CLAIMS

1. An aromatic silane compound having formula (I):

540

5

10

15

20

 R_1 R_2 OR_3 OR_4 OR_4 OR_4

wherein

 R_1 is selected from the group consisting of linear or branched C_{1-26} alkyl, C_{2-26} alkenyl, C_{1-26} alkoxy, C_{2-26} alkoxyalkyl, C_{7-26} arylalkyl, C_{3-26} cycloalkyl and C_{4-26} cycloalkoxy groups, optionally containing one or more halogen atoms;

 R_2 is an aromatic ring having at least one substituent in the ortho position selected from C_{1-10} hydrocarbon groups, and

 R_3 and R_4 , the same or different from each other, are selected from the group consisting of linear or branched C_{1-10} alkyl and C_{3-10} cycloalkyl groups.

- 2. The aromatic silane compound of claim 1, wherein R_1 is selected from the group consisting of linear or branched C_{1-18} alkyl and C_{3-18} cycloalkyl groups.
- 3. The aromatic silane compound of claim 2, wherein R_1 is selected from the group consisting of linear C_{1-5} alkyl and branched C_{3-8} alkyl groups.
- 4. The aromatic silane compound of claim 1, wherein R₂ is selected from the group consisting of mono-substituted phenyl, di-substituted phenyl and mono-substituted naphthyl.
- 5. The aromatic silane compound of claim 1, wherein R_3 and R_4 are selected from the group consisting of linear or branched C_{1-8} alkyl and C_{3-8} cycloalkyl groups.
 - 6. The aromatic silane compound of claim 5, wherein R₃ and R₄ are methyl or ethyl.
 - 7. A catalyst system for the polymerization of olefins comprising:
 - (A) an aromatic silane compound having formula (I):

ີ **6^**/ 25

 R_1 R_2 OR_3 R_1 OR_4 OR_4 OR_4

wherein

 R_1 is selected from the group consisting of linear or branched C_{1-26} alkyl, C_{2-26} alkenyl, C_{1-26} alkoxy, C_{2-26} alkoxyalkyl, C_{7-26} arylalkyl, C_{3-26} cycloalkyl and C_{4-26} cycloalkoxy groups, optionally containing one or more halogen atoms,

R₂ is an aromatic ring having at least one substituent in the ortho position; and

 R_3 and R_4 , the same or different from each other, are selected from the group consisting of linear or branched C_{1-10} alkyl and C_{3-10} cycloalkyl groups;

(B) an aluminum alkyl compound; and

5

15

20

- (C) a solid catalyst component comprising Mg, Ti, halogen and an electron donor compound.
- 10 8. The catalyst system of claim 7 wherein, in said aromatic silane compound (A), R₁ is selected from the group consisting of linear or branched C₁₋₁₈ alkyl, C₁₋₁₈ alkoxyl and C₃₋₁₈ cycloalkyl groups.
 - 9. The catalyst system of claim 8, wherein R₁ is selected from the group consisting of linear C₁₋₅ alkyl and branched C₃₋₈ alkyl groups.
 - The catalyst system of claim 7 wherein, in said aromatic silane compound (A), R_2 is selected from the group consisting of mono-substituted phenyl, di-substituted phenyl and mono-substituted naphthyl, and said substituent in the ortho position is selected from the group consisting of linear or branched C_{1-10} alkyl and C_{1-10} alkoxy groups.
 - 11. The catalyst system of claim 7 wherein, in said aromatic silane compound (A), R₃ and R₄ are selected from the group consisting of linear or branched C₁₋₈ alkyl and C₃₋₈ cycloalkyl groups.
 - 12. The catalyst system of claim 11, wherein R_3 and R_4 are methyl or ethyl.
 - 13. The catalyst system of claim 7, wherein said solid component (C) comprises a titanium compound having at least one titanium-halogen bond and an internal electron donor, both supported on an active magnesium halide.
- The catalyst system of claim 13, wherein said solid component (C) comprises the reaction product of titanium tetrachloride, active magnesium chloride and an internal electron donor.

50 B 3

15. A process for the polymerization of alpha-olefins comprising polymerizing propylene in the presence of the catalyst system as described in claim 7, to produce a polyolefin having a stereoblock content of from about 7 to about 25%.