第一章 函数与连续

选择题

20级

- 1. 设数列 $x_{_{n}}=egin{cases} \frac{n^{2}+\sqrt{n}}{n}, & n{=}2k+1\\ \frac{1}{-}, & n{=}2k \end{cases}$, 则 D .
 - (A) 当 $n \to \infty$ 时, x_n 是无穷大量
- (B) 当 $n \to \infty$ 时, x_n 是无穷小量
- (C) 数列 $\{x_n\}$ 有界

- (D) 数列 $\{x_n\}$ 无界
- 2. 当 $x \to 0$ 时, $f(x) = x \sin ax$ 和 $g(x) = x^2 \ln(1 bx)$ 为等价无穷小, 则_

(A)
$$a = 1, b = -\frac{1}{6}$$

(B)
$$a = 1, b = \frac{1}{6}$$

(C)
$$a = -1, b = -\frac{1}{6}$$

(D)
$$a = -1, b = \frac{1}{6}$$

19级

1. 根据函数极限的" ε - δ "定义证明 $\lim_{\alpha} (3x-1) = 8$ 时,对 $\forall \varepsilon > 0$,取 $\delta = \underline{\quad B\quad}$,当 $0 < |x-3| < \delta$ 时,有 $|(3x-1)-8|<\varepsilon.$ $(8) < \varepsilon.$ $(A) \ \delta = \frac{1}{2}\varepsilon \qquad (B) \ \delta = \frac{1}{3}\varepsilon \qquad (C) \ \delta = \varepsilon \qquad (D) \ \delta = \frac{2}{3}\varepsilon$

1

(A)
$$\delta = \frac{1}{2}\varepsilon$$

(B)
$$\delta = \frac{1}{3}\varepsilon$$

(C)
$$\delta = \varepsilon$$

(D)
$$\delta = \frac{2}{3}\varepsilon$$

2. 设当 $x \to 0$ 时, $e^x - (ax^2 + bx + 1)$ 是比 x^2 高阶的无穷小,则<u>A</u>.

(A)
$$a = \frac{1}{2}, b = 1$$

(C) $a = -\frac{1}{2}, b = 1$

(B)
$$a = 1, b = 1$$

(C)
$$a = -\frac{1}{2}, b = 1$$

(D)
$$a = -1, b = 1$$

- 1. 设 $\{x_n\}$ 是数列,下列命题中不正确的是<u>D</u>.
- (A) 若 $\lim_{n \to \infty} x_n = a$,则 $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = a$

- (B) 若 $\lim_{n \to \infty} x_{2n} = \lim_{n \to \infty} x_{2n+1} = a$,则 $\lim_{n \to \infty} x_n = a$
- (C) 若 $\lim_{n \to \infty} x_{_{n}} = a$,则 $\lim_{n \to \infty} x_{_{3n}} = \lim_{n \to \infty} x_{_{3n+1}} = a$
- (D) 若 $\lim x_{3n} = \lim x_{3n+1} = a$,则 $\lim x_n = a$
- 2. 设 $\alpha_{_{\! 1}} = \mathrm{e}^{x} + \mathrm{e}^{-x} 2$, $\alpha_{_{\! 2}} = \sqrt[3]{1 + x \sin^{2} x} 1$, $\alpha_{_{\! 3}} = \sqrt{x} (\cos \sqrt{x} 1)$, 当 $x \to 0^{+}$ 时,以上 3 个无穷小 按低阶到高阶的排序是<u>B</u>
 - (A) $\alpha_1, \alpha_2, \alpha_3$
- (B) $\alpha_3, \alpha_1, \alpha_2$
- (C) $\alpha_2, \alpha_3, \alpha_1$

- 4. 数列极限 $\lim_{n\to\infty}\frac{1}{n}\sqrt[n]{n(n+1)\cdots(2n-1)}$ 等于<u>C</u>.
 - (A) $\int_0^e \ln(1+x) dx$

(C) $e^{\int_0^1 \ln(1+x)dx}$

17级

- 1. 设 $\lim_{n\to\infty} x_n = a$,数列 $\{y_n\}$ 满足 $|y_n| \le M(M>0, \forall n\in\mathbb{Z}^+)$,则下列说法正确的是<u>C</u>
 - (A) $\lim_{n\to\infty} x_n y_n = a$

(B) $\lim_{n \to \infty} \frac{y_n}{x_n} = \frac{M}{a}$ (D) 以上三个都不对

(C) 数列 $\{x_n y_n\}$ 有界

2. 设

$$\alpha = \tan x (1 - \cos \sqrt[3]{x^2}), \ \beta = \sqrt{\sin x^2} \ln(1 + \sqrt[3]{x}), \ \gamma = (e^{\arcsin x} - 1)(\sqrt[3]{1 + x} - 1),$$

则当 $x \to 0$ 时,以上三个无穷小量按照从低阶到高阶的排序是_____B

- (A) α, β, γ
- (B) β, γ, α
- (C) β, α, γ
- (D) γ, β, α

- 1. 下列命题中, 正确的是____B___
- (A) 若 $\lim_{n\to\infty} a_n^2 = A^2$,则 $\lim_{n\to\infty} a_n = A$
- (B) 若 $\lim_{n \to \infty} a_n = A$,则 $\lim_{n \to \infty} a_n^2 = A^2$
- (C) 若 $\lim_{n\to\infty} a_n = A$, $\lim_{n\to\infty} b_n = B$, 则 $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{A}{B}$
- (D) 若 $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}b_n=\infty$, 则 $\lim_{n\to\infty}(a_nb_n)=0$

2. 设函数 <i>f</i> (<i>x</i>) 在 (-1,1) 内有定义	, 且满足 f(x) :	$\leq x^2, \forall x \in (-1,1)$,则 $x = 0$ 必是 $f(x)$
的			
(A) 间断点		(B) 连续ī	而不可导的点
(C) 可导的点, 且 $f'(0) = 0$	0	(D) 可导	的点,但 f′(0) ≠ 0
15 级			
1. 已知 a,b,c 是实数,且 $\lim_{n\to\infty}\frac{a}{b}$	$\frac{cn+c}{cn+c} = 2, \lim_{n\to\infty} \frac{b}{c}$	$\frac{pn^2-c}{cn^2-b}=3, \ \text{II} \lim_{n\to\infty}$	$\frac{1}{c}\frac{an^2+c}{cn^2+a}$ 的值为 <u>D</u>
(A) 2	(B) 3	(C) $\frac{2}{3}$	(D) 6
14 级 1. 以下关于数列收敛的性质打(A) 若 {a _n } 收敛(B) 若 {a _n } 收敛(C) 若 {a _n } 发散	$\{b_n\}$ 有界,则 $\{b_n\}$ 发散,则	$\{a_nb_n\}$ 收敛 $\{a_nb_n\}$ 发散	大学,
(D) 若 $\{a_n\}$ 收敛	**		
13 级 1. 以下关于函数 $f(x) = \frac{x^2 - x^2 - 3}{x^2 - 3}$ (A) $x = 1$, $x = 2$ 都是第二(B) $x = 1$, $x = 2$ 都是第二(C) $x = 1$ 是第一类间断, (D) $x = 1$ 是第二类间断,	- 类间断点 - 类间断点 点, <i>x</i> = 2 是第 点, <i>x</i> = 2 是第	二类间断点 一类间断点	
2. 设函数 $f(x)$ 连续,则 $\lim_{n\to+\infty}$	/ ~		
$(A) 0 (B) \int_{0}^{\infty}$	$\int_{0}^{1} \frac{f(x)}{x+1} dx$	$(C) \int_0^1 \frac{f(x)}{x} dx$	(D) $\int_0^1 f(x) dx$
3.	$\overline{+2t}$ d $t-x^2 \not\equiv x^4$	的 <u> </u>	
 (A) 低阶无穷小 (C) 同阶无穷小,但不是 12 级 1. x=2是函数 f(x) = arctan - 2 (A) 连续点 	是等价无穷小 <u>1</u> 的 <u>C</u> .	(B) 高阶无穷小(D) 等价无穷小可去间断点	
(C) 第一类跳跃间断点	(D)	第二类间断点	
2. 设 $x_n \le z_n \le y_n$,且 $\lim_{n \to \infty} (y_n - x_n)$ (A) 存在且等于零	$n \rightarrow \infty$	o.z _{n.} C 存在但不一定等	4. 李
(A) 存在且等于零 (C) 不一定存在	` ′	存在但不一定 《 一定不存在	F 1 令
10 级 1. 当 $x \rightarrow 0^+$ 时,与 \sqrt{x} 等价	·的无空小量旦	(R)	
1. コょ フ υ 旳, ¬ Vx 守川	ロルカケー	(D / .	

(A)
$$1 - e^{\sqrt{x}}$$

(A) $1 - e^{\sqrt{x}}$ (B) $\ln(1 + \sqrt{x})$ (C) $1 - \cos\sqrt{x}$ (D) $\sqrt{1 + \sqrt{x}} - 1$

2. 设函数 $f(x) = \frac{e^x - b}{(x - a)(x - 1)}$ 有无穷间断点 x = 0、可去间断点 x = 1,则常数 a, b 的值为

(B).

(A)
$$a = 0$$
, $b = 1$

(*B*) a = 0, b = e

$$(C)$$
 a 任意, $b=1$

(D) a 任意,b=e

09级

1. 已知
$$f(x) = \begin{cases} \left(1 + \frac{1}{2}\sin x\right)^{\frac{a}{x}}, & x > 0 \text{ 为连续函数,则A。} \\ e^{x+1}, & x \le 0 \end{cases}$$
(A) $a = 2$ (B) $a = 1$ (C) $a = 0$ (D) $a = \frac{1}{2}$

$$(A)$$
 $a=2$

$$(B)$$
 $a=1$

$$(C)$$
 $a=0$

(D)
$$a = \frac{1}{2}$$

级风声和

2. 已知 $x \to 0$ 时, $\tan x - \sin x$ 与 ax^b 为等价无穷小,则<u>B</u>

(A)
$$a = 2, b = 3$$

(B)
$$a = \frac{1}{2}, b = 3$$

(D) $a = -2, b = 2$

(C)
$$a=1, b=3$$

(D)
$$a = -2, b = 2$$

二、填空题

20级

1. 设
$$\lim_{x \to 0} \frac{\sin x}{e^x - a} (\cos x - b) = 5$$
,则 $a - b = __5$ ___.

19级

1. 设
$$f(x) = \begin{cases} e^{\frac{1}{x-1}}, & x > 0 \\ \ln(1+x), & -1 < x \le 0 \end{cases}$$
 ,则 $f(x)$ 的第一类跳跃间断点是____x = 0____.

8. 极限
$$\lim_{n\to\infty} \frac{1}{n^2} (\sqrt[3]{n^2} + \sqrt[3]{2n^2} + \dots + \sqrt[3]{n^3}) = \underline{\qquad 3} = \underline{\qquad 3}$$

18 级
1. 已知
$$\lim_{x\to 0} (1+x+\frac{f(x)}{x})^{\frac{1}{x}} = e^3$$
,则 $\lim_{x\to 0} \frac{f(x)}{x^2}$ 的值等于_____2___.

2. 设函数
$$f(x) = \frac{e^x - a}{x(x-1)}$$
 有可去间断点 $x = 1$,则 $a = ____e$

1. 设极限
$$\lim_{x\to 0} \left[\frac{1}{x} - (\frac{1}{x} - a)e^x \right] = 1$$
,则常数 $a = \underline{\qquad 2}$ ____.

2. 函数
$$f(x) = \frac{(e^{\frac{1}{x}} + e)\tan x}{x(e^{\frac{1}{x}} - e)}$$
 在区间 $[-\pi, \pi]$ 上的第一类间断点是 $x = \underline{0}$.

9. 极限
$$\lim_{n \to \infty} \left(\frac{1}{n + \frac{1^2}{n}} + \frac{1}{n + \frac{2^2}{n}} + \dots + \frac{1}{n + \frac{n^2}{n}} \right) = \underline{-\frac{\pi}{4}}$$
或 $\underbrace{\operatorname{arctan1}}_{-}$.

1.
$$\Box \ln \lim_{x \to 1} \frac{x^2 + ax + 6}{1 - x} = 5$$
, $\lim a$ 的值为____-7____.

1. 设极限
$$\lim_{x\to\infty} (1+\frac{2}{kx})^{4x+1} = e^2$$
, 则 $k = \underline{\qquad} 4\underline{\qquad}$.

1. 若
$$\lim_{x \to 0} \frac{\arctan kx}{\ln(1+\frac{x}{8})} = 4$$
,则 $k = -\frac{1}{2}$

1.
$$\lim_{x\to 0} (1-x)^{\frac{1}{x}} = \underline{\qquad} e^{-1} \underline{\qquad}$$

1. 当
$$x \to 0$$
 时, $(1-ax^2)^{\frac{1}{4}}$ −1 与 $x \sin x$ 是等价无穷小,则 $a = __- -4 ___$.

1. 极限
$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}}$$
 的值为___e^{-\frac{1}{2}}___。

1. 已知
$$f(x) = \begin{cases} a - e^{\frac{x}{x-1}}, & x \le 0, \\ x \sin \frac{1}{x}, & x > 0. \end{cases}$$
 为连续函数,则 $a = \underline{\qquad 1}$.

1. 函数
$$f(x) = \frac{(x-1)\cos x}{\sin \pi x}$$
 的可去间断点为 $x = \underline{1}$ 。

三、计算题

1. 计算极限
$$\lim_{x\to 0} \frac{\int_{\cos x}^1 \sqrt{1+t^2} dt}{x^2}$$
.

解答: 原式 =
$$\lim_{x \to 0} \frac{\sin x \sqrt{1 + \cos^2 x}}{2x}$$
 4分 = $\lim_{x \to 0} \frac{\sqrt{1 + \cos^2 x}}{2}$ 2分

编队

19级

1. 求极限
$$\lim_{x\to 0} \frac{\int_0^x (e^t - 1 - t)^2 dt}{x \sin^4 x}$$
.

18级

18 级
1. 计算极限
$$\lim_{x \to +\infty} \frac{e^{-x^2}}{x} \int_0^x t^2 e^{t^2} dt$$
.
解答: $\lim \frac{e^{-x^2}}{x} \int_0^x t^2 e^{t^2} dt$

解答:
$$\lim_{x \to +\infty} \frac{\mathrm{e}^{-x^2}}{x} \int_0^x t^2 \mathrm{e}^{t^2} \mathrm{d}t$$

$$= \lim_{x \to +\infty} \frac{\int_{0}^{x} t^{2} e^{t^{2}} dt}{x e^{x^{2}}} \qquad 2 \, \mathcal{D}$$

$$= \lim_{x \to +\infty} \frac{x^{2} e^{x^{2}}}{2x^{2} e^{x^{2}} + e^{x^{2}}} \qquad 4 \, \mathcal{D}$$

$$= \frac{1}{2}. \qquad 2 \, \mathcal{D}$$

1. 计算极限
$$\lim_{x\to 0} \frac{\int_0^x t \ln(1+t\sin t) dt}{\sin^4 x}$$
.

解答:
$$\lim_{x \to 0} \frac{\int_0^x t \ln(1 + t \sin t) dt}{\sin^4 x}$$

$$=\lim_{x\to 0} \frac{\int_0^x t \ln(1+t\sin t) dt}{x^4} \qquad 2 \mathcal{D}$$

$$= \lim_{x \to 0} \frac{x^2 \sin x}{4x^3} = \frac{1}{4}.$$
 2 \(\frac{1}{2}\)

1. 计算极限.
$$\lim_{x\to 0} \cot x \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$
.

解答:
$$\lim_{x\to 0} \cot x \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

$$=\lim_{x\to 0}\frac{\cos x (x-\sin x)}{x\sin^2 x}$$
 3 \(\frac{\pi}{2}\)

$$=\lim_{x\to 0}\frac{x-\sin x}{x^3}$$
 3 \(\frac{\psi}{x}\)

$$= \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \frac{1}{6}.$$
 2 \(\frac{1}{2}\)

15 级

1. 计算极限
$$\lim_{x\to 0} \frac{\tan x - x}{x \ln(1+x^2)}$$
.

解答:
$$\lim_{x\to 0} \frac{\tan x - x}{x \ln(1+x^2)}$$

$$=\lim_{x\to 0}\frac{\tan x - x}{x^3}$$

$$= \lim_{x \to 0} \frac{\sec^2 x - 1}{3x^2}$$
 4 \(\frac{1}{3}\)

$$= \lim_{x \to 0} \frac{2 \tan x \sec^2 x}{6x} \, \exists \vec{k} \lim_{x \to 0} \frac{\tan^2 x}{3x^2}$$

1.
$$\lim_{x \to 0} \frac{e^{2x} - e^{-x} - 3x}{1 - \cos x}$$

解答:
$$\lim_{x\to 0} \frac{e^{2x} - e^{-x} - 3x}{1 - \cos x}$$

$$= \lim_{x \to 0} \frac{e^{2x} - e^{-x} - 3x}{\frac{1}{2}x^2}$$
 3 f

$$= \lim_{x \to 0} \frac{2e^{2x} + e^{-x} - 3}{x}$$
 3 \(\frac{1}{2}\)

$$= \lim_{x \to 0} 4e^{2x} - e^{-x} = 3.$$
 2 \(\frac{1}{2} \)

1.
$$(6 分)$$
 求极限 $\lim_{x\to 1} \frac{\ln \cos(x-1)}{1-\sin \frac{\pi}{2} x}$.

$$= \lim_{x \to 1} \frac{-\sec^2(x-1)}{\frac{\pi^2}{4} \sin \frac{\pi}{2} x} \dots 2 \, \%$$

12级

1. 求极限
$$\lim_{x\to 0} (\frac{1+x}{1-e^{-x}} - \frac{1}{x})$$
.

解答: 原式=
$$\lim_{x\to 0} \frac{x+x^2-1+e^{-x}}{x(1-e^{-x})}$$

$$= \lim_{x \to 0} \frac{x + x^2 - 1 + e^{-x}}{x^2}$$

$$= \lim_{x \to 0} \frac{1 + 2x - e^{-x}}{2x}$$

$$= \lim_{x \to 0} \frac{2 + e^{-x}}{2} = \frac{3}{2}.$$

解答:
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x\to 0} \frac{x^2}{y(x)} = \lim_{x\to 0} \frac{2x}{y'(x)} = \lim_{x\to 0} \frac{2}{y''(x)}$$

由 $y'' + py' + qy = \cos x$ 得 $y'' = \cos x - py' - qy$, 由 $\cos x, py', qy$ 的连续性知 y 有二阶连续导数,从而 $y''(0) = \lim_{x \to 0} y''(x) = \lim_{x \to 0} (\cos x - py' - qy) = 1 - 0 - 0 = 1,$

所以
$$\lim_{x\to 0} \frac{\ln(1+x^2)}{y(x)} = \lim_{x\to 0} \frac{2}{y''(x)} = 2.$$

11级

1. 在
$$(-2\pi, 2\pi)$$
 内讨论函数 $f(x) = \frac{x}{\sin x}$ 的间断点并分类。

解答: $f(x) = \frac{x}{\sin x}$ 在 $(-2\pi, 2\pi)$ 内可能的间断点为 $x = -\pi, 0, \pi$,

因为
$$\lim_{x \to -\pi} \frac{x}{\sin x} = \infty$$
, $\lim_{x \to \pi} \frac{x}{\sin x} = \infty$,

所以 $x = -\pi, \pi$ 为第二类无穷间断点;

又因为 $\lim_{x\to 0}\frac{x}{\sin x}=1$,所以x=0为第一类可去间断点。

3. 求极限
$$\lim_{x\to 0} (\frac{1}{\ln(1+x)} - \frac{1}{x})$$
。

解答: 原式=
$$\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{x}\right) = \lim_{x\to 0} \frac{x - \ln(1+x)}{x \ln(1+x)} = \lim_{x\to 0} \frac{x - \ln(1+x)}{x^2}$$

$$= \lim_{x \to 0} \frac{1 - \frac{1}{1 + x}}{2x} = \lim_{x \to 0} \frac{x}{2x(1 + x)} = \frac{1}{2} \circ$$

10级

1. 计算极限
$$\lim_{x\to 0^+} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}}$$
.

解答:
$$\lim_{x\to 0^+} (\frac{\tan x}{x})^{\frac{1}{x^2}} = \lim_{x\to 0^+} (1 + \frac{\tan x - x}{x})^{\frac{x}{\tan x - x} \cdot \frac{\tan x - x}{x^3}}$$

$$\overline{\text{mi}} \lim_{x \to 0^+} \frac{\tan x - x}{x^3} = \lim_{x \to 0^+} \frac{\sec^2 x - 1}{3x^2} = \lim_{x \to 0^+} \frac{\tan^2 x}{3x^2} = \frac{1}{3}$$

所以
$$\lim_{x\to 0^+} \left(\frac{\tan x}{x}\right)^{\frac{1}{x^2}} = e^{\frac{1}{3}}$$

09级

1. 计算极限
$$\lim_{x\to 0} \frac{\ln[\frac{1}{3}(2+\cos x)]}{e^x - \sin x - 1}$$
。

解答:
$$\lim_{x \to 0} \frac{\ln\left[\frac{1}{3}(2+\cos x)\right]}{e^x - \sin x - 1} = \lim_{x \to 0} \frac{\ln\left[1 + \frac{1}{3}(\cos x - 1)\right]}{e^x - \sin x - 1} = \lim_{x \to 0} \frac{\frac{1}{3}(\cos x - 1)}{e^x - \sin x - 1}$$
$$= \lim_{x \to 0} \frac{-\frac{1}{6}x^2}{e^x - \sin x - 1} = \lim_{x \to 0} \frac{-\frac{1}{3}x}{e^x - \cos x} = \lim_{x \to 0} \frac{-\frac{1}{3}}{e^x + \sin x} = -\frac{1}{3}.$$

四、证明

13级

(3分) 用
$$\varepsilon$$
- δ 语言证明: $\lim_{x\to 1} \frac{x^2-1}{2x^2-x-1} = \frac{2}{3}$.

证明:
$$\forall \varepsilon > 0$$
,限制 $0 < |x-1| < 1$,即 $0 < x < 2$,要使;
$$\left| \frac{x^2 - 1}{2x^2 - x - 1} - \frac{2}{3} \right| = \left| \frac{x + 1}{2x + 1} - \frac{2}{3} \right| = \frac{|x - 1|}{3|2x + 1|} = \frac{|x - 1|}{3(2x + 1)} \le \frac{|x - 1|}{3} < \varepsilon, \dots \dots 2$$
 分

1. (3分) 用数列极限
$$\varepsilon - N$$
 定义证明: $\lim_{n \to \infty} \frac{n+4}{n^2+n+1} = 0$.

证明:
$$\left| \frac{n+4}{n^2+n+1} - 0 \right| = \frac{n+4}{n^2+n+1} < \frac{5n}{n^2} = \frac{5}{n}$$

故对
$$\forall \varepsilon > 0$$
 , $\exists N = \left[\frac{5}{\varepsilon}\right]$, $\stackrel{.}{=} n > N$ 时 ,

$$\left| \frac{n+4}{n^2+n+1} - 0 \right| < \varepsilon$$

级水子家。

所以
$$\lim_{n\to\infty} \frac{n+4}{n^2+n+1} = 0$$
.

11 级

1. (4分) 用极限的"
$$\varepsilon - \delta$$
"语言证明: $\lim_{x \to 1} \frac{x}{x+1} = \frac{1}{2}$ 。

证明:不妨设|x-1|<1,则此时有

$$\lim_{x \to 1} \frac{1}{x+1} = \frac{1}{2} \circ$$

$$\left| \frac{x}{x+1} - \frac{1}{2} \right| = \left| \frac{x-1}{2(x+1)} \right| < \frac{|x-1|}{2}$$

$$< |x-1| < \delta \text{ 时,有}$$

$$\left| \frac{x}{x+1} - \frac{1}{2} \right| < \varepsilon$$

对 $\forall \varepsilon > 0$,取 $\delta = \min\{1, 2\varepsilon\}$,则当 $0 < |x-1| < \delta$ 时,有

$$\left| \frac{x}{x+1} - \frac{1}{2} \right| < \varepsilon$$

成立。故
$$\lim_{x\to 1} \frac{x}{x+1} = \frac{1}{2}$$
。

10级

3. 利用
$$\varepsilon - N$$
语言,证明极限 $\lim_{n \to \infty} \frac{3n^2 + n}{2n^2 - 1} = \frac{3}{2}$.

证明:
$$\forall \varepsilon > 0, \exists N = \left[\frac{5}{\varepsilon}\right], n > N,$$

$$\left| \frac{3n^2 + n}{2n^2 - 1} - \frac{3}{2} \right| = \frac{2n + 3}{2(2n^2 - 1)} < \frac{2n + 3}{2n^2 - 1} < \frac{2n + 3n}{2n^2 - n^2} = \frac{5}{n} < \varepsilon$$

3. 用极限的"
$$\varepsilon - N$$
"语言证明: $\lim_{n \to \infty} \sin(\pi \sqrt{n^2 + 1}) = 0$ 。(3 分)

证明:
$$\forall \varepsilon > 0$$
,取 $N = \left[\frac{2}{\varepsilon}\right] + 1$,则当 $n > N$ 时········.1分

$$|\sin(\pi\sqrt{n^2+1})| = |\sin\pi(\sqrt{n^2+1}-n)|$$

$$= \left| \sin \frac{\pi}{\sqrt{n^2 + 1} + n} \right| \le \frac{\pi}{\sqrt{n^2 + 1} + n} \le \frac{\pi}{2n} \le \frac{2}{n} < \varepsilon$$

所以
$$\lim_{n\to\infty} \sin(\pi\sqrt{n^2+1}) = 0$$
。

第二章 导数

选择

17级

3. 设周期为 2 的周期函数 f(x) 在 $(-\infty, +\infty)$ 上可导,即 f(x+2) = f(x),又 $\lim_{x\to 0} \frac{f(2) - f(2-x)}{2x} = 2$,则曲线

(A) -2

y = f(x)在点(4, f(4))处切线斜率为____D_

- (B) -4
- (C) 2

16级

3. 设函数 y = f(x) 在点 x_0 处连续,记 $\Delta y = f(x_0 + \Delta x) - f(x_0)$, A 是常数, α 是 $\Delta x \rightarrow 0$ 时的无穷小量,则 y = f(x)在点 x_0 处可微的含义是: _____.

(A) $\Delta y \approx A \Delta x$

- (B) Δy 与 Δx 成比例
- (C) $\Delta y = (A + \alpha)\Delta x$, $A = \Delta x$ 无关
- (D) $\Delta y = A\Delta x + \alpha$, $A = \Delta x$ 无关

15 级

2. 设函数 y=f(x) 在 $x=x_0$ 处可导, $\Delta y=f(x_0+\Delta x)-f(x_0)$, dy 为 f(x) 在 x_0 点处的微分,则 $\lim_{\Delta x \to 0} \frac{\Delta y - \mathrm{d}y}{\Delta x} = \underline{\qquad}.$

- (C) 1
- (D) ∞

14级

2. 设 $F(x) = \begin{cases} \frac{f(x)}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, 其中 f(x) 在 x = 0 处可导,且 f(0) = 0, $f'(0) \neq 0$,则 x = 0 是 F(x) 的<u>B</u>.

(B) 第一类间断点

(D) 不能确定是连续点还是间断点

4. 设函数 $y = \ln(x + \sqrt{x^2 + 1})$,则 y = f(x) 的反函数 x = g(y) 在 y = 0 处的导数 $\frac{dx}{dy}$

- (A) 1
- (B) 2
- (C) 3
- (D) 4

12 级

(A) 3f'(a)

(B) 2f'(a)

(C) f'(a)

(D) $\frac{1}{3}f'(a)$

3. 函数 f(x) = x | x(x-1) | 不可导点的数目是 B 。

(A) 0

(*B*) 1

(*C*) 2

(D) 3

额以为

二、填空

20级

3. 由方程 $x=y^y$ 确定的隐函数 y=y(x) 的微分 $\mathrm{d}y\Big|_{x=1}=\underline{\qquad 1}$ $\mathrm{d}x$.

19级

2.
$$\exists \exists f'(3) = 2$$
, $\exists \lim_{h \to 0} \frac{f(3-h) - f(3)}{2h} = \underline{\qquad} -1 \underline{\qquad}$.

3. 由方程 $\ln \frac{x^2}{y} + xy^2 = 1$ 确定的函数 y = y(x) 的微分 $dy = _{---} \frac{2y + xy^3}{x - 2x^2y^2} dx _{---}$.

18级

3. 己知
$$y = f\left(\frac{2}{x+2}\right)$$
, $f'(u) = \arctan u^2$, 则 $dy|_{x=0} = \underline{\qquad} -\frac{\pi}{8}$.

4. 设函数
$$y = \frac{1}{2x+3}$$
,则 $y^{(n)}(0) = \underline{\qquad} \frac{(-1)^n 2^n n!}{3^{n+1}} \underline{\qquad}$.

17级

3. 由方程 $\cos(xy) + \ln y - 2x = 1$ 确定的函数 y = y(x) 的微分 $dy \Big|_{x=0} = 2$ ____ dx.

16级

3. 曲线
$$\begin{cases} x = e^{t} \sin 2t \\ y = e^{t} \cos t \end{cases}$$
 在 (0,1) 处的切线方程为____ $y = \frac{1}{2}x + 1$ ____.

5. 设
$$f(x) = x^2 \sin x$$
, 则 $f^{(2017)}(0) = _____-2017 \cdot 2016$ 或 -4066272 ;_____.

15级

2. 设函数
$$f(x) = (x-a)g(x)$$
, $g(x)$ 在 $x = a$ 点某邻域内有定义,且 $\lim_{x \to a} g(x) = 3$,则 $f'(a) = ____3$ ____.

3.
$$\Re e^{y} - y \sin x = e$$
, $\Im dy \Big|_{x=0} = \frac{1}{e} dx$.

2. 设
$$f(x)$$
 为可导函数且满足 $\lim_{x\to 0} \frac{f(a)-f(a-x)}{2x} = 1$, 则曲线 $y = f(x)$ 在点 $(a, f(a))$ 处的切线斜率为 2.

$$3. \quad d\left(\frac{\ln x}{x}\right) = \frac{1 - \ln x}{x^2} dx.$$

- 3. 设函数 $f(x) = x(x+1)(x+2)\Lambda(x+n)$,则 $df(x)|_{x=0} = ____n! dx___$
- 4. 设 f(x) 在 x = 1 处可导且 f'(1) = 3,则 $\lim_{x \to 0} \frac{f(1 + \sin x) f(1 \sin x)}{x} = \underline{\qquad} 6$ _____.
- 5. 设函数 y = y(x) 由方程 $xe^{y} + y = 1$ 所确定,则 $\frac{dy}{dx} = ____-e$ _____.

- 2. 已知 f'(0) = 1,则 $\lim_{x \to 0} \frac{f(x) f(-x)}{x}$ 的值为 ______。
- 3. 设 $y = \ln(2+x)$,则 $y^{(4)}|_{x=0} = ____$ 。

10级

2. 已知函数 $y = x^{\frac{2}{x}}$, 则微分**d** $y|_{x=1} = 2$ **d** x.

2. 已知函数 $f(x) = x^x + x$,则微分 $df(x)|_{x=1}$ 的值为___2dx

三、计算

20级

19 级
$$2. \ \ \mathbb{Q}$$
 2. 设函数 $y=y(x)$ 是由参数方程
$$\begin{cases} x=\int_0^t f(u^2)\mathrm{d}u \\ y=[f(t^2)]^2 \end{cases}$$
 所确定,函数 $f(x)$ 二阶可导,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{(\frac{\mathrm{d}y}{\mathrm{d}x})'_t}{x'_t} = 4 \frac{f'(t^2) + 2t^2 f''(t^2)}{f(t^2)}.$$
 4 \(\frac{\pi}{x}\)

2. 设曲线由参数方程
$$\begin{cases} x = t^2 + 3t + 5 \\ \mathrm{e}^y t - y = 0 \end{cases}$$
 所确定,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}\Big|_{t=0}$.

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\mathrm{e}^y y_t'(2t+3)(1-y) - \mathrm{e}^y [-y_t'(2t+3) + 2(1-y)}{(2t+3)^3 (1-y)^2}; \qquad 2 \ \text{f}$$

17 级
2. 设曲线
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = \ln(1+t^2) \\ y = t - \arctan t \end{cases}$$
 所确定,求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 和 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
解答:利用参数方程求导公式,有

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{(\frac{\mathrm{d}y}{\mathrm{d}x})'_t}{x'_t} = \frac{\frac{1}{2}}{\frac{1}{1+t^2} \cdot 2t} = \frac{1+t^2}{4t} . \qquad4 \,$$

2. 设函数 y = y(x) 由方程 $e^{-y} + x(y-x) = 1 + x$ 所确定,求 y'(0) 与 y''(0).

解答: 方程两边对 x 求导, 得

$$e^{-y}(-\frac{dy}{dx}) + (y-x) + x(\frac{dy}{dx} - 1) = 1$$
 (*)

(*)式两边对x求导,得

$$e^{-y}(-\frac{dy}{dx})^2 - e^{-y}\frac{d^2y}{dx^2} + \frac{dy}{dx} - 1 + \frac{dy}{dx} - 1 + x\frac{d^2y}{dx^2} = 0$$

将
$$x = 0$$
, $y = 0$, $\frac{dy}{dx}\Big|_{x=0} = -1$ 代入上式得

2. 设参数方程
$$\begin{cases} x = 1 - t^2 \\ y = t^2 - t \end{cases}$$
 确定了函数 $y = y(x)$, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

解答:
$$\frac{\mathrm{d}x}{\mathrm{d}t} = (1-t^2)' = -2t$$
, $\frac{\mathrm{d}y}{\mathrm{d}t} = (t^2-t)' = 2t-1$,

$$\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y/\mathrm{d}t}{\mathrm{d}x/\mathrm{d}t} = \frac{2t-1}{-2t} = -1 + \frac{1}{2t}; \qquad ...$$

$$\frac{dx}{dt} = (1 - t^{2})' = -2t, \quad \frac{dy}{dt} = (t^{2} - t)' = 2t - 1,$$

$$\therefore \quad \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t - 1}{-2t} = -1 + \frac{1}{2t}; \qquad ... 4 \%$$

$$\therefore \quad \frac{d^{2}y}{dx^{2}} = \frac{d(\frac{dy}{dx})/dt}{dx/dt} = \frac{(-1 + \frac{1}{2t})'}{-2t} = \frac{-\frac{1}{2t^{2}}}{-2t} = \frac{1}{4t^{3}}. \qquad ... 4 \%$$

$$\therefore \quad \frac{d^{3}y}{dx^{2}} = \frac{d(\frac{dy}{dx})/dt}{dx/dt} = \frac{(-1 + \frac{1}{2t})'}{-2t} = \frac{-\frac{1}{2t^{2}}}{-2t} = \frac{1}{4t^{3}}. \qquad ... 4 \%$$

$$\therefore \quad \frac{d^{3}y}{dx^{2}} = \frac{d(\frac{dy}{dx})/dt}{dx/dt} = \frac{(-1 + \frac{1}{2t})'}{-2t} = \frac{1}{4t^{3}}. \qquad ... 4 \%$$

14级

2. 设函数
$$y = y(x)$$
 由方程组
$$\begin{cases} x = e^{t} + 3 \\ y = 1 - ye^{t} \end{cases}$$
 所确定,求 $\frac{dy}{dx}\Big|_{t=0}$ 和 $\frac{d^{2}y}{dx^{2}}\Big|_{t=0}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{t=0} = -\frac{1}{4} \qquad 1 \text{ }$$

13 级
4. (7 分) 设函数
$$y=y(x)$$
由参数方程
$$\begin{cases} x = \ln(1+t^2) \\ y = \int_0^t \frac{1}{(1+u^2)^2} du \end{cases}$$
 所确定,求 $\frac{d^2y}{dx^2}\Big|_{t=1}$.

解答:
$$\frac{dy}{dx} = \frac{y'_t}{x'_t} = \frac{\frac{1}{(1+t^2)^2}}{\frac{2t}{1+t^2}} = \frac{1}{2t(1+t^2)} \dots 3 分$$

$$\frac{d^2 y}{dx^2} = \frac{\left(\frac{dy}{dx}\right)'_{t}}{x'_{t}} = \frac{-\frac{1+3t^2}{2t^2(1+t^2)^2}}{\frac{2t}{1+t^2}} = -\frac{1+3t^2}{4t^3(1+t^2)} \dots 3$$

$$\frac{d^2 y}{dx^2}\Big|_{t=1} = -\frac{1}{2} \dots 1$$

2. 己知
$$\begin{cases} x = \ln(t + \sqrt{1 + t^2}) \\ y = \frac{1}{3}t^3 + t - 2 \end{cases}$$
, 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$.

解答:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y_t'}{x_t'} = \frac{t^2 + 1}{\frac{1}{\sqrt{t^2 + 1}}} = (t^2 + 1)^{\frac{3}{2}}$$

$$\frac{d^2 y}{dx^2} = \frac{\left(\frac{dy}{dx}\right)'_t}{x'_t} = \frac{\frac{3}{2}(t^2 + 1)^{\frac{1}{2}} \cdot (2t)}{\frac{1}{\sqrt{t^2 + 1}}} = 3t(t^2 + 1)$$

3. 已知方程 $e^{x+y} - xy = 1$ 确定了二阶可导函数 y = y(x), 求y''(0).

解答: 易知 y(0) = 0, 方程两边对 x 求导得, $(1+y')e^{x+y} - y - xy' = 0$

将
$$x=0, y=0$$
 代入解得 $y'(0)=-1$

对 $(1+y')e^{x+y} - y - xy' = 0$ 两边再对 x 求导得

$$(1+y')^2 e^{x+y} + y'' e^{x+y} - 2y' - xy'' = 0,$$

以
$$y(0) = 0, y'(0) = -1$$
 代入得 $y''(0) = -2$.

11 级
2. 已知函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = a(t - \sin t) \\ y = a(1 - \cos t) \end{cases}$$
 确定,其中常数 $a > 0$,求 $\frac{dy}{dx}, \frac{d^2y}{dx^2}$ 。

解答:
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y_t'}{x_t'} = \frac{a\sin t}{a(1-\cos t)} = \frac{\sin t}{1-\cos t}$$

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = \frac{\left(\frac{\sin t}{1 - \cos t}\right)'_t}{x'_t}$$

$$= \frac{\frac{\cos t(1-\cos t)-\sin^2 t}{(1-\cos t)^2}}{a(1-\cos t)} = \frac{-1}{a(1-\cos t)^2} \circ$$

10级

2. 己知函数
$$y = y(x)$$
 是由方程 $\arctan \frac{x}{y} = \ln \sqrt{x^2 + y^2}$ 确定的隐函数,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

解答: 方程两边同时对 x 求导: $\frac{y-xy'}{x^2+y^2} = \frac{x+yy'}{x^2+y^2}$

故
$$\frac{dy}{dx} = \frac{y-x}{x+y}$$
 , 即 $\frac{dy}{dx} = 1 - 2\frac{x}{x+y}$

$$\frac{d^2y}{dx^2} = -2\frac{x+y-x(1+y')}{(x+y)^2} = \frac{-2(x^2+y^2)}{(x+y)^3}$$

09级

2. 设二阶可导的函数 y = y(x) 由方程 y = g(x+y) 确定,其中函数 g 具有二阶导数,且其一阶导数不等于

$$1, \ \ \ \ \ \ \frac{dy}{dx}, \ \ \frac{d^2y}{dx^2}$$

解答: 方程两边同时对x求导: $y' = g' \cdot (1 + y')$

故
$$\frac{dy}{dx} = y' = \frac{g'}{1-g'}$$
, ···········4 分

$$\frac{d^2y}{dx^2} = y'' = \frac{g'' \cdot (1+y')(1-g') - g'(-g'')(1+y')}{\left(1-g'\right)^2} = \frac{g'' \cdot (1+y')}{\left(1-g'\right)^2}$$

代入
$$y' = \frac{g'}{1 - g'}$$
, 整理得: $y'' = \frac{g''}{(1 - g')^3}$ 。

第3章 微分中值定理

一、选择

20级

- 3. 设函数 $f(x) = (x^2 1)^3$, 则_____B___
 - (A) f(x)在x = 0处取得极大值
- (B) f(x)在x = 0处取得极小值
- (C) f(x)在x = 1处取得极大值
- (D) f(x)在x = -1处取得极小值
- 4. 曲线 $\begin{cases} x = t \sin t \\ y = 1 \cos t \end{cases}$ 对应于 $t = \frac{\pi}{2}$ 的点处的曲率半径为 <u>C</u>
 - (A) $\frac{\sqrt{2}}{2}$ (B) $\sqrt{2}$
- (D) 2

19级

3. 若
$$\lim_{x \to a} \frac{f(x) - f(a)}{(a - x)^2} = -1$$
,则 A

- (A) 点 $x = a \, \ell f(x)$ 的极大值点
- (B) 点 $x = a \, \ell f(x)$ 的极小值点
- (C) 点 $x = a \not\in f(x)$ 的驻点, 但不是极值点
- (D) 点x = a不是f(x)的驻点

18级

3. 已知函数
$$f(x)$$
 在 $x = 0$ 的某邻域内连续,且 $f(0) = 0$, $\lim_{x \to 0} \frac{f(x)}{1 - \cos x} = 2$,则在点 $x = 0$ 处 $f(x)$ ______.

(A) 不可导

(B) 可导, 且 $f'(0) \neq 0$

(C) 取得极大值

(D) 取得极小值

- 5. 设函数 f(x)在 $(-\infty, +\infty)$ 内连续, 其导函数的图形如图所示, 则_B_.
 - (A) 函数 f(x) 有 2 个极值点, 曲线 y = f(x) 有 2 个拐点
 - (B) 函数 f(x)有 2 个极值点, 曲线 y = f(x)有 3 个拐点
 - (C) 函数 f(x)有 3 个极值点, 曲线 y = f(x)有 1 个拐点
 - (D) 函数 f(x)有 3 个极值点, 曲线 y = f(x)有 2 个拐点

12级

- - (A) a < 0

(B) a > 0

(C) a < -3

(D) a > -3

11级

- 4. 已知 f''(x), g''(x) 存在且 $f(x_0) = g(x_0) = 0$, $f'(x_0)g'(x_0) > 0$, 则 D 。
 - (A) $(x_0, f(x_0)g(x_0))$ 为 f(x)g(x)的拐点;
 - (B) 在 x_0 点f(x)g(x)切线斜率大于0;
 - (C) x_0 为 f(x)g(x)的极大值点;
 - (D) x_0 为 f(x)g(x)的极小值点。
- 5. 下列说法错误的是 D 。
- (A) 如果函数 f(x) 在区间 [a,b] 上连续、非负且 f(x) 至少有一点不为零,则 $\int_a^b f(x) dx > 0$;
- (B) 如果函数 f(x) 连续且为偶函数,则函数 $\int_0^x f(t)dt$ 是奇函数;
- (C) 如果函数 $f(x) \neq 0$ 且可导,则 $(\ln |f(x)|)' = \frac{1}{f(x)} f'(x)$;
- (D) 如果 f'(x) < 0, f''(x) < 0, 自变量增量 $\Delta x > 0$, 则在 x 点函数值增量 $\Delta y > \mathrm{d}y$ 。 10 级
- 3. 设 $f(x) = x^3 3x + q$, 其中常数 $q \in (-2, 2)$, 则f(x)的零点的个数为 (C) (A) 1 (B) 2 (C) 3 (D) 4

10级

5. 下列说法正确的是

(A).

- (A) 已知数列 $\{x_n\}$ 单调递增,非负函数f(x)单调递减,则数列 $\{f(x_n)\}$ 收敛
- (B) 设函数 f(x)连续,且满足 $m \le f(x) \le M$,其中m, M为常数,则

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

(C)
$$\int e^x (1+e^x)^{\alpha} dx = \frac{1}{1+\alpha} (e^x+1)^{1+\alpha} + C$$

- (D) 设函数 f(x) 连续,若 $(x_0, f(x_0))$ 是曲线 y = f(x) 的拐点,则 $f(x_0)$ 不是 f(x) 的极值 09 级
- 5. 下列说法正确的是 D 。
 - (A) 若函数 f(x) 的导函数为奇函数,则 f(x) 的原函数也是奇函数
 - (B) 若函数 f(x) 连续且 $f'(x_0) > 0$,则 f(x) 在 x_0 点某邻域内单调增加
 - (C) 若函数 f(x), g(x) 连续,且 $f(x) \ge g(x)$,则 $\int_0^x f(x) dx \ge \int_0^x g(x) dx$

(*D*) 若函数 f(x) 在区间 [a,b] 满足 f'(x) > f(x) 且 f(a)f(b) < 0,则 f(x) 在区间 (a,b) 内有惟一的零点

二、填空

20级

5. 函数
$$y = \frac{2x}{1+x^2}$$
 的单调递增区间是___[-1,1]____.

6. 函数 $y = xe^{-x}$ 图形的拐点为___(2,2e^{-2})_____.

19级

- 5. 设 $f(x) = x^2 \cos 2x$,则 f(x) 带皮亚诺余项的 3 阶麦克劳林展开式为___x^2 + $o(x^3)$ ____
- 6. 函数 $f(x) = (x+1)^2(x-2)$ 图形曲线的拐点为____(0,-2)____.
- 7. 抛物线 $y = ax^2 + bx + c$ 在 $x = __ \frac{b}{2a}$ ______点处的曲率最大.

18级

5. 设函数 f(x) 带皮亚诺余项的 n 阶麦克劳林展开式为

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n),$$

则 $f(x)=x\mathrm{e}^x$ 的 n 阶麦克劳林的展开式中,则 x^n 前的系数 $a_n=\underline{\qquad}\frac{1}{(n-1)!}(n\geq 1)$ _____.

6. 曲线
$$y = \frac{e^x}{x+3}$$
 的凸区间为_____($-\infty$, -3)______.

7. 曲线 $y = 4x - x^2$ 在其顶点处的曲率为_____2____.

17级

4. 设函数 f(x)的带皮亚诺余项的 n 阶麦克劳林的展开式为

$$f(x) = a_0 + a_1 x + \dots + a_n x^n + o(x^n),$$

则函数 $f(x) = x^2 \ln(1+2x)$ 的带皮亚诺余项的 n 阶麦克劳林的展开式中,系数 $a_{10} = ____-32 _____$.

- 5. 函数 $f(x) = (x-3)e^x$ 的单调递增区间是_(2,+ ∞) <u>或</u>[2,+ ∞)_.
- 6. 函数 $y = x + \sqrt{5} \ln(1 + x^2)(x > 0)$ 图形的拐点为____(1, $\sqrt{5} \ln 2 + 1$)____.

7. 曲线
$$y = x^2(1-x)$$
 在点 $(1,0)$ 处的曲率半径为 $R = -\frac{\sqrt{2}}{2}$ _____.

6. 函数 $\ln(1-x)$ 在 x=0 处的 3 阶泰勒 Taylor 多项式 $P_3(x) = \underline{\qquad} -x - \frac{1}{2}x^2 - \frac{1}{3}x^3 \underline{\qquad}$.

15级

- 4. 函数 $f(x) = xe^x$ 带有皮亚诺型余项的 3 阶麦克劳林展式为 $f(x) = -x + x^2 + \frac{1}{2}x^3 + o(x^3)$;
- 5. 抛物线 $y = 4x x^2$ 在其顶点处的曲率为 2 .

14 级

- 4. 函数 $f(x) = e^{\sin x}$ 的 n 阶麦克劳林公式中 x^3 的系数为 0 .
- 5. 已知点(1,3)是曲线 $y = ax^3 + bx^2$ 的拐点,则b-a=6

13 级

- 7. 曲线 $f(x) = xe^{-x}$ 的拐点为___(2, 2e⁻²)____.

12级

- 2. 曲线 $y = \frac{1}{2}x^2 + \ln x$ 的拐点是____(1, \frac{1}{2})____.

11 级

4. 设a > 0, 当 $a = \underline{e^{-1}}$ __时, 方程 $\ln x = ax$ 有唯一实根。

10级

09级

4. 函数 $f(x) = \frac{x}{2+x}$,则 $f^{(n)}(0)$ 的值为___(-1)ⁿ⁺¹ $n! 2^{-n}$ _,其中 n 为正整数。

三、计算

13 级

5. (7分) 求函数 $f(x) = \frac{x^2}{x+1}$ 的单调区间、极值.

所以减区间是(-2,-1), (-1,0)......2分

极大值为 f(-2) = -4,极小值为 f(0) = 0。…………2 分

12级

4. 求 $f(x) = e^{-x}(x^2 + 3x + 1)$ 的单调区间和极值.

解答: $f'(x) = -e^{-x}(x^2 + x - 2)$ 当x < -2或x > 1时,f'(x) < 0,当-2 < x < 1时,f'(x) > 0,故单调递减区间为 $(-\infty, -2)$ 和 $(1, +\infty)$,单调 递增区间为(-2,1);3分 11级 3. 已知方程 $\int_{0}^{x} e^{f^{2}(t)} dt = f(x)$ 确定了连续函数 y = f(x), (1) 求 f'(x)和函数 y = f(x) 的单调区间; (2) 求 f''(x) 和函数 y = f(x) 凹凸区间及拐点。 解答: (1) 因为 f(x) 连续,所以 $\int_0^x e^{f^2(t)} dt$ 可导, $f'(x) = e^{f^2(x)} > 0$, 故 y = f(x) 的单调增区间为2 分

 $(-\infty, +\infty)$

(2) $f''(x) = 2f(x)f'(x)e^{f^2(x)} = 2f(x)e^{2f^2(x)}$2 分

令 $f''(x)=0 \Rightarrow f(x)=0$,因为 $f(x)\uparrow$,所以 f(x)与 x 一对应,又由于 f(0)=0,所以 $f(x)=0 \Leftrightarrow x=0$ (也可由 $\int_{a}^{x} e^{f^{2}(t)} dt = 0 \Leftrightarrow x = 0$)。

所以 x>0, f''(x)>0, x<0, f''(x)<0, 凹区间为 $(0,+\infty)$, 凸区间为 $(-\infty,0)$, 拐点为 (0,0) ° 10级

4. 设 $\Phi(x) = \int_{a}^{x^2} e^{-t^2} dt$,求

(1) $y = \Phi(x)$ 的单调区间;

(2) $y = \Phi(x)$ 的凹凸区间.

解答: $\Phi'(x) = 2xe^{-x^4}$; $\Phi''(x) = 2e^{-x^4}(1-4x^4)$

 $\Leftrightarrow \Phi''(x) = 0$, $\# x = \pm \frac{1}{\sqrt{2}}$

 $\exists x \in (-\infty,0)$ 时, $\Phi'(x) < 0$,函数单调减区间 $(-\infty,0]$;

当 $x \in (0,+\infty)$ 时, $\Phi'(x) > 0$,函数单调减区间 $[0,+\infty)$;

当 $x \in (-\infty, -\frac{1}{\sqrt{2}})$ $U(\frac{1}{\sqrt{2}}, +\infty)$ 时, $\Phi''(x) < 0$,函数凸区间 $(-\infty, -\frac{1}{\sqrt{2}}]$ $U[\frac{1}{\sqrt{2}}, +\infty)$

 $\exists x \in (-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ 时, $\Phi''(x) > 0$, 函数凹区间 $x \in [-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}]$ 。

09级

1. 设函数 $y = (x^2 - 3)^2$, 计算 y' 及 y'' 并填写下表 (写出计算过程)。

单增区间	凹区间	
单减区间	凸区间	
极值点	拐点	

 $y' = 4x(x^2 - 3)$; $y'' = 12(x^2 - 1)$,

令 y'=0, 得驻点 x=0 以及 $x=\pm\sqrt{3}$,

······.1 分 令 y'' = 0, 得 $x = \pm 1$

当 $x \in (-\sqrt{3},0)$ U $(\sqrt{3},+\infty)$ 时,y' > 0,函数单调递增,……….1 分

当 $x \in (-\infty, -\sqrt{3})$ U(0, $\sqrt{3}$) 时, y' < 0 ,函数单调递减, ………...1 分

当 $x \in (-\infty, -1)$ U(1,+∞)时, y'' > 0 ,函数图形为凹, ·······.1 分 当 x ∈ (-1,1)时,v'' < 0,函数图形为凸,……….1 分 故拐点为(1,4)及(-1,4)。 ……….1分 所填表格如下:

单增区间	$(-\sqrt{3},0)\mathrm{U}(\sqrt{3},+\infty)$	凹区间	$x \in (-\infty, -1) \operatorname{U}(1, +\infty)$
单减区间	$(-\infty, -\sqrt{3}) \operatorname{U}(0, \sqrt{3})$	凸区间	$x \in (-1,1)$
极值点	极大值点: $x = 0$ 极小值点: $x = \sqrt{3}$; $x = -\sqrt{3}$	拐点	(1, 4); (-1, 4)

四、证明

20级

- (2) 存在两个不同的点 $\xi, \eta \in (0,1)$, 使得 $f'(\xi)f'(\eta) = 1$.

证明: (1) 设 g(x) = f(x) + x, 显然 g(x) 在 [0,1]上连续, 并且 g(0) = 0, g(1) = 2,故存在 $c \in (0,1)$, 使得

(2) 分别在区间[0,c]和[c,1]应用拉格朗日中值定理,可得存在 $\xi \in (0,c)$ 和 $\eta \in (c,1)$,使得

$$f'(\xi) = \frac{f(c) - f(0)}{c - 0} = \frac{1 - c}{c},$$

$$f'(\eta) = \frac{f(1) - f(c)}{1 - c} = \frac{1 - (1 - c)}{1 - c} = \frac{c}{1 - c}$$

19级

设函数 f(x) 在 [0,1] 上连续,且 f(x) 非负,证明:至少存在一点 $\xi \in (0,1)$,使得 $\xi f(\xi) = \int_{\xi}^{1} f(x) dx$. 证明: 做辅助函数 $F(x) = x \int_{1}^{x} f(t) dt$, 显然 F(x) 在[0,1]上连续, 在(0,1)内可导, 并且 F(0) = 0, F(1) = 0, 可知 F(x) 在 [0,1] 上满足罗尔定理,于是存在 $\xi \in (0,1)$ 使得 $F'(\xi) = 0$,即:

18级

设函数 f(x) 在 [0,3] 上连续, 在 (0,3) 内存在二阶导数, 且

$$2f(0) = \int_0^2 f(x) dx = f(2) + f(3),$$

- (1) 证明:存在 $\eta \in (0,2)$,使 $f(\eta) = f(0)$.
- (2) 证明: 存在 $\xi \in (0,3)$, 使 $f''(\xi) = 0$.

证明: (1) 设
$$F(x) = \int_0^x f(t) dt (0 \le x \le 2)$$
, 则 $\int_0^2 f(x) dx = F(2) - F(0)$.

(2) $\frac{f(2)+f(3)}{2}$ 介于 f(x) 在 [2,3] 上的最大最小值之间,根据连续函数介值定理,存在 $f(\zeta)=\frac{f(2)+f(3)}{2}$. 由题设知 $\frac{f(2)+f(3)}{2}=f(0)$,故 $f(\zeta)=f(0)$. 由于 $f(0)=f(\eta)=f(\zeta)$ 且 $0<\eta<\zeta\leq 3$,根据罗尔定理,存在 $\xi_1\in(0,\eta)$, $\xi_2\in(\eta,\zeta)$,使 $f'(\xi_1)=0$,从而存在 $\xi\in(\xi_1,\xi_2)\subset(0,3)$,使得 $f''(\xi)=0$ 3 分 17 级

设函数 f(x) 在 [0,1] 上可导,且满足 $f(1)-2\int_0^{\frac{1}{2}}xf(x)\mathrm{d}x=0$,试证明在 (0,1) 内至少存在一点 ξ ,使得 $f'(\xi)=-\frac{f(\xi)}{\xi}.$

证明:由于 $f(1) - 2 \int_0^{\frac{1}{2}} x f(x) dx = 0$,则由积分中值定理 $\exists \xi_1 \in [0, \frac{1}{2}]$,使得

已知函数 f(x) 具有二阶导数,且 $\lim_{x\to 0} \frac{f(x)}{x} = 0$, f(1) = 0,证明: 存在点 $\xi \in (0,1)$,使得 $f''(\xi) = 0$.

15 级

设函数 f(x) 在 [0,1] 上可导, $F(x) = \int_0^x t^2 f(t) dt$, F(1) = f(1) ,证明: 至少存在一点 $\xi \in (0,1)$,使得 $f'(\xi) = -\frac{2f(\xi)}{\xi}.$

证明: 对 $F(x) = \int_0^x t^2 f(t) dt$ 由拉格朗日中值定理可知 $\exists \eta \in (0,1)$,使得

设 $G(x) = x^2 f(x)$,显然G(x)在 $[0,\eta]$ 上可导,并且 $G(\eta) = G(1)$,故由罗尔定理知 $\exists \xi \in (0,\eta) \subset (0,1)$,使得

$$G'(\xi) = \xi^2 f'(\xi) + 2\xi f(\xi) = 0$$

整理即得 $f'(\xi) = -\frac{2f(\xi)}{\xi}$. 3 分

14级

设函数 f(x) 在 $[0,\pi]$ 上连续,且 $\int_0^\pi f(x) dx = 0$, $\int_0^\pi f(x) \cos x dx = 0$,证明:在 $(0,\pi)$ 内至少存在两个不同的点 ξ_1,ξ_2 ,使 $f(\xi_1) = f(\xi_2) = 0$.

证明: 构造辅助函数, $F(x) = \int_0^x f(t) dt \ (0 \le x \le \pi)$. 其满足在 $[0,\pi]$ 上连续,在 $(0,\pi)$ 上可导. F'(x) = f(x),且 $F(0) = F(\pi) = 0$,由题设,有

$$0 = \int_0^{\pi} f(x) \cos x \, dx = \int_0^{\pi} \cos x \, dF(x) = F(x) \cos x \Big|_0^{\pi} + \int_0^{\pi} F(x) \sin x \, dx$$

 $\mathbb{H} \colon \int_0^\pi F(x) \sin x \, \mathrm{d}x = 0.$

令 $G(x) = \int_0^x F(t) \sin t \, dt$,显然 $G(\pi) = G(0) = 0$,对 G(x) 应用罗尔定理,可知 存在 $\xi \in (0,\pi)$,使 $G'(\xi) = F(\xi) \sin \xi = 0$,即 $F(\xi) = 0$.

综上可知

在区间 $[0,\xi]$ 和 $[\xi,\pi]$ 上分别应用罗尔定理, 知存在 $\xi_1 \in (0,\xi), \xi_2 \in (\xi,\pi)$, 使

$$F'(\xi_1) = 0, F'(\xi_2) = 0,$$

2. (5 分) 设 f(x) 在 [a,b] 上连续,在 (a,b) 内有二阶导数,且

$$f(a) = f(b) = \frac{1}{b-a} \int_a^b f(x) dx,$$

试证: (1) 至少存在一点 $\eta \in (a,b)$ 使得 $f(\eta) = \frac{\int_a^b f(x) dx}{b-a}$; (2) 至少存在一点 $\xi \in (a,b)$ 使得 $f''(\xi) = 0$.

 $\sum_{i=1}^{n} \frac{1}{n} \sum_{i=1}^{n} \frac{1}{n} \sum_{i$

证明: (1) 设 $F(x) = \int_a^x f(t) dt$, 由拉格朗日中值定理知, $\exists \eta \in (a,b)$ 使得

$$\frac{F(b) - F(a)}{b - a} = F'(\eta) \Rightarrow f(\eta) = \frac{\int_a^b f(x) dx}{b - a} \dots 3$$

(2) 由于 $f(a) = f(\eta) = f(b)$, 故由罗尔定理知, $\exists \xi_1 \in (a, \eta), \xi_2 \in (\eta, b)$ 使得

$$f'(\xi_1) = f'(\xi_2) = 0$$

再由罗尔定理知, $\exists \xi \in (\xi_1, \xi_2) \subset (a,b)$ 使得 $f''(\xi) = 0$

.....2 分

12级

2. (4 分) 设函数 f(x) 在[0,1] 上连续,在(0,1) 内可导, $F(x) = \int_0^x f(t) dt$,F(1) = 0,

证明: (1) $\int_0^1 F(x) dx = 0$; (2) 存在 $\eta \in (0,1)$,使的 $F(\eta) = 0$;

(3) 存在 $\xi \in (0,1)$,使得 $f'(\xi) = f(\xi)$.

11级

(6分) 已知函数 f(x) 在[0,1] 有二阶导数,且 $f(0) = f(\frac{1}{2}) = f(1) = 0$,证明:

- (1) 存在 $\xi_1, \xi_2 \in (0,1), \xi_1 \neq \xi_2$, 使得 $f'(\xi_1) = f(\xi_1)$, $f'(\xi_2) = f(\xi_2)$;
- (2) 存在 $\eta \in (0,1)$, 使得 $f''(\eta) = f(\eta)$ 。

证明: (1) 设 $F(x) = e^{-x} f(x)$,则F(x)在[0,1]有二阶导数,且 $F(0) = F(\frac{1}{2}) = F(1) = 0$,在[0, $\frac{1}{2}$]和[$\frac{1}{2}$,1]上

分别由罗尔定理知 $\exists \xi_1 \in (0, \frac{1}{2}), \exists \xi_2 \in (\frac{1}{2}, 1)$ 使得

$$F'(\xi_1) = 0$$
, $F'(\xi_2) = 0$.

$$\mathbb{P} e^{-\xi_1} f'(\xi_1) - e^{-\xi_1} f(\xi_1) = 0, \quad e^{-\xi_2} f'(\xi_2) - e^{-\xi_2} f(\xi_2) = 0.$$

所以存在 $\xi_1, \xi_2 \in (0,1), \xi_1 < \xi_2$,使得 $f'(\xi_1) = f(\xi_1), f'(\xi_2) = f(\xi_2)$;

......3 分

(2) 令 $G(x) = e^x[f'(x) - f(x)]$,则G(x)在[ξ_1, ξ_2]上具有一阶导数且 $G(\xi_1) = G(\xi_2) = 0$,由罗尔定理知存在 $\eta \in (\xi_1, \xi_2) \subset (0,1)$ 使得

$$G'(\eta) = 0 \, \mathbb{H} \, \mathrm{e}^{\eta} [f''(\eta) - f(\eta)] = 0$$

10级 1. 当x > 0时,证明不等式: $e^x - x > 2 - \cos x$. 证明: $f(x) = e^x - x - 2 + \cos x$, f(0) = 0; $f'(x) = e^x - 1 - \sin x ,$ f'(0) = 0;2 分2 分 $f''(x) = e^x - \cos x > 0$ 所以 f'(x) > f'(0) = 0; f(x) > f(0) = 0。 2. 已知函数 f(x) 在 [0,1]上有二阶导数, $\int_0^1 f(x) dx = 0$, f(0) = f(1) = 0. (1) 证明:存在 $\xi \in (0,1)$,使得 $f(\xi) = 0$; (2) 证明: 存在 $\eta \in (0,1)$, 使得 $f''(\eta) = \frac{2\eta f'(\eta)}{1+n^2}$. 证明: (1)令 $F(x) = \int_0^x f(x)dx$,则F(1) = F(0) = 0, 由罗尔定理:存在 $\xi \in (0,1)$,使得 $F'(\xi) = f(\xi) = 0$ 。 (2) $f(a) = f(\xi) = f(b) = 0$, 由罗尔定理: 存在 $\eta_1 \in (a,\xi), \eta_2 \in (\xi,b)$,使得 $f'(\eta_1) = f'(\eta_2) = 0$ $\Leftrightarrow G(x) = \frac{f'(x)}{1+x^2},$ 则 $G(\eta_1) = G(\eta_2) = 0$, 由罗尔定理: 存在 $\eta \in (\eta_1, \eta_2) \subset (0,1)$, 使得 $G'(\eta) = 0$, $\mathbb{P} f''(\eta)(1+\eta^2) - 2\eta f'(\eta) = 0, \quad \mathbb{P} f''(\eta) = \frac{2\eta f'(\eta)}{(1+\eta^2)}.$ 09级 1. 设 $\lim_{x\to 0} \frac{f(x)}{x} = 1$,且f''(x) > 0,证明: $f(x) \ge x$ 。(4分) 证明: $\lim_{x\to 0} \frac{f(x)}{x} = 1 \Rightarrow \lim_{x\to 0} f(x) = 0$, 情形 2: 若 $x \neq 0$,则 $f(x) = f(0) + f'(0)x + \frac{1}{2}f''(\xi)x^2 \geq x$,其中 ξ 介于 0, x 之间。 ·······2 分 2. 已知函数 f(x) 在[0,3]上连续,在(0,3)内可导,且 $\int_0^1 f(x)dx = 0$, f(1) + f(3) = 0。证明: 至少存在一 点 $\xi \in (0,3)$,使 $f'(\xi) + 2f(\xi) = 0$ 成立。(4分) 证明: $\Leftrightarrow F(x) = \int_{0}^{x} f(x)dx$,则 F(1) = F(0) = 0, $f(1)+f(3)=0 \Rightarrow f(1) \le 0, f(3) \ge 0$ 或者 $f(1) \ge 0, f(3) \le 0$, 因 f(x) 连续,由连续函数零点定理:存在 $\xi_2 \in [1,3]$,使得 $f(\xi_2) = 0$ 。 ········.1 分

第4章 不定积分

一、选择

19级

- 4. 已知函数 f(x)的一个原函数是 $\sin 2x$,则 $\int xf'(x) dx =$ _____.
 - (A) $2x\cos 2x \sin 2x + C$
- (B) $2x\sin 2x \cos 2x + C$
- (C) $2x\sin 2x + \cos 2x + C$
- (D) $x\sin 2x \cos 2x + C$

二、填空

20级

7. 不定积分
$$\int \frac{\mathrm{d}x}{1+\sqrt{2x}} = \sqrt{2x} - \ln(\sqrt{2x} + 1) + C$$

18级

8. 不定积分
$$\int x^2 (e^{x^3} + e^{-x^3}) dx = \underline{\frac{1}{3}(e^{x^3} - e^{-x^3}) + C}$$
_____.

17级

8. 不定积分
$$\int e^x (1 - \frac{e^{-x}}{\sqrt{x}}) dx = \underline{e^x - 2\sqrt{x} + C}$$

16级

15 级

6. 设
$$e^{-x}$$
 是 $f(x)$ 的一个原函数,则积分 $\int x^2 f(\ln x) dx = -\frac{1}{2}x^2 + C$ __.

13 级

8. 若函数
$$f(x)$$
 连续,且 $\int f(x) dx = F(x) + C$,则不定积分 $\int \frac{f(\frac{1}{x})}{x^2} dx = ___ - F(\frac{1}{x}) + C$ _____

二、计算

3. 计算不定积分
$$\int \frac{\ln \ln x}{x} dx$$
.

解答: 原式=
$$\int \ln \ln x d(\ln x)$$
 _______2 分

$$= \ln x \cdot \ln \ln x - \int \ln x \cdot \frac{1}{\ln x} \cdot \frac{1}{x} dx$$

$$= \ln x \cdot \ln \ln x - \int \frac{1}{x} dx \qquad ... \qquad ..$$

输入。

19级

3. 计算不定积分
$$\int \frac{1}{\sqrt{x(1+\sqrt[3]{x})}} dx$$
.

18 级 3. 计算不定积分 $\int \frac{\ln(1+e^x)}{e^x} dx$.

3. 计算不定积分
$$\int \frac{1}{x(x^2+1)} dx$$
.

3. 计算不定积分 $\int x \ln(1+x) dx$.

解答:
$$\int x \ln(1+x) dx$$

$$= \frac{1}{2} \int \ln(1+x) dx^{2}$$

$$= \frac{1}{2} x^{2} \ln(1+x) - \frac{1}{2} \int x^{2} \frac{1}{1+x} dx \qquad ... 4 \%$$

$$= \frac{1}{2} x^{2} \ln(1+x) - \frac{1}{2} \int (x-1+\frac{1}{1+x}) dx$$

$$= \frac{1}{2} (x^{2}-1) \ln(1+x) - \frac{1}{4} x^{2} + \frac{1}{2} x + C \qquad ... 4 \%$$

15 级

3. 计算积分 $\int x^2 e^{-x^3} dx$.

解答:
$$\int x^2 e^{-x^3} dx$$

14 级

3. 计算积分∫ln² xdx.

解答:
$$\int \ln^2 x dx$$

$$= x \ln^2 x - \int 2 \ln x dx \qquad 3$$

$$= x \ln^2 x - 2(x \ln x - \int x \cdot \frac{1}{x} dx) \qquad 3$$

$$= x \ln^2 x - 2(x \ln x - x) + C = x \ln^2 x - 2x \ln x + 2x + C.$$
 2 \(\frac{1}{2}\)

13 级

2.计算不定积分 $\int \arctan \frac{1}{x} dx$.

解答:
$$\int_{\mathbf{x}} \arctan \frac{1}{x} dx = \arctan \frac{1}{x} - \int_{\mathbf{x}} d\arctan \frac{1}{x} \dots \dots \dots 3 \ \mathcal{H}$$

$$-x \arctan \frac{1}{x} + \int_{\mathbf{x}} \frac{1}{x} dx \dots \dots 2 \ \mathcal{H}$$

$$= x \arctan \frac{1}{x} + \frac{1}{2} \ln(1 + x^2) + C \dots \dots 1 \ \mathcal{H}$$
12 \ \ \ \mathref{M}
\]
1. \ \ \mathref{H}\mathref{\pi} \times \frac{x dx}{x^2 - 2x^2 - 1} \\
\text{ = } \frac{1}{2} \frac{d(x^2 - 1)}{(x^2 - 1)^2 - 2} \\
\text{ = } \frac{1}{4\sqrt{2}} \left| \frac{x^2 - 1}{x^2 - 1 + \sqrt{2}} \right| + C \\
\mathref{M}\mathref{M}
\]
1. \ \ \mathref{H}\mathref{\pi} \times \frac{x^2 - 1}{x^2 - 1 + \sqrt{2}} \right| + C \\
\mathref{M}\mathref{M}
\]
2. \ \ \mathref{H}\mathref{\pi} \times \frac{x^2 - 1}{x^2 - 1 + \sqrt{2}} \right| + C \\
\mathref{M}\mathref{M}
\]
3. \ \mathref{H}\mathref{M}
\text{ = } \frac{1}{x^2 - 1 + \sqrt{2}} \right| + C \\
\mathref{M}\math

$$=2\int \arctan \sqrt{x} \, d(\arctan \sqrt{x}) = (\arctan \sqrt{x})^2 + C$$

......4 分

09级

2. 计算积分
$$\int \frac{x^2}{(\sqrt{1-x^2})^3} dx$$
 。

$$= \int (\sec^2 t - 1)dt = \tan t - t + C = \frac{x}{\sqrt{1 - x^2}} - \arcsin x + C \circ \dots 3 \text{ }$$

3. 计算积分
$$\int \frac{1}{\sqrt{1+e^{-2x}}} dx$$
。

$$= \int \frac{1}{\sqrt{1 + e^{2x}}} de^x = \ln(e^x + \sqrt{1 + e^{2x}}) + C \circ \cdots 4$$

第5章 定积分

一、选择

20级

- 5. 设有反常积分① $\int_{\mathrm{e}}^{+\infty} \frac{\mathrm{d}x}{x \ln^2 x}$ 和② $\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} \mathrm{d}x$,则下列结论正确的是<u>A</u>.
 - (A) ①②都收敛

(B) (1)②都发散

(C) ①发散, ②收敛

(D) ①收敛, ②发散

19级

- 5. 设有广义积分① $\int_{1}^{+\infty} \frac{\mathrm{d}x}{x(x+1)}$ 和② $\int_{0}^{1} \frac{\mathrm{d}x}{x(x+1)}$,则下列结论正确的是<u>D</u>.
 - (A) ①②都收敛

(B) ①②都发散

(C) ①发散, ②收敛

(D) ①收敛, ②发散

18 级

5. 设函数 f(x) 与 g(x) 在 [0,1] 上连续,且 $f(x) \le g(x)$,则对任何 $c \in (0,1)$,有 ______

(A)
$$\int_{\frac{1}{2}}^{c} f(t) dt \ge \int_{\frac{1}{2}}^{c} g(t) dt$$

(B)
$$\int_{\frac{1}{2}}^{c} f(t) dt \le \int_{\frac{1}{2}}^{c} g(t) dt$$

(C)
$$\int_{c}^{1} f(t) dt \ge \int_{c}^{1} g(t) dt$$

(D)
$$\int_{a}^{1} f(t) dt \le \int_{a}^{1} g(t) dt$$

4. 设积分 $I_k = \int_0^{k\pi} e^{x^2} \sin x dx \ (k = 1, 2, 3), \ \text{则有} \underline{\text{C}}$.

- (A) $I_1 < I_2 < I_3$ (B) $I_3 < I_2 < I_1$ (C) $I_2 < I_1 < I_3$ (D) $I_2 < I_3 < I_1$

5. 设有广义积分① $\int_{-\infty}^{0} \frac{1}{x^2} e^{\frac{1}{x}} dx$ 和② $\int_{0}^{+\infty} \frac{1}{x^2} e^{\frac{1}{x}} dx$,则下列结论正确的是<u>C</u>.

(A) ①②都收敛

(B) ①②都发散

(C) ①收敛, ②发散

(D) ①发散, ②收敛

16级

4. 下列无穷积分发散的是 A

(A) $\int_{-\infty}^{+\infty} \sin x dx$

(B) $\int_{-\infty}^{0} e^{x} dx$

(C) $\int_{0}^{+\infty} \frac{1}{1+x^2} dx$

(D) $\int_{1}^{+\infty} \frac{1}{n^{p}} dx (p > 1)$

15级

3. 设函数 f(x) 与 g(x) 在[0,1]上连续,且 $f(x) \le g(x)$,且对任何 $c \in (0,1)$,则有 <u>C</u>.

- (A) $\int_{\frac{1}{2}}^{c} f(x) dx \le \int_{\frac{1}{2}}^{c} g(x) dx$
- (B) $\int_{\frac{1}{2}}^{c} f(x) dx \ge \int_{\frac{1}{2}}^{c} g(x) dx$
- (C) $\int_{c}^{1} f(x) dx \le \int_{c}^{1} g(x) dx$
- (D) $\int_{c}^{1} f(x) dx \ge \int_{c}^{1} g(x) dx$

4. 下列广义积分收敛的是__D__.

- (A) $\int_{e}^{+\infty} \frac{\ln x}{x} dx$ (B) $\int_{e}^{+\infty} \frac{1}{x\sqrt{\ln x}} dx$ (C) $\int_{e}^{+\infty} \frac{1}{x \ln x} dx$ (D) $\int_{e}^{+\infty} \frac{1}{x \ln^2 x} dx$

3. $\int_{-1}^{1} (x^2 \sqrt{1 + x^3} - \frac{x \cos x}{1 + x^2}) dx = \underline{B}$

- (A) 0 (B) $\frac{4\sqrt{2}}{9}$
- (C) $\frac{8\sqrt{2}}{9}$

4. 下列反常积分收敛的是<u>D</u>.
(A) $\int_1^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}}$ (B) $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x^3}}$ (C) $\int_{-\infty}^{+\infty} \frac{x}{1+x^2} \mathrm{d}x$ (D) $\int_0^{+\infty} x \mathrm{e}^{-x} \mathrm{d}x$

5. $\forall I_1 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{\tan x}{x} dx$, $I_2 = \int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x}{\tan x} dx$, \mathbb{U} A

(A) $1 > I_1 > I_2$

(B) $I_1 > I_2 > 1$

(D) $I_2 > I_1 > 1$

11 级

2. 下列广义积分**发散**的是 C 。

(A)
$$\int_0^1 \frac{\mathrm{d}x}{\sqrt{1-x}}$$

(B) $\int_0^1 \ln x dx$

(C)
$$\int_0^{+\infty} \frac{x dx}{x^2 + x + 1}$$

(D) $\int_0^{+\infty} \frac{\arctan x}{1+x^2} dx$

10级

4. 下列广义积分收敛的是

(D).

独立

$$(A) \int_{1}^{+\infty} \frac{1}{\sqrt{x}} \, \mathrm{d} x$$

$$(B)\int_{-\infty}^{0} xe^{-x}\,\mathrm{d}\,x$$

$$(C)\int_{-1}^{1}\frac{1}{x^3}dx$$

$$(A) \int_{1}^{+\infty} \frac{1}{\sqrt{x}} dx \qquad (B) \int_{-\infty}^{0} x e^{-x} dx \qquad (C) \int_{-1}^{1} \frac{1}{x^{3}} dx \qquad (D) \int_{1}^{+\infty} \frac{1}{x\sqrt{x-1}} dx$$

09级

4. 下列广义积分收敛的是<u>C</u>。

(A)
$$\int_0^1 \frac{dx}{1-x^2}$$

(B)
$$\int_0^1 \frac{dx}{x(1+x^2)}$$

$$(C) \int_0^{+\infty} \frac{x dx}{1+x^4}$$

$$(D) \int_{2}^{+\infty} \frac{dx}{x \ln x}$$

$$= \underline{\qquad } \frac{2}{\pi} \underline{\qquad } .$$

二、填空

20级

8. 极限
$$\lim_{n \to \infty} \left(\frac{\sin \frac{\pi}{n}}{n+1} + \frac{\sin \frac{2\pi}{n}}{n+\frac{1}{2}} + \dots + \frac{\sin \frac{n\pi}{n}}{n+\frac{1}{n}} \right) = \underline{\qquad} \frac{2}{\pi} \underline{\qquad}$$

9. 设函数
$$f(x)$$
 有一个原函数 $\frac{\sin x}{x}$,则 $\int_{\frac{\pi}{2}}^{\pi} x f'(x) dx = \underline{\qquad} \frac{4}{\pi} - 1 \underline{\qquad}$

19 级

9. 定积分
$$\int_{-1}^{1} (x+|x|)e^{-|x|}dx = __2(1-2e^{-1})_{_}$$

18级

9. 定积分
$$\int_{-5}^{5} \frac{x^{2018} \sin^{2019} x + 2}{\sqrt{25 - x^2}} dx = _2\pi_.$$

9. 函数
$$F(x) = \int_1^x (2 - \frac{1}{\sqrt{t}}) dt (x > 0)$$
 的单调减少区间为__(0, $\frac{1}{4}$) 或 $(0, \frac{1}{4}]$;____.

15 级

7. 积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos x + x^8 \sin^9 x) dx = \underline{2}$$
.

6.
$$\int_0^1 \sqrt{1 - x^2} \, dx = -\frac{\pi}{4}$$
.

7. 函数 $f(x) = \int_{1}^{x} (t-1)e^{t} dt$ 的单调增加区间为_____(1,+∞) <u>或</u>[1,+∞);_____.

13 级

9.
$$\int_{-2}^{2} (1 + \frac{x^3}{1 + x \sin x}) \sqrt{4 - x^2} dx = \underline{2\pi}.$$

12 级

3. 已知函数
$$f(x) = \int_0^{x^2} e^{-t^2} dt$$
,则 $df(x)|_{x=1} = \frac{2}{e} dx$ _____.

11级

5. 定积分
$$\int_0^{\pi} (\sin^3 2x + \cos^4 x) dx$$
 的值为 _______。

10级

4. 已知定积分
$$\int_{1}^{2} (x+c)\cos^{2011}(x+c)dx = 0$$
 ,则常数 $c = -\frac{3}{2}$ —.

09级

3. 定积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (x^3 \sin^2 x + \cos^3 x) dx$$
 的值为_____。

三、计算

20级

4. 计算定积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x (\sin x^3 + \cos x) dx$$
.

解答:由于是 $\sin^2 x \cdot \sin x^3$ 奇函数, $\sin^2 x \cos x$ 是偶函数,于是

5. 设
$$f(x)$$
 是连续函数, 且 $f(x) = x + 2 \int_0^1 f(t) dt$, 求 $f(x)$.

19级

4. 计算定积分 $\int_{-1}^{1} \frac{2x^2 + x}{1 + \sqrt{1 - x^2}} dx$.

解答:由于 $\frac{2x^2}{1+\sqrt{1-x^2}}$ 是偶函数, $\frac{x}{1+\sqrt{1-x^2}}$ 是奇函数,于是

5. 设函数 f(x)连续且 $f(x) = x^2 - x \int_0^2 f(x) dx + 2 \int_0^1 f(x) dx$, 试求 f(x).

解答: 设 $\int_0^1 f(x) dx = A$, $\int_0^2 f(x) dx = B$, 则 $f(x) = x^2 - Bx + 2A$, 故

$$B = \int_0^2 f(x) dx = \int_0^2 (x^2 - Bx + 2A) dx = \frac{8}{3} - 2B + 4A \qquad \dots 2$$

于是有
$$\begin{cases} A = \frac{1}{3} \\ B = \frac{4}{3} \end{cases}$$
,所以 $f(x) = x^2 - \frac{4}{3}x + \frac{2}{3}$.

4. 计算反常积分
$$I = \int_{1}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x-1}}$$
.

$$\int_{1}^{2} \frac{\mathrm{d}x}{x\sqrt{x-1}} = \int_{0}^{1} \frac{2t\mathrm{d}t}{t(t^{2}+1)} (\sqrt{x-1} = t)$$

$$= 2 \arctan t \Big|_{0}^{1} = \frac{\pi}{2}; \qquad 2$$

$$\int_{2}^{+\infty} \frac{\mathrm{d}x}{x\sqrt{x-1}} = \int_{1}^{+\infty} \frac{2t \mathrm{d}t}{t(t^{2}+1)} \left(\sqrt{x-1} = t\right)$$

$$= 2 \arctan t \Big|_{1}^{+\infty} = 2\left(\frac{\pi}{2} - \frac{\pi}{4}\right) = \frac{\pi}{2}; \qquad 2$$

5. 设函数 f(x) 在 $[0,\pi]$ 上具有二阶连续导数, $f'(\pi) = 3$,且 $\int_0^{\pi} [f(x) + f''(x)] \cos x dx = 2$,求 f'(0).

解答:
$$\int_0^{\pi} [f(x) + f''(x)] \cos x dx$$

$$= \int_0^\pi f(x) \mathrm{d} \sin x + \int_0^\pi \cos x \mathrm{d} f'(x) \qquad \dots 2 \, \mathcal{H}$$

$$= \{ [f(x)\sin x]_0^{\pi} - \int_0^{\pi} f'(x)\sin x dx \} + \{ [f'(x)\cos x]_0^{\pi} + \int_0^{\pi} f'(x)\sin x dx \}$$

$$=-f'(\pi)-f'(0)=2$$
;4 $\stackrel{\triangle}{/}$

4. 计算定积分
$$\int_{-1}^{1} \frac{x^3 + 1}{(x^2 + 1)^{\frac{3}{2}}} dx$$
.

$$\int_0^1 \frac{1}{(x^2+1)^{\frac{3}{2}}} dx = \int_0^{\frac{\pi}{4}} \frac{1}{\sec^3 t} \sec^2 t dt = \int_0^{\frac{\pi}{4}} \cos t dt = \sin t \Big|_0^{\frac{\pi}{4}} = \frac{\sqrt{2}}{2}.$$

5. 计算定积分
$$I = \int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
,其中 $f(x) = \int_1^{\sqrt{x}} e^{-t^2} dt$.

解答: 采用分部积分法:

用分部积分法:
$$I = \int_0^1 \frac{f(x)}{\sqrt{x}} dx$$
$$= 2 \int_0^1 f(x) d\sqrt{x} \qquad 2 \%$$
$$= 2 f(x) \sqrt{x} \Big|_0^1 - 2 \int_0^1 \sqrt{x} df(x) \qquad 2 \%$$
$$= 2 f(1) - 0 - 2 \int_0^1 \sqrt{x} \cdot e^{-x} \cdot \frac{1}{2\sqrt{x}} dx$$
$$= \int_0^1 e^{-x} d(-x) = e^{-1} - 1. \qquad 4 \%$$

16级

4. 计算定积分
$$\int_{\frac{3}{4}}^{1} \frac{dx}{\sqrt{1-x}-1}$$
.

15 级

4. 计算积分
$$\int_1^4 \cos(\sqrt{x}-1) dx$$
.

3. 己知
$$\lim_{x\to\infty} \left(\frac{x-a}{x+a}\right)^x = \int_a^{+\infty} 2x e^{-2x} dx$$
, 求 a 的值.

$$\int_{a}^{+\infty} 2x e^{-2x} dx = -\int_{a}^{+\infty} x e^{-2x} d(-2x) = -\int_{a}^{+\infty} x de^{-2x} = -(xe^{-2x})\Big|_{a}^{+\infty} + \int_{a}^{+\infty} e^{-2x} dx$$

$$= ae^{-2a} - \frac{1}{2}e^{-2x}\Big|_a^{+\infty} = \left(a + \frac{1}{2}\right)e^{-2a}.$$
 3 \$\frac{1}{2}\$

11 级

- 3. 已知方程 $\int_0^x e^{f^2(t)} dt = f(x)$ 确定了连续函数 y = f(x),
 - (1) 求 f'(x) 和函数 y = f(x) 的单调区间;
 - (2) 求 f''(x) 和函数 y = f(x) 凹凸区间及拐点。

令 $f''(x)=0 \Rightarrow f(x)=0$,因为 $f(x)\uparrow$,所以 f(x)与 x 一对应,又由于 f(0)=0,所以 $f(x)=0 \Leftrightarrow x=0$ (也可由 $\int_0^x e^{f^2(t)} dt = 0 \Leftrightarrow x=0$)。

- 4. 设 $I_n = \int_0^\pi e^x \cos(nx) dx$, 其中 n 是正整数,
 - (1) 计算 I_n ;
 - (2) 求 $\lim_{n\to\infty}I_n$ 。

$$= e^{\pi} (-1)^n - 1 + n[\sin(nx)e^x \Big|_0^{\pi} - n \int_0^{\pi} e^x \cos(nx) dx]$$

10级

3. 已知函数
$$y = y(x)$$
 由参数方程
$$\begin{cases} x = t e^{\frac{1}{2}t^2} \\ \int_0^y e^{u^2} du = \int_1^t (1+u^2) e^{\frac{1}{2}u^2} du \end{cases}$$
 确定,求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$

解答: $\int_0^y e^{u^2} du = \int_1^t (1+u^2) e^{\frac{1}{2}u^2} du$ 两边对t 求导:

(1) f'(x); (2) 计算 $\int_0^1 f(x)dx$.

(2)
$$\int_0^1 f(x)dx = xf(x)|_0^1 - \int_0^1 xf'(x)dx$$

第6章 定积分的应用

一、选择

19级

10. 曲线 $y = \ln(1-x^2)$ 自 x = 0 到 $x = \frac{1}{2}$ 这一段的弧长为__ $\ln 3 - \frac{1}{2}$

12级

- 5. 设a > 0,心形线 $r = a(1 + \cos \theta)$ 所围图形面积是-
 - (A) πa^2

(C) $2\pi a^2$

二、填空

20级

10. 心形线 $r = a(1 + \cos \theta)(a > 0)$ 的弧长为_

18级

17级

10. 求极坐标系下曲线 $r = a \left(\sin \frac{\theta}{3} \right)^{\circ} (a > 0, 0 \le \theta \le 3\pi)$ 的弧长为___3 πa _____.

8. 曲线 $y = \sqrt{x} - \frac{1}{3}\sqrt{x^3}$ 相应于区间[1,3]上的一段弧的长度为____2 $\sqrt{3} - \frac{4}{3}$ ____.

15级

14级

8. 曲线
$$y = \frac{2}{3}x^{\frac{3}{2}}$$
 (0 ≤ x ≤ 1) 的弧长 $s = \underline{\qquad} \frac{2}{3} \left(2^{\frac{3}{2}} - 1\right)$

13级

10. 对数螺线 $r = e^{\theta}$ 相应于 θ 从 0 到 π 的一段弧的长度为___√2(e^{π} -1) __.

12级

5. 曲线
$$y = \frac{e^x + e^{-x}}{2}$$
 在区间 [0,1] 上的弧长 $s = \underline{} = \frac{e - e^{-1}}{2}$ 或 shl _.

10级

5. 心形线 $r=1+\cos\theta$ ($0 \le \theta \le 2\pi$)的全长为<u>8</u>.

三、应用

20级

如图所示,直线 y=ax (0<a<1)与抛物线 $y=x^2$ 所围成的图形为 S_1 (其面积也记为 S_1),它们与 x=1 所围成的图形面积为 S_2 (其面积也记为 S_2).图形 S_1 绕 x 轴旋转一周所得旋转体的体积为 V_1 ,图形 S_2 绕 x 轴旋转一周所得旋转体的体积为 V_2 .

- (1) 试确定a的值,使 $S_1 + S_2$ 达到最小,并求出最小值;
- (2) 当 $S_1 + S_2$ 达到最小时,求 $V_1 + V_2$.

$$S_2 = \int_a^1 (x^2 - ax) dx = \frac{1 - a^3}{3} - \frac{a(1 - a^2)}{2} = \frac{1}{3} - \frac{a}{2} + \frac{a^3}{6}, \dots 1$$

故
$$S_1 + S_2 = \frac{1}{3} - \frac{a}{2} + \frac{a^3}{3}$$
 . 令 $S(a) = \frac{1}{3} - \frac{a}{2} + \frac{a^3}{3}$, 则 令 $S'(a) = -\frac{1}{2} + a^2 = 0$, 可 得 $a = \frac{\sqrt{2}}{2}$, 又

$$S''(\frac{\sqrt{2}}{2}) = \sqrt{2} > 0$$
,故 $a = \frac{\sqrt{2}}{2}$ 时, $S_1 + S_2$ 达到最小,并且最小值为

(2)
$$\stackrel{\text{def}}{=} a = \frac{\sqrt{2}}{2}$$
 Pt ,

$$V_{1} = \pi \int_{0}^{\frac{\sqrt{2}}{2}} \left[\left(\frac{\sqrt{2}}{2} x \right)^{2} - (x^{2})^{2} \right] dx$$

$$= \pi \int_{0}^{\frac{\sqrt{2}}{2}} \left(\frac{1}{2} x^{2} - x^{4} \right) dx$$

$$= \pi \left(\frac{\sqrt{2}}{24} - \frac{\sqrt{2}}{40} \right)$$

$$= \frac{\sqrt{2}}{60} \pi,$$

$$V_{1} = \pi \int_{0}^{1} \left[(x^{2})^{2} - (\frac{\sqrt{2}}{2} x)^{2} \right] dx$$

$$= \pi \int_{0}^{\frac{\sqrt{2}}{2}} (\frac{1}{2}x^{2} - x^{4}) dx$$

$$= \pi (\frac{\sqrt{2}}{24} - \frac{\sqrt{2}}{40})$$

$$= \frac{\sqrt{2}}{60} \pi,$$

$$V_{2} = \pi \int_{\frac{\sqrt{2}}{2}}^{\frac{1}{2}} [(x^{2})^{2} - (\frac{\sqrt{2}}{2}x)^{2}] dx$$

$$= \pi \int_{\frac{\sqrt{2}}{2}}^{\frac{1}{2}} (x^{4} - \frac{1}{2}x^{2}) dx$$

$$= \pi [\frac{1}{5} (1 - \frac{\sqrt{2}}{8}) - \frac{1}{6} (1 - \frac{\sqrt{2}}{4})]$$

$$= (\frac{1}{30} + \frac{\sqrt{2}}{60})\pi,$$

$$I_{2} = \frac{\sqrt{2}}{60} \pi + (\frac{1}{30} + \frac{\sqrt{2}}{60})\pi = \frac{1 + \sqrt{2}}{30} \pi.$$

$$4 \%$$

设 D 为曲线 $y = \frac{1}{4}x^2$ 与直线 3x - 2y - 4 = 0 所围成的平面图形, 求:

- (1) **D**的面积 S;
 - (2) D绕x轴旋转一周所得的旋转体体积V.

解答: 曲线 $y = \frac{1}{4}x^2$ 与直线 3x - 2y - 4 = 0 的交点为(2,1)和(4,4).

18级

设抛物线 $y=ax^2+bx+c$ 通过点 (0,0),且当 $x\in[0,1]$ 时, $y\geq0$. 试确定 a,b,c 的值,使得抛物线 $y = ax^2 + bx + c$ 与直线 x = 1, y = 0 所围图形的面积为 $\frac{4}{9}$,且使该图形绕 x 轴旋转而成的旋转体的体积最小.

解答: 因为抛物线 $y = ax^2 + bx + c$ 通过点 (0,0), 所以 c = 0, 从而

抛物线 $y = ax^2 + bx$ 与直线x = 1, y = 0所围图形的面积为

$$S = \int_0^1 (ax^2 + bx) dx = \frac{a}{3} + \frac{b}{2}.$$
 2 f

该图形绕x轴旋转而成的旋转体的体积为

图形绕
$$x$$
 轴旋转而成的旋转体的体积为
$$V = \pi \int_0^1 (ax^2 + bx)^2 dx = \pi (\frac{a^2}{5} + \frac{b^2}{3} + \frac{ab}{2})$$

$$= \pi [\frac{a^2}{5} + \frac{1}{3}(\frac{8 - 6a}{9})^2 + \frac{a}{2}(\frac{8 - 6a}{9})].$$

$$\diamondsuit \frac{\mathrm{d}\,V}{\mathrm{d}\,a} = \pi [\frac{2a}{5} + \frac{12}{3} \cdot \frac{6a - 8}{81} + \frac{1}{18}(8 - 12a)] = 0, \ \ \mbox{\it (\mathbb{R}} \ a = -\frac{5}{3}, \ \ \mbox{\it \mathbb{T}} \ \mbox{\it \mathbb{R}} \ b = 2 \, . \label{eq:continuous}$$

.....2 分

17级

设函数 $f(x) = \frac{3}{2}ax^2 + cx$,且 $\int_0^1 f(x) dx = 2$,试求:

- (1) a和c之间的关系式;
- (2) 曲线 y=f(x) 与直线 x=0, x=1 以及 x 轴所围成的图形绕 x 轴旋转一周所得旋转体的体积 V ;
 - (3) a 为何值时, 该旋转体的体积V 最小? 最小值是多少?

解答: (1) 由于
$$\int_0^1 f(x) dx = 2$$
, 则

$$2 = \int_0^1 f(x) dx = \int_0^1 \frac{3}{2} ax^2 + cx dx = \frac{a}{2} + \frac{c}{2},$$

(2) $f(x) = \frac{3}{2}ax^2 + (4-a)x$, 故旋转体的体积为:

(3) 令 $V'(a) = \frac{\pi}{30}$ 2a + 10 = 0,得 a = -5,由于 V 为 a 的二次多项式,有唯一的最小值点,因此 a = -5 时 V 取得最小值,最小值为:

$$V\big|_{\text{最小}} = \frac{\pi}{30} \ 25 - 50 + 160 \ = \frac{9}{2}\pi$$
.4 分

16级

已知拋物线 $y = px^2 + qx$ (其中 p < 0, q > 0) 在第一象限内与直线 x + y = 5 相切,且此拋物线与 x 轴所围成的平面图形的面积为 S. 问 p 和 q 为何值时,S 达到最大值?求出此最大值。

解答: 依题意知, 抛物线如图所示, 求得它

与 x 轴的交点横坐标为 $x_1 = 0$, $x_2 = -\frac{q}{p}$,

故此抛物线与 *x* 轴所围成的平面图形的面积为

$$S = \int_0^{-\frac{q}{p}} (px^2 + qx) dx = \frac{q^3}{6p^2}. \quad \dots 4 / T$$

五直线与抛物线相切,故它们有唯一公共 点.由方程组

$$\begin{cases} x + y = 5, \\ y = px^2 + qx, \end{cases}$$

从而得 $S(q) = \frac{200q^3}{2(q+1)^2}$,令 $S'(q) = \frac{200q^3(3-q)}{3(q+1)^2} = 0$ 得驻点 q = 3. 当 0 < q < 3时,S'(q) > 0;当 q > 3时,

15 级

设 D_1 是抛物线 $y = 2x^2$ 和直线 x = a, x = 2 及 y = 0 所围成的平面区域; D_2 是由抛物线 $y = 2x^2$ 和直线 y = 0, x = a 所围成的平面区域, 其中 0 < a < 2.

- (1) 试求 D_1 绕x轴旋转而成的旋转体的体积 V_1 ; D_2 绕y轴旋转而成的旋转体的体积 V_2 ;
- (2) 问a为何值时, V_1+V_2 取得最大值?并求此最大值.

14 级

设曲线 $y = ax^2 (a > 0, x \ge 0)$ 与 $y = 1 - x^2$ 交于 A 点,过坐标原点 O 和点 A 的直线与曲线 $y = ax^2$ 围成一平面图形.

- (1) 求该平面图形的面积 S;
- (2) 当a为何值时,该图形绕x轴旋转一周所得旋转体体积最大?并求最大体积.

解答: (1) 由 $\begin{cases} y = ax^2 (a > 0, x \ge 0) \\ y = 1 - x^2 \end{cases}$ 可得 A 点的坐标为 $(\frac{1}{\sqrt{a+1}}, \frac{a}{a+1})$, 所以直线 OA 的方程为

$$S = \int_0^{\frac{1}{\sqrt{a+1}}} \left(\frac{a}{\sqrt{a+1}} x - ax^2 \right) dx = \frac{a}{2\sqrt{a+1}} x^2 - \frac{1}{3} ax^3 \Big|_0^{\frac{1}{\sqrt{a+1}}} = \frac{a}{6(a+1)^{\frac{3}{2}}}$$

......3分

13级

如图,设三条曲线为 C_1 : $x^2+y^2=4$; C_2 : $(x-2)^2+y^2=4$; C_3 : $(x-1)^2+(y-\sqrt{3})^2=4$, 试求:

- (1) 由 C_1, C_2, C_3 所围公共部分图形的面积;
- (2) 由 C_1 , C_2 所围公共部分图形绕 y 轴旋转一周所得旋转体的体积.

解答: (1) $S = S_{\Delta} + 3S_{\Xi}$, 用极坐标, $(x-2)^2 + y^2 = 4$ 即 $r = 4\cos\theta$.

所以
$$S = S_{\Delta} + 3S_{=3} = \frac{1}{2} \cdot 2 \cdot \sqrt{3} + 3(\frac{2\pi}{3} - \sqrt{3}) = 2(\pi - \sqrt{3})......2$$
 分

(2) 设由 C_1, C_2 所围公共部分图形的边界曲线方程分别为 $x_1 = \sqrt{4-y^2}$, $x_2 = 2 - \sqrt{4-y^2}$,则由微元法有

12级

设平面图形D由曲线 $y=x^2$ 和直线x+y=2所围成,

求: (1) D 的面积 S; (2) D 绕 x 轴旋转一周所得的旋转体体积 V.

解答: 由
$$\begin{cases} y = x^2 \\ x + y = 2 \end{cases}$$
 得交点为 (-2,4) 和 (1,1)

$$= \left(2x - \frac{1}{2}x^2 - \frac{1}{3}x^3\right)\Big|_{-2}^{1} = \frac{9}{2} \qquad ...$$
 2 \(\frac{1}{2}\)

$$= \pi \int_{-2}^{1} (4 - 4x + x^2 - x^4) dx$$

$$=\pi \left(4x-2x^2+\frac{1}{3}x^3-\frac{1}{5}x^5\right)\Big|_{2}^{1}=\frac{72}{5}\pi \qquad 2$$

11级

设曲线 $y = e^x$ 与直线 y = 1 和直线 x = 1 所围的平面图形为 S,

- (1) 求 S 的面积;
- (2) 求 S 绕 x 轴所形成的旋转体体积:
- (3) 求 S 绕直线 x=1 轴所形成的旋转体体积。

(2) S 绕 x 轴所形成的旋转体体积

(3) 由微元法 $dV_0 = \pi (1-x)^2 dy$, 所以 S 绕直线 x=1 轴所形成的旋转体体积为

$$= \int_{0}^{1} \pi (1-x)^{2} e^{x} dx = \pi (2e-5) .$$
 1 \(\frac{1}{2}\)

另解:
$$V_2 = \int_0^1 2\pi (1-x)(e^x - 1) dx$$

 $=\pi(2e-5)$

10级

已知抛物线 $y = 2 - x^2$ 、直线 y = x 以及 y 轴在第一象限围成了平面图形 D, 求

(2) D绕 v轴旋转一周所得的旋转体的体积.

解答: (1)
$$S = \int_0^1 (2 - x^2 - x) dx = \frac{7}{6}$$
;

(2)
$$\vec{r}$$
 \vec{k} 1: $V = \int_0^1 2\pi x (2 - x^2 - x) dx = \frac{5}{6}\pi$;

方法 2:
$$V = \int_0^1 \pi y^2 dy + \int_1^2 \pi (2-y) dy = \frac{5}{6} \pi$$
。

09级

已知直线 y=x 与抛物线 $y=\sqrt{x}$ 围成一平面图形。求

- (1) 此平面图形的面积; (2分)
- (2) 此平面图形绕x轴旋转所成的旋转体的体积; (3 %)
- (3) 此平面图形绕 x 轴旋转所成的旋转体的表面积。(2分)

(3)
$$S = \int_{0}^{1} 2\pi \sqrt{x} \sqrt{1 + (\sqrt{x})^{2}} dx + \int_{0}^{1} 2\pi x \sqrt{1 + (x)^{2}} dx$$

$$= \int_0^1 2\pi \sqrt{x} \sqrt{1 + \frac{1}{4x}} dx + \int_0^1 2\pi x \sqrt{2} dx = \int_0^1 \pi \sqrt{1 + 4x} dx + \pi \sqrt{2}$$