Будем рассматривать упорядоченные наборы векторов фиксированной размерности с целыми координатами. Пусть $a=(a_1,\ldots,a_n)$ и $b=(b_1,\ldots,b_m)$ — два таких набора $(a_j$ и b_i — вектора). Под вписыванием набора a в b понимается такое сюръективное отображение $f:\{1,\ldots,n\}\to\{1,\ldots,m\},$ что $\forall i=1,\ldots,m\sum_{f(j)=i}a_j=b_i$ (в дальнейшем обозначаем это просто $f:a\to b$). Композиция вписываний определяется очевидным образом как композиция соответствующих отображений; очевидно, композиция вписываний как отображений сама будет вписыванием. Обозначать композицию вписываний будем также, как и композицию отображений значком \circ .

Под конфигурацией понимается набор вписываний $F=(f_1,\ldots,f_s),\,f_k:c_k\to c.$ Под связанными конфигурациями $F=(f_1,\ldots,f_s),\,f_k:c_k\to c$ и $F'=(f'_1,\ldots,f'_{s'}),\,f'_k:c'_k\to c'$ понимаются такие, у которых s=s' и $c_k=c'_k$ для всех k. Отношение связанности конфигураций F и F' будем обозначать $F\equiv F'.$

Пусть $F \equiv F'$. Мы говорим, что $F \leq F'$, если существует вписывание $g: c \to c'$ такое, что для всех k верно $f'_k = g \circ f_k$. Задача состоит в том, чтобы по исходной конфигурации F найти минимальную конфигурацию G среди всех конфигураций X, связанных с F и таких, что $X \leq F$ (минимальность тоже понимается в смысле указанного отношения порядка).