Docket No.: X-16723

Amendments to the Claims

1. (currently amended) A compound of a formula below:

wherein

q is 0, 1, or 2;

Serial No.:10/598,473

W, X, Y and Z are each independently CH, C, N, S, or O with appropriate single or double bonds and/or hydrogen atoms to complete valency requirements:

Ring A is a five or six member ring wherein one of W, X, Y and Z mny be absent; provided that ring A is not phenyl;

K is a bond; or C=O;, or S(O)_p; p is 0, 1 or 2; n is 0; or 1, or 2;

when n is 0, K is C=O-or $S(O)_p$ and R^1 is selected from a group consisting of $-OC_1-C_6$ alkyl, -O aryl, $-OC_2-C_6$ alkenyl, $-OC_1-C_6$ haloalkyl, $-OC_1-C_6$ alkylerocyclylie, $-OC_3-C_8$ eycloalkyl, $-OC_1-C_6$ alkyleycloalkyl, $-NR^2R^8$, $-OC_1-C_6$ alkyleyrl, -O-heterocyclylie, $-OC_1-C_6$ alkyleycloalkyl, $-OC_2-C_6$ alkyleycloalkyl, $-OC_2-C_6$ alkyleycloalkyl, $-OC_3-C_6$ alkyleycloalkyl, aryl and heterocyclic group is optionally substituted with $-C_3-C_6$ alkyleycloalkyl, $-OC_4-C_6$ alk

when n is 1-oi-2, K is a bond_and R¹ is selected from a group consisting of hydroxy, C_4 - C_4 alkyl, C_2 - C_6 alkenyl, C_4 - C_6 haloalkyl, C_4 - C_6 alkylheterocyclic, C_3 - C_8 cycloalkyl, C_4 - C_6 alkylaryl, aryl, heterocyclyl, C_4 - C_6 alkylalcohol, C_4 - C_6 alkylNR²R⁸, wherein each cycloalkyl, aryl and heterocyclic is optionally substituted with 1 or 2 groups

independently selected from the groups consisting of oxo, hydroxy, halo, C_1 , C_6 alkyl, C_2 , C_6 alkeyl, C_2 , C_6 alkynyl, C_4 , C_6 alkoxy, C_4 , C_6 haloalkyl, C_4 , C_6 alkylalcohol, C_4 , C_6 haloalkoxy, C_4 , C_6 haloalkyleyano, C_4 , C_6 haloalkoxy, C_4 , C_6 haloalkoxy, C_4 , C_6 haloalkyleyano, C_4 , C_6 haloalkoxy, C_4 , C_6 haloalkyleyano, C_4 , C_6 haloalkyleyano, C_4 , C_6 haloalkyleyano, C_4 , C_6 haloalkyleyano, C_4 , C_6 haloalkoxy, C_4 , C_6 haloalkyleyano, C_4 ,

 R^2 is each independently selected from the group consisting of hydrogen, halo. C_1 - C_6 alkylogen, C_2 - C_6 alkynyl, C_4 - C_6 haloalkyl, OC_4 - C_6 alkylogen, OC_4 - C_6 alkylogen, halo. OC_4 - OC_6 alkylogen, halo, haloalkylogen, halo, haloalkylogen, halo, haloalkylogen, halo, haloalkylogen, halo, haloalkylogen, haloalkylogen

 R^3 is each independently selected from hydrogen; or C_1 - C_6 alkyl; aryl, C_2 - C_6 alkenyl, C_4 - C_6 alkylaryl, C_4 - C_6 alkylheterocyclic, C_3 - C_8 cycloalkyl, or C_4 - C_6 alkyleyeloalkyl; R^4 is a group represented by the formula -NR $^9R^{10}$;

 R^5 is selected from: the group consisting of hydrogen, halogen, hydroxy, C_1 - C_6 alkyl, C_2 - C_6 -alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkyl, C_2 - C_8 -eycloalkyl, C_4 - C_6 -alkylaryl, C_4 - C_6 -alkylaryl, C_4 - C_6 -alkylaryl, C_4 - C_6 -alkylaryl, heteroarylaryloxy. OC_2 - C_6 -alkenyl, OC_4 - C_6 -haloalkyl, OC_4 - OC_6 -haloalkyl, OC_4 - OC_6 -alkylaryl; and wherein when C_4 or C_6 -alkylaryl groups may combine to form a fused 5 or 6 member carbocyclic ring: optionally substituted carbocyclic or heterocyclic ring with ring A;

 R^6 is independently selected from the group consisting of hydrogen, C_4 - C_6 -alkyl, C_2 - C_6 alkenyl, hydroxy, C_4 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_4 - C_6 -alkoxy, aryloxy. OC_2 - C_6 -alkenyl, OC_4 - C_6 -haloalkyl, C_4 - C_6 -alkyl OC_4 - OC_6 -alkyl OC_6 - OC_6 -alkyl OC_6 - OC_6 -alkyl OC_6 - OC_6 - OC_6 -alkyl OC_6 - OC_6 -

 R^7 and R^8 are independently selected from the group consisting of hydrogen, C_4 - C_6 alkyleyeloalkyl, C_3 - C_8 cycloalkyl, C_4 - C_6 alkylheterocyclic, C_4 - C_6 haloalkyl, $NR^{11}R^{12}$, hydroxy, exe, COOH, C(O)OC₁- C_4 alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_4 - C_6 alkylamine, C_4 - C_6 alkylaryl, C_2 - C_6 alkylaryl, C_2 - C_6 alkylaryl, C_2 - C_6 alkylaryl, C_4 - C_6 alkyl $CONR^2R^8$, C_4 - C_6 alkyl $CONR^8$, and aryl $CONR^8$ and arylex alkyl $CONR^8$ and arylex alkyl $CONR^8$ and arylex alkyl $CONR^8$ and arylex alkyl $CONR^8$ a

 C_1 - C_6 haloalkyl, C_4 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkynyl, C_4 - C_6 alkylalcohol, and C_4 - C_6 alkylalmine;

or R²-and R⁸-combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional hetero-atoms selected from oxygen, nitrogen or sulfur and may be optionally substituted with oxo, or C₁-C₆-alkyl;

R⁹ is the group C₁-C₆-alkyl. C₂-C₆ alkenyl, C₃-C₈ cyclonkyl, C₁-C₆-alkyleycloalkyl. aryl. heterocyclic, tetrazolyl, pyrazolyl, oxazolyl, oxadiazolyl, quinolinyl, C₁-C₆-alkylheterocyclic, COR⁷, and CO₂R⁷, C₀-C₃-alkylCONR²R⁸, C₀-C₂-alkylS(O)_pNR²R⁸, or C₀-C₃-alkylS(O)_pR² wherein R² is as defined above, and wherein each alkyl, cycloalkyl, aryl, and heterocyclic tetrazole, pyrazolyl, oxazolyl, oxadiazolyl, is optionally substituted with one to two groups independently selected from halo, hydroxy, oxo, COOH, C(O)OC₄-C₄-alkyl, C₄-C₆-haloalkyl, C₁-C₆ alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₄-C₆-alkoxy, C₁-C₆ alkylacohol, C₁-C₆ alkylamine, C₄-C₆-alkylaryl, C₂-C₆-alkenylaryl, C₄-C₆-alkylaryl, C₄-C₆-alkylar

 R^{10} is 3.5-bis-trifluoromethyl benzyl; selected from: the group consisting of aryl, C_4 - C_6 alkylaryl, C_2 - C_6 alkenylaryl, C_2 - C_6 alkynylaryl, C_1 - C_6 haloalkylaryl, C_4 - C_6 alkylheterocyclic, C_2 - C_6 alkyleycloalkyl, C_3 - C_6 cycloalkyl, C_4 - C_6 alkylaryl, and wherein each cycloalkyl, aryl, or heterocyclic group is optionally substituted with 1–3 groups independently selected from the group consisting of hydroxy, oxo. SC_4 - C_6 alkyl, C_4 - C_6 alkyl, C_4 - C_6 alkynyl, C_4 - C_6 haloalkyl, halogen, C_4 - C_6 alkoxy, aryloxy, C_4 - C_6 alkenyloxy, C_4 - C_6 haloalkyl, C_4 - C_6 alkyln C_4 - C_6 alkylaryl, nitro, cyano, C_4 - C_6 haloalkyl, C_4 - C_6 alkylalcohol;

 R^{11} and R^{12} are independently selected from the group consisting of hydrogen, or C_1 - C_6 alkyl. C_4 - C_6 alkenyl. C_2 - C_8 cycloalkyl, heterocyclic, aryl, and C_4 - C_6 alkylaryl, wherein each aryl group is optionally substituted with 1-3 groups independently selected from halogen, C_4 - C_6 alkylheterocyclic, and C_4 - C_6 haloalkyl, or R^{14} and R^{12} -combine to form a nitrogen containing heterocyclic ring which may have 0, 1, or 2 additional heteroatoms selected from oxygen, nitrogen or sulfur and is optionally substituted with oxo, or C_4 - C_6 -alkyl; or

a pharmaceutically acceptable salt. enantiomer, racemate, diastereomer or mixture of diastereomers thereof.

- 2. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein n is zero, K is C=O and R¹ is selected from a group consisting of -OC₁-C₆ alkyl, O-aryl, OC₂-C₆ alkyl, O-C₁-C₆ alkyleycloalkyl, OC₄-C₆ alkylaryl, and OC₁-C₆ alkylheterocyclylie, wherein each cycloalkyl, aryl and heterocyclic group is optionally substituted with 1 to 3 groups independently selected from C₆-C₆ alkylCOOR¹¹, C₆-C₆-alkylalcohol, C₆-C₃-alkylNR¹¹, and C₆-C₆-alkyleyano.
- 3. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein n is 1, K is a bond and R^1 is selected from a group consisting of C_2 - C_6 alkenyl, C_2 - C_6 haloalkyl, C_3 - C_6 eyeloalkyl, aryl, and heterocyclic wherein each cycloalkyl, aryl, or heterocyclic is optionally substituted with 1 or 2 groups selected from C_4 - C_3 -alkylaleohol, C_4 - C_3 -alkylamine, C_6 - C_6 -alkylCOOH, C_6 - C_6 -
- 4. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein \mathbb{R}^4 is $\mathbb{NR}^9\mathbb{R}^{49}$ and \mathbb{R}^9 is a heterocyclic group tetrazolyl optionally substituted with one to two groups independently selected from OH, halo, amino, $\mathbb{C}(O)OC_1$ - \mathbb{C}_4 alkyl, \mathbb{C}_4 - \mathbb{C}_6 haloalkyl, \mathbb{C}_1 - \mathbb{C}_6 alkyl, \mathbb{C}_2 - \mathbb{C}_6 -alkenyl, \mathbb{C}_2 - \mathbb{C}_6 -alkynyl, \mathbb{C}_4 - \mathbb{C}_6 -alkoxy, \mathbb{C}_1 - \mathbb{C}_6 alkylalcohol, and \mathbb{C}_1 - \mathbb{C}_6 alkylalmine, \mathbb{C}_2 - \mathbb{C}_6 -alkylcycloalkyl, \mathbb{C}_4 - \mathbb{C}_6 -alkylcyno, \mathbb{C}_4 - \mathbb{C}_6 -alkylcon $\mathbb{R}^2\mathbb{R}^8$, \mathbb{C}_4 - \mathbb{C}_6 -alkylcon $\mathbb{R}^3\mathbb{R}^8$.

5-7. (canceled)

8. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein each R³ is hydrogen and R⁹ is selected from: tetrazolyl, pyrazolyl, oxazolyl, oxidiazolyl, quinolinyl, each optionally substituted with one to two groups independently selected from C₁-C₆ alkylamine, and C₁-C₆ alkylNR⁷R⁸, the group consisting of:

wherein R is independently H, OH, NR R or C4-C3 alkyl wherein C4-C3 alkyl group is optionally substituted with OH, halo, cyano, CONR²R⁸, CO₂R¹⁴, or NR²R⁸:

- 9. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein two R⁵ groups combine to form a fused cyclopentane or cyclohexane ring with ring A.
- 10. (currently amended) A compound according to Claim 1, or a pharmaceutically acceptable salt-enantiomer, racemate, diastereomer or mixture of diastereomers thereof, wherein R⁴ is selected from the group consisting of:

Docket No.: X-16723

wherein R^7 is $OH_{-}C_1-C_3$ alkyl, OC_4-C_3 alkyl, or C_4-C_3 haloalkyl.

- 11. (currently amended) A compound according to Claim 1 selected from the group consisting of:
- 4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-7-methyl-3,4-dihydro-2H-
- [1,8]naphthyridine 1 carboxylic acid isopropyl ester,
- Cis-4-[acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-methoxy-3,4-dihydro-2H-
- [1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- _7 [Acetyl (3,5 bis trifluoromethyl benzyl) amino] 5 ethyl 6,7 dihydro 5*H* thieno[3,2 b]pyridine 4 carboxylic acid isopropyl ester,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-bromo-3,4-dihydro-2H-
- [1,5]naphthyridine-1-carboxylic acid isopropyl ester,

(+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-dimethylamino-3,4-dihydro-2H-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,

- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-ethyl-6-methyl-3,4-dihydro-2H-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-(2,5-dimethyl-2H-pyrazole-3-carbonyl)-amino]-2-ethyl-6-trifluoromethyl-3,4-dihydro-2H-quinoline-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-(3,5-Bis-trifluoromethyl-benzyl)-1-(cyclopentylmethyl-2-ethyl-6-methoxy-1,2,3,4-tetrahydro-[1,5]naphthyridine-4-yl)-acetamide,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-6-methoxy-2-methyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-ethoxycarbonyl-amino]-6-methoxy-2-methyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[(3,5-Bis-trifluoromethyl-benzyl)-(3-fluoro-5-trifluoromethyl-benzoyl)-amino]-6-methoxy-2-methyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester, (+/-)-cis-*N*-(3,5-Bis-trifluoromethyl-benzyl)-*N*-(1-cyclopentyl-6-methoxy-2-methyl-1,2,3,4-tetrahydro-[1,5]napthyridin-4-yl)-acetamide,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-methyl-6-trifluoromethyl-3,4-dihydro-2H-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- (+/-)-cis-4-[Acetyl-(3,5-bis-trifluoromethyl-benzyl)-amino]-2-cyclopropyl-6-trifluoromethyl-3,4-dihydro-2*H*-[1,5]naphthyridine-1-carboxylic acid isopropyl ester,
- 4-[(3,5-Bis-trifluoromethyl-benzyl)-(5,6,7,8-tetrahydro-quinolin-3-yl)-amino]-2,3-dimethyl-3,4,6,7,8,9-hexahydro-2*H*-benzo[b][1,5]napthyridine-1-carboxylic acid isopropyl ester, or a pharmaceutically acceptable salt, enantiomer or diastereomer or mixture thereof.

12. (canceled)

- 13. (withdrawn) A method of treating dyslipidemia comprising administering a compound of formula I of claim 1, a pharmaceutically acceptable salt, enantiomer, racemate diastereomer, mixture of diastereomers thereof, to a patient in need thereof.
- 14. (withdrawn) A method of treating atherosclerosis comprising administering a compound of formula I of claim 1, a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient in need thereof.

15-16. (Canceled)

17. (withdrawn) A method of increasing plasma HDL-cholesterol in a mammal comprising administering a therapeutically effective amount of a compound of formula I of claim 1, a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof to a patient in need thereof.

18. (Canceled)

- 19. (currently amended) A pharmaceutical composition comprising a compound according to Claim 1, a pharmaceutically acceptable salt, enantiomer, racemate, diastereomer, or mixture of diastereomers thereof, and a carrier, diluent and/or excipient.
 - 20. (canceled)
- 21. (withdrawn) A composition of claim 19 comprising one or more cardio protective agents selected from the group consisting of: statins, leptin, and lipid regulating agents.
 - 22. (canceled)
- 23. (withdrawn) A method according to claim 14 comprising administering one or more cardio protective agents selected from the group consisting of: statins, leptin, and lipid regulating agents.
- 24. (withdrawn) A method according to claim 13 comprising increasing plasma HDL-cholesterol in said patient.
- 25. (withdrawn) A method according to claim 13 comprising decreasing plasma LDL-cholesterol in said patient.
- 26. (withdrawn) A method according to claim 14 comprising increasing plasma HDL-cholesterol in said patient.

27. (withdrawn) A method according to claim 14 comprising decreasing plasma LDL-cholesterol in said patient.