

B.Sc. Degree Program Faculty of Applied Sciences University of Sri Jayewardenepura

Course Title	Regression Analysis
Course Code	AMT 325 2.0
Credit Value	02
Status	Optional
Year / Level	Year 3
Semester	2
Theory: Practical: Independent Learning	28: 20: 52
Other: Pre-requisite Course/s	AMT 212 2.2 Mathematical Statistics II

Aim of the Course:

To introduce the concepts of regression analysis (both simple and multiple) including parameter estimation, inference on regression parameters, diagnostics methods, goodness-of-fit test and how to handle qualitative predictions.

Intended Learning Outcomes:

On the successful completion of this course, the student should be able to:

- 1) identify problems that need regression models;
- 2) formulate regression models;
- 3) apply regression methods to solve problems;
- 4) analyze the appropriateness of regression methods and
- 5) implement regression methods via statistical software (Minitab).

Course Content:

Introduction to Regression; Applications of regression analysis; Steps in regression analysis; Simple Linear Regression; Parameter estimation; Interpretation of regression coefficients; Properties of least squares estimators; test of hypotheses; Confidence intervals; Predictions; Measuring the quality of fit; Regression line through the origin;

Model Adequacy Checking; Residual analysis;

Multiple Linear Regression; Matrix notations; Parameter estimation; Interpretation of regression coefficients; Test of hypotheses; Confidence intervals/region; Prediction; Introduction to Multicollineartiy; Qualitative Variables as Predictors;

Introduction to Variable Selection Procedures; Form a model using Minitab statistical package.

Scope and Schedule of Teaching - Learning Activities:

Session No.		No. of Hrs.			- Teaching	Assessment	ILO
	Topic / Sub Topic	T	P	IL	Method	Criteria	Alignmen t
1	1 Introduction to Regression 1.1 Introduction 1.2 Regression vs Correlation 1.3 Applications of regression	2	0	4	Lecture / Handout 1		-
2	1.4 Uses of Regression 2 Simple Linear Regression 2.1 SLR model		0	4	Lecture / Handout 1-2		-
3	2.2 Parameter Estimation2.3 Important Features of the Model2.4 Meaning of Regression Parameters	2	0	2	Lecture / Handout 2		1,2,3
4	 2.5 Point estimators 2.6 Example 3 Normal Error Regression Model 3.1 Methods of Maximum Likelihood 	2	2	2	Lecture / Handout 2-3		1,2,3,4
5	3.2 Sampling Distributions3.3 CI for Regression Parameters3.4 Hypothesis testing	2	2	4	Lecture / Handout 3		1,2,3,5
6	3.5 FA 1 4 Prediction of New Observation 4.1 Interval Estimation of E[Yh] 4.2 Sampling distribution of h	2	2	2	Lecture / Handout 3-4	10% of final mark	1,2,3,4,5
7	4.3 Prediction of New Observation 5 ANOVA approach to Regression 5.1 Partitioning of Total Sum of Squares 5.2 ANOVA Table	2	0	2	Lecture / Handout 4-5		1,2,3,4
8	5.3 Coefficient of Determination5.4 Example6 Model Diagnostic6.1 Residuals	2	2	4	Lecture / Handout 5-6		1,2,3,4,5
9	 6.2 Assumption Violation 6.3 Outliers 7 Lack of fit 7.1 Introduction 7.2 Notation 	2	4	4	Lecture / Handout 6-7		1,2,3,4,5
10	7.3 LoF test 8 Matrix Approach to SLR 8.1 Matrix form of SLR	2	0	4	Lecture / Handout 7-8		1,2,3,4
11	8.2 Matrix derivatives 8.3 ANOVA 8.4 FA 2	2	0	4	Lecture / Handout 8	10 % of final mark	1,2,3,4
12	8.3 Fitted Values and Residuals9 Multiple Linear Regression9.1 Model with p Predictors	2	0	4	Lecture / Handout 8-9		1,2,3,4

13	9.2 Matrix approach9.3 ANOVA Result9.4 Inference about Parameters	2	2	4	Lecture / Handout 9		1,2,3,4,5
14	10 Regression with Qualitative variables 6.1 Indicator Variable 6.2 Models with Indicators	2	0	4	Lecture / Handout 10		1,2,3,4
15	11 Practical session	0	6	4	Lecture / Lab	10% of final mark	1,2,3,4,5
	Total	28	20	52			

Linking Program Outcomes with ILOs:

Program Learning Outcomes:

- 1. Demonstrate competency in theoretical knowledge and practical and/or technical skills in respective subject areas.
- 2. Communicate efficiently and effectively in the respective subject areas using written, oral, visual and/or electronic forms.
- 3. Facilitate, and participate as an empathetic and emotionally intelligent team player with leadership qualities, in a group, diverse team or organization.
- 4. Apply subject based knowledge and skills creatively in making appropriate judgments in changing situations.
- 5. Integrate creativity and innovation to achieve entrepreneurial competencies.
- 6. Implement solutions in keeping with ethical, societal and environmental norms and need for sustainable development.
- 7. Secure life goals through lifelong learning with the aim of strengthening professional skills, and ensuring the betterment of the community.

	PLO 1	PLO 2	PLO 3	PLO 4	PLO 5	PLO 6	PLO 7
ILO 1	***	*		*			**
ILO 2	***	**		*			**
ILO 3	***	**		**		*	**
ILO 4	***	**		**			**
ILO 5	***	**	*	**	*	*	***

^{*** -} Strongly Linked; ** - Medium linked; * Weakly linked

Mode of Assessment:

Formative Assessment (FA): FA1 10% + FA2 10%: Computer Practicals 10% = 30% of Total Marks

Summative Assessment (SA): End Semester Examination: 2-hour paper covering = 70% of Total Marks

References

Introduction to Linear Regression Analysis – Douglas C. Montgomery and Elizabeth A. Peak

Applied Linear Statistical Models - John Neter, Micheal H. Kutner, Chris J. Nachtsheim, William Li