Hierarchical model construction

- 1. Classic hierarchical Bayesian models
- 2. Gaussian process models
- 3. Projects

Occupancy models

$$z_i \sim \textit{Bernoulli}(\psi_i)$$

$$y_{ij} \sim \textit{Bernoulli}(z_i p)$$

Sites i, ..., NRepeat visits j, ..., J

N-mixture models

$$N_i \sim Poisson(\lambda_i)$$

 $y_{ij} \sim \textit{Binomial}(N_i, p)$

Error in variables models

$$y_i \sim \textit{Normal}(\alpha + \beta \tilde{x}_i, \sigma_y)$$

$$x_i \sim Normal(\tilde{x}_i, \sigma_x)$$

Example: modeling poop at ponds

$$y_i \sim Poisson(\mu_i)$$
 $\mu_i = lpha_0 + log(ilde{\pi})$
 $\pi \sim N(ilde{\pi}, \sigma_{\pi})$

Zero inflated Poisson

$$p(y_i|\theta,\lambda) = \begin{cases} \theta + (1-\theta)Poisson(0 \mid \lambda) & \text{if } y = 0\\ (1-\theta)Poisson(y_i \mid \lambda) & \text{if } y > 0 \end{cases}$$

 θ : mixing parameter

Zero inflated gamma

$$p(y_i|\theta,\lambda) = \begin{cases} \theta & \text{if } y = 0\\ (1-\theta) Gamma(y_i \mid \alpha,\beta) & \text{if } y > 0 \end{cases}$$

 θ : mixing parameter

Beta glm

$$y_i \sim extit{Beta}(lpha,eta)$$
 $lpha = \mu \phi$ $eta = (1-\mu)\phi$ $extit{logit}(\mu) = Xeta$

Hierarchical Bayesian structural equation models

Background: univariate normal

 $\mathbf{x} \sim \mathit{N}(\mu, \sigma^2)$ Normal(0, 1) probability density

Background: multivariate normal

$$extbf{\textit{x}} \sim extit{\textit{N}}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

 μ : vector of means

Σ: covariance matrix

Bivariate normal probability density

Bivariate normal parameters

Bivariate normal parameters

Uncorrelated bivariate normal

Common notation

$$m{\mu} = egin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \, m{\Sigma} = egin{bmatrix} \sigma_1^2 &
ho\sigma_1\sigma_2 \\
ho\sigma_1\sigma_2 & \sigma_2^2 \end{bmatrix}$$

Common notation

$$\boldsymbol{\mu} = \begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \; \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}$$

$$Cov[X_1, X_1] = Var[X_1] = \sigma_1^2$$

$$Cov[X_1, X_2] = \rho \sigma_1 \sigma_2$$

$$\boldsymbol{\Sigma} \text{ must be symmetric and positive semi-definite}$$

Classic linear modeling

$$y = X\beta + \epsilon$$

$$\epsilon \sim N(0, \sigma^2)$$

Functional form determined by $X\beta$

Linear model functional forms

Why not set a prior on $\mu(x)$?

Gaussian process as a prior for $\mu(x)$

$$y \sim N(\mu(x), \sigma^2)$$

$$\mu(x) \sim GP(m, k)$$

GP prior for $\mu(x)$

$$y \sim N(\mu(x), \sigma^2)$$

 $\mu(x) \sim GP(m, k)$

Data and realizations from a GP prior

Wait, what's Gaussian about that?

```
If \mu(x) \sim GP(m, k), then \mu(x_1), ..., \mu(x_n) \sim N(m(x_1), ..., m(x_n), K(x_1, ..., x_n) m and k are functions!
```

Mean function: m

Classic example: $m(x) = X\beta$ e.g., $\mu(x) \sim GP(X\beta, k(x))$ But, the covariance function k(x) is the real star.

Covariance functions

k specifies covariance between to *x* values Squared exponential covariance:

$$k(x, x') = \tau^2 exp\left(-\frac{|x - x'|^2}{\phi}\right)$$

Lots of options: smooth, jaggety, periodic

$$\mathbf{K} = \begin{bmatrix} \tau^2 exp(-\frac{|x_1 - x_1|^2}{\phi}) & \tau^2 exp(-\frac{|x_1 - x_2|^2}{\phi}) \\ \tau^2 exp(-\frac{|x_2 - x_1|^2}{\phi}) & \tau^2 exp(-\frac{|x_2 - x_2|^2}{\phi}) \end{bmatrix}$$

$$oldsymbol{\mathcal{K}} = egin{bmatrix} au^2 \exp(-rac{0^2}{\phi}) & au^2 \exp(-rac{|x_1-x_2|^2}{\phi}) \ au^2 \exp(-rac{|x_2-x_1|^2}{\phi}) & au^2 \exp(-rac{0^2}{\phi}) \end{bmatrix}$$

$$oldsymbol{\mathcal{K}} = egin{bmatrix} au^2 \exp(0) & au^2 \exp(-rac{|x_1-x_2|^2}{\phi}) \ au^2 \exp(-rac{|x_2-x_1|^2}{\phi}) & au^2 \exp(0) \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} \tau^2 & \tau^2 \exp(-\frac{|x_1 - x_2|^2}{\phi}) \\ \tau^2 \exp(-\frac{|x_2 - x_1|^2}{\phi}) & \tau^2 \end{bmatrix}$$

$$Cor(\mu(x_1), \mu(x_2)) = \exp(-\frac{|x_1 - x_2|^2}{\phi}).$$

Correlation function

Gaussian process with nonzero mean function

Ornstein-Uhlenbeck Gaussian process

Periodic Gaussian process

Combining Gaussian processes

e.g., sums and products of covariance functions
Periodic OU Gaussian process

Combining Gaussian processes

Multidimensional inputs

Multidimensional inputs

Other inputs

Generally, k(x) maps **distance** to **correlation**

- ightharpoonup phylogenetic distance ightarrow phylogenetic correlation
- ightharpoonup pedigree distance ightarrow additive genetic correlation
- lacktriangle distance in time ightarrow temporal correlation

Student projects

Before fitting your model to your data:

- 1. Write out model in mathematical notation (ideally LATEX)
- 2. Prior predictive simulations (do your priors make sense?)
- **3.** Model verification (given known parameters from PPS, do you recover parameters?)