<u>Homework 3</u> <u>DIODE LASER BASICS</u>

1. Solve the following exercises from Coldren's book:

2.6 (20%)

2.7 (20%)

2.9, question (a) only (20%)

2. What is the photon lifetime in a 500 μ m cleaved-mirror InP cavity with internal losses $\langle \alpha_i \rangle = 10 \text{cm}^{-1}$? (20%)

3. Consider the P-I-N laser diode of the schematic below, having a single quantum well (QW) of thickness L_1 as active medium. The laser emits at $\lambda=1\mu m$, the cavity length is L=0.5mm, the effective index of refraction in the waveguide is $\eta=3$, and $\partial \eta/\partial \lambda=-1\mu m^{-1}$. Assuming that the injection current produces carriers in the active region without leakage, and ignoring non-radiative recombination or other parasitic phenomena, the threshold current can be written as $I_{th}=eV_1BN_{th}^2$, where V_1 the volume of the QW, B the bimolecular recombination coefficient, and N_{th} the threshold carrier density in the QW. If the gain coefficient in the QW is given by $g(N)=g_0ln(N/N_0)$, where N the carrier density and g_0 , N_0 constants, (a) write down the equation relating the threshold current with V_1 and Γ_1 , where Γ_1 the confinement factor of the QW. (b) Next, assume that we have M QWs instead of one, equally pumped by the injection current. Find which M minimizes the threshold current, if $g_0=100\text{cm}^{-1}$, L=0.5mm, the mirror reflectivities $R_1=R_2=0.3$, $\Gamma_1=0.1$, and the cavities losses $\alpha_i=10\text{cm}^{-1}$. (20%)

In 1 and 2, you will need the following parameters: cleaved mirror reflectivity for InP, R=0.32 bimolecular recombination coefficient B= 10^{-10} cm³/s group velocity $u_g=c/(\eta+\omega\cdot\theta\eta/\theta\omega)$ where $\theta\eta/\theta\lambda=-1\mu m^{-1}$

Deadline: Tuesday 24th of November

OPTIONAL- (IIPOAIPETIKA)

Bonus +1 in the final grade

Rate equations and operating characteristics of laser diodes

Starting from Eqs. 2.15 and 2.16 (Coldren), solve for and plot the steady-state solutions of N and N_P as a function of current, from below to above threshold current values. Neglect non-radiative or other carrier-leakage effects, and consider $\eta_i{=}1$, $\Gamma{=}0.2,~\tau_P{=}1ps,~B{=}~10^{-10}~cm^3/s,~\beta_{SP}{=}10^{-5},$ and the group velocity $u_g{=}c/(\eta{+}\omega{\cdot}\theta\eta/\theta\omega)$ where $\eta{=}3.2$ and $\theta\eta/\theta\lambda{=}{-}1\mu m^{-1}$. Also the thickness of the active region is 200nm, the cavity length is 0.5mm and the metal contacts have a width of 50 μ m. Further, assume that g=a (N-N_{tr}) where a=2.5x10⁻¹⁶cm² and N_{tr}=2x10¹⁸ cm⁻³. The semiconductor material of the active region is InP and the operating temperature 300K.

(Hint: the steady-state condition on Eqs. 2.15 and 2.16 leads to a third degree polynomial in N which can be used to solve for N as a function of current. The expected curves look similar but are not identical to those shown in the attached Figs. 6.1 and 6.2)

Deadline: Tuesday 24th of November

