

AutoFeat: Transitive Feature Discovery over Join Paths

Andra Ionescu

Kiril Vasilev

Florena Buse

Rihan Hai

Asterios Katsifodimos

Input dataset is the result of data augmentation and feature selection

Collection of datasets

Training dataset

Collection of datasets

Training dataset

When PK-FK are known:

- 1. Search for datasets
- 2. Join datasets
- 3. Apply feature selection

When PK-FK are missing:

- 1. Dataset discovery
- 2. Join data
- 3. Apply feature selection

Spurious relations

When PK-FK are missing:

- 1. Dataset discovery
- 2. Join data
- 3. Apply feature selection

• Multiple join columns

When PK-FK are missing:

- 1. Dataset discovery
- 2. Join data
- 3. Apply feature selection

Feature Discovery

Feature Discovery

Feature Discovery

AutoFeat

• Join-path length:

✓ single-hop

multi-hop

AutoFeat

- Joinability graph
 - simple graph
 - ✓ multi-graph

AutoFeat

• Path / Feature selection:

✓ ranking-based

X model-execution based

AutoFeat Pipeline

Dataset Relation Graph

Dataset Discovery

 Valentine – schema matching tool suite [1]

DRG - weighted graph

- Nodes → Tables
- Edges → Relationships
 - Weight = 1 (PK-FK)
 - Weight = similarity score

BFS Traversal, **Left Join & Prune Paths** 3a **Create join trees**

Join Trees

Graph traversal

- Breadth First Search (BFS)
- Evaluate data quality after each level
- Easier error management

Join type

- Left join
- Preserve number of rows
- Avoid introducing class imbalance

Join Trees

Join paths

- Sequence of edges
- Chain of joins

Prune paths

- Similarity score
- Data quality null values ratio

Relevance & Redundancy feature selection **Select features** Selected Discarded

Feature Selection

Relevance

• Spearman correlation – rank correlation

Redundancy

• MRMR - with more selected features, the effect of redundancy is reduced

Ranking

 Linear function of relevance and redundancy scores

Feature Selection

Evaluate Join Trees

Top-k join trees

• Based on the ranking

Augment Base Table

• Train ML model

Datasets

7 OpenML

1 SOTA

ML models

Decision trees from AutoGluon

Metrics

Efficiency

Effectiveness

Baselines

Base

• Non-augmented base table

Join All

• Join all tables

Join All + FS

Join all, then apply feature selection

ARDA [2]

Random Injection of noise

Multi-Armed Bandit [3]

Exploration - Exploitation strategy

^[2] Nadiia Chepurko, et al. "ARDA: Automatic Relational Data Augmentation for Machine Learning." 2020 VLDB

Scenarios

Known Relations

Known PK-FK connections

Star/Snowflake schema

Reproduce the results from baselines

Discovered Relations

Unknown PK-FK connections

Dense multi-graph

Show the predictive power of AutoFeat

KNOWN RELATIONS

16% AVERAGE INCREASE IN ACCURACY ACROSS ALL DATASETS AND MODELS

STAR SCHEMATA
AutoFeat prunes out all the irrelevant tables

SNOWFLAKE SCHEMATA

AutoFeat explores the graph of connections in depth

DISCOVERED RELATIONS

Path analysis

AutoFeat explores the join space in depth

Prunes out irrelevant tables

Effectiveness

AutoFeat shows increased accuracy from the base table

Efficiency

10x faster than MAB 3x faster than ARDA

Conclusion

AutoFeat is a more efficient and effective method for automatic feature discovery over long join paths.

AutoFeat works with both star and snowflake schema.

AutoFeat decouples the model training step from feature discovery process

AutoFeat relies on heuristics to prune out irrelevant tables and features.

Thank you!

Open for work

a.ionescu-3@tudelft.nl

AutoFeat works with both star and snowflake schema.

AutoFeat decouples the model training step from feature discovery process

AutoFeat relies on heuristics to prune out irrelevant tables and features.

https://github.com/delftdata/autofeat