✓ How Raw Time-Domain Waves Carry Information

 \square "Time domain \rightarrow frequency \rightarrow signal \rightarrow symbol \rightarrow bits \rightarrow information"

Let's walk through it step by step — like a zoom lens:

♦ 1. Time Domain = Waveform

- What you receive from an antenna is a continuous waveform v(t) or a stream of digital samples x[n].
- This signal looks random, but it's actually a modulated wave carrying meaningful patterns.
- 🔀 In this domain, you're just seeing **how the signal changes over time**.

◆ 2. Frequency = Tells You What Is Present

- Any waveform can be broken into frequency components using DFT/FFT.
- The result tells you: "Ah! There's strong energy at 433 MHz or 2.4 GHz."

This is like identifying which instruments are playing in a noisy orchestra.

♦ 3. Frequencies Carry Signals (Modulated Carriers)

- At that 2.4 GHz, you might find a WiFi signal, or drone control signal.
- These are not just sine waves they are modulated: their amplitude, frequency, or phase is changing.

That change in carrier is what encodes the signal.

4. Signals Carry Symbols

- In digital communication, modulation schemes like QPSK, 16-QAM use:
 - Amplitude
 - o Phase
 - Frequency

to form **symbols** — each a complex point in the I/Q plane.

E.g., QPSK = 4 points (00, 01, 10, 11), 16-QAM = 16 points.

♦ 5. Symbols Carry Bits

- Each symbol = a fixed number of bits.
 - QPSK → 2 bits per symbol
 - 16-QAM → 4 bits per symbol
- These bits are what you eventually decode into data.

6. Bits = Information

- The bits are grouped into:
 - Audio packets
 - Control signals
 - Commands
 - Telemetry (e.g., drone GPS position)
- This is the actual payload of the transmission.

Now Let's Put It All Together — SDR Chain

Layer	Description	Tool/Transform
Antenna	Captures waveform (RF)	Hardware
O IQ Sampling	Converts wave to I/Q samples	RTL-SDR, ADC

Layer	Description	Tool/Transform
Time Signal	Raw x[n] samples	Python array
Frequency View	Shows what frequency is present	FFT
Signal Detection	Isolate modulated signal	Filtering
Demodulation	Extract symbols (QPSK/QAM)	Python logic
○ Bitstream	Recovered binary data	Decoder
Information	Meaningful content	Application

Summary:

"Wave in time domain carry frequency, frequency carries signal, signal carries symbols, symbols carry bits, bits carry information."

✓ Perfectly captures the essence of SDR.