# 电子科技大学

# 2004 年攻读硕士学位研究生入学试题 科目名称: 计算机专业基础

## 第一部分 数据结构参考答案

| 一、单项选择题: (每题1分,共14分)          |                          |
|-------------------------------|--------------------------|
| 1. 如果从无向图 G 的任何一个顶点出发进行       | 一次深度优先搜索可以访问图的每个顶点,则     |
| 该图一定是( B )。                   |                          |
| A. 完全图                        | B. 连通图                   |
| C. 有回路的图                      | D. 树                     |
| 2. n个顶点的连通图至少有( C )条边。        |                          |
| A. n+1                        | B. n                     |
| C. n-1                        | D. n(n-1)                |
| 3. 设根结点的高度为 0,则高度为 k 的二叉      | 树的最大结点数为(B)。             |
| A. 2 <sup>k</sup>             | B. $2^{k+1}-1$           |
| C. 2 <sup>k</sup> -1          | D. $2^{k-1}-1$           |
| 4. 采用邻接表存储的图的深度优先遍历算法         | 类似于二叉树的( A )。            |
| A.                            | ·遍历                      |
| C. 后序遍历 D. 层边                 | で遍历                      |
| 5. 判定一个有向图是否存在回路,可以用(         |                          |
| A. 关键路径算法 B. BFS              | 算法                       |
| C. 最短路径 Di jkstra 算法 D. DFS   | 算法                       |
| 6. 下列关于哈夫曼树的叙述错误的是( D         | ) 。                      |
| A. 哈夫曼树的根结点的权值等于所有时           | -结点的权值之和                 |
| B. 具有 n 个叶结点的哈夫曼树共有 2n-       | 1个结点                     |
| C. 哈夫曼树是带权外路径长度最短的二           | 1.叉树                     |
| D. 哈夫曼树一个结点的度可以是 0、1.         | 或 2                      |
| 7. 在待排序文件基本有序时,效率最高的排         | ‡序方法是( A )。              |
| A. 直接插入排序 B.                  | 直接选择排序                   |
| C. 归并排序 D.                    | 快速排序                     |
| 8. 对包含 N 个元素的散列表进行查找,平均       | 的查找长度( C )。              |
| A. 为 O(log <sub>2</sub> N) B. | 为 O(N)                   |
| C. 不直接依赖于 N D.                | 上述三者都不是                  |
| 9. 下述几种排序方法中,要求内存量最大的         | <b>勺是( D         )</b> 。 |
|                               | 快速排序                     |
| C. 选择排序 D.                    | 归并排序                     |
| 10. 循环链表的主要优点是( D )。          | •                        |
| A. 已知某结点位置后能容易找到其直:           | 妾前趋                      |
|                               |                          |

计算机专业基础试题 共5页,第1页

- B. 在进行插入、删除元素时能保证链表不断开
- C. 不再需要头指针
- D. 从表中任一个结点出发都能扫描整个链表
- 11. 对线性表进行二分查找时, 要求线性表必须 ( C
  - A. 以顺序存储方式存储
  - B. 以链式存储方式存储
  - C. 以顺序存储方式存储, 且数据元素有序
  - D. 以链式存储方式存储, 且数据元素有序
- 12. 广义表 L=((a, b), (c, d)),则 TAIL(L)结果为(C)。
  - A. c.d

B. (c, d)

C. ((c, d))

- D. a.b
- 13. 在下列遍历算法中,在遍历序列中叶结点之间的次序可能与其它算法不同的算法是 (D)
  - A. 先序遍历算法

B. 中序遍历算法

C. 后序遍历算法

- D. 层次遍历算法
- 14. 设网中顶点数为 n, 边数为 e, 则适合边稀疏的网的最小生成树算法是( B )。
  - A. 普里姆 (Prim) 算法
- B. 克鲁斯卡尔 (Kruskal) 算法
- C. 弗洛伊德 (Floyed) 算法 D. 拓扑排序 (Topological sort) 算法

#### 二、填空题: (每空1分, 共 12 分)

- 1. 线性表、栈和队列都是\_线性\_\_结构,可以在线性表的\_\_任何\_位置插入和删除元素;而 栈只能在 栈顶 插入和删除元素: 对于队列只能在 队尾 插入元素、在 队首 删 除元素。
- 2. 给定 n 个值构造哈夫曼树, 经过 n-1 次合并才能得到最终的哈夫曼云。
- 3. 取 出 广 义 表 L=(x, (x, y, z, a)) 中 原子 \_\_\_\_Head(Tail(Head(Tail(L))))
- \_弗洛伊德(Floyed)\_\_最短路经算法中,A<sup>(k)</sup>[i, j]表示从顶点 Vi 到顶点 Vj 中间顶点 序号 不大于 k 的最短路经长度。
- 5. 设图中顶点数为 n,则其生成树有\_n-1\_条边; 若图的边数大于 n-1,则一定是<u>有环(回</u> 路) 图。若图的边数小于 n-1,则一定是非连通图。

#### 三、简答题: (每题 5 分, 共 30 分)

- 1. DFS 和 BFS 遍历各采用什么样的数据结构来暂存顶点?当要求连通图的生成树的高度最 小, 应采用何种遍历?
- 答: DFS 遍历采用栈来暂存顶点。BFS 采用队列来暂存顶点。当要求连通图的生成树的高度 最小时,应采用 BFS 遍历。
- 2. 设 n0 为哈夫曼树的叶子结点数目,则该哈夫曼树共有多少个结点。若以{3、4、5、6、 7)作为叶子结点的权值构造哈夫曼树,则其带权路经长度是多少?
- 答: 2n0-1 个结点。3\*7+2\*11+2\*7=57
- 3. 什么样的二叉树,对它采用任何次序的遍历,结果都相同?
- 答: 空二叉树, 或只有一个根结点的二叉树。

计算机专业基础试题 共5页,第2页

- 4. 线性表有哪两种存储结构?在这两种存储结构中元素之间的逻辑关系分别是通过什么 决定的?
- 答: `有**顺序和链式**两种存储结构,顺序结构中元素之间的逻辑关系由**物理存储位置**决定,链式结构中元素之间的逻辑关系由链指针决定。
- 5. 对线性表、栈、队列、二叉树、图和广义表六种数据结构,按能表示数据元素之间的最复杂联系在下表中打勾。多对多较1对多复杂,1对多较1对1复杂。

|     | 线性表 | 栈   | 队列 | 二叉树 | 图 | 广义表  |
|-----|-----|-----|----|-----|---|------|
| 多对多 |     |     |    |     | 1 | 1000 |
| 1对多 |     | 4.4 |    | W . |   |      |
| 1对1 | V   | 1   | V  |     |   |      |

- 6. 对 n 个顶点的无向图, 采用邻接表表示时, 如何判别下列有关问题?
  - (1) 图中有多少条边? 答: 图中的边数=邻接表链表结点总数的一半。
  - (2)任意两个顶点 i 和 j 是否有边相连? 答:任意两顶点间是否有边相连,可看其中一个顶点的邻接表,若链表中的 ad jvex 域有另一顶点位置的结点,则表示有边相连。
  - (3) 任意一个顶点的度是多少? 答: 任意一个顶点的度等于该顶点的链表中结点个数。

#### 四、算法题: (共 19 分)

1. 试编写算法,将一个带头结点的单循环链表 A,按结点值分解为奇数和偶数两个具有相同结构的链表 A和 C,其中 C的结点是原 A中结点值为偶数的结点。要求利用原链表的结点。可以使用 ODD(p↑. data)逻辑函数判断指针 p的值 data 是否为奇数,是则返回 true。(9分)

2. 利用两个栈 S1 和 S2 模拟一个队列,该队列如下图所示,试写出队空和队满条件,并编写出队列的插入 add 和删除 delete 运算。(10 分)



PROC add(x:elementype); {将 x 插入到队尾中}

ENDP; {ODD EVEN}

### 第二部分 操作系统参考答案

| 五  | 、单巧 | 页选书 | 戶题 | (在每小 | .题 2 | 分, | 共  | 20 分 | ) |    |     |
|----|-----|-----|----|------|------|----|----|------|---|----|-----|
| 1. | В   | 2.  | В  | 3.   | C    |    | 4. | С    |   | 5. | В   |
| 6. | A   | 7.  | С  | 8.   | Α    |    | 9. | A    |   | 10 | . D |

六、多项选择题(在每小题2分,共10分)

- 1. 操作系统是一个庞大的系统软件,可采用以下那些技术来构造作系统。 ( ABCDE )
- 2. 引入软件工程的目的: ( ABC )
- 3. 以下那一些是基于时间片的调度算法。(AB)
- 4. 对 I / O 通道设备的正确描述( ABCDE )
- 5. UNIX 文件管理中的索引结点是指 (CD )

七、判断题(将正确的划上"√". 错误的划上"×". 每小题 2 分, 共 10 分)

- 1. ( 🗙 ) 可变式分区可采用紧凑技术回收外零头空间。
- 2. ( ✓ )设备独立性即与设备无关性,用户在编程时,避免直接使用现实设备名,而使用逻辑设备名,这样它所要求的输入输出,便与物理设备无关。
- 3. ( ✓ )在请求分页存储管理中,从主存中刚刚移走某一页面后,根据请求马上又调进该页,这种反复调进调出的现象,称为系统颠簸,也叫系统抖动。
- 4. ( ✓ ) UNIX 的 Shell 是作为操作系统的命令语言,为用户提供使用操作系统的接口,用户利用该接口与机器交互。
- 5. ( ) 存储介质的存储分块越小越好,分块越小存储介质的利用率越高。

#### 八、填空题 (每小题 2 分, 共 10 分)

- 1. 并行性,并行
- 2. 扩充主存容量,存储保护
- 3. 算态, 管态
- 4. 进程,线程
- 5. 进程,服务

#### 九、简答题 (3个小题,共25分)

- 1. A 答: 当虚页 4 发生缺页时,使用 FIFO 管理策略,则应置换 1 号页帧中的 1 号虚页,因 为它是最先进入存储器的。
  - B 答: 当虚页 4 发生缺页时,使用 LRU 管理策略,则应置换 1 号页帧中的 1 号虚页,因为它是最久未被访问和修改过,又是最先进入存储器的
  - C 答: 当虚页 4 发生缺页时,使用 Clock 管理策略,则应置换 1 号页帧中的 1 号虚页,因为它在本周期内既未被访问过,又没有修改过。

#### D 答:

| -4 * |     |   |   |   |   |   |   |   |     |   |   |   |
|------|-----|---|---|---|---|---|---|---|-----|---|---|---|
| 页访问  | 当前状 | 4 | 0 | 0 | 0 | 2 | 4 | 2 | 1   | 0 | 3 | 2 |
| 串    | 态   |   |   |   |   |   |   |   |     |   |   |   |
| 标记   |     | * |   |   |   |   |   |   | *   |   | * |   |
| M1   | 2   | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2   | 2 | 2 | 2 |
| M2   | 1   | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4   | 4 | 3 | 3 |
| М3   | 0   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | . 0 | 0 | 0 | 0 |
| M4   | 3   | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 1   | 1 | 1 | 1 |

采用 LRU 算法, 缺页次数为: 3次。

2. 答: 访问一个被定位的字所需要的平均时间

=0.9\*20+(0.1\*0.6)\*(60+20)+(0.1\*0.4)\*(12000+60+20)=506 (ns)

3. 答: 1个作业时: 时间周期=N

吞吐量=1

处理机使用率=50%

2个作业时:时间周期=N+4

吞吐量=2

处理机使用率=[N/(N++→)]\*100%

4个作业时:时间周期=2N+

吞吐量=4

处理机使用率=[2N/(2N+€)]\*100%

