

NOTES: RTL corresponds to execution (after fetch!); JSRR not shown

	ADD	0001 DR SR1 0 00 SR2 ADD DR, SR1, SR2	LD	0010 DR PCoffset9 LD DR, PCoffset9
LC-3 Instructions		DR ← SR1 + SR2, Setcc		$DR \leftarrow M[PC + SEXT(PCoffset9)], Setcc$
	ADD	0001 DR SR1 1 imm5 ADD DR, SR1, imm5	LDI	1010 DR PCoffset9 LDI DR, PCoffset9
		DR ← SR1 + SEXT(imm5), Setcc		$DR \leftarrow M[M[PC + SEXT(PCoffset9)]], Setcc$
	AND	0101 DR SR1 0 00 SR2 AND DR, SR1, SR2	LDR	0110 DR BaseR offset6 LDR DR, BaseR, offset6
		DR ← SR1 AND SR2, Setcc		$DR \leftarrow M[BaseR + SEXT(offset6)], Setcc$
	AND	0101 DR SR1 1 imm5 AND DR, SR1, imm5	LEA	1110 DR PCoffset9 LEA DR, PCoffset9
		DR ← SR1 AND SEXT(imm5), Setcc		DR ← PC + SEXT(PCoffset9), Setcc
	BR	0000 n z p PCoffset9 BR{nzp} PCoffset9	NOT	1001 DR SR 111111 NOT DR, SR
		((n AND N) OR (z AND Z) OR (p AND P)): $PC \leftarrow PC + SEXT(PCoffset9)$		$DR \leftarrow NOT SR$, Setcc
	JMP	1100 000 BaseR 000000 JMP BaseR	ST	0011 SR PCoffset9 ST SR, PCoffset9
		PC ← BaseR		$M[PC + SEXT(PCoffset9)] \leftarrow SR$
	JSR	0100 1 PCoffset11 JSR PCoffset11	STI	1011 SR PCoffset9 STI SR, PCoffset9
		$R7 \leftarrow PC, PC \leftarrow PC + SEXT(PCoffset11)$		$M[M[PC + SEXT(PCoffset9)]] \leftarrow SR$
	TRAP	1111 0000 trapvect8 TRAP trapvect8	STR	0111 SR BaseR offset6 STR SR, BaseR, offset6
		$R7 \leftarrow PC, PC \leftarrow M[ZEXT(trapvect8)]$		$M[BaseR] + SEXT(offset6)] \leftarrow SR$

SR1MUX = 01, chooses IR[8:6]

(= 10, chooses "110"

Signal Description Signal Description LD.MAR = 1, MAR is loaded LD.CC = 1, updates status bits from system bus = 1, MDR is loaded LD.MDR = 1, IR is loaded LD.IR GateMARMUX = 1, MARMUX output is put onto system bus LD.PC = 1, PC is loaded = 1, MDR contents are put onto system bus GateMDR GateALU = 1, ALU output is put onto system bus LD.REG = 1, register file is loaded LD.BEN = 1, updates Branch Enable (BEN) bit GatePC = 1, PC contents are put onto system bus = 1, Enables memory, = 0, chooses ZEXT IR[7:0] chooses memory output for MDR input MARMUX MIO.EN = 0, Disables memory, 1, chooses address adder output chooses system bus for MDR input = 0, chooses PC = 1, M[MAR]<-MDR when MIO.EN = 1 ADDR1MUX = 1, chooses reg file SR1OUT [= 0, MDR<-M[MAR] when MIO.EN = 1 = 00, chooses "0...00" =00, ADD= 01, chooses SEXT IR[5:0] = 01, AND ADDR2MUX -ALUK = 10, chooses SEXT IR[8:0] = 10, NOT A = 11, chooses SEXT IR[10:0] = 11, PASS A $\int = 00, \text{ chooses IR}[11:9]$ DRMUX $\begin{cases}
= 01, \text{ chooses "111"}
\end{cases}$ = 00, chooses PC + 1 PCMUX \ = 01, chooses system bus = 10. chooses address adder output = 10, chooses "110" = 00, chooses IR[11:9]

