Ensembles et fonctions

1. Ensembles

Opérateurs

On considère un univers $U = \{1, 2, 3, 4, 5, 6, 7\}$. Étant donnés les ensembles suivants

$$A = \{1, 2, 3, 4\}, B = \{4, 5, 6, 7\}, C = \{1, 3, 5, 7\}, D = \{2, 3, 4, 5, 6\},$$

calculer

- 1. \overline{A} , $A \cup C$, $\overline{A \cup C}$, $A \cap C$, $\overline{A \cap C}$,
- 2. $(A \cap B) \cup (C \cap D), (A \cup C) \cap (B \cup D)$,
- 3. $A \setminus D, D \setminus A$.

Diagrammes de Venn

On suppose que $A \cup B = B \cap C$ et que $C \subset E$. Dessiner les diagrammes de Venn de A, B, C et E.

Comparer les diagrammes de Venn

- 1. de $\overline{A \cup B}$ et $\overline{A} \cap \overline{B}$;
- 2. de $\overline{A \cap B}$ et $\overline{A} \cup \overline{B}$.

Ensembles et calcul des propositions

Soient A, B, C trois ensembles dans un univers U. Démontrer les propriétés suivantes.

- 1. La distributivité: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- 2. Les lois de de Morgan: $\overline{A \cup B} = \overline{A} \cap \overline{B}$ et $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- $3. A \backslash B = A \cap \overline{B}$
- 4. $A \cup B = (A \cap B) \cup (A \cap \overline{B}) \cup (\overline{A} \cap B)$.
- 5. $A \cap B = A \cap C$ si et seulement si $A \cap \overline{B} = A \cap \overline{C}$.

2. Fonctions

Rappel: Si $f: A \to B$ est une fonction, et si $C \subset B$ est un sous-ensemble de B, on note $f^{-1}(C)$ l'**image inverse de** C **par** f, c'est à dire l'ensemble des $x \in A$ tels que $f(x) \in C$.

Soit $f: E \to F$ une fonction. Soient A et B des sous-ensembles de E et soient C et D des sous-ensembles de F. A-t-on nécessairement:

- 1. $f(A \cap B) = f(A) \cap f(B)$,
- 2. $f(A \cup B) = f(A) \cup f(B)$,
- 3. $f^{-1}(C \cap D) = f^{-1}(C) \cap f^{-1}(D)$,
- 4. $f^{-1}(C \cup D) = f^{-1}(C) \cup f^{-1}(D)$,
- 5. $f^{-1}(f(A)) = A$,
- 6. $f(f^{-1}(C)) = C$.

Justifier chaque cas par une preuve ou par un contre-exemple.

Injectivité et surjectivité

Rappel: si n est un nombre réel, la notation $\lfloor n \rfloor$ désigne la *partie entière inférieure* de n, c'est à dire le plus grand entier plus petit ou égal à n. La notation $\lceil n \rceil$ désigne la *partie entière supérieure* de n, c'est à dire le plus petit entier plus grand ou égal à n.

Déterminer si les fonctions suivantes sont injectives, surjectives ou aucune des deux.

- 1. $f: \mathbb{N} \to \mathbb{N}$ définie par $f(n) = \lfloor \frac{n}{2} \rfloor$.
- 2. $f: \mathbb{N} \to \mathbb{N}$ définie par f(n) = 2n.
- 3. $f: \mathbb{N} \to \mathbb{Z}$ définie par $f(n) = (-1)^n \lceil \frac{n}{2} \rceil$.
- 4. $f: \mathbb{N} \to \mathbb{N}$ définie par f(x) = x + 1.
- 5. $f: \mathbb{Z} \to \mathbb{Z}$ définie par f(x) = x + 1.

Interpréter les phrases suivantes en terme d'injectivité et de surjectivité.

- 1. Il existe des nombres entiers relatifs (i.e., dans $\mathbb Z$) différents qui ont le même carré.
- 2. Tout nombre réel positif a une racine carrée.
- 3. Le nombre 3 n'est le sinus d'aucun nombre.
- 4. Un nombre complexe est caractérisé par ses parties réelle et imaginaire.

Rappel: Si $f: A \to B$ et $g: B \to C$ sont deux fonctions, on note $g \circ f$ la **composée de** g **et de** f, i.e. la fonction $g \circ f: A \to C$ définie par $g \circ f(x) = g(f(x))$.

Soient $f:A\to B$ et $g:B\to C$ deux fonctions et $h=g\circ f$. Montrer les propositions suivantes.

- 1. Si h est surjective alors g est surjective.
- 2. Si h est injective alors f est injective.
- 3. Si h est injective et f est surjective alors g est injective.
- 4. Si h est surjective et g est injective alors f est surjective.

Les implications réciproques sont-elles vraies ?

3. Ensembles et induction

Soient A et B des ensembles finis, et soit $f: A \to B$ une fonction. Prouver que

- 1. Si f est injective, alors $|A| \leq |B|$;
- 2. Si f est surjective, alors $|A| \ge |B|$.

Soit f:E o E une fonction. On définit par récurrence les applications f^n par $f^1=f$ et $f^n=f\circ f^{n-1}$.

- 1. On suppose que f est injective. Montrer que pour tout entier n, f^n est injective.
- 2. On suppose que f est surjective. Montrer que pour tout entier n, f^n est surjective.

2011-2020 Mélanie Boudard http://christina-boura.info/en/content/home, Luca De Feo http://creativecommons.org/licenses/by-sa/4.0/.