logic formulas

Gleb Anohin

[2024-09-18 Wed 16:58]

Contents

1	TO	DO from galery					
2	что-то						
	2.1	Основные равносильности					
	2.2	Равносильные					
	2.3	Теорема о подстановках					
	2.4	Штрих Шеффера					
	2.5	Стрелка Пирса					
3	Двойственность						
4	фф						
5	Пус	Пусть					
	5.1						
6	Совершенность						
		ÎDEA доказать					
7	Пр	Приведение к СНФ:					
	7.1	Тождественные преобразования					
		7.1.1 Алгоритм					
	7.2	Таблица истинности					
		7.2.1 Алгоритм					
		7.2.2 Пример					
8	Проблема разрешимости						
	8.1	Критерий тождественной					
	8.2						
9	Лог	Логическое следование					
	9.1	Свойства					
	9.2	Правила логических умозаключений					

1 TODO from galery

2 что-то

$$F \equiv H \iff \phi(F(x_1, x_2, \dots, x_n)) = \phi(H(x_1, x_2, \dots, x_n))$$

Две формулы F и H тогда и только тогда, когда формула $F \iff H$ есть тавтология.

Следовательно

отношение равносильности между формулами есть отношение эквивалентности.

2.1 Основные равносильности

$$\begin{split} A &\leftrightarrow B \equiv (A \to B) \land (B \to A) \equiv (A \land B) \lor (\overline{A} \land \overline{B}) \\ A &\to B \equiv \overline{A} \lor B \equiv \overline{A \land \overline{B}} \\ A &\to B \equiv \overline{B} \to \overline{A} \\ A \land B \equiv \overline{A \to \overline{B}} \equiv \overline{\overline{A} \lor \overline{B}} \end{split}$$

2.2 Равносильные

let $A \equiv B$

$$\overline{A} \equiv \overline{B}$$

$$A \wedge B \equiv B \wedge C$$

$$A \vee B \equiv B \vee C$$

$$A \to C \equiv B \to C$$

$$C \to A = C \to B$$

$$A \leftrightarrow C = B \leftrightarrow C$$

2.3 Теорема о подстановках

 C_A - формула, содержащая в качестве своей подформулы формулу A. Пусть C_B получается из C_A заменой формулы A в этом вхождении на B. Тогда, если $A\equiv B$, то $C_A\equiv C_B$

C - формула, содержащая в которой выделено одно вхождение переменной V. Пусть C_X,C_Y получается из C заменой переменной V на X,Y соответственно. Тогда, если $X\equiv Y$, то $C_X\equiv C_Y$

Всякую формулу алгебры можно заменить равносильной ей формулой, содержащей только логический операции конъюнкции, дизъюнкции и отрицания.

2.4 Штрих Шеффера

$$x\uparrow y=\overline{x\wedge y}$$

2.5 Стрелка Пирса

$$x\downarrow y\equiv \overline{x\vee b}$$

3 Двойственность

Символы ∧, ∨ называются двойственными друг другу.

Формула называется двойственной другой, если все операции заменили на двойственные.

Двойственный список - инвертированный по значениям список.

4 фф

Пусть $A(x_i)$ - формула, $< s_i >$ - список истинности её переменных. Тогда $A(s_i) \equiv T \iff A^* \equiv F$ на списке $< t_i >$ двойственном к $< s_i >$

Приницп двойственности: $A \equiv B \Rightarrow A^* \equiv B^*$.

Можно использовать для нахождения новых равносильностей.

$$X \land (Y \lor Z) \equiv (X \land Y) \lor (Z \land Z) \Rightarrow X \lor (Y \land Z) \equiv (X \lor Y) \land (Z \lor Z)$$

5 Пусть

 x_1, x_2, \ldots, x_n - элементарные высказывания

Формула алгебры логики - функция входящих в нее элементарных выссказываний

 $A(x_1,x_2,\ldots,x_n)$ - формула составленная из x_1,\ldots,x_n

 $x_1, \dots x_n$ будем называть логическими переменными этой формулы

Конъюктивным одночленом называется конъюкция переменных или их отрицаний. Дизъюктивный - аналогично.

ДНФ (дизъюктивная нормальная форма) формулы A называется равносильная ей формула, представляющая собой дизъюнкцию элементарных конъюкций.

КНФ (конъюктивная нормальная форма) - наоборот.

Всякая формула обладает обеими ДНФ и КНФ.

5.1 Пример

$$(A \uparrow B) \to \overline{(\overline{C} \to (B \lor C))}$$

6 Совершенность

ДН Φ /КН Φ называется совершенной, если

- 1. в каждую из элементарных дизъюнкций/конъюкций логическая переменная входит только один раз.
- 2. если логическая переменная входит в одну из элементарных дизъюнкций/конъюкций, то она входит и во все остальные.
- 3. Все элементарные дизъюнкции/конъюкции различны.

$$(x \wedge y \wedge z) \vee (\overline{x} \wedge y \wedge z) \vee (x \wedge \overline{y} \wedge z)$$
 - СДНФ

Каждая не являющаяся тождественно ложной или истинной формула от n аргументов имеет единственную СДНФ/СКНФ.

6.1 IDEA доказать

7 Приведение к СНФ:

7.1 Тождественные преобразования

7.1.1 Алгоритм

CKHΦ

- (а) Найти КНФ
- (b) Путем добавления единичных противоречий $(a \land \neg a)$ для недостающих переменных в отдельные слагаемые привести к СКНФ

2. СДНФ

- (а) Найти ДНФ
- (b) Путем добавления единичных тавтологий $(a \lor \neg a)$ для недостающих переменных в отдельные множежители привести к СДНФ

7.2 Таблица истинности

7.2.1 Алгоритм

CKHΦ

- (а) Нужно выбрать все те значения переменных, когда формула ложна.
- (b) Для каждого набора выписываем элементарную дизъюнкцию. Переменная входит в нее сама если в этом наборе F иначе ее отрицание.
- (с) Образуем конъюнкцию всех дизъюнкций

2. СДНФ

- (а) Нужно выбрать все те значения переменных, когда формула истинна.
- (b) Для каждого набора выписываем элементарную конъюнкцию. Переменная входит в нее сама если в этом наборе Т иначе ее отрицание.
- (с) Образуем дизъюнкцию всех конъюнкций

7.2.2 Пример

X	У	\mathbf{Z}	F(x, y, z)
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

СДН
$$\Phi - (\neg x \wedge \neg y \wedge \neg z) \vee (\neg x \wedge y \wedge \neg z) \vee \dots$$

$$CKH\Phi - (x \lor y \lor \neg z) \land (\neg x \lor y \lor \neg z) \land (\neg x \lor \neg y \lor z)$$

8 Проблема разрешимости

8.1 Критерий тождественной

8.2 ...

Элементарная дизъюнкция тождественно истин

9 Логическое следование

$$A \to B \land B \to C \Rightarrow A \to C$$

 $H(x_1,\ldots,x_n)$ называется логическим следствие формул. $F_1(x_1,\ldots,x_n);\ldots;F_m(x_1,\ldots,x_n)$ если H превращается в истинное выссказывания при всякой такой подстановке вместо ее переменных конкретных выссказываний, при которых формулы F_1,\ldots,F_n превращаются в истинные выссказывания.

Короче (математически не правильно) $H\Rightarrow F_1,\dots F_m$ обозначается $F_1,\dots,F_n\models H$

Из истинности посылок следует истинность вывода.

$$F \models H \iff \models F \rightarrow H \ (F \rightarrow H -$$
тавтология)

$$\forall F_1, \dots, F_m, H : (F_1, \dots F_m \models H) \land (F_1 \land \dots \land F_m \models H) \land (\models (F_1 \land \dots \land \dots F_m) \rightarrow H)$$

9.1 Свойства

1.
$$F_1,\ldots,F_m\models F_i\Rightarrow$$
 для любого i

2.
$$F_1, ..., f_m \models G_i | j \in 1, ..., p; G_1, ..., G_p \models H$$
, to $F_1, ..., F_m \models H$

$$F \equiv H \iff F \models H \land H \models F$$

Если формула тавтология, то и ее любое следствие является тавтологией. $\models F, F \models H \Rightarrow \models H$

9.2 Правила логических умозаключений

$$\begin{array}{l} \text{(modus ponens)} : \frac{F,F \to G}{G} \\ \models F,F \to G \Rightarrow \models G \end{array}$$

$$\begin{array}{l} \text{(modus ponens)} : \frac{F \to G, \neg G}{\neg F} \\ \models \neg G, F \to G \Rightarrow \models \neg F \end{array}$$