outline

- instructions
- abstract
- · imports
- · data read and exploration
 - commentary
- · decision tree
 - cleaning and feature engineering
 - making a decision tree model
 - decision tree preformance
- LSTM model
 - Istm cleaning and feature engineering
 - prep features for neural network training
 - train the LSTM

abstract

- This notebook runs through the provided dataset, starting out with some general commentary. Then goes into model building. There is light commentary spriknkled in throught the way and at the conclusion, at the bottom of the notebook, contains general commentary and next steps.
- In full interest of transparency I put this together in alittle over 9 hours.
 - 3 hours on getting familiar with the data
 - 3 on the decision tree
 - 3 on the LSTM

imports

```
In [24]: from copy import deepcopy
         import numpy as np
         import pandas as pd
         import plotly.figure_factory as ff
         import plotly.graph_objects as go
         import plotly.io as pio
         # Set default renderer to static images
         pio.renderers.default = 'png'
         from sklearn.metrics import accuracy score, confusion matrix
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.tree import DecisionTreeClassifier
         from tensorflow.keras.layers import Dense, LSTM, Masking
         from tensorflow.keras.models import Sequential
         from tensorflow.keras.optimizers import Adam
         from tensorflow.keras.preprocessing.sequence import pad_sequences
         from tensorflow.keras.utils import to_categorical
```

data read and exploration

```
In [2]: metadata_df = pd.read_csv('pitch_by_pitch_metadata.csv', encoding='ISO-8859-1')
pitches_df = pd.read_csv('pitches')

/tmp/ipykernel_2177891/3508358294.py:2: DtypeWarning:
Columns (29,30) have mixed types. Specify dtype option on import or set low_memory=False.
```

· investigate the meta data

```
In [3]: metadata_df.head()
```

ut[3]:		column_name	available_prior_to_pitch	description
	0	uid	Yes	unique id
	1	game_pk	Yes	unique game id
	2	year	Yes	year
	3	date	Yes	date
	4	team_id_b	Yes	team_id for the batting team

• there are a few options regarding whether a data field is available before a pitch, lets look at each data field based on availability

In [4]: metadata_df['available_prior_to_pitch'].unique()

Out[4]: array(['Yes', 'No', nan], dtype=object)

Out[5]:

In [5]: metadata_df[metadata_df['available_prior_to_pitch'] == 'Yes']

	column_name	available_prior_to_pitch	description
0	uid	Yes	unique id
1	game_pk	Yes	unique game id
2	year	Yes	year
3	date	Yes	date
4	team_id_b	Yes	team_id for the batting team
5	team_id_p	Yes	team_id for the pitching team
6	inning	Yes	inning number
7	top	Yes	binary: is top half of inning
8	at_bat_num	Yes	incrementing at bat count for game
9	pcount_at_bat	Yes	pitches thrown in at bat
10	pcount_pitcher	Yes	pitches thrown by pitcher
11	balls	Yes	current balls
12	strikes	Yes	current strikes
13	fouls	Yes	current number of fouls in at bat
14	outs	Yes	current number of outs
19	start_tfs	Yes	eastern timestamp
20	start_tfs_zulu	Yes	eastern timestamp
21	batter_id	Yes	player id of batter
22	stand	Yes	which side of plate batter stands on
23	b_height	Yes	batter height
24	pitcher_id	Yes	player id of pitcher
25	p_throws	Yes	hand pticher throws with
31	away_team_runs	Yes	away team runs at time of pitch
32	home_team_runs	Yes	home team runs at time of pitch
35	pitch_id	Yes	a unique identification number per pitch withi
69	on_1b	Yes	player id of the runner on first base
70	on_2b	Yes	player id of the runner on second base
71	on_3b	Yes	player id of the runner on third base

In [6]: metadata_df[metadata_df['available_prior_to_pitch'] == 'No']

Out[6]:		column_name	available_prior_to_pitch	description
	15	is_final_pitch	No	binary, is final pitch of at bat.
	16	final_balls	No	number of balls at end of at bat
	17	final_strikes	No	number of strikes at end of at bat
	18	final_outs	No	number of outs at end of at bat
	26	at_bat_des	No	description of at bat outcome
	27	event	No	primary event outcome of at bat
	28	event2	No	secondary event outcome of at bat
	29	event3	No	third event outcome of at bat
	30	event4	No	fourth event outcome of at bat
	33	score	No	T = runs were score on this at bat
	34	pitch_des	No	a brief text description of the result of the \dots
	36	type	No	a one-letter abbreviation for the result of th
	37	pitch_tfs	No	pitch timestamp
	38	pitch_tfs_zulu	No	pitch timestamp
	39	x	No	x,y: the horizontal and vertical location of t
	40	у	No	NaN
	41	sv_id	No	a date/time stamp of when the PITCHf/x trackin
	42	start_speed	No	the pitch speed, in miles per hour and in thre
	43	end_speed	No	the pitch speed measured as it crossed the fro
	44	sz_top	No	the distance in feet from the ground to the to
	45	sz_bot	No	the distance in feet from the ground to the bo
	46	pfx_x	No	the horizontal movement, in inches, of the pit
	47	pfx_z	No	the vertical movement, in inches, of the pitch
	48	px	No	the left/right distance, in feet, of the pitch
	49	pz	No	the height of the pitch in feet as it crossed
	50	x0	No	the distance in feet from home plate where the
	51	z0	No	the height, in feet, of the pitch, measured at
	52	y0	No	the distance in feet from home plate where the
	53	vx0	No	vx0,vz0,vy0: the velocity of the pitch, in fee
	54	vz0	No	NaN
	55	vy0	No	NaN
	56	ax	No	ax,az,ay: the acceleration of the pitch, in fe
	57	az	No	NaN
	58	ay	No	NaN
	59	break_length	No	the measurement of the greatest distance, in i
	60	break_y	No	the value of the weight at the classification
	61	break_angle	No	the angle, in degrees, from vertical to the st
	62	pitch_type	No	the most probable pitch type according to a ne
	63	type_confidence	No	the value of the weight at the classification
	64	zone	No	a group identifier for the x,y coordinates of
	65	nasty	No	a metric attempting to quantify the difficulty
	66	spin_dir	No	a 360 degree representation of the direction o
	67	spin_rate	No	the revolutions per minute of the baseball

In [7]: metadata_df[metadata_df['available_prior_to_pitch'].isna()].head(3)

No

Out[7]:		column_name	available_prior_to_pitch	description
	72	runner1_id	NaN	NaN
	73	runner1_start	NaN	NaN
	74	runner1 end	NaN	NaN

68

- Real Time Implementability: regarding availability of data for a prediction: Its important to avoid "look ahead bugs" for prediction algorithms. Each data type for available prior to pitch has a different approach, they are described below
 - Yes When making predictions we can use any data point that has "Yes" for available_prior_to_pitch as long as it is the pitch we are trying to predict for, or one that happened earlier.
 - No This is will be determined on a case by case basis. For example when predicting any pitch for a given at bat it is never accecptable to use final_strikes as model input for pitch prediction as the number of strikes at end of at bat is not actually known before any pitch in the at bat.
 Care should be exercised in making sure that data being used for prediction actually is Real Time Implementable
 - NaN Out of general curiousity a brief investigation was done into the data which is listed as NaN. There did not appear to be anything of value.

back to top

decision tree model

- · cleaning and feature engineering
 - below each of the features that appear to have potential for a pitch model are selected from their respective categories.

```
In [8]: # the unique pitch types and decodings provided below
         pitch_types = {
              'nan': 'Not Available', # Placeholder for missing data
              'FF': 'Four-seam fastball', # A fast pitch thrown with minimal spin
              'SL': 'Slider', # Breaks laterally and down
              'CU': 'Curveball', # A breaking pitch with a top-to-bottom movement
              'SI': 'Sinker', # Fastball that dives downward
'FC': 'Cutter', # Fastball that slightly breaks toward the pitcher's glove side
              'FT': 'Two-seam fastball', # Fastball with more movement than a four-seamer
              'KC': 'Knuckle-curve', # Curveball thrown with a knuckleball grip
              'CH': 'Changeup', # Slower pitch meant to look like a fastball but arrives slower
              'IN': 'Intentional ball', # Deliberately thrown ball intended to allow a walk
              'KN': 'Knuckleball', # Slow, unpredictable pitch that barely spins
              'FS': 'Split-finger fastball', # Fastball that splits and dives sharply
              'FA': 'Fastball', # General term for faster pitches
'PO': 'Pitch out', # Intentionally thrown out of the strike zone to catch a baserunner
'FO': 'Forkball', # Similar to a split-finger but with more extreme downward motion
              'EP': 'Eephus', # An extremely slow junk pitch
              'UN': 'Unidentified', # Pitch type not identified
              'SC': 'Screwball', # Breaks in the opposite direction of a curveball
              'AB': 'Automatic ball', # A ball awarded under certain conditions
         # and a dictionary to convert these to a simple pitch type (grouping fastballs, curveballs, etc...)
         standard_to_simple_pitch_type_map = {
              'nan': 'NA', # Placeholder for missing data
              'FF': 'F', # Fastballs
              'SL': 'S', # Sliders
              'CU': 'C', # Curveballs
              'SI': 'SI', # Sinkers
              'FC': 'FC', # Cutters
'FT': 'F', # Fastballs
             'KC': 'C', # Curveballs
'CH': 'CH', # Changeups
'IN': 'IN', # Intentional balls
              'KN': 'KN', # Knuckleballs
'FS': 'F', # Fastballs
              'FA': 'F', # Fastballs
              'PO': 'PO', # Pitch outs
              'FO': 'FO', # Forkballs
              'EP': 'EP', # Eephus
              'UN': 'UN', # Unidentified
              'SC': 'SC', # Screwballs
'AB': 'AB' # Automatic balls
         # ### converting strings to numerical values
         pitch_outcome_map = {'UN': -1, 'S': 0, 'B': 1, 'X': 2}
         # ### going to need these as numerical values for a decision tree (and for one hot encoding, can use the int as the index
         # pitch to number mapping
         pitch_types_numerical = {key: i for i, key in enumerate(pitch_types.keys())}
         simple pitch types numerical = \{\text{key: i for i, key in enumerate(set(standard to_simple_pitch_type map.values()))}\}
         # mapping for inverting predictions back to pitch types
         inv_pitch_types_numerical = {v: k for k, v in pitch_types_numerical.items()}
         inv_simple_pitch_types_numerical = {v: k for k, v in simple_pitch_types_numerical.items()}
```

```
def convert_to_inches(height):
    feet, inches = height.split('-')
    return int(feet) * 12 + int(inches)
```

· initial number of observations in dataset

```
In [9]: pitches_df.shape
Out[9]: (718961, 125)
```

· decision tree feature creation

```
In [10]: df = deepcopy(pitches_df)
         # select the columns to keep
         known_prior_to_pitch_cols = ['game_pk', 'pitcher_id', 'inning', 'top', 'pcount_at_bat', 'pcount_pitcher',
                                      'balls', 'strikes', 'fouls', 'outs', 'on_1b', 'on_2b', 'on_3b', 'b_height', 'away_team_runs', 'home_team_runs', 'p_throws', 'stand', ]
         # ### there are comparisons between including too much data and less, along with how many shifter period are given later on in analys
         # ## SPOILER for decision trees, the best model used the simple shifted features with one
         simple\_shifted\_features = ['type', 'x', 'y', 'start\_speed', 'break\_length', 'nasty', 'vx0', 'vx0', 'vy0', ]
         shifted_features = simple_shifted_features
         target_cols = ['pitch_type']
         cols_to_drop = [] # running list of columns to be dropped at end of cleaning..
         initial_col_filter = target_cols + known_prior_to_pitch_cols + shifted_features
         df = df[initial_col_filter]
         # make a simple pitch type column
         df['pitch_type_simple'] = df['pitch_type'].map(standard_to_simple_pitch_type_map)
         target_cols.append('pitch_type_simple')
         # ### column type conversion to numerical formats
         # ##
         # #
         # whether someone is on base for each base
         df['on 1b'] = df['on 1b'].apply(lambda x: int(not np.isnan(x)))
         df['on_2b'] = df['on_2b'].apply(lambda x: int(not np.isnan(x)))
         df['on_3b'] = df['on_3b'].apply(lambda x: int(not np.isnan(x)))
         df['b_height'] = df['b_height'].apply(convert_to_inches) # height
         # lead of the pitching team (adjusted for who is pitching...)
         df['pitchers_score_lead'] = np.where(df['top'] == 1,
                                            df['home_team_runs'] - df['away_team_runs'],
                                            df['away_team_runs'] - df['home_team_runs'])
         df['p_throws'] = df['stand'].map({'L': -1, 'R': 1})
         df['stand'] = df['stand'].map(\{'L': -1, 'R': 1\})
         df['type'] = df['type'].map(pitch outcome map)
         df['pitch_type'] = df['pitch_type'].map(pitch_types_numerical)
         df['pitch_type_simple'] = df['pitch_type_simple'].map(simple_pitch_types_numerical)
         # shifted columns will need to be dropped
         cols_to_drop.extend(shifted_features) # Note: keep shifted target columns, slice off most recent dt=1 to use as targets
         # ### lagged adjustments
         max_dt = 2 # number of lagged observations to include (note this will remove 3
         for dt in range(1, max_dt+1):
            all_shifted_cols = target_cols + shifted_features
            df_shifted = df.groupby(['game_pk', 'pitcher_id'])[all_shifted_cols].shift(dt)
            df_shifted = df_shifted.add_prefix(f"prev_{dt}_")
            df = df.join(df_shifted)
         # dropping rows where NaNs are created from the nature of shifting info not known prior to pitch
         df.dropna(subset=[f'prev_{dt}_{feature}' for dt in range(1, max_dt+1) for feature in shifted_features], inplace=True)
         # final list of columns not needed
         cols_to_drop.extend(['game_pk', 'home_team_runs', 'away_team_runs'])
         df = df.drop(columns=cols to drop)
         df = df.dropna() # checked, and minimal columns left at this point (<1%, so best to just drop them for quick dirty work)
         df = df.reset_index(drop=True)
```

```
# reorder columns to bring target columns to the front
other_columns = [col for col in df.columns if col not in target_cols]
new_column_order = target_cols + other_columns

# Reindex the DataFrame with the new column order
df = df[new_column_order]
print(f"done")
```

• final size of dataset, we lost ~50,000 pitches. This number could be lowered but for time purposes harsher data cleaning of pruning all NaNs was preformed.

```
In [11]: df.shape
Out[11]: (676669, 40)
```

now that we have the columns fairly finalized, lets take a look at the cleaned dataset

	· IIOW	LIIdt V	we nave	tile co	oluiiiis i a	ii ty i iii a	uzeu	i, lets take a li	ook at the clea	illed d	araser							
12]: d	f[df.co]	umns	[:14]].h	ead(3)														
12]:	pitch_t	уре г	pitch_type	e_simple	e pitcher_i	d inning	top	pcount_at_bat	pcount_pitcher	balls	strikes	fouls	outs o	n_1b	on_2b	on_3b		
0	1	1.0		0.0	45030	8 1	0	3	3	1	1	0	0	0	0	0		
1		1.0		0.0	45030	8 1	0	4	4	2	1	0	0	0	0	0		
2		1.0		0.0	45030	8 1	0	5	5	2	2	1	0	0	0	0		
13]: d	f[df.co	umns	[14:25]]	.head(3)													
[13]:	b_heigl	nt p_	throws s	stand p	pitchers_sco	re_lead	prev_	1_pitch_type p	rev_1_pitch_type	_simple	prev_1	_type	ргеv_1_>	х ргеч	/_1_y	orev_1_st	:art_speed	рге
0) 7	0	1	1		0		1.0		0.0		1.0	51.50	0 14	42.47		90.9	
1	7	0	1	1		0		1.0		0.0		1.0	62.66	5 17	71.83		90.0	
2	. 7	0	1	1		0		1.0		0.0		0.0	82.40	0 13	38.15		90.7	
4																		
[14]: d	f[df.co	umns	[25:40]]	.head(3)													
[14]:	prev_1	nasty	prev_1_	_vx0 p	rev_1_vz0	prev_1_v	/0 рг	rev_2_pitch_type	prev_2_pitch_t	/pe_sim	ple pre	v_2_typ	e prev	_2_x	prev_2_	y prev_	2_start_spe	ed
0)	25.0	12	.431	-8.133	-132.4	58	1.0			0.0	0.	0 10	4.72	163.1	9	8	7.2
1		64.0	10	.966	-10.574	-131.18	39	1.0			0.0	1.	0 5	1.50	142.4	7	9	0.9
2		49.0	10	.158	-7.546	-132.43	37	1.0			0.0	1.	0 6	2.66	171.8	3	9	0.0
4																		

- commentary on dataset
 - for the decision tree there are the features that are available prior to pitch, then lagged ones, determined by a given \$d_t\$ which is indicated by prev 2 var name where the number indicates how many pitches ago that information is from.
- · making a decision tree model

```
In [15]: # Features
X = df.drop(['pitch_type', 'pitch_type_simple'], axis=1)

# Target columns
y1 = df['pitch_type']
y2 = df['pitch_type_simple']

# Splitting data for the first target
X_train1, X_test1, y_train1, y_test1 = train_test_split(X, y1, test_size=0.2, random_state=42)

# Splitting data for the second target
X_train2, X_test2, y_train2, y_test2 = train_test_split(X, y2, test_size=0.2, random_state=42)

In [16]: # Decision tree for the first target
tree_model1 = DecisionTreeClassifier(random_state=42) # Use DecisionTreeRegressor if appropriate
tree_model2.fit(X_train1, y_train1)

# Decision tree for the second target
tree_model2 = DecisionTreeClassifier(random_state=42) # Use DecisionTreeRegressor if appropriate
tree_model2.fit(X_train2, y_train2)
```

```
Out[16]: DecisionTreeClassifier DecisionTreeClassifier(random_state=42)
```

```
In [17]: # Predictions for the first target
    y_pred1 = tree_modell.predict(X_test1)
    accuracy1 = accuracy_score(y_test1, y_pred1)
    print("data set pitch type accuracy:", accuracy1)

# Predictions for the second target
    y_pred2 = tree_model2.predict(X_test2)
    accuracy2 = accuracy_score(y_test2, y_pred2)
    print("simplified set pitch type accuracy:", accuracy2)

data set pitch type accuracy: 0.3293998551731272
    simplified set pitch type accuracy: 0.40801276841000783
```

consideration on doing one hot encoding, or some kindof distinction between pitchersm but with 662 pitchers that seems too drastic.

· decision tree preformance

- dt_[1, 2, 3] ---- WITH pitcher id ---- simple feature set
 - o data set pitch type accuracy: 0.32450593186159243
 - simplified set pitch type accuracy: 0.404926603200694
- dt_[1] ---- WITH pitcher id ---- complex feature set
 - o data set pitch type accuracy: 0.3370684085851698
 - simplified set pitch type accuracy: 0.41312899289354676
- dt_[1,2, 3] ---- WITH pitcher id ---- complex feature set
 - o data set pitch type accuracy: 0.32408739127457026
 - o simplified set pitch type accuracy: 0.40263604471535436
- dt_[1] ---- WITH pitcher id ---- simlper feature set
 - o data set pitch type accuracy: 0.34406001004952985
 - simplified set pitch type accuracy: 0.41998420788170265
- top preforming model WITHOUT pitcher ID, important because this is the benchmark for the LSTM as that doesn't account for pitcher
 - o dt_[1] ---- NO pitcher id ---- simlper feature set
 - data set pitch type accuracy: 0.2906393348623853
 - o simplified set pitch type accuracy: 0.3698394495412844

back to top

LSTM model

- Istm cleaning and feature engineering
 - making the data set for the LSTM
 - this is very similar to the prior step. basically using the same variables, but a mixture of what was seen in the decision tree.
 - Due to the recurrent nature of LSTMs and their ability to pick up on trends it makes sense to give it a bit more info.

```
df = df[initial_col_filter]
# make a simple pitch type column
df['pitch_type_simple'] = df['pitch_type'].map(standard_to_simple_pitch_type_map)
target_cols.append('pitch_type_simple')
# ### column type conversion to numerical formats
# ##
# #
# whether someone is on base for each base
df['on_1b'] = df['on_1b'].apply(lambda x: int(not np.isnan(x)))
df['on_2b'] = df['on_2b'].apply(lambda x: int(not np.isnan(x)))
df['on_3b'] = df['on_3b'].apply(lambda x: int(not np.isnan(x)))
df['b_height'] = df['b_height'].apply(convert_to_inches) # height
# score lead of the pitching team (adjusted for who is pitching...)
df['pitchers_score_lead'] = np.where(df['top'] == 1,
                                    df['home_team_runs'] - df['away_team_runs'],
                                    df['away_team_runs'] - df['home_team_runs'])
cols_to_drop.extend(['home_team_runs', 'away_team_runs'])
df['p throws'] = df['stand'].map({'L': -1, 'R': 1})
df['stand'] = df['stand'].map({'L': -1, 'R': 1})
df['type'] = df['type'].map(pitch_outcome_map)
df['pitch_type'] = df['pitch_type'].map(pitch_types_numerical)
df['pitch_type_simple'] = df['pitch_type_simple'].map(simple_pitch_types_numerical)
# shifted columns will need to be dropped
cols_to_drop.extend(shifted_features) # Note: keep shifted target columns, slice off most recent dt=1 to use as targets
# ### lagged adjustments
max_dt = 1 # number of lagged observations to include (note this will remove 3
for dt in range(1, max_dt+1):
    all_shifted_cols = target_cols + shifted_features
    df_shifted = df.groupby(['game_pk', 'pitcher_id'])[all_shifted_cols].shift(dt)
    df_shifted = df_shifted.add_prefix(f"prev_{dt}_")
    df = df.join(df_shifted)
# dropping rows where NaNs are created from the nature of shifting info not known prior to pitch
df.dropna(subset=[f'prev_{dt}_{feature}' for dt in range(1, max_dt+1) for feature in shifted_features], inplace=True)
# finalize list of columns not needed.. and drop them
# cols_to_drop.extend(['game_pk', ])
df = df.drop(columns=cols_to_drop)
df = df.dropna() # checked, and minimal columns left at this point (<1%, so best to just drop them for quick dirty work)
df = df.reset_index(drop=True)
# reorder columns to bring target columns to the front
other_columns = [col for col in df.columns if col not in target_cols]
new_column_order = target_cols + other_columns
# Reindex the DataFrame with the new column order
df = df[new_column_order]
print(f"done")
```

done

· take a look at the feature set for the LSTM

- things to note here, the game_pk and pitcher_id will be removed but are still needed to group the data set.
- I will only focus on predicting pitch type, not the simplified pitch type. Pitch type will be predicted via one hot encoding.
- All of the columns will be normalized

In [19]:	df	[df.column	s[:15]].head()													
Out[19]:		pitch_type	pitch_type_simple	game_pk	pitcher_id	inning	top	pcount_at_bat	pcount_pitcher	balls	strikes	fouls	outs	on_1b	on_2b	on_3b
	0	1.0	0.0	286874	450308	1	0	2	2	0	1	0	0	0	0	0
	1	1.0	0.0	286874	450308	1	0	3	3	1	1	0	0	0	0	0
	2	1.0	0.0	286874	450308	1	0	4	4	2	1	0	0	0	0	0
	3	1.0	0.0	286874	450308	1	0	5	5	2	2	1	0	0	0	0
	4	2.0	7.0	286874	450308	1	0	6	6	2	2	2	0	0	0	0

Out[20]:		b_height	p_throws	stand	pitchers_score_lead	prev_1_pitch_type	prev_1_pitch_type_simple	prev_1_type	prev_1_x	prev_1_y	prev_1_start_speed	prev_
	0	70	1	1	0	1.0	0.0	0.0	104.72	163.19	87.2	
	1	70	1	1	0	1.0	0.0	1.0	51.50	142.47	90.9	
	2	70	1	1	0	1.0	0.0	1.0	62.66	171.83	90.0	
	3	70	1	1	0	1.0	0.0	0.0	82.40	138.15	90.7	
	4	70	1	1	0	1.0	0.0	0.0	93.56	155.42	92.9	
	4											>

· prep features for neural network training

```
In [21]: def normalize_sequences(X):
             scaler = StandardScaler()
             for i in range(len(X)):
                X[i] = scaler.fit_transform(X[i]) # Normalize each sequence
             return X
         def encode_targets(y, num_classes=None):
             if num_classes is None:
                 # Dynamically determine the number of classes by finding the max value in the data
                 num_{classes} = int(max([max(seq[seq != -1]) for seq in y if len(seq) > 0])) + 1 # + 1 to include zero-indexed classes
             y_{int} = []
             for seq in y:
                 # Convert each sequence to integer, handling padding properly
                 int_seq = seq.astype(int)
                 # Replace -1 with a new class index if you want to encode it, or handle it differently
                 # Here we're using num_classes as a placeholder for padding, so it does not affect training
                 int_seq[int_seq == -1] = num_classes # Assigning padding as a distinct class
                 y_int.append(int_seq)
             # Encode each sequence as one-hot
             new_y = [to_categorical(seq, num_classes=num_classes+1) for seq in y_int] # +1 for the extra padding class
             return np.array(new_y)
         def prepare_sequences(sequences, sequence_len=125):
             X, y = [], []
             for seq in sequences:
                 # Collect features and targets from sequences
                 X.append(seq.iloc[:, 2:].values) # Adjust as per your DataFrame structure
                 y.append(seq.iloc[:, 0].values) # Assuming targets are in the first two columns
             # Pad sequences for consistent length
             X\_padded = pad\_sequences(X, maxlen=sequence\_len, dtype='float32', padding='post', truncating='post', value=0)
             y_padded = pad_sequences(y, maxlen=sequence_len, dtype='float32', padding='post', truncating='post', value=-1) # Using -1 or and
             return np.array(X_padded), np.array(y_padded)
         # Assuming 'df' is your DataFrame already loaded and preprocessed
         grouped = df.groupby(['game_pk', 'pitcher_id'])
         sequences = [group for _, group in grouped]
         X, y = prepare_sequences(sequences)
         # Splitting the data based on provided percentages
         num\_sequences = len(X)
         train_end = int(num_sequences * 0.7)
         test_end = train_end + int(num_sequences * 0.2)
         X_train, y_train = X[:train_end], y[:train_end]
         X_test, y_test = X[train_end:test_end], y[train_end:test_end]
         X_val, y_val = X[test_end:], y[test_end:]
         # Normalize training, testing, and validation data
         X_train = normalize_sequences(X_train)
         X_test = normalize_sequences(X_test)
         X_val = normalize_sequences(X_val)
         # Encode targets
         y_train = encode_targets(y_train, 20)
         y_test = encode_targets(y_test, 20)
         y_val = encode_targets(y_val, 20)
```

train the LSTM

back to top

• the model with out an optimizier with a lower learning rate and gradient clipping does not converge

```
In [22]: # # Assuming you've already prepared your data and know the input shape and number of features
         # model = Sequential([
         #
               LSTM(50, activation='relu', return sequences=True, input shape=(125, X train.shape[2])),
               Dense(y_train.shape[-1], activation='softmax') # Output layer for 14 categories
         #
         # 1)
         # model.compile(optimizer='adam', loss='categorical crossentropy', metrics=['accuracy'])
         ## history = model.fit(X_train, y_train, epochs=7, batch_size=32, validation_data=(X_test, y_test))
         # history = model.fit(X_train, y_train, epochs=7, batch_size=32, validation_data=(X_val, y_val))
In [25]: # Assuming padding values are encoded as -1 in your targets
         model = Sequential([
             Masking(mask_value=-1, input_shape=(125, X_train.shape[2])), # Adjust `mask_value` based on your padding encoding
             LSTM(50, activation='tanh', return_sequences=True),
             Dense(y_train.shape[-1], activation='softmax')
         1)
         model.compile(optimizer=Adam(learning_rate=0.001, clipnorm=1.0), loss='categorical_crossentropy', metrics=['accuracy'])
         history = model.fit(X_train, y_train, epochs=7, batch_size=88, validation_data=(X_val, y_val))
        Epoch 1/7
        151/151 -
                                   - 11s 58ms/step - accuracy: 0.6195 - loss: 1.5877 - val_accuracy: 0.8234 - val_loss: 0.5497
        Epoch 2/7
        151/151 -
                                     9s 57ms/step - accuracy: 0.7987 - loss: 0.6065 - val accuracy: 0.8263 - val loss: 0.5118
        Epoch 3/7
        151/151 -
                                    - 9s 56ms/step - accuracy: 0.8048 - loss: 0.5744 - val_accuracy: 0.8393 - val_loss: 0.4805
        Epoch 4/7
                                     8s 55ms/step - accuracy: 0.8203 - loss: 0.5375 - val_accuracy: 0.8417 - val_loss: 0.4630
        151/151 -
        Epoch 5/7
        151/151 -
                                    - 10s 63ms/step - accuracy: 0.8215 - loss: 0.5252 - val_accuracy: 0.8446 - val_loss: 0.4517
        Epoch 6/7
        151/151 -
                                    - 9s 59ms/step - accuracy: 0.8266 - loss: 0.5024 - val accuracy: 0.8460 - val loss: 0.4450
        Epoch 7/7
        151/151
                                    - 8s 56ms/step - accuracy: 0.8280 - loss: 0.5001 - val_accuracy: 0.8478 - val_loss: 0.4375
In [26]: fig = go.Figure()
         fig.add_trace(go.Scatter(y=history.history['loss'], mode='lines+markers', name='Train Loss'))
         fig.add_trace(go.Scatter(y=history.history['val loss'], mode='lines+markers', name='Validation Loss'))
         fig.update_layout(title='Training and Validation Loss',
                           xaxis_title='Epoch',
                           yaxis_title='Loss',
                           template='plotly_white')
         fig.show()
```

Training and Validation Loss

Confusion Matrix

	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	3450	5
	1	0	0	0		0		0	0		0		0	0	0		0		0	
	16	4	0	5	0	0	0	0	0		0		0	0	0	0	0	0	0	
-	1	0		0	0	0	0	0		0	0	0	0	0	0		0	0	0	
	21	3		14				3	0		0						0		0	
	12	0		3	0				0		0		0	0	0	0	0		0	
	47	3	0	31	0	13		0	0	0	0	0	0	0	0	0	0	0	0	
	18	3		4		11			0		0						0		0	
-	1139	69	3	502	2	316		8	2		0						0		0	
	410	25	5	434	0	0	0	14	0		0		0	0	0		0	0	0	
	336	12		201	1	78		2	214		0		0			0	0		4	
	8351	398	19	3026	3	1983		93	9		0						0		13	
	1180	58	2	278		74	0	10	0	0	0	0	0	0	0		0	0	0	
-	8197	550	18	147	2	6727		42	9		0		0	0	0		0		2	
	4558	375	7	3059	2	486		56	3		0						0		0	
	2717	604	12	12490		49	0	73	7	0	0	0	0	0	0		0	0	3	
	6210	513	29	2182	2	1901	0	88	6	0	0	0	0	0	0		0	0	0	
	3124	1579	18	3980		2737		89	14		0		0	0	0	0	0		17	
-	8507	1286	44	2518	0	4626	0	130	28	0	0	0	0	0	0	0	0	0	54	

Predicted Label

Conclusion

• Its clear that the LSTM does a much better job at predicting a pitch than the decision tree model. The top model from the decision tree group had a prediction accuracy of 34.4% while an LSTM easily achieved 84% accuracy. To be forward I am slightly concerned with the high preformance and for next steps would want to more carefully comb over the feature engineering to ensure that no lookahead bug was introduced. I am fairly confident that this is not

True Label

an issue as the features provided are simple. The LSTM has the inherent ability to consider context which is so important for this task, its possible that this preformance is geniune. Its also possible that the padding is being counted as a correct prediction, However, I am fairly sure this is not the case do to the confusion matrix highlighting padded predictions.

- The fact that validation data does better than the training data can sometimes be indicative of a problem. Some explainations for this are below.
 - Batch effects of training could hurt preformance during training, this effect isn't around for testing.
 - Dropout decreases accuracy then at run time the model gets a boost from using all parameters.
 - A real world explaination of this would be that the validation is the end of the data frame, perhaps pitcher pitch more predictably during the post season.
- Finally, The decision tree section makes it clear that considering who is pitching increases preformance. Its possible this increase in preformance would be sligtly degraded by the LSTM as it considers the whole plate appearance for prediction, so after the first few pitches the transformer may begin to group a pitcher's tendencies.

Future work

- Besides model validation to ensure LSTM preformance is geniune, it would be a good idea to get the pitcher_id involved in the LSTM. This would ideally take the form of vectorizing each pitcher giving them "personality traits". This would involve a more complex model strutcure. However it was clear from the decision tree
- On an unrelated note, this pipeline could be used for many other prediction tasks, now that it is built out it could be used to predict what area of the stike zone a ball will cross or perhaps batting outcomes.

back to top