4. Let f be a function defined on [1/2, 1] which is continuous at 1. Prove that the sequence $(x^n f(x))_n$ converges for every $x \in [1/2, 1]$, and that this convergence is uniform if and only if f is bounded and f(1) = 0.

Solution:

First if x = 1, then $x^n f(x) = f(1)$ for all n, and thus converges to f(1). Fix $x \in [1/2, 1)$, then for a given $\varepsilon > 0$,

$$n > \ln\left(\frac{\varepsilon}{|f(x)|}\right) / \ln(x) \iff n \ln x < \left(\frac{\varepsilon}{|f(x)|}\right) \implies x^n < \frac{\varepsilon}{|f(x)|}$$

by applying the increasing function e^x to both sides of the inequality. Hence $|x^n f(x)| = x^n |f(x)| < \varepsilon$ implies $(x^n f(x))_n$ converges to 0. and thus $(x^n f(x))_n$ converges to the function g where g(x) = 0 when $1/2 \le x < 1$ and g(1) = 1.

Now, suppose $|f(x)| \leq M$ for each x and f(1) = 1. Then if we take

$$n > \ln\left(\frac{\varepsilon}{M}\right) / \ln(x)$$

a similar calculation replacing |f(x)| by M yields $|x^n f(x)| \leq x^n M < \varepsilon$ implies uniform convergence to the constant 0. And, in the case where f(1) = 0, is equal to g.

On the other hand, if we assume that the convergence is uniform, then since each function g_n where $g_n(x) = x^n f(x)$ are continuous on [1/2, 1]. Hence the point-wise limit g(x) must be continuous which implies $f(1) = \lim_{n \to \infty} f(1/n) = 0$.

5. Suppose $f:[0,\infty)\to\mathbb{R}$ is decreasing, and that $\int_0^\infty f(x)dx$ converges. Prove that for every $\delta>0$ the series $\sum_{n=1}^\infty f(n\delta)$ converges and

$$\lim_{\delta \to 0^+} \delta \sum_{n=1}^{\infty} f(n\delta) = \int_0^{\infty} f(x) \, dx$$

Solution:

We first show that $f(x) \ge 0$ for all x. Assume otherwise, then there exists an $x_0 < 0$ and since f is decreasing, then $f(x) < f(x_0) < 0$ for all $x > x_0$. Thus

$$\int_0^N f(x) \, dx = \int_0^{x_0} f(x) \, dx + \int_{x_0}^N f(x) \, dx \le \int_0^{x_0} f(x) \, dx - f(x_0)(x_0 - N) \to -\infty$$
as $N \to \infty$.

Thus, it suffices to to prove that $\sum_{n=1}^{\infty} f(n\delta)$ is bounded above. For each $\delta > 0$, $(0, \delta, 2\delta, \dots, N\delta)$ is a partition of $[0, N\delta]$. Since f is decreasing and positive

$$\delta \sum_{n=1}^{N} f(n\delta) = \sum_{P} \inf_{[x_{i} - x_{i-1}]} \{f(t)\} \Delta_{i} = L(P, f) \le \int_{0}^{N\delta} f(x) \, dx \le \int_{0}^{\infty} f(x) \, dx.$$

Hence $\sum_{n=1}^{N} f(n\delta) \leq \frac{1}{\delta} \int_{0}^{\infty} f(x) dx$.

Now, let $\varepsilon > 0$ be given, and let R > 0 such that

$$\int_0^\infty f(x) \, dx - \varepsilon < \int_0^R f(x) \, dx.$$

For the family of partitions $(0, \delta, 2\delta, \dots, N_R\delta, R)$, indexed by all $\delta > 0$, we have that the maximum width of each inteval goes to 0 as $\delta \to 0$, hence, for sufficiently small $\delta > 0$, we have

$$\int_0^R f(x) dx - \varepsilon < L(P, f) = \delta \sum_{n=1}^N f(n\delta).$$

Hence

$$\int_0^\infty f(x) \, dx - 2\varepsilon < \delta \sum_{n=1}^\infty f(n\delta) = L(P, f) \le \int_0^R f(x) \, dx \le \int_0^\infty f(x), dx$$

and the convergence is evident.

- 7. Let (X,d) be a metrix space. A function $f:X\to\mathbb{R}$ is called Lipschitz if there is a constant L such that $|f(x)-f(y)|\leq Ld(x,y)$, for all $x,y\in X$.
 - (a) Show that every Lipschitz function is uniformly continuous and give an example of a uniformly continuous function that is not Lipschitz.

Solution:

Let f be a Lipschitz function with Lipschitz constant L and $\varepsilon > 0$ be given, then observe

$$|f(x) - f(y)| \le Ld(x, y) < \varepsilon$$

by choosing x, y such that $d(x, y) < \varepsilon/L$.

On the other hand, consider $f:[0,1]\to\mathbb{R}$ by $f(x)=\sqrt{x}$. This function is uniformly continuous as a continuous function with a compact domain. However, for any given $L\geq 0$, choose $x<\frac{1}{L^2}$ and y=0, then

$$|f(x) - f(y)| = \left|\frac{1}{L}\right| = L\left|\frac{1}{L^2} - 0\right| > L|x - y|.$$

Let f be a bounded uniformly continuous real-valued function on X. For each positive integer n, consider the function f_n defined by

$$f_n(x) = \inf\{f(y) + nd(x, y) : y \in X\},\$$

for $x \in X$. Prove the following statements:

(b) Each f_n is a Lipschitz function on X.

Solution:

Let $x_1 \neq x_2$ in X labeled such that $f(x_1) \leq f(x_2)$ so that $|f(x_2) - f(x_1)| = f(x_2) - f(x_1)$. Let $\varepsilon > 0$ be given. There exists a $y_1 \in X$ so that

$$f(y_1) + nd(x_1, y_1) \le f_n(x) + \varepsilon$$

since $f_n(x)$ is the greatest of the upper bounds. Now, for $f_n(x_2)$ we have

$$f_n(x_2) \leq f(y_1) + nd(x_2, y_1)$$

$$= f(y_1) + nd(x_2, y_1) - nd(y_1, x_1) + nd(y_1, x_1)$$

$$\stackrel{*}{\leq} f(y_1) + nd(x_2, x_1) + nd(y_1, x_1)$$

$$\leq f_n(x_1) + \varepsilon + nd(x_2, x_1).$$

Hence, $|f_n(x_2) - f_n(x_1)| \le nd(x_2, x_1) + \varepsilon$ for an arbitrary $\varepsilon > 0$, which suffices for f_n to be Lipschitz.

$$*nd(x_2, y_1) \le nd(y_1, x_1) + nd(x_2, x_1) \implies nd(x_2, y_1) - nd(y_1, x_1) \le nd(x_2, x_1)$$

(c) $f_n \to f$ uniformly on X as $n \to \infty$.

Solution:

Let $|f(x)| \leq M$ and $\varepsilon > 0$ be given. First, observe $f_n(x) \leq f(x) + nd(x,x) = f(x)$, hence $|f(x) - f_n(x)| = f(x) - f_n(x)$. Let $\delta > 0$ be such that $|f(x) - f(y)| < \frac{\varepsilon}{2}$ whenever $d(x,y) < \delta$. Choose $n \geq \frac{2M}{\delta}$. Now, for any $x \in X$, there exists y_x such that

$$f(y_x) + nd(x, y_x) \le f_n(x) + \frac{\varepsilon}{2} \iff f(y_x) - f_n(x) + nd(x, y_x) < \varepsilon.$$

So

$$f(x) - f_n(x) = f(x) - f(y_x) + (f(y_x) - f_n(x) + nd(x, y_x)) - nd(x, y_x)$$

$$< f(x) - f(y_x) - nd(x, y_x) + \frac{\varepsilon}{2}.$$

We proceed in two cases, when $d(x,y_x) \geq \delta$ or when $d(x,y_x) < \delta$. In the first case, $n > \frac{2M}{\delta}$ implies $nd(x,y_x) > \frac{2M}{\delta}\delta = 2M$, so

$$f(x) - f_n(x) < f(x) - f(y_x) - 2M + \frac{\varepsilon}{2}$$

$$\leq (f(x) - M) - (f(y_x) + M) + \frac{\varepsilon}{2}$$

$$\leq \frac{\varepsilon}{2},$$

where we used the facts that $f(x) \leq M$ and $f(y_x) \geq -M$. In the other case where $d(x, y_x) < \delta$,

$$f(x) - f_n(x) < \frac{\varepsilon}{2} - nd(x, y_x) + \frac{\varepsilon}{2}$$

 $\leq \varepsilon,$

since $nd(x, y_x) \geq 0$. Since our choice of n did not depend on x, the convergence is uniform.

References

- [BC04] James Ward Brown and Ruel V. Churchill. Complex Variables and Applications. McGraw-Hill, 7th edition, 2004.
- [Boa10] Harold P. Boas. Julius and Julia: Mastering the art of the Schwarz lemma. *The American Mathematical Monthly*, 117(9):770–785, 2010.
- [Ste04] J Michael Steele. The Cauchy-Schwarz master class: an introduction to the art of mathematical inequalities. Cambridge University Press, 2004.
- [Str00] Robert S Strichartz. The way of analysis. Jones & Bartlett Learning, 2000.