Lecture 23: Tests for Independence in Two-Way Tables

Chapter 6.4

Question: While the results of the controlled experiment suggesting that women are at a disadvantage in science hiring may come as no surprise, what argument is made that this discrimination is not entirely due to overt misogyny? Answer in one sentence.

Question: While the results of the controlled experiment suggesting that women are at a disadvantage in science hiring may come as no surprise, what argument is made that this discrimination is not entirely due to overt misogyny? Answer in one sentence.

Answer: Women rated women candidates lower as well, suggesting not so much explicit misogyny, but rather manifestation of subtler prejudices internalized from societal stereotypes.

Question: Knowing nothing else about the problem (sample sizes, SE, etc), what can we conclude about the difference in means between men and women?

Question: Knowing nothing else about the problem (sample sizes, SE, etc), what can we conclude about the difference in means between men and women?

Answer: No, refer to HW8 Question 7. We had two overlapping Cls, but the Cl on the difference did not include 0.

Conditions for Chi-Square Test for Goodness-of-Fit

- 1. Independence: Each case is independent of the each other
- 2. Sample size/distribution: We need at least 5 cases in each scenario i.e. each cell in the table
- 3. Degrees of freedom: We need at least df = 2, i.e. $k \ge 3$

Google is always tinkering with its search ranking algorithm. Say we want to compare the following 3 algorithms:

- 1. the current version
- 2. test algorithm 1
- 3. test algorithm 2

They measure user satisfaction with the results for a particular search with the new search variable:

They measure user satisfaction with the results for a particular search with the new search variable:

▶ no new search: User clicked on a result. Suggests user is satisfied with result.

They measure user satisfaction with the results for a particular search with the new search variable:

- ▶ no new search: User clicked on a result. Suggests user is satisfied with result.
- new search: User did not click on a result and tried a new related search. Suggests user is dissatisfied with result.

So we have two categorical variables:

- ▶ algorithm: current, test 1, or test 2
- ▶ new search: yes or no

So we have two categorical variables:

- ▶ algorithm: current, test 1, or test 2
- new search: yes or no

Are they independent? i.e. independent of which algorithm is used, do we have the same levels of new search?

Say we observed the following results:

	${\tt algorithm}$			
new search	Current	Test 1	Test 2	Total
No new search	4000	2000	2000	8000
New search	1000	500	500	2000
Total	5000	2500	2500	10000

Say we observed the following results:

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search	4000	2000	2000	8000
New search	1000	500	500	2000
Total	5000	2500	2500	10000

For all 3 algorithms, there is a new search $\frac{1}{5}$ of the time.

Say we observed the following results:

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search	4000	2000	2000	8000
New search	1000	500	500	2000
Total	5000	2500	2500	10000

For all 3 algorithms, there is a new search $\frac{1}{5}$ of the time.

algorithm and new search are independent: regardless of which algorithm used, the proportion of new searches stays the same.

Now say instead we observed the following results:

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search	4000	2500	1500	8000
New search	1000	0	1000	2000
Total	5000	2500	2500	10000

Now say instead we observed the following results:

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search	4000	2500	1500	8000
New search	1000	0	1000	2000
Total	5000	2500	2500	10000

In this case, algorithm and new search are not independent: depending on which algorithm used, the proportion of new searches is different.

Hypothesis Test

We test at the $\alpha = 0.05$ significance level:

 H_0 : the algorithms each perform equally well

vs H_A : the algorithms do not perform equally well

i.e. are the categorial variables algorithm and new search independent?

Different Names

The following all refer to the same test: χ^2 test for

- ► two-way tables
- ▶ i.e. contingency tables
- independence of two categorical variables
- homogeneity: are the algorithms homogeneous in their performance?

Let's make the values match the example from the textbook on page 284:

	${ t algorithm}$			
new search	Current	Test 1	Test 2	Total
No new search	3511	1749	1818	7078
New search	1489	751	682	2922
Total	5000	2500	2500	10000

Before we start, let's make each column reflect a proportion and not a count.

Before we start, let's make each column reflect a proportion and not a count.

	${\tt algorithm}$			
new search	Current	Test 1	Test 2	Total
No new search				0.7078
New search	0.2978	0.3004	0.2728	0.2922
Total	1	1	1	1

Before we start, let's make each column reflect a proportion and not a count.

	${ t algorithm}$			
new search	Current	Test 1	Test 2	Total
No new search	0.7022	0.6996	0.7272	0.7078
New search	0.2978	0.3004	0.2728	0.2922
Total	1	1	1	1

If all algorithms performed the same, we'd expect

- ▶ 0.7078 for all 3 values in the top row
- ▶ 0.2922 for all 3 values in the bottom row

Before we start, let's make each column reflect a proportion and not a count.

	${ t algorithm}$			
new search	Current	Test 1	Test 2	Total
No new search				0.7078
New search	0.2978	0.3004	0.2728	0.2922
Total	1	1	1	1

If all algorithms performed the same, we'd expect

- ▶ 0.7078 for all 3 values in the top row
- ▶ 0.2922 for all 3 values in the bottom row

Are we observing what we expect? i.e. What is the degree of this deviation?

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search				$7078 = 0.7078 \times 10000$
New search				$2922 = 0.2922 \times 10000$
Total	5000	2500	2500	10000

		algorithm			
new search	Current	Test 1	Test 2	Total	
No new search			$1769.5 = 0.7078 \times 2500$	7078	
New search			$730.5 = 0.2922 \times 2500$	2922	
Total	5000	2500	2500	10000	

new search	Current	Test 1	Test 2	Total
No new search		$1769.5 = 0.7078 \times 2500$	1769.5	7078
New search		$730.5 = 0.2922 \times 2500$	730.5	2922
Total	5000	2500	2500	10000

	algorit			
new search	Current	Test 1	Test 2	Total
No new search	$3539 = 0.7078 \times 5000$	1769.5	1769.5	7078
New search	$1461 = 0.2922 \times 5000$	730.5	730.5	2922
Total	5000	2500	2500	10000

Observed vs. Expected

Expected Counts:

	a			
new search	Current	Test 1	Test 2	Total
No new search	3539	1769.5	1769.5	7078
New search	1461	730.5	730.5	2922
Total	5000	2500	2500	10000

Observed vs. Expected

Expected Counts:

	a			
new search	Current	Test 1	Test 2	Total
No new search	3539	1769.5	1769.5	7078
New search	1461	730.5	730.5	2922
Total	5000	2500	2500	10000

Observed Counts:

	a]			
new search	Current	Test 1	Test 2	Total
No new search	3511	1749	1818	7078
New search	1489	751	682	2922
Total	5000	2500	2500	10000

Chi-Square Statistic

We compute χ^2 test statistic: for all i = 1, ..., 6 cells

 $\frac{(\text{observed count}_i - \text{expected count}_i)^2}{\text{expected count}_i}$

Chi-Square Statistic

We compute χ^2 test statistic: for all i = 1, ..., 6 cells

$$\frac{(\text{observed count}_i - \text{expected count}_i)^2}{\text{expected count}_i}$$

Row 1, Col 1 =
$$\frac{(3511 - 3539)^2}{3539} = 0.222$$

 \vdots \vdots
Row 2, Col 3 = $\frac{(682 - 730.5)^2}{730.5} = 3.220$

Chi-Square Statistic

We compute χ^2 test statistic: for all i = 1, ..., 6 cells

$$\frac{(\text{observed count}_i - \text{expected count}_i)^2}{\text{expected count}_i}$$

Row 1, Col 1 =
$$\frac{(3511 - 3539)^2}{3539} = 0.222$$

: :
Row 2, Col 3 = $\frac{(682 - 730.5)^2}{730.5} = 3.220$

So

$$\chi^2 = 0.222 + 0.237 + \dots + 3.220$$

= 6.120

Chi-Square Distribution

We compare this to a χ^2 distribution to get the p-value. What are the degrees of freedom?

Chi-Square Distribution

We compare this to a χ^2 distribution to get the p-value. What are the degrees of freedom?

$$df = (\# \text{ of rows - 1}) \times (\# \text{ of columns - 1})$$

= $(R-1) \times (C-1)$
= $(2-1) \times (3-1) = 2 \text{ in our case}$

Chi-Square Distribution

Looking up 6.120 in the χ^2 table on page 412 on the df=2 row, it would be between 0.05 and 0.01. Since our $\alpha=0.05$, we reject the null hypothesis and accept the alternative that the algorithms do not perform equally well.

i.e. the algorithm and new search categorical variables are independent.

Nearly identical to conditions/assumptions for χ^2 tests for goodness-of-fit:

Nearly identical to conditions/assumptions for χ^2 tests for goodness-of-fit:

1. Independence: Each case is independent of the other

Nearly identical to conditions/assumptions for χ^2 tests for goodness-of-fit:

- 1. Independence: Each case is independent of the other
- 2. Sample size/distribution: We need at least 5 cases in each scenario i.e. each cell in the table

Nearly identical to conditions/assumptions for χ^2 tests for goodness-of-fit:

- 1. Independence: Each case is independent of the other
- 2. Sample size/distribution: We need at least 5 cases in each scenario i.e. each cell in the table
- 3. Degrees of freedom: (Different than before) We need $df = (R-1) \times (C-1) \ge 2$.

In the case of χ^2 tests, the degrees of freedom is the number of values needed before you specify all values in the cells of the table.

Each row has df = 2 because if we specify 2 values, all values in the row are specified.

Example:

	a]			
new search	Current	Test 1	Test 2	Total
No new search	Χ	Υ		7078
New search				2922
Total	5000	2500	2500	10000

Each row has df = 2 because if we specify 2 values, all values in the row are specified.

Example:

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search	Χ	Υ		7078
New search				2922
Total	5000	2500	2500	10000

then the missing value is 7078 - X - Y.

i.e. the wiggle room we have is C-1 two cells

Each column has df = 1 because if we specify 1 value, all values in the column are specified.

Example:

	a]			
new search	Current	Test 1	Test 2	Total
No new search	Х			7078
New search				2922
Total	5000	2500	2500	10000

Each column has df = 1 because if we specify 1 value, all values in the column are specified.

Example:

	algorithm			
new search	Current	Test 1	Test 2	Total
No new search	Χ			7078
New search				2922
Total	5000	2500	2500	10000

then the missing value is 5000 - X.

i.e. the wiggle room we have is R-1 one cell

So the overall df is $(C-1) \times (R-1)$, in our case df = 2.

	a.			
new search	Current	Test 1	Test 2	Total
No new search	Х	Υ		7078
New search				2922
Total	5000	2500	2500	10000

So the overall df is $(C-1) \times (R-1)$, in our case df = 2.

	a.			
new search	Current	Test 1	Test 2	Total
No new search	Х	Υ		7078
New search				2922
Total	5000	2500	2500	10000

i.e. if we know these two values, we can fill the rest of the table.