## ECON613 HW1

## Zhilin Tang, zt53

#### 2022-01-19

library(ggplot2)

## [1] 2765

library(gridExtra)
library(dplyr)
library(data.table)
library(tinytex)

Exercise 1 Basic Statistics

1.1 Number of households surveyed in 2007

dim(dathh2007)[1]

## [1] 10498

1.2 Number of households with a marital status "Couple with kids" in 2005

length(which(dathh2005\$mstatus=='Couple, with Kids'))

## [1] 3374

1.3 Number of individuals surveyed in 2008

length(unique(datind2008\$idind))

## [1] 25510

1.4 Number of individuals aged between 25 and 35 in 2016

length(which(datind2016\$age>=25 & datind2016\$age<=35))</pre>

1.5 Cross-table gender/profession in 2009

table(datind2009\$gender,datind2009\$profession)

```
##
##
                                                                        45
             0
               11 12
                       13
                           21
                               22 23 31 33 34
                                                  35
                                                      37
                                                          38 42 43
                                                                     44
                                          85 184
##
                    8
                       29
                           63
                               65
                                    8
                                       68
                                                  50 179
                                                          78 258 437
                                                                      1 153
                   19
##
    Male
            19
                       78 213 114
                                  48
                                      98 107 142
                                                  59 260 368 110 117
                                                                      2 95
               57
##
##
            46 47
                   48 52
                           53 54 55
                                      56
                                          62
                                              63
                                                  64
                                                      65
                                                          67
                                                                 69
                                                             68
    Female 410 82 22 782
                           27 584 353 696
                                              35 29
##
                                          64
                                                      19 147 120
           340 429 215 169 182 98 101 74 443 520 246 159 237 177 82
##
    Male
```

1.6 Distribution of wages in 2005 and 2019. Report the mean, the standard deviation, the inter-decile ratio D9/D1 and the Gini coefficient The formula for the Gini coefficient is

$$GINI = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} |x_i - x_j|}{2n^2 \bar{x}}$$

```
gini = function(x){
  n = length(x)
  numerator = 0
  for (i in 1:n) {
    for (j in 1:n) {
       numerator = numerator + abs(x[i]-x[j])
      }
  }
  return(numerator/(2*n^2*mean(x)))
}
```

Table 1: Distribution of wage in 2005

| mean          | sd           | D1    | D9           | inter_decile_ratio | Gini_coefficient |
|---------------|--------------|-------|--------------|--------------------|------------------|
| 22, 443.03000 | 18,076.71000 | 4,547 | 40,452.50000 | 8.89653            | 0.37711          |

```
p1 = ggplot(datind2005,aes(x=wage)) +
  geom_histogram(color='#999999', fill='#999999',alpha=0.8) +
  ggtitle('Histogram of wage in 2005') +
```

Table 2: Distribution of wage in 2019

| mean          | sd           | D1    | D9           | inter_decile_ratio | Gini_coefficient |
|---------------|--------------|-------|--------------|--------------------|------------------|
| 27, 578.84000 | 25,107.19000 | 3,634 | 50,375.60000 | 13.86230           | 0.39909          |

```
theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times'))
p2 = ggplot(datind2019,aes(x=wage)) +
  geom_histogram(color='#E69F00', fill='#E69F00',alpha=0.8) +
  ggtitle('Histogram of wage in 2019') +
  theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times'))
grid.arrange(p1,p2,ncol=2)
```



# 1.7 Distribution of age in 2010. Plot an histogram. Is there any difference between men and women?

```
age_gender = data.frame(gender=datind2010$gender,age=datind2010$age)
mean_age_gender = age_gender %>%
group_by(gender) %>%
summarise(mean_age=mean(age,na.rm=TRUE))
```



Yes, there is some difference between men and women. Females on average have larger age than males, and females are more older skewed.

#### 1.8 Number of individuals in Paris in 2011

```
df2011 = left_join(datind2011[,-1], dathh2011[,-1], by = c('idmen','year'))
df2011_paris = df2011 %>%
  group_by(idind) %>%
  summarise(paris=as.integer(location=='Paris')) %>%
  filter(paris==1)
length(df2011_paris$idind)
```

## [1] 3514

## Exercise 2 Merge Datasets

- 2.1 Read all individual datasets from 2004 to 2019. Append all these datasets
- 2.2 Read all household datasets from 2004 to 2019. Append all these datasets

```
for (year in 2004:2019){
    # Read all individual datasets from 2004 to 2019
    dathh_file = data.frame(fread(paste('dathh',year,'.csv',sep=''),header=TRUE))
    assign(paste('dathh',year,sep=''),dathh_file)
    datind_file = data.frame(fread(paste('datind',year,'.csv',sep=''),header=TRUE))
    assign(paste('datind',year,sep=''),datind_file)

# Append all datasets
if (year==2004){
    dathh = dathh_file
    datind = datind_file
}else{
    dathh = rbind(dathh,dathh_file)
    datind = rbind(datind,datind_file)
}
```

2.3 List the variables that are simultaneously present in the individual and household datasets

```
intersect(names(dathh),names(datind))
## [1] "V1" "idmen" "year"
```

2.4 Merge the appended individual and household datasets

```
df = left_join(datind[,-1], dathh[,-1], by = c('idmen','year'))
```

2.5 Number of households in which there are more than four family members

```
df_family_4 = df %>%
  group_by(idmen, year) %>%
  summarise(n=n()) %>%
  filter(n>4) %>%
  select(idmen, year, n)
```

If a household had more than 4 people in 2 different years, the answer can be 1 or 2 (once for each year). Here we think it would be 2.

```
num_by_year = function(data,id){
  num_by_year = c()
  for (year in 2004:2019) {
    if (id=='idmen'){
        num_by_year = c(num_by_year,length(unique(data$idmen[which(data$year==year)])))
    }else if (id=='idind'){
        num_by_year = c(num_by_year,length(unique(data$idind[which(data$year==year)])))
    }
  }
  return(num_by_year)
}
```

```
num_by_year_family_4 = num_by_year(df_family_4,'idmen')
data = data.frame(year=2004:2019,num=num_by_year_family_4)
ggplot(data, aes(x=year, y=num)) +
   geom_bar(stat='identity',color='#999999',fill='#999999',alpha=0.8) +
   geom_text(aes(label=num_by_year_family_4), vjust=-0.3, size=3.5,family='Times') +
   ggtitle('Number of households with more than 4 people for each given year') +
   theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times'))
```





sum(num\_by\_year\_family\_4)

## [1] 12436

#### 2.6 Number of households in which at least one member is unemployed

```
df_unemployed = df %>%
  group_by(idmen,year) %>%
  summarise(n=sum(empstat=='Unemployed')) %>%
  filter(n>=1) %>%
  select(idmen,year,n)
```

```
num_by_year_unemployed = num_by_year(df_unemployed ,'idmen')
data = data.frame(year=2004:2019,num=num_by_year_unemployed)
ggplot(data, aes(x=year, y=num)) +
   geom_bar(stat='identity',color='#999999',fill='#999999',alpha=0.8) +
   geom_text(aes(label=num_by_year_unemployed), vjust=-0.3, size=3.5,family='Times') +
   ggtitle('Number of households with >=1 member being unemployed for each given year') +
   theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times'))
```





```
sum(num_by_year_unemployed)
```

## [1] 17242

#### 2.7 Number of households in which at least two members are of the same profession

```
df_profession_completed = df[which(df$profession!='' & df$profession!='NA'),]
df_same_prof = df_profession_completed %>%
   group_by(idmen, year, profession) %>%
   summarise(n=n()) %>%
   filter(n>=2) %>%
   select(idmen, year, profession, n)
```





```
sum(num_by_year_same_prof)
```

## [1] 7586

#### 2.8 Number of individuals in the panel that are from household-Couple with kids

```
df_kids = df %>%
  group_by(idmen,idind,year) %>%
  summarise(kids=as.integer(mstatus=='Couple, with Kids'))%>%
  filter(kids==1)
```

#### Number of individuals that are from households-Couple with kids for each given year



```
sum(num_by_year_kids)
```

## [1] 209290

#### 2.9 Number of individuals in the panel that are from Paris

```
df_paris = df %>%
  group_by(idind,year) %>%
  summarise(paris=as.integer(location=='Paris')) %>%
  filter(paris==1)
```

```
num_by_year_paris = num_by_year(df_paris,'idind')
data = data.frame(year=2004:2019,num=num_by_year_paris)
ggplot(data, aes(x=year, y=num)) +
   geom_bar(stat='identity',color='#999999',fill='#999999',alpha=0.8) +
   geom_text(aes(label=num_by_year_paris), vjust=-0.3, size=3.5,family='Times')+
   ggtitle('Number of individuals that are from paris for each given year') +
   theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times'))
```





```
sum(num_by_year_paris)
```

## [1] 51902

2.10 Find the household with the most number of family members. Report its idmen

```
df_family = df %>%
  group_by(idmen, year) %>%
  summarise(n=n()) %>%
  select(idmen, year, n)
```

```
print(paste('The most number of family members is ',max(df_family$n),'.',sep=''))
```

## [1] "The most number of family members is 14."

```
as.character(df_family$idmen[which(df_family$n==max(df_family$n))])
```

## [1] "2207811124040100" "2510263102990100"

2.11 Number of households present in 2010 and 2011

## [1] 8984

## Exercise 3 Migration

3.1 Find out the year each household enters and exit the panel. Report the distribution of the time spent in the survey for each household

```
df_enter_exit = df %>%
  group_by(idmen) %>%
  arrange(year) %>%
  mutate(enter_year=first(year)) %>%
  mutate(exit_year=last(year)+1) %>%
  mutate(length_year=length(unique(year))) %>%
  filter(!is.na(length_year)) %>%
  select(idmen,length_year,enter_year,exit_year)
```

```
length_year_dist = c()
for (i in unique(df_enter_exit$length_year)) {
   length_year_i = length(unique(df_enter_exit$idmen[which(df_enter_exit$length_year==i)]))
   length_year_dist = c(length_year_dist,length_year_i)
}
data = data.frame(length_year=unique(df_enter_exit$length_year),num=length_year_dist)
ggplot(data, aes(x=length_year, y=num)) +
   geom_bar(stat='identity',color='#999999',fill='#999999',alpha=0.8) +
   geom_text(aes(label=length_year_dist),vjust=-0.3, size=3.5,family='Times') +
   ggtitle('Distribution of the time spent in the survey') +
   theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times')) +
   scale_x_continuous(breaks=unique(df_enter_exit$length_year))
```



3.2 Base on datent, identify whether or not a household moved into its current dwelling at the year of survey. Report the first 10 rows of your result and plot the share of individuals in that situation across years

```
df_move1 = df[!is.na(df$datent),] %>%
  mutate(move_this_year=as.integer(year==datent)) %>%
  select(idind,idmen,year,datent,move_this_year)
df_move1[1:10,]
```

```
1120001004058010002 1200010040580100 2004
                                                   2001
                                                                     0
      1120001006663010001 1200010066630100 2004
                                                   2000
                                                                     0
     1120001006663010002 1200010066630100 2004
                                                   2000
                                                                     0
     1120001008245010001 1200010082450100 2004
                                                                     0
## 6
                                                   1957
      1120001008644010001 1200010086440100 2004
                                                   2001
                                                                     0
     1120001008644010002 1200010086440100 2004
                                                   2001
                                                                     0
    1120001010299010001 1200010102990100 2004
                                                                     0
                                                   1990
## 10 1120001010299010002 1200010102990100 2004
                                                                     0
                                                   1990
num_ind_move1 = num_by_year(df_move1[which(df_move1$move_this_year==1),],'idind')
num_ind_total1 = num_by_year(df_move1, 'idind')
share_move1 = num_ind_move1/num_ind_total1
data1 = data.frame(year=2004:2019, share=share move1)
ggplot(data1, aes(x=year, y=share)) +
  geom_bar(stat='identity',color='#999999',fill='#999999',alpha=0.8) +
  geom_text(aes(label=sprintf('%.5f',share_move1)), vjust=-0.3, size=3.5,family='Times') +
  ggtitle('Share of individuals moved across years') +
```

#### Share of individuals moved across years

theme(plot.title = element\_text(hjust = 0.5),text=element\_text(family='Times')) +

scale y continuous(limits=c(0,0.07))



3.3 Base on myear and move, identify whether or not a household migrated at the year of survey. Report the first 10 rows of your result and plot the share of individuals in that situation across years

```
df_b2014 = df[which(df$year<=2014),]
df_a2014 = df[which(df$year>2014),]
df_move_b2014 = df_b2014[!is.na(df_b2014$myear),] %>%
    mutate(move_this_year=as.integer(year==myear)) %>%
    select(idind,idmen,year,myear,move,move_this_year)
df_move_a2014 = df_a2014[!is.na(df_a2014$move),] %>%
    mutate(move_this_year=as.integer(move==2)) %>%
    select(idind,idmen,year,myear,move,move_this_year)
df_move2 = rbind(df_move_b2014,df_move_a2014)
df_move2[1:10,]
```

```
##
                     idind
                                       idmen year myear move move this year
## 1
      1120001001293010001 1200010012930100 2004
                                                   2000
                                                           NA
                                                                            0
      1120001004058010001 1200010040580100 2004
                                                   2001
                                                                            0
      1120001004058010002 1200010040580100 2004
                                                                            0
                                                   2001
                                                           NA
##
##
      1120001006663010001 1200010066630100 2004
                                                   2000
                                                                            0
      1120001006663010002 1200010066630100 2004
                                                   2000
                                                                            0
## 5
      1120001008245010001 1200010082450100 2004
                                                   1957
                                                           NA
                                                                            0
      1120001008644010001 1200010086440100 2004
## 7
                                                   2001
                                                           NA
                                                                            0
      1120001008644010002 1200010086440100 2004
                                                   2001
                                                           NA
                                                                            0
      1120001010299010001 1200010102990100 2004
                                                                            0
                                                   1990
                                                           NA
## 10 1120001010299010002 1200010102990100 2004
                                                   1990
                                                           NA
                                                                            0
```

```
num_ind_move2 = num_by_year(df_move2[which(df_move2$move_this_year==1),],'idind')
num_ind_total2 = num_by_year(df_move2,'idind')
share_move2 = num_ind_move2/num_ind_total2
data2 = data.frame(year=2004:2019,share=share_move2)
ggplot(data2, aes(x=year, y=share)) +
   geom_bar(stat='identity',color='#999999',fill='#999999',alpha=0.8) +
   geom_text(aes(label=sprintf('%.5f',share_move2)), vjust=-0.3, size=3.5,family='Times') +
   ggtitle('Share of individuals migrated across years') +
   theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times')) +
   scale_y_continuous(limits=c(0,0.07))
```





3.4 Mix the two plots you created above in one graph, clearly label the graph. Do you prefer one method over the other? justify

```
data1['class'] = 1
data2['class'] = 2
data_mix = rbind(data1,data2)
ggplot(data_mix,aes(x=year, y=share)) +
   geom_bar(stat='identity',aes(fill=factor(class)), alpha=0.8,position='dodge') +
   ggtitle('Mixed plot') +
   theme(plot.title = element_text(hjust = 0.5),text=element_text(family='Times')) +
   scale_y_continuous(limits=c(0,0.07)) +
   scale_fill_discrete(labels = c('datent', 'myear & move'))
```



I would prefer to use variable datent because datent is available during the whole survey period. However, we cannot guarantee that myear=year and move=2 representing exactly the same thing. From the mixed plot, we observe that before 2014, the differences between shares of individuals based on datent and myear are small; whereas after 2014, the differences become much larger. This also implies some inconsistent of measure, so using datent is a wiser choice.

## 3.5 For households who migrate, find out how many households had at least one family member change his/her profession or employment status.



sum(num\_by\_year\_prof\_change)

## [1] 2056

## Exercise 4 Attrition

Compute the attrition across each year, where attrition is defined as the reduction in the number of individuals staying in the data panel. Report your final result as a table in proportions.

```
for (year in 2004:2019){
  if (year==2004){
    idind_last_year = unique(df$idind[which(df$year==2004)])
    prop = c(0)
}else{
    idind_this_year = unique(df$idind[which(df$year==year)])
    num_exit = sum(!(idind_last_year %in% idind_this_year))
    prop = c(prop,num_exit/length(idind_last_year))
    idind_last_year = idind_this_year
}
```

Table 3: Table of Attrition in proportions

| year         prop           1         2004         0           2         2005         0.13530           3         2006         0.20007           4         2007         0.17871           5         2008         0.22670           6         2009         0.20561           7         2010         0.18379           8         2011         0.19362           9         2012         0.16989           10         2013         0.25462           11         2014         0.21982           12         2015         0.21918           13         2016         0.21723           14         2017         0.25070           15         2018         0.24420           16         2019         0.24313 |    |      |         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|------|---------|
| 2       2005       0.13530         3       2006       0.20007         4       2007       0.17871         5       2008       0.22670         6       2009       0.20561         7       2010       0.18379         8       2011       0.19362         9       2012       0.16989         10       2013       0.25462         11       2014       0.21982         12       2015       0.21918         13       2016       0.21723         14       2017       0.25070         15       2018       0.24420                                                                                                                                                                                            |    | year | prop    |
| 3       2006       0.20007         4       2007       0.17871         5       2008       0.22670         6       2009       0.20561         7       2010       0.18379         8       2011       0.19362         9       2012       0.16989         10       2013       0.25462         11       2014       0.21982         12       2015       0.21918         13       2016       0.21723         14       2017       0.25070         15       2018       0.24420                                                                                                                                                                                                                               | 1  | 2004 | 0       |
| 4       2007       0.17871         5       2008       0.22670         6       2009       0.20561         7       2010       0.18379         8       2011       0.19362         9       2012       0.16989         10       2013       0.25462         11       2014       0.21982         12       2015       0.21918         13       2016       0.21723         14       2017       0.25070         15       2018       0.24420                                                                                                                                                                                                                                                                  | 2  | 2005 | 0.13530 |
| 5       2008       0.22670         6       2009       0.20561         7       2010       0.18379         8       2011       0.19362         9       2012       0.16989         10       2013       0.25462         11       2014       0.21982         12       2015       0.21918         13       2016       0.21723         14       2017       0.25070         15       2018       0.24420                                                                                                                                                                                                                                                                                                     | 3  | 2006 | 0.20007 |
| 6     2009     0.20561       7     2010     0.18379       8     2011     0.19362       9     2012     0.16989       10     2013     0.25462       11     2014     0.21982       12     2015     0.21918       13     2016     0.21723       14     2017     0.25070       15     2018     0.24420                                                                                                                                                                                                                                                                                                                                                                                                  | 4  | 2007 | 0.17871 |
| 7 2010 0.18379<br>8 2011 0.19362<br>9 2012 0.16989<br>10 2013 0.25462<br>11 2014 0.21982<br>12 2015 0.21918<br>13 2016 0.21723<br>14 2017 0.25070<br>15 2018 0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5  | 2008 | 0.22670 |
| 8     2011     0.19362       9     2012     0.16989       10     2013     0.25462       11     2014     0.21982       12     2015     0.21918       13     2016     0.21723       14     2017     0.25070       15     2018     0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6  | 2009 | 0.20561 |
| 9 2012 0.16989<br>10 2013 0.25462<br>11 2014 0.21982<br>12 2015 0.21918<br>13 2016 0.21723<br>14 2017 0.25070<br>15 2018 0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7  | 2010 | 0.18379 |
| 10     2013     0.25462       11     2014     0.21982       12     2015     0.21918       13     2016     0.21723       14     2017     0.25070       15     2018     0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8  | 2011 | 0.19362 |
| 11       2014       0.21982         12       2015       0.21918         13       2016       0.21723         14       2017       0.25070         15       2018       0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9  | 2012 | 0.16989 |
| 12     2015     0.21918       13     2016     0.21723       14     2017     0.25070       15     2018     0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10 | 2013 | 0.25462 |
| 13     2016     0.21723       14     2017     0.25070       15     2018     0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11 | 2014 | 0.21982 |
| 14 2017 0.25070<br>15 2018 0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12 | 2015 | 0.21918 |
| 15 2018 0.24420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13 | 2016 | 0.21723 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14 | 2017 | 0.25070 |
| 16  2019  0.24313                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15 | 2018 | 0.24420 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 | 2019 | 0.24313 |