Präferenzen zu Zahlwerten I

Erster Versuch: Durchzählen

- a · b · c · d · e
- Zuordnung von Zahlenwerten durch eine Funktion V $e \rightarrow 1$, $d \rightarrow 2$, $c \rightarrow 3$, $b \rightarrow 4$, $a \rightarrow 5$
- Es gilt: Wenn $x \rightarrow y$, dann V(x) > V(y)
- Aber: Differenzen u. Verhältnisse nicht aussagekräftig

Zweiter Versuch: Lotterie

- Idee von Frank RAMSEY (1903-1930) zur Bestimmung des <u>Gewißheitsgrades</u> von Überzeugungen ("belief")
- Beispiel: Annette glaubt, morgen regne es wahrscheinlich nicht. – Mit welcher Wahrscheinlichkeit? Wette: Wenn Regen, dann zahlt Annette X Euro, und wenn Münze auf Zahl, bekommt Annette Y Euro. Wann empfindet Annette diese Wette als fair?

Mit diesen Werten für X, Y gilt: P = Y/2X

- Ubertragbar auf Präferenzen
- Beispiel: Wieviel lieber will Bert mit Claudia reden als mit Doris?

Wette: Wenn Glücksrad auf den Feldern 1 bis X, Gespräch mit Claudia, wenn X+1 bis 100, dann mit Doris Wann empfindet Bert diese Wette als fair?

Mit diesem X: V(Claudia) : V(Doris) = (100-X) : X

Präferenzen zu Zahlwerten II

- Eine <u>Nutzensfunktion</u> ist eine Funktion u, die jeder Konsequenz k aus K eine reelle Zahl zuordnet.
- Nutzensfunktionen heißen <u>äquivalent</u>, wenn sie dieselbe Präferenzordnung ergeben.
- <u>Nutzenstheorem</u> (NRS, S. 48): Die Nutzensaxiome garantieren die Existenz einer Nutzensfunktion.
- Existiert eine Nutzensfunktion, dann gibt es unendlich viele äquivalente Nutzensfunktionen.
- Für beliebige reelle Zahlen a, b mit a > 0 gilt: Wenn $u_1 = au_2 + b$, dann ist u_1 äquivalent zu u_2 .
 - Verschieben, Stauchen/Strecken sind unschädlich.
 - Es gibt keine "Null" und keine "Einheit".
 - Differenzen und Summen sind irrelevant.
- Anwendung 1: "Normierung" der Nutzensfunktion

$$u(k_1) = 1$$
, $u(k_m) = 0$

• (Normierte) Ramsey-Situation

	Α	В
Wahl von l ₁	p*.1	(1-p*).0
Wahl von l ₂	1.x	

Annahme:
$$f = g \Rightarrow 1.x = p^*.1 + (1-p^*).0$$

 $\Leftrightarrow x = p^*$

Anwendung 2: Entscheidungsprobleme vereinfachen

Axiomatisierung des Nutzens

- Eine <u>Lotterie</u> I ist ein Zufallsmechanismus, bei dem jede mögliche Konsequenz k_i mit einer bestimmten Wahrscheinlichkeit p_i auftritt.
- *Notation:* $I = (p_1k_1, p_2k_2, ..., p_mk_m)$
- Schachtelung von Lotterien ist möglich:
 - Jede Lotterie kann auch als Konsequenz aufgefaßt werden (z.B. Teilnahme an l₂ als Gewinn von l₁).
 - Jede Konsequenz kann auch als Lotterie mit der Wahrscheinlichkeit p=1 aufgefaßt werden.

Nutzensaxiome

- (A1) *Ordnungsaxiom.* Die schwache Präferenzrelation R ist eine Ordnung, d.h. sie ist reflexiv, vollständig und transitiv.
- (A2) *Reduktionsaxiom.* Kann eine zusammengesetzte Lotterie l_1 in eine einfache Lotterie l_2 überführt werden, dann gilt: $l_1 = l_2$.

Bsp.:
$$I_1 = ((1-p_1)k1, p_1I_3)$$
 und $I_3 = (p_3k_2, (1-p_3)k_3)$
 $\Rightarrow I_1 = ((1-p_1)k1, p_1(p_3k_2, (1-p_3)k_3))$
 $\Rightarrow I_1 = ((1-p_1)k1, p_1p_3k_2, p_1(1-p_3)k_3)$

(A3) Stetigkeitsaxiom. Es gibt immer eine indifferente Lotterie nur mit der besten Konsequenz k_1 und der schlechtesten Konsequenz k_m als Ergebnis. D.h.:

Für alle k gibt es ein $p \in [0, 1]$, so daß $k = (pk_1, (1-p)k_m)$

- (A4) Unabhängigkeitsaxiom. $l_1 = l_2 \Rightarrow (..., p_i l_1, ...) = (..., p_i l_2, ...)$.
- (A5) *Monotonieaxiom.* $(p_1k_1, (1-p_1)k_m) \stackrel{.}{\geq} (p_2k_1, (1-p_2)k_m) \Leftrightarrow p_1 \geq p_2$.

Entscheiden unter Risiko

BEISPIEL 1	"1-2"	"3-6"
Setze auf "1-2"	2€	-1€
Setze auf "3-6"	1€	-2€

- <u>Dominanz-Prinzip</u>: Wähle das, was mindestens genauso gut ist wie alle anderen Optionen!
- Bayes-Prinzip: Maximiere die Nutzenserwartung!
- Thomas Bayes (1702-1761)
- Nutzenserwartung = Summe der Produkte aus Nutzen der Konsequenzen und ihrer Wahrscheinlichkeit

$$U(A) = \sum_{i=1}^{n} p_i \cdot u(x_i)$$

BEISPIEL 1			Nutzens-
	x ₁ : "1-2"	x ₂ : "3-6"	erwartung
A: Setze auf "1-2"	(1/3).2€	(2/3)(-1€)	0€
B: Setze auf "3-6"	(1/3).1€	(2/3)(-2€)	-3€

BEISPIEL 2	x ₁ : "1-4"	x ₂ : "5-6"	Nutzens- erwartung
A: Setze auf "1-4"	(2/3).4€	(1/3).(-5€)	1€
B: Setze auf "5-6"	(2/3).(-4€)	(1/3).5€	-1€

BEISPIEL 3: Krieg & Frieden (Jeffrey 1965; NRS Kap1)

DOMINANZ-PRINZIP

	Krieg	Frieden
Nicht abrüsten	Vernichtung der Menschheit	Aufrechterhaltung des Status quo
Abrüsten	Kommunistische Weltherrschaft	Goldenes Zeitalter

→ Abrüsten ist dominante Strategie

BAYES-PRINZIP

	Krieg	Frieden	Nutzens- erwartung
Nicht abrüsten	0,2 x -2000	0,8 x 200	-240
Abrüsten	0,9 x −500	0,1 x 1000	-350

[→] Nichtabrüsten maximiert Nutzenserwartung

- Konflikt zwischen Dominanz- und Bayes-Kriterium
- Wahrscheinlichkeiten ändern sich durch das Handeln
 → strategische Situation: ein Fall für die Spieltheorie!

BEISPIEL 4: Pascals Wette (Pensées Nr. 418/233)

"Wägen wir Gewinn und Verlust gegeneinander ab für den Fall, daß wir auf Kopf setzen, [d.h. darauf,] daß Gott existiert. Schätzen wir die folgenden zwei Möglichkeiten ab: Wenn sie gewinnen, gewinnen Sie alles; wenn Sie verlieren, verlieren Sie nichts."

	Gott existiert	Gott existiert nicht
Glauben	"alles gewinnen"	"nichts verlieren"
Nicht glauben	"alles verlieren"	?

"Hier gibt es [...] eine Unendlichkeit unendlich glücklichen Lebens zu gewinnen bei einer Gewinnmöglichkeit gegenüber einer endlichen Zahl von Verlustmöglichkeiten; und was Sie ins Spiel einbringen, ist nur endlich."

	Gott existiert	Gott exist. nicht	Nutzens- erwartung
Glauben	рх∝	(1-p) x f ₁	∞
Nicht glauben	p x f ₂	p x f ₃	< ∞

Entscheiden bei Unwissenheit

Dominanz-Prinzip

Wähle die dominante Handlung!

- Dominant ist diejenige Handlung, die stets mindestens so gut ist wie alle anderen.
- Konflikt mit Bayes: Bei Unwissenheit kein Problem

Direkte Maximierungsstrategien

<u>Maximin</u>: Maximiere das Minimum des Gewinns! <u>Minimax</u>: Minumiere das Maximum der Kosten!

"pessimistische" Strategie, risikoavers

Maximax: Maximiere das Maximum der Auszahlung!

- "optimistische" Strategie, risikofreudig
- Problem: Präferentielle "Abstände" unberücksichtigt

M1	Α	В
f	10	11
g	9	1000

M2	Α	В
f	0	1001
g	1000	999

Hurwicz-Kriterium

Maximiere $\alpha.m_i + (1-\alpha).M_i!$

- Pessimismus-Optimismus-Index α
- m_i = der niedrigste Nutzenswert der Konsequenzen der Handlung f_i
- M_i = der höchste Nutzenswert der Konsequenzen der Handlung f_i
- Verallgemeinerung aus Maximin und Maximax; diese sind Spezialfälle von Hurwicz: Mit $\alpha=1$ ergibt sich Maximin, mit $\alpha=0$ ergibt sich Maximax
- Problem 1: Wie findet man α ? Ist α konstant?
- Problem 2: Nur Extremwerte werden berücksichtigt

H1	A_1	A_2	A_3	•••	A ₁₀₀
f	0	1	1	•••	1
g	1	0	0	•••	0

H2	A_1	A_2
f	0	1
g	1	0

Laplace-Kriterium

- "Bayes durch die Hintertür"
- Annahme der Gleichwahrscheinlichkeit der Ereignisse
- Überführung in Entscheidung unter Risiko → Bayes

Maximiere die Nutzenserwartung!

Äquivalent (wegen Gleichwahrscheinlichkeit):

Maximiere die Summe der Einzelnutzen!

• Problem: Einteilung der Ereignisse

H1	A_1	A_2	A_3	•••	A ₁₀₀
f	0	1	1	•••	1
g	1	0	0	•••	0

H2	A_1	A_2
f	0	1
g	1	0

Minimax-Verlust

Minimiere den maximalen Verlust!

- Verfahren:
 - Suche für jedes Ereignis (= in jeder Spalte) den höchsten Nutzenswert.
 - Errechne für alle Einträge in der Spalte die Differenz zu diesem höchsten Wert der Spalte.
 - Erstelle so die <u>Verlustmatrix</u> als Hilfsmittel.
 - Wende Minimax auf die Verlustmatrix an.
- Problem: Präferentielle Ordnung abhängig von anderen Alternativen

V1	Α	В
f	1	10
g	2	7

V2	Α	В
f	1	10
g	2	7
h	5	9

Verlust- matrix V1	Α	В
f	1	0
g	0	3

 $f \stackrel{\cdot}{>} g$

Die Kriterien im Vergleich

B1	Α	В	С
f	4	5	4
g	0	10	1
h	7	6	3
i	5	7	3

Dominanz: Hurwicz:

Maximin: Laplace:

Maximax: Minimax-Verlust:

Verlustmatrix zu B1	Α	В	С
f			
g			
h			
i			