7.4 Theory of System of First Order Linear Equations

The general form of a system of n first order linear equations is

$$x'_{1} = \rho_{n}(t) \times_{1} + \cdots + \rho_{n}(t) \times_{n} + g_{n}(t)$$

$$\vdots = \vdots$$

$$x'_{n} = \rho_{n}(t) \times_{1} + \cdots + \rho_{n}(t) \times_{n} + g_{n}(t)$$

We can write it in matrix form

The corresponding homogeneous system is

Principle of Superposition If the vector functions $\mathbf{x}^{(1)}(t), \dots, \mathbf{x}^{(n)}(t)$ are solutions of the homogeneous system, then

The Wronskian of these n functions are $C(\vec{x}_{i}(t) + (\vec{x}_{i}(t) + \cdots + (\vec{x}_{i}(t))) = also a solution for any confit <math>c_{i}$

$$W(\vec{x}_1, \vec{x}_2, \dots \vec{x}_n) = \det \left[\vec{x}^{(i)}(t) \vec{x}^{(i)}(t) \dots \vec{x}^{(n)}(t) \right]$$

We say the vector functions $\mathbf{x}^{(1)}(t), \cdots, \mathbf{x}^{(n)}(t)$ are solutions form a fundamental set of solutions if they are lively independent street protection or the Morskian is not zero

In this case, each solution $\mathbf{x}(t)$ of the homogeneous system can be express as

If $\mathbf{x}_p(t)$ is a particular solution of the nonhomogeneous system, the general solution is