

数字电路与逻辑设计

第3章 逻辑门电路

张江山 zhangjs@hust.edu.cn 信息工程系

IH/E/IL

1/51

in the second

3 逻辑门电路

- 3.1 逻辑门电路简介
- 3.2 基本 CMOS 逻辑门电路
- 3.3 CMOS 逻辑门电路的不同输出结构及参数
- 3.4 类 NMOS 和 BiCMOS 逻辑门电路 *
- 3.5 TTL 逻辑门电路 *
- 3.6 ECL 逻辑门电路 *
- 3.7 逻辑描述中的几个问题
- 3.8 逻辑门电路使用中的几个实际问题
- 3.9 用 VerilogHDL 描述 CMOS 逻辑门电路

▲中子信息与通信学院

2/51

<u>HDT</u>

▲电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

教学要求

- 1. 理解与、或、与非、或非、异或、同或门的逻辑功能
- 2. 理解三态门、 OD 门和传输门的逻辑功能和应用
- 3. 了解 CMOS 逻辑门电路的输入与输出电路结构
- 4. 了解逻辑门的等效逻辑和应用接口问题
- 5. 了解半导体器件的开关特性以及逻辑门内部电路结构

3.1 逻辑门电路简介 3.1.1 各种逻辑门电路系列简介

- 1. 逻辑门:实现基本逻辑运算和复合逻辑运算的单元电路
- 2. 逻辑门电路的分类

★ 电子信息与通信学院

3/51

5/ 51

▲电子信息与通信学院

4/ 51

3.1.1 各种逻辑门电路系列简介

1. TTL (Transistor-Transistor Logic) 集成电路

TTL 是应用最早,技术比较成熟的集成电路,曾被广泛应用

随着材料和工艺技术的发展,不断推出新型的低功耗和高速TTL 器件

目前在中、大规模集成电路中还有应用

3.1.1 各种逻辑门电路系列简介

2. CMOS (Complementary Metal Oxide Semiconductor) 集成电路

速度已赶超 TTL 电路

功耗和抗干扰能力远优于 TTL 电路

目前已广泛应用于超大规模、甚大规模集成电路

A电子信息与通信学院

★电子信息与通信学院

3.1.2 开关电路

逻辑变量取值0或1,对应电路中电子器件的"闭合"与"断开 MOS 管或 BJT 管可作为开关

(a) 输出逻辑 1

(b) 输出逻辑 0

7/51

3.2 基本 CMOS 逻辑门电路 3.2.1 MOS 管及其开关特性

CMOS 门电路是以 MOS 管为开关器件 MOS 管的分类:

AL电子信息与通信学院

8/ 51

A.电子信息与通信学院

3.2.1 MOS 管及其开关特性

物质导电能力

导电能力取决于载流子的多少

N 型半导体

其中自由电子(负)浓度远大于空穴(正)浓度

自由电子为多数载流子(多子),空穴为少数载流子(少子)

P型半导体

其中空穴浓度远大于自由电子

空穴为多数载流子(多子),自由电子为少数载流子(少子)

PN 结

本征半导体内的 N 型和 P 型半导体的交界处形成 PN 结

£\电子信息与通信学院

3.2.1 MOS 管及其开关特性 ● 工作状态 无 N 沟道, i_p = 0

 v_{GD} , $v_{GS} < V_{TN} = 0.6 \text{ V}$

3.2.1 MOS 管及其开关特性

1. N 沟道增强型 MOS 管

利用电场效应产生导电沟道

- ● v_{GS} = 0 时,漏源之间被两个背靠背的 PN 结 隔离, v_{DS} 不能产生 \mathbf{D} , \mathbf{S} 间电流
- ● $0 < v_{GS} < v_{TN}$ 时,电场向下排斥栅极下方衬底 表层空穴, 并吸引自由电子, 自由电子与空 穴复合而消失, 使衬底表面形成耗尽层, 仍 不能导通

- $\bullet \nu_{cs} > \nu_{rs}$ 时,栅极下方表层汇聚更多电子,使其数量多于空穴,该薄层变 为 N 型半导体,即反型层,形成 N 型沟道
- $\bullet V_{\text{TN}}$ 为 NMOS 管的开启电压,此时 v_{DS} 可产生漏极电流 i_{D} ,即导通

\电子信息与通信学院

 v_{GD} $\bar{\mathbf{D}}_{2V}$ $v_{GS} + v_{GD} \bar{D}_{0V}$ P 衬底 P 衬底 截止 饱和 0 V B 0 V B $v_{\rm GS}$, $v_{\rm GD} > V_{\rm TN}$ $\frac{1}{2K_n(v_{GS}-V_{TN})}$ $i_{\rm n}/v_{\rm cs}$ 转移特性曲线 D₁V 电导常数, 工艺和道沟宽长比有关 N+ $v_{\rm DS}$ 较小时, $i_{\rm D}$ 随 $v_{\rm DS}$ 线性变化 沟宽随 v_{GS} 变化, r_{DS} 为可变电阻 P 衬底 0 V B 可变电阻 (电子信息与通信学院

 $v_{\rm GD} < V_{\rm TN} < v_{\rm GS}$

沟道夹断, $v_{\rm DS}$ 越大, $v_{\rm GD}$ 越小, $r_{\rm DS}$ 越大, $i_{\rm D}$ 饱和 = $v_{\rm DS}/r_{\rm DS}$

 $i_{\rm D}/v_{\rm DS}$ 输出特性曲线 $V_{\rm T}=0.6~{
m V}$

12/51

11/51

3.2.1 MOS 管及其开关特性

- 2. 其他类型的 MOS 管
- (1) P 沟道增强型 MOS 管
- ●结构与 NMOS 管相反
- ●V_{GS}, V_{DS} 电压极性与 NMOS 管相反
- ●开启电压 V_{TP} 为负值
- ●当 V_{GS} < V_{TP} ,PMOS 管导通
- ●当 $V_{\text{\tiny CS}} > V_{\text{\tiny TP}}$, PMOS 管截止

3.2.1 MOS 管及其开关特性

(2) N 沟道耗尽型 MOS 管

- 绝缘层掺入正离子;
- V_{GS} = 0 时正离子吸引部分负离子,已形成 N 沟道
- $V_{cs} > 0$ 时更多负离子被吸引, N 沟道变宽
- $V_{\rm CS} < -V_{\rm TN}$ (夹断电压) 时,沟道被夹断, $i_{\rm D} = 0$

(3) P 沟道耗尽型 MOS 管

- 绝缘层掺入负离子
- V_{cs} = 0 时在负离子作用下已形成 P 沟道
- V_{GS}<0 时 P 沟道变宽
- V_{GS} >+ V_{TP} (夹断电压)时,沟道被夹断, i_D =0

▲电子信息与通信学院

14/51

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMUNICATIONS

13/51

3.2.1 MOS 管及其开关特性

3. MOS 管的开关作用

- ●输入低电平时,MOS 管截止,输出为高电平 V_{OH}
- ullet输入高电平时,工作在可变电阻区,输出低电平 $V_{
 m OL}$
- ●由于 MOS 管栅极、漏极与衬底间电容,栅极与漏极 之间的电容存在,状态转换伴随有电容充放电过程

 $t_{\rm pLH}$

15/51

 t_{pHL}

3.2.1 MOS 管及其开关特性

3.1.4 如图所示各 MOSFET 管的 $|V_r| = 1 \text{ V}$,忽略电阻上的压降, 试确定其工作状态(导通或截止?)

解:图(a), NMOS, V_T 为+1V, V_{GS} =5V≥1V, 导通;

图 (b), PMOS, V_T 为-1V, $V_{GS} = 5$ V - 5 V \geq -1 V, 截止

图 (c), NMOS, $V_{\rm T}$ 为 +1 V, $V_{\rm GS}$ = 0 V \leq 1 V, 截止

图 (d) , PMOS , $V_{\rm T}$ 为 -1 V , $V_{\rm GS}$ = 0 V - 5 V \leq -1 V , 导通

★ 电子信息与通信学院

16/51

3.2.2 CMOS 反相器

1. 工作原理

CMOS 反相器电路如图

$$V_{\text{TN}} = 1V$$

$$V_{\text{DD}} = 5V > (V_{\text{TN}} + |V_{\text{TP}}|)$$

A.电子信息与通信学院

$v_{\rm I}$	$v_{\rm GSN}$	T _N	$v_{\rm GSP}$	T _P	$v_{\rm o}$
0 V	0 V	截止	-5 V	导通	5 V
5 V	5 V	导通	0 V	截止	0 V

真值表

逻辑表达式: L=A

逻辑图

17/51

3.2.2 CMOS 反相器

2. 电压传输特性和电流传输特性

 $u_{\rm I} < 1 \, {\rm V}$, AB段, $T_{\rm N}$ 截止, $\nu_{\rm O} = 5 \, {\rm V}$, $i_{\rm D} \approx 0$ $\nu_{\rm I} > 4 \, {\rm V}$, EF段, $T_{\rm P}$ 截止, $\nu_{\rm O} = 0 \, {\rm V}$, $i_{\rm D} \approx 0$

静态功耗低

3.2.2 CMOS 反相器

2. 电压传输特性和电流传输特性

 $v_{\scriptscriptstyle
m I}$ = 0.5 $V_{\scriptscriptstyle
m DD}$ = 2.5 V , CD 段, $T_{\scriptscriptstyle
m N}$, $T_{\scriptscriptstyle
m P}$ 都导通, $v_{\scriptscriptstyle
m O}$ = 2.5 V , $i_{\scriptscriptstyle
m D}$ 最大 阈值电压 $0.5V_{\rm DD}$ = $2.5\,\mathrm{V}$, 在阈值电压附近, 两管都导通

3.2.3 其它基本 CMOS 逻辑门

1. CMOS 与非门

A

В

0

 $\nu_{\rm A}$

 $V_{\rm TN} = 1 {\rm V}$ $V_{\rm TP} = -1 \text{ V}$

(a) 电路结构

(b) 工作原理

A B	T _{N1}	T _{P1}	T _{N2}	T _{P2}	L
0 0	截止	导通	截止	导通	1
0 1	截止	导通	导通	截止	1
1 0	导通	截止	截止	导通	1
1 1	导通	截止	导通	截止	0

与非门 L = AB

输入端越多 串联的管子越多 N 输入的与非门的电路? 导通时电阻越大 使与非门的低电平升高(输入端增加有什么问题? 电子信息与通信学院

3.2.3 其它基本 CMOS 逻辑门

2. CMOS 或非门

	' IN		, IL			
A	В	T _{N1}	T _{P1}	T _{N2}	T _{P2}	
0	0	截止	导通	截止	导通	Г
0	1	截止	导通	导通	截止	
1	0	导通	截止	截止	导通	

N 输入的或非门的电路的结构?

输入端增加有什么问题? ~

A.电子信息与通信学院

$V_{\rm TN} = 1 \, {\rm V}$ $V_{\rm TR} = -1 \, {\rm V}$

A B	T _{N1}	T _{P1}	T _{N2}	T _{P2}	L
0 0	截止	导通	截止	导通	1
0 1	截止	导通	导通	截止	0
1 0	导通	截止	截止	导通	0
1 1	导通	截止	导通	截止	0

或非门 $L = \overline{A + B}$

输入端越多 串联的管子越多 导通时电阻越大 使或非门的高电平降低

23/51

25/ 51

3.2.4 CMOS 传输门

1. 传输门的结构及工作原理

在控制信号 C 的控制下,开关闭合或者断开

A.电子信息与通信学院

24/51

3.2.4 CMOS 传输门

CMOS 传输门电路的工作原理

设 $T_P: |V_{TP}| = 1 \text{ V}$, $T_N: V_{TN} = 1 \text{ V}$ ν, 的变化范围为 0~+5 V

1) 当 C = 0, $\overline{C} = 1 = +5$ V 时 $v_{\text{GDN}} = 0 - (0 \sim +5) \text{ V} = 0 \sim -5 \text{ V}$ $v_{GDN} < V_{TN}$, T_N 截止 $v_{\rm GSP} = 5 - (0 \sim +5) \text{ V} = 5 \sim 0 \text{ V}$ $v_{GSP} > 0$, T_P 截止

开关断开,不能转送信号

3.2.4 CMOS 传输门

CMOS 传输门电路的工作原理

- 2) 当 C = 1, $\overline{C} = 0$ 时 a. $v_1 = 0 \sim 4 \text{ V}$ $v_{\rm GDN}$ = 5 - (0 \sim +4) V = 5 \sim 1 V $v_{GDN} > V_{TN}$, T_N 导通
 - b. $v_1 = 1 \sim 5 \text{ V}$ $v_{GSP} = 0 - (1 \sim +5) \text{ V}$ = -1 \sim -5 V
 - $v_{GSP} > |V_T|$, T_P 导通
 - c. $v_1 = 1 \sim 4 \text{ V}$ T_N 导通, T_P 导通 $v_o = v_I$

A.电子信息与通信学院

26/51

★电子信息与通信学院

3.3 CMOS 逻辑门电路的不同输出结构及参数

CMOS 门电路在输入、输出端加了反相器作为缓冲电路,缓冲电路能统一参 数,使不同内部逻辑集成逻辑门电路具有相同的输入和输出特性

应用者关键是掌握逻辑门电路输入与输出电路结构

电子信息与通信学院

27/51

3.3.1 输入保护电路和缓冲电路

输入保护电路和缓冲电路

(1)输入端保护电路

CMOS 门电路输入端是 MOS 管的栅极, 栅极与沟 道之间的 SiO, 层很薄, 极 易击穿,因此,加保护电路

当输入电压不在正常电压范 围时, 二极管导通, 限制了

电容两端电压的增加, 保护了输入电路

- (1) $-0.7 \text{ V} < v_1 < V_{pp} + 0.7 \text{ V}$, 允许输入电压范围, D_1, D_2 截止
- $(2) v_1 > V_{pp} + 0.7 \text{ V}$, D_1 导通 , D_2 截止 , $v_1 = V_{pp} + 0.7 \text{ V}$
- (3) $v_1 < -0.7 \text{ V}$, D_1 截止 , D_2 导通 , $v_2 = -0.7 \text{ V}$

(电子信息与通信学院

28/51

3.3.2 CMOS 漏极开路(OD)门和三态输出门电路

CMOS 漏极开路门

普通 CMOS 门电路输出短接,在一 定情况下会产生低阻通路, 大电流 有可能导致器件的损毁, 并且无法 确定输出是高电平还是低电平。

A.电子信息与通信学院

29/51

34/51

3.3.2 CMOS 漏极开路(OD)门和三态输出门电路

CMOS 漏极开路门

(1) 漏极开路门的结构与逻辑符号

- (a) 工作时必须外接电源和电阻
- (b) 与非逻辑不变
- (c) 可以实现线与功能

电子信息与通信学院

 $L = \overline{AB \cdot CD}$ =AB+CD

30/51

3.3.2 CMOS 漏极开路(OD)门和三态输出门电路

三态(TSL)输出门电路

三态门有3种输出状态:输出高电平、输出低电平、高阻状态

逻辑功能: 高电平有效的同相逻辑门

使能 <i>EN</i>	输入 A	输出 L
1	0	0
1	1	1
0	×	高阻

电子信息与通信学院

3.8 门电路使用中的几个实际问题

驱动器件的输出与负载器件的输入的高低电平噪声容限:

驱动门输出电平不利时,负载门输入电平能容忍叠加的噪声幅度范围

负载门输入 $V_{\rm HI}$ 时噪声容限 $V_{\rm NH}$:

驱动门输出高电平下限时允许叠加的负 向最大噪声电压值

 $V_{\mathrm{NH}} = V_{\mathrm{OH(min)}}$ - $V_{\mathrm{IH(min)}} = 1.4\mathrm{V}$

负载门输入 $V_{\rm IL}$ 时噪声容限 $V_{\rm NL}$:

驱动门输出低电平上限时允许叠加的正 向最大噪声电压值

 $V_{\rm NL} = V_{\rm IL(max)} - V_{\rm OL(max)} = 1.4 \text{V}$

\电子信息与通信学院

3.8.1 门电路之间接口问题

驱动器件与负载器件的输出、输入的电压与电流必须兼容

1) 逻辑门电路的电平兼容

驱动器件输出电压与负载器件的 输入电压须有噪声容限

驱动门输出高电平应满足:

 $V_{\mathrm{OH(min)}} \geq V_{\mathrm{IH(min)}}$

驱动门输出低电平应满足:

 $V_{OL(max)} \leq V_{IL(max)}$

\电子信息与通信学院

3.8.1 门电路之间接口问题

2) 逻辑门电路的电流兼容:

驱动器件须对负载器件提供足够 大的灌电流或拉电流

 $I_{OL(max)} \ge I_{IL(total)}$

3.8.1 门电路之间接口问题

CMOS 门驱动 TTL 门示例

CMOS 门(4000 系列): $V_{\rm OH(min)}$ = 4.9V , $V_{\rm OL(max)}$ = 0.1V

 $I_{OL(max)} = 0.51 \text{ mA}$, $I_{OH(max)} = 0.51 \text{ mA}$

TTL门(74系列):

 $V_{\rm IH(min)} = 2V$,

 $V_{\rm IL(max)} = 0.8 \rm V$

 $I_{\text{IH(max)}} = 20\text{uA}$, $I_{\text{IL(max)}} = 0.4\text{mA}$

考虑 4000 系列 CMOS 门驱动 74 系 列TTL反相门

 $I_{OL(max)} \ge I_{IL(total)}$

 $I_{OH(max)} \ge I_{IH(total)}$

\电子信息与通信学院

42/51

3.8.2 带负载时的接口电路

1. 用门电路直接驱动显示器件

用反相器驱动一发光二极管 LED ,设 LED 的正向压降为 $V_{\rm F}$,工作电流为 $I_{ ext{D}}$ (不大于驱动门的最大拉电流 $I_{ ext{OH(max)}}$ 或灌电流 $I_{ ext{OL(max)}}$)。

分两种情况讨论

(1) 门电路输出高电平

电子信息与通信学院

(2) 门电路输出低电平

43/51

3.8.2 带负载时的接口电路

例 3.6.2 试用 74HC04 六个 CMOS 反相器中的一个作为接口电路, 使门电路 的输入为高电平时, LED 导通发光

解: 先确定电路接口形式

查 74HC04 数据手册 $V_{\rm CC}$ = 5 V 时, $V_{\rm OL}$ = 0.33 V , $I_{\rm OL(max)}$ = 4 mA

查 LED 导通压降 $V_{\scriptscriptstyle
m F}$ 为 1.6V ,但其工作电流 $I_{\scriptscriptstyle
m D}$ 不能超过 $I_{\scriptscriptstyle
m OL(max)}$ = 4 mA

故限流电阻不能小于 $R = \frac{(5-1.6-0.33)V}{4\text{mA}} = 768(\Omega)$

如图可取 810Ω

44/51

3.8.3 抗干扰措施

1. 多余输入端的处理

处理原则:保证输出逻辑关系正确,避免多余输入端悬空以防干扰

- ①. 与门和与非门多余输入端处理
- ②. 或门和或非门多余输入端处理

要考虑驱动门的扇出数

拉申流情况应满足:

 $I_{OH(max)} \ge I_{IH(total)}$

电子信息与通信学院

3.8.3 抗干扰措施

2. 去耦合滤波电容

一般电源是非理想的,存在一定内阻,数字电路在高、低状态之间交替 变化时,可能会与电源产生相互影响,造成逻辑功能错乱

常采用去耦合滤波电容:

- ①. 在本电路板电源与地之间加一个 10~100uF 的大电容器
- ②. 各芯片的电源引脚附近(越近越好)与地之间加一个 0.1uF 的电容器

A电子信息与通信学院 SCHOOL OF ELECTRONIC INFORMATION AND COMMININGCATANAL