Definition

Given vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ such that $\mathbf{u} \neq \mathbf{0}$, the *orthogonal projection* of \mathbf{v} onto \mathbf{u} is the vector $\text{proj}_{\mathbf{u}}\mathbf{v}$ such that

- 1) $\operatorname{proj}_{\mathbf{u}}\mathbf{v} = c\mathbf{u}$ for some $c \in \mathbb{R}$
- 2) the vector $\mathbf{v} \text{proj}_{\mathbf{u}} \mathbf{v}$ is orthogonal to \mathbf{u} .

Proposition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\mathbf{u} \neq \mathbf{0}$. For any $c \in \mathbb{R}$ we have

$$dist(v, proj_uv) = ||v - proj_uv|| \le ||v - cu|| = dist(v, cu)$$

Proof:
$$\|v - cu\|^2 = \|(v - projuv) - (cu - projuv)\|^2$$

$$= \|v - projuv\|^2 + 2 \cdot (v - projuv) \cdot (cu - projuv) + \|cu - projuv\|^2$$

$$= \|v - projuv\|^2 + 2 \cdot (v - projuv) \cdot (cu - projuv) + \|cu - projuv\|^2$$

$$= \|v - projuv\|^2$$
This gives: $\|v - cu\|^2 \ge \|v - projuv\|^2$
so: $\|v - cu\| \ge \|v - projuv\|$

Proposition

Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $\mathbf{u} \neq \mathbf{0}$. Then $\text{proj}_{\mathbf{u}} \mathbf{v} = c \mathbf{u}$ where

$$c = \frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}$$

In particular, if $||\mathbf{u}|| = 1$ then $\text{proj}_{\mathbf{u}}\mathbf{v} = c\mathbf{u}$ where

$$c = \mathbf{v} \cdot \mathbf{u}$$

Proof: By definition, if
$$proj_uv = cu$$
 then
$$u \cdot (v - proj_uv) = 0$$

$$u \cdot (v - cu) = 0$$

$$u \cdot v - c(u \cdot u) = 0$$

$$c = \frac{u \cdot v}{u \cdot u}$$

Example.

$$\mathbf{u} = \begin{bmatrix} 1/3 \\ 2/3 \\ -2/3 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\mathbf{u} \cdot \mathbf{u} = \frac{1}{4} + \frac{4}{4} + \frac{4}{4} = 1$$

$$\mathbf{so} \quad ||\mathbf{u}|| = 1$$

$$\mathbf{proj}_{\mathbf{u}} \vee = \mathbf{c} \cdot \mathbf{u}$$

$$\mathbf{where} \quad \mathbf{c} = \mathbf{u} \cdot \mathbf{v} : \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = -\frac{1}{3}$$

Corollary

If $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ and $||\mathbf{u}|| = 1$ then

$$||\mathsf{proj}_u v|| = |v \cdot u|$$