# Europeean Materials Modelling Ontology

Version 1.0.0-alpha2

European Materials Modelling Counsil (EMMC)



October 12, 2020



(e.g. physics, chemistry, material science, engineering)











Information and Communication Technologies (e.g. reasoners, platforms, formats)

#### Abstract

EMMO is an ontology that is created by the Europeean Materials Modelling Council (EMMC) to provide a formal way to describe the fundamental concepts of physics, chemistry and materials science. EMMO is designed to pave the road for semantic interoperability providing a generic common ground for describing materials, models and data that can be adapted by all domains.

It is a representational framework of predefined classes and axioms (ontology) provided by experts (EMMC) that enables end users (industry, research, academy) to represent real life physical entities (materials, devices), models and properties using ontological signs (individuals) in a standard way to facilitate interactions and exchanges (data, software, knowledge) between all involved material modelling and characterization communities and stakeholders.

**Keywords:** EMMO, materials science, modelling, characterisation, materials, ontology

Authors:

Emanuele Ghedini, University of Bologne Gerhard Goldbeck, Goldbeck Consulting Jesper Friis, SINTEF Adham Hashibon, Fraunhofer IWM Georg Schmitz, ACCESS

# Contents

| T | Introduction                 | 2   |
|---|------------------------------|-----|
|   | What is an ontology          | 3   |
|   | Primitive elements in EMMO   |     |
|   | Theoretical foundations      |     |
|   | The structure of EMMO        | 9   |
| 2 | EMMO Relations               | 12  |
| _ | Root of EMMO relations       |     |
|   | Mereotopological branch      |     |
|   | Connected branch             |     |
|   |                              |     |
|   | Has Part branch              |     |
|   | Semiotical branch            | 19  |
| 3 | EMMO Classes                 | 22  |
|   | EMMO branch                  | 22  |
|   | Elementary branch            |     |
|   | Perspective branch           |     |
|   | Holistic branch              |     |
|   | Semiotic branch              |     |
|   | Sign branch                  |     |
|   | Interpreter branch           | 36  |
|   | Object branch                |     |
|   | Conventional branch          |     |
|   |                              |     |
|   | Property branch              |     |
|   |                              |     |
|   | Process branch               |     |
|   | Perceptual branch            |     |
|   | Graphical branch             |     |
|   | Geometrical branch           |     |
|   | Symbol branch                |     |
|   | Mathematical branch          |     |
|   | Mathematical Symbol branch   |     |
|   | Mathematical Model branch    |     |
|   | Mathematical Operator branch |     |
|   | Metrological branch          |     |
|   | Physical Dimension branch    |     |
|   | Physical Quantity branch     |     |
|   | Number branch                |     |
|   | Measurement Unit branch      | 117 |
|   | UTF8 branch                  | 129 |
|   | SI Base Unit branch          | 129 |
|   | SI Special Unit branch       | 132 |
|   | Prefixed Unit branch         | 138 |
|   | Metric Prefix branch         |     |
|   | Quantity branch              |     |
|   | Base Quantity branch         |     |
|   | Derived Quantity branch      |     |
|   | Physical Constant branch     |     |
|   | Reductionistic branch        |     |

|   | Expression branch                       | 185 |
|---|-----------------------------------------|-----|
|   | Physicalistic branch                    |     |
|   | Elementary Particle branch              | 187 |
|   | Subatomic branch                        | 189 |
|   | Matter branch                           | 190 |
|   | Fluid branch                            | 194 |
|   | Mixture branch                          | 198 |
|   | State Of Matter branch                  | 205 |
| 4 | Individuals                             | 212 |
| 5 | Appendix                                | 213 |
|   | The complete taxonomy of EMMO relations | 213 |
|   | The taxonomy of EMMO classes            | 213 |

# Chapter 1

# Introduction

EMMO is a multidisciplinary effort to develop a standard representational framework (the ontology) based on current materials modelling knowledge, including physical sciences, analytical philosophy and information and communication technologies. This multidisciplinarity is illustrated by the figure on the title page. It provides the connection between the physical world, materials characterisation world and materials modelling world.



Figure 1.1: EMMO provides the connection between the physical world, materials characterisation world and materials modelling world.

EMMO is based on and is consistent with the Review of Materials Modelling, CEN Workshop Agreement and MODA template. However, while these efforts are written for humans, EMMO is defined using the Web Ontology Language (OWL), which is machine readable and allows for machine reasoning. In terms of semantic representation, EMMO brings everything to a much higher level than these foundations.

As illustrated in the figure below, EMMO covers all aspects of materials modelling and characterisation, including:

- the material itself, which must be described in a rigorous way
- the observation process involving an observer that percieves the real world (characterisation)
- the **properties** that are measured or modelled
- the physics laws that describe the material behaviour
- the physical models that approximate the physics laws
- the **solver** including the numerical discretisation method that leads to a solvable mathematical representation under certain simplifying assumptions
- the numerical solver that performs the calculations
- the **post processing** of experimental or simulated data



Figure 1.2: The aspects of materials modelling and characterisation covered by EMMO.

EMMO is released under the Creative Commons license and is available at emmo.info/. The OWL2-DL sources are available in RDF/XML format.

## What is an ontology

In short, an ontology is a specification of a conceptualization. The word ontology has a long history in philosophy, in which it refers to the subject of existence. The so-called ontological argument for the existence of God was proposed by Anselm of Canterbury in 1078. He defined God as "that than which nothing greater can be thought", and argued that "if the greatest possible being exists in the mind, it must also exist in reality. If it only exists in the mind, then an even greater being must be possible – one which exists both in the mind and in reality". Even though this example has little to do with todays use of ontologies in e.g. computer science, it illustrates the basic idea; the ontology defines some basic premises (concepts and relations between them) from which it is possible reason to gain new knowledge.

For a more elaborated and modern definition of the ontology we refer the reader to the one provided by Tom Gruber (2009). Another useful introduction to ontologies is the paper Ontology Development 101: A Guide to Creating Your First Ontology by Noy and McGuinness (2001), which is based on the Protege sortware, with which EMMO has been developed.

A taxonomy is a hierarchical representation of classes and subclasses connected via <code>is\_a</code> relations. Hence, it is a subset of the ontology excluding all but the <code>is\_a</code> relations. The main use of taxonomies is for the organisation of classifications. The figure shows a simple example of a taxonomy illustrating a categorisation of four classes into a hierarchy of more higher of levels of generality.



Figure 1.3: Example of a taxonomy.

In EMMO, the taxonomy is a rooted directed acyclic graph (DAG). This is important since many classification methods relies on this property, see e.g. Valentini (2014) and Robison et al (2015). Note, that EMMO is a DAG does not prevent some classes from having more than one parent. A Variable is for instance both a Mathematical and a Symbol. See appendix for the full EMMO taxonomy.

## Primitive elements in EMMO



Figure 1.4: The primitive building blocks of EMMO.

## **Individuals**

Individuals are the basic, "ground level" components of EMMO. They may include concrete objects such as cars, flowers, stars, persons and molecules, as well as abstract individuals such as a measured height, a specific equation and software programs.

Individuals possess attributes in form of axioms that are defined by the user (interpreter) upon declaration.

#### Classes

Classes represent concepts. They are the building blocks that we use to create an ontology as a representation of knowledge. We distinguish between *defined* and *non-defined* classes.

Defined classes are defined by the requirements for being a member of the class. In the graphical representations of EMMO, defined classes are orange. For instance, in the graph of the top-level entity branch below, The root EMMO and a defined class (defined to be the disjoint union of Item and Collection).

Non-defined classes are defined as an abstract group of objects, whose members are defined as belonging to the class. They are yellow in the graphical representations.

#### Axioms

Axioms are propositions in a logical framework that define the relations between the individuals and classes. They are used to categorise individuals in classes and to define the *defined* classes.

The simplest form of a class axiom is a class description that just states the existence of the class and gives it an unique identifier. In order to provide more knowledge about the class, class axioms typically contain additional components that state necessary and/or sufficient characteristics of the class. OWL contains three language constructs for combining class descriptions into class axioms:

- Subclass (rdfs:subClassOf) allows one to say that the class extension of a class description is a subset of the class extension of another class description.
- Equivalence (owl:equivalentClass) allows one to say that a class description has exactly the same class extension (i.e. the individuals associated with the class) as another class description.
- Distjointness (owl:disjointWith) allows one to say that the class extension of a class description has no members in common with the class extension of another class description.



Figure 1.5: Example of the top-level branch of EMMO showing some classes and relationships between them.

See the section about Description logic for more information about these language constructs. Axioms are also used to define relations between relations. These are further detailed in the chapter on Relations.

## Theoretical foundations

EMMO build upon several theoretical frameworks.

#### Semiotics

Semiotics is the study of meaning-making. It is the dicipline of formulating something that possibly can exist in a defined space and time in the real world.

## Mereotopology

Mereotopology is the combination of **mereology** (science of parthood) and **topology** (mathematical study of the geometrical properties and conservation through deformations). It is introdused via the **Item** class and based on the **mereotopological** relations. Items in EMMO are always topologically connected in space and time. EMMO makes a strong distinction between membership and parthood relations. In contrast to collections, items can only have parts that are themselves items. For further information, see Casati and Varzi "Parts and Places" (1999).

## **Physics**

EMMO is strongly based on physics, with the aim of being able to describe all aspects and all domains of physics, from quantum mechanics to continuum, engeneering, chemistry, etc. EMMO is compatible with both the De Broglie - Bohm and the Copenhagen interpretation of quantum mecanics (see Physical for more comments).

EMMO defines a physics-based parthood hierarchy under Physical by introducing the following concepts (illustrated in the figure below):

- Elementary is the fundamental, non-divisible constituent of entities. In EMMO, elementaries are based on the standard model of physics.
- State is a Physical whose parts does not change during its life time (at the chosen level of granularity). This is consistent with a state within e.g. thermodynamics.
- Existent is a succession of states.



Figure 1.6: Parthood hierarchy under Physical.

## Metrology

Metrology is the science of measurements. It introduces units and links them to properties. The description of metrology in EMMO is based on the standards of International System of Quantities (ISQ) and International System of Units (SI).

## Description logic

Description logic (DL) is a formal knowledge representation language in which the *axioms* are expressed. It is less expressive than first-order logic (FOL), but commonly used for providing the logical formalism for ontologies and semantic web. EMMO is expressed in the Web Ontology Language (OWL), which in turn is based on DL. This brings along features like reasoning.

Since it is essential to have a basic notion of OWL and DL, we include here a very brief overview. For a proper introduction to OWL and DL, we refer the reader to sources like Grau et.al. (2008), OWL2 Primer and OWL Reference.

OWL distinguishes between six types of class descriptions:

- 1. a class identifier (a IRI reference)
- 2. an exhaustive enumeration of individuals that together form the instances of a class (owl:oneOf)
- 3. a property restriction (owl:someValuesFrom, owl:allValuesFrom, owl:hasValue, owl:cardinality, owl:minCardinality, owl:maxCardinality)
- 4. the intersection of two or more class descriptions (owl:intersectionOf)
- 5. the union of two or more class descriptions (owl:unionOf)
- 6. the complement of a class description (owl:complementOf)

Except for the first, all of these refer to defined classes. The table below shows the notation in OWL, DL and the Manchester OWL syntax, all commonly used for the definitions. The Manchester syntax is used by Protege and is designed to not use DL symbols and to be easy and quick to read and write. Several other syntaxes exist for DL. An interesting example is the pure Python syntax proposed by Lamy (2017), which is used in the open source Owlready2 Python package. The Python API for EMMO is also based on Owlready2.

Table 1.1: Notation for DL and Protege. A and B are classes, R is an active relation, S is an passive relation, a and b are individuals and n is a literal. Inspired by the Great table of Description Logics.

| DL                                                                             | Manchester        | Python + Owlready2                                                 | Read                          | Meaning                                                       |
|--------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|
| Constants                                                                      |                   |                                                                    |                               |                                                               |
| Т                                                                              |                   | Thing                                                              | top                           | A special class<br>with every<br>individual as an<br>instance |
| $oxed{oxed} oxed{oxed} oxed{oxed} oxed{oxed} oxed{oxed} oxed{oxed} oxed{oxed}$ |                   | Nothing                                                            | bottom                        | The empty class                                               |
| $A \doteq B$                                                                   |                   |                                                                    | A is defined to be equal to B | Class definition                                              |
| $A \sqsubseteq B$                                                              | A subclass_of B   | class A(B):<br>issubclass(A, B)                                    | all A are B                   | Class inclusion Test for inclusion                            |
| $A \equiv B$                                                                   | A equivalent_to B | A.equivalent_to.append(BA) is equivalent to B B in A.equivalent_to |                               | Class equivalence                                             |
|                                                                                |                   |                                                                    |                               | Test for equivalence                                          |

| DL                              | Manchester                          | Python + Owlready2        | Read                | Meaning                                                    |
|---------------------------------|-------------------------------------|---------------------------|---------------------|------------------------------------------------------------|
| a:A                             | a is_a A                            | a = A()                   | a is a A            | Class assertion (instantiation)                            |
|                                 |                                     | isinstance(a, A)          |                     | Test for instance of                                       |
| (a,b):R                         | a object<br>property<br>assertion b | a.R.append(b)             | a is R-related to b | Property assertion                                         |
| (a,n):R                         | a data property<br>assertion n      | a.R.append(n)             | a is R-related to n | Data assertion                                             |
| Constructions                   |                                     |                           |                     |                                                            |
| $A \sqcap B$                    | A and B                             | A & B                     | A and B             | Class $intersection$ $(conjunction)$                       |
| $A \sqcup B$                    | A or B                              | A   B                     | A or B              | Class union (disjunction)                                  |
| $\neg A$                        | not A                               | Not(A)                    | not A               | Class complement (negation)                                |
| $\{a,b,\ldots\}$                | {a, b,}                             | OneOf([a, b,])            | one of a, b,        | Class enumeration                                          |
| $S \equiv R^{-}$                | S inverse_of R                      | Inverse(R) S.inverse == R | S is inverse of R   | Property inverse<br>Test for inverse                       |
| $\forall R.A$                   | R only A                            | R.only(A)                 | all A with R        | Universal $restriction$                                    |
| $\exists R.A$                   | R some A                            | R.some(A)                 | some A with R       | Existential                                                |
| = nR.A                          | R exactly n A                       | R.exactly(n, A)           |                     | $restriction \ Cardinality$                                |
| $\leq nR.A$                     | R min n A                           | R.min(n, A)               |                     | $restriction \ Minimum \ cardinality$                      |
| $\geq nR.A$                     | R max n A                           | R.max(n, A)               |                     | restriction Minimum cardinality restriction                |
| $\exists R\{a\}$ Decompositions | R value a                           | R.value(a)                |                     | Value restriction                                          |
| $A \sqcup B \sqsubseteq \bot$   | A disjoint with<br>B                | AllDisjoint([A,B])        | A disjoint with B   | Disjoint                                                   |
|                                 | Б                                   | B in A.disjoints()        |                     | Test for disjointness                                      |
| $\exists R. \top \sqsubseteq A$ | R domain A                          | R.domain = [A]            |                     | Classes that the restriction applies                       |
| $\top \sqsubseteq \forall R.B$  | R range B                           | R.range = [B]             |                     | All classes that<br>can be the value<br>of the restriction |

## Examples

Here are some examples of different class descriptions using both the DL and Manchester notation.

## Equivalence (owl:equivalentTo)

Equivalence ( $\equiv$ ) defines necessary and sufficient conditions.

Parent is equivalent to mother or father

 $\mathbf{DL} \text{:} \; \mathtt{parent} \equiv \mathtt{mother} \, \vee \, \mathtt{father}$ 

Manchester: parent equivalent\_to mother or father

### Inclusion (rdf:subclassOf)

Inclusion ( $\sqsubseteq$ ) defines necessary conditions.

An employee is a person.

 $\mathbf{DL}$ : employee  $\sqsubseteq$  person

Manchester: employee is\_a person

## Enumeration (owl:oneOf)

The color of a wine is either white, rose or red:

 $\mathbf{DL}$ : wine\_color  $\equiv \{ \text{white, rose, red} \}$ 

Manchester: wine\_color equivalent\_to {white, rose, red}

## Existential restriction (owl:someValuesFrom)

A mother is a woman that has a child (some person):

 $\mathbf{DL}$ : mother  $\equiv$  woman  $\sqcap$   $\exists$ has\_child.person

Manchester: mother equivalent\_to woman and has\_child some person

## Universal restriction (owl:allValuesFrom)

All parents that only have daughters:

 $\mathbf{DL}$ : parents\_with\_only\_daughters  $\equiv$  person  $\sqcap$   $\forall$ has\_child.woman

Manchester: parents\_with\_only\_daughters equivalent\_to person and has\_child only woman

## Value restriction (owl:hasValue)

The owl:hasValue restriction allows to define classes based on the existence of particular property values. There must be at least one matching property value.

All children of Mary:

**DL:** Marys\_children  $\equiv$  person  $\sqcap \exists$  has\_parent.{Mary}

Manchester: Marys\_children equivalent\_to person and has\_parent value Mary

## Property cardinality (owl:cardinality)

The owl:cardinality restrictions ( $\geq$ ,  $\leq$  or  $\equiv$ ) allow to define classes based on the maximum (owl:maxCardinality), minimum (owl:minCardinality) or exact (owl:cardinality) number of occurences.

A person with one parent:

 $\mathbf{DL}$ : half\_orphant  $\equiv$  person and =1has\_parent.person

Manchester: half\_orphant equivalent\_to person and has\_parent exactly 1 person

## Intersection (owl:intersectionOf)

Individuals of the intersection  $(\sqcap)$  of two classes, are simultaneously instances of both classes.

A man is a person that is male:

 $\mathbf{DL}\text{: }\mathtt{man} \equiv \mathtt{person} \; \sqcap \; \mathtt{male}$ 

 ${\bf Manchester:} \; {\tt man \; equivalent\_to \; person \; and \; male}$ 

#### Union (owl:unionOf)

Individuals of the union  $(\sqcup)$  of two classes, are either instances of one or both classes.

A person is a man or woman:

 $\mathbf{DL}$ : person  $\equiv$  man  $\sqcup$  woman

Manchester: person equivalent\_to man or woman

### Complement (owl:complementOf)

Individuals of the complement  $(\neg)$  of a class, are all individuals that are not member of the class.

Not a man:

 $\mathbf{DL}$ : female  $\equiv \neg$  male

Manchester: female equivalent\_to not male

## The structure of EMMO

The EMMO ontology is structured in shells, expressed by specific ontology fragments, that extends from fundamental concepts to the application domains, following the dependency flow.

## Top Level

The EMMO top level is the group of fundamental axioms that constitute the philosophical foundation of the EMMO. Adopting a physicalistic/nominalistic perspective, the EMMO defines real world objects as 4D objects that are always extended in space and time (i.e. real world objects cannot be spaceless nor timeless). For this reason abstract objects, i.e. objects that does not extend in space and time, are forbidden in the EMMO.

EMMO is strongly based on the analytical philosophy dicipline semiotic. The role of abstract objects are in EMMO fulfilled by semiotic objects, i.e. real world objects (e.g. symbol or sign) that stand for other real world objects that are to be interpreted by an agent. These symbols appear in actions (semiotic processes) meant to communicate meaning by establishing relationships between symbols (signs).

Another important building block of from analytical philosophy is atomistic mereology applied to 4D objects. The EMMO calls it 'quantum mereology', since the there is a epistemological limit to how fine we can resolve space and time due to the uncertanity principles.

The mereotopology module introduces the fundamental mereotopological concepts and their relations with the real world objects that they represent. The EMMO uses mereotopology as the ground for all the subsequent ontology modules. The concept of topological connection is used to define the first distinction between ontology entities namely the *Item* and *Collection* classes. Items are causally self-connected objects, while collections are causally disconnected. Quantum mereology is represented by the *Quantum* class. This module introduces also the fundamental mereotopological relations used to distinguish between space and time dimensions.

The physical module, defines the *Physical* objects and the concept of *Void* that plays a fundamental role in the description of multiscale objects and quantum systems. It also define the *Elementary* class, that restricts mereological atomism in space.

In EMMO, the only univocally defined real world object is the *Item* individual called **Universe** that stands for the universe. Every other real world object is a composition of elementaries up to the most comprehensive object; the **Universe**. Intermediate objects are not univocally defined, but their definition is provided according to some specific philosophical perspectives. This is an expression of reductionism (i.e. objects are made of sub-objects) and epistemological pluralism (i.e. objects are always defined according to the perspective of an interpreter, or a class of interpreters).

The *Perspective* class collects the different ways to represent the objects that populate the conceptual region between the elementary and universe levels.



Figure 1.7: The EMMO top level.

## Middle Level

The middle level ontologies act as roots for extending the EMMO towards specific application domains.



Figure 1.8: The EMMO perspectives.

The *Reductionistic* perspective class uses the fundamental non-transitive parthood relation, called direct parthood, to provide a powerful granularity description of multiscale real world objects. The EMMO can in principle represents the **Universe** with direct parthood relations as a direct rooted tree up to its elementary constituents.

The *Phenomenic* perspective class introduces the concept of real world objects that express of a recognisable pattern in space or time that impress the user. Under this class the EMMO categorises e.g. formal languages, pictures, geometry, mathematics and sounds. Phenomenic objects can be used in a semiotic process as signs.

The *Physicalistic* perspective class introduces the concept of real world objects that have a meaning for the under applied physics perspective.

The *Holistic* perspective class introduces the concept of real world objects that unfold in time in a way that has a meaning for the EMMO user, through the definition of the classes *Process* and *Participant*. The semiotics module introduces the concepts of semiotics and the *Semiosis* process that has a *Sign*, an *Object* and an *Interpreter* as participants. This forms the basis in EMMO to represent e.g. models, formal languages, theories, information and properties.

## **EMMO** relations

All EMMO relations are subrelations of the relations found in the two roots: mereotopological and semiotical. The relation hierarchy extends more vertically (i.e. more subrelations) than horizontally (i.e. less sibling relations), facilitating the categorisation and inferencing of individuals. See also the chapter EMMO Relations.

Imposing all relations to fall under mereotopology or semiotics is how the EMMO force the developers to respect its perspectives. Two entities are related only by contact or parthood (mereotopology) or by standing one for another (semiosis): no other types of relation are possible within the EMMO.

A unique feature in EMMO, is the introduction of *direct parthood*. As illustrated in the figure below, it is a mereological relation that lacks transitivity. This makes it possible to entities made of parts at different levels



Figure 1.9: The semiotic level, showing both the taxonomy (open black arrows) and other relations as listed in the caption. The inverted arrows corresponds to inverse relations.

of granularity and to go between granularity levels in a well-defined manner. This is paramount for cross scale interoperability. Every material in EMMO is placed on a granularity level and the ontology gives information about the direct upper and direct lower level classes using the non-transitive direct parthood relations.



Figure 1.10: Direct parthood.

## Annotations

All entities and relations in EMMO have some attributes, called *annotations*. In some cases, only the required *International Resource Identifier* (IRI) and *relations* are provided. However, descriptive annotations, like *elucidation* and *comment*, are planned to be added for all classes and relations. Possible annotations are:

- Elucidation is a human readable explanation and clearification of the documented class or relation.
- Example clearifies the elucidation through an example. A class may have several examples, each addressing different aspects.
- Comment is a clearifying note complementing the definition and elucidation. A class may have several comments, each clearifying different aspects.
- IRI stands for *international resource identifier*. It is an identifier that uniquely identifies the class or relation. IRIs are similar to URIs, but are not restricted to the ASCII character set. In EMMO, the IRIs are now valid URLs pointing to the stable version of EMMO.
- Relations is a list of relations applying to the current class or relation. The relations for relations are special and will be elaborated on in the introduction to chapter [Relations]. Some of the listed relations are defined in the OWL sources, while other are inferred by the reasoner. The relations are expressed using the Manchester OWL syntax introduced in section Description logic.

## Chapter 2

## **EMMO** Relations

In the language of OWL, relations are called *properties*. However, since relations describe relations between classes and individuals and since properties has an other meaning in EMMO, we only call them *relations*.

Resource Description Framework (RDF) is a W3C standard that is widely used for describing informations on the web and is one of the standards that OWL builds on. RDF expresses information in form of *subject-predicate-object* triplets. The subject and object are resources (aka items to describe) and the predicate expresses a relationship between the subject and the object.

In OWL are the subject and object classes or individuals (or data) while the predicate is a relation. An example of an relationship is the statement  $dog\ is\_a\ animal$ . Here dog is the subject, is\_a the predicate and animal the object.

OWL distingues between *object properties*, that link classes or individuals to classes or individuals, and *data* properties that link individuals to data values. Since EMMO only deals with classes, we will only be discussing object properties. However, in actual simulation or characterisation applications build on EMMO, datatype propertyes will be important.

The characteristics of the different properties are described by the following property axioms:

- rdf:subPropertyOf is used to define that a property is a subproperty of some other property. For instance, in the figure below showing the relation branch, we see that active\_relation is a subproperty or relation. The rdf:subPropertyOf axioms forms a taxonomy-like tree for relations.
- owl:equivalentProperty states that two properties have the same property extension.
- owl:inverseOf axioms relate active relations to their corresponding passive relations, and vice versa. The root relation relation is its own inverse.
- owl:FunctionalProperty is a property that can have only one (unique) value y for each instance x, i.e. there cannot be two distinct values y1 and y2 such that the pairs (x,y1) and (x,y2) are both instances of this property. Both object properties and datatype properties can be declared as "functional".
- $\bullet \quad {\tt owl:InverseFunctionalProperty}$
- owl: TransitiveProperty states that if a pair (x,y) is an instance of P, and the pair (y,z) is instance of P, then we can infer that the pair (x,z) is also an instance of P.
- owl:SymmetricProperty states that if the pair (x,y) is an instance of P, then the pair (y,x) is also an instance of P. A popular example of a symmetric property is the siblingOf relation.
- rdfs:domain specifies which classes the property applies to. Or said differently, the valid values of the subject in a subject-predicate-object triplet.
- rdfs:range specifies the property extension, i.e. the valid values of the *object* in a *subject-predicate-object* triplet.



Figure 2.1: Top-level of the EMMO relation hierarchy.

## Root of EMMO relations

## **EMMORelation**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/mereotopology} \# EMMO\_ec2472ae\_cf4a\_46a5\_8555\_1556f5a6c3c5$ 

#### Relations:

- is a owl:ObjectProperty
- is\_a owl:SymmetricProperty
- is\_a owl:TransitiveProperty
- is\_a owl:topObjectProperty
- inverse\_of mereotopology.EMMORelation
- domain mereotopology.EMMO
- range mereotopology.EMMO

## Mereotopological branch



Figure 2.2: Mereotopological branch.

## mereotopological

IRI: http://emmo.info/emmo/top/mereotopology#EMMO\_03212fd7\_abfd\_4828\_9c8e\_62c293052d4b

**Comment:** Mereotopology merges mereological and topological concepts and provides relations between wholes, parts, boundaries, etc.

- is a owl:ObjectProperty
- is\_a owl:SymmetricProperty
- is a owl:TransitiveProperty
- is\_a mereotopology.EMMORelation
- $\bullet \ \ Inverse (mereotopology. EMMOR elation)$
- inverse of mereotopology.mereotopological

#### disconnected

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/mereotopology} \# EMMO\_517 \\ \text{dfaf9}\_4970\_41 \\ \text{ac}\_81 \\ \text{ee}\_d031627 \\ \text{d}2c7 \\ \text{c} \\ \text{mereotopology} \# EMMO\_517 \\ \text{dfaf9}\_4970\_41 \\ \text{ac}\_81 \\ \text{ee}\_d031627 \\ \text{d}2c7 \\ \text{c} \\ \text{ee}\_d031627 \\ \text{d}2c7 \\ \text{c} \\ \text{ee}\_d031627 \\ \text{d}2c7 \\ \text{ee}\_d031627 \\ \text{d}2c7 \\ \text{ee}\_d031627 \\ \text{d}2c7 \\ \text{ee}\_d031627 \\$ 

#### **Relations:**

- is\_a owl:ObjectProperty
- is\_a owl:SymmetricProperty
- Inverse(mereotopology.mereotopological)
- inverse of mereotopology.disconnected

## Connected branch



Figure 2.3: Connected branch.

### overcrosses

IRI: http://emmo.info/emmo/top/mereotopology#EMMO\_9cb984ca\_48ad\_4864\_b09e\_50d3fff19420

## Relations:

- is\_a owl:ObjectProperty
- is a owl:SymmetricProperty
- is\_a mereotopology.hasOverlapWith
- Inverse(mereotopology.hasOverlapWith)
- inverse\_of mereotopology.overcrosses

## hasContactWith

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/mereotopology} \# EMMO\_4d6504f1\_c470\_4ce9\_b941\_bbbebc9ab05d$ 

#### **Relations:**

- is a owl:ObjectProperty
- is a owl:SymmetricProperty
- is\_a mereotopology.connected
- Inverse(mereotopology.connected)
- inverse\_of mereotopology.hasContactWith

#### connected

IRI: http://emmo.info/emmo/top/mereotopology#EMMO\_6703954e\_34c4\_4a15\_a9e7\_f313760ae1a8

**Comment:** Causality is a topological property between connected items.

Comment: Items being connected means that there is a topological contact or "interaction" between them.

#### Relations:

- is a owl:ObjectProperty
- is\_a owl:SymmetricProperty
- is\_a mereotopology.mereotopological
- Inverse(mereotopology.mereotopological)
- inverse of mereotopology.connected

## encloses

Comment: Enclosure is reflexive and transitive.

#### Relations:

- is\_a owl:ObjectProperty
- is\_a owl:TransitiveProperty
- is\_a mereotopology.connected
- Inverse(mereotopology.connected)

## hasOverlapWith

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/mereotopology} \# EMMO\_d893d373\_b579\_4867\_841e\_1c2b31a8d2c6$ 

## Relations:

- is\_a owl:ObjectProperty
- is\_a owl:SymmetricProperty
- is\_a mereotopology.connected
- Inverse(mereotopology.connected)
- inverse of mereotopology.hasOverlapWith

## Has Part branch

## has Temporal Direct Part

IRI: http://emmo.info/emmo/middle/reductionistic#EMMO\_65a2c5b8\_e4d8\_4a51\_b2f8\_e55effc0547d

## Relations:

- $\bullet$  is\_a owl:ObjectProperty
- is\_a owl:InverseFunctionalProperty
- is\_a owl:AsymmetricProperty
- is a owl:IrreflexiveProperty
- is a physical.hasTemporalPart
- domain reductionistic.Existent
- range reductionistic.State

### hasReferenceUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_67fc0a36\_8dcb\_4ffa\_9a43\_31074efa3296

Comment: Relates the physical quantity to its unit through spatial direct parthood.

**Versioninfo:** In EMMO version 1.0.0-alpha2, physical quantities used the hasReferenceUnit object property to relate them to their units via physical dimensionality. This was simplified in 1.0.0-alpha3 in order to make reasoning faster.



Figure 2.4: Has Part branch.

The restriction (e.g. for the physical quantity Length)

Length hasReferenceUnit only (hasPhysicsDimension only LengthDimension)

was in 1.0.0-alpha3 changed to

Length hasPhysicsDimension some LengthDimension

Likewise were the universal restrictions on the corresponding unit changed to excistential. E.g.

 ${\tt Metre\ hasPhysicsDimension\ only\ LengthDimension}$ 

was changed to

Metre hasPhysicsDimension some LengthDimension

The label of this class was also changed from PhysicsDimension to PhysicalDimension.

#### **Relations:**

- is\_a owl:ObjectProperty
- is a owl:InverseFunctionalProperty
- is a owl:AsymmetricProperty
- is\_a owl:IrreflexiveProperty
- $\bullet \ \ is\_a \ reductionistic.hasSpatialDirectPart$
- domain metrology.Quantity
- range metrology.ReferenceUnit

## hasSpatioTemporalPart

IRI: http://emmo.info/emmo/top/physical#EMMO\_6e046dd0\_9634\_4013\_b2b1\_9cc468087c83

- is\_a owl:ObjectProperty
- is\_a owl:TransitiveProperty
- is a mereotopology.hasProperPart
- domain mereotopology.Item
- range mereotopology.Item

## has Temporal Part

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/physical} \# EMMO\_7 a fbed 84\_7593\_4 a 23\_bd 88\_9d 9c 6b 04e 8f 6$ 

#### **Relations:**

- is\_a owl:ObjectProperty
- $\bullet$  is\_a owl:TransitiveProperty
- is\_a mereotopology.hasProperPart
- domain mereotopology.Item
- range mereotopology.Item

## has Spatio Temporal Direct Part

IRI: http://emmo.info/emmo/middle/reductionistic#EMMO\_663859e5\_add3\_4c9e\_96fb\_c99399de278d

#### Relations:

- $\bullet$  is\_a owl:ObjectProperty
- is a owl:InverseFunctionalProperty
- is\_a owl:AsymmetricProperty
- is a owl:IrreflexiveProperty
- is a physical.hasSpatioTemporalPart

## hasPart

IRI: http://emmo.info/emmo/top/mereotopology#EMMO\_17e27c22\_37e1\_468c\_9dd7\_95e137f73e7f

#### Relations:

- is\_a owl:ObjectProperty
- is\_a owl:TransitiveProperty
- is\_a mereotopology.encloses
- is\_a mereotopology.hasOverlapWith
- Inverse(mereotopology.hasOverlapWith)

## hasQuantityValue

IRI: http://emmo.info/emmo/middle/metrology#EMMO 8ef3cd6d ae58 4a8d 9fc0 ad8f49015cd0

Comment: Relates a quantity to its reference unit through spatial direct parthood.

#### **Relations:**

- $\bullet$  is\_a owl:ObjectProperty
- is\_a owl:InverseFunctionalProperty
- is\_a owl:AsymmetricProperty
- is\_a owl:IrreflexiveProperty
- is\_a reductionistic.hasSpatialDirectPart
- domain metrology.Quantity
- range math.Numerical

## hasProperPart

IRI: http://emmo.info/emmo/top/mereotopology#EMMO 9380ab64 0363 4804 b13f 3a8a94119a76

- is\_a owl:ObjectProperty
- is\_a owl:TransitiveProperty
- is a mereotopology.hasPart

## hasMember

IRI: http://emmo.info/emmo/top/mereotopology#EMMO\_6b7276a4\_4b9d\_440a\_b577\_0277539c0fc4

#### **Relations:**

- is\_a owl:ObjectProperty
- is\_a owl:AsymmetricProperty
- is\_a owl:IrreflexiveProperty
- is a mereotopology.hasProperPart
- domain mereotopology.Collection
- range mereotopology.Item

## hasProperParticipant

IRI: http://emmo.info/emmo/middle/holistic#EMMO c5aae418 1622 4d02 93c5 21159e28e6c1

#### Relations:

- is\_a owl:ObjectProperty
- is a holistic.hasParticipant
- $\bullet \ \ is\_a \ mereotopology.hasProperPart$

## has Spatial Direct Part

IRI: http://emmo.info/emmo/middle/reductionistic#EMMO\_b2282816\_b7a3\_44c6\_b2cb\_3feff1ceb7fe

#### Relations:

- is a owl:ObjectProperty
- is\_a owl:InverseFunctionalProperty
- is\_a owl:AsymmetricProperty
- is\_a owl:IrreflexiveProperty
- is\_a physical.hasSpatialPart
- domain reductionistic.State

## hasParticipant

IRI: http://emmo.info/emmo/middle/holistic#EMMO ae2d1a96 bfa1 409a a7d2 03d69e8a125a

Comment: Participation is a parthood relation: you must be part (and then be connected) of the process to contribute to it.

**Comment:** Participation is not under direct parthood since a process is not strictly related to reductionism, but it's a way to categorize temporal regions by the interpreters.

## Relations:

- is a owl:ObjectProperty
- is\_a mereotopology.hasPart
- domain holistic.Process
- range holistic.Participant

## has Spatial Part

IRI: http://emmo.info/emmo/top/physical#EMMO\_f68030be\_94b8\_4c61\_a161\_886468558054

- is\_a owl:ObjectProperty
- is a owl:TransitiveProperty
- is a mereotopology.hasProperPart
- domain mereotopology.Item

• range mereotopology.Item

## Semiotical branch



Figure 2.5: Semiotical branch.

## has Physical Dimension

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_bed1d005\_b04e\_4a90\_94cf\_02bc678a8569

## Relations:

- is\_a owl:ObjectProperty
- is\_a properties.hasProperty
- ullet range metrology. Physical Dimension

## hasIcon

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_39c3815d\_8cae\_4c8f\_b2ff\_eeba24bec455$ 

## Relations:

- is a owl:ObjectProperty
- is\_a semiotics.hasSign
- range semiotics.Icon

## hasIndex

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_297999d6\_c9e4\_4262\_9536\_bd524d1c6e21$ 

- is\_a owl:ObjectProperty
- $\bullet \;$  is \_a semiotics.has Sign
- range semiotics.Index

## hasModel

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO} \underline{24c71baf\_6db6\_48b9\_86c8\_8c70cf36db0c}$ 

#### **Relations:**

- is\_a owl:ObjectProperty
- is\_a semiotics.hasIcon

## semiotical

IRI: http://emmo.info/emmo/middle/semiotics#EMMO\_2337e25c\_3c60\_43fc\_a8f9\_b11a3f974291

## Relations:

- is\_a owl:ObjectProperty
- is\_a mereotopology.EMMORelation
- Inverse(mereotopology.EMMORelation)

## hasInterpretant

IRI: http://emmo.info/emmo/middle/semiotics#EMMO\_7fb7fe7e\_bdf9\_4eeb\_adad\_e384dd5285c6

## Relations:

- is a owl:ObjectProperty
- $\bullet$  is\_a semiotics.hasSign
- range semiotics.Interpretant

## hasSign

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_60577 \\ \text{dea}\_9019\_4537\_ac41\_80b0 \\ \text{fb} 563 \\ \text{d} 4111 \\ \text{d} 1111 \\ \text{d} 11111 \\ \text{d} 1111 \\ \text{d$ 

#### **Relations:**

- is\_a owl:ObjectProperty
- is a semiotics.semiotical
- domain semiotics. Object
- range semiotics.Sign

## hasConvention

IRI: http://emmo.info/emmo/middle/semiotics#EMMO\_eb3518bf\_f799\_4f9e\_8c3e\_ce59af11453b

## Relations:

- $\bullet \ \ is\_a \ owl: Object Property$
- is\_a semiotics.hasSign
- range semiotics.Conventional

## hasVariable

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO}\_3446e167\_c576\_49d6\_846c\_215bb8878a55$ 

- is\_a owl:ObjectProperty
- $\bullet$  is\_a semiotics.hasConvention
- domain math.Mathematical
- range math.Variable

## hasProperty

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/properties} \# EMMO\_e1097637\_70d2\_4895\_973f\_2396f04fa204$ 

- $\bullet\,\,$  is \_a semiotics.has Convention
- domain semiotics. Object
- range properties.Property

# Chapter 3

# **EMMO Classes**

*emmo* is a class representing the collection of all the individuals (signs) that are used in the ontology. Individuals are declared by the EMMO users when they want to apply the EMMO to represent the world.

## EMMO branch



Figure 3.1: EMMO branch.

The root of all classes used to represent the world. It has two children; collection and item.

collection is the class representing the collection of all the individuals (signs) that represents a collection of non-connected real world objects.

item Is the class that collects all the individuals that are members of a set (it's the most comprehensive set individual). It is the branch of mereotopology.

## Item

IRI: http://emmo.info/emmo/top/mereotopology#EMMO\_eb3a768e\_d53e\_4be9\_a23b\_0714833c36de

**Comment:** A real world object is self-connected if any two parts that make up the whole are connected to each other (here the concept of connection is primitive).

Alternatively, using the primitive path-connectivity concept we can define a self-connected real world object as an object for which each couple of points is path-connected.

**Comment:** An 'Item' individual stands for a real world self-connected object which can be represented as a whole made of connected parts (e.g. a car made of components).

In the EMMO, connectivity is the topological foundation of causality.

All physical systems, i.e. systems whose behaviour is explained by physics laws, are represented only by 'Item'-s.

Members of a 'Collection' lack of causality connection, i.e. they do not constitute a physical system as a whole.

Comment: From Latin item, "likewise, just so, moreover".

#### Relations:

- is\_a mereotopology.EMMO
- disjoint\_union\_of physical.Void, physical.Physical

## **Physical**

IRI: http://emmo.info/emmo/top/physical#EMMO c5ddfdba c074 4aa4 ad6b 1ac4942d300d

**Elucidation:** A 'Item' that has part some 'Elementary' and whose temporal proper parts are only 'Physical'-s (i.e. it can be perceived without interruptions in time).

**Comment:** A 'Physical' is the class that contains all the individuals that stand for real world objects that interact physically with the ontologist, i.e. physical objects.

A physical object must be perceived through physical interaction by the ontologist. Then the ontologist can declare an individual standing for the physical object just perceived.

Perception is a subcategory of physical interactions. It is an interaction that stimulate a representation of the physical object within the ontologist (the agent).

Comment: A 'Physical' must include at least an 'Elementary' part, and can include 'Void' parts.

A 'Physical' may include as part also the 'Void' surrounding or enclosed by its 'Physical' sub parts.

There are no particular criteria for 'Physical'-s structure, except that is made of some 'Elementary'-s as proper parts and not only 'Void'.

This is done in order to take into account the quantum nature of physical systems, in which the actual position of sub-components (e.g. electrons in an atom) is not known except for its probability distribution function (according to the Copenhagen interpretation.)

e.g. a real world object that has spatial parts an atom and a cubic light year of void, extending for some time, can be a physical object.

**Comment:** A 'Physical' with dimensions other than 4D cannot exist, following the restriction of the parent 'EMMO' class.

It follows from the fact that perception is always unfolding in time.

e.g. you always have an aperture time when you take a picture or measure a property. Instantaneous perceptions are idealizations (abstractions) or a very small time measurement.

**Comment:** From Latin physica "study of nature" (and Ancient Greek φυσικός, "natural").

Here the word relates to things perceived through the senses as opposed to the mind; tangible or concrete.

**Comment:** In the EMMO there are no relations such as occupiesSpace, since 'Physical'-s are themselves the 4D regions.

**Comment:** The EMMO can be used to represent real world entities as 'Physical'-s that are easy to connect to classical or quantum mechanical based models.

Classical mechanics poses no representational issues, for the EMMO: the 4D representation of 'Physical'-s is consistent with classical physics systems.

However, the representation of 'Physical'-s that are typically analized through quantum mechanics (e.g. molecules, atoms, clusters), is not straightforward.

1) De Broglie - Bohm interpretation The most simple approach is to rely on Bohmian mechanics, in which each particle is supposed to exists in a specific position between measurements (hidden variables approach), while its trajectory is calculated using a Guiding Equation based on a quantum field calculated with the Schroedinger Equation.

While this approach is really easy to implement in an ontology, since each entity has its own well defined 4D region, its mathematical representation failed to receive large consensus due to the difficulties to include relativistic effects, to be extended to subnuclear scale and the strong non-locality assumtpion of the quantum field.

Nevertheless, the Bohmian mechanics is a numerical approach that is used in electronic models to reduce the computational effort of the solution of Schroedinger Equation.

In practice, an EMMO user can declare a 'physical' individual that stand for the whole quantum system to be described, and at the same time all sub-parts individuals can be declared, having them a well defined position in time, according to De Broglie - Bohm interpretation. The Hamiltonian can be calculated by considering the sub-part individuals.

'physical'-s are then made of 'physical' parts and 'void' parts that stand for the space between 'physical'-s (e.g. the void between electrons and nucleus in an atom).

2) Copenhagen interpretation In this interpretation the properties (e.g. energy level, position, spin) of a particle are not defined in the interval between two measurements and the quantum system is entangled (i.e. properties of particles in the sysyem are correlated) and described by a global wavefunction obtained solving the Schroedinger Equation.

Upon measurement, the wavefunction collapses to a combination of close eigenstates that provide information about bservables of the system components (e.g. position, energy).

The EMMO can be used to represent 'physical'-s that can be related to Copenhagen based models. In practice, the user should follow these steps:

- a) define the quantum system as a 'physical' individual (e.g. an H2 molecule) under a specific class (e.g. 'h2\_molecule'). This individual is the whole.
- b) define the axioms of the class that describe how many sub-parts are expected for the whole and their class types (e.g. 'h2\_molecule' has axioms 'has\_proper\_part exactly 2 electron' and 'has\_proper\_part exactly 2 nucleus)
- c) the user can now connect the whole to a Schroedinger equation based model whose Hamiltonian is calculated trough the information coming only from the axioms. No individuals are declared for the subparts!
- d) a measurement done on the quantum system that provides information on the sub-part observables is interpreted as wavefunction collapse and leads to the end of the whole and the declaration of the subparts individuals which can be themselves other quantum systems

e.g. if the outer electron of the H2 molecule interacts with another entity defining its state, then the whole that stands for the entangled H2 molecule becomes a 'physical' made of an electron individual, a quantum system made of one electron and two nuclei and the void between them.

e.g. in the Born-Oppenheimer approximation the user represent the atom by un-entangling nucleus and electronic cloud. The un-entanglement comes in the form of declaration of individual as parts.

e.g. the double slit experiment can be represent in the EMMO as: a) before the slit: a 'physical' that extend in space and has parts 'electron' and 'void', called 'single\_electron\_wave\_function'. 'electron' and 'void' are only in the axioms and not decalred individuals. b) during slit passage: a 'physical' made of one declared individual, the 'electron'. c) after the slit: again 'single\_electron\_wave\_function' d) upon collision with the detector: 'physical' made of one declared individual, the 'electron'.

**Comment:** The purpose of the 'Physical' branch is to provide a representation of the real world objects, while the models used to name, explain or predict the behaviour of the real world objects lay under the 'Semiotic' branch.

More than one semiotic representation can be connected to the same 'Physical'.

e.g. Navier-Stokes or Euler equation applied to the same fluid are an example of mathematical model used to represent a physical object for some specific interpreter.

- is a mereotopology. Item
- mereotopology.hasPart some physical.Elementary
- physical.hasTemporalPart only physical.Physical

#### **Individuals:**

mereotopology.Universe

#### Collection

IRI: http://emmo.info/emmo/top/mereotopology#EMMO 2d2ecd97 067f 4d0e 950c d746b7700a31

Elucidation: The class of all individuals that stand for a real world not self-connected object.

Comment: A 'Collection' individual stands for a non-self-connected real world object.

A 'Collection' individual is related to each 'Item' individuals of the collection (i.e. the members) through the membership relation.

An 'Item' individual stands for a real world self-connected object which can be represented as a whole made of connected parts (e.g. a car made of components).

Comment: Formally, 'Collection' is axiomatized as the class of individuals that has Member some 'Item'.

A 'Collection' cannot have as member another 'Collection'.

Comment: From Latin collectio, from colligere 'gather together'.

**Comment:** e.g. the collection of users of a particular software, the collection of atoms that have been part of that just dissociated molecule, or even the collection of atoms that are part of a molecule considered as single individual non-connected objects and not as a mereotopological self-connected fusion.

#### Relations:

- is\_a mereotopology.EMMO
- mereotopology.hasMember some mereotopology.Item

## Void

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/physical\#EMMO\_29072ec4\_ffcb\_42fb\_bdc7\_26f05a2e9873$ 

Elucidation: A 'Item' that has no 'Physical' parts.

Comment: From Latin vacuus, "empty".

Comment: The void concept is paramount for the representation of physical systems according to quantum theory.

## Relations:

- is a mereotopology.Item
- mereotopology.hasPart only physical.Void

## EMMO

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/mereotopology} \# EMMO\_802 d 3 e 92\_8770\_4 f 98\_a 289\_ccaaab7 f d d f f respectively. The statement of the statement of$ 

**Elucidation:** The class representing the collection of all the individuals declared in this ontology standing for real world objects.

Comment: 'EMMO' is the disjoint union of 'Item' and 'Collection' (covering axiom).

The union implies that 'EMMO' individuals can only be 'Item' individuals (standing for self-connected real world objects) or 'Collection' individuals (standing for a collection of disconnected items).

Disjointness means that a 'Collection' individual cannot be an 'Item' individual and viceversa, representing the fact that a real world object cannot be self-connected and non-self connected at the same time.

**Comment:** For the EMMO ontologist the whole universe is represented as a 4D path-connected topological manifold (i.e. the spacetime).

A real world object is then a 4D topological sub-region of the universe.

A universe sub-region is isolated and defined as a real world object by the ontologist. Then, through a semiotic process that occurs at meta-ontological level (i.e. outside the ontology). an EMMO ontology entity (e.g. an OWL individual) is assigned to represent that real world object.

The fundamental distinction between real world objects, upon which the EMMO is based, is self-connectedness: a real world object can be self-connected xor not self-connected.

**Comment:** In the EMMO we will refer to the universe as a Minkowski space, restricting the ontology to special relativity only. However, exension to general relativity, will adding more complexity, should not change the overall approach.

**Comment:** Mereotopology is the fundamental logical representation used by the EMMO ontologist to characterize the universe and to provide the definitions to connect real world objects to the EMMO concepts.

Parthood relations do not change dimensionality of the real world object referred by an 'EMMO' individual, i.e. every part of a real world object always retains its 4D dimensionality.

The smallest part of a real world object (i.e. a part that has no proper parts) is referred in the EMMO by a 'Quantum' individual.

It follows that, for the EMMO, real world objects of dimensionality lower than 4D (e.g. surfaces, lines) do not exist.

#### **Relations:**

- is a owl:Thing
- equivalent\_to mereotopology.hasPart some mereotopology.Quantum
- equivalent\_to Inverse(mereotopology.hasPart) value mereotopology.Universe
- disjoint union of mereotopology. Collection, mereotopology. Item

## Quantum

**Elucidation:** The class of 'EMMO' individuals that stand for real world objects that can't be further divided in time nor in space.

**Example:** For a physics based ontology the 'Quantum' can stand for the smallest identifiable portion of spacetime defined by the Planck limit in length (1.616e-35 m) and time (5.39e-44 s).

However, the quantum mereotopology approach is not restricted only to physics. For example, in a manpower management ontology, a 'Quantum' can stand for an hour (time) of a worker (space) activity.

**Comment:** A 'Quantum' is the most fundamental subclass of 'Item', since its individuals stand for the smallest possible self-connected 4D real world objects.

The quantum concept recalls the fact that there is lower epistemological limit to our knowledge of the universe, related to the uncertainty principle.

Comment: A 'Quantum' stands for a 4D real world object.

Comment: A quantum is the EMMO mereological 4D a-tomic entity.

To avoid confusion with the concept of atom coming from physics, we will use the expression quantum mereology, instead of a-tomistic mereology.

Comment: From Latin quantum (plural quanta) "as much as, so much as;", introduced in physics directly from Latin by Max Planck, 1900.

- is\_a mereotopology.Item
- is\_a mereotopology.EMMO
- $\bullet \ \ {\rm mereotopology.hasProperPart\ only\ owl:} Nothing$

## Elementary branch



Figure 3.2: Elementary branch.

## **Elementary**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/top/physical\#EMMO\_0f795e3e\_c602\_4577\_9a43\_d5a231aa1360}$ 

Elucidation: The basic constituent of 'item'-s that can be proper partitioned only in time up to quantum level.

**Comment:** According to mereology, this should be call 'a-tomistic' in the strict etimological sense of the word (from greek, a-tomos: un-divisible).

Mereology based on such items is called atomistic mereology.

However, in order not to confuse the lexicon between mereology and physics (in which an atom is a divisible physical entity) we prefer to call it 'elementary', recalling the concept of elementary particle coming from the standard particles model.

**Comment:** From Latin elementārius ("elementary"), from elementum ("one of the four elements of antiquity; fundamentals")

**Comment:** While a 'Quantum' is a-tomistic in time and space, an 'elementary' is a-tomistic only in space, recalling the concept of elementary particle.

#### Relations:

- is\_a physical.Physical
- physical.hasTemporalPart only physical.Elementary
- physical.hasSpatialPart only owl:Nothing

## Perspective branch



Figure 3.3: Perspective branch.

## Perspective

IRI: http://emmo.info/emmo/top#EMMO\_49267eba\_5548\_4163\_8f36\_518d65b583f9

**Elucidation:** The class of individuals that stand for real world objects according to a specific representational perspective.

**Comment:** This class is the practical implementation of the EMMO pluralistic approach for which the only objective categorization is provided by the Universe individual and all the Quantum individuals.

Between these two extremes, there are several subjective ways to categorize real world objects, each one provide under a 'Perspective' subclass.

#### Relations:

• is\_a physical.Physical

## Holistic branch



Figure 3.4: Holistic branch.

## Holistic

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/holistic} \# EMMO\_0277f24a\_ea7f\_4917\_81b7\_fb0406c8fc62$ 

**Elucidation:** A union of classes that categorize physicals under a holistic perspective: the interest is on the whole 4D object (process) and the role of its 4D parts (participants) without going further into specifying the spatial hierarchy or the temporal position of each part.

**Comment:** An holistic perspective considers each part of the whole as equally important, without the need of a granularity hierarchy (in time or space).

A molecule of a body can have role in the body evolution, without caring if its part of a specific organ and without specifying the time interval in which this role occurred.

This class allows the picking of parts without necessarily going trough a rigid hierarchy of spatial compositions (e.g. body  $\rightarrow$  organ  $\rightarrow$  cell  $\rightarrow$  molecule) or temporal composition.

**Comment:** Holism (from Greek όλος holos "all, whole, entire")

#### **Relations:**

• is\_a top.Perspective

• equivalent to holistic.Process or holistic.Participant

#### Device

IRI: http://emmo.info/emmo/middle/manufacturing#EMMO\_494b372c\_cfdf\_47d3\_a4de\_5e037c540de8

**Elucidation:** An engineered object which is instrumental for reaching a particular purpose through its characteristic functioning process, with particular reference to mechanical or electronic equipment.

Comment: From Old French "deviser", meaning: arrange, plan, contrive.

Literally "dispose in portions," from Vulgar Latin "divisare", frequentative of Latin dividere, meaning "to divide"

#### **Relations:**

- is\_a manufacturing.Engineered
- $\bullet \ \ Inverse (holistic.has Proper Participant) \ some \ manufacturing. Discrete Manufacturing$

## **EngineeredMaterial**

IRI: http://emmo.info/emmo/middle/manufacturing#EMMO\_ec7464a9\_d99d\_45f8\_965b\_4e9230ea8356

Comment: A material that is synthesized within a manufacturing process.

#### **Relations:**

- is a manufacturing. Engineered
- is a physicalistic.Material
- Inverse(holistic.hasProperParticipant) some manufacturing.ContinuousManufacturing

## Engineered

IRI: http://emmo.info/emmo/middle/manufacturing#EMMO\_86ca9b93\_1183\_4b65\_81b8\_c0fcd3bba5ad

**Elucidation:** A 'physical' that stands for a real world object that has been designed and manufactured for a particular purpose.

Example: Car, tire, composite material.

**Comment:** The 'Engineered' branch represents real world objects that show some level of complexity/heterogeneity in their composition, and are made for a specific use.

#### **Relations:**

- is\_a holistic.Participant
- $\bullet \ \ Inverse (holistic.has Proper Participant) \ some \ manufacturing. Manufacturing$

## Participant

IRI: http://emmo.info/emmo/middle/holistic#EMMO 49804605 c0fe 4538 abda f70ba1dc8a5d

Elucidation: A portion of a 'Process' that participates to the process with a specific role.

Comment: In the EMMO the relation of participation to a process falls under mereotopology.

Since topological connection means causality, then the only way for a real world object to participate to a process is to be a part of it.

- is a holistic. Holistic
- is\_a physical.Physical
- Inverse(holistic.hasParticipant) some holistic.Process

## Semiotic branch



Figure 3.5: Semiotic branch.

## Semiotic

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_b803f122\_4acb\_4064\_9d71\_c1e5fd091fc9$ 

**Elucidation:** The class of individuals that stands for semiotic objects, i.e. objects that take part on a semiotic process.

Comment: Semiotic subclasse are defined using Peirce's semiotic theory.

"Namely, a sign is something, A, which brings something, B, its interpretant sign determined or created by it, into the same sort of correspondence with something, C, its object, as that in which itself stands to C." (Peirce 1902, NEM 4, 20–21).

The triadic elements: - 'sign': the sign A (e.g. a name) - 'interpretant': the sign B as the effects of the sign A on the interpreter (e.g. the mental concept of what a name means) - 'object': the object C (e.g. the entity to which the sign A and B refer to)

This class includes also the 'interpeter' i.e. the entity that connects the 'sign' to the 'object'

#### **Relations:**

- $\bullet\,$ is\_a holistic. Participant
- Inverse(holistic.hasProperParticipant) some semiotics.Semiosis
- equivalent\_to semiotics.Interpreter or semiotics.Object or semiotics.Sign

## Sign branch



Figure 3.6: Sign branch.

## Sign

IRI: http://emmo.info/emmo/middle/semiotics#EMMO\_b21a56ed\_f969\_4612\_a6ec\_cb7766f7f31d

**Elucidation:** An 'Physical' that is used as sign ("semeion" in greek) that stands for another 'Physical' through an semiotic process.

**Example:** A novel is made of chapters, paragraphs, sentences, words and characters (in a direct parthood mereological hierarchy).

Each of them are 'sign'-s.

A character can be the a-tomistic 'sign' for the class of texts.

The horizontal segment in the character "A" is direct part of "A" but it is not a 'sign' itself.

For plain text we can propose the ASCII symbols, for math the fundamental math symbols.

Comment: A 'Sign' can have temporal-direct-parts which are 'Sign' themselves.

A 'Sign' usually have 'sign' spatial direct parts only up to a certain elementary semiotic level, in which the part is only a 'Physical' and no more a 'Sign' (i.e. it stands for nothing). This elementary semiotic level is peculiar to each particular system of signs (e.g. text, painting).

Just like an 'Elementary' in the 'Physical' branch, each 'Sign' branch should have an a-tomistic mereological part.

**Comment:** According to Peirce, 'Sign' includes three subcategories: - symbols: that stand for an object through convention - indeces: that stand for an object due to causal continguity - icon: that stand for an object due to similitudes e.g. in shape or composition

#### **Relations:**

- is a semiotics. Semiotic
- ullet equivalent\_to semiotics.Index or semiotics.Conventional or semiotics.Icon

## Neper

IRI: http://emmo.info/emmo/middle/units-extension#EMMO b41515a9 28d8 4d78 8165 74b2fc72f89e

**Definition:** Unit of measurement for quantities of type level or level difference, which are defined as the natural logarithm of the ratio of power- or field-type quantities.

The value of a ratio in nepers is given by ln(x1/x2) where x1 and x2 are the values of interest (amplitudes), and ln is the natural logarithm. When the values are quadratic in the amplitude (e.g. power), they are first linearised by taking the square root before the logarithm is taken, or equivalently the result is halved.

Wikipedia

**Dbpediaentry:** http://dbpedia.org/page/Neper

Iupacentry: https://doi.org/10.1351/goldbook.N04106

Qudtentry: http://qudt.org/vocab/unit/NP

Wikipediaentry: https://en.wikipedia.org/wiki/Neper

## Relations:

- is a units-extension.SIAcceptedSpecialUnit
- $\bullet$  is\_a metrology.OffSystemUnit
- $\bullet \ \ {\rm metrology.hasPhysicalDimension\ some\ metrology.DimensionOne}$
- perceptual.hasSymbolData value "Np"

## Interpretant

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_054 af 807\_85 cd\_4a13\_8eba\_119 df daaf 38b$ 

**Elucidation:** The interpreter's internal representation of the object in a semiosis process.

#### Relations:

• is\_a semiotics.Sign

#### Litre

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_a155dc93\_d266\_487e\_b5e7\_2a2c72d5ebf9$ 

**Definition:** A non-SI unit of volume defined as 1 cubic decimetre (dm3),

Iupacentry: https://doi.org/10.1351/goldbook.L03594

Qudtentry: http://qudt.org/vocab/unit/L

#### **Relations:**

• is\_a units-extension.SIAcceptedSpecialUnit

- is\_a metrology.OffSystemUnit
- $\bullet \hspace{0.2cm} \text{metrology.hasPhysicalDimension some isq.VolumeDimension} \\$
- perceptual.hasSymbolData value "l"

#### Bel

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 6c7160fc cc64 46f0 b43b aba65e9952e3

Definition: One bel is defined as % ln(10) neper.

Elucidation: Unit of measurement for quantities of type level or level difference.

Comment: Today decibel (one tenth of a bel) is commonly used instead of bel.

**Comment:** bel is used to express the ratio of one value of a power or field quantity to another, on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively.

Qudtentry: http://qudt.org/vocab/unit/B

Wikipediaentry: https://en.wikipedia.org/wiki/Decibel

#### Relations:

- is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "B"

## SpecialUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO 3ee80521 3c23 4dd1 935d 9d522614a3e2

Elucidation: A unit symbol that stands for a derived unit.

Example: Pa stands for N/m2 J stands for N m

Comment: Special units are semiotic shortcuts to more complex composed symbolic objects.

### Relations:

- is\_a metrology.DerivedUnit
- is a metrology.UnitSymbol
- is\_a semiotics.Sign
- Inverse(semiotics.hasSign) some metrology.DerivedUnit

## Index

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_0cd58641\_824c\_4851\_907f\_f4c3be76630c$ 

Elucidation: A 'Sign' that stands for an 'Object' due to causal continguity.

**Example:** Smoke stands for a combustion process (a fire). My facial expression stands for my emotional status.

## Relations:

• is a semiotics. Sign

#### ArcSecond

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6a4547ab\_3abb\_430d\_b81b\_ce32d47729f5

**Definition:** Measure of plane angle defined as 1/3600 or a degree.

Altlabel: SecondOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCSEC

#### **Relations:**

• is\_a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some metrology.DimensionOne

• perceptual.hasSymbolData value " "

## Day

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 28ef05a7 ecc1 4df6 8116 c53251fbd4a8

**Definition:** A measure of time defined as 86 400 seconds.

**Dbpediaentry:** http://dbpedia.org/page/Day

Iupacentry: https://doi.org/10.1351/goldbook.D01527

Qudtentry: http://qudt.org/vocab/unit/DAY

#### Relations:

• is a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "d"

### Hour

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_21ef2ed6\_c086\_4d24\_8a75\_980d2bcc9282

**Definition:** Measure of time defined as 3600 seconds. **Iupacentry:** https://doi.org/10.1351/goldbook.H02866

Qudtentry: http://qudt.org/vocab/unit/HR

## Relations:

• is\_a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

 $\bullet \hspace{0.2cm} \text{metrology.hasPhysicalDimension some isq.} \\ \text{TimeDimension}$ 

• perceptual.hasSymbolData value "h"

### Minute

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_cabb20f0\_05c7\_448f\_9485\_e129725f15a4

Definition: Non-SI time unit defined as 60 seconds.

Dbpediaentry: http://dbpedia.org/page/Minute
Qudtentry: http://qudt.org/vocab/unit/MIN

## Relations:

• is a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "min"

### ArcMinute

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_1e0b665d\_db6c\_4752\_a6d4\_262d3a8dbb46

**Definition:** Measure of plane angle defined as 1/60 or a degree.

Altlabel: MinuteOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCMIN

#### Relations:

• is\_a units-extension.SIAcceptedSpecialUnit

- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.has Symbol<br/>Data value " "

#### AstronomicalUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 053648ea 3c0a 468c 89cb eb009239323a

**Definition:** One astronomical unit is defined as exactly 149597870700 m, which is roughly the distance from

earth to sun.

**Dbpediaentry:** http://dbpedia.org/page/Astronomical\_unit

Qudtentry: http://qudt.org/vocab/unit/PARSEC

Wikipediaentry: https://en.wikipedia.org/wiki/Astronomical\_unit

#### Relations:

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.LengthDimension
- perceptual.hasSymbolData value "au"

#### Dalton

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_00dd79e0\_31a6\_427e\_9b9c\_90f3097e4a96

**Definition:** One dalton is defined as one twelfth of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state.

Dbpediaentry: http://dbpedia.org/page/Unified atomic mass unit

Iupacentry: https://doi.org/10.1351/goldbook.D01514

Qudtentry: http://qudt.org/vocab/unit/Dalton

## Relations:

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.MassDimension
- perceptual.hasSymbolData value "Da"

#### Hectare

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_d6eb0176\_a0d7\_4b4e\_8df0\_50e912be2342

**Definition:** A non-SI metric unit of area defined as the square with 100-metre sides.

**Dbpediaentry:** http://dbpedia.org/page/Hectare

Qudtentry: http://qudt.org/vocab/unit/HA

Wikipediaentry: https://en.wikipedia.org/wiki/Hectare

### Relations:

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- $\bullet \ \ metrology. has Physical Dimension \ some \ is q. Area Dimension$
- perceptual.hasSymbolData value "ha"

# Tonne

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_f8b92999\_3cde\_46e3\_99d5\_664da3090a02

**Definition:** A non-SI unit defined as 1000 kg.

Iupacentry: https://doi.org/10.1351/goldbook.T06394

Qudtentry: http://qudt.org/vocab/unit/TON\_M

Wikipediaentry: https://en.wikipedia.org/wiki/Tonne

### Relations:

• is a units-extension.SIAcceptedSpecialUnit

• is a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.MassDimension

• perceptual.hasSymbolData value "t"

# ElectronVolt

IRI: http://emmo.info/emmo/middle/units-extension#EMMO e29f84db 4c1c 46ae aa38 c4d47536b972

**Definition:** The amount of energy gained (or lost) by the charge of a single electron moving across an electric

potential difference of one volt.

**Dbpediaentry:** http://dbpedia.org/page/Electronvolt **Iupacentry:** https://doi.org/10.1351/goldbook.E02014

Qudtentry: http://qudt.org/vocab/unit/EV

# Relations:

- is a units-extension.SIAcceptedSpecialUnit
- $\bullet$  is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.EnergyDimension
- perceptual.hasSymbolData value "eV"

### Degree

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_b8830065\_3809\_41b7\_be3c\_e33795567fd9$ 

**Definition:** Degree is a measurement of plane angle, defined by representing a full rotation as 360 degrees.

 ${\bf Dbpediaentry:\ http://dbpedia.org/page/Degree\_(angle)}$ 

Iupacentry: https://doi.org/10.1351/goldbook.D01560

Qudtentry: http://qudt.org/vocab/unit/DEG

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "o"

# SIAcceptedSpecialUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_6795a4b8\_ffd0\_4588\_a581\_a9413fe49cac$ 

Elucidation: Non-SI units mentioned in the SI.

**Comment:** This is a list of units that are not defined as part of the International System of Units (SI), but are otherwise mentioned in the SI brouchure, because either the General Conference on Weights and Measures (CGPM) accepts their use as being multiples or submultiples of SI-units, they have important contemporary application worldwide, or are otherwise commonly encountered worldwide.

Wikipediaentry: https://en.wikipedia.org/wiki/Non-SI\_units\_mentioned\_in\_the\_SI

#### Relations:

- is\_a metrology.SpecialUnit
- $\bullet$  is\_a metrology.OffSystemUnit
- disjoint\_union\_of units-extension.Dalton, units-extension.AstronomicalUnit, units-extension.ArcMinute, units-extension.Hour, units-extension.Day, units-extension.ArcSecond, units-extension.Bel, units-extension.Litre, units-extension.Neper, units-extension.Degree, units-extension.Minute, units-extension.Hectare, units-extension.ElectronVolt, units-extension.Tonne

# Interpreter branch



Figure 3.7: Interpreter branch.

# MeasurementInstrument

IRI: http://emmo.info/emmo/middle/properties#EMMO\_f2d5d3ad\_2e00\_417f\_8849\_686f3988d929

### Relations:

• is a properties. Observer

# Interpreter

IRI: http://emmo.info/emmo/middle/semiotics#EMMO 0527413c b286 4e9c b2d0 03fb2a038dee

**Elucidation:** The entity (or agent, or observer, or cognitive entity) who connects 'Sign', 'Interpretant' and 'Object'.

- is a semiotics. Semiotic
- $\bullet \ \ physical. has Spatial Part \ some \ semiotics. Interpretant$

### Observer

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/properties} \# EMMO\_1b52ee70\_121e\_4d8d\_8419\_3f97cd0bd89c$ 

**Elucidation:** An 'interpreter' that perceives another 'entity' (the 'object') through a specific perception mechanism and produces a 'property' (the 'sign') that stands for the result of that particular perception.

#### **Relations:**

- is\_a semiotics.Interpreter
- Inverse(holistic.hasParticipant) some properties.Observation

# Object branch



Figure 3.8: Object branch.

# Object

IRI: http://emmo.info/emmo/middle/semiotics#EMMO 6f5af708 f825 4feb a0d1 a8d813d3022b

**Elucidation:** The object, in Peirce semiotics.

**Comment:** Here is assumed that the concept of 'object' is always relative to a 'semiotic' process. An 'object' does not exists per se, but it's always part of an interpretation.

The EMMO relies on strong reductionism, i.e. everything real is a formless collection of elementary particles: we give a meaning to real world entities only by giving them boundaries and defining them using 'sign'-s.

In this way the 'sign'-ed entity become and 'object', and the 'object' is the basic entity needed in order to apply a logical formalism to the real world entities (i.e. we can speak of it through its sign, and use logics on it through its sign).

#### **Relations:**

 $\bullet$  is\_a semiotics. Semiotic

# Conventional branch

# PhysicalLaw

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO\_9c32fd69\_f480\_4130\_83b3\_fb25d9face14.}$ 

#### **Relations:**

• is\_a models.NaturalLaw



Figure 3.9: Conventional branch.

# Parameter

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_d1d436e7\_72fc\_49cd\_863b\_7bfb4ba5276a}$ 

Example: viscosity in the Navier-Stokes equation

**Comment:** A 'variable' whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation.

# Relations:

• is\_a math.Variable

# NaturalLaw

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO\_db9a009e\_f097\_43f5\_9520\_6cbc07e7610b}$ 

### **Relations:**

• is\_a models.Theory

# Theory

IRI: http://emmo.info/emmo/middle/models#EMMO\_8d2d9374\_ef3a\_47e6\_8595\_6bc208e07519

Elucidation: A 'conventional' that stand for a 'physical'.

**Comment:** The 'theory' is e.g. a proposition, a book or a paper whose sub-symbols suggest in the mind of the interpreter an interpretant structure that can represent a 'physical'.

It is not an 'icon' (like a math equation), because it has no common resemblance or logical structure with the 'physical'.

In Peirce semiotics: legisign-symbol-argument

# Relations:

• is\_a semiotics.Conventional

### Constant

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_ae15fb4f\_8e4d\_41de\_a0f9\_3997f89ba6a2}$ 

Elucidation: A 'varaible' that stand for a well known constant.

**Example:**  $\pi$  refers to the constant number ~3.14

### Relations:

- is a math. Variable
- Inverse(math.hasVariable) only math.Numerical

### Unknown

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_fe7e56ce\_118b\_4243\_9aad\_20eb9f4f31f6}$ 

Elucidation: The dependent variable for which an equation has been written.

**Example:** Velocity, for the Navier-Stokes equation.

#### **Relations:**

• is a math. Variable

### MaterialLaw

IRI: http://emmo.info/emmo/middle/models#EMMO\_f19ff3b4\_6bfe\_4c41\_a2b2\_9affd39c140b

#### Relations:

• is a models.NaturalLaw

### Variable

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_1eed0732\_e3f1\_4b2c\_a9c4\_b4e75eeb5895$ 

**Elucidation:** A 'Variable' is a symbolic object that stands for a numerical defined 'Mathematical' object like e.g. a number, a vector, a matrix.

# $\textbf{Example:} \ x \ k$

## Relations:

- $\bullet$  is\_a math.Mathematical
- is a semiotics. Conventional
- Inverse(math.hasVariable) some math.Mathematical

# Conventional

IRI: http://emmo.info/emmo/middle/semiotics#EMMO 35d2e130 6e01 41ed 94f7 00b333d46cf9

**Elucidation:** A 'Sign' that stands for an 'Object' through convention, norm or habit, without any resemblance to it.

**Comment:** In Peirce semiotics this kind of sign category is called symbol. However, since symbol is also used in formal languages, the name is changed in conventional.

### **Relations:**

 $\bullet$  is\_a semiotics.Sign



Figure 3.10: Property branch.

# Property branch

# ModelledQuantitativeProperty

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/properties\#EMMO\_d0200cf1\_e4f4\_45ae\_873f\_b9359daea3cd} \\$ 

### Relations:

• is\_a metrology.QuantitativeProperty

# ConventionalQuantitativeProperty

IRI: http://emmo.info/emmo/middle/properties#EMMO d8aa8e1f b650 416d 88a0 5118de945456

Elucidation: A quantitative property attributed by agreement to a quantity for a given purpose.

**Example:** The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitiative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory.

If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process.

Then I have two different physical quantities that are properties thanks to two different semiotic processes.

Comment: A property that is associated to an object by convention, or assumption.

#### Relations:

• is\_a metrology.QuantitativeProperty

# QuantitativeProperty

IRI: http://emmo.info/emmo/middle/metrology#EMMO dd4a7f3e ef56 466c ac1a d2716b5f87ec

**Definition:** "A property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed by means of a number and a reference" ISO 80000-1

"A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such." International vocabulary of metrology (VIM)

**Elucidation:** A 'Quantity' that can be quantified with respect to a standardized reference physical instance (e.g. the prototype meter bar, the kg prototype) or method (e.g. resilience) through a measurement process.

**Comment:** A quantitative property is always expressed as a quantity (i.e. a number and a reference unit). For the EMMO, a nominalistic ontology, there is no property as abstract object.

A property is a sign that stands for an object according to a specific code shared by some observers.

For quantititative properties, one possible code that is shared between the scientific community (the observers) is the SI system of units.

**Comment:** Subclasses of 'QuantitativeProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling).

#### Relations:

- is\_a metrology.Quantity
- is a properties. Objective Property
- $\bullet \ \ equivalent\_to \ properties. Measured Quantitative Property \ or \ properties. Modelled Quantitative Property \ or \ properties. Conventional Quantitative Property \\$

# SubjectiveProperty

IRI: http://emmo.info/emmo/middle/properties#EMMO 251cfb4f 5c75 4778 91ed 6c8395212fd8

**Elucidation:** A 'Property' that cannot be univocally determined and depends on an agent (e.g. a human individual, a community) acting as black-box.

**Example:** The beauty of that girl. The style of your clothing.

**Comment:** The word subjective means that a non-well defined or an unknown procedure is used for the definition of the property.

This happens due to e.g. the complexity of the object, the lack of a underlying model for the representation of the object, the non-well specified meaning of the property symbols.

A 'SubjectiveProperty' cannot be used to univocally compare 'Object'-s.

e.g. you cannot evaluate the beauty of a person on objective basis.

### Relations:

• is\_a properties.Property

# NominalProperty

IRI: http://emmo.info/emmo/middle/properties#EMMO 909415d1 7c43 4d5e bbeb 7e1910159f66

**Elucidation:** An 'Objective Property' that cannot be quantified.

**Example:** CFC is a 'sign' that stands for the fact that the morphology of atoms composing the microstructure of an entity is predominantly Cubic Face Centered

A color is a nominal property.

Sex of a human being.

**Comment:** "Property of a phenomenon, body, or substance, where the property has no magnitude."

"A nominal property has a value, which can be expressed in words, by alphanumerical codes, or by other means."

International vocabulary of metrology (VIM)

#### Relations:

• is\_a properties.ObjectiveProperty

# **Property**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/properties} \# EMMO\_b7bcff25\_ffc3\_474e\_9ab5\_01b1664bd4ba$ 

**Elucidation:** A 'Perceptual' referring to a specific code that is used as 'Conventional' sign to represent an 'Object' according to a specific interaction mechanism by an 'Observer'.

(A property is always a partial representation of an 'Object' since it reflects the 'Object' capability to be part of a specific 'Observation' process)

**Example:** Hardness is a subclass of properties.

Vickers hardness is a subclass of hardness that involves the procedures and instruments defined by the standard hardness test.

**Example:** Let's define the class 'colour' as the subclass of the properties that involve photon emission and an electromagnetic radiation sensible observer.

An individual C of this class 'colour' can be defined be declaring the process individual (e.g. daylight illumination) and the observer (e.g. my eyes)

Stating that an entity E hasProperty C, we mean that it can be observed by such setup of process + observer (i.e. observed by my eyes under daylight).

This definition can be generalized by using a generic human eye, so that the observer can be a generic human.

This can be used in material characterization, to define exactly the type of measurement done, including the instrument type.

**Comment:** A 'Property' is a sort of name or label that we put upon objects that interact with an observer in the same specific way.

e.g. "hot" objects are objects that interact with an observer through a perception mechanism aimed to perceive an heat source.

**Comment:** We know real world entities through observation/perception.

A non-perceivable real world entity does not exist (or it exists on a plane of existance that has no intersection with us and we can say nothing about it).

Perception/observation of a real wolrd entity occurs when the entity stimulate an observer in a peculiar way through a well defined perception channel.

For this reason each property is related to a specific observation process which involves a specific observer with its own perception mechanisms.

The observation process (e.g. a look, a photo shot, a measurement) is performed by an observer (e.g. you, a camera, an instrument) through a specific perception mechanism (e.g. retina impression, CMOS excitation, piezoelectric sensor activation) and involves an observed entity.

An observation is a semiotic process, since it stimulate an interpretant within the interpreter who can communicate the perception result to other interpreters through a sign which is the property.

Property subclasses are specializations that depend on the type of observation processes.

e.g. the property 'colour' is related to a process that involves emission or interaction of photon and an observer who can perceive electromagnetic radiation in the visible frequency range.

Properties usually relies on symbolic systems (e.g. for colour it can be palette or RGB).

### Relations:

- is\_a semiotics.Conventional
- $\bullet \;\; \text{Inverse}(\text{holistic.hasParticipant}) \; \text{some properties.Observation}$
- Inverse(properties.hasProperty) some semiotics.Object
- disjoint\_union\_of properties.SubjectiveProperty, properties.ObjectiveProperty

# **Objective**Property

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/properties} \# EMMO\_2a888cdf\_ec4a\_4ec5\_af1c\_0343372fc978$ 

**Elucidation:** A 'Property' that is determined by each 'Observer' following a well defined 'Observation' procedure through a specific perception channel.

**Comment:** The word objective does not mean that each observation will provide the same results. It means that the observation followed a well defined procedure.

**Comment:** This class refers to what is commonly known as physical property, i.e. a measurable property of physical system, whether is quantifiable or not.

### Relations:

• is a properties. Property

# MeasuredQuantitativeProperty

IRI: http://emmo.info/emmo/middle/properties#EMMO\_873b0ab3\_88e6\_4054\_b901\_5531e01f14a4

### Relations:

• is\_a metrology.QuantitativeProperty

# Icon branch



Figure 3.11: Icon branch.

# Icon

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/semiotics} \# EMMO\_d7788d1a\_020d\_4c78\_85a1\_13563fcec168$ 

**Elucidation:** A 'Sign' that stands for an 'Object' by resembling or imitating it, in shape or by sharing a similar logical structure.

**Example:** A picture that reproduces the aspect of a person.

An equation that reproduces the logical connection of the properties of a physical entity.

**Comment:** Three subtypes of icon are possible:

- (a) the image, which depends on a simple quality (e.g. picture)
- (b) the diagram, whose internal relations, mainly dyadic or so taken, represent by analogy the relations in something (e.g. math formula, geometric flowchart)
- (c) the metaphor, which represents the representative character of a sign by representing a parallelism in something else

[Wikipedia]

• is\_a semiotics.Sign

### Model

IRI: http://emmo.info/emmo/middle/models#EMMO\_939483b1\_0148\_43d1\_8b35\_851d2cd5d939

**Elucidation:** A 'sign' that not only stands for a 'physical' or a 'process', but it is also a simplified representation, aimed to assist calculations for its description or for predictions of its behaviour.

A 'model' represents a 'physical' or a 'process' by direct similitude (e.g. small scale replica) or by capturing in a logical framework the relations between its properties (e.g. mathematical model).

**Comment:** A 'model' prediction is always a prediction of the properties of an entity, since an entity is known by an interpreter only through perception.

#### **Relations:**

- is a semiotics.Icon
- equivalent to Inverse(models.hasModel) some physical. Physical

# Process branch



Figure 3.12: Process branch.

### ContinuousManufacturing

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/manufacturing} \# EMMO\_71 \\ \text{d}1c8 \\ \text{f}0\_c6 \\ \text{e}3\_44 \\ \text{b}5\_a4 \\ \text{b}6\_1 \\ \text{b}74 \\ \text{ff}35698 \\ \text{a}465\_a4 \\ \text{b}74 \\ \text{b}74$ 

Elucidation: A manufacturing process whose product is the result of the combination of more substances.

**Example:** Synthesis of materials, the preparation of a cake.

### Relations:

• is\_a manufacturing.Manufacturing

### **Process**

IRI: http://emmo.info/emmo/middle/holistic#EMMO\_43e9a05d\_98af\_41b4\_92f6\_00f79a09bfce

Elucidation: A temporal part of a physical that identifies a particular type of evolution in time.

Comment: A 'Process' is always a 'Physical', since a 'Void' does not have elements that evolves in time.

**Comment:** Following the common definition of process, the reader may think that every 'Physical' should be a process, since every 4D object always has a time dimension.

However, in the EMMO we restrict the meaning of the word process to 'Physical'-s whose evolution in time have a particular meaning for the ontologist (i.e. every 4D object unfolds in time, but not every 4D object may be of interest for the ontologist).

A 'Process' is not only something that unfolds in time (which is automatically represented in a 4D ontology), but something that has a meaning for the ontologist (i.e. that the ontologist can separate from the rest of the 4D physical for any reason).

### Relations:

- is a holistic. Holistic
- is\_a physical.Physical
- holistic.hasParticipant some holistic.Participant

## Measurement

IRI: http://emmo.info/emmo/middle/properties#EMMO 463bcfda 867b 41d9 a967 211d4d437cfb

**Elucidation:** An 'observation' that results in a quantitative comparison of a 'property' of an 'object' with a standard reference.

#### Relations:

- is a properties. Observation
- holistic.hasParticipant some metrology.QuantitativeProperty
- holistic.hasParticipant some properties.MeasurementInstrument

### Theorization

IRI: http://emmo.info/emmo/middle/models#EMMO 6c739b1a a774 4416 bb31 1961486fa9ed

**Elucidation:** The 'semiosis' process of interpreting a 'physical' and provide a complex sign, 'theory' that stands for it and explain it to another interpreter.

## Relations:

• is\_a properties.Observation

# PhysicalPhenomenon

IRI: http://emmo.info/emmo/middle/models#EMMO\_314d0bd5\_67ed\_437e\_a609\_36d46147cea7

Elucidation: A 'process' that is recognized by physical sciences and is catogrized accordingly.

**Comment:** While every 'process' in the EMMO involves physical objects, this class is devoted to represent real world objects that express a phenomenon relevant for the ontologist.

### Relations:

• is a holistic.Process

# DiscreteManufacturing

IRI: http://emmo.info/emmo/middle/manufacturing#EMMO\_8786cb47\_8e1f\_4968\_9b15\_f6d41fc51252

Elucidation: A manufacturing process aimed to the production of a device made of specific components.

**Example:** Assemblying a bicycle, building a car.

### Relations:

• is\_a manufacturing.Manufacturing

# Experiment

IRI: http://emmo.info/emmo/middle/models#EMMO\_22522299\_4091\_4d1f\_82a2\_3890492df6db

**Elucidation:** An experiment is a process that is intended to replicate a physical phenomenon in a controlled environment.

#### Relations:

- is\_a properties.Observation
- holistic.hasParticipant some models.PhysicalPhenomenon

# Manufacturing

IRI: http://emmo.info/emmo/middle/manufacturing#EMMO\_a4d66059\_5dd3\_4b90\_b4cb\_10960559441b

**Elucidation:** The process of transforming raw materials into a product by the use of manual labor, machinery or chemical/biological processes.

Comment: From Latin manufacture: "made by hand".

### Relations:

- is a holistic. Process
- holistic.hasProperParticipant some manufacturing.Engineered

### Observation

IRI: http://emmo.info/emmo/middle/properties#EMMO\_10a5fd39\_06aa\_4648\_9e70\_f962a9cb2069

**Elucidation:** A 'Semiosis' that involves an 'Observer' that perceives another 'Physical' (the 'Object') through a specific perception mechanism and produces a 'Property' (the 'Sign') that stands for the result of that particular perception.

#### Relations:

- is a semiotics. Semiosis
- holistic.hasParticipant some properties.Observer
- holistic.hasParticipant some properties.Property

# Semiosis

IRI: http://emmo.info/emmo/middle/semiotics#EMMO 008fd3b2 4013 451f 8827 52bceab11841

**Elucidation:** A 'Process', that has participant an 'Interpreter', that is aimed to produce a 'Sign' representing another participant, the 'Object'.

**Example:** Me looking a cat and saying loud: "Cat!"  $\rightarrow$  the semiosis process

me  $\rightarrow$  interpreter cat  $\rightarrow$  object (in Peirce semiotics) the cat perceived by my mind  $\rightarrow$  interpretant "Cat!"  $\rightarrow$  sign, the produced sign

# Relations:

- is a holistic.Process
- $\bullet \ \ holistic. has Proper Participant \ some \ semiotics. Interpreter$
- holistic.hasProperParticipant some semiotics.Object
- holistic.hasProperParticipant some semiotics.Sign

# Perceptual branch

# Perceptual

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_649bf97b\_4397\_4005\_90d9\_219755d92e34



Figure 3.13: Perceptual branch.

**Elucidation:** A 'Physical' which stands for a real world object that can stimulate a perception (e.g. a mental impression, the excitation of a sensor) to an interpreter (human or non-human).

**Example:** A line scratched on a surface. A sound. A smell. The word 'cat' and the sound of the word 'cat' (the first one is graphical and the second acoustical).

**Example:** The meta-semiotic process: I see a cloud in the sky. Since I'm an EMMO ontologist, I create an individual named Cloud under the 'Impression' class. This semiotic process occurs at meta-level: it's how I use the EMMO as tool for a direct representation of the world.

The semiotic process within EMMO: My friend looks at the same cloud and says: "It is an elephant". I use the EMMO to record this experience by declaring: - my friend as MyFriend individual, belonging to 'Interpreter' classes - the sound of the word "elephant" as an acoustical impression individual named ElephantWord, belonging to 'Impression' - a relation hasSign between Cloud and ElephantWord, that makes ElephantWord also belonging to 'Sign' class and Cloud belonging also to 'Object' class - a 'Semiosis' individual called MyFriendElephantCloud that hasParticipant: Cloud, ElephantWord and MyFriend, respectively as object, sign and interpreter.

**Comment:** 'Perceptual' includes real world objects that: - are part of a communication system (e.g. words, speech, alphabets) - are not part of a communication system, but can be identified and referred by an interpreter

**Comment:** A 'Perceptual' is a meta-object, meaning that is addressed by the ontologist (the meta-interpreter) in a meta-semiotic process occurring outside the EMMO.

A 'Perceptual' becomes an 'Object', when it is part of a 'Semiotic' process described by the ontologist through the EMMO.

**Comment:** From Latin perceptiō ("a receiving or collecting, perception, comprehension"), from perceptus ("perceived, observed").

**Comment:** This class is the most general superclass for the categorization of real world objects that are recognizable by an interpreter (agent).

A 'Perceptual' can stand for something else in a semiotic process (acting as sign or as object).

However, a perceptual is not necessarily a 'Sign' (e.g. a line sketched on a blackboard is a recognizable 'Perceptual' but it may stand for nothing).

### Relations:

• is\_a top.Perspective

### Acoustical

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_4b3afb22\_27cf\_4ce3\_88bc\_492bfccb546b

**Elucidation:** A 'Perceptual' which stands for a real world object whose spatiotemporal pattern makes it identifiable by an observer as a sound.

**Comment:** 'acoustical' refers to the perception mechanism of the observer that can occur through a microphone, a ear.

• is\_a perceptual.Perceptual

# Graphical branch



Figure 3.14: Graphical branch.

# IdiomaticSymbol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_0 a 318776\_b 067\_4 de0\_a 2a6\_cba 2cf 6333f 8266 a 2a6\_cba 2cf 6335 a 2a6\_cba 2cf 6355 a 2a6\_cba 2cf 6355 a 2a6\_cba 2cf 635 a 2a6\_cba 2cf 635 a 2a6\_cba 2cf 635 a 2a6\_cba 2cf 635$ 

### Relations:

- $\bullet$  is\_a perceptual.Idiomatic
- is a perceptual.Symbol
- equivalent to perceptual. Idiomatic and perceptual. Symbol

# Python

$$\label{lem:lem:mo_info_emmo_middle_perceptual} \begin{split} \textbf{IRI:} \ & \text{http://emmo.info/emmo/middle/perceptual} \\ \textbf{\#EMMO\_add2e29d\_6d87\_4b78\_9706\_588e25557093} \end{split} \\ \textbf{Relations:} \end{split}$$

• is\_a perceptual.Software

# Idiomatic

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_48716718\_225f\_4c88\_89e2\_d819d30c90a2 Elucidation: A language object that follows syntactic rules of a an idiom (e.g. english, italian). Relations:

• is\_a perceptual.Language

# String

Elucidation: A physical made of more than one symbol sequentially arranged.

**Example:** The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language.

In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word).

If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat.

**Comment:** A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list).

Comment: A string is not requested to respect any syntactic rule: it's simply directly made of symbols.

#### **Relations:**

- $\bullet$  is\_a perceptual.SymbolicComposition
- $\bullet$  is\_a reductionistic.State
- reductionistic.hasSpatialDirectPart some perceptual.Symbol
- reductionistic.hasSpatialDirectPart only perceptual.Symbol

# Inequality

IRI: http://emmo.info/emmo/middle/math#EMMO\_0b6ebe5a\_0026\_4bef\_a1c1\_5be00df9f98e

**Elucidation:** A relation which makes a non-equal comparison between two numbers or other mathematical expressions.

Example: f(x) > 0

### Relations:

• is a math.MathematicalFormula

### MathematicalFormula

IRI: http://emmo.info/emmo/middle/math#EMMO\_88470739\_03d3\_4c47\_a03e\_b30a1288d50c

**Elucidation:** A mathematical string that can be evaluated as true or false.

### Relations:

- is a math.Mathematical
- is\_a perceptual.SymbolicComposition

### Language

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_d8d2144e\_5c8d\_455d\_a643\_5caf4d8d9df8$ 

**Elucidation:** A language object is a symbolic object respecting a specific language syntactic rules (a well-formed formula).

#### **Relations:**

• is\_a perceptual.Symbolic

# C++

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 c35698 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_24 b7\_4140\_8 eb4\_676 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_64 aba1e5\_676 e79 \\ \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# \ \text{http://emmo.info/emmo/middle/perceptual} \# \ \text{http://emmo.info/emmo/middle/perceptual} \# \ \text{http://emmo.info/emmo/middle/perceptual} \# \ \text{http://emmo.info/emmo/middle/pe$ 

Elucidation: A language object respecting the syntactic rules of C++.

#### Relations:

• is\_a perceptual.Software

### Java

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_09007bc0\_b5f2\_4fb9\_af01\_caf948cf2044

## Relations:

• is a perceptual.Software

### **Function Definition**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_4bc29b0f\_8fcc\_4026\_a291\_f9774a66d9b8$ 

Elucidation: A function defined using functional notation.

Example: y = f(x)

#### Relations:

• is\_a math.DefiningEquation

# MaterialRelation

IRI: http://emmo.info/emmo/middle/models#EMMO e5438930 04e7 4d42 ade5 3700d4a52ab7

**Elucidation:** An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics\_quantity' (the dependent variable) as function of other variables, physics\_quantity or data (independent variables).

**Example:** The Lennard-Jones potential.

A force field.

An Hamiltonian.

**Comment:** A material\_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics\_quantities.

#### Relations:

- is\_a math.Equation
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity

# **Symbolic**

**Elucidation:** An 'Graphical' that stands for a token or a composition of tokens from one or more alphabets, without necessarily respecting syntactic rules.

**Example:** fe780 emmo !5\*a cat for(i=0;i< N;++i)

#### **Relations:**

• is\_a perceptual.Graphical

### Software

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_8681074a\_e225\_4e38\_b586\_e85b0f43ce38$ 

Elucidation: A language object that follows syntactic rules of a programming language.

#### Relations:

• is\_a perceptual.Language

# **PhysicsEquation**

IRI: http://emmo.info/emmo/middle/models#EMMO\_27c5d8c6\_8af7\_4d63\_beb1\_ec37cd8b3fa3

**Elucidation:** An 'equation' that stands for a 'physical\_law' by mathematically defining the relations between physics\_quantities.

**Example:** The Newton's equation of motion.

The Schrödinger equation.

The Navier-Stokes equation.

### Relations:

- is a math.Equation
- is a models.MathematicalModel
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity
- Inverse(models.hasModel) some models.PhysicalPhenomenon

# **Symbolic Composition**

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_89a0c87c\_0804\_4013\_937a\_6fe234d9499c

Elucidation: A symbolic entity made of other symbolic entities according to a specific spatial configuration.

**Comment:** This class collects individuals that represents arrangements of strings, or other symbolic compositions, without any particular predifined arrangement schema.

### Relations:

- is\_a perceptual.Symbolic
- physical.hasSpatialPart some perceptual.Symbolic

# **Pictorial**

IRI: http://emmo.info/emmo/middle/perceptual#EMMO 1da53c06 9577 4008 8652 272fa3b62be7

**Elucidation:** A 'Graphical' that stands for a real world object that shows a recognizable pictorial pattern without being necessarily associated to a symbolic language.

**Example:** A drawing of a cat. A circle on a paper sheet. The Mona Lisa.

# Relations:

• is\_a perceptual.Graphical

### Graphical

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_c74 da 218\_9147\_4f03\_92 d1\_8894 abca55f3$ 

**Elucidation:** A 'Perceptual' which stands for a real world object whose spatial configuration shows a pattern identifiable by an observer.

**Example:** 'Graphical' objects include writings, pictures, sketches ...

**Comment:** From the Ancient Greek  $\gamma\rho\alpha\phi\dot{\eta}$  (graphé) which means drawing, painting, writing, a writing, description, and from  $\gamma\rho\dot{\alpha}\phi\omega$  (gráphō) which means scratch, carve.

### Relations:

• is\_a perceptual.Perceptual

# DefiningEquation

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_29afdf54\_90ae\_4c98\_8845\_fa9ea3f143a8$ 

Elucidation: An equation that define a new variable in terms of other mathematical entities.

**Example:** The definition of velocity as v = dx/dt.

The definition of density as mass/volume.

y = f(x)

#### Relations:

• is\_a math.Equation

# Equation

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_e56ee3eb\_7609\_4ae1\_8bed\_51974f0960a6}$ 

**Elucidation:** The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions.

**Example:**  $2+3 = 5 \text{ x}^2 + 3x = 5x \text{ dv/dt} = a \sin(x) = y$ 

Comment: An equation with variables can always be represented as:

f(v0, v1, ..., vn) = g(v0, v1, ..., vn)

where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables.

### Relations:

- $\bullet$  is\_a math.MathematicalFormula
- $\bullet$  is\_a reductionistic.State
- is a math.Mathematical
- $\bullet \ \ {\rm reductionistic.hasSpatialDirectPart\ some\ math. Expression}$

# ArithmeticEquation

IRI: http://emmo.info/emmo/middle/math#EMMO a6138ba7 e365 4f2d b6b4 fe5a5918d403

**Example:** 1 + 1 = 2

**Relations:** 

• is\_a math.Equation

### AlgebricEquation

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO}\_98d65021\_4574\_4890\_b2fb\_46430841077f$ 

Example: 2 \* a - b = c

Comment: An 'equation' that has parts two 'polynomial'-s

- is a math.Equation
- $\bullet \ \ reduction is tic. has Spatial Direct Part\ some\ math. Algebric Expression$

# Geometrical branch



Figure 3.15: Geometrical branch.

# EuclideanSpace

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_5f278af9\_8593\_4e27\_a717\_ccc9e07a0ddf \\ \textbf{Relations:}$ 

• is\_a perceptual.3-manifold

### Circle

 $\label{lem:lem:mo_b2a234a8_579a_422c_9305_b8f7e72c76cd} \textbf{Relations:}$ 

• is\_a perceptual.1-manifold

# Curve

 $\label{lem:lem:moinfo} \textbf{IRI:} \ http://emmo.info/emmo/middle/perceptual \#EMMO\_0ef4ff4a\_5458\_4f2a\_b51f\_4689d472a3f2\\ \textbf{Relations:}$ 

• is\_a perceptual.1-manifold

### 3-manifold

 $\label{lem:lem:mo_mo_middle} \textbf{IRI: } http://emmo.info/emmo/middle/perceptual \#EMMO\_46f0f8df\_4dc6\_418f\_8036\_10427a3a288e \\ \textbf{Relations: }$ 

 $\bullet$  is\_a perceptual.Geometrical

# Point

 $\label{lem:lem:moinfo/emmo/middle/perceptual \#EMMO\_39362460\_2a97\_4367\_8f93\_0418c2ac9a08 \\ \textbf{Relations:}$ 

• is\_a perceptual.0-manifold

### 1-manifold

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \\ \# EMMO\_0c576e13\_4ee7\_4f3d\_bfe9\_1614243df018 \\ \textbf{Relations:}$ 

• is\_a perceptual.Geometrical

### 0-manifold

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_0 ab 0485 c\_9 e5b\_4257\_a679\_90 a 2 df ba5 c7 c \\ \textbf{Relations:}$ 

• is\_a perceptual.Geometrical

### **Torus**

 $\label{lem:lem:moinfo} \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_86060335\_31c2\_4820\_b433\_27c64aea0366\\ \textbf{Relations:}$ 

• is\_a perceptual.2-manifold

### Line

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_3e309118\_e8b7\_4021\_80f4\_642d2df65d94 \\ \textbf{Relations:}$ 

• is\_a perceptual.1-manifold

# Plane

 $\label{lem:lem:moinfo} \textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \\ \# EMMO\_25f5ca8e\_8f7f\_44d8\_a392\_bd3fe8894458 \\ \textbf{Relations:}$ 

• is a perceptual.2-manifold

### Geometrical

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_b5957cef\_a287\_442d\_a3ce\_fd39f20ba1cd

Elucidation: A 'graphical' aimed to represent a geometrical concept.

Comment: A 'geometrical' stands for real world objects that express a geometrical concept.

This can be achieved in many different ways. For example, a line can be expressed by: a) an equation like y=mx+q, which is both an 'equation' and a 'geometrical' b) a line drawn with a pencil on a paper, which is simply a 'graphical' object c) a set of axioms, when the properties of a line are inferred by the interpreter reading them, that are both 'graphical' and also 'formula'

The case a) is a geometrical and mathematical, b) is geometrical and pictorial, while c) is geometrical and a composition of idiomatic strings.

### Relations:

• is\_a perceptual.Graphical

# Sphere

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/perceptual \#EMMO\_d7bf784a\_db94\_4dd9\_861c\_54f262846fbf \\ \textbf{Relations:}$ 

• is\_a perceptual.2-manifold

# 2-manifold

 $\label{lem:lem:moinfo/emmo/middle/perceptual \#EMMO\_9268958f\_7f54\_48ab\_a693\_febe2645892b \\ \textbf{Relations:}$ 

• is\_a perceptual.Geometrical

# Symbol branch



Figure 3.16: Symbol branch.

# LengthFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_cdc962d8\_f3ea\_4764\_a57a\_c7caa4859179

Elucidation: Unit for quantities of dimension one that are the fraction of two lengths.

**Example:** Unit for plane angle.

### Relations:

 $\bullet \;$  is \_a units-extension. FractionUnit

# MassFractionUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_18448443\_dcf1\_49b8\_a321\_cf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two masses.

**Example:** Unit for mass fraction.

# Relations:

 $\bullet\,\,$  is \_a units-extension. FractionUnit

# **IdiomaticSymbol**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_0a318776\_b067\_4de0\_a2a6\_cba2cf6333f8

#### Relations:

- $\bullet$  is\_a perceptual.Idiomatic
- is\_a perceptual.Symbol
- equivalent\_to perceptual.Idiomatic and perceptual.Symbol

### Litre

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_a155dc93\_d266\_487e\_b5e7\_2a2c72d5ebf9

**Definition:** A non-SI unit of volume defined as 1 cubic decimetre (dm3),

Iupacentry: https://doi.org/10.1351/goldbook.L03594

Qudtentry: http://qudt.org/vocab/unit/L

### **Relations:**

• is a units-extension.SIAcceptedSpecialUnit

• is a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.VolumeDimension

• perceptual.hasSymbolData value "l"

# Symbol

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_a1083d0a\_c1fb\_471f\_8e20\_a98f881ad527

Elucidation: The class of individuals that stand for an elementary mark of a specific symbolic code (alphabet).

**Example:** The class of letter "A" is the symbol as idea and the letter A that you see on the screen is the mark.

Comment: Subclasses of 'Symbol' are alphabets, in formal languages terminology.

A 'Symbol' is atomic for that alphabet, i.e. it has no parts that are symbols for the same alphabet. e.g. a math symbol is not made of other math symbols

A Symbol may be a String in another language. e.g. "Bq" is the symbol for Becquerel units when dealing with metrology, or a string of "B" and "q" symbols when dealing with characters.

**Comment:** Symbols of a formal language need not be symbols of anything. For instance there are logical constants which do not refer to any idea, but rather serve as a form of punctuation in the language (e.g. parentheses).

Symbols of a formal language must be capable of being specified without any reference to any interpretation of them. (Wikipedia)

**Comment:** The class is the idea of the symbol, while the individual of that class stands for a specific mark (or token) of that idea.

#### Relations:

• is\_a perceptual.Symbolic

# ArcSecond

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 6a4547ab 3abb 430d b81b ce32d47729f5

**Definition:** Measure of plane angle defined as 1/3600 or a degree.

Altlabel: SecondOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCSEC

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value " "

### **FractionUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_c2f5ee66\_579c\_44c6\_a2e9\_fa2eaa9fa4da$ 

**Elucidation:** Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed.

Comment: Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this is desirable ( $\mu$ m/m, nmol/mol). – SI Brochure

### Relations:

• is\_a metrology.UnitOne

### Hour

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 21ef2ed6 c086 4d24 8a75 980d2bcc9282

**Definition:** Measure of time defined as 3600 seconds. **Iupacentry:** https://doi.org/10.1351/goldbook.H02866

Qudtentry: http://qudt.org/vocab/unit/HR

**Relations:** 

• is a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "h"

# VolumeFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_9fd1e79d\_41d1\_44f8\_8142\_66dbdf0fc7ad

Elucidation: Unit for quantities of dimension one that are the fraction of two volumes.

**Example:** Unit for volume fraction.

## Relations:

• is a units-extension.FractionUnit

### BaseUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_db716151\_6b73\_45ff\_910c\_d182fdcbb4f5

Elucidation: A set of units that correspond to the base quantities in a system of units.

## Relations:

• is\_a metrology.UnitSymbol

### Gram

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_f992dc76\_f9a6\_45f6\_8873\_c8e20d16fbbe$ 

**Definition:** Gram is defined as one thousandth of the SI unit kilogram.

Iupacentry: https://doi.org/10.1351/goldbook.G02680 Wikipediaentry: https://en.wikipedia.org/wiki/Gram

#### **Relations:**

is\_a metrology.UnitSymbol is\_a units-extension.CGSUnit

• metrology.hasPhysicalDimension some isq.MassDimension

• perceptual.hasSymbolData value "g"

## AstronomicalUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 053648ea 3c0a 468c 89cb eb009239323a

**Definition:** One astronomical unit is defined as exactly 149597870700 m, which is roughly the distance from earth to sun.

**Dbpediaentry:** http://dbpedia.org/page/Astronomical\_unit

Qudtentry: http://qudt.org/vocab/unit/PARSEC

Wikipediaentry: https://en.wikipedia.org/wiki/Astronomical\_unit

#### Relations:

 $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit

 $\bullet$  is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.LengthDimension

• perceptual.hasSymbolData value "au"

# AreaFractionUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_6f4d704a\_a7c6\_4c07\_b8a7\_ea0bab04128f$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two areas.

Example: Unit for solid angle.

### **Relations:**

 $\bullet\,\,$  is \_a units-extension. FractionUnit

# Ångström

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_27c530c4\_dfcd\_486e\_b324\_54ad4448cd26

**Definition:** Measure of length defined as 1e-10 metres.

Altlabel: Angstrom

Comment: Ångström is not mentioned in the SI system and deprecated by the International Bureau of Weights

and Measures (BIPM).

Dispite of that, it is often used in the natural sciences and technology.

**Dbpediaentry:** http://dbpedia.org/page/%C3%85ngstr%C3%B6m

Iupacentry: https://doi.org/10.1351/goldbook.N00350
Qudtentry: http://qudt.org/vocab/unit/ANGSTROM

Wikipediaentry: https://en.wikipedia.org/wiki/Angstrom

#### Relations:

- $\bullet$  is\_a metrology.UnitSymbol
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.LengthDimension
- perceptual.hasSymbolData value "Å"

### Dalton

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_00 \\ \text{dd} \\ 79 \\ \text{e}0\_31 \\ \text{a}6\_427 \\ \text{e}\_9 \\ \text{b}9 \\ \text{c}\_90 \\ \text{f} \\ 3097 \\ \text{e}4a96 \\ \text{e}4$ 

**Definition:** One dalton is defined as one twelfth of the mass of an unbound neutral atom of carbon-12 in its

nuclear and electronic ground state.

**Dbpediaentry:** http://dbpedia.org/page/Unified\_atomic\_mass\_unit

Iupacentry: https://doi.org/10.1351/goldbook.D01514

Qudtentry: http://qudt.org/vocab/unit/Dalton

#### **Relations:**

• is a units-extension.SIAcceptedSpecialUnit

 $\bullet\,$  is \_a metrology.OffSystemUnit

 $\bullet \ \ metrology. has Physical Dimension \ some \ is q. Mass Dimension$ 

• perceptual.hasSymbolData value "Da"

# **Spacing**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_432192c4\_111f\_4e80\_b7cd\_c6ce1c1129ea$ 

#### **Relations:**

• is\_a perceptual.Symbol

#### Tonne

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_f8b92999\_3cde\_46e3\_99d5\_664da3090a02

**Definition:** A non-SI unit defined as 1000 kg.

Iupacentry: https://doi.org/10.1351/goldbook.T06394 Qudtentry: http://qudt.org/vocab/unit/TON\_M

Wikipediaentry: https://en.wikipedia.org/wiki/Tonne

#### Relations:

• is a units-extension.SIAcceptedSpecialUnit

• is a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.MassDimension

• perceptual.hasSymbolData value "t"

# Hectare

IRI: http://emmo.info/emmo/middle/units-extension#EMMO d6eb0176 a0d7 4b4e 8df0 50e912be2342

**Definition:** A non-SI metric unit of area defined as the square with 100-metre sides.

**Dbpediaentry:** http://dbpedia.org/page/Hectare

Qudtentry: http://qudt.org/vocab/unit/HA

Wikipediaentry: https://en.wikipedia.org/wiki/Hectare

- is a units-extension.SIAcceptedSpecialUnit
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.AreaDimension
- perceptual.hasSymbolData value "ha"

# SIAcceptedSpecialUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_6795a4b8\_ffd0\_4588\_a581\_a9413fe49cac$ 

Elucidation: Non-SI units mentioned in the SI.

**Comment:** This is a list of units that are not defined as part of the International System of Units (SI), but are otherwise mentioned in the SI brouchure, because either the General Conference on Weights and Measures (CGPM) accepts their use as being multiples or submultiples of SI-units, they have important contemporary application worldwide, or are otherwise commonly encountered worldwide.

Wikipediaentry: https://en.wikipedia.org/wiki/Non-SI\_units\_mentioned\_in\_the\_SI

#### **Relations:**

- is\_a metrology.SpecialUnit
- is a metrology.OffSystemUnit
- disjoint\_union\_of units-extension.Dalton, units-extension.AstronomicalUnit, units-extension.ArcMinute, units-extension.Hour, units-extension.Day, units-extension.ArcSecond, units-extension.Bel, units-extension.Litre, units-extension.Neper, units-extension.Degree, units-extension.Minute, units-extension.Hectare, units-extension.ElectronVolt, units-extension.Tonne

# Neper

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_b41515a9\_28d8\_4d78\_8165\_74b2fc72f89e$ 

**Definition:** Unit of measurement for quantities of type level or level difference, which are defined as the natural logarithm of the ratio of power- or field-type quantities.

The value of a ratio in nepers is given by ln(x1/x2) where x1 and x2 are the values of interest (amplitudes), and ln is the natural logarithm. When the values are quadratic in the amplitude (e.g. power), they are first linearised by taking the square root before the logarithm is taken, or equivalently the result is halved.

Wikipedia

**Dbpediaentry:** http://dbpedia.org/page/Neper

Iupacentry: https://doi.org/10.1351/goldbook.N04106

Qudtentry: http://qudt.org/vocab/unit/NP

Wikipediaentry: https://en.wikipedia.org/wiki/Neper

### **Relations:**

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.has Symbol<br/>Data value "Np"

### MetrologicalSymbol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_50a3552e\_859a\_4ff7\_946d\_76d537cabce6$ 

Elucidation: A symbol that stands for a concept in the language of the meterological domain of ISO 80000.

- is a metrology.Metrological
- is a perceptual.Symbol
- mereotopology.hasProperPart only not metrology.Metrological
- equivalent to metrology. Metrological and perceptual. Symbol

### Radian

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_a121bb1d\_5225\_4c78\_809b\_0268c3012208}$ 

Elucidation: Measure of plane angle.

Comment: Dimensionless measurement unit for plane angle.

Iupacentry: https://doi.org/10.1351/goldbook.R05036

Qudtentry: http://qudt.org/vocab/unit/RAD

#### Relations:

• is\_a units-extension.LengthFractionUnit

• is a owl:Nothing

- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "rad"

• equivalent\_to siunits.Steradian

# SpeedFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO e7bc8939 7ff8 4917 beb5 c42730b390f3

Elucidation: Unit for quantities of dimension one that are the fraction of two speeds.

**Example:** Unit for refractive index.

### Relations:

• is a units-extension.FractionUnit

# $\mathbf{Bel}$

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6c7160fc\_cc64\_46f0\_b43b\_aba65e9952e3

Definition: One bel is defined as ½ ln(10) neper.

Elucidation: Unit of measurement for quantities of type level or level difference.

Comment: Today decibel (one tenth of a bel) is commonly used instead of bel.

**Comment:** bel is used to express the ratio of one value of a power or field quantity to another, on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively.

Qudtentry: http://qudt.org/vocab/unit/B

Wikipediaentry: https://en.wikipedia.org/wiki/Decibel

### Relations:

- is a units-extension.SIAcceptedSpecialUnit
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "B"

## **SpecialUnit**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_3ee80521\_3c23\_4dd1\_935d\_9d522614a3e2

Elucidation: A unit symbol that stands for a derived unit.

**Example:** Pa stands for N/m2 J stands for N m

Comment: Special units are semiotic shortcuts to more complex composed symbolic objects.

# Relations:

• is\_a metrology.DerivedUnit

- is\_a metrology.UnitSymbol
- is a semiotics.Sign
- Inverse(semiotics.hasSign) some metrology.DerivedUnit

### **Punctuation**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_a817035a\_3e3c\_4709\_8ede\_3205df3031a3$ 

### Relations:

• is a perceptual. Symbol

# AmountFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_f76f5a24\_d703\_4e8c\_b368\_f9a7777cb73a

Elucidation: Unit for quantities of dimension one that are the fraction of two amount of substance.

**Example:** Unit for amount fraction.

Relations:

 $\bullet \;$  is \_a units-extension. FractionUnit

# Day

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_28ef05a7\_ecc1\_4df6\_8116\_c53251fbd4a8

**Definition:** A measure of time defined as 86 400 seconds.

**Dbpediaentry:** http://dbpedia.org/page/Day

Iupacentry: https://doi.org/10.1351/goldbook.D01527

Qudtentry: http://qudt.org/vocab/unit/DAY

Relations:

• is a units-extension.SIAcceptedSpecialUnit

- $\bullet$  is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.TimeDimension
- perceptual.hasSymbolData value "d"

### Numeral

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_74b05aed\_66bf\_43c8\_aa2c\_752a9ca8be03$ 

#### Relations:

 $\bullet$  is\_a perceptual.Symbol

# PureNumberUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_15d62b55\_38ea\_4aec\_b7c4\_25db1a2e5a01

Elucidation: Unit for dimensionless units that cannot be expressed as a 'FractionUnit'.

Example: Unit of AtomicNumber

Relations:

• is\_a metrology.UnitOne

### Minute

**Definition:** Non-SI time unit defined as 60 seconds. **Dbpediaentry:** http://dbpedia.org/page/Minute **Qudtentry:** http://qudt.org/vocab/unit/MIN

### Relations:

• is\_a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "min"

## UnitOne

IRI: http://emmo.info/emmo/middle/metrology#EMMO 5ebd5e01 0ed3 49a2 a30d cd05cbe72978

Elucidation: Represents the number 1, used as an explicit unit to say something has no units.

**Example:** Refractive index or volume fraction.

**Example:** Typically used for ratios of two units whos dimensions cancels out.

Qudtentry: http://qudt.org/vocab/unit/UNITLESS

#### Relations:

• is a metrology.BaseUnit

• metrology.hasPhysicalDimension some metrology.DimensionOne

### **ArcMinute**

**Definition:** Measure of plane angle defined as 1/60 or a degree.

Altlabel: MinuteOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCMIN

### Relations:

- is a units-extension.SIAcceptedSpecialUnit
- $\bullet\,$  is \_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value " "

# UnitSymbol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_216f448e\_cdbc\_4aeb\_a529\_7a5fe7fc38bb$ 

Elucidation: A symbol that stands for a single unit.

Example: Some examples are "Pa", "m" and "J".

- $\bullet \ \ is\_a \ metrology. Metrological Symbol$
- is a metrology.NonPrefixedUnit
- equivalent to metrology.MeasurementUnit and perceptual.Symbol
- disjoint union of metrology. Special Unit, metrology. Base Unit

### Steradian

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_cf3dd6cc\_c5d6\_4b3d\_aef4\_82f3b7a361af

Elucidation: Dimensionless measurement unit for solid angle.

**Iupacentry:** https://doi.org/10.1351/goldbook.S05971

Qudtentry: http://qudt.org/vocab/unit/SR

### Relations:

- $\bullet$  is\_a units-extension.AreaFractionUnit
- is\_a owl:Nothing
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "sr"
- ullet equivalent\_to owl:Nothing

### ElectronVolt

IRI: http://emmo.info/emmo/middle/units-extension#EMMO e29f84db 4c1c 46ae aa38 c4d47536b972

 $\textbf{Definition:} \ \ \text{The amount of energy gained (or lost) by the charge of a single electron moving across an electric}$ 

potential difference of one volt.

**Dbpediaentry:** http://dbpedia.org/page/Electronvolt **Iupacentry:** https://doi.org/10.1351/goldbook.E02014

Qudtentry: http://qudt.org/vocab/unit/EV

#### Relations:

- is\_a units-extension.SIAcceptedSpecialUnit
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.EnergyDimension
- perceptual.hasSymbolData value "eV"

# **SIUnitSymbol**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO}\_32129 \text{fb5}\_\text{df25}\_48 \text{fd}\_\text{a}29 \text{c}\_18 \text{a}2 \text{f}22 \text{a}2 \text{d}d5$ 

# Relations:

- is a metrology.UnitSymbol
- is\_a siunits.SICoherentUnit
- disjoint union of siunits.SIBaseUnit, siunits.SISpecialUnit

# Degree

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_b8830065\_3809\_41b7\_be3c\_e33795567fd9

**Definition:** Degree is a measurement of plane angle, defined by representing a full rotation as 360 degrees.

**Dbpediaentry:** http://dbpedia.org/page/Degree\_(angle) **Iupacentry:** https://doi.org/10.1351/goldbook.D01560

Qudtentry: http://qudt.org/vocab/unit/DEG

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "°"

### Letter

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_bed2fe4c\_dc7e\_43a8\_8200\_6aac44030bff Relations:

• is\_a perceptual.Symbol

# Mathematical branch



Figure 3.17: Mathematical branch.

### Vector

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math} \# EMMO\_06658 d8 d\_dcde\_4 fc9\_aae1\_17 f71 c0 bcdec$ 

### **Relations:**

• is\_a math.Array

## Parameter

IRI: http://emmo.info/emmo/middle/math#EMMO\_d1d436e7\_72fc\_49cd\_863b\_7bfb4ba5276a

Example: viscosity in the Navier-Stokes equation

**Comment:** A 'variable' whose value is assumed to be known independently from the equation, but whose value is not explicitated in the equation.

#### Relations:

 $\bullet$  is\_a math.Variable

# DefiningEquation

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_29afdf54\_90ae\_4c98\_8845\_fa9ea3f143a8 } \\$ 

Elucidation: An equation that define a new variable in terms of other mathematical entities.

**Example:** The definition of velocity as v = dx/dt.

The definition of density as mass/volume.

y = f(x)

# Relations:

• is\_a math.Equation

### Matrix

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_1cba0b27\_15d0\_4326\_933f\_379d0b3565b6}$ 

#### Relations:

• is\_a math.Array

# Constant

IRI: http://emmo.info/emmo/middle/math#EMMO ae15fb4f 8e4d 41de a0f9 3997f89ba6a2

Elucidation: A 'varaible' that stand for a well known constant.

**Example:**  $\pi$  refers to the constant number ~3.14

## Relations:

 $\bullet \ \ is\_a \ math. Variable$ 

• Inverse(math.hasVariable) only math.Numerical

# Array

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_28fbea28\_2204\_4613\_87ff\_6d877b855fcd\%20 } \\$ 

### Relations:

• is a math.Mathematical

### Unknown

IRI: http://emmo.info/emmo/middle/math#EMMO\_fe7e56ce\_118b\_4243\_9aad\_20eb9f4f31f6

Elucidation: The dependent variable for which an equation has been written.

**Example:** Velocity, for the Navier-Stokes equation.

#### Relations:

• is\_a math.Variable

# **Equation**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_e56ee3eb\_7609\_4ae1\_8bed\_51974f0960a6}$ 

**Elucidation:** The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions.

**Example:**  $2+3 = 5 \text{ x}^2 + 3x = 5x \text{ dv/dt} = a \sin(x) = y$ 

**Comment:** An equation with variables can always be represented as:

$$f(v0, v1, ..., vn) = g(v0, v1, ..., vn)$$

where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables.

- is a math.MathematicalFormula
- is a reductionistic.State
- is a math.Mathematical
- $\bullet \quad {\rm reductionistic.has Spatial Direct Part\ some\ math. Expression}$

# Inequality

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_0b6ebe5a\_0026\_4bef\_a1c1\_5be00df9f98e}$ 

**Elucidation:** A relation which makes a non-equal comparison between two numbers or other mathematical expressions.

Example: f(x) > 0

Relations:

• is a math.MathematicalFormula

# ArithmeticEquation

IRI: http://emmo.info/emmo/middle/math#EMMO\_a6138ba7\_e365\_4f2d\_b6b4\_fe5a5918d403

**Example:** 1 + 1 = 2

Relations:

• is a math.Equation

### Mathematical

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_54ee6b5e\_5261\_44a8\_86eb\_5717e7fdb9d0}$ 

Elucidation: The class of general mathematical symbolic objects respecting mathematical syntactic rules.

Relations:

• is\_a perceptual.Language

### Variable

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_1eed0732\_e3f1\_4b2c\_a9c4\_b4e75eeb5895$ 

**Elucidation:** A 'Variable' is a symbolic object that stands for a numerical defined 'Mathematical' object like e.g. a number, a vector, a matrix.

Example: x k

## Relations:

- $\bullet$  is\_a math.Mathematical
- is a semiotics. Conventional
- Inverse(math.hasVariable) some math.Mathematical

# MathematicalFormula

IRI: http://emmo.info/emmo/middle/math#EMMO 88470739 03d3 4c47 a03e b30a1288d50c

Elucidation: A mathematical string that can be evaluated as true or false.

- $\bullet$  is\_a math.Mathematical
- $\bullet \ \ is\_a \ perceptual. Symbolic Composition$

### Numerical

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_4ce76d7f\_03f8\_45b6\_9003\_90052a79bfaa} \\ \textbf{IRI:} \ \textbf{IRI:}$ 

**Elucidation:** A 'Mathematical' that has no unknown value, i.e. all its 'Variable"-s parts refers to a 'Number' (for scalars that have a built-in datatype) or to another 'Numerical' (for complex numerical data structures that should rely on external implementations).

### Relations:

• is a math.Mathematical

### MaterialRelation

IRI: http://emmo.info/emmo/middle/models#EMMO\_e5438930\_04e7\_4d42\_ade5\_3700d4a52ab7

**Elucidation:** An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics\_quantity' (the dependent variable) as function of other variables, physics\_quantity or data (independent variables).

**Example:** The Lennard-Jones potential.

A force field.

An Hamiltonian.

**Comment:** A material\_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics\_quantities.

### Relations:

- is\_a math.Equation
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity

### **PhysicsEquation**

IRI: http://emmo.info/emmo/middle/models#EMMO 27c5d8c6 8af7 4d63 beb1 ec37cd8b3fa3

**Elucidation:** An 'equation' that stands for a 'physical\_law' by mathematically defining the relations between physics\_quantities.

**Example:** The Newton's equation of motion.

The Schrödinger equation.

The Navier-Stokes equation.

#### Relations:

- is\_a math.Equation
- is a models.MathematicalModel
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity
- Inverse(models.hasModel) some models.PhysicalPhenomenon

# **Function Definition**

IRI: http://emmo.info/emmo/middle/math#EMMO 4bc29b0f 8fcc 4026 a291 f9774a66d9b8

Elucidation: A function defined using functional notation.

Example: y = f(x)

## Relations:

• is a math.DefiningEquation

# AlgebricEquation

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/math\#EMMO\_98d65021\_4574\_4890\_b2fb\_46430841077f$ 

Example: 2 \* a - b = c

Comment: An 'equation' that has parts two 'polynomial'-s

Relations:

• is a math.Equation

• reductionistic.hasSpatialDirectPart some math.AlgebricExpression

# Mathematical Symbol branch



Figure 3.18: Mathematical Symbol branch.

# **Equals**

IRI: http://emmo.info/emmo/middle/math#EMMO\_535d75a4\_1972\_40bc\_88c6\_ca566386934f

**Elucidation:** The equals symbol.

### Relations:

- $\bullet$  is\_a math.MathematicalSymbol
- is a math.Mathematical
- $\bullet$  is\_a perceptual.Symbol
- equivalent\_to perceptual.hasSymbolData value "="

# MathematicalSymbol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_5be83f9c\_a4ba\_4b9a\_be1a\_5bfc6e891231$ 

# Relations:

- $\bullet$  is\_a math.Mathematical
- is a perceptual.Symbol
- mereotopology.hasProperPart only not math.Mathematical
- equivalent\_to math.Mathematical and perceptual.Symbol

# Mathematical Model branch

# ${\bf DataBasedModel}$

IRI: http://emmo.info/emmo/middle/models#EMMO a4b14b83 9392 4a5f a2e8 b2b58793f59b



Figure 3.19: Mathematical Model branch.

**Elucidation:** A computational model that uses existing data to create new insight into the behaviour of a system.

### Relations:

• is\_a models.MathematicalModel

### MathematicalModel

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO\_f7ed665b\_c2e1\_42bc\_889b\_6b42ed3a36f0}$ 

**Comment:** A mathematical model can be defined as a description of a system using mathematical concepts and language to facilitate proper explanation of a system or to study the effects of different components and to make predictions on patterns of behaviour.

Abramowitz and Stegun, 1968

### Relations:

- is\_a math.Mathematical
- is\_a models.Model
- equivalent\_to math.Mathematical and models.Model

## ContinuumModel

IRI: http://emmo.info/emmo/middle/models#EMMO 4456a5d2 16a6 4ee1 9a8e 5c75956b28ea

**Elucidation:** A physics-based model based on a physics equation describing the behaviour of continuum volume.

### Relations:

• is a models.PhysicsBasedModel

### **ElectronicModel**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO\_6eca09be\_17e9\_445e\_abc9\_000aa61b7a11}$ 

Elucidation: A physics-based model based on a physics equation describing the behaviour of electrons.

**Example:** Density functional theory. Hartree-Fock.

#### **Relations:**

• is\_a models.PhysicsBasedModel

## PhysicsBasedModel

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO\_b29fd350\_39aa\_4af7\_9459\_3faa0544cba6$ 

Elucidation: A solvable set of one Physics Equation and one or more Materials Relations.

#### Relations:

- is a models.MathematicalModel
- physical.hasSpatialPart some models.PhysicsEquation
- physical.hasSpatialPart some models.MaterialRelation

## **PhysicsEquation**

IRI: http://emmo.info/emmo/middle/models#EMMO\_27c5d8c6\_8af7\_4d63\_beb1\_ec37cd8b3fa3

**Elucidation:** An 'equation' that stands for a 'physical\_law' by mathematically defining the relations between physics\_quantities.

**Example:** The Newton's equation of motion.

The Schrödinger equation.

The Navier-Stokes equation.

#### Relations:

- is\_a math.Equation
- is\_a models.MathematicalModel
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity
- Inverse(models.hasModel) some models.PhysicalPhenomenon

## MesoscopicModel

IRI: http://emmo.info/emmo/middle/models#EMMO\_53935db0\_af45\_4426\_b9e9\_244a0d77db00

**Elucidation:** A physics-based model based on a physics equation describing the behaviour of mesoscopic entities, i.e. a set of bounded atoms like a molecule, bead or nanoparticle.

### Relations:

 $\bullet$  is\_a models.PhysicsBasedModel

### AtomisticModel

IRI: http://emmo.info/emmo/middle/models#EMMO\_84cadc45\_6758\_46f2\_ba2a\_5ead65c70213

**Elucidation:** A physics-based model based on a physics equation describing the behaviour of atoms.

### Relations:

• is\_a models.PhysicsBasedModel

# Mathematical Operator branch

## DifferentialOperator

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_f8a2fe9f\_458b\_4771\_9aba\_a50e76afc52d}$ 

## Relations:

 $\bullet$  is\_a math.MathematicalOperator



Figure 3.20: Mathematical Operator branch.

### Minus

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_46d5643b\_9706\_4b67\_8bea\_ed77d60265392} \\ \textbf{IRI:} \ \text{IRI:} \$ 

### Relations:

- $\bullet \hspace{0.1in} is\_a \hspace{0.1in} math. Arithmetic Operator \\$
- equivalent\_to perceptual.hasSymbolData value "-"

## Mathematical Operator

### Relations:

- is\_a math.MathematicalSymbol
- $\bullet$  is\_a math.Mathematical
- is\_a perceptual.Symbol

## Multiplication

### Relations:

- is\_a math.ArithmeticOperator
- equivalent to perceptual.hasSymbolData value "\*"

## Plus

IRI: http://emmo.info/emmo/middle/math#EMMO\_8de14a59\_660b\_454f\_aff8\_76a07ce185f4

- $\bullet$  is\_a math.ArithmeticOperator
- equivalent\_to perceptual.hasSymbolData value "+"

## Gradient

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_b5c58790\_fb2d\_42eb\_b184\_2a3f6ca60acb}$ 

#### Relations:

- is a math.DifferentialOperator
- equivalent\_to perceptual.has Symbol<br/>Data value " $\nabla$ "

## Exponent

IRI: http://emmo.info/emmo/middle/math#EMMO\_223d9523\_4169\_4ecd\_b8af\_acad1215e1ff

#### Relations:

• is\_a math.AlgebricOperator

## ArithmeticOperator

IRI: http://emmo.info/emmo/middle/math#EMMO\_707f0cd1\_941c\_4b57\_9f20\_d0ba30cd6ff3

### Relations:

• is\_a math.AlgebricOperator

### Division

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO} \underline{a365b3c1} \underline{7bde} \underline{41d7} \underline{a15b} \underline{2820762e85f4}$ 

### Relations:

- is a math.ArithmeticOperator
- equivalent\_to perceptual.hasSymbolData value "/"

### AlgebricOperator

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_3c424d37\_cf62\_41b1\_ac9d\_a316f8d113d6}$ 

### Relations:

• is a math.MathematicalOperator

## Laplacian

IRI: http://emmo.info/emmo/middle/math#EMMO\_048a14e3\_65fb\_457d\_8695\_948965c89492

### Relations:

- $\bullet$  is\_a math.DifferentialOperator
- equivalent\_to perceptual.has Symbol<br/>Data value " $\!\Delta\!$  "

# Metrological branch

## LengthFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_cdc962d8\_f3ea\_4764\_a57a\_c7caa4859179

Elucidation: Unit for quantities of dimension one that are the fraction of two lengths.

**Example:** Unit for plane angle.



Figure 3.21: Metrological branch.

• is\_a units-extension.FractionUnit

### **MassFractionUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_18448443\_dcf1\_49b8\_a321\_cf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c393e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e2c396e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf46e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf66e12dcf6$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two masses.

**Example:** Unit for mass fraction.

#### Relations:

• is a units-extension.FractionUnit

### Litre

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_a155dc93\_d266\_487e\_b5e7\_2a2c72d5ebf9$ 

**Definition:** A non-SI unit of volume defined as 1 cubic decimetre (dm3),

Iupacentry: https://doi.org/10.1351/goldbook.L03594

Qudtentry: http://qudt.org/vocab/unit/L

### Relations:

- is\_a units-extension.SIAcceptedSpecialUnit
- $\bullet$  is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.VolumeDimension
- perceptual.hasSymbolData value "l"

## ReferenceUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_18ce 5200\_00f5\_45bb\_8c6f\_6fb 128cd 41ae$ 

Comment: A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such. International vocabulary of metrology (VIM)

**Comment:** A symbolic is recognized as reference unit also if it is not part of a quatity (e.g. as in the sentence "the Bq is the reference unit of Becquerel").

For this reason we can't declare the axiom: ReferenceUnit SubClassOf: inverse(hasReferenceUnit) some Quantity because there exist reference units without being part of a quantity.

This is peculiar to EMMO, where quantities (symbolic) are distinct with properties (semiotics).

### Relations:

 $\bullet\,\,$  is \_a metrology.Metrological

### ArcSecond

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6a4547ab\_3abb\_430d\_b81b\_ce32d47729f5

**Definition:** Measure of plane angle defined as 1/3600 or a degree.

Altlabel: SecondOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCSEC

#### **Relations:**

• is\_a units-extension.SIAcceptedSpecialUnit

- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value " "

### FractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO c2f5ee66 579c 44c6 a2e9 fa2eaa9fa4da

**Elucidation:** Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed.

Comment: Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this is desirable ( $\mu$ m/m, nmol/mol). – SI Brochure

#### **Relations:**

• is a metrology.UnitOne

### Hour

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_21ef2ed6\_c086\_4d24\_8a75\_980d2bcc9282

**Definition:** Measure of time defined as 3600 seconds. **Iupacentry:** https://doi.org/10.1351/goldbook.H02866

Qudtentry: http://qudt.org/vocab/unit/HR

### Relations:

- is a units-extension.SIAcceptedSpecialUnit
- $\bullet \;$  is \_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.TimeDimension
- perceptual.hasSymbolData value "h"

## VolumeFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_9fd1e79d\_41d1\_44f8\_8142\_66dbdf0fc7ad

Elucidation: Unit for quantities of dimension one that are the fraction of two volumes.

**Example:** Unit for volume fraction.

### Relations:

• is a units-extension.FractionUnit

### **BaseUnit**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_db716151\_6b73\_45ff\_910c\_d182fdcbb4f5

Elucidation: A set of units that correspond to the base quantities in a system of units.

### **Relations:**

• is\_a metrology.UnitSymbol

### Gram

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_f992dc76\_f9a6\_45f6\_8873\_c8e20d16fbbe$ 

**Definition:** Gram is defined as one thousandth of the SI unit kilogram.

Iupacentry: https://doi.org/10.1351/goldbook.G02680 Wikipediaentry: https://en.wikipedia.org/wiki/Gram

#### **Relations:**

 $\bullet \;$  is \_a metrology. UnitSymbol

 $\bullet \;$  is \_a units-extension.CGSUnit

 $\bullet \ \ metrology. has Physical Dimension \ some \ is q. Mass Dimension$ 

• perceptual.hasSymbolData value "g"

### AstronomicalUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_053648ea\_3c0a\_468c\_89cb\_eb009239323a

**Definition:** One astronomical unit is defined as exactly 149597870700 m, which is roughly the distance from

earth to sun.

**Dbpediaentry:** http://dbpedia.org/page/Astronomical\_unit

Qudtentry: http://qudt.org/vocab/unit/PARSEC

Wikipediaentry: https://en.wikipedia.org/wiki/Astronomical unit

### Relations:

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.LengthDimension
- perceptual.hasSymbolData value "au"

## AreaFractionUnit

Elucidation: Unit for quantities of dimension one that are the fraction of two areas.

**Example:** Unit for solid angle.

### Relations:

 $\bullet\,\,$  is \_a units-extension. FractionUnit

## Ångström

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_27c530c4\_dfcd\_486e\_b324\_54ad4448cd26$ 

**Definition:** Measure of length defined as 1e-10 metres.

Altlabel: Angstrom

**Comment:** Ångström is not mentioned in the SI system and deprecated by the International Bureau of Weights and Measures (BIPM).

Dispite of that, it is often used in the natural sciences and technology.

**Dbpediaentry:** http://dbpedia.org/page/%C3%85ngstr%C3%B6m

Iupacentry: https://doi.org/10.1351/goldbook.N00350
Qudtentry: http://qudt.org/vocab/unit/ANGSTROM

Wikipediaentry: https://en.wikipedia.org/wiki/Angstrom

#### **Relations:**

- is\_a metrology.UnitSymbolis\_a metrology.OffSystemUnit
- $\bullet \ \ {\rm metrology.hasPhysicalDimension} \ \ {\rm some} \ \ {\rm isq.LengthDimension}$
- perceptual.hasSymbolData value "Å"

### Dalton

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 00dd79e0 31a6 427e 9b9c 90f3097e4a96

**Definition:** One dalton is defined as one twelfth of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state.

**Dbpediaentry:** http://dbpedia.org/page/Unified\_atomic\_mass\_unit

Iupacentry: https://doi.org/10.1351/goldbook.D01514

Qudtentry: http://qudt.org/vocab/unit/Dalton

#### **Relations:**

- is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.MassDimension
- perceptual.hasSymbolData value "Da"

#### Tonne

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_f8b92999\_3cde\_46e3\_99d5\_664da3090a02$ 

**Definition:** A non-SI unit defined as 1000 kg.

Iupacentry: https://doi.org/10.1351/goldbook.T06394
Qudtentry: http://qudt.org/vocab/unit/TON\_M

Wikipediaentry: https://en.wikipedia.org/wiki/Tonne

### **Relations:**

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.MassDimension
- perceptual.hasSymbolData value "t"

#### Hectare

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_d6eb0176\_a0d7\_4b4e\_8df0\_50e912be2342

**Definition:** A non-SI metric unit of area defined as the square with 100-metre sides.

**Dbpediaentry:** http://dbpedia.org/page/Hectare **Qudtentry:** http://qudt.org/vocab/unit/HA

Wikipediaentry: https://en.wikipedia.org/wiki/Hectare

#### **Relations:**

- is a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.AreaDimension
- perceptual.hasSymbolData value "ha"

## SIAcceptedSpecialUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 6795a4b8 ffd0 4588 a581 a9413fe49cac

Elucidation: Non-SI units mentioned in the SI.

**Comment:** This is a list of units that are not defined as part of the International System of Units (SI), but are otherwise mentioned in the SI brouchure, because either the General Conference on Weights and Measures (CGPM) accepts their use as being multiples or submultiples of SI-units, they have important contemporary application worldwide, or are otherwise commonly encountered worldwide.

Wikipediaentry: https://en.wikipedia.org/wiki/Non-SI\_units\_mentioned\_in\_the\_SI

#### Relations:

- is\_a metrology.SpecialUnit
- is\_a metrology.OffSystemUnit
- disjoint\_union\_of units-extension.Dalton, units-extension.AstronomicalUnit, units-extension.ArcMinute, units-extension.Hour, units-extension.Day, units-extension.ArcSecond, units-extension.Bel, units-extension.Litre, units-extension.Neper, units-extension.Degree, units-extension.Minute, units-extension.Hectare, units-extension.ElectronVolt, units-extension.Tonne

## Neper

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_b41515a9\_28d8\_4d78\_8165\_74b2fc72f89e

**Definition:** Unit of measurement for quantities of type level or level difference, which are defined as the natural logarithm of the ratio of power- or field-type quantities.

The value of a ratio in nepers is given by ln(x1/x2) where x1 and x2 are the values of interest (amplitudes), and ln is the natural logarithm. When the values are quadratic in the amplitude (e.g. power), they are first linearised by taking the square root before the logarithm is taken, or equivalently the result is halved.

Wikipedia

 ${\bf Dbpediaentry:}\ \, {\rm http://dbpedia.org/page/Neper}$ 

Iupacentry: https://doi.org/10.1351/goldbook.N04106

Qudtentry: http://qudt.org/vocab/unit/NP

Wikipediaentry: https://en.wikipedia.org/wiki/Neper

### **Relations:**

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- is a metrology.OffSystemUnit
- $\bullet \ \ metrology. has Physical Dimension \ some \ metrology. Dimension One$
- perceptual.hasSymbolData value "Np"

## MetrologicalSymbol

IRI: http://emmo.info/emmo/middle/metrology#EMMO 50a3552e 859a 4ff7 946d 76d537cabce6

Elucidation: A symbol that stands for a concept in the language of the meterological domain of ISO 80000.

- is a metrology.Metrological
- is\_a perceptual.Symbol

- mereotopology.hasProperPart only not metrology.Metrological
- equivalent to metrology. Metrological and perceptual. Symbol

### Radian

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_a121bb1d\_5225\_4c78\_809b\_0268c3012208

Elucidation: Measure of plane angle.

Comment: Dimensionless measurement unit for plane angle.

Iupacentry: https://doi.org/10.1351/goldbook.R05036

Qudtentry: http://qudt.org/vocab/unit/RAD

### Relations:

 $\bullet \ \ is\_a \ units-extension. Length Fraction Unit$ 

• is\_a owl:Nothing

- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "rad"

• equivalent\_to siunits.Steradian

## SpeedFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO e7bc8939 7ff8 4917 beb5 c42730b390f3

Elucidation: Unit for quantities of dimension one that are the fraction of two speeds.

**Example:** Unit for refractive index.

#### Relations:

• is\_a units-extension.FractionUnit

### Bel

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 6c7160fc cc64 46f0 b43b aba65e9952e3

Definition: One bel is defined as % ln(10) neper.

**Elucidation:** Unit of measurement for quantities of type level or level difference.

Comment: Today decibel (one tenth of a bel) is commonly used instead of bel.

**Comment:** bel is used to express the ratio of one value of a power or field quantity to another, on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively.

Qudtentry: http://qudt.org/vocab/unit/B

Wikipediaentry: https://en.wikipedia.org/wiki/Decibel

### **Relations:**

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- $\bullet$  is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "B"

## **SpecialUnit**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_3ee80521\_3c23\_4dd1\_935d\_9d522614a3e2

Elucidation: A unit symbol that stands for a derived unit.

Example: Pa stands for N/m2 J stands for N m

Comment: Special units are semiotic shortcuts to more complex composed symbolic objects.

#### Relations:

- is\_a metrology.DerivedUnit
- is\_a metrology.UnitSymbol
- is a semiotics. Sign
- Inverse(semiotics.hasSign) some metrology.DerivedUnit

### **ProcedureUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_c9c8f824\_9127\_4f93\_bc21\_69fe78a7f6f2$ 

**Elucidation:** A reference unit provided by a measurement procedure.

Example: Rockwell C hardness of a given sample (150 kg load): 43.5HRC(150 kg)

**Relations:** 

• is a metrology.ReferenceUnit

### **AmountFractionUnit**

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_f76f5a24\_d703\_4e8c\_b368\_f9a7777cb73a

Elucidation: Unit for quantities of dimension one that are the fraction of two amount of substance.

**Example:** Unit for amount fraction.

Relations:

ullet is\_a units-extension.FractionUnit

## Day

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_28ef05a7\_ecc1\_4df6\_8116\_c53251fbd4a8 \\ \text{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_28ef05a7\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6\_8116\_ecc1\_4df6$ 

**Definition:** A measure of time defined as 86 400 seconds.

**Dbpediaentry:** http://dbpedia.org/page/Day

Iupacentry: https://doi.org/10.1351/goldbook.D01527

Qudtentry: http://qudt.org/vocab/unit/DAY

Relations:

- is a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.TimeDimension
- perceptual.hasSymbolData value "d"

### **PureNumberUnit**

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_15d62b55\_38ea\_4aec\_b7c4\_25db1a2e5a01

Elucidation: Unit for dimensionless units that cannot be expressed as a 'FractionUnit'.

Example: Unit of AtomicNumber

**Relations:** 

 $\bullet$  is\_a metrology.UnitOne

## StandardUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_acd1a504\_ca32\_4f30\_86ad\_0b62cea5bc02

Elucidation: A reference unit provided by a reference material. International vocabulary of metrology (VIM)

**Example:** Arbitrary amount-of-substance concentration of lutropin in a given sample of plasma (WHO international standard 80/552): 5.0 International Unit/l

### Relations:

• is a metrology.ReferenceUnit

## Metrological

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_985bec21\_989f\_4b9e\_a4b3\_735d88099c3c

Elucidation: A language object used in metrology.

**Comment:** Metrology includes all theoretical and practical aspects of measurement, whatever the measurement uncertainty and field of application.

- International vocabulary of metrology (VIM)

Comment: This language domain makes use of ISO 80000 concepts.

#### **Relations:**

• is\_a perceptual.Language

## Minute

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_cabb20f0\_05c7\_448f\_9485\_e129725f15a4

**Definition:** Non-SI time unit defined as 60 seconds. **Dbpediaentry:** http://dbpedia.org/page/Minute **Qudtentry:** http://qudt.org/vocab/unit/MIN

## Relations:

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.TimeDimension
- perceptual.hasSymbolData value "min"

## UnitOne

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_5ebd5e01\_0ed3\_49a2\_a30d\_cd05cbe72978

Elucidation: Represents the number 1, used as an explicit unit to say something has no units.

**Example:** Refractive index or volume fraction.

Example: Typically used for ratios of two units whos dimensions cancels out.

Qudtentry: http://qudt.org/vocab/unit/UNITLESS

- is a metrology.BaseUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne

### ArcMinute

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_1e0b665d\_db6c\_4752\_a6d4\_262d3a8dbb46$ 

**Definition:** Measure of plane angle defined as 1/60 or a degree.

Altlabel: MinuteOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCMIN

### Relations:

- is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- $\bullet \ \ {\rm metrology.hasPhysicalDimension\ some\ metrology.DimensionOne}$
- perceptual.hasSymbolData value " "

### UnitSymbol

IRI: http://emmo.info/emmo/middle/metrology#EMMO 216f448e cdbc 4aeb a529 7a5fe7fc38bb

Elucidation: A symbol that stands for a single unit. Example: Some examples are "Pa", "m" and "J".

## Relations:

- is\_a metrology.MetrologicalSymbol
- is\_a metrology.NonPrefixedUnit
- equivalent to metrology. Measurement Unit and perceptual. Symbol
- disjoint union of metrology. Special Unit, metrology. Base Unit

### Steradian

IRI: http://emmo.info/emmo/middle/siunits#EMMO cf3dd6cc c5d6 4b3d aef4 82f3b7a361af

Elucidation: Dimensionless measurement unit for solid angle.

Iupacentry: https://doi.org/10.1351/goldbook.S05971

Qudtentry: http://qudt.org/vocab/unit/SR

## Relations:

- is a units-extension.AreaFractionUnit
- is a owl:Nothing
- $\bullet \ \ metrology. has Physical Dimension \ some \ metrology. Dimension One$
- perceptual.hasSymbolData value "sr"
- equivalent\_to owl:Nothing

## ElectronVolt

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_e29f84db\_4c1c\_46ae\_aa38\_c4d47536b972$ 

**Definition:** The amount of energy gained (or lost) by the charge of a single electron moving across an electric potential difference of one volt.

**Dbpediaentry:** http://dbpedia.org/page/Electronvolt **Iupacentry:** https://doi.org/10.1351/goldbook.E02014

Qudtentry: http://qudt.org/vocab/unit/EV

- is\_a units-extension.SIAcceptedSpecialUnit
- $\bullet \;$  is \_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.EnergyDimension

• perceptual.hasSymbolData value "eV"

## **SIUnitSymbol**

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_32129fb5\_df25\_48fd\_a29c\_18a2f22a2dd5

#### **Relations:**

- is\_a metrology.UnitSymbol
- $\bullet$  is\_a siunits.SICoherentUnit
- disjoint union of siunits.SIBaseUnit, siunits.SISpecialUnit

## Degree

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_b8830065\_3809\_41b7\_be3c\_e33795567fd9

**Definition:** Degree is a measurement of plane angle, defined by representing a full rotation as 360 degrees.

**Dbpediaentry:** http://dbpedia.org/page/Degree\_(angle) **Iupacentry:** https://doi.org/10.1351/goldbook.D01560

Qudtentry: http://qudt.org/vocab/unit/DEG

Relations:

- is a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "o"

## Physical Dimension branch

### **TimeDimension**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_02e894c3\_b793\_4197\_b120\_3442e08f58d1$ 

#### Relations:

- is\_a metrology.PhysicalDimension
- equivalent to perceptual.has Symbol<br/>Data value "T+1 L0 M0 I0  $\Theta$ 0 N0 J0"

## **EntropyDimension**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_3ecff38b\_b3cf\_4a78\_b49f\_8580abf8715b

### Relations:

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T-2 L+2 M+1 I0  $\Theta$ -1 N0 J0"

## **SpeedDimension**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_4f5c7c54\_1c63\_4d17\_b12b\_ea0792c2b187

- is\_a metrology.PhysicalDimension
- equivalent\_to isq.VelocityDimension
- equivalent\_to perceptual.hasSymbol Data value "T-1 L+1 M0 I<br/>0 $\Theta0$  N0 J0"



Figure 3.22: Physical Dimension branch.  ${}^{85}_{}$ 

## **Physical Dimension**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_9895a1b4\_f0a5\_4167\_ac5e\_97db40b8bfcc

**Elucidation:** A symbol that, following SI specifications, describe the physical dimensionality of a physical quantity and the exponents of the base units in a measurement unit.

**Comment:** All physical quantities, with the exception of counts, are derived quantities, which may be written in terms of base quantities according to the equations of physics. The dimensions of the derived quantities are written as products of powers of the dimensions of the base quantities using the equations that relate the derived quantities to the base quantities. In general the dimension of any quantity Q is written in the form of a dimensional product,

$$\dim Q = T^{\hat{}} \alpha L^{\hat{}} \beta M^{\hat{}} \gamma I^{\hat{}} \delta \Theta^{\hat{}} \epsilon N^{\hat{}} \zeta J^{\hat{}} \eta$$

where the exponents  $\alpha$ ,  $\beta$ ,  $\gamma$ ,  $\delta$ ,  $\epsilon$ ,  $\zeta$  and  $\eta$ , which are generally small integers, which can be positive, negative, or zero, are called the dimensional exponents. (SI brochure)

**Comment:** The conventional symbolic representation of the dimension of a base quantity is a single upper case letter in roman (upright) type. The conventional symbolic representation of the dimension of a derived quantity is the product of powers of the dimensions of the base quantities according to the definition of the derived quantity. The dimension of a quantity Q is denoted by dim Q. ISO 80000-1

**Comment:** The expression used by the EMMO for physical dimensions is a metrological symbol (but a string at meta level, i.e. the ontologist level) like this:

Ta L<br/>b Mc Id  $\Theta \mathrm{e}$  Nf Jg

where a, b, c, d, e, f and g are 0 or signed integers.

Regex for the physical dimension symbol for the EMMO is: T([+-][1-9]|0) L([+-][1-9]|0) M([+-][1-9]|0) I([+-][1-9]|0) M([+-][1-9]|0) M([+-][1-9]|0)

Examples of correspondance between base units and physical dimensions are: mol  $\rightarrow$  T0 L0 M0 I0  $\Theta$ 0 N+1 J0 s  $\rightarrow$  T+1 L0 M0 I0  $\Theta$ 0 N0 J0 A/m2  $\rightarrow$  T0 L0 M-2 I+1  $\Theta$ 0 N0 J0

#### Relations:

- is\_a metrology.MetrologicalSymbol
- $\bullet \;$  is \_a metrology.Metrological
- is a perceptual. Symbol

### **ElectricResistanceDimension**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_7610efb8\_c7c6\_4684\_abc1\_774783c62472

#### **Relations:**

- $\bullet$  is\_a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T-3 L+2 M+1 I-2 Θ0 N0 J0"

### AbsorbedDoseDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_847f1d9f\_205e\_46c1\_8cb6\_a9e479421f88

## Relations:

- is a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbol Data value "T-2 L+2 M0 I<br/>0 $\Theta0$  N0 J0"

## InductanceDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO 585e0ff0 9429 4d3c b578 58abb1ba21d1

### Relations:

• is a metrology.PhysicalDimension

 • equivalent\_to perceptual.hasSymbol Data value "T-2 L+2 M+1 I-2  $\Theta 0$  N<br/>0 J0"

### AreaDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO}\_33433bb1\_c68f\_45ee\_a466\_f01e2c57b214$ 

#### **Relations:**

- $\bullet \;$  is \_a metrology.PhysicalDimension
- perceptual.has Symbol<br/>Data value "T0 L2 M0 I0  $\Theta 0$  N0 J0"

## LuminousEfficacyDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_5c003f53\_20a2\_4bd7\_8445\_58187e582578

### Relations:

- is a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbol Data value "T+3 L-1 M-1 I<br/>0 $\Theta0$  N0 J+1"

## MagneticFluxDensityDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_ec903946\_ddc9\_464a\_903c\_7373e0d1eeb5$ 

#### **Relations:**

- is\_a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T-2 L0 M+1 I-1 Θ0 N0 J0"

### IlluminanceDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_668e6ead\_1530\_40cc\_ad5e\_24b880edff50

#### **Relations:**

- equivalent to perceptual.hasSymbolData value "T0 L-2 M0 I0 Θ0 N0 J+1"

### **ForceDimension**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_53e825d9\_1a09\_483c\_baa7\_37501ebfbe1c } \\$ 

### Relations:

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.has Symbol<br/>Data value "T-2 L+1 M+1 I0  $\Theta 0$  N0 J0"

## ElectricConductanceDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_321af35f\_f0cc\_4a5c\_b4fe\_8c2c0303fb0c

- $\bullet$  is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T+3 L-2 M-1 I+2  $\Theta$ 0 N0 J0"

## **EnergyDimension**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_f6070071\_d054\_4b17\_9d2d\_f446f7147d0f

#### **Relations:**

- $\bullet \;$  is \_a metrology. PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T-2 L+2 M+1 I0 Θ0 N0 J0"

### **DimensionOne**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_3227b821\_26a5\_4c7c\_9c01\_5c24483e0bd0

**Comment:** "The unit one is the neutral element of any system of units – necessary and present automatically." SI Brochure

#### Relations:

- is a metrology.PhysicalDimension
- equivalent to perceptual.has Symbol<br/>Data value "T0 L0 M0 I0  $\Theta 0$  N0 J0"

## PressureDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_53bd0c90\_41c3\_46e2\_8779\_cd2a80f7e18b}$ 

#### **Relations:**

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T-2 L-1 M+1 I0 Θ0 N0 J0"

### ElectricPotentialDimension

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/isq\#EMMO\_2e7e5796\_4a80\_4d73\_bb84\_f31138446c0c$ 

### Relations:

- is a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T-3 L+2 M+1 I-1  $\Theta 0$  N0 J0"

## ${\bf Magnetic Dipole Moment Dimension}$

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1c2226a9\_22f0\_40c8\_8928\_5a01d398f96e

### Relations:

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T+1 L+1 M0 I+1  $\Theta0$  N0 J0"

### LengthDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_b3600e73\_3e05\_479d\_9714\_c041c3acf5cc

- is a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T0 L+1 M0 I0 Θ0 N0 J0"

### **ElectricCurrentDimension**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d5f3e0e5\_fc7d\_4e64\_86ad\_555e74aaff84 Relations:

- $\bullet \;$  is \_a metrology. PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T0 L0 M0 I+1 Θ0 N0 J0"

## MagneticFluxDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_4c49ab58\_a6f6\_409e\_b849\_f873ae1dcbee Relations:

- is\_a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T-2 L+2 M+1 I-1 Θ0 N0 J0"

## FrequencyDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_515b5579\_d526\_4842\_9e6f\_ecc34db6f368} \\ \textbf{Relations:}$ 

- is a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T-1 L0 M0 I0 Θ0 N0 J0"

## ElectricChargeDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_ab79e92b\_5377\_454d\_be06\_d61b50db295a} \\ \textbf{Relations:}$ 

- $\bullet$  is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T+1 L0 M0 I+1 Θ0 N0 J0"

### **Temperature Dimension**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_a77a0a4b\_6bd2\_42b2\_be27\_4b63cebbb59e Relations:

- $\bullet$  is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T0 L0 M0 I0  $\Theta$ +1 N0 J0"

### MassDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_77e9dc31\_5b19\_463e\_b000\_44c6e79f98aa} \\ \textbf{IRI:} \ \text{IRI:} \ \text{IR$ 

## Relations:

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.has Symbol<br/>Data value "T0 L0 M+1 I0  $\Theta 0$  N0 J0"

### VolumeDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_9141801c\_c539\_4c72\_b423\_8c74ff6b8f05

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.has Symbol<br/>Data value "T0 L+3 M0 I0  $\Theta 0$  N0 J0"

## CapacitanceDimension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_b14d9be5\_f81e\_469b\_abca\_379c2e83feab}$ 

#### Relations:

- $\bullet \;$  is \_a metrology. PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T+4 L-2 M-1 I+2 Θ0 N0 J0"

## CatalyticActivityDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO ce7d4720 aa20 4a8c 93e8 df41a35b6723

### Relations:

- is a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T-1 L0 M0 I0 Θ0 N+1 J0"

## AngularMomentumDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_501f9b3a\_c469\_48f7\_9281\_2e6a8d805d7a

#### **Relations:**

- is a metrology.PhysicalDimension
- equivalent to perceptual.hasSymbolData value "T-1 L+2 M+1 I0 Θ0 N0 J0"

### AmountDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_e501069c\_34d3\_4dc7\_ac87\_c90c7342192b

Comment: "In the name "amount of substance", the word "substance" will typically be replaced by words to specify the substance concerned in any particular application, for example "amount of hydrogen chloride, HCl", or "amount of benzene, C6H6". It is important to give a precise definition of the entity involved (as emphasized in the definition of the mole); this should preferably be done by specifying the molecular chemical formula of the material involved. Although the word "amount" has a more general dictionary definition, the abbreviation of the full name "amount of substance" to "amount" may be used for brevity." SI Brochure

### Relations:

- is\_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T0 L0 M0 I0  $\Theta 0$  N+1 J0"

## LuminousIntensityDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_14ff4393\_0f28\_4fb4\_abc7\_c2cc00bc761d

## Relations:

- is a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T0 L0 M0 I0 Θ0 N0 J+1"

#### PerAmountDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO af24ae20 8ef2 435a 86a1 2ea44488b318

- $\bullet \ \ is\_a \ metrology. Physical Dimension$
- equivalent to perceptual.hasSymbolData value "T0 L0 M0 I0 Θ0 N-1 J0"

### PowerDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_c8d084ad\_f88e\_4596\_8e4d\_982c6655ce6f

#### **Relations:**

- $\bullet \;$  is \_a metrology.PhysicalDimension
- equivalent\_to perceptual.hasSymbolData value "T-3 L+2 M+1 I0  $\Theta$ 0 N0 J0"

## VelocityDimension

IRI: http://emmo.info/emmo/middle/isq#EMMO\_f84792eb\_ec64\_4a6b\_941f\_c9f3e9ef052c

### Relations:

- is a metrology.PhysicalDimension
- equivalent\_to perceptual.has Symbol<br/>Data value "T-1 L+1 M0 I0  $\Theta0$  N0 J0"

# Physical Quantity branch



Figure 3.23: Physical Quantity branch.

## Weight

IRI: http://emmo.info/emmo/middle/isq#EMMO\_04cf0295\_3e8f\_4693\_a87f\_3130d125cf05

Comment: Force of gravity acting on a body.

Dbpediaentry: http://dbpedia.org/page/Weight

Iupacentry: https://doi.org/10.1351/goldbook.W06668

Physical dimension: T-2 L+1 M+1 IO OO NO JO

**Relations:** 

• is\_a isq. Force

## Permittivity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_0ee5779e\_d798\_4ee5\_9bfe\_c392d5bea112

Comment: Measure for how the polarization of a material is affected by the application of an external electric field.

neia.

**Dbpediaentry:** http://dbpedia.org/page/Permittivity **Iupacentry:** https://doi.org/10.1351/goldbook.P04507

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Permittivity

Physical dimension: T+4 L-3 M-1 I+2  $\Theta$ 0 N0 J0

• is\_a isq.ISQDerivedQuantity

### **BoltzmannConstant**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ffc7735f\_c177\_46a4\_98e9\_a54440d29209

**Elucidation:** A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant.

**Comment:** The DBpedia definition (http://dbpedia.org/page/Boltzmann\_constant) is outdated as May 20, 2019. It is now an exact quantity.

**Dbpediaentry:** http://dbpedia.org/page/Boltzmann\_constant

 $\textbf{Iupacentry:}\ \, https://doi.org/10.1351/goldbook.B00695$ 

Physical dimension: T-2 L+2 M+1 I0  $\Theta$ -1 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_BoltzmannConstant

Relations:

• is\_a isq.Entropy

• is\_a isq.SIExactConstant

## VacuumMagneticPermeability

IRI: http://emmo.info/emmo/middle/isq#EMMO de021e4f 918f 47ef a67b 11120f56b9d7

**Comment:** The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum\_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant.

Comment: The value of magnetic permeability in a classical vacuum.

Physical dimension: T-2 L+1 M+1 I-2 \O 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_MagneticConstant

Relations:

• is\_a isq.Permeability

• is a metrology.MeasuredConstant

### MagneticFieldStrength

IRI: http://emmo.info/emmo/middle/isq#EMMO\_b4895f75\_41c8\_4fd9\_b6d6\_4d5f7c99c423

Comment: Strength of a magnetic field. Commonly denoted H.

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_field **Iupacentry:** https://doi.org/10.1351/goldbook.M03683

Physical dimension: T0 L-1 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### MagneticFlux

IRI: http://emmo.info/emmo/middle/isq#EMMO\_3b931698\_937e\_49be\_ab1b\_36fa52d91181

Elucidation: Measure of magnetism, taking account of the strength and the extent of a magnetic field.

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_flux **Iupacentry:** https://doi.org/10.1351/goldbook.M03684

Physical dimension: T-2 L+2 M+1 I-1  $\Theta$ 0 N0 J0

### Relations:

• is\_a isq.ISQDerivedQuantity

## InternalEnergy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_830b59f7\_d047\_438c\_90cd\_62845749efcb

**Elucidation:** A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-20

Altlabel: ThermodynamicEnergy

**Dbpediaentry:** http://dbpedia.org/page/Internal\_energy **Iupacentry:** https://doi.org/10.1351/goldbook.I03103

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/InternalEnergy

Physical dimension: T-2 L+2 M+1 I0  $\Theta 0$  N0 J0

**Relations:** 

• is\_a isq.Energy

## Capacitance

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_99dba333\_0dbd\_4f75\_8841\_8c0f97fd58e2$ 

Elucidation: The derivative of the electric charge of a system with respect to the electric potential.

Altlabel: ElectricCapacitance

**Dbpediaentry:** http://dbpedia.org/page/Capacitance **Iupacentry:** https://doi.org/10.1351/goldbook.C00791 **Physical dimension:** T+4 L-2 M-1 I+2  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### RefractiveIndex

IRI: http://emmo.info/emmo/middle/isq#EMMO\_5eedba4d\_105b\_44d8\_b1bc\_e33606276ea2

Comment: Factor by which the phase velocity of light is reduced in a medium.

**Dbpediaentry:** http://dbpedia.org/page/Refractive\_index **Iupacentry:** https://doi.org/10.1351/goldbook.R05240

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.SpeedFractionUnit

### MassFraction

IRI: http://emmo.info/emmo/middle/isq#EMMO\_7c055d65\_2929\_40e1\_af4f\_4bf10995ad50

Comment: Mass of a constituent divided by the total mass of all constituents in the mixture.

**Dbpediaentry:** http://dbpedia.org/page/Mass\_fraction\_(chemistry)

Iupacentry: https://doi.org/10.1351/goldbook.M03722

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/MassFraction

Physical dimension: T0 L0 M0 I0 Θ0 N0 J0

### Relations:

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.MassFractionUnit

## VonKlitzingConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO eb561764 276e 413d a8cb 3a3154fd9bf8

**Definition:** The von Klitzing constant is defined as Planck constant divided by the square of the elementary

charge.

Comment: Resistance quantum.

Physical dimension: T-3 L+2 M+1 I-2  $\Theta0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value VonKlitzingConstant

### Relations:

 $\bullet\,$  is \_a isq.ElectricResistance

• is\_a isq.SIExactConstant

## Permeability

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_09663630\_1b84\_4202\_91e6\_e641104f579e}$ 

Comment: Measure for how the magnetization of material is affected by the application of an external magnetic

field .

 $\textbf{Dbpediaentry:} \ \text{http://dbpedia.org/page/Permeability\_(electromagnetism)}$ 

Iupacentry: https://doi.org/10.1351/goldbook.P04503

Physical dimension: T-2 L+1 M+1 I-2  $\Theta$ 0 N0 J0

### Relations:

• is\_a isq.ISQDerivedQuantity

## MagneticFluxDensity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_961d1aba\_f75e\_4411\_aaa4\_457f7516ed6b

Elucidation: Strength of the magnetic field.

Comment: Often denoted B.

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_field **Iupacentry:** https://doi.org/10.1351/goldbook.M03686

Physical dimension: T-2 L0 M+1 I-1  $\Theta$ 0 N0 J0

### Relations:

## RatioQuantity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_faab3f84\_e475\_4a46\_af9c\_7d249f0b9aef

Elucidation: The class of quantities that are the ratio of two quantities with the same physical dimensionality.

Example: refractive index, volume fraction, fine structure constant

**Comment:** Quantities defined as ratios Q=A/B having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as  $\dim(A)/\dim(B)$ .

Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219-230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394.

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

**Seealso:** https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012

#### Relations:

• is\_a isq.ISQDimensionlessQuantity

## Torque

IRI: http://emmo.info/emmo/middle/isq#EMMO aaf9dd7f 0474 40d0 9606 02def8515249

**Elucidation:** The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-26

**Comment:** Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt.

**Dbpediaentry:** http://dbpedia.org/page/Torque

Iupacentry: https://doi.org/10.1351/goldbook.T06400

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Torque

Physical dimension: T-2 L+2 M+1 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## Wavenumber

IRI: http://emmo.info/emmo/middle/isq#EMMO d859588d 44dc 4614 bc75 5fcd0058acc8

Comment: The number of waves per unit length along the direction of propagation.

**Dbpediaentry:** http://dbpedia.org/page/Wavenumber **Iupacentry:** https://doi.org/10.1351/goldbook.W06664

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Wavenumber

**Physical dimension:** T0 L-1 M0 I0  $\Theta0$  N0 J0

Relations:

 $\bullet$  is\_a isq.ReciprocalLength

## AreaDensity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_afea89af\_ef16\_4bdb\_99d5\_f3b2f4c85a6c}$ 

Comment: Mass per unit area.

**Dbpediaentry:** http://dbpedia.org/page/Area\_density **Iupacentry:** https://doi.org/10.1351/goldbook.S06167

Physical dimension: T0 L-2 M+1 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## ElectricCharge

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1604f495\_328a\_4f28\_9962\_f4cc210739dd

Elucidation: The physical property of matter that causes it to experience a force when placed in an electro-

magnetic field.

Altlabel: Charge

**Dbpediaentry:** http://dbpedia.org/page/Electric\_charge **Iupacentry:** https://doi.org/10.1351/goldbook.E01923

Physical dimension: T+1 L0 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## ElectricalConductivity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_cde4368c\_1d4d\_4c94\_8548\_604749523c6d

Comment: Measure of a material's ability to conduct an electric current.

Conductivity is equeal to the resiprocal of resistivity.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistivity\_and\_conductivity

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.C01245$ 

**Physical dimension:** T+3 L-3 M-1 I+2  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## PositionVector

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_44da6d75\_54a4\_4aa8\_bd3a\_156f6e9abb8e}$ 

**Definition:** Vector r characterizing a point P in a point space with a given origin point O.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-12

Altlabel: Position

**Comment:** In the usual geometrical three-dimensional space, position vectors are quantities of the dimension length.

- IEC

**Comment:** Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used.

#### - ISO 80000-3

Physical dimension: T0 L+1 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.Length

### **ProtonMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_8d689295\_7d84\_421b\_bc01\_d5cceb2c2086

**Comment:** The rest mass of a proton.

Iupacentry: https://doi.org/10.1351/goldbook.P04914

Physical dimension: T0 L0 M+1 I0  $\Theta0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value ProtonMass

**Relations:** 

• is a isq.Mass

• is a metrology.MeasuredConstant

## ThermodynamicTemperature

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/isq\#EMMO\_affe07e4\_e9bc\_4852\_86c6\_69e26182a17f$ 

**Elucidation:** Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point.

**Dbpediaentry:** http://dbpedia.org/page/Thermodynamic\_temperature

Iupacentry: https://doi.org/10.1351/goldbook.T06321

**Physical dimension:** To L0 M0 I0  $\Theta$ +1 N0 J0

Relations:

• is\_a isq.ISQBaseQuantity

### Density

IRI: http://emmo.info/emmo/middle/isq#EMMO 06448f64 8db6 4304 8b2c e785dba82044

Comment: Mass per volume.

**Dbpediaentry:** http://dbpedia.org/page/Density

Iupacentry: https://doi.org/10.1351/goldbook.D01590

Physical dimension: T0 L-3 M+1 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## Energy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_31ec09ba\_1713\_42cb\_83c7\_b38bf6f9ced2

Elucidation: A property of objects which can be transferred to other objects or converted into different forms.

**Comment:** Energy is often defined as "ability of a system to perform work", but it might be misleading since is not necessarily available to do work.

**Dbpediaentry:** http://dbpedia.org/page/Energy

Iupacentry: https://doi.org/10.1351/goldbook.E02101

Physical dimension: T-2 L+2 M+1 I0 Θ0 N0 J0

### Relations:

• is\_a isq.ISQDerivedQuantity

### Volume

IRI: http://emmo.info/emmo/middle/isq#EMMO\_fla51559\_aa3d\_43a0\_9327\_918039f0dfed

Comment: Extent of an object in space.

Dbpediaentry: http://dbpedia.org/page/Volume Physicaldimension: T0 L-3 M0 I0 Θ0 N0 J0

**Relations:** 

• is a isq.ISQDerivedQuantity

## **Electrical Resistivity**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e150fa8d\_06dc\_4bb8\_bf95\_04e2aea529c1$ 

Comment: Electric field strength divided by the current density.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistivity\_and\_conductivity

Iupacentry: https://doi.org/10.1351/goldbook.R05316

Physical dimension: T-3 L+3 M+1 I-2  $\Theta 0$  N0 J0

**Relations:** 

• is a isq.ISQDerivedQuantity

### Illuminance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_b51fbd00\_a857\_4132\_9711\_0ef70e7bdd20

**Definition:** The total luminous flux incident on a surface, per unit area.

**Dbpediaentry:** http://dbpedia.org/page/Illuminance **Iupacentry:** https://doi.org/10.1351/goldbook.I02941

Physical dimension: T0 L-2 M0 I0  $\Theta0$  N0 J+1

Relations:

• is\_a isq.ISQDerivedQuantity

## DoseEquivalent

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_3df10765\_f6ff\_4c9e\_be3d\_10b1809d78bd}$ 

**Elucidation:** A dose quantity used in the International Commission on Radiological Protection (ICRP) system

of radiological protection.

**Dbpediaentry:** http://dbpedia.org/page/Energy

Iupacentry: https://doi.org/10.1351/goldbook.E02101

Physical dimension: T-2 L+2 M0 I0  $\Theta$ 0 N0 J0

Relations:

## Entropy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_9bbab0be\_f9cc\_4f46\_9f46\_0fd271911b79

Comment: Logarithmic measure of the number of available states of a system.

Comment: May also be referred to as a measure of order of a system.

**Dbpediaentry:** http://dbpedia.org/page/Entropy

Iupacentry: https://doi.org/10.1351/goldbook.E02149

Physical dimension: T-2 L+2 M+1 I0  $\Theta$ -1 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### Work

IRI: http://emmo.info/emmo/middle/isq#EMMO 624d72ee e676 4470 9434 c22b4190d3d5

**Definition:** Product of force and displacement. **Dbpediaentry:** http://dbpedia.org/page/Heat

**Dbpediaentry:** http://dbpedia.org/page/Work\_(physics) **Iupacentry:** https://doi.org/10.1351/goldbook.W06684

Physical dimension: T-2 L+2 M+1 I0  $\Theta 0$  N0 J0

**Relations:** 

• is\_a isq.Energy

### CelsiusTemperature

IRI: http://emmo.info/emmo/middle/isq#EMMO 66bc9029 f473 45ff bab9 c3509ff37a22

**Elucidation:** An objective comparative measure of hot or cold.

Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures.

**Dbpediaentry:** http://dbpedia.org/page/Temperature **Iupacentry:** https://doi.org/10.1351/goldbook.T06261

Physicaldimension: T-1 L0 M0 I0  $\Theta$ 0 N+1 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## CurrentDensity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_7c8007b0\_58a7\_4486\_bf1c\_4772852caca0}$ 

Comment: Electric current divided by the cross-sectional area it is passing through.

**Dbpediaentry:** http://dbpedia.org/page/Current\_density **Iupacentry:** https://doi.org/10.1351/goldbook.E01928

Physical dimension: T0 L-2 M0 I+1  $\Theta$ 0 N0 J0

Relations:

### Power

IRI: http://emmo.info/emmo/middle/isq#EMMO\_09b9021b\_f97b\_43eb\_b83d\_0a764b472bc2

Elucidation: Rate of transfer of energy per unit time.

Dbpediaentry: http://dbpedia.org/page/Power\_(physics)

Iupacentry: https://doi.org/10.1351/goldbook.P04792

Physical dimension: T-3 L+2 M+1 I0  $\Theta 0$  N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## Vergence

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1e7603a7\_1365\_49b8\_b5e5\_3711c8e6b904

**Comment:** In geometrical optics, vergence describes the curvature of optical wavefronts.

**Dbpediaentry:** http://dbpedia.org/page/Vergence

Physical dimension: T0 L-1 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### Area

IRI: http://emmo.info/emmo/middle/isq#EMMO\_96f39f77\_44dc\_491b\_8fa7\_30d887fe0890

Comment: Extent of a surface.

**Dbpediaentry:** http://dbpedia.org/page/Area

Iupacentry: https://doi.org/10.1351/goldbook.A00429

Physical dimension: T0 L+2 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## **ISQDimensionlessQuantity**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_a66427d1\_9932\_4363\_9ec5\_7d91f2bfda1e

**Elucidation:** A quantity to which no physical dimension is assigned and with a corresponding unit of measurement in the SI of the unit one.

**Dbpediaentry:** http://dbpedia.org/page/Dimensionless\_quantity

Iupacentry: https://doi.org/10.1351/goldbook.D01742

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Dimensionless\_quantity

Relations:

### AmountFraction

IRI: http://emmo.info/emmo/middle/isq#EMMO\_04b3300c\_98bd\_42dc\_a3b5\_e6c29d69f1ac

**Definition:** The amount of a constituent divided by the total amount of all constituents in a mixture.

Altlabel: MoleFraction

**Dbpediaentry:** http://dbpedia.org/page/Mole\_fraction **Iupacentry:** https://doi.org/10.1351/goldbook.A00296

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/AmountOfSubstanceFraction

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

## Relations:

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.AmountFractionUnit

### VolumeFraction

IRI: http://emmo.info/emmo/middle/isq#EMMO a8eb87b5 4d10 4137 a75c e04ee59ca095

Elucidation: Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to

mixing.

**Dbpediaentry:** http://dbpedia.org/page/Volume\_fraction

Iupacentry: https://doi.org/10.1351/goldbook.V06643

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/VolumeFraction

Physical dimension: T0 L0 M0 I0 Θ0 N0 J0

### Relations:

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.VolumeFractionUnit

### **ISQBaseQuantity**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1a4c1a97\_88a7\_4d8e\_b2f9\_2ca58e92dde4

Elucidation: Base quantities defined in the International System of Quantities (ISQ).

Wikipediaentry: https://en.wikipedia.org/wiki/International\_System\_of\_Quantities

### Relations:

- is a isq.InternationalSystemOfQuantity
- is\_a metrology.BaseQuantity
- disjoint\_union\_of isq.LuminousIntensity, isq.AmountOfSubstance, isq.ThermodynamicTemperature, isq.ElectricCurrent, isq.Length, isq.Time, isq.Mass

## RybergConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO a3c78d6f ae49 47c8 a634 9b6d86b79382

**Comment:** The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state.

**Dbpediaentry:** http://dbpedia.org/page/Rydberg\_constant

Iupacentry: https://doi.org/10.1351/goldbook.R05430

Physical dimension: T0 L-1 M0 I0  $\Theta0$  N0 J0 Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_RybergConstant

### Relations:

- is\_a isq.Wavenumber
- is\_a metrology.MeasuredConstant

## SolidAngle

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e7c9f7fd\_e534\_4441\_88fe\_1fec6cb20f26 }$ 

Elucidation: Ratio of area on a sphere to its radius squared.

**Dbpediaentry:** http://dbpedia.org/page/Solid\_angle **Iupacentry:** https://doi.org/10.1351/goldbook.S05732

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

#### **Relations:**

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.AreaFractionUnit

### **MassConcentration**

IRI: http://emmo.info/emmo/middle/isq#EMMO 16f2fe60 2db7 43ca 8fee 5b3e416bfe87

Comment: Mass of a constituent divided by the volume of the mixture.

**Dbpediaentry:** http://dbpedia.org/page/Mass\_concentration\_(chemistry)

Iupacentry: https://doi.org/10.1351/goldbook.M03713

Physical dimension: T0 L-3 M+1 I0 Θ0 N0 J0

## Relations:

• is a isq.Density

### AbsorbedDose

IRI: http://emmo.info/emmo/middle/isq#EMMO 8e5dd473 808b 4a8a b7cd 63068c12ff57

**Definition:** Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by the mass of that element of volume.

**Dbpediaentry:** http://dbpedia.org/page/Absorbed\_dose **Iupacentry:** https://doi.org/10.1351/goldbook.A00031

Physical dimension: T-2 L+2 M0 I0  $\Theta$ 0 N0 J0

### Relations:

 $\bullet \ \ is\_a \ isq. ISQDerived Quantity$ 

## **ISQDerivedQuantity**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_2946d40b\_24a1\_47fa\_8176\_e3f79bb45064

Elucidation: Derived quantities defined in the International System of Quantities (ISQ).

- $\bullet \ \ is\_a \ isq. International System Of Quantity$
- is\_a metrology.DerivedQuantity

### **ElectricCurrent**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_c995ae70\_3b84\_4ebb\_bcfc\_69e6a281bb88$ 

Elucidation: A flow of electric charge.

**Dbpediaentry:** http://dbpedia.org/page/Electric\_current **Iupacentry:** https://doi.org/10.1351/goldbook.E01927

Physical dimension: T0 L0 M0 I+1  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQBaseQuantity

## PureNumberQuantity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ba882f34\_0d71\_4e4f\_9d92\_0c076c633a2c

**Elucidation:** A pure number, typically the number of something. **Example:** 1, i,  $\pi$ , the number of protons in the nucleus of an atom

**Comment:** According to the SI brochure counting does not automatically qualify a quantity as an amount of substance.

This quantity is used only to describe the outcome of a counting process, without regard of the type of entities.

"There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one."

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is a isq.ISQDimensionlessQuantity

#### Heat

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_12d4ba9b\_2f89\_4ea3\_b206\_cd376f96c875}$ 

Comment: Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter.

Iupacentry: https://doi.org/10.1351/goldbook.H02752

Physical dimension: T-2 L+2 M+1 I0 Θ0 N0 J0

Relations:

• is\_a isq.Energy

### LuminousFlux

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e2ee1c98\_497a\_4f66\_b4ed\_5711496a848e}$ 

Elucidation: Perceived power of light.

**Dbpediaentry:** http://dbpedia.org/page/Luminous\_flux **Iupacentry:** https://doi.org/10.1351/goldbook.L03646

Physical dimension: T0 L0 M0 I0  $\Theta0$  N0 J+1

Relations:

## VacuumElectricPermittivity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_61a32ae9\_8200\_473a\_bd55\_59a9899996f4}$ 

Comment: The DBpedia definition (http://dbpedia.org/page/Vacuum\_permittivity) is outdated since May

20, 2019. It is now a measured constant.

Comment: The value of the absolute dielectric permittivity of classical vacuum.

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.P04508$ 

Physical dimension: T+4 L-3 M-1 I+2  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElectricConstant

#### Relations:

• is a isq.Permittivity

• is a metrology.MeasuredConstant

## Frequency

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{852b4ab8\_fc29}\underline{4749}\underline{a8c7}\underline{b92d4fca7d5a}$ 

Elucidation: Number of periods per time interval.

Dbpediaentry: http://dbpedia.org/page/Frequency

Iupacentry: https://doi.org/10.1351/goldbook.FT07383

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### **ElectricPotential**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_4f2d3939\_91b1\_4001\_b8ab\_7d19074bf845

Elucidation: Energy required to move a unit charge through an electric field from a reference point.

Altlabel: Voltage

**Dbpediaentry:** http://dbpedia.org/page/Voltage

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.A00424$ 

Physical dimension: T-3 L+2 M+1 I-1  $\Theta0$  N0 J0

Relations:

 $\bullet \ \ is\_a \ isq. ISQDerived Quantity$ 

## AngularMomentum

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_66d01570\_36dd\_42fd\_844d\_29b81b029cd5}$ 

Comment: Measure of the extent and direction an object rotates about a reference point.

**Dbpediaentry:** http://dbpedia.org/page/Angular\_momentum

Iupacentry: https://doi.org/10.1351/goldbook.A00353

Physical dimension: T-1 L+2 M+1 I0  $\Theta$ 0 N0 J0

Relations:

## MagneticDipoleMoment

IRI: http://emmo.info/emmo/middle/isq#EMMO\_81e767f1\_59b1\_4d7a\_bf69\_17f322241831

Elucidation: Vector quantity  $\mu$  causing a change to its energy  $\Delta W$  in an external magnetic field of field flux density B:

\$\Updelta\$W = -\$\upmu\$ · B

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55

**Iso80000ref:** 10-9.1

Comment: For an atom or nucleus, this energy is quantized and can be written as:

 $W = g \simeq M B$ 

where g is the appropriate g factor,  $\mu$  is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density.

- ISO 80000

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_moment **Iupacentry:** http://goldbook.iupac.org/terms/view/M03688

Physical dimension: T0 L+2 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### Inductance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_04cc9451\_5306\_45d0\_8554\_22cee4d6e785

**Elucidation:** A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance.

Altlabel: ElectricInductance

Dbpediaentry: http://dbpedia.org/page/Inductance Iupacentry: https://doi.org/10.1351/goldbook.M04076 Physicaldimension: T-2 L+2 M+1 I-2 Θ0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## **HyperfineTransitionFrequencyOfCs**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_f96feb3f\_4438\_4e43\_aa44\_7458c4d87fc2

**Elucidation:** The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency.

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N0 J0

- $\bullet \ \ is\_a \ isq. Frequency$
- $\bullet$  is\_a isq.SIExactConstant

## **Probability**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_0a88be81\_343d\_4388\_92c1\_09228ff95ada} \\ \textbf{IRI:} \ \textbf{IR$ 

**Elucidation:** Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event.

**Comment:** The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events.

Iupacentry: https://doi.org/10.1351/goldbook.P04855

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

#### **Relations:**

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only metrology.UnitOne

## ElementaryCharge

**Elucidation:** The magnitude of the electric charge carried by a single electron.

Comment: The DBpedia definition (http://dbpedia.org/page/Elementary\_charge) is outdated as May 20,

2019. It is now an exact quantity.

 ${\bf Dbpediaentry:}\ http://dbpedia.org/page/Elementary\_charge$ 

**Iupacentry:** https://doi.org/10.1351/goldbook.E02032

Physical dimension: T+1 L0 M0 I+1  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElementaryCharge

### Relations:

 $\bullet \ \ is\_a \ isq.ElectricCharge$ 

• is a isq.SIExactConstant

### Luminance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_97589322\_710c\_4af4\_9431\_1e5027f2be42

Comment: Measured in cd/m<sup>2</sup>. Not to confuse with Illuminance, which is measured in lux (cd sr/m<sup>2</sup>).

Comment: a photometric measure of the luminous intensity per unit area of light travelling in a given direction.

 ${\bf Dbpediaentry:}\ http://dbpedia.org/page/Luminance$ 

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.L03640$ 

Physical dimension: T0 L-2 M0 I0  $\Theta$ 0 N0 J+1

#### Relations:

• is\_a isq.ISQDerivedQuantity

## **KineticEnergy**

IRI: http://emmo.info/emmo/middle/isq#EMMO ac540a9d 0131 43f6 a33b 17e5cfc432ed

**Elucidation:** The energy of an object due to its motion.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-49

**Dbpediaentry:** http://dbpedia.org/page/Kinetic\_energy **Iupacentry:** https://doi.org/10.1351/goldbook.K03402

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/KineticEnergy

Physical dimension: T-2 L+2 M+1 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is a isq.Energy

# Time

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d4f7d378\_5e3b\_468a\_baa1\_a7e98358cda7

**Definition:** One-dimensional subspace of space-time, which is locally orthogonal to space.

Elucidation: The indefinite continued progress of existence and events that occur in apparently irreversible

succession from the past through the present to the future.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-03

Comment: Time can be seen as the duration of an event or, more operationally, as "what clocks read".

**Dbpediaentry:** http://dbpedia.org/page/Time

Iupacentry: https://doi.org/10.1351/goldbook.T06375

Physical dimension: T+1 L0 M0 I0 O0 N0 J0

**Relations:** 

• is\_a isq.ISQBaseQuantity

#### **ElectricResistance**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_e88f75d6\_9a17\_4cfc\_bdf7\_43d7cea5a9a1

Elucidation: Measure of the difficulty to pass an electric current through a material.

Altlabel: Resistance

Comment: Inverse of 'ElectricalConductance'.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistance\_and\_conductance

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.E01936$ 

Physical dimension: T-3 L+2 M+1 I-2  $\Theta0~\mathrm{N0~J0}$ 

**Relations:** 

• is\_a isq.ISQDerivedQuantity

# **ElectronCharge**

IRI: http://emmo.info/emmo/middle/isq#EMMO cc01751d dd05 429b 9d0c 1b7a74d1f277

**Definition:** The charge of an electron.

**Comment:** The negative of ElementaryCharge.

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.E01982$ 

Physical dimension: T+1 L0 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ElectricCharge

• is\_a isq.SIExactConstant

#### Stress

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d1917609\_db5e\_4b8a\_9b76\_ef1d6f860a81

Comment: Force per unit oriented surface area .

Comment: Measure of the internal forces that neighboring particles of a continuous material exert on each

other.

**Dbpediaentry:** http://dbpedia.org/page/Stress\_(mechanics)

Physical dimension: T-2 L-1 M+1 I0 Θ0 N0 J0

Relations:

• is\_a isq.Pressure

# Length

IRI: http://emmo.info/emmo/middle/isq#EMMO\_cd2cd0de\_e0cc\_4ef1\_b27e\_2e88db027bac

Elucidation: Extend of a spatial dimension.

Iecentry: http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-19

Comment: Length is a non-negative additive quantity attributed to a one-dimensional object in space.

**Dbpediaentry:** http://dbpedia.org/page/Length

Iupacentry: https://doi.org/10.1351/goldbook.L03498

Physical dimension: T0 L+1 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQBaseQuantity

# **ElectronMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO 44fc8c60 7a9c 49af a046 e1878c88862c

Comment: The rest mass of an electron.

 ${\bf Dbpe diaentry:}\ \, {\rm http://dbpe dia.org/page/Electron\_rest\_mass}$ 

Iupacentry: https://doi.org/10.1351/goldbook.E02008

Physicaldimension: T0 L0 M+1 I0 Θ0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElectronMass

Relations:

• is\_a isq.Mass

• is\_a metrology.MeasuredConstant

# Speed

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{81369540} \underline{1b0e} \underline{471b} \underline{9bae} \underline{6801af22800e}$ 

Comment: Length per unit time.

Speed in the absolute value of the velocity.

Dbpediaentry: http://dbpedia.org/page/Speed

Iupacentry: https://doi.org/10.1351/goldbook.S05852

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Speed

Physical dimension: T-1 L+1 M0 I0  $\Theta0$  N0 J0

#### Relations:

• is\_a isq.ISQDerivedQuantity

# **AtomicMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_27367073\_ed8a\_481a\_9b07\_f836dfe31f7f

**Definition:** The mass of an atom in the ground state.

**Comment:** Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number.

Comment: The atomic mass is often expressed as an average of the commonly found isotopes.

**Iupacentry:** https://doi.org/10.1351/goldbook.A00496

Physical dimension: T0 L0 M+1 I0 \text{ }\Theta 0 \text{

Wikipediaentry: https://en.wikipedia.org/wiki/Atomic\_mass

Relations:

• is\_a isq.Mass

#### AtomicNumber

IRI: http://emmo.info/emmo/middle/isq#EMMO\_07de47e0\_6bb6\_45b9\_b55a\_4f238efbb105

**Definition:** Number of protons in an atomic nucleus.

**Dbpediaentry:** http://dbpedia.org/page/Atomic\_number **Iupacentry:** https://doi.org/10.1351/goldbook.A00499

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.PureNumberQuantity

# LuminousIntensity

IRI: http://emmo.info/emmo/middle/isq#EMMO 50bf79a6 a48b 424d 9d2c 813bd631231a

**Elucidation:** A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye.

**Dbpediaentry:** http://dbpedia.org/page/Luminous\_intensity

Physical dimension: T0 L0 M0 I0 Θ0 N0 J+1

Relations:

• is\_a isq.ISQBaseQuantity

# CentreOfMass

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_9d8f708a\_f291\_4d72\_80ec\_362c6e6bbca6$ 

**Elucidation:** The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-12

Comment: In non-relativistic physics, the centre of mass doesn't depend on the chosen reference frame.

**Dbpediaentry:** http://dbpedia.org/page/Center\_of\_mass

Physical dimension: T0 L+1 M0 I0  $\Theta$ 0 N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Center\_of\_mass

Relations:

• is\_a isq.PositionVector

#### Acceleration

IRI: http://emmo.info/emmo/middle/isq#EMMO e37ac288 aa60 415a 8cb7 c375724ac8e1

Comment: Derivative of velocity with respect to time.

Dbpediaentry: http://dbpedia.org/page/Acceleration

Iupacentry: https://doi.org/10.1351/goldbook.A00051

Physical dimension: T-2 L+1 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

# CatalyticActivity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_bd67d149\_24c2\_4bc9\_833a\_c2bc26f98fd3$ 

**Elucidation:** Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a

specific assay system.

Iupacentry: https://doi.org/10.1351/goldbook.C00881

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N+1 J0

Relations:

• is\_a isq.ISQDerivedQuantity

#### PlanckConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO\_76cc4efc\_231e\_42b4\_be83\_2547681caed6

Elucidation: The quantum of action.

**Dbpediaentry:** http://dbpedia.org/page/Planck\_constant **Iupacentry:** https://doi.org/10.1351/goldbook.P04685

Physical dimension: T-1 L+2 M+1 I0  $\Theta0~\mathrm{N0}~\mathrm{J0}$ 

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value PlankConstant

Relations:

is\_a isq.AngularMomentumis\_a isq.SIExactConstant

# Enthalpy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_4091d5ec\_a4df\_42b9\_a073\_9a090839279f

Comment: Measurement of energy in a thermodynamic system.

**Dbpediaentry:** http://dbpedia.org/page/Enthalpy **Iupacentry:** https://doi.org/10.1351/goldbook.E02141

Physical dimension: T-2 L+2 M+1 I0 Θ0 N0 J0

#### Relations:

• is\_a isq.Energy

### ChemicalPotential

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{88fc5d1b} \underline{d3ab} \underline{4626} \underline{b24c} \underline{915ebe7400ca}$ 

Comment: Energy per unit change in amount of substance.

Dbpediaentry: http://dbpedia.org/page/Chemical potential

Iupacentry: https://doi.org/10.1351/goldbook.C01032

Physical dimension: T-2 L+2 M+1 I0 Θ0 N-1 J0

Relations:

• is\_a isq.ISQDerivedQuantity

# PhysicalQuantity

IRI: http://emmo.info/emmo/middle/metrology#EMMO 02c0621e a527 4790 8a0f 2bb51973c819

**Elucidation:** A 'Mathematical' entity that is made of a 'Numeral' and a 'MeasurementUnit' defined by a physical law, connected to a physical entity through a model perspective. Measurement is done according to the same model.

**Comment:** In the same system of quantities, dim  $\rho B = ML-3$  is the quantity dimension of mass concentration of component B, and ML-3 is also the quantity dimension of mass density,  $\rho$ . ISO 80000-1

**Comment:** Measured or simulated 'physical propertiy'-s are always defined by a physical law, connected to a physical entity through a model perspective and measurement is done according to the same model.

Systems of units suggests that this is the correct approach, since except for the fundamental units (length, time, charge) every other unit is derived by mathematical relations between these fundamental units, implying a physical laws or definitions.

**Comment:** Measurement units of quantities of the same quantity dimension may be designated by the same name and symbol even when the quantities are not of the same kind.

For example, joule per kelvin and J/K are respectively the name and symbol of both a measurement unit of heat capacity and a measurement unit of entropy, which are generally not considered to be quantities of the same kind.

However, in some cases special measurement unit names are restricted to be used with quantities of specific kind only.

For example, the measurement unit 'second to the power minus one' (1/s) is called hertz (Hz) when used for frequencies and becquerel (Bq) when used for activities of radionuclides.

As another example, the joule (J) is used as a unit of energy, but never as a unit of moment of force, i.e. the newton metre  $(N \cdot m)$ .

**Comment:** — quantities of the same kind have the same quantity dimension, — quantities of different quantity dimensions are always of different kinds, and — quantities having the same quantity dimension are not necessarily of the same kind. ISO 80000-1

- is a math.Mathematical
- is a metrology.Quantity
- metrology.hasReferenceUnit only metrology.MeasurementUnit
- disjoint union of metrology. Derived Quantity, metrology. Base Quantity

# Angle

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_f3dd74c0\_f480\_49e8\_9764\_33b78638c235}$ 

**Definition:** Ratio of circular arc length to radius.

Altlabel: PlaneAngle

**Dbpediaentry:** http://dbpedia.org/page/Angle

Iupacentry: https://doi.org/10.1351/goldbook.A00346

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

#### Relations:

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.LengthFractionUnit

### Force

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_1f087811\_06cb\_42d5\_90fb\_25d0e7e068ef}$ 

Elucidation: Any interaction that, when unopposed, will change the motion of an object.

**Dbpediaentry:** http://dbpedia.org/page/Force

 $\textbf{Iupacentry:}\ \, \text{https://doi.org/} 10.1351/goldbook.F02480$ 

Physical dimension: T-2 L+1 M+1 I0  $\Theta 0$  N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## ElectricConductance

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_ffb73b1e\_5786\_43e4\_a964\_cb32ac7affb7$ 

Elucidation: Measure of the ease for electric current to pass through a material.

Altlabel: Conductance

Comment: Inverse of 'ElectricalResistance'.

 $\textbf{Dbpediaentry:}\ \text{http://dbpedia.org/page/Electrical\_resistance\_and\_conductance}$ 

Iupacentry: https://doi.org/10.1351/goldbook.E01925

Physical dimension: T+3 L-2 M-1 I+2  $\Theta 0$  N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### MassNumber

IRI: http://emmo.info/emmo/middle/isq#EMMO\_dc6c8de0\_cfc4\_4c66\_a7dc\_8f720e732d54

 $\textbf{Definition:} \ \ \text{Number of nucleons in an atomic nucleus.}$ 

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.PureNumberQuantity

# ${\bf SpeedOf Light In Vacuum}$

IRI: http://emmo.info/emmo/middle/isq#EMMO\_99296e55\_53f7\_4333\_9e06\_760ad175a1b9

Elucidation: The speed of light in vacuum.

**Dbpediaentry:** http://dbpedia.org/page/Speed\_of\_light **Iupacentry:** https://doi.org/10.1351/goldbook.S05854

Physical dimension: T-1 L+1 M0 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_SpeedOfLightInVacuum

#### Relations:

• is\_a isq.Speed

 $\bullet \ \ is\_a \ isq.SIExactConstant$ 

## Strain

IRI: http://emmo.info/emmo/middle/isq#EMMO acf636d4 9ac2 4ce3 960a d54338e6cae3

**Elucidation:** Change of the relative positions of parts of a body, excluding a displacement of the body as a whole.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-57

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Strain

Physicaldimension: T0 L0 M0 I0 Θ0 N0 J0

#### **Relations:**

• is a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.LengthFractionUnit

# ElectricalImpedance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_79a02de5\_b884\_4eab\_bc18\_f67997d597a2

Comment: Measure of the opposition that a circuit presents to a current when a voltage is applied.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_impedance

Physical dimension: T-3 L+2 M+1 I-2  $\Theta0~\mathrm{N0}~\mathrm{J0}$ 

# Relations:

• is\_a isq.ElectricResistance

# Mass

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ed4af7ae\_63a2\_497e\_bb88\_2309619ea405

**Elucidation:** Property of a physical body that express its resistance to acceleration (a change in its state of motion) when a force is applied.

motion) when a force is applied.

**Dbpediaentry:** http://dbpedia.org/page/Mass

Iupacentry: https://doi.org/10.1351/goldbook.M03709

Physical dimension: T0 L0 M+1 I0 O0 N0 J0

# Relations:

• is a isq.ISQBaseQuantity

• Inverse(properties.hasProperty) only physicalistic.Matter

# AmountConcentration

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_d5be1faf\_0c56\_4f5a\_9b78\_581e6dee949f}$ 

Altlabel: Concentration

Altlabel: MolarConcentration

Altlabel: Molarity

Comment: The amount of a constituent divided by the volume of the mixture.

**Dbpediaentry:** http://dbpedia.org/page/Molar\_concentration

Iupacentry: https://doi.org/10.1351/goldbook.A00295

Physicaldimension: T0 L-3 M0 I0  $\Theta$ 0 N+1 J0

Relations:

• is a isq.ISQDerivedQuantity

# PotentialEnergy

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_4c151909\_6f26\_4ef9\_b43d\_7c9e9514883a} \\ \textbf{IRI:} \ \text{IRI:} \ \text{IR$ 

Elucidation: The energy possessed by a body by virtue of its position or orientation in a potential field.

Iecentry: http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-48

**Dbpediaentry:** http://dbpedia.org/page/Potential\_energy

**Iupacentry:** https://doi.org/10.1351/goldbook.P04778

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/PotentialEnergy

Physical dimension: T-2 L+2 M+1 I0 Θ0 N0 J0

Relations:

• is\_a isq.Energy

#### Pressure

IRI: http://emmo.info/emmo/middle/isq#EMMO 50a44256 9dc5 434b bad4 74a4d9a29989

Elucidation: The force applied perpendicular to the surface of an object per unit area over which that force

is distributed.

**Dbpediaentry:** http://dbpedia.org/page/Pressure

Iupacentry: https://doi.org/10.1351/goldbook.P04819

Physical dimension: T-2 L-1 M+1 I0 Θ0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

# ElectricalReactance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_92b2fb85\_2143\_4bc7\_bbca\_df3e6944bfc1

Comment: The opposition of a circuit element to a change in current or voltage, due to that element's

inductance or capacitance.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_reactance

Physical dimension: T-3 L+2 M+1 I-2  $\Theta$ 0 N0 J0

• is\_a isq.ElectricResistance

# Velocity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO}\_0329f1f5\_8339\_4ce4\_8505\_a264c6d606ba$ 

**Definition:** Vector quantity giving the rate of change of a position vector.

- ISO 80000-3

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-32

**Iso80000ref:** 3-10.1

**Comment:** The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description.

- IEC, note 2

**Comment:** The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave.

- IEC, note 1

Physical dimension: T-1 L+1 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.Speed

# ${\bf Electric Dipole Moment}$

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1a179ce4\_3724\_47f8\_bee5\_6292e3ac9942

**Elucidation:** An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35 **Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-36

**Dbpediaentry:** http://dbpedia.org/page/Electric\_dipole\_moment

Iupacentry: https://doi.org/10.1351/goldbook.E01929

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/ElectricDipoleMoment

Physical dimension: T+1 L+1 M0 I+1  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

# ReciprocalLength

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_ecec2983\_7c26\_4f8d\_a981\_51ca29668baf}$ 

**Elucidation:** The inverse of length.

**Dbpediaentry:** http://dbpedia.org/page/Reciprocal\_length

Physical dimension: T0 L-1 M0 I0  $\Theta0$  N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Reciprocal\_length

Relations:

• is a isq.ISQDerivedQuantity

# RadiantFlux

IRI: http://emmo.info/emmo/middle/isq#EMMO\_e46f3f24\_c2ec\_4552\_8dd4\_cfc5c0a89c09

Comment: The radiant energy emitted, reflected, transmitted or received, per unit time.

**Dbpediaentry:** http://dbpedia.org/page/Radiant\_flux **Iupacentry:** https://doi.org/10.1351/goldbook.R05046

Physical dimension: T-3 L+2 M+1 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.Power

## Momentum

IRI: http://emmo.info/emmo/middle/isq#EMMO\_43776fc9\_d712\_4571\_85f0\_72183678039a

Comment: Product of mass and velocity.

**Dbpediaentry:** http://dbpedia.org/page/Momentum **Iupacentry:** https://doi.org/10.1351/goldbook.M04007

Physical dimension: T-1 L+1 M+1 I0  $\Theta 0$  N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

# Radioactivity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_8d3da9ac\_2265\_4382\_bee5\_db72046722f8}$ 

Elucidation: Decays per unit time.

Iupacentry: https://doi.org/10.1351/goldbook.A00114

Physical dimension: T-1 L0 M0 I0  $\Theta0$  N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

# AmountOfSubstance

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{8159c26a} \underline{494b} \underline{4fa0} \underline{9959} \underline{10888f152298}$ 

Elucidation: The number of elementary entities present.

 ${\bf Dbpediaentry:}\ http://dbpedia.org/page/Amount\_of\_substance$ 

Iupacentry: https://doi.org/10.1351/goldbook.A00297

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N+1 J0

Relations:

• is a isq.ISQBaseQuantity

# InternationalSystemOfQuantity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_f35cff4d\_dc09\_44cf\_a729\_22fb79e3bfb2$ 

Elucidation: Quantities declared under the ISO 80000.

Seealso: https://www.iso.org/obp/ui/#iso:std:iso:80000:-1:ed-1:v1:en:sec:3.1

Wikipediaentry: https://en.wikipedia.org/wiki/International\_System\_of\_Quantities

Relations:

• is\_a metrology.PhysicalQuantity

# Number branch



Figure 3.24: Number branch.

# Boolean

IRI: http://emmo.info/emmo/middle/math#EMMO\_54dc83cb\_06e1\_4739\_9e45\_bc09cead7f48

# Relations:

- is a math.Number
- math.hasNumericalData only type
- equivalent\_to math.hasNumericalData some type

### Real

IRI: http://emmo.info/emmo/middle/math#EMMO 18d180e4 5e3e 42f7 820c e08951223486

### Relations:

- is a math.Number
- math.hasNumericalData only type
- math.hasNumericalData exactly 1 type
- equivalent\_to math.hasNumericalData some type

# Integer

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_f8bd64d5\_5d3e\_4ad4\_a46e\_c30714fecb7f}$ 

- is a math.Number
- math.hasNumericalData only type
- math.hasNumericalData exactly 1 type
- equivalent\_to math.hasNumericalData some type

## Number

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_21f56795\_ee72\_4858\_b571\_11cfaa59c1a8$ 

Elucidation: A numerical data value.

**Comment:** A number is actually a string (e.g. 1.4, 1e-8) of numerical digits and other symbols. However, in order not to increase complexity of the taxonomy and relations, here we take a number as an "atomic" object (i.e. we do not include digits in the EMMO as alphabet for numbers).

A 'Number' individual provide the link between the ontology and the actual data, through the data property has Numerical Value.

**Comment:** In math usually number and numeral are distinct concepts, the numeral being the symbol or a composition of symbols (e.g. 3.14, 010010, three) and the number is the idea behind it.

More than one numeral stand for the same number.

In the EMMO abstract entities does not exists, and numbers are simply defined by other numerals, so that a number is the class of all the numerals that are equivalent (e.g. 3 and 0011 are numerals that stands for the same number).

Or alternatively, an integer numeral may also stands for a set of a specific cardinality (e.g. 3 stands for a set of three apples). Rational and real numbers are simply a syntactic arrangment of integers (digits, in decimal system).

The fact that you can't give a name to a number without using a numeral or, in case of positive integers, without referring to a real world objects set with specific cardinality, suggests that the abstract concept of number is not a concept that can be practically used.

For these reasons, the EMMO will consider numerals and numbers as the same concept.

#### Relations:

- is a math.Numerical
- is\_a math.MathematicalSymbol
- is\_a perceptual.Symbol

# Measurement Unit branch



Figure 3.25: Measurement Unit branch.

# LengthFractionUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_cdc962d8\_f3ea\_4764\_a57a\_c7caa4859179$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two lengths.

Example: Unit for plane angle.

# Relations:

• is a units-extension.FractionUnit

#### **MassFractionUnit**

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 18448443 dcf1 49b8 a321 cf46e2c393e1

**Elucidation:** Unit for quantities of dimension one that are the fraction of two masses.

Example: Unit for mass fraction.

Relations:

• is a units-extension.FractionUnit

### Litre

IRI: http://emmo.info/emmo/middle/units-extension#EMMO a155dc93 d266 487e b5e7 2a2c72d5ebf9

**Definition:** A non-SI unit of volume defined as 1 cubic decimetre (dm3),

Iupacentry: https://doi.org/10.1351/goldbook.L03594

Qudtentry: http://qudt.org/vocab/unit/L

Relations:

• is a units-extension.SIAcceptedSpecialUnit

• is a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.VolumeDimension

• perceptual.hasSymbolData value "l"

# DerivedUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO 08b308d4 31cd 4779 a784 aa92fc730f39

**Elucidation:** Derived units are defined as products of powers of the base units corresponding to the relations defining the derived quantities in terms of the base quantities.

### Relations:

• is a metrology.NonPrefixedUnit

# ArcSecond

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6a4547ab\_3abb\_430d\_b81b\_ce32d47729f5

**Definition:** Measure of plane angle defined as 1/3600 or a degree.

Altlabel: SecondOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCSEC

# Relations:

- is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value " "

### FractionUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_c2f5ee66\_579c\_44c6\_a2e9\_fa2eaa9fa4da$ 

**Elucidation:** Unit for fractions of quantities of the same kind, to aid the understanding of the quantity being expressed.

Comment: Quantities that are ratios of quantities of the same kind (for example length ratios and amount fractions) have the option of being expressed with units (m/m, mol/mol to aid the understanding of the quantity being expressed and also allow the use of SI prefixes, if this is desirable ( $\mu$ m/m, nmol/mol). – SI Brochure

#### Relations:

• is\_a metrology.UnitOne

# ColumnMetre

IRI: http://emmo.info/emmo/middle/units-extension#EMMO e9eaeeb5 620c 4dab 8f72 269ff85d0634

Elucidation: Measurement unit for electric dipole moment.

#### **Relations:**

• is a siunits.SICoherentDerivedUnit

• metrology.hasPhysicalDimension some isq.MagneticDipoleMomentDimension

#### Hour

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_21ef2ed6\_c086\_4d24\_8a75\_980d2bcc9282

**Definition:** Measure of time defined as 3600 seconds.

Iupacentry: https://doi.org/10.1351/goldbook.H02866

Qudtentry: http://qudt.org/vocab/unit/HR

#### **Relations:**

• is a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "h"

# NewtonMetre

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_c10b7090\_7284\_4719\_8e15\_c743b13ca6ad

Elucidation: SI coherent measurement unit for torque.

**Comment:** Note that the physical dimension is the same as for Joule.

 ${\bf Ommatch:}\ http://www.ontology-of-units-of-measure.org/resource/om-2/newtonMetre$ 

# Relations:

 $\bullet \ \ is\_a \ siunits. SIC oherent Derived Unit$ 

• metrology.hasPhysicalDimension some isq.EnergyDimension

# VolumeFractionUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_9 \text{fd1e79d\_41d1\_44f8\_8142\_66dbdf0fc7ad} + \text{IRI:} \ \text{IRI:$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two volumes.

**Example:** Unit for volume fraction.

### Relations:

• is a units-extension.FractionUnit

### **BaseUnit**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_db716151\_6b73\_45ff\_910c\_d182fdcbb4f5

Elucidation: A set of units that correspond to the base quantities in a system of units.

• is\_a metrology.UnitSymbol

#### Gram

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_f992dc76\_f9a6\_45f6\_8873\_c8e20d16fbbe

**Definition:** Gram is defined as one thousandth of the SI unit kilogram.

Iupacentry: https://doi.org/10.1351/goldbook.G02680 Wikipediaentry: https://en.wikipedia.org/wiki/Gram

#### Relations:

• is\_a metrology.UnitSymbol

- is\_a units-extension.CGSUnit
- metrology.hasPhysicalDimension some isq.MassDimension
- perceptual.hasSymbolData value "g"

#### AstronomicalUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 053648ea 3c0a 468c 89cb eb009239323a

**Definition:** One astronomical unit is defined as exactly 149597870700 m, which is roughly the distance from earth to sun.

**Dbpediaentry:** http://dbpedia.org/page/Astronomical\_unit

Qudtentry: http://qudt.org/vocab/unit/PARSEC

Wikipediaentry: https://en.wikipedia.org/wiki/Astronomical\_unit

#### Relations:

• is\_a units-extension.SIAcceptedSpecialUnit

- is\_a metrology.OffSystemUnit
- $\bullet \hspace{0.2cm} \text{metrology.hasPhysicalDimension some isq.LengthDimension} \\$
- perceptual.hasSymbolData value "au"

#### SIUnit

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_feb03a8a\_bbb6\_4918\_a891\_46713ef557f4

**Elucidation:** The set of units provided by the SI referring to the ISQ.

Comment: The complete set of SI units includes both the coherent set and the multiples and sub-multiples formed by using the SI prefixes.

**Comment:** The names, symbols and prefixes of SI units are defined by the General Conference on Weights and Measures (CGPM).

https://en.wikipedia.org/wiki/General\_Conference\_on\_Weights\_and\_Measures

#### Relations:

- is\_a metrology.MeasurementUnit
- $\bullet \ disjoint\_union\_of \ siunits. SICoherent Derived Unit, \ siunits. SIBase Unit, \ siunits. SIN on Coherent Derived Unit, \ siunits. SIP refixed Unit, \ siunits. SISpecial Unit$

# AreaFractionUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6f4d704a\_a7c6\_4c07\_b8a7\_ea0bab04128f

Elucidation: Unit for quantities of dimension one that are the fraction of two areas.

Example: Unit for solid angle.

#### Relations:

• is a units-extension.FractionUnit

# CubicMetre

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_a055d311\_9990\_40a5\_b2f2\_288412f5d6a5

Elucidation: SI coherent measurement unit for volume.

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/cubicMetre

#### **Relations:**

- is a siunits.SICoherentDerivedUnit
- metrology.hasPhysicalDimension some isq.VolumeDimension

# Ångström

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_27c530c4\_dfcd\_486e\_b324\_54ad4448cd26

**Definition:** Measure of length defined as 1e-10 metres.

Altlabel: Angstrom

Comment: Ångström is not mentioned in the SI system and deprecated by the International Bureau of Weights

and Measures (BIPM).

Dispite of that, it is often used in the natural sciences and technology.

**Dbpediaentry:** http://dbpedia.org/page/%C3%85ngstr%C3%B6m

Iupacentry: https://doi.org/10.1351/goldbook.N00350
Qudtentry: http://qudt.org/vocab/unit/ANGSTROM

Wikipediaentry: https://en.wikipedia.org/wiki/Angstrom

#### Relations:

- is\_a metrology.UnitSymbol
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.LengthDimension
- perceptual.hasSymbolData value "Å"

# NonPrefixedUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO 868ae137 4d25 493e b270 21ea3d94849e

Elucidation: A measurement unit symbol that do not have a metric prefix as a direct spatial part.

#### **Relations:**

- $\bullet$  is\_a metrology.MeasurementUnit
- reductionistic.hasSpatialDirectPart only not metrology.MetricPrefix
- equivalent\_to metrology.DerivedUnit or metrology.UnitSymbol

# Dalton

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_00 \\ \text{dd} 79 \\ \text{e}0\_31 \\ \text{a}6\_427 \\ \text{e}\_9 \\ \text{b}9 \\ \text{c}\_90 \\ \text{f} 3097 \\ \text{e}4 \\ \text{a}96 \\ \text{e}4 \\ \text{e}$ 

**Definition:** One dalton is defined as one twelfth of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state.

Dbpediaentry: http://dbpedia.org/page/Unified atomic mass unit

Iupacentry: https://doi.org/10.1351/goldbook.D01514

Qudtentry: http://qudt.org/vocab/unit/Dalton

#### Relations:

- $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit
- $\bullet \;$  is \_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.MassDimension
- perceptual.hasSymbolData value "Da"

#### **Tonne**

IRI: http://emmo.info/emmo/middle/units-extension#EMMO f8b92999 3cde 46e3 99d5 664da3090a02

**Definition:** A non-SI unit defined as 1000 kg.

Iupacentry: https://doi.org/10.1351/goldbook.T06394

Qudtentry: http://qudt.org/vocab/unit/TON\_M

Wikipediaentry: https://en.wikipedia.org/wiki/Tonne

#### Relations:

 $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit

- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.MassDimension

• perceptual.hasSymbolData value "t"

## Hectare

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_d6eb0176\_a0d7\_4b4e\_8df0\_50e912be2342$ 

**Definition:** A non-SI metric unit of area defined as the square with 100-metre sides.

**Dbpediaentry:** http://dbpedia.org/page/Hectare

Qudtentry: http://qudt.org/vocab/unit/HA

Wikipediaentry: https://en.wikipedia.org/wiki/Hectare

#### **Relations:**

- is a units-extension.SIAcceptedSpecialUnit
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.AreaDimension
- perceptual.hasSymbolData value "ha"

# SIAcceptedSpecialUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6795a4b8\_ffd0\_4588\_a581\_a9413fe49cac

Elucidation: Non-SI units mentioned in the SI.

**Comment:** This is a list of units that are not defined as part of the International System of Units (SI), but are otherwise mentioned in the SI brouchure, because either the General Conference on Weights and Measures (CGPM) accepts their use as being multiples or submultiples of SI-units, they have important contemporary application worldwide, or are otherwise commonly encountered worldwide.

Wikipediaentry: https://en.wikipedia.org/wiki/Non-SI units mentioned in the SI

- is\_a metrology.SpecialUnit
- is\_a metrology.OffSystemUnit
- disjoint\_union\_of units-extension.Dalton, units-extension.AstronomicalUnit, units-extension.ArcMinute, units-extension.Hour, units-extension.Day, units-extension.ArcSecond, units-extension.Bel, units-extension.Litre, units-extension.Neper, units-extension.Degree, units-extension.Minute, units-extension.Hectare, units-extension.ElectronVolt, units-extension.Tonne

#### **SICoherentUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_707c6032\_e272\_4a20\_98b5\_d35c4f67be68$ 

**Comment:** Derived units are defined as products of powers of the base units. When the numerical factor of this product is one, the derived units are called coherent derived units. The base and coherent derived units of the SI form a coherent set, designated the set of coherent SI units.

# Relations:

- is a metrology.NonPrefixedUnit
- is a siunits.SIUnit
- disjoint union of siunits.SICoherentDerivedUnit, siunits.SIBaseUnit, siunits.SISpecialUnit

# OffSystemUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_591e02 \text{fd}\_8d37\_45a6\_9d11\_bb21cef391a0$ 

**Elucidation:** A unit that does not belong to any system of units.

Example: eV barn

Relations:

• is a metrology.MeasurementUnit

# Neper

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_b41515a9\_28d8\_4d78\_8165\_74b2fc72f89e

**Definition:** Unit of measurement for quantities of type level or level difference, which are defined as the natural logarithm of the ratio of power- or field-type quantities.

The value of a ratio in nepers is given by ln(x1/x2) where x1 and x2 are the values of interest (amplitudes), and ln is the natural logarithm. When the values are quadratic in the amplitude (e.g. power), they are first linearised by taking the square root before the logarithm is taken, or equivalently the result is halved.

Wikipedia

**Dbpediaentry:** http://dbpedia.org/page/Neper

Iupacentry: https://doi.org/10.1351/goldbook.N04106

Qudtentry: http://qudt.org/vocab/unit/NP

Wikipediaentry: https://en.wikipedia.org/wiki/Neper

#### Relations:

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "Np"

# SICoherentDerivedUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_1273eb34\_de48\_43a9\_925f\_104110469dd2$ 

Elucidation: A SI derived unit whos numerical factor in front of the product of SI base units is one.

Example: m/s kg/m<sup>3</sup>

Comment: This class collects all units that are products or powers of SI base or SI special units only.

- is\_a metrology.DerivedUnit
- $\bullet$  is\_a siunits.SICoherentUnit

#### Radian

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_a121bb1d\_5225\_4c78\_809b\_0268c3012208

Elucidation: Measure of plane angle.

Comment: Dimensionless measurement unit for plane angle.

Iupacentry: https://doi.org/10.1351/goldbook.R05036

Qudtentry: http://qudt.org/vocab/unit/RAD

#### Relations:

• is\_a units-extension.LengthFractionUnit

• is a owl:Nothing

- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "rad"

• equivalent\_to siunits.Steradian

# SpeedFractionUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_e7bc8939\_7ff8\_4917\_beb5\_c42730b390f3$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two speeds.

**Example:** Unit for refractive index.

#### Relations:

• is a units-extension.FractionUnit

# $\mathbf{Bel}$

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_6c7160fc\_cc64\_46f0\_b43b\_aba65e9952e3

Definition: One bel is defined as ½ ln(10) neper.

Elucidation: Unit of measurement for quantities of type level or level difference.

Comment: Today decibel (one tenth of a bel) is commonly used instead of bel.

**Comment:** bel is used to express the ratio of one value of a power or field quantity to another, on a logarithmic scale, the logarithmic quantity being called the power level or field level, respectively.

Qudtentry: http://qudt.org/vocab/unit/B

Wikipediaentry: https://en.wikipedia.org/wiki/Decibel

#### **Relations:**

- is a units-extension.SIAcceptedSpecialUnit
- is a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "B"

# **SpecialUnit**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_3ee80521\_3c23\_4dd1\_935d\_9d522614a3e2

Elucidation: A unit symbol that stands for a derived unit.

**Example:** Pa stands for N/m2 J stands for N m

Comment: Special units are semiotic shortcuts to more complex composed symbolic objects.

### Relations:

• is\_a metrology.DerivedUnit

- is\_a metrology.UnitSymbol
- is a semiotics. Sign
- $\bullet \ \ Inverse (semiotics.has Sign) \ some \ metrology. Derived Unit$

#### **AmountFractionUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_f76f5a24\_d703\_4e8c\_b368\_f9a7777cb73a$ 

Elucidation: Unit for quantities of dimension one that are the fraction of two amount of substance.

**Example:** Unit for amount fraction.

**Relations:** 

• is a units-extension.FractionUnit

# Day

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_28ef05a7\_ecc1\_4df6\_8116\_c53251fbd4a8

**Definition:** A measure of time defined as 86 400 seconds.

**Dbpediaentry:** http://dbpedia.org/page/Day

Iupacentry: https://doi.org/10.1351/goldbook.D01527

Qudtentry: http://qudt.org/vocab/unit/DAY

Relations:

• is a units-extension.SIAcceptedSpecialUnit

• is a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "d"

# PureNumberUnit

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_15d62b55\_38ea\_4aec\_b7c4\_25db1a2e5a01

Elucidation: Unit for dimensionless units that cannot be expressed as a 'FractionUnit'.

**Example:** Unit of AtomicNumber

Relations:

• is\_a metrology.UnitOne

#### Minute

**Definition:** Non-SI time unit defined as 60 seconds. **Dbpediaentry:** http://dbpedia.org/page/Minute **Qudtentry:** http://qudt.org/vocab/unit/MIN

Relations:

• is\_a units-extension.SIAcceptedSpecialUnit

• is\_a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some isq.TimeDimension

• perceptual.hasSymbolData value "min"

# **UnitOne**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_5ebd5e01\_0ed3\_49a2\_a30d\_cd05cbe72978

Elucidation: Represents the number 1, used as an explicit unit to say something has no units.

**Example:** Refractive index or volume fraction.

**Example:** Typically used for ratios of two units whos dimensions cancels out.

Qudtentry: http://qudt.org/vocab/unit/UNITLESS

#### Relations:

• is\_a metrology.BaseUnit

• metrology.hasPhysicalDimension some metrology.DimensionOne

# **ArcMinute**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_1e0b665d\_db6c\_4752\_a6d4\_262d3a8dbb46$ 

**Definition:** Measure of plane angle defined as 1/60 or a degree.

Altlabel: MinuteOfArc

Qudtentry: http://qudt.org/vocab/unit/ARCMIN

#### **Relations:**

 $\bullet$  is\_a units-extension.SIAcceptedSpecialUnit

• is a metrology.OffSystemUnit

• metrology.hasPhysicalDimension some metrology.DimensionOne

• perceptual.hasSymbolData value " "

## SINonCoherentUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \\ \# EMMO\_8246541a\_f1f6\_4d03\_8bd7\_fc6b76d17375$ 

## Relations:

• is a siunits.SIUnit

 $\bullet \ \ disjoint\_union\_of \ siunits. SIN on Coherent Derived Unit, \ siunits. SIP refixed Unit$ 

# SquareMetre

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_b0d1c460\_d06b\_4c7f\_8832\_148bc1c8e7dc$ 

Elucidation: SI coherent measurement unit for area.

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/squareMetre

#### Relations:

 $\bullet$  is\_a siunits.SICoherentDerivedUnit

• metrology.hasPhysicalDimension some isq.AreaDimension

# **CGSUnit**

IRI: http://emmo.info/emmo/middle/units-extension#EMMO 52e4cb25 da39 45e2 a6db 063ec5730499

Elucidation: The centimetre–gram–second (CGS) system of units.

**Comment:** CGS is a variant of the metric system.

Wikipediaentry: https://en.wikipedia.org/wiki/Centimetre%E2%80%93gram%E2%80%93second system of units

• is\_a metrology.MeasurementUnit

# UnitSymbol

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_216f448e\_cdbc\_4aeb\_a529\_7a5fe7fc38bb

Elucidation: A symbol that stands for a single unit. Example: Some examples are "Pa", "m" and "J".

#### **Relations:**

- is a metrology.MetrologicalSymbol
- $\bullet$  is\_a metrology.NonPrefixedUnit
- equivalent\_to metrology.MeasurementUnit and perceptual.Symbol
- disjoint\_union\_of metrology.SpecialUnit, metrology.BaseUnit

# Steradian

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_cf3dd6cc\_c5d6\_4b3d\_aef4\_82f3b7a361af

Elucidation: Dimensionless measurement unit for solid angle.

Iupacentry: https://doi.org/10.1351/goldbook.S05971

Qudtentry: http://qudt.org/vocab/unit/SR

#### Relations:

- ullet is\_a units-extension.AreaFractionUnit
- is a owl:Nothing
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "sr"
- equivalent\_to owl:Nothing

# MetrePerSecond

IRI: http://emmo.info/emmo/middle/units-extension#EMMO\_4a27950a\_0d31\_4175\_bd4e\_14995aa94702

Elucidation: SI coherent measurement unit for speed.

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/metrePerSecond-Time

#### **Relations:**

- $\bullet \ \ is\_a \ siunits. SIC oherent Derived Unit$
- metrology.hasPhysicalDimension some isq.VelocityDimension

### **SIPrefixedUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_d41ce84b\_4317\_41fb\_a5d1\_6cd281fca106$ 

Elucidation: A SI base or special unit with a metric prefix.

Comment: The presence of the prefix makes this units non-coherent with SI system.

- is\_a metrology.PrefixedUnit
- is\_a siunits.SINonCoherentUnit

#### **Measurement Unit**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_b081b346\_7279\_46ef\_9a3d\_2c088fcd79f4

**Elucidation:** A 'Quantity' that stands for the standard reference magnitude of a specific class of measurement processes, defined and adopted by convention or by law.

The numerical quantity value of the 'MeasurementUnit' is conventionally 1 and does not appear.

Quantitative measurement results are expressed as a multiple of the 'MeasurementUnit'.

**Comment:** "Real scalar quantity, defined and adopted by convention, with which any other quantity of the same kind can be compared to express the ratio of the second quantity to the first one as a number" ISO 80000-1

Comment: "Unit symbols are mathematical entities and not abbreviations."

"Symbols for units are treated as mathematical entities. In expressing the value of a quantity as the product of a numerical value and a unit, both the numerical value and the unit may be treated by the ordinary rules of algebra."

https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf

**Comment:** While the SI brochure treats 'MeasurementUnit' as a 'PhysicalQuantity', in the EMMO this is not possible since the latter always has two direct parts, a 'Numerical' and a 'MeasurementUnit', while the former a single 'Symbol'.

SI distinguishes between a quantity (an abstract concept) and the quantity value (a number and a reference). The EMMO, following strict nominalism, considers a SI quantity as a SI quantity value, collapsing the two concepts into one: the 'Quantity'.

So, for the EMMO the symbol "kg" is not a physical quantity but a 'MeasurementUnit', while the string "1 kg" is 'Physical Quantity'.

#### Relations:

- is\_a metrology.ReferenceUnit
- $\bullet\,$  is \_a semiotics. Object
- metrology.hasPhysicalDimension exactly 1 metrology.PhysicalDimension
- $\bullet \ \ disjoint\_union\_of \ metrology. Non Prefixed Unit, \ metrology. Prefixed Unit$

# ElectronVolt

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \\ \# EMMO\_e29f84db\_4c1c\_46ae\_aa38\_c4d47536b972$ 

**Definition:** The amount of energy gained (or lost) by the charge of a single electron moving across an electric potential difference of one volt.

**Dbpediaentry:** http://dbpedia.org/page/Electronvolt **Iupacentry:** https://doi.org/10.1351/goldbook.E02014

Qudtentry: http://qudt.org/vocab/unit/EV

#### Relations:

- $\bullet \ \ is\_a \ units-extension. SIAccepted Special Unit$
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some isq.EnergyDimension
- perceptual.hasSymbolData value "eV"

# **SIUnitSymbol**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO}\_32129 \text{fb5}\_\text{df25}\_48 \text{fd}\_\text{a}29 \text{c}\_18 \text{a}2 \text{f}22 \text{a}2 \text{d}d5$ 

- is a metrology.UnitSymbol
- is a siunits.SICoherentUnit
- $\bullet \ \ disjoint\_union\_of \ siunits. SIB ase Unit, \ siunits. SISpecial Unit$

# SIN on Coherent Derived Unit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_60b78cc3\_6011\_4134\_95ab\_956f56d4bdc1$ 

Elucidation: A derived unit whos numerical factor in front of the product of base units is NOT equal to one.

#### **Relations:**

• is\_a siunits.SINonCoherentUnit

# Degree

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/units-extension} \# EMMO\_b8830065\_3809\_41b7\_be3c\_e33795567fd9$ 

**Definition:** Degree is a measurement of plane angle, defined by representing a full rotation as 360 degrees.

**Dbpediaentry:** http://dbpedia.org/page/Degree\_(angle) **Iupacentry:** https://doi.org/10.1351/goldbook.D01560

Qudtentry: http://qudt.org/vocab/unit/DEG

# Relations:

- is\_a units-extension.SIAcceptedSpecialUnit
- is\_a metrology.OffSystemUnit
- metrology.hasPhysicalDimension some metrology.DimensionOne
- perceptual.hasSymbolData value "°"

# UTF8 branch



Figure 3.26: UTF8 branch.

# UTF8

IRI: http://emmo.info/emmo/middle/perceptual#EMMO\_e13b2173\_1dec\_4b97\_9ac1\_1dc4b418612a Relations:

• is\_a perceptual.Symbol

# SI Base Unit branch



Figure 3.27: SI Base Unit branch.

#### Metre

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_7 db11 dbf\_a643\_464a\_9b56\_07 eabcc3e9c5$ 

**Definition:** The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299792458 when expressed in the unit m s-1, where the second is defined in terms of  $\nabla \nu \text{Cs}$ .

Iupacentry: https://doi.org/10.1351/goldbook.M03884

Qudtentry: http://qudt.org/vocab/unit/M

### Relations:

- is\_a siunits.SIBaseUnit
- metrology.hasPhysicalDimension some isq.LengthDimension
- perceptual.hasSymbolData value "m"

# Ampere

IRI: http://emmo.info/emmo/middle/siunits#EMMO db5dd38d ac79 4af6 8782 fee7e7150ae8

**Definition:** The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge e to be  $1.602176634 \times 10$ -19 when expressed in the unit C, which is equal to A s, where the second is defined in terms of  $\nabla \nu$ Cs.

Iupacentry: https://doi.org/10.1351/goldbook.A00300

Qudtentry: http://qudt.org/vocab/unit/A

#### Relations:

- is a siunits.SIBaseUnit
- $\bullet \ \ metrology. has Physical Dimension \ some \ is q. Electric Current Dimension$
- perceptual.hasSymbolData value "A"

# Mole

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_df6eeb01\_1b41\_4bd8\_9257\_a04fbd7cf000

**Definition:** The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.022  $140 76 \times 1023$  elementary entities. This number is the fixed numerical value of the Avogadro constant, NA, when expressed in the unit mol-1 and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

Iupacentry: https://doi.org/10.1351/goldbook.M03980

Qudtentry: http://qudt.org/vocab/unit/MOL

### Relations:

- $\bullet \;$  is \_a siunits.SIBaseUnit
- metrology.hasPhysicalDimension some isq.AmountDimension
- perceptual.hasSymbolData value "mol"

# Kelvin

IRI: http://emmo.info/emmo/middle/siunits#EMMO 2e5e45fc f52c 4294 bdc2 5ed7a06dfce7

**Definition:** The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be  $1.380649 \times 10\text{-}23$  when expressed in the unit J K-1, which is equal to kg m<sup>2</sup> s-2 K-1, where the kilogram, metre and second are defined in terms of h, c and  $\nabla \nu$ Cs.

Iupacentry: https://doi.org/10.1351/goldbook.K03374

Qudtentry: http://qudt.org/vocab/unit/K

#### **Relations:**

- is a siunits.SIBaseUnit
- metrology.hasPhysicalDimension some isq.TemperatureDimension
- perceptual.hasSymbolData value "K"

# **Kilogram**

IRI: http://emmo.info/emmo/middle/siunits#EMMO 9bfd6fle b0ce 459c beb7 8f1f41708bba

**Definition:** The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be  $6.62607015 \times 10{\text -}34$  when expressed in the unit J s, which is equal to kg m<sup>2</sup> s-1, where the metre and the second are defined in terms of c and  $\nabla \nu \text{Cs}$ .

Iupacentry: https://doi.org/10.1351/goldbook.K03391

Qudtentry: http://qudt.org/vocab/unit/KiloGM

#### **Relations:**

• is a siunits.SIBaseUnit

- metrology.hasPhysicalDimension some isq.MassDimension
- perceptual.hasSymbolData value "kg"

## **SIBaseUnit**

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_3a185e6c\_9e19\_4776\_b583\_19c978156aa0

Elucidation: The base units in the SI system.

Seealso: https://www.bipm.org/utils/common/pdf/si-brochure/SI-Brochure-9-EN.pdf

# Relations:

- is\_a metrology.BaseUnit
- is\_a siunits.SIUnitSymbol
- disjoint\_union\_of siunits.Kelvin, siunits.Second, siunits.Metre, siunits.Candela, siunits.Kilogram, siunits.Ampere, siunits.Mole

# Candela

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_8d00f093\_3f45\_4ea3\_986c\_b3545c3c2f4c}$ 

**Definition:** The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency  $540\times1012$  Hz, Kcd, to be 683 when expressed in the unit lm W-1, which is equal to cd sr W-1, or cd sr kg-1 m-2 s3, where the kilogram, metre and second are defined in terms of h, c and  $\nabla\nu$ Cs.

Iupacentry: https://doi.org/10.1351/goldbook.C00787

Qudtentry: http://qudt.org/vocab/unit/CD

# Relations:

- is\_a siunits.SIBaseUnit
- metrology.hasPhysicalDimension some isq.LuminousIntensityDimension
- perceptual.hasSymbolData value "cd"

#### Second

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_314ba716\_2d3d\_4462\_9a4f\_d3419ae1df43

**Definition:** The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency  $\nabla \nu \text{Cs}$ , the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s-1.

Iupacentry: https://doi.org/10.1351/goldbook.S05513

Qudtentry: http://qudt.org/vocab/unit/SEC

#### Relations:

- is a siunits.SIBaseUnit
- metrology.hasPhysicalDimension some isq.TimeDimension
- perceptual.hasSymbolData value "s"

# SI Special Unit branch

# Tesla

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_acb50123\_87a2\_4753\_b36c\_f87114ad4de2

Comment: Measurement unit for magnetic flux density or induction.

**Iupacentry:** https://doi.org/10.1351/goldbook.T06283

Qudtentry: http://qudt.org/vocab/unit/T

#### Relations:

• is a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.MagneticFluxDensityDimension

• perceptual.hasSymbolData value "T"

# Katal

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_33b67e69\_3645\_4c73\_b100\_5ea6759221b4

Comment: Measurement unit for catalytic activity.

Iupacentry: https://doi.org/10.1351/goldbook.K03372

Qudtentry: http://qudt.org/vocab/unit/KAT

#### Relations:

• is\_a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.CatalyticActivityDimension

• perceptual.hasSymbolData value "kat"

# Newton

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO} \underline{a979c531} \underline{f9fa} \underline{4a6e} \underline{93c1} \underline{a2960241ca64}$ 

Comment: Measurement unit for force.

Iupacentry: https://doi.org/10.1351/goldbook.N04135

Qudtentry: http://qudt.org/vocab/unit/N

# Relations:

• is a siunits.SISpecialUnit

 $\bullet \ \ metrology. has Physical Dimension\ some\ is q. Force Dimension$ 

• perceptual.hasSymbolData value "N"



Figure 3.28: SI Special Unit branch.

# **Pascal**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_a80 dc6f5\_b1aa\_41a7\_a3a8\_cd5040 da2162 dc6f5\_b1aa\_41a7\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5\_b1aa\_a3a8\_cd5040 dc6f5040 dc6f5040$ 

Comment: Measurement unit for pressure.

Iupacentry: https://doi.org/10.1351/goldbook.P04442

Qudtentry: http://qudt.org/vocab/unit/PA

#### **Relations:**

• is\_a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.PressureDimension

• perceptual.hasSymbolData value "Pa"

# Ohm

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_59c10c5c\_47bd\_4348\_ba39\_38836607dfa1

Comment: Measurement unit for resistance.

Iupacentry: https://doi.org/10.1351/goldbook.O04280

Qudtentry: http://qudt.org/vocab/unit/OHM

### Relations:

• is\_a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.ElectricResistanceDimension

perceptual.hasSymbolData value "Ω"

# Henry

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_fab003c8\_f7a6\_4346\_9988\_7161325ed7a3

Comment: Measurement unit for electrical inductance. Iupacentry: https://doi.org/10.1351/goldbook.H02782

Qudtentry: http://qudt.org/vocab/unit/H

#### **Relations:**

 $\bullet \ \ is\_a \ siunits. SISpecial Unit$ 

• metrology.hasPhysicalDimension some isq.InductanceDimension

• perceptual.hasSymbolData value "H"

# Siemens

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_f2523820\_04a6\_44ab\_bb67\_8237dda2b0c2$ 

Comment: Measurement unit for electrical conductance.

#### Relations:

• is\_a siunits.SISpecialUnit

 $\bullet \hspace{0.2cm} \text{metrology.hasPhysicalDimension some isq.} \\ \textbf{ElectricConductanceDimension}$ 

• perceptual.hasSymbolData value "S"

#### Joule

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_8a70dea4\_d6ab\_4260\_b931\_a3e990982416}$ 

Comment: Measurement unit for energy.

Iupacentry: https://doi.org/10.1351/goldbook.J03363

Qudtentry: http://qudt.org/vocab/unit/J

### Relations:

- $\bullet$  is\_a siunits.SISpecialUnit
- $\bullet \hspace{0.2cm} \text{metrology.hasPhysicalDimension some isq.} \\ \text{EnergyDimension}$
- perceptual.hasSymbolData value "J"

### Lux

IRI: http://emmo.info/emmo/middle/siunits#EMMO da1dd4a7 c611 4ad4 bef6 7646f28aa598

Comment: Measurement unit for illuminance.

Iupacentry: https://doi.org/10.1351/goldbook.L03651

Qudtentry: http://qudt.org/vocab/unit/LUX

#### Relations:

• is a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.IlluminanceDimension

• perceptual.hasSymbolData value "lx"

#### Hertz

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_e75f580e\_52bf\_4dd5\_af70\_df409cec08fd

Comment: Measurement unit for frequence.

Iupacentry: https://doi.org/10.1351/goldbook.H02785

Qudtentry: http://qudt.org/vocab/unit/HZ

#### **Relations:**

 $\bullet$  is\_a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.FrequencyDimension

• perceptual.hasSymbolData value "Hz"

# Weber

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_d7f11b34\_a121\_4519\_87c0\_aa754f1c4737$ 

Comment: Measurement unit for magnetic flux.

Iupacentry: https://doi.org/10.1351/goldbook.W06666

Qudtentry: http://qudt.org/vocab/unit/WB

# Relations:

• is a siunits.SISpecialUnit

 $\bullet \ \ metrology. has Physical Dimension \ some \ is q. Magnetic Flux Dimension$ 

• perceptual.hasSymbolData value "Wb"

# Volt

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_e2207e91\_02b0\_4a8a\_b13e\_61d2a2a839f1

Comment: Measurement unit for voltage.

Iupacentry: https://doi.org/10.1351/goldbook.V06634

Qudtentry: http://qudt.org/vocab/unit/V

- is a siunits.SISpecialUnit
- metrology.hasPhysicalDimension some isq.ElectricPotentialDimension
- perceptual.hasSymbolData value "V"

# Gray

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_00199e76\_69dc\_45b6\_a9c6\_98cc90cdc0f5

Comment: Measurement unit for absorbed dose.

Iupacentry: https://doi.org/10.1351/goldbook.G02696

Qudtentry: http://qudt.org/vocab/unit/GRAY

#### Relations:

• is\_a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.AbsorbedDoseDimension

• perceptual.hasSymbolData value "Gy"

### Watt

IRI: http://emmo.info/emmo/middle/siunits#EMMO 080052a1 f295 44be a60f 1326ce13f1ba

Comment: Measurement unit for power.

**Iupacentry:** https://doi.org/10.1351/goldbook.W06656

Qudtentry: http://qudt.org/vocab/unit/W

# Relations:

• is a siunits.SISpecialUnit

 $\bullet \ \ metrology. has Physical Dimension \ some \ is q. Power Dimension$ 

• perceptual.hasSymbolData value "W"

# Farad

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_a9201b2f\_e6de\_442a\_b3a6\_d292a5820bc5$ 

 $\label{lem:comment:measurement} \textbf{Comment:} \ \ \text{Measurement unit for electric capacitance.} \\ \textbf{Iupacentry:} \ \ \text{https://doi.org/10.1351/goldbook.F02320}$ 

Qudtentry: http://qudt.org/vocab/unit/FARAD

# Relations:

• is a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.CapacitanceDimension

• perceptual.hasSymbolData value "F"

### Lumen

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_d7b7fd1e\_645a\_42cb\_8f40\_85f0d034d3ae

Comment: Measurement unit for luminous flux.

Iupacentry: https://doi.org/10.1351/goldbook.L03639

Qudtentry: http://qudt.org/vocab/unit/LM

### **Relations:**

• is a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.LuminousIntensityDimension

• perceptual.hasSymbolData value "lm"

#### Sievert

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_dc232f53\_8ed8\_4ddd\_9f41\_cc057985eadb$ 

Comment: Measurement unit for equivalent doseof ionizing radiation.

Sievert is derived from absorbed dose, but takes into account the biological effectiveness of the radiation, which is dependent on the radiation type and energy.

Iupacentry: https://doi.org/10.1351/goldbook.S05658

Qudtentry: http://qudt.org/vocab/unit/SV

Wikipediaentry: https://en.wikipedia.org/wiki/Equivalent\_dose

#### Relations:

• is a siunits.SISpecialUnit

• metrology.hasPhysicalDimension some isq.AbsorbedDoseDimension

• perceptual.hasSymbolData value "Sv"

# **SISpecialUnit**

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_e9ffc696\_5228\_4ff9\_8a60\_0f5e05e9931b

**Elucidation:** The 22 derived units that are given a special name in the SI system that stands for units derived by SI base units.

Comment: These units are SI coherent by definition.

Wikipediaentry: https://en.wikipedia.org/wiki/International\_System\_of\_Units#Derived\_units

#### Relations:

- is\_a metrology.SpecialUnit
- is a siunits.SIUnitSymbol
- disjoint\_union\_of siunits.Gray, siunits.Watt, siunits.Katal, siunits.Ohm, siunits.Coulomb, siunits.Joule, siunits.Radian, siunits.Pascal, siunits.Farad, siunits.Newton, siunits.Tesla, siunits.DegreeCelsius, siunits.Becquerel, siunits.Steradian, siunits.Lumen, siunits.Weber, siunits.Lux, siunits.Sievert, siunits.Volt, siunits.Hertz, siunits.Siemens, siunits.Henry

# Coulomb

IRI: http://emmo.info/emmo/middle/siunits#EMMO 696ed548 9477 45ea 993c 6a8f5271914a

Comment: Measurement unit for electric charge.

Iupacentry: https://doi.org/10.1351/goldbook.C01365

Qudtentry: http://qudt.org/vocab/unit/C

### Relations:

- $\bullet\,$ is\_a siunits. SISpecial<br/>Unit
- $\bullet \hspace{0.2cm} \text{metrology.hasPhysicalDimension some isq.} \\ \text{ElectricChargeDimension}$
- perceptual.hasSymbolData value "C"

# **Becquerel**

IRI: http://emmo.info/emmo/middle/siunits#EMMO b71e4ba5 8f73 4199 8c96 7ea7f94d9e2a

**Definition:** Radioactive decays per second. **Comment:** Unit for radioactive activity.

Iupacentry: https://doi.org/10.1351/goldbook.B00624

Qudtentry: http://qudt.org/vocab/unit/BQ

#### **Relations:**

- is a siunits.SISpecialUnit
- metrology.hasPhysicalDimension some isq.FrequencyDimension
- perceptual.hasSymbolData value "Bq"

# **DegreeCelsius**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_b20be325\_8bfd\_4237\_bee7\_201ab0fd9c75$ 

 $\textbf{Comment:} \ \ \text{Measurement unit for Celsius temperature.} \ \ \text{This unit can only be used for expressing temperature}$ 

differences.

Iupacentry: https://doi.org/10.1351/goldbook.D01561

Qudtentry: http://qudt.org/vocab/unit/DEG\_C

### Relations:

- is\_a siunits.SISpecialUnit
- metrology.hasPhysicalDimension some isq.TemperatureDimension
- perceptual.hasSymbolData value "°C"

# Prefixed Unit branch



Figure 3.29: Prefixed Unit branch.

#### PrefixedUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_c6d4a5e0\_7e95\_44df\_a6db\_84ee0a8bbc8e$ 

Elucidation: A measurement unit that is made of a metric prefix and a unit symbol.

# Relations:

- is\_a metrology.MeasurementUnit
- is\_a reductionistic.State
- reductionistic.hasSpatialDirectPart only (metrology.UnitSymbol or metrology.MetricPrefix)
- reductionistic.hasSpatialDirectPart exactly 1 metrology.UnitSymbol
- reductionistic.hasSpatialDirectPart exactly 1 metrology.MetricPrefix
- disjoint union of metrology.MultipleUnit, metrology.SubMultipleUnit

# MultipleUnit

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \# EMMO\_62 f0 d847\_3603\_45 b4\_b fc4\_dd4511355 ff2$ 

**Elucidation:** Measurement unit obtained by multiplying a given measurement unit by an integer greater than one.

• is\_a metrology.PrefixedUnit

# SubMultipleUnit

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_a2f94f33\_71fa\_443c\_a1fb\_d1685fc537ec

Elucidation: Measurement unit obtained by dividing a given measurement unit by an integer greater than one.

# Relations:

• is a metrology.PrefixedUnit

# **SIPrefixedUnit**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_d41ce84b\_4317\_41fb\_a5d1\_6cd281fca106$ 

Elucidation: A SI base or special unit with a metric prefix.

Comment: The presence of the prefix makes this units non-coherent with SI system.

### Relations:

- is\_a metrology.PrefixedUnit
- $\bullet$  is\_a siunits.SINonCoherentUnit

# Metric Prefix branch

# **SIMetricPrefix**

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_471cb92b\_edca\_4cf9\_bce8\_a75084d876b8

# Relations:

- is\_a metrology.MetricPrefix
- disjoint\_union\_of siunits.Pico, siunits.Deci, siunits.Deka, siunits.Hecto, siunits.Femto, siunits.Zepto, siunits.Tera, siunits.Atto, siunits.Peta, siunits.Exa, siunits.Mega, siunits.Kilo, siunits.Micro, siunits.Milli, siunits.Giga, siunits.Centi, siunits.Zetta, siunits.Nano, siunits.Yotta, siunits.Yocto

#### Micro

IRI: http://emmo.info/emmo/middle/siunits#EMMO 9ff3bf8e 2168 406e 8251 1d158fc948ae

#### Relations:

- is\_a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-06
- perceptual.has Symbol<br/>Data value " $\upmu$ "

#### Yotta

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_e79c62ff\_10ad\_4ec0\_baba\_c19ddd4eaa112} \\$ 

- $\bullet$  is\_a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e+24
- perceptual.hasSymbolData value "Y"



Figure 3.30: Metric Prefix branch.  $141\,$ 

### Kilo

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_74931b1b\_c133\_4e59\_9a75\_1bf0e1626201

#### **Relations:**

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1000.0
- perceptual.hasSymbolData value "k"

# Nano

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_e1981c25\_7c55\_4020\_aa7a\_d2e14ced86d4

### Relations:

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-09
- perceptual.hasSymbolData value "n"

#### Zetta

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_daa9ee97\_4c5f\_42e5\_918c\_44d7523e8958

#### Relations:

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e+21
- perceptual.hasSymbolData value "Z"

#### Atto

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_42955b2d\_b465\_4666\_86cc\_ea3c2d685753$ 

# Relations:

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-18
- perceptual.hasSymbolData value "a"

# Giga

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_a8eb4bbb\_1bd3\_4ad4\_b114\_2789bcbd2134

# Relations:

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 10000000000.0
- perceptual.hasSymbolData value "G"

# Zepto

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \# EMMO\_254472c6\_3dbd\_4f02\_bc43\_571389cd281f$ 

- is\_a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-21
- perceptual.hasSymbolData value "z"

#### **Femto**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO} \underline{23bfe79a\_cade\_48f1\_9a8c\_fd96e6bac8ba}$ 

#### **Relations:**

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-15
- perceptual.hasSymbolData value "f"

### Peta

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_43a6b269\_da31\_4bb6\_a537\_c97df4fff32a} \\ \text{IRI:} \ \text{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_43a6b269\_da31\_4bb6\_a537\_c97df4fff32a} \\ \text{IRI:} \ \text{$ 

#### Relations:

- is a siunits.SIMetricPrefix
- perceptual.hasSymbolData value "P"

### Exa

IRI: http://emmo.info/emmo/middle/siunits#EMMO 5cf9f86c 86f5 40c4 846d 60371f670e0a

#### **Relations:**

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e+18
- perceptual.hasSymbolData value "E"

#### Tera

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO}\_3a204900\_2b33\_47d1\_b444\_815cc4c8cffa$ 

## Relations:

- is a siunits.SIMetricPrefix
- perceptual.hasSymbolData value "T"

### MetricPrefix

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_7d2afa66\_ae9e\_4095\_a9bf\_421d0be401b6

**Elucidation:** Dimensionless multiplicative unit prefix.

Seealso: https://en.wikipedia.org/wiki/Metric\_prefix

### Relations:

- is a math.MathematicalSymbol
- $\bullet$  is\_a math.Constant
- $\bullet \ \ is\_a \ metrology. Metrological Symbol$
- is\_a metrology.Metrological
- $\bullet$  is\_a perceptual.Symbol

### Deci

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits\#EMMO\_1181c938\_c8f0\_4ad6\_bc7a\_2bfdc0903d29$ 

### Relations:

• is a siunits.SIMetricPrefix

- Inverse(math.hasVariable) only math.hasNumericalData value 0.1
- perceptual.hasSymbolData value "d"

#### Hecto

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_21aaefc1\_3f86\_4208\_b7db\_a755f31f0f8c

#### **Relations:**

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 100.0
- perceptual.hasSymbolData value "h"

### Mega

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_5eaecadc\_4f0d\_4a3a\_afc7\_1fc0b83cc928

#### **Relations:**

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1000000.0
- perceptual.hasSymbolData value "M"

#### Milli

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_a3a701ed\_6f7d\_4a10\_9aee\_dfa1961fc7b7

#### Relations:

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 0.001
- perceptual.hasSymbolData value "m"

### Pico

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_068c4e58\_2470\_4b1c\_8454\_010dd4906100

#### **Relations:**

- is a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-12
- perceptual.hasSymbolData value "p"

### Centi

IRI: http://emmo.info/emmo/middle/siunits#EMMO b55cd09a e54d 4eb1 81dd 03c29d1b878e

#### Relations:

- $\bullet$  is\_a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 0.01
- perceptual.has Symbol<br/>Data value "c"

### Deka

IRI: http://emmo.info/emmo/middle/siunits#EMMO\_1d8b370b\_c672\_4d0c\_964e\_eaafcbf2f51f

- is\_a siunits.SIMetricPrefix
- Inverse<br/>(math.has Variable) only math.has Numerical<br/>Data value  $10.0\,$
- perceptual.hasSymbolData value "da"

#### Yocto

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/siunits} \\ \# EMMO\_f5769206\_9257\_4b08\_bf7b\_dad7868c6afc$ 

#### **Relations:**

- $\bullet$  is\_a siunits.SIMetricPrefix
- Inverse(math.hasVariable) only math.hasNumericalData value 1e-24
- perceptual.hasSymbolData value "y"

# Quantity branch



Figure 3.31: Quantity branch.

## ModelledQuantitativeProperty

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/properties} \# EMMO\_d0200cf1\_e4f4\_45ae\_873f\_b9359 daea3cd$ 

### Relations:

• is\_a metrology.QuantitativeProperty

## ConventionalQuantitativeProperty

IRI: http://emmo.info/emmo/middle/properties#EMMO\_d8aa8e1f\_b650\_416d\_88a0\_5118de945456

**Elucidation:** A quantitative property attributed by agreement to a quantity for a given purpose.

**Example:** The thermal conductivity of a copper sample in my laboratory can be assumed to be the conductivity that appears in the vendor specification. This value has been obtained by measurement of a sample which is not the one I have in my laboratory. This conductivity value is then a conventional quantitative property assigned to my sample through a semiotic process in which no actual measurement is done by my laboratory.

If I don't believe the vendor, then I can measure the actual thermal conductivity. I then perform a measurement process that semiotically assign another value for the conductivity, which is a measured property, since is part of a measurement process.

Then I have two different physical quantities that are properties thanks to two different semiotic processes.

Comment: A property that is associated to an object by convention, or assumption.

#### Relations:

• is\_a metrology.QuantitativeProperty

## OrdinalQuantity

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_c46f091c\_0420\_4c1a\_af30\_0a2c8ebcf7d7

**Elucidation:** "Quantity, defined by a conventional measurement procedure, for which a total ordering relation can be established, according to magnitude, with other quantities of the same kind, but for which no algebraic operations among those quantities exist" International vocabulary of metrology (VIM)

Example: Hardness Resilience

**Comment:** "Ordinal quantities, such as Rockwell C hardness, are usually not considered to be part of a system of quantities because they are related to other quantities through empirical relations only." International vocabulary of metrology (VIM)

#### Relations:

• is a metrology.Quantity

### QuantitativeProperty

IRI: http://emmo.info/emmo/middle/metrology#EMMO dd4a7f3e ef56 466c ac1a d2716b5f87ec

**Definition:** "A property of a phenomenon, body, or substance, where the property has a magnitude that can be expressed by means of a number and a reference" ISO 80000-1

"A reference can be a measurement unit, a measurement procedure, a reference material, or a combination of such." International vocabulary of metrology (VIM)

**Elucidation:** A 'Quantity' that can be quantified with respect to a standardized reference physical instance (e.g. the prototype meter bar, the kg prototype) or method (e.g. resilience) through a measurement process.

**Comment:** A quantitative property is always expressed as a quantity (i.e. a number and a reference unit). For the EMMO, a nominalistic ontology, there is no property as abstract object.

A property is a sign that stands for an object according to a specific code shared by some observers.

For quantititative properties, one possible code that is shared between the scientific community (the observers) is the SI system of units.

**Comment:** Subclasses of 'QuantitativeProperty' classify objects according to the type semiosis that is used to connect the property to the object (e.g. by measurement, by convention, by modelling).

#### Relations:

- is a metrology.Quantity
- is\_a properties.ObjectiveProperty
- $\bullet \ \ equivalent\_to \ properties. Measured Quantitative Property \ or \ properties. Modelled Quantitative Property \ or \ properties. Conventional Quantitative Property$

### MeasuredQuantitativeProperty

IRI: http://emmo.info/emmo/middle/properties#EMMO 873b0ab3 88e6 4054 b901 5531e01f14a4

#### Relations:

 $\bullet \ \ is\_a \ metrology. Quantitative Property$ 

## Quantity

IRI: http://emmo.info/emmo/middle/metrology#EMMO f658c301 ce93 46cf 9639 4eace2c5d1d5

**Elucidation:** A symbolic that has parts a reference unit and a numerical object separated by a space expressing the value of a quantitative property (expressed as the product of the numerical and the unit).

**Example:** 6.8 m 0.9 km 8 K 6 MeV 43.5 HRC(150 kg)

Comment: A quantity is not necessarily a property, since it is possible to write "10 kg", without assigning this quantity to a specific object.

However, a quantitative property is always a quantity.

Comment: Referred as Quantity Value in International vocabulary of metrology (VIM)

**Comment:** SI distinguishes between a quantity (an abstract concept) and the quantity value (a number and a reference).

The EMMO, following strict nominalism, denies the existence of abstract objects and then collapses the two concepts of SI quantity and SI quantity value into a single one: the 'Quantity'.

So, for the EMMO the symbol "kg" is not a physical quantity but simply a 'Symbolic' object categorized as a 'MeasurementUnit'.

While the string "1 kg" is a 'Physical Quantity'.

#### **Relations:**

- is\_a metrology.Metrological
- is a reductionistic.State
- metrology.hasReferenceUnit exactly 1 metrology.ReferenceUnit
- metrology.hasQuantityValue exactly 1 math.Numerical
- disjoint\_union\_of metrology.PhysicalQuantity, metrology.OrdinalQuantity

# Base Quantity branch



Figure 3.32: Base Quantity branch.

### Time

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d4f7d378\_5e3b\_468a\_baa1\_a7e98358cda7

**Definition:** One-dimensional subspace of space-time, which is locally orthogonal to space.

**Elucidation:** The indefinite continued progress of existence and events that occur in apparently irreversible succession from the past through the present to the future.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-03

Comment: Time can be seen as the duration of an event or, more operationally, as "what clocks read".

**Dbpediaentry:** http://dbpedia.org/page/Time

Iupacentry: https://doi.org/10.1351/goldbook.T06375

Physical dimension: T+1 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

 $\bullet$  is\_a isq.ISQBaseQuantity

## **ISQBaseQuantity**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_1a4c1a97\_88a7\_4d8e\_b2f9\_2ca58e92dde4}$ 

Elucidation: Base quantities defined in the International System of Quantities (ISQ). Wikipediaentry: https://en.wikipedia.org/wiki/International\_System\_of\_Quantities

#### Relations:

• is a isq.InternationalSystemOfQuantity

• is\_a metrology.BaseQuantity

• disjoint\_union\_of isq.LuminousIntensity, isq.AmountOfSubstance, isq.ThermodynamicTemperature, isq.ElectricCurrent, isq.Length, isq.Time, isq.Mass

## Length

IRI: http://emmo.info/emmo/middle/isq#EMMO\_cd2cd0de\_e0cc\_4ef1\_b27e\_2e88db027bac

**Elucidation:** Extend of a spatial dimension.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-19

Comment: Length is a non-negative additive quantity attributed to a one-dimensional object in space.

**Dbpediaentry:** http://dbpedia.org/page/Length

Iupacentry: https://doi.org/10.1351/goldbook.L03498

Physical dimension: T0 L+1 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQBaseQuantity

### **ElectronMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO 44fc8c60 7a9c 49af a046 e1878c88862c

Comment: The rest mass of an electron.

**Dbpediaentry:** http://dbpedia.org/page/Electron rest mass

Iupacentry: https://doi.org/10.1351/goldbook.E02008

Physical dimension: T0 L0 M+1 I0  $\Theta$ 0 N0 J0

 ${\bf Qudtentry:}\ {\rm http://physics.nist.gov/cuu/CODATA-Value\_ElectronMass}$ 

#### Relations:

• is\_a isq.Mass

• is\_a metrology.MeasuredConstant

## **BaseQuantity**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_acaaa124\_3dde\_48b6\_86e6\_6ec6f364f408

**Elucidation:** "Quantity in a conventionally chosen subset of a given system of quantities, where no quantity in the subset can be expressed in terms of the other quantities within that subset" ISO 80000-1

- is a metrology.PhysicalQuantity
- $\bullet \ \ metrology. has Reference Unit\ only\ metrology. Base Unit$

### PositionVector

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_44da6d75\_54a4\_4aa8\_bd3a\_156f6e9abb8e}$ 

**Definition:** Vector r characterizing a point P in a point space with a given origin point O.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-12

Altlabel: Position

Comment: In the usual geometrical three-dimensional space, position vectors are quantities of the dimension

length.

- IEC

**Comment:** Position vectors are so-called bounded vectors, i.e. their magnitude and direction depend on the particular coordinate system used.

- ISO 80000-3

Physical dimension: T0 L+1 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is a isq.Length

#### **AtomicMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_27367073\_ed8a\_481a\_9b07\_f836dfe31f7f

**Definition:** The mass of an atom in the ground state.

**Comment:** Since the nucleus account for nearly all of the total mass of atoms (with the electrons and nuclear binding energy making minor contributions), the atomic mass measured in Da has nearly the same value as the mass number.

Comment: The atomic mass is often expressed as an average of the commonly found isotopes.

Iupacentry: https://doi.org/10.1351/goldbook.A00496

**Physical dimension:** T0 L0 M+1 I0  $\Theta$ 0 N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Atomic\_mass

Relations:

• is a isq.Mass

### LuminousIntensity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_50bf79a6\_a48b\_424d\_9d2c\_813bd631231a}$ 

**Elucidation:** A measure of the wavelength-weighted power emitted by a light source in a particular direction per unit solid angle. It is based on the luminosity function, which is a standardized model of the sensitivity of the human eye.

**Dbpediaentry:** http://dbpedia.org/page/Luminous\_intensity

Physical dimension: T0 L0 M0 I0  $\Theta0$  N0 J+1

**Relations:** 

• is a isq.ISQBaseQuantity

#### **ElectricCurrent**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_c995ae70\_3b84\_4ebb\_bcfc\_69e6a281bb88

Elucidation: A flow of electric charge.

**Dbpediaentry:** http://dbpedia.org/page/Electric\_current **Iupacentry:** https://doi.org/10.1351/goldbook.E01927

Physical dimension: T0 L0 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQBaseQuantity

## ThermodynamicTemperature

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/isq\#EMMO\_affe07e4\_e9bc\_4852\_86c6\_69e26182a17f$ 

**Elucidation:** Thermodynamic temperature is the absolute measure of temperature. It is defined by the third law of thermodynamics in which the theoretically lowest temperature is the null or zero point.

**Dbpediaentry:** http://dbpedia.org/page/Thermodynamic\_temperature

Iupacentry: https://doi.org/10.1351/goldbook.T06321

Physical dimension: T0 L0 M0 I0  $\Theta$ +1 N0 J0

Relations:

• is\_a isq.ISQBaseQuantity

### CentreOfMass

IRI: http://emmo.info/emmo/middle/isq#EMMO\_9d8f708a\_f291\_4d72\_80ec\_362c6e6bbca6

**Elucidation:** The unique point where the weighted relative position of the distributed mass of an Item sums to zero. Equivalently, it is the point where if a force is applied to the Item, causes the Item to move in direction of force without rotation.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-12

Comment: In non-relativistic physics, the centre of mass doesn't depend on the chosen reference frame.

**Dbpediaentry:** http://dbpedia.org/page/Center\_of\_mass

Physical dimension: T0 L+1 M0 I0  $\Theta$ 0 N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Center\_of\_mass

Relations:

• is\_a isq.PositionVector

#### **ProtonMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_8d689295\_7d84\_421b\_bc01\_d5cceb2c2086

**Comment:** The rest mass of a proton.

Iupacentry: https://doi.org/10.1351/goldbook.P04914

Physical dimension: T0 L0 M+1 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value ProtonMass

Relations:

 $\bullet$  is\_a isq.Mass

• is a metrology. Measured Constant

#### AmountOfSubstance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_8159c26a\_494b\_4fa0\_9959\_10888f152298

Elucidation: The number of elementary entities present.

**Dbpediaentry:** http://dbpedia.org/page/Amount\_of\_substance

Iupacentry: https://doi.org/10.1351/goldbook.A00297

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N+1 J0

**Relations:** 

• is\_a isq.ISQBaseQuantity

#### Mass

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ed4af7ae\_63a2\_497e\_bb88\_2309619ea405

Elucidation: Property of a physical body that express its resistance to acceleration (a change in its state of

motion) when a force is applied.

**Dbpediaentry:** http://dbpedia.org/page/Mass

Iupacentry: https://doi.org/10.1351/goldbook.M03709

Physical dimension: T0 L0 M+1 I0 Θ0 N0 J0

Relations:

• is a isq.ISQBaseQuantity

• Inverse(properties.hasProperty) only physicalistic.Matter

# Derived Quantity branch

## Weight

IRI: http://emmo.info/emmo/middle/isq#EMMO\_04cf0295\_3e8f\_4693\_a87f\_3130d125cf05

Comment: Force of gravity acting on a body.

Dbpediaentry: http://dbpedia.org/page/Weight

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.W06668$ 

Physical dimension: T-2 L+1 M+1 I0 Θ0 N0 J0

Relations:

• is\_a isq.Force

## Permittivity

IRI: http://emmo.info/emmo/middle/isq#EMMO 0ee5779e d798 4ee5 9bfe c392d5bea112

Comment: Measure for how the polarization of a material is affected by the application of an external electric

field.

**Dbpediaentry:** http://dbpedia.org/page/Permittivity **Iupacentry:** https://doi.org/10.1351/goldbook.P04507

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Permittivity

Physical dimension: T+4 L-3 M-1 I+2  $\Theta 0$  N0 J0

Relations:

• is a isq.ISQDerivedQuantity



Figure 3.33: Derived Quantity branch. 152

### **BoltzmannConstant**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ffc7735f\_c177\_46a4\_98e9\_a54440d29209

**Elucidation:** A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant.

**Comment:** The DBpedia definition (http://dbpedia.org/page/Boltzmann\_constant) is outdated as May 20, 2019. It is now an exact quantity.

**Dbpediaentry:** http://dbpedia.org/page/Boltzmann\_constant

Iupacentry: https://doi.org/10.1351/goldbook.B00695

Physical dimension: T-2 L+2 M+1 I0  $\Theta$ -1 N0 J0

 ${\bf Qudtentry:}\ \, {\rm http://physics.nist.gov/cuu/CODATA-Value\_BoltzmannConstant}$ 

#### Relations:

• is\_a isq.Entropy

• is\_a isq.SIExactConstant

## VacuumMagneticPermeability

IRI: http://emmo.info/emmo/middle/isq#EMMO\_de021e4f\_918f\_47ef\_a67b\_11120f56b9d7

Comment: The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum\_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant.

**Comment:** The value of magnetic permeability in a classical vacuum.

Physical dimension: T-2 L+1 M+1 I-2  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_MagneticConstant

### Relations:

• is a isq.Permeability

• is a metrology. Measured Constant

### MagneticFieldStrength

**IRI:** http://emmo.info/emmo/middle/isq#EMMO\_b4895f75\_41c8\_4fd9\_b6d6\_4d5f7c99c423

Comment: Strength of a magnetic field. Commonly denoted H.

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_field **Iupacentry:** https://doi.org/10.1351/goldbook.M03683

Physical dimension: T0 L-1 M0 I+1  $\Theta0$  N0 J0

#### Relations:

• is a isq.ISQDerivedQuantity

## MagneticFlux

IRI: http://emmo.info/emmo/middle/isq#EMMO 3b931698 937e 49be ab1b 36fa52d91181

Elucidation: Measure of magnetism, taking account of the strength and the extent of a magnetic field.

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_flux **Iupacentry:** https://doi.org/10.1351/goldbook.M03684

Physical dimension: T-2 L+2 M+1 I-1  $\Theta$ 0 N0 J0

• is\_a isq.ISQDerivedQuantity

## InternalEnergy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_830b59f7\_d047\_438c\_90cd\_62845749efcb

**Elucidation:** A state quantity equal to the difference between the total energy of a system and the sum of the macroscopic kinetic and potential energies of the system.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-04-20

Altlabel: ThermodynamicEnergy

**Dbpediaentry:** http://dbpedia.org/page/Internal\_energy **Iupacentry:** https://doi.org/10.1351/goldbook.I03103

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/InternalEnergy

Physical dimension: T-2 L+2 M+1 I0 Θ0 N0 J0

**Relations:** 

• is a isq.Energy

## Capacitance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_99dba333\_0dbd\_4f75\_8841\_8c0f97fd58e2

Elucidation: The derivative of the electric charge of a system with respect to the electric potential.

Altlabel: ElectricCapacitance

Dbpediaentry: http://dbpedia.org/page/Capacitance Iupacentry: https://doi.org/10.1351/goldbook.C00791 Physicaldimension: T+4 L-2 M-1 I+2 Θ0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### RefractiveIndex

IRI: http://emmo.info/emmo/middle/isq#EMMO\_5eedba4d\_105b\_44d8\_b1bc\_e33606276ea2

Comment: Factor by which the phase velocity of light is reduced in a medium.

**Dbpediaentry:** http://dbpedia.org/page/Refractive\_index

**Iupacentry:** https://doi.org/10.1351/goldbook.R05240

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.RatioQuantity

 $\bullet \ \ metrology. has Reference Unit\ only\ units-extension. Speed Fraction Unit$ 

### MassFraction

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_7c055d65\_2929\_40e1\_af4f\_4bf10995ad50$ 

Comment: Mass of a constituent divided by the total mass of all constituents in the mixture.

**Dbpediaentry:** http://dbpedia.org/page/Mass fraction (chemistry)

Iupacentry: https://doi.org/10.1351/goldbook.M03722

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/MassFraction

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

- is a isq.RatioQuantity
- metrology.hasReferenceUnit only units-extension.MassFractionUnit

## VonKlitzingConstant

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_eb561764\_276e\_413d\_a8cb\_3a3154fd9bf8$ 

Definition: The von Klitzing constant is defined as Planck constant divided by the square of the elementary

charge.

Comment: Resistance quantum.

Physical dimension: T-3 L+2 M+1 I-2  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_VonKlitzingConstant

Relations:

is\_a isq.ElectricResistanceis\_a isq.SIExactConstant

# Permeability

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_09663630\_1b84\_4202\_91e6\_e641104f579e}$ 

**Comment:** Measure for how the magnetization of material is affected by the application of an external magnetic

 ${\it field}$  .

**Dbpediaentry:** http://dbpedia.org/page/Permeability\_(electromagnetism)

 $\textbf{Iupacentry:}\ \, \texttt{https://doi.org/10.1351/goldbook.P04503}$ 

Physical dimension: T-2 L+1 M+1 I-2  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## MagneticFluxDensity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_961d1aba\_f75e\_4411\_aaa4\_457f7516ed6b

Elucidation: Strength of the magnetic field.

Comment: Often denoted B.

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_field **Iupacentry:** https://doi.org/10.1351/goldbook.M03686

Physical dimension: T-2 L0 M+1 I-1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## RatioQuantity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_faab3f84\_e475\_4a46\_af9c\_7d249f0b9aef

Elucidation: The class of quantities that are the ratio of two quantities with the same physical dimensionality.

Example: refractive index, volume fraction, fine structure constant

**Comment:** Quantities defined as ratios Q=A/B having equal dimensions in numerator and denominator are dimensionless quantities but still have a physical dimension defined as  $\dim(A)/\dim(B)$ .

Johansson, Ingvar (2010). "Metrological thinking needs the notions of parametric quantities, units and dimensions". Metrologia. 47 (3): 219-230. doi:10.1088/0026-1394/47/3/012. ISSN 0026-1394.

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

**Seealso:** https://iopscience.iop.org/article/10.1088/0026-1394/47/3/012

#### Relations:

• is\_a isq.ISQDimensionlessQuantity

## Torque

IRI: http://emmo.info/emmo/middle/isq#EMMO aaf9dd7f 0474 40d0 9606 02def8515249

**Elucidation:** The effectiveness of a force to produce rotation about an axis, measured by the product of the force and the perpendicular distance from the line of action of the force to the axis.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-26

**Comment:** Even though torque has the same physical dimension as energy, it is not of the same kind and can not be measured with energy units like joule or electron volt.

**Dbpediaentry:** http://dbpedia.org/page/Torque

Iupacentry: https://doi.org/10.1351/goldbook.T06400

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Torque

Physical dimension: T-2 L+2 M+1 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### Wavenumber

IRI: http://emmo.info/emmo/middle/isq#EMMO d859588d 44dc 4614 bc75 5fcd0058acc8

Comment: The number of waves per unit length along the direction of propagation.

**Dbpediaentry:** http://dbpedia.org/page/Wavenumber **Iupacentry:** https://doi.org/10.1351/goldbook.W06664

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Wavenumber

**Physical dimension:** T0 L-1 M0 I0  $\Theta0$  N0 J0

Relations:

 $\bullet$  is\_a isq.ReciprocalLength

## **AreaDensity**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_afea89af\_ef16\_4bdb\_99d5\_f3b2f4c85a6c}$ 

Comment: Mass per unit area.

**Dbpediaentry:** http://dbpedia.org/page/Area\_density **Iupacentry:** https://doi.org/10.1351/goldbook.S06167

Physical dimension: T0 L-2 M+1 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## ElectricCharge

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1604f495\_328a\_4f28\_9962\_f4cc210739dd

Elucidation: The physical property of matter that causes it to experience a force when placed in an electro-

magnetic field.

Altlabel: Charge

**Dbpediaentry:** http://dbpedia.org/page/Electric\_charge **Iupacentry:** https://doi.org/10.1351/goldbook.E01923

Physical dimension: T+1 L0 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## ElectricalConductivity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_cde4368c\_1d4d\_4c94\_8548\_604749523c6d}$ 

**Comment:** Measure of a material's ability to conduct an electric current.

Conductivity is equeal to the resiprocal of resistivity.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistivity\_and\_conductivity

 $\textbf{Iupacentry:}\ \, https://doi.org/10.1351/goldbook.C01245$ 

**Physical dimension:** T+3 L-3 M-1 I+2  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## DerivedQuantity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/metrology} \\ \# EMMO\_71 \\ \text{f6ab56}\_342 \\ \text{c}\_484 \\ \text{b}\_bbe0\_de86b7367 \\ \text{cb3}$ 

Elucidation: "Quantity, in a system of quantities, defined in terms of the base quantities of that system".

Relations:

• is\_a metrology.PhysicalQuantity

## Density

IRI: http://emmo.info/emmo/middle/isq#EMMO\_06448f64\_8db6\_4304\_8b2c\_e785dba82044

Comment: Mass per volume.

**Dbpediaentry:** http://dbpedia.org/page/Density

Iupacentry: https://doi.org/10.1351/goldbook.D01590

Physical dimension: T0 L-3 M+1 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### Energy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_31ec09ba\_1713\_42cb\_83c7\_b38bf6f9ced2

Elucidation: A property of objects which can be transferred to other objects or converted into different forms.

Comment: Energy is often defined as "ability of a system to perform work", but it might be misleading since

is not necessarily available to do work.

**Dbpediaentry:** http://dbpedia.org/page/Energy

 $\textbf{Iupacentry:}\ \text{https://doi.org/10.1351/goldbook.} E02101$ 

Physical dimension: T-2 L+2 M+1 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### Volume

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_f1a51559\_aa3d\_43a0\_9327\_918039f0dfed.}$ 

Comment: Extent of an object in space.

Dbpediaentry: http://dbpedia.org/page/Volume Physicaldimension: T0 L-3 M0 I0 Θ0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### ElectricalResistivity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e150fa8d\_06dc\_4bb8\_bf95\_04e2aea529c1}$ 

Comment: Electric field strength divided by the current density.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistivity\_and\_conductivity

Iupacentry: https://doi.org/10.1351/goldbook.R05316 Physical dimension: T-3 L+3 M+1 I-2  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### Illuminance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_b51fbd00\_a857\_4132\_9711\_0ef70e7bdd20

**Definition:** The total luminous flux incident on a surface, per unit area.

**Dbpediaentry:** http://dbpedia.org/page/Illuminance **Iupacentry:** https://doi.org/10.1351/goldbook.I02941

Physical dimension: T0 L-2 M0 I0  $\Theta$ 0 N0 J+1

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## DoseEquivalent

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_3df10765\_f6ff\_4c9e\_be3d\_10b1809d78bd}$ 

Elucidation: A dose quantity used in the International Commission on Radiological Protection (ICRP) system

of radiological protection.

**Dbpediaentry:** http://dbpedia.org/page/Energy

Iupacentry: https://doi.org/10.1351/goldbook.E02101

Physical dimension: T-2 L+2 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## Entropy

IRI: http://emmo.info/emmo/middle/isq#EMMO\_9bbab0be\_f9cc\_4f46\_9f46\_0fd271911b79

Comment: Logarithmic measure of the number of available states of a system.

**Comment:** May also be referred to as a measure of order of a system.

**Dbpediaentry:** http://dbpedia.org/page/Entropy

Iupacentry: https://doi.org/10.1351/goldbook.E02149

Physical dimension: T-2 L+2 M+1 I0  $\Theta\text{-}1\ \mathrm{N0}\ \mathrm{J0}$ 

**Relations:** 

• is\_a isq.ISQDerivedQuantity

#### Work

IRI: http://emmo.info/emmo/middle/isq#EMMO\_624d72ee\_e676\_4470\_9434\_c22b4190d3d5

**Definition:** Product of force and displacement. **Dbpediaentry:** http://dbpedia.org/page/Heat

**Dbpediaentry:** http://dbpedia.org/page/Work\_(physics) **Iupacentry:** https://doi.org/10.1351/goldbook.W06684

Physical dimension: T-2 L+2 M+1 IO OO NO JO

Relations:

• is a isq.Energy

## CelsiusTemperature

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_66bc9029\_f473\_45ff\_bab9\_c3509ff37a22}$ 

Elucidation: An objective comparative measure of hot or cold.

Temperature is a relative quantity that can be used to express temperature differences. Unlike ThermodynamicTemperature, it cannot express absolute temperatures.

**Dbpediaentry:** http://dbpedia.org/page/Temperature **Iupacentry:** https://doi.org/10.1351/goldbook.T06261

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N+1 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## CurrentDensity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_7c8007b0\_58a7\_4486\_bf1c\_4772852caca0}$ 

Comment: Electric current divided by the cross-sectional area it is passing through.

**Dbpediaentry:** http://dbpedia.org/page/Current\_density **Iupacentry:** https://doi.org/10.1351/goldbook.E01928

Physical dimension: T0 L-2 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## Power

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_09b9021b\_f97b\_43eb\_b83d\_0a764b472bc2$ 

Elucidation: Rate of transfer of energy per unit time.

Dbpediaentry: http://dbpedia.org/page/Power\_(physics)

Iupacentry: https://doi.org/10.1351/goldbook.P04792

Physical dimension: T-3 L+2 M+1 I0  $\Theta0~\mathrm{N0}~\mathrm{J0}$ 

**Relations:** 

 $\bullet \ \ is\_a \ isq. ISQDerived Quantity$ 

## Vergence

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_1e7603a7\_1365\_49b8\_b5e5\_3711c8e6b904$ 

Comment: In geometrical optics, vergence describes the curvature of optical wavefronts.

Dbpediaentry: http://dbpedia.org/page/Vergence Physicaldimension: T0 L-1 M0 I0 Θ0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

#### Area

IRI: http://emmo.info/emmo/middle/isq#EMMO\_96f39f77\_44dc\_491b\_8fa7\_30d887fe0890

**Comment:** Extent of a surface.

**Dbpediaentry:** http://dbpedia.org/page/Area

Iupacentry: https://doi.org/10.1351/goldbook.A00429

Physical dimension: T0 L+2 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## **ISQDimensionlessQuantity**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_a66427d1\_9932\_4363\_9ec5\_7d91f2bfda1e

Elucidation: A quantity to which no physical dimension is assigned and with a corresponding unit of measure-

ment in the SI of the unit one.

**Dbpediaentry:** http://dbpedia.org/page/Dimensionless\_quantity

Iupacentry: https://doi.org/10.1351/goldbook.D01742

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Dimensionless\_quantity

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### AmountFraction

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_04b3300c\_98bd\_42dc\_a3b5\_e6c29d69f1ac} \\ \textbf{IRI:} \ \text{IRI:} \ \text{IR$ 

**Definition:** The amount of a constituent divided by the total amount of all constituents in a mixture.

Altlabel: MoleFraction

**Dbpediaentry:** http://dbpedia.org/page/Mole\_fraction **Iupacentry:** https://doi.org/10.1351/goldbook.A00296

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/AmountOfSubstanceFraction

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is a isq.RatioQuantity

 $\bullet \hspace{0.2cm} \text{metrology.hasReferenceUnit} \hspace{0.2cm} \text{only units-extension.AmountFractionUnit} \\$ 

## VolumeFraction

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{a8eb87b5} \underline{4d10} \underline{4137} \underline{a75c} \underline{e04ee59ca095}$ 

Elucidation: Volume of a constituent of a mixture divided by the sum of volumes of all constituents prior to

mixing.

**Dbpediaentry:** http://dbpedia.org/page/Volume\_fraction

Iupacentry: https://doi.org/10.1351/goldbook.V06643

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/VolumeFraction

Physicaldimension: T0 L0 M0 I0 Θ0 N0 J0

- is a isq.RatioQuantity
- metrology.hasReferenceUnit only units-extension.VolumeFractionUnit

## RybergConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO\_a3c78d6f\_ae49\_47c8\_a634\_9b6d86b79382

**Comment:** The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state.

**Dbpediaentry:** http://dbpedia.org/page/Rydberg\_constant

Iupacentry: https://doi.org/10.1351/goldbook.R05430

Physical dimension: T0 L-1 M0 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value RybergConstant

Relations:

• is a isq.Wavenumber

• is\_a metrology.MeasuredConstant

## SolidAngle

IRI: http://emmo.info/emmo/middle/isq#EMMO e7c9f7fd e534 4441 88fe 1fec6cb20f26

Elucidation: Ratio of area on a sphere to its radius squared.

**Dbpediaentry:** http://dbpedia.org/page/Solid\_angle **Iupacentry:** https://doi.org/10.1351/goldbook.S05732

Physicaldimension: T0 L0 M0 I0 Θ0 N0 J0

Relations:

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.AreaFractionUnit

#### MassConcentration

IRI: http://emmo.info/emmo/middle/isq#EMMO 16f2fe60 2db7 43ca 8fee 5b3e416bfe87

Comment: Mass of a constituent divided by the volume of the mixture.

**Dbpediaentry:** http://dbpedia.org/page/Mass\_concentration\_(chemistry)

**Iupacentry:** https://doi.org/10.1351/goldbook.M03713

Physical dimension: T0 L-3 M+1 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.Density

### AbsorbedDose

IRI: http://emmo.info/emmo/middle/isq#EMMO\_8e5dd473\_808b\_4a8a\_b7cd\_63068c12ff57

**Definition:** Energy imparted to matter by ionizing radiation in a suitable small element of volume divided by

the mass of that element of volume.

**Dbpediaentry:** http://dbpedia.org/page/Absorbed\_dose **Iupacentry:** https://doi.org/10.1351/goldbook.A00031

Physical dimension: T-2 L+2 M0 I0  $\Theta$ 0 N0 J0

#### **Relations:**

• is\_a isq.ISQDerivedQuantity

## **ISQDerivedQuantity**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_2946d40b\_24a1\_47fa\_8176\_e3f79bb45064

Elucidation: Derived quantities defined in the International System of Quantities (ISQ).

#### **Relations:**

- is\_a isq.InternationalSystemOfQuantity
- is a metrology. Derived Quantity

## **PureNumberQuantity**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ba882f34\_0d71\_4e4f\_9d92\_0c076c633a2c

**Elucidation:** A pure number, typically the number of something.

**Example:** 1, i,  $\pi$ , the number of protons in the nucleus of an atom

Comment: According to the SI brochure counting does not automatically qualify a quantity as an amount of substance.

This quantity is used only to describe the outcome of a counting process, without regard of the type of entities.

"There are also some quantities that cannot be described in terms of the seven base quantities of the SI, but have the nature of a count. Examples are a number of molecules, a number of cellular or biomolecular entities (for example copies of a particular nucleic acid sequence), or degeneracy in quantum mechanics. Counting quantities are also quantities with the associated unit one."

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

### Relations:

• is a isq.ISQDimensionlessQuantity

### Heat

IRI: http://emmo.info/emmo/middle/isq#EMMO\_12d4ba9b\_2f89\_4ea3\_b206\_cd376f96c875

**Comment:** Heat is energy in transfer to or from a thermodynamic system, by mechanisms other than thermodynamic work or transfer of matter.

Iupacentry: https://doi.org/10.1351/goldbook.H02752

Physical dimension: T-2 L+2 M+1 I0  $\Theta 0$  N0 J0

#### Relations:

• is\_a isq.Energy

### LuminousFlux

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e2ee1c98\_497a\_4f66\_b4ed\_5711496a848e}$ 

Elucidation: Perceived power of light.

**Dbpediaentry:** http://dbpedia.org/page/Luminous\_flux **Iupacentry:** https://doi.org/10.1351/goldbook.L03646

Physical dimension: T0 L0 M0 I0 Θ0 N0 J+1

#### Relations:

• is a isq.ISQDerivedQuantity

## VacuumElectricPermittivity

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/isq\#EMMO\_61a32ae9\_8200\_473a\_bd55\_59a9899996f4$ 

Comment: The DBpedia definition (http://dbpedia.org/page/Vacuum\_permittivity) is outdated since May

20, 2019. It is now a measured constant.

Comment: The value of the absolute dielectric permittivity of classical vacuum.

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.P04508$ 

Physical dimension: T+4 L-3 M-1 I+2  $\Theta0~\mathrm{N0~J0}$ 

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElectricConstant

#### Relations:

• is a isq.Permittivity

• is a metrology.MeasuredConstant

## Frequency

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{852b4ab8} \underline{fc29} \underline{4749} \underline{a8c7} \underline{b92d4fca7d5a}$ 

Elucidation: Number of periods per time interval.

Dbpediaentry: http://dbpedia.org/page/Frequency

Iupacentry: https://doi.org/10.1351/goldbook.FT07383

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### **ElectricPotential**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_4f2d3939\_91b1\_4001\_b8ab\_7d19074bf845

Elucidation: Energy required to move a unit charge through an electric field from a reference point.

Altlabel: Voltage

**Dbpediaentry:** http://dbpedia.org/page/Voltage

Iupacentry: https://doi.org/10.1351/goldbook.A00424

Physical dimension: T-3 L+2 M+1 I-1  $\Theta0$  N0 J0

**Relations:** 

• is a isq.ISQDerivedQuantity

## AngularMomentum

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_66d01570\_36dd\_42fd\_844d\_29b81b029cd5}$ 

Comment: Measure of the extent and direction an object rotates about a reference point.

**Dbpediaentry:** http://dbpedia.org/page/Angular\_momentum

Iupacentry: https://doi.org/10.1351/goldbook.A00353

Physical dimension: T-1 L+2 M+1 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### MagneticDipoleMoment

IRI: http://emmo.info/emmo/middle/isq#EMMO\_81e767f1\_59b1\_4d7a\_bf69\_17f322241831

Elucidation: Vector quantity  $\mu$  causing a change to its energy  $\Delta W$  in an external magnetic field of field flux density B:

 $\Omega = -\sum - \$ 

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-55

**Iso80000ref:** 10-9.1

Comment: For an atom or nucleus, this energy is quantized and can be written as:

 $W = g \simeq M B$ 

where g is the appropriate g factor,  $\mu$  is mostly the Bohr magneton or nuclear magneton, M is magnetic quantum number, and B is magnitude of the magnetic flux density.

- ISO 80000

**Dbpediaentry:** http://dbpedia.org/page/Magnetic\_moment **Iupacentry:** http://goldbook.iupac.org/terms/view/M03688

Physical dimension: T0 L+2 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

#### Inductance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_04cc9451\_5306\_45d0\_8554\_22cee4d6e785

**Elucidation:** A property of an electrical conductor by which a change in current through it induces an electromotive force in both the conductor itself and in any nearby conductors by mutual inductance.

Altlabel: ElectricInductance

Dbpediaentry: http://dbpedia.org/page/Inductance Iupacentry: https://doi.org/10.1351/goldbook.M04076 Physicaldimension: T-2 L+2 M+1 I-2 Θ0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

# Hyperfine Transition Frequency Of Cs

IRI: http://emmo.info/emmo/middle/isq#EMMO\_f96feb3f\_4438\_4e43\_aa44\_7458c4d87fc2

**Elucidation:** The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency.

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N0 J0

- $\bullet \ \ is\_a \ isq. Frequency$
- $\bullet$  is\_a isq.SIExactConstant

## **Probability**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_0a88be81\_343d\_4388\_92c1\_09228ff95ada} \\ \textbf{IRI:} \ \text{IRI:} \ \text{IR$ 

**Elucidation:** Probability is a dimensionless quantity that can attain values between 0 and 1; zero denotes the impossible event and 1 denotes a certain event.

**Comment:** The propability for a certain outcome, is the ratio between the number of events leading to the given outcome and the total number of events.

Iupacentry: https://doi.org/10.1351/goldbook.P04855

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

#### **Relations:**

• is\_a isq.RatioQuantity

• metrology.hasReferenceUnit only metrology.UnitOne

## ElementaryCharge

**Elucidation:** The magnitude of the electric charge carried by a single electron.

Comment: The DBpedia definition (http://dbpedia.org/page/Elementary\_charge) is outdated as May 20,

2019. It is now an exact quantity.

**Dbpediaentry:** http://dbpedia.org/page/Elementary\_charge

**Iupacentry:** https://doi.org/10.1351/goldbook.E02032

Physical dimension: T+1 L0 M0 I+1  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElementaryCharge

### Relations:

• is a isq.ElectricCharge

• is a isq.SIExactConstant

#### Luminance

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_97589322\_710c\_4af4\_9431\_1e5027f2be422} = 1.00 \pm 0.00 \pm$ 

Comment: Measured in cd/m<sup>2</sup>. Not to confuse with Illuminance, which is measured in lux (cd sr/m<sup>2</sup>).

Comment: a photometric measure of the luminous intensity per unit area of light travelling in a given direction.

**Dbpediaentry:** http://dbpedia.org/page/Luminance

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.L03640$ 

Physical dimension: T0 L-2 M0 I0  $\Theta$ 0 N0 J+1

#### Relations:

• is\_a isq.ISQDerivedQuantity

## **KineticEnergy**

IRI: http://emmo.info/emmo/middle/isq#EMMO ac540a9d 0131 43f6 a33b 17e5cfc432ed

**Elucidation:** The energy of an object due to its motion.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-49

**Dbpediaentry:** http://dbpedia.org/page/Kinetic\_energy **Iupacentry:** https://doi.org/10.1351/goldbook.K03402

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/KineticEnergy

Physical dimension: T-2 L+2 M+1 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.Energy

### ElectricResistance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_e88f75d6\_9a17\_4cfc\_bdf7\_43d7cea5a9a1

Elucidation: Measure of the difficulty to pass an electric current through a material.

Altlabel: Resistance

Comment: Inverse of 'ElectricalConductance'.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistance\_and\_conductance

 $\textbf{Iupacentry:}\ \text{https://doi.org/} 10.1351/goldbook.E01936$ 

Physical dimension: T-3 L+2 M+1 I-2  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## ElectronCharge

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_cc01751d\_dd05\_429b\_9d0c\_1b7a74d1f277}$ 

**Definition:** The charge of an electron.

**Comment:** The negative of ElementaryCharge.

Iupacentry: https://doi.org/10.1351/goldbook.E01982

Physical dimension: T+1 L0 M0 I+1  $\Theta0$  N0 J0

Relations:

is\_a isq.ElectricCharge is\_a isq.SIExactConstant

### Stress

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d1917609\_db5e\_4b8a\_9b76\_ef1d6f860a81

Comment: Force per unit oriented surface area .

Comment: Measure of the internal forces that neighboring particles of a continuous material exert on each

other.

**Dbpediaentry:** http://dbpedia.org/page/Stress\_(mechanics)

Physical dimension: T-2 L-1 M+1 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.Pressure

## Speed

IRI: http://emmo.info/emmo/middle/isq#EMMO\_81369540\_1b0e\_471b\_9bae\_6801af22800e

Comment: Length per unit time.

Speed in the absolute value of the velocity.

Dbpediaentry: http://dbpedia.org/page/Speed

Iupacentry: https://doi.org/10.1351/goldbook.S05852

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Speed

Physical dimension: T-1 L+1 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### AtomicNumber

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_07de47e0\_6bb6\_45b9\_b55a\_4f238efbb105$ 

**Definition:** Number of protons in an atomic nucleus.

**Dbpediaentry:** http://dbpedia.org/page/Atomic\_number **Iupacentry:** https://doi.org/10.1351/goldbook.A00499

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.PureNumberQuantity

### Acceleration

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e37ac288\_aa60\_415a\_8cb7\_c375724ac8e1$ 

Comment: Derivative of velocity with respect to time.

Dbpediaentry: http://dbpedia.org/page/Acceleration

Iupacentry: https://doi.org/10.1351/goldbook.A00051

Physical dimension: T-2 L+1 M0 I0  $\Theta0$  N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## CatalyticActivity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_bd67d149\_24c2\_4bc9\_833a\_c2bc26f98fd3

**Elucidation:** Increase in the rate of reaction of a specified chemical reaction that an enzyme produces in a specific assay system.

Iupacentry: https://doi.org/10.1351/goldbook.C00881

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N+1 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## PlanckConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO\_76cc4efc\_231e\_42b4\_be83\_2547681caed6

**Elucidation:** The quantum of action.

**Dbpediaentry:** http://dbpedia.org/page/Planck\_constant **Iupacentry:** https://doi.org/10.1351/goldbook.P04685

Physical dimension: T-1 L+2 M+1 I0  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_PlankConstant

#### Relations:

is\_a isq.AngularMomentumis a isq.SIExactConstant

## **Enthalpy**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_4091d5ec\_a4df\_42b9\_a073\_9a090839279f}$ 

Comment: Measurement of energy in a thermodynamic system.

**Dbpediaentry:** http://dbpedia.org/page/Enthalpy **Iupacentry:** https://doi.org/10.1351/goldbook.E02141

Physical dimension: T-2 L+2 M+1 I0  $\Theta0~\mathrm{N0}~\mathrm{J0}$ 

**Relations:** 

• is\_a isq.Energy

### ChemicalPotential

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO} \underline{88fc5d1b} \underline{d3ab} \underline{4626} \underline{b24c} \underline{915ebe7400ca}$ 

Comment: Energy per unit change in amount of substance.

Dbpediaentry: http://dbpedia.org/page/Chemical\_potential

Iupacentry: https://doi.org/10.1351/goldbook.C01032 Physicaldimension: T-2 L+2 M+1 I0  $\Theta$ 0 N-1 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

## Angle

IRI: http://emmo.info/emmo/middle/isq#EMMO\_f3dd74c0\_f480\_49e8\_9764\_33b78638c235

**Definition:** Ratio of circular arc length to radius.

Altlabel: PlaneAngle

**Dbpediaentry:** http://dbpedia.org/page/Angle

Iupacentry: https://doi.org/10.1351/goldbook.A00346

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

## Relations:

• is a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.LengthFractionUnit

### **Force**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1f087811\_06cb\_42d5\_90fb\_25d0e7e068ef

Elucidation: Any interaction that, when unopposed, will change the motion of an object.

**Dbpediaentry:** http://dbpedia.org/page/Force

Iupacentry: https://doi.org/10.1351/goldbook.F02480

Physical dimension: T-2 L+1 M+1 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

#### ElectricConductance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ffb73b1e\_5786\_43e4\_a964\_cb32ac7affb7

Elucidation: Measure of the ease for electric current to pass through a material.

Altlabel: Conductance

Comment: Inverse of 'ElectricalResistance'.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_resistance\_and\_conductance

Iupacentry: https://doi.org/10.1351/goldbook.E01925 Physicaldimension: T+3 L-2 M-1 I+2  $\Theta0$  N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

### MassNumber

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_dc6c8de0\_cfc4\_4c66\_a7dc\_8f720e732d54}$ 

**Definition:** Number of nucleons in an atomic nucleus.

Physical dimension: T0 L0 M0 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.PureNumberQuantity

## SpeedOfLightInVacuum

IRI: http://emmo.info/emmo/middle/isq#EMMO\_99296e55\_53f7\_4333\_9e06\_760ad175a1b9

**Elucidation:** The speed of light in vacuum.

**Dbpediaentry:** http://dbpedia.org/page/Speed\_of\_light **Iupacentry:** https://doi.org/10.1351/goldbook.S05854

Physical dimension: T-1 L+1 M0 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value SpeedOfLightInVacuum

Relations:

• is\_a isq.Speed

• is\_a isq.SIExactConstant

#### Strain

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_acf636d4\_9ac2\_4ce3\_960a\_d54338e6cae3 = 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 20$ 

Elucidation: Change of the relative positions of parts of a body, excluding a displacement of the body as a

whole.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-57

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/Strain

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

#### Relations:

• is a isq.RatioQuantity

• metrology.hasReferenceUnit only units-extension.LengthFractionUnit

## ElectricalImpedance

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_79a02de5\_b884\_4eab\_bc18\_f67997d597a2}$ 

Comment: Measure of the opposition that a circuit presents to a current when a voltage is applied.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_impedance

**Physical dimension:** T-3 L+2 M+1 I-2  $\Theta$ 0 N0 J0

**Relations:** 

• is a isq.ElectricResistance

#### AmountConcentration

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d5be1faf\_0c56\_4f5a\_9b78\_581e6dee949f

Altlabel: Concentration

Altlabel: MolarConcentration

Altlabel: Molarity

Comment: The amount of a constituent divided by the volume of the mixture.

**Dbpediaentry:** http://dbpedia.org/page/Molar\_concentration

**Iupacentry:** https://doi.org/10.1351/goldbook.A00295

Physicaldimension: T0 L-3 M0 I0  $\Theta$ 0 N+1 J0

**Relations:** 

• is a isq.ISQDerivedQuantity

## PotentialEnergy

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_4c151909\_6f26\_4ef9\_b43d\_7c9e9514883a} \\ \textbf{2.1} \ \textbf{2.2} \ \textbf$ 

Elucidation: The energy possessed by a body by virtue of its position or orientation in a potential field.

Iecentry: http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-03-48

 ${\bf Dbpediaentry:\ http://dbpedia.org/page/Potential\_energy}$ 

Iupacentry: https://doi.org/10.1351/goldbook.P04778

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/PotentialEnergy

Physical dimension: T-2 L+2 M+1 I0  $\Theta 0$  N0 J0

• is\_a isq.Energy

### Pressure

IRI: http://emmo.info/emmo/middle/isq#EMMO\_50a44256\_9dc5\_434b\_bad4\_74a4d9a29989

Elucidation: The force applied perpendicular to the surface of an object per unit area over which that force

is distributed.

**Dbpediaentry:** http://dbpedia.org/page/Pressure

**Iupacentry:** https://doi.org/10.1351/goldbook.P04819

Physical dimension: T-2 L-1 M+1 I0 Θ0 N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

### ElectricalReactance

IRI: http://emmo.info/emmo/middle/isq#EMMO\_92b2fb85\_2143\_4bc7\_bbca\_df3e6944bfc1

Comment: The opposition of a circuit element to a change in current or voltage, due to that element's

inductance or capacitance.

**Dbpediaentry:** http://dbpedia.org/page/Electrical\_reactance

**Physical dimension:** T-3 L+2 M+1 I-2  $\Theta$ 0 N0 J0

Relations:

• is a isq.ElectricResistance

## Velocity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_0329f1f5\_8339\_4ce4\_8505\_a264c6d606ba}$ 

**Definition:** Vector quantity giving the rate of change of a position vector.

- ISO 80000-3

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=113-01-32

**Iso80000ref:** 3-10.1

**Comment:** The velocity depends on the choice of the reference frame. Proper transformation between frames must be used: Galilean for non-relativistic description, Lorentzian for relativistic description.

- IEC, note 2

**Comment:** The velocity is related to a point described by its position vector. The point may localize a particle, or be attached to any other object such as a body or a wave.

– IEC, note 1

Physical dimension: T-1 L+1 M0 I0  $\Theta$ 0 N0 J0

Relations:

• is\_a isq.Speed

## ElectricDipoleMoment

IRI: http://emmo.info/emmo/middle/isq#EMMO\_1a179ce4\_3724\_47f8\_bee5\_6292e3ac9942

Elucidation: An electric dipole, vector quantity of magnitude equal to the product of the positive charge and the distance between the charges and directed from the negative charge to the positive charge.

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-35

**Iecentry:** http://www.electropedia.org/iev/iev.nsf/display?openform&ievref=121-11-36

**Dbpediaentry:** http://dbpedia.org/page/Electric dipole moment

Iupacentry: https://doi.org/10.1351/goldbook.E01929

Ommatch: http://www.ontology-of-units-of-measure.org/resource/om-2/ElectricDipoleMoment

Physical dimension: T+1 L+1 M0 I+1  $\Theta$ 0 N0 J0

Relations:

• is a isq.ISQDerivedQuantity

### ReciprocalLength

IRI: http://emmo.info/emmo/middle/isq#EMMO ecec2983 7c26 4f8d a981 51ca29668baf

**Elucidation:** The inverse of length.

**Dbpediaentry:** http://dbpedia.org/page/Reciprocal\_length

**Physical dimension:** T0 L-1 M0 I0  $\Theta$ 0 N0 J0

Wikipediaentry: https://en.wikipedia.org/wiki/Reciprocal\_length

Relations:

• is\_a isq.ISQDerivedQuantity

## RadiantFlux

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_e46f3f24\_c2ec\_4552\_8dd4\_cfc5c0a89c09$ 

Comment: The radiant energy emitted, reflected, transmitted or received, per unit time.

**Dbpediaentry:** http://dbpedia.org/page/Radiant\_flux **Iupacentry:** https://doi.org/10.1351/goldbook.R05046

Physical dimension: T-3 L+2 M+1 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.Power

#### Momentum

IRI: http://emmo.info/emmo/middle/isq#EMMO\_43776fc9\_d712\_4571\_85f0\_72183678039a

Comment: Product of mass and velocity.

**Dbpediaentry:** http://dbpedia.org/page/Momentum **Iupacentry:** https://doi.org/10.1351/goldbook.M04007

Physical dimension: T-1 L+1 M+1 I0  $\Theta 0$  N0 J0

Relations:

• is\_a isq.ISQDerivedQuantity

## Radioactivity

IRI: http://emmo.info/emmo/middle/isq#EMMO\_8d3da9ac\_2265\_4382\_bee5\_db72046722f8

Elucidation: Decays per unit time.

Iupacentry: https://doi.org/10.1351/goldbook.A00114

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N0 J0

**Relations:** 

• is\_a isq.ISQDerivedQuantity

# Physical Constant branch



Figure 3.34: Physical Constant branch.

## **JosephsonConstant**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ba380bc6\_2bfd\_4f11\_94c7\_b3cbaafd1631

**Elucidation:** Inverse of the magnetic flux quantum.

Comment: The DBpedia definition (http://dbpedia.org/page/Magnetic\_flux\_quantum) is outdated as May

20, 2019. It is now an exact quantity.

Physical dimension: T+2 L-1 M-1 I+1  $\Theta0~\mathrm{N0}~\mathrm{J0}$ 

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_JosephsonConstant

Relations:

• is\_a isq.SIExactConstant

## VacuumElectricPermittivity

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/isq\#EMMO\_61a32ae9\_8200\_473a\_bd55\_59a9899996f4$ 

 $\textbf{Comment:} \ \ \textbf{The DBpedia definition (http://dbpedia.org/page/Vacuum\_permittivity) is outdated since May and the property of the propert$ 

20, 2019. It is now a measured constant.

**Comment:** The value of the absolute dielectric permittivity of classical vacuum.

Iupacentry: https://doi.org/10.1351/goldbook.P04508

Physical dimension: T+4 L-3 M-1 I+2  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElectricConstant

Relations:

 $\bullet \ \ is\_a \ isq. Permittivity$ 

• is a metrology.MeasuredConstant

### **BoltzmannConstant**

IRI: http://emmo.info/emmo/middle/isq#EMMO\_ffc7735f\_c177\_46a4\_98e9\_a54440d29209

**Elucidation:** A physical constant relating energy at the individual particle level with temperature. It is the gas constant R divided by the Avogadro constant.

**Comment:** The DBpedia definition (http://dbpedia.org/page/Boltzmann\_constant) is outdated as May 20, 2019. It is now an exact quantity.

**Dbpediaentry:** http://dbpedia.org/page/Boltzmann\_constant

Iupacentry: https://doi.org/10.1351/goldbook.B00695

**Physical dimension:** T-2 L+2 M+1 I0  $\Theta$ -1 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_BoltzmannConstant

#### **Relations:**

• is\_a isq.Entropy

 $\bullet$  is\_a isq.SIExactConstant

## VacuumMagneticPermeability

**IRI:** http://emmo.info/emmo/middle/isq#EMMO\_de021e4f\_918f\_47ef\_a67b\_11120f56b9d7

**Comment:** The DBpedia and UIPAC Gold Book definitions (http://dbpedia.org/page/Vacuum\_permeability, https://doi.org/10.1351/goldbook.P04504) are outdated since May 20, 2019. It is now a measured constant.

**Comment:** The value of magnetic permeability in a classical vacuum.

Physical dimension: T-2 L+1 M+1 I-2  $\Theta 0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_MagneticConstant

### Relations:

• is a isq.Permeability

• is a metrology. Measured Constant

### **HyperfineTransitionFrequencyOfCs**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_f96feb3f\_4438\_4e43\_aa44\_7458c4d87fc2$ 

Elucidation: The frequency standard in the SI system in which the photon absorption by transitions between the two hyperfine ground states of caesium-133 atoms are used to control the output frequency.

Physical dimension: T-1 L0 M0 I0  $\Theta$ 0 N0 J0

### Relations:

• is\_a isq.Frequency

• is\_a isq.SIExactConstant

## SpeedOfLightInVacuum

IRI: http://emmo.info/emmo/middle/isq#EMMO\_99296e55\_53f7\_4333\_9e06\_760ad175a1b9

Elucidation: The speed of light in vacuum.

**Dbpediaentry:** http://dbpedia.org/page/Speed\_of\_light **Iupacentry:** https://doi.org/10.1351/goldbook.S05854

Physical dimension: T-1 L+1 M0 I0 Θ0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_SpeedOfLightInVacuum

- is a isq.Speed
- is a isq.SIExactConstant

## NewtonianConstantOfGravity

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_da831168\_975a\_41f8\_baae\_279c298569da$ 

Comment: Physical constant in Newton's law of gravitation and in Einstein's general theory of relativity.

**Dbpediaentry:** http://dbpedia.org/page/Gravitational\_constant

Iupacentry: https://doi.org/10.1351/goldbook.G02695

Physical dimension: T-2 L+3 M-1 I0 Θ0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_NewtonianConstantOfGravity

Relations:

• is\_a metrology.MeasuredConstant

## ElementaryCharge

IRI: http://emmo.info/emmo/middle/isq#EMMO\_58a650f0\_a638\_4743\_8439\_535a325e5c4c

**Elucidation:** The magnitude of the electric charge carried by a single electron.

Comment: The DBpedia definition (http://dbpedia.org/page/Elementary\_charge) is outdated as May 20,

2019. It is now an exact quantity.

**Dbpediaentry:** http://dbpedia.org/page/Elementary\_charge

Iupacentry: https://doi.org/10.1351/goldbook.E02032

Physical dimension: T+1 L0 M0 I+1  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElementaryCharge

Relations:

is\_a isq.ElectricCharge is\_a isq.SIExactConstant

# VonKlitzingConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO eb561764 276e 413d a8cb 3a3154fd9bf8

**Definition:** The von Klitzing constant is defined as Planck constant divided by the square of the elementary

charge.

Comment: Resistance quantum.

Physical dimension: T-3 L+2 M+1 I-2 Θ0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_VonKlitzingConstant

Relations:

 $\bullet \;$  is \_a isq.ElectricResistance

• is a isq.SIExactConstant

### FineStructureConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO\_d7d2ca25\_03e1\_4099\_9220\_c1a58df13ad0

Comment: A fundamental physical constant characterizing the strength of the electromagnetic interaction

between elementary charged particles.

**Dbpediaentry:** http://dbpedia.org/page/Fine-structure\_constant

Iupacentry: https://doi.org/10.1351/goldbook.F02389

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_FineStructureConstant

Relations:

• is a metrology.MeasuredConstant

#### MolarGasConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO ad6c76cf b400 423e 820f cf0c4e77f455

Elucidation: Equivalent to the Boltzmann constant, but expressed in units of energy per temperature incre-

ment per mole (rather than energy per temperature increment per particle).

Dbpediaentry: http://dbpedia.org/page/Gas\_constant Iupacentry: https://doi.org/10.1351/goldbook.G02579 Physicaldimension: T-2 L+2 M+1 I0 Θ-1 N-1 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value MolarGasConstant

Relations:

• is a isq.SIExactConstant

## **ElectronCharge**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_cc01751d\_dd05\_429b\_9d0c\_1b7a74d1f277}$ 

**Definition:** The charge of an electron.

Comment: The negative of ElementaryCharge.

Iupacentry: https://doi.org/10.1351/goldbook.E01982

Physical dimension: T+1 L0 M0 I+1  $\Theta$ 0 N0 J0

Relations:

is\_a isq.ElectricCharge is\_a isq.SIExactConstant

### RybergConstant

 $\textbf{IRI:} \ http://emmo.info/emmo/middle/isq\#EMMO\_a3c78d6f\_ae49\_47c8\_a634\_9b6d86b79382$ 

Comment: The Rydberg constant represents the limiting value of the highest wavenumber (the inverse wavelength) of any photon that can be emitted from the hydrogen atom, or, alternatively, the wavenumber of the lowest-energy photon capable of ionizing the hydrogen atom from its ground state.

**Dbpediaentry:** http://dbpedia.org/page/Rydberg\_constant

Iupacentry: https://doi.org/10.1351/goldbook.R05430

Physical dimension: T0 L-1 M0 I0  $\Theta0$  N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_RybergConstant

Relations:

• is\_a isq.Wavenumber

• is a metrology.MeasuredConstant

### **ElectronMass**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_44fc8c60\_7a9c\_49af\_a046\_e1878c88862c } \\ \textbf{IRI:} \ \textbf{I$ 

Comment: The rest mass of an electron.

**Dbpediaentry:** http://dbpedia.org/page/Electron\_rest\_mass

Iupacentry: https://doi.org/10.1351/goldbook.E02008

Physicaldimension: T0 L0 M+1 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ElectronMass

Relations:

• is a isq.Mass

• is a metrology.MeasuredConstant

### AvogadroConstant

IRI: http://emmo.info/emmo/middle/isq#EMMO 176cae33 b83e 4cd2 a6bc 281f42f0ccc8

**Elucidation:** The number of constituent particles, usually atoms or molecules, that are contained in the amount of substance given by one mole.

**Comment:** The DBpedia definition (http://dbpedia.org/page/Avogadro\_constant) is outdated as May 20, 2019. It is now an exact quantity.

**Dbpediaentry:** http://dbpedia.org/page/Avogadro\_constant

Iupacentry: https://doi.org/10.1351/goldbook.A00543

Physical dimension: T0 L0 M0 I0  $\Theta$ 0 N-1 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_AvogadroConstant

Relations:

• is\_a isq.SIExactConstant

### LuminousEfficacyOf540THzRadiation

IRI: http://emmo.info/emmo/middle/isq#EMMO\_506f7823\_52bc\_40cb\_be07\_b3b1e10cce13

**Elucidation:** The luminous efficacy of monochromatic radiation of frequency  $540 \times 10$  12 Hz, K cd , is a technical constant that gives an exact numerical relationship between the purely physical characteristics of the radiant power stimulating the human eye (W) and its photobiological response defined by the luminous flux due to the spectral responsivity of a standard observer (lm) at a frequency of  $540 \times 10$  12 hertz.

Comment: Defines the Candela unit in the SI system.

Physical dimension: T+3 L-1 M-1 IO OO NO J+1

Relations:

• is\_a isq.SIExactConstant

#### MeasuredConstant

IRI: http://emmo.info/emmo/middle/metrology#EMMO 3f15d200 c97b 42c8 8ac0 d81d150361e2

**Elucidation:** For a given unit system, measured constants are physical constants that are not used to define the unit system. Hence, these constants have to be measured and will therefore be associated with an uncertainty.

#### Relations:

• is\_a metrology.PhysicalConstant

## **SIExactConstant**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_f2ca6dd0\_0e5f\_4392\_a92d\_cafdae6cfc95$ 

**Elucidation:** Physical constant that by definition (after the latest revision of the SI system that was enforced May 2019) has a known exact numerical value when expressed in SI units.

#### Relations:

• is\_a metrology.ExactConstant

### **ExactConstant**

IRI: http://emmo.info/emmo/middle/metrology#EMMO\_89762966\_8076\_4f7c\_b745\_f718d653e8e2

**Comment:** Physical constant used to define a unit system. Hence, when expressed in that unit system they have an exact value with no associated uncertainty.

#### **Relations:**

• is\_a metrology.PhysicalConstant

### **ProtonMass**

IRI: http://emmo.info/emmo/middle/isq#EMMO 8d689295 7d84 421b bc01 d5cceb2c2086

Comment: The rest mass of a proton.

Iupacentry: https://doi.org/10.1351/goldbook.P04914

Physical dimension: T0 L0 M+1 I0 O0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_ProtonMass

Relations:

• is\_a isq.Mass

• is a metrology.MeasuredConstant

## PhysicalConstant

IRI: http://emmo.info/emmo/middle/metrology#EMMO b953f2b1 c8d1 4dd9 b630 d3ef6580c2bb

Comment: Physical constants are categorised into "exact" and measured constants.

With "exact" constants, we refer to physical constants that have an exact numerical value after the revision of the SI system that was enforced May 2019.

Wikipediaentry: https://en.wikipedia.org/wiki/List\_of\_physical\_constants

## Relations:

- is\_a metrology.PhysicalQuantity
- disjoint\_union\_of metrology.MeasuredConstant, metrology.ExactConstant

## PlanckConstant

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/isq\#EMMO\_76cc4efc\_231e\_42b4\_be83\_2547681caed6}$ 

**Elucidation:** The quantum of action.

**Dbpediaentry:** http://dbpedia.org/page/Planck\_constant **Iupacentry:** https://doi.org/10.1351/goldbook.P04685

Physicaldimension: T-1 L+2 M+1 I0  $\Theta$ 0 N0 J0

Qudtentry: http://physics.nist.gov/cuu/CODATA-Value\_PlankConstant

#### Relations:

- is\_a isq.AngularMomentum
- is\_a isq.SIExactConstant

## Reductionistic branch



Figure 3.35: Reductionistic branch.

#### Existent

IRI: http://emmo.info/emmo/middle/reductionistic#EMMO 52211e5e d767 4812 845e eb6b402c476a

Elucidation: A 'Physical' which is a tessellation of 'State' temporal direct parts.

**Comment:** 'Existent' is the EMMO class to be used for representing real world physical objects under a reductionistic perspective (i.e. objects come from the composition of sub-part objects, both in time and space).

'Existent' class collects all individuals that stand for physical objects that can be structured in well defined temporal sub-parts called states, through the temporal direct parthood relation.

This class provides a first granularity hierarchy in time, and a way to axiomatize tessellation principles for a specific whole with a non-transitivity relation (direct parthood) that helps to retain the granularity levels.

e.g. a car, a supersaturated gas with nucleating nanoparticles, an atom that becomes ionized and then recombines with an electron.

**Comment:** An 'Existent' individual stands for a real world object for which the ontologist wants to provide univocal tessellation in time.

By definition, the tiles are represented by 'State'-s individual.

Tiles are related to the 'Existent' through temporal direct parthood, enforcing non-transitivity and inverse-functionality.

**Comment:** Being has Temporal Direct Part a proper parthood relation, there cannot be 'Existent' made of a single 'State'.

Moreover, due to inverse functionality, a 'State' can be part of only one 'Existent', preventing overlapping between 'Existent'-s.

Comment: ex-sistere (latin): to stay (to persist through time) outside others of the same type (to be distinct from the rest).

- $\bullet$  is\_a reductionistic.Reductionistic
- $\bullet \ \ {\rm reductionistic. has Temporal Direct Part \ some \ reductionistic. State}$
- reductionistic.hasTemporalDirectPart only reductionistic.State

## **BondedAtom**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_8303a247\_f9d9\_4616\_bdcd\_f5cbd7b298e3$ 

Elucidation: An bonded atom that shares at least one electron to the atom-based entity of which is part of.

Comment: A real bond between atoms is always something hybrid between covalent, metallic and ionic.

In general, metallic and ionic bonds have atoms sharing electrons.

**Comment:** The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic.

**Comment:** This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule.

#### Relations:

• is a materials. Atom

#### Neutron

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_df808271\_df91\_4f27\_ba59\_fa423c51896c$ 

#### **Relations:**

 $\bullet$  is\_a materials.Nucleon

#### Proton

IRI: http://emmo.info/emmo/middle/materials#EMMO\_8f87e700\_99a8\_4427\_8ffb\_e493de05c217

#### Relations:

- is a materials. Nucleon
- properties.hasProperty some isq.ElementaryCharge
- $\bullet \ \ properties. has Property \ some \ is q. Proton Mass$

## String

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/perceptual} \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 46 b\_a 9032 f 17 ca 10\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 ea 1 ec 5\_f 157\_41 b 0\_b 1000 emmo/middle/perceptual \# EMMO\_50 emm$ 

Elucidation: A physical made of more than one symbol sequentially arranged.

**Example:** The word "cat" considered as a collection of 'symbol'-s respecting the rules of english language.

In this example the 'symbolic' entity "cat" is not related to the real cat, but it is only a word (like it would be to an italian person that ignores the meaning of this english word).

If an 'interpreter' skilled in english language is involved in a 'semiotic' process with this word, that "cat" became also a 'sign' i.e. it became for the 'interpreter' a representation for a real cat.

**Comment:** A string is made of concatenated symbols whose arrangement is one-dimensional. Each symbol can have only one previous and one next neighborhood (bidirectional list).

Comment: A string is not requested to respect any syntactic rule: it's simply directly made of symbols.

- is\_a perceptual.SymbolicComposition
- is a reductionistic.State
- reductionistic.hasSpatialDirectPart some perceptual.Symbol
- reductionistic.hasSpatialDirectPart only perceptual.Symbol

#### State

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/reductionistic} \# EMMO\_36c79456\_e29c\_400d\_8bd3\_0eedddb82652$ 

Elucidation: A 'Physical' which is a tessellation of spatial direct parts.

**Example:** e.g. the existent in my glass is declared at t = t\_start as made of two direct parts: the ice and the water. It will continue to exists as state as long as the ice is completely melt at t = t\_end. The new state will be completely made of water. Between t\_start and t\_end there is an exchange of molecules between the ice and the water, but this does not affect the existence of the two states.

If we partition the existent in my glass as ice surrounded by several molecules (we do not use the object water as direct part) then the appearance of a molecule coming from the ice will cause a state to end and another state to begin.

**Comment:** Direct partitions declaration is a choice of the ontologist that choses the classes to be used as direct parts, according to its own world view.

A 'State' can always be direct partitioned in 'Elementary'-s and 'Void' or 'Physical'.

e.g. the water in my glass can be seen as a single object without declaring direct parts, or as made of H2O molecules direct parts.

Comment: The definition of 'State' implies that its spatial direct parts (i.e. 'physicals') are not gained or lost during its temporal extension (they exist from the left to the right side of the time interval), so that the cardinality of spatial direct parts in a 'State' is constant.

This does not mean that there cannot be a change in the internal structure of the 'State' direct parts. It means only that this change must not affect the existence of the direct part itself.

There is no change in granularity or cardinality of direct parts of a 'State'.

The use of spatial direct parthood in 'State' definition means that a 'State' cannot overlap in space another 'State'.

**Comment:** The usefulness of 'State' is that it makes it possible to describe the evolution in time of an 'Existent' in terms of series of 'State'-s that can take into account the disappearance or appearance of parts within a 'Physical'.

A 'State' is a recognizable granularity level of matter, in the sense that its direct parts do not appear or disappear within its lifetime as it can be for a generic 'Existent'.

Comment: There is no change in granularity or cardinality of parts within a state.

The use of spatial direct parthood in state definition means that a state cannot overlap in space another state that is direct part of the same whole.

#### Relations:

- is a reductionistic.Reductionistic
- reductionistic.hasSpatialDirectPart some physical.Physical

#### Nucleon

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_50781fd9\_a9e4\_46ad\_b7be\_4500371d188d2} \\$ 

#### Relations:

- $\bullet$  is\_a materials.Subatomic
- $\bullet$  is\_a reductionistic.State
- reductionistic.hasSpatialDirectPart some physicalistic.Quark
- disjoint\_union\_of materials. Proton, materials. Neutron

## Reductionistic

IRI: http://emmo.info/emmo/middle/reductionistic#EMMO 15db234d ecaf 4715 9838 4b4ec424fb13

**Elucidation:** A class devoted to categorize 'Physical'-s according to their granularity relations, first in terms of time evolution (Existent) and then in terms of their composition (State), up to the spatial a-tomistic element (Elementary).

**Comment:** Direct parthood is the relation used to build the class hierarchy (and the granularity hierarchy) for this perspective.

#### Relations:

- is\_a top.Perspective
- equivalent to reductionistic. State or reductionistic. Existent

#### MaterialRelation

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/models\#EMMO\_e5438930\_04e7\_4d42\_ade5\_3700d4a52ab7 } \\$ 

**Elucidation:** An 'equation' that stands for a physical assumption specific to a material, and provides an expression for a 'physics\_quantity' (the dependent variable) as function of other variables, physics\_quantity or data (independent variables).

**Example:** The Lennard-Jones potential.

A force field.

An Hamiltonian.

**Comment:** A material\_relation can e.g. return a predefined number, return a database query, be an equation that depends on other physics\_quantities.

#### Relations:

- is a math.Equation
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity

## **PhysicsEquation**

IRI: http://emmo.info/emmo/middle/models#EMMO 27c5d8c6 8af7 4d63 beb1 ec37cd8b3fa3

**Elucidation:** An 'equation' that stands for a 'physical\_law' by mathematically defining the relations between physics\_quantities.

**Example:** The Newton's equation of motion.

The Schrödinger equation.

The Navier-Stokes equation.

#### **Relations:**

- $\bullet$  is\_a math.Equation
- is a models.MathematicalModel
- reductionistic.hasSpatialDirectPart some metrology.PhysicalQuantity
- $\bullet \ \ Inverse (models. has Model) \ some \ models. Physical Phenomenon$

## **FunctionDefinition**

IRI: http://emmo.info/emmo/middle/math#EMMO\_4bc29b0f\_8fcc\_4026\_a291\_f9774a66d9b8

**Elucidation:** A function defined using functional notation.

Example: y = f(x)

#### Relations:

• is a math.DefiningEquation

## **IonAtom**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_db03061b\_db31\_4132\_a47a\_6a634846578b$ 

Elucidation: A standalone atom with an unbalanced number of electrons with respect to its atomic number.

Comment: The ion\_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing,

**Relations:** 

• is a materials.StandaloneAtom

## NeutralAtom

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4588526f\_8553\_4f4d\_aa73\_a483e88d599b$ 

Elucidation: A standalone atom that has no net charge.

**Relations:** 

• is a materials.StandaloneAtom

## **DefiningEquation**

IRI: http://emmo.info/emmo/middle/math#EMMO\_29afdf54\_90ae\_4c98\_8845\_fa9ea3f143a8

Elucidation: An equation that define a new variable in terms of other mathematical entities.

**Example:** The definition of velocity as v = dx/dt.

The definition of density as mass/volume.

y = f(x)

#### **Relations:**

• is\_a math.Equation

#### StandaloneAtom

IRI: http://emmo.info/emmo/middle/materials#EMMO\_2fd3f574\_5e93\_47fe\_afca\_ed80b0a21ab4

**Elucidation:** An atom that does not share electrons with other atoms.

**Comment:** A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing.

## Relations:

- is a materials. Atom
- disjoint\_union\_of materials.NeutralAtom, materials.IonAtom

#### **ElectronCloud**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_1067b97a\_84f8\_4d22\_8ace\_b842b8ce355c$ 

Elucidation: A 'spacetime' that stands for a quantum system made of electrons.

- is\_a materials.Subatomic
- is a reductionistic.State
- $\bullet \ \ reduction is tic. has Spatial Direct Part\ some\ physical is tic. Electron$

## **Nucleus**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_f835f4d4\_c665\_403d\_ab25\_dca5cc74be52$ 

#### **Relations:**

- is a materials.Subatomic
- is\_a reductionistic.State
- $\bullet \ \ {\rm reductionistic.hasSpatialDirectPart\ some\ materials.Nucleon}$

## **Equation**

IRI: http://emmo.info/emmo/middle/math#EMMO\_e56ee3eb\_7609\_4ae1\_8bed\_51974f0960a6

**Elucidation:** The class of 'mathematical'-s that stand for a statement of equality between two mathematical expressions.

**Example:**  $2+3 = 5 \text{ x}^2 + 3x = 5x \text{ dv/dt} = a \sin(x) = y$ 

Comment: An equation with variables can always be represented as:

f(v0, v1, ..., vn) = g(v0, v1, ..., vn)

where f is the left hand and g the right hand side expressions and v0, v1, ..., vn are the variables.

#### Relations:

- is a math.MathematicalFormula
- is\_a reductionistic.State
- is a math.Mathematical
- reductionistic.hasSpatialDirectPart some math.Expression

#### Atom

IRI: http://emmo.info/emmo/middle/materials#EMMO\_eb77076b\_a104\_42ac\_a065\_798b2d2809ad

Elucidation: A standalone atom has direct part one 'nucleus' and one 'electron' cloud'.

An O 'atom' within an O2 'molecule' is an 'e-bonded\_atom'.

In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud.

We cannot say that H2 molecule has direct part two H atoms, but has direct part two H nucleus.

**Comment:** An 'atom' is a 'nucleus' surrounded by an 'electron\_cloud', i.e. a quantum system made of one or more bounded electrons.

## Relations:

- $\bullet$  is\_a physicalistic.Matter
- is\_a reductionistic.State
- properties.hasProperty some isq.AtomicNumber
- properties.hasProperty some isq.AtomicMass
- properties.hasProperty some isq.MagneticDipoleMoment
- $\bullet \ \ {\rm reductionistic.hasSpatialDirectPart\ some\ materials.} Electron Cloud$
- $\bullet \ \ reduction is tic. has Spatial Direct Part\ some\ materials. Nucleus$

## ArithmeticEquation

IRI: http://emmo.info/emmo/middle/math#EMMO a6138ba7 e365 4f2d b6b4 fe5a5918d403

**Example:** 1 + 1 = 2

## Relations:

• is\_a math.Equation

## AlgebricEquation

IRI: http://emmo.info/emmo/middle/math#EMMO\_98d65021\_4574\_4890\_b2fb\_46430841077f

Example: 2 \* a - b = c

Comment: An 'equation' that has parts two 'polynomial'-s

**Relations:** 

• is a math.Equation

• reductionistic.hasSpatialDirectPart some math.AlgebricExpression

## Expression branch



Figure 3.36: Expression branch.

## Expression

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_f9bc8b52\_85e9\_4b53\_b969\_dd7724d5b8e4}$ 

Elucidation: A well-formed finite combination of mathematical symbols according to some specific rules.

Relations:

• is a math.Mathematical

 $\bullet$  is\_a perceptual.SymbolicComposition

## AlgebricExpression

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO\_1aed91a3\_d00c\_48af\_8f43\_a0c958b2512a$ 

Example: 2x+3

**Comment:** An expression that has parts only integer constants, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number)

#### Relations:

• is\_a math.Expression

## Polynomial

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/math\#EMMO} \underline{91447ec0} \underline{\text{fb55}} \underline{49f2} \underline{85a5} \underline{3172dff6482c}$ 

**Example:**  $2 * x^2 + x + 3$ 

#### **Relations:**

• is\_a math.AlgebricExpression

## ArithmeticExpression

IRI: http://emmo.info/emmo/middle/math#EMMO\_89083bab\_f69c\_4d06\_bf6d\_62973b56cdc7

Example: 2+2

## Relations:

• is a math.AlgebricExpression

• is a not reductionistic.hasSpatialDirectPart some math.Variable

## Physicalistic branch



Figure 3.37: Physicalistic branch.

#### Vacuum

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/physicalistic} \# EMMO\_3c218 \\ \text{fbe\_} 60c9\_4597\_8 \\ \text{bcf\_} 41eb1773 \\ \text{af1} \\ \text{from the properties of the prop$ 

Elucidation: A 'Physical' with no 'Massive' parts.

#### Relations:

• is\_a physicalistic.Field

• equivalent\_to physicalistic. Field and not physicalistic. Matter

## Field

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_70dac51e\_bddd\_48c2\_8a98\_7d8395e91fc2

Elucidation: A 'Physical' with 'Massless' parts that are mediators of interactions.

**Comment:** The concepts of matter and field for classical physics, upon which we can categorize physical entities, are replaced in quantum physics by the more general concepts of quantum field.

Here the class 'Field' refers to the quantum field of massless bosonic particles (i.e. photons, gluons), while the class 'Matter' refers to the quantum field of massive fermionic or bosonic particles (e.g. quarks, electrons).

- is\_a physicalistic.Physicalistic
- is\_a physical.Physical

- mereotopology.hasPart some physicalistic.Massless
- physical.hasTemporalPart only physicalistic.Field

## **Physicalistic**

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_98ada9d8\_f1c8\_4f13\_99b5\_d890f5354152

**Elucidation:** The perspective for which physical objects are categorized only by concepts coming from applied physical sciences.

#### **Relations:**

- is\_a top.Perspective
- ullet equivalent\_to physicalistic.Matter or physicalistic.Field

# Elementary Particle branch



Figure 3.38: Elementary Particle branch.

## Massive

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_385b8f6e\_43ac\_4596\_ad76\_ac322c68b7ca

Elucidation: The union of classes of elementary particles that possess mass.

#### **Relations:**

- is\_a physicalistic.ElementaryParticle
- $\bullet\,$ equivalent\_to physicalistic. Quark or physicalistic. Electron

## Quark

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_72d53756\_7fb1\_46ed\_980f\_83f47efbe105

Elucidation: The class of individuals that stand for quarks elementary particles.

- $\bullet$  is\_a physicalistic.Massive
- is\_a physical.Elementary

## Graviton

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/physicalistic} \# EMMO\_eb3c61f0\_3983\_4346\_a0c6\_e7f6b90a67a8$ 

**Elucidation:** The class of individuals that stand for gravitons elementary particles.

**Comment:** While this particle is only supposed to exist, the EMMO approach to classical and quantum systems represents fields as made of particles.

For this reason graviton is an useful concept to homogenize the approach between different fields.

#### Relations:

- is\_a physicalistic.Massless
- is\_a physical.Elementary

## ElementaryParticle

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/physicalistic} \# EMMO\_c26a0340\_d619\_4928\_b1a1\_1a04e88bb89d$ 

Elucidation: The union of all classes categorizing elementary particles according to the Standard Model.

**Comment:** Only a subset of elementary particles from the Standard Model are here included for the sake of simplicity.

#### Relations:

- is\_a physicalistic.Physicalistic
- is\_a physical.Elementary
- disjoint\_union\_of physicalistic.Photon, physicalistic.Quark, physicalistic.Gluon, physicalistic.Electron, physicalistic.Graviton

#### Gluon

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_7db59e56\_f68b\_48b7\_ae99\_891c35ae5c3b

Elucidation: The class of individuals that stand for gluons elementary particles.

#### Relations:

- $\bullet\,\,$  is \_a physicalistic.Massless
- is\_a physical.Elementary

#### Photon

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_25f8b804\_9a0b\_4387\_a3e7\_b35bce5365ee

Elucidation: The class of individuals that stand for photons elementary particles.

## Relations:

- is\_a physicalistic.Massless
- is\_a physical.Elementary

### Electron

 $\textbf{IRI:}\ http://emmo.info/emmo/middle/physicalistic \#EMMO\_8043d3c6\_a4c1\_4089\_ba34\_9744e28e5b3d$ 

**Elucidation:** The class of individuals that stand for electrons elemntary particles.

- is\_a physicalistic.Massive
- is a physicalistic.Matter
- is a physical. Elementary
- properties.hasProperty some isq.ElectronMass

• properties.hasProperty some isq.ElectronCharge

#### Massless

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_e5488299\_8dab\_4ebb\_900a\_26d2abed8396

Elucidation: The union of classes of elementary particles that do not possess mass.

### Relations:

- is\_a physicalistic.ElementaryParticle
- equivalent\_to physicalistic.Photon or physicalistic.Gluon or physicalistic.Graviton

## Subatomic branch



Figure 3.39: Subatomic branch.

## **Nucleus**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_f835f4d4\_c665\_403d\_ab25\_dca5cc74be52$ 

## Relations:

- $\bullet$  is\_a materials.Subatomic
- $\bullet$  is\_a reductionistic.State
- $\bullet \ \ {\rm reductionistic.hasSpatialDirectPart\ some\ materials.Nucleon}$

## Subatomic

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_7d66bde4\_b68d\_41cc\_b5fc\_6fd98c5e2ff0 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 + 2000 +$ 

## Relations:

• is\_a physicalistic.Matter

## Nucleon

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_50781 \text{fd9} \underline{\hspace{0.1cm}} \text{a} 9 \text{e} 4\underline{\hspace{0.1cm}} 46 \text{ad} \underline{\hspace{0.1cm}} \text{b} 7 \text{be} \underline{\hspace{0.1cm}} 4500371 \text{d} 188 \text{d} 200371 \text{d$ 

- is\_a materials.Subatomic
- $\bullet\,$  is \_a reductionistic. State

- reductionistic.hasSpatialDirectPart some physicalistic.Quark
- disjoint\_union\_of materials.Proton, materials.Neutron

#### Neutron

IRI: http://emmo.info/emmo/middle/materials#EMMO\_df808271\_df91\_4f27\_ba59\_fa423c51896c

#### Relations:

 $\bullet$  is\_a materials.Nucleon

## Proton

IRI: http://emmo.info/emmo/middle/materials#EMMO\_8f87e700\_99a8\_4427\_8ffb\_e493de05c217

#### Relations:

- is a materials. Nucleon
- properties.hasProperty some isq.ElementaryCharge
- properties.hasProperty some isq.ProtonMass

## **ElectronCloud**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_1067b97a\_84f8\_4d22\_8ace\_b842b8ce355c$ 

Elucidation: A 'spacetime' that stands for a quantum system made of electrons.

#### Relations:

- is a materials.Subatomic
- is a reductionistic.State
- $\bullet \ \ {\rm reductionistic.hasSpatialDirectPart\ some\ physicalistic.Electron}$

## Matter branch



Figure 3.40: Matter branch.

#### IonAtom

IRI: http://emmo.info/emmo/middle/materials#EMMO\_db03061b\_db31\_4132\_a47a\_6a634846578b

**Elucidation:** A standalone atom with an unbalanced number of electrons with respect to its atomic number.

Comment: The ion\_atom is the basic part of a pure ionic bonded compound i.e. without eclectron sharing,

#### **Relations:**

• is\_a materials.StandaloneAtom

#### Molecule

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_3397f270\_dfc1\_4500\_8f6f\_4d0d85ac5f71$ 

Elucidation: An atom\_based state defined by an exact number of e-bonded atomic species and an electron cloud made of the shared electrons.

**Example:** H20, C6H12O6, CH4

Comment: An entity is called essential if removing one direct part will lead to a change in entity class.

An entity is called redundand if removing one direct part will not lead to a change in entity class.

**Comment:** This definition states that this object is a non-periodic set of atoms or a set with a finite periodicity.

Removing an atom from the state will result in another type of atom based state.

e.g. you cannot remove H from H20 without changing the molecule type (essential). However, you can remove a C from a nanotube (redundant). C60 fullerene is a molecule, since it has a finite periodicity and is made of a well defined number of atoms (essential). A C nanotube is not a molecule, since it has an infinite periodicity (redundant).

## Relations:

• is a physicalistic.Matter

#### **BondedAtom**

IRI: http://emmo.info/emmo/middle/materials#EMMO\_8303a247\_f9d9\_4616\_bdcd\_f5cbd7b298e3

Elucidation: An bonded atom that shares at least one electron to the atom-based entity of which is part of.

Comment: A real bond between atoms is always something hybrid between covalent, metallic and ionic.

In general, metallic and ionic bonds have atoms sharing electrons.

**Comment:** The bond types that are covered by this definition are the strong electonic bonds: covalent, metallic and ionic.

**Comment:** This class can be used to represent molecules as simplified quantum systems, in which outer molecule shared electrons are un-entangled with the inner shells of the atoms composing the molecule.

#### **Relations:**

• is a materials. Atom

## NaturalMaterial

IRI: http://emmo.info/emmo/middle/materials#EMMO\_75fe4fd1\_0f7e\_429b\_b91d\_59d248561bae

Elucidation: A Material occurring in nature, without the need of human intervention.

#### **Relations:**

• is\_a physicalistic.Material

## ReactiveMaterial

IRI: http://emmo.info/emmo/middle/materials#EMMO 68390bfb e307 479d 8f78 d66d8773cb1d

Elucidation: A material that undergoes chemical changes.

#### Relations:

• is\_a physicalistic.Material

## **EngineeredMaterial**

IRI: http://emmo.info/emmo/middle/manufacturing#EMMO\_ec7464a9\_d99d\_45f8\_965b\_4e9230ea8356

**Comment:** A material that is synthesized within a manufacturing process.

#### Relations:

- is\_a manufacturing.Engineered
- is\_a physicalistic.Material
- Inverse(holistic.hasProperParticipant) some manufacturing.ContinuousManufacturing

#### Matter

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_5b2222df\_4da6\_442f\_8244\_96e9e45887d1

Elucidation: A 'Physical' that possesses some 'Massive' parts.

#### Relations:

- is\_a physicalistic.Physicalistic
- is\_a semiotics.Object
- is a physical. Physical
- properties.hasProperty some isq.CentreOfMass
- properties.hasProperty some isq.Mass
- properties.hasProperty some isq.Volume
- mereotopology.hasPart some physicalistic.Massive
- physical.hasTemporalPart only physicalistic.Matter

## NeutralAtom

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4588526f\_8553\_4f4d\_aa73\_a483e88d599b

**Elucidation:** A standalone atom that has no net charge.

#### Relations:

• is\_a materials.StandaloneAtom

## Continuum

IRI: http://emmo.info/emmo/middle/materials#EMMO 8b0923ab b500 477b 9ce9 8b3a3e4dc4f2

**Elucidation:** A state that is a collection of sufficiently large number of other parts such that: - it is the bearer of qualities that can exists only by the fact that it is a sum of parts - the smallest partition dV of the state volume in which we are interested in, contains enough parts to be statistically consistent:  $n \ [\#/m3] \ x \ dV \ [m3] >> 1$ 

**Comment:** A continuum is made of a sufficient number of parts that it continues to exists as continuum individual even after the loss of one of them i.e. a continuum is a redundant.

**Comment:** A continuum is not necessarily small (i.e. composed by the minimum amount of sates to fulfill the definition).

A single continuum individual can be the whole fluid in a pipe.

**Comment:** A continuum is the bearer of properties that are generated by the interactions of parts such as viscosity and thermal or electrical conductivity.

#### Relations:

• is\_a physicalistic.Matter

#### StandaloneAtom

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_2 \text{fd} 3 \text{f5} 74\_5 \text{e} 93\_47 \text{fe\_afca\_ed} 80 \text{b} 0 \text{a} 21 \text{ab} 4 \text{b} 10 \text{c} 10 \text$ 

**Elucidation:** An atom that does not share electrons with other atoms.

**Comment:** A standalone atom can be bonded with other atoms by intermolecular forces (i.e. dipole–dipole, London dispersion force, hydrogen bonding), since this bonds does not involve electron sharing.

#### Relations:

- is a materials. Atom
- $\bullet \ \ disjoint\_union\_of \ materials. Neutral Atom, \ materials. Ion Atom$

#### Material

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO\_4207e895\_8b83\_4318\_996a\_72cfb32acd94

**Elucidation:** A matter individual that stands for a real world object representing an amount of a physical substance (or mixture of substances) in different states of matter or phases.

**Comment:** A instance of a material (e.g. nitrogen) can represent different states of matter. The fact that the individual also belongs to other classes (e.g. Gas) would reveal the actual form in which the material is found.

Comment: Material usually means some definite kind, quality, or quantity of matter, especially as intended for use.

#### **Relations:**

• is a physicalistic.Matter

#### NanoParticle

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_10dd1eed\_da7d\_45a3\_860c\_477ca9e152aa}$ 

Elucidation: Nanomaterials are Materials possessing all external dimension measuring 1-100nm

#### **Relations:**

• is a materials.NanoMaterial

## Atom

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_eb77076b\_a104\_42ac\_a065\_798b2d2809ad$ 

Elucidation: A standalone atom has direct part one 'nucleus' and one 'electron\_cloud'.

An O 'atom' within an O2 'molecule' is an 'e-bonded\_atom'.

In this material branch, H atom is a particular case, with respect to higher atomic number atoms, since as soon as it shares its electron it has no nucleus entangled electron cloud.

We cannot say that H2 molecule has direct part two H atoms, but has direct part two H nucleus.

**Comment:** An 'atom' is a 'nucleus' surrounded by an 'electron\_cloud', i.e. a quantum system made of one or more bounded electrons.

- is\_a physicalistic.Matter
- is a reductionistic.State
- properties.hasProperty some isq.AtomicNumber
- properties.hasProperty some isq.AtomicMass
- $\bullet \ \ properties. has Property \ some \ is q. Magnetic Dipole Moment$
- reductionistic.hasSpatialDirectPart some materials.ElectronCloud
- $\bullet \ \ {\rm reductionistic.hasSpatialDirectPart\ some\ materials.Nucleus}$

#### NanoMaterial

IRI: http://emmo.info/emmo/middle/materials#EMMO\_5d659e25\_a508\_43ed\_903c\_3707c7c7cd4b

Elucidation: Nanomaterials are Materials possessing, at minimum, one external dimension measuring 1-100nm

#### Relations:

• is\_a physicalistic.Material

#### PhaseOfMatter

IRI: http://emmo.info/emmo/middle/materials#EMMO\_668fbd5b\_6f1b\_405c\_9c6b\_d6067bd0595a

Elucidation: A matter object throughout which all physical properties of a material are essentially uniform.

Comment: In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetization and chemical composition. A simple description is that a phase is a region of material that is chemically uniform, physically distinct, and (often) mechanically separable. In a system consisting of ice and water in a glass jar, the ice cubes are one phase, the water is a second phase, and the humid air is a third phase over the ice and water. The glass of the jar is another separate phase.

The term phase is sometimes used as a synonym for state of matter, but there can be several immiscible phases of the same state of matter. Also, the term phase is sometimes used to refer to a set of equilibrium states demarcated in terms of state variables such as pressure and temperature by a phase boundary on a phase diagram. Because phase boundaries relate to changes in the organization of matter, such as a change from liquid to solid or a more subtle change from one crystal structure to another, this latter usage is similar to the use of "phase" as a synonym for state of matter. However, the state of matter and phase diagram usages are not commensurate with the formal definition given above and the intended meaning must be determined in part from the context in which the term is used.

[https://en.wikipedia.org/wiki/Phase\_(matter)]

## Relations:

- is\_a materials.Continuum
- is\_a physicalistic.Matter

## Electron

IRI: http://emmo.info/emmo/middle/physicalistic#EMMO 8043d3c6 a4c1 4089 ba34 9744e28e5b3d

Elucidation: The class of individuals that stand for electrons elemntary particles.

#### Relations:

- is\_a physicalistic.Massive
- is a physicalistic.Matter
- is\_a physical.Elementary
- properties.hasProperty some isq.ElectronMass
- properties.hasProperty some isq.ElectronCharge

## Fluid branch

## Dust

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_e4281979\_2b07\_4a43\_a772\_4903fb3696fe$ 

**Elucidation:** A suspension of fine particles in the atmosphere.

#### Relations:

 $\bullet$  is\_a materials.GasSolidSuspension



Figure 3.41: Fluid branch.

## LiquidFoam

IRI: http://emmo.info/emmo/middle/materials#EMMO\_d69d2e95\_b22f\_499a\_a552\_17fde0d778fc

Elucidation: A foam of trapped gas in a liquid.

## Relations:

- is\_a materials.Foam
- is\_a materials.Liquid

## SolidAerosol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_96c8d72f\_b436\_44e2\_9f7f\_085c24094292

Elucidation: An aerosol composed of fine solid particles in air or another gas.

#### Relations:

• is\_a materials.Aerosol

## GasLiquidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO e0edfb9e 9a96 4fae b942 831ffe27b84a

Elucidation: A coarse dispersion of liquid in a gas continuum phase.

Example: Rain, spray.

## Relations:

- is\_a materials.Gas
- $\bullet$  is\_a materials.Suspension

## Plasma

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_4c21fb86\_fdcf\_444e\_b498\_86fe656295af$ 

**Elucidation:** A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour.

#### **Relations:**

- $\bullet$  is\_a materials.Fluid
- is a materials.StateOfMatter

## AcqueousSolution

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5cb107ba\_7daa\_46dd\_8f9f\_da22a6eac676$ 

Elucidation: A liquid solution in which the solvent is water.

• is\_a materials.LiquidSolution

## Vapor

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4d604a13\_d1f6\_42fd\_818f\_d3138d5e308c

Elucidation: A liquid aerosol composed of water droplets in air or another gas.

#### **Relations:**

• is\_a materials.LiquidAerosol

## Gas

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_04f2a2d5\_e799\_4692\_a654\_420e76f5acc1 } \\$ 

Elucidation: Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume.

#### **Relations:**

- is\_a materials.Fluid
- is\_a materials.StateOfMatter

## LiquidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_47 \text{fe} 2379\_\text{be} 21\_48 \text{d} 1\_9 \text{ede}\_402 \text{f} 0 \text{fa} \text{f} 494 \text{b}$ 

Elucidation: A coarse dispersion of liquid in a liquid continuum phase.

#### **Relations:**

- is a materials. Suspension
- is\_a materials.Liquid

## Liquid

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_7509 \\ \text{da} 43\_56 \\ \text{b1}\_4 \\ \text{d7} \underline{\text{f}}\_887 \\ \text{a}\_65 \\ \text{d1663} \\ \text{df4ba}$ 

**Elucidation:** A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure.

#### **Relations:**

- is a materials.Fluid
- $\bullet$  is\_a materials.StateOfMatter

## LiquidAerosol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_94010cbc\_c2a6\_4cb9\_b29a\_83aa99d2ff70$ 

Elucidation: An aerosol composed of liquid droplets in air or another gas.

#### Relations:

• is\_a materials.Aerosol

## LiquidSol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4354ac74\_7425\_43ab\_92e4\_6dc19d1afee9

**Elucidation:** A type of sol in the form of one solid dispersed in liquid.

- is a materials.Sol
- is a materials.Liquid

#### Aerosol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_560d833a\_6184\_410c\_859a\_05d982712fd7$ 

Elucidation: A colloid composed of fine solid particles or liquid droplets in air or another gas.

## Relations:

- is a materials.Gas
- $\bullet$  is\_a materials.Colloid

## Fluid

IRI: http://emmo.info/emmo/middle/materials#EMMO\_87ac88ff\_8379\_4f5a\_8c7b\_424a8fff1ee8

Elucidation: A continuum that has no fixed shape and yields easily to external pressure.

Example: Gas, liquid, plasma,

**Relations:** 

 $\bullet$  is\_a materials.Continuum

## LiquidGasSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_42185 \\ \text{fe7}\_122 \\ \text{c}\_4e0 \\ \text{c}\_a3 \\ \text{cd}\_659 \\ \text{d}3e21 \\ \text{c}389 \\ \text{e}3e21 \\ \text{c}389 \\ \text{e}3e31 \\ \text{c}3e31 \\ \text{e}3e31 \\ \text{e}3e31$ 

Elucidation: A coarse dispersion of gas in a liquid continuum phase.

Example: Sparkling water

#### **Relations:**

- is\_a materials.Suspension
- is\_a materials.Liquid

## LiquidSolution

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4b3e2374\_52a1\_4420\_8e3f\_3ae6b9bf7dff

Elucidation: A liquid solution made of two or more component substances.

## Relations:

- $\bullet$  is\_a materials. Solution
- is\_a materials.Liquid

## **Emulsion**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_40e18c93\_a1b5\_49ff\_b06a\_d9d932d1fb65$ 

**Elucidation:** An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture).

Example: Mayonnaise, milk.

- is\_a materials.Colloid
- is\_a materials.Liquid

## LiquidSolidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_e9e02156\_651f\_41c8\_9efb\_d5da0d4ce5e2$ 

**Elucidation:** A coarse dispersion of solids in a liquid continuum phase.

 $\textbf{Example:} \ \mathrm{Mud}$ 

## Relations:

- is a materials. Suspension
- is a materials.Liquid

#### GasMixture

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5 be 9 c 137\_325 a\_43 d 8\_b7 c d\_ea 9 3 e 7721 c 2 d d ea 9 d e 7721 c 2 d d ea 9 d e 7721 c 2 d d ea 9 d e 7721 c 2 d d ea 9 d e 7721 c 2 d ea 9$ 

Elucidation: A gaseous solution made of more than one component type.

#### **Relations:**

- $\bullet$  is\_a materials.Gas
- $\bullet$  is\_a materials. Solution

## GasSolidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO\_d4f37e32\_16ae\_4cc6\_b4cd\_fd896b2449c4

Elucidation: A coarse dispersion of solid in a gas continuum phase.

Example: Dust, sand storm.

#### **Relations:**

- is a materials.Gas
- is\_a materials.Suspension

#### Smoke

IRI: http://emmo.info/emmo/middle/materials#EMMO\_5a2af26d\_99de\_4e5e\_b1cd\_514be71420c3

**Elucidation:** Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis.

#### **Relations:**

• is\_a materials.SolidAerosol

## Spray

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_498 aad 49\_f8d4\_40a4\_a9eb\_efd563a0115f$ 

Elucidation: A suspension of liquid droplets dispersed in a gas through an atomization process.

#### Relations:

• is\_a materials.GasLiquidSuspension

## Mixture branch

#### Dust

IRI: http://emmo.info/emmo/middle/materials#EMMO\_e4281979\_2b07\_4a43\_a772\_4903fb3696fe



Figure 3.42: Mixture branch.

Elucidation: A suspension of fine particles in the atmosphere.

#### **Relations:**

• is a materials.GasSolidSuspension

#### SolidFoam

IRI: http://emmo.info/emmo/middle/materials#EMMO\_9bed5d66\_805a\_4b3a\_9153\_beaf67143848

Elucidation: A foam of trapped gas in a solid.

Example: Aerogel

#### **Relations:**

• is\_a materials.Foam

• is\_a materials.Solid

## SolidAerosol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_96c8d72f\_b436\_44e2\_9f7f\_085c24094292$ 

Elucidation: An aerosol composed of fine solid particles in air or another gas.

#### Relations:

 $\bullet$  is\_a materials.Aerosol

## PhaseHeterogeneousMixture

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_0e030040\_98a7\_49b2\_a871\_dced1f3a6131$ 

Elucidation: A mixture in which more than one phases of matter cohexists.

Comment: Phase heterogenous mixture may share the same state of matter.

For example, immiscibile liquid phases (e.g. oil and water) constitute a mixture whose phases are clearly separated but share the same state of matter.

#### Relations:

 $\bullet\,\,$  is \_a materials. Mixture

• mereotopology.hasProperPart some materials.PhaseOfMatter

## PhaseHomogeneousMixture

IRI: http://emmo.info/emmo/middle/materials#EMMO\_0e6378df\_1ce8\_4321\_b00c\_ee9beea60a67

Elucidation: A single phase mixture.

## Relations:

• is a materials.Mixture

## GasLiquidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_e0edfb9e\_9a96\_4fae\_b942\_831ffe27b84a} \\$ 

Elucidation: A coarse dispersion of liquid in a gas continuum phase.

Example: Rain, spray.

#### **Relations:**

- is a materials.Gas
- is a materials. Suspension

## AcqueousSolution

IRI: http://emmo.info/emmo/middle/materials#EMMO\_5cb107ba\_7daa\_46dd\_8f9f\_da22a6eac676

Elucidation: A liquid solution in which the solvent is water.

#### **Relations:**

• is a materials.LiquidSolution

## LiquidLiquidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO\_47fe2379\_be21\_48d1\_9ede\_402f0faf494b

Elucidation: A coarse dispersion of liquid in a liquid continuum phase.

#### Relations:

- is\_a materials.Suspension
- is\_a materials.Liquid

## SolidLiquidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_33e0ac8b\_a318\_4285\_b1de\_e95347784632$ 

Elucidation: A coarse dispersion of liquid in a solid continuum phase.

#### Relations:

- is\_a materials.Suspension
- is\_a materials.Solid

## LiquidAerosol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_94010cbc\_c2a6\_4cb9\_b29a\_83aa99d2ff70

Elucidation: An aerosol composed of liquid droplets in air or another gas.

#### Relations:

• is\_a materials.Aerosol

## LiquidGasSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_42185 \\ \text{fe7}\_122 \\ \text{c}\_4e0 \\ \text{c}\_32 \\ \text{d}\_659 \\ \text{d} 3e21 \\ \text{c} 3e21 \\ \text{c}\_3e21 \\ \text{c}\_3e21 \\ \text{c}\_3e31 \\$ 

Elucidation: A coarse dispersion of gas in a liquid continuum phase.

Example: Sparkling water

## Relations:

• is\_a materials.Suspension

• is\_a materials.Liquid

## LiquidSolution

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4b3e2374\_52a1\_4420\_8e3f\_3ae6b9bf7dff

Elucidation: A liquid solution made of two or more component substances.

#### **Relations:**

- is\_a materials.Solution
- is\_a materials.Liquid

## Sol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_31557 \\ \text{fae\_b039\_491c\_bcbb\_0ccb8711d5a6}$ 

Elucidation: A colloid in which small particles (1 nm to 100 nm) are suspended in a continuum phase.

#### **Relations:**

• is\_a materials.Colloid

## GasMixture

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5 be 9 c 137\_325 a\_43 d 8\_b7 c d\_ea 9 3 e 7721 c 2 d d ea 9 d ea 9$ 

Elucidation: A gaseous solution made of more than one component type.

#### Relations:

- is a materials.Gas
- is\_a materials.Solution

## GasSolidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_d4f37e32\_16ae\_4cc6\_b4cd\_fd896b2449c4}$ 

Elucidation: A coarse dispersion of solid in a gas continuum phase.

Example: Dust, sand storm.

## Relations:

- is a materials.Gas
- is\_a materials.Suspension

## Smoke

IRI: http://emmo.info/emmo/middle/materials#EMMO\_5a2af26d\_99de\_4e5e\_b1cd\_514be71420c3

**Elucidation:** Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis.

#### **Relations:**

• is\_a materials.SolidAerosol

## Spray

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_498 aad 49\_f8 d 4\_40 a 4\_a 9 eb\_efd 563 a 0115 february 1.5 f$ 

Elucidation: A suspension of liquid droplets dispersed in a gas through an atomization process.

#### **Relations:**

• is\_a materials.GasLiquidSuspension

## LiquidFoam

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_d69d2e95\_b22f\_499a\_a552\_17fde0d778fc$ 

Elucidation: A foam of trapped gas in a liquid.

## Relations:

- is\_a materials.Foam
- is\_a materials.Liquid

## Suspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4a464c8d\_8895\_44a8\_a628\_aed13509f1bd$ 

**Elucidation:** An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase.

**Comment:** Suspensions show no significant effect on light.

#### Relations:

- is\_a materials.Dispersion
- is\_a materials.PhaseHeterogeneousMixture
- $\bullet$  is\_a materials.StateOfMatter
- disjoint\_union\_of materials.SolidSolidSuspension, materials.SolidLiquidSuspension, materials.LiquidGasSuspension, materials.LiquidLiquidSuspension, materials.GasSolidSuspension, materials.GasSolidSuspension, materials.LiquidSolidSuspension

#### Mixture

IRI: http://emmo.info/emmo/middle/materials#EMMO\_ec2c8ac8\_98c5\_4c74\_b85b\_ff8e8ca6655c

Elucidation: A Miixture is a material made up of two or more different substances which are physically (not chemically) combined.

#### Relations:

• is\_a materials.Continuum

## Foam

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_1f5e3e7e\_72c9\_40d4\_91dd\_ae432d7b7018$ 

Elucidation: A colloid formed by trapping pockets of gas in a liquid or solid.

#### **Relations:**

• is\_a materials.Colloid

#### Solution

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_2031516a\_2be7\_48e8\_9af7\_7e1270e308fe$ 

Elucidation: A solution is a homogeneous mixture composed of two or more substances.

Comment: Solutions are characterized by the occurrence of Rayleigh scattering on light,

#### Relations:

- is a materials. Dispersion
- $\bullet$  is\_a materials.PhaseHomogeneousMixture

## Dispersion

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_0b15f4ae\_092e\_4487\_9100\_3c44176c545c$ 

**Elucidation:** A material in which distributed particles of one phase are dispersed in a different continuous phase.

#### Relations:

- $\bullet$  is\_a materials.Mixture
- disjoint\_union\_of materials.Solution, materials.Suspension, materials.Colloid

## SolidSolution

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5e77f00d\_5c0a\_44e7\_baf1\_2c2a4cb5b3ae$ 

**Elucidation:** A solid solution made of two or more component substances.

#### **Relations:**

- is\_a materials.Solution
- is\_a materials.Solid

## Vapor

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4d604a13\_d1f6\_42fd\_818f\_d3138d5e308c$ 

Elucidation: A liquid aerosol composed of water droplets in air or another gas.

## Relations:

• is a materials.LiquidAerosol

#### Gel

IRI: http://emmo.info/emmo/middle/materials#EMMO\_3995e22d\_5720\_4dcf\_ba3b\_d0ce03f514c6

**Elucidation:** A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity.

## Relations:

- is\_a materials.Colloid
- $\bullet$  is\_a materials.Solid

## LiquidSol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4354ac74\_7425\_43ab\_92e4\_6dc19d1afee9$ 

Elucidation: A type of sol in the form of one solid dispersed in liquid.

- is a materials.Sol
- is a materials.Liquid

## SolidSolidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO\_2dd512a1\_5187\_47cc\_b0b8\_141214e22b59

Elucidation: A coarse dispersion of solid in a solid continuum phase.

Example: Granite, sand, dried concrete.

#### **Relations:**

- is a materials. Suspension
- is\_a materials.Solid

#### Aerosol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_560d833a\_6184\_410c\_859a\_05d982712fd7

Elucidation: A colloid composed of fine solid particles or liquid droplets in air or another gas.

#### **Relations:**

- is\_a materials.Gas
- $\bullet$  is\_a materials.Colloid

## **Emulsion**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_40e18c93\_a1b5\_49ff\_b06a\_d9d932d1fb65$ 

**Elucidation:** An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture).

Example: Mayonnaise, milk.

#### Relations:

- is a materials. Colloid
- is\_a materials.Liquid

## LiquidSolidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO e9e02156 651f 41c8 9efb d5da0d4ce5e2

Elucidation: A coarse dispersion of solids in a liquid continuum phase.

Example: Mud

## Relations:

- is a materials. Suspension
- is\_a materials.Liquid

## SolidSol

IRI: http://emmo.info/emmo/middle/materials#EMMO 5add9885 dc98 4fa5 8482 fdf9ba5e3889

Elucidation: A type of sol in the form of one solid dispersed in another continuous solid.

- is\_a materials.Sol
- is a materials. Solid

## SolidGasSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_c457b6b9\_5e73\_4853\_ae08\_d776c12b8058$ 

Elucidation: A coarse dispersion of gas in a solid continuum phase.

#### **Relations:**

- is\_a materials.Suspension
- is\_a materials.Solid

## Colloid

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_6c487 \text{fb3}\_03 \text{d1}\_4e56\_91 \text{ed}\_c2e16 \text{dcbef} 6000 \text{ed}\_c2e16 \text{ed}\_c2e16 \text{dcbef} 6000 \text{ed}\_c2e16 \text{ed}\_c$ 

Elucidation: A mixture in which one substance of microscopically dispersed insoluble or soluble particles (from 1 nm to 1  $\mu$ m) is suspended throughout another substance and that does not settle, or would take a very long time to settle appreciably.

Comment: Colloids are characterized by the occurring of the Tyndall effect on light.

## Relations:

- is\_a materials.Dispersion
- is\_a materials.PhaseHeterogeneousMixture

## State Of Matter branch



Figure 3.43: State Of Matter branch.

#### Dust

IRI: http://emmo.info/emmo/middle/materials#EMMO\_e4281979\_2b07\_4a43\_a772\_4903fb3696fe

Elucidation: A suspension of fine particles in the atmosphere.

### Relations:

• is\_a materials.GasSolidSuspension

## LiquidFoam

IRI: http://emmo.info/emmo/middle/materials#EMMO\_d69d2e95\_b22f\_499a\_a552\_17fde0d778fc

Elucidation: A foam of trapped gas in a liquid.

- $\bullet$  is\_a materials.Foam
- is a materials.Liquid

## SolidAerosol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_96c8d72f\_b436\_44e2\_9f7f\_085c24094292

Elucidation: An aerosol composed of fine solid particles in air or another gas.

#### Relations:

• is\_a materials.Aerosol

## Suspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4a464c8d\_8895\_44a8\_a628\_aed13509f1bd$ 

**Elucidation:** An heterogeneous mixture that contains coarsly dispersed particles (no Tyndall effect), that generally tend to separate in time to the dispersion medium phase.

Comment: Suspensions show no significant effect on light.

#### **Relations:**

• is a materials. Dispersion

- is\_a materials.PhaseHeterogeneousMixture
- is a materials.StateOfMatter

• disjoint\_union\_of materials.SolidSolidSuspension, materials.SolidLiquidSuspension, materials.LiquidGasSuspension, materials.LiquidLiquidSuspension, materials.GasSolidSuspension, materials.GasSolidSuspension, materials.LiquidSolidSuspension

## SolidFoam

IRI: http://emmo.info/emmo/middle/materials#EMMO\_9bed5d66\_805a\_4b3a\_9153\_beaf67143848

**Elucidation:** A foam of trapped gas in a solid.

Example: Aerogel

#### Relations:

• is\_a materials.Foam

 $\bullet$  is\_a materials.Solid

## GasLiquidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO e0edfb9e 9a96 4fae b942 831ffe27b84a

Elucidation: A coarse dispersion of liquid in a gas continuum phase.

Example: Rain, spray.

## Relations:

- is a materials.Gas
- is\_a materials.Suspension

## SolidSolution

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_5e77f00d\_5c0a\_44e7\_baf1\_2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5b3ae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2c2a4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4cb5bae2ca4c$ 

**Elucidation:** A solid solution made of two or more component substances.

- is\_a materials.Solution
- is a materials. Solid

## AcqueousSolution

IRI: http://emmo.info/emmo/middle/materials#EMMO\_5cb107ba\_7daa\_46dd\_8f9f\_da22a6eac676

Elucidation: A liquid solution in which the solvent is water.

#### Relations:

• is\_a materials.LiquidSolution

## Vapor

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4d604a13\_d1f6\_42fd\_818f\_d3138d5e308c + 24604a13\_d1f6\_42fd\_818f\_d3138d5e308c + 24604a13\_d1f6\_42fd\_818f\_d3138d5e308c + 24604a13\_d1f6\_d2fd\_818f\_d3138d5e308c + 24604a13\_d1f6\_d2fd\_818f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f\_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f_d318f$ 

Elucidation: A liquid aerosol composed of water droplets in air or another gas.

## Relations:

• is\_a materials.LiquidAerosol

## Gas

IRI: http://emmo.info/emmo/middle/materials#EMMO\_04f2a2d5\_e799\_4692\_a654\_420e76f5acc1

**Elucidation:** Gas is a compressible fluid, a state of matter that has no fixed shape and no fixed volume.

#### **Relations:**

- $\bullet$  is\_a materials.Fluid
- is\_a materials.StateOfMatter

## Gel

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO} \underline{3995e22d} \underline{5720} \underline{4dcf} \underline{ba3b} \underline{d0ce03f514c6}$ 

**Elucidation:** A soft, solid or solid-like colloid consisting of two or more components, one of which is a liquid, present in substantial quantity.

#### **Relations:**

- is\_a materials.Colloid
- is a materials.Solid

## LiquidLiquidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO\_47fe2379\_be21\_48d1\_9ede\_402f0faf494b

**Elucidation:** A coarse dispersion of liquid in a liquid continuum phase.

## Relations:

- is\_a materials.Suspension
- is\_a materials.Liquid

## Liquid

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_7509 \\ \text{da} 43\_56 \\ \text{b1}\_4 \\ \text{d7} f\_887 \\ \text{a}\_65 \\ \text{d1663} \\ \text{df4bar} + \text{b100} \\ \text{df4bar} + \text{df6} \\ \text{df6} + \text{df6} \\ \text{df$ 

**Elucidation:** A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure.

- is\_a materials.Fluid
- $\bullet$  is\_a materials.StateOfMatter

## LiquidAerosol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_94010cbc\_c2a6\_4cb9\_b29a\_83aa99d2ff70

Elucidation: An aerosol composed of liquid droplets in air or another gas.

#### Relations:

• is\_a materials.Aerosol

#### StateOfMatter

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_b9695e87\_8261\_412e\_83cd\_a86459426a28$ 

Elucidation: A superclass made as the disjoint union of all the form under which matter can exist.

**Comment:** In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma.

https://en.wikipedia.org/wiki/State\_of\_matter

#### **Relations:**

- is a materials.Continuum
- is\_a physicalistic.Matter
- disjoint union of materials.Gas, materials.Plasma, materials.Liquid, materials.Solid

## SolidLiquidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO\_33e0ac8b\_a318\_4285\_b1de\_e95347784632

Elucidation: A coarse dispersion of liquid in a solid continuum phase.

#### **Relations:**

- is a materials. Suspension
- is\_a materials.Solid

## SolidSol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5 \text{add} 9885\_\text{dc} 98\_4 \text{fa} 5\_8482\_\text{fd} \text{f9} \text{ba} 5 \text{e} 3889 \text{e} 38$ 

Elucidation: A type of sol in the form of one solid dispersed in another continuous solid.

#### **Relations:**

- is\_a materials.Sol
- is\_a materials.Solid

## LiquidSol

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4354ac74\_7425\_43ab\_92e4\_6dc19d1afee9

Elucidation: A type of sol in the form of one solid dispersed in liquid.

- is a materials.Sol
- is a materials.Liquid

#### Aerosol

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_560 d833 a\_6184\_410 c\_859 a\_05 d982712 fd7$ 

Elucidation: A colloid composed of fine solid particles or liquid droplets in air or another gas.

#### **Relations:**

- is\_a materials.Gas
- is\_a materials.Colloid

## LiquidGasSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_42185 \\ \text{fe7}\_122 \\ \text{c}\_4e0 \\ \text{c}\_a3 \\ \text{cd}\_659 \\ \text{d}3e21 \\ \text{c}389 \\ \text{e}3e21 \\ \text{c}389 \\ \text{e}3e31 \\ \text{c}3e31 \\ \text{e}3e31 \\ \text{e}3e31$ 

Elucidation: A coarse dispersion of gas in a liquid continuum phase.

Example: Sparkling water

#### **Relations:**

- is a materials. Suspension
- is\_a materials.Liquid

## Plasma

IRI: http://emmo.info/emmo/middle/materials#EMMO\_4c21fb86\_fdcf\_444e\_b498\_86fe656295af

**Elucidation:** A fluid in which a gas is ionized to a level where its electrical conductivity allows long-range electric and magnetic fields to dominate its behaviour.

#### Relations:

- is\_a materials.Fluid
- is\_a materials.StateOfMatter

## LiquidSolution

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_4b3e2374\_52a1\_4420\_8e3f\_3ae6b9bf7dff$ 

Elucidation: A liquid solution made of two or more component substances.

## Relations:

- is a materials. Solution
- is\_a materials.Liquid

## **Emulsion**

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_40e18c93\_a1b5\_49ff\_b06a\_d9d932d1fb65$ 

**Elucidation:** An emulsion is a mixture of two or more liquids that are normally immiscible (a liquid-liquid heterogeneous mixture).

Example: Mayonnaise, milk.

- is a materials.Colloid
- is\_a materials.Liquid

## LiquidSolidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_e9e02156\_651f\_41c8\_9efb\_d5da0d4ce5e2$ 

Elucidation: A coarse dispersion of solids in a liquid continuum phase.

Example: Mud

Relations:

• is\_a materials.Suspension

• is\_a materials.Liquid

#### GasMixture

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5 be 9 c 137\_325 a\_43 d 8\_b7 c d\_ea 9 3 e 7721 c 2 d d ea 9 d e 7721 c 2 d d ea 9 d e 7721 c 2 d d ea 9 d e 7721 c 2 d d ea 9 d e 7721 c 2 d ea 9$ 

Elucidation: A gaseous solution made of more than one component type.

## Relations:

• is a materials.Gas

 $\bullet$  is\_a materials.Solution

## GasSolidSuspension

IRI: http://emmo.info/emmo/middle/materials#EMMO\_d4f37e32\_16ae\_4cc6\_b4cd\_fd896b2449c4

Elucidation: A coarse dispersion of solid in a gas continuum phase.

Example: Dust, sand storm.

#### **Relations:**

• is a materials.Gas

• is\_a materials.Suspension

## SolidSolidSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials\#EMMO\_2dd512a1\_5187\_47cc\_b0b8\_141214e22b59$ 

Elucidation: A coarse dispersion of solid in a solid continuum phase.

Example: Granite, sand, dried concrete.

#### **Relations:**

• is a materials. Suspension

• is\_a materials.Solid

## SolidGasSuspension

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_c457b6b9\_5e73\_4853\_ae08\_d776c12b8058$ 

Elucidation: A coarse dispersion of gas in a solid continuum phase.

## Relations:

• is\_a materials.Suspension

• is\_a materials.Solid

## Solid

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_a2b006f2\_bbfd\_4dba\_bcaa\_3fca20cd6be1 + Commo/middle/materials \# EMMO\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bbfd\_a2b006f2\_bb$ 

**Elucidation:** A continuum characterized by structural rigidity and resistance to changes of shape or volume, that retains its shape and density when not confined.

#### Relations:

- is\_a materials.StateOfMatter
- is\_a materials.Continuum

## Smoke

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_5a2af26d\_99de\_4e5e\_b1cd\_514be71420c3$ 

**Elucidation:** Smoke is a solid aerosol made of particles emitted when a material undergoes combustion or pyrolysis.

#### Relations:

 $\bullet$  is\_a materials.SolidAerosol

## Spray

 $\textbf{IRI:} \ \text{http://emmo.info/emmo/middle/materials} \# EMMO\_498 aad 49\_f8 d 4\_40 a 4\_a 9 eb\_efd 563 a 0115 fear the statement of the statemen$ 

Elucidation: A suspension of liquid droplets dispersed in a gas through an atomization process.

#### **Relations:**

• is\_a materials.GasLiquidSuspension

# Chapter 4

# Individuals

## Universe

- is\_a physical. Physical

# Chapter 5

# Appendix

The complete taxonomy of EMMO relations



Figure 5.1: The complete taxonomy of EMMO relations.

# The taxonomy of EMMO classes



Figure 5.2: The almost complete taxonomy of EMMO classes. Only physical quantities and constants are left out.