Random Weighting in LASSO Regression JSM 2021 (Session ID: 220740)

Tun Lee Ng

Email: tng25@wisc.edu

Statistics PhD candidate, University of Wisconsin-Madison Advisor: Prof. Michael A. Newton

8th August, 2021

Motivation

Consider the linear model

$$Y = X\beta + \epsilon$$
.

 Bayesian: Gaussian likelihood with Double Exponential Prior under the Bayesian LASSO (Park and Casella, 2008)

$$p(\boldsymbol{\beta}|\boldsymbol{y}) \propto \exp \left\{ -\sum_{i=1}^{n} (y_i - \boldsymbol{x}_i'\boldsymbol{\beta})^2 - \lambda_n \sum_{j=1}^{p_n} |\beta_j| \right\}.$$

• Deploy MCMC to draw B posterior samples from $p(\beta|y)$:

$$\left\{oldsymbol{eta}_{(1)}^{ ext{MCMC}},\cdots,oldsymbol{eta}_{(B)}^{ ext{MCMC}}
ight\}$$

• Other methods? 1 option: Weighted Bootstrap / Random-weighting

Random-weighting:

Newton et al. (2020):

• Assign random weights $W_i \stackrel{iid}{\sim} F_w$ on negative log posterior density $-\log p(\boldsymbol{\beta}|\boldsymbol{y})$ and optimize

$$\underset{\boldsymbol{\beta}}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \underline{W_i} (y_i - x_i' \boldsymbol{\beta})^2 + \lambda_n \sum_{j=1}^{p_n} W_{0,j} |\beta_j| \right\}$$

to get one solution $\widehat{\beta}_{n(1)}^{w}$.

- Repeat: draw another set of random weights $W_i \stackrel{iid}{\sim} F_w$, assign it onto the objective function above, and optimize. Now we have 2 random-weighting (RW) samples $\left\{\widehat{\beta}_{n(1)}^w, \widehat{\beta}_{n(2)}^w\right\}$.
- ullet Repeat this B times, and obtain B random-weighting samples:

$$\left\{\widehat{\boldsymbol{\beta}}_{n(1)}^{w}, \cdots, \widehat{\boldsymbol{\beta}}_{n(B)}^{w}\right\}.$$

* More on $W_{0,i}$ later.

Random-weighting:

• Assign random weights $W_i \stackrel{iid}{\sim} F_w$ on negative log posterior density $-\log p(\boldsymbol{\beta}|\boldsymbol{y})$ and optimize with a **2-step procedure** (more on this later)

$$\underset{\beta}{\operatorname{arg\,min}} \left\{ \sum_{i=1}^{n} \underline{W_i} (y_i - x_i' \beta)^2 + \lambda_n \sum_{j=1}^{p_n} W_{0,j} |\beta_j| \right\}$$

to get one solution $\widehat{\beta}_{n(1)}^w$.

- Repeat: draw another set of random weights $W_i \stackrel{iid}{\sim} F_w$, assign it onto the objective function above, and optimize with the **2-step procedure**. Now we have 2 random-weighting (RW) samples $\left\{\widehat{\beta}_{n(1)}^w, \widehat{\beta}_{n(2)}^w\right\}$.
- ullet Repeat this B times, and obtain B random-weighting samples:

$$\left\{\widehat{\boldsymbol{\beta}}_{n(1)}^{w}, \cdots, \widehat{\boldsymbol{\beta}}_{n(B)}^{w}\right\}.$$

* More on $W_{0,j}$ later.

The two-step procedure

• Step 1: Assign random weights, optimize

$$\min_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} W_i (y_i - \boldsymbol{x}_i' \boldsymbol{\beta})^2 + \lambda_n \sum_{j=1}^{p_n} W_{0,j} |\beta_j| \right\}$$

to select variables. Let $\widehat{S}_n^w \subseteq \{1, \dots, p_n\}$ be the set of selected variables.

• Step 2: Estimate the selected variables with weighted least squares (same random weights from Step 1).

$$\widehat{\boldsymbol{\beta}}_{n}^{w} := \begin{bmatrix} \widehat{\boldsymbol{\beta}}_{n,\widehat{S}_{n}^{w}}^{w} \\ \widehat{\boldsymbol{\beta}}_{n,(\widehat{S}_{n}^{w})^{c}}^{w} \end{bmatrix} := \begin{bmatrix} \left(X_{\widehat{S}_{n}^{w}}^{\prime} D_{n} X_{\widehat{S}_{n}^{w}} \right)^{-1} X_{\widehat{S}_{n}^{w}}^{\prime} D_{n} Y \\ \mathbf{0} \end{bmatrix}, \tag{1}$$

where $D_n = diag(W_1, \dots, W_n)$, and $X_{\widehat{S}^w}$ is the $n \times |\widehat{S}_n^w|$ submatrix of X.

Model Setup

- $\{\epsilon_i\}$ iid with mean 0, variance σ_{ϵ}^2 , and finite 4^{th} moment. Unlike Bayesian LASSO, no normality assumption needed for our work.
- F_W : P(W > 0) = 1 and $\mathbb{E}(W^4) < \infty$ and $\mathbb{E}(W) = 1$.
- Other common linear-model-related regularity assumptions.

3 weighting schemes on the penalty terms are considered (Newton et al., 2020):

$$\min_{\boldsymbol{\beta}} \left\{ \sum_{i=1}^{n} W_i (y_i - \boldsymbol{x}_i' \boldsymbol{\beta})^2 + \lambda_n \sum_{j=1}^{p_n} W_{0,j} |\beta_j| \right\}$$

- RW1: $W_{0,i} = 1 \ \forall \ j$,
- RW2: $W_{0,j} = W_0 \ \forall \ j$, where $(W_0, W_i) \stackrel{iid}{\sim} F_W \ \forall \ i$,
- RW3: $(W_{0,i}, W_i) \stackrel{iid}{\sim} F_W \ \forall \ i, j.$

Theorem 3.4 (Conditional Sparse Normality)

Assume the strong irrepresentable condition (Zhao and Yu, 2006)

$$\left| C_{n(21)} \left(C_{n(11)} \right)^{-1} \operatorname{sgn} \left(\boldsymbol{\beta}_{0(1)} \right) \right| \leq \mathbf{1} - \boldsymbol{\eta},$$

where inequality holds element-wise for $0 < \eta_j \le 1 \ \forall \ j=1, \cdots, p_n-q$. Furthermore, assume proper growth rates of $\lambda_n = \mathcal{O}\left(n^{c_1}\right)$ and $p_n = \mathcal{O}\left(n^{c_2}\right)$, where $0 \le c_2 < 1/2 < c_1 < 1$, and other regularity assumptions. Let $\widehat{\boldsymbol{\beta}}_n^w$ be the two-step random-weighting samples defined in (1), and let $\widehat{\boldsymbol{\beta}}_n^{LAS+LS}$ be the unweighted two-step LASSO+LS estimator (i.e. a LASSO variable selection step followed by least-squares estimation for the selected variables). Then, for all RW1, RW2 and RW3, as $n \to \infty$,

$$P\left(\widehat{S}_n^w = S_0 \middle| \mathcal{F}_n\right) \to 1 \quad a.s. \ P_D,$$

and

$$\sqrt{n} \left(\widehat{\boldsymbol{\beta}}_{n(1)}^{w} - \widehat{\boldsymbol{\beta}}_{n(1)}^{LAS+LS} \right) \xrightarrow{\text{c.d.}} N_{q} \left(\mathbf{0} \ , \ \sigma_{W}^{2} \sigma_{\epsilon}^{2} C_{11}^{-1} \right) \quad a.s. \ P_{D}.$$

Benchmark Dataset: Boston Housing

Abbreviation	Variable
crim	per capita crime rate by town
zn	proportion of residential land zoned for lots over 25,000 sq.ft.
indus	proportion of non-retail business acres per town
chas	Charles River dummy variable (= 1 if tract bounds river; 0 other
nox	nitrogen oxides concentration (parts per 10 million)
rm	average number of rooms per dwelling
age	proportion of owner-occupied units built prior to 1940
dis	weighted mean of distances to five Boston employment centers
rad	index of accessibility to radial highways
tax	full-value property-tax rate per \$10,000
ptratio	pupil-teacher ratio by town
black	proportion of blacks by town
lstat	lower status of the population (percent)

References

- Newton, M., Polson, N. G., and Xu, J. (2020), "Weighted Bayesian Bootstrap for Scalable Posterior Distributions," *The Canadian Journal of Statistics*, 49, 421–437, https://doi.org/10.1002/cjs.11570.
- Park, T. and Casella, G. (2008), "The Bayesian Lasso," Journal of the American Statistical Association, 103, 681–686.
- Zhao, P. and Yu, B. (2006), "On model selection consistency of Lasso," *Journal of Machine Learning Research*, 7, 2541–2563.

Our manuscript for this presentation

Ng, T.L. and Newton, M.A. (2020), "Random-weighting in LASSO Regression," arXiv:2002.02629. In revision at the Electronic Journal of Statistics.