INT104 ARTIFICIAL INTELLIGENCE

➤ Discover and Visualize the Data

▶ Data Collection

CONTENT

➤ Data Preprocessing

Data Cleaning

LECTURE 2- DATA PRE-PROCESSING

Sichen Liu

Sichen.Liu@xjtlu.edu.cn

Data Transformation

▶ Data Reduction

Data Type

- Example: tables 🚠 Structured
- Highly organizedUsually with a label

State of residence	Michigan	Florida	Georgia	New Mexico	
age	49	40	22	22	
vehicles	2	8	8	0	
	Married	Married	Never Married	Never Married	
income	11300	0	4500	20000	
employed	N A	False	TRUE	TRUE	
	ш	ш	Σ	Σ	
Cust.ld	2068	2073	2848	5641	

Example: free text Unstructured "It was found that a female with a height between 65 inches and 67 inch had an IQ of 125–130"

Data Collection

Data Storage and Presentation

CSV (Comma Separated Values)

TSV (Tab Separated Values)

Name-TAB-Age-TAB-Address
Ryan-TAB-3-3 TAB-1115 W Franklin
Paul-TAB-25-TAB-91g Farm Way
Jim-TAB-45-TAB-9 Wain St
Samantha-47AB-32-TAB-28 George St

Data Storage and Presentation

XML (Extensible Markup Language)

JSON (JavaScript Object Notation)

nme" : "Super Hero Squad",
n" : "Metro City",
1 : 2016,
2016, "Super tower",

Data Visualization

- Data Visualization in Python
 - Matplotlib
- Seaborn
- Pandas.plot
- .
- Common Format
 - Line Charts
- Bar GraphsHistograms
- Scatter Plots
 - Heat Maps

Data Pre-processing

Goal: to improve the quality of data, reduce errors and inconsistencies, and prepare the data for further analysis or modeling.

(A)

Data Pre-processing

- Feature: an individual measurable property or characteristic of a phenomenon.
- Instance: a sample or data point, refers to a single observation or example in the dataset
- Target variable
- Dataset: A dataset is a collection of instances, features, and target variables that are used to train and test machine learning models.

(A)

Data Pre-processing

Data Cleaning

Data Munging

Example: "Add two diced tomatoes, three cloves of garlic, and a pinch of salt in the mix."

	Unit/size	Diced Cloves Pinch
Table 2.2 Wrangled data for a recipe.	Quantity	2 6 1
Table 2.2	Ingredient	Tomato Garlic Salt

Data Cleaning

- Handling Missing Data
- Get rid of the corresponding instance.
 - Get rid of the whole column.
- Set the values to some value (zero, the mean, the median, etc.).
- Smooth Noisy Data
- Identify or remove the outliners
 - Try to resolve the inconsistent

(there is no one way to remove noise, or smooth out the noisiness in the data)

.0(1)

,@(A

Practice: Data Cleaning

																					0	D
Free	healthcare	٨	>	z	*	>	z	z	>	>	*	>	z	z	*	z	>	Z	Z	*	Z	٨
Liver	(Per 100k)	15.3000019	45.59999847	20.70000076	16.39999962	23.89999962	19	37.90000153	11.19999981	6.5	13.69999981	42.2000076	23.20000076	9.199999809	7.699999809	12.19999981	NA	11.19999981	20.29999924	10.3000019	22.10000038	36.70000076
Heart	(Per 100k)	211	167	131	Ν	220	297	11	211	300	183	107	36	167	366	227	A	207	115	285	199	172
Deaths	(Per 100k)	785	863	883	793	971	970	751	743	1000	-834	775	089	773	916	908	724	743	693	941	926	861
Alcohol	(L/person)	2.5	3.000000095	2.900000095	2.400000095	2.900000095	0.800000012	9.100000381	-0.800000012	0.699999988	0.600000024	27.900000095	1.5	1.799999952	1.899999976	0.0800000012	6.5	1.600000024	5.800000191	1.299999952	1.200000048	2.700000048
Country		Australia	Austria	Belg/Lux	Canada	Denmark	Finland	France	Iceland	Ireland	Israel	Italy	Japan	Netherlands	New Zealand	Norway	Spain	Sweden	Switzerland	ž	Sn	West Germany
#		1	2	m	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	21

Data Integration

How to integrate multiple databases or files:

Combine

Combine data from multiple sources into a coherent storage place (e.g., a single file or a database).

Different representations or different scales; for example, metric vs. British units.

Remove redundant

- The same attribute may have different names in different databases.
 One attribute may be a "derived" attribute in another table; for example, annual revenue.
 - Correlation analysis may detect instances of redundant data

Data Transformation

Data must be transformed so it is consistent and readable (by a system)

- Handling Text and Categorical Attributes
- essing import OrdinalEncoder i.e, ["cat1"], ["cat2"], ["cat3"], ["cat4"]
 Ordinal encoder: from sktearn.preprocess! $\overline{\mathbb{S}}$ [2] É
- import OneHotEncoder One-hot encoder: from sklearn.preprocessing [1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]

Data Transformation

- Normalization
- Min-max normalization.

$$x_{scaled} = rac{x - x_{min}}{x_{max} - x_{min}}$$

- Z-score normalization.
- Normalizing every value in a dataset such that the mean of all of the values is 0 and the standard deviation is 1

$$x_{scaled} = rac{x-mean}{sd}$$

Normalization by decimal scaling.

$$x_{scaled} = \frac{x}{10^j}$$

Practice: Data Transformation

																					•	D
Free	healthcare	*	*	z	*	>	z	z	٨	>	>	*	z	Z	*	z	*	Z	Z	*	z	*
Liver	(Per 100k)	15.3000019	45.59999847	20.70000076	16.3999962	23.89999962	19	37.90000153	11.19999981	6.5	13.69999981	42.2000076	23.20000076	9.199999809	7.699999809	12.19999981	NA	11.19999981	20.2999924	10.3000019	22.10000038	36.70000076
Heart	(Per 100k)	211	167	131	NA	220	297	111	211	300	183	107	36	167	266	227	NA	207	115	285	199	172
Deaths	(Per 100k)	785	863	883	793	971	970	751	743	1000	-834	775	089	773	916	806	724	743	693	941	976	861
Alcohol	(L/person)	2.5	3.000000005	2.900000095	2.400000095	2.900000095	0.800000012	9.100000381	-0.800000012	0.69999988	0.600000024	27.900000095	1.5	1.799999952	1.899999976	0.0800000012	6.5	1.600000024	5.800000191	1.299999952	1.200000048	2.70000048
Country		Australia	Austria	Belg/Lux	Canada	Denmark	Finland	France	Iceland	Ireland	Israel	Italy	Japan	Netherlands	New Zealand	Norway	Spain	Sweden	Switzerland	ž	Sn	West Germany
#		1	2	e	4	2	9	7	00	6	10	11	12	13	14	15	16	17	18	19	20	21

Data Reduction

Data reduction is a key process in which a reduced representation of a dataset that produces the same or similar analytical results is obtained.

	A1 A2 A3	A3	1	A200			A1	A1 A2	A3	- 1	A
ш						F					
					1	T2					
						Т3					
						:					
						T150					
	Г										

120

Feature Selection

- Filter methods features are selected and ranked according to their relationships with the target;
- Wrapper methods it's a search for well-performing combinations of features
- Embedded methods perform feature selection as part of the model training process.

						(1)	19
ocean_pr oximity	452600NEAR BY	358500NEAR BY	352100NEAR BY	341300NEAR BY	342200NEAR BY	269700NEAR BY	299200NEAR BY
househ median_i median_h olds ncome e							
median_i ncome	8.3252	8.3014	7.2574	5.6431	3.8462	4.0368	3.6591
househ r	126	1138	177	219	259	193	514
opulation	322	2401	496	558	565	413	1094
total_bed rooms	129	1106	190	235	280	213	489
total_roo t ms	880	7099	1467	1274	1627	919	2535
housing_total_roo total_bed median_amsrooms ge	41	21	52	52	52	52	52
	37.88	37.86	37.85	37.85	37.85	37.85	37.84
longitude latitude	-122.23	-122.22	-122.24	-122.25	-122.25	-122.25	-122.25

Looking for Correlations

Correlation is a statistical analysis that is used to measure and describe the strength and direction of the relationship between two variables.

Pearson's r correlation:

Feature Extraction

- Technique in which new features are extracted from the existing ones.

 Identifying and selecting the most relevant and informative features from dataset
 - Transforming them into a lower-dimensional space while preserving the most important information.

PCA

(N)

Examples

Bag of words:

CNN:

.0(1)