

Class: Machine Learning

Decision Trees

Instructor: Matteo Leonetti

Learning outcomes

- Define the entropy of a set
- Compute the entropy of a given set
- Define the information gain for a given feature
- Define the Gini Impurity of a set
- Implement the ID3 and CART algorithms

Making Decisions

Nonmetric data

How to choose the variable for each split?

History

1983 - Ross Quinlan (U. of Sidney)

Learning efficient classification procedures and their application to chess end games.

Entropy and information

How much information do I receive, with a message X?

X a random variable over possible messages

Information

$$I(x) = -\log_2 P(x)$$

Entropy

$$H = E[I] = \sum_{i} -p_{i} \log_{2} p_{i}$$

$$0\log_2 0 = 0$$

Fruits

Apples and Oranges

$$H = -p_O \log_2(p_O) - p_A \log_2(p_A) = -\frac{3}{7} \log_2(\frac{3}{7}) - \frac{4}{7} \log_2(\frac{4}{7}) = 0.985$$

$$H_{\text{colour}} = \underbrace{\frac{4}{7}}_{\text{fraction in Green}} \underbrace{\frac{3}{7}}_{\text{entropy of Green}} \underbrace{\frac{3}{7}}_{\text{fraction in Large}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{1}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}}_{\text{fraction in Medium}} \underbrace{\frac{1}{2} \log_2 \frac{3}{2} - \frac{3}{2} \log_2 \frac{3}{5}_{\text{fraction in Mediu$$

H = 0.985

 $H_{colour} = 0$ $G(Colour) = H - H_{colour} = 0.985$

 $H_{\text{size}} = 0.98$

$$G(Size) = H - H_{size} = 0.005$$

Information gain

Set of elements

elements in S with feature F = f

Feature

compare with:

$$H_{\text{size}} = \frac{2}{7} \frac{2}{7} \left(-\frac{1}{2} \log_2 \frac{1}{2} - \frac{1}{2} \log_2 \frac{1}{2} \right) + \frac{5}{7} \left(-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5} \right) = 0.98$$

The ID3 algorithm

- If all examples have the same label:
 - return a leaf with that label
- Else if there are no features left to test:
 - return a leaf with the most common label
- Else:
 - choose the feature \hat{F} that maximises the information gain of S to be the next node using **Equation (12.2)**
 - $\,\,\,$ add a branch from the node for each possible value f in \hat{F}
 - for each branch:
 - * calculate S_f by removing \hat{F} from the set of features
 - * recursively call the algorithm with S_f , to compute the gain relative to the current set of examples

Characteristics

Greedy with respect to G → potential local minimum

Deals with noisy data (by assigning the label to most common class)

Always uses all the features → prone to overfitting

Pruning

Continuous variables _____ C4.5

Missing attributes

A Different Criterion: Gini Impurity

		Colour	
		Green	Orange
Size	Large	P A P P	O
	Medium	А _А	0

$$G(S) = \frac{4}{10} \left(\frac{3}{10} + \frac{3}{10} \right) + \frac{3}{10} \left(\frac{4}{10} + \frac{3}{10} \right) + \frac{3}{10} \left(\frac{4}{10} + \frac{3}{10} \right) = \sum_{i}^{C} p_i (1 - p_i)$$

Gini split:

of classes
$$G(S) = \sum_{i}^{C} p_{i}(1-p_{i}) = \sum_{i}^{C} (p_{i}-p_{i}^{2}) = \sum_{i}^{C} p_{i} - \sum_{i}^{C} p_{i}^{2} = 1 - \sum_{i}^{C} p_{i}^{2}$$

$$G(S,F) = G(S) - \sum_{f \in values(F)} \frac{|S_f|}{|S|} G(S_f)$$

Random forests

Conclusion

Learning outcomes

- Define the entropy of a set
- Compute the entropy of a given set
- Define the information gain for a given feature
- Define the Gini Impurity of a set
- Implement the ID3 and CART algorithms

Chapter 12