A számítástudomány alapjai

Legrövidebb utak, DFS, PERT

2022. szeptember 27.

► Általános gráfbejárás, BFS

- Általános gráfbejárás, BFS
- Legrövidebb utak keresése (r,ℓ) -felső becslés élmenti javításával, Dijkstra-algoritmus nemnegatív hosszfüggvényre

- Általános gráfbejárás, BFS
- Legrövidebb utak keresése (r,ℓ) -felső becslés élmenti javításával, Dijkstra-algoritmus nemnegatív hosszfüggvényre
- Konzervatív (negatív kör mentes) hosszfüggvény esetén keresünk legrövidebb utat

- Általános gráfbejárás, BFS
- Legrövidebb utak keresése (r,ℓ) -felső becslés élmenti javításával, Dijkstra-algoritmus nemnegatív hosszfüggvényre
- Konzervatív (negatív kör mentes) hosszfüggvény esetén keresünk legrövidebb utat
- Példa egy másik fajta gráfbejárásra és alkalmazásaira.

- Általános gráfbejárás, BFS
- Legrövidebb utak keresése (r,ℓ) -felső becslés élmenti javításával, Dijkstra-algoritmus nemnegatív hosszfüggvényre
- Konzervatív (negatív kör mentes) hosszfüggvény esetén keresünk legrövidebb utat
- Példa egy másik fajta gráfbejárásra és alkalmazásaira.
- Leghosszabb utak keresése.

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- $ightharpoonup (r, \ell)$ -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- $ightharpoonup (r,\ell)$ -fb élmenti javítása (r,ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk: Émj-okat végzünk a triviális (r,ℓ) -fb-en, míg van érdemi javítás.

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- ▶ (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r,ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés:}} \ f_0 \ \text{a triv.} \ (r, \ell)\text{-fb,} \ |V| = n,$

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

	r	a	b	c	
f_0	0	∞	∞	∞	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- $ightharpoonup (r,\ell)$ -fb élmenti javítása (r,ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

1. fázis

a	D	c	
) \(\infty	∞	∞	
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{M\"uk\"od\'es}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

1. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
			'	'	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{M\"uk\"od\'es}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

2. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
'	'	'	'	'	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r,ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $\overline{E} = \{e_1, e_2, \dots, e_m\}$. Az i-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

2. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{M\"uk\"od\'es}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

2. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{M\"uk\"od\'es}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

2. fázis

L		r	a	Ь	c	
Γ	f_0	0	∞	∞	∞	
	f_1	0	∞	-2	∞	
Γ	f_2	0	-1	-2	2	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\mathsf{M\"uk\"od\'es}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r, ℓ) -fb élmenti javítása (r, ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\mathsf{M\"uk\"od\'es}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i} -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r,ℓ) -fb élmenti javítása (r,ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\mathsf{M\"u\'k\"o}\mathsf{d\acute{e}s}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

3. fázis

	r	a	Ь	c	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f_3	0	-2	-2	2	

Könnyű olyan példát találni, ahol a Dijkstra-algoritmus konzervatív hosszfüggvény esetén hibás eredményt ad.

Azonban konzervatív hosszfüggvény esetén is igaz, hogy

- (r,ℓ) -fb élmenti javítása (r,ℓ) -fb-t eredményez, ill.
- ▶ ha egy (r, ℓ) -fb-en nem végezhető érdemi émj, akkor pontos.

Konzervatív hosszfv esetén is hasonló a stratégiát követünk:

Émj-okat végzünk a triviális (r, ℓ) -fb-en, míg van érdemi javítás.

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés:}} \ f_0 \ \text{a triv.} \ (r, \ell)\text{-fb,} \ |V| = n,$

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \dots, e_m élmenti javítások után.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algorithms: Input: $G = (V, E), \ \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $\overline{E} = \{e_1, e_2, \dots, e_m\}$. Az i-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \forall v \in V$ <u>Működés</u>: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \dots, e_m\}$. Az i-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Biz: $f_1(v) = dist_{\ell}(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \forall v \in V$ <u>Működés</u>: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Biz: $f_1(v) = dist_{\ell}(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út.

 $f_2(v) = dist_\ell(r, v)$ ha $\exists \le 2$ -élű legrövidebb rv-út.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v)$ $\forall v \in V$ $\underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n,

 $\overline{E} = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Biz: $f_1(v) = dist_{\ell}(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út.

 $f_2(v) = dist_\ell(r, v)$ ha $\exists \le 2$ -élű legrövidebb rv-út. ...

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \text{Működés:} \ f_0 \ \text{a triv.} \ (r, \ell)\text{-fb,} \ |V| = n$ $E = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi.

 f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Biz: $f_1(v) = dist_{\ell}(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út.

 $f_2(v) = dist_{\ell}(r, v)$ ha $\exists < 2$ -élű legrövidebb rv-út. ...

 $f_{n-1}(v) = dist_{\ell}(r, v)$ ha $\exists < (n-1)$ -élű legrövidebb rv-út.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Biz: $f_1(v) = dist_{\ell}(r, v)$ ha $\exists \le 1$ -élű legrövidebb rv-út.

 $f_2(v) = dist_\ell(r,v)$ ha $\exists \le 2$ -élű legrövidebb rv-út. ...

 $f_{n-1}(v) = dist_{\ell}(r, v)$ ha $\exists \leq (n-1)$ -élű legrövidebb rv-út.

Tehát $f_{n-1}(v) = dist_{\ell}(r, v) \ \forall v \in V$.

3. fázis

	r	a	b	c	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f_3	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v)$ $\forall v \in V$ <u>Működés</u>: f_0 a triv. (r, ℓ) -fb, |V| = n, $E = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émj, így $f_{n-1} = f_i$.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \text{Működés:} \ f_0 \ \text{a triv.} \ (r, \ell)\text{-fb,} \ |V| = n$ $\overline{E} = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émi, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkotják.

3. fázis

	r	a	Ь	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f_3	0	-2	-2	2	

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $\overline{E} = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émj, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkotják.

Biz: A Dijkstra esethez hasonló. Tetsz. v csúcsból visszafelé követve az végső értékeket beállító éleket $f_{n-1}(v)$ hosszúságú rv-utat találunk.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f ₃	0	-2	-2	2	

Ford-algoritmus: Input: $G = (V, E), \ell : E \to \mathbb{R}, r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \text{Működés:} \ f_0 \ \text{a triv.} \ (r, \ell)\text{-fb,} \ |V| = n$ $\overline{E} = \{e_1, e_2, \dots, e_m\}$. Az *i*-dik fázis $i = 1, 2, \dots, n-1$ -re az alábbi. f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émi, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkotják.

3. fázis

	r	a	b	С	
f_0	0	∞	∞	∞	
f_1	0	∞	-2	∞	
f_2	0	-1	-2	2	
f_3	0	-2	-2	2	

Ford-algoritmus: Input: G = (V, E), $\ell : E \to \mathbb{R}$, $r \in V$.

Output: $dist_{\ell}(r, v) \ \forall v \in V \ \underline{\text{Működés}}$: f_0 a triv. (r, ℓ) -fb, |V| = n, $\overline{E} = \{e_1, e_2, \ldots, e_m\}$. Az i-dik fázis $i = 1, 2, \ldots, n-1$ -re az alábbi. f_i -t f_{i-1} -ből kapjuk, az e_1, \ldots, e_m élmenti javítások után.

OUTPUT: $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Állítás: Ha ℓ konzervatív, akkor $dist_{\ell}(r, v) = f_{n-1}(v) \ \forall v \in V$.

Megf: Ha $f_i = f_{i-1}$, akkor a Ford-algoritmust az i-dik fázis után be lehet fejezni, hisz nincs érdemi émj, így $f_{n-1} = f_i$.

Megj: Az $f_{n-1}(v)$ -t beállító élek legrövidebb utak fáját alkotják. "**Lépésszámanalízis":** Ha a |V(G)| = n és |E(G)| = m, akkor minden fázisban $\leq m$ émj, ami $konst \cdot m$ lépés. Ez összesen $\leq konst \cdot (n-1) \cdot m \leq konst \cdot n^3$ lépés, az algoritmus hatékony.

Tfh G = (V, E), $\ell : E \to \mathbb{R}$ és $V = \{v_1, v_2, \dots, v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan $v_i v_j$ -út hosszát, aminek belső csúcsai csak v_1, v_2, \dots, v_k lehetnek.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1) $d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1) $d^{(n)}(i,j) = dist_{\ell}(v_i,v_j)$. (2) $d^{(0)}(i,i) = 0$

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1)
$$d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$$
. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1)
$$d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$$
. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$, különben $d^{(0)}(i,j) = \infty$.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1)
$$d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$$
. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$, különben $d^{(0)}(i,j) = \infty$.

(3) Ha ℓ konzervatív, akkor tetsz. i, j ill. $k \leq n$ esetén $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j), d^{(k)}(i,k+1) + d^{(k)}(k+1,j)\}$ teljesül.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

(3) Ha ℓ konzervatív, akkor tetsz. i, j ill. $k \leq n$ esetén $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j), d^{(k)}(i,k+1) + d^{(k)}(k+1,j)\}$ teljesül.

Biz: Tekintsünk egy $d^{(k+1)}(i,j)$ -t meghatározó P utat.

I. eset: $v_{k+1} \notin P$. Ekkor $d^{(k+1)}(i,j) = d^{(k)}(i,j)$, és $d^{(k+1)}(i,j) \le d^{(k)}(i,k+1) + d^{(k)}(k+1,j)$.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1) $d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$, különben $d^{(0)}(i,j) = \infty$. (3) Ha ℓ konzervatív, akkor tetsz. i,j ill. k < n esetén

 $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j), d^{(k)}(i,k+1) + d^{(k)}(k+1,j)\}$ teljesül.

Biz: Tekintsünk egy $d^{(k+1)}(i,j)$ -t meghatározó P utat.

I. eset: $v_{k+1} \notin P$. Ekkor $d^{(k+1)}(i,j) = d^{(k)}(i,j)$, és $d^{(k+1)}(i,j) \le d^{(k)}(i,k+1) + d^{(k)}(k+1,j)$.

II. eset: $v_{k+1} \in P$. Ekkor $d^{(k+1)}(i,j) \le d^{(k)}(i,j)$, és $d^{(k+1)}(i,j) = d^{(k)}(i,k+1) + d^{(k)}(k+1,j)$.

Mindkét esetben helyes a képlet.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1)
$$d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$$
. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$, különben $d^{(0)}(i,j) = \infty$.

(3) Ha ℓ konzervatív, akkor tetsz. i, j ill. $k \leq n$ esetén $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j), d^{(k)}(i,k+1) + d^{(k)}(k+1,j)\}$ teljesül.

Tfh G=(V,E), $\ell:E\to\mathbb{R}$ és $V=\{v_1,v_2,\ldots,v_n\}$. Jelölje $d^{(k)}(i,j)$ a legrövidebb olyan v_iv_j -út hosszát, aminek belső csúcsai csak v_1,v_2,\ldots,v_k lehetnek.

Megf: (1)
$$d^{(n)}(i,j) = dist_{\ell}(v_i, v_j)$$
. (2) $d^{(0)}(i,i) = 0$, $v_i v_j \in E \Rightarrow d^{(0)}(i,j) = \ell(v_i v_j)$, különben $d^{(0)}(i,j) = \infty$.

(3) Ha ℓ konzervatív, akkor tetsz. i, j ill. $k \leq n$ esetén $d^{(k+1)}(i,j) = \min\{d^{(k)}(i,j), d^{(k)}(i,k+1) + d^{(k)}(k+1,j)\}$ teljesül.

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\text{Működés}}$: $d^{(0)}$ felírása (2) alapján.

 $\overline{\mathsf{Az}\ i\mathsf{-dik}}\ \mathsf{fázis}:\ d^{(i-1)}\mathsf{-ből}\ \mathsf{meghatározzuk}\ d^{(i)}\mathsf{-t}\ (3)\ \mathsf{alapján}.$

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \overline{\forall u, v} \in V \ \underline{\mathsf{Műk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{M\"uk\"od\acute{e}s}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(0)}$	v_1	v ₂	v ₃	v ₄
	0	3	∞	∞
- v ₂	∞	0	∞	-4
<i>v</i> ₃	-2	2	0	-2
<i>v</i> ₄	∞	∞	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{M\"uk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az i-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(0)}$	v_1	v ₂	<i>v</i> ₃	<i>v</i> ₄
	0	3	∞	∞
v ₂	∞	0	∞	-4
<i>v</i> ₃	-2	2	0	-2
V4	∞	∞	4	0

$d^{(1)}$	v ₁	<i>v</i> ₂	<i>v</i> ₃	<i>v</i> ₄
	0	3	∞	∞
v ₂	∞	0	∞	-4
<i>V</i> 3	-2	1	0	-2
<i>v</i> ₄	∞	∞	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \overline{\forall u, v} \in V \ \underline{\mathsf{Műk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(1)}$			1	
a(-)	<i>v</i> ₁	<i>v</i> ₂	V3	V4
v_1	0	3	∞	∞
v ₂	∞	0	∞	-4
<i>V</i> 3	-2	1	0	-2
V4	∞	∞	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{M\"uk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(1)}$	v ₁	<i>v</i> ₂	<i>v</i> ₃	v ₄
	0	3	∞	∞
- v ₂	∞	0	∞	-4
<i>v</i> ₃	-2	1	0	-2
V4	∞	∞	4	0

$d^{(2)}$	v_1	v ₂	<i>v</i> ₃	<i>v</i> ₄
	0	3	∞	-1
- v ₂	∞	0	∞	-4
V3	-2	1	0	-3
v ₄	∞	∞	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{Műk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(2)}$	v_1	<i>v</i> ₂	<i>v</i> ₃	v ₄
<i>v</i> ₁	0	3	∞	-1
<i>v</i> ₂	∞	0	∞	-4
<i>V</i> 3	-2	1	0	-3
<i>V</i> 4	∞	8	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{Műk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(2)}$	v ₁	v ₂	v ₃	v ₄
	0	3	∞	-1
v ₂	∞	0	∞	-4
<i>v</i> ₃	-2	1	0	-3
V4	∞	∞	4	0

$d^{(3)}$	v_1	v ₂	<i>v</i> ₃	v ₄
	0	3	∞	-1
v ₂	∞	0	∞	-4
<i>v</i> ₃	-2	1	0	-3
V4	2	5	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \overline{\forall u, v} \in V \ \underline{\mathsf{Műk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$d^{(3)}$	v_1	<i>v</i> ₂	v ₃	v ₄
	0	3	∞	-1
v ₂	∞	0	∞	-4
<i>v</i> ₃	-2	1	0	-3
V4	2	5	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{M\"uk\"od\acute{e}s}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d^{(3)}$	v_1	<i>v</i> ₂	v ₃	v ₄
v ₃ -2 1 0 -3		0	3	∞	-1
	v ₂	∞	0	∞	-4
v. 2 5 4 0	v ₃	-2	1	0	-3
V4 2 3 4 0		2	5	4	0

$d^{(4)}$	v_1	<i>v</i> ₂	v ₃	<i>v</i> ₄
	0	3	3	-1
- v ₂	-2	0	0	-4
<i>V</i> 3	-2	1	0	-3
V4	2	5	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \overline{\forall u, v} \in V \ \underline{\mathsf{Műk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az *i*-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

	_			
v_1	0	3	∞	-1
v ₂	∞	0	∞	-4
<i>V</i> 3	-2	1	0	-3
<i>v</i> ₄	2	5	4	0

$d^{(4)}$	v_1	<i>v</i> ₂	v ₃	<i>v</i> ₄
	0	3	3	-1
- v ₂	-2	0	0	-4
v ₃	-2	1	0	-3
V4	2	5	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{M\"uk\"od\acute{e}s}}$: $d^{(0)}$ felírása (2) alapján.

Az i-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

OUTPUT: $d^{(n)}(u, v) = dist_{\ell}(u, v) \ \forall u, v \in V$.

"Lépésszámanalízis": A $d^{(0)}$ felírása $konst \cdot n^2$ lépés. Minden fázis $konst' \cdot n^2$. Mivel összesen n fázis van, a lépésszám legfeljebb $konst'' \cdot n^3$ lépés, az algoritmus hatékony.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d^{(3)}$	v_1	<i>v</i> ₂	v ₃	v ₄
v ₃ -2 1 0 -3		0	3	∞	-1
*3 = = 0	v ₂	∞	0	∞	-4
	v ₃	-2	1	0	-3
v ₄ 2 5 4 0	V4	2	5	4	0

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$d^{(4)}$	v_1	<i>v</i> ₂	v ₃	<i>v</i> ₄
v ₃ -2 1 0 -3	<i>v</i> ₁	0	3	3	-1
13 2 1 0 0	<i>v</i> ₂	-2	0	0	-4
v ₄ 2 5 4 0	<i>V</i> 3	-2	1	0	-3
	<i>v</i> ₄	2	5	4	0

Floyd-algoritmus: Input: G = (V, E), konzervatív $\ell : E \to \mathbb{R}$.

Output: $dist_{\ell}(u, v) \ \forall u, v \in V \ \underline{\mathsf{M\"uk\"od\'es}}$: $d^{(0)}$ felírása (2) alapján.

Az i-dik fázis: $d^{(i-1)}$ -ből meghatározzuk $d^{(i)}$ -t (3) alapján.

OUTPUT: $d^{(n)}(u, v) = dist_{\ell}(u, v) \ \forall u, v \in V.$

"Lépésszámanalízis": A $d^{(0)}$ felírása $konst \cdot n^2$ lépés. Minden fázis $konst' \cdot n^2$. Mivel összesen n fázis van, a lépésszám legfeljebb $konst'' \cdot n^3$ lépés, az algoritmus hatékony.

Ford vs Floyd: Konzervatív hosszfüggvényre működnek helyesen. Mindkét algoritmus talál bizonyítékot, ha ℓ nem konzervatív. (!!) A Ford csak egy gyökérből, a Floyd bmely két csúcs között talál legrövidebb utat. (!!)

A Ford ritka gráfokra jelentősen olcsóbb, sok él esetén a Floyd nem sokkal drágább.

Milyen gráfbejárás lehet a BFS "ellentéte"?

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megj: A BFS konkrét megvalósításában szükség van arra, hogy az elért csúcsokat úgy tároljuk, hogy könnyű legyen kiválasztani az elért csúcsok közül a legkorábban elértet. Erre egy célszerű adatstruktúra a *sor* (avagy *FIFO lista*). Ha a BFS megvalósításában ezt az adatstruktúrát *veremre* (más néven *LIFO listára*) cseréljük, akkor a DFS egy megvalósítása adódik.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

(1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

(1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).

Biz: v-t u-ból értük el, ezért m(u) < m(v). A v elérésekor u és v elért állapotúak. A DFS szerint v-t u előtt fejezzük be.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

(1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).

Biz: u-ból v-be faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, a befejezési csökken.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).

Biz: v-ből u-ba faéleken keresztül vezet irányított út. (1) miatt az út mentén a mélységi szám növekszik, a befejezési csökken.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).

Biz: m(u) < m(v) esetén a DFS miatt v az u leszármazottja lenne. Ezért m(u) > m(v). Ha u-t a v befejezése előtt érnénk el, akkor u a v leszármazottja lenne. Ezért az alábbi sorrendben történik u és v evolúciója: v elérése, v befejezése, u elérése, v befejezése.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.

Biz: Indirekt. Ha uv keresztél, akkor (4) miatt m(u) > m(v), továbbá vu is keresztél, ezért m(v) > m(u). Ellentmondás.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.

Biz: A DFS fa visszaélhez tartozó alapköre a G egy irányított köre.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.
- (7) Ha DFS után nincs visszaél, akkor G-ben nincs irányított kör.

Mélységi bejárás (DFS): a bejárás során mindig a legutolsónak elért csúcsot választjuk az 1. esetben.

Mélységi és befejezési számozás: DFS után m(v) ill. b(v) a v csúcs elérési ill. befejezési sorrendben kapott sorszáma.

Megf: Tfh a G gráf éleit DFS után osztályoztuk.

- (1) Ha uv faél, akkor m(u) < m(v) és b(u) > b(v).
- (2) Ha uv előreél, akkor m(u) < m(v) és b(u) > b(v).
- (3) Ha uv visszaél, akkor m(u) > m(v) és b(u) < b(v).
- (4) Ha uv keresztél, akkor m(u) > m(v) és b(u) > b(v).
- (5) Irányítatlan gráf DFS bejárása után nincs keresztél.
- (6) Ha DFS után van visszaél, akkor G tartalmaz irányított kört.
- (7) Ha DFS után nincs visszaél, akkor G-ben nincs irányított kör.

Biz: Bmely irányított körnek van olyan uv éle, amire b(u) < b(v). Ez az él csak visszaél lehet.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

1 2 *i j n*

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Ha ugyanis lenne az így megirányított gráfban irányított kör, akkor az élei mentén a számok végig növekednének, ami lehetetlen.

Azt fogjuk igazolni, hogy a fenti példa minden DAG-ot leír.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_i \in E \Rightarrow i < j)$

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** $(G \text{ irányított gráf DAG}) \iff (V(G)\text{-nek} \exists \text{ top. sorrendje}).$

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$

Tétel: (G irányított gráf DAG) \iff (V(G)-nek \exists top. sorrendje).

Biz: Tfh \exists top. sorrend. Láttuk, hogy G ekkor DAG. \checkmark

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** $(G \text{ irányított gráf DAG}) \iff (V(G)\text{-nek} \exists \text{ top. sorrendje}).$

Biz:

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** $(G \text{ irányított gráf DAG}) \iff (V(G)\text{-nek} \exists \text{ top. sorrendje}).$

Biz: Most tfh G DAG, és futtassunk rajta egy DFS-t. Láttuk, hogy a DFS után nem lesz visszaél, ezért minden uv irányított élre b(u) > b(v) teljesül. Ezért a csúcsok befejezési sorrendjének megfordítása a G csúcsainak egy topologikus sorrendje.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** $(G \text{ irányított gráf DAG}) \iff (V(G)\text{-nek} \exists \text{ top. sorrendje}).$

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \dots, v_n\}, v_i v_j \in E \Rightarrow i < j)$

Tétel: (G irányított gráf DAG) \iff (V(G)-nek \exists top. sorrendje). Köv: Irányított gráf aciklikussága DFS-sel gyorsan eldönthető: ha van visszaél, akkor a visszaél DFS-fabeli alapköre G egy irányított köre, így G nem DAG. Ha pedig nincs visszaél, akkor a fordított befejezési sorrend a G egy topologikus sorrendje, G tehát DAG.

Def: A G = (V, E) irányított gráf aciklikus (más néven DAG), ha G nem tartalmaz irányított kört.

Példa: DAG-ot pl úgy kaphatunk, hogy egy G irányítatlan gráf csúcsait csupa különböző számmal megszámozzuk, és minden élt a kisebb számot viselő csúcsból a nagyobba irányítunk.

Def: A G = (V, E) irányított gráf csúcsainak topologikus sorrendje alatt a csúcsok olyan sorrendjét értjük, amire igaz, hogy minden irányított él a sorban előbb álló csúcsból vezet a sorban későbbi csúcsba. $(V = \{v_1, v_2, \ldots, v_n\}, v_i v_j \in E \Rightarrow i < j)$ **Tétel:** $(G \text{ irányított gráf DAG}) \iff (V(G)\text{-nek } \exists \text{ top. sorrendje})$. Köv: Irányított gráf aciklikussága DFS-sel gyorsan eldönthető: ha van visszaél, akkor a visszaél DFS-fabeli alapköre G -gey irányított köre, így G -nem DAG. Ha pedig nincs visszaél, akkor a fordított

Megj: DAG-ban topologikus sorrendet forráskeresések és forrástörlések alkalmazásával is találhatunk.

befejezési sorrend a G egy topologikus sorrendje, G tehát DAG.

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása.

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása. Legrövidebb utat tudunk keresni, tudunk vajon leghosszabbat is?

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása. Legrövidebb utat tudunk keresni, tudunk vajon leghosszabbat is? Ötlet: Az $\ell'(uv) = -\ell(uv)$ élhosszokkal a leghosszabb utak legrövidebbekké válnak. Olyanokat pedig tudunk keresni.

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása. Legrövidebb utat tudunk keresni, tudunk vajon leghosszabbat is? Ötlet: Az $\ell'(uv) = -\ell(uv)$ élhosszokkal a leghosszabb utak legrövidebbekké válnak. Olyanokat pedig tudunk keresni. Gond: A módszerünk csak konzervatív élhosszokra működik. Irányítatlan gráfon ez nemnegatív élhosszokat jelent, ezért ez az ötlet itt nem segít. Irányított esetben nem baj a negatív élhossz, feltéve, hogy G DAG. Ekkor Ford, Floyd bármelyike használható.

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása. Legrövidebb utat tudunk keresni, tudunk vajon leghosszabbat is? Ötlet: Az $\ell'(uv) = -\ell(uv)$ élhosszokkal a leghosszabb utak legrövidebbekké válnak. Olyanokat pedig tudunk keresni. Gond: A módszerünk csak konzervatív élhosszokra működik. Irányítatlan gráfon ez nemnegatív élhosszokat jelent, ezért ez az ötlet itt nem segít. Irányított esetben nem baj a negatív élhossz, feltéve, hogy G DAG. Ekkor Ford, Floyd bármelyike használható. Jó hír: Van egy még gyorsabb módszer: a dinamikus programozás. Ennek segítségével tetsz. G DAG minden v csúcsához ki tudjuk számítani a v-be vezető leghosszabb utat. (Sőt! ...)

Első pillantásra haszontalannak tűnik, de matematikailag érdekes kérdés egy gráf két csúcsa között a leghosszabb út megtalálása. Legrövidebb utat tudunk keresni, tudunk vajon leghosszabbat is? Otlet: Az $\ell'(uv) = -\ell(uv)$ élhosszokkal a leghosszabb utak legrövidebbekké válnak. Olyanokat pedig tudunk keresni. Gond: A módszerünk csak konzervatív élhosszokra működik. Irányítatlan gráfon ez nemnegatív élhosszokat jelent, ezért ez az ötlet itt nem segít. Irányított esetben nem baj a negatív élhossz, feltéve, hogy G DAG. Ekkor Ford, Floyd bármelyike használható. Jó hír: Van egy még gyorsabb módszer: a dinamikus programozás. Ennek segítségével tetsz. G DAG minden v csúcsához ki tudjuk számítani a v-be vezető leghosszabb utat. (Sőt! ...) **Leghosszabb út DAG-ban** Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: $\max\{\ell(P) : P \text{ } v\text{-be vezető út}\} \text{ minden } v \in V \text{ csúcsra.}$ <u>Működés</u>: $|1|V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása. $2 \mid i = 1, 2, ..., n$: $f(v_i) = \max\{\max\{f(v_i) + \ell(v_i v_i) : v_i v_i \in E\}, 0\}$ Output: $f(v) \forall v \in V$ ◆□ ▶ ◆周 ▶ ◆ 章 ▶ ○ 章 → り ℚ (^)

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$.

Output: $\max\{\ell(P): P \text{ v-be } \overline{\text{vezet}} \text{\'o } \text{\'ut}\} \text{ minden } v \in V \text{ cs\'ucsra}.$

Működés: $1 V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2} \ i = 1, 2, \dots, \textit{n}: \ f(\textit{v}_i) = \max\{\max\{f(\textit{v}_j) + \ell(\textit{v}_j\textit{v}_i) : \textit{v}_j\textit{v}_i \in \textit{E}\}, 0\}$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$.

Output: $\max\{\ell(P): P \text{ v-be vezető út}\}\ \text{minden } v \in V \text{ csúcsra.}$

<u>Működés</u>: $1 V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ v-be vezető út} \}$ minden $v \in V$ csúcsra.

<u>Működés</u>: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

2 $i = 1, 2, \ldots, n$: $f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ v-be vezető út} \}$ minden $v \in V$ csúcsra.

Működés: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

2 i = 1, 2, ..., n: $f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ v-be vezető út} \}$ minden $v \in V$ csúcsra.

<u>Működés</u>: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

2 $i = 1, 2, \ldots, n$: $f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ v-be vezető út} \}$ minden $v \in V$ csúcsra.

<u>Működés</u>: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2 \mid i = 1, 2, ..., n: f(v_i) = \max\{\max\{f(v_i) + \ell(v_i v_i) : v_i v_i \in E\}, 0\}}$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ v-be vezető út} \}$ minden $v \in V$ csúcsra.

<u>Működés</u>: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

2 $i = 1, 2, \ldots, n$: $f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$.

<u>Működés</u>: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2} \ i = 1, 2, \dots, n: \ f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Output: $f(v) \forall v \in V$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ v-be vezető út} \}$ minden $v \in V$ csúcsra.

<u>Működés</u>: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

2 $i = 1, 2, \ldots, n$: $f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Output: $f(v) \forall v \in V$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$.

 $\underline{\mathsf{Output}} \colon \max\{\ell(P) : P \text{ v-be } \overline{\mathsf{vezet}} \text{\'o } \mathsf{\acute{u}t}\} \text{ minden } v \in V \text{ cs\'ucsra}.$

Működés: $1 V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2} \ i = 1, 2, \dots, n: \ f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Output: $f(v) \forall v \in V$

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ } v\text{-be } \text{ } vezető \text{ } \text{út} \}$ minden $v \in V$ csúcsra.

Működés: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2} \ i = 1, 2, \dots, n: \ f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Output: $f(v) \forall v \in V$

Helyesség: Ha a v_i -be vezető leghosszabb út utolsó előtti csúcsa v_j , akkor $f(v_i) = f(v_j) + \ell(v_j v_i)$.

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ } v\text{-be } \text{ } vezető \text{ } \text{út} \}$ minden $v \in V$ csúcsra.

Működés: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2} \ i = 1, 2, \dots, n: \ f(v_i) = \max\{\max\{f(v_j) + \ell(v_j v_i) : v_j v_i \in E\}, 0\}$

Output: $f(v) \forall v \in V$

Helyesség: Ha a v_i -be vezető leghosszabb út utolsó előtti csúcsa v_i , akkor $f(v_i) = f(v_i) + \ell(v_i v_i)$.

Megj: Ha a fenti algoritmusban minden csúcsra megjelöljük az f(v) értéket beállító élt (éleket), akkor a megjelölt élek minden v csúcsba megadnak egy leghosszabb utat. Sőt: minden v-be vezető leghosszabb megkapható így.

Leghosszabb út DAG-ban Input: G = (V, E) DAG, $\ell : E \to \mathbb{R}$. Output: max $\{\ell(P) : P \text{ } v\text{-be } \text{ } vezető \text{ } \text{út} \}$ minden $v \in V$ csúcsra.

Működés: $\boxed{1}$ $V = \{v_1, v_2, \dots, v_n\}$ top. sorrend meghatározása.

 $\boxed{2} \ i = 1, 2, \dots, \textit{n}: \ f(\textit{v}_i) = \max\{\max\{f(\textit{v}_j) + \ell(\textit{v}_j\textit{v}_i) : \textit{v}_j\textit{v}_i \in \textit{E}\}, 0\}$

Output: $f(v) \forall v \in V$

Helyesség: Ha a v_i -be vezető leghosszabb út utolsó előtti csúcsa v_i , akkor $f(v_i) = f(v_i) + \ell(v_i v_i)$.

Megj: Ha a fenti algoritmusban minden csúcsra megjelöljük az f(v) értéket beállító élt (éleket), akkor a megjelölt élek minden v csúcsba megadnak egy leghosszabb utat. Sőt: minden v-be vezető leghosszabb megkapható így.

Kínzó kérdés: Van bármi értelme leghosszabb utakat keresni?

Egy a, b, \ldots tevékenységekből álló projektet kell végrehajtanunk. **Precedenciafeltételek:** bizonyos (u, v) párok esetén előírás, hogy

az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét követően c(uv) időkorlát elteltével kezdhető.

Cél: minden v tevékenységehez olyan $k(v) \geq 0$ kezdési időpont meghatározása, ami nem sérti a preferenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

Egy a,b,\ldots tevékenységekből álló projektet kell végrehajtanunk.

Precedenciafeltételek: bizonyos (u, v) párok esetén előírás, hogy az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét követően c(uv) időkorlát elteltével kezdhető.

Cél: minden v tevékenységehez olyan $k(v) \geq 0$ kezdési időpont meghatározása, ami nem sérti a preferenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

G irányított gráf csúcsai a tevékenységek, élei pedig a precedenciafeltételek, az uv él hossza c(uv).

Megf: (1) Ha G nem DAG, akkor a projekt nem hajtható végre.

Egy a,b,\ldots tevékenységekből álló projektet kell végrehajtanunk.

Precedenciafeltételek: bizonyos (u, v) párok esetén előírás, hogy az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét követően c(uv) időkorlát elteltével kezdhető.

Cél: minden v tevékenységehez olyan $k(v) \geq 0$ kezdési időpont meghatározása, ami nem sérti a preferenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

G irányított gráf csúcsai a tevékenységek, élei pedig a precedenciafeltételek, az uv él hossza c(uv).

Megf: (1) Ha G nem DAG, akkor a projekt nem hajtható végre.

(2) Ha G DAG, akkor minden v tevékenység legkorábbi kezdési időpontja a v-be vezető leghosszabb út hossza.

Egy a, b, \ldots tevékenységekből álló projektet kell végrehajtanunk. **Precedenciafeltételek:** bizonyos (u, v) párok esetén előírás, hogy az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét követően c(uv) időkorlát elteltével kezdhető.

Cél: minden v tevékenységehez olyan $k(v) \geq 0$ kezdési időpont meghatározása, ami nem sérti a preferenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

G irányított gráf csúcsai a tevékenységek, élei pedig a precedenciafeltételek, az uv él hossza c(uv).

Megf: (1) Ha G nem DAG, akkor a projekt nem hajtható végre.

(2) Ha G DAG, akkor minden v tevékenység legkorábbi kezdési időpontja a v-be vezető leghosszabb út hossza.

Köv: A PERT probléma megoldása nem más, mint a G DAG minden csúcsára az oda vezető leghosszabb út meghatározása.

Egy a, b, \ldots tevékenységekből álló projektet kell végrehajtanunk. **Precedenciafeltételek:** bizonyos (u, v) párok esetén előírás, hogy az u tevékenységet a v előtt kell elvégezni, ezért v az u kezdetét

követően c(uv) időkorlát elteltével kezdhető.

Cél: minden v tevékenységehez olyan $k(v) \geq 0$ kezdési időpont meghatározása, ami nem sérti a preferenciafeltételeket, és a projekt végrehajtási ideje (a legnagyobb k(v) érték) minimális.

G irányított gráf csúcsai a tevékenységek, élei pedig a precedenciafeltételek, az uv él hossza c(uv).

Megf: (1) Ha G nem DAG, akkor a projekt nem hajtható végre.

(2) Ha G DAG, akkor minden v tevékenység legkorábbi kezdési időpontja a v-be vezető leghosszabb út hossza.

Köv: A PERT probléma megoldása nem más, mint a G DAG minden csúcsára az oda vezető leghosszabb út meghatározása.

Terminológia: *G* leghosszabb útja kritikus út, amiből több is lehet. Kritikus út csúcsai a kritikus tevékenységek.

Megf: Ha egy kritikus tevékenység nem kezdődik el a lehető legkorábbi időpontban, akkor az egész projekt végrehajtása csúszik.

Köszönöm a figyelmet!