DM545/DM871 Linear and Integer Programming

Lecture Cutting Planes

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Outline Cutting Plane Algorithms

1. Cutting Plane Algorithms

2

Outline Cutting Plane Algorithms

1. Cutting Plane Algorithms

3

Valid Inequalities

- IP: $z = \max\{c^T x : x \in X\}, X = \{x : Ax \le b, x \in \mathbb{Z}_+^n\}$
- Proposition: $conv(X) = \{x : \tilde{A}x \leq \tilde{b}, x \geq 0\}$ is a polyhedron
- LP: $z = \max\{c^T x : \tilde{A}x \leq \tilde{b}, x \geq 0\}$ would be the best formulation
- $\tilde{a}x \leq \tilde{b}$ facet defining inequalities
- Key idea: try to approximate the best formulation.

Definition (Valid inequalities)

 $ax \le b$ is a valid inequality for $X \subseteq \mathbb{R}^n$ if $ax \le b \ \forall x \in X$

Which are useful inequalities? and how can we find them? How can we use them?

ı

Example: Pre-processing

•
$$X = \{(x, y) : x \le 999y; 0 \le x \le 5, y \in \mathbb{B}^1\}$$

•
$$X = \{x \in \mathbb{Z}_+^4 : 13x_1 + 20x_2 + 11x_3 + 6x_4 \ge 72\}$$

$$2x_1 + 2x_2 + x_3 + x_4 \ge \frac{13}{11}x_1 + \frac{20}{11}x_2 + x_3 + \frac{6}{11}x_4 \ge \frac{72}{11} = 6 + \frac{6}{11}$$
$$2x_1 + 2x_2 + x_3 + x_4 \ge 7$$

Capacitated facility location:

$$\sum_{i \in M} x_{ij} \le b_j y_j \quad \forall j \in N$$

$$\sum_{j \in N} x_{ij} = a_i \quad \forall i \in M$$

$$x_{ij} \le a_i$$

$$x_{ij} \ge 0, \quad y_j \in B^n$$

$$x_{ij} \le \min\{a_i, b_j\} y_j$$

Converting Weak to Strong MIP Formulations

Strong formulations ≡ better, tighter formulations

Detection possible from the log output of a solver.

Possible actions:

- 1. Add cuts to existing models
 - Combining constraints
 - Using a graph representation (clique cuts)
 - Using a disjunctive approach
- 2. (Change the model)
- 3. (Change the algorithm, eg, column generation)

(Lazy) constraints \neq cuts

→ Many found automatically by the solver in pre-solver phase

Add cuts to the existing model

maximize
$$x_1+x_2+x_3$$
 subject to $x_1+x_2\leq 1$
$$x_2+x_3\leq 1$$

$$x_1+x_3\leq 1$$

$$x_i\in\{0,1\} \qquad i=1,2,3$$

Combine and round constraints:

$$2x_1 + 2x_2 + 2x_3 \le 3$$
$$x_1 + x_2 + x_3 \le \frac{3}{2}$$
$$x_1 + x_2 + x_3 \le 1$$

Create a conflict graph; at most one binary in a clique can be 1

$$x_1 + x_2 + x_3 \le 1$$

Chvátal-Gomory cuts

- $X \in P \cap \mathbb{Z}^n_+$, $P = \{x \in \mathbb{R}^n_+ : Ax < b\}$, $A \in \mathbb{R}^{m \times n}$
- $u \in \mathbb{R}^m_+$, $\{a_1, a_2, \dots a_n\}$ columns of A

CG procedure to construct valid inequalities

1)
$$\sum_{i=1}^{n} \mathbf{u}^{T} \mathbf{a}_{j} x_{j} \leq \mathbf{u}^{T} \mathbf{b} \qquad \text{valid: } \mathbf{u} \geq \mathbf{0}$$

2)
$$\sum_{i=1}^{n} \lfloor \mathbf{u}^{T} \mathbf{a}_{j} \rfloor x_{j} \leq \mathbf{u}^{T} \mathbf{b} \qquad \text{valid: } \mathbf{x} \geq \mathbf{0} \text{ and } \sum \lfloor \mathbf{u}^{T} \mathbf{a}_{j} \rfloor x_{j} \leq \sum \mathbf{u}^{T} \mathbf{a}_{j} x_{j}$$

3)
$$\sum_{i=1}^{n} \lfloor \mathbf{u}^T \mathbf{a}_i \rfloor \mathbf{x}_i \leq \lfloor \mathbf{u}^T \mathbf{b} \rfloor \qquad \text{valid for } X \text{ since } \mathbf{x} \in \mathbb{Z}^n$$

Theorem

by applying this CG procedure a finite number of times every valid inequality for X can be obtained

However not all the constraints generated by $u \in \mathbb{R}^m_+$ are tightenings.

Cutting Plane Algorithms

- $X \in P \cap \mathbb{Z}_+^n$
- a family of valid inequalities $\mathcal{F}: a^T x \leq b, (a, b) \in \mathcal{F}$ for X
- we do not find them all a priori, only interested in those close to optimum

Cutting Plane Algorithm

```
Init.: t = 0, P^0 = P

Iter. t: Solve \bar{z}^t = \max\{c^Tx : x \in P^t\}

Iter. t: Solve \bar{z}^t = \max\{c^Tx : x \in P^t\}

Iter. t: Solve \bar{z}^t = \max\{c^Tx : x \in P^t\}

Iter. t: Solve \bar{z}^t = \max\{c^Tx : x \in P^t\}

Iter. t: Solve \bar{z}^t = \max\{c^Tx : x \in P^t\}

Iter. t: Solve \bar{z}^t = x^t

Ite
```

else stop (P^t is in any case an improved formulation)

Gomory's fractional cutting plane algorithm

Cutting plane algorithm + Chvátal-Gomory cuts

- $\max\{c^Tx : Ax = b, x \geq 0, x \in \mathbb{Z}^n\}$
- Solve LPR to optimality

$$\begin{bmatrix} I & \bar{A}_N = A_B^{-1} A_N & 0 & \bar{b} \\ -\bar{c}_B & \bar{c}_N (\leq 0) & 1 & -\bar{d} \end{bmatrix}$$

$$x_{B_u} = \bar{b}_u - \sum_{j \in N} \bar{a}_{uj} x_j, \quad u = 1..m$$

$$z = \bar{d} + \sum_{j \in N} \bar{c}_j x_j$$

• If basic optimal solution to LPR is not integer then \exists some row u: $\bar{b}_u \notin \mathbb{Z}^1$. The Chvatál-Gomory cut applied to this row is:

$$x_{B_u} + \sum_{j \in N} \lfloor \bar{a}_{uj} \rfloor x_j \le \lfloor \bar{b}_u \rfloor$$

 $(B_u \text{ is the index in the basis } B \text{ corresponding to the row } u)$

(cntd)

• Eliminating $x_{B_u} = \bar{b}_u - \sum_{i \in N} \bar{a}_{ui} x_i$ in the CG cut we obtain:

$$\sum_{j \in N} (\underline{\bar{a}_{uj} - \lfloor \bar{a}_{uj} \rfloor}) x_j \ge \underbrace{\bar{b}_u - \lfloor \bar{b}_u \rfloor}_{0 < f_u < 1}$$

$$\sum_{j\in N} f_{uj} x_j \ge f_u$$

 $f_u > 0$ or else u would not be row of fractional solution. It implies that x^* in which $x_N^* = 0$ is cut out!

(theoretically it terminates after a finite number of iterations, but in practice not successful.)

Example

$$\max x_1 + 4x_2$$
 $x_1 + 6x_2 \le 18$
 $x_1 \le 3$
 $x_1, x_2 \ge 0$
 x_1, x_2 integer

											b
į	0	1	1	1	1/6	1	-1/6	1	0	l	15/6 3
											 -13

$$x_2 = 5/2, x_1 = 3$$

Optimum, not integer

- We take the first row: | 0 | 1 | 1/6 | -1/6 | 0 | 15/6 |
- CG cut $\sum_{j \in N} f_{uj} x_j \ge f_u \leadsto \frac{1}{6} x_3 + \frac{5}{6} x_4 \ge \frac{1}{2}$
- Let's verify that it is a CG cut:

$$\frac{1/6 (x_1 + 6x_2 \le 18)}{5/6 (x_1 \le 3)}$$
$$\frac{5/6 (x_1 \le 3)}{x_1 + x_2 \le 3 + 5/2 = 5.5}$$

since x_1, x_2 are integer $x_1 + x_2 < 5$. And it leaves out x^* .

• Let's see how it looks in the space of the original variables: from the first tableau:

$$x_3 = 18 - 6x_2 - x_1$$
$$x_4 = 3 - x_1$$

$$\frac{1}{6}(18 - 6x_2 - x_1) + \frac{5}{6}(3 - x_1) \ge \frac{1}{2} \qquad \rightsquigarrow \qquad x_1 + x_2 \le 5$$

• Graphically:

• Let's continue:

														b	
														-1/2	
														5/2	
	-	1	1	0	1	0	1	1	1	0	1	0	l	3	1
	-+-		+-		+-		-+-		+-		+-		+		1
		0		0	1	-2/3	1	-1/3	1	0		1		-13	1

We need to apply dual-simplex (will always be the case, why?)

ratio rule: $\min\{|\frac{c_j}{a_{ij}}|: a_{ij} < 0\}$

• After the dual simplex iteration:

														b	
														3/5	
ĺ	Ĺ	0	Ĺ	1	Ĺ	1/5	İ	0	Ĺ	-1/5	Ĺ	0	ĺ	13/5	Ì
:						,								12/5	- 1
		0		0		-3/5		0		-2/5		1		-64/5	

• In the space of the original variables:

$$4(18 - x_1 - 6x_2) + (5 - x_1 - x_2) \ge 2$$
$$x_1 + 5x_2 \le 15$$

We can choose any of the three rows.

Let's take the third: CG cut:

$$\frac{4}{5}x_3 + \frac{1}{5}x_5 \geq \frac{2}{5}$$

