Universidade Estadual da Paraíba - UEPB Centro de Ciências e Tecnologia - CCT Cálculo Diferencial e Integral III

Aluno(a):	 	
· / ==== 	 	
Curso:		

Avaliação da unidade I

- 1. **(2,0 pts)** Encontre uma equação vetorial e equações paramétricas para o segmento de reta que liga os pontos P(0,-1,1) e $Q\left(\frac{1}{2},\frac{1}{3},\frac{1}{4}\right)$.
- 2. (2,0 pts) Represente graficamente o que é pedido nos itens a seguir:
 - a) esboce o gráfico da função f(x,y) = 1 x y/2.
 - b) esboce o mapa de contornos da função $f(x,y) = 4x^2 + y^2$ usando as curvas de nível de altura k = 0, 1, 2.
- 3. (2,0 pts) Determine o domínio das funções a seguir e o limite, se existir, caso contrário mostre que não existe. Além disso, verifique se as funções são contínuas.

a)
$$\lim_{(x,y)\to(\pi,\pi/2)} y \cdot \cos(x-y)$$

b)
$$\lim_{(x,y)\to(0,0)} \frac{2x^2y}{x^4+y^2}$$

- 4. (2,0 pts) Use derivação implícita para encontrar $\frac{\partial z}{\partial x}$ e $\frac{\partial z}{\partial y}$ na equação $x^2 + 2y^2 + 3z^2 = 1$.
- 5. (2,0 pts) A pressão de 1 mol de um gás ideal está aumentando em uma taxa de $0,05 \,\mathrm{k}$ Pa/s e a temperatura está aumentando em uma taxa de $0,15 \,\mathrm{K/s}$. Use a equação PV=8,31T para determinar a taxa de variação do volume quando a pressão for 20 kPa e a temperatura for 320K.