Exercises

In Exercises 1 to 4, evaluate the following integrals if they exist

1.
$$\iint_D \frac{1}{\sqrt{XY}} dA$$
, where $D = [0, 1] \times [0, 1]$

- 2. $\iint_{D} \frac{1}{\sqrt{|x-y|}} dx dy, \text{ where } D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le 1, y \le x\}$
- 3. $\iint_D (y/x) dx dy$, where *D* is bounded by x = 1, x = y, and x = 2y
- **4.** $\int_0^1 \int_0^{e^v} \log x \, dx \, dy$
- **5.** Let $D = [0, 1] \times [0, 1]$. Let $0 < \alpha < 1$ and $0 < \beta < 1$. Evaluate:

$$\iint_D \frac{dx\,dy}{x^\alpha \, y^\beta}.$$

7. (a) Evaluate

$$\iint_D \frac{dA}{(x^2 + y^2)^{2/3}},$$

where D is the unit disk in \mathbb{R}^2 .

(b) Determine the real numbers λ for which the integral

$$\iint_D \frac{dA}{(x^2 + y^2)^{\lambda}}$$

is convergent, where again D is the unit disk.

11. Discuss whether the integral

$$\iint_D \frac{x+y}{x^2+2xy+y^2} \, dx \, dy$$

exists where $D = [0, 1] \times [0, 1]$. If it exists, compute its value.

13. Let *W* be the first octant of the ball $x^2 + y^2 + z^2 \le a^2$, where $x \ge 0$, $y \ge 0$, $z \ge 0$. Evaluate the improper integral

$$\iiint_W \frac{(x^2 + y^2 + z^2)^{1/4}}{\sqrt{z + (x^2 + y^2 + z^2)^2}} dx dy dz$$

by changing variables.

Solutions

- **1.** 4
- **3.** 3/16
- 5. $\frac{1}{(1-\alpha)(1-\beta)}$
- **7.** (a) 3π
 - (b) $\lambda < 1$
- **11.** Integrate over $[\varepsilon, 1] \times [\varepsilon, 1]$ and let $\varepsilon \to 0$ to show the improper integral exists and equals 2 log 2.
- 13. $\frac{2\pi}{9}[(1+a^3)^{3/2}-a^{9/2}-1]$