Adv Abstract Algebra Spr2022 midterm

xianzhi wang

Sept 2022

Q 1

Question 1. Let $H \leq G$ such that |G:H| = 4. Prove: if $g \in G$ and g has order 19, then $g \in H$.

Let G act on $\{Hb\} = \mathcal{R}$, the set of right cosets by right action. We have homomorphism

$$\rho: G \mapsto Sym(\mathcal{R}) \cong S_4 \text{ since there are 4 cosets of } H.$$

$$g \mapsto g^{\rho},$$

$$g^{\rho}: \mathcal{R} \mapsto \mathcal{R}$$

$$Hb \mapsto Hbq$$

Let $g \in G$, and |g| = 19. Want to show $g \in H$. Since $\rho(g)$ is in $Sym(\mathcal{R}) \cong S_4$, $|\rho(g)|$ divide 4!, which is the order of S_4 . Also, $|\rho(g)|$ divide |g| = 19 since ρ is homomorphism, so $|\rho(g)|$ divide $\gcd(24, 19) = 1$, so $\rho(g) = id$. So g is mapped to the identity permutation on the right cosets of H. Thus,

$$g \in \ker \rho = \bigcap_{g \in G} g^{-1} H g \le H.$$

Q 2

Question 2. let a (finite) group G act on Ω and on Δ . the action on Ω is transitive, and $|\Omega| = 22$, $|\Delta| = 10$. Prove that the action of G on Δ is not faithful. (i.e. the kernel of the action on Δ is non-trivial)

Use O-S, G act on Ω , for $x \in \Omega$, $|\mathcal{O}(x)| = 22$,

$$|\mathcal{O}(x)| \cdot |stab(x)| = |G| \implies 22 \mid |G|$$

Let ρ be denote the homomorphism assoicated with the group action.

$$\rho: G \mapsto Sym(\Delta) \cong S_{10}$$
$$g \mapsto g^{\rho}$$

We have

$$G/\ker \rho \cong \operatorname{Im} \rho \leq Sym(\Delta)$$

| $\operatorname{Im} \rho$ | divide $|G| = 22k$
| $\operatorname{Im} \rho$ | divide 10!

If G has finite order, then assume for contradiction $|\ker \rho| = 1$, then $|G| = |\operatorname{Im} \rho|$ divide 10!, but |G| has a factor of 11. Contradiction. So $\ker \rho > 1$.

If G has infinite order, then since $|\operatorname{Im} \rho| \leq 10! < \infty$, $|\ker \rho|$ must be infinite.

Q 3

Question 3. Let \mathbb{C}^{\times} denote the multiplicative group of all non-zero complex numbers (under the ordinary multiplication). Prove that \mathbb{C}^{\times} does not have any non-trivial subgroup of finite index.

Supp that H has finite index in \mathbb{C}^{\times} and $m = [\mathbb{C}^{\times} : H]$. Then for any nonzero complex number $z^m \in H$, we have

$$a^m H = (zH)^m = H, \implies z^m \in H.$$

For all $w \in \mathbb{C}$, we can solve $z^m - w = 0$ to write w as z^m for some z, hence $w \in H$, so $\mathbb{C} \subseteq H$, so $H = \mathbb{C}$.

Q 4

Proposition 1. Let a group G have order $2^2 \cdot 5 \cdot 17$. Show that

- 1. G has a unique Sylow 5-subgroup and a unique Sylow 17-subgroup.
- 2. \exists an element of order $85 = 5 \cdot 17$ in G.

Q 5

Proposition 2. Let $Z \subseteq G$ such that |Z| = 2 and |G:Z| = 97. Show that

- 1. $Z \leq Z(G)$
- 2. G is cyclic.