EE114 Intro to Systems & Control

Dr. Lachman Tarachand Dr. Chen Zhicong

Prepared by Dr. Séamus McLoone Dept. of Electronic Engineering

So far ...

- We've introduced the concept of control & feedback control ...
- We've talked about systems ...
- We've started to model simple dynamical systems an RC circuit, thus far ...

© Randy Glasbergen www.glasbergen.com.

DOG MATH

"If I have 3 bones and Mr. Jones takes away 2, how many fingers will he have left?"

So far ...

- We've introduced the concept of control & feedback control ...
- We've talked about systems ...
- We've started to model simple dynamical systems an RC circuit, thus far ...

© Randy Glasbergen www.glasbergen.com.

 Today, we shall model some more dynamical systems ...

So far ...

- We've introduced the concept of control & feedback control ...
- We've talked about systems ...
- We've started to model simple dynamical systems an RC circuit, thus far ...

© Randy Glasbergen www.glasbergen.com.

 Today, we shall model some more dynamical systems ...

Fantastic!

"If I have 3 bones and Mr. Jones takes away 2, how many fingers will he have left?"

A Quick Recap ...

- Analytic procedure:
 - Physical model circuit diagram.
 - Variables voltages, currents.
 - Equilibrium relation Kirchoff's Current Law (KCL).
 - Compatibility relation Kirchoff's Voltage Law (KVL).
 - Physical relations are summarised in the following table:

Component	Physical Law	Symbol
Resistance (R)	v = iR	R R
Inductance (L)	$v = L \frac{di}{dt}$	L L
Capacitance (C)	$v = \frac{1}{C} \int i dt$ or $i = C \frac{dv}{dt}$	C

Component	Physical Law	Symbol
Resistance (R)	v = iR	<i>R</i>
Inductance (1) Note	v = I that we are assumed identifications and identification.	L L L L L L L L L L L L L L L L L L L
para Capacitance	$v = \frac{1}{C} \int idt$	C C
(C)	or	or —
	$i = C \frac{dv}{dt}$	

• Ex 3.3 Determine a mathematical model for the resistor/capacitor filter circuit shown below:

 Ex 3.3 Determine a mathematical model for the resistor/ capacitor filter circuit shown below:

$$v_i = RC \frac{dv_C}{dt} + v_C$$

Continuing ...

- Analytic procedure:
 - Physical model schematic showing geometry of the system with respect to an arbitrary configuration and reference co-ordinate frame.
 - Variables force and position.
 - Equilibrium/ Compatibility relations Energy conservation or force equilibrium.
 - Physical relations (assuming ideal components):

Component	Physical Law	Symbol	
Spring (K)	F = Kx	F	
Damper (or Dashpot) (B)	$F = B\dot{x}$	$ \begin{array}{c c} & X \\ & X \\ & A \\ & B \end{array} $	
Mass (M)	$F = M\ddot{x}$	$M \longrightarrow F$	MONO NO

Component	Physical Law	Symbol
Spring (K)	F = Kx Pos	ition (or displacement) K
Damper (or Dashpot) (B)	$F = B\dot{x}$ Ve	$ \begin{array}{c c} & X \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ $
Mass (M)	$F = M\ddot{x}$	cceleration

- **Free body diagram** In mechanics the concept of a free body diagram (FBD) (or force diagram) is used to analyse mechanical systems.
- Each mass is viewed as a free body isolated from the rest of the system with only the forces acting on it shown.
- Force balance equations are then written for each mass.

 Ex 3.6(a) Determine a mathematical model for the spring-mass-damper system, whose physical model is shown in step 1 below:

 Ex 3.6(a) Determine a mathematical model for the spring-mass-damper system, whose physical model is shown in step 1 below:

Step 1: Physical model assuming ideal components:

Actual system –
'Suspension' within a shoe
or a bicycle for example

Physical model

Solution ...

Step 2: Model variables defined on the physical model

Solution ...

Step 2: Model variables defined on the physical model

Step 3: From the free body diagram showing only the forces acting on *M* we obtain the Force equilibrium equation:

Free body diagram

Solution ...

Step 2: Model variables defined on the physical model

Step 3: From the free body diagram showing only the forces acting on *M* we obtain the Force equilibrium equation:

$$F_m + F_d + F_s = f(t)$$

Free body diagram

Solution ...
$$F_m + F_d + F_s = f(t)$$

Step 4: Using the physical force-geometry relations this becomes:

Component	Physical Law	Symbol
Spring (K)	F = Kx	$ \begin{array}{c c} $
Damper (or Dashpot) (B)	$F=B\dot{x}$	$ \begin{array}{c} $
Mass (M)	$F = M\ddot{x}$	$M \rightarrow F$

$$F_m + F_d + F_s = f(t)$$

Step 4: Using the physical force-geometry relations this becomes:

$$M\frac{d^2x}{dt^2} + B\frac{dx}{dt} + Kx = f(t)$$

$$F_m + F_d + F_s = f(t)$$

Step 4: Using the physical force-geometry relations this becomes:

$$M\frac{d^2x}{dt^2} + B\frac{dx}{dt} + Kx = f(t)$$

$$M\ddot{x} + B\dot{x} + Kx = f(t)$$

• Ex 3.6(b) Determine a mathematical model for a pogo stick (when in contact with the ground).

Carry out this exercise yourself.

Hint: The pogo stick is effectively a mass-spring system!

 Ex 3.7 Determine a mathematical model for the system, whose physical model is shown below:

Physical Model

Solution ...

Physical Model

Solution ...

Free Body Diagram for Mass *M* is given by:

Free body diagram

Physical Model

Solution ...

Free Body Diagram for Mass *M* is given by:

Free body diagram

Physical Model

Thus, the Force equilibrium equation is:

$$F_m + F_d + F_{s1} + F_{s2} = u(t)$$

Solution ...

$$F_m + F_d + F_{s1} + F_{s2} = u(t)$$

Using the physical force-geometry relations this becomes:

Component	Physical Law	Symbol
Spring (K)	F = Kx	$ \begin{array}{c c} $
Damper (or Dashpot) (B)	$F=B\dot{x}$	$ \begin{array}{c} $
Mass (M)	$F = M\ddot{x}$	$M \rightarrow F$

Solution ...

$$F_m + F_d + F_{s1} + F_{s2} = u(t)$$

Using the physical force-geometry relations this becomes:

$$M \frac{d^{2}x}{dt^{2}} + B \frac{dx}{dt} + K_{1}x + K_{2}x = u(t)$$

Solution ...

$$F_m + F_d + F_{s1} + F_{s2} = u(t)$$

Using the physical force-geometry relations this becomes:

$$M\frac{d^2x}{dt^2} + B\frac{dx}{dt} + K_1x + K_2x = u(t)$$

$$M\ddot{x} + B\dot{x} + (K_1 + K_2)x = u(t)$$

Solution ...

$$F_m + F_d + F_{s1} + F_{s2} = u(t)$$

Note, by way of assumptions in the previous examples, we assume that we are using ideal components (springs, dampers) and that there is no friction between the mass and the ground.

$$M\ddot{x} + B\dot{x} + (K_1 + K_2)x = u(t)$$

