# adversarial training methods for semi-supervised text classification

# abstract

adversarial training + adversarial training

noise in neural network input 자체에는 적용X

## introduction

- adversarial training
  - origin sample / noise sample을 모두 정확하게 구분하는 model 만들기 위한 과정
  - label 필수
- virtual adversarial training
  - unlabeled sample
  - 모델의 regularization
    - -> origin sample & noise sample 모두 같은 출력

악의적 input에 대한 방어로 작용

word embedding에 접근할 수 없기 때문에 classifier regularization으로서 분류 기능 안정화를 제시

## method



- (a) LSTM-based text classification model.
- (b) The model with perturbed embeddings.

$$\bar{\boldsymbol{v}}_k = \frac{\boldsymbol{v}_k - \mathrm{E}(\boldsymbol{v})}{\sqrt{\mathrm{Var}(\boldsymbol{v})}} \text{ where } \mathrm{E}(\boldsymbol{v}) = \sum_{j=1}^K f_j \boldsymbol{v}_j, \mathrm{Var}(\boldsymbol{v}) = \sum_{j=1}^K f_j \left(\boldsymbol{v}_j - \mathrm{E}(\boldsymbol{v})\right)^2$$

## method

#### adversarial training / loss

$$-\log p(y \mid \boldsymbol{x} + \boldsymbol{r}_{\text{adv}}; \boldsymbol{\theta}) \text{ where } \boldsymbol{r}_{\text{adv}} = \underset{\boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon}{\arg \min \log p(y \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}})}$$
$$\boldsymbol{r}_{\text{adv}} = -\epsilon \boldsymbol{g} / \|\boldsymbol{g}\|_{2} \text{ where } \boldsymbol{g} = \nabla_{\boldsymbol{x}} \log p(y \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}).$$
$$L_{\text{adv}}(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{n=1}^{N} \log p(y_n \mid \boldsymbol{s}_n + \boldsymbol{r}_{\text{adv},n}; \boldsymbol{\theta})$$

#### virtual adversarial training / loss

$$\begin{split} \operatorname{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}_{\text{v-adv}}; \boldsymbol{\theta})] \\ \text{where } \boldsymbol{r}_{\text{v-adv}} &= \underset{\boldsymbol{r}, \|\boldsymbol{r}\| \leq \epsilon}{\operatorname{arg max}} \operatorname{KL}[p(\cdot \mid \boldsymbol{x}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{x} + \boldsymbol{r}; \hat{\boldsymbol{\theta}})] \\ \boldsymbol{r}_{\text{v-adv}} &= \epsilon \boldsymbol{g} / \|\boldsymbol{g}\|_2 \text{ where } \boldsymbol{g} = \nabla_{\boldsymbol{s} + \boldsymbol{d}} \operatorname{KL}\left[p(\cdot \mid \boldsymbol{s}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{s} + \boldsymbol{d}; \hat{\boldsymbol{\theta}})\right] \\ L_{\text{v-adv}}(\boldsymbol{\theta}) &= \frac{1}{N'} \sum_{n'=1}^{N'} \operatorname{KL}\left[p(\cdot \mid \boldsymbol{s}_{n'}; \hat{\boldsymbol{\theta}}) || p(\cdot \mid \boldsymbol{s}_{n'} + \boldsymbol{r}_{\text{v-adv}, n'}; \boldsymbol{\theta})\right] \end{split}$$

# experiment

Table 1: Summary of datasets. Note that unlabeled examples for the Rotten Tomatoes dataset are not provided so we instead use the unlabeled Amazon reviews dataset.

|                 | Classes | Train   | Test   | Unlabeled | Avg. T | Max T |
|-----------------|---------|---------|--------|-----------|--------|-------|
| IMDB            | 2       | 25,000  | 25,000 | 50,000    | 239    | 2,506 |
| Elec            | 2       | 24,792  | 24,897 | 197,025   | 110    | 5,123 |
| Rotten Tomatoes | 2       | 9596    | 1066   | 7,911,684 | 20     | 54    |
| DBpedia         | 14      | 560,000 | 70,000 | _         | 49     | 953   |
| RCV1            | 55      | 15,564  | 49,838 | 668,640   | 153    | 9,852 |



# experiment

Table 2: Test performance on the IMDB sentiment classification task. \* indicates using pretrained embeddings of CNN and bidirectional LSTM.

| Method                                                    | Test error rate |  |
|-----------------------------------------------------------|-----------------|--|
| Baseline (without embedding normalization)                | 7.33%           |  |
| Baseline                                                  | 7.39%           |  |
| Random perturbation with labeled examples                 | 7.20%           |  |
| Random perturbation with labeled and unlabeled examples   | 6.78%           |  |
| Adversarial                                               | 6.21%           |  |
| Virtual Adversarial                                       | 5.91%           |  |
| Adversarial + Virtual Adversarial                         | 6.09%           |  |
| Virtual Adversarial (on bidirectional LSTM)               | 5.91%           |  |
| Adversarial + Virtual Adversarial (on bidirectional LSTM) | 6.02%           |  |
| Full+Unlabeled+BoW (Maas et al., 2011)                    | 11.11%          |  |
| Transductive SVM (Johnson & Zhang, 2015b)                 | 9.99%           |  |
| NBSVM-bigrams (Wang & Manning, 2012)                      | 8.78%           |  |
| Paragraph Vectors (Le & Mikolov, 2014)                    | 7.42%           |  |
| SA-LSTM (Dai & Le, 2015)                                  | 7.24%           |  |
| One-hot bi-LSTM* (Johnson & Zhang, 2016b)                 | 5.94%           |  |

Table 4: Test performance on the Elec and RCV1 classification tasks. \* indicates using pretrained embeddings of CNN, and † indicates using pretrained embeddings of CNN and bidirectional LSTM.

| Method                                                                 |               | Test error rate |  |
|------------------------------------------------------------------------|---------------|-----------------|--|
|                                                                        | Elec          | RCV1            |  |
| Baseline                                                               |               | 7.40%           |  |
| Adversarial                                                            | 5.61%         | 7.12%           |  |
| Virtual Adversarial                                                    | 5.54%         | 7.05%           |  |
| Adversarial + Virtual Adversarial                                      | <b>5.40</b> % | 6.97%           |  |
| Virtual Adversarial (on bidirectional LSTM)                            |               | 6.71%           |  |
| Adversarial + Virtual Adversarial (on bidirectional LSTM)              | 5.45%         | 6.68%           |  |
| Transductive SVM (Johnson & Zhang, 2015b)                              | 16.41%        | 10.77%          |  |
| NBLM (Naive Bayes logisitic regression model) (Johnson & Zhang, 2015a) | 8.11%         | 13.97%          |  |
| One-hot CNN* (Johnson & Zhang, 2015b)                                  | 6.27%         | 7.71%           |  |
| One-hot CNN <sup>†</sup> (Johnson & Zhang, 2016b)                      |               | 7.15%           |  |
| One-hot bi-LSTM† (Johnson & Zhang, 2016b)                              | 5.55%         | 8.52%           |  |

### conclusion

- classification, word embedding에 뛰어난 성과
- 음성, 비디오와 같은 순차적 작업에 적용 가능성

code: <a href="https://github.com/tensorflow/models/tree/master/adversarial\_text">https://github.com/tensorflow/models/tree/master/adversarial\_text</a>