Springer Texts in Statistics

Gareth James
Daniela Witten
Trevor Hastie
Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Springer Texts in Statistics

Series Editors:

G. Casella

S. Fienberg

I. Olkin

For further volumes: http://www.springer.com/series/417

Gareth James • Daniela Witten • Trevor Hastie Robert Tibshirani

An Introduction to Statistical Learning

with Applications in R

Gareth James Department of Data Sciences and Operations University of Southern California Los Angeles, CA, USA

Trevor Hastie Department of Statistics Stanford University Stanford, CA, USA Daniela Witten Department of Biostatistics University of Washington Seattle, WA, USA

Robert Tibshirani Department of Statistics Stanford University Stanford, CA, USA

ISSN 1431-875X ISBN 978-1-4614-7137-0 ISBN 978-1-4614-7138-7 (eBook) DOI 10.1007/978-1-4614-7138-7 Springer New York Heidelberg Dordrecht London

Library of Congress Control Number: 2013936251

© Springer Science+Business Media New York 2013 (Corrected at 8th printing 2017)

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To our parents:

Alison and Michael James

Chiara Nappi and Edward Witten

Valerie and Patrick Hastie

Vera and Sami Tibshirani

and to our families:

Michael, Daniel, and Catherine

Tessa, Theo, and Ari

Samantha, Timothy, and Lynda

Charlie, Ryan, Julie, and Cheryl

Preface

Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning. The field encompasses many methods such as the lasso and sparse regression, classification and regression trees, and boosting and support vector machines.

With the explosion of "Big Data" problems, statistical learning has become a very hot field in many scientific areas as well as marketing, finance, and other business disciplines. People with statistical learning skills are in high demand.

One of the first books in this area—The Elements of Statistical Learning (ESL) (Hastie, Tibshirani, and Friedman)—was published in 2001, with a second edition in 2009. ESL has become a popular text not only in statistics but also in related fields. One of the reasons for ESL's popularity is its relatively accessible style. But ESL is intended for individuals with advanced training in the mathematical sciences. An Introduction to Statistical Learning (ISL) arose from the perceived need for a broader and less technical treatment of these topics. In this new book, we cover many of the same topics as ESL, but we concentrate more on the applications of the methods and less on the mathematical details. We have created labs illustrating how to implement each of the statistical learning methods using the popular statistical software package R. These labs provide the reader with valuable hands-on experience.

This book is appropriate for advanced undergraduates or master's students in statistics or related quantitative fields or for individuals in other disciplines who wish to use statistical learning tools to analyze their data. It can be used as a textbook for a course spanning one or two semesters.

We would like to thank several readers for valuable comments on preliminary drafts of this book: Pallavi Basu, Alexandra Chouldechova, Patrick Danaher, Will Fithian, Luella Fu, Sam Gross, Max Grazier G'Sell, Courtney Paulson, Xinghao Qiao, Elisa Sheng, Noah Simon, Kean Ming Tan, and Xin Lu Tan.

It's tough to make predictions, especially about the future.

-Yogi Berra

Los Angeles, USA Seattle, USA Palo Alto, USA Palo Alto, USA Gareth James Daniela Witten Trevor Hastie Robert Tibshirani

Contents

Pı	refac	e		vii
1	Inti	roduct	ion	1
2	Sta	tistical	l Learning	15
	2.1	What	Is Statistical Learning?	15
		2.1.1	Why Estimate f ?	17
		2.1.2	How Do We Estimate f ?	21
		2.1.3	·	
			and Model Interpretability	24
		2.1.4	Supervised Versus Unsupervised Learning	26
		2.1.5	Regression Versus Classification Problems	28
	2.2	Assess	sing Model Accuracy	29
		2.2.1	Measuring the Quality of Fit	29
		2.2.2	The Bias-Variance Trade-Off	33
		2.2.3	The Classification Setting	37
	2.3	Lab: I	Introduction to R	42
		2.3.1	Basic Commands	42
		2.3.2	Graphics	45
		2.3.3	Indexing Data	47
		2.3.4	Loading Data	48
		2.3.5	Additional Graphical and Numerical Summaries	49
	2.4		ises	52

3	Lin	ear Regression	59
	3.1	Simple Linear Regression	61
		3.1.1 Estimating the Coefficients	61
		3.1.2 Assessing the Accuracy of the Coefficient	
		Estimates	63
		3.1.3 Assessing the Accuracy of the Model	68
	3.2	Multiple Linear Regression	71
		3.2.1 Estimating the Regression Coefficients	72
		3.2.2 Some Important Questions	75
	3.3	Other Considerations in the Regression Model	82
		3.3.1 Qualitative Predictors	82
		3.3.2 Extensions of the Linear Model	86
		3.3.3 Potential Problems	92
	3.4		102
	3.5	Comparison of Linear Regression with K -Nearest	
		<u>-</u>	104
	3.6		109
		0	109
			110
			113
		• 0	115
			115
		3.6.6 Qualitative Predictors	117
			119
	3.7		120
4	Cla	ssification	127
	4.1	An Overview of Classification	128
	4.2		129
	4.3	·	130
			131
		· ·	133
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	134
		· ·	135
			137
	4.4		138
		ů.	138
			139
			142
		,	149
	4.5		151
	4.6	-	154
			154
			156
		~ ~ ~	161

							Contents	xi
								4.00

		4.6.4	Quadratic Discriminant Analysis	163
		4.6.5	K-Nearest Neighbors	163
		4.6.6	An Application to Caravan Insurance Data	165
	4.7	Exerc	ises	168
5	Res	ampli	ng Methods	175
	5.1	_	-Validation	176
		5.1.1	The Validation Set Approach	176
		5.1.2	Leave-One-Out Cross-Validation	178
		5.1.3	k-Fold Cross-Validation	181
		5.1.4	Bias-Variance Trade-Off for k-Fold	
			Cross-Validation	183
		5.1.5	Cross-Validation on Classification Problems	184
	5.2		Bootstrap	187
	5.3		Cross-Validation and the Bootstrap	190
		5.3.1	The Validation Set Approach	191
		5.3.2	Leave-One-Out Cross-Validation	192
		5.3.3	k-Fold Cross-Validation	193
		5.3.4	The Bootstrap	194
	5.4	Exerc		197
6	T in	oon M	odel Selection and Regularization	203
U	6.1		t Selection	205
	0.1	6.1.1	Best Subset Selection	$\frac{205}{205}$
		6.1.2	Stepwise Selection	200
		6.1.3	Choosing the Optimal Model	210
	6.2		kage Methods	210
	0.2	6.2.1	Ridge Regression	214
		6.2.2	The Lasso	219
		6.2.2	Selecting the Tuning Parameter	$\frac{213}{227}$
	6.3		nsion Reduction Methods	228
	0.0	6.3.1	Principal Components Regression	230
		6.3.2	Partial Least Squares	237
	6.4		derations in High Dimensions	238
	0.1	6.4.1	High-Dimensional Data	
		6.4.2	What Goes Wrong in High Dimensions?	239
		6.4.3	Regression in High Dimensions	$\frac{265}{241}$
		6.4.4	Interpreting Results in High Dimensions	243
	6.5		: Subset Selection Methods	243
	0.0	6.5.1	Best Subset Selection	244
		6.5.2	Forward and Backward Stepwise Selection	244 247
		6.5.2	Choosing Among Models Using the Validation	441
		0.0.0	Set Approach and Cross-Validation	248
			con representant cross vandation	210

	6.6	Lab 2: Ridge Regression and the Lasso	251
		6.6.1 Ridge Regression	251
		6.6.2 The Lasso	255
	6.7	Lab 3: PCR and PLS Regression	256
		6.7.1 Principal Components Regression	256
		6.7.2 Partial Least Squares	258
	6.8	Exercises	259
7	Mo	ving Beyond Linearity	265
	7.1	Polynomial Regression	266
	7.2	Step Functions	268
	7.3	Basis Functions	270
	7.4	Regression Splines	271
		7.4.1 Piecewise Polynomials	271
		7.4.2 Constraints and Splines	271
		7.4.3 The Spline Basis Representation	273
		7.4.4 Choosing the Number and Locations	
		of the Knots	274
		7.4.5 Comparison to Polynomial Regression	276
	7.5	Smoothing Splines	277
		7.5.1 An Overview of Smoothing Splines	277
		7.5.2 Choosing the Smoothing Parameter λ	278
	7.6	Local Regression	280
	7.7	Generalized Additive Models	282
		7.7.1 GAMs for Regression Problems	283
		7.7.2 GAMs for Classification Problems	286
	7.8	Lab: Non-linear Modeling	287
		7.8.1 Polynomial Regression and Step Functions	288
		7.8.2 Splines	293
		7.8.3 GAMs	294
	7.9	Exercises	297
8	Tre	e-Based Methods	303
	8.1	The Basics of Decision Trees	303
		8.1.1 Regression Trees	304
		8.1.2 Classification Trees	311
		8.1.3 Trees Versus Linear Models	314
		8.1.4 Advantages and Disadvantages of Trees	315
	8.2	Bagging, Random Forests, Boosting	316
		8.2.1 Bagging	316
		8.2.2 Random Forests	319
		8.2.3 Boosting	321
	8.3	Lab: Decision Trees	323
		8.3.1 Fitting Classification Trees	323
		8.3.2 Fitting Regression Trees	327

				Contents	xiii
		8.3.3	Bagging and Random Forests		328
		8.3.4	Boosting		330
	8.4	Exercis	ses		332
9	Sup	port V	ector Machines		337
	9.1	Maxim	nal Margin Classifier		338
		9.1.1	What Is a Hyperplane?		338
		9.1.2	Classification Using a Separating Hyperpla	ne	339
		9.1.3	The Maximal Margin Classifier		341
		9.1.4	Construction of the Maximal Margin Class	ifier	342
		9.1.5	The Non-separable Case		343
	9.2	Suppor	rt Vector Classifiers		344
		9.2.1	Overview of the Support Vector Classifier		344
		9.2.2	Details of the Support Vector Classifier .		345
	9.3	Suppor	rt Vector Machines		349
		9.3.1	Classification with Non-linear Decision		
			Boundaries		349
		9.3.2	The Support Vector Machine		350
		9.3.3	An Application to the Heart Disease Data		354
	9.4	${\rm SVMs}$	with More than Two Classes		355
		9.4.1	One-Versus-One Classification		355
		9.4.2	One-Versus-All Classification		356
	9.5	Relatio	onship to Logistic Regression		356
	9.6	Lab: S	upport Vector Machines		359
		9.6.1	Support Vector Classifier		359
		9.6.2	Support Vector Machine		363
		9.6.3	ROC Curves		365
		9.6.4	SVM with Multiple Classes		366
		9.6.5	Application to Gene Expression Data		366
	9.7	Exercis	ses		368
10	Uns	upervi	sed Learning		373
	10.1	The C	hallenge of Unsupervised Learning		373
	10.2	Princip	oal Components Analysis		374
		10.2.1	What Are Principal Components?		375
		10.2.2	Another Interpretation of Principal Compo	nents	379
		10.2.3	More on PCA		380
		10.2.4	Other Uses for Principal Components		385
	10.3		ring Methods		385
			K-Means Clustering		386
			Hierarchical Clustering		390
			Practical Issues in Clustering		399
	10.4		Principal Components Analysis		401

xiv Contents

In	\mathbf{dex}														419
	10.7	Exercis	ses									•		 •	413
		10.6.2	Clusteri	ng the C	bserv	atior	is c	of t	he l	NC:	I 60	Da	$_{ m ta}$		410
		10.6.1	PCA on	the NC	I60 Da	ata									408
	10.6	Lab 3 :	NCI60 I	ata Exa	ample										407
		10.5.2	Hierarch	ical Clu	stering	g									406
		10.5.1	K-Mean	s Cluste	ering .										404
	10.5	Lab 2:	Clusterii	ıg											404

Introduction

An Overview of Statistical Learning

Statistical learning refers to a vast set of tools for understanding data. These tools can be classified as supervised or unsupervised. Broadly speaking, supervised statistical learning involves building a statistical model for predicting, or estimating, an output based on one or more inputs. Problems of this nature occur in fields as diverse as business, medicine, astrophysics, and public policy. With unsupervised statistical learning, there are inputs but no supervising output; nevertheless we can learn relationships and structure from such data. To provide an illustration of some applications of statistical learning, we briefly discuss three real-world data sets that are considered in this book.

Wage Data

In this application (which we refer to as the Wage data set throughout this book), we examine a number of factors that relate to wages for a group of males from the Atlantic region of the United States. In particular, we wish to understand the association between an employee's age and education, as well as the calendar year, on his wage. Consider, for example, the left-hand panel of Figure 1.1, which displays wage versus age for each of the individuals in the data set. There is evidence that wage increases with age but then decreases again after approximately age 60. The blue line, which provides an estimate of the average wage for a given age, makes this trend clearer.

FIGURE 1.1. Wage data, which contains income survey information for males from the central Atlantic region of the United States. Left: wage as a function of age. On average, wage increases with age until about 60 years of age, at which point it begins to decline. Center: wage as a function of year. There is a slow but steady increase of approximately \$10,000 in the average wage between 2003 and 2009. Right: Boxplots displaying wage as a function of education, with 1 indicating the lowest level (no high school diploma) and 5 the highest level (an advanced graduate degree). On average, wage increases with the level of education.

Given an employee's age, we can use this curve to *predict* his wage. However, it is also clear from Figure 1.1 that there is a significant amount of variability associated with this average value, and so age alone is unlikely to provide an accurate prediction of a particular man's wage.

We also have information regarding each employee's education level and the year in which the wage was earned. The center and right-hand panels of Figure 1.1, which display wage as a function of both year and education, indicate that both of these factors are associated with wage. Wages increase by approximately \$10,000, in a roughly linear (or straight-line) fashion, between 2003 and 2009, though this rise is very slight relative to the variability in the data. Wages are also typically greater for individuals with higher education levels: men with the lowest education level (1) tend to have substantially lower wages than those with the highest education level (5). Clearly, the most accurate prediction of a given man's wage will be obtained by combining his age, his education, and the year. In Chapter 3, we discuss linear regression, which can be used to predict wage from this data set. Ideally, we should predict wage in a way that accounts for the non-linear relationship between wage and age. In Chapter 7, we discuss a class of approaches for addressing this problem.

Stock Market Data

The Wage data involves predicting a continuous or quantitative output value. This is often referred to as a regression problem. However, in certain cases we may instead wish to predict a non-numerical value—that is, a categorical

FIGURE 1.2. Left: Boxplots of the previous day's percentage change in the S&P index for the days for which the market increased or decreased, obtained from the Smarket data. Center and Right: Same as left panel, but the percentage changes for 2 and 3 days previous are shown.

or qualitative output. For example, in Chapter 4 we examine a stock market data set that contains the daily movements in the Standard & Poor's 500 (S&P) stock index over a 5-year period between 2001 and 2005. We refer to this as the Smarket data. The goal is to predict whether the index will increase or decrease on a given day using the past 5 days' percentage changes in the index. Here the statistical learning problem does not involve predicting a numerical value. Instead it involves predicting whether a given day's stock market performance will fall into the Up bucket or the Down bucket. This is known as a classification problem. A model that could accurately predict the direction in which the market will move would be very useful!

The left-hand panel of Figure 1.2 displays two boxplots of the previous day's percentage changes in the stock index: one for the 648 days for which the market increased on the subsequent day, and one for the 602 days for which the market decreased. The two plots look almost identical, suggesting that there is no simple strategy for using yesterday's movement in the S&P to predict today's returns. The remaining panels, which display boxplots for the percentage changes 2 and 3 days previous to today, similarly indicate little association between past and present returns. Of course, this lack of pattern is to be expected: in the presence of strong correlations between successive days' returns, one could adopt a simple trading strategy to generate profits from the market. Nevertheless, in Chapter 4, we explore these data using several different statistical learning methods. Interestingly, there are hints of some weak trends in the data that suggest that, at least for this 5-year period, it is possible to correctly predict the direction of movement in the market approximately 60% of the time (Figure 1.3).

4 1. Introduction

FIGURE 1.3. We fit a quadratic discriminant analysis model to the subset of the Smarket data corresponding to the 2001–2004 time period, and predicted the probability of a stock market decrease using the 2005 data. On average, the predicted probability of decrease is higher for the days in which the market does decrease. Based on these results, we are able to correctly predict the direction of movement in the market 60% of the time.

Gene Expression Data

The previous two applications illustrate data sets with both input and output variables. However, another important class of problems involves situations in which we only observe input variables, with no corresponding output. For example, in a marketing setting, we might have demographic information for a number of current or potential customers. We may wish to understand which types of customers are similar to each other by grouping individuals according to their observed characteristics. This is known as a clustering problem. Unlike in the previous examples, here we are not trying to predict an output variable.

We devote Chapter 10 to a discussion of statistical learning methods for problems in which no natural output variable is available. We consider the NCI60 data set, which consists of 6,830 gene expression measurements for each of 64 cancer cell lines. Instead of predicting a particular output variable, we are interested in determining whether there are groups, or clusters, among the cell lines based on their gene expression measurements. This is a difficult question to address, in part because there are thousands of gene expression measurements per cell line, making it hard to visualize the data.

The left-hand panel of Figure 1.4 addresses this problem by representing each of the 64 cell lines using just two numbers, Z_1 and Z_2 . These are the first two principal components of the data, which summarize the 6,830 expression measurements for each cell line down to two numbers or dimensions. While it is likely that this dimension reduction has resulted in

FIGURE 1.4. Left: Representation of the NCI60 gene expression data set in a two-dimensional space, Z_1 and Z_2 . Each point corresponds to one of the 64 cell lines. There appear to be four groups of cell lines, which we have represented using different colors. Right: Same as left panel except that we have represented each of the 14 different types of cancer using a different colored symbol. Cell lines corresponding to the same cancer type tend to be nearby in the two-dimensional space.

some loss of information, it is now possible to visually examine the data for evidence of clustering. Deciding on the number of clusters is often a difficult problem. But the left-hand panel of Figure 1.4 suggests at least four groups of cell lines, which we have represented using separate colors. We can now examine the cell lines within each cluster for similarities in their types of cancer, in order to better understand the relationship between gene expression levels and cancer.

In this particular data set, it turns out that the cell lines correspond to 14 different types of cancer. (However, this information was not used to create the left-hand panel of Figure 1.4.) The right-hand panel of Figure 1.4 is identical to the left-hand panel, except that the 14 cancer types are shown using distinct colored symbols. There is clear evidence that cell lines with the same cancer type tend to be located near each other in this two-dimensional representation. In addition, even though the cancer information was not used to produce the left-hand panel, the clustering obtained does bear some resemblance to some of the actual cancer types observed in the right-hand panel. This provides some independent verification of the accuracy of our clustering analysis.

A Brief History of Statistical Learning

Though the term *statistical learning* is fairly new, many of the concepts that underlie the field were developed long ago. At the beginning of the nineteenth century, Legendre and Gauss published papers on the *method*