Modified Fibonacci Series

We define a modified *Fibonacci* sequence using the following definition: Given terms t_i and t_{i+1} where $i \in [1, \infty)$, term t_{i+2} is computed using the following recurrence relation:

$$t_{i+2} = 2 * t_{i+1} + t_i$$

For example, if term $t_1=0$ and $t_2=1$, term $t_3=2*1+0=2$, term $t_4=2*2+1=5$ and so on.

Given three integers t_1, t_2 and n, compute the n^{th} term t_n of the modified *Fibonacci* sequence and print $t_n \% (10^9 + 7)$.

Note: The value of t_n may far exceed the range of a **64-bit** integer.

Input Format

A single line of three space-separated integers describing the respective values t_1 , t_2 and n.

Constraints

- $0 \le t_1, t_2 \le 2$
- $1 \le n \le 100$

Output Format

Print a single integer denoting the value of $t_n\%(10^9+7)$ in the modified *Fibonacci* sequence where the first two terms are t_1 and t_2 .

Sample Input 0

015

Sample Output 0

12