Gender Classification in Speech Processing

Baiju M Nair(2011CRF3637)
Geetanjali Srivastava(2012EEZ8304)
Group No. 22

Introduction

- Main objective is gender classification in speech processing.
- Classify male and female speech using classification models
 SVM and neural network
 Understand the performance
- Extract the features which are more robust and most appropriate
- Data Set: Tested using Harvard-Haskins database
- Implemented in MATLAB 7.10
- Preprocessing of acoustic data in order to extract the features
- Application Speech synthesis
 Speaker recognition
 Acoustic data analysis heart beat, pulse

Data and Procedure

- Extracted 549 acoustic data samples from the database
- Six Speakers uttering multiple syllable
- Acoustic data were collected in quiet rooms at Harvard and Haskins,
 16-bit .wav format
 Sample rate = 10 kHz,
- Read the acoustic data into a vector and load them in matlab
- Necessary in MATLAB to convert these particular .wav files back to their original physical units
- Analyzed in frequency domain and time domain to extract different feature vectors

Time series of the signal (ba-cha)

Time series of the signal (ba-cha)

Feature Vectors

Better features

Energy Entropy - Male low and distributed
 Female high and stays for short period of time

$$P(k) = \frac{|X(k)|^2}{\sum_{k=0}^{K} |X(k)|^2}, \qquad H = \sum_{k=0}^{K/2} P(k) \log(P(k)); \qquad M = (E - C_E)(H - C_H),$$

$$EE = \sqrt{(1 + |M|)}$$

Short time energy – Male low , Female High

$$E_{\hat{n}} = \sum_{m=-\infty}^{\infty} (x[m]w[\hat{n}-m])^2 = \sum_{m=-\infty}^{\infty} x^2[m]w^2[\hat{n}-m].$$

• Zero -crossing rate - Female ZCR higher than male

$$\operatorname{ZCR}, Z = \frac{1}{N} \sum_{i=1}^{N-1} \frac{\operatorname{sgn}\{x(i)\} - \operatorname{sgn}\{x(i-1)\}}{2} \qquad \operatorname{sgn}\{x(i)\} = \begin{cases} 1; x(i) > 0 \\ 0; x(i) = 0 \\ -1; x(i) < 0 \end{cases}$$

Feature Vectors Contd...

Advanced feature

Spectral Centroid

Centroid =
$$\frac{\sum_{n=0}^{N-1} f(n) x(n)}{\sum_{n=0}^{N-1} x(n)}$$

Frame based teager energy

$$f_i = w_i^2 X(w_i)$$
. $T_i = (\sum_{k=1}^K f_k)^{1/2}$.

Position of Maximum FFT coefficient

Position of Maximum FFT coefficient divided by sampling frequency

Classification models

SVM -Support vector machine

Neural network based method

		Cond (as determined by				
		Condition Positive	Condition Negative			
Test Outcome	Test Outcome Positive	True Positive	False Positive (Type I error)	Positive predictive value = Σ True Positive Σ Test Outcome Positive		
	Test Outcome Negative	False Negative (Type II error)	True Negative	Negative predictive value = Σ True Negative Σ Test Outcome Negative		
		Sensitivity = Σ True Positive	Specificity = Σ True Negative			
		Σ Condition Positive	Σ Condition Negative			

Performance Comparison Parameters

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$Precision = \frac{TP}{(TP + FP)}$$

$$Sensitivity = \frac{TP}{(TP + FN)}$$

$$Specificity = \frac{TN}{(FP + TN)}$$

$$Likelihoodratio positive(LRP) = \frac{Sensitivity}{(1 - Specificity)}$$

$$Likelihoodratio negative(LRN) = \frac{(1 - Sensitivity)}{Specificity}$$

TP: True Positive (Positive cases that were Correctly identified)

TN: True Negative(Negatives cases that were Incorrectly classified as Positive)

FP: False Positive(Negatives cases that were classified Correctly)

FN: False Negative(Positives cases that were Incorrectly classified as Negative)

SVM Results

Linear Kernal Function

Quadratic Kernal Function

RBF Kernal Function

Neural Network Results

ROC curve

MSE curve

Performance Comparison

	SVM								NN			
	Linear			Quadratic		RBF						
	Acc	PPV	NPV	Acc	PPV	NPV	Acc	PPV	NPV	Acc	PPV	NPV
1	0.3819	0.3944	0.3661	0.6654	0.6641	0.6667	0.8484	0.9005	0.8084	0.853	0.804	0.921
2,6	0.5394	0.5379	0.541	0.622	0.6281	0.6165	0.687	0.7654	0.6444	0.631	0.614	0.656
4,5	0.6614	0.7733	0.6145	0.7402	0.746	0.7346	0.7736	0.7704	0.7769	0.727	0.72	0.736
1,5	0.6732	0.6719	0.6746	0.6575	0.6754	0.6429	0.811	0.8347	0.7904	0.722	0.698	0.751
1,4	0.4961	0.4947	0.4969	0.5906	0.6018	0.5816	0.7933	0.8066	0.7811	0.663	0.64	0.695
2,3,6	0.5591	0.5573	0.561	0.5906	0.5878	0.5935	0.6516	0.7037	0.6207	0.633	0.626	0.642
All	0.6417	0.6385	0.6452	0.813	0.863	0.7751	0.7736	0.7884	0.7603	0.727	0.734	0.721

Feature Analyzed

1: Normalized maximum FFT Coefficient

2: Energy Entropy

3: Zero Crossing Rate

4: Frame Based Teager Energy

5 : Spectral Centroid6 : Short Term Energy

Acc: Accuracy

PPV: Positive Predictive Value NPV: Negative Predictive Value

Performance Comparison Contd...

Conclusion

- Comprehensive evaluation of classification methods for Gender determination.
- SVM with Quadratic kernel function has a better accuracy rate of 81% when all the feature vector are used in training.
- Features like Normalized maximum FFT Coefficient and frame based teager energy which are both frequency domain features has a better accuracy (80%) with RBF kernel function.
- Over all score of SVM is better than Neural Network.

References

- 1. M. Gomathy, K. Meena and K. R. Subramaniam, 'Gender Clustering and Classification Algorithms in Speech Processing: A Comprehensive Performance Analysis", International Journal of Computer Applications (0975 8887) Volume 51– No.20, August 2012
- 2. Hong, Kook Kim, Hwang Soo Lee. Use of spectral autocorrelation in spectral envelope linear prediction for speech recognition., IEEE Transactions on SAP, Vol.7, 1999, No 5, 533-541.
- 3. F. Jabloun, A.E. Cetin, and E. Erzin, "Teager Energy Based Feature Parameters for Speech Recognition in Car Noise", *IEEE Signal Processing Letters, Vol. 6, No.10, pp. 259–261, 1999.*
- 4. Caruntu, A. Nica, and G. Toderean,"Robust Features for Speech Classification", Documents on internet
- 5. Lawrence Rabiner, Biing-Hwang Juang ,Fundamentals of Speech Recognition , Pearson Education, 2003

Thank you

Appendix

In classi at 21

Label: '' svmStruct = Description: '' ClassLabels: [2x1 double] SupportVectors: [118x6 double] Alpha: [118x1 double] GroundTruth: [510x1 double] Bias: 0.4089 NumberOfObservations: 510 KernelFunction: @quadratic kernel ControlClasses: 2 KernelFunctionArgs: {} TargetClasses: 1 GroupNames: [256x1 logical] ValidationCounter: 2 SupportVectorIndices: [118x1 double] SampleDistribution: [510x1 double] ScaleData: [1x1 struct] ErrorDistribution: [510x1 double] FigureHandles: [] SampleDistributionByClass: [2x1 double] ErrorDistributionByClass: [2x1 double] CountingMatrix: [3x2 double] CorrectRate: 0.7913 ErrorRate: 0.2087 LastCorrectRate: 0.7992 LastErrorRate: 0.2008 InconclusiveRate: 0 ClassifiedRate: 1 Sensitivity: 0.8110 Specificity: 0.7717 PositivePredictiveValue: 0.7803 NegativePredictiveValue: 0.8033 PositiveLikelihood: 3.5517 NegativeLikelihood: 0.2449 Prevalence: 0.5000 DiagnosticTable: [2x2 double]

Frequency content of the signal (ba,Male)

Frequency content of the signal (ba,Female)

Frequency content of the signal (Cha, Male)

Frequency content of the signal (Cha, Female)


```
clear;clc
close all
load data new.txt
data=data_new;
training_dat=data(:,1:6);
training_op=data(:,7);
groups = ismember(training_op,1);
[train, test] = crossvalind('holdOut',groups);
cp = classperf(groups);
svmStruct = svmtrain(training_dat(train,:),groups(train),'showplot',true,'Kernel_Function','quadratic');
title(sprintf('Kernel Function: %s',func2str(svmStruct.KernelFunction)),'interpreter','none');
classes = svmclassify(svmStruct,training_dat(test,:),'showplot',true);
classperf(cp,classes,test)
cp.CorrectRate
figure
svmStruct = svmtrain(training_dat(train,:),groups(train),'showplot',true,'boxconstraint',1e6,'Kernel_Function','quadratic');
classes = svmclassify(svmStruct,training_dat(test,:),'showplot',true);
classperf(cp,classes,test)
cp.CorrectRate
```

```
[aco_data1,sam_rate1,nbits1]=wavread('E:\MTECH2011\SEM4\pattern\database\ap\apya1.wav');
[aco_data2,sam_rate2,nbits2]=wavread('E:\MTECH2011\SEM4\pattern\database\dy\dyya1.wav');
[aco_data3,sam_rate3,nbits3]=wavread('E:\MTECH2011\SEM4\pattern\database\sc\scya1.wav');
[aco_data4,sam_rate4,nbits4]=wavread('E:\MTECH2011\SEM4\pattern\database\jb\jbya1.wav');
[aco_data5,sam_rate5,nbits5]=wavread('E:\MTECH2011\SEM4\pattern\database\lc\lcya1.wav');
[aco_data6,sam_rate6,nbits6]=wavread('E:\MTECH2011\SEM4\pattern\database\lk\lkya1.wav');
puls11=aco data1(1:4500):
puls12=aco_data2(1:4500);
puls13=aco data3(1:4500);
puls14=aco data4(1:4500);
puls15=aco data5(1:4500);
puls16=aco data6(1:4500);
puls21=aco data1(4500:9000);
puls22=aco data2(4500:9000);
puls23=aco data3(4500:9000);
puls24=aco data4(4500:9000);
puls25=aco data5(4500:9000);
puls26=aco data6(4500:9000);
% Energy
ST1=sum(puls11.^2)/length(puls11);
ST2=sum(puls12.^2)/length(puls12);
ST3=sum(puls13.^2)/length(puls13);
ST4=sum(puls14.^2)/length(puls14);
ST5=sum(puls15.^2)/length(puls15);
ST6=sum(puls16.^2)/length(puls16);
ST=[ST1 ST2 ST3 ST4 ST5 ST6];
S2T1=sum(puls21.^2)/length(puls21);
S2T2=sum(puls22.^2)/length(puls22);
S2T3=sum(puls23.^2)/length(puls23);
S2T4=sum(puls24.^2)/length(puls24);
S2T5=sum(puls25.^2)/length(puls25);
S2T6=sum(puls26.^2)/length(puls26);
S2T=[S2T1 S2T2 S2T3 S2T4 S2T5 S2T6];
x=puls26;
```

```
%zero crossing
for n=1:length(x)-10
  pu= [ puls11(n) puls12(n) puls13(n) puls14(n) puls15(n) puls16(n)];
  fd=zeros(1,6);
  gh=find(pu > 0);
  fd(gh)=1;
  gh1=find(pu<0);
  fd(gh1)=-1;
  gh2=find(pu==0);
  fd(gh2)=0;
  pu=[puls11(n+1) puls12(n+1) puls13(n+1) puls14(n+1) puls15(n+1) puls16(n+1)];
  ma=zeros(1,6);
  hj=find(pu >0);
  ma(hj)=1;
  hj1=find(pu<0);
  ma(hj1)=-1;
  hj2=find(pu==0);
  ma(hj2)=0;
  z1(n,:)=(fd-ma)/2;
     cha= [ puls21(n) puls22(n) puls23(n) puls24(n) puls25(n) puls26(n)];
  cfd=zeros(1,6);
  cgh=find(cha >0);
  cfd(cgh)=1;
  cgh1=find(cha<0);
  cfd(cgh1)=-1;
  cgh2=find(cha==0);
  cfd(cgh2)=0;
  cha = [puls21(n+1) puls22(n+1) puls23(n+1) puls24(n+1) puls25(n+1) puls26(n+1)];
  cma=zeros(1,6);
  chj=find(cha >0);
  cma(chj)=1;
  chj1=find(cha<0);
  cma(chj1)=-1;
  chj2=find(cha==0);
  cma(chj2)=0;
  z2(n,:)=(cfd-cma)/2;
end
zcr1=sum(z1)/length(z1)
zcr2=sum(z2)/length(z2)
```

```
% energy entropy
fra dur=40e-3;
shift=10e-3;
Ng=length(puls11);
L40=round(fra dur*sam rate1);
L10=round(shift*sam rate1);
nf=0:
for ui=1:100:4100
x1=[puls11(ui:ui+L40) puls12(ui:ui+L40) puls13(ui:ui+L40) puls14(ui:ui+L40) puls15(ui:ui+L40) puls16(ui:ui+L40)];
x2=[puls21(ui:ui+L40) puls22(ui:ui+L40) puls23(ui:ui+L40) puls24(ui:ui+L40) puls25(ui:ui+L40) puls25(ui:ui+L40)];
nf=nf+1;
%plot(x1)
f x1=abs(fft(x1));
f x2=abs(fft(x2));
sum ft1=sum(f x1.^2,1);
sum ft2=sum(f x2.^2,1);
p1=f_x1./repmat(sum_ft1,length(f_x1),1);
p2=f x2./repmat(sum ft2,length(f x2),1);
%plot(p)
avg_e1(nf,:)=sum(x1.^2,1);
avg e2(nf,:)=sum(x2.^2,1);
h1(nf,:)=sum(p1.*log10(p1),1);
h2(nf,:)=sum(p2.*log10(p2),1);
end
Ce1=sum(avg e1,1)./nf;
Ch1=sum(h1,1)./nf;
Ce2=sum(avg e2,1)./nf;
Ch2=sum(h2,1)./nf;
M1=(avg e1-repmat(Ce1,length(avg e1),1)).*(h1-repmat(Ch1,length(avg e1),1));
M \text{ av1}=\text{mean}(M1,1);
EE1=sqrt(1+abs(M av1))
M2=(avg_e2-repmat(Ce2,length(avg_e2),1)).*(h2-repmat(Ch2,length(avg_e2),1));
M av2=mean(M2,1);
EE2=sqrt(1+abs(M av2))
tru op=repmat([1 1 1 0 0 0],1,2);
% FB=[ ST S2T; EE1 EE2; tru op].'
```

```
% frequency bias
L=length(puls11);
Fs=sam rate1;
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
f = Fs/2*linspace(0,1,NFFT/2+1);
sigfft1=fft(puls11,NFFT)/L;
sigfft2=fft(puls12,NFFT)/L;
sigfft3=fft(puls13,NFFT)/L;
sigfft4=fft(puls14,NFFT)/L;
sigfft5=fft(puls15,NFFT)/L;
sigfft6=fft(puls16,NFFT)/L;
[fg msig1]=max(abs(sigfft1(1:NFFT/2+1)));
[fg msig2]=max(abs(sigfft2(1:NFFT/2+1)));
[fg msig3]=max(abs(sigfft3(1:NFFT/2+1)));
[fg msig4]=max(abs(sigfft4(1:NFFT/2+1)));
[fg msig5]=max(abs(sigfft5(1:NFFT/2+1)));
[fg msig6]=max(abs(sigfft6(1:NFFT/2+1)));
msig=[ msig1 msig2 msig3 msig4 msig5 msig6]./sam rate1;
ftsig1=sum((f'.^2).*abs(sigfft1(1:NFFT/2+1))).^0.5;
ftsig2=sum((f'.^2).*abs(sigfft2(1:NFFT/2+1))).^0.5;
ftsig3=sum((f'.^2).*abs(sigfft3(1:NFFT/2+1))).^0.5;
ftsig4=sum((f'.^2).*abs(sigfft4(1:NFFT/2+1))).^0.5;
ftsig5=sum((f'.^2).*abs(sigfft5(1:NFFT/2+1))).^0.5;
ftsig6=sum((f'.^2).*abs(sigfft6(1:NFFT/2+1))).^0.5;
ftsig=[ftsig1 ftsig2 ftsig3 ftsig4 ftsig5 ftsig6]./1000;
chafft1=fft(puls21,NFFT)/L;
chafft2=fft(puls22,NFFT)/L;
chafft3=fft(puls23,NFFT)/L;
chafft4=fft(puls24,NFFT)/L;
chafft5=fft(puls25,NFFT)/L;
chafft6=fft(puls26,NFFT)/L;
```

ftcha=[ftcha1 ftcha2 ftcha3 ftcha4 ftcha5 ftcha6]./1000;

```
cenftsig1=sum((f').*abs(sigfft1(1:NFFT/2+1)))/sum(abs(sigfft1(1:NFFT/2+1))); cenftsig2=sum((f').*abs(sigfft2(1:NFFT/2+1)))/sum(abs(sigfft2(1:NFFT/2+1))); cenftsig3=sum((f').*abs(sigfft3(1:NFFT/2+1)))/sum(abs(sigfft3(1:NFFT/2+1))); cenftsig4=sum((f').*abs(sigfft4(1:NFFT/2+1)))/sum(abs(sigfft4(1:NFFT/2+1))); cenftsig5=sum((f').*abs(sigfft5(1:NFFT/2+1)))/sum(abs(sigfft5(1:NFFT/2+1))); cenftsig6=sum((f').*abs(sigfft6(1:NFFT/2+1)))/sum(abs(sigfft6(1:NFFT/2+1))); cenftsig=[cenftsig1 cenftsig2 cenftsig3 cenftsig4 cenftsig5 cenftsig6]./1000; cenftcha1=sum((f').*abs(chafft1(1:NFFT/2+1)))/sum(abs(sigfft1(1:NFFT/2+1))); cenftcha2=sum((f').*abs(chafft2(1:NFFT/2+1)))/sum(abs(chafft3(1:NFFT/2+1))); cenftcha4=sum((f').*abs(chafft4(1:NFFT/2+1)))/sum(abs(chafft3(1:NFFT/2+1))); cenftcha5=sum((f').*abs(chafft5(1:NFFT/2+1)))/sum(abs(chafft5(1:NFFT/2+1))); cenftcha6=sum((f').*abs(chafft6(1:NFFT/2+1)))/sum(abs(chafft6(1:NFFT/2+1))); cenftcha6=sum((f').*abs(chafft6(1:NFFT/2+1)))/sum(abs(chafft6(1:NFFT/2+1))); cenftcha6=sum((f').*abs(chafft6(1:NFFT/2+1)))/sum(abs(chafft6(1:NFFT/2+1))); cenftcha6=cenftcha1 cenftcha2 cenftcha3 cenftcha4 cenftcha5 cenftcha6]./1000;
```

FB=[ST S2T; EE1 EE2;zcr1 zcr2; ftsig ftcha; cenftsig cenftcha;msig mcha; tru op].'