

We claim:

- 1. A method suitable for deciding how to classify a sample in one of a number of predetermined classes, the method comprising:
 - (a) associating a weight w_{ij} with each of a plurality of classifiers i which are class models for how to classify a sample j in one of a number of predetermined classes k;
- (b) calculating for each of said predetermined classes k a weighted summation
 CL_{jk} across said classifiers i of the likelihood l_{ijk} that the sample belongs to that respective
 class k, weighted by the weight w_{ij}; and
 - (c) designating the sample j as belonging to the class k which has an associated weighted summation of likelihoods CL_{jk} which is greatest in value.
- 2. The method as claimed in claim 1, wherein the weight w_{ij} is derived from a metric of relative confidence L_{ij}, metric of relative which is calculated as an L-statistic, or linear combination of an order statistic, which represents the statistical separation among an order statistic of the classes k for a particular classifier i.
- The method as claimed in claim 2, wherein the L-statistic L_{ij} is of the log-likelihoods of respective classes k for classifiers i.
 - 4. The method as claimed in claim 2, wherein the L-statistic L_{ij} , for a particular sample j, is calculated as: $L_{ij} = a_1 \ l_{ij1} + a_2 \ l_{ij2} + ... + a_n \ l_{ijn}$, where l_{ijk} s form order statistic, that is $l_{ij1} > l_{ij2} > ... > l_{ijn}$ and $a_1 = 1$, $a_2 = -1$ and all other $a_i s = 0$.

25

5. The method as claimed in claim 2, wherein the weight w_i derived from the metric of relative confidence is calculated as a function of (a) sample confidence L_{ij} , equal to

10

15

the L-statistic L_{ij} and (b) overall confidence H_i , the cumulative mean of the sample confidence L_{ij} over a plurality of samples j.

- 6. The method as claimed in claim 5, wherein the overall confidence H_i is successively updated with the sample confidence L_{ij} of each sample j.
 - A computer program product having a computer readable medium having a computer program recorded therein for deciding how to classify a sample in one of a number of predetermined classes, said computer program product comprising:
 - (a) code means for associating a weight w_{ij} with each of a plurality of classifiers i which are class models for how to classify a sample j in one of a number of predetermined classes k;
 - (b) code means for calculating for each of said predetermined classes k a weighted summation CL_{jk} across said classifiers i of the likelihood l_{ijk} that the sample belongs to that respective class k, weighted by the weight w_{ij} ; and
 - (c) code means designating the sample j as belonging to the class k which has an associated weighted summation of likelihoods CL_{jk} which is greatest in value.
- 20 8. An apparatus for classifying a data sample in one of a number of predetermined classes, the apparatus comprising: input means to receive data; and processor means for calculating associating a weight w_{ij} with each of a plurality of classifiers i which are class models for how to classify a sample j in one of a number of predetermined classes k, and for designating calculating for each of said predetermined classes k a weighted summation CL_{jk} across said classifiers i of the likelihood l_{ijk} that the sample belongs to that respective class k, weighted by the weight w_{ij}.

5

10

- 9. The apparatus as claimed in claim 8, wherein the weight wij is derived from a metric of relative confidence Lik metric of relative which is calculated as an L-static, or linear combination of an order statistic, which represents the statistical separation among an order statistic of the classes k for a particular classifier i.
- 10. The apparatus as claimed in claim 9, wherein the L-statistic L_{ij} is of the log-likelihoods of respective classes k for classifiers i.
- 11. The apparatus as claimed in claim 9, wherein the L-statistic L_{ij}, for a particular j, is calculated as: $L_{ij} = a_1 \ l_{ijl} + a_2 \ l_{ij2} + \ldots + a_n \ l_{ijn}$, where $l_{ijk}s$ form order statistic, that is $l_{ij1} > l_{ij2} > ... > l_{ijn}$ and $a_1 = 1$, $a_2 = -1$ and all other $a_i s = 0$.
- 15 12. The apparatus as claimed in claim 9, wherein the weight wi derived from the metric of relative confidence is calculated as a function of (a) sample confidence Lij, equal to the L-statistic Lij and (b) overall confidence Hi, the cumulative mean of the sample confidence L_{ij} over a plurality of samples j.
- 20 13. The apparatus as claimed in claim 12, wherein, the overall confidence H_i is successively updated with the sample confidence L_{ij} of each sample j.