Algebraic Theory I

Thomas Fleming

October 29, 2021

Contents

Lecture 27: Ring Theory (2)

Fri 29 Oct 2021 11:31

Lecture 28: Ring Theory (3)

Fri 29 Oct 2021 11:31

Recall R will be a commutative ring unless otherwise noted.

Definition 0.1 (Prime Ideal). Recall an ideal $P \subseteq R$ is a **prime ideal** when $xy \in P$ implies one of $x \in P$ or $y \in P$. This is equivalent to the statement that R/P is an integral domain.

Definition 0.2 (Maximal Ideals). A proper ideal $M \subseteq R$ is maximal if it is not strictly contained in any other proper ideal. That is, the only ideals containing M are M and R. Equivalently, an ideal I is maximal if and only if R/I is a field.

We prove these two definitions to be equivalent.

to a proper nontrivial ideal $J/I \subseteq R/I$, ξ as R/I is a field.

Proof. First, assume I maximal. Then, note that an ideal in R/I has the form J/I with $I \subseteq J \subseteq R$ and J being an ideal in R. Hence, as I is maximal, we find J = I or J = R. Hence, R/I is a field by prior characterization. Now assume R/I is a field for some ideal I. Then, the only ideals of R/I are $\{0\}$ and R/I. Suppose I nonmaximal, then we find a $I \subset J \subset R$ corresponding

Proposition 0.1. In a commutative ring R any maximal ideal is prime.

Proof. Since $M \subset R$ and R/M is a field (hence integral domain), we find M to be a prime ideal by the quotient characterization.

Example. If $R = \mathbb{Z}$, then (0) is a prime ideal, but it is obviously not maximal.

<

In order to prove some theorems concerning maximal ideals, we need to state some results from basic set theory.

Definition 0.3. If (X, \preceq) is a poset (partially ordered set), with a totally ordered subset $Y \subseteq X$, then an **upper bound** of Y is an element $x \in X$ so that $y \leq x$ for all $y \in Y$. A **maximal element** of X is a $x \in X$ so that for all $y \in X$, $x \leq y$ implies x = y.

Law 1 (Zorn's Lemma). If (X, \preceq) is a nonempty poset, with every totally ordered subset having an upper bound, then we find a maximal element $x \in X$.

Of course, this is equivalent to axiom of choice, so we must take it as an axiom. Using Zorn's lemma, we find that every ideal is contained in a maximal ideal (as with subgroups).

Theorem 0.1. If R is a commutative ring with $I \subset R$ being a proper ideal. Then there is a maximal ideal $M \subset R$ with $I \subseteq M$.

Proof. Let (X, \subseteq) be the set of all proper ideals of R which contain I partially ordered by inclusion. As I is proper, we see $I \subseteq I$ hence $I \in X$, so $X \neq \emptyset$. Any maximal element $m \in X$ will be a maximal ideal of R containing I. Hence, we need only show the existence of a maximal element.

Let $(I_{\alpha})_{\alpha \in \Omega}$ by a nonempty totally ordered subset of X. Hence, each I_{α} is a proper ideal containing I with either $I \subseteq I_{\alpha} \subseteq I_{\beta}$ or $I \subseteq I_{\beta} \subseteq I_{\alpha}$ for all $\alpha, \beta \in \Omega$. Let $J = \bigcup_{\alpha \in \Omega} I_{\alpha}$, clearly, $I_{\alpha} \subseteq J$ for all $\alpha \in \Omega$, so we need only show $J \in X$. Clearly, $I \subseteq I_{\alpha} \subseteq J$, so J is nonempty and contains I. Now, let $x, y \in J$ with $x \in I_{\alpha}$, $y \in I_{\beta}$. By total ordering WLOG, let $I_{\alpha} \subseteq I_{\beta}$. Hence, $x, y \in I_{\beta}$. Hence, $x, y \in I_{\beta}$. Hence, $x, y \in I_{\beta}$ is an ideal. Finally, suppose J = R, then $1 \in J$, so $1 \in I_{\alpha}$ for some $\alpha \in \Omega \not \downarrow$, as I_{α} is assumed proper. Hence, $J \in X$ is an upper bound of $(I_{\alpha})_{\alpha \in \Omega}$, so there is a maximal element $M \in X$ which is clearly a maximal ideal.