Сингулряные значения бидиагональной матрицы методом бисекции

Абрамов Семен КМБО-01-20

semenabramov2002@gmail.com

tg: @schlyapapole

На вход алгоритма поступают переменные n, B, α , β и tol. Приведем описание данных переменных:

В – бидиагональная матрица (ненулевые элементы расположены только на главной и одной из соседних диагоналей)

n — размерность матрицы \mathbf{B}

 α и β — левая и правая граница полуинтервала [α , β), в котором будем искать сингулярные значения B.

tol – числовая точность алгоритма

 n_{low} , n_{up} , n_{mid} — количество сингулярных значений находящихся левее нижней (верхней) границы или середины интервала.

Опишем основной алгоритм по шагам:

- 1. Вычислим n_{α} использовав вспомогательную функцию *Negcount*(n, **B**, α)
- 2. Аналогичным образом вычислим $n_{\beta} = Negcount(n, \mathbf{B}, \beta)$
- 3. Если $n_{\alpha} = n_{\beta}$, на полуинтервале $[\alpha, \beta)$ нет сингулярных значений
- 4. В противном случае список [α , n_{α} , β , n_{β}] становится частью Worklist
- 5. Пока Worklist не пуст будем выполнять следующие шаги:
 - а. Предыдущие значения Worklist удаляются. На первой итерации [low, n_{low} , up, n_{up}] = [α , n_{α} , β , n_{β}], на следующих итерациях берем вычисленные значения из предыдущих итераций
 - b. Переменная mid = (low + up) / 2
 - с. Проверяем неравенство up low >= tol Если неравенство выполнено проделываем следующие шаги:
 - $n_{mid} = Negcount(n, B, mid)$

- Если $n_{mid} > n_{low}$ в работу Worklist идет список [low, n_{low} , mid, n_{mid}]
- Если $n_{up} > n_{mid}$, в работу Worklist идет список [mid, n_{mid} , up, n_{up}]

Если же неравенство не выполнено, выполняем цикл

• От і в диапозоне $[n_{low} + 1, n_{up}]$, элемент массива w, стоящий на позиции $i - n_{\alpha}$ равен mid (одно из искомых сингулярных значений).

Результат выполнения алгоритма — массив w, состоящий из сингулрных значений **B** в заданном диапозоне.

Алгоритм *Negcount* в псевдокоде выше вычисляет число сингулянрных значений меньше чем µ

На вход алгоритма поступают переменные n, \mathbf{B} и μ

Опишем алгоритм Negcount по шагам:

- 1. $t = -\mu$
- 2. При k от 1 до n-1

$$d = \beta_{k,k}^2 + t$$

Если d < 0, число Negcount = Negcount + 1

$$t = t * (\beta_{k,k+1}^2 / d) - \mu$$

- 3. $d = \beta_{n,n}^2 + t$
- 4. Если d < 0, число Negcount = Negcount + 1

Эффективность алгоритма зависит от размера матрицы и заданной числовой точности tol. Итеративный процесс разбиения интервала может быть неэффективным для больших матриц или малых значений tol. Однако, алгоритм позволяет находить сингулярные значения с высокой точностью в заданном интервале.

Итак, описанный алгоритм представляет собой метод численного поиска сингулярных значений бидиагональной матрицы в заданном интервале с заданной точностью. Он может быть эффективным для небольших и средних размеров матриц при умеренной числовой точности.