

Brazo Robótico Polar

Cesar Omar Alvarado Contreras Marco Manzo Torrez Eduardo Robles Vazquez Victor Gabriel Tapia Casillas Fonseca Camaarena Jonathan

Universidad Politécnica de la Zona Metropolitana de Guadalajara Profesor: Carlos Enrique Morán Garabito 19 de septiembre del 2019

Índice general

0.1.	Meta:	1
0.2.	Objetivos:	1
0.3.	Justificación	1
0.4.	Tabla de materias	1
0.5.	Project	3
0.6.	Referencia	3

0.1. Meta:

Crear un robot polar de tres grados de libertad, con una longitud total de 50 centímetros y una altura total de 30 centímetros, cuyo último eslabón deberá soportar una carga de 500 gramos.

0.2. Objetivos:

- -Realizar boceto
- -Cumplir con las especificaciones propuestas por el profesor
- -Realizar el plano del robot
- -Realizar el modelado del prototipo en 3D
- -Establecer los materiales a usar
- -Realizar el análisis de elementos finitos
- -Realizar cálculos necesarios para la selección de motores y componentes
- -Elaboración del primer prototipo
- -Programación del robot

0.3. Justificación

El propósito de este proyecto surge a partir de la necesidad de implementar los conocimientos obtenidos de las materias presentes en este año, así como las materias de cuatrimestres pasados. Retomando lo mencionado con anterioridad, se desarrollará un prototipo de un brazo robótico polar, el cual consistirá de 3 grados de libertad; dos movimientos rotacionales y uno prismático.

0.4. Tabla de materias

A continuación presentamos la tabla de materias que nos ayudarán en nuestro proyecto.

	Tabla de	materias y actividades	Ingeniería Mecatrónica 7°A		
Integrantes	César Om	ca Camarena. Marcos Manzo Torres.			
integrantes		Eduardo Robles Vázquez. Víctor Gabriel Tapia Casillas.			
Materia		Actividades	Maestro		
Administración de		Capacidad de administrar el tiempo,			
	le ingeniería	recursos y actividades a desarrollar	Miguel Alberto Martinez Molina		
p. 0 / 20105 a.		para la realización del proyecto.			
		Proveer de aspectos técnicos de los			
Cinemática	a de robots	distintos tipos de robots, además de	Carlos Enrique Morán Garabito		
Ciricinatica		su funcionamiento, programación,	carios Enrique Morair Garabito		
		cálculos y características.			
		Brindar información de los distintos			
Diseño y selección de elementos mecánicos		tipos de materiales a utilizar, sus			
		ventajas y desventajas.	Norberto García Alvarez		
		Complementación de aprendizaje del			
		uso de softwares para el diseño de			
		planos y prototipos.			
		Dotar de habilidades lingüisticas para			
		la comprensión de diversos textos			
Ing	lés	que puedan ser de ayuda, con la	Mauro Ceballos Heredia		
		característica de encontrarse en			
		inglés.			
		Aprender a aplicar distintos sistemas			
Modelado y	y simulación	y modelado matemáticos para la	Rosa María Razo Cerda		
de sistemas		simulación y desarrollo del prototipo.	Nosa Wana Nazo Cerda		
		simulación y desarrono del prototipo.			
		Obtener conocimientos acerca del			
	modinámica	comportamiento térmico del			
Termod		prototipo. Esto debido a que al ser un	José Carlos Díaz Nuñez		
		sistema mecánico genera fricción			
		entre sus partes y, por ende, calor.			

Figura 1: Tabla

0.5. Project

En el programa Project realizamos el cronograma de actividades.

Figura 2:Project

0.6. Referencia

E.F. Morales and L.E. Sucar, Los Robots del Futuro y su Importancia para México, Komputer Sapiens, year 2009, pages 7-12

Gracias.