THE INTERNATIONAL UNIVERSITY – VIETNAM NATIONAL UNIVERSITY – HCMC

CALCULUS 2 MIDTERM Semester 2, Academic Year 2022-2023 Duration: 90 minutes

D	1 1 1
Department of Mathematics	Lecturers Man
Naus	
Nguyen Minh Quan	Ta Quoc Bao, Tran Vu Khanh, Nguyen Anh Tu
devices are forbidden	our answer sheet. calculator. All other documents and electronic e True/False questions, fill in the circles com-
Part A: True/False Questions	
1. The series $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n} - \sqrt{n-1})$ con	onverges
2. The series $\sum_{n=1}^{\infty} (-1)^n \frac{(2n)!}{(n!)^2} \underline{\text{diverges.}}$	
3. The explicit formula of the sequence $\{\frac{2}{2!}\}$	$\left\{\frac{4}{5}, \frac{4}{36}, \frac{6}{49}, \frac{8}{64}, \frac{10}{81}, \dots\right\} \text{ is } a_n = \frac{2n}{(n+4)^2}.$
4. The sequence $a_n = \frac{(2n)!n^2}{(2n+2)!}$ has limit $\frac{1}{4}$	FX
5. If nonzero vectors \mathbf{u} and \mathbf{v} have the same vector $\mathbf{u} + \mathbf{v}$.	magnitude, then they make equal angle with
6. If for some three dimensional vectors u,	\mathbf{v} , w we have $\mathbf{u} \times \mathbf{v} = \mathbf{u} \times \mathbf{w}$, then $\mathbf{v} = \mathbf{w}$.
7. The series $\sum_{n=1}^{\infty} \frac{3}{n^2+3}$ is divergent.	X V= IC
8. The series $\sum_{n=2}^{\infty} (-1)^n \frac{n^2-1}{n^2+3}$ is converge	
9. If u is orthogonal to v, and v is orthogon	nal to w, then u is orthogonal to w.
10. The series $\sum_{n=1}^{\infty} \frac{n^2}{4^n}$ diverges.	X 1
11. The vector $\mathbf{u} = \langle -1, -5, 7 \rangle$ is perpendicular and the plane $2x + y + z = 12$.	ar to both the line $x = 1+5t, y = 3-t, z$

- 12. If $\mathbf{u} + \mathbf{v}$ is orthogonal to $2\mathbf{u} 3\mathbf{v}$ and $\mathbf{u} \mathbf{v}$ is orthogonal to $2\mathbf{u} + 3\mathbf{v}$, then \mathbf{u} is orthogonal to \mathbf{v} .
- 13. The series $\sum_{n=1}^{\infty} ne^{-2n^2}$ converges.
- 14. If u is a three dimensional vector, then $(u \cdot i)^2 + (u \cdot j)^2 + (u \cdot k)^2 = |u|^2$.
- 15. If \mathbf{u} , \mathbf{v} are three dimensional vectors, then $(\mathbf{u} \mathbf{v}) \times (\mathbf{u} + \mathbf{v}) = 2\mathbf{u} \times \mathbf{v}$.

Part B: Short Answer Questions

- 16. Find the limit $\lim_{(x,y)\to(0,0)} \frac{x^2+4xy}{3x^2+y^2}$ if it exists.
- 17. Determine the radius and interval of convergence of the power series $\sum_{n=2}^{\infty} \frac{2^n (x-3)^n}{n}$
- 18. Let $f(x) = \frac{x^2}{x+2}$. Find the formula for the coefficients c_n in the power series expansion $f(x) = \sum_{n=0}^{\infty} c_n x^n$.
- 19. Evaluate the series $\sum_{n=1}^{\infty} \frac{2^{2n-1}}{5^n}$.
- 20. Find all values of a such that $(a, a, 2) \times (1, a, 3) = (2, -4, 2)$.
- 21. Find the area of the triangle T with vertices P(2,-1,4), Q(1,1,-1) and R(-4,1,1).
- 22. Find the line through point (-3,4,2) that is perpendicular to both $\mathbf{u}=\langle 3,1,0\rangle$ and $\mathbf{v}=\langle 2,4,1\rangle$.
- 23. Find the plane passing through the points P(2,-1,4), Q(1,1,-1) and R(-4,1,1).
- 24. Find the volume of the parallepiped determined by $\mathbf{u} = \langle 3, 1, 0 \rangle$, $\mathbf{v} = \langle 2, 4, 1 \rangle$, $\mathbf{w} = \langle 1, 1, 5 \rangle$.
- 25. Find the length of the two-dimensional curve $\mathbf{r}(t) = \langle \cos t + t \sin t | \sin t t \cos t \rangle$, for $t \in [0, \pi/2]$.

to = 10+1101.