Algorithmique - Analyse du tri rapide randomisé

Le but est de montrer le théorème suivant, qui analyse le temps d'exécution moyen du tri rapide randomisé.

Théorème 1. L'espérance du nombre de comparaisons du tri rapide randomisé d'un ensemble à n éléments est au plus $2nH_n$ où H_n est le terme général de la série harmonique.

Démonstration. Soit T un tableau de n éléments. Pour $1 \le i \le n$, on note t_i le i-ième plus petit élément de T. Ainsi, $t_1 = \min T$ et $t_n = \max T$. On pose X_{ij} la variable aléatoire valant 1 si t_i et t_j sont comparés au cours de l'exécution, et 0 sinon.

On remarque alors que deux éléments t_i et t_j sont comparés au plus une fois. En effet, si t_i et t_j sont comparés , l'un des deux était un pivot et n'est comparé avec plus personne ensuite.

Ainsi, le nombre total de comparaisons est $N = \sum_{1 \le i < j \le n} X_{ij}$. par linéarité de l'espérance, on a alors

$$\mathbb{E}(N) = \sum_{1 \le i < j \le n} \mathbb{E}(X_{ij})$$

En notant $p_{ij} = Pr[X_{ij} = 1]$, on a directement $\mathbb{E}(X_{ij}) = p_{ij}$.

Lemme 1. Pour tout $1 \le i < j \le n$, on a $p_{ij} = \frac{2}{j-i+1}$.

On peut voir l'exécution du tri rapide comme un arbre binaire, avec comme nœuds les pivots successifs. On note alors π la permutation de T obtenu en faisant un parcours en largeur de l'arbre obtenu.

FIGURE 1 – Exemple d'exécution du tri rapide sur un tableau à 9 éléments. On a ici $\pi = (4, 8, 2, 5, 1, 9, 6, 3, 7)$.

Démonstration. On peut faire deux remarques :

- 1. t_i et t_j sont comparés ssi pour tout $i < l < j, \pi(t_i) \le \pi(t_l)$ et $\pi(t_j) \le \pi(t_l)$. En effet, t_i et t_j ne sont pas comparés ssi un pivot entre les deux les a séparés précédemment.
- 2. Chaque élément $t_i, ..., t_j$ a la même probabilité d'être le premier d'entre eux choisi pour être un pivot, et donc d'apparaître avant dans π .

Ainsi, en combinant les deux remarques, p_{ij} est exactement la probabilité que t_i ou t_j soit choisi en premier parmi $t_i, ..., t_j$ (1), et cette probabilité vaut $\frac{2}{i-i+1}$ (2).

On peut alors revenir à notre formule,

$$\mathbb{E}(N) = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}$$

$$\leqslant 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$

$$= 2nH_n$$

Or, on sait que $H_n \sim \ln n + o(1)$, le temps d'exécution de l'algorithme est $\mathcal{O}(n \log n)$. \square