PRINTABLE VERSION

Quiz 12

You scored 100 out of 100

Question 1

Your answer is CORRECT.

Which of the following would be the LSRL for the given data?

x	3	4	7	13	15	16
y	41	37	26	21	24	11

a)
$$\circ \hat{y} = 1.743 x + 43.51$$

b)
$$\circ$$
 $\hat{y} = -1.743 \text{ x} + 43.51$

c)
$$\circ$$
 $\hat{y} = -43.51 \text{ x} - 1.743$

d)
$$\bigcirc$$
 $\hat{y} = 43.51 \text{ x} - 1.743$

e) None of the above

Question 2

Your answer is CORRECT.

Determine the correlation coefficient for the data shown in this table:

x	2	4	10	15	13	16
y	22	29	28	40	34	43

- a) 0.8332
- **b)** © 0.9128
- **c)** 0.4564
- **d)** 0.9128
- e) -0.8332

f) None of the above

Question 3

Your answer is CORRECT.

Suppose you have the following data:

x	1	2	3	4	5	6
y	25	30	28	42	30	44

and the LSRL is $\hat{y} = 3.114 \text{ x} + 22.27$. Find the residual value for x = 3.

- a) 03.612
- **b)** -3.612
- c) 028
- **d)** 31.612
- e) One of the above

Question 4

Your answer is CORRECT.

Which of the following is the residual plot for the data in the given table?

x	1	2	3	4	5	6
y	14	20	17	32	17	31

Your answer is CORRECT.

b) O

Question 6

Your answer is CORRECT.

If the LSRL relating the independent variable x and the dependent variable y for a given problem is $\hat{y} = 2x + 3$, then an increase of 1 unit in x is associated with an increase of how many units in y?

- a) © 2
- **b**) 01
- **c)** 03
- d) $\bigcirc 0$
- e) 05

Question 7

Your answer is CORRECT.

Select the equation of the least squares line for the data: (44.20, 1.30), (42.25, 3.25), (45.50, .65), (40.30, 6.50), (39.00, 5.85), (35.75, 8.45), (37.70, 6.50).

- **a)** $\hat{y} = 41.407 0.89210x$
- **b)** \circ $\hat{y} = 37.643 0.81100x$
- **c)** \circ $\hat{y} = -37.643 0.81100x$
- **d)** $\hat{y} = 37.643 0.89210x$
- **e)** $\hat{y} = 0.81100x 37.643$
- f) None of the above

Question 8

Your answer is CORRECT.

The decline of salmon fisheries along the Columbia River in Oregon has caused great concern among commercial and recreational fishermen. The paper 'Feeding of Predaceous Fishes on Out-Migrating Juvenile Salmonids in John Day Reservoir, Columbia River' (Trans. Amer. Fisheries Soc. (1991: 405-420) gave the accompanying data on y = maximum size of salmonids consumed by a northern squaw fish (the most abundant salmonid predator) and x = squaw fish length, both in mm. Here is the computer software printout of the summary:

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-90.020	16.702	-5.390	0.000
Length	0.705	0.049	14.358	0.000

Using this information, give the equation of the least squares regression line.

a) $\hat{y} = -90.020x + 0.705$

- **b)** $\hat{y} = 0.705x 90.020$
- **c)** $\hat{y} = 16.702x 90.020$
- **d)** $\hat{y} = 0.705x + 16.702$
- **e)** $\hat{y} = 16.702x + 0.049$
- f) None of the above

Question 9

Your answer is CORRECT.

The decline of salmon fisheries along the Columbia River in Oregon has caused great concern among commercial and recreational fishermen. The paper 'Feeding of Predaceous Fishes on Out-Migrating Juvenile Salmonids in John Day Reservoir, Columbia River' (Trans. Amer. Fisheries Soc. (1991: 405-420) gave the accompanying data on 10 values for the data sets where y = maximum size of salmonids consumed by a northern squaw fish (the most abundant salmonid predator) and x = squaw fish length, both in mm. Here is the computer software printout of the summary:

Coefficients:				
	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-91.030	16.703	-5.450	0.000
Length	0.706	0.042	16.759	0.000

Using this information, compute a 95% confidence interval for the slope.

- a) \bigcirc [0.636, 0.775]
- **b)** \bigcirc [-124.969, -57.091]
- (0.620, 0.791]
- **d)** \bigcirc [0.365, -56.836]
- e) \bigcirc [-123.767, -58.293]
- f) None of the above

Question 10

Your answer is CORRECT.

Data for gas mileage (in mpg) for different vehicles was entered into a software package and part of the ANOVA table is shown below:

Source	DF	SS	MS
Vehicle	5	420	210.00

Error	66	303	4.59
Total	71	723	

If a LSRL was fit to this data, what would the value of the coefficient of determination be?

- a) 041.91%
- **b)** 045.74%
- c) 38.09%
- **d)** 58.09%
- e) 076.22%
- f) None of the above

Question 11

Your answer is CORRECT.

A real estate agent would like to predict the selling price of a single-family house by predicting the price (in \$1000) based on the square footage (in 100 square feet). Calculate a 95% confidence interval for the slope of the true regression line.

Dependent var Analysis of Var					
Source Model Error C total	DF 1 13	Sum of Squares 4034.4144 2195.8215 6230.2360	Mean Square 4034.4144 168.9093	F Value 23.885	Prob>F 0.0003
Root MSE Dep Mean C.V.	12.9965 88.8400 14.6291	R-square Adj R-square	0.6476 0.6204		
Parameter Est	imates				
Variable Intercept X	DF 1 1	Parameter Estimate 18.3538 3.8785	Standard Error 14.8077 0.7936	T for H0: Parameter = 0 1.239 4.887	Prob > T 0.2371 0.0003

- a) \bigcirc [0.864, 6.893]
- **b)** (2.164, 5.593]
- c) \bigcirc [-3.066, 10.823]
- **d)** \bigcirc [1.164, 6.593]
- **e)** [1.909, 5.848]

f) None of the above

Question 12

Your answer is CORRECT.

A real estate agent would like to predict the selling price of a single-family house by predicting the price (in thousands of dollars) based on the square footage (in 100 square feet). Predict the price of a 3000 square foot house (in thousands of dollars).

able : Y				
iance				
	Sum of	Mean		
DF	Squares	Square	F Value	Prob>F
1	4034.4144	4034.4144	23.885	0.0003
13	2195.8215	168.9093		
14	6230.2360			
12.9965	R-square	0.6476		
88.8400	Adj R-square	0.6204		
14.6291				
mates				
	Parameter	Standard	T for H0:	
DF	Estimate	Error	Parameter = 0	Prob > T
1	18.3538	14.8077	1.239	0.2371
1	3.8785	0.7936	4.887	0.0003
	DF 1 13 14 12.9965 88.8400 14.6291 mates	Sum of DF Squares 1 4034.4144 13 2195.8215 14 6230.2360 12.9965 R-square 88.8400 Adj R-square 14.6291 mates Parameter DF Estimate 1 18.3538	Sum of Mean	Sum of Mean F Value

- **a)** 0238.709
- **b)** 0 1347.088
- **c)** 236.709
- **d)** 0 139.709
- **e)** 134.709
- f) None of the above