Дискретная математика

Пономарев Николай, Бабин Руслан Курс Григорьевой Н.С.

Осень 2021 г.

Оглавление

O	глав.	ление	j
1	Kor	мбинаторика	1
	1.1	Основные правила	1
	1.2	Основные объекты комбинаторики	1
	1.3	Формула включений-исключений	2
2	Век	сторы	5
	2.1	Двоичные векторы	5
	2.2	Перебор векторов	5
	2.3	Прямое произведение множеств	6
	2.4	Перебор перестановок v1	6
	2.5	Перебор перестановок v2	7
	2.6	Перебор перестановок v3: "аналог кода Грея"	8

глава 1

Комбинаторика

1.1. Основные правила

Правило суммы

Если комбинации можно разбить на классы A и B, то общее число кобинаций |A|+|B|.

Правило произведения

При составлении пары из двух элементов (A, B) известно, что первый элемент пары можно выбрать |A| способами, а второй |B|.

1.2. Основные объекты комбинаторики

Множество перестановок

$$|P_k| = k!$$

Множество размещений

$$|A_n^k| = \frac{n!}{(n-k)!}$$

Множество сочетаний

$$|C_n^k| = \frac{A_n^k}{k!} = \frac{n!}{k!(n-k)!}$$

Перестановки с повторениями

Пусть имеется n_k элементов типа k. Всего элементов $n = \sum_{i=1}^k n_i$.

$$P(n_1,\dots,n_k) = \frac{n!}{n_1!n_2!\dots n_k!}$$

Сочетания с повторениями

Имеются предметы n различных типов. Сколько k комбинаций можно из них сделать, если не учитывать порядок.

Если n различных типов. Пусть сначала идут все элементы первого типа, потом второго и тд. Всего k элементов. Добавим к ним n-1 перегородок. Всего будет n-1+k мест. Выбор расположения перегородок = сочетания.

$$\overline{C_n^k} = C_{n+k-1}^{n-1} = \frac{(n+k-1)!}{k!(n-1)!}$$

1.3. Формула включений-исключений

Для двух множеств $(A \cup B)$

$$|A\cup B|=|A|+|B|-|A\cap B|$$

Общая

$$\begin{split} \left| \bigcup_{i=1}^n A_i \right| &= \sum_{i=1}^n |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \\ &\qquad \sum_{1 \leq i < j \leq k \leq n} |A_i \cap A_j \cap A_k| - \ldots + (-1)^{n-1} |A_1 \cap A_2 \cap \ldots \cap A_n| \end{split}$$

Доказателсьво по индукции

База: n = 2 – верно.

Переход: предположим, что верно для n=1, докажем что верно для n.

$$\begin{split} \left| \bigcup_{i=1}^{n} A_i \right| &= \left| \bigcup_{i=1}^{n-1} A_i \cup A_n \right| = \left| \bigcup_{i=1}^{n-1} A_i \right| + |A_n| - \left| \left(\bigcup_{i=1}^{n} A_i \right) \cap A_n \right| = \\ \sum_{i=1}^{n-1} |A_i| - \sum_{1 \leq i < j \leq n-1} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n-1} |A_i \cap A_j \cap A_k| - \ldots + \\ & (-1)^{n-2} |A_1 \cap A_2 \cap \ldots \cap A_{n-1}| + |A_n| - \left| \bigcup_{i=1}^{n-1} (A_i \cap A_n) \right| = \\ \sum_{i=1}^{n-1} |A_i| - \sum_{1 \leq i < j \leq n-1} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n-1} |A_i \cap A_j \cap A_k| - \ldots + \\ & (-1)^{n-2} |A_1 \cap A_2 \cap \ldots \cap A_{n-1}| + |A_n| - \\ & \left(\sum_{i=1}^{n-1} |A_i \cap A_n| - \sum_{1 \leq i < j \leq n-1} |A_i \cap A_j \cap A_n| + \ldots + \\ & (-1)^{n-2} |A_1 \cap A_2 \cap \ldots \cap A_n| \right) = \\ \sum_{i=1}^{n} |A_i| - \sum_{1 \leq i < j \leq n} |A_i \cap A_j| + \sum_{1 \leq i < j < k \leq n} |A_i \cap A_j \cap A_k| - \ldots + \\ & (-1)^{n-1} |A_1 \cap A_2 \cap \ldots \cap A_n| \end{split}$$

Примеры

Пример 1. В отделе 67 человек. 47 знают английский, 35 - немецкий, 23 - оба языка. Тогда знают языки по формуле.

Пример 2. 5 писем адресатам раскладывают по 5 конвертам. Сколько вариантов, в которых ни одно письмо не попадет к адресату?

Пусть A_i - количество вариантов, в которых адресат i получил свое письмо. Тогда количество вариантов, когда хотя бы один получил свое письмо:

$$|A_1 \cup \ldots \cup A_5| = 5*4! - C_5^2*3! + C_5^3*2! - C_5^4*1! + 1 = 76$$

Всего вариантов: 120. Ответ: 120 - 76 = 44.

глава 2

Векторы

2.1. Двоичные векторы

Определение 1. Двоичный вектор — упорядоченный набор фиксированного размера из 0 и 1.

Примеры

- 1. вершины единичного куба в п-мерном пространстве
- 2. характеристический вектор подмножества. (1, 0, 1, 0, 0) подмножество входят первый и третий элементы множества из 5 элементов
- 3. двоичное число
- 4. кодирование изображения

2.2. Перебор векторов

Последовательно

Рассматривая вектор как двоичное число. Начиная с нулевого, последовательно прибавляем единицу. 0000->0001->0010

Код Грея

Алгоритм: Определим два набора: x = (0, 0, ..., 0) и y = (0, 0, ..., 0)

- 1. Прибавляем 1 к числу y
- 2. Фиксируем позицию k, в которой 0 сменился на 1
- 3. $x[k] = \neg x[k]$

2.3. Прямое произведение множеств

Определение 2. Пусть даны k множеств M_i . Прямым произведением этих множеств $M=M_1\times M_2\times ...\times M_i$ называется множество всех упорядоченных наборов (a_1,\ldots,a_k) , где $a_i\in M_i$.

Количество элементов в прямом произведении:

$$|M_i| = |M_1 \times ... \times M_k| = m_1 \cdot ... \cdot m_k$$
, где $m_i = |M_i|$

Нумерация элементов прямого произведения

Занумеруем элементы каждого множества от 0 до m_i-1 . Элемент произведения — вектор чисел (r_1,\ldots,r_k) .

Сопоставим каждому набору номер:

$$\begin{split} num(r_1,\dots r_k) &= \sum_{i=1}^k \left(r_i \cdot \prod_{j=1}^{i-1} m_j \right) = \\ &= r_1 + r_2 \cdot m_1 + r_3 \cdot m_1 \cdot m_2 + \dots + r_k m_1 m_2 \dots m_{k-1} \end{split} \tag{2.1}$$

2.4. Перебор перестановок v1

Идея

Введем вспомогательный набор множеств M_i , т.ч. $|M_i|=i$. $T_k=M_k\times M_{k-1}\times ...\times M_1, |T_k|=k!$ - ровно столько, сколько перестановок в P_k . T_k перебирать умеем. Чтобы научиться перебирать и перенумеровывать P_k , построим взаимно-однозначное соответсвие между T_k и P_k

Алгоритм

Используем вспомогательный вектор t, представляющий номре перестановки в факториальной системе счисления, начиная с t=(0,0,0,0)

- 1. Прибавить 1 к текущему значению вектора t
- 2. По t построить перестановку p
- 3. Если t = (k-1, ..., 1, 0), завершить работу
- 4. Перейти к шагу 1

$N_{\overline{0}}$	0000	$1\ 2\ 3\ 4$
1	0010	1243
2	0100	1 3 2 4
3	0110	1342
4	0 2 0 0	1423
5	0210	1432
6	1000	2 1 3 4

2.5. Перебор перестановок v2

Алгоритм

Так же перебирает перестановки в лексикоргафическом порядке, но гораздо проще и быстрее. Начинаем с перестановки (1, 2, ..., k).

- 1. В данной перестановке (r_1,\ldots,r_k) найти такое q, что $r_q>r_{q+1}>\ldots>r_k$ и $r_{q-1}< r_q$
- 2. Если была перестановка (k, k-1, ..., 1), то алгоритм завершает работу
- 3. Выбрать в суффиксе (r_q, \dots, r_k) элемент, следующий по значению после r_{q-1} и поменять его и r_{q-1} местами
- 4. Упорядочить суффикс по возрастанию

Пример

- 1. (3,4,1,2,6,5,8,7)
- 2. (3,4,1,2,6,7,5,8)

Красным цветом выделен суффикс

- 3. (3,4,1,2,6,7,8,5)
- 4. (3,4,1,2,6,8,5,7)
- 5. (3,4,1,2,6,8,7,5)
- 6. (3,4,1,2,7,5,6,8)
- 7. (3,4,1,2,7,5,8,6)
- 8. (3,4,1,2,7,6,5,8)

2.6. Перебор перестановок v3: "аналог кода Грея"

Алгоритм

Дополнительно условие: хотим, чтобы только два соседних элемента менялись местами.

Перестановка p = (1, 2, ..., n)

Вектор (младший разряд последний) t = (0, 0, ..., 0)

Вектор, ответственный за смену навправлений d = (-1, -1, ..., -1)

Номер разряда j, в котором значение увеличилось на 1

- 1. Прибавить 1 к вектору t
- 2. Определить номер разряда j, в котором значение увеличилось на 1
- 3. Изменить направление движения у всех элементов, больших j, т.е. для всех i>g положим $d_i=-d_i$
- 4. Поменять местами элемент перестановки j с элементом справа (если $d_j>0$) или слева (если $d_j<0$)