# Causal Inference as Making Good Comparisons Assessing the Impact of Minimum Wages

**ECON 490** 

Email: <a href="mailto:tmackay@fullerton.edu">tmackay@fullerton.edu</a>

#### **Slides Overview**

In these slides, we'll talk about:

- Causal inference in terms of making good comparisons
- Economic studies of the effects of the minimum wage

## **Making Good Comparisons**

Goal of causal inference is to identify the causal effect of some treatment

- Let's say X is binary we want to know, if you get X, what happens?
- Assessing the effect of X = 1 requires a **comparison group** with X = 0

Why do we need a comparison group?

- We want to estimate the change in some outcome *Y* given *X*
- If everyone had X = 1 then how can we isolate the effect of X?

Given a comparison group, calculate effect of *X* as difference in means

• Compare Y for those with X = 0 and X = 1

#### Finding the Right Comparison Group

Let's say we've found a possible comparison group of people with X=0

- Q: What does it mean for this group to be a "good" comparison group?
- A: The more similar they are to people with X = 1, the better!

**Question:** If similarity is good, why not just use myself as the comparison group?

- Suppose we track your Y before and after switching X = 0 to X = 1
- What if X isn't the only thing changing about you over time?

We can't know what your Y would be if we never switched X

• In econometrics terms, we can't observe *counterfactual* you

#### Selection

When you run an experiment or randomized control trial...

- Treatment *X* is randomly assigned to people
- Meaning you're not worried about **why** some people got *X* and others didn't

With randomization (and enough trial participants), we can identify effect of treatment as difference in average Y for X=1 and X=0

When we *can't* do an experiments, what happens?

- We need to worry about why each person got X = 1 instead of X = 0
- In other words, worried about selection

## **Making Selection Intuitive**

When we say selection, we mean, "Why you have the value of X that you do?"

• In OVB terms, we're often concerned that this "why" is also correlated with Y

Multivitamin example – do multivitamins make you healthier?

- Selection: Healthier people might be more likely to take multivitamins (MV)
- OVB: We conflate specific health effect of MV with general health differences

College major example - how does a specific college affect your earnings?

- **Selection:** Your choice of major says a lot about your priorities
- OVB: We conflate specific major effect with general differences in the priority that people place on maximizing career earnings

#### **Comparisons with Fixed Effects**

Let's think about our test score ~ hour spent studying example

- Without a student FE, systematic differences across students were a problem
- We were making bad comparisons!

By including a fixed effect for student, we allowed for *relative* comparisons

- Relative to a student's own baseline study habits, did they study more?
- If so, how did they score relative to their baseline performance?

In general, adding fixed effects changes the kinds of comparison we make

#### Randomization as a Benchmark

Use Venn Diagram model as a starting point to think about identifying the causal effect of MW

If states let us randomly assign MW, this would be easy...

Not likely to happen, however!



#### The Real World

In practice, this is the Venn Diagram we face

- States can set their own MWs
- They may do so in ways that are correlated with state economic conditions

Causal inference as a selection or attribution problem

• What is the effect of MW vs. local conditions?

Goal is to isolate unique variation in MW



#### **Setting the Stage**

ECON 101 supply and demand model makes clear predictions about MW

- Assuming we have a **binding** MW in a **perfectly competitive** market...
- We should expect a surplus of labor supplied = unemployment

Given this clear prediction, it might be surprising to learn there's been decades of minimum wage research!

Why is this? Assumptions above matter, research methods improve, ...

# Historical Studies of the Minimum Wage

Through the 1970's and 1980's, papers used a "cross-sectional" approach

- Collect data from CPS survey on employment, demographic variables, etc.
- Include some continuous measure of business cycle / economic output

Aggregate your data to the national level and estimate something like:

$$Employment_t = \alpha_0 + \alpha_1 MW_t + \alpha_2 X_t + \alpha_3 Z_t + u_t$$

These kinds of studies tended to find negative employment effects of MW

Negative employment elasticities of -0.1 to -0.3 for 16-to-19

## A Turning Point

Card and Krueger (2000) is one of the most famous applied economics papers

In 1992, NJ increased MW from \$4.25 to \$5.05

- Authors collected data from NJ and eastern
   Pennsylvania where there was no MW change
- Surveyed restaurants on wages & employment

Found **no** evidence of employment reductions





## Minimum Wage Studies in the 1990's and 2000's

Card and Krueger "zoomed in" to consider just NJ's MW change

- But over the last 3 decades, there's been lots of changes to MW across states
- What if we want to estimate the effect of all those changes?

Lots of studies ran variations of the following:

$$Employment_{st} = \alpha_0 + \alpha_1 MW_{st} + \gamma_s + \tau_t + \epsilon_{st}$$

In R, this is: lm(emp ~ MW + as.factor(state) + as.factor(year), data)

# Two-Way Fixed Effects Estimates of Minimum Wages

TWFE regression on the last slide has the advantage of using all MW changes

- It's kind of a "cookbook" approach to causal inference + diff-in-diff
- If you assume TWFE absorb all possible OVBs, you've got a causal effect!

Studies that used this sort of approach often negative effects of MWs

- Reductions in employment for younger, less-skilled workers
- Tend to be a bit larger than prior estimates; elasticities b/w -0.2 to -0.5

Is this all we need to do? What about finding credible comparison groups?

## **Modern Studies of Minimum Wages**

Lots of methodological advances in the last 5 years

- Affecting how we estimate DiD models (no more 1m() with TWFE!)
- Also increasing attention paid to identifying credible comparison groups

Dube et al. (2010) – what makes a good comparison group?

- TWFE papers say, "Let's use all states"
- Dube and co-authors ask, "Does that give us the comparisons we want?"

Their approach is a generalization of C & K - look at cross-border differences

#### **Dube et al. (2010)**

Find pairs of treatment and control counties across state borders

Restrict sample to just these pairs

- Do border counties make good comparison groups?
- More likely to share local economic shocks, conditions, etc.

They find no effect of MW on emp.



#### **Descriptive vs. Causal Questions**

DiD and related models appear everywhere in modern economics research

- We discuss these models to make modern research more approachable
- Remember that these research designs are intended for causal analysis

What if you're doing a descriptive analysis? TWFE with 1m() can help a lot!

- Despite the methodological shortcomings, it's still an easy way to absorb lots of potential sources of OVB
- Allows you to compare the impact of a variable changing within a particular area, over time (i.e. controlling for avg. area and avg. shared time differences)

## Summarizing the Minimum Wage Literature

Okay, we've talked a lot about causal inference, but what do MWs actually do?!

- For changes within range we've seen historically (\$1-2), probably not a lot
- Very little evidence of "macro-scale" effects

However, some limited evidence for disemployment effects for larger changes for demographic groups most likely to be impacted

Note that larger changes could have different effects!

- Internal validity = does this study "work" on its own terms
- External validity = what does this tell us about the future, other settings, etc.?