Computer Science G11 at The Dragon Assignment 1

Propositional Logic

Due date: Tue Sep. 18 2018

September 15, 2018

Fri Sep. 2018

- 1. (KtiCa) Express the following statements in propositional logic
 - (a) I'm tired and hungry
 - (b) If I'm hungry, I whinge
 - (c) I only get tired if I did not have a nap
 - (d) Either I eat dinner or I get hungry
- 2. (Ktica) What does it mean that two logical expressions A and B are equivalent? Given an example.
- 3. (KtiCa) Use the truth tables to decide which of the following pairs of propositions are equivalent. Hint: Just make one big truth table in which you can discuss all cases.
 - (a) $(p \lor q) \lor r$ and $p \lor (q \lor r)$
 - (b) $(p \to q) \to r$ and $p \to (q \to r)$
 - (c) $\neg (p \land q)$ and $\neg p \lor \neg q$
 - (d) $p \to q$ and $\neg q \to \neg p$
- 4. (KtiCa) Repeat question 2 this time using an algebraic method instead of truth tables.
- 5. (kTIca) A box has 3 buttons and a light. The light goes on when, and only when, exactly 2 buttons are pressed. Produce a truth table for such an setting. Using the truth table, find a formula (a proposition) for each case. Can you find a unique formula for the whole box?
- 6. (KticA) Simplify the boolean expression $(p \lor q \lor, r) \land \lnot(s \lor t) \lor (p \lor q \lor, r) \land (s \lor t)$ and choose the best answer:

- (a) $p \vee q \vee r$
- (b) $s \vee t$
- (c) $\neg q \wedge \neg q \wedge \neg r$
- (d) $\neg s \wedge \neg t$
- (e) None of the above. Write your answer then.
- 7. (KticA) Simplify the boolean expression $\neg (p \lor q) \land \neg (r \lor s \lor t) \lor \neg (q \lor q)$ and choose the best answer:
 - (a) $p \vee q$
 - (b) $\neg p \wedge \neg q$
 - (c) $r \vee s \vee t$
 - (d) $\neg r \wedge \neg s \wedge \neg t$
 - (e) None of the above. Write your answer then.
- 8. (KticA) Given the function $F(p,q,r) = p \wedge r \vee r \wedge (\neg p \vee (p \wedge q))$ find the equivalent simplified expression for F
 - (a) $r \vee (q \wedge r)$
 - (b) $r \vee (p \wedge q \wedge r)$
 - (c) $p \wedge r$
 - (d) $p \vee (q \wedge r)$
 - (e) r
 - (f) None of the above. Write your answer then.
- 9. (kTIca) Demonstrate algebraically that $(\neg p \to q) \land (\neg p \to \neg q)$ is equivalent to $(\neg p \land r \land q) \lor (\neg r \land q \land \neg p) \lor (r \land p \land \neg q) \lor (\neg r \land p \land \neg q)$.
- 10. (kTIca) Argue algebraically wether ${}^{\neg}p \to (q \vee r)$ is equivalent to ${}^{\neg}((p \to q) \vee r)$