

B52 Sept 17 Lec 2 Notes

$$(x+y)^{3} = (x+y)(x+y)(x+y) = \sum_{i=0}^{3} (\frac{3}{i}) x^{i}y^{3-i}$$

Let
$$i=2$$
, x^2y^2 , 3 ways to get x^2y .

Ex 1

P(committee is in favour) =
$$P(A_1 \cup A_2)$$

= $P(A_1) + P(A_2)$ Since A_1 and A_2 are disjoint
= $\frac{|A_1|}{|S|} + \frac{|A_2|}{|S|}$

$$|S| = C_5^{20}$$
 $|A_1| = C_3^4 C_1^{10}$

Composed of two sets
 $\{\{-, -, -\}, \{-, -\}\}\}$

Composed to two sets
 $\{\{-, -, -\}, \{-, -\}\}\}$

Ex 2:

(s	tars	. &	bar	s)						

for each distinct object, and Consider a place a Star for every time object is selected:

		*				
bio	n for bj 1	bin fo	bin to		bin obj	

		~ <u>.</u>	<u>.</u>	
	/ · • :		٠.	
	\		·	/
		<u> </u>	•	
_				

There are n-1 bars , k stars

#ways to arrange stars in bins =

= # ways to select the positions of stars/bars = $\binom{n+k-1}{k}$ = $\binom{n+k-1}{n-1}$

	Order matters	arder doesit matter
w/o replacement	. P" .	Ck .
w/ replacement	n ^k	(n+k-1)

Multinomial Rule

Number of ways to partition a objects into I sets, each with K.,.., Ke objects respectively

$$C_{K_1 K_2 \cdots K_R}^n = {n \choose k_1 k_2 \cdots k_R} = \frac{n!}{k_1! K_2! \cdots k_R!}$$
, where $\sum_{i=1}^R K_i = n$