

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. - 25. (canceled).

26. (new): A process for the production of a plate, in particular a motor vehicle licence plate, in which initially at least one layer sequence forming an electroluminescence flat capacitor (4, 5, 6, 7) and thereafter a reflection film (10; 10') are applied to a carrier (1), wherein the reflection value of the reflection film (10; 10') is higher than the maximum statutory permissible value, and said reflection value is reduced by further production steps to such an extent that it is below the maximum statutory permissible value, characterised in that the reflection film (10') includes a layer (16) which is opaque in relation to the light of the electroluminescence flat capacitor (4, 5, 6, 7) and that the further production steps involve providing the reflection film (10') with a grid raster of holes in which the size and surface density of the holes (19) are so selected that on the one hand the reflection value of the reflection film (10') averaged in relation to surface area comes to lie below the maximum value permitted by statute and on the other hand the brightness of the light passing through the openings from the electroluminescence flat capacitor (4, 5, 6, 7) averaged over the surface area exceeds the minimum value prescribed by statute.

PRELIMINARY AMENDMENT
PCT/EP2003/000679

27. (new): A process for the production of a plate, in particular a motor vehicle licence plate, in which initially at least one layer sequence forming an electroluminescence flat capacitor (4, 5, 6, 7) and thereafter a reflection film (10; 10') which is translucent for the light of the electroluminescence flat capacitor (4, 5, 6, 7) are applied to a carrier (1), wherein the reflection value of the reflection film (10; 10') is higher than the maximum statutory permissible value, and said reflection value is reduced by further production steps to such an extent that it is below the maximum statutory permissible value, characterised in that a reflection film (10) is used whose reflection properties are based on it having on its rear side rearwardly projecting prismatic structures (12), at the interfaces of which the light incident from the front side is reflected by total reflection, and that the further production steps involve applying the reflection film (10) to a layer (9) which is translucent in respect of the light of the electroluminescence flat capacitor (4, 5, 6, 7) and is of approximately the same optical refractive index as the rearwardly projecting prismatic structures (12) of the reflection film (10) and in that situation the intermediate spaces between the prismatic structures (12) are partially filled by the adhesive to such an extent that the reflection value of the reflection film (10) is reduced in the desired manner.

28. (new): A process as set forth in claim 27, characterised in that the operation of filling the intermediate spaces between the prismatic structures by the adhesive is partially effected in respect of height by a procedure whereby the pressing pressure of the reflection film (10) and the viscosity of the adhesive at the time of pressing the reflection film (10) are so selected that the

PRELIMINARY AMENDMENT
PCT/EP2003/000679

prismatic structures (12) which project on the rear side of the reflection film (10) penetrate into the adhesive only to such a depth that the total reflection which is reduced in the regions embedded in the adhesive reduces the reflection value of the reflection film (10) in the desired fashion.

29. (new): A process as set forth in claim 27, characterised in that filling of the intermediate spaces between the prismatic structures (12) by the adhesive is effected partially in respect of height by the adhesive being applied to a layer which is so hard that it is substantially not deformable by the prismatic structures (12) projecting from the rear side of the reflection film (10) when the reflection film produced is subjected to pressure and by the thickness of the adhesive layer being so selected that the prismatic structures (12) which project on the rear side of the reflection film (10) and which when pressure is applied to the reflection film (10) penetrate with their tips as far as the hard layer engage into the adhesive only to such a depth that the total reflection which is reduced in the regions embedded in the adhesive reduces the reflection value of the reflection film (10) in the desired manner.

30. (new): A process as set forth in claim 27, characterised in that filling of the intermediate spaces between the prismatic structures (12) by the adhesive is effected partially in respect of surface area in that, in surface regions disposed in mutually juxtaposed raster-like relationship, the intermediate spaces between the prismatic structures (12) are filled to differing

PRELIMINARY AMENDMENT
PCT/EP2003/000679

heights so that the reflection value of the reflection film (10), which is averaged in respect of surface area, is below the maximum value permitted by statute.

31. (new): A process as set forth in claim 30, characterised in that in first surface regions the intermediate spaces between the prismatic structures (12) are filled completely in respect of height by the adhesive while in the interposed second surface regions there is no filling of the intermediate spaces by the adhesive.

32. (new): A process as set forth in claim 28, characterised in that filling of the intermediate spaces between the prismatic structures (12) by the adhesive is effected partially both in respect of height and also in respect of surface area.

33. (new): A process for the production of a plate, in particular a motor vehicle licence plate, in which initially at least one layer sequence forming an electroluminescence flat capacitor (4, 5, 6, 7) and thereafter a reflection film (10; 10') which is translucent for the light of the electroluminescence flat capacitor (4, 5, 6, 7) are applied to a carrier (1), wherein the reflection value of the reflection film (10; 10') is higher than the maximum statutory permissible value, and said reflection value is reduced by further production steps to such an extent that it is below the maximum statutory permissible value, characterised in that a reflection film (10) is used, whose reflection properties are based on the fact that on its rear side it has rearwardly projecting

PRELIMINARY AMENDMENT
PCT/EP2003/000679

prismatic structures (12), at the interfaces of which the light incident from the front side is reflected by total reflection, and that the further production steps provide that the reflection film (10) is subjected to a treatment which provides for flattening of the prismatic structures (12) which is so great that the reduction in total reflection caused thereby reduces the reflection value of the reflection film (10) in the desired manner.

34. (new): A process according to claim 33, characterised in that the treatment of the reflection film (10) provides that it is heated to a given temperature for a given time.

35. (new): A process as set forth in claim 33, characterised in that the treatment of the reflection film (10) provides that it is pressed for a given time under a given pressure against a surface which is harder than the prismatic structures (12).

36. (new): A process as set forth in claim 33, characterised in that the treatment of the reflection film (10) provides that it is both heated and at the same time pressed.

37. (new): A process as set forth in claim 33, characterised in that the two treatment steps are effected in time succession.

PRELIMINARY AMENDMENT
PCT/EP2003/000679

38. (new): A process as set forth in claim 33, characterised in that the treatment steps carried out on the reflection film (10) leading to flattening of the prismatic structures (12) are effected upon the application thereof to the plate structure.

39. (new): A process for the production of a plate, in particular a motor vehicle licence plate, wherein applied to a carrier (1) are a reflection film (10; 10') and at least one layer sequence forming an electroluminescence flat capacitor (4, 5, 6, 7), wherein the reflection value of the reflection film (10; 10') is higher than the maximum value permitted by statute and said reflection value is reduced by further production steps to such an extent that it is below the maximum value permitted by statute, characterised in that the reflection film (10; 10') is applied to the carrier (1) and a rastered electroluminescence flat capacitor (4, 5, 6, 7) is arranged on the front side thereof which is towards the viewer, the structures (12) of the capacitor, in the regions covered by them, reducing the reflection value of the reflection film (10; 10') to such an extent that the reflection value of the reflection film (10; 10'), averaged in respect of surface area, is below the maximum value permitted by statute.

40. (new): A plate, in particular a motor vehicle licence plate, which includes a carrier (1), a reflection film (10; 10') and at least one layer sequence which as seen from the viewer is disposed behind the reflection film (10') and which forms an electroluminescence flat capacitor (4, 5, 6, 7), wherein the reflectance of the reflection film (10; 10'), which is originally above the

PRELIMINARY AMENDMENT
PCT/EP2003/000679

maximum value permitted by statute, has been reduced in the course of the plate production process, characterised in that the reflection film (10') includes a layer (16) which is opaque for the light of the electroluminescence flat capacitor, and that provided in the reflection film (10') is a grid raster of holes, the holes (19) of which extend through all layers of the reflection film (10') and the size and surface density thereof being so selected that the reflectance of the reflection film (10'), which results after application of the grid raster of holes, is below the maximum value permitted by statute.

41. (new): A plate, in particular a motor vehicle licence plate, which includes a carrier (1), a reflection film (10; 10') and at least one layer sequence which as seen from the viewer is disposed behind the reflection film (10') and which forms an electroluminescence flat capacitor (4, 5, 6, 7), wherein the reflectance, which is originally above the maximum value permitted by statute of the reflection film (10; 10') which is translucent for the light of the electroluminescence flat capacitor (4, 5, 6, 7), has been reduced in the course of the plate production process, characterised in that prismatic structures (12) which project from the rear side of the reflection film (10) and at the interfaces of which the light incident from the front side is reflected by total reflection are partially embedded into a transparent layer (9) having approximately the same refractive index as the prismatic structures (12), in such a way as to afford a reduced total reflectance.

PRELIMINARY AMENDMENT
PCT/EP2003/000679

42. (new): A plate as set forth in claim 41, characterised in that partial embedding is based on the fact that the prismatic structures (12) are not engaged over their entire height into the transparent layer (9) having approximately the same refractive index.

43. (new): A plate as set forth in claim 41, characterised in that the prismatic structures (12) in differing surface regions of the flat side of the plate are engaged to differing depths into the transparent layer (9) having substantially the same refractive index.

44. (new): A plate as set forth in claim 43, characterised in that in first surface regions of the flat side of the plate the prismatic structures (12) are engaged with their entire height into a transparent layer (9) having substantially the same refractive index and in second surface regions they are not engaged into such a layer.

45. (new): A plate as set forth in claim 41, characterised in that the layer (9) having substantially the same refractive index is an adhesive layer which serves at the same time for fixing the reflection film (10) on the layer therebeneath.

46. (new): A plate, in particular a motor vehicle licence plate, which includes a carrier (1), a reflection film (10; 10') and at least one layer sequence which as seen from the viewer is disposed behind the reflection film (10') and which forms an electroluminescence flat capacitor

PRELIMINARY AMENDMENT
PCT/EP2003/000679

(4, 5, 6, 7), wherein the reflectance, which is originally above the maximum value permitted by statute of the reflection film (10; 10') which is transparent for the light of the electroluminescence flat capacitor (4, 5, 6, 7) has been reduced in the course of the plate production process, characterised in that prismatic structures (12) which project from the rear side of the reflection film (10) and at the interfaces of which the light incident from the front side is reflected by total reflection are subsequently flattened off in such a way as to afford a reduced total reflectance.

47. (new): A plate, in particular a motor vehicle licence plate, which includes a carrier (1), a reflection film (10; 10') and at least one layer sequence which forms an electroluminescence flat capacitor (4, 5, 6, 7), wherein the reflectance, which is originally above the maximum value permitted by statute of the reflection film (10; 10') which is transparent for the light of the electroluminescence flat capacitor (4, 5, 6, 7) has been reduced in the course of the plate production process, characterised in that the layer sequence forming the electroluminescence flat capacitor (4, 5, 6, 7), as seen from the viewer, is arranged in front of the reflection film (10) in rastered form and that the size and surface density of the structures thereof which do not transmit any light incident from the front side to the reflection film (10) or allow light reflected by the reflection film (10) to issue forwardly is so selected that the reflectance of the reflection film (10) is reduced in the desired fashion.