

Analisi di un sottosistema di posizionamento ferrotramviario

Corso di Laurea Magistrale in Informatica

Curriculum "Resilient and Secure Cyberphysical Systems"

Candidato: Alex Foglia

Relatore: Prof. Andrea Bondavalli

- Dependability dei Sistemi Informatici
- Stato dell'arte
- Descrizione del sistema analizzato
- Ambiente di analisi
- Risultati
- Conclusioni

Dependability

In letteratura, per dependability si intende la capacità che ha un sistema di fornire un servizio corretto.

Dependability – Elementi Chiave

Viene valutata rispetto a specifiche misure:

- Availability
- Reliability
- Maintainability
- Safety
- Coverage
- Altre...

È minacciata dai threats:

- Guasti
- Errori
- Fallimenti

È raggiunta attraverso l'utilizzo di opportune tecniche, i means:

- Fault Prevention
- Fault Removal
- Fault Tolerance
- Fault Forecasting

Sistemi Safety-Critical

La safety estende il concetto di reliability.

Quando esiste la possibilità di osservare un fallimento catastrofico, il sistema è detto safety-critical.

Dependability - Valutazione

Valutare la **dependability** di un sistema è parte integrante del processo di **validazione**: si vuole determinare se un sistema è conforme alle sue specifiche funzionali.

Quando si misura?

In generale, durante tutte le fasi del ciclo di vita del sistema.

Come si misura?

Modelli combinatori;

Modelli basati su processi casuali;

Osservazione del sistema.

Monitoring

Il **monitoring** di un sistema consiste nell'osservazione del comportamento dello stesso nel suo ambiente operativo, allo scopo di effettuare **misure sperimentali**.

Fault Injection

Fault Injection è un caso particolare di **monitoring**: si vuole osservare il comportamento del sistema **in presenza di guast**i, volontariamente inseriti dall'osservatore.

Per effettuare una campagna Fault Injection affidabile, devono essere rispettati alcuni principi fondamentali, come rappresentatività, fattibilità, ripetibilità e non intrusività.

- Dependability dei Sistemi Informatici
- Stato dell'arte
- Descrizione del sistema analizzato
- Ambiente di analisi
- Risultati
- Conclusioni

Stato dell'arte – Posizionamento

I sistemi ferrotramviari nascono come derivazione dai classici sistemi ferroviari, e con questi ne condividono il problema del **posizionamento**.

Il posizionamento ferroviario, o ferrotramviario, consiste nella determinazione della posizione di un treno lungo una traccia, espressa come **progressiva chilometrica** rispetto a un punto di riferimento noto. Un sistema di posizionamento è un sistema **safety-critical**.

Nel dominio ferroviario, lo standard di riferimento per la realizzazione di sistemi di posizionamento è **ERTMS/ETCS** (European Rail Traffic Mangement System / European Train Control System).

Tradizionali tecniche di posizionamento – ETCS

Una traccia ferroviaria viene suddivisa in **blocchi**. Le tecniche di posizionamento si basano principalmente sull'utilizzo di strumenti installati a terra, chiamati **beacon** (o balises).

Un beacon, posizionato all'entrata di ciascun blocco, ha lo scopo di rilevare il passaggio di un treno. Un sistema di odometria installato a bordo posiziona il treno rispetto all'**ultimo beacon incontrato**.

Esistono specifici livelli di compliance che un sistema di posizionamento possiede rispetto a ETCS.

Verso ETCS-3

L'utilizzo di apparati di terra è **costoso** e ha un **impatto ambientale** non trascurabile: è necessario pianificare una migrazione verso sistemi di posizionamento autonomi (ETCS-3).

Nel dominio ferroviario, la quasi totalità dei sistemi di posizionamento è ETCS-1 o ETCS-2. Nel ferrotramviario vige la regola della **marcia a vista**, tuttavia esiste una tendenza di fatto a rispettare le linee guida ERTMS/ETCS.

Il sistema analizzato è conforme alla filosofia ETCS-3:

- Non prevede l'utilizzo di segnali provenienti dalla linea
- Opera interamente a bordo treno
- Basa il suo funzionamento su un algoritmo noto come Sensor Fusion Algorithm (SFA)

- Dependability dei Sistemi Informatici
- Stato dell'arte
- Descrizione del sistema analizzato
- Ambiente di analisi
- Risultati
- Conclusioni

Il Sistema analizzato – Descrizione Generale

Da un punto di vista architetturale, il sistema analizzato è un **Cyber-Physical System**.

Scopo del sistema: fornire un servizio di posizionamento basato su SFA.

SFA permette di produrre una **stima statistica affidabile** della posizione del treno attraverso l'integrazione di più sorgenti di misura. In questa applicazione le misure processate sono:

- Accelerazione e velocità angolare;
- Velocità lineare;
- Coordinate geografiche.

Le misure vengono processate assieme a un'apposita mappa digitale della traccia su cui si muove il treno. L'uscita è prodotta in termini di progressiva chilometrica e coordinate ECEF.

Il Sistema analizzato - Sistemi Costituenti

I sistemi costituenti che compongono il sistema di posizionamento sono:

- Sensor Set, composto da:
 - Un Inertial Measurement Unit (IMU), che campiona accelerazione e velocità angolare;
 - Un odometro, che campiona la velocità lineare;
 - Un ricevitore GPS, che campiona le coordinate geografiche del treno.
- Piattaforma di elaborazione dati (Nvidia TX-Jetson). Esegue la libreria SFA;
- On Board Control Unit (OBCU). Riceve la posizione e interagisce con il sistema di interlocking.

Il Sistema analizzato – Interfacce e interazioni

L'esecuzione del sistema è una continua iterazione di due distinte fasi logiche:

- Acquisizione delle misure;
- Stima e acquisizione della posizione del treno.

Le principali interfacce del sistema sono:

- I bus dati che collegano il Sensor Set alla piattaforma di elaborazione;
- Il collegamento LTE che collega la piattaforma di elaborazione a OBCU.

Il Sistema analizzato - Interfacce e interazioni

- Dependability dei Sistemi Informatici
- Stato dell'arte
- Descrizione del sistema analizzato
- Ambiente di analisi
- Risultati
- Conclusioni

Ambiente di Analisi

L'analisi condotta è di tipo **fault-injection**.

Il target component dell'analisi è la libreria che esegue SFA (SensorFusionLib).

Questa viene compilata ed inclusa all'interno di un tool appositamente sviluppato per valutare le performance di SFA, denominato *RailTrackTool* (RTT).

Ambiente di Analisi – Load Generator

RTT incorpora un **load generator** (*SynthDataGen*) in grado di **generare** le misure di IMU e odometro che verosimilmente verrebbero campionate sulla traccia reale.

Non è supportata la generazione di campionamenti GPS.

Ambiente di Analisi – Injector

Come estensione del tool originario, è stato sviluppato un Injector interno a RTT in grado di iniettare guasti all'interno del sistema.

Sulla base dei requisiti del software e delle tecnologie utilizzate è stato individuato un opportuno **fault model** che l'utente è in grado di iniettare attraverso l'interfaccia di RTT.

Tipo	Descrizione	Guasto Iniettabile	Motivazione
Requisito	SFA deve scartare un campionamento che ha alta probabilità di non essere affidabile	Alterazione del contenuto dei messaggi provenienti dai sensori	Si vuole verificare che SFA sia in grado di riconoscere informazioni errate
Requisito	Un campionamento IMU scartato deve essere rimpiazzato attraverso regressione lineare, fino a un massimo di 500 campionamenti consecutivi.	Soppressione dei canali di comunicazione verso i sensori	Si vuole verificare come SFA sia in grado di tollerare una perdita di comunicazione verso i sensori
Tecnologia	UDP	Alterazione di contenuto e ordine dei messaggi provenienti dai sensori	UDP non garantisce integrità e ordinamento dei messaggi trasmessi

Ambiente di Analisi – Monitor

L'interfaccia utente di RTT fornisce una mappa su cui verrà marcata la posizione del treno durante gli esperimenti.

I risultati intermedi prodotti da SFA sono mostrati su un grafico e riportati in un file di log.

- Dependability dei Sistemi Informatici
- Stato dell'arte
- Descrizione del sistema analizzato
- Ambiente di analisi
- Risultati
- Conclusioni

Descrizione degli esperimenti

Il codice di SFA è stato instrumentato con delle software probe atte a trasmettere verso RTT anche i risultati intermedi, oltre all'effettiva uscita dell'algoritmo.

Sono state definite le seguenti **misure di interesse**:

- Errore commesso sulla stima della velocità del treno;
- Errore commesso sulla stima della posizione del treno.

La traccia ferrotramviaria scelta per l'analisi è un sottoinsieme della linea T1 della tramvia di Firenze.

Golden Run

Frequenza IMU	Frequenza odometro		Iterazioni
100 Hz	10 Hz	0.0004	10

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	3.5826 m	20.1141 m	5.60308 m
ECEF Y	0.0243133 m	0.362813 m	0.0452763 m
ECEF Z	3.56432e-06 m	3.19201e-06 m	8.81543e-06 m
Velocità X	0.0169528 m/s	0.124472 m/s	0.0199173 m/s
Velocità Y	0.0394826 m/s	o.847261 m/s	0.0828195 m/s
Velocità Z	0.00382241 m/s	0.0192343 m/s	0.00314704 m/s

Risultati

Faultload: soppressione del canale di comunicazione verso odometro per tutta la durata dell'esperimento

Faultload: soppressione del canale di comunicazione verso odometro durante la prima metà dell'esperimento

Faultload: soppressione del canale di comunicazione verso odometro durante la seconda metà dell'esperimento

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	861.883 m	2431.1 m	678.953 m
ECEF Y	348.814 m	1518.65 m	499.222 m
ECEF Z	0.123305 m	0.155086 m	0.567656 m
Velocità X	8.20331 m/s	30.782 m/s	7.32822 m/s
Velocità Y	23.4213 m/s	75.1929 m/s	20.0333 m/s
Velocità Z	87.7399 m/s	87.1907 m/s	245.723 m/s

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	4.3248 m	20.5617 m	5.41018 m
ECEF Y	0.0226056 m	0.39742 m	0.04816 m
ECEF Z	3.81041e-06 m	3.30294e-05 m	9.04865e-06 m
Velocità X	0.0248871 m/s	0.150687 m/s	0.0260141 m/s
Velocità Y	0.0475246 m/s	0.908185 m/s	0.0899591 m/s
Velocità Z	0.00406042 m/s	0.0228906 m/s	0.00340827 m/s

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	3.57373 m	20.1609 m	5.60304 m
ECEF Y	0.0234386 m	0.366496 m	0.0445943 m
ECEF Z	3.55578e-06 m	3.19863e-05 m	8.7636e-06 m
Velocità X	o.o184494 m/s	0.129497 m/s	0.0222426 m/s
Velocità Y	0.0396467 m/s	o.863711 m/s	0.084737 m/s
Velocità Z	0.00355928 m/s	0.0189619 m/s	0.00306268 m/s

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	+23957.5 %	+11986.5 %	+12017.5 %
ECEF Y	+1.43456e+06 %	+4.18477e+05 %	+1.10251e+06 %
ECEF Z	+3.45933e+06 %	+1.77827e+06 %	+1.75916e+06 %
Velocità X	+48289.1 %	+24630.1 %	+36693.2 %
Velocità Y	+59220.6 %	+8774.82 %	+24089.1 %
Velocità Z	+2.29531e+06 %	+1.27743e+06 %	+2.77046e+06 %

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	+20.7168 %	+2.22531 %	-3.44275 %
ECEF Y	-7.02373 %	+9.53852 %	+6.36912 %
ECEF Z	+6.90426 %	+3.47524 %	+2.64559 %
Velocità X	+46.8023 %	+21.061 %	+30.6106 %
Velocità Y	+20.3685 %	+7.1907 %	+8.62068 %
Velocità Z	+6.2267 %	+19.0093 %	+8.30082 %

Misura	Errore medio	Errore massimo	Dev. std. errore
ECEF X	-0.247586 %	+0.232673 %	-0.000714 %
ECEF Y	-3.59762 %	+1.01512 %	-1.50631 %
ECEF Z	-0.239597 %	+0.207393 %	-0.587946 %
Velocità X	+8.82804 %	+4.03705 %	+11.6748 %
Velocità Y	+0.415626 %	+1.94155 %	+2.31528 %
Velocità Z	-6.88388 %	-1.41622 %	-2.68061 %

Altri risultati

La soppressione del canale di comunicazione tra IMU e modulo SFA ha prodotto una **interruzione del servizio**, quando protratta per un periodo di tempo **maggiore o uguale a 5 secondi**.

L'alterazione di **contenuto e ordine** dei messaggi non ha portato a effetti rilevabili, a condizione che il sistema abbia maturato una **adeguata esperienza** circa il corretto comportamento dei sensori.

- Dependability dei Sistemi Informatici
- Stato dell'arte
- Descrizione del sistema analizzato
- Ambiente di analisi
- Risultati
- Conclusioni

Conclusioni

Seguono le principali conclusioni che emergono dalla campagna di fault injection.

- Il sistema è in grado di tollerare perdite di misure IMU fino a un massimo di 5 secondi, superata questa soglia il sistema si interrompe. Questa modalità di fallimento è comunque safe;
- Il sistema è in grado di stimare un intervallo di confidenza entro il quale i valori campionati dai sensori possono essere considerati processabili da SFA;
- Un messaggio ricevuto fuori ordine viene scartato, e gli effetti sulle performance di SFA dipendono dalla sorgente di misura scartata;
- L'odometro è particolarmente utile quando la traiettoria della vettura è caratterizzata da netti cambi di direzione, come ad esempio una curva stretta. Migliora inoltre la stima della velocità;
- Quando la stima della posizione non diverge, l'errore massimo rimane in modulo pari a circa 20 metri.
 - Si conclude che i risultati osservati sembrano promettenti nell'ottica di poter impiegare il sistema sul campo.

Grazie per l'attenzione