8243 NASA PLPPDAT SONERLINE SONERLINE Rate Constants and Temperature Dependences for the Reactions of Hydroxyl Radical with Several Halogenated Methanes, Ethanes, and Propanes by Relative Rate Measurements

K.-J. Hsu[†] and W. B. DeMore*

Iet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

Received: August 29, 1994; In Final Form: October 31, 19948

NASA-CR-200342

= 46

Rate constants of 15 OH reactions with halogen-substituted alkanes, C1 to C3, were studied using a relative rate technique in the temperature range 283–403 K. Compounds studied were CHF₂Cl (22), CHF₂Br (22B), CH₃F (41), CH₂F₂ (32), CHF₃Cl (23), CHCIFCCl₃F (122a), CHCl₂CF₃ (123), CHCIFCF₃ (124), CH₃CF₃ (143a), CH₃CH₂CF₃ (227ea), CF₃CH₂CF₃ (236fa), CF₃CHFCH₂ (236ea), and CHF₂CF₂CH₂F (245ca). rate constants are derived. Results are in good agreement with previous experimental results for six of the compounds studied, including CHF2CI, CHF2Br, CH2F2, CH3CF3, CHFCICFCI2, and CF3CHFCF3. For the remainder the relative rate constants are lower than those derived from experiments in which OH loss was transition-state calculations^{2,3} show order of magnitude agreement in most cases. However, the experimental factors show a much closer proportionality to the number of H atoms in the molecule than is evident from Using CH4, CH₃CCl₃, CF₃CF₂H, and C₂H₆ as primary reference standards (JPL 92-20 rate constants), absolute used to measure the reaction rate. Comparisons of the derived Arrhenius A factors with previous literature the transition state calculations. For most of the compounds studied, an A factor of $(8 \pm 3)E-13$ cm³/ (molecule s) per C-H bond is observed. A new measurement of the ratio $k^{\text{CH}_3\text{CC}_1}/k^{\text{CH}_4}$ is reported that is in good agreement with previous data.

Introduction

Most atmospheric species which have at least one C-H bond are destroyed in the atmosphere by OH attack. To estimate roform, because that compound is used as a standard for atmospheric lifetimes of species removed by OH.⁴ A considerlimits to the correct rate constants, and thus they imply shorter as comparison of preexponential factors with those calculated from transition-state theory^{2,5} or for calibration of rate constant able body of data has accumulated for these reactions. (See ref 1 for a compilation.) The bulk of the data have been obtained by measuring the rate of disappearance of OH in the presence of the reactant. However, such measurements are rate constants obtained in that manner are effectively upper Also, the uncertainty makes the data less useful for tests of theory, such estimation methods such as that of Atkinson.6 Correlations with abstraction reactions of other species such as Cl, Br, and I may the atmospheric lifetimes of such species, accurate data for the rate constants and their temperature dependences are needed. Such data are especially useful when referenced to methylchlovulnerable to OH loss by reaction with impurities, secondary or side reactions, and wall reactions. As a consequence many atmospheric lifetimes than is actually the case.

presence of OH can give very accurate ratios of rate constants. This method has the advantage of being insensitive to impurities, secondary reactions, or wall losses which may affect the measurements based on OH loss. If CH₃CCl₃ is included in lifetime calculations without regard to the absolute accuracy of any of the rate constants. Further, if a reliable absolute rate constant is available, such as is believed to be the case for the $OH + CH_4$ reaction,¹ then the relative data can be placed on an the present work we report relative rate measurements, traceable Measurements of the consumption of two compounds in the the relative database, then the results can be used for atmospheric absolute basis by including CH₄ as a reference standard.

for OH production.

The rate constant ratio is obtained from the relation

$$k_{\text{reactant}}/k_{\text{reference}} = \ln(\text{DF})_{\text{reactant}}/\ln(\text{DF})_{\text{reference}}$$
 (I)

The quantity DF (depletion factor) is defined as

$$DF = (initial concn)/(final concn)$$
 (II)

Initial reactant and reference concentrations are in the range

molecules and are compared with recent transition-state predicto CH₄, CH₃CCl₃, and other reference gases, for 15 halogenated methanes, ethanes, and propanes. In a few cases the results agree very well with previous measurements based on OH loss, but often the latter are higher than those from the relative rate results. The experimental preexponential factors are examined for their dependence on the number of hydrogen atoms in the

Experimental Section

described in several recent publications.⁷⁻⁹ The method involves measurement of the fractional losses of the reactant compound and a reference compound in the presence of OH. The OH radicals are produced by UV photolysis of O_3 ((5- $10) \times 10^{16}$ cm⁻³) in the presence of water vapor ((3-5) \times 10¹⁷ cm⁻³) in a slow-flow, temperature-controlled photochemical cell. For reactants such as HFCs which do not absorb 185 nm radiation, direct photolysis of H₂O at 185 nm may also be used photolysis are converted to the relatively unreactive HO2 in the cm in diameter and is either water-jacketed (for the O₃ photolysis experiments) or wrapped with heating tape and insulating material for the H₂O photolysis experiments. Residence times in the cell for the slow-flow mode are about 1 min. To obtain high conversion ratios, experiments are sometimes operated in a stopped-flow mode where the reactant mixture is expanded into the IR cell for analysis after several minutes of irradiation. The relative rate technique used in this work has been The H atoms produced in the H₂O presence of O₂. The cylindrical cell is 10 cm in length and 5 This method is most useful for reactant pairs which have slow rate constants. All experiments are at atmospheric pressure.

© 1995 American Chemical Society

[†] Present address: Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan.
[®] Abstract published in *Advance ACS Abstracts*, January 1, 1995.

TABLE 1: Rate Constants of the Primary Reference Compounds Used in This Work

•		
reference compound	Arrhenius rate constanta	k(298 K)
CH4	$2.9E - 12\exp(-1820/T)$	6.5E-15
CH3CCI3	$1.8E - 12\exp(-1550/T)$	1.0E - 14
CF_3CF_2H	$5.6E - 13\exp(-1700/T)$	1.9E - 15
$\mathrm{C_2H_6}$	8.7E - 12exp(-1070/T)	2.4E - 13
^a All from ref 1.		

Figure 1. Tests of the linear dependence between depletion factors of reactant and reference gases, as predicted from eq 1.

10¹⁴—10¹⁵ cm⁻³, and depletion factors are normally about 1.1—1.5. Concentrations are monitored with a Nicolet 20SX FTIR operated at 0.5 cm⁻¹ resolution in the absorbance mode using a White cell with a 3 m path length. After irradiation, and before entering the FTIR cell, the mixture flows through a trap at about -20 °C to remove the bulk of the H₂O, which would interfere with the IR analysis. The light source is a low-pressure Hg lamp. Flow controllers are used to maintain constant flows of reactant mixture (10 Torr each of the two reactants plus 1000 Torr of Ar, stored in two 5-L bulbs), the O₂/O₃ input (flowing from a commercial ozonizer), and the Ar carrier. Argon is used because of its low quenching efficiency for O(¹D). The

Figure 2. Arrhenius plots of rate constant ratio data for the halogenated methanes

experiments are usually conducted in a light-or, light-off mode for repeated measurements of the depletion factors. Approximately 15 min are required for concentrations to stabilize between cycles.

Reactant regeneration by secondary chemistry could be a source of error, but in the presence of O₂ (which scavenges radical products) this is improbable and there is no evidence that it occurs. Results for rate constant ratios are tested for any dependence on the extent of reaction, which would indicate a complication due to secondary chemistry. No such dependence has been found in O₂-containing mixtures. In mixtures with no O₂, CH₄ regeneration has been observed, as evidenced by a decreasing CH₄ loss with increasing extent of photolysis. However, O₂-free mixtures are not generally used.

It is also necessary for OH to be the only radical species removing the reactants. Other possible reactant species are O(¹D) (from O₃ photolysis), halogen atoms (which may be produced in secondary chemistry), and various haloalkoxy or peroxy radicals. Attack of O(¹D) on the reactants is minimized by using a large excess (factor of 300–500) of H₂O over the reactants. Computer simulations show that errors in the rate constant ratio less than 3% are expected under these conditions. In any case it is often possible to compare results in O₃

Ranges of Depletion Factors for Relative Rate Measurements of Halogen-Substituted Alkanes TABLE 2:

ictor range	reference	1.14-1.24	1.07-1.23	1.34-1.55	$1.82 - 8.25^a$	$1.70 - 4.37^{a}$	1.27-1.58	1.25-1.55	1.12-1.17	1.13-1.25	1.16-4.23	1.17-2.18	1.04 - 1.24	1.10 - 1.42	1.21 - 1.43	$1.41 - 6.89^a$	1.06 - 1.12	$1.11 - 1.82^a$	1.08-1.15	$1.36-2.53^{a}$	1.30 - 2.81	1.06 - 1.15	
depletion factor range	reactant	1.10 - 1.14	1.11 - 1.31	1.70-2.05	$1.20 - 2.01^{a}$	$1.04 - 1.28^a$	1.12-1.23	1.18 - 1.42	1.13-1.22	1.16-1.28	1.03-1.33	1.11-1.65	1.24 - 2.03	1.36-2.34	1.13 - 1.30	$1.06 - 1.57^a$	1.04 - 1.10	$1.10 - 1.70^{a}$	1.02 - 1.04	$1.06 - 1.26^a$	$1.23 - 2.00^{a}$	1.08-1.17	
	reference	CH ₂	CH,	CH_3CF_2H (HFC-152a)	CH ₃ CF ₂ H (HFC-152a)	CHF ₂ CF ₃ (HFC-125)	CH ₃ CF ₂ H (HFC-152a)	CH_3CF_2H (HFC-152a)	CH4	CHF_2CHF_2 (HFC-134)	CH ₂	CHF ₂ CF ₃ (HFC-125)	CH,	CH ₃ CCI ₃	C_2H_6	CH ₂	CHF ₂ CF ₃ (HFC-125)		CHF ₂ CF ₃ (HFC-125)		CH4	CH,	
	reactant	CHF ₂ CI (HFC-22)	CHF ₂ Br (HFBC-22B)	CH3F	CH_2F_2	CHF ₃	CHCIFCCl ₂ F (HCFC-122a)	CHCl ₂ CF ₃ (HCFC-123)	CHFCICF ₃ (HCFC-124)	CHFCICF ₃ (HCFC-124)	CH ₃ CF ₃ (HFC-143a)	CH ₃ CF ₃ (HFC-143a)	CH ₃ CF ₂ H (HFC-152a)	CH ₃ CF ₂ H (HFC-152a)	CH_3CH_2F (HFC-161)	CF ₃ CHFCF ₃ (HFC-227ea)	CF ₃ CHFCF ₃ (HFC-227ea)		$CF_3CH_2CF_3$ (HFC-236fa)		CF ₃ CHFCHF ₂ (HFC-236ea)	CHF2CF2CH2F (HFC-245ca)	

a Stopped flow measurement.

TABLE 3: Experimental Results for Rate Constant Ratios, k/kres, for Halogen-Substituted Methanes

	ref	32	21	45	62	73	85	80	
CHF3	k/k_{ref}^d	0.1	0.1	0.1	0.1	0.1	0.1	0.2	
S	T(K)	298	298	317	330	347	365	383	
CH ₂ F ₂	klkref	0.318	0.320	0.335	0.330	0.355	0.368	0.386	
B	T(K)	297	309	317	323	338	357	383	
CH ₃ F	klkref			0.573					
ט	T(K)	298	308	321	333	345	363		
CHF ₂ Br	k/k _{ref} ^a	1.672		1.508					
CHI	T(K)	283	298	312	322	343	368		
CHF ₂ Cl	k/kref	0.777	0.736	0.755	0.717	0.700	0.676	0.611	909.0
思	T(K)	298	298	307	317	332	349	363	366

^a CH₄. ^b C₂H₆. ^c HFC-152a. ^d HFC-125. ^e HFC-134. ^f HFC-161 were the reference compounds.

TABLE 4: Experimental Results for Rate Constants Ratios, k/k_{reb} for Halogen-Substituted Ethanes

	klk_{ref}^d	0.630	0.653	0.714	0.755	0.823					-161)	klkret	0.671	0.714	0.657	0.657	0.708	0.708	0.695	0.733	0.752	0.722	0.762
IFC-143a)	T(K)	298	313	330	351	383					сн2ғ (нғс												
CH ₃ CF ₃ (F	k/k _{ref} ª	0.212	0.199	0.210	0.189	0.241	0.242	0.240			CH	T(K)	285	298	298	298	308	318	329	338	351	358	364
	T (K)	298	298	314	328	346	374	403				klkref ⁸	3.28	3.22	3.24	3.19	3.07	2.98	3.14	2.75	3.19	2.88	2.82
	klkref	1.293	1.180	1.272	1.244	1.216	1.194	1.077	1.092	1.042	-152a)	T(K)	298	298	298	298	308	313	313	333	333	358	358
HCFC-124)	T (K)	298	298	298	298	308	321	334	356	356	CHF2 (HFC	a _t a		99	3.7	06	[2	37	20	96	90	4 %	
CHCIFCF ₃ (klkref	1.164	1.217	1.134	1.054	1.013	0.936	0.975			E	klkn	4.7	4.4	4.3	4.7	4.8	4.0	3.8	3.8	3.5(3.38	
	T(K)	298	298	313	328	345	358	366				T(K)	298	303	308	308	308	318	333	333	358	358	
HCFC-122a)	k/kref ^c	0.446	0.467	0.481	0.460	0.444	0.425	0.458	0.426	0.430	HCFC-123)	klkref	0.947	0.972	0.906	0.893	0.833	0.862	0.839	0.765	0.767	0.790	
CHCIFCCl ₂ F (T(K)	294	294	298	308	328	345	351	358	362	CHCl ₂ CF ₃ (T(K)	298	298	313	320	324	332	345	358	359	359	
	CHCIFCC1 ₂ F (HCFC-122 _a) CHCIFCF ₃ (HCFC-124) CH ₃ CF ₃ (HFC-143 _a)	FCCl ₂ F (HCFC-122a) CHCIFCF ₃ (HCFC-124) CH ₃ CF ₃ (HFC-143a) L/L	FCCl ₂ F (HCFC-122a) CHCIFCF ₃ (HCFC-124) CH3 ₂ CF ₃ (HFC-143a) CH3 ₁ CF ₂ (HFC-143a) CH3 ₁ CF ₂ (HFC-143a) CH3 ₁ CF ₂ (HFC-143a) CH3 ₂ CF ₃ (HFC-143a) CH3 ₂ (HFC-143a) CH3 ₂ CF ₃ (HFC-143a) CH3 ₂ CF ₃ (HFC-143a) CH3 ₂ (HFC-143a) CH3 ₂ CF ₃ (HFC-143a) CH3 ₂ (HFC-143a) CH3 ₂ CF ₃ (HFC-143a) CH3 ₂ (HFC-14	FCCl ₂ F (HCFC-122a) CHCIFCF ₃ (HCFC-124) CH ₃ CF ₃ (HFC-143a) CH ₃ (HFC-143a) CH ₃ CF ₃ (HFC-143a) CH ₃ (HF	FCCl ₂ F (HCFC-122a) CHCIFCF ₃ (HCFC-124) CH ₃ CF (HFC-143a) CH ₃ CF ₃ (HFC-143a) CH ₃	FCCI ₂ F (HCFC-122a) CHCIFCF3 (HCFC-124) CHCFC-1243 CH3 _{CF} 3 (HFC-143a) kIk _{tet} f T(K) kIk _{tet} f T(K) kIk _{tet} f T(K) 0.446 298 1.164 298 1.293 298 0.212 298 0.467 298 1.217 298 1.180 298 0.199 313 0.481 313 1.134 298 1.272 314 0.210 330 0.460 328 1.054 298 1.244 328 0.189 351	FCCI ₂ F (HCFC-122a) CHCIFCF-124h CHCIFCF-124h CH3-CF3 (HFC-143a) kl/k _{ef} T(K) kl/k _{ef} T(K) kl/k _{ef} T(K) kl/k _{ef} T(K) 0.446 298 1.164 298 1.273 298 0.199 313 0.481 313 1.134 298 1.272 314 0.199 330 0.460 328 1.013 398 1.244 328 0.189 351 0.444 345 1.013 308 1.216 346 0.241 383	FCCI ₂ F (HCFC-122a) CHCIFCF-124A) CHCIFCF-124A) CHCIFCF-124A) CH3-CF3 (HFC-143a) kl/k _{ef} T(K) kl/k _{ef} T(K) kl/k _{ef} T(K) kl/k _{ef} T(K) 0.446 298 1.164 298 1.293 298 0.212 298 0.467 298 1.217 298 1.180 298 0.199 313 0.481 313 1.134 298 1.272 314 0.210 330 0.460 328 1.054 298 1.244 328 0.189 351 0.444 345 1.013 308 1.216 346 0.241 383 0.425 358 0.936 321 1.194 374 0.242 383	FCCI ₂ F (HCFC-122a) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CH3CF (HFC-143a) klk _{ecf} T(K) klk _{ecf} T(K) klk _{ecf} T(K) klk _{ecf} T(K) 0.446 298 1.164 298 1.293 298 0.212 298 0.467 298 1.217 298 1.180 298 0.199 313 0.481 313 1.134 298 1.272 314 0.210 330 0.460 328 1.054 298 1.244 328 0.189 351 0.440 345 1.013 398 1.216 346 0.241 383 0.425 358 0.936 321 1.194 374 0.241 383 0.458 366 0.975 334 1.077 403 0.240 9	FCCI ₂ F (HCFC-122a) CHCIFCF3 (HCFC-124) CHSPC-124a) CH3CF3 (HFC-143a) kl/k _{ecf} T(K) kl/k _{ecf} T(K) kl/k _{ecf} T(K) kl/k _{ecf} T(K) 0.446 298 1.164 298 1.293 298 0.212 298 0.451 298 1.217 298 1.180 298 0.199 313 0.481 313 1.134 298 1.272 314 0.199 330 0.460 328 1.054 298 1.244 328 0.189 351 0.444 345 1.013 308 1.216 346 0.241 383 0.425 358 0.936 321 1.194 374 0.242 83 0.426 356 1.092 356 1.092 36 0.240 83	FCCI ₂ F (HCFC-122a) CHCIFCF-124) CHCIFCF-1243 CH3-CF-143a) kl/ker T(K) kl/ker T(K) kl/ker T(K) kl/ker T(K) 0.446 298 1.164 298 1.293 298 0.212 298 0.467 298 1.180 298 0.199 313 0.481 313 1.134 298 1.272 314 0.210 330 0.460 328 1.054 298 1.244 328 0.199 331 0.440 345 1.013 308 1.214 328 0.189 351 0.425 358 0.936 321 1.194 374 0.242 8 0.426 366 0.975 334 1.077 403 0.240 8 0.430 366 0.975 356 1.092 0.240 0.240 8	FCCI_2F (HCFC-122a) CHCIFCF (HCFC-124a) CHCIFCF (HCFC-124a) CH3CF (HCFC-143a) kl/ker T (K) kl/ker T (K) kl/ker T (K) 0.446 298 1.164 298 1.293 298 0.212 298 0.467 298 1.217 298 1.180 298 0.199 313 0.481 313 1.134 298 1.272 314 0.199 333 0.460 328 1.054 298 1.214 328 0.199 351 0.444 345 1.013 308 1.214 328 0.189 351 0.444 345 0.936 321 1.194 374 0.241 383 0.426 356 0.936 326 1.092 403 0.240 36 0.426 0.430 356 1.092 36 1.042 CA4 328 0.430 3.45 1.042 3.46 0.241 36 36 <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>FCCI_2F (HCFC-122a) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CH3CF (HFC-143a) kIk_{cef} $T(K)$ $T(K)$</td> <td>FCCI_2F (HCFC-122a) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CHCIFCF (HCFC-143a) klk_{cef} $T(K)$ tlk_{cef} $T(K)$ tlk_{cef} $T(K)$ tlk_{cef} tlk_{cef} $T(K)$ tlk_{cef} $T(K)$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>FCCI_2F (HCFC-122a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-143a) CH3CF3 (HFC-143a) CHGFC (F) (F</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td> <td>FCCI_3F (HCFC-122a) CHCIFCF3 (HCFC-124) CHG/FC-122a) CH3/CF3 (HFC-143a) klk_{ef} I(K) klk_{ef} I(K) klk_{ef} I(K) klk_{ef} I(K) 0.446 298 1.164 298 1.293 298 0.212 298 0.446 298 1.164 298 1.273 314 0.210 333 0.481 318 1.134 298 1.274 328 0.199 313 0.440 328 1.054 298 1.216 346 0.241 383 0.458 358 0.936 321 1.194 374 0.240 351 0.426 0.436 366 0.975 334 1.077 403 0.240 404 0.430 1.042 356 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 <</td> <td>FCC1₂F (HCFC-122a) CHCIFCF (124a) CHCIFCF (124a) CHCIFCF (14c) $klk_{ed}f$ $T(K)$ $klk_{ed}f$<td>FCC1₂F (HCFC-122a) CHCIFCF₃ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₂ (HCFC-124) CHCIFCF₃ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₂ (HCFC-124) $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$</td><td>FCCL3F (HCFC-122a) CHCIFCF3 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF3 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF5 (HCFC-124) T(K) klk_{ref} $T(K)$ klk_{ref} $T(K)$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td></td>	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FCCI_2F (HCFC-122a) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CH3CF (HFC-143a) kIk_{cef} $T(K)$	FCCI_2F (HCFC-122a) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CHCIFCF (HCFC-124) CHCIFCF (HCFC-143a) klk_{cef} $T(K)$ tlk_{cef} $T(K)$ tlk_{cef} $T(K)$ tlk_{cef} tlk_{cef} $T(K)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FCCI_2F (HCFC-122a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-124a) CHCIFCF3 (HCFC-143a) CH3CF3 (HFC-143a) CHGFC (F) (F	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	FCCI_3F (HCFC-122a) CHCIFCF3 (HCFC-124) CHG/FC-122a) CH3/CF3 (HFC-143a) klk _{ef} I (K) klk _{ef} I (K) klk _{ef} I (K) klk _{ef} I (K) 0.446 298 1.164 298 1.293 298 0.212 298 0.446 298 1.164 298 1.273 314 0.210 333 0.481 318 1.134 298 1.274 328 0.199 313 0.440 328 1.054 298 1.216 346 0.241 383 0.458 358 0.936 321 1.194 374 0.240 351 0.426 0.436 366 0.975 334 1.077 403 0.240 404 0.430 1.042 356 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 1.042 <	FCC1 ₂ F (HCFC-122a) CHCIFCF (124a) CHCIFCF (124a) CHCIFCF (14c) $klk_{ed}f$ $T(K)$ $klk_{ed}f$ <td>FCC1₂F (HCFC-122a) CHCIFCF₃ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₂ (HCFC-124) CHCIFCF₃ (HCFC-124) CHCIFCF₁ (HCFC-124) CHCIFCF₂ (HCFC-124) $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$</td> <td>FCCL3F (HCFC-122a) CHCIFCF3 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF3 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF5 (HCFC-124) T(K) klk_{ref} $T(K)$ klk_{ref} $T(K)$</td> <td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td>	FCC1 ₂ F (HCFC-122a) CHCIFCF ₃ (HCFC-124) CHCIFCF ₁ (HCFC-124) CHCIFCF ₁ (HCFC-124) CHCIFCF ₁ (HCFC-124) CHCIFCF ₂ (HCFC-124) CHCIFCF ₃ (HCFC-124) CHCIFCF ₁ (HCFC-124) CHCIFCF ₂ (HCFC-124) $IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	FCCL3F (HCFC-122a) CHCIFCF3 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF3 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF4 (HCFC-124) CHCIFCF5 (HCFC-124) T(K) klk_{ref} $T(K)$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a CH_{4.} ^b C₂H_{6.} ^c HFC-152a. ^d HFC-125. ^e HFC-134. ^f HFC-161. ^g CH₃CCl₃ were the reference compounds.

Experimental Results for Rate Constant Ratios, k/km, for Halogen-Substituted Prop

IABLE 5:	o: Expe	rimentai	Kesuits ior	Kate Consta	nt Kanos, K/K _{rel}	, ior maiogen-5	Experimental Kesults for Kate Constant Kanos, KIKref, for Halogen-Substituted Fropanes	Illes	
	CF ₃ CHFCF ₃ (HFC-227ea	(HIFC-227e	2a)	CF3CH2CF3	CF3CH2CF3 (HFC-236fa)	СЕЗСИЕСИЕ	F ₃ CHFCHF ₂ (HFC-236ea)	CHF2CF2CH2F	HF2CF2CH2F (HFC-245ca)
T(K)	k/k _{ref} a	T(K)	k/kref ^d	T(K)	k/kref	T (K)	k/k _{ref} a	T(K)	k/k_{ref}^{μ}
296	0.243	298	0.991	298	0.198	298	0.796	286	1.154
320	0.255	310	0.864	298	0.192	320	0.746	286	1.151
338	0.242	323	0.938	306	0.186	333	0.723	298	1.241
355	0.250	347	0.934	312	0.185	350	0.706	298	1.170
361	0.224	358	0.930	323	0.208	366	0.690	310	1.157
398	0.230	358	0.972	333	0.210	380	0.668	310	1.142
		367	0.875	34 6	0.235			319	1.117
				354	0.240			319	1.106
				355	0.246			331	1.135
				367	0.273			331	1.134
								345	1.056
				·				345	1.119
								364	1.041
								364	1.022

^a CH₄. ^b C₂H₆. ^c HFC-152a. ^d HFC-125. ^e HFC-134. ^f HFC-161 were the reference compounds.

photolysis experiments with those from H₂O photolysis experiments. No significant difference has ever been observed in these comparisons. Errors due to halogen atoms are prevented in experiments with O₃ because of rapid scavenging by the O₃. In general, reactions of secondary radicals are unimportant because of the normally low reactivity and relatively low rate of production compared to OH.

Direct photolysis of reactants is a potential complication. However, the HFCs (hydrofluorocarbons) are transparent to both 185 and 254 nm radiation, and the HCFCs (hydrofluorochlorocarbons) are transparent to 254 nm, which is the only wavelength used for those compounds. Tests are made for

unsuspected complications by measuring rate constant ratios with more than one reference compound and have not found any case in which the results differ significantly.

The technique is very accurate for rate constant ratio determinations because the depletion factors can be measured with great precision (approximately 0.1–0.3%) by the FTIR technique. The FTIR measurements of the depletion factors are based on at least two measurements, one being an absorbance measurement at a fixed wavelength of a strong IR band of the compound (sometimes two bands are used as a further test of consistency). Absorbance has been found to be linear with reactant concentrations for the compounds used in this work.

Figure 3. Arrhenius plots of rate constant ratio data for some halogenated ethanes.

The absorbance method is accurate provided that there is no overlap with the spectrum of the second reactant, and product

Figure 4. Arrhenius plots of rate constant ratio data for some halogenated propanes.

spectra do not interfere. Product interference is tested for by subtracting a reference spectrum of the compound in question, and noting any product spectra which may have remained. A second measure of the concentration is the subtraction factor, which is the factor by which the reference IR spectrum must be multiplied for exact subtraction of the spectral features of that compound. The subtraction factor ratio is used in addition to the absorbance ratios to determine the depletion factors. The best indication of the accuracy of the measurements is the fact that results obtained with depletion factors as small as 1.03 do not differ significantly from those with much larger depletions.

Several factors are involved in the choice of reference compounds: (1) the accuracy of the absolute rate constant; (2) the magnitude of the rate constant (which should be similar to the rate constant to be compared); (3) the IR spectral bands should be strong and well-defined and should not interfere with those of the reactant. From the standpoint of absolute accuracy, CH₄ is a good choice, the rate constant having been carefully measured using high-purity samples, and with great care to avoid errors due to secondary chemistry. ¹⁰ Ethane is useful as a standard for faster reactions, the OH rate constant being about 37 times faster than that of CH₄ at 298 K. However, the C₂H₆ rate constant is not known as accurately as that of CH₄, despite

TABLE 6: Ratios Measured and Their Temperature Dependences

ratio at 298 K	0.76	1.54	0.55	0.32	0.13		0.46	0.95	1.20	1.26	0.21	0.62	4.8	3.2	89.0		0.25	0.94	0.18	0.78	1.16	1 - 14 - 1. AL 00 - 00 - 0
klkref	Halogen-Substituted Methanes $(0.24 \pm 0.03) \exp(342 \pm 45)/T$	$(0.33 \pm 0.03) \exp(460 \pm 31)/T$	$(0.99 \pm 0.10) \exp(-174 \pm 35)/T$	$(0.80 \pm 0.06) \exp(-277 \pm 24)/T$	$(1.14 \pm 0.08) \exp(-654 \pm 44)/T$	Halogen-Substituted Ethanes	$(0.31 \pm 0.04) \exp(117 \pm 42)/T$	$(0.28 \pm 0.03) \exp(365 \pm 36)/T$	$(0.35 \pm 0.04) \exp(367 \pm 40)/T$	$(0.46 \pm 0.07) \exp(300 \pm 52)/T$	$(0.43 \pm 0.12) \exp(-223 \pm 90)/T$	$(2.16 \pm 0.14) \exp(-370 \pm 21)/T$	$(0.64 \pm 0.13) \exp(599 \pm 67)/T$	$(1.53 \pm 0.28) \exp(220 \pm 57)/T$	$(1.16 \pm 0.13) \exp(-158 \pm 36)/T$	Halogen-Substituted Propanes	$(0.17 \pm 0.05) \exp(117 \pm 105)/T$	$(0.83 \pm 0.22) \exp(38 \pm 89)/T$	$(1.26 \pm 0.41) \exp(-580 \pm 109)/T$	$(0.36 \pm 0.01) \exp(231 \pm 12)/T$	$(0.67 \pm 0.07) \exp(164 \pm 34)/T$	
reference	Halogen-Su CH ₄	CH7	HFC-152a	HFC-152a	HFC-125	Halogen-S	HFC-152a	HFC-152a	CH4	HFC-134	CH4	HFC-125	CH4	CH ₃ CCl ₃	C_2H_6	Halogen-Su	CH ₄	HFC-125	HFC-125	CH4	CH4	•
reactant	CHF ₂ CI (HFC-22)	CHF ₂ Br (HFBC-22B)	CH_3F	CH_2F_2	CHF ₃		CHCIFCCl ₂ F (HCFC-122a)	CHCl ₂ CF ₃ (HCFC-123)	CHFCICF ₃ (HCFC-124)	CHFCICF ₃ (HCFC-124)	CH ₃ CF ₃ (HFC-143a)	CH ₃ CF ₃ (HFC-143a)	CH ₃ CF ₂ H (HFC-152a)	CH ₃ CF ₂ H (HFC-152a)	CH_3CH_2F (HFC-161)		CF ₃ CHFCF ₃ (HFC-227ea)	CF ₃ CHFCF ₃ (HFC-227ea)	$CF_3CH_2CF_3$ (HFC-236fa)	CF ₃ CHFCHF ₂ (HFC-236ea)	CHF2CF2CH2F (HFC-245ca)	

^a Errors shown are standard deviation. Actual uncertainties are approximately a factor of 1.3 in the A factor ratios and 75-125 K in the EIR

	Our was desired			
reactant	A factor	E/R	k(298 K)	reference
CHF ₂ CI (HCFC-22)	1.2E-12	1636	5.0E-15	Atkinson et al.20
	9.2E-13	1575	4.7E-15	Watson et al. ²¹
	9.5E-12	2315	4.0E - 15	Clyne and Holt ²²
	2.1E-12	1782	5.3E-15	Handwerk and Zellner ²³
			4.6E-15	Paraskevopoulos et al.24
	1.3E-12	1670	4.8E - 15	Jeong and Kaufman ¹¹
	1.2E-12	1650	4.7E-15	JPL 92-20
	8.1E-13	1516	5.0E-15	Orkin and Khamaganov ²⁵
	7.1E-13	1478	5.0E - 15	this worka
CHF ₂ Br (HBFC-22)	7.4E-13	1300	9.4E-15	Talukdar et al. ²⁶
	7.4E-13	1300	9.4E-15	JPL 92-20
	9.3E-13	1326	1.1E-14	Orkin and Khamaganov ²⁷
	9.6E-13	1360	1.0E - 14	this worka
CH ₃ F (HFC-41)			1.6E-14	Howard and Evenson ¹³
			2.2E-14	Nip et al. ²⁸
	8.2E - 12	1890	1.5E-14	Jeong and Kaufman ¹¹
	5.4E - 12	1700	1.8E - 14	JPL 92-20
	1.7E-12	1300	2.2E-14	Schmoltner et al. 12
	2.2E-12	1449	1.7E - 14	this work ^c
CH ₂ F ₂ (HFC-32)			7.8E - 15	Howard and Evenson13
			1.2E-14	Nip et al. ²⁸
	4.4E - 12	1766	1.2E - 14	Jeong et al. ¹⁹
	1.6E-12	1470	1.2E - 14	Talukdar et al. ¹⁷
	1.9E-12	1550	1.0E - 14	JPL 92-20
	1.8E-12	1552	9.8E - 15	this work ^c
CHF ₃ (HFC-23)			2.0E - 16	Howard and Evenson ¹³
	3.0E-12	2910	2.0E - 16	Jeong and Kaufman ¹¹
	6.9E - 13	2300	3.1E-16	Schmoltner et al. 12
	see Figure 9			Kurylo et al. 14
	1.5E - 12	2650	2.1E - 16	JPL 92-20
	6.4E - 13	2354	2.4E-16	this work ^d

 a CH4, b C₂H₆, c HFC-152a, d HFC-125, e HFC-134, f HFC-161 were the reference compounds.

Figure 5. Arrhenius plot of data for CHF2Br (HBFC-22B).

the fact that many studies have been reported.¹ Earlier results from this laboratory indicate, however, that the rate constant for C₂H₆ is consistent with that of CH₄ to within about 10%.⁹ As mentioned in the Introduction, CH₃CCl₃ is a standard for atmospheric lifetimes, and the rate constant has also been carefully measured.¹ We have found that the recommended rate constants for CH₄, CH₃CCl₃, and C₂F₅H (HFC-125) give consistent results to within 3% or better at 298 K, when used as common references for the same gas; for example, HFC-134a⁷ or HCFC-141b.⁸ The E/R values appear to be mutually consistent to within about 75 K. These three compounds, along with C₂H₆ are the primary references for our work. The rate constants used (Table 1) are those of the JPL 92-20 evaluation. In addition to these primary references, we also use secondary references, such as HFC-134a, HFC-1324, or HFC-

Figure 6. Arrhenius plot of data for CH₃F (HFC-41).

Figure 7. Arrhenius plot of data for CH₂F₂ (HFC-32).

Figure 8. Arrhenius plot of data for CH2F2 (HFC-32).

161, where the rate constants have been determined in our own work and are based on one or more of the primary references. These secondary references are often more suitable than any of the primary references because of the position of the IR bands or the magnitude of the rate constants.

Results

Figure 1 shows data from six experiments using the stopped-flow method. The lines are unrestricted linear least-squares fits to the data. The results show a linear dependence between depletion factors of reactant and reference compounds and a

Figure 9. Arrhenius plot of data for CF₃H (HFC-23).

Figure 10. Arrhenius plot of data for CHFCICFCl₂ (HCFC-122a).

Figure 11. Arrhenius plot of data for CHCl₂CF₃ (HCFC-123).

near-zero intercept, as expected from eq I. This indicates the absence of problems resulting from reactant regeneration or product spectral interference.

Table 2 lists the extent of depletions that were obtained for each reactant pair in all the present experiments. Each data point is the average of three or four depletion ratios, which were measured in successive light-on, light-off cycles at a given temperature.

Data for the temperature dependences of the rate constant ratios are listed in Tables 3-5 for the methanes, ethanes, and propanes. These data are plotted in Figures 2-4, and the

Figure 12. Arrhenius plot of data for CHFCICF₃ (HCFC-124).

Figure 13. Arrhenius plot of data for CH₃CCl₃ (HFC-143a).

Figure 14. Arrhenius plot of data for CH3CHF2 (HFC-152a).

derived Arrhenius expressions are summarized in Table 6. The resulting rate constants are listed in Tables 7–9, along with comparisons with previous measurements. Figures 5–19 show graphically the data and the comparisons with other work. The lines labeled "JPL 94" in Figures 5–19 are the rate constant recommendations which will appear in the next edition of the JPL/NASA data evaluation.

Methanes. For the five halogenated methanes studied, agreement is reasonably good among the present and previous measurements. This is especially true for CHF₂CI (HCFC-22), CHF₂Br (HBFC-22B), and CH₂F₂ (HFC-32), which therefore appear to have well-established rate constants. For CH₃F, our data are in excellent agreement with that of Jeong and

Figure 15. Arrhenius plot of data for CH3CH2F (HCFC-161).

Figure 16. Arrhenius plot of data for CF3CHFCF3 (HFC-227ea).

Figure 17. Arrhenius plot of data for CF3CH2CF3 (HFC-236fa).

Kaufman,¹¹ but slightly lower than the results of Schmoltner et al.¹² The compound CF₃H has a low rate constant for the OH reaction, and therefore was measured by Jeong and Kaufman only at higher temperatures. Our data at lower temperatures are in good agreement with their extrapolated data, as well as that of the earlier room temperature measurement of Howard and Evenson.¹³ The more recent results of Schmoltner et al.¹² and Kurylo et al.¹⁴ are in good agreement with each other but slightly higher than the others.

slightly higher than the others.

Ethanes. Our result for CHCIFCCl₂F (HCFC-122a, Figure 10) is in excellent agreement with an unpublished measurement

Figure 18. Arrhenius plot of data for CF₃-CHFCHF₂ (HFC-236ea).

Figure 19. Arrhenius plot of data for CH₂FCF₂CHF₂ (HFC-245ca). by Orkin et al., ¹⁵ who obtained K = 1.0E - 12 exp (-1240/T) in the temperature range 298 - 460 K using a fast-flow/EPR technique. From Figures 11 and 12, it is apparent that our data for CHCl₂CF₃ (HCFC-123) and CHFClCF₃ (HCFC-124) are lower than some of the absolute measurements ¹⁶ but in good agreement with others.

Since we use CH₃CHF₂ (HFC-152a) as a secondary reference, the ratio was determined against both CH₄ and CH₃CCl₃ as primary references. These two results are in excellent agreement (Table 8 and Figure 14), but both are slightly lower than the absolute measurements. For the secondary reference rate constant, we use the average value K = 2.3E-12 exp(-1275/T).

CH₂F (HFC-161, Figure 15) rate constant is large and therefore considering that no significant impurities were detected in the HFC-161.¹² Nevertheless, as seen in Figure 15, our results larly in the lower temperature range. It is unlikely that our rate it has been substantiated in previous work9 in which we obtained rate data These data are quite compatible spurious OH losses should be relatively unimportant, especially deviate considerably from the absolute measurements, particufor HFC-161, relative to CH₂Cl₂, which in turn was measured The HFC-143a reaction rate is quite slow, but nevertheless is generally good agreement between the absolute and relative measurements (Figure 13). On the other hand, the CH₃this reactant is incorrect, because with our present rate constant for HFC-161. relative to HFC-152a and CH4. constant for there

additional studies of this rate constant are warranted.

Propanes. Agreement among all reported data sets is excellent for CF₃CHFCF₃ (HFC-227ea). However, for all the

TABLE 8: Halogenated Ethanes: Derived Rate Constants and Comparisons with Previous Work

aura Courbaire	CARS TICH A CVIOUS TOLIN
reactant	A factor E/R k(298 K) reference
CHCIFCCl ₂ F (HCFC-122a)	7.1E-13 1158 1.5E-14 this work
CHCl ₂ CF ₃	1.0E-12 1240 $1.6E-14$ Orkin ¹⁵ $2.8E-14$ Howard and Evenson ¹³
(227) 1217)	1.4E-12 1102 3.5E-14 Watson et al. ²⁹
	1040 3.4E-14 Liu et al.
	840 3.9E-14
	12 940 4.7E-14
	-
	3.2E-14 Zellner et al. 32 6.4E-13 010 3.0E-14 this mode
CHFCICF ₃	1.2E-14
(nCFC-124)	6 1E-13 1244 9 4E-15 Watson et al 29
	1150 9.3E-15
	1350 8.6E-15
	1380 7.1E-15
	1453
CH ₃ CF ₃ (HFC-143 ₃)	1.7E-15 Martin and Paraskevopoulos ³³
(20.1)	2.1E-12 2200 1.4E-15 Talukdar et al. ¹⁷
	1.4E-15
	2043 1.4E-15
110	2070 1.2E-15
CH ₃ CHF ₂ (HFC-152a)	3.5E-14 Handwerk and Zellner ²³
	3.7E - 14 Nip et al. ²⁸
	940 4.1E-14
	1370 3.9E-14
	1.0E-12 980 3.7E-14 Gierczak et al. 16
	1260 3.5E-14
	3.3E-14
	1221 3.1E-14
	4
CH ₃ CH ₂ F (HFC-161)	2.3E - 13 Nip et al. ²⁸
(*) *	1100 1.7E-13
	750 2.2E-13
	1.0E=11 1228 1.6E=13 this work? 7.0E=12 1152 1.5E=13 this work?
	1136 1.3611

 $[^]a$ CH4. b C₂H₆. c HFC-152a. d HFC-125. c HFC-134. f HFC-161. g CH3CCl3 were the reference compounds.

other cases the agreement is poor. In some cases, our rate constants are lower than the absolute data by a nearly constant factor which is independent of temperature. The results for HFC-236ea (factor of about 1.7) and HFC-245ca (factor of about 1.5) are examples of this behavior.

Discussion

Utility of the Relative Rate Method. The relative rate method as used in the present work is intrinsically very simple and appears to yield quite accurate temperature-dependent ratio The method is essentially immune to impurity effects and The small standard deviations of the data Reproducibility of a rate constant ratio in a given experiment is normally about 3%. The reference standards we have used (Table 1) have been intercompared in our experiments and are in excellent agreement. The derived rate data are sufficiently accurate, particularly on a relative basis, to permit some scured either by experimental error or by uncertainties in the application of transition state theory. These are discussed below. Comparisons between Relative and Absolute Rate Conas seen in Table 6 demonstrate that random errors are minor. conclusions concerning rate data which were previously obsecondary reactions.

stants. There is no case in which our relative rate constant is systematically higher than the absolute rate constant. Similar comparisons were seen in previous work.^{7–9} This may be due to the influence of reactions with impurities or secondary chemistry in the absolute experiment, in which any loss of OH contributes to the measured rate constant. However, there is

TABLE 9: Halogenated Propanes: Derived Rate Constants and Comparison with Previous Work

and Comparison with Frevious work	with Fre	VIOUS V	OFK	
reactant	A factor	EIR	k(298 K)	reference
CF ₃ CHFCF ₃ (HFC-227ea)	3.7E-13	1615	1.6E-15	Nelson et al.34
,	3.6E-13	1610	16E - 15	Zhang et al.35
	3.8E-13	1596	1.8E - 15	Zellner et al.36
			1.6E-15	Koch and Zetzsch37
	5.0E - 13	1700	1.7E-15	JPL 94
	4.9E-13	1703	1.6E - 15	this worka
	4.6E-13	1662	1.8E - 15	this work ^d
CF ₃ CH ₂ CF ₃	2.0E - 14	906	9.6E - 16	Garland et al.38
(HFC-236fa)				
			5.2E-16	Kolb et al.
	7.1E-13	2280	3.4E-16	JPL 94
	7.0E-13	2280	3.4E - 16	this work ^d
CH ₃ CHFCHF ₂ (HFC-236ea)	2.0E-13	1006	6.8E-15	Garland et al. 38
	1.0E-12	1430	8.5E-15	Zhang et al.35
	1.2E - 12	1550	6.6E - 15	JPL 94
	1.1E-12	1589	5.1E-15	this work ^a
CHF ₂ CF ₂ CH ₂ F (HFC-245ca)	2.9E-12	1660	1.1E-14	Zhang et al. 35
,	2.4E - 12	1660	9.1E - 15	JPL 94
	2.0E - 12	1656	7.5E-15	this worka
CH. CH.	HFC-152a.	"HFC-	125. ' HFC-	« СН _{4.} в С,Н _{6.} е HFC-152a. « HFC-125. е HFC-134. f HFC-161 were

 $[^]a$ CH, b C₂He, c HFC-152a, d HFC-125, c HFC-134, f HFC-161 were the reference compounds.

no clear pattern to the disagreements, and other factors may be involved. There is no consistent correlation with the magnitude of the rate constant, which might have been expected if impurity effects or secondary chemistry were the only source of discrepancies between the two methods.

Comparison of A Factors from Experiments and Transition-State Theory (TST). Table 10 compares experimental A factors (present and earlier work)^{7–9} and those from TST calculations of Cohen and Benson² and Jeong and Kaufman.³ This table includes only those compounds in which all the C—H bonds are identical.

eu difference between the entropy of the reactant and the TS model, whereas replacement of H by OH usually produces an to our experimental results. The exact reason for this is not obvious, other than that contributions to the TS entropy from Jeong and Kaufman for HFC-134a appears to be the result of It thus appears that There are two points of comparison to be made, one being the absolute values and the other being the relative values. Our derived A factors depend, of course, on those of the primary reference rate constants we have used, mainly CH4, CH3CCl3, on average, in reasonable agreement with the TST calculations individual disagreements. For example, the A factors for CH₃-CF₃, CH₃F, CH₃Cl, and HCFCs 140 and 141b in the Cohen and Benson predictions are high (about a factor of 3) compared the other hand, the very low A factor (4.8E-13) calculated by uncertainties in estimating the entropy of the TS occasionally result in substantial disagreements among different sets of TST and CF_3CHF_2 . The average A factor per H atom is (6.3 ± 1.0) -E-13. On the basis of these, our experimental A factors are, (factor of 2 or better). There are, however, some substantial a low estimate for the entropy of the transition state (only ' sources such as internal rotation are difficult to estimate. calculations and also with the experimental results. increase in entropy of at least 10 eu).

From Table 10 it is apparent that an A factor per H-atom of about $(8.0\pm3.0)E-13$ cm³/(molecule s) can be used to estimate the total A factor for molecules with a single type of C-H bond. It must be emphasized that this is only a general guideline, and variations within this range will almost certainly occur. For example, the A factors of the chloromethanes seem to fall on the high side of the average. It must be borne in mind, however, that this discrepancy is comparable to the experimental error (in relative A factors) of about a factor of 1.3, and it is therefore

Comparison of Some Transition-State Theory A Factors with Experimental Values

LADLE 10: Comparison	Comparison of Some Lianshubir-State Lincoly A recent	SIGNIFICATE TIME	•	The Tapes michael	Comit	
reactant	A(TST) CB ^b	A(TST) JK°	A(exp) this work	A(TST)/n(H) CB ^b	A(TST)/n(H) JK^c	$A(\exp)/nH$ this work
CH.C	110	69	444	37	21	15
i ciii	47	28	22 ^d	23	14	11
7107110	47	ì	324	23		91
CHCl3	6.6	12	12^d	6.6	12	12
CHaF	110	62	23	37	21	7.7
CH3F3	45	15	18	22	7.5	0.6
CHE.	16	12	6.4	16	12	6.4
CHF ₂ Cl (22)	14	15	7.1	14	15	7.1
CH-FCI (31)	45	15		22	7.5	
CHFC1, (21)	13	11		13	11	
CHECICCI-F (122a)	}		7.1			7.1
CHCl.CF ₂ (123)	6.3		6.4	6.3		6.4
CHFCICF, (124)	7.4		10	7.4		10
CHF ₃ CF ₃ (125)	10		5.6	10		2.6
CH ₂ CICF ₂ CI (132b)	21	9.3		10	4.7	
CH, CICF, (133a)	23			11		
CHF, CHF, (134)	25		21°	12		11
			15¢	12		7.5
			12°	12		0.9
CH ₂ FCF ₃ (134a)	32	4.8	15	16	2.4	7.5
			13	16		6.5
			12	16		0.9
CH,CCl, (140)	71	25	18	24	8.3	0.9
CH ₃ CFCl ₃ (141b)	74		148	22		4.7
CH ₂ CF ₃ (143a)	130		12	43		4.0
CE, CHECE, (227ea)	12		4.6	12		4.6
(2) (2) (2) (2)			6.4	12		4.9
CHF ₂ Br (Ha-1201)	12		9.6	14		9.6
,			avgs:	av 19	=======================================	7.8
			st devs	6.6	5.5	3.1

^a Units are 1.0E-13 cm³/(molecule s). ^b Cohen and Benson. ² Jeong and Kaufman. ³ and Jeong et al. ¹⁹ ^d From Hsu and DeMore. ⁹ Different values are from different reference gases. ^f From DeMore. ⁷ Different values are from different reference gases. ^f A factor from JPL 92-20.1 g Experimental A factor from Huder and DeMore.

would be to detect very large experimental errors in rate constant data. Measured A factors which fall significantly (more than a not necessarily certain that these deviations are significant. We also note that C_2H_6 has an A factor per H atom of 1.5E-12cm³/(molecule s) (Table 1), which is on the high side of the There are also deviations on the low side of the average, the largest of which seem to occur for molecules such as CH3CX3, where X represents a halogen atom. In this case database is not sufficiently accurate or broad enough to fully characterize the detailed dependence of the A factor on the reactant structure. The principal utility of the average A factor factor of 1.5) outside the above range should be regarded as suspect, particularly when they are on the low side. This is because most of the errors in absolute rate data produce low A the deviations are consistent and are more certainly real.

the sum of rate constants for reaction at the different sites. It is For molecules with different C-H bonds the situation is more complicated, since the overall reaction rate constant is in effect necessary to know the relative contributions to the overall rate constant in order to deduce the effective A factor.

is outside the estimated experimental error in relative A factors of about a factor of 1.3. This is related to the fact that the "generic" A factor per H atom can be used to represent most of ecules with the structure CH₃CX₃ have relative A factors which are consistently low by an amount (up to a factor of 1.8), which A more important comparison between experiment and TST is with the relative values of the A factors. These comparisons are independent of the accuracies of the A factors of the reference compounds. The most striking feature of the data in Table 11 is that the experimental A factor ratios are for the most part remarkably consistent with a simple proportionality to the number of H atoms. This is of course related to the fact that a Again, however, there are some exceptions. Mol-

TABLE 11: Experimental A Factor Ratios Compared to Transition-State Theory Predictions

L'AIRSINOII-RIAIC THEOLY Y TENEVISIE	7 7 7 6	CHOID		
reactant pair	expa	$statistical^b$	TS (JK)	TS (CB)
CHCI-/CH-CI-	0.55	0.50	0.43	0.21
CHCl ₃ /CH ₃ Cl	0.27	0.33	0.19	60.0
CH ₃ F/CH ₂ F ₂	1.24	1.5		2.4
CH,Br/CH,Cl	1.02	1.00		0.83
CHF,CVCH,	0.24	0.25	0.16	
CHF,Br/CH,	0.33	0.25		
CH4/CF,CFH2	2.24	2.0	19.2	
CF,CF,H/CF,CFH2	0.48	0.50		0.31
CF,CFH2/CF2HCF2H	0.85	1.0		1.3
CF,CF,H/CF,HCF,H	0.48	0.50		0.4
CHFCICF ₃ /CF ₂ HCF ₂ H	0.46	0.50		0.3
CHFCICF ₃ /CH ₄	0.35	0.25		
CHF ₃ /CF ₃ CF ₂ H	1.14	1.00		1.6
CH,CCI,/CF,CFH2	1.22	1.5	5.2	2.2
CH,CCl,/CF,HCF,H	0.84	1.5		2.8
CH,CCl,F/CH,	0.49	0.75		
CH3CCl2F/CH3CCl3	0.79	1.00		1.0
CH3CF3/CH4	0.43	0.75		
CH ₃ CF ₃ /CF ₃ CF ₂ H	2.16	3.00		13.0
CF3CHFCF3/CH4	0.17	0.25		
CF3CHFCF3/CF3CF2H	0.83	1.00		1.2
CF3CH2CF3/CF3CF2H	1.26	2.00		

a Ratios measured either directly or calculated from ratios measured against a common reference. ^b Ratio expected for strict proportionality to number of hydrogen atoms. absolute A factors for these molecules fall on the low side of the average. With regard to the TST predictions, the ratios show no discernible dependence on the number of H atoms. This is because uncertainties in the TS entropy estimates produce substantial variations (factor of 3 or more) in the predictions. As a result, no meaningful information on the relative A factors can be detected by that method.

Application to Rate Constant Estimation Methods.

cause of the large number of compounds for which OH rate

Rate Constant Ratio kCH3CCl3/kCH4 TABLE 12:

reference	this work	DeMore ⁷	Huder and	DeMore ¹⁸	$JPL\ 92-20^{1}$
source	152a as common reference	134a as common reference	141b as common reference	direct ratio measurement	absolute rate constants
value at 298 K	1.49	1.49	1.50	1.65	1.53
Arrhenius form	$0.418 \exp(379/T)$	$0.544 \exp(301/T)$	0.62 exp(263/T)	0.62 exp(291/T)	$0.62 \exp(270/T)$

are difficult to calibrate and test. The relative rate data are much more suitable for this purpose. We are developing a modified estimation technique based on the relative rate constants (to be published separately) which shows promise of calculating OH rate constants at 298 K with an accuracy comparable to the tially in error, and as a consequence the estimation methods constant data are required, and the substantial cost of individual measurements, techniques such as that of Atkinson⁶ have been developed for the estimation of rate constants. These methods are based on group effects and require calibration from existing data. However, the absolute rate constants are often substan-

0.55 exp(300/T), is suggested for atmospheric use. This corresponds to $k^{CH_3CC_1}/k^{CH_4} = 1.62$ at an average tropospheric experimental results.

The Ratio k^{CH₃CCl₃/k^{CH₄}. The two 152a ratios measured with} CH₄ and CH₃CCl₃ as references provide an additional measurement of the ratio $k^{\text{CH}_3\text{CCl}_3}/k^{\text{CH}_4}$, which is important in connection Table 12, along with previous determinations against other references^{7,8} and by a direct ratio measurement.⁷ All the measurements against a common reference are in excellent agreement with each other (better than 1%) and with the ratio calculated from the absolute rate constants as recommended in ment¹⁸ is about 10% higher (at 298 K) and should now be considered less reliable than the combined ratios and the ratio of absolute rate constants. The average value, $k^{\text{CH}_3\text{CCI}_3/\text{R}^{\text{CH}_4}} =$ with the atmospheric lifetime of CH4.4 The result is shown in JPL 92-20. The ratio obtained earlier in the direct measuretemperature of 277 K.

Conclusions

The relative rate method for OH reaction rates produces accurate and self-consistent rate constant data which are wellsuited for atmospheric lifetime calculations, tests of rate theory, and calibration of empirical estimation techniques.

are based solely on rate constants determined by measurements of OH loss must be regarded with caution. The true lifetimes may be substantially longer, and the implications for ozone Calculations of atmospheric liftimes for OH abstraction which depletion and global warming will be correspondingly greater.

Transition-state theory usually predicts the correct order of ties in the estimation of the transition-state entropy limit the magnitude for A factors of OH abstraction reactions. Uncertainaccuracy to a factor of about 3.

For the HFCs and HCFCs studied, the A factors for OH abstraction are closely, but not exactly, proportional to the number of H atoms. For A factor predictions in the temperature range of the present experiments, the assumption of 8.0E-13 cm³/(molecule s) per H atom (for cases where all C-H bonds are identical) yields an A factor which will usually be accurate to within a factor of 1.3. Experimental A factors which differ greatly from this value near room temperature should be regarded as suspect.

uncertainty of about 2% at tropospheric temperatures. The ratio of $k^{\text{CH}_3\text{CCl}_3}/k^{\text{CH}_4} = 0.55 \text{ exp}(300/T)$,

discussions with members of the JPL Kinetics and Photochemistry group. We are especially grateful to Dr. Kyle Bayes for a careful reading of the paper, and to Dr. Robert Hampson for Acknowledgment. We have benefited greatly from frequent

many comments during the couse of this work. The duPont Co. generously provided the HFC and HCFC samples used in R. Ravishankara, with whom we have had frequent discussions concerning this work. This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology, under this work. The sample of CHF₂Br was kindly provided by A. contract with the National Aeronautics and Space Administra-

References and Notes

- (1) DeMore, W. B.; Golden, D. M.; Hampson, R. F.; Howard, C. J.; Kolb, C. E.; Kurylo, M. J.; Molina, M. J.; Ravishankara, A. R.; Sander, S. P. JPL Publication 92–20: Jet Propulsion Laboratory, Calif. Inst. of Technology: Pasadena, CA, 1992; Vol. 10.
 - (2) Cohen, N.; Benson, S. W. J. Phys. Chem. 1987, 91, 162.
- (4) Prather, M.; Spivakovsky, C. M. J. Geophys. Res. 1990, 95, 18723. (3) Jeong, K.-M.; Kaufman, F. J. Phys. Chem. 1982, 86, 1816.
- (5) Cohen, N.; Westberg, K. R. J. Phys. Chem. Ref. Data 1991, 20,
- Atkinson, R. Int. J. Chem. Kinet. 1987, 19, 799. 9
- DeMore, W. B. Geophys. Res. Lett. 1993, 20, 1359. 9
- (8) Huder, K.; DeMore, W. B.; Geophys. Res. Lett. 1993, 20, 1575.(9) Hsu, K.-J.; DeMore, W. B. Geophys. Res. Lett. 1994, 21, 805.
 - (10) Vaghjiani, G. L.; Ravishankara, A. R. Nature 1991, 350, 406.
 - (11) Jeong, K. M.; Kaufman, F. J. Phys. Chem. 1982, 86, 1808.
- (12) Schmoltner, A.-M.; Talukdar, R. K.; Warren, R. F.; Mellouki, A.; Goldfarb, L.; Gierczak, T.; McKeen, S. A.; Ravishankara, A. R. J. Phys. Chem. 1993, 97, 8976.
- (13) Howard, C. J.; Evenson, K. M. J. Chem. Phys. 1976, 64, 197.
- (14) Kurylo, M. J.; Huie, R. E.; Padmaja, S.; Zhang, Z.; Saini, R. D.; Buckley, T. J., to be published.
 (15) Orkin, V. L., personal communication.
- (16) Gierczak, T.; Talukdar, R.; Vaghjiani, G. L.; Lovejoy, E. R.; Ravishankara, A. R. J. Geophys. Res. 1991, 96, 5001.
- (17) Talukdar, R.; Mellouki, A.; Gierczak, T.; Burkholder, J. B.; McKeen, S. A.; Ravishankara, A. R. J. Phys. Chem. 1991, 95, 5815.
 (18) DeMore, W. B. Geophys. Res. Lett. 1992, 19, 1367.
 (19) Jeong, K. M.; Hsu, K. J.; Jeffries, J. B.; Kaufman, F. J. Phys. Chem. 1984, 88, 1222.
 - (20) Atkinson, R.; Hansen, D. A.; Pitts, J. N., Jr.; Sandoval, H. L. J. Chem. Phys. 1975, 63, 1703.
- (21) Clyne, M. A. A.; Watson, R. T. J. Chem. Soc., Faraday Trans. I 1977, 73, 1169.
 - (22) Clyne, M. A. A.; Holt, P. M. J. Chem. Soc., Faraday Trans. 2, 1979, 75, 569.
- (23) Handwerk, V.; Zellner, R. Ber. Bunsen-Ges., Phys. Chem. 1978, 82, 1161.
 - (24) Paraskevopoulos, G.; Singleton, D. L.; Irwin, R. S. J. Phys. Chem. 1981, 85, 561.
 - - (26) Talukdar, R. K.; Mellouki, A.; Gierczak, T.; Burkholder, J. B.; McKeen, S. A.; Ravishankara, A. R. Science 1991, 252, 693-695. (25) Orkin, V. L.; Khamaganov, V. G. J. Atmos. Chem. 1993, 16, 157.
 - (27) Orkin, V. L.; Khamaganov, V. G. J. Atmos. Chem. 1993, 16, 169.
 - (28) Nip. W. S.; Singleton, D. L.; Overend, R.; Paraskevopoulos, G. J. Phys. Chem. 1979, 83, 2440.
- (29) Watson, R. T.; Ravishankara, A. R.; Machado, G.; Wagner, S.; Davis, D. D. Int. J. Chem. Kinet. 1979, 11, 187.
 - (30) Liu, R.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. 1990, 94, 3247.
- (31) Nielsen, O. J. Chem. Phys. Lett. 1991, 187, 286. (32) Zellner, R.; Hoffmann, A.; Mors, V.; Malms, W. Time Resolved Studies of Intermediate Products in the Oxidation of HCFCs and HFCs; Institut fur Physikalische Chemie, 1993.
 - (34) Nelson, D. D.; Zahniser, M. S.; Kolb, C. E. Geophys. Res. Lett. 1993, 20, 197. (33) Martin, J.-P.; Paraskevopoulos, G. Can. J. Chem. 1983, 61, 861.
- (35) Zhang, Z.; Padmaja, S.; Saini, R. D.; Huie, R. E.; Kurylo, M. J. J. Phys. Chem. 1994, 98, 4312.
 - (36) Zellner, R.; Bednarek, G.; Hoffmann, A.; Kohlmann, J. P.; Mors, V.; Saathoff, H. Ber. Bunsen-Ges. Phys. Chem. 1994, 98, 141.
- (37) Koch, R.; Zetzsch, C., private communication, 1993. (38) Garland, N. L.; Medhurst, L. J.; Nelson, H. H. J. Geophys. Res. 1993, 98, 23107.
 - (39) Chang, J. S.; Kaufman, F. J. Chem. Phys. 1977, 66, 4989.
- TP942312S

		•	

				,		
	•					