钱雨馨

+86 182-0565-2192 | Feb_weald0202@163.com

教育经历

宾夕法尼亚大学 (Upenn)

2023年08月 - 2025年07月

电气电子工程 硕士 工程与应用科学学院

美国

- GPA: 4.0 / 4.0
- 相关课程:数字集成电路和VLSI基础,模拟集成电路设计,计算机架构和设计,物联网边缘计算,物联网传感器和系统 西交利物浦大学(XJTLU) 2019年09月 - 2023年06月

电子科学与技术 本科 智能工程学院

苏州

- GPA: 3.9 / 4.0
- 荣誉/奖项:最佳学术表现(Top 1%), 最佳毕业设计(Top 1%), 学术杰出奖(Top 5%), 学术成就奖 (Top 10%)
- 相关课程:CMOS数字集成电路,集成电路的概念和设计,数字系统设计HDL,射频工程,嵌入式系统,微纳米制造技术, 信号处理与数字滤波,高级电路与电磁学,能量转换和电力系统,C/C++编程和软件工程

项目经历

物联网边缘计算项目:振动路径腕带(Vibra-Path wristband)设计

2024年01月 - 至今

设计并开发了一款基于SAMW25的盲人辅助智能腕带的嵌入式产品

- 集成了超声波传感器进行测距,并通过触觉电机和马达实现不同振动模式,以及搭配三轴传感器实现跌倒检测和自动报警
- 设计并实现了电路原理图和PCB布局,使用Altium Designer软件完成设计并进行3D渲染验证
- 开发了基于C语言的嵌入式软件,使用FreeRTOS操作系统并辅以Percepio进行编程,并集成了I2C、SPI、UART协议

全流水线数据通路设计

2024年03月 - 至今

使用SystemVerilog成功设计了一个具有分支预测和旁路传递的五级流水线处理器

- 实现了基于RV32IM指令集的全流水线数据通路设计
- 提高了处理器性能,具备处理复杂数据依赖和特殊指令执行的能力

FPGA中可配置单元 (CLB) 设计与优化

2023年11月 - 2023年12月

设计并验证了CLB,包括设计中的非重叠时钟系统,16:1 MUX,6T SRAM单元,SRAM阵列及基于DFF的SIPO寄存器等组件

- 应用多种设计指标来评估CLB性能,包括最大频率、平均能量、加载能量、有效能量和面积等
- 在Cadence .6u工艺下完成设计与布局,顺利通过DRC、LVS验证
- 建立了模拟提取验证流程,并综合分析评估了面积、能量、频率等指标

宽带跨阻抗放大器(TIA)设计

2023年10月 - 2023年12月

设计优化了TIA拓扑结构和测试电路,利用Cadence软件完成直流、交流及瞬态仿真,评估性能

- 成功实现了150kΩ跨阻增益及150MHz以上带宽
- 通过稳态性能评估和噪声分析仿真,确保放大器目标频率下稳定运行,显著提升信噪比
- 运用晶体管尺寸匹配及偏置技术,优化放大器性能,实现噪声性能和功耗效率最优化

研究经历

基于摩擦电触觉传感器的机器学习辅助实时识别系统

2022年07月 - 2023年06月

苏州

将摩擦纳米发电机TENG与机器学习算法相结合,开发了实时识别的多种应用系统

- 制备了单电极TENG,并设计信号处理电路与ADC模块,确保了数据采集的准确性与实时性
- 通过MATLAB软件运用人工神经网络(ANN)模型实现数据处理和训练,并应用t-SNE数据降维技术进行数据分析和优化
- 成功实现了两种实时识别应用开发,实时力度识别和材料识别

实习经历

科大讯飞股份有限公司

2021年07月 - 2021年09月 合肥

硬件中心

参与科大讯飞研发的智能编程机器人(U-Car)的测试和优化:

- 协助工程师测试U-Car的导航模块和自动避障功能,并分析测试结果
- 熟练使用Linux命令行进行系统配置和调试

编程语言: C/C++ | Verilog | SystemVerilog | MATLAB | Python | Java | AHDL | ARM | Arduino ID

软件: Cadence | Altium Designer | Vscode | Altera Quartus II | VisUAL | LTspice XVII | Solidwork | Origin |

Microsoft office 英语能力:雅思6.5

Yuxin Qian

3131 Walnut Street, Philadelphia, PA 19104 | (+86) 182-0565-2192 | feb_weald0202@163.com

EDUCATION BACKGROUND

University of Pennsylvania (Upenn), USA

08/2023 - 07/2025

Master of Science in Electrical Engineering | Cum GPA: 4.0/4.0

Core Courses: Digital Integrated Circuits And VLSI-Fundamentals | Analog Integrated Circuits | Iot Edge Computing | Computer Organization & Design | Internet of Things Sensors and Systems

Xi'an Jiaotong-Liverpool University (XJTLU), China

09/2019 - 07/2023

B.E. in Electronic Science and Technology | Cum GPA: 3.9/4.0 | Ranking: 1

Core Courses: CMOS Digital ICs | Digital System Design with HDL | Integrated Electronics and Design | Electromagnetism | RF Engineering | Signal Processing and Digital Filtering | Embedded Systems | Energy Conversion and Power Systems | C/C++ Programming and Software Engineering

RESEARCH EXPERIENCES

Machine-learning Assisted Real-time Recognition System Based on the Triboelectric Nanogenerators (TENG) Final Year Project, XJTLU 09/2022 – 05/2023

- Combined TENG with machine learning algorithms to develop real-time identification applications:
 - ♦ Fabricated single-electrode TENGs; designed signal processing circuits and ADC modules for data collection
 - ♦ Implemented artificial neural network (ANN) models for data processing and training; applied t-Distributed Stochastic Neighbor Embedding (t-SNE) for data analysis and optimization
 - ♦ Successfully investigated real-time force and material identification

PROJECTS

IoT Edge Computing Project: Vibra-Path Wristband Course Project, Upenn

01/2024 - 05/2024

- > Designed and developed an embedded product: a smart wristband for the visually impaired based on the SAMW25:
 - ♦ Integrated ultrasonic sensors for distance measurement, a 3-axis accelerometer for fall detection and automatic alerting, and a haptic driver with a vibrating motor for obstacle warning vibrations
 - ♦ Designed and implemented circuit schematics and PCB layouts, completing the design with Altium Designer software and validating through 3D rendering
 - ♦ Developed embedded software in C, utilizing the FreeRTOS operating system with Percepio for programming, and integrated multiple communication protocols such as I2C, SPI, and UART

Configurable Logic Blocks (CLBs) in FPGAs Design Course Project, Upenn

11/2023 - 12/2023

- Designed and validated CLBs, including a non-overlapping clock system, a 16:1 multiplexer, 6T SRAM cells, SRAM arrays, and SIPO registers based on DFFs:
 - ♦ Applied various design metrics to measure CLB performance, including maximum frequency, average energy, loading energy, effective energy, and area
 - ♦ Executed the design in Cadence .6u process, finalized layout, cleared DRC and LVS checks, established simulation validation, and analyzed the area-energy-frequency FOM

Wideband Trans-impedance Amplifier (TIA) Design Course Project, Upenn

10/2023 - 12/2023

- Designed and optimized the topology and test circuit of a TIA and conducted DC, AC, and transient simulations using Cadence software for performance evaluation:
 - Achieved a transimpedance gain of 150kΩ and a bandwidth exceeding 150MHz
 - ♦ Performed steady-state performance evaluations and noise analysis simulations to ensure amplifier stability at the target operating frequency and significantly improve the signal-to-noise ratio
 - ♦ Applied transistor size matching and biasing techniques to optimize overall amplifier performance, including optimal noise performance and power efficiency

Traffic Light Control System Design Based on Verilog Course Project, XJTLU

11/2022 - 12/2022

- Designed a traffic light control system using Verilog, simulated and debugged with Quartus II software, and conducted hardware testing on a DE1 board:
 - ♦ Implemented complex state machine logic to control transitions between green, yellow, and red lights
 - ♦ Features real-time countdown display on a seven-segment screen, with support for emergency braking, resetting, and critical timing adjustments

INTERNSHIP EXPERIENCES

Hardware Engineer Intern | iFlytek Co., Ltd., Hefei, China

07/2021 - 09/2021

- Participated in the testing and optimization of iFlytek's intelligent programming robot (U-Car):
 - ♦ Assisted engineers in testing U-Car's navigation and obstacle avoidance and analyzing results
 - ♦ Learned to use the Linux command line for system configuration and debugging

SKILLS AND HONORS

Programming Languages: C/C++ | Verilog | SystemVerilog | MATLAB | Python | Java | AHDL | ARM | Arduino ID Software: Cadence | Altium Designer | Vscode | Altera Quartus II | VisUAL | LTspice XVII | Solidwork | Origin Scholarship: Best Overall Academic Performance (2023); Best Performance in Final Year Project (2023); University Academic Excellence Award (2022); University Academic Achievement Award (2021)