MAIOI: Midterm I Solution to Broblem 2. Date 08.09.2014 2.a:) Note that $Z = \frac{1+i}{1-i} = \frac{(1+i)^2}{1-i^2} = \frac{1+2i+i^2}{2} = i$ By Euler's identity: i = ei(1) + 2nII), grall neZ. Hence, modulus of Z=1 and principal argument = $\frac{1}{2}$ Let z = x + iy where $x, y \in \mathbb{R}$. Hence, $z^2 = (x^2 - y^2) + i \cdot 2iy$. Then $z^2 = 2i$ is equivalent to It is clear that only real rotutions to these equations are X=1, y=1 and X=-1, and y=-1. Hence, Z = 1+i or -(1+i). Method 2 From Euler's identity $2i = 2e^{i(JV_2 + 2nH)}$, neZ. Let $Z = He^{i\theta}$ where H>0 and DEIRLet $z = 91e^{i\theta}$ where 170 and 0exists because of Thom). Hence, $9^2e^{i2\Theta} = 2e^{i(31/2+2n31)}$ Eguating onabulus and argument in 1) $H^2=2$ and $20=\frac{31}{2}$ from $n\in\mathbb{Z}$. > 91=12 (since 1170) and $\theta = \frac{\pi}{4} + n\pi$, $n \in \mathbb{Z}$. General solution: $Z = \sqrt{2} e^{i(\sqrt{14} + n)T}$, $n \in Z$ Distinct solutions: $z_1 = \sqrt{2}e^{i\frac{\pi}{2}}$ and $z_2 = \sqrt{2}e^{-i\frac{\pi}{4}}$ = 1+i

2.c) Method1

Let 900 and DEIR be such that u= 4eis (existence of Hand of the guaranteed from Throm). Let Z = x + iy where x, y CR.

Hence, $e^{z} = e^{\alpha + iy} = e^{\alpha} \cdot e^{iy}$ \Rightarrow $|e^{z}| = e^{\chi}$ and $arg(e^{\chi}) = y + 2n\pi$, $n \in \mathbb{Z}$.

Since ez = 11 it follows that

 $H=e^{2}$ and $\phi=y+2MJT$, $n\in\mathbb{Z}$, or, equivalently,

R = ln y (since 470 this is a valid).

and $y = \phi + 2n\pi$, $n \in \mathbb{Z}$.

Hence, $Z = ln M + i (\phi + 2n \pi)$, $n \in \mathbb{Z}$ = ln (u) + i arg (u)

Method 2 Let a, bfil be such that u=a+ib and let Z = x + iy when $x, y \in \mathbb{R}$. It is easy to show that (using Eule's identify) $e^Z = e^Z \cos y + i e^Z \sin y$.

Hence, excosy = a and exsiny = b.

 \Rightarrow $e^{\chi} = \sqrt{a^2 + b^2} \Rightarrow |\chi = lor(\overline{a^2 + b^2})| = ln|u|$

and y is the solution to siny = $\frac{b}{\sqrt{a^2+b^2}}$ and $\cos y = \frac{a}{\sqrt{a^2+b^2}}$ which implies that | y = arg (u) .

Hence, Z=lu/u/+iarg(u)

Since argar is not unique Z is not unique.