Pratique de l'apprentissage statistique 8. SVM

V. Lefieux

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Généralités I

- ▶ Les SVM (Support Vector Machine) (en français : séparateurs à vaste marge ou machines à vecteurs supports) sont issus de la théorie de Vapnik-Tchervonenkis (dénommée théorie VC) : (Cortes et Vapnik, 1995), (Vapnik, 1995).
- L'objectif historique des SVM est de classifier une variable binaire via un hyperplan de marge maximale, les SVM constituent une généralisation des classifieurs linéaires.
- Les SVM intègrent le contrôle de la complexité, ce qu'on peut appréhender via la dimension de Vapnik-Tchervonenkis qui est un indicateur du pouvoir séparateur d'une famille de fonctions.
- C'est une méthode souvent utilisée en pratique au vu des bons résultats obtenus.

Généralités II

- ➤ On parle de marge (hard margin) lorsque les données sont linéairement séparables et de marge souple (soft margin) lorsque les données ne le sont pas.
- ▶ Dans le cas où les données ne sont pas linéairement séparables, on utilise ce qu'on appelle l'astuce du noyau (kernel trick).
- ▶ Il existe également les SVR dans le cadre de la régression.

Données considérées

On dispose d'un échantillon de (X, Y) :

$$\mathcal{D}_n = (X_i, Y_i)_{i \in \{1, \dots, n\}}.$$

On note:

$$d_n = (x_i, y_i)_{i \in \{1, ..., n\}}$$
.

- On considère dans la suite que :
 - X ∈ ℝ^p :
 Toutes les covariables sont considérés quantitatives.

 Mais il est également possible de considérer des covariables qualitatives.
 - ▶ $Y \in \{-1,1\}$:
 On se place dans le cadre d'une classification supervisée binaire

Généralités sur les hyperplans I

D Dans \mathbb{R}^p , un hyperplan \mathcal{H} admet comme équation :

$$w_0 + w_1 x_1 + \ldots + w_p x_p = 0$$
,

ce qu'on peut noter également :

$$w_0 + \langle w, x \rangle = 0$$

ou encore :

$$w_0 + w^{\top} x = 0$$

où
$$w = (w_1, \dots, w_p)^{\top} \in \mathbb{R}^p$$
 et $x = (x_1, \dots, x_p)^{\top} \in \mathbb{R}^p$.

- w est le vecteur normal de l'hyperplan \mathcal{H} .
- ▶ Par exemple : un hyperplan dans \mathbb{R}^2 est une droite, un hyperplan dans \mathbb{R}^3 est un plan.

Généralités sur les hyperplans II

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Données linéairement séparables I

Données linéairement séparables II

▶ On dit que $(x_1, y_1), \dots, (x_n, y_n)$ sont linéairement séparables s'il existe $(w_0, w) \in \mathbb{R} \times \mathbb{R}^d$ tels que :

$$\forall i \in \{1,\ldots,n\} : y_i = \begin{cases} 1 & \text{si } w_0 + w^\top x_i > 0 \\ -1 & \text{si } w_0 + w^\top x_i < 0 \end{cases}.$$

Cette propriété est équivalente à :

$$y_i\left(w_0+w^\top x\right)>0$$
.

Données linéairement séparables III

Le choix de l'hyperplan séparateur

▶ Il existe une infinité d'hyperplans séparateurs possibles :

- ▶ Vapnik a proposé de maximiser la marge, soit la distance minimale entre les 2 classes déterminées par l'hyperplan séparateur.
- Les points pour lesquels la distance minimale est observée sont appelés vecteurs supports.

Marge et vecteurs supports

Formalisation du problème I

➤ On pose comme contrainte que les vecteurs supports sont situés sur les hyperplans canoniques d'équations :

$$\begin{cases} w_0 + w^\top x = -1 \\ w_0 + w^\top x = 1 \end{cases}.$$

La marge vaut dans ce cas :

$$\frac{2}{\|w\|}$$

Formalisation du problème II

Formalisation du problème III

▶ On obtient donc le problème suivant :

$$\begin{aligned} & \max_{w_0, w} \; \frac{2}{\|w\|} \\ & \text{sc} \quad \forall i \in \{1, \dots, n\} : y_i \left(w_0 + w^\top x_i\right) \geq 1 \; . \end{aligned}$$

▶ Dans la suite, on considère le problème primal équivalent :

$$\begin{split} & \min_{w_0, w} \; \frac{1}{2} \, \|w\|^2 \\ \text{sc} & \forall i \in \{1, \dots, n\} : y_i \left(w_0 + w^\top x_i\right) \geq 1 \; . \end{split}$$

- Le carré et la division par 2 ont comme seul objectif d'améliorer la lisibilité des résultats obtenus.
- ▶ Il s'agit d'un programme d'optimisation quadratique classique.

Résolution du problème I

On considère le lagrangien du problème primal :

$$\mathcal{L}(w_0, w; \alpha) = \frac{1}{2} \|w\|^2 - \sum_{i=1}^n \alpha_i \left[y_i \left(w_0 + w^\top x_i \right) - 1 \right]$$

où
$$\alpha = (\alpha_1, \ldots, \alpha_n)^{\top}$$
.

▶ Le lagrangien doit être minimisé par rapport à w_0 et w, et maximisé par rapport à α .

Résolution du problème II

- Les conditions de Karush-Kuhn-Tucker (conditions KKT) sont les conditions que doivent vérifier un problème d'optimisation afin que la solution soit optimale.
- Les conditions KKT du problème primal sont :

$$\frac{\partial \mathcal{L}(w_0, w, \alpha)}{\partial w_0} = 0 ,$$

$$\forall j \in \{1, \dots, p\} : \frac{\partial \mathcal{L}(w_0, w, \alpha)}{\partial w_j} = 0 ,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w, \alpha)}{\partial \alpha_i} = 0 ,$$

$$\forall i \in \{1, \dots, n\} : \alpha_i \ge 0 .$$

Résolution du problème III

On obtient :

$$w = \sum_{i=1}^{n} \alpha_i x_i y_i , \qquad (1)$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0 , \qquad (2)$$

$$\forall i \in \{1,\ldots,n\} : \alpha_i \left[y_i \left(w_0 + w^\top x_i \right) - 1 \right] = 0 , \quad (3)$$

$$\forall i \in \{1, \dots, n\} : \alpha_i \ge 0 . \tag{4}$$

L'équation (3) implique que $\alpha_i = 0$ pour tous les points qui ne sont pas des vecteurs supports, donc tels que :

$$y_i \left(w_0 + w^\top x_i \right) - 1 > 0$$
.

Donc, seuls les vecteurs supports participent à la définition de l'hyperplan optimal, ce qui diminue la complexité du problème.

Résolution du problème IV

► En substituant les équations (1) et (2) dans le lagrangien du problème primal, on obtient le lagrangien du problème dual :

$$\mathcal{L}_{dual}(\alpha) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \alpha_j y_j y_j x_i^{\top} x_j.$$

▶ On obtient au final le problème dual suivant :

$$\begin{aligned} \max_{\alpha} \ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \, \alpha_{j} \, y_{i} \, y_{j} \, x_{i}^{\top} \, x_{j} \\ \text{sc} \quad \forall i \in \{1, \dots, n\} : \alpha_{i} \geq 0 \ , \\ \sum_{i=1}^{n} \alpha_{i} \, y_{i} = 0 \ . \end{aligned}$$

Résolution du problème V

Les conditions KKT du problème dual sont :

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}_{dual}(\alpha_i)}{\partial \alpha} = 0 ,$$

$$\forall i \in \{1, \dots, n\} : \alpha_i \ge 0 ,$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0 .$$

► Soit encore :

$$\forall i \in \{1,\ldots,n\} : \alpha_i^{\star} \left[y_i \left(w_0^{\star} + w^{\star \top} x_i \right) - 1 \right] = 0 , \quad (5)$$

$$\forall i \in \{1,\ldots,n\} : \alpha_i \geq 0 , \qquad (6)$$

$$\sum_{i=1}^{n} \alpha_i \, y_i = 0 \ . \tag{7}$$

Résolution du problème VI

- Il existe de nombreux algorithmes de résolution pour ce problème d'optimisation quadratique classique, parmi lesquels SMO, SimpleSVM et LASVM.
- La résolution s'effectue itérativement :
 - 1. On obtient la solution $(\alpha_1^{\star}, \dots, \alpha_n^{\star})$ du problème dual.
 - 2. On en déduit $w^* = \sum_{i=1}^n \alpha_i^* x_i y_i$.
 - 3. On détermine w_0^* en résolvant l'équation (5) (une des conditions KKT du problème dual) :

$$\alpha_i^{\star} \left[y_i \left(w_0^{\star} + w^{\star \top} x_i \right) - 1 \right] = 0$$

pour un α_i^* non nul.

Règle de classification

La règle de classification obtenue est :

$$\forall x \in \mathbb{R}^p : g(x) = egin{cases} 1 & ext{si } w_0^\star + w^{\star \top} x > 0 \ -1 & ext{si } w_0^\star + w^{\star \top} x < 0 \end{cases}.$$

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Exemple non-séparable

Lever les contraintes I

- ▶ Il est rare d'être confronté à un problème linéairement séparable.
- ▶ On lève la contrainte en tolérant que :
 - certains points soient bien classés mais à l'intérieur de la zone définie par la marge,
 - certains points soient mal classés.

Lever les contraintes II

Un outil: les variables ressorts I

▶ On créé des variables ressorts (slack variables) $(\xi_1, ..., \xi_n)$ telles que :

$$y_i \left(w_0 + w^\top x_i \right) \ge 1 - \xi_i$$
.

- On peut distinguer les cas suivants :
 - ▶ $\xi_i \in]0,1]$: les points sont bien classés mais à l'intérieur (strictement) de la zone définie par la marge.
 - $\xi_i > 1$: les points sont mal classés.
 - $\xi_i = 0$: les points sont bien classés et à l'extérieur de la zone définie par la marge.
- L'enjeu est de ne pas pas avoir trop de variables ressorts non nulles (et lorsqu'elles le sont, qu'elles soient les plus faibles possibles).

Un outil : les variables ressorts II

Un nouveau problème I

On considérait le problème suivant :

$$\begin{split} & \min_{w_0, w} \; \frac{1}{2} \, \|w\|^2 \\ \text{sc} & \forall i \in \{1, \dots, n\} : y_i \left(w_0 + w^\top x\right) \geq 1 \; . \end{split}$$

Un nouveau problème II

On considère maintenant le problème suivant, avec $\xi = (\xi_1, \dots, \xi_n)^{\top}$:

$$\min_{w_0, w, \xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$
sc $\forall i \in \{1, \dots, n\} : y_i \left(w_0 + w^\top x\right) \ge 1 - \xi_i$,
$$\forall i \in \{1, \dots, n\} : \xi_i \ge 0$$
.

Choix de l'hyper-paramètre C

- L'hyper-paramètre C contrôle de le compromis entre le nombre d'erreurs de classification et le niveau de la marge.
- Le cas linéairement séparable correspond à une valeur *C* infinie.
- ▶ On choisit l'hyper-paramètre C par validation croisée.

Résolution du problème I

On considérait le lagrangien du problème primal :

$$\mathcal{L}(w_0, w; \alpha) = \frac{1}{2} \|w\|^2$$
$$-\sum_{i=1}^n \alpha_i \left[y_i \left(w_0 + w^\top x_i \right) - 1 \right]$$

où
$$\alpha = (\alpha_1, \dots, \alpha_n)^\top$$
.

Résolution du problème I

On considère maintenant le lagrangien du problème primal :

$$\mathcal{L}(w_0, w; \alpha, \beta) = \frac{1}{2} \|w\|^2 + C \sum_{i=1}^n \xi_i$$

$$- \sum_{i=1}^n \alpha_i \left[y_i \left(w_0 + w^\top x_i \right) - 1 + \xi_i \right]$$

$$- \sum_{i=1}^n \beta_i \xi_i$$

où
$$\alpha = (\alpha_1, \dots, \alpha_n)^{\top}$$
 et $\beta = (\beta_1, \dots, \beta_n)^{\top}$.

Résolution du problème II

On obtient (conditions KKT) :

$$w = \sum_{i=1}^{n} \alpha_i x_i y_i , \qquad (1)$$

$$\sum_{i=1}^{n} \alpha_i y_i = 0 , \qquad (2)$$

$$\forall i \in \{1,\ldots,n\} : \alpha_i \left[y_i \left(w_0 + w^\top x_i \right) - 1 + \xi_i \right] = 0 , \quad (3)$$

$$\forall i \in \{1, \dots, n\} : C - \alpha_i - \beta_i = 0 , \qquad (4)$$

$$\forall i \in \{1, \dots, n\} : \alpha_i \ge 0 , \qquad (5)$$

$$\forall i \in \{1, \dots, n\} : \beta_i \ge 0 . \tag{6}$$

▶ Les équations (3) et (6) impliquent $\forall i \in \{1, ..., n\} : \alpha_i \leq C$.

Résolution du problème III

- La résolution s'effectue de manière analogue au cas linéairement séparable.
- On obtient des points :
 - vecteurs supports :
 - sur la frontière : $\xi_i^* = 0$ et $\alpha_i^* > 0$,
 - en dehors de la frontière : $\xi_i^* > 0$ et $\alpha_i^* = C$,
 - non vecteurs supports : $\xi_i^* = 0$ et $\alpha_i^* = 0$.

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Changer la dimension I

Changer la dimension II

Astuce du noyau

- Déterminer un classifieur linéaire dans l'espace des observations n'est pas toujours opportun. On espère que la séparation linéaire sera plus simple dans un nouvel espace.
- On « envoie » les observations (dans l'espace X) dans un nouvel espace X' : l'espace de représentation (feature space).
- ▶ On considère pour cela une fonction Φ définie sur \mathcal{X} et à valeurs dans \mathcal{X}' .
- ▶ Dans le problème d'optimisation des SVM, on retrouve les produits $x_i^{\top} x_j$ dans l'espace des observations, donc des produits $\Phi(x_i)^{\top} \Phi(x_i)$ dans l'espace de représentation.
- Il n'est pas nécessaire de déterminer Φ, on utilisera des noyaux
 K tels que :

$$K(x_i, x_j) = \Phi(x_i)^{\top} \Phi(x_j)$$

pour i et j dans $\{1, \ldots, n\}$.

Retour au problème d'optimisation I

Dans le cas linéairement séparable, on devait résoudre le problème dual suivant dans l'espace des observations :

$$\begin{aligned} \max_{\alpha} \ \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \, \alpha_j \, y_i \, y_j \, x_i^\top \, x_j \\ \text{sc} \quad \forall i \in \{1, \dots, n\} : \alpha_i \geq 0 \ , \\ \sum_{i=1}^{n} \alpha_i y_i = 0 \ . \end{aligned}$$

Retour au problème d'optimisation II

Dans le cas linéairement séparable, on doit maintenant résoudre le problème dual suivant dans l'espace de représentation :

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \Phi (x_{i})^{\top} \Phi (x_{j})$$
sc $\forall i \in \{1, \dots, n\} : \alpha_{i} \geq 0$,
$$\sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$
.

Retour au problème d'optimisation III

Dans le cas linéairement séparable, on doit résoudre le problème dual suivant dans l'espace de représentation :

$$\begin{aligned} \max_{\alpha} \; \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \, \alpha_{j} \, y_{i} \, y_{j} \, \textit{K} \, \big(x_{i}, x_{j} \big) \\ \text{sc} \quad \forall i \in \{1, \dots, n\} : \alpha_{i} \geq 0 \; , \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \; . \end{aligned}$$

Noyau

Une fonction $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ est un noyau si et seulement si :

K est une fonction symétrique :

$$\forall (x, x') \in \mathcal{X} \times \mathcal{X} : K(x, x') = K(x', x)$$
.

K est une fonction semi-définie positive :

$$\forall n \in \mathbb{N}^*, \forall (x_1, \ldots, x_n) \in \mathcal{X}^n, \forall (a_1, \ldots, a_n) \in \mathbb{R}^n$$
:

$$\sum_{i=1}^n \sum_{i=1}^n a_i a_j K(x_i, x_j) \geq 0.$$

Un exemple de noyau

▶ Pour une observation $x_i = (x_{i1}, x_{i2})^\top$, on considère la fonction suivante :

$$\Phi: \qquad \mathbb{R}^2 \qquad \rightarrow \quad \mathbb{R}^3$$
$$(x_{i1}, x_{i2})^\top \quad \mapsto \quad (x_{i1}^2, \sqrt{2} x_{i1} x_{i2}, x_{i2}^2)^\top$$

▶ On peut montrer que pour 2 observations x_i et x_i :

$$K(x_{i}, x_{j}) = \Phi(x_{i})^{\top} \Phi(x_{j})$$

$$= (x_{i1}x_{j1})^{2} + 2(x_{i1}x_{j1})(x_{i2}x_{j2}) + (x_{i2}x_{j2})^{2}$$

$$= (x_{i1}x_{j1} + x_{i2}x_{j2})^{2}$$

$$= (x_{i}^{\top}x_{j})^{2}.$$

Quelques noyaux (parmi bien d'autres)

► Noyau affine:

$$K(x_i, x_i) = x_i^{\top} x_i + c$$
.

► Noyau polynomial :

$$K(x_i, x_j) = (x_i^{\top} x_j + c)^d$$
.

► Noyau laplacien :

$$K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|}{\sigma}\right).$$

▶ Noyau gaussien (ou RBF : Radial Basis Function) :

$$K(x_i, x_j) = \exp\left(-\frac{\|x_i - x_j\|^2}{2\sigma^2}\right).$$

En pratique

On choisit:

- ► l'hyper-paramètre *C*,
- ► le noyau *K*,

par validation croisée.

Compléments

- ▶ Dans le cas où on dispose de K > 2 classes, on peut par exemple considérer K discriminations binaires « classe k » contre « classe autre que k » pour k ∈ {1,..., K}.
- ► Il est également possible d'utiliser ces méthodes pour la régression : on parle alors de SVR : (Drucker et collab., 1997), (Vapnik et collab., 1997).

Plan

Introduction

Cas linéairement séparable

Cas non-séparable

Astuce du noyau

Cas de la régression

Fonction de perte

Vapnik a introduit la fonction de perte suivante (ε -insensitive loss function) pour mesurer la qualité de l'ajustement de la fonction de régression m:

$$\ell(m(x), y) = \begin{cases} |m(x) - y| - \varepsilon & \text{si } |m(x) - y| > \varepsilon \\ 0 & \text{sinon} \end{cases}$$

où $\varepsilon > 0$.

Risque empirique

Le risque empirique vaut :

$$R_n(m) = \sum_{i=1}^n (|m(x_i) - y_i| - \varepsilon) = \sum_{i=1}^n (\xi_i + \xi_i^*)$$

$$\begin{cases} \xi_i = m(x_i) - \varepsilon - y_i & \text{si } y_i < m(x_i) - \varepsilon \\ 0 & \text{sinon} \end{cases}$$

$$\begin{cases} \xi_i^* = y_i - m(x_i) - \varepsilon & \text{si } y_i > m(x_i) + \varepsilon \\ 0 & \text{sinon} \end{cases}$$

Cas linéaire I

Cas linéaire II

On considère la fonction de régression :

$$\forall x \in \mathbb{R}^p : m_{w_0,w}(x) = w_0 + w^\top x$$
.

- On cherche w₀ et w de manière à minimiser la somme de la perte qui traduit l'ajustement et d'un terme de régularisation (assurant la parcimonie) ||w||².
- ▶ On considère le problème suivant :

$$\begin{aligned} & \min_{w_0, w} \; \frac{1}{2} \, \|w\|^2 + C \, \sum_{i=1}^n \left(\xi_i + \xi_i^\star \right) \\ & \text{sc} \quad \forall i \in \{1, \dots, n\} : m_{w_0, w} \left(x_i \right) - y_i \leq \varepsilon + \xi_i \; , \\ & \forall i \in \{1, \dots, n\} : y_i - m_{w_0, w} \left(x_i \right) \leq \varepsilon + \xi_i^\star \; , \\ & \forall i \in \{1, \dots, n\} : \xi_i \geq 0 \; , \\ & \forall i \in \{1, \dots, n\} : \xi_i^\star \geq 0 \; . \end{aligned}$$

Résolution du problème I

On considère le lagrangien du problème primal :

$$\mathcal{L}(w_{0}, w; \alpha, \alpha', \beta, \beta') = \frac{1}{2} \|w\|^{2} + C \sum_{i=1}^{n} (\xi_{i} + \xi'_{i})$$

$$- \sum_{i=1}^{n} \alpha_{i} (\varepsilon + \xi_{i} - w_{0} - w^{T} x_{i} + y_{i})$$

$$- \sum_{i=1}^{n} \alpha'_{i} (\varepsilon + \xi'_{i} - y_{i} + w_{0} + w^{T} x_{i})$$

$$- \sum_{i=1}^{n} \beta_{i} \xi_{i}$$

$$- \sum_{i=1}^{n} \beta'_{i} \xi'_{i}.$$

Résolution du problème II

Les conditions KKT sont :
$$\frac{\partial \mathcal{L}\left(w_0, w; \alpha, \alpha', \beta, \beta'\right)}{\partial w_0} = 0 ,$$

$$\forall j \in \{1, \dots, p\} : \frac{\partial \mathcal{L}\left(w_0, w; \alpha, \alpha', \beta, \beta'\right)}{\partial w_j} = 0 ,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}\left(w_0, w; \alpha, \alpha', \beta, \beta'\right)}{\partial \alpha_i} = 0 ,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}\left(w_0, w; \alpha, \alpha', \beta, \beta'\right)}{\partial \alpha_i} = 0 ,$$

 $\forall i \in \{1,\ldots,n\}: \beta_i > 0$. $\forall i \in \{1,\ldots,n\}: \beta_i' > 0$.

$$\forall i \in \{1, \dots, n\} : \frac{\partial \alpha_i}{\partial \alpha_i} = 0,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \alpha'_i} = 0,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \beta_i} =$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \beta_i} =$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \beta_i'} =$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \beta_i} = 0,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \beta_i} = 0,$$

$$\forall i \in \{1, \dots, n\} : \frac{\partial \mathcal{L}(w_0, w; \alpha, \alpha', \beta, \beta')}{\partial \beta_i'} = 0,$$

$$\forall i \in \{1, \dots, n\} : \alpha_i \ge 0,$$

$$\forall i \in \{1, \dots, n\} : \alpha_i' \ge 0.$$

Résolution du problème III

On obtient:

$$\sum_{i=1}^{n} (\alpha'_{i} - \alpha_{i}) = 0 , \qquad (1)$$

$$\sum_{i=1}^{n} (\alpha'_{i} - \alpha_{i}) x_{i} = w , \qquad (2)$$

$$\forall i \in \{1, \dots, n\} : \alpha_{i} = C - \beta_{i} , \qquad (3)$$

$$\forall i \in \{1, \dots, n\} : \alpha_{i}' = C - \beta'_{i} , \qquad (4)$$

$$\forall i \in \{1, \dots, n\} : \alpha_{i} \ge 0 , \qquad (5)$$

$$\forall i \in \{1, \dots, n\} : \alpha'_{i} \ge 0 , \qquad (6)$$

$$\forall i \in \{1, \dots, n\} : \beta_{i} \ge 0 , \qquad (7)$$

$$\forall i \in \{1, \dots, n\} : \beta'_{i} \ge 0 . \qquad (8)$$

Résolution du problème IV

- La résolution s'effectue de manière analogue au cas linéairement séparable :
 - On résout les conditions KKT du problème primal.
 - On en déduit le problème dual.
 - On résout le problème dual (via les conditions KKT).
- La résolution du problème dual conduit à la solution :

$$w^* = \sum_{i=1}^n \left(\alpha_i'^* - \alpha_i^* \right) x_i .$$

On peut là-encore utiliser travailler dans un espace de représentation via un noyau.

Choix des hyper-paramètres ε et C

- ▶ L'hyper-paramètre ε contrôle la largeur du « tube » : plus ε est important, moins on a de vecteurs support et plus lisse est l'estimation.
- L'hyper-paramètre C contrôle de le compromis entre l'erreur d'ajustement et le niveau de la marge. On le choisit par validation croisée.

Le coin R

On peut utiliser plusieurs packages, parmi lesquels :

- ► Le package e1071 :
 - ► La fonction de base est svm.
 - L'option kernel permet de choisir le noyau.
 - L'option cost correspond à l'hyper-paramètre C.
- Le package kernlab qui offre un choix plus large de noyaux :
 - La fonction de base est ksvm.
 - L'option kernel permet de choisir le noyau.
 - L'option C correspond à l'hyper-paramètre C.
- Le package caret :
 - La fonction de base est train.
 - On utilise une des options correspondant aux SVM, par exemple :
 - method="svmLinear",
 - ▶ method="svmPoly",degree=2.

Références I

- Boyd, S. et L. Vandenberghe. 2003, *Convex optimization*, Cambridge University Press.
- Cortes, C. et V. N. Vapnik. 1995, «Support-vector networks», *Machine Learning*, vol. 20, n° 3, p. 273–297.
- Drucker, H., C. J. Burges, L. Kaufman, A. Smola et V. N. Vapnik. 1997, *Advances in Neural Information Processing Systems*, vol. 9, chap. Support vector regression machines, MIT Press, p. 155–161.
- Schölkopf, B. et A. J. Smola. 2001, Learning with Kernels. Support vector machines, regularization, optimization, and beyond, MIT Press.
- Vapnik, V. N. 1995, *The nature of statistical learning theory*, Springer.

Références II

Vapnik, V. N., S. E. Golowich et A. Smola. 1997, *Advances in Neural Information Processing Systems*, vol. 9, chap. Support vector method for function approximation, regression estimation, and signal processing, MIT Press, p. 281–287.