Génération à la suite

Les fils d'une fraction strictement positive

Soient i et j des entiers strictement positifs. On dit que les deux fils de la fraction $\frac{i}{j}$ sont les fractions

$$\frac{i}{i+j}$$
 et $\frac{i+j}{j}$.

On dit que $\frac{i}{i+j}$ est le fils gauche et que $\frac{i+j}{j}$ est le fils droit de $\frac{i}{j}$. L'arbre ci-dessous illustre la situation :

Par exemple, $\frac{7}{5}$ a pour fils gauche

$$\frac{7}{7+5} = \frac{7}{12},$$

et pour fils droit

$$\frac{7+5}{5} = \frac{12}{5}.$$

Q1: Quels sont les deux fils de $\frac{8}{9}$?

Q2: Trouver la fraction dont un des fils est $\frac{3}{8}$. **Q3**: Trouver la fraction dont un des fils est $\frac{111}{7}$.

 $\mathbf{Q4}$: De manière générale, justifier que l'un des fils de $\frac{i}{i}$ est inférieur strictement à 1 et que l'autre est supérieur strictement à 1.

Arbre et suite de Calkin-Wilf

L'arbre de Calkin-Wilf s'obtient en prenant la fraction

à la racine et en associant à chaque fraction ses deux fils (comme dans la partie A).

1

Q5 : Donner, sur sa copie, toutes les fractions de la ligne 4 de cet arbre.

 $\mathbf{Q6}$: Montrer que la fraction $\frac{44}{13}$ apparaı̂t dans l'arbre. Sur quelle ligne apparaı̂t-elle ?

La suite de Calkin-Wilf est la suite $(u_n)_{n\geq 1}$ des fractions lues de gauche à droite, ligne par ligne en descendant l'arbre de Calkin-Wilf.

Ainsi, les premiers termes de la suite (u_n) sont :

$$u_1 = \frac{1}{1}, \quad u_2 = \frac{1}{2}, \quad u_3 = \frac{2}{1}, \quad u_4 = \frac{1}{3}, \quad u_5 = \frac{3}{2}, \quad u_6 = \frac{2}{3}, \quad u_7 = \frac{3}{1}.$$

Q7: Donner la fraction égale à u_{32} .

Q8: On constate que les deux fils de u_3 sont u_6 et u_7 .

Recopier et compléter, sur sa copie, les deux phrases suivantes (aucune justification n'est attendue) :

- « Les deux fils de u_6 sont $u_{...}$ et $u_{...}$.»
- « Si n désigne un entier naturel supérieur ou égal à 1, les deux fils de u_n sont $u_{...}$ »

Suite de Stern

La suite de Stern est la suite $(v_n)_{n\geq 1}$ dont les termes sont les numérateurs des fractions lues de gauche à droite, ligne par ligne en descendant l'arbre de Calkin-Wilf.

On obtient ainsi:

$$v_1 = 1$$
, $v_2 = 1$, $v_3 = 2$, $v_4 = 1$, $v_5 = 3$, $v_6 = 2$, $v_7 = 3$.

Q9: Donner les valeurs numériques de v_8 à v_{15} .

On admet que pour tout entier naturel n non nul, le dénominateur de la n-ième fraction de la suite de Calkin-Wilf est aussi le numérateur de la (n+1)-ième.

Autrement dit, on admettra que pour tout entier naturel n non nul, on a :

$$u_n = \frac{v_n}{v_{n+1}}.$$

 ${f Q10}$: Utiliser les résultats précédents pour montrer que, pour tout entier n supérieur ou égal à 1, on a les égalités suivantes :

$$v_{2n} = v_n, v_{2n+1} = v_n + v_{n+1}.$$

Q11: En déduire les valeurs numériques de v_{64} et v_{65} .