Week-2 Allele and Genotype Frequencies

Aim: Learning about the sequencing data, data formats, programs, softwares, tools to prepare genomic datasets for population genetics analyses

Hands-on: Preparing a toy dataset and computing allele frequencies and measuring the HWE

Reading suggestions: Nielsen and Slatkin 2013 An Introduction to Population Genetics Chapter 1 https://evolutionarygenetics.github.io/Chapter3.html https://cooplab.github.io/popgen-notes/

Basics

- Locus (p. Loci): Any segregating position(s) in the genome / should not be necessarily coding. -> MC4R, rs373838, Chr1 3874902, C, CTCTCT....
- Genotype: Combination of alleles for the given position: Chr17-9,158,696, >TT, TC, CC
- Diploid species -> Two copies of all chromosomes / N diploid individuals > 2N copies of each locus

Allele and genotype frequencies

Di-allelic model -> A, a

N= 6 individuals Gene copies: 12

Allele A: 7
Allele a: 5

Allele frequency: Number of allele copies in the population / Number of gene copies in the population

$$f_A = N_A/2N$$

$$f_a = N_a/2N$$

$$f_A + f_a = 1$$

Genotype frequency: Number of individuals carrying the genotype / Total number of individuals

$$f_{AA} = N_{AA}/N$$
 $f_{aa} = N_{aa}/N$
 $f_{Aa} = N_{Aa}/N$
 $f_{AA} + f_{aa} + f_{Aa} = 1$

Genotype frequencies and heterozygosity

Di-allelic model -> A, a

N= 6 individuals

Gene copies: 12

Allele A: 7

Allele a: 5

We can compute allele frequency based on genotype frequency

$$f_A = N_{A/2}N$$

$$f_A = 2N_{AA} + N_{Aa/2}N = f_{AA} + f_{Aa/2}$$

$$f_a = f_{aa} + f_{Aa/2}$$

 f_{Aa} -> Proportion of heterozygous individuals in the population => HETEROZYGOSITY 1- f_{Aa} = f_{aa} + f_{AA} HOMOZYGOSITY

If heterozygosity is high in the population -> more diverse

K-allelic loci -> k different alleles

Di-allelic model -> A, a

N= 6 individuals

Gene copies: 12

Allele A: 7

Allele a: 5

$$f_A = N_{A/2}N$$

$$f_A = 2N_{AA} + N_{Aa/2}N = f_{AA} + f_{Aa/2}$$

$$f_A = f_{AA} + f_{Aa} / 2$$

 $f_i = f_{ii} + \sum_{j:j \neq i} f_{ij} / 2$ k-allelic

Homozygosity: $\sum_{i} f_{ii}$

Heterozygosity: ∑fj
(i,j):i<j

Estimate allele frequency

Random sample: 30 individuals Chr 2, 122839, C/T

$$f_{CC} = 25/30 = 0.833$$

 $f_{CT} = 5/30 = 0.167$
 $f_{TT} = 0$
 $f_{C} = 0.833 + 0.167/2 = 0.917$
 $f_{T} = 1 - 0.917 = 0.083$

Allele frequencies can be computed from genotype frequencies

Can we estimate genotype frequencies from allele frequencies?

Hardy-Weinberg Model - how can these frequencies change?

Random sample: 30 individuals Chr 2, 122839, C/T

If $f_T = 0.08$, what proportion of the population is expected to have TT genotype?

A way of explaining relationships between genotype and allele frequencies

Assumptions:

Random mating - without regard genotypes Infinitely large population No selection/mutation/gene flow

-> Genotype frequency <- probability

Deviations:

Assortative mating Inbreeding Selection Population structure

Hardy-Weinberg Model - how can these frequencies change?

Random sample: 30 individuals Chr 2, 122839, C/T

If $f_T = 0.08$, what proportion of the population is expected to have TT genotype?

Random mating

-> Genotype frequency <- probability

Probability of A allele transmitted to next generation

Probabilities of genotype frequencies under HWE

Genotype AA -> Probability from mother and father -> $f_A f_A = f_A^2$

Genotype aa f_a^2

Genotype Aa 2f_af_A

Expected heterozygosity: $2f_{\alpha}f_{A}$ Expected homozygosity: $f_{A}^{2} + f_{\alpha}^{2}$

Week-2 Hands-on

Aim: Preparing a toy dataset using pileupCaller, computing allele frequencies, measuring the HWE, visualising results with R

https://evolutionarygenetics.github.io/Chapter3.html

https://cooplab.github.io/popgen-notes/

PLAN

1- Prepare a dataset from low coverage bams

use samtools and mpileupcaller + scripts in our Github page

2- Merge new dataset with the existing one

use AdmixTools mergeit + scripts in our Github page

3- Convert eigenstrat files to ped files

use AdmixTools convertf, + scripts in our Github page

4- Use Plink to compute allele frequencies

use Plink —freq, + scripts in our Github page

5- Use R to understand allele and genotype frequencies

Our Github page

Preparing a dataset - starting from BAM files

SAMTools

Low to high coverage

Fast

output: bcf, mpileup

GATK

Medium to high coverage

Comparably slow

output: vcf

SAMTools + PileupCaller

Low to high coverage

Fast

output: eigenstrat

Install softwares and tools

Samtools:

http://www.htslib.org/download/

Pileupcaller

https://github.com/stschiff/sequenceTools

Plink:

https://www.cog-genomics.org/plink/

Prepare a dataset

Reference genome: Chromosome 22 (*v. hs37d5*): https://www.dropbox.com/sh/ys3ud3jvu2hk0jo/AAA1YDv8L9z4uEYyusLCxWkna?dl=0

Bam files: https://github.com/gulki/BIN784

Eigenstrat files: https://github.com/gulki/BIN784

Bed file: https://github.com/gulki/BIN784

Make a dataset using pileupcaller

Example code: https://github.com/gulki/BIN784/tree/main/scripts/pileupcaller.sh

We need:

- 1- bamlist: bamlist.txt one bam file per line
- 2- reference genome
- 3- bed file
- 4- eigensnpfile

Compute allele frequencies

Example code: https://github.com/gulki/BIN784/blob/main/scripts/plink_allele_freq.sh