

Deep Convolutional Network Based Age-Invariant Face Recognition(AIFR)

Supervisors: Dr. S Balasubramanian

Sri Darshan Gera

Saurav Rai
II M.Tech(CS)

Problem Statement

Recognizing faces across ages

Applications

- Biometrics
- Forensics, Surveillance and criminal investigations
- Finding Missing Children after years
- Verifying Passports
- Healthcare Industry

Face recognition(FR)

- Identifying or verifying the identity of an individual using their face.
- ☐ FR is of two types
 - (i) Face Identification: is a classification problem that basically classifies a face image to class of face identities.
 - (ii) Face Verification: is determining whether given two face images belong to the same identity or not.

Challenges

POSE

IMAGE QUALITY

PARTIAL OCCLUSION

Contd..

■ More Intra-class variation than Inter-class variation

3. Evolution

AIFR methods over the years...

Objectives

Study of Deep Learning(DL) based methods for AIFR.

☐ To add value to this domain by contributing a new method for the AIFR.

Literature survey

- 1. Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition, CVPR, Tianyue Zheng, Weihong Deng, Jiani Hu, 2017
- 2. Face Recognition with Contrastive Convolution, ECCV, Chunrui Han, Shiguang Shan, 2018
- 3. A Light CNN for Deep Face Representation with Noisy Labels, IEEE Transactions, Xiang Wu, Ran He, Zhenan Sun, Tieniu Tan, 2017
- 4. Squeeze and Excitation Networks, Jie Hu, Li Shen, Samuel Albanie, CVPR, 2018
- 5. Cross-Age Reference Coding for Age-Invariant Face Recognition and Retrieval, IEEE Transactions, Bor-Chun Chen1, Chu-Song Chen1, Winston H. Hsu, 2015
- 6. MORPH: A Longitudinal Image Database of Normal Adult Age-Progression, IEEE Transactions, Karl Ricanek Jr, Tamirat Tesafaye, 2006
- 7. Learning Face Representation from Scratch, Computing Research Repository(CoRR) Dong Yi, Zhen Lei, 2014

Method 1

Age Estimation guided convolution neural network (AE-CNN)

Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition, *CVPR*, *Tianyue Zheng, Weihong Deng, Jiani Hu*, 2017

Idea of the paper

☐ A new method to obtain age—invariant feature by subtracting age factor obtained by age estimation from the whole features which contain both identity and age features.

Datasets used

Datasets Info:	CACD (Cross-Age Celebrity Dataset)	MORPH Album2
No of Images	163,446	55,000
No of identity	2,000	13,000
Birth year	Yes	Yes
Rank of the celebrity	Yes	No
Age info	Yes	Yes
Range of age	16-62	16-77
Year when photo taken	Yes	No
Race/Gender	No	Yes
Illumination, poses	Yes	Yes

Results

Dataset – MORPH	No of identities	No of images	Recognitio	
			Ours	Authors
Training Set	10000	43102		
Validation Set	2000	8100	93	
Test Set	1000	4002	91	98
Dataset- CACD	No of identities	No of images	Mean aver precision (Ours	MAP)
			Ours	Authors
Training Set	1512	139118		
Training Set Test Set (Query)	1512 71	139118 1211		
Test Set (Query)	71	1211		

Method 2

AIFR with Contrastive Convolution

A vs. B_2

Face Recognition with Contrastive Convolution, ECCV, Chunrui Han, Shiguang Shan, 2018

Architecture

The pipeline of Contrastive Convolutional Neural Network(CNN)

Face Recognition with Contrastive Convolution, ECCV, Chunrui Han, Shiguang Shan, 2018

Contrastive CNN

☐ Similarity between A and B is as follows:

$$S_{AB} = \frac{1}{2}(S_A^B + S_B^A)$$
 where $S_A^B = \sigma(F_A^B \cdot W)$ and $S_B^A = \sigma(F_B^A \cdot W)$

Objective function: $\min_{C,G,W,H} L_1 + \alpha L_2$ where $\min_{C,G,W} L_1 = -\frac{1}{N} \sum_{A,B} \left[L_{AB} \log(S_{AB}) + (1 - L_{AB}) \log(1 - S_{AB}) \right]$ and $L_2 = -\frac{1}{2N} \left[\sum_A l_A \log(H(K_A)) + \sum_B l_B \log(H(K_B)) \right]$

Datasets used

Datasets Info:	VGG2	CASIA	LFW
No of Images	3.31 million	500,000	13,233
No of identity	9,131	10,575	5,749
Age info	No	No	No
Illumination , poses	Yes	Yes	Yes

Training with CASIA

☐ Face Recognition with LFW and CACD-VS

Recognition Rate (in %) for (a) LFW and (b) CACD-VS Dataset

Comparison

Architecture		mAcc on LFW(%) Result (Ours)
Contrastive CNN 4	98.20	93.12

Training with VGG2

☐ Face Recognition with LFW, CACD-VS AND MORPH

Recognition Rate (in %) for (a) LFW, (b) CACD-VS and (c) MORPH Dataset

OUR CONTRIBUTIONS

Cleaning of CACD Dataset

(a)

CACD Dataset contains wrong labelled and duplicate images

(b)

(a) Figure showing images with wrong labels and (b) Figures showing images with duplicate images

Motivation

☐ Output feature from Deep CNN may contain both informative and non-informative feature.

☐ AIFR require only informative feature.

☐ Aim is to generate a model which suppress the non-informative feature and give more weight to informative feature as much as possible.

Results on Morph Dataset

Sl.no	Pretrained Model	Test set accuracy
1	LightCNN-4	89.1
2	LightCNN-9	97.0
3	LightCNN-29	99.13
4	LightCNN-29v2	99.56

Rank 1 Identification rate of SE-CNN for MORPH Dataset

Results on CACD Dataset

(a) Loss vs the no of Iterations and (b) MAP of SE-CNN with different versions of LightCNN

Recognition rates on MORPH

sl.no	Method	Year	Rank-1
			Recognition
			Rate
1	HFA	2013	91.14%
2	CARC	2014	92.80%
3	MEFA	2015	93.80%
4	MEFA+SIFT+MLBP	2015	94.59%
5	GSM	2016	94.40%
6	LF-CNNs	2016	97.51%
7	AE-CNN	2017	98.13%
8	OE-CNNs	2018	98.67%
9	SE-CNN(LightCNN-4)	2019	89.1%
10	SE-CNN(LightCNN-9)	2019	97.0%
11	SE-CNN(LightCNN-29)	2019	99.13%
12	SE-CNN(LightCNN-29v2)	2019	99.56%

Age Estimation Guided Convolutional Neural Network for Age-Invariant Face Recognition, CVPR, Tianyue Zheng,, 2017

Comparison with different Methods:

- (a) The performance of MAP of several state-of-the-art algorithms on CACD (reference: AE-CNN)
- (b) compared with the proposed method SE-CNN(b)

Conclusion

Preprocessing of several face datasets is done.

A clean CACD dataset is contributed for better training of DL models.

□ SE-CNN performs better than state-of-the-art methods for AIFR on MORPH and CACD datasets.

ANY QUESTIONS?