Facit till pass 2

Mängdlära

- 1. Nej, kan visas med exempelvis venndiagram.
- 2. c) stämmer ej, resten stämmer
- 3.
- a) stämmer, kan visa algebraiskt genom att visa att $x\in \bar{A}\Rightarrow x\notin A\Rightarrow x\notin B\Rightarrow x\in \bar{B}$
- b)stämmer ej, t.ex. $A = \{1\}, B = \{1, 2\}$ ger $A \setminus B = \emptyset$ men $A \neq B$
- c) stämmer ej, kan visas med medlemsskaps-tabell
- d) stämmer, kan visas med förenkling av vänster led.
- 4.
- a) $\{(1, a), (1, b), (2, a), (2, b), (3, a), (3, b)\}$
- b) 6
- c) 6 (notera att b) och c) ger samma svar)
- d) 0, efter som att $A \cap B = \emptyset$
- 5. nej, ex. $A=\{1\}, B=\{2\}, C=\{3\}$ då är $A\times B=\{(1,2)\}$ och $(A\times B)\times C=\{((1,2),3)\}$ men $A\times (B\times C)=\{(1,(2,3))\}$ vilka inte är lika.
- 6. $A = \{-1, 13, 35\}$ notera också att $A \cap B = \emptyset$ altså A och B är disjunkta.
- a) 3 + 4 = 7 (obs! B har π 2 ggr men duplicerade element räknas bara en gång)
- b) $3 + 4 0 = 7 (|A \cup B| = |A| + |B| |A \cap B|)$
- c) $2^4 2^3 = 16 8 = 8$
- d) 15. Går att brute forcea genom att beräkna samtliga element i P(B) och P(A). Dock kan man resonera fram att $A \cap B = \emptyset \Rightarrow P(A) \cap P(B) = \{\emptyset\}$ och $|P(B) \setminus P(A)| = |P(B)| |P(B)| \cap P(A)| = 16 1 = 15$
- e) $|P(P(A) \cup P(B))| = 2^{|P(A) \cup P(B)|} = 2^{|P(A)| + |P(B)| |P(A) \cap P(B)|} = 2^{8+16-1} = 2^{23}$
- f) $|P(P(P(A) \cap P(B)))| = |P(P(\{\emptyset\}))| = 2^{2^{|\{\emptyset\}|}} = 4$
- 7. använd induktion över n
- 8. $a_n = 2^{n+1} 1$
- 9. a = 2

- 10. induktion över n
- 11. induktion över n