12.576

EE25BTECH11043 - Nishid Khandagre

October 10, 2025

Question

If the characteristic polynomial and minimal polynomial of a square matrix ${\bf A}$ are $(\lambda-1)(\lambda+1)^4(\lambda-2)^5$ and $(\lambda-1)(\lambda+1)(\lambda-2)$, respectively, then the rank of the matrix ${\bf A}+{\bf I}$ is?

Given:

$$\chi_A(\lambda) = (\lambda - 1)(\lambda + 1)^4(\lambda - 2)^5 \tag{1}$$

$$m_A(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 2) \tag{2}$$

Size of **A**=degree of χ_A

$$\deg \chi_A = 1 + 4 + 5 = 10 \tag{3}$$

Thus, **A** is a 10×10 matrix.

The minimal polynomial $m_A(\lambda)$ has simple roots (all linear factors with exponent 1).

$$m_A(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 2) \tag{4}$$

Since all roots are distinct, the matrix **A** is diagonalizable.

Eigenvalues of $\mathbf{A} + \mathbf{I}$ and the zero-eigenspace:

If λ is an eigenvalue of ${\bf A}$, then $\lambda+1$ is an eigenvalue of ${\bf A}+{\bf I}$.

The eigenvalue 0 of $\mathbf{A} + \mathbf{I}$ corresponds to the eigenvalue -1 of \mathbf{A} . From $\chi_A(\lambda)$, the algebraic multiplicity of $\lambda = -1$ is 4.

Since ${\bf A}$ is diagonalizable, the geometric multiplicity of $\lambda=-1$ is equal to its algebraic multiplicity, which is 4.

Therefore, the geometric multiplicity of 0 for $\mathbf{A} + \mathbf{I}$ is 4.

$$nullity(\mathbf{A} + \mathbf{I}) = \dim \ker(\mathbf{A} + \mathbf{I}) = 4$$
 (5)

Rank-nullity theorem:

$$rank(\mathbf{A} + \mathbf{I}) + nullity(\mathbf{A} + \mathbf{I}) = n$$
 (6)

Here, n = 10 and nullity($\mathbf{A} + \mathbf{I}$) = 4.

$$rank(\mathbf{A} + \mathbf{I}) = 10 - 4 \tag{7}$$

$$=6 (8)$$

Thus, the rank of the matrix $\mathbf{A} + \mathbf{I}$ is 6.