

Convexité

Spécialité Maths

Fonction dérivée n-ième

- Si f est dérivable sur E, on définit sa dérivée f' comme la fonction qui à tout $a \in E$ associe f'(a).
- Si f' est elle-même dérivable sur E, on dit que f est 2 fois dérivable sur E et on note f'' sa dérivée seconde
- Par récurrence, on définit la dérivée n-ieme de f sur E, $f^{(n)}$ comme la dérivée de $f^{(n-1)}$. ($f^{(0)}=f$ et $f^{(1)}=f'$)

Position relative de 2 courbes

- $\label{eq:condition} \Leftrightarrow \ C_f \text{ est au-dessus de } C_g$ $\text{sur } I \text{ si } \forall x \in I \text{, } f(x) \geqslant g(x)$
- $\Rightarrow C_f$ est en-dessous de C_g sur I si $\forall x \in I$, $f(x) \leq g(x)$
- \Rightarrow On peut étudier le signe de d(x) = f(x) g(x)

Fonction convexe

f est convexe sur I si C_f est située **en dessous** de toutes ses sécantes/cordes sur I

Fonction concave

f est concave sur I si C_f est située **au-dessus** de toutes ses sécantes/cordes sur I

Théorème : convexe

f est **convexe** sur I

 $\iff f' \text{ est croissante sur } I$

 $\iff f''(x) > 0 \quad \forall x \in I$

 $\iff C_f$ est **au-dessus** de toutes ses tangentes sur I

Théorème: concave

fest concave sur ${\cal I}$

 $\iff f'$ est **décroissante** sur I

 $\iff f''(x) < 0 \quad \forall x \in I$

 $\iff C_f$ est **en-dessous** de toutes ses tangentes sur I

 C_f présente un point d'inflexion en A(a; f(a))

- $\iff f$ change de convexité en a
- \iff la tangente à C_f en A traverse la courbe C_f en A
- $\iff f'$ change de variation en a
- $\iff f''$ s'annule en changeant de signe en a

