Q1

 $20.0\,\mathrm{cm^3}$ of $\mathrm{H_2SO_4}$ reacts with $25.0\,\mathrm{cm^3}$ of $0.200\,\mathrm{mol/dm^3}$ NaOH. The equation for the reaction is shown.

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

Calculate the concentration of $\mathrm{H_2SO_4}$ using the following steps.

•	Calculate the	number of m	oles in 25.0	cm3 of 0.2	00 mol/dm3 l	NaOH
---	---------------	-------------	--------------	------------	--------------	------

		mol
•	Determine the number of moles of H ₂ SO ₄ that react with the	NaOH.
		mol
•	Calculate the concentration of H ₂ SO ₄ .	
		mol/dm³
		[3]

Q2

Ester Y has the following composition by mass:

C, 48.65%; H, 8.11%; O, 43.24%.

Calculate the empirical formula of ester Y.

empirical formula =[3]

Ester Z has the empirical formula C ₂ H ₄ O and a relative molecular mass of 88.
Determine the molecular formula of ester Z .
molecular formula = [1]
Q3
Fluorine reacts with sulfur to form a compound which has 25.2% sulfur by mass and a relative molecular mass of 254.
Determine the molecular formula of this compound.
molecular formula =[3]

The equation for the reaction to enew	The	equation	for the	reaction	is shown
---------------------------------------	-----	----------	---------	----------	----------

$$Ca(OH)_2 + 2HCl \rightarrow CaCl_2 + 2H_2O$$

 $20.0\,\mathrm{cm^3}$ of $0.0500\,\mathrm{mol/dm^3}$ HC l reacts with the $25.0\,\mathrm{cm^3}$ of $\mathrm{Ca(OH)_2}$.

Determine the concentration of $Ca(OH)_2$ in g/dm^3 . Use the following steps.

Calculate	the	number	of	moles	in	20 0 cm	n3 c	of O	OF	00	mol	11	dm ³	H	71
Calculate	une	number	OI	moles	1111	ZU.UCI	11 (ונ	.UI	UU	HIO	11	UIII"	Пι	J.

cm ³ of the limewater.	Determine the number of moles of Ca(OH) ₂ in 25.0 cr	•
mo	Calculate the concentration of $Ca(OH)_2$ in mol/dm^3 .	•
mol/dm	Determine the concentration of Ca(OH) ₂ in g/dm ³ .	•

..... g/dm³

[5]

When hydrated sodium sulfate crystals, I	Na ₂ SO ₄ •xH ₂ O,	are heated, they	give off water
--	---	------------------	----------------

$$Na_2SO_4{}^{\bullet}\textbf{\textit{x}}H_2O(s) \ \rightarrow \ Na_2SO_4(s) \ + \ \textbf{\textit{x}}H_2O(g)$$

In an experiment, 1.61g of $Na_2SO_4 \cdot xH_2O$ is heated until all the water is given off. The mass of Na_2SO_4 remaining is 0.71g.

Determine the value of **x** using the following steps.

Calculate the number of moles of Na₂SO₄ remaining.

..... mol

Calculate the mass of H₂O given off.

- g
- Calculate the number of moles of H₂O given off.

..... mol

• Determine the value of **x**.

6

B 4								
I\/lan	v organic	compounds	contain	carhon	hydroden	and	OVVICEN	only
IVICI	y organic	compounds	Contain	carbon,	Hydrogon	anu	UNYGUII	OHILY.

(a) An organic compound V has the following composition by mass.

Calculate the empirical formula of compound V.

empirical formula =[3]

7

Barium carbonate decomposes when heated.

$$BaCO_3(s) \rightarrow BaO(s) + CO_2(g)$$

- (a) A student heated a 10.0 g sample of barium carbonate until it was fully decomposed.
 - (i) Calculate the number of moles of barium carbonate the student used.

moles of barium carbonate = mol [2]

(ii) Calculate the volume of carbon dioxide gas produced at room temperature and pressure. Give your answer in dm³.

volume of carbon dioxide = dm³ [1]

(b) The student added 2.00 g of the barium oxide produced to water.

BaO +
$$H_2O \rightarrow Ba(OH)_2$$

Calculate the mass of barium hydroxide that can be made from 2.00 g of barium oxide. The M_r of Ba(OH)₂ is 171.

mass of barium hydroxide = g [1]

(ii) Calculate the concentration of the hydrochloric acid used.
concentration of hydrochloric acid = mol/dm³ [2]
[Total: 7]
8
Hydrolysis of a polymer gave a compound with the following composition by mass: C, 34.61% H, 3.85%; O, 61.54%.
(i) Calculate the empirical formula of the compound.
empirical formula =[3