Complex numbers exercises

June 2025

Answer the questions on the back of the page.

Name and section:	
Instructor's name:	
Section A	
1. (maximum mark: 9)	
(a) Write i in polar and Euler's form.	(1 mark)
(b) Find the value of i^i .	(3 marks)
(c) Hence, write i^{i} in polar form.	(5 marks)
2. (maximum mark: 6)	
The complex number $z \in \mathbb{C}$ satisfies the equation Solve for z .	on $i(z+2) = 1 - 2z$, where $i = \sqrt{-1}$.
3 (maximum mark: 4)	

4. (maximum mark: 5)

(z-2i) is a factor of $2z^3-3z^2+8z-12$. Find the other two factors.

5. (maximum mark: 5)

Let $z \in \mathbb{C}$ and |z + 16| = 4|z + 1|, find |z|.

Let $z_1 = a(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4})$ and $z_2 = b(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3})$. Express $(\frac{z_1}{z_2})^3$ in cartesian form.

6. (maximum mark: 6)

The numbers $z, w \in \mathbb{C}$ satisfy the equations:

$$\frac{w}{z} = 2i$$

$$z^* - 3w = 5 + 5i$$

Find z and w in cartesian form.

7. (maximum mark: 8)

Consider the complex geometric series $e^{i\theta} + \frac{1}{2}e^{2i\theta} + \frac{1}{4}e^{3i\theta} + \dots$

- (a) Find an expression for z, the common ratio of this series. Show that $|z| = \frac{1}{2}$. (2 marks)
- (b) Write down an expression for the sum to infinity of this series. (1 mark)
- (c) Express your answer to part (b) in terms of $\sin \theta$ and $\cos \theta$, and show that: (5 marks)

$$\cos \theta + \frac{1}{2}\cos 2\theta + \frac{1}{4}\cos 3\theta + \dots = \frac{4\cos \theta - 2}{5 - 4\cos \theta}$$

8. (maximum mark: 7)

Consider $w = \cos\frac{2\pi}{5} + i\sin\frac{2\pi}{5}$.

- (a) Show that w is a solution of the equation $z^5 1 = 0$. (1 mark)
- (b) Simplify $(w-1)(w^4 + w^3 + w^2 + w + 1)$, and hence show that $w^4 + w^3 + w^2 + w + 1 = 0$. (2 marks)
- (c) Hence or otherwise, show that $\cos \frac{2\pi}{5} + \cos \frac{4\pi}{5} = -\frac{1}{2}$. (4 marks)

9. (maximum mark: 5)

Consider the complex numbers z = 1 + 2i and w = 2 + ai where $a \in \mathbb{R}$. Find a when

- (a) |w| = 2|z|;
- (b) $\Re(zw) = 2\Im(zw)$.

Section B

10. (maximum mark: 14)

If z is a non-zero complex number, define $\mathcal{L}(z)$ by the equation

$$\mathcal{L}(z) = \ln|z| + i\arg z, \arg z \in [0, 2\pi]$$

(a) Show that when z is a positive real number, $\mathcal{L}(z) = \ln z$. (2 marks)

(b) Use the equation to calculate:

(12 marks)

- 1. $\mathcal{L}(-1)$
- 2. $\mathcal{L}(1-i)$
- 3. $\mathcal{L}(-1+i)$

Hence show that the property $\mathcal{L}(z_1z_2) = \mathcal{L}(z_1) + \mathcal{L}(z_2)$ does not hold for all values of z_1 and z_2 .

11. (maximum mark: 17)

It is given that $u = 1 + \sqrt{3i}$ and v = 1 - i.

(a) Express u and v in polar form, and find u^3v^4 . (5 marks)

The complex numbers u and v can be represented in the Argand diagram via the point A and the point B respectively.

(b) Draw the Argand diagram and place the points A and B. (3 marks)

The point A is rotated $\frac{\pi}{2}$ anticlockwise with respect to the origin O and the point B is rotated $\frac{\pi}{2}$ clockwise, converting to the points A' and B' respectively.

(c) Calculate the area of the triangle OA'B'. (5 marks)

Given that u and v are the roots of the equation $z^4 + bz^3 + c^2 + dz + e = 0$, where $b, c, d, e \in \mathbb{R}$,

(d) Find
$$b, c, d$$
 and e . (4 marks)

12. (maximum mark: 24)

(a) Use the principle of mathematical induction to prove that: (7 marks)

$$(\cos x + i\sin x)^n = \cos nx + i\sin nx, \ n \in \mathbb{Z}^+$$

Let $z = \cos \theta + i \sin \theta$, where $\theta \in (-\frac{1}{4}, \frac{1}{4})$.

(b) Find z^3 using the binomial theorem and show that: (6 marks)

$$\cos 3\theta = 4\cos^3 \theta - 3\cos \theta$$

and

$$\sin 3\theta = 3\sin \theta - 4\sin^3 \theta$$

(c) Hence, show that: (6 marks)

$$\tan \theta = \frac{\sin 3\theta - \sin \theta}{\cos 3\theta + \cos \theta}$$

(d) Given that $\sin \theta = \frac{1}{3}$, find the exact value of $\tan 3\theta$. (5 marks)