Архитектура вычислительных систем. Домашнее задание №1. Вариант №3.

Комиссаров Данил Андреевич

March 2025

1 Полный отчет

Третий вариант задания. Полный сумматор (Full Adder) двух 3-битных входов.

1.1 Подсчет транзисторов для базовых элементов

Доступные элементы для составления схемы:

- 1. NOT Gate
- 2. AND Gate
- 3. NAND Gate
- 4. OR Gate
- 5. NOR GATE
- 6. XOR GATE
- 7. Probe
- 8. Pin
- 9. Соединительные провода

Сразу же подсчитаем количество транзисторов в каждом логическом элементе:

• Известно, что оптимальная реализация NOT Gate использует 2 транзистора.

Можно, конечно же, реализовать инвертор и на одном транзисторе при помощи одного транзистора и подтягивающего резистора.

Но это не соответствует КМОП логике из-за протекающего тока через подтягивающий резистор в стабильном состоянии. Жаль. Идем дальше.

• Известно, что оптимальная реализация NAND Gate использует 4 транзистора.

Элемент NAND известен также как "Штрих Шеффера". Интересен он тем, что образует функционально-полный логический базис для пространства булевых функций от двух переменных, так как удовлетворяет теореме Поста о полной системе функций. В электронике это означает, что для реализации любой логической схемы достаточно одного типового элемента. С другой стороны, такой подход увеличивает громоздкость и тем самым снижает их надёжность. В этом задании я поставлю себе задачу реализовать конечное решение с использованием наименьшего количества транзисторов.

• Элемент AND Gate реализуется точно так же, как и предыдущий, с точностью до замены всех типов транзисторов на противоположные.

Впрочем, это верно и для любых других пар противоположных логических элементов.

• Известно, что оптимальная реализация OR Gate использует 4 транзистора.

• Аналогично NOR Gate.

• Теперь добрались до самого сложного: XOR Gate.

У нас нет элемента исключающего ИЛИ (XOR). Нужно реализовать его на базе других логических элементов. Как это сделать? Какое минимальное количество элементов придется использовать?

Для начала вспомним таблицу истинности для XOR.

Α	В	A XOR B
0	0	0
0	1	1
1	0	1
1	1	0

Что делать? Нужно избавиться от самого оператора XOR. Для этого можем расписать функцию по таблице истинности двумя способами. Существуют такие вещи как $\mathbf{CKH\Phi}$ (совершенная конъюнктивная нормальная форма) и $\mathbf{CДH\Phi}$ (совершенная дизъюнктивная нормальная форма). Впрочем эти вещи эквивалентны друг другу, т.к. равны одной и той же функции. Поэтому не принципиально, каким методом пользоваться. Можно даже показать это:

$$a \operatorname{xor} b = (\overline{a} \wedge b) \vee (a \wedge \overline{b}) = \overline{a} \cdot b + a \cdot \overline{b} =$$

$$= (\overline{a} \cdot b + a) \cdot (a \cdot b + \overline{b}) =$$

$$= (1 \cdot (b + a)) \cdot ((\overline{a} + \overline{a}) \cdot (b + a) \cdot (b + \overline{b})) =$$

$$= (a + b) \cdot (a + b) = (a + b) \cdot (\overline{a} \cdot b)$$

Итак, есть две формы:

$$a \operatorname{xor} b = \overline{a} \cdot b + a \cdot \overline{b}$$

 $a \operatorname{xor} b = (a + b) \cdot (\overline{a} \cdot b)$

Обратите внимание, чаще всего везде используется первая формула. Но проблема в том, что для её построения на логических элементах нам нужно 5 логических элементов:

Если же мы возьмем вторую формулу, то нам удастся реализовать XOR, используя только три элемента: NAND, OR, AND.

А что если собрать только на NAND?

$$a=\overline{a}+a=a\cdot a=(a \text{ nand } a)$$

$$a+b=a\cdot b=(\overline{a}+\overline{a})\cdot (\overline{b}+\overline{b})=(a \text{ nand } a) \text{ nand } (b \text{ nand } b)$$

$$a\cdot b=a\cdot b=a\cdot b\cdot a\cdot b=(a \text{ nand } b) \text{ nand } (a \text{ nand } b)$$

Выражаем XOR через NAND:

$$a \text{ xor } b = (a+b) \cdot \overline{(a \cdot b)} =$$

$$= \overline{\overline{(a \cdot a) \cdot (b \cdot b)}} \cdot \overline{(a \cdot b)} = \overline{\overline{(a \cdot a) \cdot (b \cdot b)}} \cdot \overline{(a \cdot b)} \cdot \overline{\overline{(a \cdot a)} \cdot \overline{(b \cdot b)}} \cdot \overline{(a \cdot b)}$$

Получилось очевидно громоздко, и даже встроенный анализ Logisim дает результат намного лучше.

Впрочем, очевидно и то, как можно еще сильнее сократить формулу.

$$a \text{ xor } b = (a+b) \cdot (\overline{a \cdot b}) = a \cdot (\overline{(a \cdot b)}) + b \cdot (\overline{(a \cdot b)}) =$$
$$= a \cdot (\overline{(a \cdot b)}) \cdot b \cdot (\overline{(a \cdot b)})$$

Теперь это можно и расписать в транзисторах.

Раскрытие элементов позволяет снова увидеть некоторые паттерны в схеме и сократить схему до конечного:

Дальнейшее упрощение не представляется возможным.

• Элемент NXOR Gate аналогичен.

Логический элемент	Кол-во т-ров
NOT Gate	2
AND Gate	4
NAND Gate	4
OR Gate	4
NOR Gate	4
XOR Gate	4

Подсчитали наконец-то. Теперь можно и начинать составлять схему сумматора.

1.2 Составление схемы сумматора

Опираться придется на материалы из лекции. Сначала собирается полусумматор:

Тривиально. Далее собираем из них полные сумматоры.

А теперь просто каскадируем их.

Итого:

🖺 Logisim: статистика 3-bit adder						
Компонент	Библиотека	Henoc	Уника	Рекур		
semi-adder	Progress	0	2	6		
adder	Progress	3	3	3		
Контакт	Проводка	11	20	50		
Элемент И	Элементы	0	1	6		
Элемент ИЛИ	Элементы	0	1	3		
Элемент Исключающее ИЛИ	Элементы	0	1	6		
Метка	Базовые	11	11	11		
ВСЕГО (без подсхем проекта)		22	34	76		
ВСЕГО (с подсхемами)		25	39	85		

Компонент	Рекур.	Кол-во т-ров.
Элемент И	6	24
Элемент ИЛИ	3	12
Элемент Исключающее ИЛИ	6	24
Итого		60

Здорово. Но помимо этого можно и доверить построение схемы самому Logisim. Воспользуемся встроенным сумматором (приходится расписывать однобитными элементами, т.к. к сожалению анализ схемы с многобитными элементами недоступен).

А теперь компьютер раскроет схему.

Получилось довольно громоздко.

🙆 Logisim: статистика detailed computer adder				×
Компонент	Библиотека	Henoc	Уника	Рекур
Контакт	Проводка	11	11	11
Элемент НЕ	Элементы	98	98	98
Элемент И	Элементы	166	166	166
Элемент ИЛИ	Элементы	82	82	82
ВСЕГО (без подсхем проекта)		357	357	357
ВСЕГО (с подсхемами)		357	357	357

И статистика говорит о том же. Предлагаю тогда остановиться на предыдущем результате.

Тогда разобьем схему на элементы, разрешенные в задании, чтобы посчитать критический путь (предполагается, что каждый элемент из списка занимает одинаковое время).

Итого 9t (хотя интересно, что в предыдущем варианте, предоставленный компьютером, критическое время составляло всего 7t). Помимо прочего, можно уточнить, что это за время t такое. Если вернуться к подсекции "Подсчет транзисторов для базовых элементов то можно заметить, что каждый из базовых элементов имеет критическое время в 1 транзистор (это только в том случае, если принять, что не требуется ожидания для сигнала при прохождении через открытый транзистор, т.е. путь коллектор-эмиттер не занимает время), т.е. для получения стабильного сигнала на выходе требуется подождать одно характерное время работы транзистора, поэтому и правда есть обоснование в том, чтобы уравнять характерные времена базовых элементов.

Когда все аспекты рассмотрены, можно занять написание "формального отчета".

2 Формальный отчет

- 1. Выполнил: Комиссаров Данил Андреевич.
- 2. Студент группы Б01-304.
- 3. Выполненная схема Полный сумматор (Full Adder) двух 3-битных входов.
- 4. Контакты: komissarov.da@phystech.edu
- 5. Полный сумматор логическая схема, которая производит сложение двух трехбитных чисел и одного однобитного числа, обозначаемых A(a0 младший бит, a1 средний бит, a2 старший бит), B(б0 младший бит, б1 средний бит, б2 старший бит) и входной бит переноса. На выход подаются трехбитное число B(в0 младший бит, в1 средний бит, в2 старший бит) и выходной бит переноса., где В это сумма по модулю 8 (а в общем случае 2^n), а выходной бит переноса это флаг, который говорит о переполнении выхода.

6.

- 7. Критическое время составляет 9t
- 8. Схема состоит из 60-ти полевых транзисторов.

На этом пожалуй можно и закончить. Наверное я уделил слишком много внимания несущественным аспектам, в то время, когда некоторые фундаментальные принципы были упущены, но это было интересно.