

INTELLECTUAL PROPERTY RIGHTS NOTICE:

The User may only download, make and retain a copy of the materials for their use for non-commercial and research purposes. If you intend to use the materials for secondary teaching purposes it is necessary first to obtain permission.

The User may not commercially use the material, unless a prior written consent by the Licensor has been granted to do so. In any case, the user cannot remove, obscure or modify copyright notices, text acknowledging or other means of identification or disclaimers as they appear.

For further details, please email us: hartreetraining@stfc.a.c.uk

Big Data Week 12 Advanced data analysis & deep learning

Outline

Combined batch and streaming analytics

- Batch processing and stream processing
- Combined analytics

Data modelling and data fusion

- Data models
- Describing complex data types
- Data fusion by unique key
- Statistical models and fused data

Break

Neural networks

Q&A

Combined batch and streaming analytics

Batch and streaming analytics

Batch analytic

Big data volume problem

Uses an existing pot of data and runs a single set of calculations to build a model.

e.g. frequentist logistic regression using iteratively reweighted least-squares to predict probability of a patient getting a given disease.

- + Uses all the data that is available to build the model.
- + Can use expensive algorithms if the processing power is available.
- Only updates when the analytic is run over the data.

Streaming analytic

Big data velocity problem

Creates a model or state and continuously updates this as new data comes in.

e.g. Kalman filter for position and velocity of a satellite in space.

- + Updates and allows rapid response in changing circumstances.
- + Often more computationally efficient.
- Limited to models which can be continuously updated.

Streaming-batch analytic

Creates a model or state and updates this in blocks as batches of data come in.

Batch and streaming analytics

Streaming analytics are limited to models that can be continuously updated.

Some quantities can be hard to calculate in streams
e.g. median (needs a data sort or a specialised algorithm like the heap method)

5.44 1.15 2.16 2.24 2.59 3.4 **3.98** 6.19 6.62 6.98 8.13 8.64

Can resort to an approximate method if you don't need the exact answer

Batch and streaming analytics

Some analytics naturally fit into streams e.g. Bayesian updates with a conjugate prior

Combined analytics

Can combine batch and streaming analytics together
e.g. build a batch model, and then stream updates into it

These models and systems of data analysis can become more and more complicated.

Physical considerations may also be important e.g. edge devices reporting back to a central server over slow connections

Data modelling and data fusion

Data modelling

A data model is a model which can

- Organise elements of data
- Specify types of data (integer, string)
- Show how elements relate to one another
- Link to real-world definitions

Data model uses include:

- Validation of received data (types, ranges)
- Assist with building analytics
- Producing standards and agreed definitions of terms (e.g. W3C standards)
- Fusing disparate data sources

Data models

Modelling a date and time

Data models

The complete OWL-Time ontology (https://www.w3.org/TR/ owl-time/)

Data models

Diagram of the Organization ontology: https://www.w3.org/TR/vocab-org/

Recording data models – UML

UML = Unified Modelling Language

Asset Open Metadata Schema

(from https://en.wikipedia.org/wiki/Asset Description Metadata Schema)

Recording data models – OWL

OWL = Web Ontology Language


```
org:subOrganizationOf a owl:ObjectProperty, rdf:Property;
    rdfs:label "subOrganization of"@en;
   rdfs:label "sous-Organization de"@fr;
   rdfs:label "sotto-Organization di"@it;
   rdfs:domain org:Organization;
   rdfs:range org:Organization;
   rdfs:subPropertyOf org:transitiveSubOrganizationOf;
   rdfs:comment """Represents hierarchical containment of Organizations or OrganizationalUnits; indicates an
   Organization which contains this Organization. Inverse of `org:hasSubOrganization`."""@en;
   rdfs:comment """Représente une relation hierarchique des Organisations ou des Unités Opérationnelles; indique
   une Organisation sujet qui contient cette Organisation. Inverse de `org:hasSubOrganization`."""@fr;
   rdfs:comment """Rappresenta un contenimento gerarchico di una Organization o di una OrganizationalUnit. È
   l'inverso di `org:hasSubOrganization`. Ha nome come nome alternativo hasSubOrg.""@it;
   rdfs:comment "組織または組織単位の階層的包含を表わします。この組織を含む組織を示します。"@ja;
   rdfs:isDefinedBy <a href="http://www.w3.org/ns/org">http://www.w3.org/ns/org</a>;
org:subOrganizationOf rdfs:label "es suborganización de"@es ;
   rdfs:comment "Distribución jerárquica de organizaciones o unidades. Indica que una organización contiene a
   otra organización. Es la relación inversa de `org:hasSubOrganization`"@es .
org:transitiveSubOrganizationOf a owl:ObjectProperty, owl:TransitiveProperty, rdf:Property,
   rdfs:label "transitive sub-organization"@en;
    rdfs:label "sous-Organization transitive de"@fr;
   rdfs:label "sotto-Organization transitiva"@it;
```

Example from the Organization ontology (https://www.w3.org/TR/vocab-org/) in Turtle

Data models and ontologies

An *ontology* is a formal way to describe knowledge by a set of concepts and relations between those concepts.

- Closely related to data models
- Ontology descriptions (e.g. OWL2-DL) also include relations that allow automated logic

```
org:hasPost rdfs:label "tiene puesto"@es;
rdfs:comment "Posición que existe en una organización."@es.

org:postIn owl:inverseOf org:hasPost.

# -- Disjointness of backbone ------

org:Organization owl:disjointWith org:Role.

org:Organization owl:disjointWith org:Membership.

org:Organization owl:disjointWith org:Site.

org:Organization owl:disjointWith org:ChangeEvent.

org:Role owl:disjointWith org:Site.

org:Role owl:disjointWith org:Site.

org:Role owl:disjointWith org:ChangeEvent.
```

More from the Organization ontology.

Fusion is the combination of disparate data sets to give a more complete picture of a situation. This is a big data variety problem.

Example: ONS Index of Multiple Deprivation¹

Combines data from²:

- Department of Work & Pensions
- HMRC
- Home Office
- Department for Education
- Hospital Episode Statistics (NHS)
- NHS Digital
- 2011 Census
- • •

¹ https://www.gov.uk/government/statistics/english-indices-of-deprivation-2019

² https://www.gov.uk/government/publications/english-indices-of-deprivation-2019-technical-report

Fusion by unique key

Unique key fusion: join data sets using a key which matches across them.

The key must be:

- Unique
- Consistent

Example: NHS Liverpool case study.

Social care data: **568a9123be19011d**, L14, 35, B17, physiotherapy, 2005-06, ...

LinkPseudo (hashed NHS number) unique key

Primary care data: **568a9123be19011d**, L14, 33, C34, breaks and fractures, 2004-11, ...

Examples of unique keys:

NHS number, National Insurance number, company registration number

Examples of things that are not unique keys:

Names, postcodes, local authority names

Fusion by aggregated data

If a field is not unique, it may be possible to create a unique key by fusing several pieces of data

e.g name + date of birth + place of birth probably not unique more specific even more specific

Also related to de-anonymisation: recovery of information hidden in an anonymised data set.

99.98% of Americans could be correctly identified using 15 demographic variables (Rocher, Hendrix & de Montjoie, 2019, https://www.nature.com/articles/s41467-019-10933-3)

Sometimes descriptions can get quite complicated

Cheshire unitary authorities (2021)

Cheshire constituencies (2021)

Sometimes data describes the same entities but presented in very different ways

Code	Name	Geography	All ages
K02000001	UNITED KINGDOM	Country	67,081,234
K03000001	GREAT BRITAIN	Country	65,185,724
K04000001	ENGLAND AND WALES	Country	59,719,724
E92000001	ENGLAND	Country	56,550,138
E12000001	NORTH EAST	Region	2,680,763
E06000047	County Durham	Unitary Authority	533,149
E06000005	Darlington	Unitary Authority	107,402
E06000001	Hartlepool	Unitary Authority	93,836
E06000002	Middlesbrough	Unitary Authority	141,285
E06000057	Northumberland	Unitary Authority	323,820
E06000003	Redcar and Cleveland	Unitary Authority	137,228
E06000004	Stockton-on-Tees	Unitary Authority	197,419
E11000007	Tyne and Wear (Met County)	Metropolitan County	1,146,624
E08000037	Gateshead	Metropolitan District	201,950
E08000021	Newcastle upon Tyne	Metropolitan District	306,824
E08000022	North Tyneside	Metropolitan District	208,871
E08000023	South Tyneside	Metropolitan District	151,133
E08000024	Sunderland	Metropolitan District	277,846
E12000002	NORTH WEST	Region	7,367,456
E06000008	Blackburn with Darwen	Unitary Authority	150,030

Local authority area populations

Latitude and longitude

geometry	Shape_Len	ShapeAre	LAT	LONG	BNG_N	BNG_E	CTYUA20NMW	CTYUA20NM	CTYUA20CD	OBJECTID
POLYGON ((447213.899 537036.104, 447228.798 53	66121.472650	9.834667e+07	54.67614	-1.27018	531474	447160	None	Hartlepool	E06000001	1
POLYGON ((448489.897 522071.798, 448592.597 52	41055.809886	5.455359e+07	54.54467	-1.21099	516887	451141	None	Middlesbrough	E06000002	2
POLYGON ((455525.931 528406.654, 455724.632 52	105292.138896	2.537854e+08	54.56752	-1.00608	519597	464361	None	Redcar and Cleveland	E06000003	3
POLYGON ((444157.002 527956.304, 444165.898 52	108085.255484	2.097308e+08	54.55691	-1.30664	518183	444940	None	Stockton-on-Tees	E06000004	4
POLYGON ((423496.602 524724.299, 423497.204 52	107206.401677	1.974757e+08	54.53534	-1.56835	515648	428029	None	Darlington	E06000005	5

Code	Name	Geography	All ages
K02000001	UNITED KINGDOM	Country	67,081,234
K03000001	GREAT BRITAIN	Country	65,185,724
K04000001	ENGLAND AND WALES	Country	59,719,724
E92000001	ENGLAND	Country	56,550,138
E12000001	NORTH EAST	Region	2,680,763
E06000047	County Durham	Unitary Authority	533,149
E06000005	Darlington	Unitary Authority	107,402
E06000001	Hartlepool	Unitary Authority	93,836
E06000002	Middlesbrough	Unitary Authority	141,285
E06000057	Northumberland	Unitary Authority	323,820
E06000003	Redcar and Cleveland	Unitary Authority	137,228
E06000004	Stockton-on-Tees	Unitary Authority	197,419
E11000007	Tyne and Wear (Met County)	Metropolitan County	1,146,624
E08000037	Gateshead	Metropolitan District	201,950
E08000021	Newcastle upon Tyne	Metropolitan District	306,824
E08000022	North Tyneside	Metropolitan District	208,871
E08000023	South Tyneside	Metropolitan District	151,133
E08000024	Sunderland	Metropolitan District	277,846
E12000002	NORTH WEST	Region	7,367,456
E06000008	Blackburn with Darwen	Unitary Authority	150,030

Science and Technology Facilities Council **ONS:** Population Estimates for UK, England and Wales, Scotland and Northern Ireland: Mid-2020

Hartree Centre

Statistical models with fused data

Using fused data

- 1. Build a single model (e.g. a random forest) using the whole data set.
 - k-prototypes clustering (Huang, 1997)¹
- 2. Combine models derived from several data sets
 - Combined model
 - Bayesian network model

¹ Huang, Zhexue. 'Clustering large data sets with mixed numeric and categorical values.' In *Proceedings of the 1st Pacific-Asia conference on knowledge discovery and data mining*, (PAKDD), pp. 21-34. 1997.

Questions?