北京郵電大學

关业队口: Gaussid 数场件关业	实验报告:	GaussDB 数据库实验
---------------------	-------	---------------

学院: 计算机学院(国家示范性软件学院)

专业: ______计算机科学与技术

班级: 2022211305

姓名: _______ 张晨阳______

目录

实验一 GaussDB(for openGauss)数据库创建与维护实验
一、实验目的1
二、实验平台及环境1
三、实验内容1
四、实验步骤
五、实验结果及分析2
1 创建数据库
六、实验小结
实验二 数据库表的创建与维护实验
一、实验目的
二、实验环境
三、实验内容
四、实验步骤
五、实验结果及分析5
1 表的创建
2 数据导入
4 表的删除
六、实验总结10
实验三 数据查询实验11
一、实验目的11
二、实验环境11
三、实验内容11
四、实验要求12
五、实验结果及分析13
1 单表查询13
2 多表查询
3 嵌套查询
六、实验总结

实验一 GaussDB(for openGauss)数据库创建与维护实验

一、实验目的

- 1. 通过对 GAUSSDB(FOR OPENGAUSS)数据库创建与访问:
 - (1) 了解华为云分布式数据库 GAUSSDB(FOR OPENGAUSS)的软件环境和创建方法;
 - (2) 掌握并熟悉 GAUSSDB(FOR OPENGAUSS)数据库软件的使用方法;
 - (3) 掌握并熟悉 GAUSSDB(FOR OPENGAUSS)数据库软件的构成和相关工具:
 - (4) 通过 GAUSSDB(FOR OPENGAUSS)数据库软件的使用,深入理解数据库系统的基本概念。
- 2. 通过创建 GAUSSDB(FOR OPENGAUSS)数据库及进行相应的维护,了解并 掌握 GaussDB(for openGauss)数据库的创建与维护的不同方法和途径,进而通 过这一具体的数据库理解实际数据库所包含的各要素。

二、实验平台及环境

• 华为云: GaussDB 2.7.2

• 数据库: PostgreSQL

三、实验内容

- 1. GAUSSDB(FOR OPENGAUSS)数据库软件的使用:
 - (1) 登录并运行 GAUSSDB(FOR OPENGAUSS)数据库;
 - (2) 了解华为云数据库 GAUSSDB(FOR OPENGAUSS)的机制;
 - (3) 熟悉 GAUSSDB(FOR OPENGAUSS)数据库的各项功能。
- 2. 数据库创建与维护:
 - (1) 创建"疫情数据"数据库;

- (2) 对数据库属性和参数进行相应的修改和维护;
- (3) 练习数据库的删除等维护操作。

四、实验步骤

- 1. 熟悉 GaussDB(for openGauss)数据库的创建过程;
- 2. 创建一个名为"疫情数据"的数据库;
- 3. 删除"疫情数据"数据库。

五、实验结果及分析

1 创建数据库

登录华为云平台,选择 IAM 用户登录,原华为云账号为 luxqbupt123,使用学校提供的账号登入。进入控制台后点击数据库,进入数据库管理服务 DAS,进入开发工具。

登录第一节课创建的数据库实例连接。数据库引擎选择为 GaussDB, 数据库实例 选择为 gauss-3c93 root 0, 角色为 master。

创建数据库疫情数据(yqsjtest):

指定兼容的数据库的类型为 PostgreSQL.

对应的 PostgreSQL 语句为:

```
CREATE DATABASE yqsjtest
WITH
ENCODING = 'UTF8'
TEMPLATE = template0;
```

ENCODING = 'UTF8': 指定数据库的字符集为 UTF8;

TEMPLATE = template0:确保创建的数据库是一个干净的数据库,而不继承系统数据库模板的任何数据或设置。

2 删除数据库

对应的 PostgreSQL 语句为:

CREATE DATABASE yqsjtest

六、实验小结

通过本次实验,我掌握了 GAUSSDB(FOR OPENGAUSS)数据库的基础操作,了解了其软件环境和创建方法。通过创建数据库及进行相应的维护,了解并掌握其数据库的创建与维护的不同方法和途径,为以后的实验打下了基础。

实验二 数据库表的创建与维护实验

一、实验目的

- 1. 通过进行数据库表的建立操作,熟悉并掌握 GAUSSDB(FOR OPENGAUSS)数据库表的建立方法,理解关系型数据库表的结构,巩固 PostgreSQL 中关于数据库表的建立语句;
- 2. 通过进行数据库表数据的增加、删除和插入等维护操作,熟悉并掌握GAUSSDB(FOR OPENGAUSS)数据库数据的操作方法,巩固 PostgreSQL 中关于数据维护的语句。

二、实验环境

• 华为云: GaussDB 2.7.2

• 数据库: PostgreSQL

三、实验内容

建立相应的表并熟悉基本操作,例如建表、对表进行增、删、改、查。

四、实验步骤

- 1. 熟悉课程实验背景知识;
- 2. 使用 GAUSSDB(FOR OPENGAUSS)数据库软件创建相应的表;
- 3. 将提供的数据导入各表,掌握 GAUSSDB(FOR OPENGAUSS)数据库数据导入的方法:

注意:

- 1) 表中空列的处理;
- 2) 表结构与数据类型的匹配。
- 4. 修改"病例基本信息"表数据,增加名为"备注"的列,数据类型 varchar()型;
- 5. 修改"病例基本信息"表数据,将"备注"列的数据类型改为 int;

- 6. 修改"病例基本信息"表数据,删除"备注"列;
- 7. 删除"病例基本信息"数据表。

五、实验结果及分析

1 表的创建

在 SQL 查询界面,依次输入下面的 SQL 语句并执行,即可完成建表。

```
CREATE TABLE 全国城市风险等级表
   省 VARCHAR(255) NULL,
  市 VARCHAR(255) NULL,

▼ VARCHAR(255) NULL,

  地址详情 VARCHAR(255) NULL,
  风险等级 VARCHAR(255) NULL
)
CREATE TABLE 病例基本信息表 (
   病例号 INT PRIMARY KEY,
   省 VARCHAR(255) NULL,
   市 VARCHAR(255) NULL,

▼ VARCHAR(255) NULL,

   日期 DATE NULL,
  性别 VARCHAR(10) NULL,
  年龄 INT NULL,
  患者信息 VARCHAR(255) NULL,
  其它信息 VARCHAR(255) NULL,
   信息来源 VARCHAR(255) NULL
CREATE TABLE 病例行程信息表 (
   行程号 INT PRIMARY KEY,
   病例号 INT NULL,
  日期信息 VARCHAR(255) NULL,
  行程信息 VARCHAR(255) NULL
)
CREATE TABLE 参考信息表(
   组合码 VARCHAR(255) PRIMARY KEY,
   国家 VARCHAR(255) NOT NULL,
   省州 VARCHAR(255) NULL,
```

```
市县 VARCHAR(255) NULL,
  纬度 DECIMAL(10, 6) NULL,
  经度 DECIMAL(10, 6) NULL,
  人口数 BIGINT NULL
)
CREATE TABLE 各国疫情数据统计表 (
  日期 DATE NULL,
   国家 VARCHAR(255) NULL,
   省州 VARCHAR(255) NULL,
   累计确诊 INT NULL,
  累计治愈 INT NULL,
  累计死亡 INT NULL
)
CREATE TABLE 美国各州县确诊与死亡统计表 (
  日期 DATE NULL,
  州 VARCHAR(255) NULL,
  县 VARCHAR(255) NULL,
  累计确诊 INT NULL,
  累计死亡 INT NULL
)
CREATE TABLE 全国各省参考信息表(
   中文名称 VARCHAR(255) NULL,
  英文名称 VARCHAR(255) NULL,
  组合码 VARCHAR(255) NULL,
  人口数 BIGINT NULL,
   省会城市 VARCHAR(255) NULL,
  纬度 DECIMAL(10, 6) NULL,
  经度 DECIMAL(10, 6) NULL
)
CREATE TABLE 全国各省累计数据统计表 (
  日期 DATE NULL,
   省 VARCHAR(255) NULL,
   累计确诊 INT NULL,
  累计治愈 INT NULL,
  累计死亡 INT NULL
)
```

2 数据导入

在"导入"界面,点击"新建任务",导入属性配置如图所示:

新建任务				
导入类型	sql	CSV		
文件来源	上传文件	从OBS中选择		
附件存放位置 💎	obs0630bupt	V	没有OBS桶?创建OBS	桶
	创建OBS桶免费,但保存	字文件将产生一定的费用。		
		+		
选择附件	点点	 古或将文件拖动到此处后上	_传文件 (.csv)	
	最大不能超过1GB,且》	只能上传一个附件		
数据库	bupt2022211683			~
表	"buptceshi"."全国各省者	参考信息表"		~
数据位置	第1行为属性	第1行为数据		
字符集	UTF8	GBK	自动检测	
选项	忽略报错,即SQL执行	- 失败时跳过		
	✔ 导入完成后删除上传	的文件		
	✓ 清空表,执行导入前先	对相应的表执行Truncate操	作	
备注				

将八张表全部导入后结果如下:

3 数据修改

1 修改"病例基本信息"表数据,增加名为"备注"的列,数据类型 varchar()型 执行 SOL 语句为:

2 修改"病例基本信息"表数据,将"备注"列的数据类型改为 int 执行 SQL 语句为:

ALTER TABLE 病例基本信息表 ALTER COLUMN 备注 TYPE INT

执行效果如下:

3 修改"病例基本信息"表数据,删除"备注"列

执行 SQL 语句为:

ALTER TABLE 病例基本信息表 DROP COLUMN 备注

执行效果如下:

4 表的删除

执行 SQL 语句为:

DROP TABLE 病例基本信息表

执行效果如下:

六、实验总结

本次实验中第一个遇到的问题是空列的处理,对于 csv 文件中的空列,如果不处理直接导入数据时,文件格式与表的格式就会不一致导致导入异常,经过尝试,手动删除该空列即可。

除此之外,另一个问题是 varchar 的设置长度,为了避免由于长度限制导致数据丢失,经查阅资料, varchar 的最长长度为 255,故 varchar 属性都设置为 255。

在本实验中,我熟悉了 GAUSSDB(FOR OPENGAUSS)数据库表的有关操作, 以及数据库表数据的增加、删除和插入等维护操作的 SOL 语句使用。

建议: 更新一下实验的 PPT (似乎仍然是之前版本的),本次实验的账号和密码已经更换,如果完全参考 PPT 会导致错误。

实验三 数据查询实验

一、实验目的

通过对实验二建立的数据库关系表的各种查询的操作,加深对 SQL 语言和 PostgreSQL 查询语言的了解,掌握相关查询语句的语法及使用方法。

二、实验环境

• 华为云: GaussDB 2.7.2

• 数据库: PostgreSQL

三、实验内容

1.单表查询

- 1-1 查询国内确诊病例基本信息的所有信息来源。
- 1-2 给出河南省、西藏自治区、台湾省的英文名称和人口数。
- 1-3 查询 2021 年 1 月 20 日各省现有确诊病例数据,按现有确诊病例数降序排列输出。
- 1-4 顺义区中风险地区的数量。
- 1-5 计算截至 2021 年 1 月 20 日全国累计确诊病例数。
- 1-6 查询 1005 号病例确诊后,其所在市新增的所有确诊病例。
- 1-7 在"病例基本信息表"中查询石家庄市在2021年1月11日当天以及之前的所有60岁以上的患者信息。
- 1-8 统计截止到 2020 年 12 月 30 日美国累计确诊病例数最多的 10 个州。
- 1-9 统计截至 2021 年 1 月 20 号中国发病率最高的人群(人群按照年龄划分,儿童<18,18<=青壮年<60,老年>=60)。

2.多表查询:

2-1 借助病例行程信息粗略查询曾去过"源升品质生活坊"的所有患者的基本信息。

- 2-2 根据病例行程信息表和病例基本信息表,查询行程信息中存在"家庭聚餐"的病例被确诊的日期。
- 2-3 对比中美两国累计确诊病例数,输出格式为(日期,中国累计确诊,美国累计确诊)。
- 2-4 计算截止到 2021 年 1 月 20 日,美国有些县的累计确诊是同一个州的其他县的 2 倍或以上,列出这些县,以及他们所在的州和他们的累计确诊。
- 2-5 计算世界上人口数排名前 10 位的国家地区。
- 2-6 列出美国人口超千万的大州中,截至 2021 年 1 月 20 日新冠肺炎疫情死亡率超过 2%的州。
- 2-7 截至 2021 年 1 月 20 日,河北省哪些区出现了新冠确诊病例但不属于中高风险地区。
- 2-8 在病例行程信息表的基础上根据病例基本信息表,查询河北省病例的全部信息。

3.嵌套查询:

- 3-1 查询披露的确诊患者信息中年龄最大的患者,输出其基本信息。(未注明年龄的患者不进行比较)。
- 3-2 查询 2020 年 12 月份新增确诊患者最多的城市。
- 3-3 结合"全国各省参考信息表"和"病例基本信息表"给出没有新增确诊病例或未披露病例信息的省份。
- 3-4 2021年1月20日全国中高风险地区所在省中,哪些省在1月20日没有新增确诊信息披露。
- 3-5 根据病例基本信息表查询一月份国内新增患者病例最多的城市。
- 3-6 查询除中美两国以外的其余国家中,进入 2021 年以来单日新增确诊病例始终不低于一万例的国家。

四、实验要求

- 1.要求学生独立完成以上内容;
- 2.按照实验步骤完成实验后,撰写报告内容。

五、实验结果及分析

1 单表查询

1-1 查询国内确诊病例基本信息的所有信息来源

执行 SQL 语句为:

SELECT DISTINCT 信息来源 FROM 病例基本信息表

执行结果如下:

1-2 给出河南省、西藏自治区、台湾省的英文名称和人口数

执行 SQL 语句为:

SELECT 英文名称,人口数
FROM 全国各省参考信息表
WHERE 中文名称 IN ('河南省','西藏自治区','台湾省')

	英文名称	◆ 人口数
1	Henan	96050000
2	Taiwan	23816775
3	Tibet	3440000

1-3 查询 2021 年 1 月 20 日各省现有确诊病例数据,按现有确诊病例数降序排列输出

执行 SQL 语句为:

SELECT 省,累计确诊-累计死亡-累计治愈 AS 现有确诊 FROM 全国各省累计数据统计表 WHERE 日期 = '2021-01-20' ORDER BY 现有确诊 DESC

执行结果如下:

	省	⇒ 现有确诊
1	河北省	829
2	香港特别行政区	766
3	黑龙江省	259
4	吉林省	162
5	上海市	95
6	北京市	44
7	广东省	39
8	陕西省	26
9	辽宁省	25
10	天津市	24
当前第1页 上一页 下一页 50条	·/页 ∨	

1-4 顺义区中风险地区的数量

执行 SQL 语句为:

SELECT COUNT(*)
FROM 全国城市风险等级表
WHERE 区 = '顺义区' AND 风险等级 = '中风险地区'

执行结果如下:

1-5 计算截至 2021 年 1 月 20 日全国累计确诊病例数

执行 SQL 语句为:

 SELECT SUM (累计确诊) AS 全国累计确诊数

 FROM 全国各省累计数据统计表

 WHERE 日期 = '2021-1-20'

1-6 查询 1005 号病例确诊后, 其所在市新增的所有确诊病例

执行 SQL 语句为:

执行结果如下:

1 982 馬克江省 馬河市 爱斯区 2021-01-07 女 54 2 1004 馬河市 爱斯区 2021-01-06 女 41 3 1005 馬茂江省 馬河市 爱斯区 2021-01-06 女 18		病例号	⇒ 省	ф	\$ <u>K</u>	⇒□日期	⇒ 性别	◆ 年龄
	1	982	黑龙江省	黑河市	爱辉区	2021-01-07	女	54
3 1005 照光正省 照河市 爱辉区 2021-01-06 安 18	2	1004	黑龙江省	黑河市	爱辉区	2021-01-06	女	41
	3	1005	黑龙江省	黑河市	爱辉区	2021-01-06	女	18

1-7 在"病例基本信息表"中查询石家庄市在 2021 年 1 月 11 日当天以及之前的 所有 60 岁以上的患者信息

执行 SQL 语句为:

```
SELECT *
FROM 病例基本信息表
WHERE 市 = '石家庄市' AND 日期 <= '2021-1-11' AND 年龄 > '60'
```

执行结果如下:

	病例号	⇒ 省	章 市	\$ K	⇒ 日期	⇒ 性別	⇒ 年龄
1	925	河北省	石家庄市	井陉县	2021-01-08	女	65
2	741	河北省	石家庄市	藁城区	2021-01-11	女	78
3	743	河北省	石家庄市	藁城区	2021-01-11	女	75
4	744	河北省	石家庄市	藁城区	2021-01-11	女	68
5	746	河北省	石家庄市	藁城区	2021-01-11	女	77
6	747	河北省	石家庄市	藁城区	2021-01-11	男	70
当前第1页	上一页	[50 条/页∨] 跳转到 [1]	O 获取总行数				刷新

1-8 统计截止到 2020 年 12 月 30 日美国累计确诊病例数最多的 10 个州

执行 SQL 语句为:

```
SELECT 州
FROM 美国各州县确诊与死亡统计表
WHERE 日期 = '2020-12-30'
GROUP BY 州
```

```
ORDER BY SUM(累计确诊) DESC
LIMIT 10
```

执行结果如下:

	州
1	California
2	Texas
3	Florida
4	New York
5	Illinois
6	Ohio
7	Georgia
8	Pennsylvania
9	Tennessee
10	North Carolina

1-9 统计截至 2021 年 1 月 20 号中国发病率最高的人群(人群按照年龄划分,儿童<18,18<=青壮年<60,老年>=60)

执行 SQL 语句为:

```
SELECT

CASE

WHEN 年龄 < '18' THEN '儿童'

WHEN 年龄 < '60' AND 年龄 >= '18' THEN '青壮年'

ELSE '老年'

END AS 人群,

COUNT(*) AS 病例数

FROM 病例基本信息表

WHERE 日期 <= '2021-1-20'

GROUP BY 人群

ORDER BY 病例数 DESC

LIMIT 1;
```


2 多表查询

2-1 借助病例行程信息粗略查询曾去过"源升品质生活坊"的所有患者的基本信息

执行 SQL 语句为:

SELECT 病例基本信息表.*

FROM 病例基本信息表

JOIN 病例行程信息表 ON 病例基本信息表.病例号 = 病例行程信息表.病例号

WHERE 行程信息 LIKE '%源升品质生活坊%';

执行结果如下:

1 157 宮林省 通化市 东昌区 2021-01-18 女 2 167 宮林省 通化市 东昌区 2021-01-18 女	73
2 157 立林舎 雑化市 毎月区 2821-81-18 ケ	
2 20 20 20 20 20 20 20 20 20 20 20 20 20	76
3 171 吉林省 通化市 东昌区 2021-01-18 男	78
4 568	45

2-2 根据病例行程信息表和病例基本信息表,查询行程信息中存在"家庭聚餐"的病例被确诊的日期

执行 SQL 语句为:

SELECT 病例基本信息表.日期

FROM 病例基本信息表

JOIN 病例行程信息表 ON 病例基本信息表.病例号 = 病例行程信息表.病例号

WHERE 病例行程信息表.行程信息 LIKE '%家庭聚餐%';

执行结果如下:

	日期
1	2021-01-05
2	2021-01-04
3	2021-01-13
4	2021-01-13

2-3 对比中美两国累计确诊病例数,输出格式为(日期,中国累计确诊,美国累计确诊)

执行 SQL 语句为:

SELECT a.日期, a.中国累计确诊, b.美国累计确诊 FROM (

```
SELECT 日期,SUM(累计确诊) AS 中国累计确诊
FROM 全国各省累计数据统计表
GROUP BY 日期

) AS a

INNER JOIN(
SELECT 日期,SUM(累计确诊) AS 美国累计确诊
FROM 美国各州县确诊与死亡统计表
GROUP BY 日期

) AS b ON a.日期 = b.日期

ORDER BY a.日期;
```

执行结果如下:

	日期	中国累计确诊	\$ 美国累计确诊
1	2020-11-22	92117	123479 0 5
2	2020-11-23	92212	12521898
3	2020-11-24	92297	12697001
4	2020-11-25	92403	12879677
5	2020-11-26	92489	12991818
6	2020-11-27	92587	13199752
7	2020-11-28	92682	13355018
当前第1页 上一页 下-	一页 50 条/页 V		刷单

2-4 计算截止到 2021 年 1 月 20 日,美国有些县的累计确诊是同一个州的其他县的 2 倍或以上,列出这些县,以及他们所在的州和他们的累计确诊 执行 SOL 语句为:

```
SELECT A.县, A.州, A.累计确诊
FROM 美国各州县确诊与死亡统计表 AS A
WHERE A.日期 = '2021-01-20'
AND A.累计确诊 >= 2 * (
    SELECT MAX(B.累计确诊)
    FROM 美国各州县确诊与死亡统计表 AS B
    WHERE B.州 = A.州
    AND B.县 != A.县
    AND B.日期 = '2021-01-20'
);
```


2-5 计算世界上人口数排名前 10 位的国家地区

执行 SQL 语句为:

```
SELECT 国家,人口数 FROM 参考信息表 WHERE 人口数 IS NOT NULL AND 组合码 = 国家 UNION ALL SELECT 'China' AS 国家,SUM(人口数) AS 人口数 FROM 全国各省参考信息表 WHERE 组合码 LIKE '%, China' ORDER BY 人口数 DESC LIMIT 10;
```

执行结果如下:

	国家	\$ ↓ 人□数
1	China	1428493105
2	India	1380004385
3	US	329466283
4	Indonesia	273523621
5	Pakistan	220892331
6	Brazil	212559409
7	Nigeria	206139587
8	Bangladesh	164689383
9	Russia	145934460
10	Mexico	127792286

2-6 列出美国人口超千万的大州中, 截至 2021 年 1 月 20 日新冠肺炎疫情死亡率 超过 2%的州

执行 SOL 语句为:

```
SELECT s.州, (s.州累计死亡 / s.州累计确诊) * 100 AS 死亡率
FROM (
SELECT 州, SUM(累计确诊) AS 州累计确诊, SUM(累计死亡) AS 州累计死亡
FROM 美国各州县确诊与死亡统计表
WHERE 日期 = '2021-01-20'
GROUP BY 州
) AS s
JOIN 参考信息表 AS r ON s.州 = r.省州
WHERE r.国家 = 'US'
AND r.人口数 > 100000000
AND 市县 IS NULL
AND s.州累计确诊 > 0
AND (s.州累计死亡 / s.州累计确诊) > 0.02
ORDER BY 死亡率 DESC;
```

	Ж	\$ 死亡率
1	New York	3.249464178695136
2	Pennsylvania	2.515414228831464

2-7 截至 2021 年 1 月 20 日,河北省哪些区出现了新冠确诊病例但不属于中高风险地区

小型数据集时可执行 SQL 语句为:

```
SELECT 区
FROM 病例基本信息表
WHERE 日期 <= '2021-01-20' AND 省 = '河北省' AND 区 IS NOT NULL
EXCEPT
SELECT DISTINCT 区
FROM 全国城市风险等级表
WHERE 省 = '河北省';
```

大型数据集时可执行:

执行结果如下:

	区
1	栾城
2	井陉县
3	裕华市
4	正定

2-8 在病例行程信息表的基础上根据病例基本信息表,查询河北省病例的全部信息

执行 SOL 语句为:

```
SELECT b.*
FROM 病例基本信息表 AS b
JOIN 病例行程信息表 AS t ON b.病例号 = t.病例号
```

```
WHERE b.省 = '河北省';
```

执行结果如下:

	病例号	章 省	ф 1 1	\$	区	\$	日期	¢	性别	\$	年龄
1	1	河北省	石家庄市		藁城区		2021-01-20		女		54
2	1	河北省	石家庄市		藁城区		2021-01-20		女		54

3 嵌套查询

3-1 查询披露的确诊患者信息中年龄最大的患者,输出其基本信息。(未注明年龄的患者不进行比较)

执行 SQL 语句为:

```
SELECT 患者信息
FROM 病例基本信息表
WHERE 年龄 = (
SELECT MAX(年龄)
FROM 病例基本信息表
WHERE 年龄 IS NOT NULL
);
```

执行结果如下:

```
患者信息
1 张某某,女,95岁
```

3-2 查询 2020 年 12 月份新增确诊患者最多的城市

执行 SQL 语句为:

```
SELECT 市, 新增确诊数
FROM (
    SELECT 市, COUNT(*) AS 新增确诊数
    FROM 病例基本信息表
    WHERE 日期 >= '2020-12-01' AND 日期 < '2021-01-01'
    GROUP BY 市
) AS 月统计
ORDER BY 新增确诊数 DESC
LIMIT 1;
```

3-3 结合"全国各省参考信息表"和"病例基本信息表"给出没有新增确诊病例或未披露病例信息的省份

执行 SQL 语句为:

```
SELECT SUBSTRING(中文名称, 1, 2) AS 省份
FROM 全国各省参考信息表
WHERE SUBSTRING(中文名称, 1, 2) NOT IN (
SELECT DISTINCT SUBSTRING(省, 1, 2)
FROM 病例基本信息表
WHERE 省 IS NOT NULL
)
```

执行结果如下:

	省份	
1	安徽	
2	重庆	
3	福建	
4	甘肃	
5	广东	
6	贵州	
7	海南	
8	河南	
9	湖北	

3-4 2021年1月20日全国中高风险地区所在省中,哪些省在1月20日没有新增确诊信息披露

执行 SQL 语句为:

```
SELECT 省
FROM 全国城市风险等级表
EXCEPT
SELECT DISTINCT 省
FROM 病例基本信息表
WHERE 日期 = '2021-1-20'
```

	省	
1	吉林省	
2	辽宁省	

3-5 根据病例基本信息表查询一月份国内新增患者病例最多的城市

执行 SQL 语句为:

SELECT 市, 病例数

```
FROM (
    SELECT 市, COUNT(*) AS 病例数
    FROM 病例基本信息表
    WHERE 日期 >= '2021-01-01' AND 日期 <= '2021-01-31'
    GROUP BY 市
) AS 一月各市确诊
WHERE 病例数 = (
    SELECT MAX(病例数)
    FROM (
        SELECT 市, COUNT(*) AS 病例数
        FROM 病例基本信息表
        WHERE 日期 >= '2021-01-01' AND 日期 <= '2021-01-31'
        GROUP BY 市
    ) AS 内部统计
);
```

执行结果如下:

3-6 查询除中美两国以外的其余国家中,进入 2021 年以来单日新增确诊病例始 终不低于一万例的国家

由于学校提供的数据说明不够清晰,我认为此处存在两种解答:

1 各国疫情数据统计表中的省州,为 null 表示为国家级的数据,不为 null 则表示省州级的数据。故计算国家的每日新增时,需要排除省州。

执行 SQL 语句为:

```
WITH 每日新增 AS(
SELECT 国家,日期,
累计确诊 - LAG(累计确诊) OVER (PARTITION BY 国家 ORDER BY 日期) AS 新增确诊
FROM 各国疫情数据统计表
WHERE 日期 >= '2021-01-01'
AND 国家 NOT IN ('China', 'US')
-- AND 省州 IS NULL -- 确保只统计国家级别的数据
)
SELECT DISTINCT 国家
FROM 每日新增
WHERE 国家 NOT IN (
SELECT DISTINCT 国家
```

```
FROM 每日新增
WHERE 新增确诊 IS NOT NULL AND 新增确诊 < 10000
);
```

执行结果如下:

	国家
1	Russia
2	Brazil

2 不考虑省州的属性。因为查询了几个国家的数据: Canada、Singapore、France 发现: Canada 的省州不存在 null, Singapore 的省州全为 null, France 既存在 null, 也存在具体的省州。故认为是数据未说明具体指向。

执行 SQL 语句为:

```
WITH 每日新增 AS(
SELECT 国家,日期,
累计确诊 - LAG(累计确诊) OVER (PARTITION BY 国家 ORDER BY 日期) AS 新增确诊
FROM 各国疫情数据统计表
WHERE 日期 >= '2021-01-01'
AND 国家 NOT IN ('China', 'US')
AND 省州 IS NULL -- 确保只统计国家级别的数据
)
SELECT DISTINCT 国家
FROM 每日新增
WHERE 国家 NOT IN (
SELECT DISTINCT 国家
FROM 每日新增
WHERE 新增确诊 IS NOT NULL AND 新增确诊 < 10000
);
```

	国家
1	Russia
2	United Kingdom
3	Brazil

六、实验总结

本次实验让我对 sql 语句的掌握得到了很大的提高,也让我学习到了新的知识点。同时,我学会了如何根据实际需求选择合适的查询方式,比如小型数据集使用 except,大型数据集更倾向于 not in。也让我认识到写 sql 语句时,不仅仅要关注表的属性,更需要关注存储的数据的具体内容。

除此之外,我也想提出我的建议:加强数据的格式化、统一化,或者在当前的基础上,增添数据格式的说明,避免因为数据的问题造成解题时的困扰。