____ /__ /__ ___ (R)
/__ / /__ / /__ /__ /
___/ / /__ / /__ / /__ /
Statistics/Data Analysis

1 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_000000.tmp"

2 . 3 . // EXERCICE 1 4 . 5 . // Q1

6 . //a 7 . /*

> This affirmation is true:

> The distribution of incomes of the group 2 is similar to that of the first group,

> except that incomes are multiplied by a scale of 2. Since the relative inequality indices, as the Gin > i index,

> obey to the scale invariance principle, the inequality of the two groups will be the same.

> */

8 . clear

9 . input group incl inc2 inc3

group incl inc2 inc3

1. 1 2 16 2

2. 1 4 16 4

3. 1 18 16 18

4. 2 4 32 2 5. 2 8 32 4

6. 2 36 32 18

7. end

10 .

11 . igini incl , hg(group)

Index : Gini index
Group variable : group

	Group	Estimate	STE	LB	UB
1: 1 2: 2		0.44444 0.44444	0.100411 0.100411	0.186331 0.186331	0.702558 0.702558
Population		0.500000	0.069166	0.322203	0.677797

```
12 .
13 . //b
```

14 . /*

> This affirmation is false:

> When the averages of incomes of the two groups are different,

> we also must consider the contribution of the between group inequality to the total inequality.

> */

15 . 16 . //c

17 . /*

> This affirmation is true:

> - With the inc1, the between group inequality is the inequality of the distribution: D1: (8,8,8,16,16,

> 16)

> - With the inc2, the between group inequality is the inequality of the distribution: D2: (16,16,16,32,

> 32,32)

> Based on the scale invariance principle (the distribution D2 is simply that of the double of the inc > omes of D1),

> The between group inequality in incl is similar to that in inc2.

> */

18 . dentropyg incl, hg(group)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu share	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.500000	1.000000	0.21143	19 0.438875
	0.114650	0.223607	0.00000	0.110570	0.239108
2: Group_2	0.422837	0.500000	1.000000	0.21143	19 0.438875
	0.114650	0.223607	0.000000	0.110570	0.252003
Within				0.42283	37 0.877750
				0.15545	1
Between				0.05889	92 0.122250
				0.00592	1
Population	0.481729	1.000000		0.48172	29 1.000000
_	0.155563	0.000000		0.15556	3 0.000000

19 . dentropyg inc2, hg(group)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu share	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	-0.000000	0.500000 0.223607	1.000000 0.000000	-0.00000 0.000000	0 -0.00000
2: Group_2	-0.000000 0.000000	0.500000 0.223607	1.00000 0.000000		
Within				-0.00000	
Between				0.05889 0.005921	
Population	0.058892 0.005921	1.00000 0.000000		0.05889 0.005921	

20

21 . // Q2

22

23 . dentropyg inc1, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population ((mu_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837	0.50000	1.00000	0.2114	19 0.438875
	0.114650	0.223607	0.000000	0.110570	0.239108
2: Group_2	0.422837	0.50000	1.00000	0.2114	19 0.438875
	0.114650	0.223607	0.000000	0.110570	0.252003
Within				- 0.4228	337 0.877750
				0.15545	51

Wednesday February 27 16:13:32 2019 Page 3

Between			 0.058892 0.005921	0.122250
Population	0.481729 0.155563	1.00000 0.000000	 0.481729 0.155563	1.00000 0.000000

24 . dentropyg inc2, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu share	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	-0.000000	0.500000 0.223607	1.000000 0.000000	-0.00000 0.000000	0 -0.000000
2: Group_2	-0.000000 0.000000	0.500000 0.223607	1.000000 0.000000	-0.00000 0.000000	0 -0.000000 0.000000
Within				-0.00000	
Between				0.05889 0.005921	
Population	0.058892 0.005921	1.000000 0.000000		0.05889 0.005921	

25 . dentropyg inc3, hg(group) theta(0)

Decomposition of the Generalised Entropy Index by Groups

Group variable : group Parameter theta : 0.00

Group	Entropy index	Population (mu share	u_k/mu)^theta	Absolute contribution	Relative contribution
1: Group_1	0.422837 0.114650	0.500000 0.223607	1.000000 0.000000	0.21141 0.110570	.9 0.500000 0.243290
2: Group_2	0.422837 0.114650	0.500000 0.223607	1.000000 0.000000		
Within				0.4228 3 0.081070	
Between				-0.00000 0.000000	
Population	0.422837 0.081070	1.00000 0.000000		0.4228 3	

26 . 27 . // Q3

28 . igini incl inc2 inc3

Index : Gini index

	Variable	Estimate	STE	LB	UB
1: GINI_inc1		0.500000	0.069166	0.322203	0.677797
2: GINI_inc2		0.166667	0.024845	0.102800	0.230533
3: GINI_inc3		0.44444	0.071001	0.261930	0.626958

```
29 .
30 .
31 .
32 . // EXERCICE 2
33
34 . // Q1
35 . clear
36 . input identifier pre_tax_income hhsize nchild
       identif~r pre_tax~e hhsize
                                         nchild
    1. 1 480 8 4
     2. 2 1200 10 6
    3. 3 460 6 4
    4. 4 2500 6 2
    5. 5 3800 8 2
    6.6 560 8 4
    7. 7 1240 6 2
    8.8 1760 8 6
    9. end
38 . /* Scenario A */
39 . gen pcincatA = pre_tax_income * (1.00-0.10)/hhsize
40 .
41 . scalar un_revenu_A = 12000*0.06/60
42 . scalar child_all_A = 12000*0.04/30
43 . gen
           pcuincA = hhsize*un_revenu_A/hhsize
44 . gen pcallowA = nchild*child_all_A/hhsize
45 . gen dpcincA= pcincatA+ pcuincA+ pcallowA
46 .
47 . /* Scenario B */
48 . gen pcincatB = pre_tax_income * (1.00-0.10)/hhsize
49 . scalar un_revenu_B = 0
```

Wednesday February 27 16:13:32 2019 Page 5

50 . scalar child_all_B = 12000*0.10/30

51 . gen pcuincB = hhsize*un_revenu_B/hhsize

52 . gen pcallowB = nchild*child_all_B/hhsize

53 . gen dpcincB= pcincatB+ pcuincB+ pcallowB

54 .

55 .

56 . // Q2

57 . igini dpcincA dpcincB , hsize(hhsize)

Index : Gini index
Household size : hhsize

Variable	Estimate	STE	LB	UB
1: GINI_dpcincA	0.353067	0.042274	0.253105	0.453028
2: GINI_dpcincB	0.348667	0.042336	0.248557	0.448776

58 .

59 . // Q3

60 . diginis pcincatA pcuincA pcallowA, hsize(hhsize)

Decomposition of the Gini Index by Incomes Sources: Rao's (1969) Approach. Household size : hhsize

Sources Income (Concentration Index	Absolute Contribution	Relative Contribution
1: pcincatA	0.900000	0.395556	0.356000 0.042978	0 1.008308 0.006154
2: pcuincA	0.060000	0.000000	0.000000	0.000000
3: pcallowA	0.015088 0.04000	0.000000 -0.073333	0.000000 -0.00293	0.000000 3 -0.008308
	0.013684	0.077784	0.002248	0.006154
Total	1.00000 0.000000		0.35306 0.042274	7 1.000000 0.000000

61 . diginis pcincatB pcuincB pcallowB, hsize(hhsize)

Decomposition of the Gini Index by Incomes Sources: Rao's (1969) Approach. Household size : hhsize

Sources Income Share		Concentration Index	Absolute Contribution	Relative Contribution
1: pcincatB	0.900000 0.033607	0.395556	0.356000 0.044140	0 1.021032 0.015775
2: pcuincB	0.00000 0.00000		0.000000	
3: pcallowB	0.100000 0.100000 0.033607	-0.073333 0.077784	-0.007333 0.005663	
Total	1.000000 0.000000		0.34866 3	7 1.000000 0.000000

```
62 .
63 . // Q4
64 . /*
> The scena
> This is b
```

> The scenario B is with the highest reduction in inequality in disposable incomes.

> This is because, this programme targets well the deprived or poor households, which are characterized > by a large number of children.

> */

65 . 66 . // Q5

67 . // generating the per capita income without applying any program

68 . gen pcinc = pre_tax_income/hhsize

69 . difgt dpcincB pcinc, hsize1(hhsize) hsize2(hhsize) pline1(100) pline2(100) alpha(0)

Variable	Estimate	Std. Err.	t	P> t	[95% Conf. int	cerval] Pov.	line
dpcincB pcinc	.3666667 .3666667	.1835415 .1835415	1.99773 1.99773	0.0859 0.0859	06734 06734	.8006734 .8006734	100 100
diff.	0	0	•	•	0	0	

70 .

71 . // Q6

72 . difgt dpcincB pcinc, hsize1(hhsize) hsize2(hhsize) pline1(100) pline2(100) alpha(1)

Variable	Estimate	Std. Err.	t	P> t	[95% Conf. int	cerval] Pov.	line
dpcincB pcinc	.0616667 .1166667	.0374656 .061366	1.64596 1.90116	0.1438 0.0990	0269254 0284408	.1502588 .2617742	100 100
diff.	.055	.027522	1.9984	0.0858	0100792	.1200792	

```
73 . /*
```

> The households that receive child allowances have some improvement in well-being, but this improvement > is not enough to make them escape poverty.

> This is what explains the unchanged level of headcount. In the inverse, the poverty gap index is sensi
> tive to any improvement in the well-being of the poor, and this explains the reduction of this index.

>

74 . 75 .

76 . // EXERCICE 3

77 .

78 . //Stata code for the Practical exercise 3 - BLOC3

79 .

80 . // Q1

81 . clear

82 .

end of do-file

83 . use "C:\Users\lutib\Dropbox\PEP_distance_Poverty Course (Exercises)\2019\weaks_semaines 4-5-6\version\ > data_3.dta"

Wednesday February 27 16:13:33 2019 Page 7

84 . do "C:\Users\lutib\AppData\Local\Temp\STD1880_000000.tmp"

85 . svyset psu [pweight=sweight], strata(strata)

pweight: sweight
 VCE: linearized
Single unit: missing
Strata 1: strata
 SU 1: psu
 FPC 1: <zero>

86 .

87 . // Q2

88 . ifgt ae_exp, pline(21000) hs(hsize)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Parameter alpha : 0.00

Variable	Estimate	STE	LB	UB	Pov. line
ae_exp	0.316088	0.013949	0.288713	0.343464	21000.00

89 .

90 . // Q3

91 . ifgt ae_exp, pline(21000) hs(hsize) hgroup(sex)

Poverty index : FGT index Household size : hsize Sampling weight : sweight Group variable : sex Parameter alpha : 0.00

Group	Estimate	STE	LB	UB	Pov. line
1: Male 2: Female	0.301265 0.370129	0.013811 0.033178	0.274160 0.305014	0.328370 0.435243	21000.00 21000.00
Population	0.316088	0.013949	0.288713	0.343464	21000.00

92 . 93 .

end of do-file

94 .