B.Tech. Third Semester (Computer Technology / Computer Engineering / Information Technology) (C.B.C.S.) Winter 2022

Mathematics-III / Applied Mathematics-III

P. Pages: 3

SPM/KW/22/2535/2541/2547

Max. Marks: 70

Time: Three Hours

Notes:

- 1. All questions carry marks as indicated.
- 2. Solve Question 1 OR Questions No. 2.
- 3. Solve Question 3 OR Questions No. 4.
- Solve Question 5 OR Questions No. 6.
- Solve Question 7 OR Questions No. 8.
- Solve Question 9 OR Questions No. 10.
- Use of non programmable calculator is permitted.

Find L.T. of
$$\frac{e^{-at} - e^{-bt}}{t}$$
, hence evaluate $\int_{0}^{\infty} \frac{e^{-at} - e^{-bt}}{t} dt$

Find
$$L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$$
 by using Convolution theorem.

Find Fourier transform of
$$f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$$
, hence find $\int_{0}^{\infty} \frac{\sin x}{x} dx$

OR

2. a) Find
$$L\left\{\int_{0}^{t} \sin u du\right\}$$

b) Solve
$$\frac{d^2y}{dt^2} + 9y = \cos 2t$$
, given $y(0) = 1$, $y(\pi/2) = -1$

Solve the integral equation
$$\int_{0}^{\infty} f(x)\cos \lambda x dx = e^{-\lambda}, \ \lambda > 0$$

3. a) Find Z-transform
$$\sin n\theta \cos n\theta$$
.

b) By using convolution theorem,
$$z^{-1} \left\{ \frac{z^2}{(z-1)(z-3)} \right\}$$

OR

5

- Using Power series method, find $z^{-1}\left\{\frac{1}{z^2-3z+2}\right\}$, for the region |z|<1.
 - Solve the difference equation by Z-transform. 7 b) $y_{n+2} + 5y_{n+1} + 6y_n = 6^n$, given y(0) = 0, y(1) = 1.
- Reduce the given matrix in diagonal form, $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & 1 \\ 2 & -1 & 3 \end{bmatrix}$ 7 5. a)
 - Using Sylvester's Theorem, solve if $A = \begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$, show that $\log_e e^A = A$. 7

OR

7

- 6. a) Find the singular values of the matrix $A = \begin{bmatrix} 0 & 1 & 1 \\ \sqrt{2} & 2 & 0 \\ 0 & 1 & 1 \end{bmatrix}$ and find the singular value decomposition of A. https://www.rtmnuonline.com
 - Find the largest eigen value and the corresponding eigen vector for the matrix. 7
- 7. a) A density function of random variable X is. $f(x) = \begin{cases} 2e^{-2x}, & x \ge 0 \\ 0, & \text{otherwise} \end{cases}$ 7
 - i) E(X)
 - ii) Var(X)iv) $E[(X-1)^2]$
 - If 3% of electric bulbs manufactured by a company are defective, find the probability that in a sample of 100 bulbs-
 - - i) Exactly 2 ii) More than 5
 - iii) Between I and 3 iv) At the most 2,

v) At least 2 bulbs will be defective

OR

8. Find the moment generating function of the random variable 7 $X = \begin{cases} 1/2, & \text{Prob.}1/2 \\ -1/2 & \text{Prob.}1/2 \end{cases}$ Also find first four moments about the origin.

iii) σ_X

A machine produces bolts which are 10% defective. Find the probability that in a random sample of 400 bolts produced by this machine.

7

7

7

7

7

- Between 30 and 50
- at the most 30, ii)
- iii) 55 or more of the bolts will be defective.
- Find the mode from the following

A control of the tonowing data.								
Age	0-6	6-12	12-18	18-24	24.20	20.26	16.40	
Frequency	6				24-30	30-36	30-42	
1-1-01109	_ 0	11	25	35	18	12	6	ĺ
								ı

b) Calculate the mean and standard deviation for the foll

Size of item	data standard deviation for the following data.						
	6	7	8	9	10	11	12
Frequency	3	6	9	13	8	5	4

OR

- 10. Let x_1, x_2, x_3 are three variates measured from their mean with n = 10, $\Sigma x_1^2 = 90$, $\Sigma x_2^2 = 160$, $\Sigma x_3^2 = 40$, $\Sigma x_1 x_2 = 60$, $\Sigma x_1 x_3 = 40$ and $\Sigma x_2 x_3 = 60$ calculate the multiple correlation coefficient $R_{1,23}$.
 - Calculate coefficient of skewness of the following distribution. b)

х	0	1	2	3	4	5	6	7	8
f	7	12	32	56	70	56	28	8	l

15