Cálculo I - agr. 1 2017/18

exame de recurso Duração: 3h00

• Este teste continua no verso e termina com a palavra FIM. No verso encontras também a cotação e formulários.

 Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.

1.a parte

1. Considera a função real de variável real dada pela expressão $f(x) := \arcsin \frac{3-x^2}{x^2+1}$. Em baixo podes ver um esboço do seu gráfico tal como produzido por um conhecido

Não se garante que este esboço esteja cem por cento correto. Foi aqui colocado para o caso de achares que é útil, mas usa-o por tua conta e risco. O que se pede que faças aqui é que resolvas as questões abaixo usando as técnicas que foram dadas nas aulas (em particular não serão aceites justificações com base no esboço acima):

- (a) Determina o domínio D_f de definição de f.
- (b) Determina, caso existam, todos os extremos (os absolutos e os relativos) e os respetivos extremantes de f (se achares que algum deles não existe, deves explicar porquê).
- 2. Calcula as primitivas das seguintes funções:

sistema de álgebra computacional (CAS).

(a)
$$x \cdot \sin x \cdot \cos x$$
; (b) $\frac{x-1}{x(x^2-4)}$; (c) $\frac{\sin x}{2-\cos x}$, $x \in]0,\pi[$.

Sugestão: Na alínea (a) utiliza primitivação por partes e na alínea (c) utiliza a mudança de variável definida por $x = \arccos t, t \in]-1,1[$.

- 3. Constatou-se que uma população de gatos, introduzida para controlar o número de ratos num certo habitat, está a crescer cada vez menos. Neste momento (t=0) essa população tem 637 gatos a crescer a uma taxa de 100 gatos por unidade de tempo. Contudo, tudo leva a crer que nos tempos que se seguem esta taxa de crescimento vai ela própria diminuir a uma taxa de $\frac{200 \, t}{(1+t^2)^2}$ por unidade de tempo. Se assim for, e designando por q(t) a função que nos dá o número de gatos nessa população em função do tempo t,
 - (a) determina a expressão para g(t);
 - (b) verifica se o número de gatos tenderá a estabilizar (e, se sim, à volta de que valor) ou a diminuir no longo prazo (se o π aparecer nas contas considera $\pi = 3.14$).

2.a parte no verso

- 4. Considera a região \mathcal{A} do plano delimitada pelos gráficos das funções y = x 1 e $y = 2 (x 1)^2$. Esboça \mathcal{A} e calcula a sua área (não precisas de justificar o esboço analiticamente, mas convém seres rigoroso e explícito o suficiente para se perceber como determinas a área a partir do esboço que fizeres).
- 5. Considera os seguintes integrais:

(i)
$$\int_0^\infty \frac{x+1}{\sqrt{x}} dx$$
; (ii) $\int_0^1 \frac{\ln x}{x} dx$.

- (a) Diz, para cada um deles e justificando devidamente, se estamos em presença de um integral de Riemann ou de um integral impróprio (e de que espécie).
- (b) Para cada um dos integrais acima, faz o seguinte: no caso de ser de Riemann, calcula-o; no caso de ser impróprio, determina a sua natureza e, no caso de ser convergente, calcula-o também.
- 6. (a) Estuda a natureza (divergência, convergência simples ou convergência absoluta) das seguintes séries numéricas:

(i)
$$\sum_{n=1}^{\infty} \frac{(2 \cdot n!)^3}{(3n)!}$$
; (ii) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\frac{\pi}{2} - \arctan n}$.

- (b) Determina a soma da seguinte série numérica convergente: $\sum_{n=1}^{\infty} \Big(\frac{2}{n+1} \frac{2}{n+4}\Big).$
- 7. Mostra que $\frac{\pi}{2}$ é um minimizante local da função F definida por $F(x) := \int_{\sin(x)}^{0} e^{t^2} dt$.

FIM

Cotação: 1. 3; 2. 4,5; 3. 2,5; 4. 2; 5. 2,5; 6. 3; 7. 2,5

Algumas fórmulas de derivação

função de x	$\frac{\mathrm{d}}{\mathrm{dx}}$
$m u(x), m \in \mathbb{R}$	m u'(x)
$u(x)^n, n \in \mathbb{R}$	$n u(x)^{n-1} u'(x)$
	$\frac{u'(x)}{u(x)\ln a}$ $a^{u(x)}u'(x)\ln a$
$a^{u(x)}, a \in \mathbb{R}^+$	$a^{u(x)}u'(x)\ln a$
$\sin u(x)$	$\cos u(x) u'(x)$
$\cos u(x)$	$-\sin u(x) u'(x)$
$\tan u(x)$	$\sec^2 u(x) u'(x)$
$\cot u(x)$	$-\csc^2 u(x) u'(x)$
$\sec u(x)$	$\tan u(x) \sec u(x) u'(x)$
$\csc u(x)$	$-\cot u(x) \csc u(x) u'(x)$
$\sinh u(x)$	$ \cosh u(x) u'(x) $
$\cosh u(x)$	$\sinh u(x) u'(x)$
$\arcsin u(x)$	$\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arccos u(x)$	$-\frac{u'(x)}{\sqrt{1-u(x)^2}}$ $\frac{u'(x)}{1-u(x)^2}$
$\arctan u(x)$	$\frac{u'(x)}{1+u(x)^2}$
$\operatorname{arccot} u(x)$	$-\frac{u'(x)}{1+u(x)^2}$

Algumas fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$\csc u = \frac{1}{\sin u}$
$\cot u = \frac{\cos u}{\sin u}$	
$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$\sin^2 u = \frac{1 - \cos(2u)}{2}$
$1 + \tan^2 u = \sec^2 u$	$1 + \cot^2 u = \csc^2 u$
$\cos^2(\arcsin u) = 1 - u^2$	$\sin^2(\arccos u) = 1 - u^2$

Algumas fórmulas hiperbólicas

$\sinh u = \frac{e^u - e^{-u}}{2}$	$ \cosh u = \frac{e^u + e^{-u}}{2} $
$\cosh^2 u - \sinh^2 u = 1$	