

Charge, electric field, and potential

Coulomb's law

- Force of *n* source charges on a test charge
 - \circ Force from source charge q_i acting on test charge Q
 - Coulomb's law $F_i = \frac{1}{4\pi\varepsilon_0} \frac{q_i Q}{r_i^2} \widehat{r_i}$

• Location of Q: r, location of q_i : r'_i

■ Total force acting on test charge
$$F = \sum_{i=1}^{n} F_i$$

Not a necessity, but an experimental fact

* to in textbook is typed as to in our slides (Cursive "r")

Coulomb's law

Cavendish's apparatus for determining $F \propto r^{-2}$ in Coulomb's law

Electric field induced by charge

Relation of force and electric field

$$\mathbf{F} = Q\mathbf{E}$$

- Electric field: force per unit charge
- Real physical entity, as a vector field filling the space around charges
- Negated theory of "ether"

Electric field induced by discrete charges

$$\mathbf{E}(\mathbf{r}) \equiv \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{\nu_i^2} \hat{\boldsymbol{\lambda}}_i$$

- Separation vector $\boldsymbol{r}_i = \boldsymbol{r} \boldsymbol{r}_i'$, contains \boldsymbol{r}
- Principle of superposition also holds

Electric field induced by charge

Electric field induced by continuous charge distribution

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{1}{n^2} \hat{\mathbf{n}} \, dq$$

- Add up contributions from infinitesimal charge elements dq
- Three ways dq can be distributed

Line charge $dq \rightarrow \lambda \ dl'$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(\mathbf{r}')}{r^2} \hat{\boldsymbol{\lambda}} dl'$$

Surface charge $dq \rightarrow \sigma \ da'$ Volume charge $dq \rightarrow \rho \ d\tau'$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma(\mathbf{r}')}{r^2} \hat{\boldsymbol{n}} da'$$

$$dq \rightarrow \rho \ d\tau'$$

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\lambda(\mathbf{r}')}{r^2} \hat{\boldsymbol{\lambda}} dl' \quad \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\sigma(\mathbf{r}')}{r^2} \hat{\boldsymbol{\lambda}} da' \quad \mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{r^2} \hat{\boldsymbol{\lambda}} d\tau'$$

* λ , σ , ρ : charge per unit length, area, volume

Electric field induced by charge

Electric field induced by continuous charge distribution

Example 2.2. Find the electric field a distance z above the midpoint of a straight line segment of length 2L that carries a uniform line charge λ (Fig. 2.6).

 Integration sometimes can get formidable, need to device new tools to simplify problems.

- Electric field lines
 - Source charge q at the origin

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

o Draw vector field – field falls off like $1/r^2$

- Connect up the arrows electric field lines
 - Direction of line indicates field direction
 - Density of line indicates field magnitude

 Field lines begin from positive charges and end on negative ones

• Electric field flux
$$\Phi_E \equiv \int_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a}$$

A measure of the number of field lines passing through an area

- Gauss's law
 - The flux through any closed surface is a measure of the total charge inside

$$\oint_{\mathbf{T}} \mathbf{E} \cdot d\mathbf{a} = \int \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r^2} \hat{\mathbf{r}} \right) \cdot (\underline{r^2 \sin\theta \, d\theta \, d\phi \, \hat{\mathbf{r}}}) = \frac{1}{\epsilon_0} q$$
Spherical surface of radius r

- The surface integral can be any shape, not necessarily spherical
- $\oint \mathbf{E} \cdot d\mathbf{a} = \sum_{i=1}^{n} \left(\oint \mathbf{E}_{i} \cdot d\mathbf{a} \right) = \sum_{i=1}^{n} \left(\frac{1}{\epsilon_{0}} q_{i} \right)$ Multiple charges

$$\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}$$

 $\oint \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}$ (Q_{enc} : total charge enclosed in the integrated surface)

- Gauss's law
 - Gauss's law in the differential form

Divergence theorem
$$\oint_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}} \quad \text{(integral form)}$$

$$\oint_{\mathcal{S}} \mathbf{E} \cdot d\mathbf{a} = \int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{E}) \, d\tau$$

$$Q_{\text{enc}} = \int_{\mathcal{V}} \rho \, d\tau$$

$$\Rightarrow \int_{\mathcal{V}} (\mathbf{\nabla} \cdot \mathbf{E}) \, d\tau = \int_{\mathcal{V}} \left(\frac{\rho}{\epsilon_0}\right) \, d\tau$$

$$\Rightarrow \nabla \cdot \mathbf{E} = \frac{1}{\epsilon_0} \rho \quad \text{(differential form)}$$

- Differential form more compact, but integral form easier to use
- Use of Gauss's law to calculate electric field
 - Need (1) Gauss's law in integral form and (2) symmetry arguments

Application of Gauss's law

Example 2.3. Find the field outside a uniformly charged solid sphere of radius R and total charge q.

 The field outside the sphere is exactly the same as it would have been if all the charge had been concentrated at the center

- Directly calculate divergence
 - o According to Coulomb's law

$$\mathbf{E}(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int_{\text{all space}} \frac{\hat{\mathbf{i}}}{\imath^2} \rho(\mathbf{r}') d\tau'$$

$$\nabla \cdot \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \nabla \cdot \left(\frac{\hat{\mathbf{z}}}{z^2}\right) \rho(\mathbf{r}') d\tau'$$

$$\nabla \cdot \left(\frac{\widehat{r}}{r^2}\right) = \nabla \cdot \left(\frac{\widehat{r}}{r^2}\right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{1}{r^2}\right) = 0$$

 \circ The derivation above is correct anywhere but the origin (r=0), where the divergence should go to infinity

? This seems to contradict the Gauss's law, what went wrong

 Consider special case of point charge and Gauss's law with varying volume to integrate

- Delta function
 - Infinitely high, infinitesimally narrow
 - 1D Delta function

$$\delta(x) = \begin{cases} 0, & \text{if } x \neq 0 \\ \infty, & \text{if } x = 0 \end{cases}$$
with
$$\int_{-\infty}^{\infty} \delta(x) \, dx = 1$$

Can be understood as the limit of a sequence of functions

- Delta function
 - 1D Delta function
 - When in an integral, "picks out" the value of a function

Since
$$\delta(x)$$
 anywhere 0 but at $x = 0$

$$f(x)\delta(x) = f(0)\delta(x)$$

[f(x)] being an ordinary function not going to infinity]

And, one can shift $\delta(x)$ to $\delta(x-a)$ to pick out another one

$$f(x)\delta(x-a) = f(a)\delta(x-a)$$

$$\int_{-\infty}^{\infty} f(x)\delta(x-a) \, dx = f(a)$$

A frequently used expression $\delta(kx) = \frac{1}{|k|}\delta(x)$

- Delta function
 - o 3D Delta function $\delta^3(\mathbf{r}) = \delta(x) \, \delta(y) \, \delta(z)$

with
$$\int_{\text{all space}} \delta^3(\mathbf{r}) d\tau = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta(x) \, \delta(y) \, \delta(z) \, dx \, dy \, dz = 1$$

- Picks out a function value $\int_{\mathbf{a}^{11} \text{ space}} f(\mathbf{r}) \delta^3(\mathbf{r} \mathbf{a}) \, d\tau = f(\mathbf{a})$
- Back to calculating divergence of electric field

$$\nabla \cdot \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int \nabla \cdot \left(\frac{\hat{\mathbf{i}}}{\imath^2}\right) \rho(\mathbf{r}') \, d\tau'$$

$$\int \nabla \cdot \left(\frac{\hat{\mathbf{i}}}{\imath^2}\right) = 4\pi\delta^3(\mathbf{i})$$

$$\nabla \cdot \mathbf{E} = \frac{1}{4\pi\epsilon_0} \int 4\pi\delta^3(\mathbf{r} - \mathbf{r}') \rho(\mathbf{r}') \, d\tau' = \frac{1}{\epsilon_0} \rho(\mathbf{r}) \quad \text{Gauss's law recovered}$$

Curl of electric field

Calculate curl for point charge at origin

$$\mathbf{E} = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$

$$\int d\mathbf{l} = dr \, \hat{\mathbf{r}} + r \, d\theta \, \hat{\boldsymbol{\theta}} + r \sin\theta \, d\phi \, \hat{\boldsymbol{\phi}}$$

$$\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\epsilon_0} \int_{\mathbf{a}}^{\mathbf{b}} \frac{q}{r^2} dr = \left. \frac{-1}{4\pi\epsilon_0} \frac{q}{r} \right|_{r_a}^{r_b} = \frac{1}{4\pi\epsilon_0} \left(\frac{q}{r_a} - \frac{q}{r_b} \right)$$

• For any closed loop $(r_a = r_b)$ $\oint \mathbf{E} \cdot d\mathbf{l} = 0$

$$\nabla \times \mathbf{E} = \mathbf{0}$$

 $oldsymbol{
abla} imes oldsymbol{\mathrm{E}}=\mathbf{0}$ due to Stoke's theorem

Stoke's theorem $\int_{S} (\nabla \times \mathbf{v}) \cdot d\mathbf{a} = \oint_{D} \mathbf{v} \cdot d\mathbf{l}$

Any static charge distribution

$$\nabla \times \mathbf{E} = \nabla \times (\mathbf{E}_1 + \mathbf{E}_2 + \ldots) = (\nabla \times \mathbf{E}_1) + (\nabla \times \mathbf{E}_2) + \ldots = \mathbf{0}$$

- Vector field **E** cannot take arbitrary form
 - Crucial constraint: $\nabla \times \mathbf{E} = \mathbf{0}$

$$\frac{\partial E_x}{\partial y} = \frac{\partial E_y}{\partial x} \qquad \frac{\partial E_z}{\partial y} = \frac{\partial E_y}{\partial z} \qquad \frac{\partial E_x}{\partial z} = \frac{\partial E_z}{\partial x}$$

- Any chance the vector field can be described more easily?
- Electric potential: $V(\mathbf{r}) \equiv -\int_{0}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$
 - Unit: joules per coulomb
 - O: a reference point (usually taken as infinity)
 - Integral does not depend on path

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0$$

• $\oint \mathbf{E} \cdot d\mathbf{l} = 0$ • $\int_{-\mathbf{E}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$ is path independent

- Electric potential: $V(\mathbf{r}) \equiv -\int_{0}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l}$
 - Potential difference between two points is more meaningful

$$V(\mathbf{b}) - V(\mathbf{a}) = -\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} + \int_{\mathcal{O}}^{\mathbf{a}} \mathbf{E} \cdot d\mathbf{l}$$
$$= -\int_{\mathcal{O}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} - \int_{\mathbf{a}}^{\mathbf{c}} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$

On the other hand, the theorem for gradient gives

$$V(\mathbf{b}) - V(\mathbf{a}) = \int_{\mathbf{a}}^{\mathbf{b}} (\nabla V) \cdot d\mathbf{l}$$
 $\mathbf{E} = -\nabla V$

- Scalar field V gives full information of vector field E
- Can be off by a constant if choosing a different reference point

$$V'(\mathbf{r}) = -\int_{\mathcal{O}'}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} = -\int_{\mathcal{O}'}^{\mathcal{O}} \mathbf{E} \cdot d\mathbf{l} - \int_{\mathcal{O}}^{\mathbf{r}} \mathbf{E} \cdot d\mathbf{l} = K + V(\mathbf{r})$$

Application of electric potential

Example. Find the potential of a point charge q at origin

Example 2.7. Find the potential inside and outside a spherical shell of radius R (Fig. 2.31) that carries a uniform surface charge. Set the reference point at infinity.

- Poisson's equation of potential
 - o Poisson's equation $\nabla^2 V = -\frac{\rho}{\epsilon_0}$ $\nabla \cdot \mathbf{E} = \nabla \cdot (-\nabla V) = -\nabla^2 V = \frac{\rho}{\epsilon_0}$
 - o In regions with no charge, Laplace's equation $\nabla^2 V = 0$
 - Curl of a gradient always zero $\nabla \times \mathbf{E} = \nabla \times (-\nabla V) = \mathbf{0}$
- Potential of a localized charge distribution
 - Pick infinity as the reference point $\mathcal{O} = \infty$
 - o Principle of superposition holds $V = V_1 + V_2 + \dots$
 - $\text{O Discrete charges} \quad V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \frac{q_i}{\imath_i} \\ \text{O Continuous charge} \quad V(\mathbf{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\rho(\mathbf{r}')}{\imath} \, d\tau' \\ \text{Can check}$

Charge, electric field, and potential

Differential equations need boundary conditions to solve

Boundary conditions

- Boundary conditions of E across a 2D charged surface
 - Normal component of E

"Gaussian pillbox" with $\varepsilon \to 0$

$$\oint_{S} \mathbf{E} \cdot d\mathbf{a} = \frac{1}{\epsilon_0} Q_{\text{enc}} = \frac{1}{\epsilon_0} \sigma A$$

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{1}{\epsilon_0} \sigma$$

Tangential component of E

Thin loop with $\varepsilon \to 0$

$$\oint \mathbf{E} \cdot d\mathbf{l} = 0$$

$$\mathbf{E}_{\mathrm{above}}^{\parallel} = \mathbf{E}_{\mathrm{below}}^{\parallel}$$

$$\circ$$
 Summarizing above $\mathbf{E}_{above} - \mathbf{E}_{below} = rac{\sigma}{\epsilon_0} \mathbf{\hat{n}}$

Boundary conditions

- Boundary conditions of *V* across a 2D charged surface
 - Potential is continuous (across any boundary)

$$V_{
m above} - V_{
m below} = -\int_{f a}^{f b} {f E} \cdot d{f l}$$
 Path length $ightarrow 0$ $V_{
m above} = V_{
m below}$

Gradient of potential is discontinuous

$$\mathbf{E}_{\text{above}} - \mathbf{E}_{\text{below}} = \frac{\sigma}{\epsilon_0} \mathbf{\hat{n}}$$

$$\mathbf{E} = -\nabla V$$

$$\nabla V_{\text{above}} - \nabla V_{\text{below}} = -\frac{1}{\epsilon_0} \sigma \mathbf{\hat{n}}$$

$$\Rightarrow \frac{\partial V_{\text{above}}}{\partial n} - \frac{\partial V_{\text{below}}}{\partial n} = -\frac{1}{\epsilon_0} \sigma$$

where we define normal derivative of *V*

$$\frac{\partial V}{\partial n} = \nabla V \cdot \hat{\mathbf{n}}$$

Energy in electrostatics

- Work done to move a charge
 - o Integrate force over distance

$$W = \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{F} \cdot d\mathbf{l} = -Q \int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l}$$
$$= Q[V(\mathbf{b}) - V(\mathbf{a})]$$

- Electrostatic force is conservative (path independent)
- Can confirm the unit of electric potential
- \circ Work for bringing from infinitely far to $m{r}$

$$W = Q[V(\mathbf{r}) - V(\infty)]$$

 $W = QV(\mathbf{r})$ with the potential reference point set to infinity

Energy in electrostatics

- Energy of a point charge configuration
 - Equals to the work required to bring charges together from infinity
 - First charge q_1 to r_1 , no work required

•
$$q_2$$
 to $\mathbf{r_2}$ $W_2 = \frac{1}{4\pi\epsilon_0} q_2 \left(\frac{q_1}{r_{12}}\right)$

•
$$q_3$$
 to $\mathbf{r_3}$ $W_3 = \frac{1}{4\pi\epsilon_0} q_3 \left(\frac{q_1}{r_{13}} + \frac{q_2}{r_{23}} \right)$

•
$$W = W_1 + W_2 + W_3$$

Total work (energy) for n charges

$$W = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^n \sum_{j>i}^n \frac{q_i q_j}{\imath_{ij}} = \frac{1}{8\pi\epsilon_0} \sum_{i=1}^n \sum_{j\neq i}^n \frac{q_i q_j}{\imath_{ij}} = \frac{1}{2} \sum_{i=1}^n q_i \left(\sum_{j\neq i}^n \frac{1}{4\pi\epsilon_0} \frac{q_j}{\imath_{ij}} \right)$$
Count once for each pair
$$V(\mathbf{r}_i)$$

Potential q_i feels due to all **other** charges

Energy in electrostatics

- Energy of a continuous charge distribution
 - Generalize point charge equation to

$$W = \frac{1}{2} \int \rho V \, d\tau \qquad \text{with V: actual potential, without excluding the charge of interest}$$

$$\downarrow \rho = \epsilon_0 \nabla \cdot \mathbf{E}$$

$$W = \frac{\epsilon_0}{2} \int (\nabla \cdot \mathbf{E}) V \, d\tau$$

$$\downarrow \text{Integrate by parts } \int_{\mathcal{V}} f(\nabla \cdot \mathbf{A}) \, d\tau = -\int_{\mathcal{V}} \mathbf{A} \cdot (\nabla f) \, d\tau + \oint_{\mathcal{S}} f \mathbf{A} \cdot d\mathbf{a}$$

$$W = \frac{\epsilon_0}{2} \left[-\int \mathbf{E} \cdot (\nabla V) \, d\tau + \oint V \mathbf{E} \cdot d\mathbf{a} \right] = \frac{\epsilon_0}{2} \left(\int_{\mathcal{V}} E^2 \, d\tau + \oint_{\mathcal{S}} V \mathbf{E} \cdot d\mathbf{a} \right)$$

$$Vanishes$$
 when $\mathcal{V} \to \infty$ all space

Cannot be directly compared to equation of point charge, see textbook

Conductors

- Free electrons solid-state metals and doped semiconductors
- Free ions Electrolyte, salt water, lithium ion battery
- Unlimited supply of free charges, which are free to move
- Electrostatics of perfect conductors
 - \circ **E** = 0 inside a conductor
 - If not, charge will flow to induce a new surface charge distribution that exactly cancels the internal field
 - \circ $\rho = 0$ (net charge volume density) inside a conductor
 - Because $\nabla \cdot \mathbf{E} = \rho/\epsilon_0$
 - A conductor is an equipotential
 - For any two points, $V(\mathbf{b}) V(\mathbf{a}) = -\int_{\mathbf{a}}^{\mathbf{b}} \mathbf{E} \cdot d\mathbf{l} = 0$

- Electrostatics of perfect conductors
 - Any net charge only resides on the surface (minimizes energy)
 - Surface net charges serves to cancel the internal field
- + - + - + - + - + - E₁ + - + - + - + - + - + - + - +
- E is always perpendicular to the surface, just outside the conductor
 - Recall boundary conditions

$$E_{\text{above}}^{\perp} - E_{\text{below}}^{\perp} = \frac{1}{\epsilon_0} \sigma$$

$$\mathbf{E}_{\text{above}}^{\parallel} = \mathbf{E}_{\text{below}}^{\parallel} = 0$$

- Induced charges
 - Charge placed outside a metal
 - Induced charge serves to cancel field inside conductor
 - Net force of attraction

- Charge in the cavity of a hollow metal
 - Inside the cavity: $\mathbf{E} \neq 0$
 - Induced charge $q_{induced} = -q$ at inner wall
 - Inside the conductor: $\mathbf{E} = 0$
 - Leftover charge $q_{induced} = q$ at outer wall
 - Outside the conductor: $\mathbf{E} \neq 0$

- Induced charges
 - Faraday cage
 - If no charge is placed in the cavity of a hollow conductor, E = 0 in the cavity regardless of the outside conditions

If not, can construct a loop of integration, whose trajectory in the cavity follows the field line

$$\oint \mathbf{E} \cdot d\mathbf{l} \neq 0$$

$$ightharpoonup$$
 Contradicts $\nabla \times \mathbf{E} = 0$

$$\mathbf{E} = 0$$

 Protects sensitive apparatus inside the cavity by shielding out external electric fields

Induced charges

Example 2.10. An uncharged spherical conductor centered at the origin has a cavity of some weird shape carved out of it (Fig. 2.46). Somewhere within the cavity is a charge *q. Question:* What is the field outside the sphere?

- Surface charge and force on a conductor
 - Boundary conditions

$$\left\{ \begin{array}{ll} \mathbf{E}_{above} - \mathbf{E}_{below} = \frac{\sigma}{\epsilon_0} \mathbf{\hat{n}} & \text{On the surface} \\ \frac{\partial V_{above}}{\partial n} - \frac{\partial V_{below}}{\partial n} = -\frac{1}{\epsilon_0} \sigma & \text{conductor} \end{array} \right.$$

$$\left\{ \begin{array}{ll} \mathbf{E} = \frac{\sigma}{\epsilon_0} \mathbf{\hat{n}} \\ \text{conductor} \\ \sigma = -\epsilon_0 \frac{\partial V}{\partial n} \end{array} \right.$$

- Force (per unit area) exerted on the conductor
 - Can prove (textbook p.104): for any surface across which is discontinuous, force needs to be calculated by

$$\mathbf{f} = \sigma \mathbf{E}_{\text{average}} = \frac{1}{2} \sigma (\mathbf{E}_{\text{above}} + \mathbf{E}_{\text{below}})$$

• For conductors
$$\mathbf{f} = \frac{1}{2\epsilon_0} \sigma^2 \hat{\mathbf{n}}$$

Capacitors

 We can define a potential difference between two conductors, without specifying locations of the integral

$$V = V_{+} - V_{-} = -\int_{(-)}^{(+)} \mathbf{E} \cdot d\mathbf{l}$$

- Although **E** is geometry dependent, we know **E** $\propto Q$, and $V \propto Q$
- \circ Can define ratio as capacitance $C \equiv rac{Q}{V}$
 - A purely geometrical quantity, determined by shapes, sizes, and separation of the two conductors
 - Unit: farads (F), or Coulomb per volt
 - Always positive