Instrument Control & Data Processing

for high-reliable 'New Space' instruments

Dr. ir. Gerard RauwerdaGerard.Rauwerda@technolution.nl

New Space ↔ Traditional Space

Single or Multi instrument Instrument autonomy Rad-Tolerant

Solar panels

Command & Telemetry antenna (S-band)

Science data antenna (Ka-band)

Ocean Color Instrument

(polarimeter)

■ SPEXone

(polarimeter)

Science satellite (conventional space)

Multi instrument
Custom ICU developed
Share Earth link with other instruments

CubeSat

Single instrument Not Rad-Tolerant

Problem context: Separation of concerr

Separation of concerns and standardization in satellites

Flexibility & Edge processing

Data rate & Bandwidth

Modular electronics to bridge sensor with satellite platform

- Enabling reuse of modules in new projects → NRE cost sharing
- Separation of concerns between satellite platform and instrument developers
 - Reducing overall satellite build time
 - Reducing instrument development and test time

Rapid prototyping

- Design for rad.-hard (and COTSequivalent) components
 - Reliability trade-off depending on mission needs

CDPU: Control & Data Processing Unit

for SmallSat instruments

Space Cesa
Office

Flexible & reliable integration of sensor and platform

RISC-V® at Technolution

- We develop supplier-independent Programmable Logic designs
 - Implemented in

- FreNox RISC-V IP
 - RISC-V processor family, 100% developed by Technolution
 - No dependencies on open-source implementations
 - Implemented in NLD/NATO/EU classified security

Secure line encryption

- Hardware VPN solution (NLD/NATO/EU restricted)
 - Control flow in software /
 - Data encryption in hardware logic

Secure line encryption

- Hardware VPN solution (NLD/NATO/EU restricted)
 - Control flow in software / N RISC-V*
 - Data encryption in hardware logic
 - ⇒ Full understanding of our custom implementation
 - **⇒** Transparency for customer/evaluator
 - ⇒ Lifecycle management (transparency & portability)

Embedded processor

- hardware
 - RV32I(MA)
 - 32bits, mul/div
 - 5 stages Harvard arch
 - cache or internal RAM
 - IO space

- software
 - Bare metal (C, embedded Rust)
 - FreeRTOS
 - ThreadX

Application processor

- hardware
 - RV32IMA (S-mode)
 - 32bits, mul/div, atomic, supervisor
 - 5 stages Harvard arch
 - iMMU, dMMU (1 128 entries)
 - 8 way associative cache (4 32k)
 - cache coherency (DMA)
 - IO space
- software
 - Linux
 - Buildroot

CDPU: Control & Data Processing Unit

for SmallSat instruments

Space Cesa
Office

Flexible & reliable integration of sensor and platform

CDPU Evaluation Kit

CDPU FPGA Functional Design

- Programmable logic design
 - FreNox RISC-V
 - SpW interface IP
 - SpFi interface IP
 - Interconnect infrastructure; accelerator extensions
- Embedded software design
 - TC/TM handling

CDPU Demo – Instrument Integration

- FreNox-E SoC demonstrated in NG-Medium RH-FPGA
- FreNox-E SoC demonstrated in PolarFire FPGA

Innovation & collaboration

 Joint research with University of Twente & European Space Agency on (reduced) RERI, checkers and radiation testing

Conclusion: advanced electronics and embedded systems

Modular electronics enable re-use Modularity gives reduced instrument development & test time Benefit from standardization: transparancy, portability & flexibility

We build high-security & high-reliability systems using ₹ RISC-V°(since 2014)

Thanks for your attention!

Dr. ir. Gerard Rauwerda

Business Developer

Technolution Advance

Burgemeester Jamessingel 1

2803 WV Gouda

The Netherlands

 \searrow

Gerard.Rauwerda@technolution.nl

+31 182 59 4000

technolution-advance