THE UNIVERSITY OF NEW SOUTH WALES SCHOOL OF MATHEMATICS AND STATISTICS MATH1131 Calculus

Section 5: - Mean Value Theorem.

Mean Value Theorem:

Suppose f is cts on [a,b] and diffble on (a,b). Then there is a real number $c \in (a,b)$ such that

 $\frac{f(b) - f(a)}{b - a} = f'(c).$

There must be a point $c \in (a,b)$ at which the tangent line has the same slope at the secont line through (a,fin)) and (b,f(b)).

Ex: Demonstrate the Mean Value Theorem for the function, $f(x) = 6 - 2x + x^2$, on [-2, 2].

$$\frac{f(z) - f(-z)}{z - (-z)} = \frac{6 - 14}{4} = -2.$$

$$f'(x) = -2 + 2x , f'(0) = -2.$$

We can use the MVT to do a range of problems.

Ex: Use the MVT to find an approximate value of $\sqrt{17}$.

$$f(x) = \sqrt{x}$$
. $f(17) - f(16) = (17 - 16) \cdot f'(e)$
 $f(x) = \sqrt{x}$. $f(17) - f(16) = (17 - 16) \cdot f'(e)$
 $f(x) = \sqrt{x}$. So $\sqrt{17} \approx 4 + 1 \cdot \frac{1}{2 \cdot 16} = \frac{33}{8}$

Ex: Give a precise estimate of log 1.001.

By MVT, with $f(x) = \log x$, on [1, 1.001] we have

$$\frac{\log(1.001) - \log 1}{1.001 - 1} = f'(c)$$

for some $c \in [1, 1.001]$.

Hence $\frac{1}{1.001} < f'(c) < 1$ so $\frac{1}{1.001} < \frac{\log 1.001}{.001} < 1$. Thus $0.00099 < \log 1.001 < 0.001$ so $\log 1.001 = 0.000995 \pm 0.0000005$.

Ex: Use the MVT to prove that $\tan x \ge x$ for all $x \in [0, \frac{\pi}{2})$.

Let
$$g(x) = \tan x - x$$
. $g(0) = 0$
 $g'(x) = \operatorname{Sec}^2 x - 1$.
So $g'(x) > 0$ if $x \in [0, \frac{\pi}{2}]$.
If $x \in [0, \frac{\pi}{2}]$, then
 $g(x) = g(x) - g(0) = (x - 0)g'(0)$, for some
 $c \in [0, \frac{\pi}{2}]$. So $g(x) > 0$ for all $x \in [0, \frac{\pi}{2}]$.

Ex: Prove that for all real x and y, $|\sin x - \sin y| \le |x - y|$.

If
$$x = y$$
, then this inequality is trivial.
If $x \neq y$, then by the MVT,

$$\left| \frac{\sin x - \sin y}{x - y} \right| = \left| \frac{\cos c}{x - y} \right|, \text{ for }$$
some c between x and y . Now $|\cos x| \leq 1$.
 $|\sin x - \sin y| \leq |x - y|$.

Error Estimates:

Suppose I measure an angle in radians to be 0.7^c and I take the sine of that angle. If the error involved in my measurement is approximately 0.01^c what is the worst error involved in taking the sine of this number?

That is, if $f(x) = \sin x$ and $\Delta x = \pm 0.01$, we want a bound on the size of

$$|\Delta f(x)| = |f(x + \Delta x) - f(x)|.$$

Theorem: If f'(x) exists, then

$$|\Delta f(x)| = |f(x + \Delta x) - f(x)| \approx f'(x)\Delta x.$$

Ex: In the above example, $\Delta f(x) \approx \cos 0.7 \times 0.01 \approx 7.65 \times 10^{-3}$.

Here are some consequences of the MVT:

Definition: A function f defined on [a,b] is said to be **increasing** if f(x) > f(y) whenever x > y, and **decreasing** when f(x) < f(y) whenever x > y.

Theorem: Suppose f is diffble on (a, b),

- (i) If f'(x) > 0 for all $x \in (a, b)$ then f is increasing on (a, b).
- (ii) If f'(x) = 0 for all $x \in (a, b)$ then f is constant on (a, b)
- (iii) If f'(x) < 0 for all $x \in (a, b)$ then f is decreasing on (a, b).

Proof: The proof of all of these comes from applying the MVT to f on (x, y), any subset of (a, b) giving

 $\frac{f(y) - f(x)}{y - x} = f'(c).$

In the first case we have f(y) > f(x) whenever y > x so f is increasing. Similarly for (iii). For (ii), we have f(x) = f(y), for all x and y so f is a constant.

Theorem: Suppose that f is cts on [a,b] and diffble on (a,b) and that f(a) and f(b) have opposite signs. If f'(x) > 0 for all $x \in (a,b)$ (or f'(x) < 0 for all $x \in (a,b)$), then f has **exactly** one real zero in (a,b).

proof: IVT tells us that fix, has

a zero in (a, b). If there are

two zeros in (a, b), say C, and C_2 .

Then by the MVT. $0 = f(C_1) - f(C_2) = (C_1 - C_2) f(d)$,

for some of fetwern C, and C_2 .

Since $C_1 \neq C_2$, we must have f(d) = 0.

But this contradicts the positivity (or negativity) of f(x). So there cannot be two zeros in (a, b). Thus, there is a ranique zero.

Ex: $f(x) = x^3 + x + 1$ on [-1, 1].

$$f(1) = 3$$
, $f(-1) = -1$.
Moreover, $f(x) = 3x^2 + 1$ which is
alway non-negative. So by the
theorem on the previous frage. $f(x)$ has
a unique zero on $[-1, 1]$.

Ex: Show that $5x^5 + 2x + 1 = 0$ has exactly one real solution.

$$f(x) = 5x^5 + 2x + 1$$

 $f(x) = 25x^4 + 2$, 50 $f(x) > 0$.
 $f(x)$ is incovering and can have at
most one zero.
 $f(0) = 1$, $f(-1) = -6$.
Hence $f(x)$ has at least one zero.
Thus $f(x)$ has exactly one zero.

Theorem: Suppose that f, g are differentiable functions such that f(a) = g(a) and for all x > a, we have f'(x) > g'(x). Then f(x) > g(x) for all x > a.

Ex: Prove that $\sin x < x$ for all x > 0.

Let
$$f(x) = Sin \times \text{ and } g(x) = X$$
. So $f(0) = g(0) = 0$.
 $f'(x) = Cos \times$, $g'(x) = 1$.
So $f'(x) < g'(x)$, for all $X \in (0, 2\pi)$.
If $x \neq 2\pi$, then $g(x) \geq 2\pi > 1 \geq f(x)$.

Types of points:

We wish to classify all the sorts of interesting points a function can have.

Definition:

Suppose that f is a function defined on an interval [a, b] and let $x_0 \in [a, b]$.

- (i) x_0 is called a **critical point** if $f'(x_0) = 0$ or if f is not differentiable at x_0 .
- (ii) x_0 is called an **extreme point** if x_0 is a local maximum or local minimum.
- (iii) x_0 is called a **stationary point** if $f'(x_0) = 0$.

In practise, to find the (global) maximum and minimum, we need to find the stationary points and check their y values and also check the y values at the end points.

Ex: Find the global max and min of $f(x) = x^3 - 3x^2 + 1$ on the interval [0, 4].

$$f'(x) = 3x^2 - 6x = 3x(x-2).$$
So the Stationary Jets are $x = 0$, $x = 2$.
$$f(0) = 1$$
, $f(z) = -3$, $f(4) = 17$.
$$Global max : f(4).$$

$$Global min : f(2).$$

Ex: Find the local max and min of f(x) = |x - 3||x|

The critical points are at x = 0, $x = \frac{3}{2}$ and x = 3.

Thus the local mins are at f(0) = f(3) = 0

The local max is at
$$f(\frac{3}{2}) = \frac{9}{4}$$
.

Ex: Find the dimensions of the rectangle (with vertical and horizontal sides) of maximum area which can be inscribed in the ellipse, $\frac{x^2}{4} + \frac{y^2}{9} = 1$.

Suppose that f and g are differentiable functions (except possibly at a) and that f(a) and g(a) are both equal to 0, or both tend to ∞ as $x \to a$.

If
$$\lim_{x\to a} \frac{f'(x)}{g'(x)}$$
 exists, then
$$\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}.$$

Theorem: (L'Hôpital's Rule)

Proof: (Outline). Suppose we have the case f(a) = g(a) = 0. Apply the MVT to f and g on the interval (a, x), where x > a, so that for some $c, d \in (a, x)$ we have $\frac{f(x) - 0}{x - a} = f'(c)$ and $\frac{g(x)-0}{x-a} = g'(d).$

Hence

$$\frac{f(x)}{g(x)} = \frac{\frac{f(x)}{x-a}}{\frac{g(x)}{x-a}} = \frac{f'(c)}{g'(d)}.$$

Hence as $x \to a^+$ we have $c \to a^+$ and $d \to a^+$, so that if the limit of $\frac{f'(x)}{g'(x)}$ exists as $x \to a$, we have $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$.

Ex:
$$\lim_{x\to 0} \frac{e^x - 1}{\sin 2x}$$
.

$$= \lim_{x\to 0} \frac{e^x}{\sin 2x}$$

$$= \lim_{x\to 0} \frac{e^x}{\cos 2x}$$

$$= \lim_{x\to 0} \frac{e^x}{\cos 2x}$$

Ex:
$$\lim_{x \to 1} \frac{1 - x + \log x}{1 + \cos \pi x}$$

$$= \lim_{x \to 1} \frac{-1 + \frac{1}{x}}{-\pi \sin \pi x}$$

$$= \lim_{x \to 1} \frac{-1}{-\pi^2 \cos \pi x}$$

$$= \lim_{x \to 1} \frac{-1}{-\pi^2 \cos \pi x}$$

$$= -\frac{1}{\pi^2}$$

When dealing with limits to infinity, we need the following version of L'Hôpital's rule.

Theorem: Suppose f and g are differentiable. Suppose further that $f(x) \to 0$ and $g(x) \to 0$ as $x \to \infty$ (or $f(x) \to \infty$ and $g(x) \to \infty$ as $x \to \infty$).

If
$$\lim_{x\to\infty} \frac{f'(x)}{g'(x)}$$
 exists, then

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Ex:
$$\lim_{x \to \infty} \frac{\log x}{x}$$
.

$$= \lim_{x \to \infty} \frac{\log x}{x}$$

Ex:
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x$$
.

$$= \lim_{x \to \infty} \left(\ln \left(1 + \frac{1}{x}\right)^{\times} \right)$$

$$= \exp \left(\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x}\right) \right). \quad "0. \infty"$$

$$\lim_{x \to \infty} x \ln \left(1 + \frac{1}{x}\right) = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x}\right)}{\frac{1}{x}} \quad "0. \infty"$$

$$= \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x}\right)}{-\frac{1}{x^2}} = \lim_{x \to \infty} \frac{\ln \left(1 + \frac{1}{x}\right)}{-\frac{1}{x^2}} = 1.$$
So
$$\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e.$$