F-08 (ANSYS)

Формулировка задачи:

: Балка постоянной жёсткости с врезанным шарниром; шарнирная опора на левом краю, заделка на правом; нагружена силой $q \cdot l$, распределённой нагрузкой q и моментом $q \cdot l^2/8$.

E – модуль упругости материала;

 I_z – изгибный момент инерции.

Построить: Эпюру внутренней перерезывающей силы Q_Y ; Эпюру внутреннего изгибающего момента M_Z .

Аналитический расчёт (см. F-08) даёт следующие решения:

Puc. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Оставить в меню только пункты, относящиеся к прочностным расчётам:

 ${\tt M_M} > {\tt Preferences} > {\tt Otmetute}$ "Structural" > OK

Нумеровать точки и линии твердотельной модели:

```
U_M > PlotCtrls > Numbering >
Отметить KP, LINE ;
Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

Приравняв E, I_z , q и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > q=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Add _ Options Delete
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $l/100$. С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Defined Real Constant Sets Set 1 Add Edit Delete Close Help

No	Действие		Резул	ьтат	
4	Cвойства материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».		Material M Linear Isotropic Properties for Materia	erties for Material Number 1	
	Твердотельное моделирование				
5	Ключевые точки — границы участков: $A \to I$, $B \to 2$, $C_{LEFT} \to 3$, $C_{RIGHT} \to 4$ и $D \to 5$: М_M> Preprocessor> Modeling> Create> Keypoints> In Active CS> NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply > NPT пишем 2 X,Y,Z пишем I ,0,0 > Apply > NPT пишем 3 X,Y,Z пишем $2 \times I$,0,0 > Apply > NPT пишем 4 X,Y,Z пишем $2 \times I$,0,0 > Apply > NPT пишем 5 X,Y,Z пишем $3 \times I$,0,0 > OK Прорисовываем всё, что есть: U_M > Plot > Multi-Plots Справа от рабочего поля нажимаем кнопку Fit	¥ X	.2	3	.5

No	Действие	Результат
7	Onopы:Левая (шарнир):M_M > Preprocessor > Loads > Define Loads > Apply >Structural > Displacement > On Keypoints >Левой кнопкой мыши нажать на 1 ключевую точку> OK >Lab2 установить "UY"> OKПравая (заделка):M_M > Preprocessor > Loads > Define Loads > Apply >Structural > Displacement > On Keypoints >Левой кнопкой мыши нажать на 5 ключевую точку> OK >Lab2 установить "All DOF"> OKПрорисовываем всё, что есть:U_M > Plot > Multi-Plots	Y X T.1 2 T.2 3 T.3 5
8	Cocpedomoченная внешняя сила: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 2 ключевую точку > OK > Lab установить "FY" VALUE установить "q*1" > OK	Y T.1 2 T.2 3 T.3 5

N₂	Действие	Результат
9	Cocpedomoченный внешний момент: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши нажать на 4 ключевую точку; загорится окошко выбора точки: «3 или 4»? Нажмите кнопку «Prev», появится номер «4», тогда нажмите ОК. > OK > Lab установить "MZ" VALUE установить "q*1**2/8" > OK	Y T.1 2 T.2 A T.3 5
10	Изометрия: До сих пор модели мы рассматривали, используя фронтальный вид («сбоку»). Вектор изгибающего момента при этом виден плохо, а его направление не определяется вовсе. Меняем угол зрения: справа от рабочего поля нажимаем кнопки - изометрия; автоформат (размер изображения по размеру окна рабочего поля).	L-K U ROT F M L1 L2 L2 L3
	Конечноэлементная модель	,
11	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	

№	Действие	Результат
12	Левый участок нагружен распределённой поперечной силой, его нужно разбить несколькими конечными элементами; участки без распределённых нагрузок можно бить одним конечным элементом: М_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > Picked Lines > Левой кнопкой мыши кликаем на линию L1 > ОК NDIV пишем 10 > Apply > Левой кнопкой мыши последовательно кликаем на линии L2и L3 > ОК NDIV пишем 1 > ОК NDIV пишем 1 > ОК Oбновляем изображение: U_M > Plot > Multi-Plots	LOW
13	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots: U_M > PlotCtrls > Multi-Plot Controls > Появляется первое окно Multi-Plotting > > OK > Появляется второе окно Multi-Plotting > Оставляем в нём отметки только напротив Nodes и Elements > OK	Edit Window G Window 1 Window 2 Window 3 Window 4 Window 5 Display Type G Entity Plots Graph Plots OK Cancel Help Wellers For Mindow 5 OR Reproses For Mindow 5 OR Reproses For Mindow 5 OR Nordes For Mindow 6 For Mindow 7 For Mindow 7 For Mindow 7 For Mindow 1 For Mindo

14	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение:U_M > Plot > Multi-PlotsБирюзовым цветом изображены балочные элементы. Чёрные точки - это их узлы.	1 E-N
15	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK	1 E-N

Шарнир в точке С:

В точке С балки установлен врезанный шарнир (рис. 1a). Моделируется он так: при разбиении твердотельной модели в ключевых точках 3 и 4 образовалось по одному узлу модели конечноэлементной, координаты этих узлов совпадают; свяжем совпадающие узлы по двум поступательным степеням свободы UX и UY, по угловому перемещению узлы останутся развязаны.

16

17

M_M > Preprocessor > Coupling/Ceqn > Coincident Nodes >
Lab установить «UX»
> OK >

M_M > Preprocessor > Coupling/Ceqn > Coincident Nodes >
Lab установить «UY»
> OK

Поперечная распределённая нагрузка q:

M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Pressure > On Beams > Левой кнопкой мыши отмечаем 10 элементов левого участка > Apply > LKEY пишем 1 VALI пишем q > OK

Расчёт

Запускаем расчёт:

18 M_M > Solution > Solve > Current LS

Когда он закончится, появится окно «Solution is done!». Закройте это окно.

Просмотр результатов

Скрываем оси системы координат:

19

U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK


```
Силовая схема:
    U M > PlotCtrls > Symbols >
    [/PBC] устанавливаем в положение "For Individual"
    Убираем галочку с "Miscellaneous"
    Surface Load Symbols устанавливаем Pressures
    Show pres and convect as устанавливаем Arrows
    > OK >
    В окне "Applied Boundary Conditions"
      U установить "Off"
    Rot установить "Off"
      F установить "Symbol+Value"
      М установить "Symbol+Value"
                                                                                RMOM
    > OK >
20
                                                                                PRES-NORM
    В окне "Reactions"
    NFOR установить "Off"
    NMOM установить "Off"
    RFOR установить "Symbol+Value"
    RMOM установить "Symbol+Value"
    > OK
    Обновляем изображение: U M > Plot > Elements
    Получаем тот же результат, что и на рис. 1а. (числа, выделенные синим цветом).
    В рабочем поле видим следующее:
    - Красным цветом начерчены внешняя сила и распределённая нагрузка;
    - Синим цветом начерчен вектор внешнего момента;
    - Малиновым цветом нарисованы реактивные силы;
    - Фиолетовым цветом изображён вектор реактивного момента.
    Цветовая шкала будет состоять из десяти цветов:
    U M > PlotCtrls > Style > Contours > Uniform Contours >
    NCONT пишем 10 > OK
```

No	Действие	Результат
22	Фронтальный вид: - вид спереди; - автоформат (размер изображения по размеру окна рабочего поля).	.25 1 .125 .12525
23	Cocmaвление эпюры внутренней перерезывающей силы: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "2" > Apply > "By sequence num", "SMISC,", "8" > OK > > OK > Close	
24	Инвертирование эторы внутренней перерезывающей силы: Строчку SMISC2 умножаем на -1, получаем строчку QYI: М_М > General Postproc > Element Table > Multiply LabR пишем QYI FACT1 пишем -1 Lab1 устанавливаем SMIS2 Lab2 устанавливаем -none- > Apply Строчку SMISC8 умножаем на -1, получаем строчку QYJ: М_М > General Postproc > Element Table > Multiply LabR пишем QYJ FACT1 пишем -1 Lab1 устанавливаем SMIS8 Lab2 устанавливаем SMIS8 Lab2 устанавливаем -none- > OK Смотрим таблицу результатов: М_М > General Postproc > Element Table > Define Table > Close	Currently Defined Data and Status: Label Item Comp Time Stamp Status SMIS2 SMIS 2 Time= 1,0000 (Current) CYI CALC SMUL Time= 1,0000 (Current) CYJ CALC SMUL Time= 1,0000 (Current)

№	Действие	Результат
25	Прорисовка эпюры внутренней перерзывающей силы: М_М > General Postproc > Plot Results > Contour Plot > Line Elem Res > Установить LabI в положение "QYI" Установить LabJ в положение "QYJ" > ОК Получаем тот же результат, что и на рис. 16 (только числа, выделенные синим цветом). Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.	LINE STRESS STEP=1 SUB =1 TIME=1 QYI QYJ MIN =75 ELEM=10 MAX =.25 ELEM=1 75553515 .05 .25
26	Для того, чтобы лучше понимать, каким точкам стержня какое значение эпюры соответствует, повторите действие №20. Увидите, совмещённые с эпюрой внешние силы (кроме распределённых, увы) и реакции.	LINE STRESS STER=1 SUB =1 TIME=1 QYI QYJ MIN =75 ELEM=10 MAX =.25 ELEM=1 F M RFOR RMOM 75553515 .05 .25
27	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close Смотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	Correst Colored Data and State:

Прорисовка эпюры внутреннего изгибающего момента:

 ${\tt M_M}$ > General Postproc > Plot Results > Contour Plot

> Line Elem Res >

LabI установить "SMIS6"

LabJ установить "SMIS12"

Fact пишем 1

> OK

28

Получаем тот же результат, что и на *puc. 1в.* (только числа, выделенные синим цветом). Значения показывает цветовая шкала.

Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.

LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN *-.25 ELEM=11 MAX *.125 ELEM=12 .25 F M RFOR RMOM -.25 -.175 -.1

Величина экстремума параболы:

U M > Select > Entities... >

В окошке Select Entities установить в окошках $\,$

"Elements"

"By Num/Pick"

Точку селектора установить на «From Full»

> OK >

Левой кнопкой мыши кликнуть на элемент, визуально содержащий вершину (третий слева)

> OK

Перерисовываем эпюру. Теперь на одном только этом элементе:

U M > Plot > Replot

Эпюра на элементе прямоугольна, и в левом и в правом узле выделенного элемента её значение равно 0,03. На *рис. 1в.* Экстремум указан точно 0,03125. Погрешность составляет 4%.

Погрешность будет тем меньше, чем меньше размер элемента (то есть, чем на большее количество элементов разбит участок).

Координата экстремума параболы:

Номера узлов выделенного элемента – 4 и 5:

U M > List > Elements > Nodes+Attributes

Координаты четвёртого и пятого узлов – x_4 =0,2; x_5 =0,3:

U M > List > Nodes > OK

Если значения момента в этих узлах одинаковы (по $0.03 \cdot q \cdot l^2$), значит экстремум находится строго между ними и его координата:

30

$$x^* = \frac{x_4 + x_5}{2} = \frac{0.2 + 0.3}{2} = 0.25 = \frac{1}{4} \cdot l$$

...что в точности соответствует значению \mathcal{X}^* на $\mathit{puc.}\ 1$.

Снова прорисовываем полностью эпюру внутреннего изгибающего момента:

 $U_M > Select > Everything$

U_M > Plot > Multi-Plots

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.