1. Compute the following determinants:

(i)
$$\begin{vmatrix} 2 & 3 \\ 0 & 4 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 3 \\ 2 & 5 \end{vmatrix}$ (iii) $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \end{vmatrix}$ (iv) $\begin{vmatrix} 1 & 2 & 2 \\ 2 & -2 & 1 \\ 2 & 1 & -2 \end{vmatrix}$ (v) $\begin{vmatrix} 2 & 3 & 0 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \end{vmatrix}$.

2. Let:

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}.$$

Find:

- (i) $\det A$ (ii) $\det(-A)$ (iii) $\det(2A)$ (iv) $\det B$ (v) $\det(A+B)$.
- 3. Use suitable cofactor expansions to compute the following determinants:

(i)
$$\begin{vmatrix} 9 & 0 & 0 & 2 \\ 7 & 3 & 2 & 8 \\ 3 & 0 & 0 & 0 \\ 5 & -3 & 1 & 11 \end{vmatrix}$$
 (ii)
$$\begin{vmatrix} 0 & 9 & 0 & 2 \\ 7 & -12 & 3 & -1 \\ 0 & 2 & 0 & 0 \\ 1 & 8 & 1 & 2 \end{vmatrix}$$
 (iii)
$$\begin{vmatrix} 1 & 0 & 5 & 0 & 3 \\ 6 & 8 & 9 & 1 & 2 \\ -1 & 0 & 5 & 11 & 4 \\ 0 & 0 & 3 & 0 & 0 \\ 3 & 0 & 13 & 0 & 2 \end{vmatrix}$$
.

4. Find the values of the following determinants if $\det A = 2$:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} : \quad \text{(i)} \quad \begin{vmatrix} a & b & c \\ 2d & 2e & 2f \\ g & h & i \end{vmatrix} \quad \text{(ii)} \quad \begin{vmatrix} g & h & i \\ d & e & f \\ a & b & c \end{vmatrix} \quad \text{(iii)} \quad \begin{vmatrix} a+3g & b+3h & c+3i \\ d & e & f \\ g & h & i \end{vmatrix}.$$

5. If an $n \times n$ matrix contains:

(i) a zero row (ii) two identical rows (iii) two proportional rows,

what should its determinant be?

6. Find a relation between $\det A$, $\det B$, and $\det C$:

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}, \quad B = \begin{bmatrix} u & v & w \\ d & e & f \\ g & h & i \end{bmatrix}, \quad C = \begin{bmatrix} a+u & b+v & c+w \\ d & e & f \\ g & h & i \end{bmatrix}.$$

7. Compute the following determinants:

(i)
$$\begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix}$$
 (ii) $\begin{vmatrix} 1 & 2 & 3 & 4 \\ -1 & 2 & 3 & 4 \\ -1 & -2 & 3 & 4 \\ -1 & -2 & -3 & 4 \end{vmatrix}$ (iii) $\begin{vmatrix} 1 & 2 & 0 & 0 & 0 \\ 2 & 1 & 2 & 0 & 0 \\ 0 & 2 & 1 & 2 & 0 \\ 0 & 0 & 2 & 1 & 2 \\ 0 & 0 & 0 & 2 & 1 \end{vmatrix}$.

8. Let x be a real number. Find det A in terms of x.

Find x such that A is not invertible.

- 9. Suppose that A is invertible. What is the relation between det A and det A^{-1} ?
- 10. Let $\det A = 2$, $\det B = 3$, $\det C = -1$. Find the determinants of the following expressions:

(i)
$$ABAC^T$$
, (ii) $B^TA^{-1}CB^{-1}C^TA$, (iii) $A^5B^{-2}(C^T)^2A^{-1}BA^{-1}C$.

11. Let $\{x_1, x_2, \ldots, x_n\}$ and $\{y_1, y_2, \ldots, y_n\}$ be two sequences of numbers such that $x_i + y_j \neq 0$ for all i, j. The $n \times n$ Cauchy matrix $A_n = (a_{ij})$ corresponding to $\{x_i\}$, $\{y_j\}$ is defined by:

$$a_{ij} = \frac{1}{x_i + y_j}, \quad 1 \le i, j \le n.$$
 e.g. $A_2 = \begin{bmatrix} \frac{1}{x_1 + y_1} & \frac{1}{x_1 + y_2} \\ \frac{1}{x_2 + y_1} & \frac{1}{x_2 + y_2} \end{bmatrix}$.

[Note: When $x_i = i - 1$, $y_j = j$, we obtain the $n \times n$ Hilbert matrix.]

The following exercises will lead you to a general formula of $\det A_n$.

- (i) Find $\det A_2$.
- (ii) By applying row replacement operations $-r_3 + r_1$, $-r_3 + r_2$ to A_3 , find the factor k in the following equality:

$$\det A_3 = k \det \begin{bmatrix} \frac{1}{x_1+y_1} & \frac{1}{x_1+y_2} & \frac{1}{x_1+y_3} \\ \frac{1}{x_2+y_1} & \frac{1}{x_2+y_2} & \frac{1}{x_2+y_3} \\ 1 & 1 & 1 \end{bmatrix}.$$

(iii) Continue by column replacement operations $-c_3 + c_1$, $-c_3 + c_2$, find the factor ℓ in the following equality:

$$\det A_3 = \ell \det A_2$$
.

Then write down the formula of $\det A_3$.

(iv) Find the factor m in the following equality:

$$\det A_4 = m \cdot \det A_3.$$

Then guess a formula of $\det A_n$.

Answers for checking:

1. (i) 8 (ii)
$$-1$$
 (iii) -1 (iv) 27 (v) -11 .

3. (i)
$$54$$
 (ii) -16 (iii) 1848 .

4. (i) 4 (ii)
$$-2$$
 (iii) 2.

6.
$$\det C = \det A + \det B$$
 (note that $C \neq A + B$).

8. (i)
$$(1-x^4)^3$$
, $x=\pm 1$ (ii) $(1-x^4)^3$, $x=\pm 1$ (iii) $x^3(1-x)^3(1+x)$, $x=0,\pm 1$.

9.
$$\det A^{-1} = (\det A)^{-1}$$
.

10. (i)
$$-12$$
 (ii) 1 (iii) $-\frac{8}{3}$.

11. (i)
$$\frac{(x_2 - x_1)(y_2 - y_1)}{(x_1 + y_1)(x_1 + y_2)(x_2 + y_1)(x_2 + y_2)}$$
 (ii) $k = \frac{(x_3 - x_1)(x_3 - x_2)}{(x_3 + y_1)(x_3 + y_2)(x_3 + y_3)}$;

(iii)
$$\ell = \frac{(x_3 - x_1)(x_3 - x_2)(y_3 - y_1)(y_3 - y_2)}{(x_3 + y_1)(x_3 + y_2)(x_3 + y_3)(x_1 + y_3)(x_2 + y_3)}$$
;

$$\det A_3 = \frac{(x_3 - x_1)(x_3 - x_2)(x_2 - x_1)(y_3 - y_1)(y_3 - y_2)(y_2 - y_1)}{(x_3 + y_1)(x_3 + y_2)(x_3 + y_3)(x_2 + y_1)(x_2 + y_2)(x_2 + y_3)(x_1 + y_1)(x_1 + y_2)(x_1 + y_3)}.$$

(iv)
$$m = \frac{(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)(y_4 - y_1)(y_4 - y_2)(y_4 - y_3)}{(x_4 + y_1)(x_4 + y_2)(x_4 + y_3)(x_4 + y_4)(x_1 + y_4)(x_2 + y_4)(x_3 + y_4)};$$

$$\det A_n = \frac{\prod_{1 \le j < i \le n} (x_i - x_j)(y_i - y_j)}{\prod_{1 \le i, j \le n} (x_i + y_j)}$$