6.006	Lecture 23	Dec. 8, 2011
TODAY: Com	outational Compl	lexity
$-\nu$ $+ \chi$ P.	K	
- most prok	olems are uncom	pulable
- hardness	& completeness	
- reduction	5	> hc
P = {problems	s Solvable in pol	ynomial time?
Taxo 6 (who	at this class is a	ynomial time? all about) exponential time?
$R = \{problems\}$	5 solvable in fin [Turing 1936; Chi	ite time 3
"recursive"	LTuring 1936; Chi	urch 1941)s computational
P		difficulty
EXP		Jung on out of land
	R PÇEXPŞ	uncomputable/ R undecidable
Examples:		
- negative-v	veight cycle detections	tion ∈ r €P
5 who i	vins from given boo	ard config.
- letris E E	EXP but don't know ve given pieces from	ow whether Et
-> 3ul vl	ve given pieces (10)	y y w w w w w

Halting problem: given a computer program,
does it ever halt (stop)?

- uncomputable (&R): no algorithm solves it

(correctly in finite time on all inputs)

- decision problem: answer is YES or No Most decision problems are uncomputable: - program \approx binary string \approx nonneg. integer $\in \mathbb{N}$ - decision problem = a function from binary strings to EYES, NOZ = nonneg, integers = {0.13 ≈ infinite sequence of bits ≈ real number ETR - IN/< IR/: no assignment of unique nonneg.

integers to real numbers (IR uncountable)

not nearly enough programs for all problems - each program solves only one problem ⇒ almost all problems cannot be solved

P+N	P: bio	a Canie	cture	(wa	th \$	1,000	(000)	
≈	can't	engine	cer D	uck				
\approx	genero	iting (proofs	of)	soluti	on S	can b	e
	harde	engine conjecting (n che	ecking	ther	И		
				0				
Clain	n: if	P = NP	a ther	Tetri	is e 1	VP - F		
Bre	ukelaar, 1	Demaine, t	lohenber	geva Huos	eboom.	Kosters.	Liben-No	owell a
Why?	Tety	is is	NP-h	ard g		·		2004]
		ris is =" act NI	as ha	rd as	, eval	1 prob	lem E	NP
_	- in t	fact NE	2-com	plete:	= NP	~ NP	-havo	
		-				•		•
	FXC	-complete	NP	-have)			
	NP-com	plete		EXP	hard '			_
		2				com	putation	mal
		1	\		1	diff	putation	7
			etris	Chess				
	NP			,		ung	compute	able/
	E	XP				und	ecidak	ke '
		Ř						
Simil	arly:	Chess	īs 1	EXP-	compl	ete		
			= 1	EXP o	EXP-	-harc	<u>J</u>	
	as h	ard as	every	proble	min	EXPS	J	
<u> </u>	\Rightarrow if ,	NP ≠ E	KP. 7	hen C	Thess	¢ EX	PNF)
		also ope	ma bu	t less	famor	us/"in	portan	t"
		'					•	

Re	edu	icti	m	S:	C	ØΥ\	ver.	t	yo	N	DIT	لط	em	ìv	to	a			
		pro	sbl	em	l	104	rev [*]	lre	ad	y l	r SVO	W	ho	w -	to	Sal	ve		
		G	nst	ea	do	of	S	sky	ing	+	rov	n.	SCV	ata	ch'	5			
	_	me	st	Co	MV	107	a	90	rit	hn	ı C	les	19V	it	أك	nni	9U	9	
	-	un	we	igh	tec		sho	rte	st	P	ath	زب	3 W	ei9	hte	d	0		
			•	0			se	tu	neig	ahts	(= (1		0					
	_	m	in-	pro	du	ct	pa						t f	patl	1				
		_					士	ake	l	99		PS(5-1						
	~	lo	190	est	Þ	ath	\	≯ 5	ho	te	st	Pa	th	_					
							négo	ate	h	eig	ht	5	Qu	iZ 1	کہ	P1	k]		
	<u> </u>	sh	ort	est	0	rde	red	1	DU		> 5	sho	rte	st	PO	ath			
					_		Co											5]	
	<u> </u>	ch	ea	pes	†	lea	ky-	tai	Λ<	Pa	th.	<u>ج</u> ج	sho	rte	s†	Pai	th		_
P	w.			\	۸.		0		91	ap	h V	edi	ictio	M	[0	uiz	2,	P6	
	JNI,	se (are	01	IQ:	٨	•			٨		. 1						^	
	Q	Ne-	-C0		4	du	ctio	ma	5:	A	pr	do	lem		B	P	rob	lem itio)
				CO	ole	24				Λ		Λ	1				$\sqrt{}$	1	
	<u>//\</u>	ult	ica	<u>W</u>	re	du	ctic	MS	5	Sol	lve	A	us	ing	(r)	ee 1	Call	sto	R
			îN	+	NÌS	S	ens	ie _a	6	JOX	y	alg	ori	thr	n (red	uce	25	
			P	rok	le	M	->	m	ode	el d	of	C	m)Wi	àtic	M		sto es	
		/VI	/_ _	උත	npl	v Ne	P	rot	ske 1	ms I	0	re	a N	7-	int	err	ed	ucil	ble
		U	SìV	9	po	Xey Y	VOM 1	.TOJ	<u></u>	tin	9r	re	tuc	Tib	ns	(So	me (ucil diffic ss	cully
	⇒	Co	M	us 2	(L)	4.1	duc	गोव	ns	↑ ←⊥	0 (210 '	ve	Λŀ	√h	arc	lne:	55	•
		0.9	}, 2	3-	rai	111	10n		ラ	હા	ris								

Examples of NP-complete problems:

- Knapsack (pseudopoly- not poly) - 3-Partition: given n integers, can you divide them into triples of equal sum? - Traveling Salesman Problem: shortest path that visits all vertices of a given graph -decision version: is min weight < x? -longest common subsequence of k strings - Minesweeper, Sudoku, & most puzzles -SAT: given a Boolean formula (and or not), is it ever true? x and not x > NO -shortest paths amidst obstacles in 30 -3-coloring a given graph
-find largest clique in a given graph