1

Control Systems

G V V Sharma*

CONTENTS

1	Mason	n's Gain Formula	1
2	Bode Plot		1
	2.1	Introduction	1
	2.2	Example]
3	Second order System		1
	3.1	Damping	
	3.2	Example	2
4	Routh Hurwitz Criterion		2
	4.1	Routh Array	2
	4.2	Marginal Stability	2
	4.3	Stability	
5	State-Space Model		2
	5.1	Controllability and Observability	4
	5.2	Second Order System	2
6	Nyquist Plot		2
7	Phase Margin		2
8	Gain Margin		2
9	Comp 9.1	ensators Phase Lead	2
10	Oscilla	ator	2

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

1 Mason's Gain Formula

2 Bode Plot

- 2.1 Introduction
- 2.2 Example
- 3 Second order System
- 3.1 Damping
- 3.1. The transfer function of causal L.T.I system is

$$H(s) = \frac{1}{s}. (3.1.1)$$

If the input to the system is

$$x(t) = \left(\frac{\sin(t)}{\pi t}\right)u(t) \tag{3.1.2}$$

, where u(t) is a unit step function, the system output y(t) as $t \to \infty$ is ?

Solution: let

$$f(t) = \sin(t)u(t) \tag{3.1.3}$$

We know that,

$$\mathcal{L}f(t) = F(s) = \frac{1}{1+s^2}$$
 (3.1.4)

(by u.v rule of integration.) By using,

$$\mathcal{L}\frac{f(t)}{t} = \int_{s}^{\infty} F(s) \, \mathrm{d}s \tag{3.1.5}$$

$$\implies X(s) = (1/\pi)(\frac{\pi}{2} - \tan^{-1}(s))$$
 (3.1.6)

$$\implies Y(s) = (1/\pi s)(\frac{\pi}{2} - \tan^{-1}(s))$$
 (3.1.7)

since

$$Y(s) = X(s)H(s)$$
 (3.1.8)

Then using Final Value theorem,

$$y(\infty) = \lim_{s \to 0} sY(s) = (\frac{1}{\pi})(\frac{\pi}{2} - \tan^{-1}) = \frac{1}{2}$$
(3.1.9)

Proof of Final Value Theorem:

To prove:

$$\lim_{s \to 0} (sF(s)) = \lim_{t \to \infty} f(t)$$
 (3.1.10)

We know,

$$\mathcal{L}\left\{\frac{\partial f(t)}{\partial t}\right\} = \int_{0^{-}}^{\infty} \frac{\partial f(t)}{\partial t} e^{-st} dt = s * F(s) - f(0^{-})$$
(3.1.11)

Now applying $s \to 0$ We have,

$$RHS = \int_{0^{-}}^{\infty} \frac{\partial f}{\partial t} dt = \lim_{s \to 0} (f(\infty) - f(0^{-}))$$
(3.1.12)

And

$$LHS = \lim_{s \to 0} (sF(s) - f(0^{-}))$$
 (3.1.13)

Hence proved

4 ROUTH HURWITZ CRITERION

- (3.1.10) 4.1 Routh Array
 - 4.2 Marginal Stability
 - 4.3 Stability
- 5 STATE-SPACE MODEL
- 5.1 Controllability and Observability
- 5.2 Second Order System
 - **6** Nyquist Plot
 - 7 Phase Margin
 - 8 Gain Margin
 - 9 Compensators
- 9.1 Phase Lead
- 10 Oscillator

Plotting y(t) in time domain.

https://github.com/Kkuntal990/Control-theory -course/blob/master/codes/ EE18BTECH11028.py

This shows as t goes to infinity y(t) tends to 0.5.