Supplementary Material for Learning Rate Adaptation by Line Search in Evolution Strategies with Recombination

Armand Gissler forename.lastname@polytechnique.edu

Anne Auger forename.lastname@inria.fr Inria and CMAP, Ecole Polytechnique, Inria and CMAP, Ecole Polytechnique, Inria and CMAP, Ecole Polytechnique, IP Paris, CNRS

Nikolaus Hansen

forename.lastname@inria.fr IP Paris, CNRS

IP Paris, CNRS Palaiseau, France

Palaiseau, France

Palaiseau, France

ABSTRACT

This is the supplementary material (proofs) for [1].

Proof of Lemma 2.3 in [1]. Let $t \in \mathbb{N}$. We know that $X_{t+1} = X_t + \kappa_{t+1} \sum_{i=1}^{\mu} w_i U_{t+1}^{\varphi(i)}$, with $\kappa_{t+1} = \bar{\kappa}(X_t, \alpha \|X_t\| \sum_{i=1}^{\mu} w_i U_{t+1}^{\varphi(i)})$. Then, by (A1)

$$Z_t = \frac{\left\|X_{t+1}\right\|}{\left\|X_{t}\right\|} = \left\|\frac{X_t}{\left\|X_{t}\right\|} + \alpha \bar{\kappa} \left(\frac{X_t}{\left\|X_{t}\right\|}, \alpha S_{U_{t+1}}^{\varphi}\right) S_{U_{t+1}}^{\varphi}\right\|.$$

But then, according to (A2), we have that Z_t has the same distribution than $||e_1 + \alpha \bar{\kappa}(e_1, \alpha S_V^{\varphi}) S_V^{\varphi}||$. Thus, all the $Z_t, t \in \mathbb{N}$ are identically distributed.

Let $s \in \mathbb{R}$, and denote $\psi^s : \mathbb{R}^n \to \mathbb{C}$ the measurable function such that $\psi^s(X_t) = \mathbb{E}[\exp isZ_t \mid X_t]$. Then, for $x \in \mathbb{R}$, according to (A2) applied to X = x

$$\begin{split} \psi^s(x) &= \mathbb{E} \exp is \left\| \frac{x}{\|x\|} + \alpha \bar{\kappa} \left(\frac{x}{\|x\|}, \alpha S_{U_{t+1}}^{\varphi} \right) S_{U_{t+1}}^{\varphi} \right\| \\ &= \psi^s(e_1). \end{split}$$

Thus, $\mathbb{E}[\exp isZ_t \mid X_t] = \psi^s(X_t) = \psi^s(e_1)$. Define \mathcal{F}_t the filtration induced by X_0, \ldots, X_t . We get then

 $\mathbb{E}[\exp i(s_0Z_0 + s_1Z_1 + \cdots + s_tZ_t)]$

- $= \mathbb{E}[\mathbb{E}[\exp i(s_0 Z_0 + s_1 Z_1 + \dots + s_t Z_t) \mid \mathcal{F}_t]]$
- $= \mathbb{E}[\exp is(s_0Z_0 + s_1Z_1 + \dots + s_{t-1}Z_{t-1}) \times \mathbb{E}[\exp is_tZ_t \mid X_t]]$
- $= \mathbb{E}[\exp i(s_0 Z_0 + s_1 Z_1 + \dots + s_{t-1} Z_{t-1})] \times \psi^{s_t}(e_1)$
- $= \mathbb{E}\left[\exp i(s_0 Z_0 + s_1 Z_1 + \dots + s_{t-1} Z_{t-1})\right] \times \mathbb{E}\left[\exp i s_t Z_t\right]$

Hence, Z_t is independent from $(Z_0, Z_1, \dots, Z_{t-1})$. By induction, we get that (Z_0, Z_1, \ldots, Z_t) is mutually independent.

PROOF OF LEMMA 3.2 IN [1]. Assumption (A1) holds by [1, Lemma 2.1]

Let *R* be a rotation matrix. Then $\bar{\kappa}_{PLS}(Rx, Rv) = \arg\min_{\kappa \ge 0} ||Rx +$ $\kappa Rv\| = \arg\min_{\kappa \geqslant 0} \|R(x + \kappa v)\| = \arg\min_{\kappa \geqslant 0} \|x + \kappa v\| = \bar{\kappa}_{\mathrm{PLS}}(x, v).$ Hence $\bar{\kappa}_{PLS}$ is rotation-invariant and [1, Lemma 2.2] implies that (A2) holds.

Now, let us show that (A4) is satisfied. Let $U^1, \dots, U^{\lambda} \in \mathbb{R}^{\mathbb{N}}$ be i.i.d. infinite dimensional standard Gaussian vectors. Then, when $n \to \infty$, the following limit holds a.s. by the strong LLN

$$\frac{1}{n} \left\| \sum_{i=1}^{\mu} w_i[U^i] \leq n \right\|^2 = \frac{1}{n} \sum_{k=1}^{n} \left| \sum_{i=1}^{\mu} w_i[U^i]_k \right|^2 \to \mu_{\mathbf{w}}^{-1},$$

thus by [1, Lemma 3.1]

$$\begin{split} \bar{\kappa}_{\text{PLS}}\left(e_{1}, \frac{\alpha}{n} \sum_{i=1}^{\mu} w_{i}[U^{i}]_{\leq n}\right) &= -\mathbf{1}_{\sum_{i=1}^{\mu} w_{i}[U^{i}]_{1} < 0} \frac{\sum_{i=1}^{\mu} w_{i}[U^{i}]_{1}}{\frac{\alpha}{n} \|\sum_{i=1}^{\mu} w_{i}[U^{i}]_{\leq n} \|^{2}} \\ &\to -\mathbf{1}_{\sum_{i=1}^{\mu} w_{i}[U^{i}]_{1} < 0} \alpha^{-1} \mu_{\text{W}} \sum_{i=1}^{\mu} w_{i}[U^{i}]_{1}. \end{split}$$

Thus (A4) holds.

Proof of Lemma 4.2 in [1]. First, let us prove the scaling-invariance condition (A1) for $\bar{\kappa}_{\mathrm{DLS}}^{\varepsilon,\beta}$. Consider $\bar{\kappa}_{\mathrm{DLS}}^{\varepsilon,\beta}(x/r,v/r,\kappa_{\mathrm{init}})$. Then, as in line 4 of [1, Algorithm 2], the condition $f(x+\kappa^0v)< f(x+\kappa^1v)$ is equivalent to $f(x/r + \kappa^0 v/r) < f(x/r + \kappa^1 v/r)$, as f is the sphere function is scaling-invariant, then $\bar{\kappa}_{\rm DLS}^{\epsilon,\beta}(x/r,v/r,\kappa_{\rm init}) =$ $\bar{\kappa}_{\mathrm{DLS}}^{\varepsilon,\beta}(x,v,\kappa_{\mathrm{init}})$. Thus, (A1) holds.

The function $\bar{\kappa}_{\mathrm{DLS}}^{\epsilon,\beta}$ is rotation-invariant. Indeed if R is a rotation matrix, then, as in line 4 of [1, Algorithm 2], the condition f(x + $\kappa^0 v$) < $f(x + \kappa^1 v)$ is equivalent to $f(Rx + \kappa^0 Rv)$ < $f(Rx + \kappa^1 Rv)$, as f is the sphere function is invariant by rotation, then this implies that $\bar{\kappa}_{\mathrm{DLS}}^{\varepsilon,\beta}(Rx,Rv,\kappa_{\mathrm{init}}) = \bar{\kappa}_{\mathrm{DLS}}^{\varepsilon,\beta}(x,v,\kappa_{\mathrm{init}})$. Thus, by [1, Lemma 2.2],

We prove now that (A4) is satisfied. Consider $U^1, \ldots, U^{\mu} \in \mathbb{R}^{\mathbb{N}}$ μ i.i.d. infinite dimensional standard Gaussian vectors, and denote $S_U^n = \sum_{i=1}^{\mu} w_i [U^i]_{\leq n}.$

Consider the line search obtained with $\bar{\kappa}_{\mathrm{DLS}}^{\epsilon,\beta}\left(e_{1},\frac{\alpha}{n}S_{U}^{n},\kappa_{\mathrm{init}}\right)$. We denote $(\kappa^{i,0}, \kappa^{i,1})_{i=0,\cdots,C(\beta,\varepsilon)-2}$ the value of κ^1 and κ^0 over the iterations of this line search.

We prove now by induction that for all i = 0, 1, ..., the following limits when $n \to \infty$ hold a.s. $\kappa^{i,0} \to \kappa^{\infty,i,0}$ and $\kappa^{i,1} \to \kappa^{\infty,i,1}$, where $\kappa^{\infty,i,0}, \kappa^{\infty,i,1}$ are given in the line 5 and line 7 of [1, Algorithm 2] over iteration initialized with parameters $X = \alpha^{-1} \mu_{\mathbf{w}} S_{U}^{1} \in \mathbb{R}^{1}, v =$ $1 \in \mathbb{R}^1$, and given κ_{init} , ε , β . At iteration i = 0, this is trivially true as $\kappa^{i,0} = \kappa^{\infty,i,0} = \kappa_{\rm init}/2$, and $\kappa^{i,1} = \kappa^{\infty,i,1} = 2\kappa_{\rm init}$

Now consider an arbitrary step i of the line search, and assume that $\kappa^{i,0} \to \kappa^{\infty,i,0}$ and $\kappa^{i,1} \to \kappa^{\infty,i,1}$. Then, $\kappa^{i+1,0} = \kappa^{i,0} + (1 - 1)^{i+1,0}$ $\beta)\left(\kappa^{i,1}-\kappa^{i,0}\right)\mathbf{1}_{\left\{h_{\alpha/n}\left(\kappa^{i,1}S_U^n\right)< h_{\alpha/n}\left(\kappa^{i,0}S_U^n\right)\right\}},\text{ where }$

$$h_{\alpha/n}(\kappa^{i,j}S_U^n) = 2\underbrace{\kappa^{i,j}}_{\to \kappa^{\infty,i,j}} S_U^1 + \alpha \left(\kappa^{i,j}\right)^2 \underbrace{\frac{\|S_U^n\|^2}{n}}_{\to \sum_{i=1}^{\mu} w_i^2}$$

Hence, a.s. $h_{\alpha/n}(\kappa^{i,j}S_U^n)$ tends to $2\kappa^{\infty,i,j}S_U^1 + \alpha \left(\kappa^{\infty,i,j}\right)^2 \mu_{\mathbf{w}}^{-1}$ when $n \to \infty$, so that

$$\begin{split} \lim_{n \to \infty} \mathbf{1}_{\{h_{\alpha/n}(\kappa^{i,1}S_U^n) < h_{\alpha/n}(\kappa^{i,0}S_U^n)\}} \\ &= \mathbf{1}_{\{(\kappa^{\infty,i,1} - \kappa^{\infty,i,0}) \left(2S_U^n + (\kappa^{\infty,i,0} + \kappa^{\infty,i,1})\alpha \sum_{i=1}^{\mu} w_i^2\right) > 0\}}, \end{split}$$

hence $\kappa^{i+1,0} \to \kappa^{\infty,i+1,0}$. Similarly, $\lim_{n \to \infty} \kappa^{i+1,1} = \kappa^{\infty,i+1,1}$.

In the end, by induction, we get that

$$\lim_{n\to\infty}\bar{\kappa}\left(e_1,\frac{\alpha}{n}S_U^n,\kappa_{\mathrm{init}}\right)=\bar{\kappa}^\infty\left(\left(\left[U^i\right]_1\right)_{i=1,\dots,\lambda},\kappa_{\mathrm{init}}\right).$$

where $\bar{\kappa}^{\infty}$ is defined in [1, Lemma 4.2]. Hence (A4) holds.

LEMMA A.1. For $n \in \mathbb{N}^*$, let U_n^1, \ldots, U_n^{μ} be i.i.d. standard multivariate normal distribution of dimension n. Suppose that the functions $\bar{\kappa}_n \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}_+$ are either all equal to $\bar{\kappa}_{PLS}$ or all upperbounded by a positive constant κ^M . Then,

$$\left(n \ln \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^{n} w_i U_n^i \right\|^2 \right)_{n \in \mathbb{N}}$$

is uniformly integrable.

PROOF. Suppose first that for all $n \in \mathbb{N}^*$, $\bar{\kappa}_n = \bar{\kappa}_{PLS}$. Note then that, as in the proof of [1, Theorem 3.3], we have

$$\begin{split} n \ln \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha / n \sum_{i=1}^{\mu} w_i U_n^i \right) \frac{\alpha}{n} \sum_{i=1}^{n} w_i U_n^i \right\|^2 \\ &= -8 \ln \left[\left(1 - \frac{\left[\sum_{i=1}^{\mu} w_i U_n^i \right]_1^2}{\left\| \sum_{i=1}^{\mu} w_i U_n^i \right\|^2} \right)^{-n/8} \right] \mathbf{1}_{\left[\sum_{i=1}^{\mu} w_i U_n^i \right]_1 < 0}. \end{split}$$

But it is proven in [2, Proof of Proposition 4, page 23] that

$$\left(\ln\left[\left(1 - \frac{\left[\sum_{i=1}^{\mu} w_i U_n^i\right]_1^2}{\left\|\sum_{i=1}^{\mu} w_i U_n^i\right\|^2}\right)^{-n/8}\right] \mathbf{1}_{\left[\sum_{i=1}^{\mu} w_i U_n^i\right]_1 < 0}\right) = 0$$

is uniformly integrable.

Suppose now that there exists $\kappa^M > 0$ such that for all $n \in \mathbb{N}^*$, $\bar{\kappa}_n \leq \kappa^M$. We will prove the uniform integrability of the positive part and of the negative part of

$$\left(n \ln \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^{n} w_i U_n^i \right\|^2 \right)_{n \in \mathbb{N}^*}.$$

For the negative part, note that, by definition of $\bar{\kappa}_{PLS}$, then

$$\begin{split} \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^n w_i U_n^i \right\|^2 \\ \geqslant \left\| e_1 + \bar{\kappa}_{\text{PLS}} \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^n w_i U_n^i \right\|^2. \end{split}$$

In addition, the negative part of the logarithm \ln^- is a decreasing function, thus

$$n \ln^{-} \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha / n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha / n \sum_{i=1}^{n} w_i U_n^i \right\|^2$$

$$\leq n \ln^{-} \left\| e_1 + \bar{\kappa}_{PLS} \left(e_1, \alpha / n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha / n \sum_{i=1}^{n} w_i U_n^i \right\|^2. \quad (1)$$

Note that, as $\|e_1 + \bar{\kappa}_{\text{PLS}}(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i) \alpha/n \sum_{i=1}^{n} w_i U_n^i\| \le \|e_1 + 0\| = 1$, then $\ln \|e_1 + \bar{\kappa}_{\text{PLS}}(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i) \alpha/n \sum_{i=1}^{n} w_i U_n^i\| \le \|e_1 + 0\| \le 0$, thus is equal in absolute value to its negative part.

However, as

П

$$\left(n \ln^{-} \left\| e_1 + \bar{\kappa}_{\text{PLS}} \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^{n} w_i U_n^i \right\|^2 \right)_{n \in \mathbb{N}}$$

is uniformly integrable (since it is equal to the sequence with \ln instead of \ln^- which is uniformly integrable as seen above), then according to Eq. (1) so is

$$\left(n \ln^{-} \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^{n} w_i U_n^i \right\|^2 \right)_{n \in \mathbb{N}^*}.$$

We claim that for all $x \in \mathbb{R}^n$, and $0 \le \kappa \le \kappa^M$, then

$$\ln^+ \|e_1 + \kappa x\| \le \ln^+ \|e_1 + \kappa^M x\|.$$

Indeed, the above equation is equivalent to

$$\|e_1 + \kappa x\|^2 \mathbf{1}_{\|e_1 + \kappa x\| \ge 1} \le \|e_1 + \kappa^M x\|^2 \mathbf{1}_{\|e_1 + \kappa^M x\| \ge 1}$$

However, the derivative of the function $\kappa \mapsto \|e_1 + \kappa x\|^2$ is equal to $\kappa \mapsto 2[x]_1 + \kappa \langle x, x \rangle$, hence is nonnegative for any $\kappa \geqslant 0$ that also satisfies that $\|e_1 + \kappa x\|^2 = 1 + \kappa(2[x]_1 + \kappa \langle x, x \rangle)$ is greater than or equal to 1. Thus, the above condition is satisfied.

For the positive part, we have then

$$\begin{split} n \ln^+ \left\| e_1 + \bar{\kappa}_n \left(e_1, \frac{\alpha}{n} \sum_{i=1}^{\mu} w_i U_n^i \right) \frac{\alpha}{n} \sum_{i=1}^{\mu} w_i U_n^i \right\|^2 \\ & \leq n \ln^+ \left\| e_1 + \frac{\kappa^M \alpha}{n} \sum_{i=1}^{\mu} w_i U_n^i \right\|^2. \end{split}$$

But it is proven in [2]¹ that the RHS of the above equation is uniformly integrable. All in all, we get that

$$\left(n \ln \left\| e_1 + \bar{\kappa}_n \left(e_1, \alpha/n \sum_{i=1}^{\mu} w_i U_n^i \right) \alpha/n \sum_{i=1}^{n} w_i U_n^i \right\|^2 \right)_{n \in \mathbb{N}^*}$$

П

is uniformly integrable.

REFERENCES

- Armand Gissler, Anne Auger, and Nikolaus Hansen. Learning rate adapatation by line search in evolution strategies with recombination. In *Genetic and Evolutionary Computation Conference (GECCO 2022)*, Boston, United States, July 2022.
- [2] Mohamed Jebalia and Anne Auger. Log-linear convergence of the scale-invariant (μ/μ_w, λ)-ES and optimal μ for intermediate recombination for large population sizes. In *International Conference on Parallel Problem Solving from Nature*, pages 52–62. Springer, 2010.

 $^{^1\}mathrm{replace}~\sigma^*$ by $\alpha\kappa^M$ in the proof of Proposition 4 of [2]