TRAVAUX DIRIGÉS Nº 2 : Concentration, théorie de VC

Stéphan Clémençon <stephan.clemencon@telecom-paristech.fr> Emilie Chautru <emilie.chautru@mines-paristech.fr>

EXERCICE 1. On se place dans le cadre de la classification binaire : soient un descripteur aléatoire X à valeurs dans un espace mesurable $\mathcal{X} \subset \mathbb{R}^d$ $(d \in \mathbb{N}^*)$ et un label aléatoire Y valant -1 ou 1. On considère une classe finie \mathcal{G} de classifieurs $\mathcal{X} \to \{-1,1\}$ telle que les deux labels sont parfaitement séparables par un élément de \mathcal{G} , *i.e.* $\min_{g \in \mathcal{G}} L(g) = 0$ pour le risque $L : g \in \mathcal{G} \mapsto \mathbb{P}(g(X) \neq Y) \in [0,1]$.

Soit $n \in \mathbb{N}^*$. On suppose que l'on dispose d'un échantillon i.i.d. $\{(X_i, Y_i)\}_{1 \le i \le n}$ dont les éléments suivent la même loi que (X, Y) et on note \hat{g}_n un minimiseur de l'erreur empirique de classification :

$$\hat{g}_n \in \operatorname*{arg\,min}_{g \in \mathcal{G}} \mathrm{L}_n(g)$$
 où $\mathrm{L}_n : g \in \mathcal{G} \mapsto \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{\{g(\mathrm{X}_i) \neq \mathrm{Y}_i\}}.$

- 1) Montrer que $\min_{g \in \mathcal{G}} L_n(g) = 0$ presque-sûrement.
- 2) Soit $\epsilon \in \mathbb{R}_+$.
 - i) Montrer que $\mathbb{P}\left(L(\hat{q}_n) > \epsilon\right) \leq |\mathcal{G}| (1 \epsilon)^n \mathbb{1}_{\{0 \leq \epsilon \leq 1\}}$.
 - ii) En déduire que $\mathbb{P}(L(\hat{q}_n) > \epsilon) \leq |\mathcal{G}| e^{-n\epsilon}$.

Indication. Utiliser $\mathcal{G}_{\epsilon} := \{g \in \mathcal{G} : L(g) > \epsilon\}$ ainsi qu'une borne d'union.

3) Déduire de la question précédente que $\mathbb{E}\left(\mathbb{L}\left(\hat{g}_{n}\right)\right) \leq \frac{1}{n} \ln\left(e\left|\mathcal{G}\right|\right)$.

Indication. Pour toute variable aléatoire Z positive, $\mathbb{E}(Z) = \int_0^{+\infty} \mathbb{P}(Z > t) dt$.

EXERCICE 2. On se place dans le cadre de la classification binaire : soient un descripteur aléatoire X à valeurs dans un espace mesurable $X \subset \mathbb{R}^d$ $(d \in \mathbb{N}^*)$ et un label aléatoire Y valant -1 ou 1. On considère le risque 0-1 noté L, qui à tout classifieur $g: X \to \{-1,1\}$ associe $L(g) = \mathbb{P}(g(X) \neq Y)$. On pose $L^* := L(g^*)$ avec $g^*: x \in X \mapsto 2\mathbb{1}_{\{\eta(x)>\frac{1}{2}\}} - 1$ le classifieur de Bayes, et on note $\eta: x \in X \mapsto \mathbb{P}(Y = 1 \mid X = x)$.

Soit $(\eta_n)_{n\in\mathbb{N}^*}$ une suite de fonctions définies sur X à valeurs dans]0, 1[. Pour tout $n\in\mathbb{N}^*$ on considère le classifieur $g_n:x\in X\mapsto 2\mathbbm{1}_{\left\{\eta_n(x)>\frac{1}{2}\right\}}-1$.

1) On suppose qu'il existe $\delta > 0$ tel que $|\eta(x) - \frac{1}{2}| \geq \delta$ pour tout $x \in \mathcal{X}$. Montrer que pour tout $n \in \mathbb{N}^*$,

$$L(g_n) - L^* \le \frac{2}{\delta} \mathbb{E} \left((\eta_n(X) - \eta(X))^2 \right).$$

2) Montrer que si L* = 0, alors quels que soient $n \in \mathbb{N}^*$ et $q \in [1, +\infty[$

$$L(q_n) \le 2^q \mathbb{E} (|\eta_n(X) - \eta(X)|^q).$$

Soient maintenant $\eta': \mathcal{X} \to]0,1[$ et $g: x \in \mathcal{X} \mapsto 2\mathbbm{1}_{\{\eta'(x)>\frac{1}{2}\}}-1.$

- 3) On suppose que $\mathbb{P}\left(\eta'(X) = \frac{1}{2}\right) = 0$ et que $\mathbb{E}\left(|\eta_n(X) \eta'(X)|\right) \to 0$ lorsque $n \to +\infty$. Montrer que $\mathbb{E}(g_n) \to \mathbb{E}(g)$ lorsque $n \to +\infty$.
- 4) On suppose que le label Y n'est plus observable, mais qu'une variable Z à valeurs dans $\{-1, +1\}$ l'est, telle que :

$$\mathbb{P}(Z = 1 \mid Y = -1, X) = \mathbb{P}(Z = 1 \mid Y = -1) = a < \frac{1}{2},$$

$$\mathbb{P}(Z = -1 \mid Y = 1, X) = \mathbb{P}(Z = -1 \mid Y = 1) = b < \frac{1}{2}.$$

On pose à présent $\eta': x \in \mathcal{X} \mapsto \mathbb{P} (Z = 1 \mid X = x)$. Montrer que :

$$L(g) \le L^* \left(1 + \frac{2|a-b|}{1 - 2\max(a,b)} \right).$$

Que peut-on en déduire lorsque a = b?

EXERCICE 3. Soit $d \in \mathbb{N}^*$. Calculer la VC dimension des classes d'ensembles suivantes :

- 1) $\mathcal{A} := \{]-\infty, x_1] \times \cdots \times]-\infty, x_d] : (x_1, \ldots, x_d) \in \mathbb{R}^d \},$
- 2) l'ensemble $\mathcal A$ des hyper-rectangles de $\mathbb R^d$.

EXERCICE 4. Soit $d \in \mathbb{N}^*$. Donner une borne supérieure de la VC dimension de la classe des boules fermées dans \mathbb{R}^d :

$$\mathcal{A} := \left\{ \left\{ x = (x_1, \dots, x_d) \in \mathbb{R}^d : \sum_{i=1}^d |x_i - a_i|^2 \le b \right\} : a_1, \dots, a_d, b \in \mathbb{R} \right\}.$$

EXERCICE 5. Soient $d \in \mathbb{R}^d$ et \mathcal{A} une classe d'ensembles de \mathbb{R}^d , de VC dimension finie V et de coefficients d'éclatement $(S_{\mathcal{A}}(n))_{n \in \mathbb{N}^*}$.

2

- 1) Montrer que pour tout $n \in \mathbb{N}^*$ on a $S_{\mathcal{A}}(n) \leq (n+1)^{V}$.
- 2) Montrer que pour tout entier $n \ge V$ on a $S_{\mathcal{A}}(n) \le \left(\frac{ne}{V}\right)^{V}$.

Indication. On utilisera le lemme de Sauer (admis) : $\forall n \in \mathbb{N}^*$, $S_{\mathcal{A}}(n) \leq \sum_{k=0}^{V} \binom{n}{k}$.