

Supplemental Table S2: Complete set of parameters for Mixed Meal Model.

Parameter	Function	Value
k_1	Stomach emptying glucose (stomach \rightarrow gut)	0.015
k_2	Glucose appearance from gut (gut \rightarrow plasma)	0.28
k_3	Supression of hepatic glucose release by change in plasma glucose.	$6.07 \text{x} 10^{-3}$
k_4	Supression of hepatic glucose release by remote insulin	$2.34 \text{x} 10^{-4}$
k_5	Coefficient for rate of insulin dependent glucose uptake to tissues.	0.102
k_6	Coefficient for rate of insulin production (proportion to glucose)	2.85
k_7	Coefficient for rate of insulin production (integral term)	1.15
k_8	Coefficient for rate of insulin production (derivative term)	7.27
k_9	Coefficient for rate of outflow of plasma insulin to remote compartment.	$3.83 \text{x} 10^{-2}$
k_{10}	Coefficient for rate of degradation of insulin in remote compartment.	$2.84 \text{x} 10^{-1}$
σ	Shape factor meal	1.4
K_m	Michaelis-Menten coefficient for glucose uptake into tissues.	13.2
G_b	Basal glucose level (glucose set-point of model)	fasting
I_b	Basal insulin level (insulin set-point of model)	glucose value fasting insulin value
EGP_b	Basal rate of endogenous glucose production	0.43
f_{spill}	Fractional spill-over of LPL derived NEFA	30
k_{11}	Coefficient of rate of LPL lipolysis of circulating triglyceride.	0.0008
ATL_{max}	Coefficient for maximum rate of lipolysis of triglyceride	0.215
K_{ATL}	stored in adipose tissue. Michaelis-Menten coefficient for rate of lipolysis of	0.126
k_{12}	adipose triglyceride Coefficient for rate of NEFA uptake into tisues	0.0598
$ au_{LPL}$	Time delay coefficient for insulin effect on lipid reactions.	320
k_{13}	Stomach emptying triglyceride (stomach \rightarrow gut)	$8.8 \text{x} 10^{-3}$
k_{14}	Rate constant for triglyceride appearance in plasma	0.017
k_{15}	(gut → lymphatic compartment → plasma) Coefficient for inhibition of triglyceride secretion from liver by delayed insulin	$1.0 \text{x} 10^{-5}$
k_{16}	by delayed insulin. Basal rate of triglyceride secretion from liver (VLDL)	0.015

Supplemenary Section S1: Complete set of equations for Mixed Meal Model Introduced in STAR Methods

Equation	Role
Glucose	
$G_{meal} = \sigma k_1^{\sigma} t^{\sigma - 1} e^{-k_1 t^{\sigma}} \cdot D_G$	Glucose mass in stomach
$\frac{d[\mathbf{M}_{G-gut}]}{dt} = G_{meal} - k_2[\mathbf{M}_{G-gut}]$	Rate of transition of glucose from stomach through gut to plasma.
$G_{gut} = k_2(\frac{f_G}{V_G \cdot BW})[M_{G-gut}]$	Glucose appearance in plasma from the meal via the gut.
$G_{liver} = EGP_b - k_4[\mathbf{I_{d1}}] - k_3([\mathbf{G_{PL}}] - G_b)$	Net hepatic glucose flux - EGP inhibited by insulin and glucose
$G_{uii} = EGP_b(\frac{K_m + G_b}{G_b}) \cdot (\frac{[G_{PL}]}{K_m + [G_{PL}]})$	Insulin independent glucose uptake into tissues (maintain steady state)
$G_{uid} = k_5 [\boldsymbol{I_{d1}}] (\frac{[\boldsymbol{G_{PL}}]}{K_M + [\boldsymbol{G_{PL}}]})$	Insulin dependent glucose uptake into tissues (delayed insulin signal)
$G_{ren} = (\frac{c_1}{V_G \cdot BW})([\mathbf{G_{PL}}] - G_{ren})([\mathbf{G_{PL}}] > G_{ren})$	Renal excretion of excess glucose (iff $G_{PL} >$ sepecified threshold)
$\frac{d[G_{PL}]}{dt} = G_{gut} + G_{liver} - G_{uii} - G_{uid} - G_{ren}$	Rate of change of plasma glucose
Insulin	
$I_{pro} = k_6([G_{PL}] - G_b) + \frac{k_7}{\tau_i}(G_{int} + G_b) + \frac{k_8}{\tau_d}(\frac{d[G_{PL}]}{dt})$	Insulin production in pancreas (PID controller)
$I_{liver} = k_7(\frac{G_b}{\tau_i \cdot I + b})[\boldsymbol{I_{PL}}]$	Insulin degradation in liver (maintain steady state)
$I_{rem} = k_9([\boldsymbol{I_{PL}}] - I_b)$	Insulin transport to insterstitial space
$\frac{d[I_{PL}]}{dt} = I_{pro} - I_{liver} - I_{rem}$	Rate pf change of plasma insulin
$\frac{d[I_{d1}]}{dt} = k_9([I_{Pl}]I_b) - k_{10} \cdot [I_{d1}]$	Insulin delay 1 (glucose)
$rac{d[oldsymbol{I_{d2}}]}{dt} = rac{3}{ au_{LPL}}([oldsymbol{I_{PL}}] - [oldsymbol{I_{d2}}])$	Insulin delay 2 (triglyceride liver)
$rac{d[m{I_{d3}}]}{dt} = rac{3}{ au_{LPL}}([m{I_{d2}}] - [m{I_{d3}}])$	Insulin delay 3
$rac{d[m{I_{d4}}]}{dt} = rac{3}{ au_{LPL}}([m{I_{d3}}] - [m{I_{d4}}])$	Insulin delay 4 (LPL lipolysis)

Equation Role

Triglyceride

$TG_{meal} == \sigma k_{13}^{\sigma} t^{\sigma - 1} e^{-k_{13}t^{\sigma}} \cdot D_{TG}$	Triglyceride mass in stomach	
$\frac{d[M_{TG-gut1}]}{dt} = TG_{meal} - k_{14} \cdot [M_{TG-gut1}]$	delayed transition of triglyceride mass from stomach to plasma via lymphatic	
$\frac{d[M_{TG-gut2}]}{dt} = k_{14}([M_{TG-gut2}] - [M_{TG-gut1}])$	system. $(gut \rightarrow lymphatic system \rightarrow plasma)$	
$\frac{d[\boldsymbol{M_{TG-gut3}}]}{dt} = k_{14}([\boldsymbol{M_{TG-gut3}}] - [\boldsymbol{M_{TG-gut2}}])$		
$TG_{gut} = k_{15} \left(\frac{f_{TG}}{V_{TG} \cdot BW} \cdot \left[\mathbf{M_{TG-gut3}} \right] \right)$	Triglyceride appearance in plasma from the meal via the lymphatic system.	
$TG_{LPL} = k_{11} \cdot [TG_{PL}] \cdot [I_{d4}]$	Hydrolysis of circulating triglcyeride by LPL (Insulin stimulated)	
$TG_{VLDL} = k_{16} - k_{15}([\boldsymbol{I_{d4}}] - I_b)$	Secretion of triglyceride from the liver occurs at a basal rate and inhibited by insulin.	
$\frac{d[TG_{PL}]}{dt} = TG_{VLDL} + TG_{gut} - TG_{LPL}$	Rate of change of plasma triglyceride concentration.	

NEFA

 $\frac{d[\mathbf{NEFA_{PL}}]}{dt} = 3spill \cdot [\mathbf{TG_{PL}}] + \frac{ATL_{max}}{1 + K_{ATL} \cdot [\mathbf{I_{d2}}]^2} - k_{12}[\mathbf{NEFA_{PL}}] \quad \text{Rate of change of plasma NEFA}$ concentration.

4