HyperLogLog in Practice

Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm

Stefan Heule Marc Nunkesser Alexander Hall

Contents

- i. Problem Definition & Applications
- ii. Cardinality Estimation Algorithms
- iii. HyperLogLog and Improvements
- iv. Implementations and Examples

i. Problem Definition & Applications

Problem Description

- <u>Count-distinct problem</u> or Cardinality Estimation Problem
- Formal Definition:
 - Given a stream of N elements with repetitions
 - Find the number of distinct elements D
 - Using M storage units, where M << D
- Memory requirement tends to be proportional to the cardinality
- Accuracy depends on the algorithm and the underlying data structure
- Set Membership can be inferred by changes in cardinality

Exact Solution

- Store unique elements in Array Data Structure $\rightarrow A_i = X, j \in [0, n]$
- Advantages:
 - Accuracy
 - Cardinality is the Array length \rightarrow 0(1)
- Disadvantages:
 - \circ Slow Lookup $\rightarrow 0(n)$, insertion time depends on cardinality
 - Required memory scales with cardinality $\rightarrow \sum A_i$
- Possible Improvements:
 - Use lossless compression in order to reduce data size
 - Use Set / Tree data structure (B-tree) with lookup time 0(1) / 0(logn)

Approximate Solution

- Define:
 - Cardinality → n
 - Hashing function with uniform distribution $h(x) \rightarrow D, D \in [0, S]$
- Add each hash value to a Set Data Structure
 - Lookup time \rightarrow O(1)
 - Cardinality calculation → O(1)
- Collision probability depends on hash value range
- Accuracy is retained if: S >> n
- Memory requirements are still proportional to cardinality

Problem Domain

- Time-series data streams lead to large, transient datasets
- Not feasible or otherwise necessary to maintain the exact original dataset:
 - Cardinality is unknown
 - Memory constraints
 - Sliding window calculations
- Small errors can be tolerated:
 - Eventual consistency
 - Multiple data sources
- Latency versus Accuracy

Applications: Web Analytics & Security

Problem Definition

- Count unique sessions or pageviews per device/browser for given time periods.
- Detect possible spamming or malicious requests.

Solution Modelling

- Combine session ID and URL → Request ID.
- Count unique Request ID.
- Low cardinality of Request ID and high request rate → throttling?
- Calculation happens over a sliding time window.

Applications: Network Security

Problem Definition

- Detect and possibly block malicious network traffic^[6]
- Very high data rate: 40+ Gb/s
- Packet inter-arrival time must remain low (~8ns)
- Attack detection is not the main role of the router, memory should remain low

Solution Modelling

- Flow is sequence of packets identified by the tuple
 (Source-IP, Source-Port, Destination-IP, Destination-Port, Protocol)
- Calculate the total packets using different destination ports over a sliding time window

ii. Cardinality Estimation Algorithms

Concepts & Theory - Part I

Multiset

- Modification of Set that allows multiples instances of its elements.
- Number of instances per element is named *multiplicity*.
- Cardinality is the number of unique elements.
- Uniform distribution:
 - Probability of random variable within the interval [a,b] is independent of the variable.
- K-th Order Statistic
 - Equal to kth-smallest value of a statistical sample
 - First order statistic is the sample minimum
- Probabilistic Algorithms / Data Structures
 - Employ randomness as part of their logic
 - Examples: Bloom Filter, Linear Counting, Skip List, HyperLogLog

Concepts & Theory - Part II

- Estimator
 - Rule for calculating an estimate of a given quantity based on observed data
- Bias
 - Expected relative error of an estimator
 - bias = 0.01 means an overestimation of 1% compared to the exact value
- Standard Error
 - Standard deviation of the ratio of estimated quantity compared to the exact value
- <u>Harmonic Mean</u>
 - Type of average function, better suited for average of rates
 - Expressed as the reciprocal of the arithmetic mean of the reciprocals

$$H = (\sum x_i^{-1} / n)^{-1}$$

Cardinality Observables - Part I

- Consider the uniformly distributed hashed values of a Multiset (S-values)
- Bit-pattern Observables
 - Series of bits (bit strings) of predefined length (e.g. 32-bit)
 - Pattern of bits occurring at the beginning of the S-values
 - Observe the minimum index of a 1-bit
 - By convention we use **LSB order**

Cardinality Observables - Part II

- Assume hashing function of 4 bits, LSB order in bit strings:
 - 50% of hashed values will display the pattern 1BBB
 - 25% of hashed values will display the pattern 01BB
- Hashing 4 unique elements, it is likely that at least one S-value will start with 01
- Inverting the expectation:
 - If the first 1-bit index is 2, it is likely we encountered ~4 unique values.

Cardinality Observables - Part II

- Order-Statistic Observables
 - Hash function provides uniformly distributed real values in [0, 1]
 - The minimum value in an ideal multiset does not depend on:
 - Replication structure of the data
 - Ordering
 - Indication on the number of distinct values of the multiset
 - The minimum of independent uniform values on [0, 1] has more chances of being small if cardinality is large
 - MinCount^[9]

Available Probabilistic Algorithms

- <u>Flajolet Martin</u> (1985)
- <u>Linear Counting</u> (Whang et al 1990)
 - Bit-map of size *m* initialized to zero values
 - Hash function generates bit map address which is set to one
 - Cardinality is computed by: n = -m * ln(ZeroCount / m)
- LogLog (Durand & Flajolet 2003)
 - Improvements to the Flajolet Martin algorithm
- <u>HyperLogLog</u> (Flajolet et al 2007)

Probabilistic Counting - An Example

- Approximate Counting (Morris 1977)
 - Count large number of events using small amount of memory
 - Counts powers of two only stores the exponent
 - Incremented by Pseudo-random event: "coin flip" times the current counter value

$$1 \longrightarrow 2^1 = 2$$

$$1 \longrightarrow 2^2 = 4$$

$$0 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1 \longrightarrow 2^3 = 8$$

iii. HyperLogLog and Improvements

Introduction to HyperLogLog - Part I

- Computational Algorithm presented in <u>Flajolet et al (2007)</u>
- Contains the analytical mathematical proofs:
 - The estimator is asymptotically unbiased.
 - The standard error constant values used for bias correction.
- Applies hash function on the original data stream
- Uses bit-pattern observables
- Divides the hash values input stream into m substreams
 - Specific bit interval is used for partitioning
- Emulates m experiments in parallel with a single hash function
 - As opposed to using multiple hash values per original input element
- Estimate of the cardinality is a suitable average of the substream observables
 - Quality should improve due to averaging effects as substreams increase
- Solution is named Stochastic Averaging

Introduction to HyperLogLog - Part II

- If each of a m random variables has standard deviation σ
 - Their arithmetic mean has deviation σ / √m
- Accuracy Characteristics (m = 2048, hashing to 32 bit values):
 - Cardinalities close to and exceeding one billion (10⁹)
 - Typical accuracy of 2% error → 1.04 / √m
 - 1.5 kilobyte of storage
- Substream counters are also referred as registers
- Use of harmonic mean since it is less sensitive to outliers.
- Suggests a correction formula depending on estimate range (E):
 - Small Range (≤2.5m): Use Linear Counting
 - Large Range (> 2³² / 30)

HyperLogLog - Computational Algorithm (I)

```
Let h: D \to [0, 1] \equiv \{0, 1\}^{\infty} hash data from domain D to the binary domain.

Let \rho(s), for s \in \{0, 1\}^{\infty}, be the position of the leftmost 1-bit (\rho(0001 \cdot \cdot \cdot) = 4).

Algorithm HYPERLOGLOG (input M : multiset of items from domain D).

Assume m = 2^b with b \in Z > 0

Initialize a collection of m registers, M[1], . . . , M[m], using a value of -\infty

for v in M:

x \leftarrow h(v)

j \leftarrow 1 + x_1 x_2 \dots x_b

w \leftarrow x_{b+1} x_{b+2} \dots

M[j] = max(M[j], \rho(w))
```

- Compute indicator function $Z = (\sum 2^{-M[j]})^{-1}$
- Compute estimator E = $\alpha_m m^2 Z$ with α_m as a bias-correction constant.

HyperLogLog - Computational Algorithm (II)

```
- Assume hashing function h with 8-bit output range and 4 registers (m = 2^2, b = 2)
- Let v = \text{`abcdef'}
- x = h(v) = 142 = 01110001
- j = \text{`01}110001'_{1...2} = \text{`01'} = 2
- w = \text{`01}110001'_{3...8} = \text{`110001'}
- \rho(w) = \rho(\text{`110001'}) = 1
- M[2] = 1
- x = h(\text{`ghij'}) = 178 = 01001101
- j = 2, \rho = 3, M[2] = \max(M[2], 3), M[2] = 3
```

Example Implementation - Part I

```
def compute_hash(value):
                                                    def lsb_bit_range(number, start, end):
  return zlib.crc32(value.encode()) % (1 << 32)</pre>
                                                       return to_lsb_binary(number)[start:end]
def to_binary_representation(integer):
                                                    def indicator_function(registers):
                                                      return 1. / sum(2 ** -register for
  return '{0:b}'.format(integer)
                                                    register in registers)
def to_lsb_binary(integer):
  returnto_binary_representation(integer)[::-1]
                                                    def find_first_one_bit_index(lsb_binary):
                                                      return lsb_binary.index('1') + 1
def convert_to_base_10(value):
  return int(value, 2)
```

Example Implementation - Part II

```
def add(registers, b, value):
    x = compute_hash(value)
    j = convert_to_base_10(lsb_bit_range(x, 0, b)[::-1])
   w = lsb_bit_range(x, b, -1)
    rho = find_first_one_bit_index(w)
    changed = rho > registers[j]
    registers[j] = max(rho, registers[j])
    return changed
def count(registers):
    a m = 0.72134
    Z = indicator_function(registers)
    return a_m * (m ** 2) * Z
def merge(hll_1, hll_2):
    return map(max, hll_1, hll_2)
```

Example Implementation - Part III

```
def initialize_hll(b):
    m = 2 ** b
    return [-math.inf] * m
B = 11
hll_registers = initialize_hll(B)
for n in range(1, 10**7 + 1):
    if add(registers=hll_registers b=B, value=str(n)):
        cardinality = count(hll_registers)
        if n % 100 == 0:
           print(
               'n={}, hyperloglog count={}, error={}'.format(
               n, cardinality, abs(n - cardinality) / n)
```

HyperLogLog - Operations and Complexity

- Add
 - Time Complexity 0(1)
- Merge
 - HLL_{union}[j] = Max(HLL₁[j], HLL₂[j])
 - Dependent on register count: Complexity O(m)
- Count
 - Time Complexity O(m)
- Space
 - O(m)
 - Total size depends on the hashing function output range S
 - Register Size log₂ (S-bits log₂m)

HyperLogLog++ - Part I

- HyperLogLog weaknesses:
 - As cardinality approaches 2^L, where L is the number of hash output bits, number of collisions increases.
 - Zero cardinality for n << mlogm
- Improvements to the original HyperLogLog algorithm
 - Use a 64-bit hashing function, instead of 32-bit
 - Initialize registers to zero to avoid zero cardinality for n << mlogm
 - Large range correction no longer necessary due to the 64-bit range shift
 - Empirical bias correction
 - Sparse/dense representation
- Improved Accuracy for cardinalities larger that 2³²
- Small increase in memory requirements

HyperLogLog++ - Part II

Small Cardinality Estimation

- Linear Counting below 2.5m
- Empirical bias correction until 5m
 - Calculation of the mean difference of raw estimate minus the cardinality
 - Use <u>k-nearest neighbor interpolation</u>
 (200 cardinalities as interpolation points)

Sparse Representation

- Stores pairs (index, $\rho(w)$) with size threshold 6m bits
- Represented as sorted list of integers, by concatenating bit patterns:

- Variable-Length Encoding
- Difference Encoding
 - Store consecutive differences for the second element and so forth

Sliding HyperLogLog

- Problem: allow calculations over a sliding time window for unknown intervals
- Store a List of Possible Future Maxima for each register
- LPFM entries [Timestamp, R,]
 - R_i is the $\rho(w)$ value of the HyperLogLog algorithm.
 - Timestamp is the Unix epoch time (seconds)
- Requires approximately 5 additional bytes per LPFM element.
- Query: estimate cardinality given an interval [t w, t]
 - Retrieve all LPFM entries for which the timestamp is within the interval.
 - Maintain the maximum R, value for each LPFM.
 - Apply stochastic averaging on the computed maximum register values.
- Remove LPFM entries based on the timestamp as the window advances

iv. Implementations and Examples

Elasticsearch

- Elasticsearch Cardinality Aggregations
- Cardinality Aggregation uses HyperLogLog++ (based on the Google paper).

Elasticsearch

- Configurable precision with the precision_threshold option
- Increasing the threshold requires more memory, in order to improve accuracy.
- The threshold defines a unique count below which counts are expected to be close to accurate.
 - Maximum supported value is 40000, with a default value of 3000.
 - Memory: Threshold * 8 bytes
- Pre-computed hashes:
 - Value hashing can be performed using an ES plugin.
 - Beneficial for large string and high-cardinality fields.
 - Field hash value is stored in the document.
 - Aggregation is applied on the hash field.

Redis - Part I

- Redis is an in-memory data structure store
- HyperLogLog structures are available since version 2.8.9^[10]
- Largely based on HyperLogLog++ with further improvements
- **Sparse representation**, optimized for storing large number of registers set to zero:
 - Lossless compression with run-length encoding
- Dense representation:
 - Redis string of 12288 bytes in order to store **16384 6-bit counters**
- 6-bit registers
 - With 64-bit hash values ($m = 2^{14}$) 50 bits remain that require 2^6 storage bits
- Maximum memory is **12 kB**, standard error **0.81%** (since 16384 registers are used)
- 64-bit hash function (MurmurHash2)

Redis - Part II

- Introduced curve fitting resulting in a four-order polynomial for error correction in range 40960-72000
 - Linear counting:

```
Cardinality = m * ln(m /
total-registers-with-initialization-value)
```

- Finally using τ raw estimator (Ertl 2017)
- PFADD key element [element ...]
 - Adds the given elements to the HLL structure.
 - Returns 1 if any of the internal registers was modified.
- <u>PFCOUNT</u> key [key]
 - Returns the approximated cardinality of the specified HLL or the combined cardinality by merging multiple HLL structures.
- PFMERGE destkey source-key [source-key ...]
 - Merge multiple HLL structures to a new one.

Druid

- Column-oriented, distributed data store
 - High performance analytics data store for event-driven data
- Cardinality Aggregator
- Fast, Cheap, and 98% Right: Cardinality Estimation for Big Data
 - Murmur 128 hashing function
 - Stores intermediate HLL format in a column
- How We Scaled HyperLogLog: Three Real-World Optimizations
 - Register compaction:
 - Offset + positive differences in the registers
 - Faster cardinality calculations was to use lookups for register values
 - Dense/sparse storage

Libraries

PostgreSQL extension adding HLL as native datatype: https://github.com/citusdata/postgresql-hll

C#: https://github.com/Microsoft/CardinalityEstimation

Golang: https://github.com/axiomhq/hyperloglog

Python: https://github.com/ekzhu/datasketch

Erlang: https://github.com/GameAnalytics/hyper

References

- [1] <u>HyperLogLog in Practice: Algorithmic Engineering of a State of The Art Cardinality Estimation Algorithm</u>
- [2] Probabilistic Counting Algorithms for Data Base Applications
- [3] Streaming Algorithm
- [4] <u>Elasticsearch: The Definitive Guide [2.x] » Aggregations » Approximate Aggregations »</u> <u>Finding Distinct Counts</u>
- [5] Approximate counting algorithm
- [6] How can sliding HyperLogLog and EWMA detect port scan attacks in IP traffic?
- [7] Sliding HyperLogLog: Estimating cardinality in a data stream
- [8] HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm
- [9] Order statistics and estimating cardinalities of massive data sets
- [10] Redis new data structure: HyperLogLog