

Introduction to **Computer Science Fall 2022** Chi-Jen Wu

Database Systems

T 8 T 1 8 T

- The history of database systems
- Database fundamentals
- Traditional File Structures
- Maintaining Database Integrity
- The Relational Model
- Object-Oriented Databases
- Data Mining

儲存和連結

資料和

資料之間的關係

A database is a collection of related, logically coherent, data used by the application programs in an organization

The advantages for a database system

- Advantages of databases
 - Less redundancy
 - A lot of redundancy in files
 - Inconsistency avoidance
 - Any changes in the data need to occur in all places

教授A 課程1 教授A 課程2 教授B 課程3 教授B 課程4 教授C 課程5 教授C 課程6

Database fundamentals

- A collection of data
 - Multidimensional
 - Internal links (<u>relationship</u>)
 - make the information accessible from a variety of **perspectives**
- File-oriented database system
 - Traditional File Structures
- Database system

Traditional File Structures

- Sequential file
 - A file whose contents can only be <u>read in</u>
 <u>order</u>
- Reader must be able to detect end-of-file (EOF)
- Data can be stored in <u>logical records</u>, sorted by a <u>key field</u>
 - Greatly <u>increases</u> the speed of batch updates

P檔 C檔 S檔 微積分 課程1 教授A 皮卡丘 學生1 小智 計算機概論 課程2 大智 教授B 雷丘 2 學生2 人工智慧概論 課程3 大木 3 學生3 教授C 妙蛙 基礎英文 課程4 大大 學生4 課程5 普通物理學 學生5 小弱 課程6 體育大一 學生6 大弱 6 P.3 C6 **7** C.2 S.6 **S.1** S.2 C.2 CRUD 操作: S.3 **S.4** P.2 C.4 Create C.1. S.5 **5** P.2. C.5 6 C.1. S.6 Read 教授教學檔 學生修課檔 **Update** 一個老師課程學生關係 Delete

Text based logical records

P檔

New P檔

- 1 教授A 皮卡丘
- 2 教授B 雷丘
- 3 教授C 妙蛙

"1", "皮卡丘", "資工"\n

"2", "雷丘", "電子" \n

"3", "妙蛙", "資管" \n

我們可以定義一個老師應該有什麼屬性

在P檔裡 目前一個教師會有

- 1. id (獨一無二的編號)
- 2. 姓名
- 3. 系所

Logical record

屬性

電腦科學中的 index

- Index 技術在電腦科學中非常重要
- 應用範圍非常廣
 - 你每天用的google 也是靠特別的 index 技術
- 大概也是整個電腦科學都會使用的技術
- 先記住他是一種有排序的資料結構
 - 利用索引鍵值來指向一個資料區塊

The Role of Schemas

Schema

- A description of the <u>structure</u> of an database
 - 表格結構,欄位格式,資料關聯

Subschema

- A description of the portion of the database to a particular user's needs
 - to prevent sensitive data from being accessed by unauthorized personnel

S CHANGE OWN TEST OF THE PROPERTY OF THE PROPE

Topics

- An Introduction to Computer Science
- The Shapes of Computers Today
- Computer Organization and Architecture
- Operating system
- Networking & The Internet
- Database Systems
- Software Engineering
- Cloud Platform/Cloud Shell Editor
- Cloud Platform/Cloud Source Repositories (git)
- C/C++ Programming

Database Systems

- The history of database systems
- Database fundamentals
- Traditional File Structures
- Maintaining Database Integrity
- The Relational Model
- Object-Oriented Databases
- Data Mining

儲存和連結

資料和

資料之間的關係

A database is a collection of related, logically coherent, data used by the application programs in an organization

File-oriented 問題

- 單人在CRUD情況下都算是正常
 - 在大部分情況下是正常
- 所以現在要討論在多人情況下的情況
 - Multiprogramming
 - 還記得嗎?又要分享
 - Execute multiple processes concurrently
 - Multi-user / Multi-host

CRUD 操作:

Create

Read

Update

Delete

Maintaining data **integrity**

- Simultaneous access problems
 - Incorrect summary problem
 - Lost update problem
- Locking
 - preventing others from accessing data being used by a transaction
 - Shared lock: used when reading data
 - Exclusive lock: used when altering data

Incorrect summary problem

Lost update problem

Locking

- Preventing others from accessing data being used by a transaction
 - Shared lock (Read lock)
 - used when reading data
 - Only <u>read</u>
 - Exclusive lock (Write lock)
 - used when altering data (Update data)
 - No one can access

Shared lock

Exclusive lock

Locking 問題?

Deadlock

- 作業系統中要存取共同的資源
- 有了鎖,就有機會產生**死結**
- 問題越來越多!

Starvation

- 產生了死結,就有可能會有人會餓死
- 系統就好像不動了,程序也無法進行

DataBase Management System (DBMS)

 所以我們需要一個程式來控制資料庫的分類及 數據的存取,解決多人讀取的問題

Maintaining Database Integrity

- 在資料庫中,我們把一個不能分割的資料操作稱為
- Transaction (交易或事務)
 - A sequence of operations that must all happen together

transferring money between bank accounts

Transaction

Transaction 交易/事務

資料庫執行過程中的一個「邏輯單位」

—

一個transaction = 一組一連串對資料庫進行存取、讀取的行為

兩種結局

成功 or 失敗 ◀

只要有任一個SQL失敗 -> rollback -

Transaction: ACID

- 原子性 Atomicity
 - 所有操作,或者全部完成,或者全部不完成,不會結束在中間某個環節
- 一致性 Consistency
 - 結束以後,資料庫的完整性沒有被破壞
- 事務隔離 Isolation
 - 防止多個事務並發(同時)執行時由於交叉執行而導致數據的不一致
- 持久性 Durability
 - 對數據的修改就是永久的

Transaction Log (Journal)

- A <u>non-volatile record</u> of each transaction's activities
 - Commit point: ←
 - The point at which a transaction has been recorded in the log
 - Roll-back: ←
 - The process of undoing a transaction

Commit point

- The point has been recorded in the log
 - Write
 - Update

問題:Commit point 在哪裏?

Transaction Log Example

	Current LSN	Operation	Context	Transaction ID	AllocUnitId	AllocUnitName
3576	0000008a:00000198:0010	LOP_EXPUNGE_ROWS	LCX_CLUSTERED	0000:00000000	281474979397632	sys.syscolpars.clst
3577	0000008a:00000198:0011	LOP_EXPUNGE_ROWS	LCX_CLUSTERED	0000:00000000	281474979397632	sys.syscolpars.clst
3578	0000008a:00000198:0012	LOP_EXPUNGE_ROWS	LCX_CLUSTERED	0000:00000000	281474979397632	sys.syscolpars.clst
3579	0000008a:00000198:0013	LOP_EXPUNGE_ROWS	LCX_CLUSTERED	0000:00000000	281474979397632	sys.syscolpars.clst
3580	0000008a:00000198:0014	LOP_SET_BITS	LCX_PFS	0000:0000000	281474979397632	sys.syscolpars.clst
3581	0000008a:00000198:0015	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3582	0000008a:00000198:0016	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3583	0000008a:00000198:0017	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3584	0000008a:00000198:0018	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3585	0000008a:00000198:0019	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:0000000	562949956108288	sys.syscolpars.nc
3586	0000008a:00000198:001a	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:0000000	562949956108288	sys.syscolpars.nc
3587	0000008a:00000198:001b	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3588	0000008a:00000198:001c	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3589	0000008a:00000198:001d	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3590	0000008a:00000198:001e	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	562949956108288	sys.syscolpars.nc
3591	0000008a:00000198:001f	LOP_SET_BITS	LCX_PFS	0000:00000000	562949956108288	sys.syscolpars.nc
3592	0000008a:00000198:0020	LOP_EXPUNGE_ROWS	LCX_INDEX_LEAF	0000:00000000	844424932360192	sys.sysschobjs.nc2
3593	0000008a:00000198:0021	LOP_SET_BITS	LCX_PFS	0000:0000000	844424932360192	sys.sysschobjs.nc2

The process of <u>undoing</u> a transaction

Roll-back

Roll-back

- Undoing the points have been recorded in the log
 - Write
 - Update

Transaction Log

Transaction successful

Transaction failed

Modern Databases

- Hierarchical Databases
 - Organize and manage data in a <u>tree-like</u> structure
- Relational Databases
- Object-Oriented Databases
- Column-based databases
- Key-Value databases
- NoSQL databases
- Graph databases

The Relational Databases

- Entity-Relationship Model
- Relation: A rectangular table
 - Attribute:
 - A column in the table
 - Tuple:
 - A row in the table

- Primary key
 - A primary key uniquely specifies a tuple within a table
- Foreign key
 - A field matches the primary key column of another table

Entity-Relationship Model

- 設計資料庫的重要方法
- Entity, Attribute, Relationship

一開始要靠想像的,之後是由需求決定

- Relationship
 - 1 to 1
 - 1 to m
 - n to m

Relational Database Example

A relation containing **redundancy**

Empl Id	Name	Address	SSN	Job ld	Job Title	Skill Code	Dept	Start Date	Term Date
25X15	Joe E. Baker	33 Nowhere St.	111223333	F5	Floor manager	FM3	Sales	9-1-2009	9-30-2010
25X15	Joe E. Baker	33 Nowhere St.	111223333	D7	Dept. head	K2	Sales	10-1-2010	*
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999	F5	Floor manager	FM3	Sales	10-1-2009	*
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S25X	Secretary	T5	Personnel	3-1-1999	4-30-2010
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S26Z	Secretary	T6	Accounting	5-1-2010	*
·	•	•	•	•	•		•	•	•
•	•	•	•	:	•	•	•	•	•
•	• •	•	•	•	•	• 1	•	• !	•

Decomposition

A relation containing **redundancy**

Empl Id	Name	Address	SSN	Job ld	Job Title	Skill Code	e Dept	Start Date	Term Date
25X15	Joe E. Baker	33 Nowhere St.	111223333	F5	Floor manager	FM3	Sales	9-1-2009	9-30-2010
25X15	Joe E. Baker	33 Nowhere St.	111223333	D7	Dept. head	K2	Sales	10-1-2010	*
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999	F5	Floor manager	FM3	Sales	10-1-2009	*
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S25X	Secretary	T5	Personnel	3-1-1999	4-30-2010
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555	S26Z	Secretary	T6	Accounting	5-1-2010	*
•	•	•	•	•	•	•	•	•	•
	•	:		:			:	:	
	. •	•			. •		•		, • ,

EMPLOYEE relation

Empl Id	Name	Address	SSN
25X15	Joe E. Baker	33 Nowhere St.	111223333
34Y70	Cheryl H. Clark	563 Downtown Ave.	999009999
23Y34	G. Jerry Smith	1555 Circle Dr.	111005555

JOB relation

Job Id	Job Title	Skill Code	Dept
S25X S26Z F5	Secretary Secretary Floor manager	T5 T6 FM3	Personnel Accounting Sales
• F3	Floor illallager	FIVIS	• Sales
•	•	•	•
•	•	•	•

Decomposition

變成三張表

ASSIGNMENT relation

Empl Id	Job ld	Start Date	Term Date
23Y34	S25X	3-1-1999	4-30-2010
34Y70 23Y34	F5 S26Z	10-1-2009 5-1-2010	*
•	•	J-1-2010 •	*
	•	•	•
•	•	•	•

EMPLOYEE relation

23Y34

P key & F key

關聯表

Finding the departments in which employee 23Y34 has worked

Relational Operations

- SELECT:
 - Choose rows
- PROJECT:
 - Choose columns
- JOIN:
 - Assemble information from relations

EMPLOYEE relation

Empl Id	Name	Address	SSN	_
25X15	Joe E. Baker	33 Nowhere St.	111223333	SELECT
34Y70 23Y34	Cheryl H. Clark G. Jerry Smith	563 Downtown Ave. 1555 Circle Dr.	999009999 111005555	
•	•	•	•	
•	•	•	•	
		OP relation		

•	•	•	•	
•	•	•	•	
	J	OB relation		
Job Id	Job Title	Skill Code	Dept	
S25X —	Secretary	T5	Personnel 7	are contained

S26Z T6 Accounting Secretary

in the personn and accountin

Sales F5 Floor manager FM3 departments.

Finding the departments in which employee 23Y34 & 34Y70 has worked

JOIN operation

ASSIGNMENT relation JOB relation Empl Id Job Id Start Date Term Date Job Id Job Title Skill Code Dept 23Y34 S25X 3-1-1999 4-30-2010 S25X **T5** Personnel Secretary T6 34Y70 F5 10-1-2009 S26Z Secretary Accounting S26Z FM3 25X15 5-1-2010 F5 Floor manager Sales NEW1 ← JOIN ASSIGNMENT and JOB where ASSIGNMENT.JobId = JOB.JobId **NEW1** relation **ASSIGNMENT** ASSIGNMENT **ASSIGNMENT ASSIGNMENT** J0B JOB J₀B JOB Empl Id **TermDate** Job Id StartDate Job Id JobTitle SkillCode Dept 23Y34 S25X 3-1-1999 4-30-2010 S25X **T5** Secretary Personnel 34Y/U Fb 10-1-2009 F5 FIVI3 Sales Floor manager S26Z 25X15 5-1-2010 S26Z **T6** Accounting Secretary

50

Structured Query Language (SQL)

- 特定目的程式語言,用於管理關聯式資料庫
 - IBM, 1974, 1987
- Operations to manipulate tuples
 - select
 - insert
 - update
 - delete
- 網站安全

CRUD 操作:

Create

Read

Update

Delete

SELECT and Join Select

SELECT EmplId, Dept
 FROM Assignment
 WHERE Assignment.TermData = '*';

• SELECT EmplId, Dept
FROM Assignment, Job
WHERE Assignment.JobId = Job.JobId
AND Assignment.TermData = '*';

INSERT

• INSERT INTO Employee

VALUES ('43212', 'Sue A. Burt',

'33 Fair St.', '444661111');

Delete and Update

• DELETE FROM Employee
WHERE Name = 'G. Jerry Smith';

• UPDATE Employee SET Address = '1812 Napoleon Ave.' WHERE Name = 'Joe E. Baker';

https://sqliteonline.com/

SQL 在電腦科學中

- SQL 是非常重要的技能!!
- 目前一定要知道
 - CRUD 操作所需要的SQL
 - SELECT, INSERT
 - **UPDATE**, **DELETE**
- https://www.w3schools.com/sql/default.asp
- SQL 語法要背起來! 應該會用到你孫子生出來!

CRUD 操作:

Create

Read

Update

Delete

Object-Oriented Databases

- Object-oriented Database:
 - Constructed by applying the <u>object-oriented</u> <u>paradigm</u>
 - Each entity stored as a persistent object
 - Relationships indicated by links between objects
 - DBMS maintains <u>inter-object links</u>

Relational Databases

訂單月	序號 日期	客戶編號	是否付款
1	2005/7/1	6	1
2	2005/7/1	3	1
3	2005/7/3	2	0

	- 1	
訂單資	資料表 、	٠

客戶編	號 客戶名稱	聯絡人	性別	地址
1	十全書店	陳圓圓	女	台北市
2	大發書店	陳季暄	女	台北市
3	好看書店	趙飛燕	女	台中市

客戶資料表

被動關聯

	日期	客戶	是否付款
OID 1	2005/7/1	OID 10	1
OID 2	2005/7/1	OID 11	1
OID 3	2005/7/3	OID 12	0
	計	單	``.

	客戶名稱	聯絡人	性別	地址
OID 9	十全書店	陳圓圓	女	台北市
OID 10	大發書店	陳季暄	女	台北市
OID 11	好看書店	趙飛燕	女	台中市
		客戶		

主動關聯

Object-oriented Databases

Advantages of Object-oriented Databases

- Matches design paradigm of <u>object-oriented</u> <u>applications</u>
- Intelligence can be built into attribute handlers
- Can handle exotic data types
 - Example
 - multimedia
- 實際上使用的不多,主要是太複雜了,效率也不好

Column-based databases

- A type of NoSQL database
- 適合在數據分析
 - 得到某欄位的max, min

Row Oriented Database

<u>date</u>	р	<u>rice</u>	<u>size</u>
2011-01-20		10.1	10
2011-01-21		10.3	20
2011-01-22		10.5	40
2011-01-23		10.4	5
2011-01-24		11.2	55
2011-01-25		11.4	66
2013-03-31		17.3	100

Column Oriented Database

<u>date</u>	<u>price</u>	<u>size</u>
2011-01-20	10.1	10
2011-01-21	10.3	20
2011-01-22	10.5	40
2011-01-23	10.4	5
2011-01-24	11.2	55
2011-01-25	11.4	66
2013-03-31	17.3	100

SCYLLA

Key-Value databases

Sand of the UNITED STATES

- A dictionary
 - Key —> value

NoSQL databases

- 不同於關聯式資料庫的資料庫管理系統的統稱
- Use in **big data** and **real-time web** applications
- May lack true ACID transactions
- MongoDB, Cassandra

Data Mining

- 從資料庫中挖掘出潛在、明確、而且非常有用資訊的過程
- 主要方法
 - 統計分析和人工智慧技術
- 改變未來的十大創新技術, 2002, MIT
- 處理問題:
 - 請評估明年長庚資工男女生比例?
 - 請預估下星期林口天氣如何?

Conclusion

- The history of database systems
- Database fundamentals
- Traditional File Structures
- Maintaining Database Integrity
- The Relational Model
- Object-Oriented Databases
- Data Mining

儲存和連結 資料和 資料之間的關係

Thanks! Open for any questions

CJ Wu

cjwu@mail.cgu.edu.tw