Lec12 Note of Abstract Algebra

Xuxuayame

日期: 2023年4月21日

我们补充一个记号,记 G 的全体 Sylow p-子群为 $Syl_p(G)$ 。

引理 3.3. $P \in \operatorname{Syl}_p(G), \ Q \leq G \$ 为 p-子群,则 $H = Q \cap N_G(P) = Q \cap P$ 。

证明. 显然有 $Q \cap P \subset H$,于是我们只需证明 $H \subset Q \cap P$ 。

由于 $H \subset N_G(P)$,对 $\forall h \in H$, $hPh^{-1} = P$ 。于是我们可以考查 HP,取 $h_1p_1, h_2p_2 \in HP$,那么存在 p_3 使得 $h_2p_3h_2^{-1} = p_1 \Rightarrow h_1p_1h_2p_2 = h_1h_2p_3p_2 \in HP$,于是 HP 在乘法下封闭,进而可以说明 HP 构成群,从而 $HP \leq G$ 。

那么有 $|HP| = \frac{|H|\cdot|P|}{|H\cap P|}$,由于 |H|, $|H\cap P|$ 均为 p-子群, $|H\cap P|$ |H|,所以 |P| |HP|,|HP|,|HP|,|HP|,|HP|,|HP|,|HP|,|HP|,|HP|,|HP|,|HP| |HP| |HP|

于是得到后面两条的证明1。

证明. 记 $S = \{gPg^{-1} \mid g \in G\}$,考虑 Q 共轭作用到 S 上。那么

$$S = \mathcal{O}_1 \sqcup \cdots \sqcup \mathcal{O}_s.$$

这里取出 $P_i \in \mathcal{O}_i$, $i = 1, \dots, s$ 。 那么 $|\mathcal{O}_i| \mid |Q| = p^q \Rightarrow |\mathcal{O}_i| = p^k$, $0 \le k \le q$ 。 如果 $\exists i \ s.t. \ |\mathcal{O}_i| = 1 \Rightarrow \forall \ q \in Q, \ qP_iq^{-1} = P_i \Rightarrow q \in Q \cap N_G(P_i) = Q \cap P_i \Rightarrow Q \le P_i$,这由引 理 3.3 得到。

于是我们欲证明存在长为 1 的轨道。特别地,我们考查 P 共轭作用在 S 上,轨道长度显然也是 p 的幂次,且 $\{P\}$ 是长为 1 的轨道,下面我们证明它是唯一的。

假设 $\{P_i\}$ 也是长为 1 的轨道,那么 $\forall p \in P, pP_ip^{-1} = P_i \Rightarrow p \in P \cap N_G(P_i) = P \cap P_i \Rightarrow P \leq P_i \Rightarrow P = P_i$,从而唯一。于是 $|S| \equiv 1 \mod p$ 。

可见当 Q 共轭作用在 S 上时,必然存在长为 1 的轨道,否则 p 整除轨道长度和,即 |S|,矛盾。从而 $\exists g \ s.t. \ Q \leq gPg^{-1}$ 。

特别地,当 Q 是 Sylow p-子群时, $Q=gPg^{-1}$ 与 P 共轭,于是任意两个 Sylow p-子群共轭,且 $\mathrm{Syl}_p(G)=S$ 。从而 $N(p):=|\mathrm{Syl}_p(G)|\equiv 1\mod p$ 。以及 $|\mathrm{Syl}_p(G)|=|S|=|c_P|=|G|/|N_G(P)|$ | |G|。

定理 3.4. $p^k \mid |G|$, 记 $N \ni p^k$ 阶子群的个数,则 $N \equiv 1 \mod p$ 。

 $^{^{1}}$ 上次 note 有处 typo 没有修正, (2) 中的 Q 为 p-子群。

证明.
$$\diamondsuit S = \{A \subset G \mid |A| = p^k\}, \quad \mathbb{M} \mid S| = \binom{p^r m}{p^k} = \frac{mp^r \cdots (mp^r - p^k + 1)}{p^k \cdots 1}.$$

考查 G 在 S 上的左乘作用, $g \cdot A = \{ga \mid a \in A\}$ 。 $\forall X \in S$,那么 \mathfrak{O}_X 中含有一个子群 $\Leftrightarrow |\mathfrak{O}_X| = mp^{r-k} \Leftrightarrow G_X = \{g \in G \mid gX = X\}, |G_X| = p^k$ 。且此时 \mathfrak{O}_X 中仅有一个形成子群。

进而考虑 G_X 在 X 上的左乘作用,那么 X 在 G_X 作用下是一些 G_X -轨道的并, $X = \bigsqcup G_X \cdot x_i$,进而 $|G_X| \mid |X| = p^k \Rightarrow |\mathcal{O}_X| = \frac{|G|}{|G_X|} = mp^{r-s}, \ 0 \le s \le k$ 。

于是我们依次设轨道长度为 mp^{r-k+i} 的轨道数为 N_i ,特别地 $N_0=N$,那么

$$N \cdot mp^{r-k} + N_1 p \cdot mp^{r-k} + \dots + N_k p^k \cdot mp^{r-k} = \binom{mp^r}{p^k}$$

$$\Rightarrow N + p(N_1 + \dots + N_k p^{k-1}) = \frac{1}{mp^{r-k}} \binom{mp^r}{p^k}$$

$$\Rightarrow N \equiv \frac{1}{mp^{r-k}} \binom{mp^r}{p^k} \mod p$$

$$\Rightarrow N \equiv 1 \mod p.$$

评论. 第一个等价是因为,如果 O_X 含有一个子群,记为 g_0X ,那么 $O_X = \{gX \mid g \in G\} = \{gg_0X \mid g \in G\}$,从而给出了 g_0X 的所有陪集,于是 $|O_X| = |G|/|g_0X| = mp^{r-k}$ 。反过来,如果 $|O_X| = mp^{r-k}$,则 $|G_X| = p^k = |X|$ 。取 $g \in X$,那么 $g^{-1}X \in O_X$ 且 $1 \in g^{-1}X$ 。考虑 $G_{g^{-1}X} = \{h \in G \mid h(g^{-1}X) = g^{-1}X\}$,则 $\forall h \in G_{g^{-1}X}$, $h \cdot 1 = h \in g^{-1}X \Rightarrow G_{g^{-1}X} \subset g^{-1}X$,而 $|G_{g^{-1}X}| = |G_X| = |X| = |g^{-1}X|$,从而 $g^{-1}X = G_{g^{-1}X}$ 构成 群。

而子群的唯一性在于,如果 \mathcal{O}_X 中有 G 的两个子群 $X_1, X_2 \leq G$,那么 $\exists g \ s.t. \ gX_1 = X_2 \Rightarrow gx_1 = 1 \Rightarrow g^{-1} = x_1 \in X_1 \Rightarrow gX_1 = X_2$ 。

推论. $P \in \mathrm{Syl}_p(G), \ N_G(P) \leq A \leq G \Rightarrow N_G(A) = A$ 。

证明. 我们熟知 $A < N_G(A)$, 于是下证 $N_G(A) \subset A$.

设 $g\in N_G(A)$,则 $gAg^{-1}=A$,那么 $gPg^{-1}\leq gAg^{-1}=A$,从而 $P\in \mathrm{Syl}_p(A)$,那么 $\exists~a\in A$ 使得

$$gPg^{-1} = aPa^{-1} \Rightarrow (a^{-1}g)P(a^{-1}g)^{-1} = P$$
$$\Rightarrow a^{-1}g \in N_G(P) \le A$$
$$\Rightarrow g \in A \Rightarrow N_G(A) \subset A.$$

推论. $M \triangleleft G$, $P \in \operatorname{Syl}_p(M) \Rightarrow G = M \cdot N_G(p)$

证明。 $\forall g \in G, \ gPg^{-1} \leq gMg^{-1} = M \Rightarrow gPg^{-1} \in \operatorname{Syl}_p(M) \Rightarrow gPg^{-1} = mPm^{-1}, \ \exists \ m \in M \Rightarrow m^{-1}g \in N_G(P) \Rightarrow g \in M \cdot N_G(P)$ 。

2