Ladder Networks and Grounding

- Ladder Networks
 - □ Approach from Wednesday
 - Current divider reminder
 - □ In class problem
- Grounding
 - □ Intro
 - □ Lab equipment example
 - □ AC line example

Electrical Engineering Technology

Ladder Networks – One Approach (same as in DC Circuits)

A specific series-parallel configuration

Analyze by:

- Collapse the circuit from the far end
- Find the source current
- Expand the circuit again, finding voltages or currents along the way
 - Successive application of voltage or current divider

Ladder Networks – One Approach

Finding ZT

$$\mathbf{Z''}_T = \mathbf{Z}_5 + \mathbf{Z}_6$$

and

$$\mathbf{Z'}_T = \mathbf{Z}_3 + \mathbf{Z}_4 \| \mathbf{Z''}_T$$

with

$$\mathbf{Z}_T = \mathbf{Z}_1 + \mathbf{Z}_2 \| \mathbf{Z}'_T$$

Finding I

$$\mathbf{I} = \frac{\mathbf{E}}{\mathbf{Z}_T}$$

Current Divider (special case of 2 impedances)

$$\mathbf{I}_3 = \frac{\mathbf{Z}_2 \mathbf{I}}{\mathbf{Z}_2 + \mathbf{Z'}_T}$$

$$\mathbf{I}_6 = \frac{\mathbf{Z}_4 \mathbf{I}_3}{\mathbf{Z}_4 + \mathbf{Z}''_T}$$

Development of 13 (special case equation)

GENERAL FORM:

$$\vec{I}_{\times} = \vec{I}_{T} \left(\frac{\vec{Z}_{T}}{\vec{Z}_{\times}} \right)$$

$$\vec{I}_3 = \vec{I} \left(\frac{\vec{z}_T' / \vec{z}_2}{\vec{z}_T'} \right)$$

BUT
$$\vec{z}_{7}//\vec{z}_{2} = \frac{\vec{z}_{7}\cdot\vec{z}_{2}}{\vec{z}_{7}^{\prime}+\vec{z}_{2}}$$

$$\vec{z}_{3} = \vec{1} \left(\frac{\vec{z}_{7} \cdot \vec{z}_{2}}{\vec{z}_{7} + \vec{z}_{2}} \right) \left(\frac{1}{\vec{z}_{7}} \right)$$

$$\vec{I}_{3} = \vec{1} \quad \vec{Z}_{2}$$

Ladder Networks – ICP (partial HW problem)

FIG. 17.54

Find: The voltage across L2, the current through C2 (not I1) and the average power delivered to the circuit by the source

Remember: Develop a strategy 1st and at least one check-point BEFORE starting the problem.

Grounding – In The Lab

What will the O'Scope read? Is it the correct value?

ffect of What will the O'Scope read?

across Is it the correct value?

Grounding – In The Lab

What will the O'Scope read? CH1 and CH2? Are these the correct measurements?

Grounding – Electrical Outlets

FIG. 17.24 Three-wire conductors: (a) extension cord; (b) home outlet.

Grounding – Electrical Outlets

Note:

- No current is meant to flow through the green wire (earth ground)
- Return and ground are connected together

Electrical Engineering Technology

Grounding - Appliances

FIG. 17.26 Demonstrating the importance of a properly grounded appliance: (a) ungrounded; (b) ungrounded and undesirable contact; (c) grounded appliance with undesirable contact.