EXAMEN DE MATEMÁTICA DISCRETA 2

Nombre	C.I	No. de prueba
--------	-----	---------------

Duración: 4:00 horas. Sin material y sin calculadora.

Es necesario mostrar la resolución de los ejercicios, presentar únicamente la respuesta final carece de valor.

Ejercicio 1.

- **A.** Sea G un grupo finito y $g, h \in G$.
 - (i) Probar que si o(q) = n y n = km con $k, m \in \mathbb{N}$, entonces $o(q^m) = k$
 - (ii) Probar que si gh = hg y mcd(o(g), o(h)) = 1 entonces o(gh) = o(g)o(h).
 - (iii) ¿Es cierto lo anterior si $gh \neq hg$? Probar o encontrar un contraejemplo.
- **B.** Sea $b \in \mathbb{N}$ tal que $b^{280} \equiv 400 \pmod{401}$ y $b^{16} \equiv 39 \pmod{401}$.
 - (i) Probar que el orden de \bar{b} en U(401) es 80.
 - (ii) Con el dato adicional de que el orden de $\overline{2}$ en U(401) es 200, hallar un par de enteros $x, y \in \mathbb{Z}$ tales que $2^x b^y$ es raíz primitiva módulo 401. (No es necesario probar que $o(\overline{2}) = 200$).

Ejercicio 2.

- **A.** Hallar todos los pares de naturales (a, b) que verifican que $ab = 21 \operatorname{mcd}(a, b)$ y $a \equiv \operatorname{mcd}(a, b)$ (mód b).
- **B.** Investigar si los siguientes sistemas tienen solución entera, y en caso de tenerla, hallar todas las soluciones:

(i)
$$\begin{cases} x \equiv 34 \pmod{49} \\ x \equiv 11 \pmod{21} \\ x \equiv 7 \pmod{9} \end{cases}$$
 (ii)
$$\begin{cases} x \equiv 20 \pmod{49} \\ x \equiv 13 \pmod{21} \\ x \equiv 7 \pmod{9} \end{cases}$$

Ejercicio 3. Sean p y q dos primos distintos y n = pq. Sea $e \in \mathbb{N}$ tal que $mcd(e, \varphi(n)) = 1$ y $E : \mathbb{Z}_n \to \mathbb{Z}_n$ la función de encriptado utilizada en el sistema RSA con clave (n, e); es decir $E(x) = x^e \pmod{n}$.

- **A.** Probar que si $ed \equiv 1 \pmod{\varphi(n)}$, entonces la función $D : \mathbb{Z}_n \to \mathbb{Z}_n$ dada por $D(y) = y^d \pmod{n}$ desencripta.
- **B.** Sean p = 41 y q = 47 y n = pq.
 - (i) Si e = 459, probar que $mcd(\varphi(n), e) = 1$ y hallar la función de desencriptado D.
 - (ii) Hallar los restos de dividir 494⁴⁵⁹ entre 41 y entre 47.
 - (iii) Hallar E(494) (perteneciente a $\{0, 1, 2, \dots, n-1\}$). (Sugerencia: utilizar la parte (ii). Puede resultarle útil que $47 \times 7 41 \times 8 = 1$).