Smart Mask

Mask applications

Daily life

ER mask

Firefighter mask

Cardiopulmonary Exercise Testing (CPET)

Warrior Platform

Industrial mask

Call center

COVID-19

COVID-19 CORONAVIRUS PANDEMIC

Last updated: July 21, 2021, 11:37 GMT

Weekly Trends - Graphs - Countries - News

Coronavirus Cases:

192,393,605

view by country

Deaths:

4,136,695

Recovered:

175,056,304

Smart mask - Papers

- Ghatak, B., Banerjee, S., Ali, S. B., Bandyopadhyay, R., Das, N., Mandal, D., & Tudu, B. (2020). Design of a Self-powered Smart Mask for COVID-19. arXiv preprint arXiv:2005.08305.
- Kalavakonda, R. R., Masna, N. V. R., Bhuniaroy, A., Mandal, S., & Bhunia, S. (2020). A Smart Mask for Active
 Defense Against Coronaviruses and Other Airborne Pathogens. IEEE Consumer Electronics Magazine.
- Ghatak, B., Banerjee, S., Ali, S. B., Bandyopadhyay, R., Das, N., Mandal, D., & Tudu, B. (2021). Design of a self-powered triboelectric face mask. *Nano energy*, 79, 105387.
- Masna, N. V. R., Kalavakonda, R. R., Bhuniaroy, A., Mandal, S., & Bhunia, S. (2020). The Smart Mask: Active
 Closed-Loop Protection against Airborne Pathogens. arXiv preprint arXiv:2008.10420.
- Noronha, M., Jindal, A., & Mysore, V. (2020). Modified mask for aesthetic procedures on face during COVID-19 era:
 chiseling our armamentarium. Dermatologic Therapy.
- Sethumadhavan, A., Mugunthan, D., Sakthivel, J., Venkatesan, S., Patturaja, D. P., Ganesh, D., ... &
 Sathiyanarayanan, M. (2020, October). Design of Smart Air Purifier Facial Mask. In 2020 International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE) (pp. 581-584). IEEE.

Why smart mask?

What is a smart mask?

- Research prototype or commercial product
- Considered three features
 - Sensing
 - whether it can sense anything through mask or things related to mask.
 - ex) body temperature, breathing rate, heart rate, blood pressure, ...
 - Actuation
 - Can the user operate/control the functions of the mask?
 - ex) fan speed, Powering the filter on/off, LED light on/off ...
 - Wireless connectivity
 - ex) connect a mask to cell phone

Sensing

- Personal sensing
 - Physiological sensing: HR/SpO2 (PPG), Respiration (Sound, Vibration, Temp), Eye (EOG), EMG
 - Bodily sensing: head/body posture, head/body movements, physical activities (motion sensors)
 - Speech sensing: paralinguistic signals (e.g., speech duration)
- Environmental sensing
 - In-mask condition (temperature/moisture)
 - Ambient temperature / moisture
 - Ambient light
 - Air quality + toxic gas
- Device sensing
 - Fan current sensing (rotation)
 - Wearing time/durations
- Disease sensing
 - o COVID-19 (e.g., DETECT Health Study)
 - Lung cancer (breath sensor)
 - Alcohol level
 - Depression/stress (mood disorder)

What kinds of sensing can be detected by using a smart mask?

- Heart rate
 - ECG(Electrocardiography), PPG(Photoplethysmography)[1]
 - BCG(Ballistocardiography) / SCG(Seismocardiography)
 - Slight movement of the body that occurs with each heartbeat
 - Analysis of these slight movements is known as BCG
- Skin temperature
 - Temperature sensor[1]
- Blood pressure
 - PPG(Photoplethysmography)[1]
- Blood oxygen
 - PPG(Photoplethysmography)[1]

What kinds of sensing can be detected by using a smart mask?

Respiration

- The standard deviation of a pressure signal when the mask is on is much higher than when the mask is off due to respiration.
 - Barometric pressure sensor
- The warm air coming out from the mouth, every time a person breathes, shows a subtle but distinct periodicity from the inhale/exhale
- Breathing volume, breath counts
- Mask fit & Wear time
 - IMU(Inertial Measurement Unit) & Barometric pressure sensor
 - Total mask wearing time

BCG (Ballistocardiogram)

-심탄도

PPG (Photoplethysmogram)

-산소 포화도 등을 측정하는 센서로 빛을 통해 조직의 혈액량 측정 가능

ECG (Electrocardiography), EKG

-심전도

EMG (Electromyography)

-근전도 검사 -골격근에서 발생하는 전기적인 신호를 측정하고 기록

EGG (Electroglottograph)

-음성 제작 중 진동 보컬 접힘의 접촉 정도를 비 침습적으로 측정하는 데 사용되는 장치

EMG (Electromyography)

-근전도

-골격근에서 발생하는 전기적인 신호를 측정하고 기록

EOG (Electrooculography)

-전기 안구도 기록

-안구 운동 추적 시스템

GSR (Galvanic Skin Resonse)

-피부전도도

-땀 배출량과 체온 변화를 측정하고 그에 따른 피부 긴장도 파악

PPE (Personal protective equipment)

-개인보호구

-마스크, 보호의, 보호장갑, 보안경, 귀마개, 등

SCG(Seismocardiogram

-the recording of body vibrations induced by the heart beat.

What kinds of sensing can be detected by using a smart mask?

What kinds of sensing can be detected by using a smart mask?

Detect Covid-19 infection

Design Considerations & Challenges

- Weight & size
 - average weight: 185g
- Materials (inner/outer space)
 - Plastic/cloth
 - Need to consider comfort levels
- Inner Moisture & Sweat
 - Temperature
 - Moisture (due to breathing) + Sweat
 - Electronics
 - Moisture (drying) due to fan
- Battery
 - Sensing frequency
 - Energy harvesting possibilities
- Sound/Speech
 - Sound muffling if smart masks are too bulky

- Mask filter
 - Using existing disposable face masks
 - Attachable (where to attach? inside or neck)
 - Mask guides
 - Using reusable face masks / replacing filters
- Hygiene and sanitization
 - Against possible germs or virus
 - Ultraviolet Germicidal Irradiation, hydrogen peroxide, and moist-heat
- Price
 - average cost: 145\$

Name	Brand Compan y	Weight	Material	Filter	Charging	Battery	Function	Domain	Price(\$)	String type	Note	Sensing	Actuation	Connectivit y	Score
CX9	CELLRETU RN	130g	silicon	1~7 days	USB-C Type	Lithium polymer battery 3.7V 450mAh	sterilize LED skin care safe activation	daily life	299	Adjustabl e ear strings and headband strap	washable	X	0	Х	1
LICCUIC	ATMOBL UE	190g	silicone interface	HEPA H13 filter (last up to 6 weeks)	USB-C Type	last up to 8 hours on a single charge	3 speed dual fans, no more foggy glasses	daily life	199	omni-dire ctional head strap		O (air-quality sensor on the mask)	0	0	3
CLIU	INDEMAN D	200g		Interchange able carbon filter			Microphone, Bluetooth, Acceleromet er	daily life	116.82/298. 00(pro)	adjustable silicone band on head	transparent mask	0	0	0	3
Fresh Air Mask	Philips	300a		Carbon filter (up to 122h)		2-3.5 hours operation	water-resista nt, 3 wind modes	daily life	199.00	normal string to ears	washable	Х	O	х	1
ADAPT							pathogens sensing				research prototype	0			1
C-FACE	Donut Robotics		soft plastic and silicon cover		0	hours(singl e charge)	translation, transcript	medical, daily life	40	х	fit to other strap mask	Х	Х	0	1

Name	Brand Compan V	Weight	Material	Filter	Charging	Battery	Function	Domain	Price(\$)	String type	Note	Sensing	Actuation	Connectivit y	Score
Lab-on- Mask	NTU					Li-battery with 880 mAh	monitor HR, BP, SpO2, skin temp	medical, daily life		Х	attachable, research prototype	0	х	0	2
Purely	Xiaomi	50.5g	non-woven fabric, nanometer electret fiber	nano-fiher	O charging time: 30min		fan speed(three-l evel)	daily life	32.99	normal string to ears	detachable design	х	0	Х	1
AIRVISOR	CS ENL	125g		copper filter(7 days)	fully charge in 2 hours. USB C type	600mA,	3 speed modes	daily life	70	head strap		х	0	Х	1
AO AIR	Atmos	290g	hypoallerg enic materials including silicones	composite construction (1 month)	USB C type	5 hours of continuous use per charge	No seal around the mouth and nose.	daily life	350.00	head-mou nted device		x	0	0	2
HAZEL	RAZER		recyclable plastic	N95 filter	Wireless charging case	all-day use	auto-sterilizat ion, voiceamp technology, waterproof	daily life	not yet	adjustable ear loops		Х	0	х	1
Belovedo ne		80g		4-layer filter	USB charging	4-8 hours operation after being fully charged	2 speed modes	daily life	29.99	thicker loops on head		X	0	х	1
TrendyN ow365 LED Mask	TrendyNow 365	65g	cotton	carbon activated filter	fully charge in 2 hours. USB cable	8 hours operation	text display	daily life	19.99	adjustable ear loops		X	0	0	2

Name	Brand Compan V	Weight	Material	Filter	Charging	Battery	Function	Domain	Price(\$)	String type	Note	Sensing	Actuation	Connectivit y	Score
PuriCare	LG	126g	medical-gr ade silicone	H13 grade HEPA filter (1 month)	fully charge in 2 hours. USB charger	820mAh Lithium-ion (Rechargea ble), 8 hours operation	fan speed(high/m edium/low)	daily life	249	adjustable ear loops		х	0	Х	1
MIT&Har vard face mask							detects COVID-19 infection	medical, daily life			research prototype	0	x		1
Forcit Benelux &TencoD DM smart face mask							built-in microphone to amplify the wearer's voice, temperature, oxygen saturation, breathing rhythm	medical,			research prototype	0	х	O	2

Possible sensor integration	

Mask Main Body
Mask Support Frame

Source

Breath

(Respiration)

Facial blood vessel

Skin

Head

Air

External Temperature

External Humidity

Ear

Neck

Biosignal

Information

Environment

Information

Biosignal

Information

Sensor

Pressure

Chemical sensor

PPG

EOG

GSR

Temperture

EMG

IMU

Chemical sensor

Thermocouple

EEG

IMU

ECG

Feature

Respiration rate

/Volume

Ketone, Acetone

H2S

Toluene

Alcohol

Heart rate Variability

(HRV)

Oxygen Saturation

Blood Pressure

Eye Blink

GRS response

Temperture change

Facial Muscle

Motion

Environment Air Quality

Temperature

Humidity

Brain Activity

Motion

Heart

Applications

autonomic nervous system

Physical Stress

hypertension/hypotension

concentration

Emotion

Communicable diseases

Emotion

Speech

Posture

Local Air Quality

Local Temperature

Local Humidity

Real-life monitoring

Posture

Heart Disease

Mask illustration

참고자료 (21.03.15)

https://www.funshop.co.kr/goods/detail/106725?t=m&t=m&utm_campaign=210315A_goods_106725&utm_source=mi_5f&utm_medium=am_and_s

References

- [1] Pan, L., Wang, C., Jin, H., Li, J., Yang, L., Zheng, Y., ... & Chen, X. (2020). Lab-on-Mask for Remote Respiratory Monitoring. *ACS Materials Letters*, 2(9), 1178-1181.
- [2] Gupta, P., Moghimi, M. J., Jeong, Y., Gupta, D., Inan, O. T., & Ayazi, F. (2020). Precision wearable accelerometer contact microphones for longitudinal monitoring of mechano-acoustic cardiopulmonary signals. *NPJ digital medicine*, 3(1), 1-8.
- [3] Vu, T., Lin, F., Alshurafa, N., & Xu, W. (2017). Wearable food intake monitoring technologies: A comprehensive review. *Computers*, 6(1), 4.
- [4] Amft, O., & Tröster, G. (2008). Recognition of dietary activity events using on-body sensors. *Artificial intelligence in medicine*, 42(2), 121-136.
- [5] Prioleau, T., Moore, E., & Ghovanloo, M. (2017). Unobtrusive and wearable systems for automatic dietary monitoring. *IEEE Transactions on Biomedical Engineering*, 64(9), 2075-2089.
- [6] Amft, O., Stäger, M., Lukowicz, P., & Tröster, G. (2005, September). Analysis of chewing sounds for dietary monitoring. In *International Conference on Ubiquitous Computing* (pp. 56-72). Springer, Berlin, Heidelberg.