Алгебраические свойства операторов распознавания в моделях зрительного восприятия (динамических сцен)

Александр Панов

ИСА РАН

Лаб. 0-2 «Динамические интеллектуальные системы» Интеллетуализация обработки информации 10-я международная конференция

7 октября 2014 г.

Восприятие — когнитивная функция

Восприятие — один из видов когнитивных или познавательных процессов, который сопоставляет поступающую с органов чувств информацию с имеющейся информацией, закодированной в коре головного мозга, обновляя последнюю в процессе сопоставления.

Связанные понятия: внимание, память, категоризация.

<u>Изучение</u>: со стороны психологии (свойства, факторы, формы) и со стороны нейрофизиологии (строение перцептивных участков коры головного мозга).

<u>Интерес</u>: в задачах навигации и локализации (SLAM), человеко—машинное взаимодействие (HRI).

Основные принципы работы коры головного мозга

Маунткасл, Эдельман, Хокинс:

- неокортекс состоит из элементарных составных элементов, которые имеют одинаковое строение на всех участках коры,
- колонки латеральными связями объединены в регионы,
- неокортекс хранит последовательности паттернов,
- неокортекс воспроизводит паттерны автоассоциативно,
- неокортекс предсказывает паттерны,
- неокортекс хранит паттерны в инвариантной иерархической форме.

Слои и колонки неокортекса

Основные принципы модели

С целью проведения математического исследования модели были приняты следующие упрощения:

- дискретность во времени,
- простейшая строгая иерархия со связями только между ближайшими уровнями,
- обратная связь только по предсказанию, без моторной части,
- гипотеза одинаковой длительности для одной тематики,
- гипотеза «всегда начинаем с начала»,
- пороговая модель принятия решений,
- подавление непредвиденного сигнала.

Признаки и распознающие блоки

Пусть заданы следующие множества:

- ullet $\{R_i^j\}$ совокупность распознающих блоков,
- ullet $\{f_k\}$ совокупность допустимых признаков.

Введём бинарное отношение \dashv , определённое на декартовом произведении $\{f_k\} \times \{R_i^j\}$, и будем читать $f_k \dashv R_i^j$ как «признак f_k распознаётся блоком R_i^j ».

Множество всех распознаваемых блоком R_i^j признаков будем обозначать F_i^{*j} , т. е. $\forall f^* {\in} F_i^{*j} f^* {\dashv} R_i^j, F_i^{*j} {\subseteq} \{f_k\}.$

Иерархия распознающих блоков

Рассмотрим связный ориентированный (ярусный) граф $G_R = (V, E)$:

- ullet V множество вершин,
- *E* множество рёбер,
- ullet каждая вершина v, принадлежащая j-ому ярусу графа G_R , связана с соответствующим распознающим блоком R_i^j уровня j,
- каждое ребро $e=(v,u){\in}E$ обозначает иерархическую связь между соответствующим вершине v дочерним блоком $R_{i_1}^{j_1}$ и соответствующим вершине u блоком—родителем $R_{i_2}^{j_2}$.

Входные и измеряемый признаки

Определим:

- для каждого распознающего блока R_i^j множество $F_i^j \subseteq \{f_k\}$ совокупность входных признаков, в которую входят такие признаки, что для любого $f \in F_i^j$ существует распознающий блок R_k^{j-1} уровня j-1, дочерний по отношению к блоку R_i^j , такой, что $f \dashv R_k^{j-1}$
- для каждого признака $f^* {\in} F_i^{*j} \phi$ ункцию распознавания $\hat{f}(x_1,\dots,x_q) = x^*$, где $x^* {\in} (0,1)$ вес присутствия распознаваемого признака f^* , а $x_1,\dots,x_q {\in} (0,1)$ вес присутствия признаков из множества входных признаков F_i^j ,
- множество \hat{F}_i^j совокупность функций распознавания для блока R_i^j .

Динамика распознающего блока

Пусть

- ullet l_i^j мощность множества измеряемых признаков F_i^{*j} и множества функций измерения \hat{F}_i^j ,
- q_i^j мощность множества входных признаков F_i^j
- T_i^j упорядоченное множество локальных моментов времени T_i^j для распознающего блока R_i^j
- ullet h_i^j характерный масштаб времени, за который происходит один цикл вычисления в распознающем блоке R_i^j .

Динамика распознающего блока

В начале s-ого цикла вычисления (момент времени $\tau_s \in T_i^j$) распознающий блок R_i^j получает на вход вектор длины l_i^j ожиданий $\hat{x}_i^{j+1}(\tau_s)$:

$$\hat{x}_i^{j+1}(\tau_s) = \frac{1}{N_i^j} \sum_{k \in K_i^{j+1}} \hat{x}_k^{j+1}(\tau_s),$$

где N_i^j — количество родительских блоков, K_i^{j+1} — множество индексов родительских относительно R_i^j распознающих блоков.

Динамика распознающего блока

В каждый момент времени $t\in T_i^j$, $au_s\leqslant t\leqslant au_s+h_i^j$, распознающий блок R_i^j

- ullet получает на вход весовой вектор $ar{x}_i^j(t)$ длины l_i^j присутствия входных признаков из множества F_i^j ,
- ullet вычисляет выходной весовой вектор $ar{x}_i^{*j}(t)$ длины l_i^j присутствия измеряемых признаков из множества F_i^{*j} ,
- ullet вычисляет вектор длины q_i^j ожиданий $\hat{x}_i^j(t)$ присутствия входных признаков в следующий момент времени.

Схема входных и выходных отображений

Входные и выходные отображения

Пусть

- ullet X_i^{*j} множество возможных мгновенных значений выходных векторов распознающего блока R_i^j ,
- ullet X_i^j множество возможных мгновенных значений весовых векторов присутствия входных признаков,
- ullet \hat{X}_i^j множество всех возможных мгновенных значений векторов ожиданий или множество состояний распознающего блока R_i^j ,
- $\omega_i^j: T {
 ightarrow} X_i^j$ входное воздействие в смысле теории динамических систем,
- ullet $\gamma_i^j:T{
 ightarrow}X_i^{*j}$ выходная величина,
- ullet $arphi_i^j(t; au_s,\hat{x}_i^{j+1},\omega)=\hat{x}_i^j$ функция переходов,
- $\eta_i^j: T \times \hat{X}_i^j \to X_i^{*j}$ выходное отображение, определяющее выходные вектора $\bar{x}_i^{*j}(t) = \eta(t, \hat{x}_i^j(t))$.

Матрица предсказаний

Будем считать множество моментов времени T множеством целых чисел. Тогда распознающий блок R_i^j будет являться динамической системой с дискретным временем.

Поставим каждой функции измерения \hat{f}_k из множества \hat{F}_i^j в соответствие набор матриц предсказания $Z_k=\{Z_1^k,\dots,Z_m^k\}$ размерности $q_i^j \times h_i^j$. Тогда

- ullet столбец $ar{z}_u^r=(z_{u1}^k,\dots,z_{uq}^k)$ матрицы Z_r^k это вектор предсказания присутствия входных признаков из множества F_i^j в момент времени au_s+u , $z_{uv}^k\in\{0,1\}$,
- ullet матрица Z_r^k задаёт последовательность событий, наличие которых свидетельствует о присутствии измеряемого функцией \hat{f}_k признака,
- \mathcal{Z}_i^j множество всех матриц предсказания распознающего блока R_i^j .

Алгоритм \mathfrak{A}_{th} (часть I, инициализация)

Require: $\tau_s, \hat{x}_i^{j+1}(\tau_s), \omega_i^j$; Ensure: φ_i^j, η_i^j ;

Алгоритм \mathfrak{A}_{th} (часть I, инициализация)

```
Require: \tau_s, \hat{x}_i^{j+1}(\tau_s), \omega_i^j;

Ensure: \varphi_i^j, \eta_i^j;

1: \hat{F}^* = \varnothing;

2: Z^* = \varnothing;

3: t = 0;

4: c_1 \in (0,1), c_2 \in (0,1);
```

Алгоритм \mathfrak{A}_{th} (часть I, инициализация)

```
Require: \tau_s, \hat{x}_i^{j+1}(\tau_s), \omega_i^j;
Ensure: \varphi_i^j, \eta_i^j;
 1: \hat{F}^* = \varnothing:
 2: Z^* = \emptyset:
 3: t = 0:
 4: c_1 \in (0,1), c_2 \in (0,1);
 5: for all компонент \hat{x}_{ik}^{j+1} вектора \hat{x}_{i}^{j+1}(	au_s)=(\hat{x}_{s1}^{j+1},\hat{x}_{s2}^{j+1},\dots,\hat{x}_{st}^{j+1}) do
      if \hat{x}_{ik}^{j+1} \ge c_1 then
 7: \hat{F}^* := \hat{F}^* \cup \{\hat{f}_k\}:
      end if
 8:
 9: end for
```

Алгоритм \mathfrak{A}_{th} (часть II, инициализация)

10: for all функций распознавания $\hat{f}_k \in \hat{F}^*$ do

11: **for all** $Z_r^k \in \mathcal{Z}_k$, соответствующих функции распознавания \hat{f}_k **do**

```
Алгоритм \mathfrak{A}_{th} (часть II, инициализация)

10: for all функций распознавания \hat{f}_k \in \hat{F}^* do

11: for all Z_k^k \in \mathcal{Z}_k, соответствующих функции распознавания \hat{f}_k do

12: if \frac{\|\vec{z}_1^r - \vec{x}_i^j\|}{\|\vec{z}_1^r\| + \|\vec{x}_i^j\|} < c_2 then

13: Z^* := Z^* \cup \{Z_r^k\};

14: end if

15: end for
```

16: end for

```
Алгоритм \mathfrak{A}_{th} (часть II, инициализация)
```

```
10: for all функций распознавания \hat{f}_k \in \hat{F}^* do
             for all Z_r^k \in \mathcal{Z}_k, соответствующих функции распознавания \hat{f}_k do
11:
                  if \frac{\|\bar{z}_1^r - \bar{x}_i^j\|}{\|\bar{z}_1^r\| + \|\bar{x}_i^j\|} < c_2 then
12:
                      Z^* := Z^* \cup \{Z_r^k\};
13:
                  end if
14:
      end for
15.
16: end for
17: \bar{N} := (|\{Z_r^1 | Z_r^1 \in Z^*\}|, \dots, |\{Z_r^{l_i^j} | Z_r^{l_i^j} \in Z^*\}|);
18: \bar{x}_i^{*j} := W(\bar{N});
                                                                                      \triangleright W — весовая функция
19: \eta(\tau_s, \hat{x}_i^j(\tau_s)) = \bar{x}_i^{*j};
20: \varphi(\tau_s + 1; \tau_s, \hat{x}_i^{j+1}, \omega) = \hat{x}_i^j(\tau_s + 1) = W(\sum_{\hat{f}_k \in \hat{F}^*} \hat{x}_{ik}^{j+1} \sum_{Z_i^k \in Z^*} \bar{z}_2^r);
```

Алгоритм \mathfrak{A}_{th} (часть III, основной цикл)

```
21: t = 1;
```

22: while $t \leqslant h_i^j - 1$ do

23:
$$\bar{x}_i^j = \omega(\tau_s + t);$$

```
Алгоритм \mathfrak{A}_{th} (часть III, основной цикл)
21: t=1;
22: while t\leqslant h_i^j-1 do
23: \bar{x}_i^j=\omega(\tau_s+t);
24: for all матриц предсказания Z_r^k из множества Z^* do
25: if \frac{\|\bar{z}_{t+1}^r-\bar{x}_i^j\|}{\|\bar{z}_{t+1}^r\|+\|\bar{x}_i^j\|}\geqslant c_2 then
26: Z^*:=Z^*\setminus\{Z_r^k\};
27: end if
28: end for
```

```
Алгоритм \mathfrak{A}_{th} (часть III, основной цикл)
```

```
21. t = 1:
22: while t \leq h_i^j - 1 do
        \bar{x}_{i}^{j}=\omega(\tau_{s}+t):
23:
            oldsymbol{\mathsf{for all}} матриц предсказания Z^k_x из множества Z^* oldsymbol{\mathsf{do}}
24:
                    if \frac{\|\bar{z}_{t+1}^r - \bar{x}_i^j\|}{\|\bar{z}_{t+1}^r\| + \|\bar{x}_i^j\|} \geqslant c_2 then
25:
                           Z^* := Z^* \setminus \{Z^k_n\}
26:
                    end if
27:
             end for
28:
             \bar{N} = (|\{Z_r^1 | Z_r^1 \in Z^*\}|, \dots, |\{Z_r^{l_i^j} | Z_r^{l_i^j} \in Z^*\}|):
29:
             \bar{x}_{\cdot}^{*j} := W(\bar{N}):
30:
             \eta(\tau_s + t, \hat{x}_i^j(\tau_s + t)) = \bar{x}_i^{*j};
31:
```

Алгоритм \mathfrak{A}_{th} (окончание)

```
32: t = t + 1;
```

33: if
$$t \leqslant h_i^j - 2$$
 then

Алгоритм \mathfrak{A}_{th} (окончание) 32: t=t+1; 33: if $t\leqslant h_i^j-2$ then 34: $\hat{x}_i^j:=W(\sum_{\hat{f}_k\in\hat{F}^*}\hat{x}_{ik}^{j+1}\sum_{Z_r^k\in Z^*}\bar{z}_{t+1}^r)$; 35: $\varphi(\tau_s+t;\tau_s,\hat{x}_i^{j+1},\omega)=\hat{x}_i^j(\tau_s+t)=\hat{x}_i^j$; 36: end if 37: end while

Статический оператор распознавания

Зафиксируем момент времени t, равный началу некоторого s-го вычислительного цикла au_s .

В этом случае, распознающий блок R_i^j можно рассматривать как статический оператор распознавания $R_i^j(\hat{x}_i^{j+1},\mathcal{Z}_i^j,\bar{x}_i^j)=\bar{x}_i^{*j}.$

Задача классификации по Журавлёву

Пусть

- $\{Q\}$ совокупность задач классификации,
- ullet $\{\mathcal{A}\}$ множество алгоритмов, переводящих пары $(\hat{x}, ar{x})$ в вектора $\bar{\beta}$, составленные из элементов $0,1,\Delta:\mathcal{A}(\hat{x},\bar{x})=\bar{\beta}$. Если $\beta_i \in \{0,1\}$, то β_i — значение величины α_i , вычисленное алгоритмом \mathcal{A} . Если $\beta_i = \Delta$, то алгоритм \mathcal{A} не вычислил значение α_i .

Задача $Q(\hat{x}, \bar{x}, \alpha_1, \dots, \alpha_l) \in \{Q\}$ состоит в построении алгоритма, вычисляющего по поступившему вектору ожиданий \hat{x} и входному вектору \bar{x} значения $\alpha_1,\ldots,\alpha_l\in\{0,1\}$ присутствия признаков f_1^*, \ldots, f_I^* . Другими словами, искомый алгоритм \mathcal{A}^* переводит набор (\hat{x}, \bar{x}) в вектор $\bar{\alpha}=(\alpha_1,\ldots,\alpha_l)$, который будем называть информационным вектором входного вектора \bar{x} .

Свойство корректности алгоритма

Определение 1

Алгоритм ${\mathcal A}$ называется корректным для задачи Q, если выполнено равенство

$$\mathcal{A}(\hat{x}, \bar{x}) = \bar{\alpha}.$$

Алгоритм \mathcal{A} , не являющийся корректным для Q, называется некорректным.

Далее будем считать, что множество $\{\mathcal{A}\}$ является совокупностью, вообще говоря, некорректных алгоритмов.

Главное отличие от классической постановки: используются вектора, а не матрицы при формулировке соответствующих определений и утверждений.

Разложение алгоритма классификации

Утверждение 1 (аналог теоремы 1 по Журавлёву)

Каждый алгоритм $\mathcal{A} \in \{\mathcal{A}\}$ представим как последовательность выполнения алгоритмов R и C, где $R(\hat{x}, \bar{x}) = \bar{x}^*$, \bar{x}^* — вектор действительных чисел, $C(\bar{x}^*) = \bar{\beta}$, $\beta_i \in \{0, 1, \Delta\}$.

- R оператор распознавания,
- С решающее правило.

Решающее правило и операции над алгоритмами

Определение 2

Решающее правило C^* называется корректным на множестве входных векторов X, если для всякого вектора \bar{x} из X существует хотя бы один числовой вектор \bar{x}^* такой, что $C^*(\bar{x}^*) = \bar{\alpha}$, где $\bar{\alpha}$ — информационный вектор входного вектора \bar{x} .

В множестве операторов $\{R\}$ введем операции умножения на скаляр, сложения и умножения. Пусть r' — скаляр, $R',R''\in\{R\}$. Определим операторы $r'\cdot R',R''+R''$ и $R\cdot R''$ следующим образом:

$$r' \cdot R' = (r' \cdot x_1^{*\prime}, \dots, r' \cdot x_l^{*\prime}), \tag{1}$$

$$R' + R'' = (x_1^{*'} + x_1^{*''}, \dots, x_1^{*'} + x_l^{*''}), \tag{2}$$

$$R' \cdot R'' = (x_1^{*'} \cdot x_1^{*''}, \dots, x_1^{*'} \cdot x_l^{*''}). \tag{3}$$

Замыкание множества алгоритмов

Утверждение 2

Замыкание $L\{R\}$ множества $\{R\}$ относительно операций (1) и (2) является векторным пространством.

Утверждение 3

Замыкание $\mathfrak{U}\{R\}$ множества $\{R\}$ относительно операций (1), (2) и (3) является ассоциативной линейной алгеброй с коммутативным умножением.

Определение 3

Множества $L\{A\}$ и $\mathfrak{U}\{A\}$ алгоритмов $\mathcal{A}=R\cdot C^*$ соответственно таких, что $R{\in}L\{R\}$ и $R\in\mathfrak{U}\{R\}$, соответственно называются линейными и алгебраическими замыканиями множества $\{\mathcal{A}\}$.

Свойство полноты задачи

Зафиксируем пару (\hat{x}, \bar{x}) управляющего вектора и входного вектора. Будем рассматривать задачи $Q(\hat{x}, \bar{x})$, обладающие следующим свойством относительно множества операторов распознавания \mathcal{R} .

Определение 4

Если множество векторов $\{R(\hat{x},\bar{x})\}$, где R пробегает некоторое множество операторов распознавания \mathcal{R} , содержит базис в пространстве числовых векторов длины l, то задача $Q(\hat{x},\bar{x},\bar{\alpha})$ называется полной относительно \mathcal{R} .

Связь свойств полноты и корректности

Утверждение 4 (аналог теоремы 2 по Журавлёву)

Если множество задач $\{Q\}$ состоит лишь из задач, полных относительно \Re , то линейное замыкание $L\{R\cdot C^*\}$ $(C^*-$ произвольное фиксированное корректное решающее правило, R пробегает множество \Re является корректным относительно $\{Q\}$.

Основная теорема корректности

Будем рассматривать только такие задачи $Q(\hat{x}, \bar{x}, \bar{\alpha})$, для которых удовлетворяется следующее условие: $\exists k$ такое, что x_k является k-ым элементом вектора \bar{x} и $x_k > 1/2$.

Theorem 1

Линейное замыкание $L\{\mathcal{A}\}$ семейства алгоритмов $\{\mathcal{A}\}=\{R\cdot C^*\}$ с произвольным корректным решающим правилом C^* и операторами распознавания R, определенными алгоритмом \mathfrak{A}_{th} , является корректным на $\{Q\}$.

Операторы распознавания R^t

Фиксация момента времени не в начале вычислительного цикла, а на любом другом значении $au_s < t < au_s + h_i^j$, приводит к операторам вида $R_i^j(\hat{x}_i^j(t), \mathcal{Z}_i^j, \bar{x}_i^j(t))$, который кратко будем записывать R^t .

Для этих операторов постановка задачи распознавания выглядит таким же образом как и для операторов R, формулировки определений полноты и корректности идентичны. Теорема о корректности линейного замыкания $L\{R^t\cdot C^*\}$ доказывается аналогично.

Динамические операторы распознавания

Будем фиксировать не конкретный момент времени t, а промежуток времени $\Delta t = [\tau_s, \tau_s + h_i^j).$

В этом случае распознающий блок R_i^j можно рассматривать как динамический оператор распознавания $\hat{R}_i^j(\hat{x}_i^{j+1}(au_s),\mathcal{Z}_i^j,\omega_{i\Delta t}^j)=\gamma_{i\Delta t}^j$

- ullet принимающий функцию входного воздействия ω_i^j , ограниченную на промежутке времени Δt и
- ullet выдающий функцию выходной величины γ_i^j на том же временном промежутке.

Динамические операторы распознавания

Действие динамического оператора \hat{R}_i^j можно заменить последовательным действием статических операторов

$$R(\hat{x}_{i}^{j+1}(\tau_{s}), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s})), R^{1}(\hat{x}_{i}^{j}(\tau_{s}+1), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s}+1)), \dots,$$

$$R^{h_{i}^{j}-1}(\hat{x}_{i}^{j}(\tau_{s}+h_{i}^{j}-1), \mathcal{Z}_{i}^{j}, \bar{x}_{i}^{j}(\tau_{s}+h_{i}^{j}-1)),$$

в результате выдающих последовательность

$$\{\bar{x}_i^{*j}(t)\} = \{\bar{x}_i^{*j}(\tau_s), \bar{x}_i^{*j}(\tau_s+1), \dots, \bar{x}_i^{*j}(\tau_s+h_i^j-1)\}.$$

Так как параметр h_i^j фиксирован, то конечные последовательности векторов $\omega_{i\Delta t}^j$ и $\gamma_{i\Delta t}^j$ можно считать матрицами размерности $l_i^j imes h_i^j$. Далее будем опускать индексы i и j.

Задача классификации по Журавлёву

Задача $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$ состоит в построении алгоритма $\hat{\mathcal{A}}$, вычисляющего по поступившему начальному (управляющему) вектору ожиданий \hat{x} и матрице входных воздействий $\omega_{\Delta t}$ последовательность векторов $\beta_{\Delta t}$, монотонно сходящуюся к информационному вектору $\bar{\alpha}$.

Искомый оператор распознавания \hat{R} должен выдавать весовую матрицу присутствия измеряемых признаков $\gamma_{\Delta t}$, столбцы которой должны сходиться (с учётом корректного решающего правила) к информационному вектору: $\lim_{t \to \tau_s + h} \bar{x}^*(t) = \bar{\alpha}$.

Корректность алгоритма

Определение 5

Алгоритм $\hat{\mathcal{A}}(\hat{x},\bar{x})=eta_{\Delta t}=(ar{eta}_1,\dots,ar{eta}_h)$ называется корректным для задачи \hat{Q} , если выполнено условие

$$\|\bar{\beta}_1 - \bar{\alpha}\| \geqslant \|\bar{\beta}_2 - \bar{\alpha}\| \geqslant \dots \geqslant \|\bar{\beta}_h - \bar{\alpha}\| = 0.$$

 $\|ar{eta}_i - ar{lpha}\| = \sum_j (eta_{ij} - lpha_j)$, где $eta_{ij} - lpha_j = 0$, если $eta_{ij} = lpha_j$, $eta_{ij} - lpha_j = rac{1}{2}$, если $eta_{ij} = \Delta$, и $eta_{ij} - lpha_j = 0$ иначе. Алгоритм $\hat{\mathcal{A}}$, не являющийся корректным для \hat{Q} , называется некорректным.

Разложимость алгоритма

Утверждение 5

Каждый алгоритм $\hat{\mathcal{A}} \in \{\hat{\mathcal{A}}\}$ представим как последовательность выполнения алгоритмов \hat{R} и \hat{C} , где $\hat{R}(\hat{x},\mathcal{Z},\omega_{\Delta t})=\gamma_{\Delta t}$, $\gamma_{\Delta t}$ — матрица действительных чисел, $\hat{C}(\gamma_{\Delta t})=\beta_{\Delta t}$, $\beta_{\Delta t}$ — матрица значений $\beta_{ij}\in\{0,1,\Delta\}$.

Корректное решающее правило

Корректное решающее правило \hat{C}^* для матрицы $\gamma_{\Delta t}$ определяется через набор корректных правил для векторов (C_1^*,\dots,C_h^*) таких, что

$$||C_1^*(\bar{x}^*(\tau_s)) - \bar{\alpha}|| \ge ||C_2^*(\bar{x}^*(\tau_s + 1)) - \bar{\alpha}|| \ge \dots \ge$$

 $\ge ||C_h^*(\bar{x}^*(\tau_s + h - 1)) - \bar{\alpha}|| = 0.$

В простейшем случае $\forall i \ C_i^*(\bar{x}^*(\tau_s+i)) = \bar{\alpha}.$

Аналогично статическому случаю вводятся определения линейного $L\{\hat{R}\}$ и алгебраического $\mathfrak{U}\{\hat{R}\}$ замыкания над множеством $\{\hat{R}\}.$

Основная теорема корректности

Зафиксируем начальный вектора ожиданий \hat{x} и последовательность входных векторов $\omega_{\Delta t}.$

Если, как и в статическом случае, будем рассматривать только такие задачи $\hat{Q}(\hat{x},\omega_{\Delta t},\bar{\alpha})$, для которых в матрице $\omega_{\Delta t}$ в каждом столбце с номером s $\exists k$ такое, что x_{sk} является k-ым элементом вектора $\bar{x}(\tau_s+s)$ и $x_{sk}>1/2$, то можно сформулировать следующую теорему.

Theorem 2

Линейное замыкание $L\{\hat{\mathcal{A}}\}$ семейства алгоритмов $\{\hat{\mathcal{A}}\}=\{\hat{R}\cdot\hat{C}^*\}$ с произвольным корректным решающим правилом \hat{C}^* и операторами распознавания \hat{R} , определенными алгоритмом \mathfrak{A}_{th} , является корректным на $\{\hat{Q}\}$.

Иерархический оператор распознавания

Для обоснования корректности иерархии операторов динамического распознавания, рассмотрим пример из двухуровневой иерархии, на каждом уровне которой находится по одному оператору: статический $R_{i_1}^{j+1}(\hat{x}_{i_1}^{j+2}, \bar{x}_{i_1}^{j+1}(\tau_s), \bar{\alpha}_{i_1}^{j+1})$ на верхнем уровне и динамический $\hat{R}_{i_2}^j(\hat{x}_{i_2}^{j+1}, \omega_{i_2\Delta t}^j, \bar{\alpha}_{i_2}^j)$ — на нижнем.

Данную иерархию можно рассматривать как иерархический оператор распознавания $\hat{R}^2_{e,j}(\hat{x}^{j+1}_{i_1}(au_s),\mathcal{Z}^{j+1}_{i_1},\mathcal{Z}^j_{i_2},\omega^j_{i_2\Delta t})=\bar{x}^{*j+1}_{i_1}$, принимающий функцию входного воздействия $\omega^j_{i_2\Delta t}$ нижнего уровня, ограниченную на промежутке времени Δt , и выдающий весовой вектор присутствия распознаваемых признаков $\bar{x}^{*j+1}_{i_1}$.

Задача классификации по Журавлёву

Задача $\hat{Q}_{e,j}^2(\hat{x}_{i_1}^{j+2},\omega_{i_2\Delta t}^j,\bar{\alpha}_{i_1}^{j+1})$ состоит в построении алгоритма $\hat{\mathcal{A}}_{e}$, вычисляющего по поступившему начальному вектору ожиданий $\hat{x}_{i_1}^{j+2}$ и матрице входных воздействий $\omega_{i_2\Delta t}^j$ значения информационного вектора $\bar{\alpha}_{i_1}^{j+1}$.

Основная теорема корректности

Зафиксируем начальный вектор ожиданий $\hat{x}_{i_1}^{j+2}$ и последовательность входных векторов $\omega_{i_2\Delta t}^j.$

Если мы будем рассматривать только такие задачи $\hat{Q}^2_{e,j}(\hat{x}^{j+2}_{i_1},\omega^j_{i_2\Delta t},\bar{\alpha}^{j+1}_{i_1})$, для которых в матрице $\omega^j_{i_2\Delta t}$ в каждом столбце с номером s $\exists k$ такое, что x_{sk} является k-ым элементом вектора $\bar{x}^j_{i_2}(\tau_s+s)$ и $x_{sk}>1/2$, то можно сформулировать следующую теорему.

Theorem 3

Линейное замыкание $L\{\hat{\mathcal{A}}_e\}$ семейства алгоритмов $\{\hat{\mathcal{A}}_e\}=\{\hat{R}_{e,j}^2\cdot\hat{C}_e^*\}$ с произвольным корректным решающим правилом \hat{C}_e^* и операторами распознавания $\hat{R}_{e,j}^2$, определёнными алгоритмом \mathfrak{A}_{th} , является корректным на множестве задач $\{\hat{Q}_{e,j}^2\}$.

Результаты

- теорема корректности линейного замыкания иерархических операторов распознавания интерпретируется как существование такого способа обучения иерархии распознающих блоков, в результате которого данная иерархия будет корректно распознавать поступающие стимулы,
- был разработан алгоритм работы региона неокортекса в процессе восприятия с известными допущениями и упрощениями,
- было проведено исследование данного алгоритма путём построения операторов распознавания (статического, динамического и иерархического),
- был применён алгебраический подход к исследуемому алгоритму, доказаны теоремы корректности по всем оператором распознавания,
- с помощью распознающего блока возможно описать и другие компоненты элемента картины мира и построить модели других когнитивных функций.

Спасибо за внимание!

ИСА РАН, лаб. «Динамические интеллектуальные системы», pan@isa.ru