November 8, 2016

A. Boosting

1. I use 10-fold cross validation to test the average error, the result is shown in Fig. 1. k is selected 3 as maximum.

Next, I set $T^* = 400$ and plot the error on the test data, shown in Fig. 2.

Obviously, AdaBoost outperforms SVM (5% vs 15% error), which shows weak learner can be trained robust.

2. First, we don't care about what values α_t and Z_t are. In each iteration, we still choose $h_t \in \mathbb{H}$ with the smallest error $1_{y_i h_t(x_i) < 0}$. So the algorithm structure is the same, the only difference is the exact values.

The normalized factor

$$\begin{split} Z_t &= \sum_{i=1}^m D_t(i) e^{-\alpha_t y_i h_t(x_i)} \\ &= \sum_{i:y_i h_t(x_i)=1} D_t(i) e^{-\alpha} + \sum_{i:y_i h_t(x_i)=0} D_t(i) + \sum_{i:y_i h_t(x_i)=-1} D_t(i) e^{\alpha_t} \\ &= \epsilon_t^1 e^{-\alpha_t} + \epsilon_t^0 + \epsilon_t^{-1} e^{\alpha_t} \\ &\text{(choose } \alpha_t \text{ s.t. min } Z_t) \text{ we get } \alpha_t = \frac{1}{2} \ln \frac{\epsilon_t^1}{\epsilon_t^{-1}} \\ &= 2 \sqrt{\epsilon_t^1 \epsilon_t^{-1}} + \epsilon_t^0 \end{split}$$

(a) The objective function is

$$F(\boldsymbol{\alpha}) = \frac{1}{m} \sum_{i=1}^{m} e^{-y_i \sum_{s=i}^{n} \alpha_s h_s(x_i)}.$$

And let e_t be the tth unit vector in \mathbb{R}^n . We need to find the greatest gradient each iteration. Like the original AdaBoost,

$$F(\boldsymbol{\alpha}_{t-1} + \eta \boldsymbol{e}_t) = \frac{1}{m} \sum_{i=1}^{m} e^{-y_i \sum_{s=i}^{n} \alpha_s h_s(x_i) - y_i \eta h_t(x_i)}.$$

Then

$$F'(\boldsymbol{\alpha}_{t-1}, \boldsymbol{e}_t) = \frac{1}{m} \sum_{i=1}^{m} -y_i h_t(x_i) e^{-y_i \sum_{s=i}^{n} \alpha_s h_s(x_i)}$$

$$= -\frac{1}{m} \sum_{i=1}^{m} y_i h_t(x_i) m D_t(i) \prod_{s=1}^{t-1} Z_s$$

$$= -\left[\sum_{i:y_i h_t(x_i)=1} D_t(i) + 0 - \sum_{i:y_i h_t(x_i)=-1} D_t(i) \right] \prod_{s=1}^{t-1} Z_s$$

$$= (\epsilon_t^{-1} - \epsilon_t^1) \prod_{s=1}^{t-1} Z_s$$

As we find the direction with greatest gradient, and ϵ_t^{-1} is the error rate, we will pick h_t with the smallest ϵ_t^{-1} .

1

Figure 1: Average cross validation error versus lg(T).

Figure 2: Test error on the test data.

For the step size η ,

$$\frac{dF(\boldsymbol{\alpha}_{t-1} + \eta \boldsymbol{e}_t)}{d\eta} = 0 \Leftrightarrow -\sum_{i=1}^m y_i h_t(x_i) e^{-y_i \sum_{s=1}^{t-1} \alpha_s h_s(x_i)} e^{-\eta y_i h_t(x_i)} = 0$$

$$\Leftrightarrow \sum_{i=1}^m y_i h_t(x_i) D_t(i) m \prod_{s=1}^{t-1} Z_s e^{-\eta y_i h_t(x_i)} = 0$$

$$\Leftrightarrow \sum_{i=1}^m y_i h_t(x_i) D_t(i) e^{-\eta y_i h_t(x_i)} = 0$$

$$\Leftrightarrow \epsilon_t^1 e^{-\eta} - \epsilon_t^{-1} e^{\eta} = 0$$

$$\Leftrightarrow \eta = \frac{1}{2} \ln \frac{\epsilon_t^1}{\epsilon_t^{-1}}$$

which is the same as α_t as discussed previously.

(b) Edge can still be defined as

$$\gamma_t(D) = \frac{1}{2} \sum_{i=1}^m y_i h_t(x_i) D(i) = \frac{1}{2} (\epsilon_t^1 - \epsilon_t^{-1}.)$$

Then the weak learning assumption would be: $\exists \gamma > 0$ s.t. $\forall D$ and $\forall h_t, \gamma_t(D) > \gamma$ holds. i.e. the best edge $\gamma^* > 0$

(c) 1:
$$H \in \{-1,0,1\}^X$$
2: function AdaBoost $3(S = (x_1,y_1), \cdots, (x_m,y_m))$
3: for $i \leftarrow 1$ to m do
4: $D_1(i) = \frac{1}{m}$
5: end for
6: for $t \leftarrow 1$ to T do
7: $h_t \leftarrow$ base classifier in H with small error ϵ_t^{-1}
8: $\alpha_t \leftarrow \frac{1}{2} \ln \frac{\epsilon_t^1}{\epsilon_t^{-1}}$
9: $Z_t = 2\sqrt{\epsilon_t^1 \epsilon_t^{-1}} + \epsilon_t^0$
10: for $i \leftarrow 1$ to m do
11: $D_{t+1}(i) = \frac{D_t(i)e^{-\alpha_t y_i h_t(x_i)}}{Z_t}$
12: end for
13: $f_t = \sum_{i=1}^t \alpha_s h_s$
14: end for
15: return f_T
16: end function

(d)

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1_{y_i f(x_i) < 0}$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} e^{-y_i f(x_i)}$$

$$\leq \frac{1}{m} \sum_{i=1}^{m} D_{T+1}(i) m \prod_{t=1}^{T} Z_t$$

$$= \prod_{t=1}^{T} Z_t$$

$$= \prod_{t=1}^{T} \left[2\sqrt{\epsilon_t^1 \epsilon_t^{-1}} + \epsilon_t^0 \right]$$