2039

DRINKING WATER SURVEILLANCE PROGRAM

PORT COLBORNE WATER TREATMENT PLANT

ANNUAL REPORT 1990

PORT COLBORNE WATER TREATMENT PLANT

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1990

AUGUST 1992

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1992

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2039 Log 92-2302-265

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

PORT COLBORNE WATER TREATMENT PLANT 1990 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 supplies were being monitored.

The Port Colborne water treatment plant is a conventional treatment plant which treats water from Lake Erie. The process consists of coagulation, flocculation, sedimentation, filtration, and disinfection. This plant has a rated capacity of $27.270 \times 1000 \, \text{m}^3/\text{day}$. The Port Colborne water treatment plant serves a population of approximately 15,092.

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Port Colborne water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP

SUMMARY TABLE BY SCAN

ABLE	E 1 POSITIVE	777	8	28	1.7	0		0	0		0	13	
S QUANTIFI	SITE 1 TESTS POSITIVE %POSITIVE	7	7	281	161	0		0	0		0	36	553
ON AND	TESTS	٥	82	323	391	126	٠	15	191	•	٥	261	1407
OF DETECTION	TREATED VE %POSITIVE	25	100	ĸ	27	0	0	0	0	0	0	13	
AL LIMIT C	TREA POSITIVE ?	2	75	145	09	0	0	0	0	0	0	32	281
FATISTIC	TESTS	ھ	75	198	216	126	12	134	307	٥	59	232	1343
SULT IS GREATER THAN THE STATISTICAL LIM A '.' INDICATES THAT NO SAMPLE WAS TAKEN SITE	RAM TREATED TESTS POSITIVE XPOSITIVE TESTS POSITIVE XPOSITIVE	88	100	18	34	0	0	0	0	0	0	0	
S GREATER INDICATES	POSITIVE	54	21	161	7.4	0	0	0	0	0	0	0	280
E RESULT I A '.'	TESTS	27	21	198	216	126	12	134	307	٥	59	261	1370
A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A '.' INDICATES THAT NO SAMPLE WAS TAKEN SITE	SCAN	BACTERIOLOGICAL	CHEMISTRY (FLO)	CHEMISTRY (LAB)	METALS	CHLOROAROMATICS	CHLOROPHENOLS	РАН	PESTICIDES & PCB	PHENOLICS	SPECIFIC PESTICIDES	VOLATILES	
		-											TOTAL

DRINKING WATER SURVEILLANCE PROGRAM

PORT COLBORNE WATER TREATMENT PLANT 1990 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Port Colborne water treatment plant in May of 1990. This is the first published annual report.

PLANT DESCRIPTION

The Port Colborne water treatment plant is a conventional treatment plant which treats water from Lake Erie. The process consists of coagulation, flocculation, sedimentation, filtration, and disinfection. This plant has a rated capacity of $27.270 \times 1000 \, \text{m}^3/\text{day}$. The Port Colborne water treatment plant serves a population of approximately 15,092.

The sample day flows ranged from 11.650 x 1000 m^3/day to 14.600 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At all distribution system locations two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals, due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples therefore, were General Chemistry and Metals. The free flow sample represented fresh water from the distribution main, since the sample tap was flushed for five minutes prior to sampling.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

Stringent DWSP sampling protocols were followed to ensure that all samples were taken in a uniform manner (see Appendix B).

Plant operating personnel routinely analyze parameters for process control (Table 2).

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall. Laboratory analyses were conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary break-down of the number of water samples analyzed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- THE TREATED AND DISTRIBUTED WATER;
- ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples.

Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were reported above the quideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of the soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Maximum Desirable Concentration of 15°C in 5 of 15 treated and distributed water samples with a maximum reported value of 20.0°C.

CHEMISTRY (LAB)

Colour in drinking water may be due to the presence of natural or synthetic substances as well as certain metallic ions.

Colour exceeded the ODWO Maximum Desirable Concentration of 5 HZU in 2 of 18 treated and distributed water samples with a maximum reported value of 13.0 HZU.

The ODWos indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Aesthetic or Recommended Operational Guideline of 80-100 mg/L in 18 of 18 treated and distributed water samples with a maximum reported value of 135.6 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to indicate the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant, to avoid problems in the distribution system.

Aluminum exceeded the ODWO Aesthetic or Recommended Operational Guideline of 100 ug/L in 16 of 18 treated and distributed water samples with a maximum reported value of $280.0~\rm ug/L$.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

POLYAROMATIC HYDROCARBONS (PAH)

The results of the PAH scan showed that none were detected.

PESTICIDES & PCB

The results of the pesticides and PCB scan showed that none were detected.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs recommend, as an operational guideline, that phenolic substances in drinking water not exceed 2.0 ug/L. This limit has been set primarily to prevent undesirable taste and odours, particularly in chlorinated water. No results exceeded the guideline.

SPECIFIC PESTICIDES

The results of the specific pesticides scan showed that none were detected above trace levels.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane; bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THMs results are discussed.

Total THMs were found at positive levels in all 15 treated and distributed water samples analyzed. The maximum observed level was 49.1 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

CONCLUSIONS

The Port Colborne water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

No known health related guidelines were exceeded.

FIGURE 1

PORT COLBORNE WTP

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

WORKS #: 220002075
PLANT NAME: PORT COLBO

PORT COLBORNE WTP

DISTRICT: WELLAND REGION: WEST CENTRAL DISTRICT OFFICER : J. MAYES

UTM #: 176428904749130

PLANT SUPERINTENDENT: MR TED BURCH

ADDRESS:

323 KING STREET

PORT COLBORNE, ONTARIO

L3K 4H2

(416 834 3363)

MUNICIPALITY: NIAGARA REGION

AUTHORITY: MUNICIPAL

PLANT INFORMATION

PLANT VOLUME:

- (X 1000 M3) 36.360 (X 1000 M3/DAY)

DESIGN CAPACITY: 36.360 (X 1000 M3/DAY)
RATED CAPACITY: 27.270 (X 1000 M3/DAY)

MUNICIPALITY

POPULATION

PORT COLBORNE

15,092

TABLE 2

DRINKING WATER SURVEILLANCE PROGRAM

IN-PLANT MONITORING

PARAMETER:	LOCATION:	FREQUENCY:
CHLORINE RESIDUAL FREE	RAW WATER HEADER SETTLED WATER RESERVOIR	4 HOURS 4 HOURS 4 HOURS
TURBIDITY	RAW WATER WELL FILTERED WATER RESERVOIR	4 HOURS CONTINUOUS 4 HOURS
РН	FINISHED WATER	CONTINUOUS
TEMPERATURE	RAW WATER WELL	CONTINUOUS

TABLE 3

DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP SAMPLE DAY CONDITIONS FOR 1990

			PRE CHLORINATION	POST CHLORINATION	COAGULATION	
			CHLORINE	CHLORINE	ALUM LIQUID	
DATE	DELAY * TIME(HRS)	(1000M3)				
MAY 01	.50	13.850	1.03	.35	6.60	
MAY 08	.00	.000	1.00	.36	5.80	
JUN 05	10.00	.000	1.04	.41	5.80	
JUL 10	10.00	14,600	1.31	.34	5.40	
AUG 07	6.00	14.510	1.49	.36	5.96	
NOV 06	8.00	.000	1.05	.47	8.70	
DEC 04	8.00	11.650	.97	.48	6.30	

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP SUMMARY TABLE OF RESULTS (1990)

			RAW		Т	REATED		;	SITE 1
SCAN PARAMETER		POSITIVE			POSITIVE			POSITIVE	TRACE
BACTERIOLOGICAL									
FECAL COLIFORM MF STANDED PLATE CNT MF	9	9	0	. 8	. 2	ċ		. 4	
TOTAL COLIFORM MF T COLIFORM BCKGRD MF	9 9	6	0	•					:
*TOTAL SCAN BACTERIOL		2/	•					,	•
	27	24	0	8	2		9		0
CHEMISTRY (FLD)									
FLD CHLORINE (COMB) FLD CHLORINE FREE				7 7	7		13 13	11 5	0
FLD CHLORINE (TOTAL)	:	:	•	7	7		13	12	0
FLD PH	7	7	0	7	7	0	15	15	0
FLD TEMPERATURE	7	7	0	7	7		15	15	0
FLD TURBIDITY	′	′	U	,	,	0	13	13	0
*TOTAL SCAN CHEMISTRY									
	21	21	0	42	42	0	82	71	0
CHEMISTRY (LAB) ALKALINITY CALCIUM CYANIDE CHLORIDE COLOUR CONDUCTIVITY DISS ORG CARBON FLUORIDE HARDNESS IONCAL LANGELIERS INDEX MAGNESIUM SOOIUM AMMONIUM TOTAL NITRITE TOTAL NITRATES NITROGEN TOT KJELD PH PHOSPHORUS FIL REACT PHOSPHORUS TOTAL	999999999999999999999999999999999999999	99 99 22 99 99 99 99 99 44 55 99	0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 1 1 9 9 9 9 9 9 1 1 2 2 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	17 17 17 17 17 17 17 17 17 17 17 17 17 1	17 17 17 17 17 17 17 17 17 17 17 17 17 1	0 0 15 0 0 0 0 0 0 0 0 0 0 0 0
SULPHATE TURBIDITY	9	9	0	9	9 5	0	17 17	17 16	0 1
*TOTAL SCAN CHEMISTRY	(LAB) 198	161	19	198	145	27	323	281	34

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP SUMMARY TABLE OF RESULTS (1990)

			RAW		TRE	ATED		SI	TE 1
SCAN PARAMETER	TOTAL PO	SITIVE 1	RACE	TOTAL P	OSITIVE T	RACE	TOTAL PO	OSITIVE T	RACE
METALS									
SILVER	9	0	0	9	0	0	17	0 17	0
LUMINUM	9	9	0	9	9	0	17 17	0	17
RSENIC	9	9	0	9	9	ő	17	17	0
BARIUM BORON	9	9	0	9	9	0	17	16	1
BERYLLIUM	9	0	1	9	0	1	17	0	ò
CADMIUM	ý	ő	ò	9	Ö	ò	17	Ō	- 11
COBALT	ý	ŏ	9	9	Ŏ	9	17	1	15
CHROMIUM	9	Ō	6	9	0	7	17	. 0	12
COPPER	9	0	9	9	0	9	17	8	9
RON	9	5	4	9	0	4	17	1	16
MERCURY	9	0	4	9	1	0			:
ANGANESE	9	9	0	9	6	3	17	17	0
40LYBDENUM	9	9	0	9	9	0 7	17 17	17 2	15
IICKEL	9 9	1	8 9	9	1	9	17	14	3
.EAD ANTIMONY	9	3	6	9	2	7	17	12	5
SELENIUM	9	0	2	9	0	4	17	0	Š
STRONTIUM	9	9	ō	9	9	Ō	17	17	ć
TITANIUM	ý	ź	4	ý	ź	7	17	5	12
THALLIUM	9	0	0	9	0	0	17	0	0
JRANIUM	9	0	9	9	0	9	17	0	17
/ANAD I UM	9	0	9	9	0	9	17	0	17
ZINC	9	6	3	9	3	6	17	17	C
			_						
TOTAL SCAN METALS									
TOTAL SCAN METALS	216			216	60	100	391	161	159
	216 IC & PHYSI	74	92	216	60	100	391	161	159
		74		216 456	60 247	100 127	391 796	161 513	
*TOTAL GROUP INORGAN	IC & PHYSI	74 CAL 256	92 111	456	247	127	796	513	193
TOTAL GROUP INORGAN	IC & PHYSI 435	74 CAL 256	92 111	456	247	127	796	513	193
TOTAL GROUP INORGAN CHLOROAROMATICS	IC & PHYSI 435	74 CAL 256	92 1111	456	247	127	796	513	193
TOTAL GROUP INORGAN CHLOROAROMATICS MEXACHLOROBUTADIENE 123 TRICHLOROBENZENE	IC & PHYSI 435	74 CAL 256	92 111 0 0	456 9 9	247 0 0	0 0	796 9 9	513	193
TOTAL GROUP INORGAN CHLOROAROMATICS HEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE	1C & PHYS1 435	74 CAL 256	92 1111 0 0 0	9 9	247	127	796 	513	193
TOTAL GROUP INORGAN CHLOROAROMATICS MEXACHLOROBUTADIENE 123 TRICHLOROBENZENE	9 9 9	74 CAL 256	92 111 0 0	456 9 9	247 0 0 0	127 0 0 0	796 9 9	513	193
*TOTAL GROUP INORGAN CHLOROAROMATICS HEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE 1235 T-CHLOROBENZENE	9 9 9 9 9	74 CAL 256	92 111 0 0 0 0	9 9 9	0 0 0 0	127 0 0 0	796 	513 0 0 0 0	193
TOTAL GROUP INORGAN CHLOROAROMATICS HEXACHLOROBUTADIENE 1234 TRICHLOROBENZENE 1235 T-CHLOROBENZENE 1235 T-CHLOROBENZENE 1244 TRICHLOROBENZENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 CAL 256	92 1111 0 0 0 0 0	9 9 9 9 9	0 0 0 0 0 0 0	127 0 0 0 0	796 	513 0 0 0 0 0 0 0	193
CHLOROAROMATICS MEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE 1235 T-CHLOROBENZENE 124 TRICHLOROBENZENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 CAL 256	92 1111 0 0 0 0 0 0	9 9 9 9 9 9	0 0 0 0 0 0	0 0 0 0 0 0 0	796 9 9 9 9 9	513 0 0 0 0 0 0 0	193
CHLOROAROMATICS MEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1235 T-CHLOROBENZENE 124 TRICHLOROBENZENE 124 TRICHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1256 T-CHLOROBENZENE 1267 T-CHLOROBENZENE 1268 MEXACHLOROBENZENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 CAL 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0	9 9 9 9 9 9	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	796 9 9 9 9 9	513 0 0 0 0 0 0 0 0	193
CHLOROAROMATICS CHLOROAROMATICS HEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE 1235 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE 1365 TRICHLOROBENZENE 146BACHLOROBETHANE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 CAL 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	247 0 0 0 0 0 0 0 0 0	127 0 0 0 0 0 0 0 0 0	796 9 9 9 9 9 9 9	513 0 0 0 0 0 0 0 0 0 0	
CHLOROAROMATICS CHLOROAROMATICS HEXACHLOROBUTADIENE 1234 T-CHLOROBENZENE 1235 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1355 TRICHLOROBENZENE 1656 HEXACHLOROSTYRENE 1657 TRICHLOROBENZENE 1657 TRICHLOROSTYRENE 1658 TRICHLOROBENZENE 1658 TRICHLOROSTYRENE 1658 TRICHLOROBENZENE 1658 TRICHLOROBENZENE 1658 TRICHLOROBENZENE 1658 TRICHLOROBENZENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 CAL 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0 0 0	456	247 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	127 0 0 0 0 0 0 0 0 0 0	796 9 9 9 9 9 9 9	513 0 0 0 0 0 0 0 0 0 0 0 0	193
CHLOROAROMATICS MEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1235 T-CHLOROBENZENE 124 TRICHLOROBENZENE 124 TRICHLOROBENZENE 1245 T-CHLOROBENZENE 1255 TRICHLOROBENZENE 1265 TRICHLOROBENZENE 1275 TRICHLOROBENZENE 1285 TRICHLOROBENZENE 1286 MEXACHLOROSTYRENE 1286 TRICHLOROBENZENE 1286 TRICHLOROTOLUENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0 0 0 0	99999999999999999999999999999999999999	0 0 0 0 0 0 0 0 0 0	127 0 0 0 0 0 0 0 0 0 0 0 0	796 9 9 9 9 9 9 9	513 0 0 0 0 0 0 0 0 0 0 0 0 0 0	193
CHLOROAROMATICS HEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE 135 TRICHLOROBENZENE 136 TRICHLOROSTYRENE 136 TRICHLOROSTYRENE 136 TRICHLOROSTUZENE 136 TRICHLOROSTUZENE 137 TRICHLOROSTYRENE 138 TRICHLOROSTUZENE 139 TRICHLOROSTUZENE 130 TRICHLOROSTUZENE 131 TRICHLOROSTUZENE 132 TRICHLOROSTUZENE 133 TRICHLOROSTUZENE 134 TRICHLOROSTUZENE 135 TRICHLOROSTUZENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0 0 0 0	99999999999999999999999999999999999999	247	127 0 0 0 0 0 0 0 0 0 0 0 0	796	513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	193
CHLOROAROMATICS MEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1235 T-CHLOROBENZENE 124 TRICHLOROBENZENE 124 TRICHLOROBENZENE 1245 T-CHLOROBENZENE 1255 TRICHLOROBENZENE 1265 TRICHLOROBENZENE 1275 TRICHLOROBENZENE 1285 TRICHLOROBENZENE 1286 MEXACHLOROSTYRENE 1286 TRICHLOROBENZENE 1286 TRICHLOROTOLUENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0 0 0 0	99999999999999999999999999999999999999	0 0 0 0 0 0 0 0 0 0	127 0 0 0 0 0 0 0 0 0 0 0 0	796 9 9 9 9 9 9 9	513 0 0 0 0 0 0 0 0 0 0 0 0 0 0	193
CHLOROAROMATICS HEXACHLOROBUTADIENE 123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 1245 T-CHLOROBENZENE 135 TRICHLOROBENZENE 135 TRICHLOROBENZENE 136 TRICHLOROSTYRENE 136 TRICHLOROSTYRENE 136 TRICHLOROSTUZENE 136 TRICHLOROSTUZENE 137 TRICHLOROSTYRENE 138 TRICHLOROSTUZENE 139 TRICHLOROSTUZENE 130 TRICHLOROSTUZENE 131 TRICHLOROSTUZENE 132 TRICHLOROSTUZENE 133 TRICHLOROSTUZENE 134 TRICHLOROSTUZENE 135 TRICHLOROSTUZENE	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	74 256 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92 1111 0 0 0 0 0 0 0 0 0 0	99999999999999999999999999999999999999	247	127 0 0 0 0 0 0 0 0 0 0 0 0	796	513 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	193

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP SUMMARY TABLE OF RESULTS (1990)

			RAW		T	REATED		s	ITE 1
SCAN PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
CHLOROPHENOLS	• • • • • •								
234 TRICHLOROPHENOL 2345 T-CHLOROPHENOL	2	0	0	2		0			:
2356 T-CHLOROPHENOL	2	0	0	2	0	0			
245-TRICHLOROPHENOL 246-TRICHLOROPHENOL	2	0	0	2		0	•	•	•
PENTACHLOROPHENOL	2	0	0	2		0	:	:	:
*TOTAL SCAN CHLOROPHE	NOLS 12	0	0	12	0	0	0	0	0
PAH	• • • • • •	• • • • • • • • • • • • • • • • • • • •							
PHENANTHRENE	8	0	0	8	0	0	1	0	0
ANTHRACENE	7	0	0	7	0	0	0	0	0
FLUORANTHENE PYRENE	8	0	0	8	0	0	1	0	0
BENZO(A)ANTHRACENE	8	0	ő	8	0	ő	i	ŏ	Ö
CHRYSENE	8	0	0	8	0	0	1	0	0
DIMETH. BENZ(A)ANTHR BENZO(E) PYRENE	7 8	0	0	7 8	0	0	0	0	0
BENZO(B) FLUORANTHEN	8	0	0	8	0	0	1	0	0
PERYLENE	8	Ō	ō	8	0	Ö	i	Ö	Ö
BENZO(K) FLUORANTHEN	8	0	0	8	0	0	1	0	0
BENZO(A) PYRENE BENZO(G,H,I) PERYLEN	8	0	0	8	0	0	1	0	0
DIBENZO(A, H) ANTHRAC	8	0	0	8	0	0	1	0	0
INDENO(1,2,3-C,0) PY	8	0	Ŏ	8	0	0	i	Ö	Ö
BENZO(B) CHRYSENE CORONENE	8 8	0	0	8 8	0	0	1	0	0
*TOTAL SCAN PAH									
TOTAL SUM FAII	134	0	0	134	0	0	15	0	0
PESTICIDES & PCB					• • • • • • • • • • • • • • • • • • • •				
ALDRIN	9	0	0	9	0	0	9	0	0
ALPHA BHC	9	0	5	9	0	6	9	0	6
BETA BHC LINDANE	9	0	0	9	0	0	9	0	0
ALPHA CHLORDANE	9	0	0	9	0	0	9	0	0
GAMMA CHLORDANE	9	Ö	ő	ģ	Ď	ő	9	0	Ô
DIELDRIN	9	0	0	9	0	0	9	0	0
METHOXYCHLOR ENDOSULFAN 1	9	0	0	9	0	0	9	0	0
ENDOSULFAN II	9	0	0	9	0	0	9	0	0
ENDRIN	9	Ö	Ö	ģ	Ö	Ö	ý	ŏ	ő
ENDOSULFAN SULPHATE	9	0	0	9	0	0	9	0	0
HEPTACHLOR EPOXIDE HEPTACHLOR	9	0	0	9	0	0	9	0	0
MIREX	9	0	0	9	0	0	9	0	0
OXYCHLORDANE	9	0	D	9	0	0	9	0	0
OPDOT PCB	9	0	0	9	0	0	9	0	0
DDD	9	0	0	9	0	0	9	0	0
PPDDE	ģ	Ö	Ô	ý	0	Ö	9	0	0

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP SUMMARY TABLE OF RESULTS (1990)

			RAW		TREA	TED		SIT	E 1
SCAN PARAMETER	TOTAL POSIT	IVE TR	ACE	TOTAL POS	ITIVE TR	ACE	TOTAL POSI	TIVE TR	ACE
PPDDT AMETRINE ATRAZINE ATRAZINE ATRAZINE ATRAZINE CYANAZINE (BLADEX) DESETHYLATRAZINE D-ETHYL SIMAZINE PROMETORE PROMETORE PROPAZINE PROMETRYNE METRIBUZIN (SENCOR) SIMAZINE ALACHLOR (LASSO) METOLACHLOR HEXACLCYCLOPENTADIEN **TOTAL SCAN PESTICIDE	9 9 9 9 9 9 8 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 5 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 8 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9		0
	307	0	10	307	0	8	191	0	6
PHENOLICS									
PHENOLICS	9	0	2	9	0	4			
*TOTAL SCAN PHENOLICS	9	0	2	9	0	4	0	0	0
SPECIFIC PESTICIDES	,								
TOXAPHENE 2,4,5-T 2,4-D 2,4-D 2,4-D 2,4-D 2,4-D 2,4-D 10-CAMBA PICHLORAM SILVEX DIAZINON DICHLOROVOS CHLORPYRIFOS ETHION AZIMPHOS-METHYL MALATHION MEVIMPHOS METHYL PARATHION METHYLTRITHION PARATHION PHORATE RELDAM RONNEL AMINOCARB BENOMYL BUX CARBOFURAN CICP DIALLATE	9 2 2 2 2 1 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9 2 2 2 1 0 0 2 2 2 2 2 0 0 0 0 0 0 0 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		9		

TABLE 4

DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP
SUMMARY TABLE OF RESULTS (1990)

			RAW		т	REATED		S	ITE 1
SCAN PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL F	POSITIVE	TRACE
EPTAM	2	0	0	2	0	0			
IPC	2	0	0	2	0	0			
PROPOXUR	2	0	0	2	0	0			
CARBARYL	2	0	0	. 2	0	0			
BUTYLATE	2	0	0	2	0	0	•		•
*TOTAL SCAN SPECIFIC	PESTICI	DES							
	59	0	0	59	0	0	9	٥	0
VOLATILES									
BENZENE	9	0	0	8	0	5	9	0	5
TOLUENE	9	0	0	8	0	6	9	0	5
ETHYLBENZENE	9	0	1	8	0	7	9	0	5
P-XYLENE	9	0	0	8	0	0	9	0	0
M-XYLENE O-XYLENE	9	0	0	8	0	5	9	0	2
STYRENE	9	0	0	8	0	4	9	0	3
1,1 DICHLOROETHYLENE	9	0	1	8	0	5	9	0	5 0
METHYLENE CHLORIDE	9	0	0	8	0	0	9	0	0
T1,2DICHLOROETHYLENE	9	0	0	8	0	0	9	0	0
1.1 DICHLOROETHANE	ý	Ď	0	8	0	0	9	0	0
CHLOROFORM	ý	Ď	ő	8	8	Ö	9	9	0
111, TRICHLOROETHANE	9	0	Ď	8	ō	ŏ	ý	ó	ő
1,2 DICHLOROETHANE	9	Ō	Ö	8	ō	ō	9	Ď	Ö
CARBON TETRACHLORIDE	9	0	D	8	Ö	Ŏ	9	Ō	Ō
1,2 DICHLOROPROPANE	9	0	0	8	0	Ō	9	Ō	ō
TRICHLOROETHYLENE	9	0	0	8	0	0	9	0	0
DICHLOROBROMOMETHANE	9	0	0	8	8	0	9	9	0
112 TRICHLOROETHANE	9	0	0	8	0	0	9	0	0
CHLOROD I BROMOMETHANE	9	0	0	8	8	0	9	9	0
T-CHLOROETHYLENE	9	0	0	8	0	0	9	0	0
BROMOFORM	9	0	0	8	0	8	9	0	9
1122 T-CHLOROETHANE	9	0	0	8	0	0	9	0	0
CHLOROBENZENE 1,4 DICHLOROBENZENE	9	0	0	8	0	0	9	0	0
1,3 DICHLOROBENZENE	9	0	0	8	0	0	9	0	0
1.2 DICHLOROBENZENE	9	0	_	8	0	0	9	0	0
ETHLYENE DIBROMIDE	9	0	0	8	0	0	9	0	0
TOTL TRIHALOMETHANES	0	0	0	8	8	0	9	9	0
	,	U	J	٥	8	U	y	4	U
*TOTAL SCAN VOLATILES	244		-					_	
*TOTAL GROUP ORGANIC	261	0	2	232	32	40	261	36	34
The same of the same of	908	0	14	879	32	52	602	36	40

KEY TO TABLE 5 and 6

- ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - 3. Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
- HEALTH & WELFARE CANADA (H&W)
 - Maximum Acceptable Concentration (MAC)
 Proposed MAC

 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- WORLD HEALTH ORGANIZATION (WHO)
 - Guideline Value (GV)
 - Tentative GV
 Aesthetic GV
- US ENVIRONMENTAL PROTECTION AGENCY (EPA)

 - 1. Maximum Contaminant Level (MCL)
 2. Suggested No-Adverse Effect Level (SNAEL)

 - 3. Lifetime Health Advisory
 4. EPA Ambient Water Quality Criteria
 - 4T. EPA Ambient Water Quality Criteria for Total PAH
- EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	No Sample Taken
BDL '	Below Minimum Measurement Amount
<1	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
ICS	No Data: Contamination Suspected
IIL =	No Data: Sample Incorrectly Labelled
118	No Data: Insufficient Sample
IIV	No Data: Inverted Septum
ILA	No Data: Laboratory Accident
!LD	No Data: Test Queued After Sample Discarded
!NA	No Data: No Authorization To Perform Reanalysis
!NP	No Data: No Procedure
! NR	No Data: Sample Not Received
10P	No Data: Obscured Plate
iQU	No Data: Quality Control Unacceptable
!PE	No Data: Procedural Error - Sample Discarded
!PH	No Data: Sample pH Outside Valid Range
! RE	No Data: Received Empty
!RO	No Data: See Attached Report (no numeric results)
! SM	No Data: Sample Missing
ISS	No Data: Send Separate Sample Properly Preserved
101	No Data: Indeterminant Interference
!TX	No Data: Time Expired
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, !mproper Cap
CRO	Calculated Result Only
PPS	Test Performed On Preserved Sample
RMP	P and M-Xylene Not Separated
RRV	Rerun Verification
RVU	Reported Value Unusual
SPS	Several Peaks, Small, Not Priority Pollutant

UCR	Unreliable: Could Not Confirm By Reanalysis
UCS	Unreliable: Contamination Suspected
UIN	Unreliable: Indeterminate Interference
XP	Positive After X Number Of Hours
Т#	(TO6) Result Taken After # Hours

WATER TREATMENT PLANT

	RAW	TREATED	\$17	E 1	
			STANDING	FREE FLOW	
FECAL COL	BACTERIOLOGICAL IFORM MF (CT/100ML)	DE	T'N LIMIT = 0	GUIDELINE	= 0 (A1)
MAY	34				
JUN	118				
JUL	72			•	
AUG	.2		•	•	
SEP	16	•	•	•	
OCT NOV	20 24	•	•	•	
DEC	28	•	•	•	
	• • • • • • • • • • • • • • • • • • • •				
STANDED P	LATE CHT MF (COUNT/ML)	DE	T'N LIMIT = 0	GUIDELINE	= 500/ML (A3)
MAY		0 <=>		1 <=>	
JUN	•	1 <=>	:	48	
JUL		0 <=>		2 <=>	
AUG		2 <=>		39	
SEP		21		106	
OCT		12		3 <=>	
NOV		3 <=>		6 <=>	
DEC	•	ILA	•	138	
TOTAL COL	FORM MF (CT/100ML)	DE	T'N LIMIT = 0	GUIDELINE	= 5/100ML(A1)
MAY	70				
JUN	2600				
JUL	8900				
AUG	40 <=>		•	•	
SEP	BDL	•			
OCT	250	•	•	•	
NOV DEC	310	•	•	•	
DEC	200	•	•	•	
T COLIFOR	BCKGRD MF (CT/100ML)	DE	T'N LIMIT = 0	GUIDELINE	= N/A
MAY	763				
JUN	50000	•	•	•	
JUL	40000 >		:		
AUG	13000				
SEP	24000 >				
OCT	14000				
NOV	5300				
DEC	3000				

WATER TREATMENT PLANT

	RAW	Т	REATED SI	TE 1	
			STANDING	FREE FLOW	
	CHEMISTRY	(FID)			
FLD CHLORI	CHEMISTRY (NE (COMB) (MG/L)	DET'N LIMIT = 0	GUIDELINE = N/A	
MAY		.100		.200	
JUN		.250	.000	.200	
JUL	•	.200	.050	.100	
AUG	•	.200	.000	.100 .100	
OCT	•	.160	.100 .100	.150	
NOV DEC	•	.170	.100	.350	
FLD CHLORI	NE FREE (MG/L)	DET'N LIMIT = 0	GUIDELINE = N/A	
****		.400		.100	
MAY JUN	•	.300	.000	.100	
JUL	:	.300	.000	.000	
AUG	· ·	.300	.000	.000	
OCT			.000	.100	
NOV		.310	.000	.000	
DEC	•	.370	•	.100	
FLD CHLORI	NE (TOTAL) (MG/L)	DET'N LIMIT = 0	GUIDELINE = N/A	
MAY		.500		.300	
JUN		.550	.050	.300	
JUL		.500	.050	.100	
AUG		.500	.000	.100	
OCT		.470	.100	.200	
NOV		.470	.100	.150	
DEC		.540		.250	
FLD PH (DA	ANSLESS)		DET'N LIMIT = N/A	GUIDELINE = 6.5-8	5.5(A4
MAY	8.400	8.100	7.600	7.500	
JUN	8.100	7.700	7.600	7.500	
JUL	8.400	7.600	7.700	7.500	
AUG	8.200	7.600	7.700	7.500	
OCT		7.900	7.500	7.500 7.500	
NOV DEC	8.300 8.400	7.900	7.500 7.700	7.500	
	RATURE (DEG.C)		DET'N LIMIT = N/A		(3)
WAV	10, 000	10.000	11.500	7,500	
MAY JUN	10.000 13.000	12.500	12.500	10.000	
	10 800	20.000	17.000	16.000	
JUL AUG	19.800 20.000	20.000	20.000	19.000	
OCT	20.000	20.000	16.500	17.000	
NOV	12.000	10.500	15.500	10.000	
DEC	7.000	5.500	12.000	5.000	

WATER TREATMENT PLANT

		RAW	TR	REATED SI	re 1	
				STANDING	FREE FLOW	
FLD TURBIDI	TY (FTU)		DET'N LIMIT = N/A	GUIDELINE = 1	(A1)
MAY	1.100		.150	.190	.220	
JUN	4.200		.260	.340	.250	
JUL	2.600		.110	.220		
AUG	3.300		.180	.190	.200	
OCT				.210	.130	
NOV	2.000		. 140	.300	.300	
DEC	5.500		.150		.220	

WATER TREATMENT PLANT

	RAW	TREATED	SITE 1	
		STANDING	FREE FLOW	
ALKALINITY (MG/L	CHEMISTRY (LAB)	DET'N LIMIT = C	0.2 GUIDELIN	E = 30-500 (A3)
MAY 102.10 JUN 98.10 JUL 96.00 AUG 97.90 SEP 94.90	97.700 95.000 95.000 91.900	95.300 92.700	96.400 92.900	
AUG 97.90 SEP 94.90 OCT 97.00 NOV 103.00	93.000 90.700 90.700 92.100 90.100	91.000 93.500	91.100	
DEC 105.00	001.101	100.900	102.200	
CALCIUM (MG/L)	DET'N LIMIT = 0	0.2 GUIDELIN	E = 100 (F2)
MAY 37.70 JUN 37.20 JUL 36.40 AUG 36.51 SEP 35.44 OCT 37.40		37.400 35.800 36.200	37.200 37.000 37.300	
SEP 35.41 OCT 37.44 NOV 38.11 DEC 39.01	00 37.900	38.000 38.900 38.900	35.000 37.600 37.600 37.800	_
CHLORIDE (MG/L)		D.2 GUIDELIN	
MAY 15.4 JUN 15.8 JUL 15.6 AUG 15.7 SEP 14.9 OCT 15.11 NOV 14.8 DEC 16.00	00 15.100	17.500 17.900 17.400 16.800 15.700 17.900	16.800 17.200 17.900 16.700 16.500 15.600	
COLOUR (NZU)	DET'N LIMIT = 0	0.5 GUIDELIN	E = 5 (A3)
NOV 2.0	00 <t 1.000<br="">00 <t 13.000<br="">00 <t .500<br="">00 <t .500<br="">00 <t 1.000<br="">00 <t 1.000<br="">00 <t 1.000<br="">00 <t 1.500<="" td=""><td><t .500="" 2.000="" 7="" 7<="" <="" td=""><td> 1,500 < T</td><td></td></t></td></t></t></t></t></t></t></t></t>	<t .500="" 2.000="" 7="" 7<="" <="" td=""><td> 1,500 < T</td><td></td></t>	1,500 < T	
CONDUCTIVITY (UMH	D/CM)	DET'N LIMIT = 1	1. GUIDELIN	E = 400 (F2)
MAY 3 JUN 2 JUL 2: AUG 2: SEP 2: OCT 2: NOV 3 DEC 3	91 294 91 294 91 294 82 285 94 296	307 297 296 289 286 299 308 316	304 298 294 288 285 296 305 313	

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1	
			STANDING	FREE FLOW	
	CARBON (MG/L)	DET'N LIMIT = .	.100 GUIDELI	NE = 5.0 (A3)
MAY	2.000	2.000	2.200	2.000	
JUN	2.300	2.200	2.300		
JUL	2.000	2.000	2.200	1.900	
AUG	2.000 2.000	1.900	1.900	1.800	
SEP	1,900	1.800		1.800	
OCT	1 700	4 400	1 900	1 500	
NOV	1.500	1.300	1.400	1.200	
DEC	1.900	1.800	2.000	1.200 1.800	
FLUORIDE	(MG/L)		DET'N LIMIT = (0.01 GUIDELI	NE = 2.4 (A1)
MAY		.080		.120	
MUL	.120	.120	.120	.120	
JUL	.120	.120		.120	
AUG	.120 .140	.120	.120	.100	
SEP	.100	.100	.100	.100	
OCT	.120	.120	.120	.120	
NOV	.120	.120	.120	.120	
OEC	.100	.100	.100	.100 .120 .120 .100	
HARDNESS	(MG/L)		DET'N LIMIT = (0.5 GUIDELI	NE = 80-100 (A4)
MAY	129.300	130.200	128.800	129.200	
MUL	127.900	126.400	129.700	129.200	
JUL	128.000	126.000	125.000	128.000	
AUG	129.000	130.600	129.000	130.900	
SEP	123.000	122,000	121.000	121.000	
OCT	130.000	132.000	132.000	131.000	
NOA	133.100	135.600	134.900	132.100	
DEC	135.700	132.800	135.300	129.200 129.200 128.000 130.900 121.000 131.000 132.100 133.300	
IONCAL (OMNSLESS)		DEL.W FIMIT = 1	N/A GUIDELI	NE = N/A
MAY		.243 1.056	2.584	1.382	
JUN	.124 .855	1.056	.366		
JUL	.855	.345	2.342		
AUG	1.330	2.446	1.964		
SEP	.596	.730	2.312	1.014	
OCT	4.559	4.752 1.994	4.056 .615	4.018	
NOV	.506	1.994	.615	.457	
DEC	1.481	.40/	.540	.220	
LANGELIEF	RS INDEX (DMNSL	ESS)	DET'N LIMIT = 1	N/A GUIDELI	NE = N/A
MAY	.515	.421		.426	
JUN	.437	.240		.266	
JUL	.438	.375		.420	
AUG	.518	.449		.339	
SEP	.424	.308	.302	.330	
ОСТ	.443	.344	.392	.419	
NOV	.494	.458	.467	.449	
0EC	.450	.351	.321	.344	

WATER TREATMENT PLANT

MAGNESIUM (MG/L)			RAW	TREATED	SITE 1	1	
MAY						FREE FLOW	
JUN 8.500 8.750 8.800 8.800 8.800 JUL 8.900 8.700 8.700 8.700 9.200 SEP 8.400 8.300 8.100 8.300 NOV 9.250 9.350 9.150 9.250 DEC 9.300 9.300 9.300 9.200 NOV 9.250 9.350 9.150 9.250 DEC 9.300 9.300 9.300 9.300 JUN 9.200 9.300 9.300 9.300 8.800 JUN 9.200 9.300 9.300 8.800 JUN 8.600 8.800 8.600 8.600 AUG 8.700 8.900 8.700 9.000 SEP 8.800 8.800 8.600 8.800 SEP 8.800 8.800 8.600 8.800 OCT 9.400 9.600 9.800 9.800 9.800 DEC 9.900 10.000 10.400 10.200 AMMONIUM TOTAL (MC/L) DET*N LIMIT = 0.002 GUIDELINE = 0.05 (F2) MAY .004 T .004 SEP .006 T .002 JUN BDL .006 .002 T JUN BDL .006 .002 T JUN BDL .006 .002 T JUN .001 .002 .003 .004 T JUN .003 T .004 T SEP BBL .002 T .008 T JUN .003 T .004 T JUN .004 T .001 T JUN .003 T .004 T JUN .004 T .006 T BDL .007 .008 .008 AUG .005 .001 T DET*N LIMIT = 0.005 .001 T BDL .006 T BDL .007 .005 .003 T DEC .007 .005 .003 T DEC .007 .004 T .002 T BDL .006 T BDL .006 T BDL .007 .005 .003 T TOTAL NITRATES (MG/L) DET*N LIMIT = 0.005 .003 T TOTAL NITRATES (MG/L) DET*N LIMIT = 0.005 .003 T TOTAL NITRATES (MG/L) DET*N LIMIT = 0.005 .003 T TOTAL NITRATES (MG/L) DET*N LIMIT = 0.005 .00	MAGNESIUM	(MG/L)				GUIDELINE =	30 (F2)
JUN 8.500 8.750 8.750 8.800 8.800 JUL 8.900 8.750 8.750 8.600 AUG 9.150 9.350 9.400 9.200 SEP 8.400 8.300 8.100 8.300 OCT 9.000 9.100 8.900 9.000 NOV 9.250 9.350 9.150 9.250 DEC 9.300 9.300 9.300 9.500 JUN 9.200 9.800 9.500 9.300 8.800 JUN 9.200 9.300 9.300 8.800 AUG 8.700 8.900 8.600 8.600 AUG 8.700 8.900 8.700 9.000 SEP 8.800 8.800 8.600 8.800 OCT 9.400 9.600 9.800 9.800 9.800 OCT 9.400 9.600 9.800 9.800 9.800 OCT 9.400 8.300 8.100 8.700 9.000 NOV 8.200 8.300 8.100 8.700 9.800 DEC 9.900 10.000 10.400 10.200 AMMONITUM TOTAL (MC/L) DET*N LIMIT = 0.002 GUIDELINE = 0.05 (F2) MAY .004 T BDL .006 T BDL JUL .010 BDL .026 .002 T AUG .026 .002 T .008 T .004 T SEP BBDL .005 BDL DEC BDL .004 T .003 T .004 T JUN BDL .005 BDL DEC BDL .004 T .003 T .004 T JUN .003 T .004 T .005 BDL DEC BDL .004 T .003 T .004 T JUN .003 T .004 T .005 .003 T MAY .004 T .001 T .002 T JUN .003 T .004 T .005 .003 T DEC BDL .006 T .007 T DET*N LIMIT = 0.001 GUIDELINE = 1 (A1) MAY .004 T .001 T .002 T JUN .003 T .004 T DEC .007 .005 .003 T DEC .007 .005 .003 T DEC .007 .005 .003 T DEC .007 .004 T .002 T BDL .002 T .004 T DEC .007 .004 T .002 T DEC .007 .004 T .005 .003 T TOTAL NITRATES (MG/L) DET*N LIMIT = 0.005 GUIDELINE = 10 (A1) MAY .275 .235 .235 .240 .255 JUL .2775 .280 .225 .270 AUG .200 .190 .305 .305 .300	MAY	8 550	8,550		8.700	8,650	
JUL 8.900 8.700 8.700 8.700 8.600 AUG 9.150 9.350 9.400 9.200 SEP 8.400 8.300 8.100 8.300 OCT 9.000 9.100 8.900 9.000 NOV 9.250 9.350 9.150 9.250 DEC 9.300 9.350 9.350 9.500 SODIUM (MG/L) DET'N LIMIT = 0.2 GUIDELINE = 200 (A4) MAY 8.900 9.800 9.300 9.300 JUL 8.600 8.800 8.600 8.800 AUG 8.700 8.900 8.700 9.000 SEP 8.800 8.800 8.600 8.800 OCT 9.400 9.600 9.800 8.600 8.800 OCT 9.400 9.600 9.800 8.700 9.000 SEP 8.800 8.800 8.600 8.800 OCT 9.400 9.600 9.800 8.700 9.000 SEP 8.800 8.800 8.600 8.800 AND 8.200 8.300 8.100 8.700 DEC 9.900 10.000 10.400 10.200 AMMONIUM TOTAL (MG/L) DET'N LIMIT = 0.002 GUIDELINE = 0.05 (F2) MAY .004 <t .002="" .003="" .004="" .005="" .006="" .008="" .00<="" .026="" <t="" bdl="" th=""><th></th><th>8 500</th><th>8.750</th><th></th><th></th><th>8.800</th><th></th></t>		8 500	8.750			8.800	
DEC 9.300 9.300 9.300 9.300 9.300		8,900	8.700		8.700	8.600	
DEC 9.300 9.300 9.300 9.300 9.300		9.150	9.350		9.400		
DEC 9.300 9.300 9.300 9.300 9.300	SEP	8.400	8.300		8.100		
DEC 9.300 9.300 9.300 9.300 9.300	OCT	9.000	9.100				
DEC 9.300 9.300 9.300 9.300 9.300		9.250	9.350				
MAY		9.300	9.300		9.300	9.500	
JUN 9.200 9.300 9.300 8.800 JUL 8.600 8.800 8.600 8.600 AUG 8.700 8.900 8.700 9.000 SEP 8.800 8.800 8.600 8.800 OCT 9.400 9.600 9.800 8.700 DEC 9.900 10.000 10.400 10.200 AMMONIUM TOTAL (MG/L) DET'N LIMIT = 0.002 GUIDELINE = 0.05 (F2) MAY .004 <t .000="" .001="" .002="" .004="" .006="" .00<="" <t="" aug="" bdl="" td=""><td></td><td></td><td></td><td>DET'N</td><td>LIMIT = 0.2</td><td>GUIDELINE</td><td>= 200 (A4)</td></t>				DET'N	LIMIT = 0.2	GUIDELINE	= 200 (A4)
MAY	MAY	8.900	9.800				
MAY	JUN	9.200	9.300				
MAY	JUL	8.600	8.800				
MAY	AUG	8.700	8.900				
MAY	SEP	8.800	8.800				
MAY	OCT	9.400	9.600		9.800		
MAY	NOV	8.200	8.300		8.100	8.700	
MAY .004 <t .002="" .004="" .005="" .006="" .008="" .00<="" <t="" bdl="" ct="" td="" =""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t>							
JUN BDL BDL BDL BDL .026 .002 <t .002="" .003<="" .004="" .006="" .008="" .018="" .026="" .050="" <t="" aug="" bdl="" nov="" oct="" sep="" td=""><td>AMMONIUM T</td><td>OTAL (MG/L</td><td>)</td><td>DETIN</td><td>LIMIT = 0.002</td><td>GUIDELINE</td><td>= 0.05 (F2)</td></t>	AMMONIUM T	OTAL (MG/L)	DETIN	LIMIT = 0.002	GUIDELINE	= 0.05 (F2)
SEP BOL .018 .002 <t .002="" .004="" .006="" .008="" .<="" <t="" td=""><td></td><td>.004 <</td><td></td><td></td><td></td><td></td><td></td></t>		.004 <					
SEP BOL .018 .002 <t .002="" .004="" .006="" .008="" .<="" <t="" td=""><td></td><td>BDL</td><td>BDL</td><td></td><td>BDL</td><td></td><td></td></t>		BDL	BDL		BDL		
SEP		.010	BDL		.026		
NITRITE (MG/L)		.026	.002	<1	.008 <1		
NITRITE (MG/L)		BUL	BUL	~T	.030 008 <t< td=""><td>002 <7</td><td></td></t<>	002 <7	
NITRITE (MG/L)		.010	.002	~1	T> 200	RDI	
MAY .004 <t .001="" .003="" .004="" <t="" \<="" td=""><td>DEC</td><td>BOL</td><td>.007</td><td></td><td></td><td>.004 <7</td><td></td></t>	DEC	BOL	.007			.004 <7	
JUL .009 .005 .008 .006 AUG .005 .001 <t (a1="" (mg="")="" .001="" .002="" .003="" .004="" .005="" .006="" .007="" .145="" .150="" .165="" .170="" .175="" .190="" .200="" .205="" .225="" .235="" .240="" .245="" .270="" .275="" .280="" .285="" .290="" .305="" .305<="" <t="" aug="" bdl="" dec="" det'n="" guideline="10" jul="" jun="" l="" limit="0.005" may="" nitrates="" nov="" oct="" sep="" td="" total=""><td></td><td></td><td></td><td></td><td></td><td></td><td>= 1 (A1)</td></t>							= 1 (A1)
JUL .009 .005 .008 .006 AUG .005 .001 <t (a1="" (mg="")="" .001="" .002="" .003="" .004="" .005="" .006="" .007="" .145="" .150="" .165="" .170="" .175="" .190="" .200="" .205="" .225="" .235="" .240="" .245="" .270="" .275="" .280="" .285="" .290="" .305="" .305<="" <t="" aug="" bdl="" det'n="" guideline="10" jul="" jun="" l="" limit="0.005" may="" nitrates="" nov="" oct="" sep="" td="" total=""><td>MAY</td><td>.004 <</td><td>T .001</td><td><t< td=""><td>.003 <t< td=""><td>.004 <t< td=""><td></td></t<></td></t<></td></t<></td></t>	MAY	.004 <	T .001	<t< td=""><td>.003 <t< td=""><td>.004 <t< td=""><td></td></t<></td></t<></td></t<>	.003 <t< td=""><td>.004 <t< td=""><td></td></t<></td></t<>	.004 <t< td=""><td></td></t<>	
JUL .009 .005 .008 .006 AUG .005 .001 <t (a1="" (mg="")="" .001="" .002="" .003="" .004="" .005="" .006="" .007="" .145="" .150="" .165="" .170="" .175="" .190="" .200="" .205="" .225="" .235="" .240="" .245="" .270="" .275="" .280="" .285="" .290="" .305="" .305<="" <t="" aug="" bdl="" det'n="" guideline="10" jul="" jun="" l="" limit="0.005" may="" nitrates="" nov="" oct="" sep="" td="" total=""><td></td><td>.003 <</td><td>T BDL</td><td></td><td>.001 <t< td=""><td>BDL</td><td></td></t<></td></t>		.003 <	T BDL		.001 <t< td=""><td>BDL</td><td></td></t<>	BDL	
AUG .005 .001 <t .002="" .005="" <="" <t="" td=""> SEP .007 .005 .003 <t .006="" <="" td=""> .003 <t .006="" <="" td=""> OCT .005 .001 <t .001="" .002="" .007="" <="" <t="" td=""> .008 <t .008="" .008<="" <t="" td=""><td>JUL</td><td>.009</td><td>.005</td><td></td><td>.008</td><td></td><td></td></t></t></t></t></t>	JUL	.009	.005		.008		
SEP		.005	.001	<t< td=""><td></td><td></td><td></td></t<>			
NOV .004 <t .001="" .002="" .003="" .005="" .00<="" <t="" bdl="" td=""><td></td><td>.007</td><td></td><td></td><td></td><td></td><td></td></t>		.007					
DEC .007 .004 <t (a1="" (mg="")="" .003="" .005="" .145="" .150="" .165="" .170="" .175="" .190="" .200="" .205="" .225="" .235="" .240="" .245="" .270="" .275="" .280="" .285="" .290="" .300<="" .305="" <t="" aug="" det'n="" guideline="10" jul="" jun="" l="" limit="0.005" may="" nitrates="" nov="" oct="" sep="" td="" total=""><td></td><td>.005</td><td>BDL</td><td></td><td>.002 <7</td><td>BDL</td><td></td></t>		.005	BDL		.002 <7	BDL	
TOTAL NITRATES (MG/L) DET'N LIMIT = 0.005 GUIDELINE = 10 (A1 MAY .275 .275 .280 .275 JUN .225 .235 .240 .245 JUL .275 .280 .285 .270 AUG .200 .190 .205 .200 SEP .175 .145 .150 .145 OCT .165 .165 .170 .170 NOV .290 .305 .305 .300		.004 <	T BDL		.002 <t< td=""><td>.001 <7</td><td></td></t<>	.001 <7	
MAY .275 .275 .280 .275 JUN .225 .235 .240 .245 JUL .275 .280 .285 .270 AUG .200 .190 .205 .200 SEP .175 .145 .150 .145 OCT .165 .165 .170 .170 NOV .290 .305 .305 .300	DEC	.007	.004	<t< td=""><td>.005</td><td>.003 <7</td><td></td></t<>	.005	.003 <7	
AUG .200 .190 .205 .200 SEP .175 .145 .150 .145 OCT .165 .165 .170 .170 NOV .290 .305 .305 .300	TOTAL NITE			DET'N	LIMIT = 0.005	GUIDELINE	= 10 (A1
AUG .200 .190 .205 .200 SEP .175 .145 .150 .145 OCT .165 .165 .170 .170 NOV .290 .305 .305 .300		.275	.275				
AUG .200 .190 .205 .200 SEP .175 .145 .150 .145 OCT .165 .165 .170 .170 NOV .290 .305 .305 .300		.225	.235				
SEP .175 .145 .150 .145 OCT .165 .165 .170 .170 NOV .290 .305 .305 .300		.213	.200				
OCT .165 .165 .170 .170 NOV .290 .305 .305 .300							
NOV .290 .305 .305 .300		.1/5	.145				
		. 165	.165				
	DEC	.520					

WATER TREATMENT PLANT

	RAW	TREA	TED S	ITE 1	
			STANDING		
NITROGEN T	OT KJELD (MG/L)	DET'N LIMIT = 0.0	2 GUIDELINE	= N/A
MAY	.240	.190	.300	.200	
JUN	240	.170	.220	.170	
JUL	-250	.170	.440	.170	
AUG	.240 .240 .250 .240	.170	.260	.160	
SEP	.190 .510	.150	.300	.130	
OCT	510	540	.520	.510	
NOV	210	.180	.240	.160	
DEC	.210 .170	.120	.290	.120	
PH (DMNSLE	:ss)		DET'N LIMIT = N/A	.160 .120 GUIDELINE	= 6.5-8.5(A4)
MAY	8.370	8,290	8.300	8.300	
JUN	8.310	8.140	8.180	8.150	
JUL	8 330	8.290	8.250	8.320	
AUG	8.330 8.400 8.330	8.350	8.210	8.240	
SEP	8 330	8.240	8.230	8.260	
OCT	8.320	8 2/0	8 280		
NOV	8.340	8 310	8 320	8.320	
DEC	8.280	8 210	8.280 8.320 8.170	8.200	
DEC	0.200	0.210			
PHOSPHORUS	S FIL REACT (MG/L	>	DET'N LIMIT = 0.0	005 GUIDELINE	= N/A
	.000	.000			
JUN	.000 <t< td=""><td>BDL</td><td></td><td></td><td></td></t<>	BDL			
JUL	BDL	BDL BDL			
AUG	BDL	BDL			
	BDL	BDL			
OCT	,000 <t< td=""><td>BDL BDL</td><td></td><td></td><td></td></t<>	BDL BDL			
NOV	.002 <t< td=""><td>.001 <t< td=""><td></td><td></td><td></td></t<></td></t<>	.001 <t< td=""><td></td><td></td><td></td></t<>			
DEC	BDL .000 <t .002 <t .002</t </t 	.000 <t< td=""><td>•</td><td>•</td><td></td></t<>	•	•	
PHOSPHORUS	S TOTAL (MG/L)	DET'N LIMIT = 0.0	02 GUIDELIN	= .40 (F2)
MAY	.006 <7	.003 <t< td=""><td></td><td></td><td></td></t<>			
JUN	.006 <t .011</t 	BDL			
JUL	.019	.004 <t< td=""><td></td><td></td><td></td></t<>			
AUG	.019 .019 .009 < T BDL .076	.005 <t< td=""><td></td><td></td><td></td></t<>			
SEP	.009 <t< td=""><td>.003 <7</td><td></td><td></td><td></td></t<>	.003 <7			
OCT	BDL	.002 <t< td=""><td></td><td></td><td></td></t<>			
NOV	.076	.066			
DEC	.020	.003 <t< td=""><td></td><td></td><td></td></t<>			
	(MG/L)		DET'N LIMIT = .20	O GUIDELIN	E = 500 (A3)
MAY	26.150	28.070	27.940	27.740	
JUN	25.370	27.450	27.930	27.510	
JUL	24 010	27.320	27.740	27.120	
AUG	24.010 23.650	26.560	26.530	26.870	
SEP	23.650	25.940	26.120	25.800	
OCT	24.370	28.170	27.860	27.750	
NOV	24.270	26.970	27.340	27.200	
DEC	25.070	27.460	28.540		
					•

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP 1990

WATER TREATMENT PLANT

		RAW	TREATED	SITE 1		
			STANDING	FREE	FLOW	
TURBIDITY	(FTU)		DET'N LIMIT	= 0.05	GUIDELINE = 1	(A1)
MAY	1.600	.370	.76	0	.590	
JUN	6.100	.580	.63	0	.580	
JUL	6.200	.230 <	T .55	0	.260	
AUG	4.800	.230 <	T .48	0	.300	
SEP	2.100	.270	.37	0	.260	
OCT	1.400	.240 <	.37	0	.210 <t< td=""><td></td></t<>	
NOV	4.500	.220 <	T .60	0	.370	
DEC	6.500	.570	.72	0	.610	

WATER TREATMENT PLANT

		RAW	TREATED		SITE 1			
				STANDING	F	REE FLOW		
	METAL	ς						
ALUHINUM	(UG/L)	.3	DET	'N LIMIT = 0	.10	GUIDELINE	= 100	(A4)
HAY	25.000	180.000		170.000		170.000		
JUN	78.000	220.000		170.000		170.000		
JUL	65.000	220.000		170.000		200.000		
AUG	48.000 29.000 25.000	270.000		220.000		250.000		
SEP	29.000	280.000		200.000		270.000		
OCT	25.000	170.000		160.000		160.000		
NOV	50.000	120.000		120.000		130.000		
	71.000	83.000		80.000		76.000		
	UG/L)					GUIDELINE	= 25	(A1)
MAY	.640 <t< td=""><td>.390</td><td><t< td=""><td>.320 <</td><td>T</td><td>.440 <t< td=""><td></td><td></td></t<></td></t<></td></t<>	.390	<t< td=""><td>.320 <</td><td>T</td><td>.440 <t< td=""><td></td><td></td></t<></td></t<>	.320 <	T	.440 <t< td=""><td></td><td></td></t<>		
JUN	.420 <t .830 <t< td=""><td>.320</td><td><1 - ***</td><td>.170 <</td><td></td><td>.130 <7</td><td></td><td></td></t<></t 	.320	<1 - ***	.170 <		.130 <7		
JUL	.960 <t< td=""><td>.520 ·</td><td>< [</td><td>.350 < .500 <</td><td></td><td>.310 <t .720 <t< td=""><td></td><td></td></t<></t </td></t<>	.520 ·	< [.350 < .500 <		.310 <t .720 <t< td=""><td></td><td></td></t<></t 		
SEP	.590 <t< td=""><td>120</td><td>-7</td><td>.300 <</td><td>· I</td><td>.250 <t< td=""><td></td><td></td></t<></td></t<>	120	-7	.300 <	· I	.250 <t< td=""><td></td><td></td></t<>		
OCT	.810 <t< td=""><td>.120 .570</td><td><1 ∠T</td><td>.330 < .590 <</td><td>T</td><td>.560 <t< td=""><td></td><td></td></t<></td></t<>	.120 .570	<1 ∠T	.330 < .590 <	T	.560 <t< td=""><td></td><td></td></t<>		
NOV	.730 <t< td=""><td>.470</td><td>-T</td><td>.370 <</td><td>T</td><td>.300 <t< td=""><td></td><td></td></t<></td></t<>	.470	-T	.370 <	T	.300 <t< td=""><td></td><td></td></t<>		
	.650 <t< td=""><td>.180</td><td>cT</td><td>.140 <</td><td></td><td>.110 <t< td=""><td></td><td></td></t<></td></t<>	.180	cT	.140 <		.110 <t< td=""><td></td><td></td></t<>		
BARIUM (U	IG/L)		DET	'N LIMIT = 0	.05	GUIDELINE	= 1000	U (A2)
HAY	21.000	21.000		21.000		21.000		
JUN	22.000 21.000	21.000		21.000		21.000		
JUL	21.000	20.000		20.000		19.000		
AUG	22.000	21.000		21.000		22.000		
SEP	21.000	21.000 24.000 20.000		20.000		21.000		
OCT	25.000	24.000		24.000		24.000		
NOV	20.000	20.000		20.000		20.000		
DEC	21.000			21.000		21.000		
BORON (UG	i/L)		DET	'N LIMIT = 2	.00	GUIDELINE	= 500	00 (A1
MAY		53.000		57.000		59.000		
JUN	23.000	24.000		24.000		24.000		
JUL	21.000 38.000	25.000		30.000		24.000		
AUG	38.000	39.000		37.000		37.000		
SEP	31.000	30.000		28.000		26.000		
OCT	24.000	23.000		25.000		23.000		
NOV DEC	25.000 21.000	25.000 23.000		27.000 23.000		19.000 <t 23.000</t 		
							(00)	
BERTLLIUM	(UG/L)		DET	'N LIMIT = D	.05	GUIDELINE	= 6800	J (D4)
MAY	BDL	.060	<t< td=""><td>BDL</td><td></td><td>BDL</td><td></td><td></td></t<>	BDL		BDL		
JUN	BDL	BDL		BDL		BDL		
JUL	BDL	BDL		BDL		BDL		
AUG	BDL	BDL		BDL		BDL		
SEP	BOL	BDL		BDL		BDL		
OCT	BDL	BDL		BDL		BDL		
NOV	BDL	BDL		BDL		BDL		
DEC	BDL	BDL		BDL		BDL		

WATER TREATMENT PLANT

		RAW T	REATEO	SITE 1	
			STANDING	FREE FLOW	
CADHIUM (U	IG/L)			0.05 GUI	
MAY	BDL	BDL	.150		
JUN	BDL BDL	BDL	.250		
JUL		BDL	.250		
AUG	BDL	BDL	.130		
SEP	BDL BDL	BDL BDL	.340	<t bdi<="" td=""><td></td></t>	
NOV	BDL	RDI	. 280	<t bdi<="" td=""><td></td></t>	
		BDL	.260	<t .110<="" td=""><td>) <t< td=""></t<></td></t>) <t< td=""></t<>
COBALT (UG	/L)		DET'N LIMIT =	0.02 GUIDE	ELINE = N/A
HAY	.110 <t< td=""><td>.190 <t< td=""><td>.140</td><td><t .240<="" td=""><td>) <t< td=""></t<></td></t></td></t<></td></t<>	.190 <t< td=""><td>.140</td><td><t .240<="" td=""><td>) <t< td=""></t<></td></t></td></t<>	.140	<t .240<="" td=""><td>) <t< td=""></t<></td></t>) <t< td=""></t<>
JUN	.220 <t .130 <t .070 <t< td=""><td>.130 <t< td=""><td>.130</td><td><t .100<="" td=""><td>) <ī</td></t></td></t<></td></t<></t </t 	.130 <t< td=""><td>.130</td><td><t .100<="" td=""><td>) <ī</td></t></td></t<>	.130	<t .100<="" td=""><td>) <ī</td></t>) <ī
JUL	.130 <t< td=""><td>.110 <t< td=""><td>.100</td><td><t .120<="" td=""><td>) <t< td=""></t<></td></t></td></t<></td></t<>	.110 <t< td=""><td>.100</td><td><t .120<="" td=""><td>) <t< td=""></t<></td></t></td></t<>	.100	<t .120<="" td=""><td>) <t< td=""></t<></td></t>) <t< td=""></t<>
AUG	.070 <t< td=""><td>.050 <7</td><td>BDL</td><td>.110</td><td>) <t< td=""></t<></td></t<>	.050 <7	BDL	.110) <t< td=""></t<>
SEP	.050 <t< td=""><td>.050 <7</td><td>.100</td><td><7 .090</td><td>) <t< td=""></t<></td></t<>	.050 <7	.100	<7 .090) <t< td=""></t<>
NOV	070 <	1> 000.	.070	<t .070<="" td=""><td>) < < </td></t>) < <
DEC	230 <1	140 <1	120	<t 130<="" td=""><td>) <t< td=""></t<></td></t>) <t< td=""></t<>
	.230 11	. 140 11		<t .100="" .120="" .244="" <="" <t="" td=""><td></td></t>	
CHROMIUM (UG/L)		DET'N LIMIT =	0.50 GUIDE	ELINE = 50 (A1)
MAY	2.100 <t< td=""><td>2.200 <t .670 <t 1.600 <t 3.200 <t 1.800 <t BDL</t </t </t </t </t </td><td>2.400</td><td><t 2.500<="" td=""><td>) <ī</td></t></td></t<>	2.200 <t .670 <t 1.600 <t 3.200 <t 1.800 <t BDL</t </t </t </t </t 	2.400	<t 2.500<="" td=""><td>) <ī</td></t>) <ī
JUN	BDL	.670 <1	.560	<t .590="" 1.300="" 2.500="" 2.700="" 950="" <t="" b01<="" td=""><td>) <ī</td></t>) <ī
JUL	.570 <t< td=""><td>1.600 <t< td=""><td>1.000</td><td><t 1.300<="" td=""><td>) <<u>T</u></td></t></td></t<></td></t<>	1.600 <t< td=""><td>1.000</td><td><t 1.300<="" td=""><td>) <<u>T</u></td></t></td></t<>	1.000	<t 1.300<="" td=""><td>) <<u>T</u></td></t>) < <u>T</u>
AUG	2.700 <1	3.200 <1	2.600	<7 2.700) <t< td=""></t<>
SEP OCT	1.000 <1	1.800 <1	1.200	, you) <1
NOV	1.800 <t< td=""><td>1 800 <t< td=""><td>1 800</td><td><t bd1<="" td=""><td></td></t></td></t<></td></t<>	1 800 <t< td=""><td>1 800</td><td><t bd1<="" td=""><td></td></t></td></t<>	1 800	<t bd1<="" td=""><td></td></t>	
DEC	BOL	BDL	BDL	<t bdi<="" td=""><td></td></t>	
COPPER (UG	/L)		DET'N LIMIT =	0.50 GU108	ELINE = 1000 (A3)
MAY	1.300 <t< td=""><td>1,200 <t< td=""><td>7,600</td><td>1,500</td><td>) <ī</td></t<></td></t<>	1,200 <t< td=""><td>7,600</td><td>1,500</td><td>) <ī</td></t<>	7,600	1,500) <ī
JUN	1.500 <t< td=""><td>1.400 <t< td=""><td>8.200</td><td>2.000</td><td>) <t< td=""></t<></td></t<></td></t<>	1.400 <t< td=""><td>8.200</td><td>2.000</td><td>) <t< td=""></t<></td></t<>	8.200	2.000) <t< td=""></t<>
JUL	1.500 <t< td=""><td>1.300 <t< td=""><td>8.700</td><td>1.800</td><td>) <t< td=""></t<></td></t<></td></t<>	1.300 <t< td=""><td>8.700</td><td>1.800</td><td>) <t< td=""></t<></td></t<>	8.700	1.800) <t< td=""></t<>
AUG	1.800 <t< td=""><td>1,100 <t< td=""><td>14.000</td><td>1.600</td><td>) <ī</td></t<></td></t<>	1,100 <t< td=""><td>14.000</td><td>1.600</td><td>) <ī</td></t<>	14.000	1.600) <ī
SEP	1.400 <t< td=""><td>1.500 <t< td=""><td>9.200</td><td>1.700</td><td>) <t< td=""></t<></td></t<></td></t<>	1.500 <t< td=""><td>9.200</td><td>1.700</td><td>) <t< td=""></t<></td></t<>	9.200	1.700) <t< td=""></t<>
OCT	1.200 <1	1.100 <7	5.500	1.200) <t< td=""></t<>
DEC	1.100 <1	1 000 <1	10.000	2.00U 3.700) <1) <7
	1.500 (1	1.000 1		1.500 2.000 1.800 1.600 1.700 1.200 2.800	
IKUN (UG/L	,		DELIN FIMIT =	0.00 60108	:LINE = 300 (A3)
MAY	28.000 <7	12.000 <t 12.000 <t< td=""><td>61.000 50.000 19.000</td><td>39.000 <t 29.000<br=""><t 25.000<="" td=""><td>) <t< td=""></t<></td></t></t></td></t<></t 	61.000 50.000 19.000	39.000 <t 29.000<br=""><t 25.000<="" td=""><td>) <t< td=""></t<></td></t></t>) <t< td=""></t<>
JUN	110.000	12.000 <t< td=""><td>50.000</td><td><7 29.000</td><td>) <t< td=""></t<></td></t<>	50.000	<7 29.000) <t< td=""></t<>
JUL	110.000	BDL BDL	19.000	<1 25.000	\ \1
SED	51 000 -7	14.000 <t< td=""><td>51.000 57.000</td><td><t 40.000<br=""><t 26.000<="" td=""><td></td></t></t></td></t<>	51.000 57.000	<t 40.000<br=""><t 26.000<="" td=""><td></td></t></t>	
OCT	43 000 <1	14.000 <1	34.000	<t 17.000<="" td=""><td></td></t>	
NOV	82,000	BDL BDL	57.000		_
DEC	110.000 110.000 87.000 51.000 <t 43.000 <t 82.000 110.000</t </t 	8.400 <t< td=""><td>29.000</td><td></td><td>) <ī</td></t<>	29.000) <ī

WATER TREATMENT PLANT

	1	RAW TREA	TED SITE	1	
			STANDING	FREE FLOW	
MERCURY (U	G/L)		DET'N LIMIT = 0.02	GUIDELINE = 1	(A1)
MAY	BDL	BDL			
JUN	BDL .030 <t< td=""><td>BDL</td><td>•</td><td></td><td></td></t<>	BDL	•		
JUL	.030 <t< td=""><td>BOL</td><td>•</td><td>•</td><td></td></t<>	BOL	•	•	
AUG SEP	BDL	BDL BDL	•	•	
OCT	BDL BDL .060 <t< td=""><td>.120</td><td>•</td><td>•</td><td></td></t<>	.120	•	•	
NOV	.100 <t< td=""><td>BDL</td><td></td><td></td><td></td></t<>	BDL			
DEC	.060 <t< td=""><td>BDL</td><td></td><td>•</td><td></td></t<>	BDL		•	
	(UG/L)	• • • • • • • • • • • • • • • • • • • •	DET'N LIMIT = 0.05	GUIDELINE = 50	(A3)
MAY	2.700	.620	5.900	3.100	
JUN	8.300	.900	4.500	3.000	
JUL	8.200	.660	3.100	4.900	
AUG SEP	6.500	.690 .660	4.500 5.100	3.700 3.300	
OCT	5.200 3.900	.390 <t< td=""><td>4.000</td><td>2.900</td><td></td></t<>	4.000	2.900	
NOV	4.700	.370 <t< td=""><td>3.100</td><td>2.800</td><td></td></t<>	3.100	2.800	
DEC	6.100		4.200		
	(UG/L)	••••	DET'N LIMIT = 0.05	GUIDELINE = N/A	
HAY	1.100	1.200	1.200	1.300	
JUN	.980	1.200	1.200	1.400	
JUL	1.000	1.100 1.200	1.000	1.100	
SEP	1 100	1.200	1.100 1.300	1.300 1.200	
OCT	1.300	1.400	1.400	1.300	
NOV	1.000	1.100	1.200	1.100	
DEC	1.100 .980 1.000 1.000 1.100 1.300 1.000 .960	1.200	1.200	1.200	
NICKEL (UG)	'L)		DET'N LIMIT = 0.20	GUIDELINE = 350	(D3)
MAY	.960 <t< td=""><td>.900 <t< td=""><td>2.200</td><td>.740 <t< td=""><td></td></t<></td></t<></td></t<>	.900 <t< td=""><td>2.200</td><td>.740 <t< td=""><td></td></t<></td></t<>	2.200	.740 <t< td=""><td></td></t<>	
JUN	.710 <t< td=""><td>BDL .780 <t< td=""><td>.730 <t 1.200 <t< td=""><td>.260 <t< td=""><td></td></t<></td></t<></t </td></t<></td></t<>	BDL .780 <t< td=""><td>.730 <t 1.200 <t< td=""><td>.260 <t< td=""><td></td></t<></td></t<></t </td></t<>	.730 <t 1.200 <t< td=""><td>.260 <t< td=""><td></td></t<></td></t<></t 	.260 <t< td=""><td></td></t<>	
JUL	./90 <t< td=""><td>.780 <t< td=""><td>1.200 <t 1.600 <t< td=""><td>.440 <t< td=""><td></td></t<></td></t<></t </td></t<></td></t<>	.780 <t< td=""><td>1.200 <t 1.600 <t< td=""><td>.440 <t< td=""><td></td></t<></td></t<></t </td></t<>	1.200 <t 1.600 <t< td=""><td>.440 <t< td=""><td></td></t<></td></t<></t 	.440 <t< td=""><td></td></t<>	
SEP	350 <t< td=""><td>1.200 <t .400 <t< td=""><td>.800 <t< td=""><td>1.300 <t .250 <t< td=""><td></td></t<></t </td></t<></td></t<></t </td></t<>	1.200 <t .400 <t< td=""><td>.800 <t< td=""><td>1.300 <t .250 <t< td=""><td></td></t<></t </td></t<></td></t<></t 	.800 <t< td=""><td>1.300 <t .250 <t< td=""><td></td></t<></t </td></t<>	1.300 <t .250 <t< td=""><td></td></t<></t 	
OCT	2.300	2.100	2.600	2.000 <t< td=""><td></td></t<>	
NOV	.810 <t< td=""><td>.400 <t< td=""><td></td><td>.720 <1</td><td></td></t<></td></t<>	.400 <t< td=""><td></td><td>.720 <1</td><td></td></t<>		.720 <1	
DEC	.960 <1 .710 <1 .790 <1 1.700 <1 .350 <1 2.300 .810 <1 1.200 <7	1.100 <t< td=""><td>1.300 <t< td=""><td>1.200 <t< td=""><td></td></t<></td></t<></td></t<>	1.300 <t< td=""><td>1.200 <t< td=""><td></td></t<></td></t<>	1.200 <t< td=""><td></td></t<>	
LEAD (UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 10.	(A1)
MAY	.280 <t< td=""><td>.110 <t< td=""><td>2.100</td><td>.360 <t< td=""><td></td></t<></td></t<></td></t<>	.110 <t< td=""><td>2.100</td><td>.360 <t< td=""><td></td></t<></td></t<>	2.100	.360 <t< td=""><td></td></t<>	
JUN	.300 <t .330 <t< td=""><td>.140 <t< td=""><td>2.000</td><td>.520</td><td></td></t<></td></t<></t 	.140 <t< td=""><td>2.000</td><td>.520</td><td></td></t<>	2.000	.520	
JUL	.330 <7	.230 <7	1.500	.620	
AUG SEP	.330 <t .300 <t< td=""><td>.130 <t .250 <t< td=""><td>2.200 2.500</td><td>.680</td><td></td></t<></t </td></t<></t 	.130 <t .250 <t< td=""><td>2.200 2.500</td><td>.680</td><td></td></t<></t 	2.200 2.500	.680	
OCT	.230 <7	.250 <t< td=""><td>2.300</td><td>.750 .720</td><td></td></t<>	2.300	.750 .720	
NOV	.270 <t< td=""><td>.110 <t< td=""><td>3.400</td><td>.510</td><td></td></t<></td></t<>	.110 <t< td=""><td>3.400</td><td>.510</td><td></td></t<>	3.400	.510	
DEC	.270 <t< td=""><td>.330 <t< td=""><td>1.700</td><td>.300 <t< td=""><td></td></t<></td></t<></td></t<>	.330 <t< td=""><td>1.700</td><td>.300 <t< td=""><td></td></t<></td></t<>	1.700	.300 <t< td=""><td></td></t<>	

WATER TREATMENT PLANT

		RAW TREA	ATED SIT	E 1	
			STANDING	FREE FLOW	
ANTIMONY (UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 146	(D4)
MAY	.580	.410 <t< td=""><td>.540</td><td>.640</td><td></td></t<>	.540	.640	
JUN	.540	.560	.520	.640	
JUL	.540 .430 <t< td=""><td>.430 <t< td=""><td>.530</td><td>.430 <t< td=""><td></td></t<></td></t<></td></t<>	.430 <t< td=""><td>.530</td><td>.430 <t< td=""><td></td></t<></td></t<>	.530	.430 <t< td=""><td></td></t<>	
AUG	. 550	.650	.520 .530 .680	.690	
SEP	.370 <t .490 <t .450 <t< td=""><td>.290 <t< td=""><td>.630</td><td>.500 <t< td=""><td></td></t<></td></t<></td></t<></t </t 	.290 <t< td=""><td>.630</td><td>.500 <t< td=""><td></td></t<></td></t<>	.630	.500 <t< td=""><td></td></t<>	
OCT	.490 <t< td=""><td>.430 <t< td=""><td>.650</td><td>.600</td><td></td></t<></td></t<>	.430 <t< td=""><td>.650</td><td>.600</td><td></td></t<>	.650	.600	
NOV	.450 <t< td=""><td>.490 <t< td=""><td>.500 <t< td=""><td>.610</td><td></td></t<></td></t<></td></t<>	.490 <t< td=""><td>.500 <t< td=""><td>.610</td><td></td></t<></td></t<>	.500 <t< td=""><td>.610</td><td></td></t<>	.610	
DEC	.400 <t< td=""><td></td><td>.410 <t< td=""><td>.500 <1</td><td></td></t<></td></t<>		.410 <t< td=""><td>.500 <1</td><td></td></t<>	.500 <1	
SELENIUM ((UG/L)		DET'N LIMIT = 1.00	GUIDELINE = 10	(A1)
MAY	1.300 <t< td=""><td>1.200 <t 1.400 <t< td=""><td>1.100 <t< td=""><td>1.500 <t< td=""><td></td></t<></td></t<></td></t<></t </td></t<>	1.200 <t 1.400 <t< td=""><td>1.100 <t< td=""><td>1.500 <t< td=""><td></td></t<></td></t<></td></t<></t 	1.100 <t< td=""><td>1.500 <t< td=""><td></td></t<></td></t<>	1.500 <t< td=""><td></td></t<>	
JUN	2.000 <t< td=""><td>1.400 <t< td=""><td>BDL BDL BDL</td><td>1.200 <t< td=""><td></td></t<></td></t<></td></t<>	1.400 <t< td=""><td>BDL BDL BDL</td><td>1.200 <t< td=""><td></td></t<></td></t<>	BDL BDL BDL	1.200 <t< td=""><td></td></t<>	
JUL	BDL BDL BDL BDL			1.700 <t< td=""><td></td></t<>	
AUG	BDL	1.600 <t 1.100 <t< td=""><td>BDL</td><td>1.900 <t< td=""><td></td></t<></td></t<></t 	BDL	1.900 <t< td=""><td></td></t<>	
SEP	BDL	1.100 <t< td=""><td>1.600 <t< td=""><td>1.100 <t BDL</t </td><td></td></t<></td></t<>	1.600 <t< td=""><td>1.100 <t BDL</t </td><td></td></t<>	1.100 <t BDL</t 	
OCT	BDL	BDL	BDL 1.200 <t< td=""><td>DDI</td><td></td></t<>	DDI	
NOV	BDL	BDL	1.200 <1	BDL	
DEC	8DL	BDL	1.200 <1 BDL		
STRONTIUM	(UG/L)		DET'N LIMIT = 0.10	GUIDELINE = N/A	
MAY	190.000 190.000 160.000 170.000 170.000 190.000 150.000	190.000	190.000	190.000	
JUN	190.000	190.000	190.000	190.000	
JUL	160.000	150.000	4/0 000	160.000	
AUG	170.000	170.000	170.000 160.000 190.000	170.000	
SEP	170.000	170.000	160.000	160.000	
OCT	190.000	190.000	190.000	190.000	
NOV	150.000	160.000	160.000 190.000	160.000	
		190.000	190.000	170.000	
TITANIUM	(UG/L)		DET'N LIMIT = 0.50	GUIDELINE = N/A	
MAY	7.600	7.300	7.000	7.500	
JUN	6.400 6.600	4.900 <t< td=""><td>5.500 5.200</td><td>4.800 <t< td=""><td></td></t<></td></t<>	5.500 5.200	4.800 <t< td=""><td></td></t<>	
JUL	6.600	4.3D0 <t< td=""><td>5.200</td><td>4.600 <t< td=""><td></td></t<></td></t<>	5.200	4.600 <t< td=""><td></td></t<>	
AUG	4.400 <t< td=""><td>3.000 <t< td=""><td></td><td></td><td></td></t<></td></t<>	3.000 <t< td=""><td></td><td></td><td></td></t<>			
SEP	3.800 <t< td=""><td>2.800 <t< td=""><td>2.900 <t 1.900 <t 2.200 <t< td=""><td>2.700 <t 1.900 <t< td=""><td></td></t<></t </td></t<></t </t </td></t<></td></t<>	2.800 <t< td=""><td>2.900 <t 1.900 <t 2.200 <t< td=""><td>2.700 <t 1.900 <t< td=""><td></td></t<></t </td></t<></t </t </td></t<>	2.900 <t 1.900 <t 2.200 <t< td=""><td>2.700 <t 1.900 <t< td=""><td></td></t<></t </td></t<></t </t 	2.700 <t 1.900 <t< td=""><td></td></t<></t 	
OCT	2.600 <t 3.700 <t< td=""><td></td><td></td><td>2.300 <t< td=""><td></td></t<></td></t<></t 			2.300 <t< td=""><td></td></t<>	
NOV	5.700 <1	2.300 <t< td=""><td>2.200 <1</td><td>2.300 <t< td=""><td></td></t<></td></t<>	2.200 <1	2.300 <t< td=""><td></td></t<>	
DEC	3.900	2.300 <t 2.800 <t< td=""><td>***************************************</td><td>2.700</td><td></td></t<></t 	***************************************	2.700	
	UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 100	(A1)
HAY	.350 <t< td=""><td>.350 <7</td><td>.430 <t< td=""><td>.360 <7</td><td></td></t<></td></t<>	.350 <7	.430 <t< td=""><td>.360 <7</td><td></td></t<>	.360 <7	
JUN	.310 <t< td=""><td>.300 <7</td><td>.330 <t< td=""><td>.320 <t< td=""><td></td></t<></td></t<></td></t<>	.300 <7	.330 <t< td=""><td>.320 <t< td=""><td></td></t<></td></t<>	.320 <t< td=""><td></td></t<>	
JUL	.310 <t< td=""><td>.300 <7</td><td>.260 <t< td=""><td></td><td></td></t<></td></t<>	.300 <7	.260 <t< td=""><td></td><td></td></t<>		
AUG	.310 <t< td=""><td>.320 <t< td=""><td>.320 <</td><td>.350 <7</td><td></td></t<></td></t<>	.320 <t< td=""><td>.320 <</td><td>.350 <7</td><td></td></t<>	.320 <	.350 <7	
SEP	.330 <t< td=""><td>.350 <t< td=""><td>.250 <t< td=""><td>.290 <t< td=""><td></td></t<></td></t<></td></t<></td></t<>	.350 <t< td=""><td>.250 <t< td=""><td>.290 <t< td=""><td></td></t<></td></t<></td></t<>	.250 <t< td=""><td>.290 <t< td=""><td></td></t<></td></t<>	.290 <t< td=""><td></td></t<>	
OCT	.380 <1	.390 <t< td=""><td>.370 <7</td><td>.390 <t .340 <t< td=""><td></td></t<></t </td></t<>	.370 <7	.390 <t .340 <t< td=""><td></td></t<></t 	
NOV	.370 <t< td=""><td>.340 <t< td=""><td>.330 <t .340 <t< td=""><td>.340 <1</td><td></td></t<></t </td></t<></td></t<>	.340 <t< td=""><td>.330 <t .340 <t< td=""><td>.340 <1</td><td></td></t<></t </td></t<>	.330 <t .340 <t< td=""><td>.340 <1</td><td></td></t<></t 	.340 <1	
OEC	.370 <t< td=""><td>.360 <t< td=""><td>.340 <1</td><td>.540 11</td><td></td></t<></td></t<>	.360 <t< td=""><td>.340 <1</td><td>.540 11</td><td></td></t<>	.340 <1	.540 11	

WATER TREATMENT PLANT

		RAW	TREATEO	SITE 1	
			STANDING	FREE FLOW	
VANADIUM	(UG/L)		OET'N LIMIT = 0.0	5 GUIDELINE = N/A	
MAY JUN	.190 <t .270 <t< td=""><td>.310 <t .300 <t< td=""><td>.340 <t .310 <t< td=""><td>.350 <t .280 <t< td=""><td></td></t<></t </td></t<></t </td></t<></t </td></t<></t 	.310 <t .300 <t< td=""><td>.340 <t .310 <t< td=""><td>.350 <t .280 <t< td=""><td></td></t<></t </td></t<></t </td></t<></t 	.340 <t .310 <t< td=""><td>.350 <t .280 <t< td=""><td></td></t<></t </td></t<></t 	.350 <t .280 <t< td=""><td></td></t<></t 	
JUL AUG SEP	.310 <t .300 <t .190 <t< td=""><td>.460 <t .420 <t .350 <t< td=""><td>.370 <t .370 <t .330 <t< td=""><td>.380 <t .430 <t .350 <t< td=""><td></td></t<></t </t </td></t<></t </t </td></t<></t </t </td></t<></t </t 	.460 <t .420 <t .350 <t< td=""><td>.370 <t .370 <t .330 <t< td=""><td>.380 <t .430 <t .350 <t< td=""><td></td></t<></t </t </td></t<></t </t </td></t<></t </t 	.370 <t .370 <t .330 <t< td=""><td>.380 <t .430 <t .350 <t< td=""><td></td></t<></t </t </td></t<></t </t 	.380 <t .430 <t .350 <t< td=""><td></td></t<></t </t 	
NOV	.310 <t .250 <t< td=""><td>.450 <t .300 <t< td=""><td>.380 <t .280 <t< td=""><td>.390 <t .340 <t< td=""><td></td></t<></t </td></t<></t </td></t<></t </td></t<></t 	.450 <t .300 <t< td=""><td>.380 <t .280 <t< td=""><td>.390 <t .340 <t< td=""><td></td></t<></t </td></t<></t </td></t<></t 	.380 <t .280 <t< td=""><td>.390 <t .340 <t< td=""><td></td></t<></t </td></t<></t 	.390 <t .340 <t< td=""><td></td></t<></t 	
ZINC (UG/	.260 <t< td=""><td>.320 <t< td=""><td>.220 < T</td><td>.200 <t< td=""><td>(A3)</td></t<></td></t<></td></t<>	.320 <t< td=""><td>.220 < T</td><td>.200 <t< td=""><td>(A3)</td></t<></td></t<>	.220 < T	.200 <t< td=""><td>(A3)</td></t<>	(A3)
MAY JUN	2.000 <t 2.900</t 	1.400 <t 1.900 <t< td=""><td>53.000 92.000</td><td>7.700 13.000</td><td>(,,,,</td></t<></t 	53.000 92.000	7.700 13.000	(,,,,
JUL AUG	2.800 2.600	1.500 <t 2.200</t 	77.000 61.000	14.000 12.000	
SEP OCT NOV	2.500 1.700 <t 3.000</t 	2.500 1.200 <7 1.800 <7	110.000 65.000 140.000	16.000 11.000 14.000	
DEC	2.700	2.100	69.000	18.000	

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	R	AW TREAT	ED SITE	1
			STANDING	FREE FLOW
•••••	PESTICID	ES & PCB		
ALPHA BHO	(NG/L)		DET'N LIMIT = 1.000	GUIDELINE = 700 (G)
MAY	1.000 <7	2.000 <7		1.000 <t< td=""></t<>
JUN	BDL	BDL		1.000 <t< td=""></t<>
JUL	BDL	1.000 <7		BDL
AUG	2.000 <t< td=""><td>1.000 <t< td=""><td></td><td>2.000 <t< td=""></t<></td></t<></td></t<>	1.000 <t< td=""><td></td><td>2.000 <t< td=""></t<></td></t<>		2.000 <t< td=""></t<>
SEP	BDL	BDL		2.000 <t< td=""></t<>
OCT	1,000 <t< td=""><td>BDL</td><td></td><td>BOL</td></t<>	BDL		BOL
NOV	1.000 <t< td=""><td>1.000 <7</td><td></td><td>1.000 <t< td=""></t<></td></t<>	1.000 <7		1.000 <t< td=""></t<>
DEC	1.000 <t< td=""><td>1.000 <t< td=""><td></td><td>BOL</td></t<></td></t<>	1.000 <t< td=""><td></td><td>BOL</td></t<>		BOL
ATRAZINE	(NG/L)		DET'N LIMIT = 50	GUIDELINE = 60000 (A2
MAY	BDL	BDL		
JUN	BDL	BDL		
JUL	170.000 <t< td=""><td>150.000 <t< td=""><td></td><td></td></t<></td></t<>	150.000 <t< td=""><td></td><td></td></t<>		
AUG	80.000 <t< td=""><td>BDL</td><td></td><td></td></t<>	BDL		
SEP	90.000 <t< td=""><td>BDL</td><td></td><td></td></t<>	BDL		
OCT	90.000 <t< td=""><td>80.000 <t< td=""><td>•</td><td></td></t<></td></t<>	80.000 <t< td=""><td>•</td><td></td></t<>	•	
NOV	160.000 <t< td=""><td>BDL</td><td></td><td></td></t<>	BDL		
DEC	INS.	BDI		

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW	TREA	TED SI1	E 1	
				STANDING	FREE FLOW	
	P	HENOLICS				•
PHENOLICS	(UG/L)		DET'N LIMIT = .20	GUIDELINE = 2	(A4)
MAY	BDL		.400 <t< td=""><td></td><td></td><td></td></t<>			
JUN	BDL		BDL			
JUL	BDL		BDL			
AUG	BDL		BDL			
SEP	BDL		BDL			
OCT	.800	<t< td=""><td>.800 <t< td=""><td></td><td></td><td></td></t<></td></t<>	.800 <t< td=""><td></td><td></td><td></td></t<>			
NOV	BDL		.800 <t< td=""><td></td><td></td><td></td></t<>			
DEC	.600	<1	.800 <t< td=""><td></td><td></td><td></td></t<>			

- --

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	RAW	TREATE	D SITE	1	
			STANDING	FREE FLOW	
	VOLATILES		DET'N LIMIT = 0.05	GUIDELINE = 5	(A1)
BENZENE			DEL-M FIMIT - 0.05		(///
YAM		BDL .050 <t< td=""><td>:</td><td>.100 <t BDL</t </td><td></td></t<>	:	.100 <t BDL</t 	
JUL	BOL	.200 <t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<>		.100 <t< td=""><td></td></t<>	
AUG	BDL	.100 <t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<>		.100 <t< td=""><td></td></t<>	
SEP	BDL	.100 <7	•	.100 <t BOL</t 	
OCT NOV	BDL BDL	BDL !U	•	BDL	
	BDL	BDL	:	BDL	
	(UG/L)	***************************************	DET'N LIMIT = 0.05	GUIDELINE = 24	(A3)
MAY		.100 <t< td=""><td></td><td>.050 <t< td=""><td></td></t<></td></t<>		.050 <t< td=""><td></td></t<>	
JUN	BDL	BDL	•	BOL	
JUL	BDL	.300 <t .200 <t< td=""><td>•</td><td>.150 <t .100 <t< td=""><td></td></t<></t </td></t<></t 	•	.150 <t .100 <t< td=""><td></td></t<></t 	
AUG SEP	BDL BDL	.350 <t< td=""><td>:</td><td>.200 <t< td=""><td></td></t<></td></t<>	:	.200 <t< td=""><td></td></t<>	
OCT	BDL	.100 <t< td=""><td></td><td>BDL</td><td></td></t<>		BDL	
NOV	BDL	!U		BDL	
DEC	BDL	BDL		BDL	
	NZENE (UG/L)		DET'N LIMIT = 0.05	GUIDELINE = 2.4	(A3)
MAY	BOL	BDL		.150 <t< td=""><td></td></t<>	
JUN		.100 <t< td=""><td>•</td><td>.050 <t< td=""><td></td></t<></td></t<>	•	.050 <t< td=""><td></td></t<>	
JUL	BDL	.100 <t .050 <t< td=""><td>•</td><td>BDL BDL</td><td></td></t<></t 	•	BDL BDL	
AUG SEP	BDL BDL	.100 <7		BDL	
OCT	BDL	.050 <7		BOL	
NOV	.050 <t< td=""><td>!U</td><td>•</td><td>.100 <t< td=""><td></td></t<></td></t<>	!U	•	.100 <t< td=""><td></td></t<>	
DEC	BOL	.050 <t< td=""><td></td><td>.100 <7</td><td></td></t<>		.100 <7	
	E (UG/L)		DET'N LIMIT = 0.10	GUIDELINE = 300	(A3*)
MAY		.100 <t< td=""><td>•</td><td>BDL</td><td></td></t<>	•	BDL	
JUN	BDL BDL	BDL .300 <t< td=""><td>•</td><td>BDL BDL</td><td></td></t<>	•	BDL BDL	
JUL AUG	BDL	.200 <t< td=""><td>:</td><td>BOL</td><td></td></t<>	:	BOL	
SEP	BDL	.300 <t< td=""><td></td><td>.100 <t< td=""><td></td></t<></td></t<>		.100 <t< td=""><td></td></t<>	
OCT	BDL	BDL		BDL	
NOV	BDL	!U	•	BDL BDL	
DEC	BDL	BDL			
O-XYLEN	E (UG/L)		DET'N LIMIT = 0.05		O (A3*)
MAY	BDL	BDL	•	BDL	
JUN	BDL	BDL 150 < T	•	BDL .050 <t< td=""><td></td></t<>	
JUL	BDL BDL	.150 <t .100 <t< td=""><td>•</td><td>BDL</td><td></td></t<></t 	•	BDL	
SEP	BDL	.100 <t< td=""><td></td><td>.050 <t< td=""><td></td></t<></td></t<>		.050 <t< td=""><td></td></t<>	
OCT	BDL	BDL		BDL	
NOV	BDL	IU	•	BDL	
DEC	BDL	BDL		BDL	

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	RAW	TREA	TED	SITE 1		
			STANDING	FREE	FLOW	
STYRENE (UG/L)		DET'N LIMIT = (0.05	GUIDELINE = 10	0 (D1)
MAY JUN JUL AUG SEP OCT	BDL	BDL			.300 <t< td=""><td></td></t<>	
JUN	BDL	.100 <7			.050 <t< td=""><td></td></t<>	
JUL	BDL	.050 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<>			BDL	
AUG	BDL	.050 <t< td=""><td></td><td></td><td>BDL</td><td></td></t<>			BDL	
SEP	BDL	BDL	•		BDL	
OCT	BDL	BDL	•		BDL	
NOV	.100 <t BDL</t 	IU	•		.100 <t< td=""><td></td></t<>	
DEC		.050 <t< td=""><td></td><td></td><td>.100 <t< td=""><td></td></t<></td></t<>			.100 <t< td=""><td></td></t<>	
CHLOROFORM (UG.			DET'N LIMIT = 1		GUIDELINE = 350	(A1+)
MAY	BDL	20.600			17.000	
JUN	BDL	21.100			16.400	
JUL	BOL	24.800			18.500	
AUG	BDL BDL BDL BDL BDL	29.000			22.000	
SEP	BDL	22.300			15.900	
OCT	BDL	21.700			14.300	
NOV	BDL	10.600	•		14.100	
DEC			·		12.400	
DICHLOROBROMOM	ETHANE (UG/L)	DET'N LIMIT =		GUIDELINE = 350	(A1+)
MAY	BDL BDL BDL BDL BDL	10.950			10.000	
JUN	BDL	11.100			9.750	
JUL	BDL	13.400			11.000	
AUG	BDL	14.200			12.300	
SEP	BDL	12.650			10.600	
OCT	BDL	11.850			9.400	
NOV		!U			9.250	
DEC	BDL	10.300	•		8.500	
CHLOROD I BROMOM	ETHANE (UG/L)	DET'N LIMIT =		GUIDELINE = 350	(A1+)
MAY	BDL BDL BDL BDL BDL	4.300			4.100	
JUN	BDL	4.500			4.200	
JUL	BDL	5.400			4.700	
AUG	BDL	5.400			5.400	
SEP	BDL	5.700			5.100	
OCT	BDL	4.600	•		4.100	
NOV	RDL	!U			4.100	
DEC	BDL	3.600			3.400	
BROMOFORM (UG/			DET'N LIMIT =		GUIDELINE = 350	(A1+)
MAY	BDL	.400 <t< td=""><td></td><td></td><td>.400 <t< td=""><td></td></t<></td></t<>			.400 <t< td=""><td></td></t<>	
JUN	BDL	.400 <t< td=""><td></td><td></td><td>.400 <t< td=""><td></td></t<></td></t<>			.400 <t< td=""><td></td></t<>	
	BDL	.600 <t< td=""><td></td><td></td><td>.400 <t< td=""><td></td></t<></td></t<>			.400 <t< td=""><td></td></t<>	
	BDL	.600 <t< td=""><td></td><td></td><td>.600 <1</td><td></td></t<>			.600 <1	
	BDL	.600 <t< td=""><td></td><td></td><td>.600 <t< td=""><td></td></t<></td></t<>			.600 <t< td=""><td></td></t<>	
OCT	BDL	.600 <t< td=""><td></td><td></td><td>.600 <7</td><td></td></t<>			.600 <7	
NDV	BDL	!U			.400 <t< td=""><td></td></t<>	
DEC	BDL	.400 <t< td=""><td>•</td><td></td><td>.40D <t< td=""><td></td></t<></td></t<>	•		.40D <t< td=""><td></td></t<>	

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM PORT COLBORNE WTP 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW	TREATED SIT	TE 1
			STANDING	FREE FLOW
TOTL TRIHAL	OMETHANES (UG/	L)	DET'N LIMIT = 0.50	GUIDELINE = 350 (A1)
MAY	BDL	36.500		31.500
JUN	BDL	37.050		30.7 50
JUL	BDL	44.200		34.600
AUG	BDL	49.150		40.300
SEP	BDL	41.300		32.150
OCT	BDL	38.650		28.350
NOV	BDL	IU.		27.800
DEC	BDL	30.900		24.600

TRACE LEVELS OF TOLUENE ARE LABORATORY ARTIFACTS DERIVED FROM THE ANALYTICAL METHODOLOGY.

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS.

			DETECTION		
SCAN/PARAMETE	R	UNIT	LIMIT	GUIDELIN	Ε
	•				•
BACTERIO	001041				
BACTERIOL	OGICAL				
FECAL COLIFOR	M MEMBRANE FILTRATION	CT/100ML	0	0	(A1)
	E COUNT MEMBRANE FILT.	CT/ML	0	500/ML	
TOTAL COLIFOR	M BACKGROUND MF	CT/100ML	0	MIZA	
TOTAL COLIFOR	M MEMBRANE FILTRATION	CT/100ML	0	5/100ML	(A1)
CHEMISTRY	(FLO)				
FIELD COMBINE	D CHLORINE RESIDUAL	MG/L	0	H/A	
FIELD TOTAL C	HLORINE RESIDUAL	MG/L	Ö	N/A	
FIELD FREE CH	LORINE RESIDUAL	MG/L	0	N/A	
FIELD PH		DMNSLESS	N/A	N/A N/A 6.5-8.5	(A3)
FIELD TEMPERA		DEG.C	n/A	. 13.0	(2)
FIELD TURBIDI	TY	FTU	N/A	1.0	(A1)
CHEMISTRY	(LAB)				
ALKALINITY		MG/L	0.2	30-500	(43)
AMMONIUM TOTA	1	MG/L		0.05	
CALCIUM	•	MG/L	0.2	100	(F2)
CHLORIDE		MG/L	0.2	250	(A3)
COLOUR		TCU	0.5	100 250 5.0	(A3)
CONDUCTIVITY		UMHO/CM	0.5 1.0	400	(12)
CYANIDE		MG/L	0.001	0.2	(A1)
DISSOLVED ORG	ANIC CARBON	MG/L	0.1 0.01	5.0	(A3)
FLUORIDE		MG/L	0.01	2.4	
HARDNESS	NEV	MG/L	0.5		(A4)
LANGELIERS IN MAGNESIUM	DEX	DMNSLESS MG/L	N/A	N/A 30.0	(F2)
NITRITE		MC /I	0.001	1.0	(41)
NITROGEN TOTA	L KJELDAHL	MG/L	0.001	N/A	(////
PH		DMNSLESS	N/A	N/A 6.5-8.5	(A4)
PHOSPHORUS FI	L REACT	MG/L	0.0005	N/A	
PHOSPHORUS TO	TAL	MG/L	0.002	0.4	(F2)
SODIUM		MG/L	0.2	200	(A4)
SULPHATE	_	MG/L MG/L	0.2	500	(A3)
TOTAL NITRATE	5	MG/L	0.005	0.4 200 500 10.0	
TUKBIDITT		FTU	0.05	1.0	(A1)
CHLOROARO	MATICS				
123 TRICHLORO		NG/L	5.0	N/A	
1234 TETRACHL		NG/L	1.0	N/A	
1235 TETRACHLE		NG/L	1.0	N/A	
124 TRICHLORO		NG/L	5.0	10000 38000	(1)
1245-TETRACHL		NG/L	1.0		(D4)
135 TRICHLORO 236 TRICHLORO		NG/L	5.0	N/A	
245 TRICHLORO		NG/L NG/L	5.0	N/A N/A	
26A TRICHLORO		NG/L	5.0 5.0	N/A	
HEXACHLOROBEN:		NG/L	1.0		(C1)
HEXACHLOROBUTA		NG/L	1.0		(D4)
HEXACHLOROCYC	LOPENTADIENE	NG/L	5.0	206000	
HEXACHLOROETH		NG/L	1.0	1900	
OCTACHLOROSTY		NG/L	1.0	N/A	
PENTACHLOROBEI	NZENE	NG/L	1.0	74000	(D4)
CHLOROPHE	NOLS				
234 TRICHLORO	PHENOL	NG/L	100.0	N/A	
2345 TETRACHLO	DROPHENOL	NG/L	20.0	N/A	
2356 TETRACHLO		NG/L	10.0	H/A	

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
245 TRICHLOROPHENOL	NG/L	100.0	2600000 (D4)
246 TRICHLOROPHENOL	NG/L	20.0	5000 (A1)
PENTACHLOROPHENOL	NG/L	10.0	60000 (A1)
-	,		*****
METALS			
ALUMINUM	UG/L	0.10	100 (A4)
ANTIMONY	UG/L	0.05	146 (D4)
ARSENIC	UG/L	0.10	25 (A1)
BARIUM BERYLLIUM	UG/L UG/L	0.05 0.05	1000 (A2) 6800 (D4)
BORON	UG/L	2.00	5000 (A1)
CADHIUM	UG/L	0.05	5 (A1)
CHRONIUM	UG/L	0.50	50 (A1)
COBALT	UG/L	0.02	N/A
COPPER IRON	UG/L	0.50 6.00	1000 (A3) 300 (A3)
LEAD	UG/L UG/L	0.05	10 (A1)
MANGANESE	UG/L	0.05	50 (A3)
MERCURY	UG/L	0.02	1 (A1)
MOLYBDENUM	UG/L	0.05 0.20	N/A
NICKEL	UG/L	0.20	350 (03)
SELENIUM SILVER	UG/L UG/L	1.00 0.05	10 (A1) 50 (A1)
STRONTIUM	UG/L	0.10	N/A
THALLIUM	UG/L	0.05	13 (D4)
TITANIUM	UG/L	0.50	N/A
URANTUM	UG/L	0.05	100 (A1)
VANADIUM ZING	UG/L	0.05 0.20	N/A 5000 (A3)
21110	UG/L	0.20	3000 (A3)
PAH			
ANTHRACENE	NG/L	1.0	N/A
BENZO(A) ANTHRACENE	NG/L	20.0	N/A
BENZO(A) PYRENE	NG/L	5.0	10.0 (A1)
BENZO(B) CHRYSENE BENZO(B) FLUORANTHENE	NG/L NG/L	2.0 10.0	N/A N/A
BENZO(E) PYRENE	NG/L	50.0	N/A
BENZO(G,H,I) PERYLENE	NG/L	20.0	N/A
BENZO(K) FLUORANTHENE	NG/L	1.0	N/A
CHRYSENE	NG/L	50.0	N/A
CORONENE DIBENZO(A, H) ANTHRACENE	NG/L NG/L	10.0 10.0	N/A N/A
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A
FLUORANTHENE	NG/L	20.0	42000.0 (D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A
PERYLENE	NG/L	10.0	N/A
PHENANTHRENE PYRENE	NG/L NG/L	10.0 20.0	N/A N/A
PESTICIDES & PCB			
ALACHLOR (LASSO)	NG/L	500.0	5000 (A2)
ALDRIN	NG/L	1.0	700 (A1)
ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	700 (G)
ALPHA CHLORDANE	NG/L	2.0	7000 (A1)
AMETRINE ATRATONE	NG/L NG/L	50.0 50.0	300000 (D3) N/A
ATRAZINE	NG/L	50.0	60000 (A2)
DES ETHYL ATRAZINE	NG/L	200.0	60000 (A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300 (G)
CYANAZINE (BLADEX)	NG/L	100.0 5.0	10000 (A2) 10 (I)
O,P-DOO DIELDRIN	NG/L NG/L	2.0	10 (I) 700 (A1)
ENDOSULFAN 1 (THIODAN I)	NG/L	2.0	74000 (D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000 (D4)

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NC ()	F 0	
ENDRIN	NG/L	5.0	N/A
GAMMA CHLORDANE	NG/L	5.0	1600 (03)
HEPTACHLOR	NG/L	2.0	7000 (A1)
	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	900000 (A1)
METOLACHLOR	NG/L	500.0	50000 (AZ)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX '	NG/L	5.0	N/A
P,P-DDD O,P-DDT	NG/L	5.0	N/A
	NG/L	5.0	30000 (A1)
OXYCHLORDANE	NG/L	2.0	N/A
PCB PPDDE	NG/L	20.0	3000 (A2)
PPDDT	NG/L	1.0	30000 (A1)
	NG/L	5.0	30000 (A1)
PROMETONE	NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
D-ETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	2 (A4)
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.	N/A
2,4,5-TRICHLOROPHENDXY ACETIC ACID	NG/L	50.	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000 (A1)
24-DICHLORORPHENOXYBUTYRIC ACID (24-DB)	NG/L	200.	18000 (B3)
BUTYLATE (SUTAN)	NG/L	2000.	245000 (D3)
CARBARYL (SEVIN)	NG/L	200.	90000 (A1)
CARBOFURAN	NG/L	2000.	90000 (A1)
CHLORPYRIFOS (DURŚBAN)	NG/L	20.	N/A
CICP (CHLORPROPHAM)	NG/L	2000.	350000 (G)
DIALLATE	NG/L	2000.	N/A
DIAZINON	NG/L	20.	20000 (A1)
DICAMBA	NG/L	50.	120000 (A1)
DICHLOROVOS	NG/L	20.	N/A
EPTAM	NG/L	2000.	N/A
ETHION	NG/L	20.	35000 (G)
IPC	NG/L	2000.	N/A
MALATHION	NG/L	20.	190000 (A1)
METHYL PARATHION	NG/L	50.	7000 (B3)
METHYLTRITHION	NG/L	20.	N/A
MEVINPHOS	NG/L	20.	N/A
PARATHION	NG/L	20.	50000 (A1)
PHORATE (THIMET)	NG/L	20.	2000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.	140000 (D3)
RELDAN	NG/L	20.	N/A
RONNEL	NG/L	20.	N/A
SILVEX (2,4,5-TP)	NG/L	20.	10000 (A1)
VOLATILES			
1,1 DICHLOROETHANE	UG/L	0.10	N/A
1,1 DICHLOROETHYLENE	UG/L	0.10	7 (01)
1,2 DICHLOROBENZENE	UG/L	0.05	200 (A1)
1,2 DICHLOROETHANE	UG/L	0.05	5 (A1)

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
1.2 DICHLOROPROPANE	UG/L	0.05	5 (D1)
1.3 DICHLOROBENZENE	UG/L	0.10	
1,4 DICHLOROBENZENE	UG/L	0.10	5 (A1)
111. TRICHLOROETHANE	UG/L	0.02	
112 TRICHLOROETHANE	UG/L	0.05	
1122 TETRACHLOROETHANE	UG/L	0.05	0.17(04)
BENZENE	UG/L	0.05	
BRONOFORM	UG/L	0.20	
CARBON TETRACHLORIDE	UG/L	0.20	
CHLOROBENZENÉ	UG/L	0.10	
CHLOROD I BROMOMETHANE	UG/L	0.10	
CHLOROFORM	UG/L	0.10	
DICHLOROBROMOMETHANE	UG/L	0.05	
ETHLYENE DIBROMIDE	UG/L	0.05	
ETHYLBENZENE	UG/L	0.05	
M-XYLENE	UG/L	0.10	
METHYLENE CHLORIDE	UG/L	0.50	
O-XYLENE	UG/L	0.05	
P-XYLENE	UG/L	0.10	300 (A3*)
STYRENE	UG/L	0.05	100 (D1)
TETRACHLOROETHYLENE	UG/L	0.05	
TRANS 1,2 DICHLOROETHYLENE	UG/L	0.10	70 (01)
TOLUENE	UG/L	0.05	
TOTAL TRIHALOMETHANES	UG/L	0.50	
TRICHLOROETHYLENE	UG/L	0.10	50 (A1)

Appendix A

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1990, 76 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment (MOE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption,

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
 - iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake,

discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

MOE - DRINKING WATER ASSESSMENT PROGRAM (DWSP)

PARAMETER REFERENCE INFORMATION

CLASS:	HEALTH	METHOD	: POCODO	UNIT: μg/L			
SOURCE	FROM	то м	ETHOD	GUIDELINE	UNIT	NOTE	
CAL C	85/01			0.700	μg/L	AL	
CDWG C	87/01			5.000	μg/L	MAC	
EPA C	87/07			5.000	μg/L	MCL	
EPAA C	80/11			6.600	μg/L	AMBIENT	**
FERC C	84/05			1.000	μg/L	MCL	
WHO C	84/01			10.000	μg/L	GV	

DESCRIPTION: NAME: BENZENE CAS#: 71-43-2

BENZENE (B2001P)

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 µg/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27).

CYCLOHEXATRIENE (41).

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NON-POLAR LIQUID, OF HIGHLY REFRACTIVE NATURE,

AROMATIC ODOUR; VAPOURS BURN WITH SMOKING FLAME

(30).

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41).

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATERTHRESHOLD TASTE:

0.5 mg/L IN WATER (39).

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM SOILS OR ARE

DEGRADED RATHER QUICKLY (80).

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY;

COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES; COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

VOLATILES

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING AGENT; GASOLINE.

TOXICITY: RATING: 4 (VERY TOXIC).

ACUTE: IRRITATING TO MUCOUS MEMBRANES; SYMPTOMS
INCLUDE RESTLESSNESS, CONVULSIONS, EXCITEMENT,
DEPRESSION; DEATH MAY FOLLOW RESPIRATORY FAILURE.
CHRONIC: MAY CAUSE ANAEMIA AND LEUKAEMIA (45);
MUTAGENIC.
MODE OF ACTION: CHROMOABERRATION IN LYMPHOCYTE

CARCINOGENICITY: A KNOWN HUMAN CARCINOGEN.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12

MELTING POINT: 5.5°C (27).

BOILING POINT: 80.1°C (27).

SPECIFIC GRAVITY: 0.8790 AT 20°C (27).

VAPOUR PRESSURE: 100 MM AT 26.1°C (27).

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41).

LOG OCT./WATER PARTITION COEFFICIENT: 1.95 TO 2.13 (39).

CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41) SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

NOTES: EPA PRIORITY POLLUTANT.

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500) -rinse bottle and cap with sample

water three times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white

seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO3) (Caution: HNO3 is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with

sample)

-do not rinse bottle

-fill bottle completely without

bubbles

Organics

-1 L amber glass bottle per scan (OWOC), (OWTRI), (OAPAHX) -do not rinse bottle

-fill to 2 cm from top

-when 'special pesticides' are requested three extra bottles

must be filled

Cyanide -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury

-250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO3) and potassium dichromate (K2Cr2O7) (Caution: HNO3&K2Cr2O7 are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative

has been added

-fill to top of label

Radionuclides (as scheduled) -4 L plastic jug

-do not rinse, carrier added

-fill to 5 cm from top

(GC/MS - once per year) as per organic

Organic Characterization -1 Lamber glass bottle; instructions

-250 mL glass bottle

-do not rinse bottle

-fill completely without bubbles

Steps:

- 1. Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- 5. Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times -fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

5. Fill general chemistry and metals bottles.

Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with

white seal on cap

-do not rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) (OPOPUP)

-45 mL glass vial with septum (teflon side must be in contact

with sample)

-do not rinse bottle, preservative

has been added

-fill bottle completely without

bubbles

Organics (OWOC) (OAPAHX) -1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

