DELPHION

Legious Work Files Seved Secreties My Account

PRODUCTS INSIDE DELPHION

Search: Quick/Number Boolean Advanced Derwent

Help

The Delphion Integrated View

Get Now: PDF | More choices...

Tools: Add to Work File: Create new Work File

View

<u>Image</u>

1 page

View: INPADOC | Jump to: Top

Q

Email this to a friend

PTitle: JP11345027A2: GAS SUPPLY EQUIPMENT PROVIDED WITH PRESSURE TYPE

FLOW RATE CONTROLLER

PCountry:

JP Japan

& Kind:

A2 Document Laid open to Public inspection i (See also: JP03522535B2)

P Inventor:

OMI TADAHIRO;

KAGATSUME SATORU; **IKEDA SHINICHI:** NISHINO KOJI:

YOSHIKAWA KAZUHIRO:

IDETA EIJI: DOI RYOSUKE; **УАМАЛ МІСНІО**; **UNO TOMIO**;

8 Assignee:

OMI TADAHIRO

TOKYO ELECTRON LTD

FUJIKIN INC

News, Profiles, Stocks and More about this company

Published / Filed:

1999-12-14 / 1998-05-29

P Application Number:

JP1998000150049

PIPC Code:

G05D 7/06; F17D 1/00; G05D 16/20;

Priority Number:

1998-05-29 JP1998000150049

PAbstract:

PROBLEM TO BE SOLVED: To miniaturize a gas supply equipment provided with a pressure type flow rate controller more, to lower a manufacture cost thereof, to prevent the occurrence of overshoot phenomenon of gas at the time of starting gas supply, to improve flow rate control accuracy and the reliability of the equipment, to reduce the dispersion of the quality of products such as semiconductors and to improve the manufacture efficiency of the products.

SOLUTION: This gas supply equipment for controlling the flow rate of the gas in a state of keeping an upstream side pressure of an orifice 5 more than double or so of a downstream side pressure is constituted of a control valve 2 for receiving the gas from a gas supply source, an orifice corresponding valve 9 provided on the downstream side of the valve, a pressure detector 3 provided between the control valve and the orifice corresponding valve, the orifice provided on the downstream side of the valve mechanism part of the orifice corresponding valve and an arithmetic controller 6 for computing the flow rate from the detected pressure P1 of the pressure detector as Qc=KP1 (where K is a constant) and outputting the difference between a flow rate command signal Qs and a computed flow rate Qc to the drive part of the control valve as a control signal Qy.

COPYRIGHT: (C)1999, JPO

PINPADOC Legal Status:

None

Get Now: Family Legal Status Report

P Designated Country:

CH DE FR GB IT LI NL CN EP KR SG US

P Family:

Show 10 known family members

POther Abstract Info:

DERABS G2000-097363

https://www.delphion.com/details?pn=JP11345027A2

Copyright © 1997-2005 The Thomson Corporation

Subscriptions | Web Seminars | Privacy | Terms & Conditions | Site Map | Contact Us | Help

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-345027

(43)公開日 平成11年(1999)12月14日

(51) Int.Cl.6		識別記号	FI		
G05D	7/06		G05D	7/06	Z
F17D	1/00		F17D	1/00	
G05D	16/20		G05D	16/20	A

		審查請求	未請求 請求項の数7 OL (全 10 頁)		
(21)出顧番号	特顏平10-150049	(71)出顧人	000205041		
			大見 忠弘		
(22)出顧日	平成10年(1998) 5月29日		宮城県仙台市青菜区米ケ袋2-1-17-		
			301		
		(71)出願人	000219967		
			東京エレクトロン株式会社		
			東京都港区赤坂5丁目3番6号		
		(71)出願人			
		(12/12/04/7)	株式会社フジキン		
			大阪府大阪市西区立売堀2丁目3番2号		
		/7.4\ 45.0H 1			
		(74)代理人	弁理士 杉本 丈夫		
			最終頁に続く		

(54) 【発明の名称】 圧力式流量制御装置を備えたガス供給設備

(57)【要約】 (修正有)

【課題】 圧力式流量制御装置を備えたガス供給設備を より小形化して製造コストの引下げを図ると共に、ガス 供給開始時のガスのオバーシュート現象の発生を防止 し、流量制御精度や設備の信頼性を高めて、半導体等製 品の品質のバラツキを少なくすると共に製品の製造能率 を高める。

【解決手段】 オリフィス5の上流側圧力を下流側圧力 の約2倍以上に保持した状態でガスの流量制御を行なう ガス供給設備に於いて、ガス供給源からガスを受け入れ るコントロール弁2と、当弁の下流側に設けたオリフィ ス対応弁9と、前記コントロール弁とオリフィス対応弁 との間に設けた圧力検出器3と、オリフィス対応弁の弁 機構部の下流側に設けたオリフィスと、圧力検出器の検 出圧力P, から流量をQc=KP, (但しKは定数)と して演算すると共に、流量指令信号Qsと演算流量Qc との差を制御信号Qyとしてコントロール弁の駆動部へ 出力する演算制御装置6とから構成する。

【特許請求の範囲】

【請求項1】 オリフィスの上流側圧力をオリフィスの 下流側圧力の約2倍以上に保持した状態でガスの流量制 御を行ないつつオリフィス対応弁を通してプロセスへガ スを供給するようにした圧力式流量制御装置を備えたガ ス供給設備に於いて、ガス供給源からガスを受け入れる コントロール弁と、コントロール弁の下流側に設けたオ リフィス対応弁と、前記コントロール弁とオリフィス対 応弁との間に設けた圧力検出器と、オリフィス対応弁の 弁機構部の下流側に設けたオリフィスと、前記圧力検出 器の検出圧力P、から流量をQc=KP、(但しKは定 数)として演算すると共に、流量指令信号Qsと演算流 量Qcとの差を制御信号Qyとしてコントロール弁の駆 動部へ出力する演算制御装置とからガス供給設備を構成 し、コントロール弁の開閉を制御して圧力P、を調整す ることにより供給ガス流量を制御するようにしたことを 特徴とする圧力式流量制御装置を備えたガス供給設備。

1

【請求項2】 コントロール弁を圧電素子駆動型の駆動 部を備えたダイレクトタッチ型のメタルダイヤフラム式 バルブとすると共に、オリフィス対応弁をダイレクトタッチ型のメタルダイヤフラム式バルブとし、更に圧力検 出器をコントロール弁の弁本体へ一体的に組み付ける構成とした請求項1に記載の圧力式流量制御装置を備えた ガス供給設備。

【請求項3】 コントロール弁の弁本体とオリフィス対応弁の弁本体とを一体的に形成するようにした請求項1 に記載の圧力式流量制御装置を備えたガス供給設備。

【請求項4】 オリフィス対応弁の弁機構を、弁本体の 弁室内へ挿着され、中央部に弁座シート挿着孔をまた外 周部にガス流入孔を夫々穿設したインナーディスクと、 前記インナーディスクの弁座シート挿着孔内へ気密状に 挿着され、中央部に弁座とこれに連通するガス流出口と ガス流出口を絞るオリフィスとを形成して成る弁座シートと、弁座シートの上方に配設され、弁座シートの弁座 に接離することにより流体通路を開閉する金属ダイヤフ ラムとから形成するようにした請求項1に記載の圧力式 流量制御装置を備えたガス供給設備。

【請求項5】 オリフィス対応弁を、ソレノイド駆動型 の駆動部を備えたオリフィス対応弁とした請求項2に記 載の圧力式流量制御装置を備えたガス供給設備。

【請求項6】 オリフィス対応弁を、空気圧作動型の駆動部を備えたオリフィス対応弁とした請求項2に記載の圧力式流量制御装置を備えたガス供給設備。

【請求項7】 弁座シートを、盤状体の上面側にリング状の弁座を突設すると共に、リング状の弁座シートの中央部の薄肉部に下方のガス流出通路に連通する小孔を穿設してオリフィスとし、且つ当該オリフィス部分の厚さtを0.03~0.1 mmとするようにした請求項4に記載の圧力式流量制御装置を備えたガス供給設備。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体製造装置や 化学品製造設備等に於いて使用する圧力式流量制御装置 を備えたガス供給設備の改良に関するものであり、ガス 供給の小形化及び流量制御性能の向上等を図ったガス供 給設備に関するものである。

[0002]

【従来の技術】半導体製造設備用のガス供給システムに 於いては、従前からマスフロコントローラが流量制御装 置として多く利用されて来た。しかし、マスフロコント ローラには、装置そのものが高価なうえ、応答速度が低 いこと、製品毎に制御精度にバラツキがあること、制御 の安定性に欠けること等の問題があり、実用上様々な支 障を生じていた。同様に、ガス供給システムからブロセ スへのガスの供給を制御する制御弁には、従前から空気 式のメタルダイヤフラム弁が多く使用されて来た。しか し、当該制御弁は開閉作動速度が遅いため、半導体製造 の信頼性が低下したり、処理能率の向上を図れないと云 う問題があった。

【0003】一方、本願出願人等は、上記従前のガス供給システムに於ける諸問題を一挙に解決するものとして、圧力式流量制御装置と高速ソレノイド作動型メタルダイヤフラム弁とを用いたガス供給設備を開発し、特開平8-338546号及び特開平10-55218号としてこれを公開している。

【0004】図11は従前の圧力式流量制御装置を備え たガス供給設備のブロック構成図を示すものであり、ま た図12はその主要部を形成するコントロール弁とオリ フィス対応弁の組み付け状況を示す縦断面図である。図 11及び図12に於いて1は圧力式流量制御装置、2は コントロール弁、3は圧力検出器、4は温度検出器、5 はオリフィス、6は演算制御装置、6aは温度補正回 路、6 b は流量演算回路、6 c は比較回路、6 d は増幅 回路、7a・7bは増幅器、8a・8bはA/D変換 器、9はオリフィス対応弁、9 a は弁本体、12は弁本 体、Qsは流量指令信号、Qcは流量演算信号、Qyは 制御信号であり、オリフィスの上流側圧力P、を下流側 圧力P, の約2倍以上に保持した状態でオリフィス5と コントロール弁2との間の流体圧を圧力検出器3によっ て検出し、この検出圧力P, から演算制御装置6に於い て流量QcをQc=KP、(但しKは定数)として演算 すると共に、流量指令信号Qsと演算した流量信号Qc との差を制御信号Qyとしてコントロール弁2の駆動部 10へ出力し、コントロール弁2の開閉によりオリフィ ス5の上流側圧力P、を調整することにより、オリフィ ス5の下流側流量を指令流量Qs に自動制御するもので ある。

【0005】前記コントロール弁2とオリフィス対応弁 9とは図12に示すように夫々別体として形成されてお 50 り、両者をニップル12a及び取付ねじ13aを介して 20

30

連結することにより、ガス供給設備の要部が構成されて いる。尚、オリフィス対応弁9としては空気作動型のメ タルダイヤフラム弁若しくはソレノイド作動型のメタル ダイヤフラム弁が使用されている。また、図11及び図 12に於いて11aはガス出口側、11bはガス入口 側、12a・12bはニップル、13b・13aは取付 ねじである。

【0006】前記図11及び図12に示した公知の圧力 式流量制御装置を備えたガス供給設備は、従前のマスフ ローコントローラを用いた設備に比較して、製造コスト を大幅に低減することができるだけでなく、応答性の点 でも格段に優れている。また、制御精度の点でも従来の ものに比較して遜色が無く、優れた実用的効用を奏する ものである。

【0007】しかし、上記公知の圧力式流量制御装置を 備えたガス供給設備にも末だ解決すべき問題が残されて おり、その中でも特に解決を急ぐべき問題は、①設備の 一層の小形化を図ること、②構成機器の構造を、接ガス 部の表面処理が施し易い構造とし、構成機器類の安定性 及び信頼性を高めること、③過渡流量特性を改善して、 流体の所謂オーバーシュート(過渡的流れ込み)及び混 合ガスの成分比のバラツキの発生を防止し、半導体製品 等の品質の安定性を高めること、及びの供給ガスの切換 速度をより速め、半導体製品等の生産能率を高めること 等の点である。

[0008]

【発明が解決しようとする課題】本発明は、公知の圧力 式流量制御装置を備えたガス供給設備に於ける上述の如 き問題の解決を課題とするものであり、①ガス供給設備 の一層の小形化を図ると共に、接ガス部の表面処理をし 易い構造とし、②過渡流量特性を改善して、半導体製品 の品質の安定性を高めることができると共に、供給ガス の切換速度を速めて半導体生産能率を高めることを可能 とした圧力式流量制御装置を備えたガス供給設備を提供 せんとするものである。

[0009]

【課題を解決するための手段】本発明に於いては、コン トロール弁2とオリフィス対応弁9とを一体化可能な構 造とすることにより設備の一層の小型化と接ガス部の表 面処理の容易化を図り、また、オリフィス5の取付位置 40 をオリフィス対応弁9の下流側とすることにより、流体 の過渡流量特性を改善し、更にオリフィス対応弁9その ものを小型・高速作動型のメタルダイヤフラム弁とする ことにより供給ガスの高速切換を可能とするようにした ものである。

【0010】即ち、請求項1に記載の発明は、オリフィ スの上流側圧力をオリフィスの下流側圧力の約2倍以上 に保持した状態でガスの流量制御を行ないつつオリフィ ス対応弁を通してプロセスへガスを供給するようにした

ス供給源からガスを受け入れるコントロール弁と、コン トロール弁の下流側に設けたオリフィス対応弁と、前記 コントロール弁とオリフィス対応弁との間に設けた圧力 検出器と、オリフィス対応弁の弁機構部の下流側に設け たオリフィスと、前記圧力検出器の検出圧力P、から流 量をQc=KP1(但しKは定数)として演算すると共 に、流量指令信号Qsと演算流量Qcとの差を制御信号 Qyとしてコントロール弁の駆動部へ出力する演算制御 装置とからガス供給設備を構成し、コントロール弁の開 閉を制御して圧力P、を調整することにより供給ガス流 量を制御するようにしたことを発明の基本構成とするも のである。

【0011】請求項2に記載の発明は、請求項1の発明 に於いて、コントロール弁を圧電素子駆動型の駆動部を 備えたダイレクトタッチ型のメタルダイヤフラム式バル ブとすると共に、オリフィス対応弁をダイレクトタッチ 型のメタルダイヤフラム式バルブとし、更に圧力検出器 をコントロール弁の弁本体へ一体的に組み付ける構成と したものである。

【0012】請求項3に記載の発明は、請求項1の発明 に於いてコントロール弁の弁本体とオリフィス対応弁の 弁本体とを一体的に形成するようにしたものである。

【0013】請求項4に記載の発明は、請求項1の発明 に於いてオリフィス対応弁の弁機構を、弁本体の弁室内 へ挿着され、中央部に弁座シート挿着孔をまた外周部に ガス流入孔を夫々穿設したインナーディスクと、前記イ ンナーディスクの弁座シート挿着孔内へ気密状に挿着さ れ、中央部に弁座とこれに連通するガス流出口とガス流 出口を絞るオリフィスとを形成して成る弁座シートと、 弁座シートの上方に配設され、弁座シートの弁座に接・ 離することにより流体通路を開閉する金属ダイヤフラム とから形成するようにしたものである。

【0014】請求項5に記載の発明は、請求項2の発明 に於いて、オリフィス対応弁をソレノイド駆動型の駆動 部を備えたオリフィス対応弁としたものである。

【0015】請求項6に記載の発明は、請求項2の発明 に於いて、オリフィス対応弁を空気圧作動型の駆動部を 備えたオリフィス対応弁としたものである。

【0016】請求項7に記載の発明は、請求項4の発明 に於いて、弁座シートを、盤状体の上面側にリング状の 弁座を突設すると共に、リング状の弁座シートの中央部 の薄肉部に下方のガス流出通路に連通する小孔を穿設し てオリフィスとし、且つ当該オリフィス部分の厚さtを 0. 03~0. 1mmとするようにしたものである。

[0017]

【発明の実施の形態】以下、図面に基づいて本発明の実 施の形態を説明する。図1は本発明に係る圧力式流量制 御装置を備えたガス供給設備の基本構成を示すブロック 線図であり、「オリフィス5とオリフィス対応弁9の組 圧力式流量制御装置を備えたガス供給設備に於いて、ガ 50 付け位置が変っている」点を除けば、前記図11に示し

20

 ϵ

た従前の圧力式流量制御装置を備えたガス供給設備の場合と全く同一である。

【0018】本発明に於いては、図1からも明らかなようにオリフィス5がオリフィス対応弁9の下流側に設けられており、且つ後述するようにオリフィス対応弁9の弁部とオリフィス5間の流路距離が極めて短かく選定されている。尚、前記オリフィス5とオリフィス対応弁9の取付位置関係が変っている点を除いて、本発明の圧力式流量制御装置のその他の構成は図11に示した公知の圧力式流量制御装置の構成と同一であるため、ここでは 10その説明を省略する。

【0019】図2及び図3は、本発明に係るガス供給設備の主要部の縦断正面概要図及び側面図であり、コントロール弁2の弁本体12とオリフィス対応弁9の弁本体9aとが連結ねじ14a・14bによって一体化されている。また、コントロール弁2の弁本体12の側面には接続用フランジ15が連結ねじ16a・16bを介して気密状に固定されている。更に、弁本体12の底面側には圧力検出器3が気密状に挿着されており、コントロール弁2の下流側のガス圧力P,が検出されている。尚、ガス入口11bは接続用フランジ15に穿設されており、弁本体12内に形成した流路を通して矢印方向にガスが流通する。

【0020】コントロール弁2の弁本体12から流出したガスは、オリフィス対応弁9の弁本体9a内に形成した流路を矢印方向に流通し、後述するようにオリフィス対応弁9のダイヤフラム弁体と弁座との間を流通したあと、オリフィス5を通して、弁本体9aの下面側に設けたガス出口11aから外部へ導出されて行く。

【0021】前記コントロール弁2は、メタルダイヤフラムを弁体とし、これを弁座へ直接に接当又は弁座から離座させることにより流体通路を開閉する構成のダイレクトタッチ型のメタルダイヤフラム式バルブに構成されており、駆動部10には圧電素子型の駆動部が利用されている。尚、当該コントロール弁2そのものは、前記図及び特開平8-338546号等によって公知であり、従って、ここではその詳細な説明は省略する。

【0022】一方、前記オリフィス対応弁9もコントロール弁2とほぼ同じ構造を有しており、その弁部Aはダイレクトタッチ型のメタルダイヤフラム式バルブに構成 40されている。また、オリフィス対応弁9の駆動部17としては髙飽和磁束密度を持つパーメンジュール又はFeーCo合金を鉄心とする髙速応答型のソレノイド駆動部が利用されており、前記メタルダイヤフラム型弁体をソレノイドブランジャによって直接作動させることにより、極く小形の電磁弁でもってガス通路の髙速開閉を可能にするものである。尚、オリフィス対応弁9の構造並びにその駆動部17の構成は既に公知のものであるため、ここではその詳細な説明は省略する。

【0023】図4及び図5は、本発明のガス供給設備で 50 状に切削除去し、リング状の弁座シート26aの中央部

使用するコントロール弁2とオリフィス対応弁9との組み合せの第2実施態様を示すものであり、コントロール弁2の弁本体12とオリフィス対応弁9の弁本体9aとを一体として弁本体18を形成するようにしたものである。尚、図4及び図5の第2実施形態では、弁本体18の両側に接続用フランジ19・20を設け、これ等を連結ねじ21a・21b、22a・22bによって気密状に弁本体18へ固定することにより、弁本体18の底面側にガス入口11b、ガス出口11aが失々形成されており、ガス入口11bから流入したガスは矢印方向に流れ、ガス出口11aより外部(真空チャンバー等)へ取り出されて行く。

【0024】前記図2乃至図5に示すように、コントロール弁2と弁本体12とオリフィス対応弁9の弁本体9 aを一体化することにより、弁本体そのものの小形化が図れると共に、流体通路内壁面に酸化クロム不働態膜や弗化クロム不働態膜等の不働態膜処理がし易くなる。その結果、半導体製造装置のコンパクト化が可能になると共に、金属内部からの脱ガスや金属内壁面の腐食によるパーティクルの発生が防止され、半導体製品の品質の悪化等を有効に防止することができる。

【0025】図6は、図2及び図4に示したオリフィス対応弁9のA部(弁機構部)の部分拡大断面図であり、9aは弁本体、23は弁本体9aに穿設した弁室、24は弁室内へ挿着したインナーディスク、25は弁体を形成する金属ダイヤフラム、26はPCTFE製の弁座用シート、26aはリング状の弁座、5は弁座用シートに設けたオリフィス、27は弁体押え、28はシャフト(弁棒)、29はスプリング、Sは流体通路であり、流30体通路S、から矢印方向に流入したガスは空隙及びオリフィス5を通って流体通路S、から流出して行く。

【0026】即ち、オリフィス対応弁9の弁機構部Aは、弁本体9aに穿設した弁室23の底面へ挿着した円盤状のインナーディスク24と、インナーディスク24の中央部に設けた弁座シート挿着孔24a内へ気密状に挿着した弁座シート26と、弁座シート26の上方に設けた金属製のダイヤフラム25と、ダイヤフラム25を上方より押圧する弁体押え27等より形成されている。尚、インナーディスク24の外周部にはガス流入通路S、に連通するガス流入口24bが設けられており、当該ガス流入口24bを通してガスがダイヤフラム25の下方空間へ流入する。また、弁座シート26の上面にはリング状の弁座26aが突設されており、更に、弁座26aに連通するガス流出通路S、にはオリフィス5が形成されている。

【0027】図7は、前記図6に於ける弁座シート(PCTFE製)26の他の例を示すものであり、弁座シート26をほぼ盤状体に形成してその上面側にリング状の弁座26aを突設する。そして、盤状体の裏面側を円錐状に切削除去し、リング状の弁座シート26aの中央部

(5)

を薄肉状にすると共に、当該薄肉部に小孔状のオリフィス5を穿設するようにしたものである。尚、オリフィス5としては、 ϕ =0.04、 ϕ =0.06、 ϕ =0.12、 ϕ =0.25、 ϕ =0.35 mmのものが適宜に用いられている。また、オリフィス5を形成する部分の厚さ t は極く薄い方がよく、例えば t = 0.03 \sim 0.1 mm位いとするのが望ましい。何故なら、後述するように当該厚さ t を小さくするほど、ガスのオーバーシュート(過渡流量)が小さくなるからである。

【0028】図8及び図9は、本発明に係る圧力式流量 10制御装置を備えたガス供給設備(オリフィス対応弁9の弁機構部の下流側にオリフィス5を設けたもの)と、従前の圧力式流量制御装置を備えたガス供給設備(オリフィス対応弁9の弁機構部の上流側にオリフィス5を設けたもの)との過渡流量特性を示すものである。

【0029】即ち、図8はオリフィス対応弁9としてソレノイド駆動型の駆動部を備えた弁を用いた場合の特性を示すものであり、曲線A,は本発明に係るガス供給設備の過渡流量特性であって、N,流量を250SCCMに設定した場合を示すものである。また、曲線B,は従前のガス供給設備の場合の過渡流量特性(N,流量=250SCCM)を示すものである。

【0030】また、図9はオリフィス対応弁として空気圧作動型の駆動部を備えた弁を用いた場合の特性を示すものであり、曲線A、は、本発明に係るガス供給設備の過渡流量特性を示すものであり、N、流量を200SCCMとした場合を示すものである。また、曲線B、は従前のガス供給設備の場合の過渡流量特性(N、流量=250SCCM)示すものである。図9の曲線A、からも明らかなように、空気圧駆動型のオリフィス対応弁とした場合には、操作信号C、の印加から約20msecとに場合には、操作信号C、の印加から約20msecとになる。尚、この遅れ時間をより少なくするためには、空気圧駆動部とコントロール用電磁弁とを一体とした型式の空気圧駆動型オリフィス対応弁を用いるのが望ましい。

【0031】前記図8及び図9に於いて、曲線C,及びC,はオリフィス対応弁9の作動信号の供給状態を示すものであり、曲線A,及びB,、曲線A,及びB,の測定に於いては、夫々同じ条件でオリフィス対応弁9へ作動信号が与えられている。

【0032】前記図8及び図9からも明らかなように、従前のガス供給設備に於いては、オリフィス対応弁9の開放時に流量曲線B,及びB,に振動が生じ、所謂ガスのオーバーシュート(過渡的な流れ込み)が発生する(曲線B,′、B,′の部分)。これに対して、本発明のガス供給設備に於いては、従前のガス供給設備の流量特性曲線B,及び流量特性曲線B,のように、オリフィス対応弁9の開放時にガスのオーバーシュート(過渡的な流れ込み)B,′、B,′を生ずることは全く無く、極めて田路にガスの流量が、確定の設定流量値にまでは

ぼ瞬時に立上り、正確なガス流量制御が行なえる。

【0033】図10は、前記ガス供給設備の過渡流量特性の測定試験装置の概要を示すものであり、ガス供給設備CSを構成する圧力式流量制御装置1の流量指令信号Qsを5V(流量200SCCM・N。)に設定し、オリフィス対応弁9の下流側(本発明の場合)又はオリフィス対応弁の上流側(従来のガス供給設備の場合)に設けたオリフィス5の内径を0.15mmのとした。

【0034】また、オリフィス対応弁9のガス出口11 aに9.261の真空チャンバー30を設け、ドライボンプ31により161/secの割合で排気し、チャンバー30内を1torr以下の真空度に保持した。尚、図10に於いて32はコンベクトロン真空計、33は差圧センサー、34は差圧センサーアンプ、35はニードル弁(常時開)、36はストレージオツシロスコープ、37は N_z ガス源($2kgf/cm^2G$)である。

【0035】オリフィス対応弁9(常時閉)の駆動部17への入力信号をonにしてオリフィス対応弁9を開放し、入力信号及び差圧センサ出力をストレージオツシロスコープ36により夫々測定したものが前記図8及び図9の各曲線A、・A、・B、・B・Cである。

【0036】尚、本発明のように、オリフィス5の位置をオリフィス対応弁9の弁機構部の下流側に設けた方が、ガスの過渡的流れ込みが少なくなる。従前のガス供給設備の場合のように、オリフィス対応弁9の閉鎖時にオリフィス5とオリフィス対応弁9との間に一次圧のガス溜りを生じないからであると想定される。また、試験の結果から、本発明に於けるオリフィス5は、その厚さ t を可能な限り薄くした方がより良い過渡流量特性を得30 ることができることが、確認されている。

[0037]

【発明の効果】本発明に於いては、オリフィス対応弁の 弁機構部Aの下流側にオリフィスを配設する構成として いるため、オリフィス対応弁を開放してプロセス側への ガスの供給を開示した際に生ずる所謂ガスのオーバーシ ュートがほぼ皆無となる。その結果、極めて高精度なガ スの流量制御を行なうことができ、ガス成分の乱れに起 因する半導体製品の品質のバラツキ等を防止することが 可能となる。

0 【0038】また、本発明に於いては、コントロール弁とオリフィス対応弁との弁本体を一体的に且つ機能的に連結する構成としているため、ガス供給設備の要部であるバルブ組立体部分の大幅な小形化が可能となり、引いてはガス供給設備の製造コストの引下げを図ることができる。

のガス供給設備に於いては、従前のガス供給設備の流量 【0039】更に、本発明に於いてはコントロール弁と特性曲線B,及び流量特性曲線B,のように、オリフィ オリフィス対応弁の弁本体を有機的に組み合せることにス対応弁9の開放時にガスのオーバーシュート(過渡的 より、バルブ本体内のガス流路を比較的単純な形態に形な流れ込み)B,′、B,′を生ずることは全く無く、 成することができ、接ガス面に対する不働態膜の形成処極めて円滑にガスの流量が、所定の設定流量値にまでは 50 理が容易に行なえるようになることにより、より完全な

10

内部ガスの放出防止や腐食生成物の発生防止が可能となり、ガス供給設備の信頼性が大幅に向上する。

【0040】加えて、本発明に於いては、オリフィス対応弁の駆動部に高透磁率のパーメンジュールを磁性材とする高速作動型ソレノイドを使用している。その結果、駆動部そのものを小形化できると共に、オリフィス対応弁を高速で開閉することができ、前記ガスのオーバーシュートが無いこととも相俟って、プロセス処理能率や半導体製品の製造能率の大幅な向上が可能となる。本発明は上述の通り優れた実用的効用を奏するものである。

【図面の簡単な説明】

【図1】本発明に係る圧力式流量制御装置を備えたガス 供給設備の構成を示すブロック線図である。

【図2】ガス供給設備の要部を形成するコントロール弁とオリフィス対応弁と圧力検出器の組み付け状況を示す一部を断面した概要図である。

【図3】図2の側面図である。

【図4】ガス供給設備の要部を形成するコントロール弁とオリフィス対応弁と圧力検出器の他の組み付け状況を示す一部を断面した概要図である。

【図5】図4の側面図である。

【図6】オリフィス対応弁の弁機構部分の拡大断面図で **~

【図7】オリフィス対応弁で使用する弁座シートの他の 例を示す拡大断面図である。

【図8】ソレノイド駆動型のオリフィス対応弁を用いた場合の、本発明に係るガス供給設備と従前のガス供給設備の過渡流量特性の一例を示すものである。

【図9】空気圧作動型のオリフィス対応弁を用いた場合の、本発明に係るガス供給設備と従前のガス供給設備と の過渡流量特性を示すものである。

【図10】図8及び図9に示した過渡流量特性の測定装置の説明図である。 :

*【図11】従前の圧力式流量制御装置を用いたガス供給 設備のブロック構成図である。

【図12】従前のガス供給設備に於けるコントロール弁とオリフィス対応弁と圧力検出器の組み付け状態を示す一部を断面した概要図である。

【符号の説明】

CS…ガス供給設備、Qs…流量指令信号、Qc…流量 演算信号、Qy…制御信号、P、…オリフィス上流側圧 力、P₂ …オリフィス下流側圧力、S…流体通路、S₂ 10 …ガス流入通路、S, …ガス流出通路、A…オリフィス 対応弁の弁機構部、1…圧力式流量制御装置、2…コン トロール弁、3…圧力検出器、4…温度検出器、5…オ リフィス、6…演算制御装置、6 a…温度補正回路、6 b…流量演算回路、6c…比較回路、6d…增幅回路、 7a・7b…増幅器、8a・8b…A/D変換器、9… オリフィス対応弁、9 a…オリフィス対応弁の弁本体、 10…コントロール弁の駆動部、11a・11b…ガス 出口側・ガス入口側、12…コントロール弁の弁本体、 12a・12b…ニップル、13a・13b…取付けね 20 じ、14a・14b…連結ねじ、15…接続用フラン ジ、16a・16b…連結ねじ、17…オリフィス対応 弁の駆動部、18…弁本体、19・20…接続用フラン ジ、21a・22b…連結ねじ、22a・22b…連結 ねじ、23…弁室、24…インナーディスク、24a… 弁座シート挿着孔、24b…ガス流入口、25…金属ダ イヤフラム、26…弁座シート、26a…弁座、27… 弁付押え、28…シャフト(弁枠)、29…スプリン グ、30…真空チャンバー、31…ドライボンプ、32 …コンベクトロン真空計、33…差圧センサー、34… 30 差圧センサーアンプ、35…ニードル弁、36…ストレ ージオツシロスコープ、37…N, ガス源2kgf/c m' G

) P₁

[図8]

【図9】

【図11】

【図12】

フロントページの続き

(72)発明者 大見 忠弘

宮城県仙台市青葉区米ケ袋2丁目1番17-

301号

(72)発明者 加賀爪 哲

山梨県韮崎市藤井町北下条2381番地の1 東京エレクトロン山梨株式会社内 (72)発明者 池田 信一

大阪府大阪市西区立売堀2丁目3番2号 株式会社フジキン内

(72)発明者 西野 功二

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72)発明者 吉川 和博

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72)発明者 出田 英二

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72)発明者 土肥 亮介

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72)発明者 山路 道雄

大阪府大阪市西区立売堀2丁目3番2号

株式会社フジキン内

(72)発明者 宇野 富雄

大阪府大阪市西区立壳堀2丁目3番2号

株式会社フジキン内