1.		
	Show that:	
a	Re(iz) = -Im(z)	
	Proof	
	Let Z=X+iy & C	
	$\Rightarrow iz = ix - y$	
	⇒ Re(;z)=-y	
	On the other hand, Im(z)= /	
	Thus, Re(iz)=-y=-Im(z)	
	$\Rightarrow Re(iz) = -Im(z)$	I
	-1/(02) 1/1(2)	(B
1	Im(iz) = Re(z)	
D.	Proof	
	Again, let Z= X+iy & C	
	⇒iZ=iX-Y	
	$\Rightarrow Im(iz) = X$	
	On the other hand, Re(z)=x	
	Thus, $Im(iz) = x = Re(z)$	
	⇒ Im(iz) = Re(z)	