

Lepton-jets: data vs MC

Jim Pivarski
Texas A&M University

2 September, 2010

- ▶ Reminder: signal is two or more distinct μ -groups (where a μ -group is at least two near-by muons)
 - Standard candle: single dimuon from SM resonances
- ▶ Dimuon spectrum in 3_6_3 (0.6 pb⁻¹ for HLT_Mu9)
 - make sure our standard candles are visible
 - tests luminosity calculations (MC and data not normalized to equal area)
 - check for missing backgrounds (base sample is InclusiveMu5_Pt* only; add others as needed)
- ► Track-segment matches in 3_8_2 (2.1 pb⁻¹ for HLT_Mu9)
 - start from the ground-up: discover low-level problems early
 - ► tests 3_8_2 tracking developments (relevant events re-reconstructed from hits)
- Next steps

- /Mu/Run2010A-PromptReco-v4/RECO
- Run/LS selection: good tracking, muons, and trigger, selected by runregparse.py and luminosity calculated by lumiCalc.py
- Event-level:
 - ► HLT_Mu9 (unprescaled) or HLT_Mu5 (correcting for prescale)
 - lacktriangle at least one $p_T>11$ (7) GeV/c muon with $|\eta|<2.1$
 - at least one primary vertex with |z| < 24 cm (hn-cms-PO7TeV)
 - filter out scraping (Collisions2010Recipes)
- Muon tracks:
 - $p_T > 5 \text{ GeV}/c$, $|\eta| < 2.4$
 - ► TrackerMuons with *N*_{segments} ≥ 2 (arbitrated)
- ▶ Muon-group "closeness" definition:
 - $(m_{
 m pair} < 5~{
 m GeV}/c^2$ and $P_{
 m vertex} > 1\%)$ or $\Delta R < 0.1$
 - pairs must be oppositely charged

Reminder:

With these cuts, TrackerMuons have background rejection similar to GlobalMuons (below: InclusiveMu5_Pt* N_{tracks})

Even with the cuts, TrackerMuons do not have inefficiencies that depend on closeness of muons in muon

system (right: μ -pair gun efficiency as color scale vs. ME2 ΔR , $\Delta \phi$)

(This is 3_6_3; GlobalMuon inefficiencies likely worse in 3_8_2 due to new cleaning step)

High-level quantities in 3_6_3

- Mass distribution; data and MC independently scaled by luminosity
- Big plot: HLT_Mu9 with $p_T > 11$; small: HLT_Mu5 with 7 GeV/c

- Mass distribution; data and MC independently scaled by luminosity
- Big plot: HLT_Mu9 with $p_T > 11$; small: HLT_Mu5 with 7 GeV/c

- ▶ Prompt J/ψ (and ψ') are not in InclusiveMu5_Pt*
- \triangleright p_T of μ -groups with masses near J/ψ peak shows that the missing events are at low momentum

► Zoom in with HLT_Mu5 sample to see more low-mass resonances

- $\phi(1020) \rightarrow \mu\mu$ is visible in data/MC but underproduced?
- \triangleright $\omega(782)$ is in data but not MC
- $\eta(548) \rightarrow \mu \mu(\gamma)$ is not responsible for the excess at low mass

- Excess of dimuons below 0.3 GeV/c² is not explained
- ▶ Looked at all $\mathcal{O}(100)$ by hand: they're all good-looking muons

- ▶ The dimuon vertices are not consistent with $\gamma X \to \mu^+ \mu^- X$ conversions (right)
- \blacktriangleright Centrally distributed in η (not ME1/1a triplets)

Vertex positions of $m_{
m inv} < 0.3~{
m GeV}/c^2$ events

 $\gamma X
ightarrow e^+ e^- X$ conversions (for reference)

Low-level quantities in 3_8_2

Low-level data/MC comparison Jim Pivarski 12/24

- Start with segment/propagated track comparisons to check for detector effects; later, work upward to kinematics again
- Avoiding trigger bias: only look at muons that were not solely responsible for the HLT_Mu9 trigger
- ► Using latest alignment GlobalTag and 3_8_2 algorithms (re-reconstructed all tracks from the hits in data and MC)
- ► Check residuals (segment-minus-propagated track) as a function of
 - ▶ inverse momentum $(q/p_T \text{ or } q/|p|)$: sensitive to propagation issues (e.g. \vec{B} -field bias, material budget)
 - wheel/disk/station: sensitive to misalignment
- Four segment/propagated track parameters:
 - x: local coordinate equivalent to $r\phi$; " ϕ residual" = $x/R_{\rm chamber}$
 - y: parallel to beamline (DT) or radial (CSC)
 - \rightarrow dx/dz (entrance angle in bending plane)
 - ▶ dy/dz

Dependence on momentum

Jim Pivarski

Plot ϕ residuals from MB3 and ME2 only

(one representative residual per track)

- ▶ Width of residuals distribution scales roughly as 1/|p|, cut at $1/p_T < 0.2 \ c/\text{GeV}$
- Any biases in the mean are much smaller than the width of the distribution

▶ To quantify bias in the Gaussian part of the residuals peak (not the tails), fit distributions in momentum bins to

$$p(x) = \begin{cases} A \exp\left(-(x - x_0)^2/(2\sigma^2)\right) & |x - x_0| < m \\ B/|x|^{p_1} & (x - x_0) > m_1 \\ C/|x|^{p_2} & -(x - x_0) < -m_2 \end{cases}$$

where A, B, C, m_1 , and m_2 are chosen to make the function continuous and differentiable

Dependence on momentum

Jim Pivarski 15/24

- ▶ Slope of Gaussian peak vs. q/|p| obscured by decays-in-flight
 - ▶ Green: all muons (TM with $p_T > 5$ GeV/c and $N_{\text{segments}} \ge 2$)
 - ► Black: excluding muons matched to decay-in-flight (MC only)
 - ▶ Red: member of μ -group ($P_{\text{vertex}} > 1\%$ with another muon)
 - ▶ Blue: within 0.2 GeV/ c^2 of J/ψ peak (very pure muons)
- Removing that, there's a bias in data not present in Monte Carlo

0.15

8 Constant 0.0051 = 0.0778 | 2 f and 0.702.6 | 2

a/lpl [c/GeV]

Data

Monte Carlo

Dependence on momentum

Jim Pivarski 16/24

- ▶ trend is stronger vs. q/|p| (but that might be different influence of the endcap detectors relative to the barrel)
- lacktriangle bias is about 10% of the width of the distribution at 5 GeV/c
- Modifying dE/dx in SteppingHelixPropagator tunes this plot (but I don't plan to apply an ad-hoc tune)

- ▶ Plot four components of residuals (x, y, dx/dz, dy/dz) for each distinct ring of detectors
 - ▶ barrel wheels 0, ± 1 , ± 2 and stations 1, 2, 3, 4
 - ► endcap stations 1/1, 1/2, 1/3, 2/1, 2/2, 3/1, 3/2, 4/1, 4/2
- No trigger bias (only look at muons not solely responsible for HLT_Mu9 trigger)
- Select only muons in μ -groups (similar results in J/ψ -only)
- Examples (points are data, shaded blue/grey is Monte Carlo):

Dependence on detectors

Jim Pivarski 18/24

- MC is a little wider than the data everywhere
- ▶ MC has STARTUP conditions re-tracked with IDEAL alignment: could be the influence of miscalibrated hits?

Dependence on detectors

Jim Pivarski 19/24

- Same for y
- Compared with standard RelVals (similar results):

http://cmsdoc.cern.ch/cms/Physics/muon/CMSSW/Performance/RecoMuon/MuonIdentification/

Dependence on detectors

Jim Pivarski 20/24

- \rightarrow dx/dz has not been aligned in the endcap
- But this pattern is reproduced in MC— doesn't seem like misalignment is the problem

- ▶ The same can be said for dy/dz in the barrel
- Discrepancy in MB0/2 and MB0/3: MC has large tails...?

- \triangleright Oddity in endcap: discrete peaks in dy/dz residuals, reproduced by Monte Carlo and observed in standard RelVal plots (right)
- Could be related to granularity of CSC wire-groups?

- ► Data/MC comparisons
 - 1. check residuals distributions with these track/event cuts
 - modifications to residuals distributions when two muons cross (pair-gun MC; enough statistics to check data, too?)
 - 3. compare kinematic quantities (momenta, angular distributions)
 - find all missing background samples (particularly the mysterious low-mass contribution)
- Trigger efficiency study
 - 1. reconstructing one $p_T>11~{\rm GeV}/c$, $|\eta|<2.1$ StandAloneMuon in the presence of nearby/overlapping muons
 - 2. HLT and L1 efficiencies, given the above
- Estimating backgrounds from data
- Efficiency from tag-and-probe of boosted J/ψ ?

- Basically good data/MC agreement out-of-the-box
- Discrepancies:
 - missing prompt J/ψ , ψ' (not a problem; just add them)
 - underproduced $\phi(1020)$ and missing $\omega(782)$ (possibly produce prompt samples by following example of prompt J/ψ ? is it necessary? only at few-percent level...)
 - excess of $m_{\rm inv} < 0.3 \; {\rm GeV}/c^2$ events: needs to be understood
 - residual vs. momentum bias in data and not Monte Carlo
 - residuals distributions are generally narrower in data
- ▶ Discrepancies in residuals are not large enough to make much difference in cut efficiencies, since cuts are wide
 - if efficiencies are taken from J/ψ tag-and-probe in the future, it won't matter at all
- Residuals information will be useful for muon alignment studies, but for this analysis, I can move on to higher-level distributions