A1. Espacios vectoriales. Aplicaciones lineales

- 1. Se considera el subconjunto P de \mathbb{R}^n formado por todas las n-uplas de números reales tales que los elementos de cada n-upla forman una progresión aritmética.
 - a) Demuestre que P es un subespacio de \mathbb{R}^n y determine una base \mathcal{B} del mismo.
 - b) Calcule, respecto de la base \mathcal{B} , las coordenadas del vector (6,9,12,...,3n+3).

Este problema figura resuelto en la página 133 del volumen 1 de Problemas de Oposiciones de Editorial Deimos.

2. Sea F el siguiente subconjunto del espacio vectorial $\mathcal{M}_2(\mathbb{R})$:

$$F = \left\{ \begin{bmatrix} a+b & -b \\ b & a-b \end{bmatrix} : a, b \in \mathbb{R} \right\}$$

- a) Demuestre que F es un subespacio vectorial de $\mathcal{M}_2(\mathbb{R})$ y dé una base y la dimensión de dicho subespacio.
- b) Demuestre que $\mathbf{A}^n \in F$ para cualquier $\mathbf{A} \in F$ y cada n entero no negativo.
- c) Determine un subespacio G de $\mathcal{M}_2(\mathbb{R})$ tal que $F \oplus G = \mathcal{M}_2(\mathbb{R})$.

Este problema es el 97.14 del volumen 4 de Problemas de Oposiciones de Editorial Deimos.

3. En el espacio vectorial $\mathcal{M}_2(\mathbb{R})$ de las matrices cuadradas de orden dos con elementos reales, se consideran los subespacios U y W siguientes:

$$U = \left\{ \begin{pmatrix} a-b+c & b-c \\ 0 & c \end{pmatrix} : a,b,c \in \mathbb{R} \right\}, \qquad W = \mathcal{L} \left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 0 \\ 1 & -1 \end{pmatrix} \right\}$$

- a) Determine una base de U y otra de W.
- b) Determine los subespacios $U \cap W$ y U + W.

Este problema es totalmente análogo al 02.7 del volumen 4 de Problemas de Oposiciones de Editorial Deimos.

4. Demuestre que $\mathcal{B} = \{1, x-a, (x-a)^2, \dots, (x-a)^n\}$ es una base del espacio vectorial $\mathbb{R}_n[x]$, sea cual sea $a \in \mathbb{R}$. En el caso n=4 y a=2, halle las coordenadas del vector $p(x)=5x^4+6x^3-4x+2$ respecto de la base \mathcal{B} .

Este problema figura resuelto en la página 301 del volumen 1 de Problemas de Oposiciones de Editorial Deimos.

academiadeimos.es

5. En el espacio vectorial \mathbb{P}_n de los polinomios reales de grado menor o igual que n, se consideran las bases

$$\mathcal{B} = \{1, x, x^2 \dots, x^n\}$$
 y $\mathcal{B}' = \{1, 1 + x, (1+x)^2 \dots, (1+x)^n\}.$

academia@academiadeimos.es

- a) Encuentre las ecuaciones del cambio de la base \mathcal{B}' a la base \mathcal{B} y las del cambio recíproco.
- b) Si las coordenadas del polinomio r(x) en la base \mathcal{B}' son $(1,1,\ldots,1)$, halle sus coordenadas en la base \mathcal{B} .

Este problema es el 96.1 del volumen 4 Problemas de Oposiciones de Editorial Deimos y allí figura resuelto.

- **6.** Determine, en la base canónica de \mathbb{R}^3 , la matriz de la aplicación lineal $\mathbf{f}: \mathbb{R}^3 \to \mathbb{R}^3$ definida por las siguientes condiciones:
 - a) La restricción de ${\bf f}$ al plano $\pi: x+y+z=0$ es una homotecia de razón 3.
 - b) La restricción de **f** a la recta $r: \begin{cases} 2x + 4y + 3z = 0 \\ x + 2y + z = 0 \end{cases}$ es la identidad.

Este problema figura resuelto en la página 194 del volumen 1 de Problemas de Oposiciones de Editorial Deimos.

A1

7. Los vectores $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ son una base del espacio vectorial real V. El endomorfismo \mathbf{f} de V tiene núcleo $\mathcal{L}\{\mathbf{u}, \mathbf{v} - \mathbf{w}\}$ y cumple que $f(\mathbf{u} + \mathbf{v} + \mathbf{w}) = \mathbf{u} + \mathbf{v} + \mathbf{w}$. Demuestre que la aplicación lineal $\mathbf{g} = \mathbf{f} - \mathbf{i}$, donde \mathbf{i} es el endomorfismo identidad, verifica $\mathbf{g}^n = (-1)^{n+1}\mathbf{g}$, donde \mathbf{g}^n es la composición de \mathbf{g} consigo misma n veces.

Este problema figura resuelto en la página 336 del volumen 2 de Problemas de Oposiciones de Editorial Deimos.

- 8. En el espacio vectorial \mathbb{P}_3 de los polinomios reales de grado menor o igual que 3:
 - a) Demuestre que $\{1, x+1, (x+1)^2, x^3\}$ es una base.
 - b) Halle las coordenadas de $(x+1)^3$ respecto a esta base.
 - c) Fijando como base de \mathbb{P}_3 la del apartado a), determine la matriz del endomorfismo \mathbf{f} que a cada polinomio le hace corresponder su derivada.

Este problema figura resuelto en la página 23 del volumen 1 de Problemas de Oposiciones de Editorial Deimos.

9. Sea $n \in \mathbb{N}^+$ y sea $\mathbb{R}_n[x]$ el espacio vectorial de los polinomios con coeficientes reales de grado menor o igual que n. Sea \mathbf{f} la aplicación que a cada polinomio p(x) le asigna:

$$f(p(x)) = p(x+1) - 2p(x) + p(x-1)$$
.

- a) Demuestre que \mathbf{f} es un endomorfismo de $\mathbb{R}_n[x]$.
- b) Calcule los subespacios $\operatorname{im} \mathbf{f}$ y $\ker \mathbf{f}$.
- c) Sea a(x) un polinomio de im \mathbf{f} y ker \mathbf{f} . Demuestre que existe un único polinomio $q(x) \in \mathbb{R}_n[x]$ tal que $\mathbf{f}(q(x)) = a(x)$ y q(0) = q'(0) = 0.

Este problema figura resuelto en la página 585 del volumen 2 de Problemas de Oposiciones de Editorial Deimos.

10. Sea f un homomorfismo de \mathbb{R}^4 en \mathbb{R}^3 definido por:

academiadeimos.es

$$\mathbf{f}(1,1,1,1) = (0,0,1), \qquad \mathbf{f}(1,0,1,0) = (1,1,-1), \qquad \mathbf{f}(1,1,1,0) = (0,0,-1), \qquad \mathbf{f}(-1,-2,0,0) = (1,1,1)$$

- a) Halle la matriz de \mathbf{f} respecto de las bases canónicas de \mathbb{R}^4 y \mathbb{R}^3 .
- b) La dimensión, unas ecuaciones y una base de im f y kerf.

Este problema figura resuelto en la página 484 del volumen 2 de Problemas de Oposiciones de Editorial Deimos.

11. Sea V un espacio vectorial real de dimensión tres y sea $\mathcal{B} = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ una base de V. Sea $\mathbf{f}: V \to V$ el único endomorfismo de V tal que

$$\mathbf{f}(\mathbf{u}_1) = -\mathbf{u}_1,$$
 $\mathbf{f}(\mathbf{u}_2) = \mathbf{u}_1 + 3\mathbf{u}_3,$ $\mathbf{f}(\mathbf{u}_3) = 2\mathbf{u}_1 - \mathbf{u}_2$

a) Halle unas ecuaciones de f
 respecto de la base $\mathcal{B}_1 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ de V dada por:

$$\mathbf{v}_1 = -\mathbf{u}_1, \qquad \mathbf{v}_2 = 2\mathbf{u}_2 + \mathbf{u}_3, \qquad \mathbf{v}_3 = -2\mathbf{u}_3$$

academiadeimos.es

b) Halle unas ecuaciones de \mathbf{f} respecto de las bases $\mathcal{B}_1 = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ del espacio de salida, y $\mathcal{B}_2 = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ del espacio de llegada, donde:

$$\mathbf{w}_1 = \mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3, \qquad \mathbf{w}_2 = 2\mathbf{v}_1 + \mathbf{v}_2 + 3\mathbf{v}_3, \qquad \mathbf{w}_3 = 3\mathbf{v}_1 + 3\mathbf{v}_3$$

Este problema figura resuelto en la página 249 del volumen Problemas de Algebra Lineal, de Braulio De Diego. Editorial Deimos.

