Apuntes de análisis de variable compleja

2023

Apuntes de las clases de Análisis de variable compleja dadas por Juan Matías Sepulcre Martínez y transcritos a LATEX por Víctor Mira Ramírez durante el curso 2023-2024 del grado en Física de la Universidad de Alicante.

Índice

Capítulo 1	El cuerpo de los números complejos	Página 3
1.1	Definiciones básicas	3
1.2	Analiticidad	5
1.3	Algunas funciones elementales	5
	Función exponencial — 5 • Función logarítmica — 6	

Capítulo 1

El cuerpo de los números complejos

1.1 Definiciones básicas

Definición 1.1.1: Número complejo

Un **número complejo** z es un par ordenado de números reales a, b escrito como z = (a, b) en coordenadas cartesianas. Existe una notación equivalente, la forma binómica: z = a + ib siendo i = (0, 1).

El conjunto de los número complejos se denota por: $C := \{(a, b) : a, b \in \mathbb{R}\}$

🛉 Comentario: 🖠

Siempre que a = 0 sea un número imaginario puro, y b = 0 sea un número real.

Definición 1.1.2: Conjugado

Llamamos conjugado de un número complejo al número denotado $\bar{z} = a - ib$, siendo z = a + ib. Geométricamente, podemos decir que el eje real actúa de 'espejo' del número en el plano.

Comentario:

Llamamos \mathbb{C} al cuerpo de los numeros complejos. \mathbb{C} es un cuerpo conmutativo, pero no totalmente ordenado. En cambio, cualquier ecuación algebraica tiene solución en los complejos. De todas formas, el teorema fundamental del álgebra nos asegura que tendrá n soluciones en los complejos

Comentario:

Cuando los coeficientes de una ecuación algebraica son reales, las soluciones complejas vienen por pares.

Teorema 1.1.1 Operaciones elementales

SUMA
$$(a + bi) + (c + di) = (a + c) + (b + d)i$$

RESTA
$$(a + bi) - (c + di) = (a - c) + (b - d)i$$

PRODUCTO
$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i$$
 (teniendo en cuenta que $i^2 = -1$)

$$\mathbf{DIVISI\acute{O}N} \qquad \frac{a+bi}{c+di} \ = \ \frac{a+bi}{c+di} \cdot \frac{c-di}{c-di} \ = \ \frac{ac+bd}{c^2+d^2} + \left(\frac{bc-ad}{c^2+d^2}\right)i \qquad \text{(multiplicando por el conjugado)}$$

Comentario:

El elemento unidad es 1 + 0i y el elemento inverso es $\frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i$. Para que un número complejo tenga elemento inverso, debe ser distinto de cero. El producto de un número complejo por su elemento inverso es la unidad.

Definición 1.1.3: Componentes de los complejos

Llamamos **módulo** del número complejo z = a + bi a la cantidad $|\sqrt{a^2 + b^2}|$ denotada |z|

Llamamos **argumento** del número complejo z = a + bi al ángulo que forma el semieje positivo de abcisas con la recta que contiene el vector (a,b). Se denota Arg $z=\alpha$ y se expresa en radianes.

$$\alpha = \arctan\left(\frac{b}{a}\right) \text{ si } a \neq 0$$

Definición 1.1.4: Módulo

Llamamos **módulo** de un número complejo z = a + bi, y lo denotamos |z|, a la cantidad

$$|z| = \sqrt{a^2 + b^2}$$

Definición 1.1.5: Argumento

Llamamos **argumento** de un número complejo z = a + bi al ángula que forma el semieje positivo de abcisas con la recta que contiene al vector. El argumento de z se representa por $Arg(z) = \alpha$, y se expresa normalmente en radianes.

$$\alpha = \arctan \frac{b}{a}, \sin a \neq 0$$

$$\alpha = \frac{\pi}{2}, \sin a = 0, b > 0$$

$$\alpha = \frac{3\pi}{2}, \sin a = 0, b < 0$$

Si el ángulo se encuentra en el intervalo $[-\pi,\pi)$ lo llamaremos argumento principal.

Comentario:

lol

Comentario:

forma exponencial: el desarrollo en serie de la exponencial es: $e^x = \sum_{n=0} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$ si introducimos un número complejo en la exponencial: $e^{iy} = 1 + (iy) + \frac{(iy)^2}{2} + \frac{(iy)^3}{3!} + \dots$ Si analizamos el valor de i^n en función de n, entonces vemos como la exponencial compleja queda ahora como: $e^{iy} = 1 + iy - \frac{y^2}{2} - \frac{iy^3}{3!} + \frac{y^4}{4!} + \dots = \left(1 - \frac{y^2}{2!} + \frac{y^4}{4!} + \dots\right) + i\left(y - \frac{y^3}{3!} + \frac{y^5}{5!}\right) = \cos(y) + i\sin(y)$

$$e^z = e^x e^{iy} = e^x (\cos(y) + i \sin(y)) \text{ con } z = x + iy$$

1.2 Analiticidad

Definición 1.2.1: Función armónica conjugada

Sea $u: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}$ una función armónica en un abierto de $\mathcal{D} \subset \mathbb{R}^2$ diremos que $v: \mathcal{D} \subset \mathbb{R}^2 \to \mathbb{R}$ es una **función armónica conjugada** de u en \mathcal{D} si v es armónica en \mathcal{D} y satisfacen las condiciones de *Cauchy-Riemann*, (o equivalentemente la función f(x+iy) = u(x,y) + iv(x,y) es holomorfa en $\{x+iy \in \mathbb{C}: (x,y) \in \mathcal{D}\}$)

Comentario:

Una función armónica es aquella que satisface la ecuación de Laplace.

Teorema 1.2.1

Sea $u(x,y) \colon \mathcal{D} \to \mathbb{R}$ es una función armónica de \mathcal{D} y consideramos v una región rectangular contenida en \mathcal{D} . Entonces existe una conjugada armónica de u(x,y) en v.

1.3 Algunas funciones elementales

1.3.1. Función exponencial

Definición 1.3.1

$$f(z) = e^z = e^x e^{iy} = e^x (\cos y + i \sin y)$$

Teorema 1.3.1

1.
$$e^z \neq 0 \quad \forall z \in \mathbb{C}$$

2.
$$|e^z| = e^{Re(z)}$$
 $z \in \mathbb{C}$

3.
$$arg(e^z) = \{Im(z) + 2\pi k, k \in \mathbb{Z}\}$$
 $\forall z \in \mathbb{C}$

$$4. \ \overline{(e^z)} = e^{\bar{z}} \qquad z \in \mathbb{C}$$

5.
$$e^x = 1 \Leftrightarrow x = 0$$
 $x \in \mathbb{R}$ $e^z = 1 \Leftrightarrow z = 2\pi ki$ $z \in \mathbb{C}$

6.
$$\lim_{x\to\infty} e^x = \infty$$
 $x \in \mathbb{R}$ $\nexists \lim_{|z|\to\infty} e^z = \infty$ $x \in \mathbb{R}$

7. e^x es entera (derivable en todo punto de \mathbb{C}) $(e^z)'=e^z$

8.
$$e^{z+\omega} = e^z \cdot e^{\omega}, \quad z, w \in \mathbb{C}$$

 $(e^z)^n = e^{nz}, \quad n \in \mathbb{N}, z \in \mathbb{C}$

Ejemplo 1.3.1
$$(e^{iz} - e^{-iz} = 4i)$$

 $e^{iz} - e^{-iz} = 4i \iff e^{iz} - e^{-iz} - 4i = 0 \iff e^{2iz} - 4ie^{iz} - 1 = 0$

Si
$$\omega = e^{iz} \Longrightarrow \boxed{\omega^2 - 4i\omega - 1 = 0}$$

$$w = \frac{4i \pm \sqrt{-16 + 4}}{2} = \frac{4i \pm \sqrt{-12}}{2} = 2i \pm \sqrt{3} = 2 \pm \sqrt{3}i \Longrightarrow \boxed{e^{iz} = (2 \pm \sqrt{3})i}$$

1.3.2. Función logarítmica

Definición 1.3.2

Se introduce por la necesidad de solucionar ecuaciones como la anterior.

$$x = e^y \iff y = \log x, \qquad x \ 0, y \in \mathbb{R}$$

Sea $z \in \mathbb{C} - 0$, definimos el logaritmo principal de z, y lo denotamos por log z, como

$$\log z = \ln|z| + i \cdot Arg(z)$$

Vemos que $e^{\log z} = e^{\log|z| + Arg(z)} = e^{\ln|z|} e^{Arg(z)} = |z| e^{Arg(z)} = z$

El conjunto de todos los logaritmos de z será:

$$\log z = \{ \ln|z| + i \left(Arg(z) + 2\pi k \right), k \in \mathbb{Z} \}$$

Ejemplo 1.3.2

- 1. Si $z = x > 0 \Rightarrow \log z = \ln|z| + i \cdot Arg(z) = \ln x$ $\log z = \{lnx + 2\pi ki, k \in \mathbb{Z}\}\$
- 2. Si $z = -x > 0 \Rightarrow \log z = \ln x i \cdot (-\pi)$ (argumento de z) $\log z = \{lnx + -(\pi + 2\pi k), k \in \mathbb{Z}\}\$
- 3. Si z = ix, $x > 0 \Rightarrow \log z = \ln x + i\frac{\pi}{2}$ $\log z = \left\{ lnx + i\left(\frac{\pi}{2} + 2\pi k\right), k \in \mathbb{Z} \right\}$

🖣 Comentario: 🖣

Retomando la ecuación del ejemplo anterior,

$$e^{iz} = (2 \pm \sqrt{3})i = \begin{cases} (2 + \sqrt{3}i) \leftrightarrow iz = \log(2 + \sqrt{3})i \leftrightarrow z = \left(\frac{\pi}{2} + 2\pi k\right) - iln(2 + \sqrt{3}) \\ (2 - \sqrt{3}i) \leftrightarrow iz = \log(2 - \sqrt{3})i \leftrightarrow z = \left(\frac{\pi}{2} + 2\pi k\right) - iln(2 - \sqrt{3}) \end{cases}, k \in \mathbb{Z}$$

Teorema 1.3.2 Propiedades

- 1. Log z es holomorfa en $\mathbb{C} [-\infty, 0] \implies$ de hecho, no es continua en $(-\infty, 0]$
- 2. $\log_{\theta_0} = z$ es holomorfa en $\mathbb{C} \{z \in \mathbb{C}, arg(z) = \theta_0\}$
- 3. $e^{\log_{\theta_0} z} = z$, $\forall z \in \mathbb{C}, arg(z) = \theta_0 \text{ y } (\log_{\theta_0})' = \frac{1}{z}$
- 4. $\log_{\theta_0} e^z = z$ $\forall z = x + iy, \theta_0 \le y \le \theta_0 + 2\pi z = x + iy, e^z = e^x e^{iy} \implies \log_{\theta_0} e^z = z$ cuando $y \in [\theta_0, \theta_0 + 2\pi]$

Definición 1.3.3

Sea $\theta_0 \in \mathbb{R}$, tomamos $z \neq 0$, $z = re^{i\theta}$, r > 0, $\theta_0 <= \theta = \theta_0 + 2\pi$ y entonces $\log_{\theta_0} z = \ln|z| + i\theta$

Si
$$\theta_0 = -\pi \implies \log_{\theta_0} z = Log z$$

$$\begin{array}{l} \text{Si } \theta_0 = -\pi \implies \log_{\theta_0} z = Logz \\ \text{Si } \theta_0 = 0 \implies log_0 z = ln|z| + i\theta, \qquad 0 <= \theta < 2\pi \end{array}$$