Домашнее задание по АиСД №4

Эмиль Гарипов М3138 2019-10-14

Задача №1

Для поиска позиции p будем использовать следующий алгоритм:

На i-м шаге будем сравнивать число x с числом a_{2^i} . До тех пор, пока верно $x>2^i$, увеличиваем i. Тогда мы остановимся, когда $a_{2^i}\le x$, причем все элементы на префиксе длиной 2^{i-1} меньше x, поскольку массив отсортирован. Тогда бинарным поиском попытаемся найти x на отрезке $[2^{i-1};2^i]$. Элемент x, если сущесвтует в массиве a, то находится именно в этом отрезке, так как $a_{2^{i-1}}< x\le a_{2^i}$ и массив a отсортирован.

Посчитаем время работы алгоритма: пусть p — позиция x в массиве a, тогда поиск отрезка, в котором находится элемент x выполнится не более чем за $\log p$ шагов, так как поиск перебирает позиции, равные степеням двойки, которые не превосходят p, и сравнивает значения в них с x. Степеней двоек не больших чем x ровно $|\log p|$.

Бин поиск выполнит не более $\log p$ шагов, поскольку длина отрезка, на котором выполняется поиск $2^{\log p}$.

Итого, алгоритм работает за $\mathcal{O}(\log p)$.

Задача №2

Воспользуемся следующим алгоритмом:

Будем поддерживать три указателя, L, R_1 и R_2 . L указывает на начало отрезков таких, что количество различных чисел на них ровно k, заканчивающихся в $R \in [R1;R2]$. Так же необходимо хранить массив a — массив подсчета, i-я ячейка которого будет хранить кол-во числа i для $\forall i$ на отрезках, описанных выше. Чтобы узнать кол-во различных чисел на отрезке, надо посчитать кол-во не нулей в этом массиве (подробнее об этом ниже).

Шаг № 1. Если мы узнаем такие L, R_1 и R_2 , то надо добавить к ответу R_2-R_1+1 , так как на них ровно k различных чисел, уменьшать $a_{val[l]}$ и прибавлять к ответу R_2-R_1+1 , сдвигая L на один вправо до тех пор, пока кол-во различных чисел на отрезках [L;R] ($R\in[R_1;R_2]$), не станет равно k (о том, как это посчитать сказано ниже), где val[l]— значение исходного массива в позиции l.

Шаг №2. После сдвига левой границы надо найти такие R_1 , R_2 , что кол-во различных чисел на них было ровно k. Для этого сдвинем R_1 и R_2 в R_2+1 и будем увеличивать R_2 , одновременно увеличивая значения $a_{val[R_2]}$ до тех пор, пока кол-во не нулей в массиве a не будет равно k (в самом начале работы алгоритма будет аналогичным способом искать L, R_1 , R_2).

После этого будем проделывать алгоритм начиная с Шага $\mathbb{N}1$, до тех пор пока не дойдем до конца массива.

Так как мы добавляем и удаляем по одному элементу из отрезка, то для подсчета кол-ва не нулей в массиве просто будем хранить переменную, хранящую это кол-во. Увеличивать ее будем при добавлении элемента x, если $a_x=0$, уменьшать при удалении элемента x, если $a_x=1$ (до уменьшения a_x).

Таким образом алгоритм для каждой позиции L посчитает кол-во отрезков, удовлетворяющих условию за время $\mathcal{O}(n)$.