### Algorithmique des graphes

3 — Graphes pondérés

Anthony Labarre

10 février 2021



#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.

 $\Rightarrow$ : tout cycle partant de v y revient par des aller-retours:



 $\dots$  et donc tout cycle de G est pair.

#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.

 $\Leftarrow$  :  $\equiv$  "si G n'est pas biparti, alors il contient un cycle impair".

1 2 3 k

 $V \circ$ 

#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.



#### Théorème 1

Graphes pondérés

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.



#### Théorème 1

Graphes pondérés

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.





#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.



Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.

Théorème 1





#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.



#### Théorème 1

Un graphe est biparti si et seulement s'il ne contient pas de cycle de longueur impaire.

#### Démonstration.

 $\Leftarrow$  :  $\equiv$  "si G n'est pas biparti, alors il contient un cycle impair".



 $S_1 + \{x_1, x_2\} + S_2$  est un cycle de longueur impaire.



#### Définition 2

Un graphe pondéré est un graphe G = (V, E, w), où  $w: E \to \mathbb{R}: \{u, v\} \mapsto w(\{u, v\})$  est une fonction affectant à chaque arête un poids réel.

#### Définition 2

Un **graphe pondéré** est un graphe G = (V, E, w), où  $w : E \to \mathbb{R} : \{u, v\} \mapsto w(\{u, v\})$  est une fonction affectant à chaque arête un poids réel.

L'algorithme de Prim

#### Définition 3

Le **poids** d'un (sous-)graphe G = (V, E, w) est la quantité  $w(G) = \sum_{e \in E} w(e)$ .

#### Définition 2

Un graphe pondéré est un graphe G = (V, E, w), où  $w: E \to \mathbb{R}: \{u, v\} \mapsto w(\{u, v\})$  est une fonction affectant à chaque arête un poids réel.

L'algorithme de Prim

#### Définition 3

Le **poids** d'un (sous-)graphe G = (V, E, w) est la quantité  $w(G) = \sum_{e \in F} w(e)$ .

Tous les graphes pondérés vus aujourd'hui seront connexes pour simplifier la discussion, mais nos algorithmes sont facilement adaptables aux graphes non connexes.

### Implémentation des graphes pondérés

- On peut facilement modifier ce qu'on a déjà vu pour implémenter les graphes pondérés :
  - matrice d'adjacence : poids au lieu de booléens;
  - listes d'adjacence : couples (voisin, poids) au lieu de voisins ;

### Exemple 1



### Implémentation des graphes pondérés

- On suppose l'existence d'une classe GraphePondéré très similaire à la classe Graphe, avec quelques modifications:
  - ajouter\_arête(u, v, poids);
  - ajouter\_arêtes(séquence);
  - arêtes();
  - boucles();
  - sous\_graphe\_induit(séquence);

### Implémentation des graphes pondérés

- On suppose l'existence d'une classe GraphePondéré très similaire à la classe Graphe, avec quelques modifications :
  - ajouter\_arête(u, v, poids);
  - ajouter\_arêtes(séquence);
  - arêtes();
  - boucles();
  - sous\_graphe\_induit(séquence);
- ... et quelques ajouts :
  - arêtes\_incidentes(sommet);
  - poids\_arête(u, v);

### Motivations

On veut que chaque paire de maisons soit mutellement accessible. Comment relier les maisons à moindre coût?













#### **Motivations**

On veut que chaque paire de maisons soit mutellement accessible. Comment relier les maisons à moindre coût?



• On pourrait ajouter tous les liens possibles . . . mais c'est cher;

#### **Motivations**

On veut que chaque paire de maisons soit mutellement accessible. Comment relier les maisons à moindre coût?



- On pourrait ajouter tous les liens possibles . . . mais c'est cher;
- Ou ne garder qu'un sous-graphe connexe de poids minimum;

### Arbres couvrants de poids minimum

#### Définition 4

Un sous-graphe **couvrant** d'un graphe connexe donné G = (V, E) est un graphe connexe de la forme H = (V, F) où  $F \subseteq E$ .

### Arbres couvrants de poids minimum

#### Définition 4

Graphes pondérés

Un sous-graphe **couvrant** d'un graphe connexe donné G = (V, E) est un graphe connexe de la forme H = (V, F) où  $F \subseteq E$ .

 Les arbres (ou forêts) de parcours de la fois passée étaient couvrants;

L'algorithme de Kruskal

#### Définition 4

Graphes pondérés

Un sous-graphe **couvrant** d'un graphe connexe donné G = (V, E)est un graphe connexe de la forme H = (V, F) où  $F \subseteq E$ .

- Les arbres (ou forêts) de parcours de la fois passée étaient couvrants:
- Maintenant qu'on a des poids à prendre en compte, on va chercher des arbres couvrants avec un autre objectif :

### Arbres couvrants de poids minimum

#### Définition 4

Un sous-graphe **couvrant** d'un graphe connexe donné G = (V, E)est un graphe connexe de la forme H = (V, F) où  $F \subseteq E$ .

- Les arbres (ou forêts) de parcours de la fois passée étaient couvrants:
- Maintenant qu'on a des poids à prendre en compte, on va chercher des arbres couvrants avec un autre objectif :

#### Définition 5

Un arbre couvrant de poids minimum (ou ACPM) pour un graphe pondéré G est un arbre couvrant T pour G tel que pour tout arbre couvrant T' pour G, on a  $w(T) \leq w(T')$ .

Graphes pondérés

• Les deux algorithmes que nous verrons rajoutent progressivement des arêtes à un sous-graphe  ${\cal T}$  de  ${\cal G}$ ;

### oritimies de calcar à Mer iv

- Les deux algorithmes que nous verrons rajoutent progressivement des arêtes à un sous-graphe T de G;
- On fera la distinction entre les catégories suivantes d'arêtes ; une arête e de G est :

- Les deux algorithmes que nous verrons rajoutent progressivement des arêtes à un sous-graphe T de G;
- On fera la distinction entre les catégories suivantes d'arêtes; une arête e de G est :
  - candidate si elle a au moins une extrémité dans T;

- Les deux algorithmes que nous verrons rajoutent progressivement des arêtes à un sous-graphe T de G:
- On fera la distinction entre les catégories suivantes d'arêtes; une arête e de G est :
  - candidate si elle a au moins une extrémité dans T :
  - valide si e est candidate et T ∪ e est acyclique;

- Les deux algorithmes que nous verrons rajoutent progressivement des arêtes à un sous-graphe T de G;
- On fera la distinction entre les catégories suivantes d'arêtes; une arête e de G est :
  - candidate si elle a au moins une extrémité dans T;
  - **valide** si e est candidate et  $T \cup e$  est acyclique;
  - sûre si elle est valide et de poids minimum parmi toutes les arêtes valides:

- Les deux algorithmes que nous verrons rajoutent progressivement des arêtes à un sous-graphe T de G;
- On fera la distinction entre les catégories suivantes d'arêtes; une arête e de G est :
  - candidate si elle a au moins une extrémité dans T :
  - valide si e est candidate et T ∪ e est acyclique;
  - sûre si elle est valide et de poids minimum parmi toutes les arêtes valides:
- Les deux algorithmes sont simples, mais nécessiteront des structures de données efficaces :

ullet L'algorithme de Prim construit un ACPM  ${\mathcal T}$  de la manière suivante:

L'algorithme de Prim

•00000000000

- L'algorithme de Prim construit un ACPM T de la manière suivante:
  - $\bullet$  on part d'un sommet arbitraire, qu'on ajoute à un ensemble Sde sommets explorés;

- L'algorithme de Prim construit un ACPM T de la manière suivante:
  - $\bullet$  on part d'un sommet arbitraire, qu'on ajoute à un ensemble Sde sommets explorés;
  - 2 à chaque étape, on rajoute à T une arête e sûre; c'est-à-dire que:

- L'algorithme de Prim construit un ACPM T de la manière suivante:
  - $\bullet$  on part d'un sommet arbitraire, qu'on ajoute à un ensemble Sde sommets explorés;
  - 2 à chaque étape, on rajoute à T une arête e sûre; c'est-à-dire que:
    - 1 e possède une extrémité dans T;

- L'algorithme de Prim construit un ACPM T de la manière suivante :
  - on part d'un sommet arbitraire, qu'on ajoute à un ensemble S de sommets explorés;
  - 2 à chaque étape, on rajoute à T une arête e sûre; c'est-à-dire que :
    - $oldsymbol{0}$  e possède une extrémité dans T;
    - e est de poids minimum;

- L'algorithme de Prim construit un ACPM T de la manière suivante :
  - $\bullet$  on part d'un sommet arbitraire, qu'on ajoute à un ensemble Sde sommets explorés;
  - 2 à chaque étape, on rajoute à T une arête e sûre; c'est-à-dire que :
    - 1 e possède une extrémité dans T;
    - 2 e est de poids minimum;
    - 3 e ne crée pas de cycle dans T;

### L'algorithme de Prim

- L'algorithme de Prim construit un ACPM T de la manière suivante :
  - 1 on part d'un sommet arbitraire, qu'on ajoute à un ensemble *S* de sommets explorés;
  - 2 à chaque étape, on rajoute à T une arête e sûre; c'est-à-dire que :
    - $\mathbf{0}$  e possède une extrémité dans T;
    - e est de poids minimum;
    - $oldsymbol{3}$  e ne crée pas de cycle dans T;
- On résoud les ambigüités arbitrairement;

### Exemple 2 (départ = 1)

Graphes pondérés



L'algorithme de Prim

### Exemple 2 (départ = 1)



L'algorithme de Prim

### Exemple 2 (départ = 1)



### Exemple 2 (départ = 1)



### Exemple 2 (départ = 1)



L'algorithme de Prim

### Exemple 2 (départ = 1)



L'algorithme de Prim

# Exemple 2 (départ = 1)

L'algorithme de Prim

### Exemple 2 (départ = 1)



L'algorithme de Prim

Graphes pondérés



L'algorithme de Prim

### Exemple 2 (départ = 1)



L'algorithme de Prim

### Exemple 2 (départ = 1)



L'algorithme de Prim

Exemple 2 (départ = 1)

Graphes pondérés



L'algorithme de Prim

Graphes pondérés

## Déroulement de l'algorithme de Prim



L'algorithme de Prim

### Exemple 2 (départ = 1)



Graphes pondérés

• Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à l'arbre T?

### Prim : validité des arêtes

- Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à l'arbre T?
- $\{u, v\}$  est valide si et seulement si  $T \cup e$  est acyclique;

### Prim : validité des arêtes

Graphes pondérés

- Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à l'arbre T?
- $\{u, v\}$  est valide si et seulement si  $T \cup e$  est acyclique;
- $\Leftrightarrow u \in V(T)$  ou  $v \in V(T)$  mais pas les deux;

### Prim : validité des arêtes

Graphes pondérés

- Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à l'arbre T?
- $\{u, v\}$  est valide si et seulement si  $T \cup e$  est acyclique;
- $\Leftrightarrow u \in V(T)$  ou  $v \in V(T)$  mais pas les deux;
- Il suffit donc de marquer les sommets de T (ou hors de T);

Graphes pondérés

• Comment sélectionner une arête valide de poids minimum?

- Comment sélectionner une arête valide de poids minimum?
- Idée : trier les arêtes par poids croissant ;

- Comment sélectionner une arête valide de poids minimum?
- Idée : trier les arêtes par poids croissant ;
- ullet Oui, mais la validité des arêtes change à mesure que  ${\mathcal T}$  évolue;

- Comment sélectionner une arête valide de poids minimum?
- Idée : trier les arêtes par poids croissant;
- Oui, mais la validité des arêtes change à mesure que T évolue;
- Le tri ne nous empêcherait pas de devoir parcourir la structure à chaque itération  $\Rightarrow O(|E|)$  pour la sélection;

- Comment sélectionner une arête valide de poids minimum?
- Idée : trier les arêtes par poids croissant;
- Oui, mais la validité des arêtes change à mesure que T évolue;
- Le tri ne nous empêcherait pas de devoir parcourir la structure à chaque itération  $\Rightarrow O(|E|)$  pour la sélection;

Solution plus efficace : utiliser un tas d'arêtes valides;

Un tas (ou heap) est un arbre binaire enraciné dont tout sommet s ayant pour fils gauche g et pour fils droit d vérifie :

s.valeur = min(s.valeur, g.valeur, d.valeur).

### Tas

Graphes pondérés

Un **tas** (ou *heap*) est un arbre binaire enraciné dont tout sommet s ayant pour fils gauche g et pour fils droit d vérifie :

s.valeur = min(s.valeur, g.valeur, d.valeur).

### Exemple 3



### La classe Tas

 On supposera qu'une classe Tas est disponible avec les méthodes suivantes : Graphes pondérés

- On supposera qu'une classe Tas est disponible avec les méthodes suivantes :
  - un constructeur Tas(S), qui organise les données de S sous la forme d'un tas en O(|S|);

L'algorithme de Prim

00000 0000000

- On supposera qu'une classe Tas est disponible avec les méthodes suivantes :
  - un constructeur Tas(S), qui organise les données de S sous la forme d'un tas en O(|S|);
  - une méthode insérer(élément), qui ajoute un élément au tas T en  $O(\log |T|)$  et garantit que le résultat après insertion est toujours un tas;

### La classe Tas

- On supposera qu'une classe Tas est disponible avec les méthodes suivantes :
  - un constructeur Tas(S), qui organise les données de S sous la forme d'un tas en O(|S|);
  - une méthode insérer(élément), qui ajoute un élément au tas T en  $O(\log |T|)$  et garantit que le résultat après insertion est toujours un tas;
  - une méthode extraire\_minimum(), qui extrait et renvoie le minimum du tas T en  $O(\log |T|)$  et garantit que le résultat après extraction est toujours un tas.

Graphes pondérés





### Les coulisses

 $\begin{array}{c} 0\ 1\ 2\ 3\ 4\ 5\ 6 \\ \text{hors\_arbre}: \boxed{\checkmark\ |\ \sqrt{\ |\ \sqrt{\ |\ \sqrt{\ |\ \sqrt{\ |\ \sqrt{\ |\ \sqrt{\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |\ |}}} \end{array}$ 

tas:

Graphes pondérés

# Exemple 4 (départ = 1)

### Les coulisses

tas:



# Les coulisses



Graphes pondérés



### Les coulisses

hors\_arbre : ✓ tas:

 $({0, 1}, 5)$ 



### Les coulisses



Les coulisses

 $({0, 1}, 5)$ 

Graphes pondérés

# Exemple 4 (départ = 1) 12 4 3 2 5 7 3 4 5 7 7 9 7 0

# 

 $({4, 6}, 7)$ 



#### Les coulisses

L'algorithme de Prim

000000000000









#### Les coulisses

L'algorithme de Prim

000000000000





















#### Les coulisses

L'algorithme de Prim

000000000000



# Stockage des arêtes

Lorsqu'on découvre un nouveau sommet, on enregistre les nouvelles arêtes valides;

## Algorithme 1 : STOCKERARETES VALIDES (G, u, S, hors\_arbre)

**Entrées** : un graphe pondéré non orienté G, un sommet u de G, un tas d'arêtes S et un tableau booléen hors arbre.

**Résultat** : les arêtes valides incidentes à u sont ajoutées à S.

- 1 pour chaque  $v \in G.voisins(u)$  faire
- si hors\_arbre[v] alors  $S.insérer((u, v, G.poids_arête(u, v)))$ ;

#### Extraction des arêtes

Attention : les arêtes sont valides quand on les insère, mais pas nécessairement quand on les extrait!

#### Algorithme 2 : EXTRAIREARETESURE(S, hors\_arbre)

**Entrées :** un tas *S* d'arêtes et un tableau booléen hors\_arbre.

**Résultat**: une arête sûre (ou factice s'il n'y en a pas) est extraite de S et renvoyée : les arêtes invalides éventuellement rencontrées sont éliminées.

- 1 tant que S.pas\_vide() faire
- $(u, v, p) \leftarrow S.\text{extraire\_minimum()}$ :
- si  $hors\_arbre[u] \neq hors\_arbre[v]$  alors renvoyer (u, v, p);
- 4 renvoyer (NIL, NIL,  $+\infty$ );

## Algorithme 3 : PRIM(G, départ)

```
Entrées : un graphe pondéré non orienté G, un sommet de départ.
   Sortie : un ACPM pour la composante connexe de G contenant départ.
1 arbre ← GraphePondéré();
2 arbre.ajouter_sommet(départ);
3 hors_arbre \leftarrow tableau(G.nombre_sommets(), VRAI);
4 hors_arbre[départ] ← FAUX;
5 \text{ candidates} \leftarrow \mathsf{Tas}();
6 STOCKERARETES VALIDES (G, départ, candidates, hors_arbre);
   tant que VRAI faire
       (u, v, p) \leftarrow \text{EXTRAIREARETESURE}(\text{candidates, hors\_arbre});
       si u = NIL alors renvoyer arbre ;
 9
       si \neg hors\_arbre[u] alors échanger u et v;
10
       arbre.ajouter_arête(u, v, p);
11
       hors\_arbre[u] \leftarrow FAUX;
12
       STOCKERARETES VALIDES (G, u, candidates, hors_arbre);
13
14 renvoyer arbre;
```

• Supposons que G est implémenté à l'aide de listes d'adjacence  $(\Rightarrow G.voisins(v) \text{ est en } O(\deg(v));$ 

L'algorithme de Prim

000000000000

- Supposons que G est implémenté à l'aide de listes d'adjacence  $(\Rightarrow G.voisins(v))$  est en  $O(\deg(v))$ ;
- On passe O(|V|) fois dans la boucle principale;

- Supposons que G est implémenté à l'aide de listes d'adjacence  $(\Rightarrow G.voisins(v) est en O(deg(v));$
- On passe O(|V|) fois dans la boucle principale;
- Le tas contient au pire |E| arêtes;

- Supposons que G est implémenté à l'aide de listes d'adjacence  $(\Rightarrow G.voisins(v) est en O(deg(v));$
- On passe O(|V|) fois dans la boucle principale;
- Le tas contient au pire |E| arêtes;
- Les insertions et extractions se font en temps  $O(\log |E|)$ ;

- Supposons que G est implémenté à l'aide de listes d'adjacence (⇒ G.voisins(v) est en O(deg(v));
- On passe O(|V|) fois dans la boucle principale;
- Le tas contient au pire |E| arêtes;
- Les insertions et extractions se font en temps  $O(\log |E|)$ ;

$$\Rightarrow O((|V|+|E|)\log|E|) = O(|E|\log|V|);$$

- Supposons que G est implémenté à l'aide de listes d'adjacence (⇒ G.voisins(v) est en O(deg(v));
- On passe O(|V|) fois dans la boucle principale;
- Le tas contient au pire |E| arêtes;
- Les insertions et extractions se font en temps  $O(\log |E|)$ ;

$$\Rightarrow O((|V|+|E|)\log|E|) = O(|E|\log|V|);$$

• Il est possible d'obtenir du  $O(|E| + |V| \log |V|)$  avec des *tas* de Fibonacci [1];

# Forêts couvrantes de poids minimum

Graphes pondérés

• Attention : l'algorithme de Prim n'explore que la composante connexe contenant le sommet de départ;

# Forêts couvrantes de poids minimum

- Attention : l'algorithme de Prim n'explore que la composante connexe contenant le sommet de départ;
- Si on veut une forêt couvrante de poids minimum (FCPM), on fait comme pour l'identification des composantes connexes;

• L'algorithme de Kruskal construit une FCPM F de la manière suivante:

L'algorithme de Prim

# L'algorithme de Kruskal

- L'algorithme de Kruskal construit une FCPM F de la manière suivante:
  - 1 tous les sommets du graphe font partie de F;

• L'algorithme de Kruskal construit une FCPM F de la manière suivante :

L'algorithme de Prim

- 1 tous les sommets du graphe font partie de F;
- ② à chaque étape, on rajoute à F une arête e satisfaisant les conditions suivantes:

- L'algorithme de Kruskal construit une FCPM F de la manière suivante :
  - 1 tous les sommets du graphe font partie de F;
  - 2 à chaque étape, on rajoute à *F* une arête *e* satisfaisant les conditions suivantes :
    - 1 e est de poids minimum;

- L'algorithme de Kruskal construit une FCPM F de la manière suivante :
  - 1 tous les sommets du graphe font partie de F;
  - 2 à chaque étape, on rajoute à F une arête e satisfaisant les conditions suivantes :
    - e est de poids minimum;
    - 2 e ne crée pas de cycle dans F;

# L'algorithme de Kruskal

- L'algorithme de Kruskal construit une FCPM F de la manière suivante :
  - 1 tous les sommets du graphe font partie de F;
  - 2 à chaque étape, on rajoute à F une arête e satisfaisant les conditions suivantes :
    - e est de poids minimum;
    - 2 e ne crée pas de cycle dans F;
- On résoud les ambigüités arbitrairement;

#### Exemple 5



# Déroulement de l'algorithme de Kruskal

#### Exemple 5

Graphes pondérés



# Déroulement de l'algorithme de Kruskal







Graphes pondérés

• Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à la forêt F?

- Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à la forêt F?
- Dans l'algorithme de Prim, il suffisait de vérifier si les deux sommets étaient dans l'**arbre** *T*;

- Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à la forêt F?
- Dans l'algorithme de Prim, il suffisait de vérifier si les deux sommets étaient dans l'arbre T;
- Mais ici, on construit plusieurs composantes en même temps!

- Étant donnée une arête  $e = \{u, v\}$  de G: comment sait-on si elle est valide par rapport à la forêt F?
- Dans l'algorithme de Prim, il suffisait de vérifier si les deux sommets étaient dans l'arbre T:
- Mais ici, on construit plusieurs composantes en même temps!

• Solution :  $\{u, v\}$  est valide si et seulement si u et vappartiennent à des composantes différentes de F;

Graphes pondérés

Comment maintenir les informations sur les composantes?

Graphes pondérés

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles; dans ce cas :

#### skar . gestion des composantes

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles; dans ce cas :
    - fusionner les classes A et B se fait en O(|A| + |B|);

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles : dans ce cas :
    - fusionner les classes A et B se fait en O(|A| + |B|);
    - identifier la classe du sommet v se fait en O(|V|);

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles : dans ce cas :
    - fusionner les classes A et B se fait en O(|A| + |B|);
    - identifier la classe du sommet v se fait en O(|V|);
  - utiliser un tableau marqueurs dont la case marqueurs [v] contient la classe à laquelle appartient v;

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles : dans ce cas :
    - fusionner les classes A et B se fait en O(|A| + |B|);
    - identifier la classe du sommet v se fait en O(|V|);
  - utiliser un tableau marqueurs dont la case marqueurs [v] contient la classe à laquelle appartient v;
    - fusionner les classes A et B se fait en O(|V|);

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles : dans ce cas :
    - fusionner les classes A et B se fait en O(|A| + |B|);
    - identifier la classe du sommet v se fait en O(|V|);
  - utiliser un tableau marqueurs dont la case marqueurs [v] contient la classe à laquelle appartient v;
    - fusionner les classes A et B se fait en O(|V|);
    - identifier la classe du sommet v se fait en O(1);

- Comment maintenir les informations sur les composantes?
- Deux techniques naïves :
  - 1 stocker les classes de la partition sous la forme d'une collection d'ensembles : dans ce cas :
    - fusionner les classes A et B se fait en O(|A| + |B|);
    - identifier la classe du sommet v se fait en O(|V|);
  - utiliser un tableau marqueurs dont la case marqueurs [v] contient la classe à laquelle appartient v;
    - fusionner les classes A et B se fait en O(|V|);
    - identifier la classe du sommet v se fait en O(1);
- La structure recommandée dans ce cas-ci est *Union-Find*;

Graphes pondérés

# Structure *Union-Find* (ou ensembles disjoints)

• La structure **Union-Find** représente une partition d'un ensemble à l'aide d'une forêt orientée;

Graphes pondérés

- La structure Union-Find représente une partition d'un ensemble à l'aide d'une forêt orientée;
  - 1 chaque arbre représente une classe de la partition;

- La structure Union-Find représente une partition d'un ensemble à l'aide d'une forêt orientée;
  - 1 chaque arbre représente une classe de la partition;
  - 2 le "numéro" d'une partie est le numéro de sa racine;

Graphes pondérés

- La structure **Union-Find** représente une partition d'un ensemble à l'aide d'une forêt orientée;
  - 1 chaque arbre représente une classe de la partition;
  - 2 le "numéro" d'une partie est le numéro de sa racine;

Exemple 6 (représentation de  $\{\{1,3\},\{2,6,7\},\{4\},\{5,8\}\}$ )



- La structure **Union-Find** représente une partition d'un ensemble à l'aide d'une forêt orientée;
  - 1 chaque arbre représente une classe de la partition;
  - 2 le "numéro" d'une partie est le numéro de sa racine;

Exemple 6 (représentation de  $\{\{1,3\},\{2,6,7\},\{4\},\{5,8\}\}$ )



Les deux opérations disponibles sont :

- La structure **Union-Find** représente une partition d'un ensemble à l'aide d'une forêt orientée;
  - 1 chaque arbre représente une classe de la partition;
  - 2 le "numéro" d'une partie est le numéro de sa racine;

Exemple 6 (représentation de  $\{\{1,3\},\{2,6,7\},\{4\},\{5,8\}\}\}$ )



- Les deux opérations disponibles sont :
  - 1 union(A, B): fusionne les classes A et B;

Arbres couvrants de poids minimum

- La structure **Union-Find** représente une partition d'un ensemble à l'aide d'une forêt orientée;
  - 1 chaque arbre représente une classe de la partition;
  - 2 le "numéro" d'une partie est le numéro de sa racine;

Exemple 6 (représentation de  $\{\{1,3\},\{2,6,7\},\{4\},\{5,8\}\}\}$ )



- Les deux opérations disponibles sont :
  - 1 union(A, B): fusionne les classes A et B;
  - find(x): renvoie la classe de l'élément x;

#### Structure *Union-Find*: problèmes potentiels

 De mauvaises fusions peuvent mener mener à une structure dégénérée;

Graphes pondérés

- On se retrouve alors avec une opération find en O(n);
- On va avoir recours à deux optimisations pour éviter les problèmes:
  - la compression de chemins;
  - 2 l'utilisation de rangs;



#### Optimisation de *Union-Find*: compression de chemin

Les informations calculées lors de l'appel à *find* permettent de réduire la hauteur de la structure.

#### Exemple 8 (appel à find(n))

Graphes pondérés

find donne 0 pour tous les sommets du chemin de  $n \ge 0$ .



L'algorithme de Kruskal

# Optimisation de *Union-Find* : rangs

Les "mauvaises" fusions augmentent la hauteur de l'arbre et donc la complexité de *find*.



Graphes pondérés

• Calculer explicitement la hauteur des arbres est trop coûteux en temps;

L'algorithme de Prim

# Rangs et fusions

Graphes pondérés

- Calculer explicitement la hauteur des arbres est trop coûteux en temps;
- On stocke plutôt pour chaque arbre un champ rang initialement nul;

L'algorithme de Kruskal

# Rangs et fusions

- Calculer explicitement la hauteur des arbres est trop coûteux en temps;
- On stocke plutôt pour chaque arbre un champ rang initialement nul;
- Quand on doit effectuer une fusion de deux arbres A et B de rangs r et s :

- Calculer explicitement la hauteur des arbres est trop coûteux en temps;
- On stocke plutôt pour chaque arbre un champ rang initialement nul;
- Quand on doit effectuer une fusion de deux arbres A et B de rangs r et s :
  - si r < s, B devient le parent de A;

# Rangs et fusions

- Calculer explicitement la hauteur des arbres est trop coûteux en temps;
- On stocke plutôt pour chaque arbre un champ rang initialement nul;
- Quand on doit effectuer une fusion de deux arbres A et B de rangs r et s:
  - si r < s, B devient le parent de A;</li>
  - si r > s, A devient le parent de B;

en temps;

- Calculer explicitement la hauteur des arbres est trop coûteux
- On stocke plutôt pour chaque arbre un champ rang initialement nul;
- Quand on doit effectuer une fusion de deux arbres A et B de rangs r et s :
  - si r < s, B devient le parent de A;
  - si r > s, A devient le parent de B;
  - si r = s: choisir arbitrairement, et incrémenter le rang de l'arbre sous lequel on place l'autre;

# Exemple 10 12 6 7 3 4 3 2 5 7 9 7 0 10

Graphes pondérés

# Déroulement de l'algorithme de Kruskal



Graphes pondérés

#### Les coulisses



Graphes pondérés



#### Les coulisses

 $\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \\ \hline \text{parents} : \boxed{0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6} \end{array}$ 





#### Les coulisses





#### Les coulisses



### Déroulement de l'algorithme de Kruskal

Graphes pondérés







#### Les coulisses



# Exemple 10

Graphes pondérés

#### Les coulisses







# Exemple 10 12 4 3 2 5 7 3 4 5 7 0





#### Les coulisses













# Les coulisses parents:

# L'algorithme de Kruskal proprement dit

### Algorithme 4 : KRUSKAL(G)

**Entrées :** un graphe pondéré non orienté G.

**Sortie** : une forêt couvrante de poids minimum pour *G* consistant en un arbre couvrant de poids minimum pour chaque composante connexe de G.

```
1 forêt \leftarrow GraphePondéré(G.sommets());
2 classes ← UnionFind(G.sommets());
  pour chaque (u, v, p) \in tri\_par\_poids\_croissant(G.arêtes()) faire
       si classes.find(u) \neq classes.find(v) alors
           forêt.ajouter_arête(u, v, p);
5
           classes.union(classes.find(u), classes.find(v));
```

• Initialisation de la forêt : O(|V|);

# Complexité de l'algorithme de Kruskal (listes d'adjacence)

- Initialisation de la forêt : O(|V|);
- Initialisation de Union-Find : O(|V|);

Initialisation de la forêt : O(|V|);

Graphes pondérés

- Initialisation de Union-Find : O(|V|);
- Tri des arêtes :  $O(|E|\log|E|) = O(|E|\log|V|)$ ;

- Initialisation de la forêt : O(|V|);
- Initialisation de Union-Find : O(|V|);
- Tri des arêtes :  $O(|E|\log|E|) = O(|E|\log|V|)$ ;
- Parcours des arêtes : O(|E|);

- Initialisation de la forêt : O(|V|);
- Initialisation de Union-Find : O(|V|);

Arbres couvrants de poids minimum

- Tri des arêtes :  $O(|E|\log|E|) = O(|E|\log|V|)$ ;
- Parcours des arêtes : O(|E|));
- Opérations sur Union-Find : "à peu près O(1)" ;

- Initialisation de la forêt : O(|V|);
- Initialisation de Union-Find : O(|V|);
- Tri des arêtes :  $O(|E|\log|E|) = O(|E|\log|V|)$ ;
- Parcours des arêtes : O(|E|));
- Opérations sur Union-Find : "à peu près O(1)" ;

$$\Rightarrow O(|V| + |E| + |E| \log |V|) = O(|E| \log |V|);$$

#### [1] Michael L. Fredman and Robert Endre Tarjan.

Fibonacci heaps and their uses in improved network optimization algorithms.

Journal of the ACM, 34(3):596-615, 1987.