Вариант		Нагрузочный конденсатор		Нагрузочный конденсатор	
		C1 nf	C2 nf	C3 µf	C4 µf
№11		20	40	0,03	0,1
Делитель напряжения		Хронирующая R C-		Делитель напряжения	
		цепь			
R1 kOm	R2 kOm	R3 kOm	R4 kOm	R5 kOm	R6 kOm
22.5 45		22.5	22.5	22.5	45

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)**НАПРАВЛЕНИЕ ПОДГОТОВКИ **09.03.01 Информатика и вычислительная техника**

ОТЧЕТ

По лабораторной работе №4

Название:	<u>Мультивибратор</u>	на	основе	операционного	усилителя	c
интегриру	ющей RC-цепью			-		
Дисциплин	а: Электроника					

Студент	ИУ-42б		С.В.Астахов	
•	(Группа)	(Подпись, дата)	(И.О. Фамилия)	
Преподаватель				
		(Подпись, дата)	(И.О. Фамилия)	

Исходные данные

		Нагрузочный конденсатор		Нагрузочный конденсатор	
		С ₁ , нФ С ₂ , нФ		С₃, нФ	С ₄ , нФ
		20	40	0.03	0.1
Делитель напряжения		Хронирующая RC-цепь		Делитель напряжения	
R ₁ , кОм	R ₂ , кОм	R ₃ , кОм	R ₄ , кОм	R ₅ , кОм	R ₆ , кОм
22.5 45		22.5	22.5	22.5	45

Исходная схема

Параметры операционного усилителя

Исследуем влияния постоянной времени хронирующей RC-цепи на период генерируемых колебаний.

Определим из графика величину периода:

Период импульсов с С1

Период импульсов с С2

Рассчитаем аналитически:

При условии $|U+выx|=|U-выx| \rightarrow T=2*C1*R3*In(1+2*R1/R5)$

Занесем значения в таблицу и найдем относительную погрешность.

Таблица 2 - Исследование влияния постоянной времени на Т

	Графически	Аналитически		
	Т, сек	τ=R3*C1, сек	Т, сек	б, %
C1	1,02566e-03	4,5000e-03	0,9887e-03	3,7382e+00
C2	2,01202e-03	9,000e-03	1,9775e-03	1,7456e+00

Исследование влияния коэффициента передачи β цепи положительной обратной связи на период генерируемых колебаний.

Подберем различные значения R_1 и R_5 , чтобы получить различные значение коэффициента β , который рассчитывается по формуле: $\beta=R1/(R1+R5)$.

Также рассчитаем период аналитически $T=2*C_1*R_3*In(1+2*R_1/R_5)$ и графически и найдем относительную погрешность.

Период для R_1 = 22.5 кОм и R_5 = 22.5 кОм

Период для R_1 = 110 кОм и R_5 = 22.5 кОм

Период для R_1 = 22.5 кОм и R5 = 55 кОм

Период для R_1 = 55 кОм и R_5 = 22.5 кОм

Исследование влияния коэффициента передачи на период Т

R ₁ , кОм	R ₅ , кОм	β	Т _{вычисл} , сек	Т _{граф} , сек	б, %
22.5	55	2,9032e-01	0,5380e-03	0,5892e-03	9,5167e+00
22.5	22.5	5,0000e-01	0,9887e-03	1,0281e-03	3,9850e+00
55	22.5	7,0967e-01	1,5955e-03	1,6274e-03	1,9999e+00
110	22.5	8,3018e-01	2,1397e-03	2,1686e-03	1,3506e+00

Исследуем влияния ёмкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора.

Из графиков найдем т фронта и т среза для цепей с C3 = 0.03 мкФ, 0.1 мкФ, 0.25 мкФ, 0.5 мкФ.

Импульс напряжения цепи нагрузки для нахождения $au_{\phi pohta}$ и au_{cpesa} (C3 = 0.03 мкФ)

Импульс напряжения цепи нагрузки для нахождения $au_{\text{фронта}}$ и $au_{\text{среза}}$ (C₃ = 0.1 мкФ)

Импульс напряжения цепи нагрузки для нахождения $au_{\phi pohta}$ и au_{cpesa} ($C_3 = 0.25 \text{ мк}\Phi$)

Импульс напряжения цепи нагрузки для нахождения $au_{\text{фронта}}$ и $au_{\text{среза}}$ ($C_3 = 0.5 \text{ мк}\Phi$)

Найдем $\tau_{\text{конд}}$ по формуле: $\tau_{\text{к}} = C_{\text{нагр}} * R_{\text{вых}}$, где $R_{\text{вых}}$ - выходное сопротивление усилителя Output resistance (RO) =10 Ом.

Исследование влияния ёмкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора.

СЗ, мкФ	тконд, сек	$ au_{\phi}$, сек	т _{ср} , сек
0,03	1,500e-06	1,164e-04	1,163e-04
0,1	5,000e-07	3,880e-05	3,880e-05
0,25	2,500e-06	1,940e-04	1,941e-04
0,5	5,000e-06	3,885e-04	3,885e-04

Вывод: в данной лабораторной работе мы исследовали влияние постоянной времени на период генерируемых колебаний, влияние коэффициента передачи β цепи положительной обратной связи на период генерируемых колебаний и влияние емкости нагрузочного конденсатора на длительность фронта и среза выходных импульсов генератора