

Natural Language Processing (NLP)

Lab3-4
Spyridon Roumpis
181004877

Lab3

PartA.GenerativeGrammars

Lexicon:

 $\begin{array}{ll} \textit{Noun} \rightarrow & \text{flight} \mid \text{flights} \mid \text{breeze} \mid \text{trip} \mid \text{morning} \\ \textit{Verb} \rightarrow & \text{is} \mid \text{prefer} \mid \text{like} \mid \text{need} \mid \text{want} \mid \text{fly} \mid \text{have} \\ \textit{Adjective} \rightarrow & \text{cheapest} \mid \text{non-stop} \mid \text{first} \mid \text{latest} \mid \text{other} \mid \text{direct} \end{array}$

 $Prounoun \rightarrow me | I | you | it$

Proper-Noun → Alaska | Baltimore | Los Angeles | Chicago | United | American

 $\begin{array}{ll} \textit{Determiner} \rightarrow & \text{the } | \text{ a} | \text{ an } | \text{ this } | \text{ these } | \text{ that} \\ \textit{Preposition} \rightarrow & \text{from } | \text{ to } | \text{ on} | \text{ near } | \text{ in} \end{array}$

 $Conjunction \rightarrow and | or | but$

Production Rules:

Gramma	r Rules	Examples
S -	NP VP	I + want a morning flight
NP -	Pronoun	I
	Proper-Noun	Los Angeles
i	Det Nominal	a + flight
Nominal -	Nominal Noun	morning + flight
1	Noun	flights
VP -	· Verb	do
1	Verb NP	want + a flight
i	Verb NP PP	leave + Boston + in the morning
į	Verb PP	leaving + on Thursday
PP -	Preposition NP	from + Los Angeles

1. Draw parse trees for the following sentences of natural language:

1. I want a flight

2. I want a morning flight

3. I want a flight in the morning.

- 2.Add production rules with VP on the left-hand side to be able to parse the following sentences. Write down all the new rules needed to be able to parse all three sentences. You only need to give the new rules required, not the parse trees:
 - 1. I want a flight in the morning from Baltimore.
 - 2. I want a flight from Baltimore to Los Angeles.

3. I need a trip in the morning from Baltimore to Los Angeles.

The extra rules are: VP→verb NP PP PP and VP→verb NP PP PP

3. To be able to parse questions, add the following items to the lexicon

Aux→do and Wh-word→what

and add the following production rules to the grammar:

NP→Nominal Wh-NP→Wh-word NP S→Aux NP VP S→Wh-NP Aux NP VP With these new additions to the grammar included, draw parse trees for the following questions:

1. Do you have a flight in the morning?

2. What flights do you have?

4. Add the minimum number of necessary rule(s) using adjectives needed to be able to parse the following noun phrases. Write down the rule(s) needed and then draw the parse trees for the following noun phrases (note, they are not full sentences and the top of the trees should be NP):

The extra rules are: NP→Adj Noun and NP→Adj NP

1. direct flight

2. first direct flight

3. first non-stop direct flight

PartB.LogicalGrammars

1. Use the following type assignments and the directional AB calculus of Bar-Hillel to derive syntactic trees for the following phrases and sentences of natural language:

Word	Type
John Mary pizza pasta bed	NP
slept snored	$NP \backslash S$
ate	$(NP \backslash S)/NP$
and	$X\backslash X/X$

Whenever the conjunctive word "and" is used, please clearly specify what X is, as you can specify any type. Note these are not all full sentences, so the S won't be derived in all cases.

. John and Mary	
2 John	NO/NOMB NG
NP	NPINP
	NP
. John slept	

4. John slept and snored

NPIS (NPIS) (NPIS)	. John	slept	om d NP15) (NP15)	(NPIS) NPIS
		NP15	(NPIS) (NPIS)
NP NP S	NP		NP15	

5.	John	and	Mary	slept

NOCT	and	Mary	5 lept
1		NP	NPIS
	NP 15/5		5
je	٨	UP15	The second second
ip	5	UP15	

6. John and Mary slept and snored

and	Mary	slept	and	snoved	
NP\5/5	NP	NP15	(NPIS)		7
				(NP15) (N	pls)
		NP	15_		
	5				
NPY	5				Market
		1			NP/S/S NP NP/S (NP/S)/(NP/S)/(NP/S)

7. John ate Pizza

8. John and Mary ate Pizza and Pasta.

NP NP/S/S NP (NP/S)/NP NP NP/NP/NP NP NP/NP NP/S	8.	John	and	Mary	ate	Pizza	and Pa	x>t9
NP \ NP \ NP		1	\				\	1
NP NP NP		NP	NP 1515	NP	(NP/5)/NP	NP	NP/NP/NP	NP
5								
5							NP	
NP/S						NP 1	5	
NPS					5			
			NP/S	5				
		S						

2. Come up for a type for the adjective "big" and use it to derive syntactic trees for the following. Give the tree derivations:

The new type for adjective "big" is NP/NP

1. Big John.

2. Big John slept.

3. Big John ate Pizza.

4. Big John and Mary slept.

3. Add the type Q to the designated types of your AB grammar. Assign a type to "did" to be able to provide syntactic trees for the following questions. Note that these sentences don't necessarily need to lead to an S derivation- they can lead just to the Q symbol. You can therefore think of Q as alternative to S for the final derived type- it stands for a question rather than a declarative sentence.

The new type for adjective "did" is Q/S

1. Did John sleep?

2. Did John eat Pizza?

2. Did	John eat Pizza ?
CONT.	NP (NPIS)/NP NP
Q /5	NP 15
	5
	3

Lab4

PartA. Dependency Grammars

Clausal Argument Relations	Description
NSUBJ	Nominal subject
DOBJ	Direct object
IOBJ	Indirect object
CCOMP	Clausal complement
XCOMP	Open clausal complement
Nominal Modifier Relations	Description
NMOD	Nominal modifier
AMOD	Adjectival modifier
NUMMOD	Numeric modifier
APPOS	Appositional modifier
DET	Determiner
CASE	Prepositions, postpositions and other case markers
Other Notable Relations	Description
CONJ	Conjunct
cc	Coordinating conjunction

1. Draw dependency graphs for the following sentences. For each case, specify the longest path (or paths) of the tree and its(their)length(s). Based on this, argue which sentence is the one with the most "involved" grammatical structure.

1. I want a flight

Longest Path: Want→flight→a

Length: 2

2. I want a morning flight

Longest Path: Want→flight→a or Want→flight→morning

Length: 2

3. I want a flight in the morning

Longest Path: Want→flight→morning→in or Want→flight→morning→the

Length: 3

4. I want a flight in the morning from Boston

Longest Path: Want→flight→morning→Boston→from

Length: 4

2. Draw dependency graphs for the following sentences and in each case explain (briefly but clearly, similar to the explanation of the examples in the lecture and the Jurafsky and Martin book) if the graph has an arc which is not 'projective':

From theory an arc between v and w in a dependency tree is called projective if there is a path between v and every other word that occurs in the sentence between v and w. A dependency tree is projective if all its arc are.

1. I want from you a flight in the morning, it is projective.

2. I want from Boston a flight in the morning, it is projective.

3. I want a flight in morning the, it is projective.

3. Using the table of universal dependency relations, draw a dependency tree for the following sentence.

1. John and Mary booked the first direct flight and slept

PartB.CKYParsingwithContextFreeGrammars

Production Rules

 $S \rightarrow VP \ NP \ PP$

 $PP \rightarrow Prep NP$

 $PP \rightarrow PP \ PP$

 $NP \rightarrow Det\ Noun$

 $NP \rightarrow NP \ PP$

 $NP \rightarrow Det \ AP \ Noun$ $AP \rightarrow Adj \ AP$

Lexicon

 $Verb \rightarrow put \mid take$

 $Prep \rightarrow in \mid behind$

 $Det \rightarrow the \mid a$

 $Noun \rightarrow ball \mid hat \mid banana \mid apple$

 $Adj \rightarrow big \mid small \mid red \mid yellow$

1. To use CKY parsing to parse sentences with a Context Free Grammar (CFG), the CFG production rules first have to be converted to Chomsky Normal Form. Re-write the below CFG grammar production rules (and lexical rules, if needs be) such that the resulting rules and lexicon are all in Chomsky Normal Form, adding extra rules where necessary. Some rules may already be in the correct form, so do not need to change.

The new production rules are:

XO→NP PP

 $S \rightarrow VP XO$

X1 →VP NP

 $S \rightarrow X1 PP$

 $S \rightarrow X1$

VP→Verb

PP→ Prep NP

Р	$P \rightarrow$	ΡĮ	οр	P
				п

NP→ Det Noun

 $NP \rightarrow NP PP$

 $X2 \rightarrow Det AP$

X3→AP Noun

NP→ X2 Noun

NP→Det X3

 $AP \rightarrow Adj AP$

AP→ Adj

2. Given the new CNF rules you have just written, now use them to parse the below sentence (by hand, not with code) using the CKY algorithm: "Take the big yellow banana"

Take	the	big	yellow	Barrana
VP, Vers		0		\$
[10]	[0,2]	To,33	[0,4]	[0,5]
	Dex	X2		NP
	[12]	[133]	[1,4]	E1,5]
		AdJ, AP	AP	<i>X</i> 3
		[2,3]	[2,4]	[2,5]
			LBA 9A	X3
			[1,4]	[3,5]
				Noun
				T4.53

There is one full parse (that derive S) from the above sentence "Take the big yellow banana"

3. With the same grammar you used for the last question, fill in a parse matrix using the CKY method for the following sentence: 'Put the ball behind the apple in the hat'.

	Put	the	ball	behind	the	apple	Jesson	ecostorius	hert
_	VP, verb		5, X1			5 x1 (5)			5 (5,55)
	[4,5]	(5,0)	To, 53	[0,4]	To, S]	To 61	To 1)	To,33	[0,0]
		Det	NP			NP			MP (30,30)
		[1,2]	T1,3]	[1,9]	[1,5]	[1,6]	[1,1]	[1,3]	T1, 43
			Noun						
			[2,3]	[2,4]	[2,5]	Tz,63	[2, 7]	[2,3]	[29]
				Prep		PP			PP(PP)
				C3,43	[3,5]	[36]	TS. FJ	T3 37	[3,9]
				0.0000000000000000000000000000000000000	Der	NP			NP
					[u,s]	T4.63	C4, #3	[6,4]	[4,9]
					Wester	Noun	-		MODER
						[Ls,6]	(S, F)	[5,3]	[r, 9]
							Prep		PP
							[[6 F]	I6.81	T6,9]
								Dex	NP
								[7,8]	[7.47
									Noun
									T8,97

There are three full parses (that derive S) from the above sentence 'Put the ball behind the apple in the hat'.