\{ n \ge 1 : p_{ii}^{(n)} > 0 \right\} & \text{if } \left\{ n \ge 1 : p_{ii}^{(n)} > 0 \right\} \neq \phi \\ 0 & \text{if } \left\{ n \ge 1 : p_{ii}^{(n)} > 0 \right\} = \phi. \end{cases}$$

Example 4: $S = \{0, \pm 1, \pm 2, \ldots\}$. $p_{i, i+1} = a$, $p_{i, i-1} = b$, $p_{ii} = c$, where a + b + c = 1, a > 0, b > 0, $c \ge 0$.

Theorem: If $i \leftrightarrow j$, then d(i) = d(j).