Konstantin Riege

FLI Jena

Data Source

RESEARCH ARTICLE

A complex association between DNA methylation and gene expression in human placenta at first and third trimesters

Yen Ching Lim¹, Jie Li¹, Yiyun Ni¹, Qi Liang¹, Junjiao Zhang¹, George S. H. Yeo², Jianxin Lyu¹*, Shengnan Jin¹*, Chunming Ding¹*

1 Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China, 2 KK Women's and Children's Hospital, Singapore, Singapore

Data Source

- 1st trimester vs. 3rd trimester human RNA-Seq samples (N=4)
 - 1T paired end N1,N2,N3,N4
 - 3T paired end N2,N3
 - 3T single end N1,N4
- ~2400 diff. expressed genes
- 21 of them with diff. methylated promoter regions (1kb upstream region)

Data Source

- Downsampling
 - HG38 toy genome composed of 21 genes of interest (GOI) and 4kb intergenic regions (2kb upstream and 2kb downstream)
 - 10% of GOI mapped reads extracted from available RAW sequencing data

https://github.com/destairdenbi/trainings/tree/master/raw_data/bs_tour

Upload GOI Data

Extract uniquely/unambigiously aligned reads

 Select only alignments with both read mates mapped properly paired


```
QHD VN:1.5 SO:coordinate
@SQ SN:ref LN:45
               7 30 8M2I4M1D3M = 37
r001
       99 ref
                                     39 TTAGATAAAGGATACTG *
                                      O AAAAGATAAGGATA
r002
               9 30 3S6M1P1I4M *
r003
       0 ref 9 30 5S6M
                                      O GCCTAAGCTAA
                                                            SA:Z:ref,29,-,6H5M,17,0;
        0 ref 16 30 6M14N5M
                                      O ATAGCTTCAGC
r004
                                  0
r003 2064 ref 29 17 6H5M
                                      O TAGGC
                                                           * SA:Z:ref,9,+,5S6M,30,1;
      147 ref 37 30 9M
                                  7 -39 CAGCGGCAT
                                                           * NM:i:1
r001
```

Header section

Alignment section

I	Bit	Description
1	0x1	template having multiple segments in sequencing
2	0x2	each segment properly aligned according to the aligner
4	0x4	segment unmapped —
8	0x8	next segment in the template unmapped
16	0x10	SEQ being reverse complemented
32	0x20	SEQ of the next segment in the template being reverse complemented
64	0x40	the first segment in the template
128	0x80	the last segment in the template
256	0x100	secondary alignment
512	0x200	not passing quality controls
1024	0x400	PCR or optical duplicate
2048	0x800	supplementary alignment

- Filter BAM by
 - alignment flags pair information: 2
 - alignment tags mapping count: NH:i:*
 - mapping quality often an indicator for unique alignments
 - STAR: =255
 - HISAT2: >0
- Sort BAM
- 1. Samtools view
- 2. Samtools sort

- Requieremets:
 - Annotation
 - sequencing strandness information
- DETOUR: infer experimental setup

fragment RNA + cDNA

RNA from cDNA using Deoxyuridine Triphosphate + cRNA

Image Credit: Zhao Zhang

https://eu.idtdna.com/pages/products/next-generation-sequencing/adapters

https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-reads.html

- Tool box: RSeQC
- Requierements:
 - Annotation in BED format
- 1. GTF to BED conversion
- 2. infer_experiment.py

- Count uniquely mapped reads only
- What to count?
 - Fragments
 - Reads
- Where to count?
 - Gene body
 - Exons

Count fragments over all exons

- For comparison, normalize counts by
 - Transcript length

Sequencing depth

- Fragments Per Kilobase Million (FPKM)
 - Total reads of a sample (w), divided by 1Mio
 - Divide the exon read counts (x) by the "per million" scaling factor
 - Divide this values by the length (I) of the gene (sum of exon lengths), devided by 1000 (kilobase scaling)

$$FPKM = 10^9 \times \frac{x}{wl}$$

- Tool box: R Subread featureCounts
- Requierements:
 - BAM
 - GFF/GTF
 - Sequencing strandness information

Quantification: SE

Quantification: PE

- Sophisticated read count normalization
 - per gene estimation of dispersion for Negative Binomial read count distribution (NB can model over-dispersion due to biological noise)

https://www.statisticshowto.datasciencecentral.com/negative-binomial-experiment/

- Tool box: DESeq2
 - Dispersion shrinkage to regression fit
 - Hypothesis test

FDR correction: Benjamini Hochberg rank

sum test

