1.11. Let G be the graph of figure 1.20. Let X= {e, f} were e=re and f=uw, and let U= {u,w}. Draw the subgraphs G-x and G-U of G

Solution 1.11

1.13

a) Give an example of an connected graph G containing three vertixes u, v, W such that d(u,v) = d(u,w) = d(v,w) = diam (6):3

b) Is there some relation between the number of vertixes and the diameter of a connected graph?

Draw all connected graphs of order s in which the distance between every two dinstinct vertices is odd. Explain why you know that you have drawn all such graphs.

Solvion

(a) dist(uv) 7.1 as G connected.

1) dist (u,v) is the length (no of edges) of the geodesic Path

(a) for any Path $W_{2,1}[W] = |E(W)|$ 2.2 |E(W)| + 1 = |V(W)| 2.3 |W| = |V(W)| - 1

Braths may not have more vertexes than the total sum of vertexes in a graph

(4) Therefore from 2.3 and 3 we conclude for order s...

 $\forall u, v \in V(b)$ $\forall u,$

S) So from 4. We can see $\forall u, v \in V(G)...$ $d_{151}(u,v) = 1 \quad \forall \ d_{157}(v,v) = 3$

6) The graph where disi (u,v)=1 is trivial. Is the complete graph
of order 5

7 There is no graph of order 5 s.t + u, v & V(6), dist(u,v)=3

let a 6 of order 5 where dist(u,v) = 3 + u,v.

let the Path P= {11=1e, x, v}

· There is a parn u-x of length = 1

· Impossible

(8) Is there any That has dist(u,v)=1 OR dist(u,v)=3?

The complete graph of order 5 honors this criterion

Therefore, we searching for a graph G where

dist(u,v)=1 OR dist(u,v)=3

at least one

(g) We will show that such a graph does not exist.

Let 6 with |6| = 5 where
- dist(0,v) = 1 OR dist(0,v) = 3 \rightarrow u,v \in V(6)
, \(\frac{1}{3}\)u,v \in V(6) \(\frac{1}{3}\)\tag{4.57}(u,v) = 3

ler Geodesic Parn P U-V of size 3 P=(Vo=V, X, Y, U) X, Y & V (6)

Path P (Vo=V, X, y, u) reveals path V-y path p has size 2 Impossible

The only graph 6 of order 5 that honors this criterion is the Complete graph of order 5

1.17: To DU DAME OTO LECTURE IS.

1.19 : Theorem 1.10 states that a graph & of order 3 or more 15 Connected if and only if 6 contains two dinstinct vertices 4, v

Such that G-u, G-V are connected. Based on the one, one might suspect that the following statement is

Frey connected graph G of order 4 or more contains three dinstinct vertexes u, v and w such that G-u, G-v, G-w Connected

Solution

Is it true?

$$V(6) = \{ a, b, c, d \}$$
 $E(6) = \{ (a, b), (a, c), (c, d) \}$