What is claimed is:

1. A compound of Formula I

wherein

5

10

15

20

25

R¹ is selected from H, F, and Cl;

R² is selected from H, OH, CN, halo, C(O)R⁵, thienyl, pyrimidinyl, oxazolyl, furanyl,

 (C_1-C_3) alkyl, (C_2-C_6) alkenyl and (C_2-C_6) alkynyl, each optionally substituted with up to two substituents selected from OH, halo, and (C_1-C_3) alkoxy optionally substituted with (C_1-C_3) alkoxy,

 (C_1-C_6) alkoxy optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy,

pyrrolidinyl,
$$+$$
N \times

and $N[(C_1-C_3)alkyl]_2$ where each alkyl group is independently optionally substituted with a substituent selected from $(C_1-C_3)alkyl$,

$$(C_1-C_3)$$
alkoxy OH, halo, $\stackrel{+}{\longrightarrow}$, and phenyl,

N[(C₁-C₄)alkyl]₂ where each alkyl group is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, and phenyl,

pyridyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, and halo,

phenyl optionally substituted with up to two substituents independently selected

from
$$(C_1-C_3)$$
alkoxy, CN, halo, $+N$, $C(O)-N$ X

 $C(O)N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with

(C₁-C₃)alkoxy, and

pyrrolidinyl optionally substituted with $N[(C_1-C_3)alkyl]_2$;

 R^3 is selected from H, halo, (C₁-C₃)alkyl, and (C₁-C₃)alkoxy;

R⁴ is selected from H, F, and Cl;

R⁵ is selected from OH, NHR⁶,

10

15

20

25

30

$N[(C_1-C_3)alkyl]R^7$ where said alkyl is optionally substituted with up to	one
substituent selected from (C_1-C_3) alkyl and (C_1-C_3) alkoxy,	

 $N[(C_1-C_3)alkyl]_2 \ where each alkyl is optionally substituted with up to two substituents independently selected from CN, OH, (C_1-C_3)alkoxy, <math display="block">N[(C_1-C_3)alkyl]_2, \ pyridyl, \ phenyl, \ S(O)_2(C_1-C_3)alkyl, \ tetrahydrofuryl, \\ S(O)_2-phenyl, \ (C_3-C_6)cycloalkyl, \ and \\ furyl \ optionally \ substituted \ with \ (C_1-C_3)alkyl, \\$

 $\label{eq:Newtonical} N[(C_3-C_6) \text{cycloalkyl}](C_1-C_3) \text{alkyl} \text{ where said alkyl is substituted with up to two substituents independently selected from } (C_1-C_3) \text{alkoxy, OH, CN, } \\ N[(C_1-C_4) \text{alkyl}]_2, \ S(O)_2-\text{phenyl, } S(O)_2(C_1-C_3) \text{alkyl, phenyl, furyl, } \\ \text{tetrahydrofuryl, } (C_5-C_6) \text{cycloalkyl, and pyridyl, } \\$

optionally substituted with up to two substituents independently selected from N[(C₁-C₃)alkyl]₂, C(O)(C₁-C₃)alkyl, pyrrolidinyl,

 $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ -phenyl, , oxo-dihydrobenzimidazolyl, pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)NH(C_1-C_3)$ alkyl, (C_1-C_3) alkyl optionally substituted with up to two substituents

independently selected from OH, halo, (C₁-C₃)alkoxy,

pyrrolidinyl, C(O)-pyrrolidinyl, C(O)-N , and N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, and pyridyl optionally substituted with (C₁-C₃)alkyl, CF₃, and CN, and pyrrolidinyl optionally substituted with up to two substituents independently selected from N[(C₁-C₄)alkyl]₂, C(O)NH₂, pyridyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and pyrrolidinyl;

R⁶ is selected from H,

 (C_1-C_4) alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C_1-C_4) alkoxy, NHC(O) (C_1-C_3) alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, thienyl, ..., N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, halo, and phenyl,

10

15

20

25

phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, (C_1-C_3) alkoxy, CN, halo, CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$, pyridyl optionally substituted up to two times with CF₃, indolyl optionally substituted up to two times with (C₁-C₃)alkyl, imidazolyl optionally substituted up to two times with (C₁-C₃)alkyl, furyl optionally substituted up to two times with (C₁-C₄)alkyl, and pyrrolidinyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (O), and (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, and halo, indolyl optionally substituted up to two times with (C1-C3)alkyl, pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₄)alkyl, halo, CF₃, and CN, benzothiazolyl optionally substituted up to two times with (C1-C4)alkyl, thiazolyl optionally substituted up to two times with (C₁-C₄)alkyl, thiadiazolyl optionally substituted with up to two substituents independently selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl, phenyl optionally substituted with up to two substituents independently selected from CN, halo, CF_3 , $N[(C_1-C_4)alkyl]_2$, indolyl, $\stackrel{+}{\longrightarrow}$, $(C_1-C_4)alkoxy$, O-pyridyl optionally substituted with C(O)NH(C₁-C₄)alkyl, (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from pyridyl, OH, halo, and phenyl, and optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and(C₁-C₄)alkoxy, pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₄)alkoxy, and

30

indazolyl optionally substituted up to two times with (C_1-C_4) alkyl; R^7 is selected from (C_1-C_3) alkoxy, pyrrolidinyl, tetrahydropyranyl, pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

pyranyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

piperidinyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, and (C_1-C_3) alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, and (C_1-C_3) alkyl; and

X is selected from O, S, CH₂ and NH;

with the proviso that when R¹ is F or Cl, then R⁴ must be H, and when R⁴ is F or Cl, then R¹ must be H;

or a pharmaceutically acceptable salt thereof.

 A method of treating a disorder selected from a hyper-proliferative disorder and a disorder associated with angiogenesis, in a mammal in need thereof, comprising administering to said mammal an effective amount of a compound of Formula I

$$\begin{array}{c|c}
R^1 & R^2 \\
R^2 & R^3 \\
R^4 & R^4
\end{array}$$
(I)

15

20

5

10

wherein

R¹ is selected from H, F, and Cl;

R² is selected from H, OH, CN, halo, C(O)R⁵, thienyl, pyrimidinyl, oxazolyl, furanyl,

(C₁-C₃)alkyl, (C₂-C₆)alkenyl and (C₂-C₆)alkynyl, each optionally substituted with up to two substituents selected from OH, halo, and (C₁-C₃)alkoxy optionally substituted with (C₁-C₃)alkoxy,

 $(C_1-\dot{C}_6)$ alkoxy optionally substituted with (C_1-C_3) alkyl, (C_1-C_3) alkoxy,

pyrrolidinyl,
$$+$$
N \longrightarrow

pyrrolidin 25 and N[(C

and $N[(C_1-C_3)alkyl]_2$ where each alkyl group is independently optionally substituted with a substituent selected from $(C_1-C_3)alkyl$,

$$(C_1-C_3)$$
alkoxy OH, halo, $+N$, and phenyl

N[(C₁-C₄)alkyl]₂ where each alkyl group is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, and phenyl,

pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, (C_1-C_3) alkoxy, and halo,

phenyl optionally substituted with up to two substituents independently selected

 $C(O)N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with $(C_1-C_3)alkoxy$, and

pyrrolidinyl optionally substituted with N[(C₁-C₃)alkyl]₂;

 R^3 is selected from H, halo, (C_1-C_3) alkyl, and (C_1-C_3) alkoxy;

R⁴ is selected from H, F, and Cl;

R⁵ is selected from OH, NHR⁶,

 $N[(C_1-C_3)alkyl]R^7$ where said alkyl is optionally substituted with up to one substituent selected from $(C_1-C_3)alkyl$ and $(C_1-C_3)alkoxy$,

$$\label{eq:Newtonian} \begin{split} &N[(C_1-C_3)alkyl]_2 \text{ where each alkyl is optionally substituted with up to two} \\ &\text{substituents independently selected from CN, OH, } (C_1-C_3)alkoxy, \\ &N[(C_1-C_3)alkyl]_2, \text{ pyridyl, phenyl, } S(O)_2(C_1-C_3)alkyl, \text{ tetrahydrofuryl, } \\ &S(O)_2\text{-phenyl, } (C_3-C_6)\text{cycloalkyl, and} \\ &\text{furyl optionally substituted with } (C_1-C_3)alkyl, \end{split}$$

N[(C₃-C₆)cycloalkyl](C₁-C₃)alkyl where said alkyl is substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, OH, CN, N[(C₁-C₄)alkyl]₂, S(O)₂-phenyl, S(O)₂(C₁-C₃)alkyl, phenyl, furyl, tetrahydrofuryl, (C₅-C₆)cycloalkyl, and pyridyl,

optionally substituted with up to two substituents independently selected from N[(C₁-C₃)alkyl]₂, C(O)(C₁-C₃)alkyl, pyrrolidinyl,

 $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ -phenyl, $\overset{\cdot}{\longrightarrow}\overset{\cdot}{\searrow}$, oxo-dihydrobenzimidazolyl, pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)NH(C_1-C_3)$ alkyl, (C_1-C_3) alkyl optionally substituted-with up to two substituents

independently selected from OH, halo, (C₁-C₃)alkoxy,

pyrrolidinyl, C(O)-pyrrolidinyl, C(O)—N X, and N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, and pyridyl optionally substituted with (C₁-C₃)alkyl, CF₃, and CN, and pyrrolidinyl optionally substituted with up to two substituents independently

30

5

10

15

20

selected from N[(C_1 - C_4)alkyl]₂, C(O)NH₂, pyridyl, and (C_1 - C_3)alkyl optionally substituted with up to two substituents independently selected from (C_1 - C_3)alkoxy, and pyrrolidinyl;

R⁶ is selected from H,

 (C_1-C_4) alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C_1-C_4) alkoxy, NHC(O) (C_1-C_3) alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, thienyl,

+N \longrightarrow

 $N[(C_1-C_4)alkyl]_2$ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, $(C_1-C_3)alkoxy$, halo, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo,

 CF_3 , $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ phenyl, and $S(O)_2NH_2$, pyridyl optionally substituted up to two times with CF_3 , indolyl optionally substituted up to two times with (C_1-C_3) alkyl, imidazolyl optionally substituted up to two times with (C_1-C_3) alkyl, furyl optionally substituted up to two times with (C_1-C_4) alkyl, and pyrrolidinyl optionally substituted with up to two substituents

independently selected from (C_1 - C_4)alkoxy, (O), and (C_1 - C_4)alkyl optionally substituted with up to two substituents independently selected from OH, (C_1 - C_3)alkoxy, and halo,

indolyl optionally substituted up to two times with (C_1-C_3) alkyl, pyrazolyl optionally substituted with up to two substituents independently

selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and phenyl optionally substituted with up to two substituents independently

selected from (C₁-C₄)alkoxy, (C₁-C₄)alkyl, halo, CF₃, and CN,

benzothiazolyl optionally substituted up to two times with (C_1-C_4) alkyl, thiazolyl optionally substituted up to two times with (C_1-C_4) alkyl,

thiadiazolyl optionally substituted with up to two substituents independently

selected from CF₃, (C_3 - C_6)cycloalkyl, and (C_1 - C_6)alkyl, phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF_3 , $N[(C_1-C_4)alkyl]_2$, indolyl, , $(C_1-C_4)alkoxy$, O-pyridyl optionally substituted with $C(O)NH(C_1-C_4)alkyl$, $(C_1-C_4)alkyl$ optionally substituted with up to two substituents

10

5

15

20

25

10

15

20

25

30

independently selected from pyridyl, OH, halo, and phenyl, and

independently substituted with up to two substituents independently

selected from (C₁-C₃)alkyl, and(C₁-C₄)alkoxy,

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₄)alkoxy, and

indazolyl optionally substituted up to two times with (C₁-C₄)alkyl;

R⁷ is selected from (C₁-C₃)alkoxy, pyrrolidinyl, tetrahydropyranyl,

pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

pyranyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

piperidinyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and (C₁-C₃)alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, and (C_1-C_3) alkyl; and

X is selected from O, S, CH₂ and NH;

with the proviso that when R^1 is F or Cl, then R^4 must be H, and when R^4 is F or Cl, then R^1 must be H;

or a pharmaceutically acceptable salt thereof.

3. A composition comprising a carrier and a compound of Formula I

wherein

R¹ is selected from H, F, and Cl;

 R^2 is selected from H, OH, CN, halo, $C(O)R^5$, thienyl, pyrimidinyl, oxazolyl, furanyl, $(C_1\text{-}C_3) \text{alkyl}, \ (C_2\text{-}C_6) \text{alkenyl} \text{ and } \ (C_2\text{-}C_6) \text{alkynyl}, \text{ each optionally substituted with }$ up to two substituents selected from OH, halo, and $(C_1\text{-}C_3) \text{alkoxy optionally substituted with } (C_1\text{-}C_3) \text{alkoxy},$

(C₁-C₆)alkoxy optionally substituted with (C₁-C₃)alkyl, (C₁-C₃)alkoxy,

10

20

25

30

and $N[(C_1-C_3)alkyl]_2$ where each alkyl group is independently optionally substituted with a substituent selected from $(C_1-C_3)alkyl$,

 (C_1-C_3) alkoxy OH, halo, +N, and phenyl,

N[(C₁-C₄)alkyl]₂ where each alkyl group is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkyl, halo, (C₁-C₃)alkoxy, and phenyl,

pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkyl, (C_1-C_3) alkoxy, and halo,

phenyl optionally substituted with up to two substituents independently selected

from
$$(C_1-C_3)$$
alkoxy, CN, halo,

 $C(O)N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with $(C_1-C_3)alkoxy$, and

pyrrolidinyl optionally substituted with N[(C1-C3)alkyl]2;

- 15 R³ is selected from H, halo, (C₁-C₃)alkyl, and (C₁-C₃)alkoxy;
 - R4 is selected from H, F, and Cl;
 - R⁵ is selected from OH, NHR⁶,
 - N[(C₁-C₃)alkyl]R⁷ where said alkyl is optionally substituted with up to one substituent selected from (C₁-C₃)alkyl and (C₁-C₃)alkoxy,
 - $N[(C_1-C_3)alkyl]_2$ where each alkyl is optionally substituted with up to two substituents independently selected from CN, OH, $(C_1-C_3)alkoxy$, $N[(C_1-C_3)alkyl]_2$, pyridyl, phenyl, $S(O)_2(C_1-C_3)alkyl$, tetrahydrofuryl, $S(O)_2$ -phenyl, (C_3-C_6) cycloalkyl, and furyl optionally substituted with $(C_1-C_3)alkyl$,
 - $$\label{eq:Newtonicondition} \begin{split} &N[(C_3-C_6)\text{cycloalkyl}](C_1-C_3)\text{alkyl where said alkyl is substituted with up to two}\\ &\text{substituents independently selected from } &(C_1-C_3)\text{alkoxy, OH, CN,}\\ &N[(C_1-C_4)\text{alkyl}]_2,\ &S(O)_2\text{-phenyl, }S(O)_2(C_1-C_3)\text{alkyl, phenyl, furyl,}\\ &\text{tetrahydrofuryl, } &(C_5-C_6)\text{cycloalkyl, and pyridyl,} \end{split}$$
 - optionally substituted with up to two substituents independently selected from $N[(C_1-C_3)alkyl]_2$, $C(O)(C_1-C_3)alkyl$, pyrrolidinyl,

 $S(O)_2(C_1-C_3)$ alkyl, $S(O)_2$ -phenyl, $\xrightarrow{+}$, oxo-dihydrobenzimidazolyl, pyrazinyl, $C(O)NH_2$, C(O)NH-phenyl, C(O)-furanyl, $C(O)NH(C_1-C_3)$ alkyl,

 (C_1-C_3) alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C_1-C_3) alkoxy,

pyrrolidinyl, C(O)-pyrrolidinyl, C(O)-N , and N[(C₁-C₃)alkyl]₂, phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, halo, CF₃, and CN, and pyridyl optionally substituted with (C₁-C₃)alkyl, CF₃, and CN, and pyrrolidinyl optionally substituted with up to two substituents independently selected from N[(C₁-C₄)alkyl]₂, C(O)NH₂, pyridyl, and (C₁-C₃)alkyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkoxy, and pyrrolidinyl;

R⁶ is selected from H,

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, halo, (C₁-C₄)alkoxy, NHC(O)(C₁-C₃)alkyl,

S-(C₁-C₃)alkyl, benzimidazolyl, thienyl,

N[(C₁-C₄)alkyl]₂ where each alkyl is independently optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, halo, and phenyl,

phenyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, CN, halo,

CF₃, S(O)₂(C₁-C₃)alkyl, S(O)₂phenyl, and S(O)₂NH₂, pyridyl optionally substituted up to two times with CF₃, indolyl optionally substituted up to two times with (C₁-C₃)alkyl, imidazolyl optionally substituted up to two times with (C₁-C₃)alkyl, furyl optionally substituted up to two times with (C₁-C₄)alkyl, and pyrrolidinyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (O), and

(C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from OH, (C₁-C₃)alkoxy, and halo,

indolyl optionally substituted up to two times with (C₁-C₃)alkyl, pyrazolyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl, (C₃-C₆)cycloalkyl, and phenyl optionally substituted with up to two substituents independently selected from (C₁-C₄)alkoxy, (C₁-C₄)alkyl, halo, CF₃, and CN,

30

5

10

15

20

10

15

20

25

benzothiazolyl optionally substituted up to two times with (C₁-C₄)alkyl, thiazolyl optionally substituted up to two times with (C₁-C₄)alkyl, thiadiazolyl optionally substituted with up to two substituents independently selected from CF₃, (C₃-C₆)cycloalkyl, and (C₁-C₆)alkyl, phenyl optionally substituted with up to two substituents independently selected

from CN, halo, CF₃, N[(C₁-C₄)alkyl]₂, indolyl, , (C₁-C₄)alkoxy, O-pyridyl optionally substituted with C(O)NH(C₁-C₄)alkyl, (C₁-C₄)alkyl optionally substituted with up to two substituents independently selected from pyridyl, OH, halo, and phenyl, and

optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and(C₁-C₄)alkoxy,

pyridyl optionally substituted with phenoxy where said phenoxy is optionally substituted with up to two substituents independently selected from (C₁-C₄)alkyl and (C₁-C₄)alkoxy, and

indazolyl optionally substituted up to two times with (C₁-C₄)alkyl;

R⁷ is selected from (C₁-C₃)alkoxy, pyrrolidinyl, tetrahydropyranyl,

pyridyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

pyranyl optionally substituted with up to two substituents independently selected from (C_1-C_4) alkyl and (C_1-C_3) alkoxy,

piperidinyl optionally substituted with up to two substituents independently selected from (C₁-C₃)alkyl, and (C₁-C₃)alkoxy, and

phenyl optionally substituted with up to two substituents independently selected from (C_1-C_3) alkoxy, and (C_1-C_3) alkyl; and

X is selected from O, S, CH₂ and NH;

with the proviso that when R¹ is F or Cl, then R⁴ must be H, and when R⁴ is F or Cl, then R¹ must be H;

or a pharmaceutically acceptable salt thereof.