Section 17 Limits involving the point at infinity

The complex plane together with the *point at* infinity is called the extended complex plane. However, if we refer to a point z, we will mean a point in the finite plane, unless specified otherwise. Optional: read the first paragraph on p.50 about the Riemann sphere and the stereographic projection.

Definition

 $\lim_{z\to z_0} f(z) = \infty$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$0<|z-z_0|<\delta \quad \Rightarrow \quad |f(z)|>\frac{1}{\epsilon}.$$

 $\lim_{z\to\infty} f(z) = w_0 \text{ if for every } \epsilon > 0 \text{ there exists}$ $\delta > 0 \text{ such that}$

$$|z| > \frac{1}{\delta} \quad \Rightarrow \quad |f(z) - w_0| < \epsilon.$$

Theorem p.50

If
$$\lim_{z \to z_0} \frac{1}{f(z)} = 0$$
, then $\lim_{z \to z_0} f(z) = \infty$.

Let
$$z_0, w_0 \in \mathbb{C}$$
. Then: If $\lim_{z \to z_0} \frac{1}{f(z)} = 0$, then $\lim_{z \to z_0} f(z) = \infty$. If $\lim_{z \to 0} f\left(\frac{1}{z}\right) = w_0$, then $\lim_{z \to \infty} f(z) = w_0$.

Example

Determine
$$\lim_{z\to -1}\frac{iz+3}{z+1}$$
 and $\lim_{z\to \infty}\frac{2z+i}{z+1}$.

Section 18 Continuity

Definition

A complex function f is continuous at a point $z_0 \in \mathbb{C}$ if $\lim_{z \to z_0} f(z) = f(z_0)$. f is continuous on a set R if f is continuous at each point of R.

Theorem 1, p.52

A composition of continuous functions is continuous.

Theorem 2, p.53

If a function f is continuous and nonzero at z_0 , then $f(z) \neq 0$ for all z in some neighbourhood of z_0 .

Theorem 3, p.53

Suppose that f(z) = u(x,y) + iv(x,y) with z = x + iy. Then f is continuous at $z_0 = x_0 + iy_0$ if and only if both u and v are continuous at (x_0, y_0) .

Theorem 4, p.54

If f is continuous on a closed, bounded set R, then there exists $M \geq 0$ such that $|f(z)| \leq M$ for all $z \in R$ (and equality holds for at least one z).

We say that f is bounded on R.

Tutorial: pp.54–55 nr. 1, 4–5, 7–9, 10(a),(b).

Section 19 Derivatives

Definition

Suppose f is defined in a neighbourhood of z_0 . Then the *derivative* of f at z_0 is

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to 0} \frac{f(z_0 + z) - f(z_0)}{z}.$$

f is said to be *differentiable* if $f'(z_0)$ exists.

Examples

Investigate the differentiability of $f(z) = \frac{1}{z}$ and $f(z) = |z|^2$.

Note:

- It is possible for a function to be differentiable at a point but nowhere else in any neighbourhood of that point.
- It is possible that the real and imaginary components of a function f have continuous partial derivatives of all orders at some point, while f is not differentiable at that point.
- ullet f may be continuous but not differentiable.
- \bullet If f is differentiable, then f is continuous.

Section 20 Differentiation Rules

Similar as for real functions — see pp.59–60.

We have, e.g., the sum rule, product rule, quotient rule and chain rule.

(Optional: Proof of chain rule, p.60.)

Tutorial: pp.61-62 nr. 2(d), 6(a), 7, 9.

Sections 21–22 Cauchy-Riemann equations

Theorem p.64

Suppose that f(z) = u(x,y) + iv(x,y) and f is differentiable at $z_0 = x_0 + iy_0$. Then the first order partial derivatives of u and v exist at (x_0, y_0) and satisfy the Cauchy-Riemann equations

$$u_x = v_y, \quad u_y = -v_x$$
 at (x_0, y_0) . Also

$$f'(z_0) = u_x(x_0, y_0) + iv_x(x_0, y_0).$$

Examples

Use the Cauchy-Riemann equations to investigate the differentiability of the following functions:

1.
$$f(z) = z^2$$

2.
$$f(z) = |z|^2$$

3.
$$f(z) = \begin{cases} \frac{\overline{z}^2}{z} & \text{if } z \neq 0\\ 0 & \text{if } z = 0. \end{cases}$$