

ANIMAL PROTEOMICS: IPG-DALT and more...

Ingrid Miller

University of Veterinary Medicine Vienna, Austria

ANIMAL PROTEOMICS:

- animal science: animal medicine (biomarker search)
- food industry: animal derived products
- animal models: study of diseases / expositions
- *****

ANIMAL PROTEOMICS:

- animal science: animal medicine (biomarker search)
- food industry: animal derived products (COST - EuFAP)
- animal models: study of diseases / expositions
- technical modifications

A VARIETY OF SPECIES

A VARIETY OF SPECIES

- differences in protein properties (pl, Mr...)
- differences in protein concentrations (health, disease)
- species specific proteins

1- serum albumin; 2 – transferrin; 3 – Ig γ-chain; 4 – haptoglobin ß-; 5 – Ig L-chain

transferrin

(and other species)

transferrin

haptoglobin

(and other species)

cow

β-chain

 α -chain

β-chain

other species

 α -chain

A VARIETY...

Positive Acute Phase Proteins (proteins up-regulated in inflammation)

	CRP	SAA	Нр	oroso	α_1 AT	other
human	++	+	+	+	+	
rat	土	X	+	+	+	α_1 MAP, SPI-3
dog	+	+	+	+	-	
COW			++			
pig	+	+	+	-	-	MAP (++)

x ... non existent

CRP cannot be detected in electrophoresis (except for rat)

EXAMPLES

- animal model of inflammation and shock (rat)
- transgenic models (mouse)
- physiological changes (cow)
- gammaglobulin disorders (dog)
- homologous proteins (fibrinogen)
- depletion

1. Animal model of inflammation and shock (rat)

Serum protein pattern in inflammation

Acute inflammation

Rat serum protein patterns

Serum (healthy)

Serum (inflamed, 48h)

male Sprague-Dawley rats i.m. turpentine

Acute inflammation

Protein concentration changes

pink: female, blue: male rats

48 hours

Acute inflammation

Time-course

1 - 4 days

Chronic inflammation

Effect of adjuvant arthritis on serum protein levels

female Lewis rats heat-inactivated *M. tuberculosis*

Acute / Chronic inflammation

Differentially regulated proteins

Treatment of arthritis

Effect of NSAID treatment on serum protein levels in adjuvant arthritis

Effect of NSAID treatment per se on serum protein levels

Liver proteome and and endotoxic shock

Experimental shock model:

- male Sprague Dawley rats
- 8 mg/kg LPS i.p. / i.v.
- 16 hours after
 LPS challenge

Liver failure

Increased levels of ALT

alanine aminotransferase

Mitochondria

green: control

red: LPS

more fragments of carbamoylphosphate synthase

Mitochondrial superoxide dismutase (SOD [Mn])

Endoplasmic reticulum

green: control

red: LPS

Differentially regulated ER protein spots

e.g. transport, folding, oxidation, acute phase

Testing of function: function of mitochondria improved, function of ER decreased.

ROS production

histological changes

More (pronounced) changes in endoplasmic reticulum (ER)

ER is much more succeptable to endotoxic shock than mitochondria

2. Transgenic animals (mouse)

Apolipoproteins

knock-out: murine Apo A-I and/or II

knock-in: human Apo A-I and/or II

KO

0.002

apoA2

0.016

mouse strain

Additional changes of: orosomucoid + clusterin, α_1 -macroglobulin, contrapsin, carboxylesterase, haptoglobin.

Improved resolution of relevant proteins by varying running conditions

reducing

conditions

nonreducing

contrapsin
haptoglobin
α₂-HS-glycoprotein

3. Physiological changes (cow pregnancy)

4.5 µl serum, 7.5 – 17.5 % T

Cow serum protein map

Wait et al., Electrophoresis 2002, 23, 3418-3427.

Elisabetta Gianazza *et al.*Università di Milano

Cow pregnancy

acidic zoom gels, non-reducing conditions

Elisabetta Gianazza *et al.* Università di Milano

SDS-PAGE

time course

healthy animal

endometritis

Cairoli et al, Electrophoresis 2006, 27, 1617-1625.

Elisabetta Gianazza *et al.* Università di Milano

SDS-PAGE

time course

healthy animal

endometritis

Cairoli et al, Electrophoresis 2006, 27, 1617-1625.

endometritis

4. Disorders (gammopathy, dog)

Normal immunoglobulin pattern

dog serum (healthy dog)

gammopathies: polyclonal, monoclonal

Multiple myeloma with monoclonal IgA

in late stage of the disease / severe cases also detectable in urine (kidney damage)

Bence Jones Proteins (free Ig L-chains)

URINE

reducing 2-DE

Dog 1: chronic lymphatic leukemia; mlgA and mlgG in serum

Dog 2: plasmacytoma; dimeric BJP + mlgA in serum

Bence Jones Proteins (free Ig L-chains)

URINE

reducing 2-DE

Dog 1: chronic lymphatic leukemia; mlgA and mlgG in serum

Dog 2: plasmacytoma; dimeric BJP + mlgA in serum

non-reducing 2-DE

Bence Jones Proteins (free Ig L-chains)

URINE

reducing 2-DE

non-reducing 2-DE: for the detection of single subunits, incomplete molecules

in serum

miga in serum

non-reducing 2-DE

UREA

DTT

unfolding without reduction unfolding with reduction native

Different combinations

native (non-denaturing) IEF / native PAGE

native IEF (non-denaturing) / SDS-PAGE

native IEF (non-denaturing) / red. SDS-PAGE

denaturing IEF / SDS-PAGE

red./denat.IEF / red. SDS-PAGE

2-DE

••••

non-denaturing IPG native PAGE

non-denaturing IPG SDS-PAGE

Rabbit milk

IPG (urea) SDS-PAGE IPG (urea, DTT) SDS-PAGE (DTT)

5. Homologous proteins (fibrinogen)

Structure of fibrinogen

340 kD plasma glycoprotein

Structure of fibrinogen

340 kD plasma glycoprotein

3 pairs of polypeptide chains:

linked by disulfide bonds and stabilized by Ca²⁺

Approaches for identification:

- a) comparison serum/plasma
- b) immunoblotting

Approaches for identification:

Miller et al, *J. Chromatogr. B,* in press.

Physicochemical data of fibrinogen chains of different species

6. Depletion of highabundance proteins (albumin)

Albumin binding to Cibacron Blue F3G A

albumins of different species bound on a "blue column" as a function of pH

better binding and higher capacity for HSA

Albumin binding to Cibacron Blue F3G A

University of Veterinary Medicine, Vienna

LBI for Exp. & Clin. Traumatology, Vienna

Medical University, Vienna

University of Graz

Università degli Studi, Milano

Kennedy Institute, London

and all the others...

Thank you!

...and you!

Thank you!