

Neural Networks, Part 1

Data Visualization and Data Mining
Talk 1 by Jana Cavojska

Instructors:

Prof. Dr. Agnès Voisard Daniel Kressner

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

1. What are Neural Networks?

- classifiers:
 Input data → Class of input data
- consist of layers of neurons(perceptrons)
- different architectures for different types of problems

How did it all start?

Geoffrey E. Hinton's 2007 paper:

"Learning multiple layers of Representation"

In:

Trends in Cognitive Sciences
- TRENDS COGN SCI,
vol. 11, no. 10, pp. 428-434,
2007

Neuron

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

A Single Perceptron

Logical Operators

Logical Operators

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

Perceptron Training?

Perceptron Training

$$W_i \leftarrow W_i + \Delta W_i$$

where

Linear Separability

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

XOR

Multiple Neurons

Example of a Simple Network

Neural Network Model

Inputs

Independent variables

Weights

Hidden Layer

Weights

Dependent variable

Prediction

Being creative about Linear Separability

Being creative about Linear Separability

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

Gradient Descent

Gradient Descent

Using Matrices

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,R} \\ w_{2,1} & w_{2,2} & \dots & w_{2,R} \\ w_{S,1} & w_{S,2} & \dots & w_{S,R} \end{bmatrix}$$

Problem: Overfitting

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

hidden layer 1 hidden layer 2

Complexity Reduction

Complexity Reduction

Max-Pooling

Architecture examples

- LeNet (1990's)

- AlexNet (2012)

- ZF Net (2013)

- GoogLeNet (2014)

- VGGNet (2014)

Overview

- 1. What are neural networks?
- 2. A single perceptron
- 3. Perceptron training
- 4. A simple network
- 5. Learning via backpropagation
- 6. Convolutional neural networks
- 7. 2nd talk: Visualization

Why visualize Neural Networks?

- because they are too difficult to understand otherwise

Thanks!

Quellen

- [1] Bogdan M. Wilamowski. "Neural Network Architectures and Learning". In: Conference: Industrial Technology, 2003 IEEE International Conference on, Volume: 1
- [2] "Vertiefung: Neural Networks for Secondary Structure Prediction". URL: http://medicalbioinformatics.de/downloads/lectures/Algorithmische_BioInformatik/WS 13-14/algbioinf_ws13-14_woche9_2.pdf.
- [3] "Vertiefung: Neural Networks for Secondary Structure Prediction, Prediction Methods for Special Secondary Structures". URL:
- http://medicalbioinformatics.de/downloads/lectures/Algorithmische_BioInformatik/WS 13-14/algbioinf_ws13-14_woche10_1.pdf
- [4] "Convolutional Neural Networks (CNNs / ConvNets)". URL:
- http://cs231n.github.io/convolutional-networks/
- [5] "Chapter 15: Visual Processing: Cortical Pathways". URL:
- http://neuroscience.uth.tmc.edu/s2/chapter15.html.
- [6] "Neural Network Architectures". URL:
- http://de.mathworks.com/help/nnet/ug/neural-network-architectures.html
- (Alle Weblinks zuletzt abgerufen am 18.11.2015 um 14:27 Uhr)