

Introduction to Superconducting Quantum Circuits

- Review of Mathematical Methods for Quantum Computing -

Department of Electrical and Computer Engineering Seoul National University

Seong Hyeon Park and Seungyong Hahn

31st July, 2024

Keywords in Mathematical Methods for Quantum Computing

Mathematical Methods: Number Systems

Complex Number Polar Coordinates Euler Expressions

Mathematical Methods: Series Expansion

Taylor Expansion Jacobi-Anger Expansion Fourier Series Fourier Transform

Mathematical Methods: Linear Algebra

Hilbert Space Bra-Ket Notation Dirac Notation

Adjoint Operation Linear Operator Unitary Operator Hermitian Operator

Inner Product Tensor Product Taylor Expansion of Operators

Basis State Kronecker Delta Levi-Civita Eigenvalue Eigenstate

Mathematical Methods: Differential Equation

Ordinary Differential Equation Partial Differential Equation Green's Function

Mathematical Methods: Vector Calculus

Divergence Theorem Stokes' Theorem

Mathematical Methods: Dimensional Analysis

Physical Unit Conversion

SH Park <pajoheji0909@snu.ac.kr>

Introduction to Number Systems

Major Number Systems

- □ Natural numbers: $\mathbb{N} = \{1, 2, 3, ...\}$
- □ Integers: $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- Rational numbers: $\mathbb{Q} = \{\frac{a}{b}\}$ where a and b are integers
- \square Irrational numbers: \mathbb{I} where elements can NOT be expressed with $\frac{a}{b}$
- □ Real numbers: $\mathbb{R} = \mathbb{Q} \cup \mathbb{I} = \{x : x \in \mathbb{Q} \text{ or } x \in \mathbb{I}\}$
- \square Complex numbers: $\mathbb{C} = \{a + bj\}$ where a and b are real

NOTE: all quantum states are expressed with complex numbers

Number System Set Inclusions

- $\square \quad \mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
- Imaginary Unit (j)
 - □ The imaginary unit is a solution of $x^2 = -1$
 - \Box 1*i* = $\sqrt{-1}$ (which is same as 1*j* = $\sqrt{-1}$)

Figure. Number system set diagram

NOTE

most of electrical engineers prefer 1j notation rather than 1i, since i is used to denote the electrical current

Brief Review of Number Systems: Complex Number Expressions

Complex Numbers: Real Part + Imaginary Part

$$z = a + bj$$
 $z^* = a - bj$ (conjugate of z)

Polar Coordinates for Complex Numbers

$$z=(r,\theta)$$
 where $r=\sqrt{a^2+b^2}$ and $\theta=\arctan(\frac{b}{a})$

Euler Expressions for Complex Numbers

where Euler's formula is
$$e^{j\theta} = \cos\theta + j\sin\theta$$
 Euler's identity is
$$e^{j\pi} + 1 = 0$$

Figure. Polar form of a complex number z = a + bj

• Example:
$$z = 2 + 2\sqrt{3}j$$

$$z = 2 + 2\sqrt{3}j \to r = \sqrt{2^2 + (2\sqrt{3})^2} = 4$$
 and $\theta = \arctan\left(\frac{2\sqrt{3}}{2}\right) = \frac{\pi}{3} \to z = 4e^{j\frac{\pi}{3}}$

Brief Review of Series Expansion: (1) Taylor Expansion

- Definition of Taylor Expansion
 - \square Approximation of a function f(x) as a series of infinite sum of polynomial terms
- Formula of Taylor Expansion
 - \Box For a function f(x) that is infinitely differentiable at x = a, the Taylor series expansion around a is:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$
 in simplified notation:

$$f(x) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n}{dx^n} f(x) \bigg|_{x=a} (x-a)^n \text{ where } n! \text{ is factorial } n! = 1 \times 2 \times \dots \times n - 1 \times n$$

Figure. Truncated Taylor series of sine function up to 9th order

- Truncation of Taylor Expansion
 - ☐ In reality, infinite sum of Taylor series can not be computed...
 - ☐ For simplicity, only few low-order terms are only considered in practice
- **Example** $f(\theta) = \cos \theta$ around $\theta = 0$

$$f(\theta) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^n}{d\theta^n} \cos \theta \bigg|_{\theta=0} \theta^n = 1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \frac{\theta^6}{6!} + \cdots$$

Brief Review of Series Expansion: (2) Jacobi-Anger Expansion

- Definition of Jacobi-Anger Expansion
 - Approximation of an exponential function with trigonometric terms as a series of infinite sum of Bessel functions
- Formula of Jacobi-Anger Expansion

$$e^{jx\cos\theta} = \sum_{n=-\infty}^{\infty} j^n J_n(x) e^{jn\theta}$$

$$e^{jx\sin\theta} = \sum_{n=-\infty}^{\infty} J_n(x)e^{jn\theta}$$

For a function
$$e^{jx\cos\theta}$$
, $e^{jx\cos\theta}$, where $J_n(x)$ is Bessel function of the first kind and $\Gamma(n)$ is Gamma function $e^{jx\cos\theta} = \sum_{n=-\infty}^{\infty} j^n J_n(x) e^{jn\theta}$ $J_n(x) = \sum_{m=0}^{\infty} \frac{(-1)^m}{m! \Gamma(m+n+1)} \left(\frac{x}{2}\right)^{2m+n}$ $\Gamma(n) = \int_0^{\infty} x^{n-1} e^{-x} dx$

Some Useful Expressions of Jacobi-Anger Expansion

NOTE: these expressions will be utilized, when we analyze Josephson junction after

$$egin{aligned} \cos(z\cos heta) &\equiv J_0(z) + 2\sum_{n=1}^\infty (-1)^n J_{2n}(z)\cos(2n heta), & \cos(z\sin heta) \equiv J_0(z) + 2\sum_{n=1}^\infty J_{2n}(z)\cos(2n heta), \ \sin(z\cos heta) &\equiv -2\sum_{n=1}^\infty (-1)^n J_{2n-1}(z)\cos[(2n-1)\, heta], & \sin(z\sin heta) \equiv 2\sum_{n=1}^\infty J_{2n-1}(z)\sin[(2n-1)\, heta]. \end{aligned}$$

Brief Review of Fourier Analysis: (1) Fourier Series

- **Definition of Fourier Series**
- Approximation of a periodic function as a sum of trigonometric terms
- Formula of Fourier Series
 - For a function f(t) with period 2l,

$$f(t) = \sum_{n = -\infty}^{\infty} c_n e^{\frac{jn\pi t}{l}}$$
 where c_n coefficient is
$$c_n = \frac{1}{2l} \int_{-l}^{l} f(t) e^{-\frac{jn\pi t}{l}} dx$$

where c_n coefficient is

$$c_n = \frac{1}{2l} \int_{-l}^{l} f(t)e^{-\frac{jn\pi t}{l}} dx$$

- **Properties of Fourier Series**
 - For functions $f_1(t) = \sum a_n e^{\frac{jn\pi t}{l}}$ and $f_2(t) = \sum b_n e^{\frac{jn\pi t}{l}}$.
 - Linearity: $af_1(t) + bf_2(t) = a\left(\sum a_n e^{\frac{jn\pi t}{l}}\right) + b\left(\sum b_n e^{\frac{jn\pi t}{l}}\right)$
 - Shift in time: $f_1(t t_0) = \left(\sum a_n e^{\frac{jn\pi(t t_0)}{l}}\right)$
- Example f(t) $\begin{cases} 0, & 0 < x < 0.5 \\ 1, & 0.5 < x < 1 \end{cases}$ and its period 1

Figure. Fourier series approximation of squared pulse up to N=100

$$f(t) = \frac{1}{2} + \frac{1}{j\pi} \left(e^{2j\pi t} - e^{-2j\pi t} + \frac{1}{3} \left(e^{6j\pi t} - e^{-6j\pi t} \right) + \frac{1}{5} \left(e^{10j\pi t} - e^{-10j\pi t} \right) + \cdots \right)$$

Brief Review of Fourier Analysis: (2) Fourier Transform

- Definition of Fourier Transform
 - \square Conversion of an arbitrary time-domain signal f(t) into its frequency-domain $F(\omega)$
- Formula of Fourier Transform
 - \Box For a function f(t), the transformed function $F(\omega)$ is

$$F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-j\omega t}dt$$

- Properties of Fourier Transform
 - \Box Linearity: $af_1(t) + bf_{2(t)} \Leftrightarrow aF_1(\omega) + bF_2(\omega)$
 - □ Time shifting: $f(t t_0) \Leftrightarrow e^{-jt_0ω}F(ω)$
 - Time scaling: $f(at) \Leftrightarrow \frac{1}{|a|} F\left(\frac{\omega}{a}\right)$

Figure. Square pulse in time domain and its Fourier transformed function in frequency domain

NOTE: these expressions are useful, when we control a superconducting qubit with RF pulse

Some Useful Examples of Fourier Transform

- □ square pulse in time domain ⇔ sinc in frequency domain
- □ Gaussian pulse in time domain ⇔ Gaussian (but different amplitude) in frequency domain
- \Box Gaussian modulated cosine (frequency: ω_0) pulse in time domain \Leftrightarrow two Gaussian (with ω_0 and $-\omega_0$) in frequency domain

Brief Review of Linear Algebra: (1) Bra-Ket Notation (Dirac Notation)

- Definition of Bra-Ket Notation (also Known as Dirac Notation)
 - ☐ A standard notation for describing quantum states in the mathematical framework
- Key Components of Bra-Ket Notation
 - \square Ket vector $|\psi\rangle$: a column vector
 - \square Bra vector $\langle \psi |$: a row vector, which is conjugate transpose (symbol: \dagger , dagger) of a Ket vector

Ket Bra $|\psi\rangle = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix} \qquad \langle\psi| = |\psi\rangle^\dagger \\ = (a_1^*, a_2^*, \dots, a_n^*)$

Inner Product Using Bra-Ket Notation

$$\int \psi_a^* \psi_b = \langle \psi_a | \psi_b \rangle = (a_1^*, a_2^*, \dots, a_n^*) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \sum_{i=1}^n a_i^* b_i$$
 NOTE: inner product can be also expressed as

- Why Do We Use Bra-Ket Notation? $\langle \psi_a, \psi_b \rangle$ instead of $\langle \psi_a | \psi_b \rangle$
 - □ Simple notation to express the quantum state

Brief Review of Linear Algebra: (2) Inner Product

- Definition of Inner Product
 - ☐ The inner product (or dot product) in a Hilbert space returns scalar by multiplying two vectors

$$\langle \psi_a | \psi_b \rangle = (a_1^*, a_2^*, \dots, a_n^*) \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix} = \sum_{i=1}^n a_i^* b_i$$

- Properties of Inner Product
 - \Box Linearity: $\langle c_1 \psi_1 + c_2 \psi_2 | \psi_3 \rangle = c_1 \langle \psi_1 | \psi_3 \rangle + c_2 \langle \psi_2 | \psi_3 \rangle$

where c_1 and c_2 are scalar constants

- \square Conjugate symmetric: $\langle \psi_a | \psi_b \rangle = \langle \psi_b | \psi_a \rangle^*$
- \square Positive definite: $\langle \psi_a | \psi_a \rangle \ge 0$, with equality if and only if $\psi_a = 0$
- Characteristics of Inner Product for Quantum Computing
 - ☐ Inner product represents projection of a quantum state to the other state
- Square of inner product $|\langle \psi | \phi \rangle|^2$ indicates the probability of a system to be in state $|\psi\rangle$, given that the system is in state $|\phi\rangle$
- Example of Inner Product

Brief Review of Linear Algebra: (3) Tensor Product

- Definition of Tensor Product
 - \square The tensor product of two vector spaces V and W results in a new vector space, denoted $V \otimes W$

$$|\psi\rangle \otimes |\phi\rangle = \begin{pmatrix} ac \\ ad \\ bc \\ bd \end{pmatrix}$$

- Properties of Tensor Product
 - $\Box \text{ Linearity: } (a|\psi_1\rangle + b|\psi_2\rangle) \otimes |\phi\rangle = a(|\psi_1\rangle \otimes |\phi\rangle) + b(|\psi_2\rangle \otimes |\phi\rangle)$
- Characteristics of Tensor Product for Quantum Computing
 - ☐ Tensor product represents the combined state of two quantum systems
- Example of Tensor Product
 - □ For qubit #1 in state $|0\rangle$ and qubit #2 in state $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$, the tensor product of qubit #1 and qubit #2 is

$$|0\rangle \otimes \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) = {1 \choose 0} \otimes \frac{1}{\sqrt{2}} {1 \choose 1} = \frac{1}{\sqrt{2}} {1 \choose 1 \choose 0}$$

Brief Review of Linear Algebra: (4) Hilbert Space

- Definition of Hilbert Space
 - ☐ Hilbert space is a complete, infinite-dimensional vector space equipped with an inner product

- Properties of Hilbert Space
 - □ Vector space: A collection of vectors where vector addition and scalar multiplication are defined
 - ☐ Inner product: Dot product (integration over the entire vector space) of two vectors
 - Orthogonality: two vectors $|\psi\rangle$ and $|\phi\rangle$ are orthogonal, if the inner product is zero $\langle\psi|\phi\rangle=0$
 - □ Norm: length of a vector $|\psi\rangle$ is calculated as $||\psi|| = \sqrt{\langle \psi | \psi \rangle}$
 - ☐ Basis: Any vector in the Hilbert space can be expressed as a combination of the basis vectors

NOTE: Here, we consider a qubit as two-level system.

Example of Hilbert Space

A qubit can be considered as m-level system for some cases.

- Single qubit system: 2-dimensional space with basis |0⟩ and |1⟩
- \square Two qubit system: 4-dimensional space with basis $|00\rangle$, $|01\rangle$, $|10\rangle$, and $|11\rangle$
- \square qubit system: 2^n -dimensional space with basis $|00 \cdots 00\rangle$, $|00 \cdots 01\rangle$, \cdots , $|11 \cdots 11\rangle$

Brief Review of Linear Algebra: (5) Linear Operators

- Definition of Linear Operator
 - \square A mapping function \widehat{L} between two vector spaces
 - \square In typical quantum computing problems, a linear operator \widehat{L} maps two vectors within the same Hilbert space
- Properties of Linear Operator
 - \Box Linearity: $\hat{L}(a|\psi\rangle + b|\phi\rangle) = a \hat{L}|\psi\rangle + b\hat{L}|\psi\rangle$
 - \square Associativity: $\langle \psi | \hat{L} | \phi \rangle = \langle (\psi \hat{L}) | \phi \rangle = \langle \psi | (\hat{L} \phi) \rangle$

where a and b are scalar constants

- Characteristics of Linear Operator for Quantum Computing
- ☐ In a finite-dimensional Hilbert space, linear operators can be represented as matrices
- \square For a Ket vector in a n-dimensional space, a linear operator \widehat{L} can be represented by an $n \times n$ matrix
- Example of Linear Operator
- Qubit NOT gate (also known as Pauli X gate): flips qubit state between $|0\rangle = {1 \choose 0}$ and $|1\rangle = {0 \choose 1}$
- □ Matrix representation of the NOT gate: $\hat{X} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ that $\hat{X}|0\rangle = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1\rangle$ and vice versa

Brief Review of Linear Algebra: (6) Basis States

- Definition of Basis States
 - ☐ Basis is a set of linearly independent vectors that span a vector space
- Properties of Basis States
 - \square Orthogonality: Basis states are orthogonal, meaning $\langle 0|1\rangle = 0$ and $\langle 1|0\rangle = 0$
 - □ Normalization: Basis states are normalized, meaning ⟨0|0⟩=1 and ⟨1|1⟩=1
 - \square Superposition: Any state $|\psi\rangle$ can be expressed as a linear combination of basis states
- Characteristics of Basis States for Quantum Computing
 - \square A qubit's state can be represented by a superposition of basis states $|0\rangle$ and $|1\rangle$ as $|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$
 - \square Measuring a qubit in superposition collapses it to one of the basis states, $|0\rangle$ or $|1\rangle$, with probabilities of $|\alpha|^2$ or $|\beta|^2$
 - \square Otherwise, one can define qubit's basis states with $|+\rangle$ and $|-\rangle$ states
 - \square A qubit's state can be represented by a superposition of basis states $|+\rangle$ and $|-\rangle$ as $|\psi\rangle = \alpha|+\rangle + \beta|-\rangle$
 - \square Measuring a qubit in superposition collapses it to one of the basis states, $|+\rangle$ or $|-\rangle$, with probabilities of $|\alpha|^2$ or $|\beta|^2$

where
$$|+\rangle=\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$$
 and $|-\rangle=\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$

Brief Review of Linear Algebra: (7) Kronecker Delta and Levi-Civita

Definition of Kronecker Delta

 \Box The Kronecker delta, denoted as δ_{ij} , is a function of two variables (usually integers) that is 0 or 1, defined as

$$\delta_{ij} = \begin{cases} 0, & \text{if } i \neq j \\ 1, & \text{if } i = j \end{cases}$$

Definition of Levi-Civita

 \Box The Levi-Civita, denoted as ε_{ijk} , is a function of two variables (usually integers) that is -1, 0 or 1, defined as

$$arepsilon_{ijk} = egin{cases} +1 & ext{if } (i,j,k) ext{ is } (1,2,3), (2,3,1), ext{ or } (3,1,2), \ -1 & ext{if } (i,j,k) ext{ is } (3,2,1), (1,3,2), ext{ or } (2,1,3), \ 0 & ext{if } i=j, ext{ or } j=k, ext{ or } k=i \end{cases}$$

 \square The generalized Levi-Civita in n-dimensions is defined as

$$arepsilon_{a_1 a_2 a_3 \dots a_n} = egin{cases} +1 & ext{if } (a_1, a_2, a_3, \dots, a_n) ext{ is an even permutation of } (1, 2, 3, \dots, n) \ -1 & ext{if } (a_1, a_2, a_3, \dots, a_n) ext{ is an odd permutation of } (1, 2, 3, \dots, n) \ 0 & ext{otherwise} \end{cases}$$

- Why Do We Use Kronecker Delta and Levi-Civita?
 - ☐ Simplified expressions of matrix operations

Brief Review of Linear Algebra: (8) Eigenvalues and Eigenstates

- Definition of Eigenvalue
 - \square The constant factor λ by which the eigenstate is scaled when the operator \widehat{O} is applied
- Definition of Eigenstate
 - The quantum state $|\psi\rangle$ that, when an operator \hat{O} is applied to it, results in the state being scaled by its eigenvalue.

r
$$\widehat{O}$$
 is applied to it, results in the state $\widehat{O}|\psi
angle=\lambda|\psi
angle$ eigenstate eigenvalue

- Formula of Eigenvalues and Eigenstates
 - \square For n-dimensional Hilbert space, \widehat{O} is $n \times n$ matrix
 - \Box By solving the linear equation of $\det(\hat{O} \lambda \hat{I}) = 0$, eigenvalues and eigenstates of the operator \hat{O} can be obtained

- Example of Eigenvalues and Eigenstates
 - □ For the Pauli-Z gate $\hat{Z} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, eigenstate $|0\rangle$ and its corresponding $\lambda = 1$, while eigenstate $|1\rangle$ and its $\lambda = -1$

Brief Review of Linear Algebra: (9) Adjoint Operation

- Definition of Adjoint Operation
 - Adjoint of a linear operator \hat{A} , denoted as \hat{A}^{\dagger} : complex conjugate transpose of $\hat{A} \Rightarrow$ transpose(\hat{A}^{*})
- Formula of Adjoint Operation
 - \square For $n \times n$ matrix \hat{A} , let the (i, j) element representation as \hat{A}_{ij}
 - \square The (j,i) element of the \hat{A}^{\dagger} is $(\hat{A}^{\dagger})_{ji} = (\hat{A}_{ij})^*$
- Characteristics of Adjoint Operation
 - \Box The adjoint of a linear operator \hat{A} satisfies the following relation for all vectors in a Hilbert space:

$$\langle \psi | \hat{A} | \phi \rangle = \langle \psi | \hat{A} \phi \rangle = \langle \psi | \hat{A}^{\dagger} | \phi \rangle$$

- \square An operator \hat{A} is unitary operator, if $\hat{A}\hat{A}^{\dagger}=\hat{A}^{\dagger}\hat{A}=\hat{I}$
- \square An operator \hat{A} is Hermitian operator, if $\hat{A} = \hat{A}^{\dagger}$

Details of unitary and Hermitian operators will be discussed next slides

- Example of Adjoint Operation

Brief Review of Linear Algebra: (10) Unitary Operators

- Definition of Unitary Operator
 - \square A linear operator \widehat{U} is unitary, if it satisfies: $\widehat{U}^{\dagger}\widehat{U} = \widehat{I}$, where \widehat{I} is the identity operator
- Properties of Unitary Operator
 - \square Norm preservation: An unitary operator \widehat{U} preserves the norm (length) of vectors
 - \square Reversibility: An unitary operator \widehat{U} is reversible that its inverse \widehat{U}^{-1} exists and is defined as $\widehat{U}^{-1} = \widehat{U}^{\dagger}$
 - \square Inner product preservation: An unitary operator \widehat{U} preserves the inner product as $\langle \psi | \phi \rangle = \langle \widehat{U} \psi | \widehat{U} \phi \rangle$
- Characteristics of Unitary Operator for Quantum Computing
 - ☐ The probability remains unchanged under unitary operators
 - ☐ Any quantum states preserve their initial states after two identical unitary operators
- Example of Unitary Operator
 - \square Hadamard gate: turns $|0\rangle$ or $|1\rangle$ into the superposition of $|0\rangle$ and $|1\rangle$
 - □ Matrix representation of the Hadamard gate: $\widehat{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$

Brief Review of Linear Algebra: (11) Hermitian Operators

- Definition of Hermitian Operator
 - \square A linear operator \widehat{H} is Hermitian (also known as self-adjoint), if it is equal to its own adjoint: $\widehat{H} = \widehat{H}^{\dagger}$
- Properties of Hermitian Operator
 - \square Real eigenvalues: Hermitian operator \widehat{H} has real (not complex) eigenvalues as

 $\widehat{H}|\psi\rangle = \lambda |\psi\rangle$, where λ is the eigenvalue and real value

Orthogonal eigenvectors: Eigenvectors corresponding to different eigenvalues of an Hermitian operator are orthogonal

$$\widehat{H}|\psi_1\rangle = \lambda_1|\psi_1\rangle$$
 and $\widehat{H}|\psi_2\rangle = \lambda_2|\psi_2\rangle \rightarrow \langle \psi_1|\psi_2\rangle = 0$, if $\lambda_1 \neq \lambda_2$

 \square Diagonalization: Hermitian operator \widehat{H} can be diagonalized by an unitary operator \widehat{U} as

$$\widehat{U}\widehat{H}\widehat{U} = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_n) = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ 0 & \ddots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}, \text{ where } \lambda_i \text{ are the eigenvalues of } \widehat{H}$$

- Characteristics of Hermitian Operator for Quantum Computing
 - ☐ Hermitian operators represent observable physical quantities, such as position, momentum, and energy
 - □ Hamiltonian is one of the Hermitian operators, since Hamiltonian represents the total energy of a quantum system

Brief Review of Linear Algebra: (12) Taylor Expansion of an Operator

- Definition of Taylor Expansion of Operator
 - □ Similar to the Taylor expansion of a function, operators can be also approximated by the Taylor expansion
- Formula of Taylor Expansion
 - \square For an operator \hat{A} , the exponential of the operator is

$$e^{\hat{A}} = \sum_{n=0}^{\infty} \frac{(\hat{A})^n}{n!} = \hat{A} + \frac{1}{2!} \hat{A}\hat{A} + \frac{1}{3!} \hat{A}\hat{A}\hat{A} + \cdots$$

- Characteristics of Taylor Expansion of Operator for Quantum Computing
 - $\,\Box\,$ The time evolution of a quantum state is governed by the exponential of a time-independent Hamiltonian operator \widehat{H} as

$$e^{-j\widehat{H}t/\hbar} = \sum_{n=0}^{\infty} \frac{1}{n!} \left(-\frac{j\widehat{H}t}{\hbar} \right)^n$$

where \hbar is the reduced Planck's constant and t is time

Taylor expansion is used in perturbation theory to approximate the effects of small perturbations

Brief Review of Differential Equation: Ordinary Differential Equation (ODE)

Definition of ODE

- ☐ An equation involving a function of one independent variable and its derivatives
- \Box The generalized expression of an ODE for the unknown function y is

$$\frac{d^n}{dx^n}y + a_{n-1}(x)\frac{d^{n-1}}{dx^{n-1}}y + \dots + a_1(x)\frac{d}{dx}y + a_0(x)y = g(x)$$

where $a_i(x)$ and g(x) are given functions

Properties of ODE

- □ Order: The highest derivative of the unknown function in the ODE
- \square Homogeneous ODE: If g(x) = 0 (otherwise, $g(x) \neq 0$, inhomogeneous ODE)

Mathematical Methods to Solve ODE

- ☐ Analytical methods: only some ODEs can be solved by exact analytical methods
- □ Numerical methods: most of ODEs are solved by numerical methods with approximations

Brief Review of Differential Equation: Partial Differential Equation (PDE)

Definition of partial Derivative

- □ Derivative of a function with respect to one of the independent variables, with the others being constant
- The partial derivative of a function y at the point $a = (a_1, a_2, \dots, a_n)$ with respect to the i^{th} variable x_i is defined as

$$\frac{\partial}{\partial x_i} f(\mathbf{a}) = \lim_{h \to 0} \frac{f(a_1, \dots, a_i + h, \dots, a_n) - f(a_1, \dots, a_i, \dots, a_n)}{h}$$

Definition of PDE

- ☐ An equation involving a function of multiple independent variables and its partial derivatives
- \Box The generalized expression of an ODE for the unknown function y with the independent variables x and t is

$$\frac{\partial^n}{\partial t^n}y + a_{n-1}(x,t)\frac{\partial^{n-1}}{\partial t^{n-1}}y + \dots + a_1(x,t)\frac{\partial}{\partial t}y + a_0(x,t)y = g(x,t)$$

where $a_i(x, t)$ and g(x, t) are given functions

Example PDE in Quantum Computing

□ Schrödinger equation: time evolution of a quantum system can be represented by a linear PDE in time variable

$$j\hbar \frac{d}{dt} |\psi\rangle = \widehat{H} |\psi\rangle$$

NOTE: You don't have to solve Schrödinger equation by yourself.

There are various numerical tools to solve it.

Brief Review of Differential Equation: Green's Function

- Definition of Green's Function
 - \square Impulse response of an inhomogeneous linear differential operator \widehat{L} with specified boundary conditions
 - \square Green's function is often utilized to solve an inhomogeneous differential equation of $\hat{L}y(x) = f(x)$
- Solving Inhomogeneous Differential Equation Using Green's Function
 - \Box For a given forcing term f(x), the forcing term can be expressed with Dirac-delta function as

$$f(x) = \int_{\mathbb{R}^n} f(r)\delta(x-r) \, dr \quad \text{Where Dirac-delta function is } \delta(x-r) \begin{cases} \infty, & \text{if } x=r \\ 0, & \text{if } x \neq r \end{cases} \text{ and satisfies } \int_{\mathbb{R}^n} \delta(r) \, dr = 1$$

 \Box For a given linear differential operator $\widehat{L}(x)$, the Green's function G(x) can be obtained from the following relation

$$\widehat{L}G(x,r) = \delta(x-r)$$

NOTE: Most of Green's functions corresponding to the specific \hat{L} can be found in https://en.wikipedia.org/wiki/Green%27s_function

□ Using the above relation, the inhomogeneous differential equation satisfies the following relations

$$f(r)\hat{L}G(x,r) = f(r)\delta(x-r) \longrightarrow \hat{L}f(r)G(x,r) = f(r)\delta(x-r)$$

 \square Thus, by integrating over the region \mathbb{R}^n , the unknown function y(x) can be expressed as

$$\therefore y(x) = \int_{\mathbb{R}^n} f(r)G(x,r) dr$$

Brief Review of Vector Calculus: (1) Divergence Theorem

Definition of Divergence

The divergence is the flux through the surface of a vector field \mathbf{F} , defined at $x = x_0$ as

$$\nabla \cdot \mathbf{F} \Big|_{x=x_0} = \lim_{V \to 0} \frac{1}{|V|} \oint_{\partial V} \mathbf{F} \cdot d\mathbf{a}$$

□ For cartesian coordinate, the divergence of a vector field F is

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

Figure. Example visualizations of divergence of **F**

- Definition of Divergence Theorem (also Known as Gauss's Theorem)
 - □ The surface integral of a vector field over a closed surface is equal to the volume integral of the divergence over the region enclosed by the surface

$$\int_{V} (\nabla \cdot \mathbf{F}) dV = \int_{\partial V} \mathbf{F} \cdot d\mathbf{a}$$

$$\downarrow \text{Volume Integral}$$

$$\downarrow \text{Surface Integral}$$

Brief Review of Vector Calculus: (2) Stokes' Theorem

Definition of Curl

 \Box The curl is the circulation of a vector field **F**, defined at $x = x_0$ as

$$\nabla \times \mathbf{F} \Big|_{x=x_0} = \lim_{A \to 0} \frac{1}{|A|} \oint_{\partial A} \mathbf{F} \cdot d\mathbf{l}$$

□ For cartesian coordinate, the curl of a vector field F is

$$\nabla \times \mathbf{F} = \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z}\right) \hat{x} + \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x}\right) \hat{y} + \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y}\right) \hat{z}$$

Figure. Example visualizations of curl of **F**

Definition of Stokes' Theorem

□ The line integral of a vector field over a loop is equal to the surface integral of its curl over the enclosed surface

$$\int_{A} (\nabla \times \mathbf{F}) \cdot d\mathbf{a} = \oint_{\partial A} \mathbf{F} \cdot d\mathbf{l}$$

$$\downarrow \text{Surface Integral}$$
Line Integral

Brief Review of Dimensional Analysis: Physical Unit Conversion

- **Definition of Physical Unit Conversion**
 - Analysis of the relationships between physical quantities by identifying their base quantities and units of measurement
 - Using the international standard unit systems, intuitive analysis and comparison between variables are possible
- Physical Unit Conversion in Quantum Computing
 - In physics, particularly in superconducting quantum circuits, many variables have unfamiliar physical units
 - Example: qubit energy in [Hz] or in [rad/s] by reducing the physical constants as 1

qubit energy
$$[J] = \mathcal{K} \times \text{qubit angular frequency [rad/s]}$$
 Why?
= $\mathcal{K} \times \text{qubit frequency [Hz]}$ In practice of the present of the pre

In practice, we measure the qubit energy levels by RF spectroscopy in frequency units

- Some Notable Physical Constants
- Planck's constant $h \approx 6.63 \times 10^{-34}$ [J·s]
- Charge of an electron $e \approx 1.60 \times 10^{-19}$ [C]
- Speed of light in vacuum $c \approx 3.00 \times 10^8$ [m/s]
- Impedance of vacuum $Z_n \approx 377 [\Omega]$

- Boltzmann constant $k_B \approx 1.38 \times 10^{-23}$ [J/K]
- Vacuum permeability $\mu_0 \approx 1.26 \times 10^{-6}$ [H/m]
- Vacuum permittivity $\varepsilon_0 \approx 8.85 \times 10^{-12}$ [F/m]
- Magnetic flux quantum $\Phi_0 = \frac{h}{2e} \approx 2.07 \times 10^{-15}$ [Wb]

See Also...

■ Textbooks:

[1] Mary L. Boas, Mathematical Methods in the Physical Sciences, John Wiley & Sons, 2006. * recommended

- [2] Erwin O. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2011.
- [3] George B. Arfken, Mathematical Methods for Physicists, Elsevier, 2012.