Food Recommendation System

Assisting food manufacturer to produce healthy food

Project Objective

- To develop a service that helps food producers understand, which products should be produced in order to boost their customers' immune systems
- Dataset: Kaggle- COVID-19 Healthy Diet Dataset

https://www.kaggle.com/mariaren/covid19-healthy-diet-dataset

Dataset Description

Four Different types of nutritional data for 170 countries: Percentage of consumption

- Protein
- Fat
- Amount(Kg)
- Energy (KCal)

Each of them contains

- 31 Identical Columns
- 24 different types of foods(eg. Animal product, vegetal product, fish, etc)
- Health condition and covid cases (Undernourished, Obesity, COVID death..)

Dataset Overview

Show a preview of data
Fat_Supply_DF.head()

500	Country	Alcoholic Beverages	Animal Products	Animal fats	Aquatic Products, Other	Cereals - Excluding Beer	Eggs	Fish, Seafood	Fruits - Excluding Wine	Meat	Miscellaneous	Milk - Excluding Butter	Offals	Oilcrops	Pulses
0	Afghanistan	0.0	21.6397	6.2224	0.0	8.0353	0.6859	0.0327	0.4246	6.1244	0.0163	8.2803	0.3103	1.0452	0.1960
1	Albania	0.0	32.0002	3.4172	0.0	2.6734	1.6448	0.1445	0.6418	8.7428	0.0170	17.7576	0.2933	3.1622	0.1148
2	Algeria	0.0	14.4175	0.8972	0.0	4.2035	1.2171	0.2008	0.5772	3.8961	0.0439	8.0934	0.1067	1.1983	0.2698
3	Angola	0.0	15.3041	1.3130	0.0	6.5545	0.1539	1.4155	0.3488	11.0268	0.0308	1.2309	0.1539	3.9902	0.3282
5	Argentina	0.0	30.3572	3.3076	0.0	1.3316	1.5706	0.1664	0.2091	19.2693	0.0000	5.8512	0.1878	0.0640	0.0213
4															

Protein_Supply_DF.head()

	Country	Alcoholic Beverages	Animal Products	Animal fats	Aquatic Products, Other	Cereals - Excluding Beer	Eggs	Fish, Seafood	Fruits - Excluding Wine	Meat	Milk - Excluding Butter	Offals	Oilcrops	Pulses	Spices	Starchy Roots
0	Afghanistan	0.0000	9.7523	0.0277	0.0	35.9771	0.4067	0.0647	0.5824	3.1337	5.5278	0.5916	0.2034	1.2479	0.1664	0.1941
1	Albania	0.1840	27.7469	0.0711	0.0	14.2331	1.8069	0.6274	1.2757	7.6582	16.4750	1.1084	0.3722	1.4555	0.0000	0.8867
2	Algeria	0.0323	13.8360	0.0054	0.0	26.5633	1.2916	0.6350	1.1624	3.5088	8.0616	0.3283	0.1830	2.5509	0.1776	1.4638
3	Angola	0.6285	15.2311	0.0277	0.0	20.3882	0.1756	5.4436	1.2754	7.6248	1.1460	0.8133	2.1534	4.0850	0.0000	5.1941
5	Argentina	0.1704	31.9799	0.0097	0.0	13.6702	2.0593	1.0223	0.5209	21.6250	5.8322	1.4313	0.0097	0.2434	0.0292	1.3096
4																•

Dataset Overview

Show a preview of data
Fat_Supply_DF.head()

5	Sugar Crops	Sugar & Sweeteners	Treenuts	Vegetal Products	Vegetable Oils	Vegetables	Obesity	Undernourished	Confirmed	Deaths	Recovered	Active	Population	Unit (all except Population)
0	0.0	0.0	0.7513	28.3684	17.0831	0.3593	4.5	29.8	0.053472	0.000938	0.004929	0.047605	38042000.0	%
0	0.0	0.0	0.9181	17.9998	9.2443	0.6503	22.3	6.2	0.043597	0.001190	0.032820	0.009587	2858000.0	%
3	0.0	0.0	0.8595	35.5857	27.3606	0.5145	26.6	3.9	0.023393	0.001629	0.015475	0.006289	43406000.0	%
8	0.0	0.0	0.0308	34.7010	22.4638	0.1231	6.8	25.0	0.000290	0.000013	0.000076	0.000200	31427000.0	%
5	0.0	0.0	0.1366	19.6449	17.3147	0.1878	28.5	4.6	0.050722	0.001478	0.015374	0.033870	44939000.0	%
4														F

Protein_Supply_DF.head()

ugar & teners	Treenuts	Vegetal Products	Vegetable Oils	Vegetables	Miscellaneous	Obesity	Undernourished	Confirmed	Deaths	Recovered	Active	Population	Unit (all except Population)
0.0000	0.1387	40.2477	0.0000	1.1370	0.0462	4.5	29.8	0.053472	0.000938	0.004929	0.047605	38042000.0	%
0.0042	0.2677	22.2552	0.0084	3.2456	0.0544	22.3	6.2	0.043597	0.001190	0.032820	0.009587	2858000.0	%
0.0000	0.2745	36.1694	0.0269	3.1267	0.1399	26.6	3.9	0.023393	0.001629	0.015475	0.006289	43406000.0	%
0.0092	0.0092	34.7782	0.0092	0.8133	0.0924	6.8	25.0	0.000290	0.000013	0.000076	0.000200	31427000.0	%
0.0049	0.0438	18.0176	0.0000	1.0516	0.0000	28.5	4.6	0.050722	0.001478	0.015374	0.033870	44939000.0	%
4													F

COVID-19 cases, fatality and recovery in percent

Data cleaning

- Filling empty values:
 - Using most frequent value
- Removing Non Numeric Characters
 - (less than or greater than signs)
- Standard Scaler Transform
 - Standardizes a feature by subtracting the mean and then scaling to unit variance

Data visualization: Positive correlation

Data visualization: Positive correlation

Data Visualization: Negative correlation

Input and Output of the model

- Input variables
 - Death, Recovery, Active and Infection rate of covid
 - Undernourished and Obesity

- Output variable
 - Different types of food percentage (Animal product, vegetal product etc.)

Methodology

- Randomly shuffle
- Train data
 - 0 80%
- Hyper-parameter tuning
 - o Random search
 - 5-fold cross validation
- Test data
 - o **20%**

Note: Only 170 samples, so we had less flexibility to increase the test data size

Model Selection:

- Linear Regression
- LASSO
- Ridge Regression
- Support Vector Regression
- Decision Tree
- Random Forest
- Neural Network

Model Selection

• 24 output variable

Methods	R^2 Score(Fat)	R^2 Score(Protein)	R^2 Score(Kcal)	R^2 Score(Amount)
Linear Regression	-358.03	-501.27	-351.97	-351.97
Ridge	-0.08	-0.08	0.07	0.07
Lasso	-0.03	-0.10	0.07	0.07
SVR	-0.49	-10.79	0.08	0.08
Decision Tree	-0.01	-0.10	-0.03	-0.03
Random Forest	-0.06	-0.98	0.08	0.08
Neural Network	-0.13	-0.19	-0.30	-0.23

Table 1: R2 accuracy after 5-fold cross validation for two nutrients consumption, calorie consumption and amount.

Protein dataset

- 1. Vegetal Products
- 2. Fish
- 3. Seafood
- 4. Alcoholic Beverages
- 5. Sugar & Sweeteners
- 6. Fruits Excluding Wine
- 7. Spices
- 8. Stimulants
- 9. Treenuts

Fat dataset

- 1. Animal Products
- 2. Vegetables
- 3. Miscellaneous
- 4. Fruits Excluding Wine,
- 5. Milk Excluding Butter
- 6. Starchy Roots
- 7. Animal fats
- 8. Fruits Excluding Wine

Kcal dataset

- 1. Animal Products
- 2. Offals
- 3. Sugar & Sweeteners
- 4. Miscellaneous
- Animal fats
- 6. Vegetables
- 7. Starchy Roots
- 8. Sugar & Sweeteners

Quantity dataset

- 1. Animal fats
- 2. Offals
- 3. Stimulants
- 4. Fruits Excluding Wine
- 5. Vegetable Oils
- 6. Starchy Roots
- 7. Spices
- 8. Sugar Crops

Model Tuning

- Training model on 8 selected output variable
- Animal Products, Animal fats, Meat, Cereals-Excluding Beer, Vegetables, Vegetal Products, Vegetable Oils, and Oil crops

Methods	R^2 Score(Fat)	R^2 Score(Protein)	R^2 Score(Kcal)	R^2 Score(Amount)
Linear Regression	-258.79	-81.34	-450.49	-1821.37
Ridge	0.09	0.19	0.15	0.07
Lasso	0.08	0.17	0.16	0.09
SVR	0.15	0.16	0.17	0.06
Decision Tree	0.06	0.15	-0.06	-0.11
Random Forest	0.19	0.23	0.27	0.06
Neural Network	-0.64	-0.69	-0.81	-0.68

Table 2: Prediction on eight outputs for types of data.

Predicting recommended percentage of foods

- Best condition of a country in COVID-19 crisis
 - 0 death due to covid
 - 100% recovery rate from covid
 - 0% Undernourishment
 - 0% Obesity
- Usages of prediction
 - Based on above input we predict the output
 - Compare it with the current food habit of a country
 - Guide food manufacturers to produce food to increase immunity.

Note: Detail description will be on the application presentation.