

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 155 740 A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 21.11.2001 Patentblatt 2001/47

(21) Anmeldenummer: 01109287.1

(22) Anmeldetag: 17.04.2001

(51) Int Cl.7: **B01J 21/04**, B01J 27/122, C07C 17/156, B01J 23/78, B01J 23/83

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Benannte Erstreckungsstaaten: AL LT LV MK RO SI

(30) Priorität: 19.05.2000 DE 10024928

(71) Anmelder: BASF AKTIENGESELLSCHAFT 67056 Ludwigshafen (DE)

(72) Erfinder:

- Walsdorff, Christian, Dr.
 67061 Ludwigshafen (DE)
- Meissner, Ruprecht 67273 Weisenheim (DE)
- Harth, Klaus, Dr.
 67317 Altleiningen (DE)

(54) Katalysatoren für heterogen katalysierte Reaktionen

(57) Katalysatoren für heterogen katalysierte Reaktionen, indem der Katalysator Aktivkomponenten und einen Katalysatorträger mit röntgendiffraktographisch detektierbaren Mengen δ -Al $_2$ O $_3$ enthält, insbesondere zur Oxichlorierung von Ethylen zu 1,2-Dichlorethan.

EP 1 155 740 A1

Beschreibung

- [0001] Die vorliegende Erfindung betrifft Katalysatoren für heterogen katalysierte Reaktionen mit Aktivkomponenten und einem Katalysatorträger, der röntgendiffraktographisch detektierbare Mengen δ-Al₂O₃ enthält.
- [0002] Aus der EP-A-375 202 und der US-A-5 011 808 sind Katalysatoren für die Oxichlorierung bekannt, die Kupfer, Kalium und Magnesium auf einem Träger aus ε-Al₂O₃ oder γ-Al₂O₃ enthalten.
 - [0003] Aus der EP-A-931 587 sind Katalysatoren für die Oxichlorierung bekannt, die auf einem γ-Al₂O₃-Träger eine erste Schicht von Magnesium und eine zweite Schicht von Kupfer und wahlweise Lithium enthalten.
- [0004] Aus der EP-A-255 156 sind Katalysatoren für die Oxichlorierung auf einem γ-Al₂O₃-Träger bekannt, die Kupfer, Magnesium und Natrium oder Lithium enthalten.
 - [0005] Aus der US-A-5 527 754 sind Katalysatoren für die Oxichlorierung bekannt, die Kupfer, Magnesium und Cāsium bzw. eine Mischung von Cāsium und Kalium auf einem Aluminiumoxid enthalten. Als gut geeignet wird γ-Al₂O₃ genannt.
 - [0006] Diese Katalysatoren lassen jedoch noch zu wünschen übrig.
- 15 [0007] Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, Trägerkatalysatoren für die Oxichlorierung mit verbesserten Eigenschaften bereitzustellen.
 - [0008] Demgemäß wurden neue und verbesserte Katalysatoren für heterogen katalysierte Reaktionen gefunden, welche dadurch gekennzeichnet sind, daß der Katalysator Aktivkomponenten und einen Katalysatorträger mit röntgendiffraktographisch detektierbaren Mengen δ-Al₂O₃ enthält.
 - [0009] δ-Al₂O₃ ist kommerziell oder durch Calcinierung von Pseudoböhmit bei Temperaturen um ca. 1000°C erhält-
 - [0010] Die Katalysatorträger haben in der Regel eine BET-Oberfläche von 80 bis 250 g/m², bevorzugt von 100 bis 200 g/m², besonders bevorzugt von 120 bis 180 g/m² und ein Porenvolumen von 0,2 bis 1 cm³/g, bevorzugt von 0,3 bis 0,8 cm³/g, besonders bevorzugt von 0,4 bis 0,7 cm³/g.
- [0011] δ-Al₂O₃ läßt sich anhand seines Röntgenbeugungsdiagramms zuordnen. In "Aluminium Compounds, G. Mac Zura, K. P. Goodboy und J. J. Koenig, Kirk-Othmer Encyclopedia of Technology Volume 2, Third Edition (1978), Seiten 218 bis 244 ist eine Übersicht mit weiterführenden Referenzen zur Herstellung und Charakterisierung von δ-Al₂O₃ zu finden. δ-Al₂O₃ ist kommerziell erhältlich.
- [0012] Katalysatorträger mit röntgendiffraktographisch detektierbaren Mengen δ-Al₂O₃ enthalten in der Regel 10 bis 100 Gew.-% δ-Al₂O₃, bevorzugt 30 bis 100 Gew.-% δ-Al₂O₃, besonders bevorzugt 50 bis 100 Gew.-% δ-Al₂O₃, insbesondere 60 bis 100 Gew.-% δ-Al₂O₃. Herstellungsbedingt können noch Restbestandteile von γ-Al₂O₃ vorhanden sein. [0013] Die erfindungsgemäßen Katalysatoren enthalten zusätzlich zum Katalysatorträger Aktivkomponenten. Als Aktivkomponenten eignen sich 1 bis 15 Gew.-%, bevorzugt 2 bis 10 Gew.-%, besonders bevorzugt 4 bis 8 Gew.-% Kupfer, 0,1 bis 6 Gew.-%, bevorzugt 0,2 bis 4 Gew.-%, besonders bevorzugt 0,2 bis 3 Gew.-%, insbesondere 0,25 bis 2 Gew.-% eines Alkalimetalls, wie Lithium, Natrium, Kalium, Cäsium, vorzugsweise Kalium, 0 bis 5 Gew.-%, bevorzugt 0,1 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-% eines Erdalkalimetalls, wie Calcium, Magnesium, Barium und Strontium, vorzugsweise Magnesium, eines Seltenen Erdmetalles, wie Cer oder Lanthan, oder deren Gemische. [0014] Lösliche Salze sind solche, die sich in Wasser, einem C₁- bis C₄-Alkanol wie Methanol, Ethanol, Propanol oder Butanol, einem Keton wie Aceton oder einem Ester wie Essigsäuremethylester oder Essigsäureethylester, bevorzugt in Wasser lösen.
 - [0015] Als lösliche Salze eignen sich beispielsweise Chloride, Nitrate, Carbonate und Acetate, bevorzugt Chloride, Nitrate und Acetate, besonders bevorzugt Chloride.
 - [0016] Die erfindungsgemäßen Katalysatoren können auch Verunreinigungen aus dem Einsatzstoff des δ-Al₂O₃, dem Pseudoböhmit wie beispielsweise Eisen enthalten.
- [0017] Die erfindungsgemäßen Katalysatoren werden vorteilhaft durch Tränkung des Katalysatorträgers Trocknen bei 80 bis 250°C, bevorzugt 90 bis 200°C, besonders bevorzugt 100 bis 150°C erhalten. Die Tränkung kann einstufig oder in mehreren Schritten durchgeführt werden. Die Tränkung kann vorzugsweise einstufig und "trocken" durchgeführt werden. "Trocken" bedeutet, daß Konzentration und Menge der Tränklösung so auf die Wasseraufnahme des verwendeten Trägers abgestimmt wird, daß die Tränklösung nahezu vollständig vom Trägermaterial aufgenommen wird und das ganze Trägermaterial gleichmäßig getränkt wird. Gegebenenfalls können auch Säuren wie anorganische Säuren, beispielsweise Salzsäure und Salpetersäure oder organische Säuren wie Carbonsäuren, beispielsweise Essigsäure, bevorzugt Salzsäure oder Oxidationsmittel wie Wasserstoffperoxid zur Tränklösung hinzugefügt werden, um beispielsweise eine klare Tränklösung zu erhalten und die Tränkung zu vereinfachen. Für den Einsatz als Fließbettkatalysatoren wird vorzugsweise ein pulverförmiger Träger getränkt, für den Einsatz als Festbettkatalysator werden vorzugsweise geformte und gegebenenfalls zuvor katzinierte Formkörper des Trägermaterials eingesetzt.
 - [0018] Die Katalysatoren k\u00f6nnen in Pulverform f\u00fcr den Einsatz in Flie\u00dfbettverfahren oder als Formk\u00f6rper f\u00fcr den Einsatz in Festbettverfahren verden vorzugsweise Tr\u00e4ger mit einer druckverlustarmen Geometrie und mit einer hohen geometrischen Oberfl\u00e4che verwendet, wie beispielsweise

Ringe oder Hohlzylinder mit einer oder mehrerer Bohrungen. Um eine bessere mechanische Stabilität oder Porenstruktur solcher Formkörper zu erreichen, kann δ -Al₂O₃ oder auch eine Verbindung eingesetzt werden, die sich nach der Formgebung des Trägerkörpers durch Kalzinieren in δ -Al₂O₃ umwandeln läßt, beispielsweise Pseudoböhmit.

[0019] Die erfindungsgemäßen Katalysatoren zeichnen sich gegenüber in herkömmlicher Weise unter Verwendung von γ -Al $_2$ O $_3$ hergestellten Katalysatoren mit gleichem prozentualem Gehalt an Aktivmasse durch eine deutlich bessere Selektivität bei vergleichbarer Aktivität aus.

[0020] Die erfindungsgemäßen Katalysatoren eignen sich für heterogen katalysierte Reaktionen wie exotherme Gasphasenreaktionen, beispielsweise Oxidationsreaktionen, besonders zur Oxichlorierung, insbesondere zur Oxichlorierung von Ethylen zu 1,2-Dichlorethan (Ethylendichlorid) und Oxidationsreaktionen.

[0021] Die Oxichlorierung, insbesondere diejenige von Ethylen zu 1,2-Dichlorethan (Ethylendichlorid) läßt sich bei Temperaturen von 150 bis 400°C, bevorzugt von 170 bis 350°C, besonders bevorzugt von 200 bis 300°C und einem Druck von 1 bis 10 bar, bevorzugt von 1 bis 6 bar, besonders bevorzugt von 1 bis 4 bar durchführen.

Beispiele

15

[0022] Die Katalysatoren wurden in Pulverform in einem Laborfließbettreaktor getestet. Beispiel- und Vergleichskatalysatoren wurden unter den gleichen Bedingungen in derselben Testapparatur getestet. Der Laborreaktor hatte einen Durchmesser von 2,5 cm und wurde durch ein Ölumwälzbad in der Reaktordoppelwand temperiert. Die Temperatur des Wirbelbetts wurde über ein in einer Thermohülse steckendes Thermoelement in der Wirbelschicht gemessen und geregelt. Jeweils 90 g der Katalysatoren wurden mit einem stöchiometrischen Feed von einem Mol Chlorwasserstoff, einem halben Mol Ethylen und einem viertel Mol Sauerstoff in Form von Luft belastet und bei einem Druck von 1,2 bara und Temperaturen von 225°C, 245°C und 265°C getestet. Unter diesen Bedingungen wurde wegen der relativ kurzen Verweilzeit (ca. 7 s) kein Vollumsatz erreicht.

[0023] Die erfindungsgemäßen Katalysatoren wurden durch Trankung von Puralox® SCCa 5/150 (einem δ-Al₂O₃ der Fa. Condea) mit einer klaren Lösung der Promotoren in Wasser erhalten. Die Vergleichskatalysatoren wurde auf dem Träger Puralox® SCCa 5/200 (einem γ-Al₂O₃ der Fa. Condea) hergestellt. Es wurden verschiedene erfindungsgemäße Katalysatoren und Vergleichskatalysatoren jeweils mit gleicher Promotorenzusammensetzung hergestellt und getestet.

30 Beispiel 1

35

40

[0024] 34,93 g CuCl₂·2H₂O, 15,84 g MgCl₂·6H₂O und 1,80 g KCl wurden in 156 ml Wasser gelöst. Diese Lösung wurde unter Mischen auf 200 g Puralox® SCCa 5/150 getränkt. Der getränkte Träger wurde 1 h bei Raumtemperatur stehen gelassen und anschließend für 16 h unter einem Stickstoffstrom bei 110°C getrocknet.

Tab. 1

	Testergebnisse des Katalysators aus Beispiel 1						
Temperatur	Umsatz Ethylen	Selektivitāt Ethylendichlorid	Selektivität CO + CO ₂	Selektivität Chlorkohlenwasserstoffe*	Ausbeute Ethylendichlorid		
225°C	61,1%	99, 6%	0,14%	0,17%	60,9%		
245°C	77,3%	99, 0%	0,58%	0,35%	76,6%		
265°C	82,9%	96, 8%	2,34%	0,82%	80,3%		

^{*} Summe von Ethylchlorid, 1,1,2-Trichlorethan, 1,1,2,2-Tetrachlorethan, 1,1-Dichlorethan, Dichlorethan (Isomere), Chloral, Vinylchlorid, Tetrachlorethan, the chlorethan (Isomere), Chloral, Vinylchlorid, Tetrachlorethan, 1,1,2,2-Tetrachlorethan, 1,1-Dichlorethan, Dichlorethan (Isomere), Chloral, Vinylchlorid, Tetrachlorethan, 1,1,2,2-Tetrachlorethan, 1,1-Dichlorethan, Dichlorethan (Isomere), Chloral, Vinylchlorid, Tetrachlorethan, 1,1-Dichlorethan, Dichlorethan, Dichlorethan

Vergleichsbeispiel 1

[0025] 34,93 g CuCl₂·2H₂O, 15,84 g MgCl₂·6H₂O und 1,80 g KCl wurden in 160 ml Wasser gelöst. Diese Lösung wurde unter Mischen auf 200 g Puralox® SCCa 5/200 getränkt. Der getränkte Träger wurde 1 h bei Raumtemperatur stehen gelassen und anschließend für 16 h unter einem Stickstoffstrom bei 110°C getrocknet.

55

Tab. 2

		Testergebnisse des I	Katalysators au	s Vergleichbeispiel 1	
Temperatur	Umsatz Ethylen	Selektivität Ethylendichlorid	Selektivität CO + CO ₂	Selektivität Chlorkohlenwasserstoffe*	Ausbeute Ethylendichlorid
225°C	65,9%	99,4%	0,39%	0,2%	65,5%
245°C	78,5%	98,3%	1,18%	0,44%	77,2%
265°C	83,5%	95,2%	3,72%	1,05%	79,6%

^{*} Summe von Ethylichlorid, 1,1,2-Trichlorethan, 1,1,2,2-Tetrachlorethan, 1,1-Dichlorethan, Dichlorethan (Isomere), Chlorat, Vinylchlorid, Tetrachlorethan, the chloroform

15 Patentansprüche

5

10

25

30

35

- Katalysatoren für heterogen katalysierte Reaktionen, dadurch gekennzeichnet, daß der Katalysator Aktivkomponenten und einen Katalysatorträger mit r\u00f6ntgendiffraktographisch detektierbaren Mengen δ-Al₂O₃ enth\u00e4lt.
- Katalysatoren für heterogen katalysierte Reaktionen nach Anspruch 1, dadurch gekennzeichnet, daß der Katalysatorträger 10 bis 100 Gew.-% δ-Al₂O₃ enthält.
 - Katalysatoren für heterogen katalysierte Reaktionen nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man als Aktivkomponenten 1 bis 15 Gew.-% Kupfer, 0,1 bis 6 Gew.-% Alkalimetalle, 0 bis 5 Gew.-% Erdalkalimetalle, Seltene Erdmetalle oder deren Gemische einsetzt.
 - 4. Katalysatoren für heterogen katalysierte Reaktionen nach Anspruch 1, hergestellt durch Tränkung eines geformten δ-Al₂O₃ enthaltenden Trägers mit einer BET-Oberfläche von 80 bis 250 g/m² mit Salzen von Kupfer, Alkalimetallen und gegebenenfalls Erdalkalimetallen, Seltenen Erdmetallen oder deren Gemischen.
 - 5. Verfahren zur Herstellung von Katalysatoren für heterogen katalysierte Reaktionen nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß man den δ-Al₂O₃ enthaltenden Träger mit Salzen von Kupfer, Alkalimetallen und gegebenenfalls Erdalkalimetallen, Seltenen Erdmetallen oder deren Gemischen getrennt voneinander oder gemeinsam, gegebenenfalls unter Zusatz von Säuren oder Oxidationsmitteln tränkt.
 - 6. Verfahren zur Herstellung von Katalysatoren für heterogen katalysierte Reaktionen nach Anspruch 5, dadurch gekennzeichnet, daß man als Salze Chloride einsetzt.
- Verwendung von Katalysatoren für heterogen katalysierte Reaktionen nach einem der Ansprüche 1 bis 4 für exotherme Gasphasenreaktionen.
 - Verwendung von Katalysatoren für heterogen katalysierte Reaktionen nach einem der Ansprüche 1 bis 4 für Oxichlorierungsreaktionen.
- Verwendung von Katalysatoren für heterogen katalysierte Reaktionen nach einem der Ansprüche 1 bis 4 für die Oxichlorierung von Ethylen zu 1,2-Dichlorethan.
 - 10. Verfahren zur Herstellung von 1,2-Dichlorethan, dadurch gekennzeichnet, daß man Ethylen mit Chlorwasserstoff und Luft oder Sauerstoff in Gegenwart einer Katalysators gemäß einem der Ansprüche 1 bis 4 bei einer Temperatur von 150 bis 400°C und einem Druck von 1 bis 10 bar einsetzt.
 - 11. Verwendung von Katalysatoren für heterogen katalysierte Reaktionen nach einem der Ansprüche 1 bis 4 für partielle Oxidationsreaktionen.

55

50

Europäisches EUROPÄISCHER RECHERCHENBERICHT

EP 01 10 9287

	EINSCHLÄGIGE			
Kategorie	Kennzeichnung des Dokume der maßgebliche	ents mit Angabe, soweit erforderlich, n Telle	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (InLCI.7)
X Y	US 4 722 920 A (KIMU 2. Februar 1988 (198 * Ansprüche 1-3 * * Spalte 3, Zeile 13	38-02-02)	3-11	B01J21/04— B01J27/122 C07C17/156 B01J23/78 B01J23/83
X	DE 26 38 498 A (MOBI 3. März 1977 (1977-C * Anspruch 1; Beisp)3-03)	1	
X	US 4 271 042 A (OLEC 2. Juni 1981 (1981-(* Anspruch 1; Beisp	06-02)	1	
Y	EP 0 278 922 A (ENIO 17. August 1988 (198 * Beispiel 8 *	CHEM SÍNTESI) 88-08-17)	3-11	
P,Y	EP 1 053 789 A (EVC 22. November 2000 (: * Seite 3, Zeile 33	2000-11-22)	5	RECHERCHIERTE SACHGEBIETE (Int.CI.7)
A	EP 0 920 908 A (DEG 9. Juni 1999 (1999-	USSA) 06-09)		B01J C07C
A	EP 0 657 212 A (SOL 14. Juni 1995 (1995			
				·
Der	vorliegende Recherchenbericht wu	rde für alle Patentansprüche ersteß		
	Pecherohenori	Abschlußdalum der Recherche	_	Prüter
	DEN HAAG	22. August 200	1 Th	ion, M
Y:vo	KATEGORÆ DER GENANNTEN DOK on besonderer Bedeutung allem betrach ni besonderer Bedeutung in Verbindung ideren Veröffentlichung derseiben Kale ichnschaftliche Offenbarung wischenfähratur	tet nach dem At g mit einer D: in der Anne gorie L: aus andemen	ntdokument, das ja zweldedatum veröf Idung angeführtes i Gründen angeführ	lentlicht worden ist Dokument

ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR.

EP 01 10 9287

In diesem Anhang sind die Mitglieder der Patentfamilien der im obengenannten europäischen Recherchenbericht angeführten Patentdokumente angegeben. Die Angaben über die Familienmitglieder entsprechen dem Stand der Datei des Europäischen Patentamts am Diese Angaben dienen nur zur Unterrichtung und erfolgen ohne Gewähr.

22-08-2001

	Recherchenberi		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichur
		 	.l	I		
US	4722920	Α	02-02-1988	JP	1813732 C	18-01-199
				JP	5021030 B	23-03-199
				JP	62180751 A	08-08-198
DE	2638498	Α	03-03-1977	GB	1550684 A	15-08-197
				JP	1137414 C	28-02-198
				JP	52030282 A	07-03-197
				JP	57031457 B	05-07-198
				NZ	181809 A	02-06-197
				US	4089774 A	16-05-197
				ZA	7605023 A	29-03-197
US	4271042	Α	02-06-1981	KEI	NE	
EP	0278922	Α	17-08-1988	IT	1202538 B	09-02-198
				AT	97645 T	15-12-199
				DE	3885770 D	05-01-199
				DE	3885770 T	17-03-199
				ES	2059561 T	16-11-199
				JP	2621116 B	18-06-199
				JP	63294949 A	01-12-198
				US 	5070062 A	03-12-199
EP	1053789	Α	22-11-2000	JP	2000342979 A	12-12-200
EΡ	0920908	Α	09-06-1999	DE	19751962 A	29-07-199
				JP	11221465 A	17-08-199
				NO	985455 A	25-05-199
				US	5986152 A	16-11-199
ΕP	0657212	Α	14-06-1995	BE	1007818 A	31-10-199
				BR	94048 99 A	08-08-199
				BR	94049 00 A	08-08-199
				CA	2137538 A	09-06-199
				CA	2137539 A	09-06-199
				DE	69425115 D	10-08-200
				DE	69425115 T	15-03-200
				EP	0657213 A	14-06-199
				ES	2150467 T	01-12-200
				JP	7194981 A	01-08-199
				JP	7194982 A	01-08-199
				NO	944728 A	09-06-199
				NO	944729 A	09-06-199
				TR	28753 A	28-02-199 18-06-199
				US	5527754 A	

Für nähere Einzelheiten zu diesem Anhang : siehe Amtsblatt des Europäischen Patentamts, Nr.12/82