Prawdopodobieństwo & Statystyka.

Ekonometria WNE UW

Sebastian Zalas

s.zalas@uw.edu.pl

Proszę nie rozpowszechniać - Wersja niekompletna.

Zadania przygotowane do powtórzenia.

Spis treści

I.	Rachunek prawdopodobieństwa.	2
	I.A. Wektor losowy	. 2
	I.B. Wartość oczekiwana	. 2
	I.C. Warunkowa wartość oczekiwana	. 3
	I.D. Wariancja. Macierz wariancji kowariancji	. 3
	I.E. Własności rozkładu normalnego, rozkładu χ^2 , rozkładu t i F	. 5
TT	Chalanatadaa	(
11.	. Statystyka.	6
	II.A. Pojęcie estymatora	. 6
	II.B. Nieobciążoność estymatora, wariancja estymatora i efektywność	. 6
	II.C. Przedziały ufności	. 7
	II.D. Testowanie hipotez statystycznych, wartości krytyczne i wartości p	. 7

I. Rachunek prawdopodobieństwa.

I.A. Wektor losowy

• Wektor losowy to wektor którego elementy są zmiennymi losowymi.

I.B. Wartość oczekiwana

• Dla dyskretnej zmiennej losowej X z funkcją masy prawdopodobieństwa f (ang. PMF), jeżeli $\sum_{x} |x| f(x) < \infty$, wtedy wartość oczekiwana zmiennej losowej równa się:

$$\mathbb{E}[X] = \sum_{x} x f(x)$$

Dla ciągłej zmiennej losowej X z funkcją gęstości prawdopodobieństwa (ang. PDF) f, jeżeli $\int_x |x| f(x) dx < \infty$, wtedy wartość oczekiwana zmiennej losowej równa się:

$$\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) dx$$

- O wartości oczekiwanej zmiennej losowej można myśleć jako o wartości jaką byśmy otrzymali
 jeżeli wzięlibyśmy średnią z wielu realizacji tej zmiennej losowej. Jest to najbardziej znana miara
 "środka"rozkładu prawdopodobieństwa. Wartość oczekiwana przyjmuje zmienną losową, a zwraca
 skalar (liczbę).
- Własności wartości oczekiwanej:
 - $\forall c \in \mathbb{R}, \ \mathbb{E}[c] = c$
 - $\forall a \in \mathbb{R}, \ \mathbb{E}[aX] = a \ \mathbb{E}[X]$
- Możemy uogólnić pojęcie wartości oczekiwanej do dwuwymiarowego przypadku (także analogicznie do trójwymiarowego i więcej). Ponieważ każdy element wektora losowego jest zmienną losową, wartość oczekiwana wektora losowego jest zdefiniowana jako wektor wartości oczekiwanych.
 - Dla wektora losowego [X,Y] wartość oczekiwana równa się:

$$\mathbb{E}[\begin{bmatrix} X & Y \end{bmatrix}] = \begin{bmatrix} \mathbb{E}[X] & \mathbb{E}[Y] \end{bmatrix}$$

• Liniowość wartości oczekiwanej. Niech X oraz Y będą zmiennymi losowymi. Wtedy $\forall a,\ b,\ c\in\mathbf{R}$,

$$\mathbb{E}[aX + bY + c] = a \,\mathbb{E}[X] + b \,\mathbb{E}[Y] + c$$

I.C. Warunkowa wartość oczekiwana

• Dla dyskretnych zmiennych losowych X i Y z łącznym rozkładem masy prawdopodobieństwa f, warunkowa wartość oczekiwana Y pod warunkiem, że X=x to:

$$\mathbb{E}[Y|X=x] = \sum_{y} y f_{Y|X}(y|x), \ \forall x \in Supp[X]$$

Dla ciągłych zmiennych losowych X i Y z łącznym rozkładem gęstości prawdopodobieństwa f, warunkowa wartość oczekiwana Y pod warunkiem, że X=x to:

$$\mathbb{E}[Y|X=x] = \int_{\mathcal{Y}} y f_{Y|X}(y|x) dy, \ \forall x \in Supp[X]$$

Innymi słowy, warunkowa wartość oczekiwana to wartość oczekiwana zmiennej losowej pod warunkiem, że inna zmienna losowa przyjmuje pewną wartość. Dzięki warunkowej własności oczekiwanej możemy opisać związek dwóch rozkładów.

• Wzór na całkowitą wartość oczekiwaną. Dla dwóch zmiennych losowych *X* i *Y*:

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$$

• Wartość oczekiwana - przypadek wielowymiarowy. Dla dyskretnych zmiennych losowych X_1, \ldots, X_k oraz Y z łącznym rozkładem masy prawdopodobieństwa f, warunkowa wartość oczekiwana Y pod warunkiem, że X = x to:

$$\mathbb{E}[Y|\boldsymbol{X} = \boldsymbol{x}] = \sum_{y} y f_{Y|X}(y|\boldsymbol{x}), \ \forall \boldsymbol{x} \in Supp[\boldsymbol{X}]$$

Dla ciągłych zmiennych losowych X_1, \dots, X_k oraz Y z łącznym rozkładem gęstości prawdopodobieństwa f, warunkowa wartość oczekiwana Y pod warunkiem, że X = x to:

$$\mathbb{E}[Y|X=x] = \int_{y} y f_{Y|X}(y|\boldsymbol{x}) dy, \ \forall \boldsymbol{x} \in Supp[\boldsymbol{X}]$$

I.D. Wariancja. Macierz wariancji kowariancji.

- Wartość oczekiwana opisuje "środek"rozkładu, natomiast wariancja opisuje zmienność rozkładu lub
 jego rozpiętość. Formalnie, wariancja mierzy wartość oczekiwaną kwadratu różnicy między obserwowaną wartością zm. losowej X oraz średnią.
 - Wariancja zmiennej losowej X:

$$\mathbb{V}[X] = \mathbb{E}[(X - \mathbb{E}[X])^2]$$

Alternatywny wzór na wariancję zm. losowej X:

$$\mathbb{V}[X] = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

• Własności wariancji zmiennej losowej *X*:

$$- \forall c \in \mathbb{R}, \ \mathbb{V}[X+c] = \mathbb{V}[X]$$

$$- \forall a \in \mathbb{R}, \ \mathbb{V}[aX] = a^2 \, \mathbb{V}[X]$$

• Odchylenie standardowe zmiennej losowej X

$$\sigma[X] = \sqrt{\mathbb{V}[X]}$$

• Własności odchylenia standardowego zmiennej losowej *X*:

$$- \forall c \in \mathbb{R}, \ \sigma[X+c] = \sigma[X]$$

$$- \forall a \in \mathbb{R}, \ \sigma[aX] = |a| \ \sigma[X]$$

Naturalnym uogólnieniem wariancji w przypadku dwuwymiarowym jest kowariancja dwóch zmiennych losowych:

$$Cov[X, Y] = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$

Kowariancja mierzy w jaki sposób dwie zmienne są "związane"ze sobą. Jeżeli X i Y mają dodatnią kowariancję to oznacza to że wartości X mają tendencję do zwiększania się gdy wartości Y rosną oraz maleją, gdy wartości Y maleją. Jeśli kowariancja jest ujemna, wtedy przeciwieństwo jest prawdą, gdy wartości X maleją, Y ma tendencję wzrostową.

• Alternatywny wzór na wariancję:

$$Cov[X, Y] = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

• Własności kowariancji. Dla zmiennych losowych *X*, *Y*, *Z* i *W*:

$$\begin{aligned} \forall c,d \in \mathbb{R}, & \operatorname{Cov}[c,X] = \operatorname{Cov}[X,c] = \operatorname{Cov}[c,d] = 0 \\ & \operatorname{Cov}[X,Y] = \operatorname{Cov}[Y,X] \\ & \operatorname{Cov}[X,X] = \mathbb{V}[X] \\ \forall a,b,c,d \in \mathbb{R}, & \operatorname{Cov}[aX+c,bY+d] = ab\operatorname{Cov}[X,Y] \\ & \operatorname{Cov}[X+W,Y+Z] = \operatorname{Cov}[X,Y] + \operatorname{Cov}[W,Z] + \operatorname{Cov}[W,Y] + \operatorname{Cov}[W,Z] \end{aligned}$$

• **Korelacja** dwóch zmiennych losowych X i Y gdy $\sigma[X] > 0$ oraz $\sigma[Y] > 0$:

$$\rho[X,Y] = \frac{\operatorname{Cov}[X,Y]}{\sigma[X]\,\sigma[Y]}$$

• Macierz wariancji-kowariancji. Dla wektora losowego X o długości k, macierz wariancji-kowariancji $\mathbb{V}[X]$ to macierz której poszczególne elementy (i,i) są równe $Cov[X_i,X_i]$:

$$\mathbb{V}[\boldsymbol{X}] = \mathbb{E}[(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])(\boldsymbol{X} - \mathbb{E}[\boldsymbol{X}])'] \begin{bmatrix} \mathbb{V}[X_1] & \operatorname{Cov}[X_1, X_2] & \cdots & \operatorname{Cov}[X_1, X_k] \\ \operatorname{Cov}[X_2, X_1] & \mathbb{V}[X_2] & \cdots & \operatorname{Cov}[X_2, X_k] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}[X_k, X_1] & \operatorname{Cov}[X_k, X_2] & \cdots & \mathbb{V}[X_K] \end{bmatrix}$$

Macierz wariancji-kowariancji jest wielowymiarowym uogólnieniem wariancji. Jej cechą charakterystyczną jest to, że na przekątnej znajduje się wariancja poszczególnych zmiennych losowych.

• Wariancja sumy *k* zmiennych losowych:

$$\mathbb{V}[X_1 + X_2 + \dots + X_k] = \mathbb{V}[\sum_{i=1}^k X_i] = \sum_{i=1}^k \sum_{j=1}^k \text{Cov}[X_i, X_j]$$

I.E. Własności rozkładu normalnego, rozkładu χ^2 , rozkładu t i F.

• Chyba najważniejszym ze znanych rozkładów jest tak zwany rozkład normalny, określany niekiedy jako rozkład Gaussa. Rozkład P nazywamy rozkładem normalnym, jeżeli istnieją takie liczby rzeczywiste μ oraz $\sigma > 0$, że funkcja $f: \mathbb{R} \to \mathbb{R}$, określona wzorem:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-m}{\sigma})^2} \quad \text{dla } x \in \mathbb{R},$$

Notacja jest następująca: $\mathcal{N}(\mu, \sigma)$ oznacza rozkład normalny o parametrach μ oraz σ - jego dystrybuantę oznaczamy przez $\Phi_{\mu,\sigma}$. Wykres gęstości rozkładu normalnego nosi nazwę krzywej Gaussa.

- Własności. Niech X_1 oraz X_2 będą niezależnymi zmiennymi losowymi o rozkładach normalnych, odpowiednio $\mathcal{N}(m_1, \sigma_1)$ oraz $\mathcal{N}(m_2, \sigma_2)$. Wtedy:
 - $X_1 + X_2 \sim \mathcal{N}(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2})$
 - $aX_1 + b \sim N(am_1 + b, |a|\sigma_1)$ dla wszystkich $a, b \in \mathbb{R}$.
- Wielowymiarowy rozkład normalny. Jednowymiarowy rozkład normalny ma dwa parametry μ oraz σ . W wersji wielowymiarowej μ jest zastąpione przez wektor μ , oraz σ jest zastąpiona przez macierz wariancji-kowariancji Σ .
- Rozkład χ^2 rozkład zmiennej losowej, która jest sumą k kwadratów niezależnych zmiennych losowych o standardowym rozkładzie normalnym. Liczbę k nazywamy liczbą stopni swobody rozkładu zmiennej losowej. Jeżeli zmienne losowe $X_i \sim \mathcal{N}(0, 1)$ to: $Y \sim \chi^2(k)$.

II. Statystyka.

Wnioskowanie statystyczne to proces w którym używamy danych do wnioskowania o rozkładzie który wygenerował te dane. We wnioskowaniu statystycznym zwykle zadajemy następujące pytanie: mając losową próbkę danych $(X_1,...X_n)$ wylosowaną z rozkładu F jaki jest rozkład F? Często chcemy dowiedzieć się czegoś o cechach rozkładu F, na przykład o jego wartości oczekiwanej.

II.A. Pojęcie estymatora

- W procesie estymacji (punktowej) używamy danych do wyznaczenia pojedynczej wartości, znanej
 jako estymator (punktowy), która ma być najlepszym przybliżeniem (best guess) nieznanego parametru w populacji (np. średniej w populacji).
- Zwykle oznaczamy estymator nieznanego parametru θ jako $\hat{\theta}$.
- Estymator punktowy $\hat{\theta}$ nieznanego parametru θ jest funkcją danych, a więc jest jest on zmienną losową.

$$\hat{\theta} = g(X_1, ... X_n)$$

Wartość którą przyjmuje estymator nazywamy oszacowaniem.

II.B. Nieobciążoność estymatora, wariancja estymatora i efektywność

- Estymator $\hat{\theta}$ jest zmienną losową (statystyką), czyli istnieje wartość oczekiwana $\mathbb{E}[\hat{\theta}]$, wariancja $\mathbb{V}[\hat{\theta}]$ (sampling variance). Istnieje także jego odchylenie standardowe, $\sigma[\hat{\theta}]$ które często jest nazywane **błędem standardowym**.
- Estymator $\hat{\theta}$ parametru θ nazywamy **nieobciążonym** gdy jego wartość oczekiwana jest równa prawdziwemu parametrowi:

$$\mathbb{E}[\hat{\theta}] = \theta$$

• Obciążenie estymatora

$$bias(\hat{\theta}) = \mathbb{E}[\hat{\theta}] - \theta$$

- Błędem średniokwadratowym (Mean Square Error, MSE) estymatora $\hat{\theta}$ parametru θ nazywamy

$$\mathbb{E}[(\hat{\theta} - \theta)^2]$$

Alternatywny wzór:

$$\mathbb{E}[(\hat{\theta} - \theta)^2] = \mathbb{V}[\hat{\theta}] - (\mathbb{E}[\hat{\theta}] - \theta)^2$$

• Estymator $\hat{\theta}$ parametru θ nazywamy **efektywnym** gdy jego wariancja, $\mathbb{V}[\boldsymbol{\theta}]$ jest najmniejsza w danej klasie estymatorów. Na przykład, niech $\hat{\theta}_A$ i $\hat{\theta}_B$ będą estymatorami parametru θ . Bardziej efektywny jest ten estymator który ma niższą wariancję.

II.C. Przedziały ufności

II.D. Testowanie hipotez statystycznych, wartości krytyczne i wartości p