Name:	Student#:	Date:

COMP 2711: Discrete Mathematical Tools for Computer Science

In Class Exercise #5

- 1. Which of the following statements (in which Z^+ stands for the positive integers and Z stands for all integers) is true and which is false? Don't forget to explain why.
 - a) $\forall z \in Z^+(z^2 + 6z + 10 > 20)$
 - b) $\forall z \in Z, (z^2 z \ge 0)$
 - c) $\exists z \in Z^+, (z z^2 > 0)$
 - d) $\exists z \in Z, (z^2 z = 6)$

Answer:

- a) False, because $1^2 + 6 \cdot 10 = 17$.
- b) True, because the graph of $y = z^2 z$ is concave up and the y-coordinate is 0 at z = 0 and z = 1

OR:

Consider the following cases:

1) z < 0: true, because $z^2 - z \ge 0 \Rightarrow z^2 \ge z$

The LHS is positive, the RHS is negative.

- 2) z = 0: true by substitution $0^2 0 \ge 0$.
- 3) z > 0: true, because $z^2 z \ge 0 \Rightarrow z^2 \ge z$, so we get $z \ge 1$ which holds in this case.
- c) False, because the graph of $y = z z^2$ is concave down and the y-coordinate is 0 at z = 1.

OR:

Indeed, we will show that no such z exists.

To prove the negation of an existential quantifier one proves the universal of the negation

(see Lecture Slides).

So we want to prove $\forall z \in \mathbb{Z}^+, (z - z^2 \le 0)$.

Multiplying the inequality by -1 gives us $(z^2 - z \ge 0)$,

which was already proved in part (b) (for an even bigger universe).

d) True, because $(-2)^2 - (-2) = 6$.