The Untyped Lambda Calculus: A Simple Functional Programming Language

Paul Gustafson

Math 482 - Texas A&M University

March 5, 2013

Why is the λ -calculus important?

- Computer Science
 - Variable binding in function declarations
 - Scope
 - Type sytems
 - Functional programming languages (Lisp, ML variants, Haskell)
- Logic
 - Computability
 - Constructivism ("Proofs as Programs")
- Linguistics

Why was the λ -calculus developed?

- Formal system of logic developed by Alonzo Church in 1932
- Used to solve Leibniz' Entscheidungsproblem ("Decision problem")
 - "Is every statement in first-order logic over a finite set of axioms decidable?"
 - No Church and Turing

How does the λ -calculus work? (I): λ -terms

- The set of λ -terms, Λ , is built from a countable set of variables $V = \{v, v', v'', \ldots\}$:

 - $(M, N \in \Lambda \implies (MN) \in \Lambda)$
- Examples of λ -terms
 - v'
 - $(\lambda v.(v'v))$
 - $(((\lambda v.(\lambda v'.(v'v)))v'')v''')$
- Free and bound variables, closed terms

Convenient syntactic assumptions

- Drop outer parentheses
- Lowercase letters are placeholders for arbitrary variables
- ullet Scope of λ extends as far to the right as possible
 - Example: $\lambda x.\lambda y.xy = \lambda x.(\lambda y.xy)$)
- Expressions are left associative by default
 - Example: xyz = (xy)z
- Multiple bindings in a row can be contracted.
- Example $\lambda xyz.M = \lambda x.\lambda y.\lambda z.M$.

How does the λ -calculus work? (II): Conversion Rules

- α -conversion: $\lambda x.[...x...] = \lambda y.[...y...]$.
 - "We can rename bound variables."
 - Example: $\lambda a.a = \lambda b.b$
- β -conversion: $\lambda x.[...x...]T = [...T...].$
 - "Evaluation / substitution."
 - Example: $(\lambda x.x)y = y$.
- η -conversion: $\lambda x.F(x) = F$.
 - "Extensionality a function is defined by what it does."
 - Example: $\lambda y.\lambda x.yx = \lambda y.y$

Representing booleans

- true = $\lambda x. \lambda y. x$
- false = $\lambda x. \lambda y. y$
- if a then b else c = abc
 - if true then b else $c = (\lambda x. \lambda y. x)bc = (\lambda y. b)c = b$.
 - if false then b else $c = (\lambda x. \lambda y. y)bc = (\lambda y. y)c = c$.

Church numerals

- A representation of the natural numbers
 - $0 := \lambda f. \lambda x. x$
 - $1 := \lambda f.\lambda x.fx$
 - $2 := \lambda f . \lambda x . f(fx)$
 - $3 := \lambda f.\lambda x.f(f(fx))$
 - ...

Arithmetic with Church numerals

- Successor: $\lambda n.\lambda f.\lambda x.f(nfx)$
- Addition: $\lambda m. \lambda n. \lambda f. \lambda x. mf(nfx)$
- Multiplication: $\lambda m. \lambda n. \lambda f. m(nf)$
- Exponentiation: $\lambda m. \lambda n. nm$
- Predecessor: $\lambda n.\lambda f.\lambda x.n(\lambda g.\lambda h.h(gf))(\lambda u.x)(\lambda u.u)$

The Y-combinator

- Define the Y-combinator by $Y = \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))$
- Fixed-point Theorem: For any term $g \in \Lambda$, we have g(Yg) = Yg.
- Proof:

$$Yg = (\lambda f.(\lambda x.f(xx))(\lambda x.f(xx)))g$$

$$= (\lambda x.g(xx))(\lambda x.g(xx))$$

$$= g((\lambda x.g(xx))(\lambda x.g(xx)))$$

$$= g(Yg)$$

References

- Lecture Notes on the Lambda Calculus. Peter Selinger. http://www.mscs.dal.ca/selinger/papers/lambdanotes.pdf
- Untyped Lambda Calculus. Deepak D'Souza.
 http://drona.csa.iisc.ernet.in/ deepakd/pav/lecture-notes.pdf
- Introduction to Lambda Calculus. Barendregt and Barensen. ftp://ftp.cs.ru.nl/pub/CompMath.Found/lambda.pdf
- Lambda Calculus, Then and Now. Dana S. Scott. http://www.youtube.com/watch?v=7cPtCpyBPNI