SECRETÁRIA DE EDUCAÇÃO DE MATO GROSSO DO SUL

Escola			

Aluno: Turma: Data

1 Modelos Atômicos

Os primeiros a imaginar a existência dos átomos foram os filósofos gregos, por volta de 450 a.C. Os filósofos Leucipo e Demócrito foram os primeiros a formular a teoria atomista, que explica a origem do Universo

Modelo Filosófico

- A matéria NÃO pode ser dividida infinitamente
- 2. A matéria tem um limite com as características do todo.
- 3. Este limite seriam partículas bastante pequenas que não poderiam mais ser divididas, os **ÁTOMOS INDIVISÍVEIS**.

2 Modelo de Dalton

O modelo atômico de Dalton foi proposto em 1808 pelo químico, meteorologista e físico britânico John Dalton. Foi a primeira teoria atômica a explicar a composição da matéria

Modelo da Bola de Bilhar

- 1. Os átomos são esféricos, maciços, indivisíveis e indestrutíveis.
- 2. Os átomos de elementos diferentes têm massas diferentes.
- 3. Os diferentes átomos se combinam em várias proporções, formando novas substâncias.
- 4. Os átomos não são criados nem destruídos, apenas trocam de parceiros para produzirem novas substâncias.

Problemas do Modelo

 Não explicou a Eletricidade nem a Radioatividade.

3 Modelo de Thomson

O modelo atômico de Thomson foi proposto no ano de 1898 pelo físico inglês Joseph John Thomson ou, simplesmente, J.J. Thomson.

Modelo do Pudim de Passas

- Thomson propôs que o átomo seria uma espécie de bolha gelatinosa, completamente maciça na qual haveria a totalidade da carga POSITIVA homogeneamente distribuída.
- Ele propôs que o átomo é esférico, divisível e eletricamente neutro.
- O átomo é formado por um núcleo positivo e elétrons negativos.
- Os elétrons estão distribuídos uniformemente ao redor do núcleo positivo.
- Os elétrons podem ser transferidos a outros átomos, em determinadas condições.
- Incrustada nessa gelatina estariam os Elétrons de carga NEGATIVA.
- A Carga total do átomo seria igual a zero.

O Modelo Atômico de Thomson foi derrubado em 1908 por Ernerst Rutherford.

3.1 A RADIOATIVIDADE E A DERRUBADA DO MODELO DE THOMSON

W. K. Röntgen estudava raios emitidos pela ampola de Crookes. Repentinamente, notou que raios descon-hecidos saíam dessa ampola, atravessavam corpos e impressionavam chapas fotográficas. Como os raios eram desconhecidos, chamou-os de *RAIOS-X*.

Henri Becquerel tentava relacionar fosforescência

de minerais à base de urânio com os raios X. Pensou que dependiam da luz solar. Num dia nublado, guardou uma amostra de urânio numa gaveta embrulhada em papel preto e espesso. Mesmo assim, revelou uma chapa fotográfica. Iniciam-se, portanto, os estudos relacionados à **RADIOATIVIDADE**.

3.2 CASAL CURIE E A RADIOATIVIDADE

O casal Curie – Pierre e Marie Curie – formou uma notável parceria e fez grandes descobertas, como os elementos polônio, em homenagem à terra natal de Marie, e **rádio**, de "radioatividade", ambos de importância fundamental no grande avanço que seus estudos imprimiram ao conhecimento da estru-tura da matéria.

3.3 O EXPERIMENTO DE RUTHERFORD

Ernest Rutherford, Convencido por J. J. Thomson, começa a pesquisar materiais radioativos e, aos 26 anos de idade, notou que havia dois tipos de radiação: Uma positiva (alfa) e outra negativa (beta). Assim, iniciase o processo para determinação do NOVO MODELO ATÔMICO.

Rutherford propõe a dois de seus alunos - Johannes Hans Wilhelm Geiger e Ernerst Marsden - que bombardeassem finas folhas de metais com as partículas alfa, a fim de comprovar, ou não, a validade do modelo atômico de Thomson.

Como o átomo, segundo Thomson, era uma espécie de bolha gelatinosa, completamente neutra, no momento em que as partículas Alfa (numa veloci-dade muito grande) colidissem com esses átomos, passariam direto, podendo sofrer pequeníssimos desvios de sua trajetória.

Rutherford observou que: (1) a maioria das partículas alfa atravessam a lâmina de ouro sem sofrer desvios; (2) algumas partículas alfa sofreram desvios de até 90° ao atravessar a lâmina de ouro; (3) algumas partículas alfa **RETORNARAM**.

4 Modelo de Rutherford

Modelo Planetário

Para que uma partícula alfa pudesse inverter sua trajetória, deveria encontrar uma carga positiva bastante concentrada na região central (o núcleo), com massa bastante pronunciada. Rutherford propôs que o **NÚCLEO**, conteria toda a massa do átomo, assim como a totalidade da carga positiva (chamadas de **PRÓTONS**).

Os elétrons estariam girando circularmente ao redor desse núcleo, numa região chamada de ELETROSFERA. Surge, assim, o **ÁTOMO NU-CLEAR!**

Problemas do Modelo Rutherford

Para os físicos, toda carga elétrica em movimento, como os elétrons, perde energia na forma de luz, diminuindo sua energia cinética e a consequente atração entre prótons e elétrons faria com que houvesse uma colisão entre eles, destruindo o átomo, ALGO QUE NÃO OCORRE.

Portanto, o Modelo Atômico de Rutherford, mesmo explicando o que foi observado no laboratório, apresenta uma INCORREÇÃO.

5 Modelo de Bohr

Niels Bohr estudava espectros de emissão do gás hidrogênio. O gás hidrogênio aprisionado numa ampola submetida a alta diferença de potencial emitia luz ver-

melha

Ao passar por um prisma, essa luz se subdividia em diferentes comprimentos de onda e frequência, caracterizando um ESPECTRO LUMINOSO DESCONTÍNUO.

Postulados de Bohr

 A ELETROSFERA está dividida em CA-MADAS ou NÍVEIS DE ENERGIA (K, L, M, N, O, P e Q), e os elétrons nessas camadas, apresentam energia constante.

- 2. Em sua camada de origem (camada estacionária), a energia é constante, mas o elétron pode saltar para uma camada mais externa, sendo que, para tal, é necessário que ele ganhe energia externa.
- 3. Um elétron que saltou para uma camada de maior energia fica instável e tende a voltar a sua camada de origem. Nesta volta, ele devolve a mesma quantidade de energia que havia ganhado para o salto e emite um **FÓTON DE LUZ**.

O modelo atômico de Rutherford, modificado por Bohr, é também conhecido como modelo de Rutherford-Bohr. **OBS:** O número máximo de elétrons por camadas é: K = 2 L = 8 M = 18 N = 32 O = 32 P = 18 Q = 2.

6 A DESCOBERTA DO NÊUTRON

Em 1932, **James Chadwick** descobriu a partícula do núcleo atômico responsável pela sua ESTABILIDADE, que passou a ser conhecida por NÊUTRON, devido ao fato de não ter carga elétrica. Por essa descoberta ganhou o Prêmio Nobel de Física em 1935.

6.1 PARTÍCULAS DO ÁTOMO

- Os prótons têm carga elétrica positiva.
- · Os elétrons carga negativa.
- Os nêutrons não têm carga nenhuma.

7 Modelo atômico de Sommerfeld

Arnold. J. W. Sommerfeld, em 1916, interpretou espectros com múltiplas linhas justapostas e segundo ele, as camadas enunciadas por Bohr (K, L, M, N...) eram constituídas por subcamadas, de órbitas elípticas e de diferentes momentos angulares, conforme exibe a figura a seguir.

As órbitas elípticas de Sommerfeld indicaram um segundo número quântico, denominado número quântico secundário (l). Este número quântico secundário, definido pela equação l=n-1 descreveria as subcamadas de energia e por consequência, seu momento angular. Para a camada M (n=3) teremos para o valor do número quântico secundário l=2. Conforme se observa na figura acima, teremos para a camada M três órbitas possíveis (0, 1 e 2), sendo a órbita de maior valor a mais arredondada e onde o elétron possuirá o maior nível de energia.

A proposta de Sommerfeld conseguira, através da instituição do segundo número quântico, explicar como os espectros de emissão apresentavam o fenômeno de linhas múltiplas nas raias espectrais. Segundo este modelo, as múltiplas linhas seriam os subníveis de energia que compõem o nível ou camada de energia e estes subníveis foram caracterizados como "s", "p", "d" e "f", derivados de conceitos relativos à espectroscopia.

Sommerfeld, ao manter preceitos do modelo de Bohr, determinou intacta a natureza quântica do elétron. Os subníveis de energia explicavam a existência de espectros compostos por linhas justapostas, embora ainda se mantivessem dúvidas acerca de espectros obtidos sob a ação de intensos campos magnéticos.

Sob a ação de campos magnéticos, o espectro se decompõe, exibindo novas bandas espectrais. Para explicar o surgimento destas bandas, foi proposto que o elétron reagiria ao campo magnético acumulando determinado valor de energia e isso alteraria o seu momento magnético. Tal proposição permitiu a determinação do terceiro número quântico, o número quântico magnético (m_l)

8 Modelo Atual

8.1 LOUIS DE BROGLIE

DUALIDADE DA MATÉRIA: Toda e qualquer massa pode se comportar como onda

8.2 SCHRÖDINGER

ORBITAIS: Desenvolve o "MODELO QUÂNTICO DO ÁTOMO" ou "MODELO PROBABILÍSTICO", colocando uma equação matemática (EQUAÇÃO DE ONDA) para o cálculo da probabilidade de encon-trar um elétron girando em uma região do espaço denominada "ORBITAL ATÔMICO".

$$\frac{\partial^2 \psi}{\partial x^2} + \frac{8\pi^2 m}{h^2} (E - V)\psi = 0$$

8.3 HEISENBERG

PRINCÍPIO DA INCERTEZA: É impossível determinar ao mesmo tempo a posição e a velocidade do elétron. Se determinarmos sua posição, não saber-emos a medida da sua velocidade e viceversa.

9 Diagrama de Linus Pauling

Atualmente, os cientistas preferem identificar os elétrons mais por seu conteúdo de energia do que por sua posição na eletrosfera. Por meio de cálculos matemáticos, chegou-se a conclusão de que os elétrons se dispõe ao redor do núcleo atômico de acordo com sua energia. O cientista americano Linus Pauling (1901-1994) imaginou um diagrama (conhecido como diagrama de Pauling) onde ordenou os elétrons segundo suas energias.

Fazer uma distribuição eletrônica é definir toda a configuração da eletrosfera em estudo, determinando sua quantidade de níveis, subníveis e quantidade de elétrons em cada um desses níveis e subníveis.

Ordem crescente de energia dos subníveis: 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d 7p

A distribuição eletrônica é feita de acordo com o número atômico (número de prótons) do elemento em questão.

A distribuição dos elétrons de um elemento por Linus Pauling nos fornece algumas informações :

1. A que período pertence o elemento = nível mais

alto da distribuição.

- O número de elétrons da última camada = soma dos elétrons do último nível.
- 3. A localização do elétron mais periférico = é o elétron que se encontra na última camada da distribuição.
- 4. O elétron mais energético é o último elétron da distribuição.
- 5. A que tipo de família pertence o elemento:
 - Se a distribuição terminar em s ou p, o elemento pertence à família 1-2 ou 13-18 .
 - Se a distribuição terminar em d ou f, o elemento pertence à família 3-12.
- 6. O número da família a que pertence o elemento :
 - s = o expoente indica o número da família 1.
 - p = a soma do último s e p mais dez (10), indica o número da família 1-2 e 13-18.
 - d = a soma do último s e d indica o número da família 3-12.
 - f = são os elementos de transição interna e pertencem à família 3 do sexto e sétimo

período.

Exemplo

$$^{51}{\rm Sb} \\ 1s^2 - 2s^2 - 2p^6 - 3s^2 - 3p^6 - 4s^2 - 3d^{10} - 4p^6 - 5s^2 - 4d^{10} - 5p^3$$

 $\mathbf{5} \, \mathbf{p}^3$ – É o último da distribuição. Isso quer dizer que o elétron mais energético se encontra no subnível p, do quinto nível. O elétron mais periférico coincide com o mais energético, pois ele também representa a última camada. O elemento pertence ao 5° período e à família 15 (5A) pois a soma do último s, d e p dá um valor igual a 15.

10 Identificação do átomo

Os átomos são identificados segundo o seu número de prótons, nêutrons e elétrons. Assim, convém sabermos alguns conceitos:

Número atômico (Z) – É a quantidade de prótons existente no núcleo do átomo.

Número de nêutrons (N) – É a quantidade de nêutrons existentes no núcleo do átomo.

Número de massa (A) – É a soma dos números de prótons e nêutrons existentes no núcleo atômico.

Em um **átomo neutro** o número de prótons é igual ao número de elétrons. Um átomo que apresenta o seu número de elétrons diferente do número de prótons é um **íon**. Um íon positivo é conhecido pelo nome de **cátion** e apresenta número de elétrons menor do que o número de prótons (perda de elétrons). Um íon negativo é conhecido pelo nome de **ânion** e apresenta número de elétrons maior do que o número de prótons (ganho de elétrons)

11 Números Quânticos

11.1 Número quântico principal

O número quântico principal (n) define o nível de energia ou a camada que os elétrons possuem, definindo também a distância do orbital em relação ao núcleo e o tamanho do orbital ocupado pelo elétron. Tal conceito se assemelha ao conceito de camada, adotado por Niels Böhr e pode ser assim exemplificado:

11.2 Número quântico de momento angular (l)

O número quântico secundário, azimutal ou de momento angular (l) é aquele que indica os subníveis de energia, ou seja, o subnível energético a que o elétron pertence.

l	0	1	2	3
Orbital	S	p	d	f

11.3 Número quântico magnético (m_I)

O número quântico magnético (m ou m_l) é aquele que indica os orbitais no espaço onde os elétrons se encontram, ou seja, a região mais provável de encontrar um elétron dentro de um subnível de energia.

11.4 Número quântico spin (m_s)

O número quântico Spin (S ou m_s) caracteriza o possível movimento rotacional dos elétrons, sob seus eixos imaginários.

12 Material Apoio

_	_	•			-		
1	Га	h	Δ	n	1	•	
П	ıa		C	a	- 1		

Conteúdo	Aula	Scan
Modelos Atômicos Dalton e Thompson	https://youtu.be/15C1qq37W48	
Modelo de Bohr	https://youtu.be/-1tQAFJyxho	
Tabela Periódica	https://youtu.be/yv5168bi1X4	
Distribuição Eletrônica	https://youtu.be/LYhckRAtCPU	
Propriedades Periódicas	https://youtu.be/eaGqKb22_7I	