Intro to Continuous random variables

Lecture 3a (STAT 24400 F24)

1/20

Density function for a continuous random variable

Just like for a discrete r.v., for a continuous r.v. we can describe its distribution via the CDF (cumulative distribution function),

$$F(x) = \mathbb{P}(X \le x)$$

However, for a continuous r.v., it is pointless to use a PMF, since $\mathbb{P}(X = x) = 0$ for every value x.

Instead we use a **probability density function** (a.k.a. the PDF), f(x) (sometimes written as $f_X(x)$), which plays an analogous role.

The probability of r.v. X falling into an interval (a, b) is

$$\mathbb{P}(a < X < b) = \int_{x=a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

Continuous random variables

Recall: a discrete random variable has finitely many or countably infinitely many possible values, characterized by its PMF

$$p(x) = \mathbb{P}(X = x)$$

(which is > 0 for at most countably infinitely many x) or its CDF: $F(x) = \mathbb{P}(X \le x)$.

Other random variables might take values in a continuous range (which is uncountably infinitely many).

<u>Definition</u>: If a random variable X has no mass at any single value, i.e.,

$$\mathbb{P}(X=x)=0 \qquad \text{for any } x \in \mathbb{R}$$

then it is a continuous random variable.

2/20

An example of density function

Example:

Intuitively, the PDF f(x) is of larger magnitude or higher around x if X is more likely to take on values near x; and vice versa.

Properties of density functions

By the basic characteristics of probability, a density function should have the following properties:

- $f(x) \ge 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) dx = 1$
- *f* is piecewise continuous

5 / 20

Common distributions for continuous random variables

Some common continuous distribution:

- Uniform distribution
- Exponential distribution
- Gamma distribution
- Normal distribution

Density function & CDF

Relationship between density function & CDF:

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{P}(-\infty < X \le x)$$

$$= \mathbb{P}(-\infty < X < x) = \int_{t=-\infty}^{x} f_X(t) dt$$

since X is continuous

Equivalently (by the fundamental theorem of calculus),

$$f_X(x) = F'_X(x)$$

(if f is continuous at x).

That is, density function is the derivative of the CDF.

(Notation:
$$\int_{t=-\infty}^{x} f_X(t) dt = \lim_{s \to \infty} \int_{t=-s}^{x} f_X(t) dt$$
)

6/20

Uniform distribution

What do we mean when we "draw X at random from the interval [a, b]"?

- For a finite set (e.g. choose at random an integer between 1 and 10), the meaning is clear — every value should be equally likely.
- In the continuous case, we mean that the probability should be "evenly spread" across the interval.

Uniform[a, b] distribution — parameters a, $b \in \mathbb{R}$ with a < b.

Density:

$$f(x) = \frac{1}{b-a} \quad \text{for } x \in [a, b]$$

CDF:

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0, & \text{for } x < a \\ \frac{x-a}{b-a}, & \text{for } x \in [a, b] \\ 1, & \text{for } x > b \end{cases}$$

Uniform distribution examples

(Note: vertical lines are for convenience only)

9 / 20

11 / 20

Exponential distribution examples

Exponential distribution

Exponential(λ) distribution—parameter $\lambda > 0$ is the "rate". Density:

$$f(x) = \lambda e^{-\lambda x}$$
 for $x \ge 0$

- This distribution is memoryless (recall the property of the geometric distribution in the discrete case)
- It's a natural model for many physical phenomena that are memoryless (e.g. half-life decay of a radioactive atom; time an ion passing through a channel)
- Larger λ means shorter time to decay

Calculate the CDF: for $x \ge 0$,

$$F(x) = \mathbb{P}(X \le x) = \int_{t=0}^{x} f(t) \ dt = \int_{t=0}^{x} \lambda e^{-\lambda t} \ dt = \left[-e^{-\lambda t} \right]_{t=0}^{x} = 1 - e^{-\lambda x}$$

10 / 20

Gamma distribution

 ${\sf Gamma}(\alpha,\lambda) \ {\sf distribution --- parameters} \ \alpha>0 \ (\text{"shape"}), \ \lambda>0 \ (\text{"rate"})$ Density:

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}$$
 for $x \ge 0$

- $\Gamma(\alpha)$ is a normalizing constant (so that density integrates to 1). $\Gamma(\alpha) = \int_0^\infty t^{\alpha-1} e^{-t} dt$; $\Gamma(k) = (k-1)!$ for integers $k \ge 1$,
- ullet Generalization of the exponential: $\mathsf{Gamma}(1,\lambda) = \mathsf{Exponential}(\lambda)$
- This family allows for a change in the rate of decay
 - $\alpha < 1$ an event that becomes increasingly less likely, with the density declining sharply after zero
 - $\alpha = 1$ a constant rate of decay (= exponential distrib.)
 - $\alpha > 1$ an event that becomes more likely as time goes on, and gives a shape that has a peak (mode) at some value above zero

Note: the text calls λ the "scale" but this does not agree with standard terminology; $\frac{1}{\lambda}$ is called a scale parameter sometimes.

12 / 20

Gamma distribution examples

Examples:

- $\alpha < 1$ how long a person works at a company (quitting is more likely early during the adjustment period)
- $\alpha = 1$ time-to-decay of a radioactive atom (memoryless)
- ullet lpha > 1 lifespan of an organism (death more likely when older)

13 / 20

Normal distribution

Normal (μ, σ^2) distribution (also written as $N(\mu, \sigma^2)$)

Parameters:

- $\mu \in \mathbb{R}$ "mean"
- $\sigma > 0$ "standard deviation" ($\sigma^2 > 0$ is called the "variance")

Density:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x-\mu)^2/2\sigma^2}$$
 for $x \in \mathbb{R}$

14 / 20

Normal distribution examples

Standard Normal

• N(0,1) is called the **standard normal distribution**, with density

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2}$$
 for $x \in \mathbb{R}$

• Caution of notations: Different texts or software may use N(μ , σ^2) or N(μ , σ) — be careful! (i.e., does N(1,3) indicate $\sigma=3$ or $\sigma^2=3$?)

15 / 20

16 / 20

Properties of normal distribution

- The normal distribution has a symmetric "bell curve" shape.
 The tails are very "thin":
 the density becomes very low very quickly as x moves away from the mean.
- Often used to approximate distribution of some naturally occurring phenomenon or measured quantities such as height
- Most variables we can measure are not normally distributed
- However, there is an important connection between the normal distribution and the process of sampling from a population:

An average of a randomly chosen sample is approximately normally distributed, even if the original distribution is not. (Central Limit Theorem, later in the course)

— The main reason that normal distribution is very important in statistics.

17 / 20

Remarks on densities - end points of intervals

For any continuous distribution, point mass is always zero:

$$\mathbb{P}(X=x) = \int_{t-x}^{x} f(t)dt = 0 \quad \text{for any } x$$

Consequently, an event has the same probability on closed or open intervals,

e.g.

$$\mathbb{P}(X \ge a) = \mathbb{P}(X > a)$$

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a < X < b)$$

Thus we can ignore closed vs open endpoints of intervals for continuous r.v.'s, when calculating event probabilities.

Remarks on densities — 'Support" of PDF

X is supported on the interval $I \Leftrightarrow f(x) = 0$ for any $x \notin I$.

It may be convenient to think of f as a function with domain either I or \mathbb{R} .

For example for the Uniform[a, b] distribution, we might write

$$f(x) = \frac{1}{b-a}$$
 on the support $x \in [a, b]$

or equivalently we might write

$$f(x) = \begin{cases} \frac{1}{b-a}, & a \le x \le b, \\ 0, & x < a \text{ or } x > b \end{cases}$$

Similarly for the CDF:

$$F(x) = \frac{x-a}{b-a}$$
 on the support $x \in [a, b]$

which is equivalent to

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \le x \le b, \\ 1, & x > b \end{cases}$$

18 / 20

Remarks on densities - piecewise continuity

The PDF f(x) of a continuous random variable may not be continuous.

Example (exercise)

A r.v.
$$X$$
 has PDF $f(x) = \begin{cases} c, & x \in [0,1] \\ c(x-1), & x \in (1,2] \\ 0, & \textit{elsewhere.} \end{cases}$

- Note that f(x) is not continuous at x = 0, 1, 2.
- What is the value of *c*?

$$\int_{-\infty}^{\infty} f(x)dx = \int_{x=0}^{1} c dx + \int_{x=1}^{2} c(x-1)dx = \cdots = 1 \quad \Rightarrow \quad c = \frac{2}{3}$$

• What is the CDF of X?