

»Лекционен курс »Интелигентни системи

Синтаксис

- » Ще направим преглед на основополагащите концепции за логическо представяне и логически заключения
 - > Тези концепции са независими от конкретните форми на логиката
- » Една База Знания (Б3) се състои от отделни съждения, които са представени съответно определен синтаксис

» Синтаксис

> Правила за коректно изграждане на съждения

» Пример:

- > "х + у = 4" добре дефинирано съждение на езика на математиката
- > "х4у+ = " не добре дефинирано съждение на езика на математиката

Семантика

- » Семантика или значението на съжденията
 - > Дефинира истинността на всяко съждение, относно всеки възможен свят
- » Пример:
 - > Семантиката на съждението "x + y = 4" определя, че е вярно в един възможен свят, където "x е 2" и "y е 2"
 - > Но грешно в един свят, където "х е 1" и "у е 1"
- » В стандартната логика всяко съждение трябва да бъде вярно или грешно – няма междинно положение

Модели

- » По-прецизно определение: Модел (вместо "възможен свят") > "m изпълнява α " или "m е модел на α " – α е вярно в m
- » Модел: математическа абстракция, която определя дали едно съждение е вярно или грешно
- » $M(\alpha)$: множеството на всички модели на α

Модели

» Пример:

- > х жени и у мъже играят бридж
- > Съждението "х + у = 4" е вярно, ако общият брой на играчите е 4

Модели

» Пример:

- > х жени и у мъже играят бридж
- > Съждението "х + у = 4" е вярно, ако общият брой на играчите е 4
- > Всички възможни присвоявания на цели числа за х и у
- > Всяко присвояване има някаква вярностна стойност

Удовлетворява

- » Ако едно съждение α е вярно в един модел m, тогава казваме, че "m удовлетворява α "
- » Или просто "m е модел на lpha"
- » След като имаме понятие за истинност на съжденията, сме готови за въвеждане на логическо следствие

Логическо следствие

» Логическо следствие

- > Едно твърдение следва логически от друго
- > Математически запис: $\alpha \models \beta$, " β е логическо следствие от α "
- > Формална дефиниция: $\alpha \vDash \beta$ е валидно тогава, когато във всеки модел, в който α е вярно, β също е вярно
- > Може да бъде записано: " $\alpha \models \beta$ тогава и само тогава, когато $M(\alpha) \subseteq M(\beta)$ "

» Релацията "следствие" е подобна на тази от математиката

> "от x = 0 следва, че xy = 0" – очевидно е, че във всеки модел, в който x е 0, xy ще бъде също 0

Пример за света на W.

БЗ = възприятия + знание на агента за правилата, действащи в света W.

- БЗ множество от съждения (или отделни съждения)
- БЗ грешна в модели, които противоречат на това, което знае агентът

Агентът се интересува за това, дали съседните полета [1,2], [2,2] и [3,1] съдържат яма

 $2^3 = 8$ възможни модела

БЗ за примера:

- Знанията на агента за W. света
- Възприятията на агента ,,нищо" β [1,1] и ,,полъх" β [2,1]

Анализ на света на W.

Анализ на света на W.

Модели за α_1

 $α_1 = ,, H$ 9Μα 9Μα β [1,2]"

Във всеки модел, в който БЗ е вярна, α_1 също е вярно – следователно БЗ $\models \alpha_1$

Модели за α_2

Изводи

» Примерът демонстрира не само логическото следствие, но показва също как се използва неговата дефиниция за да се правят заключения

» Алгоритъм за извод:

- > Познат като "проверка на модела"
- > Всички възможни модели се проверяват за това, дали α е вярна в тези от тях, в които БЗ е вярна
 - + T.e. $M(53) \subseteq M(\alpha)$

Логически извод

- » Изводът е процес
 - > Б3 $\vdash_{i} \alpha$ α изведено от Б3 посредством і
- » Надежден алгоритъм за извод
 - > Извежда само изводими съждения
- » Желателно, алгоритмите да имат две свойства:
 - > Коректност извежда само изводими съждения
 - > Пълнота може да изведе всяко изводимо съждение
 - + За крайни множества систематично търсене
 - + За безкрайни множества за щастие съществуват пълни процедури за извод за логики, които са достатъчно мощни (изразителни) за да покрият много БЗ
- » Лесно се доказва, че "Проверка на модела" (Model-Checking) където е приложим е коректен метод за извод
- » За примера: понеже копата е крайно голяма, едно систематично изследване може винаги да установи дали иглата е в нея

Логически извод

- » Описахме процес на извод, чиито заключения са гарантирани във всеки свят, в който премисата (условната част) е вярна
 - > По-специално, ако КВ е вярна в реалния свят, тогава всяко съждение α , изведено от КВ чрез коректна процедура за извод, също е вярно в реалния свят

