

第五章

时序逻辑电路的分析与设计

宗 汝

西安电子科技大学电子工程学院

Email: zongru@xidian.edu.cn

主要内容

- 一. 时序电路定义和分类
- 二. 时序电路的功能描述方法
- 三.同步时序电路的分析
- 四.同步时序电路的设计

学习目标

- 掌握时序逻辑电路的概念、结构及其特点
- 掌握时序逻辑电路的分类
- 掌握同步时序逻辑电路的分析
- 掌握同步时序逻辑电路的设计

时序逻辑电路概念

时序逻辑电路

特点:

- 1. 具有记忆元件(最常用的是触发器)。
- 2. 具有反馈通道。

- 时序逻辑电路某时刻的输出 Z^n 取决于该时刻的外部输入 X^n 和内部状态 Q^n ;
- 而时序逻辑电路的下一状态 Q^{n+1} 同样决定于 X^n 和 Q^n 。

<u>时序逻辑电路的工作过程实质上就是在不同的输入条件下,内部状态不断</u> 更新的过程。

以上三个方程习惯 写成如下形式: *输出方程: Z = F(X,Q)

*激励方程: Y = G(X,Q)

*状态方程: $Q^{n+1} = H(Y,Q)$

时序逻辑电路的分类

• 按触发器状态转换的步调分:

同步与异步

• 按电路输出信号的特点分:

Mealy型

Moore型

特殊Moore型

时序逻辑电路的分类:同步 vs 异步

(1)按触发器状态转换的步调分:同步与异步

同步二进制加法计数器

异步二进制加法计数器

时序逻辑电路的分类: Mealy vs Moore

(2)按电路输出信号的特点分:

时序逻辑电路的分类:Mealy vs Moore

(2)按电路输出信号的特点分:

<u>摩尔(Moore)型</u>:某时刻的输出与外部输入无关,仅由其内部状态决定。

时序逻辑电路的分类:Mealy vs Moore

(2)按电路输出信号的特点分:

$$*Y=G(X, Q)$$

$$*Q^{n+1}=H(Y, Q)$$

$$*Z=F(Q)$$
 or $Z=F(X, Q)$

Mealy型的输出与输入X直接相关;

Moore型输出与输入无关或间接相关;

特殊Moore型是无输入X的电路,输出Z则可有可无。

Mealy和Moore电路示例

同步电路, CP下降沿作用

Mealy和Moore电路示例

*Mealy型串行加法器电路

*Moore型串行加法器电路

时序电路的功能描述方法

- 逻辑方程
- 状态转移表
- 状态转移图
- 时序图

功能描述方法:逻辑方程

1. 输出方程:

$$Z = X \overline{Q}_1 \overline{Q}_0$$

2. 激励方程: $J_0 = K_0 = 1$

$$J_1 = K_1 = X \oplus Q_0$$

3. 状态方程:

$$\dot{Q}_{1}^{n+1} = J_{1}\overline{Q}_{1} + \overline{K}_{1}Q_{1} = (X \oplus Q_{0}) \cdot \overline{Q}_{1} + \overline{(X \oplus Q_{0})} \cdot Q_{1}
= X \oplus Q_{0} \oplus Q_{1}
Q_{0}^{n+1} = J_{0}\overline{Q}_{0} + \overline{K}_{0}Q_{0} = \overline{Q}_{0}$$

功能描述方法:状态转移表

列表描述电路输出、次态与输入、现态之间的关系。

输出方程: $Z = X\overline{Q_1}\overline{Q_0}$

激励方程: $J_1 = K_1 = X \oplus Q_0$ $J_0 = K_0 = 1$

状态方程: $Q_1^{n+1} = X \oplus Q_1 \oplus Q_0$ $Q_0^{n+1} = \overline{Q_0}$

Mealy型

Moore型

$Q_1^{n+1}Q_0^{n+1}$			7
Q_1Q_0	0	1	Z
0 0	01	11	0
0 1	10	00	0
1 1	00	10	1
1 0	11	01	0

功能描述方法:状态转移表

电路没有输入X,也没有输出Z的状态表

特殊Moore型状态表

Q_2	Q_{I}	Q_0	Q_2^{n+1}	Q_{l}^{n+1}	Qo^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

功能描述方法:状态转移图

Mealy型状态图

Moore型状态图

特殊Moore型状态图

功能描述方法:时序图

以时序波形的形式描述电路状态、输出Z与输入X之间的关系。

*以上几种同步时序逻辑电路功能描述的方法, 各有特点,但实质相同,且可以相互转换,它们都是同步时序逻辑电路分析和设计的主要工具。

时序逻辑电路分析

时序电路分析方法

同步时序电路的分析,就是找出一个同步时序电路的变化规律,确定逻辑功能。

分析步骤:

- 1. 根据时序电路图,写出该电路的<u>输出方程</u>和各触发器的<u>输入(激励)方程</u>。
- 2.根据触发器的激励方程和触发器的<u>特征方程</u>,获得时序电路 的<u>状态方程</u>。
- 3.根据状态方程和输出方程,建立<u>状态转移表</u>,画出<u>状态图</u>和 <u>时序波形图</u>。
- 4.描述电路的逻辑功能。

示例

例1:分析图示Moore型同步时序电路的逻辑功能。

解:①写出输出方程和触发器的输入方程

$$Z = Q_{2}Q_{1}Q_{0}$$

$$J_{0} = K_{0} = 1$$

$$J_{1} = K_{1} = Q_{0}$$

$$J_{2} = K_{2} = Q_{1}Q_{0}$$

② 写状态方程

根据JK触发器的特征方程 $Q^{n+1} = JQ + KQ$ 可得

$$\begin{aligned} Q_{2}^{n+1} &= J_{2}\overline{Q_{2}} + \overline{K_{2}}Q_{2} = Q_{1}Q_{0}\overline{Q_{2}} + \overline{Q_{1}}Q_{0}Q_{2} = (Q_{1}Q_{0}) \oplus Q_{2} \quad (J_{2} = K_{2} = Q_{1}Q_{0}) \\ Q_{1}^{n+1} &= J_{1}\overline{Q_{1}} + \overline{K_{1}}Q_{1} = Q_{0}\overline{Q_{1}} + \overline{Q_{0}}Q_{1} = Q_{1} \oplus Q_{0} \quad (J_{1} = K_{1} = Q_{0}) \\ Q_{0}^{n+1} &= J_{0}\overline{Q_{0}} + \overline{K_{0}}Q_{0} = 1 \cdot \overline{Q_{0}} + \overline{1} \cdot Q_{0} = \overline{Q_{0}} \quad (J_{0} = K_{0} = 1) \end{aligned}$$

③ 列状态转移表

	Q_2	Q_1	Q_0	Q_2^{n+}	${}^{1}\mathcal{Q}_{1}^{n+1}$	Q_0^{n+1}	^{1}Z
	0	0	0	0	0	1	0
	0	0	1	0	1	0	0
	0	1	0	0	1	1	0
	0	1	1	1	0	0	0
	1	0	0	1	0	1	0
	1	0	1	1	1	0	0
	1	1	0	1	1	1	0
电子エ	1	1	1	0	0	0	1

④ 画状态图

数字电路与逻辑设计

④ 画波形图*

⑤逻辑功能分析

在CLK控制下,电路的触发器状态转移按 $000 \rightarrow 001 \rightarrow 010 \rightarrow 011 \rightarrow 100 \rightarrow 101 \rightarrow 110 \rightarrow 111 \rightarrow 000$ 的规律循环。

该电路是3位二进制加1计数器(称为模8加1计数器);输出Z为进位标志,当计数器计到111时Z=1。

计数器

- 计数器功能:累计输入脉冲的个数。
- 计数器模值:计数器是一个周期循环的时序电路,循环一次所需要的时钟脉冲的个数称为计数器的模值M。
 - hn 由 hn 中 hn 的一般应满足 hn hn hn 的一般应满足 hn $\operatorname{$
- 可以用来计数、分频,还可以对系统进行定时、顺序控制等,是数字系统中应用最广泛的时序逻辑部件之一。
- 计数器的类型:
 - 按时钟控制方式来分,有异步、同步两大类;
 - 按计数过程中数值的增减来分,有加法、减法、可逆计数器三类;
 - 按模值来分,有二进制、十进值和任意进制计数器。

问题:实际生活中的电子表,有几组计数器?它们的计数模值分别是多少?

*计数器

计数器分类

名 称	模值	状态编码方式	自启动情况	
二进制计数器	$M=2^n$	二进制码	无多余状态,能自启动	J
十进制计数器	M=10	BCD 码	有 6 个多余状态	
任意进制计数器	$M < 2^2$	多种方式	2"-M 个多余状态	检查多余状态
环型计数器	M=n	/	2"-n个多余状态	世旦夕示认心
扭环型计数器	M=2n	/	2 ⁿ -2n个多余状态	·

序列码检测电路分析

• 例2:分析如图所示同步时序逻辑电路的功能。

解:① 写激励和输出函数

$$D_1 = \overline{x}Q_1\overline{Q}_0 + x(Q_1 \oplus Q_0) \qquad D_0 = \overline{x}Q_1\overline{Q}_0 + x(\overline{Q_1 \oplus Q_0}) \qquad Z = \overline{x}Q_1\overline{Q}_0$$

输出Z与外输入x有关,该电路为Mealy型电路。

② 求状态方程

$$Q_1^{n+1} = D_1 = \overline{x}Q_1\overline{Q}_0 + x(Q_1 \oplus Q_0) \qquad Q_0^{n+1} = D_0 = \overline{x}Q_1\overline{Q}_0 + x(\overline{Q_1 \oplus Q_0})$$

序列码检测电路分析

③ 列状态表、画状态图

$$Q_1^{n+1} = \overline{x}Q_1\overline{Q}_0 + x(Q_1 \oplus Q_0) \qquad Q_0^{n+1} = \overline{x}Q_1\overline{Q}_0 + x(\overline{Q_1 \oplus Q_0}) \qquad Z = \overline{x}Q_1\overline{Q}_0$$

x	$Q_1^{n+1} Q_0^{n+1} / \mathbb{Z}$		
$Q_1 Q_0$	0	1	
0 0	00/0	01/0	
0 1	00/0	10/0	
1 1	00/0	01/0	
1 0	11/1	10/0	

④ 画波形图

⑤ 逻辑功能描述

电路是一个输入为110序列检测电路。

输出Z只有在输入x为110序 列时输出Z=1,其余Z=0。

序列信号检测器

110序列检测电路的输入、输出关系

输入串行序列 x:01011001110111100

输出标志 Z: 00000100001000010

序列信号发生器

- 1. 定义:能输出一个周期序列的电路;
- 2. 电路特点:一般无输入X,有输出Z,属于特殊Moore型电路;
- 3. 结构:实质是一个模为N的计数器加上一个组合电路构成。设周期序列中 0\1 的个数是N。

常见典型的时序电路

- 计数器
- 序列发生器
- 序列检测器

其他典型时序逻辑电路

寄存器和移位寄存器

1) 寄存器

寄存器用于寄存一组二进制代码。 n个触发器组成的寄存器能存储一组n位二进制代码。

2) 移位寄存器 对于串行数据,则采用移位寄存器输入并加以保存。

分类:

- 左向移位寄存器、右向移位寄存器和双向移位寄存器;
- 串行输入和并行输入;
- 串行输出和并行输出。

单向移位寄存器举例

1. 单向右移。 2. 串入并出或串入串出

*异步时序电路的分析方法(略)

要考虑不同触发器的CP变化的问题。

时序逻辑电路设计

基本同步时序逻辑电路设计

计数器

设计步骤:

例1用D或JK触发器设计模5计数器。

状态变化为:000→001→011→101→110

解:

1. 电路无输入X和输出Z,就是现态与次态的状态转换。 电路是特殊Moore型的;

- 2. 从状态情况推测,触发器应有三个;
- 3. 非完全描述,存在自启动问题。

(1)列状态表:

状态变化为:

$$Q_2$$
 Q_1 Q_0 Q_2^{n+1} Q_1^{n+1} Q_0^{n+1} Q_0^{n+1}

(2) 画次态卡诺图,求次态与现态的函数关系:

(2) 画次态卡诺图,求次态与现态的函数关系(续):

$$Q_0^{n+1} = \overline{Q}_2$$

$$Q_2^{n+1} = Q_1 \overline{Q}_2 + \overline{Q}_1 Q_2$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1$$

$$Q_0^{n+1} = \overline{Q}_2$$

- (3)根据触发器特征函数,确定激励函数。
 - a、如选用D触发器实现电路

D触发器特征函数如下,对照可得激励函数:

$$Q_2^{n+1} = D_2$$
 $Q_1^{n+1} = D_1$
 $Q_0^{n+1} = D_0$

$$D_{2} = Q_{1}\overline{Q}_{2} + \overline{Q}_{1}Q_{2}$$

$$D_{1} = Q_{0}\overline{Q}_{1}$$

$$D_{0} = \overline{Q}_{2}$$

(4) 画电路图

*(4)自启动检查

根据上述K图的画圈情况或函数表达式,检查无效状态的去向,画出完整状态图。

$$Q_2^{n+1} = Q_1 \overline{Q}_2 + \overline{Q}_1 Q_2$$

$$Q_1^{n+1} = Q_0 \overline{Q}_1$$

$$Q_0^{n+1} = \overline{Q}_2$$

*(5)非自启动电路变为自启动电路

方法1:根据K图和有效状态的情况,酌情改变K图的圈法:

*(6)重新确定激励函数,画电路图

第一个K图的圈法改变后的激励函数:

*方法2:直接将无效状态的次态设为有效状态中的一个,重新寻找激励函数。

Q_2	Q_1	Q_{o}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	×	×	X
0	1	1	1	0	1
1	0	0	×	×	X
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	×	×	×

Q_2	Q_1	Q_{θ}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	0
0	1	1	1	0	1
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	0	0	0

这种方法简单但电路将稍微复杂。

#计数器设计——激励表设计方法

b、用JK触发器实现电路

JK触发器激励表

0

 $Q^n \rightarrow Q^{n+1}$

现态与次态关系表	
观心一人心大尔众	

系统激励表

Q_2	Q_1	Q_{o}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	J_2 K_2	J_1 K_1	J_0 K_0
0	0	0	0	0	1	<u>0</u> ×	0 ×	1 ×
0	0	1	0	1	1	0 ×	1 ×	\times 0
0	1	0	×	X	×	××	××	××
0	1	1	1	0	1	1 ×	0 ×	\times 0
1	0	0	×	X	×	××	××	××
1	0	1	1	1	0	\times 0	1 ×	× 1
1	1	0	0	0	0	× 1	× 1	0 ×
1	1	1	×	X	×	××	××	××

百	理		

X

X

0

 J_1, K_1, J_0, K_0

NY.29	Q_1				
Q_0	00_	01	_11	10	I.
0	0	×	X	×	J_2
1	0	1	X	×	$J_2 = Q_1$

Q_2Q	Q_1			
Q_{o}	00_	01	11	10
0	\times	ÍΧ	1	X
1	×	X	×	0

K_2		
K_2	$= \overline{Q}_0(K_2$	$=Q_1$

时序逻辑设计步骤——激励表设计方法(!!法方!!)

- 一、从题意写出状态转换表;
- 二、从状态转换表画出输出的K图,写出输出方程;
- 三、由触发器激励表,列出待设计电路激励表;
- 四、对激励表中每个激励变量画K图,写出各个触发器的激励 函数;
- 五*、检查自启动情况,需要时修改电路;
- 六、画电路图。(设计的电路可能不唯一)

*计数器设计——特征函数对比设计方法

b、用JK触发器实现电路

JK触发器现态与次态之间的关系如下表:

Q_2	Q_1	Q_{o}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	×	×	×
0	1	1	1	0	1
1	0	0	×	×	×
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	×	×	×

触发器FF2的K图是:

JK触发器的特征方程:

$$Q_2^{n+1} = J_2 \overline{Q}_2 + \overline{K}_2 Q_2$$

从K图看Q₂现态与次态的关系, 适当划分K图,求J₂和K₂非常方便。

*计数器设计——特征函数对比设计方法

对划分后的K图分别化简,得:

$$Q_2^{n+1} = Q_1 \overline{Q}_2 + Q_2 Q_0$$

对比:
$$Q_2^{n+1} = J_2 \overline{Q}_2 + \overline{K}_2 Q_2$$

则有:
$$J_2 = Q_1$$
 $K_2 = \overline{Q}_0$

检查自启动与画电路图略。

*时序电路设计步骤——特征函数对比设计方法

- 一、从题意写出状态转换表;
- 二、从状态转换表写出各个状态次态的K图和输出的K图;
- 三、化简,如用JK则要对K图分区,如用D则不用;
- 四、从化简后的状态方程中写出各个触发器的激励函数;
- 五、检查自启动情况,需要时修改电路;
- 六、画电路图。(设计的电路可能不唯一)

示例练习

例3:用D或JK触发器设计模7同步加法计数器。

分析:

- 1. 加法计数器——同步;
- 2. 触发器个数——至少3个;
- 3. 电路类型:无需输入X和输出Z,是一个特殊Moore电路;
- 4. 非完全描述,有自启动问题。

示例练习

根据题意,可列出状态表:

Q_2	Q_1	Q_{o}	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	×	×	×

列激励表; 画K图; 检查自启动; 画电路图等略

小 结

对于某些典型的同步时序电路,直接从命题要求就可以列出状态编码表,如计数器和序列发生器,这类设计问题称为"给定状态时序电路的设计"。

*例4:用D触发器设计能产生01011的序列发生器。

设计数器的状态变化为: $000 \rightarrow 001 \rightarrow 011 \rightarrow 101 \rightarrow 110$

^_____

题目分析

- 1. 要发生的一个周期序列包含5个不同状态;
- 2. 先设计一个模5的计数器,让每个有效状态对应一个序列中的状态数;

所需触发器的个数至少3个;

- 3. 无需输入X,但有一个输出Z,是一个特殊Moore电路
- 4. 非完全描述,有自启动问题。

*(1)根据题意,列状态表:

Q_2	Q_{I}	Q_0	$Q_2^{n+1} Q_1^{n+1} Q_0^{n+1}$
0	0	0	
0	0	1	
0	1	1	
1	0	1	
1	1	0	
0	1	0	
1	0	0	
1	1	1	

分析:

红线以左是要设计一个可自启动的模5计数器。主要只看输出与现态的关系。

*参考前例,模5计数器电路图:

*(2)画输出Z的卡诺图:

Q_2	Q_I	Q_0	Z
0	0	0	0
0	0	1	1
0	1	1	0
1	0	1	1
1	1	0	1
0	1	0	X
1	0	0	×
1	1	1	X

*(3)画电路图

序列信号发生器

定义:能输出一个周期序列的电路;

● 电路特点:一般无输入X,有输出Z,

属于特殊Moore型电路;

结构:

- 实质是一个模为N的计数器加上一个组合电路构成。
- 周期序列中0/1的个数是N。

设计思路:

- 1. 根据要设计序列中的0/1个数N,先设计一个模值为N的计数器;
- 2. 计数器中每个状态对应一个输出的序列值;
- 3. 根据上述要求,画状态表。

非给定状态时序电路设计

一般同步时序电路设计

时序电路的设计:把语言描述转换成符合设计要求的状态图 或状态表,选择适当的逻辑器件,设计出时序逻辑电路。

- 同步时序电路的设计步骤:
- ① 根据命题的描述确定输入、输出变量和可能的状态数目;
- ② 建立原始状态图、状态表;.
- ③ 状态化简;
- ④ 状态分配,得到编码状态表;
- ⑤ 画输出卡诺图,写出输出方程;
- ⑥ 根据选择的触发器,列出系统激励表,写出触发器激励(输入)函数;
- ⑦ 检查自启动,调整电路;
- ⑧ 画出时序逻辑电路图。

建立原始状态图或状态表

同步时序电路的设计流程图:

原始状态图和状态表的建立是时序电路设计中最关键的一步。

一般步骤如下:

- ① 分析命题要求,确定输入、输出变量。
- ② 确定状态数目,以及每一个状态的含义,并用字母表示每一个状态信息。
- ③ 确定状态之间的转换关系,画出原始状态图,列出原始状态表。

##例:设计一个同步模为4的可逆计数器。加减控制信号为X。

当X=0时为加1计数器,计数循环过程是00→01→10→11→00;

当X=1时为减1计数器, 计数循环过程是00→11→10→01→00。

Z为进位或借位输出,当X=0时加1计数器为11时Z=1,当X=1时减1计数器为00时Z=1。试设计该计数器,画出电路图。

解• ①确定输入、输出变量和状态数目。

一个输入变量X,一个输出变量Z,4个状态用两个触发器表示。

②列出二进制状态转移真值表

X	Q_1	Q_0	Q_1^{n+}	${}^{1}Q_{0}^{n+1}$	1 Z
0	0	0	0	1	0
0	0	1	1	0	0
0	1	0	1	_1	0
0	1	1	0	0	1
1	0	0	1	1	1
1	0	1	0	0	0
1	1	0	0	_1	0
1	1	1	1	0	0

Mealy型

③根据选用触发器,列激励表

1)选用D触发器实现逻辑设计

	$\rightarrow Q_1^{n+1}Q_1$	Q_0^{n+1}/Z
Q_1Q_0	8	1
00	01/0	11/1
01	10/0	00/0
11	00/0	10/0
10	11/1	01/0

X	0	1
Q_1Q_0	D_1D_0	D_1D_0
00	01	11
01	10	00
11	00	10
10	11	01

D-FF激励表

$Q^n \rightarrow Q^{n+1}$	D
Q Q	0
0 1	1
1 0	0
1 1	1

④ 画输入端口K图,写出激励函数和输出函数

$$D_{1} = X \oplus Q_{1} \oplus Q_{0} \qquad \qquad D_{0} = \overline{Q}_{0} \qquad \qquad Z = \overline{X}Q_{1}Q_{0} + X\overline{Q}_{1}\overline{Q}_{0}$$

—) LLI		كا رزا
X		
Q_1Q_0	0	1
00	J	الر
01	0	0
11	0	0
10	1	1
	1	O_0

$$D_0 = \overline{Q}_0$$

$$Z = \overline{X}Q_1Q_0 + X\overline{Q}_1\overline{Q}_0$$

4个状态,两个触发器无多余的状态,可以自启动。

2)选用JK触发器实现逻辑设计

	$\rightarrow Q_1^{n+1}Q_0^{n+1}/Z$		
Q_1Q_0	0	1	
00	01 /0	11/1	
01	10/0	00/0	
11	00/0	10/0	
10	11/1	01/0	

X	0		1	
Q_1Q_0	J_1K_1	J_0K_0	J_1K_1	J_0K_0
00	0X	1X	1X	1X
01	1X	X1	0X	X1
11	X1	X1	X0	X1
10	X0	1X	X1	1X

JK-FF激励表

$Q^n \rightarrow Q^{n+1}$	J K
0 0	<u>0 ×</u>
0 1	1 ×
1 0	× 1
1 1	\times 0

入端口K图,写出激励函数和输出函数

$$Q_1Q_0$$
 0 1
00 X X
01 1 1
11 1 1
10 X X

X		
Q_1Q_0	0	1
00	0	1
01	0	0
11	0	0
10	1	0
,	Z	

$$J_1 = \overline{X}Q_0 + X\overline{Q}_0 = X \oplus Q_0 \qquad K_1 = X \oplus Q_0 \qquad J_0 = 1$$

$$K_1 = X \oplus Q_0$$

$$J_0 = 1$$

$$K_0 = 1$$

$$K_0 = 1$$
 $Z = \overline{X}Q_1Q_0 + X\overline{Q}_1\overline{Q}_0$

自启动...

⑤画出时序逻辑电路图

D触发器逻辑电路

$$D_1 = X \oplus Q_1 \oplus Q_0$$

$$D_0 = \overline{Q}_0$$

$$Z = \overline{X}Q_1Q_0 + X\overline{Q}_1\overline{Q}_0$$

JK触发器逻辑电路

$$J_1 = K_1 = X \oplus Q_0$$

$$J_0 = K_0 = 1$$

建立原始状态图或状态表

同步时序电路的设计流程图:

原始状态图和状态表的建立是时序电路设计中最关键的一步。

一般步骤如下:

- ① 分析命题要求,确定输入、输出变量。
- ② 确定状态数目,以及每一个状态的含义,并用字母表示每一个状态信息。
- ③ 确定状态之间的转换关系,画出原始状态图,列出原始状态表。

建立原始状态图或状态表

例:设计串行输入 "101"序列检测电路,确定其原始状态图和原始状态表。设该电路输入变量为X,代表输入串行序列;输出变量为Z,当检测到输入序列为 "101"时Z=1,否则Z=0。

(1)检测的输入序列可重叠时,输入和输出之间的关系为:

X 011010111011

Z 000010100010

(2)检测的输入序列不重叠时,输入和输出之间的关系为:

X 011010111011

Z 000010000010

解:串行输入"101"序列检测

① 确定输入变量和输出变量

设该电路的输入变量为X,输出变量为Z。

② 确定状态数目以及每一个状态的含义

根据题意,用状态来记忆输入序列情况,每一个状态的含义设为:

So:初始状态,表示电路还没有收到一个有效的1;

S1:表示电路收到了一个1的状态;

S2:表示电路收到了10的状态;

S3:表示电路收到了101的状态。

(1) Mealy型,输入序列可重叠。

X 011010111011

Z 000010100010

X/Z

③ 画状态图、列状态表

(1) Mealy型,输入序列可重叠

$\setminus X$	S^{n+1}/Z		
$ S \setminus$	0	1	
So	S ₀ /0	$S_{1}/0$	
S_1	$S_2/0$	$S_{1}/0$	
S_2	S ₀ /0	S ₃ /1	
S 3	$S_{2}/0$	S ₁ /0	

(2) Mealy型,输入序列不重叠

$\setminus X$	S^{n+1}/Z		
$ S \setminus$	0	1	
So	S ₀ /0	S ₁ /0	
S_1	$S_2/0$	S ₁ /0	
S_2	S ₀ /0	S ₃ /1	
S ₃	S ₀ /0	S ₁ /0	

*建立原始状态图或状态表示例

例6:建立Moore型时序电路状态图和表,要求检测的输入序列为可重叠"101",输入和输出之间的关系为:

X 011010111011

Z 000001010001

解:Moore型时序电路的输出与外输入无关。

① 确定输入变量和输出变量 设该电路的输入变量为X,输出变量为Z。

② 确定状态数目以及每一个状态的含义根据题意,每一个状态的含义设为:

SO:初始状态,表示还没有收到有效的1;

S1:表示电路收到了一个1的状态;

S2: 表示电路收到了10的状态;

S3:表示电路收到了101的状态。

$\setminus X$	S^{n+1}		
S	0	1	Z
S_0	S_0	S_1	0
S_1	S_2	S_1	0
S_2	S_0	S_3	0
S ₃	S_2	S_1	1

*示例

*例:设计一个自动售票机的逻辑电路原始状态表和原始状态图。假设该售票机的投币口每次只能投入一枚五角或一元两种硬币。当投入二元五角硬币后机器自动售出一张票。当投入的硬币为三元,机器在自动售出一张票的同时找回一枚五角硬币。

解: ① 确定输入变量和输出变量

设输入变量为X和Y:

X=1投入一元钱, X=0未投入;

Y=1投入五角钱, Y=0未投入。

输出变量为P和Z:

P=1出一张票, P=0不出票;

Z=1找五角硬币,Z=0不找钱。

*示例

② 确定状态数目以及每一个状态的含义

So: 没有收到硬币前的初始状态;

S1:记忆收到五角钱的状态;

S2:记忆收到一元钱的状态;

S3:记忆收到一元五角钱的状态;

S4:记忆收到两元钱的状态。

③ 列状态表、画状态图

	$S^{n+1}PZ$				
S^{XY}	00	01	11	10	
So	S ₀ /00	S ₁ /00	xx/xx	$S_2/00$	
S_1	S ₁ /00	$S_2/00$	xx/xx	S ₃ /00	
S_2	$S_2/00$	$S_3/00$	xx/xx	S ₄ /00	
S_3	$S_3/00$	S ₄ /00	xx/xx	S ₀ /10	
S_4	S ₄ /00	S ₀ /10	xx/xx	S ₀ /11	

注意: 输入变量X和Y不可能同时出现11的输入情况。

状态化简

同步时序电路的设计流程图:

状态设置时的重点,是正确反映功能设计要求,但可能有多余的状态;多余状态导致电路复杂,需要化简。 化简的核心是要找所谓的等价状态。

状态化简

什么是状态的等价?

定义:对两个状态 S_i 和 S_j ,如分别以之为初始状态,加入任意的输入,电路均产生相同的输出,称 S_i 和 S_j 等价。

等价的状态可以合并。

如何判断状态的等价?

两个状态等价的条件:(观察状态表)

- 1. 相同输入有相同的输出
- 2. 相同输入时次态等价,次态等价指:
 - (1)次态相同 或
 - (2)次态交错 或
 - (3)次态互为隐含条件

*状态化简

Mealy型101可重叠检测电路的两种状态图。

$\setminus X$	S^{n+1}/Z	
$S \setminus$	0	1
So	S ₀ /0	S ₁ /0
S 1	$S_2/0$	$S_1/0$
S_2	S ₀ /0	S ₃ /1
S_3	$S_2/0$	$S_1/0$

X	S^{n+1}/Z	
S	0	1
So	$S_0/0$	$S_{1}/0$
S 1	$S_2/0$	$S_{1}/0$
S ₂	S ₀ /0	S ₃ /1

等价状态: S1≈S3; [S1, S3]

状态化简:找出状态表中的等价状态,并合并等价状态。

状态分配

将最简状态图或状态表中字符表示的状态赋以适当的二值代码,得到二进制形式的状态表示。又称为状态编码。

- 1. 分配时注意<u>状态个数</u>、<u>二进制位数</u>(<u>触发器个数</u>)之间的关系;
 - 2. 分配的原则供参考,一般可简单随意分配。

状态分配

如果实际状态数为M,要用n个触发器,则一共有 2^n ($2^n > = M$)种不同代码,将 2^n 种代码分配给M个状态,则分配方案数N为:

 $N = \frac{(2^n - 1)!}{(2^n - M)!n!}$

相邻法三原则,即符合下列条件的状态应尽可能分配相

邻的二进制代码:

- ① 具有相同次态的现态;
- ② 同一现态下的次态;
- ③具有相同输出的现态。

00 01 10 11如何相邻?

00: 01 10 相邻 01: 00 11 相邻

10:00 11 相邻 11:01 10 相邻

相邻三原则举例:

$\setminus X$	S^{n+1} / Z	
S	0	1
S_1	$S_3/0$	$S_{1}/0$
S_2	$S_1/0$	$S_{1}/1$
S_3	$S_{1}/0$	S ₄ /1
S ₄	$S_2/1$	S ₃ /0

③ 具有相同输出的现态。 S₂S₃应分配相邻代码。

分配结果为:

 $S_1=00$; $S_2=01$; $S_3=11$; $S_4=10$.

- ① 具有相同次态的现态; S1S2, S2S3应分配相邻代码。
- ② 同一现态下的次态; S₁S₃, S₁S₄, S₂S₃应分配相 邻代码。

X	$Q_1^{n+1}Q_0^{n+1} / Z$	
Q_1Q_0	0	1
00	11/0	00/0
01	00/0	00/1
11	00/0	10/1
10	01/1	11/0

同步时序逻辑电路的设计

将上述分配了二进制代码的状态表,得到输出、次态与输入、现态之间的关系。

这时的设计回到了给定状态电路设计方法。

例5 用JK触发器设计111序列检测器。

- 1. 电路的功能是连续输入3个或3个以上的1时,电路输出1,否则输出0;
 - 2. 电路应该有一个输入X,一个输出Z,应有如下关系:如 X 011011111011
 - 则 Z 000000111000
 - 3. 难以确定到底需要几个触发器。

(1)根据题意进行状态设置

具体做法如下:

设: S_0 初态,电路没有收到有效的1;

 S_1 收到一个有效的1;

 S_2 收到两个有效的1;

 S_3 收到三个有效的1。

这些状态是需要电路记忆的事件。

(2)根据状态设置建立状态图和状态表

	S^{n+1}/Z			
S^{X}	0	1		
$egin{array}{c} {\bf S_0} \\ {\bf S_1} \\ {\bf S_2} \\ {\bf S_3} \end{array}$	$S_0 / 0$ $S_0 / 0$ $S_0 / 0$ $S_0 / 0$	S ₁ /0 S ₂ /0 S ₃ /1 S ₃ /1		

状态化简:

	S^{n+1}	Z		S^{n+1}	'Z
S^{X}	0	1	S^{X}	0	1
S ₀ S ₁ S ₂ S ₃	S ₀ /0 S ₀ /0 S ₀ /0 S ₀ /0	S ₁ /0 S ₂ /0 S ₃ /1 S ₃ /1	$egin{array}{c} \mathbf{S_0} \\ \mathbf{S_1} \\ \mathbf{S_2} \end{array}$	S ₀ /0 S ₀ /0 S ₀ /0	S ₁ /0 S ₂ /0 S ₂ /1

84

化简后的状态分配:

	S^{n+1}/\mathbb{Z}		
S^{X}	0	1	
S_0	S ₀ /0	S ₁ /0	
S_1	$S_0/0$	$S_2/0$	
S_2	$S_0/0$	$S_2/1$	

$Q_1^{n+1}Q_0^{n+1}/Z$				
Q_1Q_0	0	1		
0 0	00/0	01/0		
0 1	00/0	10/0		
1 0	00/0	10/1		

设
$$S_0 = 00$$
 , $S_1 = 01$, $S_2 = 10$

状态分配的方案二:

	S^{n+1}/\mathbb{Z}		
S^{X}	0	1	
S_0	S ₀ /0	S ₁ /0	
S_1	$S_0/0$	$S_2/0$	
S_2	$S_0/0$	$S_2/1$	

$Q_1^{n+1}Q_0^{n+1}/Z$				
Q_1Q_0	0	1		
0 0	00/0	10/0		
1 0	00/0	11/0		
1 1	00/0	11/1		

设
$$S_0 = 00$$
 , $S_1 = 10$, $S_2 = 11$

求状态方程:

$$Q_{1}^{n+1} = J_{1}\overline{Q}_{1} + \overline{K}_{1}Q_{1} = X\overline{Q}_{1} + XQ_{1}$$

$$Q_{0}^{n+1} = J_{0}\overline{Q}_{0} + \overline{K}_{0}Q_{0} = XQ_{1}\overline{Q}_{0} + XQ_{0}$$

求激励方程和输出方程:

$$J_{1} = X K_{1} = \overline{X}$$

$$J_{0} = XQ_{1} K_{0} = \overline{X}$$

$$Z = XQ_{0}$$

自启动检查:电路可以自启动。

(6)画出电路图

本章完,谢谢大家!

作业

- 5-4
- 5-7
- *5-8
- 5-14

*什么是可自启动电路?

时序电路中的所有<u>无效状态</u>经过数个CP脉冲后都能进入 <u>有效状态环</u>,称电路为<u>可自启动电路</u>。

*可自启动电路与不可自启动电路举例

 Q_1^{n+1} 、 Q_0^{n+1} 和 Z 的 K 图分别如(a)(b)(c)所示:

