

计算机视觉课程

——从运动到结构(下)

主讲人 隋博士

课程内容

✓运动恢复结构(SFM)

- ✓ 增量运动恢复结构(Incremental SFM)
- ✓全局运动恢复结构(Global SFM)
- ✓分层运动恢复结构(Hierarchical SFM)
- ✓运动恢复结构的几个问题

运动恢复结构(SFM)

通过相机运动同时恢复相机参数和场景结构

无序图像

稀疏点云

主要流程

特征检测与特征匹配

双视点几何

模型选择

基础矩阵/本质矩阵

基础矩阵(未标定) 7对匹配点

本质矩阵(标定) 5对匹配点

场景是平面 4对匹配点

!Homography (平面) !Homography (纯旋转)

全景图拼接 4对匹配点

图像连接图

顶点:图像

边界:两幅图像之间存在共同的可见区域

运动恢复结构(SFM)

图像连接图

- 顶点的大小与连接个数有关
- 相似的、正面光照条件好的视角 集中在中央,末梢是一些比较偏 的视角

Tracks

- 多个视角对应的匹配点连接起来
- 每一条Track对应一个三维点

Tracks

计算Tracks

捆绑调整 (BA)

相对的相机参数生成全局一致的相机参数和场景结构

运动恢复结构(SFM)

增量运动恢复结构(Incremental SFM)

全局运动恢复结构(Global SFM)

分层运动恢复结构(Hierarchical SFM)

课程内容

- ✓运动恢复结构(SFM)
 - ✓ 增量运动恢复结构(Incremental SFM)
 - ✓全局运动恢复结构(Global SFM)
 - ✓分层运动恢复结构(Hierarchical SFM)
- ✓运动恢复结构的几个问题

增量运动恢复结构

初始相机对的选取

- 匹配点足够多
- 基线足够长(三角量测角)
- 满足Homography的匹配尽量少

三角量测

● 三角量测将tracks重建成三维点

● 由于存在匹配外点,重建出错 误的tracks

Tracks滤波

● 三维空间中太远的点

● 重投影误差比较大点

Tracks滤波

Tracks滤波后的结果

全局的捆绑调整

- 运动恢复结构的非线性优化部分
- 最小化重投影误差 $\min_{P,X} ||x \pi(P,X)||$

Ceres-Solver, http://ceres-solver.org/
Triggs et al., "Bundle Adjustment – A Modern Synthesis"

全局的捆绑调整

● 运动恢复结构的非线性优化部分

Ceres-Solver, http://ceres-solver.org/
Triggs et al., "Bundle Adjustment – A Modern Synthesis"

1. 选择新的视角

重建新的视角

2. 恢复新新建相机姿态

- 找到3D-2D对应关系
- 用PnP算法求解相机姿态

2. 单个相机的捆绑调整

● 相机姿态的非线性优化

3. Tracks重建

● 增加视角之后,会产生新的tracks(大于两个视角的匹配点)

P" = K" [R" | t"]

4. Tracks滤波

● 对重建的tracks进行外点去除

全局的捆绑调整

● 对场景中所有的相机和三维 点进行非线性优化

$$g(\boldsymbol{\theta}) = \frac{1}{2} \sum_{i}^{n} \sum_{j}^{m} \chi_{ij} \left\| \boldsymbol{u}_{ij} - \hat{\boldsymbol{u}}_{ij} \left(\boldsymbol{C}_{j}, \boldsymbol{X}_{i} \right) \right\|^{2} = \frac{1}{2} \sum_{i}^{n} \sum_{j}^{m} \chi_{ij} e_{ij},$$

$$\boldsymbol{\theta} = \left(\boldsymbol{C}_{1}, \dots, \boldsymbol{C}_{m}, \boldsymbol{X}_{1}, \dots \boldsymbol{X}_{n} \right)$$

$$\boldsymbol{C}_{j} = \left(f_{j}, k_{1j}, k_{2j}, \boldsymbol{R}j, \boldsymbol{t}_{j} \right) \quad \boldsymbol{X}_{j} = \left(\boldsymbol{X}_{j}, \boldsymbol{Y}_{j}, \boldsymbol{Z}_{j} \right)^{T}$$

● 每重建一个视角运行一次,也可以重建多个视角运行一次

增量捆绑调整的优缺点

主要优点:

- > 对特征匹配外点鲁邦
- > 重建精度高
- > 捆绑调整不断优化场景结构

常用来做算法比较的基准

主要缺点:

- ➢ 对初始相机对的选取以及相机添加顺序敏感
- ▶ 大场景产生累计误差导致场景漂移
- ▶ 重复进行捆绑调整,效率低

增量捆绑调整重建结果

Bundler: http://www.cs.cornell.edu/~snavely/bundler/

VisualSFM: http://ccwu.me/vsfm/

Theia: http://www.theia-sfm.org/sfm.html

Colmap: https://demuc.de/colmap/

地面建筑稀疏重建结果

课程内容

- ✓运动恢复结构(SFM)
 - ✓ 增量运动恢复结构(Incremental SFM)
 - ✓全局运动恢复结构(Global SFM)
 - ✓分层运动恢复结构(Hierarchical SFM)
- ✓运动恢复结构的几个问题

只进行一次全局捆绑调整

顶点:图像

边界: 双视点几何

$$\mathbf{R}_{ij} = \mathbf{R}_{j} \mathbf{R}_{i}^{T}$$

$$\lambda_{ij} \boldsymbol{t}_{ij} = \boldsymbol{R}_{j} \left(\boldsymbol{C}_{i} - \boldsymbol{C}_{j} \right)$$

图像连接图

$$egin{aligned} oldsymbol{R}_{ij} &= oldsymbol{R}_j oldsymbol{R}_i^T \ \lambda_{ij} oldsymbol{t}_{ij} &= oldsymbol{R}_j \left(oldsymbol{C}_i - oldsymbol{C}_j
ight) \end{aligned}$$

$$\boldsymbol{R}_{i}^{T}\boldsymbol{R}_{ij}^{T} = \boldsymbol{R}_{j}^{T} \qquad \boldsymbol{R}_{ij} = \boldsymbol{R}_{j}\boldsymbol{R}_{i}^{T}$$

$$\begin{aligned}
\boldsymbol{C}_{j} &= -\boldsymbol{R}_{j}^{T} \boldsymbol{t}_{j} & \lambda_{ij} \boldsymbol{R}_{i}^{T} \left(-\boldsymbol{R}_{ij}^{T} \boldsymbol{t}_{ij} \right) - \boldsymbol{R}_{i}^{T} \boldsymbol{t}_{i} &= \boldsymbol{R}_{j}^{T} \boldsymbol{t}_{j} \\
o_{2}(\boldsymbol{R}_{j}, \boldsymbol{t}_{j}) & & \\
\lambda_{ij} \boldsymbol{t}_{ij} &= \boldsymbol{R}_{j} \left(\boldsymbol{C}_{i} - \boldsymbol{C}_{j} \right)
\end{aligned}$$

全局旋转矩阵的恢复 rotation averaging

Chatterje and Govindu 2013, "Efficient and Robust Large-Scale Rotation Averaging"

根据相对旋转矩阵,删除错误的连接边界

全局平移向量的恢复 position averaging

$$\lambda_{ij} \boldsymbol{t}_{ij} = \boldsymbol{R}_{j} \left(\boldsymbol{C}_{i} - \boldsymbol{C}_{j} \right)$$

$$\boldsymbol{l}_{ij} = \boldsymbol{R}_{j}^{T} \boldsymbol{t}_{ij}$$

$$\min_{\boldsymbol{C}} \left\| \boldsymbol{l}_{ij} - \frac{\boldsymbol{C}_{i} - \boldsymbol{C}_{j}}{\left\| \boldsymbol{C}_{i} - \boldsymbol{C}_{j} \right\|} \right\|$$

根据全局的平移向量,删除错误的连接边界

$$\left\| \boldsymbol{l}_{ij} - \frac{\boldsymbol{C}_i - \boldsymbol{C}_j}{\left\| \boldsymbol{C}_i - \boldsymbol{C}_j \right\|} \right\| > \varepsilon$$

全局运动恢复结构

三角量测重建三维点,并进行全局的捆绑调整

全局捆绑调整的优缺点

主要优点:

- 将误差均匀分布在连接图想, 没有误差积累
- 不需要考虑初始相机选取和相机添加顺序问题
- 仅执行一次捆绑调整,重建 效率高

主要缺点:

- ▶ 鲁棒性不足,相机位置求解 时对匹配外点敏感
- 过滤连接图边界,容易造成部分图像丢失

课程内容

- ✓运动恢复结构(SFM)
 - ✓ 增量运动恢复结构(Incremental SFM)
 - ✓全局运动恢复结构(Global SFM)
 - ✓分层运动恢复结构(Hierarchical SFM)
- ✓运动恢复结构的几个问题

分层运动恢复结构

算法流程

创建树状图

● 采用凝聚聚类的方式

● 根据图像内容的重合 程度进行聚类

树状图用来引导分层的捆绑调整

三种基本操作

添加一个新的视角

- PnP恢复相机姿态
- 三角量测重建三维点

创建一个局部模型

- 计算相对姿态
- 三角量测重建三维点

融合两个局部模型

● 3D-3D 刚体变换

分层运动恢复结构

算法稳定,不依赖初始相机的选取

避免了大场景中的误差积 累和漂移

运动恢复结构比较

方法	效率	鲁棒性	准确率
增量式		++	+
全局式	+	+	+
分层式	++		

课程内容

运动恢复结构(SFM)

增量运动恢复结构(Incremental SFM)

全局运动恢复结构(Global SFM)

分层运动恢复结构(Hierarchical SFM)

✓ 运动恢复结构的几个问题

焦距的获取

● 自标定的方法获取初始值

如 VisualSFM

● 从可交换图像文件中读取EXIF初始值

如 Bundler

Exif

Exif是一种图像文件格式,它的数据存储与JPEG格式是完全相同的。实际上Exif格式就是在JPEG格式头部插入了数码照片的信息,包括拍摄时的光圈、快门、白平衡、ISO、焦距、日期时间等各种和拍摄条件以及相机品牌、型号、色彩编码、拍摄时录制的声音以及GPS全球定位系统数据、缩略图等。你可以利用任何可以查看JPEG文件的看图软件浏览Exif格式的照片,但并不是所有的图形程序都能处理Exif信息。

尺度不确定性

动态物体

标准的SFM只能重建场景中的动态物体

Zheng et al. 2015, "Sparse Dynamic 3D Reconstruction from Unsynchronized Videos" Ji et al. 2014, "3D Reconstruction of Dynamic Textures in Crowdsourced Data"

重复结构

Projected Unique Structure

非朗伯面

找不到足够的匹 配特征点

三维建模课程地址

感谢各位聆听 Thanks for Listening •