UNCLASSIFIED

AD NUMBER AD276249 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution authorized to U.S. Gov't. agencies and their contractors; Mar 1962. Other requests shall be referred to Air Force Systems Command, ASD, Wright-Patterson AFB, OH 43433. **AUTHORITY** AFWAL 1tr, 21 Nov 1984

AD 276249

AUTHORITY: AFWAL It, Someway

UNCLASSIFIED

0276249

DEFENSE DOCUMENTATION CENTER

FOR

SCIENTIFIC AND TECHNICAL INFORMATION

CAMERON STATION ALEXANDRIA, VIRGINIA

UNCLASSIFIED

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U.S. Government thereby incurs no responsibility, nor any obligation whatsoever and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation or conveying any right or permission to manufacture use or sell any patented invention that may in any way be related thereto.

AN ENGINEERING EVALUATION OF METHODS FOR THE PREDICTION OF FATIGUE LIFE IN AIRFF. ME STRUCTURES

TECHNICAL EPORT No. ASD-TR-61-434

MARCH 1962

FLIGHT F INAMICS LABORATORY AERONAU : CAL SYSTEMS DIVISION AIR FOLL: SYSTEMS COMMAND

WRIGHT-PART SON AIR FORCE BASE, OHIO

1) de - vo. 1367, Task No. 136710

(Prepared upder Congress AF 35(6)6) 6574 by Lockheed for the Ministry of the Corporation, and the Corporation, and the Corporation, and the Corporation, and the Corporation of the Corporation, and the Corporation of the Co

HOTICES.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related G casent procurement operation, the United States Covernment thereby income responsibility nor any obligation whatsoever; and the fact that covernment may have formulated, furnished, or in any way supplied the said d trings, madifications, or other data, is not to be regarded by implication or the control of the said of the said

Qualified requesters may obtain copies of this report from the services Technical Information Agency, (ASTIA), Arlington Hell Stat: ca. Arlington 12, Virginia.

ASTIA release to OTS NCT authorized

Copies of ASD Technical Reports and Technical Notes should not be returned to the Aeronautical Systems Pivision unless return is required by security considerations, contractual obligations, or notice on a specific document.

300 - hay 1962 - 33-1463 6 1464

FORE LORD

This report was prepared by the Lockheed-California Company, a Livision of Lockheed Aircraft Corporation, Burbank, California, under USAF Compact No. AF 33(616)-6574. This contract was performed under Project too. 1367, "Structural Design Criteria," Task No. 136710. "Statutal Analysis Methods." This Project and Task are part of Air Force Systems, Command Applied Research Program 750A, "The Mechanics of Flight." The Contract was administered initially under the technical direction of the Air, aft Labora and by the Project Engineer, Mr. Bernard Nagal, it was completed in the Flight Cynamics Laboratory under the direction of Mr. Vincens Kearney.

The program was concluded at the Lockheed-California Company under the technical administration of Mr. M. A. Melcon, Department Manager, Semicural Methods. Technical succession was under the differentian of Mr. W. J. Crichley, Group Engineer, Semicural Static and Gr. A. J. McCalloch. The details of the methods review and computations.

Computations of the Si Letural Methods and Computation in the Si Letural Methods.

Analysis Department in program and for digital complete.

The laboratory experimental program was under the technical a indistration of Mr. H. W. Foster, Division Manager, Lockheed Structurus Research Laboratory. The design and assembly of the experimental equipment for the development of operations techniques were undeposite technical supervision of Mr. J. Rebman, Croup Engineer, Structural Development Research. He was also assisted in the absembly of electronic equipment for magnetic type signal analysis, the recording of special loading spectra, and for tatigue test machine control equipment by Mr. W. B. Brewer, Group Engineer, Electrical Instrumentation and did by Mr. R. A. Meyer, electrical design; Mr. J. B. Parlan, tape equipment; Nr. P. A. atham, electrical calibration, monitoring, and maintenance.

The testing performed under this contract was under the discort supermon of M. H. W. Grebe, Mr. R. M. Wells, and Mr. J. B. Ryan, assisted by Mr. J. Cox. Mr. R. L. Lowe, and Mr. L. Silvas.

Typing of the report was done by Mrs. Emily A. Buldwin, assisted by Mrs. Joyle Pender and Miss Pat Imig.

The ask? bly of the electronic equipment for magnetic tape reading, counting, tape recording of special counting spectra, and for the magnetic tape controlled fatigue lest equipment, along with the development of the calibration and monitoring techniques, and the testing of the spectrum landful coupons reported herein, was shared between this contract and the companion contract, No. AF 33(616)-6575, "Research Study to Establish Fatigue Test Loading Spectra from Flight Records."

ABSTITUTE

The results of a research study are presented for the comparison and verification of methods of fatigue life prediction suitable for handling the complex problems encountered in the design and operation of modern directift. A general introduction to the problems of airframe fatigue analysis is given from the overall viewpoint of a system of resign, development testing, and interpretation of fleet service history to maintain a necessary comparative basis for relating a practical fatigue life prediction method to oppose in results. From a study of testing proposed fatigue life prediction methods ten of the procedures were encoun for evaluation numerically with a group of asyguty-eight complex of relations to representing a proximately 200 included specimens.

imple notched coupens of 7075-T6 eluminum vilour un al le 4 E-N type deto on imple notched coupens of 7075-T6 eluminum vilour kiester to the energies procedures. Crosred spectral fatigue test data from their to the energies utilized from enother concurrent. AMD fatigue remained to apply to the spectra of the controlled fatigue test muchines were utilized to apply to the spectra of the energy to the spectra of the energy to the spectra of the energy to the end ground-air-ground transitions and composite spectra of the end of energy to the end to the end of the end of

proposite space of its the ware enalyzed by the relected procedures to confirm sycles. These as of improving the selected fitting life prediction or provide a consider means to consider the considering the second field of the considering the considering the second field of the considering the second field of the considering the

PUBLICATION REVIEW

as Leer reviewed and is approved.

This report if

FUR THE COMPAN

Marian C. Vlucker

Colomb, "See

Chief. Fireh: Dynamics Indicatory

AED TH 01 - 434

A STATE OF THE PARTY OF THE PAR

11

TABLE OF CONTENTS

SECTION	•		Page
I	Introduction	and Background	1
II	Methods of A	nalysis	5
III	Evaluation a Methods	and Selection of Fatigue Life Prediction	25
TA	Investigation on Fatigue I	n of the lafluence of Spectrum Shape	53
4	Analysis of	Complex Joint Specimens	99
AT	Summary and	Conclusions	113
	References		119
	Appenaix nt	rescription of Fatigue Life Pradiction acthods	122
•	Appendix B:	Application of Selected Fatigue Life Prediction methods to Published Test Data	161
••	Appeniix C:	Spectral Fatigue Test Data for the Evaluation of Fatigue Life Prediction Methods	196
	Appendix D:	Original Test Results	264

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	Fatigue Notch Factors for Simulation Elements	3
2	Development of Gust Londing Spectra	13
3	Development of Manauver ting Spectra	15
A	Schematic Composite L. inc Spectrum	17
5	Comparison of Predicted and Experimental Fatigue Life - Gust Losding Spectra	32-3
6.	Comparison of Predicted and Experimental Fatigue Life - Maneuver Loading Spectra	39
7	Cumulative Pistributions for the Ratio of Test Life to Predicted Life	妇.
8	Cumulative Pistributions for the Ratio of Test Stress to Adjusted Stress	42
9	Log Cumulative Distributions for the Ratio of Test Life to Predicted Life	1.14
10	Variation of the Test Derived Fatigue Quality Index K verses Slope of the Londing Spectra	48
11	General View of Tape Handling Equipment	60
12	General View of Specimen Loading Apparatus	60
13	Close-Up of Test Specimen Installation	61
14	Comparison of Servo Valve Input Signal with Specimen Loading History	62
15	Notched Sheet Test Coupons - 7075-T6 Aluminum Alloy	63
16	Sample Flight Loading Trace	64
17	Comparison of Trace Reductions - Wing Root Random Loading Trace	65
18	Schematic of High Peak, Concave Upward, and Concave	66

FIGURE		PAG
19	Comp ''''. of Military Maneuver Loading Spectrum . W' at Loution Specified in MIL-A-8866 for Class "A" () wraft	67
20	Sample of Random Military Maneuver Loading Trace	68
21	Development of Ordered Loading Spectrum	69
S5	Schematic Representation of Sequence, Stress Interval, and Unit Spectrum Size	70
23	Partial Trace of an Ordered Gust Loading History	71
571	Sample of Ordered Military Maneuver Loading Trace	72
25	Schematic Diagrams of Maneuver Loading Sequences for Coupons	73
26	Schematic Representation of Ordered Loading Trace - Gust and Ground Loadings Plus Ground-to-Air Cycles	74
27	Sample Handom Loading Trace - Composite of Military Maneuver and Ground Loadings	75
28	Variation in Quality Index (K) with Slope of Guet Loading Spectra in the High Stress Range	78
29	Variation in Quality Index (K) with Slope of Gust Loading Spectra in the Midstress Range of Maximum Calculated Fatigue Damage	· 79
30	Varying Stress versus Slope of Gust Loading Spectra	80
31	Varying Stress versus Slope of Maneuver Loading Spectra	81
32	Varying Stress versus Slope of Composite Gust Loading Spectra	82
33	Varying Stress versus Slope of Composite Maneuver Spectrum	83
34	Standardited S-N Curves for Calculating Fatigue Damage and Fatigue Life	86
35	Illustrations of Gust Loading Spectra and the Corresponding Curves for Fatigue Damage at Quality Indexes of 2, 4 and 6	87

FIGURE		PAGE
36	Illustration of Procedure Used to Correlate Quality Index and Slope of Loading Spectra in Stress Range of Maximum Fatigue Damage	88
37	Comparison between Predicted and Experimental Fatigue Lives for Gust Spectra on Coupons	95
38	Comparison between Predicted and Experimental Fatigue Lives for Gust Spectra on Coupons	96
39	Comparison between Predicted and Experimental Fatigue Lives for Manauver, Graund, and Composite Spectra on Coupons	97
10	Cumulative Distributions for the Ratio of Test Life to Predicted Life	98
41	Detail Sketch of Panel Ausembly	100
42	Basic Ordered Unit Gust and Unit Composite Gust Loading Spectra	101
43	Two Joint Test Panel Assemblies Installed in Fatigue Test Machine	102
1414	Schematic Piagram of 500,000 - pound Fatigue Machine	103
45	Basic Ordered Unit Maneuver and Unit Composite Maneuver Loading Spectra	105
կ 6	Comparison Setween Predicted and Experimental Fatigue Lives	111
47	S-N Data for Notched Sheet Specimens	127
48	Analytical Representation of S-N Data	132
49	Analytical Interpretation of Unit Loading Spectrum	134
50	Equivalent Cycle Ratio (n/N), for Lo-Hi and Hi-Lo Sequence of Loading	137
51	The Influence of Prior Fetigue Loading on the Selection of an Equivalent S-N Curve	139
52	Typical Variation in Fatigue Life with the Exponents b and c for a Specific Unit Loading Spectrum	1149

FIGURE		PAGE
53	Tangent Intercept Method of Spectrum Fatigue Test Interpretation	156
54	Schematic of Tangent Intercept Method	157
55	Method Used to Reduce Cumulative Stress-Frequency Spectrum into Simple Cyclic Loading Steps	163
56	Comparison of Analytical and Experimental Unit Gust Loading Spectrum for Notched Sheet Specimens	165
57	(S S.) versus N for S-N Data on Notched Sheet Specimens	166
58	Standardized S-N Curves f =-10,000 psi	170
59	Standardized S-1 Curves f mean = 0	171
60	Standardized S-N Curves fmean = 10,000 psi	172
61	Standardized S-N Curves f _{mean} = 20,000 psi	173
62	Standardized S-N Curves fmean = 30,000 psi	174
63	Schematic Diagrams of Gust Loading Sequences	200-201
64	Notched Sheet Specimen for which Fatigue Test Data are Presented in Reference 16	202
65	Specimens for which fatigue Test Data are Presented in Reference 17	203
66	Riveted Lap Joint Specimens for which Fatigue Test Data are Presented in Reference 18	501
67	Notched Plate Specimen for which Finigue Test Data are Presented in Reference 19	205
68	C-Lió Wing Specimen for which Fatigue Test Data are Presented in References 20 and 23	206
69	FSI Wing Specimen for which Fatigue Test Data are Presented in Reference 21	207
70	Unit Gust Louding Spectra for Notched Sheet Specimens - 2024-T3 Aluminum Alloy	201
71	Unit Gust Loading Spectra for Notched Sheet Specimens - 7075-76 Aluminum Alloy	555

FIGURE		PAGE
72	Unit Gust Loading Spectra for Double Shear Riveted Joint Specimens - 2024-T3 Alclad Aluminum Alloy	223
73	Unit Gust Loading Spectra for Unnotched Sheet Specimens - 7075-25 Alclad Aluminum Alloy	224
74	Unit Gust Loading Spectra for Butt Joint Specimens - 7075-T6 Alciad Almanum Alloy	225
?5	Unit Gust Loading Spectra for Strip Specimens with Centrally Located Hole - Cr-Mo Steel	226
76	Unit Gust Loading Spectra for Lap Joint Specimens. with a Single Row of Flush Rivets - 2024-T3 Alclad Aluminum Alloy	227
77	Unit Gust Loading Spectrum for Lap Joint Specimens with a Double Row of Flush Rivets - 2024-73 Alclad Aluminum Alloys	228
3 E	Unit Gust Loading Spectra for Lap Joint Specimens with a Single Row of Flush Rivets - 7075-T6 Alclad Aluminum Alloy	229
79	Unit Gust Loading Spectra for Notched Flate Specimens = D.T.D. 363A Aluminum Alloy	230
80	Unit Gust Loading Spectrum for C-hó Wing - 2024-T3 Aluminum Alloy	231
81	Unit Gust Loading Spectra for F51 Wing - 2024-T3 Aluminum Alloy	232
82	S-N Curves for Notened Sheet Specimens - 2024-T3 Aluminum Alloy	233
8,3	S-N Curves for Notched Sheet Specimens - 7075-T5 Aluminum Alloy	234
git	S-N Curves for Double Shoar Riveted Joint Specimens - 2024-T3 Alclad Aluminum Alloy	235
85	S-N Curves for Unnotched Sheet Specimens - 7075-T6 Alchad Aluminum Alloy	256
86	SN Curves for But: Joint Spedimens - 7075-T6 Alclad Aluminum Allor	237

FIGURE		PACE
87	S-N Curves for Strip Specimens with Centrally Located Hole - Cr-Mo Steel	238
88	S-N Curves for Lap Joint Specimens with a Single Row of Flush Rivets - 2024-T3 Alclad Aluminum Alloy	239
89	S-N Curve for Lap Joint Specimen with a Double Row of Flush Rivets - 2024-T3 Alclad Aluminum Alloy	5F.O
:0	S-N Curve for Lap Joint Specimens with a Single Row of Flush Rivets - 7075-T6 Alclad Aluminum Alloy	5/11
91	S-N Curve for Notched Plate Specimens - D.T.D. 363A Aluminum Alloy	2112
92	S-N Curves for Wing Stations 180, 214, 228, and 239 of C-46 Wing - 2024-T Aluminum Alloy	5713
93	Average S-N Curves for Complete C-46 Wing - 2024-T Aluminum Alloy	5गिंग
94	S-N Curves for Initial Failure of P51 Wing - 2024-T Aluminum Alloy	245
95	S-N Curves for Final Failure of P51 Wing - 2024-T Aluminum Alloy	2116
96	Schematic Diagrams of Lo-Hi-Lo Maneuver Loading Sequence	247
97	Unit Maneuver Loading Spectra for Double Shear . Riveted Joint Specimens - 2024-T3 Alclad Aluminum Alloy	252
98	Unit Maneuver Loading Spectra for Unnotched Sheet Specimens - 7075-Tó Alclad Aluminum Alloy	253
99	Unit Maneuver Loading Spectra for Butt Joint Specimens-7075-T6 Alclad Aluminum Alloy	254
100	Unit Maneuver Loading Spectra for Strip Specimens with a Centrally Located Hole - Cr-Mo Steel	255
101	S-N Curves for Double Shear Riveted Joint Specimens-Constant Minimum Stress (for Maneuver-Type Loading)-2024-T3 Alclad Aluminum	256

FIGURE		PAGE
102	S-N Curves for Unnotched Sheet Specimens - Constant Minimum Stress (for Maneuver-Type Loading) - 7075-T6 Alclad Aluminum Alloy	257
103	S-N Curves for Butt Joint Specimers - Constant Minimum Stress (for Maneuver Type Loading) - 7075-T6 Alclad Aluminum	258
104	S-N Curves for Strip Specimens with Centrally Located Hole - Constant Minimum Stress (for Maneuver-Type Loading) - Cr-Mo Steel	259
105	Deviation in \(\Delta \text{Log S} \) from the Least Square Best Fit Streight Line on \(A \) Flot of Log S \(\text{versus Log N} \)	266
106	Experimental S-N Curve for Notched Sheet Coupons - KT = 3, fmean = -10 KSI	276
107	Experimental S=N Curve for Notched Sheet Coupons - KT = 3, f ==5 KSI	275
108	Experimental S-N Curve for Notched Sheet Coupons - K _T = 3, f _{mean} = 10 KSI	276
109	Experimental S-K Curve for Notched Sheet Coupons - K _T = 3, f _{mean} = 15 KSI	277
110	Experimental S-N Curve for Notched Sheet Coupons - * Kr = 4, f = -10 KSI	278
m	Experimental S-N Curve for Notched Sheet Coupons - Kr = 4, f =-5 KSI	279
112	Experimental S=N Curve for Notched Sheet Coupons = $K_T = l_t$, $f_{mean} = 0$ KSI	280
113	Experimental S-N Curve for Notched Sheet Coupons - Kr = 4, fmean = 10 KSI	591
114	Experimental S-N Curve for Notched Shoet Coupons - K _T = 4, f _{mean} = 15 KSI	282
115	Experimental S-N Curve for Notched Sheet Coupons - KT = 7, fmean =-10 KSI	283
116	Experimental S-N Curve for Notched Sheet Coupons - KT = 7, fmean =-5 KSI	585

FIGURE		PAGE
117	Experimental S-N Currs for Notched Sheet Coupons - K _T = 7, f _{mean} = 0 KSI	285
118	Experimental S-N Curve for Notched Sheet Coupons - K _T = 7, i _{mean} = 10 KSI	286
119	Experimental S-N Curve for Notched Sheet Coupons - K _T = 7, f _{mean} = 15 KSI	287
120	Experimental S-N Curve for Notched Sheet Coupons - K _T = 10, f _{mean} = -10 KSI	236
121	Experimental S-N Curve for Notched Sheet Coupons - K _T = 10, f = -5 KSI	289
122	Experimental S-N Curve for Notched Sheet Goupons - K _T = 10, f _{mean} = 10 KSI	290
123	Experimental S-N Curve for Notched Sheet Coupons - KT " 10, fmean = 15 KSI	291
124	Christensen Diagram - Axiai Loading, Coupon Test S-N Data - K _T = 7	293
125	Christensen Diagram - Axial Loading, Coupon Test S-N Data - $K_{\rm T}$ = k	29 <i>l</i> t
126	Interpolated S-N Curves for Notched Sheet Coupons - KT = 7	295
127	Interpolated S-N Curves for Notched Sheet Coupons + $K_{\mathbf{T}}$ * \mathbf{L}	296
128	Interpolated S-N Curves for Netched Sheet Coupons - Constant Minimum Stress of 5.4 KSI - K_{T} = 4 & K_{T} = 7	297
129	Close-up of Specimen Installation	299
130	General View of Tape Construction and Data Reduction Equipment	299
1,31	Schematic of Transcription of Flight Record	300
132	Mean Crossing Peak Count - Wing Root and Modified Wing Root Traces	301
133	Schematic of System for Altering Spectrum Shapes	303
134	Schematic of Step Ordered Tape Generation	306
135	Schematic of Test Loading System	312
ASD TR	: 61 - h3h xii	

FIGURE		PAGE
136	General View of Specimen Loading Apparatus	X14
137	Magnetic Tape Loading Control Units	314
138	Definition of the Zero Crossing Peak Count Method	320
139	Applications of Basic Computer Elements	322
1110	Applications of Busic Computer Elements	323
141	Schematic of Computing Circuit for the Zero Grossing Feak Count	324
142	Schematic for Complete Testing, Monitoring, and Counting Process	327
143	Maximum Error Limits	328
144	95% Probability Error Limits	329
145 -	Random Low Feak Gust Loading Test Data	383
146	Ordered Low Peak Gust Loading Test Data	384
147	Ordered Low Peak Gust Loading Test Data	385
148	Ordered Low Poak Gust Londing Test Data	386
149	Random Low Peak Gust Loading Test Data	387
150	Ordered Low Peak Gust Loading Test Data	388
151	Random High Peak Gust Loading Test Data	389
152	Ordered High Peak Gust Loading Test Data	390
153	Ordered High Peak Gust Loading Test Data	391
154	Ordered High Peak Gust Loading Pest Data	392
155	Random High Peak Gust Loading Test Data	393
156	Ordered High Peak Gust Loading Test Data	394
157	Wing Root Random Loading Test Data	395
158	Wing Root Ordered Loading Test Date	396
159	Modified Wing Root Random Loading Test Data	397

FIGURE		PAGE
160	Modified Wing Root Ordered Loading Test Data	398
161	Random Ground Loading Test Data	399
162	Ordered Ground Loading Test Data	700
163	Random Military Maneuver Flight Loading Test Data	401
164	Ordered Military Maneuver Flight Loading Test Data	402
165	Ordered Military Maneuver Flight Loading Test Data	403
166	Ordered Composite Loading Test Data (Low Peak Gust Loadingss in Flight)	707
167	Ordered Composite Loading Test Data (Low Feak Gust Loadings in Flight)	405
168	Ordered Composite Loading Test Data (High Peak Gust Loadings in Flight)	406
169	Ordered Composite Loading Test Data (High Peak Gust Loadings in Flight)	407
170	Random Composite Loadingss (Military Maneuver Flight Loadings)	408
171	Panel Assembly No. 1 - Static Failure	416
172	Panel Assembly No. 9 - Fetigue Failure	416
173	Panel Assembly No. 2 - Fatigue Failure	417
174	Cross Section of the Tee - Fatigue Failure	417
115	Panel Assembly No. 4 - Fatigue Failure	418
176	Two Cross Section Views of the Fatigue Crack	418
177	Panel Assembly No. 8 - Fatigue Failures	419
178	Gross Section of the Failed Tee	419
179	Ordered Test Load Histories - Panel 1	426
180	Ordered Test Loading History - Panels 2 and 3	L27

FIGURE		PAGE
181	Ordered Test Loading History - Panels 4 to 6	428
182	Ordered Test Loading History - Panels 7 to 9	429
183	Ordered Composite Uust Loading Test Histories - Panels 10 and 13	430
184	Ordered Composite Maneuver Loading Test Histories - Panels 14 and 15	431

LIST OF TABLES

TABLE		PAGI
1	List of Coding Used in Figures	31
2	Statistical Parameters Estimated from the Cumulative Distribution Curves	45
3	Variation of the Fatigue Quality Index with Different Loading Spectra Slope	47
4	Lives Predicted by Miner's Method for Guet Spectra on Coupons	76
5	Fatigue Lives Predicted by Miner's Method for Maneuver, Ground, Composite Gust and Composite Maneuver Spectra on Coupons	77
6	Fatigue Lives Predicted for Coupons with Adjustments for Slope of Loading Spectra	811.
7	Evaluation of Fatigue Damage for Quality Indexes of 2, 4 and 6	85
8	Fatigue Quality Index for Gust Spectra on Coupons	89
9	Fatigue Quality Index for Maneuver, Ground and Composite Spectra on Coupons	90
10	Fatigue Lives Predicted for Composite Gust and Composite Maneuver Spectra on Coupons from Quality Index for First Specimen in a Similar Type of Simple Flight Spectra	. 91
11	Fatigue Lives Predicted for Faneuver and Composite Faneuver Spectra on Coupons from Quality Index for First Specimen in a Gust Spectrum	92
12	Comparison of Test Fatigue Life of Simple Loading Spectra with the Flight Portion of Composite Tests	93
13	Coding in Figures for Coupons and Panels	94
14	Influence of Ground-Air Transition	103
15	Quality Index for Minimum Gross Area Stresses in Gust, Caneuver, and Composite Spectra	107
16	Quality Index for Gross Area Stresses in Vicinity of Fracture in Gust, Maneuver, and Composite Spectra	108
17	Fatigue Lives Predicted for Maneuver, Composite Gust, and Composite Maneuver Spectra on Panels from Guslity Index for First Specimen in a Simple Gust Spectrum	109

TABLE		PAGE
18	Fatigue Lives Predicted for Composite Maneuver Spectra on Panels from Quality Index for First Specimen in a Simple Maneuver Spectrum	110
19	Parameters for S-N Bata and Unit Gust Loading Spectre	176-177
20	Parameters for S-N Data and Unit Maneuver Loading Spectra	178
21	Fredicted Fatigue Lives for Gust Loading Spectra	179-181
22	Predicted Lives by the FFA and Modified Henry's Methods with Required Analytical Parameters Based on the Gomplete S-N Curve and Entire Cust Loading Spectaria	182-184
23	Predicted Fatigue Lives for Maneuver Loading Spectra	185
5/1	Stress Adjustment Factors for Exactly Predicting the Geometric Mean of Test Life for Gust Loading Spectra	186-138
25	Stress Adjustment Factors for Exactly Predicting the Geometric Mean of Test Life under Maneuver Loading Spectra	189
26	Fatigue Quality Indexes for Gust Loading Spectra	190-191
27	Fatigue Quality Indexes for Maneuver Spectra	192
28	Exponents for the Modified Corten-Dolan and the Non-Linear Cumulative Damage Nethods from Gust Loading Spectra	193-194
29	Exponents for the Modified Corten-Dolan and Non- Linear Cumulative Damage Methods from Maneuver Loading Spectra	195
3 Ů	Test Variables to be Considered with Mean and Varying Stress in Analyzing Fatigue Life Prediction Nethods	199
31	Unit Gust Loading Spectra and S-N Data for Notched Sheet Specimens - 2024-T3 Aluminum Alloy	208

TABLE		PAGE
32	Unit Gust Loading Spectra and S-N Data for Notched Sheet Specimens - 7075-T5 Aluminum Alloy	209
33	Unit Gust Loading Spectra and S-N Data for Double Shear Riveted Joirts - 2024-T3 Alclad	510
34	Unit Gust Loading Spectra and S-N Data for Unnotched Sheet - 7075-T6 Alciad	211
35	Unit Gust Loading Spectra and S-N Data for Butt Joints - 7075-T6 Alclad	212
36	Unit Gust Loading Spectra and S-N Data for Strips with Centrally Located Hole - Cr-No Steel	213
37	Unit Gust Loading Spectra and S-N Data for Single- Row Flush-Riveted Lap Joints - 2024-T3 Alclad	214
38	Unit Gust Loading Spectrum and S-N Data for Double- Row Flush-Riveted Lr. Joints - 2024-T3 Alclad	215
39	Unit Gust Loading Spectra and S-N Data for Single- now Flush-Riveted Lap Joints - 7075-To Alclad	216
40	Unit Gust Loading Spectra and S-N Data for Notched Plate Specimens - D.T.D. 363A Aluminum Alloy	217
42 •	Unit Gust Loading Scentrum and S-N Data for Wing Stations 180, 21h, 228, and 239 of C-h6 Wing w 2024-T Alumirum Alloy	218
ħΣ	Unit Gust Loading Spectrum and SaN Date for Complete Calf Wing - 2024-T Aluminum Alloy	219
43	Unit Gust Loading Spectra and S-N Data for F51 Wing = 2024-T Aluminum Alloy	\$50
ţţţ	Unit Maneuver Loading Spectra and S-N Data for Double Shear Riveted Joints - 2024-T3 Aloled	248
45	Unit Maneuver Loading Spectra and S-N Data for Ermotched Sheet - 7075-F6 Alclad	573
46	Unit Maneuver Loading Spectra and S-N Data for dutt Joirts-7075-T6 Alclad	250
47	Unit Maneuver Loading Spectra and S-N Data for Strips with Centrally Located Hole - Gr-Mo Steel	251

TABLE		PAGE
48	Experimental Fatigue Lives for Gust Loading Spectra	260-26
149	Experimental Fatigue Lives for Manauver Loading Spectra	263
50	Test Configurations for S-N Data	265
<i>5</i> 1	Student's t - Values for W = 23 Degrees of Freedom	268
52	S-N Data for Notched Sheet Coupons	270-272
53	S-N Data for Notched Sheet Coupons	273
54	Static Tensile Properties of 7075-T6 Bare Aluminum Sheet, .OhO Cage	332
55	Unit Low Peak Gust Loading Spectra and S-N Dave for Notched Sheet Coupons - KT = 4 - 18 and 4 Loading Steps	333
56	Unit Low Peak Gust Loading Spectra and S-N Data for Notched Sheet Coupons - Kp = 4 - 14 Loading Steps	334
57	Unit Low Peak Gust Loading Spectra and S-N Data for Notched Sheet Coupons - KT = 7 - 17 and 13 Loading Steps	335
58	Unit High Peak Gust Loading Spectra and S-N Data for Notched Sheet Coupons - K_T = L - 23 and 5 Loading Steps	336
59	Unit High Peak Gust Loading Spectra and S-N Data for Notched Sheet Coupons K _T = 4 - 19 Loading Steps	337
60	Unit High Peak Gust Loading Spectra and S-N Data for Notched Sheet Coupons - K _T = 7 - 1h and 17 Loading Steps	338
61	Unit Concave Upward and Concave Downward Gust Loading Spectra and S-N Data for Notched Sheet Coupons - KT = 4 - 7 Loading Steps	3 39
62	Unit Fighter Maneuver Loading Spectra and S-N Data for Notched Sheet Coupons - KT = 4 - 11 Loading Steps	340
63	Unit Fighter Maneuver Loading Spectra and S-N Data for Motched Sheet Goupons - Kr = 4 - 40 Loading Steps	141

TABLE		PAGE
64	Unit Ground Loading Spectra and S-X Data for Notched Sheet Coupons - K _T = 7 - 18 and 11 Loading Steps	342
65	Unit Composite Low Peak Gust, Ground and Ground-Air-Ground Loading Spectrum, and S-N Data for Notched Sheet Coupons - K _T = 4 - 26 Loading Steps	343
66	Unit Composite Low Peak Gust, Ground and Ground-Air-Ground Loading Spectrum, and S-N Data for Notched Sheet Coupons - Km = 7 - 21 Loading Steps	Hila
67	Unit Composite High Peak Gust, Ground and Ground-Air-Ground Loading Spectra, and S-N Data for Notched Sheet Coupons - K, = 4 - 28 Loading Steps	345
. 68	Unit Composite Fighter Maneuver, Ground and Ground-Air-Ground Loading Spectrum, and S-N Data for Notched Sheet Coupons - K _T = 4 - 29 Loading Steps	346
69	Experimental Fetigue Lives for Gust Loading Spectra	347-350
70	Experimental Fatigue Lives for Ground Loading Spectra	351
71	Experimental Fatigue Lives for Fighter Maneuver Loading Spectra	352
72	Experimental Fatigue Lives for Composite Maneuver Loading Spectrum	352
73	Experimental Fatigue Lives for Composite Gust Load-ing Spectra	353
74	Low Peak Random Gust Loading Histories	354
75	Low Peak Ordered Gust Loading Histories	355
76	Low Peak Ordered Gust Loading Histories	35 G
? 7	Low Peak Ordered Gust Loading Histories	357
78	Low Peak Handom Gust Loading Histories	358
79	Low Prak Ordered Cust Loading Histories	35 9
80	High Pwak Random Gust Loading Histories	360-361
81	High Peak Ordered Gust Loading Histories	362
85	High Peak Ordered Gust Loading Histories	363

TABLE		PAGE
83	High Peak Ordered Gust Loading Histories	364
84	High Peak Random Gust Loading Histories	365
85	High Peak Ordered Gust Loading Histories	366
86	Test Loading Speatra	367-371
87	Random Military Maneuver Loading Histories	372
88	Ordered Military Maneuver Loading Histories	373
89	Ordered Military Maneuver Loading Histories	374
90	Random Ground Loading Histories	375
91	Ordered Ground Loading Histories	376.
92	Ordered Composite Loading Histories - Low Peak Gust Loadings in Flight	377
93	Ordered Composite Loading Histories - Low Peak Gust Loadings in Flight	378
94	Ordered Composite Louding Histories - Righ Peak Gust Loudings in Flight	379
95	Ordered Composite Loading Histories - High Peak Gust Loadings in Flight	380-381
. 96	Random Composite Loading Histories - Military Maneuver Loadings in Flight	382
97	Mechanical Properties of Joint Material	412
98	Summary of Panel Test Results	413-415
99	Gust Loading History - Lo-Hi Loading Sequence -Panel 1	420
100	Gust Loading History - Lo-Hi Loading Sequence - Panels 2 and 3 - Test Group No. 082	757
101	Gust Loading History - Lo-Hi Loading Sequence - Panels 4 to 6 - Test Group No. G83	755
102	Fighter Maneuver Loading Histories - Lo-Hi Loading	423

TABLE		PAGE
103	Composite Loading Histories - Gust Loadings in Flight - Lo-Hi Loading Sequence Panels 10 and 13 - Test Group No. COS	1 1511
104	Composite Loading Histories - Fighter Maneuver Loadings in Flight - Lo-Hi Loading Sequence - Panels 14 and 15 - Test Group No. CM1	425
105	Factors Used to Convert Panel Stresses for Minimum Gross Area into Stresses for Gross Area at Point of Fracture	1432
106	Gross Area Stress Spectra in Vicinity of Fracture in Panel 2 at Tee and in Panel 3 at Stringer Run-Out	1433
107	Gross Area Stress Spectra in Vicinity of Fracture in Panel 4 at Stringer Run-Out, in Panel 5 at Tee and in Panel 6 at Joint	Lišk
108	Gross Area Stress Spectra in Vicinity of Fracture in Panels 7 and 9 at Joint and in Panel 8 at Tee	435
109	Gross Area Stress Spectra in Vicinity of Fracture in Panel 10 at Joint and Panel 13 at Stringer Run-Out	1436
110	Gross Area Stress Spectra in Vicinity of Fracture	437

LIST OF SYMBOLS

a, b, c, d	exponents
•	exponential = 2.718282
£ _v	varying stress in KSI
f	varying stress at the endurance limit in KSI
fmax	maximum stress in KSI
f _{min}	minimum stress in ESI
f _{mear} , f _m	mean stress in KSI
f Vpeak	peak or largest varying stress
fred	reduced or equivalent constant stress which gives the same damage ratio as a spectrum of varying stresses above the endurance limit
g	load factor
h	Darameser
k	proportionality factor
m	number of cracks
n -	number of load cycles applied at a varying load of specific amplitude
P	$\sigma_{\mathbf{n}}$
r	coefficient of crack propagation
u	<u>1</u>
ui	number of load cycles applied before crack initiation
¥	internal work absorbed by a material at a varying load of specific amplitude
x	log N
*i	number of load cycles applied between initiation of fatigue crack and the final failure of a specimen at a varying load of specific amplitude
y .	log (S _{v -} S _g)
yo	log p

•	per cent of the number of cycles to failure that is used up in initiating cracks at a varying load of specific amplitude
A	area
D	ciamage ratio
Fvarying	allowable varying stress in KSI
Fmean	allowable mean stress in KSI
F _{tu}	tensile ultimate strength in KSI
G-A-G	ground-air-ground
H, H _T , ≥n	total number of load cycles applied at or above a varying stress of specific amplitude
Ho	value of H at S equal zoro
H _s	total number of load cycles in one application of a unit loading spectrum
K	damage boundary or Kr of standardized S-N curves
K _T	theoretical elastic stress concentration factor
g M	force due to bending moment in lbs.
<u>Mc</u> I	stress due to bending moment in KSI
X	number of cycles to failure when a varying load of constant amplitude is applied to a specimen
N.T.	fatigue life in torms of the total number of load cycles that are applied at varying loads of two or more amplitudes prior to failure
H.	number of cycles to failure when only the highest load in a unit loading spectrum is applied to a specimen
Ии	number of cycles to failure at a varying load of constant amplitude for a "fictitious" S-N curve
P	force or load in 1bs.
R	ratio of the coefficient of the rate of crack propagation at a lower varying load to that at the highest varying load in a unit loading spectrum

S _v	relative or nondimensional varying stress = \frac{f_{max} - f_{mean}}{f_{tn}} = \frac{f_v}{f_{tx}}
S	relative or nomdimensional varying stress at the endurance limit = $\frac{f_E}{f_{tu}}$
Si	relative varying stress at the endurance limit after fatigue damage is produced by the application of varying loads above the endurance limit
S _R	relative or nondimensional reduced varying stress = red tu
S _{max}	relative or nondimensional maximum stress = \frac{f_{max}}{tu} relative or nondimensional mean stress = \frac{f_{mean}}{f_{mean}}
me a.n.	maximum amount of internal work that is absorbed by a material before failure
W.S.	wing station
oc. and o	S-N parameters
(3,8, and y	exponents
r	gamma function
σ	standard deviation and multiplicative standard deviation
ω	stress interaction factor having a value that clways exceeds unity
i NL · NL ·	• • N _L geometric mean of N _L

Definition of Maximum, Minimum, Mean and Varying Relative Stresses.

SECTION I

INTRODUCTION AND BACKGROUND

The problem of the fatigue of sirframe structures is of vital importance not only to the operators of both military and commercial sircraft but also to the designers. The importance of fatigue of the airframe has been well recognized by the military and industry for many years. However, the complexities involved have successfully defied satisfactory solution in spite of the massive effort, time, and expense which have been invested in fatigue research in past years. In addition to the operational problems on current aircraft, future trends to high performance VTOL/STOL and spacecraft, with their scuttly more critical weight problems, foretells even greater urgency of reaching a practical solution of the "fatigue problem."

A satisfactory analytical solution for the problem of fatigue life prediction has eluded the intense efforts of some of the best scientists, engineers and research specialists for the past 130 years. This is so because of the immense number of variables involved, the statistical qualities of nature, and the inherent limitations of the analytical achievements in detail stress analysis, impressive as these are. Progress is being made in the area of the statistical definition of the external loading environment, and in the area of the definition of the material resistance to fatigue cracking under complex loading environments.

There is, however, a most important middle area between these two which is the crux of the whole problem of fatigue life prediction. This area is that concerned with the definition of a "fatigue quality" as a property of complex, composite structure. The analytical assessment of this key property of a complex structure is fraught with the most formidable of difficulties. The purely analytical approach offers no immediate fruitfulness. This is not to imply neglect of this area, rather, that the solution must be pursued with vigor; but the primary approach must be experimental. Some of the reasons for this statement are as follows:

- a. Joint friction and its attendant nonlinear slippage characteristics is highly unpredictable and nonrepeatable.
- b. Local plastic yielding at points of high stress concentrations with resulting residual stresses, and, for some materials, the changing work hardening properties, is too complex a process to expect analytical solutions to follow clearly the path through intricate service histories.
- c. Fretting and fretting corrosion can create unpredictable stress concentrations which often compound with normal design concentrations.
- d. Repairs, reconstruction, and accidental damage place unforeseen and unpredictable fatigue-critical areas in the structure.
- e. The micro-detailed geometrical stress analysis required at the multitudinous points in a complex structure is as yet beyond the capabilities of the modern analyst.

Manuscript released by the authors 21 August, 1961 for publication as an ASD Technical Report

ASD TR 61 - 434

Time and complexity preclude reliance on purely analytical solutions which would realistically encompass these variables.

An important distinction must be made between various stages of the external loads and stress analysis of a complex structure and a theory of fatigue damage. It is a process of definitive stress analysis that is required to define the complex stress history at a critical point in the structure. It is a process of fatigue damage that defines the formation of a crack in a critical point in the structure as a function of the definitive stress history.

Even if a perfect fatigue damage theory were available the fatigue life prediction problem would not be solved until the stress analysis problem is also solved.

However, the problem of fatigue life prediction is amenable to solution in spite of all the difficulties cited. This solution makes use of analytical formulations where feasible, and supported by the proper kind of laboratory fatigue testing and field service comparisons, a reasonably good job may be accomplished, consistent with the uncertainties which will always be inherent in the definition of the external basic loads.

It must be recognised from the outset that the development of fatigue cracks in metal is a statistically random process. The loads and stresses in the airframes of individual aircraft are subject to extremely wide variations. Many of the operating variables are boyond direct control. The integrated influence of all these variables yields a large scatter of results. Thus it cannot be expected to precisely predict the fatigue life of a single article. Life insurance companies with the best facilities and statisticians do not yet attempt to predict the life span of a single individual however well their prediction holds for a large-enough population.

A considerable background of successful service history on other aircraft models can provide a basis for significant comparisons. When coupled with this foundation of service history, and with judicious testing of critical areas of the structure, it is possible to develop a system which has good potential of schieving fatigue quality control as well as reasonable predictability of fatigue life.

CBJECT IVES

The objectives of this research study are as follows:

- To review, compare and evaluate proposed methods of fatigue life prediction suitable for application to the special problems of airframe structure.
- 2. To provide experimental fatigue life data of constant load amplitude S-N type for use in evaluating selected prediction methods.
- 3. To provide experimental fatigue life data under complex loading spectra representative of realistic airframe loading history on both coupon-type apacimens and on specimens of a complex joint representative of contemporary airframe construction.
- I. From an analysis of the new experimental data to verify the adequacy or provide a possible improvement in the selected fatigue life prediction method.

PLAN OF THE STUDY

This research program was organized into three basic phases to meet the stated objectives:

Phase I.

A study of proposed methods for the prediction of fatigue life was made and those suitable for application to the problems of airframe fatigue were selected for evaluation using available published data. This portion is discussed in Sections I through III and Appendices. A, B, and C.

Phase II.

Experimental fatigue data were generated to provide additional verification or a basis for the improvement of selected methods of fatigue life prediction under loadings more realistic of air-frame environment than was previously available. These data are described in Appendix P.

Phase III.

Analyses were made of the experimental results of Phase II using the selected methods from Sections II and III. A summary of the results and conclusions drawn is presented in Section VI.

SECTION II

METHODS OF ANALYSIS

Fatigue analysis follows the same general pattern as developed in static strength analysis. These subjects may be classified into three broad fields.

- l. External loads
- 2. Internal loads
- 3. Allowable loads

The differences in fatigue analysis compared with conventional static strength analysis are associated primarily with the specification of the multitudes of external loadings, with the detail requirements, or precision demanded of internal load (or stress) distributions, and with the form or specification of the allowable loads. Another major difference is the convention of expressing the results of static strength analysis as a comparison of internal loads (stresses) with allowable loads (stresses) to show a "Margin of Safety." Inherent in this "Margin of Safety" is the concept of a "Factor of Safety." Fatigue analyses for this discussion will not contain this concept of "Margins of Safety" nor "Factors of Safety," but will be limited to the direct prediction of a "fatigue life." That the predicted lifetime in whatever units measured (hours, cycles, missions, or any other) is "safe" or not is, of course, dependent not only upon the precision of all input data, precision of operations performed, but also on many other factors, some not even a part of the fatigue process.

- 1. Such factors as "fail safe" may change completely the complexion of a "Margin of Safety" in fatigue.
- 2. Periodic and special inspections, maintenance, and repair can have the quality of extending the "life" of an airframe to an indefinite period, probably determined by economic or performance obsolescence rather than fatigue.

The subject of factors or margins of safety will be discussed in a later section of the report (see Section III).

A method of analysis is a formal procedure to attain the solution of a problem. The method chosen will depend heavily on two facets:

- 1. The problem to be solved, and
- 2. The data available on which to base the solution.

را پرواز برا میرا میرا میرا در اثر از براز در از در از براز براز براز میزاز میزاز میزاز میزاز میزاز میزاز میزا

To illustrate, one of the oldest and simplest fatigue problems to be solved is that of the plain rotating shaft in bending. Assuming the external loading to be known, measured, or limited, the internal stresses may be simply computed by the engineering beam theory. The remaining question is the determination of

the allowable stresses for the lifetime desired or to predict the life of a given design. An impressive amount of experimental S-N data is available for most materials under this type of loading. This is highly important in the solution of this problem, which may be considered solved, provided:

- A. External loads are
 - 1. Constant, known, or
 - 2. Measured, or
 - 3. Limited.
- B. Internal loads (stresses) are
 - 1. Predictable or
 - 2. Measurable.
- C. Allowable loads (stresses) are
 - 1. Known or ...
 - 2. Determinable for
 - a. Material chosen,
 - b. Processing variables.
 - c. Environment.
 - d. Rate of loading.
 - e. Laboratory simulation compatible with service conditions, etc.

The effects of more than one load level on fatigue life were minimized in most industrial problems of this type by restricting the loads produced in service to levels below an endurance limit, or the maximum repeated load for an indefinite life on the S-N curve. This is still the practice for certain propeller and other rotating machinery for aircraft use.

The internal loads or stresses in the simple example were assumed predictable or measurable. The simple shaft, without notches, is both an easily predictable and an easily tested article. Years of laboratory experience have envolved specimen designs which achieve consistent futigue failure in almost straight shafts unaffected by grips and loading fixtures. The experimentally determined allowable stresses are thus compatible with the actual part under its expected loading. This point is of primary importance to the precision and success of the solution to the assigned problem.

Suppose the shaft had a notch. The solution of the problem may now take one of two divergent paths.

Path 1. The influence of the notch may be computed in the second stage of the solution dealing with the prediction of internal loads or stresses. Geometrical analyses of stress concentration factors, supported by experimental measurements, photoelastic optical methods, and others, constitute a large body of data to accomplish this step. (References 1, 2 & 3)

Successfully accomplished, the predicted maximum repeated stress to be applied may be compared with the allowable S-N data of virgin unnotehed material to predict a fatigue life or to design to a specific life.

However, attempts to follow Path 1 have run into difficulties. The theoretical elastic or photoelastically determined stress concentration factor is, in the actual part, profoundly affected by yielding, residual atresses, work hardening, and other effects so that the net fatigue effect is not directly predictable. This is well illustrated in Figure 1 taken from reference 4, which indicates the fatigue effective concentration factor compared with the geometrical stress concentration factor at several different fatigue lives. Some recent work at the NACA has provided empirical plasticity corrections which work well in cortain steels (non-work hardenable), but these corrections are as yet unsuccessful in aluminum alloy (work hardenable). (Reference 3)

re 1 Fatigue notch factors for simulation elements. (Ref. No. h

Path 2. The internal loads or stresses may be computed as if the notch were not there (gross area basis) or at the root of the notch (net area basis) without any influence of stress concentration.

The stress concentration influence of the notch is assigned to the third stage of the solution dealing with the allowable stress determination. The actual notch or a graded series of notches is fatigue tested and S-N or allowable data are plotted for the specific part. (Stresses must, of course, be consistent with the internal stresses of step 2.) The fatigue effectiveness of the notch is in this manner determined experimentally.

Following Path 2 is seen to be fundamentally an improvement over the method or procedure of Path 1 in that some of the previous difficulties unaccountable by analysis are now experimentally determined and the precision of prediction of the fatigue life of the notched part is improved. However, experimental data for the actual configuration must be made available for the achievement of this improvement. Lack of these data may force an estimate by the best means available (Path 1), but imprecision is then inevitable.

The type of experimental data required to assess the fatigue problem varies at different stages of a design. Broadly categorized, these may be scaled in complexity by the following list:

- 1. Material and Processing Data are needed in the earlier preliminary design stages. These are usually S-K type or simple spectrum-type fatigue tests to provide comparative data for decisions among possible design choices.
- 2. Development Tests are designed to assure achievement of a satisfactory fatigue quality at critical joints or discontinuities.
- 3. Full-Scale Component or Airframe Fatigue Test may be planued if the fleet size warrants the time and cost.
- h. Fleet Service History is a factor of importance. The structure designed by the best means available must be observed in service. The integrated influence of many factors may reduce fatigue life below the best engineering and laboratory estimates. Some of these factors are:
 - a. Service loading variations, changing operational demands,
 - b. Installation stresses, misalignments,
 - c. Workmanship, nicks, scratches not duplicated in laboratory test specimens,
 - d. Material alloy, heat treat, batch variations,
 - e. Environmental conditions, corrosive atmosphere,
 - f. And many others.

The factors that bring about fatigue life reductions must be ferreted out and field service experience obtained to provide a feed-back loop to improve the life predictions. Engineering estimates of fatigue life conditioned by fleet-wide field service experience are another stage of improvement beyond that provided by calculations and laboratory experiments. Laboratory testing and analysis of parts which have a known service failure history provide a required overall check of the laboratory-analysis life-prediction system.

Within this context of an overall system approach for the deliberate scheduling of improvements in airframe fatigue life predictions, depending on the data available at various stages of a design, specific facets of the airframe life prediction problem will be examined in more detail.

EXTERNAL LOADING DATA

The aircraft exists and operates in a complex physical environment. The list of service loading is extensive. It includes:

- 1. Gust loadings
 - 1.1 In clear air
 - 1.2 in storms
- 2. Maneuver loadings
 - 2.1 Transport
 - 2.1.1 Routine route maneuvers
 - 2.1.2 Training maneuvers
 - 2.2 Military aircraft
 - 2.2.1 Operational maneuvers
 - 2.2.2 Training maneuvers
- 3. Landing impacts
- 4. Taxiing and ground handling
- 5. Ground-air cycle
- 6. Buffeting
 - 6.1 Stall
 - 6.2 Supersonic snock wave instability
- 7. Acoustical noise
 - 7.1 Propeller tip or jet noise
 - 7.2 Aerosy samic noise (boundary layer)

The contribution of some of these types of loading to fatigue damage has been debated for many years. Other concurrent research programs are investigating experimentally some important facets of these loadings. (See reference 5) Preliminary results indicate that the fatigue influence of some of these items may be unimportant while others are of considerable importance. It is too early to determine a clear cut simplification.

A detailed investigation of the generation of external applied loading data and its influence on the fatigue life prediction process is considered beyond the scope of this study. It will be assumed that complete external applied loading spectra for all the critical loading conditions can be developed for a mission phase synthesis utilizing basic environmental statistics currently available for each type of loading. However, a brief review of the general characteristics of several pertinent types of loading is given to describe the complex form of these external applied loads and to demonstrate the versatility required of a practical fatigue life prediction method necessary to handle this complexity.

<u>CAPACEANTE L'ESTACIONES EN 1811 EN 1</u>

1. Gust Loading

- a. The gust loading record is characterized by a varying load factor or stress component oscillating about a substantially constant mean load level. At different positions in the structure and in different types of aircraft the mean load level can cover a wide range of values. This is significant for fatigue life predictions.
- the natural sequence of varying gust loading magnitudes is substantially random. However, examination of sufficient length of record shows an eventual symmetry of positive loads and negative loads. Past practice has been to regroup positive half cycles with equal negative half cycles and re-order the sequence of occurrence into a graduated spectra of frequency of occurrence or probability of exceedance. This process is illustrated in Figure 2. It can be seen that a number of basic assumptions are involved in tampering with the original load record to convert it into the ordered spectrum. The fatigue significance of the order of load application has been well demonstrated. (Reference 16) Physical considerations of the process of crack propagation confirm the importance of order of loading. This information is not reported in the current service load data reduction methods. Some experimental evidence of the fatigue life significance of this property of ordered vs. random loading is being generated in a concurrent research project reported in reference 5.

2. Maneuver Loading

a. Bomber, Transport, and Cargo-Type Aircraft

Maneuver loadings of large bomber, transport, and cargo-type aircraft are characterized by near symmetry of incremental or varying load component about the constant flight mean load level. For records of sufficient duration the loads are substantially random in sequence, and, in general, the above comments regarding gust loadings are applicable to maneuver loadings for this class of aircraft.

b. Military Fighter-Trainer Aircraft

The maneuver load record for high load factor military fighter—
trainer type aircraft has a considerable bias in the positive
direction, reflecting the pilot's inherent avoidance of uncomfortable negative accelerations of any appreciable magnitude.
The resulting load record has a substantially constant minimum
load at the steady static lg level. The positive acceleration
increments rise from this level to a maximum load increment
and return to the steady static lg level with only minor excursions in the negative range. This is characterized by a varying
mean load for each load cycle as contrasted with gust loads which
occur with a substantially constant mean load level. The character

Random Sequence of Flight Loads

Random Grouping of Faired Flight Loads

Ordered Grouping of Faired Flight Loads

Figure 2 Development of Gust Loading Spectra

of this type of loading is illustrated in Figure 3. Incremental load lavels may approach random sequence over a long-enough time period. As discussed above, the sequence information is lost in current data reduction techniques. This fact produces a significant difference in handling the fatigue life predictions, which will be discussed in more detail in later sections.

3. Landing Impacts

Landing loads are applied to the airframe while it is in the flight steady mean load condition. The varying loads are a complex function of the dynamic response of the structure and are affected by the usually nonlinear characteristics of the tire-shock strut combination. The sequence of load application is not accounted for in the usual analysis.

4. Taxi and Ground Handling

These conditions create varying loads of a generally random sequence oscillating about a ground-supported mean load level. Depending on the aircraft configuration, the mean load level for these conditions can become compressive for fatigue critical structures which are normally loaded in tension in the flight conditions. This condition can be aggravated by configurations which carry large external stores and/or tip tanks. Thus the range of the mean load can be quite large for each flight.

5. Ground-Air-Ground Cycle

The change in load distribution from ground borne to air borne during the take-off run and the transition from air borne to ground borne during the landing run is a loading cycle that takes place once each flight. There is general agreement that this cycle is an important contributor to fatigue damage. However, there is no general agreement on the specific definition of the effective amplitude of this loading. One definition could be the cycle of loading from the maximmm negative (ground lead) to the maximum positive (flight load) occurring in each flight. This overall load cycle per flight is not yet precisely defined; it may become a spectrum of load amplitudes over the life duration of a fleet. Another definition, popular in many quarters though not universally accepted, is the transition cycle from the ground-borne static mean load level to the air-borne static mean load, and return on each flight. Various other definitions have been proposed such as the RMS value of negative ground level loads to the RMS value of positive flight level loads and return for each flight.

Whatever the load level definition, the ground-air-ground cycle is generally broken down into its own substantially constant varying load component acting once per flight about its own mean load level.

Random Sequence of Flight Loads

Inini wum

Random Grouping of Faired Flight Loads

fminimum

Ordered Grouping of Faired Flight Loads

Figure 3 Development of Maneuver Loading Spectra

ASD TR 61 - 434

6. Buffeting

Buffeting from stall or supersonic shock wave instability is a phenomenon to be avoided wherever possible. When fatigue accounting is necessary, these loads are generally considered random in sequence and act symmetrically about a specific mean or steady load condition. The comments on gust loads are therefore also applicable for buffet loadings.

7. Acoustic Noise

Although an important source of fatigue damage for some areas of structure in certain configurations, this specialized problem is not within the scope of this study.

8. Composite of Mission Loads

The total load history at a point on the airframe structure during one flight mission may be made up of each of the major types discussed above. These may be schematically illustrated as in Figure

Pre-take-off ground he and take-off run-	andling -	Taxi load spectrum at a negative mean load (compression).
Cround-air	_	Transition from ground- to air- borne state.
5		Random loads varving about &

Turbulence	positive mean	load (tension).

Fighter Maneuvor	-	Varying increments to a maximum above the static leval
. maile a vos		flight mean load

Each of the several types of loadings may appear in each flight.

9. Summary

This discussion of the loads to which airframe structures are subjected during their lifetime is primarily to demonstrate the type of input data which the method of analysis for fatigue life prediction must be capable of handling in order to solve the problem posed. Some methods proposed for fatigue life prediction, while slegant and useful in certain

Figure 4 Schematic of Composite Loading Spectrum

fields, are limited in capability to handling only simple definitions of loads. These limited methods cannot be successful in the solution of the problem at hand.

INTERNAL LOAD DISTRIBUTION

Structural designs which achieve the highest efficiency place the greatest amount of material into pure tension or compression, reducing bending stresses from local discontinuities to the least possible. Great pains are taken to achieve this desirable goal. The process of design and analysis goes through several circuits of ever increasing precision, each stage successively miniaturizing the structural element under consideration.

	Design Stage	Method of Analysis	Structural Size
1.	Proliminary design	$P = \frac{M}{h}$, $f = \frac{P}{A}$	Yards
2.	Project design	$f = \pm \frac{Mq}{1} + \frac{p}{A}$	Feet
3.	Final design	Redundent analysis	Inches
L •	Proof of design	Experimental .	Willimeters to microns
5.	Research	Experimental	Millimeters to microns.

The precision of internal loads and stress distributions computed at various stages of the design is essentially consistent with the precision of the data available at that stage of design. However, it is well known that both the number of cycles to crack initiation and the additional cycles for growth to a critical crack size are extremely sensitive to small variations in the stress level existing at the critical points.

The desired precision of life prediction resolves into a required precision of stress prediction that is simply not attainable with the currently available analytical tools. This critical statement is not an indictment of the present state of the art of stress analysis for this is indeed impressive. Rather, it must be considered a recognition of critical factors which the current analysis techniques cannot handle and were never intended to handle. As discussed in the introduction, some of these factors are:

- 1. Joint friction with unpredictable, nonrepeatable, nonlinear slippage characteristics.
- 2. Local plastic yielding at points of high stress concentration with the resulting ever-changing residual stresses, and work hardening properties.
- 3. Fretting and fretting corresion resulting from joint slippage under repeated loads.
- h. The complexity of practical structures most generally results in shapes not readily amenable to the analytical approach.

Consideration of the formidable difficulties involved in this brief list indicates that the purely analytical approach cannot in the immediate future offer any hope of adequate solution. Therefore the only practical approach is to refer this problem to the experimental laboratory for solution. This is Path 2 of the analysis methods discussed in the introduction. However, for timely success in this approach a number of conditions must be considered.

- 1. There must be a specimen design to test. The designer is called upon to make decisions without benefit of final test knowledge. The best tools available and the data on hand at decision time are used to make the best possible estimates. These estimates can only be considered crude at best. The stress concentration factor procedure finds its greatest usefulness at this stage. As explained in the sample problem in the introduction, by judicious use of a large body of stress concentration literature (for example, reference 1) and with the full realization of the limitations on fatigue effectiveness of these predictions, design comparisons and choices can be made, subject to later confirmation and refinement.
- 2. The fatigue test specimen must be complete. The test specimen must be a large-enough sample of the structure to encompass local redistributions of load due to yielding, joint slippage; it must contain an exact representation of all critical local eccentricities and a reasonable representation of local supporting structure. It must have all secondary attachments which would in any way affect the fatigue life of the primary element; for example, attachment holes for hose clamps, tubing, electrical wiring bundles, drain holes, and holes for secondary support brackets may be fatigue critical but are too easily overlooked. All processing operations, cleaning, coating, etching, sealing, etc., which the airframe parts undergo during manufacture should also be included in the build-up of the fatigue test specimen.
- 3. Nominal structure adjacent to joint. The loads introduced into a complex joint or material discontinuity are generally controlled by the stress state of the average material in the structure surrounding the joint. It is also often considered good practice that joints and fatigue—critical discontinuities, and especially blind areas, should be as good as or tetter than adjacent structure with a nominal hole. To most directly demonstrate achievement of this quality level and to aid in the definition and monitoring of the test load spectra, the test specimen should include such sections.
- 4. The full range of loads are necessary. There is considerable evidence accumulated from full-scale airframe fatigue tests (references 20 and 21 and others) and from laboratory attempts to duplicate service failures, that the location of fatigue failures in complex structure is dependent on the applied load levels. Constant load amplitude S-N type tests on multiple specimens must therefore cover the full range of the anticipated operational service loads. Spectrum-type tests offer the advantage of requiring fewer specimens to cower the full range of operational loads. However, the test variables of unit spectrum block size, stress interval, order of load application, etc., exert some influence on the test results. The influence of these test variables must be minimized by judicious choices. (Reforence 5)

The internal loads from the normal static stress analysis are generally considered adequate to define the test spectra for development tests of the joint or discontinuity. Strain gage surveys taken during component or full-scale static tests are an aid in either setting the fatigue test load level, or, if scheduled later, provide data for corroboration or corrective analyses to improve the precision of prediction when necessary.

The successful fatigue test of a fully detailed specimen of a critical area of the airframe structure under the full range of expected loads provides experimentally the micro-detailed analysis which includes most of the factors which current purely analytical approaches find insurmountable.

It is necessary, however, that allowable fatigue data for complex structure be provided by laboratory development tests of fully detailed specimen(s) of the critical areas of the structure, tested under the full range of loads representative of those expected in service. To define an S-N curve for a specific element of structure requires a minimum of six to nine specimens with sixteen or twenty desirable depending upon the statistical confidence level required. In the interests of economy, schedule, and the availability of large scale fatigue equipment, in addition to the technical reasons discussed above, it is advantageous to perform the development tests on fewer specimens with each to experience the full spectrum of loadings anticipated for operational service. This aspect is especially important in the consideration of a full scale airframe fatigue test in which the economic justification of a single test specimen is of paramount importance.

The interpretation of the results of these more complex specimen tests is not quite so simple as the interpretation of the allowable fatigue life (vs. Stress) of constant amplitude type loadings. However, a number of methods have been used such as the comparison of the test results with the results of tests of a (good quality) standard joint, or the Tangent Intercept Method, or the Fatigue quality Index procedure. The latter two are described in metall in Appendix A.

One of the objectives of this study is to explore the possibilities and limitations in the use of spectrum type fatigue test results as a means for fatigue life prediction.

SUMMARY

Man Water Control

A discussion of the complexities involved in the prediction of the fatigue life of airframe structure and the requirements of a practical method has emphasized these points.

- External loadings are complex in range and sequence. A fatigue life prediction method must be versatile in scope to handle the many types of loadings likely to be critical.
- 2. The prediction of the fatigue life of complex structure requires a precision and reliability of local stress history under complex external loading which is not currently available by purely analytical means, nor likely to be available in the near future.
- 3. A satisfactory fatigue damage theory is not available for the analytical prediction of the allowable stress history of complicated structure under complex loadings.
- 1. The crux of the problem of fatigue life prediction is, therefore, a fatigue quality of complex structure which embodies the affects of the complex internal stress history and the allowable stress history for the formation of a critical crack, both of which are dependent on the range and sequence of applied loading.
- 5. Laboratory development tests of fully detailed specimens of fatigue critical structure are required to assess this fatigue quality of complex structure. Either spectrum type tests which cover the full range of loads anticipated for operational service, or constant amplitude 5-N type tests may be used for this purpose.
- 6. For spectrum type tests, test variables such as loading block size, stress interval size, and loading sequence affect the laboratory results. These effects must be eliminated, reduced to insignificance, or accounted for by some empirical means.
- 7. Interpretation of operational service history by consistent laboratory testing and analysis means is required to provide a comparative base for any method of fatigue life prediction.

SECTION III

EVALUATION AND SELECTION OF FATIOUE LIFE PREDICTION AETHORS

From a search of the literature a number of methods for the prediction of fatigue life proposed by various authors was selected for comparative study and evaluation. During this study, simplifications, modifications, and generalizations were developed to better adapt some of these methods to the problem of fatigue life prediction of aluminum airframe structure. For brevity and continuity of this section, these methods and their extensions are described in detail in Appendix A.

While all these methods (except one, the Tangent Intercept Lethod) were fundamentally the concept of the gradual accumulation of fatigue damare during the progress of loading, each author emphasized some particular aspect or formula for the representation of either or both the applied loading spectra or the allowable 5-4 data. These variations could be considered in three general categories. The methods studied in this phase of the project are classified in the three categories as listed below, with the Tangent Intercept method unclassified. In addition, those methods chosen for comparison by numerical evaluation with the selected text data are indicated by the asteriak.

- Class I. <u>Linear Cumulative Damage</u> (based on specific 3-X data for each specimen type).
 - * 1.º Minor's Mathad (reference 6)

This is the well-known linear summation of the fractions of fatigue damage expressed as the cycle ratio $(\frac{n_1}{N_1})$ where failure is hypothesized when the sum of a^{11} cycle ratios is one.

* 2. Lundberg's FFA Method (reference 7)

Lundberg and his associates at the Aeronautical Research Institute of Sweden (FFA) utilized mathematical formulas for representing the applied loading spectrum and the allowable S-N data and, based on miner's linear cumulative damage hypothesis, obtained a closed form solution for the total damage, and, thus, for the corresponding predicted fatigue life. This method was evaluated in two parts, one utilizing equations for the applied load spectra and for the S-N curves with parameters determined by an average best fit for the full stress range, while the second application, in an attempt to improve the precision of prediction, restricted the best fit to the mid-range of stress levels in the region of highest cycle ratios.

* 3. Shanley's "IX" Method (references 8, 9 and 10)

Based on a concept of rate of formation of slip bands, Shanley's "IX" method derives an equation for the fatigue damage which results in the linear cumulative damage expression of Miner, utilizing a mathematical formula for the S-N curve.

4. Langer's Method (reference 11)

Langer separated the fatigue process into two parts - first, the initiation of cracks, and second the growth of the cracks, and, based on linear accumulation of cycle ratios, derived a prediction of fatigue life.

5. Grover's Wethod (reference 12)

Grover's method is essentially the same as Langer's method. Both of these methods require experimental S-N data which separate the crack initiation stage from the crack growth stage. These data were not available for this evaluation.

6. Smith's Residual Stress Method (reference 13)

Using Miner's linear cumulative damage, Smith proposes inclusion of the residual stresses from plastic yielding at higher load levels with the stresses from external loads. This very elegant method of stress analysis is not practical for the complexity of loading history met in service, and could not be evaluated in this study.

Class II. Nonlinear Cumulative Damage (based on specific S-N data for each specimen type.)

7. Henry's Method (reference 14)

Henry developed a procedure for reducing the allowable S-N curve in a step-by-step procedure to account for damage of prior loadings. By ingenious means of cycle ratio corrections, the reductions are achieved by reference to only the original S-N curve. The result is a nonlinear accumulation of damage. Knowledge of the order of 1 ed application is necessary for the use of this method. In its original form the mathematical representation of the S-N data could be applied only to a limited class of materials.

* 8. Generalization of Herry's Nethod

Henry's original development is extended in this report to accept a more general representation of the S-N data. This development is discussed in detail in Appendix *A".

9. Corten and Dolan's Method (reference 15)

Corten and Dolan based their method on a concept of relating fatigue damage to the number of cracks formed as a function of the largest varying load in the sequence, with the growth of such cracks to occur at all load levels of the sequence. The result is a form of nonlinear cumulative damage in terms of stress ratios of the various loads in the spectrum, and, as such, contributes damage from the low stresses below the endurance limit. This point is discussed in detail in Appendix A.

* 10. Modified Corten and Dolan Method

The Corten and Dolan method is modified to convert the basic formula to a cycle ratio basis, which assumes no contribution from loadings below the endurance limit. The nonlinearity coefficient, evaluated by the available test data in Appendix B, indicates the results to be so closely equivalent to the Linear Cumulative Damage Method that further evaluation was discontinued.

* 11. A Simplified Nonlinear Cumulative Damage Method

A simplified form of a nonlinear cumulative damage method is developed from the results of this survey by introducing an ampirical exponent into the equation representing the damage ratio survation. This nonlinearity coefficient, evaluated from the available test data in Appendix B, indicates the results to be so closely equivalent to the Linear Cumulative Damage Method that further evaluation was discontinued.

* 12. Shanley's "21" Method (reference 8)

Based on essentially the same reasoning as was used to develop his linear "IX" method. Shanley assumed one of the coefficients in the rate equation to be stress dependent. This increased strongly the rate of crack growth and resulted in a nonlinear form of the cumulative damage summation.

Class III. Cumulative Damage (Linear or Nonlinear) from Damage Boundaries or Modifiled S-N Curves

13. Kommors' Nonlinear Damage Hypothesis (reference 22)

Kommers pointed out the essential nonlinearity of the damage boundaries determined experimentally from two-step load tests of steel coupons. The damage boundaries were found to be functions of both the load levels and the cycle ratios in each load level.

14. Richart and Newmark's Acthod (reference 24)

Richart and Newmark devised a formal procedure with additional experimental verification for utilizing Kommers' nonlinear

damage hypothesis to create damage boundaries which vary with both stress level and the cycle ratio.

15. Marco and Starkey's Method (reference 25)

A method of defining damage boundaries by use of a power relation of the cycle ratio was developed by Marco and Starkey. The exponent was made stress or load dependent, which resulted in essentially a mathematical formulation of the damage boundaries for use in the procedure described previously by Richart and Newmark, and suggested by Kommers earlier work.

16. Freudenthal and Heller's Mothod (reference 26)

Freudenthal and Heller have developed a procedure to construct a "fictitious" S-N curve by the use of a stress interaction factor, which is derived from a statistical analysis of a large number of samples tested under a number of spectra of loading. Lack of both the type and quantity of the necessary data procludes its practical application.

17. Levy's Method (reference 27)

Levy suggested a fatigue life prediction procedure based on deriving, from test data, empirical constants as exponents for each cycle ratio of a step spectrum, with one additional constant coefficient required for the life prediction equation. This method requires (q + 1) sets of test data and the solution of as many simultaneous equations where q is the number of steps of the loading spectrum. Data were not available in a form required to evaluate this method.

* 18. Stress Concentration Method

The stress concentration method in practice is a procedure of refined stress analysis to define the ratio of peak stress in a discontinuity of structure to the nominal stress in a region remote from the disturbance. It must be coupled with a damage theory to complete a life prediction method. The linear cumulative damage hypothesis is taken for that purpose in this study. The stress concentration factor derived analytically may be used in either of two ways:

- A. When used to specifically define the peak stress, the allowable stress (or cycles) may be determined from an appropriate S-N curve for the virgin unnotehed material.
- The stress concentration factor may be used to select an appropriate S-N curve from a graded set of notched specimens of the material. This S-N curve may be arbitrarily considered as the damage boundary for the design for which he specific test data exist.

Once the peak stress history is defined (as in h.) or the equivalent notch concentration factor specified (as in B.) any of the fatigue life prediction methods could, in principle, be used.

* 19. Fatigue Quality Index Method

A fatigue test of a completely detailed specimen is conducted under the full spectrum of loads expected on the structure in service. The results of the spectrum test are analyzed with a set of standardized S-N date fixed for the purpose of providing a scale of measurement of fatigue quality. That stress concentration factor is determined which, by interpolation, makes the linear cumulative damage equation exactly unity under the application of the full test history. This concentration factor, defined as the Fatigue Quality Index for the tested specimen, is compared with an acceptance standard.

As a fatigue life prediction method, the establishment of the Fatigue Quality Index provides an arbitrary damage boundary based on a fatigue test of the specimen under its own anticipated load spectrum. By the linear cumulative damage procedure, fatigue life predictions are made from this damage boundary for the structure under other similar loading spectra.

Unclassified

20. Tangent Intercept Method (reference 28)

Originally developed as a method of interpretation of simple spectrum test results to derive a fatigue quality acceptance standard, the fangent Intercept procedure has been proposed as a fatigue life prediction method. (reference 31)

Essentially a graphical procedure, the spectrum test result in cumulative cycles is plotted in an appropriate field of S-N curves. The interpolated KT value of the S-N curve which is tangent to the total test spectrum becomes the Tangent Intercept Quality Index of the specimen.

As a fatigue life prediction method, an S-N curve of the specimen is provided by constant amplitude tests. The fatigue life under a spectrum of loads is defined by the multiple of the unit spectrum which becomes just tangent to the S-N curve.

EVALUATION OF METHODS OF PREDICTION

For use in evaluating numerically the various methods of fatigue life prediction which were chooses in extensive search of the available published data turned up seventy-signification to meet of the proposed methods. These are all spectrum-type experiments in which spectrum shapes, unit spectrum block size, stress intervals, sequence of loadings, etc., cover a wide range of variations. Included also are pertinent spectrum test results from the Australian P-51 and the NACA C-46 wing full scale fatigue tests. Detailed descriptions of these test data are given in Appendix "C".

The evaluation was conducted in two forms, depending on the scale on which the comparisons are measured.

1. Comparisons of Life Cycles

Each of the methods chosen for evaluation was required to predict the fatigue life of the test specimen from the unit applied loading spectrum, using whichever form of the allowable data that was specifically applicable to the method.

The details of this numerical work pertinent to each method are given in Appendir "B".

The results of the life predictions of each group of specimens are plotted in Figure 5 for sixty-five groups of gust-type spectrum results, and in Figure 6 for thirteen groups of maneuver-type spectrum results. The code identification of the various methods is given in Table 1. The experimental results are also plotted for direct comparison, indicating the geometrical mean of the group, and a vertical bar showing the hand spread between the minimum and maximum experimental values of the group.

Another comparison of the prediction with the actual test result is made by the ratio:

If
$$\frac{N_{L(Test)}}{N_{L(Predicted)}}$$
 < 1.00, the prediction is unconsorvative.

If
$$\frac{N_L(Test)}{N_L} \ge 1.00$$
, the prediction is conservative.

TABLE 1
LIST OF CODING USED IN FIGURES

Symbol		Meaning
•	Geometric Me	an of Test Data
	Scatter Band	for Test Data
Ö	Minerts	
\Q	FFA	Loading Spectrum and S-N Equations Best Fit in the Midstress Range.
o	FFA	Loading Spectrum and S-N Equations Best Fit in the Full Stress Range.
Δ	Shanley "IX"	
\triangle	Shanley "2X"	
۵	Modified Henry	S-N Equation Best Fit in the Midstress Range.
•	Yodified Henry	S-N Equation Best Fit in the Full Stress Range.
۵	Tangent Inte	rcept
0	Quality Inde	x-Based on Standardized S-N Data of Figs. 58 to 62.
0	58 to 62.	ntration Factor-Based on Standardized S-N Data of Figs.
	Loading Seque	nce in the Unit Spectrum Block
I-H P-L L-H-L H-L-H QR TR	High Low t High Quasi	o High Loading Sequence to Low Loading Sequence o High to Low Loading Sequence to Low to High Loading Sequence -Random Loading Sequence Random Loading Sequence

Figure 5. Comparison of Predicted and Experimental Fatigue Life

10 ⁶ Life in Cycles \(\sum n \)					0 € 0			O (200)			Q 0+0000 D	Q 0+00000000000000000000000000000000000		
10h	015	016	G17	G18	019	020	021	022	023	3 G21	025	026	027	
No. Sequence		; <u>;</u>	H-L	L-E-L	H-L-H	 	원,	L-H-L	 	-	 	1-8-1		
Block Size (cycles)	10200													
Loading Steps	8													
Mean Stress	<u> </u>	20 KSI 10 KSI 0 KSI												
Spectrum Specimen	-					Just A								1
Material						5 - T6]
Raference for Test Data						16								

Coding for Points is Given in Table 1.

(continued) Comparison of Predicted and Experimental Fatigue Li Figure 5

Coding for Points is Given in Table 1.

Figure 5. (continued) Comparison of Predicted and Experimental Fatigue Life

ASD TR 61 - 434

a sequence applied only once
b Lap Joint with two rows of flush rivets
c Lap Joint with one row of flush rivets

Coding for Points is Given in Table 1.

(continued) Comparison of Predicted and Experimental Figure 5. Fatigue Life

Test Group No.	C)48	G)13	650			
Sequence		L-H-L	·			
Block Size (cycles)	13290	6290	5h10			
Loading . Steps		9	10			
Mean Stress	14KSI					
Spectrum	Gust					
Specimen	Notched Plate					
Material	D.T.D. 363A Aluminum Alloy					
Reference for Test Data	19					

Coding for Points is Given in Table 1

Figure 5. (continued) Comparison of Predicted and Experimental Fatigue Life

Test Group No.	051	052	053	054	055	056	057		
Type of Pailure	C	rack In	itiatio	n	First Crack	Critical Crack	Final Failure		
Sequence		Quasi-Random							
Block Size (cycles)		59670							
Loading Steps	16								
Mean Load Factor	-	Unit Gravitational Acceleration							
Spectrum		Cust							
Location on C-16 Wing	180	Wing 8 214	tation 228	239	Cox	nete Win	3		
Material.			2024-	T		stand interpol Table 6			
Reference for Test Data			50			- 			

Coding for Points is Given in Table 1.

Figure 5. (continued) Comparison of Predicted and Experimental Fatigue Life

			•						
Test Group No.	058	G59	050	061	ces	G63	G64	G65	
Type of Failur	'e 	Init	ial			Fin	91	L	
Sequence	TR	L-H-L	TR	L-H-L	TR	L-H-L	TR	L-H-L	
Block Size (cycles)	500000	32860	500000	32860	500000	32860	500000	32860	
Loading Steps	11	3	11	3	1.1	3	11	3	
Mean Load LBS			17	'900					
Spectrum				Gust					
Location on P-51 Wing	Gun bay Tank bay Gun bay						Tank bay		
Material				2024-T					
Reference for Test Data				51					

Coding for Points is Given in Table 1

. Figure 5. (continued) Comparison of Predicted and Experimental Fatigue Life

AND REPORTED TO SECURITION OF THE PROPERTY OF

Coding for Points is given in Table I.

Figure 6. Comparison of Predicted and Experimental Fatigue Life.

and the first thing is the first of the firs

This scale of comparison is most informative in assessing the life prediction effectiveness of the various methods and in providing information on the scatter factors which need consideration for assessing reliability on the Life cycle scale.

2. Comparisons of the Change in Stress Level Required to Predict Exactly the Test Life

The stress scale may be used to evaluate the various prediction methods by the determination of a proportionality factor, k, by which all stress levels of the test spectrum are raised or lowered to arrive at the exact prediction of the specific test lite.

The comparison of the prediction with the actual test result is made by the ratio:

Dagree of conservatism =
$$\frac{S_{\sqrt{\text{Test}}}}{S_{\sqrt{\text{Adjusted}}}} = \frac{S_{\sqrt{\text{Test}}}}{k \cdot S_{\sqrt{\text{Test}}}} = \frac{1}{k}$$

If
$$\frac{S_{V(Test)}}{S_{V(Adjusted)}} = \frac{1}{K} < 1.00$$
, the prediction is unconservative.

If
$$\frac{S_{V,Test}}{S_{V,Adjusted}} = \frac{1}{k} \ge 1.00$$
, the prediction is conservative.

This scale of comparison is informative to the designer with respect to the amount of material (and its corresponding weight) which is necessary to achieve a given fatigue life, and in the assessment of any factor of safety on loads which may need consideration in achieving any required dogree of reliability of fatigue life.

ascending order and the percentage of the total number of samples equal to or less than a given degree of conservatism was determined and plotted as a function of that degree of conservatism. These correlation graphs are shown in Figures 7 and 9 for the life cycle prediction and in Figure 8 for the stress adjustment ratio.

Cumulative Distributions for the Ratio of Test Life to Predicted Life Figure

Cumilative Distributions for the Matio of Test Stress to Adjusted Stress å Figure .

The inherent spread of fatigue life predictions is evident in the rectilinear scale of Figure 7. To encompace a wider range of data. Figure 9 is presented with the degree of conservatism on a log scale. This latter figure also has the advantage that equal distances on each side of the ordinate of perfect correlation (degree of conservatism = 1.00) represent equal degrees of conservatism, whereas in the rectilinear plots of Figures 7 and 8, these distances are distorted between the unconservative and the conservative sides of the diagrams.

The appearance of these diagrams is roughly similar to the Gaussian normal distribution curve. Table 2 was therefore prepared from these data to indicate a quasi-statistical analysis of the error spread in terms of standard deviations (one sigma). From the proporties of the logarithmic increments, the resulting multiplicative standard deviation is a factor to be multiplied or divided, not added or subtracted as is the case for the standard deviation.

Examination of these curves shows the Tangent Intercept method to be very unconservative for predicting the fatigue life of this group of tests. Also evident is the large degree of conservatism in the fatigue life predictions of Shanley's "2X" method and the lack of agraement, both conservative and unconservative, for the stress concentration procedure when using the concept of linear cumulative damage with standardized S-N curves. All other methods evaluated by these data group closely to the same band generally consistent with the linear cumulative damage prediction. This agreement is to be expected since all of these methods except the Tangent Intercept are variations of the basic cumulative damage procedure, some of which vary only in details of mathematical curve fitting.

Some of the methods which introduce nunlinearities do not demonstrate for these tests any strong divergence from the linear accumulation process, with the single exception of Shanley's "2X" method.

The evaluation of the two variants of the least squares best fit of the S-N data in the two methods showed no detectable difference in the generalized lienry method. A relatively minor overall improvement can be observed in Lundberg's FFA method when the best fit of S-N and loading spectra data is restricted to the midstress region of most damaging stresses.

In Figure 8 the correlation of the various methods as measured on the stress scale reveals the same general pattern among the various methods as was discussed above for the life cycle scale of comparison. The significant difference, from the viewpoint of design and control for the prevention of fatigue failures, is the relatively small change in the stress adjustment factor required to achieve a given degree of improvement on the life cycle scale.

9. Log Cumulative Distributions for the Ratio of Test Life to Predicted Life Pigure

STATISTICAL PARAMETERS ESTINATED FROM THE CUMULATIVE DISTRIBUTION CURVES

Steat Stadjusted	Standard Deviation	្ត
Ratios	Mean	5.5.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4
ltest predicted	, Multiplicative Standard Deviation One c	2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2
Ratio, NI	Multiplicative Mean	8.00 20.1 20.1 20.1 20.1 20.1 20.1 20.1 2
	Method Codes in Table 1	Targent Intercept FFA Code () FFA Code () Ifiner's Ifiner's Code () Ifinery's Code () Ifinery's Code () Ifinery's X If

rived from Figures 8 and 9

THE FATIGUE QUALITY INDEX METHOD

The potential advantages of basing a fatigue life prediction method on one or a few spectrum test results of specimens of critical structure is worthy of special study. The simplest test of the effectiveness of the procedure is to compare the values of the test-derived quality index determined from all available tests in which two or more different loading spectra were applied to one specimen. If these quality indices are invariant (within a reasonable scatter factor) for all load spectra test results on the same type of specimen, the predictability of fatigue life is assured.

The fatigue quality index was derived for all the pertinent data available from the test groups chosen for this evaluation. These values are listed in Table 3. The test data of these groups are of a similarly shaped spectrum of varying loads in which the general slope was changed as well as the mean stresses. Comparisons of the fatigue quality index values in Table 3 for a given specimen, however, indicate a considerable variance. The variance due to scatter of the test results is also indicated.

Croups 28 through 31 inclusive show the influence of progressively reduced slope of a gust-type spectrum on the derived fatigue quality index for a double shear riveted joint of 2024-T3 Aluminum Alloy. The maximum K-value (minimum life of each test group) is progressively higher for each reduction in slope of the loading spectrum. The geometric mean and the minimum K-value (maximum life of each test group) show a slight reversal in the general trend for the lowest sloped loading spectrum. However, the change in slope between these last two groups (030 and G31 in Figure 10) is relatively much smaller than the changes among the others of the set. The trend of increasing K-value with decreasing slope of the loading spectrum is, in general, stronger than the scatter (except for the last two groups).

Groups G35, G36, and G37 provide a similar comparison for a bitt-joint specimen of 7075-T6 Aluminum Alloy. The trend is clearer for this group, there being no overlapping of the minimum and maximum K-values of any of the groups.

Groups 032, 033, and 034 indicate, for 7075-T6 aluminum alloy unnotched sheet specimens, the same general trend of increasing K-value with reduction of loading spectrum slope. However, the variance is much weaker, and there is more overlap of minimum and maximum values of the groups from scatter. Contributing to this conclusion, however, is the relatively small difference in slope as indicated by Figure 10.

It is therefore concluded from this brief study that the relative maximum load content of a service record as exemplified by the mean load changes and the slope of the statistical load frequency spectrum has an important influence on the fatigue life of airframe structure.

TABLE 3

VARIATION OF THE FAILURE QUALITY INDEX
WITH DIFFERENT LOADING SPECTRA SLOPE

Test Group	Slope Sequence	No. of Spec.		Max. K Min. Life	Geometric Mcan	Min. K Max. Life			
	2024-T3 Double	Shear Ri	vited .	Joint - 2(3/16)R	ound Head Rivets	.			
G28	High Lo-Hi -Lo	2	rite K	4.13 .324 × 10 ⁶	3.97 .411 x 10 ⁶	3.82 .522 x 10 ⁶			
	High Intermediate		K Life	5.06 3.20 × 10 ⁶	4.70 5.98 x 10 ⁶	4.52 4.788 × 10 ⁶			
030	Low Intermediate	3	K Life	7.73 13.69 x 10 ⁶	6.71 21,73 x 10 ⁶	6.29 27.4 x 10 ⁶			
G31	Low Lo-Hi-Lo	2	K Life	7.83 62.4 × 10 ⁶	6.59 129.7 x 10 ⁶	5.52 270.0 x 10 ⁶			
•	7075-76 Butt Joint Specimens 5/32 CSK Rivets								
035	High Lo-Hi-Lo	4	K Life	3.69 2.05 × 10 ⁶	3.52 2.99 x 10 ⁶	3.30 4.03 x 10 ⁶			
036	Intermediate Lo-Hi-Lo	2	K Life	3.98 27.00 x 10 ⁶	3.97 27.56 x 10 ⁶	3.96 28.10 x 10 ⁶			
037	Low Lo-III-Lo	2	K Life	4.59 72.75 × 10 ⁶	101.00 x 10 ⁶	4.25 140.00 × 10 ⁶			
	7075-T6 Unnotched Sheet								
032	High	2	K Life	2h.1 × 10 ⁶	25.71 x 10 ⁶	1.89 27.4 x 10 ⁶			
033	Intermediate	2	K Life	2.22 58.7 x 10 ⁶	2.10 75.875 x 10 ⁶	1.98 98.0 x 10 ⁶			
034	Low	2 .	K Life	2.26 127.00 x 10 ⁶	2.17 152.00 x 10 ⁶	2.07 181.00 x 10 ⁶			

Variation of the Test Darived Fatigue Quality Index & versus Slope of the Loading Spectra Pigure 10

FACTORS OR MARGINS OF SAFETY FOR FATIGUE

Diagrams of the type of Figure 7 are often used for discussion on the necessity of factors of safety or margins of safety on fatigue life. Diagrams of the type of Figure 8 are correspondingly used for discussions of factors or margins on loads or stresses to achieve the same end; namely, a "safe-life" philosophy of design. However, there are many other facets of the problem which must be considered in the establishment of safety factors. A brief discussion of some of these facets is given, although it is not the purpose nor within the scope of this study to establish factors or margins of safety for fatigue.

Mission Objectives

The trend of design toward achievement of higher performance goals has led to an over higher degree of specialization. For each major project, therefore, the subject of reassessment of factors of safety in relation to the specific mission objectives is a necessity.

Fail-Safe Philosophy

One of the most important aspects to be considered is the "fail-safe" philosophy of design. The "safe-life" and the "fail-safe" philosophy have been the subject of considerable controversy in the past by proponents of one or the other approaches to built-in safety in the flight structure. From practical considerations, both have a place, they are not mutually exclusive philosophies, and even though reliance may be placed on a "fail-safe" approach; the fatigue qualities of the structure cannot have any less degree of attention. However, in the case of successful "fail-safe" design, the need for reliance on fatigue life for flight safety is considerably reduced. The consideration of factors of safety on fatigue life thus may have an entirely different complexion in the presence of a "fail-safe" structure than it assuredly must have in a "safe-life" structure which is not "fail-safe."

Londs

The evaluation diagrams referred to above cover only a portion of the life prediction process; uncertainties in the external load predictions are not contained. The external loads as well as the interrelation of the static strength level loads and their factors of safety should be considered simultaneously in assessing factors of safety for designing against fatigue.

Inspection, Maintenance, and Repair

Inspection, maintenance, and repair as a means of prolonging indefinitely the "fatigue useful life" of a structure is another important subject, often overlooked in the assessment of factors of safety for fatigue. Catastrophic fatigue cracking of major structure early in the operational life of a fleet is not to be condoned. On the other hand, an airframe used long enough can be expected to develop fatigue cracks. The fatigue characteristics of some materials show no specific endurance limit, and the severe performance

requirements of flight force the use of the highest possible design allowable tensile stresses. However, means are available for designing to any specific fatigue life required, performance permitting. Scheduled inspection, maintenance, and repair or replacement of components may become a deliberate policy in the attainment of higher performance with safety from fatigue problems. Helicopter parts are an example.

Test Procedures

Factors in the laboratory testing procedures also affect the scatter of results, which should be considered in assessing factors for design. Constant amplitude loading appears to give wider scatter in results when compared with spectral load testing techniques. Notched coupon-type specimens appear also to give wider scatter in results than complex specimens in which load redistributions may take place. These factors should be taken into account, particularly in assessing a broad range of specimen types and loadings as represented in the Figures 5 and 6 of the methods evaluation phase of this study.

It may be concluded, therefore, that the results of this study demonstrates a need for factors or marins of safety in certain classes of structures (non-fail-safe). However, additional considerations are necessary, some of which are specific for each type of project. An evaluation of the need and the particular values for factors of safety should, therefore, be a process in the establishment of design criteria for each project.

CONCLUSIONS OF THE EVALUATION STUDY

From considerations of the problems involved in the prediction of fatigue life of airframe structure when this process is used as a tool for the prevention of fatigue failures in an operational fleet, and based on the test data utilized in this evaluation, the following conclusions may be drawn.

- 1. The Limmar Cumulative Damage Method is currently the most practical, simple, and yet versatile method available and his sufficient accuracy commensurate with the other uncertainties, such as service load history, not included in this evaluation.
- The Stress Concentration Factor Method of refined stress analysis, coupled with a fatigue damage theory such as the linear cumulative damage hypothesis used in this evaluation, is shown to be less than adequate as a fatigue life prediction method. However, since these procedures usually are the only means available for preliminary design assessments, their use must be followed up by development tests of fatigue critical areas.

Development tests of fatigue critical joints and structural discontimuities are required to assess a fatigue quality of the structure which is as yet not attainable by theoretical means. To achieve satisfactory reliability from the laboratory results, the critical areas of the specimen must be as exact a simulation of the critical area as possible, including local occuntricities, supports, manufacturing processes and finishes, local attachments for secondary elements, etc., and should also include a nominal area of surrounding estructure for load and stress monitoring and for comparing the joint results with the fatigue life of the nominal structure, if this is required. These development tests must encompass the full range of load magnitudes expected in service to properly essess location of cracks, crack growth, and final fracture. While the objectives of those tests might be achieved by constant load supplitude S-N type tests or the full spectral-type tests, there is considerable evidence (reference 20) for recommending the latter.

- 3. The Fatigue quality Index Procedure, which was originally a means of interpreting spectrum-type fatigue tests, is investigated as a test-based method of fatigue life prediction. A spectrum test result is sualyzed by the linear cumulative damage equation coupled with a fixed standard set of S-N data to define which K-value of the set will make the cumulative damage summation exactly unity. For success as a fatigue life prediction method, the test-defined K-value should be invariant for similar types of test spectra applied to identical specimens. Study of the applicable test data shows this not to be the case. Further exploration is therefore necessary to determine whether a consistent trend exists which might be used as an adjustment factor to improve the life prediction process.
- It. The Tangent Intercept Method demonstrated the largest degree of unconservatism when applied to these test data. Graphical limitations make this method impractical to handle the more complex composite loading histories, often at several different mean load levels in each flight.

- 5. Shanley's "2x" Method of nonlinear cumulative damage, based on a more accelerated rate of crack growth than his "1x" method, demonstrated a larger degree of conservation than all other methods investigated.
- 6. The remaining prediction methods which were evaluated (Lundberg's FFA method, Shanley's "IX", and the generalized Henry method) all show relatively small differences in reliability of life prediction, considering the large uncertainties remaining, for instance, in the service loads and operational history. The limitations of mathematical curve fitting in some of these methods and the complexity and lack of statistical information for other methods preclude their widespread application for aircraft fatigue life prediction.
- 7. The assessment of reliability on the scale of the stress adjustments necessary to achieve exact prediction of the fatigue test results show generally the same relationship among the various methods as for the scale of life cycles. However, as would be expected, far less absolute deviation occurred on the stress adjustment scale than on the life cycle scale.
- 8. The results of this study demonstrate a need for factors or margins of safety in certain classes of structures (non-fail safe). However, additional considerations are necessary, some of which are specific for each type of project. An evaluation of the need and the particular values for factors of safety should, therefore, be a process in the establishment of design criteria for each project.

SECTION IV

INVESTIGATION OF THE INFLUENCE OF SPECTRUM SHAPE ON PATIGUE LIPE PREDICTIONS

Based on the test data available, the evaluation study of fatigue life prediction methods discussed in Section III arrived at two basic conclusions. First, when adequate S-N data is available on the specific structure, fatigue life prediction under complex loading spectra by the simple linear cumulative damage procedure is of sufficient accuracy commensurate with other intangibles remaining in the problem. Secondly, the direct use of the fatigue quality index procedure was shown to be less capable of analysing different spectra of loads applied to identical specimens. While some of the discrepancy is attributable to artificial test variables, sufficient variation remains to indicate a considerable influence from the statistical load frequency content as exemplified by the spectrum shape (slope).

It is the purpose of this section of the study to explore the circumstances of this difference in fatigue life predictions for similar structure tested under different shaped loading spectra. The objective is to determine whether any regularity in the trend of fatigue life with shape of loading spectra exists which might be used an an empirical adjustment factor to improve the predictability under different types of loading spectra. An experimental program was conducted to generate data for this purpose.

EXPERIMENTAL PROGRAM

The experimental program was conducted in two parts to provide evidence for this study. The first part, using simple notched sheet coupons of 7075-T6 aluminum alloy, explored a variety of test spectra shapes including the use of the original random load record from which the ordered loading spectra was derived. The results of these tests, reported in detail in Appendix D, are analyzed in this section of the report. The second part of the experimental program was conducted on specimens of a complex joint design to determine whether the results of the coupon test program could be reproduced in complex structure more representative of contemporary aircraft. These results, reported in detail also in Appendix D, are analyzed in the following section of this report.

FATIGUE TEST EQUIPMENT

A magnetic tape controlled fatigue loading machine was assembled from available equipment. The system consisted essentially of a magnetic tape playback unit, associated electronic amplifiers, calibration equipment, load monitoring tape recording system, and an oscillograph. The amplified magnetic tape load demand signal was fed through a summing junction to a highly sensitive electrohydraulic servo-valve which controls the pressure on each side of a 17,000 lh. capacity, double-acting hydraulic loading jack. The fatigue test specimen was coupled to the hydraulic jack, in series through a calibrated electrical strain-gage load-measuring call. The instantaneous load signal from the monitoring call was amplified and fed through a specially tailored lead network to the tape demand signal summing junction. The error between the measured load signal and the

demand signal, suitable amplified, was applied to the servo valve in a direction to reduce the error to zero. This negative feed-back loop stabilizes the system up to relatively high frequence of load application, in this case approximately 60 cps for simple loading forms, determined primarily by the dynamics of the mechanical system and the hydraulic flow characteristics of the valve and associated power supply.

While most of the equipment is of commercially available units and the test arrangement is simple and straightforward, the precision and repeatability, demanded for quality results, require considerable efforts to develop control, maintenance, calibration, and monitoring techniques to a satisfactory degree of reliability. These techniques consist essentially of careful calibration of each set-up, and recording sampling load monitoring tapes which are counted on the electronic analogue computer set up for this purpose. The test data records reported herein are based on the load cell monitor count. The details of the equipment and a description of the complete test technique are more fully outlined in Appendix D, Part 2. Figures 11, 12, and 13 illustrate the test equipment, electronic control system, and a test specimen in place. Figure 14 illustrates the precision finally achieved by comparing the calibrated load cell output with the demand signal applied to the servo valve input terminals.

COUPON TEST SPECIMENS

The test specimens for the first phase of this program were made of a three-inch-wide strip of 0.040-inch thick 7075-T6 aluminum alloy sheet, Material Spec. Q4-A-277. Static tensile properties, taken in the longitudinal grain direction, are reported in Appendix D. Part 2, for samples from each sheet purchased for this program. The tensile test specimen conformed to ASTM standard Ed-57T. These results indicate adequate uniformity and conformity of this material to the specification standards.

The specimens were notched by a series of central holes designed for two values of $K_{\rm T}$ = μ and 7. The dimensions were as indicated in Figure 15. Floating edge-grouved stiffener blocks were installed to prevent buckling under the maximum compressive loads.

TEST SPECTRA ON MAGNETIC TAPE

A sample reproduced from a short length of an actual load trace from a B-47 aircraft flying in turbulence is shown in Figure 16. The general characteristics of varying magnitude cyclic loads are apparent, along with other irregularities of a nonrepetitive nature. There have been a number of methods proposed to reduce this type of load record to ordered cyclic load frequency spectra, three of which were explored in some detail in the research program reported in reference 5. A line through the average of the amplitudes of a short length of trace defines the local mean static load measured from a calibrated reference line. Perhaps the simplest of the counting methods is the mean crossing peak count which records each excursion from the local mean line to a maximum peak and return to the next crossing of the mean line as one half cycle of load, innoring any secondary excursions within the time interval of mean line crossings. For records of sufficient duration, varying

magnitudes of positive peaks and negative peaks are substantially squal in number. Positive and negative half cycles are regrouped to form full cycles. These cycles are rearranged in order of magnitude and plotted in cumulative load frequency form as illustrated in Figure 17. The majority of service loading data is customarily reported in this form.

The other counting methods that were investigated, the range count and the interval crossing count, are defined in detail in reference 5. For the available loading traces, these were shown to be equivalent to the mean crossing peak count method described above. For this reason all the spectral fatigue results of this report are recorded in the form of mean crossing peak counts.

Analogue computing components were essembled to perform the counting procedure as described in Appendix D, Part 2. The computing techniques were calibrated against an average of several manual counts of approximately five mimites! length of the B-47 wing root bending moment record, which had been recorded on oscillograph paper for this purpose.

The relatively short length of B-L7 data record (ninety-six minutes) produced a continuous frequency distribution spectra, with no gaps and discontinuities in the load intervals. however, the record was modified to provide a variety of spectra more suitable for testing. The modifications are discussed below.

- 1. The varying component of load was recorded separately from the local mean load so that independent amplification ratios could be applied to each load channel. An inequality of the maximum negative and the maximum positive load was equalized by nonlinear re-recording.
- 2. The varying spectra of leads were extended in length by linear amplifications and splicing, and was modified by special nonlinear amplifications to introduce the seldom encountered higher loads found on longer records. The technique used in producing this master gust spectrum tape is describe in detail in Appendix D. Part 2.
- 3. During testing, suitable linear amplification ratios were used to produce high-slope high peak spectra, as illustrated in Figure 18.
- 4. Nonlinear amplification of the verying load record changed the spectrum shape to be predominately concave downward as illustrated in Figure 18.
- 5. The use of a diode rectifier suppressed all negative load peaks and resulted in a master record substantially representative of the random positive maneuver excursions from a constant minimum load level. The spectrum shape was modified by non-linear amplification to produce the characteristics of the maneuver spectrum of Specification MIL-A-3366. See Figure 19. A sample of the resulting random military maneuver leading trace is given in Figure 20. This type of trace represents the true random maneuver loading sequence denoted in Figure 25.
- 6. Unit step spectra were constructed and recorded on tape, from the average fatigue life on the various random mean crossing peak count curves of each type of spectrum, by the breakdown illustrated in Figure 21. The unit spectrum sizes were 1/10 and 1/20 of the total random test life.

and the stress interval was 1000 psi in each block size. One additional combination was produced with 4000 psi stress interval and 1/20 block size, as illustrated in Figure 22. A typical trace of an ordered step or Lo-Hi loading spectrum of a gust history is shown in Figure 23. The unit maneuver spectrum size was 1/20 of the total random test life with stress intervals of either 1000 or 4000 psi. A sample of an ordered military maneuver loading trace is shown in Figure 24, and the ordered or Lo-Hi maneuver loading sequence is illustrated in Figure 25.

- 7. Ordered composite gust and ground loading was simulated as sketched schematically in Figure 26, based on the 1/20 unit spectrum block size and 1000 psi stress interval. The load activity was the same as for the random composite tests in Reference 5 with approximately 11 to 12 gust loads per flight and approximately 6 to 7 taxi loads per flight. Test group CG4 had approximately 100 gust loads and 10 ground taxi loads per flight.
- 8. Random composite maneuver loading and ground taxi loading were simulated by running the master random maneuver tape during the flight portion and switching to the master gust random tape at the mean load level and amplification commensurate with ground taxi loads. The load activity was approximately 30 maneuver loads and approximately 35 taxi loadings per flight. A trace of this record is shown in Figure 27. Only those tests are used that were deemed of sufficient duration to provide adequate statistical sampling of both the maneuver and ground (gust) records.

The results of the fatigue tests conducted are tabulated and plotted in Appendix D. Part 2.

analysis of the coupon test data

Miner's method was applied to the unit spectra using the specific S-N data for these coupons from Appendix D. The resulting predictions are compared with test results in Tables 4 and 5 and in Figures 37, 38, and 39. The fatigue life predictions by Miner's method for these coupons are in general less conservative than the results of the application of this method to the test data from the literature. This is illustrated in Figure 40 by the comparison of curve number 2 with curve number I taken from Figure 7 of Section III. The largest degree of unconservatism is shown for coupons of Kr = 7.00 loaded with the ground taxi spectra at compressive mean stress levels of f = -3000 psi. (Test group numbers Tl and T2.)

The effects of the shape of the loading spectra on fatigue life predictions by the Fatigue Quality Index method was investigated in two ways:

- 1. Adjustment of the Fatigue Quality Index by a function of the slope of the air loading spectrum in the high stress range.
- 2. Adjustment of the Fatigue Quality Index by a function of the slope of the air loading spectrum in the stress range of maximum fatigue damage as denoted by the largest cycle ratio $\binom{n}{n}$ in the unit loading spectrum.

The slope of the airloading portion of each test spectra is plotted as a function of the varying stress level for gust and maneuver type loading spectra in Figures 30 and 31, respectively, and for composite gust and composite maneuver load spectra in Figures 32 and 33, respectively.

The test results of Groups G7h, G79, and G8l were selected to provide the empirical adjustment function for the variation of the Fatigue Quality Index with the slope of the test spectra. The test results of each of the three shapes of loading spectra in Figure 15 were used to derive the Fatigue Quality Index for the coupon specimen of Kr = h. The geometric mean of the Quality Index for the test groups G7h, G79, and G8l are plotted in Figure 28 as a function of the slope of the varying load spectra at 90% of the maximum peak load applied. Figure 29 is a graph of the same test derived Fatigue Quality Index values plotted as a function of the slope of the loading diagrams in the region of the stress level for maximum calculated fatigue damage, (N) max

To predict the fatigue life of similar specimens tested under other types of loading spectra, the slope of the new unit loading spectrum is determined at the appropriate stress level, for example, at the level of 90% of the maximum applied load in the sequence. At this value of slope, the corresponding Fatigue Quality Index read from Figure 28 establishes the standard S-N curve set that is to be used in the prediction of fatigue life by the linear cumulative damage procedure. This is accomplished for twelve sets of data in Table 6, including low slope gust spectra, composite gust and ground load spectra, and composite maneuver and ground load spectra. These predictions are graphically compared with the corresponding test results in Figures 37 to 39. The degree of conservatism is indicated in Table 6 by the ratio of test fatigue life to predicted fatigue life. These degrees of conservatism are ranked in ascending order, and the percentage of the total number of samples equal to or less than a given degree of conservatism is determined and plotted as a function of that degree of conservatism as curve No. 4 in Figure 40.

The second procedure of adjustment is not quite so direct. As indicated in Table 7 and Figure 35, the stress level of the maximum cycle ratio $(\frac{n}{N})_{max}$ is a function of the Quality Index which, from Figure 29, is a function of the slope of the loading spectra at the stress level for maximum cycle ratio. The graphical procedure illustrated in Figure 36 was used to determine the compatible stress level, slope of the loading spectra, and Fatigue Quality Index. As an example, Figure 36 illustrates the procedure for Test Group No. 066. Arbitrarily chosen Fatigue Quality Index values were utilized to obtain the stress level at which the maximum cycle ratio exists for the unit loading spectra. These values of stress level are plotted as a function of the chosen Quality Index, K, in the center graph of Figure 36. The slope of the loading spectra is given as a function of the varying stress level in the graph to the left of Figure 36 (see Figures 30, 31, 32, and 33 for slope data from other loading spectra). Values of slope "h" and Quality Index "K" are determined at several trial varying stress levelsa, b, and c, from the left and center graph as indicated, and these values are cross plotted on the right hand graph at points a, b, and c. The intersection of the interpolating curve abo with the curve of Figure 29 provides the value of the Fatigus Quality Index compatible with the other parameters as desired.

The adjusted value of the Fatigue Quality Index is used to predict fatigue lives of these specimens with the standard set of S-N data as in the normal procedure. Results of life predictions for thirteen of the sixteen groups of coupons of this series are given in Table 6. Two cases (075 and G80) provided no compatible values. A third case (CMI) was of a slope beyond the range of the control test data of Figure 29 and was therefore omitted.

The comparison of these predicted results with their test results is given in Figures 37, 38, and 39. The ratio of the test life to the predicted life is determined, ranked, and the percentage of the total number of samples exceeding a given degree of conservatism is plotted as a function of that degree of conservatism as described previously. This is Curve No. 5 in Figure 40.

The basic version of the fatigue Quality Index procedure was also applied to these coupon data. The ratigue Quality Index values, derived from the 26 groups of coupon test results by the use of the standardized S-N curves, are listed in Tables 8 for simple gust type spectra of various shapes and in Table 9 for the simple fighter maneuver and the ground-taxi type of loading spectra, and for the composite gust and the composite maneuver flight type of loading spectra. The minimum, the maximum, and the geometrical mean of the test derived Fatigue Quality Index are given. In addition, the FQI value from the first specimen of each group is given. Its purpose is to assess the effectiveness of a reduced number of test results in the evaluation of other loading spectra on similar specimens. This is of importance in consideration of large size specimens, components, and full-scale sinframe tests in which only one specimen may be economically feasible.

Comparison may be made of the results of Test Groups 066 through 69 which are low peak load, low slope gust spectra (at a low mean stress level) with those of Test Groups G72 through G75 which are high peak load, high slope gust spectra (with a high mean stress level) on the same type specimen $(K_T = I_*)$. This comparison indicates a considerable variation in the derived Fatigue Quality index. A life prediction derived from a test of the low slope variety of gust spectrum would under-predict the result of the high slope gust spectrum whereas the reverse situation would provide an unconservative prediction. It was not possible to evaluate the results of the specimen of $K_T = 7.0$ because the derived Fatigue Quality Index, in most cases, exceeded the maximum scale value of K = 8.0.

The comparison of the test derived FQI values for the first specimen of each of these two simple gust groups shows a similar trend. For the low slope spectra the geometric mean of the first specimen FQI values is 5.46 which compares well with the geometric mean of the means of all specimens of this group which is K = 5.45, even though by chance the first specimen of the first group was the maximum value of all in this group. The similar comparison for the high slope group has a geometric mean of the first specimen of K = 1.43 to compare with the geometric mean of the means for all the specimens of this group of K = 4.53. The first specimen basis for life predictions in this case would be only slightly unconservative.

The two groups 678 and 679 (concave upward loading spectra) and 680 and 681 (concave downward loading spectra) show a somewhat reversed trend from that discussed above in that the concave upward group has a relatively higher fatigue Quality Index value although this spectra has higher peak stresses and slope than the concave downward loading spectra.

The simple fighter maneuver spectra test results from groups MIL, MI5, and MI6 show derived fatigue Quality Index values more closely approximating the concave upward gust spectra (group G78 and G79) than any of the others. However, the results of these simple maneuver spectra encompass the widest scatter of all the groups. The values of the Fatigue Quality Index range from the minimum of K = 3.60 to the maximum of K = 7.10.

The derived FQI values for the composite test results bear no close correspondence to their counterparts in the simple spectrum groups. From Tables 8 and 9, compare, for instance, groups 066 through 669 with composite gust Group CO1 (low slope spectra) and groups G72 through G75 with composite gust groups CO3 and CO4 (high peak, high slope spectra), and the fighter maneuver groups M14, M15 and M16 with the composite maneuver group CM1. Fatigue life predictions are made in Table 10 for the composite loading spectra by the use of the derived Fatigue Quality Index value from the first coupon specimen result of the corresponding simple spectra of flight loads. As indicated these results were unconservative in the composite tests by approximately 12% of the predicted value for the low slope gust spectra, il to 60% of the prediction for the high slope gust spectra and 33% of the prediction for the maneuver spectra. Comparisons in Tablesh and 5, of the fatigue life predictions for these same groups by Miner's methou utilizing the specific S-N curves for these coupons show only moderately improved predictions. This is a fundamental result inherent in the test data which none of the life prediction methods studied in this report can cope with in their current form.

To determine the effectiveness of a Fatigue Quality Index derived from a gust test spectre as a means of predicting the fatigue life of coupons under maneuver type spectra. Table 11 was prepared. This comparison indicates results ranging from relatively conservative predictions to values of test results of half the predictions. While this range of the ratios of test life to predicted life is within the normal scatter band of other prediction methods, this data group is much too small for reliance.

An unexpected result of this series of tests is indicated in the comparisons shown in Table 12. The flight portion of the composite spectrum tests is compared with the simple spectrum test results for corresponding types of loading. The ratio of the number of cycles of flight loadings in the composite spectrum test to the number of cycles of loading in the simple spectrum test may be considered to be the damage fraction for this portion of the loading. Assigning the remaining fraction (leading.) to the rest of the loadings.

and noting that the damage due to ground taxt loadings is relatively small, the ground-air-transition cycle is seen to be a predominant producer of fatigue damage. This portion of the loading is seen to provide approximately 50% to 73% of the total damag, ratio for this series of tests. The importance of this transition cycle is thus established on an experimental basis. Reviewing the results in Table 5 of the simple linear cumulative damage procedure (Miner's method) utilizing the specific S-N data for these specimens indicates that the effect of the ground-air transition cycle is not predictable by this method either. The test results vary unconservatively from approximately 24% to 86% of the predicted value.

Figure 11 General View of Tape Handling Equipment

Figure 12 General View of Specimen Leading Apparatus

Figure 13 Close-up of Test Specimen Installation

Trace of Input Stone

Trace of Specimen Loading History

Pigure 14

ASD TR - 134

%r - 3.0

Kr - 7.0

Kr = 4.0

 $K_{\rm T} = 10.0$

Note: All Dimensions Given In Inches

MATERIAL: 7075-16 Bare Aluminum Alloy Sheet (.Oh inches thick)

PATRICATION: Specimen Blanks Sheared to Size
Holes Drilled and Reamed
Burrs Removed by Light Stoning

Figure 15. Notched Sheet Test Coupons

Figure 16 Sample Flight Loading Trace

Figure 17 Comparison of Trace Reductions - Wing Root Randon Loading Trace

Figure 1d. Schemaile of High Peak, Concare Upward and Concave Downward Gust Loading Spectra.

Migure 19 Comparison of Hilitary Manauver Loading Spectrum with Distribution Specified in MIL-A-8866 for Class "A" Aircraft

ASD TR 61 - 434

Figure 21 Development of Ordered Loading Spectrum

Low-High Sequence, Small Stress Interval, Small Unit Spectrum

Low-High Sequence, Large Stress Interval, Small Unit Spectrum

Low-High Sequence, Small Stress Interval, Large Unit Spectrum

Figure 22. Schematic Representation of Sequence Stress Interval, and Unit Spectrum Sixe

Pigure 23 Partiel Trace of an Ordered Gast Loading History

asd tr 61 - his

7)

ASD TR 61 - 434

Figure 25. Schematic Diagrams of Maneuver Loading Sequences for Coupons

Figure 26 Schematic Representation of Ordered Loading Trace - Gust and Ground Loadings plus Ground-to-Air Cycles,

TABLE &
FATIGUE LIVES PREDICTED BY MINER'S METHOD FOR GUST SPECTRA ON COUPONS

068 Lo-Hi h.165 3.07h 1.355 069 Lo-Hi 6.005 3.178 1.890 070 True Random .229 .h8h .473 071 Lo-Hi .255 .518 .492 072 True Random .359 .290 1.238 073 Lo-Hi .218 .079 2.505 074 Lo-Hi .579 .353 1.640 075 Lo-Hi .27h .196 1.398 076 True Random .057 .057 1.000 077 Lo-Hi .058 .055 1.055 078 True Random .270 .317 .852	D,	N _L Tost	Predicted Life (106 cycles) Miner's Method	Geometric Mean of Test Life (10 ⁵ cycles)	Sequence	Test Eroup No.
067 Lo-Hi 1.230 .668 1.841 068 Lo-Hi h.165 3.07h 1.355 069 Lo-Hi 6.005 3.178 1.890 670 True Random .229 .h8h .473 071 Lo-Hi .255 .518 .492 672 True Random .359 .290 1.238 673 Lo-Hi .218 .079 2.505 07h Lo-Hi .579 .353 1.640 675 Lo-Hi .27h .196 1.398 676 True Random .057 .057 1.000 077 Lo-Hi .058 .055 1.055 678 True Random .270 .317 .852	N _L Test	.384		1.650	True Randon	G66
069 Lo-Hi 6.005 3.178 1.890 670 True Random .229 .484 .473 671 Lo-Hi .255 .518 .492 672 True Random .359 .290 1.238 673 Lo-Hi .218 .099 2.505 671 Lo-Hi .579 .353 1.640 675 Lo-Hi .274 .196 1.398 676 True Random .057 .057 1.000 677 Lo-Hi .058 .055 1.055 678 True Random .270 .317 .852	NL Prod.				Lo-IIi	
G69 Lo-Hi 6.005 3.178 1.890 G70 True Random .229 .484 .473 G71 Lo-Hi .255 .518 .492 G72 True Random .359 .290 1.238 G73 Lo-Hi .218 .079 2.505 G74 Lo-Hi .579 .353 1.640 G75 Lo-Hi .274 .196 1.398 G76 True Random .057 .057 1.000 077 Lo-Hi .058 .055 1.055 G78 True Random .270 .317 .852	-				Lo-Hi	g68
G70 True Random .229 .484 .473 G71 Lo-Hi .255 .518 .492 G72 True Random .359 .290 1.238 G73 Lo-Hi .218 .099 2.505 G74 Lo-Hi .579 .353 1.640 G75 Lo-Hi .274 .196 1.398 G76 True Random .057 .057 1.000 G77 Lo-Hi .058 .055 1.055 G78 True Random .270 .317 .852				6.005	Lo-III.	
071 Lo-Hi .255 .518 .492 072 True Random .359 .290 1.238 073 Lo-Hi .218 .099 2.505 071 Lo-Hi .579 .353 1.610 075 Lo-Hi .2714 .196 1.398 076 True Random .057 .057 1.000 077 Lo-Hi .058 .055 1.055 078 True Random .270 .317 .852					True Random	G70
G72 True Random .359 .290 1.238 G73 Lo-Hi .218 .099 2.505 G7h Lo-Hi .579 .353 1.6h0 G75 Lo-Hi .27h .196 1.398 G76 True Random .057 .057 1.000 G77 Lo-Hi .058 .055 1.055 G78 True Random .270 .317 .852	1.780			.255		
G73 Lo-Hi .218 .099 2.505 G71 Lo-Hi .579 .353 1.610 G75 Lo-Hi .274 .196 1.398 G76 True Random .057 .057 1.000 G77 Lo-Hi .058 .055 1.055 G78 True Random .270 .317 .852	1.133		.290	. 359	True Random	
07h Lo-Hi .579 .353 1.640 075 Lo-Hi .27h .196 1.398 076 True Random .057 .057 1.000 077 Lo-Hi .058 .055 1.055 078 True Random .270 .317 .852	. 769					
G75 Lo-H1 .274 .196 1.398 G76 True Random .057 .057 1.000 G77 Lo-H1 .058 .055 1.055 G78 True Random .270 .317 .852	•078		.353	.579		
076 True Random .057 .057 1.000 077 Lo-Hi .058 .055 1.055 078 True Random .270 .317 .852	.112	1.398				
077 Lo-Hi .058 .055 1.055 078 True Random .270 .317 .852	.271		.057			
078 True Random .270 .317 .852	. 238					
O(O TING INSTITUTE AND	•597	.852				
079 Lo-111 .801 .153 1.775	.862	1.775	.453			
080 True Random .193 .082 2.354	.611					
081 Lo-Hi .11/4 .052 2.769						

Slope - h
Figure 28. Variation in Quality Index (K) with slope of gust loading spectra in the high stress range.

Figure 29 Variation in Quality Index (K) with Slope of Gust Loading Spectra in Midstress Hange of Maximum Calculated Fatigue Damage.

ASD TR 61 - 434

同語のないない。「「「「「「」」」というないない。「「「」」」というない。「「」」というない。「「」」というないない。「「」」というない。「「」」というない。「「」」というない。「「」」というない。

Figure 30. Varying Stress versus Slope of Gust Loading Spectra

Figure 31 Verying Stress versus Slope of Maneuver Load. or Spectra

Varying Stress versus Slope of Corposite Gust Loading Spectra Figure 12

Mgure 33. Varying Stress versus Slope of Composite Maneuver Spectrum

FATIGUE LIVES PREDICTED FOR COUPONS WITH ADJUSTMENTS

		N. Lest	٠	Pred			C#2	e a	2,7	ב ה ה	7 -	3 5	787	ייי ביייי ביייי	2,053				75	, ,		77.	
SPECTRA	(4)	Pred Pred	901	Cycles)	•		19,000	ω (°		3 2	80	227	350	(5)	011				1,800	697		,025	
OF LOADING SPE	Adinatment (E)	Fig.	peak 28	_			75-7	7.00	75.1	70	\ \ 	7.72	1, 1,9	1, 1, 7	4.38	(e)	(e)	()	4.52	1, 1,8	(e)	4.56	
SICPE OF I	Slone	£.	•	△ pst	17.28cm		. 2200	1350	2000	2150	2850	2730	2350	3080	830	3580	1750	3620	2650	3050	3900	21,80	1
IN K BOR	High Stress	0.9f peak	KSI			•	12.60	12.60	12,60	12.60	17.57	16.47	16-47	11.15	11,15	17.73	18.90	18.90	11,70	19.7T	16.47	19.00	•
SIMENIS		f v peak	KSI (::	(A)r	(र्रापुट	(c)	24.33	31.00	5,4	8.11	19.52	18,30	18,30	13,50	13,50	20,81	21.00	21,00	13,00	16.30	18,30	21.20	:
ALTH ADJUSTMENTS IN K	(a)	N. Test	ر ا ا	rred			.033	•286	•0i:16	2990	1,282	2.253		705		1778	.539	.273	,029h	23.	699•		
ELALEN FOR COUPONS	Adjustment	N. pard	(100	Cycles)			50.000	7.300	100,00	000°08	. 230	011.	•	•620		•035	•056	70.	33,900	.20 0	.374		
CTEN C	Slope	3 보다			•		4.02	61.4	3.76	3.70	8	16.41	E.	4-41	<u>.</u>	3,83	J. 33	3,62	11°13	දි ග්.	0,	(8)	
	Hdstress	Je u	Apsi	u?Bon?		-	075	020 020	Q	820	1373	1290	,	2 080	į	£3.	570	918	0001	1340	1270	2570	7 40 70
		rsi					5.50	£ 15	6.20	8.3 8.3	٠, بر	ۇ. ئى	;	ري دور		77.77	13,50	2. 1.		2	2,5	75.50	(0)
1	Gecm.	of Test	Life	(10	Cycles		1,650	27.7	4.165	6. 005	.359	.27.8	#1.7°	7	.225	720.	70.	215	200	į	3,0	110.	
	_ ا	KSI (Air		_	·		.o-			 • ,	ه	۲ الت		;	3	(g)	<u>.</u>	(g),	ပ ဉ်	7.	ý3	(b)	
	Test	No.					0 t	3	5	. G69	2/5	 673	212	٥/ن ن ر	ວະວ	Į,	27.	جا (155	3	3 5	.	•

Prediction Based on Quality Index Adjustment for Slope of Loading Spectra in Midstress Range of Maximum Calculated Patigue Damage.

Prodiction Based on Quality Index Adjustment for Slope of Loading Spectra at 90% of the Peak Varying Struss. 3

Largest Varying Stress in Spectra.

nin of 5.4 KSI

Slope of Loading Spectra is Outside Range of Figure 28. **9**99

Compatible Combinations of K and h do not Satisfy Curve in Figure 29. Rlope of Loading Spectra is Outside Range of Figure 29.

TABLE 7

EVALUATION OF FATIGUE DAMAGE FOR QUALITY INDICES OF 2, 4, AND 6

	Fatigue Damage % n		0	၁ ဝ	6,3	21,9	31.4	17.3	10.0	7.0	2.9	2.3	7.5	o.	٠٠	Σ 100. 0
	Cycle Ratio . 10 ⁻¹ (n/N)	У • М	0 (၁၀	Ę	1.49	2,13	1.21	58	ਜ਼	8.	51.	સ્	%	ද	₹ 6.79
	Cycles to Failure N fa • 6 K3I		,) 1	1200000	13000	12000	0002	34000	21000	000TA	10000	200 200 200	27,00 1,00	3980	
355	Fatigue Danage , n		0	3 Q	0	၀	13.2	₹ 7.	20.5	12.9	10.3	ය ග	6•3	1.2	2,3	5 100.0
con groa	Cycle Ratio $10^{-3} (\frac{n}{N})$		· •	9 0	0	0	7.30	7.95	7-67	4.61	ET &	3.26	2,33	1,56	53	237.19
Unit Spectra for Test Group Mc. 366	Cycles to Failure N fm = 6 KSI		•		•	ı	\$200000	580000	30000	135000	33000 3000	1,6000	3000	20500	15000	•
t Spectra	Tatigue Damage % n										•	12.8	27.9	32.1	56.9	7 100.0
Und	Cycle Ratio	7 3 34	0	00	0	0	0	0	Ö	0	0	77.0	4.67	5,12	4.43	Σ16.71
	Cycles to Failure N		ī		•	1	•	•	t	1	•	7000007	1500000	590000	.290000	
	Applied Cycles n		612800	3 3000	183000	0001.9	25500	7000	2300	550	250	250	2	3 5	ន	
	Varying Stress f XXI		55.	 	i m	7,7	7V 7V	6.55		a N	ر. بربر	10.55	11.55	12.55	13.55	
	1		١.													

Illustration of a Cust Loading Spectra and the Corresponding Curves for Fatigue Damage at Quality Indices of 2, $\dot{\mu}_{\nu}$ and $\dot{6}_{\nu}$ Figure 35.

Figure 36. Illustration of procedure used to correlate quality index and slope of loading spectra in stress range of maximum fatigue damage.

(a)

PATIGUE QUALITY INDEX FOR GUST SPECTRA OF COUPONS

Specimen, Figure 15.

•								
	ಕಿದ್ದಾಗ		Number		First Specimen	(Ten)	K Quality Index Method	poq ₁
Group No.	Spectrum	Sequence	of Specimens	Geometric	in Test Group	Kinimum	Zaximum	Geometric Mean
995		True Mancom	≟π 2 *	77	7.18	6.62	7.18	6.95
,		. Ic-::	Ŋ	- 1	4.03	1.077	6.23	5.05
	Low	- Lo-11	w	1	ਰ ੰ	55-17	5.50	5,19
699	, eak	1-0-1	νı		:: 	4.53	5.11	, y
070		True Mandom	٥		(C)	7.30	000 (A	\ \ \
G71		[o-ii]	v		, ,	, '\	.œ	· ^0
672		True Kandom	~	·::t	4.32	. 32	5.27	92.04
673	•	10-E	ß		2		, C	1, 2, 1
G74:	1271	Lo-71	ហ	الت . ع	1.78	1.22	7.00	: 23 ::
675	Peak	. S	· W		2.52	65.1	1.76	\ \(\(\)
676		True nandom	9	7	نند ^	i i	200	œ^
677		10-11	9	. ~	ς; Λ	, rc	. 000	• œ
G7ë	Concave	True Random	or	_ _	5,25	87	5,60	7, 72
679	upward	1:-07	IA	_ :]	20.70	35	17.1	12
080	Concave	True dandom	-=	_1	ج <u>-</u>	0000 C	30.	4.17
r Egg	downward	3	•	-1	Cilian	7.	20	0

TABLE 9

FATIGUE QUALITY INDEX FOR MANEUVER GROUND AND COMPOSITE SPECTRA ON COUFONS

Spectmen, Figure 15

No.	Type	Secuses	. Nurber		Krst Specimen	one.	R Quality Index Method	sethod fethod
-	Spectrum	•	Specimens		In Test Group	Minimum	Haximum	Geometric Mean
 ਹੁ		True	7	17	4.15	3.60	1.75	4
	Fighter Haneuver	Lo-Hi	w	~ 3 *	4.85	1,20) () () () () () () () () () (7
M.6	į	다.	w	. ≠	7.10	8.7	2.5	5,63
ជ	7	True	9	2	9	923 ^	8	8
2 <u>7</u>	puno.	[6-H1	9	•	· ·	ď	ć	•
! !	Low Peak	Lo-lii	W	· 4	2 6	o &	20 2	∞ °,
	Composite	10-11	w	۰ ،	8 e ^	Q .	2 2	æ (
CC3 H	High Peak	Lo-Hi	w	. খ	5,70	א ס	و م م	, v
	Compost te	· 15-41	ထ	7	5.50	8 %	. 9. V.	ν, ν. V. ή
<u>ਂ ਸ਼</u> ਰ	Composite Maneuver	True Random	υ	7	7.45	5.87	7.45	6-69

TABLE 10

PATIGUE LIVES PREDICTED FOR COMPOSITE GUST AND COMPOSITE MANEUVER SPECTRA ON COUPONS FROM QUALITY INDEX FOR FIRST SPECIMEN IN A SIMILAR TYPE OF SIMPLE FLIGHT SPECTRA

ruver	Treet Mr.Preed	15***	•333
Fighter Maneuver	Nr. Pred	K = 4.15*	.033
Oust	N.Pred	8**	128 504
. High Peak Gust	N. Fred (10 ⁶ Cycles)	K = 4.78**	. 332 1114.
Gust	Test W.Pred	01*	311.
Low Peak Gust	Nr Pred (10 ⁵ Croles)	X = 5	6.475
Geometric	Mean of Test Life (10° Cycles)		88. 241. 025. 110.
	Test Group No.		5555 5555 5555 5555 5555 5555 5555 5555 5555

* K for first specimen in lest Group No. 568 (Specimen No. 372)
* K for first specimen in Test Group No. 674 (Specimen No. 313)
* K for first specimen in Test Group No. Ml4 (Specimen No. 342)

FATIBUE LIVES TREDICTED FOR MANEUVER AND COMPOSITE MANEUVER SPECTRA ON COUPONS FROM QUALITY INDEX FOR FIRST SPECIMEN IN A GUST SPECTRUM

Test Group	Geometric Mean of	Based on Low Spect		Based on High Spect	
No.	Test Life (10 ⁶ Cycles)	N _L Pred (10 ⁶ Cycles)	N _{LTest}	NI Pred (10 ⁶ Cycles)	N _{LTest} N _{LPred}
		K = 5	.01#	K = 1	1.78##.
M14 M15 M16 CM1	.027 .01) .012 .011	.015 .012 .016 .019	1.800 1.167 .750 .579	.017 .013 18 .022	1.588 1.077 .667 .500

K for first specimen in Test Group No. 068 (Specimen No. 372) K for first specimen in Test Group No. G7N (Specimen No. 313)

TABLE 12

COMPARISON OF TEST FATIGUE LIFE OF SIMPLE LOADING SPECTRA WITH THE FLIGHT PORTION OF COMPOSITE TESTS

Composite Spectra	Spectra	Simple Spectra	pectra		
	N. Test		N Test	Test Composite	í
Test Group No.	(10 ⁶ Cycles)	Test Group No.	(10 ⁶ Cycles)	"Lest Simple	Damage Attributed to All Other Loadinger
T90	•615	795	1.23	500	\$500
C62	890°	179	.255	-257	.733
6 00	060*	673	-21µ8	.363	.637
ที่อื่อ	•223	725	.579	• 385	\$19*
CHO	\$900*.	ਸ਼ੁਰਾ	.0257	•325	.678
				Minamoetto	

TABLE 13

CODING IN FIGURES FOR COUPONS AND PANELS

(All Predictions are Based on Linear Cumulative Damage.)

Symbol	Meaning
•	Geometric mean of test data.
I	Scatter band for test data.
0	Prediction based on actual S-N curve for specimen configuration (Coupons). (Miner's Method)
O	Prediction based on standardized S-N curves with adjustment in K for slope of loading spectra in the mid-stress range. (Coupons)
×	Prediction based on standardized S-N curves with adjustment in K for slope of loading spectra in the high stress range. (Coupons)
•	Prediction based on standardized S-N curve corresponding to the Quality Index for the first specimen in a simple gust spectrum.
	a) S-N data based on stresses for minimum gross area.
000	 Quality Index for first panel in gust spectrum. Quality Index for first coupon in a low peak gust spectrum. Quality Index for first coupon in a high peak gust spectrum
\Diamond	b) S-N data based on stresses for local gross area in fractured structural element. (Panels)
	Prediction based on standardized S-N curve corresponding to the Quality Index for the first specimen in a simple maneuver spectrum.
◊	a) S-N data based on stresses for minimum gross area. (Coupons and panels)
\Diamond	b) S-N data based on stresses for local gross area in fractured structural element. (Panels)

Test Group No.	G56	G67	G68	G69	G70	071	G72	G73		
Sequence	TR		L-H		TR	IH	TR	L-H		
Block Size (10 ³ Cycles)	1663	26	60	120	233	9	379	9.25		
Number of Loading Steps	18	ų]	LI ₂	17	13	23	5		
Kean Stres s KSI			6		•		12	.l		
Type of Spectrum				Gust						
Specimen		No	tched	Sheet	Coupon	Coupons				
× _T		4				7		4		
<i>Material</i>				7075-	16		 			

For Coding See Table 13

Figure 37. Comparison between Predicted and Experimental Fatigue Lives for Gust Spectra on Coupons

10								
Test Group No.	G74	G75	G76	G77	G78	G79	G80	G81
Sequence:	L	-H	TR	L-H	TR	L-H	TR	L-H
Block Size (10 ³ Gyclos)	16	32	58.7	2.5	273	826	197	145
Number of Loading Steps	3	19	14	17			7	
Mean Stress KSI				1	2			
Type of Spectrum	Cust							
Specimen			No tche	d Shee	t Cou	pons		
K _T	4 7 4						4	
<u> </u>	7075-16							<u></u> ,

For Coding See Table 13

Figure 38. Comparison between Predicted and Experimental Fatigue Lives for Gust Spectra on Compons

Control of the Contro

Block S (103 Cyc			27.7	1.1	1	560	21.5	21.2	1.9	3.3	10.1	11	
Numbe Loadi.ng		-	1	1	40	18	11	26	21	<u> </u>	29		
Minimum Stress		Air		5.4		l		<u>.</u>		, .		5.15	
Mean	ĸ	NII.						6)	1	2		
Stress	1	Ground							- 3				
		G-A-U						5	1.22				
Type of Spectrum			Maneuver Ground' Composite Gust								4-		
Speci	Notched Sheet Coupons												
KT			4 7 4 7										
Ma ter	7075 <u>-</u> T6												

* Composite Maneuver For Coding See Table 13

Figure 39 Comparison between Predicted and Experimental Fatigue Lives for Maneuver, Ground, and Composite Spectra on Coupons

Figure 40, Cumulative Distributions for the Ratio of Test Life to Predicted Life

SECTION V

ANALYSIS OF COMPLEX JOINT SPECIMENS

Many of the problems of full scale complex structure are not present in the simple notched strip coupon-type specimen used in the majority of research projects for reasons of economy. To determine the effectiveness of the selected life prediction method on specimens more representative of aircraft structure, a series of spectrum-type fatigue tests was conducted on a splice design adapted from an integrally stiffened tension surface of a current wing structure. A splice joint is made of two panels consisting of machined plates of 7075-T6 extrusion material approximately six inches wide, each containing three vertical stiffeners which run out or taper off into a tongue flange across the width of the plates. A double butt splice is formed by a flush recessed outer surface splice plate and an inner tee splice plate with an integral flange for a rib connection. Attachments are by twelve one-quarter inch diameter Hi-Lok fasteners, six on each side of the splice. The neutral axis location throughout the length was carefully tailored in the aircraft design to reduce as much as possible eccentrically induced bending stresses. The recessed outer splice plate, in addition to providing flush aerodynamic surfaces, also aids materially in achieving a uniform load axis. The details of the panel are sketched in Figure 11.

The panels were to be tested in an adaptation of the magnetic tape controlled fatigue test machine described in the preceding section. Two electro-serve controlled loading jacks were coupled in tandem to operate on one magnetic tape demand signal, providing 34,000 lb. load capacity. This proved insufficient, however, when the first panel had not failed after approximately 350 applications (over 5.25 x 10° cycles) of the unit low peak-low slope gust spectra illustrated in Figure 42. After careful inspection of this panel had revealed no visible damage, it was reassembled in the large 500,000 lb. fatigue machine illustrated in Figure 43. The principle of operation of this machine is illustrated schematically in Figure 44. Static loading was applied to determine the ultimate strength of the panel as a guide to stress levels to apply in the remaining fatigue tests.

Pertinent data are as follows:

Static failure load

- 66,000 lbs.

Minimum gross area

= 0.815 in. (Section BB in Figure 41)

Minimum gross area ultimate tensile strength

= 81,000 psi

The remaining panels were fatigue tested in the large 500,000 lb. fatigue machine (Figure 1/3) as described in detail in Appendix D Part 3. Two additional panels, No. 11 and 12, were accidentally destroyed by compression collapse through malfunction of a loading valve in the hydraulic loading system.

ASD TR 61 - 434

Basic Ordered Unit Gust and Unit Composite Gust Loading Spectra Figure 42.

Figure 13 Two-Joint Test Panel Assemblies Installed in Tandem in a Lockheed 500,000-pound Fatigue Test Machine

70 815P

Figure hh Schematic Diagram of the 500,000-pound Fatigue Machine Shown in the Above Photograph

Eight of the twelve panels successfully fatigue tested were apportioned five to the unit gust spectra that is illustrated in Figure 42, and three to the unit maneuver spectra in Figure 45. The remaining four were tested two to the composite gust, ground taxi, and mean load level ground-air transition cycle shown in Figure 42 and two to the composite maneuver, ground taxi, and mean load level ground-air transition cycle shown in Figure 45. The spectral test results are presented in terms of minimum gross area stress in Tables 79 to 104 and Figures 179 to 184 of Appendix D, Part 3. These same test results are also presented in terms of gross area stress at the point of fracture in Tables 106 to 110 of Appendix D. Photographs of the various types of failures that occurred are also presented there.

In the composite tests, the gust loading activity was approximately 12 loads per flight along with approximately 6.5 ground taxi loads per flight. The maneuver load activity was 30 loads per flight along with 35 ground loads per flight. In both cases, the ground-air cycle applied was the mean ground load transition to the mean flight load. These loads were grouped into ordered step spectra broken down to approximately 2000 to 2500 psi stress intervals in the gust and ground taxi loadings, and approximately 5500 psi intervals for the maneuver loadings. Block sizes varied from 1/48th to 1/600th of the final test life for the simple ordered spectral loading tests. However, due to the unexpectedly shorter tost life under the composite loadings, these block sizes were from 1/5th to 1/10th of the final test life. The low-to-high load sequence was applied within the block interval. Further test details are given in Appendix D Part 3.

GROUND-AIR TRANSITION CYCLE

The importance of the ground-to-air-to-ground transition cycle discussed in connection with the analysis of the coupon data in Section IV was confirmed by these tests of the complex joint. The following comparison is developed relating the geometric mean of the number of flight cycles in the composite tests to the geometric mean of the number of flight cycles of a simple spectrum test:

	TABLE	14 INFLU		D-AIR TRANSITION	<u> </u>
	Spectra	Compos	ite Spectra		
Panel or (Group)	NL (test) (10 ⁶ Cycles)	1/4 . 1	NL (test) (106 Cycles)	NL (composite) NL (simple)	I - NL (composite) NL (simple)
5 6	.912 .783 .928	10 13	•397 •516	~10	
(C83) 7 8 9	.872* .298 .421 .1.74	14 15	.452* .099 .179	.518	<u>-1</u> :82
(m)	.391*	(CM2)	.133*	•340	.660

^{*} Geometric mean of the group.

Assuming the ratio of the number of flight loading cycles in the composite test to the number of cycles in the simple spectrum test to be representative of fatigue damage done by the flight loads, the residual damage due to other than flight loadings of the composite spectra is seen to be 0.48 for the gust loading case and 0.66 for the fighter maneuver case. Since it is known that the damage contributed by the ground taxi portion of the spectra is relatively small, it can be concluded that the ground-air-ground transition cycle per flight is the predominant contributor of this residual damage. It should be noted also that the mean ground load to mean flight load level as used in these tests is a minimum (conservative) definition of this transition cycle per flight. The predominance of the ground-air transition would be expected to vary with the flight duration, reducing in importance with increased duration to the flight phase per landing. The gust loading spectra of these tests represents relatively short range flights; the fighter maneuver activity, however, is moderately high for long time average usage.

MINER'S METHOD

There were no specific S-N data available for this joint design, consequently Miner's method of simple linear cumulative damage could not be directly applied.

FATIGUE QUALITY INDEX PROCEDURE

REPORT TO A PARTY OF THE PARTY OF THE PROPERTY OF THE PARTY OF THE PAR

Since a consistent influence of the shape or slope of the cumulative load frequency spectrum on the Fatigue Quality Index was not apparent in the analysis of the coupon data discussed in the previous section, this type of analysis was not applied to the data from the complex joint tests. However, several combinations of the Fatigue Quality Index procedure were applied.

The Fatigue Quality Index was derived for each of the test groups utilizing the standardized S-N data in the usual manner. Each of two base stress levels was used:

Stress Basis I. Minimum gross area stress in the uniform panel adjacent to the joint.

Stress Basis II. Actual gross area stress through the section of fracture.

The derived FQI values for Stress Basis I are given in Table 15, while those for Stress basis II are given in Table 16. Examination of these values shows the general separation of the groups by the type of load spectra. In both bases of stress definition, the simple and composite gust loading values of K are similar within moderate scatter, and the simple and composite maneuver loading values are similar to each other but considerable different than the values from the gust-type spectra tests.

The Fatigue Quality Index is seen to be not invariant as would be required for satisfactory predictability of fatigue life. However, for similar spectra the predictability of variations on the basic load frequency spectrum is of interest. The large leverage factor between the Fatigue Quality Index value "K" and the corresponding fatigue life in number of cycles makes difficult the assessment of predictability. Therefore, several combinations of Fatigue Quality Index calculations were made to compare with the test results.

FATIGUE QUALITY INDEX FROM FIRST PANEL TEST RESULT

A. SIMPLE GUST SPECTRUM

Fatigue life predictions based on a single specimen test result are an important consideration for large component and airframe fatigue tests in which more than one specimen is economically unfeasible. This investigation therefore utilizes the results of the gust spectrum test on Panel No. It to derive the Fatigue Quality Index with the standardized S-N curves. This value of Quality Index is used to predict the fatigue life of each specimen under the composite gust, simple maneuver, and composite maneuver load frequency spectra. Comparison of these predictions with the test results is given in Table 17 for both bases of stress definition.

The composite gust fatigue life by test is approximately 63.9 per cent and 75.8 per cent of the prediction when based on the Fatigue Quality Index for the simple gust load spectra and the minimum gross area stress outside the joint (Stress Basis I). When the stress is defined by the gross area at the point of fracture, the test result is 17.6 per cent to 30.4 per cent of the prediction.

The simple maneuver loading results are conservatively predicted by the Fatigue Quality Index from the simple gust spectrum test result, by factors of 10.5 to 74.5 times the predicted lifetime by the minimum gross area Stress Basis I. The corresponding composite maneuver test result is 6.36 to 8.07 times the predicted value on the same stress basis. However, on the basis of the stress through the point of fracture (Stress Basis II), the simple maneuver load spectrum test results were from 23.4 per cent of prediction (unconservative) to 206 per cent of prediction (conservative), whereas the composite maneuver load spectra test result was only 5.2 per cent and 58.8 per cent of the predicted lifetime (unconservative) on this stress basis. These variations in predictability are much greater than the test scatter within each group.

B. SIMPLE MANEUVER SPECTRUM

The first test result from a simple maneuver loading spectrum (Panel No. 7) was also used to derive a Fatigue Quality Index with the standard S-N curves for use in predictions of the panel fatigue life under the composite maneuver loading spectra. These results are shown in Table 18. Predictions for both bases of stress definition were unconservative, comparing test lives with approximately 5.2 per cent and 6.6 per cent of the predicted values for a panel interpreted for each stress basis and 48.4 per cent and 61.6 per cent for the alternate panel in each case. This wide divergence is greater than the test scatter.

The results of these predictions are graphically compared with the test results from each of the panels in Figure 16. Too few test results were available to justify the statistical rank ordering of the ratio of test life to predicted life as was done for the more numerous coupon test data.

TABLE 15

CLASS I PATIGUE

QUALITY INDEX FOR HINIMUM GROSS AREA STREMSES IN GUST, MANEUVER, AND COMPOSITE SPECTRA

Spectmen, Figure 41

K Guality Index Method	George Lric Kean	1.35	1.29	£.	1.39	83
K ity Index He	Maximum	1.52	1.33	, 38 18	1.40	66.
Çual	Kinimum	1.20	1.21	• • • • • • • • • • • • • • • • • • • •	1.38	.70
K First Specimen	Group	1.52	1.24	09•	1.40	.70
Munier	or Specimens	. 23		m	W	8
	e di merce	18-07				
Type	Spectrum	Gust	Gist	Janener	Composite Gust	Composite Eapenver
Test	io.	682	683	ž.	CGS	CKS

Table 16

CLASS II FRACTURE

Test	Туре		Number	K First Specimen	Qualit	K Quality Index Method	Por
recup No.	S.	Sequence	of Specimens	in Test Group	Minima	Maximum	Geometric Mean
G82	Gust	25-31 -	2	5.01	10-11	5.01	1.18
C83	Gust		٣	3.26	3.26	12.57	3.74
ML7	Maneuver		m	3.28	2.81	10°1	3.34
CGS	Composite Gust		8	3.38	3.88	4,12	00-17
CHO CHO	Composite Maneuver		c	r u		1	•

TABLE 17

FATIGUE LIVES PREDICTED FOR MANEUVER, COMPOSITE GUST, AND COMPOSITE MANEUVER SE ON PANELS FROM QUALITY INDEX FOR FIRST SPECIMEN IN A SIMPLE GUST SPECTRUM

N _L Test	N. Pred.	resses for	* 9	कर हैं इस्टर्ड	न्हें के किए के किए के किए	0.52 888
N. Pred.	(10 ⁶ Cycles)	K based on stresses for local gross area at fracture	K = 3.26 *	,310 1,600	2,100	4.200
N. Test	N. Pred.	stresses oss area		74.500 10.525 11.650	639	8.074 6.355
Mr Pred.	(10 ⁶ Cycles)	K based on stresses for minimum gross area	K = 1,2h *	700°	1,000	225
Test	(10 ⁵ Cycles)			121 121 121	.639 .758	216 196.
Panel No.				~ ∞	ន្ទង	নম
lest Group	No.			1대	500	G12

* K for Panel No. 4 in Test Group No. G83

TABLE 18

PATICUE LIVES REEDICTED FOR COMPOSITE MANEUVER SPECTRA ON PANELS FACE ÇUALITY INDEX FOR FIRST SPUCIMEN IN A SIMPLE MANEUVER SPECTRUM

N. Test	N. Pred	esses for	*	.052	979°
Mr Pred.	(106 Cycles)	N based on stresses for local gross area at fracture	К = 3,28 *	4.200	075*
 M Test	M. Fred.	tresses oss area	*	1,61.	990•
	_	K based on stresses for minimum gross area	× 0. * ×	150	000*9
Nr lest	(10° Cycles)			.218	.394
Panel No.	,			77	አ
Test Group	No.			2	

* K for Panel No. 7 in Test Group No. ML7

f_{min} for maneuver loading For coding see Table 13

Figure 46. Comparison between Predicted and Experimental Fatigue Lives

CONCLUSIONS FROM THE PANEL TESTS

The analysis of the spectral fatigue tests conducted on the complex panels result in the following conclusions.

- 1. The influence of the ground-air-ground transition cycle which occurs once per flight was found to be important in reducing the fatigue life of these joints when compared with the results of similar panels tested by the flight load spectra alone. This confirms the conclusions reached in the analysis of the coupon test results.
- 2. A Fatigue Quality Index derived from the first test result of a simple gust spectrum by use of standard S-N curves was used as a test-based fatigue life prediction procedure for other types of loading spectra. The predictions were somewhat unconservative for composite gust loading spectra which included the ground-air-ground cycle based on the mean ground to mean flight load transition. When based on the minimum gross area stress adjacent to the joint, this fatigue Quality Index produced unduly conservative predictions for both the simple and the composite fighter maneuver test results. When based on the gross area through the point of fracture, they were both conservative and unconservative for the simple maneuver results and unconservative for the composite maneuver results.
- 3. The use of a Fatigue Quality Index derived from a simple fighter maneuver test spectrum was unconservative in predicting the composite fighter maneuver which contained the ground-air cycle based on the transition of mean ground to mean flight load.

SECTION VI

SUMMARY AND CONCLUSIONS

The main difficulty in the task of the prediction of fatigue life lies in the definition of a fatigue quality of complex structure. This quality embodies an intergration of the dual effects of a complicated localized internal stress history and the physics of the creation and propagation of a fatigue crack. The problem is complicated by a very complex loading history, plastic yielding at peak stress points, progressive work hardening ◀ ome materials, changing residual stress patterns, nonlinear, nonrepeat able slippage of friction joints, redistribution of local internal loads. and mun; other factors not amenable to analytical treatment. Means of *malytical prediction of this fathme quality of a complex structure will : it | lke:/ be available in the near future. The statistical nature of • my facets of the fatique problem precludes hope of any specific fatigue 1: fo prediction of a simple article. The best that can be achieved is by and compari the of the expectations of new structure researed with current and lest purid mance. However, the problem of fatigue com rol is amenable to saution.

An engineering evaluation of the collable practical orthods of fatigue life prediction was conducted by the application of selected procedures to a large on was evaluated by the application of selected procedures to a large on was evaluated from the lines. Communities a smalle hypothesis is recommunical as test qualified from the standy districtly, vertaility, and of sufficient accuracy (in view of other intangit as in the problem) for use in three areas of derigns.

1. Paliminary Design

The Stress Concentration Method (essentially a refine i method of stress analysis) must be coupled with a damage theory to constitute a life prediction method. The direct use of theoretical (or photosistic or experimental) elastic stress concentration factors coupled with the linear cumulative damage procedure is instead a animay provide misleading comparisons. Therefore, development test of fatigue-critical areas are required.

A. Davelopment Tents

The development tests are an important link in any system for the control of fatigue cracks in fleet operations. The specimens must be complete in all fatigue-critical details. Where feasible, constant amplitude S-N type tests may be conducted to provide specific S-N data for fatigue life predictions by the simple cumulative damage procedure. This requires a considerable number of identical specimens for any resonable degree of confidence. Where constant amplitude S-N type testing is not economically feasible (for large size specimen, component, or airframe testing) it is recommended that spectral type tests impose the full range of loading anticipated for operational

service. Spectral tests results are known to depend on many variables and assumptions made in the reduction of service loading records to practical test loading history. Some of these include unit spectrum size and stress interval size, both of which should be made relatively small (block size 1/20 or less of anticipated life; stress interval 1000-2000 psi). Flight by flight load sequence is one means of avoiding arbitrary definitions of the ground-air-ground transition cycle.

The sequence of the higher loads in the schedule has a large influence on the results; if applied early in the loading history, the test life may be unconservatively prolonged. Only the Henry Method, extended for more general application, had the potential of accounting for block size and loading sequence. However, for the test data used in this evaluation, the Generalized Henry Method offered no overall improvement over the more simple Linear Cumulative Damage Hypothesis. This problem cannot be satisfactorily resolved until sufficient statistical information on the sequence of occurrence of the highest loadings is made available from service records.

An interpretation of the full spectrum type fatigue test is outlined by a special application of the Linear Cumulative Damage Procedure in connection with a standardized set of S-N curves. The procedure is to find, by interpolation, which set of KT curves from the standardized group is required to make the cumulative damage equation exactly unity for the total applied test history. This K-value defines the Fatigue Quality Index demonstrated by the specimen under these test conditions.

3. Analysis of Service History

Many intengibles remain in the laboratory test based analysis system, including the wide range of operational loads in service, among others. It is necessary, therefore, to maintain a comparative base in service history by the consistent application of any analysis system to laboratory tests of structure which has a known operational history - both successful and unsuccessful. This is most important in the establishment of the fatigue quality acceptance standards for new structure.

The application of the Linear Cumulative Damage procedure in the prediction of the fatigue life of airframe structure as described has many unexplored areas. One of the most pertinent questions raised is the validity of the extrapolation of one or a few test results to other loading conditions. The experimental program conducted for this study explored briefly the influence of the statistical load content, as exemplified by the shape of the cumulative load frequency spectra, on the Fatigue Quality Index derived from the tests and their use in a test-based fatigue life prediction method for loading spectra of other shapes. A number of different loading spectra were applied to notched 7075-T6 aluminum alloy coupon specimens, including both the random loading sequences based on actual flight load measurements, and various ordered cyclic loading spectra derived from this flight record, and from various modifications of it.

A new magnetic tape controlled fatigue test machine and auxiliary equipment was assembled and testing, calibration, monitoring and maintenance techniques perfected to precisely reproduce almost any desired loading record which could be imposed on magnetic tape.

The experimental data derived from these tests were analyzed to determine what correlation, if any, existed between the derived quality index values and the slopes of the various loading spectra, and whether there was any trend that could be used as a corrective step for the improvement of the fatigue life prediction method. The slopes of the loading spectra were measured both at the high stress region and in the mid-stress level in the region of the maximum computed damage ratios. Fatigue life predictions using the experimentally derived relationship between spectrum slopes and the quality index were compared with the normal predictions based on the fatigue quality index derived from the first test result of a group.

The second group of experiments was conducted on a complex joint specimen representative of contemporary aircraft construction. Except for one specimen, these tests were conducted in a 500,000 lb. resonant pendulum type fatigue test machine. The same step-ordered cyclic load spectra were used as for some of the coupon experiments. These included gust type spectra of various slopes and maneuver type loadings, and two composite spectra of ground taxi loads, ground-to-air cycles based on the transition from ground mean load to flight mean load, and containing, in one case spectra of high peak-high slope flight gust loads, and in the other case spectra of military maneuver flight loads.

From an analysis of the experimental results of coupon tests, no consistent trend in the derived fatigue quality index could be developed as a function of the slope of the various loading spectra curves in either the high stress region or the mid-stress range of maximum computed fatigue damage. Fatigue life predictions of coupon type specimens loaded by composite spectra, including a ground-to-air transition based on the mean load level, from a test derived fatigue quality index based on a simple spectrum test of similar specimens loaded only by the flight portion of the spectrum of loads were less conservative than predictions by the simple linear cumulative damage hypothesis. This conclusion is equally applicable for gust-type loads or for military maneuver-type flight loads.

The use of a fatigue quality index based on a gust-type test to predict the fatigue life of specimens loaded by military maneuver-type spectra was not satisfactory.

These conclusions, with respect to the Fatigue Quality Index procedure initially based on coupon tests, were confirmed by a brief series of tests on a complex joint specimen.

A general observation is made that the scatter of coupon data obtained by spectrum-type tests is somewhat smaller than the scatter obtained in the constant amplitude-type tests, and that the scatter in results of the limited number of complex joints under spectral loading is even less than that on coupons tested by either constant amplitude or spectral-type loading. This may be significant in any study which might be conducted to establish factors of safety or margins of safety on fatigue loads or life. It is suggested that

these factors or margins of safety for fatigue cannot be established from a study of fatigue results alone, but must be considered in perspective with many other considerations such as static design criteria, fail-safe philosophy, and inspection, maintenance, and repair policy, as well as performance penalties which might accrue. These considerations are beyond the scope of this study.

CONCLUSIONS

Based on the test data applied in the engineering evaluations conducted in this study and the analysis of the experimental results generated for the investigation of extrapolations of a test-based fatigue life prediction method for airframe structure, the following conclusions may be drawn.

- 1. When satisfactory constant amplitude S-N type data can be provided for the specific structure, the Linear Cumulative Damage procedure is recommended for its simplicity, versatility, and sufficient accuracy commensurate with the data currently available for this type of analysis.
- 2. Development tests are required for all fatigue-suspect areas of the structure. Either constant amplitude S-N type tests or full load range spectrum-type tests can be used for this purpose.
- 3. An important link in a fatigue quality control system is the establishment of realistic fatigue quality acceptance standards. These should be based on the consistent analysis of laboratory test results of structure with known service history, both successful and unsuccessful.
- 4. For spectral type tests, the technique for load simulation such as unit spectrum block size, stress intervals, and the order in which the higher peak loads appear in the sequence of loading has an important bearing on the fatigue life predictions based on test results. The unit block size and the stress interval should be relatively small. The question of where in the sequence of loading to place the highest loads cannot be satisfactorily resolved until this type of statistical information is made available from service records. A compromise is to place the highest loads approximately into the midrange of the anticipated life sequence.
- 5. A special use of the Linear Cumulative Damage procedure in the interpretation of test results under complex composite spectral-type loading histories is a useful tool to accomplish two functions:
 - a. To provide a simple index number on a scale of fatigue quality by which various structures may be compared and evaluated against fatigue quality acceptance standards established by similar consistent analysis of service history.
 - b. To provide a test basis for the extrapolation of fatigue life predictions of complex structure under other similar loading spectra than the specific test condition, when specific constant amplitude S-N type data cannot be made available.
- 6. Test results indicate that the ground-air-ground transition cycle which occurs once per flight has a strong influence in reducing the fatigue life of coupons and complex panel specimens when compared with spectral tests with flight loads alone.

- 7. The use of simple gust-type spectral test results to derive a Fatigue quality Index is less adequate for the life prediction of gust-type composite spectrum tests which include ground taxi, and ground-air transition cycles as well as flight gust loads. The same conclusion is made for the military maneuver-type loading conditions. The use of a quality Index derived from a simple gust loading condition was completely inadequate to predict the fatigue life of specimens under military maneuver-type of loads, and vice versa. More experimental data are needed to explore the problems of composite loading. In the meantime, it is concluded that development tests should contain the best possible representation of all loads expected in service. Flight by flight spectral loading technique is recommended to avoid arbitrary definition of the ground-air-ground transition cycle.
- 8. A versatile magnetic tape controlled fatigue test machine is now available with adequate calibration and monitoring techniques for precisely reproducing onto test specimens actual flight records and almost any simulation of ordered loading spectra which may be required.

REFERENCES

- 1. Peterson, R.E., Stress Concentration Design Factor, John Wiley and Jons., 1953
- 2. Neuber, H., Theory of Notch Stresses: Principles of Exact Stress Calculations, J.W. Edwards, Ann Arbor, Michigan, 1946
- 3. Hardrath, H.F. and Ohman, L., A study of Elastic and Plastic Stress Concentration Factors Due to Notches and Fillets in Flat Plates NACA Tech. Report No. 1117, 1953
- 4. Hyler, W.S., Popp, H.G., et al., Fatigue Behavior of Aircraft Structural Beams, NACA Tech. Note No. 4137, January 1958
- 5. McCulloch, A.J., Melcon, M.A., Crichlow, W.J., Foster, H.W., and Rebman, J., Investigation of the Representation of Aircraft Cervice Loading in Fatigue Tests, WADD Contract No. AF 33(616)-6575, Project No. 1367, Task 14025, ASD TR 61 435, September. 1961
- b. Miner, M.A., Cumulative Damage in Fatigue. J. Appl. Mech., Vol. 12, No. 3, pp. A-159 A-164, cept. 1945
- 7. Lundberg, B., Fatigue Life of Airplane Structures, J. Aero. Sci. Vol. 22, No. 0, pp. 349 402, June 1955
- 8. Shanley, f.k., a Theory of ratifue Based on Unbonding during keversed Slip. Rand Corp. Report P-350-1, 11 Mov. 1952
- 9. Shanley, F.R., A Theory of Fatigue Based on Unbonding during Reversed Slip: Supplement. RAND Corp. Report P-350-Supplement, 1 May 1953
- 10. Shanley, F.R., Fatigue Analysis of Aircraft Structures, RAND Corp. Paper No. RM1127, 31 July 1953; AD 210794
- 11. Langer, B.F., Fatigue Failure from Stress Cycles of Varying Amplitude, J. appl. Mech., Vol. 4, pp. A-160 A-162, December, 1937
- 12. Grover, H.J., Cumulative Damage Theories. (In Proceedings of the Symposium on Fatigue of Aircraft Structures) WaDC Tech. Rept. 59-507, pp. 207-225, august 1959
- 13. Smith, C.R., Prediction of Fatigue Failures in aluminum alloy Structures, SESA Proceedings, Vol. 12, No. 2, pp. 21-28, 1955
- 1h. Henry, J.L., A Theory of Fatigue-Damage Accumulation in Steel.
 ADM Trans., vol. 77, No. 6, pp. 913-918, August 1955

- 15. Corten, n.T. and Dolan, T.J., Cumulative Fatigue Darage. Session 3-Paper 2 (Advance copy of paper presented at the International Conference on Fatigue of Metals at the IME, London, 10-11, Sept. 1956, and at the ASME, N.Y., 28-30 November 1956)
- 16. Naumann, E.C., Hardrath, H.F., and Guthrie, D.E., axial-Load Fatigue Tests of 2024-T3 and 7075-T6 Aluminum-Alloy Sheet Specimens under Constant-and Variable-Amplitude Loads, NASA Tech. Note No. D-212, December 1959
- 17. Wallgren, G., Fatigue Tests with Stress Cycles of Varying Amplitude, FFA Report No. 28, 1949
- 18. Russell, H.W., Jackson, L.R., et al., Fatigue Strength and Related Characteristics of Aircraft Joints Part II Fatigue Characteristics of Sheet and Riveted Joints of O.Oho-inch 2hS-T. and R 303-T275 Aluminum Alloys, NACA Tech. Note No. 1485, February 1948
- 19. Fisher, W.A.P., Programme Fatigue Tests on Notched Bars to a Gust Load Spectrum, H. A. E. Tech. Note No. Structures 236, March 1958
- 20. Whaley, R.E., Fatigue investigation of Full-Scale Transport-Airplane Wings: Variable-amplitude Tests with a Gust-Loads Spectrum, NACA Tech. Note No. 4132, November 1957
- 21. Payne, A.U., Random and Programmed Load Sequence Fatigue Tests on 245T Aluminum Alloy wings, Dept. of Supply, Relbourne, A.R.L. Report No. 54 244, Sept. 1956
- 22. Kommers, J.B., The effect of Overstress in Patigue on the Endurance Life of Steel, ASTM Proceedings, Vol. 45, pp. 532-541, 1945
- 23. McGuigan, Jr., M.J., Bryan, D.F., and Whaley, R.E., Fatigue Investigation of Full-Scale Transport-Airplane Wings: Summary of Constant-Amplitude Tests through 1953, NACA Tech. Note No. 3190, March 1954
- 24. Richart, Jr., F.E., and Newmark, N.A., A Hypothesis for the Determination of Cumulative Damage in Fatigue, ASTM Proceedings, Vol. 48, pp. 767-778, 1948
- 25. Marco, S.M. and Starkey, W.L., A Concept of Fatigue Damage. ASME Trans., Vol. 76, No. 4, pp. 627-632, May 1954
- 26. Freudonthal, A.M. and Heller, R.A., Un Stress Interaction in Fatigue and a Cumulative Damage Rule Part 1 202h Aluminum and SAE 4340 Steel Alloys, WADC Tech. Rept. 58-69-Ft. 1, June 1958, AD 155687

- 27. Levy, J.C., Cumulative Damage in Fatigue A Design Method Based on the S-N Curves, J. Royal Aero. Soc. Vol. 61, No. 559, pp. 485-491, July 1957
- 28. Foster, H.W., and Wells, R.H. "Fatigue Test of Lower Wing Surface Splice at Station 317" Lockheed Aircraft Corp., Lockheed Report No. 4612, 11 Feb 1944
- 29. Roylance, T.F., "A Review of Cumulative Damage in Fatigue", British Ministry of Supply S and T Memo No. 8/57 Dated May 1957
- 30. Kuhn, P. and Hardrath, H.F. *An Engineering Method for Estimating Notch Size Effect in Fatigue Tests on Steel NACA TN 2805 Oct 1952
- 31. Aircraft Fatigue Handbook Vol. II Design and Analysis Aircraft Industries Association ARTC/W-76 Aircraft Structural Fatigue Panel, January 1957
- 32. Rhode, R.V., and Donely, P., Frequency of Occurrence of Atmospheric Gusts and of Related Loads on Airplane Structures, NACA War Report No. L-121, 1944
- 33. Weibull, W., Statistical Handling of Fatigue Data and Planning of Small Test Series. The Aeronautical Research Institute of Sweden (FFA), Report No. 69, October 1956
- 34. Gramer, H., Mathematical Mothods of Statistics. Princeton Univ. Press, Princeton, N.J. (1954)
- 35. Pearson, K., Tables of the Incomplete T Function, Cambridge, 1951

APPENDIX A

PESCRIPTION OF FATIGUE LIFE PREDICTION METHODS

A survey of the literature revealed some seventuon procedures by different authors dealing with some aspect of fatigue life predictions. This section of the report presents a detailed description of most of these methods. In a number of cases, study of the methods revealed essentially a common basis with variations in handling cartain aspects of the problem. For instance, the form of the mathematical equations for representing the loading spectre, or the S-N data were subject to differences by different authors who, nevertheless, were each performing, in a slightly different way, the basic linearly cumulative damage analysis.

In addition, study of some of these methods showed that modifications, extensions, and generalizations could be derived which would improve the application of certain specific methods. These extensions are derived and explained in detail. They provide three additional procedures for consideration, making twenty in all.

Study of these methods revealed some which could not be evaluated because of the lack of proper data. The methods which were studied include the following: (Those underlined were chosen for comparative evaluation.)

- I. Linear Cumilativo Damage Miner's Method
- 2. Shanley's "1X" Method
- 3. Shanley's "2X" Method
- 4. Lundberg's FFA Method
- 5. Homry's Method
- 6. Generalization of Henry's Method
- 7. Corten and Dolan's Method
- 8. Modified Corton and Dolan Method
- 9. A Simplified Nonlinear Cumulative Damage
- 10. Kommers Method
- 11. Richart and Newmark's Method
- 12. Marco and Starkey's Method
- 13. Freudenthal-Heller's Method

- 14. Langer's Method
- 15. Grover's Method
- 16. Levy's Method
- 17. Smith's Residual Stress Method
- 18. Tangent Intercept Method
- 19. Stress Concentration Method
- 20. A Fatigue Quality Index Method

LINEAR CUMULATIVE DAMAGE - MINER'S METHOD

In 1945 Miner derived, in reference 6, the first logical basis for the method of linear cumulative damage, which had been previously proposed by Palmgren in 1924. In deriving this method, the following assumptions were applied to a simple distribution of discrete loads:

- 1. The amount of internal work absorbed by the material during each load cycle was constant at a given load level.
- 2. The maximum amount of internal work that could be absorbed from cyclic loads prior to failure was always the same.
- 3. The amount of internal work absorbed at each discrete load level in a simple loading spectrum was linearly cumulative and independent of the sequence of loading.

The first two assumptions lead to the following relationship between the amount of internal work absorbed and the number of lead cycles applied at a specific lead level.

$$\frac{w_{\underline{i}}}{W} = \frac{n_{\underline{i}}}{N_4} \tag{A1}$$

where

wi - work absorbed at the ith varying load,

W = maximum amount of internal work that is absorbed by a material before failure (note that W = W₁ = constant),

n, = number of cycles applied at the ith varying load, and

N_i = number of cycles required for failure at the ith varying load.

Assumptions two and three were used to derive the equation which is given below for relating the increments of internal work absorbed at two or more load levels to the maximum amount of internal work absorbed before failure.

or

$$\sum \frac{\mathbf{w_i}}{\mathbf{w}} = 1$$

Elimination of $\frac{x_1}{u}$ in Equations (A1) and (A2) results in the following expression.

$$\sum \frac{n_1}{n_1} = 1 \tag{A3}$$

Failure is specified by the above equation in terms of a damage level of unity when the left hand side of the equation is considered to represent fatigue damage in the form

$$D = \sum \frac{n_{\xi}}{N_{\phi}} \tag{A4}$$

where

D = damage ratio or the fraction of fatigue life used up by the total number of load cycles that are applied at all load levels.

In using this expression, a unit distribution of discrete loads is usually selected that represents some specific service time or flight distance. When the damage ratio D has been calculated for this unit distribution, the predicted life is obtained as follows:

Predicted Life (in hours or miles) = $\frac{1}{D}$ x (Life in hours or miles associated with a unit spectrum of discrete loads)

or, in terms of the predicted fatigue life in cycles

$$N_{L} = \frac{\sum n_{i}}{D} = \frac{\left(\sum n_{i}\right)_{flight} + \left(\sum n_{i}\right)_{G-A-G} + \left(\sum n_{i}\right)_{ground}}{\left(\sum \frac{n_{i}}{N_{i}}\right)_{flight} \left(\sum \frac{n_{i}}{N_{i}}\right)_{G-A-G} \left(\sum \frac{n_{i}}{N_{i}}\right)_{ground}}$$
(A5)

where

N_t = predicted total number of cycles applied at loads of all magnitudes,

 $\sum n_i$ - total number of load cycles in the unit distribution, and

D - damage ratio for the unit distribution.

ASD TR 61 - 434

SHANLEY'S "LI" METHOD

Shanley's "IX" method (references 8.9, and 10) is similar to Miner's method in using the concept of linear cumulative damage that is expressed in Equation (Ah). In this method S-M data are represented by an equation of the forms

$$\overline{n} = \frac{\overline{\sigma}}{s_{\bullet}^{\sigma}} \tag{A6}$$

where

T = a parameter which is equal to the vertical intercept at N = 1 of the straight line fit to a plot of log S, versus log N, and

 δ - exponent defining the slope of the straight line fit.

This equation provides a linear approximation for the log-log form of S-N data that is illustrated in Figure 47.

A relative reduced stress or equivalent stress is also used in this method. This equivalent reduced stress is associated with a load of constant magnitude that may be applied the same number of times as all the loads above the endurance limit in a unit loading spectrum and may be defined in terms of Equation (A6) as

$$S_{R} = \left(\frac{\gamma}{N_{R}}\right)^{\frac{1}{\delta}} \tag{A7}$$

where

 S_p = relative equivalent or reduced stress of constant amplitude, and

NR = the total number of cycles that may be applied at all load levels above the endurance limit prior to failure.

Equation (A5) may be modified so that it becomes applicable to only the loads applied above the endurance limit in a unit loading spectrum. This is accomplished by multiplying this equation by the ratio of load cycles above the endurance limit $(\sum_{i=1}^{n})_{S_{v_i}} > S_{E}$ to the block size of the spectrum or $(\sum_{i=1}^{n})_{all} S_{v_i}$. Use of this

ratio in Equation (A5) will lead to

$$N_{R} = \frac{\left(\sum n_{i}\right)_{3_{V_{i}}} > S_{E}}{\sum \frac{n_{i}}{N_{i}}}$$
(A8)

Figure 47. S-N Data for Notched Sheet Specimens

The following equation will result when Equations (A6) and (A7) are used to eliminate Ni and Np in Equation (A8).

$$S_{R} = \left[\frac{\sum n_{1} S_{V_{1}}^{6}}{\sum n_{1}} \right] \frac{1}{6} S_{V_{1}} > S_{R}$$
(A9)

This equation was derived in reference 8 from a concept of crack growth that leads to the following relationship for depth of crack:

$$h = Ae^{an}$$
 (A10)

where

h - depth of crack,

A - constant,

e - exponential,

a = factor that depends on the magnitude of the varying load, and

n = number of loading cycles.

To complete the derivation of the "IX" method in terms of the quantities specified in Equation (A10) the reduced stress in Equation (A9) was assumed to cause the same crack growth as the unit loading spectrum for which the reduced stress was calculated.

SHANLEY'S "2X" METHOD

By using an assumption that the constant, A, in Equation (A10) was dependent on stress level, Shanley derived his "2X" method in the preceding reference. This assumption leads to a rate of crack growth which is higher than that used in the "1X" method, with the reduced stress expressed in the form:

$$S_{R} = \left[\frac{\sum_{i=1}^{n_{1}} S_{v_{1}}^{2\delta}}{\sum_{i=1}^{n_{1}}}\right] \frac{1}{2\delta}$$
 $S_{v_{1}} > S_{g}$
(All)

By using Equations (A6) and (A7) to eliminate the relative stress terms in Equation (A11), the "2X" method may be expressed in terms of cycles as:

$$N_{R} = \sqrt{\frac{\left(\sum n_{i}\right)_{S_{v_{i}}} > S_{p_{i}}}{\sum \frac{n_{i}}{N_{i}} 2}}$$
 (A12)

The relative reduced stress in Equations (A9) or (A11) may be used to predict fatigue life with the "IX" or "2X" method. To evaluate the reduced stress, S-N data must be analytically defined by Equation (A6) to evaluate the exponent 6 that is used in Equations (A9) and (A11). The value of the relative reduced stress from either of these equations is used to read from an S-N curve the appropriate number of cycles N_R that may be applied at load levels above the endurance limit. Fatigue life is predicted by "IX" and "2X" methods when N_R is multiplied by the ratio of the total number of cycles of the associated unit loading spectrum to the total number of cycles above the endurance limit.

$$N_{L} = N_{R} \frac{\left[\sum_{i=1}^{n_{1}}\right] \text{ unit block size}}{\left[\sum_{i=1}^{n_{1}}\right] s_{v_{i}} > s_{g}}$$
(A13)

The value of N_R could be evaluated by substituting the relative reduced stress in Equation (A7) or (All_i). When these equations provide a good fit to the S-N curve in the vicinity of S_R , their analytical definition will be the same as

the value of N_R obtained by reading an S-N curve. Equations (A8) and (A12) may also be used to determine the value of N_R without requiring an analytical definition of S-N data or of reduced stress. However, these equations were not used in making predictions from the "IX" and "2X" methods.

THE FFA METHOD

Bo Lundberg and his colleagues at the Aeronautical nesearch Institute of Sweden (FFA) developed mathematical equations in reference 7 for simplified forms of the gust loading spectra and S-N data. By use of these equations in the linear cumulative damage concept, a closed form solution was obtained for fatigue life predictions.

In this method, S-N curves are represented by equations of the form:

$$R = \frac{cC}{(S_{\perp} - S_{E})^{\gamma}} \tag{A14}$$

where

N - number of cycles to failure at a varying load of constant magnitude corresponding to the relative varying stress, S_v,

S = relative varying stress,

S_E = relative varying stress at the endurance limit (may be arbitrarily defined by the relative varying stress at N = 10!),

of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the vertical intercept at N = 1 of the curve parameter, given by the curve parameter in the

Be exponent defined by the slope of the straight line fit.

A graphical picture of Sed data is given in Figure 48 to illustrate the basis for this equation. This figure 4150 indicates that Popular (A14) may not choosely represent the leberror of Sed data in both the high and low stress ranges.

The currilative leading appearance is rough to the two that me to be a supported in the Torons.

where

H - tobal number of low, cycles applied at or store the relative varying characteristics, to see the second corresponding to See,

 $\rm H_0$ = intercept of the spraight line fit to the constable only loading spectron at $\rm S_v$ = 0 of on $\rm J_v$ is plotted versus log H.

h is slope of the atradible line rut to the equalative emit leading spectrum, and

o wammontial.

Figure 4th Analytical Representation of S-N Date

Log M

The type of curve fitting that is required for an adequate representation of cumulative loading spectra by this equation is illustrated in Figure 49. When more complex analytical functions are used, the solution of the resulting damage equation in the method can become very difficult. Complications are also involved when the shape of the unit loading spectrum cannot be adequately defined by a straight line fit in the stress range for maximum calculated fatigue damage.

To show how Equations (All) and (Al5) are used, Equation (Al) must be written in the form:

$$D = \sum_{N} \frac{-\triangle H}{N}$$
 (A16)

where

 \triangle H = the number of cycles applied within the varying load interval represented by $\triangle S_v$.

The minus sign is required in the above definition for consistency with the negative exponent in Equation (Al5).

For an infinitesimal increment in relative varying stress. $\triangle S_v$. Equation (Al6) may be transformed into the following equation for defining fatigue damage over a wide range of varying stress.

$$D = -\int_{S_{E}}^{\infty} \frac{dH}{dS_{V}} \frac{1}{N} dS_{V}$$
 (A17)

S. Eggwertz used Equations (Alh) and (Al5) in Appendix A of Reference ? to eliminate $\frac{d\ H}{d\ S_v}$ and N in Equation (Al7). He then integrated Equation (Al7) between limits of S_E to ∞ arrive at the following approximate solution.

$$D = \frac{H_0}{cC} h^{-\beta} e^{-h} S_E \Gamma (\beta + 1)$$
 (A18)

where

 $\Gamma(\beta+1)$ = Gamma function of $(\beta+1)$ which

may be obtained from mathematical tables such as Reference 35.

Log H = Log∑n Figure 49. Analytical Interpretation of Unit Loading Spectrum

ASD TR 61 - 434

Within the usual accuracy of S-N and loading spectrum data, the approximate solution in Equation (AlB) was considered to be more than adequate in Reference 7 for all practical applications of the FFA method.

When unit cumulative loading spectra are considered, fatigue damage may be calculated by using Equation (Al8); and the predicted total number of cycles to failure may be obtained by using Equation (A5). In this last step, the actual total number of loading cycles in the unit spectrum must be used rather than the value of H_Q that was determined in the analytical definition of the spectrum.

HENRY'S HETHOD

Henry (reference IL) derived a method of nonlinear cumulative damage by defining fatigue damage in terms of a reduction in the S-N curve. This decrease in fatigue strength reflected the effects of increased local stress concentration when loading cycles were applied at any load level above the endurance limit. As originally proposed, Henry's method could be used only with materials which had S-N curves which fit the following equation:

$$N = \frac{\infty}{S_{W} - S_{E}} \tag{A19}$$

Fatigue damage at any varying stress greater than $S_{\rm E}$ but less than 1.5 $S_{\rm E}$ was evaluated in this method from the following equation:

$$D = \frac{S_E - S_E^*}{S_E} = \frac{n/N}{1 + \frac{S_E}{S_V - S_E} (1 - n/!!)}$$
 (A20)

where

S_E = relative varying stress at the endurance limit from S-N data prior to the initiation of any fatigue damage, and

 S_{E}^{r} = relative varying stress at the endurance limit after fatigue damage is produced by applying varying loads associated with relative stresses larger than S_{E} .

The above equation becomes indeterminate when $S_V = S_E$ and cannot be used when $S_V \leq S_E$. Equation (A20) is also used to compute fatigue damage when two or more varying loads are applied above the endurance limit. The damage after applying one or more varying loads is first defined in terms of an equivalent

cycle ratio (m), at the next varying load above the endurance limit.

This equivalent cycle ratio is then used as the starting point from which additional damage will be computed by Equation (A2C) at the new varying load. This is shown in Figure 50. The equation for the equivalent cycle ratio is

a) Lo-Hi - Sequence of Loading

Figure 50 Equivalent Cycle Ratio $\left(\frac{n}{N}\right)_{i}$ For Lo-Hi and Hi-Lo Sequence of Loading

$$\left(\frac{n}{N}\right)_{i} - \frac{D_{i-1}\left(1 + \frac{S_{v_{i}} - S_{E}}{S_{E}}\right)}{D_{i-1} + \frac{S_{v_{i}} - S_{E}}{S_{E}}}$$
(A21)

where

- $\left(\frac{n}{N}\right)_{i}$ = equivalent cycle ratio at a new relative varying stress greater than S_{E} that computes the level of damage reached by applying loading cycles at other relative varying stresses.
- D_{i-1} = damage ratio after applying loading cycles at the last previous relative varying stress greater than S_{n} , and
- S the new relative varying stress greater than $S_{\underline{E}}$ at which damage is to be calculated.

The use of an equivalent cycle ratio may be further clarified in terms of stress levels and equivalent S-N curves by referring to the Hi-Lo loading sequence in Figure 51. In this figure, n, load cycles are applied at the larger relative varying stress of $S_{f v}$. The constant amplitude fatigue life of $N_{f 1}$ on the original S-N curve is reduced by n_1 cycles to $(N_1 - n_1)$. An equivalent S-N curve that accounts for this reduction is defined in terms of a new relative endurance limit $S_{\mathbf{r}}^{'}$. The cycles to failure on the equivalent S-N curve at $S_{\mathbf{r}}^{'}$ can be read from the original S-N curve at the increased stress level of c_1 . S_{v1} where c_1 is a function of the new relative endurance limit. The cycles to failure on the equivalent S-M curve at a new relative varying stress of S_{V_2} are also read from the original S-N curve, but not at S_{v_2} . They are read at the adjusted stress level defined by multiplying the new varying stress by C_1 which was previously evaluated at $S_{v1} \cdot$ This results in the definition of a fatigue life under constant amplitude loading of S_{v_2} that is shorter than the original S-N curve by ΔN_2 cycles or the equivalent cycle ratio $(\frac{n}{N})_2$ in Equation (A21). Applying n_2 load cycles at the relative vary stress of S_{v_2} will result in another new equivalent S-N curve with a still lower endurance limit of $S_{E_1}^{\bullet}$. Points on this second equivalent S-N corve in Figure 51 other relative varying stresses Svi are defined by reading the original S-N curve

Figure 51. The Influence of Prior Fatigue Loading on the Selection of an Equivalent S-M Curve

stress levels of C_2 S_{V_1} . In this manner, the equivalent S-N data after any number of loading steps may be defined in terms of the original S-N curve. Since the exponent on $(S_Y - S_E)$ in Equation (Al9) has a fixed value of unity, the equivalent S-N curves have the same slope and are parallel to the original S-N curve when log $(S_Y - S_E)$ is plotted versus log N.

If subscripts are added to Equation (A2), the equivalent cycle ratio in Equation (A2) could be used in the following manner to evaluate damage at the end of applying cycles of the next relative varying stress:

$$D_{i} = \frac{\left(\frac{n}{N}\right)_{i} + \frac{n_{i}}{N_{i}}}{1 + \frac{S_{E}}{S_{v_{i}} - S_{E}} \left[1 - \left\{\left(\frac{n}{N}\right)_{i} + \frac{n_{i}}{N_{i}}\right\}\right]}$$
(A22)

where

 D_1 = damage ratio after applying cycles at the next relative varying stress greater than S_E ,

 n_{i} = number of cycles applied at the next relative varying stress, and

N_i = the number of cycles to failure from S-N data for the next relative varying stross.

Fatigue damage can be determined through repeated use of Equation (A22) as a function of the magnitude and sequence of application of varying loads above the endurance limit. The block size of a simple spectrum of discrete load levels affects the cycle ratio n₁/N₁ used in this equation. Hence, the effects of block size are also a parameter in Henry's method.

After two loading steps, Equation (A2) would take the form given below, with n₁ load cycles applied in the first loading step and n₂ cycles in the second loading step.

$$D_{2} = \frac{\frac{n_{1}}{N_{1}} + \frac{n_{2}}{N_{2}} - \frac{n_{1}}{N_{1}} \frac{S_{E}}{S_{V_{1}}} (I + \frac{n_{2}}{N_{2}}) - \frac{n_{2}}{N_{2}} \cdot \frac{S_{E}}{S_{V_{2}}} (1 - \frac{n_{1}}{N_{1}})}{1 - \frac{n_{1}}{N_{1}} \frac{S_{E}}{S_{V_{1}}} - \frac{n_{2}}{N_{2}} \frac{S_{E}}{S_{V_{2}}} - \frac{n_{1}}{N_{1}} \frac{n_{2}}{N_{2}} \frac{S_{E}^{2}}{S_{V_{1}} \cdot S_{V_{2}}} \left(\frac{S_{V_{1}} - S_{V_{2}}}{S_{V_{2}} - S_{E}}\right)}$$
(A23)

All terms except the first and second in the numerator and the first in the denominator are zero when S_E is zero, or tend to become zero when S_{V_1} and S_{V_2} are much greater than the relative endurance limit S_E . In such a case, Equation (A23) reduces to Equation (A1) in Miner's method. The added complexity in considering more than two load levels in equation (A22) obscures this simple picture. When S_{V_1} and S_{V_2} are of the same order of magnitude as S_E , the difference in the fatigue damage predicted by Equations (A1) and (A23) will depend largely on the values of the cycle ratios $\frac{n_1}{N_1}$ and $\frac{n_2}{N_2}$. While this difference in fatigue damage would be slight for small cycle ratios, the difference will increase essentially as a linear function of these cycle ratios for fixed values of S_{V_1} and S_{V_2} .

Another important feature indicated by Equation (A23) is the effects of the order in which the larger varying load is applied to the specimen. When the larger relative varying load is applied first as S_{V_1} , the last term in the denominator is negative. This makes the resulting damage larger and the fatigue life shorter than it would be when the larger varying load is applied in the second loading step as S_{V_2} . Test results, however, tend to indicate that the fatigue damage is smaller and the resulting fatigue life longer when the largest of two or more varying loads is applied first. This may be seen by comparing the test lives for ili-Lo and Lo-Hi loading sequences such as Test Groups No. G1 and G3 in Table 48. In certain loading ranges this effect may be due to beneficial residual stresses resulting from plastic yielding. (Reference 30)

GENERALIZATION OF HENRY'S METHOD

A more general version of Henry's method is derived to cover the cases where S-N data can be expressed in terms of Equation (Ah). Unlike the S-N function expressed in Equation (AB) and used in the original derivation of Henry's method, Equation (Ah) permits the slope of S-N data to have values other than unity. Removal of this slope restriction on S-N data permits Henry's method to have much wider application and to be used with many more materials than previously posaible.

The general equation for damage is given by

$$D = \frac{1 - (1 - \frac{n}{N})^{1/\beta}}{1 + \frac{S_E}{S_V - S_E} (1 - \frac{n}{N})^{1/\beta}}$$
 (A2l_i)

where

.में = exponent from Equation (All).

The equation replacing Equation (A2) for the equivalent cycle ratio at a subsequent relative varying stress is given below.

$$\left(\frac{n}{N}\right)_{i} \cdot 1 - \left[\begin{array}{c} \frac{S_{v_{i}} - S_{E}}{S_{E}} & (1 - D_{i} - 1) \\ \hline S_{v_{i}} - S_{E} \\ \hline D_{i-1} + \frac{S_{v_{i}}}{S_{E}} \end{array}\right]^{\mathcal{B}}$$
(A25)

Equations (A24) and (A25) reduce to Equations (A20) and (A21) when the exponent is unity.

This modified set of equations for Henry's method was used to calculate fatigue damage for most of the test spectra used in this report, with the exception of spectra employing random sequences. The random sequences were generally inadequately defined for the required step-by-step application of the equations.

CORTEN AND DOLAN'S METHOD

Corten and Dolan (reference 15) base the evaluation of fatigue damage on the number of fatigue cracks that are formed and the rate of crack prepagation. While cracks are propagated at all load levels, the number of cracks is considered to be a function only of the largest varying load used in a fatigue test. With these basic concepts, fatigue damage is assumed on the first cycle of loading and is related to the number of cycles applied at each varying load through the following equation:

$$D = n r n^{\frac{n}{2}}$$
 (A26)

where

m - number of cracks,

r . coefficient of the rate of crack propagation, and

a = exponent that could change with the amplitude of the varying load.

The total calculated damage for a periodically repeated sequence of two different varying loads was generalized from this equation in terms of applied load cycles. This generalization considered the actual number of cycles applied at the larger varying load, and the equivalent number of cycles required at the larger varying load to obtain damage increments equal to those accrued at the smaller varying load. In subsequent development of the equations, however, the authors used the actual number of cycles applied in each step at the smaller load rather than the equivalent number of cycles at the larger load, as mentioned in reference 29. Because of this, their resulting equation for fatigue life falls within the original concept of their theory only when the exponent "a" does not depend on the magnitude of the varying load, and fails to do so when the exponent is affected by changes in the magnitude of the varying load. Hence, the method must be used with a load invariant exponent, where the total number of cycles applied in a periodically repeated sequence of two different varying loads is given by

$$N_{L} = \frac{N_{2}}{\frac{n_{2}}{n_{1} + n_{2}} + R^{1/a} \left(1 - \frac{n_{2}}{n_{1} + n_{2}}\right)}$$
 (A27)

where

N2 = number of cycles to failure at the larger varying load when it is the only varying load applied to the specimen.

n, = the number of cycles applied at the larger varying load,

n, = the number of cycles applied at the smaller warying load, and

R = ratio of the coefficient of the rate of crack propagation at the smaller varying load to that at the larger varying load = $\frac{r_1}{r_2}$

The ratio R in the above equation was empirically related in reference 15 to the ratio of the smaller to the larger varying stress as shown below.

$$R^{1/a} = \begin{bmatrix} \frac{s_{v_1}}{s_{v_2}} \end{bmatrix}^d \tag{A28}$$

where e

 $\mathbf{S}_{\mathbf{v}_1}$, relative varying stress, at the smaller lead;

Sy " relative varying stress, at the higher load; and

d - stress invariant exponent.

Equation (A28) was eventually used to extend equation (A27) into a more general equation for fatigue spectra involving any number of varying loads. The resulting equation is:

$$N_{L} = \frac{N!}{\frac{1}{\sum n_{1}} \sum n_{1} \left[\frac{S_{v_{1}}}{S_{v}^{1}} \right]^{d}}$$
(A29)

whore

N' = number of cycles to failure from S-N data for the largest varying load, and

St = relative varying stress for the largest load.

Use of the above equation will be discussed in the following section of this report.

ASD TR 61 - 434

144

MODIFIED CORTEN AND DOLAN METHOD

The method of Corten and Folan is modified by replacing the stress ratios in Equation (A29) by a ratio involving the number of cycles to failure. This is readily accomplished when S-N data for a material can be analytically represented by Equation (A6).

In such cases, the following relationship between cycles to failure and relative varying stresses can be derived for the two-step spectrum under the restrictive condition where the relative varying stresses S_{μ} and S_{μ} are both greater than the relative endurance limit, S_{μ} .

By generalizing Equation (A30) to cover any number of varying loads, this last equation can be used to eliminate the relative varying stress in Equation (A29). This results in

$$N_{L} = \frac{N^{r}}{\frac{1}{2} n_{1} \sum n_{1} \left(\frac{N^{r}}{N_{1}}\right)^{b}}$$
(A31)

Since Equation (A29) was derived in terms of stresses, it implies that all varying loads, including those below the endurance limit, are effective in propagating fatigue damage. On the other hand, Equation (A31) does not consider fatigue damage to be propagated below the endurance limit. This is because the number of cycles to failure, N_i , is infinite in this region of the S-N data.

Values of the exponents d in Equation (A29) or b in Equation (A31) can be determined by using test data to define all other terms in the applicable equations.

S-N curves define N° and N₁, the unit loading spectra define S_{v1} or n_1 , while

N, may best be defined by the geometric means of the test lives of a set of nominally identical specimens. Evaluation of the exponent b from the test data is discussed in Section III.

A SIMPLIFIED NONLINEAR CUMULATIVE DAMAGE METHOD

While several of the methods which have been described use nonlinear accumulations of damage, an investigation of the simplest type of nonlinear representation was considered to be desirable. For this purpose the available test data will be used to evaluate the exponent in the equation

$$N_{L} = \frac{\sum n_{1}}{\sum \left[\begin{array}{c} n_{1} \\ N_{1} \end{array}\right] c} \tag{A32}$$

where

c = empirical exponent that is independent of the magnitude of the varying load.

When the exponent c is assumed independent of load amplitude, it is found to vary with material, specimen configuration, number of loading cycles in the unit spectrum, the number of loading steps, and the sequence in which the varying loads are applied to the specimen.

The exponent c is related to the exponent b in the modified version of Corten-Dolan's mothod. For a spectrum involving just two loading steps, the relationship between these exponents may be found by equating N_L in Equations (431) and (432). This will result in:

$$h = \frac{\log_{e}\left(\frac{N_{2}}{n_{1}}\right) + \log_{e}\left[\left(\frac{n_{1}}{N_{1}}\right)^{c} + \left(\frac{n_{2}}{N_{2}}\right)^{c} - \frac{n_{2}}{N_{2}}\right]}{\log_{e}\left(\frac{N_{2}}{N_{1}}\right)}$$
(A33)

where

n₁ - number of cycles applied in the spectrum at the smaller varying load,

n, = number of cycles applied at the larger varying load,

b = exponent in Equation (All), and

c = exponent in Equation (A32).

The above relationship becomes rather complex and neither exponent can be expressed as a simple function of the other when a loading spectrum containsmore than two different varying loads.

One pertinent difference between the exponent b in Equation (A31) and the exponent c in Equation (A32) lies in the fact that the value of c is more dependent upon block size than the exponent b. If the exponent c were evaluated for a unit loading spectrum which had the same fatigue life when applied at two different block sizes, the value of this exponent would be larger for the smaller block size as illustrated in Figure 52. The value of c is affected by block size through the number of applied load cycles that appear under different exponents in the numerator and denominator of Equation (A32). Figure 52 also indicates that the value of the exponent b is independent of block size at a specific fatigue life. The only effect that block size can have on the exponent b in Equation (A31) is from experimental variations in the fatigue lives used to evaluate this exponent.

Equations (A31) and (A32) both reduce to the simple linearly cumulative damage hypothesis, Equation (A5), when the exponents b and c are made equal to unity.

Figure 57 Typical Variation in Fatigue Life with the Exponents b and a for a Specific Unit Loading Spectrum.

KOMMERS' HYPOTHESIS AND RICHART-HEWMARK'S AND MARCO-STARKEY'S METHODS

The concept that damage curves are a function of both the varying load and the cycle ratio, n/N, was first presented as a hypothesis by Kommers in 1945 (Reference 22). In 1948 Richart and Newmark (Reference 24) and later (1954) Marco and Starkey (Reference 25) proposed graphical and analytical methods for the application of these damage curves to fatigue life predictions. This hypothesis placed only one restriction on the curves. They could have any shape, but each curve was required to indicate a damage level of one when the cycle ratio was unity. Damage curves of this general type are shown in Figure 50. The evaluation of the actual damage curves is difficult because of the problems involved in assessing any degree of damage less than failure. The most important factor, however, is the relationship between damage curves rather than their absolute values. From this concept, Richart and Newmark developed a method for experimentally securing damage curves at a specific varying load relative to an arbitrary damage curve at any reference varying load.

Marco and Starkey (Reference 25) developed an analytical form for damage curves that is similar to that of Richart and Newmark. These authors make the shape of the damage curve at each load amplitude a function of the cycle ratio raised to a load or stress-dependent exponent.

$$D = \left(\frac{n}{N}\right)^{p^{\prime}} \tag{A34}$$

where

D - damage at a specific varying Icad level,

n = number of cycles applied at the referenced varying load level,

N = number of cycles to fallure, and

 Ψ = load-dependent exponent

In applying the above methods to test results, specially obtained two-step loading test data would be required in large quantities to experimentally determine the relationship between damage boundaries. Since this type of data was not available in sufficient quantity for any of the test conditions being considered, Kommers', Richart-Newmark's, or Marco-Starkey's methods could not be applied.

FREUDENTHAL-HELLER'S METHOD

Freudenthal and Heiler (reference 26) proposed the use of a stress-interaction factor to construct a fictitious S-N curve. The fatigue life, associated with a randomly applied unit spectrum of loading, is predicted from the fictitious S-N curve by the concept of linear cumulative fatigue damage, with Equation (Ah) being replaced by

$$\sum \frac{n_i \omega_i}{N_i} = 1$$

.or

(A35)

$$\sum \frac{n_i}{N_i^{ij}} - 1$$

wher e

stress interaction factor that reduces the cycles to failure at the ith varying load after the specimen has had prior exposure to larger varying loads, and

 $N_i^{ii} = \frac{N_i}{\omega_i}$ = cycles to failure at the ith varying load from the fictitious S-N curve.

Determination of the stress interaction factor in the above equations depends on the statistical analysis of a large number of test results from a number of loading spectra applied to each type of specimen of interest. Experimental data may eventually be obtained that shows the nature of these interaction factors and some rules for their evaluation. Lack of both the type and quantity of data prevented application of this particular method to the test results used in this report.

LANGER'S METHOD AND GROVER'S METHOD

Langer (reference 11) and Grover (reference 12) have each divided the process of fatigue damage development into two stages. The first stage involves crack initiation, and the other crack propagation. In Grover's development of this type of analysis, it is assumed that

$$\sum \frac{u_1}{v_1} u_1 = 1 \tag{3.36}$$

and

$$\sum \frac{x_1}{N_1 (1 - V_1)} - 1 \tag{A37}$$

where

$$(u_i + x_i) = n_i$$

u = number of load cycles applied before crack initiation,

x₁ = number of load cycles applied between crack initiation and final failure, and

per cent of the number of cycles to failure that is used up in initiating cracks at the ith varying load level.

Use of Equations (A36) and (A37) requires information on the number of cycles at each load level for crack initiation and the additional number of cycles to critical fracture. However, if the S-N curves for crack initiation and for failure are parallel, this method reduces to the simple linear numulative damage equation.

No evaluation of this method was possible because the information required was not reported in the available data selected for this study.

LEVY'S METHOD

Another approach to analyzing fatigue has been developed by Levy (reference 27). In this approach the following equation was derived for two-step loading by assuming that less than one application of the higher load level in 10,000 total load cycles would have no effect on the S-E curve at the lower varying load.

$$N_{L} = \sqrt{\binom{N_{2}}{n_{1} + n_{2}} \binom{\log_{10} \frac{n_{1} + n_{2}}{n_{1} + n_{2}}} \binom{\log_{10} \frac{n_{1} + n_{2}}{n_{2}}}$$
(A38)

Where

NL = predicted faticue life,

N₁ = number of cycles to failure at the lower varying load,

N2 = number of cycles to failure at the higher varying load,

n1 = number of cycles applied at the lower varying load, and

n2 = number of cycles applied at the higher varying loads.

This method was extended to three loading steps, with the following equation being suggested for fatigue life predictions with more than three loading steps:

$$\log N_L = a \log \frac{n_1}{\sum_{i=1}^{n_1}} + b \log \frac{n_2}{\sum_{i=1}^{n_1}} + \dots + M$$
 (A39)

where a_1 b_2 . . . and M are functions of N_1 , N_2 , etc.

This equation is tedious to apply, as it becomes necessary to evaluate (q+1) constants in Equation (A39), where q is the total number of loading steps in a unit spectrum. An eight-loading-step spectrum, for example, would require nine different sets of relative load frequencies as well as nine corresponding test results in order to solve the resulting system of simultaneous equations for the applicable constants. Once the constants have been determined from this system of equations, only one equation involving these constants would be necessary to predict fatigue life for any one of the specified unit spectra. The type of test data used in this report could not generally be adapted to applications of Levy's method.

SMITH'S METHOD

Smith, by considering two stress levels, has developed a method in Reference 13 that places primary emphasis on the effects of residual stresses in regions of stress concentration. These residual stresses are induced by plastic deformations during the first high load cycle. Their presence modifies the internal stresses associated with each additional loading, and, as such, is a stress analysis procedure rather than a damage theory or a life prediction method.

The modified stress, including the residual stress component, is used with the unnotched S-N curves and the linear cumulative damage equation to predict the fatigue life.

Since this method considers the influence of local stress variations on the fatigue strength of the material, an accurate stress history at the critical point is required. While this procedure has been demonstrated for simple two-step loading on a simple coupon, its application to multi-spectra in complex structure is not practical as yet. It was not possible to evaluate this method with the data chosen for this study.

TANGENT-INTERCEPT METHOD

The Tangent-Intercept approach (reference 28) was originally conceived to aid in interpretation of spectrum-type fatigue tests. It is in essence a graphical procedure of plotting the total cumulative load frequency spectrum of varying stresses achieved in the fatigue test at failure upon a graded set of S-N curves of the same mean stress level. The Kr value of the S-N curve which is tangent to the test total cumulative load frequency curve becomes the effective fatigue quality associated with the joint tested. Since both the test spectrum and the S-N curves were starlardized for all fatigue tests of this era, simply comparing the effective Kr values gives a relative scale of joint quality. The method is schematically demonstrated in Figure 53. Joint A demonstrated a Kr = 4.00; Joint P did not last as long under the standardized test spectrum of loading and indicates a tangency to the S-N curve for Kr = 8.00. Fatigue tests of many joints which had proven satisfactory in service life showed better than, for example, Kr = 4.5. Some joints which developed cracks in service tested worse than Kr of 4.5. By this means $K_T \leqslant h_0 5$ became established as the fatigue quality acceptance standard. New joints were required to be redesigned and retested until they demonstrated acceptably low Kr (& 4.5).

The standard test spectrum was derived from a peak count reduction of flight test records from an instrumented (VGH) Lockheed Model 18 Transport flown approximately 1000 miles through Rocky Mountain weather. Later more extensive records reduced by NACA show that for small service times this spectrum is good. However, with longer service times, relatively greater number of high load levels are developed producing a concave upward shape to the load frequency curve. Other loadings such as landing, taring, ground-air cycle, etc., became known as prominent producers of fatigue damage, each at considerably different mean stress levels. When these loadings were included in the test program, the Tangent Intercept approach proved inadequate to handle the added complexities. Its use for the purpose of interpretation of spectrum fatigue tests has since been entirely superseded by the application of the linearly cumulative damage concept.

Proposals have been made to convert this graphical process into a procedure to predict fatigue life (reference 31). As a life prediction procedure, the tangent-intercept method is illustrated on Figure 54. In this method, the prediction of fatigue life is based on the number of times the complete unit loading spectrum can be applied to a specimen before the spectrum becomes tangent to (or intercepts) the S-H curve defined for the test specimen.

As indicated on Figure 54.

$$N_{L} = \frac{N_{T}}{H_{T}} H_{S} \tag{A40}$$

Pergent Intercept Method of Spectrum Patigue Test Interpretation Figure 53

提到**的现在分词,这个人,然后是这个多名中国的人**的人,但是是1000年,

Figure 54 Schemetic of Tangent Intercept Method

- N_T = number of cycles to failure at the point of tangency of the cumulative loading spectrum and S-N curves,
- H_T the total number of cycles in the unit loading spectrum that are applied at or above the varying load at which the cumulative loading curve is tangent to the S-N curve, and
- H_S = total number of cycles applied at all varying loads in one complete application of the unit loading spactrum.

Once the unit loading spectrum and the S-N data are specified, the tangent intercept method will give the same predicted life irrespective of the loading sequence or the block size of the unit spectrum.

In terms of the linear cumulative damage process, the basic procedure outlined for the tangent-intercept method implies that the one constant amplitude load in the test spectrum at the point of tangency with the S-N curve is the only load which creates damage, and all other loads, both above and below this level, contribute no fatigue damage. This is, of course, known to be unconservative.

In the graphical application of the procedure, one test spectrum of a gust or a maneuver type may be conveniently compared with an appropriate set of S-M curves at a time. If the required total loading spectrum contains other significant types of loadings, such as combined gust, maneuver, ground taxi, and ground-pir-ground transitions, the graphical procedure becomes hopelessly inadequate and impractical.

For these reasons no attempt was made to develop an empirically corrective procedure to reduce the unconservatism of the tangent-intercept fatigue life predictions.

STRESS CONCENTRATION METHOD

The stress concentration procedure is a method of stress analysis to define as accurately as possible the stress distribution in local regions of discontinuities. (Typical references 1, 2 & 3) Before specific fatigue test data are available on a part, coupon, or joint specimen, the analytical assessment of the fatigue quality of a design is possible only through means of highly refined theoretical and/or photo-clastic or experimental stress analysis procedures. This type of analysis has in the past received a large amount of attention. This attention is currently no less, and work will continue to expand in the future. A large body of literature exists which provides solutions for many types of discontinuities and applied loading systems. However, for the reasons discussed in the introduction, applications of this analytical approach (including, as wall, both experimental photoclasticity and static experimental stress analysis by means of strain gages and others) can only be considered a rough approximation until specific fatigue tests can be run.

To complete a life prediction method, the stress concentration procedure must be coupled with a fatigue damage theory. For evaluation in this study, the Miner's simple linear cumulative damage hypothesis was chosen. This method, used with a standardized set of S-N data for various geometrical Ky values, constitutes the basic information usually available in early stages of design. The choice of the standard S-N curves is, in essence, arbitrarily specifying a damage boundary shape before this boundary has been determined or confirmed by tests. For important complex joints or critical areas of the structure, the timely confirmation or correction of the fatigue quality and the life prediction by fatigue tests through the full range of the loading spectrum is of utmost importance.

では、「「「これのこうない。」というないという。「「「「「「「「「「「」」」というない。「「「「」」」というない。「「「「」」というない。「「「」」というない。「「「」」というない。「「「」」というない

FATIGUE QUALITY INDEX METHOD

The Fatigue Quality Index method was devoluped to overcome the difficulties inherent in the use of the Tangent Intercept method for the interpretation of a composite spectrum test on a complex joint. The composite test spectrum is generally made up of a taxi-load spectrum at the ground static mean load level, a gust and/or manouver and landing spectrum at the flight static mean load level, and ground-air-ground transition cycles for each flight. The spectrum fatigue results are interpreted by the use of the simple linearly cumulative damage equation to specifically define (by interpolation) which of the standardized S-N curves (identified by Kr value), when used in conjunction with the actually applied test spectrum, will exactly satisfy the equation:

$$\sum_{N_{\underline{1}}}^{n_{\underline{1}}} \equiv \dots \qquad (AL1)$$

The stress concentration factor which Fatigue Quality Index demonstrated 1 loading spectrum. The Quality Index established quality standard or else satisfactory quality is achieved. on the results obtained in an ident which have a known service history.

For comparative purposes the qualit system consistent between the analy tests of new structure. Generally for each complete joint or critica one set of S-W data for the hard a interpretations and life predictic standardized set. This standardiz

For its use as a life prodiction r from a fatigue test in which a com loads is applied to suspect areas derived from this test result may boundary on which life predictions similarly staped 'sading spectra,

arbitrarily defined damage boundar

any significant relationship to the

The Orlany Index procedure as a " with the other selected methods by ly teation to multable data from the See Sections III through VI.

dentifies these curves becomes the The test specimen under its expected ust be equal to or smaller than the edesign and retest is necessary until ; established quality standard is based 1. consistent analysis of many joints

scale must remain fixed and the analysis of service history and the analysis of complete S-N curve is not available pa of the structure. For these reasons Finum alloys has been fixed and all tost are based on the consistent use of this set of S-W curves may be considered an and, in the usage outlined, have no longer data from which they were derived.

hod a Fatigue Quality Index is determined fitte spectrum of all anticipated service the structure. The Patigue Qualit : Duc. s considered we as a twel-delan is diminithis sin as any may be hade for other

rediction method is evaluated along literature and to the special fatig of ata generated for this program. It so evaluations are discussed in the apply interplaces elsewhere in this reports

asd tr 61 - 434

APPENDIX B

APPLICATION OF SELECTED FATIGUE LIFE PREDICTION METHODS TO FUBLISHED TEST DATA

The study of the twenty proposed fatigue life prediction mathods, conducted in Appendix "A", reduced the list to ten which were to be evaluated numerically by application and comparison with the selected spectral fatigue test data described in Appendix "C". It was also decided to vary the procedure of mathematical curve fitting in two of these methods to determine the significance of alternate equation parameters for S-N curves, one set derived for a least square "best fit" for all data points, and the other set derived for a least square "best fit" in the local region of the midstress levels, where usually the maximum calculated damage is found. These twelve applications are those listed:

- 1. Miner's Linear Cumulative Damage Method.
- 2. Lundberg's FFA Method Variant "A", with best fit to the midstress range of S-N and loading spectra data.
- 3. Lundberg's FFA Method Variant "B", with best fit to the full-stress range of S-N and loading spectra data.
- li. Shanley's "1X" Method.
- 5. Shanley's "2X" Method.
- 6. Henry's Method Generalized Form Variant "A", with best fit to the midstress range of S-M data.
- 7. Henry's Method Generalized Form Variant "B", with best fit to the full-stress range of S-N data.
- 8. Tangent Intercept Mothod.
- 9. Stress Concentration Procedure with Linear Cumulative Damage.
- 10. Fatigue Quality Index Method.
- 11. Modified Corton-Dolan.
- 12. Monlinear Cumilative Damage.

The following sections explain the applications of each of these methods to the prediction of the fatigue lives of test specimens for which spectral and S-N data are listed in Appendix C.

The comparisons of the predicted fatigue life and experimental fatigue life are given in Section III of the main body of the report.

In addition to the direct comparison of fatigue lives on the cycle scale, a constant proportional adjustment in the varying stress levels was determined to make the predicted life exactly the experimental life for each test group by each method. The application of the proportionality factor to the mean

stress would, of course, make a more meaningful assessment of the effect of cross-section material changes in design. However, since the influence of the mean stress is not expected to change the order of ranking of the methods, the more simple comparison was chosen. The results of the analysis and comparisons of the various methods by the stress adjustment factor are given in Section III of the main body of the report.

1. Miner's Linear Cumulative Damage Method

The direct application of Miner's linear cumulative damage method is simple and straightforward. The unit cumulative frequency spectrum for the applied loads of each group is reduced to the simple number of cycles. ni, in each stress interval in Tables 31 through 47 of ippendix C. The stress intervals are those used in each particular test, and the reduction from the accumulated spectrum to the simple spectrum is in accordance with the definitions given in Figure 55. Assuming all the cycles within one stress interval to act at the equivalent stress level approximately the mid point of the interval, the allowable number of cycles, N1, at that stress level was interpolated from the appropriate form of the S-N curve; i.e., symmetrical varying stresses about a constant mean stress for gust-type spectra. while varying stresses that maintain a constant minimum stress were used for the maneuver-type spectra. The interpolating function is a straight line segment in Sy - Log N from tabulated imput data taken at relatively close intervals. These values of Na are also listed in the Tables 31 through 47. The individual damage ratios are formed and summed for all the stress intervals to form the damage for the unit spectrum. The life prediction for the group is then computed by Equation (B1):

$$N_{L} = \frac{\left(\sum n_{1}\right) \text{ unit block}}{\left(\sum \frac{n_{1}}{N_{1}}\right) \text{ unit block}}$$
 (E1)

These computations were performed on the IBM 7090 computer.

The stress adjustment ratio was determined by the enange in slope of the accumulative spectra (i.e., constant proportional change to the stresses of all intervals) to require the process to exactly predict the test life. This was accomplished by an iteration procedur programmed for digital computation on the IBM 7090 computer.

Special handling was found necessary for some cases in which small changes of the stress adjustment factor would increase or decrease the mid-interval stress of the lower block in the vicinity of the endurance limit stress. Bringing in or dropping out of the large number of cycles in this last block could indicate a disproportionate

Figure 55 Method used to Reduce Cumulative Stress . Frequency Spectrum into Simple Cyclic Loading Steps.

Cumulative Cycles - H• ∑n

shift in the predicted fatigue life for those cases where the S-N data indicate an actual endurance limit, or those cases in which an arbitrary endurance limit had been defined at 107 cycles.

2. Lundberg's FFA Method

Since Lundberg's FFA method is basically an analytical form of the linear cumulative damage procedure, application consists of the determination of the mathematical curve parameters for the best fit to the unit applied loading spectrum, and those for best fit to the appropriate S-N curve. The suggested equation for gust-type spectra Equation (AL5) has two adjustable parameters, Ho, the intercept, and h, the slope of the straight line, which is a best fit of the unit cumulative relative varying stress history when plotted in semi-log form of Sv vs. log on, as in Figure 56. The parameters for the S-N curve, OC and of from Equation (All), represent, respectively, the intercept and the slope of the straight line which best fits the S-N data in a $log(S_v - S_E)$ vs. log N plot as in Figure 57.These four parameters were determined for each test case using the applied unit loading spectra and the appropriate type of S-N data for gust spectra, or for maneuver-type spectra. The S-N curves for each type of specimen were determined for the applicable mean stress or minimum stress through interpolation on the Christensen diagram as discussed in Section D. Where necessary, parameters for the unit loading spectra were biased to best fit the midstress range in the region of maximum colculated damage. The parameters for the S-N curves were determined for two cases:

Case (A) for a best fit to the midstress range of S-N data in the region of maximum calculated fatigue damage ratios, and

Case (B) for a best fit to the full stress range.

The parameters for the equations of Case (A) are given in Table 19; those for Case (B) are given in Table 22 for the gust spectra tests. The unit damage computed from the unit spectra is given in terms of these four parameters by Equation (Al8) of Appendix A, and the predicted fatigue life is computed by Equation (A5) of Appendix A. Those fatigue life predictions are listed in Table 21 for the gust spectra by Case (A) and in Table 22 for Case (B). The fatigue life predictions for the maneuvering spectra tests are given in Table 23. The geometric mean of the experimental fatigue life of each group of tests is given in each table for direct comparison. These data are plotted in Figures 5 and 5 in Section III, where comparisons of those results with those of other methods are discussed.

The stress adjustments required to predict exactly the experimental fatigue life were determined for each test group by trial manipulations of the unit test spectra slope parameter h, amintaining Ho the intercept constant. The resulting stress adjustment factors are listed in Table 24 for the gust leading spectra, and in Table 25 for the maneuvering-type spectra.

Figure 56 Comparison of Analytical and Experimental Unit Gust Loading Spectrum for Notched Sheet Specimens

3. Shanley's "IX" Method

In predicting fatigue life with Shanley's "IX" method, reduced varying stresses were computed for each of the loading spectra that were compared with test data. The number of applied cycles ni and the corresponding relative varying stresses Sv; above the endurance limit were provided from the test spectra in Tables 31 and 47 of Appendix C. The exponent δ in Equation (A6) was evaluated from the pertinent S-N data by a least square straight line fit to a plot of log Sy versus log N. In securing this fit, S-N data points for the low stresses near the endurance limit were omitted because these stresses did not generally lie on or near the straight line which fit best the rest of the S-N data. After the exponent & has been obtained from S-N data, the solution of Equation (A9) for a relative reduced stress SR corresponding to the stresses above the endurance limit in a loading spectrum is straightforward. The predicted number of cycles, NR, to failure for load levels above the endurance limit are thon read from the appropriate S-N curve at the computed value of Sg. Predictions of fatigue life in terms of cycles of applied loads at all levels, including those below the endurance limit, in a unit loading spectrum are then obtained from Equation (Al3) by multiplying NR by the ratio of total number of cycles in the unit block to the number of load cycles applied above the endurance limit. The resulting life predictions, NL, are listed in Table 21 for gust loading spectra and Table 23 for maneuver loading spectra.

Stress adjustments were also computed by interpolations to make the "lX" method exactly predict the test results. These adjustments are given in Tables 24 and 25.

4. Shanley's "2X" Method

The fatigue lives for Shanley's "21" Method in Tables 21 and 23 were determined from Equations (All) and (Al3) in a similar manner as for Shanley's "11" Method. The proportional stress adjustment factors determined by this method to exactly predict fatigue test lives are given in Tables 24 and 25.

5. Generalized Henry's Method

Fatigue life predictions by the generalized Henry's Method were computed for each of the test groups by the alternate application of Equations (A2h) and (A25), of Appendix A, and accounting for the sequence of loading in the test block of each unit spectrum until the damage reached a value of unity. The number of blocks repeatedly applied to reach the damage value of unity is then the measure of the predicted fatigue life.

The parameters β & Sg in Equations (A24) and (A25) were determined for each of two cases of curve fitting.

Case (A) is the best fit line in the limited mid-stress range in the region of maximum calculated damage, from the graphs of $log(S_v-S_E)$ vs. $logN_*$

Case (B) is the best fit line for the full stress range on the graphs of $log (S_v - S_E)$ vs. $log N_o$

These parameters are given for each test group in Table 19 for the gust loading spectra utilizing the Case (A) curve parameters for the S-N data, and in Table 22 for the Case (B) curve parameters. The S-N curve parameters for the maneuvering spectra tests are given in Table 20. The cycles to failure N at each of the stress levels used in testing were read from an S-N curve.

The fatigue life calculated for each group of tests is given in Tables 21 and 22 for the gust spectra leadings with the Case (A) and Case (B) forms of S-N data, respectively, and in Table 23 for the maneuver spectra test groups in which only Case (B), the best fit for the full range of S-N data, was used. The experimental test results are also given in these tables for direct comparison. These predictions are plotted along with the prediction results of the other methods and with the experimental results for comparative evaluation of each of the methods in Section III in the main body of the report.

In addition to the fatigue life evaluation, the Generalized Henry procedure is used to determine the proportional stress adjustment factor required to predict exactly the test life. These factors are listed in Table 2h for the gust spectra test groups and in Table 25 for the maneuver spectra groups. These results are also compared with the results of other methods in Section III of the report.

In several of the test groups (GA2 and GB3) it was noted that a damage ratio in excess of unity was achieved within one of the stress intervals. The computing procedure, of course, recognizes this as failure and predicts life as less than the unit block size although, experimentally, these groups lasted from approximately twelve to sixteen times longer than predicted. These were extreme cases of the High-to-Low sequence of loading within the test block in which very few blocks were applied. Residual stresses from early plastic yielding no doubt greatly tenefited the net effective fatigue stress at the peak stress point. These examples point up the important influence test variables often have on fatigue life in the laboratory. The probability of these type events occurring in service cannot be deduced from current data reduction procedures.

6. The Tangent Intercept Method

The fatigue lives predicted by the Tangent Intercept method were secured by locating the point at which the cumulative loading spectrum was tangent to the appropriate S-N curve and applying Equation (AliO) to arrive at the total cumulative number of cycles in the tangent spectrum.

The stress adjustment factor was also derived by trial changes in the slope of the loading spectrum until the total cycles predicted agreed with the experimental test results.

The fatigue life predictions are listed in Table 21 for each group of gust loading spectra tests, and in Table 23 for each group of maneuver loading spectra tests. The experimental values are also given for direct comparison. The stress adjustment factors are listed in Tables 24 and 25 for the gust and maneuver loadings, respectively.

7. Stress Concentration Factor Method

The stress concentration factor method as described in Appendix A is an analytical stress analysis procedure for defining the local critical stress state which, when coupled with a fatigue damage theory, may be used to predict fatigue life. Its area of usage is limited to preliminary design assessments in which only minimum information is available. The application of this procedure makes use of the simple linear cumulative damage hypothesis. The appropriate S-N curve is scleeted from the group of standardized S-N data in Figures 58 to 62 by means of the theoretical stress concentration factor reported for each particular test specimen. Thirty groups of data from those listed in Appendix C were analyzed by this procedure. The resulting fatigue life predictions are listed in Table 21 for the gust spectra tests. The experimental fatigue life for each test group is also listed for comparison.

The stress adjustment factors were determined, using the same sets of data, to make the predicted fatigue life equal to the experimental fatigue life. These factors are listed in Table 24 for the gust spectra tests. Comparisons of the results of these predictions with those of the other methods chosen for evaluation are given in Section III in the main body of the report.

8. Fatigue Quality Index Method

The Fatigue Quality Index method was used to predict fatigue life for thirty-three test groups. The application of this method requires the use of one spectral fatigue test result to determine by interpolation which K curve, of the standard set of S-N data (Figures 58 to 62), is

Figure 58 Standardized S-N Curves

Figure 59 Standardized S-N Curves

Figure 60 Standardized 5-N Curves

required to make the linear cumulative damage equation equal unity for this test result. Interpolation of these standardized S-N curves to the mean stress of each test group is made from Christensen diagrams similar to those described in Appendix D. The test-derived Fatigue Quality Index or K is listed in Table 26 for all of the gust spectra that were applied to aluminum specimens and in Table 27 for maneuver spectra applied to aluminum specimens. One of these test-derived K is used as a base test to predict the fatigue life of identical specimens loaded under other similar types of spectra.

To reduce the bias in choice of the base test, only those test groups were selected which had a quasi-random or Lo-Hi-Lo loading sequence in conjunction with the same and other types of loading sequences in similar test groups. These selected spectrum tost groups were first used to derive the k for which Equation (Ahl) was exactly satisfied. The resulting value of K was then used to obtain fatigue life predictions for the test groups that are noted in Table 21.

The stress adjustment factors in Table 24 were also determined for this same set of test groups to make the predicted fatigue life exactly match the test life when using the previously derived Quality Index in the linear cumulative damage procedure.

The Quality Index Procedure is effective only when fatigue life predictions are made for loading spectra that have approximately the same shape of slope, the same number of loading steps, relatively similar stress increments, fairly close mean loads, equivalent block sizes, identical loading sequences and essentially the same point of fatigue failure. All of these conditions were not satisfied between any two of the Test Groups that were analyzed. Just to consider, for example, the point of failure on the C-16 wing, in Test Group No. 656 where the occurrence of a critical crack on the complete wing was used to select a test-derived K for analyzing Test Groups G51 to G55 and G57. A total of six critical cracks occurred in Test Group G56, four at Wing Station 195, one at Wing Station 20h, and one at the corner of the inspection cutout B at WS21h in Figure 68. Out of these Wing Stations at which critical cracks occurred, only Wing Station 214 was analyzed by the Quality Index Method. This analysis of Wing Station 21h, however, was for crack initiation at the corner of the inspection cutout plate at H in Figure 68 rather than the corner of the inspection cutout at B.

2. Modified Corten and Dolan and Monlinear Cumilative Damage

The exponent b in Equation (A31) of the Modified Corten-Dolan method and the exponent c in Equation (A32) of the nonlinear cumulative damage method were evaluated from the test data in the manner described in Appendix A. The resulting values are tabulated in Table 28 for gust loading spectra and in Table 29 for maneuver loading spectra.

Fatigue life predictions, however, were not made with either the Modified Corten-Dolan's or nonlinear cumulative damage methods, since the resulting average values of 1.097 for b and 1.077 for c were extremely close to the value of unity. When either of these exponents reach this value, the corresponding method reduces to the concept of linear cumulative fatigue damage.

TABLE 19

Parameters for s-n data and unit gust loading spectea (*)

(Table is completed on next page)

			•		•								
	200		100	No. of	John Jan	R	• • • • • • • • • • • • • • • • • • • •	SE		(p+1)		æ	Test
Katerial	Spe cluen	Биовп	Spectrum	Steps	Sixe	(2)	(q)	(p)	(e)	(q)	(q)	(q)	No.
	Notched												
	Si eet	त्रं	Gust B	87	9000	67	2.473	Š	4.318	3.225	124900	55.	9
2007-T3			Quet A	1 8	10000	62	2-473	ું. જ	4.378	3.225	165200	45.22	8
		ਜੂ ਂ		~	000000	29	2-473	1	4.318	3.55	176100	E4:56	67-612 67-612 67-612
	1	2	<u> </u> 	<u> </u> 	3		71007	3	3	77.7	3326	?	77.75
7075-256		4		<u>-</u>	3030	చిన్	1.837 1.828	270	2.3 2.3	1.731	62800 51100 51100	3.23 5.23 5.23 5.23 5.23 5.23 5.23 5.23	015-021
	Motched	0	Gust A	©	3000	220	1.690	105	5.788	1.811	20200	27.60	624-627
	Double	. 253		6	360280	1368	1,620	.017	2.035	1.451	231800	26.99	028
2021:-T3	Shoar	152		. —	<u>-</u> .	2650	1.68	018	1.90	1.525	230400	17.89	029
Liciad	Hvetnd	101				12340	1,11,5	070	1,883	1.070	233700	67.66	9
	Joints	080				26770	000	5	2.08	196	231500	84.37	631
		25.			<u> </u> 	9364	277	289	2.875	7.06	231900	33.85	632
	Unnotched	191				10364	1.087	97.	2.641	1.000	23200	42.37	633
Daied	Sheet	2115				14134	.976	300	2.623	•330	230500	47.0h	634
		250				23.3	2,370	ਹੋਰ.	3.376	2,388	232400	27.29	635
	gatt	191		 -		998	2,080	8	3.1.60	2,156	230800	10.94	93
	Joints	.125		_		יוניויו	1,551	ر06	2,831	1,379	231300	55-11-5	937
	i	298				2,00	1.741	306	3.959	1.596	231800	23.85	0 38
Cr-No Steel	1 Strips	.222		_		1237	1,721	র	3.623	1.571	234300	30.73	639
	eron /x	.182		٥	360280	1327	1*669	80	3.700	1.508	227200	3.8	offo offo

⁽a) c_s , β , s_E , Γ (β +1), H_o & h for FFA method β and s_E for modified Henry's method δ for Snanley's "LX" and "2X" methods.

⁽b) Parameter in Equation (Alk) (Best fit in the midstress range,

⁽c) Paramater in Equation (A6) (Bast fit to the complete stress range.)

⁽d) Paremeter in Equation (A18) (Best fit in the midstress range.)

TABLE 19

(Constuding Page of Table)

												48
	Type of	8	No. of Londing	Block	ષ્ઠ છે	و. (ف	% (2)	(c) A	T(8+1)	ы ^о б	д ў	Group No.
METETIAL	opere service								9	1	7	6.10 6.10
Cap Hook.	\ -\ \	212	v	189830c	3045	1.588	چ و	2.60	2	255/000	30	C177
CTOKARY	0)		·	1577700	3045	1.538	o. o. o.	2.601	1.420	3	36.2	1
Alclad		-		1/4	1 1 1	2.00	.053	2,823	2,005	1146200	37.58	いった
			2	00000	351	1.125	.052	1.953	1,000	685600	۲۲. در	975
7075-26	(e)	- č	^	2000	415	1.125	.052	3,93	98.4	1874800	35.01	र ते
		יכוני		1220	18	55	033	2.532	1.286	52900	8.3	ָ ברוט ברוט
D.T.D. 363A	Notcoed	(OT•	> •	200	8	1.12	933	2.532	1.260	17100	56.18	670
Atumpum	277	Cot	۸ç	12	8	1.122	Ó	2.532	1.260	30300	58-43	650
Alley		101.	21.5	02,903	175	27.0	0.0	3.624	2.833	202700	\$. \$.	rg rg
2024-T	72 5	V	3	<u>-</u>	2.69	2,091	.032	2,687	2.178			652
	2				1218	2,155	980	3.33	2,319		. 	053 053
	ON CONTRACTOR			_	13	1.937	8	2.4.2	88			17. 17. 10.
-	2	.			, %	2.676	030	80,4	±0°.4			G- マバ
		******			164	2,636	035	3.709	3.828	_	_	0 7 0 1 1
	9.5		٦,	59670	1,62	2,138	र्ड	3.75	3.279	202700	42.02	5
	<u> </u>	<u> </u> 	2	200005	 83 	2.39	•039	188,4	\$°0	8863	37.15	
			'n	32960	ह्य	2.394	•039	188	200	115200	5	الله الله الله الله الله الله الله الله
	- A - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1			20000	130	2.545	न्तुः ।	3,689	3.456	009266	31.10	30
	The Post		۳ ا	32860	8	2.545	, Oi	3.682	3.495	115200	0	- 55 - 55 - 55 - 55 - 55 - 55 - 55 - 5
	N A N		1	200000	ġ	2.270	•039	3.782	5°605	000066	37.5	705
			۳	32660	ま	2.270	•039	3-(32	8	1250	45.00	3.5
		 - 	11	500000	1624	1.549	.052	3.574	1.377	000866	31-16	3 Y
- (X	Tork Par	٥	m	32860	1624	1.75	.052	3.574	1.377	115200	3	3
Series	1		,									

(c), and (d) See corresponding notes on previous pags.
Lap joint with one row of flush rivets
Lap joint with two rows of flush rivets
First crack initiated in complete wing
Critical crack initiated in complete wing SEEEE.

Final failure of complete (Ŧ)

wing Initial failure Firel failure

TABLE 20

PARAMETERS FOR S-N LATA AND SMIT MANEUVER LOADING SPECTRA (*)

2024-T3 Shear .0625 Alclad Rivited .0626 Alclad Rivited .050 Joints .125 Alclad Sheet .0625 Alclad Sheet .0625 Butt .0633 Gr-Mo Strips .100 Stool Rivine .0633 Stool Rivine .0633 Stool Rivine .0625 Stool Rivine .0633 Stool Rivine .0625 Stool Rivine .0633 Stool Rivine .0633 Stool Rivine .0633	Type of S _{Min.} Specimen	No. of Loading Steps	Block	૪ 🏝	(**)	S (*)	\$ (***)	Γ(β+1) (****)	H ₀ (****)	h (****)	Test Group No.
Joints .125 .100 .100 .100 .100 .100 .100 .100 .10		o. —	74,97	914 1001 5109	1.647	£6.	2.514 2.678 2.678	1.637	9300	19.38 25.83	455
125 100 100 11 Steet .0625 12 Steet .0633 13 Strips .0625 111 Strips .100 110 .0833 9 7097					•				3	200	2
100 It Unnotched .0333 Steet .0625 100 Butt .0833 Joints .0625 111 Strips .100 Whole .0833 9 797	•125		<u> </u>	558	2.077	\$60°	1.028	2,150	9300	12.92	M
Steet		•••		3172	1.459	660	2,955	1.292	9300	16.15	ñ
Steet .0025 100 Butt .0633 Joints .0625 Strips .100 Whole .0833 9 7997				1,840	1,302	101.	2.708	1,163	9300	19.38	2
Butt .0633 Joints .0625 .111 Strips .100 W/hole .0833 9 7997	•0625		 	5477	1.346	•095	3.015	1.200	0076	25.83	5
Joints .0625 Joints .0625 .111 Strips .100 Whole .0833 9 7997	307.			જું.	3.108	•055	4.669	6.332	355	16.15	23
Strips 100 1197 197	2003			at i		.050	4.674	6.497	9300	19,38	67
Strips 100	(78°		1	232	2,259	8	4.654	. 2.599	9300	25. 83	000
*/hole .0833 9 7497	1		•	525	1.657	.122	4.300	1.760	9300	14.53	T,
1617 6 10033 6 10073	201.	(550	1.962	•122	4-122	1,931	9300	16,15	21%
	2,003	^	7671	2105	1,397	.122	3.889	1.240	38	19,33	E

^(*) of, 3, Sz, T (= + 1), Ho & h are used in the FFA method bis used in the Shanley's "lX" and Shanley's "2N" methods 3 & Sg are used in Henry's method.

⁽Best fit to the full stress range. (Best fit to the full stress range.) Parameter in Equation (All) Parameter in Equation (A6) (Parameter in Equation (A18) (*** ****

PHEDICTED FARIGUE LIVES FOR GUST LOADING SPICTRA (Table is continued on next two pages)

Test		Geometric			19.2.d.	dicted Life	Predicted Life (105 Cycles)	(6)		
Group No.	Sequence	rean of Test Life (10 Cycles)	.Yiner	FFA Case A(a)	Shanl "IX"	Shanley "2X"	Hodified Henry Case A (5)	Tangent Intercept	Quality Index	Stress Conc. Factor
ਰ	12-07		8.240	0£9*6	9.04.2	2.067	7.597	40.131	6.988	1.018
G2	15-51	•••		Ma v -11			7.986			
G3	Hilo	Ä				. .	7.403			
75	H1-10	Ħ		***			7.013		6.988	
S. TV	ಆ	•0	8.240	9.630	9.012	2.087	1	10.131	(c)	1.018
જ	5	<u></u>	1.591	1.717	1.616	.h26	1	7.065	2.845	,316
ij	にしてい		1,201	1.155	1.186	305	1-154	11-754	2.020	. •237
ૡ	Hi-io		•••	. •		••••	1.014		_	_
65	lo-ti-ol	-					1.7.5			
010	HILOHE		-	•••		•	1,103		2.020	
011	5	•••				•	t		(P)	
312	•	•	1.201	1,155	1,186	30%	1	12751	5.020	.237
913			176.	1.913	-91.2	•058	ı	5.351	.36h	656
916	罗		1716.	1.913	5,9,2	8X.0.	t	5,361	<u>e</u>	8
615	Lo-His		320	17. 17.	.238	•109	30,	1.171	199	138
910	10-55		_	-		-	34.8			-
617	Fillo			_			. 252	,		
GIB	Lo-Fi-Lo						162	· -		
619	H-10-H		-			•••	106	-		-
020	ુ (ક						ı		64	
0 23	ព្		.320	354		•109	ı	1,171	त्र	.138
022	Io-ii-ol		,326	- - -		9 ⁷ C•	.287	1,360	,282 ,	\$03
683	5		925.	E.	.238	•076	:	1,360	(i)	.209
นรม	10-4:1		100	692	,331	070.	\$355	2,399	762	.288
025	i:1-Lo		-			. :-	301		- '	
925	Lo-F:1-Lo						,316		7550	
G27	ఈ	.394	607	169°	.331	070*	. 1	2-399	£	.288

Analytical representation of unit loading spectrum and 5-3 data is based on best ill in the midstreas **(B**)

(c), (d), (e), (f), (g), and (h) See corresponding notes on last pages of table.

Analytical intrepretation of S-N data is besed on best fit in the midstress range. (<u>a</u>

PREDICTED FATISHE LIVES FOR SYST LOADING SPECTEA (Table is completed on next page)

	Stress Conc. Factor																					.529	20.	21.4
	Quality Index			•															· •			<u>ध्य</u> ्यः .	951	Î
88)	Tangent Intercept	1,171	6.341	18.566	633.4.70	92.350	278,160	501,790	139.5	30,003	300.010	12,215	55.208	235.890	5.551	7,551	\$5.50 \$5.50	65h	558	.207	2.050	.330	336	138
Fredicted Life (106 Cycles	Modified Henry Case A (5)	.364		28,1,73	225,890	13,344	81,783	186.980	1,034	11.879	103,500(1)	3:956	21,976	82.504	3.55	192		ייות.	166	950	1.178	960.	.108	870°
edicted Li	Shanley "2X"	.132	1.790	22,860	177.440	10,758	56.981	147,150	•299	7,030	76.536	1.739	15.096	61,611	1.45	1,145	1.115	17/4	,125	.065	.09	890.	.077	.033
E	Shanley . "IX"	075.	2.264	27.195	233,510	24.928	63,848	11.8.540	128.	12,167	106,730	3.734	23.912	89.012	1,554	1.854	1.85k	.223	174	270	689	1001	106	2700
	Case h	.482	3.692	33.146	159,280	19,522	62,881	108,070	1.037	13,560	66,619	7.266	20.083	77.160	2.280	2.280	2.283	177.	,326	110	•732	.127	.127	•070
,	Miner	. 368	2.222	29,959	260,200	31,627	95.532	195.150	.876	12,133	80.110	130	24,139	69.807	1.688	1.888	1.838	.228	138	620	.705	701.	917.	670.
	Rest Life 10 Cycles)	117.	188	21,732	129.700	25.710	75,375	151,966	2.994		100,985		17.902	57,367	1.699	2.279	2.31.5	957.	.161	6693	1.226	.133	.122	.07t
	Sequence	Lo-Hi-Lo										- -		Lo-: 11-Lo	19-11 11-11	H-10				71-I'O	라-3	57-11-57	-	Lo-Hi-Lo
	Test Group No.	G28	655	630	631	335	433	334	035	. 636	037	633	038	୦୮୦	댐	: cli2	510	770	CLS	975	61.7	375 275	679	0 55.

See note on previous page. See note on previous page. Prediction ignored singularity at a varying stress equal to the endurance limit in the loading spectrum. Used as master spectrum to determine damage boundary with K of 5.27 for test groups No. GH^R R GL^Q. Reference Table 26. @**@£**@

TABLE 21

PREDICTED FATIGUE LIVES FOR GUST LOADING SPECTRA (Concluding page of Table)

Test		Coorde to the			Predi	Predicted Life	(io Cycles	7	
		to meat		FFA			Kodified		
Group No.	Sequence	Test Life (10°Cycles)	Miner	Case A (a)	Sharley "1X"	Shanley "2X"	Henry Cass A (b)	Tangent Intercent	Quality Index
150	8	4.179	1,335	1.759	1.408	.393	١.	6.667	1.099
352	_	4.453	1.893	2.811	2.128	101.1		577y°C	18,585
353	••	2,307	1,695	2.1.02	1.751	.719	•	7.435	3,305
นี้ย์	• •	2.073	21.5	196	760	7.111.	•	2.5/18	1111
355	·	1.252	1.010	1.750	810	261	•	3.947	3. 24.4
356	. .	3.344	1.54	3.658	1,196	141	•	5,634	(E)
357	ප	999.6	2,126	4.116	1.957	715	•	8-1152	3. 114
87.	ឌ	.417	33,1	.532	321	8,0	ı	1.909	
359	Io-ii-ol	.557	510	,65t	.123	75.4.	127°	2.923	679
80	e	1.521	.7.98	.851	.870	.21h	•	4.128	1
	10-11-01	953	.956	7.032	1,035	027	.855	5.557	2,715
162	臂	2.520	1,175	1.516	1,039	350	•	1,768) (E
563	るようから	1.495	280	1.818	993	1777	1,014	3.922	3,9,0
195	臂	2.017	•939	1,103	88.	275	1	3.13.2	(e)
رم الا	oi-23-ci	1.039	1.131	1.275	1.312	.372	.818	8.7.8	3,311
,		See Corresponding note on first	on first	nage of table	+ ab]•				
c)	Used as Master	as Master Spectrum to determine	le terrating		7	with % of 3	3.22 for Test	Test Group No.	G 1 to G
(g)					•	K of 2		•	6 6 \$5 612
•				•		K of h	17.1		•
G			•			٠,	3.10		315 to 019
ba)		-				X of 3	.73		
E :						b	3.75		G23 to G26
(¥.						÷;	•26		3
A´						X of L	01.		
Œ.						В	.33		195
<u>=</u>						K Of 3	80.		693
_									

Ref. Table 26

TABLE 22

PREDICTED LIVES BY THE FFA AND MODIFIED HENRY'S METHODS WITH REQUIRED AKALYTICAL PARAMETERS
BASED ON THE COMPLETE 6-N CURVE AND ENTIRE GUST LOADING SPECTRUM

(Table is continued on the next two pages)

!									
TEST		GEOMETRIC MENN OF			PAR METERS	δλ		PREDIC	PREDIOTED LIFE
GROUP NO.	SEQUENCE	TEST LIFE (106 CYCLEU)	∀ ਭ	(၉)	$\Gamma(\beta + 1)$ (b)	н (ъ)	д (FFA	5
								Case B	Case B
GJ	15.4kg	6,0,8	₹	2.652	4.995	52300	47.74	7,109	7 500
G S	17-27	3.872		` <u> </u>		261500	-	-	36.
ő	Hi-io	1.888 11	_			50300			25
:B	라-12	14.555		 -	 -	505128	-	-	3.5
S.	æ	6.968				261500	47.74	7,100	20.1
જ	F	1.624				121000	42,30	1.631	•
67	Lo-ti	.595				147300	200	900	ָב בי
B	Hi-70	20.00			. 		77-	30C-	1.176
3	Lo-fit-Lo	1.612		<u>-</u> .					210.1
010	Hi-Lo-51	1.519		•		147,500		<u>-</u>	707
GI1	5	2.020				73000		 -, • •	707.1
912		1.215	な	2.852	4.995	147800	800	3 232	• 1
<u>6</u> 13		627.	#	76.7° E	11.529	54320	25 b i	A72) .
#	5	₹.	7	ない。	11,529	103600	77 57	87.8	t i
25	다.	.443	14	2.053	2,102	11500	43.55		7
916	12-01	52÷،		••••		57700	-	-	34.8
75	HI-LO	1.88				57730	•		200
913	Lo-fii-Lo	.762				11500			
9 13	Hi-Jo-(H	.976			• • • •	57700		-	<u> </u>
3	3 8	.661			.	11500			
Ø	# 3	969.	41	2.053	2,102	57730	43.55	322	ı
ଫୁ	0-1-01 00	.365	ૠં	2.420	3.043	42200	32.67	295	287
ည္တ	ž	.282	₹ T	2.420	3.048	42200	32.67	.295	•

(e) Parameter in Equation (A14) (b) Parameter in Equation (A18)

•	
page)	
next	
the	
0	
completed	
1.8	
(Table	

10° CYCLESS (a) (b) (b) (b) (b)	PREDICTED LIFE (10 ⁶ CYCLES)
23 2.552 3.522 850 1.634 1.525 9390 1.243 1.129 22000 .954 1.525 12200 1.954 1.129 12200 1.667 1.105 1330 1.667 1.505 1400 1.941 1.896 1501 1.340 1.941 1.896 170 1.360 1.315 170 1.501 1.330 170 1.501 1.330	h FPA MODIFIES
23 2.552 3.522 850 1.634 1.728 8250 1.634 1.525 9390 1.243 1.129 22000 1.955 1.135 1220 1.252 1.135 1230 1.252 1.135 1330 1.667 1.505 1400 1.941 1.896 1400 1.941 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	26.05 .310
23	
23 2.552 2.522 850 1.644 1.525 9390 1.843 1.129 22000 .954 1.525 1220 1.852 1.135 1470 1.856 1.150 1400 1.941 1.896 170 1.941 1.896	
850 1.530 1.755 1.129 22000 1.543 1.129 22000 1.552 1.135 7370 1.264 1.129 1220 1.252 1.135 320 2.636 1.150 1400 1.641 1.696 150 2.001 1400 1.941 1.696 160 2.001 1800 1.366 1.215 170 1.501 1.330 170 1.501 1.330	485. 412. 00.05.
2550 1.554 1.723 22000554 1.725 6320 1.243 1.129 12200 1.252 1.135 1220 1.252 1.135 3210 1.254 1.150 1400 1.941 1.896 150 2.001 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	269
25000555955955955955955955955955955955955955955961055961055961055961055965	ָּבְיִיר בּיִיר
1220 1.252 1.135 1.250 1.252 1.135 1.250 1.252 1.135 1.250 1.1014 1.250 1.105 1.250 1.105 1.255 1.105 1.250 1.250 1.350 1.350 1.350 1.350 1.501 1.330 1.501 1.501 1.330 1.501 1.501 1.330 1.501 1.330 1.330 1.501 1.330	34.37 164.140 224.450
1220 1.26 1.105 1220 1.32 1.014 1220 1.032 1.014 1220 1.032 1.014 1220 1.657 1.505 3210 1.667 1.505 1330 1.659 1.506 1400 1.941 1.896 150 2.001 2.002 1800 1.36 1.215 170 1.501 1.330 170 1.501 1.330	19.008
1220 1.032 1.014 1220 2.696 4.150 1230 1.667 1.505 1330 1.659 1.508 1400 1.941 1.696 1890 1.941 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	65.630
120 2.696 4.150 470 2.383 2.926 3210 1.667 1.505 3220 2.458 3.176 910 1.856 1.758 1400 1.941 1.896 1890 1.941 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	110.080
1320 1.667 1.505 320 2.458 3.176 320 1.667 1.505 1330 1.659 1.508 1400 1.941 1.896 1890 1.941 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	1.060
320 1.667 1.505 320 2.456 3.176 320 1.856 1.755 1330 1.859 1.508 1400 1.941 1.896 1890 1.340 2.002 170 1.501 1.330 170 1.501 1.330	14.700
320 2.456 3.176 910 1.856 1.758 1330 1.659 1.508 1400 1.941 1.896 150 2.001 2.002 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	54.55 72.703 103.400
910 1.856 1.758 1330 1.659 1.508 1400 1.941 1.896 1400 1.941 1.896 1800 1.941 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	4.743
1330 1.659 1.508 1400 1.541 1.896 1400 1.541 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	8
1400 1.941 1.896 1400 1.941 1.896 1890 1.366 1.215 170 1.501 1.330 170 1.501 1.330	1.480 1.480
1400 1.941 1.896 30 150 2.001 2.002 11 1890 1.366 1.215 6 170 1.501 1.330 170 1.501 1.330	2.674
1400 1.941 1.895 30 E50 2.001 2.002 11 1890 1.356 1.215 6 170 1.501 1.330 170 1.501 1.330	2.674
1400 1.941 1.895 30 650 2.001 2.002 11 1890 1.356 1.215 6 170 1.501 1.330 170 1.501 1.330	2.674
650 2.001 2.002 11 1890 1.366 1.215 6 1890 1.366 1.215 18 170 1.501 1.330 170 1.501 1.330	.473
1890 1.366 1.215 6 1890 1.366 1.215 18 170 1.501 1.330 170 1.501 1.330	<u>ښ</u> ا
1890 1,366 1,215 16 170 1,501 1,330 170 1,501 1,330	811.
170 1.501 1.330 170 1.501 1.330 170 1.501 1.330	200
170 1,501 1,330	128
170 1.501 1.330	87.
20014 72/04 017	58.43 .070

TABLE 22

	PREDICTED LIFE	FFA HETRY Care B Case B	2,196 -	4.229	3.391	1.763	2.835	4.210							2,199 1,004		
٠		д (a)	3. **						34.60	35.10	₹°.5‡	35.10	\$.\$	35.10	45.64	35.10	45.04
r Table)	S	(e) (e)	71,800					-	71,800	805000	115200	805000	115200	805000	115200	805000	115200
Concluding page of Table)	PARANETER	T(\(\beta\) (\(\beta\))	609.4	2,404	3.381	2.105	10.773	7.191	5.086	13.077	13.077	4.025	4.025	5.509	5.509	2,536	2,536
(Conclud		(a)	2.785	2.192	2.516	2.192	3.444	3,142	2.367	3.504	3.584	2,670	2,670	2,932	2.932	2.245	2.245
		(a)	160	1710	530	2001	65	180	350	رم ا	· (C	8	8	001	801	8	8
	GEOVETPIC	TEST LIFE (10^6 CYCLES)	4.179	4,453	2,307	2.073	1.252	1 m	9,656	7:4	557	1.52	56.	2,520	1,495	2.017	1.039
		SEQUENCE	g	,			-	 -	8	旨	Lo-H1-L0	F	Lo-Hi-ol	ដ	いっぱっち	臂	ol-th-ol
		GROUP NC.	651	ָ ֖֭֭֭֭֭֭֭֭֭֭֭֭֭֓֞֝֞֜֝֡֓֓	653	655	33.	`* `*	7.55	658	000	3	9	0 8	199	්ල්	965

(a), (b) See corresponding note on first page of table.

TABLE 23

PREDICTED FATIGUE LIVES FOR HANEUVER LOADING SPECTEA

Test Group	Sequence	Geometric Hean of			Predicted]	901) 9377	Oyc.es)	
ŠO.		Test Life (105 Cycles)	Hiner	FFA Caso B	Shanley #114		Modified Kenry	Tengent
1							Case B	
덬 :	10-H-01	. 308	132	125	345	.078	ACT.	1.81
Z		667	315	,346	776	171	259	1000
5.3		ğ.	8	.758	.727	. 452	(66)	220
3 ¥	·	3,7	977	٠ ۲	.203	H	115	133
3 3		97.		575	. 563	\$07	25.5	1,539
<u> </u>		20.6 010.6	3 6	1,122	.953	7.	.921	2,076
X	·,	\$8	16	35	77.5.7. 0.10.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0.1.0	2,255	2.78	6.583
જ	•	77.	132	31	3,6	300	9,5	986
9,	· • • • • • • • • • • • • • • • • • • •	1.477	179.	.582	22.	348	¥8,	.,,,,
12		55.	216	542	842.	977	200	, 106
Ę	TO-ER-TO	200	3	200	.381	.227	.338	36
}		70.00	ž	.935	068 •	637	878	2,11,1

TABLE 24

STRESS ADJUSTMENT FACTORS FOR EXACTLY PREDICTING THE GROWETRIC MEAN OF TEST LIFE FOR GUST LOADING SPECTRA

(Table is continued on the next two pages)

l												
134	rest.	•			•		Stress	Adjustment Factors	t Factors			
	Group No.	Sequence	Miner	(a) Case A	FA (d) Case .B	Shanley "IX"	Shanley *2X"	Modified Henry (b) (c) (case A Case B	d Henry (d) Case B	Tangent Intercept	Quality Index	Stress Conc. Factor
· · . :	ថ	12-21	1,005	1.033	176.	1.017	.779	989	- 588	1.32	983	639
	32	10-11	1,152	1.195	1,123	1,167	888	1.082	1.032	1.565	1.133	982
	.33	· HI-15	.939	196	116.	960	.779	906	8	1.214	920	700
	귣.	13-74 0	†IC6*	.931	673.	.930	.765	.779	.779	1.198	888	575
	გ	5 ;	1.037	1,060	1.003	1.033	.793	•	•	1,361		650
	ક	5	.975	9839	.973	.975	.779	ı	t	1,350	1.094	.635
1	Ç.		1.159	7,2,1	1,178	1. 156	.868	1.183	1.191	1,526	1,300	177.
.36	æ	61-tH	925	.912	106.	895.	(e)	.828	.820	1,171	.983	562
,	9	lo-Hi-ol	•939	.970	.963	17/5.		.918	916	1,263	.936	609
	910	11-10-H	K	166	\$26.	. 9i ₁ 9		.925	.923	1,280	.923	.620
	נוט	5	.893	.935	.923	.912	(e)	1	· 1	1,203		579
	275		.9 98	1.039	1.018	.935	177.	•	,	1,350	1,125	759
	613	 -	1.105	1.322	1.107	1.085.	878.	1	t	1.176	<u>د او .</u>	1.058
	216	ទ	132	·1.103	1.161	1,136	አ ຜູ	ì	•	1.533	1	1.120
	in'	Lo-iii	•933	.952	.933	.931	(၁	.911	606.	1,315	1.134	.672
	o io	전투 약:	929	.927	.929	. 328	(၁)	.929	.928	1,307	1-129	699•
	917	H1-10	745	(c)	-742	.727	.650	•739	.739	.979	.883	.494
		01-11-01	بار در ا	838	.827	ကို ထို	.72:3	(၁)	(°)	1.122	998	5,53
	575	12-07-14 13-07-14	M		737.	7.39		(e)	(၁)	1.049	-936	.530
	625	3 3 (770	200	٠ دري دري	57.5	(<u>v</u>	1	1	1,168	1	290
	rl ()	ر انت	.853	• 685	.971	.888	ં	ı	ı	1.201	1.057	782
	G22	ماستناما	556.	1.03	.947	4.91.14	.837	.933	.903	2.343	376.	.876
	7. 2.	3	1.03	1.1.	1.009	1.004	• 360	1	ı	1.1.6		1,000
•	1725	(1) (1) (2) (3)	 	1.251	1.038	1.022	878°	1.082	1.076	1.1.95	1.072	1.021
	222	H1-10	0.0	1.075	.917	.955	.760	.955	.955	1,326	656	306
	02¢	01-1:F-01	. 569	1.074	.915	\$7.6°	•759	.955	.955	1,325	856.	-907
	725	3		1.131	-956	-972	-792		1	1.381	•	976.

There 24

STRESS ADJUSTMENT FACTURE FOR EXACTLY PREDICTING THE GEOMETHIC MEAN OF TEST LIFE FOR GUST LOADING SPECTRA

(Table is completed on the next page)

Test						Strass	hd fingt nor	Stress Addustract Foots			
Group No.	Padneuce	Miner	(a) Case A	(case 3	Shanley "IX"	Shanley *2X"	(b)	Podified Henry (b) (c) Case A Case B	Tangent Intercept	Quality Index	Stress Conc. Factor
88888888888888888888888888888888888888	16-H-10 01-18-01 01-18-01 01-18-01 01-18-01	251 142 152 152 153 153 153 153 153 153 153 153 153 153	86. 12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	40.1 40.1 40.1 40.1 40.1 40.1 40.1 40.1	441144864466644666888888888888888888888	5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	# 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.11 25.11	######################################		
643 649 650	07-18-01 07-18-01 07-18-01	2.0 2.0 2.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	1.011 1.934 .934	.990 1.011 985	.921 .959 .873	316. 125: 577.	.91d .901 .856	.917 .960 .867	1.344 1.337 1.211	1.019	1,330 1,419 1,318

TABLE 24

STRESS ADJISTMENT FACTORS FOR EXACTLY PREDICTING THE GEOMETRIC MEAN OF TEST LIFE FOR GUST LOADING SPECTRA (Concluding page of Table)

Test					Stress		Adjustment Factors			
Group No.	Sequence.	Atner	FFA (a) Case A	(d) Case 3	Shanley	Shanley "2X"	Kodifi (b) Case A	Kodified Henry (b) (d) Case A Case B	Tangent Intercept	Cuality Index
651	æ	.762	,814	.859	.768	. 6 <u>1</u> 6	i	•	1.134	m
325		•719	.878	593.	.722	.111	1	•	1.227	3.21.6
ego Ego	•••	116.	1.01	1111	.322	003.	ı	1	1.436	1.078
냜	••	. 651	.773	.956	613	.523			1.033	1.146
955	• ••	.036	1,090	1.205	.854	.667	1	•	1.505	1.2i.8
656		.739	41/6•	1.056	.711	• 62b.	1		1.20	
957	B	679	.322	16B.	.6 <u>4</u> 6	.533	•	1	<u>сл</u> 6.	.876
6 56	甠	• 969	1.366	.934	-94.2	47¢.	ı		1,373	ſ
629	10-4:1-0.I	.931	1.240	.975	176.	177	.965	. 761	1.150	1.028
GÉO	띥	.856	.370	-362	.87i	. 67c.	1	•	1.257	•
193	o-Hi-or	1.001	1.032	1.031	1.027	.823	725	476.	1.164	1.245
G 62	日	.507	.875	.597	.767	.615		•	1.219	٠,
(93	lo-il-ol	• 92 <u>i</u>	1.050	1.037	.687	.739	468.	.891	1.265	1,235
1 55	田	. e43	.847	.825	-7%	583.	•	. 1	1.137	
399	Lo-Hi-Lo	1.031	1.055	1.032	1.031	576.	576.	546.	1,361	1,277

Analytical representation of 5-N data and unit loading spectra is based on best fit in the midstress range of maximum calculated fatigue damage. (a)

Analytical definition of S-N data is based on best fit in the midstress range of maximum calculated fatigue damage. <u>a</u>

No incremental deviation because of mathematical discontinuity (See text) છ

Analytical definitions are based on best fit over the full stress range. (g

TABLE 24

STRESS ADJUSTMENT FACTORS FOR EXACTLY PREDICTING THE GEOMETRIC MEAN OF TEST LIFE UNDER MANEUVER LANDING SPECTRA

Test		-		Stress Adjustment Factors	ment Factors		
Group No.	Sequence	Miner	FFA	Shanley "IX"	Snanley "2X"	Modified Henry	Tangent Intercept
			Case 3			Case B	•
덫	07-HI-01	147.	689*	.722	249	795	1-150
덡	•	27.73	.875	.387	27.6	867	1,337
₽ .	1 - 2	958	-935	925*	865	006	1-13
덝`		• 959	106.	166.	81,5	876	-923
ቪ.		466.	.933	.911 ₄	गूर ९	916	1,300
က္ရွင္		1,0,1	1.070	1.024	.819	1.009	1.493
<u>;</u>		1,082	1,100	1,0%	1.005	1.0.8	1-615
£ :		.931	888	•932	.752	.915	1.076
		905	.870	916	. 749	769°	1,102
CT)	- 40 00000	.637	.797	.83k	.723	118.	.978
117		1,01,	1,023	1,061	.922	1.008	1.179
H12		1,008	1.001	1,007	67.7	626	1.253
ğ		.972	986	958	.881	8	2.22

TABLE 26
FATIGUE QUALITY INDEX FOR GUST LOADING SPECTRA

(Table is completed on next page)

Test Croup	Sequence	Number of Specimens	Geometric K _T	Quali	K ity Index 1	lethod
No.				<u> </u>	Maximum	Geometri Mean
01. 02	Lo-Hi Lo-Ki	3 9	<u>L</u>	3.17 3.33	3.17 3.62	3.17 3.44
03 СЦ 05	Hi-lo Hi-lo Qr	. 3 6 8		2.92 2.30 3.10	3.19 3.15 3.46	3.04 2.98 3.22
06 07	QR Lo-Hi	9368433333463344		2.99 3.13	3.23 3.61	3.12 3.52
G8 G9 G10	. Hi-lo Lo-Hi-lo Hi-Lo-Hi	3		2.84 2.98 3.00	2.95 3.09 3.11	2.91 3.05 3.06
011 012	QR 	3		2.88 3.10	3.02 3.30	2. 95 3 . 16
013 014 015	QR Lo-Hi	6 3 3		3.92 4.58 3.19	11.75 11.98 3.41	4.38 4.71 3.32
016 017	Lo-Hi Hi-Lo			3.21 2.77	3.14 2.91	3.32 2.85
018 G19 G 20	Lo-Hi-Lo Hi-Lo-Hi QR	1 1 1		2.96 2.9 3 3.04	3.25 3.03 3.15	3.08 2.97 3.10
G27 G27	QR Io-Hi-Io	<u>1</u> 4		3.11. 3.13	3.30 3.75	3.18 3.56
023 024 025	QR Lo-Hi	44343665 3 6		3•54 3•53 3•39	4.01 h.58 3.77	3.78 4.19 3.56
025 026 027	Hi-Lo Lo-Hi-Lo QR	3	14	3.37 3.19	3.73 4.40	3.55 3.76

TABLE 26
FATIGUE QUALITY INDEX FOR GUST LOADING SPECTRA

(concluding page of Table)

Test	Sequence	Number of	Geometric	Ou 2 1 1 1	K Ly Index Mo	t.hod
Group		Specimens	K _T	Qualiti	A TIMEN WG	Geometric
No.		<u>.</u>		Minimum	Maximum	Nean
028	Lo-Hi-Lo	. 2	-	3.82	11.13	3.97
029	•	. 2		4.53	5.06	h.70
G30	1	• 3		6.29	7.73	6.71
G31		5		5.52	7.83	6.59
032	.		1	1.89	1.91	1.90
G33		2	l.	1.98	2.22	2.10
034	ľ	2	. 1	2.07	2.26	2.17
035	j	. 4	•	3.30	3.69	3.52
036		2		3.96	3.98	3.97
037	· }.	2 2 2		4.25	11.59	4.41
G38		. 2		• -		-
G39	Į.				-	•
G10	Lo-Hi-Lo	3 1		` -	-	~ 0
G41	Lo-Hi				-	>8
G15	Hi-Lo	1 .		-	-	>8
Gl ₁ 3		1.				>8 >∎
GLL	j	1		-	- `	>8
045				-	. 🕶	4.47
GL6	Hi-Lo	1			***	≥8
Gl ₁ 7	Lo-Hi	1		-	* = *	>8
048	Lo-Hi-Lo	6	3.95	4.41	5.75	5.23
G49		6	3.95	5.22	5.94	5.43
050	Lo-Hi-Lo	5	3.95	3.93	6.91	5.27
051	QR	· 4		5.20	>8	6 . 25 >8
G52	1	6		>8	>8	>8 >8
05 3		5		6.64	>8 >8	>8
0511	,	1665465566634		>8	>8 >8	>8 >8
055	İ	6		>8	>0 >8	8.26
G56	ł	6		6.96		6.li8
G57	QR	6		6.06	6.91	4.10
G58	TR	3		3.87	h.hl h.62	4.11
059	Lo-Hi-Lo	4		3.77	3.44	3.33
060	TT	2 7		3 .23 3 .65	1.02	3.85
G61	Lo-Hi -Lo	7		2.96	3.18	3.08
062	TR	4		3 .46	3.83	3.64
663	Lo-Hi-Lo	3		3.12	3.25	3.19
06 L	TR	3 2 5		3.52	3.94	3.80
G65	Lo-Hi-J o	5		2.76	4/4 ر	3400

TABLE 27 PATIQUE QUALITY INDEX FOR MANEUVER SPECTEA

¶o e ¢				Cualit	K Cuality Index Method	po
Greup No.	Sequence.	of Specimens	Geometric Kr	Minimum	Kaximun	Geometric Mean
Z.	Io-H1-Io	2		2.50	2.60	. 2.55
Ŋ.			-	3.50	4.20	3.83
ũ	· • • • • • • • • • • • • • • • • • • •	8		0°•1	4.20	4.10
7		8	H	9.	9	9.
ij		2	~	1,15	1.22	1.19
.X5.		m	٦	1.15	1.58	1.33
22.7		. ~	~ 4	1.51	1.92	1.70
KG.		8	-	3.50	3.60	٦. برگر
6M		~		3.20	3.50	3.35
, 1	Louitello	^		3.20	3,60	3, 30

TABLE 28

EXPONENTS FOR THE MODIFIED CORTEN-DOLAN AND THE NON-LINEAR CUMULATIVE DAMAGE METHODS FROM GUST LOADING SPECTRA

(Table is completed on the next page)

	•		•	
Test	Sequence	Geometric	Exp	onents
Group	•	Mean of	Ъ	C
No.		Test Life	ModLfied	Non-linear
		(cycles)	Corten &	Cumulative
			Dolan	Damage
01	Lo-Hi	804900	.996	•995
. G2	Lo-Hi	3872000	. 860	-8144
G3	Hi-Lo	11888000	1.072	1.058
Oli	Hi-Lo	1455°, 200	1.313	1.120
05	QR	6988 000	•969	•966
G6	ÇR	1824000	1.032	1.027
G7	Lo-Hi	595000	.846	.822
68	Hi-Lo	553/1000	1.156	1.168
· 09	Lo-Hi-Lo	1612000	1.069	1.065
010	Hi-Lo-Hi	1519000	1.055	1.051
Gll	QR	2020000	1.124	1.114
G12		1817,000	1.003	1.003
013	1	17860 0	.865	•855
G1F	ÇR	363600	.816	.762
015	Lo-Hi	1:1:2800	1.086	1.069
G 16	Lo-Hi	71257100	1.091	1.113
017	Hi-Lo	1268000	1.389	1.1157
G18	Lo-Hi-Lo	762000	1.237	1.162
019	Hi-Lo-Hi	975700	1.309	1.299
G20	ÇR	6617100	1.196	1.155
G5J	QR	600300	1.169	1.206
G55	Lo-Hi-Lo	385000	1.038	1.045
G23	GR.	5857100	.968	.961
G2li	Lo-Hi	25li600	•898	_ . 88 6
G25	Hi-Lo	1196300	1. Oldi	1.047
G26	i.o-111-Lo	1197700	1,045	1.chl
027	⊊ R	393900	.991	•991

TABLE 28

EXPONENTS FOR THE MODIFIED CORTEN-DOLAN AND THE NON-LINEAR CUMULATIVE DAMAGE METHODS FROM GUST LOADING SPECTRA

(Concluding page of table)

	Test		Geometric	Expo	pnents
	Group No.	Sequence	Hean of Test Life (Cycles)	b Modified Corten & Dolan	C Non-linear Cumulative Damage
	G28	Lo-Hi-Lo	410700	1.032	1.087
	G29	1	1,788000	1.293	1.292
	G30	.	21732000	•8L9	.943
	631		129700000	-589	.914
	G32		25710000	•91 9	.966
•	až3		75875000	.371	.968
	G34		151966000	.802	.967
	035		2994000	1.323	1.549
	G36		2755800 0	1.276	1.174
	G 37		100936000	1.088	1.032
	. G38	İ	7090000	•995	.9 96
	039	ļ	17902000	.865	•448
	CHO	Lo-Hi-Lo	50367000	.647	•918
	Ghi	Lo-Hi	1899000	1.004	1.016
	G42	Hi-Lo	2279000	1.065	1.442
	043	1	2848000	1.142	
	0111	-	457700	1.241	-
	G45	1	1644,00	.965	.894
	G46	Hi-Lo	92900	1.073	1.296
	G47	Lo-Hi	1228000	1.232	
	G148	Lo-Hi-Lo	132900	1.128	1.056
	349		121500	1.032	1.010
	650	Lo-Hi-Lo	74100	1.214	1.101
	051	QR	11179000	1.210	1.241
	052	1	4453000	1.18 6	1.171
	G53	İ	2307000	1.059	1.063
	054		2070000	1.232	1.257
	G55		1252000	1.024	1.035
	056	}	3344,000	1.138	1.180
	G57	⊈ R	9666000	1.267	1.293
	058	TR	41680 0	1.030	1.093
	059	Lo-Hi-Lo	556600	1.063	1.025
	G60	TR	1521000	1.151	1.272
	061	Lo-Hi-Lo	953300	1.145	1.046
	G62	TR	252000 0	1.148	1.277
	G63	Lo-Hi-Lo	1495000	1.222	1.076
	G6li	TR	2017000	1.16h	1.312
-	G65	Lo-Hi-Lo	1038700	-948	-983
Averag	ge of Gu	st & Maneuv	er Spectra	1.097	1.077

TABLE 29
EXPONE'S FOR THE MODIFIED CORTEN-DOLAN AND

NON-LINEAR CUMULATIVE DAMAGE METHODS FROM MANEUVER LOADING SPECTRA

	Geometria	Ex	ponents
Sequence	Mean of Test Life (Cycles)	b Nodified Corten & Dolan	c Non-linear Cumulative Damage
Lo-Hi-La	-308	1.685	1.173
			1.065
			1.026
·			1.114
.			1.042
			.983
, [.963
ĺ			1.107
[1.105
ì	1.577		1.145
{			.983
!	•370	.976	.994
1,0=11 -1,0	1.0/12	1. 144	1.022
	Sequence	Sequence Mean cf Test Life (Gycles) Lo-Mi-Lo .308 .199 .903 .205 .716 .903 .217 .069 .21'1 1.177 .198	Sequence Mean b of Test Modified Life Corten (Cycles) & Dolan Lo-Mi-Lo .308 1.685 .199 1.283 .903 1.131 .205 1.496 .716 1.203 .903 .905 2.217 .715 .069 1.311 .214 1.462 1.477 2.238 .945

The set in the same that the same that the same and the same that the sa

APPENDIX C

SPECTRAL FATIGUE TEST DATA FOR THE EVALUATION OF FATIGUE LIFE PREDICTION METHODS

To evaluate and compare the fatigue life prediction methods studied in this program, a search was made for suitable experimental data. The suitability was judged on the basis of the following criteria:

- 1. Complexity To cover the range and types of loading encountered in aircraft service, spectral fatigue test results were required.
- 2. Loading type was restricted to axial loading as more representative of the efficient strassing of the shell structure; bending data were considered unsatisfactory, except for the full scale air/rame compenent test data.
- 3. Constant amplitude S-H data on each of the specific specimens were required in addition to the spectral results.

Within these criteria 78 sets of data suitable for most of the methods were collected covering approximately 266 individual specimens.

GUST SPECTRA TEST RESULTS

While gust spectra were used in most of the tests, manouvering typo data were located for some specimens. These maneuver tests will be described in the next section. The gust spectra were applied to the various specimens i loading sequences that are shown in Figure 63. In the quasi-random loading tests, the order of application of the different varying loads was irregular, with the total number of cycles applied at each varying load being equal to those specified in the unit loading spectrum. The number of loading steps and the number of load cycles employed in the unit spectra covered wide ranges. Loading steps ranged from 3 to 18, the load cycles in the unit spectra ranged from approximately 5,000 to 3,000,000 cycles. Other pertinent test variables are noted in Table 30 and in the summary that follows. These include types of loading sequences, specimens, materials, and mean load levels used in the various tests. S-N data were also obtained on all fatigue specimens in part of each test program for which data are reported under loading of variable magnitude.

In general, the gust tests were conducted under the following conditions:

a. Lo-Hi. Hi-Lo. Lo-Hi-Lo. Hi-Lo-Hi. and quasi-random loading sequences were applied to the notched sheet specimens of Figure 64 which were made of 2024-T3 aluminum alloy and tested at net area mean stresses of 0 and 17.4 ksi; and of 7075-T6 aluminum alloy tested at net area mean stresses of 0, 10, and 20 ksi (reference 16). The gust spectra A and B specified in reference 32 were used in this testing. The

spplicable unit loading spectra and S-N data are presented in Tables 31 and 32 and Figures 70, 71, 82, and 83. The brackets behind or under F_{tu} in these tables and some of these figures (S-N curves only) denote that this value of F_{tu} was divided into the net area stresses to obtain the relative varying and mean stresses, S_{v} and S_{mean} . The magnitude of the relative varying stress in Figures 70 and 71 was increased as mean stress was reduced in this series of tests, maintaining essentially the same maximum stress spectrum.

- b. Lo-Hi-Lo sequence was applied on the double shear riveted joints of Figure 65 which were made of 2024-T3 as presented from Reference 17. These were tested at net area mean stresses of 15.5, 9.3, 6.2, and 4.9 ksi. The same loading sequence was applied in tests to unnotehed sheet of 7075.T6 (Figure 65) at net area mean stresses of 15.4, 12.4, and 11.1 ksi; to butt joints of 7075-T6 (Figure 65) at gross area mean stresses of 13.2, 8.9, and 6.6 ksi; and on strips of Cr-Mo steel (Figure 65) with a centrally located hole, at net area mean stresses of 43.1, 33.5, and 27.5 ksi. Unit loading spectra and 5-N data for this series of tests are presented in Tables 33 to 36 and in Figures 72 to 75, and 84 to 87. In this series, the varying loads were decreased when reductions were made in mean stress levels. This may be seen in Figures 72 to 75.
- c. Hi-Lo or Lo-Hi sequence was applied only once to lap joints of 2024-T3 with a single row of flush rivets (Figure 66) and tested at a gross area mean load of 975 lbs.; to lap joints of 7075-T6 with a single row of flush rivets (Figure 66) and tested at a gross area mean load of 1,055 lbs. (Reference 18) The unit loading spectra used in these tests and the related S-N data are given in Tables 37 to 39 and shown in Figures 76 to 78 and 88 to 90. In these tables and figures, the relative stresses, Sy and Smean are based on the ratio of applied-to-ultimate static load while in Tables 40 and 41 to follow, they correspond to a similar ratio of load factors. The applicability of net or gross area in securing relative stress levels is denoted in the brackets near the ultimate load or load factor on each table or S-N oneve.
- d. Lo-Hi-Lo sequence is applied to notched plates of D.T.D 363A (a British zinc-aluminum alloy that is similar to 7075-T6) at a not area mean stress of 14 ksi (Reference 19). The unit loading spectra in Table 40 and in Figure 79 were used in testing. Applicable S-N data are presented in the same table and in Figure 91.
- e. A quasi-random sequence of loads was applied to a complete C-46 wing for the purpose of determining the experimental load history at the initiation of the first crack; at the initiation of the critical crack that propagated to failure under continued loading, and at the

estimated time for final failure of the wing (reference 20). Test results were also screened for crack initiation at W.S. 180, W.S. 214. W.S. 228, and W.S. 239 which had measured local mean stresses of 7.1, 5.2, 6.3, and 6.0 ksi, respectively. All tests were conducted under the gross area loading spectrum described in Tables 41 and 42 or in Figure 80. S-N data are also presented in these tables or in Figures 92 and 93.

f. Lo-H1-Lo and true random sequences of loading were applied to a complete P-51 wing at a mean load of 17,900 lbs. for determining initiation of failure. (Reference 21) Final failure resulted in the gun bay (approximately W.S. 28) and in the tank bay (W.S. 80). The two gross area loading spectra in Table 43 or Figure 81 were used in this series of tests with the related S-N data presented in the same Table and in Figures 94 and 95.

Experimental results for each of the preceding series of tests are tabulated in Table 48. This table sorts the data from 239 individual gust spectrum tests into 65 groups of test results according to material, specimen configurations, loading spectrum, and other pertinent experimental variables.

MANEUVER SPECTRA TEST RESULTS

Unit maneuver spectra were used in some of the tests that were selected from the literature to be correlated with fatigue life prediction methods. These unit maneuver spectra were applied in a series of tests that are reported in Reference 17. These tests were conducted under the Lo-Hi-Lo sequence of Figure 96 on double shear riveted joints of 2024-T3 (Figure 65) at net area minimum stresses of 5.1, 3.8, and 3.1 ksi, and on unnotched sheet of 7075-T6 at not area minimum stresses of 9.6, 7.7, 6.4, and 4.8 ksi. Butt joints of 7075-T6 (Figure 65) were tested at gross area minimum stresses of 5.3, 4.4, and 3.3 ksi; and strips of Cr-Mo steel with a centrally located hole (Figure 65) were tested at not area minimum stresses of 16.7, 15.1, and 12.6 ks1. The unit loading spectra and S-N data for this series of tosts are presented in Tables 44 to 47 and in Figures 37 to 104. Similar to the series of tests conducted under unit gust loading spectra in Reference 17, the magnitude of the varying loads was decreased with reductions in mean load levels as shown in Figures 97, 98, 99, and 100. Twenty-coven experimental fatigue lives under these unit maneuver spectra were sorted into the 13 test groups listed in Table 49.

The application of these data to the numerical evaluation of ten of the fatigue life prediction methods selected for this phase of the study is described in detail in Appendix B. The results and conclusions drawn from the evaluation are given in Section III in the main body of the report.

TABLE 30 TEST VARIABLES TO BE CONSIDERED WITH MEAN AND VARYING STRESS IN ANALYZING FATIGUE LIFE PREDICTION METHODS

SEQUENCE	NO. OF TEST OROUPS
Lo-Hi Hi-Lo Quasi-Random Lo-Hi-Lo Hi-Lo-Hi True Random	8 10 17 37 2

	GROUPS
Lo-Hi	8
Hi-Lo	10
Quasi-Random	17
Lo-Hi-Lo	37
Hi-Lo-Hi	2
True Random	4
NO. CF	NO. OF
LOADING	TEST

O. CF ADING STEPS	NO. OF TEST GROUPS
356890168	927729

HLOCK SIZE	no. of Test Groups
5410 6290 7500 10200 13290 30000 30700 32860 50000 50100 50900 59670 92900 100000 100200 164400 360280 457700 500000 1228000 1899000 2279000 2848000	11331424114714513171111

TYPE OF SFECTRUM	NO. OF TEST GROUPS
Gust	65
Maneuver	13

MATERIAL	NO. OF TEST GROUPS
2C_4-T	41
7075-T6	28
Cr-Ho Steel	6
D.T.D. 363A	6

Type of Speciaen	no. Of Test Groups
Notched Sheet	27
Double Shear Riveted Joints	7
Unnotched Sheet	7
Butt Joints	6
Strips with Hole	6
One Row Lap Joints	6
Two Row Lap Joints	1
Notched Plate	3
C-46 Wing	7
P-51 Wing	8

Figure 53. Schematic Diagrams of Gust Loading Sequences

Figure 63 (continued) Schematic Diagrams of Gust Loading Sequences

Theoretical Elastic Stress Concentration Factor $K_{T} = 1.0$

Figure 64 Notched Sheet Specimen for which Fatigue Test
Data are Presented in Reference 16

Figure 65 Specimens for which Patigue Test Data are Presented in Reference 17

Single - Row Flush-Riveted Tap Joint

Double-Row Flush-Riveted Lap Joint

(Length between Grips is Approximately 12 Inches)

Figure 66 Riveted - Tap Joint Specimens for which Fatigue Test Data are Presented in Reference 18

Figure 67 Notched Plate Specimen for which Fatigue Test Data are Presulted in Reference 19

- •
- D Internal Doubler
- R Internal Doubler
- H Corner of Cutout

Figure 68 C-46 Wing Specimen for which Fatigue Test Data are Presented in References 20 and 23

Figure 69 P51 Wing Specimen for Which Fatigue Test Data are Presented in Reference 21

TABLE 31

UNIT GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET SPECIMENS 2024-T3 ALUMINUM ALLOY (Reference 16)

Ftu = 72.1 KSI (Net Area)

1 18.1 .010 62000 - 18.1 .010 46800 - 2 19.5 .029 24000 - 19.5 .029 27200 - 3 20.9 .049 9400 - 20.9 .049 14500 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .041 145000 - 20.9 .0	Loading Step	f _{max} KSI	S _V	n ·	N	r _{max} KSI	. S _V	n	N
1 18.1 .010 62000 - 18.1 .010 46800 - 2 19.5 .029 2h000 - 19.5 .029 27200 - 3 20.9 .049 9h00 - 20.9 .049 1h500 - 4 22.3 .068 3h00 1300000 22.3 .068 6800 1300 5 23.7 .087 880 270000 23.7 .087 2750 270 6 25.1 .107 220 96000 26.5 .126 450 44 8 27.9 .1h6 26 26000 27.9 .1h6 200 26.5 .126 450 44 8 27.9 .1h6 26 26000 27.9 .1h6 200 26.5 .126 150 44 10 30.7 .185 3.2 9200 30.7 .185 39 29 11 32.1 .204 1.8 6100 32.1 .204 18 612 33.5 .223 .5 4200 33.5 .223 7.6 11 32.1 .204 1.8 6100 32.1 .204 18 612 33.5 .223 .5 4200 33.5 .223 7.6 11 36.3 .262 .1c 2050 36.3 .262 1.3 .2 11 36.3 .262 .1c 2050 36.3 .262 1.3 .2 11 36.3 .262 .1c 2050 36.3 .262 1.3 .2 11 36.3 .262 .1c 2050 36.3 .262 1.3 .2 11 36.3 .262 .08 1540 37.7 .262 .6 11 36 39.1 .301 .054 1150 39.1 .301 .3 11 17 40.5 .320 .024 860 40.5 .320 .25 18 41.9 .340 .012 700 41.9 .340 .09 (06) \overline{\tau} \ta		fmea			n = •2l:1	$\mathbf{f}_{ exttt{mea}}$			
fmean = 17.4 KSI Smean = .241 fmean = 0 KSI Smean = 19.5 .029 82000 = 2.2 .031 41000	10 11 12 13 14 15 16 17	19.5 20.9 22.3 23.7 25.5 27.3 29.3 30.7 32.1 33.5 34.9 36.3 37.7 39.1 41.9	.029 .049 .068 .087 .107 .126 .116 .165 .204 .223 .243 .262 .282 .301 .320	24,000 94,00 34,00 880 220 60 26 7.8 3.2 1.8 .5 .34 .16 .08	270000 96000 44500 26000 15000 9200 6100 4200 2900 2050 1540 1150 860	18.1 19.5 20.9 22.3 23.7 25.1 26.5 27.9 29.3 30.7 32.1 33.5 34.9 36.3 37.7 39.1	.010 .029 .049 .068 .087 .107 .126 .165 .185 .204 .223 .262 .262 .301 .320 .340	46800 27200 14500 6800 2750 1120 450 200 80 39 18 7.6 3.0 1.3	130000: 270000: 270000 1450: 26000 150: 2500 1,300 2500 1,400 2500 1,400 1,500
7 38.4 .292 1.6 1320 34.8 .463 .73	·	fmea 19.5 22.5 25.6 28.7 31.9 35.1	.029 .071 .114 .157 .201	82000 15000 2800 350 46	900000 73000 18500 6500 2760	2.2 8.0 13.2 18.5 23.8 29.2	.031 .111 .183 .257 .330	L1000 7850 980 143 23	

**** tosts also made at 2n (GIL)

TABLE 32

UNIT GUST LOADING SPECTRA AND S-N DATA FOR ECTCHED SHEET SPECIMENS
7075-T6 ALUMINUM ALLOY
(Reference 16)

Ftu - 82.9 KSI (Net Area)

Loading Stop	f _{max} KSI	Sy		•	K
Gust Sp	postrum A;	Imean =	20 KSI;	menn	24I
-					
12345078	21.5	.018	420		160000
2	25.3	.(6h	75		160000
3	28.7	.105	11		16600
4	32.6	.152		75	5800
5	30.3	.1.97		23	2900
U	ήΟ*Ţ	-21.2		2.5	J1130
?	43.2	.288		٥,٢	820
8	1.7.5	.332		0.1	ijua
	(*15 %	721×+)	÷ 500	ου *	
	postrum A,				121
1	13.0	.036	علبل		
2	17.1	. CVs C		00	520000
ን 14 5 6 7	21.5	.1 14		00	50000
li	27.1	.200		92	11100
5	31.7	.262		74	1650
6	36.8	.323		1.8	670
7	42.5	.392		0.3	280
ġ	47.0	.) <u>փ</u>		07	160
	(O22 &	(12 3)	≥ 30A	00	
	bectrum A:	f _{menti} *	O KSI; S	mean	= C
Quet S	•	14.000			
	3.8	.046	21:14		-
	3.8	•	21:14 148	00	2300000
	3.8 9.1	.046	21:14 148		2300000 27500
	3.8 9.1 15.0	.046	21:14 148	00	
	3.8 9.1 15.0 21.2	.046 .110 .181 .256	21:14 148	90 90	27500 4200
	3.8 9.1 15.0 21.2 27.2	.046 .110 .181 .256	21:14 148	90 98 U	27500 420 0 1050
	3.8 9.1 15.0 21.2 27.2 33.7	.046 .110 .181 .256 .328 .406	21:14 148	90 98 14 1.8	27500 4200 1050 320
1 2 3 4 5 6 7	3.8 9.1 15.0 21.2 27.2	.046 .110 .181 .256	21:14 148	90 98 U	27500 4200 1050 320 130

* Tests also made at n (G15, G18, & G20)

HA Test Group No.

TABLE 33

UNIT GUST LOADING SPECTRA AND S-N DATA FOR DOUBLE SHEAR RIVETED JOINTS
2024-T3 ALCLAD
(Reference 17)

Ftar	,	61.1	KSI	(Net	Area)
90				-	

			90.			· .		:
Loading Step	Smax	5 _v	n	N	S _{mack}	Sv	n	N
		Smea	n253			Sme	an = .152	
123456789	.278 .327. .376 .426 .475 .524 .574 .623	.025 .074 .123 .173 .222 .271 .321 .370 .b19 (028*)	281000 65700 11500 1140 402 131 50 16 10	2300000 120000 54000 29000 18000 11700 7000 5400 3700	.167 .196 .226 .256 .285 .315 .315 .374	.015 .044 .074 .104 .133 .163 .193 .222	201000 65700 11500 1140 432 131 50 16 10	650000 260000 160000 72000 53000 35000 29000
•		Spea	n = .101			Smean	n = .0806	· ·
123456789	.111 .131 .150 .170 .190 .209 .229 .249	.010 .030 .019 .069 .089 .108 .128 .148 .167	281000 65700 11500 1140 132 131 50 16 10	1500000 610000 390000 270000 200000 115000 120000	.089 .105 .120 .136 .152 .168 .184 .199 .215	.008 .024 .039 .055 .071 .087 .103 .118 .134	281000 65700 11500 14110 432 131 50 16 10	3500000 880000 520000 380000 300000 220000

*Test Group No.

TABLE 34
UNIT GUST LOADING SPECTRA AND S-N DATA FOR UNNOTCHED SHEET
7075-TO ALCIAD
(Reference 17)

F_{tu} = 76.8 KSI

Smax	S	n	Ŋ
	S _{moan} =	.201	-
.221 .260 .299 .339 .378 .117 .1157 .156 .535	.020 .059 .098 .138 .177 .216 .256 .295 .334 (032*)	281000 65700 11500 1140 432 131 50 16 10	5000000 36000 180000 105000 66000 44000 31000
	S _{mean} *	.161	
.177 .208 .240 .271 .302 .314 .355 .397	.016 .047 .079 .110 .141 .173 .204 .236 .267 (G33)	281000 65700 11500 1140 432 131 50 16	1500000 330000 131000 120000 82000 60000
	S _{mean} =	·us	
.159 .167 .216 .214 .272 .301 .329	.014 .042 .071 .099 .127 .156 .184	281000 65700 11500 1140 132 131 50	550000 260000 165000 120000 85000
	.221 .260 .299 .339 .378 .117 .157 .196 .515 .240 .271 .302 .314 .355 .397 .128	Smoan ** .221 .020 .260 .059 .299 .098 .339 .138 .378 .177 .117 .216 .457 .256 .196 .295 .535 .334 (632*) Smean ** .177 .016 .208 .017 .210 .079 .271 .110 .302 .111 .334 .173 .355 .234 .397 .236 .128 .267 (633) Smean ** .159 .014 .167 .012 .216 .071 .214 .099 .272 .127 .301 .156 .329 .184 .357 .212	Smoan = .201 .221

^{*} Test Group No.

TABLE 35

UNIT GUST LOADING SPECTRA AND S-N DATA FOR BUTT JOINTS
7075-T6 ALCLAD
(Reference 17)

Ftu	=	53.0	KSI	(Gross	Area)
-----	---	------	-----	--------	-------

Loading Step	Smax	Sy	n ·	N			
	S,	nean25	0				
1 .275 .025 281000 -							
1 2	•323	•073	65700	380000			
3	-372	.122	11500	95000			
h	421	.171	0 بايلًا	31000			
3 4 5 6 7 8	-470	.220	132	15000			
6	51.8	.268	131	8000			
7	.567	.317	50	4200			
8	-516	.366	16	21,00			
9	.665	.i15 `	10	1400			
•		(035*)	Σ <u>360280</u>				
		Smoan	167				
1	.183	.016	281000	-			
2	.216	·0/19	65700	-			
3	-248	.081	11500	650000			
3 4 5 6 7 8	.281	.114	11410	300000			
Š	.313	·145	432	150000			
6	.346	.179	131	75000			
7	.378	.211	50	42000			
Š	.411	-244	16	23000			
9	3 البا	.276	1.0	มีเ500			
_		(036)	5. 360280				
		Smean	125				
1 2	.137	.012	281000				
2	-162	.037	65700	-			
3	.186	.061	11500	•			
3 4 5 6 7 8	.210	•085	1 /1/10	1100000			
5	•235	.110	432	1460000			
6	.259	.334	131	260000			
7	.284	.159	50	170000			
8	.308	.1£3	16	110000			
9	.332	.207	1.0	72000			
		(037)	<u> 2::360280</u>				

*Test Group No.

TABLE 36

UNIT GUST LOADING SPECTRA AND S-N DATA FOR STRIPS WITH CENTRALLY LOCATED HOLE Cr-Mo STEEL

(Reference 17)

Ftu = 150.8 KSI (Net Area)

Loading Step	Smax	S _v	n	N
	·	S _{mean} =	286	
123456789	.314 .370 .426 .481 .537 .593 .649 .705	.028 .084 .140 .195 .251 .307 .363 .419 .474 (038*)	281000 65700 11500 1140 132 131 50 16 10	260000 92000 43000 22000 11000 5400 2600
		Smoan = .	222	
1 2 3 4 5 6 7 8 9	.214 .288 .330 .374 .417 .460 .503 .547	.022 .065 .108 .152 .195 .238 .281 .325 .368 (039)	281000 65700 11500 1140 432 131 50 16 10	270000 111000 56000 32000 18000 11000
		Smean .	.182	
123455789	.199 .235 .270 .306 .341 .472 .448 .483	.017 .053 .088 .124 .159 .195 .230 .266 .301 (G40)	281000 65700 11500 1山山 1432 131 50 16 10 22 360280	320000 125000 6l4000 37000 25000

* Test Group No.

THEIR 37

UNIT GUST ICADING SPECTRA AND S-H DATH FOR SINGLE-ROW FIUSH-RIVEED LAP JOINTS 2021—73 ALCLAD (Reference 18)

Ultimate Load = 4600 lbs. (Gross Area)

×			280000 91000 40300 1,9200 10000	
я	2	Steps	115000 384.00 38	
ωÞ	Smean = .212	Five Loading Steps	103 200 200 308 376 (44)	
SEEX	ν _e	Five	37. 182 152 252 88	
Mariana Load-Ibs.		•	2450 2080 2400 2100	
*			285500 91500 40300 19200 10000	
닯	lbs.	tens	1673000 207500 19200 1920 192 192 192 193	
o ∤	Mean Load = 759 lbs	Six Loading Steps	.034 .103 .172 .240 .303 .376	
Srax	Rean L	Mean L	Stx 1	21,6 315 315 36,4 24,5 520 520 528
Eximm Load-lbs.			2000 2770 2000 2000 2700 (64)	
Loading Step			ው ለ ድო፡፡፡	

* Tests also made at 1.2n and 1.5n. (Git & Gill, respectively)

** Test Group No.

BE SAIGAT

UNIT GUST LOADING SPECTRUM AND S-N DATA FOR DOUBLE-ROW FLUSH-RIVETED LAP JOINTS 2021;-T3 ALCIAD (Reference 18)

Ultimate Load = 8690 lbs. (Gross Area)

Loading Step	Maximum Load-165.	Smauc	S	n	Ä
Mean I	oad = 1840 1b	8,		S _{mean} = .212	
	Fi	ve Loadi	ng Steps		
1 3 45	2734 3333 3923 4514 5104	•315 •384 •452 •520 •588	.103 .172 .240 .308 .376 (Gli5*)	113800 18500 1850 185 19 2 161350	250000 75000 31500 13100 6000

* Test Group No.

TABLE 39

UNIT GUST LOADING SPECTRA AND S-N DATA FUR SINGLE-ROW PLUSH-RIVETED LAP JOINTS
7075-36 ALCIAU
(Reference 18)

Ultimate Load = L975 lbs. (Gross Area)

×			98000 40500 22100 12300 7100
et .	21	Steps	79100 121,00 121,0 121, 121, 121,00 120,00 1
S A	Smean212	Five Loading Staps	103 172 172 306 376 665
Saex	S _A	Five I	£5.4.88
Marchana Load-lbs			1567 1910 221.8 2567 2920
*	Mean Load = 1055 lbs.		93000 40500 22100 12300 7100
ជ		Steps	1086C00 124:000 124:00 124:0 124:12 124:12
« ≯		Kean Load = 10 Six Loading S	172 172 210 306 308 (617*)
Srax			252 152 152 152 152 153 153 153 153 153 153 153 153 153 153
Maximum Load-lbs.			1222 1567 1910 2218 2587 2920
Loading Step			๚๚๚๚๛

* fest Group No.

TABLE 40

UNIT GUST LOADING SPECTRA AND S-N DATA
FOR NOTCHED PLATE SPECIMENS
D.T.D. 363A ALUMINUM ALLOY
(British Zinc-Aluminum Alloy Similar to 7075-T6)
(Reference 19)

F_{tu} = 85 KSI (Net Area) f_{mean} = 14 KSI S_{mean} = .165

Loading Step	f _v KSI	S	n	N
	Hi	no loading St	eps	
1 2 3 4 5 6 7 8 9	2.62 3.63 4.73 5.78 6.84 7.88 8.93 9.98 11.02	.030 .043 .056 .068 .080 .093 .105 .118 .130 (Ch8*)	7400 3100 1500 700 325 150 67 31 15 2 13290	150000 18000 26000 17000 12500 9200 6800 5200
	D3.1	forent Frequ	iou of.	
1 2 3 4 5 6 7 8 9	2.62 3.58 4.73 5.78 6.84 7.88 8.93 9.98	.030 .043 .056 .068 .080 .093 .105 .118 .130 (Gh9)	1,400 600 700 280 180 66 33 21 13 ∑ 6290	150000 48000 26000 17000 12500 9200 6800 5200
	T	en Loading St	iop s	
1 2 3 4 5 6 7 8 9	2.62 3.58 4.73 5.78 6.84 7.88 8.93 9.98 11.02 11.60	.030 .013 .056 .068 .080 .093 .105 .118 .130 .137 (050)	810 1800 1650 747 193 103 60 27 12 8	150000 48000 26000 17000 12500 9200 6800 5200 4000

* Test Group No.

TABLE 41

UNIT GUST LOADING SPECTRUM AND S-N DATA
FOR WING STATIONS 180, 211, 228, AND 239 OF C-16 WIND
2021-T ALUMINUM ALLOY
(Reference 20 and 23)

Ultimate Load Factor = 5.0 * (Gross Area)
Smean = .2

Loading	∆g	5 - <u>Δ</u> 6		N			
Step	3	n	WS 160	#S 21/1	WS 228	WS 239	
			••	Se	2		
1	.225	.045	39 312 151444	6500000 1170000	5000000 1500000	6000000 1300000	1750000
· 1.	.375 .525	.075 .105	3510	320000	550000	470000	520000 240000
4 5 6	.675	.135 .165	1.067 235	132000 66000	260000 150000	21,0000	130000 81000
.6 7 8	.975 1.125	.195 .225	73 20	3 <i>5</i> 000 20500	9200 0 65000	62000 39000	56000 40000
8 9	1.275	.255 .285	5.86 1.48	12500 8600	1,6000 3,5000	27000 18500	29000 21500
1.0 11	1.575	.315 .345	· .69	6000 450 0	28000 23000	10200	16000 12500
12 13	1.875	•375 •405	.12	3300 2500	18000 14500	8000 620 0	10000
14 15	2.175	.1.35	•02	1900	12000	4600	7000
16	2.325 2.475 G51 to	.465 .495	.02 .01 59670	1520 1250	10000 8800	4000 3°00	6000 520 0

* Arbitrary

Test Group No.

тавые 42

UNIT CUST LOADING SPECTRUM AND S-N DATA FOR COMPLETE C-46 WING 2024-T ALUMINUM ALLOY (Reference 20)

Ultimate Load Factor = 5.0 * (Gross Area)					S _{moan} = •	2
Loading Step	S △g	Sv-SE	n	N.	N	N
	•			First Crack	Critical Crack	Final Failure
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	.225 .375 .525 .675 .825 .975 1.275 1.575 1.875 1.875 2.025 2.175 2.325 2.475 (055 to	045 075 105 105 105 105 105 105 105 105 105 10	39312 15444 3510 1067 235 73 20 5.86 1.48 .69 .19 .12 .06 .02 .02	3100000 190000 250000 140000 141000 24000 15000 9500 6200 4000 2700 1800 1200 850 580	1300000 1070000 1070000 200000 110000 65000 10000 26000 17000 11500 7900 51400 3700 2600 1820	6600000 1550000 590000 280000 152000 95000 57000 24000 16000 11000 8000 5900 4500 31000 2600

^{*} Arbitrary

^{**} Test Group To.

TABLE 43

UNIT GUST LOADING SPECTRA AND S-N DATA FOR P51 WING 2021;-T ALUMINUM ALLOX (Reference 21 & 24)

Ultimate Load = 89600 lbs. (Gross Area) $S_{\rm mean}$ = .200

Loading Step	Sy	D.	¥	N	N	И
			Initial	Pailure	Final.	Failure
		•	Gun Bay	Tank . Bay	Gun Bay	Tank Bay
		Eleven	Loading	Steps		
1	.0324	275300			_	
2	0540	118200	1585000	3020000	2089000	5888000
	.0756	643 10	346700	616600	660700	501200
3456789	.0972	26080	123000	211300	309000	218800
5	.11.88	9452	53090	93330	152200	112200
6	.1512	5110	17780	38020	75860	53700
?	بابا 19	1139	5248	15140	33110.	23500
8	.2376	220.7	1950	7590	15850	10960
	-2808	51.32	813	1360	7800×	5623
10	.3240	10.69	355	2660	4169	3020
	.4 G60, .4 G60, .4100	<u>4.343</u> ∑ 499880 **	83	1120	1120	1072
		Three	Loading	Steps		
1	•055	26500	1513600	2691500	1905500	4365200
2	.075	5300	363080	630000*	676080	524810
3	.1325	1060	32359	61659	TJ)1820	81283
G59,G61,	163 & G65)∑ <u>32860</u>				

^{*} These values have been corrected. The values listed in reference 21 are apparently in error.

^{**} Specified in reference 21 as the number of positive load peaks in 10° load sclections.

^{***} Test Group No.

Unit Gust Loading Spectra for Unnotched Sheet Specimens

Figure 73

Figure 74. Unit Gust Loading Spectra for Butt Joint Specimens

ASD TR 61 - 434

Figure 77 Unit Gust Loading Spectrum for Lap Joint Specimen With a Double Row of Flush Rivets

Figure 78 Unit Gust Loading Spectra for Lap Joint Specimens with a Single Row of Flush Rivets

ASD TR 61 - 434

553

Figure 79 Unit Gust Loading Spectra for Notchel Flate Specimens

ASD TR 61 - 434

Figure 81 Unit Gust Loading Spectra for P51 Wing

Figure 82 S-N Curves for Notched Sheet Specimens

ASD TR 61 - 434

Figure 84 S-R Curves for Double Shear Riveted Joint Specimens

ASD TR 61 - 434

Migure 85 S-N Curves for Unnotched Sheet Specimens

Figure 86 S-N Curves for Butt Joint Specimens

Figure 87 S-M Curver for Strip Specimens with Centrally Located Hole

S-N Curve for Lap Joint Specimens with a Single Row of Flush Rivets Figure 88

S-N Curve for Lap Joint Specimen with a Double Row of Flush Rivets Figure 89

S-N Gath. for Lap Joint Specimens with a Single Row of Flush Rivets . Leure 90

S-W Curve for Molane? Flate Specimens

242

W.S. 214 - S-N Curve for Corner Annie ed Doubler Plate . pection Cutout of Test Points . S-N Crive for Internal Doubler I Specimen, Figure 58 W.F. 228 - S-N Curve for Internal Reig at Outboard Junction Measured Mean Stra - S-N Curve is Aver Reference 20. at Cutout P. 30. ut B. Lat Factor = 5.0 Alloy 0.00 ر کن

S-3 Curves for Wing Stations 180, 214, 228, and 239 of C.

ASD TR 61 - 434

Figure 93 Average S-N Curves for Complete C-L6 Wing

Figure 94 S-M Curres for Initial Failure of PSI Wing

Figure 95 S-N Curves for Final Failure of P51 Wing

asd th 61 - 434

TABLE 14

UNIT MANEUVER LOADING SPECTRA AND S-N DATA FOR DOUBLE SHEAR RIVETED JOINTS 2021,-T3 ALCIAD (Reference 17)

Ftu = 61.1 KSI (Net Area)

		.		
Loading Step	Smax	S _v	n	M
	· ·	S _{min} = .083	13	
123456789	.117 .183 .250 .317 .383 .450 .517 .583 .650	.0169 .0499 .0833 .1169 .11,99 .1833 .2169 .24,99 .2833 (M1*)	3200 1800 1100 620 350 200 120 68 39 2 7497	540000 170000 77000 42000 24000 14000 9300 6000
		S ₀ in = .062	5	
1 2 3 4 5 6 7 8 9	.088 .138 .188 .238 .288 .338 .368 .438	.0128 .0378 .0628 .0878 .1128 .1378 .1628 .1878 .2128 (M2)	3200 1800 1100 620 350 200 120 68 39 ∑7497	9000000 420000 190000 97000 57000 35000 24000
		S _{min} = .050)	
1 2 3 4 5 6 7 8 9	.070 .110 .150 .190 .230 .270 .310 .350 .390	.010 .030 .050 .070 .090 .110 .130 .150 .170 (N3)	3200 1800 11.00 620 350 200 120 68 39 27497	1300000 100000 200000 120000 76000 50000 35000

* Test Group No.

TABLE 45

UNIT MANEUVER LOADING SPECTRA AND S.-N DATA FOR UNNOTCHED SHEET 7075-16 ALCLAD (Reference 17)

Ftu = 76.8 KSI (Net Area)

Loading Step	Smax	Sy	n	N	Smax	S	n	Ŋ
	S	min = .1	25			Smi	n = .100	
123456789	•175 •275 •375 •475 •575 •675 •775 •875 •975	.025 .075 .125 .175 .225 .275 .325 .375 .425 (14*)	3200 1800 1100 620 350 200 120 68 39 27497	470000 140000 71000 10000 22000 9000 1300	.140 .220 .300 .380 .460 .540 .620 .700 .780	.020 .060 .100 .140 .180 .220 .260 .300 .310	3200 1800 1100 620 350 200 7.20 68 39	6000000 300000 110000 80000 52000 31000 20000
	· s	min = .00	8 33 .			Smi	n0625	
1 2 3 4 5 6 7 8 9	.117 .183 .250 .317 .383 .450 .517 .533 .650	.0168 .0496 .0834 .1168 .1498 .1334 .2168 .2498 .2834 (M6)	3200 1800 1100 620 350 200 120 68 39 2 7497	680000 230000 135000 86000 58000 1,1000	.088 .138 .188 .238 .298 .338 .388 .138 .488	.0128 .0378 .0628 .0078 .1128 .1378 .1628 .1273 .2128 (M7)	3200 1300 1100 620 350 200 120 68 39 2 7497	850000 340000 200000 130000 92000

*Test Group No.

TABLE 46

UNIT MANEUVER LOADING SPECTRA AND S-N DATA FOR BUTT JOINTS
7075-T6 ALCIAD
(Reference 17)

Ioading Step	Smax	S _y	n	X
		S _{min} = .10	o ·	
1	.Tlt	•02	3200	••
123456789	.22	•06	1800	2700000
3	.30	.10 .14	1100	300000
lų –	.38	•1ħ	620	71000
5 .	.46	.18 .22	350	20000
<u>6</u> ·	•24	.22	200	8600
7	.62	•26	120	11800
8	. 70	-30	68	2000
9	•78	. 34	<u>39</u> Σ 7497	900
•	•	(x8 *)	≥ 7497	
		$S_{min} = .08$	33	
1	.117	.0168	3200	
2	.183	.0498	1800	
3	.250	.0833	1100	700000
4	.317	.1168	620	190000
5	•383	.1198	350 200	62000
6	. 450	.1833	200	21000
7	-517	,2168	120	10000
123456789	.58 3 .550	.21,98	68	5500
9	- 550	.2833	39	31:00
		(1:19)	39 ∑749 7	
		$S_{\min,n} = .063$	25	
1	•088	.0127	3200	•
2	.138	.0377	1800	_
3	.188	.0627	J700	
4	•238	.0877	620	750000
123456789	-288	.1127	350	270000
6	.338	.1377	200	120000
7	•38 8	.1627	120	50000
8	•jr38	.1877	68	23000
9	-488	.2127	39	12500
		(mo)	Σ 7497	

* Test Group No.

TABLE 47

UNIT MANEUVER LOADING SPECTRA AND S-N DATA FOR STRIPS WITH CENTRALLY LOCATED HOLE Cr-No STEEL (Reference 17)

Ftu = 150.8 XSI (Net Area)

Loading Step	Smax	Sy	n	N
· .		s _{min} 111	•	
1	.156	.0225	3200	
1 2 3 4 5 6 7 8 9	.21,4	.0665	1800	-
3	•333	.11.10	1100	-
4	.422	.1555	620	220000
5	.511	•2000	350	87,000
6	.600	.2445	200	10000
7	.689	.2890	120	21000
8	.778	•3335	68	10000
y	.867	.3780	39	3800
		(Mll*)	Σ7491	
		$S_{\min} = .100$		
1	.140	.020	3200	•
2	•550	•060	1800	-
3 ·	.300	.100	1100	
4	. 380	-1110	6නු	1100000
5	. 1,60	.180	350	130000
6	•270	.280	200	59000
1 2 3 4 5 6 7 8	.620	.260	120	32000
0	•700	•300	68	17500
9	.780	340	∑ 74 97	9000
		(WIS)	2_ 1491	
		$s_{\min}083$	3	
1	.117	.0168	3200	•
2	.183	.0498	1800	***
3	. 250	-0834	1700	-
4	-317	.1168	620 .	
1 2 3 4 5 6 7 8	-383	•1768 867E	350	280000
7	-450	.1831 .2169	200	120000
f R	•\$17 •\$83	.2103 .2498	120 68	63000 38000
0	.505 .650	•2496 •283 4	39	23000
,	△ \4,2\7		∑71.97	2,5000
		(103)	2_ 1471	

^{*} Test Group No.

Unit Maneuver Loading Spectra for Double Shear Riveted Joint Specimens. 71gure 97

ASD TR 61 - 434

Pigne 99 Unit Maneuver Loading Speatra for Butt Joint Specimens

Unit Maneuver Loading Spectra for Strip Specimens with a Centrally Located Hole. Figure 100

ď

Figure 102 S-M Curves for Unnotched Sheet Speciaese. Constant Minimum Stress. (For Maneuver Type Loading)

Figure 103 S-R Curves for Butt Joint Specimens. Constant Minimum Stress. (For Maneuver Type Loading

(For Manauver Type Loading)

Constant Minimim Stress.

TABLE LS

EXPERIMENTAL PATIGUE LIVES FOR GUST LOADING SPECTEA

ges
ď
2
Next
g
Continued
7
(Table

			1 40000	renurana er arger)	1		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	}			
			Nurber of	gg Jo				Test	ot) =357	Test Life (10 ⁶ Cycles)	
Meterial	Specimen	SHERT	Loeding Steps	Loeding Spectrum Steps Curve	Sequence	Block Size	Specience of	2	Minima Mexima	Geometr's Mean	Ref.
Sm. Hore	Kotebed	241	18	Gust 5	Le-H1	37.	ന	8,000	8.100	8.049	
;	Steet	-	- .	\ 	Lo-Et	3000	0	2.58	5.000	3.872	
	-				H1-10	3	, (**)	7.410	17.700	1 88.1	
						0000	w.	8.506	26.036	14.555	
	w Pri a			Gust B	ව	50000	ထ	3.654	10.143	6.933	
			8	Gust A	· (.	000001	.at	1.403	2.501	1.824	
		- - -	ထ		01	100200	m	g.	5 .	.593	
	- 	•••	. •••	- -	91. FE	1002001	m	2.007	2.65 2.65	30°00	
	-				o-E1-Lo		m	757.7	次の。こ	1,612	
				-	Hi-to-Hi	100200	• 647	1.376	1.756	1.519	
	··••		-de-		5	50100) (**)	\$	2.253	2,020	
	٠.	263			;·	100200	1-3	8	ri M	1.215	
		O				2000	v	55.0	Ç.	624.	;
2021; T3		5			සු	10000	m	305	<u>ب</u>	3 0%	2
! }		1 10		<u> </u> 	10-H1	0000	-	T.S.	! •:	8.41T	
24-672		•	•		11-01	0000	الدو	356	တ	452	
				• •	41-IH	800	.4	त्र	1.527	3.58	
			···	- ·	Io-Hi-ol	13200	. ‡	.503	1.013	.762	
		.	. .	·•• ·	H-01-1H	50,00	.:	%	1.069	916.	
			- +	• • • •	8	10200	ന	5,5	÷i5	3.	
	,.	T+2.			5	88	.a t	聚	2	8	
	- ***	ষ			10-H1-01	3000	(M)	183	894	363	
		য়		. .	ß	9000 9000 9000	9	สฺ	907	X.	
		0	••••	•••	1E-01	0000 0000 0000 0000 0000 0000 0000 0000 0000	9	8	ğ.	52.	
		• • •			H1-L0		'n	8.	8	8	
	Kotched	-	1		ol-H-ol		m/	5	gi Gi	X 7	
7075-16	Sheet	0	œ	Gust: A	ខ	99	ه	3	913	<u></u>	

SD TR 1

260

(Table is completed on next page.) TABLE 18

							11								u	3				ગ	,
ycles)	Mean	114	4.788	21,732	25,710	75,875	151,966	2.99L	27.558	1.020	27.900	50,367	1.59	2,279	2,648	0470	.093	1.228	132	128	.C71
Life (10 ⁶ Cycles	Maximum	.522	5.980	27,400	27.100	98,000	181,000	4.030	28,100	020	26.600	63,000							270	7	.282
Test L	Minimm	324	3,260	13,590	27, 100	58.78	127,000	2.050	27,000	30/03/	201.21	115,000							100	, S.	.032
Number of		2	m	m o	2	~	C:	7	• 🗪 c	- 6	ı d	•		н	-4 <i>,</i>	·1 p-4	Н	1	. 9	عدد	۶
Block	Size	360280	_		1			<u> </u>	 -	<u> </u> 		3602 Bo	1899000	2279000	281,8000	161,00	92500	1228000	13290	0629	5420
	Loeding Sequence Steps	07-1H-01	namet (c)			****				<u> </u>	 .	2-41-22	(o)-141-01	H1-lo-(c)		 	H1-12 (c)	Io-Fii (c)	01-H-01	Lo-H1-10	77-74-01
Number		6								<u> </u> 		- 0	0	\$	ωv	1	~	9	6	6	
8	Keen	.253	152	1	201	191,	. 11.5	.250	167	265	.222	201	.212			 -	 	.212	365	.165	.165
Type of	Specimen	Double	Shear	riveted Joints	Unnotebed	Sheet		Butt	Joints	String	w/nole		(*)			(9)		(B)	Notched	Plate	
	Material		2024-T3	ALCIBA			7075-16 11-18-4				Cr.No	ovee.,		2021:-T3	Alclad	•	7075-T6	Alclad	3634	Aluminum	Alloy
fest Group	og.	628	G29	35	632	ტ. ტ.ე		035	036 037	338	633	Glo	C[]	G12	() () ()	0,5	970	277	870	် ကို	350

(a) lap joint with one row of flush : Lysts(b) lap joint with two rows of flush rivets(c) sequence applied only once

TABLE 148

(Concluding Fage of Table)

Ref.	50	ដ
Cycles) Georatric Kean	1.179 2.307 2.070 1.252 3.344 9.656	.557 .557 .953 .953 2.520 2.520 1.495
Test Life(10 ⁶ Cycles) Georgiann Maximum Nean	8.314 8.712 7.159 3.879 2.507 6.906 13.100	.595 1.120 1.835 1.470 2.300 2.280 1.935
Test Minimum	3.487 3.487 354 1.253 1.418 7.160	276 246 1,260 669 2,025 .990 1,782
Number of Spectmens	ひ ひ ひ ひ と く ひ に	NO NE JO EM
3lock Size	59670	500000 32560 32860 32860 32660 50000 32660
Sequence	5	18 10-81-10 10-81-10 178 10-81-10
Number of Loading Steps	16	# # # #
A Fean	8	, s
Type of Specimen	133 180 132 214 135 228 135 239 (4) (6) (7)	Gun Say Initial Failure Tork Say Initial Failure Gun Bay Firal Failure Tark Say
1 =	C-li6 Wing	Surm tsa
Xaterie]	20211	2024-1
Test Group No.	45.65 45.65 6.65 6.65 6.65 6.65 6.65 6.6	656 661 661 661 663 663 663 663

first crack initiated in complete wing Initiation of critical crack that propagated to failure when loading continued final failure of complete wing (P)

(4)

TABLE 4.9

EXPORTMENTAL FATIGUE LEVES FOR MANSUVER LOADING SPECTRA (Reference 17)

Test Litte (106 Cyoles)	Gourstyle Mean	86.00 E
	lax.	.334 .532
Test	Min.	252 252 252 252
Number	2	ભ ભ ૯
1:100K	Size	1571
المحادد المحاد	Sequence	o!∷o! -
Nu. Jou	of Loading Steps	ο -
7.		.1833 .1625
To exist	upa o timan	Double Shour
•		1

Post Croup Material No.

t			
308 159 903	256 -716 -903 -903	(69) 211, 12,477	.198 .370 1.042
.334 .532 .990	.206 .787 1.120 3.359	1.994 1.994	.208 .389 1.042
252 165 825 825	205 64.5 630 1.454	1,005 1,005	37.5
000	00 m0	ଫା ମ ମ	
1457			1697
o <u>ી- ∷</u> -o1			 -
o —		<u> </u>	o
.0833 .0825 .050	125 0633 0625	100 1003 1003 0625	111. 001. 0833
Double Shoar Ziveted Joint	Unaotched Shaet	Fift foint	Strip W/hole
2021, -13 .Lased	37-5707	710TY	(x-16 Steel
격여없	可动物型	94 94 94	व्रध्रव

APPENDIX D

ORIGINAL TEST RESULTS

This as pendix presents a description of the test equipment, descriptions of the test specimens, and tabulation and graphical results of the experimental work completed in this program. Also included is the statistical analysis of the constant amplitude coupon S-N data. These data are presented in three pare

Part 1. Constant amplitude axial load S-N data from simple coupons.

Statistical analysis of constant amplitude S-N data.

Experimental S-N data.

Construction of S-N Curves by interpolation.

Part 2. Spectral Axial load data from simple coupons.

Description of equipment and procedures for obtaining experimental data on coupon specimens.

Unit Loading Spectra

Experimental Lives

Test Histories .

Part 3. Matigue Pest Results of a Complex Specimen

Specimen Description

Test Set-up

Test kesults

APPENDIK D

PART 1 - CONSTANT AMPLITUDE AXIAL LOAD S-N DATA FROM STEPLE COUPONS

Statistical Analysis of Constant Amplitude S-T Late

The multiple variables and the limited number of individual lest specimens per test condition (five coupons each) led to the use of special statistical methods for small samples. The method of limits regression was chosen to analyze the results of the constant amplitude: Self test data. This method has been suggested by Weibull in reference 33, as well as by other investigators. It considers the frequency distribution of log (Sy - Sg) when log N is held constant. While Figure 105 shows that this method can lead to an approximately normal distribution, the small sample size for each combination of stress concentration factor by and mean stress impan in Table 50 does not always make it possible to arrive at statistically significant conclusions with a high degree of confidence.

は大きには、一人は自己というという。

TABLE 50
TEST CONFIGURATIONS FOR S-X SATA

K _r		fmean,	gross are	a, ISI	
	-10	زد	0	10	15
3	x	x		x	X
4	x	x	x	X	X
7	x	x	x	ı	x
10	X	x		x	1

The eighteen test configurations listed comprise the 450 specimens in Table 52. Twenty-five specimens were tested for each combination of KT and fmean, with five of these specimens being tested at each of five convenient varying stress levels, which cid not exceed 25 KSI. Some additional test configurations are given in Table 53 which were not statistically analyzed.

In Weibull's use of the method of linear regression with small sample size, the $(n = 5 \times 5)$ or twenty-five specimens are pooled and the following S-N function is assumed (reference 33).

Figure 105 Deviation in \triangle log S_{ψ} from the Least Square Best Fit Straight Line on a Plot of log S_{ψ} versus log N

$$S_{\Psi} = S_{E} + p N^{U}$$
 (D1)

This form corresponds to Equation (A6) of Appendix A when

$$p = \infty$$

and

The endurance limit Sg is itself a statistical variate, and Equation (D1) must be solved for known or estimated values of Sg. For a given value of Sg. Equation (D1) can be written in the form

$$\log (S_{\psi} - S_{E}) = \log p + u \log N$$
 (D2)

Designating $y = \log (S_y - S_E)$ as the dependent and $x = \log N$ as the independent variable, the method of linear regression may be applied with

$$\mathbf{y} = \mathbf{y_0} + \mathbf{u} \mathbf{x} \tag{D3}$$

and the coefficients u and y_0 of the straight regression line are determined by

$$u = \frac{\sum (x_1 - \overline{x}) (y_1 - \overline{y})}{\sum (x_1 - \overline{x})^n}$$
 (D4)

and

$$\mathbf{y_0} = \log p = \overline{\mathbf{y}} - \mathbf{u} \ \overline{\mathbf{x}} \tag{D5}$$

where

$$\overline{x} = \frac{\sum x_i}{n} \qquad ; \qquad \overline{y} = \frac{\sum y_i}{n} \qquad (D6)$$

The method is strictly correct only if the population variances of y are homogeneous; that means, the standard deviation in y is independent of x. The deviations from the regression line should be normally distributed. An unbiased estimate of the variance from regression of the population $(n = \infty)$ is given by

$$\{var\} = \frac{\sum [y_1 - (y_0 + u x_1)]^2}{n-2}$$
 (D7)

For any given value x *, confidence limits for the computed value $y * = y_0 + u x *$ are easily set according to Cramer (reference 31).

Upper confidence limit

$$y_u = (y_0 + u x^{*}) + (t_{\frac{1}{2}; \nu}) \sqrt{\{var\} \left\{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{\sum (x_1 - \overline{x})^2}\right\}}$$
 (D8)

Lower confidence limit

$$y_1 = (y_0 + u \times u) - (t_{\infty/2; v}) \sqrt{\left\{var\right\} \left\{\frac{1}{n} + \frac{(x^* - \overline{x})^2}{\sum (x_i - \overline{x})^2}\right\}}$$
 (D9)

Values of $t_{\infty/2;V}$ corresponding to the required confidence coefficient (1 = ∞) and the given degree of freedom V = n - 2 can be found in reference 34; for instance, the values are given in Table 51 for n = 25 test specimens.

TABLE 51
Student's t - value for V = 23 Degree of Freedom

Confidence (%)	20	40	60	80	90	95	98	99	99.9
t - value	.256	.532	.858	1.319	1.714	2.069	2.500	2.807	3.767

Plausible values must be assumed for the endurance limit before this statistical procedure can be applied to S-N data. The actual value selected for the endurance limit, $S_{\rm E}$, as pointed out in reference 33, will have only a small effect on the analytical matching of S-N data in the mid-stress range. A more accurate linear interpretation of S-N data over the entire stress range may semetimes be provided by a statistical fit of Equation (D10) to S-N data.

$$N = \frac{S_{\Delta}^{\delta}}{S_{\Delta}^{\delta}}$$
 (D10)

The improvement in matching S-N data in the high and low stress ranges occurs when S-N data follow the linear trend that is indicated in Figure 47. When plotted in the form of log (S_v-S_E) versus log N, the straight

line variation in Figure 47 degenerates into a curve as shown in Figure 57, where two portions of the resulting curve are approximated by straight lines. This curvilinear variation with $\log (S_w - S_z)$ led to the use of linear regression based on Equation (MO). Statistical parameters for this equation constitute a special case for Equation (DI), being the same as that secured by setting S_z equal to zero in Equation (DI) and in the subsequent statistical development.

The use of linear regression with Equation (D10) lead to more likely conditions for a straight line fit to the entire stress range of S-N data. It led to the S-N curves in Figures 106 to 123 that were faired within the \pm 90 per cent confidence limits. This fairing was made to reduce as much as possible the merging and intersections in cross plots of the data. The faired S-N curves intersected in only one case at the upper end ($f_V = 25 \text{ ksi}$) and were tangent in one place near the endurance limit. Agreement was generally good with the test data although the resulting S-N curves did not flatten out in the vicinity of the assumed endurance limit at N = 107 cycles.

TABLE 52
S-N DATA FOR NOTCHED SHEET COUPONS
(Table 1s continued on the next two pages)
All Stresses are Based on Gross Area

		•	_					
	Kr = 4		Ħ	86.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	1245 1656 1684 2274 2460	% 550 6550 7050 7050 7050 7050 7050 7050	27600 63000 62800 86400 93600	163000 169000 1306600 1998000 3601000
	,=4	fnean	ry KST	นแผนน	22222	้หมหมหม	22222	พพพพพ พพพพพ
	77 =	10	R	1215 1519 1597 2424 2843	212 212 232 202 200 200 200 200 200 200 200 20	12600 12600 14400 15200 16200	1366 112:00 16920 54600 79740	37440 91600 117000 124200 3700000
i Area	УŢ	Lucan	fy KSI	หหหหห	ឧឧឧឧឧ	አአአአ <mark>አ</mark>	44444 24444	99999
Based on Gross Area	Kr = 3	an = 15	N	915 915 965 1072 1101	3272 3904 1269 1998 5200	7995 8722 10655 10707	23400 32400 34200 43600 84600	176400 160000 232200 246600 466600 466600
		fream	f , XSI	หเหตุเหน	0.0000	NNNNN	23333	cycles (
Stresses are	K = 3	fneam • 10	Ħ	765 1509 1666 24.76 2621	2765 3130 4611 6264 5091	9000 10500 10500 16200 19800	27000 27540 1,9630 52800 55600	198560 198300 198540 201600 239400 * 10 ⁷ cy
A11 S		4i'	rsi Ksi	22222	20000	អ្នកអ្នក	22222	NNNNN
	Σ ₁ = 3	£ = a==	Ħ	200 1031 1384 1384 1452 1760	6446 6446 6446 6446 6446 6446 6446 644	10800 12800 23400 27000 41400	7200 36000 75500 270000 295560	3744.00 \$22000 \$22000 *
		44	TSX KSI	nnnnn	30000 30000 30000	มหมหา	22222	MMMMM
	K, = 3	an = -10	N	100 00 00 00 00 00 00 00 00 00 00 00 00	2500 2500 2500 2500 2500 2500 2500 2500	10600 37500 37500 13200 105000	100800 135000 203400 3024,00 365200	1,63,200 52,5500 6,634,00 1,67,000 27,19,600
		fnean	FA KSI	BRRRR	22222	អូដូអូង ស អូដូអូងស	22222	ะะะะ พทุพพุฬ
							•	

TABLE \$2 (Table is completed on next page)

~ 4	0		×	검	ਬੌ	77.	22	300	386	38	636	388		1200 1800	2310	3150	1633	-	80,41	19300	32.00	34200	2770	35,55	מיסורו	3 11600		
Κη.	THE SEE		rsi Ksi	20	8	8	8	8	Z;	٦, ر) L	7	}	9 S	2 6	ន្ទ	9		เ เก็ก	, 70	2	2.	W.	w	ላጉ	viv		
	, to		N	36	भ	077	172	163	195	07.7 2.7.7.	3	256	2	1,55	7,5	3,5	il El	,	55 57 57 57 57 57 57 57 57 57 57 57 57 5	352	313	6620	176200	84,7800	000000	*		
Ϋ́	1		ISA KSI	25	12	52	5 2		8	ន្តន	3 6	2 5	3	77	٠, <u>١</u> ,	ሳ ኮ ሳ ኒ) H		96	200	ខ្ព	93	- =	. . :	⇒ -	4.4		•
. 7	-10		. 24	21.3	(<u>7</u>	516	8	i	17.17	<u>بر</u> چوچ	3 5	38.	1	9540	2007	3 2	\$2200	•	1,580	102280	11,7630	11,6500	165000	20,000	390,00	691700	lure)	
1, m	+ + + + + + + + + + + + + + + + + + +		fy KŠI	20	200	8	2	50	75	Z,	ጎዝ	3 ,	7	10	26	35	32	,	ار ا	٠, ۲	111	5.	ν,	, אינ	r V ,	νv	(no failure)	
4	15		z	18.	17.	\0 d	212	315	167	300	ָ פֿאָט נ	nord Total	150	147	2325	365	31.20		6300	352	25.57 C7.67	1500	90003	17,4600	370800	1,06800 21,56000	107 cycles	•
8	1 1	EBall	fy isi	36	, K	7,7	27	123	20	50	g 8	3 8	20	IJ	۲, رک	in) rd r	ታ፫	}	ន្ត	32	3 5	33	"	m	m	๛๛	* 30	
-	01 H	et	×		2 C	38	321		521	दि	3	22.5	1007	1660	2500	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5750 6150	3	5003	33	3,45	27300	0200ر	63000	61,830	92500 5720 00		
	Ę⁴ ←	user.	FSI FSI	1	J.	0 K) tr	193	នួ	202	20	20	22	14	F)	V) i	٦. ري	7	ដ	2	0 6	33	-=	tt	انــ	ച .ವ	•	
		.	¥		m m m	7 P	ሳ ኒ ጎ	25	620	县	भार	975	1316	3500	1,263	8317	6450 7263	1500	26280	25300	29700	37500	20055200	3979500	50001111	6378000		
	Š,	T.ean	f. Kit		ដូរ	υ, Έ	กน งัง	ល	, ç	28	8	ଧ	8	r.	F.	77.	id i	4	2	႙	유 :	33		ን ù	w	ww	•	

ASD TR 61 - 13h

TABLE 52 (Concluding Page of Table)
All Stresses are Based on Gross Area

30	57	×	हेड्ड इस्ट्रेड	84868 84868	1331 1530 1530 1530 1530 1530 1530 1530	25200 28800 30600 57600 61500	340200 648000 640014 696200 *
.5	f mean	fy K3I	# #####	99999	ννννν	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	diddd Mwww
10	10	×	155 168 177 179 200	1.93 728 766 794 1021	772 1391 1462 1462 1501	2580 6176 6343 6959 7258	25200 35000 73440 82620 57600 0
	reen .	KŠ	ಚಿಚಿಸಿಸಿಸಿ	22222	~~~~~ ~~~~~~	NNNNN	~~~~~ ~~~~~~
Kr = 10	2- u	N	23.22.25. 23.22.22.25.22.22.22.22.22.22.22.22.22.22.	760 1031 1231 2331 330	916 3600 14138 7200 22,544	23300 35000 35000 4,3200 68200	1.3600 55800 111.000 521.750 8381,80 failure
×	ragan	rigit Rigit	ಸ ಸಸಸಸ	99999	www.	NNNNN	77 ou)
Kr. = 10	10 E -10	N	28. 28. 26. 26. 26. 26. 26. 26. 26. 26. 26. 26	350 473 883 783 783 783	1660 2215 3215 16500 9011	25800 145000 66500 72000 73800	185400 352800 658600 1420200 3216600
132	7. 1985.1	rši rši	22222	NYNYY NYNYY	22222	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ми иии *.
Kr = 7	rean * 15	×	160 160 130 230	360 1430 1600 1600 1033	500 900 1510 1880 2040	10300 12600 12960 11250 17250	81,600 81,600 1,851,000 31,2000 *
	₽ _B	rši rši	88888	አጓጓጓዝ	22222	NNNNN	00000
2 = 1	ot • u	×	100 130 130 130 130 130 130	383 1253 7063 7063	1500 24,50 3600 41,69 1,950	12600 12600 14400 17460 25200	85200 83200 129600 691000
5	 	ને ટૂંટ	88888	ಸ್ಪಸ್ಟಸ್ಟ	99999	NNNNN	นนนนน์ พัพพัพพ

ASD TR 61 - 434

TABLE 53

	Krat; fmesn = 2.4 KS]	N	12015 14856
	Krat; f	f _v KSI	10.4 10.4
JONS Area	ISX 7 = T	ĸ	3342 3465 3537 4075 4330
SEEET COUP	Krat; freen 7 KSI	fy KSI	15 15 15 15
S-N DATA FOR NOTCHED SHEET COUPONS All Stresses are Based on Gross Area	$K_{T}=\mu$; $f_{mean}=\mu.5$ KSI	N	25200 32400 41400 43400 43800
S-N DATA	K _T =4; f	f, KSĬ	2,5,5,5,5 2,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
	'T-4; f _{mean} 1.125 KSI	æ	>13 ⁷ >10 ⁷ >1.5 (10) ⁷
	T. Lat.	f _v KSI	4.225 4.225 4.225

mean = 2.6 KSI	je.	1356
K _T =7; f _{me}	f _v KSI	10.2 10.2
en 7 KSI	Z	1,85 502 503 529 540
K_=7: f_mean	f _v KSI	11 21 21 21 21
K_r=7; fnean 4.5 XSI	Ħ	9900 10600 11900 13700 14600
K_T=7; £	f _v KSI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
frean 1.125 KSI	N	364030 144000 148000 >107 >107 >107
Kr=7; frest	f _V KSI	4.225 4.225 4.225 4.225 4.225 2.23

Figure 107 Experimental S-N Curve for Notched Sheet Coupons

Figure 108 Experimental S-N Curve for Notched Sheet Coupons

Pigure 109 Experimental S-N Curve for Notched Sheet Coupons

Figure 110 Experimental S-N Curve for Notched Smeet Coupons

Figure 111 Experimental S-N Curve for Motoned Ebect Coupons

ASD TR 61 - 434

280

asd tr 61 - 434

である。 である話であったが、「他によってものない。」 でもの話であったが、「他によってものないできます。」というでは、「他によった。」「他によってものできない。」「他によってものできない。」「他によってものできない。」

Figure 115 Experimental S-N Curve for Notched Sheet Coupons

ASD TR 61 - 434

285

ASD TR 61 - 434

Figure 118 Experimental S-N Curve for Notched Sneet Coupons

Figure 119 Experimental S-N Curve for Notched Sheet Coupons

ASD TR 61 - 434

の際になっている。これには、一般のことが必要を持ちなから、一般のことには、

ASD TR 61 - 434

Figure 122 Experimental S-N Curve for Notched Sheet Coupons

Figure 123 Experimental S-H Curve for Notched Sheet Coupons

CONSTRUCTION OF S-N CURVES BY INTERPOLATION

The complete fatigue loading history for an airframe structure contains several types of varying load spectra, each witing at different mean load levels. One spectrum in particular, the high-performance fighter-trainer maneuver load history, is characterized by an essentially constant minimum load with the varying load excursions to a maximum magnitude and returning to the original minimum. For fighter-maneuver spectra, the normally defined mean load thus varies with each cycle. Interpolation procedures are required to provide the S-N curves for each of these two basic types of loading.

- A. S-N curves of allowable symmetrical varying stresses about a constant mean stress of any specified value are most readily obtained from interpolation of S-N data plotted on a Christenson diagram along lines of the specified constant mean stress. Figure 12h illustrates this operation. The S-N curves in Figure 12b were obtained in this manner from Figure 12h, and those in Figure 127 were obtained in a similar manner from Figure 125.
- 3. S-N curves of allowable unsymmetrical varying stresses above a constant minimum stress of any specified value are readily obtained by interpolation of S-N data plotted on a Christensen diagram along lines of the specified constant minimum stress. Figure 124 illustrates how this procedure results in a 45° line originating at the constant minimum stress in the rectilinear plot that leads to the S-N curve plotted in Figure 128. This latter figure also contains an S-N curve that was derived in the same manner from Figure 125.
- C. S-N curves of allowable stresses with any ratio of R = $\frac{F_{min}}{F_{max}}$ may be obtained by interpolation along a radial line of slope $\frac{1}{R}$ on the $F_{min} F_{max}$ scale.

ASD TR 61 - 434

Caristonesa Disgram-Axial Losding, Coupor Test S-N Data - Kg Pigure 125

ASD TR 61 - 434

Figure 126 Interpolated S-N Curves for Notched Steet Coupons - K, -

ASD T3. 61 - 434

APPENDIX D

PART 2 - SPECTRAL AXIAL LOAD DATA FROM SIMPLE COUPONS

DESCRIPTION OF EQUIPMENT AND PROCEDURES FOR OBTAINING EXPERIMENTAL DATA OR COUPON SPECIMENS

This appendix describes the procedures and equipment employed in accomplishing the experimental and data processing phases of this investigation. An analysis is also presented of the degree of accuracy of the specimen loading histories as a reflection of the command signal emanating from the programming tape. In addition, discussion is presented relative to significant problems encountered in development of methods and equipment.

CONSTRUCTION OF LOADING TAPES

Random Gust Loading Tapes

A one-inch multi-channel magnetic tape recording of a complete flight of an instrumented B-h7 airplane was obtained from the Boeing Airplane Company. A photograph of the equipment which was used for converting the flight data to test input tapes is shown as Figure 130. A full length oscillograph of this instrumentation tape was visually scanned in order to identify signals of high cyclic activity. The signals representing the bending moments occurring at the wing root during a 96-minute low altitude pass (800 feet at 280 knots) was selected for adaptation to specimen loading signals for this investigation.

The selected flight record was transcribed on dual-channel 1/4-inch magnetic tape, as shown schematically on Figure 131. The flight record was passed through an electronic scanning system which continuously determined and subtracted out variations of mean load from the initial mean value. The mean variations were recorded on Channel No. 2 and the resulting dynamic signal was recorded on Channel No. 1. In order to obtain the shortest testing time possible within the frequency limitations of the testing equipment, the 96-minute flight histories were compressed to about 6 minutes for the wing root trace. Ten copies of the transcribed wing root trace were recorded and spliced together into one-hour continuous programming tape.

In an effort to obtain a random trace with a markedly different spectrum shape, the dynamic signal (Channel No. 1) of the wing root programming tape was rerecorded through a non-linear amplification system. To illustrate the change in shape produced, spectral representations based on zero crossing peak counts of the wing root, modified wing root unit programming tapes are shown on Figure 132.

Figure 129 Close-up of Specimen Installation

Figure 130 General View of Tape Construction and Data Reduction Equipment

Figure 131 Schematic of Transcription of Flight Record

MEAN CRUSSING PLAK COUNT-WING ROOT AND MODIFIED WING ROOT TRACES FIGURE 132

The system used to electrically alter the spectrum shape of a random trace is shown schematically on Figure 133. A desired input-output voltage pattern was drawn on the oscilloscope display screen and the non-linear amplification system was calibrated to match this relationship. Spectrum modification was accomplished by rerecording the tape through this calibrated setup.

FATIGUE TESTING PROGRAM

The limited flight loading histories recorded by the 96-minute wing trace was insufficient to provide the desired characteristics of a representative extende random service loading history. To obtain the desired loading history, the random wing root programming signal was modified. The maximum positive and negative loads were made symmetrical and larger loads were inserted so as to represa longer service loading spectrum.

Repetitions of 10 basic sections of the random signal (identified as A1, A2, B1 B2..... E1, E2) were spliced together to make four programming tapes, each approximately one hour long. The A1 section was obtained by rerecording the the basic wing root signal through a non-linear amplifier such that the maximum negative excursion was limited to match the maximum positive excursion. This operation is similar to that used in making the unit modified wing trace and was shown schematically on Figure 133. The B1 section was obtained by rerecording the A1 section through the non-linear amplifier such that the maximum positive and negative excursions are increased about 15%, the next smaller excursions are amplified only slightly and the smallest excursions experience negligible change. The C1, D1 and E1 sections are obtained in the same manner with the maximum positive and negative excursions increased by approximately 20%, 30%, and 40% respectively, over the maximum A1 excursions. The A2 through E2 sections were obtained by rerecording the A1 through E1 sections through a 75% linear amplification system. These 10 basic sections are summarized below.

- A1 Unit wing rest signal modified so that maximum positive and negative excursions are approximately equal.
- A₂ Section A₁ x 75% (linear amplifications)
- Bl Section Al modified so that maximum positive and negative excursions amplified approximately 15%.
- B_2 Section $B_1 \times 75\%$ (linear emplification)
- Section A1 modified so that maximum positive and negative excursions emplified approximately 20%
- C₂ Section C₁ x 75% (linear amplification)
- Section A1 modified so that maximum positive and negotive excursions amplified approximately 30%
- D₂ Section D₁ x 75% (linear amplification)
- Section Al modified so that maximum positive and negative excursions amplified approximately 40%
- E₂ Section E₁ x 75% (linear sumplification)

Four programming tapes (identified as Tape Nos. 49, 50, 51 and 52) were then constructed by splicing the LO basic sections together in the following sequence.

Tape No. 4	9									
	Aı	Λ2	Al	νS	c _l	A2	Al	A2	٨٦	(S
Tape No. 50										
	A ₁	Λ2	Al	Λ ₂	υı	A2	A ₁	A ₂	A _I	D2
Tape No. 5	1									
	Al	A ₂	A _I	A ₂	E	A2	Λı	Λ2	A ₁	E2
Tape No. 52										
	A ₁	AZ	Aı	B ₂	В	A _{J.}	A ₂	A ₂	B 1	B ₂

These four tapes were utilized for testing specimens in the following limbour sequence to obtain the desired extended random gust loading spectrum.

Test Sequence	•	Loading Tape No.
123450789911314	•	ጛጜ፞፞፞፞፞፞፞ጜ፞ጜጜጜጜጜጜጜጜጜጜ

Random Killtary Luceuver Tape

Note that we will bill the consistent of the wavelebility of an appropriate recording of representative military manuser leadings, a tap a construct of the consistent with the loading speakrum for fighter and which is described in approximation of the consistent o

The unit wing root programming trace was played through the non-linear amplification system so that the negative excursions were modulated to match the spectrum described above. This operation was similar to that described in making the modified wing root trace which was shown schematically in Figure 132.

Step Ordered Oust Loading Tapes

Cyclic stop-ordered loading tapes were constructed to mimulate the average test life of a given group of random loading histories. Three combinations of stress interval and block size were used:

- (1) 1,000 psi stress interval and 1/10 block size
- (2) 1,000 pei stress interval and 1/20 block size
- (3) 4,000 psi stress interval and 1/20 block size

The system used to construct the step-ordered leading tapes is shown achomatically on Figure 134.

Visicorder (Fodel 1108 - Mirmempolis Honsywell Regulator Co.)

Figure 134 Schematic of Step Ordered Tape Generation

ASD TR 61 - 434

The procedure used in constructing an ordered loading tape is shown in the following examples

For a given average random test history, construct an ordered programming tape of 1,000 psi stress interval size, and 1/10 block size.

- (1) Graph the random test history spectrum.
- (2) Observe and record in columnar form the cumulative frequency count at the half range intervals (500 psi, 1500 psi, 2500 psi, etc.) on the random spectrum.

- (3) Determine the total number of cycles to be applied at each stress level (1000 psi, 2000 psi, 3000 psi, atc.) by calculating differences between the cumulative counts observed in step (2).
- (4) Divide the total number of cycles for each stress level calculated in step (3) by ten. This determines the number of cycles to be applied in each unit spectrum at each stress level. Distribute each fractional cycle : the corresponding half life.

観光にしている。国際できょうの人の意識というできた。現代できるととは国際できょうでもありませんが、特別などの人が

(5) Construct a test programming schedule for the "stress level-cycle" combinations from step (4).

				Unit Spectrum Number								
L	Σu	n	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
500	100											
1,000		90	9	9	9	9	9	9	9	9	9	9
1,500	10											
2,000		5	1		1		1		1	-	1	
2,500	5											
3,000		4	1			1		1			1	
3,500	1	1					1					

(6) Employing an "cacillator-preset counter-recorder" combination, (shown schematically in Figure 13h) record the ordered loading tape as described in the programming schedule constructed in step (5).

Unit Spectrum No. 2

Step Ordered Military Maneuver Loadings

Step ordered loading tapes were constructed representing the average random military maneuver test histories. These ordered loading tapes were constructed utilizing the same procedure used in making the step ordered gust loading tapes except that the negative excursions were suppressed by passing the generated signal through a diods.

Step Ordered Composite Leading Tapes

Step ordered programming tapes were constructed representing random composite test histories. These ordered tapes were constructed for both gust and military raneuver type air leadings employing the same procedure described in the example above. Air leadings, ground leadings, and ground-to-air transitions were treated as three separate random spectra and separate programming schedules were made for each spectrum. The complete ordered composite tape was made as follows:

- (1) The first unit spectrum of air loadings was recorded, as tabulated on its programming schedule, about the mean load for which the corresponding random air loadings were applied.
- (2) The first unit spectrum of ground londings was also recorded, as shown on its programming schedule, at the mean load at which the corresponding random ground loadings were applied.
- (3) The first unit spectrum of ground-to-air cycles was recorded such that the peak-to-peak excursion extended from the air leading mean to the ground leading mean.

The procedure described above was used to generate the first unit composite loading spectrum. The succeeding spectrum units were constructed in the same manner.

The standard equipment items used in this tape construction work are indicated on the schematics on Figures 133 and 134. The portable tape unit is a two-channel frequency-modulated 1/10-inch record and playback unit. The tape deck is a series 30 recorder manufactured by American Electronics, Inc., and the electronics were designed and developed by Lockheed. Characteristic of this unit are:

Carrier frequency - 3,400 cps
Tape speed - 7 1/2 inches per second
Minimum signal to noise ratio - 40 db
Maximum record voltage - 9.0 volts
Playback filtering - 50 or 500 cps

i

がなるのでは、「他のないのでは、「「「「「」」というできない。「「「」」というないのです。「「「」」というないのできない。「「」」というないのできない。「「」「「」」というないのできない。「「」」、「「」」というないのできない。「「」」というないできない。「「」」というないのできない。「「」」というないのできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「「」」というないできない。「」」というないできない。「」」というないできないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできない。「」」というないできないできない。「」」というないできないできない。「」」というないできないできない。「」」というないできないできないできないできない。「」」というないできないできない。「」」というないできないできないできないできない。「」」というないできないできないできないできない。「」」というないできないできないできないできないできないできないできないできないできない。」

SPECIMEN LOADING

The specimen loading system which was developed for this investigation was basically simple in mech mical detail, utilizing for the most part standard commercial equipment for signal input, hydraulic load control and loading readout. However, to appreciate the demands upon the system it must be realized that in this investigation the primary testing requirement involved application of specimen loadings which faithfully followed command signals of a very complex nature. The controlled application of such loadings dictated the selection and development of servo control circuitry and the development of special test monitoring techniques. A description of the loading system is presented below followed by a brief discussion of several problems encountered during testing.

DESCRIPTION OF SPECIMEN LOADING EQUIPMENT

Fatigue losding equipment was developed for the rapid application of the loadings defined by signals on the magnetic tapes described in preceding paragraphs. This equipment busically provides an electro-hydraulic servo system consisting of a test specimen in series with a servo valve-jack combination, with the loadings programmed by the signal from magnetic tape. This system is shown schematically on Figure 135.

As shown on this figure, the output signal from the programmer is fed into the servo loop through the summing junction. The amplified input signal programs the action of the servo valve in metering cyclic flow of oil to the fore and aft parts of the servo jack. The output signal of the lead transducer strain gage is amplified and fed back into the numming junction closing the loop. The instantaneous summing of these two opposing signals at the input side of the servo valve ideally results in the specimen experiencing the loading history represented by the signal on the loading tape. In utilizing such a system due cognizance was given to inherent mechanical and electrical limitations of the entire system, especially with respect to frequency response and flow characteristics of the servo valve.

The 1/4 inch programming tape unit used for spectral loading input is the same braic unit as the 1/4 inch portable tape unit which was used for preparation of the program tapes except that it does not have recording capabilities. The servo loop command and feed-back electronics were basically Model K2-W operational amplifiers in series with Model K2-P chopper stabilizing amplifiers, manufactured by George A. Philbrick Researches, Inc. A diode clipper was mounted in the electrical circuit between the tape unit and the summing junction which limited the amplitude of the programming signal supplied to the summing junction in case of signal overload. This diode clipper was also basically a Model K2-W operational amplifier.

The servo jack was a Lockbeed designed hydraulic actuator with a maximum static force rating of 17,000 pounds. The servo valve employed to program the action of the hydraulic actuator was a Model 26 Flow Control Valve, manufactured by Hydraulic Research and Manufacturing Company. This servo valve has a flow control range from 0.15 to 10 gpm for an operating pressure range of

ASD TR 61 - 434

のできた。 のでは、これでは、これでは、これでは、これできない。 では、これでは、これでは、これでは、これできない。 では、これでは、これできない。 では、これでは、これできない。

150 to \$,000 psi. The transducer used as the sensing unit in the system was a Lockheed designed strain gaged load cell. This transducer is cylindrical in constructional detail and is equipped with a full bridge gage installation, the electrical output being essentially insensitive to berding strain. Four complete loading systems were developed for this testing program and are shown in operation on Figure 136. The tape playback unit, the electronica and associated components for programming two separate servo loops were mounted in a solf-contained unit as shown on Figure 137. A photograph of a walve-jack combination, load transducer and specimen, all rigidly mounted in one of the loading firtures, is shown on Figure 129. The specimen was mounted in the test fixture by rigid friction grips, and floating stiffeners were used on the unsupported edges of the specimen to prevent huckling as shown in Figure 129. A failure wire was cemented to the specimen in the area of maximum stress concentration and connected to a relay. Upon initiation of a fatigue crack the failure wire circuit was interrupted, instantaneously blocking off hydraulic flow to the actuator.

PROCEDURE FOR SPECTRAL LOADING OF SPECIMENS

Prior to the application of loads to each specimen, the loading system was calibrated and adjusted to produce the applicable loading history represented on programming tape. Although several steps in the calibration and dynamic loading procedure were common to all spectral tests, contain shape were followed only for particular types of loading history. Outlines of the procedures follow.

Loading Histories Having Constant Mean Load Values

- (1) From known transducer data, a calibration factor of load versus electrical output was determined which related the maximum signal voltage on the program tape to the highest load to be applied to the specimen. This maximum signal was recorded on an oscillograph for later reference.
- (2) A dummy specimen, serving merely as a load link during calibration was installed in the test fixture and the static mean load was applied by dialing in the equivalent voltage to the servo valve circuit.
- (3) The required dynamic signal amplification was set, based on the loading tape voltage calibration factor.
- (4) The maximum dynamic load was applied to the dummy openimen and the load cell wigned output was recorded on an oscillograph for comparison with the static signal previously recorded.
- (5) Deviation of the maximum loading cycle from the desired load level was corrected by a compensating adjustment of the signal amplification, and step 4 was repeated.
- (6) When the desired loading level for the maximum cycle was obtained the calibrating system was replaced by a test specimen.

Figure 136 General View of Specimen Loading Apparatus

Figure 137 Magnetic Tape Loading Control Unite

- (7) The loading trace was then applied to the test specimen. The maximum loading cycle was periodically monttored on the oscillograph and required adjustments made to the amplification of the dynamic signal to maintain the desired loading level.
- (8) Testing was continued until the initiation of a fatigue crack interrupted the failure wire circuit terminating the loadings. In addition,
 interruption of the failure wire circuit cut off the power source to
 the electrical timing device recording the duration of specimen life.

The full range of random loadings applied to the test specimen were periodically monitored to determine the spectrum content of the applied loads, and as an added check on the stability of the frequency response of the loading system. Monitoring of these random loadings was accomplished by recording on magnetic tape the output signal from the load transducer for each unit loading trace applied. These unit monitor tapes were then electrically counted as described later in the data reduction section.

Periodic monitoring checks were also made of the ordered loadings applied to the specimen. Monitoring of the ordered loadings applied in the preliminary investigation was accomplished in the manner described above for the random loadings. Monitoring of the step ordered loadings consisted of periodic recording on an oscillograph of the load transducer output signal for the complete ordered loading trace. The loads for each group of cycles were calculated from the oscillographic record and compared with the schedule from which the loading tape was constructed.

Loading Histories Having Variable Mean Load Values

Handom composite loadings with gust type air loadings were produced by using the same loading tape signal for both air loadings and ground loadings. The ground loading trace was similar to the air loadings except that different static mean load and amplification of the dynamic signal were used. The loading tape signal was routed through an electro-mechanical device which periodically shifted both static mean load and amplification of the dynamic trace. The procedure for elternately applying these two loading traces from the same input signal was as follows:

- (1) A calibration factor for the load programming system was determined relating specimen load to loading tape veltage and a calibration signal was recorded on an oscillograph. The input voltage relationships required to define the desired loading history were then calculated.
- (2) k.th a dummy specimen installed in the loading fixture, the switching device was locked in one of the spectrum loading positions and the static mean load was applied with a bias voltage.
- (3) The required dynamic signal amplification was set based on the loading tape voltage relationships calculated in Step I above.
- (4) The maximum dynamic signal was applied to the calibrating specimen and recorded on an oscillograph for comparison with the previously recorded loading system calibration factor.

- (5) Deviation of the maximum loading cycle from the desired load level was corrected by a compensating adjustment of the signal amplification and the repetition of Step 4.
- (6) The switching device was then locked in the second loading condition and Steps 2 through 5 were repeated to obtain its desired dynamic trace amplification.
- (7) After the desired loading levels for the maximum loading cycle were obtained, the calibrating specimen was replaced by a test specimen.
- (8) The loading trace was then applied to the specimen and the switching davice was started at the commencement of the dynamic signal.
- (9) The maximum composite loading cycle was periodically monitored on the oscillograph and the required adjustments were made to the amplification of the dynamic signal to maintain the desired loading level.
- (10) Testing was continued until a fatigue crack developed. The loading was terminated by failure of the previously described failure wire and the test duration was recorded.

Random composite military maneuver loadings were produced by employing the signals from two separate loading tapes. To apply these loadings the portable tape unit used in the tape construction work was operated in parallel with the programming tape unit as shown schematically on Figure 135. These two signals were fed into the same switching device used in applying the random composite gust loadings. The switching apparatus alternately switched static mean loads and the dynamic signal inputs. The setup, calibration, testing and monitoring were also accomplished in the manner described above for random composite gust loadings.

Ordered composite loading tapes were constructed so that the relationship between the static mean load and the dynamic loading level was recorded on the tape. Thus only one signal amplification was required for the composite tape to apply the desired composite loading spectra. The procedure for setting the loading levels, testing and monitoring, was the same as described for the single spectrum loadings.

Discussion of Loading System Development

In developing this loading system a number of problems were encountered. The resolution of the overall problem of applying the same loading history to the specimen for repeated applications of the same loading trace required considerable effort. Many factors contributing to this overall problem complicated the development of a completely reliable loading system throughout a major portion of the preliminary investigation. Some of the contributing problems are discussed in the following paragraphs.

In order to extend the operating frequency range of the servo valve and system, electrical lead networks were developed. A flat frequency response over the range of 0 to 45 cps with attenuation of 3 db at 60 cps within a

maximum allowable deviation of 12% was set up as the performance standard. Values for the lead network components were determined from the frequency response of the basic system. In addition audividual lead networks were tailored to compensate for the cumulative effect of the characteristics of each servo loop in order to meet these requirements.

In the continued effort to improve the overall loading system performance, the meter originally used in setting the level of the input loading trace was replaced by a direct reading oscillograph (Visicorder). The use of the oscillograph permitted utilization of a dynamic signal for calibrating the loading tapes. This more realistic method of setting the loading level with a dynamic signal in the frequency range of the applied loading cycles greatly improved the control of variations in frequency response.

Due to deteriorization in servo valve performance and aging of electronic components, it was necessary to monitor continuously the frequency response of the servo system. A function generator was used in conjunction with an oscillograph to check the servo system response and by adjustment of the forward and feedback gains of the servo amplifier, the system response could be maintained within the limits of the 12% deviation.

Variations were noted, during the early testing stage, between loading histories sampled at discrete intervals for the same input trace. This was concluded to be due mainly to large fluctuations of the hydraulic oil temperature occurring over a normal operating period since corresponding fluctuations were also observed in the frequency response of the loading system. Stabilization of the hydraulic oil temperature through the use of an immersion heater or regulation of cooling water through a heat exchanger greatly reduced these response variations.

Proper mechanical operation of the servo valve demands that the hydraulic fluid be filtered of all particles which are greater than approximately 25 microns in diameter. In order to assure reasonable filter life the entire hydraulic system was maintained as free as practicable of contaminants. The formation of varnish or generation of corrosion particles results in costly shutdown periods and is a constant threat to the attainment of reliable test data. Therefore MIL H 5606-A hydraulic fluid was selected because of its stable and non-corrosive characteristics. This particular problem proved to be a costly one during the early stages of the testing phase of this investigation.

Bearing in mind that the specimen leading system was, of necessity, highly responsive to tape signal command, it can readily be seen that it was imperative that leading input tapes remain as free as possible of extraneous signals which might affect testing validity. These false signals may be of such strength to cause serious overloading or destruction of the specimen. In an effort to produce and maintain leading input tapes essentially free of false signals, special tape handling procedures were adopted. Electrical means were also employed to repress false signals of any significant magnitude, during load application.

In passing a magnetic tape across a signal reproduce-head any irregularity of the tape surface causes a momentary loss of playback signal known as a drop-out, resulting in the appearance of a maximum voltage at the output terminals of the tape unit reproduce-electronics. The response characteristics of an electro hydraulic servo loop are such that the loading system instantaneously applies the maximum possible load to the test specimen. The major causes of tape drop-outs are improper tape splices, flaking of the magnetic surface, and minute dust particles collecting on the tape surface. A method of completely eliminating drop-outs was not achieved, but by a continual effort in guarding against conditions conducive to their origin, their occurrence was effectively minimized.

The principal efforts extended in minimizing the occurrence of drop-outs were as follows:

- 1. Dust protective shields were installed around the area of the loading tape and signal reproduce-equipment. A practice of periodic cleaning was rigorously followed.
- 2. Whiti-pass loading tapes were constructed by splicing together recorded sections of the unit loading trace. These loading tapes were rerecorded onto splice-free tape for use on the load programming units. In the event of accidental damage or flaking of the magnetic coating of the test loading tape, resulting in a permanent drop-out, a duplicate splice-free copy was made of the originally spliced multi-pass tape.
- 3. Where single drop-outs or other strong extraneous signals existed which were not the result of splicing, electrical means involving the use of diods clippers were utilized to subdue the strength of the signal. To this end the clipper circuit was adjusted to cut off all signal strength which was in excess of that signal representing the highest spectral load.

CONSTAIT LOAD AMPLITUDE TESTING EQUIPMENT

and the second of the second o

As noted in the main body of the report, sets of S-N curves were developed as reference data for the random loading and spectrum loading tests. The S-N tests were conducted in resonant beam fatigue test machines. In this type of fatigue machine, loads are developed by means of a motor-driven rotating eccentric weight fastened at the free end of a pivoted beam. This beam is tuned to a frequency slightly higher than the driving frequency produced by the motor (1800 rpm). The test specimen is mounted normal to the axis of the beam and so is loaded axially by the beam displacements. Static and dynamic loads are measured and monitored using the output of strain gages mounted on a load cell which is loaded in series with the test specimen.

DATA REDUCTION

DESCRIPTION OF COUNT METHODS

At the part of this program a large number of count methods were reviewed in toward their applicability. All of these methods were variations of three basic count methods: "Peak Count," "Range Count" and "Interval Crossing Count." One of these three basic types of count methods was then selected for further use as applied to the gust data records used in this study. This was the mean crossing peak count method. The manner in which the selected count method was applied is described below.

Mean Crossing Feak Count

Given load-time trace y = f(t)

(1) Establish load levels of interest y1, y2, y3....yn above and below mear

$$\bar{y} - \frac{1}{T} \int_{0}^{T} f(t)dt$$

- (2) Establish all points at which y = \(\textit{y} \), that is , where load-time trace crosses mean.
- (3) Between two successive crossings of the mean establish:
 - a) The maximum value of load-time trace for portions greater than mean (peak).
 - b) The minimum value of load-time trace for portions less than mean (valley).
- (4) Count the number of peak maximum values above any paticular level of interest.
- (5) Count the number of valley minimum values below any particular level of interest.
- (6) Summarize counts.

This Procedure is Illustrated in Figure 138.

Level of Interest	0	1	2	3	4
Peak Count	4	3	1	a	0
Valley Count	3	1	1	1	0

Figure 138 Definition of the Nean Crossing Peak Count Kethod

ELECTRICAL COUNTING SYSTEMS

An integrated system was developed for high speed statistical analysis of random and ordered spectra employing analog mathods. A counting system was developed for obtaining a mean crossing peak count at counting rates up to 500 sycles per second. This integrated system basically consists of a magnetic tape input unit, an analog computer and an electronic totalizing counter. Figure 130 shows this system programmed for counting.

The magnetic tape input unit was the 1/4 inch portable tape unit used in the construction of the loading tapes. A Model 521C electronic counter manufactured by the Hewlett Packard Corporation was employed to record the statistical data from the counting circuit.

The analog computer consists of eight standard K5-U computing amplifiers and twenty K2-W operational amplifiers manufactured and packaged in a self-contained unit by George Philbrick Researches, Inc. Four separate input signals can be scaled, the polarity inverted, and then summed in the K5-U computing amplifiers. In addition, a reference voltage of either polarity can be subtracted from its final output. The K2-W is a basic operational amplifier in that no input or feedback resistors are associated with it. By adding resistors, capacitors, and diodes externally the K2-W can be made to operate as an inverter, filter, mean integrator, buffer, peak follower, or voltage crossing detector. Schematical representations are shown on Figures 139 and 140 for the operational configurations in which these amplifiers were employed in the counting circuit. In addition, the counting circuit developed for the mean crossing peak count method is shown schematically in Figure 141.

The initial calibration of this circuit was based on use of a five-minute section of the original B-47 wing root loading trace. This trace was recorded on 1/4 inch magnetic tape suitable for electrical counting and an oscillograph was made. The visible trace was scamed and the mean crossing peak count was tabulated. This tabulation was then used as a guide in assessing the performance of the counting circuit.

In the development of this counting system certain problems were encountered which were largely due to the demand for unique applications of analog computer elements. A number of possible circuits were evaluated in the search for counting systems which were accurate and reliable. The selection and use of high quality components was a requisite to the reliable performance of all circuits. Frecision carbon resistors and high quality mylar capacitors were used exclusively in all operational amplifier circuitry. Silicon crystal diodes were used in the initial phases of counting circuit development but later proved to possess insufficient reverse impedance to reset the peak follower in all instances. Vacuum tube diodes were substituted, providing reliable operation of the peak follower circuit.

K5-U Computing Amplifier

Buffer - M2-W Operational Amplifier

Inverter - M2-H Operational Amplifier

Figure 139 Applications of Basic Computer Elements

for filter RC $\langle\langle 1, e_0 \approx -e_2 \rangle$ for mean integrator RC $\gg 1$,

$$e_0 = \frac{1}{t} \int_0^t e_2 dt$$

Filter and Mean Integrator K2-W Operational Amplifier

Peak Follower - K2-W Operational Amplifier

$$\mathbf{e_0} = +70 \Big|_{\mathbf{e_1} > 0} \quad \mathbf{e_0} = -70 \Big|_{\mathbf{e_1} < 0}$$

Voltage Crossing Detector K2-W Operational Amplifier

Figure 140 Applications of Basic Computer Elements

Figure 141 Schematic of Computing Circuit for the Mean Grossing Peak Count

Procedure for Counting Random Spectra

The state of the s

Monitor tapes for the load transducer output signal, representing the speciana leading history, were recorded for a unit section of each random programming tape. These unit loading signals were then programmed through the computing circuit and their count distributions were recorded in columnar form.

The counting of a particular monitor tape was accomplished in the following manner:

- (1) The counting circuit was installed on the analog computer and a schedule was made of the load levels at which counts were desired.
- (2) The load level was dialed into the computer and the monitor tape signal was programmed to the counting circuit.
- (3) Cumulative counts were displayed on the electronic counter as the unit section of monitor signal was transmitted through the computing circuit.
- (4) When all of the monitor tape signals had been played through the computing circuit, the total cumulative counts were recorded for permanent record and the sequence was repeated for each load level in the counting schedule.

Procedure for Counting Ordered Spectra

Monitor tapes were also recorded from the load transducer output signal for a unit section of each ordered loading tape constructed in the preliminary investigation. These monitor tapes were counted in the same manner as described above for counting the random spectra.

Counting of the monitor tape output signal for the step ordered loading tapes constructed in the principal part of this investigation was obtained in the following manner.

- (1) An oscillographic record was made of the load transducer output signal for the full length of each step ordered programming tape.
- (2) The amplitude at each load interval was scaled and the load level determined by comparison with a known calibration.

ANALYSIS OF ACCURACY

A step by step procedure of the testing, monitoring, and counting operation is summarized below. The values of maximum possible error at each step in this procedure are shown. The nature of such error sources is noted in the procedure outline and also keyed to the schematic diagram shown in Figure 142.

These individual errors were added directly to obtain the maximum error limits shown graphically on Figure 11.3. However, a more realistic evaluation of the accuracy of the presented data is obtained from the 95% probability error limits presented graphically on Figure 11.4.

	T PROCEDURE USING MULTI-PASS	
TOV	DING SPECTRUM PROGRAMMING TAPE	of Error
(1)	Apply static calibration of load cell H to Visicorder (7)	•
	a) Load cell calibration	±1.0
(2)	Start tape transport (A) and play output signal thru tape electronics (B) and servo loop (D-E-F-H) and record load cell (H) output on Visicorder J. Compare maximum dynamic range to static calibration	
	On Visicorder (step 1) and adjust gain pot C to apply desired maximum specimen atreas	
	a) Stability of programmer electronics (3)	±0.5
	b) Stability of servo command electronics (D)	±0.02
	c) Frequency response deviation (E)	±2.0
	d) Specimen cross sectional area variation	±1.5
	e) Stability of load cell monitor electronics (1)	±0.02
	f) Visicorder frequency response (j)	±3.0
	g) Reading accuracy - comparison Visicorder calibrations ()	±2.0
(3)	Continuous loading symlied to a medimen with calibration techniques (steps 1 and 2) applied periodically	
	a) Variation of frequency response	±0.5

ASD TR 61 - 434

PROCEDURE FOR RECORDING MONITOR TAPE OF SPECIMEN LOADING HISTORY

(1)	el	tput signal of load cell (H) played through monitor ectronics (L) and unit section of basic data recorded recorder (H).	\$ of Error
	a)	Stability of load cell monitor electronics (1).	
	b)	Stability of recorder electronics (1).	±0.5
PROC	KDU	RE FOR COUNTING MONITOR TAPE	
(1)	Pro	ogram monitor signal into computer (N), (P) & (R) and serve occurrences of data characteristics on counter (R).	
	a)	Balance computer bank No. 2 P.	±0.09 *
	b)	Balance computer bank No. 3 (R) .	±0.09 *
	c)	Zero output computer bank No. 1 (N) (read meter (S)) for "tape-zero" input.	±0.09 *
	a)	Adjust output computer bank No. 1 (a) (read meter (3)) for tape calibration input to desired signal amplification level.	±0.225 *
	e)	Dial desired signal count level in computer bank No. 3 (R) and observe number of counts on counter (T).	***
	r)	Stability of computer bank No. 1 (8).	±0.5
	g)	Stability of computer bank No. 2 (P).	±0.2475 *
	h)	Stability of computer bank No. 3 (R).	±0.2

It should be noted that the error analysis described above applies to the complete testing-counting process. It therefore establishes the accuracy of the specimen test history curves presented in the report.

^{*} KSI Constant

MATERIAL STRUNGTH

The results of static tensile tests on the 7075-T6 bare aluminum material used in the investigation are presented in Table 5h. The geometry of the rectangular 2 inch gage length conformed to ASTM Standard E8-57T. The longitudinal grained tensile test specimens were taken along the longitudinal axis of each sheet of material.

TABLE 54

TOTS-TO BARE ALIMINIM SHEET, . 040 GAGE

5.5	Elcag.	11.0 10.5 9.0	ដូងដូង ទំនុំទំនុំ	वन्न १९९९	
Sheet No.	rty (ks1)	78.6 78.4 78.1 76.1	35 55 55 4 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	76.6 78.0 78.2 78.2	
8	Fti (kei)	85.7 86.5 8.5 8.5	₽33.23 2.1.20	8888 6.2.88	
4	\$ E.l.ong.	0.11 0.13 1.0	०००० अन्नेत्रेन	2000 000 000	·
Sheet No	(kal)	77.2 78.5 78.5	28.87 7.88 7.87	78.7 78.5 77.9	
88	rtu (kai)	85.48 4.58 4.68 4.68	8.83.8 6.1.4	85.6 85.4 85.0 85.0	
5	£lcng.	0.000 0.000	3344 5.2.2.	10.5 10.5 11.5	3.13.1 5.5.6.2.
Sheet Mo.	fty (ksi)	78.6 77.7 78.3 78.8	78.7 77.0 78.5 78.5	77.5 79.1 78.1	78.0 75.3 77.6 77.6
S	Ftr. (kai)	8.4.28 8.4.28 9.4.29	85.9 85.4 85.5	85.1 85.8 85.1 84.1	88.5.0 9.4.48 9.4.49
2	£long.	25.01 20.01 20.01	1113 7,67,6	0.11 0.12 0.23	0.55 0.55 0.55 0.55
Speet No.	fty (kai)	78.5 78.3 77.1	2. F. F. S. 4. S. V. V. V. V. V. V. V. V. V. V. V. V. V.	76.7 78.5 78.9	78.5 71.8 71.8
S	ftu (ks1)	20.00 20.00	8.7.7.8 7.7.7.8 8.7.7.7.8	85.5 85.5 85.5 85.5	ఖ్యాఖ్య రాగాలు మార్చాలు
	Elong.	4448 0.0.3.4.	2000 2000	2448 6656	8488 6000
seet No	1) (ke1) E	78.2 79.0 77.8	# 4 4 6 5 1	76.8 73.1 77.2	78.1 79.1 76.3 77.5
180	1, (1, ES.)	85.4 85.1 85.1 85.7	చిని చిన్నారు రాజులు రాజులు	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	85.5 84.8 84.8
See S	¥.	Hans	N/0 1-00	៰ ៦ដង	P2 12 12

Note: The static test specimens were selected along the longitudinal centerline of each 48 x 144 inch sheet. The longitudinal axis of each specimen was parallel to the direction of sheet rolling.

TABLE 55

UNIT LOW PEAK GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-T6 ALUNLINUM ALLOY

t_{mean} = 6 KSI S_{mean} = .071

Ptu = 85 KSI (Gross Area)

Loading	fy	· · · · · · · · · · · · · · · · · · ·		
Step	KBI	84	n	n
		18 LOADING	STEPS	
1	.60	.0071	715900	
2	1.78	.0209	51 1588	••
3	2.97	.C349	280342	6000000
. 3	4.16	. 0489	112479	1200000
5	5.35	.0629	32231	320000
6	6.54	.0769	7519	120000
7 8	7.42	.c873	1184	68000
8	8.02	• ८० मि	561	46000
9	8.60	.1012	379	32000
10	9.20	.1082	211	24000
11	9.75	•3 147	119	18500 '
12	10.35	.1218	125	14000
13	11.15	.1312	81	10200
14	11.75	.1.382	18	81100
15	11.98	1409	4	7800
16	12.28	41 415 -	17	7200
17	12.80	.1506	15	6000
18	13.55	.1594	13	4800
		(0654) 2	1662800	
		4 LOADING		
1	4.20	.0194	25408	1000000
2	8.15	•0959	582	43000
3 k	12.00	.1412	11	7800
A.	14.00	.1647	.10	4500
			∑ 26000	

^{*} Test Group No.

TABLE 56

UNIT LOW PEAK GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET COUPONS.
7075-TG ALUMINUM ALLOY

 $r_{mean} = 6 \text{ KSI}$ $s_{mean} = .07$

Ptu = 85 KSI (Gross Area)

Cading	fy	-			Ŷy			
Stap	KEL	Sy	D.	N	KSI	Sy	n	N N
			14	LOADING S	TEPS			
1	1.10	.C129	25057		1.09	8 5.00.	50098	00
2	2.10	.0247	17005	-	2.14	.0236	34105	∞
3	3.10	.0365	9986	4500000	3.05	.c359	19970	5200000
4	4,15	. ch68	5231	1100000	4.03	.c474	10422	1300000
5	5.00	.0588	1832	450000	5.05	.0594	3636	440000
6	6.05	.0712	627	180000	6.03	.c709	1248	180000
7	7.00	.C824	163	90000	7.03	.0827	324	86000
Ř	8.00	.0941	59	47000	8.05	.0947	118	4500
9	9.05	.1065	23	26000	9.07	1.067	45	2500
10	10.00	.1176	9.9	16500	10.25	.1206	20	1500
11	11.00	1291	4.5	11000	10.60	.1247	8.8	1300
12	12,00	.1412	1.5	78∞	11.40	.1341	3.9	950
13	12.95	.1524	.74	5800	12.60	.1482	.98	610
14	14.00	.1647	25	4200	14.00	.1647	.50	420
		(G68*)	£ 60000			(969)	2 120000	

^{*} Test Group No.

TABLE 57

UNIT LOW PEAK GUST LOADING SPECTPA AND S-M DATA FOR NOTCHED SHEET COUPONS 7075-T6 ALUHINUM ALLOY

 $f_{\text{mean}} = 6 \text{ KSI}$ $s_{\text{mean}} = .071$

Ftu = 85 KSI (Gross Area)

Loading	fy	**************************************		•	ſv		·	
Step	KSI	Sy	n	N.	KSI	Sv	n	N
	17	LOADING	STEPS			13 LOA	DING STEP	8
1	.60	.0071	100308		1.10	-0155	4491	∞ ⇒
2	1.78	.0209	7191. 7	3900000	1.95	.czz9	2124	2400000
3	2.97	0319	39417	980000	2.79	.0328	1291	520000
j.	4.16	china	15803	110000	3.72	.cl,38	703	170000
5 6	5.35	.0629	4551	42000	4.66	. c548	256	70000
6	6.54	.c769	1068	17000	5.66	.0666	89	32000
7 8	7.42	.c873	166	9900	6.68	.0786	23	15000
• В	8.02	44160	3.00	690 0	7.70	•0906	10	8000
9	8.60	.1012	35	5100	8.76	.1031	3.5	4800
10	9.20	.1082	29	3800	9.75	.1147	1.5	3000
11	9.75	.1147	18	3000	11.00	.3.294	.70	1800
12	10.35	.1218	18	2300	11.91	.1LOI	.20	1300
13	11.15	.1312	10	1700	13.10	-1541	.10	890
14	11.75	.)J82	4.0	1400	-			
15	11.98	.11,09	1.0	1300				
16	12.28	11/15	2.4	1150				
17	12.80	.1506	`2.0	950				
·		(070*)∑	233400	••		(071) Σ	9000	

^{*} Test Group No.

TABLE 58

UNIT HIGH PEAK GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHRET COUPONS 7075-T6 ALUNINUM ALLOY

fmean = 12 KH Smean = .141

Ftu = 85 KSI (Gross Area)

oeding	fy			
Step	KSI		n	N
		3 LOADING	STEPS	
1	-5	.0059	107200	, c>3
2	1.5	.0176	83784	10000000
3 3	2.5	.c294	70408	1,500000
	3.5	.ch12	49593	420000
5	4.5	.0529	32123	170000
	5.5	.0647	19296	80000
7 8	6.5	.0765	9663	41000
	7.5	.c882	4035	24000
9 .	8.5	.1000	1658	15000
10	9.5	*1118	691	10000
11	10.5	.1235	287	7400
12	11.5	.1353	151	5500
13	12.5	.1471	77	4100
14	13.5	.1588	42	3100
	14.5	.1705	29	5400
15 16	15.5	.182 h	16	1900
17	16.10	.1894	5.0	1600
18	16.51	.1942	6.0	1500
19	16.92	.1991	1.0	1300
50	17.50	.2059	5.0	1200
51	18.14	.2134	1.3	960
55	18.64	-2193	1.5	890
23	19.26	2266		760
د)	17.20		Σ 379100	100
		5 LOAULING		
I	4.13	•C1.86	8389	230000
2	8.25	.0971	828	17000
3 14	12.35	.1453	3 0	4300
	16.05	.1888	2.9	1590
5	18.30	.2153	.096	940
		(073) 2.9250	

[#] Test Group No.

336

TABLE 59

UNIT HIGH PEAK GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-T6 ALUNINUM ALLOY

Kr = 4 fmean = 12 KSI Smean = .141

Ptu = 85 MSI (Gross Area)

fy				f.v			
KSI	Sy	n	N	KSI	Sv	n	N
			LOADING S	TEPS	***********		
		5033	**	1.49	.0175	10043	10000000
	·C211	3511	4500000	2.46	.0289	6993	1600000
	.0312	3290	1100000	3.34	.0393	6594	500000
3.55	<u>.ch18</u>		380000		.0529		170000
	·0527		175000	5.50	.0621		88000
. 5.45			81000	6.36	.c71,8		45000
6.35		355	45000		.0865		26000
	•c865	133	26000	8.40	.0988		15000
	°C589	59	16000	9.50	.1118		10000
9.35		23	10000		.1235		7400
	.1276	9.9	5500	11.60	.1365		5200
		4.9	4900	12.50	.1477		4100
		3.0	3800	13.60	.1600		3000
		2.0		15.80	.1624		2900
		.99	5500	15.10	.1776		2100
		.50	1,700		.1871		1700
17.20		.30			.2000		1300
18.05		.10	1000	18.00	.211.8		1000
18.30	-2153	.10	960	18.30	.2153		960
(0	174*) E	16000	-		(G75) \(\sum_{\infty}\)	32000	,
	1.79 2.65 3.55 4.48 5.45 6.35 7.35 8.39 9.35 10.85 11.90 12.80 13.80 14.90 15.90 17.20 18.05 18.30	.96 .0113 1.79 .0211 2.65 .0312 3.55 .0418 4.48 .0527 5.45 .0541 6.35 .0747 7.35 .0865 8.39 .0986 9.35 .1100 10.85 .1276 11.90 .1400 12.80 .1506 13.80 .1624 14.90 .1753 15.90 .1871 17.20 .2026 18.05 .2124 18.30 .2153	19 -96 .0113 5033 1.79 .0211 3511 2.65 .0312 3290 3.55 .0418 1842 4.48 .0527 1139 5.45 .0541 592 6.35 .0747 355 7.35 .0865 133 8.38 .0986 59 9.35 .11c0 23 10.85 .1276 9.9 11.90 .1400 4.9 12.80 .1506 3.0 13.80 .1624 2.0 14.90 .1753 .99 15.90 .1871 .50 17.26 .2026 .30 18.05 .2124 .10	NSI Sy N N 19 IOADING S -96 0113 5033 1.79 0211 3511 4500000 2.65 0312 3290 1100000 3.55 06418 1842 380000 4.48 0527 1139 175000 5.45 0641 592 81000 6.35 0.0747 355 45000 7.35 0.865 133 26000 8.38 0.986 59 16000 9.35 1100 23 10000 10.85 1276 9.9 5500 11.90 1400 4.9 4900 12.80 1506 3.0 3800 13.80 1624 2.0 2900 14.90 1753 .99 2200 14.90 1753 .99 2200 15.90 1871 .50 1700 17.26 .2026 .30 1250 18.05 .2124 .10 1000 18.30 .2153 .10 960 .10	NSI Sy N N NSI	NSI Sy N N NSI Sy Sy Sy Sy Sy Sy Sy	19 10 10 10 10 10 10 10

^{*} Test Group No.

TABLE 60

UNIT HIGH PEAK GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-TG ALUMINUM ALLOY

fmean = 12 KSI Smean = .llil

Ftu = 85 KSI (Gross Area)

Loading Step	f _v KSI	Sv	n	n .	f _v KSI	Sy	n	n
	14	LOADING	STEPS				DING STER	
1	.84	.0099	25147	9000000	1.05	.0124	767	51+00000
2	2.50	.0294	18066	280000	2.00	.0235	62i	700000
	4.16	•с489	9964	41000	3.00	.0353	444	140000
3	5.84	.0687	4005	13000	3.90	·01159	286	54000
5	7.50	.c882	1170	5100	4.90	.c576	194	24000
5 6	9.16	.1078	278	2400	5.80	.0682	102	13000
7	10.42	.1226	43	1500	6.80	.c800	48	7000
7	11.24	.1322	21	1150	8.00	·02/17	50	3900
9	12.08	.1421	15	900	9.00	.1059	8.9	2600
10	12.92	.1520	7	710	9.8v	.1152	3.6	1900
11	13.66	.1607	4.6	570	10.60	.1247	1.4	1400
12	14.48	.1704	4.4	480	11.70	.1376	.91	980
13	15.58	.1833	3.2	350	12.70	باوبلد	.40	740
14	16.40	.1929	.60	290	14.00	.1647	.31	530
15					14.90	.1753	.15	420
16					16.00	.1882	.10	320
17			•		16.20	.1906	.01+14	300
-	((176*) _S	58700		(G7		2500	•

^{*} Test Group No.

TABLE 61

UNIT CONCAVE UPWARD AND CONCAVE DOWNWARD GUST LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-16 aluminum alloy fil = $\frac{1}{1}$ $\frac{$

frean = 12 KSI

Ftu = 65KSI (Gross Area)

7 Loading Steps

	×	:	2000000	750000	110000	31000	12000	6300	3800			2000000	750000	10000	31000	12000	9	3800	
	E		L56200	269000	83450	15070	11,50	350	8	2825600		38 340	12920	27000	19970	12020	14,90	8	27,5100
	ω [*]		\$1.0.	.0353	.0565	•062 4	•1059	1234	.1503	(675)		8110.	•0353	•0588	• 062µ	.1059	1621	1500	(081)
1	f W KSI		-	m	W	2	σ	Ħ	12.75		. Pri	۲·۱	ო	ΓV	2	٥	ជ	12.75	
4	×	Concave Upward	20000002	750000	000011	31000	12000	6300	3800		Concave Downward	20000002	250000	110000	31000	12000	6300	3800	
	а		157310	62150	14.890	0069	0,11	190	ଣ	2272600		65530	61210	32300	24,920	0965	2030	210	(080) 2<u>1907</u>00
	S		8110.	53.53	•0538	,062 <u>1;</u>	.1059	1294	1500	(0194)		9110	0353	3 3 3 3	700	1001	1677	827	(090)
	t _v KSI		~ 1	m)	v	- -	Φ.	#	12.75			ı~i	U.1 .	L	r- (י ע	;; ;;;	27.75	
	Loading Step		rd :	~	M .	ন্ব ।	۰ <i>۰</i> ۷ ,	٥	t			7	N	(* ^ -	-# Y	'n	O I	-	

TABLE 62

UNIT FIGHTER MANEUVER LOADING SPECTRA AND S-N DATA FOR MYTCHED SHEET COUPONS
7075-T6 ALUMINUM ALLOY

Ftu = 65 KSI (Gross Area)

Loading	Tv.		-	N	ť _y ver	AT		
Step	KSI	Sy	<u> n</u>	N LOADING	KSI STEPS	3 _V	<u>p</u>	<u> </u>
						- AT A D		
1	.71	.0084	5971	(OK)	1.68	-C138	350	0 0
2	2.13	.0251	4795	∞	3.50	·c/175	235	1000000
3	4.27	.0502	7085	350000	5.75	.0576	175	78000
Ĭ.	7.10	0835	5029	<u></u> 86000	7.80	.C216	125	i8000
5	9.92	.1167	2860	7000	10.00	.1176	85	6600
6 ·	12.78	.1504	1351	5/100	12.10	11:24	56	3100
7	14.90	.1753	264	1200	14.20	.1671	29	1500
ġ	16.30	.1918	164	820	16.50	1961	12	780
9	18.45	2171	113	· 500	18,50	.2153	5.4	520
10	20.25	.2382	12	360	20.15	,2371	1.6	360
11	20.81	.2448	6.3	320	21.00	.2471	.28	310
		(M14#)	5 27700	•		(115)	Σ 1700	_

* Tost Group No.

TABLE 63

UNIT FIGHTER MANEUVER LOADING SPECTRA AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-T6 ALUNINUM ALLOY

 $r_{min} = 5.4 \text{ KSI}$

Smin = .064

Ftu = 85 KSI (Gross Area)

Loading Step	f _v KSI	5 _v	n	Ħ	Loading Step	f _v KSI	Sy	n	N
				40 LOADI					
1	.470	•0055	100		21	10.450	.1229	15	5700
2	.845	.0099	75		22	11.050	.1300	15	4400
	1.175	.0138	75		23	11.750	.1382	12	3500
3 4	1.555	.C183	75		24	12.250	.1442	11	2900
5 6	1.930	.0227	75		25	12.850	.1512	7.8	2300
6	2.400	.0282	60	7200000	26	13.550	.1594	5.9	1800
7	2.920	•C3144	55	26000CO	27	14.150	.1665	5.9	1600
7 8	3.500	·C412	45	1000000	28	14.650	.172h	5.8	1300
9	3.955	.0465	45	510000	29	15.150	.1782	3.9	1100
10	4.475	.0526	45	300000	30	15.700	.1847	2.9	940
11	5.000	.0588	40	155000	31	16.300	.1918	2.0	820
12	5.555	.0654	35	88000	32	16.850	.1982	2.0	710
13	6.050	.0712	35	58000	33	17.350	.2041	1.5	640
14	6.650	.0782	32	37000	34	17.850	.2100	.98	570
15	7.150	·0841	30	26000	35	18.500	.2153	.96	520
16	7.750	.0)12	25	18000	35	18.850	,2218	.70	470
17	8.300	.0976	23	14000	37	19.400	.2282	. 58	420
18	8.550	.1006	20	12000	38	20.000	. 235 3	.50	370
19	9.400	.1106	20	8600	39	20.300	.2388	.40	350
20	10.000	.1176	19	6700	40	21.000	.2471	.30	310
			•	•				2. 1000	•

^{*} Test Group No.

* Test Group No.

	NOTCHED SHEET COUPONS
TABLE 64	ig spectea and s—n data for no
	UNIT GROUND LOADING SPECTRA

٠.		
	-	
•		035
		Ġ.
	-	
8		•
7075-T6 ALDKINUH ALLOY		180H
≺		8
晉		Ŋ.
Ä	-	
ď	, F	
3	¥•	
v.		H
Ť		34
Š		3 KST
2		
• -		
		neen
		Į,
		**

			Ftu = 85 KS	85 KSI (Gross Area)				
Loading Step	rsi Ksi	ig [≯]	¤	X	t, KSI	S	#	×
		18 Los	18 Leading Steps			7 17	il Loading Steps	
10m3v.ocmのははおばはだめにだ	49 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	89888888888888888888888888888888888888	28.550 28.250 28	180030 170000 160000 90000 90000 31000 12000 7800 7800 7800 7800	4444464866 66447668666	0129 0224 0244 0355 00135 00335 1000 1255 1235 1235	2821 1282 1289 88 88 84 54 14 61	28000 180000 180000 19000 19000
3	3		(11*) \$259700	2	•	S	(72) \(\Sigma\) 21500	

TABLE 65

UNIT COMPOSITE LOW PEAK GUET, GROUND AND GROUND-AIR-GROUND LOADING SPECTRUM, AND S-N DATA FOR NOTCHED SHELT COUPONS

7075-T6 ALUMINUM ALLOY $K_{T^*} = 4$ F_{tu} 85 KSI (GROSS AREA)

Loading STKP	f _v KSI	8,	a	N
		LOADING ST		
		EAK GUST I		
	fmean*	6 KSI; S _{me}	an= .071	
1	1.15	.0135	5549	∞
	2,20	.0259	4036	00
2 3 4 5 6 7	3.25	.0382	2018	840000
Ă.	4.35	.0512	940	900000
5 .	5.35	. c629	386	33000
6	6.40	•c753	114	13500
7	7.45	.0876	27	6500
á	8.25	.0971	ġ . 9	4000
9	9.15	.1076	4.0	5/100
ıó	10.15	با 119	2.4	1500
11	11.20	.1318	•99	1000
12	12.05	•1 <u>l</u> 18	.41	860
13	13.00	.1529	19	570
-3	13.00		Σ13100	7,0
•		OUND LOADI		
	Imean -	-3 KSI; S _m	ean=035	
14	1.20	•01/17	2969 .	∞
15	2.20	•0259	2078	Ø
16	3.30	•03 ₈ 8	1038	00
17	4.50	.C529	4.95	520000
18	5.65	•0665	208	150000
19	6.75	•0794	64	550000
50	7.60	•0694	15	270000
21	8.65	.1018	5.9	136000
55	9.40	.1106	2.0	90000
23	10.30	.1212	.99	52XX
2 1	11.45	.1347	.60	29XX
25	12.00	.1412	.41	55600
			Σ6930	
		IR-GROUND		
	fmean=	1.5 KSI; S	mean= .018	
26	4.90	.0576	1170	21,0000
		(CG1*)	Σ21200	

Test Group No.

TABLE 66

UNIT COMPOSITE LOW PEAK GUST, GROUND AND GROUND-AIR-GROUND LOADING SPECTRUM, AND S-N DATA FOR NOTCHED SHEET COLPONS

7075-TG ALUMINUM ALLOY $K_T = 7$ $F_{tu} = 85 \text{ KsI (GROSS AREA)}$

Loading Step	r _v Ksi	8 _v	. n	ď
		1 LOADING STEP	S	
	LOW	PEAK CUST LOA	DING	
	f _{mean}	= 6 KSI; S _{mean}	071	
1	1.30	.0153	511	000
1 2 3 4 5 6 7 8	2.30	.C271	325	2900000
3	3.20	.0376	550	320000
4	4.20	.0494	90	110000
5 .	5.10	.0600	34	49000
6	6.00	.c706	12	25000
7	7.20	,c8 <u>1</u> ,7	2.5	11000
	8.70	1657	.81	. 4900
9	9.10	.1071	•35	4000
10	10.00	.1176	.21	2700
11	11.00	.1294	.052	1800
		GROUND LOADING	Σ1200	•
				•
	-mean-	-3 KSI; 3 _{mean}	, CO1-1-1	
15	• 1.30	.0153	290	∞
13	2.30	.0271	190	50
14	3.30	•c388	84	1800000
15	4.30	•050 6	29	450000
16	5.20	.0612	5.2	165000
17	6.25	.0735	1.1	69000
18	7.25	.0853	، 35	311000
19	8.35	.0982	.16	17000
50	8.8 5	,10li1	. <u>052</u> ∑60 0	15000
	GROUN	D-AIR-CROUND I		
		1.5 KSI; Smea		
21	4.65	.0547	102	140000
Total	·	(CG2#)	Σ1900	

* Test Group No.

TABLE 67

UNIT COMPOSITE HIGH PEAK GUST, GROUND AND GROUND-AIR-GROUND LOADING SPECTRA, AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-76 ALUMINUM ALLOY Km = 4

LOAD-	fy	3			ROSS ARE			
ING STEP	KSI	. 3 _V	a	N	KSI	Sy	r.	×
				28 LOADI	NG STEPS			
	···			eding; fme	an = 12 1	CSI; Sme	an141	
1	1.15	.0135	606	∞	1.10	.0129	2560	~
2	2.40	.0282	505	1800000	2.30	.0272	2560	2000000
3 4	3.40	.0400	429	470000	3.00	.0353	1598	770000
	4.30 5.40	.0506 .0635	257	190000	3.90	-ch23	1064	280000
5	6.35	.0747	158 84	86000	4.80	.0565 8830.	58a	132000
7	7.65	•0900	. 40	46000 22000	5.85	0624	387	63000
8	8.55	.1006	40 17	14300	7.00	.0941	169	31000
9	9.55	.1124	15.9	9800	9.00	1059	73 24	18500
10	10.60	.1247	3.0	7100	10.20	1200	13	12000 8100
11	11.50	.1.353	1.4	5500	11.05	.1300	4.8	5500
12	12.60	•1/կն2	.69	4000	12.10	1424	3.4	1600
13	13.60	.1600	•39	3000	13.05	1535	1.5	3500
14	14.80	.1741	.21	2250	14.00	.1647	-97	2760
15	15.40	.1812	.16	1960	14.90	.1753	-51	5500
16	15.80	.1859	.092	. 1760	16.0	.1082	-34	1670
17	16.30	.1918	.046	1560	16.85	.1982	.11	1360
18		~~~	2110		18.30	.2153	.11	960
							9040	
-			d loading	: Imean = -	3 KSI; S	mean	035	
19	1.25	.0147	553	∞	1.10	.0129	455	~:
20 21	2.10	.0247	286	90	2.05	*CSliT	31+5	50
5 2	3.10 4.20	.0365 .0494	133 44	50	3.05	.0359	126	\sim
23	5.00	.0588	6.9	7800000 3000000	4.00	-01.71	46	10000000
24	6.00	.0706	5.0	1070000	5.00 6.05	.C.F.88	5.2	3000000
25	6.90	.0812	.64	480000	7.00	C52F	2 .4 .63	980 000
≥6	7.95	.0935	.25	320000	8.05	-0947	.40	¹ /5000 0
27	8.65	.1018	.046	134000	9.30	1091	.11	9300 0
28	8.95	.1053	.046	116000	,. <u></u>			
		Σ	1030			5	970	
	c			Loading; f	mean = 4.			253
29 _	7.95	.0935	182	65000	7.85	.0924	£9	67000
rotal	(C	33 *) Σ	3320			(cgi) ∑	10100	

^{*} Test Group No.

TABLE 68

UNIT COMPOSITE FIGHTER MANEUVER, GROUND AND GROUND-AIR-GROUND LOADING SPECTRUM, AND S-N DATA FOR NOTCHED SHEET COUPONS 7075-T6 Aluminum Alloy

K_T = h F_{tu} = 85 MSI (Gross Area)

•	KSI L	S _▼	n	N
			ng Stepa	
		FIGHTER MANE	UVER LOADING	
	f _{mi}	n = 5.45 KS	i s _{min} woot	
1 2 3 4 5 6 7 8 9 10	•71	.0084	1870	⇔
2	2.13	.0251	1496	13000000
3	4.27	.0502	2224	340000
4	7.10	.0835	1574	27000
5	9.92	.1167	8 96	6500
6	12.78	.1504	423	57100
7	14.90	.1753	83	1200
8	16.30	.1918	51	820
9	18.42	.2167	. 35	510
10 ,	20.25	. 238 2	. 3.9	340
11	20.00	·2447	2.0	310
			28060	
•		GROUND	LOADING	
	f	ean = -3 KSI	I; S _{mean} =035	
12	•42	وبلان.	849	∞
13	1.44	.01.69	628	<i>0</i> 0
14	2.38	.0280	345	000
15	3.32	.0391	138	00
16	4.28	·0504	39	7000C()(
17	5.22	.0614	9.1	2200000
18	5.91	.00.29	1.5	1100000
19	6.42	.0755	.63	740000
20	6.89	.0811	. 141	50000
21	7.36	.0866	.25	330000
22	7.80	.0918	.15	2/1000
23	8.28	.0974	.21	170000
23 24	8.90	1047	.037	120000
25	9.38	1104	.055	90000
26	9.56	.1125	.002	80000
27	9.80	.1153	.016	70000
28	10.22	-1202	.003	54000
~,	2012	*****	Σ2010	,,,,,,
		BOUND TRAGE	OCHUM TOADTHE	
	f _{me} a		; S _{mean} = .ouk	
29	4.22	.0496	287	5000000

* Test Group No.

ASD TR 61 - 434

346

TABLE 69

EXPERIMENTAL PATIGUE LIVES FOR GUST LOADING SPECTRA 7075-T6 ALUMINUM ALLOY

(Table is completed on next three pages)

Test Group No.	Specimen No.	Type of Specimen	KT	Spean	No. of Loading Steps	Type of Spectrum Curve	Sequence	Block Size	Test Life (106 Cycles)
056	518 362 393 305	Notched Sheet Coupon	•	.071	18	Low Peak	True Random	1662800 (Avg.)	1.936 1.470 1.792 1.453 1.650
c 67	364 365 368 370 377						Lo-H1	26000	1.394 .458 2.103 2.046 1.030 1.230 *
c68	372 576 381 385 394				14		Lo-Hi	60000	4.918 3.178 4.189 3.777 5.070 4.165 *
G69	378 387 388 392 391				14		Lo-Hi	120000	4.555 5.386 5.390 5.874 10.056 6.005 *
G 70	299 300 301 302 303 30 ¹ :	Notched Sheet Coupon	7	.cm	17 15 17 17 17	Low Peuk	True Randoz	253400 (Avg.)	.252 .170 .259 .200 .326 .213

^{*} Geometric mean of test life

TABLE 69
EXPERIMENTAL FATIGUE LIVES FOR GUST LOADING SPECTRA
7075-T6 ALUMINUM ALLOY

(Table is continued on next many)

Test Croup No.	Specimen No.	Type Specia	nt		Smcan	No. or	d on next Type of Spectrum Curve		Block Size	Test Life (106 Cycles
G71	348 350 351 355 356	Notche Sheet Coupon		7	.071	13	Low Peak Low Poak	Lov-Hi	9000	.211 .289 .305 .254 .228
672	292 295 287 293 291 291 299 299				.141	51 51 51 51 51 51	High Feak	True Random	379100 (Avg.)	.652 .396 .457 .335 .239 .326 .248
515	326 331 332 334 336 337 339 340					5		Lo-Hi	9250	.359 * .304 .145 .153 .188 .306 .207 .498 .353
74	335 SI	otched lest	*	(.3.141	13	High Peak	Lo-Hi l	6000	.415 .470 .814 .441

^{*} Geometric mean of test life

TABLE 69

EXPERIMENTAL FATIGUE LIVES FOR GUST LOADING SPECTRA
7075-T6 ALIMINUM ALLOY

(Table is concluded on next page)

Test Group No.	Specimen	Type of Specimen	Kr Smean		Type of Spectrum Curve		Block Size	Test Life (106 Cycles)
G 75	307 308 309 310 312	Notched Sheet Coupon	14 .11.1	19	High Peak	Lo-H1	32000	.319 .289 .288 .224 .257
676	274 280 281 282 283 284		7	13 14 13 13 13 13		True Rendom	58700 (Avg.)	.0566 .0957 .0566 .0392 .0522 .0522
GTT	293 294 295 296 297 298	Notched Sheet Coupon	7 ,214.	17	High Peak	Lo-Hi	2500	.0630 .0582 .0630 .0429 .0413 .0555

⇒ Geometric mean of test life

TABLE 69

EXPERIMENTAL FATIGUE LIVES FOR GUST LOADING SPECTRA
7075-T6 ALUMINUM ALLOY

(Concluding page of table)

Test Oroup No.	Specimen No.	Type of Specimen	KT	S _{me an}	No. of Loading . Steps	Type of Spectrum Curve	Sequence	Block Si.ze	Test Life (10 ⁶ Gycles)
G78	70 72 85 88 92 93 114 115 126	Notched Sheet Coupon	4	בונב	7	Conca ve Upward	True Random	272600 (Avg.)	
G79	251 252 255 256 258		•	•	7	Concave. Upward	Lo-lii	825600 (Avg.)	1.020 .780 .536 .808 .985 .80U*
G80	173 175 176 177				7	Concave Downward	True Handom	196700 (Avg.)	
G81	246 247 248 249 250	Notched Sheet Coupon	1	-141	7	Concave Downward	Lo-III	1h5100 (Avg.)	•134 •118 •147 •151 •187 •144*

* Geometric Mean of Test Life

TABLE 70
EXPERIMENTAL FATIGUE LIVES FOR OROUND LOADING SPECTRA
7075-TS ALTHUMUM ALLOX

Test Group No.	Specimen No.	Type of Specimen	r _t	Smean	No. of Loading Steps	Sequence	Block Size	Test Life (10 ⁶ cycles)
т1	1,16 1,17 1,18 1,19 1,122 1,23	Notched Sheet Soupon	7	035	18	True Randon	559700 (Avg.)	.783 .500 .552 .579 .196 .118
T2	1,61 1,62 1,65 1,66 1,69 1,71	Notched Sheet Coupon	7	035	11	Lo-Hi	21500	.775 .7h8 1.010 1.268 .900 1.309

* Geometric mean of test life

TABLE 71

EXPERIMENTAL FATIGUE LIVES FOR PIGHTER MANEUVER LOADING SPECTRA
7075-T6 ALUMINUM ALLOY

Test Group Ro.	Specimen No.	Type of Specimen	KT.	Smin	No. of Loading Steps	Seguince	Block Size	Test Life (106 Cycles
к14	342 343 344 345 346 347 349	Notched Sheet Coupon		. 0614	11	True Random	27700 (Avg.)	.0264 .0220 .0176 .0308 .0440 .0264 .0267*
M15	399 400 401 404 406			.06k	11	Lo-Hi	1100	.0129 .0129 .0097 .0193 .0150
X 16	410 411 413 414 415	Notched Sheet Coupon		.064	40	Lo-Hi	1000	.0082 .0174 .0123 .0123 .0133

^{*} Geometric mean of test life

TABLE 72

EXPERIMENTAL FATIGUE LIVES FOR COMPOSITE MANEUVER LOADING SPECTRUM 7075-T6 ALUMINUM ALLOY

True Random Loading Sequence

Test Group No.	Specimen No.	Type of Specimen	K _T	Smin	S _{mean}	No. of Loading Steps	Block Size	Test Life (10 ⁶ Cycles)
CMI	488 48 9 490 499 500	Notched Sheat Coupon		Fighter Manauver	Ground 035 G-A-G .014	29	11000 (Avg.)	.0091 .0103 .0121 .0098 .0135

• Geometric Mean of Test Life

ASD TR 61 - 434

152

TABLE 73

EXPERIMENTAL FATIGUE LIVES FOR COMPOSITE GUST LCADING SPECTRA

7075-T6 ALUMINUM ALIOY Lo-Hi Loading Sequence

Test Group No.	Specimen No.	Type of Specimen	KŢ	Smean	No. of Loading Stops	Block Size	Test Life (10 ⁶ cycles)
con.	475 480 481 485 487	Notched Shoot Coupon	4	Gust .071 Ground 035 G-A-G .018	26	21200	1.092 .571 1.242 .754 1.694 .798 *
CG2	478 479 482 484 486		7	Gust .071 Ground 035 G-A-G .018	21	1900	.134 .138 .083 .110 .084 .107 *
CC3	- 467 470 472 473 474		4	Gust .141 Ground 035 G-A-0 .053	28	3300	.145 .191 .117 .118 .151 .142 *
coff	509 510 511 512 513 514 517 518	Notched Sheet Coupon	h	Cust .141 Ground 035 G-A-G .053	28	10100	.200 .259 .338 .221 .276 .269 .177 .301

Geometric mean of test data

TABLE 71

LOW PEAK PANDOM GUST LOADING HISTORIES (CSEAN CROSSING PEAK COUNTS)

(!EAN CROSSING PEAK COUNTS)

fmean = 6,000 ps1

Kr = 4.0

Test Group No. G66

Varying		requency of I		urrences
Stress (psi)	Specimen No.305	Specimen No.318	Specimen No.362	Specimen No.393
o	1,452,900	1,935,750	1,470,300	1,792,200
1,190	827,300	1,102,600	837,050	1,020,600
2,380	380,300	507,050	384,750	469,100
3,560	135,380	180,500	136,990	166,960
4,750	37,113	49,490	27,539	45,774
5,950	8,952	11,939	9,057	11,043
7,120	2,382.7	3,181.5	2,411.3	2,938.6
7,720	1,326.0	1,811.2	1,371.7	1,672.6
8,310	859.5	1,148.4	869.1	1,060.0
8,900	527.7	705.3	534.3	650.8
9,500	744.1	460.3	348.7	124.3
10,000	239.9	321.5	243.3	295.6
10,700	91.1	122.4	93.1	112.3
11,600	60.2	80.7	61.7	74.0
11,900	22.6	30 . 5	23.7	27.6
12,050	21.0	28.6	22.0	25.6
12,500	10.2	13.2	10.2	11.5
13,100	7.7	10.0	7.7	8.7
14,000	2.0	3.0	5.0	2.0

TABLE 75

LOW PEAK ORDERED GUST LOADING HISTORIES

Stress Interval = 4,000 psi Unit Spectrum = 1/20 avg. random test history fmean = 6,000 psi K_T = 4,0

 $_{K_{\underline{T}}}^{\mathbf{r}_{mean}}$

Test Group No. 067

			0 01045 1131		
ences	Cycle Occur	cy of Load	ive Frequen	Cumulat	Varying
Specimen No. 377	Specimen. No. 370	Spectmen No. 368	Specimen No. 365	Specimen No. 364	Stress (ps1)
1,029,60	2,015,683	2,103,148	457,862	1,393,865	2,100
25,40	46,808	48,008	10,202	31,805	6,180
43	866	· 888	189	588	10,080
1	8	. 8	2	5	14,000
39.60	78.68	80.89	17.61	53.61	No. of Blocks

TABLE 76

LUW PEAK ORDERED GUST LOADING HISTORIES

Stress Interval = 1,000 psi Unit Spectrum = 1/20 avg. random test life fmean = 6,000 psi K_T = k.0

Test Group No.

Varying	Cumulat	ive Frequer	No. God	Cyola Carri	
Stress (psi)	Specimen No. 372	Specimen No. 376	Specimen No.381	Specimen No.385	Specimen No.394
550	4,918,201	3,177,840	4,189,201	3,777,001	5,070,000
1,600	2,868,201	1,852,840	2,439,201	2,202,001	2,245,000
2,600	1,474,201	951,840	1,249,201	1,131,001	1,512,000
3,620	654,201	421,840	552,001	501,001	672,000
4,580	223,701	143,590	189,751	170,501	231,000
5,520	72,901	46,800	62,101	55,801	75,600
6,520	21,466	13,780	19,295	16,431	22,260
7,500	8,101	5,200	6,901	5,201	00ار8
8,520	3,241	2,080	2,761	2,481	3,360
9,520	1,378	981*	1,174	1,055	1,428
10,500	568	364	484	435	588
11,500	203	130	173	156	210
12,480	81	52	69	63	84
000 وبلا	20	IJ	17	16	21
No. of Blocks	81.97	52.96	69.82	62.95	84.50

TABLE 77

TOW PEAK ORDERED GUST LOADING HISTORIES

Stress Interval = 1,000 psi Unit Spectrum = 1/10 avg. random test history fmean - 6,000 psi

R.I. Laceu

Test Group No. G69

Varying								
Stress (psi)	Specimen No.378	Specimen NO.387	Specimen No.388	Specimen No.391	Specimen No.392			
540	h,552,819	5,385,622	5,390,422	10,056,01,2	5,874,024			
1,620	2,652,819	3,135,622	3,140,422	5,856,042	3,424,024			
2,590	1,360,819	1,605,622	1,610,122	3,000,012	1,758,024			
3,540	600,819	705,622	710,422	1,328,01,2	778,024			
1,510	203,519	2f15,055	575,055	456,542	264,024			
5,540	66,619	79,222	79,222	1կ9,կկ2	86,424			
6,530	19,629	23,342	23,342	hli,032	25,464			
7,54a	7,419	8,822	8,822	16,642	9,624			
8,600	2,979	3,562	3,542	6,682	3,864			
9,660	1,277	1,518	1,518	2,864	1,656			
10,1150	537	6 38	638	1,20k	696			
11,000	204	242	242	457	264			
12,000	55	66	66	125	72			
14,000	19	55	22	42	24			
No. of Blocks	37.94	88.44	ોો9 ટ	83.80	48.95			

た。 「他の関係ができます。 「他のできます。」 「他のできます。 「他のできます。」 「他のできます。 「他の

TABLE 78

LOW PEAK RANDOM GUST LOADING HISTORIES (MEAN CROSSING PEAK COUNTS) f mean = 6,000 pai KT = 7.0

Varying	Cina	ulative Fr	roup No. O		n Occurren	
Stress (psi)	Specimen Wo.299	Specimen No.300	Specimen No.301	Specimen No.302		Specimen No.304
o	252,300	169,650	239,250	200,100	326,250	213,150
1,190	143,700	97,050	136,500	114,100	185,900	121,600
2,330	65,900	44,800	62,700	52,450	85,500	56,000
3,560	25,480	15,980	22,360	18,630	30,460	19.940
4,750	6,437	4,440	6,157	5,142	8,349	5,507
5,950	1,552	1,079.5	1,488	1,245	2,018.5	1,338
7,120	411.8	286.0	397.3	328.3	538.6	354.3
7,720	ઉંજો , ક	163.6	227.2	167.6	306.2	505.0
8,310	148.5	103.5	144.1	118.9	193.7	127.7
8,900	90.9	62.7	88.3	72.3	119.2	77.6
9,500	60.0	8.04	58.4	47.5	77.4	50.6
10,000	41.8	28,4	40.8	33.3	53.7	35.3
10,700	16.1	11.3	16.1	13.6	19.7	13.6
11,600	10.6	7.3	10.6	9.0	12.9	9.0
11,900	. 3.9	1.1	3.9	2.6	5.0	2.6
12,050	3.6	1.0	3.6	2.5	4.6	2.5
12,500	1.4		1.4	1.3	1.4	1.3
13,100	1.0		1.0	1.0	1.0	1.0

TABLE 79

LOW PEAK ORDERED GUST LOADING HISTORIES

Stress Interval = 1,000 psi Unit Spectrum = 1/20 avg. random test history fmean = 6,000 psi T = 7.0

 $\mathbf{r}_{\mathrm{mean}}$

Test Group No. G71

Varying	Cumula	tivo Freque		Cycle Occur	mences
Stress (psi)	Specimen No.348	Specimen No.350	Specimen No.351	Specimen No.355	Specimen No.356
550	211,141	289,080	305,371	253,531	228,242
1,520	104,421	145,280	153,731	127,121	113,502
2,370	55,201	76,800	80,971	67,201	60,002
3,260	25,301	35,200	36,771	30,801	27,502
4,190	8,971	12,480	12,871	10,921	9,752
5,160	2,991	4,160	4,291	3,641	3,252
6,170	921	1,280	1,321	1,121	1,002
7,190	300	416	430	365	327
8,230	139	192	199	169	152
9,260	58	80	83	71	64
10,380	23	32	33	29	26
11,460	7	9	10	9	8
13,200	2	3	3	3	3
No. of Elocks	23.46	32.12	33.93	28.17	25.36

(Continued on next page)

THRIE 80

HIGH PEAK RANDOM GUST LOADING HISTORIES
(MEAN CROSSING PEAK COUNTS)

frean = 12,000 pst

KT

Test Group No. G72

Varying		Cumile	ative Frequen	Cumulative Frequency of Load Cycle Occurrences	Sycle Occurre	ences	
Stress	Specimen	Specimen	Specimen	Specimen	Specimen	Spectmen	Specimen
(ps1)	No.279	No.265	No.287	No.288	No.290	No.291	No.292
0	652,500	395,850	456,750	334,950	239,250	326,250	247,950
, « % %	323,760	263,800 196,350	327,500 226,600	240,500 . 166,250	171,700 118,700	234,100 161,950	177,500
5,000	202,550	122,650	141,750	104,050	74,250	101,350	76,950
5,000	117,200	71,020	32,020	60,220	42,960	58,670	44,510
5,000	61,830	37,520	43,300	31,833	22, 720	30,970	23,550
6,000 8,000 900 900 900 900 900 900 900 900 900	28,650 12,030 5,100	17,345 7,865 3, 082	20,075 8,44,5 3,582		10,585 4,455 1,893	14,335 5,025 2,550	10,960 4,610 1,958
9,000	2,230	1,364	1,583	1,157.5	833.5	1,129	862
	1,145	697	805	590.0	424.0	575	439
	567.3	346.2	400	292.6	210.2	285.6	217.3
8,52	511.4	190.2	219.6	160.n	115.7	156.6	119.3
80,44	179.7	109.5	126.4	91.9	67.1	90.0	69.0
80,00	108.4	65.7	76.0	54.8	. 40.5	53.8	61.6

(End of Table 80)

ſ	 -	
	Specimen No.292	1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01
	Specimen No.291	18.7 17.6 12.8 1.5 1.1
Cumulative Frequency of Load Cyrle Orenament	Specimen No.250	15.1 11.0 10.4 5.6 1.5
icy of Load (Specimen No.268	18.7 13.6 12.8 4.6 1.5
tive Frequen	Specimen No.267	27.3 18.6 18.7 6.0 6.0 6.0 6.0
Curra	Specimer. No.285	82.9 15.6 15.6 15.0 15.0 15.0 15.0
	Spectren No.279	2.88.88 2.78 8.94 8.94 8.94 8.91
Varying	(ps1)	15,000 15,000 15,150 17,000 18,230 18,230

ASD TR 61 - 434

(Continued)

TABLE 80

TABLE 81

HIGH PEAK ORDERED GUST LOADING HISTORIES

= \$,000 psi = 1/20 avg. random test history = 12,000 psi = \$.0 Stress Interval Unit Spectrum

f_{mean}

Varying	Cumulative	Frequency of	Load Cycle	Occurrence
Stress (psi)	Specimen No.326	Specimen No.331	Specimen No.332	Spacimer No.334
2,070	304,232	144,578	152,718	188,145
6,190	28,000	13,126	14,001	17,500
10,350	1,056	496	529	660
14,200	96	46	49	60
18,300	3	, 2	· 2	2
Spectrum	32.89	15.63	16.51	20.34
Units				
Varying	Cumulative	Frequency of	Load Cycle	Occurrence
Stress (psi)	Specimen No.336	Specimen No.337	Specimen No.339	Specimen No.340
2,070	305,713	207,478	497,650	353,350
6,190	278,88	19,250	46,375	33,250
10,350	1,089	726	1,749	1,254
14,200	99	66	159	114
18,300	3	5	5	4
No. of Elocks	33.05	22.43	53.80	38.20

TABLE 82

HIGH PEAK ORDERED GUST LOADING HISTORIES

Stress Interval = 1,000
Unit Spectrum = 1/20 avg. random test history
fmean = 12,000 psi

fmean KT

4.0

Test Grown No. G74

Varying	Cumula	ive Frequen	acy of Load	Cycle Occu	rrences
Stress	Specimen	Specimen	Specimen	Specimen	
(psi)	No.313	No.320		No.335	No.341
480	414,882	470,401	813,600	441,281	928,161
1,320	284,882	320,401	558,600	301,281	638,001
2,220	193,882	217,501	380,100	203,281	435,001
3,100	108,082	121,801	211,800	113,401	243,601
4, 020	59,982	68,151	117,500	63,451	136,301
4,960	30,082	34,801	60,000	38,400	69,601
5,900	15,002	17,401	30,000	16,201	34,801
6,850	6,002	6,961	12,000	6,481	13,921
7,860	2,527	3,046	5,250	2,836	6,091
8,860	1,127	1,306	2,250	1,216	2,611
10,100	552	639	1,100	595	1,277
11,380	302	349	600	325	697
12,350	177	204	350	190	407
13,300	102	117	200	109	233
14,350	52	59	100	55	117
15,400	27	30	50	28	59
16,550	14	15	25	14	30
17,620	6	6	10	6	12
18,300	3	3	5	3	6
No. of Mocks	25.93	29.40	50.85	27.58	58.01

TABLE 83

HIGH PEAK ORDERED GUST TOADING HISTORIES

Stress Interval = 1,000
Unit Spectrum = 1/10 avg. random test history

frace = 12,000
= 4.0

Varying	Cumula	st Group No ive Freque	ncy of Load	Cycle Occu	rrences
Stress (psi)	Specimen No.307	Specimen No.306	Specimen No.309	Specimen No.310	Specimen No.312
750	319,040	288,960	288,000	224,319	256,961
1,980	219,010	198,000	198,000	153,999	176,001
2.900	149,040	135,000	135,000	101,999	120,001
3,920	83,040	75,600	75,600	58,799	67,201
4,900	46,040	42,300	42,300	32,899	37,601
5,830	23,040	21,600	21,600	16,799	19,201
6,850	11,040	10,800	10,800	8,399	9,601
7,880	4,320	4,320	4,320	3,359	3,841
8,950	1,890	1,890	1,890	1,469	1,681
10,000	810	810	810	629	721
1,1,050	396	396	396	307	353
18,050	216	216	216	167	193
13,050	126	126	126	97	113
13,700	72	72	72	55	65
14,450	36	36	36	27	33
15,500	18	18	18	13	17
16,450	9	9	. 9	6	9
17,500	l.	4	1,	2	4
18,300	2	2	2	1	2
No. of Elooks	9.97	9.03	9.00	7.01	8.03

TABLE 84

HIGH PEAK HANDOM GUST LOADING HISTORIES (MEAN CROSSING PEAK COUNTS) fmuan = 12,000 psi KT = 7.0

Test Group No. G75

Test Group No. 075										
Varying Cumulative Frequency of Load Cycle Occurrences										
(Fxi)	Specimen No.274	Specimen No.280	Specimen No.281	Specimen No.282	Specimen No.283	Specimen No.284				
. 0	56,550	95 ,7 00	55,550	39,150	52 , 200.	52,200				
1,670	32,400	511,500	32,1,00	22,600	29,800	29,800				
3,330	15,000	25,100	15,000	10,600	13,700	13,700				
5,000	5,360	9,000	5,360	880و ت	4,860	4,860				
6,570	1,504	2,479	1,504	1,092	1,354	1,354				
8,330	36 9	606	369	267.5	329 -	329				
10,000	99.1	159.1	99.1	70.8	86.6	86.6				
10,830	56.8	88.9	56.8	140.5	49.6	49.6				
11,660	35.6	55 .5	35.6	25.8	31,2					
12,500	21.1	33.5	21.1	15.8	18.4	18.4				
13,330	13.5	21.5	13.5	10.3	11.9	11.9				
14,000	9.2	14.7	9.2	7.2	8.2	8.2				
14,960	3.1	5.0	3.1	3.1	3.1	3.1				
16,190	2.0	3.3	2.0	2.0	2.0	2.0				
16,620		1.0								

TABLE 85

HIGH PEAK ORDERED GUST LOADING HISTORIES

Stress Interval - 1,000 psi
Unit Spectrum - 1/20 avg. rardom test history
fmeam - 12,000 psi

 $\mathbf{r}_{\mathbf{mean}}$

7.0

Test Group No. 077

Varying	Cumulative Frequency of Load Cycle Occurrences								
Stress (psi)	Specimen No.293	Specimen No.294	Specimen No.295	Specimen No.296	Specimen	Specimer No.298			
530	63,002	58,249	63,002	68,001	41,253	55,501			
1,550	43,752	40,249	43,752	47,251	28,503	38,501			
2,500	28,127	25,874	28,127	30,376	18,003	24,751			
3,450	16,877	15,524	16,877	18,226	10,303	14,851			
4,400	9,627	8,854	9,627	10,396	6,163	8,1171			
5,350	4,702	4,323	4,702	5,077	3,011	4,137			
6,300	2,127	1,954	2,127	2,296	1,363	1,871			
7,400	902	827	902	97 3	579	79 3			
8,500	705	367	1105	433	259	353			
9,400	177	160	177	190	115	155			
10,200	84	75	84	90	56	73			
11,150	49	43	75	52	33	42			
12,200	26	22	26	27	18	22			
13,300	16	13	16	16	11	13			
14,450	8	6	8	8	6	6			
15,500	4	3	4	4	3	3			
16,200	3	2	3	3	3	3			
No. of Elocks	25.19	23.29	25.19	27.24	16,52	22.23			

TABLE 86

TEST LOADING SPECTRA

	92 Wing Root	12,000 12,000 79.2	Rendom	277,200	67,320 39,600 8.712	1,584	135
ces (Cycles)	36 Wirg Root	17%-P4-4 12,000 59.1	Randon	254,130	130, 320	1,300 248	100
ency of Occurren	نام کار Wing Root	17%-PU-U 12,000 60.5	Random o• G78	260,150	133,100 57,475 7,865	1,33	103
Cumulative Frequency of Occurrences (Cycles	72 Wing Root	17%-PL-L 12,000 71.8	Random R. Test Group No. G78	306,740	157,950 68,210 9,334	1,530	122
	70 Wing Root	17½-P¼-L 12,000 69.7	Random	299,710	153,340 66,215 9,061	1,533	118 70
	•	Actord No. Mean Stress (psi) Trace Repetitions	Varying Stress (Gross Area) ESI	9	^ ************************************	در ن ش ک ن	۵. پودر دور

TABLE 66

TEST LOADING SPECTRA

128 Wing Root 1,7%-24-4 12,030 55.6 126 Wing Root 17%-P3-3 12,000 172.5 Random (Continued)
Cumulative Frequency of Occurrences (Oyoles) 115 Wing Root L 17%-PL-L 12,000 53.0 Random ill Wing foot 17%-P3-3 12,000 74.8 Random 17%-24-4 12,000 55.7 93 Wing Root Random Record No. Ween Stress (ost) Trace Repetitions Varying Stress (Gross Area) KSI Specimen No.

Irace

239,080

358,750

227,900

Test Group No. 678

261,600

235,510

37,125 51,250 11,275 2,050 512 512

116,600 50,350 6,890 1,166 223 90

63,580 37,100 8,223 1,196 1,196 127

122,540 52,915 7,241 1,225 1,225 9,95

102

Random

TABLE 86

TEST LOADING SPECTAR (Continued)

		(contribut)	usa)		
		Cumulative Frec	Cumulative Frequency of Occurrences (Cycles)	es (Cycles)	_
Specimen No. Trace Kr	251 Wing Root L	252 Wing Root	255 Wing Root	256 Wing Root	258 Wing Root
Record No. Rean Stress (psi) Trace Repetitions	16%-P1-14 12,000 217.0	. 46%-P2-1 12,000 156.0	1655-PL-1. 12,000 1111,0	1:64-PL-1: 12,000 172.0	1464-P2-1 12,000 197-0
Variing Stress (Gross Area) KSI	Ordered	Ordered	Ordered	Ordered	Ogdered
		Test Group No. G79	Fo. G79		
O 01	2,019,500 477,400	780,000 327,600	535,400 250,800	803,400	\$85,000 143,700
1 10	130,200	οβ,920 17,200	68,400	103,200	112,290
3 OT	2,604	1,872 1,872 640	1,368	17,200 2,064	29,700 2,364.
12 13.5	262 217	265 156	877 711	254 224 172	335 197

TABLE 86

		Cumulative fraquency of Occurrences (Cycles)	of Occurrences (Cycle	s)
Specimen No. Trace Kr	173 Ficd. Aing Root	175 rod. Wing Root	176 And Wing Root	177 Mod. Wing Root
Record No. Wean Stress (psi) Trace Repetitions	30:-24-4 12,000 37.3	2306-24-12 12,000 57.06	1, 30:~PL-L 12,000 34.9	30x-Pla-L 12,000 15,1
Varying Stress (Gross Area) KSI	Random	Random Test Group No. Gio	Randon	Random
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	167,650 111,900 59,680 31,705 10,444	259,200 172,600 92,160 16,760 16,128,	157,050 104,700 55,840 29,665 9,772	202,950 135,300 72,160 38,335 12,628
9.6 10.3 12.55 13.5	1,940 213 37	2,9% 326 58	1,815	2,345 725

~€	
SPECTRA	eđ)
DAIGACI	Conclud
Test	_

		Cumlative Fr	Cumilative Frequency of Occurrences (Sycles)	ences (Sycles)	
ecimen No. ace	2146 Mad. Wing Root	217	248 1. Ning Boot	249 1. Aing Ro	250 Mod. Wing Root
Ar Record No. Fean Stress (psi) Trace Repetitions	4.14422.1 12,000 31.1	12,000 27.4	44X-P2-1 12,000 34:-1	12,000 32.7	12,000 12,000
Varying Stress (Gross Area) XSI	Úrdered	Ordered Test Group No. GEL	Urdered	Ordered	Ordered
ស ១៧១៤៤០ ក្រុក	23,730 99,520 97,520 37,320 12,936 1976 10,4	217,820 84,940 22,560 23,560 33,268 32,88 32,88	146,630 109,120 68,230 10,920 19,773 5,456 44,3	140,610 101,370 55,590 29,430 11,772 3924 332	187,050 139,200 87,200 52,200 5,500 1,500

TABLE 87

RANDOM MILITARY MANEUVER LOADING HISTORIES

(PEAK COUNTS)
Minimum Stress = 5,450 ps1

Incre-	Cun	ulative Fr	roup No.	Load Cycl	e Occurren	Icea
Stress (psi)	Specimen No.342	Specimen No.343	Specimen No.344	Specimen No.345	Specimen No.346	Specimen No. 347 & No. 349
0	26,400	55,000	17,600	30,800	hh,000	26,400
2,840	20,700	17,250	15,800	24,150	34,500	20,700
5,680	16,100	13,450	10,760	18,830	26,900	16,100
11,400	9,360	7,800	6,240	10,920	15,600	9,360
17,000	4,560	5,800	3,040	5,320	7,600	4,560
22,700	1,830	1,525	1,220	2,135	3,050	1,830
28,400	540	450	<i>3</i> 60	630	900	540
31,200	288	240	192	336	480	288
54,000	132	110	88	154	550	1
59,800	24	20	16	28	⁶ 10	132
1,200	12	10	8	14	20	
2,050	6	5	h,	7	10	15

CRIDERED MILITARY MANEUVER LOADING RISTORIES

Stress Interval = 4,000 psi
Unit Spectrum = 1/20 avg. random test history
Minimum Stress = 5,450 psi
KT = 4.0

KT

Test Group No. MLS

	· · · · · · · · · · · · · · · · · · ·	Test Grow	h was und		
Incremental Stress		ive Freque			
(ps1)	Specimen No.399	Spacimen No.400	Specimen No.401	Specimen No.404	Specimen No.406
1,680	12,900	12,898	9,676	19,345	15,001
5,180	8,700	8,698	6,526	13,045	10,101
9,250	5,880	5,878	للباربا	8,815	6,811
13,550	3,780	3,778	2,836	5,665	4,361
17,800	2,280	2,278	1,711	3,415	2,611
22,100	1,260	1,258	9 46	1,885	1,421
26,300	588	5 86	7775	877	637
30,700	240	238	181	355	260
34,800	84	82	64	121	91
. 38,450	24	22	29	34	26
h2,000	3	3	3	5	4
No. of Blocks	12.00	11.99	9.00	17.99	13.95

TABLE 89

ORDERED MILITARY MANEUVER LOADING HISTORIES

Stress Interval 1,000 psi

Unit Spectrum 1/20 avg. random test history

Minimum Stress 5,450 psi 4.0 K.

.	Test	Croup No. M	16	
Incremental	Cumulative	Frequency o	f Load Cycle	Occurrences
Stress	Specimen	Specimen	Specimen	Specimen
(psi)	No.410	No.411	Nos.4138414	No.415
470	8,201	17,425	12,298	13,271
1,320	7,401	15,725	11,098	11,971
2,020	6,801	14,450	10 198	10,996
2,730	6,201	13,175	9. 298	10,021
3.480	5,601	11,900	8,39 8	9,046
4,330	5,001	10,625	7,498	8,071
5,320	4,521	9,605	6,778	7.291
6,420	4,081	8,670	6,118	6,576
. 7,460	3,721	7,905	5,578	5,991
B.440	3,361	7,140	5,038	5,406
9,480	3,001	6,375	4,498	4,821
10,560	2,721	5,780	4,078	4,366
11,600	2,401	5,100	3.598	3,846
12,700	2,121	4,505	3,178	3,391
13,800	1,881	3,995	2,818	3,001
14,900	1,681	3,570	2,518	2,676
16,050	1,425	3,026	2,134	2,260
16,850	1,241	2,635	1,858	1,961
17,950	1,081	2.295	1,618	1,701
19,400	351	1,955	1,378	1,441
20,450	759	1,632	1,150	1,194
21,500	649	1,577	970	999
22,800	529	1,122	790	804
24,000	441	935	658	€61
25,100	345	731	514	517
26,400	281	595	418	421
27,700	233	493	346	349
28.800	185	391 289	274	277
29,800	137	503	202	205
30,850	105	221	154 118	157
32,000	81	170	94	121
33,150	65	136 102	70	9 7
34,200	49	77	52	7 3 55
35,200	37 29	60	40	43
36,150 37,150	21	43	29	31
70,170 30,050	15	31	21	22
38,250	10	21	4.	16

39,400 40,500

42,000 No. of Blocks

17.00

51 21

16

10

8.90

14

11

11.99

15

11

12.95

TABLE 90

RANDOM GROUND LOADING HISTORIES (MEAN GROSSING PEAK COUNTS) fmean = -3,000 psi T.O

25			st Group N			
Varying Stress	Specimen	Specimen	Specimen	Load Cycle Specimen	Specimen	Specimen
(psi)	No.416	No.417	No.418	No.419	No.422	No.423
0	783,000	500,250	552,450	578,550	495,900	448,050
950	452,400	289,000	319,300	334,200	286,250	258,700
1,920	208,250	133,000	146,850	153,800	131,550	119,050
2,850	73,600	47,040	51,950	54,400	46,450	42,150
3,800	20,050	12,846	14,168	14,818	12,656	11,460
4,750	4,843	3,107.5	3,11214	3,583	3,057.5	2,770
5,700	1,287	827.9	911.2	953-7	813.9	738.5
6,180	715.9	461.0	507.3	530.4	453.4	410.9
6,650	458.9	295.6	325.1	239.4	. 530°1	262.9
7,130	286.2	184.3	202.6	211.6	180.3	164.3
7,500	187.4	120.1	133.2	138.0	117.6	107.2
8,000	129.4	85.0	91.8	94.8	80.9	75.7
8,550	48.8	31.1	34.6	34.6	29.8	26.6
9,250	32.8	20.8	23.1	23.1	19 .8	17.8
9,500	11.0	6.7	7.8	7.8	6.7	6.7
9,620	10.2	6.2	7.2	7.2	6.2	6.2
9,980	4.4	2.7	2.7	2.7	2.7	2.7
10,450	3.4	2.0	2.0	2.0	5.0	2.0
11,150	1.0					

ORDERED GROUND LOADING HISTORIES

Stress Interval = 1,000 psi Unit Spectrum = 1/20 avg. random test history incan = -3,000 psi a_T = 7.0

Varying	Cun	Cumulative Frequency of Load Cycle Occurrences								
Stress (psi)	Specimen No.461	Specimen No.462	Specimen No.465	Specimen No.166	Specimen No.469	Specimen No.471				
550	775,438	747,757	1,010,085	1,268,351	900,009	1,309,42				
1,580	396,608	380,257	516,585	648,851	459,009	668,92				
2,580	144,008	136,007	187,585	235,851	165,009	241,19				
3,580	41,408	39,107	53,635	67,701	47,159	69,01				
4,610	5,768	5,447	7,370	9,291	6,569	9,612				
5,700	2,168	2,047	2,770	3,491	2,469	3,612				
6,780	692	653	884	1,113	788	1,152				
7,910	296	279	378	475	337	492				
8,780	87	82	111	139	99	الرابة - 1				
9,480	22	20	28	34	25	36				
0,500	7	6	9	u	8	12				
o. of locks	36.07	34.78	46.98	58,99	41.86	60,90				

ORDERED COMPOSITE LOADING HISTORIES

(Spectra Based on Tests Having Approx. 11 Random Gust Loadings per Flight)

LOW PEAK GUST LOADINGS IN FLIGHT

Stress Interval = 1,000 psi Unit Spectrum = 1/20 evernge random test history L_n = 4.0

L

Test Group No. CG1

	Test Group No. CG1							
Varying	Cumulative Frequenty of Load Cycles Occurrences Specimen Specimen Specimen Specimen Specimen							
Stress	Specimen	Specimen		Specimen	Specimen			
(isq)	No. 475	No. 480		No. 485	No. 487			
			t Londings					
		f _{me at}	= 6,000 ps		3 ala asa			
580	674,501	351,000	766,997	467,505	1,040,000			
1,680	388,501	202,500	442,487	769,505	600,000			
2,720	180,501	94,500	206,487	125,505	280,000			
3,8%	76,501	40,500	89,487	53,505	. 1.20,000			
4 ,850	29,051	14,850	32,437	19,305	44,000			
5,880	8,161	4,320	9,427	5,600	12,800			
6,920	2,296	1,215	2,647	1,575	3,600			
7,850	919	496	1,054 464	630 280	1,440 640			
8,700	408	216						
9,650	205	108	535	140	320 128			
10,680	82	. 43	93	56	48			
11,620	31	. 16	35	21	16			
13,000	10	5	12	7	10			
		Ground Loadings						
	f _{mean} = -3,000 vs1							
600	357,001	189,000	406,232	245,000	560 ,000			
1,700	204,001	108,000	535,535	140,000	320,000			
2,750	96,901	51,300	110,432	66,500	152,000			
3,900	40,801	21,600	46,632	28,000	64,000			
5,080	15,301	8,100	17,632	10,500	54,000			
6,200	4,591	2,430	5,452	3,150	7,200			
7,180	1,276	675	1,682	875	2,000			
8,120	511	270	815	350	800			
9,020	205	109	464	140	350			
9,850	103	54	116	70	160			
10,880	52	27	5 8	35	80			
12,000	21	11	23	14	32			
	}	Ground	l to Air Cycl	e\$				
		f _{mu} s						
4,900	60,486	31,249	68,788	41,510	94,287			
No. of Hlocks	51.54	26.96	58,62	35.59	79.97			

TABLE 93

CRDERED COMPOSITE LOADING HISTORIES
(Spectra Hased on Tests having approx. 12 Random Gust Loadings per Flight)

LOW PEAK GUST LOADINGS IN FLIGHT

Stress Interval = 1,000 psi
Unit Spectrum = 1/20 avg. random test history
Kr = 7.0
Test Group No. CG2

1/a		Test 0	roup No. CG	2	
Varying Stress		Specimen	ney of Load	Cycle Occur	rences
(psi)	Specimen No. 478	Plycormen	Shearwar	Specimen	Specimen
	1000	No., 479	No. 482	No. 484	No. 486
ł	1			-	
1	1	Guat	Loadings		
1	•	f _{mean} =	6,000 pai		
650	84,652	67,180	52,445	in and	
1,800	48,442	49,950	30,005	69,305 39,725	52,575
2,750	25,367	26,225	15,705	20,875	30,135 15,835
3,700 4,650	9,747	10,165	6,025	8,115	6,155
5,550	3,4,7	3,595	2,155	2,895	2,195
6,600	1,067	1,113	693	923	699
7,950	105	237 107	177 61	227	177
8,900	1 13	43	26	82 35	61
9,550	18	18	ĩi	35 15	27
11,000	4	4	2	3	11 2
1	1	Chanal		•	_
1	}	r uround	Loadinga -3,000 pmi		ļ
	İ	f _{moan} :	-21000 Bar		ì
650	42,002	43,201	25,811	34,765	26,395
1,800 2,800	21,702	22,321	13,341	17,945	13,635
3,800	8,402	8,641	5,171	6,925	5,275
4,750	2,522 492	2,593	1,559	2,053	1,585
5,720	121	505 123	312	400	309
6,750	40	40	74 24	98 32	76
7,800	15	15	79	je le	25
8,850	4	4	ź	3	9
		Ground to A	ir Cycles	-	
		fmean "	1,500 pui		1
4,650	7 200		•		1
	7,290	7,488	4,472	5,923	4,545
No. of Hlocks	70.54	72 61	13 55		
	70174	72.61	43.57	57.93	43.98

TABLE 94

ORDERED COMPOSITE LOADING HISTORIES (Spectra Based on Tosts having approx. 13 Random Gust Loadings per Flight)

HIGH FEAK GUST LOADINGS IN FLIGHT

Tost Group No. CG3
Stress Interval = 1,000 psi
Unit Spectrum = 1/20 avg. random test history

1	, K _p ,		= 4.0		•
Varying	Cumul	ative Frague	ency of Load	Cycles Occur	hence#
Stress	Specimen	Spacimen	Spucimen	Spacimen	Specimen
(psi)	No. 467	No. 470	No. 472	No. 473	No. 474
i		Gust	Icadings		
1 .		fmean	= 12,000 ps	. (
580	91,835	120,914	74,142	75,449	95,632
1,780	65,435	86,114	52,5/2	53,849	68,032
2,900	43,435	57,114	35,002	35,849	45,032
3,850	24,735	32,776	20,127	20,549	25,875
4,850	13,545	17,956	11,027	11, 137	14,176
5,880	6,665	8,836	5,427	5,427	6,976
7,000	3,010	3,991	2,452	2,452	3,151
8,100	1,247	1,654	1,017	1,017	1,306
9,050	516	685	422	422	541
10,030	258	343	212	212	271
11,050	129	172	107	107	136
13,100	69	92	58	58	73
14,200	22	52	33	33	41
15,100	13	29 18	18 11	18	23
15,600	6	9	6	11 6	14
16,300	ž	ź	2	2	7 2
			•	~	~
1	}	Ground	Loadings		
ĺ	l	f mean	= -3,000 ps	1	
620	44,720	59,281	36,401	36,401	46,800
1,680	20,640	27,361	16,801	16,801	21,600
2,600	8,170	10,831	6,651	6,651	8,550
3,650	2,365	3,136	1,926	1,926	2,475
4,600	430	571	351	351	450
5,500	129	172	106	106	135
6,450	4.3	58	36	36	45
7,420	15	20	\mathfrak{z}	13	15
8,300 8,950	4 2	6 3	4	4	4
9,770	Į ~	,	2	2	2
1	1	Ground to	Air Cycles		ł
			= 4,500 psi		ì
7,950	7,955	10,545	6,475	6,475	8,325
No. of				سويسوب وروستونه والمسا	
Blocks	43.56	57.04	35.28	35.67	45.44

(continued on next rage)

(Spectra Based on Tests having approximately 110 Nandom Gust Loadings per Filght) CRUSEDD COMPOSITE LOADING HISTORIES

HIGH FELK CUST LOADINGS IN FLIGHT

Test Group No. CGU

Stress interval = 1,330 psf
Unit Spectrum = 1/20 avg. random test history
in

					1 2 2 2			
Carleson Grootes	- 1	Curulati	- 1	Frequency of Load Cycle	Sylver Cycle	Speciences	Snortmen	Specimen
Specimen Specimen Specimen. No. 539 No. 512	No.	No.	វិទ្យ	35ecmen No. 512	Fo. 513	Specimen No. 514	No. 517	No. 518
								•
			ائ	st Io				
)i)J	¥	t (zecn)) = 12,000	psi	•		
231,785		332,4	8	197,951	246,129	240,364	158,896	269,287
165,785		217	817	13.81	176,129	172,864	13,8%	194,287
101,735		132.	877	67,951	109,032	107,864	958,89	119,287
60,135		33	201	52,751	64,332	64,664	€05,02	71,287
32,503		42	106	28,551	35,102	37.067	22,103	38,287
17,503		ั่ว	101	15,351	13,902	18,764	11,933	20,302
7,533		6	175	6,553	3,132	7,964	5,1:13	8,702
3,123		4,	226	2,701	3,377	3,251	2,128	3,627
1,253		Ä	651	1,351	1,352	1,301	853	1,452
623			826	526	. 667	651	728	727
60		•	397	253	326	313	207	350
37.7			232	. 178	161	133	221	202
			911	7/2	96	. 76	3	ध्य
ß			%	7 7	55	ß	36	26
			33	ಸ	28	27	13	જ
9t 7t ct			9	01.	አ	'	ឧ	ਜ ਜ
9 7	9		9	7	9	Q	4	9
M.	M.		m	7	~	(C)	~	~

TABLE 95 (Continued)

のから国際のおからは、「他のないのは、「他のなかながある。」 「他のないない」

Varying			Cumilative Frequency of Load Cycle Occurrences	requency of	Load Cycle	Occurrence	8.	
Stress (nst)	Specimen No. 509	Specimen No. 510	Specimen No. 511	Specimen No. 512	Specimen No. 513	Specimen No. 514	Specimen No. 517	Specimen Es, 518
			Grou	[[2])	, , , , , , , , , , , , , , , , , , ,			
			मिलकार्य -	ł	1			
.550	19,002	25,013	33,004		27,004	26,004	17,004	29,035
2,550	3,612	763	6.274	3,994	5,134	776.7	3.234	5,615
3,520	12.	15,1	1,994	1,264	7,62	1,564	78	1,725
5,530	7	3 8	31	32	85 86 86 86	ર્કેશ્ટ	2 2 3 3 3 3	2,2
6,520	12	87	*	রঃ	(A)	:ጸ:	ୟ	R:
9,320	ટુત	ವ ಷ	g m	1 78	4m	ታ ጣ	r 19	3 ~
			Groun	Ground to Air Gyeles	Sel S			
			frean	= 4,500 pst	pst			•
7,850	1,748	2,300	3,036	1,932	75762	2,392	1,564	2,668
No. of Blocks	19.85	25.67	33.54	21.89	27.31	26.63	17.58	29,82

(End of Table)

TABLE 96

RANDOM CONPOSITE LOADING HISTORIES

HILITARY MANEUVER LOADINGS IN FLIGHT

LT = 4.0

Test Group No. CML

Dynami c	Cumula	itive Frequer		Cycle Occurr	
Stross	Specimen	Specimen	Specimen	Specimen	Specimen
(psi)	No.488	110. 489	No. 490	No.499	No.500
(Incre-		litary Maneu		5	
mental)	M	inimum Stress	s = 5,450 psi	•	
0	7,236	8,126	9,549	7,711	10,676
2,840	5,674	6,371	7.488	6,046	8,371
5,680	4.424	4,968	5,838	4,714	5,527
11,400	2,566	2,881	3,396	2,734	3,785
17,000	1,250	1.կ0և	1.649	1,332	1,844
22,700	502	-563	662	534	740
28 1.00	148	166	195		218
28,400				158	
31,200	78 26 2	88	104	84.1	116
31,000	36.2	40.6	47.7	38.6	53.4
39,700	6.58	7-39	8.68	7.01	9.71
41,200	3.29	3.69	4.34	3.50	4.85
42,000	1.64	1.85	2.17	1.75	2.43
Varying)	•	Ground Lose	dings	•	
		$f_{\text{mean}} = -3.00$	00 psi		
0	1,682	1,888	2,216	1,793	2,478
950	971	1,090	1.280	1.036	1,431
1,920	446	501	58 8	476	658
2,850	158	177	208	168	233
3,800	43.0	49.2	56 .6	45.8	63.3
4,750	10.4	11.6	13.7	11.1	15.3
5,700	2.75	3.09	Ĩ3.63	2.94	4.06
6,180	1.53	1.72	2.02	1.63	2.26
6,650	0.982	1.10	1.29	1.05	1.45
	0.61	0.69	0.81	0.65	
7,130.					0.90
7,600	0.41	0.45	0.53	0.43	0.59
8,000	0.28	0.31	0.36	0.29	ō•ĦĪ
8,550	0.10	0.12	0.14	0.11	0.15
9,250	0.070	0.078	0 .092	0.074	0.10
9,500	0.084	0.026	0.031	0.025	0.03
9,620	0.022	0.024	0.029	0.023	0.03
9,980	0.003	0.009	0.011	0.009	0.01
10,450	0.006	0.007	0.008	0,006	0.00
		nd-Air-Ground			
	-	mean = 1,22	manana samusansissi siirama Kaasa	···	
4,225	240	270	317	256	354

ASD TR 61 - 434

ASD TR 61 - 434

Figure 118 Ordered Low Peak Gust Loading Test Data

Figure 11,9 Random Low Peak Gust Loading Test Data

Figure 150 Ordered Low Peak Gust Leading Test Data

Figure 152 Ordered High Peak Gust Loading Test Data

391

ASD TR 61 - 1.31.

Figure 155 Random High Feak Gust Loading Test Data

Figure 156 Ordared High Peak Gust Loading Tost Date

Figure 157 Wing Root Random Loading Test Date (Mean Crossing Peak Count)

Figura 158 Wing Root Ordered Loading Test Data (Mean Grossing Peak Count)

Figure 159 Hodified Wing Root Random Loading Test Data (Wean Crossing Feak Count)

Figure 160 Kodified Wing Root Ordered Loading Real

Figure 161 Random Ground Loading Test Data

ASD TR 61 - 434

Figure 164 Bender Militams Ern

ASD TR 61 - 434

Figure 164 Ordered Military Manguver Flight Loading Test Data

Figure 165 Ordered Military Maneuver Flight Loading Test Data

はなるななない。

Figure 166 Urdered Composite Loading Test Data (Low Peak Gust Loadings in Filight)

Figure 167 Ordered Composice Loading Test Data (Low Peak Quet Loadings in Flight)

是这种是这种的是一种的,也是这种是一种的,也是是一种的,也是是一种的。 1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1995年,1

Ordered Compost te Loading Data (High Peak Gust Loadings in Flight)

Figure 168

406

407

Figure 170 Random Composite Loading (Killtary Manauver Flight Loadings)

APPENDIX D

PART 3 - FATIGUE TEST RESULTS OF A COMPLEX SPECIMEN

Introduction

In order to compare the fatigue life results derived from simple coupon data described in other sections of this report, it was planned to fatigue test fifteen typical complex joint specimens representative of contemporary aircraft construction. The joint selected is illustrated in Figure 41. The test spectra to be applied were representative of two types of loading, gust and maneuver, and a composite set in which ground taxi loads and ground-air-ground loading cycles defined by a static mean ground to a static mean flight range were combined with gust loads in flight on one group of specimens, and with maneuver loads in flight in another group of specimens. The test equipment and specimen description, along with the experimental results in tabular, graphical, and photographic form, are presented in this appendix.

The Specimen

The specimen is constructed of two basically identical panel sections of integrally stiffenedskin typical of current wing tension surface design. The two panels are joined by a double shear butt splice arrangement, with one splice plate recessed for flush outer contour, and the other splice plate containing an integral flunge for a rib support connection. The material is aluminum alloy extrusion 7075-T6 of Specification QQ-A-277. We chanical properties determined from tensile coupons of the specimen material are listed in Table 9°, which indicates matisfactory agreement with the specification requirements. The panels are assembled with 12 Hi-Lok fasteners of one quarter inch dismeter as indicated in Figure 41.

Test Set-up

Each of the panel essemblies was installed in a Lockheed-designed 500,000-pound fatigue testing machine as shown in Figure 43. To facilitate the fatigue testing, and since it was desired to have these cancles tested in groups of three's, the tandem arrangement was adopted. In practice, the first of two such panels to fail was replaced by a third test panel; however, the second panel to fail was replaced simply by a dummy panel in order that the testing might be continued without disturbing the adjustment of the test machine.

Figure 44 presents a schematic diagram of the test machine which is partially shown in Figure 43. This machine, which was designed and built particularly for the ordered spectrum testing of wing surface structure, is a fairly conventional inertia—drive resonance machine utilizing inertia reaction and incorporating a spring—coupled hydraulic static leading system. It is normally operated subresonance with amplification factors of less than 50. Draamic load control when running is provided by test frequency adjustment, and the driving eccentric weight is manually adjustable over a range of more than 20 to 1 to provide additional set—up control.

For the subject test program an auxiliary, more sensitive, load-measuring transducer was bolted to the face of the permanently installed 500,000-pound transducer in series with the two test panels (Figure 43). This load transducer consisted mainly of an I-section upon which were mounted to electrical strain games arranged to measure exial loads up to plus or minus 100,000 pounds independent of moments in either transverse plane and independent of shear eccentricity.

Test Frocedure

In the spectrum testing of the panels, relatively high amplitude, low-cycle loadings were applied by means of a hydraulic jack, part of the hydraulic static loading system proviously mentioned, at frequencies ranging from 1 to 200 cycles per minute. Control of these hydraulic loadings was maintained through a Weston heavy sclenoid valve which in turn was actuated by a special cyclic control device incorporating a Schmitt Trigger. This load control device consisted principally of a two-level voltage sensor, each level of which could be adjusted independently of the other level to "triggers" the sclenoid valve whenever a paticular voltage, generated by the previously calibrated load measuring transducer, was amplified and fed into it. And, since the principle function of any electrical strain gage type of transducer is to generate a voltage proportional to the load which is being applied to it, it was simply a case of manually selecting the upper and lower load levels and then allowing the hydraulic jack to evole back and forth between these points.

Lower amplitude, hi-cycle loadings (dynamic) were applied at approximately 1,200 cycles per minute by means of the rotating eccentric weight shown in Figure like. These loads were manually selected by means of a hard-operated vari-drive coupled to the eccentric shaft. Loads were visually controlled through a calibrated dynamic strain indicator which, as in the case of the cyclic load control device previously described, was used to determine indirectly the actual load being felt by the load transducer. Calibration of this strain indicator was made at the beginning of each work day using a calibration box which has previously been calibrated against known loads applied directly to the transducer in a Baldwin-Southwark universal test machine at the Lockhood Physical Test Laboratory.

For both types of loadings, hydraulic and dynamic, loads were selected that would give the required stress levels shown in Figures 179 through 184 at the minimum cross section of the panel assemblies. This minimum cross section was always near the center section of one of the two panel sections comprising the panel assembly.

As an additional check on the accuracy of the applied loadings, stresses at minimum cross section of the panels were measured independently (both statically and dynamically) through pairs of strain gages installed on the stringers and on the skin at these areas. These strain surveys showed the stresses at the minimum areas to be within plus or winus 2% of the required axial stresses as determined by measured loads at the transducer.

Tost Results

Panel No. I was loaded statically in the aforementioned fatigue machine and after 350 applications of the basic air loading spectrum had failed to

produce any evidence of fatigue cracking (Table 98). Careful inspection of this panel, prior to the static test, was made after the panel had been disassembled. The panel was then reassembled, using new Hi-Lok fasteners after it was determined that the only visible fatigue "darage" consisted of minor fretting at the faying surfaces within the joint area (Figure 171).

The static tension load was applied at a steady rate of 500 pounds per second until failure. Failure occurred at 66,000 pounds (giving an ultimate tensile stress of 80,950 psi across the minimum cross section of the smaller of the two panel sections) and consisted of the fracture of both the tee and of one of the panel sections at the joint (Figure 171).

The remaining 14 panels were spectrum tested to failure - Panels 2 through 6 to a spectrum of air loads representing amplifications of the basic spectrum used in the spectrum test of ranel No. 1 (Figure 179 through 181); Panels 7 through 9 to a single maneuver loading spectrum (Figure 182); Panels 10 and 13 to a composite spectrum representing gust, ground-to-air, and ground loadings (Figure 183) and Panels 14 and 15 to a composite spectrum of ground, ground-to-air, and maneuver loadings (Figure 184).

With the exception of Panels 7 through 9, all spectrum loudings were applied one block at a time, with the smallest loads being applied first.

In the case of Panel No. 7, the first 230 blocks were applied one at a time; however, the last seventy were applied ten blocks at a time.

For Panels 8 and 9, the blocks were applied ten at a time from the beginning of the testing, and, in addition, the lowest load level was omitted from the spectrum.

For Panel No. 9, the next two lowest load levels were dropped at the end of 500 blocks.

Fanels 11 and 12 are not reported since both panels failed in compression because of a failure in the hydraulic loading system of the fatigue testing machine.

The mechanical properties of the joint material are given in Table 97. Spectral test results for minimum gross area stresses are presented in Tables 93 to 104 and Figures 179 to 184. The stress conversion factors in Table 105 were used to convert the panel stresses for minimum gross area into stresses for gross area at point of fract re in Tables 106 to 109.

The results of these spectral fatigue tests are analysed on the basis of stresses for both minimum gross area and gross area at point of fracture, and compared in Section V of the main body of this report.

TABLE 97

MECHANICAL PROPERTIES OF JOINT MATERIAL

Coupon	Ultimate	(KSI) Tiel	d (xsi)	% Elong.*	Red. Area \$
٨.	Integrally	Stiffened Pane	1 Coupons	Longitudinal	Grain .
E1	87.6	5 7	19.k	9	16
E-2	92.3	3	4.2	9.	16
E-3	93.0		14.9	9	1h
E-L	90.1		31.k	10	15
E-5	88.6	5	30.2	. 10	15
E_6	90.9		32.6	9:	16
Aver.	90.1		2.1	9.3	
Spec.	•				
QQ-A-2	77 80	7	2	7	
		B. Splice	Plate Cou	pens	
•	•	Transve	rse Grain	3	
s -1	74.1	7 6	3.1	12	
5 - 2	71.9		59.6	12	•
S-3	73.		1.6	12	
S-L	74.5		2.9	. 10	•
S-5	72.1		1.0	11	
S-6	73.8		2.0	12	
S-7	72.		0.7	12	
s-8	75.0		4.3	<u> </u>	
Aver.	73.9		1.9	11.5	. •
Spec. QQ-A-287	73		3		
	• • • • • • • • • • • • • • • • • • • •			_	
		C. Splics Ted		-	
			erse Grain		
1'-1.	74.3		/3 . 3	F.O.G.L.	
T-2	74.6		3.8	F.O.C.L.	•
T-,3	83.8		/3 . 4.	37	
T-L	76.3		2.9	F.O.G.L.	
T-5	Bh•(3.8	12	
T-6	83.1		5.6	14	
T-7	83.1		2.7	14	
T-8	_83.		3.7	F.O.G.L.	•
Aver.	80.3	3 ?	3.7	13.5	
Spec. QQ.	-A-277 75		5	_	
			lage Lengt		
			Cage Len		
		F.O.G.L.	- Pailed	Outside Gage	Longth .

TABLE 98

SUBJAKY OF PAMEL TEST RESULTS (Continued on next page)

Ę	results	Fig. 179	'l, F13, 180			Hg. 130	
Failures	Ref. Photos (2)	71g. 171		Figs. 173 & 174 Fig. 180		Figs. 175 & 176 Fig. 130	-
Description of Panel Failures	Mode & Location	No fatigue failure, Panei pulled statically, Failure occurred both in the tee & in one of the panel sections at the joint.	No failure.	unitiple fatigue failures in the tee between fillet radius and line of hi-lok holes at edge of collars.	No failure,	1/4 inch fatigue crack at eige of single hi-lok noie in the tee.	Catastrophic failure at intersection of stringer run-out and fillet.
No. of	Applied Loading Blocks	. 350.	52	3 Total: 55	52	σ	2 Total:
y (1)	Spectrum Step Mize	fvery 5	fvery # 1,565 gst	fuery = 2,560 pst	fvary = 1,900 psi	fvary = 2,560 ps1	•
isading Georetry (1)	Spectrum Description	Air Loading Imean = 12,000 pai	Air Loading frean = 23,400 psi	Air Loading frean = 30,600 psi	Air Losding facan = 23,400 pei	Air Ionding fnear = 30,600 pei	
	kres kres (in ²)	.2153	.8137		1513.		
	No. Area (in-	ر 4،	7		W		-

All stresses are those experienced at the minimum cross section of the panel assembly (Fig. ii), Sec. B-B). $\widehat{\mathbb{H}}$

Photographs, shown in Figs. In this 176, were selected as representative of the various types of fatigue failures incurred. 3

SUPMARY OF PAMEL TEST RESULTS (Continued on next page)

•			7	,	T		T	
		Test Results	Mg.181	Fig. 131	F16.181	F\$ g. 182	F# 2, 182	F\$g.162
	Failures	Ref. Photos (2)	Figs. 175 & 176 Prg. 181	Figs. 173 & 174 Fig.181	Fig. 172	Fig. 172	Figs. 177 & 178 Fig. 182	F1g. 172
	Description of Panel Failures	Moda & Location R	56-1/2 Single failure at inter- section of stringer run- out and fillet radius, catastrophic.	Single futigue failure (1/2 inch crack) in tee between fillet & line of hi-lok holes at edge of a collar.	Same as Panel No. 9 F.	Same as Fenel No. 9 F	Muitiple fatigue failures Fin tee at edge of hi-lok holes.	waver loading $\Delta f_{max} = 600$ Fultiple midden fatigue Fig. 172 Fig. 7,600 psf fullures in a panel section at the hi-lok holes, panel failed catastrophically.
	io. of	Apriled Loading Blocks	56-1/2	48-1/2	58	30	097	009
		Spectrum Step Size	fvary = 2,240 ps1	fvary = 2,240 psi	fvary = 2,240 pst	Δfmex = 5,650 pst	Δf _{zex} = 5,650 ps1	∆f _{max} = 5,650 pst
	Loading Geometry (1)	Spectrum Description	Air Loading L _{pean} = 27,000 psi	Air Loading fmean = 27,000 psi	Air Loading Imean = 27,000 pai	Nameuver Loading fain = 7,600 psi	Faneuver Loading frin = 7,600 psl·	Fane fair
		Area (in2)	. 8168	.8204	.6332	.8197	-E462	.8373
	ģ	No. Area (in	7	~	9	7	బ	0

Ail stresses are those experienced at the minimum cross section of the panel assembly (Fig. 11, Sec. B-B). 7

Photographs, shown in Figs. In thrulfquere selected as representative of the various types of fatigue fallures incurred. $\widehat{\mathfrak{C}}$

TABLE 96

	4	Results		Cov				Fig. 183					[F1g. 184						Fig. 184					
		Ref. Photos (2)		717-973				F128-175 & 176 F1					_1	FIES. 177 & 178 FI	•			-		Fig. 172 Fig.	-				
SUPPLARY OF PANEL TEST RESULTS	Description of Panel Feilures	Node & Location	0 -	Carrier as Fairer to 7				Same as Fanel No. 4						Catastrophic failure	starting at an cutside	ni-lok nole in the tee.				Same as Fanel No. 9	except that both panel				
OF PANE	No. of	Applied Loeding Blocks		7-17 6				OT					İ	5			- 4			6					
SUPPARK		Spectrum Step Size	fvary =	6, 24,0 ps.	16,560 per	fyarr =	2,220 rst	fvary =	2,240 ps1	fvary =	16,550 pst	fyer, =	2,220 pst	Tygpe =	2,22b pst	fysr. =	7,160 pst	Ofnex =	5,650 ps1	Yery =	2,220 pst	fvery =	7,150 pst	Office =	5,650 pst
	Loading Geometry (1)	Spactrum Description	Air Loading	G.T.A. Loading	frean = 10,000 ps1	Ground Loeding	frean = -6,730 pst	Air Loading	frean = 27,000 psi	G.T.A. Losding	fnean = 10,000 psf	Ground Loeding	fnean = -6,700 psi	Ground Loading	fnean = -6,700 ps1	G.T.A. Logding	Incan = 450 ps1	Faneuver Loading	frin = 7,600 pst	Cround Loading	fmean = -6,700 pst	G.T.A. Loading	frean = 450 pst	Maneuver Loading	$f_{\pi 1n} = 7,600 \text{ ps1}$
		kres (122)	6988.					9328						.3340						8118					
	ŕ	No.	ឧ					13						7						15					

All stresses are those experienced at the minimum cross section of the panel (Migure Il, Section B-D) Photographs selected are representative of the various types of fatigue failures incurred. Panels 11 & 12 were scaldentally overloaded and were failed in compression. වලල

Figure 171 Panel Assembly No. 1, Pulled Statically. Fretting at the faying surfaces (arrows) was caused by previous, low-amplitude cycling.

Pigure 172 Panel Assembly No. 9. Fatigue failure of a panel section. Edges of all six holes showed evidence of fatigue cracking. Note beach marks (arrows) in the enlarged cross section.

Figure 173 Panel Assembly No. 2. Fatigue failure of the tee (arrow) between lookbolt holes and the fillet radius.

70 519R

Figure 174 Cross section of the tes shown above. Multiple fatigue failures (bright semi-circular areas) coincide with scratches on the upper surface of the tee.

Figure 175 Panel Assembly No. 4. Fatigue failure in a panel section near the intersection of a stringer run-out and a fillet radius.

Figure 176 Two cross section views of the fatigue crack shown in the above photograph.

Figure 177 Panel Assembly No. 8. Fatigue failures in the tee section. Cracks originated at the edges of the two outside lockbolt holes.

70 51/10

Figure 178 Cross section of the failed tec shown in the above photograph. Note beach marks (arrows).

TABLE 99

GUST LOADING HISTORY
LO-HI LOADING SEQUENCE
PANEL NO. 1
fmean = 12,000 psi

Varying Stress (psi) *	Simple Frequency (cycles)
1	1,750,000
. 2	1,225,000
3	1,155,000
4	647,500
5	402,500
6	210,000
7	126,000
8	117,250
9	21,000
10	8,050
11	3,500
12	1.,750
13	1,050
וונ	700
15	350
16	175
17	115
18	35
18.3	35

^{*}Minimum cross sectional area.

TABLE 100

GUST LOADING HISTORY - LO-HI LOADING SEQUENCE
Test Group No. 682

DATE	NO_2	PANEL NO. 3					
Varying	Simple	Varying	Simple				
Stress	Frequency	Stress	Frequency				
(psi) *	Cycles	(psi) *	Cycles				
	3,448 ps:		3,1,00 pai				
1,954	260,000	1,951	260,000				
3,908	182,000	3,901	182,000				
5,862	171,600	5,852	171,600				
7,816	96,200	7,803	96,200				
9,770	59,800	9,753	59,800				
11,724	31,200	11,704	31,200				
13,678	18,720	13,651	18,720				
15,632	7,020	15,605	7,020				
17,586	3,120	17,556	3,120				
19,510	1,196	19,506	1,196				
21,494	520	21,458	520				
23,1178	260	23,409	260				
25,402	156	25,358	156				
27,357	104	27,309	104				
29,311	52	29,260	52				
31,265	27	31,211	27				
33,219	17	33,162 35,112	17				
35,173	6	35,112	6				
35,759	- 1	35,697	0				
1 .	Loads Increased		Loads Increased				
	0,660 psi	1	0,610 psi				
2,555	15,000	2,550	115,000				
5,110	10,500	5,101	31,500				
7,566	9,900 5,550	7,653	29,700				
10,821	5,550	10,204	16,650				
12,776	3,450	12,755	10,350				
15,331	1,800	15,305	5,400				
17,687	1,080 405	17,857	3,2140 1,215				
غرابار 20 20 موت	บเร	20,407 22,95 7	510				
22,997	1,6	25,508	207				
25,552	20	28,061	90				
30.662	10	30,609	45				
33,219	6	33,162	27				
30,662 33,219 35,774	h	35,703	18				
38,329	<u>"</u>	36,264	9				
40,885	2 2 1	418,04	5				
43,440	ì	43,365	3				
45,995	Ō	1 45 .915	18 9 5 3 1				
46,762	Ö	46,681	1				
	1						

^{*}Minimum cross sectional area.

TABLE 101

CUST LOADING HISTORY LO-HI LOADING SEQUENCE

Test Group No. 083

PANE	L NO. 4	TI			·
Varying	1 84-12	PANE	L NO. 5	PANE	L NO. 6
Stream (psi) #	Simple	Varying	Simple	Varying	Simple
	Frequency	Stress	Frequency	Streas	Frequency
	(Cycles)	(psi) *	(Cycles)	(psi) *	(Cycles)
foon *	27,152 pai	fnean =	27,033 psi	fmean = 2	5,618 psi
2,262	285,000	2,252	245,000	2,218	290,000
4,525	199,500	h,507	171,500	4,436	203,000
6,788	188,100	6,758	161,700	6,655	191,100
9,051	105,450	9,011	90,650	8,873	107,300
11,313	65,550	11,263	56,350	11,091	66,700
13,576	31,200	13,516	29,400	13,310	34,800
15,839	20,520	15,770	17,280	15,502	20,880
18,102	7,695	18,022	6,480	17,746	7,830
20,365	3,620	20,275	240	19,96h	3,480
22,627	1,311	22,527	1,104	22,182	1,334
24,890	570	24,780	2,880	21,400	580
27,152	282	27,032	2,880	26,618	2 9 0
29,415	168	29,285	1կկ	28,836	17h
31,677	112	31,537	96	31,054	116
33,941	56	33,791	կ8	33,273	58
36,203	29	36,0hh	2կ	35,491	29
38,466 40,728 41,408	18 6 6	38,296 40,549 41,225	15 55	37,710 39,527 40,593	18 6 6

[&]quot;Minimum cross sectional area.

TABLE 102
FIGHTER MANEUVER LOADING HISTORIES
LO-HI LOADING SEQUENCE
Test Group No. K17

PANEL I	10. 7	PANEL 1	io. 8	PANEL	YO. 9	
Maximum Stress (pai) *	Simple Frequency (Cycles)	Maximum Stress (psi) *	Simple Frequency (Cycles)	Maximum St.ross (psi) *	Simple Frequency (Cycles)	
Minimum Stress = 7,865 psi		Minimm Stress	- 7,601 psi	Minimm Stress = 7,680 psi		
13,606	80,500	13,181	80,500	13,320	80,500	
19,363	70,500	18,759	50,000 مور	18,957	117,500	
25,123	52,500	24,338	82,250	24,595	87,500	
30,882	37,500	29,917	58,750	30,234	75,000	
36,641	25,500	35,497	39,950	35,872	51,000	
12,399	16,800	112,075	26,320	42,509	33,600	
46,158	8,700	1.6,654	13,630	7بلار 1،7	17,1:00	
53,917	3,900	52,233	6,110	52,786	7,800	
59,675	1,1:50	57,811	2,350	58,123	2,972	
65,434	508	63,391	810	61,061	1,033	
68,31lı	90	66,181	194	66,881	164	

[&]quot;Minimum cross sectional area.

TABLE 103

COMPOSITE LOADING HISTORIES CUST LOADINGS IN FLIGHT - LO-HI LOADING SEQUENCE

Test Group No. CO5

PANEI	NO. 10	PANEL	NO. 13					
Varying.	Simple	Varying	Simple					
Stress (psi) *	Frequency (Cyclos)	Stress (ps1) #	Frequency					
(597) 4	(c)cros/	(ba1) #	(Cycles)					
	Cust L	egnifings						
fmean = 2	6,500 psi	fmonn = 26,800 pst						
2,208	123,750	5,550	165,000					
4,416	86,535	وقراريا	115,380					
6,626	80,190	6,660	106,920					
8,834	14,955	8,680	59,910					
11,062	28,905	11,099	37,260					
13,250	16,200	13,319 15,540	19,440					
15,159	9,700	12,240	11,66h 5,103					
17,667	3,650 1,620	17,759	1,620					
55,087	621	19,979 22,199	621					
24,292	270	24,418	270					
26,500	135	26,638	135					
28,708	l sí	28,858	l 8í					
30,916	54	31,077	54					
33,126	29	33,298	27					
35,33h	14	35,518	14					
37,742	8 .	37,737	8					
39,750	3 .	20.957	3					
40,413	3 .	40,624	2					
1	Oround 1	ordings	{					
Imoan -	6,630 psi	fmean = "	6,660 psi					
2,208	110,250	2,220	110,250					
1 4,416	61,200	1 4,1,39	61,200					
6.626	25,200	6,660	25,200					
8,834	10,080	8,880	10,080					
11,042	2,150	11,099	2,150					
13,250	1150	12,319	1,50					
15,1,59	120	15,510	120					
17,667	27	17,759	28 28					
19,876	29	19,979	6					
22,08h	ů	22,199 24,418	1					
24,591	i	211,748	î					
-4,554	Ground to		1 ~					
fmean = 9),900 psi	I Imean = 1	1sq 000,Q					
16,561	32,500	16,617	32,500					
Miles de marce de la constante	المستحد يستمينا	L	L					

Minimu cross sectional area.

COMPOSITE LOADING HISTORIES FIGHTER MANEUVER LOADINGS IN FLIGHT LO-HI LOADING SEQUENCE Tost Group No. CM2

PANET.	NO. 11	p No. CM2	
Dynamic	Simple		NO. 15
Stress	Frequency	Dynamic	Simple
(psi) #	(Cycles)	Stress (psi) *	Frequency
42	(0,) 0,20()	[] (bsr) #	(Cycles)
Maximum		**	·
Streas		il .	
	Maneuver	Loadings	,
Mindus !	Stress = 7,725 psi	Hinimum :	Stress = 7,875 psi
22 200	at rue	lł	
13,372	24,500	13,629	կև,100
29,032	20,750	19,397	37,350
24,692	18,500 15,250	25,166	33,300
30,753	77,3200	30,535	27,450
36,013 41,672	9,250	36,704	16,650
47,333	5,750	12,471	10,350
52,593	2,500 2,000	48,241	4,500
\$3,653	561	51,010	3,600
64,313	112	59,778 65,547	1,485
67,140	28	65,547	228
-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		68,1,32	56
Varying			·
Stress			
1 - '	Ground	Ioadings -	
Imean = -	6,550 psi	l imem = -	6,700 psi
2 276	62 01%	!!	
2,216 4,432	61,250	2,258	110,250
6,61,8	31,000	4,517	61,200
8,864	11,000 5,600	6,776	?5,200
11,080	1,075	9,034	10,080
13,296	225	11,293	1,935
15,513	60	13,551	นกร
17,728	27	15,810	108
19,944	น์	18,068	149
22,160	3	20,327	26
24,376	í	22,585	5
24,750	ō	24,843 25,179	1
		•	.
	Ground to A	Ur Cycles	
t _{mean} = h	uz pai	Imoan # 4	20 part
7,280	3,325	7,360	5,980
Minimum er			

"Minimum cross sectional area.

Cumulative Load Cycle Groungsmass Figure 179. Ordered Test Load History

Cumulative Load Cycle Occurrences Sigure 180. Ordered Test Loading History

Figure 181. Ordered Test Loading History

Cumulative Load Cycle Occurrences

12x - Varying Strass - (Alminum gross area) - KEI ASD TR 61 - 434 428

Cumulative Load Cycle, Occurrences Figure 182. Ordered Test Loading History

Figure 183.

Ordered Composite Gust Loading Test Histories

ASD TR 61 - 434

Ordered Composite Mansuver Loading Test Histories

Mgure 184.

Committee Load Cycle Occurrences

Twee or Incromental Stress or Incromental Stress - KSI (Minimum gross area)

431

ASU TR 61 - 434

TABLE 105

FACTORS USED TO CONVERT PANEL STRESSES FOR MINIMUM
CROSS AREA INTO STRESSES FOR GROSS AREA AT POINT OF FRACTURE

Tanel No.	Minimum Gross Area (in. ²)	Point of Fracture	Area of Tee (in.*)	Area cf Splice Plate (in.2)	Fractured Gross Area (in.2)	Stress Conversion Factors (1)
2	.8137	Tee	.7892	1.232	.2021(2)	.403
3	.8151	Tee	.7864	1.236	2.022(2)	.403
	·	Stringer Run-out			1.742(3)	.458
4	.8168	Stringer Run-out			1.543(3)	.529
5	.820l ₊	Tog	.7869	1.226	2.013(2)	.406
6	.8332	Pariel at Joint		·	1.510	.505
7	.8197	Panel at Joint			1.615	•508
8	.0462	Tee	.7892	1.228	2.017(2)	.420
9	.8373	Panel at Joint			1.580	.530
10	.8369	Panel at Joint			1.648	•598
13	.8326	Stringer Run-out			1.794(3)	8 بلباء
171	.8340	Too	.7866	1,235	2.022(2)	.412
15	.8178	Panel at Joint			1.640	.499

^{1.} Stress conversion factor is the ratio of minimum gross area to fractured gross area.

^{2.} Total area for toe and splice plute.

^{3.} Effective area of panel and stringer in vicinity of stringer run-out at joint.

TABLE 105

CROSS AREA STRESS SPECTRA IN VICINITY OF FRACTURE
IN PANEL 2 AT THE AND IN PANEL 3* AT STRINGER RUN-OUT

	Pan	t Group No. C	Paris	1 3*
Loading Step	KSI V	n	f _v KSI	n
	fmean	9.45 KSI	Imman -	11.00 KS
1	•79	260000	•71	26000
2	1.57	182000	1.83	18200
3	2.36	171600	2.74	17160
3 4 5	3.15	96200	3.65	9620
· 5	3.94	59800	4.56	5980
6	4.72	31200	5.48	3120
. 7	5.51	18720	6.39	1872
8	6.30	7020	7.30	702
9	7.09	3120	8.22	312
10	7.87	1196	9.13	119
11	8.66	520	10.00	119 52
12	9.45	260	11.00	26
13	10.20	156	11.90	15
īŭ	11.00	10h	12.80	10
15	11.80	52	13.70	5
`.16	12.60	27	14.60	ź
17	13.40	.17	15.50	ī
18	14.20	.11	16.40	
	71. 1.0	6	16.70	
19	14.10	<u>> 832004</u>	10.10	283200
	No Failu	re - Loads II	ncreased	
		12.4 XSI	. acən. "	34.3 A
20	1,03	35000	TeTA	1,500
21	2.06	10500	2.39	3150
22	3.09	9900	3.58	2970
23	4.12	5550	4.78	1665
2 lı	5 .15	3450	5.97	1035
25	6.18	1800	7.16	540
26	7.21	108C	8.36	324
27	8.24	405	9.55	121
28	9.27	147	10.79	54
29	10.30	46	11.90	50
3 0	11.30	20	13.10	9
31 .	12.40	10	14.30	L
32	13.40	6	15.50	2
32 33	14,40	l ₄	16.70	ī
34	15.40	ž	17.50	
35	16.50	2	19.10	
36	17.50	ī	20.30	
J -	~, •,>0		21.50	
37	_			
3 7 ว8	_		21.80	
34 35 36 37 38	-	7.4793Ī	21.80	> 11,100

^{*} Stresses at point of fracture in Fanel 3 are based on stress conversion factor (Table 105) for catastrophic failure at stringer run-out rather than stress conversion factor for initial failure at tee.

子書が大学がある。これできるとなるとの自己には、これは大学の大学は

TABLE 107

GROSS AREA STRESS SPECTEA IN VICTHITY OF PRACTURE IN PANEL 4 AT STRINGER JUNGUE, IN PANEL 5 AT TER AND IN PANEL 6 AT JOINT

		¤	29000	203000	1=1100	107300	00139	3,800	2000	0000	S & S	, c	1 Ca	900	17.	אַננ	ኛ የ	3,8	38	•	9	≥ 924001
	Panal (K51	1,12	2.24	3.36	7. 18	5.63	. 22.	7.87	8.95	10,10	11.20	12.30	13.60	35.41	15.70	16.50	17,90	19,00	23.20	20.50	
		u	24:5000	171500	161700	05906	56350	291,00	17280	640	2880	1101	1,30	24:0	Ħ	96	87	ਨੋ	71	гν.	2	र रहिज्ञाना
Test Group No. G83	f Panel 5	KSI	26.	1.8	2.76	3.68	2; 2;	5.51	6.k3	7.35	8.27	9.19	10.10	21,00	8.1	12.90	13.80	11.73	15,50	16.50	•	N
Tes			255000	199500	150100 150100	202505	5555 550 100 100 100 100 100 100 100 100	3450	20520											۰ ۵		71.575
	r Panel it	KSI	1.20	, c													3 6	2 (ણ દ		2	N
	Loading Step		Н О	4 r	۲:	ris	N >C													16		

T: BLE 108

CROSS AREA STREESS SPECTRA IN VICINITY OF FRACTURE IN PANELS 7 AND 9 AT JOINT AND II. PANEL 8 AT THE

Tost tirup No. 107

	Panel 7	7	P.	Panel 8	Parel	0 5
. Loading Step	183 183	ជ	4 S	ri ri	f _v ESI	я
	$t_{n\pm\alpha} = t_{n}$	= 4,00 KSE	£.'n = 3.19 KSI	.19 KSI	$f_{cin} = h.07 \text{ KSI}$.07 KSI
~10	45 50 50 50 50 50 50 50 50 50 50 50 50 50	60500 70500	7.00	80500	1-19	80500
m)•	(A) (m) (a)	25500	: :: : ::::	62250	1.074 1.054	£7500
-3133 - - -	10°C	3.23 2.23 3.23 3.23 3.23 3.23 3.23 3.23	֓֞֞֓֞֓֓֞֓֞֓֓֓֓֓֓֓֓֓֓֞֝֓֓֓֓֓֓֓֓֓֡֞֝ ֓֓֓֓֓֓֓֓֓֓	56750	58.5	75000
(v) ((E-1)	16930	: 2 63 7 64	26320	96.0	33600
<i>i</i> ,	8 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	973 85 85 85	9 9 8 8	13630	10.60	175.00
· \$\frac{1}{2}	(S.	3.55 7.77	15.55 15.55	2350	13°18	7500 2972
3 [25.25 25.25	ල් දිරි දි	11.70	810	24.90	1033
	1	>2979/5	257	> 121 250.	15.70	184 7.73680

TABLE 109

GROSS AREA STRESS SPECTRA IN VICINITY OF FRACTURE IN PANEL 10 AT JOINT AND PANEL 13 AT STRINGER RUN-OUT

Pest Group No. CGS

		nel 10	Pane	1 13	
Loading	rs¥	n	rši		
Step	"unit		Loading	<u> </u>	
	fmean	13.50 KSI	- mea	n = 12.40 KSI	
		101760	3 63	7.66000	
1	1.12	123750	1.03	165000	
2	2.24	86535	2.06	115380	
3	3.37	80120	3.09	106920	
4	4.49	44.955	4.12	59940	
. 5	5.61	28905	5.15	37260	
6	6.73	16200	6.18		
7	7.85	9700	7.12		
8	8.97	1650	8.214		
9	10.10	1620	9.27		
10	. 11,20	612	10.30	612	
11	12.30	270	11.30	270	
12	13.50	1.35	12.40	135	
13	14.60	81.	13.40		
14	15.70	54	14.40		
15	16.80	29	15.50		
16	17.90	· 114	16.50		
17	19.10	.9	17.50	8	
18	20.20	à	18.50	3	
19	20.50	5	18.80	19440 11664 5103 1620 612 270 135 81 27 14 8 3 2 5515542 - 3.79 431 110250 61200 25200 10080	
**	401,0	5396723	,		
•	9 a ready to the commence of the comment of the com		Loading		
•	fmaar.	.37 KSI	Finopra	- 3.79 43	
20	1.12	7.10250	1.03	110250	
21	2.24.	61200	2.06		
22	3.37	25200	3.09		
23	4.49	- 1.0080	4.12		
24	5.16	2150	5.15	2150	
	6.73	1,50°	5.18	1,50	
25		.20	7.21	120	
26	7.85	54	8.24	54	
27	8.97	29	9.27		
2 8	70.10		10.30	28	
29	1.20	5		6	
30	75.30	į.	11.30	1	
31.	17.50	7777700577 1	11.50	1. 2008E0	
	- unit a comme - 1 149 97	"round-Air-0	round Loading	A COLUMN CONTRACTOR CO	
	f may	5.05 ksi	าเลา	li.6h KSI	
32	"mow i .: 41.	22500	7.72	32500	
TUTAL	The second of the second of the second of	<u> 5638761.</u>		Σ757582	

TABLE 110

GROSS AREA STRESS SPECTRA IN VICINITY OF FRACTURE IN PANEL 11. AT THE AND IN PANEL 15 AT JOINT

Test Group No. CH	Te	t G	roup	No.	CH
-------------------	----	-----	------	-----	----

	Panel	14	Panel 1	<u> </u>
Loading Step	f _y KSI	n	i. Vši	12
	No. 1	Fighter Man	uver Loading	
	£min = 3	.18 KSI	िल्यं त	3.93 KSI
1	1.16	24500	1.44	44100
1 2 3 4 5 6 7 8 9	2.33	20750	2.37	37350
3	3.50	18500	4.31	33300
Ĭ,	4.66	15250	5.75	27450
3	5.83	9250	7.19	16650
2	6.99	57 50	8.63	10350
ž	8.16	2500	10.10	4500
	9.33	2000	11.50	3600
0		661	12.90	ग्रेहें
. y	10.50			258 1102
	11.70	112	14.40	56
11	12.20	28	15.10	
,	The state of the s	\$9930 1	Loading	<u> 2179069</u>
				3 10 VOT
	f meian	2.74 KSI	- Ingan	3.38 KSI
12	.91	51250	1.13	11:0250
13	`.83	31,000	2.25	61200
บโ	2.74	14000	3.35	252 00
ر1	3.65	5600	4.51	10080
16	4.56	1075	5.62	1935
17	5.48	225	6.75	405
18	6.39	. 6 0	7.89	1.08
19	7.30	27	9,02	49
20	8.22	14	13.10	ŽŚ
		111	11.30	ξ.
21	9.13	۶		1
22	10.00	7	12.40	.L.
23	**	72336255	12.60	
	affile major firms at a paragraph shapes and a		round Loadine	مرين م
	f _{mean} -	18 KSI	mean -	'SS K2I
24	3.00	332#	3.67	5980
LATOI				5.394309

EATEN OF METH AN POR THE PREDICTION OF PA-ANTOGRADIA TYPE WE DINISMA, W-PAFB, AMES. BOX NO. AND THE OF FAM. AN END TREEDING EVAL. THE LEE NAME OF STREET SALITURES. MAY 64 Riby Soil tillian, to ca, 35 refa

Unclustedial kep of

HARRY A

I. Airford

II. Comeran AFIXCID)-TANK 1 X-110

1. APV: Project 1:67,

III. Labort-California Co. A Inc. of Lackbert Atri Craft Carp., Burkerich てまったがにひ

Assetts of study are in a wathing in populations and with

Accept to Young a st W. J. Cricklow, A. J. V. In A. TIA confection ٠;

the server beserve, grow and of it proposed aligner

A design, decre proces periods, and finisher states in

his producion methods, 10 sens embaise sumerentif

makes are analysis from social visitions of a season

force in a following product in the second for beautification of the constant rate in the second constant of the constant rate in the second constant of the sec

with 18 complet special test results represented to the

UATHIN OF METHORS FOR THE PREDICTION OF PA-RING ASSTA-61-18, AN ENGINEERING EVAL-T.C. E LIFE IN ABFRAME STRUCTURES, MAY 62,

thelassified fleport

6.574

that service through. From mody of In proposed fallgue-Breake of study are presented for comparison and vertraft richting of a syst. mone distince and a second test results representing about life prediction mentions, it were evaluated numerically He tion of Little-Proportion mechads suitable for has the or higher problems convened to design and of artigat development to dang, and interpretation of op ration of mocenial. With Front ties of airframe facilities have academed

- ***** 6 .

cycles, their and a semisored to confirm or provided mental manusci, grand tast, and ground-air-ground framition simple one for 3, or and research species, to the commens of complet joint were also fatigue-fested to same asiations, and the man which and bed countred of or a suit, many trees, pround than soften georne fant, am' ground-att-gruind translition. Sp. et-A fill to 1, ground last, and grand-E certaineds. 1 region generated constant suplifieds. transitions and evenposite spectra of flight manuvers, attractions that is a time be, and to composite filter to I tatigue-life prediction methods. - Kar or being aby their form their are or or since Charles Canga first materials acre taid to apply sweiten et filt in frint, groung it bent, und green. of improving The section

cycles. Data vere malyzed to confirm or proofile means

of tepproving selen of fath emille prediction authors,

manaveer, ground ext, and ground air greend transition

simple ordered gas, end namener and erra, to the com-

posite spectes of fil is good, grand tast, wit priced-

sir ground tracsuses eyeles, and to energessta fight

mens of complex joint were placifulgathers of the same

apprehens of fights greet, a presidence, and apprehently, transfer a

transference and composite appetra of triple and transference pround that, and governd-alt-ground translit in April-

simple upertra of gree, manuscer, merche, comprade

axisteipad, S-V trp: data on emple mutakat occipera of

The Particular and a finds New Haged of the Transfer of the Cap. controlled fail que tem montante mere used to apply

Experimental program sensitive consists implimite.

A congester; System Budston, W-PAFIS, Ohio. + ip. for elies., tabler, 15 pals.

1. Airfrages

- 2, Picipue
- 11. Cuttan AP 14(16)-1. APSC Propert 1:p7. Task 1:6710
- id. Lackbool-California Co. A Div. of Lockbood Alr. erati Corp., Bertanik, Califor in
- McCulladi, L. Foung, et al W. J. Crichlaw, A. J. V., To AFTIM rollection 2

SE AND DISCLOSURE.

TRIBUTION STATEMENT A

FROVED FOR PUBLIC RELEASE;