- 1. Find the maximum and minimum of $f(x,y) = x^2 + 2x + y^2$ on the disk $x^2 + y^2 \le 4$.
- 2. Find the maximum and minimum of T(x,y,z) = xyz subject to the constraint $x^2 + y^2 + 4z^2 = 12$. Note: It is easy to see that all absolute extrema occur when none of x, y, z are zero, so you may assume that fact in your solution.
- 3. Let $f(x,y) = x^3y^4$.
 - (a) Find $\nabla f(1,1)$.
 - (b) Find an equation of the tangent plane to the graph of f at the point (1,1,1).
 - (c) Find the maximum rate of increase of f at (1,1), and the direction in which it occurs.
 - (d) A unit vector \mathbf{u} makes an angle of $\pi/3$ with $\nabla f(1,1)$. Find the directional derivative $D_{\mathbf{u}}f(1,1)$. Hint: you don't really need to know \mathbf{u} to answer this question.
 - (e) Determine an equation for the tangent line to the level curve of f at the point (1,1).
- 4. Consider the following series. If they converge, determine their value; if they diverge, briefly say why.
 - (a) $\sum_{n=1}^{\infty} \frac{n}{n+1}$

Converges to.

or

Diverges because

(b) $\sum_{n=0}^{\infty} 10^{10} \left(\frac{2}{3}\right)^n$

Converges to

or

Diverges because_

(c)
$$\sum_{n=0}^{\infty} \frac{2^n}{n!}$$

Converges to.

or

Diverges because_

5. Below is drawn a contour map (the level curves) for a twice differentiable function f(x,y). Use this map to answer the questions which follow:

(a) Give the approximate coordinates (integer values) of a local maximum point of f.

(b) Give the approximate coordinates (integer values) of a saddle point of f.

(c) Consider the point (0,0) marked on the diagram by a \blacksquare . You may assume that none of the partial derivatives of f are zero at this point. Indicate whether the following partial derivatives are positive or negative:

0.0	October 1980	11.	100	20.0	400		100				41.0				1.5			٠,٠		200		1.0						1.0							100			. 100 1		
	1000	27		w	2.9			1,00	O.	400	200		100	- 0	wis.	40	٠.,		200	60	90	200	, O.			0.0	0.00					100	: 33				1.99		300	
10	x	7.7	`	n	· A :	. •	200				100		٠٠٠,		٠.			40		: -:	×.	ж.					:		- : '						0.00		20.0	-0.0		
0.7			11.		1.1	. 7	ο.	4.0	C.,								100			400			: : :		11.										- 11	5.0	1.00			
100	n		٠.	··	ш.	بليان	Ο.	_		4.	_			-			_		-	-			÷	_		-	_	-	_	÷	-	_		_	<u> </u>	_		_		
		۸.			Z.:		1.5							200		v :	100				-0.0	: 50	:::		100			:::				:::	****		/ :::					
						- 1			::		1.0							40.0		5. 5					. 60	9.00								. 25 -					100	
177		- 10	16				100	111							::.												600								. ii.		i. 5.			
- 4				0.0	96.0	- 1					1.0				0.00			100				200				con													.000	
		-00						: :		200	-:::	100	33.	. : : :	:	11		200		90			- 40	٠٠.						· .					· · ·				100	
2.35	100				373	200	9.5	90	a.,	0.00		307							20.04	400			100	: 50			0.00	200	200			- 6	- 41	400		377		- · · · ;		
				0.00	200					200		-00			100			×:::												100				100			0.00		100	
1.5	p.	77	`	0	Α.																		1.44			***			4.4						1.00	2.0	200	-0.00		
	M .	11	ЯΣ.	:1 I	410	:T	C:	10				3.5		93	×Υ								110			- 11		0.00		500	900			201	200	200	e Gr		11.5	
	y	١.	۶.	·		-14	σ.	24					•••		· ·	7.				· .				000	_	<u></u>		20.00	37	200		200	330		نست		-	20.0		ċ
	м.	١.		- 5	z:	3.7			-:	1		-		e .						40									·. i .											

6. Suppose a twice differentiable function f has a critical point at (x_0, y_0) . In each of the following, information about the second order partials is given. In each case, classify the critical point as a local maximum, local minimum, or saddle point, or else explain why the second derivative test fails.

(a)
$$f_{xx}(x_0, y_0) = 2$$
, $f_{yy}(x_0, y_0) = 6$, $f_{xy}(x_0, y_0) = 2$.

(b)
$$f_{xx}(x_0, y_0) = 2$$
, $f_{yy}(x_0, y_0) = 8$, $f_{xy}(x_0, y_0) = 4$.

(c)
$$f_{xx}(x_0, y_0) = 2$$
, $f_{yy}(x_0, y_0) = 6$, $f_{xy}(x_0, y_0) = 5$.

7. Given a function z = f(u) where u = g(x, y), x = h(s, t), and y = k(s, t), use the Chain Rule to write an expression for $\frac{\partial z}{\partial t}$ in terms of the partial derivatives of the other functions.

8. Multiple Choice Circle the correct response.

A. What is the Maclaurin series for $\frac{1}{1+x^2}$?

a.
$$\sum_{n=0}^{\infty} (-1)^n x^{2n}$$

$$b.\sum_{n=0}^{\infty} x^{2n}$$

c.
$$\sum_{n=0}^{\infty} (-1)^n (2n) x^{2n-1}$$

d.
$$\sum_{n=1}^{\infty} (-1)^n \frac{x^{2n-1}}{2n}$$

- e. none of the above
- B. If the motion of a particle is given by a vector-valued function $\mathbf{r}(t)$ defined for $a \leq t \leq b$, then the integral of the speed of $\mathbf{r}(t)$ from t=a to t=b equals
- a. the acceleration
- b. the distance from $\mathbf{r}(a)$ to $\mathbf{r}(b)$
- c. the velocity
- d. the distance the particle travels going from $\mathbf{r}(a)$ to $\mathbf{r}(b)$
- e. none of the above
- C. Which of the following vectors is orthogonal to the plane containing the parallel lines $\mathbf{r}(t) = \langle 1, 1, 1 \rangle + t \langle 2, 1, 4 \rangle$, and $\mathbf{r}(t) = \langle 2, 3, 4 \rangle + t \langle 2, 1, 4 \rangle$.
- a. $\langle 1, 1, 1 \rangle \times \langle 2, 3, 4 \rangle$
- b. $(1,1,1) \times (2,1,4)$
- c. (2,1,4)
- d. $(1,2,3) \times (2,1,4)$
- e. $\langle 1, 2, 3 \rangle$
- 9. Find

$$\int \frac{1}{x^2\sqrt{x^2+9}} dx.$$

10. Determine whether the planes given by x + 4y - 3z = 1 and -3x + 6y + 7z = 3 are parallel, perpendicular, or neither. If neither, find the angle between them.