Алгебры

Харитонцев-Беглов Сергей

20 сентября 2021 г.

Содержание

1.	Теория чисел		1
	1.1	НОД, делимость, линейные диофантовы уравнения	1
2.	Про	одолжение теории чисел	4
	2.1	Пара комментариев про предыдущую лекцию	4
	2.2	Основная теорема арифметики	4
3.	Кол	выца вычета и их друзья	6
	3.1	Группы	6
	3.2	Кольца	7
	3 3	Построение кольца вычетов	7

1. Теория чисел

1.1. НОД, делимость, линейные диофантовы уравнения

Определение 1.1. Диофантовым уравнение называется уравнение, которое можно решить \mathbb{Z} .

Рассмотрим линейное диофантово уравнене

$$ax + by = c..$$

Если бы мы были в \mathbb{R} , то решение быстро бы нашлось: $y = \frac{c-ax}{b}$. Но в целых штуках такая штука не всегда будет решением, т.к. b не всегда делит c-ax.

Определение 1.2. а делится на b (a:b,b|a), если $\exists c \in \mathbb{Z} : a = bc$.

Простые свойства:

- 1. $\forall a: 1|a$.
- $2. \forall a: a|a.$
- 3. $\forall a, b : c, k, l \in \mathbb{Z} \Rightarrow (ka + lb) : c$.

Доказательство.
$$a,b$$
: $c\Rightarrow \exists d,e: \begin{array}{l} a=c\cdot l \\ b=c\cdot e \end{array}$. Тогда $ka+lb=k\cdot cd+l\cdot ce=c\cdot (kd+le)\Rightarrow$ $(ka+lb)$: c

- 4. $\forall k \neq 0, k \in \mathbb{Z} : a : b \iff ak : bk$.
- 5. $a:b \iff a^2:b^2$.
- 6. $a:b \Rightarrow \begin{bmatrix} |a| > |b| \\ a = 0 \end{bmatrix}$.
- 7. $a:b,b:c \Rightarrow a:c$.
- 8. a:a.
- 9. $a:b, b:a \Rightarrow a = \pm b$.

Теорема 1.1 (О делении с остатком).
$$a,b \in \mathbb{Z}\exists ! (q,r) : \begin{cases} q,r \in \mathbb{Z} \\ a = b \cdot q + r \\ 0 \leqslant r < |b| \end{cases}$$

- **Доказательство**. Единственность. Пусть есть два результата: $a = b \cdot q_1 + r_1$ и $a = b \cdot q_2 + r_2$. Тогда приравняем: $b \cdot q_1 + r_1 = b \cdot q_2 + r_2 \iff b(q_1 q_2) = r_2 r_1 \xrightarrow{r_1, r_2 \in [0; |b| 1]} [|r_1 r_2| < |b|] |r_2 r_1 : b \Rightarrow r_2 r_1 = 0 \iff r_1 = r_2 \Rightarrow b(q_1 q_2) = 0 \iff q_1 = q_2$
 - Существование.

I.
$$a \geqslant 0, b \geqslant 0$$
.

— База: $a = 0$. $0 = b \cdot 0 + 0$. $(0,0)$ — подходит.

— Переход: $a \to a+1$.

 $a = b \cdot q + r$, где $0 \leqslant r < b$.

 $a + 1 = b \cdot q + (r+1)$.

* $r < b - 1$. Тогда $r + 1 < b \Rightarrow (q, r+1)$ — подходит.

II.
$$a<0,b>0.$$
 $a<0\Rightarrow -a>0.$ Из I: $\exists (q,r): -a=b\cdot q+r,$ где $0\leqslant r< b.$ Соответственно $a=-bq-r.$ $-r=0.$ $a=b\cdot q+0\Rightarrow (-q,0)$ — подходит.

$$-\ r>0 \Rightarrow r\in [1;b-1].\ a=-bq-b+b-r=b\cdot (-q-1)+b-r \Rightarrow (-q-1,b-r)---$$
 III. $b<0 \iff -b>0.\ \exists q,r:a=(-b)\cdot q+r,$ где $0\leqslant r<|b|,$ тогда $a=b(-q)+r\Rightarrow (-q-1,b-r)$

*r = b - 1. Тогда $a + 1 = b \cdot q + b = b \cdot (q + 1) \Rightarrow (q + 1, 0)$ — подходит.

Вернемся к диофантову уравнению ax + by = c, где a, b, c фиксированы, а x, y — переменные. Пусть только a, b — фиксированы. Тогда подумаем, когда же ax + by = c имеет решения. Тогда решим задачу: описать $\{ax + by \mid x, y \in \mathbb{Z}\} =: \langle a, b \rangle$

Пример. $\langle 1, b \rangle = \mathbb{Z}$

Пример. $\langle 4, 6 \rangle =$ четные числа

(-q,r) — подходит

Заметим:

- 1. $\forall m, n \in \langle a, b \rangle m + n \in \langle a, b \rangle$
- 2. $m \in \langle a, b \rangle \Rightarrow km \in \langle a, b \rangle \forall k$

Определение 1.3. Пусть $I \subset \mathbb{Z}$. I называется идеалом, если

$$\left\{ \begin{array}{l} m,n\in I\Rightarrow m+n\in I \ (\text{замкнутость по сложению})\\ m\in I\Rightarrow \forall k\in \mathbb{Z}k\cdot m\in I \ (\text{замкнутость по домножению})\\ I\neq\varnothing \end{array} \right.$$

Пример. $\{0\}$ — идеал.

Пример. \mathbb{Z} — идеал (собственный).

Пример. $\langle a,b\rangle$ — идеал, порожденный a и b.

 $\forall a \in \mathbb{Z} \, \langle a \rangle = \{ax \mid x \in \mathbb{Z}\}$ — главный идеал (порожденный a).

Пример. $\{0\} = \langle 0 \rangle, \mathbb{Z} = \langle 1 \rangle, \langle 4, 6 \rangle = \langle 2 \rangle$

Теорема 1.2. В \mathbb{Z} любой идеал главный.

Доказательство. $I=\{0\}$ — ок. Тогда пусть $I\neq\{0\}$. Пусть $a\in I \land a<0 \Rightarrow -a=(-1)a\in I \land -a\in \mathbb{N}$. То есть $I\cap \mathbb{N}\neq\varnothing$. Найдем наименьшее $r\in I\cap \mathbb{N}$. Проверим, что $I=\langle r\rangle$ (тогда I-главный). Надо проверить $\langle r\rangle\subset I \land I\subset \langle r\rangle$.

Глава #1 2 из 8 Aвтор: XБ

- $x \in \langle r \rangle$. То есть $x = r \cdot z$. Т.к. $r \in I$, то $r \cdot z \in I$ (по определению идеала), т.е. $\langle r \rangle \subset I$.
- Пусть $a \in I$. Поделим с остатком: $a = r \cdot q + r_1$, $0 \le r_1 < r$, то есть $r_1 = a r \cdot q = a + (-q) \cdot r$. Т.к. $r \in I \Rightarrow (-q) \cdot r \in I \land q \in I \Rightarrow a + (-q) \cdot r \in I$, т.е. $r_1 \in I$. Ho! $0 < r_1 < r$, а r m минимальное натуральное из I. Тогда $r_1 = 0 \Rightarrow a = r \cdot q$, т.е. $a \in \langle r \rangle$, а значит $I \subset \langle r \rangle$.

Определение 1.4. Пусть $a,b \in \mathbb{Z}$. Тогда $d - \text{HOД}(a,b) = \gcd(a,b) = (a,b)$

Докажем единственность. $\begin{cases} a \vdots d, b \vdots d \\ a \vdots d_1, b \vdots d_1 \end{cases} \iff d \vdots d_1. \text{ Тогда } d \vdots d_1 \wedge d_1 \vdots d, \text{ а значит } d = \pm d_1.$

Теорема 1.3. 1. $\forall a, b \; \exists d = (a, b)$

- 2. $\exists x, y \in \mathbb{Z} : d = ax + by$
- 3. ax + by = c имеет решение $\iff c:d$.

Доказательство. Докажем каждый пункт отдельно:

- Рассмотрим $\langle a, b \rangle$ идеал. Он главный по предыдущей теореме: $\exists d \, \langle a, b \rangle = \langle d \rangle$.
- $d \in \langle d \rangle = \langle a, b \rangle$. А значит $\exists x, y : d = ax + by$. $a = a \cdot 1 + b \cdot 0 \in \langle a, b \rangle = \langle d \rangle, \text{ значит } a \vdots d. \text{ Аналогично } b \vdots d.$ С другой стороны пусть $a \vdots d, b \vdots d,$ тогда $d = \underbrace{ax + by}_{\vdots d} \vdots d$
- ax + by = c имеет решение $\iff c \in \langle a, b \rangle = \langle d \rangle$. A $c \in \langle d \rangle \iff c : d$.

Определение 1.5. a,b — взаимно просты, если (a,b)=1, то есть $\langle a,b\rangle=\mathbb{Z}$

Лемма. $\begin{cases} ab:c \\ (a,c) = 1 \end{cases} \Rightarrow b:c.$

Доказательство. По условию $ab\dot{:}c$, значит $\exists x \in \mathbb{Z} : ab = c \cdot x$.

Так как (a,c)=1, то $\exists y,z\in\mathbb{Z}:ay+cz=1$. Тогда домножим все на b и получим aby+czb=b.

А значит
$$\begin{cases} aby:c\\ czb:c \end{cases} \Rightarrow b:c$$

Глава #1 3 из 8 Автор: XБ

2. Продолжение теории чисел

2.1. Пара комментариев про предыдущую лекцию

- 1. Для любого набора $a_1, \ldots, a_n \in \mathbb{Z} \ \exists \gcd(a_1, \ldots, a_n)$ и $\exists x_1, \ldots, x_n : \ HOД = x_1a_1 + \ldots + x_na_n$. HOД такое d, что $\langle a_1, \ldots, a_n \rangle = \langle d \rangle$.
- 2. Алгоритм Евклида.
 - (a,b) = (a,b-a), но и $b = a \cdot q + r$, тогда (a,b) = (a,r).
 - Пусть $r = b \mod a$, $x_1, x_2 \in \mathbb{N}$. Сделаем последовательность $x_{n+1} = x_{n-1} \mod x_n$. Тогда $(x_1, x_2) = (x_3, x_4) = \dots$ Заметим, что x_n убывает.
 - Тогда существует такое x_n , что $(x_1, x_2) = (x_n, 0) = x_n$.

2.2. Основная теорема арифметики

Определение 2.1. $x \in \mathbb{Z}, x \neq 1$, тогда x — простое число, если $x = x_1 x_2 \iff \begin{cases} x_1 = \pm 1 \\ x_2 = \pm 1 \end{cases} \quad \forall x_1, x_2$

Свойство *. x — обладает свойством *, $\iff x \neq \pm 1 \land ab \vdots x \Rightarrow \begin{bmatrix} a \vdots x \\ b \vdots x \end{bmatrix}$

Утверждение 2.1. p — простое $\iff p$ — обладает свойством *.

Доказательство. • \Leftarrow Пусть p — простое и $p = x_1x_2$. Тогда x_1x_2 :p по *, $\begin{bmatrix} x_1 \\ x_2 \\ p \end{bmatrix}$. Пусть $x_1 = py. \ p = x_1x_2 = pyx_2. \ 1 = yx_2 \Rightarrow x_2 = \pm 1.$

• \Rightarrow . Пусть p — простое и $ab \dot{:} p$. d = (a, p), $d = d \cdot d_1$, p — простое $\Rightarrow d = p \lor d = 1$. $d = p \Rightarrow a \dot{:} p$. $d = 1 \land (a, p) = 1$, по лемме $ab \dot{:} p \land (a, p) = 1 \Rightarrow b \dot{:} p$.

Теорема 2.2 (Основная теорема арифмктики). Пусть $n \in \mathbb{Z}, n \neq 0$. Тогда n единственным образом с точностью до перестановки сомножителей, представимо в виде $(p_i - \text{простые})$

$$n = \epsilon p_1 p_2 \dots p_n, \epsilon \pm 1 = \operatorname{sign}(n), p_1 < p_2 < \dots < p_n.$$

Доказательство. 1. Существование. От противного. Пусть ∃ нераскладываемое число. Рассмотрим минимальное такое число.

- \bullet x = 1 пустое произведение. Противоречие.
- x = p произведение из 1 члена. Противоречие.
- $x = x_1x_2$. $x_1, x_2 = \pm 1 \Rightarrow x_1, x_2 < X \Rightarrow x_1, x_2$ раскладываемые. Или $x_1 = p_1p_2 \dots p_n, x_2 = q_1q_2 \dots q_m \Rightarrow x = p_1p_2 \dots p_nq_1q_2 \dots q_m$.

2. Единственность. Пусть есть плохие числа. X — минимальное из них. $q_1q_2\dots q_n=X=p_1p_2\dots p_m$. Значит $p_1p_2\dots p_m$: $q_1\Rightarrow p_1$: $q_1\lor p_2\dots p_m$: q_1 . Тогда $\exists p_i$: q_1 . Тогда можно поделить на q_1 , но p_i — простое, тогда p_i =. Рассмотрим $X'=\frac{X}{q_1}$. $q_2q_3\dots q_n=X'=p_1p_2\dots p_k$. X'< X, значит q=p. А значит противоречие.

Контр-примеры для О. Т. А:

1. Рассмотрим $2\mathbb{Z}$ — множество четных чисел. Теперь 6 — простое. и все (4k+2). Теперь как разложить на простые 60? $60=2\cdot 30$, а также $60=6\cdot 10$.

2.
$$\mathbb{Z} \cup \{\sqrt{5}\} = \{a + b\sqrt{5} \mid a, b \in \mathbb{Z}\}$$
. Заметим, что $\mathbb{Z} \subset \mathbb{Z}\{\sqrt{5}\}$
$$4 = 2 \cdot 2 = \overbrace{(\sqrt{5} - 1)(\sqrt{5} + 1)}$$

Определение 2.2. $n \in \mathbb{Z}, n \neq 0, p$ — простое, тогда степень вхождения $(V_p(n) = k)$ p в n — $\max\{k \mid n:p^k\}$

В терминах разложения: $n=p_1^{a_1}p_2^{a_2}\dots p_k^{a_k}$. $V_p(n)=a_i$, а если p нет в разложении, то $V_p(n)=0$.

Свойства: $V_p(n)$

1.
$$V_p(xy) = V_p(x) + V_p(y)$$

2.
$$V_p(x+y) = \min(V_p(x), V_p(y))$$
, и если $V_p(x) \neq V_p(y)$

Доказательство. $V_p(x)=a, V_p(y)=b$ и $x=p^a\cdot \widetilde{x}, y=p^b\cdot \widetilde{y}.$

Не умаляя общности: $a \geqslant b$. Тогда $x+y=p^a\widetilde{x}+p^b\widetilde{y}=p^b(p^{a-b}\widetilde{x}+\widetilde{y})$. Если a>b, то $\underbrace{p^{a-b}\widetilde{x}}+\widetilde{y}$

не делится на p. А значит $V_p(x+y) = \min(V_p(x), V_p(y))$.

Еще следствия из О. Т. А.

1.
$$x:y \Rightarrow V_p(x) \geqslant V_p(y) \forall$$
 простого p

2.
$$x = p_1^{a_1} \dots p_n^{a_n}, y = p_1^{b_1} \dots p_n^{b_n} \Rightarrow (x, y) = p_1^{\min(a_1, b_2)} \dots p_n^{\min(a_n, b_n)}$$

3.
$$x = z^k \iff \forall$$
 простого $p V_p(x) : k$

4. Количество натуральных делителей $x = \prod x_i^{a_i}$ равно $\tau(x) = \prod (a_i + 1)$

Доказательство. Делители X однозначно соотносятся с $\{(b_1,b_2,\ldots,b_n)\mid 0\leqslant b_i\leqslant a_i$

5. $\sigma(x)$ — сумма натуральных делителей x. Тогда $\sigma(x) = \frac{\prod (p_i^{a_i+1}-1)}{\prod (p_i-1)}$.

Доказательство. $\frac{\prod (p_i^{a_i+1}-1)}{\prod (p_i-1)}=\prod \frac{p_i^{a_i+1}-1}{p_i-1}=\prod (1+p_i+\ldots+p_i^{a_i})=$ раскроем скобки. = сумма делителей.

6.

 $m{Onpedenetue~2.3.}~m-{
m HOK}~({
m LCM},~[a,b]),~{
m e}$ сли $m\.:a,m\.:b$ и $\forall n~n\.:a\wedge n\.:b\Rightarrow n\.:m$ $[a,b]=\prod p_i^{\max(a_i,b_i)}$

7.
$$a, b \in \mathbb{Z}$$
 $(a, b) = 1$ $ab = c^k \Rightarrow \exists c_1, c_2 \ a = c_1^k, b = c_2^k$

3. Кольца вычета и их друзья

Рассмотрим
$$a^2 - b^2 = 15^{2021} \iff (a - b)(a + b) = 3^{2021} \cdot 5^{2021} \Rightarrow \begin{cases} a + b = 3^k \cdot 5^l \\ a - b = 3^{2021-k} \cdot 5^{2021-l} \end{cases} \Rightarrow a = \frac{3^k \cdot 5^l + 3^{2021-k} \cdot 5^{2021-l}}{2}.$$

Уравнение $81a^2 - 169b^2 = 15^{2021}$ — тоже решается. А вот $a^2 - 2b^2 = 15^{2021} \iff (a - \sqrt{2}b)(s + \sqrt{2}b) = 3^{2021}5^{2021}$ уже не решается в целых чисел. Если вылезать, то надо расписывать разложение $a + \sqrt{2}b$, "3", "5" и единственность разложения на множители.

Еще один пример: $a^2 + b^2 = 15^{2021}$. Посмотрим на остатки от деления на 4: $a^2, b^2 \mod 4 \in \{0,1\}, 15^{2021} \mod 4 = 3$. Но для этого нам нужно понимать что-то по кольцо вычетов по модулю.

3.1. Группы

Определение 3.1. Группой называется пара (G,*), где G — множество, а $*:G\to G$ — бинарная операция, так что выполнены свойства:

- 1. $\forall a, b, c \in G : (a * b) * c = a * (b * c)$. Ассоциативность.
- 2. $\exists e \in G : a * e = e * a = a$. Существование нейтрального элемента.
- 3. $\exists a^{-1} : a * a^{-1} = a^{-1} * a = e$. Существование обратного элемента.

Несколько примеров:

- 1. $(\mathbb{Z}, +)$. $e = 0, a^{-1} = -a$.
- 2. $(\mathbb{Q} \setminus 0, \cdot), e = 1, a^{-1} = \frac{1}{a}$.
- 3. $(2^M, \triangle) e = \emptyset, A^{-1} = A$.

Определение 3.2. Группа G называется абелевой, если $\forall x,y \in G: x*y=y*x.$

Пример Главный пример группы. Пусть $G = S(M) = \{f : M \to M \mid f$ — биекция $\}$

- Ассоциативность упражнение.
- Нейтральный элемент f(x) = x, тождественное отображение.
- $f^{-1} =$ обратная функция. Она существует, так как f биекция.

Получили группы по композиции.

Пример. $M = \{1, 2, 3\}$. $f_1, f_2 : M \to M$ — биекция. f_1 — меняет местами 1 и 2: $1 \to 2, 2 \to 1, 3 \to 3$, f_2 переставляет по циклу: $1 \to 2, 2 \to 3, 3 \to 1$. $f_2 \circ f_1 : 1 \to 3, 2 \to 2, 3 \to 1$. $f_1 \circ f_2 : 1 \to 1, 2 \to 3, 3 \to 2$. Ну значит группа не абелева.

Докажем простейшие свойства групп:

1. ∃! нейтральный элемент.

Доказательство: заметим, что $e_1 = e_1 * e_2 = e_2$

2. ∃! обратный элемент.

Доказательство: пусть b, c — обратные к a. Тогда (b*a)*c = e*c = c, но при этом b*(a*c) = b*e = b. Значит b = c.

3. $a * b = b * c \iff a = c$

Доказательство: $a*b = a*c \iff (a^{-1}*a)*b = (a^{-1}*a)*c \iff e*b = e*c \iff b = c$

3.2. Кольца

Определение 3.3. Кольцо — тройка $(R, +, \cdot)$ (R — множество, $+, \cdot : R \times R \to R)$, такая что:

1–4. (R, +) — абелева группа. Нейтральный элемент обозначается 0, обратный к a - -a.

5.
$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 и $(b+c) \cdot a = b \cdot a + b \cdot c$. Дистрибутивность.

 ${\it Onpedenenue 3.4.}$ Кольцо R называется ассоциативным, если выполнено

6.
$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
.

Определение 3.5. Кольцо R называется коммутативным, если

6.
$$a \cdot b = b \cdot a$$

Определение 3.6. Кольцо R называется кольцом с 1, если

7.
$$\exists 1 \in R : 1 \cdot a = a \cdot 1 = a$$

Пример. $(\mathbb{Z}, +, \cdot)$ — коммутативное ассоциативное кольцо с 1.

Определение 3.7. Коммутативное ассоциативное кольцо с 1 называется полем, если выполнена

8.
$$\forall a \in R \{0\} \exists b \in R \ ab = 1 \land 1 \neq 0$$

Пример. $(\mathbb{Q}, +, \cdot)$ — поле, а вот $(\mathbb{Z}, +, \cdot)$ — не поле.

3.3. Построение кольца вычетов

Определение 3.8. Пусть $a, b \in \mathbb{Z}$, говорят, что a сравнимо с b по модулю $n \ (a \equiv b \pmod n)$, если $n \mid a - b$. Эквивалентное определение: a и b имеют одинаковые остатки по модулю n.

Докажем, что сравнимость по модулю — отношение эквивалентности.

- $a \equiv a \pmod{n} \iff n \mid 0$
- $n|a-b \iff n|b-a \Rightarrow a \equiv b \pmod{n} \iff b \equiv a \pmod{n}$.
- Транзитивность...

Наблюдение. $a \in \mathbb{Z} \to \overline{a} = \{b \mid a \equiv b\} = \{a + kn \mid k \in \mathbb{Z}\}. \ \mathbb{Z} = \overline{0} \cup \overline{1}...$

Определение 3.9. Фактор множества по отношению \equiv обозначается $\mathbb{Z}/n\mathbb{Z}$.

 $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$. Элементы $\mathbb{Z}/n\mathbb{Z}$ называются классами вычетами по модулю.

1. $a \equiv b \pmod{n} \land c \equiv d \pmod{n} \iff a + c \equiv b + d \pmod{n} \land ac \equiv bd \pmod{n}$.

Доказательство
$$(a+c)-(b+d)=\underbrace{(a-b)}_{:n}-\underbrace{(b+d)}_{:n}$$
: n

Доказательство ac - bd = ac - bc + bc - bd = c(a - b) + b(c - d):n.

Значит класс суммы и произведения зависит только от классов множителей и слагаемых.

Теорема 3.1. Пусть $n \in \mathbb{N}$. Тогда класс $(\mathbb{Z}/n\mathbb{Z}, +, \cdot)$, где $\overline{a} + \overline{b} = \overline{a + b} \wedge \overline{a} \cdot \overline{b} = \overline{a \cdot b}$ — ассоциативное коммутативное кольцо с единицей.