ī	=	
	线	
		腳
cilm		苓□
李号		角
	私	K
出		\mathbb{R}
級		絥
		華
小 争	例子	例
	例	

四川轻化工大学试卷(2020至2021学年第一学期)

课程名称: 概率论与数理统计(A卷)

命题教师:谢巍

适用班级: 本科 32 学时

考试

			2020 ±	上 月	Н		共	0 火	
题号	_	 111	四	五	六	乜	八	总分	评阅(统分)教师
得分									

注意事项:

- 1、满分100分。要求卷面整洁、字迹工整、无错别字。
- 2、考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否则视为废卷。
- 3、考生必须在签到单上签到,若出现遗漏,后果自负。
- 4、如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷分别一同 交回,否则不给分。

试 题

得分	评阅教师

- 一、填空题(每小题 4 分, 共 20 分)
- 1. 随机事件 A, B, C 都不发生记作 .
- 2. 设 10 件产品中有 4 件不合格品, 从中任取 2 件, 已知所取 2 件中有 1 件是不合格品, 则另外 1 件也是不合格品的概率为______.
- 3. 若随机变量 X 服从均值为 2, 方差为 σ^2 的正态分布, 且 $P\{0 < X < 4\} = 0.6$, 则 $P\{X < 0\} = _____.$
- 4. 设随机变量 X , Y 的方差分别为 $D\big(X\big)=25$, $D\big(Y\big)=36$, 相关系数 $\rho_{XY}=0.4$,则 Cov(X,Y)=______.
- 5. 设总体 $X\sim N(\mu,\sigma^2)$, μ 未知, 检验 H_0 : $\sigma^2=\sigma_0^2$, 应选用的统计量是 ______.

二、选择题(每小题4分,共20分)

- 1. 设 A, B 为两个随机事件, 若 P(AB) = 0, 则下列命题中正确的是 ()
 - (A) A 与 B 互不相容
- (B) A 与 B 独立
- (C) P(A) = 0或P(B) = 0 (D) AB 未必是不可能事件
- 2. 设每次试验失败的概率为p,则在3次独立重复试验中至少成功一次的概率为()
 - (A) 3(1-p)
- (B) $(1-p)^3$
- (C) $1-p^3$ (D) $C_3^1(1-p)p^2$
- 3. 若函数 y = f(x) 是一随机变量 ξ 的概率密度,则下面说法中一定成立的是()
 - (A) f(x) 非负
- (B) f(x) 的值域为[0,1]
- (C) f(x) 单调非降 (D) f(x) 在 $(-\infty, +\infty)$ 内连续
- 4. 若随机变量 X 的概率密度为 $f(x) = \frac{1}{2\sqrt{\pi}} e^{-\frac{(x+3)^2}{4}} (-\infty < x < +\infty)$,则 Y = (
- $\sim N(0,1)$
 - (A) $\frac{X+3}{\sqrt{2}}$ (B) $\frac{X+3}{2}$
- - (C) $\frac{X-3}{\sqrt{2}}$ (D) $\frac{X-3}{2}$
- 5. 样本 X_1, X_2, \cdots, X_n $(n \geq 3)$ 取自总体 X , 则下列估计量中,()不是总体期望 μ 的无偏估计量
 - (A) $\sum_{i=1}^{n} X_{i}$
- (B) \overline{X}
- (C) $0.1(6X_1 + 4X_n)$ (D) $X_1 + X_2 X_3$

	线	
姓名		
4~		答题
李		祵
班	抓	内 不
级		笨
		### Kan
小 争		例
W.	後王	

得分	评阅教师

三、 $(8 \, \%)$ 设有三只外形完全相同的盒子, I 号盒中装有 14 个黑球, 6 个白球; II 号盒中装有 5 个黑球, 25 个白球; III 号盒中装有 8 个黑球, 42 个白球。 现在从三个盒子中任取一盒,再从中任取一球,求:

- (1) 取到的球是黑球的概率;
- (2) 若取到的是黑球, 它是取自 I 号盒中的概率.

得分	评阅教师

四、(12分)设连续型随机变量X的分布函数为:

$$F(x) = \begin{cases} A + Be^{-\frac{x^2}{2}}, & x > 0, \\ 0, & x \le 0, \end{cases}$$

求: (1) 系数 A 及 B; (2) 随机变量 X 的概率密度; (3) $P(\sqrt{\ln 4} \le X \le \sqrt{\ln 9})$.

得分	评阅教师

五、 $(10\, eta)$ 一实习生用一台机器接连独立地制造三个同样的零件,第i 个零件是不合格品的概率为 $p_i=rac{1}{1+i}$ (i=1,2,3),以 X 表示三个零件中合格品的个数,

求:(1) X的分布律; (2) X的方差D(X).

得分	评阅教师

六、(8 分) 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{1}{2} \cos \frac{x}{2}, & 0 \le x \le \pi, \\ 0, & \text{#.e.}, \end{cases}$$

对 X 独立地重复观察 4 次, 用 Y 表示观察值大于 $\frac{\pi}{3}$ 地次数, 求 Y^2 的数学期望.

得分	评阅教师
七. (12	分)二维随机

索

七. (12 分) 二维随机变量(X,Y)的联合概率密度:

$$f(x,y) = \begin{cases} 2e^{-(x+2y)}, & x > 0, y > 0, \\ 0, & \not\exists \dot{\Xi}, \end{cases}$$

求: (1) X 与 Y 之间是否相互独立, 判断 X 与 Y 是否线性相关;

(2)
$$P(Y + X \le 1)$$
.

得分	评阅教师

八、(10~ 分) 设总体 $X\sim N(0,\sigma^2)$, σ^2 为未知参数, x_1,x_2,\cdots,x_n 是来自总体 X 的一组样本值,求 σ^2 的最大似然估计.