#### A Heuristic For Efficient Reduction In Hidden Layer Combinations For Feedforward Neural Networks Computing Conference 2020

Wei Hao Khoong



#### **Table of contents**

- Overview
  - Introduction
- 2 Motivation
- 3 Preliminaries
  - The Models
- 4 Data
- 5 Methods Employed
- 6 Algorithm
- 7 Results & Conclusion
  - Acknowledgements



# **Background**

- Analyst, SingHealth Office for Insights & Analytics
- Graduate student, Department of Statistics & Applied Probability, National University of Singapore
- Active Kaggler



#### **Motivation**

- A full grid search takes a long time
- Tendency to overfit even with cross-validation
- This approach instantiates another form of grid search with local search



# **Overview of Approach**

Consider the 2D case:





#### **Preliminaries - The Models**

#### From Scikit-Learn's sklearn.neural\_network package:

- 1 MLPRegressor
  - A multi-layer perceptron regressor
- 2 MLPClassifier
  - A multi-layer perceptron classifier

#### Parameters used:

- activation='relu', solver='lbfgs', alpha=0.0001, batch\_size='auto', learning\_rate='constant', learning\_rate\_init=0.001, max\_iter=500, random\_state=69
- The rest are defaults



#### Data

- Boston house-prices
  - available from Scikit-Learn's sklearn.datasets package
- MNIST handwritten digits
  - downloadable from http://yann.lecun.com/exdb/mnist/



#### **Test Cases**

- Method 1 Benchmark
  - Initialization  $L_0$  is the set of all possible hidden-layer combinations
  - $\blacksquare$  GridSearchCV takes in this  $L_0$  and returns the 'best' result
- Method 2 Heuristic Algorithm
  - Initialization  $L_0$  is the set of hidden-layer combinations with equal number of neurons in each hidden-layer
  - The algorithm described in the following slides takes in this *L*<sub>0</sub> and returns the best result



- Set max. number of hidden-layer neurons = 10
- Set number of hidden-layers = 2
- Initialize set of all hidden-layer combinations with same number of neurons in each layer:

$$L_0 = \{(1,1),(2,2),\ldots,(10,10)\},$$
 where  $n_{min}^{(input)} = 1, n_{max}^{(input)} = 10$ 

■ Perform grid-search on  $L_0$  with stratified K-fold cross-validation (GridSearchCV) to obtain  $H^{(0)} = \{(j,j)\}$ , where

$$RMSE_{(i,i)} = min\{RMSE_{(i,i)}\}, i \in \{1, ..., 10\}$$



■ Output of GridSearchCV:  $H^{(0)} = \{(3,3)\}$ 





Now let's proceed the main block of the algorithm



Define the threshold for each iteration by

$$\Delta = \left| \frac{RMSE_{curr} - RMSE_{prev}}{RMSE_{prev}} \right|,$$

where  $RMSE_{curr}$  and  $RMSE_{prev}$  are the RMSE from the current and previous iterations respectively.

- Set tolerance  $\alpha = 0.10$  for this example
- If  $\Delta > \alpha$ , continue to next iteration



- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $H^{(1)} = H^{(0)} = \{(3,3)\}, H_{prev} = \{\}$
- $n_{min} = 3, n_{max} = 3$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $H^{(1)} = H^{(0)} = \{(3,3)\}, H_{prev} = \{\}$
- $n_{min} = 3-1, n_{max} = 3$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $\blacksquare$   $H^{(1)} = H^{(0)} = \{(3,3)\}, H_{prev} = \{\}$
- $n_{min} = 2, n_{max} = 3$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $\blacksquare$   $H^{(1)} = H^{(0)} = \{(3,3)\}, H_{prev} = \{\}$
- $n_{min} = 2, n_{max} = 3+1$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $\blacksquare H^{(1)} = H^{(0)} = \{(3,3)\}, H_{prev} = \{\},$
- $n_{min} = 2, n_{max} = 4$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $\blacksquare \ H^{(1)} = \{(2,2), (2,3), (3,2), (3,3), (3,4), (4,4)\}, H_{prev} = \{\}$
- $n_{min} = 2, n_{max} = 4$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $\blacksquare \ \ H^{(1)} = \{(2,2),(2,3),(3,2),(3,3),(3,4),(4,4)\}, \\ H_{prev} = H_{prev} \cup H^{(1)} \setminus H^{(1)} \cap H_{prev}$
- $\blacksquare$   $n_{min} = 2, n_{max} = 4, H_{curr,best} = \{\}$





- Now at iteration:  $\mathbf{1}$ ,  $\Delta > 0.10$
- $\blacksquare \ \ H^{(1)} = \{(2,2),(2,3),(3,2),(3,3),(3,4),(4,4)\}, \\ H_{\textit{prev}} = H_{\textit{prev}} \cup H^{(1)} \setminus H^{(1)} \cap H_{\textit{prev}} \cap \cap H_{\textit{$
- $\blacksquare$   $n_{min} = 2, n_{max} = 4, H_{curr,best} = \{(2,3)\}$





- Now at iteration:  $\mathbf{2}$ ,  $\Delta > 0.10$
- $\blacksquare \ \ H^{(1)} = \{(2,2),(2,3),(3,2),(3,3),(3,4),(4,4)\}, H_{prev} = H_{prev} \cup H^{(1)} \setminus H^{(1)} \cap H_{prev}$
- $n_{min} = 2$ ,  $n_{max} = 4$ ,  $H_{curr,best} = \{(2,3)\}$





- Now at iteration:  $\mathbf{2}$ ,  $\Delta > 0.10$
- $\blacksquare \ \ H^{(1)} = \{(2,2),(2,3),(3,2),(3,3),(3,4),(4,4)\}, \\ H_{prev} = H_{prev} \cup H^{(1)} \setminus H^{(1)} \cap H_{prev} = H_{prev} \cup H^{(1)} \setminus H^{(1)} \cap H_{prev} = H_{prev} \cup H_{prev} = H_{prev} \cup H$
- $n_{min} = 1$ ,  $n_{max} = 5$ ,  $H_{curr,best} = \{(2,3)\}$





- Now at iteration:  $\mathbf{2}$ ,  $\Delta > 0.10$
- $\blacksquare \ \ H^{(2)} = \{(1,1),(1,2),(2,2),\ldots,(5,5)\}, H_{prev} = H_{prev} \cup H^{(1)} \setminus H^{(1)} \cap H_{prev}$
- $n_{min} = 1, n_{max} = 5, H_{curr,best} = \{(2,3)\}$





- Now at iteration:  $\mathbf{2}$ ,  $\Delta > 0.10$
- $\blacksquare \ \ H^{(2)} = \{(1,1),(1,2),(2,2),\ldots,(5,5)\}, \\ H_{\text{prev}} = H_{\text{prev}} \cup H^{(2)} \setminus H^{(2)} \cap H_{\text{prev}}$
- $n_{min} = 1, n_{max} = 5, H_{curr,best} = \{(2,3)\}$





- Now at iteration: 2. △ < 0.10</p>
- $\blacksquare \ \ H^{(2)} = \{(1,1),(1,2),(2,2),\ldots,(5,5)\}, H_{prev} = H_{prev} \cup H^{(2)} \setminus H^{(2)} \cap H_{prev}$
- $n_{min} = 1, n_{max} = 5, H_{curr,best} = \{(2, 5)\}$





- But now  $\Delta < \alpha = 0.10$  (i.e. less than 10% improvement in RMSE)
- So algorithm terminates and returns the resulting architecture:





# **Test Cases (Recap)**

- Method 1 Benchmark
  - Initialization  $L_0$  is the set of all possible hidden-layer combinations
  - $\blacksquare$  GridSearchCV takes in this  $L_0$  and returns the 'best' result
- Method 2 Heuristic Algorithm
  - Initialization  $L_0$  is the set of hidden-layer combinations with equal number of neurons in each hidden-layer
  - The algorithm described in previous slides takes in this L<sub>0</sub> and returns the best result



#### Results

|                         | Benchmark | Heuristic | Benchmark | Heuristic | Benchmark | Heuristic |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Number of Hidden-Layers | 1         |           | 2         |           | 3         |           |
| Median Score            | 0.82      | 0.82      | 0.85      | 0.84      | 0.86      | 0.83      |
| Median RMSE             | 3.76      | 3.50      | 3.68      | 3.56      | 3.63      | 3.57      |
| Median Time Elapsed (s) | 2.92      | 2.84      | 12.63     | 5.07      | 56.00     | 7.03      |

#### Table: Boston Housing Prices dataset with MLPRegressor

|                         | Benchmark | Heuristic | Benchmark | Heuristic | Benchmark | Heuristic |
|-------------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| Number of Hidden-Layers | 1         |           | 2         |           | 3         |           |
| Median Score            | 0.92      | 0.92      | 0.93      | 0.92      | 0.93      | 0.93      |
| Median RMSE             | 1.08      | 1.08      | 1.05      | 1.08      | 1.09      | 1.09      |
| Median Time Elapsed (s) | 1014.20   | 1011.10   | 9498.86   | 2763.15   | 36336.83  | 2556.78   |

Table: MNIST dataset with MLPClassifier



#### Conclusion

- For test cases with the heuristic, as number of hidden-layers increases:
  - run-time decreases significantly
  - accuracy/score about the same as benchmark
- Heuristic appears effective in reducing model overfitting in the regression case
  - median validation RMSE for heuristic case lower than the benchmark case



#### **Future Work**

- Extend heuristic algorithm to more hyperparameters (as coordinates)
- Parameterize number of top performing starting candidates from grid search at initialization





#### **Future Work**

- Use various metrics in-place of RMSE in threshold Δ
- Selection algorithms to obtain inputs for L<sub>0</sub> of grid search initialization
- Open-source library (Python 3) with the above implementations in Scikit-learn, PyTorch, Tensorflow



# **Acknowledgements**

- NUS:
  - High Performance Computing (HPC) for computing resources
  - Unrestricted-access to most journals



#### **Selected References**



Practical Methods of Optimization; (2Nd Ed.). Wiley-Interscience, New York, NY, USA, 1987.

Marc Claesen and Bart De Moor. Hyperparameter search in machine learning. *CoRR*, *abs/1502.02127*, *2015*.

Ivan Jordanov and Antoniya Georgieva.

Neural network learning with global heuristic search.

Neural Networks, IEEE Transactions on, 18:937 – 942, 06 2007.



#### **Contact**

- Email: khoongweihao@u.nus.edu
- LinkedIn: https://www.linkedin.com/in/wei-hao-khoong-6b94b1101

