Intro to Self-Driving Cars Nanodegree Weekly Outline

Week #	Material to Cover
First Day	 Welcome Join Slack and Forums Support services available
Week 1	 Orientation Bayesian Thinking: Introduction Project 0: Joy Ride
Week 2	 Bayesian Thinking: Probability Conditional Probability Programming Probability in Python Bayes' Rule Programming Probability Distributions
Week 3	 Bayesian Thinking: Gaussian Distribution Robot Localization Histogram Filter in Python Optional (and highly encouraged) Project: Histogram Filter in Python
Week 4	Working with Matrices: Section Overview Introduction to Kalman Filters State and Object Oriented Programming
Week 5	Working with Matrices:
Week 6	 Working with Matrices: Implement Matrix Class Project 1: Implement Matrix Class C++ Basics: C++ Getting Started C++ Vectors Practical C++
Week 7	 C++ Basics C++ Object Oriented Programming Python and C++ Speed Translate Python to C++ Project 2: Translate Python to C++

	Performance Programming in C++:
	C++ Intro to Optimization
Week 8	C++ Optimization Practice
VVEEK O	O C++ Optimization Flactice
	Performance Programming in C++:
	Optimize Histogram Filter
	Optional project: Optimize Histogram Filter
	Navigating Data Structures:
Week 9	How to Solve Problems
	Navigating Data Structures:
	Data Structures
Week 10	o The Search Problem
	Navigating Data Structures:
	o Implement Route Planner
	Project 3: Implement Route Planner
	Vehicle Motion and Control:
	o Odometers
Week 11	 Speedometers and Derivatives
	Vehicle Motion and Control:
	 Accelerometers, Rate Gyros and Integrals
Week 12	 Two Dimensional Robot Motion and Trigonometry
	Vehicle Motion and Control:
	 Reconstructing Trajectories from Sensor Data
Week 13	Optional Project: Reconstructing Trajectories from Sensor Data
	Computer Vision and Machine Learning:
Week 14	 Computer Vision and Classification
Week 15	Project 4: Traffic Light Classifier
	Graduation:
	 Congratulations! You've Finished!
Week 16	 Guaranteed Admission into your next Nanodegree
End of Term	