

ЛЕКЦИЯ 8. КОНТРАСТИРОВАНИЕ ИЗОБРАЖЕНИЙ, СЖАТИЕ

Обработка аудиовизуальной информации. Бакалавры, 6 семестр. Магистры, 9 семестр

План лекции

- □ Глобальное контрастирование
 - Методы улучшения изображений с помощью оператора.
 - □ Автоматические методы улучшения изображений.
 - Степенные и логарифмические преобразования передаточной функции яркости.
 - Эквализация гистограммы
- Адаптивное контрастирование
- □ Улучшение резкости
 - АРЕХ-метод

Контрастирование

Линейное преобразование функции яркости Степенное преобразование функции яркости Логарифмическое преобразование функции яркости

Слабый контраст

- □ Предположим, что минимальная и максимальная яркости исходного изображения равны fmin u fmax соответственно.
- Если эти параметры или один из них существенно отличаются от граничных значений яркостного диапазона, то визуализированная картина выглядит либо как темная, либо как ненасыщенная, неудобная, утомляющая при наблюдении.

Линейное контрастирование

 При линейном контрастировании используется линейное поэлементное преобразование вида:

$$g(n,m) = a \cdot f(n,m) + b$$

Параметры преобразования а и b определяются желаемыми значениями минимальной gmin и максимальной gmax выходной яркости.

$$a = \frac{g_{\text{max}} - g_{\text{min}}}{f_{\text{max}} - f_{\text{min}}} \quad b = \frac{g_{\text{min}} f_{\text{max}} - g_{\text{max}} f_{\text{min}}}{f_{\text{max}} - f_{\text{min}}}$$

$$g = \frac{f - f_{\min}}{f_{\max} - f_{\min}} (g_{\max} - g_{\min}) + g_{\min}$$

Линейное контрастирование

Линейное контрастирование

Степенные преобразования

 Одним из наиболее часто применяемых в обработке изображений является преобразование, называемое гаммакоррекцией:

$$g(n,m) = c \left(f(n,m) + f_0 \right)^{\gamma}$$

- □ где *c, f₀,γ* неотрицательные константы.
- При этом функция яркости должна быть нормирована: значения должны лежать в интервале [0; 1].
- □ После преобразования можно снова свести к [0..255]

Степенные преобразования

$$c = 1$$
, $f_0 = 0$, $\gamma = 0.5$

Логарифмические преобразования

- Строится гистограмма изображения и оценивается математическое ожидание - среднее, минимальное, максимальное значения сигнала. Вычисляются:
- Положительный диапазон

$$PositiveRange = max(2, f_{max} - mean)$$

Отрицательный диапазон

$$NegativeRange = \max(2, mean - f_{\min})$$

□ и два коэффициента преобразования:

$$PositiveAlpha = \frac{2^{L-1}}{\ln(PositiveRange)}$$

$$NegativeAlpha = \frac{2^{L-1}}{\ln(NegativeRange)}$$

Логарифмические преобразования

 Для всех отсчетов изображения вычисляется разность яркости и среднего значения сигнала:

$$f' = f(n,m) - mean$$

 На основании этого значения формируется выходное изображение:

$$g(n,m) = \begin{cases} mean + \lceil PositiveAlpha \cdot \ln(f') \rceil & f' \ge 1 \\ mean - \lceil NegativeAlpha \cdot \ln(|f'|) \rceil & f' \le -1 \\ mean & otherwise \end{cases}$$

- Эквализация процедура выравнивания гистограммы изображения путем изменения яркости отдельных пикселей.
- Гистограмма произвольного изображения представляет собой график, отображающий в виде пиков количество пикселей в изображении с определенной яркостью
- Как правило, для некоторого изображения гистограмма представляет собой множество пиков, неравномерно распределенных по графику.

□ Главной задачей эквализации гистограмм, является преобразование, в котором все уровни яркости приобретут примерно одинаковую частоту, а гистограмма яркостей будет близка к равномерному закону распределения:

□ Средний уровень яркости, к которому следует стремиться:

$$n_0 = \frac{N \cdot M}{2^L} = \frac{N \cdot M}{256}$$

- □ Расстояние Δg_i между уровнями g_i и g_{i+1} различно, но в среднем число пикселов на каждом уровне одинаковое и равно n_0 .
- □ Допустим N=M=512, тогда J=256 и n₀=1024. Например,

Рассмотренные процедуры выполняются для всех уровней яркости.

Пример эквализации

Пример эквализации

Функция вероятности и функция распределения вероятности

- Цель эквализации приблизить распределение интенсивностей к равномерному.
- РМF вероятность (частота) каждого числа в наборе данных.
- □ CDF функция, которая вычисляет совокупную сумму всех значений, рассчитанных в PMF.

Дискретное равномерное распределение

Вычисление PMF и CDF

РМF можно получить из гистограммы, которая в нашем случае показывает частоту значений уровня серого для изображения с 8 битами на пиксель. Чтобы это сделать, мы просто делим частоту каждого вхождения на суммарное число пикселей (нормализуем в диапазон [0, 1]).

- Для получения CDF мы просто последовательно складываем значения PMF.
- Таким образом, получаем монотонно возрастающую функцию, что является необходимым условием выравнивания гистограммы.

□ Предположим, что изображение, имеет 8 уровней интенсивности. Тогда, построив гистограмму, пусть наша функция распределения (CDF) приняла следующий вид (L – число градаций интенсивности):

Частоты	14	14	42	14	14	14	14	1
Значение уровня интенсивности	0	1	2	3	4	5	6	7
CDF	0,11	0,22	0,55	0,66	0,77	0,88	0,99	1
CDF * (L-1)	0	1	3	4	5	6	6	7

 □ Пропущена интенсивность 2, а интенсивности 5 и 6 переходят в одну и ту же – в 6. На графике CDF приблизилась к прямой линии.

Частоты	14	14	0	42	14	14	28	1
Значение уровня интенсивности	0	1	2	3	4	5	6	7
CDF	0,11	0,22	0,22	0,55	0,66	0,77	0,99	1

□ Для преобразования изображения интенсивность исходного пикселя используется как индекс для массива, содержащего новые уровни интенсивности (т.е. значения, записанные в строке CDF*(L-1))

Мост

 Легко можно заметить, что гистограммы после эквализации имеют своеобразные заметные разрывы. Это связано с тем, что динамический диапазон выходного изображения шире диапазона исходного.

Мост (тёмное изображение)

Мост (светлое изображение)

Мост (низкоконтрастное изображение)

Мост (высококонтрастное изображение)

Эквализация гистограммы для цветных изображений

- Ни в коем случае не применяйте эквализацию к каналам RGB. В некоторых редких случаях это позволяет добиться успеха, но в большинстве случаев результат так себе цвета получаются неестественными и холодными.
- Вспомните о другом цветовом пространстве − HSI. Здесь есть отдельный канал интенсивности. Именно к нему и стоит применять эквализацию.

Адаптивное контрастирование

Локальный контраст
Локальная статистика
Нелинейное усиление локального контраста
Определение нового значения яркости

Локальный контраст в окрестности

- Пусть
 - \square W окрестность размером [n*m] с центром в точке (i, j)
 - L(i, j) интенсивность изображения в точке (i, j)
 - □ H(L(i, j)) нормированное значение гистограммы яркости в рамках W
- Момент 2-го порядка L(i, j) относительно среднего значения L в окрестности W (дисперсия):

$$\sigma^{2}(L) = \mu_{2}(L) = \sum_{(i,j) \in W} \left(L(i,j) - \overline{L}\right)^{2} H\left(L(i,j)\right)$$

Нормированная мера локального контраста:

$$C(i,j) = 1 - \frac{1}{1 + k \cdot \sigma^2(L)}$$

- □ Где k=0.8 коэффициент нормирования, причём
- C(i, j) = 0 при равномерной яркости в окрестности W
- \Box C(i, j)→1 при высокой дисперсии

Локальная статистика окрестности

- \Box ϵ энтропия,
- □ σ среднеквадратичное отклонение,
- □ Н_s характеристика локальной скользящей окрестности
 - □ Например, функция протяженности гистограммы:

$$H_{s}\left(W\left(i,j\right)\right) = \frac{L_{\max}\left(W\left(i,j\right)\right) - L_{\min}\left(W\left(i,j\right)\right)}{H_{\max}\left(W\left(i,j\right)\right)}$$

- □ Где *L*_{max}, *L*_{min} максимальное и минимальное значения яркостей элементов скользящей окрестности *W*;
- □ *H*_{max} максимальное значение гистограммы уровней яркости элементов окрестности *W*.

Нелинейное преобразование локального контраста

 □ Преобразование локального контраста нелинейной монотонной функцией F(C(i,i)) с учётом характеристики окрестности W:

$$C^{*}(i,j) = F(C(i,j)) = C(i,j)^{\alpha}$$

□ Где

$$\alpha = \alpha_{\min} + (\alpha_{\max} - \alpha_{\min}) \frac{H_s(W(i,j)) - H_{s\min}(W(i,j))}{H_{s\max}(W(i,j)) - H_{s\min}(W(i,j))}$$

□ [атіп, атах] — заданная область значений показателя степенной функции

Определение нового значения яркости

□ Определение нового значения яркости L*(i, j) на основе нового локального контраста C*(i, j):

$$L^{*}(i,j) = \overline{L}(i,j) + \sqrt{\frac{C^{*}(i,j) \cdot n \cdot m}{1 - C^{*}(i,j)} - \sum_{(i,j) \in W_{2} - W_{1}} \left(L(i,j) - \overline{L}(i,j)\right)^{2} H\left(L(i,j)\right)}$$

- Ограничения метода:
 - Изображения не должны содержать большого числа импульсных выбросов. Иначе это приводит к неправильному вычислению функции протяженности гистограммы.
 - Изображения не должны содержать темные или светлые области большой площади. Иначе это приведёт к неэффективному увеличению контраста.
 - Если изображение не отвечает выше перечисленным требованиям, то нужно провести его фильтрацию или градационную коррекцию.

Пример адаптивного контрастирования

SVD-контрастирование

- Факторизация Singular Value Decomposition
- Восстановление слабоконтрастных изображений на основе сингулярного разложения матрицы исходных данных, использующего логарифмическое преобразование сингулярных чисел совместно с процедурой фильтрации аддитивных помех

Пример SVD-контрастирования

Пример SVD-контрастирования

Что почитать

- В.Т. Фисенко, Т.Ю. Фисенко, Компьютерная обработка и распознавание изображений: учеб. пособие. СПб: СПбГУ ИТМО, 2008. 192 с.
- В.А. Лебедев, Адаптивное контрастирование изображений
- □ И.М.Журавель, Краткий курс теории обработки изображений, 1999 [Электронный ресурс]
 http://matlab.exponenta.ru/imageprocess/book2/index.php

37 Улучшение резкости

АРЕХ-метод

Улучшение резкости изображений

 Carasso A.S. et al. - APEX method and real-time blind deconvolution of scanning electron microscope imagery

АРЕХ-метод

Сжатие изображений

Без потери информации С потерей информации

Формат GIF

- Graphics Interchange Format формат для обмена изображениями
- LZW-компрессия без потери качества
 - Lempel–Ziv–Welch https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv%E2 %80%93Welch
- Индексированная палитра из 256 цветов
- □ Один цвет может быть объявлен прозрачным
- Нет полупрозрачности (альфа-канала)
- Есть поддержка анимации: покадровое хранение с указанием времени показа.

Формат PNG

- Portable Network Graphics растровый формат хранения графической информации
 - □ Полутон 16 бит;
 - 8-битная палитра для 24-битных цветов;
 - Полноцветное изображение с глубиной 48 бит.
- Сжатие по алгоритму DEFLATE без потерь
 - Deflate https://en.wikipedia.org/wiki/DEFLATE
- Создан на замену простого проприетарного GIF и сложного TIFF
- Поддержка альфа-канала
- Поддержка гамма-коррекции: хранение коэффициента предыскажения
- Нет анимации

TIFF

- Tagged Image File Format формат хранения растровых графических изображений:
 - Двуцветные
 - □ Полутоновые
 - Индексированная палитра
 - RGB, CMYK, YCbCr, CIE Lab
 - □ На канал 8, 16, 32, 64 бита
- □ Сжимает без потерь. Но может и с потерями:
 - Без потерь: RLE, LZW, LZ77, ZIP
 - LZ77, LZ78 https://en.wikipedia.org/wiki/LZ77 and LZ78
 - RLE https://en.wikipedia.org/wiki/Run-length encoding
 - □ С потерями: используется JPEG внутри TIFF

Формат JPEG

- Joint Photographic Experts Group растровый графический формат
 - JPEG-LS сжимает без потерь
 - JPEG сжимает с потерями на основе DCT
 - DCT
 https://en.wikipedia.org/wiki/Discrete cosine transform
 - □ JPEG2000 сжимает с потерями на основе вэйвлетов
- □ Конвертация RGB → YCbCr

Что почитать

- □ Lempel–Ziv–Welch https://en.wikipedia.org/wiki/Lempel%E2%80%93Ziv %E2%80%93Welch
- Deflate https://en.wikipedia.org/wiki/DEFLATE
- LZ77, LZ78
 https://en.wikipedia.org/wiki/LZ77 and LZ78
- DCT
 https://en.wikipedia.org/wiki/Discrete cosine transform
 m
- □ RLE https://en.wikipedia.org/wiki/Run-length_encoding
- □ Борисова И. Цифровые методы обработки информации. ISBN: 978-5-7782-2448-3