

Estimation

Estimation of the unknown parameters of a multivariate process works similar to the univariate case, but one has to take a bit more care with the dimensions.

The mean is estimated as

$$\hat{\mathbf{m}}_{\mathbf{y}} = \frac{1}{N} \sum_{t=1}^{N} \mathbf{y}_{t}$$

and the (biased) autocovariance function as

$$\hat{\mathbf{R}}_{\mathbf{y}}(k) = \frac{1}{N} \sum_{t=k+1}^{N} \left(\mathbf{y}_{t} - \hat{\mathbf{m}}_{\mathbf{y}} \right) \left(\mathbf{y}_{t-k} - \hat{\mathbf{m}}_{\mathbf{y}} \right)^{*}$$

vielding the ACF estimate

$$\hat{\boldsymbol{\rho}}_{\mathbf{y}}(k) = \hat{\mathbf{P}}_{\mathbf{y}}^{-1/2} \hat{\mathbf{R}}_{\mathbf{y}}(k) \hat{\mathbf{P}}_{\mathbf{y}}^{-1/2}$$

where

$$\hat{\mathbf{P}}_{\mathbf{y}} = \begin{bmatrix} \hat{r}_{11}(0) & 0 & \dots & 0 \\ 0 & \hat{r}_{22}(0) & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & \hat{r}_{mm}(0) \end{bmatrix}$$

LUND UNIVERSITY

Estimation

Example:

Consider the $m \times 1$ multivariate ARX(p) process

$$\mathbf{y}_t + \mathbf{A}_1 \mathbf{y}_{t-1} + \ldots + \mathbf{A}_p \mathbf{y}_{t-p} = \mathbf{B}_0 \mathbf{x}_t + \ldots + \mathbf{B}_r \mathbf{x}_{t-r} + \mathbf{e}_t$$

with \mathbf{x}_t being an s-dimensional, possibly stochastic, vector. Thus,

$$\mathbf{y}_t^* = -\sum_{k=1}^p \mathbf{y}_{t-k}^* \mathbf{A}_k^* + \sum_{k=0}^r \mathbf{x}_{t-k}^* \mathbf{B}_k^* + \mathbf{e}_t^* = \mathbf{X}_t^* oldsymbol{ heta} + \mathbf{e}_t^*$$

where

$$\mathbf{X}_t^* = \left[\begin{array}{cccc} -\mathbf{y}_{t-1}^* & \dots & -\mathbf{y}_{t-p}^* & \mathbf{x}_{t-1}^* & \dots & \mathbf{x}_{t-r}^* \end{array}
ight]$$
 $oldsymbol{ heta} = \left[egin{array}{cccc} \mathbf{A}_1 & \dots & \mathbf{A}_p & \mathbf{B}_0 & \dots & \mathbf{B}_r \end{array}
ight]$

or, equivalently, assuming that $p \geq r$,

$$\mathbf{Y} = \left[egin{array}{c} \mathbf{y}_{p+1}^* \ dots \ \mathbf{y}_N^* \end{array}
ight] = \left[egin{array}{c} \mathbf{X}_{p+1}^* \ dots \ \mathbf{X}_N^* \end{array}
ight] oldsymbol{ heta} + \left[egin{array}{c} \mathbf{e}_{p+1}^* \ dots \ \mathbf{e}_N^* \end{array}
ight] = \mathbf{X}oldsymbol{ heta} + \mathbf{E}$$

which suggests the LS parameter estimate

$$\hat{oldsymbol{ heta}} = \left(\mathbf{X}^*\mathbf{X}
ight)^{-1}\mathbf{X}^*\mathbf{Y}$$

Let $\phi = \text{vec} \{ \boldsymbol{\theta} \}$. Then, $V \{ \hat{\phi} \} = \boldsymbol{\Sigma} \otimes [\mathbf{X}^* \mathbf{X}]^{-1}$.

LUND UNIVERSITY

Estimation

The maximum likelihood (ML) estimate is formed as the parameters maximising the likelihood function given the observed data.

Restricting ourselves to the real-valued multivariate process

$$\mathbf{y}_t = \mathbf{X}\boldsymbol{\theta} + \mathbf{e}_t$$

for t = 1, ..., N, where \mathbf{e}_t is a zero-mean multivariate Gaussian process with covariance matrix Σ . Let

$$\mathbf{Y} = \left[egin{array}{cccc} \mathbf{y}_1 & \dots & \mathbf{y}_N \end{array}
ight]$$

Then,

$$f(\mathbf{Y}) = \prod_{t=1}^{N} \left[(2\pi)^m \det(\mathbf{\Sigma}) \right]^{-1/2} \exp\left\{ -\frac{1}{2} \left[\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta} \right]^T \mathbf{\Sigma}^{-1} \left[\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta} \right] \right\}$$
$$= \left[(2\pi)^m \det(\mathbf{\Sigma}) \right]^{-N/2} \exp\left\{ -\frac{1}{2} \sum_{t=1}^{N} \left[\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta} \right]^T \mathbf{\Sigma}^{-1} \left[\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta} \right] \right\}$$

The log likelihood is thus

$$\ln f(\mathbf{Y}) = -\frac{N}{2} \ln \det (\mathbf{\Sigma}) - \frac{1}{2} \sum_{t=1}^{N} [\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta}]^T \mathbf{\Sigma}^{-1} [\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta}] + c$$

where c denotes a constant that does not depend on θ .

LUND UNIVERSITY

Estimation

Assuming first that Σ is known, the maximisation of

$$\ln f(\mathbf{Y}) = -\frac{N}{2} \ln \det (\mathbf{\Sigma}) - \frac{1}{2} \sum_{t=1}^{N} [\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta}]^T \mathbf{\Sigma}^{-1} [\mathbf{y}_t - \mathbf{X}\boldsymbol{\theta}] + c$$

simplifies to

$$\hat{\boldsymbol{\theta}}_{ML} = \arg \max_{\boldsymbol{\theta}} \ln f(\mathbf{Y})$$

$$= \arg \min_{\boldsymbol{\theta}} \frac{1}{2} \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T} \boldsymbol{\Sigma}^{-1} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]$$

$$= \arg \min_{\boldsymbol{\theta}} \operatorname{tr} \left(\boldsymbol{\Sigma}^{-1} \hat{\mathbf{D}}_{\boldsymbol{\theta}} \right)$$

where

$$\hat{\mathbf{D}}_{\boldsymbol{\theta}} = \frac{1}{N} \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right] \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T}$$

is an estimate of Σ .

Estimation

In case Σ is unknown, the ML estimate is formed by maximising $f(\mathbf{Y})$ over both $\boldsymbol{\theta}$ and Σ , i.e.,

$$\left\{ \hat{\boldsymbol{\theta}}_{ML}, \hat{\boldsymbol{\Sigma}} \right\} = \arg \min_{\boldsymbol{\theta}, \boldsymbol{\Sigma}} \left\{ N \ln \det \left(\boldsymbol{\Sigma} \right) + \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T} \boldsymbol{\Sigma}^{-1} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right] \right\}$$

$$= \arg \min_{\boldsymbol{\theta}} \left\{ \ln \det \left(\hat{\mathbf{D}}_{\boldsymbol{\theta}} \right) \right\}$$

where

$$\hat{\mathbf{D}}_{\boldsymbol{\theta}} = \frac{1}{N} \sum_{t=1}^{N} \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right] \left[\mathbf{y}_{t} - \mathbf{X} \boldsymbol{\theta} \right]^{T}$$

The resulting cost function is often multi-modal and requires an accurate initialisation.

Estimation

Model order selection:

$$Q^* = N^2 \sum_{\ell=1}^K (N - \ell)^{-1} tr \left\{ \hat{\mathbf{R}}_e^T(\ell) \hat{\mathbf{R}}_e^{-1}(0) \hat{\mathbf{R}}_e^T(\ell) \hat{\mathbf{R}}_e^{-1}(0) \right\}$$

$$M_p = -\left(N - p - mp - \frac{1}{2}\right) \ln \left[\frac{|\hat{\boldsymbol{\Sigma}}_p|}{|\hat{\boldsymbol{\Sigma}}_{p-1}|}\right]$$

$$AIC(p) = N \ln \left[|\hat{\boldsymbol{\Sigma}}_p|\right] + 2pm^2$$

$$BIC(p) = N \ln \left[|\hat{\boldsymbol{\Sigma}}_p|\right] + pm^2 \ln N$$

$$FPE(p) = \left[\frac{N + mp + 1}{N - mp - 1}\right]^m |\hat{\boldsymbol{\Sigma}}_p|$$

where $Q^* \in \chi^2_{1-\alpha}\Big\{m^2(K-p-q)\Big\}$ (use lbpTest) and $M_p \in \chi^2_{1-\alpha}(m^2)$

Here, $\hat{\Sigma}_p$ denotes the covariance matrix of the residual when using a model of order p, i.e.,

$$\hat{\boldsymbol{\Sigma}}_p = \frac{1}{N-p} \Big(\mathbf{Y} - \mathbf{X}_p^* \hat{\boldsymbol{\theta}}_p \Big)^* \Big(\mathbf{Y} - \mathbf{X}_p^* \hat{\boldsymbol{\theta}}_p \Big) = \frac{\mathbf{Y}^* \boldsymbol{\Pi}_{\mathbf{X}_p}^{\perp} \mathbf{Y}}{N-p}$$

Example

We consider a VAR(2), with

$$\mathbf{y}_t + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} = \mathbf{e}_t$$

where

$$\mathbf{A}_1 = \begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.8 \end{bmatrix} \qquad \mathbf{A}_2 = \begin{bmatrix} -0.2 & -0.1 \\ 0.3 & 0.6 \end{bmatrix}$$

Example

	k = 1	k = 2	k = 3	k = 4	
$oldsymbol{ ho_{\mathbf{y}}(k)}$	$ \begin{bmatrix} -0.67 & -0.36 \\ 0.31 & -0.57 \end{bmatrix} $ $ \begin{bmatrix} - & - \\ + & - \end{bmatrix} $	$ \begin{bmatrix} 0.41 & 0.50 \\ -0.43 & -0.08 \end{bmatrix} $ $ \begin{bmatrix} + & + \\ - & - \end{bmatrix} $	$ \begin{bmatrix} -0.14 & -0.37 \\ 0.33 & 0.43 \end{bmatrix} \\ \begin{bmatrix} - & - \\ - & + \end{bmatrix} $	$\begin{bmatrix} 0.00 & 0.13 \\ -0.13 & -0.38 \end{bmatrix}$ $\begin{bmatrix} . & + \\ - & - \end{bmatrix}$	
4	[-0.67 0.31]	[0.16 0.10]	$\begin{bmatrix} -0.01 & -0.04 \end{bmatrix}$	$\begin{bmatrix} 0.07 & -0.01 \end{bmatrix}$	

$$\phi_{k,k} = \begin{bmatrix} -0.67 & 0.31 \\ -0.36 & -0.57 \end{bmatrix} = \begin{bmatrix} 0.16 & 0.10 \\ -0.11 & -0.52 \end{bmatrix} = \begin{bmatrix} -0.01 & -0.04 \\ 0.05 & -0.04 \end{bmatrix} = \begin{bmatrix} 0.07 & -0.01 \\ -0.03 & 0.01 \end{bmatrix}$$
$$\begin{bmatrix} - & + \\ - & - \end{bmatrix} = \begin{bmatrix} + & + \\ - & - \end{bmatrix} = \begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$$

We consider a VAR(2), with

$$\mathbf{y}_t + \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} = \mathbf{e}_t$$

where

$$\mathbf{A}_1 = \begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.8 \end{bmatrix} \qquad \mathbf{A}_2 = \begin{bmatrix} -0.2 & -0.1 \\ 0.3 & 0.6 \end{bmatrix}$$

Our identification indicates that:

- \bullet The Box-Cox plot indicates that no transformation is required.
- No detrending seems to be required.
- We estimate ACF and PACF to determine model structure; these suggest a VAR structure of order 2 (here, $2/\sqrt{N} \approx 0.063$).
- The multivariate Jarque-Bera test indicates that the ACF and PACF are normal distributed (use mjbtest).

Example

p	0	1	2	3	4	5
Q^*	393	315	15	18	16	12
M_p		1404	412	3.7	6.4	4.3
AIC	1602	352	21	27	30	34
BIC	1622	391	80	106	128	152
FPE	8.614	1.626	1.021	1.029	1.035	1.037

Here, the 95% quantile for Q^* is approximately 102, and for M_p about 9.5.

Note that the AIC, BIC, and FPE all have minimum for order 2.

Using LS (use lsVAR), we estimate the unknown parameters

$$\mathbf{A}_1 = \begin{bmatrix} 0.52 & 0.36 \\ 0.07 & 0.28 \end{bmatrix} \qquad \mathbf{A}_2 = \begin{bmatrix} -0.17 & -0.12 \\ 0.24 & 0.58 \end{bmatrix}$$

Recall that the true parameters were

$$\mathbf{A}_1 = \begin{bmatrix} 0.5 & 0.4 \\ 0.1 & 0.8 \end{bmatrix} \qquad \mathbf{A}_2 = \begin{bmatrix} -0.2 & -0.1 \\ 0.3 & 0.6 \end{bmatrix}$$

Note that, even with 2×1000 samples, the estimates are still not all that good.

Minks and mustrats

Denote the muskrat and mink time series $y_{t,1}$ and $y_{t,2}$, respectively, and form

$$\mathbf{z}_t = \begin{bmatrix} \log y_{t,1} - \hat{m}_{\tilde{y}_1} \\ \log y_{t,2} - \hat{m}_{\tilde{y}_2} \end{bmatrix}$$

where $\hat{m}_{\tilde{y}_1}=10,79$ and $\hat{m}_{\tilde{y}_2}=13,12$ denote the estimated mean of the transformed muskrat and mink data sets, respectively.

Minks and mustrats

	k = 1	k = 2	k = 3	k = 4	
$\rho_{\mathbf{y}}(k)$	$\begin{bmatrix} 0.68 & 0.47 \\ -0.13 & 0.73 \end{bmatrix}$	$\begin{bmatrix} 0.29 & 0.38 \\ -0.27 & 0.37 \end{bmatrix}$	$\begin{bmatrix} -0.02 & 0.25 \\ -0.16 & 0.20 \end{bmatrix}$	$\begin{bmatrix} -0.25 & 0.08 \\ 0.03 & 0.13 \end{bmatrix}$	
	[+ + 	[+ + - +]	[: :]	[: :]	
$\phi_{k,k}$	$\begin{bmatrix} 0.68 & -0.13 \\ 0.47 & 0.73 \end{bmatrix}$	$\begin{bmatrix} -0.17 & -0.27 \\ 0.11 & -0.18 \end{bmatrix}$	$\begin{bmatrix} -0.24 & 0.10 \\ 0.08 & 0.15 \end{bmatrix}$	$\begin{bmatrix} -0.27 & -0.19 \\ 0.07 & -0.07 \end{bmatrix}$	
	[+ . + +]	$\begin{bmatrix} \cdot & - \\ \cdot & \cdot \end{bmatrix}$	$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$	$\begin{bmatrix} - & \cdot \\ \cdot & \cdot \end{bmatrix}$	
	k = 5	k = 6	k = 7	k = 8	
$\rho_{\mathbf{y}}(k)$	$\begin{bmatrix} -0.34 & -0.11 \\ 0.23 & 0.08 \end{bmatrix}$	$\begin{bmatrix} -0.30 & -0.33 \\ 0.35 & 0.05 \end{bmatrix}$	$\begin{bmatrix} -0.12 & -0.45 \\ 0.41 & 0.11 \end{bmatrix}$	$\begin{bmatrix} 0.10 & -0.47 \\ 0.40 & 0.25 \end{bmatrix}$	
	[+ ·]	[+ .]	[+ .]	[· -] + · .]	
$\phi_{k,k}$	$\begin{bmatrix} -0.21 & -0.12 \\ 0.00 & -0.22 \end{bmatrix}$	$\begin{bmatrix} -0.18 & -0.23 \\ -0.20 & -0.11 \end{bmatrix}$	$\begin{bmatrix} 0.02 & -0.15 \\ -0.03 & -0.09 \end{bmatrix}$	$\begin{bmatrix} -0.02 & -0.22 \\ 0.04 & 0.11 \end{bmatrix}$	
	$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$	$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$	[· ·]	$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$	

Minks and mustrats

	k = 1	k = 2	k = 3	k = 4	
$\rho_{\mathbf{y}}(k)$	$\begin{bmatrix} 0.68 & 0.47 \\ -0.13 & 0.73 \end{bmatrix}$	$\begin{bmatrix} 0.29 & 0.38 \\ -0.27 & 0.37 \end{bmatrix}$	$\begin{bmatrix} -0.02 & 0.25 \\ -0.16 & 0.20 \end{bmatrix}$	$\begin{bmatrix} -0.25 & 0.08 \\ 0.03 & 0.13 \end{bmatrix}$	
	[+ + - +]	[+ + - +]	[· ·]	[: :]	
$\phi_{k,k}$	$\begin{bmatrix} 0.68 & -0.13 \\ 0.47 & 0.73 \end{bmatrix}$	$\begin{bmatrix} -0.17 & -0.27 \\ 0.11 & -0.18 \end{bmatrix}$	$\begin{bmatrix} -0.24 & 0.10 \\ 0.08 & 0.15 \end{bmatrix}$	$\begin{bmatrix} -0.27 & -0.19 \\ 0.07 & -0.07 \end{bmatrix}$	
	[+ . + +]	$\begin{bmatrix} \cdot & - \\ \cdot & \cdot \end{bmatrix}$	$\begin{bmatrix} \cdot & \cdot \\ \cdot & \cdot \end{bmatrix}$	[- ·]	
	k = 5	k = 6	k = 7	k = 8	
$\rho_{\mathbf{y}}(k)$	$\begin{bmatrix} -0.34 & -0.11 \\ 0.23 & 0.08 \end{bmatrix}$	$\begin{bmatrix} -0.30 & -0.33 \\ 0.35 & 0.05 \end{bmatrix}$	$\begin{bmatrix} -0.12 & -0.45 \\ 0.41 & 0.11 \end{bmatrix}$	$\begin{bmatrix} 0.10 & -0.47 \\ 0.40 & 0.25 \end{bmatrix}$	
	[+ .]	[+ .]	[+ .]	[· - + ·]	
$\phi_{k,k}$	$\begin{bmatrix} -0.21 & -0.12 \\ 0.00 & -0.22 \end{bmatrix}$	$\begin{bmatrix} -0.18 & -0.23 \\ -0.20 & -0.11 \end{bmatrix}$	$\begin{bmatrix} 0.02 & -0.15 \\ -0.03 & -0.09 \end{bmatrix}$	$\begin{bmatrix} -0.02 & -0.22 \\ 0.04 & 0.11 \end{bmatrix}$	

p	0	1	2	3	4	5
Q^*	41	24	29	20	18	16
M_p		122.0	12.6	8.5	8.7	5.3
AIC	-189	-317	-324	-327	-330	-330
BIC	-181	-300	-299	-293	-288	-279
FPE	0.0506	0.0065	0.0057	0.0055	0.0052	0.0053