In [59]:

```
# Importing the libraries
import pandas as pd
import numpy as np
```

In [60]:

```
data_url = "http://lib.stat.cmu.edu/datasets/boston"
raw_df = pd.read_csv(data_url, sep="\s+", skiprows=22, header=None)
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])
target = raw_df.values[1::2, 2]
```

In [61]:

```
# Initializing the dataframe
data = pd.DataFrame(boston.data)
```

In [62]:

```
# See head of the dataset
data.head()
```

Out[62]:

	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33

In [63]:

```
#Adding the feature names to the dataframe
data.columns = boston.feature_names
data.head()
```

Out[63]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	I
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	
4												•	

```
In [64]:
```

```
#Adding target variable to dataframe
data['PRICE'] = boston.target
# Median value of owner-occupied homes in $1000s
```

In [65]:

```
#Check the shape of dataframe data.shape
```

Out[65]:

(506, 14)

In [66]:

```
data.columns
```

Out[66]:

In [67]:

```
data.dtypes
```

Out[67]:

```
float64
CRIM
ΖN
           float64
           float64
INDUS
           float64
CHAS
           float64
NOX
RM
           float64
AGE
           float64
           float64
DIS
RAD
           float64
           float64
TAX
PTRATIO
           float64
           float64
В
LSTAT
           float64
PRICE
           float64
dtype: object
```

```
In [68]:
# Identifying the unique number of values in the dataset
data.nunique()
Out[68]:
           504
CRIM
ΖN
            26
INDUS
            76
CHAS
             2
NOX
            81
RM
           446
AGE
           356
DIS
           412
RAD
             9
TAX
            66
PTRATIO
            46
В
           357
LSTAT
           455
PRICE
           229
dtype: int64
In [69]:
# Check for missing values
data.isnull().sum()
Out[69]:
CRIM
           0
ΖN
           0
INDUS
           0
CHAS
           0
NOX
           0
RM
           0
           0
AGE
DIS
           0
RAD
           0
TAX
           0
PTRATIO
           0
           0
В
LSTAT
           0
PRICE
dtype: int64
```

Out[70]:

In [70]:

See rows with missing values
data[data.isnull().any(axis=1)]

CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX PTRATIO B LSTAT PRICE

In [71]:

Viewing the data statistics
data.describe()

Out[71]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000
4							•

In [72]:

Finding out the correlation between the features
corr = data.corr()
corr.shape

Out[72]:

(14, 14)

In [73]:

```
# Plotting the heatmap of correlation between features
plt.figure(figsize=(20,20))
sns.heatmap(corr, cbar=True, square= True, fmt='.1f', annot=True, annot_kws={'size':15},
```

Out[73]:

<AxesSubplot:>

In [74]:

```
# Spliting target variable and independent variables
X = data.drop(['PRICE'], axis = 1)
y = data['PRICE']
```

```
In [75]:
```

```
# Splitting to training and testing data
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state =
```

In [76]:

```
# Import Library for Linear Regression
from sklearn.linear_model import LinearRegression

# Create a Linear regressor
lm = LinearRegression()

# Train the model using the training sets
lm.fit(X_train, y_train)
```

Out[76]:

LinearRegression()

In [77]:

```
# Value of y intercept
lm.intercept_
```

Out[77]:

36.35704137659466

In [78]:

```
#Converting the coefficient values to a dataframe
coeffcients = pd.DataFrame([X_train.columns,lm.coef_]).T
coeffcients = coeffcients.rename(columns={0: 'Attribute', 1: 'Coefficients'})
coeffcients
```

Out[78]:

	Attribute	Coefficients
0	CRIM	-0.12257
1	ZN	0.055678
2	INDUS	-0.008834
3	CHAS	4.693448
4	NOX	-14.435783
5	RM	3.28008
6	AGE	-0.003448
7	DIS	-1.552144
8	RAD	0.32625
9	TAX	-0.014067
10	PTRATIO	-0.803275
11	В	0.009354
12	LSTAT	-0.523478

In [79]:

```
# Model prediction on train data
y_pred = lm.predict(X_train)
```

In [80]:

```
# Model Evaluation
print('R^2:',metrics.r2_score(y_train, y_pred))
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 0.7465991966746854

Adjusted R^2: 0.736910342429894

MAE: 3.08986109497113 MSE: 19.07368870346903 RMSE: 4.367343437774162

In [81]:

```
# Visualizing the differences between actual prices and predicted values
plt.scatter(y_train, y_pred)
plt.xlabel("Prices")
plt.ylabel("Predicted prices")
plt.title("Prices vs Predicted prices")
plt.show()
```


In [82]:

```
# Checking residuals
plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()
```


In [83]:

```
# Checking Normality of errors
sns.distplot(y_train-y_pred)
plt.title("Histogram of Residuals")
plt.xlabel("Residuals")
plt.ylabel("Frequency")
plt.show()
```

C:\Users\rachi\AppData\Local\Programs\Python\Python39\lib\site-packages\se
aborn\distributions.py:2619: FutureWarning: `distplot` is a deprecated fun
ction and will be removed in a future version. Please adapt your code to u
se either `displot` (a figure-level function with similar flexibility) or
`histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

In [84]:

```
# Predicting Test data with the model
y_test_pred = lm.predict(X_test)
```

In [85]:

```
# Model Evaluation
acc_linreg = metrics.r2_score(y_test, y_test_pred)
print('R^2:', acc_linreg)
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_test, y_test_pred))*(len(y_test)-1)/(len
print('MAE:',metrics.mean_absolute_error(y_test, y_test_pred))
print('MSE:',metrics.mean_squared_error(y_test, y_test_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
```

R^2: 0.7121818377409181

Adjusted R^2: 0.6850685326005699

MAE: 3.859005592370746 MSE: 30.053993307124284 RMSE: 5.482152251362988

```
In [86]:
```

```
# Import Random Forest Regressor
from sklearn.ensemble import RandomForestRegressor

# Create a Random Forest Regressor
reg = RandomForestRegressor()

# Train the model using the training sets
reg.fit(X_train, y_train)
```

Out[86]:

RandomForestRegressor()

In [87]:

```
# Model prediction on train data
y_pred = reg.predict(X_train)
```

In [88]:

```
# Model Evaluation
print('R^2:',metrics.r2_score(y_train, y_pred))
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 0.9798924504026062

Adjusted R^2: 0.9791236323297646

MAE: 0.8283022598870055 MSE: 1.5135119406779671 RMSE: 1.2302487312238803

In [89]:

```
# Visualizing the differences between actual prices and predicted values
plt.scatter(y_train, y_pred)
plt.xlabel("Prices")
plt.ylabel("Predicted prices")
plt.title("Prices vs Predicted prices")
plt.show()
```


In [90]:

```
# Checking residuals
plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()
```


In [91]:

```
# Predicting Test data with the model
y_test_pred = reg.predict(X_test)
```

```
In [92]:
# Model Evaluation
acc_rf = metrics.r2_score(y_test, y_test_pred)
print('R^2:', acc_rf)
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_test, y_test_pred))*(len(y_test)-1)/(len
print('MAE:',metrics.mean_absolute_error(y_test, y_test_pred))
print('MSE:',metrics.mean_squared_error(y_test, y_test_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
R^2: 0.8254540421090988
Adjusted R^2: 0.8090113069454632
MAE: 2.5385131578947364
MSE: 18.226101539473685
RMSE: 4.269203853117544
In [93]:
# Import XGBoost Regressor
from xgboost import XGBRegressor
#Create a XGBoost Regressor
reg = XGBRegressor()
# Train the model using the training sets
reg.fit(X_train, y_train)
Out[93]:
XGBRegressor(base_score=None, booster=None, callbacks=None,
             colsample bylevel=None, colsample bynode=None,
             colsample_bytree=None, early_stopping_rounds=None,
             enable_categorical=False, eval_metric=None, feature_types=Non
e,
             gamma=None, gpu id=None, grow policy=None, importance type=No
ne,
             interaction_constraints=None, learning_rate=None, max_bin=Non
e,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max_delta_step=None, max_depth=None, max_leaves=None,
             min_child_weight=None, missing=nan, monotone_constraints=Non
e,
             n estimators=100, n jobs=None, num parallel tree=None,
             predictor=None, random state=None, ...)
In [94]:
# Model prediction on train data
y_pred = reg.predict(X_train)
```

In [95]:

```
# Model Evaluation
print('R^2:',metrics.r2_score(y_train, y_pred))
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 0.9999980912185324

Adjusted R^2: 0.9999980182357117

MAE: 0.008653184923075066 MSE: 0.00014367556470779537 RMSE: 0.011986474240067234

In [96]:

```
# Visualizing the differences between actual prices and predicted values
plt.scatter(y_train, y_pred)
plt.xlabel("Prices")
plt.ylabel("Predicted prices")
plt.title("Prices vs Predicted prices")
plt.show()
```


In [97]:

```
# Checking residuals
plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()
```


In [98]:

```
#Predicting Test data with the model
y_test_pred = reg.predict(X_test)
```

In [99]:

```
# Model Evaluation
acc_xgb = metrics.r2_score(y_test, y_test_pred)
print('R^2:', acc_xgb)
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_test, y_test_pred))*(len(y_test)-1)/(len
print('MAE:',metrics.mean_absolute_error(y_test, y_test_pred))
print('MSE:',metrics.mean_squared_error(y_test, y_test_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
```

R^2: 0.8579951986672496

Adjusted R^2: 0.8446179347735847

MAE: 2.5309582503218397 MSE: 14.828151619536392 RMSE: 3.850733906612659

In [100]:

```
# Creating scaled set to be used in model to improve our results
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
```

```
In [101]:
```

```
# Import SVM Regressor
from sklearn import svm
# Create a SVM Regressor
reg = svm.SVR()
```

In [102]:

```
# Train the model using the training sets
reg.fit(X_train, y_train)
```

Out[102]:

SVR()

In [103]:

```
# Model prediction on train data
y_pred = reg.predict(X_train)
```

In [104]:

```
# Model Evaluation
print('R^2:',metrics.r2_score(y_train, y_pred))
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_train, y_pred))*(len(y_train)-1)/(len(y_print('MAE:',metrics.mean_absolute_error(y_train, y_pred))
print('MSE:',metrics.mean_squared_error(y_train, y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_train, y_pred)))
```

R^2: 0.6419097248941195

Adjusted R^2: 0.628218037904777

MAE: 2.9361501059460293 MSE: 26.953752101332935 RMSE: 5.191700309275655

In [105]:

```
# Visualizing the differences between actual prices and predicted values
plt.scatter(y_train, y_pred)
plt.xlabel("Prices")
plt.ylabel("Predicted prices")
plt.title("Prices vs Predicted prices")
plt.show()
```


In [106]:

```
# Checking residuals
plt.scatter(y_pred,y_train-y_pred)
plt.title("Predicted vs residuals")
plt.xlabel("Predicted")
plt.ylabel("Residuals")
plt.show()
```


In [107]:

```
# Predicting Test data with the model
y_test_pred = reg.predict(X_test)
```

In [108]:

```
# Model Evaluation
acc_svm = metrics.r2_score(y_test, y_test_pred)
print('R^2:', acc_svm)
print('Adjusted R^2:',1 - (1-metrics.r2_score(y_test, y_test_pred))*(len(y_test)-1)/(len
print('MAE:',metrics.mean_absolute_error(y_test, y_test_pred))
print('MSE:',metrics.mean_squared_error(y_test, y_test_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test, y_test_pred)))
```

R^2: 0.5900158460478174

Adjusted R^2: 0.5513941503856553

MAE: 3.7561453553021686 MSE: 42.81057499010247 RMSE: 6.542979060802691

In [109]:

```
models = pd.DataFrame({
    'Model': ['Linear Regression', 'Random Forest', 'XGBoost', 'Support Vector Machines'
    'R-squared Score': [acc_linreg*100, acc_rf*100, acc_xgb*100, acc_svm*100]})
models.sort_values(by='R-squared Score', ascending=False)
```

Out[109]:

Model R-squared Score

2	XGBoost	85.799520
1	Random Forest	82.545404
0	Linear Regression	71.218184
3	Support Vector Machines	59.001585