Tutorial 3

17. If $f:(a,b)\to\mathbb{R}$ is differentiable at $c\in(a,b)$, then show that

$$\lim_{h \to 0^+} \frac{f(c+h) - f(c-h)}{2h}$$

exists and equals f'(c). Is the converse true? [Hint: Consider f(x) = |x|.]

Guven,

$$\int_{h\to 0}^{f(c+h)-f(c)} = f'(c)$$

Hence,

$$1 + \frac{f(c+h) - f(c)}{h \rightarrow 0^{\dagger}} = f'(c)$$
 (1)

and

$$\int_{\Lambda \to 0^{-}} f(c+h) - f(c) = f(c)$$

$$\Rightarrow lt f(c) - f(c-h) = f(c) (2)$$

$$h \to 0^{\dagger}$$

Adding (1) and (2),

$$\int_{h \to 0}^{h} \frac{f(c+h) - f(c-h)}{h} = 2f'(c)$$

For converse, consider
$$f(n) = |n|$$
 at $c = 0$

lt $f(h) - f(-h) = 0$ but $f'(n)$ does not enist at

- 4. Consider the cubic $f(x) = x^3 + px + q$, where p and q are real numbers. If f(x) has three distinct real roots, show that $4p^3 + 27q^2 < 0$ by proving the following:
 - (i) p < 0.
 - (ii) f has a local maximum/minimum at $\pm \sqrt{-p/3}$.
 - (iii) The maximum/minimum values are of opposite signs.

$$f'(n) = 3n^2 + p = 0 \Rightarrow n = \sqrt{\frac{1}{3}}$$

Hunce $p < 0$.

(ii) Since
$$f'(n) = 0$$
 at $n = \pm \sqrt{\frac{1}{3}}$, we need to check $f''(n)$ for man/min.

$$f''(n) = 6n \Rightarrow f''(\frac{1}{3}) > 0$$

Hence man at
$$-\frac{1}{3}$$
 and min at $-\frac{1}{3}$

$$(iii)$$
 $f(-\sqrt{-\frac{1}{3}}) = 0 + \sqrt{-\frac{4}{27}}$

$$f\left(-\frac{1}{3}\right) = 9 - \left(-\frac{4}{27}\right)$$

- 13. Let $f, g : \mathbb{R} \to \mathbb{R}$ satisfy $f(x) \geq 0$ and $g(x) \geq 0$ for all $x \in \mathbb{R}$. Define h(x) = f(x)g(x) for $x \in \mathbb{R}$. Which of the following statements are true? Why?
 - (i) If f and g have a local maximum at x = c, then so does h.
 - (ii) If f and g have a point of inflection at x = c, then so does h.

(i) Given
$$\exists s_1 \quad s.t \quad \forall \quad \pi \in (C-s_1, C+s_2)$$

 $f(\pi) \leq f(c)$

Given
$$\exists s_2$$
 s.t $\forall n \in (c-s_1, c+s_2)$
 $g(n) \leq g(c)$

let
$$\delta = \min(\delta_1, \delta_2)$$
.

$$h(n) = f(n) g(n) \leq f(c)g(c) = h(c)$$

$$h(n) \leq h(c)$$

Hence C is local man.

$$(ii) f(n) = g(n) = 1 + \sin n$$

is counter enample.

Exercise 1. Write down the Taylor series for (i) $\cos x$, (ii) $\arctan x$ about the point 0. Write down a precise remainder term $R_n(x)$ in each case.

$$p(n) = \frac{f''(0)}{\ln n} \chi^n; \quad R_n(n) = \frac{f'''(1)}{\ln n} (n-n)$$

$$(1) \quad f(x) = 105 \chi$$

$$f''(0) = (-1)^{\frac{n}{2}} \quad \text{when} \quad n = 2k$$

$$0 \quad \text{else}$$

$$\Rightarrow p(x) = \frac{f''(0)}{\ln n} \chi^n; \quad R_n(n) = \frac{f''''(1)}{\ln n} (n-n)$$

$$R_n(n) = write$$

$$(ii) \begin{cases} d + \tan^{4} n \\ dn \end{cases} = \begin{cases} (1 - n^{2} + n^{4} - n^{2} - \dots) dn \end{cases}$$

$$tan^{4} n = \begin{cases} (1 - n^{2} + n^{4} - n^{2} - \dots) dn \end{cases}$$

note that since p(n) is a polynomial and $p(n) = tan^{+}(n)$, it is Taylor series of $tan^{+}(n)$ [for $n^{2} < 1$]