## Odds and Risk

Grinnell College

September 16, 2024

## Review

#### **Probabilities**

- Unions (possibility of either event)
- Intersections (2 events at same time)
  - ▶ Disjoint (2 events *can't* happen at same time)
- Conditionals (one event has already happened)
  - Independence (do conditions add extra info?)

Lots of Probability math

Grinnell College SST-115 / STA-209 September 16, 2024 2 / 14

# Outline for Today

- ► Introduce odds (another likelihood comparison)
- Odds ratios
- Relative Risk

## Law of Large Numbers

As our sample size increases, the empirical probability of something happening approaches the true probability (only holds when trials cannot influence each other)



# Odds and Probability

When dealing with a *binary* event, we often speak in terms of **odds**, a *ratio* of "number of successes" to "number of failures"

# success : # failure

This is distinct from the idea of **probabilities**, which give a ratio of the "number of successes" to the number of possible outcomes

# success : # total outcomes : # success + # failure

## Odds

Suppose we have a 6-sided die, and we are interested in rolls that land on either 1 or 2 (note how we have turned six distinct outcomes into two "events").

$$Die = \{1, 2, 3, 4, 5, 6\}$$

- ▶ The *probability* of rolling a 1 or 2 is 1/3
  - 1. There are 6 possible outcomes
  - 2. There are 2 possible successes
  - 3. Probability is 2/6 = 1/3
- ▶ The odds of rolling a 1 or 2 are 2:4 (or 1:2)
  - 1. There are 2 possible successes
  - 2. There are 4 possible failures
  - 3. The odds of success are 2:4 (or 1:2)

Grinnell College

## Odds Examples

The order of the event and non-event in this table matters for our calculations:

|             | Event | Non-Event |
|-------------|-------|-----------|
| Exposure    | А     | В         |
| No Exposure | С     | D         |

- ▶ The odds of an event for the exposure group are A:B (or A/B)
- ▶ The odds of an event for the no exposure group are C:D (or C/D)

The **odds ratio** for these groups is then the ratio of their odds:

$$OR = \frac{A:B}{C:D} = \frac{A/B}{C/D} = \frac{A \times D}{B \times C}$$

# Why Ratios?

#### Situation 1:

|             | Event | Non-Event |
|-------------|-------|-----------|
| Exposure    | 6     | 2         |
| No Exposure | 3     | 2         |

### Situation 2:

|             | Event | Non-Event |
|-------------|-------|-----------|
| Exposure    | 103   | 2         |
| No Exposure | 100   | 2         |

- 1. Difference in odds for each situation?
- 2. Ratio of odds for each situation?

## Event vs Non-Event

Which column is our "Event" changes how we report our results

### Case 1:

|           | Survive | Death |
|-----------|---------|-------|
| Treatment | 12      | 6     |
| Placebo   | 5       | 10    |

### Case 2:

|           | Death | Survive |
|-----------|-------|---------|
| Treatment | 6     | 12      |
| Placebo   | 10    | 5       |

# **Group Rows**

The same is true for which group is in the first row

### Case 1:

|           | Survive | Death |
|-----------|---------|-------|
| Treatment | 12      | 6     |
| Placebo   | 5       | 10    |

## Case 2:

|           | Survive | Death |
|-----------|---------|-------|
| Placebo   | 5       | 10    |
| Treatment | 12      | 6     |

# **Odds Ratio Summary**

- Odds and probabilities
- Column/row order matters
- Odds ratios
- ightharpoonup OR > 1, OR = 1, OR < 1
  - OR = 1 implies no association. Why?

11 / 14

## Example 1

A report published in 1988 summarizes results of a Harvard Medical School clinical trial determining effectiveness of asprin in preventing heart attacks in middle-aged male physicians

|                  | Myocardial Infarction |           |
|------------------|-----------------------|-----------|
| Treatment Status | Attack                | No Attack |
| Placebo          | 189                   | 10,845    |
| Asprin           | 104                   | 10,933    |

- ▶ Odds of having a heart attack for placebo:
- Odds ratio for treatment and infarction:
- Associated?

# Example 2

The table below shows the results for drivers and passengers in auto accidents in Florida in 2008, according to whether or not the individual was wearing a seat belt.

|                |       | Injury   |  |
|----------------|-------|----------|--|
| Sealt-Belt Use | Fatal | Nonfatal |  |
| No             | 1085  | 55,623   |  |
| Yes            | 703   | 441,239  |  |

- Probability of wearing seatbelt conditional on fatality status:
- ▶ Odds of fatality conditional on seat-belt use:
- Associated?

## Relative Risk

Just like looking at odds ratios, we can look at probability ratios. These are often called **relative risk**.

▶ again, the order of events matters

|                |       | Injury   |  |
|----------------|-------|----------|--|
| Sealt-Belt Use | Fatal | Nonfatal |  |
| No             | 1085  | 55,623   |  |
| Yes            | 703   | 441,239  |  |

relative risk of fatality for no-seat-belt use:

```
\frac{\text{P(Fatality if Seat-Belt Use} = \text{No)}}{\text{P(Fatality if Seat-Belt Use} = \text{Yes)}} = \frac{1085/(1085+55623)}{703/(703+441239)} = 12.02
```

▶ Prob. of Fatality is roughly 12 times *higher* for the no-seat-belt group

relative risk of fatality for seat-belt use:

$$\frac{\text{P(Fatality if Seat-Belt Use = Yes)}}{\text{P(Fatality if Seat-Belt Use = No)}} = \frac{703/(703+441239)}{1085/(1085+55623)} = .083$$

Prob. of Fatality is .083 times less for the seat-belt group