

(Translation)

Case: Japanese Utility Model Laid-Open Publication No.5-25325

Title: Piezoelectric Liquid-Level Sensor

Claim:

1. A piezoelectric liquid-level sensor comprising:
 - a protective tube;
 - a vibration plate fluid-tightly disposed on a lower end opening of the protective tube, with one surface of the vibration plate being exposed outside; and
 - a liquid sensing part having a piezoelectric element applied to an inner surface of the vibration plate;
 - whereby a presence of liquid is detected by vibrating the piezoelectric element when the exposed outer surface of the vibration plate is not in contact with liquid, wherein
 - the protective tube is bent such that the liquid sensing part is located at a given position.

2. A piezoelectric liquid-level sensor comprising:
 - a protective tube;
 - a vibration plate fluid-tightly disposed on a lower end opening of the protective tube, with one surface of the vibration plate being exposed outside; and
 - a liquid sensing part having a piezoelectric element applied to an inner surface of the vibration plate;
 - whereby a presence of liquid is detected by vibrating the piezoelectric element when the exposed outer surface of the vibration plate is not in contact with liquid, wherein
 - the protective tube is formed by a bendable flexible protective tube.

S, S' ... piezoelectric liquid-level sensor
1a, 1b ... protective tube
2 ... sensor case
10 ... rubber damper
11 ... cylindrical groove
30 ... vibration plate
31 ... piezoelectric element

(19)日本国特許庁 (JP)

(12) 公開実用新案公報 (U)

(11)実用新案出願公開番号

実開平5-25325

(43)公開日 平成5年(1993)4月2日

(51)Int.Cl.⁵
G 0 1 F 23/22

識別記号 庁内整理番号
H 7143-2F

F I

技術表示箇所

審査請求 未請求 請求項の数2(全2頁)

(21)出願番号 実願平3-83753

(22)出願日 平成3年(1991)9月17日

(71)出願人 000004547

日本特殊陶業株式会社

愛知県名古屋市瑞穂区高辻町14番18号

(72)考案者 成瀬 信幸

名古屋市瑞穂区高辻町14番18号 日本特殊
陶業株式会社内

(72)考案者 横井 達也

名古屋市瑞穂区高辻町14番18号 日本特殊
陶業株式会社内

(74)代理人 弁理士 松浦 喜多男

(54)【考案の名称】 圧電式液体レベルセンサー

(57)【要約】

【目的】 保護管の下端開口側に、振動板の内面に圧電素子を貼着してなる液体感知部を構成した圧電式液体レベルセンサーにおいて、液体感知部の配設を所要箇所に設定し得るようにする。

【構成】 保護管1を屈曲して、液体感知部を液立ちの無い箇所や、種々の部材の邪魔にならない適正場所に位置決めできるようにした。

1

【実用新案登録請求の範囲】

【請求項1】保護管の下端開口側に、一面を外部に露出させて振動板を液密状に配設し、前記振動板の内面に圧電素子を貼着して液体感知部を構成し、前記振動板の露出外面が液体と非接触の時に前記圧電素子を振動させて、液体の有無を検出する圧電式液体レベルセンサーにおいて、

前記液体感知部が任意の位置になるように保護管を屈曲したことを特徴とする圧電式液体レベルセンサー。

【請求項2】保護管の下端開口側に、一面を外部に露出させて振動板を液密状に配設し、前記振動板の内面に圧電素子を貼着して液体感知部を構成し、前記振動板の露出外面が液体と非接触の時に前記圧電素子を振動させて、液体の有無を検出する圧電式液体レベルセンサーにおいて、

前記保護管を屈曲自在の可撓性保護管によって構成したことを特徴とする圧電式液体レベルセンサー。

【図面の簡単な説明】

2

* 【図1】第一手段の圧電式液体レベルセンサーSの斜視図である。

【図2】第二手段の圧電式液体レベルセンサーS'の斜視図である。

【図3】第二手段の圧電式液体レベルセンサーS'の縦断側面図である。

【図4a】水平状態にある液体感知部への表面張力による影響を示す概要側面図である。

【図4b】傾斜状態にある液体感知部への表面張力による影響を示す概要側面図である。

【符号の説明】

S, S' 圧電式液体レベルセンサー

1a, 1b 保護管

2 センサーチェース

10 ゴムダンバ

11 円管溝

30 振動板

31 圧電素子

*

【図1】

【図2】

【図3】

【図4a】

【図4b】

【考案の詳細な説明】**【0001】****【産業上の利用分野】**

本考案は、内燃機関や、発電機のオイル等、各種液体の液位が所定以上であるかどうかを検出するための圧電式液体レベルセンサーに関する。

【0002】**【従来の技術】**

圧電式液体レベルセンサーとして、保護管の下端開口に、一面を外部に露出させて振動板を液密状に配設し、前記振動板の内面に圧電素子を貼着してバイモルフ型の液体感知部を構成してなるものが提案されている。かかるレベルセンサーは前記振動板が所定液位に相当する高さとなるように配置され、液体が容器内に所定以上ある場合には、前記振動板の外面が液体に浸漬していることから、その液圧によって、前記圧電素子の上下面電極に交番電圧を印加しても振動不能となる。また前記液面が所定レベル未満である場合には、前記振動板の外面が気中に露出して、液圧の印加が解除され振動が可能となる。そこで、この振動を検出することにより前記液体の液位が所定レベル以下にあるかどうかを検知し得るようになっているものである。

【0003】**【考案が解決しようとする課題】**

ところで、前記圧電式液体レベルセンサーは、上述のように自動車のオイルタンク等に取付ける際には、該レベル検出を正確に行なうために液立ちのない安定した箇所にその液体感知部を配設する必要がある。また、タンク内にあって取付け部位となるオイル注入口の下には、種々の部材が位置して真直に圧電式液体レベルセンサーを挿入できない場合もあり、このような場合には、従来構成にあつては、その取付けが不能となる。

本考案は、上述の構成にあって、液体感知部の配設を所要箇所に容易に設定し得る構成を備えた圧電式液体レベルセンサーの提供を目的とするものである。

【0004】**【課題を解決するための手段】**

本考案の第一手段の圧電式液体レベルセンサーは、保護管の下端開口側に、一面を外部に露出させて振動板を液密状に配設し、前記振動板の内面に圧電素子を貼着してバイモルフ型の液体感知部を構成し、前記振動板の露出外面が液体と非接触の時に前記圧電素子を振動させて、液体の有無を検出する圧電式液体レベルセンサーにおいて、前記液体感知部が任意の位置になるように保護管を屈曲したものである。また第一手段は、前記保護管を屈曲自在の可撓性保護管によって構成したものもある。

【0005】

【作用】

第一の手段にあっては、保護管を任意の角度で屈曲したものであるから、液体感知部を必要な箇所に適宜配置することができる。また、第二の手段にあっては、可撓性保護管の適用により、該保護管を適宜に屈撓させることができる。このため、上端に設けられる取付け部に対して、適宜に湾曲させることにより、その液体感知部の位置を随意に調整することができ、最適に位置決めすることができる。

【0006】

【実施例】

図1は本考案の第一の手段の圧電式液体レベルセンサーSの一例を示し、1aは耐蝕性金属材料により製作された細長い保護管であって、要部を任意の角度で「く」の字形に屈曲してある。

【0007】

また図2、3は本考案の第二の手段の圧電式液体レベルセンサーS'の一例を示し、可撓性材料で構成した保護管1bを備えるものである。

【0008】

前記圧電式液体レベルセンサーS、S'は保護管1a、1bの相違を除いて、同一構成であり、図3を用いてその構造を説明する。

保護管1a、1bの上部にはセンサーケース2が外嵌されている。このセンサーケース2はその上部に扁平収納筒3を備え、該扁平収納筒3にプリント基板7が長軸に沿って縦方向に嵌着される。また扁平収納筒3の下部には図1に示すよ

うに取付け孔 5, 5 を備える円形の固定フランジ 4 が連成され、さらにその下部には嵌着筒 6 が連成され、該嵌着筒 6 に前記保護管 1 a, 1 b の上端を内嵌することにより、該保護管 1 a, 1 b とセンサークース 2 との接続を可能としている。そして前記固定フランジ 4 の取付け孔 5, 5 から螺子固定することにより、オイルタンク等への付装を可能としている。前記プリント基板 7 には種々の回路部材が実装され、リード線 8 により外部機器と接続するようにしている。そして後述する圧電素子 3 1 の電極と電気的に接続しているリード線 9 a, 9 b が前記保護管 1 a, 1 b 内を挿通してプリント基板 7 の所要導電路に接続される。

【0009】

前記保護管 1 a, 1 b の下端開口 1 2 には、下方に開放するシリコンゴム、フロロシリコンゴム、フッ素ゴム、NBR 等の材料からなるゴムダンパ 1 0 が内嵌される。このゴムダンパ 1 0 は短円筒状をしており、その周囲の係止錫部を緩衝部としているものであって、その下面から内奥にかけて下方に開放する円管溝 1 1 が形成され、さらにその中心には貫通孔 1 3 が形成され、前記貫通孔 1 3 には、リード線 9 a と接続する導電管 1 7 が嵌装される。また円管溝 1 1 には、金属製筒状基蓋 2 0 が嵌着される。この筒状基蓋 2 0 は、前記円管溝 1 1 に内嵌する円筒部 2 1 を備えており、その下端外周にはゴムダンパ 1 0 の係止錫部と上下で当接する連結錫部 2 3 を形成している。

【0010】

前記筒状基蓋 2 0 の下端には筒孔を下方から遮蔽するように、金属製薄板からなる振動板 3 0 が、その周縁を接合して配設されている。この振動板 3 0 の内面中央には、振動板 3 0 と共に液体感知部を構成する圧電素子 3 1 が固着されている。前記圧電素子 3 1 はチタン酸ジルコン酸鉛等の圧電磁器円板の表裏面に電極を配設してなる。そしてこの圧電素子 3 1 は、基蓋 2 0 の筒孔内に臨むようにして配設される。かかる構成の圧電素子 3 1 は二端子構造のものであるが、表面側に大面積の励振用電極と小面積の帰還用電極とを設けた三端子型構造のものを用いるようにしても良い。

【0011】

そして前記圧電素子 3 1 の表面電極はリード線 3 3 により導電管 1 7 と接続さ

れる。また前記筒状基蓋20の上端にはリード線9bと電気的に接続する接続ピン25が突設され、前記圧電素子31の裏面電極と振動板30、金属製筒状基蓋20を介して電気的に接続される。而して前記圧電素子31の表面電極はリード線9aと電気的に接続し、裏面電極はリード線9bと電気的に接続されてプリント基板7の所要導電路と結線され、リード線8により外部機器と接続されることとなる。尚、前記プリント基板7との接続をリード線8によらずに、コネクタを扁平収納筒3の口端に嵌着することにより行なう構成としても良い。

【0012】

上述の構成の第一手段の圧電式液体レベルセンサーSの取付けにあっては、前記保護管1aを湾曲することにより、液立ちの無い箇所等、その最適箇所に前記振動板30と圧電素子31とによって構成される液体感知部を容易に配設することができる。このとき上述したように前記固定フランジ4の取付け孔5、5から螺子固定することにより、回転操作を要することなくオイルタンク等への付装を可能としている。このため前記液体感知部の位置をその取付けによって変位させることは無い。すなわち液体レベルセンサーSの取付けを、従来のようにオイル注入口に回転操作により螺合する取付け手段にあっては、液体感知部を可撓性保護管1aの屈曲により適正箇所に液体感知部を配設しても、その回転操作により位置が変わってしまう。ところが上述の実施例にあっては、固定フランジ4の取付けによって回転操作を不要としており、このような問題を生じない。

【0013】

また図2、3の第二手段の圧電式液体レベルセンサーS'は前記保護管1bを蛇腹構造としたり、可撓性金属材料で形成して、屈曲自在となっている。そしてこのような構成にすることにより、液体感知部を自在に所要位置へ屈曲して配設することができると共に、振動板30の面を傾斜させることも容易にできる。

【0014】

前記圧電式液体レベルセンサーSは上述のように、その取付け状態において振動板30が液面に対して傾斜している。また前記圧電式液体レベルセンサS'にあっては随意に振動板30を傾斜させることが可能となる。このため次のような利点を生ずる。

【0015】

図4 aに示すように、垂直の保護管1cを備える従来構成の圧電式液体レベルセンサーSにあってはこれを整一に取付けた場合には、振動板30が水平となる。このような状態にあっては、液面が振動板30の位置よりも下降しても、その表面張力により振動板30に液面が付着する場合があり、振動板の励振が阻害されて、振動板30が液中に浸漬しているものとして判断され、誤検知となり易い。ところが図4 bに示すように振動板30の面を液面に対して傾斜させると、該振動板30の外面に付着した液はその傾斜に沿って下降するから、振動板30の振動を阻害することの無い状態となる。このように振動板30を傾斜することにより、液体の表面張力による影響を阻止できることとなる。

【0016】**【考案の効果】**

本考案の圧電式液体レベルセンサーS, S'は、上述したように保護管1a, 1bを適宜に屈曲したものであるから、その下端に配設した液体感知部を液立ちの無い箇所や、種々の部材の邪魔にならない適正場所とすることができます、さらには該液体感知部の傾斜により、液体の表面張力による悪影響を排除し得る。また可撓性保護管1bを用いた場合にあっては、その屈曲調整を容易に施すことができ、取付け箇所に良好に対応し得ることとなる、等の優れた効果がある。