Application en Ingénierie et Programmation Numérique "Rendu III - Interpolation et Approximation"

VILLEDIEU Maxance et BESQUEUT Corentin

7 novembre 2023

Table des matières

Ι			tion Polynomiale	2
	I.1	Interp	polation par la méthode de Neville	:
			Présentation de la méthode	
		I.1.2	Résolution Manuelle	3
		I.1.3	Algorithme	:
		I.1.4	Implémentation en C	3
			Exemples d'exécution	
	nnex Jeur			4

Chapitre I

Interpolation Polynomiale

L'interpolation est une technique fondamentale en analyse numérique, qui s'illustre aussi bien dans la modélisation mathématique que dans la visualisation de données. Elle permet l'approximation d'un ensemble de données discrètes, à partir d'une fonction continue. L'objectif de ce TP est d'explorer deux méthodes d'interpolation, à savoir les méthodes de Newton et Neville. L'interpolation de Newton repose sur les différences divisées, tandis que la méthode de Neville utilise un schéma récursif pour construire un polynôme interpolateur. Dans ce rapport, nous explorerons en détail ces deux méthodes d'interpolation. Pour chacune d'entre-elles, nous commencerons par une présentation théorique, puis nous illustrerons nos propos avec un exemple pratique de résolution. Nous nous concentrerons ensuite sur leurs algorithmes respectifs, ainsi que sur leur implémentation en C. Nous analyserons enfin les résultats fournis par l'ordinateur des deux méthodes sur les 4 jeux d'essais présents en annexe de ce rapport, ainsi que les avantages et les limitations de chaque méthode.

Figure I.1 – Exemple d'interpolation

I.1 Interpolation par la méthode de Neville

I.1.1 Présentation de la méthode

La méthode de Neville est une technique d'interpolation qui permet d'approximer une fonction inconnue à partir de données discrètes. Elle repose sur un processus récursif de construction d'un polynôme interpolateur à partir des données initiales. À chaque étape, deux polynômes voisins sont combinés pour former un nouveau polynôme qui passe par certains points données. Cette méthode devient rapidement imprécise au fur et à mesure que le nombre de points augmente. Elle est en revanche efficace pour l'interpolation de petits ensembles de données.

Considérons un ensemble de n points donnés, notés (x_i, y_i) , où les x_i sont deux à deux distincts. Nous cherchons à déterminer un polynôme d'interpolation p(x) de degré n-1 au maximum, qui satisfait la condition suivante :

$$p(x_i) = y_i$$
, avec $i = 0, ..., n - 1$

La méthode de Neville consiste à évaluer ce polynôme pour le point d'abscisse x. Soit $p_k[x_i,...,x_i+k](x)$ le polynôme de degré k qui passe par les points $(x_i,y_i),...,(x_{i+k},y_{i+k})$. Alors $p_k[x_i,...,x_{i+k}](x)$ vérifie la relation de récurrence suivante :

$$\begin{cases} p_0[x_i](x) = y_i, \text{ avec } 0 \leqslant i < n \text{ et } k = 0 \\ p_k[x_i, ..., x_{i+k}](x) = \frac{(x - x_{i+k})p_{k-1}[x_i, ..., x_{i+k-1}](x) + (x_i - x)p_{k-1}[x_{i+1}, ..., x_{i+k}](x)}{x_i - x_{i+k}}, \text{ avec } 1 \leqslant k < n \text{ et } 0 \leqslant i < n \end{cases}$$

Cette relation de récurrence permet de calculer $p_{n-1}[x_0,...,x_{n-1}](x)$, qui est le polynôme recherché.

- I.1.2 Résolution Manuelle
- I.1.3 Algorithme
- I.1.4 Implémentation en C
- I.1.5 Exemples d'exécution

Annexe

Jeux d'essais

Densité (D) de l'eau en fonction de la température (T)

T(C)	0	2	4	6	8	10	12	14	16	18
$D(t/m^3)$	0.99897	0.99846	0.99987	0.99997	1.00000	0.99997	0.99988	0.99973	0.99953	0.99927
T(C)	20	22	24	26	28	30	32	34	36	38
$D(t/m^3)$	0.99805	0.999751	0.99705	0.99650	0.99664	0.99533	0.99472	0.99472	0.99333	0.99326

Dépenses mensuelles et revenus

On s'intéresse à la relation qui existe entre les Dépenses de loisirs mensuelles D et les revenus R des employés d'une entreprise.

R	752	855	871	734	610	582	921	492	569	462	907
D	85	83	162	79	81	83	281	81	81	80	243
R	643	862	524	679	902	918	828	875	809	894	
D	84	84	82	80	226	260	82	186	77	223	

Série S dûe à Anscombe

x_i	10	8	13	9	11	14	6	4	12	7	5
y_i	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Série chronologique avec accroissement exponentiel

x_i	88	89	90	91	92	93	94	95	96	97
y_i	5.89	6.77	7.87	9.11	10.56	12.27	13.92	15.72	17.91	22.13

Vérification de la loi de Pareto

Loi de Pareto : "Entre le revenu x et le nombre y de personnes ayant un revenu supérieur à x, il existe une relation du type :

$$y = \frac{A}{x^a} = Ax^{-a}$$

où a et A sont des constantes positives caractéristiques de la région considérée et de la période étudiée.

					50			
ſ	y_i	352	128	62.3	35.7	6.3	0.4	0.1