

Training Neural Networks: Normalization, Regularization etc.

Intro to Deep Learning, Fall 2020

Recap

We train a network by minimizing a "loss"

$$L(W) = \frac{1}{N_X} \sum_{X} div(f(X; W), D(X))$$

- Average divergence between true and desired outputs over "training" inputs
- Approximation to "true" risk expected divergence between desired and true outputs
- We minimize it through gradient descent
 - Iterative updates against the gradient of the loss w.r.t. W
- Batch updates must process the entire training data before each update
 - Incremental update algorithms, like SGD and minibatch update, speed it up by updating using random individual inputs or subsets of the input
 - Faster to converge, but greater variance may result in worse estimates
- Trend algorithms smooth out the variations in incremental update methods by considering long-term trends in gradients.
 - This can lead to faster, and better convergence

Quick Recap: Training a network

- Define a total "loss" over all training instances
 - Quantifies the difference between desired output and the actual output, as a function of weights
- Find the weights that minimize the loss

Quick Recap: Training networks by gradient descent

$$L(W) = \frac{1}{N_X} \sum_{X} div(f(X; W), D(X))$$

$$\nabla_{W}L(W) = \frac{1}{N_{X}} \sum_{X} \nabla_{W} div(f(X; W), D(X))$$

Computed using backpropagation

Solved through gradient descent as

$$\widehat{W} = \arg\min_{W} L(W)$$

$$\widehat{W} = \arg\min_{W} L(W)$$
 \longrightarrow $W_k = W_{k-1} - \eta \nabla_W L(W)^T$

Recap: Incremental methods

- Batch methods that consider all training points before making an update to the parameters can be terribly inefficient
- Online methods that present training instances incrementally make quicker updates
 - "Stochastic Gradient Descent" updates parameters after individual randomlychosen instances
 - "Mini batch descent" updates them after minibatches of randomly-chosen instances
 - Require shrinking learning rates to converge
 - Not absolute summable
 - But square summable
- Online methods have greater variance than batch methods
 - Potentially leading to worse model estimates

Recap: Trend Algorithms

- Trend algorithms smooth out the variations in incremental update methods by considering long-term trends in gradients
 - Leading to faster and more assured convergence
- Momentum and Nestorov's method improve convergence by smoothing updates with the *mean* (first moment) of the sequence of derivatives
- Second-moment methods consider the variation (second moment)
 of the derivatives
 - RMS Prop only considers the second moment of the derivatives
 - ADAM and its siblings consider both the first and second moments
 - All of them typically provide considerably faster than simple gradient descent

Moving on: Topics for the day

- Incremental updates
- Revisiting "trend" algorithms
- Generalization
- Tricks of the trade
 - Divergences...
 - Activations
 - Normalizations

Tricks of the trade...

- To make the network converge better
 - The Divergence
 - Batch normalization
 - Dropout
 - Other tricks
 - Gradient clipping
 - Data augmentation
 - Other hacks...

Training Neural Nets by Gradient Descent: The Divergence

Total training loss:

$$Loss = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, ..., W_K)$$

- The convergence of the gradient descent depends on the divergence
 - Ideally, must have a shape that results in a significant gradient in the right direction outside the optimum
 - To "guide" the algorithm to the right solution

Desiderata for a good divergence

- Must be smooth and not have many poor local optima
- Low slopes far from the optimum == bad
 - Initial estimates far from the optimum will take forever to converge
- High slopes near the optimum == bad
 - Steep gradients

Desiderata for a good divergence

- Functions that are shallow far from the optimum will result in very small steps during optimization
 - Slow convergence of gradient descent
- Functions that are steep near the optimum will result in large steps and overshoot during optimization
 - Gradient descent will not converge easily
- The best type of divergence is steep far from the optimum, but shallow at the optimum
 - But not too shallow: ideally quadratic in nature

Choices for divergence

Desired output:

Desired output:

$$Div = \frac{1}{2}(y-d)^2$$

$$KL \quad Div = -d\log(y) - (1-d)\log(1-y)$$

$$Div = \frac{1}{2} \sum_{i} (y_i - d_i)^2$$

$$Div = \frac{1}{2} \sum_{i} (y_i - d_i)^2$$

$$Div = \sum_{i} d_i \log(d_i) - \sum_{i} d_i \log(y_i)$$

- Most common choices: The L2 divergence and the KL divergence
- L2 is popular for networks that perform numeric prediction/regression
- KL is popular for networks that perform classification

L2 or KL?

- The L2 divergence has long been favored in most applications
- It is particularly appropriate when attempting to perform regression
 - Numeric prediction
- The KL divergence is better when the intent is classification
 - The output is a probability vector

L2 or KL

- Plot of L2 and KL divergences for a *single* perceptron, as function of weights
 - Setup: 2-dimensional input
 - 100 training examples randomly generated

L2 or KL

- Plot of L2 and KL divergences for a single perceptron, as function of weights
 - Setup: 2-dimensional input
 - 100 training examples randomly generated

A note on derivatives

Note: For L2 divergence the derivative w.r.t.
 the output of the network is:

$$\nabla_{y} \frac{1}{2} ||y - d||^{2} = (y - d)$$

- We literally "propagate" the error (y-d) backward
 - Which is why the method is sometimes called "error backpropagation"

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates

 The choice of divergence affects both the learned network and results

The problem of covariate shifts

- Training assumes the training data are all similarly distributed
 - Minibatches have similar distribution

The problem of covariate shifts

- Training assumes the training data are all similarly distributed
 - Minibatches have similar distribution
- In practice, each minibatch may have a different distribution
 - A "covariate shift"
 - Which may occur in each layer of the network

The problem of covariate shifts

- Training assumes the training data are all similarly distributed
 - Minibatches have similar distribution
- In practice, each minibatch may have a different distribution
 - A "covariate shift"
- Covariate shifts can be large!
 - All covariate shifts can affect training badly

Solution: Move all minibatches to a "standard" location

- "Move" all batches to a "standard" location of the space
 - But where?
 - To determine, we will follow a two-step process

- "Move" all batches to have a mean of 0 and unit standard deviation
 - Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
 - Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
 - Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
 - Eliminates covariate shift between batches

- "Move" all batches to have a mean of 0 and unit standard deviation
 - Eliminates covariate shift between batches

(Mini)Batch Normalization

- "Move" all batches to have a mean of 0 and unit standard deviation
 - Eliminates covariate shift between batches
- Then move the entire collection to the appropriate location

Batch normalization

- Batch normalization is a covariate adjustment unit that happens after the weighted addition of inputs but before the application of activation
 - Is done independently for each unit, to simplify computation
- Training: The adjustment occurs over individual minibatches

Batch normalization

- BN aggregates the statistics over a minibatch and normalizes the batch by them
- Normalized instances are "shifted" to a unit-specific location

Batch normalization: Training

- BN aggregates the statistics over a minibatch and normalizes the batch by them
- Normalized instances are "shifted" to a unit-specific location

Batch normalization: Training

- BN aggregates the statistics over a minibatch and normalizes the batch by them
- Normalized instances are "shifted" to a unit-specific location

A better picture for batch norm

A note on derivatives

 The minibatch loss is the average of the divergence between the actual and desired outputs of the network for all inputs in the minibatch

$$Loss(minibatch) = \frac{1}{B} \sum_{t} Div(Y_t(X_t), d_t(X_t))$$

 The derivative of the minibatch loss w.r.t. network parameters is the average of the derivatives of the divergences for the *individual* training instances w.r.t. parameters

$$\frac{dLoss(minibatch)}{dw_{i,j}^{(k)}} = \frac{1}{B} \sum_{t} \frac{dDiv(Y_t(X_t), d_t(X_t))}{dw_{i,j}^{(k)}}$$

- In conventional training, both, the output of the network in response to an input, and the derivative of the divergence for any input are independent of other inputs in the minibatch
- If we use Batch Norm, the above relation gets a little complicated

A note on derivatives

• The outputs are now functions of μ_B and σ_B^2 which are functions of the entire minibatch

Loss(*minibatch*)

$$= \frac{1}{B} \sum_{t} Div(Y_t(X_t, \mu_B, \sigma_B^2), d_t(X_t))$$

- The Divergence for each Y_t depends on all the X_t within the minibatch
 - Training instances within the minibatch are no longer independent

The actual divergence with BN

The actual divergence for any minibatch with terms explicity written

Loss(*minibatch*)

$$= \frac{1}{B} \sum_{t} Div\left(Y_t\left(X_t, \mu_B(X_t, X_{t'\neq t}), \sigma_B^2\left(X_t, X_{t'\neq t}, \mu_B(X_t, X_{t'\neq t})\right)\right), d_t(X_t)\right)$$

- We need the derivative for this function
- To derive the derivative lets consider the dependencies at a single neuron
 - Shown pictorially in the following slide

Batchnorm is a vector function over the minibatch

- Batch normalization is really a vector function applied over all the inputs from a minibatch
 - Every z_i affects every \hat{z}_i
 - Shown on the next slide
- To compute the derivative of the minibatch loss w.r.t any z_i , we must consider all $\hat{z}_i s$ in the batch

- The computation of mini-batch normalized u's is a vector function
 - Invoking mean and variance statistics across the minibatch
- The subsequent shift and scaling is individually applied to each u to compute the corresponding \hat{z}

37

- The computation of mini-batch normalized u's is a vector function
 - Invoking mean and variance statistics across the minibatch
- The subsequent shift and scaling is individually applied to each u to compute the corresponding \hat{z}

Batch normalization: Forward pass

Batch normalization: Backpropagation

Batch normalization: Backpropagation

Batch normalization: Backpropagation

Propogating the derivative

- We must propagate the derivative through the first stage of BN
 - Which is a vector operation over the minibatch

- The complete dependency figure for the first "normalization" stage of Batchnorm
 - Which computes the centered "u"s from the "z"s for the minibatch
- Note: inputs and outputs are different *instances* in a minibatch
 - The diagram represents BN occurring at a single neuron
- Let's complete the figure and work out the derivatives

• The complete derivative of the mini-batch loss w.r.t. z_i

$$\frac{dLoss}{dz_i} = \sum_{j} \frac{dLoss}{du_j} \frac{du_j}{dz_i}$$

• The complete derivative of the mini-batch loss w.r.t. z_i

$$\frac{dLoss}{dz_i} = \sum_{j} \frac{dLoss}{du_j} \frac{du_j}{dz_i}$$
Already computed

• The complete derivative of the mini-batch loss w.r.t. z_i

$$\frac{dLoss}{dz_i} = \sum_{j} \frac{dLoss}{du_j} \frac{du_j}{dz_i}$$

Must compute for every i,j pair

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_R^2 + \epsilon}}$$

$$\frac{du_i}{dz_i} =$$

$$\frac{du_i}{dz_i} = \frac{\partial u_i}{\partial z_i} +$$

$$\frac{du_i}{dz_i} = \frac{\partial u_i}{\partial z_i} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} +$$

$$\frac{du_i}{dz_i} = \frac{\partial u_i}{\partial z_i} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{\partial u_i}{\partial z_i} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{\partial u_i}{\partial z_i} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

From the highlighted relation

$$\frac{\partial u_i}{\partial z_i} = \frac{1}{\sqrt{\sigma_R^2 + \epsilon}}$$

$$\frac{du_i}{dz_i} = \frac{\partial u_i}{\partial z_i} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

From the highlighted relation

$$\frac{\partial u_i}{\partial \mu_B} = \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial u_i}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

From the highlighted relation

$$\frac{\partial \mu_B}{\partial z_i} = \frac{1}{B}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \frac{d\mu_B}{dz_i} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{\sqrt{\sigma_B^2 + \epsilon}} \frac{1}{B} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{B\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{B\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

From the highlighted equation

$$\frac{\partial u_i}{\partial \sigma_B^2} = \frac{-(z_i - \mu_B)}{2} (\sigma_B^2 + \epsilon)^{-3/2}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{B\sqrt{\sigma_B^2 + \epsilon}} + \frac{\partial u_i}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$\frac{du_i}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} + \frac{-1}{B\sqrt{\sigma_B^2 + \epsilon}} + \frac{-(z_i - \mu_B)}{2(\sigma_B^2 + \epsilon)^{3/2}} \frac{d\sigma_B^2}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$\frac{du_{i}}{dz_{i}} = \frac{1}{\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})}{2(\sigma_{B}^{2} + \epsilon)^{3/2}} \frac{d\sigma_{B}^{2}}{dz_{i}}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^B (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_R^2 + \epsilon}}$$

From the highlighted equations

$$\frac{d\sigma_B^2}{dz_i} = \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial \sigma_B^2}{\partial \mu_B} \frac{d\mu_B}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

From the highlighted equations

$$\frac{d\sigma_B^2}{dz_i} = \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial \sigma_B^2}{\partial \mu_B} \frac{d\mu_B}{dz_i}$$

$$\frac{\partial \sigma_B^2}{\partial z_i} = \frac{2(z_i - \mu_B)}{B}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$\frac{d\sigma_B^2}{dz_i} = \frac{\partial \sigma_B^2}{\partial z_i} + \frac{\partial \sigma_B^2}{\partial \mu_B} \frac{d\mu_B}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$\frac{d\sigma_B^2}{dz_i} = \frac{2(z_i - \mu_B)}{B} + \frac{\partial \sigma_B^2}{\partial \mu_B} \frac{d\mu_B}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^B (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$\frac{d\sigma_B^2}{dz_i} = \frac{2(z_i - \mu_B)}{B} + \frac{\partial \sigma_B^2}{\partial \mu_B} \frac{d\mu_B}{dz_i}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_R^2 + \epsilon}}$$

$$\frac{d\sigma_B^2}{dz_i} = \frac{2(z_i - \mu_B)}{B}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

• The derivative for the "through" line (i = j)

$$\frac{du_{i}}{dz_{i}} = \frac{1}{\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})}{2(\sigma_{B}^{2} + \epsilon)^{3/2}} \frac{d\sigma_{B}^{2}}{dz_{i}}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

• The derivative for the "through" line (i = j)

$$\frac{du_{i}}{dz_{i}} = \frac{1}{\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})}{2(\sigma_{B}^{2} + \epsilon)^{3/2}} \frac{2(z_{i} - \mu_{B})}{B}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

• The derivative for the "through" line (i = j)

$$\frac{du_{i}}{dz_{i}} = \frac{1}{\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})^{2}}{B(\sigma_{B}^{2} + \epsilon)^{3/2}}$$

$$\sigma_B^2 = \frac{1}{B} \sum_{i=1}^{B} (z_i - \mu_B)^2$$

$$u_i = \frac{z_i - \mu_B}{\sqrt{\sigma_R^2 + \epsilon}}$$

$$\frac{du_j}{dz_i} =$$

$$\frac{du_j}{dz_i} = \frac{\partial u_j}{\partial \mu_B} \frac{d\mu_B}{dz_i} +$$

$$\frac{du_j}{dz_i} = \frac{\partial u_j}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_j}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

• The derivative for the "cross" lines $(i \neq j)$

$$\frac{du_j}{dz_i} = \frac{\partial u_j}{\partial \mu_B} \frac{d\mu_B}{dz_i} + \frac{\partial u_j}{\partial \sigma_B^2} \frac{d\sigma_B^2}{dz_i}$$

This is identical to the equation for i = j, without the first "through" term

$$\frac{du_{j}}{dz_{i}} = \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})^{2}}{B(\sigma_{B}^{2} + \epsilon)^{3/2}}$$

$$\frac{du_{j}}{dz_{i}} = \begin{cases}
\frac{1}{\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})^{2}}{B(\sigma_{B}^{2} + \epsilon)^{3/2}} & \text{if } j = i \\
\frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})^{2}}{B(\sigma_{B}^{2} + \epsilon)^{3/2}} & \text{if } j \neq i
\end{cases}$$

• The complete derivative of the mini-batch loss w.r.t. z_i

$$\frac{dLoss}{dz_i} = \sum_{j} \frac{dLoss}{du_j} \frac{du_j}{dz_i}$$

$$\frac{du_{j}}{dz_{i}} = \begin{cases} \frac{1}{\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})^{2}}{B(\sigma_{B}^{2} + \epsilon)^{3/2}} & \text{if } j = i\\ \frac{-1}{B\sqrt{\sigma_{B}^{2} + \epsilon}} + \frac{-(z_{i} - \mu_{B})^{2}}{B(\sigma_{B}^{2} + \epsilon)^{3/2}} & \text{if } j \neq i \end{cases}$$

$$\frac{dLoss}{dz_i} = \sum_{j} \frac{dLoss}{du_j} \frac{du_j}{dz_i}$$

• The complete derivative of the mini-batch loss w.r.t. z_i

$$\frac{dLoss}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} \frac{dLoss}{du_i} - \frac{1}{B\sqrt{\sigma_B^2 + \epsilon}} \sum_j \frac{dLoss}{du_j} - \frac{1}{B(\sigma_B^2 + \epsilon)^{3/2}} \sum_j \frac{dLoss}{du_j} (z_i - \mu_B)^2$$

Batch normalization: Backpropagation

$$\frac{dLoss}{dz_i} = \frac{1}{\sqrt{\sigma_B^2 + \epsilon}} \frac{dLoss}{du_i} - \frac{1}{B\sqrt{\sigma_B^2 + \epsilon}} \sum_j \frac{dLoss}{du_j} - \frac{1}{B(\sigma_B^2 + \epsilon)^{3/2}} \sum_j \frac{dLoss}{du_j} (z_i - \mu_B)^2$$

Batch normalization: Inference

- On test data, BN requires μ_B and σ_B^2 .
- We will use the average over all training minibatches

$$\mu_{BN} = \frac{1}{Nbatches} \sum_{batch} \mu_B(batch)$$

$$\sigma_{BN}^2 = \frac{B}{(B-1)Nbatches} \sum_{batch} \sigma_B^2(batch)$$

- Note: these are neuron-specific
 - $-\mu_B(batch)$ and $\sigma_B^2(batch)$ here are obtained from the final converged network
 - The B/(B-1) term gives us an unbiased estimator for the variance

Batch normalization

- Batch normalization may only be applied to some layers
 - Or even only selected neurons in the layer
- Improves both convergence rate and neural network performance
 - Anecdotal evidence that BN eliminates the need for dropout
 - To get maximum benefit from BN, learning rates must be increased and learning rate decay can be faster
 - Since the data generally remain in the high-gradient regions of the activations
 - Also needs better randomization of training data order

Batch Normalization: Typical result

 Performance on Imagenet, from Ioffe and Szegedy, JMLR 2015

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results
- Covariate shift between training and test may cause problems and may be handled by batch normalization

The problem of data underspecification

• The figures shown to illustrate the learning problem so far were *fake news*..

Learning the network

• We attempt to learn an entire function from just a few *snapshots* of it

General approach to training

Blue lines: error when function is below desired output

Black lines: error when function is above desired output

$$E = \sum_{i} (d_i - f(\mathbf{x}_i, \mathbf{W}))^2$$

- Define a divergence between the actual network output for any parameter value and the desired output
 - Typically L2 divergence or KL divergence

Overfitting

- Problem: Network may just learn the values at the inputs
 - Learn the red curve instead of the dotted blue one
 - Given only the red vertical bars as inputs

Data under-specification

- Consider a binary 100-dimensional input
- There are 2¹⁰⁰=10³⁰ possible inputs
- Complete specification of the function will require specification of 10³⁰ output values
- A training set with only 10¹⁵ training instances will be off by a factor of 10¹⁵

Data under-specification in learning

- Consider a binary 100-dimensional input
- There are 2¹⁰⁰=10³⁰ possible inputs
- Complete specification of the function will require specification of 10³⁰ output values
- A training set with only 10¹⁵ training instances will be off by a factor of 10¹⁵

Need "smoothing" constraints

- Need additional constraints that will "fill in" the missing regions acceptably
 - Generalization

Smoothness through weight manipulation

- Illustrative example: Simple binary classifier
 - The "desired" output is generally smooth

Smoothness through weight manipulation

- Illustrative example: Simple binary classifier
 - The "desired" output is generally smooth
 - Capture statistical or average trends
 - An unconstrained model will model individual instances instead

The unconstrained model Χ

- Illustrative example: Simple binary classifier
 - The "desired" output is generally smooth
 - Capture statistical or average trends
 - An unconstrained model will model individual instances instead

Why overfitting

.. the perceptrons in the network are individually capable of sharp changes in output

The individual perceptron

- Using a sigmoid activation
 - As |w| increases, the response becomes steeper

Smoothness through weight manipulation

 Steep changes that enable overfitted responses are facilitated by perceptrons with large w

Smoothness through weight manipulation

- Steep changes that enable overfitted responses are facilitated by perceptrons with large w
- Constraining the weights w to be low will force slower perceptrons and smoother output response

Objective function for neural networks

Desired output of network: d_t

Error on i-th training input: $Div(Y_t, d_t; W_1, W_2, ..., W_K)$

Training loss:

$$Loss(W_1, W_2, ..., W_K) = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, ..., W_K)$$

Conventional training: minimize the loss:

$$\widehat{W}_1, \widehat{W}_2, \dots, \widehat{W}_K = \underset{W_1, W_2, \dots, W_K}{\operatorname{argmin}} Loss(W_1, W_2, \dots, W_K)$$

Smoothness through weight constraints

Regularized training: minimize the loss while also minimizing the weights

$$L(W_1, W_2, \dots, W_K) = \frac{1}{T} \sum_{t} Div(Y_t, d_t; W_1, W_2, \dots, W_K) + \frac{1}{2} \lambda \sum_{k} ||W_k||_F^2$$

$$\widehat{W}_1, \widehat{W}_2, \dots, \widehat{W}_K = \underset{W_1, W_2, \dots, W_K}{\operatorname{argmin}} L(W_1, W_2, \dots, W_K)$$

- λ is the regularization parameter whose value depends on how important it is for us to want to minimize the weights
- Increasing λ assigns greater importance to shrinking the weights
 - Make greater error on training data, to obtain a more acceptable network

Regularizing the weights

$$L(W_1, W_2, \dots, W_K) = \frac{1}{T} \sum_t Div(Y_t, d_t) + \frac{1}{2} \lambda \sum_k ||W_k||_F^2$$

Batch mode:

$$\Delta W_k = \frac{1}{T} \sum_t \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k$$

SGD:

$$\Delta W_k = \nabla_{W_k} Div(Y_t, d_t)^T + \lambda W_k$$

Minibatch:

$$\Delta W_k = \frac{1}{b} \sum_{\tau=t}^{t+b-1} \nabla_{W_k} Div(Y_{\tau}, d_{\tau})^T + \lambda W_k$$

Update rule:

$$W_k \leftarrow W_k - \eta \Delta W_k$$

Incremental Update: Mini-batch update

- Given $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
- Initialize all weights $W_1, W_2, ..., W_K; j = 0$
- Do:
 - Randomly permute $(X_1, d_1), (X_2, d_2), ..., (X_T, d_T)$
 - For t = 1:b:T
 - j = j + 1
 - For every layer k:
 - $-\Delta W_k = 0$
 - For t' = t:t+b-1
 - For every layer k:
 - » Compute $\nabla_{W_k}Div(Y_t, d_t)$
 - Update
 - For every layer k:

$$W_k = W_k - \eta_i (\Delta W_k + \lambda W_k)$$

Until Loss has converged

Smoothness through network structure

- Smoothness constraints can also be imposed through the network structure
- For a given number of parameters deeper networks impose more smoothness than shallow ones
 - Each layer works on the already smooth surface output by the previous layer

Minimal correct architectures are hard to train

- Typical results (varies with initialization)
- 1000 training points orders of magnitude more than you usually get
- All the training tricks known to mankind

But depth and training data help

- Deeper networks seem to learn better, for the same number of total neurons
 - Implicit smoothness constraints
 - As opposed to explicit constraints from more conventional regularization methods
- Training with more data is also better ©

10000 training instances

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results
- Covariate shift between training and test may cause problems and may be handled by batch normalization
- Data underspecification can result in overfitted models and must be handled by regularization and more constrained (generally deeper) network architectures

Regularization...

- Other techniques have been proposed to improve the smoothness of the learned function
 - − L₁ regularization of network activations
 - Regularizing with added noise..
- Possibly the most influential method has been "dropout"

A brief detour.. Bagging

- Popular method proposed by Leo Breiman:
 - Sample training data and train several different classifiers
 - Classify test instance with entire ensemble of classifiers
 - Vote across classifiers for final decision
 - Empirically shown to improve significantly over training a single classifier from combined data
- Returning to our problem....

• During training: For each input, at each iteration, "turn off" each neuron with a probability 1- α

- During training: For each input, at each iteration, "turn off" each neuron with a probability 1- α
 - Also turn off inputs similarly

- During training: For each input, at each iteration, "turn off" each neuron (including inputs) with a probability 1- α
 - In practice, set them to 0 according to the failure of a Bernoulli random number generator with success probability α

The pattern of dropped nodes changes for each input i.e. in every pass through the net

- During training: For each input, at each iteration, "turn off" each neuron (including inputs) with a probability 1- α
 - In practice, set them to 0 according to the failure of a Bernoulli random number generator with success probability α

The pattern of dropped nodes changes for each input i.e. in every pass through the net

- During training: Backpropagation is effectively performed only over the remaining network
 - The effective network is different for different inputs
 - Gradients are obtained only for the weights and biases from "On" nodes to "On" nodes
 - For the remaining, the gradient is just 0

Statistical Interpretation

- For a network with a total of N neurons, there are 2^N possible sub-networks
 - Obtained by choosing different subsets of nodes
 - Dropout samples over all 2^N possible networks
 - Effectively learns a network that averages over all possible networks
 - Bagging

Dropout as a mechanism to increase pattern density

- Dropout forces the neurons to learn "rich" and redundant patterns
- E.g. without dropout, a noncompressive layer may just "clone" its input to its output
 - Transferring the task of learning to the rest of the network upstream
- Dropout forces the neurons to learn denser patterns
 - With redundancy

The forward pass

- Input: D dimensional vector $\mathbf{x} = [x_j, j = 1 ... D]$
- Set:
 - $-D_0=D$, is the width of the Oth (input) layer

$$- y_j^{(0)} = x_j, j = 1 \dots D; y_0^{(k=1\dots N)} = x_0 = 1$$

• For layer $k = 1 \dots N$

Mask takes value 1 with prob. α , 0 with prob 1 $-\alpha$

- $mask(k-1,j) = Bernoulli(\alpha), j = 1...D_{k-1}$
- $-y_j^{(k-1)} = y_j^{(k-1)} . mask(k-1,j), j = 1 ... D_{k-1}$
- For $j=1\dots D_k$ $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)} + b_j^{(k)}$
 - $y_i^{(k)} = f_k\left(z_i^{(k)}\right)$
- Output:

$$- Y = y_j^{(N)}, j = 1...D_N$$

Backward Pass

Output layer (N):

$$-\frac{\partial Div}{\partial Y_i} = \frac{\partial Div(Y,d)}{\partial y_i^{(N)}}$$
$$-\frac{\partial Div}{\partial z_i^{(k)}} = f_k' \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$$

- For layer k = N 1 downto 0
 - For $i = 1 ... D_k$

•
$$\frac{\partial Div}{\partial y_i^{(k)}} = mask(k, i) \sum_j w_{ij}^{(k+1)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$

•
$$\frac{\partial Div}{\partial z_i^{(k)}} = f_k' \left(z_i^{(k)} \right) \frac{\partial Div}{\partial y_i^{(k)}}$$

•
$$\frac{\partial Div}{\partial w_{ij}^{(k+1)}} = y_i^{(k)} \frac{\partial Div}{\partial z_j^{(k+1)}}$$
 for $j = 1 \dots D_{k+1}$

Testing with Dropout

- Dropout effectively trains 2^N networks
- On test data the "Bagged" output, in principle, is the ensemble average over all 2^N networks and is thus the statistical expectation of the output over all networks

$$Y = E\left[network\left(y_j^{(k)}, j = 1 \dots D_k, k = 1 \dots K\right)\right]$$

- Explicitly showing the network as a function of the outputs of individual neurons in the net
- We cannot explicitly compute this expectation
- Instead we will use the following approximation

$$E\left[network\left(y_{j}^{(k)}, \forall k, j\right)\right] = network\left(E\left[y_{j}^{(k)}\right] \forall k, j\right)$$

- Where $E[y_j^{(k)}]$ is the expected output of the jth neuron in the kth layer over all networks in the ensemble
- I.e. approximate the expectation of a function as the function of expectations
- We require $E[y_j^{(k)}]$ to compute this

What each neuron computes

Each neuron actually has the following activation:

$$y_i^{(k)} = D\sigma \left(\sum_j w_{ji}^{(k)} y_j^{(k-1)} + b_i^{(k)} \right)$$

- Where D is a Bernoulli variable that takes a value 1 with probability α
- D may be switched on or off for individual sub networks, but over the ensemble, the expected output of the neuron is

$$E[y_i^{(k)}] = \alpha \sigma \left(\sum_{j} w_{ji}^{(k)} y_j^{(k-1)} + b_i^{(k)} \right)$$

- During test time, we will use the expected output of the neuron
 - Consists of simply scaling the output of each neuron by α

Dropout during test: implementation

• Instead of multiplying every output by lpha, multiply all weights by lpha

Dropout: alternate implementation

- Alternately, during *training*, replace the activation of all neurons in the network by $\alpha^{-1}\sigma(.)$
 - This does not affect the dropout procedure itself
 - We will use $\sigma(.)$ as the activation during testing, and not modify the weights

Inference with dropout (testing)

- Input: D dimensional vector $\mathbf{x} = [x_i, j = 1 ... D]$
- Set:
 - $-D_0=D$, is the width of the Oth (input) layer

$$-y_j^{(0)} = x_j, j = 1 \dots D; y_0^{(k=1\dots N)} = x_0 = 1$$

• For layer
$$k = 1 ... N$$

- For $j = 1 ... D_k$

• $z_j^{(k)} = \sum_{i=0}^{N_k} w_{i,j}^{(k)} y_i^{(k-1)} + b_j^{(k)}$

• $y_j^{(k)} = \alpha f_k \left(z_j^{(k)} \right)$

•
$$y_j^{(k)} = \alpha f_k \left(z_j^{(k)} \right)$$

Output:

$$-Y = y_j^{(N)}, j = 1...D_N$$

Dropout: Typical results

- From Srivastava et al., 2013. Test error for different architectures on MNIST with and without dropout
 - 2-4 hidden layers with 1024-2048 units

Variations on dropout

- Zoneout: For RNNs
 - Randomly chosen units remain unchanged across a time transition
- Dropconnect
 - Drop individual connections, instead of nodes
- Shakeout
 - Scale up the weights of randomly selected weights
 - $|w| \rightarrow \alpha |w| + (1 \alpha)c$
 - Fix remaining weights to a negative constant
 - $w \rightarrow -c$
- Whiteout
 - Add or multiply weight-dependent Gaussian noise to the signal on each connection

Story so far

- Gradient descent can be sped up by incremental updates
- Convergence can be improved using smoothed updates
- The choice of divergence affects both the learned network and results
- Covariate shift between training and test may cause problems and may be handled by batch normalization
- Data underspecification can result in overfitted models and must be handled by regularization and more constrained (generally deeper) network architectures
- "Dropout" is a stochastic data/model erasure method that sometimes forces the network to learn more robust models

Other heuristics: Early stopping

- Continued training can result in over fitting to training data
 - Track performance on a held-out validation set
 - Apply one of several early-stopping criterion to terminate training when performance on validation set degrades significantly

Additional heuristics: Gradient clipping ___

- Often the derivative will be too high
 - When the divergence has a steep slope
 - This can result in instability
- Gradient clipping: set a ceiling on derivative value

if
$$\partial_w D > \theta$$
 then $\partial_w D = \theta$

- Typical θ value is 5

Additional heuristics: Data Augmentation

- Available training data will often be small
- "Extend" it by distorting examples in a variety of ways to generate synthetic labelled examples
 - E.g. rotation, stretching, adding noise, other distortion

Other tricks

- Normalize the input:
 - Normalize entire training data to make it 0 mean, unit variance
 - Equivalent of batch norm on input
- A variety of other tricks are applied
 - Initialization techniques
 - Xavier, Kaiming, SVD, etc.
 - Key point: neurons with identical connections that are identically initialized will never diverge
 - Practice makes man perfect

Setting up a problem

- Obtain training data
 - Use appropriate representation for inputs and outputs
- Choose network architecture
 - More neurons need more data
 - Deep is better, but harder to train
- Choose the appropriate divergence function
 - Choose regularization
- Choose heuristics (batch norm, dropout, etc.)
- Choose optimization algorithm
 - E.g. ADAM
- Perform a grid search for hyper parameters (learning rate, regularization parameter, ...) on held-out data
- Train
 - Evaluate periodically on validation data, for early stopping if required

In closing

- Have outlined the process of training neural networks
 - Some history
 - A variety of algorithms
 - Gradient-descent based techniques
 - Regularization for generalization
 - Algorithms for convergence
 - Heuristics
- Practice makes perfect...