Métodos de *Deep Learning* aplicados à Segmentação Semântica de Imagens para Percepção de Veículos Autônomos

Gabriel Toffanetto França da Rocha

Laboratório de Mobilidade Autônoma – LMA Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas

Campinas, Brasil g289320@dac.unicamp.br

Abstract—

Index Terms—Deep learning, Visão computacional, Segmentação Semântica de Imagem, Robótica móvel, Veículos autônomos

I. INTRODUÇÃO

Veículos com capacidade de se guiarem de forma autônoma estão cada vez mais presentes no dia a dia da sociedade contemporânea, possibilitando que o motorista possa realizar outras atividades durante a navegação, ou que o mesmo seja assistido em caso de alguma falha humana do condutor. Para que o automóvel seja capaz de se mover por conta própria, o mesmo deve ser capaz de perceber o ambiente, e sensores como sonares, radares, LiDARs e câmeras podem ser utilizados para tal. Porém, a câmera se faz como uma solução mais viável economicamente, e como visto na literatura, apresenta soluções que contemplam os desafios da navegação autônoma de veículos em ambientes urbanos, como visto nos trabalhos de [8] e [17].

Para que um veículo autônomo possa entender o ambiente à sua volta, é necessário que ele saiba reconhecer as entidades que o compõem, como por exemplo: estrada, veículos, calçadas, pedestres e vegetação, para que assim, o mesmo saiba diferenciar área navegável de obstáculos [12]. Para isso, o emprego da técnica de segmentação semântica de imagens, onde cada pixel da imagem é classificado de acordo com a entidade do ambiente da qual ele faz parte [10]. A Fig. 1 mostra a aplicação da técnica de segmentação semântica fundida à informação de profundidade dada por uma câmera *stereo*, permitindo a obtenção de um *grid* de percepção dinâmica local (DLP), que projeta no plano 2D o ambiente contendo a detecção de múltiplos objetos para que o veículo consiga planejar seu caminho [19].

Existem métodos de processamento de imagens que realizam o mascaramento de cada entidade da imagem, porém a definição de qual é a classe de cada segmento se faz desafiadora, sendo anteriormente empregada a utilização de redes neurais artificiais (ANNs) para tal, como feito por [18]. Porém, devido à utilização de ANNs somente para a classificação final, era necessário muito pré-processamento para realização da segmentação semântica. Com o desenvolvimento das redes neurais profundas (DNNs), obteve-se métodos com poder

Fig. 1: DLP com ênfase na detecção múltipla de objetos móveis obtido com a fusão da imagem semanticamente segmentada e as informações de profundidade [19].

suficiente para que, dada uma imagem bruta de entrada e uma imagem de referência (*ground truth*) segmentada para comparação, a rede profunda consegue aprender como realizar a segmentação da imagem do ambiente urbano, como nas várias arquiteturas mostradas por [14]. Com a popularização desses métodos, já existem diversos conjuntos de dados para treinamento das DNNs, como vistos em [5] e [2], [3]. Existem também *datasets* que trazem cenas ainda mais desafiadoras, como o [13] que apresenta imagens urbanas durante noites chuvosas.

Dessa forma, a percepção do ambiente por meio de visão computacional se faz indispensável para o desenvolvimento dos veículos autônomos, e com isso, os métodos de *deep learning* se fazem uma grande ferramenta para conseguir-se reconhecer as entidades de uma cena urbana com robustez às variações de luz e reflexos, sendo assim uma solução a ser explorada. Além do desempenho da segmentação semântica, o tempo demandado para tal operação também é vital, uma vez que durante a navegação, todos os módulos operam em tempo real, e a quantidade de *frames* segmentados por segundo é uma informação importante. Dessa forma, esse trabalho propõem a utilização de redes neurais profundas com diferentes arquiteturas para a segmentação semântica de imagens de cenas

urbanas, utilizados *datasets* da literatura e para testes finais, utilizando imagens reais adquiridas pelo autor. Com esse teste, espera-se poder julgar se o treinamento da rede neural com conjuntos de dados da literatura conseguem gerar máquinas que generalizam bem para localidades não vistas durante o treinamento.

Este trabalho é dividido em seis partes, onde na Seção I é realizada a motivação e contextualização da pesquisa e na Seção II é apresentado o estado da arte, discorrendo sobre as soluções utilizadas atualmente. Com isso, a Seção III apresenta a metodologia a ser utilizada neste trabalho, seguida dos resultados obtidos na Seção IV e sua análise na Seção V. Por fim, são apresentadas as conclusões na Seção VI e as referências utilizadas.

II. ESTADO DA ARTE

III. METODOLOGIA

Para a solução do problema foi escolhida uma rede da família STDC, que conseguem realizar a segmentação semântica de imagens de forma rápida e com desempenho estado da arte. Tal arquitetura apresenta grande riqueza de recursos, empregando inspirações na BiSeNet, SENet, U-Net e utilizando mecanismos de atenção, além da utilização de uma função de custo secundária para potencializar a captação de detalhes pela rede. A rede STDC75-1 foi escolhida por apresentar a maior velocidade nos testes realizados pelos autores do *survey* [14], com um desempenho de segmentação considerável, permitindo uma melhor *performance* no *hardware* disponível.

A. Arquitetura

A rede STDC1 [7] é baseada na arquitetura de *two-branch network*, onde existe uma bifurcação da rede em dois ramos, um ligado à extração de informações de contexto e o outro aplicado para obtenção de informações espaciais da entrada. A informação de contexto demanda de uma maior profundidade, implementando mecanismos de atenção em dois níveis para extração dos atributos necessários para a identificação das regiões da imagem, como mostrado na Fig. 2(a).

Fig. 2: Arquitetura completa da rede neural utilizada [7].

Porém, o fato de se processar a informação de entrada em dois ramos, traz um inconveniente para o problema de segmentação em tempo real, que é justamente o tempo de

inferência da rede. Desta forma, a rede aplica uma estratégia elegante ao utilizar no lugar de um ramo com novas camadas, uma skip connection do Stage 3, para o bloco de fusão dos feature maps oriundos dos dois braços da rede. Para forçar a captura das informações espaciais, a saída da skip connection é utilizada em uma tarefa auxiliar de detecção de bordas de cada região semântica da imagem, por meio de uma detail head, como visto na Fig. 2(b). Tal procedimento é realizado por meio de treinamento supervisionado, onde com a aplicação de filtros laplacianos na imagem rótulo de segmentação semântica, se obtém a imagem rótulo com as bordas de cada segmento da imagem de entrada, procedimento ilustrado na Fig. 2(c). Tal informação explicita os detalhes à serem capturados pelo ramo espacial, e a perda é computada por meio da saída da detail head e o rótulo obtido. Reforça-se que esse procedimento é realizado apenas em treinamento, enquanto durante a inferência a rede neural irá utilizar as habilidades aprendidas por meio do gradiente sobre a perda atrelada à segmentação e à detecção de bordas, sem realizar explicitamente a extração das bordas de cada região da imagem.

O módulo principal da rede é o Short-Term Dense Concatenate Module (STDC), que possuí quatro camadas internas de convolução (convolução + batch normalization + ReLU), e os feature maps de todas as camadas convolucionais do bloco são concatenadas na saída, formando assim um bloco com característica densa, como descrito na Fig. 3. Dada uma entrada de M canais, a primeira camada possuí kernels 1×1 , gerando N/2 feature maps. A segunda camada realiza downsampling, apresentando stride = 2 e kernel 3×3 , assim como as consecutivas, porém contribuindo com N/4 canais de saída. Por fim, as duas ultimas camadas contribuem cada uma com N/8 mapas de ativação, e com isso, o bloco concatena todos os canais de saída, apresentando uma saída com N canais. Tal configuração se fez para valorizar a tarefa de segmentação de imagem, onde nas primeiras camadas existem mais filtros, e com isso, conseguindo explorar melhor a extração de informação multi-escala [7].

Fig. 3: Estrutura do módulo STDC. Adaptado de [7].

O estágio 1 e 2 realizam a operação de convolução, *batch normalization* e ReLU aos dados de entrada, com *stride* igual a 2. Já os estágios 3, 4 e 5 apresentam realizações em série de módulo STDC. O mecanismo de atenção e o bloco *Feature Fusion Module* (FFM) são baseados na rede BiSeNet [22], onde o funciona com base em obter os pesos de atenção por meio da aplicação de *global pooling*, computando o vetor de pesos por uma camada convolucional com *kernel* 1 × 1, aplicando *batch normalization* e ativação logística. Dessa forma, a informação de contexto global é integrada com baixo custo computacional, evitando *up-sampling*. Já o bloco FFM, é inspirado no conceito

da SENet, e condiciona a soma as informações do ramo de contexto e do ramo espacial da rede *two-branch*. O mesmo se faz por meio da concatenação dos *feature maps*, normalização por *batch normalization* e ponderação dessas informações por meio de um vetor de pesos obtido por meio da aplicação de *global pooling*, e duas camadas de convolução de *kernel* de tamanho unitário, a primeira seguida por ReLU e a segunda por uma sigmoide. Por fim é realizado um *upsampling* de 8 vezes para a recuperação da dimensão de entrada.

Sua implementação se deu com base nos códigos fonte disponibilizados pelos autores da rede, modificados para o problema em questão, e disponibilizados no GitHub¹. Utilizouse o *framework* PyTorch, juntamente dos pacotes de CUDA necessários para utilização da GPU NVIDIA em treinamento e inferência.

B. Dataset de treinamento e dados de teste

O conjunto de dados Cityscapes [5] foi escolhido como base para treinamento e avaliação do modelo, sendo um *dataset* que contempla imagens de alta resolução, de contextos urbanos, capturados em diversas cidades da Europa. A base de dados conta com a anotação de 30 classes, sendo que 19 estão disponíveis para o problema de segmentação semântica, sendo elas: estrada, calçada, pedestre, piloto/condutor, carro, caminhão, ônibus, trem, moto, bicicleta, edifício, muro, cerca, poste, placa de transito, semáforo, vegetação, terreno e céu, cuja legenda está disponível na Fig. 4. Estão disponíveis no mesmo, 5000 imagens com anotação fina dos segmentos semânticos, divididos em treinamento (2975), validação (500) e teste (1525). A resolução das imagens é de 2048 × 1024 pixels, sendo uma entrada desafiadora para a inferência em tempo real.

Fig. 4: Legenda de cores referentes à cada classe do dataset.

Foram implementadas estratégias de *data augmentation* pelos autores da rede neural [7], utilizando alteração de cor, brilho e contraste, inversão horizontal, aplicação de escala e

corte, buscando a inserção de robustez e maximização da capacidade de generalização, evitando *overfitting*. A aplicação de escala também é utilizada para reduzir a dimensão dos dados de entrada, facilitando a predição do mapa de segmentação semântico em tempo real pela rede, onde foi escolhida a escala de 0,75 por fornecer um desempenho maior.

Para teste da capacidade de generalização do modelo, realizou-se uma coleta de dados na mesma forma da realizada pelos autores do *dataset*, no *campus* da Unicamp, sendo assim, imagens de locais que não foram vistos em treinamento, e aplicou-se a inferência da máscara de segmentação semântica das mesmas por meio da rede STCD1.

C. Método de treinamento

O treinamento da rede neural foi realizado por meio do algoritmo de gradiente descendente estocástico (SGD), com *momentum* de 0,9, decaimento de pesos de $5e^{-4}$, com atualização dos pesos por *mini-batch* de 4 amostras, devido às limitações de memória da GPU utilizada. O treinamento é limitado por número de iterações, onde com base na rede original, foi limitado em 60000 iterações, onde é adotada uma estratégia de *warmup*. Com isso, a taxa de aprendizado é incrementada de um valor pequeno até o valor alvo durante as primeiras 1000 interações para estabilização do processo de otimização e evitar a divergência do mesmo. Além disso, durante o treinamento a taxa de aprendizado é adaptada por meio de uma política polinomial, dada por $(1-iter/max_iter)^{power}$, onde foi considerada uma potência de 0.9 [7].

Como função de custo para ajuste dos pesos, é considerada a entropia cruzada, por se tratar de um problema de classificação, e aplicando recursos *Online Hard Example Mining* para a otimização da tarefa de aprendizado da segmentação semântica. O OHEM é uma estratégia de exploração de amostras desafiadoras, que tendem a trazer mais aprendizado ao modelo devido à riqueza de informações transpassadas pela complexidade de classificação, sendo selecionados durante o treinamento, e trazendo mais robustez à rede [16].

Também é computada a função de custo para o problema de detecção dos detalhes, realizado pela *detail head*. Nesse caso, não é utilizado a entropia cruzada, devido a ser um problema altamente desbalanceado, onde a mesma não apresenta bons resultado. Nesse caso, são aplicadas as métricas de entropia cruzada binária e *dice loss*, conforme (1). A *dice loss*, enunciada em (2) se baseia em medir a sobreposição entre o mapa predito e seu respectivo rótulo, variando no intervalo [0, 1], sendo assim robusta ao número de pixels de cada classe. O equacionamento é realizado considerando uma entrada de $H \times W$ pixels, obtendo assim uma predição do mapa de detalhes p_d , sendo g_d seu respectivo rótulo, e ϵ uma constante para evitar a divisão por zero [6].

$$L_{detail}(p_d, g_d) = L_{dice}(p_d, g_d) + L_{bce}(p_d, g_d)$$
 (1)

$$L_{dice}(p_d, g_d) = 1 - \frac{2\sum_{i}^{H \times W} p_d^i g_d^i + \epsilon}{\sum_{i}^{H \times W} (p_d^i)^2 + \sum_{i}^{H \times W} (g_d^i)^2 + \epsilon}$$
(2)

¹github.com/toffanetto/STDC-Seg

D. Métricas de avaliação

Sendo um problema de segmentação com k+1 classes considerando o fundo da imagem, têm-se que p_{ij} é o número de pixels pertencentes à classe i que foram preditos para a classe j, logo, i=j representa uma classificação correta da classe do pixel.

Com isso, as duas métricas mais famosas para segmentação semântica, sendo elas a *Intersection over Union* (IoU) e *mean Intersection over Union* (mIoU). A IoU, enunciada em (3), é obtida pela quantidade de pixels preditos corretamente para uma certa classe (interseção predição e *ground truth*), divido pela quantidade de pixels preditos incorretamente somado ao *ground truth* (união) [14].

$$IoU = \frac{\sum_{i=0}^{k} p_{ii}}{\sum_{i=0}^{k} \sum_{j=0}^{k} (p_{ij} + p_{ji}) - \sum_{i=0}^{k} p_{ii}}$$
(3)

Ao realizar a média da IoU para k+1 classes, se obtém a mIoU, conforme (4). Devido à informação de um desempenho médio para todas as classes, essa métrica foi escolhida para realização da medida de efetividade da segmentação semântica.

$$mIoU = \frac{1}{k+1} \sum_{i=0}^{k} \frac{p_{ii}}{\sum_{j=0}^{k} (p_{ij} + p_{ji}) - p_{ii}}$$
IV. RESULTADOS

A. Métricas de teste

mIOU is: 0.7450460195541382

B. Cityscapes

Fig. 5: Predições para cenas do dataset Cityscapes.

C. Unicamp

V. Análise dos Resultados

VI. CONCLUSÕES

AGRADECIMENTOS

Deixo meus agradecimentos aos professores Dr. Levy Boccato e Dr. Romis Attux, por todos os conhecimentos compartilhados e que tornaram possível a realização deste trabalho.

REFERÊNCIAS

- BADRINARAYANAN, V., KENDALL, A., AND CIPOLLA, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, Oct. 2016.
- [2] BROSTOW, G. J., FAUQUEUR, J., AND CIPOLLA, R. Semantic object classes in video: A high-definition ground truth database. *Pattern Recognition Letters* 30, 2 (Jan. 2009), 88–97.
- [3] BROSTOW, G. J., SHOTTON, J., FAUQUEUR, J., AND CIPOLLA, R. Segmentation and Recognition Using Structure from Motion Point Clouds. In *Computer Vision ECCV 2008*, D. Forsyth, P. Torr, and A. Zisserman, Eds., vol. 5302. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 44–57.
- [4] CHAO, P., KAO, C.-Y., RUAN, Y., HUANG, C.-H., AND LIN, Y.-L. HarDNet: A Low Memory Traffic Network. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV) (Seoul, Korea (South), Oct. 2019), IEEE, pp. 3551–3560.
- [5] CORDTS, M., OMRAN, M., RAMOS, S., REHFELD, T., ENZWEILER, M., BENENSON, R., FRANKE, U., ROTH, S., AND SCHIELE, B. The Cityscapes Dataset for Semantic Urban Scene Understanding, Apr. 2016.
- [6] DENG, R., SHEN, C., LIU, S., WANG, H., AND LIU, X. Learning to predict crisp boundaries, July 2018.
- [7] FAN, M., LAI, S., HUANG, J., WEI, X., CHAI, Z., LUO, J., AND WEI, X. Rethinking BiSeNet For Real-time Semantic Segmentation, Apr. 2021.
- [8] GARCIA, O., VITOR, G. B., FERREIRA, J. V., MEIRELLES, P. S., AND DE MIRANDA NETO, A. The VILMA intelligent vehicle: An architectural design for cooperative control between driver and automated system. *Journal of Modern Transportation* 26, 3 (Sept. 2018), 220–229.
- [9] GÉRON, A. Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, second ed. O'Reilly, 2020.
- [10] HE, H.-J., ZHENG, C., AND SUN, D.-W. Image Segmentation Techniques. In Computer Vision Technology for Food Quality Evaluation. Elsevier, 2016, pp. 45–63.
- [11] JANAI, J., GÜNEY, F., BEHL, A., AND GEIGER, A. Computer Vision for Autonomous Vehicles: Problems, Datasets and State of the Art. Foundations and Trends® in Computer Graphics and Vision 12, 1–3 (2020), 1–308.
- [12] JEBAMIKYOUS, H.-H., AND KASHEF, R. Autonomous vehicles perception (AVP) using deep learning: Modeling, assessment, and challenges. IEEE Access 10 (2022), 10523–10535.
- [13] JIN, J., FATEMI, A., LIRA, W., YU, F., LENG, B., MA, R., MAHDAVI-AMIRI, A., AND ZHANG, H. RaidaR: A Rich Annotated Image Dataset of Rainy Street Scenes, Oct. 2021.
- [14] PAPADEAS, I., TSOCHATZIDIS, L., AMANATIADIS, A., AND PRATIKAKIS, I. Real-Time Semantic Image Segmentation with Deep Learning for Autonomous Driving: A Survey. Applied Sciences 11, 19 (Sept. 2021), 8802.
- [15] POUDEL, R. P. K., BONDE, U., LIWICKI, S., AND ZACH, C. ContextNet: Exploring Context and Detail for Semantic Segmentation in Real-time, Nov. 2018.
- [16] SHRIVASTAVA, A., GUPTA, A., AND GIRSHICK, R. Training Regionbased Object Detectors with Online Hard Example Mining, Apr. 2016.
- [17] VITOR, G. B. Urban environment and navigation using robotic vision: conception and implementation applied to autonomous vehicle = Percepção do ambiente urbano e navegação usando visão robótica: concepção e implementação aplicado à veículo autônomo. Doutor em Engenharia Mecânica, Universidade Estadual de Campinas, Campinas, SP, Sept. 2014.

- [18] VITOR, G. B., LIMA, D. A., VICTORINO, A. C., AND JANITO V. FERREIRA. A 2D/3D Vision Based Approach Applied to Road Detection in Urban Environments. In 2013 IEEE Intelligent Vehicles Symposium (IV) (Gold Coast City, Australia, June 2013), IEEE, pp. 952–957.
- [19] VITOR, G. B., VICTORINO, A. C., AND FERREIRA, J. V. Modeling evidential grids using semantic context information for dynamic scene perception. *Knowledge-Based Systems* 215 (Mar. 2021), 106777.
- [20] WANG, Y., ZHOU, Q., AND WU, X. ESNet: An Efficient Symmetric Network for Real-time Semantic Segmentation, June 2019.
- [21] Yu, C., GAO, C., WANG, J., YU, G., SHEN, C., AND SANG, N. BiSeNet V2: Bilateral Network with Guided Aggregation for Real-time Semantic Segmentation, Apr. 2020.
- [22] YU, C., WANG, J., PENG, C., GAO, C., YU, G., AND SANG, N. BiSeNet: Bilateral Segmentation Network for Real-time Semantic Segmentation, Aug. 2018.