# Question 1(a) [3 marks]

## List out types of congestion control and explain any one

#### Answer:

| Туре        | Description                          |
|-------------|--------------------------------------|
| Open-Loop   | Prevents congestion before it occurs |
| Closed-Loop | Manages congestion after detection   |

## **Open-Loop Congestion Control Explanation:**

• Prevention approach: Takes action before congestion occurs

• Traffic shaping: Controls data rate at sender

• Admission control: Limits new connections during high traffic

• Load shedding: Drops packets when buffer full

Mnemonic: "Open Prevents Traffic Admission Load"

# Question 1(b) [4 marks]

## **Explain Address Resolution Protocol briefly**

## **Answer**:

ARP (Address Resolution Protocol) maps IP addresses to MAC addresses in local networks.

### **Working Process:**

• ARP Request: Broadcast message asking "Who has IP X?"

• ARP Reply: Target device responds with its MAC address

• ARP Cache: Stores IP-MAC mappings for future use

• Dynamic mapping: Updates entries automatically

## **Table: ARP Message Types**

| Туре        | Purpose             | Broadcast |
|-------------|---------------------|-----------|
| ARP Request | Find MAC address    | Yes       |
| ARP Reply   | Provide MAC address | No        |

Mnemonic: "ARP Requests Broadcast, Replies Cache Dynamic"

# Question 1(c) [7 marks]

## Explain TCP/IP model with all layers and functionalities of each layer

#### Answer:

**TCP/IP Model** is a four-layer network protocol stack for internet communication.



## **Layer Functions:**

| Layer          | Function                         | Protocols       |
|----------------|----------------------------------|-----------------|
| Application    | User interface, network services | HTTP, FTP, SMTP |
| Transport      | End-to-end communication         | TCP, UDP        |
| Internet       | Routing, addressing              | IP, ICMP        |
| Network Access | Physical transmission            | Ethernet, WiFi  |

- Application Layer: Provides network services to applications
- **Transport Layer**: Ensures reliable data delivery with error control
- Internet Layer: Routes packets across networks using IP addressing
- Network Access Layer: Handles physical data transmission

Mnemonic: "All Transport Internet Network"

# Question 1(c OR) [7 marks]

## **Explain OSI model with each layer functionality**

## Answer:

**OSI Model** is a seven-layer reference model for network communication.



## **Layer Functionalities:**

| Layer            | Function            | Examples           |
|------------------|---------------------|--------------------|
| Physical (1)     | Bit transmission    | Cables, signals    |
| Data Link (2)    | Frame delivery      | Ethernet, switches |
| Network (3)      | Routing packets     | IP, routers        |
| Transport (4)    | End-to-end delivery | TCP, UDP           |
| Session (5)      | Dialog management   | NetBIOS            |
| Presentation (6) | Data formatting     | SSL, compression   |
| Application (7)  | User interface      | HTTP, email        |

Mnemonic: "Physical Data Network Transport Session Presentation Application"

# Question 2(a) [3 marks]

## **Explain subnetting in short**

#### Answer:

**Subnetting** divides a large network into smaller sub-networks for better management.

## **Key Concepts:**

• Subnet mask: Defines network and host portions

• Network efficiency: Reduces broadcast traffic

• Address conservation: Better IP utilization

• Security: Isolates network segments

## **Example:**

Network: 192.168.1.0/24 → Subnets: 192.168.1.0/26, 192.168.1.64/26

Mnemonic: "Subnet Network Efficiency Address Security"

# Question 2(b) [4 marks]

## Explain stop and wait ARQ protocol of data link layer with example

#### Answer:

**Stop and Wait ARQ** is a flow control protocol ensuring reliable data transmission.

## **Working Process:**

• **Send frame**: Transmitter sends one frame

• Wait for ACK: Sender waits for acknowledgment

• Timeout: Retransmits if no ACK received

Next frame: Sends next frame after ACK



**Example:** File transfer where each packet waits for confirmation before sending next.

Mnemonic: "Send Wait Timeout Next"

# Question 2(c) [7 marks]

Draw diagram of IPv4 datagram Header and explain it

Answer:

**IPv4 Header** contains control information for packet routing and delivery.

**Field Explanations:** 

| Field               | Size         | Function                |
|---------------------|--------------|-------------------------|
| Version             | 4 bits       | IP version (4 for IPv4) |
| IHL                 | 4 bits       | Header length           |
| Type of Service     | 8 bits       | Quality of service      |
| Total Length        | 16 bits      | Packet size             |
| TTL                 | 8 bits       | Hop limit               |
| Protocol            | 8 bits       | Next layer protocol     |
| Source/Dest Address | 32 bits each | IP addresses            |

Mnemonic: "Version IHL Service Total TTL Protocol Source Destination"

# Question 2(a OR) [3 marks]

## What is HTTPS? List important key features of HTTPS

Answer:

**HTTPS (HTTP Secure)** is encrypted HTTP using SSL/TLS for secure web communication.

## **Key Features:**

• **Encryption**: Data encrypted in transit

• Authentication: Verifies server identity

• Data integrity: Prevents data tampering

• Trust: SSL certificates provide validation

## **Security Benefits:**

• Protects sensitive information

• Prevents man-in-the-middle attacks

• Search engine ranking boost

Mnemonic: "HTTPS Encrypts Authentication Data Trust"

# Question 2(b OR) [4 marks]

## Give Answer of any two:

#### Answer:

1) How many bits HOST ID use by class B and C?

• **Class B**: 16 bits for Host ID (65,534 hosts)

• Class C: 8 bits for Host ID (254 hosts)

## 2) What is IP range for Class A and D?

• Class A: 1.0.0.0 to 126.255.255.255

• Class D: 224.0.0.0 to 239.255.255.255 (Multicast)

| Class | Range                       | Host Bits |
|-------|-----------------------------|-----------|
| В     | 128.0.0.0 - 191.255.255.255 | 16 bits   |
| С     | 192.0.0.0 - 223.255.255.255 | 8 bits    |
| А     | 1.0.0.0 - 126.255.255.255   | 24 bits   |
| D     | 224.0.0.0 - 239.255.255.255 | Multicast |

**Mnemonic:** "B=16, C=8, A=1-126, D=224-239"

# Question 2(c OR) [7 marks]

## Explain classful IPv4 addresses scheme

**Answer**:

Classful IPv4 Addressing divides IP address space into five classes based on first octets.

## **Address Classes:**

| Class | Range   | Network Bits | Host Bits | Usage           |
|-------|---------|--------------|-----------|-----------------|
| Α     | 1-126   | 8            | 24        | Large networks  |
| В     | 128-191 | 16           | 16        | Medium networks |
| С     | 192-223 | 24           | 8         | Small networks  |
| D     | 224-239 | -            | -         | Multicast       |
| E     | 240-255 | -            | -         | Experimental    |



## **Characteristics:**

- Class A: 16.7 million hosts per network
- Class B: 65,534 hosts per network
- Class C: 254 hosts per network
- Limitations: Address wastage, inflexible allocation

Mnemonic: "A-Large, B-Medium, C-Small, D-Multicast, E-Experimental"

# Question 3(a) [3 marks]

List out types of applications uses mobile computing

**Answer**:

**Mobile Computing Applications:** 

| Туре          | Examples                        |
|---------------|---------------------------------|
| Communication | WhatsApp, Email, Video calls    |
| Navigation    | GPS, Google Maps                |
| E-commerce    | Shopping apps, Mobile banking   |
| Entertainment | Games, Streaming, Social media  |
| Business      | CRM, Sales tracking             |
| Healthcare    | Health monitoring, Telemedicine |

• Location-based services: GPS navigation, location sharing

• Mobile payments: Digital wallets, UPI transactions

• Social networking: Facebook, Instagram, Twitter

Mnemonic: "Communication Navigation E-commerce Entertainment Business Healthcare"

# Question 3(b) [4 marks]

## **Explain use of Gateways and list types of Gateways**

#### Answer:

**Gateway** connects networks with different protocols and architectures.

## **Uses of Gateways:**

- **Protocol conversion**: Translates between different protocols
- Network bridging: Connects dissimilar networks
- **Security**: Firewall and access control
- Data filtering: Manages traffic flow

## **Types of Gateways:**

| Туре                | Function                    |
|---------------------|-----------------------------|
| Network Gateway     | Routes between networks     |
| Internet Gateway    | Connects to internet        |
| Protocol Gateway    | Protocol translation        |
| Application Gateway | Application-level filtering |

Mnemonic: "Gateways Convert Bridge Secure Filter"

# Question 3(c) [7 marks]

## Draw and explain architecture of mobile computing

#### Answer:

**Mobile Computing Architecture** consists of three main components working together.



## **Architecture Components:**

| Component             | Elements                  | Function                   |
|-----------------------|---------------------------|----------------------------|
| Mobile Unit           | Devices, OS, Apps         | User interface, processing |
| Communication Network | Wireless links, protocols | Data transmission          |
| Fixed Infrastructure  | Servers, databases        | Backend services           |

## **Key Features:**

- Mobility: Users can move while maintaining connectivity
- Wireless communication: Radio waves for data transmission
- Distributed computing: Processing across multiple devices
- Location independence: Access services from anywhere

## **Challenges:**

- Limited bandwidth: Wireless networks have capacity constraints
- Battery life: Mobile devices have power limitations
- Security: Wireless transmission vulnerable to attacks

Mnemonic: "Mobile Communication Fixed - Mobility Wireless Distributed Location"

# Question 3(a OR) [3 marks]

## List security standards in mobile computing

#### Answer:

## **Mobile Computing Security Standards:**

| Standard   | Purpose                        |
|------------|--------------------------------|
| WPA3       | WiFi security protocol         |
| SSL/TLS    | Secure data transmission       |
| IPSec      | IP layer security              |
| EAP        | Authentication framework       |
| 802.11i    | Wireless LAN security          |
| FIPS 140-2 | Cryptographic module standards |

• Authentication protocols: Verify user identity

• Encryption standards: Protect data confidentiality

• Access control: Manage resource permissions

Mnemonic: "WPA SSL IPSec EAP 802.11i FIPS"

# Question 3(b OR) [4 marks]

## **Explain key functions of communication gateway**

## Answer:

**Communication Gateway** manages data exchange between different network systems.

## **Key Functions:**

| Function               | Description                      |
|------------------------|----------------------------------|
| Protocol Translation   | Converts between protocols       |
| Data Format Conversion | Changes data formats             |
| Routing                | Directs messages to destinations |
| Security               | Access control and filtering     |

#### **Detailed Functions:**

- Message routing: Determines optimal path for data
- Error handling: Manages transmission errors and recovery
- Traffic management: Controls data flow and congestion

• Authentication: Verifies sender and receiver identity

#### **Benefits:**

- Enables interoperability between different systems
- Centralizes network management
- Provides security checkpoint

Mnemonic: "Protocol Data Routing Security - Message Error Traffic Authentication"

# Question 3(c OR) [7 marks]

## Explain use of middleware and list types of middleware

#### Answer:

Middleware provides software layer between applications and operating system for distributed computing.

### **Uses of Middleware:**

- Connectivity: Links distributed applications
- Interoperability: Enables different systems to work together
- Abstraction: Hides complexity of underlying systems
- **Scalability**: Supports system growth and expansion



## **Types of Middleware:**

| Туре                   | Function                   | Examples         |
|------------------------|----------------------------|------------------|
| Message-Oriented       | Asynchronous communication | IBM MQ, RabbitMQ |
| Remote Procedure Call  | Synchronous communication  | gRPC, XML-RPC    |
| Object Request Broker  | Object communication       | CORBA            |
| Database Middleware    | Database connectivity      | ODBC, JDBC       |
| Transaction Processing | Transaction management     | Tuxedo           |
| Web Middleware         | Web services               | Apache, IIS      |

#### **Benefits:**

- Reduced complexity: Simplifies application development
- Reusability: Common services for multiple applications
- Maintainability: Centralized management of services
- Platform independence: Works across different systems

Mnemonic: "Message RPC Object Database Transaction Web"

## Question 4(a) [3 marks]

## **Explain working phases of Mobile IP**

#### **Answer**:

Mobile IP Working Phases enable seamless mobility for mobile devices across networks.

#### **Three Main Phases:**

| Phase           | Function                       |
|-----------------|--------------------------------|
| Agent Discovery | Find home/foreign agents       |
| Registration    | Register with foreign agent    |
| Tunneling       | Forward packets to mobile node |

## **Phase Details:**

- Agent Discovery: Mobile node detects available agents through advertisements
- Registration: Mobile node registers current location with home agent
- Tunneling: Home agent encapsulates and forwards packets to foreign agent

Mnemonic: "Agent Registration Tunneling"

# Question 4(b) [4 marks]

## **Explain Handover management in Mobile IP**

#### Answer:

**Handover Management** maintains connectivity when mobile node moves between networks.

#### **Handover Process:**

- Movement detection: Identifies change in network attachment
- New agent discovery: Finds new foreign agent
- Registration update: Updates location with home agent
- Data forwarding: Redirects traffic to new location

## **Types of Handover:**

| Туре          | Description          |
|---------------|----------------------|
| Hard Handover | Break-before-make    |
| Soft Handover | Make-before-break    |
| Horizontal    | Same technology      |
| Vertical      | Different technology |

## **Challenges:**

• Packet loss: During handover transition

• Delay: Registration and tunneling setup time

• **Resource management**: Efficient use of network resources

Mnemonic: "Movement Discovery Registration Forwarding"

# Question 4(c) [7 marks]

## **Explain Registration and Tunneling in Mobile IP**

#### Answer:

**Registration and Tunneling** are core mechanisms enabling Mobile IP functionality.

## **Registration Process:**



## **Registration Steps:**

- Request: Mobile node sends registration request to foreign agent
- Forward: Foreign agent forwards request to home agent
- Authentication: Home agent verifies mobile node identity
- **Reply**: Home agent sends registration reply confirming registration

## **Tunneling Mechanism:**

| Component       | Function                       |
|-----------------|--------------------------------|
| Encapsulation   | Wraps original packet          |
| Tunnel Endpoint | Home and foreign agents        |
| Decapsulation   | Unwraps packet at destination  |
| Routing         | Directs traffic through tunnel |

## **Tunneling Process:**

- Packet arrival: Data arrives at home agent for mobile node
- Encapsulation: Home agent wraps packet with foreign agent address
- Tunnel transmission: Packet travels through tunnel to foreign agent
- **Decapsulation**: Foreign agent unwraps and delivers to mobile node

#### **Benefits:**

• Transparency: Applications unaware of mobility

- Connectivity: Maintains communication during movement
- Scalability: Supports multiple mobile nodes

## **Security Considerations:**

- Authentication: Prevents unauthorized registration
- **Encryption**: Protects data in tunnels

**Mnemonic:** "Registration Request Forward Authentication - Tunneling Encapsulation Transmission Decapsulation"

# Question 4(a OR) [3 marks]

## **Explain snooping TCP**

#### **Answer:**

**Snooping TCP** improves TCP performance over wireless networks by handling wireless link errors.

## **Working Mechanism:**

- Base station monitoring: Observes TCP packets
- Local retransmission: Handles wireless link errors locally
- Cache management: Stores copies of transmitted packets
- Error recovery: Retransmits lost packets without involving sender

## **Key Features:**

| Feature          | Benefit                              |
|------------------|--------------------------------------|
| Transparent      | No changes to TCP endpoints          |
| Local recovery   | Faster error correction              |
| Reduced timeouts | Prevents unnecessary retransmissions |

Mnemonic: "Snooping Monitors Local Cache Recovery"

# Question 4(b OR) [4 marks]

## **Explain Packet delivery in Mobile IP**

#### Answer:

Packet Delivery in Mobile IP ensures data reaches mobile nodes regardless of location.

## **Delivery Process:**



## **Delivery Scenarios:**

| Scenario | Path             | Method            |
|----------|------------------|-------------------|
| At Home  | Direct           | Normal IP routing |
| Away     | Via HA/FA        | Tunneling         |
| Roaming  | Triangle routing | Indirect path     |

## **Packet Flow Steps:**

• Address resolution: Determine mobile node location

• Route selection: Choose direct or tunneled delivery

• **Encapsulation**: Wrap packet if tunneling required

• Forwarding: Send to appropriate destination

• Decapsulation: Unwrap packet at foreign agent

• Final delivery: Deliver to mobile node

## **Optimization Techniques:**

• Route optimization: Direct communication when possible

• Binding cache: Store location information

• Smooth handover: Minimize packet loss during movement

Mnemonic: "Address Route Encapsulation Forward Decapsulation Delivery"

# Question 4(c OR) [7 marks]

## **Describe how DHCP working with diagram**

#### Answer:

**DHCP (Dynamic Host Configuration Protocol)** automatically assigns IP addresses and network configuration to devices.

## **DHCP Working Process:**



## **Four-Step Process:**

| Step | Message  | Function                            |
|------|----------|-------------------------------------|
| 1    | DISCOVER | Client broadcasts request for IP    |
| 2    | OFFER    | Server offers available IP address  |
| 3    | REQUEST  | Client requests specific IP address |
| 4    | ACK      | Server confirms IP assignment       |

## **DHCP Components:**

• DHCP Server: Manages IP address pool and assignments

• **DHCP Client**: Requests and uses assigned configuration

• **DHCP Relay**: Forwards DHCP messages across subnets

• Address Pool: Range of available IP addresses

## **Configuration Information Provided:**

• IP Address: Unique network identifier

• Subnet Mask: Network boundary definition

• **Default Gateway**: Route to other networks

• **DNS Servers**: Domain name resolution

• Lease Time: Duration of IP assignment

#### **Benefits:**

• Automatic configuration: No manual IP assignment needed

• **Centralized management**: Single point for network configuration

• Efficient utilization: Dynamic allocation prevents waste

• Reduced errors: Eliminates manual configuration mistakes

## **DHCP Message Types:**

• **DISCOVER**: Locate available DHCP servers

• OFFER: Response with configuration offer

• **REQUEST**: Accept specific server offer

• ACK: Confirm configuration assignment

• NAK: Reject configuration request

• **RELEASE**: Return IP address to pool

• RENEW: Extend current lease

Mnemonic: "Discover Offer Request ACK - Server Client Relay Pool"

# Question 5(a) [3 marks]

## Give types of WLAN and explain any one

#### **Answer**:

## **WLAN Types:**

| Туре           | Standard | Frequency |
|----------------|----------|-----------|
| Infrastructure | 802.11   | 2.4/5 GHz |
| Ad-hoc         | IBSS     | 2.4/5 GHz |
| Mesh           | 802.11s  | Multiple  |

#### **Infrastructure WLAN Explanation:**

• Access Point (AP): Central coordinator for all communications

• BSS (Basic Service Set): Network coverage area of single AP

• ESS (Extended Service Set): Multiple interconnected BSSs

• **Distribution System**: Backbone connecting multiple APs

#### **Characteristics:**

- All communication goes through access point
- Centralized network management
- Better security and performance control

Mnemonic: "Infrastructure Ad-hoc Mesh - AP BSS ESS Distribution"

# Question 5(b) [4 marks]

## Answer the following questions:

#### **Answer:**

#### 1) List Uses of Ad hoc Network:

| Use Case    | Application                          |
|-------------|--------------------------------------|
| Emergency   | Disaster recovery, rescue operations |
| Military    | Battlefield communications           |
| Conferences | Temporary meeting networks           |
| Home        | Device-to-device communication       |
| Vehicular   | Car-to-car networks                  |

## 2) Enlist entities and terminology of mobile computing:

#### **Entities:**

- Mobile Node (MN): Moving device
- Home Agent (HA): Permanent network representative
- Foreign Agent (FA): Temporary network coordinator
- Correspondent Node (CN): Communication partner

## **Terminology:**

- Handover: Network switching process
- Roaming: Moving between networks
- Care-of Address: Temporary IP address

Mnemonic: "Emergency Military Conference Home Vehicular - MN HA FA CN"

# Question 5(c) [7 marks]

## Explain architecture of WLAN with neat diagram

#### Answer:

**WLAN Architecture** consists of wireless stations communicating through access points.



## **Architecture Components:**

| Component                  | Function               | Coverage        |
|----------------------------|------------------------|-----------------|
| STA (Station)              | Wireless device        | Point           |
| AP (Access Point)          | Network coordinator    | BSS area        |
| BSS (Basic Service Set)    | Single AP coverage     | ~100m radius    |
| ESS (Extended Service Set) | Multiple connected BSS | Large area      |
| DS (Distribution System)   | AP interconnection     | Building/campus |

## **Types of WLAN Architecture:**

## 1. Infrastructure Mode:

• Centralized: All traffic through access points

• Managed: Network administration and security

• Scalable: Easy to expand coverage area

#### 2. Ad-hoc Mode (IBSS):

• Peer-to-peer: Direct device communication

• **Decentralized**: No central coordinator

• Temporary: Quick setup for specific needs

## **Key Features:**

• Mobility: Users can move within coverage area

• Wireless medium: Radio waves for communication

• Shared bandwidth: Multiple users share channel capacity

• Security: WPA/WPA2/WPA3 protocols for protection

### **Standards and Frequencies:**

• **802.11a**: 5 GHz, up to 54 Mbps

• **802.11b**: 2.4 GHz, up to 11 Mbps

• **802.11g**: 2.4 GHz, up to 54 Mbps

• **802.11n**: 2.4/5 GHz, up to 600 Mbps

• **802.11ac**: 5 GHz, up to 6.93 Gbps

Mnemonic: "STA AP BSS ESS DS - Infrastructure Ad-hoc"

# Question 5(a OR) [3 marks]

#### Write features of 5G

#### Answer:

## **5G Key Features:**

| Feature      | Specification         |
|--------------|-----------------------|
| Speed        | Up to 10 Gbps         |
| Latency      | < 1 millisecond       |
| Connectivity | 1 million devices/km² |
| Reliability  | 99.999% availability  |
| Bandwidth    | 100x increase         |
| Energy       | 90% reduction         |

## **Advanced Capabilities:**

• Enhanced Mobile Broadband (eMBB): Ultra-fast data speeds

- Ultra-Reliable Low Latency (URLLC): Mission-critical applications
- Massive Machine Type Communication (mMTC): IoT connectivity

Mnemonic: "Speed Latency Connectivity Reliability Bandwidth Energy"

# Question 5(b OR) [4 marks]

Answer the following questions:

Answer:

## 1) List Type of communication middleware:

| Туре             | Function               |
|------------------|------------------------|
| Message-Oriented | Asynchronous messaging |
| RPC-based        | Remote procedure calls |
| Object-Oriented  | Distributed objects    |
| Service-Oriented | Web services           |
| Database         | Data access layer      |

## 2) Define the term "Home Agent" in the context of Mobile IP:

**Home Agent (HA)** is a router on mobile node's home network that:

- Maintains registration: Tracks mobile node's current location
- Tunnels packets: Forwards data to mobile node's foreign location
- Address management: Manages mobile node's permanent IP address
- Authentication: Verifies mobile node identity during registration

#### **Functions:**

- Acts as proxy for mobile node when away from home
- Intercepts packets destined for mobile node
- Creates tunnels to foreign agents

Mnemonic: "Message RPC Object Service Database - HA Maintains Tunnels Address Authentication"

# Question 5(c OR) [7 marks]

**Explain Bluetooth protocol stack with diagram** 

Answer:

**Bluetooth Protocol Stack** provides layered architecture for short-range wireless communication.



## **Protocol Stack Layers:**

| Layer       | Function           | Protocols            |
|-------------|--------------------|----------------------|
| Application | User applications  | Audio, File transfer |
| Middleware  | Services           | OBEX, SDP, TCS       |
| Transport   | Data delivery      | RFCOMM               |
| Network     | Packet management  | L2CAP                |
| Interface   | Host-Controller    | HCI                  |
| Management  | Link control       | LMP                  |
| Data Link   | Channel access     | Baseband             |
| Physical    | Radio transmission | 2.4 GHz ISM          |

## **Layer Details:**

## **Upper Layers:**

- **OBEX**: Object Exchange Protocol for file transfers
- SDP: Service Discovery Protocol finds available services
- TCS: Telephony Control Specification for voice calls
- **RFCOMM**: Serial port emulation over Bluetooth

## **Lower Layers:**

- L2CAP: Logical Link Control manages multiple connections
- HCI: Host Controller Interface standardizes communication
- LMP: Link Manager Protocol handles connection setup
- Baseband: Manages time slots and frequency hopping

## **Key Features:**

- **Frequency Hopping**: 1600 hops/second across 79 channels
- Piconet: Network of up to 8 devices
- **Scatternet**: Multiple overlapping piconets
- Power Classes: Class 1 (100m), Class 2 (10m), Class 3 (1m)

## **Advantages:**

• Low power consumption: Suitable for battery devices

- Automatic pairing: Easy device connection
- Interference resistance: Frequency hopping spread spectrum
- **Cost effective**: Low implementation cost

## **Applications:**

- Audio streaming: Headphones, speakers
- Data transfer: File sharing between devices
- Input devices: Keyboards, mice
- IoT devices: Sensors, smart home devices

Mnemonic: "Application Middleware Transport Network Interface Management DataLink Physical"