2 pages 1

```
Source | Model | Option | Model_Option | Help on fd methods | Archived Tests
```

fd_explicit_bs2d

Input parameters:

• TimeStepNumber N

Output parameters:

- Price
- Delta1
- Delta2

```
/*Memory Allocation*/
```

/*Covariance Matrix*/

/*Space localisation/*

Define the integration domain $D = [-l, l]^2$ using probabilistic estimation.

/*Space Step/*

Define the space step $h = \frac{2l}{M}$.

/*Stability Condition Time Step*/

This stability condition is given there The Time Step number is given by M.

/*"Probabilities" associated to point/*

/*Terminal Values/*

Put the value of the payoff into a vector P

2 pages 2

/*Homegenous Dirichlet Conditions/*

/*Finite difference Cycle/*

At any time step, described by the loop in the variable *TimeIndex*, we have to explicitly the equation (cf. there)

/*Splitting for American case*/

For American options, we compare at each time step the solution in P with the payoff function saved in iv. We save the result in P

```
/*Price*/
/*Delta*/
cf.there.
/*Memory Desallocation*/
```