functional analysis study note

Zehao Li

October 2025

0.1 Bipolar

Definition 1. Let X be TVS topology defined by $\{p_i\}$ separate (X). Then X is LCTVS, T1, and

$$A \subset X, A^{\circ} = \{ \psi \in X^* | |\psi(x)| \le 1 \}$$

$$B \subset X^*, B^{\circ} = \{x \in X | |\psi(x)| < 1\}$$

Note: A° and B° are balanced convex sets, and

$$B^{\circ} = \{ \bigcap_{\psi \in B} \psi^{-1}(\{z \in \mathbb{C} | |z| \le 1\}) \}$$

which is closed.

Theorem 1. X be a LCTVS T1,if A is a balanced convex neighborhood of 0, then $A^{\circ \circ} = \overline{A}$

note:
$$A^{\circ \circ} = \{x \in X | \sup_{\psi \in A^{\circ}} |\psi(x)| \le 1\}$$

Proof. Step 1: $\overline{A} \subset A^{\circ\circ}$. For every $x \in A$ and every $\varphi \in A^{\circ}$ we have $|\varphi(x)| \leq 1$ by definition, hence $A \subset A^{\circ\circ}$. Since for each fixed φ the map $x \mapsto |\varphi(x)|$ is continuous, the sublevel set $\{x: |\varphi(x)| \leq 1\}$ is closed; therefore $A^{\circ\circ} = \bigcap_{\varphi \in A^{\circ}} \{x: |\varphi(x)| \leq 1\}$ is closed. Consequently $\overline{A} \subset A^{\circ\circ}$.

Step 2: $A^{\circ\circ} \subset \overline{A}$. Assume $x_0 \notin \overline{A}$. The set \overline{A} is closed, convex, and balanced. By the (strong) Hahn–Banach separation theorem in LCTVS, there exists $\psi \in X^*$ and real numbers $\alpha < \beta$ such that

$$\operatorname{Re} \psi(x) \le \alpha \quad (\forall x \in \overline{A}), \qquad \operatorname{Re} \psi(x_0) \ge \beta.$$

We claim that $\sup_{x\in A} |\psi(x)| \leq \sup_{x\in A} \operatorname{Re} \psi(x) \leq \alpha$. Indeed, for any $x\in A$:

- if $\mathbb{K} = \mathbb{R}$, then A being balanced implies $x, -x \in A$, so $|\psi(x)| = \max\{\psi(x), -\psi(x)\} \le \sup_{y \in A} \operatorname{Re} \psi(y)$;
- if $\mathbb{K} = \mathbb{C}$, pick $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ such that $\operatorname{Re}(\lambda \psi(x)) = |\psi(x)|$. Since A is balanced, $\lambda x \in A$, hence $|\psi(x)| = \operatorname{Re} \psi(\lambda x) \leq \sup_{y \in A} \operatorname{Re} \psi(y)$.

Thus $\sup_A |\psi| \le \alpha < \beta \le |\psi(x_0)|$. Choose t > 0 so that

$$t \cdot \sup_{x \in A} |\psi(x)| \le 1$$
 and $t |\psi(x_0)| > 1$

(which is possible because $|\psi(x_0)| > \sup_A |\psi|$). Set $\varphi := t\psi$. Then

$$\sup_{x \in A} |\varphi(x)| \le 1,$$

so $\varphi \in A^{\circ}$, while $|\varphi(x_0)| = t|\psi(x_0)| > 1$. Hence $x_0 \notin A^{\circ \circ}$. Since every $x_0 \notin \overline{A}$ is also not in $A^{\circ \circ}$, we have $A^{\circ \circ} \subset \overline{A}$.

Theorem 2. Let X be LCTVS, T1 then weakly bounded set are coincide with bounded set.

corollary 1. (X, ||||) be a normed space let $E \subset X$ a subset $\sup_{x \in E} |\psi(x)| < \infty, \forall \psi \in X^*$ then there exists a c > 0 such that $||x|| \le c, \forall x \in E$

Proof. by previous theorem, $E \subset X$ is weakly bounded if and only if each $P_{\psi}, \psi \in X^*$ is bounded on E, if and only if $|\psi(x)\rangle| \leq c(\psi), \forall x \in E, \forall \psi \in X^*$

Theorem 3 (Uniform boundedness on a compact set). Let X be a topological vector space and Y a locally convex topological vector space. Let $K \subset X$ be compact and let $\Gamma \subset \mathcal{L}(X,Y)$ be a family of continuous linear maps. Assume that for every $x \in K$ the orbit $\Gamma(x) = \{\gamma(x) : \gamma \in \Gamma\}$ is bounded in Y. Then there exists a bounded set $B \subset Y$ such that $\gamma(K) \subset B$ for all $\gamma \in \Gamma$.

Proof. Let $\{q_i\}_{i\in I}$ be a directed family of continuous seminorms generating the topology of Y. Fix $i\in I$. For $n\in\mathbb{N}$ set

$$E_{i,n} := \{x \in K : \sup_{\gamma \in \Gamma} q_i(\gamma x) \le n\}.$$

Each $E_{i,n}$ is closed in the relative topology of K because

$$E_{i,n} = \bigcap_{\gamma \in \Gamma} \{ x \in K : \ q_i(\gamma x) \le n \},$$

and every set $\{x \in K : q_i(\gamma x) \leq n\}$ is closed in K (continuity of $q_i \circ \gamma$). Moreover, by pointwise boundedness, $\bigcup_{n=1}^{\infty} E_{i,n} = K$.

Since K is compact Hausdorff, it is a *Baire space*. Hence for this fixed i there exists $n_i \in \mathbb{N}$ and a nonempty relatively open set $U_i \subset K$ such that $U_i \subset E_{i,n_i}$, i.e.,

$$\sup_{\gamma \in \Gamma} q_i(\gamma x) \leq n_i \qquad (\forall x \in U_i).$$

Pick any $y \in U_i$. Consider the continuous map

$$\Phi: K \times [0,1] \to K, \qquad \Phi(x,t) = (1-t)y + tx.$$

Since U_i is open in K and $\Phi(K \times \{0\}) = \{y\} \subset U_i$, by the tube lemma there exists $\delta \in (0,1]$ such that

$$\Phi(K \times [0, \delta]) \subset U_i$$
.

Fix such a δ . Then for every $x \in K$ the point

$$z = (1 - \delta) y + \delta x \in U_i.$$

Now for any $\gamma \in \Gamma$, by linearity and the seminorm properties,

$$q_i(\gamma z) = q_i((1-\delta)\gamma y + \delta\gamma x) \le (1-\delta)q_i(\gamma y) + \delta q_i(\gamma x).$$

Since $y, z \in U_i$ we have $q_i(\gamma y) \leq n_i$ and $q_i(\gamma z) \leq n_i$. Hence

$$\delta q_i(\gamma x) \leq q_i(\gamma z) + (1 - \delta) q_i(\gamma y) \leq n_i + (1 - \delta) n_i \leq 2n_i,$$

and therefore

$$q_i(\gamma x) \leq \frac{2}{\delta} n_i \quad (\forall x \in K, \ \forall \gamma \in \Gamma).$$

Thus, for the fixed i, the set $\bigcup_{\gamma \in \Gamma} \gamma(K)$ is bounded with respect to q_i . Since $i \in I$ was arbitrary and $\{q_i\}_{i \in I}$ generates the topology of Y, it follows that

$$B := \bigcup_{\gamma \in \Gamma} \gamma(K)$$

is a bounded subset of Y. Equivalently, there exists a bounded set $B \subset Y$ with $\gamma(K) \subset B$ for all $\gamma \in \Gamma$.

Theorem 4. Weakly bounded set if and only if bounded set

Proof. 1. let τ be the topology on the LCTVS X (T1). Since $\sigma(X, X^*) \subset \tau$, we have τ bounded is $\sigma(X, X^*)$ bounded

2. the opposite direction: Let $E \subset X$ be the weakly bounded. Let U be a τ neighborhood of 0. Since X is LCTVS, there exists a V is open convex balanced and $\overline{V} \subset U$.

Let

$$K = V^{\circ} = \{ \psi \in X^* | |\psi(x)| \le 1 \}$$

. By bipolar theorem $K^{\circ} = V^{\circ \circ} = \overline{V}$.

E is weakly bounded, hence $\forall \psi \in X^*$, there exists $c(\psi) > 0$ such that $|\psi(x)| \leq c(\psi)$ for any $x \in E$.

By Alaoglu, we have K is weak* compact, convex. Then, by uniform boundedness on a compact set, we have

K compact, $Y \subset \mathbb{C}, \Gamma = E, x(\psi) = \psi(x)$ on the topology $(X^*, \sigma(X^*, X))$.

Let $\Gamma(\psi) = \{x(\psi)|x \in E\} = \{\psi(x)|x \in E\}$ are bounded because E is weakly bounded.

Thus, $|\psi(x)| \le c$ for any $x \in E, \psi \in K$, giving us $c^{-1}x \in K^{\circ}$ for any $x \in E$ $k^{\circ} = V^{\circ \circ} = \overline{V} \subset U$

Hence, $x \in cu$ for any $x \in E$. $E \subset tU$ for any t > c, which is equivalent to E is bounded.

Definition 2. Let K be a convex set in a vector space X. A point $x \in K$ is an extreme point of K if it cannot be expressed as a convex combination of points in K distinct from itself. In other words, x is extreme if whenever

$$x = \lambda y + (1 - \lambda)z$$

for some $y, z \in K$ and $\lambda \in (0,1)$, it follows that y = z = x.

Equivalently, $x \in \text{ext}(K)$ if and only if $K \setminus \{x\}$ is convex (or, if the only way to write x as a convex combination is the trivial one).

example 1. 1.

$$K = \{x^2 + y^2 \le 1\}$$

the extreme set of K is $\{x^2 + y^2 = 1\}$

example 2. 2.

$$K = \{(x, y) | x = 0\}$$

the extreme set of K is \emptyset

example 3. 3.

$$K = \{(x,y)|x<0\} \cup \{(0,0)\}$$

the extreme set of K is $\{(0,0)\}$

example 4. 4.

$$K = \{ f \in L_1([0,1]) | ||f|| \le 1 \}$$

the extreme set of K is \emptyset

Proof. 1.suppose $f \in L_1([0,1])$ and $\int_0^1 f(t)dt = 1$, then there exists $x \in [0,1]$ such that $\int_0^1 f(t)dt = \frac{1}{2}$ let h(t) = 2f(t) for $0 \le t \le x$,

g(t) = 2f(t) for $x \le t \le 1$

We have $f = \frac{1}{2}(h+g)$ and $||h||_1 = ||g||_1 = 1$

2. For the case $||f||_1 < 1$, it is in the unit ball so that is obvious f not an extreme point of K.