令和4年度 卒業論文 提出確認書 (指導教員)

論文題目 スパースモデリングを用いた干渉関係推定

Interference relationship estimation using sparsemodeling

論文執筆者	5316 小林 慧悟
_	
_	

提出物

- (1) 卒業論文提出(原本)正副計2部(A4縦ファイルに綴じる)
- (2) 抄録原稿 A4 2 枚 (片面印刷 2ページ)

※テーマ名、氏名を記入した封筒に入れて提出

(3) 審査用抄録コピー 150 部 (1 枚に両面印刷) ※テーマ名、氏名を記入した封筒に入れて提出

上記の卒業論文及び抄録の提出を確認しました。

指導教員	稲毛 契	印
		印

令和4年度 卒業論文 受領証

提出物(1)、(2)及び(3)を受領しました。

令和5年xx月yy日

電気電子工学コース長 山本 哲也 印

令和4年度 卒業論文

スパースモデリングを用いた干渉関係推定

Interference relationship estimation using sparsemodeling

学生番号		53	16	
氏	名	小林 慧悟		
指導教員		稲毛 契	准教授	

提出日: 令和5年xx月yy日

東京都立産業技術高等専門学校 ものづくり工学科 電気電子工学コース Tokyo Metropolitan College of Industrial Technology Electrical and Electronics Engineering Course

概要

ここに書く。ここに概要を書く。

目 次

概安		1
第1章 1.1 1.2 1.3	序論 研究背景 先行研究の課題 研究目的	
第 2 章 2.1 2.2 2.3 2.4 2.5	わからない 通信方式	666666666666666666666666666666666666666
3.1 3.2	シミュレーション環境	7 7
第 4 章 参考文献	結論	8

表目次

図目次

第1章 序論

1.1 研究背景

• 干渉関係を知りたい

1.2 先行研究の課題

- 先行研究でやってたことを簡単に説明
- 実環境との違い

1.3 研究目的

- シミュレーション方法
- 先行研究との違い
- 評価方法
- 最終的にどうしたいのか

第2章 わからない

2.1 通信方式

- CSMA/CA の通信方式を簡単に説明
- キャリアセンスについて説明できればいい

2.2 MIC

● MIC の説明

2.3 代表値の選定

- 履歴の記録方法
- 中央値と最頻値が一緒になる

2.4 パスロス

- パスロスの説明(横距離、縦損失のグラフ)
- 正答データとして扱える理由

2.5 評価方法

- パスロスを正答データとする
- 相関係数を求めて評価する

第3章 シミュレーション

3.1 シミュレーション環境

- エリアの大きさや端末の配置等
- パラメータの表

3.2 推定結果

- 代表値を平均値とした時の横区間、縦相関値のグラフ
- 代表値を中央値、最頻値とした時の横区間、縦相関値のグラフ
- もしかしたまとめるかも

第4章 結論

• 代表値良かったもの