Natural Construction of Homography Transformation

Dejan Milosavljevic

dmilos@gmail.com

TOC

- Description
- Nomenclature
- Bricks
 - Translate
 - Linear
 - Simple Homography
- Building
 - o Ingredients
 - o Goal
 - o Elements
 - Assembling
- Assembling
- Miscellaneous

Description

Computing the plane to plane homography without fancy thing such as inversion of big matrix or eugen vectors values.

In here it will be present method in step-by-step manner where every step has some meaning.

Nomenclature

2D Euclid vector

Ordered pair of two real numbers.

$$\mathbf{p} = (x, y) = [x,y]^T; x,y \in \mathbb{R}$$

2D Homography vector

Ordered triplet of three real numbers.

$$\mathbf{p} = (x, y, z) = [x, y, z]^T x, y, z \in \mathbb{R}$$

2D Euclid matrix

2 by 2 table of real number

$$a_{00}$$
 a_{01} a_{11} a_{11}

2D Homography matrix

$$\begin{bmatrix} a_{00} & a_{01} & a_{02} \\ a_{10} & a_{11} & a_{12} \\ a_{20} & a_{21} & a_{22} \end{bmatrix}$$

Bricks

... or what we need to assemble to get our matrix.

Translation

Move for some vector.

Linear

If **M** is linear function then:

$$\mathbf{M}(\alpha \mathbf{x} + \beta \mathbf{y}) = \alpha \mathbf{M}(\mathbf{x}) + \beta * \mathbf{M}(\mathbf{y})$$

Represented using homography matrix:

Simple Homography

$$(0,0) \rightarrow (0,0);$$

$$(1,0) \rightarrow (1,0);$$

$$(0,1) \rightarrow (0,1);$$

$$(1,1) \rightarrow (X,Y);$$

This can be represented by homography matrix:

$$\begin{array}{c|cccc}
X & 0 & 0 \\
0 & Y & 0 \\
\hline
1-Y & 1-X & X+Y-1
\end{array}$$

 $0 \neq (1-Y)^2 + (1-X)^2 + (X+Y-1)^2$ Always $\neq 0$. Always exists.

... and vice versa

 $(0,0) \rightarrow (0,0)$;

 $(1,0) \rightarrow (1,0);$

 $(0,1) \rightarrow (0,1);$

 $(X,Y) \rightarrow (1,1);$

Homography matrix:

$$0 \neq (Y^*(Y-1))^2 + (X^*(X-1))^2 + (X^*Y)^2$$

$$(X,Y) \neq (0,0)$$

$$(X,Y) \neq (0,1)$$

$$(X,Y) \neq (0,0)$$

Building

Ingredients

- $s_0, s_x, s_y, s_z \in \mathbb{R}^2$
- t_0 , t_x , t_y , $t_z \in \mathbb{R}^2$
- o=(0,0)
- det(s_i , s_j , s_k) \neq 0; $i \neq j \neq k$; $i,j,k \in \{0,x,y,z\}$, this condition can be relaxed to only $\det(s_0, s_x, s_v) \neq 0;$

- $det(t_i, t_j, t_k) \neq 0; i \neq j \neq k; i, j, k \in \{0, x, y, z\}$
- Nice to have:

$$|\det(t_i, t_j, t_k)| \le \det(t_0, t_x, t_y)$$

$$|\det(s_i, s_j, s_k)| \le \det(s_0, s_x, s_y)$$

Goal

•
$$t_i = H(s_i); i \in \{0, x, y, z\}$$

Elements

- T_s : translation matrix, translate from s_0 to o
- M_s:

$$(1, 0) = \mathbf{M_s}(\mathbf{T_s}(\mathbf{s_x})),$$

 $(0, 1) = \mathbf{M_s}(\mathbf{T_s}(\mathbf{s_v}))$

• P_s:

$$(0,0) = \mathbf{P_s}((0,0)),$$

$$(1,0) = \mathbf{P_s}((1,0)),$$

$$(0,1) = \mathbf{P_s}((0,1)),$$

$$(1,1) = \mathbf{P_s}(\mathbf{M_s} \mathbf{T_s}(s_z))$$

- T_t: translation matrix, translate from t₀ to o
- **M**_t:

$$(1,0) = \mathbf{M_t} (\mathbf{T_t} (\mathbf{t_x})),$$

 $(0,1) = \mathbf{M_t} (\mathbf{T_t} (\mathbf{t_v}))$

• P_t:

$$(0,0) = \mathbf{P_{t}}(\ (0,0)\),$$

$$(1,0) = \mathbf{P_{t}}(\ (1,0)\),$$

$$(0,1) = \mathbf{P_{t}}(\ (0,1)\),$$

$$(1,1) = \mathbf{P_{t}}(\ \mathbf{M_{t}}\ \mathbf{T_{t}}(\ t_{z}\)\)$$

$$\mathbf{M_{t}}\ \mathbf{T_{t}}(\ t_{z}\) \notin \{\ (0,0),\ (1,0),\ (0,1)\ \}$$

Assembling

$$H = (P_t M_t T_t)^{-1} P_s M_s T_s = T_t^{-1} M_t^{-1} P_t^{-1} P_s M_s T_s$$

Miscellaneous

Source code

github.com/dmilos/math/linar/homography/construct2.hpp

Comment

• This can be easily extend to higher dimensions