Solutions to David A.Cox "Galois Theory"

Richard Ganaye

October 13, 2021

6 Chapter 6: THE GALOIS GROUP

6.1 DEFINITION OF THE GALOIS GROUP

Ex. 6.1.1 Let $L = F(\alpha_1, ..., \alpha_n)$, and let $p_i \in F[x]$ be a nonzero polynomial vanishing at α_i . Explain why the proof of Corollary 6.1.5 implies that $|Gal(L/F)| \leq deg(p_1) \cdots deg(p_n)$.

Proof. $L = F(\alpha_1, \dots, \alpha_n)$, where α_i is algebraic over F. Then α_i is the root of a polynomial $p_i \in F(x)$.

By Proposition 6.1.4, every $\sigma \in \operatorname{Gal}(L/F)$ is uniquely determined by the images of α_i , $i = 1, \dots, n$. α_i being a root of $p_i \in F[x]$, $\sigma(\alpha_i)$ is also a root of p_i . So there exist only $\deg(p_i)$ possibilities for the choice of $\sigma(\alpha_i)$.

More formally, write R_i the set of the roots of p_i in L, then $\sigma(\alpha_i) \in R_i$, with $|R_i| \le \deg(p_i)$, and the map

$$\begin{cases}
\operatorname{Gal}(L/F) & \to & R_1 \times \cdots \times R_n \\
\sigma & \mapsto & (\sigma(\alpha_1), \dots, \sigma(\alpha_n))
\end{cases}$$

is injective (one-to-one), since $\sigma \in \operatorname{Gal}(L/F)$ is uniquely determined by the images of α_i , $i = 1, \dots, n$.

Therefore

$$|\operatorname{Gal}(L/F)| \le |R_1| \times \cdots \times |R_n| \le \deg(p_1) \cdots \deg(p_n).$$

Ex. 6.1.2 Consider the extension $\mathbb{Q} \subset L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. In Exercise 13 of Section 5.1, you used Proposition 5.1.8 to construct an automorphism of L that takes $\sqrt{3}$ to $-\sqrt{3}$ and is the identity on $\mathbb{Q}(\sqrt{2})$. By interchanging the roles of 2 and 3 in this construction, explain why all possible signs in (6.1) can occur. This shows that $|\operatorname{Gal}(L/\mathbb{Q})| = 4$.

Proof. As $L = \mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of $x^2 - 3$ over $\mathbb{Q}(\sqrt{2})$, and as $x^2 - 3$ is irreducible over $\mathbb{Q}(\sqrt{2})$ (see Exercise 5.1.13), there exists by Proposition 5.1.8 a field isomorphism $\sigma: L \to L$ which is identity on $\mathbb{Q}(\sqrt{2})$ and which takes $\sqrt{3}$ on $-\sqrt{3}$. As σ is identity on $\mathbb{Q}(\sqrt{2})$, we have also $\sigma(\sqrt{2}) = \sqrt{2}$. As the restriction of σ to $\mathbb{Q}(\sqrt{2})$ is identity, the restriction of σ to \mathbb{Q} is the identity on \mathbb{Q} , so $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$.

Similarly $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is the splitting field of x^2-2 over $\mathbb{Q}(\sqrt{3})$, and x^2-2 is irreducible over $\mathbb{Q}(\sqrt{3})$ by the Reciprocity Theorem (see Exercise 4.3.6), so there exists by Proposition 5.1.8 a field isomorphism $\tau: L \to L$ which is identity on $\mathbb{Q}(\sqrt{3})$ and which takes $\sqrt{2}$ on $-\sqrt{2}$. As τ is identity on $\mathbb{Q}(\sqrt{3})$, we have also $\sigma(\sqrt{3}) = \sqrt{3}$, and $\tau \in \operatorname{Gal}(L/\mathbb{Q})$.

Moreover $1_L(\sqrt{2}) = \sqrt{2}, 1_L(\sqrt{3}) = \sqrt{3}$, with $1_L \in Gal(L/\mathbb{Q})$.

Finally $\sigma \tau = \sigma \circ \tau \in \operatorname{Gal}(L/\mathbb{Q})$ satisfies $(\sigma \tau)(\sqrt{2}) = -\sqrt{2}, (\sigma \tau)(\sqrt{3}) = -\sqrt{3}$.

All possibilities in Example 6.1.10 can occur. Consequently $|\operatorname{Gal}(L/\mathbb{Q})| \geq 4$. As it is proved in Example 6.1.10 that $|\operatorname{Gal}(L/\mathbb{Q})| \leq 4$, then $|\operatorname{Gal}(L/\mathbb{Q})| = 4$, and

$$\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}) = \{1_L, \sigma, \tau, \sigma\tau\}.$$

Ex. 6.1.3 This exercise will prove a generalized form of Proposition 6.1.11.

- (a) Let $\varphi: L_1 \to L_2$ be an isomorphism of fields. Given a subfield $F_1 \subset L_1$, set $F_2 = \varphi(F_1)$, which is a subfield of L_2 . Prove that the map sending $\sigma \in \operatorname{Gal}(L_1/F_1)$ to $\varphi \circ \sigma \circ \varphi^{-1}$ induces an isomorphism $\operatorname{Gal}(L_1/F_1) \simeq \operatorname{Gal}(L_2/F_2)$.
- (b) Explain why Proposition 6.1.11 follows from part (a).

Proof. (a) If $\varphi: L_1 \to L_2$ is a field isomorphism, and $\sigma \in \operatorname{Gal}(L_1/F_1)$, then $\sigma: L_1 \to L_1$, and so $\varphi \circ \sigma \circ \varphi^{-1}$ is a map from L_2 to L_2 , composed of three field isomorphisms. Therefore $\varphi \circ \sigma \circ \varphi^{-1}$ is an automorphism of L_2 .

Moreover, if $\alpha \in F_2$, then $\varphi^{-1}(\alpha) \in F_1$, since $F_2 = \varphi(F_1)$. As $\sigma \in \text{Gal}(L_1/F_1)$, σ is identity on F_1 , thus $\sigma(\varphi^{-1})(\alpha) = \varphi^{-1}(\alpha)$, and $(\varphi \circ \sigma \circ \varphi^{-1})(\alpha) = \alpha$. Consequently

$$\varphi \circ \sigma \circ \varphi^{-1} \in \operatorname{Gal}(L_2/F_2).$$

Let

$$\chi: \left\{ \begin{array}{ccc} \operatorname{Gal}(L_1/F_1) & \to & \operatorname{Gal}(L_2/F_2) \\ \sigma & \mapsto & \varphi \circ \sigma \circ \varphi^{-1} \end{array} \right.$$

If $\sigma, \tau \in \operatorname{Gal}(L_1/F_1)$,

$$\chi(\sigma)\chi(\tau) = \varphi \circ \sigma \circ \varphi^{-1} \circ \varphi \circ \tau \circ \varphi^{-1} = \varphi \circ \sigma \circ \tau \circ \varphi^{-1} = \chi(\sigma \circ \tau).$$

 χ is so a group homomorphism.

Moreover, if $\chi(\sigma) = id$, then $\varphi \circ \sigma \circ \varphi^{-1} = id$, then $\sigma = \varphi^{-1} \circ \varphi = id : \ker(\chi) = \{id\}$, so χ is injective.

If $\tau \in \operatorname{Gal}(L_2/F_2)$, let $\sigma = \varphi^{-1} \circ \tau \circ \varphi$, then $\sigma \in \operatorname{Gal}(L_1/F_1)$ with the same arguments, and $\chi(\sigma) = \tau$, thus χ is surjective.

Conclusion : $\chi : \operatorname{Gal}(L_1/F_1) \to \operatorname{Gal}(L_2/F_2)$ is a group isomorphism.

(b) Suppose as in Proposition 6.1.11 that the restriction of φ to F is identity, and let $F_1 = F$. Then $F_2 = \varphi(F_1) = F_1 = F$, and part (a) shows that

 $\chi: \operatorname{Gal}(L_1/F) \to \operatorname{Gal}(L_2/F), \sigma \mapsto \varphi \circ \sigma \circ \varphi^{-1}$ is a group isomorphism: this is Proposition 6.1.11.

- **Ex. 6.1.4** In the Historical Notes, we saw that Dedekind defined a "permutation" $\alpha \to \alpha'$ to be a map $\Omega \to \omega'$ satisfying $(\alpha + \beta)' = \alpha' + \beta'$ and $(\alpha \beta)' = \alpha' \beta'$ for all $\alpha \beta \in \Omega$. Dedekind also assumes that $\Omega' = \{\alpha' \mid \alpha \in \Omega\}$ and that the α' are not all zero.
 - (a) Show that $1 \in \Omega$ maps to $1 \in \Omega'$. Once this is proved, it follows that $\alpha \mapsto \alpha'$ is a ring homomorphism (Recall that sending 1 to 1 is part of the definition of ring homomorphism given in Appendix A.)
 - (b) Show that the map $\alpha \to \alpha'$ is one-to-one. This shows that Dedekind's definition of field is equivalent to ours.

Proof. Let $\varphi: \alpha \to \alpha'$. By hypothesis, for all $\alpha, \beta \in \Omega$,

$$\varphi(\alpha + \beta) = \varphi(\alpha) + \varphi(\beta), \varphi(\alpha\beta) = \varphi(\alpha)\varphi(\beta).$$

(a) By hypothesis, there exists $\alpha \in \Omega$ such that $\alpha' = \varphi(\alpha) \neq 0$. Then $\varphi(\alpha) = \varphi(\alpha.1) = \varphi(\alpha)\varphi(1)$, and since $\varphi(\alpha) \neq 0$, $\alpha' = \varphi(\alpha)$ has a inverse in Ω , thus

$$\varphi(1)=1.$$

 φ is so a ring homomorphism between two fields.

(b) We show that φ is injective:

If $a \neq 0$, there exists an inverse b of a: ab = 1, thus $\varphi(a)\varphi(b) = \varphi(ab) = \varphi(1) = 1$, therefore $\varphi(a) \neq 0$. The kernel of φ is null, thus φ is injective.

As $\Omega' = \{\varphi(\alpha), \alpha \in \Omega\}$, φ is surjective. So $\varphi : \Omega \to \Omega'$ is a field isomorphism.

Ex. 6.1.5 Prove the following inequalities:

- (a) $|\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})/\mathbb{Q})| \le 8$
- (b) $|\operatorname{Gal}(\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_n})/\mathbb{Q})| \leq 2^n$, where p_1,\ldots,p_n are the first n primes. In each case, one can show that these are actually equalities.

Proof. (a) As $\sqrt{2}$ is a root of $f_1 = x^2 - 2$, $\sqrt{3}$ a root of $f_2 = x^2 - 3$, and $\sqrt{5}$ a root of $f_3 = x^2 - 5$, Exercise 1 shows that

$$|\operatorname{Gal}(F(\sqrt{2}, \sqrt{3}, \sqrt{5})/F)| \le \deg(f_1) \deg(f_2) \deg(f_3) = 8.$$

(b) As $\sqrt{p_i}$ is a root of $f_i = x^2 - p_i$, the same Exercise 1 shows that

$$|\operatorname{Gal}(F(\sqrt{p_1},\ldots,\sqrt{p_n})/F)| \leq \deg(f_1)\cdots \deg(f_n) = 2^n.$$

Ex. 6.1.6 If we apply Exercise 1 to the extension $\mathbb{Q} \subset L = \mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15})$, we get the inequality $|\operatorname{Gal}(L/\mathbb{Q})| \leq 8$. Show that $|\operatorname{Gal}(L/\mathbb{Q})| \leq 4$.

Proof.
$$L = \mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}).$$

$$\sqrt{15} = \sqrt{3 \cdot 5} = 3\frac{\sqrt{10}}{\sqrt{6}} \in \mathbb{Q}(\sqrt{6}, \sqrt{10}), \text{ therefore}$$

$$L = \mathbb{Q}(\sqrt{6}, \sqrt{10}, \sqrt{15}) = \mathbb{Q}(\sqrt{6}, \sqrt{10}).$$

Then Exercise 1 shows that

$$|\operatorname{Gal}(L/\mathbb{Q})| \le 4.$$

Note: moreover, $x^2 - 10$ is irreducible over $\mathbb{Q}(\sqrt{6})$, otherwise the roots $\pm \sqrt{10}$ of f would be in $\mathbb{Q}(\sqrt{6})$, and then

$$\sqrt{10} = a + b\sqrt{6}, \ a, b \in \mathbb{Q}(\sqrt{6}).$$

By squaring, we obtain $10 = a^2 + 6b^2 + 2ab\sqrt{6}$. The irrationality of $\sqrt{6}$ shows that $ab = 0, a^2 + 6b^2 = 10$. Since $\sqrt{10}$ and $\sqrt{\frac{5}{3}}$ are irrational, this system has no solution in $\mathbb{Q} \times \mathbb{Q}$.

 $x^2 - 10$ is irreducible over $\mathbb{Q}(\sqrt{6})$, thus

$$[\mathbb{Q}(\sqrt{6}, \sqrt{10}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{6}, \sqrt{10}) : \mathbb{Q}(\sqrt{6}) \cdot [\mathbb{Q}(\sqrt{6}) : \mathbb{Q}] = 4.$$

Using section 6.2, as L is the splitting field of the separable polynomial $(x^2 - 6)(x^2 - 10)$ over \mathbb{Q} , we obtain

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 4.$$

Ex. 6.1.7 Let $F \subset L$ be a finite extension, and let $\sigma : L \to L$ be a ring homomorphism that is the identity on F. This exercise will show that σ is an automorphism.

- (a) Show that σ is one-to-one.
- (b) Show that σ is onto.

Proof. (a) Let $a \in L$, $a \neq 0$. Then a has an inverse b in the field L, so ab = 1, $\sigma(a)\sigma(b) = \sigma(1) = 1$, $\sigma(a) \neq 0$. Therefore $\ker(\sigma) = \{0\}$, thus σ is injective. $\sigma: L \to L$ is an injective field homomorphism.

(b) As $K \subset L$ is a finite extension, L is a finite dimensional vector space over F. As σ is identity on F, $\sigma : L \to L$ is an injective linear application on a finite dimensional vector space, thus σ is also surjective :

$$\sigma \in \operatorname{Gal}(L/F)$$
.

6.2 GALOIS GROUPS OF SPLITTING FIELDS

Ex. 6.2.1 Complete Example 6.2.2 by showing that $Gal(L/\mathbb{Q}) = \{1_L, \sigma, \tau, \sigma\tau\}$ and that $Gal(L/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Proof. We proved in Exercise 6.1.2 that

$$G := \operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}) = \{1_L, \sigma, \tau, \sigma\tau\}.$$

Every group of order 4 is abelian, and isomorphic to $\mathbb{Z}/4\mathbb{Z}$ or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

As G has at least 2 elements of order 2, since $\sigma^2 = \tau^2 = 1_L$. This is not the case in $\mathbb{Z}/4\mathbb{Z}$. Thus

$$\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3})/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Ex. 6.2.2 Consider $\mathbb{Q} \subset L = \mathbb{Q}(\omega, \sqrt[3]{2})$, where $\omega = e^{2\pi i/3}$.

- (a) Explain why $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ is uniquely determined by $\sigma(\omega) \in \{\omega, \omega^2\}$ and $\sigma(\sqrt[3]{2}) \in \{\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}\}.$
- (b) Explain why all possible combinations for $\sigma(\omega)$ and $\sigma(\sqrt[3]{2})$ actually occur.

In the next section we will show that $Gal(L/Q) \simeq S_3$.

Proof. (a) As $L = \mathbb{Q}(\omega, \sqrt[3]{2})$, Proposition 6.1.4(b) shows that $\sigma \in \text{Gal}(L/\mathbb{Q})$ is uniquely determined by $\sigma(\omega), \sigma(\sqrt[3]{2})$.

Moreover, by theorem 6.1.4 (a), $\sigma(\omega)$ is a root of $f = x^2 + x + 1$, whose roots are ω, ω^2 , and $\sigma(\sqrt[3]{2})$ is a root of $g = x^3 - 2$ whose roots are $\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}$.

Then Exercise 6.1.1 shows that

$$|\operatorname{Gal}(L/\mathbb{Q})| \le \deg(f) \deg(g) = 6.$$

(b) L is the splitting field of the separable irreducible polynomial $g=x^3-2\in\mathbb{Q}[x]$. Indeed, g is irreducible over \mathbb{Q} since $\deg(g)=3$ and g has no root in \mathbb{Q} . Moreover g is separable since its roots in \mathbb{C} are $\sqrt[3]{2}, \omega\sqrt[3]{2}, \omega^2\sqrt[3]{2}$ which are distinct.

By theorem 6.2.1, $|Gal(L/\mathbb{Q})| = [L : \mathbb{Q}]$, and by Exercise 5.1.8, $[L : \mathbb{Q}] = 2 \times 3 = 6$, therefore

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 6.$$

If all possible combinations for $\sigma(\omega)$ and $\sigma(\sqrt[3]{2})$ don't actually occur, then $|Gal(L/\mathbb{Q})| < 6$, which is false, so all possible combinations occur.

Ex. 6.2.3 Consider $\mathbb{Q} \subset L = \mathbb{Q}(\zeta_5, \sqrt[5]{2})$, where $\zeta_5 = e^{2\pi i/5}$. By proposition 4.2.5, the minimal polynomial of ζ_5 over \mathbb{Q} is $x^4 + x^3 + x^2 + x + 1$.

- (a) Show that $[L:\mathbb{Q}]=20$.
- (b) Show that L is the splitting field of $x^5 2$ over \mathbb{Q} , and conclude that $Gal(L/\mathbb{Q})$ is a group of order 20.

We will describe the structure of this Galois group in section 6.4.

Proof. Write $\zeta = \zeta_5$.

(a) as $L = \mathbb{Q}(\zeta, \sqrt[5]{2})$, Proposition 6.1.4(b) shows that $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ is uniquely determined by $\sigma(\zeta), \sigma(\sqrt[3]{2})$.

Moreover by Proposition 6.4.1(a), $\sigma(\zeta)$ is a root of $f = x^4 + x^3 + x^2 + x + 1$, whose roots are ζ^i , $1 \le i \le 4$, and $\sigma(\sqrt[5]{2})$ is a root of $g = x^5 - 2$, whose roots are $\zeta^j \sqrt[5]{2}$, $0 \le j \le 4$.

Then Exercise 6.1.1 shows that

$$|\operatorname{Gal}(L/\mathbb{Q})| \le \deg(f) \deg(g) = 20.$$

(b) L is the splitting field of the separable irreducible polynomial $g = x^5 - 2 \in \mathbb{Q}[x]$ over \mathbb{Q} . Indeed, g is irreducible over \mathbb{Q} by Schönemann-Eisenstein Criterion with p = 2, and separable since its roots in \mathbb{C} are $\sqrt[5]{2}$, $\zeta^5\sqrt{2}$,

By theorem 6.2.1, $|Gal(L/\mathbb{Q})| = [L : \mathbb{Q}]$, and by Exercise 5.1.8, $[L : \mathbb{Q}] = 4 \times 5 = 20$, therefore

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 20.$$

Ex. 6.2.4 Consider the nth root of unity $\zeta_n = e^{2\pi i/n}$. We call $\mathbb{Q} \subset \mathbb{Q}(\zeta_n)$ a cyclotomic extension of \mathbb{Q} .

- (a) Show that $\mathbb{Q} \subset \mathbb{Q}(\zeta_n)$ is a splitting field of a separable polynomial.
- (b) Given $\sigma \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, show that $\sigma(\zeta_n) = \zeta_n^i$ for some integer i.
- (c) Show that the integer i in part (b) is relatively prime to n.
- (d) The set of congruence classes modulo n relatively prime to n form a group under multiplication, denoted $(\mathbb{Z}/n\mathbb{Z})^*$. Show that the map $\sigma \mapsto [i]$, where $\sigma(\zeta_n) = \zeta_n^i$, define a one-to-one group homomorphism $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*$.
- (e) The order of $(\mathbb{Z}/n\mathbb{Z})^*$ is $|(\mathbb{Z}/n\mathbb{Z})^*| = \phi(n)$, where $\phi(n)$ is the Euler ϕ -function from number theory. Prove that the homomorphism of part (d) is an isomorphism if and only if $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \phi(n)$.
- (f) Let p be prime. Use part (e) and Proposition 4.2.5 to show that $Gal(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^*$.

In chapter 9 we will prove that $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \phi(n)$. By part (e), this will imply that there is an isomorphism $Gal(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^*$ for all n.

Proof. (a) ζ_n is a root of $x^n - 1 \in \mathbb{Q}[x]$. Write \mathbb{U}_n the set of nth roots of unity in \mathbb{C} :

$$\mathbb{U}_n = \{\zeta_n^k, \ 0 \le k \le n - 1\}$$

and $|\mathbb{U}_n| = n$.

As $x^n - 1 = \prod_{\zeta \in \mathbb{U}_n} (x - \zeta)$, $x^n - 1$ is separable, and the splitting field of $x^n - 1$ over \mathbb{Q} is $\mathbb{Q}(\zeta, \dots, \zeta^{n-1}) = \mathbb{Q}(\zeta)$

Conclusion: $\mathbb{Q}(\zeta_n)$ is the splitting field of the separable polynomial $x^n - 1 \in \mathbb{Q}[x]$ over \mathbb{Q} .

(b) Let $\sigma \in Gal(\mathbb{Q}(\zeta_n) : \mathbb{Q})$.

As ζ_n is a root of $x^n - 1 \in \mathbb{Q}[x]$, by Proposition 6.1.4(a), $\sigma(\zeta_n)$ is a root of $x^n - 1$, thus $\sigma(\zeta_n) \in \mathbb{U}_n$, so

$$\sigma(\zeta_n) = \zeta_n^i, \ i \in \mathbb{N}.$$

(c) Note that $\zeta_n = e^{2i\pi/n}$ is an element of order n in the group \mathbb{U}_n . Indeed, for all $k \in \mathbb{Z}$,

$$\zeta_n^k = 1 \iff e^{2i\pi k/n} = 1 \iff k/n \in \mathbb{Z} \iff n \mid k.$$

 σ being a field isomorphism, $\sigma(\zeta_n) \in \mathbb{U}_n$ is also of order n. Indeed, for all $k \in \mathbb{Z}$,

$$\sigma(\zeta_n)^k = 1 \iff \sigma(\zeta_n^k) = 1 \iff \zeta_n^k = 1 \iff n \mid k.$$

If the order of an element ζ is $|\zeta| = n$, then for all integer j, the order of ζ^j in \mathbb{U}_n is

$$|\zeta^j| = \frac{n}{n \wedge j}.$$

Indeed for all $k \in \mathbb{Z}$,

$$(\zeta^j)^k = 1 \iff n \mid jk \iff \tfrac{n}{n \wedge j} \mid \tfrac{j}{n \wedge j}k \iff \tfrac{n}{n \wedge j} \mid k \text{ (since } \tfrac{n}{n \wedge j} \wedge \tfrac{j}{n \wedge j} = 1).$$

If we apply this result to $\zeta_n^i = \sigma(\zeta_n)$, we obtain

$$\frac{n}{n \wedge i} = |\zeta_n^i| = |\sigma(\zeta_n)| = n,$$

thus

$$n \wedge i = 1$$
.

(d) Let

$$\varphi: \left\{ \begin{array}{ccc} \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) & \to & (\mathbb{Z}/n\mathbb{Z})^* \\ \sigma & \mapsto & [i]: \ \sigma(\zeta_n) = \zeta_n^i \end{array} \right.$$

Note that φ is well defined, since $\zeta_n^i = \zeta_n^j$ implies $i \equiv j \pmod{n}$ and so [i] = [j]. We show that φ is a group homomorphism.

If $\sigma, \tau \in \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, and $\varphi(\sigma) = [i], \varphi(\tau) = [j]$, then $\sigma(\zeta_n) = \zeta_n^i, \tau(\zeta_n) = \zeta_n^j$, thus

$$(\sigma \circ \tau)(\zeta_n) = \sigma((\zeta_n)^j) = (\sigma(\zeta_n))^j = (\zeta_n^i)^j = \zeta_n^{ij},$$

therefore

$$\varphi(\sigma \circ \tau) = [ij] = [i][j] = \varphi(\sigma)\varphi(\tau).$$

 φ is injective :

If $\varphi(\sigma) = [1]$, then $\sigma(\zeta_n) = \zeta_n$. Since $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$, σ is uniquely determined by the image of ζ_n , thus $\sigma = 1_{\mathbb{Q}(\zeta_n)}$. The kernel of φ is trivial, thus φ is injective.

Conclusion: there exist an injective group homomorphism

$$\varphi: \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*.$$

(e) As $\mathbb{Q}(\zeta_n)$ is the splitting field of a separable polynomial over \mathbb{Q} ,

$$|\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})| = [\mathbb{Q}(\zeta_n) : \mathbb{Q}].$$

If we suppose that $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \phi(n)$, φ is an injection between two set of same cardinality, thus φ is a bijection, and so φ is a group isomorphism. Conversely, if φ is a group isomorphism, then $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})| = \phi(n)$

Conclusion: $[\mathbb{Q}(\zeta_n):\mathbb{Q}] = \phi(n)$ if and only if $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \simeq (\mathbb{Z}/n\mathbb{Z})^*$.

(f) If p is prime, we know that $f = 1 + x + \cdots + x^{p-1}$ is irreducible over \mathbb{Q} , so f is the minimal polynomial of ζ_p over \mathbb{Q} . This implies that $[\mathbb{Q}(\zeta_p):\mathbb{Q}] = p - 1 = \phi(p)$. By part (e), we know then that $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \simeq (\mathbb{Z}/p\mathbb{Z})^*$ (and so this group is cyclic).

Ex. 6.2.5 Let F have characteristic p, and assume that $f = x^p - x + a \in F[x]$ is irreducible over F. Then let $L = F(\alpha)$, where α is a root of f in some splitting field. In Exercise 16 of Section 5.3, you showed that $F \subset L$ is a normal extension.

- (a) Show that |Gal(L/F)| = p, and use this to prove that $Gal(L/F) \simeq \mathbb{Z}/p\mathbb{Z}$.
- (b) Exercise 15 of Section 5.3 showed that $\alpha + 1$ is a root of f. For $i = 0, \ldots, p 1$, show that there is a unique element of Gal(L/F) that takes α to $\alpha + i$.
- (c) Use part (b) to describe an explicit isomorphism $Gal(L/F) \simeq \mathbb{Z}/p\mathbb{Z}$.

Proof. (a) $L = F(\alpha)$ and α has for minimal polynomial $f = x^p - x + a$, thus [L : F] = p. By Exercise 5.3.16, we know that $L = F(\alpha) = F(\alpha, \alpha + 1, \dots, \alpha + p - 1)$ is the splitting field of

$$f = x^p - x - a = (x - \alpha)(x - \alpha - 1) \cdots (x - \alpha - p + 1).$$

Therefore $F(\alpha)$ is the splitting field of a separable polynomial $f \in F[x]$, and by theorem 6.2.1

$$|\operatorname{Gal}(L/F)| = [L:F] = p.$$

Every group of order p, where p is prime, is cyclic and isomorphic to $\mathbb{Z}/p\mathbb{Z}$:

$$Gal(L/F) \simeq \mathbb{Z}/p\mathbb{Z}$$
.

(b) $F \subset L$ is by part (a) a normal extension, and $f \in F[x]$ is irreducible over F by hypothesis. The roots of f in L are $\alpha, \alpha + 1, \ldots, \alpha + p - 1$. By Proposition 5.1.8, there exists a field isomorphism $\sigma_i : L \to L$ which is identity on F and which takes α on $\alpha + i, i \in \mathbb{F}_p$. Then $\sigma_i \in \operatorname{Gal}(L/F), \sigma(\alpha) = \alpha + i$. As $L = F(\alpha)$, σ is uniquely determined by the image of α .

Conclusion: α being a fixed root of f, and $i \in \mathbb{F}_p$, there exist a unique $\sigma_i \in \operatorname{Gal}(L/F)$ such that $\sigma_i(\alpha) = \alpha + i$.

(c) Let

$$\varphi \left\{ \begin{array}{ccc} \operatorname{Gal}(L/F) & \to & \mathbb{F}_p \\ \sigma & \mapsto & \sigma(\alpha) - \alpha \end{array} \right.$$

- For all $\sigma \in \operatorname{Gal}(L/F)$, $\varphi(\sigma) \in \mathbb{F}_p$ since $\sigma(\alpha)$ is a root of f, so $\sigma(\alpha) \alpha = i \in \mathbb{F}_p$.
- φ is bijective by part(b), since for all $i \in \mathbb{F}_p$, there exists a unique $\sigma \in \operatorname{Gal}(L/F)$ such that $\varphi(\sigma) = \sigma(\alpha) \alpha = i$.
- φ is a group homomorphism : if $\sigma, \tau \in \operatorname{Gal}(L/F)$, and $\varphi(\sigma) = i, \varphi(\tau) = j$, then $\sigma(\alpha) = \alpha + i, \tau(\alpha) = \alpha + j (i, j \in \mathbb{F}_p)$.

 $(\sigma \circ \tau)(\alpha) = \sigma(\alpha + j) = \sigma(\alpha) + \sigma(j) = (\alpha + i) + j = \alpha + (i + j) \ (\sigma(j) = j \text{ since } \sigma \text{ is identity on } F, \text{ a fortiori on } \mathbb{F}_p \subset F).$

As
$$(\sigma \circ \tau)(\alpha) = \alpha + (i+j)$$
, $\varphi(\sigma \circ \tau) = i+j = \varphi(\sigma) + \varphi(\tau)$.

 $\varphi: \operatorname{Gal}(L/F) \to \mathbb{F}_p$ is so a group isomorphism.

Ex. 6.2.6 Let $f \in F[x]$ be irreducible and separable of degree n, and let $F \subset L$ be a splitting field of f. Prove that n divides |Gal(L/F)|.

Proof. Let L a splitting field of f over F, where f is a separable irreducible polynomial. By Proposition 6.2.1 (using the separability of f):

$$|\operatorname{Gal}(L/F)| = [L:F].$$

Let α a root of f in L. As f is irreducible, f is the minimal polynomial of α over F, thus $[F(\alpha):F]=\deg(f)=n$, and

$$[L:F] = [L:F(\alpha)][F(\alpha):F] = n[L:F(\alpha)]:$$

So n divides |Gal(L/F)|.

6.3 PERMUTATION OF THE ROOTS

Ex. 6.3.1 Consider $\operatorname{Gal}(L/\mathbb{Q})$, where $L = \mathbb{Q}(\omega, \sqrt[3]{2}), \omega = e^{2\pi i/3}$. By Exercise 2 of section 6.2, there are $\sigma, \tau \in \operatorname{Gal}(L/\mathbb{Q})$ such that

$$\sigma(\sqrt[3]{2}) = \omega\sqrt[3]{2}, \sigma(\omega) = \omega \quad \text{and} \quad \tau(\sqrt[3]{2}) = \sqrt[3]{2}, \tau(\omega) = \omega^2.$$

Find the permutations in S_3 corresponding to σ and τ .

Proof. $L = \mathbb{Q}(\omega, \sqrt[3]{2})$ is the splitting field over \mathbb{Q} of $f = x^3 - 2$. By Exercise 6.2.2, there exist $\sigma, \tau \in \operatorname{Gal}(L/\mathbb{Q})$ such that

$$\sigma(\sqrt[3]{2}) = \omega \sqrt[3]{2}, \sigma(\omega) = \omega \text{ and } \tau(\sqrt[3]{2}) = \sqrt[3]{2}, \tau(\omega) = \omega^2.$$

Number the roots of f by $\alpha_1 = \sqrt[3]{2}$, $\alpha_2 = \omega \sqrt[3]{2}$, $\alpha_3 = \omega^2 \sqrt[3]{2}$.

Then $\sigma(\alpha_1) = \alpha_2, \sigma(\alpha_2) = \alpha_3, \sigma(\alpha_3) = \alpha_1$. If we write $\tilde{\sigma} = (1, 2, 3)$, then for $i = 1, 2, 3, \sigma(\alpha_i) = \sigma(\alpha_{\tilde{\sigma}(i)})$, so the 3-cycle $\tilde{\sigma} = (1, 2, 3)$ corresponds to σ .

 $\tau(\alpha_1) = \alpha_1, \tau(\alpha_2) = \alpha_3, \tau(\alpha_3) = \alpha_2, \text{ so } \tilde{\tau} = (2,3) \text{ corresponds to } \tau.$

As S_3 is generated by $\tilde{\sigma}, \tilde{\tau}$, $\operatorname{Gal}(L/\mathbb{Q})$ is generated by σ, τ .

Ex. 6.3.2 For each of the following Galois groups, find an explicit subgroup of S_4 that is isomorphic to the group. Also, the Galois group is isomorphic to which known group?

- (a) $\operatorname{Gal}(\mathbb{Q}(i,\sqrt{2})/\mathbb{Q})$.
- (b) $\operatorname{Gal}(\mathbb{Q}(i, \sqrt[4]{2})/\mathbb{Q}).$

Proof. (a) Gal($\mathbb{Q}(i,\sqrt{2})/\mathbb{Q}$) = $\{1_{\mathbb{Q}}, \sigma, \tau, \sigma\tau\}$, where

$$\sigma(i) = -i, \sigma(\sqrt{2}) = \sqrt{2},$$

$$\tau(i) = i, \tau(\sqrt{2}) = -\sqrt{2}$$
.

As every $g \in \operatorname{Gal}(\mathbb{Q}(i,\sqrt{2})/\mathbb{Q})$ satisfies $g^2 = 1_{\mathbb{Q}}$,

$$\operatorname{Gal}(\mathbb{Q}(i,\sqrt{2})/\mathbb{Q}) \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$$

(Klein's ViertelGruppe: cf Exercise 6.2.1 and example 6.2.2 for more details).

If we number the roots by $\alpha_1 = i, \alpha_2 = -i, \alpha_3 = \sqrt{2}, \alpha_4 = -\sqrt{2}$, then (1,2) corresponds to σ , and (3,4) to τ .

As subgroup of S_4 , $Gal(Q(i, \sqrt{2})/\mathbb{Q})$ is represented by

$$\{(), (1,2), (3,4), (1,2)(3,4)\} = \langle (1,2), (3,4) \rangle \simeq \operatorname{Gal}(\mathbb{Q}(i,\sqrt{2})/\mathbb{Q}).$$

(b)

$$f = x^{4} - 2$$

$$= (x^{2} - \sqrt{2})(x^{2} + \sqrt{2})$$

$$= (x - \sqrt[4]{2})(x + \sqrt[4]{2})(x + i\sqrt[4]{2})(x - i\sqrt[4]{2})$$

The splitting root of f over \mathbb{Q} is so $L = \mathbb{Q}(i, i\sqrt[4]{2}) = \mathbb{Q}(i, \sqrt[4]{2})$. f is separable, since f has simple roots in its splitting field. L is so the splitting field over \mathbb{Q} of a separable polynomial, therefore by Theorem 6.2.1,

$$|\mathrm{Gal}(L:\mathbb{Q})| = [L:\mathbb{Q}].$$

f is irreducible over \mathbb{Q} by the Schönemann-Eisenstein Criterion with p=2. As f is irreducible over \mathbb{Q} ,

$$[\mathbb{Q}(\sqrt[4]{2}):\mathbb{Q}] = \deg(f) = 4,$$

and x^2+1 is irreducible over $\mathbb{Q}(\sqrt[4]{2})$, since it is of degree 2, without root in $\mathbb{Q}(\sqrt[4]{2}) \subset \mathbb{R}$, thus

$$[\mathbb{Q}(i, \sqrt[4]{2}) : \mathbb{Q}(\sqrt[4]{2})] = 2.$$

Consequently,

$$[\mathbb{Q}(i, \sqrt[4]{2}) : \mathbb{Q}] = [\mathbb{Q}(i, \sqrt[4]{2}) : \mathbb{Q}(\sqrt[4]{2})] [\mathbb{Q}(\sqrt[4]{2}) : \mathbb{Q}] = 8,$$

and so

$$|Gal(L:\mathbb{Q})| = 8.$$

If $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$, as i is a root of $x^2 + 1 \in \mathbb{Q}[x]$, and $\sqrt[4]{2}$ a root of $x^4 - 2 \in \mathbb{Q}[x]$, then $\sigma(i) = \pm i$, et $\sigma(\sqrt[4]{2}) = i^k \sqrt[4]{2}$, k = 0, 1, 2, 3.

As σ is uniquely determined by the images of i, $\sqrt[4]{2}$, and as $|\operatorname{Gal}(L:\mathbb{Q})| = 8$, these 8 possibilities occur, thus $G = \operatorname{Gal}(L/\mathbb{Q}) = \{\sigma_{j,k} \mid 0 \leq j \leq 1, 0 \leq k \leq 3\}$, where $\sigma_{j,k}$, which is identity on \mathbb{Q} , is determined by

$$\sigma_{j,k}(i) = (-1)^j i, \sigma_{j,k}(\sqrt[4]{2}) = i^k \sqrt[4]{2}$$

Write $\tau: L \to L, z \mapsto \overline{z}$ the complex conjugation restricted to L. τ is a ring homomorphism and an involution, thus τ is a field automorphism of L, which is identity on \mathbb{Q} , so $\tau \in G$. Moreover

$$\tau(i) = -i, \tau(\sqrt[4]{2}) = \sqrt[4]{2},$$

Let $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ defined by

$$\sigma(i) = i, \sigma(\sqrt[4]{2}) = i\sqrt[4]{2}.$$

Then $\tau = \sigma_{1,0}, \sigma = \sigma_{0,1}$.

As $\tau^2 = 1_L$ and $\tau \neq e$, the order of τ is 2.

 $\sigma^4(i)=i$ and $\sigma^4(\sqrt[4]{2})=\sqrt[4]{2}$, thus $\sigma^4=e$. As $\sigma^2(\sqrt[4]{2})=i^2\sqrt[4]{2}=-\sqrt[4]{2}$, $\sigma_2\neq e$, thus the order of σ is 4.

$$|\tau| = 2, \qquad |\sigma| = 4.$$

As $\tau(i) = -i, \tau \notin \langle \sigma \rangle$. Thus the subgroup $\langle \sigma, \tau \rangle$ of G contains at least 5 elements, so is equal to G by Lagrange's Theorem:

$$G = \langle \sigma, \tau \rangle$$
.

As the index of $H = \langle \sigma \rangle$ in G is 2, and $\tau \notin H$, $G = H \cup \tau H$:

$$G = \operatorname{Gal}(L/\mathbb{Q}) = \{1_L, \sigma, \sigma^2, \sigma^3, \tau, \tau\sigma, \tau\sigma^2, \tau\sigma^3\}.$$

If we number the roots of f by $\alpha_k = i^{k-1}\sqrt[4]{2}$, for k = 1, 2, 3, 4, then τ corresponds to the transposition (2, 4), and σ to the cycle (1, 2, 3, 4):

$$G \simeq \langle (1, 2, 3, 4), (2, 4) \rangle \subset S_4.$$

If we number the 4 summits of a square by 1,2,3,4 in the direct orientation, then σ corresponds to a rotation of angle $\pi/2$, and τ to a symmetry with respect to the

diagonal [1,3]. They generate the group of isometry of the square, which is the dihedral group D_8 , defined also by generators and relations:

$$G = \langle \sigma, \tau \rangle, \sigma^4 = \tau^2 = e, \tau \sigma = \sigma^{-1} \tau.$$

(Since
$$\tilde{\sigma}^{-1}\tilde{\tau} = (1,4,3,2)(2,4) = (4,3,2,1) = (2,4)(1,2,3,4) = \tilde{\tau}\tilde{\sigma}$$
.)

As a verification, the following GAP instruction confirm the result D_8 :

G:= Group((1,2,3,4),(2,4));
StructureDescription(G);
"D8"

Ex. 6.3.3 In the terminology of Exercise 2, $Gal(\mathbb{Q}(i,\sqrt{2},\sqrt{3})/\mathbb{Q})$ is isomorphic to which known group? Explain your reasoning in detail.

Proof. We have already proved (Ex. 5.1.13) that $f = x^2 - 3$ is irreducible over $\mathbb{Q}[\sqrt{2}]$. f is so the minimal polynomial of $\sqrt{3}$ over $\mathbb{Q}(\sqrt{2})$, thus $[\mathbb{Q}(\sqrt{2},\sqrt{3}):\mathbb{Q}(\sqrt{2})] = \deg(f) = 2$. As $g = x^2 - 2$ is irreducible over \mathbb{Q} , $[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = \deg(g) = 2$, therefore

$$[\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{2})] [\mathbb{Q}(\sqrt{2}) : \mathbb{Q}] = 4.$$

Moreover, $h = x^2 + 1$ has no real root, a fortiori h has no root in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. As $\deg(h) = 2$, h is irreducible over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, h is the minimal polynomial of i over $\mathbb{Q}(\sqrt{2}, \sqrt{3})$, thus $[\mathbb{Q}(\sqrt{2}, \sqrt{3}, i) : \mathbb{Q}(\sqrt{2}, \sqrt{3})] = 2$, and by the Tower Theorem, and the equality $\mathbb{Q}(\sqrt{2}, \sqrt{3}, i) = \mathbb{Q}(i, \sqrt{2}, \sqrt{3})$,

$$[\mathbb{Q}(i,\sqrt{2},\sqrt{3}):\mathbb{Q}] = 8.$$

 $L=\mathbb{Q}(i,\sqrt{2},\sqrt{3})$ is the splitting field of $p=(x^2+1)(x^2-2)(x^2-3)$ over \mathbb{Q} , and $p=(x-i)(x+i)(x-\sqrt{2})(x+\sqrt{2})(x-\sqrt{3})(x+\sqrt{3})$ is separable. By theorem 6.2.1, we obtain

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 8.$$

If $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$, $\sigma(i) = \pm i$, $\sigma(\sqrt{2}) = \pm \sqrt{2}$, $\sigma(\sqrt{3}) = \pm \sqrt{3}$. As $|\operatorname{Gal}(L/\mathbb{Q})| = 8$, all of these possibilities occur: there exist 8 \mathbb{Q} -automorphisms of L satisfying these equalities. As $L = \mathbb{Q}(i, \sqrt{2}, \sqrt{3})$, $\sigma \in \operatorname{Gal}(L : \mathbb{Q})$ is uniquely determined by the images of these 3 elements.

In particular, there exist $\sigma_1, \sigma_2, \sigma_3 \in Gal(L : \mathbb{Q})$ defined by

$$\sigma_1(i) = -i, \quad \sigma_1(\sqrt{2}) = \sqrt{2}, \quad \sigma_1(\sqrt{3}) = \sqrt{3}$$

 $\sigma_2(i) = i, \quad \sigma_2(\sqrt{2}) = -\sqrt{2}, \quad \sigma_2(\sqrt{3}) = \sqrt{3}$
 $\sigma_3(i) = i, \quad \sigma_3(\sqrt{2}) = \sqrt{2}, \quad \sigma_3(\sqrt{3}) = -\sqrt{3}$

and $1_L, \sigma_1, \sigma_2, \sigma_3, \sigma_1\sigma_2, \sigma_1\sigma_3, \sigma_2\sigma_3, \sigma_1\sigma_2\sigma_3$ give distinct images to $i, \sqrt{2}, \sqrt{3}$, thus

$$G := \operatorname{Gal}(L/\mathbb{Q}) = \{1_L, \sigma_1, \sigma_2, \sigma_3, \sigma_1\sigma_2, \sigma_1\sigma_3, \sigma_2\sigma_3, \sigma_1\sigma_2\sigma_3\}.$$

Therefore

$$G = \langle \sigma_1, \sigma_2, \sigma_3 \rangle.$$

Note that $\sigma_1\sigma_2 = \sigma_2\sigma_1$ since they give the same images to $i, \sqrt{2}, \sqrt{3}$. Similarly $\sigma_1\sigma_3 = \sigma_3\sigma_1$ and $\sigma_2\sigma_3 = \sigma_3\sigma_2$. Thus G is abelian, generated by 3 elements of order 2, with $\sigma_2 \notin \langle \sigma_1 \rangle, \sigma_3 \notin \langle \sigma_1, \sigma_2 \rangle$. Therefore G is the direct sum of the 3 subgroups $\{e, \sigma_i\}, i = 1, 2, 3, \text{ d'ordre } 2$:

$$\operatorname{Gal}(L:\mathbb{Q}) \simeq (\mathbb{Z}/2\mathbb{Z})^3.$$

Some instructions Sage and Gap to verify these results:

f=(x-i-sqrt(2)-sqrt(3))*(x-i-sqrt(2)+sqrt(3))*(x-i+sqrt(2)-sqrt(3))

(x-i+sqrt(2)+sqrt(3))(x+i-sqrt(2)-sqrt(3))*(x+i-sqrt(2)+sqrt(3))

(x+i+sqrt(2)-sqrt(3))(x+i+sqrt(2)+sqrt(3));f

$$(x+\sqrt{3}+\sqrt{2}+i)(x+\sqrt{3}+\sqrt{2}-i)(x+\sqrt{3}-\sqrt{2}+i)(x+\sqrt{3}-\sqrt{2}-i)(x-\sqrt{3}+\sqrt{2}+i)(x-\sqrt{3}-\sqrt{2}+i)(x-\sqrt{3}-\sqrt{2}-i)$$

g=f.expand();g

$$x^8 - 16x^6 + 88x^4 + 192x^2 + 144$$

g.factor()

$$x^{8} - 16x^{6} + 88x^{4} + 192x^{2} + 144$$

x=polygen(QQ,'x')

 $K. < z > = NumberField(x^8-16*x^6+88*x^4+192*x^2+144)$

G = K.galois_group();G

$$\langle (1,2)(3,4)(5,6)(7,8), (1,3)(2,4)(5,7)(6,8), (1,5)(2,6)(3,7)(4,8) \rangle$$

With Gap:

G:=Group((1,2)(3,4)(5,6)(7,8),(1,3)(2,4)(5,7)(6,8),(1,5)(2,6)(3,7)(4,8)); StructureDescription(G);

$$C_2 \times C_2 \times C_2$$
.

As $x^8 - 16x^6 + 88x^4 + 192x^2 + 144$ is irreductible over \mathbb{Q} , $[\mathbb{Q}(i + \sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 8 = [L : \mathbb{Q}]$, and since $\mathbb{Q}(i + \sqrt{2} + \sqrt{3}) \subset L$, $L = \mathbb{Q}(i + \sqrt{2} + \sqrt{3})$.

These results imply that $L = \mathbb{Q}(i, \sqrt{2}, \sqrt{3})$ is the splitting field of the irreducible polynomial $x^8 - 16x^6 + 88x^4 + 192x^2 + 144$, that $i + \sqrt{2} + \sqrt{3}$ is a primitive element of $\mathbb{Q} \subset L$, and that $\operatorname{Gal}(L/\mathbb{Q}) \simeq C_2 \times C_2 \times C_2$.

Ex. 6.3.4 Consider the extension $\mathbb{Q} \subset L = \mathbb{Q}(\alpha)$, where $\alpha = \sqrt{2 + \sqrt{2}}$. In Exercise 6 of Section 5.1, you showed that $f = x^4 - 4x^2 + 2$ is the minimal polynomial of α over \mathbb{Q} and that L is the splitting field of f over \mathbb{Q} . Show that $Gal(L/\mathbb{Q}) \simeq \mathbb{Z}/4\mathbb{Z}$.

Proof. $L = \mathbb{Q}(\alpha), \alpha = \sqrt{2 + \sqrt{2}}$. We have already proved (Ex. 5.1.6) that

$$f = x^4 - 4x^2 + 2$$

$$= \left(x - \sqrt{2 + \sqrt{2}}\right) \left(x + \sqrt{2 + \sqrt{2}}\right) \left(x - \sqrt{2 - \sqrt{2}}\right) \left(x + \sqrt{2 - \sqrt{2}}\right)$$

is the minimal polynomial of α over \mathbb{Q} , and that $L = \mathbb{Q}(\alpha)$ is the splitting field of f over \mathbb{Q} .

 $L = \mathbb{Q}(\alpha)$ is so the splitting field of the irreducible separable polynomial f. By theorem 6.2.1,

$$|\operatorname{Gal}(L/\mathbb{Q})| = [L : \mathbb{Q}] = 4.$$

Write $\beta = \sqrt{2 - \sqrt{2}}$. If $\sigma \in \operatorname{Gal}(L/\mathbb{Q}), \sigma(\alpha)$ is a root of f, thus

$$\sigma(\alpha) \in \{\alpha, \beta, -\alpha, -\beta\}.$$

Moreover, since $L = \mathbb{Q}(\alpha)$, an automorphism of $\operatorname{Gal}(L/\mathbb{Q})$ is uniquely determined by the image of α , and since $|\operatorname{Gal}(L/\mathbb{Q})| = 4$, all of these possibilities occur, so there exist one and only one $\sigma \in \operatorname{Gal}(L/\mathbb{Q})$ such that $\sigma(\alpha) = \gamma$, where $\gamma \in \{\alpha, \beta, -\alpha, -\beta\}$ (alternatively, since f is irreducible over \mathbb{Q} , we can use Theorem 5.1.8).

$$Gal(L/\mathbb{Q}) = \{\sigma_0 = e, \sigma_1, \sigma_2, \sigma_3\}, \sigma_1(\alpha) = \beta, \sigma_2(\alpha) = -\alpha, \sigma_3(\alpha) = -\beta.$$

In particular, there exists $\sigma(=\sigma_1) \in \operatorname{Gal}(L/\mathbb{Q})$ defined by $\sigma(\alpha) = \beta$.

Recall that $\alpha\beta = \sqrt{2}, \alpha^2 = 2 + \sqrt{2}, \beta^2 = 2 - \sqrt{2}$ (see Ex. 5.1.6), thus

$$\alpha^2 - \beta^2 = 2\alpha\beta.$$

From this equality we obtain

$$\alpha^2 - \frac{2}{\alpha^2} = 2\alpha\beta, \ \frac{2}{\beta^2} - \beta^2 = 2\alpha\beta,$$

therefore

$$\beta = \frac{1}{2} \left(\alpha - \frac{2}{\alpha^3} \right), \ \alpha = -\frac{1}{2} \left(\beta - \frac{2}{\beta^3} \right).$$

As $\sigma(\alpha) = \beta$.

$$\sigma(\beta) = \frac{1}{2} \left(\sigma(\alpha) - \frac{2}{\sigma(\alpha)^3} \right)$$
$$= \frac{1}{2} \left(\beta - \frac{2}{\beta^3} \right)$$
$$= -\alpha$$

Finally $\sigma(-\alpha) = \sigma(-1)\sigma(\alpha) = -\sigma(\alpha) = -\beta$, so

$$\sigma(\alpha) = \beta, \sigma^2(\alpha) = -\alpha, \sigma^3(\alpha) = -\beta.$$

As every element in $Gal(L/\mathbb{Q})$ is uniquely determined by the image of α ,

$$\sigma^{0} = e = \sigma_{0}, \sigma^{1} = \sigma_{1}, \sigma^{2} = \sigma_{2}, \sigma^{3} = \sigma_{3},$$

and

$$\operatorname{Gal}(L/\mathbb{Q}) = \{e, \sigma, \sigma^2, \sigma^3\} = \langle \sigma \rangle.$$

So $Gal(L/\mathbb{Q})$ is cyclic, generated by σ :

$$Gal(L/\mathbb{O}) \simeq \mathbb{Z}/4\mathbb{Z}.$$

Ex. 6.3.5 Let $f \in F[x]$ be separable, where $f = g_1 \cdots g_s$ for $g_i \in F[x]$ of degree $d_i > 0$, and let L be the splitting field of f over F. Show that Gal(L/F) is isomorphic to a subgroup of the product group $S_{d_1} \times \cdots \times S_{d_s}$.

Proof. We show the proposition for s=2 to have lighter notations.

Suppose that $f = gh \in F[x]$ is separable, with $g, h \in F[x]$, $\deg(g) = r, \deg(h) = s$. Then g, h are separable.

Write $\alpha_1, \dots, \alpha_r$ the roots of g in M, and β_1, \dots, β_s the roots of h in N.

Let M be a splitting field of g over F, and N be a splitting field of h over F. Then $M = F(\alpha_1, \dots, \alpha_r), N = F(\beta_1, \dots, \beta_s)$, and $L = F(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s)$. As f is separable, the d = r + s roots of f, $\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s$ are distinct.

Write A the set of the roots of g in L, B the set of roots of h in L: |A| = r, |B| = s, and write S(A) the set of bijections of A (and the same for B): $S(A) \simeq S_r, S(B) \simeq S_s$.

Let $\sigma \in \operatorname{Gal}(L/F)$. As $g, h \in F[x]$, σ induces a permutation of the roots of g and of the roots of h, so the maps

$$\sigma_1: \left\{ \begin{array}{ccc} A & \to & A \\ \alpha & \mapsto & \sigma(\alpha) \end{array} \right. \text{ and } \sigma_2: \left\{ \begin{array}{ccc} B & \to & B \\ \beta & \mapsto & \sigma(\beta) \end{array} \right.$$

restrictions of σ à A, B, satisfy $\sigma_1 \in S(A), \sigma_2 \in S(B)$.

The map

$$\varphi: \left\{ \begin{array}{ccc} \operatorname{Gal}(L/F) & \to & S(A) \times S(B) \\ \sigma & \mapsto & (\sigma_1, \sigma_2) \end{array} \right.$$

is a group homomorphism: if $\varphi(\sigma) = (\sigma_1, \sigma_2)$ and $\varphi(\tau) = (\tau_1, \tau_2)$ (with $\sigma, \tau \in Gal(L/F)$), and also $\eta = \sigma \circ \tau, \varphi(\eta) = (\eta_1, \eta_2)$, then for all α in A and $\beta \in B$,

$$\eta_1(\alpha) = \eta(\alpha) = (\sigma\tau)(\alpha) = (\sigma_1\tau_1)(\alpha), \eta_2(\beta) = \eta(\beta) = (\sigma\tau)(\beta) = (\sigma_2\tau_2)(\beta),$$

thus $\eta_1 = \sigma_1 \tau_1, \eta_2 = \sigma_2 \tau_2$. Consequently

$$\varphi(\sigma \circ \tau) = \varphi(\eta) = (\eta_1, \eta_2) = (\sigma_1 \tau_1, \sigma_2 \tau_2) = (\sigma_1, \sigma_2)(\tau_1, \tau_2) = \varphi(\sigma)\varphi(\tau).$$

 φ is injective: if $\varphi(\sigma) = (\sigma_1, \sigma_2) = (1_A, 1_B)$, then

$$\sigma(\alpha_i) = \alpha_i, \ i = 1, \dots r \text{ et } \sigma(\beta_i) = \beta_i, \ j = 1, \dots s.$$

As $L = F(\alpha_1, \dots, \alpha_r, \beta_1, \dots, \beta_s), \ \sigma = 1_L$.

 $\operatorname{Gal}(L/F)$ is isomorphic to a subgroup of $S(A) \times S(B)$, and as $S(A) \times S(B) \simeq S_r \times S_s$, $\operatorname{Gal}(L/F)$ is isomorphic to a subgroup of $S_r \times S_s$.

We can generalize to s polynomials similarly, or by induction.

Ex. 6.3.6 Let H be a transitive subgroup of S_n . Prove that |H| is a multiple of n.

Proof. A subgroup H of S_n defines an action on [1, n] by $h \cdot x = h(x), h \in H, x \in [1, n]$. By definition H is a transitive subgroup of S_n if this action is transitive, i.e. if the only orbit is $\mathcal{O}_i = [1, n]$, $i = 1, \dots, n$. If we write $H_i = \operatorname{Stab}_H(i)$ the stabilizer in H of a fixed element i, then $(H : H_i) = |\mathcal{O}_i| = n$, thus $|H| = |H_i| \times n$:

n divides |H|.

Ex. 6.3.7 Let $f \in F[x]$ be irreducible and separable of degree n and let $F \subset L$ be a splitting field of f over F. Use Exercise 6 and Proposition 6.3.7 to prove that n divides |Gal(L/F)|. This gives an alternate proof of Exercise 6 of Section 6.2.

Proof. We define a left action of the Galois group $G = \operatorname{Gal}(L/F)$ on the set S of the roots of f by $\sigma \cdot \alpha = \sigma(\alpha)$, where $\sigma \in G, \alpha \in S$ (we know that $\sigma(\alpha) \in S$).

For a fixed $\alpha \in S$, define $G_{\alpha} = \operatorname{Stab}_{G}(\alpha) = \{ \sigma \in G \mid \sigma(\alpha) = \alpha \}$ the stabilizer of α in G, and $\mathcal{O}_{\alpha} = \{ \sigma \cdot \alpha \mid \sigma \in G \}$ its orbit.

As f is irreducible, by proposition 5.8.1, if α, β are two roots of f, there exists a field isomorphism $\sigma: L \to L$, which is identity on F (so $\sigma \in \operatorname{Gal}(L/F)$, and such that $\sigma(\alpha) = \beta$.

Therefore the action of G on S is transitive, so there exists a unique orbit : for all $\alpha \in S$, $\mathcal{O}_{\alpha} = \mathcal{S}$, thus

$$|\mathcal{O}_{\alpha}| = |S| = n.$$

Indeed the separability of f implies that f has $n = \deg(f)$ distinct roots in L. As $(G: G_{\alpha}) = |\mathcal{O}_{\alpha}|$, we obtain

$$|G| = |\operatorname{Gal}(L/F)| = n \times |G_{\alpha}|.$$

So $n = \deg(f)$ divides $|\operatorname{Gal}(L/F)|$.

6.4 EXAMPLES OF GALOIS GROUPS

Ex. 6.4.1 Given $a, b \in \mathbb{F}_p$, define $\gamma_{a,b} : \mathbb{F}_p \to \mathbb{F}_p$ by $\gamma_{a,b}(u) = au + b$.

- (a) Prove that $\gamma_{a,b}$ is one-to-one and onto if and only if $a \neq 0$.
- (b) Suppose that $a \neq 0$. Prove that the inverse function of $\gamma_{a,b}$ is $\gamma_{a^{-1},-a^{-1}b}$.
- (c) Show that

$$AGL(1, \mathbb{F}_p) = \{ \gamma_{a,b} \mid (a,b) \in \mathbb{F}_p^* \times \mathbb{F}_p \}$$

is a group under composition.

Proof. Let $a, b \in \mathbb{F}_p$, and $\gamma_{a,b} : \mathbb{F}_p \to \mathbb{F}_p$, $u \mapsto \gamma_{a,b}(u) = au + b$.

(a) If a = 0, $\gamma_{a,b}$ is the constant function b, thus $\gamma_{0,b}$ is not a bijection.

Suppose that $a \neq 0$. Then, for all $u, v \in \mathbb{F}_p$,

$$v = au + b \iff u = a^{-1}v - a^{-1}b.$$

So every $v \in \mathbb{F}_p$ has a unique antecedent, therefore $\gamma_{a,b}$ is bijective.

(b) If $a \neq 0$, by part (a), $\gamma_{a,b}$ is bijective, and the unique antecedent u of any $v \in \mathbb{F}_p$ is given by $u = a^{-1}v - a^{-1}b = \gamma_{a^{-1}, -a^{-1}b}(v)$. Consequently

$$\gamma_{a,b}^{-1} = \gamma_{a^{-1},-a^{-1}b}.$$

- (c) We show that $AGL(1, \mathbb{F}_p)$ is a subgroup of $(S(\mathbb{F}_p), \circ)$.
 - By part (a), if $f \in AGL(1, \mathbb{F}_p)$, then $f = \gamma_{a,b}$, where $a \neq 0$, thus f est bijective : $AGL(1, \mathbb{F}_p) \subset S(\mathbb{F}_p)$, and $1_{\mathbb{F}_p} = \gamma_{1,0} \in AGL(1, \mathbb{F}_p)$, so $AGL(1, \mathbb{F}_p) \neq \emptyset$.
 - If $f, g \in AGL(1, \mathbb{F}_p)$, then $f = \gamma_{a,b}, g = \gamma_{c,d}, a, b, c, d \in \mathbb{F}_p, a \neq 0, c \neq 0$.

For all $u \in \mathbb{F}_p$,

 $(g \circ f)(u) = \gamma_{c,d}(\gamma_{a,b}(u)) = \gamma_{c,d}(au+b) = c(au+b) + d = acu + (bc+d) = \gamma_{ac,bc+d}.$ Therefore $g \circ f = \gamma_{c,d} \circ \gamma_{a,b} = \gamma_{ac,bc+d}$ and $ac \neq 0$, so $g \circ f \in AGL(1, \mathbb{F}_p)$.

• If $f \in AGL(1, \mathbb{F}_p)$, $f = \gamma_{a,b}, a \neq 0$, then $f^{-1} = \gamma_{a^{-1}, -a^{-1}b} \in AGL(1, \mathbb{F}_p)$. AGL $(1, \mathbb{F}_p)$ is a group under composition.

Ex. 6.4.2 Consider the map $AGL(1, \mathbb{F}_p) \to \mathbb{F}_p^*$ defined by $\gamma_{a,b} \mapsto a$.

- (a) Show that this map is an onto group homomorphism with kernel $T = \{\gamma_{1,b} \mid b \in \mathbb{F}_p\}$. Then use this to prove (6.6).
- (b) Show that $T \simeq \mathbb{F}_p$.

Proof. Let $\varphi : AGL(1, \mathbb{F}_p) \to \mathbb{F}_p^*, \gamma_{a,b} \mapsto \varphi(\gamma_{a,b}) = a.$

(a) This map is well defined, since

$$f = \gamma_{a,b} = \gamma_{c,d} \in AGL(1, \mathbb{F}_p) \Rightarrow \forall u \in \mathbb{F}_p, au + b = cu + d \Rightarrow a = c.$$

 φ is a group homomorphism: if $f = \gamma_{a,b}, g = \gamma_{c,d} \in AGL(1, \mathbb{F}_p)$, then

$$\varphi(g \circ f) = \varphi(\gamma_{c,d} \circ \gamma_{a,b}) = \varphi(\gamma_{ac,bc+d}) = ac = \varphi(g)\varphi(f).$$

This homomorphism is surjective, since every $a \in \mathbb{F}_p^*$ satisfies $a = \varphi(\gamma_{a,0})$, with $\gamma_{a,0} \in AGL(1,\mathbb{F}_p)$.

 $\gamma_{a,b} \in \ker(\varphi) \iff a = 1$: the kernel of φ is $T = \{\gamma_{1,b} \mid b \in \mathbb{F}_p\}$, so T is a normal subgroup.

As the image of the group homorphism φ is \mathbb{F}_p^* , and its kernel T, the Isomorphism Theorem shows that

$$AGL(1, \mathbb{F}_p)/T \simeq \mathbb{F}_p^*$$
.

(b) The map $\psi: T \to \mathbb{F}_p, \gamma_{1,b} \mapsto b$ is bijective, and satisfies

$$\psi(\gamma_{1,b} \circ \gamma_{1,d}) = \psi(\gamma_{1,b+d}) = b + d = \psi(\gamma_{1,b})\psi(\gamma_{1,d}),$$

So ψ is a group homomorphism: $T \simeq \mathbb{F}_p$.

Ex. 6.4.3 This exercise is concerned with the proof of (6.7). Given $\tau \in S_n$, observe that $f \mapsto \tau \cdot f$ can be regarded as the evaluation map from $F[x_1, \ldots, x_n]$ to itself that evaluates $f(x_1, \ldots, x_n)$ at $(x_{\tau(1)}, \ldots, x_{\tau(n)})$.

- (a) Explain why Theorem 2.1.2 implies that $f \mapsto \tau \cdot f$ is a ring homomorphism. This proves the first two bullets of (6.7).
- (b) Prove the third bullet of (6.7).

П

Proof. (a) Let $\tau \in S_n$. As $f \mapsto \tau \cdot f$ is the evaluation map that evaluates $f(x_1, \ldots, x_n)$ at $(x_{\tau(1)}, \ldots, x_{\tau(n)})$, Theorem 2.1.2 shows that this application is a ring homomorphism, thus

$$\tau \cdot (f+g) = \tau \cdot f + \tau \cdot g$$
$$\tau \cdot (fg) = (\tau \cdot f)(\tau \cdot g)$$

(b) Let $f = f(x_1, \dots, x_n) \in F(x_1, \dots, x_n)$, and $\tau, \gamma \in S_n$. Define g by

$$g(x_1, \dots, x_n) = \gamma \cdot f = f(x_{\gamma(1)}, \dots, x_{\gamma(n)}).$$

Then $\tau \cdot (\gamma \cdot f) = \tau \cdot g = g(x_{\tau(1)}, \dots, x_{\tau(n)})$ is obtained by substituting each x_i in the expression of g by $x_{\tau(i)}$, thus $x_{\gamma(j)}$ becomes $x_{\tau(\gamma(j))} = x_{(\tau\gamma)(j)}$:

$$\tau \cdot (\gamma \cdot f) = f(x_{(\tau \gamma)(1)}, \dots, x_{(\tau \gamma)(n)}) = (\tau \gamma) \cdot f.$$

Conclusion:

$$\tau \cdot (\gamma \cdot f) = (\tau \gamma) \cdot f.$$

Ex. 6.4.4 Let $\tau \in S_n$. Prove that $f \mapsto \tau \cdot f$ is a ring isomorphism from $F[x_1, \dots, x_n]$ to itself.

Proof. We know (Exercise 6.4.3 (a)) that $\varphi: f \mapsto \tau \cdot f$ is a ring isomorphism. As $\tau \in S_n$, τ is bijective and so τ^{-1} exists. Let $\psi: f \mapsto \tau^{-1} \cdot f$. Then for all $f \in F[x_1, \dots, x_n]$, by Exercise 6.4.3 (b)

$$(\psi \circ \varphi)(f) = \tau^{-1} \cdot (\tau \cdot f) = (\tau^{-1}\tau) \cdot f = 1_{[1,n]} \cdot f = f$$
$$(\varphi \circ \psi)(f) = \tau \cdot (\tau^{-1} \cdot f) = (\tau\tau^{-1}) \cdot f = 1_{[1,n]} \cdot f = f$$

Therefore $\psi \circ \varphi = \varphi \circ \psi = 1_{F[x_1,...,x_n]}$, so φ is a bijection.

Conclusion: φ is a ring isomorphism.

Ex. 6.4.5 Let R be an integral domain, and let K be its field of fractions. Prove that every ring isomorphism $\phi: R \to R$ extends uniquely to an automorphism $\tilde{\phi}: K \to K$.

Proof. If $f = p/q \in K$, then the fraction $\phi(p)/\phi(q)$ doesn't depends of the choice of the representative (p,q) of the fraction: if f = p/q = r/s, then ps = qr, thus $\phi(p)\phi(s) = \phi(ps) = \phi(qr) = \phi(q)\phi(r)$, and so $\phi(p)/\phi(q) = \phi(r)/\phi(s)$. Therefore there exists a map $\tilde{\phi}: K \to K$ defined for all $p/q \in K$ by

$$\tilde{\phi}(p/q) = \phi(p)/\phi(q).$$

18

In particular, if $p \in R$, $\tilde{\phi}(p) = \tilde{\phi}(p/1) = \phi(p)/\phi(1) = \phi(p) : \tilde{\phi}$ extends ϕ .

 $\tilde{\phi}$ is a ring homomorphism: $\tilde{\phi}(1) = 1$ since $1 \in R$ and $\phi(1) = 1$.

$$\begin{split} \tilde{\phi}\left(\frac{p}{q}\frac{r}{s}\right) &= \tilde{\phi}\left(\frac{pr}{qs}\right) = \frac{\phi(pr)}{\phi(qs)} = \frac{\phi(p)\phi(r)}{\phi(q)\phi(s)} \\ &= \tilde{\phi}\left(\frac{p}{q}\right)\tilde{\phi}\left(\frac{r}{s}\right). \\ \tilde{\phi}\left(\frac{p}{q} + \frac{r}{s}\right) &= \tilde{\phi}\left(\frac{ps + qr}{qs}\right) = \frac{\phi(ps + qr)}{\phi(qs)} \\ &= \frac{\phi(p)\phi(s) + \phi(q)\phi(r)}{\phi(q)\phi(s)} = \frac{\phi(p)}{\phi(q)} + \frac{\phi(r)}{\phi(s)} \\ &= \tilde{\phi}\left(\frac{p}{q}\right) + \tilde{\phi}\left(\frac{r}{s}\right) \end{split}$$

If $\tilde{\phi}(p/q) = 0$, then $\phi(p)/\phi(q) = 0$, thus $\phi(p) = 0$, p = 0, p/q = 0: $\tilde{\phi}$ is injective.

If $g = u/v \in K$, as ϕ is surjective, $u = \phi(p), v = \phi(q), p, q \in R$. Then $g = \phi(p)/\phi(q) = \tilde{\phi}(p/q), p/q \in K$: $\tilde{\phi}$ est surjective.

 $\tilde{\phi}: K \to K$ is a field automorphism.

If $\psi: K \to K$ is any field automorphism which extends ϕ , then for any fraction $p/q \in K$,

$$\psi\left(\frac{p}{q}\right) = \frac{\psi(p)}{\psi(q)} = \frac{\phi(p)}{\phi(q)} = \tilde{\phi}\left(\frac{p}{q}\right),$$

so $\psi = \tilde{\phi}$:

every ring isomorphism $\phi: R \to R$ extends uniquely to an automorphism of K. \square

Ex. 6.4.6 As in the text, let $f = x^5 - 6x + 3$.

- (a) Use the hints given in the text to show that every element of S_5 of order 5 is a 5-cycle.
- (b) Use curve graphing from calculus to show that f has exactly three real roots.

Proof. Let $f = x^5 - 6x + 3$.

(a) Let $\sigma \in S_5$ a permutation of order 5. Write $\sigma = \sigma_1 \cdots \sigma_r$ ($\sigma_i \neq e$) the cycle decomposition of σ . Let $d_i = |\sigma_i|$ the order of σ_i in S_n . As the cycles are disjoint, for all integer k, $\sigma^k = \sigma_1^k \cdots \sigma_r^k$ and

$$\sigma^{k} = e \iff \sigma_{1}^{k} = \dots = \sigma_{r}^{k} = e$$
$$\iff d_{1} \mid k, \ d_{2} \mid k, \dots, \ d_{r} \mid k$$
$$\iff \operatorname{lcm}(d_{1}, \dots, d_{r}) \mid k$$

So the order of σ is the lcm of the orders d_i .

$$5 = \operatorname{lcm}(d_1, \dots, d_r).$$

As $d_i \mid 5$, i = 1, ..., r, and $d_i \neq 1$, where 5 is prime, $d_i = 5$. The cycles σ_i being disjoint, as $d_i = |\sigma_i| = \text{length}(\sigma_i)$, $d_1 + \cdots + d_r \leq 5$, thus $rd_1 = 5r \leq 5$, so r = 1. Conclusion: $\sigma = \sigma_1$ is a 5-cycle.

(b) Let $f : \mathbb{R} \to \mathbb{R}, x \mapsto f(x) = x^5 - 6x + 3$.

If $x \in \mathbb{R}$, $f'(x) = 5x^4 - 6 < 0 \iff x^4 < \frac{6}{5} \iff -x_0 < x < x_0$, where $x_0 = \sqrt[4]{\frac{6}{5}}$.

f is so strictly increasing on $]-\infty, -x_0]$, strictly decreasing on $[-x_0, x_0]$, and strictly increasing on $[x_0, +\infty[$.

 $f(x_0) = x_0(x_0^4 - 6) + 3 = x_0(\frac{6}{5} - 6) + 3 = -\frac{24}{5}x_0 + 3 = \frac{3}{5}(5 - 8x_0) < 0$: indeed $x_0 = \sqrt[4]{\frac{6}{5}} > 1 > \frac{5}{8}$, so $5 - 8x_0 < 0$.

$$f(-x_0) = -x_0(x_0^4 - 6) + 3 = \frac{24}{5}x_0 + 3 > 0.$$

As f is continuous, $\lim_{x\to-\infty} f(x) = -\infty, f(-x_0) > 0$, and f is strictly increasing on $]-\infty, -x_0]$, the Intermediate Values Theorem shows that f has a unique root in $]-\infty, -x_0]$.

With a similar reasoning on $[-x_0, x_0]$ and and on $[x_0, +\infty[$, with $f(-x_0) < 0, f(x_0) > 0$, $\lim_{x \to +\infty} f(x) = +\infty$, we prove that f has a unique root in $[-x_0, x_0]$, and also in $[x_0, +\infty[$.

Conclusion: f has exactly three real roots.

Ex. 6.4.7 Show that S_n is generated by the transposition (12) and the n-cycle (12...n).

Proof. Let G_n be the subgroup of S_n generated by the transpositions $(1,2),(2,3),\cdots,(n-1,n)$:

$$G_n = \langle (1,2), (2,3), \dots, (n-1,n) \rangle$$

For all $i \in \{1, \dots, n\}$, there exists $g \in G_n$ such that g(n) = i.

Indeed, if $g = (i, i+1) \circ (i+1, i+2) \circ \cdots \circ (n-1, n) = (i, i+1)(i+1, i+2) \cdots (n-1, n)$ (with the convention g = e if i = n), then $g \in G_n$ and g(n) = i (as $\mathcal{O}_n = [1, n]$, G_n is a transitive subgroup of S_n).

Conclusion: for all $i \in \{1, ..., n\}$, there exists $g \in G_n$ tel que g(n) = i.

We show that $G_n = S_n$.

 $S_2 = \{e, (1, 2)\}$ is equal to $G_2 = \langle (1, 2) \rangle$.

By induction, we suppose that $S_{n-1} = G_{n-1}$ $(n \ge 3)$.

The subgroup of S_n of the permutations fixing n is identified with S_{n-1} , so

$$\operatorname{Stab}_{S_n}(n) = S_{n-1}.$$

Let $\sigma \in S_n$ and $i = \sigma(n)$. By part (a), there exist $g \in G_n$ such that g(n) = i. Then

$$(g^{-1} \circ \sigma)(n) = n : g' = g^{-1} \circ \sigma \in S_{n-1}.$$

Thus $\sigma = g \circ g'$, where $g \in G_n, g' \in G_{n-1} \subset G_n$, therefore $\sigma \in G_n$. So $S_n \subset G_n$, and by definition $G_n \subset S_n$, thus $G_n = S_n$.

Conclusion: for all $n \ge 2$, $S_n = ((1, 2), (2, 3), \dots, (n - 1, n))$

We recall the following lemma:

Lemma. If $g = (a_1, \ldots, a_k)$ is a cycle in S_n , and $\sigma \in S_n$, then

$$\sigma \circ g \circ \sigma^{-1} = (\sigma(a_1), \dots, \sigma(a_k)).$$

Indeed,

- If $1 \le i < k$, $(\sigma \circ g \circ \sigma^{-1})(\sigma(a_i)) = \sigma(g(a_i)) = \sigma(a_{i+1})$.
- If i = k, $(\sigma \circ g \circ \sigma^{-1})(\sigma(a_k)) = \sigma(g(a_k)) = \sigma(a_1)$.
- if $x \notin \{\sigma(a_1), \dots, \sigma(a_k)\}$, then $\sigma^{-1}(x) \notin \{a_1, \dots, a_k\}$, therefore $g(\sigma^{-1}(x)) = \sigma^{-1}(x), (\sigma \circ g \circ \sigma^{-1})(x) = x$.

Let $\tau = (1, 2), \sigma = (1, 2, \dots, n)$.

We apply the Lemma to τ and $\sigma^{k-1}, 1 \leq k < n$:

$$\sigma^{k-1} \circ \tau \circ \sigma^{-(k-1)} = (\sigma^{k-1}(1), \sigma^{k-1}(2)) = (k, k+1).$$

Thus $\langle \sigma, \tau \rangle \supset G_n = S_n$.

Conclusion: S_n is generated by the transposition (1,2) and the *n*-cycle $(1,2\ldots,n)$.

Ex. 6.4.8 Let G and H be groups where G acts on H by group homomorphisms. As in the text, we let $H \rtimes G$ denote the set $H \times G$ with the binary operation given by (6.9).

- (a) Prove that $H \rtimes G$ is a group.
- (b) Prove that the map $H \rtimes G \to G$ defined by $(h,g) \mapsto g$ is an onto homomorphism with kernel $H \times \{e\}$.
- (c) Prove that $h \mapsto (h, e)$ defines an isomorphism $H \simeq H \times \{e\}$ (where the group structure on $H \times \{e\}$ comes from $H \rtimes G$).

Proof. By definition of an action by group homomorphisms, there exists a group homomorphism $\varphi: G \to \operatorname{Aut}(H)$ such that for all $(g,h) \in G \times H$,

$$g \cdot h = \varphi(g)(h),$$

so $h \mapsto g \cdot h$ is a group automorphism of H for all $g \in G$.

(a) \boxed{I} If $h,h'\in H,g,g'\in G$, then $g\cdot h'\in H$, thus $(h(g\cdot h'),gg')\in H\times G$, so this law defines a binary operation on $H\times G$.

$$\overline{A}$$
 Let $(h,g), (h',g'), (h'',g'') \in H \times G$. Then

$$\begin{split} ((h,g).(h',g')).(h'',g'') &= (h(g \cdot h'), gg').(h'',g'') \\ &= (h(g \cdot h')((gg') \cdot h''), gg'g'') \\ &= (h(g \cdot h')(g \cdot (g' \cdot h'')), gg'g''). \end{split}$$

The last equality is true because G acts on H.

$$\begin{split} (h,g).((h',g').(h'',g'')) &= (h,g)((h'(g'\cdot h''),g'g'') \\ &= (h(g\cdot (h'(g'\cdot h''))),gg'g'') \\ &= (h(g\cdot h')(g\cdot (g'\cdot h'')),gg'g''). \end{split}$$

The last equality is true because G acts on H by group homomorphism.

Therefore ((h, g).(h', g')).(h'', g'') = (h, g).((h', g').(h'', g'')): the law is associative.

N Write e_H, e_G the identity of H and the identity of G.

$$(f,g).(e_H,e_G) = (f(g \cdot e_H), ge_G) = (fe_H, ge_G) = (f,g),$$

 $(e_H,e_G).(f,g) = (e_H(e_G \cdot f), e_G g) = (e_H f, e_G g) = (f,g).$

So (e_H, e_G) is the identity of $H \rtimes G$, which we will write now (1, 1).

S

Analysis: if (h', g') is the inverse of (h, g), then $(h(g \cdot h'), gg') = (1, 1)$. Thus $g' = g^{-1}$, and $g \cdot h' = h^{-1}$, therefore $h' = g^{-1} \cdot (h^{-1})$.

Synthesis: we show that $(g^{-1} \cdot (h^{-1}), g^{-1})$ is the inverse of (h, g):

$$\begin{split} (h,g).(g^{-1}\cdot(h^{-1}),g^{-1}) &= (h(g.(g^{-1}\cdot(h^{-1}))),gg^{-1}) \\ &= (h(gg^{-1}\cdot(h^{-1})),1) \\ &= (hh^{-1},1) = (1,1) \\ (g^{-1}\cdot(h^{-1}),g^{-1})(h,g) &= ((g^{-1}\cdot(h^{-1}))(g^{-1}.h),g^{-1}g) \\ &= (g^{-1}\cdot(h^{-1}h),1) \\ &= (g^{-1}\cdot1,1) = (1,1) \end{split}$$

Every element of $H \rtimes G$ has an inverse.

 $H \rtimes G$ is a group.

(b) Let
$$\psi : \left\{ \begin{array}{ccc} H \rtimes G & \to & G \\ (h,g) & \mapsto & g \end{array} \right.$$

 $\psi((h,g).(h',g')) = \psi(h(g \cdot h'),gg') = gg' = \psi(h,g)\psi(h',g').$ ψ is so a group homomorphism.

As every g in G is the image of $(1, g) \in H \times G$ by ψ, ψ is surjective.

$$\ker(\psi) = \{(h,g) \in H \rtimes G \mid g = e\} = H \times \{e\}.$$

(c) Let
$$\chi: \left\{ \begin{array}{ccc} H & \rightarrow & H \times \{e\} \\ h & \mapsto & (h,e) \end{array} \right.$$
.

 $\chi(h)\chi(h')=(h,e)(h',e)=(h(e\cdot h'),e)=(hh',e)=\chi(hh'): \chi$ is a group homorphisme from H on the subgroup $H\times\{e\}$ of $H\rtimes G$.

 $\chi(h)=(e,e)\iff h=e, \text{ thus }\chi \text{ est injective, and surjective since every element of }H\times\{e\} \text{ is of the form }(h,e)=\chi(h):H\simeq H\times\{e\}.$

Therefore the sequence $\{e\} \to H \to H \rtimes G \to G \to \{e\}$ is a short exact sequence, so $H \rtimes G$ is an extension of H by G.

Ex. 6.4.9 Explain how (6.6) and (6.10) relate to the last paragraph of the discussion of semidirect products in the Mathematical Notes.

Proof. The group homomorphism ψ of Exercise 8 shows that $(H \rtimes G)/(H \times \{e\}) \simeq G$.

Moreover the isomorphism (6.10)
$$\phi : \begin{cases} \operatorname{AGL}(1, \mathbb{F}_p) & \to & \mathbb{F}_p \rtimes \mathbb{F}_p^* \\ \gamma_{a,b} & \mapsto & (b, a) \end{cases}$$
 maps $T = \{\gamma_{1,b} \mid b \in \mathbb{F}_p\}$ on $\mathbb{F}_p \times \{1\}$.

maps $T = \{ \gamma_{1,b} \mid b \in \mathbb{F}_p \}$ on $\mathbb{F}_p \times \{1\}$.

Therefore $AGL(1, \mathbb{F}_p)/T \simeq (\mathbb{F}_p \rtimes \mathbb{F}_p^*)/(\mathbb{F}_p \times \{1\}) \simeq \mathbb{F}_p^*$: we obtain so (6.6):

$$AGL(1, \mathbb{F}_p)/T \simeq \mathbb{F}_p^*$$
.

Ex. 6.4.10 Let $p \geq 3$ be prime, and let $\mathbb{F}_p \rtimes \mathbb{F}_p^*$ be the semidirect product described in the Mathematical Notes.

- (a) Show that $\mathbb{F}_p \rtimes \mathbb{F}_p^*$ is not Abelian.
- (b) Show that the product group $\mathbb{F}_p \times \mathbb{F}_p^*$ is Abelian.
- (c) Show that $\mathbb{F}_p \times \mathbb{F}_p^*$ is an extension of \mathbb{F}_p by \mathbb{F}_p^* .

Since we already know that $\mathbb{F}_p \rtimes \mathbb{F}_p^*$ is an extension of \mathbb{F}_p by \mathbb{F}_p^* , we see that (a) and (b) give nonisomorphic extensions.

Proof. (a) As $p \geq 3$, there exist in \mathbb{F}_p an element 2 with $2 \neq 0, 2 \neq 1$, so $(0, 2) \in \mathbb{F}_p \rtimes \mathbb{F}_p^*$, and also $(1,1) \in \mathbb{F}_p \times \mathbb{F}_p^*$.

$$(0,2).(1,1) = (0+2\times 1, 2\times 1) = (2,2)$$

$$(1,1).(0,2) = (1+1\times 0, 1\times 2) = (1,2)$$

Since $2 \neq 1$, $(0,2).(1,1) \neq (1,1).(0,2)$. So if $p \geq 3$, then $\mathbb{F}_p \rtimes F_p^*$ is not Abelian.

- (b) By definition of the product in $\mathbb{F}_p \times \mathbb{F}_p^*$, (a,b)(c,d) = (ac,bd) = (ca,db) = (c,d)(a,b): $\mathbb{F}_p \times \mathbb{F}_p^*$ is Abelian.
- (c) The sequence

$$\{0\} \to \mathbb{F}_p \to \mathbb{F}_p \times \mathbb{F}_p^* \to \mathbb{F}_p^* \to \{1\}$$

is a short exact sequence (the first arrow is the injective map $x \mapsto (x,1)$, and the second one is the surjective map $(x,y) \mapsto y$). Actually, a direct product is a special case of semidirect product, where $\varphi: G \to \operatorname{Aut}(h)$ is the trivial action defined by $\phi(g) = 1_H$ for all $g \in G$, so $\varphi(g)(h) = g \cdot h = h$ for all $h \in H$. By part (a) and (b), these two extensions are not isomorphic.

The goal of this exercise is to show that the group G of permutations (6.11) is metacyclic in the sense that G has a normal subgroup H such that H and G/H are cyclic. Show that this follows from $G \simeq AGL(1, \mathbb{F}_p)$ together with (6.6) and proposition A.5.3.

Proof. If $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$, and $G = \operatorname{Gal}(L/\mathbb{Q})$, then by (6.4), $G \simeq \operatorname{AGL}(1, \mathbb{F}_p)$. By (6.6) and Exercise 9, $AGL(1, \mathbb{F}_p)/T \simeq \mathbb{F}_p^*$, and $T \simeq \mathbb{F}_p$. As \mathbb{F}_p is a cyclic (additive) group, and \mathbb{F}_p^* a cyclic (multiplicative) group by Proposition A.5.3, $G = \operatorname{Gal}(L/\mathbb{Q})$ is metacyclic. \square

Ex. 6.4.12 Let p be prime. Generalize part (a) of Exercise 6 by showing that every element of S_p of order p is a p-cycle.

Proof. Let $\sigma \in S_p$ a permutation of order p. Write $\sigma = \sigma_1 \cdots \sigma_r$ ($\sigma_i \neq e$) the cycle decomposition of σ . Let $d_i = |\sigma_i|$ the order of σ_i in S_n . The order of σ is the lcm of the orders d_i (see Ex. 6).

$$p = \operatorname{lcm}(d_1, \dots, d_r).$$

As $d_i \mid p, i = 1, ..., r$, and $d_i \neq 1$, where p is prime, $d_i = p$. The cycles σ_i being disjoint, as $d_i = |\sigma_i| = \text{length}(\sigma_i), d_1 + \cdots + d_r \leq p$, thus $rd_1 = pr \leq p$, so r = 1.

Conclusion : $\sigma = \sigma_1$ is a *p*-cycle.

Ex. 6.4.13 Let L be the splitting field of $2x^5-10x+5$ over \mathbb{Q} . Prove that $Gal(L/\mathbb{Q}) \simeq S_5$.

Lemma: Let p be a prime number. Let $\alpha = (i, j) \in S_p$ a transposition, and $\beta \in S_p$ a p-cycle. Then $S_p = \langle \alpha, \beta \rangle$.

Proof of lemma. $\beta \in S_p$ is a p-cycle, so $\beta = (a_1, a_2, \dots, a_p) = (a, \beta(a), \dots, \beta^{p-1}(a))$, where $1 \le a = a_1 \le p$ is fixed.

The $\beta^i(a)$ are distinct, otherwise $\beta^i(a) = \beta^j(a), i < j$ implies $\beta^{j-i}(a) = a$, so the cycle would have an order at most equal to j - i < p, thus not equal to p.

The support of β , Supp $(\beta) = \{a_1, \dots, a_p\}$ has so p elements, therefore

$$\operatorname{Supp}(\beta) = \{1, 2, \dots, p\}.$$

So there exists r < p, s < p such that $i = \beta^r(a), j = \beta^s(a)$, thus $j = \beta^{s-r}(i)$. Let k the remainder of the division of s - r by p. Then $\beta^k(i) = j, 0 \le k \le p - 1$, and as $i \ne j$ since $\alpha = (ij)$ is a transposition, $k \ne 0$, so

$$\beta^k(i) = j, 1 \le k \le p - 1.$$

As p is prime, and $1 \le k \le p-1$, β^k is also a p-cycle.

Indeed, $H = \{n \in \mathbb{Z} \mid (\beta^k)^n(a) = a\}$ is a subgroup of \mathbb{Z} , therefore it is of the form $H = d\mathbb{Z}, d > 0$.

As $p \in H$, d divides p, and $d \neq 1$ (otherwise $\beta^k(a) = a, k < p$), thus d = p.

Consequently $\beta^k = (a, \beta^k(a), \beta^{2k}(a), \dots, \beta^{(p-1)k}(a))$ is a *p*-cycle, thus *i* is in the support of β^k .

 $\alpha = (i, j), \beta^k = (i, j = \beta^k(i), \dots, \beta^{(p-1)k}(i))$ generate S_n as in Exercise 7 where we have proved that $\sigma = (1, 2, \dots, p)$ and $\tau = (1, 2)$ generate S_p .

There is a simple relabeling of the roots. More formally, let

$$\gamma = \begin{pmatrix} 1 & 2 & \dots & p \\ i & j = \beta^k(i) & \dots & \beta^{k(p-1)}(i) \end{pmatrix}.$$

Let g be any permutation in S_n . Then $\gamma^{-1}g\gamma \in S_n = \langle \sigma, \tau \rangle$.

So $\gamma^{-1}g\gamma = \sigma_1\sigma_2\cdots\sigma_l$, where $\sigma_i = \tau$, or $\sigma_i = \sigma$ (we can avoid negative powers since each element is of finite order).

Then $g = (\gamma \sigma_1 \gamma^{-1})(\gamma \sigma_2 \gamma^{-1}) \cdots (\gamma \sigma_l \gamma^{-1})$, and $\gamma \sigma_i \gamma^{-1} \in \{\alpha, \beta^k\}$, since by the Lemma of Exercise 6.4.1: $\gamma \tau \gamma^{-1} = \alpha, \gamma \sigma \gamma^{-1} = \beta^k$.

 S_n is generated by α, β^k , a fortiori by α, β .

Conclusion: if p is prime, a p-cycle β , and any transposition (i, j) generate S_n . \square

Proof. Let $f = 2x^5 - 10x + 5 \in \mathbb{Q}[x]$, and L the splitting field of f, $G = Gal(L, \mathbb{Q})$, and $G' \subset S_5$ the corresponding subgroup of S_5 isomorphic to G.

The Schönemann-Eisenstein Criterion with p=5 shows that f is irreducible over \mathbb{Q} (if $f=\sum_{k=0}^5 a_i x^i$, $5 \nmid a_5=2, 5 \mid a_i, i=0,\ldots 4, 5^2 \nmid a_0=5$).

Thus G acts transitively on the roots of f (Proposition 6.3.7). By Exercise 6.3.6, 5 divides |G|.

By Cauchy's Theorem, there exists an element σ of order 5 in G, thus an element $\tilde{\sigma}$ of order 5 in $G' \subset S_5$. Exercise 6.4.6(a) shows that $\tilde{\sigma}$ is a 5-cycle.

For all $t \in \mathbb{R}$, $f'(t) < 0 \iff |t| < 1$, f is strictly decreasing on [-1,1], strictly increasing on $]-\infty,-1]$ and on $[1,+\infty[$. As f is continuous, f(1)=-3<0, f(-1)=13>0, and $\lim_{t\to\infty}f=+\infty$, $\lim_{t\to\infty}f=-\infty$, the Intermediate Values Theorem shows that the polynomial f has exactly 3 real roots, thus 2 non real conjugate complex roots. The restriction τ of complex conjugation to L is a \mathbb{Q} -automorphism of L (thus $\tau \in G$) who fixes three roots and exchanges the two others. The corresponding element $\tilde{\tau}$ in $G' \subset S_5$ is so a transposition. By the above Lemma, $G' = S_5$, and so

$$G = \operatorname{Gal}(L/\mathbb{Q}) \simeq S_5$$
.

Ex. 6.4.14 Let $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$. Prove that $L = \mathbb{Q}(\sqrt[p]{2}, \zeta_p \sqrt[p]{2})$, i.e. the splitting field of $x^p - 2$ over Q can be generated by two of its roots.

Proof. Let $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$.

 $\sqrt[p]{2} \in L$, and $\zeta_p \sqrt[p]{2} \in L$, thus $\mathbb{Q}(\sqrt[p]{2}, \zeta_p \sqrt[p]{2}) \subset L$.

 $\zeta_p = \zeta_p \sqrt[p]{2} / \sqrt[p]{2} \in \mathbb{Q}(\sqrt[p]{2}, \zeta_p \sqrt[p]{2}), \text{ and } \sqrt[p]{2} \in \mathbb{Q}(\sqrt[p]{2}, \zeta_p \sqrt[p]{2}). \text{ As } L \text{ is the smallest subfield of } \mathbb{C} \text{ containing } \mathbb{Q}, \zeta_p, \sqrt[p]{2}, \text{ then } L \subset \mathbb{Q}(\sqrt[p]{2}, \zeta_p \sqrt[p]{2}).$

Conclusion:

$$\mathbb{Q}(\zeta_p, \sqrt[p]{2}) = \mathbb{Q}(\zeta_p, \zeta_p \sqrt[p]{2}).$$

The splitting field of $x^p - 2$ over \mathbb{Q} is generated by two of its roots.

Ex. 6.4.15 Let $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$. The description of $Gal(L/\mathbb{Q})$ given in the text enables one to construct some elements of $Gal(L/\mathbb{Q}(\zeta_p))$. Use these automorphisms and Proposition 6.3.7 to prove that $x^p - 2$ is irreducible over $\mathbb{Q}(\zeta_p)$.

Proof. Let $L = \mathbb{Q}(\zeta_p, \sqrt[p]{2})$, the splitting field of $f = x^p - 2$ over \mathbb{Q} . Then $\operatorname{Gal}(L/\mathbb{Q}) \simeq \operatorname{AGL}(1, \mathbb{F}_p)$.

We show that $x^p - 2$ is irreducible over $\mathbb{Q}(\zeta_p)$.

 $\Phi_p = 1 + x + \dots + x^{p-1}$ is irreducible over \mathbb{Q} , thus $[\mathbb{Q}(\zeta_p) : \mathbb{Q}] = p - 1$.

 $[L:\mathbb{Q}]=p(p-1)$ by Section 6.4. We deduce of $[L:\mathbb{Q}]=[L:\mathbb{Q}(\zeta_p)]$ $[\mathbb{Q}(\zeta_p):\mathbb{Q}]$ that

$$[\mathbb{Q}(\zeta_p, \sqrt[p]{2}) : \mathbb{Q}(\zeta_p)] = p.$$

(If g is the minimal polynomial of $\sqrt[p]{2}$ over $\mathbb{Q}(\zeta_p)$, then $\deg(g) = [\mathbb{Q}(\zeta_p, \sqrt[p]{2}) : \mathbb{Q}(\zeta_p)] = p$. Moreover $\sqrt[p]{2}$ is a root of $f = x^p - 2 \in \mathbb{Q}[x] \subset \mathbb{Q}(\zeta_p)[x]$, thus $g \mid f$ in $\mathbb{Q}(\zeta_p)[x]$, where f, g are of the same degree p and monic, thus $g = f = x^p - 2$. Therefore $x^p - 2$ is irreducible over $\mathbb{Q}(\zeta_p)$.)

Following the wording, we note that $\sigma = \sigma_{1,1} \in \operatorname{Gal}(L/\mathbb{Q}(\zeta_p))$ defined by

$$\sigma(\zeta_p) = \zeta_p, \sigma(\sqrt[p]{2}) = \zeta_p \sqrt[p]{2}$$

is of order p, and corresponds to the p-cycle $\tilde{\sigma} = (1, 2, \dots, p)$, if we number the roots by $z_1 = \sqrt[p]{2}, \dots, z_p = \zeta_p^{p-1} \sqrt[p]{2}$. Since $\tilde{\sigma}^{k-1}(1) = k, k = 1, \dots, p-1$, the subgroup $\langle \tilde{\sigma} \rangle \subset S_n$ is transitive, and so is $\langle \sigma \rangle$. Since $\operatorname{Gal}(L/\mathbb{Q}(\zeta_p)) \supset \langle \sigma \rangle$, $\operatorname{Gal}(L/\mathbb{Q}(\zeta_p))$ acts transitively on the roots of $x^p - 2$. So, by Proposition 6.3.7, $x^p - 2$ is irreducible over $\mathbb{Q}(\zeta_p)$.

6.5 ABELIAN EQUATION (OPTIONAL)

Ex. 6.5.1 Assume that $f \in F[x]$ is nonconstant and has roots $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_n$ in a splitting field L. Prove that $L = F(\alpha)$ if and only if there are rational functions $\theta_i \in F(x)$ such that $\alpha_i = \theta_i(\alpha)$. Can we assume that the θ_i are polynomials?

Proof. • Suppose that $L = F(\alpha)$. As $\alpha_i \in L$, $\alpha_i \in F(\alpha)$. By definition of $F(\alpha)$, there exist $\theta_i \in F(x)$ such that $\alpha_i = \theta_i(\alpha)$.

• Conversely, suppose that for all $i, 1 \leq i \leq n, \alpha_i = \theta_i(\alpha), \theta_i \in F(x)$. Thus $\alpha_i \in F(\alpha)$. Consequently $L = F(\alpha_1, \dots, \alpha_n) \subset F(\alpha)$.

As $F(\alpha) = F(\alpha_1) \subset F(\alpha_1, \dots, \alpha_n), L = F(\alpha_1, \dots, \alpha_n) = F(\alpha).$

Conclusion: $L = F(\alpha) \iff \alpha_i = \theta_i(\alpha), \theta_i \in F(x) \ (1 \le i \le n).$

Moreover, as α is algebraic over F, $F(\alpha) = F[\alpha]$, therefore every $\alpha_i \in F(\alpha) = F[\alpha]$ is of the form $\alpha_i = \theta_i(\alpha)$, where the $\theta_i \in F[x]$ are polynomials.

Ex. 6.5.2 Show that the equation $x^4 - 10x^2 + 1 = 0$ discussed in Example 6.5.1 is Abelian.

Proof. As in Example 6.5.1, let $\theta_1(x) = x$, $\theta_2(x) = -x$, $\theta_3(x) = 10x - x^3$, $\theta_4(x) = -10x + x^3$, so the solutions of the equations are $\alpha_i = \theta_i(\alpha)$, i = 1, 2, 3, 4.

The roots of f being polynomials in α , the splitting field of f is $F(\alpha)$ (See Exercise 1).

Moreover, as $\theta_1 = x, \theta_2 = -x, \theta_4 = -\theta_3$ and θ_3, θ_4 are odd functions,

 $\theta_1(\theta_i(\alpha)) = \theta_i(\alpha) = \theta_i(\theta(\alpha)), i = 2, 3, 4.$

 $\theta_2(\theta_i(\alpha)) = -\theta_i(\alpha) = \theta_i(-\alpha) = \theta_i(\theta_2(\alpha)), i = 3, 4.$

 $\theta_3(\theta_4(\alpha)) = \theta_3(-\theta_3(\alpha)) = -\theta_3^2(\alpha) = -\theta_4^2(\alpha) = \theta_4(-\theta_4(\alpha)) = \theta_4(\theta_3(\alpha)).$

Thus $\theta_i(\theta_i(\alpha)) = \theta_i(\theta_i(\alpha))$, for $1 \le i < j \le 4$, thus also for $1 \le i, j \le 4$.

 $x^4 - 10x^2 + 1 = 0$ is an Abelian equation.

Ex. 6.5.3 Complete the proof of theorem 6.5.3.

Proof. We show that the Galois group G of an Abelian equation is Abelian.

Let $L = F(\alpha_1, \dots, \alpha_n)$ a splitting field of $f \in F[x]$, et $\alpha = \alpha_1$.

By definition of an Abelian equation, there exists $\theta_i \in F(x)$ tels que $\alpha_i = \theta_i(\alpha)$ (i = 1, ..., n), so $L = F(\alpha)$ (see Exercise 1).

- $\sigma \in \operatorname{Gal}(L/F)$, et $f \in F[x]$, thus $\sigma(\alpha)$ is also a root $\alpha_i, 1 \leq i \leq n$ of f:
- $\sigma(\alpha) = \alpha_i = \theta_i(\alpha)$. Similarly $\tau(\alpha) = \theta_j(\alpha), 1 \le j \le n$.
- if $\sigma \tau = \tau \sigma$, then $\sigma(\tau(\alpha)) = (\sigma \tau)(\alpha) = (\tau \sigma)(\alpha) = \tau(\sigma(\alpha))$.

Réciproquement, si $\sigma(\tau(\alpha)) = \tau(\sigma(\alpha))$, then $(\sigma\tau)(\alpha) = (\tau\sigma)(\alpha)$.

As $L = F(\alpha)$, and as $\sigma \tau$ and $\tau \sigma$ are identity over f F and send α on the same element, $\sigma \tau = \tau \sigma$.

$$\sigma \tau = \tau \sigma \iff \sigma(\tau(\alpha)) = \tau(\sigma(\alpha)).$$

• $\sigma(\tau(\alpha)) = \sigma(\theta_j(\alpha))$. Moreover σ is a F-automorphism of fields, et $\theta_j \in F(x)$ a polynomial, thus $\sigma(\theta_j(\alpha)) = \theta_j(\sigma(\alpha)) = \theta_j(\theta_i(\alpha))$. Therefore $\sigma(\tau(\alpha)) = \theta_j(\theta_i(\alpha))$. Similarly $\tau(\sigma(\alpha)) = \theta_i(\theta_i(\alpha))$.

The equation f = 0 being Abelian, $\theta_i(\theta_i(\alpha)) = \theta_i(\theta_i(\alpha))$, thus $\sigma(\tau(\alpha)) = \tau(\sigma(\alpha))$, so $\sigma\tau = \tau\sigma$, and this is true for all $\sigma, \tau \in \operatorname{Gal}(L/F)$: $\operatorname{Gal}(L/F)$ is Abelian.

Conclusion: the Galois group of an Abelian equation is Abelian.

Ex. 6.5.4 Show that $x^n - 1$ is an Abelian equation over \mathbb{Q} .

Proof. The roots of $f = x^n - 1$ in \mathbb{C} are $\zeta^k, 0 \le k < n$, where $\zeta = e^{2i\pi/n}$.

The splitting field of f over \mathbb{Q} is $Q(1,\zeta,\cdots,\zeta^{n-1})=\mathbb{Q}(\zeta)$. Moreover, every root ζ^k is of the form $\zeta^{\bar{k}} = \theta_k(\zeta)$, where $\theta_k = x^{\bar{k}}, 0 \le k \le n-1$.

$$\theta_i(\theta_j(\zeta)) = (\zeta^j)^i = \zeta^{ji} = (\zeta^i)^j = \theta_j(\theta_i(\zeta)), \ 0 \le i, j \le n-1,$$

so by definition $x^n - 1 = 0$ is an Abelian equation.

Ex. 6.5.5 Let f the minimal polynomial of $\sqrt{2+\sqrt{2}}$ over \mathbb{Q} . Show that f=0 is an Abelian equation.

Proof. By Exercises 5.1.6 and 6.3.4,

$$f = x^4 - 4x^2 + 2$$

$$= \left(x - \sqrt{2 + \sqrt{2}}\right) \left(x + \sqrt{2 + \sqrt{2}}\right) \left(x - \sqrt{2 - \sqrt{2}}\right) \left(x + \sqrt{2 - \sqrt{2}}\right)$$

$$= (x - \alpha)(x + \alpha)(x - \beta)(x + \beta)$$

where $\beta = \frac{1}{2} \left(\alpha - \frac{2}{\alpha^3} \right) = \alpha^3 - 3\alpha$. The 4 roots of f are of the form $\alpha = \theta_1(\alpha), -\alpha = \theta_2(\alpha), \beta = \theta_3(\alpha), -\beta = \theta_4(\alpha),$ where

$$\theta_1(x) = x, \theta_2(x) = -x, \theta_3(x) = x^3 - 3x, \theta_4(x) = -x^3 + 3x.$$

As $\theta_1 = x$, $\theta_2 = -x$, $\theta_4 = -\theta_3$ and θ_3 , θ_4 are odd functions, as in Exercise 2,

$$\theta_1(\theta_i(\alpha)) = \theta_i(\alpha) = \theta_i(\theta_1(\alpha)), i = 2, 3, 4.$$

$$\theta_2(\theta_i(\alpha)) = -\theta_i(\alpha) = \theta_i(-\alpha) = \theta_i(\theta_2(\alpha)), i = 3, 4.$$

$$\theta_3(\theta_4(\alpha)) = \theta_3(-\theta_3(\alpha)) = -\theta_3^2(\alpha) = -\theta_4^2(\alpha) = \theta_4(-\theta_4(\alpha)) = \theta_4(\theta_3(\alpha)).$$

Thus $\theta_i(\theta_i(\alpha)) = \theta_i(\theta_i(\alpha))$, for $1 \le i < j \le 4$, thus also for $1 \le i, j \le 4$.

$$\theta_i(\theta_j(\alpha)) = \theta_j(\theta_i(\alpha)), \ 1 \le i, j \le 4.$$

$$x^4 - 4x^2 + 2 = 0$$
 is an Abelian equation.

Ex. 6.5.6 In this exercise, you will prove a partial converse to Theorem 6.5.3. Suppose that a finite extension $F \subset L$ is normal ans separable and has an Abelian Galois group.

- (a) Explain why $F \subset L$ has a primitive element.
- (b) By part (a), we can find $\alpha \in L$ such that $L = F(\alpha)$. Let f be the minimal polynomial of α . Prove that f = 0 is an Abelian equation over f.

Proof. Suppose that $F \subset L$ is normal and separable and that G = Gal(L/F) is an Abelian group.

- (a) As $F \subset L$ is separable, the Theorem of the Primitive Element shows that there exists a separable element $\alpha \in L$ such that $L = F(\alpha)$.
- (b) Let f the minimal polynomial of α over F. Then f is irreducible and separable. As $F \subset L$ is normal, the roots $\alpha_1 = \alpha, \ldots, \alpha_n$ of f are all in L, so $L = F(\alpha) = F(\alpha_1, \ldots, \alpha_n)$ is the splitting field of f. By Exercise 1, there exist polynomials $\theta_i \in F[x]$ such that $\alpha_i = \theta_i(\alpha)$, $i = 1, \ldots, n$.

Let $1 \leq i, j \leq n$. As f is separable and irreducible, by Proposition 6.3.7, the Galois group G acts transitively on the set of the roots of f, so there exists $\sigma, \tau \in G$ such that $\theta_i(\alpha) = \sigma(\alpha)$ and $\theta_j(\alpha) = \tau(\alpha)$.

Exercise 3 shows that $(\sigma\tau)(\alpha) = \theta_j(\theta_i(\alpha))$ and $(\tau\sigma)(\alpha) = \theta_i(\theta_j(\alpha))$. As G is Abelian by hypothesis, $\sigma\tau = \tau\sigma$, so

$$\theta_j(\theta_i(\alpha)) = \theta_i(\theta_j(\alpha)), 1 \le i, j \le n.$$

The equation f = 0 is Abelian.

Conclusion: if the finite extension $F \subset L$ is normal and separable and has an Abelian Galois group, and if f is the minimal polynomial of a primitive element α , then f = 0 is an Abelian equation.

Ex. 6.5.7 Show that the implication $(a) \Rightarrow (b)$ of Theorem 6.5.5 is equivalent to Kronecker's assertion that the roots of an Abelian equation over \mathbb{Q} can be expressed rationally in terms of a root of unity.

Proof. Suppose that the implication (a) \Rightarrow (b) of Theorem 6.5.5 is true.

Let $f \in \mathbb{Q}[x]$ such that the equation f = 0 is Abelian. Then f has a root α such that $L = F(\alpha)$ is the splitting field of F, so the extension $F \subset L$ is normal. By Theorem 6.5.3 (and Exercise 3), as the equation f = 0 is Abelian, $\operatorname{Gal}(L/\mathbb{Q})$ is an Abelian group. The hypothesis (a) is so satisfied, and (b) follows: $L \subset \mathbb{Q}(\zeta_n)$, where $\zeta_n = e^{2i\pi/n}$. As the roots of f are in L, these roots can be expressed rationally in terms of a root of unity.

Conversely, suppose that the roots $\alpha_1, \ldots, \alpha_n$ of any Abelian equation f = 0 in the splitting field of f can be expressed rationally in terms of a root of unity ζ_n , and suppose also (a) : $\mathbb{Q} \subset L \subset \mathbb{C}$, the extension $\mathbb{Q} \subset L$ is normal, and $\operatorname{Gal}(L/\mathbb{Q})$ is an Abellan group.

As the characteristic of \mathbb{Q} is 0, $\mathbb{Q} \subset L$ is also separable, and there exists a primitive element α for the extension $\mathbb{Q} \subset L$. Let f the minimal polynomial of α over \mathbb{Q} . By Exercise 6, since $\mathbb{Q} \subset L$ is normal and separable, the equation f = 0 is Abelian. By hypothesis, the roots $\alpha_1 = \alpha, \ldots, \alpha_n$ of f can be expressed rationally in terms of a root of unity ζ_n , therefore $\alpha_i \in \mathbb{Q}(\zeta_n), 1 \leq i \leq n$. In particular $\alpha \in \mathbb{Q}(\zeta_n)$, thus $L = \mathbb{Q}(\alpha) \subset \mathbb{Q}(\zeta_n)$. (b) is so proved under the hypothesis (a).

Conclusion: (a) \Rightarrow (b) is equivalent to the assertion of Kronecker: the roots of an Abelian equation over \mathbb{Q} can be expressed rationally in terms of a root of unity.