Hoja de fórmulas ELECTRÓNICA INDUSTRIAL

Nomenclatura

 V_Z Tensión en el Zener I_Z Corriente en el Zener Tensión de la fuente Corriente en la carga Corriente del colector Tensión en juntura C E v_{CE} i_B Corriente de la base Tensión en juntura C B v_{CB} Corriente del emisor Tensión en juntura B E v_{BE} Ganancia en corriente Parámetro alpha α Resistencia de Thévenin Tensión de Thévenin V_{Th} R_{Th}

UNIDAD 1 DISPOSITIVOS DE ESTADO SÓLIDO

Diodos

Diodo Zener

ESTADOS DEL ZENER

Condiciones mínimas V_{Fmin} I_{Zmin} $I_{Lmáx}$

Condiciones máximas

UNIDAD 2
TRANSISTORES

Transistor bipolar BJT

Tensión en la juntura B E $v_{BE} = 0.7 \text{ V}$

TIPO CONSTRUCTIVO

Ingresa corriente a E Sale corriente de E

Configuración

Base común

Emisor común

Colector común

Polarización del BJT

ECUACIONES DEL DISPOSITIVO

 $i_C = \alpha i_E$ Si no se especifica: $\alpha = 1$

$$i_C = \beta i_B$$
 $i_E = i_B + i_C$

APLICACIÓN EN CONMUTACIÓN

Garantizar que: $\beta i_B = 5i_C$

Corte Saturación

 $i_B = 0 v_{CE} = 0.2V$

Interruptor abierto Interruptor cerrado

APLICACIÓN PARA AMPLIFICACIÓN

Máxima excursión simétrica en

$$v_{CEQ} = \frac{(v_{CE})_{i_C=0}}{2}$$

Polarización por resistencia de base. Polarización por divisor de tensión.

Varía con β

$$V = i_C R_C + v_{CE} + i_E R_E$$
$$V = i_b R_B + v_{BE} + i_E R_E$$

No varía con β

$$V_{Th} = V_{CC} \frac{R_2}{R_2 + R_1}$$

$$R_{Th} = \frac{R_1 R_2}{R_1 + R_2}$$

Polarización por análisis aproximado.

Garantizar que: $\beta R_E \ge 10R_2$