

Boolean Functions: Terminology

$$F(a,b,c) = a'bc + abc' + ab + c$$

- Variable
- Represents a value (0 or 1), Three variables: a, b, and c
- Literal
- Appearance of a variable, in true or complemented form
- Nine literals: a', b, c, a, b, c', a, b, and c
- Product term
- Product of literals, Four product terms: a'bc, abc', ab, c
- Sum-of-products (SOP)
- Above equation is in sum-of-products form.

Representations of Boolean Functions

- A function can be represented in different ways
 - Above shows seven representations of the same functions F(a,b), using four different methods: English, Equation, Circuit, and Truth Table

Truth Table Representation of Functions

 Define value of F for each possible combination of input values

а	b	F
0	0	
0	1	
1	0	
1	1	

(b)

- 2-input function: 4 rows

- 3-input function: 8 rows

4-input function: 16 rows

 Q: Use truth table to define function F(a,b,c) that is 1 when abc is 5 or greater in binary

- 1	a		
а	b	С	F
0 0 0 0 1	0	0	0
0	0	1	
0	1	0	0 0 0 0 1
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

а	b	С	d	F
0	0	0	0	
0 0 0 0 0 0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	
		(c))	

Converting among Representations

- Can convert from any representation to any other
- Common conversions
 - Equation to circuit
 - Truth table to equation
 - Equation to truth table
 - Easy -- just evaluate equation for each input combination (row)
 - · Creating intermediate columns helps

In	outs	Outputs	Term		
а	b	F	F = sum of		
0	0	1	a'b'		
0	1	1	a'b		
1	0	0	11700		
1	1	0			

$$F = a'b' + a'b$$

Q: Convert to equation

а	b	С	F]
0	0	0	0	
		U		
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	ab'c
1	1	0	1	abc'
1	1	1	1	abc

$$F = ab'c + abc' + abc$$

Inputs				Output
а	b	a' b'	a' b	F
0	0	1	0	1
0	1	0	1	1
1	0	0	0	0
1	1	0	0	0

Standard Representation: Truth Table

- How to determine two functions are the same?
 - · Use algebraic methods
 - But if we failed, does that prove not equal? No.
- Solution: Convert to truth tables
 - Only ONE truth table representation of given same functions: Standard representation

F = 8	ab + a'	
а	b	F
0	0	1
0	1	1
1	0	0
1	1	1

same

F = a'b' +a'b + ab				
а	b	F		
0	0	1		
0	1	1		
1	0	0		
1	1	1		

Canonical Form -- Sum of Minterms

- Truth tables too big for numerous inputs
- Use standard form of equation instead Boolean algebra: create sum of minterms
- *Minterm*: product term with every function literal appearing exactly once, in true or complemented form
- Just multiply-out equation until sum of product terms
- Then expand each term until all terms are minterms

Determine if
$$F(a,b) = ab+a'$$
 is same function as $F(a,b) = a'b'+a'b+ab$ by to canonical form.

```
F = ab + a' (already sum of products)
F = ab + a'(b+b') (expanding term)
F = ab + a'b + a'b' (it is canonical form)
```


Canonical form or Standard Form

- Canonical forms
- -Sum of minterms (SOM)
- -Product of maxterms (POM)
- Standard forms (may use less gates)
- -Sum of products (SOP)
- -Product of sums (POS)

```
F = ab + a'(b+b') (expanding term)
```

F = ab + a'(b+b') (expanding term)

F = ab + a'b + a'b' (it is canonical form:SOM)

Canonical Forms

- It is useful to specify Boolean functions in a form that:
- Allows comparison for equality.
- Has a correspondence to the truth tables
- Canonical Forms in common usage:
- Sum of Minterms (SOM)
- Product of Maxterms (POM)

Minterms

- product term is a term where literals are ANDed.
- Example: x'y', xz, xyz, ...
- minterm : A product term in which all variables appear exactly once, in normal or complemented form
- Example: F(x,y,z) has 8 minterms x'y'z', x'y'z, x'yz', ...
- Function with n variables has 2ⁿ minterms
- A minterm equals 1 at exactly one input combination and is equal to 0 otherwise
- Example: x'y'z' = 1 only when x=0, y=0, z=0
- A minterm is denoted as mi where i corresponds the input combination at which this minterm is equal to 1

2 Variable Minterms

Two variables (X and Y) produce 2x2=4 combinations

XY (both normal)
XY' (X normal, Y complemented)
X'Y (X complemented, Y normal)
X'Y' (both complemented)

Maxterms

• Maxterms are OR terms with every variable in true or complemented form.

X+Y (both normal)

X+Y' (x normal, y complemented)

X'+Y (x complemented, y normal)

X'+Y' (both complemented)

Maxterms and Minterms

Two variable minterms and maxterms.

Index	Minterm	Maxterm
0	x' y'	x + y
1	x 'y	x + y'
2	x y'	x' + y
3	ху	x' + y'

The index above is important for describing which variables in the terms are true and which are complemented.

Minterms

Minterms for Three Variables

			Product									
X	Y	Z	Term	Symbol	mo	m ₁	m_2	m ₃	m ₄	m ₅	m ₆	m ₇
0	0	0	$\overline{X}\overline{Y}\overline{Z}$	m_0	1	0	0	0	0	0	0	0
0	0	1	$\overline{X}\overline{Y}Z$	m_1	0	1	0	0	0	0	0	0
0	1	0	$\overline{X}Y\overline{Z}$	m_2	0	0	1	0	0	0	0	0
0	1	1	$\overline{X}YZ$	m_3	0	0	0	1	0	0	0	0
1	0	0	$X\overline{Y}\overline{Z}$	m_4	0	0	0	0	1	0	0	0
1	0	1	$X\overline{Y}Z$	m ₅	0	0	0	0	0	1	0	0
1	1	0	$XY\overline{Z}$	m_6	0	0	0	0	0	0	1	0
1	1	1	XYZ	m ₇	0	0	0	0	0	0	0	1

Variable complemented if 0
Variable uncomplemented if 1

m_i indicated the ith minterm i indicates the binary combination m_i is equal to 1 for ONLY THAT combination

Maxterms

- Sum term: A term where literals are ORed.
- Example: x'+y', x+z, x+y+z, ...
- Maxterm: a sum term in which all variables appear exactly once, in normal or complemented form
- Example: F(x,y,z) has 8 maxterms (x+y+z), (x+y+z'), (x+y'+z), ...
- Function with n variables has 2^n maxterms
- A maxterm equals 0 at exactly one input combination and is equal to 1 otherwize
- Example: (x+y+z) = 0 only when x=0, y=0, z=0
- A maxterm is denoted as Mi where i corresponds the input combination at which this maxterm is equal to 0

Maxterms for Three Variables

X	Y	Z	Sum Term	Symbol	Mo	M ₁	M ₂	M ₃	M ₄	M ₅	M ₆	M ₇
0	0	0	X+Y+Z	M_0	0	1	1	1	1	1	1	1
0	0	1	$X+Y+\overline{Z}$	M_1	1	0	1	1	1	1	1	1
0	1	0	$X + \overline{Y} + Z$	M_2	1	1	0	1	1	1	1	1
0	1	1	$X + \overline{Y} + \overline{Z}$	M_3	1	1	1	0	1	1	1	1
1	0	0	$\overline{X} + Y + Z$	M_4	1	1	1	1	0	1	1	1
1	0	1	$\overline{X} + Y + \overline{Z}$	M_5	1	1	1	1	1	0	1	1
1	1	0	$\overline{X} + \overline{Y} + Z$	M_6	1	1	1	1	1	1	0	1
1	1	1	$\overline{X} + \overline{Y} + \overline{Z}$	M_7	1	1	1	1	1	1	1	0

Variable complemented if 1
Variable not complemented if 0

M_i indicated the ith maxterm i indicates the binary combination M_i is equal to 0 for ONLY THAT combination

Expressing Functions with Minterms

- Boolean function can be expressed algebraically from a give truth table
- Forming sum of ALL the minterms that produce 1 in the function

Example: Consider the function truth table defined by the

$$F(X,Y,Z) = X'Y'Z' + X'YZ' + XY'Z + XYZ =$$

 $\Sigma (0 2 5 7) = m0 + m2 + m5 + m7 =$

X	Υ	Z	m	F
0	0	0	m _o	1
0	0	1	m_1	0
0	1	0	m ₂	1
0	1	1	m ₃	0
1	0	0	m ₄	0
1	0	1	m ₅	1
1	1	0	m_6	0
1	1	1	m ₇	1

Expressing Functions with Maxterms

- Boolean function: Expressed algebraically from a give truth table
- By forming logical product (AND) of ALL the maxterms that produce 0 in the function

Example:

Consider the function defined by the truth table

$$F(X,Y,Z) = \Pi M(1,3,4,6)$$

Applying DeMorgan

F' =
$$m_1 + m_3 + m_4 + m_6 = \Sigma m(1 \ 3 \ 4 \ 6)$$

F = F'' = $[m_1 + m_3 + m_4 + m_6]$ '
= m1'.m3'.m4'.m6'
Note the indices in this list are those that
= $M_1 \cdot M_3 \cdot M_4 \cdot M_6 = \Pi M(1,3,4,6)$

Note the indices in this list are those that are missing from the previous list in $\Sigma m(0,2,5,7)$

X	Υ	Z	М	F	F'
0	0	0	M _o	1	0
0	0	1	M ₁	0	1
0	1	0	M ₂	1	0
0	1	1	M ₃	0	1
1	0	0	M ₄	0	1
1	0	1	M ₅	1	0
1	1	0	M ₆	0	1
1	1	1	M ₇	1	0

Sum of Minterms vs Product of Maxterms

- A function can be expressed algebraically as:
 The sum of minterms
 The product of maxterms
- Given the truth table, writing F as Σmi for all minterms that produce 1 in the table, or ΠMi for all maxterms that produce 0 in the table
- Minterms and Maxterms are complement of each other.

Example: minterm & maxterm

- Write E = Y' + X'Z' in the form of Σ mi and Π Mi?
- Method1 construct the Truth Table as shown

E=
$$\Sigma$$
m(0,1,2,4,5), and E = ΠM(3,6,7)

X	Υ	Z	m	М	E
0	0	0	m_0	M_{o}	1
0	0	1	m_1	M_1	1
0	1	0	m_2	M_2	1
0	1	1	m_3	M_3	0
1	0	0	m ₄	M_4	1
1	0	1	m_5	M_5	1
1	1	0	m_6	M_6	0
1	1	1	m ₇	M_7	0

Example (Cont.)

Solution: Method2 a

$$E = Y' + X'Z'$$

$$= Y'(X+X')(Z+Z') + X'Z'(Y+Y') E' = Y(X+Z)$$

$$= (XY'+X'Y')(Z+Z') + X'YZ'+$$

$$= Y'Z+X'Y'Z+XY'Z'+X'Y'Z'+$$

$$= m_5 + m_1 + m_4 + m_0 + m_2 + m_0$$

$$= \mathbf{m}_0 + \mathbf{m}_1 + \mathbf{m}_2 + \mathbf{m}_4 + \mathbf{m}_5$$

$$=\sum m(0,1,2,4,5)$$

To find the form Π Mi, consider the remaining indices

$$E = \Pi M(3,6,7)$$

Solution: Method2 b

$$E = Y' + X'Z'$$

$$E' = Y(X+Z)$$

$$= YX + YZ$$

$$= YX(Z+Z') + YZ(X+X')$$

$$= XYZ+XYZ'+X'YZ$$

$$E =$$

$$(X'+Y'+Z')(X'+Y'+Z)(X+Y'+Z')$$

$$= M_7 . M_6 . M_3$$

$$=\Pi M(3,6,7)$$

To find the form Sm_i, consider the remaining indices

$$E = \sum m(0,1,2,4,5)$$

Canonical Forms

• The sum of minterms and the product of maxterms forms are known as the canonical forms of a function.

Standard Forms

- Sum of Products (SOP) and Product of Sums (POS) are also standard forms
- $\bullet AB+CD = (A+C)(B+C)(A+D)(B+D)$
- The sum of minterms is a special case of the SOP form, where all product terms are minterms
- The product of maxterms is a special case of the POS form, where all sum terms are maxterms

SOP and POS Conversion

$$SOP \rightarrow POS$$

$$F = (A'+B)(A'+C)(C+D)$$

= $(A'+BC)(C+D)$

$$= A'C+A'D+BCC+BCD$$

$$= A'C+A'D+BC+BCD$$

$$= A'C + A'D + BC$$

Example: Three input Majority Function

- True Table
- Minterms
- Maxterms
- Canonical : Sum of Minterms (SOM)
- Standard: Sum of Producs (SOP)
- Canonical: Product of Maxterms (POM)
- Standard: Product of sum (POS)
- Design with Only NAND Gate
- Design with Only NOR Gate

• Example:

- * Majority function
 - » Output is one whenever majority of inputs is 1
 - » We use 3-input majority function

Logic Functions

3-input majority function

· Logical expression form

$$F = A B + B C + A C$$

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1
			L

Minterms

	325 CM 537		• (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 ((2)(20)
•	3-input	mar	1011	tv tui	nction
		200	100 00 100		

A	В	C	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

- SOM logical expression
- · Four product terms
 - * Because there are 4 rows with a 1 output

$$F = \overline{A} B C + A \overline{B} C + A B C + A B C$$

Sigma notation

$$\Sigma(3, 5, 6, 7)$$

	- 190	and the second of the second decrease and	Constant and the Constant
•	3-100111	majority	function
	Jinput	majority	Idiletton

0
U
0
0
1
0
1
1
1

• POM logical expression

- Four sum terms
 - Because there are 4 rows with a 0 output

$$F = (A + B + C) (A + B + \overline{C})$$
$$(A + \overline{B} + C) (\overline{A} + B + C)$$

· Pi notation

$$\Pi(0, 1, 2, 4)$$

$$Y = m_3 + m_5 + m_6 + m_7 =$$

$$Y = \overline{A}BC + A\overline{B}C + AB\overline{C} + ABC$$

	Α	В	C	Y
m _o	0	0	0	0
m ₁	0	0	1	0
m ₂	0	1	0	0
m ₃	0	1	1	1
m ₄	1	0	О	0
m ₅	1	0	1	1
m ₆	1	1	O	1
m ₇	1	1	1	1

(Some Of Minterms) SOM $4AND_3$, $10R_4$, 3NOT

$$Y = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$Y = C(A \oplus B) + AB(C + C')$$

$$Y = C(A \oplus B) + AB$$

$$Y = BC + AC + AB$$
 SOP(min)

3AND₂ 1OR₃

$$M_0 = \overline{M}_0 = \overline{A}\overline{B}\overline{C} = A + B + C$$

$$M 4 = \overline{ABC} = \overline{m4}$$

$$Y = M_0 . M_1 . M_2 . M_4$$

$$Y = (A + B + C)(A + B + \overline{C})(A + \overline{B} + C)(\overline{A} + B + C)$$

4OR₃, 1AND₄, 3NOT

$$Y = [A + B + (C\overline{C})] [A + C + (B\overline{B})] [B + C + (A\overline{A})]$$

$$Y = (A + B) (A + C) (B + C)$$
 (POS) min

$$Y = [A + (BC)][B + C]$$

$$Y = AB + AC + BC$$
 (SOP)_{min}

$$A + \overline{A}B = (\underline{A + \overline{A}})(A + B) = A + B$$

3-input even-parity function

• SOM implementation

A	В	C	F	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0	0	0	0	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	1	
1	0	1	0	F
1	1	0	0	
1	1	1	1	
1 1	1 1		0 1	

3-input even-parity function

 POM impl 	ementation
1 Olvi imp	cincination

A	B	C	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- Various ways to build higher-input gates
 - * Series
 - * Series-parallel
- Propagation delay depends on the implementation
- * Series implementation
 - » 3-gate delay
- * Series-parallel implementation» 2-gate delay

- Using NAND gates
 - * Get an equivalent expression

$$AB + CD = \overline{AB + CD}$$

* Using de Morgan's law

$$AB + CD = \overline{AB} \cdot \overline{CD}$$

- * Can be generalized
 - » Majority function

$$AB + BC + AC = \overline{AB} \cdot \overline{BC} \cdot \overline{AC}$$

Implementation Using Other Gates

Bubble Notation

THANK YOU