$Pr(c_2|C)$ as β 's change. 0.4 - \bigcirc $Pr(i=c_2;$ 0.2 0.0 5 -55 10 10 $\beta_{n_1,0}$ $\beta_{n_0,0}$ 0.4 - $Pr(i=c_2; C)$ 0.2 0.0

-5

0

 $\beta_{n_1,1}$

5

10

0.4 -

0.2 -

0.0 -

0.4 -

0.0 -

-5

5

10

0

 $\beta_{n_0,1}$

 $Pr(i=c_2; C)$

 $\Pr(i=c_2;\,\mathrm{C})$ - 5.0