SMPoster

Sebastian Muskalla

The publication title (arXiv:abcd.efghi)

together with the other authors

In PROCEEDINGS, volume xyz of LIPIcs, pages ab:1-cd:18, Schloss Dagstuhl, 202X.

Well-structured transition systems [FS01]

Labeled WSTS $W = (S, \leq, T, I, F)$ over Σ with

 (S, \leq) well-quasi ordered states,

 $T \subseteq S \times \Sigma \times S$ transitions, (strongly) compatible with \leq ,

 $I \subseteq S$ initial states,

 $F \subseteq S$ final states, upward closed.

Coverability language:

$$\mathcal{L}(\mathcal{W}) = \{ w \in \Sigma^* \mid s_I \xrightarrow{w} s_F \text{ for some } s_I \in I, s_F \in F \}$$

Examples: Petri nets and extensions (transfer nets, reset nets, ...) with covering a marking as acceptance condition.

Finite branching

 \mathcal{W} finitely branching if I and $\operatorname{Post}_{\Sigma}(s)$ finite for all $s \in S$. \mathcal{W} deterministic if I and $\operatorname{Post}_{a}(s)$ unique for all $s \in S$, $a \in \Sigma$. \mathcal{W} ω^{2} -WSTS if (S, \leq) does not embed the Rado order.

Theorem: The following inclusions of language classes hold:

lang. of ω^2 -WSTS \subseteq lang. of deterministic WSTS, lang. of fin.-branching WSTS \subseteq lang. of deterministic WSTS.

The result & its consequences

Theorem: If two WSTS languages, one of them finitely branching, are disjoint, then they are regularly separable.

Corollary: If a language and its complement are languages of finitely-branching WSTS, then they are necessarily regular.

Corollary: No subclass of the class of languages of finitely-branching WSTS beyond REG is closed under complement.

Proof approach:

- 1. Show that finitely-represented inductive **invariants** can be turned into regular separators.
- 2. Show that such invariants always exist using ideals.

Ideals [KP92] [FG12, BFM14]

Let $\widehat{\mathcal{W}}$ be the ideal completion of \mathcal{W} . Note: $\mathcal{L}(\mathcal{W}) = \mathcal{L}(\widehat{\mathcal{W}})$.

Proposition: If X is an invariant for \mathcal{W} , then its ideal decomposition ID-DEC(X), is a finitely-represented invariant for $\widehat{\mathcal{W}}$.