





## RAONAMENT BASAT EN L'EXPERIÈNCIA Raonament Basat en Casos

## (SBC-CBR Part IV – Problemes en el Desenvolupament de Sistemes CBR)

Miquel Sanchez-Marrè

Intelligent Data Science and Artificial Intelligence Research Centre (IDEAI-UPC)

Knowledge Engineering and Machine Learning Group (KEMLG-UPC)

Computer Science Dept.
Universitat Politècnica de Catalunya · Barcelona**Tech** 

miquel@cs.upc.edu
http://www.cs.upc.edu/~miquel

Course 2023/2024

https://kemlg.upc.edu





#### PART 4 – PROBLEMES EN EL DESENVOLUPAMENT DE SISTEMES DE CBR





#### PROBLEMES EN EL DESENVOLUPAMENT DE SISTEMES DE CBR







## PROBLEMES EN SISTEMES CBR JERÀRQUICS

#### Competència

- Valoració de la similitud
- Informació desconeguda (valors que falten)
- Discretització
- Cerca infructuosa / Pèrdua de casos en estructures jeràrquiques

#### Eficiència en Temps

- Degradació de les estructures jeràrquiques
- Overhead d'aprenentatge

#### Eficiència en Espai

- Quan és necessari aprendre un cas nou?
- Hem d'oblidar alguns casos?







#### Competència Valoració de la similitud







#### Valoració de la similitud

Algoritme Nearest Neighbour (NN)

Full-dist 
$$(C_i, C_j) = \sum_{k=1}^{n} w_k * \text{atr-dist } (C_{ik}, C_{jk}) / \sum_{k=1}^{n} w_k$$

- Problemes:
  - Es perd la rellevància dels atributs quan n augmenta
  - La majoria només utilitzen valors quantitatius







#### Distància l'Eixample: heterogènia sensible al pes

[Sànchez-Marrè, 1996; Sànchez-Marrè et al., 1998]

$$d(C_i, C_j) = \frac{\sum_{k=1}^{n} e^{w_k} \times d(A_{ki}, A_{kj})}{\sum_{k=1}^{n} e^{w_k}}$$

$$d(A_{ki}, A_{kj}) = \begin{cases} \frac{|\mathit{quantval}(A_{ki}) - \mathit{quantval}(A_{kj})|}{|\mathit{upperval}(A_k) - |\mathit{lowerval}(A_k)|} & \text{if } A_k \text{ is an ordered attribute and } w_k \leq \alpha \\ \frac{|\mathit{qualval}(A_{ki}) - \mathit{qualval}(A_{kj})|}{|\mathit{mod}(A_k) - 1|} & \text{if } A_k \text{ is an ordered attribute and } w_k > \alpha \\ \frac{1 - \delta_{\mathit{qualval}(A_{ki}),\mathit{qualval}(A_{kj})}}{|\mathit{qualval}(A_{kj})|} & \text{if } A_k \text{ is a non-ordered attribute} \end{cases}$$







#### Proves experimentals (1)

$$d(C_{i},C_{j}) = (\sum_{k=1}^{n} weight^{r} * |d(A_{ki},A_{kj})|^{r} / \sum_{k=1}^{n} weight^{r})^{1/r}$$

|                                              |   |                 | Ordered attributes $d(A_{ki}, A_{kj})$                                                            |                  |  |
|----------------------------------------------|---|-----------------|---------------------------------------------------------------------------------------------------|------------------|--|
| Similarity Measure                           | r | Weight          | $W_k > \alpha$                                                                                    | $W_k \le \alpha$ |  |
| Discrete Manhattan (MD)                      | 1 | W <sub>k</sub>  | $ \operatorname{qlv}(A_{ki}) - \operatorname{qlv}(A_{kj})  / (\#\operatorname{mod}(A_k) - 1)$ [a] |                  |  |
| Discrete Euclidean (ED)                      | 2 | $W_k$           | [a]                                                                                               |                  |  |
| Discrete Expweighted Manhattan (EMD)         | 1 | e <sup>Wk</sup> | [a]                                                                                               |                  |  |
| Continuous Manhattan (MC)                    | 1 | $W_k$           | $ qtv(A_{ki}) - qtv(A_{kj})   /   (upv(A_k) - lowv(A_k)   \textbf{[b]}$                           |                  |  |
| Continuous Euclidean (EC)                    | 2 | $W_k$           | [b]                                                                                               |                  |  |
| Continuous Expweighted Manhattan (EMC)       | 1 | e <sup>Wk</sup> | [b]                                                                                               |                  |  |
| Weight-sensitive Manhattan (MW)              | 1 | $W_k$           | [a]                                                                                               | [b]              |  |
| Weight-sensitive Euclidean (EW)              | 2 | $W_k$           | [a]                                                                                               | [b]              |  |
| Weight-sensitive Expweighted Manhattan (EIX) | 1 | e <sup>Wk</sup> | [a] [b]                                                                                           |                  |  |







#### Proves experimentals (2)

- EDAR de Girona
  - 45.000 m3/dia 70.000 hab.
  - 396 casos reals del període 1995/1996
- EDAR de Lloret
  - 13.000 m3/dia 20.000 hab. (hivern)
  - 45.000 m3/dia 150.000 hab. (estiu)
  - 234 casos reals del període 1996/1997
- Conjunt d'entrenament de 10 batches
- 10 mesures de semblança provades (100 taules de recuperació)
- Biblioteques de casos inicialitzades amb casos representatius







## Recuperació òptima

| Similarity Measure                                    | % Optimal retrieval | % Optimal retrieval |  |
|-------------------------------------------------------|---------------------|---------------------|--|
|                                                       | Lloret's WWTP       | Girona's WWTP       |  |
| Discrete Manhattan (MD)                               | 60                  | 60                  |  |
| Discrete Euclidean (ED)                               | 80                  | 60                  |  |
| Discrete Exponential-weighted Manhattan (EMD)         | 80                  | 70                  |  |
| Continuous Manhattan (MC)                             | 50                  | 90                  |  |
| Continuous Euclidean (EC)                             | 60                  | 80                  |  |
| Continuous Exponential-weighted Manhattan (EMC)       | 60                  | 70                  |  |
| Weight-sensitive Manhattan (MW)                       | 60                  | 90                  |  |
| Weight-sensitive Euclidean (EW)                       | 80                  | 90                  |  |
| Weight-sensitive Exponential-weighted Manhattan (EIX) | 80                  | 90                  |  |







## Rànquing de recuperació òptima (1)

#### • EDAR de Girona









## Rànquing de recuperació òptima (2)

#### • EDAR de Lloret









#### Conclusions de l'avaluació de la similitud

- Les distàncies contínues i euclidianes resulten més adequades per a dominis amb molts valors quantitatius ordenats i pocs valors categòrics no ordenats
- Les distàncies Manhattan resulten més adequades per a dominis amb categòrics ordenats
- La distància l'Eixample es deriva de la Manhattan i combina atributs continuous i discrets. Sembla millór, però és molt sensible als pesos i al procés de discretització
- La selecció de funcions i la ponderació de les funcions són reptes importants







#### Competència Informació que falta

[Sànchez-Marrè et al., 1997]

















## Informació que falta (1)

#### Possibles solucións:

- Aturat la cerca
- Cercar a totes les branques de la jerarquia
- Cercar en altres jerarquies amb diferents ordres de característiques (arbres de discriminació redundants)
- Cercar a la branca més prometedora
- Aproximació escollida:
  - Associar valors de freqüència a cada branca
  - Cercar a la branca amb la freqüència més alta







#### Competència Problemes amb la discretització

[Sànchez-Marrè et al., 1997]







#### Discretització: concordança parcial









## Temps Degeneració de la jerarquia







# Temps:Degeneració de la jerarquia









#### Temps Sobrecàrrega ("Overhead") en l'aprenentatge







#### Temps: Sobrecàrrega ("Overhead") en l'aprenentatge









Espai Quan aprendre?

[Sànchez-Marrè et al., 1997]







#### Espai: Quan aprendre/Oblidar casos?

- Categorització de casos
- Aprendre només casos rellevants
  - Mesura de rellevància
- Oblidar casos inútils i casos no excepcionals
  - Mesura d'utilitat







## Ontologia de casos (1)

- Useful case  $(C_i) \Leftrightarrow UM(C_i) \geq \delta$
- Useless case (C<sub>i</sub>)  $\Leftrightarrow$  UM(C<sub>i</sub>) <  $\delta$
- Redundant case (C<sub>i</sub>) 

   ⇔ Minimum {d(C<sub>i</sub>,C<sub>k</sub>)} < γ, where C<sub>k</sub> are the cases in the same leaf of the case library tree than C<sub>i</sub>, k≠i
- Exceptional case (C<sub>i</sub>) 

  #(C<sub>k</sub>) = 0, where #(C<sub>k</sub>) is the number of cases in the same leaf of the case library tree than C<sub>i</sub>, k≠i
- Normal case (C<sub>i</sub>) 

  #(C<sub>k</sub>) > 0, where #(C<sub>k</sub>) is the number of cases in the same leaf of the case library tree than C<sub>i</sub>, k≠i







#### Ontologia de casos (1)

#### **ATRIBUT 1**



**ATRIBUT 2** 







#### Aprenentatge: mesura de la rellevància

#### Quan aprendre un cas nou?

Mesura de rellevàncica basada en mesura de similitud:

Aprendre un nou cas  $(C_i) \Leftrightarrow Minim \{d(C_i,C_l)\} \geq \gamma$ 









## Comprovació experimental 1 (1)

- Llibreria de casos inicial: 15 casos representatius del conjunt de dades del 96/97 de l'EDAR de Girona
- Experiment 1
  - Aprendre el cas ⇔ #casos-mateixa-fulla ≤ 3
  - 396 casos processats, 87.3% apresos
- Experiment 2
  - Aprendre només els casos rellevants
  - 396 casos processats, 61% apresos







## Comprovació experimental 1 (2)









## Comprovació experimental 1 (3)









## Comprovació experimental 1 (4)









## Comprovació experimental 2 (1)

[Comas et al., 2001]

- 243 **objectes** (dia de funcionament de l'EDAR de Lloret)
- 63 atributs (quantitatius i qualitatius)
- Atribut de classe: l'estat de funcionament de la planta
- Valors que falten ("missing")
- 20 classes obtigudes d'un procés de clustering







## Comprovació experimental 2 (2)

| Situation                                                                          | Class # | N° of days |
|------------------------------------------------------------------------------------|---------|------------|
| Normal WWTP-operation in winter days                                               | 1       | 81         |
| Normal WWTP-operation in summer days                                               | 2       | 55         |
| Rainy days                                                                         | 3       | 3          |
| Storm days                                                                         | 4       | 3          |
| Underloading                                                                       | 5       | 12         |
| Overloading                                                                        | 6       | 1          |
| Nitrification                                                                      | 7       | 2          |
| Deflocculation                                                                     | 8       | 5          |
| Bulking sludge due to Thiotrix (affecting the effluent)                            | 9       | 3          |
| Foaming sludge due to <i>Microthrix</i> with <i>normal</i> microfauna biodiversity | 10      | 17         |
| Summer days with optimal WWTP-operation                                            | 11      | 24         |
| Clhorine shock                                                                     |         | 1          |
| Denitrification in the secondary settler (rising)                                  |         | 7          |
| Transition to a bulking-sludge episode due to Thiotrix                             |         | 2          |
| Weak episode of Foaming sludge due to Nocardia                                     |         | 4          |
| Severe episode of foaming sludge due to Nocardia                                   |         | 5          |
| Foaming sludge due to <i>Nocardia</i> and defflocculation                          |         | 8          |
| Foaming sludge due to <i>Microthrix</i> with very low microfauna biodiversity      |         | 1          |
| Foaming sludge due to <i>Microthrix</i> and viscous bulking due to <i>Zooglea</i>  |         | 6          |
| Winter-summer Plant configuration change                                           | 20      | 3          |
|                                                                                    |         |            |







## Comprovació experimental 2 (3)

#### 10-fold stratified cross validation

- Conjunt sencer de 243 exemples
- 10 conjunts de proves de 24/25 exemples
- 10 conjunts d'entrenament de 219/218 exemples

#### Característiques observades

- Precisió predictiva al conjunt de proves
- Precisió predictiva en tot el conjunt
- Nombre d'exemples utilitzats
- Nombre de funcions utilitzades
- Interpretació significativa







## Comprovació experimental 2 (4)

| Nº Attrib. | Type of library               | Case Retrieval Accuracy (%) |        |             |  |
|------------|-------------------------------|-----------------------------|--------|-------------|--|
| N Aurib.   |                               | First                       | Second | Predominant |  |
|            | Plain memory                  | 65.8                        | 59.7   | 68.7        |  |
| 19         | Hierarchical (relevant cases) | 62.5                        | 44.9   | 52.3        |  |
|            | Hierarchical (all cases)      | 64.2                        | 44.4   | 51.1        |  |
| 63         | Plain memory                  | 68.7                        | 60.5   | 70.4        |  |

| Method                                | Number of Attributes | Number of Examples | Prediction<br>accuracy<br>on test set (%) | Meaningful<br>Interpretation | Prediction accuracy<br>on whole data set (%) |
|---------------------------------------|----------------------|--------------------|-------------------------------------------|------------------------------|----------------------------------------------|
| C4.5 (63 atts)                        | 24                   | 243                | 63.51                                     | Partially                    | 89.7                                         |
| CN2 (63 atts)                         | 44                   | 243                | 63.98                                     | Partially                    | 98.8                                         |
| BPRI (63 atts)                        | 63                   | 243                | 58.9                                      | Partially                    | -                                            |
| <i>k</i> -NN (63 atts)                | 63                   | 243                | 76.38                                     | No                           | 100                                          |
| J48 (63 atts)                         | -                    | 243                | 64.4                                      | Partially                    | -                                            |
| J48, bagging with 10 iterations       | -                    | 243                | 70.7                                      | No                           | -                                            |
| 48, AdaBoostM1 with 10 iterations     | -                    | 243                | 73.6                                      | No                           | -                                            |
| C4.5 (19 atts)                        | 11                   | 243                | 65.11                                     | Mostly                       | 87.2                                         |
| CN2 (19 atts)                         | 19                   | 243                | 65.45                                     | Mostly                       | 95.9                                         |
| k-NN (19 atts)                        | 19                   | 243                | 71.22                                     | No                           | 100                                          |
| Opencase (plain memory)               | 19                   | 243                | 68.73                                     | No                           | 100                                          |
| encase (hierarchical, relevant cases) | 19                   | 220                | 62.50                                     | Yes                          | 97.1                                         |
| Opencase (hierarchical, all cases)    | 19                   | 243                | 64.20                                     | Yes                          | 98.8                                         |
| Opencase (plain memory)               | 63                   | 243                | 70.40                                     | No                           | 100                                          |





Espai Quan oblidar?

[Sànchez-Marrè et al., 1997]







#### **Oblit**

#### Quan cal **oblidar un cas**?

El criteri d'oblit està basat en una mesura d'utilitat i en la categorització dels casos:

Oblidar el cas  $(C_i) \Leftrightarrow Unuseful(C_i)$  and  $Normal(C_i)$ 







Competència Cerca infructuosa / pèrdua de casos òptims







#### Cerca infructuosa a la Biblioteca de Casos

- **Re-exploració** [Sànchez-Marrè et al., 1997]
- Meta-casos [Sànchez-Marrè et al., 2000]







#### Re-exploració

[Sànchez-Marrè et al., 1997]









#### Meta-casos (1)

[Sànchez-Marrè et al., 2000]

- Definició d'un conjunt de casos prototípics: els meta-casos
- Induir el conjunt relacionat de biblioteques de casos
  - Diferents característiques rellevants
  - Ordenació discriminant diferent
  - Ponderació diferent
- Recuperar de la/les biblioteca/biblioteques de casos més rellevants















#### Comprovació Experimental (1)

- Biblioteca de casos inicial: 15 casos representatius del conjunt de dades 96/97 de l'EDAR de Girona
- Experiment 1
  - Utilitzant la biblioteca de casos estàndard
- Experiment 2
  - Utilitzant els metacasos i el conjunt de 5 biblioteques de casos definides







## Comprovació Experimental (2)

|                                |                                                                                                                                                                                                                                                                                                                                                                  | Modalities |             |                 |                 |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|-----------------|-----------------|
| Feature Interpretation (units) |                                                                                                                                                                                                                                                                                                                                                                  | Weight     | Low         | Normal          | High            |
| SS-S                           | Suspended solids at the output of the plant (mg/l)                                                                                                                                                                                                                                                                                                               | 9          | (0-10)      | (10-20)         | (20 – 100)      |
| DQO-S                          | Chemical oxidizable organic matter at the output (mg/l)                                                                                                                                                                                                                                                                                                          | 9          | (0-30)      | (30 – 70)       | (70 – 200)      |
| DQO-E                          | DQO-E  Che mical o xid izable organic matter at the input (mg/l)  SS-E  Suspended solids at the input of the plant (mg/l)  Q-E  Inflow wastewater (m³/d)  Biodegradable organic matter at the input (mg/l)  Che mical o xid izable organic matter at the output of the primary settler(mg/l)  SS-D  Suspended solids at the output of the primary settler (mg/l) |            | (0-300)     | (300 – 500)     | (500 – 1000)    |
| SS-E                           |                                                                                                                                                                                                                                                                                                                                                                  |            | (0-150)     | (150 – 300)     | (300 – 750)     |
| Q-E                            |                                                                                                                                                                                                                                                                                                                                                                  |            | (0 - 30000) | (30000 - 40000) | (40000 - 60000) |
| DBO-E                          |                                                                                                                                                                                                                                                                                                                                                                  |            | (0-100)     | (100 – 250)     | (250 – 600)     |
| DQO-D                          |                                                                                                                                                                                                                                                                                                                                                                  |            | (0-150)     | (150 – 300)     | (300 – 600)     |
| SS-D                           |                                                                                                                                                                                                                                                                                                                                                                  |            | (0-80)      | (80 – 200)      | (200 – 450)     |
| IVF                            | Sludge volume index (ml)                                                                                                                                                                                                                                                                                                                                         | 8          | (0-125)     | (125 – 220)     | (220-400)       |
| V30                            | Measure of the sedimentability of the activated sludge (ml/g)                                                                                                                                                                                                                                                                                                    | 5          | (0-150)     | (150 – 250)     | (250 – 450)     |







## Comprovació Experimental (3)

| ı |                        | Li braries set      |              |             |                              |              |  |  |
|---|------------------------|---------------------|--------------|-------------|------------------------------|--------------|--|--|
|   | Discriminant<br>or der | Standard<br>Library | Underloading | Overloading | Poor sludge<br>settleability | Tur bi di ty |  |  |
|   | 1                      | SS-S                | DQO-E        | DQO-E       | IVF                          | IVF          |  |  |
|   | 2                      | DQO-S               | SS-E         | SS-E        | V30                          | SS-S         |  |  |
|   | 3                      | DQO-E               | Q-E          | Q-E         | SS-S                         | DBO-E        |  |  |
|   | 4                      | SS-E                |              | DQO-D       | DBO-E                        |              |  |  |
|   | 5                      | Q-E                 |              | DBO-E       |                              |              |  |  |
|   | 6                      | DBO-E               |              |             |                              |              |  |  |
|   | 7                      | DQO-D               |              |             |                              |              |  |  |
|   | 8                      | SS-D                |              |             |                              |              |  |  |
|   | 9                      | IVF                 |              |             |                              |              |  |  |
|   | 10                     | V30                 |              |             |                              |              |  |  |







## Aproximació estàndard









#### Aproximació amb Meta-Casos







#### Resultats de la recuperació de casos

| Optimal             | Standard                   | Meta-cases retrieval (Libraries set) |              |             |                           |           |       |  |
|---------------------|----------------------------|--------------------------------------|--------------|-------------|---------------------------|-----------|-------|--|
| cas e<br>retrie val | Retrie val<br>(1 libr ary) | Standard                             | Underloading | Overloading | Poor sludge settleability | Turbidity | Total |  |
| First (%)           | 21                         | 75                                   | 71           | 100         | 29                        | 75        | 68    |  |
| Other (%)           | 54                         | 100                                  | 86           | 100         | 100                       | 100       | 93    |  |







## Referències (1)

- [Comas et al., 2001] J. Comas, S. Dzeroski, K. Gibert, I. R.-Roda and M. Sànchez-Marrè (2001). Knowledge discovery by means of inductive methods in wastewater treatment plant data. AI Communications 14(1):45-62. January 2001. ISSN 0921-7126.
- [Sànchez-Marrè, 1996] M. Sànchez-Marrè. DAI-DEPUR: an integrated supervisory multi-level architecture for wastewater treatment plants. Ph. D. Thesis. Dept. de Llenguatges i Sistemes Informàtics. Universitat Politècnica de Catalunya. 1996.
- [Sànchez-Marrè et al., 2000] M. Sànchez-Marrè, U. Cortés, I. R.-Roda & M. Poch (2000). Using Meta-cases to Improve Accuracy in Hierarchical Case Retrieval. Computación y Sistemas 4(1):53-63, July 2000.
- [Sànchez-Marrè et al., 1997] Sànchez-Marrè, M., Cortés, U., R-Roda, I., Poch, M. & Lafuente, J. (1997). Learning and Adaptation in Wastewater Treatment Plants through Case—Based Reasoning. Computer-Aided Civil and Infrastructure Engineering 12(4):251-266.









# Intelligent Data Science and Artificial Intelligence (IDEAI-UPC)

Miquel Sànchez-Marrè miquel@cs.upc.edu





Knowledge Engineering and Machine Learning Group
UNIVERSITAT POLITÈCNICA DE CATALUNYA

https://kemlg.upc.edu