Ю. В. Прохоров, Л. С. Пономаренко

ЛЕКЦИИ ПО ТЕОРИИ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКОЙ СТАТИСТИКЕ

УЧЕБНИК И ПРАКТИКУМ ДЛЯ СПО

3-е издание, исправленное и дополненное

Рекомендовано Учебно-методическим отделом среднего профессионального образования в качестве учебника и практикума для студентов образовательных учреждений среднего профессионального образования

> Книга доступна в электронной библиотеке biblio-online.ru, а также в мобильном приложении «Юрайт.Библиотека»

Авторы:

Прохоров Юрий Васильевич — профессор, доктор физико-математических наук, академик АН СССР и РАН (с 1970 по 2013 г.), заведующий кафедрой математической статистики факультета вычислительной математики и кибернетики Московского государственного университета имени М. В. Ломоносова; с 1961 г. по 2013 г., заведующий отделом теории вероятностей Математического института имени В. А. Стеклова Российской академии наук;

Пономаренко Любовь Степановна — доцент, кандидат физико-математических наук, доцент кафедры математической статистики факультета вычислительной математики и кибернетики Московского государственного университета имени М. В. Ломоносова.

Рецензенты:

Сенатов В. В. — профессор, доктор физико-математических наук, профессор кафедры теории вероятностей механико-математического факультета Московского государственного университета имени М. В. Ломоносова;

Чибисов Д. М. — профессор, доктор физико-математических наук, сотрудник Математического института имени В. А. Стеклова Российской академии наук.

Прохоров, Ю. В.

П84

Лекции по теории вероятностей и математической статистике : учебник и практикум для среднего профессионального образования / Ю. В. Прохоров, Л. С. Пономаренко. — 3-е изд., испр. и доп. — Москва : Издательство Юрайт, 2019. — 219 с. — (Профессиональное образование). — Текст : непосредственный.

ISBN 978-5-534-12260-2

Учебник основан на материале годового курса лекций по теории вероятностей и математической статистике, который начинается со случая конечных вероятностных пространств, что дает возможность доказывать содержательные теоремы сравнительно простыми средствами. Далее излагаются общие основы теории вероятностей, рассматриваются предельные теоремы, сходимости последовательностей и рядов из случайных величин. Последние главы посвящены задачам математической статистики.

Особое внимание уделяется оценкам вероятностей в виде приближенных формул или в виде неравенств. Учебник содержит много примеров, иллюстрирующих основные понятия теории вероятностей и математической статистики.

Соответствует актуальным требованиям Федерального государственного образовательного стандарта среднего профессионального образования и профессиональным требованиям.

Для студентов, обучающихся по специальностям «Прикладная математика и информатика», «Фундаментальная информатика и информационные технологии».

УДК 519.2(075.32) ББК 22.12я723

Разыскиваем правообладателей и наследников Прохорова Ю. В.: https://www.biblio-online.ru/inform Пожалуйста, обратитесь в Отдел договорной работы: +7 (495) 744-00-12; e-mail: expert@urait.ru

Бее права защищены. Никакая часть данной книги не может быть воспроизведена в какой бы то ни было форме без письменного разрешения владельцев авторских прав. Правовую поддержку издательства обеспечивает юридическая компания «Дельфи».

- © Прохоров Ю. В., Пономаренко Л. С., 2012
- © Прохоров Ю. В., Пономаренко Л. С., 2019, с изменениями
- © ООО «Издательство Юрайт», 2019

Оглавление

Предисловие редакции к третьему изданию	7
Предисловие	9
Введение	10
Глава 1. Вероятностное пространство	15
1.1. Конечное вероятностное пространство	16
1.2. Классическая вероятность	16
1.2.1. Генуэзская лотерея	17
1.2.2. Игральные кости	18
1.2.3. Случайные перестановки	21
1.2.4. Игра в бридж	21
1.2.5. Абсолютно случайные последовательности	22
Глава 2. Случайные величины и случайные события	24
2.1. Случайные величины	
2.2. Операции над случайными событиями	25
2.3. Операции над индикаторами	27
Глава 3. Свойства вероятности и математического ожидания	29
3.1. Свойства вероятности	
3.2. Свойства математического ожидания случайных величин	
3.3. Вероятность появления хотя бы одного из n событий	34
Глава 4. Независимость случайных событий и случайных	
величин	37
4.1. Условная вероятность. Независимость двух случайных событий	37
4.2. Независимость случайных величин. Взаимная независимость	
нескольких случайных событий	38
4.3. Свойства независимых случайных величин и взаимно	
независимых случайных событий	
4.4. Критерий независимости случайных величин	42
4.5. Мультипликативное свойство математического ожидания	
независимых случайных величин	43
Глава 5. Суммирование независимых случайных величин	45
5.1. Производящая функция целочисленной случайной величины	45
5.2. Производящая функция моментов	47
5.3. Свойства числовых характеристик распределений сумм	
независимых случайных величин	49

Глава 6. Неравенства Чебышёва. Отклонения сумм	
независимых случайных величин	
6.1. Схемы Бернулли и Пуассона	
6.2. Неравенства Чебышёва	
6.3. Отклонения сумм независимых случайных величин	54
Глава 7. Закон больших чисел	59
7.1. Закон больших чисел в форме Чебышёва	59
7.2. Теорема Бернулли. Отклонение частоты наступления события	
от его вероятности7.3. Вероятностное доказательство теоремы Вейерштрасса	
	03
Глава 8. Неравенства для максимума сумм независимых случайных величин	66
8.1. Неравенство А. Н. Колмогорова	
8.2. Неравенство Поля Леви	
Глава 9. Математические основы теории вероятностей	
9.1. Общее определение вероятностного пространства	
9.1.1. Порожденные алгебры и σ -алгебры	
9.1.2. Борелевские σ -алгебры множеств	
9.1.3. Вероятностные меры, или распределения вероятностей	79
9.2. Вероятностные меры в евклидовых пространствах	82
9.2.1. Вероятностные распределения на прямой	82
9.2.2. Вероятностные распределения на плоскости	
и в пространстве	86
9.2.3. Два основных типа распределений в евклидовых	
пространствах	
9.3. Случайные величины	
9.3.1. σ -алгебра, порожденная случайной величиной	
9.3.2. Распределения случайных величин	
9.4. Математические ожидания случайных величин (общий случай)	
9.5. Независимые случайные величины	99
9.6. Мультипликативное свойство математического ожидания	100
Глава 10. Усиленный закон больших чисел	103
10.1. Лемма Бореля — Кантелли	103
10.2. Сходимость с вероятностью 1	104
10.3. Усиленный закон больших чисел	106
10.4. Сходимость рядов из независимых случайных величин. Закон	
«0 или 1»	110
Глава 11. Предельные теоремы и метод характеристических	
функций	114
11.1. Обозначения и формулировки предельных теорем	
11.2. Характеристические функции. Определение и свойства	
11.3. Формулы обращения для характеристических функций	
11.4. Свойство непрерывности соответствия характеристических	
функций и функций распределения	122

11.5. Примеры слабой сходимости последовательностей	
характеристических функций	
11.6. Доказательство центральной предельной теоремы	
11.7. Теорема Пуассона	
11.8. Сходимость к равномерному распределению	140
Глава 12. Задачи математической статистики. Основные	
понятия	
12.1. Сходимость по вероятности	
12.2. Асимптотическая нормальность	
12.3. Некоторые важные преобразования случайных величин	
12.4. Эмпирическая функция распределения	155
Глава 13. Проверка гипотезы о виде распределения	
13.1. Критерий согласия А. Н. Колмогорова	
13.2. Критерий согласия Пирсона хи-квадрат	160
Глава 14. Проверка параметрических гипотез.	
Фундаментальная лемма Неймана — Пирсона	
14.1. Квантили и процентные точки нормального распределения	
14.2. Постановка задачи. Ошибки первого и второго рода	
14.3. Лемма Неймана — Пирсона	
14.4. Проверка гипотез о параметрах нормального распределения	
14.4.1. Проверка гипотез о математическом ожидании	
14.4.2. Необходимое число наблюдений для различения гипотез .	
14.4.3. Проверка гипотез о дисперсии	
14.4.4. Сложные гипотезы. Равномерно наиболее мощные критер	
14.5. Проверка гипотез о параметре биномиального распределения	
Глава 15. Доверительные интервалы	181
15.1. Постановка задачи и основные определения	181
15.2. Доверительный интервал для математического ожидания	
нормального распределения при известной дисперсии	182
15.3. Построение доверительного интервала для дисперсии	
нормального распределения	
15.3.1. Совместное распределение статистик \overline{X} и S^2	
15.3.2. Распределение Стьюдента	188
15.4. Асимптотический доверительный интервал для параметра <i>р</i> биномиального распределения	100
Глава 16. Точечные оценки для неизвестных параметров	
16.1. Сравнение свойств несмещенных оценок	
16.2. Семейства распределений	
16.3. Метод максимального правдоподобия	
16.4. Неравенство Рао — Крамера	
16.5. Метод моментов	
Приложение 1. Основные распределения и их свойства	207
Приложение 2. Экзаменационные вопросы по курсу «теория	

вероятностей и математическая статистика»	213
Литература	215
Новые издания по дисциплине «Теория вероятностей	
и математическая статистика»	. 217

Предисловие редакции к третьему изданию

Эта книга является переизданием классического учебника по теории вероятностей и математической статистике. Одним из его авторов является выдающийся советский и российский математик, академик Ю. В. Прохоров, более 30 лет являвшийся признанным главой российской вероятностной школы.

Учебник не охватывает полностью все разделы дисциплины, в частности отсутствуют формулы полной вероятности и Байеса, не рассмотрены дисперсионный, факторный и регрессионный анализ, нет разделов, посвященных случайным процессам. Авторы планировали при последующих изданиях доработать книгу, дополнить ее новыми главами, но, к сожалению, уход из жизни Юрия Васильевича нарушил эти планы. Его соавтор не стала в память об Учителе ничего добавлять в книгу. В данном издании только поправлены некоторые неточности, исправлены опечатки, найденные в предыдущем издании.

При необходимости студенты могут посмотреть нерассмотренные темы в учебниках других авторов, воспользовавшись приводимым в конце книги списком новейших изданий по теории вероятностей и математической статистике.

Тем не менее материал книги достаточно обширен, книга написана доступным языком, рассмотрение теории снабжено решением примеров и задачами для самостоятельного решения. Все это позволяет использовать книгу для изучения курса теории вероятностей и математической статистики. В результате ее изучения студенты должны освоить:

трудовые действия

- владеть методами доказательства теорем и основных соотношений теории вероятностей и математической статистики;
- математическим аппаратом теории вероятностей и математической статистики;

необходимые умения

- вычислять вероятности случайных событий, проводить оценку вероятностей, используя известные неравенства и предельные теоремы;
- находить распределения случайных величин, вычислять математические ожидания, дисперсии и другие числовые характеристики;
 - проводить проверку статистических гипотез;
 - строить доверительные интервалы;
 - проводить оценку параметров распределений;

необходимые знания

- понятий вероятности случайного события, вероятностного пространства, случайной величины;
 - свойств вероятности и числовых характеристик распределений;
 - операций со случайными событиями и случайными величинами;
- понятий взаимной независимости случайных событий и случайных величин;
- основных законов, соотношений и теорем теории вероятностей, в том числе законов больших чисел и центральной предельной теоремы;
 - математических основ теории вероятностей;
 - определения и свойств характеристических функций;
- основных видов сходимостей последовательностей случайных величин и связей между ними;
 - основных понятий и теорем математической статистики.

Предисловие

Уважаемый читатель!

Вы открыли одну из замечательных книг, изданных в серии «Классический университетский учебник», посвященной 250-летию Московского университета. Серия включает свыше 150 учебников и учебных пособий, рекомендованных к изданию Учеными советами факультетов, редакционным советом серии и издаваемых к юбилею по решению Ученого совета МГУ.

Московский университет всегда славился своими профессорами и преподавателями, воспитавшими не одно поколение студентов, впоследствии внесших заметный вклад в развитие нашей страны, составивших гордость отечественной и мировой науки, культуры и образования.

Высокий уровень образования, которое дает Московский университет, в первую очередь обеспечивается высоким уровнем написанных выдающимися учеными и педагогами учебников и учебных пособий, в которых сочетаются как глубина, так и доступность излагаемого материала. Аккумулируемый в этих книгах бесценный опыт методики и методологии преподавания становится достоянием не только Московского университета, но и других университетов России и всего мира.

Издание серии «Классический университетский учебник» наглядно демонстрирует тот вклад, который вносит Московский университет в классическое университетское образование в нашей стране, и, несомненно, служит его развитию.

Решение этой благородной задачи было бы невозможным без активной помощи со стороны издательств, принявших участие в выпуске книг серии «Классический университетский учебник». Мы расцениваем это как поддержку ими позиции, которую занимает Московский университет в вопросах науки и образования. Это служит также свидетельством того, что 250-летний юбилей Московского университета — выдающееся событие в жизни всей нашей страны, мирового образовательного сообщества.

Ректор Московского университета академик РАН, профессор В. А. Садовничий

Введение

Настоящее учебное пособие основано на материале лекций, которые много лет читались студентам второго курса факультета вычислительной математики и кибернетики Московского государственного университета имени М. В. Ломоносова.

Вашему вниманию предлагается краткий вариант. В отдельные годы он дополнялся и другими вопросами, и представление о полной программе этого годового курса можно получить из приведенного в приложении 2 списка экзаменационных вопросов.

Особое внимание обращается на оценки вероятностей либо в виде приближенных формул, либо в виде неравенств. Это вполне соответствует классической традиции, когда в названиях книг не было слов «теория вероятностей», а употреблялось выражение «исчисление вероятностей». В качестве примеров можно привести учебники Пуанкаре [35], Маркова [22].

Ряд теорем приводится без доказательства. Мы считаем, что студентам нужно в первую очередь уметь пользоваться этими теоремами. Источники, в которых при желании можно найти доказательства данных теорем, обычно указываются. Часто, чтобы избежать громоздкие обозначения и формулы, доказательства проводятся в частных случаях. При этом переход к общему случаю не составляет особых трудностей, а акцент делается на идее доказательства.

При изложении вопросов математической статистики произведен жесткий отбор материала. Часто из учебников большого объема математическая статистика представляется как цепочка определений, лемм и теорем без применения этих теорем к обработке статистического материала. Примером удачного соединения теории и практики может служить книга Г. Крамера «Математические методы статистики» [17].

Мы начинаем изложение со случая конечных вероятностных пространств, поскольку к началу третьего семестра студенты не имеют еще достаточных знаний по математическому анализу. Это позволяет иметь дело только с конечными суммами, все функции от элементарных исходов являются случайными величинами, математические ожидания и дисперсии существуют, и можно продвинуться с этими средствами достаточно далеко, например доказать закон больших чисел и даже центральную предельную теорему.

Ряд экзаменационных вопросов не освещен в этой книге (в частности, цепи Маркова). Мы исправим этот недостаток во втором томе

данного курса лекций. Мы надеемся в будущем дополнить эту книгу новыми главами, которые могут быть полезны не только студентам, интересующимся теорией вероятностей, но и начинающим преподавателям этой дисциплины.

Авторы благодарят рецензентов профессора В. В. Сенатова и профессора Д. М. Чибисова за полезные замечания и поправки.

Мы будем благодарны всем читателям, которые пожелают сообщить нам свои замечания.

Теория вероятностей есть в сущности не что иное, как здравый смысл, сведенный к исчислению.

Пьер-Симон Лаплас

Глава 1 ВЕРОЯТНОСТНОЕ ПРОСТРАНСТВО

«Теория вероятностей — математическая наука, позволяющая по вероятностям одних случайных событий находить вероятности других случайных событий, связанных каким-либо способом с первыми»¹ — такое определение приводится в математической энциклопедии².

Поскольку теория вероятностей дает возможность количественно оценивать случайные события, случайные явления, то методы этой математической дисциплины находят широкое применение в различных областях науки и человеческой деятельности. К выводам теории вероятностей и возможности использовать их в практической деятельности надо относиться разумно.

«Утверждение о том, что какое-либо событие наступает с вероятностью, равной, например, 1/2, еще не представляет само по себе окончательной ценности, так как мы стремимся к достоверному знанию. Окончательную познавательную ценность имеют те результаты теории вероятностей, которые позволяют утверждать, что вероятность наступления какого-либо события A весьма близка к единице или (что то же самое) вероятность ненаступления события A весьма мала. В соответствии с принципом "пренебрежения достаточно малыми вероятностями" такое событие справедливо считают практически достоверным»³.

О возникновении теории вероятностей и ее становлении как науки можно прочитать, например, в очерке А. Н. Ширяева⁴. Мы же отметим только, что в развитие теории вероятностей огромный вклад внесли российские и советские математики: П. Л. Чебышёв (1821—1894), А. А. Марков (1856—1922), А. М. Ляпунов (1857—1918), С. Н. Бернштейн (1880—1968), А. Н. Колмогоров (1903—1987) и другие.

Знакомство с теорией вероятностей начнем с основного ее понятия — понятия вероятностного пространства.

¹ Прохоров Ю. В., Севастьянов Б. А. [23. T. 1. C. 655—665].

² Автор данного учебника Ю. В. Прохоров был главным редактором журналов «Теория вероятностей и ее применения», «Обозрение прикладной и промышленной математики», а также однотомного Математического энциклопедического словаря и энциклопедии «Вероятность и математическая статистика» (М., 1999). — Прим. ред.

³ Прохоров Ю. В., Севастьянов Б. А. [23. Т. 1. С. 655].

⁴ *Ширяев А. Н.* Математическая теория вероятностей. Очерк истории становления [14. С. 101—129].

$$(\Omega, \mathcal{A}, \mathbf{P})$$

в которой Ω — некоторое множество, состоящее из точек ω ; \mathcal{A} — некоторый класс подмножеств множества Ω , называемых случайными событиями; \mathbf{P} — распределение вероятностей, или вероятность случайных событий.

Разберем все эти понятия сначала для конечного вероятностного пространства.

1.1. Конечное вероятностное пространство

Пусть Ω — некоторое конечное множество, состоящее из s элементов $\omega_1, ..., \omega_s$, называемых элементарными исходами или элементарными событиями.

Обычно это множество Ω выбирается в соответствии с проводимым случайным экспериментом таким образом, чтобы всякий мыслимый неразложимый исход эксперимента описывался единственным элементарным исходом.

Событием в этом случае будем называть любое подмножество множества Ω . Таким образом, $\mathcal A$ будет состоять из событий (подмножеств), включая подмножество, совпадающее с Ω , и пустое подмножество \varnothing . Событие Ω называют достоверным, а \varnothing — невозможным событием.

Распределение **P** для конечных вероятностных пространств задается следующим образом: каждому элементарному исходу ω_i ставится в соответствие число $\mathbf{P}(\omega_i) = p_i \geq 0$ так, чтобы $\sum^s p_i = 1$.

Тогда вероятность $\mathbf{P}(A)$ произвольного случайного события $A = \{\omega_{i_1},...,\omega_{i_r}\}$ определяется следующим образом:

$$\mathbf{P}(A) = \sum_{k=1}^{r} p(\omega_{i_k}) = \sum_{\omega \in A} p(\omega), \quad \mathbf{P}(\emptyset) = 0.$$

Исходы $\omega \in A$ называют благоприятствующими для события A, так как наступление любого такого исхода повлечет наступление события A.

Подробнее рассмотрим частный случай конечного вероятностного пространства, которое будем называть классической вероятностной моделью.

1.2. Классическая вероятность

Пусть все s возможных исходов случайного эксперимента равновероятны, тогда в соответствии с изложенным выше $p(\omega_i)=1/s$ для любого i и

$$\mathbf{P}(A) = \frac{r_A}{s},$$

где s — по-прежнему общее число возможных исходов, а r_{A} — число исходов, благоприятствующих A.

1.2.1. Генуэзская лотерея

Первое упоминание об этой лотерее в литературе относится к 1620 г. Условия лотереи таковы: проводится розыгрыш 5 выигрышных билетов из 90 имеющихся. Все билеты пронумерованы числами от 1 до 90. Участники розыгрыша могут делать ставки: на 1 номер (простая единица), на 2 номера (амбо), на 3 номера (терно), на 4 номера (кватерно), на 5 номеров (квинтерно).

При этом, если игрок угадывал, он получал свою ставку, умноженную на 15 для простой единицы, на 270 для амбо, на 5500 для терно, на 75000 для кватерно, на 1 000 000 для квинтерно. Пользуясь моделью классической вероятности, найдем вероятности таких выигрышей.

Для этого введем элементарные исходы как упорядоченные наборы из 5 различных между собой чисел:

$$\omega = (i_1, i_2, i_3, i_4, i_5),$$

где i_j — номер числа, выпавшего в j-м розыгрыше, $1 \le i_j \le 90$. Замечание. В этом примере и всюду в дальнейшем $C_n^k = \frac{n!}{k!(n-k)!}$ обозначает число сочетаний из n по k.

Подсчет общего числа исходов s проводится следующим образом: для i_1 имеется всего 90 различных вариантов, для i_2 уже на единицу меньше, т. е. 89, для i_3 — 88, для i_4 — 87, для i_5 — 86. Перемножив эти числа, получим общее число исходов:

$$s = 90 \cdot 89 \cdot 88 \cdot 87 \cdot 86 = 5273912160.$$

Тогда вероятность любого элементарного исхода ω равна $P(\omega) = 1/s$. Введем события A_i ($1 \le i \le 5$) — выиграть при ставке на i номеров. Проведем для примера вычисление $P(A_2)$.

Пусть 7 и 11 — два числа, на которые делается ставка амбо. Тогда каждый благоприятствующий исход для события A_2 будет иметь вид

где * помечены различные между собой числа, не равные 7 и 11, причем 7 и 11 могут появиться в этой цепочке на любых местах. Таких благоприятствующих исходов будет

$$C_5^2 \cdot 2 \cdot 88 \cdot 87 \cdot 86$$
,

где $C_5^2 \cdot 2$ — это число способов выбора двух мест, на которых можно в любом порядке расположить числа 7 и 11; 88 — возможные варианты выбора числа на первое из оставшихся мест; 87 — на второе оставшееся место; 86 — на третье свободное место. Получаем, что

$$\mathbf{P}(A_2) = \frac{C_5^2 \cdot 2 \cdot 88 \cdot 87 \cdot 86}{90 \cdot 89 \cdot 88 \cdot 87 \cdot 86} = \frac{2}{801}.$$

Аналогичным образом можно вычислить все вероятности $P(A_i)$. Значения этих вероятностей приведены в табл. 1.1.

Вероятности выигрышей в генуэзской лотерее

Таблица 1.1

•	•
личение ставки в m _i раз	$P(A_i)$
15	1/18 ≈ 0,055555
270	2/801 ≈ 0,002497

i Увел 1 2 $1/11748 \approx 0,0000851$ 3 5500 $1/511038 \approx 0,0000019$ 4 75 000 $1/43949268 \approx 10^{-8} \cdot 2,275$ 5 1 000 000

Значения $\mathbf{P}(A_i)$ можно получить и другим способом, вводя в качестве элементарных исходов неупорядоченные наборы различных между собой 5 чисел. Тогда общее число исходов $s' = C_{90}^5$, а для события A_2 вероятность вычисляется следующим образом:

$$\mathbf{P}(A_2) = \frac{C_2^2 \cdot C_{88}^3}{C_{90}^5} = \frac{2}{801}.$$

Задача 1.1. Найдите вероятности всех событий A_i .

Задача 1.2. Какова вероятность того, что при розыгрыше лотереи номера выйдут в возрастающем или убывающем порядке? (Ответ: 1/60.)

Приведем имеющиеся статистические данные по розыгрышам этой лотереи в Праге. За 133 года, с 1754 по 1886 г., было проведено 2854 тиража, при этом номера выходили в возрастающем или убывающем порядке с частотой 0,01612, тогда как точное значение вероятности такого события 0,01667. Можно ли считать классическую модель, в рамках которой была вычислена эта вероятность, удовлетворительной? Ответ на этот вопрос мы сможем дать, когда познакомимся с основными понятиями теории проверки статистических гипотез во второй части нашего курса.

1.2.2. Игральные кости

Игроки бросают по 6 игральных костей. Ставка игрока составляет 10 коп. Если сумма выпавших очков 6 или 36, то игрок получает премию 78 руб., 7 или 35 очков — 24 руб., 8 или 34 — 4 руб., в остальных случаях не получает ничего 1 .

 $^{^{1}\;}$ Игра относится ко второй половине XIX в. и описана П. Л. Чебышёвым в лекциях по теории вероятностей, читавшихся им в Санкт-Петербургском университете в 1879— 1880 гг. (см. [32]).

Проведем вычисление вероятностей данных премий. Для этого занумеруем кости от 1 до 6 и введем элементарный исход как упорядоченный набор из шести чисел

$$\omega = (i_1, i_2, i_3, i_4, i_5, i_6),$$

где $1 \le i_j \le 6$ — результат бросания j-й кости. Всего элементарных исходов $s = 6^6 = 46~656$.

Обозначим $S(\omega)=i_1+i_2+i_3+i_4+i_5+i_6$ сумму выпавших очков. Тогда

$$P{S(\omega) = 6} = P{S(\omega) = 36} = \frac{1}{s},$$

так как единственными благоприятствующими исходами для этих событий являются (1, 1, 1, 1, 1, 1) и (6, 6, 6, 6, 6, 6) соответственно. Следовательно, вероятность выиграть 78 руб. равна

$$p_1 = \frac{2}{s} \approx 0,000042867.$$

Аналогичными рассуждениями можно получить, что

$$P{S(\omega) = 7} = P{S(\omega) = 35} = \frac{6}{s}.$$

Действительно, для каждого из этих событий имеется уже по 6 благоприятствующих исходов. Например, событие $S(\omega)=7$ произойдет в любом из 6 случаев

$$(2, 1, 1, 1, 1, 1), (1, 2, 1, 1, 1, 1), (1, 1, 2, 1, 1, 1),$$

$$(1, 1, 1, 2, 1, 1), (1, 1, 1, 1, 2, 1), (1, 1, 1, 1, 1, 2).$$

Значит, вероятность выиграть 24 руб. равна

$$p_2 = \frac{2 \cdot 6}{s} \approx 0,000257202.$$

Подобными рассуждениями, представив всеми возможными способами число $8=1+1+1+1+2+2=\ldots=1+1+1+1+1+3$, получим, что

$$P{S(\omega) = 8} = P{S(\omega) = 34} = \frac{C_6^2 + C_6^1}{6^6} = \frac{15 + 6}{6^6}$$

и вероятность выиграть 4 руб. равна

$$p_3 = \frac{2 \cdot 21}{6^6} \approx 0,000900205.$$

Таким образом, вероятность выиграть хоть что-нибудь в этой игре равна

$$p_1 + p_2 + p_3 = 0,001200274,$$

а средний выигрыш равен

$$(78p_1 + 24p_2 + 4p_3) \cdot 100 = 1,3117284$$
 (коп.),

что составляет около 1 коп. и почти в 10 раз меньше ставки 1 . Как видим, условия этой игры весьма невыгодны для игроков, ставки должны быть повышены.

Подсчет вероятностей $P\{S(\omega) = k\}$ был проведен в самых простых случаях, при приближении k к среднему значению 21 вычисления становятся все более громоздкими, и требуется уже некий алгоритм, заменяющий простой перебор.

Разберем способ, использующий бином Ньютона и разложения в ряды для простых функций, применимый при любом числе игральных костей.

Рассмотрим многочлен 36-й степени

$$Q(x) = (x + x^2 + x^3 + x^4 + x^5 + x^6)^6 = a_{36}x^{36} + a_{35}x^{35} + \dots + a_1x + a_0$$

 $(a_0=0,\,a_{36}=1)$. К примеру, коэффициент a_8 в этом разложении равен числу способов, которыми можно получить 8, т. е. 21. Это мы вычислили выше. Но можно этот коэффициент получить и по-другому. Используя формулу для суммы геометрической прогрессии, получим, что

$$Q(x) = \left(\frac{x(1-x^6)}{1-x}\right)^6 = \frac{x^6(1-x^6)^6}{(1-x)^6}.$$

Поскольку

$$\frac{1}{(1-x)^6} = (1-x)^{-6} = 1 + \frac{(-6)}{1}(-x) + \frac{(-6)(-7)}{1 \cdot 2}(-x)^2 + \frac{(-6)(-7)(-8)}{1 \cdot 2 \cdot 3}(-x)^3 + \dots + \frac{6 \cdot 7 \cdot \dots \cdot (6+k-1)x^k}{k!} + \dots,$$

то

$$Q(x) = x^{6}(1 - C_{6}^{1}x^{6} + C_{6}^{2}x^{12} - \dots + x^{36})(1 + 6x + 21x^{2} + 56x^{3} + \dots) =$$

$$= x^{6}(1 - 6x^{6} + 15x^{12} + \dots)(1 + 6x + 21x^{2} + \dots).$$

Таким образом, подсчитывая коэффициенты при соответствующих степенях x, мы получим, в частности, что $a_8=21$, а $a_{15}=1666$. Поскольку число a_k равно числу благоприятствующих исходов для события $\{S(\omega)=k\}$, то

¹ Чебышёв [32. С. 213] пишет: «...так что 9/10 ставки шло в пользу откупщика; поэтому такие лотереи во всех государствах упразднены».

$$P{S(\omega) = 8} = \frac{21}{6^6}; P{S(\omega) = 15} = \frac{1666}{6^6}.$$

1.2.3. Случайные перестановки

Рассмотрим в качестве элементарных исходов ω различные перестановки чисел 1, 2, ..., n. Общее число исходов s=n!, каждому исходу приписываем вероятность 1/n!.

Пусть A_2 — событие, состоящее в том, что число 2 появится на втором месте, тогда

$$P(A_2) = \frac{(n-1)!}{n!} = \frac{1}{n}.$$

Какова вероятность того, что хотя бы одно число встретится на своем месте? Обозначим это событие A.

Для небольших n можно выписать все возможные исходы и подсчитать среди них число благоприятствующих. Так, для n=3 имеем 6 исходов:

$$\omega_1 = (1, 2, 3), \quad \omega_2 = (1, 3, 2), \quad \omega_3 = (2, 1, 3),$$

$$\omega_4 = (2, 3, 1), \quad \omega_5 = (3, 1, 2), \quad \omega_6 = (3, 2, 1).$$

Для события A благоприятствующими являются исходы ω_1 , ω_2 , ω_3 , ω_6 . Следовательно,

$$P(A) = \frac{4}{6} = \frac{2}{3}$$
.

Такой способ вычисления вероятности события A, конечно, не годится при больших n. В дальнейшем мы сможем показать, что $\mathbf{P}(A) \approx 1 - 1/e$, но для этого потребуется формула для вычисления вероятности объединения конечного числа случайных событий.

1.2.4. Игра в бридж

Рассмотрим колоду, состоящую из 52 карт. Четырем игрокам раздают по 13 карт. Какова вероятность того, что у одного из них, скажем у первого, на руках окажется полная масть?

Обозначим это событие B. Занумеруем карты следующим образом: номерами от 1 до 13 — червы, от 14 до 26 — бубны, от 27 до 39 — трефы и от 40 до 52 — пики.

Здесь элементарный исход ω — это перестановка из 52 чисел, описывающая начальное расположение карт перед их раздачей. При этом первому игроку достаются первая, пятая, девятая и т. д. карты из колоды, второму — вторая, шестая и т. д.

Рассмотрим случай, когда первому игроку, например, достанутся все карты червовой масти. Это произойдет, если на местах $1, 5, 9, \dots$ стоят числа $1, 2, \dots, 13$ в том или ином порядке, а на остальных местах — все