DT05 Rec'd PCT/PT0 1 3 DEC 2004

1/8

Sequence Listing

<110> Sode, Koji
<120> Glucose Dehydrogenase
<130> psd9009W0
<150> JP 2003-71744
<151> 2003-03-17
<150> JP 2002-172955
<151> 2002-06-13
<160> 19
<210> 1
<211> 454
<212> PRT
<213> Acinetobacter calcoaceticus
<400> 1
Asp Val Pro Leu Thr Pro Ser Gln Phe Ala Lys Ala Lys Ser Glu Asn
1 5 10 15
Phe Asp Lys Lys Val Ile Leu Ser Asn Leu Asn Lys Pro His Ala Leu
20 25 30
Leu Trp Gly Pro Asp Asn Gln Ile Trp Leu Thr Glu Arg Ala Thr Gly
35 40 45
Lys Ile Leu Arg Val Asn Pro Glu Ser Gly Ser Val Lys Thr Val Phe
50 55 60
Gln Val Pro Glu Ile Val Asn Asp Ala Asp Gly Gln Asn Gly Leu Leu
65 70 75 80
Gly Phe Ala Phe His Pro Asp Phe Lys Asn Asn Pro Tyr Ile Tyr Ile
85 90 95
Ser Gly Thr Phe Lys Asn Pro Lys Ser Thr Asp Lys Glu Leu Pro Ası
100 105 110
Gln Thr Ile Ile Arg Arg Tyr Thr Tyr Asn Lys Ser Thr Asp Thr Le

115		120		125	
Glu Lys Pro Val	Asp Leu Leu	Ala Gly Le	eu Pro Ser	Ser Lys As	sp His
130	135		140		
Gln Ser Gly Arg	Leu Val Ile	Gly Pro A	sp Gln Lys	Ile Tyr T	yr Thr
145	150		155		160
Ile Gly Asp Gln	Gly Arg Asn	Gln Leu A	la Tyr Leu	Phe Leu P	ro Asn
	165		70		75
Gln Ala Gln His	Thr Pro Thr	Gln Gln G	Glu Leu Asn	Gly Lys A	sp Tyr
180		185		190	
His Thr Tyr Met	Gly Lys Val	Leu Arg I	Leu Asn Leu	Asp Gly S	er Ile
195		200		205	
Pro Lys Asp Asn	Pro Ser Phe	e Asn Gly	Val Val Ser	His Ile 1	Tyr Thr
210	219	5	220)	
Leu Gly His Arg	g Asn Pro Gli	n Gly Leu	Ala Phe Thi	r Pro Asn (Gly Lys
225	230		235		240
Leu Leu Gln Se	r Glu Gln Gl	y Pro Asn	Ser Asp As	o Glu Ile	Asn Leu
	245	,	250		255
Ile Val Lys Gl	y Gly Asn Ty	r Gly Trp	Pro Asn Va	l Ala Gly	Tyr Lys
26	0	265		270	
Asp Asp Ser Gl	y Tyr Ala Ty	r Ala Asn	Tyr Ser Al	a Ala Ala	Asn Lys
275		280		285	
Ser Ile Lys As	p Leu Ala Gl	ln Asn Gly	Val Lys Va	ıl Ala Ala	Gly Val
290		95	30		
Pro Val Thr Ly	rs Glu Ser G	lu Trp Thr	Gly Lys As	sn Phe Val	
305	310		315		320
Leu Lys Thr Le	eu Tyr Thr V	al Gln Asp	Thr Tyr A	sn Tyr Asn	
	325		330		335
Thr Cys Gly G	lu Met Thr T	yr Ile Cys	Trp Pro T		
	40	345		350	
Son Ala Tur V	al Tyr Lys G	lv Glv Lys	Lys Ala I	le Thr Gly	Trp Glu

355		360		365	•
Asn Thr Leu I	Leu Val Pro S	er Leu Lys	Arg Gly Va	l Ile Phe	Arg Ile
370		75	380		
Lys Leu Asp I	Pro Thr Tyr S	Ser Thr Thr	Tyr Asp Asp	p Ala Val	Pro Met
385	390		395		400
Phe Lys Ser	Asn Asn Arg T	Tyr Arg Asp	Val Ile Al	a Ser Pro	Asp Gly
,	405		410		415
Asn Val Leu	Tyr Val Leu 🤅	Thr Asp Thr	Ala Gly As	n Val Gln	Lys Asp
	420	425		430	
Asp Glv Ser	Val Thr Asn	Thr Leu Glu	ı Asn Pro Gl	y Ser Leu	Ile Lys
435		440		445	
Phe Thr Tyr	Lys Ala Lys				
450					
<210> 2					
<211> 1612					
<212> DNA					
	tobacter calc	coaceticus			
<400> 2					
	atgcaacaga go	cctttcaga a	atttagatt t	taatagatt	cgttattcat 60
cataatacaa	atcatataga g	aactcgtac a	aacccttta t	tagaggttt	aaaaattctc 120
ggaaaatttt	gacaatttat a	aggtggaca c	atgaataaa o	atttattgg	ctaaaattgc 180
tttattaagc	gctgttcagc t	agttacact c	tcagcattt g	gctgatgttc	ctctaactcc 240
atctcaattt	gctaaagcga a	atcagagaa o	tttgacaag a	aaagttattc	tatctaatct 300
aaataagccg	catgctttgt t	atggggacc a	agataatcaa a	atttggttaa	ctgagcgagc 360
aacaggtaag	attctaagag t	taatccaga (gtcgggtagt	gtaaaaaacag	tttttcaggt 420
accagagatt	gtcaatgatg c	tgatgggca (gaatggttta	ttaggttttg	ccttccatcc 480
tgattttaaa	aataatcctt a	atatctatat	ttcaggtaca	tttaaaaaatc	cgaaatctac 540
agataaagaa	ttaccgaacc a	aacgattat	tcgtcgttat	acctataata	aatcaacaga 600

tacgctcgag aagccagtcg atttattagc aggattacct tcatcaaaag accatcagtc 660 aggtcgtctt gtcattgggc cagatcaaaa gatttattat acgattggtg accaagggcg 720

taaccagett gettatttgt tettgecaaa teaagcacaa eataegeeaa eteaacaaga 780 actgaatggt aaagactatc acacctatat gggtaaagta ctacgcttaa atcttgatgg 840 aagtattcca aaggataatc caagttttaa cggggtggtt agccatattt atacacttgg 900 acatcgtaat ccgcagggct tagcattcac tccaaatggt aaattattgc agtctgaaca 960 aggcccaaac tctgacgatg aaattaacct cattgtcaaa ggtggcaatt atggttggcc 1020 gaatgtagca ggttataaag atgatagtgg ctatgcttat gcaaattatt cagcagcagc 1080 caataagtca attaaggatt tagctcaaaa tggagtaaaa gtagccgcag gggtccctgt 1140' gacgaaagaa tetgaatgga etggtaaaaa etttgteeca eeattaaaaa etttatatae 1200 cgttcaagat acctacaact ataacgatcc aacttgtgga gagatgacct acatttgctg 1260 gccaacagtt gcaccgtcat ctgcctatgt ctataagggc ggtaaaaaaag caattactgg 1320 ttgggaaaat acattattgg ttccatcttt aaaacgtggt gtcattttcc gtattaagtt 1380 agatccaact tatagcacta cttatgatga cgctgtaccg atgtttaaga gcaacaaccg 1440 ttatcgtgat gtgattgcaa gtccagatgg gaatgtctta tatgtattaa ctgatactgc 1500 cggaaatgtc caaaaagatg atggctcagt aacaaataca ttagaaaacc caggatctct 1560 cattaagttc acctataagg ctaagtaata cagtcgcatt aaaaaaccga tc 1612

<210> 3

<211> 7

<212> PRT

<213> Acinetobacter calcoaceticus

<220>

<221> UNSURE

<222> 4

<223> Xaa is Met or Trp

<400> 3

Cys Gly Glu Xaa Thr Tyr Ile

<210> 4

<211> 7

<212> PRT

<213> Acinetobacter calcoaceticus

<220>

```
<221> UNSURE
```

<222> 4

<223> Xaa is Asp, Lys, Ile or Asn

⟨400⟩ 4

Gly Glu Met Xaa Tyr Ile Cys

<210> 5

<211> 7

<212> PRT

<213> Acinetobacter calcoaceticus

<400> 5

Glu Met Thr Asp Ile Cys Trp

<210> 6

<211> 7

<212> PRT

<213> Acinetobacter calcoaceticus

<400> 6

Met Thr Tyr Asp Cys Trp Pro

<210> 7

<211> 7

<212> PRT

<213> Acinetobacter calcoaceticus

<400> 7

Thr Tyr Ile Arg Trp Pro Thr

⟨210⟩ 8

<211> 7

<212> PRT

<213> Acinetobacter calcoaceticus

<400> 8

Pro Thr Val Pro Pro Ser Ser

<210> 9

```
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
\langle 223 \rangle primer for point mutation
<400> 9
caaatgtagg taccetetee acaagttg 28
<210> 10
<211> 28
<212> DNA
<213> Artificial Sequence
<220>
\langle 223 \rangle primer for point mutation
 <400> 10
caaatgtagg ttccctctcc acaagttg 28
 <210> 11
 <211> 32
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> primer for point mutation
 <400> 11
 cagcaaatgt agttcatctc tccacaagtt gg 32
 <210> 12
 <211> 32
 <212> DNA
  <213> Artificial Sequence
  <220>
  <223> primer for point mutation
```

<400> 12

```
cagcaaatgt agatcatctc tccacaagtt gg 32
<210> 13
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> primer for point mutation
<400> 13
gccagcaaat gtagtccatc tctccacaag 30
 <210> 14
 <211> 30
 <212> DNA
 <213> Artificial Sequence
 <220>
 \langle 223 \rangle primer for point mutation
 <400> 14
 gccagcaaat gtatttcatc tctccacaag 30
 <210> 15
 <211> 33
  <212> DNA
  <213> Artificial Sequence
  <220>
  \langle 223 \rangle primer for point mutation
  <400> 15
  ccagcaaatg tcggtcatct ctccacaagt tgg 33
  <210> 16
  <211> 19
  <212> DNA
   <213> Artificial Sequence
   <220>
```



```
<223> primer for point mutation
```

<400> 16

ggccagcaat tgtaggtca 19

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> primer for point mutation

<400> 17

ctgttggcca gcaaatgtag g 21

<210> 18

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> primer for point mutation

⟨400⟩ 18

gcagatgacg gtggaactgt tggc 24

<210> 19

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ primer for point mutation

<400> 19

cctgactgat gttcttttga tgaagg 26