Técnicas de representación y razonamiento

☐ Tema 3: Representación del conocimiento e inferencia
□ 3.3: Redes semánticas – Índice de contenidos
☐ Introducción
 Definición de redes semánticas (o asociativas) Características Tipos de arcos
 Mecanismos de inferencia (o razonamiento) Herencia de propiedades Búsqueda de la intersección entre dos conceptos Contestación de preguntas: equiparación
 Representación con redes semánticas Representación de relaciones no binarias Representación de sucesos
Conclusiones

IAIC - Curso 2010-11

Técnicas de representación y razonamiento

Técnicas de representación	del conocimiento
☐ Representaciones básicas	
☐ Lógica de predicados. Rep	presentación en Prolog
Redes semánticas	
☐ Sistemas de producción	
☐ Representaciones estructuradas	
☐ Marcos (frames) y guiones	s (scripts)
☐ Estudio comparativo de las	técnicas de representación
☐ Lenguajes de representació	on del conocimiento

Introducción - I

- ☐ Tema anterior: Representaciones lógicas de primer orden
 ☐ Principios del razonamiento lógico: correcto y completo
 - ...Cómo representar y razonar con muchos conceptos y relaciones?
 - ☐ Ej: conocimiento de sentido común con 1,4 millones (ConceptNet)
- Redes semánticas
 - ☐ Razonar con categorías y relaciones de conceptos
 - ☐ Cómo el humano lo almacena? → Representación Descriptiva
- ☐ Ejemplos on-line : Aplicaciones
 - Visualthesaurus: un diccionario visual
 - ☐ ConceptNet: BD conocimiento de sentido comun (colaborativamente)
- Evoluciones de las Redes Semánticas
 - Mapas Conceptuales (CmapLite)
 - Mapas Mentales (FreeMind)
 - Lógicas Descriptivas : OWL-DL (en Protégé)
 - Ontologías (Protégé)

Tema 3.3 - 3

Introducción – II : Ejemplo Visualthesaurus

Introducción - III: Teoría Asociativa

Damos significado a un objeto con Una red de asociaciones con otros objetos ■ Relaciones sobre propiedades y comportamiento del objeto □ Ej: Nieve → fría, blanca, hielo, muñeco de nieve... Organizamos nuestro conocimiento de forma jerárquica □ Canario → ave → vertebrado → animal Aprendemos: Conectamos el nuevo concepto a otros mediante relaciones □ Canario ? Lo conecto con ave Ponemos propiedades en el nivel más abstracto posible □ Volar conectado con ave (no con canario) Ponemos excepciones directamente en los conceptos □ No vuela conectado con avestruz (no con ave) Recordamos y Razonamos: responder a una pregunta Recorriendo/navegando por esas redes de conceptos y relaciones Usamos la herencia y las intersecciones de conceptos en la navegación Tema 3.3 - 5 IAIC - Curso 2010-11

Definición de Red Semántica (o asociativa)

Ejemplo: Fragmentos de una red semántica

Tipos de arcos: relaciones entre conceptos

- a)- Arcos estructurales (semántica independiente del dominio "primitivas")
 - instancia o ejemplar: une un objeto con su tipo (clase)
 - □ subclase: une una clase con otra más general
 - tiene_parte: liga un objeto con sus componentes

- b)- Arcos descriptivos (semántica dependiente del dominio)
 - □ Propiedades: *Profesión, Color_Pelo,* etc.
 - □ Relaciones (no estructurales): *Amigo_de, Padre_de,* etc.

A) – Tipos Inferencia: Herencia de propiedades

- La notación de redes semánticas hace muy conveniente la utilización de razonamiento basado en herencia
- Algoritmo simple y eficiente con manejo de excepciones
 - Los nodos acceden a las propiedades definidas en otros nodos siguiendo los arcos Instancia (o Ejemplar) y Subclase
- Ventajas
 - Evita repetir propiedades
 - Permite compartir conocimiento entre diferentes conceptos de la red semántica

Tema 3.3 - 9

Herencia de propiedades: ejemplo

Gris

¿Qué puedo decir de Dumbo?

- Es un elefante
 - Es de color gris
- Es un macho
- Es un mamífero
- Es un animal
 - Necesita oxígeno
- Es un ser vivo

IAIC - Curso 2010-11

Tema 3.3 - 10

Herencia de propiedades: Problemas

☐ Herencia de propiedades que no son ciertas (inferencias inválidas)

B) - Tipos Inferencia: intersección entre dos conceptos

- □ Dados dos conceptos C1 y C2, queremos saber cuál es su relación
- Se utiliza un mecanismo de propagación de la activación
 - Inicialmente activamos ambos conceptos
 - La activación se propaga a los nodos
 - que están a un arco de distancia de los nodos iniciales,
 - después a los nodos que están a distancia 2,
 - □ ..., formando "ondas" concéntricas
 - □ Cuando las ondas procedentes de C1 intersectan a las procedentes de C2 (o a algún nodo del interior), hemos encontrado la relación que hay entre C1 y C2,...
 - La relación entre C1 y C2 viene dada por las etiquetas de las aristas existentes de C1 al punto de intersección y de C2 al punto de intersección
 - □ Si hubiera varios puntos de intersección, esto indicaría que existen varias relaciones distintas entre C1 y C2

Tema 3.3 - 13

Uso de enlaces inversos

- ☐ La búsqueda de la intersección a menudo necesita generar la inversa de una relación
 - Algunos sistemas lo hacen automáticamente con los arcos estructurales
- □ ¿Quién es hermana de Juan?
 - □ El algoritmo de inferencia podría deducir que tiene_hermana es inversa de hermana_de y responder siguiendo el enlace de Juan a María
 - Si no, comprobaría cada mujer para ver si tiene un enlace hermana_de hacia Juan
 - Indexación directa sólo para los enlaces que salen de un nodo

Ejemplo de representación: relaciones binarias

Una red semántica es la forma natural de representar relaciones correspondientes a instancias cerradas de predicados binarios en lógica

Ejemplo de representación: relaciones no binarias

- Los enlaces representan relaciones binarias
 - □ ¡Un arco sólo tiene 2 extremos!
- La representación de relaciones n-arias
 - Convertirlas a formato binario
 - □ Se crea un nuevo objeto que representa a la relación concreta puntuación(Tigres, Leones, 5-3)
 J23
 - Se introducen predicados binarios para describir la relación de ese nuevo objeto con sus argumentos originales

Esta técnica resulta útil para la representación de sucesos

Ejemplo de representación: sucesos -I

■ Juan dio el libro a María

- □ El objeto del suceso es un libro concreto que no está representado como tal en la frase dada por el usuario → el sistema crea un objeto, ejemplar de libro y le da un nombre (15)
- ☐ Juan sí es un individuo concreto al igual que María
- Este tipo de representación contesta preguntas de distinto tipo sobre el conocimiento que tenemos representado

Tema 3.3 - 17

Ejemplo de representación: sucesos –II

□ Pepe vio un museo en Madrid

Ejemplo de representación: sucesos -III

■ Luis sabe que Pepe vio el museo de El Prado

Ejemplo de representación: sucesos –IV

- ☐ Pepe compra a Luis un reloj por 5000 euros
 - ☐ Lógica: compra(Pepe, Luis, Reloj, 5000, euros)

c) Inferencia: equiparación- Contestación de preguntas

- ☐ Una pregunta se equiparar con la base de conocimiento (BC)
 - □ si existe en la BC un fragmento que encaja con la pregunta (o se infiere)
- Pasos del proceso de equiparación:
 - 1. Construir un apunte para la pregunta en cuestión:
 - Apunte: una pequeña red semántica que representa la pregunta
 - ☐ Elementos: nodos constante, nodos variable, arcos etiquetados
 - Nodos variable: lo desconocido de la pregunta.
 - Criterio de construcción: el mismo de la base de conocimiento
 - 2. Cotejar el apunte con la base de conocimiento
 - 3. Equiparación de nodos
 - 4. Respuesta
- ☐ La complejidad del proceso es importante
 - ☐ Si pregunto algo falso (o que el sistema no sepa)
 - ..puede ser necesario estudiar la red semántica por completo

IAIC – Curso 2010-11

Equiparación: ejemplo - I

Base de conocimiento: tres instancias del Suceso ver

Equiparación: ejemplo - II

☐ Consulta: ¿quién vio un museo en Madrid?

Dos respuestas:

Equiparación 1: Equiparación 2:

 $Ver_? \equiv Ver_1$ $Ver_? \equiv Ver_3$

 $X? \equiv Pepe$ $X? \equiv María$

IAIC - Curso 2010-11

Tema 3.3 - 23

Equiparación: ejemplo - III

☐ Consulta: ¿algún varón vio algún museo en Madrid?

IAIC - Curso 2010-11

Equiparación: ejemplo - IV

Consulta: ¿alguna persona vio algún museo en Madrid?

Respuesta:

No existe equiparación directa con la consulta, pero puede inferirse

IAIC – Curso 2010-11

Redes semánticas: adecuación

- ☐ Más intuitiva y cercana al pensamiento humano que la lógica
 - Mismos conceptos base que la lógica, pero con la ventaja de que el conocimiento se organiza en base a conceptos (y no a relaciones)
- Ayuda gráfica para visualización, algoritmo eficiente de herencia
 - ☐ Permite fácilmente el mecanismo de herencia con excepciones, siendo el proceso transparente (facilidad de visualizar los pasos)
- Mecanismo específico para obtener la relación entre dos conceptos: búsqueda de la intersección
 - □ Fue uno de los usos iniciales de redes semánticas en IA (Quillian, 1968): operación básica de recuperación de información
 - A menudo, necesita la generación de las relaciones inversas
- □ Contribución a investigación en representación del conocimiento
 - ☐ Abrió una década de investigación en formalismos basados en redes
 - ☐ Éxito limitado como modelo psicológico de la memoria humana

Tema 3.3 - 26

Redes semánticas: dificultades

☐ Falta de estándares a la hora de nombrar nodos y arcos
Como en la lógica de predicados
Problema: no seguir convenios al asignar significado a nodos y arcos
Dos personas distintas pueden hacer diferentes interpretaciones de la misma red
■ Explosión combinatoria: sigue estando presente, aunque la inferencia se reduzca a la búsqueda de la intersección
Respuestas negativas: cantidad descomunal de búsqueda
Esto prueba su no adecuación como modelo psicológico
☐ ¿Hay un equipo de fútbol en Plutón? (el humano responde rápido)
Imposibilidad de distinguir entre características propias del conjunto y características heredables por sus elementos
El cardinal del conjunto delfín es característica de la clase y NO de los individuos de la clase (como flipper)
Tema 3.3 - 27

Redes semánticas: limitaciones

☐ Falta de adecuación lógica
faltan negación, disyunción, símb.función anidados, cuantificadores.
Para cuantificadores: redes semánticas particionadas
qué parte está cuantif. existencialmente y cuál lo está universalmente
Significados de nodos y arcos dependientes de las capacidades del sistema: confusión de semántica con detalles de implementación
☐ Falta de adecuación heurística
Imposibilidad de incluir meta-conocimiento para dirigir la búsqueda
Extraer información puede ser muy ineficiente
Escasez de estructura: Evolucionan para
Incluir normas que ponen límites a la representación uniforme:Mapas conceptuales, mapas mentales
Incluir formalismo que garantice corrección y completitud:Lógicas Descriptivas en ontologías
Incluir estructura para dar profundidad a la representación plana:
IAIC – Curso 2010-11 Sistemas de Marcos Tema 3.3 -

Evolución: Mapas Mentales - I

(CMAPS)

- ☐ Método de análisis que permite organizar, ordenar ideas
- Elementos
 - Circulo central: tema a tratar
 - □ Ramas que irradian del círculo: ideas principales (7)
 - ☐ Ramas secundarias de cada rama principal: ideas sobre ella
 - ☐ Se pueden conectar unas ramas con otras con diferentes líneas
- ☐ Se fomenta: uso de imágenes, iconos, colores, etc...
- Uso:
 - Escuchar o preparar una Conferencia,
 - Leer o diseñar un artículo,
 - □ Hacer resumen de un tema, libro.
 - ☐ Planificar tareas, flujo de trabajo, estrategia, proyecto

Tema 3.3 - 29

Evolución: Mapas Mentales - 11

Evolución: Mapas Mentales - III

Evolución: Mapas Conceptuales - I

- Tripletas: concepto origen, frase de enlace, concepto destino.
- Conceptos: un rectángulo
 - Nombres comunes o frases descriptivas de un objeto.
- Frases de enlace son una flecha hacia el concepto destino
 - Verbos/frases que describen una acción...
 - ..del concepto origen que afecta al concepto destino
- Los cmaps pueden ser jerarquías de conceptos o redes
- Semántica Libre
 - Sin reglas ni vocabulario fijo
- Uso:
 - Analizar dominio complejo
 - Paso preliminar formalizar
 - Explicar conceptos
 - Repasar conceptos lección

Figura 3: Ejemplo de Cmap refinado

Tema 3.3 - 32

Evolución: Mapas Conceptuales - II

<u> Evolución: Ontologías – I : Elementos</u>

- Conceptos /clases: definiciones lenguaje formal
 - "Destino Familiar tiene
 - uno o más Alojamientos y dos o más Actividades"
- Relaciones (propiedades): tipo interacción entre conceptos
 - ☐ Hotel Subclase-de Alojamiento
 - ☐ Destino tiene Alojamiento ...uno o más
 - Destino tiene Actividades ... dos o más
- ☐ Funciones, son un tipo especial de relación
 - Precio-objeto: Valor + Ganancia + IVA
- ☐ Individuos, son los objetos del dominio de una clase concreta
- ☐ Si se usa lenguaje formal permiten razonamientos sofisticados
 - ☐ Lógicas Descriptivas, OWL-DL, (ej: WordNet)
 - □ Ej: Qué tipo de destino es X si tiene 3 alojamientos y 5 actividades?

Evolución: Ontologías - II

Referencias y Enlaces

Capítulo 4 del Libro: Palma Mendez, J.T. Y Marín Morales, R. Inteligencia Artificial: técnicas, métodos y aplicaciones McGraw-Hill, en español (2008) Ejemplos online Redes Semánticas: http://www.visualthesaurus.com/landing/ □ ConceptNet: API → http://csc.media.mit.edu/docs/conceptnet/ , Online → http://openmind.media.mit.edu/ (login gratis) Mapas conceptuales: http://cmap.ihmc.us/conceptmap.html herramienta: http://cmap.ihmc.us/download/cmaplite.php Mapas Mentales : ☐ El libro de los Mapas Mentales (T. Buzan), ☐ Libro Resumen: "Como Crear Mapas Mentales" (Tony Buzan) ☐ Herramienta http://freemind.sourceforge.net/wiki/index.php/Download Ontologías y Marcos: Herramienta: Protégé-OWL y Protégé-Frames

http://protege.stanford.edu/download/download.html

Online: http://wordnetweb.princeton.edu/perl/webwn