

Scanned by CamScanner

We will convert this to T(z) When will convert this to T(z) T(z) must be rational for realizability.	
(= iw) should have a one-one	1 20
unit circle (121 = 1)	
3 Left helf is mapped to IzIXI, right half is in	sapped bolzla
Tracing Y-axis and unit circle is monotonical $(-\infty, \infty)$ \longrightarrow $(-\Pi, \Pi)$	
-> Consider differentiator :- H(s) = s	
$-\frac{y[n] = x[n] - x[n-1]}{T(z) = 1 - e^{-j\omega}}$ (putting $z = 0$). Does not map imaginary axis to unit circle.	∋ jω)
$-\frac{y[n] = x[n+\frac{1}{2}] - x[n-\frac{1}{2}]}{T(z) = e^{j\frac{1}{2}} - e^{-j\frac{1}{2}} = 2j \sin \frac{\omega}{2}}$	
not bose entire unit circle	circle, but they
- We can by by get $T(z) = \int_{-\infty}^{\infty} tan\left(\frac{\omega}{2}\right)$	
$= \int \frac{\sin\left(\frac{\omega}{2}\right)}{\cos\left(\frac{\omega}{2}\right)}$	
$T(z) = z'_{2} - z'_{2} = 1 - z'_{2}$ $z'_{2} + z^{-1/2} + z'_{2} = 1 - z'_{2}$	z-1
:. y[n]+y[n-1] = z[n]-z[n-1]	
Average of current and first past output sample is p	proportional b
the first difference of inputs. Scanne	ed by CamScanno

Scanned by CamScanner

Scanned by CamScanner

Page No. Gate
$\frac{1}{2} \cdot \frac{(2k+1) \pi}{2} D_{k} = \frac{1 \sinh^{-1}(\frac{1}{2})}{N}$
Find constant by Hanglog (1).
CP Shelth piles of Hanalog(s) for N = 3,4,5,6
Theorem Poles lie on an ellipse.
· · · · · · · · · · · · · · · · · · ·
11/3 Pasaband Stop-band Filter Type Manatonic Monatonic Butterworth Equiripple M Chabyschau E Toverse Chabyschau E Tacabi/Elliptic.
IV ANALOG FREQUENCY TRANSFORMATIONS
of Transform: Handley, BAE (S) - Handley, LPE (SL)
specifications, design the LPF, transform back to BPF

