▼ 第九次作业

- ▼ 定义
 - **2.1**
 - **2.2**
 - **2.3**
 - **2.4**

▼ 定理

- **2.1**
- **2.2**
- **2.4**
- **2.5**

▼ 例题

- **2.1**
- **2.2**
- **2.3**
- **2.6**
- **2.8**
- **2.9**

▼ 习题

- **2.1.1**
- **2.2.1**

第九次作业

2022211363 谢牧航

定义

2.1

如果 V 是数域 K 上的线性空间,对任意的 $x \in V$,定义一个实值函数 $\|x\|$,它满足以下三个条件:

- (1) 非负性: 当 $x \neq 0$ 时, ||x|| > 0; 当 x = 0 时, ||x|| = 0;
- (2) 齐次性: $\|\alpha x\| = |\alpha| \|x\|$ $(\alpha \in K, x \in V)$;
- (3) 三角不等式: $\|x+y\| \leq \|x\| + \|y\|$ $(x,y \in V)$ 。

2.2

满足 $c_1||x||_{\beta} \leq ||x||_{\alpha} \leq c_2||x||_{\beta}$ 的两个范数 $||\cdot||_{\alpha}$ 和 $||\cdot||_{\beta}$ 称为等价的。

2.3

设矩阵 $A \in C^{m \times n}$, 定义一个实值函数 $\|A\|$, 它满足以下三个条件:

(1) 非负性: 当 $A \neq O$ 时, ||A|| > 0; 当 A = O 时, ||A|| = 0;

(2) 齐次性: ||aA|| = |a|||A|| $(a \in C)$;

(3) 三角不等式: $||A + B|| \le ||A|| + ||B||$ $(B \in C^{m \times n})$ 。

则称 $\|A\|$ 为 A 的广义矩阵范数。若对 $C^{m imes n}$, $C^{n imes l}$ 及 $C^{m imes l}$ 上的同类广义矩阵范数 $\|\cdot\|$ 还满足下面一个条件

(4) 相容性: $\|AB\| \leq \|A\| \|B\|$ $(B \in C^{n \times l})$ 。

则称 $\|\cdot\|$ 为 $C^{m\times n}$ 上的矩阵范数。

2.4

对于 $C^{m \times n}$ 上的矩阵范数 $\|\cdot\|_M$ 和 C^m 与 C^n 上的同类向量范数 $\|\cdot\|_V$,如果满足

$$||Ax||_V \le ||A||_M ||x||_V \quad (\forall A \in C^{m \times n}, \forall x \in C^n)$$

则称矩阵范数 $\|\cdot\|_M$ 与向量范数 $\|\cdot\|_V$ 是相容的。

定理

2.1

有限维线性空间上的不同范数是等价的。

2.2

 C^n 中的向量序列

$$x^{(k)} = (\xi_1^{(k)}, \xi_2^{(k)}, \dots, \xi_n^{(k)}) \quad (k = 1, 2, 3, \dots)$$

收敛到向量 $x = (\xi_1, \xi_2, \dots, \xi_n)$, 当且仅当对任何一个向量范数 $\|\cdot\|$, 数列

$$\|x^{(k)}-x\|$$

的极限为零。

2.4

已知 C^m 和 C^n 上的向量范数 $\|\cdot\|$, 设 $A \in C^{m \times n}$, 则矩阵

$$||A|| = \max_{||x||=1} ||Ax||$$

是 $C^{m \times n}$ 上的矩阵范数,且与已知的向量范数相容。

2.5

设矩阵 $A=(a_{ij})_{m\times n}\in C^{m\times n}$, $x=(\xi_1,\xi_2,\dots,\xi_n)^T\in C^n$,则从属于向量的三种范数 $\|x\|_1$, $\|x\|_2$, $\|x\|_\infty$ 的矩阵 范数计算公式依次为:

- (1) $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|;$
- (2) $||A||_2 = \sqrt{\lambda_1}$, λ_1 为 $A^H A$ 的最大特征值;
- (3) $\|A\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|_{\bullet}$

通常称 $\|A\|_1$, $\|A\|_2$ 及 $\|A\|_\infty$ 依次为**列和范数**, **谱范数**及**行和范数**。

例题

2.1

在 n 维空间 C^n 上,复向量 $x=(\xi_1,\xi_2,\ldots,\xi_n)$ 的长度定义为

$$||x|| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \ldots + |\xi_n|^2}$$

证明其就是一种范数。

(1) 非负性:当 $x \neq 0$ 时, $\|x\| > 0$;当 x = 0 时,有 $\|x\| = \sqrt{0^2 + \ldots + 0^2} = 0$ 。

(2) 齐次性:对任意的复数 a,有

$$ax = (a\xi_1, a\xi_2, \dots, a\xi_n)$$

所以

$$\|ax\| = \sqrt{|a\xi_1|^2 + |a\xi_2|^2 + \ldots + |a\xi_n|^2} = |a|\sqrt{|\xi_1|^2 + |\xi_2|^2 + \ldots + |\xi_n|^2} = |a|\|x\|$$

(3) 三角不等式:对于任意两个复向量 $x=(\xi_1,\xi_2,\ldots,\xi_n)$,和 $y=(\eta_1,\eta_2,\ldots,\eta_n)$,有

$$x+y=(\xi_1+\eta_1,\xi_2+\eta_2,\ldots,\xi_n+\eta_n)$$

可以得

$$||x+y|| = \sqrt{|\xi_1 + \eta_1|^2 + |\xi_2 + \eta_2|^2 + \ldots + |\xi_n + \eta_n|^2}$$

$$||x|| = \sqrt{|\xi_1|^2 + |\xi_2|^2 + \ldots + |\xi_n|^2}$$

$$||y|| = \sqrt{|\eta_1|^2 + |\eta_2|^2 + \ldots + |\eta_n|^2}$$

有

$$||x + y||^2 = (x + y, x + y) = (x, x) + 2\operatorname{Re}(x, y) + (y, y)$$

因为

$$Re(x, y) \le |(x, y)| \le ||x|| ||y||$$

所以

$$||x + y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = (||x|| + ||y||)^2$$

即

$$||x + y|| \le ||x|| + ||y||$$

所以 $\|\cdot\|$ 是 C^n 上的范数。

2.2

证明 $\|x\|=\max_i |\xi_i|$ 是 C^n 上的一种范数,这里 $x=(\xi_1,\xi_2,\ldots,\xi_n)\in C^n$ 。

- (1) 非负性: 当 $x \neq 0$ 时,有 $||x|| = \max_i |\xi_i| > 0$; 当 x = 0 时,有 ||x|| = 0。
- (2) 齐次性:对任意的 $a \in C$,有

$$\|ax\| = \max_i |a\xi_i| = |a| \max_i |\xi_i| = |a| \|x\|$$

(3) 三角不等式:对 C^n 的任意两个向量 $x=(\xi_1,\xi_2,\ldots,\xi_n)$,和 $y=(\eta_1,\eta_2,\ldots,\eta_n)$,有

$$\|x+y\| = \max_i |\xi_i + \eta_i| \leq \max_i |\xi_i| + \max_i |\eta_i| = \|x\| + \|y\|$$

所以 $\|\cdot\|$ 是 C^n 上的范数。

2.3

证明 $\|x\|=\sum_{i=1}^n |\xi_i|$,也是 C^n 上的一种范数,其中 $x=(\xi_1,\xi_2,\ldots,\xi_n)\in C^n$ 。

- (1) 非负性: $x \neq 0$ 时,有 $\|x\| = \sum_{i=1}^n |\xi_i| > 0$; 当 x = 0 时,由于 x 的每一分量都是零,故 $\|x\| = 0$ 。
- (2) 齐次性:对任意复数 $a \in C$,有

$$\|ax\| = \sum_{i=1}^n |a\xi_i| = |a| \sum_{i=1}^n |\xi_i| = |a| \|x\|$$

(3) 三角不等式: 对任意两个向量 $x, y \in \mathbb{C}^n$, 有

$$\|x+y\| = \sum_{i=1}^n |\xi_i + \eta_i| \leq \sum_{i=1}^n (|\xi_i| + |\eta_i|) = \sum_{i=1}^n |\xi_i| + \sum_{i=1}^n |\eta_i| = \|x\| + \|y\|$$

所以 $\|\cdot\|$ 是 C^n 上的范数。

2.6

给定线性空间 V^n 中的向量 x_1,x_2,\ldots,x_n ,设 $x\in V^n$ 在该基下的坐标向量为 $x=(\xi_1,\xi_2,\ldots,\xi_n)^T$,那么

$$\|x\|_p = \|lpha\|_p \quad (1 \leq p < +\infty)$$

证明 $\|\cdot\|_p$ 是 V^n 上的范数。

(1) 非负性:当 $x \neq 0$ 时,有 $\|x\|_p = \|\alpha\|_p > 0$;当 x = 0 时,有 $\|x\|_p = \|\alpha\|_p = 0$ 。

(2) 齐次性:对任意的 $a \in C$,有

$$\|lpha x\|_p = \left(\sum_{i=1}^n |lpha x_i|^p
ight)^{1/p} = \left(\sum_{i=1}^n |lpha|^p |x_i|^p
ight)^{1/p} = |lpha| \left(\sum_{i=1}^n |x_i|^p
ight)^{1/p} = |lpha| \|x\|_p$$

(3) 三角不等式:对任意两个向量 $x,y\in V^n$,有

$$\|x+y\|_p = \left(\sum_{i=1}^n |x_i+y_i|^p\right)^{1/p} \leq \left(\sum_{i=1}^n (|x_i|+|y_i|)^p\right)^{1/p} \leq \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^n |y_i|^p\right)^{1/p} = \|x\|_p + \|y\|_p$$

(闵可夫斯基不等式)

所以 $\|\cdot\|_p$ 是 V^n 上的范数。

2.8

例 2.8 设矩阵 $A=(a_{ij})_{m imes n}\in C^{m imes n}$,证明Frobenius范数

$$\|A\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2
ight)^{1/2} = (\operatorname{tr}(A^HA))^{1/2}$$

是 $C^{m \times n}$ 上的矩阵范数,且与向量范数 $\|\cdot\|_2$ 相容。

(1) 非负性: 当 $A \neq O$ 时,有 $\|A\|_F = (\operatorname{tr}(A^HA))^{1/2} > 0$; 当 A = O 时,有 $\|A\|_F = (\operatorname{tr}(A^HA))^{1/2} = 0$ 。

(2) 齐次性:对任意的 $a \in C$,有

$$\|aA\|_F = \left(\sum_{i=1}^m \sum_{j=1}^n |aa_{ij}|^2
ight)^{1/2} = |a| \left(\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2
ight)^{1/2} = |a| \|A\|_F$$

(3) 三角不等式:

设 $B \in C^{m imes n}$,且 A 的第 j 列为 a_j ,B 的第 j 列为 b_j $(j=1,2,\ldots,n)$,则有

$$\|A+B\|_F^2 = \|a_1+b_1\|_2^2 + \ldots + \|a_n+b_n\|_2^2 \leq (\|a_1\|_2 + \|b_1\|_2)^2 + \ldots + (\|a_n\|_2 + \|b_n\|_2)^2 =$$

$$(\|a_1\|_2^2 + \ldots + \|a_n\|_2^2) + 2(\|a_1\|_2\|b_1\|_2 + \ldots + \|a_n\|_2\|b_n\|_2) + (\|b_1\|_2^2 + \ldots + \|b_n\|_2^2)$$

对上述第二项应用柯西-施瓦茨不等式,可得

$$||A + B||_F^2 \le ||A||_F^2 + 2||A||_F ||B||_F + ||B||_F^2 = (||A||_F + ||B||_F)^2$$

即三角不等式成立。

(4) 相容性:

设
$$B=(b_{ij})\in C^{n imes l}$$
,则 $AB=(\sum_{k=1}^n a_{ik}b_{kj})\in C^{m imes l}$,于是有

$$\|AB\|_F^2 = \sum_{i=1}^m \sum_{j=1}^l \left|\sum_{k=1}^n a_{ik} b_{kj}
ight|^2 \leq \sum_{i=1}^m \sum_{j=1}^l \left(\sum_{k=1}^n |a_{ik}| |b_{kj}|
ight)^2$$

对上述中括号内的项应用柯西-施瓦茨不等式,可得

$$||AB||_F^2 \le \sum_{i=1}^m \sum_{j=1}^l \left(\sum_{k=1}^n |a_{ik}|^2\right) \left(\sum_{k=1}^n |b_{kj}|^2\right)$$

$$= \left(\sum_{i=1}^m \sum_{k=1}^n |a_{ik}|^2\right) \left(\sum_{j=1}^l \sum_{k=1}^n |b_{kj}|^2\right) = ||A||_F^2 ||B||_F^2$$

即 $||A||_F$ 是 A 的矩阵范数。

若令 $B=x\in C^{n\times 1}$,则有

$$||Ax||_2 = ||AB||_F \le ||A||_F ||B||_F = ||A||_F ||x||_2$$

即矩阵范数 $\|\cdot\|_F$ 与向量范数 $\|\cdot\|_2$ 相容。

2.9

设 $\|\cdot\|_M$ 是 $C^{n\times n}$ 上的矩阵范数,任取在 C^n 中的非零向量 y,则函数

$$\|x\|_V = \|xy^H\|_M (orall x \in C^n)$$

是 C^n 上的向量范数, 且矩阵范数 $\|\cdot\|_M$ 和向量范数 $\|\cdot\|_V$ 相容。

- (1) 非负性:当 $x \neq 0$ 时, $xy^H \neq O$,从而 $\|x\|_V > 0$;当 x = 0 时, $xy^H = O$,从而 $\|x\|_V = 0$ 。
- (2) 齐次性:对任意复数 $\alpha \in C$,有

$$\|\alpha x\|_V = \|\alpha x y^H\|_M = |lpha| \|x y^H\|_M = |lpha| \|x\|_V$$

(3) 三角不等式: 对任意 $x_1, x_2 \in C^n$, 有

$$\|x_1+x_2\|_V=\|(x_1+x_2)y^H\|_M=\|x_1y^H+x_2y^H\|_M\leq \|x_1y^H\|_M+\|x_2y^H\|_M=\|x_1\|_V+\|x_2\|_V$$
因此, $\|x\|_V$ 是 C^n 上的向量范数。对 $A\in C^{n imes n},\,x\in C^n$ 时,有

$$\|Ax\|_V = \|(Ax)y^H\|_M = \|A(xy^H)\|_M \leq \|A\|_M \|xy^H\|_M = \|A\|_M \|x\|_V$$

即矩阵范数 $\|\cdot\|_M$ 与向量范数 $\|\cdot\|_V$ 相容。

习题

2.1.1

求向量 $e=(1,1,\cdots,1)$ 的 l_1,l_2,l_∞ 范数。

解:

$$\|e\|_1 = \sum_{i=1}^n |e_i| = \sum_{i=1}^n 1 = n$$
 $\|e\|_2 = \sqrt{\sum_{i=1}^n |e_i|^2} = \sqrt{\sum_{i=1}^n 1} = \sqrt{n}$
 $\|e\|_{\infty} = \max_i |e_i| = \max_i 1 = 1$

2.2.1

求矩阵
$$A=\begin{bmatrix}-1&2&1\end{bmatrix}$$
 和 $B=\begin{bmatrix}-j&2&3\\1&0&j\end{bmatrix}$ 的 $||\cdot||_1,||\cdot||_2,||\cdot||_\infty$ 范数。

解:

$$\begin{split} \|A\|_1 &= \max_j \sum_{i=1}^m |a_{ij}| = \max_j \sum_{i=1}^m |a_{ij}| = \max_j \sum_{i=1}^m |a_{ij}| = 2 \\ \|A\|_2 &= \sqrt{\lambda_1} = \sqrt{6} \\ \|A\|_\infty &= \max_i \sum_{j=1}^n |a_{ij}| = \max_i \sum_{j=1}^n |a_{ij}| = \max_i \sum_{j=1}^n |a_{ij}| = 4 \\ \|B\|_1 &= \max_j \sum_{i=1}^m |b_{ij}| = \max_j \sum_{i=1}^m |b_{ij}| = \max_j \sum_{i=1}^m |b_{ij}| = 4 \\ \|B\|_2 &= \sqrt{\lambda_1} = \sqrt{8 + 2\sqrt{13}} \\ \|B\|_\infty &= \max_i \sum_{j=1}^n |b_{ij}| = \max_i \sum_{j=1}^n |b_{ij}| = \max_i \sum_{j=1}^n |b_{ij}| = 6 \end{split}$$