11 Veröffentlichungsnummer:

0 239 931 A2

12

Q

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 87104466.5

(9) Int. Cl.4: C07D 257/04, C12Q 1/26

2 Anmeldetag: 26.03.87

Priorität: 04.04.86 DE 3611227

Veröffentlichungstag der Anmeldung: 07.10.87 Patentblatt 87/41

Benannte Vertragsstaaten:
AT BE CH DE ES FR GB GR IT LI LU NL SE

 Anmelder: Boehringer Mannheim GmbH Sandhofer Strasse 116
 D-6800 Mannheim 31(DE)

② Erfinder: Town, Michael-Harold, Dr.rer.nat. Waldstrasse 45

D-8125 Oberhausen(DE)

Erfinder: Siedel, Joachim, Dr.rer.nat.

Bahnhofstrasse 6 D-8131 Bernried(DE)

Erfinder: Ziegenhorn, Joachim Dr.rer.nat.

Ina-Seldel-Weg 1 D-8130 Stamberg(DE)

Verfahren und Reagenz zur Bestimmung von Substraten oder Enzymaktivitäten.

Die vorliegende Erfindung betrifft ein Verfahren zur Bestimmung von Substraten oder Enzymaktivitäten unter Anwendung einer Redoxreaktion als Meßreaktion, welches dadurch gekennzeichnet ist, daß in Gegenwart eines oder mehrerer zusätzlich zugegebener Tetrazoliumsalze, die reduzierende Störverbindungen unwirksam machen, gearbeitet wird. Gegenstand der Erfindung ist weiter ein hierfür geeignetes Reagenz sowie neue Tetrazoliumsalze der allgemeinen Formel I'

931 A2

in der

R¹ einen Carboxylrest, einen unsubstituierten oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest,

R 2 einen unsbustituierten Phenylrest,

R^{3'} einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest und A'- ein übliches Gegenanion

bedeuten

und ein Verfahren zur Herstellung dieser Verbindungen.

EP 0 239

Abbildung 1:

Verfahren und Reagenz zur Bestimmung von Substraten oder Enzymaktivitäten

Die Erfindung betrifft ein Verfahren zur quantitativen Bestimmung von Substraten oder Enzymaktivitäten unter Anwendung einer Redox-Reaktion als Meßreaktion.

In der klinischen und pharmazeutischen Chemie, der Biochemie und Lebensmittelchemie werden zur Bestimmung von Substraten oder Enzymaktivitäten eine Vielzahl von Indikatormethoden verwendet. Von besonderer Bedeutung ist jedoch zum Beispiel die Änderung der Extinktion eines Redox-Farbindikatorsystems oder Änderungen im elektrischen Potential oder Strom, welche durch eine geeignete Elektrode gemessen werden können. Solche Redox-Reaktionen finden insbesondere breite Anwendung in der klinischen Chemie.

Sind in dem zur photometrischen Bestimmung eines bestimmten Substrats oder Enzyms eingesetzten Testsystem, welches auf der Anwendung einer Redox-Reaktion als Meßreaktion beruht, neben den Interessierenden Redox-Partnern nun noch weitere reduzierende Substanzen vorhanden, so ist mit Störungen der Meßreaktion zu rechnen. Mit solchen Störungen ist bekanntermaßen, insbesondere bei Verwendung von biologischem Probenmaterial, wie Harn, Plasma oder Serum, zu rechnen, die reduzierende Substanzen sowohl endogenen als auch exogenen Ursprungs in signifikanten Mengen enthalten können. Bei endogenen Störsubstanzen ist hier vor allem Bilirubin zu nennen. Störende reduzierende Substanzen exogenen Ursprungs können zum Beispiel Ascorbat, verschiedene Medikamente oder deren Metaboliten sein. In biologischen Proben oft vorkommende und aufgrund ihrer reduzierenden Eigenschaften störende Medikamente sind zum Beispiel α-Methyldopa oder Calciumdobesylat. Als störender Metabolit ist zum Beispiel Homogentisinsäure bekannt.

Störungen durch reduzierende Substanzen wirken sich besonders deutlich aus, wenn die Konzentration oder Aktivität des zu bestimmenden Substrats oder des Enzyms in der Probe relativ niederig ist und zum Erzielen einer ausreichenden Meßpräzision ein relativ hohes Probe-/Reagenz-Volumenverhältnis erforderlich ist. Dies ist beispielsweise bei der Bestimmung von Harnsäure, Creatinin oder Oxalat in Serum oder Plasma der Fall. Hier wird ein zu bestimmendes Substrat mit einem Enzym unter Wasserstoffperoxidbildung umgesetzt, wobei das entstehende Wasserstoffperoxid in Gegenwart von Peroxidase bei einer stöchlometrischen Farbstoffbildungsreaktion, wie z. B. der oxidativen Kupplung zweier Kupplungskomponenten, verbraucht wird.

Bisher war es nicht möglich, Störungen durch reduzierende Substanzen gleichermaßen sowohl rasch und effektiv als auch ohne zusätzliche Beeinträchtigung der zur Messung notwendigen Redox-Reaktion zu beseitigen. Hierzu sind in der Chemie stark oxidierende Substanzen üblich. Diese sind jedoch für enzymatische Bestimmungsmethoden in der klinischen und pharmazeutischen Chemie, der Biochemie oder der Lebensmittelchemie unbrauchbar, da sie auch Substrate und Enzyme angreifen und zerstören. Außerdem führen sie häufig zu Nebenreaktionen, die die Reagenzleerwert-Extinktion erhöhen.

Viele Metallsalze und deren Komplexe reagieren ebenfalls mit reduzierenden Substanzen unter Bildung der entsprechenden zwei-oder dreiwertigen ionen. Diese hemmen häufig die Enzyme, die zur Indikatorreaktion benutzt werden. Darüberhinaus können die entstandenen reduzierten Metallionen in gleicher Weise stören, wie die sich in dem Probenmaterial befindlichen Störsubstanzen. Ein zusätzlicher Nachteil der Metallionen besteht darin, daß deren Oxidation unter stark sauren Bedingungen optimal ist. Unter diesen Bedingungen werden Enzyme meist zerstört.

Außer diesen herkömmlichen Verfahren kommt speziell für Ascorbinsäure der rasche oxidative Abbau von Ascorbat mit Luftsauerstoff in Frage. Dieser ist jedoch nur möglich unter stark alkalischen Bedigungen, unter denen Enzyme denaturiert oder inaktiviert werden.

Als Alternative wurde der Einsatz von Ascorbatoxidase als Katalysator für diese Reaktion vorgeschlagen (DE-OS 26 25 843). Dieses Verfahren kann aufgrund der Spezifität des Enzyms Ascorbat-Oxidase außer für Ascorbat nicht für andere reduzierende Störsubstanzen verwendet werden. Das pH-Optimum des Enzyms liegt bei pH 5 - 6 und ist damit weit von den pH-Optima vieler für klinische Tests wichtigen Enzyme entfernt. So erfolgt z. B. die Bestimmung von Creatinin oder Harnsäure bei pH 8. Bei diesem pH-Wert ist die Aktivität der Ascorbat-Oxidase nicht ausreichend für eine schnelle Entstörung. Ausserdem wird diese Enzym durch einige übliche Testkomponenten, wie Azid oder Chelatoren, wie zum Beispiel EDTA, gehemmt.

Es bestand daher Bedarf für ein universell anwendbares Verfahren und Reagenz zur Bestimmung von Substraten oder Enzymaktivitäten, welches Störungen durch reduzierende Substanzen in Redox-Reaktionen beseitigt, ohne jedoch die Meßreaktion nachteilig zu beeinflussen. Das Reagenz sollte darüberhinaus einfach in der Handhabung und auch preiswert sein. Aufgabe war es, diesen Bedarf zu befriedigen.

Die Aufgabe wird gelöst durch das erfindungsgemäße Verfahren zur Bestimmung von Substraten oder Enzymaktivitäten, bei dem dann, wenn eine Redox-Reaktion als Meßreaktion dient, in Gegenwart eines oder mehrerer zusätzlich zugegebener Tetrazoliumsalze gearbeitet wird. Der Vorteil dieses Verfahrens besteht in der universellen, irreversiblen, leichten und schnellen Beseitigung reduzierender Substanzen, die unter den in den betreffenden Substrat-oder Enzymtests vorherrschenden Bedingungen stören. Dadurch wird eine störungsfreie Messung ermöglicht.

Tetrazoliumsalze und ihre Reduktion zu Formazanen sind schon seit Ende des letzten Jahrhunderts bekannt. Sie werden vorwiegend zum Nachweis von reduzierenden Substanzen in Chemie, Biochemie und Histochemie verwendet (vergleiche: Bergmeyer, Methods of Enzymatic Analysis, Band I, Seite 199 ff [1984] oder Altmann, F. P., Progress in Histochemistry, 9, Seite 1 ff [1976]). Bisher wurde jedoch noch niemals in Betracht gezogen, eine als Farbindikator wirkende Redox-Reaktion mit einer Tetrazoliumsalz-Reduktion zu kombinieren, mit dem Ziel, diese Reduktion eines Tetrazoliumsalzes zu einem Formazan nicht als Nachweisreaktion, sondern als entstörende Reaktion auszunutzen. Das bisherige Interesse bestand darin, Tetrazoliumsalze zu finden, die bei Reduktion möglichst farbige Formazane bilden und deshalb als Farbindikatoren in Redoxreaktionen einzusetzen sind.

Um bei einer als Meßreaktion verwendeten, photometrisch verfolgbaren Redoxreaktion das Farbindikatorsystem nicht zu stören, müssen die zur Beseitigung störender reduzierender Substanzen verwendeten Tetrazoliumsalze solche Formazane bilden, die Licht nicht oder nur in vernachlässigbarem Ausmaß bei der Meßwellenlänge des eigentlichen Farbindikatorsystems absorbieren. Für die vor allem in der klinischen Chemie üblichen Farbindikatorsysteme mit maximalen Absorptionswellenlängen zwischen 500 und 600 nm kann deshalb erfindungsgemäß prinzipiell jedes Tetrazoliumsalz verwendet werden, welches in diesem Wellenlängenbereich nicht oder nur vernachlässigbar absorbiert.

Im Sinne der vorliegenden Erfindung haben sich vor allem Tetrazoliumsalze der allgemeinen Formel I

25

30

R' Wasserstoff, einen Carboxyl-, Alkyl-, Phenyl-, Nitrophenyl-, Dinitrophenyl-, carboxylsubstituierten Phenyloder einen Trialkylammoniumphenylrest,

R² einen Phenyl-, Nitrophenyl-, Biphenylyl-oder Naphthylrest.

R³ einen Phenyl-, carboxylsubstituierten Phenyl-, einen carboxylsubstituierten Hydroxyphenyl-oder einen Dimethylthiazolylrest und

A ein übliches Gegenion

bedeuten, bewährt.

Ein Alkylrest in der Definition von R' besteht aus 1-10, bevorzugt 1-7 Kohlenstoffatomen. Besonders bevorzugt sind der Methyl-, Ethyl-und n-Butylrest.

Besonders bevorzugt als Nitrophenylrest in der Definition von R¹ und R² ist der para-Nitrophenylrest.

Unter einem in der Definition von R¹ genannten Dinitrophenylrest ist vor allem der 2,4-Dinitrophenylrest zu verstehen.

Carboxylsubstituierte Phenylreste in der Definition von R¹ und R³ sind dann bevorzugt, wenn der Phenylrest in 4-Stellung durch eine Carboxylgruppe substituiert ist. In der Definition von R³ sind darüberhinaus solche Reste dann ganz besonders bevorzugt, wenn der Phenylrest den Carboxylsubstituenten in 2-Stellung trägt.

Ein Trialkylammoniumphenylrest der Definition von R¹ erweist sich dann als besonders vorteilhaft, wenn der Phenylrest den Trialkylammoniumsubstituenten in 4-Stellung trägt. Die Alkylreste des Ammoniumsubstituenten entsprechen der gleichen Definition wie Alkyl in R¹ und können sowohl gleich als auch verschieden sein.

Der Biphenylylrest der Definition von R² ist vorteilhafterweise mit seiner 4-Stellung an das Tetrazoliumsalz geknüpft.

Der Naphthylrest in der Definition von R² ist vorteilhafterweise mit seiner 2-Position an das Tetrazoliumsalz gebunden.

0 239 931

Unter einem carboxylsubstituierten Hydroxyphenylrest in der Definition von R³ wird vor allem ein solcher Hydroxyphenylrest verstanden, der in 2-Position einen Carboxylsubstituenten trägt und mit seiner 4-Position an das Tetrazoliumsalz gebunden ist.

Dimethylthiazolylreste in der Definition von R³ sind mit ihrer 2-Position an das Tetrazoliumsalz gebunden. Ein bevorzugter Dimethylthiazolylrest trägt die Methylgruppen in 4-und 5-Position.

Unter einem üblichen Gegenion in der Definition von A⁻ werden vor allem einwertige Anionen verstanden. Üblicherweise werden hierzu anorganische Anionen, wie zum Beispiel Halogenionen verwendet. Bevorzugte Halogenionen in diesem Sinne sind Chlorid-und Bromidionen. Im Falle carboxylsubstituierter Reste R¹ oder R³ kann das Gegenanion A⁻ auch das Carboxylation sein.

Die in der folgenden Tabelle aufgelisteten Verbindungen sind besonders bevorzugt.

Tetra	R ¹	R ²	R ³
zolium			
salz			
T1	Carboxyl	Phenyl	2-Carboxypheny1
T 2	Pheny1	Phenyl _a	2-Carboxypheny1
T3	2,4-Dinitrophenyl	Phenyl	Pheny1
T4	Carboxyl	Phenyl	Pheny1
T5	para-Trimethyl-		
	ammoniumphenyl	Phenyl	Pheny1
T6	4-Carboxyphenyl	Pheny1	Pheny1
T7	para-Nitrophenyl	para-Nitrophenyl	Pheny1
T8	Pheny1	Pheny1	4,5-Dimethyl-
			thiazolyl
T9	Wasserstoff	Phenyl	Phenyl
T10	n-Butyl	Phenyl	Phenyl
T11	Phenyl	2-Naphthy1	Phenyl
T12	Phenyl	para-Diphenylyl	Phenyl
T1:3	Methyl	Pheny1	3-Carboxy-4-
			hydroxyphenyl
T14	Methyl	Pheny1	Pheny1
T15	Ethy1	Pheny1	Pheny1
T16	4-Carboxyphenyl	Phenyl	2-Carboxypheny1
T17	2-Carboxypheny1	Phenyl	2-Carboxyphenyl

Ganz besonders bevorzugte Verbindungen sind die Verbindungen T1, T2, T3, T4, T5, T6 und T8. Die Konzentration der zur Entstörung der Meßreaktion zugesetzten Tetrazoliumsalze richtet sich nach der Menge der zu erwartenden störenden reduzierenden Substanz in der Probe. In der Regel werden 0,001 - 100 mmol/l, vorzugsweise 0,01 - 20 mmol/l, besonders bevorzugt 0,05 - 5 mmol/l Tetrazoliumsalz eingesetzt.

Das erfindungsgemäße Verfahren zur Bestimmung von Substraten oder Enzymaktivitäten unter Anwendung einer Redox-Reaktion als Meßreaktion und Zusatz eines oder mehrerer Tetrazoliumsalze zur Beseitigung störender reduzierender Substanzen kann je nach den für das jeweilige Verfahren erforderlichen Enzymen bei einem pH-Wert zwischen 3 und 11 durchgeführt werden. Bevorzugt ist der Bereich zwischen 6,5 und 9. Als Puffer kann jede Substanz verwendet werden, die in dem erforderlichen pH-Bereich eine ausreichende Pufferkapazität aufweist. Vorzugsweise werden jedoch Phosphat-oder Tris-Puffer verwendet. Die Konzentration des Puffers beträgt 0,01 bis 1 mol/l, vorzugsweise 0,05 bis 0,2 mmol/l.

Zur besseren Löslichkeit des aus dem zur Entstörung zugesetzten Tetrazoliumsalz gebildeten Formazans und zur Steigerung der Reaktionsgeschwindigkeit der entstörenden Reaktion kann der zu messenden Probe gegebenenfalls ein nichtionisches Detergens, wie zum Beispiel Triton X-100, Tween 80 oder Polyvinylpyrrolidon zugesetzt werden. Die Konzentrationen solcher gegebenenfalls zugesetzten Detergentien richten sich nach der kritischen Miceller Konzentration des jeweiligen Detergens. Sie liegen in der Regel zwischen 0,01 und 5 %, insbesondere zwischen 0,05 und 0,5 %.

In einer bevorzugten Ausführungsform des Verfahrens wird die entstörende Tetrazoliumsalz-Wirkung durch Zugabe eines oder mehrerer Elektronenüberträger beschleunigt. Zur Beschleunigung der Entstörreaktion und als Hilfsmittel bei der Oxidation von Störsubstanzen kann eine Reihe von Elektronenüberträgern verwendet werden. Als Beispiele seien genannt Phenazin-methosulfat, Phenazin-ethosulfat, 8-Dimethylamino-2,3-benzophenoxazin, 1-Methyoxy-5-methylphenazinium-methylsulfat oder Diaphorase. Besonders bevorzugt sind hiervon Phenazin-ethosulfat oder Diaphorase.

Bei der Bestimmung von Substraten oder Enzymaktivitäten unter Verwendung einer Redox-Reaktion als Meßreaktion kann ein gewisser entstörender Effekt auch schon mit Elektronenüberträgern allein ohne zusätzliche Tetrazoliumsalze, festgestellt werden. Die Wirkung der vorgenannten Elektronenüberträger reicht jedoch für eine weitgehende oder gar völlige Entstörung einer Redox-Meßreaktion nicht aus. Hierzu ist die erfindungsgemäße Kombination mit einem Tetrazoliumsalz erforderlich.

20

Die der zu entstörenden Probe zuzusetzenden Konzentrationen der Elektronenüberträger sind vorzugsweise 0,005 - 100 mmol/l, besonders bevorzugt 0,05 - 5 mmol/l. Im Falle der Diaphorase werden vorzugsweise Mengen zwischen 0,001 und 100 U/ml eingesetzt, wobei der Bereich zwischen 0,1 und 20 U/ml besonders bevorzugt ist.

Ein weiterer Gegenstand der Erfindung ist ein Reagenz zur photometrischen Bestimmung von Substraten oder Enzymaktivitäten, welches ein System zur Bestimmung eines Substrats oder Enzyms mit einer Redox-Reaktion als Meβreaktion und zusätzlich ein oder mehrere Tetrazoliumsalze enthält, die inversibel, leicht und schnell unter den in den betreffenden Substrat-oder Enzymtests vorherrschenden Bedingungen störende reduzierende Substanzen beseitigen und dadurch eine störungsfreie Meßung ermöglichen.

Prinziplell sind für ein solches Reagens alle Tetrazoliumsalze verwendbar, die nicht oder nur vernachlässigbar in dem Wellenlängenbereich absorbieren, in dem die Meßreaktion verfolgt wird. Dieser Wellenlängenbereich liegt bei vielen in der klinischen Chemie wichtigen Substraten oder Enzymen zwischen 500 und 600 nm. Vor allem bewährt haben sich deshalb Tetrazoliumsalze der allgemeinen Formel I. Besonders bevorzugt sind ind Kombination mit den übrigen zur Bestimmung erforderlichen Reagenzbestandteilen die Verbindungen T1 bis T17. Hiervon haben sich als ganz besonders vorteilhaft die Tetrazoliumsalze T1, T2, T3, T4, T5, T6 und T8 erwiesen.

Das erfindungsgemäße Reagenz enthält ein oder mehrere Tetrazoliumsalze, deren Konzentration sich nach der zu erwartenden Menge an störender, reduzierender Substanz richtet. In der Regel enthält es 0,001 - 100 mmol/l, vorzugsweise 0,01 - 20 mmol/l, besonders bevorzugt 0,05 - 5 mmol/l Tetrazoliumsalz.

Um bei der Bestimmung von Substraten oder Enzymaktivitäten unter Anwendung einer Redox-Reaktion als Meßreaktion und unter Zusatz eines oder mehrerer Tetrazoliumsalze zur Beseitigung störender reduzierender Substanzen je nach den erforderlichen Enzymen einen bestimmten pH-Wert einzuhalten, kann das erfindungsgemäße Reagenz einen Puffer enthalten. Der pH des erfindungsgemäßen Reagenz liegt in dem Bereich von pH 3 - 11, bevorzugterweise in dem Bereich von pH 6,5 - 9. Puffer, die einen solchen Wert einstellen können, sind prinzipiell alle diejenigen, die mit ihrem pK-Wert innerhalb des angegebenen pH-Bereichs liegen. Das erfindungsgemäße Reagenz kann jeden dieser Puffer enthalten. Als bevorzugte Puffer enthält das erfindungsgemäße Reagenz Phosphat-oder Tris-Puffer. Die Konzentration des Puffers im Reagenz kann 0,01 bis 1 mol/l betragen, vorzugsweise aber 0,05 bis 0,2 mol/l.

Zur besseren Löslichkeit des aus dem zur Entstörung zugesetzten Tetrazoliumsalz gebildeten Formazans und zur Steigerung der Reaktionsgeschwindigkeit der entstörenden Reaktion kann das erfindungsgemäße Reagenz gegebenenfalls auch ein nichtionisches Detergenz, wie z. B. Triton X-100, Tween 80 oder Polyvinylpyrrolidon enthalten. Die Konzentration solcher Detergentien richtet sich nach der kritischen Miceller Konzentration des jeweiligen Detergens. Sie liegt in der Regel zwischen 0,01 und 5 %, insbesondere zwischen 0,05 und 0,5 %. Ein besonders bevorzugtes, erfindungsgemäßes Reagenz ist dadurch gekennzeichnet, daß es außer einem oder mehreren Tetrazoliumsalzen auch einen oder mehrere Elektronenüberträger enthält. Als solche kommen z. B. Phenazin-methosulfat, Phenazin-ethosulfat, 8-Dimethylamino-2,3-benzophenoxazin, 1-Methoxy-5-methylphenazinium-methylsulfat oder Diaphorase in Frage.

Als besonders geeignete Elektronenüberträger haben sich in Kombination mit den übrigen zur Bestimmung bestimmter Substrate oder Enzymaktivitäten erforderlichen Reagenzbestandteilen Phenazin-ethosulfat und/oder Diaphorase erwiesen.

Die Konzentration der Elektronenüberträger im Reagenz beträgt 0,005 - 100 mmol/l, vorzugsweise 0,05 - 5 mmol/l. Im Falle der Diaphorase enthält das Reagenz vorzugsweise 0,001 - 100 U/ml des Enzyms. Besonders bevorzugt ist der Konzentrationsbereich zwischen 0,1 und 20 U/ml.

Das erfindungsgemäße Reagenz kann als System zur Bestimmung eines Substrats oder Enzyms mit einer Redox-Reaktion als Meßreaktion, z. B.

zur Bestimmung von Glucose: Glucose-Oxidase, Peroxidase, 4-Aminophenazon und Phenol,

zur Bestimmung von Harnsäure: Uricase, Peroxidase, 2-Hydrazono-2,3-dihydro-3-methyl-6-sulfobenzothiazol und N-Ethyl-N-β-sulfoethyl-m-toluidin

oder zur Cholesterin-Bestimmung: Cholesterin-Esterase, Cholesterin-Oxidase, Peroxidase, 4-Aminophenazon und Phenol enthalten.

Alle diese Systeme zur Bestimmung der genannten, beispielhaft angeführten Substrate sind bekannt. An ihrer Stelle können auch andere bekannte Systeme zur Bestimmung von Substraten oder Enzymen im Rahmen des erfindungsgemäßen Reagenz verwendet werden.

Als besonders wirkungsvoll hat sich das erfindungsgemäße Reagenz erwiesen, wenn es zur Beseitigung störender reduzierender Substanzen ein oder mehrere Tetrazoliumsalze und als Bestandteil des Systems zur Bestimmung eines Substrats oder Enzyms ein H₂O₂-bildendes Enzym, wie z. B. die obengenannte Glucose-Oxidase, Uricase oder Cholesterin-Oxidase enthält. Ebenso hat sich das erfindungsgemäße Reagenz als besonders vorteilhaft erwiesen, wenn es für die Meßreaktion ein Phenol, wie z. B. Phenol selbst oder 2,4,6-Tribromhydroxybenzoesäure oder ein Anilinderivat, wie z. B. N-Ethyl-N-β-sulfoethyl-m-toluidin enthält, welches mit Reagenzien, wie z. B. 4-Aminophenazon, 4-Amino-antipyrin oder 2-Hydrazono-2,3-dihydro-3-methyl-6-sulfobenzothiazol oxidativ gekuppelt werden kann. Beispiele für solche Redoxreaktionen als Meßreaktionen wurden für die Glucose-, Harnsäure-oder Cholesterin-Bestimmung bereits genannt.

Anwendbar ist die Erfindung auch auf dem Gebiet der Schnelldiagnostica. Derartige Schnelldiagnostica enthalten in der Regel die verschiedenen, für die Durchführung des Verfahrens benötigten Reagentien entweder in einem saugfähigen, unlöslichen Träger, wie Papier, Vlies, etc. imprägniert oder mit einem geeigneten Bindemittel auf einer Trägerfolie oder einem quellbaren Film als Überzug aufgebracht.

In einer Ausführungsform ist das erfindungsgemäße Reagenz, welches ein oder mehrere Tetrazoliumsalze zur Beseitigung störender reduzierender Substanzen enthält auf einem saugfähigen Träger, wie z. B. Papier, imprägniert. Auf diese Weise werden z. B. durch Ascorbinsäure praktisch nicht gestörte Testpapiere zum Nachweis von z. B. Glucose, Harnsäure oder Cholesterin erhalten.

Erfindungsgemäß kann Tetrazoliumsalz aber auch auf einen getrennten Träger aufgebracht werden, der mit dem Träger der übrigen Reagentien vereinigt, beispielsweise darübergelegt, verklebt oder gemeinsam eingesiegelt wird. In einer solchen Ausführungsform kann z. B. ein wasserlösliches Papier (z. B. gemäß DE-OS 24 36 598) mit Tetrazoliumsalz imprägniert werden, während das zur Bestimmung eines Substrats oder einer Enzymaktivität erforderliche System auf einem wasserunlöslichen, saugfähigen Trägermaterial imprägniert vorliegt. Beide Trägermaterialien werden vorteilhafterweise so aufeinander geschichtet, daß die zu bestimmende Probe zuerst auf das Tetrazoliumsalz trifft und dann auf das wasserunlösliche Trägermaterial.

In einer bevorzugten Ausführungsform können auch getrennte Zonen des Trägermaterials mit Tetrazoliumsalz(en) und Testreagentien imprägniert werden. In diesem Fall wird zweckmäßigerweise der Träger mit der zu untersuchenden Lösung derart in Berührung gebracht, daß die Lösung zuerst mit der Tetrazoliumsalzhaltigen Zone in Berührung kommt und von dort aus in die Zone gesaugt wird, welche die übrigen erforderlichen Testreagentien enthält. Zur Illustration einer solchen Ausführungsform wird in Abbildung 1 ein Beispiel für eine Vorrichtung im Querschnitt dargestellt, die es gemäß DE-A 30 29 579 erlaubt, einerseits aus Vollblut das für den Test erforderliche Serum bzw. Plasma abzutrennen und andererseits aufgrund eines speziell gestalteten Aufbaus der Reagenz-und Hilfsstoffschichten eine Temperierung, Vorreaktion und gezieltes Starten der Hauptreaktion erlaubt.

Die Vorrichtung gemäß Abbildung 1 ist wie folgt zusammengesetzt: Auf einer inerten Trägerfolie 8 ist ein aus Glasfasern bestehendes Transportvlies 7 befestigt. Diese Transportvlies 7 teilweise Überdeckend ist ein ebenfalls aus Glasfasern bestehendes Vlies 5 mittels eines Fixiernetzes 6 befestigt. Zwischen Vlies 5 und Transportvlies 7 ist ein Entstörgewebe 4 angeordnet, welches mit Stoffen imprägniert ist, die in der Lage sind, die Meßreaktion störende reduzierende Substanzen zu beseitigen. Seitlich von Transportvlies 7 ist über eine Klebestelle 9 eine aus einem durchsichtigen Kunststoff bestehende transparente Folie 1 befestigt. Unter dieser transparenten Folie 1 ist eine Reagenzschicht 2 aufgebracht, die aus einem quelloder saugfähigen Film besteht, in dem die für die Meßreaktion notwendigen Stoffe eingearbeitet sind. Unter der Reagenzschicht 2 ist eine Deckschicht 3 aufgebracht, welche üblicherweise aus einem Kunststoff-oder Gelatinefilm besteht, der mit stark reflektierenden Substanzen, wie Bariumsulfat, Titandioxid oder ähnlichen durchsetzt ist und als optisch weißer Hintergrund dient. Zur Beobachtung eingestrahltes Licht wird so vollständig remittiert und eventuelle Verfärbungen des Vlieses 7 sind nicht sichtbar. Reagenzschicht 2 und Deckschicht 3 werden gemeinsam als Testschicht bezeichnet.

Wird auf das Fixiernetz 6 Vollblut aufgetragen, dann wird dieses im Glasfaservlies 5 in Serum und Erythrozyten getrennt, wobei letztere festgehalten werden. Beim Durchtritt durch das Entstörgewebe 4 werden die Meßreaktion störende reduzierende Inhaltsstoffe beseitigt, so daß in den Iinken Bereich des Transportvlieses 7 nur Serum übertritt, welches keine die Messung störende Substanzen enthält. Nach Druck auf die transparente Folie 1 wird die Meßreaktion gestartet, nachdem das Serum das Transportvlies 7 vollständig gefüllt hat. Das Serum dringt infolge des Druckkontaktes durch die Deckschicht 3 in die Reagenzschicht 2 und durchfeuchtet diese gleichmäßig. Die Reaktion wird anhand der Verfärbung in der Reagenzschicht 2 durch die transparente Folie 1 hindurch beobachtet.

Die für das erfindungsgemäße Verfahren und Reagenz verwendbaren Tetrazoliumsalze 5-Carboxy-3-(2-carboxyphenyl)-2-phenyl-2-H-tetrazoliumhydroxid, inneres Salz (T1),

3-(2-Carboxyphenyl)-2.5-diphenyl-2-H-tetrazoliumhydroxid, inneres Salz (T2),

25 2,3-Diphenyl-5-(2.4-dinitrophenyl)-2-H-tetrazoliumchlorid (T3), 2.3-Diphenyl-5-[4-(trimethylammoniophenyl)]-2-H-tetrazolium-dichlorid (T5) sowie

3-(2-Carboxyphenyl)-5-(4-carboxyphenyl)-2-phenyl-2-H-tetrazoliumhydroxid, inneres Salz (T16) und 3,5-Bis-(2-carboxyphenyl)-2-phenyl-2-H-tetrazoliumchlorid (T17) sind neue Verbindungen und ebenfalls Gegenstand der Erfindung. Sie können durch die allgemeine Formel I'

¹⁰ in der

30

35

R^{1'} einen Carboxylrest, einen unsubstituierten oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest,

R² einen unsubstituierten Phenylrest,

R3 einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest und A~ ein übliches Gegenanion bedeuten.

beschrieben werden.

Die üblichen Gegenanionen in der Definition von A'- entsprechen denjenigen, die für A- in der allgemeinen Formel I angegeben wurden.

Außer ihrer guten Wasserlöslichkeit zeigen die Verbindungen anforderungsgemäß keine Lichtabsorption im Wellenlängenbereich zwischen 500 und 600 nm und stören die Meßreaktion nicht.

Ihre Herstellung erfolgt nach an sich bekannten Methoden, die beschrieben sind bei:

R. Kuhn, D. Jerchel, Ber. Dtsch. Chem. Ges. <u>74</u>, 94 (1941); D. Jerchel, W. Möhle, Ber. Dtsch. Chem. Ges. <u>77</u>, 600 (1944); R. Wizinger, V. Bisro, Helv. Chim. Acta 32, 909 (1949).

Hierbei werden literaturbekannte Aldehydphenylhydrazone der allgemeinen Formel II

in der

R einen veresterten Carboxylrest, einen unsubstitulerten Phenylrest oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest und

R^{2'} einen unsubstituierten Phenylrest bedeuten, mit Diazoniumsalzen der allgemeinen Formel III

15

5

20 in der

42

R ^{3'} einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest und A'- ein übliches Gegenanion bedeuten,

durch alkalische Kupplung in Formazane der allgemeinen Formel IV

$$R-C = N-R^{3}$$
(IV)

in der

30

45

R und $R^{2'}$ die in der allgemeinen Formel II angegebene Bedeutung haben und $R^{3'}$ der Definition in der allgemeinen Formel III entspricht, überführt

Ein veresterter Carboxylrest in der Definition von R ist hierbei vorzugsweise ein niederalkylveresterter Carboxylrest, wobei Niederalkyl eine C, bis C₄-Kohlenwasserstoffrest bedeutet. Besonders bevorzugt sind Methyl-oder Ethylester.

Übliche Gegenanionen der Definition von A' sind die gleichen wie für A in der allgemeinen Formel I angegeben.

Als basisches Reaktionsmedium für die alkalische Azokupplung können z. B. Pyridin, Natriumacetat gelöst in Dimethylformamid und/oder Alkohol oder alkoholische Alkalilauge Verwendung finden.

Unter Alkohol werden niedere aliphatische Alkohole, bevorzugt Methanol oder Ethanol verstanden.

Die Überführung von Formazanen der allgemeinen Formel IV in Tetrazoliumsalze der allgemeinen Formel I' gelingt durch Oxidation entweder mittels Isopentylnitrit in alkoholischer Salzsäure analog D. Jerchel, H. Fischer, Liebigs Ann. Chem. <u>563</u>, 200 (1949) oder mittels Bleitetraacetat analog R. Kuhn, D. Jerchel, Ber. Dtsch. Chem. Ges. <u>74</u>, 941 (1941) oder D. Jerchel, H. Fischer, Liebigs Ann. Chem. <u>563</u>, 200 (1949) in Chloroform.

Die Amylnitrit-Methode hat hierbei den Vorteil, daß eine aufewendige, säulenchromatographische Nachreinigung entfallen kann. Sie ist jedoch wegen des geringen Oxidationspotentials des Nitrits nicht universell anwendbar.

Da die Doppelbindungen und die positive Ladung des Tetrazoliumringes innerhalb des Stickstoffsystems nich lokalisierbar sind, kann zur Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel IV natürlich auch analog von Formazanen der allgemeinen Formel IV

in der

5

15

25

30

35

R, R^{2'} und R^{3'} die gleiche Bedeutung haben wie in der Definition der allgemeinen Formel IV, ausgegangen werden.

Formazane der allgemeinen Formel IV' sind dem geschilderten Verfahren analog aus Aldehydphenylhydrazonen der allgemeinen Formel II'

und Diazoniumsalzen der allgemeinen Formelill'

herstellbar. Die angegebenen Reste haben die gleiche Bedeutung wie die in den allgemeinen Formeln II und III definierten.

Die folgenden Beispiele erläutern die Erfindung weiter.

Beispiel 1

Herstellung der Tetrazoliumsalze T1, T2, T3, T5, T16 und T17

a) Herstellung der Ausgangsformazane

0,1 mol Amin werden in 100 ml Wasser suspendiert und nach Zugabe von 0,3 mol 12 N Salzsäure durch Zutropfen einer konzentrierten wässrigen Lösung von 1,04 mol Natriumnitrit bie 0-5° C diazotiert. Innerhalb 30 Minuten wird die gekühlte Diazoniumsalzlösung unter Rühren und Kühlung unterhalb 10° C in eine Lösung von 0,1 mol Aldehydphenylhydrazon und 0,35 mol Natriumacetat (oder 100 ml Pyridin) in 180 ml Ethanol und 100 ml Dimethylformamid eingetropft und eine Stunde nachgerührt. Der gebildete Kristalibrei wird abgesaugt, gut mit Wasser und danach mit wenig Methanol gewaschen und abschließend getrocknet. Eine Reinigung des so erhaltenen Formazans kann durch Umkristallisieren aus Eisessig, Methanol-Wasser oder aus Dimethylformamid-Wasser oder durch Säulenchromatographie an Kieselgel 60 (Merck) mit Methylenchlorid-Methanol 5:1 oder Methylenchlorid als Eluens erfolgen. Nach dieser Methode wurden die folgenden Formazane erhalten.

50

Formazan	Ausgangs- verbindung für	Ausbeute (%)	Fp Azokupplun (°C) in Medium	g Reinigungs- methode
F1	T1	40	180 A (Zers.)	Umkristallisation aus Methanol/ Wasser
F2	T2 .	40	187 C (Zers.)	R. Wizinger V. Bisro, Helv. Chim. Acta 32, 910 (1949)
F3	T3	62	204 B (Zers.)	Säulenchromato- graphie an Kie- selgel, Eluens:
	14.1			Methylenchlorid
F5	T5	70	187 A (Zers.)	Anrühren mit Isopropanol
F16	T16	35	>300 B (Zers.)	Säulenchromato- graphie an Kieselgel, Eluens: Methylen- chlorid-Methanol = 5:1
F17	T17	50	191 A (Zers.)	Saulenchromato- graphie an Kieselgel, Eluens: Methylen- chlorid-Methanol = 5:1

Medium A: Dimethylformamid/Natriumacetat

B: Dimethylformamid/Pyridin

C: Ethanolische Lauge (KOH oder NaOH)

- F1 2-(3-Carboxyethy1-5-pheny1-1-formazano)benzoesäure
- F2 2-(3.5-Dipheny1-1-formazano)benzoesäure
- F3 1.5-Dipheny1-3-(2.4-dinitropheny1)formazan
- F5 4-(1.5-Diphenyl-3-formazano)-N,N,N-trimethylammoniochlorid
- F16 2,4'-(5-Phenyl-1.3-formazandily1)bis-benzoesäure
- F17 2,2'-(5-Phenyl-1,3-formazandilyl)bis-benzoesäure

b) Oxidation der Formazane

A) Bleitetraacetat-Methode

0,1 mol Formazan werden in wasserfreiem Chloroform gelöst und mit 0,12 mol Bleitetraacetat versetzt. Man läßt 30 Minuten rühren und saugt danach von Ungelöstem ab. Das Filtrat wird eingedampft, der Rückstand nach Zugabe von Wasser abgesaugt und das Filtrat mit 2 N Salzsäure angesäuert. Das so gefällte Bleichlorid wird abgesaugt, das Filtrat eingeengt und der Rückstand aus Ethanol umkristallisiert oder durch Säulenchromatographie an Kieselgel 60 (Merck) mit Chloroform-Methanol 19:1, Chloroform-Methylenchlorid 5:1 oder Methylenchlorid-Methanol 5:1 als Eluens gereinigt.

B) Isopentylnitrit-Methode

0,1 mol Formazan werden in der 10-bis 20fachen Menge Ethanol suspendiert, 0,2 mol Isopentylnitrit zugegeben und innerhalb 20 Minuten 0,15 mol ethanolische Salzsäure unter Rühren zugetropft. Anschließend wird eine Stunde nachgerührt. Falls dann die Reaktionsmischung noch nicht entfärbt ist, wird sie bis zur vollständigen Entfärbung auf 40° C erwärmt. Tetrazoliumsalz wird durch Zugabe von Äther ausgefällt, abgesaugt und getrocknet. Zur Reinigung kann das Produkt mit Methanol oder Isopropanol angerührt, abgesaugt und getrocknet werden. Umkristallisation kann aus Methanol, Methanol-Wasser oder Eisessig erfolgen. Vorteilhaft läßt sich zur Reinigung der Tetrazoliumsalze die Säulenchromatographie an Kieselgel 60 (Merck) mit Chloroform-Methanol 19:1, Chloroform-Methylenchlorid 5:1 oder Methylenchlorid-Methanol = 5:1 anwenden.

Nach einer der beiden Methoden A) oder B) wurden die folgenden Tetrazoliumsalze hergestellt.

30

5

15

35

40

45

50

Tetrazoliumsalz	Ausbeute (%)	Fp	Oxidations- methode	Reinigungs- methode
T1	35	184 (Zers.)	A	Säulenchromato- graphie an Kiesel- gel, Eluens: Chlo- roform/Methanol
T2	48	259 (Zers.)	Α	Umkristallisation aus Ethanol-Wasser
Т3	47	246 (Zers.)	A	Säulenchromato- graphie an Kiesel- gel, Eluens:
हुँहै। 				Methylenchlorid- Methanol = 5:1
T 5	8 2	162 (Zers.)	A	Anrühren mit Methanol
T16	4 2	>300 (Zers.)	Α	Säulenchromato- graphie an Kiesel- gel, Eluens: Methylenchlorid/ Methanol = 5:1
T17	74	230 (Zers.)	В	Säulenchromato- graphie an Kiesel- gel, Eluens: Methylenchlorid/ Methanol = 5:1

Oxidations-Methode A: Bleitetraacetat-Chloroform B: Isopentylnitrit-ethanolische Salzsäure

T1 5-Carboxy-3-(2-carboxyphenyl)-2-phenyl-2-H-tetrazolium hydroxid, inneres Salz T2 3-(2-Carboxyphenyl)-2.5-diphenyl-2-H-tetrazoliumhydroxid, inneres Salz

T3 2,3-Diphenyl-5-(2.4-dinitrophenyl)-2-H-tetrazoliumchlorid

⁵⁰ T5 2.3-Diphenyl-5-[4-(trimethylammoniophenyl)]-2-H-tetrazolium-dichlorid T16 3-(2-Carboxyphenyl)-5-(4-carboxyphenyl)-2-phenyl-2-H-tetrazoliumhydroxid, inneres Salz T17 3.5-Bis-(2-carboxyphenyl)-2-phenyl-2-H-tetrazoliumchlorid

Beispiel 2 Harnsäurebestimmung in Gegenwart verschiedener Störsubstanzen

5 In die Küvetten A, B und C der Schichticke 1 cm werden die folgenden Lösungen pipettiert:

		A	В	С
Probe ·		50 _/ ul	50 /ul	50 /u1
Störsubstanz	*		+	+
Tetrazoliumsalz				
und/oder	*	-	-	175,u1
Elektronenüberträger				,
0,1 M Kaliumphosphat-Puffe	r	175 /ul	175,ul	-
рН 8				

* Art und Konzentration sind in den Beispielen 2 a) - h) jeweils angegeben.

Die in die jeweiligen Klüvetten pipettierten Lösungen werden gemischt und eine Minute bie 25°C inkubiert. Dann erfolgt die Zugabe von 2 ml Harnsäurereagenz der folgenden Zusammensetzung: Kaliumphosphat 0,1 mol/l, pH 8

2,4,6-Tribromhydroxybenzoesäure 20 mmol/l

4-Aminoantipyrin 0,1 mmol/l

Natriumazid 1 g/l

Peroxidase 4 U/ml

Uricase 2 U/ml

Nach 5minütiger Inkubation bei 25° C wird die Extinktion der jeweiligen Reaktionsmischung bei einer Wellenlänge von 546 nm gegen einen Reagenzienleerwert (ohne Probe) gemessen. Zur Kalibrierung wird statt einer zu messenden Probe ein wässriger Hamsäure-Standard (6 mg/dl) verwendet.

Die gemessene Harnsäurekonzentration in Küvette A (ohne Störsubstanz)

wird als 100 % eingesetzt. Die Harnsäurewiederfindungsrate in Anwesenheit von Störsubstanz wird in den folgenden Beispielen 2 a) bis 2 h) experimentell bestimmet. Die Ergebnisse belegen, daß die Wiederfindungsrate in Küvettenreihe C (mit Tetrazoliumsalzzusatz) deutlich höher ist als ohne Zusatz (Küvettenreihe B).

Die im folgenden angegebene Konzentration der Tetrazolium-Salze und/oder Elektronenüberträger betreffen die Endkonzentration in der zu messenden Lösung nach Zugabe dieser Substanzen und von Puffer. Die Konzentration der Störsubstanzen betrifft die Konzentration in der Probe vor Zugabe von Puffer, Tetrazoliumsalz und/oder Elektronenüberträger.

a) Störsubstanz: Ascorbat 3 mg/dl

T3:0,4 mmol/l

Phenazin-ethosulfat (PES): 20 µmol/l

50

					% Wied	erfindung	
			•			in	
5			· · · · · · · · · · · · · · · · · · ·		В	С	
	Humanserum 1				61	100	
	Humanserum 2	•			65	100	
10	Humanserum 3				62	92	
	Humanserum 4				58	110	
	Humanserum 5				83	105	
15	Kontrollserum						
	PPU Ch. 1				80	101	
	Kontrollserum						
	PPU Ch. 2				74	104	
20	b) Störsubstanz: Bilirubin T8: 0,4 mmol/l PES: 20µmol/l						
25		-			e waaa	erfindung	
	Bilirubin Konzentra	ation	in der			in	
	Probe (Humanserum)				В	C	
30	100 mg/l	-			76	. 89	
	200 mg/1		•		63	86	
35	c) Störsubstanz: α-Methyl- T3 bzw. T5: 0,6 mmol/l PES: 25 μmol/l Probe: Harnsäure-Standard 6 mg		20 mg/l				
					% Wiede	erfindung	
40						in	
	Tetrazoliumsalz				В	С	
	Т3				62	94	
45	T5				62	94	
50	d) Störsubstanz: Calcium-l T3: 0,6 mmol/l PES: 25 μmol/l	Dobesy	lat 25 mg/l				
		% Wi	ederfind	บทฮ			
			in	5			
55		В		С		·	
	_	90		98			

, Ev

e) Störsubstanz: Ascorbat 3 mg/dl

Tetrazoliumsalz: 0,06 mmol/l

PES: 25 µmol/l

Probe: Harnsäure-Standard 6 mg/dl

% Wiederfindung

ø,

	iı	ı	
Tetrazoliumsalz	ВВ	C	
TI	39	82	
T2	39	88	
T3	39	. 82	
T4	39	89	
T5	39	94	
T6	39	93	

f) Störsubstanz: Ascorbat 3 mg/dl

T8: 0,4 mmol/l

PES: 20 µmol/l

Probe: Humanserum

25

% Wiederfindung

in

30

B	C	
72	93	

g) Störsubstanz: Ascorbat 3 mg/dl

T8: 0,4 mmol/l

35 Diaphorase 0,4 U/ml

% Wiederfindung

in

Probe: Humanserum B C

45 h) Störsubstanz: Ascorbat 17,6 mg/dl

PES: 25 µmol/l

Probe: Harnsäure Standard 6 mg/dl

50

% Wiederfindung

in

B C 6 53

Beispiel 3 Glucosebestimmung in Gegenwart von Ascorbinsäure

5 In die Küvetten A, B und C der Schichtdicke 1 cm werden die folgenden Lösungen pipettiert:

		A	В	C
	Probe	50 _/ u1	50,u1	50,u1
10	Ascorbinsäure	-	+	+
	Tetrazoliumsalz: T3	· · · · · · · · · · · · · · · · · · ·		
	und Elektronenüberträger:	-	-	175 _/ u1
15	Phenazin-ethosulfat (PES)			
	0,1 M Kaliumphosphat-Puffer	175/ul	175/ul	•
	pH 7,8			

Die in die jeweiligen Küvetten pipettierten Lösungen werden gemischt und fünf Minuten bei 25° C inkubiert. Dann erfolgt die Zugabe von 2 ml Glucosereagenz der folgenden Zusammensetzung: Tris-Phosphat-Puffer 180 mmol/l, pH 7,8

Phenol 11 mmol/l

20

3,4-Dichlorphenol 2,1 mmol/l

5 Fettalkoholpolyglycoläther 0,24 %

4-Aminophenazon 0,8 mmol/l

Peroxidase 1 U/ml

Glucoseoxidase 15 U/ml

Nach 30minütiger Inkubation bei 25° C wird die Extinktion der jeweiligen Reaktionsmischung bein einer Wellenlänge von 546 nm gegen einen Reagentienleerwert (ohne Probe) gemessen. Zur Kalibrierung wird statt einer zu messenden Probe ein wässriger Glucose-Standard (100 mg/dl) verwendet.

Die gemessene Glucosekonzentration in Küvette A (ohne Störsubstanz) wird als 100 % eingesetzt. Die Glucosewiederfindungsrate in Anwesenheit von Störsubstanz wird in den folgenden Beispielen 3 a) und 3 b) experimentell bestimmt. Die Ergebnisse belegen, daß die Wiederfindungsrate in Küvettenreihe C (mit Tetrazoliumsalzzusatz) deutlich höher ist als ohne Zusatz (Küvettenreihe B).

Die im folgenden angegebene Konzentration des Tetrazoliumsalzes T3 und des Elektronenüberträgers PES betreffen die Endkonzentration in der zu messenden Lösung nach Zugabe dieser Substanzen und von Puffer. Die Konzentration der Störsubstanz Ascorbinsäure betrifft jeweils die Konzentration in der Probe vor Zugabe von Puffer, T3 und PES>

a) Glucose-Konzentration: 25 mg/dl

Störsubstanz: Ascorbat

T3: 0,25 mmol/l PES: 20 µmol/l

% Wiederfindung

	i.	n	
Ascorbat-Konzentration	В	C	
3 mg/dl	65	94	
6 mg/dl	27	91	
12 mg/d1	0	85	

b) Glucose-Konzentration: 50 mg/dl

Störsubstanz: Ascorbat 3 mg/dl

T3: 0,25 mmol/l PES: 20 µmol/l

% Wiederfindung

in

В С

94

83

10

Beispiel 4

Testsystem zur Bestimmung von Harnsäure in Blut

15 a) Testschicht zum Nachweis der Harnsäure

Aus den unten aufgeführten Bestandteilen wird eine Beschichtungsmasse hergestellt und mit einer Naßfilmdicke von 200 μm auf eine transparente Folie 1 aufgerakelt und getrocknet: 18 g einer Kunststoffdispersion eines Mischpolymeren aus Vinylacetat und Vinylpropionat; 1,38 g Alginat; 69 g eines Tris-Citrat-Puffers pH 7,5 0,45 m; 0,47 g Indikator 2-(3,5-Dimethoxy-4-hydroxyphenyl)-4-(5)-(4-dimethylaminophenyl)-5-(4)-methyl-(1H)-imidazol-hydrochlorid; 0,025 g 1-(3-Chlorphenyl)-semicarbazid; 0,025 g MgK₃EDTA.2H₂O; 0,5 g Triton X 100; 0,6 g Hexanol; 200 KU Peroxidase; 2 KU Uricase.

Auf die so hergestellte Reagenzschicht 2 wird eine Deckschicht 3 als optisch weißer Hintergrund der unten aufgeführten Zusammensetzung mit einer Schichtdicke von 200 µm gerakelt und getrocknet: 52 ml 0,1 m Tris-Citrat-Puffer pH 7,0; 5,5 g Titandioxid; 2,7 g Diatomeenerde; 0,4 g Alginat; 1,4 g einer Kunststoffdispersion eines Mischpolymeren aus Vinylacetat und Vinylpropionat; 0,2 g Triton X 100.

b) Entstörgewebe 4

30

Nylon-Gewebe (Type NY 75 HC der Firma Züricher Beuteltuchfabrik, Schweiz) wird mit folgender Lösung getränkt und bei 60° C getrocknet:

5 mg 5-(2,4-Dinitrophenyl)-2,3-diphenyl-tetrazolium-chlorid (T3); 5 mg Phenazin-ethosulfat; 30 mg Dioctylsulfonsuccinat-Natrium; ad 100 ml 0,5 m Phosphatpuffer pH 7,5.

Als Material für einen Vergleichstest wurde das gleiche Gewebe mit einer entsprechenden Lösung getränkt, die nur Puffer und Netzmittel, aber kein Tetrazoliumsalz und Phenazin-ethosulfat enthielt.

c) Gesamtsystem

4ก

Die vorgenannten Bestandteile werden zu einem Testsystem gemäß Abbildung 1 verarbeitet. Der Test ist zur Bestimmung der Harnsäure aus Blut, Plasma und Serum geeignet.

45 d) Testdurchführung

Zur Bestimmung der Harnsäure werden 30 µl Serum auf das Fixiernetz 6 aufgetragen, die transparente Folie 1 wird nach einer Minute angedrückt und nach weiteren zwei Minuten wird mit einem Remissionsphotometer die gebildete Farbe vermessen und aus einer vorher ermittelten Eichkurve die Harnsäurewerte ermittelt.

Eine Serumprobe mit einem Harnsäuregehalt von 6,2 mg/dl wird in zwei Teile geteilt. Einem Teil wird Ascorbinsäure zugefügt, so daß ein Gehalt von 2 mg/dl resultiert. Beide Serumproben werden sowohl mit dem Tetrazoliumsalz enthaltenden Testsystem als auch mit dem zum Vergleich dienenden Testsystem ohne Tetrazoliumsalz untersucht.

Es werden folgende Hamsäure-Werte in mg/dl gemessen:

	Ascorbinsäure	Ascorbinsäure
mit Tetrazoliumsalz	6,27	6,09
ohne Tetrazoliumsalz	6,02	4,61

Serum ohne

Serum mit

10

15

5

Bezugszeichenliste:

1 = Transparente Folie

2 = Reagenzschicht

3 = Deckschicht

4 = Entstörgewebe

5 = Glasfaservlies

6 = Fixiemetz

7 = Transportvlies

8 = Trägerfolie

9 = Klebestelle

Ansprüche

25

20

t y t

1. Verfahren zur Bestimmung von Substraten oder Enzymaktivitäten unter Anwendung einer Redoxreaktion als Meßreaktion, dadurch gekennzeichnet, daß in Gegenwart eines oder mehrerer zusätzlich zugegebener Tetrazoliumsalze gearbeitet wird.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß als zusätzliche Tetrazoliumsalze solche der allgemeinen Formel I

40

35

verwendet werden,

in der

R¹ Wasserstoff, einen Carboxyl-, Alkyl-, Phenyl-, Nitrophenyl-, Dinitrophenyl-, carboxylsubstituierten Phenyl-oder einen Trialkylammoniumphenylrest,

R² einen Phenyl-, Nitrophenyl-, Biphenylyl-oder Naphthylrest,

R³ einen Phenyl-, carboxylsubstituierten Phenyl-, einen carboxylsubstituierten Hydroxyphenyl-oder Dimethylthiazolylrest und

A- ein übliches Gegenion

bedeuten.

50

- 3. Verfahren gemäß einem der Anspruüche 1 bis 2, dadurch gekennzeichnet, daß außerdem ein oder mehrere Elektronenüberträger eingesetzt werden.
- 4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, daß als Elektronenüberträger Phenazinmethosulfat, Phenazinethosulfat, 8-Dimethylamino-2,3-benzophenoxazin,

1-Methoxy-5-methylphenazinium-methylsulfat oder Diaphorase verwendet werden.

5. Reagenz zur enzymatischen Bestimmung von Substraten oder Enzymaktivitäten, enthalten ein System zur Bestimmung eines Substrats oder Enzyms mit einer Redoxreaktion als Meßreaktion, dadurch gekennzeichnet, daß es zusätzlich ein oder mehrere Tetrazoliumsalze enthält.

6. Reagenz gemäß Anspruch 5, dadurch gekennzeichnet, daß es als zusätzliche Tetrazoliumsalze solche der allgemeinen Formel I

enthält,

in der

5-

10

15

30

35

R¹ Wasserstoff, einen Carboxyl-, Alkyl-, Phenyl-, Nitrophenyl-, Dinitrophenyl-, carboxylsubstituierten Phenyloder einen Trialkylammoniumphenylrest,

R² einen Phenyl-, Nitrophenyl-, Biphenylyl-oder Naphthylrest,

R³ einen Phenyl-, carboxylsubstituierten Phenyl-, carboxylsubstituierten Hydroxyphenyl-oder einen Dimethylthiazolylrest und

A- ein übliches Gegenion

bedeuten.

- 7. Reagenz gemäß einem der vorgenannten Ansprüche, dadurch gekennzeichnet, daß es zusätzlich einen oder mehrere Elektronenüberträger enthält.
- 8 Reagenz gemäß einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, daß es auf einem unlöslichen Träger imprägniert vorliegt.
 - 9. Tetrazoliumsalze der allgemeinen Formel I'

in der

R¹einen Carboxylrest, einen unsubstituierten oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest,

R2 einen unsubstituierten Phenytrest.

R3 einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest und

A' ein übliches Gegenanion

bedeuten.

10. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I'

in der

R^{1'} einen Carboxylrest, einen unsubstituierten oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest,

R 2 einen unsbustituierten Phenylrest,

 $R^{3'}$ einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest und A'- ein übliches Gegenanion

bedeuten,

10

15

dadurch gekennzeichnet, daß entweder

a) Aldehydphenylhydrazone der allgemeinen Formel II

in der

R einen veresterten Carboxylrest, einen unsubstituierten Phenylrest oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest und

R² einen unsubstituierten Phenylrest

bedeuten,

mit Diazoniumsalzen der allgemeinen Formel III

+ N≡N-R³ (III)

30

25

in dei

R^{3'} einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest und A'- ein Übliches Gegenanion

bedeuten,

35 alkalisch zu Formazanen der allgemeinen Formel IV

$$R-C = N-N+R^{2}$$

$$N-N+R^{3}$$
(IV)

in de

⁵ R, R² und R³ die vorgenannte Bedeutung haben, gekuppelt oder b) Aldehydphenylhydrazone der allgemeinen Formel II'

in der

50

R einen veresterten Carboxylrest, einen unsubstituierten Phenylrest oder einen in 2-oder 4-Stellung durch eine Carboxylgruppe, in 2-und 4-Stellung durch Nitrogruppen disubstituierten oder in 4-Stellung durch Trimethylammonium substituierten Phenylrest und

R3 einen unsubstituierten oder in 2-Stellung durch eine Carboxylgruppe substituierten Phenylrest

bedeuten,

mit Diazoniumsalzen der allgemeinen Formel III'

+ N≡N-R²' (III')

in der

R2 einen unsubstituierten Phenylrest und

A'- ein übliches Gegenanion

bedeuten,

alkalisch zu Formazanen der allgemeinen Formel IV'

15

20

5

N=N-R²'
R-C
N-NHR³'

in de

R, R^{2'} und R^{3'}die vorgenannte Bedeutung haben, gekuppelt und diese abschließend oxidiert werden.

30

25

35

40

45

50

Abbildung 1:

