2N1038 thru 2N1041 (GERMANIUM) 2N2552 thru 2N2559

PNP GERMANIUM MEDIUM POWER TRANSISTORS

. . . designed for relay drivers, pulse amplifiers, audio amplifiers and high-current switching applications.

- High Current Capability − I_C = 3.0 Amperes
- Guaranteed Excellent Collector-Emitter Sustaining Voltage
- 20-Watt Power Dissipation at 25°C Case Temperature
- 100°C Maximum Junction Temperature

PNP GERMANIUM POWER TRANSISTORS 40-100 VOLTS 20 WATTS

| Unit | 0.372 DIA | 0.375 DIA | 0.370 DIA | 0.370 DIA | 0.310 DIA

*MAXIMUM RATINGS

Rating	Symbol	2N2552		2N2554		Unit
Collector-Emitter Voltage	V _{CEO}	30	40	50	60	Vdc
Collector-Base Voltage	V _{CB}	40	60	80	100	Vdc
Emitter-Base Voltage	VEB	-	2	20	-	Vdc
Collector Current — Continuous	1c	-	3	3.0 —	-	Adc
Base Current — Continuous	ΙB	-	1	.0		Adc
Total Device Dissipation @ T _A = 25 ^o C Derate above 25 ^o C	PD	-		50 —— .0 ——	-	mW mW/ ^o C
Total Device Dissipation @ T _C = 25°C Derate above 25°C (Note 1)	PD	-	_	267 ——		Watts W/ ^O C
*Operating and Storage Junction Temperature Range	T _J ,T _{stg}	•	— -65 to	+100 -	-	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	θJC	3.75	oC/M

*Indicates JEDEC Registered Data.

Note 1: Case Temperature shall be measured 0.100 \pm 0.010 inches above the seating plane.

* Motorola guarantees this data in addition to the JEDEC Registered Data shown.

2N1038 thru 2N1041/2N2552 thru 2N2559 (continued)

*ELECTRICAL	CHARACTERISTICS	(T _C = 25°C unless otherwise noted)
LLLCINICAL		tro = 25 °C uniess otherwise noted)

Characteristic		Symbol	Min	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage ($I_C = 100 \text{ mAdc}, I_B = 0$)	2N1038, 2N2552, 2N2556 2N1039, 2N2553, 2N2557 2N1040, 2N2554, 2N2558 2N1041, 2N2555, 2N2559	V _{CEO(sus)}	30 40 50 60	- - - -	Vdc
Collector Cutoff Current (V _{CE} = 15 Vdc, I _B ' = 0)	2N1038, 2N2552, 2N2556	I _{CEO}	-	25	m A do
$(V_{CE} = 20 \text{ Vdc}, I_{B} = 0)$	2N1039, 2N2553, 2N2557		-	20	
$(V_{CE} = 25 \text{ Vdc}, I_{B} = 0)$	2N1040, 2N2554, 2N2558		-	20	
$(V_{CE} = 30 \text{ Vdc}, I_{B} = 0)$	2N1041, 2N2555, 2N2559	!	- '	20	
Collector-Emitter Cutoff Current (V _{CE} = 40 Vdc, V _{BE(off)} = 0.2 Vdc)	2N1038, 2N2552, 2N2556	I _{CEX}	-	0.65	mAdo
$(V_{CE} = 60 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc})$	2N1039, 2N2553, 2N2557		-	0.65	
$(V_{CE} = 80 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc})$	2N1040, 2N2554, 2N2558		-	0.65	
$(V_{CE} = 100 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc})$	2N1041, 2N2555, 2N2559	*	-	0.65	
$(V_{CE} = 20 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc}, T_{C} = 85^{\circ}\text{C})$	2N1038, 2N2552, 2N2556		-	5.0	
$(V_{CE} = 30 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc}, T_{C} = 85^{\circ}\text{C})$	2N1039, 2N2553, 2N2557		-	5.0	
$(V_{CE} = 40 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc}, T_{C} = 85^{\circ}\text{C})$	2N1040, 2N2554, 2N2558		-	5.0	
$(V_{CE} = 50 \text{ Vdc}, V_{BE(off)} = 0.2 \text{ Vdc}, T_{C} = 85^{\circ}\text{C})$	2N1041, 2N2555, 2N2559		-	5.0	
Collector Cutoff Current (V _{CB} = 20 Vdc, I _E = 0)	2N1038, 2N2552, 2N2556	ICBO	-	125	μAdo
$(V_{CB} = 30 \text{ Vdc}, I_{E} = 0)$	2N1039, 2N2553, 2N2557		_	125	
$(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$	2N1040, 2N2554, 2N2558		-	125	
$(V_{CB} = 50 \text{ Vdc}, I_{E} = 0)$	2N1041, 2N2555, 2N2559		-	125	
** $(V_{CB} = 40 \text{ Vdc}, I_{E} = 0)$	2N1038, 2N2552, 2N2556		-	750	
** $(V_{CB} = 60 \text{ Vdc}, I_{E} = 0)$	2N1039, 2N2553, 2N2557		-	750	
** $(V_{CB} = 80 \text{ Vdc}, I_{E} = 0)$	2N1040, 2N2554, 2N2558		-	750	
** $(V_{CB}^{CB} = 100 \text{ Vdc}, I_{E}^{C} = 0)$	2N1041, 2N2555, 2N2559		- 1	750	
Emitter Cutoff Current (V _{BE} = 20 Vdc, I _C = 0)		I _{EBO}	-	650	μAd
ON CHARACTERISTICS					
DC Current Gain (I _C = 50 mAdc, V _{CE} = 0.5 Vdc)		h _{FE}	33	200	-
$(I_C = 1.0 \text{ Adc}, V_{CE} = 0.5 \text{ Vdc})$			20	60	
Collector-Emitter Saturation Voltage (I _C = 1.0 Adc, I _B = 100 mAdc)		V _{CE(sat)}	-	0. 25	Vdc
Base-Emitter Input Voltage (I _C = 1.0 Adc, V _{CE} = 0.5 Vdc)		v _{BE}	-	1.0	Vdo
MALL-SIGNAL CHARACTERISTICS					
Small-Signal Current Gain (I _C = 500 mAdc, V _{CE} = 1.5 Vdc, f = 1.0 kHz)		h _{fe}	18	72	-
Small-Signal Current Gain ($I_C = 500 \text{ mAdc}, V_{CE} = 1.5 \text{ Vdc}, f = 112.5 \text{ kHz}$)		h _{fe}	2.0	-	-

^{*}Indicates JEDEC Registered Data.
**Motorola Guarantees this data in addition to the JEDEC Registered Data Shown.