Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat No.

[5057]-2055

S.E. (Computer) (First Semester) EXAMINATION, 2016 COMPUTER ORGANIZATION AND ARCHITECTURE (2015 Pattern)

Time: Two Hours

Maximum Marks: 50

- N.B.: (i) Neat diagrams must be drawn wherever necessary.
 - (ii) Figures to the right indicate full marks.
 - (iii) Use of calculator is allowed.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Show the general structure of IAS computer and explain in detail. [6]
 - (b) Explain following cache mapping techniques along with their merits and demerits: [6]
 - (i) Direct
 - (ii) Set associative.

Or

2. (a) Perform Division of following numbers using restoring Division
Algorithm: [6]

Dividend = 1011

Divisor = 0011.

P.T.O.

<i>(b)</i>	What is Cache coherence? What are the solutions to tache
	coherence problem in single CPO system.
(a)	What are the evolutionary steps of I/O channel? Explain types
	of I/O channel ?
(b)	Explain the following addressing modes with one example each:
	(i) Immediate
	(ii) Register Indirect
	(iii) Direct.
	Or
(a)	Differentiate between programmed I/O and interrupt
	driven I/O. [6]
(b)	What is displacement addressing? Explain its types with
	calculation of effective address. [6]
(a)	What are various hazards in instruction pipelining? Explain
	with example. [7]
(b)	What is register organization ? What are different types of
	registers ? Explain in detail. [6]
	Or
(a)	Explain the instruction cycle in detail. [6]
(b)	List and explain various ways in which an instruction pipleine
	can deal with conditional branch instructions. [7]
]-2055	2
	(a) (b) (a) (b) (a) (b)

- 7. (a) Compare horizontal and vertical microinstruction format. [6]
 - (b) Write a control sequence for the following instruction for single bus organization: SUB (R3), R1. [7]

Or

- 8. (a) Compare Hardwired control over micro-programmed control. [6]
 - (b) Explain in detail micro instruction sequencing organization. [7]

Marking Scheme

	b)	register organization = 1 Mark types of register = 5 Marks	[6]
Q.5	a)	Resource Hazard = 2 Marks Control Hazards = 2 Marks	[7]
0.5	(b)	displacement addressing Definition =2 Marks 3 Types of displacement addressing = 4 Marks (Explanation with examples of each type) Relative Addressing = 2 Marks Base register addressing = 1 Marks Indexing =1 Marks Data Hazards =3 Marks	[6]
Q.4	a)	Each point of Differentiation = 2 Marks 2*3=6 Marks	[6]
		OR	-
	b)	 i) Immediate 2 Marks = Explanation = 1 + Example 1 (ii) Register Indirect 2 Marks = Explanation = 1 + Example 1 (iii) Direct Addressing 2 Marks = Explanation = 1 + Example 1 	[6]
Q.3	a)	Evolutionary steps of I/O Channel = 3 Marks Types of I/O Channel = 3 Marks • Selector channel = 1 ½ Mark • Multiplexer Channel = 1 ½ Mark	[6]
	b)	Definition of cache Coherence = 2 Marks Solutions Write through= 2 Marks Write Block = 1 Marks Instruction cache = 1 Mark	[6]
Q.2	a)	Result = 0011 Reminder = 0010 Each cycle = 1 ½ Mark 1 ½ * 4 = 6 Marks	[6]
0.0		OR	
	b)	Direct Mapping = 3 Marks Set Associative = 3 Marks	[6]
Q.1	a)	structure of IAS Computer = 2 Marks explanation of MAR, MBR, IBR, IR, PC, AC & MQ = 4 Marks	[6]

P.T.O.

		 User visible = 3 marks Control and status = 2 marks 	
		OR	
Q.6	a)	State Diagram = 3 Marks Explanation = 3 Marks	[6]
	b)	Listing = 2 Marks Explanation of following point =1 Marks each Multiple Streams Prefetch branch target Loop Buffer Branch prediction Delayed branch	[7]
Q.7	a)	Each point of comparison = 2 Marks 2*3=6 Marks	[6]
	b)	Instruction fetch = 2 Marks Operand Fetch= 2 Marks Execution of instruction steps= 3 Marks	[7]
		OR	
Q. 8	a)	Each point of comparison = 2 Marks 2*3=6 Marks.	[6]
	b)	micro instruction sequencing Diagram = 3 Marks Explanation = 4 Marks	[7]