The graph of f(t) is shown at right. Assume that 1 tick = 1 unit. Use the concept of accumulated area to draw a sketch of the following:



| x    | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
|------|----|----|----|----|---|---|---|---|---|
| g(x) |    |    |    |    |   |   |   |   |   |
| h(x) |    |    |    |    |   |   |   |   |   |
| k(x) |    |    |    |    |   |   |   |   |   |

(a) 
$$g(x) = \int_{0}^{x} f(t)dt$$

(b) 
$$h(x) = \int_{0}^{x} f(t) dt$$



$$k(x) = \int_{0}^{x} f(t)dt$$



When does g(x) reach a maximum? Justify your answer.

When does h(x) reach a maximum? Justify your answer.

When is the graph of k(x) concave down? Justify your answer.

Let f(t) be the function shown at right. Let  $q(x) = \int_{-2}^{x} f(t) dt$ .

Which is greater? q(-1) or q(2)

Which is greater? q'(-1) or q'(2)



