- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

22 luglio 2016

(Cognome)												_			(No	me)			-	ume	ı ma	trice	ola)			

1	0000
2	
3	
4	0000
5	0000
6	
7	
8	
9	
10	0000

1. Dire per quale codominio la funzione $f(x) = \frac{1}{1+xe^x}$ definita su $D = [0, +\infty[$ è bigettiva A: N.A. B: $]0, +\infty[$ C: N.E. D:]0, 1[E:]0, 1[

2. Sia y'' - y = 0, y(0) = 0 y'(0) = 1, allora y'(1) vale A: N.A. B: $\frac{e^2 - 1}{2e}$ C: $\frac{e^2 + 1}{2e}$ D: $-\sin(1)$ E: $\sin(1)$

3. Trovare le soluzioni complesse di $16z^2-z^6=0$ con parte immaginaria di z negativa A: z=2i,-2i B: z=-i C: z=-2i D: N.E. E: N.A.

4. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{n^2 \, 3^n}{\mathrm{e}^n (1+n)} x^n$$

A: x = e B: x = -1.87 C: $x = \sqrt{\pi}$ D: $x = -\pi$ E: N.A.

5. Data $f(x) = (\sin(x^2))^{x^3}$ allora $f'(\sqrt{\pi/2})$ è uguale a A: $\sin(\sqrt{\pi/2})^{3(\frac{\pi}{2})^2}$ B: N.A. C: 1 D: -2 E: 0

6. Date le funzioni $f(x) = x^2$ e $g(x) = \log(x+1)$ la funzione composta g(f(x)) risulta definita in

A: $(-\infty, 0)$ B: N.A. C: \mathbb{R} D: $(-\infty, -1) \cup (1, +\infty)$ E: $(-1, +\infty)$

7. inf min sup e max dell' insieme

$$A = \{ x \in \mathbb{R} : \log(x^2) < e \}$$

valgono

A: $\{0, N.E., \sqrt{e^e}, N.E.\}$ B: N.A. C: $\{-\infty, N.E., +\infty, N.E.\}$ D: $\{0, 0, \sqrt{e^e}, N.E.\}$ E: $\{-e^{e/2}, N.E., e^{e/2}, N.E.\}$

8. Il limite

$$\lim_{x \to 0} \frac{3^{x^3} - 1}{\sin(x)\tan(2x)}$$

vale

A: N.A. B: 0 C: $\log(1/3)$ D: 1/2 E: 1/3

9. Lo sviluppo di Taylor di grado 4 relativo al punto $x_0=0$ della funzione $y(x)=\cos(x^2)$ vale A: $1+2\cos(x^2)x+o(x^3)$ B: $1+\frac{x^4}{4!}+o(x^5)$ C: N.A. D: $1-\frac{x^4}{2}+o(x^4)$ E: $x-\frac{x^3}{3!}+o(x^3)$

10. L'integrale

$$\int_0^1 x e^{-x^2 + 2} \, dx$$

779 lo

A: $e^2 - e$ B: $\frac{e-1}{2}$ C: N.A. D: e^2 E: $\frac{e^2 - e}{2}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

22 luglio 2016

(Cognome)												_			(No	me)			-	ume	ı ma	trice	ola)			

1	0000
2	
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{n^2 \, 3^n}{\mathrm{e}^n (1+n)} x^n$$

A: x = e B: $x = \sqrt{\pi}$ C: N.A. D: $x = -\pi$ E: x = -1.87

- 2. Trovare le soluzioni complesse di $16z^2 z^6 = 0$ con parte immaginaria di z negativa A: N.E. B: z = -2i C: N.A. D: z = -i E: z = 2i, -2i
- 3. Il limite

$$\lim_{x \to 0} \frac{3^{x^3} - 1}{\sin(x)\tan(2x)}$$

vale

A: 1/3 B: N.A. C: 0 D: 1/2 E: $\log(1/3)$

- 4. Lo sviluppo di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $y(x) = \cos(x^2)$ vale A: $1 + \frac{x^4}{4!} + o(x^5)$ B: $x \frac{x^3}{3!} + o(x^3)$ C: N.A. D: $1 + 2\cos(x^2)x + o(x^3)$ E: $1 \frac{x^4}{2} + o(x^4)$
- 5. Data $f(x) = (\sin(x^2))^{x^3}$ allora $f'(\sqrt{\pi/2})$ è uguale a A: -2 B: N.A. C: 0 D: $\sin(\sqrt{\pi/2})^{3(\frac{\pi}{2})^2}$ E: 1
- 6. Dire per quale codominio la funzione $f(x) = \frac{1}{1+xe^x}$ definita su $D = [0, +\infty[$ è bigettiva A: $]0, +\infty[$ B: N.E. C:]0, 1[D:]0, 1] E: N.A.
- 7. L'integrale

$$\int_0^1 x e^{-x^2+2} \, dx$$

vale

A:
$$\frac{e^2-e}{2}$$
 B: N.A. C: e^2-e D: $\frac{e-1}{2}$ E: e^2

- 8. Sia y'' y = 0, y(0) = 0 y'(0) = 1, allora y'(1) vale A: $\frac{e^2 + 1}{2e}$ B: $\sin(1)$ C: N.A. D: $\frac{e^2 - 1}{2e}$ E: $-\sin(1)$
- 9. Date le funzioni $f(x) = x^2$ e $g(x) = \log(x+1)$ la funzione composta g(f(x)) risulta definita in

A:
$$(-\infty, -1) \cup (1, +\infty)$$
 B: $(-\infty, 0)$ C: \mathbb{R} D: N.A. E: $(-1, +\infty)$

10. inf min sup e max dell' insieme

$$A = \{ x \in \mathbb{R} : \log(x^2) < e \}$$

valgono

A:
$$\{-e^{e/2}, N.E., e^{e/2}, N.E.\}$$
 B: $\{0, 0, \sqrt{e^e}, N.E.\}$ C: $\{0, N.E., \sqrt{e^e}, N.E.\}$ D: N.A. E: $\{-\infty, N.E., +\infty, N.E.\}$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

22 luglio 2016

																	1				
		 (Co	gnor	ne)				_	 		(No	me)			-	(N	lume	ro d	i ma	trice	ola)

1	0000
2	
3	0000
4	0000
5	00000
6	
7	
8	0000
9	0000
10	0000

1. inf min sup e max dell' insieme

$$A = \{ x \in \mathbb{R} : \log(x^2) < e \}$$

valgono

A: $\{0,0,\sqrt{\mathrm{e^e}},N.E.\}$ B: $\{0,N.E.,\sqrt{\mathrm{e^e}},N.E.\}$ C: $\{-\infty,N.E.,+\infty,N.E.\}$ D: $\{-\mathrm{e^{e/2}},N.E.,\mathrm{e^{e/2}},N.E.\}$ E: N.A.

2. Sia y'' - y = 0, y(0) = 0 y'(0) = 1, allora y'(1) vale

A: N.A. B:
$$-\sin(1)$$
 C: $\frac{e^2-1}{2e}$ D: $\frac{e^2+1}{2e}$ E: $\sin(1)$

3. Il limite

$$\lim_{x \to 0} \frac{3^{x^3} - 1}{\sin(x)\tan(2x)}$$

vale

A: 1/3 B: $\log(1/3)$ C: N.A. D: 1/2 E: 0

4. Date le funzioni $f(x) = x^2$ e $g(x) = \log(x+1)$ la funzione composta g(f(x)) risulta definita in

A:
$$\mathbb{R}$$
 B: $(-\infty, 0)$ C: N.A. D: $(-\infty, -1) \cup (1, +\infty)$ E: $(-1, +\infty)$

5. L'integrale

$$\int_{0}^{1} x e^{-x^{2}+2} dx$$

vale

A: N.A. B:
$$e^2 - e$$
 C: $\frac{e-1}{2}$ D: $\frac{e^2 - e}{2}$ E: e^2

6. Trovare le soluzioni complesse di $16z^2 - z^6 = 0$ con parte immaginaria di z negativa

A:
$$z = -i$$
 B: $z = -2i$ C: N.A. D: $z = 2i, -2i$ E: N.E.

7. Data $f(x) = (\sin(x^2))^{x^3}$ allora $f'(\sqrt{\pi/2})$ è uguale a

A: N.A. B:
$$-2$$
 C: 1 D: $\sin(\sqrt{\pi/2})^{3(\frac{\pi}{2})^2}$ E: 0

8. Dire per quale codominio la funzione $f(x) = \frac{1}{1+xe^x}$ definita su $D = [0, +\infty[$ è bigettiva

A:
$$]0,1[$$
 B: N.A. C: $]0,+\infty[$ D: $]0,1[$ E: N.E.

9. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{n^2 \, 3^n}{\mathrm{e}^n (1+n)} x^n$$

A: N.A. B:
$$x = -1.87$$
 C: $x = \sqrt{\pi}$ D: $x = e$ E: $x = -\pi$

10. Lo sviluppo di Taylor di grado 4 relativo al punto $x_0 = 0$ della funzione $y(x) = \cos(x^2)$ vale

$$\text{A: } 1 - \frac{x^4}{2} + o(x^4) \quad \text{ B: N.A.} \quad \text{C: } x - \frac{x^3}{3!} + o(x^3) \quad \text{D: } 1 + 2\cos(x^2)x + o(x^3) \quad \text{E: } 1 + \frac{x^4}{4!} + o(x^5)$$

- Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo.
- Tempo 30 minuti. Durante la prova non si può uscire dall'aula.
- Non si possono consultare libri, appunti, manuali.
- Non si possono usare calcolatrici, computer di ogni genere o telefoni cellulari.
- Consegnare solo il foglio risposte.
- Le risposte valide sono SOLO quelle segnate sul foglio che si consegna.
- Ogni domanda ha una e una sola risposta giusta.
- N.A. significa "nessuna delle altre", mentre N.E. significa "non esiste"
- Non usare matite e/o penne rosse sul foglio risposte.
- Indicare la risposta nell'apposita maschera con una "X".
- Per effettuare correzioni, barrare tutta la linea e scrivere CHIARAMENTE e INEQUIVOCABILMENTE la risposta corretta a destra della linea stessa.

22 luglio 2016

(Cognome)												_			(No	me)			-	ume	ı ma	trice	ola)			

1	0000
2	00000
3	00000
4	
5	
6	
7	
8	
9	
10	0000

1. L'integrale

$$\int_0^1 x e^{-x^2 + 2} dx$$

vale

A:
$$\frac{e^2-e}{2}$$
 B: N.A. C: $\frac{e-1}{2}$ D: e^2 E: e^2-e

2. Data $f(x) = (\sin(x^2))^{x^3}$ allora $f'(\sqrt{\pi/2})$ è uguale a

A: N.A. B:
$$-2$$
 C: 1 D: $\sin(\sqrt{\pi/2})^{3(\frac{\pi}{2})^2}$ E: 0

3. Quale tra questi punti appartiene all'insieme di convergenza della serie di potenze

$$\sum_{n=1}^{+\infty} \frac{n^2 \, 3^n}{e^n (1+n)} x^n$$

A:
$$x = -1.87$$
 B: $x = e$ C: N.A. D: $x = -\pi$ E: $x = \sqrt{\pi}$

- 4. Lo sviluppo di Taylor di grado 4 relativo al punto $x_0=0$ della funzione $y(x)=\cos(x^2)$ vale A: $1-\frac{x^4}{2}+o(x^4)$ B: $x-\frac{x^3}{3!}+o(x^3)$ C: $1+\frac{x^4}{4!}+o(x^5)$ D: $1+2\cos(x^2)x+o(x^3)$ E: N.A.
- 5. Trovare le soluzioni complesse di $16z^2-z^6=0$ con parte immaginaria di z negativa A: z=2i,-2i B: z=-2i C: N.A. D: z=-i E: N.E.
- 6. Dire per quale codominio la funzione $f(x) = \frac{1}{1+xe^x}$ definita su $D = [0, +\infty[$ è bigettiva A: $]0, +\infty[$ B: N.A. C:]0, 1[D: N.E. E:]0, 1]
- 7. Date le funzioni $f(x) = x^2$ e $g(x) = \log(x+1)$ la funzione composta g(f(x)) risulta definita in

A:
$$(-\infty,0)$$
 B: $(-1,+\infty)$ C: \mathbb{R} D: N.A. E: $(-\infty,-1)\cup(1,+\infty)$

8. Il limite

$$\lim_{x \to 0} \frac{3^{x^3} - 1}{\sin(x)\tan(2x)}$$

vale

A: 0 B:
$$1/2$$
 C: $\log(1/3)$ D: $1/3$ E: N.A.

9. inf min sup e max dell' insieme

$$A = \{x \in \mathbb{R} : \log(x^2) < e\}$$

valgono

A:
$$\{-\infty, N.E., +\infty, N.E.\}$$
 B: $\{0, N.E., \sqrt{\mathrm{e^e}}, N.E.\}$ C: $\{0, 0, \sqrt{\mathrm{e^e}}, N.E.\}$ D: N.A. E $\{-\mathrm{e^{e/2}}, N.E., \mathrm{e^{e/2}}, N.E.\}$

10. Sia y'' - y = 0, y(0) = 0 y'(0) = 1, allora y'(1) vale

A:
$$\frac{e^2+1}{2e}$$
 B: $\sin(1)$ C: $\frac{e^2-1}{2e}$ D: N.A. E: $-\sin(1)$

22 luglio 2016

(Cognome)												_			(No	me)			_	ume		trice	ola)			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

22 luglio 2016

(Cognome)												_			(No	me)			_	ume		trice	ola)			

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

22 luglio 2016

(Cognome)									(Nome)									(Numero di matricola)												

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

22 luglio 2016

(Cognome)									(Nome)									(Numero di matricola)												

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	

22 luglio 2016

PARTE B

1. Studiare al variare di $\lambda \in \mathbb{R}$ la funzione

$$f(x) = |\log(\lambda + x)| - \lambda$$

Calcolare per $\lambda=1$, l'area della porzione di piano finita compresa tra l'asse delle x e il grafico della f.

Soluzione. Il dominio della funzione è $D = \{x \in \mathbb{R} : x > -\lambda\}$, in tale insieme si ha

$$f(x) = \begin{cases} -\log(x+\lambda) - \lambda, & \text{se } -\lambda < x < 1 - \lambda, \\ \log(x+\lambda) - \lambda, & \text{se } x \ge 1 - \lambda. \end{cases}$$

La funzione f risulta continua in D, in particolare $\lim_{x\to 1-\lambda} f(x) = -\lambda$ e si ha

$$\lim_{x \to -\lambda^+} f(x) = \lim_{x \to +\infty} f(x) = +\infty \qquad \forall \, \lambda \in \mathbb{R}.$$

La funzione f è derivabile in $D \setminus \{1 - \lambda\}$ e si ha

$$f'(x) = \begin{cases} -\frac{1}{x+\lambda}, & \text{se } -\lambda < x < 1 - \lambda, \\ \\ \frac{1}{x+\lambda}, & \text{se } x > 1 - \lambda. \end{cases}$$

Quindi f risulta decrescente per $-\lambda < x < 1 - \lambda$ e crescente per $x > 1 - \lambda$, si ha un punto di mimino assoluto in $x = 1 - \lambda$, anche se in tale punto f non è derivabile. Il minimo vale $f(1-\lambda) = -\lambda$. La funzione poi risulta convessa per $-\lambda < x < 1 - \lambda$ e concava per $x > 1 - \lambda$.

La regione di piano in questione è delimitata dai punti di intersezione con l'asse delle x che hanno ascissa $x_1={\rm e}^{-1}-1$ e $x_2={\rm e}-1$ e in tale intervallo f risulta negativa. Pertanto

$$A = \int_{e^{-1}-1}^{e^{-1}} \left| |\log(x) + 1| - 1 \right| dx$$

$$= -\int_{e^{-1}-1}^{e^{-1}} \left| \log(x) + 1 \right| - 1 dx = \int_{e^{-1}-1}^{0} -\log(x+1) - 1 dx - \int_{0}^{e^{-1}} \log(x+1) - 1 dx$$

$$= (-\log(1+x) - x \log(1+x)) \Big|_{e^{-1}}^{0} + (-2x + \log(1+x) + x \log(1+x)) \Big|_{0}^{e^{-1}}$$

$$= \frac{e^{2} - 2e + 1}{e^{2}}.$$

Figura 1: Grafico di $f(x) = |\log(\lambda + x)| - \lambda$, per $\lambda = 1$

Il grafico approssimativo è quindi il seguente, che non cambia in maniera qualitativa al variare di λ .

2. Data l'equazione

$$y''(x) - 3y'(x) + 2y(x) = e^x.$$

- (a) Si trovi lo spazio delle soluzioni dell'omogenea
- (b) Si trovi una soluzione dell'equazione differenziale con y(0) = 1, y'(0) = 0.
- (c) Si dica se esiste qualche soluzione dell'equazione differenziale tale che $\lim_{x\to\infty} y(x)$ esiste ed è minore o uguale a zero?

Soluzione: (a) L'equazione associata all'omogenea è $\lambda^2 - 3\lambda + 2 = 0$, con soluzioni $\lambda_1 = 2$, $\lambda_2 = 1$. Le soluzioni dell'equazione omogenea sono

$$y_0(x) = A e^{2x} + B e^x$$
 $A, B \in \mathbb{R}$.

(b) Il termine non omogeneo e^x è risonante. Cerchiamo allora una soluzione particolare della forma $y_p = cx\,e^x$

Si trova facilmente che c=-1, quindi l'integrale generale dell'equazione completa è

$$y_f(x) = A e^{2x} + B e^x - x e^x.$$

Imponendo le condizioni iniziali si ha A + B = 1, 2A + B - 1 = 0 ovvero A = 0 e B = 1; la soluzione cercata è $y(x) = (1 - x) e^x$.

- (c) Si ha che per A < 0 e B qualsiasi o per A = 0 e $B \le 0$ vale $\lim_{x \to \infty} y(x) = -\infty$.
- 3. Dato $\lambda \in \mathbb{R}$ si studi la convergenza della serie

$$\sum_{n=1}^{\infty} \frac{\lambda^2 + \lambda + 1}{\log(\lambda)} (x - 1)^n$$

Soluzione: Si tratta di una semplice serie di potenze osservando che

$$\sum_{n=1}^{\infty} \frac{\lambda^2 + \lambda + 1}{\log(\lambda)} (x-1)^n = \frac{\lambda^2 + \lambda + 1}{(\log(\lambda)} \sum_{n=1}^{\infty} (x-1)^n \quad \text{per } \lambda > 0, \ \lambda \neq 1.$$

La restruzione $\lambda > 0$, $\lambda \neq 1$ serve per dare senso alla frazione, evitando che si annulli il denominatore.

Pertanto la serie converge se |x-1|<1 e inoltre, usando la formula per la somma (se convergente) di una progressione geometrica $\sum_{n=0}^{\infty}q^n=\frac{1}{1-q}$ si ha

$$\sum_{n=1}^{\infty} \frac{\lambda^2 + \lambda + 1}{\log(\lambda)} (x - 1)^n = \frac{\lambda^2 + \lambda + 1}{\log(\lambda)} \left[\frac{1}{1 - (x - 1)} - 1 \right], \quad \text{per } 0 < x < 2, \ \lambda > 0, \ \lambda \neq 1.$$

La serie non converge se $|x-1| \ge 1$. Per affermare questo osserviamo che tale risultato è vero per la serie $\sum_{n=1}^{\infty} (x-1)^n$ e dato che il fattore moltiplicativo $\frac{\lambda^2 + \lambda + 1}{\log(\lambda)}$ non si annulla mai, lo stesso vale anche per la serie di potenze $\sum_{n=1}^{\infty} \frac{\lambda^2 + \lambda + 1}{\log(\lambda)} (x-1)^n$.

4. Data la funzione

$$F(x) = \int_{1}^{x} \frac{\arcsin(t/2)}{t+1} dt$$

si dimostri che è continua e derivabile su (-1,2) e si scriva l'equazione della retta tangente a F nel punto x=1.

Studiare gli intervalli di monotonia.

Soluzione: La funzione $\arcsin(t/2)$ è definita per -1 < t/2 < 1, ovvero per -2 < t < 2. La funzione t+1 è definita per $t \neq -1$, quindi scelto un $x \in (-1,2)$ sicuramente la funzione $\frac{\arcsin(t/2)}{t+1}$ è definita e continua nell'intervallo [1,x] ([x,1] se x < 1). Dunque la funzione F(x) è ben definita per ogni $x \in (-1,2)$. Inoltre, dato che $\frac{\arcsin(t/2)}{t+1}$ è continua, per il teorema fondamentale del calcolo abbiamo anche che F(x) è derivabile su (-1,2) con derivata $F'(x) = \frac{\arcsin(x/2)}{x+1}$. Pertanto la funzione derivata risulta positiva per $0 < x \le 2$ e negativa per -1 < x < 0, e la funzione F ha un punto di minimo per x = 0.

Per x=1 abbiamo $F'(1)=\frac{\arcsin(1/2)}{2}=\frac{\pi}{12}$ e F(1)=0 quindi la retta tangente al grafico y=F(x), che ha equazione y=F(1)+F'(1)(x-1), diventa

$$y = \frac{\pi}{12}(x-1).$$