Versuch 504 - Thermische Elektronenemission

TU Dortmund, Fakultät Physik Anfänger-Praktikum

Jan Adam

Dimitrios Skodras

jan.adam@tu-dortmund.de

dimitrios.skodras@tu-dortmund.de

22.Januar 2013

Inhaltsverzeichnis

1	Einleitung	3
2	Theorie	3
3	Durchführung 3.1 Versuchsaufbau	3
4	Auswertung 4.1 Kennlinienschar der Hochvakuumdiode	3
5	Diskussion	6

1 Einleitung

Bei Metallen sind die äußeren Hüllenelektronen nur schwach an ihren Kern gebunden. Im kristallförmigen Gitter können sich die Elektronen daher nahezu frei bewegen, wodurch die gute elektrische Leitfähigkeit von Metallen erklärt wereden kann. Erhält ein Elektron genügend Energie, um das nur noch schwache Kern-Potential zu überwinden, so kann es aus dem Metall austreten. Erreichen kann man dies, indem man dem Elektron durch Stößen mit Photonen (Photoelektrischer Effekt) oder wie in diesem Versuch durch Erhöhung der Temperatur und somit ihrer thermischen Energie.

2 Theorie

3 Durchführung

3.1 Versuchsaufbau

4 Auswertung

4.1 Kennlinienschar der Hochvakuumdiode

Unter Anlegung von fünf verschiedenen Heizströmen I_f wird die Beschleunigungsspannung U_A erhöht und der fließende Strom I_A gemessen.

$I_f = 2.2 \text{ A}$		$I_f = 2.4 \text{ A}$		$I_f = 2.5 \text{ A}$ V_A		$I_f = 2.6 \text{ A}$ V_A		$I_f = 2.8 \text{ A}$	
V_A	I_A	$\begin{array}{ c c } I_f = 2.4 \text{ A} \\ \hline V_A \end{array}$	I_A	V_A	I_A	V_A	I_A	V_A	I_A
2	3	1	3	1	5	1	5	1	6
3	4	2 3	7	2 3	8	2	9	$\frac{2}{3}$	13
4	6	3	10	3	12	3	15	3	18
5	7	4	13	4	16	4	18	4	24
7	8	5	16	5	20	5	24	5	29
8	9	6	19	6	24	6	28	6	35
10	10	7	22	7	28	7	33	7	40
12	11	8	24	8	32	8	38	8	46
13	11	9	27	9	35	9	42	9	52
15	12	10	30	10	40	10	48	10	57
20	14	12	35	11	44	12	60	12	72
25	14	15	43	12	48	14	70	14	86
30	15	20	54	13	53	16	83	16	103
35	16	25	62	14	57	18	97	18	212
40	16	30	68	15	61	20	110	20	139
50	17	35	72	20	84	22	124	22	155
100	19	40	75	22	92	24	138	24	172
125	19	50	76	25	104	25	144	25	184
		70	79	27	109	26	151	26	193
		90	83	30	120	28	165	28	213
		100	85	35	133	30	177	30	233
		150	87	40	140	35	206	32	255
				45	146	40	233	34	276
				50	147	45	252	36	297
				60	150	50	265	38	320
				70	156	55	278	40	343
				80	160	60	289	45	405
				90	167	70	305	50	462
				100	166	80	316	55	522
				150	170	90	325	60	572
						100	332	70	680
						150	336	80	785
								90	872
								100	937
								110	980
								120	1010
								130	1040
								140	1060
								150	1080
								200	1130

Tabelle 1: Beschleunigungsspannung ${\cal U}_A$ und Strom ${\cal I}_A$ zu fünf Heizströmen ${\cal I}_f$

Kennlinien der Hochvakuumdiode

Langmuir-Schottky Exponent

5 Diskussion