(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 March 2006 (30.03.2006)

PCT

(10) International Publication Number $WO\ 2006/034061\ A2$

- (51) International Patent Classification: C12N 15/09 (2006.01) C12N 15/31 (2006.01)
- (21) International Application Number:

PCT/US2005/033218

(22) International Filing Date:

16 September 2005 (16.09.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/943,508

17 September 2004 (17.09.2004) U

- (71) Applicant (for all designated States except US): PROMEGA CORPORATION [US/US]; 2800 Woods Hollow Road, Madison, WI 53711 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WOOD, Keith, V. [US/US]; 8380 Swan Road, Mt. Horeb, WI 53572 (US). WOOD, Monika, G. [US/US]; 8380 Swan Road, Mt. Horeb, WI 53572 (US). ALMOND, Biran [US/US]; 5765 Richard Drive, Fitchburg, WI 53719 (US). PAGUIO, Aileen [US/US]; 205 Ramsey Court, Madison, WI 53704 (US). FAN, Frank [TZ/US]; 2977 Dunmore Street, Madison, WI 53711 (US).

- (74) Agents: STEFFEY, Charles, E. et al.; Schwegman, Lundberg, Woessner & Kluth, P.A., P.O. Box 2938, Minneapolis, MN 55402 (US).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: SYNTHETIC NUCLEIC ACID MOLECULE AND METHODS OF PREPARATION

(57) Abstract: A method to prepare synthetic nucleic acid molecules having reduced inappropriate or unintended transcriptional characteristics when expressed in a particular host cell.

5

10

15

20

25

30

SYNTHETIC NUCLEIC ACID MOLECULE AND METHODS OF PREPARATION

Background

Transcription, the synthesis of an RNA molecule from a sequence of DNA is the first step in gene expression. Sequences which regulate DNA transcription include promoter sequences, polyadenylation signals, transcription factor binding sites and enhancer elements. A promoter is a DNA sequence capable of specific initiation of transcription and consists of three general regions. The core promoter is the sequence where the RNA polymerase and its cofactors bind to the DNA. Immediately upstream of the core promoter is the proximal promoter which contains several transcription factor binding sites that are responsible for the assembly of an activation complex that in turn recruits the polymerase complex. The distal promoter, located further upstream of the proximal promoter also contains transcription factor binding sites. Transcription termination and polyadenylation, like transcription initiation, are site specific and encoded by defined sequences. Enhancers are regulatory regions, containing multiple transcription factor binding sites, that can significantly increase the level of transcription from a responsive promoter regardless of the enhancer's orientation and distance with respect to the promoter as long as the enhancer and promoter are located within the same DNA molecule. The amount of transcript produced from a gene may also be regulated by a post-transcriptional mechanism, the most important being RNA splicing that removes intervening sequences (introns) from a primary transcript between splice donor and splice acceptor sequences.

Natural selection is the hypothesis that genotype-environment interactions occurring at the phenotypic level lead to differential reproductive success of individuals and therefore to modification of the gene pool of a population. Some properties of nucleic acid molecules that are acted upon by natural selection include codon usage frequency, RNA secondary structure, the efficiency of intron splicing, and interactions with transcription factors or other nucleic acid binding proteins. Because of the degenerate nature of the genetic

5

10

15

20

25

code, these properties can be optimized by natural selection without altering the corresponding amino acid sequence.

Under some conditions, it is useful to synthetically alter the natural nucleotide sequence encoding a polypeptide to better adapt the polypeptide for alternative applications. A common example is to alter the codon usage frequency of a gene when it is expressed in a foreign host cell. Although redundancy in the genetic code allows amino acids to be encoded by multiple codons, different organisms favor some codons over others. It has been found that the efficiency of protein translation in a non-native host cell can be substantially increased by adjusting the codon usage frequency but maintaining the same gene product (U.S. Patent Nos. 5,096,825, 5,670,356, and 5,874,304).

However, altering codon usage may, in turn, result in the unintentional introduction into a synthetic nucleic acid molecule of inappropriate transcription regulatory sequences. This may adversely effect transcription, resulting in anomalous expression of the synthetic DNA. Anomalous expression is defined as departure from normal or expected levels of expression. For example, transcription factor binding sites located downstream from a promoter have been demonstrated to effect promoter activity (Michael et al., 1990; Lamb et al., 1998; Johnson et al., 1998; Jones et al., 1997). Additionally, it is not uncommon for an enhancer element to exert activity and result in elevated levels of DNA transcription in the absence of a promoter sequence or for the presence of transcription regulatory sequences to increase the basal levels of gene expression in the absence of a promoter sequence.

Thus, what is needed is a method for making synthetic nucleic acid molecules with altered codon usage without also introducing inappropriate or unintended transcription regulatory sequences for expression in a particular host cell.

Summary of the Invention

The invention provides an isolated nucleic acid molecule (a polynucleotide) comprising a synthetic nucleotide sequence having reduced, for instance, 90% or less, e.g., 80%, 78%, 75%, or 70% or less, nucleic acid sequence identity relative to a parent nucleic acid sequence, e.g., a wild-type

nucleic acid sequence, and having fewer regulatory sequences such as transcription regulatory sequences. In one embodiment, the synthetic nucleotide sequence has fewer regulatory sequences than would result if the sequence differences between the synthetic nucleotide sequence and the parent nucleic acid sequence, e.g., optionally the result of differing codons, were randomly selected. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide that has an amino acid sequence that is at least 85%, 90%, 95%, or 99%, or 100%, identical to the amino acid sequence of a naturally-occurring (native or wild-type) corresponding polypeptide (protein). Thus, it is recognized that some specific amino acid changes may also be desirable to alter a particular phenotypic characteristic of a polypeptide encoded by the synthetic nucleotide sequence. Preferably, the amino acid sequence identity is over at least 100 contiguous amino acid residues. In one embodiment of the invention, the codons in the synthetic nucleotide sequence that differ preferably encode the same amin o acids as the corresponding codons in the parent nucleic acid sequence.

5

10

15

20

25

30

Hence, in one embodiment, the invention provides an isolated nucleic acid molecule comprising a synthetic nucleotide sequence having a coding region for a selectable or screenable polypeptide, wherein the synthetic nucleotide sequence has 90%, e.g., 80%, or less nucleic acid sequence identity to a parent nucleic acid sequence encoding a corresponding selectable or screenable polypeptide, and wherein the synthetic nucleotide sequence encodes a selectable or screenable polypeptide with at least 85% amino acid sequence identity to the corresponding selectable or screenable polypeptide encoded by the parent nuclei c acid sequence. The decreased nucleotide sequence identity may be a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence. The synthetic nucleotide sequence of the invention has a reduced number of regulatory sequences relative to the parent nucleic acid sequence, for example, relative to the average number of regulatory sequences resulting from random selections of codons or nucleotides at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence. In one embodiment, a nucleic acid molecule may include a synthetic nucleotide sequence which together with other sequences encodes a selectable or screenable polypeptide. For instance, a synthetic nucleotide

sequence which forms part of an open reading frame for a selectable or screenable polypeptide may include at least 100, 150, 200, 250, 300 or more nucleotides of the open reading, which nucleotides have reduced nucleic acid sequence identity relative to corresponding sequences in a parent nucleic acid sequence. In one embodiment, the parent nucleic acid sequence is SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:15 or SEQ ID NO:41, the complement thereof, or a sequence that has 90%, 95% or 99% nucleic acid sequence identity thereto.

In one embodiment, the nucleic acid molecule of the invention comprises sequences which have been optimized for expression in mammalian cells, and more preferably, in human cells (see, e.g., WO 02/16944 which discloses methods to optimize sequences for expression in a cell of interest). For instance, nucleic acid molecules may be optimized for expression in eukaryotic cells by introducing a Kozak sequence and/or one or more introns or decreasing the number of other regulatory sequences, and/or altering codon usage to codons employed more frequently in one or more eukaryotic organisms, e.g., codons employed more frequently in an eukaryotic host cell to be transformed with the nucleic acid molecule.

In one embodiment, the synthetic nucleotide sequence is present in a vector, e.g., a plasmid, and such a vector may include other optimized sequences. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide comprising a selectable polypeptide, which synthetic nucleotide sequence has at least 90% or more nucleic acid sequence identity to an open reading frame in a sequence comprising, for example, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, the complement thereof, or a fragment thereof that encodes a polypeptide with substantially the same activity as the corresponding full-length and optionally wild-type (functional) polypeptide, e.g., a polypeptide encoded by SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:15 or SEQ ID NO:41, or a portion thereof which together with other parent or wild-type sequences encodes a polypeptide with substantially the same activity as the

corresponding full-length and optionally wild-type polypeptide. As used herein, "substantially the same activity" is at least about 70%, e.g., 80%, 90% or more, the activity of a corresponding full-length and optionally wild-type (functional) polypeptide. In one embodiment, an isolated nucleic acid molecule encodes a fusion polypeptide comprising a selectable polypeptide.

5

10

15

20

25

30

Also provided is an isolated nucleic acid molecule comprising a synthetic nucleotide sequence having a coding region for a firefly luciferase, wherein the nucleic acid sequence identity of the synthetic nucleic acid molecule is 90% or less, e.g., 80%, 78%, 75% or less, compared to a parent nucleic acid sequence encoding a firefly luciferase, e.g., a parent nucleic acid sequence having SEQ ID NO:14 or SEQ ID NO:43, which synthetic nucleotide sequence has fewer regulatory sequences including transcription regulatory sequences than would result if the sequence differences, e.g., differing codons, were randomly selected. Preferably, the synthetic nucleotide sequence encodes a polypeptide that has an amino acid sequence that is at least 85%, preferably 90%, and most preferably 95% or 99% identical to the amino acid sequence of a naturally-occurring or parent polypeptide. Thus, it is recognized that some specific amino acid changes may be desirable to alter a particular phenotypic characteristic of the luciferase encoded by the synthetic nucleotide sequence. Preferably, the amino acid sequence identity is over at least 100 contiguous amino acid residues. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide comprising a firefly luciferase, which synthetic nucleotide sequence has at least 90% or more nucleic acid sequence identity to an open reading frame in a sequence comprising, for example, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, the complement thereof, or a fragment thereof that encodes a polypeptide with substantially the same activity as the corresponding full-length and optionally wild-type (functional) polypeptide, e.g., a polypeptide encoded by SEQ ID NO:14 or SEQ ID NO:43, or a portion thereof which together with other sequences encodes a firefly luciferase. For instance, a synthetic nucleotide sequence which forms part of an open reading frame for a firefly luciferase may include at least 100, 150, 200, 250, 300 or more nucleotides of the open reading, which nucleotides have reduced nucleic acid sequence identity relative to corresponding sequences in a parent nucleic acid sequence.

5

10

15

20

25

30

In another embodiment, the invention provides an isolated nucleic acid molecule comprising a synthetic nucleotide sequence which does not include an open reading frame encoding a peptide or polypeptide of interest, e.g., the synthetic nucleotide sequence may have an open reading frame but it does not include sequences that encode a functional or desirable peptide or polypeptide, but may include one or more stop codons in one or more reading frames, one or more poly(A) adenylation sites, and/or a contiguous sequence for two or more restriction endonucleases (restriction enzymes), i.e., a multiple cloning region (also referred to as a multiple cloning site, "MCS"), and which is generally at least 20, e.g., at least 30, nucleotides in length and up to 1000 or more nucleotides, e.g., up to 10,000 nucleotides, which synthetic nucleotide sequence has fewer regulatory sequences such as transcription regulatory sequences relative to a corresponding parent nucleic acid sequence. In one embodiment, the synthetic nucleotide sequence which does not encode a peptide or polypeptide has 90% or less, e.g., 80%, or less nucleic acid sequence identity to a parent nucleic acid sequence, wherein the decreased sequence identity is a result of a reduced number of regulatory sequences in the synthetic nucleotide sequence relative to the parent nucleic acid sequence.

The regulatory sequences which are reduced in the synthetic nucleotide sequence include, but are not limited to, any combination of transcription factor binding sequences, intron splice sites, poly(A) adenylation sites (poly(A) sequences or poly(A) sites hereinafter), enhancer sequences, promoter modules, and/or promoter sequences, e.g., prokaryotic promoter sequences. Generally, a synthetic nucleic acid molecule lacks at least 10%, 20%, 50% or more of the regulatory sequences, for instance lacks substantially all of the regulatory sequences, e.g., 80%, 90% or more, for instance, 95% or more, of the regulatory sequences, present in a corresponding parent or wild-type nucleotide sequence. Regulatory sequences, e.g., transcription regulatory sequences, are well known in the art. The synthetic nucleotide sequence may also have a reduced number of restriction enzyme recognition sites, and may be modified to include selected sequences, e.g., sequences at or near the 5' and/or 3' ends of the synthetic nucleotide sequence such as Kozak sequences and/or desirable restriction enzyme recognition sites, for instance, restriction enzyme recognition sites useful

to introduce a synthetic nucleotide sequence to a specified location, e.g., in a multiple cloning region 5' and/or 3' to a nucleic acid sequence of interest.

5

10

15

20

25

30

In one embodiment, the synthetic nucleotide sequence of the invention has a codon composition that differs from that of the parent or wild-type nucleic acid sequence. Preferred codons for use in the invention are those which are employed more frequently than at least one other codon for the same amino acid in a particular organism and/or those that are not low-usage codons in that organism and/or those that are not low-usage codons in the organism used to clone or screen for the expression of the synthetic nucleotide sequence (for example, E. coli). Moreover, codons for certain amino acids (i.e., those amino acids that have three or more codons), may include two or more codons that are employed more frequently than the other (non-preferred) codon(s). The presence of codons in a synthetic nucleotide sequence that are employed more frequently in one organism than in another organism results in a synthetic nucleotide sequence which, when introduced into the cells of the organism that employs those codons more frequently, has a reduced risk of aberrant expression and/or is expressed in those cells at a level that may be greater than the expression of the wild type (unmodified) nucleic acid sequence in those cells under some conditions. For example, a synthetic nucleic acid molecule of the invention which encodes a selectable or screenable polypeptide may be expressed at a level that is greater, e.g., at least about 2, 3, 4, 5, 10-fold or more relative to that of the parent or wild-type (unmodified) nucleic acid sequence in a cell or cell extract under identical conditions (such as cell culture conditions, vector backbone, and the like). In one embodiment, the synthetic nucleotide sequence of the invention has a codon composition that differs from that of the parent or wild-type nucleic acid sequence at more than 10%, 20% or more, e.g., 30%, 35%, 40% or more than 45%, e.g., 50%, 55%, 60% or more of the codons.

In one embodiment of the invention, the codons that are different are those employed more frequently in a mammal, while in another embodiment the codons that are different are those employed more frequently in a plant. A particular type of mammal, e.g., human, may have a different set of preferred codons than another type of mammal. Likewise, a particular type of plant may have a different set of preferred codons than another type of plant. In one

5

10

15

20

25

30

embodiment of the invention, the majority of the codons which differ are ones that are preferred codons in a desired host cell and/or are not low usage codons in a particular host cell. Preferred codons for mammals (e.g., humans) and plants are known to the art (e.g., Wada et al., 1990). For example, preferred human codons include, but are not limited to, CGC (Arg), CTG (Leu), AGC (Ser), ACC (Thr), CCC (Pro), GCC (Ala), GGC (Gly), GTG (Val), ACT (Ile), AAG (Lys), AAC (Asn), CAG (Gln), CAC (His), GAG (Glu), GAC (Asp), TAC (Tyr), TGC (Cys) and TTC (Phe) (Wada et al., 1990). Thus, synthetic nucleotide sequences of the invention have a codon composition which differs from a wild type nucleic acid sequence by having an increased number of preferred human codons, e.g. CGC, CTG, TCT, AGC, ACC, CCC, GCC, GGC, GTG, ACT, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC, TTC, or any combination thereof. For example, the synthetic nucleotide sequence of the invention may have an increased number of AGC serine-encoding codons, CCC prolineencoding codons, and/or ACC threonine-encoding codons, or any combination thereof, relative to the parent or wild-type nucleic acid sequence. Similarly, synthetic nucleotide sequences having an increased number of codons that are employed more frequently in plants, have a codon composition which differs from a wild-type nucleic acid sequence by having an increased number of the plant codons including, but not limited to, CGC (Arg), CTT (Leu), TCT (Ser), TCC (Ser), ACC (Thr), CCA (Pro), CCT (Pro), GCT (Ser), GGA (Gly), GTG (Val), ATC (Ile), ATT (Ile), AAG (Lys), AAC (Asn), CAA (Gln), CAC (His), GAG (Glu), GAC (Asp), TAC (Tyr), TGC (Cys), TTC (Phe), or any combination thereof (Murray et al., 1989). Preferred codons may differ for different types of plants (Wada et al., 1990).

The nucleotide substitutions in the synthetic nucleic acid sequence may be influenced by many factors such as, for example, the desire to have an increased number of nucleotide substitutions such as those resulting in a silent nucleotide substitution (encodes the same amino acid) and/or decreased number of regulatory sequences. Under some circumstances (e.g., to permit removal of a transcription factor binding site) it may be desirable to replace a non-preferred codon with a codon other than a preferred codon or a codon other than the preferred codon in order to decrease the number of regulatory sequences.

5

10

15

20

25

30

The invention also provides an expression cassette or vector. The expression cassette or vector of the invention comprises a synthetic nucleotide sequence of the invention operatively linked to a promoter that is functional in a cell or comprises a synthetic nucleotide sequence, respectively. Preferred promoters are those functional in mammalian cells and those functional in plant cells. Optionally, the expression cassette may include other sequences, e.g., one or more restriction enzyme recognition sequences 5' and/or 3' to an open reading frame for a selectable polypeptide or luciferase and/or a Kozak sequence, and be a part of a larger polynucleotide molecule such as a plasmid, cosmid, artificial chromosome or vector, e.g., a viral vector, which may include a multiple cloning region for other sequences, e.g., promoters, enhancers, other open reading frames and/or poly(A) sites. In one embodiment, a vector of the invention includes SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, the complement thereof, or a sequence which has at least 80% nucleic acid sequence identity thereto and encodes a selectable and/or screenable polypeptide.

In one embodiment, the synthetic nucleotide sequence encoding a selectable or screenable polypeptide is introduced into a vector backbone, e.g., one which optionally has a poly(A) site 3' to the synthetic nucleotide sequence, a gene useful for selecting transformed prokaryotic cells which optionally is a synthetic sequence, a gene useful for selecting transformed eukaryotic cells which optionally is a synthetic sequence, a noncoding region for decreasing transcription and/or translation into adjacent linked desirable open reading frames, and/or a multiple cloning region 5' and/or 3' to the synthetic nucleotide sequence encoding a selectable or screenable polypeptide which optionally includes one or more protein destabilization sequences (see U.S. application Serial No. 10/664,341, filed September 16, 2003, the disclosure of which is incorporated by reference herein). In one embodiment, the vector having a synthetic nucleotide sequence encoding a selectable or screenable polypeptide may lack a promoter and/or enhancer which is operably linked to that synthetic sequence. In another embodiment, the invention provides a vector comprising a promoter, e.g., a prokaryotic or eukaryotic promoter, operably linked to a synthetic nucleotide sequence encoding a selectable or screenable polypeptide. Such vectors optionally include one or more multiple cloning regions, such as

ones that are useful to introduce an additional open reading frame and/or a promoter for expression of the open reading frame which promoter optionally is different than the promoter for the selectable or screenable polypeptide, and/or a prokaryotic origin of replication. A "vector backbone" as used herein may include sequences (open reading frames) useful to identify cells with those sequences, e.g., in prokaryotic cells, their promoters, an origin of replication for vector maintenance, e.g., in prokaryotic cells, and optionally one or more other sequences including multiple cloning regions e.g., for insertion of a promoter and/or open reading frame of interest, and sequences which inhibit transcription and/or translation.

Also provided is a host cell comprising the synthetic nucleotide sequence of the invention, an isolated polypeptide (e.g., a fusion polypeptide encoded by the synthetic nucleotide sequence of the invention), and compositions and kits comprising the synthetic nucleotide sequence of the invention, a polypeptide encoded thereby, or an expression cassette or vector comprising the synthetic nucleotide sequence in suitable container means and, optionally, instruction means. The host cell may be an eukaryotic cell such as a plant or vertebrate cell, e.g., a mammalian cell, including but not limited to a human, non-human primate, canine, feline, bovine, equine, ovine or rodent (e.g., rabbit, rat, ferret, hamster, or mouse) cell or a prokaryotic cell.

The invention also provides a method to prepare a synthetic nucleotide sequence of the invention by genetically altering a parent, e.g., a wild-type or synthetic, nucleic acid sequence. The method comprises altering (e.g., decreasing or eliminating) a plurality of regulatory sequences in a parent nucleic acid sequence, e.g., one which encodes a selectable or screenable polypeptide or one which does not encode a peptide or polypeptide, to yield a synthetic nucleotide sequence which has a decreased number of regulatory sequences and, if the synthetic nucleotide sequence encodes a polypeptide, it preferably encodes the same amino acids as the parent nucleic acid molecule. The transcription regulatory sequences which are reduced include but are not limited to any of transcription factor binding sequences, intron splice sites, poly(A) sites, enhancer sequences, promoter modules, and/or promoter sequences. Preferably, the alteration of sequences in the synthetic nucleotide sequence does not result in an

increase in regulatory sequences. In one embodiment, the synthetic nucleotide sequence encodes a polypeptide that has at least 85%, 90%, 95% or 99%, or 100%, contiguous amino acid sequence identity to the amino acid sequence of the polypeptide encoded by the parent nucleic acid sequence.

5

10

15

20

25

30

Thus, in one embodiment, a method to prepare a synthetic nucleic acid molecule comprising an open reading frame is provided. The method includes altering the codons and/or regulatory sequences in a parent nucleic acid sequence which encodes a reporter protein such, as a firefly luciferase or a selectable polypeptide such as one encoding resistance to ampicillin, puromycin, hygromycin or neomycin, to yield a synthetic nucleotide sequence which encodes a corresponding reporter polypeptide and which has for instance at least 10% or more, e.g., 20%, 30%, 40%, 50% or more, fewer regulatory sequences relative to the parent nucleic acid sequence. The synthetic nucleotide sequence has 90%, e.g., 85%, 80%, or 78%, or less nucleic acid sequence identity to the parent nucleic acid sequence and encodes a polypeptide with at least 85% amino acid sequence identity to the polypeptide encoded by the parent nucleic acid sequence. The regulatory sequences which are altered include transcription factor binding sequences, intron splice sites, poly(A) sites, promoter modules, and/or promoter sequences. In one embodiment, the synthetic nucleic acid sequence hybridizes under medium stringency hybridization but not stringent conditions to the parent nucleic acid sequence or the complement thereof. In one embodiment, the codons which differ encode the same amino acids as the corresponding codons in the parent nucleic acid sequence.

Also provided is a synthetic (including a further synthetic) nucleotide sequence prepared by the methods of the invention, e.g., a further synthetic nucleotide sequence in which introduced regulatory sequences or restriction endonuclease recognition sequences are optionally removed. Thus, the method of the invention may be employed to alter the codon usage frequency and/or decrease the number of regulatory sequences in any open reading frame or to decrease the number of regulatory sequences in any nucleic acid sequence, e.g., a noncoding sequence. Preferably, the codon usage frequency in a synthetic nucleotide sequence which encodes a selectable or screenable polypeptide is altered to reflect that of the host organism desired for expression of that

nucleotide sequence while also decreasing the number of potential regulatory sequences relative to the parent nucleic acid molecule.

5

10

15

20

25

30

Also provided is a method to prepare a synthetic raucleic acid molecule which does not code for a peptide or polypeptide. The method includes altering the nucleotides in a parent nucleic acid sequence having at least 20 nucleotides which optionally does not code for a functional or desirable peptide or polypeptide and which optionally may include sequences which inhibit transcription and/or translation, to yield a synthetic nucleotide sequence which does not include an open reading frame encoding a peptide or polypeptide of interest, e.g., the synthetic nucleotide sequence may have an open reading frame but it does not include sequences that encode a functional or desirable peptide or polypeptide, but may include one or more stop codons in One or more reading frames, one or more poly(A) adenylation sites, and/or a contiguous sequence for two or more restriction endonucleases, i.e., a multiple clorning region. The synthetic nucleotide sequence is generally at least 20, e.g., at least 30, nucleotides in length and up to 1000 or more nucleotides, e.g., up to 10,000 nucleotides, and has fewer regulatory sequences such as transcription regulatory sequences relative to a corresponding parent nucleic acid sequence which does not code for a peptide or polypeptide, e.g., a parent nucleic acid sequence which optionally includes sequences which inhibit transcription and/or translation. The nucleotides are altered to reduce one or more regulatory sequences, e.g., transcription factor binding sequences, intron splice sites, poly(A) sites, enhancer sequences, promoter modules, and/or promoter sequences, in the parent nucleic acid sequence.

The invention also provides a method to prepare an expression vector. The method includes providing a linearized plasmid having a nucleic molecule including a synthetic nucleotide sequence of the invention which encodes a selectable or screenable polypeptide which is flanked at the 5' and/or 3' end by a multiple cloning region. The plasmid is linearized by contacting the plasmid with at least one restriction endonuclease which cleaves in the multiple cloning region. The linearized plasmid and an expression cassette having ends compatible with the ends in the linearized plasmid are annealed, yielding an expression vector. In one embodiment, the plasmid is linearized by cleavage by

at least two restriction endonucleases, only one of which cleaves in the multiple cloning region.

Also provided is a method to clone a promoter or open reading frame. The method includes comprising providing a linearized plasmid having a multiple cloning region and a synthetic sequence of the invention which encodes a selectable or screenable polypeptide and/or a synthetic sequence of the invention which does not encode a peptide or polypeptide, which is plasmid is linearized by contacting the plasmid with at least two restriction endonucleases at least one of which cleaves in the multiple cloning region; and annealing the linearized plasmid with DNA having a promoter or an open reading frame with ends compatible with the ends of the linearized plasmid.

Exemplary methods to prepare synthetic sequences for firefly lucifer ase and a number of selectable polypeptide nucleic acid sequences, as well as non-coding regions present in a vector backbone, are described hereinbelow. For instance, the methods may produce synthetic selectable polypeptide nucleic acid molecules which exhibit similar or significantly enhanced levels of mammalian expression without negatively effecting other desirable physical or biochemical properties and which were also largely devoid of regulatory elements.

Clearly, the present invention has applications with many genes and across many fields of science including, but not limited to, life science research, agrigenetics, genetic therapy, developmental science and pharmaceutical development.

Brief Description of the Figures

Figure 1. Codons and their corresponding amino acids.

Figure 2. Design scheme for the pGL4 vector.

Detailed Description of the Invention

Definitions

5

10

15

20

30

The term "nucleic acid molecule" or "nucleic acid sequence" as used herein, refers to nucleic acid, DNA or RNA, that comprises noncoding or coding sequences. Coding sequences are necessary for the production of a polypeptide or protein precursor. The polypeptide can be encoded by a full-length coding

sequence or by any portion of the coding sequence, as long as the desired protein activity is retained. Noncoding sequences refer to nucleic acids which do not code for a polypeptide or protein precursor, and may include regulatory elements such as transcription factor binding sites, poly(A) sites, restriction endonuclease sites, stop codons and/or promoter sequences.

A "synthetic" nucleic acid sequence is one which is not found in nature, i.e., it has been derived using molecular biological, chemical and/or informatic techniques.

5

10

15

20

25

30

A "nucleic acid", as used herein, is a covalently linked sequence of nucleotides in which the 3' position of the pentose of one nucleotide is joined by a phosphodiester group to the 5' position of the pentose of the next, and in which the nucleotide residues (bases) are linked in specific sequence, i.e., a linear order of nucleotides. A "polynucleotide", as used herein, is a nucleic acid containing a sequence that is greater than about 100 nucleotides in length. An "oligonucleotide" or "primer", as used herein, is a short polynucleotide or a portion of a polynucleotide. An oligonucleotide typically contains a sequence of about two to about one hundred bases. The word "oligo" is sometimes used in place of the word "oligonucleotide".

Nucleic acid molecules are said to have a "5'-terminus" (5' end) and a "3'-terminus" (3' end) because nucleic acid phosphodiester linkages occur to the 5' carbon and 3' carbon of the pentose ring of the substituent mononucleotides. The end of a polynucleotide at which a new linkage would be to a 5' carbon is its 5' terminal nucleotide. The end of a polynucleotide at which a new linkage would be to a 3' carbon is its 3' terminal nucleotide. A terminal nucleotide, as used herein, is the nucleotide at the end position of the 3'- or 5'-terminus.

DNA molecules are said to have "5' ends" and "3' ends" because mononucleotides are reacted to make oligonucleotides in a manner such that the 5' phosphate of one mononucleotide pentose ring is attached to the 3' oxygen of its neighbor in one direction via a phosphodiester linkage. Therefore, an end of an oligonucleotides referred to as the "5' end" if its 5' phosphate is not linked to the 3' oxygen of a mononucleotide pentose ring and as the "3' end" if its 3' oxygen is not linked to a 5' phosphate of a subsequent mononucleotide pentose

ring.

5

10

15

20

25

30

As used herein, a nucleic acid sequence, even if internal to a larger oligonucleotide or polynucleotide, also may be said to have 5' and 3' ends. In either a linear or circular DNA molecule, discrete elements are referred to as being "upstream" or 5' of the "downstream" or 3' elements. This terminology reflects the fact that transcription proceeds in a 5' to 3' fashion along the DNA strand. Typically, promoter and enhancer elements that direct transcription of a linked gene (e.g., open reading frame or coding region) are generally located 5' or upstream of the coding region. However, enhancer elements can exert their effect even when located 3' of the promoter element and the coding region.

Transcription termination and polyadenylation signals are located 3' or downstream of the coding region.

The term "codon" as used herein, is a basic genetic coding unit, consisting of a sequence of three nucleotides that specify a particular amino acid to be incorporation into a polypeptide chain, or a start or stop signal. The term "coding region" when used in reference to structural genes refers to the nucleotide sequences that encode the amino acids found in the nascent polypeptide as a result of translation of a mRNA molecule. Typically, the coding region is bounded on the 5' side by the nucleotide triplet "ATG" which encodes the initiator methionine and on the 3' side by a stop codon (e.g., TAA, TAG, TGA). In some cases the coding region is also known to initiate by a nucleotide triplet "TTG".

By "protein", "polypeptide" or "peptide" is meant any chain of amino acids, regardless of length or post-translational modification (e.g., glycosylation or phosphorylation). The nucleic acid molecules of the invention may also encode a variant of a naturally-occurring protein or a fragment thereof.

Preferably, such a variant protein has an amino acid sequence that is at least 85%, preferably 90%, and most preferably 95% or 99% identical to the amino acid sequence of the naturally-occurring (native or wild-type) protein from which it is derived.

Polypeptide molecules are said to have an "amino terminus" (N-terminus) and a "carboxy terminus" (C-terminus) because peptide linkages occur between the backbone amino group of a first amino acid residue and the backbone

carboxyl group of a second amino acid residue. The terms "N-terminal" and "C-terminal" in reference to polypeptide sequences refer to regions of polypeptides including portions of the N-terminal and C-terminal regions of the polypeptide, respectively. A sequence that includes a portion of the N-terminal region of a polypeptide includes amino acids predominantly from the N-terminal half of the polypeptide chain, but is not limited to such sequences. For example, an N-terminal sequence may include an interior portion of the polypeptide sequence including bases from both the N-terminal and C-terminal halves of the polypeptide. The same applies to C-terminal regions. N-terminal and C-terminal regions may, but need not, include the amino acid defining the ultimate N-terminus and C-terminus of the polypeptide, respectively.

5

10

15

20

25

30

The term "wild-type" as used herein, refers to a gene or gene product that has the characteristics of that gene or gene product isolated from a naturally occurring source. A wild-type gene is that which is most frequently observed in a population and is thus arbitrarily designated the "wild-type" form of the gene. In contrast, the term "mutant" refers to a gene or gene product that displays modifications in sequence and/or functional properties (i.e., altered characteristics) when compared to the wild-type gene or gene product. It is noted that naturally-occurring mutants can be isolated; these are identified by the fact that they have altered characteristics when compared to the wild-type gene or gene product.

The term "recombinant protein" or "recombinant polypeptide" as used herein refers to a protein molecule expressed from a recombinant DNA molecule. In contrast, the term "native protein" is used herein to indicate a protein isolated from a naturally occurring (i.e., a nonrecombinant) source. Molecular biological techniques may be used to produce a recombinant form of a protein with identical properties as compared to the native form of the protein.

The term "fusion polypeptide" refers to a chimeric protein containing a protein of interest (e.g., luciferase) joined to a heterologous sequence (e.g., a non-luciferase amino acid or protein).

The terms "cell," "cell line," "host cell," as used herein, are used interchangeably, and all such designations include progeny or potential progeny of these designations. By "transformed cell" is meant a cell into which (or into

an ancestor of which) has been introduced a nucleic acid molecule of the invention, e.g., via transient transfection. Optionally, a nucleic acid molecule synthetic gene of the invention may be introduced into a suitable cell line so as to create a stably-transfected cell line capable of producing the protein or polypeptide encoded by the synthetic gene. Vectors, cells, and methods for constructing such cell lines are well known in the art. The words "transformants" or "transformed cells" include the primary transformed cells derived from the originally transformed cell without regard to the number of transfers. All progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Nonetheless, mutant progeny that have the same functionality as screened for in the originally transformed cell are included in the definition of transformants.

5

10

15

20

25

30

Nucleic acids are known to contain different types of mutations. A "point" mutation refers to an alteration in the sequence of a nucleotide at a single base position from the wild type sequence. Mutations may also refer to insertion or deletion of one or more bases, so that the nucleic acid sequence differs from the wild-type sequence.

The term "homology" refers to a degree of complementarity between two or more sequences. There may be partial homology or complete homology (i.e., identity). Homology is often measured using sequence analysis software (e.g., EMBOSS, the European Molecular Biology Open Software Suite available at http://www.hgmp.mrc.ac.uk/Software/EMBOSS/overview/html). Such software matches similar sequences by assigning degrees of homology to various substitutions, deletions, insertions, and other modifications. Conservative substitutions typically include substitutions within the following groups: glycine, alanine; valine, isoleucine, leucine; aspartic acid, glutamic acid, asparagine, glutamine; serine, threonine; lysine, arginine; and phenylalanine, tyrosine.

The term "isolated" when used in relation to a nucleic acid, as in "isolated oligonucleotide" or "isolated polynucleotide" refers to a nucleic acid sequence that is identified and separated from at least one contaminant with which it is ordinarily associated in its source. Thus, an isolated nucleic acid is present in a form or setting that is different from that in which it is found in nature. In

5

10

15

20

25

30

contrast, non-isolated nucleic acids (e.g., DNA and RNA) are found in the state they exist in nature. For example, a given DNA sequence (e.g., a gene) is found on the host cell chromosome in proximity to neighboring genes; RNA sequences (e.g., a specific mRNA sequence encoding a specific protein), are found in the cell as a mixture with numerous other mRNAs that encode a multitude of proteins. However, isolated nucleic acid includes, by way of example, such nucleic acid in cells ordinarily expressing that nucleic acid where the nucleic acid is in a chromosomal location different from that of natural cells, or is otherwise flanked by a different nucleic acid sequence than that found in nature. The isolated nucleic acid or oligonucleotide may be present in single-stranded or double-stranded form. When an isolated nucleic acid or oligonucleotide is to be utilized to express a protein, the oligonucleotide contains at a minimum, the sense or coding strand (i.e., the oligonucleotide may be single-stranded), but may contain both the sense and anti-sense strands (i.e., the oligonucleotide may be double-stranded).

The term "isolated" when used in relation to a polypeptide, as in "isolated protein" or "isolated polypeptide" refers to a polypeptide that is identified and separated from at least one contaminant with which it is ordinarily associated in its source. Thus, an isolated polypeptide is present in a form or setting that is different from that in which it is found in nature. In contrast, non-isolated polypeptides (e.g., proteins and enzymes) are found in the state they exist in nature.

The term "purified" or "to purify" means the result of any process that removes some of a contaminant from the component of interest, such as a protein or nucleic acid. The percent of a purified component is thereby increased in the sample.

The term "operably linked" as used herein refer to the linkage of nucleic acid sequences in such a manner that a nucleic acid molecule capable of directing the transcription of a given gene and/or the synthesis of a desired protein molecule is produced. The term also refers to the linkage of sequences encoding amino acids in such a manner that a functional (e.g., enzymatically active, capable of binding to a binding partner, capable of inhibiting, etc.) protein or polypeptide is produced.

The term "recombinant DNA molecule" means a hybrid DNA sequence comprising at least two nucleotide sequences not normally found together in nature.

The term "vector" is used in reference to nucleic acid molecules into which fragments of DNA may be inserted or cloned and can be used to transfer DNA segment(s) into a cell and capable of replication in a cell. Vectors may be derived from plasmids, bacteriophages, viruses, cosmids, and the like.

5

10

15

20

25

30

The terms "recombinant vector" and "expression vector" as used herein refer to DNA or RNA sequences containing a desired coding sequence and appropriate DNA or RNA sequences necessary for the expression of the operably linked coding sequence in a particular host organism. Prokaryotic expression vectors include a promoter, a ribosome binding site, an origin of replication for autonomous replication in a host cell and possibly other sequences, e.g. an optional operator sequence, optional restriction enzyme sites. A promoter is defined as a DNA sequence that directs RNA polymerase to bind to DNA and to initiate RNA synthesis. Eukaryotic expression vectors include a promoter, optionally a polyadenlyation signal and optionally an enhancer sequence.

A polynucleotide having a nucleotide sequence encoding a protein or polypeptide means a nucleic acid sequence comprising the coding region of a gene, or in other words the nucleic acid sequence encodes a gene product. The coding region may be present in either a cDNA, genomic DNA or RNA form. When present in a DNA form, the oligonucleotide may be single-stranded (i.e., the sense strand) or double-stranded. Suitable control elements such as enhancers/promoters, splice junctions, polyadenylation signals, etc. may be placed in close proximity to the coding region of the gene if needed to permit proper initiation of transcription and/or correct processing of the primary RNA transcript. Alternatively, the coding region utilized in the expression vectors of the present invention may contain endogenous enhancers/promoters, splice junctions, intervening sequences, polyadenylation signals, etc. In further embodiments, the coding region may contain a combination of both endogenous and exogenous control elements.

The term "regulatory element" or "regulatory sequence" refers to a genetic element or sequence that controls some aspect of the expression of

nucleic acid sequence(s). For example, a promoter is a regulatory element that facilitates the initiation of transcription of an operably linked coding region. Other regulatory elements include, but are not limited to, transcription factor binding sites, splicing signals, polyadenylation signals, termination signals and enhancer elements.

5

10

15

20

25

30

Transcriptional control signals in eukaryotes comprise "promoter" and "enhancer" elements. Promoters and enhancers consist of short arrays of DNA sequences that interact specifically with cellular proteins involved in transcription. Promoter and enhancer elements have been isolated from a variety of eukaryotic sources including genes in yeast, insect and mammalian cells. Promoter and enhancer elements have also been isolated from viruses and analogous control elements, such as promoters, are also found in prokaryotes. The selection of a particular promoter and enhancer depends on the cell type used to express the protein of interest. Some eukaryotic promoters and enhancers have a broad host range while others are functional in a limited subset of cell types. For example, the SV40 early gene enhancer is very active in a wide variety of cell types from many mammalian species and has been widely used for the expression of proteins in mammalian cells. Two other examples of promoter/enhancer elements active in a broad range of mammalian cell types are those from the human elongation factor 1 gene (Uetsuki et al., 1989; Kim et al., 1990; and Mizushima and Nagata, 1990) and the long terminal repeats of the Rous sarcoma virus (Gorman et al., 1982); and the human cytomegalovirus (Boshart et al., 1985).

The term "promoter/enhancer" denotes a segment of DNA containing sequences capable of providing both promoter and enhancer functions (i.e., the functions provided by a promoter element and an enhancer element as described above). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous" or "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one that is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one that is placed in juxtaposition to a gene by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of the gene is directed by the linked enhancer/promoter.

The presence of "splicing signals" on an expression vector often results in higher levels of expression of the recombinant transcript in eukaryotic host cells. Splicing signals mediate the removal of introns from the primary RNA transcript and consist of a splice donor and acceptor site (Sambrook et al., 1989). A commonly used splice donor and acceptor site is the splice junction from the 16S RNA of SV40.

5

10

15

20

25

30

Efficient expression of recombinant DNA sequences in eukaryotic cells requires expression of signals directing the efficient termination and polyadenylation of the resulting transcript. Transcription termination signals are generally found downstream of the polyadenylation signal and are a few hundred nucleotides in length. The term "poly(A) site" or "poly(A) sequence" as used herein denotes a DNA sequence which directs both the termination and polyadenylation of the nascent RNA transcript. Efficient polyadenylation of the recombinant transcript is desirable, as transcripts lacking a poly(A) tail are unstable and are rapidly degraded. The poly(A) signal utilized in an expression vector may be "heterologous" or "endogenous." An endogenous poly(A) signal is one that is found naturally at the 3' end of the coding region of a given gene in the genome. A heterologous poly(A) signal is one which has been isolated from one gene and positioned 3' to another gene. A commonly used heterologous poly(A) signal is the SV40 poly(A) signal. The SV40 poly(A) signal is contained on a 237 bp BamH I/Bcl I restriction fragment and directs both termination and polyadenylation (Sambrook et al., 1989).

Eukaryotic expression vectors may also contain "viral replicons "or "viral origins of replication." Viral replicons are viral DNA sequences which allow for the extrachromosomal replication of a vector in a host cell expressing the appropriate replication factors. Vectors containing either the SV40 or polyoma virus origin of replication replicate to high copy number (up to 10⁴ copies/cell) in cells that express the appropriate viral T antigen. In contrast, vectors containing the replicons from bovine papillomavirus or Epstein-Barr virus replicate extrachromosomally at low copy number (about 100 copies/cell).

The term "in vitro" refers to an artificial environment and to processes or reactions that occur within an artificial environment. In vitro environments include, but are not limited to, test tubes and cell lysates. The term "in vivo"

refers to the natural environment (e.g., an animal or a cell) and to processes or reactions that occur within a natural environment.

The term "expression system" refers to any assay or system for determining (e.g., detecting) the expression of a gene of interest. Those skilled in the field of molecular biology will understand that any of a wide variety of 5 expression systems may be used. A wide range of suitable mammalian cells are available from a wide range of sources (e.g., the American Type Culture Collection, Rockland, MD). The method of transformation or transfection and the choice of expression vehicle will depend on the host system selected. Transformation and transfection methods are described, e.g., in Ausubel et al., 10 1992. Expression systems include in vitro gene expression assays where a gene of interest (e.g., a reporter gene) is linked to a regulatory sequence and the expression of the gene is monitored following treatment with an agent that inhibits or induces expression of the gene. Detection of gene expression can be through any suitable means including, but not limited to, detection of expressed 15 mRNA or protein (e.g., a detectable product of a reporter gene) or through a detectable change in the phenotype of a cell expressing the gene of interest. Expression systems may also comprise assays where a cleavage event or other nucleic acid or cellular change is detected.

All amino acid residues identified herein are in the natural L-configuration. In keeping with standard polypeptide nonnenclature, abbreviations for amino acid residues are as shown in the following Table of Correspondence.

25	TABLE OF CORRESPONDENCE		
	1-Letter	3-Letter	AMINO ACID
30	Y	Tyr	L-tyrosine
	G	Gly	L-glycine
	F	Phe	L-phenylalanine
	M	Met	L-methionine
	Α	Ala	L-alanine
	S	Ser	L-serine
	I	Ile	L-isoleucine

20

L	Leu	L-leucine
T	Thr	L-threonine
V	Val	L-valine
P	Pro	L-proline
K	Lys	L-lysine
H	His	L-histidine
Q	Gln	L-glutamine
Е	Glu	L-glutamic acid
W	Trp	L-tryptophan
R	Arg	L-arginine
D	Asp	L-aspartic acid
N	Asn	L-asparagine
C	Cys	L-cysteine
	T V P K H Q E W R D	T Thr V Val P Pro K Lys H His Q Gln E Glu W Trp R Arg D Asp N Asn

15

20

25

30

The terms "complementary" or "complementarity" are used in reference to a sequence of nucleotides related by the base-pairing rules. For example, for the sequence 5' "A-G-T" 3', is complementary to the sequence 3' "T-C-A" 5'. Complementarity may be "partial," in which only some of the nucleic acids' bases are matched according to the base pairing rules. Or, there may be "complete" or "total" complementarity between the nucleic acids. The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of hybridization between nucleic acid strands. This is of particular importance in amplification reactions, as well as detection methods which depend upon hybridization of nucleic acids.

When used in reference to a double-stranded nucleic acid sequence such as a cDNA or a genomic clone, the term "substantially homologous" refers to any probe which can hybridize to either or both strands of the double-stranded nucleic acid sequence under conditions of low stringency as described herein.

"Probe" refers to an oligonucleotide designed to be sufficiently complementary to a sequence in a denatured nucleic acid to be probed (in relation to its length) and is bound under selected stringency conditions.

"Hybridization" and "binding" in the context of probes and denatured nucleic acids are used interchangeably. Probes that are hybridized or bound to denatured nucleic acids are base paired to complementary sequences in the

polynucleotide. Whether or not a particular probe remains base paired with the polynucleotide depends on the degree of complementarity, the length of the probe, and the stringency of the binding conditions. The higher the stringency, the higher must be the degree of complementarity and/or the longer the probe.

5

10

15

20

25

30

The term "hybridization" is used in reference to the pairing of complementary nucleic acid strands. Hybridization and the strength of hybridization (i.e., the strength of the association between nucleic acid strands) is impacted by many factors well known in the art including the degree of complementarity between the nucleic acids, stringency of the conditions involved such as the concentration of salts, the Tm (melting temperature) of the formed hybrid, the presence of other components (e.g., the presence or absence of polyethylene glycol), the molarity of the hybridizing strands and the G:C content of the nucleic acid strands.

The term "stringency" is used in reference to the conditions of temperature, ionic strength, and the presence of other compounds, under which nucleic acid hybridizations are conducted. With "high stringency" conditions, nucleic acid base pairing will occur only between nucleic acid fragments that have a high frequency of complementary base sequences. Thus, conditions of "medium" or "low" stringency are often required when it is desired that nucleic acids that are not completely complementary to one another be hybridized or annealed together. The art knows well that numerous equivalent conditions can be employed to comprise medium or low stringency conditions. The choice of hybridization conditions is generally evident to one skilled in the art and is usually guided by the purpose of the hybridization, the type of hybridization (DNA-DNA or DNA-RNA), and the level of desired relatedness between the sequences (e.g., Sambrook et al., 1989; Nucleic Acid Hybridization, A Practical Approach, IRL Press, Washington D.C., 1985, for a general discussion of the methods).

The stability of nucleic acid duplexes is known to decrease with increasing numbers of mismatched bases, and further to be decreased to a greater or lesser degree depending on the relative positions of mismatches in the hybrid duplexes. Thus, the stringency of hybridization can be used to maximize or minimize stability of such duplexes. Hybridization stringency can be altered by:

adjusting the temperature of hybridization; adjusting the percentage of helix destabilizing agents, such as formamide, in the hybridization mix; and adjusting the temperature and/or salt concentration of the wash solutions. For filter hybridizations, the final stringency of hybridizations often is determined by the salt concentration and/or temperature used for the post-hybridization washes.

5

10

15

20

25

30

"High stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄ H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 0.1X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

"Medium stringency conditions" when used in reference to nucleic acid hybridization comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄ H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.5% SDS, 5X Denhardt's reagent and 100 μg/ml denatured salmon sperm DNA followed by washing in a solution comprising 1.0X SSPE, 1.0% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

"Low stringency conditions" comprise conditions equivalent to binding or hybridization at 42°C in a solution consisting of 5X SSPE (43.8 g/l NaCl, 6.9 g/l NaH₂PO₄ H₂O and 1.85 g/l EDTA, pH adjusted to 7.4 with NaOH), 0.1% SDS, 5X Denhardt's reagent [50X Denhardt's contains per 500 ml: 5 g Ficoll (Type 400, Pharmacia), 5 g BSA (Fraction V; Sigma)] and 100 g/ml denatured salmon sperm DNA followed by washing in a solution comprising 5X SSPE, 0.1% SDS at 42°C when a probe of about 500 nucleotides in length is employed.

The term " T_m " is used in reference to the "melting temperature". The melting temperature is the temperature at which 50% of a population of double-stranded nucleic acid molecules becomes dissociated into single strands. The equation for calculating the T_m of nucleic acids is well-known in the art. The Tm of a hybrid nucleic acid is often estimated using a formula adopted from hybridization assays in 1 M salt, and commonly used for calculating Tm for PCR primers: [(number of A + T) x 2°C + (number of G+C) x 4°C]. (C.R. Newton et

al., PCR, 2nd Ed., Springer-Verlag (New York, 1997), p. 24). This formula was found to be inaccurate for primers longer than 20 nucleotides. (Id.) Another simple estimate of the T_m value may be calculated by the equation: $T_m = 81.5 + 0.41(\% G + C)$, when a nucleic acid is in aqueous solution at 1 M NaCl. (e.g., Anderson and Young, Quantitative Filter Hybridization, in Nucleic Acid Hybridization, 1985). Other more sophisticated computations exist in the art which take structural as well as sequence characteristics into account for the calculation of T_m . A calculated T_m is merely an estimate; the optimum temperature is commonly determined empirically.

The term "promoter/enhancer" denotes a segment of DNA containing sequences capable of providing both promoter and enhancer functions (i.e., the functions provided by a promoter element and an enhancer element as described above). For example, the long terminal repeats of retroviruses contain both promoter and enhancer functions. The enhancer/promoter may be "endogenous" or "exogenous" or "heterologous." An "endogenous" enhancer/promoter is one that is naturally linked with a given gene in the genome. An "exogenous" or "heterologous" enhancer/promoter is one that is placed in juxtaposition to a gene by means of genetic manipulation (i.e., molecular biological techniques) such that transcription of the gene is directed by the linked enhancer/promoter.

The term "sequence homology" means the proportion of base matches between two nucleic acid sequences or the proportion of amino acid matches between two amino acid sequences. When sequence homology is expressed as a percentage, e.g., 50%, the percentage denotes the proportion of matches over the length of sequence from one sequence that is compared to some other sequence. Gaps (in either of the two sequences) are permitted to maximize matching; gap lengths of 15 bases or less are usually used, 6 bases or less are preferred with 2 bases or less more preferred. When using oligonucleotides as probes or treatments, the sequence homology between the target nucleic acid and the oligonucleotide sequence is generally not less than 17 target base matches out of 20 possible oligonucleotide base pair matches (85%); preferably not less than 9 matches out of 10 possible base pair matches (90%), and more preferably not less than 19 matches out of 20 possible base pair matches (95%).

Two amino acid sequences are homologous if there is a partial or complete identity between their sequences. For example, 85% homology means that 85% of the amino acids are identical when the two sequences are aligned for maximum matching. Gaps (in either of the two sequences being matched) are allowed in maximizing matching; gap lengths of 5 or less are preferred with 2 or less being more preferred. Alternatively and preferably, two protein sequences (or polypeptide sequences derived from them of at least 100 amino acids in length) are homologous, as this term is used herein, if they have an alignment score of at more than 5 (in standard deviation units) using the program ALIGN with the mutation data matrix and a gap penalty of 6 or greater. See Dayhoff, M. O., in Atlas of Protein Sequence and Structure, 1972, volume 5, National Biomedical Research Foundation, pp. 101-110, and Supplement 2 to this volume, pp. 1-10. The two sequences or parts thereof are more preferably homologous if their amino acids are greater than or equal to 85% identical when optimally aligned using the ALIGN program.

5

10

15

20

25

30

The following terms are used to describe the sequence relationships between two or more polynucleotides: "reference sequence", "comparison window", "sequence identity", "percentage of sequence identity", and "substantial identity". A "reference sequence" is a defined sequence used as a basis for a sequence comparison; a reference sequence may be a subset of a larger sequence, for example, as a segment of a full-length cDNA or gene sequence given in a sequence listing, or may comprise a complete cDNA or gene sequence. Generally, a reference sequence is at least 20 nucleotides in length, frequently at least 25 nucleotides in length, and often at least 50 or 100 nucleotides in length. Since two polynucleotides may each (1) comprise a sequence (i.e., a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) may further comprise a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity.

A "comparison window", as used herein, refers to a conceptual segment of at least 20 contiguous nucleotides and wherein the portion of the

polynucleotide sequence in the comparison window may comprise additions or deletions (i.e., gaps) of 20 percent or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences.

5

10

15

20

25

30

Methods of alignment of sequences for comparison are well known in the art. Thus, the determination of percent identity between any two sequences can be accomplished using a mathematical algorithm. Preferred, non-limiting examples of such mathematical algorithms are the algorithm of Myers and Miller (1988); the local homology algorithm of Smith and Waterman (1981); the homology alignment algorithm of Needleman and Wunsch (1970); the search-for-similarity-method of Pearson and Lipman (1988); the algorithm of Karlin and Altschul (1990), modified as in Karlin and Altschul (1993).

Computer implementations of these mathematical algorithms can be utilized for comparison of sequences to determine sequence identity. Such implementations include, but are not limited to: ClustalW (available, e.g., at http://www.ebi.ac.uk/clustalw/); the ALIGN program (Version 2.0) and GAP, BESTFIT, BLAST, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Version 8. Alignments using these programs can be performed using the default parameters. The CLUSTAL program is well described by Higgins et al. (1988); Higgins et al. (1989); Corpet et al. (1988); Huang et al. (1992); and Pearson et al. (1994). The ALIGN program is based on the algorithm of Myers and Miller, supra. The BLAST programs of Altschul et al. (1990), are based on the algorithm of Karlin and Altschul supra. To obtain gapped alignments for comparison purposes, Gapped BLAST (in BLAST 2.0) can be utilized as described in Altschul et al. (1997). Alternatively, PSI-BLAST (in BLAST 2.0) can be used to perform an iterated search that detects distant relationships between molecules. See Altschul et al., supra. When utilizing BLAST, Gapped BLAST, PSI-BLAST, the default parameters of the respective programs (e.g. BLASTN for nucleotide sequences, BLASTX for proteins) can be used. See http://www.ncbi.n1m.nih.gov. Alignment may also be performed manually by inspection

The term "sequence identity" means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) over the window of

5

10

15

20

25

30

comparison. The term "percentage of sequence identity" means that two polynucleotide sequences are identical (i.e., on a nucleotide-by-nucleotide basis) for the stated proportion of nucleotides over the window of comparison. The term "percentage of sequence identity" is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g., A, T, C, G, U, or I) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The terms "substantial identity" as used herein denote a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 60%, preferably at least 65%, more preferably at least 70%, up to about 85%, and even more preferably at least 90 to 95%, more usually at least 99%, sequence identity as compared to a reference sequence over a comparison window of at least 20 nucleotide positions, frequently over a window of at least 20-50 nucleotides, and preferably at least 300 nucleotides, wherein the percentage of sequence identity is calculated by comparing the reference sequence to the polynucleotide sequence which may include deletions or additions which total 20 percent or less of the reference sequence over the window of comparison. The reference sequence may be a subset of a larger sequence.

As applied to polypeptides, the term "substantial identity" means that two peptide sequences, when optimally aligned, such as by the programs GAP or BESTFIT using default gap weights, share at least about 85% sequence identity, preferably at least about 90% sequence identity, more preferably at least about 95% sequence identity, and most preferably at least about 99% sequence identity.

Synthetic Nucleotide Sequences and Methods of the Invention

The invention provides compositions comprising synthetic nucleotide sequences, as well as methods for preparing those sequences which yield synthetic nucleotide sequences that are efficiently expressed as a polypeptide or protein with desirable characteristics including reduced inappropriate or

unintended transcription characteristics, or do not result in inappropriate or unintended transcription characteristics, when present in a particular cell type.

5

10

15

20

25

30

Natural selection is the hypothesis that genotype-environment interactions occurring at the phenotypic level lead to differential reproductive success of individuals and hence to modification of the gene pool of a population. It is generally accepted that the amino acid sequence of a protein found in nature has undergone optimization by natural selection. However, amino acids exist within the sequence of a protein that do not contribute significantly to the activity of the protein and these amino acids can be changed to other amino acids with little or no consequence. Furthermore, a protein may be useful outside its natural environment or for purposes that differ from the conditions of its natural selection. In these circumstances, the amino acid sequence can be synthetically altered to better adapt the protein for its utility in various applications.

Likewise, the nucleic acid sequence that encodes a protein is also optimized by natural selection. The relationship between coding DNA and its transcribed RNA is such that any change to the DNA affects the resulting RNA. Thus, natural selection works on both molecules simultaneously. However, this relationship does not exist between nucleic acids and proteins. Because multiple codons encode the same amino acid, many different nucleotide sequences can encode an identical protein. A specific protein composed of 500 amino acids can theoretically be encoded by more than 10^{150} different nucleic acid sequences.

Natural selection acts on nucleic acids to achieve proper encoding of the corresponding protein. Presumably, other properties of nucleic acid molecules are also acted upon by natural selection. These properties include codon usage frequency, RNA secondary structure, the efficiency of intron splicing, and interactions with transcription factors or other nucleic acid binding proteins. These other properties may alter the efficiency of protein translation and the resulting phenotype. Because of the redundant nature of the genetic code, these other attributes can be optimized by natural selection without altering the corresponding amino acid sequence.

Under some conditions, it is useful to synthetically alter the natural nucleotide sequence encoding a protein to better adapt the protein for alternative

applications. A common example is to alter the codon usage frequency of a gene when it is expressed in a foreign host. Although redundancy in the genetic code allows amino acids to be encoded by multiple codons, different organisms favor some codons over others. The codon usage frequencies tend to differ most for organisms with widely separated evolutionary histories. It has been found that when transferring genes between evolutionarily distant organisms, the efficiency of protein translation can be substantially increased by adjusting the codon usage frequency (see U.S. Patent Nos. 5,096,825, 5,670,356 and 5,874,304).

5

10

15

20

25

30

In one embodiment, the sequence of a reporter gene is modified as the codon usage of reporter genes often does not correspond to the optimal codon usage of the experimental cells. In another embodiment, the sequence of a reporter gene is modified to remove regulatory sequences such as those which may alter expression of the reporter gene or a linked gene. Examples include βgalactosidase (β-gal) and chloramphenicol acetyltransferase (cat) reporter genes that are derived from E. coli and are commonly used in mammalian cells; the \betaglucuronidase (gus) reporter gene that is derived from E. coli and commonly used in plant cells; the firefly luciferase (luc) reporter gene that is derived from an insect and commonly used in plant and mammalian cells; and the Renilla luciferase, and green fluorescent protein (gfp) reporter genes which are derived from coelenterates and are commonly used in plant and mammalian cells. To achieve sensitive quantitation of reporter gene expression, the activity of the gene product must not be endo genous to the experimental host cells. Thus, reporter genes are usually selected from organisms having unique and distinctive phenotypes. Consequently, these organisms often have widely separated evolutionary histories from the experimental host cells.

Previously, to create genes having a more optimal codon usage frequency but still encoding the same gene product, a synthetic nucleic acid sequence was made by replacing existing codons with codons that were generally more favorable to the experimental host cell (see U.S. Patent Nos. 5,096,825, 5,670,356 and 5,874,304.) The result was a net improvement in codon usage frequency of the synthetic gene. However, the optimization of other attributes was not considered and so these synthetic genes likely did not reflect genes optimized by natural selection.

In particular, improvements in codon usage frequency are intended only for optimization of a RNA sequence based on its role in translation into a protein. Thus, previously described methods did not address how the sequence of a synthetic gene affects the role of DNA in transcription into RNA. Most notably, consideration had not been given as to how transcription factors may interact with the synthetic DNA and consequently modulate or otherwise influence gene transcription. For genes found in nature, the DNA would be optimally transcribed by the native host cell and would yield an RNA that encodes a properly folded gene product. In contrast, synthetic genes have previously not been optimized for transcriptional characteristics. Rather, this property has been ignored or left to chance.

10

15

20

25

30

This concern is important for all genes, but particularly important for reporter genes, which are most commonly used to quantitate transcriptional behavior in the experimental host cells, and vector backbone sequences for genes. Hundreds of transcription factors have been identified in different cell types under different physiological conditions, and likely more exist but have not yet been identified. All of these transcription factors can influence the transcription of an introduced gene or sequences linked thereo. A useful synthetic reporter gene or vector backbone of the invention has a minimal risk of influencing or perturbing intrinsic transcriptional characteristics of the host cell because the structure of that gene or vector backbone has been altered. A particularly useful synthetic reporter gene or vector backbone will have desirable characteristics under a new set and/or a wide variety of experimental conditions. To best achieve these characteristics, the structure of the synthetic gene or synthetic vector backbone should have minimal potential for interacting with transcription factors within a broad range of host cells and physiological conditions. Minimizing potential interactions between a reporter gene or vector backbone and a host cell's endogenous transcription factors increases the value of a reporter gene or vector backbone by reducing the risk of inappropriate transcriptional characteristics of the gene or vector backbone within a particular experiment, increasing applicability of the gene or vector backbone in various environments, and increasing the acceptance of the resulting experimental data.

In contrast, a reporter gene comprising a native nucleotide sequence, based on a genomic or cDNA clone from the original host organism, or a vector backbone comprising native sequences found in one or a variety of different organisms, may interact with transcription factors when present irn an exogenous host. This risk stems from two circumstances. First, the native nucleotide sequence contains sequences that were optimized through natural selection to influence gene transcription within the native host organism. However, these sequences might also influence transcription when the sequences are present in exogenous hosts, i.e., out of context, thus interfering with its performance as a reporter gene or vector backbone. Second, the nucleotide sequence may inadvertently interact with transcription factors that were not present in the native host organism, and thus did not participate in its natural selection. The probability of such inadvertent interactions increases with greater evolutionary separation between the experimental cells and the native organism of the reporter gene or vector backbone.

These potential interactions with transcription factors would likely be disrupted when using a synthetic reporter gene having alterations in codon usage frequency. However, a synthetic reporter gene sequence, designed by choosing codons based only on codon usage frequency, or randomly replacing sequences or randomly juxtaposing sequences in a vector backbone, is likely to contain other unintended transcription factor binding sites since the resulting sequence has not been subjected to the benefit of natural selection to correct inappropriate transcriptional activities. Inadvertent interactions with transcription factors could also occur whenever an encoded amino acid sequence is artificially altered, e.g., to introduce amino acid substitutions. Similarly, these changes have not been subjected to natural selection, and thus may exhibit undesired characteristics.

Thus, the invention provides a method for preparing synthetic nucleotide sequences that reduce the risk of undesirable interactions of the nucleotide sequence with transcription factors and other trans-acting factors when expressed in a particular host cell, thereby reducing inappropriate or unintended characteristics. Preferably, the method yields synthetic genes containing improved codon usage frequencies for a particular host cell and with a reduced

occurrence of regulatory sequences such as transcription factor binding sites and/or vector backbone sequences with a reduced occurrence of regulatory sequences. The invention also provides a method of preparing synthetic genes containing improved codon usage frequencies with a reduced occurrence of transcription factor binding sites and additional beneficial structural attributes. Such additional attributes include the absence of inappropriate RNA splicing junctions, poly(A) addition signals, undesirable restriction enzyme recognition sites, ribosomal binding sites, and/or secondary structural motifs such as hairpin loops.

5

10

15

20

25

30

In one embodiment, a parent nucleic acid sequence encoding a polypeptide is optimized for expression in a particular cell. For example, the nucleic acid sequence is optimized by replacing codons in the wild-type sequence with codons which are preferentially employed in a particular (selected) cell, which codon replacement also reduces the number of regulatory sequences. Preferred codons have a relatively high codon usage frequency in a selected cell, and preferably their introduction results in the introduction of relatively few regulatory sequences such as transcription factor binding sites, and relatively few other undesirable structural attributes. Thus, the optimized nucleotide sequence may have an improved level of expression due to improved codon usage frequency, and a reduced risk of inappropriate transcriptional behavior due to a reduced number of undesirable transcription regulatory sequences. In another embodiment, a parent vector backbone sequence is altered to remove regulatory sequences and optionally restriction endonuclease sites, and optionally retain or add other desirable characteristics, e.g., the presence of one or more stop codons in one or more reading frames, one or more poly(A) sites, and/or restriction endonuclease sites.

The invention may be employed with any nucleic acid sequence, e.g., a native sequence such as a cDNA or one that has been manipulated *in vitro*. Exemplary genes include, but are not limited to, those encoding lactamase (β-gal), neomycin resistance (Neo), hygromycin resistance (Hyg), puromycin resistance (Puro), ampicillin resistance (Amp), CAT, GUS, galactopyranoside, GFP, xylosidase, thymidine kinase, arabinosidase, luciferase and the like. As used herein, a "reporter gene" is a gene that imparts a distinct phenotype to cells

expressing the gene and thus permits cells having the gene to be distinguished from cells that do not have the gene. Such genes may encode either a selectable or screenable polypeptide, depending on whether the marker confers a trait which one can 'select' for by chemical means, i.e., through the use of a selective agent (e.g., a herbicide, antibiotic, or the like), or whether it is simply a "reporter" trait that one can identify through observation or testing, i.e., by 'screening'. Included within the terms selectable or screenable marker genes are also genes which encode a "secretable marker" whose secretion can be detected as a means of identifying or selecting for transformed cells. Examples include markers that encode a secretable antigen that can be identified by antibody interaction, or even secretable enzymes which can be detected by their catalytic activity. Secretable proteins fall into a number of classes, including small, diffusible proteins detectable, e.g., by ELISA, and proteins that are inserted or trapped in the cell membrane.

Elements of the present disclosure are exemplified in detail through the use of particular genes and vector backbone sequences. Of course, many examples of suitable genes and vector backbones are known to the art and can be employed in the practice of the invention. Therefore, it will be understood that the following discussion is exemplary rather than exhaustive. In light of the techniques disclosed herein and the general recombinant techniques that are known in the art, the present invention renders possible the alteration of any gene or vector backbone sequence.

Exemplary genes include, but are not limited to, a *neo* gene, a *puro* gene, an *amp* gene, a β -gal gene, a *gus* gene, a *cat* gene, a *gpt* gene, a *hyg* gene, a *hisD* gene, a *ble* gene, a *mprt* gene, a *bar* gene, a nitrilase gene, a mutant acetolactate synthase gene (ALS) or acetoacid synthase gene (AAS), a methotrexate-resistant *dhfr* gene, a dalapon dehalogenase gene, a mutated anthranilate synthase gene that confers resistance to 5-methyl tryptophan (WO 97/26366), an R-locus gene, a β -lactamase gene, a *xyl*E gene, an α -amylase gene, a tyrosinase gene, a luciferase (*luc*) gene (e.g., a *Renilla reniformis* luciferase gene, a firefly luciferase gene, or a click beetle luciferase (*Pyrophorus plagiophthalamus* gene), an aequorin gene, or a fluorescent protein gene.

5

10

15

20

25

30

The method of the invention can be performed by, although it is not limited to, a recursive process. The process includes assigning preferred codons to each amino acid in a target molecule, e.g., a native nucleotide sequence, based on codon usage in a particular species, identifying potential transcription regulatory sequences such as transcription factor binding sites in the nucleic acid sequence having preferred codons, e.g., using a database of such binding sites, optionally identifying other undesirable sequences, and substituting an alternative codon (i.e., encoding the same amino acid) at positions where undesirable transcription factor binding sites or other sequences occur. For codon distinct versions, alternative preferred codons are substituted in each version. If necessary, the identification and elimination of potential transcription factor or other undesirable sequences can be repeated until a nucleotide sequence is achieved containing a maximum number of preferred codons and a minimum number of undesired sequences including transcription regulatory sequences or other undesirable sequences. Also, optionally, desired sequences, e.g., restriction enzyme recognition sites, can be introduced. After a synthetic nucleotide sequence is designed and constructed, its properties relative to the parent nucleic acid sequence can be determined by methods well known to the art. For example, the expression of the synthetic and target nucleic acids in a series of vectors in a particular cell can be compared.

Thus, generally, the method of the invention comprises identifying a target nucleic acid sequence, and a host cell of interest, for example, a plant (dicot or monocot), fungus, yeast or mammalian cell. Preferred host cells are mammalian host cells such as CHO, COS, 293, Hela, CV-1 and NIH3T3 cells. Based on preferred codon usage in the host cell(s) and, optionally, low codon usage in the host cell(s), e.g., high usage mammalian codons and low usage *E. coli* and mammalian codons, codons to be replaced are determined. Concurrent, subsequent or prior to selecting codons to be replaced, desired and undesired sequences, such as undesired transcriptional regulatory sequences, in the target sequence are identified. These sequences, including transcriptional regulatory sequences and restriction endonuclease sites, can be identified using databases and software such as TRANSFAC® (Transcription Factor Database, http://www.gene-regulation.com/), MatchTM (http://www.gene-regulation.com/),

MatInspector (Genomatix, http://www.genomatix.de), EPD (Eukaryotic Promoter Database, http://www.epd.isb-sib.ch/), REBASE® (Restriction Enzyme Database, NEB, http://rebase.neb.com), TESS (Transcription Element Search System, http://www.cbil.upenn.edu/tess/), MAR-Wiz (Futuresoft, http://www.futuresoft.org), Lasergene® (DNASTAR, http://www.dnastar.com), 5 Vector NTITM (Invitrogen, http://www.invitrogen.com), and Sequence Manipulation Suite (http://www.bioinformatics.org/SMS/index.html). Links to other databases and sequence analysis software are listed at http://www.expasy.org/alinks.html. After one or more sequences are identified, 10 the modification(s) may be introduced. Once a desired synthetic nucleotide sequence is obtained, it can be prepared by methods well known to the art (such as nucleic acid amplification reactions with overlapping primers), and its structural and functional properties compared to the target nucleic acid sequence, including, but not limited to, percent homology, presence or absence of certain sequences, for example, restriction sites, percent of codons changed (such as an 15 increased or decreased usage of certain codons) and/or expression rates.

As described below, the method was used to create synthetic reporter genes encoding firefly luciferases and selectable polypeptides, and synthetic sequences for vector backbones. Synthetic sequences may support greater levels of expression and/or reduced aberrant expression than the corresponding native or parent sequences for the protein. The native and parent sequences may demonstrate anomalous transcription characteristics when expressed in mammalian cells, which are likely not evident in the synthetic sequences.

25 Exemplary Uses of the Synthetic Nucleotide Sequences

20

30

The synthetic genes of the invention preferably encode the same proteins as their native counterpart (or nearly so), but have improved codon usage while being largely devoid of regulatory elements in the coding (it is recognized that a small number of amino acid changes may be desired to enhance a property of the native counterpart protein, e.g. to enhance luminescence of a luciferase) and noncoding regions. This increases the level of expression of the protein the synthetic gene encodes and reduces the risk of anomalous expression of the protein. For example, studies of many important events of gene regulation,

which may be mediated by weak promoters, are limited by insufficient reporter signals from inadequate expression of the reporter proteins. Also, the use of some selectable markers may be limited by the expression of that marker in an exogenous cell. Thus, synthetic selectable marker genes which have improved codon usage for that cell, and have a decrease in other undesirable sequences, (e.g., transcription factor binding sites), can permit the use of those markers in cells that otherwise were undesirable as hosts for those markers.

5

10

15

20

25

30

Promoter crosstalk is another concern when a co-reporter gene is used to normalize transfection efficiencies. With the enhanced expression of synthetic genes, the amount of DNA containing strong promoters can be reduced, or DNA containing weaker promoters can be employed, to drive the expression of the co-reporter. In addition, there may be a reduction in the background expression from the synthetic reporter genes of the invention. This characteristic makes synthetic reporter genes more desirable by minimizing the sporadic expression from the genes and reducing the interference resulting from other regulatory pathways.

The use of reporter genes in imaging systems, which can be used for *in vivo* biological studies or drug screening, is another use for the synthetic genes of the invention. Due to their increased level of expression, the protein encoded by a synthetic gene is more readily detectable by an imaging system. In fact, using a synthetic *Renilla* luciferase gene, luminescence in transfected CHO cells was detected visually without the aid of instrumentation.

In addition, the synthetic genes may be used to express fusion proteins, for example fusions with secretion leader sequences or cellular localization sequences, to study transcription in difficult-to-transfect cells such as primary cells, and/or to improve the analysis of regulatory pathways and genetic elements. Other uses include, but are not limited to, the detection of rare events that require extreme sensitivity (e.g., studying RNA recoding), use with IRES, to improve the efficiency of *in vitro* translation or *in vitro* transcription-translation coupled systems such as TnT (Promega Corp., Madison, WI), study of reporters optimized to different host organisms (e.g., plants, fungus, and the like), use of multiple genes as co-reporters to monitor drug toxicity, as reporter molecules in multiwell assays, and as reporter molecules in drug screening with the advantage

of minimizing possible interference of reporter signal by different signal transduction pathways and other regulatory mechanisms.

Additionally, uses for the synthetic nucleotide sequences of the invention include fluorescence activated cell sorting (FACS), fluorescent microscopy, to detect and/or measure the level of gene expression *in vitro* and *in vivo*, (e.g., to determine promoter strength), subcellular localization or targeting (fusion protein), as a marker, in calibration, in a kit (e.g., for dual assays), for *in vivo* imaging, to analyze regulatory pathways and genetic elements, and in multi-well formats.

Further, although reporter genes are widely used to measure transcription events, their utility can be limited by the fidelity and efficiency of reporter expression. For example, in U.S. Patent No. 5,670,356, a firefly luciferase gene (referred to as luc+) was modified to improve the level of luciferase expression. While a higher level of expression was observed, it was not determined that higher expression had improved regulatory control.

The invention will be further described by the following nonlimiting examples. In particular, the synthetic nucleic acid molecules of the invention may be derived by other methods as well as by variations on the methods described herein.

20

25

30

5

10

15

Example 1

Synthetic Click Beetle (RD and GR) Luciferase Nucleic Acid Molecules

Luc*PpI*YG is a wild-type click beetle luciferase that emits yellow-green luminescence (Wood, 1989). A mutant of Luc*PpI*YG named YG#81-6G01 was envisioned. YG#81-6G01 lacks a peroxisome targeting signal, has a lower K_M for luciferin and ATP, has increased signal stability and increased temperature stability when compared to the wild type (PCT/WO9914336). YG #81-6G01 was mutated to emit green luminescence by changing Ala at position 224 to Val (A224V is a green-shifting mutation), or to emit red luminescence by simultaneously introducing the amino acid substitutions A224H, S247H, N346I, and H348Q (red-shifting mutation set) (PCT/WO9518853)

Using YG #81-6G01 as a parent gene, two synthetic gene sequences were designed. One codes for a luciferase emitting green luminescence (GR) and one

for a luciferase emitting red luminescence (RD). Both genes were designed to 1) have optimized codon usage for expression in mammalian cells, 2) have a reduced number of transcriptional regulatory sites including mammalian transcription factor binding sites, splice sites, poly(A) sites and promoters, as well as prokaryotic (E. coli) regulatory sites, 3) be devoid of unwanted restriction sites, e.g., those which are likely to interfere with standard cloning procedures, and 4) have a low DNA sequence identity compared to each other in order to minimize genetic rearrangements when both are present inside the same cell. In addition, desired sequences, e.g., a Kozak sequence or restriction enzyme recognition sites, may be identified and introduced.

5

10

15

20

25

30

Not all design criteria could be met equally well at the same time. The following priority was established for reduction of transcriptional regulatory sites: elimination of transcription factor (TF) binding sites received the highest priority, followed by elimination of splice sites and poly(A) sites, and finally prokaryotic regulatory sites. When removing regulatory sites, the strategy was to work from the lesser important to the most important to ensure that the most important changes were made last. Then the sequence was rechecked for the appearance of new lower priority sites and additional changes made as needed. Thus, the process for designing the synthetic GR and RD gene sequences, using computer programs described herein, involved 5 optionally iterative steps that are detailed below

- Optimized codon usage and changed A224V to create GRver1, separately changed A224H, S247H, H348Q and N346I to create RDver1. These particular amino acid changes were maintained throughout all subsequent manipulations to the sequence.
- 2. Removed undesired restriction sites, prokaryotic regulatory sites, splice sites, poly(A) sites thereby creating GRver2 and RDver2.
- 3. Removed transcription factor binding sites (first pass) and removed any newly created undesired sites as listed in step 2 above thereby creatingGRver3 and RDver3.
- 4. Removed transcription factor binding sites created by step 3 above (second pass) and removed any newly created undesired sites as listed in step 2 above thereby creating GRver4 and RDver4.

5. Removed transcription factor binding sites created by step 4 above (third Pass) and confirmed absence of sites listed in step 2 above thereby creating GRver5 and RDver5.

- 6. Constructed the actual genes by PCR using synthetic oligonucleotides corresponding to fragments of GRver5 and RDver5 designed sequences thereby creating GR6 and RD7. GR6, upon sequencing was found to have the serine residue at amino acid position 49 mutated to an asparagine and the proline at amino acid position 230 mutated to a serine (S49N, P230S). RD7, upon sequencing was found to have the histidine at amino acid position 36 mutated to a tyrosine (H36Y). These changes occurred during the PCR process.
 - 4. The mutations described in step 6 above (S49N, P230S for GR6 and H36Y for RD7) were reversed to create GRver5.1 and RDver5.1.
 - 5. RDver5.1 was further modified by changing the arginine codon at position 351 to a glycine codon (R351G) thereby creating RDver5.2 with improved spectral properties compared to RDver5.1.
 - 6. RDver5.2 was further mutated to increase luminescence intensity thereby creating RD156-1H9 which encodes four additional amino acid changes (M2I, S349T, K488T, E538V) and three silent single base changes (see U.S. application Serial No. 09/645,706, filed August 24, 2000, the disclosure of which is incorporated by reference herein).

1. Optimize codon usage and introduce mutations determining luminescence

The starting gene sequence for this design step was YG #81-6G01.

a) Optimize codon usage:

5

10

15

20

25

30

color

The strategy was to adapt the codon usage for optimal expression in human cells and at the same time to avoid *E. coli* low-usage codons. Based on these requirements, the best two codons for expression in human cells for all amino acids with more than two codons were selected (see Wada et al., 1990). In the selection of codon pairs for amino acids with six codons, the selection was biased towards pairs that have the largest number of mismatched bases to allow

design of GR and RD genes with minimum sequence identity (codon distinction):

Arg: CGC/CGT	Leu: CTG/TTG	Ser: TCT/AGC
Thr: ACC/ACT	Pro: CCA/CCT	Ala: GCC/GCT
Glv: GGC/GGT	Val: GTC/GTG	Ile: ATC/ATT

Based on this selection of codons, two gene sequences encoding the YG#81-6G01 luciferase protein sequence were computer generated. The two genes were designed to have minimum DNA sequence identity and at the same time closely similar codon usage. To achieve this, each codon in the two genes was replaced by a codon from the limited list described above in an alternating fashion (e.g., $Arg_{(n)}$ is CGC in gene 1 and CGT in gene 2, $Arg_{(n+1)}$ is CGT in gene 1 and CGC in gene 2).

For subsequent steps in the design process it was anticipated that changes had to be made to this limited optimal codon selection in order to meet other design criteria, however, the following low-usage codons in mammalian cells were not used unless needed to meet criteria of hi gher priority:

Arg: CGA Leu: CTA Ser: TCG
Pro: CCG Val: GTA Ile: ATA

Also, the following low-usage codons in *E. coli* were avoided when reasonable (note that 3 of these match the low-usage list for mammalian cells):

Arg: CGA/CGG/AGA/AGG

5

10

15

20

25

30

Leu: CTA Pro: CCC Ile: ATA

b) Introduce mutations determining luminescence color:

Into one of the two codon-optimized gene sequences was introduced the single green-shifting mutation and into the other were introduced the 4 red-shifting mutations as described above.

The two output sequences from this first design step were named GRver1 (version 1 GR) and RDver1 (version 1 RD). Their DNA sequences are 63% identical (594 mismatches), while the proteins they encode differ only by the 4 amino acids that determine luminescence color (see Figures 2 and 3 for an alignment of the DNA and protein sequences).

Tables 1 and 2 show, as an example, the codon usage for valine and leucine in human genes, the parent gene YG#81-6G01, the codon-optimized

synthetic genes GRver1 and RDver1, as well as the final versions of the synthetic genes after completion of step 5 in the design process (GRver5 and RDver5).

Table 1: Valine

Codon	Human	Parent	GR ver1	RD ver1
GTA	4	13	0	0
GTC	13	4	25	24
GTG	24	12	25	25
GTT	9	20	0	0

GR ver5	RD ver5
1	1
21	26
25	17
3	5

5

20

Table 2: Leucine

Codon	Human	Parent	GR ver1	RD ver1
CTA	3	5	0	0
CTC	12	4	0	1
CTG	24	4	28	27
CTT	6	12	0	0
TTA	3	17	0	0
TTG	6	13	27	27

GR ver5	RD ver5
0	0
12	11
19	18
1	1
0	0
23	25

2. Remove undesired restriction sites, prokaryotic regulatory sites, splice sites and poly(A) sites

10 The starting gene sequences for this design step were GRver1 and RDver1.

a) Remove undesired restriction sites:

To check for the presence and location of undesired restriction sites, the sequences of both synthetic genes were compared against a database of restriction enzyme recognition sequences (REBASE ver.712,

15 http://www.neb.com/rebase) using standard sequence analysis software (GeneProver 6.10, Riverside Scientific Ent.).

Specifically, the following restriction enzymes were classified as undesired:

- BamH I, Xho I, Sfi I, Kpn I, Sac I, Mlu I, Nhe I, Sma I, Xho I, Bgl II, Hind III, Nco I, Nar I, Xba I, Hpa I, Sal I,
- other cloning sites commonly used: EcoR I, EcoR V, Cla I,
- eight-base cutters (commonly used for complex constructs),
- BstE II (to allow N-terminal fusions),
- Xcm I (can generate A/T overhang used for T-vector cloning).

To eliminate undesired restriction sites when found in a synthetic gene, one or more codons of the synthetic gene sequence were altered in accordance with the codon optimization guidelines described in 1a above.

b) Remove prokaryotic (E. coli) regulatory sequences:

To check for the presence and location of prokaryotic regulatory sequences, the sequences of both synthetic genes were searched for the presence of the following consensus sequences using standard sequence analysis software (GenePro):

- TATAAT (-10 Pribnow box of promoter)
- AGGA or GGAG (ribosome binding site; only considered if paired with a methionine codon 12 or fewer bases downstream).

To eliminate such regulatory sequences when found in a synthetic gene, one or more codons of the synthetic gene at sequence were altered in accordance with the codon optimization guidelines described in 1a above.

15 c) Remove splice sites:

5

10

20

25

30

To check for the presence and location of splice sites, the DNA strand corresponding to the primary RNA transcript of each synthetic gene was searched for the presence of the following consensus sequences (see Watson et al., 1983) using standard sequence analysis software (GenePro):

- splice donor site: AG | GTRAGT (exon | intron), the search was performed for AGGTRAG and the lower stringency GGTRAGT;
- splice acceptor site: $(Y)_nNCAG \mid G \text{ (intron } \mid \text{exon)}$, the search was performed with n = 1.

To eliminate splice sites found in a synthetic gene, one or more codons of the synthetic gene sequence were altered in accordance with the codon optimization guidelines described in 1a above. Splice acceptor sites were generally difficult to eliminate in one gene without introducing them into the other gene because they tended to contain one of the two only Gln codons (CAG); they were removed by placing the Gln codon CAA in both genes at the expense of a slightly increased sequence identity between the two genes.

d) Remove poly(A) sites:

To check for the presence and location of poly(A) sites, the sequences of both synthetic genes were searched for the presence of the following consensus sequence using standard sequence analysis software (GenePro):

5 - AATAAA.

10

30

To eliminate each poly(A) addition site found in a synthetic gene, one or more codons of the synthetic gene sequence were altered in accordance with the codon optimization guidelines described in 1a above. The two output sequences from this second design step were named GRver2 and RDver2. Their DNA sequences are 63% identical (590 mismatches).

3. Remove transcription factor (TF) binding sites, then repeat steps 2 a-d

The starting gene sequences for this design step were GRver2 and RDver2.

To check for the presence, location and identity of potential TF binding sites, the sequences of both synthetic genes were used as query sequences to search a database of transcription factor binding sites (TRANSFAC v3.2). The TRANSFAC database (http://transfac.gbf.de/TRANSFAC/index:html) holds information on gene regulatory DNA sequences (TF binding sites) and proteins (TFs) that bind to and act through them. The SITE table of TRANSFAC Release 3.2 contains 4,401 entries of individual (putative) TF binding sites (including TF binding sites in eukaryotic genes, in artificial sequences resulting from mutagenesis studies and *in vitro* selection procedures based on random oligonucleotide mixtures or specific theoretical considerations, and consensus binding sequences (from Faisst and Meyer, 1992).

The software tool used to locate and display these TF binding sites in the synthetic gene sequences was TESS (Transcription Element Search Software, http://agave.humgen.upenn.edu/tess/index.html). The filtered string-based search option was used with the following user-defined search parameters:

- Factor Selection Attribute: Organism Classification

- Search Pattern: Mammalia

Max. Allowable Mismatch %: 0

Min. element length: 5

Min. log-likelihood: 10

5

10

15

20

25

This parameter selection specifies that only mammalian TF binding sites (approximately 1,400 of the 4,401 entries in the database) that are at least 5 bases long will be included in the search. It further specifies that only TF binding sites that have a perfect match in the query sequence and a minimum log likelihood (LLH) score of 10 will be reported. The LLH scoring method assigns 2 to an unambiguous match, 1 to a partially ambiguous match (e.g., A or T match W) and 0 to a match against 'N'. For example, a search with parameters specified above would result in a "hit" (positive result or match) for TATAA (SEQ ID NO:50) (LLH = 10), STRATG (SEQ ID NO:51) (LLH = 10), and MTTNCNNMA (SEQ ID NO:52) (LLH = 10) but not for TRATG (SEQ ID NO:53) (LLH = 9) if these four TF binding sites were present in the query sequence. A lower stringency test was performed at the end of the design process to reevaluate the search parameters.

When TESS was tested with a mock query sequence containing known TF binding sites it was found that the program was unable to report matches to sites ending with the 3' end of the query sequence. Thus, an extra nucleotide was added to the 3' end of all query sequences to eliminate this problem.

The first search for TF binding sites using the parameters described above found about 100 transcription factor binding sites (hits) for each of the two synthetic genes (GRver2 and RDver2). All sites were eliminated by changing one or more codons of the synthetic gene sequences in accordance with the codon optimization guidelines described in 1a above. However, it was expected that some these changes created new TF binding sites, other regulatory sites, and new restriction sites. Thus, steps 2 a-d were repeated as described, and 4 new restriction sites and 2 new splice sites were removed. The two output sequences from this third design step were named GRver3 and RDver3. Their DNA sequences are 66% identical (541 mismatches).

30 4. Remove new transcription factor (TF) binding sites, then repeat steps 2 a-d

The starting gene sequences for this design step were GRver3 and

RDver3.

This fourth step is an iteration of the process described in step 3. The search for newly introduced TF binding sites yielded about 50 hits for each of the two synthetic genes. All sites were eliminated by changing one or more codons of the synthetic gene sequences in general accordance with the codon optimization guidelines described in 1a above. However, more high to medium usage codons were used to allow elimination of all TF binding sites. The lowest priority was placed on maintaining low sequence identity between the GR and RD genes. Then steps 2 a-d were repeated as described. The two output sequences from this fourth design step were named GRver4 and RDver4. Their DNA sequences are 68% identical (506 mismatches).

5

10

15

20

25

5. Remove new transcription factor (TF) binding sites, then repeat steps 2 a-d

The starting gene sequences for this design step were GRver4 and RDver4.

This fifth step is another iteration of the process described in step 3 above. The search for new TF binding sites introduced in step 4 yielded about 20 hits for each of the two synthetic genes. All sites were eliminated by changing one or more codons of the synthetic gene sequences in general accordance with the codon optimization guidelines described in 1a above. However, more high to medium usage codons were used (these are all considered "preferred") to allow elimination of all TF binding sites. The lowest priority was placed on maintaining low sequence identity between the GR and RD genes. Then steps 2 a-d were repeated as described. Only one acceptor splice site could not be eliminated. As a final step the absence of all TF binding sites in both genes as specified in step 3 was confirmed. The two output sequences from this fifth and last design step were named GRver5 and RDver5. Their DNA sequences are 69% identical (504 mismatches).

Additional evaluation of GRver5 and RDver5

a) Use lower stringency parameters for TESS:

The search for TF binding sites was repeated as described in step 3 above, but with even less stringent user-defined parameters:

setting LLH to 9 instead of 10 did not result in new hits;

 setting LLH to 0 through 8 (incl.) resulted in hits for two additional sites, MAMAG (22 hits) and CTKTK (24 hits);

- setting LLH to 8 and the minimum element length to 4, the search yielded (in addition to the two sites above) different 4-base sites for AP-1, NF-1, and c-Myb that are shortened versions of their longer respective consensus sites which were eliminated in steps 3-5 above.

It was not realistic to attempt complete elimination of these sites without introduction of new sites, so no further changes were made.

b) Search different database:

5

25

30

The Eukaryotic Promoter Database (release 45) contains information about reliably mapped transcription start sites (1253 sequences) of eukaryotic genes.

This database was searched using BLASTN 1.4.11 with default parameters (optimized to find nearly identical sequences rapidly; see Altschul et al, 1990) at the National Center for Biotechnology Information site

15 (<u>http://www.ncbi.nlm.nih.gov/cgi-bin/BLAST</u>). To test this approach, a portion of pGL3-Control vector sequence containing the SV40 promoter and enhancer was used as a query sequence, yielding the expected hits to SV40 sequences. No hits were found when using the two synthetic genes as query sequences.

20 Summary of GRver5 and RDver5 synthetic gene properties

Both genes, which at this stage were still only "virtual" sequences in the computer, have a codon usage that strongly favors mammalian high-usage codons and minimizes mammalian and *E. coli* low-usage codons.

Both genes are also completely devoid of eukaryotic TF binding sites consisting of more than four unambiguous bases, donor and acceptor splice sites (one exception: GRver5 contains one splice acceptor site), poly(A) sites, specific prokaryotic (E. coli) regulatory sequences, and undesired restriction sites.

The gene sequence identity between GRver5 and RDver5 is only 69% (504 base mismatches) while their encoded proteins are 99% identical (4 amino acid mismatches). Their identity with the parent sequence YG#81-6G1 is 74% (GRver5) and 73% (RDver5). Their base composition is 49.9% GC (GRver5) and 49.5% GC (RDver5), compared to 40.2% GC for the parent YG#81-6G01.

Construction of synthetic genes

The two synthetic genes were constructed by assembly from synthetic oligonucleotides in a thermocycler followed by PCR amplification of the full-length genes (similar to Stemmer et al. (1995) <u>Gene</u>. <u>164</u>, pp. 49-53).

5 Unintended mutations that interfered with the design goals of the synthetic genes were corrected.

a) Design of synthetic oligonucleotides:

10

15

20

25

30

The synthetic oligonucleotides were mostly 40mers that collectively code for both complete strands of each designed gene (1,626 bp) plus flanking regions needed for cloning (1,950 bp total for each gene). The 5' and 3' boundaries of all oligonucleotides specifying one strand were generally placed in a manner to give an average offset/overlap of 20 bases relative to the boundaries of the oligonucleotides specifying the opposite strand.

A total of 183 oligonucleotides were designed: fifteen oligonucleotides that collectively encode the upstream and downstream flanking sequences and 168 oligonucleotides (4 x 42) that encode both strands of the two genes.

All 183 oligonucleotides were run through the hairpin analysis of the OLIGO software (OLIGO 4.0 Primer Analysis Software © 1989-1991 by Wojciech Rychlik) to identify potentially detrimental intra-molecular loop formation. The guidelines for evaluating the analysis results were set according to recommendations of Dr. Sims (Sigma-Genosys Custom Gene Synthesis Department): oligos forming hairpins with $\Delta G < -10$ have to be avoided, those forming hairpins with $\Delta G \le -7$ involving the 3' end of the oligonucleotide should also be avoided, while those with an overall $\Delta G \le -5$ should not pose a problem for this application. The analysis identified 23 oligonucleotides able to form hairpins with a ΔG between -7.1 and -4.9. Of these, 5 had blocked or nearly blocked 3' ends (0-3 free bases) and were re-designed by removing 1-4 bases at their 3' end and adding it to the adjacent oligonucleotide.

The 40mer oligonucleotide covering the sequence complementary to the poly(A) tail had a very low complexity 3' end (13 consecutive T bases). An additional 40mer was designed with a high complexity 3' end but a consequently reduced overlap with one of its complementary oligonucleotides (11 instead of 20 bases) on the opposite strand.

Even though the oligonucleotides were designed for use in a thermocycler-based assembly reaction, they could also be used in a ligation-based protocol for gene construction. In this approach, the oligonucleotides are annealed in a pairwise fashion and the resulting short double-stranded fragments are ligated using the sticky overhangs. However, this would require that all oligonucleotides be phosphorylated.

b) Gene assembly and amplification

5

10

15

20

25

30

In a first step, each of the two synthetic genes was assembled in a separate reaction from 98 oligonucleotides. The total volume for each reaction was $50 \,\mu l$:

0.5 µM oligonucleotides (= 0.25 pmoles of each oligo)

1.0 U Taq DNA polymerase

0.02 U Pfu DNA polymerase

2 mM MgCl₂

0.2 mM dNTPs (each)

0.1% gelatin

Cycling conditions: (94°C for 30 seconds, 52°C for 30

seconds, and 72°C for 30 seconds) x 55 cycles.

In a second step, each assembled synthetic gene was amplified in a separate reaction. The total volume for each reaction was 50 μ l:

2.5 l assembly reaction

5.0 U Taq DNA polymerase

0.1 U Pfu DNA polymerase

1 M each primer (pRAMtailup, pRAMtaildn)

2 mM MgCl₂

0.2 mM dNTPs (each)

Cycling conditions: (94°C for 20 seconds, 65°C for 60

seconds, 72°C for 3 minutes) x 30 cycles.

The assembled and amplified genes were subcloned into the pRAM vector and expressed in *E. coli*, yielding 1-2% luminescent GR or RD clones. Five GR and five RD clones were isolated and analyzed further. Of the five GR clones, three had the correct insert size, of which one was weakly luminescent and one had an altered restriction pattern. Of the five RD clones, two had the correct size insert with an altered restriction pattern and one of those was weakly luminescent. Overall, the analysis indicated the presence of a large number of mutations in the genes, most likely the result of errors introduced in the assembly and amplification reactions.

10 c) Corrective assembly and amplification

To remove the large number of mutations present in the full-length synthetic genes we performed an additional assembly and amplification reaction for each gene using the proof-reading DNA polymerase *Tli*. The assembly reaction contained, in addition to the 98 GR or RD oligonucleotides, a small amount of DNA from the corresponding full-length clones with mutations described above. This allows the oligos to correct mutations present in the templates.

The following assembly reaction was performed for each of the synthetic genes. The total volume for each reaction was 50 μ l:

20

25

30

15

5

0.5 µM oligonucleotides (= 0.25 pmoles of each oligo)

0.016 pmol plasmid (mix of clones with correct insert

size)

2.5 U Tli DNA polymerase

2 mM MgCl₂

0.2 mM dNTPs (each)

0.1 % gelatin

Cycling conditions: 94°C for 30 seconds, then (94°C for

30 seconds, 52°C for 30 seconds, 72°C for 30 seconds) for

55 cycles, then 72°C for 5 minutes.

The following amplification reaction was performed on each of the assembly reactions. The total volume for each amplification reaction was 50 μ l:

1-5 µl of assembly reaction

40 pmol each primer (pRAMtailup, pRAMtaildn)

2.5 U Tli DNA polymerase

2 mM MgCl₂

5

10

15

20

25

30

0.2 mM dNTPs (each)

Cycling conditions: 94°C for 30 seconds, then (94°C for 20 seconds, 65°C for 60 seconds and 72°C for 3 minutes)

for 30 cycles, then 72°C for 5 minutes.

The genes obtained from the corrective assembly and amplification step were subcloned into the pRAM vector and expressed in *E. coli*, yielding 75% luminescent GR or RD clones. Forty-four GR and 44 RD clones were analyzed with the screening robot described in WO99/14336. The six best GR and RD clones were manually analyzed and one best GR and RD clone was selected (GR6 and RD7). Sequence analysis of GR6 revealed two point mutations in the coding region, both of which resulted in an amino acid substitution (S49N and P230S). Sequence analysis of RD7 revealed three point mutations in the coding region, one of which resulted in an amino acid substitution (H36Y). It was confirmed that none of the silent point mutations introduced any regulatory or restriction sites conflicting with the overall design criteria for the synthetic genes.

d) Reversal of unintended amino acid substitutions

The unintended amino acid substitutions present in the GR6 and RD7 synthetic genes were reversed by site-directed mutagenesis to match the GRver5 and RDver5 designed sequences, thereby creating GRver5.1 and RDver5.1. The DNA sequences of the mutated regions were confirmed by sequence analysis.

e) Improve spectral properties

The RDver5.1 gene was further modified to improve its spectral properties by introducing an amino change (R351G), thereby creating RDver5.2

pGL3 vectors with RD and GR genes

The parent click beetle luciferase YG#81-6G1 ("YG"), and the synthetic click beetle luciferase genes GRver5.1 ("GR"), RDver5.2 ("RD"), and RD156-1H9 were cloned into the four pGL3 reporter vectors (Promega Corp.):

- pGL3-Basic = no promoter, no enhancer
- pGL3-Control = SV40 promoter, SV40 enhancer

- pGL3-Enhancer = SV40 enhancer (3' to luciferase coding sequences)

- pGL3-Promoter = SV40 promoter.

The primers employed in the assembly of GR and RD synthetic genes facilitated the cloning of those genes into pRAM vectors. To introduce the genes into pGL3 vectors (Promega Corp., Madison, WI) for analysis irn mammalian cells, each gene in a pRAM vector (pRAM RDver5.1, pRAM GR ver5.1, and pRAM RD156-1H9) was amplified to introduce an *Nco* I site at the 5' end and an *Xba* I site at the 3' end of the gene. The primers for pRAM RDver5.1 and pRAM GRver5.1 were:

10 GR→5' GGA TCC CAT GGT GAA GCG TGA GAA 3' (SEQ ID NO:56) or RD→5' GGA TCC CAT GGT GAA ACG CGA 3' (SEQ ID NO:57) and 5' CTA GCT TTT TTT TCT AGA TAA TCA TGA AGA C 3' (SEQ ID NO:58) The primers for pRAM RD156-1H9 were:

5' GCG TAG CCA TGG TAA AGC GTG AGA AAA ATG TC 3' (SEQ ID NO:

15 59) and

30

5' CCG ACT CTA GAT TAC TAA CCG CCG GCC TTC ACC 3' (SEQ ID NO: 60)

The PCR included:

100 ng DNA plasmid

20 1 μM primer upstream

1 μM primer downstream

0.2 mM dNTPs

1X buffer (Promega Corp.)

5 units Pfu DNA polymerase (Prom.ega Corp.)

25 Sterile nanopure H₂O to 50 μl

The cycling parameters were: 94°C for 5 minutes; (94°C for 30 seconds; 55°C for 1 minute; and 72°C for 3 minutes) x 15 cycles. The purified PCR product was digested with Nco I and Xba I, ligated with pGL3-control that was also digested with Nco I and Xba I, and the ligated products introduced to E. coli. To insert the luciferase genes into the other pGL3 reporter vectors (basic, promoter and enhancer), the pGL3-control vectors containing each of the luciferase genes was digested with Nco I and Xba I, ligated with other pGL3

vectors that also were digested with *Nco* I and *Xba* I, and the ligated products introduced to *E. coli*. Note that the polypeptide encoded by GRver5.1 and RDver5.1 (and RD156-1H9, see below) nucleic acid sequences in pGL3 vectors has an amino acid substitution at position 2 to valine as a result of the *Nco* I site at the initiation codon in the oligonucleotide.

Because of internal Nco I and Xba I sites, the native gene in YG #81-6G01 was amplified from a Hind III site upstream to a Hpa I site downstream of the coding region and which included flanking sequences found in the GR and RD clones. The upstream primer (5'-CAA AAA GCT TGG CAT TCC GGT ACT GTT GGT AAA GCC ACC ATG GTG AAG CGA GAG- 3'; SEQ ID NO:61) and a downstream primer (5'- CAA TTG TTG TTG TTA ACT TGT TTA TT -3'; SEO ID NO:62) were mixed with YG#81-6G01 and amplified using the PCR conditions above. The purified PCR product was digested with Nco I and Xba I, ligated with pGL3-control that was also digested with Hind III and Hpa I, and the ligated products introduced into E. coli. To insert YG#81 -6G01 into the other pGL3 reporter vectors (basic, promoter and enhancer), the pGL3-control vectors containing YG#81-6G01 were digested with Nco I and Xba I, ligated with the other pGL3 vectors that also were digested with Nco I and Xba I, and the ligated products introduced to E. coli. Note that the clone of YG#81-6G01 in the pGL3 vectors has a C instead of an A at base 786, which yields a change in the amino acid sequence at residue 262 from Phe to Leu. To determine whether the altered amino acid at position 262 affected the enzyme biochemistry, the clone of YG#81-6G01 was mutated to resemble the original sequence. Both clones were then tested for expression in E. coli, physical stability, substrate binding, and luminescence output kinetics. No significant differences were found.

Partially purified enzymes expressed from the synthetic genes and the parent gene were employed to determine Km for luciferin and ATP (see Table 3).

30

5

10

15

20

25

Table 3

5

10

15

20

25

Enzyme	K _M (LH ₂)	K _M (ATP)
YG parent	2 μΜ	17 μΜ
GR	1.3 μΜ	25 μΜ
RD	24.5 μΜ	46 μM

In vitro eukaryotic transcription/translation reactions were also conducted using Promega's TNT T7 Quick system according to manufacturer's instructions. Luminescence levels were 1 to 37-fold and 1 to 77-fold higher (depending on the reaction time) for the synthetic GR and RD genes, respectively, compared to the parent gene (corrected for luminometer spectral sensitivity).

To test whether the synthetic click beetle luciferase genes and the wild type click beetle gene have improved expression in mammalian cells, each of the synthetic genes and the parent gene was cloned into a series of pGL3 vectors and introduced into CHO cells (Table 8). In all cases, the synthetic click beetle genes exhibited a higher expression than the native gene. Specifically, expression of the synthetic GR and RD genes was 1900-fold and 40-fold higher, respectively, than that of the parent (transfection efficiency normalized by comparison to native *Renilla* luciferase gene). Moreover, the data (basic versus control vector) show that the synthetic genes have reduced basal level transcription.

Further, in experiments with the enhancer vector where the percentage of activity in reference to the control is compared between the native and synthetic gene, the data showed that the synthetic genes have reduced risk of anomalous transcription characteristics. In particular, the parent gene appeared to contain one or more internal transcriptional regulatory sequences that are activated by the enhancer in the vector, and thus is not suitable as a reporter gene while the synthetic GR and RD genes showed a clean reporter response (transfection efficiency normalized by comparison to native *Renilla* luciferase gene). See Table 8.

Example 2

Synthetic Renilla Luciferase Nucleic Acid Molecule

The synthetic *Renilla* luciferase genes prepared include 1) an introduced Kozak sequence, 2) codon usage optimized for mammalian (human) expression, 3) a reduction or elimination of unwanted restriction sites, 4) removal of

3) a reduction or elimination of unwanted restriction sites, 4) removal of prokaryotic regulatory sites (ribosome binding site and TATA box), 5) removal of splice sites and poly(A) sites, and 6) a reduction or elimination of mammalian transcriptional factor binding sequences.

The process of computer-assisted design of synthetic *Renilla* luciferase genes by iterative rounds of codon optimization and removal of transcription factor binding sites and other regulatory sites as well as restriction sites can be described in three steps:

- Using the wild type Renilla luciferase gene as the parent gene, codon usage
 was optimized, one amino acid was changed (T→A) to generate a Kozak
 consensus sequence, and undesired restriction sites were eliminated thereby
 creating synthetic gene Rlucver1.
- 2. Remove prokaryotic regulatory sites, splice sites, poly(A) sites and transcription factor (TF) binding sites (first pass). Then remove newly created TF binding sites. Then remove newly created undesired restriction enzyme sites, prokaryotic regulatory sites, splice sites, and poly(A) sites without introducing new TF binding sites. This thereby created Rlucver2.
- 3. Change 3 bases of Rlucver2 thereby creating Rluc-final.
- The actual gene was then constructed from synthetic oligonucleotides corresponding to the Rluc-final designed sequence. All mutations resulting from the assembly or PCR process were corrected. This gene is Rluc-final.

Codon Selection

5

10

15

20

30

Starting with the *Renilla reniformis* luciferase sequence in Genbank (Accession No. M63501), codons were selected based on codon usage for optimal expression in human cells and to avoid *E. coli* low-usage codons. The best codon for expression in human cells (or the best two codons if found at a similar frequency) was chosen for all amino acids with more than one codon (Wada et al., 1990):

Arg: CGC Lys: AAG Leu: CTG Asn: AAC Ser: TCT/AGC Gln: CAG His: CAC Thr: ACC Glu: GAG Pro: CCA/CCT Ala: GCC Asp: GAC Gly: GGC Tyr: TAC Cys: TGC Val: GTG Phe: TTC Ile: ATC/ATT

In cases where two codons were selected for one amino acid, they were used in an alternating fashion. To meet other criteria for the synthetic gene, the initial optimal codon selection was modified to some extent later. For example, introduction of a Kozak sequence required the use of GCT for Ala at amino acid position 2 (see below).

The following low-usage codons in mammalian cells were not used unless needed: Arg: CGA, CGU; Leu: CTA, UUA; Ser: TCG; Pro: CCG; Val: GTA; and Ile: ATA. The following low-usage codons in *E. coli* were also avoided when reasonable (note that 3 of these match the low-usage list for mammalian cells): Arg: CGA/CGG/AGA/AGG, Leu: CTA; Pro: CCC; Ile: ATA.

Introduction of Kozak Sequences

5

15

20

25

30

The Kozak sequence: 5' aaccATGGCT 3' (SEQ ID NO: 63) (the *Nco* I site is underlined, the coding region is shown in capital letters) was introduced to the synthetic *Renilla* luciferase gene. The introduction of the Kozak sequence changes the second amino acid from Thr to Ala (GCT).

Removal of undesired restriction sites

REBASE ver. 808 (updated August 1, 1998; Restriction Enzyme Database; www.neb.com/rebase) was employed to identify undesirable restriction sites as described in Example 1. The following undesired restriction sites (in addition to those described in Example 1) were removed according to the process described in Example 1: EcoICR I, NdeI, NsiI, SphI, SpeI, XmaI, PstI.

The version of *Renilla* luciferase (Rluc) which incorporates all these changes is Rlucver1.

Removal of prokaryotic (E. coli) regulatory sequences, splice sites, and poly(A) sites

The priority and process for eliminating transcription regulation sites was as described in Example 1.

5 Removal of TF binding sites

10

15

20

25

30

The same process, tools, and criteria were used as described in Example 1, however, the newer version 3.3 of the TRANSFAC database was employed.

After removing prokaryotic regulatory sequences, splice sites and poly(A) sites from Rlucver1, the first search for TF binding sites identified about 60 hits. All sites were eliminated with the exception of three that could not be removed without altering the amino acid sequence of the synthetic *Renilla* gene:

- site at position 63 composed of two codons for W (TGGTGG), for CAC-binding protein T00076;
- site at position 522 composed of codons for KMV (AAN ATG GTN), for myc-DF1 T00517;
- 3. site at position 885 composed of codons for EMG (GAR ATG GGN), for myc-DF1 T00517.

The subsequent second search for (newly introduced) TF binding sites yielded about 20 hits. All new sites were eliminated, leaving only the three sites described above. Finally, any newly introduced restriction sites, prokaryotic regulatory sequences, splice sites and poly(A) sites were removed without introducing new TF binding sites if possible.

Rlucver2 was obtained.

As in Example 1, lower stringency search parameters were specified for the TESS filtered string search to further evaluate the synthetic *Renilla* gene.

With the LLH reduced from 10 to 9 and the minimum element length reduced from 5 to 4, the TESS filtered string search did not show any new hits. When, in addition to the parameter changes listed above, the organism classification was expanded from "mammalia" to "chordata", the search yielded only four more TF binding sites. When the Min LLH was further reduced to between 8 and 0, the search showed two additional 5-base sites (MAMAG and CTKTK) which combined had four matches in Rlucver2, as well as several 4-base sites. Also as in Example 1, Rlucver2 was checked for hits to entries in the

EPD (Eukaryotic Promoter Database, Release 45). Three hits were determined one to Mus musculus promoter H-2L^d (Cell, 44, 261 (1986)), one to Herpes Simplex Virus type 1 promoter b'g'2.7 kb, and one to Homo sapiens DHFR promoter (J. Mol. Biol., 176, 169 (1984)). However, no further changes were made to Rlucver2.

Summary of Properties for Rlucver2

5

15

25

- All 30 low usage codons were eliminated. The introduction of a Kozak sequence changed the second amino acid from Thr to Ala;
- base composition: 55.7% GC (Renilla wild-type parent gene: 36.5%);
 - one undesired restriction site could not be eliminated: *EcoR* V at position 488;
 - the synthetic gene had no prokaryotic promoter sequence but one potentially functional ribosome binding site (RBS) at positions 867-73 (about 13 bases upstream of a Met codon) could not be eliminated;
 - all poly(A) sites were eliminated;
 - splice sites: 2 donor splice sites could not be eliminated (both share the amino acid sequence MGK);
- TF sites: all sites with a consensus of >4 unambiguous bases were eliminated (about 280 TF binding sites were removed) with 3 exceptions due to the preference to avoid changes to the amino acid sequence.

When introduced into pGL3, Rluc-final has a Kozak sequence (CACCATGGCT; SEQ ID NO:65). The changes in Rluc-final relative to Rlucver2 were introduced during gene assembly. One change was at position 619, a C to an A, which eliminated a eukaryotic promoter sequence and reduced the stability of a hairpin structure in the corresponding oligonucleotide employed to assemble the gene. Other changes included a change from CGC to AGA at positions 218-220 (resulted in a better oligonucleotide for PCR).

30 Gene Assembly Strategy

The gene assembly protocol employed for the synthetic *Renilla* luciferase was similar to that described in Example 1.

Sense Strand primer:

5' AACCATGGCTTCCAAGGTGTACGACCCCGAGCAACGCAAA 3' (SEQ ID NO:66)

Anti-sense Strand primer:

5' GCTCTAGAATTACTGCTCGTTCTTCAGCACGCGCTCCACG 3' (SEQ ID NO:67)

The resulting synthetic gene fragment was cloned into a pRAM vector using *Nco* I and *Xba* I. Two clones having the correct size insert were sequenced. Four to six mutations were found in the synthetic gene from each clone. These mutations were fixed by site-directed mutagenesis (Gene Editor from Promega Corp., Madison, WI) and swapping the correct regions between these two genes. The corrected gene was confirmed by sequencing.

Other Vectors

10

15

20

25

To prepare an expression vector for the synthetic *Renilla* luciferase gene in a pGL-3 control vector backbone, 5 μ g of pGL3-control was digested with *Nco* I and *Xba* I in 50 μ l final volume with 2 μ l of each enzyme and 5 μ l 10X buffer B (nanopure water was used to fill the volume to 50 μ l). The digestion reaction was incubated at 37°C for 2 hours, and the whole mixture was run on a 1% agarose gel in 1XTAE. The desired vector backbone fragment was purified using Qiagen's QIAquick gel extraction kit.

The native *Renilla* luciferase gene fragment was cloned into pGL3-control vector using two oligonucleotides, *Nco* I-RL-F and *Xba* I-RL-R, to PCR amplify native *Renilla* luciferase gene using pRL-CMV as the template. The sequence for *Nco* I-RL-F is 5'-

CGCTAGCCATGGCTTCGAAAGTTTATGATCC -3' (SEQ ID NO:68); the sequence for Xba I-RL-R is

5' GGCCAGTAACTCTAGAATTATTGTT-3' (SEQ ID NO:69). The PCR reaction was carried out as follows:

30 Reaction mixture (for 100 μl):

DNA template (Plasmid) 1.0 µl (1.0 ng/µl final)

10 X Rec. Buffer 10.0 μl (Stratagene Corp.)

	dNTPs (25 mM each)	1.0 μl (final 250 μM)
	Primer 1 (10 μM)	2.0 μl (0.2 μM final)
5	Primer 2 (10 μM)	2.0 μl (0.2 μM final)
	Pfu DNA Polymerase	2.0 µl (2.5 U/µl, Stratagene Corp.)
		82.0 µl double distilled water

PCR Reaction: heat 94°C for 2 minutes; (94°C for 20 seconds; 65°C for 1 minute; 72°C for 2 minutes; then 72°C for 5 minutes) x 25 cycles, then incubate on ice. The PCR amplified fragment was cut from a gel, and the DNA purified

and stored at -20°C.

15

20

25

30

35

To introduce native *Renilla* luciferase gene fragment into pGL3-control vector, 5 µg of the PCR product of the native *Renilla* luciferase gene (RAM-RL-synthetic) was digested with *Nco* I and *Xba* I. The desired *Renilla* luciferase gene fragment was purified and stored at -20°C.

Then 100 ng of insert and 100 ng of pGL3-control vector backbone were digested with restriction enzymes *Nco* I and *Xba* I and ligated together. Then 2 µl of the ligation mixture was transformed into JM109 competent cells. Eight ampicillin resistance clones were picked and their DNA isolated. DNA from each positive clone of pGL3-control-native and pGL3-control-synthetic was purified. The correct sequences for the native gene and the synthetic gene in the vectors were confirmed by DNA sequencing.

To determine whether the synthetic *Renilla* luciferase gene has improved expression in mammalian cells, the gene was cloned into the mammalian expression vector pGL3-control vector under the control of SV40 promoter and SV40 early enhancer. The native *Renilla* luciferase gene was also cloned into the pGL-3 control vector so that the expression from synthetic gene and the native gene could be compared. The expression vectors were then transfected into four common mammalian cell lines (CHO, NIH3T3, Hela and CV-1; Table 9), and the expression levels compared between the vectors with the synthetic gene versus the native gene. The amount of DNA used was at two different levels to ascertain that expression from the synthetic gene is consistently

increased at different expression levels. The results show a 70-600 fold increase of expression for the synthetic *Renilla* luciferase gene in these cells (Table 4).

•	Table 4	
Cell Type	Amount Vector	Fold Expression Increase
СНО	0.2 μg	142
	2.8 μg	145
NIH3T3	0.2 μg	326
	2.0 μg	593
HeLa	0.2 μg	185
	1.0 μg	103
CV-1	0.2 μg	68

72

5

10

15

One important advantage of luciferase reporter is its short protein half-life. The enhanced expression could also result from extended protein half-life and, if so, this gives an undesired disadvantage of the new gene. This possibility is ruled out by a cycloheximide chase ("CHX Chase") experiment, which demonstrated that there was no increase of protein half-life resulted from the humanized *Renilla* luciferase gene.

 $2.0 \mu g$

To ensure that the increase in expression is not limited to one expression vector backbone, is promoter specific and/or cell specific, a synthetic *Renilla* gene (Rluc-final) as well as native *Renilla* gene were cloned into different vector backbones and under different promoters. The synthetic gene always exhibited increased expression compared to its wild-type counterpart (Table 5).

Table 5

Vector	NIH-3T3	HeLa	СНО
pRL-tk, native	3,834.6	922.4	7,671.9
pRL-tk, synthetic	13,252.5	9,040.2	41,743.5
pRL-CMV, native	168,062.2	842,482.5	153,539.5
pRL-CMV, synthetic	2,168,129	8,440,306	2,532,576
pRL-SV40, native	224,224.4	346,787.6	85,323.6

Vector	NIH-3T3	HeLa	СНО
pRL-SV40, synthetic	1,469,588	2,632,510	1,422,830
pRL-null, native	2,853.8	431.7	2,434
pRL-null, synthetic	9,151.17	2,439	28,317.1
pRGL3b, native	12	21.8	17
pRGL3b, synthetic	130.5	212.4	1,094.5
pRGL3-tk, native	27.9	155.5	186.4
pRGL3-tk, synthetic	6,778.2	8,782.5	9,685.9
pRL-tk no intron, native	31.8	165	93.4
pRL-tk no intron, synthetic	6,665.5	6,379	21,433.1

<u>Table 6</u>

Percent of control vector

<u>Vector</u>	CHO cells	NIH3T3 cells	HeLa cells
pRL-control native	100	100	100
pRL-control synthetic	100	100	100
pRL-basic native	4.1	5.6	0.2
pRL-basic synthetic	0.4	0.1	0.0
pRL-promoter native	5.9	7.8	0.6
pRL-promoter synthetic	15.0	9.9	1.1
pRL-enhancer native	42.1	123.9	52.7
pRL-enhancer synthetic	2.6	1.5	5.4

With reduced spurious expression the synthetic gene should exhibit less

basal level transcription in a promoterless vector. The synthetic and native

Renilla luciferase genes were cloned into the pGL3-basic vector to compare the

basal level of transcription. Because the synthetic gene itself has increased

expression efficiency, the activity from the promoterless vector cannot be

compared directly to judge the difference in basal transcription, rather, this is

taken into consideration by comparing the percentage of activity from the

promoterless vector in reference to the control vector (expression from the basic vector divided by the expression in the fully functional expression vector with both promoter and enhancer elements). The data demonstrate that the synthetic *Renilla* luciferase has a lower level of basal transcription than the native gene in mammalian cells (Table 6).

5

10

15

20

25

30

It is well known to those skilled in the art that an enhancer can substantially stimulate promoter activity. To test whether the synthetic gene has reduced risk of inappropriate transcriptional characteristics, the native and synthetic gene were introduced into a vector with an enhancer element (pGL3enhancer vector). Because the synthetic gene has higher expression efficiency, the activity of both cannot be compared directly to compare the level of transcription in the presence of the enhancer, however, this is taken into account by using the percentage of activity from enhancer vector in reference to the control vector (expression in the presence of enhancer divided by the expression in the fully functional expression vector with both promoter and enhancer elements). Such results show that when native gene is present, the enhancer alone is able to stimulate transcription from 42-124% of the control, however, when the native gene is replaced by the synthetic gene in the same vector, the activity only constitutes 1-5% of the value when the same enhancer and a strong SV40 promoter are employed. This clearly demonstrates that synthetic gene has reduced risk of spurious expression (Table 6).

The synthetic Renilla gene (Rluc-final) was used in in vitro systems to compare translation efficiency with the native gene. In a T7 quick coupled transcription/translation system (Promega Corp., Madison, WI), pRL-mull native plasmid (having the native Renilla luciferase gene under the control of the T7 promoter) or the same amount of pRL-null-synthetic plasmid (having the synthetic Renilla luciferase gene under the control of the T7 promoter) was added to the TNT reaction mixture and luciferase activity measured every 5 minutes up to 60 minutes. Dual Luciferase assay kit (Promega Corp.) was used to measure Renilla luciferase activity. The data showed that improved expression was obtained from the synthetic gene. To further evidence the increased translation efficiency of the synthetic gene, RNA was prepared by an in vitro transcription system, then purified. pRL-null (native or synthetic) vectors

were linearized with *Bam*HI. The DNA was purified by multiple phenol-chloroform extraction followed by ethanol precipitation. An *in vitro* T7 transcription system was employed by prepare RNAs. The DNA template was removed by using RNase-free DNase, and RNA was purified by phenol-chloroform extraction followed by multiple isopropanol precipitations. The same amount of purified RNA, either for the synthetic gene or the native gene, was then added to a rabbit reticulocyte lysate or wheat germ lysate. Again, the synthetic *Renilla* luciferase gene RNA produced more luciferase than the native one. These data suggest that the translation efficiency is improved by the synthetic sequence. To determine why the synthetic gene was highly expressed in wheat germ, plant codon usage was determined. The lowest usage codons in higher plants coincided with those in mammals.

5

10

15

20

25

30

Reporter gene assays are widely used to study transcriptional regulation events. This is often carried out in co-transfection experiments, in which, along with the primary reporter construct containing the testing promoter, a second control reporter under a constitutive promoter is transfected into cells as an internal control to normalize experimental variations including transfection efficiencies between the samples. Control reporter signal, potential promoter cross talk between the control reporter and primary reporter, as well as potential regulation of the control reporter by experimental conditions, are important aspects to consider for selecting a reliable co-reporter vector.

As described above, vector constructs were made by cloning synthetic Renilla luciferase gene into different vector backbones under different promoters. All the constructs showed higher expression in the three mammalian cell lines tested (Table 5). Thus, with better expression efficiency, the synthetic Renilla luciferase gives out higher signal when transfected into mammalian cells.

Because a higher signal is obtained, less promoter activity is required to achieve the same reporter signal, this reduced risk of promoter interference. CHO cells were transfected with 50 ng pGL3-control (firefly *luc+*) plus one of 5 different amounts of native pRL-TK plasmid (50, 100, 500, 1000, or 2000 ng) or synthetic pRL-TK (5, 10, 50, 100, or 200 ng). To each transfection, pUC19 carrier DNA was added to a total of 3 µg DNA. 10 fold less pRL-TK DNA gave

similar or more signal as the native gene, with reduced risk of inhibiting expression from the primary reporter pGL3-control.

5

10

15

20

Experimental treatment sometimes may activate cryptic sites within the gene and cause induction or suppression of the co-reporter expression, which would compromise its function as co-reporter for normalization of transfection efficiencies. One example is that TPA induces expression of co-reporter vectors harboring the wild-type gene when transfecting MCF-7 cells. 500 ng pRL-TK (native), 5 µg native and synthetic pRG-B, 2.5 µg native and synthetic pRG-TK were transfected per well of MCF-7 cells. 100 ng/well pGL3-control (firefly luc+) was co-transfected with all RL plasmids. Carrier DNA, pUC19, was used to bring the total DNA transfected to 5.1 µg/well. 15.3 µl TransFast Transfection Reagent (Promega Corp., Madison, WI) was added per well. Sixteen hours later, cells were trypsinized, pooled and split into six wells of a 6-well dish and allowed to attach to the well for 8 hours. Three wells were then treated with the 0.2 nM of the tumor promoter, TPA (phorbol-12-myristate-13-acetate, Calbiochem #524400-S), and three wells were mock treated with 20 µl DMSO. Cells were harvested with 0.4 ml Passive Lysis Buffer 24 hours post TPA addition. The results showed that by using the synthetic gene, undesirable change of co-reporter expression by experimental stimuli can be avoided (Table 7). This demonstrates that using synthetic gene can reduce the risk of anomalous expression.

Table 7

<u>Vector</u>	Rlu	Fold Induction
pRL-tk untreated (native)	184	
pRL-tk TPA treated (native)	812	4.4
pRG-B untreated (native)	1	
pRG-B TPA treated (native)	8	8.0
pRG-B untreated (final)	132	
pRG-B TPA treated (final)	195	1.47
pRG-tk untreated (native)	44	

VectorRluFold InductionpRG-tk TPA treated (native)1924.36pRG-tk untreated (final)12,816pRG-tk TPA treated (final)11,3470.88

Example 3

Synthetic Firefly Luciferase Genes

5

10

15

20

The luc+ gene (U.S. Patent No. 5,670,356) was optimized using two approaches. In the first approach (Strategy A), regulatory sequences such as codons were optimized and consensus transcription factor binding sites (TFBS) were removed (see Example 4, although different versions of programs and databases were used). The sequences obtained for the first approach include hluc+ver2AF1 through hluc+ver2AF8 (designations with an "F" indicate the construct included flanking sequences). hluc+ver2AF1 is codon-optimized, hluc+ver2AF2 is a sequence obtained after a first round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF3 was obtained after a second round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF4 was obtained after a third round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF5 was obtained after a fourth round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2AF6 was obtained after removal of promoter modules and RBS, hluc+ver2AF7 was obtained after further removal of identified undesired sequences including transcription factor binding sites, and hluc+ver2AF8 was obtained after modifying a restriction enzyme recognition site.

Pairwise DNA identity of different P. pyralis luciferase gene versions:

Table 8

	luc	luc+	hluc+	hluc+ver2A1	hluc+ver2B1	hluc+ver2A6	hluc+ver2B6
Luc	100	95	76	73	77	74	75
luc+		100	78	76	78	75	77
hluc+			100	91	81	87	81
hluc+ver2A1				100	74	91	78
hluc+ver2B1					100	74	85
hluc+ver2A6						100	80
hluc+ver2B6		1	1		<u> </u>		100

luc+ has the following sequence:

atggaagacgccaaaaaacataaagaaaggcccggcgccattctatccgctggaagatggaaccgctggagagcaactg cata agget at gaag agata cgccct ggttcct ggaac a attg cttttac agat gcacat atcg aggt ggacat consideration of the consideration ofacttacgctgagtacttcgaaatgtccgttcggttggcagaagctatgaaacgatatgggctgaatacaaatcacaga at cgtcgt at gcagt gaaa a act ctctt ca at tctt tat gccggt gtt gg gcgcgt tat ttt at cgg ag tt gcagt tgccgcccgcgaacgacatttataatgaacgtgaattgctcaacagtatgggcatttcgcagcctaccgtggtgttcgtttccaaaa aggggttg caaaaaaattttg aacgtg caaaaaaaagctcccaatcatccaaaaaaattattatcatggattctaaaacggattaccagggatttcagtcgatgtacacgttcgtcacatctcatctacctcccggttttaatgaatacgattttgtgccagagtccttcgatagggacaagacaattgcactgatcatgaactcctctggatctactggtctgcctaaaggtgtcgctctg cct cataga actgcct gcgt gag attctc gcat gccag agatcct attttt ggcaat caa at cattcc ggat act gcgatttta agt gtt gtt ccattccat cac gg ttt t gg aat gtt tactacac tcg gat at tt gat at gt gg at tt cg agt cg tct taatgtatagatttgaagaagagctgtttctgaggagccttcaggattacaagattcaaagtgcgctgctggtgccaaccctattctccttcttcgccaaaagcactctgattgacaaatacgatttatctaatttacacgaaattgcttctggtggcgctccccto tota aggaag toggggaag cggttgccaag aggttccatctgccagg tatcaggcaag gatatgggctcactgagacta cat cag ctatt ctg attacacccg agg gg gat gataaaccg gg cg gg tcg gtaaa gt tgt tcc att ttt tgaaaccg gat gataaaccg gg gat gataaaccg gataaccg gataaaccg gataaccg gataaccg gataaccg gataaccg gataaccg gataaccg gataaccg gataaccg ga catagetta ctgggacgaagacgaacacttette ategttgaccgcctgaagtetetgatta agtacaaaggetateaggtggctcccgctgaattggaatccatcttgctccaacaccccaacatcttcgacgcaggtgtcgcaggtcttcccga cgatgacgccggtgaacttcccgccgccgttgttgttttggagcacggaaaaaagacgatgacggaaaaaagagatcgtggattacgtcgccagtcaagtaacaaccgcgaaaaagttgcgcggaggagttgtgtttgtgggacgaagtaccgaaag gtottaccggaaaaactcgacgcaagaaaaatcagagagatcctcataaaaggccaagaagggcggaaagatcgccgtgtaa (SEQ ID NO:43)

25

30

10

15

20

and hluc+ has the following sequence:

<u>Table 9</u>

<u>Percent Identity</u>

20

15

5

10

		hluc+ver2A8	hluc+ver2B10	luc+	hluc+
Divergence	hluc+ver2A8		79.6	74	86.6
	hluc+ver2B10	22.9		75.9	80.1
	luc+	30.4	27.8		77.4
	hluc+	14.7	22.5	25.7	

Table 10

25 <u>Composition statistics of different P.pyralis luciferase gene versions</u>

	GC content	CG di-nucleotides		
H. sapiens	53%			
luc	45%	99		
luc+	47%	97		
hluc+	60%	111		
hluc+ver2A1	66%	151		
hluc+ver2B1	46%	1		
hluc+ver2A6	58%	133		
hluc+ver2B6	49%	53		

hluc+ver2A1-hluc+ver2A5 have the following sequences (SEQ ID Nos.16-20):

hluc+ver2A1

AAAGCCACCATGGAGGACGCCAAGAACATCAAGAAGGGCCCCGCCC 5 CCTTCTACCCCCTGGAGGACGGCACCGCCGGCGAGCAGCTGCACAAG GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTCACCGA CGCCCACATCGAGGTGGACATCACCTACGCCGAGTACTTCGAGATGA GCGTGCGCCTGGCCGAGGCCATGAAGCGCTACGGCCTGAACACCAAC CACCGCATCGTGGTGTGCAGCGAGAACAGCCTGCAGTTCTTCATGCC 10 ACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAG CCCACCGTGGTGTTCGTGAGCAAGAAGGCCTGCAGAAGATCCTGAA CGTGCAGAAGAAGCTGCCCATCATCCAGAAGATCATCATCATGGACA GCAAGACCGACTACCAGGGCTTCCAGAGCATGTACACCTTCGTGACC 15 AGCCACCTGCCCCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAG CTTCGACCGCGACAAGACCATCGCCCTGATCATGAACAGCAGCGGCA GCACCGGCCTGCCCAAGGGCGTGGCCCTGCCCCACCGCACCGCCTGC GTGCGCTTCAGCCACGCCCGCGACCCCATCTTCGGCAACCAGATCAT CCCCGACACCGCCATCCTGAGCGTGGTGCCCTTCCACCACGGCTTCG 20 GCATGTTCACCACCCTGGGCTACCTGATCTGCGGCTTCCGCGTGGTGC TGATGTACCGCTTCGAGGAGGAGCTGTTCCTGCGCAGCCTGCAGGAC TACAAGATCCAGAGCGCCCTGCTGGTGCCCACCCTGTTCAGCTTCTTC GCCAAGAGCACCTGATCGACAAGTACGACCTGAGCAACCTGCACGA GATCGCCAGCGGCGCGCCCCCTGAGCAAGGAGGTGGGCGAGGCC 25 GTGGCCAAGCGCTTCCACCTGCCCGGCATCCGCCAGGGCTACGGCCT GACCGAGACCACCAGCGCCATCCTGATCACCCCCGAGGGCGACGACA AGCCCGGCGCGTGGGCAAGGTGGTGCCCTTCTTCGAGGCCAAGGTG GTGGACCTGGACACCGGCAAGACCCTGGGCGTGAACCAGCGCGCG AGCTGTGCGTGCGCGCCCCATGATCATGAGCGGCTACGTGAACAAC 30 CGGCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGG ACCGCCTGAAGAGCCTGATCAAGTACAAGGGCTACCAGGTGGCCCCC GCCGAGCTGGAGAGCATCCTGCTGCAGCACCCCAACATCTTCGACGC

CGGCGTGGCCGGCCTGCCCGACGACGACGCCGGCGAGCTGCCCGCCG CCGTGGTGGTGCTGGAGCACGGCAAGACCATGACCGAGAAGGAGAT CGTGGACTACGTGGCCAGCCAGGTGACCACCGCCAAGAAGCTGCGCG GCGGCGTGGTGTTCGTGGACGAGGTGCCCAAGGGCCTGACCGGCAAG CTGGACGCCCGCAAGATCCGCGAGATCCTGATCAAGGCCAAGAAGG GCGGCAAGATCGCCGTGTAATAATTCTAGA

hluc+ver2A2

5

AAAGCCACCATGGAGGACGCCAAGAACATCAAGAAGGGCCCAGCGC CATTCTACCCCTGGAGGACGGCACCGCCGGCGAGCAGCTGCACAAG 10 GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTCACCGA CGCACATATCGAGGTGGACATCACCTACGCCGAGTACTTCGAGATGA GCGTTCGGCTGCAGAGGCTATGAAGCGCTATGGGCTGAACACCAAC CATCGCATCGTGGTGTGCAGCGAGAACAGCTTGCAGTTCTTCATGCC CGTGTTGGGTGCCCTGTTCATCGGCGTGGCTGTGGCCCCAGCTAACG 15 ACATCTACAACGAGCGCGAGCTGCTGAACAGCATGGGCATCAGCCAG CCCACCGTCGTATTCGTGAGCAAGAAGGGCTGCAAAAGATCCTGAA CGTGCA_AAAGAAGCTGCCCATCATCCAAAAGATCATCATCATGGACA GCAAGA CCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACC 20 AGCCATTTGCCGCCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAG CTTCGACCGCGACAAGACCATCGCCCTGATCATGAACAGTAGTGGCA GTCCGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATCATC CCCGACACCGCTATCCTGAGCGTGGTGCCATTTCACCACGGCTTCGGC ATGTTCACCACCCTGGGCTACTTGATCTGCGGCTTCCGGGTCGTGCTG 25 **ATGTAC CGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTA** CAAGATTCAAAGCGCCCTGCTGGTGCCCACCCTGTTCAGTTTCTTCGC CAAGAGCACCTGATCGACAAGTACGACCTGAGCAACCTGCACGAG ATCGCCAGCGCGCGCCCCCGCTCAGCAAGGAGGTGGGCGAGGCCG TGGCCA_AGCGCTTCCACCTGCCAGGCATCCGCCAGGGCTACGGCCTG 30 ACCGAGACAACCAGCGCCATTCTGATCACCCCCGAGGGGGACGACA AGCCTGGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTG GTGGACCTGGACACCGGTAAAACCCTGGGTGTGAACCAGCGCGCG

hluc+ver2A3

AAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGCCCAGCGC CATTCTACCCACTGGAGGACGGCACCGCCGGCGAGCAGCTGCACAAA 15 GCCATGAAGCGCTACGCCTGGTGCCCGGCACCATCGCCTTTACCGA CGCACATATCGAGGTGGACATCACCTACGCCGAGTACTTCGAGATGA GCGTTCGGCTGGCA.GAGGCTATGAAGCGCTATGGGCTGAATACCAAC CATCGCATCGTGGTGTGCAGCGAGAATAGCTTGCAGTTCTTCATGCCC GTGTTGGGTGCCCTGTTCATCGGTGTGGCTGTGGCCCCAGCTAACGAC 20 CACCGTCGTATTCGTGAGCAAGAAGGGCTGCAAAAGATCCTCAACG TGCAAAAGAAGCTACCGATCATACAAAAGATCATCATCATGGATAGC AAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACCAG CCATTTGCCACCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGCTT 25 CGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCAGTA CGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATCATCCCC GACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCTTCGGCATG 30 TTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCATG TACCGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTATAA GATTCAAAGCGCCCTGCTGGTGCCCACACTGTTCAGCTTCTTCGCCAA GAGCACTCTCATCGACAAGTACGACCTGAGCAACCTGCACGAGATCG

CCAGCGGCGGGCGCCGCTCAGCAA.GGAGGTGGGCGAGGCCGTGGC CAAGCGCTTCCACCTACCAGGCATCCGCCAGGGCTACGGCCTGACAG AAACAACCAGCGCCATTCTGATCACCCCCGAAGGGGACGACAAGCCT GGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTGGTGGA CTTGGACACCGGTAAGACCCTGGGTGTGAACCAGCGCGGCGAGCTGT GCGTCCGTGGCCCCATGATCATGAGCGGCTACGTTAACAACCCCGAG GCTACAAACGCTCTCATCGACAAGGACGGCTGCTGCACAGCGGCGA CATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGGC TGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCAGCCGA **ACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCGGGG** TCGCCGGCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCGCAGTC GTCGTGCTGGAGCACGGTAAAACCA.TGACCGAGAAGGAGATCGTGG ACTATGTGGCCAGCCAGGTTACAAC CGCCAAGAAGCTGCGCGGTGGT GTTGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGCAAGTTGGA CGCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGCA AGATCGCCGTGTAATAATTCTAGA

hluc+ver2A4

5

10

15

20

25

30

GACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCTTCGGCATG TTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGGTCGTGCTCATG TACCGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTATAA GATTCAAAGCGCCCTGCTGGTGCCCACACTGTTCAGTTTCTTCGCCAA GAGCACTCTCATCGACAAGTACGACCTAAGCAACTTGCACGAGATCG CCAGCGGCGGGCGCCCCTCAGCAAGGAGGTGGGCCGAGGCCGTGGC CAAACGCTTCCACCTACCAGGCATCCGCCAGGGCTACGGCCTGACAG AAACAACCAGCGCCATTCTGATCACCCCCGAAGGGGGACGACAAGCCT GGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTGGTGGA CTTGGACACCGGTAAGACACTGGGTGTGAACCAGCGCGGCGAGCTGT 10 GCGTCCGTGGCCCCATGATCATGAGCGGCTACGTTAACAACCCCGAG ${\tt GCTACAAACGCTCTCATCGACAAGGACGGCTGCTGCACAGCGGCGA}$ CATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGGC TGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCAGCCGA **ACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCGGGG** 15 TCGCCGGCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCGCAGTC GTCGTGCTGGAACACGGTAAAACCATGACCGAGA_AGGAGATCGTGG ACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCGGTGGT GTTGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGGCAAGTTGGA CGCCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCGGCA 20 AGATCGCCGTGTAATAATTCTAGA

hluc+ver2A5

CAAGACCGACTACCAGGGCTTCCAAAGCATGTACACCTTCGTGACTT CCCATTTGCCACCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGC TTCGACCGGGACAAAACCATCGCCCTGATCATGAACAGTAGTGGCAG TCCGATTCAGTCATGCCCGCGACCCCATCTTCGGCAACCAGATCATCC CCGACACCGCTATCCTCAGCGTGGTGCCATTTCACCACGGCTTCGGCA TGTTCACCACGCTGGGCTACTTGATCTGCGGCTTTCGGGTCGTGCTCA TGTACCGCTTCGAGGAGGAGCTATTCTTGCGCAGCTTGCAAGACTAT AAGATTCAAAGCGCCCTGCTGGTGCCCACACTGTTCAGTTTCTTCGCT AAGAGCACTCTCATCGACAAGTACGACCTAAGCAACTTGCACGAGAT 10 CGCCAGCGGCGGGCGCCCCTCAGCAAGGAGGTGGGCGAGGCCGT G GCCAAACGCTTCCACCTACCAGGCATCCGCCAGGGCTACGGCCTGA.C AGAAACAACCAGCGCCATTCTGATCACCCCCGAAGGGGACGACAAG CCTGGCGCAGTAGGCAAGGTGGTGCCCTTCTTCGAGGCTAAGGTGGT GGACTTGGACACCGGTAAGACACTGGGTGTGAACCAGCGCGGCGAG 15 CTGTGCGTCCGTGGCCCCATGATCATGAGCGGCTACGTTAACAACC€ GCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGAC CGGCTGAAGAGCCTGATCAAATACAAGGGCTACCAGGTAGCCCCAGC CGAACTGGAGAGCATCCTGCTGCAACACCCCAACATCTTCGACGCCG 20 GGGTCGCCGGCCTGCCCGACGACGATGCCGGCGAGCTGCCCGCCGCA GTCGTCGTGCTGGAACACGGTAAAACCATGACCGAGAAGGAGATCGT GGACTATGTGGCCAGCCAGGTTACAACCGCCAAGAAGCTGCGCGGTG GTGTTGTGTTCGTGGACGAGGTGCCTAAAGGCCTGACGGGCAAGTTG GACGCCGCAAGATCCGCGAGATTCTCATTAAGGCCAAGAAGGGCG 25 GCAAGATCGCCGTGTAATAATTCTAGA

hluc+ver2A6 has the following sequence

30

AAAGCCACCATGGAaGAtGCCAAaAACATtAAGAAGGGCCCaGCgCCaT
TCTACCCaCTcGAaGACGGCACCGCCGGCGAGCAGCTGCACAAaGCCA
TGAAGCGCTACGCCTGGTGCCCGGCACCATCGCCTTtACCGACGCaC
AtATCGAGGTGGACATtACCTACGCCGAGTACTTCGAGATGAGCGTtCG
gCTGGCaGAaGCtATGAAGCGCTAtGGgCTGAAtACaAACCAtCGgATCGT

GGTGTGCAGCGAGAAtAGCtTGCAGTTCTTCATGCCCGTGtTGGGtGCC CTGTTCATCGGtGTGGCtGTGGCCCCaGCtAACGACATCTACAACGAGC GCGAGCTGCTGAACAGCATGGGCATCAGCCAGCCCACCGTcGTaTTCG TGAGCAAGAAaGGgCTGCAaAAGATCCTcAACGTGCAaAAGAAGCTaCC gATCATaCAaAAGATCATCATCATGGAtAGCAAGACCGACTACCAGGG CTTCCAaAGCATGTACACCTTCGTGACttcCCAttTGCCaCCCGGCTTCAA CGAGTACGACTTCGTGCCCGAGAGCTTCGACCGgGACAAaACCATCGC TaccgcaccgcaccgctTGtGTcCGaTTCAGtCAtGCCCGCGACCCCATCTTCGGCAACCAGATCATCCCCGACACCGCtATCCTcAGCGTGGTGCCaTT 10 t CACCACGGCTTCGGCATGTTCACCACgCTGGGCTACtTGATCTGCGGCTTtCGgGTcGTGCTcATGTACCGCTTCGAGGAGGAGCTaTTCtTGCGCAG CtTGCAaGACTAtAAGATtCAaAGCGCCCTGCTGGTGCCCACaCTGTTCA GtTTCTTCGCtAAGAGCACtCTcATCGACAAGTACGACCTaAGCAACtTG 15 GCCGTGGCCAAaCGCTTCCACCTaCCaGGCATCCGCCAGGGCTACGGC CTGACaGAaACaACCAGCGCCATtCTGATCACCCCCGAaGGgGACGACAAGCCtGGCGCaGTaGGCAAGGTGGTGCCCTTCTTCGAGGCtAAGGTGGT GGACtTGGACACCGGtAAgACaCTGGGtGTGAACCAGCGCGGCGAGCTG TGCGTcCGtGGCCCCATGATCATGAGCGGCTACGTtAACAACCCCGAG 20 GCtACaAACGCtCTcATCGACAAGGACGGCTGGCTGCACAGCGGCGAC ATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGgCT GAAGAGCCTGATCAAaTACAAGGGCTACCAGGTaGCCCCaGCCGAaCT CGGCCTGCCCGACGACGAtGCCGGCGAGCTGCCCGCCGCaGTcGT25 GCTGGAaCACGGtAAaACCATGACCGAGAAGGAGATCGTGGACTAtGT GGCCAGCCAGGTtACaACCGCCAAGAAGCTGCGCGGtGGtGTtGTGTTC GTGGACGAGGTGCCtAAaGGCCTGACgGGCAAGtTGGACGCCCGCAAG ATCCGCGAGATtCTcATtAAGGCCAAGAAGGGCGGCAAGATCGCCGTG TAATAATTCTAGA (SEQ ID NO:21). 30

The hluc+ver2A6 sequence was modified yielding hluc+ver2A7:

AAAGCCACCATGGAaGAtGCCAAaAACATtAAGAA GGGCCCaGCgCCaTTCTACCCaCTcGAaGACGGgACCGCCGGCGAGCAG CTGCACAA&GCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGC CTTtACCGACGCaCAtATCGAGGTGGACATtACCTACGCCGAGTACTTC GAGATGAGCGTtCGgCTGGCaGAaGCtATGAAGCGCTAtGGgCTGAAtAC 5 aAACCAtCGgATCGTGGTGTGCAGCGAGAAtAGCtTGCAGTTCTTCATGC CCGTGtTGGGtGCCCTGTTCATCGGtGTGGCtGTGGCCCCaGCtAACGAC CACCGTcGTaTTCGTGAGCAAGAAaGGgCTGCAaAAGATCCTcAACGTG CAaAAGAAGCTaCCgATCATaCAaAAGATCATCATCATGGAtAGCAAGA 10 CCGACTACCAGGGCTTCCAaAGCATGTACACCTTCGTGACttcCCAttTG CCaCCCGGCTTCAACGAGTACGACTTCGTGCCCGAGAGCTTCGACCGg GACAAaACCATCGCCCTGATCATGAACAGtAGtGGCAGtACCGGatTgCC cAAGGGCGTaGCCCTaCCgCACCGCACCGCtTGtGTcCGaTTCAGtCAtGCC CGCGACCCCATCTTCGGCAACCAGATCATCCCCGACACCGCtATCCTc 15 AGCGTGGTGCCaTTtCACCACGGCTTCGGCATGTTCACCACgCTGGGCT ACtTGATCTGCGGCTTtCGgGTcGTGCTcATGTACCGCTTCGAGGAGGAG CTaTTCtTGCGCAGCtTGCAaGACTAtAAGATtCAatctGCCCTGCTGGTGC CCACaCTaTTtAGcTTCTTCGCtAAGAGCACtCTcATCGACAAGTACGACC TaAGCAACtTGCACGAGATCGCCAGCGGCGGGGCgCCgCTcAGCAAGGA 20 GGTaGGtGAGGCCGTGGCCAAaCGCTTCCACCTaCCaGGCATCCGCCAG GGCTACGGCCTGACaGAaACaACCAGCGCCATtCTGATCACCCCCGAaG GgGACGACAAGCCtGGCGCaGTaGGCAAGGTGGTGCCCTTCTTCGAGG CtAAGGTGGTGGACtTGGACACCGGtAAgACaCTGGGtGTGAACCAGCG 25 CGGCGAGCTGTGCGTcCGtGGCCCCATGATCATGAGCGGCTACGTtAA CAACCCGAGGCtACaAACGCtCTcATCGACAAGGACGGCTGGCTGCA CAGCGGCGACATCGCCTACTGGGACGAGGACGAGCACTTCTTCATCG TGGACCGgCTGAAGAGCCTGATCAAaTACAAGGGCTACCAGGTaGCCC CaGCCGAaCTGGAGAGCATCCTGCTGCAaCACCCCAACATCTTCGACG CCGGgGTcGCCGGCCTGCCCGACGACGAtGCCGGCGAGCTGCCCGCCG 30 CaGTcGTcGTGCTGGAaCACGGtAAaACCATGACCGAGAAGGAGATCGT GGACTAtGTGGCCAGCCAGGTtACaACCGCCAAGAAGCTGCGCGGtGGt GTtGTGTTCGTGGACGAGGTGCCtAAaGGCCTGACgGGCAAGtTGGACG

CCCGCAAGATCCGCGAGATtCTcATtAAGGCCAAGAAGGGCGGCAAGA TCGCCGTGTAATAATTCTAGA (SEQ ID NO:22).

For vectors with a *BgI*I site in the multiple cloning region, the *BgI*I site present in the firefly sequence can be removed. The luciferase gene from hluc+ver2AF8, which lacks a *BgI*I site, displays an average of a 7.2-fold increase in expression when assayed in four mammalian cell lines, i.e., NIH3T3, CHO, HeLa and HEK293 cells.

10 hluc+ver2A8 has the following sequence:

5

 $AAAGCCACCATGGA \\ aGAtGCCAA \\ aAACAT \\ tAAGAAGGGCCC \\ aGCgCCaT$ TCTACCCaCTcGAaGACGGgACCGCCGGCGAGCAGCTGCACAAaGCCATGAAGCGCTACGCCCTGGTGCCCGGCACCATCGCCTTtACCGACGCaC AtATCGAGGTGGACATtACCTACGCCGAGTACTTCGAGATGAGCGTtCG ${\tt gCTGGCaGAaGCtATGAAGCGCTAtGGgCTGAAtACaAACCAtCGgATCGT}$ 15 GGTGTGCAGCGAGAAtAGCtTGCAGTTCTTCATGCCCGTGtTGGGtGCC CTGTTCATCGGtGTGGCtGTGGCCCCaGCtAACGACATCTACAACGAGC GCGAGCTGCTGAACAGCATGGGCATCAGCCAGCCCACCGTcGTaTTCG gATCATaCAaAAGATCATCATCATGGAtAGCAAGACCGACTACCAGGG 20 CTTCCAaAGCATGTACACCTTCGTGACttcCCAttTGCCaCCCGGCTTCAA CGAGTACGACTTCGTGCCCGAGAGCTTCGACCGgGACAAaACCATCGC TaCCgCACCGCACCGCtTGtGTcCGaTTCAGtCAtGCCCGCGACCCCATCT TCGGCAACCAGATCATCCCCGACACCGCtATCCTcAGCGTGGTGCCaTT 25 t CACCACGGCTTCGGCATGTTCACCACgCTGGGCTACtTGATCTGCGGCTTtCGgGTcGTGCTcATGTACCGCTTCGAGGAGGAGCTaTTCtTGCGCAG CtTGCAaGACTAtAAGATtCAatctGCCCTGCTGGTGCCCACaCTaTTtAGcT TCTTCGCtAAGAGCACtCTcATCGACAAGTACGACCTaAGCAACtTGCAC GAGATCGCCAGCGGCGGGGCGCCgCCTcAGCAAGGAGGTaGGtGAGGCC30 GTGGCCAAaCGCTTCCACCTaCCaGGCATCCGCCAGGGCTACGGCCTG ACaGAaACaACCAGCGCCATtCTGATCACCCCCGAaGGgGACGACAAGC CtGGCGCaGTaGGCAAGGTGGTGCCCTTCTTCGAGGCtAAGGTGGTGGA CtTGGACACCGGtAAgACaCTGGGtGTGAACCAGCGCGGCGAGCTGTGC

GTcCGtGGCCCCATGATCATGAGCGGCTACGTtAACAACCCCGAGGCtA
CaAACGCtCTcATCGACAAGGACGGCTGGCTGCACAGCGGCGACATCG
CCTACTGGGACGAGGACGAGCACTTCTTCATCGTGGACCGgCTGAAG
AGCCTGATCAAaTACAAGGGCTACCAGGTaGCCCCaGCCGAaCTGGAG

5 AGCATCCTGCTGCAaCACCCCAACATCTTCGACGCCGGGGTcGCCGGC
CTGCCCGACGACGACGCCGGAGCTGCCCGCCGCaGTcGTGCTGG
AaCACGGtAAaACCATGACCGAGAAGGAGATCGTGGACTAtGTGGCCA
GCCAGGTtACaACCGCCAAGAAGCTGCCGCGGtGGTTGTTCGTGGA
CGAGGTGCCtAAaGGaCTGACcGGCAAGtTGGACGCCGCAAGATCCGC

10 GAGATtCTcATtAAGGCCAAGAAGGGCGGCAAGATCGCCGTGTAATAA
TTCTAGA (SEQ ID NO:23).

For the second approach, firefly luciferase luc+ codons were optimized for mammalian expression, and the number of consensus transcription factor binding site, and CG dinucleotides (CG islands, potential methylation sites) was reduced. The second approach yielded: versions hluc+ver2BF1 through hluc+ver2BF5. hluc+ver2BF1 is codon-optimized, hluc+ver2BF2 is a sequence obtained after a first round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF3 was obtained after a second round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF4 was obtained after a third round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF5 was obtained after a fourth round of removal of identified undesired sequences including transcription factor binding sites, hluc+ver2BF6 was obtained after removal of promoter modules and RBS, hluc+ver2BF7 was obtained after further removal of identified undesired sequences including transcription factor binding sites, and hluc+ver2BF8 was obtained after modifying a restriction enzyme recognition site.

15

20

25

30 hluc+ver2B1-B5 have the following sequences (SEQ ID Nos. 24-28): hluc+ver2B1 AAAGCCACCATGGAGGATGCTAAGAATATTAAGAAGGGGCCTGCTCC TTTTTATCCTCTGGAGGATGGGACAGCTGGGGAGCAGCTGCATAAGG

CTATGAAGAGATATGCTCTGGTGCCTGGGACAATTGCTTTTACAGATG CTCATATTGAGGTGGATATTACATATGCTGAGTATTTTGAGATGTCTG TGAGACTGGCTGAGGCTATGAAGAGATATGGGCTGAATACAAATCAT AGAATTGTGGTGTGTTCTGAGAATTCTCTGCAGTTTTTTATGCCTGTG CTGGGGGCTCTGTTTATTGGGGTGGCTGTGGCTCCTGCTAATGATATT 5 TATAATGAGAGAGCTGCTGAATTCTATGGGGATTTCTCAGCCTAC AGTGGTGTTTGTGTCTAAGAAGGGGCTGCAGAAGATTCTGAATGTGC AGAAGAAGCTGCCTATTATTCAGAAGATTATTATTATGGATTCTAAG ACAGATTATCAGGGGTTTCAGTCTATGTATACATTTGTGACATCTCAT CTGCCTCCTGGGTTTAATGAGTATGATTTTGTGCCTGAGTCTTTTGAT 10 AGAGATAAGACAATTGCTCTGATTATGAATTCTTCTGGGTCTACAGG GCTGCCTAAGGGGGTGGCTCTGCCTCATAGAACAGCTTGTGTGAGAT TTTCTCATGCTAGAGATCCTATTTTTGGGAATCAGATTATTCCTGATA CAGCTATTCTGTCTGTGGTGCCTTTTCATCATGGGTTTGGGATGTTTAC AACACTGGGGTATCTGATTTGTGGGTTTAGAGTGGTGCTGATGTATAG 15 ATTTGAGGAGGAGCTGTTTCTGAGATCTCTGCAGGATTATAAGATTCA GTCTGCTGCTGGTGCCTACACTGTTTTCTTTTTTTGCTAAGTCTACA CTGATTGATAAGTATGATCTGTCTAATCTGCATGAGATTGCTTCTGGG GGGGCTCCTCTGTCTAAGGAGGTGGGGGAGGCTGTGGCTAAGAGATT TCATCTGCCTGGGATTAGACAGGGGTATGGGCTGACAGAGACAACAT 20 CTGCTATTCTGATTACACCTGAGGGGGATGATAAGCCTGGGGCTGTG GGGAAGGTGCCTTTTTTTGAGGCTAAGGTGGTGGATCTGGATAC GGGCCTATGATTATGTCTGGGTATGTGAATAATCCTGAGGCTACAAA TGCTCTGATTGATAAGGATGGGTGGCTGCATTCTGGGGATATTGCTTA 25 TTGGGATGAGGATGAGCATTTTTTTATTGTGGATAGACTGAAGTCTCT GATTAAGTATAAGGGGTATCAGGTGGCTCCTGCTGAGCTGGAGTCTA CTGATGATGATGCTGGGGGAGCTGCCTGCTGCTGTGGTGCTGCTGGAG CATGGGAAGACAATGACAGAGAAGGAGATTGTGGATTATGTGGCTTC 30 TCAGGTGACAACAGCTAAGAAGCTGAGAGGGGGGGGGTGGTTTTGTGG ATGAGGTGCCTAAGGGGCTGACAGGGAAGCTGGATGCTAGAAAGAT TAGAGAGATTCTGATTAAGGCTAAGAAGGGGGGGAAGATTGCTGTGT

AATAATTCTAGA

hluc+ver2B2

AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC TTTCTACCCTCTGGAGGATGGGACTGCCGGGGAGCAGCTGCATAAAG 5 CTATGAAGCGGTATGCTCTGGTGCCAGGCACAATTGCGTTCACGGAT GCTCACATTGAGGTGGACATTACATACGCTGAGTATTTTGAGATGTCG GTGCGGCTGGCTGAGGCTATGAAGCGATATGGGCTGAATACAAACCA TAGAATTGTAGTGTCTCTGAGAACTCGTTGCAGTTTTTTATGCCTGT GCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACAT 10 TTACAATGAGAGAGCTTTTGAACTCGATGGGGATTTCTCAGCCTA CAGTGGTGTTTGTGAGTAAGAAAGGCTTCAAAAGATTCTCAATGTG CAAAAGAAGCTGCCTATTATTCAAAAGATTATTATTATGGACTCTAA GACAGACTACCAGGGGTTTCAGTCTATGTATACATTTGTGACATCTCA TCTGCCTCCTGGGTTCAACGAGTATGACTTTGTGCCCGAGTCTTTCGA 15 CAGAGATAAGACAATTGCTCTGATTATGAATTCATCTGGGTCTACCG GGCTGCCTAAGGGTGTAGCTCTGCCACATAGAACAGCTTGTGTGAGA TTTTCTCATGCTAGGGACCCTATTTTTGGGAATCAGATTATTCCTGAT **ACTGCTATTCTGTCGGTTGTGCCCTTTCATCATGGGTTTGGGATGTTTA** CAACACTGGGCTACCTGATATGTGGGTTTAGAGTGGTGCTCATGTATA 20 GGTTTGAGGAGGAGCTTTTTTTGCGCTCTCTGCAAGATTATAAGATTC **AGTCTGCTGGTGCCTACACTGTTTTCTTTTTTTGCTAAGTCTAC** CCTGATCGATAAGTATGATCTGTCCAACCTGCACGAGATTGCTTCTGG GGGGGCTCCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCGCT TTCATCTGCCTGGAATCAGACAGGGGTATGGGCTAACAGAAACAACA 25 TCTGCTATTCTGATTACACCAGAGGGGGATGATAAGCCCGGGGCTGT AGGGAAAGTGGTGCCCTTTTTTGAAGCTAAAGTAGTTGATCTTGATAC GGGCCTATGATTATGTCGGGGTATGTGAACAACCCTGAGGCTACAAA TGCTCTGATTGATAAGGATGGGTGGCTGCATTCGGGCGATATTGCTTA 30 CTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTCGT TGATCAAATATAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAGTCC

CCTGATGATGATGCTGGGGAGCTGCCTGCTGCTGTAGTGGTGCTGGA GCACGGTAAGACAATGACAGAGAAGGAGATTGTGGATTATGTGGCTT CACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTGTG GATGAGGTGCCTAAAGGGCTGACAGGCAAGCTGGATGCTAGAAAAA TTCGAGAGATTCTGATTAAGGCTAAGAAGGGTGGAAAGATTGCTGTG TAATAGTTCTAGA

hluc+ver2B3

AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC 10 TTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAAG CTATGAAGCGGTATGCTCTTGTGCCAGGCACAATTGCGTTCACGGAT GCTCACATT GAGGTGGACATCACATACGCTGAGTATTTTGAGATGTC GGTGCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG 15 TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATTTCTCAGCCT ACAGTGGTGTTTGTGAGTAAGAAAGGCTTCAAAAGATTCTCAATGT GCAAAAGAAGCTGCCTATTATTCAAAAGATTATTATTATGGACTCTA AGACCGACTACCAGGGGTTTCAGTCTATGTATACATTTGTGACATCTC 20 ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG ACAGAGATAAGACAATTGCTCTGATCATGAATTCATCCGGGTCTACC GGGCTGCCTAAGGGTGTAGCTCTGCCCCATAGAACAGCTTGTGTGAG ATTTCTCATGCTAGGGACCCTATTTTTGGGAATCAGATTATTCCTGA CACTGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTTGGGATGTT 25 TACAACACTGGGCTACCTAATATGTGGGTTTAGAGTGGTGCTCATGTA TAGGTTTGA_AGAAGAGCTGTTCTTACGCTCTTTGCAAGATTATAAGAT TCAGTCTGCTGCTGCCAACACTATTCTCTTTTTTTGCTAAGTCT ACGCTCATA GACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTCT GGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCG 30 CTTTCATCTGCCTGGTATCAGACAGGGGTATGGGCTAACAGAAACAA CATCTGCTATTCTGATTACACCAGAGGGGGATGATAAGCCCGGGGCT GTAGGGAAA:GTGGTGCCCTTTTTTGAAGCCAAAGTAGTTGATCTTGAT

AGGGCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACAA
ATGCTCTGATTGATAAGGATGGCTGGCTGCATTCGGGCGACATTGCTT
ACTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTCG
TTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAATC

5 CATTCTGCTTCAACATCCCAACATTTTCGATGCTGGGGTGGCTGGGCT
GCCTGATGATGATGCTGGGGAGTTGCCTGCTGTAGTGGTGCTTGA
GCACGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGCTT
CACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTTTTGTG
GATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCTAGAAAAAT

10 TCGAGAGATTCTGATTAAGGCTAAGAAAGGGTGGAAAGATTGCTGTGT
AATAGTTCTAGA

hluc+ver2B4

AAAGCCACCATGGAAGAT GCTAAAAACATTAAGAAGGGGCCTGCTCC CTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAAG 15 CTATGAAGCGGTATGCTCTTGTGCCAGGCACAATTGCGTTCACGGAT GCTCACATTGAGGTGGACATCACATACGCTGAGTATTTTGAGATGTC GGTGCGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA 20 TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATCTCTCAGCCT ACAGTGGTGTTTGTGAGTAAGAAAGGCTTCAAAAGATTCTCAATGT GCAAAAGAAGCTGCCTATTATTCAAAAGATTATTATTATGGACTCTA AGACAGACTACCAGGGGTTTCAGTCCATGTATACATTTGTGACATCTC ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG 25 ACAGAGATAAGACAATTGCTCTGATCATGAATTCATCCGGGTCTACC GGGCTGCCTAAGGGTGTAGCTCTGCCCCATCGAACAGCTTGTGTGAG ATTCTCTCATGCCAGGGACCCGATCTTTGGGAATCAGATTATTCCTGA CACTGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTTGGGATGTT TACAACACTGGGATACCTAATATGTGGGTTTAGAGTGGTGCTCATGT 30 ATAGGTTTGAAGAAGAACTGTTCTTACGCTCTTTGCAAGATTATAAGA TTCAGTCTGCTGCTGGTGCCAACACTATTCTCTTTTTTTGCTAAGTC TACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTC

TGGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGC GCTTTCATCTGCCTGGTATCAGACAGGGGTACGGGCTAACAGAAACA ACTTCTGCTATTCTGATTACACCAGAGGGCGATGACAAGCCCGGGGC TGTAGGGAAAGTGGTGCCCTTTTTTGAAGCCAAAGTAGTTGATCTTGA TACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGCC 5 GGGGCCCTATGATTATGTCGGGGTACGTTA.ACAACCCCGAAGCTACA **AATGCTCTTATTGATAAGGATGGCTGGTTGCATTCGGGCGACATTGCC** TACTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTC GTTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAAT CCATTCTGCTTCAACATCCAAACATTTTCGATGCTGGGGTGGCTGGGC 10 TGCCTGATGATGATGCTGGAGAGTTGCCTGCTGCTGTAGTAGTGCTTG AGCACGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGC TTCACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTG TGGATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCCAGAAAA ATTCGAGAGATTCTCATTAAGGCTAAGAAGGGTGGAAAGATTGCTGT 15 **GTAATAGTTCTAGA**

hluc+ver2B5

AAAGCCACCATGGAAGATGCTAAAAACATTAAGAAGGGGCCTGCTCC CTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAAG 20 CTATGAAGCGGTATGCTCTTGTGCCAGGCACAATTGCGTTCACGGAT GCTCACATTGAGGTGGACATCACATACGCTGAGTATTTTGAGATGTC GGTGCGGCTGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC ATAGAATTGTAGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA 25 TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATCTCTCAGCCT ACAGTGGTGTTTGTGAGTAAGAAAGGCTTCAAAAGATTCTCAATGT GCAAAAGAAGCTGCCTATTATACAAAAGATTATTATTATGGACTCTA AGACCGACTACCAGGGGTTTCAGTCCATGTACACATTTGTAACCTCTC ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG 30 ACAGGGACAAAACGATTGCTCTGATCATGAACTCATCCGGGTCTACC GGGCTGCCTAAGGGTGTAGCTCTGCCCCATCGAACAGCTTGTGTGAG ATTCTCTCATGCCAGGGACCCGATCTTTGGGAATCAGATTATTCCTGA

CACTGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTTGGGATGTT CACAACACTGGGATACCTCATTTGCGGGTTTAGAGTGGT GCTCATGTA TAGGTTTGAAGAAGAACTATTCCTACGCTCTTTGCAAGATTATAAGAT TCAGTCTGCTCTGCTGCCCAACACTATTCTCTTTTTTTGCTAAGTCT ACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTCT GGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCG CTTTCATCTGCCTGGTATCAGACAGGGGTACGGGCTAACAGAAACAA CTTCTGCTATTCTGATTACACCAGAGGGCGATGACAAACCCGGGGCT GTAGGGAAAGTGGTGCCCTTTTTTGAAGCCAAAGTAGTTGATCTTGAT ACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGCG 10 GGGCCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACAA ATGCTCTTATTGATAAGGATGGCTGGTTGCATTCGGGCGACATTGCCT ACTGGGATGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTCG TTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCTGAGCTGGAATC CATTCTGCTTCAACATCCTAACATTTTCGATGCTGGGGTGGCTGGGCT 15 GCCTGATGATGCTGGAGAGTTGCCTGCTGCTGTAGTAGTGCTTGA GCACGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGCTT CACAAGTGACAACAGCTAAGAAACTGAGAGGTGGCGTTGTGTTTGTG GATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGC CAGAAAAAT TCGAGAGATTCTCATTAAGGCTAAGAAGGGTGGAAAGA.TTGCTGTGT 20 **AATAGTTCTAGA**

hluc+ver2B6 has the following sequence:

AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc

25 TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA
AGcGgTATGCTCTtGTGCCaGGcACAATTGCgTTcACgGATGCTCAcATTG
AaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa
GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT
GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcAT

30 cGGGGTGGCTGTGGCTCCTGCTAAcGAcATcTAcAAcGAGcGAGAGCTgt
TGAAcTCgATGGGGATcTCTCAGCCTACAGTGTTTTGTGagTAAGAA
aGGGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTGCCTATTATaCAaA

 $TA cACATTTGT {\tt 2} ACcTCTCATCTGCCTCCTGG {\tt c} TT cAA cGAGTA cGA cTT cAA cTT cAA cGA cTT cAA cTT cAA cGA cTT cAA cGA cTT cAA cGA cTT cAA cGA cTT cAA c$ GTGCCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcTCcGGGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGC TTGTGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcCCTGA cACtGCTATTCTGTCgGTgGTGCC cTTTCATCATGGGTTTGGGATGTTcACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTA TAGgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAG TCTGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTTGCTAAGTCTACgCTc ATaGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCa CCTCTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCTGGtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTG ATTACACCaGAGGGCGATGAcAAaCCcGGGGCTGTaGGGAAaGTGGTGC CcTTTTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGT GAAcCAGcGtGGGAaCTGTGTGTGCGgGGCCCTATGATTATGTCgGGGTA cGTtAAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTtCATagcGGcGAcATTGCcTAcTGGGAcGAGGATGAGCATTTcTTcATcGTGGAcAGACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGC TGAGCTGGA a TC cATTCTGCT tCA a CA cCC cAA tAT cTT cGATGCTGGGGTGGCTGGCTGCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTa GTGCTtGAGCAcGGtAAGACAATGACAGAGAAGGAGATcGTGGATTAT GTGGCTTCaCAaGTGACAACAGCTAAGAAaCTGAGAGGtGGcGTtGTGT TTGTGGATGAGGTGCCTAAaGGGCTcACtGGcAAGCTGGATGCcAGAAA aATTcGAGAGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTG TAATAgTTCTAGA (SEQ ID NO:29).

25

10

15

20

hluc+ver2BF8 was created by removing a *Ptx*1 consensus transcription factor binding site from hluc+ver2BF7.

hluc+ver2B7 has the following sequence:

30 AAAGCCACCATGGAAGATGCCAAAAACATTAAGAAGGGGCCTGCTC
CCTTCTACCCTCTTGAAGATGGGACTGCTGGCGAGCAACTTCACAAA
GCTATGAAGCGGTATGCTCTTGTGCCAGGGACAATTGCGTTCACGGA
TGCTCACATTGAAGTAGACATCACATACGCTGAGTATTTTGAGATGTC

GGTGCGGCTGGCAGAAGCTATGAAGCGCTATGGGCTGAATACAAACC ATAGAATTGTAGTGTGCAGTGAGAACTCGTTGCAGTTCTTTATGCCCG TGCTGGGGGCTCTCTTCATCGGGGTGGCTGTGGCTCCTGCTAACGACA TCTACAACGAGCGAGAGCTGTTGAACTCGATGGGGATCTCTCAGCCT ACAGTGGTGTTTGTGAGTAAGAAAGGCTTCAAAAGATTCTCAATGT 5 GCAAAAGAAGCTGCCTATTATACAAAAGATTATTATTATGGACTCTA AGACAGACTACCAGGGGTTTCAGTCCATGTACACATTTGTAACCTCTC ATCTGCCTCCTGGCTTCAACGAGTACGACTTCGTGCCCGAGTCTTTCG ACAGGGACAAAACGATTGCTCTGATCATGAACAGCTCCGGGTCTACC GGGCTGCCTAAGGGTGTAGCTCTGCCCCATCGAACAGCTTGTGTGAG 10 ATTCTCTCATGCCAGGGACCCGATCTTTGGAAACCAGATCATCCCTGA CACTGCTATTCTGTCGGTGGTGCCCTTTCATCATGGGTTTGGGATGTT CACAACACTGGGATACCTCATTTGCGGGTTTTAGAGTGGTGCTCATGTA TAGGTTTGAAGAAGAACTATTCCTACGCTCTTTGCAAGATTATAAGAT TCAGTCTGCTGCTGGTGCCAACACTATTCTCTTTTTTTGCTAAGTCT 15 ACGCTCATAGACAAGTATGACTTGTCCAACTTGCACGAGATTGCTTCT GGCGGAGCACCTCTGTCTAAGGAGGTAGGTGAGGCTGTGGCTAAGCG CTTTCATCTGCCTGGTATCAGACAGGGGTACGGGCTAACAGAAACAA CTTCTGCTATTCTGATTACACCAGAGGGCGATGACAAACCCGGGGCT GTAGGGAAAGTGGTGCCCTTTTTTGAAGCCAAAGTAGTTGATCTTGAT 20 ACCGGTAAGACACTAGGGGTGAACCAGCGTGGTGAACTGTGTGCG GGGCCCTATGATTATGTCGGGGTACGTTAACAACCCCGAAGCTACAA ATGCTCTCATAGACAAGGACGGGTGGCTTCATAGCGGCGACATTGCC TACTGGGACGAGGATGAGCATTTCTTCATCGTGGACAGACTGAAGTC GTTGATCAAATACAAGGGGTATCAAGTAGCTCCTGCCGAGCTTGAGT 25 CCATTCTGCTTCAACACCCCAATATCTTCGATGCTGGGGTGGCTGGGC TGCCTGATGATGATGCTGGAGAGCTGCCTGCTGCTGTAGTAGTGCTTG AGCATGGTAAGACAATGACAGAGAAGGAGATCGTGGATTATGTGGCT TCACAAGTGACAACAGCTAAGAAACTCCGAGGTGGCGTTGTGTTTGT GGATGAGGTGCCTAAAGGGCTCACTGGCAAGCTGGATGCCAGAAAA 30 ATTCGAGAGATTCTCATTAAGGCTAAGAAGGGTGGAAAGATTGCTGT GTAATAGTTCTAGA (SEQ ID NO:94)

hluc+ver2B8 has the following sequence

AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc TTcTAcCCTCttGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA AGcGgTATGCTCTtGTGCCaGGgACAATTGCgTTcACgGATGCTCAcATTGAaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT G cag TGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcATcGGGGTGGCTGTGGCTCCTGCTAAcGAcATcTAcAAcGAGcGAGAGCTgtTGAAcTCgATGGGGATcTCTCAGCCTACAGTGGTGTTTGTGagTAAGAA10 aGGGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTaCCgATcATaCAaAAGAT cAT cAT GGA tag cAAGAC cGA cTA cCAGGGGTTT CAGT C cATGTAcACATTTGT2ACcTCTCATCTGCCTCCTGGcTTcAAcGAGTAcGAcTTcGT GCCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcTCcGGGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGCTT 15 GTGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcC CTGAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGATGTTcACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTAT AGgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAGT $CTGCTCTGCTGGTGCC \underline{a} A CACT \underline{a} TT \underline{c} TCTTTTTTTGCTAAGTCTAC \underline{g} CT \underline{c} A$ 20 TaGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCaCC TCTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCT GGtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTGAT TACACCaGAGGGcGATGAcAAaCCtGGGGCTGTaGGGAAaGTGGTGCCcT TTTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGTGA25 ATagcGGcGAcATTGCcTAcTGGGAcGAGGATGAGCATTTcTTcATcGTGG AcAGACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGCc GAGCTtGAgTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGGTGG 30 CTGGGCTGCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTaGT GCTtGAGCAtGGtAAGACAATGACAGAGAAGGAGATcGTGGATTATGT GGCTTCaCAaGTGACAACAGCTAAGAAaCTccGAGGtGGcGTtGTGTTTG TGGATGAGGTGCCTAAaGGGCTcACtGGcAAGCTGGATGCcAGAAAaAT

TcGAGAGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTGTA ATAgTTCTAGA (SEQ ID NO:31).

hluc+ver2BF8 was modified to yield hluc+ver2BF9.

5

10

15

20

25

30

hluc+ver2B9 has the following sequence

AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc

TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA AGcGgTATGCTCTtGTGCCaGGgACAATTGCgTTcACgGATGCTCAcATTGAaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcAT tGGGGTGGCTGTGGCTCCTGCTAAtGAcATcTAcAAcGAGcGAGAGCTgtTGGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTaCCgATcATaCAaAAGATcATcATcATGGAtagcAAGACcGAcTAcCAGGGGTTTCAGTCcATGTAc ACATTTGTaACcTCTCATCTGCCTCCTGGcTTcAAtGAGTAtGAcTTcGTG CCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcagtGGGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGCTTG TGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcCCTGAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGATGTT cACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTATA GgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAGTC TGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTGCTAAGTCTACgCTcAT a GAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGcGGaGCaCCTCTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCTG GtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTGATT ACACCaGAGGGcGATGAcAAaCCtGGGGCTGTaGGGAAaGTGGTGCCcTT TTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGTGAA cCAGaGaGGtGAatTGTGTGTGaGgGGcCCTATGATTATGTCgGGGTAcGTtAAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTtCATagtGGaGAtATTGCcTAcTGGGAtGAaGATGAGCATTTcTTcATcGTGGAcA GACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGCcGAG

CTtGAgTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGGTGGCTG
GGCTGCCTGATGATGATGCTGGaGAGcTGCCTGCTGCTGTaGTaGTaGTGCTt
GAGCAtGGtAAGACAATGACAGAGAAGGAGATcGTGGATTATGTGGCT
TCaCAaGTGACAACAGCTAAGAAaCTccGAGGtGGcGTtGTGTTTGTGGA
5 TGAGGTGCCTAAaGGGCTcACtGGcAAGCTGGATGCcAGAAAaATTcGA
GAGATTCTcATTAAGGCTAAGAAGGGtGGaAAGATTGCTGTAATAgT
TCTAGA (SEQ ID NO:32).

The *BgI*I sequence in hluc+ver2BF9 was removed resulting in hluc+ver2BF10. hluc+ver2BF10 demonstrated poor expression.

10

25

30

hluc+ver2B10 has the following sequence

AAAGCCACCATGGAaGATGCcAAaAAcATTAAGAAGGGGCCTGCTCCc

TTcTAcCCTCTtGAaGATGGGACtGCtGGcGAGCAaCTtCAcAAaGCTATGA

15 AGcGgTATGCTCTtGTGCCaGGgACAATTGCgTTcACgGATGCTCAcATTG

AaGTaGAcATcACATAcGCTGAGTATTTTGAGATGTCgGTGcGgCTGGCa

GAaGCTATGAAGcGcTATGGGCTGAATACAAAcCATAGAATTGTaGTGT

GcagTGAGAAcTCgtTGCAGTTcTTTATGCCcGTGCTGGGGGCTCTcTTcAT

tGGGGTGGCTGTGGCTCCTGCTAAtGAcATcTAcAAcGAGcGAGAGCTgtT

20 GAAcagtATGGGGATcTCTCAGCCTACAGTGGTGTTTTTGTGagTAAGAAaG

GGCTtCAaAAGATTCTcAATGTGCAaAAGAAGCTaCCgATcATaCAaAAG

ACATTTGTaACcTCTCATCTGCCTCCTGGcTTcAAtGAGTAtGAcTTcGTG
CCcGAGTCTTTcGAcAGgGAcAAaACgATTGCTCTGATcATGAAcagcagtG
GGTCTACcGGGCTGCCTAAGGGtGTaGCTCTGCCcCATcGAACAGCTTG
TGTGAGATTcTCTCATGCcAGgGAcCCgATcTTtGGaAAcCAGATcATcCCT
GAcACtGCTATTCTGTCgGTgGTGCCcTTTCATCATGGGTTTGGGATGTT
cACAACACTGGGaTAccTcATtTGcGGGTTTAGAGTGGTGCTcATGTATA
GgTTTGAaGAaGAaCTaTTccTacGcTCTtTGCAaGATTATAAGATTCAGTC
TGCTCTGCTGGTGCCaACACTaTTcTCTTTTTTTTGCTAAGTCTACgCTcAT
aGAcAAGTATGActTGTCcAActTGCAcGAGATTGCTTCTGGCGGaGCaCCT

A T c A T c A T G G A t ag c A A G A C c G A c T A c C A G G G G T T T C A G T C C A T G T A c C A G G G G T T T C A G T C A G T C A G G G G G T T T C A G T C A G G G G G T T T C A G T C A G G G G G T T T C A G T C A G G G G G T T T C A G T C A G G G G G T T T C A G T C A G T C A G G G G T T T C A G

CTGTCTAAGGAGGTaGGtGAGGCTGTGGCTAAGcGcTTTCATCTGCCTG GtATcAGACAGGGGTAcGGGCTaACAGAaACAACtTCTGCTATTCTGATT 1

ACACCaGAGGGcGATGAcAAaCCtGGGGCTGTaGGGAAaGTGGTGCCcTT
TTTTGAaGCcAAaGTaGTtGATCTtGATACcGGtAAGACACTaGGGGTGAA
cCAGaGaGGtGAatTGTGTGTGaGgGGCCCTATGATTATGTCgGGGTAcGTt
AAcAAcCCcGAaGCTACAAATGCTCTcATaGAcAAGGAcGGgTGGcTtCAT
agtGGaGAtATTGCcTAcTGGGAtGAaGATGAGCATTTcTTcATcGTGGAcA
GACTGAAGTCgtTGATcAAaTAcAAGGGGTATCAaGTaGCTCCTGCcGAG
CTtGAgTCcATTCTGCTtCAaCAcCCcAAtATcTTcGATGCTGGGTGGCTG
GGCTGCCTGATGATGATGCTGGaGAGCTGCCTGCTGTaGTaGTGCTt
GAGCAtGGtAAGACAATGACAGAGAAAGAGAGATCGTGGATTATGTGGCT
TCaCAaGTGACAACAGCTAAGAAaCTccGAGGtGGcGTtGTTTTGTGGA
TGAGGTGCCTAAaGGaCTcACtGGcAAGCTGGATGCCAGAAAaATTcGAG
AGATTCTcATTAAGGCTAAGAAGAGGTGGAAAGATTGCTGTGTAATAgTT
CTAGA (SEQ ID NO:33).

15 <u>Table 11</u>
Summary of Firefly Luciferase Constructs

Firefly luciferase Gene	Number of consensus transcription factor binding sites	Number of Promoter modules*	CG dinucleotides (possible methylation sites)
Luc+	287	7	97
hluc+ver2AF8	3	0	132
hluc+ver2BF10	3	0	43

^{*}Promoter modules are defined as a composite regulatory element, with 2 TFBS separated by a spacer, which has been shown to exhibit synergistic or antagonistic function.

Example 4

Synthetic Selectable Polypeptide Genes

Design Process

25 Define sequences

5

10

20

Protein sequence that should be maintained:

- Neo: from neo gene of pCI-neo (Promega) (SEQ ID NO:1)
- Hyg: from hyg gene of pcDNA3.1/Hygro (Invitrogen) (SEQ ID NO:6)

DNA flanking regions for starting sequence:

5' end: Kozak sequence from *neo* gene of pCI-neo (GCCACCATGA; SEQ ID NO:34)), *PfI*MI site (*CCANNNNNTGG*; SEQ ID NO:35), add Ns at end (to avoid search algorithm errors & keep ORF1):

neo/hyg: NNNNNCCAnnnnTGGCCACC-ATG-G (SEQ ID NO:36)

- 5 Change: replace PflMI with SbfI (CCTGCAGG)
 - 3' end: two stop codons (at least one TAA), *Pfl*MI site (not compatible with that at 5' end to allow directional cloning), add Ns at end (to avoid search algorithm errors):

neo/hyg: TAATAACCAnnnnnTGGNNN (SEQ ID NO:37)

10 Change: replace PflMI with AflII (CTTAAG)

Define codon usage

20

25

30

Codon usage was obtained from the Codon Usage Database (http://www.kazusa.or.jp/codon/):

Based on: GenBank Release 131.0 [15 August 2002] (Nakamura et al., 2000).

Codon usage tables were downloaded for:

HS: Homo sapiens [gbpri] 50,031 CDS's (21,930,294 codons)

MM: Mus musculus [gbrod] 23,113 CDS's (10,345,401 codons)

EC: Escherichia coli [gbbct] 11,985 CDS's (3,688,954 codons)

EC K12: Escherichia coli K12 [gbbct] 4,291 CDS's (1,363,716 codons)

- ⇒ HS and MM were compared and found to be closely similar, use HS table
- ⇒ EC and EC K12 were compared and found to be closely similar, use EC K12 table

Codon selection strategy:

Overall strategy is to adapt codon usage for optimal expression in mammalian cells while avoiding low-usage *E. coli* codons. One "best" codon was selected for each amino acid and used to back-translate the desired protein sequence to yield a starting gene sequence.

Strategy A was chosen for the design of the *neo* and *hyg* genes (see Table 12). (Strategy A: Codon bias optimized: emphasis on codons showing the highest usage frequency in HS. Best codons are those with highest

usage in HS, unless a codon with slightly lower usage has substantially higher usage in $E.\ coli.$).

Table 12

Amino acid	Codon Choices in Examples 1-2	Codon Choices in Codon Bias Optimized Strategy A
Gly	GGC/GGT	GGC
Glu	GAG	GAG
Asp	GAC	GAC
Val	GTG/GTC	GTG
Ala	GCC/GCT	GCC
Arg	CGC/CGT	CGC
Ser	TCT/AGC	AGC
Lys	AAG	AAG
Asn	AAC	AAC
Ile	ATC/ATT	ATC
Thr	ACC/ACT	ACC
Cys	TGC	TGC
Tyr	TAC	TAC
Leu	CTG/TTG	CTG
Phe	TTC	TTC
Gln	CAG	CAG
His	CAC	CAC
Pro	CCA/CCT	CCC

5

Generate starting gene sequences

Use custom codorn usage table in Vector NTI 8.0 (Informax) ("Strategy A")
Back-translate neo and hyg protein sequences

Neo (based on neomycin gene from Promega's pCI-neo)

10 MIEQDGLHAGSPAAWVERLFGYDWAQQTIGCSDAAVFRLSAQGRPVLF VKTDLSGALNELQDEAARLSWLATTGVPCAAVLDVVTEAGRDWLLLGE VPGQDLLSSHLAPAEKVSIMADAMRRLHTLDPATCPFDHQAKHRIERAR

TRMEAGLVDQDDLDEEHQGLAPAELFARLKARMPDGEDLVVTHGDAC LPNIMVENGRFSGFIDCGRLGVADRYQDIALATRDIAEELGGEWADRFLV LYGIAAPDSQRIAFYRLLDEFF (SEQ ID NO:2) and encoded by

Hyg (based on hygromycin gene from Invitrogen's pcDNA3.1/Hygro)

MKKPELTATSVEKFLIEKFD SVSDLMQLSEGEESRAFSFDVGGRGYVLRV

NSCADGFYKDRYVYRHFAS AALPIPEVLDIGEFSESLTYCISRRAQGVTLQ

DLPETELPAVLQPVAEAMD AIAAADLSQTSGFGPFGPQGIGQYTTWRDFI

20 CAIADPHVYHWQTVMDDT VSASVAQALDELMLWAEDCPEVRHLVHAD

FGSNNVLTDNGRITAVIDWSEAMFGDSQYEVANIFFWRPWLACMEQQT

RYFERRHPELAGSPRLRAYMLRIGLDQLYQSLVDGNFDDAAWAQGRCD

AIVRSGAGTVGRTQIARRSA AVWTDGCVEVLADSGNRRPSTRPRAKE

25

30

(SEQ ID NO:7) encoded by

5

10

gacaatggccgcataacagcggtcattgactggagcgaggcgatgttcgg_ggattcccaatacgaggtcgccaac atcttcttctggaggccgtggttggcttgtatggagcagcagcagcagccgctacttcgagcggaggcatccggagcttgc aggatcgccggggtccgggggtatatgctccgcattggtcttgaccaactctatcagagcttggttgacggcaatttc gatgatgcagcttgggcgagggtcgatgcgacgcaatcgtccgatccggagcggactgtcgggcgtacacaa atcgcccgcagaagcgcggccgtctggaccgatggctgtgtagaagtactcgccgatagtggaaaccgacgcccc agcactcgtccgagggcaaaggaat (SEQ ID NO:6).

5

Table 13

Nomenclature of exemplary neo and hyg gene versions

Gene name	Description		
neo	from pCI-neo (Promega)		
hneo	humanized (codon usage strategy A) ORF		
hneo-F	humanized ORF with 5' and 3' flanking regions		
hneo-1F	humanized ORF with 5' and 3' flanking regions		
	after first removal of undesired sequence matches		
hneo-2F	humanized ORF with 5' and 3' flanking regions		
	after second removal of undesired sequence		
	matches		
hneo-3F	humanized ORF with 5' and 3' flanking regions		
	after third removal of undesired sequence matches		
hneo-3FB	Changed 5' and 3' flanking cloning sites		
hyg	from pcDNA3.1/Hygro (Invitrogen)		
hhyg	humanized (codon usage strategy A) ORF		
hhyg-F	humanized ORF with 5' and 3' flanking regions		
hhyg-1F	humanized ORF with 5' and 3' flanking regions		
	after first removal of undesired sequence matches		
hhyg-2F	humanized ORF with 5' and 3' flanking regions		
	after second removal of undesired sequence		
	matches		
hhyg-3F	humanized ORF with 5' and 3' flanking regions		
	after third removal of undesired sequence matches		
hhyg-3FB	Changed 5' and 3' flanking cloning sites		

"h" indicates humanized codons, "F" indicates presence of 5' and 3' flanking sequences.

Create starting (codon-optimized) gene sequences:

- hneo (humanized starting gene sequence without flanking regions in hneo-F) CCACTCAGTGGCCACCATGATCGAGCAGGACGGCCTGCACGCCGGCA GCCCGCCGCCTGGGTGGAGCGCCTGTTCGGCTACGACTGGGCCCAG CAGACCATCGGCTGCAGCGACGCCGCCGTGTTCCGCCTGAGCGCCCA GGGCCGCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCCGCCCTGA 10 CGACTGCTGCTGCGGCGAGGTGCCCGGCCAGGACCTGCTGAGCA GCCACCTGGCCCCGCCGAGAAGGTGAGCATCATGGCCGACGCCATG CGCCGCCTGCACACCCTGGACCCCGCCACCTGCCCCTTCGACCACCA GGCCAAGCACCGCATCGAGCGCGCCCCGCACCCGCATGGAGGCCGGC 15 CTGGTGGACCAGGACGACCTGGACGAGGAGCACCAGGGCCTGGCCC CCGCCGAGCTGTTCGCCCGCCTGAAGGCCCGCATGCCCGACGGCGAG GACCTGGTGGTGACCCACGGCGACGCCTGCCTGCCCAACATCATGGT GGAGAACGGCCGCTTCAGCGGCTTCATCGACTGCGGCCGCCTGGGCG TGGCCGACCGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCC 20 GAGGAGCTGGGCGGGCGAGTGGGCCGACCGCTTCCTGGTGCTGTACGG CATCGCCGCCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTGG ACGAGTTCTTCTAATAACCAGTCTCTGG (SEQ ID NO:3).
- hhyg (humanized starting gene sequence without flanking regions)
 CCACTCAGTGGCCACCATGAAGAAGCCCGAGCTGACCGCCACCAGCG
 TGGAGAAGTTCCTGATCGAGAAGTTCGACAGCGTGAGCGACCTGATG
 CAGCTGAGCGAGGGCGAGGAGAGCCGCGCCTTCAGCTTCGACGTGG
 GCGGCCGCGGCTACGTGCTGCGCGTGAACAGCTGCGCCGACGGCTTC
 TACAAGGACCGCTACGTGTACCGCCACTTCGCCAGCGCCGCCCTGCC
 CATCCCCGAGGTGCTGGACATCGGCGAGTTCAGCGAGAGCCTGACCT
 ACTGCATCAGCCGCCGCCCCAGGGCGTGACCCTGCAGGACCTGCCC
 GAGACCGAGCTGCCCGCCCGTGCTGCAGCCCGAGGCCATGGA

CGCCATCGCCGCCGACCTGAGCCAGACCAGCGGCTTCGGCCCCT TCGGCCCCAGGGCATCGGCCAGTACACCACCTGGCGCGACTTCATC TGCGCCATCGCCGACCCCACGTGTACCACTGGCAGACCGTGATGGA CGACACCGTGAGCGCCAGCGTGGCCCAGGCCCTGGACGAGCTGATGC TGTGGGCCGAGGACTGCCCCGAGGTGCGCCACCTGGTGCACGCCGAC 5 TTCGGCAGCAACACGTGCTGACCGACAACGGCCGCATCACCGCCGT GATCGACTGGAGCGAGGCCATGTTCGGCGACAGCCAGTACGAGGTGG CCAACATCTTCTTGGCGCCCCTGGCTGGCCTGCATGGAGCAGCAG ACCCGCTACTTCGAGCGCCGCCACCCCGAGCTGGCCGGCAGCCCCCG CCTGCGCGCCTACATGCTGCGCATCGGCCTGGACCAGCTGTACCAGA 10 GCCTGGTGGACGCCAACTTCGACGACGCCGCCTGGGCCCAGGGCCGC TGCGACGCCATCGTGCGCAGCGGCGCCGGCACCGTGGGCCGCACCCA GATCGCCGCCGCAGCGCCGCCGTGTGGACCGACGCTGCGTGGAGG AAGGAGTAATAACCAGCTCTTGG (SEQ ID NO:8). 15

Programs and databases used for identification and removal of sequence motifs
All from Genomatix Software GmbH (Munich, Germany,
http://www.genomatix.de):

GEMS Launcher Release 3.5.2 (June 2003)

20 MatInspector professional Release 6.2.1 June 2003

Matrix Family Library Ver 3.1.2 June 2003 (incl. 318 vertebrate matrices in 128 families)

ModelInspector professional Release 4.8 October 2002

Model Library Ver 3.1 March 2003 (226 modules)

SequenceShaper toolUser Defined Matrices

Sequence motifs to remove from starting gene sequences (In order of priority)

30 Restriction enzyme recognition sequences:

See user-defined matrix subset neo and hyg. Same as those used for design of hluc+ version 2.0

Generally includes those required for cloning (pGL4) or commonly used

for cloning

Change: also SbfI, AfII, AccIII

Transcription factor binding sequences:

Promoter modules (2 TF binding sites with defined orientation) with

5 default score or greater

Vertebrate TF binding sequences with score of at least core=0.75 /

matrix=optimized

Eukaryotic transcription regulatory sites:

Kozak sequence

10 Splice donor / acceptor sequences in (+) strand

PolyA addition sequences in (+) strand

Prokaryotic transcription regulatory sequences:

E. coli promoters

E. coli RBS (if less than 20 bp upstream of Met codon)

15

User-defined matrix subset "neo+hyg"

Format: Matrix name (core similarity threshold / matrix similarity threshold)

- U\$Aat∏ (0.75/1.00)
- U\$BamHI (0.75/1.00)
- U\$BgII (0.75/1.00)
 - U\$BglII (0.75/1.00)
 - U\$BsaI (0.75/1.00)
 - U\$BsmAI (0.75/1.00)
 - U\$BsmBI (0.75/1.00)
- U\$BstEII (0.75/1.00)
 - U\$BstXI (0.75/1.00)
 - U\$Csp45I (0.75/1.00)
 - U\$CspI (0.75/1.00)

- U\$EC-P-10 (1.00/Optimized)
- U\$EC-P-35 (1.00/Optimized)
- U\$EC-Prom (1.00/Optimized)
- U\$EC-RBS (0.75/1.00)
- U\$EcoRI (0.75/1.00)
 - U\$HindⅢ (0.75/1.00)
 - U\$Kozak (0.75/Optimized)
 - U\$KpnI (0.75/1.00)
 - U\$MluI (0.75/1.00)
- 10 U\$NcoI (0.75/1.00)
 - U\$NdeI (0.75/1.00)
 - U\$NheI (0.75/1.00)
 - U\$NotI (0.75/1.00)
 - U\$NsiI (0.75/1.00)
- U\$PflMI (0.75/1.00)
 - U\$PmeI (0.75/1.00)
 - U\$PolyAsig (0.75/1.00)
 - U\$PstI (0.75/1.00)
 - U\$SacI (0.75/1.00)
- U\$SacⅡ (0.75/1.00)
 - U\$SalI (0.75/1.00)
 - U\$SfiI (0.75/1.00)
 - U\$SgfI (0.75/1.00)

- U\$SmaI (0.75/1.00)
- U\$SnaBI (0.75/1.00)
- U\$SpeI (0.75/1.00)
- U\$Splice-A (0.75/Optimized)
- U\$Splice-D (0.75/Optimized)
 - U\$XbaI (0.75/1.00)
 - U\$XcmI (0.75/1.00)
 - U\$XhoI (0.75/1.00)
 - ALL vertebrates.lib (0.75/Optimized)

10

User-defined matrix subset "neo+hyg-EC"

Format: Matrix name (core similarity threshold / matrix similarity threshold)

- U\$AatII (0.75/1.00)
- U\$BamHI (0.75/1.00)
- U\$BglI (0.75/1.00)
 - U\$BglII (0.75/1.00)
 - U\$BsaI (0.75/1.00)
 - U\$BsmAI (0.75/1.00)
 - U\$BsmBI (0.75/1.00)
- U\$BstEII (0.75/1.00)
 - U\$BstXI (0.75/1.00)
 - U\$Csp45I (0.75/1.00)
 - U\$CspI (0.75/1.00)
 - U\$EcoRI (0.75/1.00)

- U\$HindⅢ (0.75/1.00)
- U\$Kozak (0.75/Optimized)
- U\$KpnI (0.75/1.00)
- U\$MluI (0.75/1.00)
- U\$NcoI (0.75/1.00)
 - U\$NdeI (0.75/1.00)
 - U\$NheI (0.75/1.00)
 - U\$NotI (0.75/1.00)
 - U\$NsiI (0.75/1.00)
- 10 U\$PfIMI (0.75/1.00)
 - U\$PmeI (0.75/1.00)
 - U\$PolyAsig (0.75/1.00)
 - U\$PstI (0.75/1.00)
 - U\$SacI (0.75/1.00)
- U\$SacII (0.75/1.00)
 - U\$SalI (0.75/1.00)
 - U\$SfiI (0.75/1.00)
 - U\$SgfI (0.75/1.00)
 - U\$SmaI (0.75/1.00)
- 20 U\$SnaBI (0.75/1.00)
 - U\$SpeI (0.75/1.00)
 - U\$Splice-A (0.75/Optimized)
 - U\$Splice-D (0.75/Optimized)

- U\$XbaI (0.75/1.00)
- U\$XcmI (0.75/1.00)
- U\$XhoI (0.75/1.00)
- ALL vertebrates.lib (0.75/Optimized)

5

User-defined matrix subset "pGL4-072503"

Format: Matrix name (core similarity threshold / matrix similarity threshold)

- U\$AatII (0.75/1.00)
- U\$AccIII (0.75/1.00)
- U\$AfIII (0.75/1.00)
 - U\$BamHI (0.75/1.00)
 - U\$BglI (0.75/1.00)
 - U\$BglII (0.75/1.00)
 - U\$BsaI (0.75/1.00)
- U\$BsmAI (0.75/1.00)
 - U\$BsmBI (0.75/1.00)
 - U\$BstEII (0.75/1.00)
 - U\$BstXI (0.75/1.00)
 - U\$Csp45I (0.75/1.00)
- U\$CspI (0.75/1.00)
 - U\$EC-P-10 (1.00/Optimized)
 - U\$EC-P-35 (1.00/Optimized)
 - U\$EC-Prom (1.00/Optimized)
 - U\$EC-RBS (0.75/1.00)

- U\$EcoRI (0.75/1.00)
- U\$HindIII (0.75/1.00)
- U\$Kozak (0.75/Optimized)
- U\$KpnI (0.75/1.00)
- 5 U\$MluI (0.75/1.00)
 - U\$NcoI (0.75/1.00)
 - U\$NdeI (0.75/1.00)
 - U\$NheI (0.75/1.00)
 - U\$NotI (0.75/1.00)
- 10 U\$NsiI (0.75/1.00)
 - U\$PfiMI (0.75/1.00)
 - U\$PmeI (0.75/1.00)
 - U\$PolyAsig (0.75/1.00)
 - U\$PstI (0.75/1.00)
- U\$SacI (0.75/1.00)
 - U\$SacII (0.75/1.00)
 - U\$SalI (0.75/1.00)
 - U\$SbfI (0.75/1.00)
 - U\$SfiI (0.75/1.00)
- 20 U\$SgfI (0.75/1.00)
 - U\$SmaI (0.75/1.00)
 - U\$SnaBI (0.75/1.00)
 - U\$SpeI (0.75/1.00)

- U\$Splice-A (0.75/Optimized)
- U\$Splice-D (0.75/Optimized)
- U\$XbaI (0.75/1.00)
- U\$XcmI (O.75/1.00)
- U\$XhoI (0.75/1.00)
 - ALL vertebrates.lib

Strategy for removal of sequence motifs

The undesired sequence motifs specified above were removed from the starting gene sequence by selecting alternate codons that allowed retention of the specified protein and flanking sequences. Alternate codons were selected in a way to conform to the overall codon selection strategy as much as possible.

General steps:

10

- Identify undesired sequence matches with MatInspector using matrix family subset "neo+hyg" or "neo+hyg-EC" and with ModelInspector using default settings.
 - Identify possible replacement codons to remove undesired sequence matches with SequenceShaper (keep ORF).
- Incorporate changes into a new version of the synthetic gene sequence and re-analyze with MatInspector and ModelInspector.

Specific steps:

- First try to remove undesired sequence matches using subset "neo+hyg-EC" and SequenceShaper default remaining thresholds (0.70/Opt-0.20).
- For sequence matches that cannot be removed with this approach use lower
 SequenceShaper remaining thresholds (e.g. 0.70/Opt-0.05).
 - For sequence matches that still cannot be removed, try different combinations of manually chosen replacement codons (especially if more than 3 base changes might be needed). If that introduces new sequence

matches, try to remove those using the steps above (a different starting sequence sometimes allows a different removal solution).

- Use subset "neo+hyg" to check whether problematic *E. coli* sequence matches were introduced, and if so try to remove them using an analogous approach to that described above for non *E. coli* sequences.

5

25

30

Use an analogous strategy for the flanking (non-ORF) sequences.

Final check with subset "pGL4-072503" after change in flanking cloning sites

After codon optimizing *neo* and *hyg*, hneo and hhyg were obtained.

Regulatory sequences were removed from hneo and hhyg yielding hneo-1F and hhyg-1F (the corresponding sequences without flanking regions are SEQ ID Nos. 38 and 30, respectively). Regulatory sequences were removed from hneo-1F and hhyg-1F yielding hneo-2F and hhyg-2F (the corresponding sequences without flanking regions are SEQ ID Nos. 39 and 42, respectively). Regulatory sequences were removed from hneo-2F and hhyg-2F yielding hneo-3F and hhyg-3F. Hneo-3F and hhyg-3F were further modified by altering 5' and 3' cloning sites yielding hneo-3FB and hhyg-3FB:

hneo-3 (after 3rd round of sequence removal, subset neo+hyg) has the following sequence:

CCACTCoGTGGCCACCATGATCGAaCAaGACGGCCToCAtGCtGGCAGtC
CCGCaGCtTGGGToGAaCGCtTGTTCGGgTACGACTGGGCCCAGCAGAC
CATCGGaTGtAGCGAtGCgGCCGTGTTCCGtCTaAGCGCtCAaGGCCGgCC
CGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTtCA
aGACGAGGCtGCCCGCCTGAGCTGGCTGGCCACCACCGGtGTaCCCTGC
GCCGCtGTGtTGGAtGTtGTGACCGAaGCCGGCCGgGACTGGCTGCT
GGGCGAGGToCCtGGCCAGGAtCTGCTGAGCAGCCACCCTGC
GAGAAGGTttoCATCATGGCCGAtGCaATGCGgCGCCTGCACACCCTGG
ACCCCGCtACaTGCCCCTTCGACCACACGGCtAAGCAtCGgATCGAGCGt
GCtCggACCCGCATGGAGGCCGGCCTGGACCACGCTGGA
CGAGGAGCAtCAGGGCCTGGCCCCCGCtGAaCTGTTCGCCCCGCTGAAa
GCCCGCATGCCgGACGGCCTGGCCCCCGCTGAACCTGG
CCTcCCtAACATCATGGTcGAGAACCTGGTTGTGACCACACGGCT
CCTcCCtAACATCATGGTcGAGAAATGGCCGCTTCtcCGGCTTCATCGACTG

CGGtCGCCTaGGaGTtGCCGACCGCTACCAGGACATCGCCCTGGCCACC
CGCGACATCGCtGAGGAGCTtGGCGGCGAGTGGGCCGACCGCTTCtTaG
TctTGTACGGCATCGCaGCtCCCGACAGCCAGCGCATCGCCTTCTACCG
CCTGCTcGACGAGTTCTTtTA_ATGACCAGgCTCTGG (SEQ ID NO:4);

- hneo-3FB (change PfIMI sites to SbfI at 5' end and AfIII at 3' end) has the following sequence: cctgcaggCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCCCG CAGCTTGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGACC ATCGGATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGCCG GCCCGTGCTGTTCGTGAAGACCGACCTGAGCGCCCCTGAACGAGC 10 TTCAAGACGAGGCTGCCCGCCTGAGCTGGCTGGCCACCACCGGTGTA GCTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCACC CTGCACACCCTGGACCCCGCTACATGCCCCTTCGACCACCAGGCTAA 15 ACCAGGACGACCTGGACGA GGAGCATCAGGGCCTGGCCCCCGCTGA ACTGTTCGCCCGCCTGAAAGCCCGCATGCCGGACGGTGAGGACCTGG TTGTGACACATGGTGATGCCTGCCTCCCTAACATCATGGTCGAGAAT 20 GGCCGCTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCGAC CGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAGCT TGGCGCGAGTGGGCCGACCGCTTCTTAGTCTTGTACGGCATCGCAG
- hhyg-3 (after 3rd round of sequence removal, subset neo+hyg) has the following sequence:
 CCACTCcGTGGCCACCATGAAGAAGCCCGAGCTGACCGCtACCAGCGT tGAaAAaTTtCTcATCGAGAAGTTCGACAGtGTGAGCGACCTGATGCAGt TgtcgGAGGGCGAaGAgAGCCGaGCCTTCAGCTTCGAtGTcGGCGGaCGC
 GGCTAtGTaCTGCGgGTGAAtAGCTGCGCtGAtGGCTTCTACAAaGACCG CTACGTGTACCGCCACTTCGCCAGCGCtGCaCTaCCCATCCCCGAaGTGt TGGACATCGGCGAGTTCAGCGAGAGCCTGACaTACTGCATCAGtaGaCG

TTTAATGAgcttaag (SEQ ID NO:5);

CTCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTCGACGAGTTCT

CGCCCAaGGCGTtACtCTcCAaGACCTcCCCGAaACaGAGCTGCCtGCtGT GtTaCAGCCtGTcGCCGAaGCtATGGAtGCtATtGCCGCCGCCGACCTcAGt CAaACCAGCGCTTCGGCCCaTTCGGgCCCCAaGGCATCGGCCAGTAC ACaACCTGGCGgGAtTTCATtTGCGCCATtGCtGAtCCCCAtGTcTACCACT GGCAGACCGTGATGGACGACACCGTGtcCGCCAGCGTaGCtCAaGCCCT 5 GGACGAaCTGATGCTGTGGGCCGAaGACTGtCCCGAGGTGCGCCAcCTc GTcCAtGCCGACTTCGGCAGCAACAACGTcCTGACCGACAACGGCCGC ATCACCGCCGTaATCGACTGGtcCGAaGCtATGTTCGGgGACAGtCAGTA CGAGGTGGCCAACATCTTCTTCTGGCGgCCCTGGCTGGCtTGCATGGA GCAGCAGACtCGCTACTTCGAGCGCCGgCAtCCCGAGCTGGCCGGCAG 10 CCCtCGtCTGCGaGCCTACATGCTGCGCATCGGCCTGGAtCAGCTcTACC AGAGCCTcGTGGACGCAACTTCGACGAtGCtGCCTGGGCtCAaGGCCG TCGCtCGCCGgAGCGCCGCCGTaTGGACCGACGGCTGCGTcGAGGTGCTGGCCGACAGCGCCAACCGCCGgCCCAGtACaCGaCCgCGCGCtAAGGAG 15 TAgTAACCAGgetcTGG (SEQ ID NO:9); and

hhyg-3FB (change *PfI*MI sites to *SbfI* at 5' end and *AfIII* at 3' end) has the following sequence:

cctgcaggCCACCATGAAGAAGCCCCGAGCTGACCGCTACCAGCGTTGAAA AATTTCTCATCGAGAAGTTCGACAGTGTGAGCGACCTGATGCAGTTG 20 TCGGAGGCGAAGAGAGCCGAGCCTTCAGCTTCGATGTCGGCGGACG CGGCTATGTACTGCGGGTGAATAGCTGCGCTGATGGCTTCTACAAAG ACCGCTACGTGTACCGCCACTTCGCCAGCGCTGCACTACCCATCCCC GAAGTGTTGGACATCGGCGAGTTCAGCGAGAGCCTGACATACTGCAT CAGTAGACGCGCCCAAGGCGTTACTCTCCAAGACCTCCCCGAAACAG 25 AGCTGCCTGTGTTACAGCCTGTCGCCGAAGCTATGGATGCTATTG CCGCCGCCGACCTCAGTCAAACCAGCGGCTTCGGCCCATTCGGGCCC CAAGGCATCGGCCAGTACACAACCTGGCGGGATTTCATTTGCGCCAT TGCTGATCCCCATGTCTACCACTGGCAGACCGTGATGGACGACACCG TGTCCGCCAGCGTAGCTCAAGCCCTGGACGAACTGATGCTGTGGGCC 30 GAAGACTGTCCCGAGGTGCGCCACCTCGTCCATGCCGACTTCGGCAG CAACAACGTCCTGACCGACAACGGCCGCATCACCGCCGTAATCGACT

GGTCCGAAGCTATGTTCGGGGA CAGTCAGTACGAGGTGGCCAACATC
TTCTTCTGGCGGCCCTGGCTGGCTTGCATGGAGCAGCAGACTCGCTAC
TTCGAGCGCCGGCATCCCGAGCTGGCCGGCAGCCCTCGTCTGCGAGC
CTACATGCTGCGCATCGGCCTGGATCAGCTCTACCAGAGCCTCGTGG

ACGGCAACTTCGACGATGCTGC CTGGGCTCAAGGCCGCTGCGATGCC
ATCGTCCGCAGCGGGGCCGGCA CCGTCGGTCGCACACAAATCGCTCG
CCGGAGCGCCGCCGTATGGACC GACGGCTGCGTCGAGGTGCTGGCCG
ACAGCGGCAACCGCCGGCCCAGTACACGACCGCGCGCTAAGGAGTA
GTAActtaag (SEQ ID NO:10).

10 Analysis of hneo-3FB and hhyg-3FB

hneo-3FB had no transcription factor binding sequence, including promoter module, matches (GEMS re-lease 3.5.2 June 2003; vertebrate TF binding sequence families (core similarity: 0.75 / matrix similarity: opt); and promoter modules (default parameters: optimized threshold or 80% of maximum score)), while hhyg-3FB had 4 transcription factor binding sequence matches remaining but no promoter modules (Table 10). The following transcription factor binding sequences were found in hhyg-3FB:

1) **V\$MINI**

15

Family: Muscle Initiators (2 members)

20 Best match: Muscle Initiator Sequence 1

Ref: Laura L. Lopez & James W. Fickett "Muscle-Specific Regulation of

Transcription: A Catalog of Regulatory Elements"

http://www.cbil.upenn.edu/MTIR/HomePage.html

25 Position in ORF: -7 to 11

2) V\$PAX5

Family: PAX-5/PAX-9 B-cell-specific activating proteins (4 members)

Best match: B-cell-specific activating protein

Ref: MEDLINE 94010299

30 Position in ORF: 271 to 299

3) <u>V\$AREB</u>

Family: Atplal regulatory element binding (4 members)

Best match: AREB6

Ref: MEDLINE 96061934

Position in ORF: 310 to 322

4) V\$VMYB

Family: AMV-viral myb oncogene (2 members)

5 Best match: v-Myb

10

15

Ref: MEDLINE 94147510

Position in ORF: 619 to 629

Other sequences remaining in hneo-3F included one *E. coli* RBS 8 bases upstream of Met (ORF position 334 to 337); hneo-3FB included a splice acceptor site (+) and *Pst*I site as part of a 5' cloning site for *Sbf*I, and one *E. coli* RBS 8 bases upstream of Met (ORF position 334 to 337); hhyg-3F had no other sequence matches; and hhyg-3FB included a splice acceptor site (+) and *Pst*I site as part of a 5' cloning site for *Sbf*I.

Subsequently, regulatory sequences were removed from hneo-3F and hhyg-3F yielding hneo-4 and hhyg-4. Then regulatory sequences were removed from hneo-4 yielding hneo-5.

Table 14

Gene name	Hap TF binding sequences:	Promoter modules
	5' F/ORF/3' F	145' F./ ORF // 3' E
Neo	/ 53 /	/ 0 /
hneo-F	1 / 61 / 2	0 / 2 / 0
hneo-3F	0 / 0 / 0	0 / 0 / 0
hneo-3FB	0/0/0	0/0/0
Hyg	/ 74 /	/ 3 /
hhyg-F	1 / 94 / 1	0 / 4 / 0
hhyg-3F	1 / 3 / 0	0/0/0
hhyg-3FB	1 / 3 / 0	0/0/0

20

^{*}Promoter modules are defined as a composite regulatory element, with 2 transcription factor binding sites separated by a spacer, which has been shown to exhibit synergistic or antagonistic function.

Table 15 summarizes the identity of various genes.

<u>Table 15</u>

<u>Pairwise identity of different gene versions</u>

5 Comparisons were of open reading frames (ORFs).

	neo	hneo	hneo-3	hneo-4	hneo-5	Final hNeo
Neo		79	78	78	78	77
hneo			90	90	90	89
hneo-3				100	99	98
hneo-4 ‡					99	98
hneo-5						99
Final hNeo						

	hyg	hhyg	hhyg-3	hHygro	hhÿg-4	Final hHyg
Hyg		79	78	73	76	78
hhyg			88	83	86	88
hhyg-3.				94	96	98
hHygro:					96	94
hhyg-4						97 .
Final hHyg						

	Pe	rcent Id	entity		
•	•	1	2		·
vergence	1		82.2	1	Synthetic puro-SEQ ID NO:11
Jiverg	2	19.6		2	Starting puro-SEQ ID NO:15
1		1	2	i	

10

An expression cassette (hNeo-cassette) with a synthetic neomycin gene flanked by a SV40 promoter and a synthetic poly(A) site is shown below.

 ${\tt GGATCCGTTTGCGTATTGGGCGCTCTTCCGCTGATCTGCGCAGCACCA} \\ {\tt TGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGCTACCTTCTG} \\$

AGGCGGAAAGAACCAGCTGTGGAATGTGTGTCAGTTAGGGTGTGGAA AATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGG CAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCC CGCCCTAACTCCGCCCATCCCGCCCTAACTCCGCCCAGTTCCGCCC 5 AGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT TTTGGAGGCCTAGGCTTTTGCAAAAAGCTCGATTCTTCTGACACTAGC GCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCCCGCAGC TTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGACCATCG 10 GTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTTCA AGACGAGGCTGCCCGCCTGAGCTGGCTGGCCACCACCGGCGTACCCT GCGCCGCTGTGTTGGATGTTGTGACCGAAGCCGGCCGGGACTGGCTG CTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCACCTTGC 15 CCCCGCTGAGAAGGTTTCTATCATGGCCGATGCAATGCGGCGCCTGC ACACCCTGGACCCCGCTACCTGCCCCTTCGACCACCAGGCTAAGCAT CGGATCGAGCGTGCTCGGACCCGCATGGAGGCCGGCCTGGTGGACCA GGACGACCTGGACGAGGAGCATCAGGGCCTGGCCCCCGCTGAACTGT TCGCCCGACTGA.AAGCCCGCATGCCGGACGGTGAGGACCTGGTTGTC 20 ACACACGGAGAT GCCTGCCTCCCTAACATCATGGTCGAGAATGGCCG CTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCGACCGCTA CCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAGCTTGGCG GCGAGTGGCCGACCGCTTCTTAGTCTTGTACGGCATCGCAGCTCCC GACAGCCAGCGCATCGCCTTCTACCGCTTGCTCGACGAGTTCTTTAA 25 TGATCTAGAACCGGTCATGGCCGCAATAAAATATCTTTATTTTCATTA CATCTGTGTGTTGGTTTTTTGTGTGTTCGAACTAGATGCTGTCGAC (SEQ ID NO:44).

An expression cassette (hPuro-cassette) with a synthetic puromycin gene flanked by a SV40 promoter and a synthetic poly(A) site is shown below.

GGATCCGTTTGCGTATTGGGCGCTCTTCCGCTGATCTGCGCAGCACCA

TGGCCTGAAATAACCTCTGAAAGAGGAACTTGGTTAGCTACCTTCTG

AGGCGGAAAGAACCAGCTGTGGAATGTGTCAGTTAGGGTGTGGAA AATTAGTCAGCAACCAGGTGTGGAAAGTCCCCAGGCTCCCCAGCAGG CAGAAGTATGCAAAGCATGCATCTCAATTAGTCAGCAACCATAGTCC CGCCCTAACTCCGCCCATCCCGCCCTAACTCCGCCCAGTTCCGCCC AGGCCGCCTCTGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTT TTTGGAGGCCTAGGCTTTTGCAAAAAGCTCGATTCTTCTGACACTAGC GCCACCATGACCGAGTACAAGCCTACCGTGCGCCTGGCCACTCGCGA TGATGTGCCCGCGCCGTCCGCACTCTGGCCGCCGCTTTCGCCGACTA CCCCGCTACCCGGCACACCGTGGACCCCGACCGGCACATCGAGCGTG TGACAGAGTTGCAGGAGCTGTTCCTGACCCGCGTCGGGCTGGACATC GGCAAGGTGTGGGTAGCCGACGACGCGCGCGCCGTGGCCGTGTGGA CTACCCCGAGAGCGTTGAGGCCGGCGCGTGTTCGCCGAGATCGGC CCCGAATGGCCGAGCTGAGCGGCAGCCGCCTGGCCGCCCAGCAGCA TTCTGGCCACTGTAGGAGTGAGCCCCGACCACCAGGGCAAGGGCTTG GGCAGCGCCGTCGTTTGCCCGGCGTAGAGGCCGCCGAACGCGCCGG TGTGCCCGCCTTTCTCGAAACAAGCGCACCAAGAAACCTTCCATTCTA CGAGCGCCTGGGCTTCACCGTGACCGCCGATGTCGAGGTGCCCGAGG GACCTAGGACCTGGTGTATGACACGAAAACCTGGCGCCTAATGATCT AGAACCGGTCATGGCCGCAATAAAATATCTTTATTTTC.ATTACATCTG TGTGTTGGTTTTTTGTGTGTTCGAACTAGATGCTGTCGAC (SEQ ID NO:11);

25

30

5

10

15

20

hpuro:

hpuro-1:

10 gctagcgccaccatgaccgagtacaagcctaccgtgcgcctggccactcgcgatgatgtgccccgcgccgtccgc
actctggccgccgctttcgccgactaccccgctacccggcacaccgtggaccccgaccggcacatcgagcgtgtg
acagagttgcaggagctgttcctgacccgcgtcgggctggacatcggcaaggtgtgggtagccgacgacggcgc
ggccgtggccgtgtggactacccccgagagcgttgaggccggcggcgtgttcgccgagatcggccccgaatgg
ccgagctgagcggcagccgctggccgccagcagcaaatggagggcctgettgcccccaatggcccaaggag
15 cccgcctggtttctggccactgtaggagtgagccccgaccaccagggcaagggcttgggcagcgccgtgttg
cccggcgtagaggccgccgaacggcggtgtgcccgactttctggagacaagcgctccgcgtaaccttccattct
acgagcgcctgggcttcaccgtgaccgccgatgtcgaggtgcccgagggaccccggacctggtgcatgactcgc
aagcctggcgcctaatgatctaga (SEQ ID NO:92); and

20 hpuro-2

25

30

GCTAGCGCCACCATGACCGAGTACAAGCCTACCGTGCGCCTGGCCAC
TCGCGATGATGTGCCCCGCGCCGTCCGCACTCTGGCCGCCGCTTTCGC
CGACTACCCCGCTACCCGGCACACCGTGGACCCCGACCGGCACATCG
AGCGTGTGACAGAGTTGCAGGAGCTGTTCCTGACCCGCGTCGGGCTG
GACATCGGCAAGGTGTGGGTAGCCGACGACGGCGGCCGTGGCCG
TGTGGACTACCCCCGAGAGCGTTGAGGCCGCCGCGTGTTCGCCGAG
ATCGGCCCCCGAATGGCCGAGCTGAGCGGCAGCCGCCTGGCCGCCA
GCAGCAAATGGAGGGCCTGCTTGCCCCCCATCGTCCCAAGGAGCCTG
CCTGGTTTCTGGCCACTGTAGGAGTGAGCCCCGACCACCAGGGCAAG
GGCTTGGGCAGCGCCGTCGTTTGCCCCGGCGTAGAGGCCGCCGAACG
CGCCGGTGTGCCCGCCTTTCTCGAAACAAGCGCACCAAGAAACCTTC
CATTCTACGAGCGCCTGGGCTTCACCGTGACCGCCGATGTCGAGGTG
CCCGAGGGACCTAGGACCTGGTGTATGACACGAAAACCTGGCGCCTA

ATGATCTAGA (SEQ ID NO:93).

The starting puro sequence (from psi STRIKE) has SEQ ID NO:15

(atgaccgagt acaagcccac ggtgcgcctc gccacccgcg acgacgtccc ccgggccgta

5 cgcaccctcg ccgccgcgtt cgccgactac cccgccacgc gccacaccgt cgacccggac
cgccacatcg agcgggtcac cgagctgcaa gaactcttcc tcacgcgcgt cgggctcgac
atcggcaagg tgtgggtcgc ggacgacggc gccgcggtgg cggtctggac cacgccggag
agcgtcgaag cgggggcggt gttcgccgag atcggcccgc gcatggccga gttgagcggt
tcccggctgg ccgcgcagca acagatggaa ggcctcctgg cgccgcaccg gcccaaggag

10 cccgcgtggt tcctggccac cgtcggcgtg tcgcccgacc accagggcaa gggtctgggc
agcgccgtcg tgctccccgg agtggaggcg gccgagcgc ccggggtgcc cgccttcctg
gagacctccg cgccccgcaa cctccccttc tacgagcggc tcggcttcac cgtcaccgcc
gacgtcgagg tgcccgaagg accgcgcacc tggtgcatga cccgcaagcc cggtgcc).

15 Other synthetic hyg and neo genes include

hneo-1:

20

25

30

CCACTCAGTGGCCACCATGATCGAGCAGGACGGCCTcCAtGCtGGCAGt CCCGCaGCCTGGGTcGAGCGCtTGTTCGGgTACGACTGGGCCCAGCAG ACCATCGGaTGtAGCGAtGCCGCaGTGTTCCGCCTGAGCGCtCAaGGCCG gCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGC TtCAaGACGAGGCtGCCCGCCTGAGCTGGCTGGCCACCACCGGtGTaCC CTGCGCCGCtGTGtTGGAtGTtGTGACCGAaGCCGGCCGCGACTGGCTGC TGCTGGGCGAGGTGCCtGGCCAGGACCTGCTGAGCAGCCACCTGGCC CCCGCtGAGAAGGTGAGCATCATGGCCGACGCCATGCGgCGCCTGCAC ACCTGGACCCGCtACaTGCCCTTCGACCACCAGGCtAAGCACCGC ATCGAGCGgGCtCGgACCCGCATGGAGGCCGGCCTGGTGGACCAGGACGACCTGGACGAGGAGCACCAGGGCCTGGCCCCCGCtGAaCTGTTCGCC CGCCTGAAaGCCCGCATGCCgGACGGtGAGGACCTGGTtGTGACaCACG GCGACGCCTGCCTcCCtAACATCATGGTcGAGAACGGgCGCTTCtcCGGC TTCATCGACTGCGCCCCCGGGCGTtGCCGACCGCTACCAGGACATC GCCCTGGCCACCCGCGACATCGCCGAGGAGCTGGGCGAGTGGG CCGACCGCTTCCTGGTctTGTACGGCATCGCaGCtCCCGACAGCCAGCG CATCGCCTTCTACCGCCTGCTGGACGAGTTCTTCTAgTAACCAGgCTCT

GG (SEQ ID NO:38);

hneo-2

25

30

CCACTCcGTGGCCACCATGATCGAaCAaGACGGCCTcCAtGCtGGCAGtC CCGCaGCtTGGGTcGAaCGCtTGTTCGGgTACGACTGGGCCCAGCAGAC5 CATCGGaTGtAGCGAtGCgGCCGTGTTCCGtCTaAGCGCtCAaGGCCGgCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGAGCTtCA aGACGAGGCtGCCCGCCTGAGCTGGCTGGCCACCACCGGtGTaCCCTGC $GGGCGAGGT \circ CCtGGCCAGGAtCTGCTGAGCAGCCACCTtGCCCCCGCt$ 10 GAGAAGGTttcCATCATGGCCGAtGCaATGCGgCGCCTGCACACCCTGG ACCCCGCtACaTGCCCCTTCGACCACCAGGCtAAGCAtCGgATCGAGCGt GCtCGgACCCGCATGGAGGCCGGCCTGGTGGACCAGGACGACCTGGA CGAGGAGCAtCAGGGCCTGGCCCCCGCtGAaCTGTTCGCCCGCCTGAAa GCCCGCATGCCgGACGGtGAGGACCTGGTtGTGACaCAtGGaGAtGCCTG 15 CCTcCtAACATCATGGTcGAGAAtGGcCGCTTCtcCGGCTTCATCGACTG CGGtCGCCTaGGaGTtGCCGACCGCTACCAGGACATCGCCCTGGCCACC CGCGACATCGCtGAGGAGCTtGGCGGCGAGTGGGCCGACCGCTTCtTaG TctTGTACGGCATCGCaGCtCCCGACAGCCAGCGCATCGCCTTCTACCG

20 CCTGCTcGACGAGTTCTTtTAATGACCAGgCTCTGG (SEQ ID NO:39);
hhyg-1

CCACTCAGTGGCCACCATGAAGAAGCCCGAGCTGACCGCTACCAGCG
TTGAGAAGTTCCTGATCGAGAAGTTCGACAGCGTGAGCGACCTGATG
CAGTTAAGCGAGGGCGAGGAAAGCCGCGCCTTCAGCTTCGATGTCGG
CGGACGCGGCTATGTACTGCGGGTGAATAGCTGCGCTGATGGCTTCT
ACAAAGACCGCTACGTGTACCGCCACTTCGCCAGCGCTGCACTGCCC
ATCCCCGAGGTGCTGGACATCGGCGAGTTCAGCGAGAGCCTGACATA
CTGCATCAGCCGCCGCGCTCAAGGCGTGACTCTCCAAGACCTGCCCG
AGACAGAGCTGCCCGCTGTGCTACAGCCTGTCGCCGAGGCTATGGAC
GCTATTGCCGCCGCCGACCTGAGCCAGACCAGCGGCTTCGCCCATT
CGGGCCCCAAGGCATCGGCCAGTACACCACCTGGCGCGACTTCATCT

GCGCCATTGCTGATCCCCATGTCTACCACTGGCAGACCGTGATGGAC GACACCGTGAGCGCCAGCGTAGCTCAAGCCCTGGACGAGCTGATGCT

hhyg-2:

CCACTCCGTGGCCACCATGAAGAAGCCCGAGCTGACCGCTACCAGCG TTGAAAAATTTCTCATCGAGA_AGTTCGACAGTGTGAGCGACCTGATG 15 CAGTTGTCGGAGGCGAAGAGAGCCGAGCCTTCAGCTTCGATGTCGG CGGACGCGGCTATGTACTGCGGGTGAATAGCTGCGCTGATGGCTTCT ACAAAGACCGCTACGTGTACCGCCACTTCGCCAGCGCTGCACTACCC ATCCCGAAGTGTTGGACATCGGCGAGTTCAGCGAGAGCCTGACATA CTGCATCAGTAGACGCGCCCAAGGCGTTACTCTCCAAGACCTCCCCG 20 AAACAGAGCTGCCTGTGTTACAGCCTGTCGCCGAAGCTATGGAT GCTATTGCCGCCGCCGACCTCAGTCAAACCAGCGGCTTCGGCCCATT CGGGCCCAAGGCATCGGCCAGTACACAACCTGGCGGGATTTCATTT GCGCCATTGCTGATCCCCATGTCTACCACTGGCAGACCGTGATGGAC GACACCGTGTCCGCCAGCGTAGCTCAAGCCCTGGACGAACTGATGCT 25 GTGGGCCGAGACTGTCCCGAGGTGCGCCACCTCGTCCATGCCGACT TCGGCAGCAACACGTCCTGACCGACAACGGCCGCATCACCGCCGTA ATCGACTGGAGCGAGGCTATGTTCGGGGACAGTCAGTACGAGGTGGC CAACATCTTCTTGGCGGCCCTGGCTGGCTTGCATGGAGCAGCAGA 30 CTCGCTACTTCGAGCGCCGGCATCCCGAGCTGGCCGGCAGCCCTCGT CTGCGAGCCTACATGCTGCGCATCGGCCTGGATCAGCTCTACCAGAG CCTCGTGGACGCCAACTTCGACGATGCTGCCTGGGCTCAAGGCCGCT

ATCGCTCGCCGGAGCGCCGCCGTATGGACCGACGGCTGCGTCGAGGT
GCTGGCCGACAGCGGCAACCGCCGGCCCAGTACACGACCGCGCGCTA
AGGAGTAGTAACCAGCTCTTGG (SEQ ID NO:42);

hHygro (SacI site in ORF near 5' end, insert in-frame linker coding for 12 amino 5 acids at 3' end, and SnaBI site added at 3' end in ORF) a agett get agege caccat gaag aage cegage te accget accagegt t gaaaa a att te te at egaga ag t te gagaag te gagaagcagtgtgagcgacctgatgcagttgtcggagggcgaagagagccgagccttcagcttcgatgtcggcggacgcgg10 actacce at cecega agt gtt gga categge gag tte age gag age ct gae at act geat cag tag ac gee gee categories and the same actac consistency of the same consistency of the same actac consistency of the same actac consgccgccgacctcagtcaaaccagcggcttcggcccattcgggccccaaggcatcggccagtacacaacctggegggattteatttgegeeattgetgateeceatgtetaceaetggeagaeegtgatggaegaeaeegtgteegeeag cgtagetcaagecetggaegaactgatgetgtgggeegaagaetgteeegaggtgegeeacetegteeatgeegae 15 ttcggcagcaacaacgtcctgaccgacaacggccgcatcaccgccgtaatcgactggtccgaagctatgttcgggg acagtcagtacgaggtggccaacatettettetggcggccetggctggcttgcatggagcagcagactcgctactte gagegeeggeateeegagetggeeggeageeetegtetgegageetaeatgetgegeateggeetggateagete taccagagcctcgtggacggcaacttcgacgatgctgcctgggctcaaggccgctgcgatgccatcgtccgcagc ggggccggcaccgtcggtcgcacacaaatcgctcgccggagcgccgccgtatggaccgacggctgcgtcgaggt 20 cggaggttcctacgtatagtctagactcgag (SEQ ID NO:70);

hhyg-4

25

30

hneo-4:

5

10

15

20

GCTAGCGCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCC CGCAGCTTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGA CCATCGGATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGC CGGCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGA GCTTCAAGACGAGGCTGCCCGCCTGAGCTGGCCACCACCGGTG TGGCTGCTGGGCGAGGTCCCTGGCCAGGATCTGCTGAGCAGCCA CCTTGCCCCGCTGAGAAGGTTTCCATCATGGCCGATGCAATGCGGC GCCTGCACACCCTGGACCCCGCTACATGCCCCTTCGACCACCAGGCT GGACCAGGACGACCTGGACGAGGAGCATCAGGGCCTGGCCCCCGCT GAACTGTTCGCCCGCCTGAAAGCCCGCATGCCGGACGGTGAGGACCT GGTTGTGACACATGGTGATGCCTGCCTCCCTAACATCATGGTCGAGA ATGGCCGCTTCTCCGGCTTCATCGACTGCGGTCGCCTAGGAGTTGCCG ACCGCTACCAGGACATCGCCCTGGCCACCCGCGACATCGCTGAGGAG CTTGGCGGCGAGTGGGCCGACCGCTTCTTAGTCTTGTACGGCATCGC AGCTCCCGACAGCCAGCGCATCGCCTTCTACCGCCTGCTCGACGAGT

25 TCTTTTAATCTAGA

(SEQ ID NO:72);

and

hneo-5:

GCTAGCGCCACCATGATCGAACAAGACGGCCTCCATGCTGGCAGTCC

30 CGCAGCTTGGGTCGAACGCTTGTTCGGGTACGACTGGGCCCAGCAGA
CCATCGGATGTAGCGATGCGGCCGTGTTCCGTCTAAGCGCTCAAGGC
CGGCCCGTGCTGTTCGTGAAGACCGACCTGAGCGGCGCCCTGAACGA
GCTTCAAGACGAGGCTGCCCGCCTGAGCTGCCCACCACCGCG

The synthetic nucleotide sequence of the invention may be employed in 15 fusion constructs. For instance, a synthetic sequence for a selectable polypeptide may be fused to a wild-type sequence or to another synthetic sequence which . encodes a different polypeptide. For instance, the neo sequence in the following examples of a synthetic Renilla luciferase-neo sequence may be replaced with a 20 synthetic neo sequence of the invention: atggcttccaaggtgtacgaccccgagcaacgcaaacgcatgatcactgggcctcagtggtgggctcgctgcaagc aaatgaacgtgctggactccttcatcaactactatgattccgagaagcacgccgagaacgccgtgatttttctgcatgg ${\bf t} a acg ctg cct ccag ctacctg tgg agg cacg tcg tgcct cacatcg agc ccg tgg ctag at gcat cat ccct gat ctacct acceptance of the contract of t$ gatcggaatgggtaagtccggcaagagcgggaatggctcatatcgcctcctggatcactacaagtacctcaccgctt ${\tt ggttcgagctgctgaaccttccaaagaaaatcatctttgtgggccacgactggggggcttgtctggcctttcactactc}$ 25 ctacgagcaccaagacaagatcaaggccatcgtccatgctgagagtgtcgtggacgtgatcgagtcctgggacga gtggcctgacatcgaggaggatatcgccctgatcaagagcgaagagggcgagaaaatggtgcttgagaataacttc caaggagaaggcgaggttagacggcctaccctctcctggcctcgcgagatccctctcgttaagggaggcaagcc ${\color{red} \textbf{c}} gacgtegtecagattgteegeaactacaaegeetacettegggeeagegaegatetgeetaagatgtteategagte$ 30 ${\tt cgaccctgggttcttttccaacgctattgtcgagggagctaagaagttccctaacaccgagttcgtgaaggtgaaggg}$ cctccacttcagccaggaggacgctccagatgaaatgggtaagtacatcaagagcttcgtggagcgcgtgctgaag aacgagcagaccggtggtgggagcggaggtggcggatcaggtggcggaggctccggagggattgaacaagatg

10

15

20

25

30

and

atgattgaacaagatggattgca cgcaggttctccggccgcttgggtggagaggctattcggctatgactgggcacaacagacaatcggctgctctgatgccgccgtgttccggctgtcagcgcagggggcgcccggttctttttgtcaagaccg gcgcagctgtgctcgacgttgtcactgaagcgggaagggactggctgctattgggcgaagtgccggggcaggatc teetgteateteacettgeteetgeegagaaagtateeateatggetgatgeaatgeggeggetgeataegettgatee gatcaggatgatctggacgaagagcatcaggggctcgcgccagccgaactgttcgccaggctcaaggcgcgcat gcccgacggcgaggatctcgtc gtgacccatggcgatgcctgcttgccgaatatcatggtggaaaatggccgctttt ctggattcatcgactgtggccggctgggtgtggcggaccgctatcaggacatagcgttggctacccgtgatattgctg a agaget tggeggcga at ggget tgaccgettcct cgtget ttacggt at cgccget cccg at tcgcageg categoettctatcgccttcttgacgagttcttcaccggtggtgggagcggaggtggcggatcaggtggcggaggctccggag gggcttccaaggtgtacgaccccgagcaacgcaaacgcatgatcactgggcctcagtggtgggctcgctgcaagc aaatgaacgtgctggactccttcatcaactactatgattccgagaagcacgccgagaacgccgtgatttttctgcatgg taacgctgcctccagctacctgtggaggcacgtcgtgcctcacatcgagcccgtggctagatgcatcatccctgatct gatcggaatgggtaagtccggcaagagcgggaatggctcatatcgcctcctggatcactacaagtacctcaccgctt ggttcgagctgctgaaccttccaaagaaaatcatctttgtgggccacgactgggggggttgtctggcctttcactactc ctacgagcaccaagacaagatcaaggccatcgtccatgctgagagtgtcgtggacgtgatcgagtcctgggacga gtggcctgacatcgaggaggatatcgccctgatcaagagcgaagagggcgagaaaatggtgcttgagaataacttc

ttcgtcgagaccatgctcccaagcaagatcatgcggaaactggagcctgaggagttcgctgcctacctggagccatt caaggagaagggcgaggttagacggcctaccctctcctggcctcgcgagatccctctcgttaagggaggcaagcc cgacgtcgtccagattgtccgcaactacaacgcctaccttcgggccagcgacgatctgcctaagatgttcatcgagtc

cgaccctgggttcttttccaacgctattgtcgagggagctaagaagttccctaacaccgagttcgtgaaggtgaagggcctccacttcagccaggaggacgctccagatgaaatgggtaagtacatcaagagcttcgtggagcgctgctgaagaacgagcagtaa (neo-hrl-fusion; SEQ ID NO:13).

Example 5

<u>Transcription Factor Binding Sites Used to Identify Sites</u> in Selected Synthetic Sequences

TF binding site libraries

5

20

The TF binding site library ("Matrix Family Library") is part of the

GEMS Launcher package. Table 16 shows the version of the Matrix Family
Library which was used in the design of a particular sequence and Table 17
shows a list of all vertebrate TF binding sites ("matrices") in Matrix Family
Library Version 2.4, as well as all changes made to vertebrate matrices in later
versions up to 4.1 (section "GENOMATIX MATRIX FAMILY LIBRARY

INFORMATION Versions 2.4 to 4.1"). (Genomatix has a copyright to all
Matrix Library Family information).

Table 16

Synthetic DNA sequence	Genomatix Matrix Family Library
pGL4B-NN3*	Version 2.4 May 2002
luc2A8 and luc2B10	Version 3.0 Nov 2002 Version 3.1.1 April 2003
hhyg3 hneo3	Version 3.1.2 June 2003
hhyg4	Version 3.3 August 2003
SpeI-NcoI-Ver2 **	Version 4.0 Nov 2003
hneo5 hpuro2	Version 4.1 Feb 2004

^{*}NotI-NcoI fragment in pGL4 including amp gene (pGL4B-NN3)

^{**}SpeI-NcoI-Ver2 (replacement for SpeI-NcoI fragment in pGL4B-NN3

Table 17

GENOMATIX MATRIX FAMILY LIBRARY INFORMATION Versions 2.4 to 4.1

5 A. Matrix Family Library Version 2.4

Matrix Family Library Version 2.4 (May 2002) contains 412 weight matrices in 193 families

(Vertebrates: 275 matrices in 106 families)

Vertebrates

Family	Family Information	Matrix Name	Finformation .
	:	V\$AHRARNT.01	aryl hydrocarbon receptor / Arnt heterodimers
<u>V\$AHRR</u>	AHR-arnt heterodimers and AHR-related factors	V\$AHR.01	aryl hydrocarbon / dioxin receptor
· ·		V\$AHRARNT.02	aryl hydrocarbon / Arnt heterodimers, fixed core
		V\$AP1.01	AP1 binding site
		V\$AP1.02	activator protein 1
		V\$AP1.03	activator protein 1
		V\$AP1FJ.01	activator protein 1
V\$AP1F	AP1 and related factors	V\$NFE2.01	NF-E2 p45
		V\$VMAF.01	v-Maf
		V\$TCF11MAFG.01	TCF11/MafG heterodimers, binding to subclass of AP1 sites
		V\$BEL1.01	Bel-1 similar region
V\$AP2F	Activator Protein 2	V\$AP2.01	activator protein 2
V\$AP4R	AP4 and Related	V\$AP4.01	activator protein 4
	proteins	V\$AP4.02	activator protein 4
		V\$TH1E47.01	Thing1/E47 heterodimer, TH1 bHLH member specific expression in a variety of embryonic tissues

Family	Family Information	Matrix Name	Information .
		V\$TAL1ALPHAE47.01	Tal-1alpha/E47 heterodimer
	,	V\$TAL1BETAE47.01	Tal-1beta/E47 heterodimer
		V\$TAL1BETAITF2.01	Tal-1beta/ITF-2 heterodimer
		V\$AP4.03	activator protein 4
1		V\$AREB6.04	AREB6 (Atp1a1 regulatory element binding factor 6)
V\$AREB	Atp1a1 regulatory	V\$AREB6.02	AREB6 (Atpla1 regulatory element binding factor 6)
VJARED	element binding	<u>V\$AREB6.03</u>	AREB6 (Atp1a1 regulatory element binding factor 6)
		V\$AREB6.01	AREB6 (Atpla1 regulatory element binding factor 6)
V\$ARP1	Apolipoprotein aI and cIII gene Repressor Protein	V\$ARP1.01	apolipoprotein AI regulatory protein 1
V\$BARB	BARbiturate-Inducible El. box from Pro+eukaryot. genes	V\$BARBIE.01	barbiturate-inducible element
V\$BCL6	POZ domain zinc finger expressed in B-Cells	V\$BCL6.01	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
, , , , , , , , , , , , , , , , , , ,		V\$BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$BRAC	Brachyury gene, mesoderm	V\$TBX5.01	T-Box factor 5 site

Family	Family Information	Matrix Name:	Ninformation (
	developmental factor		syndrome
	-	V\$BRACH.01	Brachyury
VEDDNE	Brn POU domain	V\$BRN3.01	POU transcription factor Brn-3
V\$BRNF	factors	V\$BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$CABL	C-abl DNA binding sites	V\$CABL.01	Multifunctional c-Abl src type tyrosine kinase
<u>V\$CART</u>	Cart-1 (cartilage	V\$XVENT2.01	Xenopus homeodomain factor Xvent-2; early BMP signaling response
	nomeoprotein 1)	V\$CART1.01	Cart-1 (cartilage homeoprotein 1)
<u>V\$CDXF</u>	Vertebrate caudal related homeodomain protein	V\$CDX2.01	Cdx-2 mammalian caudal related intestinal transcr. factor
V\$CEBP	Ccaat/Enhancer Binding Protein	V\$CEBPB.01	CCAAT/enhancer binding protein beta
		V\$CEBP.02	C/EBP binding site
V\$CHOP	CHOP binding protein	V\$CHOP.01	heterodimers of CHOP and C/EBPalpha
		V\$CDPCR3HD.01	cut-like homeodomain protein
		V\$CDP.01	cut-like homeodomain protein
<u>v\$CLOX</u>	CLOX and CLOX homology (CDP) factors	V\$CDP.02	transcriptional repressor CDP
		V\$CDPCR3.01	cut-like homeodomain protein
		V\$CLOX.01	Clox
VSCMYB	C-MYB, cellular transcriptional activator	V\$CMYB.01	c-Myb, important in hematopoesis, cellular equivalent to avian myoblastosis virus

iFamily	Family Information	# Watrix Name	information U
			oncogene v-myb
V\$COMP	factors which COoperate with Myogenic Proteins	V\$COMP1.01	COMP1, cooperates with myogenic proteins in multicomponent complex.
V\$COUIP	Repr. of RXR- mediated activ. & retinoic acid responses	V\$COUP.01	COUP antagonizes HNF-4 4 by binding site competition or synergizes by direct protein - protein interaction with HNF-4
V\$CP2F	CP2-erythrocyte Factor related to drosophila Elf1	V\$CP2.01	CP2
V\$CREB	Camp-Responsive Element Binding proteins	V\$CREBP1.01	cAMP-responsive element binding protein 1
1	proteins	V\$CREBP1CJUN.01	CRE-binding protein 1/c- Jun heterodimer
		V\$CREB.01	cAMP-responsive element binding protein
		V\$HLF.01	hepatic leukemia factor
***		V\$E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
		V\$CREB.02	cAMP-responsive element binding protein
		V\$CREB.03	cAMP-response element- binding protein
		V\$CREB.04	cAMP-response element binding protein
		V\$CREBP1.02	CRE-binding protein 1
		V\$ATF.02	ATF binding site
		V\$ATF.01	activating transcription factor
		V\$TAXCREB.01	Tax/CREB complex
<u> </u>		V\$TAXCREB.02	Tax/CREB complex

Family	Family Information	Matrix Name	Information (2
		V\$VJUN.01	v-Jun
:		V\$E2F.02	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$E2FF	E2F-myc activator/cell cycle regulator	V\$E2F.03	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
		V\$E2F.01	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$E2TF	papillioma virus E2	V\$E2.01	BPV bovine papilloma virus regulator E2
VŞEZIF	Transcriptional activator	V\$E2.02	papilloma virus regulator E2
VEEDOD	E-BOx Related factors	V\$DELTAEF1.01	deltaEF1
VSEBOR		V\$XBP1.01	X-box-binding protein 1
VSEBOX	E-BOX binding factors	V\$USF.02	upstream stimulatirng factor
		V\$USF.03	upstream stimulatirng factor
		V\$MYCMAX.03	MYC-MAX binding sites
, page time at		V\$SREBP.03	Sterol regulatory element binding protein
		V\$SREBP.02	Sterol regulatory element binding protein
		V\$MYCMAX.02	c-Myc/Max hetero dimer
		V\$NMYC.01	N-Мус
		V\$ATF6.01	Member of b-zip family, induced by ER damage/stress
!		V\$USF.01	upstream stimulating factor

Family	Family/Information	Matrix Name	Information
		V\$MYCMAX.01	c-Myc/Max heterodimer
		V\$MAX.01	Max
:		V\$ARNT.01	AhR nuclear translocator homodimers
		V\$SREBP.01	Sterol regulatory element binding protein 1 and 2
į :	:	V\$NFY.02	nuclear factor Y (Y-box binding factor)
<u>V\$ECAT</u>	Enhancer-CcAaT binding factors	V\$NFY.03	nuclear factor Y (Y-box binding factor)
		V\$NFY.01	nuclear factor Y (Y-box binding factor)
		V\$EGR1.01	Egr-1/Krox-24/NGFI-A immediate-early gene product
	EGR/nerve growth	V\$EGR2.01	Egr-2/Krox-20 early growth response gene product
VSEGRF	Factor Induced protein C & rel. fact.	V\$EGR3.01	early growth response gene 3 product
		V\$NGFIC.01	nerve growth factor- induced protein C
		V\$WT1.01	Wilms Tumor Suppressor
VSEKLF	Erythroid krueppel like factor	V\$EKLF.01	Erythroid krueppel like factor (EKLF)
V\$ETSF	Human and murine ETS1 Factors	V\$CETS1P54.01	c-Ets-1(p54)
1	E TOT FACIOIS	V\$NRF2.01	nuclear respiratory factor 2
	•	V\$GABP.01	GABP: GA binding protein
	:	V\$ELK1.02	Elk-1

Family.	Family:Information	MatrixName	information.
		V\$FLI.01	ETS family member FLI
		V\$ETS2.01	c-Ets-2 binding site
		V\$ETS1.01	c-Ets-1 binding site
		V\$ELK1.01	Elk-1
,	:	V\$PU1.01	Pu.1 (Pu120) Ets-like transcription factor identified in lymphoid B- cells
		V\$EVI1.06	Ecotropic viral integration site 1 encoded factor
. Interpretation		V\$EVI1.02	Ecotropic viral integration site 1 encoded factor
VSEVI1	EVI1-myleoid	V\$EV[1.03	Ecotropic viral integration site 1 encoded factor
	transforming protein	<u>V\$EVI1.05</u>	Ecotropic viral integration site 1 encoded factor
		V\$EVI1.04	Ecotropic viral integration site 1 encoded factor
		<u>V\$EVI1.01</u>	Ecotropic viral integration site 1 encoded factor
V\$FKHD	Fork Head Domain factors	V\$HFH1.01	HNF-3/Fkh Homolog 1
: :	1401015	V\$HFH2.01	HNF-3/Fkh Homolog 2
: : : : : : : : : : : : : : : : : : : :		V\$HFH3.01	HNF-3/Fkh Homolog 3 (= Freac-6)
		V\$HFH8.01	HNF-3/Fkh Homolog-8
		V\$XFD1.01	Xenopus fork head domain factor 1

I Family	Family Information	Matrix Name * 2	Information 1
		V\$XFD2.01	Xenopus fork head domain factor 2
		V\$XFD3.01	Xenopus fork head domain factor 3
		V\$HNF3B.01	Hepatocyte Nuclear Factor 3beta
		V\$FREAC2.01	Fork head RElated ACtivator-2
		V\$FREAC3.01	Fork head RElated ACtivator-3
		V\$FREAC4.01	Fork head RElated ACtivator-4
		V\$FREAC7.01	Fork head RElated ACtivator-7
		V\$LMO2COM.02	complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1, half-site 2
		V\$GATA1.04	GATA-binding factor 1
		V\$GATA1.05	GATA-binding factor 1
		V\$GATA2.01	GATA-binding factor 2
		V\$GATA2.02	GATA-binding factor 2
<u>V\$GATA</u>	GATA binding factors	V\$GATA3.01	GATA-binding factor 3
\$. 		V\$GATA3.02	GATA-binding factor 3
		V\$GATA.01	GATA binding site (consensus)
		V\$GATA1.03	GATA-binding factor 1
		V\$GATA1.01	GATA-binding factor 1
		V\$GATA1.02	GATA-binding factor 1
V\$GFI1	Growth Factor Independence- transcriptional	V\$GFI1.01	growth factor independence 1 zinc finger protein acts as

Family	Family Information	Matrix Name	information a
	repressor		transcriptional repressor
V\$GKLF	Gut-enriched Krueppel Like binding Factor	V\$GKLF.01	gut-enriched Krueppel- like factor
	Glucocorticoid	<u>V\$GRE.01</u>	Glucocorticoid receptor, C2C2 zinc finger protein binds glucocorticoid dependent to GREs
V\$GREF	responsive and related elements	<u>V\$ARE.01</u>	Androgene receptor binding site
		<u>V\$PRE.01</u>	Progesterone receptor binding site
V\$HAML	Human Acute Myelogenous Leukernia factors	V\$AML1.01	runt-factor AML-1
<u>V\$HEAT</u>	HEAT shock factors	V\$HSF1.01	heat shock factor 1
TOTTE NO	E-box binding factor without transcript. activation	V\$HEN1.01	HEN1
V\$HEN1		V\$HEN1.02	HEN1
V\$HMTB	Human muscle-specific Mt binding site	V\$MTBF.01	muscle-specific Mt binding site
VOYING:	Hepatic Nuclear Factor	V\$HNF1.01	hepatic nuclear factor 1
V\$HNF1		V\$HNF1.02	Hepatic nuclear factor 1
V\$HNF4	Hepatic Nuclear Factor	V\$HNF4.01	Hepatic nuclear factor 4
V SHINF4		V\$HNF4.02	Hepatic nuclear factor 4
V\$HOMS	Homeodomain subfarmily S8	<u>V\$S8.01</u>	Binding site for S8 type homeodomains
<u>vshoxf</u>	Factors with moderate activity to homeo domain consensus sequence	V\$HOXA9.01	Member of the vertebrate HOX - cluster of homeobox factors
		V\$HOX1-3.01	Hox-1.3, vertebrate homeobox protein
<u>V\$IKRS</u>	Ikaros zinc finger family	V\$LVELOL	LyF-1 (Ivaros 1).

Family	Family Information	Matrix Name	Information lymphocytes
		V\$IK2.01	Ikaros 2, potential regulator of lymphocyte differentiation
	,	V\$IK1.01	Ikaros 1, potential regulator of lymphocyte differentiation
	:	V\$IK3.01	Ikaros 3, potential regulator of lymphocyte differentiation
		V\$IRF1.01	interferon regulatory factor 1
<u>V\$IRFF</u>	Interferon Regulatory Factors	V\$IRF2.01	interferon regulatory factor 2
		V\$ISRE.01	interferon-stimulated response element
<u>V\$LEFF</u>	LEF1/TCF	V\$LEF1.01	TCF/LEF-1, involved in the Wnt signal transduction pathway
<u>V\$LTUP</u>	Lentiviral Tata UPstream element	V\$TAACC.01	Lentiviral TATA upstream element
V\$MEF2	MEF2-myocyte-	V\$MEF2.05	MEF2
	specific enhancer- binding factor	V\$MEF2.01	myogenic enhancer factor 2
		V\$HMEF2.01	myocyte enhancer factor
		V\$MMEF2.01	myocyte enhancer factor
		V\$RSRFC4.01	related to serum response factor, C4
		V\$RSRFC4.02	related to serum response factor, C4
		V\$AMEF2.01	myocyte enhancer factor
		V\$MEF2.02	myogenic MADS factor MEF-2

Family	Family Information	Matrix Name	Information
		V\$MEF2.03	myogenic MADS factor MEF-2
:		V\$MEF2.04	myogenic MADS factor MEF-2
V\$MEF3	MEF3 BINDING SITES	V\$MEF3.01	MEF3 binding site, present in skeletal muscle-specific transcriptional enhancers
V\$MEIS	Homeodomain factor aberrantly expressed in myeloid leukemia	<u>V\$MEIS1.01</u>	Homeobox protein MEIS1 binding site
		V\$MUSCLE_INI.01	Muscle Initiator Sequence
<u>V\$MINI</u>	Muscle INItiator	V\$MUSCLE INI.02	Muscle Initiator Sequence
;		V\$MUSCLE_INI.03	Muscle Initiator Sequence
V\$MOKF	Mouse Krueppel like factor	V\$MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2
V\$MTF1	Metal induced transcription factor	V\$MTF-1.01	Metal transcription factor 1, MRE
		V\$MYOD.02	myoblast determining factor
	MYOblast Determining factor	V\$MYF5.01	Myf5 myogenic bFILH protein
TANGER OF SHAPE		V\$MYOD.01	myoblast determination gene product
		V\$LMO2COM.01	complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1, half-site 1
		V\$E47.01	MyoD/E47 and MyoD/E12 dimers
		V\$E47.02	TAL1/E47 dimers

Family	Family Information	Matrix Name	Unformation 1
V\$MYOF		V\$NF1.01	nuclear factor 1
	MYOgenic Factors	V\$MYOGNF1.01	myogenin / nuclear factor 1 or related factors
	Xenopus MYT1 C2HC	V\$MYT1.02	MyT1 zinc finger transcription factor involved in primary neurogenesis
<u>V\$MYT1</u> ,	zinc finger protein	V\$MYT1.01	MyT1 zinc finger transcription factor involved in primary neurogenesis
V\$MZF1	Myeloid Zinc Finger 1 factors	V\$MZF1.01	MZF1
<u>V\$NFAT</u>	Nuclear Factor of Activated T-cells	V\$NFAT.01	Nuclear factor of activated T-cells
	Nuclear Factor Kappa B/c-rel	V\$CREL.01	c-Rel
		V\$NFKAPPAB.01	NF-kappaB
		V\$NFKAPPAB65.01	NF-kappaB (p65)
<u>V\$NFKB</u>		V\$NFKAPPAB50.01	NF-kappaB (p50)
		V\$NFKAPPAB.02	NF-kappaB
		V\$NFKAPPAB.03	NF-kappaB
<u>v\$nkxh</u>	NKX - Homeodomain sites	V\$NKX25.01	homeo domain factor Nkx-2.5/Csx, tinman homolog, high affinity sites
		V\$NKX25.02	homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity sites
		V\$NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$NOLF	Neuron-specific- OLFactory factor	V\$OLF1.01	olfactory neuron-specific factor

Family,	Family:Information	Matrix Name?	Information
V\$NRSF	Neuron-Restrictive	<u>V\$NRSF.01</u>	neuron-restrictive silencer factor
V DINKSF	Silencer Factor	V\$NRSE.01	neural-restrictive- silencer-element
VSOAZF	Olfactory associated zinc finger protein	V\$ROAZ.01	Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation
		V\$OCT1.02	octamer-binding factor 1
		V\$OCT1.06	octamer-binding factor 1
	OCT binding	V\$OCT.01	Octamer binding site (OCT1/OCT2 consensus)
V\$OCT1	OCTamer binding protein	V\$OCT1.05	octamer-binding factor 1
		V\$OCT1.04	octamer-binding factor 1
		V\$OCT1.03	octamer-binding factor 1
		V\$OCT1.01	octamer-binding factor 1
VSOCTB	OCT6 Binding factors_astrocytes + glioblastoma cells	<u>V\$TST1.01</u>	POU-factor Tst-1/Oct-6
VSOCTP	OCT1 binding factor (POU-specific domain)	V\$OCT1P.01	octamer-binding factor 1, POU-specific domain
<u>V\$P53F</u>	p53 tumor supprneg. regulat. of the tumor suppr. Rb	V\$P53.01	tumor suppressor p53
V\$PAX1	PAX-1 binding site	V\$PAX1.01	Pax1 paired domain protein, expressed in the developing vertebral column of mouse embryos
VSPAX3	PAX-3 binding sites	V\$PAX3.01	Pax-3 paired domain protein, expressed in embryogenesis, mutations correlate to Waardenburg Syndrome

Family	Family Information	Marrix Name	Information
V\$PAX4	Heterogeneous PAX-4 binding sites	V\$PAX4.01	Pax-4 paired domain protein, together with PAX-6 involved in pancreatic development
,		V\$PAX9.01	zebrafish PAX9 binding sites
V\$PAX5	PAX-5 / PAX-9 B- cell-specific activating protein	V\$PAX5.01	B-cell-specific activating protein
		V\$PAX5.02	B-cell-specific activating protein
V\$PAX6	Activ. involved in Iris development in the mouse eye	V\$PAX6.01	Pax-6 paired domain protein
V\$PAX8	PAX-2/5/8 binding sites	V\$PAX8.01	PAX 2/5/8 binding site
<u>V\$PBXF</u>	Homeo domain factor PBX-1	V\$PBX1.01	homeo domain factor Pbx-1
	Promoter-CcAaT binding factors	V\$ACAAT.01	Avian C-type LTR CCAAT box
V\$PCAT		V\$CAAT.01	cellular and viral CCAAT box
		V\$CLTR_CAAT.01	Mammalian C-type LTR CCAAT box
V\$PDX1	Pancreatic and intestinal homeodomain transcr.	V\$PDX1.01	Pdx1 (IDX1/IPF1) pancreatic and intestinal homeodomain TF
	factor	V\$ISL1.01	Pancreatic and intestinal lim-homeodomain factor
<u>V\$PERO</u>	PEROxisome proliferator-activated receptor	V\$PPARA.01	PPAR/RXR heterodimers
V\$PIT1	GHF-1 pituitary specific pou domain transcription factor	V\$PIT1.01	Pit1, GHF-1 pituitary specific pou domain transcription factor
V\$RARF	Nuclear receptor for	170D AD 01	Potincie ocid recoptor,

.Family.	Family Lifermation	Mairix Name	(Linformation &)
			member of nuclear receptors
	retenoic acid	V\$RTR.01	Retinoid receptor-related testis-associated receptor (GCNF/RTR)
V\$RBIT	Regulator of B-Cell IgH transcription	V\$BRIGHT.01	Bright, B cell regulator of IgH transcription
V\$RBPF	RBPJ - kappa	V\$RBPJK.01	Mammalian transcriptional repressor RBP-Jkappa/CBF1
VSREBV	Epstein-Barr virus transcription factor R	V\$EBVR.01	Epstein-Barr virus transcription factor R
	Estrogen receptor and rar-Rel. Orphan Receptor Alpha	V\$ROR.A1.01	RAR-related orphan receptor alpha1
V\$RORA		V\$ROR_A2.01	RAR-related orphan receptor alpha2
		V\$ER.O1	estrogen receptor
V\$RREB	Ras-REsponsive element Binding protein	V\$RREB1.01	Ras-responsive element binding protein 1
V\$RXRF	RXR heterodimer binding sites	V\$FXR E.01	Farnesoid X - activated receptor (RXR/FXR dimer)
		V\$VDR_RXR.01	VDR/RXR Vitamin D receptor RXR heterodimer site
		V\$VDR_RXR.02	VDR/RXR Vitamin D receptor RXR heterodimer site
		V\$LXRE.01	Nuclear receptor involved in the regulation lipid homeostasis
V\$SATB	Special AT-rich sequence binding protein	V\$SATB1.01	Special AT-rich sequence-binding protein 1, predominantly expressed in thymocytes, binds to matrix

Family	Family Information	Matrix Name	A Information
			attachment regions (MARs)
V\$SEF1	SEF1 protein in mouse Retrovirus SL3-3	V\$SEF1.01	SEF1 binding site
V\$SF1F	Vertebrate steroidogenic factor	V\$SF1.01	SF1 steroido genic factor
		V\$SMAD3.01	Smad3 transcription factor involved in TGF- beta signaling
<u>V\$SMAD</u>	Vertebrate SMAD family of transcription factors	V\$SMAD4.01	Smad4 transcription factor involved in TGF-beta signaling
!		V\$FAST1.01	FAST-1 SMAD interacting protein
	SOx/sRY-sex/testis determinig and related HMG Box factors	V\$SOX5.01	Sox-5
<u>v\$sory</u>		V\$SRY.01	sex-determining region Y gene product
		V\$HMGIY.01	HMGI(Y) hi gh-mobility- group protein I (Y), architectural transcription factor organizing the framework of a nuclear protein-DNA transcriptional complex
		V\$SOX9.01	SOX (SRY-related HMG box)
V\$SP1F	GC-Box factors_SP1/GC	V\$SP1.01	stimulating protein 1 SP1, ubiquitous zinc finger transcription factor
		V\$GC.01	GC box elements
V\$SRFF		V\$SRF.02	serum resporase factor
	Serum Response element binding Factor	V\$SRF.03	serum responsive factor
		V\$SRF.01	serum response factor

Family	Family Information	Matrix Name	Information
:	·	V\$STAT.01	signal transducers and activators of transcription
		V\$STAT5.01	STAT5: signal transducer and activator of transcription 5
V\$STAT	Signal Transducer and Activator of Transcript. factors	V\$STAT6.01	STAT6: signal transducer and activator of transcription 6
		V\$STAT1.01	signal transducer and activator of transcription
		V\$STAT3.01	signal transducer and activator of transcription 3
<u>V\$T3RH</u>	Viral homolog of thyroid hormon receptor alpha1 (AEV vErbA)	<u>V\$T3R.01</u>	vErbA, viral homolog of thyroid hormone receptor alpha1
	Tata-Binding Protein Factor	V\$TATA.02	Mammalian C-type LTR TATA box
<u>V\$TBPF</u>		V\$ATATA.01	Avian C-type LTR TATA box
		V\$TATA.01	cellular and viral TATA box elements
		V\$MTATA.01	Muscle TATA box
V\$TCFF	TCF11 transcription Factor	V\$TCF11.01	TCF11/KCR-F1/Nrf1 homodimers
<u>V\$TEAF</u>	TEA/ATTS DNA binding domain factors	V\$TEF1.01	TEF-1 related muscle factor
<u>vsttff</u>	Thyroid transcription factor-1	V\$TTF1.01	Thyroid transcription factor-1 (TTF1) binding site
VSVBPF	chicken Vitellogenin gene Binding Protein factor	V\$VBP.01	PAR-type chicken vitellogenin promoter- binding protein

Family	Ramily Information	Matrix Name	Information (A)
V\$VMYB	AMV-viral myb	V\$VMYB.02	v-Myb
VOVINIE	oncogene	V\$VMYB.01	v-Myb
<u>V\$WHZF</u>	Winged Helix and ZF5 binding sites	<u>V\$WHN.01</u>	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
:		V\$RFX1.01	X-box binding protein RFX1
<u>V\$XBBF</u>	X-box binding Factors	V\$RFX1.02	X-box binding protein RFX1
		V\$MIF1.01	MIBP-1 / RFX1 complex
<u>V\$XSEC</u>	Xenopus SEleno Cystein t-RNA activiating factor	V\$STAF.02	Se-Cys tRNA gene transcription activating factor
		V\$STAF.01	Se-Cys tRNA gene transcription activating factor
V\$YY1F	activator/repressor binding to transcr. init. site	V\$YY1.01	Yin and Yang 1
V\$ZBPF	Zinc binding protein factor	V\$ZBP89.01	Zinc finger transcription factor ZBP-89
V\$ZFIA	ZincFinger with InterAction domain factors	V\$ZID.01	zinc finger with interaction domain

© Genomatix Software GmbH 1998-2002 - All rights reserved.

B: Changes from Family Library Version 2.4sto Version 3.0

Matrix Family Library Version 3.0 (Nov 2002) contains 452 weight matrices in 216 families

(Vertebrates: 314 matrices in 128 families)

5 New weight matrices - Vertebrates

Eamily 1	Family Information	Matrix Name	Matrix Information
V\$AP1F	AP1 and related factors	V\$BACH1.01	BTB/POZ-bZIP transcription factor BACH1 forms heterodimers with the small Maf protein family
V\$CIZF	CAS interating zinc finger protei	V\$NMP4.01	NMP4 (nuclear matrix protein 4) / CIZ (Cas- interacting zinc finger protein)
V\$CREB	Camp-Responsive Element Binding proteins	V\$ATF6.02	Activating transcription factor 6, member of b-zip family, induced by ER stress
V\$E4FF	Ubiquitous GLI - Krueppel like zinc finger involved in cell cycle regulation	V\$E4F.01	GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter
V\$GFI1	Growth Factor Independence- transcriptional repressor	V\$Gf11B.01	Growth factor independence 1 zinc finger protein Gfi-1B
V\$GLIF	GLI zinc finger family	V\$GLI1.01	Zinc finger transcription factor GLI1
V\$HAML	Human Acute Myelogenous Leukemia factors	V\$AML3.01	Runt-related transcription factor 2 / CBFA1 (corebinding factor, runt domain, alpha subunit 1)
V\$HESF	Vertebrate homologues of enhancer of split complex	V\$HES1.01	Drosophila hairy and enhancer of split homologue 1 (HES-1)
	Hypoxia inducible	V\$HIF1.01	Hypoxia induced factor-1 (HIF-1)
V\$HIFF	factor, bHLH / PAS protein family	V\$HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family

Family	Eamily	Mairix Name	Matrix Information
V\$HNF6	Onecut Homeodomain factor HNF6	V\$HNF6.01	Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT)
V\$HOXF	Factors with moderate activity to homeo domain consensus sequence	V\$CRX.01	Cone-rod homeobox- containing transcription factor / otx-like homeobox gene
		V\$EN1.01	Homeobox protein engrailed (en-1)
		V\$PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$IRFF	Interferon Regulatory Factors	V\$IRF3.01	Interferon regulatory factor 3 (IRF-3)
		V\$IRF7.01	Interferon regulatory factor 7 (IRF-7)
V\$MAZF	Myc associated zinc fingers	V\$MAZ.01	Myc associated zinc finger protein (MAZ)
		V\$MAZR.01	MYC-associated zinc finger protein related transcription factor
V\$MEIS	Homeodomain factor aberrantly expressed in myeloid leukernia	V\$MEIS1.01	Binding site for monomeric Meis1 homeodomain protein
V\$MITF	Microphthalmia transcription factor	V\$MIT.01	MIT (microphthalmia transcription factor) and TFE3
V\$MOKF	Mouse Krueppel like factor	V\$MOK2.02	Ribonucleoprotein associated zinc finger protein MOK-2 (human)
V\$NEUR	NeuroD, Beta2, HLH domain	V\$NEUROD1.01	DNA binding site for NEUROD1 (BETA-2 / E47 dimer)
V\$NF1F	Nuclear Factor 1	V\$NF1.02	Nuclear factor 1 (CTF1)
V\$NKXH	NKX/DLX - Homeodomain sites	V\$DLX1.01	DLX-1, -2, and -5 binding sites
		V\$DLX3.01	Distal-less 3 homeodomain transcription facto
		V\$HMX3.01	H6 homeodomain HMX3/Nkx5.1

Family	Family 7.	Watrix Name	Matrix Information
			transcription factor
		V\$MSX.01	Homeodomain proteins MSX-1 and MSX-2
		V\$MSX2.01	Muscle segment homeo box 2, homologue of Drosophila (HOX 8)
V\$NRLF	Neural retina leucine zipper	V\$NRL.01	Neural retinal basic leucine zipper factor (bZIP)
V\$PARF	PAR/bZIP family	V\$DBP.01	Albumin D-box binding protein
V\$PBXC	PBX1 - MEIS1 complexes	V\$PBX1_MEIS1.01	Binding site for a Pbx1/Meis1 heterodimer
		V\$PBX1_MEIS1.02	Binding site for a Pbx1/Meis1 heterodimer
		V\$PBX1_MEIS1.03	Binding site for a Pbx1/Meis1 heterodimer
V\$PLZF	C2H2 zinc finger protein PLZF	V\$PLZF.01	Promyelocytic leukemia zink finger (TF with nine Krueppel-like zink fingers)
V\$PXRF	Pregnane X receptor	V\$PXRCAR.01	Halfsite of PXR (pregnane X receptor)/RXR resp. CAR (constitutive androstane receptor)/RXR heterodimer binding site
1	v-ERB and rar- related Orphan Receptor Alpha	V\$NBRE.01	Monomers of the nur subfamily of nuclear receptors (nur77, nurr1, nor-1)
<u>V\$SF1F</u>	Vertebrate steroidogenic factor	V\$FTF.01	Alpha (1)-fetoprotein transcription factor (FTF), liver receptor homologue- 1 (LHR-1)
V\$SIXF	Sine oculis (SIX) homeodomain factors	V\$SIX3.01	SIX3 / SIXdomain (SD) and Homeodomain (HD) transcription factor
V\$TALE	TALE Homeodomain class recognizing TG motives	V\$TGIF.01	TG-interacting factor belonging to TALE class of homeodomain factors

Family 4	Family A Information	Matrix Name	Matrix Information
V\$ZF5F	ZF5 POZ domain zinc finger	はんのうじそ ひょ	Zinc finger / POZ domain transcription factor

Weight matrices renamed

V\$MEIS1.01 renamed to <u>V\$MEIS1_HOXA9.01</u>

Weight matrices moved to other families

- V\$BEL1.01 moved from V\$AP1F to <u>V\$BEL1</u>
- V\$NF1.01 moved from V\$MYOF to <u>V\$NF1</u>
- V\$ER.01 moved from V\$RORA to <u>V\$EREF</u>
- V\$T3R.01 moved from V\$T3RH to <u>V\$RORA</u>
- V\$CLTR_CAAT.01 moved from V\$PCAT to <u>V\$RCAT</u>
- V\$FAST1.01 moved from V\$SMAD to <u>V\$FAST</u>

10 Weight matrices removed

5

V\$MUSCLE_INI.03

C. Changes from Family Library Version 3:0 to Version 3.1

Matrix Family Library Version 3.1 contains 456 weight matrices in 216 families (Vertebrates: 318 matrices in 128 families)

New weight matrices - Vertebrates

Family	Family Information	Matrix Name	Matrix-Information
i i i i i i i i i i i i i i i i i i i	LEF1/TCF	V\$LEF1.02	TCF/LEF-1, involved in the Wnt signal transduction pathway
V\$PAX2	PAX-2 binding sites	V\$PAX2.01	Zebrafish PAX2 paired domain protein
V\$PAX5	PAX-5/PAX-9 B- cell-specific activating protein	V\$PAX5.03	PAX5 paired domain protein
V\$PAX6	PAX-4/PAX-6 paired domain binding sites	V\$PAX4_PD.01	PAX4 paired domain binding site
		V\$PAX6.02	PAX6 paired domain and homeodomain are required for binding to this site
V\$ZBPF	Zinc binding protein	V\$ZF9.01	Core promoter-binding

factor	protein (CPBP) with 3
	Krueppel-type zinc fingers

Weight matrices modified

- <u>V\$AML1.01</u>
- <u>V\$AML3.01</u>

5 Weight matrices moved to other families

 V\$ARNT.01 moved from V\$EBOX to <u>V\$HIFF</u> (ARNT is a synonym for HIF1 B)

Weight matrices removed

- V\$SEF1.01
- 10 V\$OCT1.03

Version 3.1.1 (April 2003)

Matrices <u>V\$IRF3.01</u> and <u>V\$IRF7.01</u> corrected.

Version 3.1.2 (June 2003)

Matrix V\$GfI1B.01 corrected.

15

D. Changes from Family Library Version 3.1 ato Version 3.3

Matrix Family Library Version 3.3 (August 2003) contains 485 weight matrices in 233 families

(Vertebrates: 326 matrices in 130 families)

5 New weight matrices - Vertebrates

W-5822-1324	Family 3		
Family	Information	Matrix Name	Matrix Information
V\$ÉREF	Estrogen Response Elements	<u>V\$ER.02</u>	Canonical palindromic estrogen response element (ERE)
V\$SP1F	GC-Box factors_SP1/GC	V\$BTEB3.01	Basic transcription element (BTE) binding protein, BTEB3, FKLF- 2
V\$CDEF	Cell cycle regulators: Cell cycle dependent element	V\$CDE.01	Cell cycle-dependent element, CDF-1 binding site (CDE/CHR tandem elements regulate cell cycle dependent repression)
V\$CHRF	Cell cycle regulators: Cell cycle homology element	V\$CHR.01	Cell cycle gene homology region (CDE/CHR tandem elements regulate cell cycle dependent repression)
V\$HIFF	Hypoxia inducible factor, bHLH / PAS protein family	V\$CLOCK_BMAL1.01	Binding site of Clock/BMAL1 heterodimer, NPAS2/BMAL1 heterodimer
V\$FKHD	Fork Head Domain factors	V\$FKHRL1.01	Fkh-domain factor FKHRL1 (FOXO)
V\$P53F	p53 tumor suppr neg. regulat. of the	V\$P53.02	Tumor suppressor p53 (5' half site)
Ψ. 331	tumor suppr. Rb	V\$P53.03	Tumor suppressor p53 (3' half site)

Weight matrices modified

V\$GFI1.01

E. Changes from Family Library Version 3:3 to Wersion 4:0

Matrix Family Library Version 4.0 (November 2003) contains 535 weight matrices in 253 families

(Vertebrates: 339 matrices in 136 families)

5 New weight matrices - Vertebrates

Family	Family Information	Matrix Name	Matrix Information .
V\$AARF	AARE binding factors	V\$AARE.01	Amino acid response element, ATF4 binding site
	MAF and AP1 related	V\$BACH2.01	Bach2 bound TRE
V\$AP1R	factors	V\$NFE2L2.01	Nuclear factor (erythroid- derived 2)-like 2, NRF2
V\$CDXF	Vertebrate caudal related homeodomain protein	V\$CDX1.01	Intestine specific homeodomain factor CDX-1
V\$DEAF	Homolog to deformed epidermal autoregulatory factor-1 from D. melanogaster	<u>V\$NUDR.01</u>	NUDR (nuclear DEAF-1 related transcriptional regulator protein
V\$ETSF	Human and murine ETS1 factors	V\$ELF2.01	Ets - family member ELF-2 (NERF1a)
V\$GABF	GA-boxes	V\$GAGA.01	GAGA-Box
V\$HNF1	Hepatic Nuclear Factor	<u>V\$HNF1.03</u>	Hepatic nuclear factor 1
V\$HOXF	Factors with moderate activity to homeo domain consensus sequence	V\$GSC.01	Vertebrate bicoid-type homeodomain protein Goosecoid
V\$LIHXF	Lim homeodomain factors	V\$LHX3.01	Homeodomain binding site in LIM/Homeodomain factor LHX3
V\$NKXH	NKX/DLX - homeodomain sites	V\$NKX32.01	Homeodomain protein NKX3.2 (BAPX1, NKX3B, Bagpipe homolog)
V\$RBPF	RBPJ - kappa	V\$RBPJK.02	Mammalian transcriptional repressor RBP-Jkappa/CBF1
V\$R.P58	RP58 (ZFP238) zinc finger protein	V\$RP58.01	Zinc finger protein RP58 (ZNF238), associated preferentially with heterochromatin

Weight matrices modified

V\$GRE.01

V\$NFY.03

5

Weight matrices moved to other families

- V\$BACH1.01 moved from <u>V\$AP1F</u> to <u>V\$AP1R</u>
- V\$NFE2.01 moved from <u>V\$AP1F</u> to <u>V\$AP1R</u>
- V\$TCF11MAFG.01 moved from <u>V\$AP1F</u> to <u>V\$AP1R</u>
 - V\$VMAF.01 moved from <u>V\$AP1F</u> to <u>V\$AP1R</u>

F. Changes from Family Library Version 4.0 to Wersion 4.1

Matrix Family Library Version 4.1 (February 2004) contains 564 weight matrices in 262 families

(Vertebrates: 356 matrices in 138 families)

New weight matrices - Vertebrates

IVEW WEIGHT INATIFICES - VEI LEBITATES			
Family	Family Information	Matrix Name	Matrix Information:
1 :	Basonuclein rDNA transcription factor (Poll)	V\$BNC.01	Basonuclin, cooperates with USF1 in rDNA Poll transcription)
V\$CMYB	C-myb, cellular transcriptional activator	V\$CMYB.02	c-Myb, important in hematopoesis, cellular equivalent to avian myoblastosis virus oncogene v-myb
V\$CP2F	CP2-erythrocyte Factor related to drosophila Elf1	V\$CP2.02	LBP-1c (leader-binding protein-1c), LSF (late SV40 factor), CP2, SEF (SAA3 enhancer factor)
V\$EKLF	Basic and erythroid Krueppel like factors	V\$BKLF.01	Basic krueppel-like factor (KLF3)
V\$HAND	bHLH transcription factor dimer of HAND2 and E12	V\$HAND2_E12.01	Heterodimers of the bHLH transcription factors HAND2 (Thing2) and E12
V\$HIFF	Hypoxia inducible factor, bHLH / PAS protein family	V\$DEC1.01	Basic helix-loop-helix protein known as Dec1, Stra13 or Sharp2
V\$HNF6	Onecut Homeodomain factor HNF6	V\$OC2.01	CUT-homeodomain transcription factor Onecut-2
V\$HOXF	Factors with moderate activity to homeo domain consensus sequence	V\$OTX2.01	Homeodomain transcription factor Otx2 (homolog of Drosophila orthodenticle)

Family	Family information	Matrix Name	Matrix Information
:	!	V\$GSH1.01	Homeobox transcription factor Gsh-1
V\$IRFF	Interferon Regulatory Factors	V\$IRF4.01	Interferon regulatory factor (IRF)-related protein (NF-EM5, PIP, LSIRF, ICSAT)
V\$LHXF	Lim homeodomain factors	V\$LMX1B.01	LIM-homeodomain transcription factor
V\$MYT1	MYT1 C2HC zinc finger protein	V\$MYT1L.01	Myelin transcription factor 1-like, neuronal C2HC zinc finger factor 1
V\$NEUR	NeuroD, Beta2, HLH domain	V\$NEUROG.01	Neurogenin 1 and 3 (ngn1/3) binding sites
7.097.79 47.779.	AMV-viral myb	V\$VMYB.03	v-Myb, viral myb variant from transformed BM2 cells
V\$VMYB	oncogene	V\$VMYB.04	v-Myb, AMV v-myb
		V\$VMYB.05	v-Myb, variant of AMV v-myb
V\$ZBPF	Zinc binding protein factor	V\$ZNF202.01	Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism

Weight matrices modified

- V\$CMYB.01
- V\$PTX1.01

5

Copyright © Genomatix Software GmbH 1998-2004 - All rights reserved

Example 6

Summary of Design for Particular Selectable Genes

TF binding sites and search parameters

Each TF binding site ("matrix") belongs to a matrix family that groups

functionally similar matrices together, eliminating redundant matches by

MatInspector professional (the search program). Searches were limited to

vertebrate TF binding sites. Searches were performed by matrix family, i.e., the

results show only the best match from a family for each site. MatInspector

default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity = optimized).

<u>Table 18</u> <u>Gene Designations</u>

A. Synthetic hygromycin gene

5

miyem gene	A TABLE OF SHIPS AND ARTHURS.
	Matrix
The same of the sa	Library
from pcDNA3.1/Hygro	Not
	applicable
humanized ORF	Not
	applicable
First removal of undesired sequence matches	Ver 3.1.2 Jun
_	2003
Second removal of undesired sequence	Ver 3.1.2 Jun
matches	2003
Third removal of undesired sequence	Ver 3.1.2 Jun
matches	2003
Changes to ORF and add linker	Ver 3.3 Aug
	2003
Fourth removal of undesired sequence	Ver 3.3 Aug
matches	2003
	from pcDNA3.1/Hygro humanized ORF First removal of undesired sequence matches Second removal of undesired sequence matches Third removal of undesired sequence matches Changes to ORF and add linker Fourth removal of undesired sequence

B. Synthetic neomycin gene

Sequence	Description	Matrix : Library
neo	from pCI-neo or psiSTRIKE neo	Not applicable
hneo	humanized ORF	Not applicable
hneo-1	First removal of undesired sequence matches	Ver 3.1.2 Jun 2003
hneo-2	Second removal of undesired sequence matches	Ver 3.1.2 Jun 2003
hneo-3	Third removal of undesired sequence matches	Ver 3.1.2 Jun 2003
hneo-4	Changed 5' and 3' flanking regions/cloning sites	Ver 4.1 Feb 2004
hneo-5	Fourth removal of undesired sequence matches	Ver 4.1 Feb 2004

C. Synthetic puromycin gene

Sequence	Description.	Matrix
puro	from psiSTRIKE puromycin	Not applicable
hpuro	humanized ORF	Not applicable
hpuro-1	First removal of undesired sequence matches	Ver 4.1 Feb 2004
hpuro-2	Second removal of undesired sequence matches	Ver 4.1 Feb 2004

Note: the above sequence names designate the ORF only (except for Hhygro which includes flanking sequences). Addition of "F" to the sequence name indicates the presence of up- and down-stream flanking sequences. Additional letters (e.g., "B") indicate changes were made only to the flanking regions

Table 19

Sequences in Synthetic Hygromycin Genes

10

5

TFBS in hhyg

Before removal of TFBS from hhyg (94 matches)

Family/matrix:*	Further-information (*)
V\$PCAT/CAAT.01	cellular and viral CCAAT box
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$MINI/MUSCLE_INI.01	Muscle Initiator Sequence
V\$ETSF/PU1.01	Pu.1 (Pu120) Ets-like transcription factor identified in lymphoid B-cells
V\$AHRR/AHRARNT.02	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$AP4R/AP4.01	Activator protein 4
V\$EGRF/NGFIC.01	Nerve growth factor-induced protein C
V\$MAZF/MAZ.01	Myc associated zinc finger protein (MAZ)
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$CREB/ATF6.02	Activating transcription factor 6, member of b-zip family, induced by ER stress
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS

Family,matrix	a Further Information 1
	protein family
V\$E2FF/E2F.01	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$AP4R/AP4.01	Activator protein 4
V\$HEN1/HEN1.02	HEN1
V\$MYOD/E47.01	MyoD/E47 and MyoD/E12 dimers
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$MOKF/MOK2.02	Ribonucleoprotein associated zinc finger protein MOK-2 (human)
V\$SP1F/GC.01	GC box elements
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$RORA/RORA2.01	RAR-related orphan receptor alpha2
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$AHRR/AHRARNT.02	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$AP1F/TCF11MAFG.01	TCF11/MafG heterodimers, binding to subclass of AP1 sites
V\$EKLF/EKLF.01	Erythroid krueppel like factor (EKLF)
V\$NRSF/NRSF.01	Neuron-restrictive silencer factor
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$EBOX/MYCMAX.03	MYC-MAX binding sites
V\$RXRF/FXRE.01	Farnesoid X - activated receptor (RXR/FXR dimer)
V\$AHRR/AHRARNT.02	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$WHZF/WHN.01	Winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$EGRF/EGR1.01	Egr-1/Krox-24/NGFI-A immediate-early gene product
V\$SMAD/SMAD3.01	Smad3 transcription factor involved in TGF-beta signaling
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$MYOD/MYOD.02	Myoblast determining factor

Eamily/matrix	Further Information
V\$E4FF/E4F.01	GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter
V\$MOK.F/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$EGRF/EGR2.01	Egr-2/Krox-20 early growth response gene product
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$EBOX/USF.02	Upstream stimulating factor
V\$HIFF/ARNT.01	AhR nuclear translocator homodimers
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$BEL1/BEL1.01	Bel-1 similar region (defined in Lentivirus LTRs)
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$MYOD/MYOD.01	Myoblast determination gene product
V\$NEUR/NEUROD1.01	DNA binding site for NEUROD1 (BETA-2 / E47 dimer)
V\$AHR.R/AHRARNT.01	Aryl hydrocarbon receptor / Arnt heterodimers
V\$HIFF/ARNT.01	AhR nuclear translocator homodimers
V\$VMYB/VMYB.02	v-Myb
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$PBXC/PBX1_MEIS1.02	Binding site for a Pbx1/Meis1 heterodimer
V\$MYOF/MYOGNF1.01	Myogenin / nuclear factor 1 or related factors
V\$SRFF/SRF.03	Serum responsive factor
V\$CP2F/CP2.01	CP2
V\$OAZF/ROAZ.01	Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation
V\$AHRR/AHR.01	Aryl hydrocarbon / dioxin receptor
V\$MINI/MUSCLE INI.01	Muscle Initiator Sequence
V\$PAX5/PAX5.02	B-cell-specific activating protein

Tramily/matrixt	Further Information
<u>V\$ZBPF/ZF9.01</u>	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$EGRF/NGFIC.01	Nerve growth factor-induced protein C
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$AP4R/AP4.02	Activator protein 4
V\$XBBF/MIF1.01	MIBP-1 / RFX1 complex
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$WHZF/WHN.01	Winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$WHZF/WHN.01	Winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$CP2F/CP2.01	CP2
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$AP2F/AP2.01	Activator protein 2
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$AHRR/AHRARNT.02	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$MINI/MUSCLE INI.02	Muscle Initiator Sequence
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$SP1F/SP1.01	stimulating protein 1 SP1, ubiquitous zinc finger transcription factor
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$EGRF/EGR1.01	Egr-1/Krox-24/NGFI-A immediate-early gene product
V\$EGRF/WT1.01	Wilms Tumor Suppressor

eFamily/matrix	Funther information:
V\$SP1F/SP1.01	stimulating protein 1 SP1, ubiquitous zinc finger transcription factor
V\$RCAT/CLTR_CAAT.01	Mammalian C-type LTR CCAAT box
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$EGRF/WT1.01	Wilms Tumor Suppressor
V\$EGRF/WT1.01	Wilms Tumor Suppressor
V\$NF1F/NF1.01	Nuclear factor 1
V\$PDX1/PDX1.01	Pdx1 (IDX1/IPF1) pancreatic and intestinal homeodomain TF

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hhyg3

After removal of TFBS from hhyg2 (3 matches)

5

10

Family/matrix23	Further Information
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$VMYB/VMYB.02	v-Myb

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hHygro

Before removal of TFBS from hHygro (5 matches, excluding linker)

Family/matrix	W. Further Information
V\$MINI/MUSCLE INI.02	Muscle Initiator Sequence
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$AREB/AREB6. 04	AREB6 (Atplal regulatory element binding factor 6)
V\$VMYB/VMYB. 02	v-Myb
V\$CDEF/CDE.01	Cell cycle-dependent element, CDF-1 binding site (CDE/CHR tandem elements regulate cell cycle dependent repression)

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hhyg4

After removal of TFBS from hHygro (4 matches)

Eamily/matrix	* Further Information
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$AREB/AREB6.04	AREB6 (Atpla1 regulatory element binding factor 6)
V\$VMYB/VMYB.02	v-Myb

^{**}matches are listed in order of occurrence in the corresponding sequence

Table 20

Sequences in Synthetic Neomycin Genes

10 TFBS in hneo

5

Before removal of TFBS from hneo (69 matches)

West and the latest a	
Family/matrix**	Further Information
V\$PCAT/CAAT.01	cellular and viral CCAAT box
V\$ZFIA/ZID.01	Zinc finger with interaction domain
V\$AP1F/TCF11MAFG.01	TCF11/MafG heterodimers, binding to subclass of AP1 sites
V\$MINI/MUSCLE_INI.01	Muscle Initiator Sequence
V\$AHRR/AHRARNT.01	Aryl hydrocarbon receptor / Arnt heterodimers
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$SP1F/GC.01	GC box elements
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$CP2F/CP2.01	CP2
V\$WHZF/WHN.01	Winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP)

Family/matrix3)	Further Information
	with 3 Krueppel-type zinc fingers
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$AHRR/AHRARNT.01	Aryl hydrocarbon receptor / Arnt heterodimers
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$CREB/ATF6.02	Activating transcription factor 6, member of b-zip family, induced by ER stress
V\$RXRF/VDR_RXR.01	VDR/RXR Vitamin D receptor RXR heterodimer site
V\$PCAT/CAAT.01	cellular and viral CCAAT box
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$P53F/P53.01	Tumor suppressor p53
V\$NEUR/NEUROD1.01	DNA binding site for NEUROD1 (BETA- 2 / E47 dimer)
V\$EBOX/USF.03	Upstream stimulating factor
V\$MYOD/MYOD.02	Myoblast determining factor
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$WHZF/WHN.01	Winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$EBOX/MYCMAX.03	MYC-MAX binding sites
V\$HESF/HES1.01	Drosophila hairy and enhancer of split homologue 1 (HES-1)
V\$NEUR/NEUROD1.01	DNA binding site for NEUROD1 (BETA- 2 / E47 dimer)
V\$MYOD/MYOD.02	Myoblast determining factor
V\$REBV/EBVR.01	Epstein-Barr virus transcription factor R
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$EGRF/WT1.01	Wilms Tumor Suppressor
V\$EGRF/WT1.01	Wilms Tumor Suppressor
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP)

Pamily/matrix**	Further Information &
	with 3 Krueppel-type zinc fingers
V\$MINI/MUSCLE INI.01	Muscle Initiator Sequence
V\$NRSF/NR.SF.01	Neuron-restrictive silencer factor
U\$PfIMI/PfIMI	RE II-IP
V\$NRSF/NR.SE.01	Neural-restrictive-silencer-element
V\$MOKF/MOK2.02	Ribonucleoprotein associated zinc finger protein MOK-2 (human)
V\$AP2F/AP2.01	Activator protein 2
V\$AP1F/AP1 FJ.01	Activator protein 1
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$WHZF/WIHN.01	Winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$PAX6/PAX4_PD.01	PAX4 paired domain binding site
V\$VMYB/VMYB.02	v-Myb
V\$BEL1/BEL1.01	Bel-1 similar region (defined in Lentivirus LTRs)
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$EGRF/EGR1.01	Egr-1/Krox-24/NGFI-A immediate-early gene product
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$NRSF/NR.SE.01	Neural-restrictive-silencer-element
V\$ETSF/ETS1.01	c-Ets-1 binding site
V\$NRSF/NR.SF.01	Neuron-restrictive silencer factor
V\$SP1F/SP1 .01	stimulating protein 1 SP1, ubiquitous zinc finger transcription factor
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$GREF/ARE.01	Androgene receptor binding site
V\$BCL6/BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$CLOX/CDP.01	cut-like homeodomain protein

**matches are listed in order of occurrence in the corresponding sequence

TFBS in hneo3

After removal of TFBS from hneo 2 = before removal of TFBS from hneo3 (0 matches)

TFBS in hneo4

After removal of TFBS from hneo3 = before removal of TFBS from hneo4 (7 matches)

10

5

Family/matrix*****	Further Information
V\$PAX5/PAX9.01	Zebrafish PAX9 binding sites
V\$AARF/AARE.01	Amino acid response element, ATF4 binding site
V\$P53F/P53.02	Tumor suppressor p53 (5' half site)
V\$AP1R/BACH2.01	Bach2 bound TRE
V\$NEUR/NEUROG.01	Neurogenin 1 and 3 (ngn1/3) binding sites
V\$CMYB/CMYB.01	c-Myb, important in hematopoesis, cellular equivalent to avian myoblastosis virus oncogene v-myb
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hneo5

After removal of TFBS from hneo4 (0 matches)

15

Table 21

Sequences in Synthetic Puromycin Genes

20 TFBS matches in hpuro

Before removal of TFBS from hpuro (68 matches)

Family/matrix**	Further Information
V\$CDEF/CDE.01	Cell cycle-dependent element, CDF-1 binding site (CDE/CHR tandem elements regulate cell cycle dependent repression)
V\$PAX3/PAX3.01	Pax-3 paired domain protein, expressed in embryogenesis, rnutations correlate to Waardenburg

Family/matrix	Further Information - 3.
	Syndrome
V\$CREB/ATF6.02	Activating transcription factor 6, member of b-zip family, induced by ER stress
V\$EBOR/XBP1.01	X-box-binding protein 1
V\$P53F/P53.03	Tumor suppressor p53 (3' half site)
V\$HESF/HES1.01	Drosophila hairy and enhancer of split homologue 1 (HES-1)
V\$MTF1/MTF-1.01	Metal transcription factor 1, MRE
V\$EKLF/EKLF.01	Erythroid krueppel like factor (EKLF)
V\$EGRF/EGR1.01	Egr-1/Krox-24/NGFI-A immediate- early gene product
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$CMYB/CMYB.01	c-Myb, important in hematopoesis, cellular equivalent to avian myoblastosis virus oncogene v-myb
V\$AHRR/AHRARNT.01	Aryl hydrocarb on receptor / Arnt heterodimers
V\$EBOX/MYCMAX.03	MYC-MAX binding sites
V\$RORA/RORA2.01	RAR-related orphan receptor alpha2
V\$EBOX/MYCMAX.03	MYC-MAX binding sites
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein farmily
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$EGRF/WT1.01	Wilms Tumor Suppressor
V\$HAML/AML3.01	Runt-related transcription factor 2 / CBFA1 (core-binding factor, runt domain, alpha subunit 1)
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH /

Family/matrix	Further Information
	PAS protein family
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$OAZF/ROAZ.01	Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation
V\$GABF/GAGA.01	GAGA-Box
V\$EBOX/MYCMAX.03	MYC-MAX binding sites
V\$MYOD/MYF5.01	Myf5 myogenic bHLH protein
V\$AP4R/TAL1BETAE47.01	Tal-1beta/E47 heterodimer
V\$NEUR/NEUROG.01	Neurogenin 1 and 3 (ngn1/3) binding sites
V\$HAND/HAND2_E12.01	Heterodimers of the bHLH transcription factors HAND2 (Thing2) and E12
V\$MAZF/MAZR.01	MYC-associated zinc finger protein related transcription factor
<u>V\$ZBPF/ZNF202.01</u>	Transcriptional repressor, binds to elements found predominantly in genes that participate in lipid metabolism
V\$SP1F/SP1.01	Stimulating protein 1 SP1, ubiquitous zinc finger transcription factor
V\$AP2F/AP2.01	Activator protein 2
V\$RREB/RREB1.01	Ras-responsive element binding protein 1
V\$XBBF/MIF1.01	MIBP-1 / RFX1 complex
V\$CREB/TAXCREB.01	Tax/CREB complex
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$NRSF/NRSE.01	Neural-restrictive-silencer-element
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$DEAF/NUDR.01	NUDR (nuclear DEAF-1 related

Family/matrix	Further Information
	transcriptional regulator protein)
V\$AHRR/AHRARNT.01	Aryl hydrocarbon receptor / Arnt heterodimers
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$EGRF/EGR1.01	Egr-1/Krox-24/NGFI-A immediate- early gene product
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$ETSF/ETS1.01	c-Ets-1 binding site
V\$STAT/STAT1.01	Signal transducer and activator of transcription 1
V\$BCL6/BCL6.01	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$BCL6/BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$CREB/ATF6.02	Activating transcription factor 6, member of b-zip family, induced by ER stress
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$EBOR/XBP1.01	X-box-binding protein 1
V\$DEAF/NUDR.01	NUDR (nuclear DEAF-1 related transcriptional regulator protein)
V\$RXRF/VDR_RXR.01	VDR/RXR Vitamin D receptor RXR heterodimer site
V\$AP2F/AP2.01	Activator protein 2
V\$REBV/EBVR.01	Epstein-Barr virus transcription factor R
V\$ZBPF/ZF9.01	Core promoter-binding protein (CPBP) with 3 Krueppel-type zinc fingers
V\$MYOD/LMO2COM.01	Complex of Lmo2 bound to Tal-1,

/Family/matrix	Thurther Information \
	E2A proteins, and GATA-1, half-site
V\$AREB/AREB6.03	AREB6 (Atpla1 regulatory element binding factor 6)
V\$RXRF/FXRE.01	Farnesoid X - activated receptor (RXR/FXR dimer)
V\$AHRR/AHR.01	Aryl hydrocarbon / dioxin receptor

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS matches in hpuro1

5

10

15

After removal of TFBS from hpuro = before removal of TFBS from hpuro1 (4 matches)

Family/matrix	2. Further Information
V\$NEUR/NEUROG.01	Neurogenin 1 and 3 (ngn1/3) binding sites
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$REBV/EBVR.01	Epstein-Barr virus transcription factor R
V\$AHRR/AHR.01	Aryl hydrocarbon / dioxin receptor

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS matches in hpuro2

After removal of TFBS from hpuro1 (2 matches)

Family/matrix	Further Information
V\$NEUR/NEUROG.01	Neurogenin 1 and 3 (ngn1/3) binding sites
	POZ/zinc finger protein, transcriptional
V\$BCL6/BCL6.02	repressor, translocations observed in
	diffuse large cell lymphoma

^{**}matches are listed in order of occurrence in the corresponding sequence

Example 7

Summary of Design of Synthetic Firefly Luciferase Genes

TF binding sites and search parameters

The TF binding sites are from the TF binding site library ("Matrix Family Library") that is part of the GEMS Launcher package. Each TF binding site ("matrix") belongs to a matrix family that groups functionally similar matrices

together, eliminating redundant matches by MatInspector professional (the search program). Searches were limited to vertebrate TF binding sites. Searches were performed by matrix family, i.e. the results show only the best match from a family for each site. MatInspector default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity = optimized).

<u>Table 22</u> <u>Luc Gene Designations</u>

10 Synthetic luc gene (versions A and B)

5

Sequence*	Description	(
Luc	wild-type gene	(not applicable)
luc+	improved gene from Promega's pGL3 vectors	(not applicable)
hluc+	Improved gene form Promega's pGL3(R2.1)-Basic	(not applicable)
	Codon optimization strategy A	
hluc+ver2A1	codon optimized luc+ (strategy A)	Ver 3.0 Nov 2002
hluc+ver2A2	First removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2A3	Second removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2A4	Third removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2A5	Fourth removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2A6	Fifth removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2A7	Sixth removal of undesired sequence matches	Ver 3.1.1 Apr 2003
hluc+ver2A8	Removal of BgII (RE) site	Ver 3.1.1 Apr 2003
	Codon optimization strategy B	
hluc+ver2B1	codon optimized luc+ (strategy B)	Ver 3.0 Nov 2002
hluc+ver2B2	First removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2B3	Second removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2B4	Third removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2B5	Fourth removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2B6	Fifth removal of undesired sequence matches	Ver 3.0 Nov 2002
hluc+ver2B7	Sixth removal of undesired sequence matches	Ver 3.1.1 Apr 2003
hluc+ver2B8	Removal of SmaI (RE), Ptx1 (TF) sites	Ver 3.1.1 Apr 2003
hluc+ver2B9	Removal of additional CpG sequences	Ver 3.1.1 Apr 2003

Sequence*	Description	Matrix Library
hluc+ver2B10	Removal of BgII (RE) site	Ver 3.1.1 Apr
		2003

^{*} the sequence names designate open reading frames; RE = restriction enzyme recognition sequence

Table 23

Sequences in Synthetic Luc Genes (version A)

TFBS in hluc+ver2A1

5

Before removal of TFBS from hluc+ver2A1 (110 matches)

Family/matrix	Further Information Cales
V\$MINI/MUSCLE_INI. 02	Muscle Initiator Sequence
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$GREF/PRE.01	Progesterone receptor binding site
V\$MAZF/MAZR.01	MYC-associated zinc finger protein related transcription factor
V\$SP1F/SP1.01	stimulating protein 1 SP1, ubiquitous zinc finger transcription factor
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$SF1F/SF1.01	SF1 steroidogenic factor 1
V\$EGRF/NGFIC.01	Nerve growth factor-induced protein C
V\$MINI/MUSCLE INI. 01	Muscle Initiator Sequence
V\$EGRF/EGR2.01	Egr-2/Krox-20 early growth response gene product
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$HESF/HES1.01	Drosophila hairy and enhancer of split homologue 1 (HES-1)
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$PAX5/PAX5.02	B-cell-specific activating protein
V\$HAML/AML3.01	Runt-related transcription factor 2 / CBFA1 (core-binding factor, runt domain, alpha subunit 1)
V\$GREF/PRE.01	Progesterone receptor binding site
V\$P53F/P53.01	tumor suppressor p53
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$NF1F/NF1.01	Nuclear factor 1

plantily/matrixy	to Kurther Information!
V\$EGR.F/EGR3.01	early growth response gene 3 product
V\$REBV/EBVR.01	Epstein-Barr virus transcription factor R
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$PBXC/PBX1_MEIS1 .01	Binding site for a Pbx1/Meis1 heterodimer
V\$XSEC/STAF.01	Se-Cys tRNA gene transcription activating factor
V\$COMP/COMP1.01	COMP1, cooperates with myogenic proteins in multicomponent complex
V\$MYOF/MYOGNF1.0	Myogenin / nuclear factor 1 or related factors
V\$NEUR/NEUROD1.0	DNA binding site for NEUROD1 (BETA-2 / E47 dimer)
V\$MYOD/MYOD.02	myoblast determining factor
V\$AP2F/AP2.01	Activator protein 2
V\$EVI1/EVI1.02	Ecotropic viral integration site 1 encoded factor
V\$SMAD/SMAD4.01	Smad4 transcription factor involved in TGF-beta signaling
V\$MYOD/MYF5.01	Myf5 myogenic bHLH protein
V\$HESF/HES1.01	Drosophila hairy and enhancer of split homologue 1 (HES-1)
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$SP1 F/GC.01	GC box elements
V\$MAZF/MAZR.01	MYC-associated zinc finger protein related transcription factor
V\$RREB/RREB1.01	Ras-responsive element binding protein 1
V\$AHRR/AHRARNT.0	Aryl hydrocarbon receptor / Arnt heterodimers
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$ZF5 F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$YY1F/YY1.01	Yin and Yang 1
V\$ETSF/GABP.01	GABP: GA binding protein
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$ETSF/ELK1.02	Elk-1
V\$EBOX/MYCMAX.03	MYC-MAX binding sites
V\$E4FF/E4F.01	GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter

Family/matrix	Further information
V\$XBBF/RFX1.01	X-box binding protein RFX1
V\$EVI1/EVI1.06	Ecotropic viral integration site 1 encoded factor
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
<u>V\$NF1F/NF1.01</u>	Nuclear factor 1
V\$PBXC/PBX1_MEIS1 .02	Binding site for a Pbx1/Meis1 heterodimer
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$HESF/HES1.01	Drosophila hairy and enhancer of split homologue 1 (HES-1)
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$ETSF/GABP.01	GABP: GA binding protein
V\$MYOD/MYOD.02	myoblast determining factor
V\$XSEC/STAF.01	Se-Cys tRNA gene transcription activating factor
V\$OAZF/ROAZ.01	Rat C2H2 Zn finger protein involved in olfactory neuronal differentiation
V\$AP2F/AP2.01	Activator protein 2
V\$PAX3/PAX3.01	Pax-3 paired domain protein, expressed in embryogenesis, mutations correlate to Waardenburg Syndrome
V\$AP2F/AP2.01	Activator protein 2
V\$MTF1/MTF-1.01	Metal transcription factor 1, MRE
V\$SF1F/FTF.01	Alpha (1)-fetoprotein transcription factor (FTF), liver receptor homologue-1 (LHR-1)
V\$SMAD/SMAD4.01	Smad4 transcription factor involved in TGF-beta signaling
V\$NFKB/NFKAPPAB.	NF-kappaB
V\$EKLF/EKLF.01	Erythroid krueppel like factor (EKLF)
V\$CREB/TAXCREB.01	Tax/CREB complex
V\$E2FF/E2F.03	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$CP2F/CP2.01	CP2
V\$AHRR/AHRARNT.0	Aryl hydrocarbon receptor / Arnt heterodimers
V\$EGRF/EGR2.01	Egr-2/Krox-20 early growth response gene product
V\$ZF5F/ZF5.01	Zinc finger / POZ domain transcription factor
V\$EBOR/XBP1.01	X-box-binding protein 1
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3
V\$AP2F/AP2.01	Activator protein 2
V\$EGRF/NGFIC.01	Nerve growth factor-induced protein C
V\$PCAT/ACAAT.01	Avian C-type LTR CCAAT box

Family/matrix	Further information
V\$PBXC/PBX1_MEIS1 .02	Binding site for a Pbx1/Meis1 heterodinaer
V\$AHRR/AHRARNT.0 2	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$GREF/GRE.01	Glucocorticoid receptor, C2C2 zinc finger protein binds glucocorticoid dependent to GREs
V\$NEUR/NEUROD1.0	DNA binding site for NEUROD1 (BETA-2 / E47 dimer)
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$AHRR/AHRARNT.0 2	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$EGRF/EGR3.01	early growth response gene 3 product
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$AP2F/AP2.01	Activator protein 2
V\$HIFF/HIF1.02	Hypoxia inducible factor, bHLH / PAS protein family
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$ZFIA/ZID.01	zinc finger with interaction domain
V\$SMAD/SMAD4.01	Smad4 transcription factor involved in TGF-beta signaling
V\$AHRR/AHRARNT.0	Aryl hydrocarbon / Arnt heterodimers, fixed core
V\$EBOX/MYCMAX.01	c-Myc/Max heterodimer
V\$EBOX/USF.03	upstream stimulating factor
V\$EGRF/EGR1.01	Egr-1/Krox-24/NGFI-A immediate-early gene product
V\$MINI/MUSCLE INI. 01	Muscle Initiator Sequence
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$NF1F/NF1.01	Nuclear factor 1
V\$SF1F/SF1.01	SF1 steroidogenic factor 1

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2A3

5

10

15

After removal of TFBS from hluc+ver2A2 = before removal of TFBS from hluc+ver2A3 (8 matches)

Family/matrix	Eurther Information
V\$EGRF/EGR2.01	Egr-2/Krox-20 early growth response gene product
V\$HAMI/AML3.01	Runt-related transcription factor 2 / CBFA1 (core-binding factor, runt domain, alpha subunit 1)
V\$MYOF/MYOGNF1.01	Myogenin / nuclear factor 1 or related factors
V\$NF1F/NF1.01	Nuclear factor 1
V\$ETSF/GABP.01	GABP: GA binding protein
V\$NFKB/NFKAPPAB.01	NF-kappaB
V\$EKLF/EKLF.01	Erythroid krueppel like factor (EKLF)
	

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2A6

After removal of TFBS from hluc+ver2A5 (2 matches)

Family/matrix*	Further Informations:
	Runt-related transcription factor 2 / CBFA1 (core-binding factor, runt domain, alpha subunit 1)
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2A6

Before removal of TFBS from hluc+ver2A6 (4 matches)

Family/matrix**	Eurther Information
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$LEFF/LEF1.02	TCF/LEF-1, involved in the Wnt signal transduction pathway
V\$IRFF/IRF7.01	Interferon regulatory factor 7 (IRF-7)
V\$FKHD/XFD3.01.	Xenopus fork head domain factor 3

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2A7

After removal of TFBS from hluc+ver2A6 = before removal of TFBS from hluc+ver2A7 (1 match)

5

TFBS in hluc+ver2A8

After removal of TFBS from hluc+ver2A7 (1 match)

Family/matrix	Further Information
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3

10

Table 24

Sequences in Synthetic Luc Genes (version B)

15 TFBS in hluc+ver2B1

Before removal of TFBS from hluc+ver2B1 (187 matches)

Eamily/matrix:	Further Information as 1
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$OCT1/OCT1.04	octamer-binding factor 1
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$NKXH/NKX25.02	homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity sites
V\$BARB/BARBIE.01	barbiturate-inducible element
V\$TBPF/TATA.01	cellular and viral TATA box elements
V\$GATA/GATA.01	GATA binding site (consensus)
V\$AP4R/AP4.01	Activator protein 4
V\$HEN1/HEN1.02	HEN1
V\$SRFF/SRF.01	serum response factor
V\$PARF/DBP.01	Albumin D-box binding protein
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$EVI1/EVI1.04	Ecotropic viral integration site 1 encoded factor
V\$GFI1/GfI1B.01	Growth factor independence 1 zinc finger protein Gfi-1B
V\$RBPF/RBPJK.01	Mammalian transcriptional repressor RBP- Jkappa/CBF1
V\$TBPF/TATA.02	Mammalian C-type LTR TATA box

Family/matrix	Weight of the second of the se
V\$AP4R/TAL1ALPHAE47.01	Tal-1alpha/E47 heterodimer
V\$SRFF/SRF.01	serum response factor
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$VBPF/VBP.01	PAR-type chicken vitellogenin promoter- binding protein
V\$EVI1/EVI1.04	Ecotropic viral integration site 1 encoded factor
V\$CLOX/CDPCR3.01	cut-like homeodomain protein
V\$GFI1/GfI1B.01	Growth factor independence 1 zinc finger protein Gfi-1B
V\$GATA/LMO2COM.02	complex of Lmo2 bound to Tal-1, E2A proteins, and GATA-1, half-site 2
V\$SRFF/SRF.01	serum response factor
V\$HOXT/MEIS1_HOXA9.01	Homeobox protein MEIS1 binding site
V\$OCT1/OCT1.03	octamer-binding factor 1
V\$GFI1/GFI1.01	Growth factor independence 1 zinc finger protein acts as transcriptional repressor
V\$HNF6/HNF6.01	Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT)
V\$HAML/AML1.01	runt-factor AML-1
V\$GREF/PRE.01	Progesterone receptor binding site
V\$STAT/STAT5.01	STAT5: signal transducer and activator of transcription 5
V\$TBPF/TATA.01	cellular and viral TATA box elements
V\$CLOX/CDP.01	cut-like homeodomain protein
V\$FKHD/HFH8.01	HNF-3/Fkh Homolog-8
V\$FAST/FAST1.01	FAST-1 SMAD interacting protein
V\$GFI1/GfI1B.01	Growth factor independence 1 zinc finger protein Gfi-1B
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)
V\$HMTB/MTBF.01	muscle-specific Mt binding site
V\$TBPF/TATA.01	cellular and viral TATA box elements
V\$FKHD/XFD2.01	Xenopus fork head domain factor 2
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$MEF2/AMEF2.01	myocyte enhancer factor
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$BEL1/BEL1.01	Bel-1 similar region (defined in Lentivirus LTRs)
V\$NOLF/OLF1.01	olfactory neuron-specific factor

Family/matrix	Eurther-Information
V\$OCT1/OCT1.06	octamer-binding factor 1
V\$NFKB/NFKAPPAB.02	NF-kappaB
V\$BCL6/BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$HEAT/HSF1.01	heat shock factor 1
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$PIT1/PIT1.01	Pit1, GHF-1 pituitary specific pou domain transcription factor
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene
V\$HNF6/HNF6.01	Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT)
V\$CLOX/CLOX.01	Clox
V\$BCL6/BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$GATA/GATA1.02	GATA-binding factor 1
V\$FKHD/FREAC4.01	Fork head RElated ACtivator-4
V\$E4FF/E4F.01	GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter
V\$PDX1/ISL1.01	Pancreatic and intestinal lim-homeodomain factor
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)
V\$GFI1/GFI1.01	Growth factor independence 1 zinc finger protein acts as transcriptional repressor
V\$IRFF/IRF3.01	Interferon regulatory factor 3 (IRF-3)
V\$BARB/BARBIE.01	barbiturate-inducible element
V\$PBXF/PBX1.01	homeo domain factor Pbx-1
V\$EVI1/EVI1.02	Ecotropic viral integration site 1 encoded factor
V\$GATA/GATA2.01	GATA-binding factor 2
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$PARF/DBP.01	Albumin D-box binding protein
V\$BRNF/BRN3.01	POU transcription factor Brn-3
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$CREB/TAXCREB.02	Tax/CREB complex
V\$GREF/PRE.01	Progesterone receptor binding site
V\$RBPF/RBPJK.01	Mammalian transcriptional repressor RBP-

Eamlly/matrix	Further Information
	Jkappa/CBF1
V\$GATA/GATA3.02	GATA-binding factor 3
V\$STAT/STAT.01	signal transducers and activators of transcription
V\$IKRS/IK2.01	Ikaros 2, potential regulator of lymphocyte differentiation
V\$SRFF/SRF.01	serum response factor
V\$SEF1/SEF1.01	SEF1 binding site
V\$HAML/AML1.01	runt-factor AML-1
V\$MOKF/MOK2,02	Ribonucleoprotein associated zinc finger protein MOK-2 (human)
V\$FKHD/FREAC2.01	Fork head RElated ACtivator-2
V\$HMTB/MTBF.01	muscle-specific Mt binding site
V\$GFI1/GFI1.01	Growth factor independence 1 zinc finger protein acts as transcriptional repressor
V\$ECAT/NFY.03	nuclear factor Y (Y-box binding factor)
V\$HOXT/MEIS1_HOXA9.01	Homeobox protein MEIS1 binding site
V\$PCAT/ACAAT.01	Avian C-type LTR CCAAT box
V\$HNF6/HNF6.01	Liver enriched Cut - Homeodomain transcription factor HNF6 (ONECUT)
V\$CLOX/CLOX.01	Clox
V\$GATA/GATA3.02	GATA-binding factor 3
V\$AREB/AREB6.04	AREB6 (Atpla1 regulatory element binding factor 6)
V\$GATA/GATA3.02	GATA-binding factor 3
V\$FKHD/HNF3B.01	Hepatocyte Nuclear Factor 3beta
V\$IRFF/IRF1.01	interferon regulatory factor 1
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$PBXF/PBX1.01	homeo domain factor Pbx-1
V\$ECAT/NFY.03	nuclear factor Y (Y-box binding factor)
V\$PBXC/PBX1_MEIS1.02	Binding site for a Pbx1/Meis1 heterodimer
V\$CLOX/CDP.02	transcriptional repressor CDP
V\$HOXT/MEIS1_HOXA9.01	Homeobox protein MEIS1 binding site
V\$HOXF/HOXA9.01	Member of the vertebrate HOX - cluster of homeobox factors
V\$GATA/GATA.01	GATA binding site (consensus)
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$GATA/GATA3.02	GATA-binding factor 3
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)

Pamily/matrix	Further information, 2007
V\$OCT1/OCT1.02	octamer-binding factor 1
V\$MAZF/MAZR.01	MYC-associated zinc finger protein related transcription factor
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$GATA/GATA3.02	GATA-binding factor 3
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene
V\$CLOX/CDPCR3.01	cut-like homeodomain protein
V\$AP1F/VMAF.01	v-Maf
V\$AP4R/TAL1ALPHAE47.01	Tal-1alpha/E47 heterodimer
V\$PAX8/PAX8.01	PAX 2/5/8 binding site
V\$BRAC/BRACH.01	Brachyury
V\$GATA/GATA1.02	GATA-binding factor 1
V\$RREB/RREB1.01	Ras-responsive element binding protein 1
V\$MZF1/MZF1.01	MZF1
V\$MOKF/MOK2.02	Ribonucleoprotein associated zinc finger protein MOK-2 (human)
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$LTUP/TAACC.01	Lentiviral TATA upstream element
V\$AP4R/TH1E47.01	Thing1/E47 heterodimer, TH1 bHLH member specific expression in a variety of embryonic tissues
V\$XSEC/STAF.01	Se-Cys tRNA gene transcription activating factor
V\$IKRS/IK3.01	Ikaros 3, potential regulator of lymphocyte differentiation
V\$AP1F/AP1.01	AP1 binding site
V\$MAZF/MAZ.01	Myc associated zinc finger protein (MAZ)
V\$MZF1/MZF1.01	MZF1
V\$CLOX/CDPCR3.01	cut-like homeodomain protein
V\$P53F/P53.01	tumor suppressor p53
V\$SMAD/SMAD3.01	Smad3 transcription factor involved in TGF- beta signaling
V\$HMTB/MTBF.01	muscle-specific Mt binding site
V\$OCT1/OCT1.03	octamer-binding factor 1
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3
V\$PIT1/PIT1.01	Pit1, GHF-1 pituitary specific pou domain transcription factor
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$HOXF/HOX1-3.01	Hox-1.3, vertebrate homeobox protein

Eamily/matrix	Further Information
V\$PBXF/PBX1.01	homeo domain factor Pbx-1
V\$ECAT/NFY.03	nuclear factor Y (Y-box binding factor)
V\$PBXC/PBX1_MEIS1.02	Binding site for a Pbx1/Meis1 heterodimer
V\$CLOX/CDP.02	transcriptional repressor CDP
V\$HOXT/MEIS1_HOXA9.01	Homeobox protein MEIS1 binding site
V\$HOXF/HOXA9.01	Member of the vertebrate HOX - cluster of homeobox factors
V\$GATA/GATA1.02	GATA-binding factor 1
V\$PCAT/ACAAT.01	Avian C-type LTR CCAAT box
V\$XSEC/STAF.01	Se-Cys tRNA gene transcription activating factor
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$CLOX/CDP.01	cut-like homeodomain protein
V\$FAST/FAST1.01	FAST-1 SMAD interacting protein
V\$ECAT/NFY.01	nuclear factor Y (Y-box binding factor)
V\$MEF2/MMEF2.01	myocyte enhancer factor
V\$TBPF/TATA.02	Mammalian C-type LTR TATA box
V\$FAST/FAST1.01	FAST-1 SMAD interacting protein
V\$LTUP/TAACC.01	Lentiviral TATA upstream element
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$HEN1/HEN1.01	HEN1
V\$BEL1/BEL1.01	Bel-1 similar region (defined in Lentivirus LTRs)
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$NFKB/NFKAPPAB.01	NF-kappaB
V\$HAML/AML1.01	runt-factor AML-1
V\$ZFIA/ZID.01	zinc finger with interaction domain
V\$XSEC/STAF.02	Se-Cys tRNA gene transcription activating factor
V\$IKRS/IK1.01	Ikaros 1, potential regulator of lymphocyte differentiation
V\$FAST/FAST1.01	FAST-1 SMAD interacting protein
V\$MOKF/MOK2.01	Ribornucleoprotein associated zinc finger protein MOK-2 (mouse)

Jeffamily/mathix***	Further Information
V\$BEL1/BEL1.01	Bel-1 similar region (defined in Lentivirus LTRs)
V\$EGRF/WT1.01	Wilms Tumor Suppressor
V\$MAZF/MAZR.01	MYC-associated zinc finger protein related transcription factor
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$ZBPF/ZBP89.01	Zinc finger transcription factor ZBP-89
V\$SP1F/GC.01	GC box elements
V\$RREB/RREB1.01	Ras-responsive element binding protein 1
V\$MOKF/MOK2.01	Ribonucleoprotein associated zinc finger protein MOK-2 (mouse)
V\$MEIS/MEIS1.01	Binding site for monomeric Meis 1 homeodomain protein
V\$BCL6/BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$GATA/GATA3.02	GATA-binding factor 3
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene
V\$MAZF/MAZR.01	MYC-associated zinc finger protein related transcription factor
V\$MZF1/MZF1.01	MZF1
V\$PDX1/PDX1.01	Pdx1 (IDX1/IPF1) pancreatic and intestinal homeodomain TF

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2B3

After removal of TFBS from hluc+ver2B2 = before removal of TFBS from hluc+ver2B3 (35 matches)

## /Family/matrix**	Further Information
V\$OCT1/OCT1.04	octamer-binding factor 1
V\$BARB/BARBIE.01	barbiturate-inducible element
V\$NFKB/NFKAPPAB.02	NF-kappaB
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
	Pit1, GHF-1 pituitary specific pou domain transcription factor
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$FKHD/FREAC4.01	Fork head RElated ACtivator-4

Family/matrix	Euriher-Information (
V\$E4FF/E4F.01	GLI-Krueppel-related transcription factor, regulator of adenovirus E4 promoter
V\$EVI1/EVI1.02	Ecotropic viral integration site 1 encoded factor
V\$GATA/GATA2.01	GATA-binding factor 2
V\$GREF/PRE.01	Progesterone receptor binding site
V\$RBPF/RBPJK.01	Mammalian transcriptional repressor RBP- Jkappa/CBF1
V\$STAT/STAT.01	signal transducers and activators of transcription
V\$IKRS/IK2.01	Ikaros 2, potential regulator of lymphocyte differentiation
V\$FKHD/FREAC2.01	Fork head RElated ACtivator-2
V\$SRFF/SRF.01	serum response factor
V\$GREF/PRE.01	Progesterone receptor binding site
V\$CLOX/CDPCR3.01	cut-like homeodomain protein
V\$AP4R/TAL1ALPHAE47.01	Tal-1alpha/E47 heterodimer
V\$GATA/GATA1.02	GATA-binding factor 1
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3
V\$PBXF/PBX1.01	homeo domain factor Pbx-1
V\$ECAT/NFY.03	nuclear factor Y (Y-box binding factor)
V\$PBXC/PBX1_MEIS1.02	Binding site for a Pbx1/Meis1 heterodimer
V\$CLOX/CDP.02	transcriptional repressor CDP
V\$HOXT/MEIS1_HOXA9.01	Homeobox protein MEIS1 binding site
V\$HOXF/HOXA9.01	Member of the vertebrate HOX - cluster of homeobox factors
V\$GATA/GATA1.02	GATA-binding factor 1
V\$MINI/MUSCLE_INI.01	Muscle Initiator Sequence
V\$CLOX/CDP.01	cut-like homeodomain protein
V\$BRNF/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$NFKB/NFKAPPAB.01	NF-kappaB
V\$ZFIA/ZID.01	zinc finger with interaction domain
V\$BCL6/BCL6.02	POZ/zinc finger protein, transcriptional repressor, translocations observed in diffuse large cell lymphoma
V\$HOXF/CRX.01	Cone-rod homeobox-containing transcription factor / otx-like homeobox gene

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2B6

After removal of TFBS from hluc+ver2B5 (2 matches)

Family/matrix	Further Information
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2B6

5

10

20

Before removal of TFBS from hluc+ver2B6 (6 matches)

Family/matrix	Further Information 3
V\$PAX6/PAX4_PD.01	PAX4 paired domain binding site
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3
IVXPAX6/PAX6II/	PAX6 paired domain and homeodomain are required for binding to this site
V\$PAX5/PAX5.03	PAX5 paired domain protein
V\$IRFF/IRF3.01	Interferon regulatory factor 3 (IRF-3)

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2B7

After removal of TFBS from hluc+ver2B6 = before removal of TFBS from hluc+ver2B7 (2 matches)

Eamily/matrix -	Further Information of the state of the stat
V\$HOXF/PTX1.01	Pituitary Homeobox 1 (Ptx1)
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3

15 **matches are listed in order of occurrence in the corresponding sequence

TFBS in hluc+ver2B8

After removal of TFBS from hluc+ver2B7 = before removal of TFBS from hluc+ver2B8 (1 match)

Family/matrix

Further information

V\$FKHD/XFD3.01

Xenopus fork head domain factor 3

TFBS in hluc+ver2B9

After removal of TFBS from hluc+ver2B8 = before removal of TFBS from hluc+ver2B9 (1 match)

TFBS in hluc+ver2B10

5

10

15

20

25

After removal of TFBS from hluc+ver2B9 (1 match)

Eamly matrix	Eurthei Information
V\$FKHD/XFD3.01	Xenopus fork head domain factor 3

Example 8

Summary of Design for pGL4 Sequences

Figure 2 depicts the design scheme for the pGL4 vector. A portion of the vector backbone in pGL3 which includes an bla gene and a sequence between bla and a multiple cloning region, but not a second open reading frame, was modified to yield pGL4. pGL4 includes an ampicillin resistance gene between a NotI and a SpeI site, the sequence of which was modified to remove regulatory sequences but not to optimize codons for mammalian expression (bla-1-bla-5), and a SpeI-NcoI fragment that includes a multiple cloning region and a translation trap. The translation trap includes about 60 nucleotides having at least two stop codons in each reading frame. The SpeI-NcoI fragment from a parent vector, pGL4-basics-5F2G-2, was modified to decrease undesired regulatory sequences (MCS-1 to MCS-4; SEQ ID Nos. 76-79). One of the resulting sequences, MCS-4, was combined with a modified ampicillin resistance gene, bla-5 (SEQ ID NO:84), to yield pGL4B-4NN (SEQ ID NO:95). pGL4B-4NN was further modified (pGL4-NN1-3; SEQ ID Nos. 96-98). To determine if additional polyA sequences in the SpeI-NcoI fragment further reduced expression from the vector backbone, various polyA sequences were inserted therein. For instance, pGL4NN-Blue Heron included a c-mos polyA sequence in the SpeI-NcoI fragment. However, removal of regulatory sequences in polyA sequences may alter the secondary structure and thus the function of those sequences.

In one vector, the *SpeI-NcoI* fragment from pGL3 (*SpeI-NcoI* start ver 2; SEQ ID NO:48) was modified to remove one transcription factor binding site and one restriction enzyme recognition site, and alter the multiple cloning region, yielding *SpeI-NcoI* ver2 (SEQ ID NO:49).

5

TF binding sites and search parameters

Each TF binding site ("matrix") belongs to a matrix family that groups functionally similar matrices together, eliminating redundant matches by MatInspector professional (the search program). Searches were limited to vertebrate TF binding sites. Searches were performed by matrix family, i.e., the results show only the best match from a family for each site. MatInspector default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity = optimized), except for sequence MCS-1 (core similarity = 1.00, matrix similarity = optimized).

15

10

<u>Table 25</u> <u>Description of Designed Sequences</u>

pGL4 sequences

Sequence	Description	Matrix Library
	SpeI-NcoI fragment with MCS, translation trap	
MCS-1	SpeI-NcoI from pGL4-basics-5F2G-2	Ver 2.2 Sep 2001
MCS-2	First removal of undesired sequence matches	Ver 2.2 Sep 2001
MCS-3	Second removal of undesired sequence matches	Ver 2.2 Sep 2001
MCS-4	Third removal of undesired sequence matches NotI-SpeI fragment with bla gene	Ver 2.3 Feb 2001
Bla	Beta-lactamase gene from pGL3 vectors	
bla-1*	SacII (RE) added, BsmAI (RE) site removed (*)	Ver 2.2 Sep 2001
bla-2*	First removal of undesired sequence matches	Ver 2.3 Feb 2001
bla-3*	Second removal of undesired sequence matches	Ver 2.3 Feb 2001
bla-4*	Third removal of undesired sequence matches	Ver 2.3 Feb 2001

Sequence	Description	Matrix
bla-5*	Fourth removal of undesired sequence	Ver 2.3 Feb
	matches	2001
	NotI-NcoI fragment with bla,	
	translation trap, MCS	
pGL4B-4NN	Combination of bla-5 and MCS-4	Ver 2.4 May
•	sections	2002
pGL4B-4NN1	First removal of undesired sequence	Ver 2.4 May
1	matches	2002
pGL4B-4NN2	Second removal of undesired sequence	Ver 2.4 May
1	matches	2002
pGL4B-4NN3	Third version after removal of CEBP	Ver 2.4 May
1	(TF) site	2002
	Spel-Ncol fragment with translation	
	trap, polyA, MCS	
SpeI-NcoI-	Existing MCS replaced with new MCS	Ver 4.0 Nov
Ver2-start		2003
SpeI-NcoI-Ver2	First removal of undesired sequence	Ver 4.0 Nov
-	matches	2003

(*)Bla codon usage was not optimized for expression in mammalian cells. Low usage *E. coli* codons were avoided when changes were introduced to remove undesired sequence elements.

5

<u>Table 26</u> <u>Sequences in Synthetic SpeI-NcoI fragment of pGL4</u>

TFBS in MCS-1

Before removal of TFBS from MCS-1 (14 matches)

Name of family/matrix **	Further:Information:
V\$PAX3/PAX3.01	Pax-3 paired domain protein, expressed in embryogenesis, mutations correlate to Waardenburg Syndrome
V\$GATA/GATA.01	GATA binding site (consensus)
V\$NKXH/NKX31.01	prostate-specific homeodomain protein

	NKX3.1
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$BRN2/BRN2.01	POU factor Bm-2 (N-Oct 3)
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$ZFIA/ZID.01	zinc finger with interaction domain
V\$CP2F/CP2.01	CP2
V\$BRAC/BRACH.01	Brachyury
V\$PAX6/PAX6.01	Pax-6 paired dom ain protein
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$TEAF/TEF1.01	TEF-1 related muscle factor
V\$ETSF/ELK1.02	Elk-1

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in MCS-2

5

After removal of TFBS from MCS-1 = before removal of TFBS from MCS-2 (12 matches)

	and the state of the contract
a feet to the second of the se	The state of the s
The state of the s	here : 172 Princip in 1881 in 1966 - 1987 here in 1884 Liber 1981 - 198
Name of	材度的设备 通信 化二氯化合物 医乳腺 化二氯化物 医乳腺性 医动物性动物 医二氯磺酸 经销售
Transcore and the second	数的方式的第三人称单数 100mg 120mg
- NA - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Further Information
	to the first and free transport to the first of
family/matrix **	【4、2000年2月20日 1997年2月 - 1
family/matrix **	松 , 是 6 年 [25] [1] 《 6 年 [1] [2] [2] [2] [4] [4] [4] [4] [4] [4] [4] [4] [4] [4
	机工 经证券 医多种子科 经经验的 二氧化二乙基甲基乙基 医抗病病 经重新 医二氏结束性结膜
- No. 1984	【禁止集门】"别"(注):"知道如:"自己,自己,其是""不去,因此的现在形成。"。 计计算符号
- Harris and and a first the Nation 1999	手工, 2011年1日 1日,《 201 1年1日 4日为11日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日

V\$GATA/GATA.01	GATA binding site (consensus)
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$TBPF/ATATA.01	Avian C-type LTR TATA box
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$BRN2/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$TBPF/ATATA.01	Avian C-type LTR TATA box
V\$NKXH/NKX31.01	prostate-specific homeodomain protein NKX3.1
V\$PAX6/PAX6.01	Pax-6 paired domain protein
V\$PAX8/PAX8.01	PAX 2/5/8 binding site
V\$PAX1/PAX1.01	Pax1 paired domain protein, expressed in the developing vertebral column of mouse embryos

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in MCS-3

5

After removal of TFBS from MCS-2 = before removal of TFBS from MCS-4 (0 matches)

TFBS in MCS-4

After removal of TFBS from MCS-3 (0 matches)

<u>Table 27</u>
<u>Sequences in Synthetic NotI-SpeI Fragment of pGL4</u>

TFBS in bla-1

Before removal of TFBS from bla-1 (94 matches)

	THE CONTROL SECTION OF THE PROPERTY OF THE PRO
Name of family/matrix **	Further Information
V\$GATA/GATA1.02	GATA-binding factor 1
V\$HOXF/HOX1-3.01	Hox-1.3, vertebrate homeobox protein
V\$TBPF/ATATA.01	Avian C-type LTR TATA box
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$ETSF/ELK1.02	Elk-1
V\$GKLF/GKLF.01	gut-enriched Krueppel-like factor
V\$E2FF/E2F.02	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$AP1F/VMAF.01	v-Maf
V\$XBBF/RFX1.01	X-box binding protein RFX1
V\$AREB/AREB6.04	AREB6 (Atp1a1 regulatory element binding factor 6)
	c-Myb, important in hematopoesis,
V\$CMYB/CMYB.01	cellular equivalent to avian
	myoblastosis virus oncogene v-myb
V\$VMYB/VMYB.02	v-Myb
V\$EBOX/NMYC.01	N-Myc
V\$VBPF/VBP.01	PAR-type chicken vitellogenin promoter-binding protein
V\$CMYB/CMYB.01	c-Myb, important in hematopoesis, cellular equivalent to avian

Name of family/matrix	Further Information
	myoblastosis virus oncogene v-myb
V\$GATA/GATA3.02	GATA-binding factor 3
V\$PAX8/PAX8.01	PAX 2/5/8 binding site
V\$HNF4/HNF4.02	Hepatic nuclear factor 4
V\$E2FF/E2F.01	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$NFAT/NFAT.01	Nuclear factor of activated T-cells
V\$ECAT/NFY.02	nuclear factor Y (Y-box binding factor)
V\$TBPF/TATA.02	Mammalian C-type LTR TATA box
V\$MYT1/MYT1.02	MyT1 zinc finger transcription factor involved in primary neurogenesis
V\$GATA/GATA3.01	GATA-binding factor 3
V\$CREB/CREB.02	cAMP-responsive element binding protein
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$IRFF/ISRE.01	interferon-stimulated response element
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$TCFF/TCF11.01	TCF11/KCR-F1/Nrf1 homodimers
V\$STAT/STAT.01	signal transducers and activators of transcription
V\$ECAT/NFY.03	nuclear factor Y (Y-box binding factor)
V\$OCT1/OCT1.05	octamer-binding factor 1
V\$OCTP/OCT1P.01	octamer-binding factor 1, POU-specific domain
V\$NKXH/NKX25.02	homeo domain factor Nkx-2.5/Csx,

Name of family/matrix	Eurther Information
	tinman homolog low affinity sites
V\$PIT1/PIT1.01	Pit1, GHF-1 pituitary specific pou
	domain transcription factor
V\$CLOX/CDPCR3.01	cut-like homeodomain protein
V\$GREF/ARE.01	Androgene receptor binding site
V\$GATA/GATA1.04	GATA-binding factor 1
V\$E2TF/E2.02	papilloma virus regulator E2
V\$RPOA/POLYA.01	Mammalian C-type LTR Poly A signal
V\$VMYB/VMYB.02	v-Myb
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$VBPF/VBP.01	PAR-type chicken vitellogenin
, , , , , , , , , , , , , , , , , , ,	promoter-binding protein
V\$CREB/HLF.01	hepatic leukemia factor
V\$SF1F/SF1.01	SF1 steroidogenic factor 1
V\$XBBF/MIF1.01	MIBP-1 / RFX1 complex
V\$IKRS/IK2.01	Ikaros 2, potential regulator of
	lymphocyte differentiation
V\$MINI/MUSCLE_INI.02	Muscle Initiator Sequence
V\$PCAT/CLTR_CAAT.01	Mammalian C-type LTR CCAAT box
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$RPAD/PADS.01	Mammalian C-type LTR Poly A
	downstream element
V\$XBBF/RFX1.02	X-box binding protein RFX1
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$CREB/HLF.01	hepatic leukemia factor
V\$HNF1/HNF1.01	hepatic nuclear factor 1

Name of family/matrix	Further Informations
V\$VMYB/VMYB.01	v-Myb
V\$NKXH/NKX31.01	prostate-specific homeodomain protein
VOITE SERVICE STATE OF THE SERVICE SER	NKX3.1
V\$XBBF/RFX1.01	X-box binding protein RFX1
V\$STAT/STAT.01	signal transducers and activators of
	transcription
V\$HNF1/HNF1.01	hepatic nuclear factor 1
V\$HMYO/S8.01	S8
V\$SORY/SOX5.01	Sox-5
V\$RBIT/BRIGHT.01	Bright, B cell regulator of IgH
	transcription
<u>V\$NKXH/NKX25.02</u>	homeo domain factor Nkx-2.5/Csx,
	tinman homolog low affinity sites
V\$GATA/GATA1.02	GATA-binding factor 1
V\$BARB/BARBIE.01	barbiturate-inducible element
<u>V\$MTF1/MTF-1.01</u>	Metal transcription factor 1, MRE
V\$NFKB/CREL.01	c-Rel
V\$ETSF/ELK1.02	Elk-1
V\$CLOX/CDP.01	cut-like homeodomain protein
V\$RPOA/LPOLYA.01	Lentiviral Poly A signal
V\$GATA/GATA1.03	GATA-binding factor 1
V\$ZFIA/ZID.01	zinc finger with interaction domain
	winged helix protein, involved in hair
V\$WHZF/WHN.01	keratinization and thymus epithelium
	differentiation
V\$PAX1/PAX1.01	Pax1 paired domain protein, expressed
	in the developing vertebral column of

Name of family/matrix	Eurther Information 27
	mouse embryos
V\$GATA/LMO2COM.02	complex of Lmo2 bound to Tal-1, E2A
	proteins, and GATA-1, half-site 2
V\$NRSF/NRSF.01	neuron-restrictive silencer factor
V\$AP4R/TAL1BETAE47.01	Tal-1beta/E47 heterodimer
V\$GATA/LMO2COM.02	complex of Lmo2 bound to Tal-1, E2A
	proteins, and GATA-1, half-site 2
V\$GATA/GATA1.02	GATA-binding factor 1
V\$XBBF/RFX1.01	X-box binding protein RFX1
V\$AHRR/AHRARNT.02	aryl hydrocarbon / Arnt heterodimers,
	fixed core
V\$PAX5/PAX9.01	zebrafish PAX9 binding sites
V\$CLOX/CDP.02	transcriptional repressor CDP
V\$GATA/GATA1.01	GATA-binding factor 1
V\$AP1F/TCF11MAFG.01	TCF11/MafG heterodimers, binding to
· · · · · · · · · · · · · · · · · · ·	subclass of AP1 sites
V\$BRN2/BRN2.01	POU factor Brn-2 (N-Oct 3)
V\$NKXH/NKX25.02	homeo domain factor Nkx-2.5/Csx,
	tinman homolog low affinity sites
V\$ECAT/NFY.02	nuclear factor Y (Y-box binding factor)
V\$FKHD/FREAC4.01	Fork head RElated ACtivator-4
V\$NFAT/NFAT.01	Nuclear factor of activated T-cells
V\$IRFF/IRF1.01	interferon regulatory factor 1
V\$E2FF/E2F.02	E2F, involved in cell cycle regulation,
1 3334 1 1334 102	interacts with Rb p107 protein

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in bla-2

After removal of TFBS from bla-1 = before removal of TFBS from bla-2 = (51 matches)

Name of family/matrix	Further information 3.7
V\$GATA/GATA1.02	GATA-binding factor 1
V\$ETSF/NRF2.01	nuclear respiratory factor 2
	octamer-binding factor 1, POU-specific
V\$OCTP/OCT 1P.01	domain
V\$ETSF/ELK1.02	Elk-1
V\$EBOX/NMYC.01	N-Мус
V\$GATA/GATA3.02	GATA-binding factor 3
V\$PAX8/PAX8.01	PAX 2/5/8 binding site
V\$HNF4/HNF4.02	Hepatic nuclear factor 4
V\$E2FF/E2F.01	E2F, involved in cell cycle regulation,
V W D Z 1 7 D Z 1 . V 1	interacts with Rb p107 protein
V\$NFAT/NFAT.01	Nuclear factor of activated T-cells
V\$ECAT/NFY.02	nuclear factor Y (Y-box binding factor)
V\$TBPF/TATA.02	Mammalian C-type LTR TATA box
V\$MYT1/MYT1.02	MyT1 zinc finger transcription factor
νφινιτιτήνιτι τι.υ2	involved in primary neurogenesis
V\$GATA/GATA3.01	GATA-binding factor 3
V\$CREB/CREB.02	cAMP-responsive element binding
	protein
	winged helix protein, involved in hair
V\$WHZF/WHN.01	keratinization and thymus epithelium
	differentiation
V\$NRSF/NRSE.01	neural-restrictive-silencer-element
V\$OCT1/OCT 1.05	octamer-binding factor 1
V\$CLOX/CDPCR3.01	cut-like homeodomain protein

AND THE PARTY OF T	Endowyna war and a segment of the second of
Name of family/matrix #*	Continued in the second
V\$GREF/ARE.01	Androgene receptor binding site
V\$GATA/GATA1.04	GATA-binding factor 1
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$CREB/HLF.01	hepatic leukemia factor
V\$VBPF/VBP.01	PAR-type chicken vitellogenin
	promoter-binding protein
V\$XBBF/MIF1.01	MIBP-1 / RFX1 complex
V\$IKRS/IK2.01	Ikaros 2, potential regulator of
	lymphocyte differentiation
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$XBBF/RFX1.02	X-box binding protein RFX1
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$CREB/HLF.01	hepatic leukemia factor
V\$XBBF/RFX1.02	X-box binding protein RFX1
V\$GATA/GATA1.02	GATA-binding factor 1
V\$BARB/BARBIE.01	barbiturate-inducible element
V\$MTF1/MTF-1.01	Metal transcription factor 1, MRE
V\$NFKB/CREL.01	c-Rel
V\$ETSF/ELK1.02	Elk-1
V\$TBPF/TATA.01	cellular and viral TATA box elements
V\$MEIS/MEIS1.01	Horneobox protein MEIS1 binding site
V\$HOXF/HOXA9.01	Member of the vertebrate HOX - cluster
TWITCH THE THE	of homeobox factors
V\$GATA/GATA1.03	GATA-binding factor 1
V\$MEIS/MEIS1.01	Homeobox protein MEIS1 binding site
V\$NOLF/OLF1.01	olfactory neuron-specific factor
	<u></u>

Name of family/matrix	Further information
V\$AP4R/TAL1BETAE47.01	Tal-1beta/E47 heterodimer
V\$GATA/GATA1.02	GATA-binding factor 1
V\$XBBF/RFX1.01	X-box binding protein RFX1
V\$AHRR/AHRARNT.02	aryl hydrocarbon / Arnt heterodimers, fixed core
V\$PAX5/PAX9.01	zebrafish PAX9 binding sites
V\$CLOX/CDP.02	transcriptional repressor CDP
V\$GATA/GATA1.01	GATA-binding factor 1
V\$IRFF/IRF1.01	interferon regulatory factor 1
V\$E2FF/E2F.02	E2F, involved in cell cycle regulation, interacts with Rb p107 protein

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in bla-3

After removal of TFBS from bla-2 = before removal of TFBS from bla-3

5 = (16 matches)

Name of family/matrix **	Further Information
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$E2FF/E2F.02	E2F, involved in cell cycle regulation, interacts with Rb p107 protein
V\$NFAT/NFAT.01	Nuclear factor of activated T-cells
V\$TBPF/TATA.02	Mammalian C-type LTR TATA box
V\$MYT1/MYT1.02	MyT1 zinc finger transcription factor involved in primary neurogenesis

Name of family/matrix	Further Information Region 1997
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$SORY/SOX5.01	Sox-5
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$CREB/HLF.01	hepatic leukemia factor
V\$VBPF/VBP.01	PAR-type chicken vitellogenin promoter-binding protein
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$XBBF/RFX1.02	X-box binding protein RFX1
V\$CREB/HLF.01	hepatic leukemia factor
V\$GATA/GATA1.0	GATA-binding factor 1
V\$MEIS/MEIS1.01	Homeobox protein MEIS1 binding site
V\$NOLF/OLF1.01	olfactory neuron-specific factor

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in bla-4

After removal of TFBS from bla-3 = before removal of TFBS from <math>bla-4

5 = (14 matches)

•	·	· · · ·	
Name of Further family/matrix**	Infor	mation	

Name of the family/matrix	Further Information:
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$NFAT/NFAT.01	Nuclear factor of activated T-cells
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$GATA/GATA3.01	GATA-binding factor 3
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$EBOX/USF.02	upstream stimulating factor
V\$PAX5/PAX5.01	B-cell-specific activating protein
V\$XBBF/RFX1.02	X-box binding protein RFX1
V\$GATA/GATA1.03	GATA-binding factor 1
V\$MEIS/MEIS1.01	Homeobox protein MEIS1 binding site
V\$ZFIA/ZID.01	zinc finger with interaction domain
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$PAX1/PAX1.01	Pax1 paired domain protein, expressed in the developing vertebral column of mouse embryos
V\$GATA/LMO2COM.02	complex of Lmo2 bound to Tal-1, E2A

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in bla-5

After removal of TFBS from bla-4 (5 matches)

	*
Name of Salaring Sala	Further Information;
V\$ETSF/NRF2.01	nuclear respiratory factor 2
	winged helix protein, involved in hair
V\$WHZF/WHN.01	keratinization and thymus epithelium
	differentiation
V\$GATA/GATA3.01	GATA-binding factor 3
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$EBOX/USF.02	upstream stimulating factor

^{5 **}matches are listed in order of occurrence in the corresponding sequence

<u>Table 28</u>

Sequences in Synthetic NotI-NcoI Fragment of pGL4

TFBS in pGL4B-4NN

10

Before removal of TFBS from pGL4B-4NN = (11 matches)

Name of family/matrix**	Further Information
V\$SMAD/FAST1.01	FAST-1 SMAD interacting protein
V\$SMAD/FAST1.01	FAST-1 SMAD interacting protein

V\$ETSF/FLI.01	ETS family member FLI
V\$RBPF/RBPJK.01	Mammalian transcriptional repressor RBP- Jkappa/CBF1
V\$ETSF/FLI.01	ETS family member FLI
V\$EBOX/USF.02	upstream stimulating factor
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$GATA/GATA3.01	GATA-binding factor 3
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$TBPF/ATATA.01	Avian C-type LTR TATA box

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in pGL4B-4NN1

5

After removal of TFBS from pGL4B-4NN = before removal of TFBS from pGL4B-4NN1 (7 matches)

Name of family/matrix	Further Information
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta

V\$EBOX/USF.02	upstream stimulating factor
V\$ETSF/FLI.01	ETS family member FLI
V\$SMAD/FAST1.01	FAST-1 SMAD interacting protein
V\$SMAD/FAST1.01	FAST-1 SMAD interacting protein

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in pGL4B-4NN2

After removal of TFBS from pGL4B-4NN1 = before removal of TFBS from pGL4B-4NN2 (4 matches)

"Nameiofo" "Ifamily/matrix"	Further Information
V\$ETSF/NRF2.01	nuclear respiratory factor 2
V\$WHZF/WHN.01	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$CEBP/CEBPB.01	CCAAT/enhancer binding protein beta
V\$EBOX/USF.02	upstream stimulating factor

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in pGL4B-4NN3

After removal of TFBS from pGL4B-4NN2 (3 matches)

Name of family/matrix	Further Information
V\$EBOX/USF.	upstream stimulating factor

02	
	winged helix protein, involved in hair keratinization and thymus epithelium differentiation
V\$ETSF/NRF2	nuclear respiratory factor 2

^{**}matches are listed in order of occurrence in the corresponding sequence

Table 29

Sequences in Synthetic SpeI-NcoI section of pGL4

5 TFBS in SpeI-NcoI-Ver2-start

Before removal of TFBS from SpeI-NcoI-Ver2-start (34 matches)

Family/matrix	Further Information
V\$PAX8/PAX8.01	PAX 2/5/8 binding site
V\$GATA/GATA1.02	GATA-binding factor 1
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$NKXH/NKX31.01	Prostate-specific homeodomain protein NKX3.1
V\$TBPF/ATATA.01	Avian C-type LTR TATA box
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$NKXH/NKX31.01	Prostate-specific homeodomain protein NKX3.1
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)
V\$NKXH/NKX25.02	Homeo domain factor Nkx-2.5/Csx, tinman homolog low affinity sites
V\$ETSF/ELK1.01	Elk-1

Tamily/matrix	* Runther Information		
V\$CDXF/CDX2.01	Cdx-2 mammalian caudal related intestinal transcr. factor		
V\$BRNF/BRN3.01	POU transcription factor Brn-3		
V\$TBPF/TATA.02	Mammalian C-type LTR TATA box		
V\$FKHD/FREAC3.01	Fork head related activator-3 (FOXC1)		
V\$OCT1/OCT1.02	Octamer-binding factor 1		
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)		
V\$PDX1/PDX1.01	Pdx1 (IDX1/IPF1) pancreatic and		
	intestinal homeodomain TF		
V\$P.ARF/DBP.01	Albumin D-box binding protein		
V\$GATA/GATA3.02	GATA-binding factor 3		
V\$VBPF/VBP.01	PAR-type chicken vitellogenin		
, , , , , , , , , , , , , , , , , , ,	promoter-binding protein		
V\$A.P4R/TAL1ALPHAE47.01	Tal-1alpha/E47 heterodimer		
	Zinc finger protein RP58 (ZNF238),		
<u>V\$R.P58/RP58.01</u>	associated preferentially with		
	heterochromatin		
V\$COMP/COMP1.01	COMP1, cooperates with myogenic		
	proteins in multicomponent complex		
V\$CLOX/CLOX.01	Clox		
V\$TBPF/ATATA.01	Avian C-type LTR TATA box		
V\$PBXC/PBX1 MEIS1.02	Binding site for a Pbx1/Meis1		
	heterodimer		
V\$PBXF/PBX1.01	Homeo domain factor Pbx-1		
V\$IRFF/IRF1.01	Interferon regulatory factor 1		
V\$TEAF/TEF1.01	TEF-1 related muscle factor		

Family/matrix	Further Information =
V\$EBOX/ATF6.01	Member of b-zip family, induced by ER damage/stress, binds to the ERSE in association with NF-Y
V\$NKXH/NKX32.01	Homeodomain protein NKX3.2 (BAPX1, NKX3B, Bagpipe homolog)
V\$E2TF/E2.02	Papilloma virus regulator E2
V\$EVI1/EVI1.05	Ecotropic viral integration site 1 encoded factor
V\$GATA/GATA3.02	GATA-binding factor 3

^{**}matches are listed in order of occurrence in the corresponding sequence

TFBS in SpeI-NcoI-Ver2

After removal of TFBS from SpeI-NcoI-Ver2-start (28 matches)

Family/matrix	Further Information
V\$PAX8/PAX8.01	PAX 2/5/8 binding site
V\$GATA/GATA1.02	GATA-binding factor 1
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$NKXH/NKX31.01	Prostate-specific homeodomain protein NKX3.1
V\$TBPF/ATATA.01	Avian C-type LTR TATA box
V\$CREB/E4BP4.01	E4BP4, bZIP domain, transcriptional repressor
V\$NKXH/NKX31.01	Prostate-specific homeodomain protein NKX3.1
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)

Family/matrix	Eurther Information		
V\$NKXH/NKX25.02	Homeo dornain factor Nkx-2.5/Csx, tinman hornolog low affinity sites		
V\$CDXF/CDX2.01	Cdx-2 mammalian caudal related intestinal transcr. factor		
V\$BRNF/BRN3.01	POU transcription factor Brn-3		
V\$TBPF/TATA.02	Mammaliam C-type LTR TATA box		
V\$FKHD/FREAC3.01	Fork head related activator-3 (FOXC1)		
V\$OCT1/OCT1.02	Octamer-binding factor 1		
V\$CART/CART1.01	Cart-1 (cartilage homeoprotein 1)		
V\$PDX1/PDX1.01	Pdx1 (IDX 1/IPF1) pancreatic and intestinal homeodomain TF		
V\$PARF/DBP.01	Albumin D-box binding protein		
V\$GATA/GATA3.02	GATA-binding factor 3		
V\$VBPF/VBP.01	PAR-type chicken vitellogenin promoter-b inding protein		
V\$AP4R/TAL1ALPHAE47.01	Tal-1alpha/E47 heterodimer		
V\$RP58/RP58.01	Zinc finger protein RP58 (ZNF238), associated preferentially with heterochromatin		
V\$COMP/COMP1.01	COMP1, cooperates with myogenic proteins in multicomponent complex		
V\$CLOX/CLOX.01	Clox		
V\$TBPF/ATATA.01	Avian C-type LTR TATA box		
V\$PBXC/PBX1_MEIS1.02	Binding site for a Pbx1/Meis1 heterodimer		
V\$PBXF/PBX1.01	Homeo domain factor Pbx-1		

Family/matrix	Further Information 4.2 5
V\$IRFF/IRF1.01	Interferon regulatory factor 1
V\$TEAF/TEF1.01	TEF-1 related muscle factor

^{**}matches are listed in order of occurrence in the corresponding sequence

The number of consensus transcription factor binding sites present in the vector backbone (including the ampicillin resistance gene) was reduced from 224 in pGL3 to 40 in pGL4, and the number of promoter modules was reduced from 10 in pGL3 to 4 for pGL4, using databases, search programs and the like as described herein. Other modifications in pGL4 relative to pGL3 include the removal of the fl origin of replication and the redesign of the multiple cloning region.

10

5

MCS-1 to MCS-4 have the following sequences (SEQ ID Nos:76-79)

MCS-1

20 MCS-2

ACTAGTACGTCTCTTGAGAGACCGCGATCGCCACCATGATAAGTA AGTAATATAAATAAGTAAGGCCTGAGTGGCCCTCGAGTCCAGCCTT GAGTTGGTTGAGTCCAAGTCACGTCTGGAGATCTGGTACCTTACGCGT AGAGCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGATCT

25 AAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG

MCS-3

30

MCS-4

35 ACTAGTACGTCTCTTGAGAGACCGCGATCGCCACCATGTCTAGGT AGGTAGTAAACGAAAGGGCTTAAAGGCCTAAGTGGCCCTCGAGTCCA GCCTTGAGTTGGTTGAGTCCAAGTCACGTTTGGAGATCTGGTACCTTA

CGCGTATGAGCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTCTTG CGATCTAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG

bla has the following sequence:

- 5 ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCAT TTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAG ATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC 10 CCGTATTGACGCCGGGCAAGAGCAACTCGGTCGCCGCATACACTATT CTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGAC CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACT 15 CGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA AACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCG GCCCTTCCGGCTGGCTGGTTTATTGCTGATAAATCTGGAGCCGGTGAG 20 CGTGGGTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG CATTGGTAA (SEQ ID NO:41).
- 25 bla-1 to bla-5 have the following sequences (SEQ ID Nos:80-84):
- bla-1 ACTAGTAACCCTGATAAATGCTTCAATAATATTGAAAAAGGAAGAGT ATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCCTTTTTTGCGGCAT 30 TTTGCCTTCCTGTTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAG ATGCTGAAGATCAGTTGGGTGCACGAGTGGGTTACATCGAACTGGAT CTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATC CCGTATTGACGCCGGCAAGAGCAACTCGGTCGCCGCATACACTATT CTCAGAATGACTTGGTTGAGTACTCACCAGTCACAGAAAAGCATCTT 35 ACGGATGGCATGACAGTAAGAGAATTATGCAGTGCTGCCATAACCAT GAGTGATAACACCGCGGCCAACTTACTTCTGACAACGATCGGAGGAC CGAAGGAGCTAACCGCTTTTTTGCACAACATGGGGGATCATGTAACT CGCCTTGATCGTTGGGAACCGGAGCTGAATGAAGCCATACCAAACGA 40 CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA

AACTATTAACTGGCGAACTACTTACTCTAGCTTCCCGGCAACAATTAA TAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTCG GCCCTTCCGGCTGGCTGGTTATTGCTGATAAATCTGGAGCCGGTGAG CGTGGCTCTCGCGGTATCATTGCAGCACTGGGGCCAGATGGTAAGCC CTCCCGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGG ATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATTAAG CATTGGTAACCACTGCAGTGGTTTTCCTTTTGCGGCCGC

bla-2

5

10 ACTAGTAACCCTGATAAATGCTGCAAACATATTGAAAAAGGAAGAGT ATGAGTATTCAACATTTCCGTGTCGCACTCATTCCCTTCTTTGCGGCA TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA GATGCTGAAGATCAACTGGGTGCACGAGTGGGCTATATCGAACTGGA TCTCAATAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACGTTT 15 TCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGGTATTATC CCGTATTGACGCCGGCAAGAGCAGCTCGGTCGCCGCATACACTACT CACAGAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCTT ACGGATGGCATGACAGTAAGAGAATTGTGTAGTGCTGCCATAACCAT GAGTGATAACACCGCGGCCAACTTACTTCTGACAACGATCGGAGGCC 20 CTAAGGAGCTGACCGCATTTTTGCACAACATGGGGGATCATGTAACC CGGCTTGATCGTTGGGAACCGAGCTGAACGAAGCCATACCGAACGA CGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCA AACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAACTC ATAGACTGGATGGAGGCGGATAAAGTTGCAGGACCACTTCTGCGCTC 25 GGCCCTTCCGGCTGGCTGGTTATAGCTGATAAATCCGGTGCCGGTG AACGCGGCTCTCGCGGGATCATTGCTGCGCTGGGGCCAGATGGTAAG CCCTCACGAATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTAT

GGATGAACGAAATAGACAGATCGCTGAGATAGGTGCCTCACTGATCA

AGCACTGGTAGCCACTGCAGTGGTTTAGCTTTTGCGGCCGC

30

bla-3 ACTAGTAACCCTGACAAATGCTGCAAACATATTGAAAAAGGAAGAGT ATGAGCATCCAACATTTTCGTGTCGCACTCATTCCCTTCTTTGCGGCA TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA 35 GATGCTGAAGATCAACTGGGTGCAAGAGTGGGCTATATCGAACTGGA TCTCAATAGCGGCAAGATCCTTGAGTCTTTTCGCCCCGAAGAACGTTT TCCGATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTGTTGTC CCGTATAGACGCCGGCAAGAGCAGCTTGGTCGCCGTATACACTACT CACAAAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCTT 40 ACGGATGGCATGACGGTAAGAGAATTGTGTAGTGCTGCCATTACCAT GAGCGACAATACCGCGGCCAACTTACTTCTGACAACGATCGGAGGCC CTAAGGAGCTGACCGCATTTTTGCACAACATGGGGGATCATGTAACC CGGCTTGACCGCTGGGAACCGAGCTGAACGAAGCCATACCGAACG ACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGG 45 AAACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAGCT CATAGACTGGATGGAGGCGGACAAAGTAGCAGGACCACTTCTTCGCT CGGCCCTCCCTGCTGGCTGGTTCATTGCTGATAAATCCGGTGCCGGTG

AACGCGGCTCTCGCGGGATCATTGCTGCGCTGGGGCCTGATGGTAAG CCCTCACGAATCGTAGTAATCTACACGACGGGGAGTCAGGCCACTAT

GGACGAACGAATAGACAGATCGCTGAGATCGGTGCCTCACTGATCA AGCACTGGTAACCACTGCAGTGGTTTAGCATTTGCGGCCGC

bla-4

- 5 ACTAGTAACCCTGACAAATGCTGCAAACATATTGAAAAAGGAAGAGT ATGAGCATCCAACATTTTCGTGTCGCACTCATTCCCTTCTTTGCGGCA TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA GATGCTGAAGATCAACTGGGTGCAAGAGTGGGCTATATCGAACTGGA TCTCAATAGCGGCAAGATCCTTGAGTCTTTCCGCCCCGAAGAACGTTT
- 10 TCCGATGATGAGCACTTTCAAAGTACTGCTATGTGGCGCGGTGTTGTC CCGTATAGACGCCGGGCAAGAGCAGCTTGGTCGCCGTATACACTACT CACAAAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCTT ACGGATGGCATGACGGTAAGAGAATTGTGTAGTGCTGCCATTACCAT GAGCGATAATACCGCGGCCAACTTACTTCTGACAACGATCGGAGGCC
- 15 CTAAGGAGCTGACCGCATTTTTGCACAACATGGGTGATCATGTGACC CGGCTTGACCGCTGGGAACCGAGCTGAACGAAGCCATACCGAACG ACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACTCTTCGG AAACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAGCT CATAGACTGGATGGAGGCGGACAAAGTAGCAGGACCACTTCTTCGCT
- 20 CGGCCCTCCCTGCTGGCTGGTTCATTGCTGATAAATCTGGAGCCGGTG AGCGTGGCTCTCGCGGTATCATTGCTGCGCTGGGGCCTGATGGTAAG CCCTCACGAATCGTAGTAATCTACACGACGGGGAGTCAGGCCACTAT GGACGAACGAAATAGACAGATCGCTGAGATCGGTGCCTCACTGATCA AGCACTGGTAACCACTGCAGTGGTTTAGCATTTGCGGCCGC

25

- bla-5 ACTAGTAACCCTGACAAATGCTGCAAACATATTGAAAAAGGAAGAGT
- ATGAGCATCCAACATTTCGTGTCGCACTCATTCCCTTCTTTGCGGCA
 TTTTGCTTGCCTGTTTTTGCACACCCCGAAACGCTGGTGAAAGTAAAA
 30 GATGCTGAAGATCAACTGGGTGCAAGAGTGGGCTATATCGAACTGGA
- TCTCAATAGCGGCAAGATCCTTGAGTCTTTCCGCCCCGAAGAACGAT TCCCGATGATGAGCACTTTCAAAGTACTGCTATGTGGCGCGGTGTTGT CCCGTATAGACGCCGGGCAAGAGCAGCTTGGTCGCCGTATACACTAC TCACAAAACGACTTGGTTGAGTACTCGCCGGTCACGGAAAAGCATCT
- TACGGATGGCATGACGGTAAGAGAATTGTGTAGTGCTGCCATTACCA
 TGAGCGATAATACCGCGGCCAACTTACTTCTGACAACGATCGGAGGC
 CCTAAGGAGCTGACCGCATTTTTGCACAACATGGGTGATCATGTGAC
 CCGGCTTGACCGCTGGGAACCGGAGCTGAACGAAGCCATACCGAAC
 GACGAGCGTGATACCACGATGCCAGTAGCAATGGCCACAACTCTTCG
- 40 GAAACTACTCACTGGCGAACTTCTCACTCTAGCATCACGACAGCAGC
 TCATAGACTGGATGGAGGCGGACAAAGTAGCAGGACCACTTCTTCGC
 TCGGCCCTCCCTGCTGGCTGGTTCATTGCTGACAAATCCGGTGCCGGT
 GAACGCGGCTCTCGCGGCATCATTGCTGCGCTGGGGCCTGATGGTAA
 GCCCTCACGAATCGTAGTAATCTACACGACGGGGAGTCAGGCCACTA
- 45 TGGACGAACGAAATAGACAGATCGCTGAGATCGGTGCCTCACTGATC AAGCACTGGTAACCACTGCAGTGGTTTAGCATTTGCGGCCGCNNN.

Table 30

Pairwise identity of different bla gene versions

The state of the s	bla	bla-1	bla-2	bla-3	bla-4	bla-5	bla in 🥞
					類於		pGL4
							(SEQ ID)
							NO:74).
bla		99	93	90	89	88	87
bla-1			94	90	90	89	88
bla-2				96	94	94	93
bla-3					98	98	97
bla-4						99	97
bla-5							98

note: sequence "bla" is bla gene from pGL3-Basic; ClustalW

(Slow/Accurate, IUB); sequence comparisons were of ORF only

5
SpeI-NcoI ver2 start has the following sequence:
ACTAGTACGTCTCTCAAGGATAAGTAAGTAATATTAAGGTACGGGAG
GTACTTGGAGCGGCCGCAATAAAATATCTTTATTTTCATTACATCTGT
GTGTTGGTTTTTTGTGTGAATCGATAGTACTAACATACGCTCTCCATC

10 AAAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAG
TGCAAGTGCAGGTGCCAGAACATTTCTCTGGCCTAAGTGGCCGGTAC
CGAGCTCGCTAGCCTCGAGGATATCAGATCTGGCCTCGGCGGCCAAG
CTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG (SEQ ID NO:48);

15 Small Neal X

and

SpeI-NcoI-Ver2 has the following sequence:
ACTAGTACGTCTCTCAAGGATAAGTAAGTAATATTAAGGTACGGGAG
GTATTGGACAGGCCGCAATAAAATATCTTTATTTTCATTACATCTGTG
TGTTGGTTTTTTGTGTGAATCGATAGTACTAACATACGCTCTCCATCA
20 AAACAAAACGAAACAAAACAAACTAGCAAAATAGGCTGTCCCCAGT
GCAAGTGCAGGTGCCAGAACATTTCTCTGGCCTAACTGGCCGGTACC
TGAGCTCGCTAGCCTCGAGGATATCAAGATCTGGCCTCGGCGGCCAA
GCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG (SEQ ID NO:49)

25 pGLA related sequences include (SEQ ID Nos.95-97):

pGL4B-4NN

GCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA

30 GTGAGGCACCGATCTCAGCGATCTGTCTATTTCGTTCGTCCATAGTGG
CCTGACTCCCCGTCGTGTAGATTACTACGATTCGTGAGGGCTTACCAT
CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCA

CCGGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT GTCGTGATGCTAGAGTGAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTCGTTCGGT 5 ATGGCTTCGTTCAGCTCCGGTTCCCAGCGGTCAAGCCGGGTCACATG ATCACCCATGTTGTGCAAAAATGCGGTCAGCTCCTTAGGGCCTCCGA TCGTTGTCAGAAGTAAGTTGGCCGCGGTATTATCGCTCATGGTAATGG CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA 10 CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC GGGCGGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG 15 AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCTTCCT TTTTCAATATGTTTGCAGCATTTGTCAGGGTTACTAGTACGTCTCTTT GAGAGACCGCGATCGCCACCATGTCTAGGTAGGTAGTAAACGAAAG GTCCAAGTCACGTTTGGAGATCTGGTACCTTACGCGTATGAGCTCTAC 20 GTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGATCTAAGCTTGGCA ATCCGGTACTGTTGGTAAAGCCACCATGG

pGL4B-4NN1

gcggccgcaaatgctaaaccactgcagtggttaccagtgcttgatcagtgaggcaccgatctcagcgatctgtctatt25 tcgttcgtccatagtggcctgactccccgtcgtgtagattactacgattcgtgagggcttaccatcaggccccagegcagca at gatgccgcgagagccgcgttcaccggcccccgatttgtcagca at gaaccagccagcaggagggccgagegaagaagtggtcctgctactttgtccgcctccatccagtctatgagctgctgtcgtgatgctagagtaagaagttcgccagtgagtagtttccgaagagttgtggccattgctactggcatcgtggtatcacgctcgtcgttcggtatggcttcgtt caact ccggt tcccagcggt caagccgggt cacat gat cacccat gtt gt gcaaaaa at gcggt cagct cctt ag gg30 cctccg atcgttgtcagaagtaagttggccgcggtgttgtcgctcatggtaatggcagcactacacaattctcttaccgtcatgccatccgtaagatgcttttccgtgaccggcgagtactcaaccaagtcgttttgtgagtagtgtatacggcgaccaagctgctcttgcccggcgtctatacgggacaacaccgcgccacatagcagtactttgaaagtgctcatcatcgggaatcgttcttcggggcggaaagactcaaggatcttgccgctattgagatccagttcgatatagcccactcttgcacccagt35 atgagtgcgacacgaaaatgttggatgctcatactcttcctttttcaatatgtttgcagcatttgtcagggttactagtacg cgagtccagccttgagttggttgagtccaagtcacgtttggagatctggtaccttacgcgtatgagctctacgtagcta geggeeteggeggeegaattettgegttegaagettggeaateeggtaetgttggtaaageeaeeatgg; and

40 pGL4B-4NN2 GCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA GTGAGGCACCGATCTCAGCGATCTGCCTATTTCGTTCGTCCATAGTGG CCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCAT CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCC 45 CCCGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT GTCGTGATGCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTTCGGT ATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATG

ATCACCCATGTTGTGCAAAAATGCGGTCAGCTCCTTAGGGCCTCCGA TCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTAATGG CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA

- 5 CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC GGGGCGGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG
- 15 GTAGCTAGCGGCCTCGGCGGCCGAATTCTTGCGTTCGAAGCTTGGCA ATCCGGTACTGTTGGTAAAGCCACCATGG,

as well as

pGL4B-4NN3:

- 20 GCGGCCGCAAATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA GTGAGGCACCGATCTCAGCGATCTGCCTATTTCGTTCGTCCATAGTGG CCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCAT CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCC CCCGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA
- 25 GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT GTCGTGATGCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTCGGT ATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATG ATCACCCATATTATGAAGAAATGCAGTCAGCTCCTTAGGGCCTCCGA
- 30 TCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTAATGG CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC
- 35 GGGGCGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCTTCTT TTTTCAATATGTTTGCAGCATTTGTCAGGGTTACTAGTACGTCTCTCTT
- 45 AATCCGGTACTGTTGGTAAAGCCACCATGG (SEO ID NO:45)

pGL4NN from Blue Heron:

GTGAGGCACCGATCTCAGCGATCTGCCTATTTCGTTCGTCCATAGTGG CCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCAT CAGGCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCC CCCGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA 5 GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT GTCGTGATGCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTCGTTCGGT ATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATG ATCACCCATATTATGAAGAAATGCAGTCAGCTCCTTAGGGCCTCCGA TCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTAATGG 10 CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT CCGTGACCGGCGAGTACTCAACCAAGTCGTTTTGTGAGTAGTGTATA CGGCGACCA_AGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC 15 GGGGCGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCTTCCT TTTTCAATATGTTTGCAGCATTTGTCAGGGTTACTAGTACGTCTCTCA 20 AGAGATTTGTGCATACACAGTGACTCATACTTTCACCAATACTTTGCA GTCTTAAAATTAAAAATTACAAAGTAATAAATCACATTGTAATGTATT TTGTGTGATACCCAGAGGTTTAAGGCAACCTATTACTCTTATGCTCCT GAAGTCCACAATTCACAGTCCTGAACTATAATCTTATCTTTGTGATTG CTGAGCAAATTTGCAGTATAATTTCAGTGCTTTTAAATTTTGTCCTGC 25 TTACTATTTCCTTTTTTATTTGGGTTTGATATGCGTGCACAGAATGGG GCTTCTATTA.AAATATTCTTGAGAGACCGCGATCGCCACCATGTCTAG GTAGGTAGTAAACGAAAGGGCTTAAAGGCCTAAGTGGCCCTCGAGTC CAGCCTTGAGTTGGTTGAGTCCAAGTCACGTTTGGAGATCTGGTACCT 30 TACGCGTATGAGCTCTACGTAGCTAGCGGCCTCGGCGGCCGAATTCT TGCGTTCGAAGCTTGGCAATCCGGTACTGTTGGTAAAGCCACCATGG (SEO ID NO:46).

pGL4 with promoter changes:

GCGGCCGCA.AATGCTAAACCACTGCAGTGGTTACCAGTGCTTGATCA
GTGAGGCAC.CGATCTCAGCGATCTGCCTATTTCGTTCGTCCATAGTGG
CCTGACTCCCCGTCGTGTAGATCACTACGATTCGTGAGGGCTTACCAT
CAGGCCCCAGCGCAGCAATGATGCCGCGAGAGCCGCGTTCACCGGCC

40 CCCGATTTGTCAGCAATGAACCAGCCAGCAGGGAGGGCCGAGCGAA
GAAGTGGTCCTGCTACTTTGTCCGCCTCCATCCAGTCTATGAGCTGCT
GTCGTGATGCTAGAGTAAGAAGTTCGCCAGTGAGTAGTTTCCGAAGA
GTTGTGGCCATTGCTACTGGCATCGTGGTATCACGCTCGTTCGGT
ATGGCTTCGTTCAACTCTGGTTCCCAGCGGTCAAGCCGGGTCACATG

45 ATCACCCATATTATGAAGAAATGCAGTCAGCTCCTTAGGGCCTCCGA

TCGTTGTCAGAAGTAAGTTGGCCGCGGTGTTGTCGCTCATGGTAATGG CAGCACTACACAATTCTCTTACCGTCATGCCATCCGTAAGATGCTTTT CCGTGACCGGCGAGTACT CAACCAAGTCGTTTTGTGAGTAGTGTATA CGGCGACCAAGCTGCTCTTGCCCGGCGTCTATACGGGACAACACCGC 5 GCCACATAGCAGTACTTTGAAAGTGCTCATCATCGGGAATCGTTCTTC GGGGCGGAAAGACTCAAGGATCTTGCCGCTATTGAGATCCAGTTCGA TATAGCCCACTCTTGCACCCAGTTGATCTTCAGCATCTTTTACTTTCAC CAGCGTTTCGGGGTGTGCAAAAACAGGCAAGCAAAATGCCGCAAAG AAGGGAATGAGTGCGACACGAAAATGTTGGATGCTCATACTCGTCCT 10 TTTTCAATATTATTGAAGCATTTATCAGGGTTACTAGTACGTCTCTCA AGAGATTTGTGCATACACAGTGACTCATACTTTCACCAATACTTTGCA GTCTTAAAATTAAAAATTACAAAGTAATAAATCACATTGTAATGTATT TTGTGTGATACCCAGAGGTTTAAGGCAACCTATTACTCTTAT (SEO ID 15 NO:47),

A hygromycin gene in a pGL4 vector:

Atgaagaagcccgaactcaccgctaccagcgttgaaaaatttctcatcgagaagttcgacagtgtgagcgacctgat 20 g cagttg tcgg agg cgaag agaccga g ccttcag cttcg at g tcgg cgg acg cgg ctat g tactg cgg g tgaatagctgcgctgatggcttctacaaagaccgctacgtgtaccgccacttcgccagcgctgcactacccatccccgaag $tgttggacatcggcgagttcagcgagagc \verb|ctgacatactgcatcagtagacgcgcccaaggcgttactctccaaga|\\$ cctccccgaaacagagctgcctgctgtgttacagcctgtcgccgaagctatggatgctattgccgccgccgacctca $gtcaaaccagcggcttcggcccattcggg\\ \textbf{c}cccaaggcatcggccagtacacaacctggcgggatttcatttgcgc\\$ 25 cattgctgatccccatgtctaccactggcagaccgtgatggacgacaccgtgtccgccagcgtagctcaagccctgg $acga act gat gct gt gg gccga agact gt {\tt ccc} gag gt gc gccacct cgt ccat gccgact tcgg cag caa caacgt$ gccaacatcttcttctggcggccctggctggcttgcatggagcagcagcagcagcatcccgaactcgctacttctgagcgcccggcatcccgagetggccggcagccctcgtctgcgagcctacatgctgcgcatcggcctggatcagctctaccagagcctcgtggac30 ggcaacttcgacgatgctgcctgggctcaaggccgctgcgatgccatcgtccgcagcggggccggcaccgtcggt cgcacacaaatcgctcgccggagcgcagccgtatggaccgacggctgcgtcgaggtgctggccgacagcggca

35 pGL4.10

40

ggcctaactggccggtacctgagctcgctagcctcgaggatatcaagatctggcctcggcggccaagcttggcaat ccggtactgttggtaaagccaccatggaagatgccaaaaacattaagaagggcccagcgccattctacccactcga agacgggaccgccggcgagcagctgcacaaagccatgaagcgctacgccctggtgcccggcaccatcgccttta ccgacgcacatatcgaggtggacattacctacgccgagtacttcgagatgagcgttcggctggcagaagctatgaa gcgctatgggctgaatacaaaccatcggatcgtggtgtgcagcgagaatagcttgcagttctatgggttggctgtggcccagctagcgagaatagcttcaacgagcgggggtgtgaacatgggc tgccctgttcatcggtgtggcccagctagcagacatctacaacgagcgcgagctgctgaacagcatgggc

5

10

15

20

25

30

35

40

45

atcagccagccaccgtcgtattcgtgagcaagaaaggctgcaaaagatcctcaacgtgcaaaagaagctaccg atcatacaaaagatcatcatcatggatagcaagaccgactaccagggcttccaaagcatgtacaccttcgtgacttcc catttgccacccggcttcaacgagtacgacttcgtgcccgagagcttcgaccgggacaaaaccatcgccctgatcatgaacagtagtggcagtaccggattgcccaagggcgtagccctaccgcaccgcatcgcttgtgtccgattcagtcat $gcccgcgaccccatcttcggcaaccagatcatccccgacaccgctatcct \\ cagcgtggtgccatttcaccacggctt$ eggeatgtteaceaegetgggetaettgatetgeggetttegggtegtgeteatgtaeegettegaggaggagetatte ttgcgcagcttgcaagactataagattcaatctgccctgctggtgcccacactatttagcttcttcgctaagagcactctaggccgtggccaaacgcttccacctaccaggcatccgccagggctacggcctgacagaaacaaccagcgccattc tgatcaccccgaaggggacgacaagcctggcgcagtaggcaaggtggtgcccttcttcgaggctaaggtggtgg acttggacaccggtaagacactgggtgtgaaccagcgcggcgagctgtgcgtccgtggccccatgatcatgagcg actgggacgaggacgagcacttcttcatcgtggaccggctgaagagcctgatcaaatacaagggctaccaggtagc $\verb|cccagccgaactggagagcatcctgctgcaacaccccaacatcttcgacgccggggtcgccgggctgcccgacg|$ acgatgccggcgagctgcccgccgcagtcgtcgtgctggaacacggtaaaaccatgaccgagaaggagatcgtg gactatgtggccagccaggttacaaccgccaagaagctgcgcggtggtgttgtgttcgtggacgaggtgcctaaag gactgaccggcaagttggacgcccgcaagatccgcgagattctcattaaggccaagaagggcggcaagatcgccgtgtaataattctagagtcgggcggccggccgcttcgagcagacatgataagatacattgatgagtttggacaaaccaca actaga at g cagt gaaa aa aa aa t g cttt at t t g t gaa at t t g ctt at t t g ct at a g ct g ca a caca act a g a a a caca act a g a caca actaaaacctctacaaatgtggtaaaatcgataaggatccgtcgaccgatgcccttgagagccttcaacccagtcagctcc ttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtcttctttatcatgcaactcgtaggacaggtgcct caa agg cgg taa tacgg ttatccacaga at cagg gg at aacg cagga aa agaa catgt gag caa aa gg ccag cagga aa agaa catgt gag caa aa gg ccag cagga aa agaa catgt gag caa aa gg ccag cagga aa agaa catgt gag caa aa gg ccag cagga aa agaa catgt gag caa aa ga catgt gag caa aa catgt gag ctogtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgcctttctcccttcgggaagcgtggcgctttctcatage teacget g taggtate teagt teggt taggt eget cataget tagget taggetagcccgaccgctgcgccttatccggtaactatcgtcttgagtccaacccggtaagacacgacttatcgccactggcagcagccactggtaacaggattagcagagcgaggtatgtaggcggtgctacagagttcttgaagtggtggcctaacta cggctacactagaagaacagtatttggtatctgcgctctgctgaagccagttaccttcggaaaaaagagttggtagctct aacttggtctgacagcggccgcaaatgctaaaccactgcagtggttaccagtgcttgatcagtgaggcaccgatctc cagg ccc cag cg cag caat gat gcc gcg ag ag ccg cgt t cac cgg ccc ccg at tt gt cag caat gaa ccag ccatagagtaagaagttcgccagtgagtagtttccgaagagttgtggccattgctactggcatcgtggtatcacgctcgtcg t cag ctcct taggg cctccg at cgttg tcaga ag taag ttggccgcggtgttg tcgctcat gg taat gg cag cactacct cat categggaat cgt ctt cggggcggaaa gact caaggat ctt gccgc tattgagat ccagt tcgat at agccccc and the compact category and the category and the compact category and the compact category and the compact category and the compact category and the caact ctt g caccca g tt g at ctt cag cat cttt ta ctt t cac cag c g ttt c g g g t g t g caa aa aa cag g caa g caa aa t g caa cag g caa g caa aa t g caa cag g caa g caa aa t g caa cag g caa g caa aa t g caa cag g caa g caa aa t g caa cag g caa g caa aa t g caa cag g caa g caa aa t g caa cag g caa aa aa cag g caa g caa aa t g caa cag g caa aa aa cag g caa aa cag $cgcaaagaagggaatgagtgcgacacgaaaatgttggatgctcatactcgt {\color{red} c} ctttttcaatattattgaagcatttatc$ caa aa caa acta g caa aa tag g c t g t c c cag t g caa g t g cag g t g c cag aa catt t c t c taa g t aa ta t t aa g g t a caa aa caa acta g caa aa tag g cag g t g cag g t g cag g t g cag g c

gggaggtattggacaggccgcaataaaatatctttattttcattacatctgtgtgttggttttttgtgtgaatc (SEQ ID NO:89), and

pGL4.70

5

10

15

20

25

30

35

40

45

ggcctaactggccggtacctgagctcgctagcctcgaggatatcaagatctggcctcggcggccaagcttggcaatceggtactgttggtaaagccaccatggcttccaaggtgtacgaccccgagcaacgcaaacgcatgatcactgggcctggctagatgcatcatccctgatctgatcggaatgggtaagtccggcaagagcgggaatggctcatatcgcctcctggat cacta caa a gaa a act cacca caccact ggt to gag cotte caa a gaa a act catct tt gt ggg coacgact ggggggcttgtctggcctttcactactcctacgagcaccaagacaagatcaaggccatcgtccatgctgagagtgtcgtg gacgtgatcgagtcctgggacgagtggcctgacatcgaggaggatatcgccctgatcaagagggaagagggga $agt tcgctgcctacctggagccattcaaggagaagggcgaggttagacggcctaccctctctgg \\ \texttt{C}ctcgcgagat$ ccctctcgttaagggaggcaagcccgacgtcgtccagattgtccgcaactacaacgcctaccttcgggccagcgac gatctgcctaagatgttcatcgagtccgaccctgggttcttttccaacgctattgtcgagggagctaagaagttccctaa caccgagttcgtgaaggtgaagggcctccacttcagccaggaggacgctccagatgaaatgggtaagtacatcaag at a agata catt gat gag ttt ggacaaaccacaacta gaat gcag t gaaaaaaaa at gctt tatt t gt gaaattt gt gat gctggaggtgtgggaggttttttaaagcaagtaaaacctctacaaatgtggtaaaatcgataaggatccgtcgaccgatgc ccttgagagccttcaacccagtcagctccttccggtgggcgcggggcatgactatcgtcgccgcacttatgactgtct tetttateatgeaactegtaggaeaggtgeeggeagegetetteegetteetegeteactgaetegeteggteg ttcggctgcggcgagcggtatcagctcactcaaaggcggtaatacggttatccacagaatcaggggataacgcagg aaagaacatgtgagcaaaaggccagcaaaaggccaggaaccgtaaaaaggccgcgttgctggc gtttttccatag gctccgccccctgacgagcatcacaaaaatcgacgctcaagtcagaggtggcgaaacccgaca_ggactataaag ataccaggcgtttccccctggaagctccctcgtgcgctctcctgttccgaccctgccgcttaccggatacctgtccgc ctttctcccttcgggaagcgtggcgctttctcatagctcacgctgtaggtatctcagttcggtgtaggtcgttcgctcca $agctgggctgtgtgcacgaacccccgttcagcccgaccgctgcgccttatccggtaactatcgtc \verb|ttgagtccaac||$ ceggta agacac gacttate gecact ggeag cage cact gg taa cag gattag cag ag cgag gtat gtag geggtgctacagagttcttgaagtggtggcctaactacggctacactagaagaacagtatttggtatctgcgctctgctgaagcagtatttggtatctgcgctgaagcagtatttggtatctgcgctgaagcagtatttggtatctgcgctgaagcagtatttggtatctgcgctgaagcagtatttggtatctgcgctgaagcagtatttggaagcagtatttggtatctgcgctgaagcagtatttggaagcagaacgaaaactcacgttaagggattttggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagcggccgcaaatgctaaaccactgcagtggttacgatcactac gattcgtg agggcttac catcaggccccagcgcagcaatgatgccgcgagagccgcgttcaccggcctactgg catcgtgg tatcacgctcgttcggtatggcttcgttcaactctggttcccagcggtcaa.gccgggtcacgttgtcgctcatggtaatggcagcactacacaattctcttaccgtcatgccatccgtaagatgcttttccgtgaccggcgagtactcaaccaagtcgttttgtgagtagtgtatacggcgaccaagctgctcttgcccggcgtctatacgggacaaca cgctattgagatccagttcgatatagcccactcttgcacccagttgatcttcagcatcttttactttcaccagcgtttcggg gtgtgcaaaaacaggcaagcaaaatgccgcaaagaagggaatgagtgcgacacgaaaatgttggatgctcatact $gagg tattggacagg ccg caataaaa tatctttatttt cattacatctgtgtgtttgttttttgtgtgaatc{\it gatagtactaa}$

catacgctctccatcaaaacaaacgaaacaaaacaaactagcaaaataggctgtccccagtgcaagtgcaggtgccagaacatttctct (SEQ ID NO:90).

The pGL4 backbone (*NotI-NcoI*) has the following sequence: 5 geggeegcaaatgetaaaccactgeagtggttaccagtgettgateagtgaggeaccgateteagegatetgeetatt tegttegteeatagtggeetgacteecegtegtgtagateactaegattegtgagggettaceateaggeeceagege gccagtgagtagtttccgaagagttgtggccattgctactggcatcgtggtatcacgctcgtcgttcggtatggcttcgt 10 tcaactctggttcccagcggtcaagccgggtcacatgatcacccatattatgaagaaatgcagtcagctccttagggc ctccgatcgttgtcagaagtaagttggccgcggtgttgtcgctcatggtaatggcagcactacacaattctcttaccgtc atgccatccgtaagatgcttttccgtgaccggcgagtactcaaccaagtcgttttgtgagtagtgtatacggcgaccaa gctgctcttgcccggcgtctatacgggacaacaccgcgccacatagcagtactttgaaagtgctcatcatcgggaat cgttcttcggggcggaaagactcaaggatcttgccgctattgagatccagttcgatatagcccactcttgcacccagtt 15 atgagtgcgacacgaaaatgttggatgctcatactcgtcctttttcaatattattgaagcatttatcagggttactagtacg tctctcaaggataagtaagtaatattaaggtacgggaggtattggacaggccgcaataaaatatctttatttcattacat aaaataggetgteeccagtgeaagtgeaggtgeeagaacatttetetggeetaactggeeggtacetgagetegeta 20 gcctcgaggatatcaagatctggcctcggcggccaagcttggcaatccggtactgttggtaaagccaccatgg (SEQ ID NO:74).

Example 10

Summary of Sequences Removed in Synthetic Genes

25 Search parameters:

30

TFBS searches were limited to vertebrate TF binding sites. Searches were performed by matrix family, *i.e.*, the results show only the best match from a family for each site. MatInspector default parameters were used for the core and matrix similarity values (core similarity = 0.75, matrix similarity = optimized), except for sequence MCS-1 (core similarity = 1.00, matrix similarity = optimized).

Promoter module searches included all available promoter modules (vertebrate and others) and were performed using default parameters (optimized threshold or 80% of maximum score).

35 Splice site searches were performed for splice acceptor or donor consensus sequences.

Table 31

Sequence	" Matrix	TFBS "	Promoter	Splice sites,
	Library	(family	modules	(+ strand)
		*matches)	地名	W. T. C. C. C. C.
puro	(not applicable)	62	5	0
hpuro	(not applicable)	68	4	1
hpuro1	Ver 4.1 Feb 2004	4	2	1
hpuro2	Ver 4.1 Feb 2004	2	0	1
Neo	(not applicable)	53	0	No data
hneo	(not applicable)	61	2	3
hneo-1	Ver 3.1.2 Jun 2003	No data	No data	No data
hneo-2	Ver 3.1.2 Jun 2003	No data	No data	No data
hneo-3	Ver 3.1.2 Jun 2003	0	0	0
hneo-4	Ver 4.1 Feb 2004	7	1	0
hneo-5	Ver 4.1 Feb 2004	0	0	0
Hyg	(not applicable)	74	3	No data
hhyg	(not applicable)	94	4	6
hhyg-1	Ver 3.1.2 Jun 2003	No data	No data	No data
hhyg-2	Ver 3.1.2 Jun 2003	No data	No data	No data
hhyg-3	Ver 3.1.2 Jun 2003	3	0	0
hHygro	Ver 3.3 Aug 2003	5.	0	0
hhyg-4	Ver 3.3 Aug 2003	4	0	0
Luc	(not applicable)	213	11	No data
Luc+	(not	189	7	No data

44 December 1997 (Street Bellet)	HET DETECTION AND SOME STREET	5.00 to 200 - 200 or 100 or	STATE OF STATE OF	Seatter Lorge
Sequence.	Matrix			Splice sites
	Library.			(+ strand)
"特别"的"特别"	19 5 90 60 100 10	matches)	会是是多种的	THE STATE OF THE S
	applicable)			
hluc+ver2A1	Ver 3.0 Nov	110	7	6
	2002			
hluc+ver2A2	Ver 3.0 Nov	No data	No data	No data
	2002			
hluc+ver2A3	Ver 3.0 Nov	8	No data	0
I I I I I I I I I I I I I I I I I I I	2002		110 data	
hluc+ver2A4	Ver 3.0 Nov	No data	No data	No data
muc PV612A4		No data	No data	No data
11	2002	NT 1.	37 1 .	
hluc+ver2A5	Ver 3.0 Nov	No data	No data	No data
	2002			
hluc+ver2A6	Ver 3.0 Nov	2	0	0
	2002	<u></u>		
hluc+ver2A6	Ver 3.1.1 Apr	4	0	0
	2003			
hluc+ver2A7	Ver 3.1.1 Apr	1	0	0
	2003			_
hluc+ver2A8	Ver 3.1.1 Apr	1	0	0
	2003	•	Ŭ	
hluc+ver2B1	Ver 3.0 Nov	187	2	8
muc voizbi	2002	107	2	0
hluc+ver2B2	Ver 3.0 Nov	No data	NT- 1-4-	NT- 1-4-
		No data	No data	No data
11	2002	25	37.4	
hluc+ver2B3	Ver 3.0 Nov	35	No data	0
	2002			··· · · · · · · · · · · · · · · · · ·
hluc+ver2B4	Ver 3.0 Nov	No data	No data	No data
	2002			
hluc+ver2B5	Ver 3.0 Nov	No data	No data	No data
	2002		-	
hluc+ver2B6	Ver 3.0 Nov	2	0	0
	2002			
hluc+ver2B6	Ver 3.1.1 Apr	6	0	0
	2003	-	-	
hluc+ver2B7	Ver 3.1.1 Apr	2	0	0
111111111111111111111111111111111111111	2003			U
hluc+ver2B8	Ver 3.1.1 Apr	1	0	0
mido · vol2Do	-	1	U	V
hluo tro-200	2003	1		
hluc+ver2B9	Ver 3.1.1 Apr	1	0	0
11	2003			
hluc+ver2B10	Ver 3.1.1 Apr	1	0	0
	2003			
MCS-1	Ver 2.2 Sep	14	No data	(not
	2001			applicable)

Sequence	Matrix	TFBS	Promoter	Splice sites
	Library	(family	modules	(+ strand)
一种 主体的				
MCS-2	Ver 2.2 Sep	12	No data	(not
	2001			applicable)
MCS-3	Ver 2.2 Sep	0	No data	(not
	2001			applicable)
MCS-4	Ver 2.3 Feb	0	0	(not
	2001			applicable)
Bla	(not	No data	No data	(not
	applicable)			applicable)
bla-1	Ver 2.2 Sep	94	1	(not
	2001			applicable)
bla-2	Ver 2.3 Feb	51	No data	(not
	2001			applicable)
bla-3	Ver 2.3 Feb	16	No data	(not
	2001		_,	applicable)
bla-4	Ver 2.3 Feb	14	No data	(not
	2001			applicable)
bla-5	Ver 2.3 Feb	5	0	(not
	2001	_		applicable)

pGL4B-4NN	Ver 2.4 May	11	0	(not
	2002			applicable)
pGL4B-4NN1	Ver 2.4 May	7	No data	(not
	2002			applicable)
pGL4B-4NN2	Ver 2.4 May	4	0	(not
F	2002	,	J	applicable)
pGL4B-4NN3	Ver 2.4 May	3	0	(not
F	2002		Ū	applicable)
SpeI-NcoI-	Ver 4.0 Nov	34	1	(not
Ver2-Start	2003]	•	applicable)
SpeI-NcoI-Ver2	Ver 4.0 Nov	28	1	(not
-	2003		•	applicable)
	2005	L		applicable)

Using the 5 sequences, i.e., hluc+ver2A1, bla-1, hneo-1, hpuro-1, hhyg-1 (humanized codon usage) for analysis, TFBS from the following families were found in 3 out 5 sequences:

5 V\$AHRR (AHR-arnt heterodimers and AHR-related factors)

V\$ETSF (Human and murine ETS1 factors)

V&NFKB (Nuclear Factor Kanpa B/c-rel)

V\$VMYB (AMV-viral myb oncogene)

V\$CDEF (Cell cycle regulators: Cell cycle dependent element)

V\$HAND (bHLH transcription factor dimer of HAND2 and E12)

V\$NRSF (Neuron-Restrictive Silencer Factor)

5 V\$WHZF (Winged Helix and ZF5 binding sites)

V\$CMYB (C-myb, cellular transcriptional activator)

V\$MINI (Muscle INItiator)

V\$P53F (p53 tumor suppr.-neg. regulat. of the tumor suppr. Rb)

V\$ZF5F (ZF5 POZ domain zinc finger)

10 V\$DEAF (Homolog to deformed epidermal autoregulatory factor-1

from D. melanogaster)

V\$MYOD (MYOblast Determining factor)

V\$PAX5 (PAX-5/PAX-9 B-cell-specific activating protein)

V\$EGRF (EGR/nerve growth Factor Induced protein C & rel. fact.)

15 V\$NEUR (NeuroD, Beta2, HLH domain)

V\$REBV (Epstein-Barr virus transcription factor R);

TFBS from the following families were found in 4 out of 5 sequences:

V\$ETSF (Human and murine ETS1 factors)

20 V\$CDEF (Cell cycle regulators: Cell cycle dependent element)

V\$HAND (bHLH transcription factor dimer of HAND2 and E12)

V\$NRSF (Neuron-Restrictive Silencer Factor)

V\$PAX5 (PAX-5/PAX-9 B-cell-specific activating protein)

V\$NEUR (NeuroD, Beta2, HLH domain); and

25

TFBS from the following families were found in 5 out of 5 sequences:

V\$PAX5 (PAX-5/PAX-9 B-cell-specific activating protein).

30 References

Altschul et al., Nucl. Acids Res., 25, 3389 (1997).

Aota et al., Nucl. Acids Res., 16, 315 (1988).

Boshart et al., Cell, 41, 521 (1985).

Bronstein et al., Cal. Biochem., 219, 169 (1994).

Corpet et al., Nucl. Acids Res., 16, 881 (1988).

deWet et al., Mol. Cell. Biol., 7, 725 (1987).

Dijkema et al., EMBO J., 4, 761 (1985).

5 Faist and Meyer, <u>Nucl. Acids Res.</u>, 20, 26 (1992).

Gorman et al., Proc. Natl. Acad. Sci. USA, 79, 6777 (1982).

Higgins et al., Gene, 73, 237 (1985).

Higgins et al., <u>CABIOS</u>, <u>5</u>, 151 (1989).

Huang et al., <u>CABIOS</u>, <u>8</u>, 155 (1992).

10 Itolcik et al., PNAS, 94, 12410 (1997).

Johnson et al., Mol. Reprod. Devel., 50, 377 (1998).

Jones et al., Mol. Cell. Biol., 17, 6970 (1997).

Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 87, 2264 (1990).

Karlin and Altschul, Proc. Natl. Acad. Sci. USA, 90, 5873 (1993).

15 Keller et al., <u>J. Cell Biol.</u>, <u>84</u>, 3264 (1987).

Kim et al., Gene, 91, 217 (1990).

Lamb et al., Mol. Reprod. Devel., 51, 218 (1998).

Mariatis et al., Science, 236, 1237 (1987).

Michael et al., EMBO. J., 9, 481 (1990).

20 Mizushima and Nagata, Nucl. Acids Res., 18, 5322 (1990).

Murray et al., Nucl. Acids Res., 17, 477 (1989).

Myers and Miller, CABIOS, 4, 11 (1988).

Nakamura et al., NAR, 28:292 (2000).

Needleman and Wunsen, <u>J. Mol. Biol.</u>, <u>48</u>, 443 (1970).

25 Pearson and Lipman, <u>Proc. Natl. Acad. Sci. USA</u>, <u>85</u>, 2444 (1988).

Pearson et al., Meth. Mol. Biol., 24, 307 (1994).

Sharp et al., Nucl. Acids Res., 16, 8207 (1988).

Sharp et al., Nucl. Acids Res., 15, 1281 (1987).

Smith and Waterman, Adv. Appl. Math., 2, 482 (1981).

30 Stemmer et al., <u>Gene</u>, <u>164</u>, 49 (1995).

Uetsuki et al., J. Biol. Chem., 264, 5791 (1989).

Voss et al., <u>Trends Biochem. Sci.</u>, <u>11</u>, 287 (1986).

Wada et al., Nucl. Acids Res., 18, 2367 (1990).

Watson et al, eds. Recombinant DNA: A Short Course, Scientific American Books, W. H. Freeman and Company, New York (1983).

Wood, K. Photochemistry and Photobiology, 62, 662 (1995).

Wood, K. Science 244, 700 (1989)

5

10

All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details herein may be varied considerably without departing from the basic principles of the invention.

WHAT IS CLAIMED IS:

An isolated nucleic acid molecule comprising a synthetic nucleotide 1. sequence having a coding region for a selectable polypeptide, wherein the synthetic nucleotide sequence has 90% or less nucleic acid sequence 5 identity to a parent nucleic acid sequence encoding a corresponding selectable polypeptide, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence, wherein the nucleotide sequence encodes a selectable polypeptide with at least 85% amino acid 10 sequence identity to the corresponding selectable polypeptide encoded by the parent nucleic acid sequence, wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide 15 sequence and the parent nucleic acid sequence, and wherein the synthetic nucleotide sequence, when expressed in a cell, confers resistance to ampicillin, puromycin, hygromycin or neomycin.

- 20 2. The isolated nucleic acid molecule of claim 1 wherein the regulatory sequences include transcription factor binding sequences, intron splice sites, poly(A) sites, promoter modules, and/or promoter sequences.
- The isolated nucleic acid molecule of claim 1 wherein a majority of the codons which differ are ones that are preferred codons of a desired host cell and/or are not low-usage codons in that host cell.
- 4. The isolated nucleic acid molecule of claim 3 wherein the majority of the codons which differ in the synthetic nucleic acid sequence are those which are employed more frequently in mammals.

5. The isolated nucleic acid molecule of claim 3 wherein the majority of the codons which differ in the synthetic nucleic acid sequence are those which are preferred codons in humans.

- 5 6. The isolated nucleic acid molecule of claim 3 wherein the majority of codons which differ are the codons CGC, CTG, AGC, ACC, CCC, GCC, GGC, GTG, ATC, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC and TTC.
- 10 7. The isolated nucleic acid molecule of claim 1 wherein the nucleic acid molecule encodes a fusion of the selectable polypeptide with a luciferase.
 - 8. The isolated nucleic acid molecule of claim 7 wherein the luciferase is a *Renilla* luciferase, a firefly luciferase or a click beetle luciferase.

15

- 9. The isolated nucleic acid molecule of claim 1 wherein the parent nucleic acid sequence is a wild-type neo, hyg, bla or puro sequence.
- The isolated nucleic acid molecule of claim 1 wherein the parent nucleic acid sequence is SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:15 or SEQ ID NO:41.
- The isolated nucleic acid molecule of claim 1 wherein the synthetic nucleotide sequence comprises an open reading frame in SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:42, SEQ ID NO:44; SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, or SEQ ID NO:84.

30

12. The isolated nucleic acid molecule of claim 1 wherein the synthetic nucleotide sequence has at least 10% fewer regulatory sequences.

13. The isolated nucleic acid molecule of claim 1 wherein the synthetic nucleotide sequence has an increased number of AGC serine-encoding codons, an increased number of ATC isoleucine-encoding codons, an increased number of CCC proline-encoding codons, and/or an increased number of ACC threonine-encoding codons.

5

- 14. The isolated nucleic acid molecule of claim 1 wherein the codons in the synthetic nucleotide sequence which differ encode the same amino acids as the corresponding codons in the parent nucleic acid sequence.
- The isolated nucleic acid molecule of claim 1 which has at least 90% nucleotide sequence identity to an open reading frame in any one of SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, or SEQ ID NO:84, or the complement thereof.
- The isolated nucleic acid molecule of claim 1 wherein the nucleic acid
 molecule encodes a fusion of the selectable polypeptide with one or more
 other peptides or polypeptides, wherein at least the selectable polypeptide
 is encoded by the synthetic nucleic acid sequence.
- The isolated nucleic acid molecule of claim 16 wherein one or more other peptides are peptides having protein destabilization sequences.
 - 18. A plasmid comprising the nucleic acid molecule of claim 1.
- 19. The plasmid of claim 18 which further comprises a multiple cloning30 region.
 - 20. The plasmid of claim 18 which further comprises an open reading frame of interest.

21. The plasmid of claim 18 which further comprises a promoter functional in a particular host cell operably linked to the synthetic nucleotide sequence.

- 22. The plasmid of claim 21 wherein the promoter is functional in a prokaryotic cell.
- 23. The plasmid of claim 21 wherein the promoter is functional in a eukaryotic cell.
 - 24. The plasmid of claim 20 further comprising a promoter operably linked to the open reading frame of interest.
- 15 25. An isolated nucleic acid molecule comprising a synthetic nucleotide sequence encoding a firefly luciferase, wherein the synthetic nucleotide sequence has 80% or less nucleic acid sequence identity to a parent nucleic acid sequence having SEQ ID NO:43 or 85% or less nucleic acid sequence identity to a parent nucleic acid sequence having SEO ID 20 NO:14 which encodes a firefly luciferase, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence, wherein the synthetic nucleotide sequence encodes a firefly luciferase which has at least 85% amino acid sequence identity to the 25 corresponding luciferase encoded by the parent nucleic acid sequence, and wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent 30 nucleic acid sequence.
 - 26. The isolated nucleic acid molecule of claim 25 wherein the regulatory sequences include transcription factor binding sequences, intron splice

sites, poly(A) sites, promoter modules, and/or promoter sequences.

27. The isolated nucleic acid molecule of claim 25 wherein a majority of the codons which differ are ones that are preferred codons of a desired host cell and/or are not low-usage codons in that host cell.

28. The isolated nucleic acid molecule of claim 27 wherein the majority of the codons which differ in the synthetic nucleic acid molecule are those which are employed more frequently in mammals.

10

- 29. The isolated nucleic acid molecule of claim 27 wherein the majority of the codons which differ in the synthetic nucleic acid molecule are those which are preferred codons in humans.
- The isolated nucleic acid molecule of claim 27 wherein the majority of codons which differ are the codons CGC, CTG, AGC, ACC, CCC, GCC, GGC, GTG, ATC, AAG, AAC, CAG, CAC, GAG, GAC, TAC, TGC and TTC.
- The isolated nucleic acid molecule of claim 25 wherein the synthetic nucleotide sequence comprises a sequence in an open reading frame in SEQ ID NO:21, SEQ ID NO:22, or SEQ ID NO:23 or has at least 90% nucleotide sequence identity thereto.
- 25 32. The isolated nucleic acid molecule of claim 25 wherein the synthetic nucleic acid molecule is expressed in a mammalian host cell at a level which is greater than that of the parent nucleic acid sequence.
- 33. The isolated nucleic acid molecule of claim 25 wherein the synthetic

 nucleic acid molecule has an increased number of AGC serine-encoding
 codons, an increased number of CCC proline-encoding codons, an
 increased number of ATC isoleucine-encoding codons and/or an
 increased number of ACC threonine-encoding codons.

34. The isolated acid molecule of claim 25 wherein the synthetic nucleotide sequence has at least 10% fewer transcription regulatory sequences.

- 5 35. The isolated nucleic acid molecule of claim 25 wherein the codons in the synthetic nucleotide sequence which differ encode the same amino acids as the corresponding codons in the parent nucleic acid sequence.
- 36. The isolated nucleic acid molecule of claim 25 wherein the nucleic acid molecule encodes a fusion of the luciferase with one or more other peptides or polypeptides, wherein at least the luciferase is encoded by the synthetic nucleic acid sequence.
- The isolated nucleic acid molecule of claim 36 wherein one or more other peptides are peptides having protein destabilization sequences.
 - 38. A plasmid comprising the nucleic acid molecule of claim 25.
- 39. The plasmid of claim 38 which further comprises a multiple cloning 20 region.
 - 40. The plasmid of claim 38 which further comprises a promoter operatively linked to the synthetic nucleotide sequence.
- 25 41. The plasmid of claim 38 which further comprises the synthetic nucleotide sequence of the nucleic acid molecule of claim 1.
 - 42. An expression vector comprising the nucleic acid molecule of claim 25 linked to a promoter functional in a cell.

30

43. The expression vector of claim 42 wherein the promoter is functional in a eukaryotic cell.

44. The expression vector of claim 42 wherein the expression vector further comprises a multiple cloning site.

- 45. The expression vector of claim 42 wherein the promoter is functional in a mammalian cell.
 - 46. The expression vector of claim 42 wherein the synthetic nucleotide sequence is operatively linked to a Kozak consensus sequence.
- 10 47. A plasmid comprising a nucleotide sequence comprising SEQ ID NO:74 or a nucleotide sequence comprising at least 80% nucleic acid sequence identity to SEQ ID NO:74, which nucleotide sequence comprises an open reading frame with less than 90% nucleic acid sequence identity to SEQ ID NO:41, and the expression of which open reading frame in a host cell confers resistance to ampicillin.
 - 48. A host cell comprising the expression cassette of claim 42.
 - 49. A host cell comprising the plasmid of claim 17, 38 or 47.

- 50. A kit comprising, in suitable container means, the plasmid of claim 17, 38 or 47.
- A polynucleotide which hybridizes under stringent hybridization
 conditions to SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:30, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:42, SEQ ID NO:44, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, or the complement of the polynucleotide, wherein the polynucleotide or the complement thereof encodes a selectable polypeptide or a firefly luciferase.

52. The polynucleotide of claim 51 which does not have SEQ ID NO:1, SEQ ID NO:6, SEQ ID NO:15, SEQ ID NO:41, SEQ ID NO:14, or SEQ ID NO:43.

5

- 53. An isolated nucleic acid molecule comprising a synthetic nucleotide sequence which does not code for a desirable peptide or polypeptide but includes sequences which inhibit transcription and/or translation, wherein the synthetic nucleotide sequence has at least 20 nucleotides which have a different sequence relative to a corresponding parent nucleic acid sequence which does not code for the desirable peptide or polypeptide, wherein the synthetic nucleotide sequences has 90% or less nucleic acid sequence identity to the parent nucleic acid sequences, and wherein the sequence difference is a result of a reduced number of one or more regulatory sequences in the synthetic nucleotide sequence relative to the parent nucleic acid sequence.
 - 54. The isolated nucleic acid molecule of claim 53 wherein the synthetic nucleotide sequence has SEQ ID NO:49.

20

- 55. The isolated nucleic acid molecule of claim 53 further comprising a multiple cloning region and/or a poly(A) site.
- The isolated nucleic acid molecule of claim 53 wherein the sequenceswhich inhibit transcription include one or more poly(A) sites.
 - 57. The isolated nucleic acid molecule of claim 53 wherein the sequences which inhibit translation include one or more stop codons in one or more reading frames.

30

58. The isolated nucleic acid molecule of claim 53 wherein the parent nucleic acid sequence includes a multiple cloning region.

59. The isolated nucleic acid molecule of claim 53 wherein the parent nucleic acid sequence includes sequences which inhibit transcription and/or translation.

- 5 60. The isolated nucleic acid molecule of claim 53 wherein the parent nucleic acid sequence has SEQ ID NO:76.
 - 61. The isolated nucleic acid molecule of claim 53 wherein the synthetic nucleotide sequence has a reduced number of one or more restriction endonuclease recognition sites relative to the parent nucleic acid sequence.
 - 62. A plasmid comprising the nucleic acid molecule of claim 53.

- 15 63. A plasmid which includes a sequence including SEQ ID NO:89, SEQ ID NO:90, or a sequence having at least 90% nucleic acid sequence identity thereto, or the complement thereof, which sequence encodes at least one selectable and/or screenable polypeptide.
- 20 64. The plasmid of claim 63 further comprising a multiple cloning region.
 - 65. The plasmid of claim 63 further comprising another selectable or screenable polypeptide.
- 25 66. The plasmid of claim 63 or 65 wherein at least one selectable or screenable polypeptide comprises one or more protein destabilization sequences.
- The plasmid of claim 63 wherein the sequence for the at least one selectable and/or screenable polypeptide is not SEQ ID NO:41.
 - 68. A synthetic nucleotide sequence of at least 100 nucleotides having a coding region for a selectable polypeptide which confers resistance to ampicillin, puromycin, hygromycin or neomycin, wherein the synthetic

nucleotide sequence has 90% or less nucleic acid sequence identity to a corresponding region of a parent nucleic acid sequence for the selectable polypeptide, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the corresponding region in the parent nucleic acid sequence, wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence.

An isolated nucleic acid molecule encoding a selectable polypeptide and comprising a synthetic nucleotide sequence of at least 100 nucleotides having a coding region for the selectable polypeptide, wherein the synthetic nucleotide sequence has 90% or less nucleic acid sequence identity to a corresponding region in a parent nucleic acid sequence for the selectable polypeptide, wherein the decreased sequence identity is a result of different codons in the synthetic nucleotide sequence relative to the codons in the parent nucleic acid sequence, wherein the synthetic nucleotide sequence encodes a region of the selectable polypeptide with at least 85% amino acid sequence identity to the corresponding region of the selectable polypeptide encoded by the parent nucleic acid sequence, wherein the synthetic nucleotide sequence has a reduced number of regulatory sequences relative to the average number of regulatory sequences resulting from random selections of codons at the sequences which differ between the synthetic nucleotide sequence and the parent nucleic acid sequence, and wherein the isolated nucleic acid molecule, when expressed in a cell, confers resistance to ampicillin, puromycin, hygromycin or neomycin.

30

5

10

15

20

25

69.

Figure 1

Amino Acid	Codon
Phe	UUU, UUC
Ser	UCU, UCC, UCA, UCG, AGU, AGC
Tyr	UAU, UAC
Cys	UGU, UGC
Leu	UUA, UUG, CUU, CUC, CUA, CUG
Trp	UGG
Pro	CCU, CCC, CCA, CCG
His	CAU, CAC
Arg	CGU, CGC, CGA, CGG, AGA, AGG
Gln	CAA, CAG
Пе	AUU, AUC, AUA
Thr	ACU, ACC, ACA, ACG
Asn	AAU, AAC
Lys	AAA, AAG
Met	AUG
Val	GUU, GUC, GUA, GUG
Ala	GCU, GCC, GCA, GCG
Asp	GAU, GAC
Gly	GGU, GGC, GGA, GGG
Glu	GAA, GAG

f16.2

<110> Promega Corporation

SEQUENCE LISTING

```
5
       Wood, Keith
       Wood, Monika
       Almond, Brian
        Paguio, Aileen
        Fan, Frank
10
  <120> Synthetic nucleic acid molecule and methods of preparation
  <130> 341.034W01
15
  <160> 97
  <170> FastSEQ for Windows Version 4.0
20<210> 1
  <211> 795
  <212> DNA
  <213> Unknown
25<220>
  <223> Neo from neomycin gene from Promega's pCI-neo.
  <400> 1
  atgattgaac aagatggatt gcacgcaggt tctccggccg cttgggttgga gaggctattc 60
30ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 120
  gcgcaggggc gcccggttct ttttgtcaag accgacctgt ccggtgccct gaatgaactg 180
  caggacgagg cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 240
  ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 300
  gatctcctgt catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 360
35cggcggctgc atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc 420
  atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 480
  gagcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catqcccqac 540
  ggcgaggatc tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat 600
  ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 660
40atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc 720
  ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt 780
  gacgagttct tctga
                                                                     795
```

2

<210> 2 <211> 264 <212> PRT <213> Unknown

<223> Neo from neomycin gene from Promega's pCI-neo.

<400> 2

<220>

10Met Ile Glu Gln Asp Gly Leu His Ala Gly Ser Pro Ala Ala Trp Val 1 5 10 15

Glu Arg Leu Phe Gly Tyr Asp Trp Ala Gln Gln Thr Ile Gly Cys Ser 20 25 30

Asp Ala Ala Val Phe Arg Leu Ser Ala Gln Gly Arg Pro Val Leu Phe
15 35 40 45

Val Lys Thr Asp Leu Ser Gly Ala Leu Asn Glu Leu Gln Asp Glu Ala
50 55 60

Ala Arg Leu Ser Trp Leu Ala Thr Thr Gly Val Pro Cys Ala Ala Val
65 70 75 80

20Leu Asp Val Val Thr Glu Ala Gly Arg Asp Trp Leu Leu Gly Glu 85 90 95

Val Pro Gly Gln Asp Leu Leu Ser Ser His Leu Ala Pro Ala Glu Lys
100 105 110

Val Ser Ile Met Ala Asp Ala Met Arg Arg Leu His Thr Leu Asp Pro 25 115 120 125

Ala Thr Cys Pro Phe Asp His Gln Ala Lys His Arg Ile Glu Arg Ala 130 135 140

Arg Thr Arg Met Glu Ala Gly Leu Val Asp Gln Asp Asp Leu Asp Glu

30Glu His Gln Gly Leu Ala Pro Ala Glu Leu Phe Ala Arg Leu Lys Ala 165 170 175

Arg Met Pro Asp Gly Glu Asp Leu Val Val Thr His Gly Asp Ala Cys
180 185 190

Leu Pro Asn Ile Met Val Glu Asn Gly Arg Phe Ser Gly Phe Ile Asp

Cys Gly Arg Leu Gly Val Ala Asp Arg Tyr Gln Asp Ile Ala Leu Ala 210 215 220

Thr Arg Asp Ile Ala Glu Glu Leu Gly Gly Glu Trp Ala Asp Arg Phe 225 230 235 240

40Leu Val Leu Tyr Gly Ile Ala Ala Pro Asp Ser Gln Arg Ile Ala Phe 245 250 255

Tyr Arg Leu Leu Asp Glu Phe Phe

3

<210> 3 <211> 825 <212> DNA

```
5<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
10<400> 3
  ccactcagtg gccaccatga tegageagga eggeetgeac geeggeagec eegeegeetg 60
  ggtggagcgc ctgttcggct acgactgggc ccagcagacc atcggctgca gcgacgccgc 120
  cgtgttccgc ctgagcgccc agggccgccc cgtgctgttc gtgaagaccg acctgagcgg 180
  cgccctgaac gagctgcagg acgaggccgc ccgcctgagc tggctggcca ccaccggcgt 240
15gccctgcgcc gccgtgctgg acgtggtgac cgaggccggc cgcgactggc tgctgctggg 300
  cgaggtgccc ggccaggacc tgctgagcag ccacctggcc cccgccgaga aggtgagcat 360.
  catggccgac gccatgcgcc gcctgcacac cctggacccc gccacctgcc ccttcgacca 420
  ccaggccaag caccgcatcg agcgcgcccg cacccgcatg gaggccggcc tggtggacca 480
  ggacgacctg gacgaggagc accagggcct ggcccccgcc gagctgttcg cccgcctgaa 540
20ggcccgcatg cccgacggcg aggacctggt ggtgacccac ggcgacgcct gcctgcccaa 600
  catcatggtg gagaacggcc gcttcagcgg cttcatcgac tgcggccgcc tgggcgtggc 660
  cgaccgctac caggacatcg ccctggccac ccgcgacatc gccgaggagc tgggcggcga 720
  gtgggccgac cgcttcctgg tgctgtacgg catcgccgcc cccgacagcc agcgcatcgc 780
  cttctaccgc ctgctggacg agttcttcta ataaccagtc tctgg
                                                                    825
25
  <210> 4
  <211> 825
  <212> DNA
  <213> Artificial Sequence
3.0
  <220>
  <223> A synthetic construct.
  <400> 4
35ccactcagtg gccaccatga tcgagcagga cggcctgcac gccggcagcc ccgccgcctg 60
  ggtggagege etgttegget aegaetggge eeageagaee ateggetgea gegaegeege 120
  cgtgttccgc ctgagegccc agggcegccc cgtgctgttc gtgaagaccg acctgagegg 180
  cgccctgaac gagctgcagg acgaggccgc ccgcctgagc tggctggcca ccaccggcgt 240
  gecetgegee geegtgetgg aegtggtgae egaggeegge egegaetgge tgetgetggg 300
40cgaggtgccc ggccaggacc tgctgagcag ccacctggcc cccgccgaga aggtgagcat 360
  catggccgac gccatgcgcc gcctgcacac cctggacccc gccacctgcc ccttcgacca 420
  ccaggccaag caccgcatcg agcgccccg cacccgcatg gaggccggcc tggtggacca 480
  qqacqacctq qacqaqqaqc accaqqqcct qqcccccqcc qaqctqttcq cccqcctqaa 540
```

Δ

```
ggcccgcatg cccgacggcg aggacctggt ggtgacccac ggcgacgcct gcctgcccaa 600
 catcatggtg gagaacggcc gcttcagcgg cttcatcgac tgcggccgcc tgggcgtggc 660
 cqaccqctac caggacatcg ccctggccac ccgcgacatc gccgaggagc tgggcggcga 720
 gtgggccgac cgcttcctgg tgctgtacgg catcgccgcc cccgacagcc agcgcatcgc 780
                                                                    825
 Scttctaccgc ctgctggacg agttcttcta ataaccagtc tctgg
 <210> 5
 <211> 818
 <212> DNA
10<213> Artificial Sequence
 <220>
 <223> A synthetic construct.
15<400> 5
 cctgcaggcc accatgatcg aacaagacgg cctccatgct ggcagtcccg cagcttgggt 60
 cgaacgettg ttcgggtacg actgggccca gcagaccatc ggatgtagcg atgcggccgt 120
 gttccgtcta agcgctcaag gccggcccgt gctgttcgtg aagaccgacc tgagcggcgc 180
  cctgaacgag cttcaagacg aggctgcccg cctgagctgg ctggccacca ccggtgtacc 240
20ctgegeeget gtgttggatg ttgtgaeega ageeggeegg gaetggetge tgetgggega 300
 ggtccctggc caggatctgc tgagcagcca ccttgccccc gctgagaagg tttccatcat 360
 ggeogatgca atgeggegec tgcacaccet ggacceeget acatgeecet tegaccacca 420
 ggctaagcat cggatcgagc gtgctcggac ccgcatggag gccggcctgg tggaccagga 480
  cgacctggac gaggagcatc agggcctggc ccccgctgaa ctgttcgccc gcctgaaagc 540
25ccgcatgccg gacggtgagg acctggttgt gacacatggt gatgcctgcc tccctaacat 600
  catggtcgag aatggccgct tctccggctt catcgactgc ggtcgcctag gagttgccga 660
 ccgctaccag gacatcgcc tggccaccg cgacatcgct gaggagcttg gcggcgagtg 720
 ggeogacege ttettagtet tgtaeggeat egeageteee gacagecage geategeett 780
                                                                    818
 ctaccgcctg ctcgacgagt tcttttaatg agcttaag
30
  <210> 6
  <211> 1024
  <212> DNA
  <213> Escherichia coli
35
  <400> 6
  atgaaaaagc ctgaactcac cgcgacgtct gtcgagaagt ttctgatcga aaagttcgac 60
  agcgtctccg acctgatgca gctctcggag ggcgaagaat ctcgtgcttt cagcttcgat 120
  gtaggagggc gtggatatgt cctgcgggta aatagctgcg ccgatggttt ctacaaagat 180
40cgttatgttt atcggcactt tgcatcggcc gcgctcccga ttccggaagt gcttgacatt 240
  ggggaattca gcgagagcct gacctattgc atctcccgcc gtgcacaggg tgtcacgttg 300
  caagacctgc ctgaaaccga actgcccgct gttctgcagc cggtcgcgga ggccatggat 360
  gratcacta caaccaatet tagecagaca ageggattea accestteaa accesaaqaa 420
```

ateggteaat acactacatg gegtgattte atatgegega ttgetgatee ceatggtat 480
cactggeaaa etgtgatgga egacacegte agtgegteeg tegegeagge tetegatgga 540
ctgatgettt gggeegagga etgeecegaa gteeggeaee tegtgeaege ggatttegge 600
tecaacaatg teetgaegga eaatggeege ataacagegg teattgaetg gagegaggeg 660
5atgttegggg atteecaata egaggtegee aacatettet tetggaggee gtggttgget 720
tgtatggage ageagaegeg etaettegag eggaggeate eggagettge aggategee 780
eggeteeggg egtatatget eegeattggt ettgaeeaae tetateagag ettggttgae 840
ggeaattteg atgatgeage tegggegea ggtegatgeg aegeaategt eegateegga 900
geegggaetg tegggegtae acaaategee egeagaageg eggeegtetg gaeegatgge 960
10tgtgtagaag taetegeega tagtggaaae egacgeeeea geaetegtee gagggeaaag 1020
gaat

<210> 7

<211> 341

15<212> PRT

<213> Escherichia coli

<400> 7

Met Lys Lys Pro Glu Leu Thr Ala Thr Ser Val Glu Lys Phe Leu Ile Glu Lys Phe Asp Ser Val Ser Asp Leu Met Gln Leu Ser Glu Gly Glu Glu Ser Arg Ala Phe Ser Phe Asp Val Gly Gly Arg Gly Tyr Val Leu 25Arg Val Asn Ser Cys Ala Asp Gly Phe Tyr Lys Asp Arg Tyr Val Tyr Arg His Phe Ala Ser Ala Ala Leu Pro Ile Pro Glu Val Leu Asp Ile Gly Glu Phe Ser Glu Ser Leu Thr Tyr Cys Ile Ser Arg Arg Ala Gln Gly Val Thr Leu Gln Asp Leu Pro Glu Thr Glu Leu Pro Ala Val Leu Gln Pro Val Ala Glu Ala Met Asp Ala Ile Ala Ala Asp Leu Ser 35Gln Thr Ser Gly Phe Gly Pro Phe Gly Pro Gln Gly Ile Gly Gln Tyr Thr Trp Arg Asp Phe Ile Cys Ala Ile Ala Asp Pro His Val Tyr His Trp Gln Thr Val Met Asp Asp Thr Val Ser Ala Ser Val Ala Gln Ala Leu Asp Glu Leu Met Leu Trp Ala Glu Asp Cys Pro Glu Val Arg

6

His Leu Val His Ala Asp Phe Gly Ser Asn Asn Val Leu Thr Asp Asn 200 205 195 Gly Arg Ile Thr Ala Val Ile Asp Trp Ser Glu Ala Met Phe Gly Asp 215 5Ser Gln Tyr Glu Val Ala Asn Ile Phe Phe Trp Arg Pro Trp Leu Ala Cys Met Glu Gln Gln Thr Arg Tyr Phe Glu Arg Arg His Pro Glu Leu 245 250 Ala Gly Ser Pro Arg Leu Arg Ala Tyr Met Leu Arg Ile Gly Leu Asp 10 265 260 Gln Leu Tyr Gln Ser Leu Val Asp Gly Asn Phe Asp Asp Ala Ala Trp 275 280 285 Ala Gln Gly Arg Cys Asp Ala Ile Val Arg Ser Gly Ala Gly Thr Val 295 15Gly Arg Thr Gln Ile Ala Arg Arg Ser Ala Ala Val Trp Thr Asp Gly 305 310 315 Cys Val Glu Val Leu Ala Asp Ser Gly Asn Arg Arg Pro Ser Thr Arg 330 335 325 Pro Arg Ala Lys Glu 20 340 <210> 8 <211> 1056 <212> DNA 25<213> Artificial Sequence <220> <223> A synthetic construct. 30<400> 8 ccactcagtg gccaccatga agaagcccga gctgaccgcc accagcgtgg agaagttcct 60 gategagaag ttegacageg tgagegaeet gatgeagetg agegagggeg aggagageeg 120 cgccttcagc ttcgacgtgg gcggccgcgg ctacgtgctg cgcgtgaaca gctgcgccga 180 eggettetae aaggaeeget aegtgtaeeg ceaettegee agegeegeee tgeeeateee 240 35cgaggtgctg gacatcggcg agttcagcga gagcctgacc tactgcatca gccgccgcgc 300 ccagggcgtg accetgcagg acctgcccga gaccgagetg cccgccgtgc tgcagcccgt 360 ggccgaggcc atggacgcca tcgccgccgc cgacctgagc cagaccagcg gcttcggccc 420 cttcggcccc cagggcatcg gccagtacac cacctggcgc gacttcatct gcgccatcgc 480 cgacccccac gtgtaccact ggcagaccgt gatggacgac accgtgagcg ccagcgtggc 540 40ccaggccctg gacgagctga tgctgtgggc cgaggactgc cccgaggtgc gccacctggt 600 gcacgccgac ttcggcagca acaacgtgct gaccgacaac ggccgcatca ccgccgtgat 660 cgactggagc gaggccatgt tcggcgacag ccagtacgag gtggccaaca tcttcttctg 720

gegeecetgg etggeetgea tggageagea gaccegetae ttegagegee qccaccecqa 780

7

```
gctggccggc agcccccgcc tgcgcgccta catgctgcgc atcggcctgg accagctgta 840
  ccagagcctg gtggacggca acttcgacga cgccgcctgg gcccagggcc gctgcgacgc 900
  catcgtgcgc agcggcgccg gcaccgtggg ccgcacccag atcgcccgcc gcagcgccgc 960
  cgtgtggacc gacggctgcg tggaggtgct ggccgacagc ggcaaccgcc gccccagcac 1020
                                                                    1056
 5ccqccccgc gccaaggagt aataaccagc tcttgg
  <210> 9
  <211> 1056
  <212> DNA
10<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
15<400> 9
  ccactccgtg gccaccatga agaagcccga gctgaccgct accagcgttg aaaaatttct 60
  catcgagaag ttcgacagtg tgagcgacct gatgcagttg tcggagggcg aagagagccg 120
  agectteage ttegatgteg geggaegegg etatgtaetg egggtgaata getgegetga 180
  tggcttctac aaagaccgct acgtgtaccg ccacttcgcc agcgctgcac tacccatccc 240
20cgaagtgttg gacatcggcg agttcagcga gagcctgaca tactgcatca gtagacgcgc 300
  ccaaggcgtt actctccaag acctccccga aacagagctg cctgctgtgt tacagcctgt 360
  egeegaaget atggatgeta ttgeegeege egaceteagt caaaceageg getteggeee 420
  attegggee caaggeateg gecagtacae aacetggegg gattteattt gegeeattge 480
  tgatccccat gtctaccact ggcagaccgt gatggacgac accgtgtccg ccagcgtagc 540
25tcaagccctg gacgaactga tgctgtgggc cgaagactgt cccgaggtgc gccacctcgt 600
  ccatgccgac ttcggcagca acaacgtcct gaccgacaac ggccgcatca ccgccgtaat 660
  cgactggtcc gaagctatgt tcggggacag tcagtacgag gtggccaaca tcttcttctg 720
  geggeeetgg etggettgea tggageagea gaetegetae ttegagegee ggeateeega 780
  gctggccggc agccctcgtc tgcgagccta catgctgcgc atcggcctgg atcagctcta 840
30ccagagecte gtggaeggea acttegaega tgetgeetgg geteaaggee getgegatge 900
  categicege ageggggeeg geaeegiegg tegeacacaa ategetegee ggagegeege 960
  cgtatggacc gacggctgcg tcgaggtgct ggccgacagc ggcaaccgcc ggcccagtac 1020
  acgaccgcgc gctaaggagt agtaaccagg ctctgg
                                                                    1056
35<210> 10
  <211> 1048
  <212> DNA
```

<213> Artificial Sequence

40<220>

<223> A synthetic construct.

```
<400> 10
  cctgcaggcc accatgaaga agcccgagct gaccgctacc agcgttgaaa aatttctcat 60
  cgagaagttc gacagtgtga gcgacctgat gcagttgtcg gagggcgaag agagccgagc 120
  cttcagcttc gatgtcggcg gacgcggcta tgtactgcgg gtgaatagct gcgctgatgg 180
 5cttctacaaa gaccgctacg tgtaccgcca cttcgccagc gctgcactac ccatccccga 240
  agtgttggac atcggcgagt tcagcgagag cctgacatac tgcatcagta gacgcgccca 300
  aggegttact etccaagace teecegaaac agagetgeet getgtgttac ageetgtege 360
  cgaagetatg gatgetattg cegeegeega ceteagteaa accagegget teggeecatt 420
  cgggccccaa ggcatcggcc agtacacaac ctggcgggat ttcatttgcg ccattgctga 480
1Otccccatgtc taccactggc agaccgtgat ggacgacacc gtgtccgcca gcgtagctca 540
  agecetggae gaactgatge tgtgggeega agactgteec gaggtgegee acetegteea 600
  tgccgacttc ggcagcaaca acgtcctgac cgacaacggc cgcatcaccg ccgtaatcga 660
  ctggtccgaa gctatgttcg gggacagtca gtacgaggtg gccaacatct tcttctggcg 720
  gccctggctg gcttgcatgg agcagcagac tegetactte gagegeegge atecegaget 780
15ggccggcagc cctcgtctgc gagcctacat gctgcgcatc ggcctggatc agctctacca 840
  gagectegtg gaeggeaact tegaegatge tgeetggget caaggeeget gegatgeeat 900
  cgtccgcagc ggggccggca ccgtcggtcg cacacaaatc gctcgccgga gcgccgccgt 960
  atggaccgac ggctgcgtcg aggtgctggc cgacagcggc aaccgccggc ccagtacacg 1020
                                                                    1048
  accgcgcgct aaggagtagt aacttaag
20
  <210> 11
  <211> 1174
  <212> DNA
  <213> Artificial Sequence
25
  <220>
  <223> A synthetic construct.
  <400> 11
3 Oggatccgttt gcgtattggg cgctcttccg ctgatctgcg cagcaccatg gcctgaaata 60
  acctetgaaa gaggaacttg gttagetace ttetgaggeg gaaagaacca getgtggaat 120
  gtgtgtcagt tagggtgtgg aaagtcccca ggctccccag caggcagaag tatgcaaagc 180
  atgcatctca attagtcagc aaccaggtgt ggaaagtccc caggctcccc agcaggcaga 240
  agtatgcaaa gcatgcatct caattagtca gcaaccatag tcccgcccct aactccgccc 300
35atcccgcccc taactccgcc cagttccgcc cattctccgc cccatggctg actaattttt 360
  tttatttatg cagaggccga ggccgcctct gcctctgagc tattccagaa gtagtgagga 420
  ggcttttttg gaggcctagg cttttgcaaa aagctcgatt cttctgacac tagcgccacc 480
  atgaccgagt acaagcctac cgtgcgcctg gccactcgcg atgatgtgcc ccgcgccgtc 540
  egeactetgg degeogettt egeogactac deegetacec ggeacacegt ggacceegac 600
4Ocggcacatcg agcgtgtgac agagttgcag gagctgttcc tgacccgcgt cgggctggac 660
  atcggcaagg tgtgggtagc cgacgacggc gcggccgtgg ccgtgtggac tacccccgag 720
  agogttgagg ceggegegt gttegeegag ateggeecce gaatggeega getgagegge 780
  agccgcctgg ccgcccagca gcaaatggag ggcctgcttg ccccccatcg tcccaaggag 840
```

```
cctgcctggt ttctggccac tgtaggagtg agccccgacc accagggcaa gggcttgggc 900
  agegreegteg tgttgeeegg cgtagaggee geegaacgeg eeggtgtgee egeetttete 960
  gaaacaagcg caccaagaaa ccttccattc tacgagcgcc tgggcttcac cgtgaccgcc 1020
  gatgtcgagg tgcccgaggg acctaggacc tggtgtatga cacgaaaacc tggcgcctaa 1080
 5tgatctagaa ccggtcatgg ccgcaataaa atatctttat tttcattaca tctgtgtgtt 1140
  ggttttttgt gtgttcgaac tagatgctgt cgac
                                                                     1174
  <210 > 12
  <211 > 1776
10<212 > DNA
  <213 > Artificial Sequence
  <220 >
  <223 > A synthetic construct.
15
  <400 > 12
  atggcttcca aggtgtacga ccccgagcaa cgcaaacgca tgatcactgg gcctcagtgg 60
  tgggctcgct gcaagcaaat gaacgtgctg gactccttca tcaactacta tgattccgag 120
  aagcacgccg agaacgccgt gatttttctg catggtaacg ctgcctccag ctacctgtgg 180
20aggcacgtcg tgcctcacat cgagcccgtg gctagatgca tcatccctga tctgatcgga 240
  atgggtaagt ccggcaagag cgggaatggc tcatatcgcc tcctggatca ctacaagtac 300
  ctcaccgctt ggttcgagct gctgaacctt ccaaagaaaa tcatctttgt gggccacgac 360
  tggggggctt gtctggcctt tcactactcc tacgagcacc aagacaagat caaggccatc 420
  gtccatgctg agagtgtcgt ggacgtgatc gagtcctggg acgagtggcc tgacatcgag 480
25gaggatatcg ccctgatcaa gagcgaagag ggcgagaaaa tggtgcttga gaataacttc 540
  ttcgtcgaga ccatgctccc aagcaagatc atgcggaaac tggagcctga ggagttcgct 600
  gcctacctgg agccattcaa ggagaagggc gaggttagac ggcctaccct ctcctggcct 660
  cgcgagatcc ctctcgttaa gggaggcaag cccgacgtcg tccagattgt ccgcaactac 720
  aacgcctacc ttcgggccag cgacgatctg cctaagatgt tcatcgagtc cgaccctggg 780
30ttcttttcca acgctattgt cgagggagct aagaagttcc ctaacaccga gttcgtgaag 840
  gtgaagggcc tccacttcag ccaggaggac gctccagatg aaatgggtaa gtacatcaag 900
  agcttcgtgg agcgcgtgct gaagaacgag cagaccggtg gtgggagcgg aggtggcgga 960
  tcaggtggcg gaggctccgg agggattgaa caagatggat tgcacgcagg ttctccggcc 1020
  gcttgggtgg agaggctatt cggctatgac tgggcacaac agacaatcgg ctgctctgat 1080
35gccgccgtgt teeggetgte agegeagggg egeeeggtte tttttgteaa gaeegaeetg 1140
  tccggtgccc tgaatgaact gcaggacgag gcagcgcggc tatcgtggct ggccacgacg 1200
  ggcgttcctt gcgcagctgt gctcgacgtt gtcactgaag cgggaaggga ctggctgcta 1260
  ttgggcgaag tgccggggca ggatctcctg tcatctcacc ttgctcctgc cgagaaagta 1320
  tccatcatgg ctgatgcaat gcggcggctg catacgcttg atccggctac ctgcccattc 1380
40gaccaccaag cgaaacatcg catcgagcga gcacgtactc ggatggaagc cggtcttgtc 1440
  gatcaggatg atctggacga agagcatcag gggctcgcgc cagccgaact gttcgccagg 1500
  ctcaaggcgc gcatgcccga cggcgaggat ctcgtcgtga cccatggcga tgcctgcttg 1560
  ccgaatatca tggtggaaaa tggccgcttt tctggattca tcgactgtgg ccggctgggt 1620
```

10

```
gtggcggacc gctatcagga catagcgttg gctacccgtg atattgctga agagcttggc 1680
 ggcgaatggg ctgaccgctt cctcgtgctt tacggtatcg ccgctcccga ttcgcagcgc 1740
                                                                    1776
 atcgccttct atcgccttct tgacgagttc ttctaa
5<210> 13
 <211> 1776
 <212> DNA
 <213> Artificial Sequence
10<220>
 <223> A synthetic construct.
 <400> 13
 atgattgaac aagatggatt gcacgcaggt teteeggeeg ettgggtgga gaggetatte 60
15ggctatgact gggcacaaca gacaatcggc tgctctgatg ccgccgtgtt ccggctgtca 120
 gegeagggge geeeggttet ttttgteaag acegacetgt eeggtgeeet gaatgaactg 180
 caggacgagg cagcgcggct atcgtggctg gccacgacgg gcgttccttg cgcagctgtg 240
 ctcgacgttg tcactgaagc gggaagggac tggctgctat tgggcgaagt gccggggcag 300
 gatctcctgt catctcacct tgctcctgcc gagaaagtat ccatcatggc tgatgcaatg 360
20cggcggctgc atacgcttga tccggctacc tgcccattcg accaccaagc gaaacatcgc 420
  atcgagcgag cacgtactcg gatggaagcc ggtcttgtcg atcaggatga tctggacgaa 480
 qaqcatcagg ggctcgcgcc agccgaactg ttcgccaggc tcaaggcgcg catgcccgac 540
 ggcgaggatc tcgtcgtgac ccatggcgat gcctgcttgc cgaatatcat ggtggaaaat 600
  ggccgctttt ctggattcat cgactgtggc cggctgggtg tggcggaccg ctatcaggac 660
25atagcgttgg ctacccgtga tattgctgaa gagcttggcg gcgaatgggc tgaccgcttc 720
  ctcgtgcttt acggtatcgc cgctcccgat tcgcagcgca tcgccttcta tcgccttctt 780
  gacgagttct tcaccggtgg tgggagcgga ggtggcggat caggtggcgg aggctccgga 840
  qqqqcttcca aqqtqtacqa ccccgagcaa cgcaaacgca tgatcactgg gcctcagtgg 900
  tgggctcgct gcaagcaaat gaacgtgctg gactccttca tcaactacta tgattccgag 960
30aagcacgccg agaacgccgt gatttttctg catggtaacg ctgcctccag ctacctgtgg 1020
  aggcacgtcg tgcctcacat cgagcccgtg gctagatgca tcatccctga tctgatcgga 1080
  atgggtaagt ccggcaagag cgggaatggc tcatatcgcc tcctggatca ctacaagtac 1140
  ctcaccgctt ggttcgagct gctgaacctt ccaaagaaaa tcatctttgt gggccacgac 1200
  tggggggctt gtctggcctt tcactactcc tacgagcacc aagacaagat caaggccatc 1260
35gtccatgctg agagtgtcgt ggacgtgatc gagtcctggg acgagtggcc tgacatcgag 1320
  gaggatatcg ccctgatcaa gagcgaagag ggcgagaaaa tggtgcttga gaataacttc 1380
  ttcgtcgaga ccatgctccc aagcaagatc atgcggaaac tggagcctga ggagttcgct 1440
  gectacetgg agecatteaa ggagaaggge gaggttagae ggeetaeeet eteetggeet 1500
  cgcgagatcc ctctcgttaa gggaggcaag cccgacgtcg tccagattgt ccgcaactac 1560
40aacgcctacc ttcgggccag cgacgatctg cctaagatgt tcatcgagtc cgaccctggg 1620
  ttcttttcca acgctattgt cgagggagct aagaagttcc ctaacaccga gttcgtgaag 1680
  qtgaagggcc tccacttcag ccaggaggac gctccagatg aaatgggtaa gtacatcaag 1740
```

agcttcgtgg agcgcgtgct gaagaacgag cagtaa

<210> 14

<212> DNA

<213> Streptomyces sp.

```
<211> 1653
  <212> DNA
  <213> Artificial Sequence
5
  <220>
  <223> A synthetic construct.
  <400> 14
10atggccgatg ctaagaacat taagaagggc cctgctccct tctaccctct ggaggatggc 60
  accgctggcg agcagctgca caaggccatg aagaggtatg ccctggtgcc tggcaccatt 120
  gccttcaccg atgcccacat tgaggtggac atcacctatg ccgagtactt cgagatgtct 180
  gtgcgcctgg ccgaggccat gaagaggtac ggcctgaaca ccaaccaccg catcgtggtg 240
  tqctctqaqa actctctqca gttcttcatg ccagtgctgg gcgccctgtt catcggagtg 300
15gccgtggccc ctgctaacga catttacaac gagcgcgagc tgctgaacag catgggcatt 360
  tctcagccta ccgtggtgtt cgtgtctaag aagggcctgc agaagatcct gaacgtgcag 420
  aagaagctgc ctatcatcca gaagatcatc atcatggact ctaagaccga ctaccagggc 480
  ttccagagca tgtacacatt cgtgacatct catctgcctc ctggcttcaa cgagtacgac 540
  ttcgtgccag agtctttcga cagggacaaa accattgccc tgatcatgaa cagctctggg 600
20tctaccqqcc tqcctaaggg cqtgqccctg cctcatcgca ccgcctgtgt gcgcttctct 660
  cacgcccgcg accctatttt cggcaaccag atcatccccg acaccgctat tctgagcgtg 720
  gtgccattcc accacggctt cggcatgttc accaccctgg gctacctgat ttgcggcttt 780
  cgggtggtgc tgatgtaccg cttcgaggag gagctgttcc tgcgcagcct gcaagactac 840
  aaaattcagt ctgccctgct ggtgccaacc ctgttcagct tcttcgctaa gagcaccctg 900
25atcqacaaqt acqacctqtc taacctqcac gagattgcct ctggcggcgc cccactgtct 960
  aaggaggtgg gcgaagccgt ggccaagcgc tttcatctgc caggcatccg ccagggctac 1020
  ggcctgaccg agacaaccag cgccattctg attaccccag agggcgacga caagcctggc 1080
  qccqtqgqca aggtggtgcc attcttcgag gccaaggtgg tggacctgga caccggcaag 1140
  accetgggag tgaaccageg eggegagetg tgtgtgegeg geeetatgat tatgteegge 1200
30tacgtgaata accetgagge cacaaacgee etgategaca aggaeggetg getgeactet 1260
  qqcqacattg cctactggga cgaggacgag cacttcttca tcgtggaccg cctgaagtct 1320
  ctgatcaagt acaagggcta ccaggtggcc ccagccgagc tggagtctat cctgctgcag 1380
  caccetaaca ttttegacge eggagtggce ggeetgeeeg acgaegatge eggegagetg 1440
  cctqccqccq tcqtcqtgct ggaacacqqc aagaccatga ccgagaagga gatcgtggac 1500
35tatgtggcca gccaggtgac aaccgccaag aagctgcgcg gcggagtggt gttcgtggac 1560
  gaggtgccca agggcctgac cggcaagctg gacgcccgca agatccgcga gatcctgatc 1620
                                                                    1653
  aaggctaaga aaggcggcaa gatcgccgtg taa
  <210> 15
40<211> 597
```

<400> 15

atgaccgagt acaagcccac ggtgcgcctc gccacccgcg acgacgtccc ccgggccgta 60 cgcaccetcg ccgccgcgtt cgccgactac cccgccacgc gccacaccgt cgacccggac 120 cgccacatcg agcgggtcac cgagctgcaa gaactettec tcacgcgcgt cgggctcgac 180 5atcggcaagg tgtgggtcgc ggacgacggc gccgcggtgg Cggtctggac cacgccggag 240 agegtegaag egggggeggt gttegeegag ateggeeege geatggeega gttgageggt 300 teceggetgg cegegeagea acagatggaa ggceteetgg egeegeaceg geecaaggag 360 cccgcgtggt tcctggccac cgtcggcgtg tcgcccgacc accagggcaa gggtctgggc 420 agegeegteg tgeteeeegg agtggaggeg geegagegeg Ceggggtgee egeetteetg 480 10gagacetecg egeceegeaa ceteccette taegagegge teggetteae egteaeegee 540 gacgtcgagg tgcccgaagg accgcgcacc tggtgcatga Cccgcaagcc cggtgcc 597 <210> 16 <211> 1672 15<212> DNA <213> Artificial Sequence <220> <223> A synthetic construct. 20 <400> 16 aaagccacca tggaggacgc caagaacatc aagaagggcc ccgccccctt ctaccccctg 60 gaggacggca ccgccggcga gcagctgcac aaggccatga agcgctacgc cctggtgccc 120 ggcaccatcg cetteacega egeceacate gaggtggaca teacetaege egagtaette 180 25gagatgageg tgegeetgge egaggeeatg aagegetaeg geetgaacae caaccacege 240 atcgtggtgt gcagcgagaa cagcctgcag ttcttcatgc ccgtgctggg cgccctgttc 300 ateggegtgg cegtggeece egecaaegae atetacaaeg agegegaget getgaaeage 360 atgggcatca gccagcccac cgtggtgttc gtgagcaaga agggcctgca gaagatcctg 420 aacgtgcaga agaagctgcc catcatccag aagatcatca tcatggacag caagaccgac 480 30taccagggct tccagagcat gtacacette gtgaccagee acctgeecee eggetteaac 540 gagtacgact tegtgecega gagettegae egegaeaaga ceategeeet gateatgaae 600 agcageggea geaceggeet geceaaggge gtggeeetge cecaeegeae egeetgegtg 660 egetteagee aegeeegega eeceatette ggeaaceaga teateeeega eaeegeeate 720 ctgagegtgg tgcccttcca ccaeggette ggcatgttea ccaecetggg ctaectgate 780 35tgcggcttcc gcgtggtgct gatgtaccgc ttcgaggagg agctgttcct gcgcagcctg 840 caggactaca agatecagag egecetgetg gtgeceaece tgtteagett ettegecaag 900 agcaccctga tegacaagta egacetgage aacctgeacg agategeeag eggeggegee 960 cccctgagca aggaggtggg cgaggccgtg gccaagcgct tccacctgcc cggcatccgc 1020 cagggetacg geetgacega gaccaceage geeateetga teacceeega gggegaegae 1080 40aagcccggcg ccgtgggcaa ggtggtgccc ttcttcgagg ccaaggtggt ggacctggac 1140 accggcaaga ccctgggcgt gaaccagcgc ggcgagctgt gcgtgcgcgg ccccatgatc 1200 atgagegget aegtgaacaa eeeegaggee aeeaaegeee tgategaeaa ggaeggetgg 1260 ctgcacagcg gcgacatcgc ctactgggac gaggacgagc acttettcat cgtggaccgc 1320

```
ctgaagagcc tgatcaagta caagggctac caggtggccc ccgccgagct ggagagcatc 1380
 ctgctgcagc accccaacat cttcgacgcc ggcgtggccg gcctgcccga cgacgacgcc 1440
 ggcgagctgc ccgccgccgt ggtggtgctg gagcacggca agaccatgac cgagaaggag 1500
 ategtggact aegtggeeag ceaggtgace aeegeeaaga agetgegegg eggegtggtg 1560
5ttcgtggacg aggtgcccaa gggcctgacc ggcaagctgg acgcccgcaa gatccgcgag 1620
 atcctgatca aggccaagaa gggcggcaag atcgccgtgt aataattcta ga
                                                                  1672
 <210> 17
 <211> 1672
10<212> DNA
 <213> Artificial Sequence
 <220>
 <223> A synthetic construct.
15
 <400> 17
 aaagccacca tggaggacgc caagaacatc aagaagggcc cagcgccatt ctaccccctg 60
 gaggacggca ccgccggcga gcagctgcac aaggccatga agcgctacgc cctggtgccc 120
 ggcaccateg cetteacega egeacatate gaggtggaca teacetaege egragtaette 180
20gagatgagcg ttcggctggc agaggctatg aagcgctatg ggctgaacac ca.accatcgc 240
 atcgtggtgt gcagcgagaa cagcttgcag ttcttcatgc ccgtgttggg tgccctgttc 300
 atoggogtgg ctgtggcccc agctaacgac atctacaacg agcgcgagct gctgaacagc 360
 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aa.agatcctg 420
 aacgtgcaaa agaagctgcc catcatccaa aagatcatca tcatggacag ca.agaccgac 480
25taccaggget tecaaageat gtacacette gtgaccagee atttgeegee eggetteaac 540
 gagtacgact tcgtgcccga gagcttcgac cgcgacaaga ccatcgccct gatcatgaac 600
 cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720
  ctgagcgtgg tgccatttca ccacggcttc ggcatgttca ccaccctggg ctacttgatc 780
30tgcggcttcc gggtcgtgct gatgtaccgc ttcgaggagg agctattctt gcgcagcttg 840
  caagactaca agattcaaag cgccctgctg gtgcccaccc tgttcagttt cttcgccaag 900
  agcaccetga tegacaagta egacetgage aacetgeaeg agategeeag eggeggee 960
  ccgctcagca aggaggtggg cgaggccgtg gccaagcgct tccacctgcc aggccatccgc 1020
  cagggctacg gcctgaccga gacaaccagc gccattctga tcacccccga ggrgggacgac 1080
35aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacctggac 1140
  accggtaaaa ccctgggtgt gaaccagcgc ggcgagctgt gcgtccgtgg ccccatgatc 1200
  atgagegget acgttaacaa eeeegagget acaaacgeee tgategacaa ggaceggetgg 1260
  ctgcacagcg gcgacatcgc ctactgggac gaggacgagc acttcttcat cgtggaccgg 1320
  ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380
40ctgctgcagc accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440
 ggcgagctgc ccgccgcagt cgtggtgctg gagcacggta aaaccatgac cgagaaggag 1500
  atogtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg cggcgtggtg 1560
  ttcgtggacg aggtgcctaa aggcctgacg ggcaagttgg acgcccgcaa gatccgcgag 1620
```

```
attctgatca aggccaagaa gggcggcaag atcgccgtgt aataattcta ga
                                                                  1672
  <210> 18
 <211> 1672
 5<212> DNA
  <213> Artificial Sequence
  <220>
 <223> A synthetic construct.
10
 <400> 18
 aaagccacca tggaagatgc caaaaacatt aagaagggcc cagcgccatt ctacccactg 60
 gaggacggca ccgccggcga gcagctgcac aaagccatga agcgctacgc cctggtgccc 120
 ggcaccatcg cetttacega egcacatate gaggtggaca teacetacge egagtactte 180
15gagatgagcg ttcggctggc agaggctatg aagcgctatg ggctgaatac caaccategc 240
  atcgtggtgt gcagcgagaa tagcttgcag ttcttcatgc ccgtgttggg tgccctgttc 300
 ateggtgtgg etgtggeece agetaacgae atetacaacg agegegaget getgaacage 360
 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aaagatcctc 420
 aacgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480
20taccagggct tocaaagcat gtacaccttc gtgaccagcc atttgccacc cggcttcaac 540
 gagtacgact tcgtgcccga gagcttcgac cgggacaaaa ccatcgccct gatcatgaac 600
 cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720
 cteagegtgg tgccatttca ccaeggette ggcatgttca ccaegetggg ctaettgate 780
25tgcggctttc gggtcgtgct catgtaccgc ttcgaggagg agctattctt gcgcagcttq 840
 caagactata agattcaaag cgccctgctg gtgcccacac tgttcagctt cttcgccaag 900
 ageactetea tegacaagta egacetgage aacetgeaeg agategeeag eggeggggeg 960
 ccgctcagca aggaggtggg cgaggccgtg gccaagcgct tccacctacc aggcatccgc 1020
 cagggctacg gcctgacaga aacaaccagc gccattctga tcacccccga aggggacgac 1080
30aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacttggac 1140
 accegetaaga coctegegetet gaaccagege gegegetet gegeteegteg coccategate 1200
 atgagegget aegttaacaa eeeegagget acaaacgete teategacaa ggaeggetgg 1260
 ctgcacageg gegacatege ctactgggac gaggacgage acttetteat egtggacegg 1320
 ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380
35ctgctgcaac accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440
 ggcgagctgc ccgccgcagt cgtcgtgctg gagcacggta aaaccatgac cgagaaqgag 1500
 atcgtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg tggtgttgtg 1560
 ttegtggaeg aggtgeetaa aggeetgaeg ggeaagttgg aegeeegeaa gateegegag 1620
 atteteatta aggecaagaa gggeggeaag ategeegtgt aataatteta qa
```

15

PCT/US2005/033218

<210> 19 <211> 1672 <212> DNA <213> Artificial Sequence <220> <223> A synthetic construct. <400> 19 10aaagccacca tggaagatgc caaaaacatt aagaagggcc cagcgccatt ctacccactc 60 gaagacggca ccgccggcga gcagctgcac aaagccatga agcgctacgc cctggtgccc 120 ggcaccatcg cetttacega egcacatate gaggtggaca ttacetacge egagtactte 180 gagatgagcg ttcggctggc agaagctatg aagcgctatg ggctgaacac caaccatcgc 240 atcgtggtgt gcagcgagaa tagcttgcag ttcttcatgc ccgtgttggg tgccctgttc 300 15atcggtgtgg ctgtggcccc agctaacgac atctacaacg agcgcgagct gctgaacagc 360 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aaagatcctc 420 aacgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480 taccagggct tecaaagcat gtacacette gtgacttece atttgccace eggetteaac 540 gagtacgact tegtgecega gagettegae egggacaaaa ecategeeet gateatgaae 600 cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720 ctcagcgtgg tgccatttca ccacggcttc ggcatgttca ccacgctggg ctacttgatc 780 tgcggctttc gggtcgtgct catgtaccgc ttcgaggagg agctattctt gcgcagcttg 840 caagactata agattcaaag cgccctgctg gtgcccacac tgttcagttt cttcgccaag 900 25agcactetea tegacaagta egacetaage aacttgeaeg agategeeag eggeggggeg 960 ccgctcagca aggaggtggg cgaggccgtg gccaaacgct tccacctacc aggcatccgc 1020 cagggctacg gcctgacaga aacaaccagc gccattctga tcacccccga aggggacgac 1080 aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacttggac 1140 accegtaaga cactgggtgt gaaccagcgc ggcgagctgt gcgtccgtgg ccccatgatc 1200 30atgagegget aegttaacaa eeeegagget acaaaegete teategacaa ggaeggetgg 1260 ctgcacageg gegacatege ctactgggac gaggacgage acttetteat egtggacegg 1320 ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380 ctgctgcaac accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440 ggcgagctgc ccgccgcagt cgtcgtgctg gaacacggta aaaccatgac cgagaaggag 1500 35atcgtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg tggtgttgtg 1560 ttcgtggacg aggtgcctaa aggcctgacg ggcaagttgg acgcccgcaa gatccgcgag 1620 attotoatta aggocaagaa gggoggcaag atcgccgtgt aataattota ga 1672 <210> 20 40<211> 1672 <212> DNA

<213> Artificial Sequence

16

<220> <223> A synthetic construct. <400> 20 5aaagccacca tggaagatgc caaaaacatt aagaagggcc cagcgccatt ctacccactc 60 gaagacggca ccgccggcga gcagctgcac aaagccatga agcgctacgc cctggtgccc 120 ggcaccatcg cctttaccga cgcacatatc gaggtggaca ttacctacgc cgagtacttc 180 gagatgagcg ttcggctggc agaagctatg aagcgctatg ggctgaacac caaccatcgg 240 ategtggtgt geagegagaa tagettgeag ttetteatge eegtgttggg tgeeetgtte 300 10atcggtgtgg ctgtggcccc agctaacgac atctacaacg agcgcgagct gctgaacagc 360 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aaagatcctc 420 aacgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480 taccaggget tecaaageat gtacacette gtgaetteee atttgecace eggetteaac 540 gagtacgact tcgtgcccga gagcttcgac cgggacaaaa ccatcgccct gatcatgaac 600 cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720 ctcagcgtgg tgccatttca ccacggcttc ggcatgttca ccacgctggg ctacttgatc 780 tgcggctttc gggtcgtgct catgtaccgc ttcgaggagg agctattctt gcgcagcttg 840 caagactata agattcaaag cgccctgctg gtgcccacac tgttcagttt cttcgctaag 900 20agcactetea tegacaagta egacetaage aacttgeaeg agategeeag eggeggggeg 960 ccgctcagca aggaggtggg cgaggccgtg gccaaacgct tccacctacc aggcatccgc 1020 cagggctacg gcctgacaga aacaaccagc gccattctga tcacccccga aggggacgac 1080 aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacttggac 1140 accggtaaga cactgggtgt gaaccagege ggegagetgt gegteegtgg ecceatgate 1200 25atgagegget aegttaacaa eecegagget acaaaegete teategacaa ggaeggetgg 1260 ctgcacagcg gcgacatcgc ctactgggac gaggacgagc acttcttcat cgtggaccgg 1320 ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380 ctgctgcaac accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440 ggcgagctgc ccgccgcagt cgtcgtgctg gaacacggta aaaccatgac cgagaaggag 1500 30atcgtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg tggtgttgtg 1560 ttcgtggacg aggtgcctaa aggcctgacg ggcaagttgg acgcccgcaa gatccgcgag 1620 attotoatta aggocaagaa gggoggcaag atcgccgtgt aataattota ga 1672 <210> 21 35<211> 1672 <212> DNA <213> Artificial Sequence <220> 40<223> A synthetic construct. <400> 21

aaaqccacca tqqaaqatqc caaaaacatt aaqaagggcc cagcgccatt ctacccactc 60

17

```
gaagacggca ccgccggcga gcagctgcac aaagccatga agcgctacgc cctggtgccc 120
 ggcaccatcg cctttaccga cgcacatatc gaggtggaca ttacctacgc cgagtacttc 180
 gagatgagcg ttcggctggc agaagctatg aagcgctatg ggctgaatac aaaccatcgg 240
 atcgtggtgt gcagcgagaa tagcttgcag ttcttcatgc ccgtgttggg tgccctgttc 300
 5atcggtgtgg ctgtggcccc agctaacgac atctacaacg agcgcgagct gctgaacagc 360
 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aaagatcctc 420
 aacgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480
 taccaggget tecaaageat gtacaeette gtgaetteee atttgecaee eggetteaae 540
 gagtacgact tcgtgcccga gagcttcgac cgggacaaaa ccatcgccct gatcatgaac 600
cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720
 ctcagcgtgg tgccatttca ccacggcttc ggcatgttca ccacgctggg ctacttgatc 780
 tgeggettte gggtegtget catgtacege ttegaggagg agetattett gegeagettg 840
 caagactata agattcaaag cgccctgctg gtgcccacac tgttcagttt cttcgctaag 900
15agcactctca tegacaagta egacetaage aacttgeaeg agategeeag eggeggggeg 960
 ccgctcagca aggaggtagg tgaggccgtg gccaaacgct tccacctacc aggcatccgc 1020
 cagggctacg gcctgacaga aacaaccagc gccattctga tcacccccga aggggacgac 1080
 aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacttggac 1140
 accegetaaga cactegegetet gaaccagege gegegetet gegeteegteg ceccategate 1200
20atgagcgct acgttaacaa ccccgaggct acaaacgctc tcatcgacaa ggacggctgg 1260
 ctgcacagcg gcgacatcgc ctactgggac gaggacgagc acttcttcat cgtggaccgg 1320
 ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380
 ctgctgcaac accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440
 ggcgagctgc ccgccgcagt cgtcgtgctg gaacacggta aaaccatgac cgagaaggag 1500
25atcgtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg tggtgttgtg 1560
 ttcgtggacg aggtgcctaa aggcctgacg ggcaagttgg acgcccgcaa gatccgcgag 1620
 attotoatta aggocaagaa gggoggcaag atcgccgtgt aataattota ga
                                                                  1672
 <210> 22
30<211> 1672
  <212> DNA
 <213> Artificial Sequence
 <220>
35<223> A synthetic construct.
  <400> 22
```

aaagccacca tggaagatgc caaaaacatt aagaagggc cagcgccatt ctacccacte 60 gaagacggga ccgccggcga gcagctgcac aaagccatga agcgctacgc cctggtgccc 120 40ggcaccatcg cctttaccga cgcacatatc gaggtggaca ttacctacgc cgagtacttc 180 gagatgagcg ttcggctggc agaagctatg aagcgctatg ggctgaatac aaaccatcgg 240 atcgtggtgt gcagcgagaa tagcttgcag ttcttcatgc ccgtgttggg tgccctgttc 300 atcggtgtgg ctgtggccc agctaacgac atctacaacq agcgcgagct gctgaacaqc 360

```
18
 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aaagatcctc 420
 aacgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480
  taccaggget tecaaageat gtacacette gtgaetteee atttgecace eggetteaac 540
 gagtacgact tcgtgcccga gagcttcgac cgggacaaaa ccatcgccct gatcatgaac 600
 cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720
 ctcagcgtgg tgccatttca ccacggcttc ggcatgttca ccacgctggg ctacttgatc 780
  tqcqqctttc gggtcqtqct catgtaccgc ttcgaggagg agctattctt gcgcagcttg 840
 caagactata agattcaatc tgccctgctg gtgcccacac tatttagctt cttcgctaag 900
10agcactetea tegacaagta egacetaage aacttgeaeg agategeeag eggeggggeg 960
  ccgctcagca aggaggtagg tgaggccgtg gccaaacgct tccacctacc aggcatccgc 1020
  cagggctacg gcctgacaga aacaaccagc gccattctga tcacccccga aggggacgac 1080
  aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacttggac 1140
  accggtaaga cactgggtgt gaaccagege ggegagetgt gegteegtgg ceccatgate 1200
15atgagcggct acgttaacaa ccccgaggct acaaacgctc tcatcgacaa ggacggctgg 1260
  ctgcacagcg gcgacatcgc ctactgggac gaggacgagc acttcttcat cgtggaccgg 1320
  ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380
  ctgctgcaac accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440
  ggcgagctgc ccgccgcagt cgtcgtgctg gaacacggta aaaccatgac cgagaaggag 1500
20atcgtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg tggtgttgtg 1560
  ttcgtggacg aggtgcctaa aggcctgacg ggcaagttgg acgcccgcaa gatccgcgag 1620
  attotoatta aggocaagaa gggcggcaag atcgccgtgt aataattota ga
                                                                 1672
  <210> 23
25<211> 1672
  <212> DNA
  <213> Artificial Sequence
```

<220>

30<223> A synthetic construct.

<400> 23

aaagccacca tggaagatgc caaaaacatt aagaagggcc cagcgccatt ctacccactc 60 gaagaeggga cegeeggega geagetgeac aaageeatga agegetaege cetggtgeec 120 35ggcaccatcg cetttacega egcacatate gaggtggaca ttacetacge egagtaette 180 gagatgageg tteggetgge agaagetatg aagegetatg ggetgaatac aaaccategg 240 atcgtggtgt gcagcgagaa tagcttgcag ttcttcatgc ccgtgttggg tgccctgttc 300 ateggtgtgg etgtggeece agetaacgae atetacaacg agegegaget getgaacage 360 atgggcatca gccagcccac cgtcgtattc gtgagcaaga aagggctgca aaagatcctc 420 40aacgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480 taccagggct tccaaagcat gtacaccttc gtgacttccc atttgccacc cggcttcaac 540 gagtacgact tcgtgcccga gagcttcgac cgggacaaaa ccatcgccct gatcatgaac 600

cgattcagtc atgcccgcga ccccatcttc ggcaaccaga tcatccccga caccgctatc 720 ctcaqcqtqq tqccatttca ccacqqcttc ggcatgttca ccacqctggg ctacttgatc 780 tgeggettte gggtegtget catgtacege ttegaggagg agetattett gegeagettg 840 caagactata agattcaatc tgccctgctg gtgcccacac tatttagctt cttcgctaag 900 Saqcactctca tcgacaaqta cgacctaagc aacttgcacg agatcgccag cggcggggcg 960 ccgctcagca aggaggtagg tgaggccgtg gccaaacgct tccacctacc aggcatccgc 1020 cagggctacg gcctgacaga aacaaccagc gccattctga tcacccccga aggggacgac 1080 aagcctggcg cagtaggcaa ggtggtgccc ttcttcgagg ctaaggtggt ggacttggac 1140 acceptaaqa cactegetet gaaccagege gegagetet gegteegteg ceceatgate 1200 10atgagcggct acgttaacaa ccccgaggct acaaacgctc tcatcgacaa ggacggctgg 1260 ctgcacagcg gcgacatcgc ctactgggac gaggacgagc acttcttcat cgtggaccgg 1320 ctgaagagcc tgatcaaata caagggctac caggtagccc cagccgaact ggagagcatc 1380 ctgctgcaac accccaacat cttcgacgcc ggggtcgccg gcctgcccga cgacgatgcc 1440 ggcgagctgc ccgccgcagt cgtcgtgctg gaacacggta aaaccatgac cgagaaggag 1500 15atcgtggact atgtggccag ccaggttaca accgccaaga agctgcgcgg tggtgttgtg 1560 ttcgtggacg aggtgcctaa aggactgacc ggcaagttgg acgcccgcaa gatccgcgag 1620 atteteatta aggecaagaa gggeggeaag ategeegtgt aataatteta ga 1672

<210> 24

20<211> 1672

<212> DNA

<213> Artificial Sequence

<220>

25<223> A synthetic construct.

<400> 24

aaagccacca tggaggatgc taagaatatt aagaaggggc ctgctccttt ttatcctctg 60 gaggatggga cagctgggga gcagctgcat aaggctatga agagatatgc tctggtgcct 120 30gggacaattg cttttacaga tgctcatatt gaggtggata ttacatatgc tgagtatttt 180 gagatgtctg tgagactggc tgaggctatg aagagatatg ggctgaatac aaatcataga 240 attgtggtgt gttctgagaa ttctctgcag ttttttatgc ctgtgctggg ggctctgttt 300 attggggtgg ctgtggctcc tgctaatgat atttataatg agagagagct gctgaattct 360 atggggattt ctcaqcctac agtggtgttt gtgtctaaga aggqqctqca qaaqattctq 420 35aatgtgcaga agaagctgcc tattattcag aagattatta ttatggattc taagacagat 480 tatcaggggt ttcagtctat gtatacattt gtgacatctc atctgcctcc tgggtttaat 540 gagtatgatt ttgtgcctga gtcttttgat agagataaga caattgctct gattatgaat 600 tettetgggt etacaggget geetaagggg gtggetetge eteatagaac agettgtgtg 660 agattttctc atgctagaga tcctattttt gggaatcaga ttattcctga tacagctatt 720 40ctgtctgtgg tgccttttca tcatgggttt gggatgttta caacactggg gtatctgatt 780 tgtgggttta gagtggtgct gatgtataga tttgaggagg agctgtttct gagatctctg 840 caggattata agattcagtc tgctctgctg gtgcctacac tgttttcttt ttttgctaag 900 totacactga ttgataagta tgatctgtct aatctgcatg agattgcttc tgggggggct 960

20

cctctgtcta aggaggtgg ggaggctgt gctaagagat ttcatctgc tgggattaga 1020 caggggtatg ggctgacaga gacaacatct gctattctga ttacacctga gggggatgat 1080 aagcctgggg ctgtggggaa ggtggtgcc ttttttgagg ctaaggtggt ggatctggat 1140 acaggggaaga cactgggggt gaatcagaga ggggagctgt gtgtgagagg gcctatgatt 1200 5atgtctgggt atgtgaataa tcctgaggct acaaatgctc tgattgataa ggatgggtgg 1260 ctgcattctg gggatattgc ttattgggat gaggatgagc attttttat tgtggataga 1320 ctgaagtctc tgattaagta taaggggtat caggtggctc ctgctgagct ggagtctatt 1380 ctgctgcagc atcctaatat ttttgatgct ggggtggctg ggctgcctga tgatgatgct 1440 ggggaggctgc ctgctgctg ggtggtgct ggggtggctg gggggtggtg 1500 10attgtggatt atgtggcttc tcaggtgaca acagctaaga agctgagag gggggtggtg 1560 tttgtggatg aggtcctaa gggggggaag attgctagaa ggtgcctaa gggggggaag attctgata aggctaagaa gggggggaag attgctagaaa gattagagag 1620 attctgatta aggctaagaa gggggggaag attgctgtg aataattcta ga 1672

<210> 25

15<211> 1672

<212> DNA

<213> Artificial Sequence

<220>

20<223> A synthetic construct.

<400> 25

aaagccacca tggaagatgc taaaaacatt aagaaggggc ctgctccttt ctaccctctg 60 gaggatggga ctgccgggga gcagctgcat aaagctatga agcggtatgc tctggtgcca 120 25ggcacaattg cgttcacgga tgctcacatt gaggtggaca ttacatacgc tgagtatttt 180 gagatgtcgg tgcggctggc tgaggctatg aagcgatatg ggctgaatac aaaccataga 240 attgtagtgt gctctgagaa ctcgttgcag ttttttatgc ctgtgctggg ggctctcttc 300 atcggggtgg ctgtggctcc tgctaacgac atttacaatg agagagagct tttgaactcg 360 atggggattt ctcagcctac agtggtgttt gtgagtaaga aagggcttca aaagattctc 420 30aatgtgcaaa agaagctgcc tattattcaa aagattatta ttatggactc taagacagac 480 taccaqqqqt ttcaqtctat qtatacattt gtgacatctc atctgcctcc tgggttcaac 540 gagtatgact ttgtgcccga gtctttcgac agagataaga caattgctct gattatgaat 600 tcatctgggt ctaccgggct gcctaagggt gtagctctgc cacatagaac agcttgtgtg 660 agattttctc atgctaggga ccctattttt gggaatcaga ttattcctga tactgctatt 720 35ctgtcggttg tgccctttca tcatgggttt gggatgttta caacactggg ctacctgata 780 tgtgggttta gagtggtgct catgtatagg tttgaggagg agcttttttt gegctctctg 840 caagattata agattcagtc tgctctgctg gtgcctacac tgttttcttt ttttgctaag 900 tctaccctga tcgataagta tgatctgtcc aacctgcacg agattgcttc tgggggggct 960 cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggaatcaga 1020 40caggggtatg ggctaacaga aacaacatct gctattctga ttacaccaga gggggatgat 1080 aagcccgggg ctgtagggaa agtggtgccc ttttttgaag ctaaagtagt tgatcttgat 1140 accggtaaga cactgggggt gaatcagcga ggggaactgt gtgtgagagg gcctatgatt 1200 atdtcqqqqt atqtqaacaa ccctqaqqct acaaatqctc tqattgataa ggatgggtgg 1260

21

```
ctgcattcgg gcgatattgc ttactgggat gaggatgagc atttcttcat cgtggacaga 1320 ctgaagtcgt tgatcaaata taaggggtat caagtagctc ctgctgagct ggagtccatt 1380 ctgcttcaac atcctaacat tttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 ggggagctgc ctgctgct agtggtgctg gagcacggta agacaatgac agagaaggag 1500 5attgtggatt atgtggcttc acaagtgaca acagctaaga aactgagagg tggcgttgtg 1560 tttgtggatg aggtgcctaa agggctgaca ggcaagctgg atgctagaaa aattcgagag 1620 attctgatta aggctaagaa gggtggaaag attgctgtg aatagttcta ga 1672
```

<210> 26

10<211> 1672

<212> DNA

<213> Artificial Sequence

<220>

15<223> A synthetic construct.

<400> 26

aaagccacca tggaagatgc taaaaacatt aagaaggggc ctgctccttt ctaccctctt 60 gaagatggga ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120 20ggcacaattg cgttcacgga tgctcacatt gaggtggaca tcacatacgc tgagtatttt 180 gagatgtcgg tgcggctggc agaagctatg aagcgctatg ggctgaatac aaaccataga 240 attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300 ateggggtgg etgtggetee tgetaaegae atetaeaaeg agegagaget gttgaaeteg 360 atggggattt ctcagcctac agtggtgttt gtgagtaaga aagggcttca aaagattctc 420 25aatgtgcaaa agaagctgcc tattattcaa aagattatta ttatggactc taagaccgac 480 taccaggggt ttcagtctat gtatacattt gtgacatctc atctgcctcc tggcttcaac 540 gagtacgact tcgtgcccga gtctttcgac agagataaga caattgctct gatcatgaat 600 tcatccgggt ctaccgggct gcctaagggt gtagctctgc cccatagaac agcttgtgtg 660 agattttctc atgctaggga ccctattttt gggaatcaga ttattcctga cactgctatt 720 30ctgtcggtgg tgccctttca tcatgggttt gggatgttta caacactggg ctacctaata 780 tgtgggttta gagtggtgct catgtatagg tttgaagaag agctgttctt acgctctttg 840 caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900 tctacgctca tagacaagta tgacttgtcc aacttgcacg agattgcttc tggcggagca 960 cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 35caggggtatg ggctaacaga aacaacatct gctattctga ttacaccaga gggggatgat 1080 aagcccgggg ctgtaggggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140 accggtaaga cactaggggt gaaccagcgt ggtgaactgt gtgtgagagg gcctatgatt 1200 atgtcggggt acgttaacaa ccccgaagct acaaatgctc tgattgataa ggatggctgg 1260 ctgcattcgg gcgacattgc ttactgggat gaggatgagc atttcttcat cgtggacaga 1320 40ctgaagtcgt tgatcaaata caaggggtat caagtagctc ctgctgagct ggaatccatt 1380 ctgcttcaac atcccaacat tttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 ggggagttgc ctgctgctgt agtggtgctt gagcacggta agacaatgac agagaaggag 1500 atcgtggatt atgtggcttc acaagtgaca acagctaaga aactgagagg tggcgttgtg 1560

22

tttgtggatg aggtgcctaa agggctca.ct ggcaagctgg atgctagaaa aattcgagag 1620 attctgatta aggctaagaa gggtggaa.ag attgctgtgt aatagttcta ga 1672

<210> 27

5<211> 1672

<212> DNA

<213> Artificial Sequence

<220>

10<223> A synthetic construct.

<400> 27

aaagccacca tggaagatgc taaaaacatt aagaaggggc ctgctccctt ctaccctctt 60 qaaqatqqqa ctqctqqcqa qcaacttcac aaagctatqa agcqgtatqc tcttqtqcca 120 15ggcacaattg cgttcacgga tgctcacatt gaggtggaca tcacatacgc tgagtatttt 180 gagatgtegg tgeggetgge agaagetatg aagegetatg ggetgaatac aaaccataga 240 attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300 atcggggtgg ctgtggctcc tgctaacgac atctacaacg agcgagagct gttgaactcg 360 atggggatet eteageetae agtggtgttt gtgagtaaga aagggettea aaagattete 420 20aatqtqcaaa aqaaqctqcc tattattcaa aagattatta ttatggactc taagacagac 480 taccaggggt ttcagtccat gtatacattt gtgacatctc atctgcctcc tggcttcaac 540 qaqtacqact tcgtgcccga gtctttcgac agagataaga caattgctct gatcatgaat 600 teatecogqt etacegget geetaagggt gtagetetge eccategaac agettgtgtg 660 agattetete atgecaggga ceegatettt gggaateaga ttatteetga caetgetatt 720 25ctqtcqqtqq tqccctttca tcatqqqtttt gggatqttta caacactggg atacctaata 780 tgtgggttta gagtggtgct catgtatagg tttgaagaag aactgttctt acgctctttg 840 caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900 totacqotea taqacaaqta tqacttqtoc aacttgcacg agattgctto tggcggagca 960 cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 30caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080 aagcccgggg ctgtagggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140 accggtaaga cactaggggt gaaccagcgt ggtgaactgt gtgtgcgggg ccctatgatt 1200 atgtcggggt acgttaacaa ccccgaagct acaaatgctc ttattgataa ggatggctgg 1260 ttgcattcgg gcgacattgc ctactgggat gaggatgagc atttcttcat cgtggacaga 1320 35ctgaagtcgt tgatcaaata caaggggtat caagtagctc ctgctgagct ggaatccatt 1380 ctgcttcaac atccaaacat tttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 qqaqagttqc ctqctqctqt aqtaqtqctt qaqcacqgta agacaatqac agaqaaggag 1500 atcgtggatt atgtggcttc acaagtgaca acagctaaga aactgagagg tggcgttgtg 1560 tttgtggatg aggtgcctaa agggctcact ggcaagctgg atgccagaaa aattcgagag 1620 40attctcatta aggctaagaa gggtggaaag attgctgtgt aatagttcta ga 1672 <210> 28

```
<211> 1672
 <212> DNA
 <213> Artificial Sequence
5
  <220>
 <223> A synthetic construct.
  <400> 28
10aaagccacca tggaagatgc taaaaacatt aagaaggggc ctgctccctt ctaccctctt 60
 gaagatggga ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120
 ggcacaattg cgttcacgga tgctcacatt gaggtggaca tcacatacgc tgagtatttt 180
 gagatgtcgg tgcggctggc agaagctatg aagcgctatg ggctgaatac aaaccataga 240
  attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300
15atcggggtgg ctgtggctcc tgctaacgac atctacaacg agcgagagct gttgaactcg 360
  atggggatct ctcagcctac agtggtgttt gtgagtaaga aagggcttca aaagattctc 420
  aatgtgcaaa agaagctgcc tattatacaa aagattatta ttatggactc taagaccgac 480
  taccaggggt ttcagtccat gtacacattt gtaacctctc atctgcctcc tggcttcaac 540
  gagtacgact tcgtgcccga gtctttcgac agggacaaaa cgattgctct gatcatgaac 600
20tcatccqqqt ctaccqqqct qcctaaqqqt gtagctctgc cccatcgaac agcttgtgtg 660
  agattetete atgecaggga ceegatettt gggaateaga ttatteetga caetgetatt 720
  ctqtcqqtqq tgccctttca tcatgggttt gggatgttca caacactggg atacctcatt 780
  tgcqqqttta qaqtqgtqct catgtatagg tttgaagaag aactattcct acgctctttg 840
  caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900
25tctacqctca tagacaaqta tgacttgtcc aacttgcacg agattgcttc tggcggagca 960
  cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020
  caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080
  aaacccgggg ctgtagggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140
  accggtaaga cactaggggt gaaccagcgt ggtgaactgt gtgtgcgggg ccctatgatt 1200
30atgtcggggt acgttaacaa ccccgaagct acaaatgctc ttattgataa ggatggctgg 1260
  ttgcattcqq qcqacattgc ctactgggat gaggatgagc atttcttcat cgtggacaga 1320
  ctgaaqtcgt tgatcaaata caaggggtat caagtagctc ctgctgagct ggaatccatt 1380
  ctgcttcaac atcctaacat tttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440
  ggagagttgc ctgctgctgt agtagtgctt gagcacggta agacaatgac agagaaggag 1500
35atcgtggatt atgtggcttc acaagtgaca acagctaaga aactgagagg tggcgttgtg 1560
  tttgtggatg aggtgcctaa agggctcact ggcaagctgg atgccagaaa aattcgagag 1620
  attctcatta aggctaagaa gggtggaaag attgctgtgt aatagttcta ga
                                                                    1672
  <210> 29
```

40<211> 1672

<212> DNA

<213> Artificial Sequence

24

<220× <223> A synthetic construct. <400> 29 5aaagccacca tggaagatgc caaaaacatt aagaaggggc ctgctccctt ctaccctctt 60 gaagatggga ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120 ggcacaattg cgttcacgga tgctcacatt gaagtagaca tcacatacgc tgagtatttt 180 gagatgtcgg tgcggctggc agaagctatg aagcgctatg ggctgaatac aaaccataga 240 attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300 10atcggggtgg ctgtggctcc tgctaacgac atctacaacg agcgagagct gttgaactcg 360 atggggatct ctcagcctac agtggtgttt gtgagtaaga aagggcttca aaagattctc 420 aatgtgcaaa agaagctgcc tattatacaa aagattatta ttatggactc taagaccgac 480 taccaggggt ttcagtccat gtacacattt gtaacctctc atctgcctcc tggcttcaac 540 gagtacgact tcgtgcccga gtctttcgac agggacaaaa cgattgctct gatcatgaac 600 15agctccgggt ctaccgggct gcctaagggt gtagctctgc cccatcgaac agcttgtgtg 660 agattetete atgecaggga ecegatettt ggaaaccaga teateeetga eactgetatt 720 ctgtcggtgg tgccctttca tcatgggttt gggatgttca caacactggg atacctcatt 780 tgcgggttta gagtggtgct catgtatagg tttgaagaag aactattcct acgctctttg 840 caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900 20tctacgctca tagacaagta tgacttgtcc aacttgcacg agattgcttc tggcggagca 960 cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080 aaacccgggg ctgtagggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140 accggtaaga cactaggggt gaaccagcgt ggtgaactgt gtgtgcgggg ccctatgatt 1200 25atgtcggggt acgttaacaa ccccgaagct acaaatgctc tcatagacaa ggacgggtgg 1260 cttcatagcg gcgacattgc ctactgggac gaggatgagc atttcttcat cgtggacaga 1320 ctgaagtcgt tgatcaaata caaggggtat caagtagctc ctgctgagct ggaatccatt 1380 ctgcttcaac accccaatat cttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 ggagagetge etgetgetgt agtagtgett gageaeggta agacaatgae agagaaggag 1500 30atcgtggatt atgtggcttc acaagtgaca acagctaaga aactgagagg tggcgttgtg 1560 tttgtggatg aggtgcctaa agggctcact ggcaagctgg atgccagaaa aattcgagag 1620 attotoatta aggotaagaa gggtggaaag attgctgtgt aatagttota ga 1672 <210> 30 35<211> 1056 <212> DNA <213> Artificial Sequence <220> 40<223> A synthetic construct. <400> 30

ccactcagtg gccaccatga agaagcccga gctgaccgct accagcgttg agaagttcct 60

WO 2006/034061

gatcgagaag ttcgacagcg tgagcgacct gatgcagtta agcgagggcg aggaaagccg 120 cqccttcagc ttcgatgtcg gcggacgcgg ctatgtactg cgggtgaata gctgcgctga 180 tggcttctac aaagaccgct acgtgtaccg ccacttcgcc agcgctgcac tgcccatccc 240 cgaggtgetg gacateggeg agtteagega gageetgaea taetgeatea geegeegege 300 5tcaaggcgtg actetecaag acetgeeega gacagagetg eeegetgtge tacageetgt 360 cgccgaggct atggacgcta ttgccgccgc cgacctgagc cagaccagcg gcttcggccc 420 attegggeec caaggeateg gecagtacae cacetggege gaetteatet gegecattge 480 tgatccccat gtctaccact ggcagaccgt gatggacgac accgtgagcg ccagcgtagc 540 tcaagccctg gacgagctga tgctgtgggc cgaggactgc cccgaggtgc gccatctcgt 600 10ccatgccgac ttcggcagca acaacgtcct gaccgacaac ggccgcatca ccgccgtaat 660 cgactggagc gaggccatgt tcggggacag tcagtacgag gtggccaaca tcttcttctg 720 geggeeetgg etggeetgea tggageagea aaccegetae ttegagegee gecateeega 780 gctggccggc agccccgtc tgcgagccta catgctgcgc atcggcctgg atcagctcta 840 ccagageete gtggaeggea aettegaega tgetgeetgg geteaaggee getgegatge 900 15catcgtccgc agcggggccg gcaccgtcgg tcgcacacaa atcgctcgcc ggagcgccgc 960 cgtatggacc gacggctgcg tcgaggtgct ggccgacagc ggcaaccgcc ggcccagtac 1020 acgaccgcgc gctaaggagt agtaaccagc tcttgg 1056

<210> 31 20<211> 1672

<212> DNA

<213> Artificial Sequence

25<220>

<223> A synthetic construct.

<400> 31

aaagccacca tggaagatgc caaaaacatt aagaagggc ctgctcctt ctaccctctt 60
30gaagatggga ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120
gggacaattg cgttcacgga tgctcacatt gaagtagaca tcacatacgc tgagtatttt 180
gagatgtcgg tgcggctggc agaagctatg aagcgctatg ggctgaatac aaaccataga 240
attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300
atcggggtgg ctgtggctcc tgctaacgac atcacaacg agcgagagct gttgaactcg 360
35atggggatct ctcagcctac agtggtgtt gtgagtaaga aagggcttca aaagattctc 420
aatgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480
taccaggggt ttcagtccat gtacacattt gtaacctct atctgcctcc tggcttcaac 540
gagtacgact tcgtgcccga gtctttcgac agggacaaaa cgattgctct gatcatgaac 600
agctccgggt ctaccgggct gcctaagggt gtagctctgc cccatcgaac agcttgttg 660
40agattctcc atgccagga cccgatcttt ggaaaccaga tcatccctga cactgctatt 720
ctgtcggtgg tgccctttca tcatgggttt gggatgttca caacactggg atacctcatt 780
tgcgggttta gagtggtgct catgtatagg tttgaagaag aactattcct acgctcttt 840
caagattata agattcagtc tgctctgcg gtgccaacac tattctcttt ttttgctaag 900

tctacgctca tagacaagta tgacttgtcc aacttgcacg agattgcttc tggcgagca 960 cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080 aaacctgggg ctgtagggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140 5accggtaaga cactaggggt gaaccagcgt ggtgaactgt gtgtgcgggg ccctatgatt 1200 atgtcggggt acgttaacaa ccccgaagct acaaatgctc tcatagacaa ggacgggtgg 1260 cttcatagcg gcgacattgc ctactgggac gaggatgagc atttcttcat cgtggacaga 1320 ctgaagtcgt tgatcaaata caaggggtat caagtagct ctgccgagct tgagtccatt 1380 ctgcttcaac accccaatat cttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 10ggagagctgc ctgctgct agagtgctc acaagtgaca acagctaaga aactccgagg tggcgttgtg 1560 tttgtggatg aggtgcctaa aggctcact ggcaagctgg atgccagaa aattcgagag 1620 attctcatta aggctaagaa gggtggaaag attgctgtg aatagttcta ga 1620 attctcatta aggctaagaa gggtggaaag attgctgtg aatagttcta ga 1620

15<210> 32

<211> 1672

<212> DNA

<213> Artificial Sequence

20<220>

<223> A synthetic construct.

<400> 32

aaagccacca tggaagatgc caaaaacatt aagaaggggc ctgctccctt ctaccctctt 60 25qaaqatqqqa ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120 gggacaattg cgttcacgga tgctcacatt gaagtagaca tcacatacgc tgagtatttt 180 gagatgtegg tgeggetgge agaagetatg aagegetatg ggetgaatae aaaccataga 240 attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300 attggggtgg ctgtggctcc tgctaatgac atctacaacg agcgagagct gttgaacagt 360 30atggggatet eteageetae agtggtgttt gtgagtaaga aagggettea aaagattete 420 aatgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480 taccaggggt ttcagtccat gtacacattt gtaacctctc atctgcctcc tggcttcaat 540 gaqtatgact tegtgeeega gtetttegae agggacaaaa egattgetet gateatgaac 600 ageagtgggt ctaccgggct gcctaagggt gtagctctgc cccatcgaac agcttgtgtg 660 35agattetete atgecaggga ecegatettt ggaaaccaga teateeetga eactgetatt 720 ctgtcggtgg tgccctttca tcatgggttt gggatgttca caacactggg atacctcatt 780 tgcgggttta gagtggtgct catgtatagg tttgaagaag aactattcct acgctctttg 840 caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900 tctacgctca tagacaagta tgacttgtcc aacttgcacg agattgcttc tggcggagca 960 40cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080 aaacctgggg ctgtagggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140 accggtaaga cactaggggt gaaccagaga ggtgaattgt gtgtgagggg ccctatgatt 1200

27

atgtcgggt acgttaacaa ccccgaagct acaaatgctc tcatagacaa ggacgggtgg 1260 cttcatagtg gagatattgc ctactgggat gaagatgagc atttcttcat cgtggacaga 1320 ctgaagtcgt tgatcaaata caaggggtat caagtagctc ctgccgagct tgagtccatt 1380 ctgcttcaac accccaatat cttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 5ggagggtgc ctgctgctgt agtagtgctt gagcatggta agacaatgac agagaaggag 1500 atcgtggatt atgtggcttc acaagtgaca acagctaaga aactccgagg tggcgttgtg 1560 tttgtggatg aggtgcctaa agggctcact ggcaagctgg atgccagaaa aattcgagag 1620 attctcatta aggctaagaa gggtggaaag attgctgtg aatagttcta ga 1672

10<210> 33

<211> 1672

<212> DNA

<213> Artificial Sequence

15<220>

<223> A synthetic construct.

<400> 33

aaagccacca tggaagatgc caaaaacatt aagaaggggc ctgctccctt ctaccctctt 60 20gaagatggga ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120 gggacaattg cgttcacgga tgctcacatt gaagtagaca tcacatacgc tgagtatttt 180 gagatgtegg tgeggetgge agaagetatg aagegetatg ggetgaatac aaaccataga 240 attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300 attggggtgg ctgtggctcc tgctaatgac atctacaacg agcgagagct gttgaacagt 360 25atggggatct ctcagcctac agtggtgttt gtgagtaaga aagggcttca aaagattctc 420 aatgtgcaaa agaagctacc gatcatacaa aagatcatca tcatggatag caagaccgac 480 taccaggggt ttcagtccat gtacacattt gtaacctctc atctgcctcc tggcttcaat 540 gagtatgact tcgtgcccga gtctttcgac agggacaaaa cgattgctct gatcatgaac 600 agcagtgggt ctaccgggct gcctaagggt gtagctctgc cccatcgaac agcttgtgtg 660 30agattetete atgecaggga ceegatettt ggaaaceaga teateeetga caetgetatt 720 ctgtcggtgg tgccctttca tcatgggttt gggatgttca caacactggg atacctcatt 780 tgcgggttta gagtggtgct:catgtatagg tttgaagaag aactattcct acgctctttg 840 caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900 totacgetca tagacaagta tgacttgtcc aacttgcacg agattgcttc tggcggagca 960 35cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080 aaacctgggg ctgtagggaa agtggtgccc ttttttgaag ccaaagtagt tgatcttgat 1140 accggtaaga cactaggggt gaaccagaga ggtgaattgt gtgtgagggg ccctatgatt 1200 atgtcggggt acgttaacaa ccccgaagct acaaatgctc tcatagacaa ggacgggtgg 1260 40cttcatagtg gagatattgc ctactgggat gaagatgagc atttcttcat cgtggacaga 1320 ctgaagtcgt tgatcaaata caaggggtat caagtagctc ctgccgagct tgagtccatt 1380 ctgcttcaac accccaatat cttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 ggagagetgc etgetgetgt agtagtgett gageatggta agacaatgae agagaaggag 1500

28

atcgtggatt atgtggcttc acaagtgaca acagctaaga aactccgagg tggcgttgtg 1560 tttgtggatg aggtgcctaa aggactcact ggcaagctgg atgccagaaa aattcgagag 1620 attctcatta aggctaagaa gggtggaaag attgctgtgt aatagttcta ga 1672

5<210> 34

<211> 10

<212> DNA

<213> Artificial Sequence

10<220>

<223> A synthetic construct.

<400> 34

gccaccatga

10

15

<210> 35

<211> 11

<212> DNA

<213> Artificial Sequence

20

<220>

<223> A synthetic construct.

<220>

25<221> misc_feature

<222> 4, 5, 6, 7, 8

<223> n = A,T,C or G

<400> 35

30ccannnnntg g

11

<210> 36

<211> 25

<212> DNA

35<213> Artificial Sequence

<220>

<223> A synthetic construct.

40<220>

<221> misc_feature

<222> 1, 2, 3, 4, 5, 9, 10, 11, 12, 13

<223> n = A, T, C or G

```
<400> 36
                                                                     25
 nnnnnccann nnntggccac catgg
  <210> 37
 5<211> 20
  <212> DNA
  <213> Artificial Sequence
  <220>
10<223> A synthetic construct.
  <220>
  <221> misc_feature
  <222> 10, 11, 12, 13, 14, 18, 19, 20
15<223> n = A,T,C \text{ or } G
  <400> 37
                                                                     20
 taataaccan nnnntggnnn
20<210> 38
  <211> 825
  <212> DNA
  <213> Artificial Sequence
25<220>
  <223> A synthetic construct.
  <400> 38
  ccactcagtg gccaccatga tcgagcagga cggcctccat gctggcagtc ccgcagcctg 60
30ggtcgagcgc ttgttcgggt acgactgggc ccagcagacc atcggatgta gcgatgccgc 120
  agtgttccgc ctgagcgctc aaggccggcc cgtgctgttc gtgaagaccg acctgagcgg 180
  cgccctgaac gagcttcaag acgaggctgc ccgcctgagc tggctggcca ccaccggtgt 240
  accetgegee getgtgttgg atgttgtgae egaageegge egegaetgge tgetgetggg 300
  cgaggtgcct ggccaggacc tgctgagcag ccacctggcc cccgctgaga aggtgagcat 360
35catggccgac gccatgcggc gcctgcacac cctggacccc gctacatgcc ccttcgacca 420
  ccaggetaag caccgcatcg agegggeteg gaccegcatg gaggeeggee tggtggacca 480
  ggacgacctg gacgaggagc accagggcct ggcccccgct gaactgttcg cccgcctgaa 540
  agcccgcatg ccggacggtg aggacctggt tgtgacacac ggcgacgcct gcctccctaa 600
  catcatggtc gagaacggc gcttctccgg cttcatcgac tgcggccgcc tgggcgttgc 660
40cgaccgctac caggacatcg ccctggccac ccgcgacatc gccgaggagc tgggcggcga 720
  gtgggccgac cgcttcctqq tcttgtacgg catcgcagct cccgacagcc agcgcatcgc 780
  cttctaccgc ctgctggacg agttcttcta gtaaccaggc tctgg
                                                                     825
```

```
<210> 39
  <211> 825
  <212> DNA
  <213> Artificial Sequence
 5
  <220>
  <223> A synthetic construct.
  <400> 39
10ccactccgtg gccaccatga tcgaacaaga cggcctccat gctggcagtc ccgcagcttg 60
  ggtcgaacgc ttgttcgggt acgactgggc ccagcagacc atcggatgta gcgatgcggc 120
  cgtgttccgt ctaagcgctc aaggccggcc cgtgctgttc gtgaagaccg acctgagcgg 180
  cgccctgaac gagcttcaag acgaggctgc ccgcctgagc tggctggcca ccaccggtgt 240
  accetqcqcc qctqttqttgg atgttqtgac cgaagccggc cgggactggc tgctgctggg 300
15cgaggtccct ggccaggatc tgctgagcag ccaccttgcc cccgctgaga aggtttccat 360
  catggccgat gcaatgcggc gcctgcacac cctggacccc gctacatgcc ccttcgacca 420
  ccaggctaag catcggatcg agcgtgctcg gacccgcatg gaggccggcc tggtggacca 480
  qqacqacctq qacqaqqaqc atcaqqqcct ggccccqct gaactqttcq cccqcctgaa 540
  agcccgcatg ccggacggtg aggacctggt tgtgacacat ggagatgcct gcctccctaa 600
20catcatggtc gagaatggcc gcttctccgg cttcatcgac tgcggtcgcc taggagttgc 660
  cgaccgctac caggacatcg ccctggccac ccgcgacatc gctgaggagc ttggcggcga 720
  gtgggccgac cgcttcttag tcttgtacgg catcgcagct cccgacagcc agcgcatcgc 780
                                                                     825
  cttctaccgc ctgctcgacg agttctttta atgaccaggc tctgg
25<210> 40
  <400> 40
   000
30<210> 41
  <211> 861
  <212> DNA
  <213> Escherichia coli
35<400> 41
  atgagtattc aacatttccg tgtcgccctt attccctttt ttgcggcatt ttgccttcct 60
  gtttttgctc acccagaaac gctggtgaaa gtaaaagatg ctgaagatca gttgggtgca 120
  cgagtgggtt acatcgaact ggatctcaac agcggtaaga tccttgagag ttttcgcccc 180
  qaaqaacqtt ttccaatqat qaqcactttt aaagttctgc tatgtggcgc ggtattatcc 240
 40cgtattgacg ccgggcaaga gcaactcggt cgccgcatac actattctca gaatgacttg 300
  gttgagtact caccagtcac agaaaagcat cttacggatg gcatgacagt aagagaatta 360
   tgcagtgctg ccataaccat gagtgataac actgcggcca acttacttct gacaacgatc 420
  ggaggaccga aggagctaac cgcttttttg cacaacatgg gggatcatgt aactcgcctt 480
```

WO 2006/034061

PCT/US2005/033218

31

gatcgttggg aaccggagct gaatgaagcc ataccaaacg acgagcgtga caccacgatg 540 cctqtaqcaa tqqcaacaac gttgcgcaaa ctattaactg gcgaactact tactctagct 600 tcccggcaac aattaataga ctggatggag gcggataaag ttgcaggacc acttctgcgc 660

teggeeette eggetggetg gtttattget gataaatetg gageeggtga gegtgggtet 720

5cgcggtatca ttgcagcact ggggccagat ggtaagccct cccgtatcgt agttatctac 780

acgacgggga gtcaggcaac tatggatgaa cgaaatagac agatcgctga gataggtgcc 840

tcactgatta agcattggta a 861

<210> 42

10<211> 1056

<212> DNA

<213> Artificial Sequence

<220>

15<223> A synthetic construct.

<400> 42

ccactccgtg gccaccatga agaagcccga gctgaccgct accagcgttg aaaaatttct 60 categagaag ttegacagtg tgagegaeet gatgeagttg teggagggeg aagagageeg 120 20agccttcagc ttcgatgtcg gcggacgcgg ctatgtactg cgggtgaata gctgcgctga 180 tggcttctac aaagaccgct acgtgtaccg ccacttcgcc agcgctgcac tacccatccc 240 cgaagtgttg gacatcggcg agttcagcga gagcctgaca tactgcatca gtagacgcgc 300 ccaagg cgtt actctccaag acctccccga aacagagctg cctgctgtgt tacagcctgt 360 cgccgaagct atggatgcta ttgccgccgc cgacctcagt caaaccagcg gcttcggccc 420 25attegggeee caaggeateg geeagtacae aacetggegg gattteattt gegeeattge 480 tgatccccat gtctaccact ggcagaccgt gatggacgac accgtgtccg ccagcgtagc 540 tcaagccctg gacgaactga tgctgtgggc cgaagactgt cccgaggtgc gccacctcgt 600 ccatgccgac ttcggcagca acaacgtcct gaccgacaac ggccgcatca ccgccgtaat 660 cgactggagc gaggctatgt tcggggacag tcagtacgag gtggccaaca tcttcttctg 720 30geggeeetgg etggettgea tggageagea gaetegetae ttegagegee ggeateeega 780 gctggccggc agccctcgtc tgcgagccta catgctgcgc atcggcctgg atcagctcta 840 ccagagcete gtggacggca acttegacga tgetgeetgg getcaaggee getgegatge 900 catcgtccgc agcggggccg gcaccgtcgg tcgcacacaa atcgctcgcc ggagcgccgc 960 cgtatggacc gacggctgcg tcgaggtgct ggccgacagc ggcaaccgcc ggcccagtac 1020

1056

<210> 43

<211> 1653

<212> DNA

40<213> Artificial Sequence

<220>

<223> A synthetic construct.

35acgaccgcgc gctaaggagt agtaaccagc tcttgg

32

```
<400> 43
  atggaagacg ccaaaaacat aaagaaaggc ccggcgccat tctatccgct ggaagatgga 60
  accgctggag agcaactgca taaggctatg aagagatacg ccctggttcc tggaacaatt 120
  gcttttacag atgcacatat cgaggtggac atcacttacg ctgagtactt cgaaatgtcc 180
 5gttcggttgg cagaagctat gaaacgatat gggctgaata caaatcacag aatcgtcgta 240
  tqcaqtqaaa actctcttca attctttatg ccggtgttgg gcgcgttatt tatcggagtt 300
  qcagttgcgc ccgcgaacga catttataat gaacgtgaat tgctcaacag tatgggcatt 360
  tcgcagccta ccgtggtgtt cgtttccaaa aaggggttgc aaaaaatttt gaacgtgcaa 420
  aaaaagctcc caatcatcca aaaaattatt atcatggatt ctaaaacgga ttaccaggga 480
10tttcagtcga tgtacacgtt cgtcacatct catctacctc ccggttttaa tgaatacgat 540
  tttgtgccag agtccttcga tagggacaag acaattgcac tgatcatgaa ctcctctgga 600
  tctactggtc tgcctaaagg tgtcgctctg cctcatagaa ctgcctgcgt gagattctcg 660
  catgccagag atcctatttt tggcaatcaa atcattccgg atactgcgat tttaagtgtt 720
  gttccattcc atcacggttt tggaatgttt actacactcg gatatttgat atgtggattt 780
15cgagtcgtct taatgtatag atttgaagaa gagctgtttc tgaggagcct tcaggattac 840
  aagattcaaa gtgcgctgct ggtgccaacc ctattctcct tcttcgccaa aagcactctg 900
  attgacaaat acgatttatc taatttacac gaaattgctt ctggtggcgc tcccctctct 960
  aaggaagtcg gggaagcggt tgccaagagg ttccatctgc caggtatcag gcaaggatat 1020
  gggctcactg agactacatc agctattctg attacacccg agggggatga taaaccgggc 1080
20gcggtcggta aagttgttcc attttttgaa gcgaaggttg tggatctgga taccgggaaa 1140
  acgctgggcg ttaatcaaag aggcgaactg tgtgtgagag gtcctatgat tatgtccggt 1200
  tatgtaaaca atccggaagc gaccaacgcc ttgattgaca aggatggatg gctacattct 1260
  ggagacatag cttactggga cgaagacgaa cacttcttca tcgttgaccg cctgaagtct 1320
  ctgattaagt acaaaggcta tcaggtggct cccgctgaat tggaatccat cttgctccaa 1380
25caccccaaca tcttcgacgc aggtgtcgca ggtcttcccg acgatgacgc cggtgaactt 1440
  cccgccgccg ttgttgtttt ggagcacgga aagacgatga cggaaaaaga gatcgtggat 1500
  tacgtcgcca gtcaagtaac aaccgcgaaa aagttgcgcg gaggagttgt gtttgtggac 1560
  gaagtaccga aaggtettac eggaaaacte gaegeaagaa aaateagaga gateeteata 1620
                                                                    1653
  aaggccaaga agggcggaaa gatcgccgtg taa
30
  <210> 44
  <211> 1369
  <212> DNA
35<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
40<400> 44
  ggatccgttt gcgtattggg cgctcttccg ctgatctgcg cagcaccatg gcctgaaata 60
  acctctgaaa gaggaacttg gttagctacc ttctgaggcg gaaagaacca gctgtggaat 120
```

qtqtqtcaqt taqqqtqtqq aaagtcccca qqctccccaq caqqcaqaag tatqcaaaqc 180

	atgcatctca	attagtcagc	aaccaggtgt	ggaaagtccc	caggctcccc	agcaggcaga	240
	agtatgcaaa	gcatgcatct	caattagtca	gcaaccatag	tecegecect	aactccgccc	300
	atcccgcccc	taactccgcc	cagttccgcc	cattctccgc	cccatggctg	actaatttt	360
	tttatttatg	cagaggccga	ggccgcctct	gcctctgagc	tattccagaa	gtagtgagga	420
	5ggctttttg	gaggcctagg	cttttgcaaa	aagctcgatt	cttctgacac	tagcgccacc	480
	atgatcgaac	aagacggcct	ccatgctggc	agtcccgcag	cttgggtcga	acgcttgttc	540
	gggtacgact	gggcccagca	gaccatcgga	tgtagcgatg	cggccgtgtt	ccgtctaagc	600
	gctcaaggcc	ggcccgtgct	gttcgtgaag	accgacctga	geggegeeet	gaacgagctt	660
	caagacgagg	ctgcccgcct	gagctggctg	gccaccaccg	gcgtaccctg	cgccgctgtg	720
1	L0ttggatgttg	tgaccgaagc	cggccgggac	tggctgctgc	tgggcgaggt	ccctggccag	780
	gatctgctga	gcagccacct	tgccccgct	gagaaggttt	ctatcatggc	cgatgcaatg	840
	cggcgcctgc	acaccctgga	ccccgctacc	tgccccttcg	accaccaggc	taagcatcgg	900
	atcgagcgtg	ctcggacccg	catggaggcc	ggcctggtgg	accaggacga	cctggacgag	960
	gagcatcagg	gcctggcccc	cgctgaactg	ttcgcccgac	tgaaagcccg	catgccggac	1020
1	15ggtgaggacc	tggttgtcac	acacggagat	gcctgcctcc	ctaacatcat	ggtcgagaat	1080
	ggccgcttct	ccggcttcat	cgactgcggt	cgcctaggag	ttgccgaccg	ctaccaggac	1140
	atcgccctgg	ccacccgcga	catcgctgag	gagcttggcg	gcgagtgggc	cgaccgcttc	1200
	ttagtcttgt	acggcatcgc	agctcccgac	agccagcgca	tegeetteta	ccgcttgctc	1260
	gacgagttct	tttaatgatc	tagaaccggt	catggccgca	ataaaatatc	tttattttca	1320
2	20ttacatctgt	gtgttggttt	tttgtgtgtt	cgaactagat	gctgtcgac		1369
	.010. 45						

<210> 45

<211> 1214

<212> DNA

25<213> Artificial Sequence

<220>

<223> A synthetic construct.

30<400> 45

geggeegaa atgetaaace actgeagtgg ttaccagtge ttgateagtg aggeacegat 60 ctcagegate tgeetatte gttegteeat agtggeetga etceeegteg tgtagateae 120 tacgattegt gagggettae cateaggeee cagegaagea atgatgeege gagageegeg 180 ttcaceggee eccegattigt cageaatgaa ecageeagea gggagggeeg agegaagaag 240 35tggteetget actttgteeg ectecateea gtetatgage tgetgtegtg atgetaagagt 300 aagaagtteg ecagtgagta gttteegaag agttgtggee attgetaetg geategtggt 360 atcacegeteg tegtteeggta tggettegtt caactetggt teccaageggt eaageegggt 420 cacatgatea eccatattat gaagaaatge agteagetee ttagggeete egategtggt 480 cagaagtaag ttggeeggg tgttgteget eatggtaatg geageactae acaattetet 540 40tacegteatg ecateegtaa gatgetttee eatggtaatg geageactae ecaagtegtt 600 egegeeacat ageagtaett tgaaagtee eatetegga aategttet eggggeggaa 720 agaeteaaqq atettgeege tattgagate eagttegata tageeeacte ttgeaceeag 780

34

ttgatettea geatettta ettteacea egttteggg tgtgeaaaa eaggeaagea 840
aaatgeegea aagaaggaa tgagtgegae aegaaaatgt tggatgetea taetetteet 900
tttteaatat gtttgeagea tttgteaggg ttaetagtae gtetetettg agagaeegeg 960
ategeeacea tgtetaggta ggtagtaaae gaaagggett aaaggeetaa gtggeeeteg 1020
5agteeageet tgagttggtt gagteeaagt eaegtttgga gatetggtae ettaegegta 1080
tgagggttga gteeaagtea egtttggaga tetggtaeet taegegtatg agetetaegt 1140
agetagegge eteggegge gaattettge gttegaaget tggeaateeg gtaetgttgg 1200
taaageeace atgg

10<210> 46

<211> 1522

<212> DNA

<213> Artificial Sequence

15<220>

<223> A synthetic construct.

<400> 46

qcqqccqcaa atqctaaacc actgcagtgg ttaccagtgc ttgatcagtg aggcaccgat 60 20ctcagcgatc tgcctatttc gttcgtccat agtggcctga ctccccgtcg tgtagatcac 120 tacgattcgt gagggcttac catcaggccc cagcgcagca atgatgccgc gagagccgcg 180 ttcaccggcc cccgatttgt cagcaatgaa ccagccagca gggagggccg agcgaagaag 240 tggtcctgct actttgtccg cctccatcca gtctatgagc tgctgtcgtg atgctagagt 300 aagaagttcg ccagtgagta gtttccgaag agttgtggcc attgctactg gcatcgtggt 360 25atcacgeteg tegtteggta tggettegtt caactetggt teecageggt caageegggt 420 cacatgatca cccatattat gaagaaatgc agtcagctcc ttagggcctc cgatcgttgt 480 cagaagtaag ttggccgcgg tgttgtcgct catggtaatg gcagcactac acaattctct 540 taccgtcatg ccatccgtaa gatgcttttc cgtgaccggc gagtactcaa ccaagtcgtt 600 ttgtgagtag tgtatacggc gaccaagetg etettgeeeg gegtetatac gggacaacac 660 30cgcgccacat agcagtactt tgaaagtgct catcatcggg aatcgttctt cggggcggaa 720 agactcaagg atcttgccgc tattgagatc cagttcgata tagcccactc ttgcacccag 780 ttgatcttca gcatctttta ctttcaccag cgtttcgggg tgtgcaaaaa caggcaagca 840 aaatgccgca aagaagggaa tgagtgcgac acgaaaatgt tggatgctca tactcttcct 900 ttttcaatat gtttgcagca tttgtcaggg ttactagtac gtctctcaag agatttgtgc 960 35atacacagtg actcatactt tcaccaatac tttgcatttt ggataaatac tagacaactt 1020 tagaagtgaa ttatttatga ggttgtctta aaattaaaaa ttacaaagta ataaatcaca 1080 ttgtaatgta ttttgtgtga tacccagagg tttaaggcaa cctattactc ttatgctcct 1140 gcagtataat ttcagtgctt ttaaattttg tcctgcttac tattttcctt ttttatttgg 1260 40gtttgatatg cgtgcacaga atggggcttc tattaaaata ttcttgagag accgcgatcg 1320 ccaccatgtc taggtaggta gtaaacgaaa gggcttaaag gcctaagtgg ccctcgagtc 1380 cagcettgag ttggttgagt ccaagtcacg tttggagate tggtacetta egegtatgag 1440 ctctacgtag ctagcggcct cggcggccqa attcttgcgt tcgaagcttg gcaatccggt 1500

```
actgttggta aagccaccat gg
                                                                    1522
 <210> 47
 <211> 1134
 5<212> DNA
  <213> Artificial Sequence
 <220>
 <223> A synthetic construct.
10
  <400> 47
 qcqqccqcaa atqctaaacc actgcagtgg ttaccagtgc ttgatcagtg aggcaccgat 60
 ctcagcgatc tgcctatttc gttcgtccat agtggcctga ctccccgtcg tgtagatcac 120
  tacgattegt gagggettae cateaggeec cagegeagea atgatgeege gagageegeg 180
15ttcaccqqcc cccqatttgt cagcaatgaa ccagccagca gggagggccg agcgaagaag 240
  tggtcctgct actttgtccg cctccatcca gtctatgagc tgctgtcgtg atgctagagt 300
  aagaagttcg ccagtgagta gtttccgaag agttgtggcc attgctactg gcatcgtggt 360
  atcacgeteg tegtteggta tggettegtt caactetggt teccageggt caageegggt 420
  cacatgatca cccatattat gaagaaatgc agtcagctcc ttagggcctc cgatcgttgt 480
20cagaagtaag ttggccgcgg tgttgtcgct catggtaatg gcagcactac acaattctct 540
  taccgtcatg ccatccgtaa gatgcttttc cgtgaccggc gagtactcaa ccaagtcgtt 600
  ttgtgagtag tgtatacggc gaccaagctg ctcttgcccg gcgtctatac gggacaacac 660
  cgcgccacat agcagtactt tgaaagtgct catcatcggg aatcgttctt cggggcggaa 720
  agactcaagg atcttgccgc tattgagatc cagttcgata tagcccactc ttgcacccag 780
25ttgatcttca gcatctttta ctttcaccag cgtttcgggg tgtgcaaaaa caggcaagca 840
  aaatgccgca aagaagggaa tgagtgcgac acgaaaatgt tggatgctca tactcgtcct 900
  ttttcaatat tattgaagca tttatcaggg ttactagtac gtctctcaag agatttgtgc 960
  atacacagtg actcatactt tcaccaatac tttgcatttt ggataaatac tagacaactt 1020
  tagaagtgaa ttatttatga ggttgtctta aaattaaaaa ttacaaagta ataaatcaca 1080
30ttgtaatgta ttttgtgtga tacccagagg tttaaggcaa cctattactc ttat
  <210> 48
  <211> 319
  <212> DNA
35<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
40<400> 48
  actagtacgt ctctcaagga taagtaagta atattaaggt acgggaggta cttggagcgg 60
  ccgcaataaa atatetttat ttteattaca tetgtgtgtt ggttttttgt gtgaatcgat 120
  aqtactaaca tacqctctcc atcaaaacaa aacqaaacaa aacaaactaq caaaataqqc 180
```

```
tgtccccagt gcaagtgcag gtgccagaac atttctctgg cctaagtggc cggtaccgag 240
  ctcgctagcc tcgaggatat cagatctggc ctcggcggcc aagcttggca atccggtact 300
                                                                     319
  gttggtaaag ccaccatgg
 5<210> 49
  <211> 320
  <212> DNA
  <213> Artificial Sequence
10<220>
  <223> A synthetic construct.
  <400> 49
  actagtacgt ctctcaagga taagtaagta atattaaggt acgggaggta ttggacaggc 60
15cgcaataaaa tatctttatt ttcattacat ctgtgtgttg gttttttgtg tgaatcgata 120
  gtactaacat acgeteteca teaaaacaaa acgaaacaaa acaaactage aaaatagget 180
  gtccccagtg caagtgcagg tgccagaaca tttctctggc ctaactggcc ggtacctgag 240
  ctcgctagcc tcgaggatat caagatctgg cctcggcggc caagcttggc aatccggtac 300
                                                                     320
  tgttggtaaa gccaccatgg
20
  <210> 50
  <211> 5
  <212> DNA
  <213> Artificial Sequence
25
  <220>
  <223> A synthetic construct.
  <400> 50
                                                                     5
30tataa
  <210> 51
  <211> 6
  <212> DNA
35<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
40<400> 51
                                                                     6
  stratg
```

```
<210> 52
 <211> 9
  <212> DNA
5<213> Artificial Sequence
 <220>
  <223> A synthetic construct.
10<220>
  <221> misc_feature
  <222> 4, 6, 7
  <223> n = A,T,C or G
15<400> 52
                                                                     9
 mttncnnma
 <210> 53
 <211> 5
20<212> DNA
  <213> Artificial Sequence
  <220>
  <223> A synthetic construct.
25
  <400> 53
                                                                     5
  tratg
  <210> 54
30<211> 38
  <212> DNA
  <213> Artificial Sequence
  <220>
35<223> A synthetic construct.
  <400> 54
                                                                     38
  gtactgagac gacgccagcc caagcttagg cctgagtg
40<210> 55
  <211> 38
  <212> DNA
  <213> Artificial Sequence
```

<220>		
<223>	A synthetic construct.	
<400>	55	
5ggcat	gagcg tgaactgact gaactagcgg ccgccgag	38
	•	
<210>	56	
<211>	24	
<212>	DNA	
10<213>	Artificial Sequence	
	•	
<220>		
<223>	A synthetic construct.	
	•	
15<400>	56	
	ccatg gtgaagcgtg agaa	24
33		
<210>	57	
<211>		
20<212>		
	Artificial Sequence	
12207		
<220>		
	A synthetic construct.	
25		
<400>	. 57	
	eccatg gtgaaacgcg a	21
3340		
<210	- 58	
30<211		
<212		
	Artificial Sequence	
1220		
<220:		
-	A synthetic construct.	
33 (223)	by moneoge comportation	
<400	. 58	
	etttt tttctagata atcatgaaga c	31
ctage		
40<210	. 59	
<211:		
<212		
	· Artificial Sequence	
-CT2	wrettrorat pedacine	

```
<220>
  <223> A synthetic construct.
  <400> 59
 5gcgtagccat ggtaaagcgt gagaaaaatg tc
                                                                     32
  <210> 60
  <211> 33
  <212> DNA
10<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
15<400> 60
  ccgactctag attactaacc gccggccttc acc
                                                                     33
  <210> 61
  <211> 54
20<212> DNA
  <213> Artificial Sequence
  <220>
  <223> A synthetic construct.
25
  <400> 61
  caaaaagctt ggcattccgg tactgttggt aaagccacca tggtgaagcg agag
                                                                      54
  <210> 62
30<211> 26
  <212> DNA
  <213> Artificial Sequence
  <220>
35<223> A synthetic construct.
  <400> 62
                                                                      26
  caattgttgt tgttaacttg tttatt
40<210> 63
  <400> 63
   000
```

```
<210> 64
 <400> 64
   000
5
  <210> 65
 <211> 10
  <212> DNA
  <213> Artificial Sequence
10
  <220>
  <223> A synthetic construct.
  <400> 65
                                                                      10
15caccatggct
  <210> 66
  <211> 40
  <212> DNA
20<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
25<400> 66
                                                                      40
  aaccatggct tccaaggtgt acgaccccga gcaacgcaaa
  <210> 67
  <211> 40
30<212> DNA
  <213> Artificial Sequence
  <220>
  <223> A synthetic construct.
35
  <400> 67
                                                                      40
  getetagaat tactgetegt tetteageac gegeteeacg
  <210> 68
40<211> 31
  <212> DNA
  <213> Artificial Sequence
```

41

<220> <223> A synthetic construct. <400> 68 31 5cgctagccat ggcttcgaaa gtttatgatc c <210> 69 <211> 25 <212> DNA 10<213> Artificial Sequence <220> <223> A synthetic construct. 15<400> 69 25 ggccagtaac tctagaatta ttgtt <210> 70 <211> 1092 20<212> DNA <213> Artificial Sequence <220> <223> A synthetic construct. 25 <400> 70 aagettgeta gegecaccat gaagaageee gageteaceg etaccagegt tgaaaaattt 60 ctcatcgaga agttcgacag tgtgagcgac ctgatgcagt tgtcggaggg cgaagagagc 120 cgagccttca gcttcgatgt cggcggacgc ggctatgtac tgcgggtgaa tagctgcgct 180 30gatggcttct acaaagaccg ctacgtgtac cgccacttcg ccagcgctgc actacccatc 240 cccgaagtgt tggacatcgg cgagttcagc gagagcctga catactgcat cagtagacgc 300 gcccaaggcg ttactctcca agacctcccc gaaacagagc tgcctgctgt gttacagcct 360 gtegeegaag etatggatge tattgeegee geegaeetea gteaaaceag eggettegge 420 ccattcgggc cccaaggcat cggccagtac acaacctggc gggatttcat ttgcgccatt 480 35gctgatcccc atgtctacca ctggcagacc gtgatggacg acaccgtgtc cgccagcgta 540 gctcaagccc tggacgaact gatgctgtgg gccgaagact gtcccgaggt gcgccacctc 600 gtecatgeeg actteggeag caacaacgte etgacegaca aeggeegeat caeeggegta 660 atcgactggt ccgaagctat gttcggggac agtcagtacg aggtggccaa catcttcttc 720 tggcggccct ggctggcttg catggagcag cagactcgct acttcgagcg ccggcatccc 780 40gagetggeeg geageeeteg tetgegagee taeatgetge geateggeet ggateagete 840 taccagagec tegtggaegg caacttegae gatgetgeet gggeteaagg cegetgegat 900 gccatcgtcc gcagcggggc cggcaccgtc ggtcgcacac aaatcgctcg ccggagcgcc 960 gccgtatgga ccgacggctg cgtcgaggtg ctggccgaca gcggcaaccg ccggcccagt 1020

acacgaccgc gcgctaagga gggtggcgga gggagcggtg gcggaggttc ctacgtatag 1080 1092 tctagactcg ag <210> 71 5<211> 1093 <212> DNA <213> Artificial Sequence <220> 10<223> A synthetic construct. <400> 71 aagettgeta gegecaceat gaagaageee gageteaceg etaceagegt tgaaaaattt 60 ctcatcgaga agttcgacag tgtgagcgac ctgatgcagt tgtcggaggg cgaagagagc 120 15cgagccttca gcttcgatgt cggcggacgc ggctatgtac tgcgggtgaa tagctgcgct 180 gatggcttct acaaagaccg ctacgtgtac cgccacttcg ccagcgctgc actacccatc 240 cccgaagtgt tggacatcgg cgagttcagc gagagcctga catactgcat cagtagacgc 300 gcccaaggcg ttactctcca agacetecce gaaacagage tgcctgctgt gttacagcct 360 gtcgccgaag ctatggatgc tattgccgcc gccgacctca gtcaaaccag cggcttcggc 420 20ccattcggc cccaaggcat cggccagtac acaacctggc gggatttcat ttgcgccatt 480 gctgatcccc atgtctacca ctggcagacc gtgatggacg acaccgtgtc cgccagcgta 540 gctcaagccc tggacgaact gatgctgtgg gccgaagact gtcccgaggt gcgccacctc 600 gtccatgccg acttcggcag caacaacgtc ctgaccgaca acggccgcat caccgccgta 660 ategactggt cegaagetat gtteggggac agteagtaeg aggtggeeaa catettette 720 25tggcggccct ggctggcttg catggagcag cagactcgct acttcgagcg ccggcatccc 780 gagetggeeg geageeeteg tetgegagee tacatgetge geateggeet ggateagete 840 taccagagec tegtggaegg caacttegae gatgetgeet gggeteaagg cegetgegat 900 gccatcgtcc gcagcggggc cggcaccgtc ggtcgcacac aaatcgctcg ccggagcgca 960 gccgtatgga ccgacggctg cgtcgaggtg ctggccgaca gcggcaaccg ccggcccagt 1020 30acacga ccgc gcgctaagga aggcggtgga ggtagtggtg gcggaggtag ctacgtataa 1080 1093 ctctagactc gag <210> 72 <211> 813 35<212> DNA <213> Artificial Sequence <220> <223> A synthetic construct. 40 <400> 72 gctagcgcca ccatgatcga acaagacggc ctccatgctg gcagtcccgc agcttgggtc 60 gaacgcttgt tcgggtacga ctgggcccag cagaccatcg gatgtagcga tgcggccgtg 120

```
ttccgtctaa gegetcaagg ceggeeegtg etgttegtga agacegacet gageggegee 180
ctgaacgage ttcaagacga ggetgeeege etgagetgge tggeeaceae eggtgtacee 240
tgegeegetg tgttggatgt tgtgaeegaa geeggeeggg actggetget getgggegag 300
gtccctggee aggatetget gageageeae ettgeeeeeg etgagaaggt ttceateatg 360
5gccgatgeaa tgeggegeet geacaceetg gaceeegeta catgeeeett egaceaeeag 420
gctaageate ggategageg tgeteggaee egeatggagg eeggeetggt ggaeeaggae 480
gacetggaeg aggageatea gggeetggee eeeggetgaae tgttegeeeg eetgaaagee 540
egeatgeegg aeggtgagga eetggttgt acacatggtg atgeetgeet eeetaaeate 600
atggtegaga atggeeget eteeggete gaeaeeege gaeategetg aggagettgg eggegagtgg 720
geegaeeget tettagtett gtaeeggate geageteeeg acageeageg eategeette 780
taeegeetge tegaegagtt etttaatet aga 813
```

<210> 73

15<211> 816

<212> DNA

<213> Artificial Sequence

<220>

20<223> A synthetic construct.

<400> 73

```
getagegeca ceatgatega acaagaegge etecatgetg geagteeege agettgggte 60
gaaegettgt tegggtaega etgggeeegg eagaeeateg gatgtagega tgeggeegtg 120
25tteegtetaa gegeteaagg eeggeeegtg etgttegtga agaeegaeet gageggegee 180
etgaaegage tteaagaega ggetgeeege etgagetgge tggeeaeeae eggegtaeee 240
tgegeegetg tgttggatgt tgtgaeegaa geeggeeggg aetggetget getgggegag 300
gteeetggee aggatetget gageageae ettgeeeegg etgagaaggt ttetateatg 360
geegatgeaa tgeggegeet geaeeeeegg aeeggeeggt eggeeeett egaeeaeea 420
30getaageate ggategageg tgeteggaee eggeetggt ggaeeaggae 480
gaeetggaeg aggageatea gggeetggee eeeggetgaae tgttegeeeg aeegaaagee 540
egeatgeegg aeggtgagga eetggette aeeaeeggag atgeetgeet eeetaaeae 600
atggtegaga aeggegett eteeggette ategaetgg gtegeetagg agttgeegae 660
egetaeeagg aeategeett gtaeegeete gaeategetg aggagettgg eggegagtgg 720
35geegaeeget tettagtett gtaeggeate geageteeeg aeageeageg eategeette 780
taeegettge tegaegagtt ettttaatga tetaga
```

<210> 74

<211> 1252

40<212> DNA

<213> Artificial Sequence

44

<220> <223> A synthetic construct. <400> 74 5qcqqccqcaa atgctaaacc actgcagtgg ttaccagtgc ttgatcagtg aggcaccgat 60 ctcaqcqatc tgcctatttc gttcgtccat agtggcctga ctccccgtcg tgtagatcac 120 tacgattegt gagggettae cateaggeee cagegeagea atgatgeege gagageegeg 180 ttcaccqqcc cccgatttqt cagcaatgaa ccagccagca gggagggccg agcgaagaag 240 tggtcctgct actttgtccg cctccatcca gtctatgagc tgctgtcgtg atgctagagt 300 10aagaagttcg ccagtgagta gtttccgaag agttgtggcc attgctactg gcatcgtggt 360 atcacqctcq tcqttcggta tggcttcgtt caactctggt tcccagcggt caagccgggt 420 cacatgatca cccatattat gaagaaatgc agtcagctcc ttagggcctc cgatcgttgt 480 cagaagtaag ttggccgcgg tgttgtcgct catggtaatg gcagcactac acaattctct 540 taccetcate ccatcetaa gatettttc ceteaccegc gagtactcaa ccaagteett 600 15ttgtgagtag tgtatacggc gaccaagctg ctcttgcccg gcgtctatac gggacaacac 660 cgcgccacat agcagtactt tgaaagtgct catcatcggg aatcgttctt cggggcggaa 720 agactcaagg atcttgccgc tattgagatc cagttcgata tagcccactc ttgcacccag 780 ttgatcttca gcatctttta ctttcaccag cgtttcgggg tgtgcaaaaa caggcaagca 840 aaatgccgca aagaagggaa tgagtgcgac acgaaaatgt tggatgctca tactcgtcct 900 20ttttcaatat tattgaagca tttatcaggg ttactagtac gtctctcaag gataagtaag 960 taatattaag gtacgggagg tattggacag gccgcaataa aatatcttta ttttcattac 1020 atctgtgtgt tggttttttg tgtgaatcga tagtactaac atacgctctc catcaaaaca 1080 aaacqaaaca aaacaaacta gcaaaatagg ctgtccccag tgcaagtgca ggtgccagaa 1140 cattletetg gcctaactgg ccggtacctg agetegetag cctcgaggat atcaagatet 1200 25qgcctcggcg gccaagcttg gcaatccggt actgttggta aagccaccat gg 1252 <210> 75 <400> 75 30 000 <210> 76 <211> 228 <212> DNA 35<213> Artificial Sequence <220> <223> A synthetic construct. 40<400> 76 actagtcgtc tctcttgaga gaccgcgatc gccaccatga taagtaagta atattaaata 60 agtaaggeet gagtggeeet egageeagee ttgagttggt tgagteeaag teaegtetgg 120 agatetogta cetaegegte agetetaegt agetagegge eteggeggee gaattettge 180

WO 2006/034061

```
gatctaagta agcttggcat tccggtactg ttggtaaagc caccatgg
                                                                     228
  <210> 77
  <211> 228
 5<212> DNA
  <213> Artificial Sequence
  <220>
  <223> A synthetic construct.
10
  <400> 77
  actagtacgt ctctcttgag agaccgcgat cgccaccatg ataagtaagt aatattaaat 60
  aagtaaggcc tgagtggccc tcgagtccag ccttgagttg gttgagtcca agtcacgtct 120
  ggagatetgg tacettacge gtagagetet aegtagetag eggeetegge ggeegaatte 180
15ttgcgatcta agcttggcaa tccggtactg ttggtaaagc caccatgg
                                                                     228
  <210> 78
  <211> 230
  <212> DNA
20<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
25<400> 78
  actagtacgt ctctcttgag agaccgcgat cgcatgccta ggtaggtagt attagagcat 60
  aggtagaggc ctaagtggcc ctcgagtcca gccttgagtt ggttgagtcc aagtcacgtc 120
  tggagatctg gtaccttacg cgtatgagct ctacgtagct agcggcctcg gcggccgaat 180
                                                                     230
  tcttgcgatc taagcttggc aatccggtac tgttggtaaa gccaccatgg
30
  <210> 79
  <211> 234
  <212> DNA
  <213> Artificial Sequence
35
  <220>
  <223> A synthetic construct.
  <400> 79
40actagtacgt ctctcttgag agaccgcgat cgccaccatg tctaggtagg tagtaaacga 60
  aagggettaa aggeetaagt ggeeetegag tecageettg agttggttga gtecaagtea 120
  cgtttggaga tctggtacct tacgcgtatg agctctacgt agctagcggc ctcggcggcc 180
  gaattottgc gatctaagct tggcaatccg gtactgttgg taaagccacc atgg
```

46

<210> 80

```
<211> 938
 <212> DNA
 <213> Artificial Sequence
 <220>
  <223> A synthetic construct.
  <400> 80
10actagtaacc ctgataaatg cttcaataat attgaaaaag gaagagtatg agtattcaac 60
  atttccgtgt cgcccttatt cccttttttg cggcattttg ccttcctgtt tttgctcacc 120
  cagaaacgct ggtgaaagta aaagatgctg aagatcagtt gggtgcacga gtgggttaca 180
  tegaactgga teteaacage ggtaagatee ttgagagttt tegeecegaa gaacgtttte 240
  caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg 300
15ggcaagagca acteggtege egcatacact atteteagaa tgaettggtt gagtacteae 360
  cagtcacaga aaagcatctt acggatggca tgacagtaag agaattatgc agtgctgcca 420
  taaccatgag tgataacacc gcggccaact tacttctgac aacgatcgga ggaccgaagg 480
  agctaaccgc ttttttgcac aacatggggg atcatgtaac tcgccttgat cgttgggaac 540
  cggagctgaa tgaagccata ccaaacgacg agcgtgacac cacgatgcct gtagcaatgg 600
20caacaacgtt gcgcaaacta ttaactggcg aactacttac tctagcttcc cggcaacaat 660
  taatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg gcccttccgg 720
  ctggctggtt tattgctgat aaatctggag ccggtgagcg tggctctcgc ggtatcattg 780
  cagcactggg gccagatggt aagccctccc gtatcgtagt tatctacacg acggggagtc 840
  aggcaactat ggatgaacga aatagacaga tegetgagat aggtgeetea etgattaage 900
25attggtaacc actgcagtgg ttttcctttt gcggccgc
                                                                    938
 <210> 81
 <211> 938
  <212> DNA
30<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
35<400> 81
  actagtaacc ctgataaatg ctgcaaacat attgaaaaag gaagagtatg agtattcaac 60
  attteegtgt egeacteatt ceettetttg eggeattttg ettgeetgtt tttgeacace 120
  ccgaaacgct ggtgaaagta aaagatgctg aagatcaact gggtgcacga gtgggctata 180
  tcgaactgga tctcaatagc ggtaagatcc ttgagagttt tcgccccgaa gaacgttttc 240
40caatgatgag cacttttaaa gttctgctat gtggcgcggt attatcccgt attgacgccg 300
 ggcaagagca gctcggtcgc cgcatacact actcacagaa cgacttggtt gagtactcgc 360
  cggtcacgga aaagcatctt acggatggca tgacagtaag agaattgtgt agtgctgcca 420
  taaccatgag tgataacacc gcggccaact tacttctgac aacgatcgga ggccctaagg 480
```

```
agetgacege atttttgcae aacatggggg ateatgtaae eeggettgat egttgggaae 540
  cggagctgaa cgaagccata ccgaacgacg agcgtgacac cacgatgcct gtagcaatgg 600
  caacaacgtt gcgcaaacta ctcactggcg aacttctcac tctagcatca cgacagcaac 660
  tcatagactg gatggaggcg gataaagttg caggaccact tctgcgctcg gcccttccgg 720
Sctggctggtt tatagctgat aaatccggtg ccggtgaacg cggctctcgc gggatcattg 780
  ctgcgctggg gccagatggt aagccctcac gaatcgtagt tatctacacg acggggagtc 840
  aggcaactat ggatgaacga aatagacaga tcgctgagat aggtgcctca ctgatcaagc 900
                                                                    938
  actggtagcc actgcagtgg tttagctttt gcggccgc
10<210> 82
  <211> 938
  <212> DNA
  <213> Artificial Sequence
15<220>
  <223> A synthetic construct.
  <400> 82
  actaqtaacc ctqacaaatq ctgcaaacat attgaaaaag gaagagtatg agcatccaac 60
20attttcgtgt cgcactcatt cccttctttg cggcattttg cttgcctgtt tttgcacacc 120
  ccgaaacgct ggtgaaagta aaagatgctg aagatcaact gggtgcaaga gtgggctata 180
  tcqaactqqa tctcaatagc qqcaagatcc ttgagtcttt tcgccccgaa gaacgttttc 240
  cgatgatgag cacttttaaa gttctgctat gtggcgcggt gttgtcccgt atagacgccg 300
  ggcaagagca gcttggtcgc cgtatacact actcacaaaa cgacttggtt gagtactcgc 360
25cggtcacgga aaagcatctt acggatggca tgacggtaag agaattgtgt agtgctgcca 420
  ttaccatgag cgacaatacc gcggccaact tacttctgac aacgatcgga ggccctaagg 480
  agotgaccgc attittigcac aacatggggg atcatgtaac ccggcttgac cgctgggaac 540
  cggagctgaa cgaagccata ccgaacgacg agcgtgacac cacgatgcct gtagcaatgg 600
  caacaacgtt gcggaaacta ctcactggcg aacttctcac tctagcatca cgacagcagc 660
30tcatagactg gatggaggcg gacaaagtag caggaccact tettegeteg geceteeetg 720
  ctggctggtt cattgctgat aaatccggtg ccggtgaacg cggctctcgc gggatcattg 780
  ctgcgctggg gcctgatggt aagccctcac gaatcgtagt aatctacacg acggggagtc 840
  aggccactat ggacgaacga aatagacaga tcgctgagat cggtgcctca ctgatcaagc 900
  actggtaacc actgcagtgg tttagcattt gcggccgc
                                                                    938
35
  <210> 83
  <211> 938
  <212> DNA
  <213> Artificial Sequence
40
  <220>
  <223> A synthetic construct.
```

48

<400> 83

```
actagtaacc ctgacaaatg ctgcaaacat attgaaaaag gaagagtatg agcatccaac 60
  attttcgtgt cgcactcatt cccttctttg cggcattttg cttgcctgtt tttgcacacc 120
  ccgaaacgct ggtgaaagta aaagatgctg aagatcaact gggtgcaaga gtgggctata 180
 5tcgaactgga tctcaatagc ggcaagatcc ttgagtcttt ccgccccgaa gaacgttttc 240
  cqatqatgag cactttcaaa gtactgctat gtggcgcggt gttgtcccgt atagacgccg 300
  ggcaagagca gcttggtcgc cgtatacact actcacaaaa cgacttggtt gagtactcgc 360
  cggtcacgga aaagcatctt acggatggca tgacggtaag agaattgtgt agtgctgcca 420
  ttaccatgag cgataatacc gcggccaact tacttctgac aacgatcgga ggccctaagg 480
10aqctgaccgc atttttgcac aacatgggtg atcatgtgac ccggcttgac cgctgggaac 540
  cggagctgaa cgaagccata ccgaacgacg agcgtgacac cacgatgcct gtagcaatgg 600
  caacaactet teggaaacta etcaetggeg aactteteac tetageatea egacageage 660
  tcatagactq gatggaggcg gacaaagtag caggaccact tcttcgctcg gccctccctg 720
  ctggctggtt cattgctgat aaatctggag ccggtgagcg tggctctcgc ggtatcattg 780
15ctgcgctggg gcctgatggt aagccctcac gaatcgtagt aatctacacg acggggagtc 840
  aggccactat ggacgaacga aatagacaga tcgctgagat cggtgcctca ctgatcaagc 900
                                                                    938
  actggtaacc actgcagtgg tttagcattt gcggccgc
  <210> 84
20<211> 938
  <212> DNA
  <213> Artificial Sequence
  <220>
25<223> A synthetic construct.
  <400> 84
  actagtaacc ctgacaaatg ctgcaaacat attgaaaaag gaagagtatg agcatccaac 60
  attttcgtgt cgcactcatt cccttctttg cggcattttg cttgcctgtt tttgcacacc 120
30ccgaaacgct ggtgaaagta aaagatgctg aagatcaact gggtgcaaga gtgggctata 180
  tegaactgga teteaatage ggeaagatee ttgagtettt eegeecegaa gaacgattee 240
  cgatgatgag cactttcaaa gtactgctat gtggcgcggt gttgtcccgt atagacgccg 300
  ggcaagagca gcttggtcgc cgtatacact actcacaaaa cgacttggtt gagtactcgc 360
  cggtcacgga aaagcatctt acggatggca tgacggtaag agaattgtgt agtgctgcca 420
35ttaccatgag cgataatacc gcggccaact tacttctgac aacgatcgga ggccctaagg 480
  agetgacege atttttgcae aacatgggtg atcatgtgae eeggettgae egetgggaae 540
  cggagctgaa cgaagccata ccgaacgacg agcgtgatac cacgatgcca gtagcaatgg 600
  ccacaactct tcggaaacta ctcactggcg aacttctcac tctagcatca cgacagcagc 660
  tcatagactg gatggaggcg gacaaagtag caggaccact tcttcgctcg gccctccctg 720
40ctggctggtt cattgctgac aaatccggtg ccggtgaacg cggctctcgc ggcatcattg 780
  ctgcgctggg gcctgatggt aagccctcac gaatcgtagt aatctacacg acggggagtc 840
  aggccactat ggacgaacga aatagacaga tcgctgagat cggtgcctca ctgatcaagc 900
                                                                    938
  actggtaacc actgcagtgg tttagcattt gcggccgc
```

```
<210> 85
  <400> 85
   000
5
  <210> 86
  <400> 86
   000
10
  <210> 87
  <400> 87
   000
15
  <210> 88
  <211> 1038
  <212> DNA
  <213> Artificial Sequence
20
  <220>
  <223> A synthetic construct.
  <400> 88
25atgaagaagc ccgaactcac cgctaccagc gttgaaaaat ttctcatcga gaagttcgac 60
  agtgtgagcg acctgatgca gttgtcggag ggcgaagaga gccgagcctt cagcttcgat 120
  gtcggcggac gcggctatgt actgcgggtg aatagctgcg ctgatggctt ctacaaagac 180
  cgctacgtgt accgccactt cgccagcgct gcactaccca tccccgaagt gttggacatc 240
  ggcgagttca gcgagagcct gacatactgc atcagtagac gcgcccaagg cgttactctc 300
30caagacctcc ccgaaacaga gctgcctgct gtgttacagc ctgtcgccga agctatggat 360
  gctattgccg ccgccgacct cagtcaaacc agcggcttcg gcccattcgg gccccaaggc 420
  atcggccagt acacaacctg gcgggatttc atttgcgcca ttgctgatcc ccatgtctac 480
  cactggcaga ccgtgatgga cgacaccgtg tccgccagcg tagctcaagc cctggacgaa 540
  ctgatgctgt gggccgaaga ctgtcccgag gtgcgccacc tcgtccatgc cgacttcggc 600
35agcaacaacg tcctgaccga caacggccgc atcaccgccg taatcgactg gtccgaagct 660
  atgttegggg acagteagta egaggtggce aacatettet tetggeggee etggetgget 720
  tgcatggage ageagacteg ctacttegag egeeggeate eegagetgge eggeageeet 780
  egtetgegag cetacatget gegeategge etggateage tetaceagag cetegtggae 840
  ggcaacttcg acgatgctgc ctgggctcaa ggccgctgcg atgccatcgt ccgcagcggg 900
40gccggcaccg tcggtcgcac acaaatcgct cgccggagcg cagccgtatg gaccgacggc 960
 tgcgtcgagg tgctggccga cagcggcaac cgccggccca gtacacgacc gcgcgctaag 1020
                                                                     1038
  gaggtaggtc gagtttaa
```

<210> 89

```
<211> 4333
 <212> DNA
 <213> Artificial Sequence
  <220>
 <223> A synthetic construct.
 <400> 89
10ggcctaactg gccggtacct gagctcgcta gcctcgagga tatcaagatc tggcctcggc 60
 ggccaagett ggcaateegg tactgttggt aaageeacca tggaagatge caaaaacatt 120
 aagaagggcc cagcgccatt ctacccactc gaagacggga ccgccggcga gcagctgcac 180
 aaagccatga agcgctacgc cctggtgccc ggcaccatcg cctttaccga cgcacatatc 240
 gaggtggaca ttacctacgc cgagtacttc gagatgagcg ttcggctggc agaagctatg 300
15aagcgctatg ggctgaatac aaaccatcgg atcgtggtgt gcagcgagaa tagcttgcag 360
  ttetteatge eegtgttggg tgeeetgtte ateggtgtgg etgtggeece agetaacgae 420
 atctacaacg agcgcgagct gctgaacagc atgggcatca gccagcccac cgtcgtattc 480
 gtgagcaaga aagggctgca aaagatcctc aacgtgcaaa agaagctacc gatcatacaa 540
 aagatcatca tcatggatag caagaccgac taccagggct tccaaagcat gtacaccttc 600
20gtgacttccc atttgccacc cggcttcaac gagtacgact tcgtgcccga gagcttcgac 660
 cgggacaaaa ccatcgccct gatcatgaac agtagtggca gtaccggatt gcccaagggc 720
 gtagecetae egeacegeae egettgtgte egatteagte atgeeegega ecceatette 780
 ggcaaccaga tcatccccga caccgctatc ctcagcgtgg tgccatttca ccacggcttc 840
 ggcatgttca ccacgctggg ctacttgatc tgcggctttc gggtcgtgct catgtaccgc 900
25ttcgaggagg agctattctt gcgcagcttg caagactata agattcaatc tgccctgctg 960
 gtgcccacac tatttagctt cttcgctaag agcactctca tcgacaagta cgacctaagc 1020
 aacttgcacg agatcgccag cggcggggcg ccgctcagca aggaggtagg tgaggccgtg 1080
 gccaaacgct tccacctacc aggcatccgc cagggctacg gcctgacaga aacaaccagc 1140
 gccattctga tcacccccga aggggacgac aagcctggcg cagtaggcaa ggtggtgccc 1200
30ttcttcgagg ctaaggtggt ggacttggac accggtaaga cactgggtgt gaaccagcgc 1260
 ggcgagctgt gcgtccgtgg ccccatgatc atgagcggct acgttaacaa ccccgaggct 1320
 acaaacgctc tcatcgacaa ggacggctgg ctgcacagcg gcgacatcgc ctactgggac 1380
 gaggacgagc acttcttcat cgtggaccgg ctgaagagcc tgatcaaata caagggctac 1440
  caggtagece cageegaact ggagageate etgetgeaac acceeaacat ettegaegee 1500
35ggggtcgccg gcctgcccga cgacgatgcc ggcgagctgc ccgccgcagt cgtcgtgctg 1560
 gaacacggta aaaccatgac cgagaaggag atcgtggact atgtggccag ccaggttaca 1620
 accgccaaga agetgeggg tggtgttgtg ttegtggaeg aggtgeetaa aggaetgaee 1680
 ggcaagttgg acgcccgcaa gatccgcgag attctcatta aggccaagaa gggcggcaag 1740
  ategeegtgt aataatteta gagtegggge ggeeggeege ttegageaga catgataaga 1800
40tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg ctttatttgt 1860
 gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa acaagttaac 1920
 aacaacaatt gcattcattt tatgtttcag gttcaggggg aggtgtggga ggttttttaa 1980
 agcaagtaaa acctctacaa atgtggtaaa atcgataagg atccgtcgac cgatgccctt 2040
```

				ggcatgacta		
acttatgact	gtcttcttta	tcatgcaact	cgtaggacag	gtgccggcag	cgctcttccg	2160
cttcctcgct	cactgactcg	ctgcgctcgg	tcgttcggct	gcggcgagcg	gtatcagctc	2220
actcaaaggc	ggtaatacgg	ttatccacag	aatcagggga	taacgcagga	aagaacatgt	2280
5gagcaaaagg	ccagcaaaag	gccaggaacc	gtaaaaaggc	cgcgttgctg	gcgtttttcc	2340
ataggctccg	ccccctgac	gagcatcaca	aaaatcgacg	ctcaagtcag	aggtggcgaa	2400
acccgacagg	actataaaga	taccaggcgt	ttccccctgg	aagctccctc	gtgcgctctc	2460
ctgttccgac	cctgccgctt	accggatacc	tgtccgcctt	tctcccttcg	ggaagcgtgg	2520
cgctttctca	tagctcacgc	tgtaggtatc	tcagttcggt	gtaggtcgtt	cgctccaagc	2580
10tgggctgtgt	gcacgaaccc	cccgttcagc	ccgaccgctg	cgccttatcc	ggtaactatc	2640
gtcttgagtc	caacccggta	agacacgact	tatcgccact	ggcagcagcc	actggtaaca	2700
ggattagcag	agcgaggtat	gtaggcggtg	ctacagagtt	cttgaagtgg	tggcctaact	2760
acggctacac	tagaagaaca	gtatttggta	tetgegetet	gctgaagcca	gttaccttcg	2820
gaaaaagagt	tggtagctct	tgatccggca	aacaaaccac	cgctggtagc	ggtggtttt	2880
15ttgtttgcaa	gcagcagatt	acgcgcagaa	aaaaaggatc	tcaagaagat	cctttgatct	2940
tttctacggg	gtctgacgct	cagtggaacg	aaaactcacg	ttaagggatt	ttggtcatga	3000
gattatcaaa	aaggatcttc	acctagatcc	ttttaaatta	aaaatgaagt	tttaaatcaa	3060
tctaaagtat	atatgagtaa	acttggtctg	acagcggccg	caaatgctaa	accactgcag	3120
tggttaccag	tgcttgatca	gtgaggcacc	gatctcagcg	atctgcctat	ttcgttcgtc	3180
20catagtggcc	tgactccccg	tcgtgtagat	cactacgatt	cgtgagggct	taccatcagg	3240
ccccagcgca	gcaatgatgc	cgcgagagcc	gcgttcaccg	gcccccgatt	tgtcagcaat	3300
gaaccagcca	gcagggaggg	ccgagcgaag	aagtggtcct	gctactttgt	ccgcctccat	3360
ccagtctatg	agctgctgtc	gtgatgctag	agtaagaagt	tcgccagtga	gtagtttccg	3420
aagagttgtg	gccattgcta	ctggcatcgt	ggtatcacgc	tcgtcgttcg	gtatggcttc	3480
25gttcaactct	ggttcccagc	ggtcaagccg	ggtcacatga	tcacccatat	tatgaagaaa	3540
tgcagtcagc	tccttagggc	ctccgatcgt	tgtcagaagt	aagttggccg	cggtgttgtc	3600
gctcatggta	atggcagcac	tacacaattc	tcttaccgtc	atgccatccg	taagatgctt	3660
ttccgtgacc	ggcgagtact	caaccaagtc	gttttgtgag	tagtgtatac	ggcgaccaag	3720
ctgctcttgc	ccggcgtcta	tacgggacaa	caccgcgcca	catagcagta	ctttgaaagt	3780
30gctcatcatc	gggaatcgtt	cttcggggcg	gaaagactca	aggatcttgc	cgctattgag	3840
atccagttcg	atatagccca	ctcttgcacc	cagttgatct	tcagcatctt	ttactttcac	3900
cagcgtttcg	gggtgtgcaa	aaacaggcaa	gcaaaatgcc	gcaaagaagg	gaatgagtgc	3960
gacacgaaaa	tgttggatgc	tcatactcgt	cctttttcaa	tattattgaa	gcatttatca	4020
gggttactag	tacgtctctc	aaggataagt	aagtaatatt	aaggtacggg	aggtattgga	4080
35caggccgcaa	taaaatatct	ttattttcat	tacatctgtg	tgttggtttt	ttgtgtgaat	4140
cgatagtact	aacatacgct	ctccatcaaa	acaaaacgaa	acaaaacaaa	ctagcaaaat	4200
aggetgteee	cagtgcaagt	gcaggtgcca	gaacatttct	ctaagtaata	ttaaggtacg	4260
ggaggtattg	gacaggccgc	aataaaatat	ctttattttc	attacatctg	tgtgttggtt	4320
ttttgtgtga	atc					4333

52

<210> 90

```
<211> 3522
 <212> DNA
  <213> Artificial Sequence
5
  <220>
  <223> A synthetic construct.
  <400> 90
10ggcctaactg gccggtacct gagctcgcta gcctcgagga tatcaagatc tggcctcggc 60
  ggccaagett ggcaateegg taetgttggt aaageeacea tggetteeaa ggtgtaegae 120
  cccgagcaac gcaaacgcat gatcactggg cctcagtggt gggctcgctg caagcaaatg 180
  aacgtgctgg actccttcat caactactat gattccgaga agcacgccga gaacgccgtg 240
  atttttctgc atggtaacgc tgcctccagc tacctgtgga ggcacgtcgt gcctcacatc 300
15gagcccgtgg ctagatgcat catccctgat ctgatcggaa tgggtaagtc cggcaagagc 360
  gggaatgget catategeet cetggateae tacaagtace teacegettg gttegagetg 420
  ctgaaccttc caaagaaaat catctttgtg ggccacgact ggggggcttg tctggccttt 480
  cactactcct acgagcacca agacaagatc aaggccatcg tccatgctga gagtgtcgtg 540
  gacgtgatcg agtcctggga cgagtggcct gacatcgagg aggatatcgc cctgatcaag 600
20agcgaagagg gcgagaaaat ggtgcttgag aataacttct tcgtcgagac catgctccca 660
  agcaagatca tgcggaaact ggagcctgag gagttcgctg cctacctgga gccattcaag 720
  gagaagggcg aggttagacg gcctaccctc tcctggcctc gcgagatccc tctcgttaag 780
  ggaggcaagc ccgacgtcgt ccagattgtc cgcaactaca acgcctacct tcgggccagc 840
  gacgatctgc ctaagatgtt catcgagtcc gaccctgggt tcttttccaa cgctattgtc 900
25gagggagcta agaagttccc taacaccgag ttcgtgaagg tgaagggcct ccacttcagc 960
  caggaggacg ctccagatga aatgggtaag tacatcaaga gcttcgtgga gcgcgtgctg 1020
  aagaacgagc agtaattcta gagtcggggc ggccggccgc ttcgagcaga catgataaga 1080
  tacattgatg agtttggaca aaccacaact agaatgcagt gaaaaaaatg ctttatttgt 1140
  gaaatttgtg atgctattgc tttatttgta accattataa gctgcaataa acaagttaac 1200
30aacaacaatt gcattcattt tatgtttcag gttcaggggg aggtgtggga ggttttttaa 1260
  agcaagtaaa acctctacaa atgtggtaaa atcgataagg atccgtcgac cgatgccctt 1320
  gagageette aacceagtea geteetteeg gtgggegegg ggeatgacta tegtegeege 1380
  acttatgact gtcttcttta tcatgcaact cgtaggacag gtgccggcag cgctcttccg 1440
  cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc 1500
35actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt 1560
  gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc 1620
  ataggeteeg eccècetgae gageateaca aaaategaeg etcaagteag aggtggegaa 1680
  accegacagg actataaaga taccaggegt ttccccctgg aagctccctc gtgcgctctc 1740
  etgtteegae cetgeegett aceggatace tgteegeett tetecetteg ggaagegtgg 1800
40cgctttctca tagctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc 1860
  tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactatc 1920
  gtcttgagtc caacceggta agacacgact tategccact ggcagcagcc actggtaaca 1980
  ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact 2040
```

53

```
acggctacac tagaagaaca gtatttggta tctgcgctct gctgaagcca gttaccttcg 2100
 gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt 2160
 ttgtttgcaa gcagcagatt acgcgcagaa aaaaaggatc tcaagaagat cctttgatct 2220
 tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga 2280
 Sgattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa 2340
 totaaagtat atatgagtaa acttggtctg acagcggccg caaatgctaa accactgcag 2400
 tggttaccag tgcttgatca gtgaggcacc gatctcagcg atctgcctat ttcgttcgtc 2460
 catagtggcc tgactccccg tcgtgtagat cactacgatt cgtgagggct taccatcagg 2520
 ccccagcgca gcaatgatgc cgcgagagcc gcgttcaccg gcccccgatt tgtcagcaat 2580
10gaaccagcca gcagggaggg ccgagcgaag aagtggtcct gctactttgt ccgcctccat 2640
 ccagtctatg agetgetgte gtgatgetag agtaagaagt tegecagtga gtagttteeg 2700
 aagagttgtg gccattgcta ctggcatcgt ggtatcacgc tcgtcgttcg gtatggcttc 2760
 gttcaactct ggttcccagc ggtcaagccg ggtcacatga tcacccatat tatgaagaaa 2820
 tgcagtcagc teettaggge etcegategt tgtcagaagt aagttggeeg eggtgttgte 2880
15gctcatggta atggcagcac tacacaattc tcttaccgtc atgccatccg taagatgctt 2940
 ttccgtgacc ggcgagtact caaccaagtc gttttgtgag tagtgtatac ggcgaccaag 3000
 ctgctcttgc ccggcgtcta tacgggacaa caccgcgcca catagcagta ctttgaaagt 3060
 gctcatcatc gggaatcgtt cttcggggcg gaaagactca aggatcttgc cgctattgag 3120
 atccagttcg atatagccca ctcttgcacc cagttgatct tcagcatctt ttactttcac 3180
20cagcgtttcg gggtgtgcaa aaacaggcaa gcaaaatgcc gcaaagaagg gaatgagtgc 3240
 gacacgaaaa tgttggatgc tcatactcgt cctttttcaa tattattgaa gcatttatca 3300
 gggttactag tacgtctctc aaggataagt aagtaatatt aaggtacggg aggtattgga 3360
 caggccgcaa taaaatatct ttattttcat tacatctgtg tgttggtttt ttgtgtgaat 3420
 3522
25aggctgtccc cagtgcaagt gcaggtgcca gaacatttct ct
 <210> 91
 <211> 621
 <212> DNA
30<213> Artificial Sequence
  <220>
 <223> A synthetic construct.
35<400> 91
 gctagcgcca ccatgaccga gtacaagccc accgtgcgcc tggccacccg cgacgacgtg 60
 ccccgcgccg tgcgcaccct ggccgccgcc ttcgccgact accccgccac ccgccacacc 120
 gtggaccccg accgccacat cgagcgcgtg accgagctgc aggagctgtt cctgacccgc 180
 gtgggcctgg acatcggcaa ggtgtgggtg gccgacgacg gcgccgccgt ggccgtgtgg 240
40accaccccg agagegtgga ggccggcgcc gtgttegccg agateggccc ccgcatggcc 300
 gagetgageg geageegeet ggeegeeeag cageagatgg agggeetget ggeeeeeeac 360
 cgccccaagg agcccgcctg gttcctggcc accgtgggcg tgagccccga ccaccagggc 420
```

aagggeetgg geagegeegt ggtgetgeee ggegtggagg eegeegageg egeeggegtg 480

```
cccgccttcc tggagaccag cgcccccgc aacctgccct tctacgagcg cctgggcttc 540
  accgtgaccg ccgacgtgga ggtgcccgag ggcccccgca cctggtgcat gacccgcaag 600
                                                                    621
  cccggcgcct aatgatctag a
 5<210> 92
  <211> 621
  <212> DNA
  <213> Artificial Sequence
10
  <220>
  <223> A synthetic construct.
  <400> 92
15gctagcgcca ccatgaccga gtacaagcct accgtgcgcc tggccactcg cgatgatgtg 60
  ccccgcgccg tccgcactct ggccgccgct ttcgccgact accccgctac ccggcacacc 120
  gtggaccccg accggcacat cgagcgtgtg acagagttgc aggagctgtt cctgacccgc 180
  gtcgggctgg acatcggcaa ggtgtgggta gccgacgacg gcgcggccgt ggccgtgtgg 240
  actacccccg agagcgttga ggccggcgcc gtgttcgccg agatcggccc ccgaatggcc 300
20gagetgageg geageegeet ggeegeeeag eageaaatgg agggeetget tgeeceeeat 360
  cgtcccaagg agcccgcctg gtttctggcc actgtaggag tgagccccga ccaccagggc 420
  aagggcttgg gcagcgccgt cgtgttgccc ggcgtagagg ccgccgaacg cgccggtgtg 480
  cccgcctttc tggagacaag cgctccgcgt aaccttccat tctacgagcg cctgggcttc 540
  accgtgaccg ccgatgtcga ggtgcccgag ggaccccgga cctggtgcat gactcgcaag 600
                                                                     621
25cctggcgcct aatgatctag a
  <210> 93
  <211> 621
  <212> DNA
30<213> Artificial Sequence
  <220>
  <223> A synthetic construct.
35<400> 93
  gctagcgcca ccatgaccga gtacaagcct accgtgcgcc tggccactcg cgatgatgtg 60
  ccccgcgccg tccgcactct ggccgccgct ttcgccgact accccgctac ccggcacacc 120
  gtggaccccg accggcacat cgagcgtgtg acagagttgc aggagctgtt cctgacccgc 180
  gtcgggctgg acatcggcaa ggtgtgggta gccgacgacg gcgcggccgt ggccgtgtgg 240
40actacccccg agagcgttga ggccggcgcc gtgttcgccg agatcggccc ccgaatggcc 300
  gagetgageg geageegeet ggeegeecag eageaaatgg agggeetget tgeeceecat 360
  cgtcccaagg agcctgcctg gtttctggcc actgtaggag tgagccccga ccaccagggc 420
  aagggettgg geagegeegt egtgttgeee ggegtagagg eegeegaaeg egeeggtgtg 480
```

1672

55

cccqcctttc tcgaaacaag cgcaccaaga aaccttccat tctacgagcg cctgggcttc 540 accgtgaccg ccgatgtcga ggtgcccgag ggacctagga cctggtgtat gacacgaaaa 600 621 cctggcgcct aatgatctag a 5<210> 94 <211> 1672 <212> DNA <213> Artificial Sequence 10<220> <223> A synthetic construct. <400> 94 aaagccacca tggaagatgc caaaaacatt aagaaggggc ctgctccctt ctaccctctt 60 15gaagatggga ctgctggcga gcaacttcac aaagctatga agcggtatgc tcttgtgcca 120 gggacaattg cgttcacgga tgctcacatt gaagtagaca tcacatacgc tgagtatttt 180 gagatgtcgg tgcggctggc agaagctatg aagcgctatg ggctgaatac aaaccataga 240 attgtagtgt gcagtgagaa ctcgttgcag ttctttatgc ccgtgctggg ggctctcttc 300 ateggggtgg etgtggetee tgetaacgae atetacaacg agegagaget gttgaacteg 360 20atggggatct ctcagcctac agtggtgttt gtgagtaaga aagggcttca aaagattctc 420 aatgtgcaaa agaagctgcc tattatacaa aagattatta ttatggactc taagacagac 480 taccaggggt ttcagtccat gtacacattt gtaacctctc atctgcctcc tggcttcaac 540 gagtacgact tcgtgcccga gtctttcgac agggacaaaa cgattgctct gatcatgaac 600 ageteegggt ctaceggget geetaagggt gtagetetge eccategaac agettgtgtg 660 25agattetete atgecaggga ecegatettt ggaaaccaga teateeetga eactgetatt 720 ctgtcggtgg tgccctttca tcatgggttt gggatgttca caacactggg atacctcatt 780 tgcgggttta gagtggtgct catgtatagg tttgaagaag aactattcct acgctctttg 840 caagattata agattcagtc tgctctgctg gtgccaacac tattctcttt ttttgctaag 900 tctacgctca tagacaagta tgacttgtcc aacttgcacg agattgcttc tggcggagca 960 30cctctgtcta aggaggtagg tgaggctgtg gctaagcgct ttcatctgcc tggtatcaga 1020 caggggtacg ggctaacaga aacaacttct gctattctga ttacaccaga gggcgatgac 1080 aaacccqqqq ctgtaqqqaa agtqgtqccc ttttttqaaq ccaaaqtaqt tqatcttqat 1140 accggtaaga cactaggggt gaaccagcgt ggtgaactgt gtgtgcgggg ccctatgatt 1200 atgtcggggt acgttaacaa ccccgaagct acaaatgctc tcatagacaa ggacgggtgg 1260 35cttcatagcg gcgacattgc ctactgggac gaggatgagc atttcttcat cgtggacaga 1320 ctgaagtcgt tgatcaaata caaggggtat caagtagctc ctgccgagct tgagtccatt 1380 ctgcttcaac accccaatat cttcgatgct ggggtggctg ggctgcctga tgatgatgct 1440 ggagagctgc ctgctgctgt agtagtgctt gagcatggta agacaatgac agagaaggag 1500 atcgtggatt atgtggcttc acaagtgaca acagctaaga aactccgagg tggcgttgtg 1560 40tttgtggatg aggtgcctaa agggctcact ggcaagctgg atgccagaaa aattcgagag 1620

attotoatta aggotaagaa gggtggaaag attgotgtgt aatagttota ga

<210> 95

```
<211> 1166
  <212> DNA
  <213> Artificial Sequence
 5
  <220>
  <223> A synthetic construct.
  <400> 95
10qcqqccqcaa atqctaaacc actgcagtgg ttaccagtgc ttgatcagtg aggcaccgat 60
  ctcagcgatc tgtctatttc gttcgtccat agtggcctga ctccccgtcg tgtagattac 120
  tacgattcgt gagggcttac catcaggccc cagcgcagca atgatgccgc gagagccgcg 180
  ttcaccqqca ccqqatttgt cagcaatgaa ccagccagca gggagggccg agcgaagaag 240
  tggtcctgct actttgtccg cctccatcca gtctatgagc tgctgtcgtg atgctagagt 300
15qaqaaqttcq ccaqtqaqta gtttccgaag agttgtggcc attgctactg gcatcgtggt 360
  atcacgeteg tegtteggta tggettegtt cageteeggt teccageggt caageegggt 420
  cacatgatca cccatgttgt gcaaaaatgc ggtcagctcc ttagggcctc cgatcgttgt 480
  cagaaqtaag ttggccgcgg tattatcgct catggtaatg gcagcactac acaattctct 540
  taccqtcatq ccatccqtaa qatqcttttc cqtqaccggc gagtactcaa ccaagtcgtt 600
20ttgtgagtag tgtatacggc gaccaagctg ctcttgcccg gcgtctatac gggacaacac 660
  cgcgccacat agcagtactt tgaaagtgct catcatcggg aatcgttctt cggggcggaa 720
  agacteaagg atcttgccgc tattgagate cagttegata tageceacte ttgcacccag 780
  ttgatcttca gcatctttta ctttcaccag cgtttcgggg tgtgcaaaaa caggcaagca 840
  aaatgccgca aagaagggaa tgagtgcgac acgaaaatgt tggatgctca tactcttcct 900
25ttttcaatat gtttgcagca tttgtcaggg ttactagtac gtctctcttg agagaccgcg 960
  atcgccacca tgtctaggta ggtagtaaac gaaagggctt aaaggcctaa gtggccctcg 1020
  agtccagcct tgagttggtt gagtccaagt cacgtttgga gatctggtac cttacgcgta 1080
  tgagetetae gtagetageg geeteggegg cegaattett gegatetaag ettggeaate 1140
                                                                    1166
  cggtactgtt ggtaaagcca ccatgg
30
  <210> 96
  <211> 1166
  <212> DNA
  <213> Artificial Sequence
35
  <220>
  <223> A synthetic construct.
  <400> 96
40gcggccgcaa atgctaaacc actgcagtgg ttaccagtgc ttgatcagtg aggcaccgat 60
  ctcagcgatc tgtctatttc gttcgtccat agtggcctga ctccccgtcg tgtagattac 120
  tacgattegt gagggettae cateaggeee cagegeagea atgatgeege gagageegeg 180
  ttcaccggcc cccgatttgt cagcaatgaa ccagccagca gggagggccg agcgaagaag 240
```

```
tggtcctgct actttgtccg cctccatcca gtctatgagc tgctgtcgtg atgctagagt 300
  aagaagttcg ccagtgagta gtttccgaag agttgtggcc attgctactg gcatcgtggt 360
  atcacgctcg tcgttcggta tggcttcgtt caactccggt tcccagcggt caagccgggt 420
  cacatgatca cccatgttgt gcaaaaatgc ggtcagctcc ttagggcctc cgatcgttgt 480
 5cagaagtaag ttggccgcgg tgttgtcgct catggtaatg gcagcactac acaattctct 540
  taccgtcatg ccatccgtaa gatgcttttc cgtgaccggc gagtactcaa ccaagtcgtt 600
  ttgtgagtag tgtatacggc gaccaagctg ctcttgcccg gcgtctatac gggacaacac 660
  cgcgccacat agcagtactt tgaaagtgct catcatcggg aatcgttctt cggggcggaa 720
  agactcaagg atcttgccgc tattgagatc cagttcgata tagcccactc ttgcacccag 780
10ttgatcttca gcatctttta ctttcaccag cgtttcgggg tgtgcaaaaa caggcaagca 840.
  aaatgccgca aagaagggaa tgagtgcgac acgaaaatgt tggatgctca tactcttcct 900
  ttttcaatat gtttgcagca tttgtcaggg ttactagtac gtctctcttg agagaccgcg 960
  atcgccacca tgtctaggta ggtagtaaac gaaagggctt aaaggcctaa gtggccctcg 1020
  aqtccaqcct tgagttggtt gagtccaagt cacgtttgga gatctggtac cttacgcgta 1080
15tgagetetac gtagetageg geeteggegg eegaattett gegttegaag ettggeaate 1140
                                                                    1166
  cggtactgtt ggtaaagcca ccatgg
  <210> 97
  <211> 1166
20<212> DNA
  <213> Artificial Sequence
  <220>
  <223> A synthetic construct.
25
  <400> 97
  gcggccgcaa atgctaaacc actgcagtgg ttaccagtgc ttgatcagtg aggcaccgat 60
  ctcagcgatc tgcctatttc gttcgtccat agtggcctga ctccccgtcg tgtagatcac 120
  tacgattcgt gagggcttac catcaggccc cagcgcagca atgatgccgc gagagccgcg 180
30ttcaccggcc cccgatttgt cagcaatgaa ccagccagca gggagggccg agcgaagaag 240
  tggtcctgct actttgtccg cctccatcca gtctatgagc tgctgtcgtg atgctagagt 300
  aagaagttcg ccagtgagta gtttccgaag agttgtggcc attgctactg gcatcgtggt 360
  atcacgctcg tcgttcggta tggcttcgtt caactctggt tcccagcggt caagccgggt 420
  cacatgatca cccatgttgt gcaaaaatgc ggtcagctcc ttagggcctc cgatcgttgt 480
35cagaagtaag ttggccgcgg tgttgtcgct catggtaatg gcagcactac acaattctct 540
  taccgtcatg ccatccgtaa gatgcttttc cgtgaccggc gagtactcaa ccaagtcgtt 600
  ttqtqaqtaq tgtatacggc gaccaagctg ctcttgcccg gcgtctatac gggacaacac 660
  cgcgccacat agcagtactt tgaaagtgct catcatcggg aatcgttctt cggggcggaa 720
  agactcaagg atcttgccgc tattgagatc cagttcgata tagcccactc ttgcacccag 780
40ttgatcttca gcatctttta ctttcaccag cgtttcgggg tgtgcaaaaa caggcaagca 840
  aaatgeegea aagaagggaa tgagtgegae aegaaaatgt tggatgetea taetetteet 900
  ttttcaatat gtttgcagca tttgtcaggg ttactagtac gtctctcttg agagaccgcg 960
  atogocacca tgtotaggta ggtagtaaac gaaagggott aaaggootaa gtggoootog 1020
```

agtccagcct	tgagttggtt	gagtccaagt	cacgtttgga	gatctggtac	cttacgcgta	1080
tgagctctac	gtagctagcg	gcctcggcgg	ccgaattctt	gcgttcgaag	cttggcaatc	1140
cggtactgtt	qqtaaagcca	ccatgg				1166

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 30 March 2006 (30.03.2006)

(10) International Publication Number WO 2006/034061 A3

- (51) International Patent Classification: C12N 15/09 (2006.01) C12N 15/31 (2006.01)
- (21) International Application Number:

PCT/US2005/033218

(22) International Filing Date:

16 September 2005 (16.09.2005)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

10/943,508 17 September 2004 (17.09.2004)

- (71) Applicant (for all designated States except US): PROMEGA CORPORATION [US/US]; 2800 Woods Hollow Road, Madison, WI 53711 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WOOD, Keith, V. [US/US]; 8380 Swan Road, Mt. Horeb, WI 53572 (US). WOOD, Monika, G. [US/US]; 8380 Swan Road, Mt. Horeb, WI 53572 (US). ALMOND, Biran [US/US]; 5765 Richard Drive, Fitchburg, WI 53719 (US). PAGUIO, Aileen [US/US]; 205 Ramsey Court, Madison, WI 53704 (US). FAN, Frank [TZ/US]; 2977 Dunmore Street, Madison, WI 53711 (US).
- (74) Agents: STEFFEY, Charles, E. et al.; Schwegman, Lundberg, Woessner & Kluth, P.A., P.O. Box 2938, Minneapolis, MN 55402 (US).

- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SM, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of
- (88) Date of publication of the international search report: 26 May 2006

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Internal I application No PCT/US2005/033218

A. CLASSI	FICATION OF SUBJECT MATTER C12N15/09 C12N15/31		
According to	International Patent Classification (IPC) or to both national classification	alion and IPC	
B. FIELDS	SEARCHED		
	cumentation searched (classification system followed by classification C12N	on symbots)	
	ion searched other than minimum documentation to the extent that si		·
	ata base consulted during the international search (name of data bas ternal, BIOSIS, EMBASE, Sequence Sea	. 1, 4 ;.	; • · · · · ·
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the rele	evant passages	Relevant to claim No.
X	WO 01/23541 A (ALEXION PHARMACEUT INC; FODOR, WILLIAM, L; RAMSOONDA JAGDEECE,) 5 April 2001 (2001-04-* There is 94,521% identity in 80 overlap (total 825 nt) of the seq	R, 05) 3 nt uence	11,15
A	shown in Fig. 4 with SEQ ID NO: 4 present application * WO 2004/042010 A (UNIVERSITY OF T RESEARCH FOUNDATION) 21 May 2004 (2004-05-21)		
A 	US 5 670 356 A (SHERF ET AL) 23 September 1997 (1997-09-23)cited in the application	/	
Y Furth	er documents are listed in the continuation of Box C.	X See patent family annex.	
<u> </u>			
"A" docume	nt defining the general state of the art which is not ered to be of particular relevance	"T" later document published after the inter or priority date and not in conflict with clied to understand the principle or the invention "X" document of particular relevance; the ci	the application but cory underlying the
filing d. "L" docume which is citation. "O" docume other in. "P" docume.	ate nt which may throw doubts on priority claim(s) or is clied to establish the publication date of another or other special reason (as specified) int referring to an oral disclosure, use, exhibition or neans nt published prior to the international filling date but	cannot be considered novel or cannot involve an inventive step when the doc 'Y' document of particular relevance; the ci cannot be considered to involve an inv document is combined with one or mo ments, such combination being obviou in the art.	be considered to comment is taken alone laimed invention rentive step when the re other such docu-is to a person skilled
	actual completion of the international search	Date of mailing of the international sear	
	March 2006	3 1. 03. 06	
Name and n	nalling address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2400, Tx. 31 651 epo nl, Fax: (+31-70) 40-3016	Authorized officer Hillenbrand, G	

Interna | al application No PCT/US2005/033218

		FC1/U32UU5/U33218
C(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with Indication, where appropriate, of the relevant passages	Relevant to claim No.
Χ	US 2002/100076 A1 (GARCON FREDERIC ET AL) 25 July 2002 (2002-07-25) * There is 88,19% identity of SEQ ID NO: 2 in 906 nt overlap (total 5909 nt) with SEQ ID NO: 74 (1252 nt) of the present application - 39,2% identity of SEQ ID NO: 2 to SEQ ID NO: 41 *	47,49,50
X ∷·	WO 97/08320 A (MORPHOSYS GESELLSCHAFT FUER PROTEINOPTIMIERUNG MBH; KNAPPIK, ACHIM; PA) 6 March 1997 (1997-03-06) * There is 88,19% identity of the sequence of Fig. 36 in 906 nt overlap (total 1289 nt) with SEQ ID NO: 741(1252 nt) of the present application - 39,2% identity of SEQ ID NO: 2 to SEQ ID NO: 41 *	47,49,50
X	DATABASE EMBL 1 March 1996 (1996-03-01), GROSKREUTZ ET AL.: "Cloning vector pGL3-Basic, complete sequence" XP002371236 retrieved from EBI Database accession no. U47295 * There is 85,82% identity of U47295 in 3095 nt overlap (total 4818 nt) with SEQ ID NO: 89 (4333 nt) of the present application * abstract	63-67
X	DATABASE EMBL 15 May 2001 (2001-05-15), ZHUANG, Y. ET AL.: "Co-reporter vector phRG-B, complete sequence" XP002371237 retrieved from EBI Database accession no. AF362550 * There is 98,82% identity of AF362550 in 2375 nt overlap (total 4101 nt) with SEQ ID NO: 90 (3522 nt) of the present application * abstract	63-67

Box II	Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This Into	ernational Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. X	Claims Nos.: 1-10, 12-14, 16-30, 32-46, 48, 53, 55-62, 68-69 because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically: see FURTHER INFORMATION sheet PCT/ISA/210
з. 🔲	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box III	Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This Inte	ernational Searching Authority found multiple inventions in this international application, as follows:
	see additional sheet
•	
1.	As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
з. 🛛	As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
	11 and 15 (partially), 47, 49 and 50 (partially), 63-67 (partially)
4.	No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the Invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest The additional search fees were accompanied by the applicant's protest. X No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM ... PCT/ISA/ 210

Continuation of Box II.2

Claims Nos.: 1-10, 12-14, 16-30, 32-46, 48, 53, 55-62, 68-69

The present application contains 69 claims, of which 7 claims are independent. They are drafted in such a way that the claims as a whole are not in compliance with the provisions of clarity and conciseness of Article 6 PCT, as they erect a smoke screen in front of the skilled reader when assessing the intended scope of protection. In view of the fact that the starting (parent) nucleic acid sequences are not defined in most claims, it is impossible for the skilled reader to determine the subject-matter for which protection is sought. The non-compliance with the substantive provisions of the PCT is to such an extent, that a meaningful search of the claims identified above was not possible.

The applicant's attention is drawn to the fact that claims relating to inventions in respect of which no international search report has been established need not be the subject of an international preliminary examination (Rule 66.1(e) PCT). The applicant is advised that the EPO policy when acting as an International Preliminary Examining Authority is normally not to carry out a preliminary examination on matter which has not been searched. This is the case irrespective of whether or not the claims are amended following receipt of the search report or during any Chapter II procedure. If the application proceeds into the regional phase before the EPO, the applicant is reminded that a search may be carried out during examination before the EPO (see EPO Guideline C-VI, 8.5), should the problems which led to the Article 17(2) declaration be overcome.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Inventions 1-20 : claims 11 and 15 (partially)

The subject-matter of this group of different inventions comprises an isolated nucleic acid molecule comprising a synthetic nucleotide sequence having a coding region for a selectable polypeptide, wherein the synthetic nucleotide sequence has 90% or less nucleic acid sequence identity to a parent nucleotide encoding a corresponding selectable polypeptide, wherein the nucleotide sequence encodes a selectable polypeptide with at least 85% amino acid sequence identity to the corresponding selectable polypeptide encoded by the the parent nucleotide sequence – wherein the synthetic nucleotide sequence comprises an open reading frame in SEQ ID NO: 4 to SEQ ID NO: 84 as claimed in claims 11 and 15.

Invention 21: claim 31 (partially)

The subject-matter of this invention comprises an isolated nucleic acid sequence encoding a firefly luciferase, wherein the synthetic nucleotide sequence has 80% or less nucleic acid sequence identity to a parent nucleotide having SEQ ID NO: 43 or 85% or less nucleic acid sequence identity to a parent nucleic acid sequence having SEQ ID NO: 14 which encodes a firefly luciferase, wherein the nucleotide sequence encodes a firefly luciferase with at least 85% amino acid sequence identity to the corresponding luciferase encoded by the the parent nucleotide sequence, wherein the synthetic nucleotide sequence comprises an open reading frame in SEQ ID NO: 21-23.

Invention 23: claims 47, 49 and 50 (partially)

A plasmid comprising SEQ ID NO: 74 which comprises an open reading frame with less than 90% nucleic acid sequence identity to 41 which confers resistance to ampicillin.

Inventions 24-46: claims 51-52 (partially)

A polynucleotide which hybridizes under stringent hybridization conditions to SEQ ID NO: 4 to SEQ ID NO: 23 as claimed in claim 51 and encodes a selectable polypeptide or a firefly luciferase.

Invention 47: claim 54

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

An isolated nucleic acid molecule comprising a synthetic nucleotide sequence which does not code for a desirable peptide or polypeptide but includes sequences which inhibit transcription and/or translation wherein the synthetic nucleotide sequence has SEQ ID NO: 49.

Inventions 48-49: claims 63-67 (partially)

A plasmid which includes a sequence including SEQ ID NO: 89 or SEQ ID NO: 90. The search was limited to matter related to invention 1 and inventions 23, 48 and 49 as requested by the applicant in his letter dated 13.02.2006.

mation on patent family members

Inter)al application No PCT/ÜS2005/033218

Patent document cited in search report	·	Publication date		Patent family member(s)	Publication date
WO 0123541	A	05-04-2001	AU CA EP JP MX	7744800 A 2385162 A1 1220928 A2 2003510072 T PA02003232 A	30-04-2001 05-04-2001 10-07-2002 18-03-2003 22-09-2003
WO 2004042010	Α	21-05-2004	AU	2003301883 A1	07-06-2004
US 5670356	A	23-09-1997	NONE	-	
US 2002100076	A1	25-07-2002	AT BR EP FR	306553 T 0104564 A 1186666 A2 2812883 A1	15-10-2005 04-06-2002 13-03-2002 15-02-2002
WO 9708320	A	06-03-1997	AT AU CA DE DK ES JP PT US	219517 T 725609 B2 6874596 A 2229043 A1 69621940 D1 69621940 T2 859841 T3 2176484 T3 2001519643 T 859841 T 6300064 B1	15-07-2002 12-10-2000 19-03-1997 06-03-1997 25-07-2002 16-01-2003 09-09-2002 01-12-2002 23-10-2001 29-11-2002 09-10-2001