

01.

Lambert Function

(-1/e;0) as a solution of the equation:

$$W_{-1}\exp(W_{-1})=z.$$

The Mathematical Form

f(w) = wexp(w) - z

The root on the right gives W0.

Therefore, the boundary between -1 to 2

The root on the left gives W1. Therefore, the boundary between -10 to -1.

CODE-BISECTION

```
implicit none
double precision, parameter :: tol=1.0d-6 ! maximum relative error
double precision, parameter :: x_left=-10.0,x_right=-1.0 ! initial interval to check for intersection
! function must have different signs on the left and right
double precision :: f,x_left_n,x_right_n,x_middle_n,z
double precision :: x_iteration_old,x_iteration,relative_error
double precision :: tmp,tmp1,tmp2
integer, parameter :: Nz=1000 ! creating a thoundsand points
double precision, parameter :: z1=-0.3678794, z2=-.01 ! going from -e^(-1) to -.01
double precision :: W1(Nz) ! create the W0 array of 1000 points
integer n,k,iterations(Nz) ! See each iteration
do k=1,Nz ! going through a thoundsand values
  z=z1+(z2-z1)*float(k-1)/float(Nz-1) ! create each value of z
  ! find the value of f=W0*exp(W0)-z where W0=x left/x right
  call lambert(z,x_left,tmp1)
  call lambert(z,x_right,tmp2)
  tmp=tmp1*tmp2
  if(tmp>0.0)then
    write(*,*) 'function must have different signs in x_left and x_right'
    write(*.*) 'exit with error'
  n=0 !zeroth iteration
  x left n=x left
                     !initial point on the left
  x_right_n=x_right !initial point on the right
  x middle n=(x \text{ left } n+x \text{ right } n)/2.0 \text{!finding the middle point}
  relative_error=1.0 !set inital error to any value higher than tol
  x_iteration_old=x_middle_n !zeroth iteration
```

```
do while (relative_error>tol) !iterations untill relative error is less than tol
            !calculate the value f(w) again on both ends
            call lambert(z,x_left_n,tmp1)
            call lambert(z,x_middle_n,tmp2)
            if(tmp1*tmp2<=0.0)then
                x right n=x middle n !<--- the root is in left subinterval
                x_left_n=x_middle_n !<--- the root is in right subinterval
            x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
            x_iteration=x_middle_n
            relative_error=abs((x_iteration-x_iteration_old)/x_iteration) !find the differences btw two values
            x_iteration_old=x_iteration
           W1(k)=x iteration
           iterations(k)=n
         open(file='/Users/phihung/Documents/PHY/first/homework/hw_02/lambert_function_W1.dat',unit=32) !file to record Lambert function W0
           z=z1+(z2-z1)*float(k-1)/float(Nz-1)
           write(32,*) z,W1(k),iterations(k)
         close(unit=32)
        end
subroutine lambert(z,W1,f)
   implicit none
   double precision z,W1,f
```

For each z value, we find a root on the left.

f=W1*exp(W1)-z

end subroutine lambert

1250 003-771

Graph Bisection

I was able to generate Lambert Functions using the right boundary. Most converge with 20-23 iterations.

003-1040559 1250 003-77156.8 1760 0009-14563.7 73273

CODE-NR

end

```
implicit none
                                                                                 39
    double precision, parameter :: tol=1.0d-6 !maximum relative error
    double precision, parameter :: x_initial=-2.51 !initial interval !-3->-2
                                                                                 40
                                                                                            subroutine lambert(z,W1,f,df dx)
    !function must have different signs on the left and right
    double precision f,x_left_n,x_right_n,x_middle_n,z,dfdx1
                                                                                 41
                                                                                                implicit none
    double precision x_iteration_old,x_iteration,relative_error
    double precision tmp,tmp1,tmp2
    integer, parameter :: Nz=10000
                                                                                                double precision z,W1,f, df_dx
                                                                                 42
    double precision, parameter :: z1=-0.3678794,z2=-.02
    double precision W1(Nz)
                                                                                 43
                                                                                                f=W1*exp(W1)-z
    integer n,k,iterations(Nz)
                                                                                                df dx=W1*exp(W1)+exp(W1)
                                                                                 44
    do k=1,Nz
      z=z1+(z2-z1)*float(k-1)/float(Nz-1)! find z value
                                                                                            end subroutine lambert
                                                                                 45
      n=0 !zeroth iteration
      call lambert(z,x_initial,tmp1,dfdx1) ! fidn the value of function and the derivati
      relative error=1.0 !set inital error to any value higher than tol
      x_iteration_old=x_initial-tmp1/dfdx1 !zeroth iteration
      do while (relative_error>tol) !iterations untill relative error is less than tol
        call lambert(z,x_iteration_old,tmp1,dfdx1)
        x iteration=x iteration old-tmp1/dfdx1
        relative_error=abs((x_iteration-x_iteration_old)/x_iteration)
24
        x iteration old=x iteration
      enddo
      W1(k)=x iteration
      iterations(k)=n
    enddo
    open(file='/Users/phihung/Documents/PHY/first/homework/hw_02/lambert_function_W1_NR.dat',unit=32) !file to record Lambert function W
    do k=1.Nz
      z=z1+(z2-z1)*float(k-1)/float(Nz-1)
      write(32,*) z,W1(k),iterations(k)
    enddo
    close(unit=32)
```


Graph N-R

I was able to generate Lambert Functions with the initial between 2-3. Most converges within 10 iterations, however some take up to 100 iterations (close to 0/steep).

3.36787939071655273 -1.0005238291947034 3.36784359919830689 -1.0140244959180484 3.36780780768006105 -1,0198652348225252 3.36777201616181526 -1.0243634239254609 3.36773622464356942 -1.0281664117315397 3.36770043312532358 -1.0315250827517217 3.36766464160707774 -1.0345681365122341 3.36762885008883189 -1.0373720363750698 3.36759305857058611 -1.0399866062114982 3.36755726705234026 -1.0424464554139938 3.36752147553409442 -1.0447767835711188 3.36748568401584858 -1.0469966146280034 3.36744989249760274 -1.0491207283943924 3.36741410097935695 -1.0511608784787960 3.36737830946111111 -1.0531265946173074 3.36734251794286527 -1.0550257306129383 3.36730672642461942 -1.0568648500270850 3.36727093490637358 -1.0586495047420019 3.36723514338812774 -1.0603844406706975 3.36719935186988195 -1.0620737525807802 3.36716356035163611 -1.0637210027458586 3.367127768833339027 -1.0653293130739105 3.36709197731514442 -1.0669014377542951 3.36705618579689858 -1.0684398211743109 -1,0699466446104868 3.36702039427865280 3.36698460276040695 -1.0714238642443821 1.36694881124216111 -1.0728732423952316

Conclusion

Using bisection is much easier than NR to generate data for W1, but it is much faster to generate W0 with NR.

02.

LU Decomposition

Find all three currents (in **A**) in the circuit shown in the figure if:

$$R_6$$
 $\varepsilon_1 = 2 V$, $\varepsilon_2 = 3 V$, $\varepsilon_3 = 4 V$,

$$R_1 = 1 \Omega$$
, $R_2 = 2 \Omega$,

$$R_3 = 3 \Omega$$
, $R_4 = 1 \Omega$, $R_5 = 2 \Omega$,

$$R_6 = 3 \Omega$$
, $R_7 = 1 \Omega$.


```
Ludcmp and lubksb are given methods
```

```
implicit none
     integer, parameter :: n size=3
     double precision current(n_size),A(n_size,n_size),B(n_size),tmp
     integer indx(n_size)
     !define A and B
     A(1,1) = 1.0 ! first row
     A(1,2) = -1.0
     A(1,3) = 1.0
     A(2,1) = -3.0 ! second row
     A(2,2) = -6.0
13
     A(2,3) = 0.0
     A(3,1) = 0.0! third row
     A(3,2) = -6.0
     A(3,3) = -4.0
     ! Ax = B
     B(1) = 0.0
     B(2) = -5.0
     B(3) = -7.0
     call ludcmp(A,n size,n size,indx,tmp) !this call performs LU decomposition of A
                                             !note that A is replaced by LU decomposition
     call lubksb(A,n_size,n_size,indx,B)
                                            !B is replaced by the solution of A*X=B
     write(*,*) 'current I1=',B(1)
     write(*,*) 'current I2=',B(2)
     write(*,*) 'current I3=',B(3)
     end
```


Conclusion

I was able to solve linear equations using LU decompositions. Check: I1+I3=I2

```
current I1= 0.14814814814814814

current I2= 0.75925925925925930

current I3= 0.6111111111111116
```


Transcendental Equation

$$\sin^2\left(x^2 - \frac{\pi}{2}\right) - x = 0$$

Bisection Method

```
implicit none
     double precision, parameter :: tol=1.0d-6 !maximum relative error
     double precision, parameter :: x_left=-0.0,x_right=1000 !initial interval
                                          !function must have different signs on the left and right
     double precision f,x_left_n,x_right_n,x_middle_n
     double precision x_iteration_old,x_iteration,relative_error
                                                                                         open(file='/Users/phihung/Documents/PHY/first/homework/hw_02/bisectional_-0_1000.dat',unit=11) !file to re
     double precision tmp
                                                                                           do while (relative_error>tol) !iterations untill relative error is less than tol
                                                                                            n=n+1
     tmp=f(x_left)*f(x_right) !check if interval is correct
                                                                                            if(f(x left n)*f(x middle n)<=0.0) then
                                                                                                x_right_n=x_middle_n !<--- the root is in left subinterval</pre>
      if(tmp>0.0)then
       write(*,*) 'function must have different signs in x_left and x_right'
                                                                                                 x left n=x middle n !<--- the root is in right subinterval
        write(*,*) 'exit with error'
                                                                                             endif
                                                                                            x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
     endif
                                                                                             x iteration=x middle n
                                                                                             relative_error=abs((x_iteration-x_iteration_old)/x_iteration)
                                                                                            x_iteration_old=x_iteration
                                                                                            write(11,*) n,x_iteration,f(x_iteration)
     n=0 !zeroth iteration
                                                                                           enddo
     x left n=x left
                           !initial point on the left
19
                                                                                         close(unit=11)
     x_right_n=x_right !initial point on the right
     x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
                                                                                         end
     relative_error=1.0 !set inital error to any value higher than tol
                                                                                         double precision function f(x)
     x iteration old=x middle n !zeroth iteration
                                                                                          implicit none
                                                                                          double precision pi
                                                                                          double precision x
                                                                                          pi = 4.0*atan(1.0)
                                                                                           f=(\sin(x**2-pi/2))**2-x
                                                                                         end function f
```


Different intervals to show the convergence of data. The bigger the range, the more steps to take to come

Converges for all proper intervals

to convergence. The method

\bigoplus

Newton-Raphson

```
implicit none
double precision, parameter :: tol=1.0d-6 !maximum relative error
double precision, parameter :: x_initial=-1.8 !initial guess
double precision f, df dx
double precision x_iteration_old,x_iteration,relative_error
double precision tmp
integer n
n=0 !zeroth iteration
call f_and_deriv(x_initial,f,df_dx)
x_iteration_old=x_initial-f/df_dx
relative_error=1.0 !set inital error to any value higher than tol
!newton method
open(file='/Users/phihung/Documents/PHY/first/homework/hw_02/Newton_Raphson.dat',unit=11) !file to
  do while (relative_error>tol) !iterations untill relative error is less than tol
    n=n+1
    call f_and_deriv(x_iteration_old,f,df_dx)
   x_iteration=x_iteration_old-f/df_dx
    relative_error=abs((x_iteration-x_iteration_old)/x_iteration)
    x_iteration_old=x_iteration
    write(11,*) n,x_iteration,f
  enddo
close(unit=11)
end
!define function
subroutine f_and_deriv(x,f,df_dx)
  implicit none
 double precision x,f,df_dx, pi
  pi = 4.0*atan(1.0) !define pi
  f=(\sin(x**2-pi/2))**2-x!function
  df_dx=4*x*sin(x**2-pi/2)*cos(x**2-pi/2)-1!the derivative
end subroutine f_and_deriv
```

02

03

04

05

06

50 50

X_i = -1.8 doesn't converge. Break at 100000.

JU1332	JJ/JE/1677/17EJ7E7	، ب
387993	-357527.82388274831	357
387994	-357527.10490780167	357
387995	-357528.09404438152	357
387996	-357526.71509536542	357
387997	-357526.20186016290	357
387998	-357527.47883265634	357
387999	-357528.91355904349	357
388000	-357530.25800018740	357
388001	-357530.76173138537	357
388002	-357524.01690509508	357
388003	-357523.50384145475	357
388004	-357524.73569227388	357
388005	-357524.13877074968	357
388006	-357524.63877472008	357
388007	-357524.11377080297	35
388008	-357525.06173811021	357
388009	-357525.58097674936	357
388010	-956872.72810165398	357
388011	-956873.26657877362	956
200011	-9300/3.20 03/6//302	950

/JI3:0JJTJE3EJI3 7527.99804926023 7527.96458747040 7527.17349240789 7529.06001787313 7527.10227776656 7527.16193782154 7528.44748688914 7528.94942327990 7530.81873220118 7531.76035568962 7524.62901576946 7524.46080113784 7525.50881017023 7524.64037375496 7524.98630754586 7525.03856473637 7525,42689945316 7526.58097674936 6873.04249220958

Bisection is better for NR for functions that iterate a lot.

Energy State

Mathematical Formulas

$$x^2 + y^2 = 6^2$$

 $-x \cot x$

$z\tan(z) = \sqrt{z_0^2 - z^2}$

$$-z\cot(z) = \sqrt{z_0^2 - z^2}$$

Because we square the expression. There will be an extra negative values.

$$z \tan(z) = \sqrt{z_o^2 - z^2}$$

=)
$$(zton(z))^2 + z^2 - z_0^2 = f(z)$$

$$-z \cot(z) = \sqrt{z_0^2 - z^2}$$

=)
$$(z(ot(z))^{2} + z^{2} - z_{0}^{2} = f_{2}(z)$$


```
bound 1=0.00
double precision, parameter :: tol=1.0d-6 !maximum relative error
                                                                                                                bound 2=0.00
double precision x_left_n,x_right_n,x_middle_n,f1, f2
                                                                                                                    !find energy of the cotangent expression
double precision x iteration old,x iteration, relative error
                                                                                                                    do while(bound 2<r)
double precision :: tmp_odd,tmp_even, double_check
                                                                                                                        bound 2 = bound 2 + dx !update second bound
integer n
double precision :: r=6.0, dx=0.1, bound_1=0.00, bound_2=0.00, even_value=0.0, odd_value=0.0
                                                                                                                        tmp_odd = f2(bound_1)*f2(bound_2) ! check if the two bounds have the same sign
                                                                                                                        if(tmp_odd>0.0)then !if yes
 open(file='/Users/phihung/Documents/PHY/first/homework/hw_02/energies.dat', unit=12) !file to recc
                                                                                                                            continue ! continue until the range is good
      !find energy of the tangent expression
                                                                                                                        else !initiate the zeroth iteration
     do while(bound_2<r) !when the bound given is not searched</pre>
                                                                                                                            n=0 !zeroth iteration
          bound_2 = bound_2 + dx !update second bound
                                                                                                                            x_left_n=bound_1 !initial point on the left
         tmp even = f1(bound 1)*f1(bound 2) ! check if the two bounds have the same sign
                                                                                                                            x_right_n=bound_2 !initial point on the right
                                                                                                                            x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
          if(tmp_even>0.0)then !if yes
              continue ! continue to search for a good range
                                                                                                                            relative_error=1.0 !set inital error to any value higher than tol
                                                                                                                            x_iteration_old=x_middle_n !zeroth iteration
          else !initiate the zeroth iteration
                                                                                                          62
                                                                                                                        endif
              n=0 !zeroth iteration
                                                                                                                        do while (relative_error>tol) !iterations untill relative error is less than tol
              x_left_n=bound_1
                                  !initial point on the left
              x right n=bound 2 !initial point on the right
                                                                                                                            if(f2(x_left_n)*f2(x_middle_n) \le 0.0)then
              x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
                                                                                                                                x_right_n=x_middle_n !<--- the root is in left subinterval
              relative_error=1.0 !set inital error to any value higher than tol
              x iteration old=x middle n !zeroth iteration
                                                                                                                                x left n=x middle n !<--- the root is in right subinterval
          endif
                                                                                                                            endif
                                                                                                                            x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
          do while (relative error>tol) !iterations untill relative error is less than tol
                                                                                                                            x_iteration=x_middle_n
              n=n+1
                                                                                                                            relative_error=abs((x_iteration-x_iteration_old)/x_iteration)
                                                                                                                            x_iteration_old=x_iteration
              if(f1(x_left_n)*f1(x_middle_n) \le 0.0)then
                                                                                                                        enddo
                  x_right_n=x_middle_n !<--- the root is in left subinterval</pre>
                                                                                                                        double_check = -x_iteration/tan(x_iteration)
                                                                                                                        if(odd_value<x_iteration .AND. (-x_iteration/tan(x_iteration))>0.0)then
                  x_left_n=x_middle_n !<--- the root is in right subinterval
                                                                                                                            write(12,*) x_iteration
              endif
                                                                                                                            odd value = x iteration
              x_middle_n=(x_left_n+x_right_n)/2.0 !finding the middle point
                                                                                                                        endif
              x iteration=x middle n
              relative_error=abs((x_iteration-x_iteration_old)/x_iteration)
                                                                                                                        bound_1 = bound_2 ! skip that range to initiate left bound as the old right bound
              x iteration old=x iteration
                                                                                                                    enddo
                                                                                                                                                86 double precision function f1(x)
          enddo
                                                                                                                close(unit=12)
                                                                                                                                                        implicit none
                                                                                                                                                       double precision x
          double check = x iteration*tan(x iteration) !check if the value is positive
                                                                                                                                                       double precision :: z_0 = 6
          if(even_value<x_iteration .AND. double_check>0.0)then !if satisfies the condition
                                                                                                                                                       f1=(x*tan(x))**2+x**2-z 0**2
              write(12,*) x_iteration !write
                                                                                                                                                     end function f1
             even_value = x_iteration !update
                                                                                                                                                     double precision function f2(x)
          endif
                                                                                                                                                       implicit none
         bound_1 = bound_2 ! skip that range to initiate left bound as the old right bound
                                                                                                                                                       double precision x
     enddo
                                                                                                                                                       double precision :: z_0 = 6
                                                                                                                                                       f2=(-x/tan(x))**2+x**2-z_0**2
                                                                                                                                                     end function f2
```

implicit none

Z0=6

1.3447517595403156 3.9858246443543521 2.6787826937255659 5.2259613815838293

z0=4

1.2523536868744145 3.5953033983007572 2.4745773684170445

z0=5

1.3733253683645330 4.0886322630738050 6.6159607919448717 2.7394882610363993 5.4017182201403102

z0 = 2

1.0298668061176954 1.8954941078349066

z0=20

1.4959297403086680 4.4861542416535940 7.4711365859379839 10.446026766986051 13.402771195810601 16.323962645589745 19.143298625101124 2.9914566485800833 5.9795624670321104 8.9602357292210399 11.927398859372715 14.869690162981897 17.756921651317498

\bigoplus

Conclusion

1.3447517595403156

3.9858246443543521

2.6787826937255659

5.2259613815838293

All energies for the system with z_0 = 6.

90