Практичне заняття № 4 (за темою лабораторної роботи №2)

Параметри алгоритму. Правило безпосереднього перероблення. Асимптотичні характеристики складності алгоритму. Алгоритми з поліноміальною та експоненціальною складністю.

Параметрична модель алгоритму

Деяка змінна величина, яка визначає значення характеристик математичного об'єкту, називається *параметром*. Прикладом може бути частотна характеристика RC – ланцюга. R i C – параметри, затримка прямокутного сигналу τ = RC

Характеристики алгоритму визначаються наступними параметрами Рис. 1:

- 1. Правило початку.
- 2. Правило вводу даних.
- 3. Система вхідних даних.
- 4. Правило безпосереднього перероблення.
- 5. Система проміжних результатів.
- 6. Система кінцевих результатів.
- 7. Правило виводу.
- 8. Правило закінчення.

Рис. 1

Зміна будь-якого параметру алгоритму змінює часову складність та інші характеристики. Зміна параметру алгоритму з метою мінімізації часової складності алгоритму називається параметричною оптимізацією алгоритму.

До способів мінімізації часової складності відносяться:

- 1. Зміна правила початку визначає
 - вибір черговості використання даних в процесі обчислень
 - векторизація,
 - конкурентизація, тощо.
- 2. Зміна системи вхідних даних, наприклад, 10-вої, 16 річної тощо
- 3. Зміна системи проміжних результатів наприклад, використання двійкової системи,

- 4. Зміна правила вводу даних:
 - генерування,
 - читання,
 - інкапсуляція
- 5. Зміна правил безпосереднього перероблення:
 - розбиття масивів вхідних, вихідних даних проміжних,
 - еквівалентні перетворення,
 - апроксимація,
 - використання попередніх обчислень

Визначення Параметрична модель алгоритму це сімка параметрів алгоритму об'єднаних зв'язками, які задають послідовність операцій виконання задачі < A, Q, q_0 , q_f , I, O, P > ,

де:

A – множина символів зовнішнього алфавіту. А охоплює множини символів систем проміжних і кінцевих результатів,

Q - множина символів алфавіту станів

 q_0, q_f — початковий та кінцевий стани роботи моделі алгоритму; $q_0, q_f \in Q$

I,O – операції вводу та виводу даних

Р – правило безпосереднього перероблення

Правило безпосереднього перероблення може бути задано деякою функцією, словесно, таблицею, графом, блок-схемою, тощо.

На Рис 2 зображено блок-схема параметричної моделі пари задача-алгоритм. Від блоксхеми алгоритму вона відрізняється доданим блоком "сформульоване намагання". Крім того в системі вхідних даних та системі кінцевих результатів виділений набір вхідних даних $\{X\}$ та набір кінцевих результатів $\{Y\}$, які належать безпосередньо до задачі, яка розв'язується

Асимптотичні співвідношення

Для опису швидкості зростання функцій використовується О-символіка. Функція f(n) має порядок зростання O(g(n)), якщо існують додатні константи C і \mathbf{n}_0 такі, що:

$$f(n) \le C*g(n),$$
 для $n > n_0$.

Позначемо функцію яка виражає залежність часової складності від кількості вхідних даних (\mathbf{n}) через $\mathbf{L}(\mathbf{n})$. Тоді, наприклад, коли говорять, що часова складність $\mathbf{L}(\mathbf{n})$ алгоритму має порядок(степінь) зростання $\mathrm{O}(n^2)$ (читається як "О велике від \mathbf{n} в квадраті", або просто як "о від \mathbf{n} в квадраті", то вважається, що існують додатні константи \mathbf{c} і \mathbf{n}_0 такі, що для всіх \mathbf{n} , більших або рівних \mathbf{n}_0 , виконується нерівність $\mathbf{L}(\mathbf{n}) <= \mathbf{c} \mathbf{n}^2$.

Наприклад, функція $L(\mathbf{n}) = 3\mathbf{n}^3 + 2\mathbf{n}^2$ має порядок зростання $O(\mathbf{n}^3)$. Нехай $\mathbf{n}_0 = 0$ і $\mathbf{c} = 5$. Очевидно, що для всіх цілих $\mathbf{n} > 0$ виконується нерівність $3\mathbf{n}^3 + 2\mathbf{n}^2 < = 5\mathbf{n}^3$.

Коли кажуть, що L(n) має степінь зростання O(f(n)), то вважається, що f(n) є верхньою границею швидкості зростання L(n). Щоби вказати нижню границю швидкості зростання L(n) використовують позначення $\Omega(g(n))$, що означає існування такої константи c, що для нескінченої кількості значень n виконується нерівність L(n) >= c * g(n).

Теоретичне визначення порядку зростання функції ε складною математичною задачею. На практиці визначення порядку зростання ε задачею, що цілком вирішується за допомогою кількох базових принципів. Існують три правила для визначення складності:

1.
$$O(c^* f(n)) = O(f(n))$$

2.
$$O(f(n) + g(n)) = O(max(f(n), g(n)))$$

3.
$$O(f(n) * g(n)) = O(f(n)) * O(g(n))$$

Перше правило декларує, що постійні множники не мають значення для визначення порядку зростання.

Друге правило називається "Правило сум". Це правило використовується для послідовних програмних фрагментів з циклами та розгалуженнями. Порядок зростання скінченої послідовності програмних фрагментів (без врахування констант) дорівнює порядку зростання фрагменту з найбільшою часовою складністю. Якщо алгоритм складається з двох фрагментів, функції часових складностей яких $L_1(\mathbf{n})$ і $L_2(\mathbf{n})$ мають ступені зростання $O(\mathbf{f}(\mathbf{n}))$ і $O(\mathbf{g}(\mathbf{n}))$ відповідно, то алгоритм має степінь зростання $O(\mathbf{max}(\mathbf{f}(\mathbf{n}),\mathbf{g}(\mathbf{n})))$.

Третє правило називається "Правило добутків". Якщо $L_1(n)$ і $L_2(n)$ мають ступені зростання O(f(n)) і O(g(n)) відповідно, то добуток $L_1(n)$ $L_2(n)$ має степінь зростання O(f(n)g(n)). Прикладом може бути фрагмент програми "пикл в пиклі".

Приклад.

Задані функції часової складності L(n) для чотирьох алгоритмів:

1.
$$L_1(n) = n\sqrt{n}$$
 2. $L_2(n) = 2^n + n$ 3. $L_3(n) = 3n^2 + 2n^3$ 4. $L_4(n) = n + \log_2 n$

Використавши правило сум і правило добутків знайдемо O(n):

$$\mathrm{O}_1(n) = n\sqrt{n} \qquad \qquad \mathrm{O}_2(n) = 2^n \qquad \qquad \mathrm{O}_3(n) = n^3 \qquad \qquad \mathrm{O}_4(n) = n$$

Розташуємо функції $O_i(n)$ у порядку зростання:

1.
$$O_4(n) = n$$
 2. $O_1(n) = n\sqrt{n}$ 3. $O_3(n) = n^3$ 4. $O_2(n) = 2^n$

Функція О $_{2}$ (n) = $_{2}$ n має найбільший степінь зростання.

Побудуємо графіки
$$Y(n) = \frac{O_2(n)}{P_k(n)}$$
 для $n = (1,2,...,10)$; $k = 3,4,5$

Для спрощення будемо вважати що поліном для відповідних значень **K** буде прирівнюватися до n^3 , n^4 та n^5 оскільки ці значення ϵ тою адитивною складовою в поліномі, яка найшвидше зроста ϵ .

$$Y(n) = \frac{2^n}{n^3}$$
:

K=3

$$Y(n) = \frac{2^n}{n^4}$$
:

K=4

Y(n)

$$Y(n) = \frac{2^n}{n^5}$$
:

Графіки показують, що існують такі значення \mathbf{n}_0 (при зростанні \mathbf{K} значення \mathbf{n}_0 теж зростає), починаючи з яких значення функції порядку зростання часової складності буде приймати більші значення ніж значення відповідного поліному. Це ілюструє приналежність алгоритму до класу алгоритмів з експоненціальною складністю.