Report of OpenCalphad Calculation

2021-08-17

Materials

Element	MG	SI	ZN	AL	
Mole-frac	0.02	0.03	0.02	0.93	

Database

COST507R.TDB

Equilibrium calculations

Equilibrium 1:

Output for equilibrium: 1, DEFAULT_EQUILIBRIUM 2021.08.17

```
1:T=1000, 2:P=100000, 3:N=1, 4:X(MG)=.02, 5:X(SI)=.03, 6:X(ZN)=.02
Degrees of freedom are 0
```

```
Some global data, reference state SER:
```

```
T= 1000.00 K ( 726.85 C), P= 1.0000E+05 Pa, V= 0.0000E+00 m3
N= 1.0000E+00 moles, B= 2.7730E+01 g, RT= 8.3145E+03 J/mol
G= -4.51331E+04 J, G/N=-4.5133E+04 J/mol, H= 3.1602E+04 J, S= 7.673E+01 J/K
```

Some data for components :

Component name	Moles	Mass-fr	Chem.pot/RT	Activities	Ref.state
AL	9.3000E-01	0.90493	-5.2039E+00	5.4951E-03	SER (default)
MG	2.0000E-02	0.01753	-1.0013E+01	4.4800E-05	SER (default)
SI	3.0000E-02	0.03038	-6.1675E+00	2.0964E-03	SER (default)
ZN	2.0000E-02	0.04716	-1.0166E+01	3.8475E-05	SER (default)

Some data for phases:

Name		Status	Mass	Vol	.ume	Form.	Jnits	Cmp/FU	dGm/RT	Comp:
LIQUI	D#1	E	2.773E-02	0.0	0E+00	1.00E-	+00	1.00	0.00E+00	W:
AL	9.04930E-0)1 ZN	4.71555E-02	SI	3.0384	16E-02	MG	1.75301E-02		

Advanced application: Scheil-Gulliver Solidification

Figure 1: Mole fraction of solid vs. Temperature

Figure 2: Equilibrium: Mole fraction of phase vs. Temperature

Figure 3: Mole fraction of solid vs. Composition of phase

Figure 4: Mole fraction of solid vs. Composition of phase

Figure 5: Mole fraction of solid vs. Composition of phase

Figure 6: Mole fraction of solid vs. Composition of phase

Figure 7: Equilibrium: Mole fraction of solid vs. Temperature

Figure 8: Comparison between Equilibrium and Scheil: Mole fraction of solid vs. Temperature

Figure 9: Equilibrium: Mole fraction of phase vs. Temperature

Figure 10: Equilibrium: Mole fraction of phase vs. Temperature

