$12n_{0346} (K12n_{0346})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -8563315867395u^{19} + 12169590007513u^{18} + \dots + 13082431761068b + 64802000815324, \\ & 52899877847623u^{19} - 79722292100065u^{18} + \dots + 13082431761068a - 413103210378158, \\ & u^{20} - 2u^{19} + \dots - 12u + 4 \rangle \\ I_2^u &= \langle u^7 - u^6 - 2u^5 + 3u^4 - 2u^2 + b + 4u - 2, \quad -u^7 - u^6 + 3u^5 + 2u^4 - 3u^3 + a - 2, \\ & u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1 \rangle \\ I_3^u &= \langle -au + b - u - 1, \ 2a^2 + au - 1, \ u^2 - 2 \rangle \\ I_1^v &= \langle a, \ b - v + 2, \ v^2 - 3v + 1 \rangle \end{split}$$

* 4 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 34 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -8.56 \times 10^{12} u^{19} + 1.22 \times 10^{13} u^{18} + \dots + 1.31 \times 10^{13} b + 6.48 \times 10^{13}, \ 5.29 \times 10^{13} u^{19} - 7.97 \times 10^{13} u^{18} + \dots + 1.31 \times 10^{13} a - 4.13 \times 10^{14}, \ u^{20} - 2u^{19} + \dots - 12u + 4 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -4.04358u^{19} + 6.09384u^{18} + \dots - 25.5560u + 31.5769 \\ 0.654566u^{19} - 0.930224u^{18} + \dots + 6.84847u - 4.95336 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -4.04358u^{19} + 6.09384u^{18} + \dots - 25.5560u + 31.5769 \\ -0.367222u^{19} + 0.611916u^{18} + \dots - 0.897037u + 3.01992 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -6.21544u^{19} + 9.28273u^{18} + \dots - 48.2193u + 51.0252 \\ 0.348398u^{19} - 0.661202u^{18} + \dots + 3.63448u - 3.80249 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -4.90774u^{19} + 7.58167u^{18} + \dots - 38.9378u + 42.2351 \\ 2.23801u^{19} - 3.26288u^{18} + \dots + 16.4563u - 17.7254 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -5.35239u^{19} + 8.30016u^{18} + \dots - 43.5388u + 45.8952 \\ 2.16712u^{19} - 3.30945u^{18} + \dots + 15.7609u - 18.5509 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 5.60383u^{19} - 8.48450u^{18} + \dots + 48.3882u - 47.1067 \\ -2.25347u^{19} + 3.54770u^{18} + \dots - 15.9192u + 19.1670 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$=\frac{\frac{8651471282093}{3270607940267}u^{19} - \frac{12603254258761}{3270607940267}u^{18} + \dots - \frac{78299168927818}{3270607940267}u - \frac{83998088848016}{3270607940267}u^{18} + \dots - \frac{12603254258761}{3270607940267}u^{18} + \dots - \frac{12603254258761}{327060794026$$

Crossings	u-Polynomials at each crossing
c_1	$u^{20} + 24u^{18} + \dots + 3807u + 81$
c_2, c_5	$u^{20} + 4u^{19} + \dots - 93u - 9$
c_3, c_4, c_8	$u^{20} + 2u^{19} + \dots + 12u + 4$
c_6, c_{10}	$u^{20} + 2u^{19} + \dots + 3200u + 256$
c ₇	$u^{20} - 6u^{19} + \dots - 6212u - 964$
c_9, c_{11}, c_{12}	$u^{20} + 12u^{19} + \dots - 58u + 1$

Crossings	Riley Polynomials at each crossing
c_1	$y^{20} + 48y^{19} + \dots - 10684791y + 6561$
c_2, c_5	$y^{20} + 24y^{18} + \dots - 3807y + 81$
c_3, c_4, c_8	$y^{20} - 14y^{19} + \dots - 432y + 16$
c_6, c_{10}	$y^{20} - 60y^{19} + \dots - 5160960y + 65536$
	$y^{20} + 58y^{19} + \dots - 44905072y + 929296$
c_9, c_{11}, c_{12}	$y^{20} - 44y^{19} + \dots - 2922y + 1$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.311540 + 0.820503I		
a = -1.183960 + 0.104977I	1.94026 - 0.82547I	0.912486 + 0.761117I
b = -0.936205 - 0.261735I		
u = -0.311540 - 0.820503I		-
a = -1.183960 - 0.104977I	1.94026 + 0.82547I	0.912486 - 0.761117I
b = -0.936205 + 0.261735I		
u = 0.806269 + 0.099052I		
a = -0.029427 - 0.611307I	-1.290640 + 0.060456I	-5.65835 + 0.55419I
b = 0.383913 - 0.245700I		
u = 0.806269 - 0.099052I		
a = -0.029427 + 0.611307I	-1.290640 - 0.060456I	-5.65835 - 0.55419I
b = 0.383913 + 0.245700I		
u = 1.33638		
a = -1.16154	3.62783	3.71420
b = 1.16836		
u = -1.301610 + 0.401831I		
a = 0.508418 - 0.295516I	-1.51005 + 5.52302I	-5.54282 - 3.24717I
b = -0.439577 + 0.851076I		
u = -1.301610 - 0.401831I		
a = 0.508418 + 0.295516I	-1.51005 - 5.52302I	-5.54282 + 3.24717I
b = -0.439577 - 0.851076I		
u = 1.037800 + 0.883330I		
a = 0.77758 - 1.27910I	4.14315 - 3.36874I	0.04800 + 2.58345I
b = -2.72069 - 2.90147I		
u = 1.037800 - 0.883330I		
a = 0.77758 + 1.27910I	4.14315 + 3.36874I	0.04800 - 2.58345I
b = -2.72069 + 2.90147I		
u = -1.38998		
a = -0.0133698	-6.53389	-14.0580
b = -1.23390		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.307583 + 1.370650I		
a = 0.05460 + 1.81689I	-16.9450 + 5.1999I	0.48479 - 2.11695I
b = -1.41200 + 5.33955I		
u = -0.307583 - 1.370650I		
a = 0.05460 - 1.81689I	-16.9450 - 5.1999I	0.48479 + 2.11695I
b = -1.41200 - 5.33955I		
u = 1.43456		
a = 0.671677	-4.98064	60.9990
b = 7.72000		
u = 0.486279		
a = -3.47218	6.88313	-9.17840
b = 1.37914		
u = 0.388073		
a = 0.457271	-1.01688	-12.8430
b = 0.718784		
u = 1.58364 + 0.49918I		
a = -1.064100 + 0.688577I	16.4234 - 11.7755I	-1.93237 + 4.54638I
b = 3.34498 + 2.38478I		
u = 1.58364 - 0.49918I		
a = -1.064100 - 0.688577I	16.4234 + 11.7755I	-1.93237 - 4.54638I
b = 3.34498 - 2.38478I		
u = -0.283054		
a = -3.06452	1.22670	10.7000
b = -0.370034		
u = -1.49310 + 0.84801I		
a = 1.22823 + 0.86872I	19.0199 + 2.7480I	-0.478669 - 0.983748I
b = -3.91160 + 3.62679I		
u = -1.49310 - 0.84801I		
a = 1.22823 - 0.86872I	19.0199 - 2.7480I	-0.478669 + 0.983748I
b = -3.91160 - 3.62679I		

II.
$$I_2^u = \langle u^7 - u^6 - 2u^5 + 3u^4 - 2u^2 + b + 4u - 2, -u^7 - u^6 + 3u^5 + 2u^4 - 3u^3 + a - 2, u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1 \rangle$$

$$a_{5} = \begin{pmatrix} 1\\0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0\\u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1\\-u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u\\-u^{3}+u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2}+1\\u^{4}-2u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3}+2u\\-u^{3}+u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{7}+u^{6}-3u^{5}-2u^{4}+3u^{3}+2\\-u^{7}+u^{6}+2u^{5}-3u^{4}+2u^{2}-4u+2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7}+u^{6}-3u^{5}-2u^{4}+3u^{3}+2\\-u^{7}+u^{6}+2u^{5}-3u^{4}+2u^{2}-3u+2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{3}+2u\\-u^{3}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{3}+2u\\-u^{3}+u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{5}-2u^{3}+u\\-u^{7}+3u^{5}-2u^{3}-u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0\\-u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{7}+u^{6}-3u^{5}-2u^{4}+3u^{3}+2\\-u^{7}+u^{6}+2u^{5}-3u^{4}+2u^{2}-3u+2 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^7 9u^6 10u^5 + 27u^4 2u^3 18u^2 + 20u 17$

Crossings	u-Polynomials at each crossing
c_1	$u^8 - 3u^7 + 7u^6 - 10u^5 + 11u^4 - 10u^3 + 6u^2 - 4u + 1$
c_2	$u^8 - u^7 - u^6 + 2u^5 + u^4 - 2u^3 + 2u - 1$
c_3, c_4	$u^8 + u^7 - 3u^6 - 2u^5 + 3u^4 + 2u - 1$
c_5	$u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1$
c_6, c_{10}	u^8
C ₇	$u^8 + 3u^7 + 7u^6 + 10u^5 + 11u^4 + 10u^3 + 6u^2 + 4u + 1$
<i>C</i> ₈	$u^8 - u^7 - 3u^6 + 2u^5 + 3u^4 - 2u - 1$
<i>C</i> 9	$(u+1)^8$
c_{11}, c_{12}	$(u-1)^8$

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^8 + 5y^7 + 11y^6 + 6y^5 - 17y^4 - 34y^3 - 22y^2 - 4y + 1$
c_2, c_5	$y^8 - 3y^7 + 7y^6 - 10y^5 + 11y^4 - 10y^3 + 6y^2 - 4y + 1$
c_3, c_4, c_8	$y^8 - 7y^7 + 19y^6 - 22y^5 + 3y^4 + 14y^3 - 6y^2 - 4y + 1$
c_6,c_{10}	y^8
c_9, c_{11}, c_{12}	$(y-1)^8$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.180120 + 0.268597I		
a = 0.805639 - 0.183365I	0.604279 - 1.131230I	-1.38132 + 1.25921I
b = -1.14297 - 0.89911I		
u = 1.180120 - 0.268597I		
a = 0.805639 + 0.183365I	0.604279 + 1.131230I	-1.38132 - 1.25921I
b = -1.14297 + 0.89911I		
u = 0.108090 + 0.747508I		
a = 0.189481 - 1.310380I	3.80435 - 2.57849I	1.74277 + 4.63100I
b = -0.02521 - 1.55019I		
u = 0.108090 - 0.747508I		
a = 0.189481 + 1.310380I	3.80435 + 2.57849I	1.74277 - 4.63100I
b = -0.02521 + 1.55019I		
u = -1.37100		
a = -0.729394	-4.85780	-25.4550
b = 6.70204		
u = -1.334530 + 0.318930I		
a = -0.708845 - 0.169402I	-0.73474 + 6.44354I	-1.71699 - 7.87618I
b = 1.07471 - 1.15185I		
u = -1.334530 - 0.318930I		
a = -0.708845 + 0.169402I	-0.73474 - 6.44354I	-1.71699 + 7.87618I
b = 1.07471 + 1.15185I		
u = 0.463640		
a = 2.15684	0.799899	-10.8330
b = 0.484913		

III.
$$I_3^u = \langle -au + b - u - 1, \ 2a^2 + au - 1, \ u^2 - 2 \rangle$$

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u \\ -u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} a \\ au + u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ au + 2a + u + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -a + \frac{1}{2}u \\ 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -a + \frac{1}{2}u - 1 \\ 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -a + \frac{1}{2}u \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -a + \frac{1}{2}u \\ 2a + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -4

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u-1)^4$
c_2	$(u+1)^4$
c_3, c_4, c_7 c_8	$(u^2-2)^2$
c_6, c_{11}, c_{12}	$(u^2+u-1)^2$
c_9, c_{10}	$(u^2 - u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^4$
c_3, c_4, c_7 c_8	$(y-2)^4$
c_6, c_9, c_{10} c_{11}, c_{12}	$(y^2 - 3y + 1)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.41421		
a = -1.14412	2.30291	-4.00000
b = 0.796180		
u = 1.41421		
a = 0.437016	-5.59278	-4.00000
b = 3.03225		
u = -1.41421		
a = 1.14412	2.30291	-4.00000
b = -2.03225		
u = -1.41421		
a = -0.437016	-5.59278	-4.00000
b = 0.203820		

IV.
$$I_1^v = \langle a, \ b - v + 2, \ v^2 - 3v + 1 \rangle$$

$$a_5 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ v - 2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2v+1 \\ v-2 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2v+1 \\ v-2 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -2v+1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2v \\ -1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 2v - 1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} v \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 14

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^2$
c_3, c_4, c_7 c_8	u^2
<i>C</i> ₅	$(u+1)^2$
c_{6}, c_{9}	$u^2 - u - 1$
c_{10}, c_{11}, c_{12}	$u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_5	$(y-1)^2$
c_3, c_4, c_7 c_8	y^2
c_6, c_9, c_{10} c_{11}, c_{12}	$y^2 - 3y + 1$

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.381966		
a = 0	-0.657974	14.0000
b = -1.61803		
v = 2.61803		
a = 0	7.23771	14.0000
b = 0.618034		

V. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$(u-1)^{6}(u^{8} - 3u^{7} + 7u^{6} - 10u^{5} + 11u^{4} - 10u^{3} + 6u^{2} - 4u + 1)$ $\cdot (u^{20} + 24u^{18} + \dots + 3807u + 81)$
c_2	$(u-1)^{2}(u+1)^{4}(u^{8}-u^{7}-u^{6}+2u^{5}+u^{4}-2u^{3}+2u-1)$ $\cdot (u^{20}+4u^{19}+\cdots-93u-9)$
c_3, c_4	$u^{2}(u^{2}-2)^{2}(u^{8}+u^{7}-3u^{6}-2u^{5}+3u^{4}+2u-1)$ $\cdot (u^{20}+2u^{19}+\cdots+12u+4)$
c_5	$ (u-1)^4 (u+1)^2 (u^8 + u^7 - u^6 - 2u^5 + u^4 + 2u^3 - 2u - 1) $ $ \cdot (u^{20} + 4u^{19} + \dots - 93u - 9) $
c_6	$u^{8}(u^{2}-u-1)(u^{2}+u-1)^{2}(u^{20}+2u^{19}+\cdots+3200u+256)$
c_7	$u^{2}(u^{2}-2)^{2}(u^{8}+3u^{7}+7u^{6}+10u^{5}+11u^{4}+10u^{3}+6u^{2}+4u+1)$ $\cdot (u^{20}-6u^{19}+\cdots-6212u-964)$
c_8	$u^{2}(u^{2}-2)^{2}(u^{8}-u^{7}-3u^{6}+2u^{5}+3u^{4}-2u-1)$ $\cdot (u^{20}+2u^{19}+\cdots+12u+4)$
<i>c</i> ₉	$((u+1)^8)(u^2-u-1)^3(u^{20}+12u^{19}+\cdots-58u+1)$
c_{10}	$u^{8}(u^{2}-u-1)^{2}(u^{2}+u-1)(u^{20}+2u^{19}+\cdots+3200u+256)$
c_{11}, c_{12}	$((u-1)^8)(u^2+u-1)^3(u^{20}+12u^{19}+\cdots-58u+1)$

VI. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{6}(y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{20} + 48y^{19} + \dots - 10684791y + 6561)$
c_2, c_5	$(y-1)^{6}(y^{8} - 3y^{7} + 7y^{6} - 10y^{5} + 11y^{4} - 10y^{3} + 6y^{2} - 4y + 1)$ $\cdot (y^{20} + 24y^{18} + \dots - 3807y + 81)$
c_3, c_4, c_8	$y^{2}(y-2)^{4}(y^{8}-7y^{7}+19y^{6}-22y^{5}+3y^{4}+14y^{3}-6y^{2}-4y+1)$ $\cdot (y^{20}-14y^{19}+\cdots-432y+16)$
c_6, c_{10}	$y^{8}(y^{2} - 3y + 1)^{3}(y^{20} - 60y^{19} + \dots - 5160960y + 65536)$
c_7	$y^{2}(y-2)^{4}(y^{8} + 5y^{7} + 11y^{6} + 6y^{5} - 17y^{4} - 34y^{3} - 22y^{2} - 4y + 1)$ $\cdot (y^{20} + 58y^{19} + \dots - 44905072y + 929296)$
c_9, c_{11}, c_{12}	$((y-1)^8)(y^2-3y+1)^3(y^{20}-44y^{19}+\cdots-2922y+1)$