Infineon TC275 PWM (Pulse Width Modulation)

Architecture and Compiler for Embedded System LAB.
School of Electronics Engineering, KNU, KOREA
2021-05-11

Hitex ShieldBuddy TC275

- PWM Duty Ratio에 따른 LED 밝기 변화
 - 1. 새로운 예제를 위한 프로젝트를 생성한다.
 - 2. 원하는 동작을 위해 레지스터와 메모리에 직접 접근해서 값을 써야한다.
 - 3. Board Schematic과 Datasheet를 통해 PWM 신호 출력에 대한 정보를 파악한다.
 - 4. PWM 신호 생성을 위해 사용할 GTM 모듈의 동작 원리를 파악하고 메모리 맵을 분석한다.
 - 5. 분석 결과를 활용해 임베디드 프로그래밍을 한다.

- 1. LED 연결 정보 파악
 - ✓ 여러 LED를 사용하기 위해 Target Board가 아닌 Easy Module Shield V1 확장 보드의 LED를 사용한다.

- 1. LED 연결 정보 파악
 - ✓ LED는 Easy Module Shield V1 확장 보드의 Pin D12(RED)/D13(BLUE)과 연결되어 있다.
 - ✓ 타겟 보드는 Easy Module Shield V1 확장 보드의 Pin D12/D13을 통해 LED 출력을 보낼 수 있다.
 (정상적인 Switch 동작을 위해 VCC 및 GND도 연결해야 한다.)

- 1. LED 연결 정보 파악
 - ✓ TC275 보드의 Schematic과 Datasheet를 확인했을 때, Easy Module Shield V1 확장 보드의 **Pin D12/D13**과 연결되는 IO는 PORT10**의 Pin 1-2**다.
 - ✔ 해당 Pin의 출력이 High-level 일 때 LED는 켜지고, Low-level 일 때 LED는 꺼진다.

- 1. PWM 신호 출력 정보 파악
 - ✓ LED가 연결된 PORT10 Pin 1는 GTM 모듈의 TOUT103과 연결되어 있다.
 - ✓ GTM 모듈의 TOUT103이 PWM 신호를 출력하면 PORT10 Pin 1을 통해 LED에 인가될 수 있다.
 - ✓ PWM 신호를 통해 LED 밝기를 제어하기 위해 해당 Pin을 GTM 모듈의 TOUT103 (01)으로 설정해야 한다.

Pin	Symbol	Ctrl	Type	Function
169	P10.1	I	MP+/	General-purpose input
	TIN103		PU1/	GTM input
	MRST1A		VEXT	QSPI1 input
	T5EUDB			GPT120 input
	P10.1	00		General-purpose output
	TOUT103	01		GTM output
	MTSR1	02		QSPI1 output
	MRST1	O3	7	QSPI1 output
	EN01	04		MSC0 output
	VADCG6BFL1	O5		VADC output
	END03	O6		MSC0 output
	-	07		Reserved

- 2. Data sheet 분석: PORT 설정 (1)
 - ✓ P10_IOCR Register는 PORT10의 Input/Output을 설정한다.
 - ✓ LED가 PORT10의 Pin 1에 연결되어 있기 때문에 P10_IOCRO Register의 PC1 bits를 설정한다.

Table 13-3 Registers Address Space

Module	Base Address	End Address	Note	
P00	F003 A000 _H	F003 A0FF _H	13 pins	
P01	F003 A100 _H	F003 A1FF _H	5 pins	
P02	F003 A200 _H	F003 A2FF _H	12 pins	
P10	F003 B000 _H	F003 B0FF _H	9 pins	
P11	F003 B100 _H	F003 B1FF _H	16 pins	
P12	F003 B200 _H	F003 B2FF _H	2 pins	
P13	F003 B300 _H	F003 B3FF _H	4 pins	
P14	F003 B400 _H	F003 B4FF _H	11 pins	
P15	F003 B500 _H	F003 B5FF _H	9 pins	

P10_IOCR0 Register 주소: F003_B010h (F003B000h + 10h) P10_IOCR0 Register 구조:

Pn_IOCR0 (n=10-11)
Port n Input/Output Control Register 0

(F003 A610_H + n*100_H)

Reset Value: 1010 1010_H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PC3

0

PC2

0

PC1

0

PC1

0

PC0

0

Field	Bits	Туре	Description
PC0, PC1, PC2, PC3	[7:3], [15:11], [23:19], [31:27]	rw	Port Control for Port n Pin 0 to 3 This bit field determines the Port n line x functionality (x = 0-3) according to the coding table (see Table 13-5).
0	[2:0], [10:8], [18:16], [26:24]	г	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석: PORT 설정 (2)
 - ✔ PORT10의 Pin 1을 GTM 모듈의 TOUT103 (O1)으로 설정하기 위해 PC1 bits를 10001b로 설정한다.

Table 13-5 PCx Coding

PCx[4:0]	I/O	Characteristics	Selected Pull-up / Pull-down / Selected Output Function
10000 _B	Output	Push-pull	General-purpose output
10001 _B			Alternate output function 1
10010 _B			Alternate output function 2
10011 _B			Alternate output function 3
10100 _B			Alternate output function 4
10101 _B			Alternate output function 5
10110 _B			Alternate output function 6
10111 _B			Alternate output function 7
11000 _B		Open-drain	General-purpose output
11001 _B			Alternate output function 1
11010 _B			Alternate output function 2
11011 _B			Alternate output function 3
11100 _B			Alternate output function 4
11101 _B			Alternate output function 5
11110 _B			Alternate output function 6
11111 _B			Alternate output function 7

- 2. Data sheet 분석: GTM Enable 설정
 - ✓ GTM_CLC Register는 GTM 모듈의 Enable 설정을 한다.
 - ✓ GTM 모듈을 Enable 하기 위해 DISR bit를 0으로 설정한다.
 - ✓ GTM 모듈이 Enable 되어 있는지 확인하기 위해 DISS bit가 O인지 확인한다.

GTM_CLC Register 주소: F019_FD00h (F0100000h + 9FD00h)

GTM_CLC Register 구조:

Table 25-63 Registers Address Space

Mod	ule		Base	ase Address End Address						Not	Note				
GTM			F010	0000	1		F019 FFFF _H								
CLC Clock Control Register (9FD00 _H) Reset Value: 0000 0000								0003 _H							
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						•)							
	l	l		ı	l	I		r	ı	l	1	ı		l	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0									EDIS		DIS S	DIS R			
						r						rw	r	r	rw

Field	Bits	Туре	Description
DISR	0	rw	Module Disable Request Bit Used for enable/disable control of the GTM module. 0 _B No disable requested 1 _B Disable requested
DISS	1	r	Module Disable Status Bit Bit indicates the current status of the GTM module. 0 _B GTM module is enabled 1 _B GTM module is disabled
EDIS	3	rw	Sleep Mode Enable Control Used for module sleep mode control.
0	2, [31:4]	r	Reserved Read as 0; should be written with 0.

- 2. Data sheet 분석 : System Critical Register 설정 (1)
 - ✓ 설정해야 하는 GTM_CLC Register는 System Critical Register이기 때문에 Write Protected (System ENDINIT, End-of-Initialization) 되어 있다.
 - ✓ 해당 Register를 수정하기 위해서는 System ENDINIT을 해제해야 한다.
 - ✓ SCU_WDTCPU0CON0 Register는 System Critical Register의 System ENDINIT을 설정/해제한다.

SCU_WDTCPU0CON0 Register 주소: F003_6100h (F0036000h + 100h)

SCU_WDTCPU0CON0 Register 구조:

Table 7-27	Registers /	Registers Address Spaces - SCU Kernel Registers						

Module E	Base Address	End Address	Note
SCU F	F003 6000 _H	F003 63FF _H	-

WDTCPU0CON0

- 2. Data sheet 분석 : System Critical Register 설정 (2)
 - ✓ ENDINIT bit는 System ENDINIT의 설정 상태를 나타내며 Modify Access를 통해서만 수정이 가능하다.
 - ✓ **LCK bit**는 SCU_WDTCPU0CON0 Register의 Lock 상태를 나타내며 해당 Register의 Lock 상태는 Password Access를 통해 Unlock 되고, Modify Access를 통해 Lock 된다.
 - ✓ PW bits는 SCU_WDTCPU0CON0 Register에 접근하기 위한 Password를 저장하며 해당 값을

Field	Bits	Туре	Description
ENDINIT	0	rwh	End-of-Initialization Control Bit 0 _B Access to Endinit-protected registers is permitted. 1 _B Access to Endinit-protected registers is not permitted. This bit must be written with a '1' during a Password Access or Check Access (although this write is only used for the password-protection mechanism and is not stored). This bit must be written with the required ENDINIT update value during a Modify Access.
LCK	1	rwh	Lock Bit to Control Access to WDTxCON0 0 _B Register WDTxCON0 is unlocked 1 _B Register WDTxCON0 is locked (default after ApplicationReset) The current value of LCK is controlled by hardware. It is cleared after a valid Password Access to WDTxCON0 when WDTxSR.US is 0 (or when WDTxSR.US is 1 and the SMU is in RUN mode), and it is automatically set again after a valid Modify Access to WDTxCON0. During a write to WDTxCON0, the value written to this bit is only used for the password-protection mechanism and is not stored. This bit must be cleared during a Password Access to WDTxCON0, and set during a Modify Access to WDTxCON0.

PW	[15:2]	rwh	User-Definable Password Field for Access to WDTxCON0 This bit field is written with an initial password value during a Modify Access. A read from this bitfield returns this initial password, but bits [7:2] are inverted (toggled) to ensure that a simple read/write is not sufficient to service the WDT.
			If corresponding WDTxSR.PAS = 0 then this bit field must be written with its current contents during a Password Access or Check Access. If corresponding WDTxSR.PAS = 1 then this bit field must be written with the next password in the LFSR sequence during a Password Access or Check Access
			The default password after Application Reset is 00000001111100 _B
			A-step silicon: Bits [7:2] must be written with 111100 _B during Password Access and Modify Access. Read returns 000011 _B for these bits.

- 2. Data sheet 분석 : System Critical Register 설정 (3)
 - ✓ SCU_WDTCPU0CON0 Register에 적절한 값을 Write하여 Password Access를 수행한다.
 - ✓ Password Access는 SCU_WDTCPU0CON0 Register의 Lock 상태를 해제하며 과정은 다음과 같다.
 - 1. SCU_WDTCPU0CON0 Register의 값을 읽어 REL bits, PW bits를 파악한다.
 - 2. Bits[7:2] (PW bits의 일부)가 반전되어 읽히기 때문에 이를 반전시켜 정확한 PW bits를 얻는다.
 - 3. Write 할 값의 bits[31:16]은 읽혀진 REL bits 값으로 설정하고 bit[15:2]는 앞서 구한 정확한 PW bits 값으로 설정한다.
 - 4. Write 할 값의 bit[1]은 0으로 설정하고, bit[0]은 1로 설정한다.
 - 5. 설정된 값을 SCU_WDTCPU0CON0 Register에 한번에 쓴다.
 - 6. SCU_WDTCPU0CON0 Register의 LCK bit를 확인하여 Lock 상태가 해제되었는지 파악한다. (Password Access가 정상적으로 수행되면 Lock 상태가 해제되며 LCK bit가 0으로 설정된다.)
 - ✓ Password Access를 통해 SCU_WDTCPU0CON0 Register의 Lock 상태가 해제되면 Modify
 Access를 통해 System ENDINIT을 설정/해제할 수 있다.

- 2. Data sheet 분석 : System Critical Register 설정 (4)
 - ✓ SCU_WDTCPU0CON0 Register에 적절한 값을 Write하여 Modify Access를 수행한다.
 - ✓ Modify Access는 System ENDINIT을 설정/해제하며 과정은 다음과 같다.
 - 1. SCU_WDTCPU0CON0 Register의 값을 읽어 REL bits, PW bits를 파악한다.
 - 2. Bits[7:2] (PW bits의 일부)가 반전되어 읽히기 때문에 이를 반전시켜 정확한 PW bits를 얻는다.
 - 3. Write 할 값의 bits[31:16]은 읽혀진 REL bits 값으로 설정하고 bit[15:2]는 앞서 구한 정확한 PW bits 값으로 설정한다.
 - 4. Write 할 값의 bit[1]은 1로 설정하고, bit[0]은 적절한 값으로 설정한다. (System ENDINIT 설정: bit[0] = 1, System ENDINIT 해제 : bit[0] = 0)
 - 5. 설정된 값을 SCU_WDTCPUOCONO Register에 한번에 쓴다.

- 6. SCU_WDTCPU0CON0 Register의 LCK bit를 확인하여 Lock 상태가 다시 설정되었는지 파악한다.
 - (Modify Access가 정상적으로 수행되면 Lock 상태가 설정되며 LCK bit가 1로 설정된다.)
- **ACE**/Ibally Access를 통해 System ENDINIT을 해제하면 System Critical Register를 수정할 수 있으며。

GTM

GTM

Submodule	Full name	Description
AEIMUX	AEI Interface	Generic bus interface for the GTM module. A bridge is required from the AEI to the MCU bus interface.
MON	Monitoring Unit	Another submodule primarily for safety applications. It provides a mechanism to supervise common circuitry and resources by monitoring output channels using an MCS channel and a TIM to check for errors.
PSM	Parameter Storage module	Consists of the AEI-to-FIFO interface (AFD), the FIFO-to-ARU (F2A), and the FIFO itself.
SPE	Sensor Pattern Evaluation Module	Can be used to evaluate the three hall sensor inputs and together with the TOM to support driving a Brush-less DC motor.
TBU	Timer Base Unit	Provides a common time base that can be used throughout the GTM subsystem. The TBU is organized by channels. The number of channels is implementation specific.
ТІМ	Timer Input Module	Provides for filtering and capture of input signals. It allows several characteristics of the input to be measured, including the time stamping of rising and falling edges, as well as the number of edges since an enable.
ТОМ	Timer Output Module	Provides independent channels for generating simple Pulse Width Modulated signals.

	Submodule	Full name	Description
	AFD	AEI to FIFO Data Interface	Provides a data interface between the AEI bus and the FIFO submodule.
	ARU	Advanced Routing Unit	Provides a mechanism for routing streams of data between data sources and transfer it to a destination. This is the heart of the GTM subsystem.
,	АТОМ	ARU connected Timer Output Module	Capable of generating complex output signals through its interconnectivity with the ARU to other modules in the GTM subsystem.
	BRC	Broadcast Module	Allows data streams to be duplicated and sent to multiple destinations.
1	CMP	Output Compare Module	Provides an XOR of duplicate outputs to provide an indication of differences for safety type applications.
	СМU	Clock Management Unit	Generates all of the clocks and counters for the GTM subsystem. It contains a Configurable Clock Generation Unit (CFGU), a Fixed Clock Generation Unit (FXU), and a External Clock Generation Unit (EGU).
	DPLL	Digital Phase Lock Loop	Provides the capability to multiply frequencies to provide a higher precision of position or value information. It performs calculations based on TRIGGER and STATE inputs from the MAP submodule to predict the duration of the current increment, generate pulses for up to two position counters, synchronise the actual position and predict position and time events without any CPU intervention. It can also seamlessly switch between modes under CPU control.
	F2A	FIFO to ARU Interface	Provides the interface between the ARU and the FIFO.
	FIFO	First in First Out Buffer	Provides a storage unit between the AFD and the ARU.
	GTMDI	GTM Debug Interface	Provides an advanced, real-time development interface for the GTM, based on the IEEE-ISTO 5001-2011 Nexus standard. It provides both run control and trace capabilities.
	GTMINT	GTM Integration Module	Provides a device specific wrapper around the GTM to handle specific MCU hardware interfaces including the module configuration control, AEI control, and interrupts.
	ICM	Interrupt Concentrator Module	Gathers the GTM submodule interrupts into interrupt groups to provide a smaller number of interrupts to the host CPU of the microcontroller.
	MAP	TIM0 Input Mapping Module	Generates two input signals (TRIGGER and STATE) for the DPLL submodule. The TIM can also be used as an input to the MAP submodule to provide additional filtering capabilities.
	MCFG	Memory Configuration Module	Provides an infrastructure to organize physical memory blocks and maps them to the instances of the MCS submodules. This submodule is not normally shown on Block Diagrams as it is so closely tied to the MCS RAM.
	MCS	Multi-Channel Sequencer	A generic data processing module that is connected to the ARU. It allows "programs" to be written to calculate complex output sequences that depend on Time Base values and ATOM signals. Other types of applications can also be handled by the MCS such as extending the operation of the TIM submodules, or using data from the host CPU to control GTM functions.

2. Data sheet 분석 : GTM 내부 Clock 설정 (1)

- ✓ GTM 모듈은 내부에 CMU (Clock Management Unit)을 포함하고 있다.
- ✓ CMU는 GTM 입력 클럭을 분주하여 다양한 내부 클럭을 생성하고, GTM 내부의 하위 모듈에 공급한다.
- ✓ 본 실습에서 PWM 신호 생성을 위해 사용할 하위 모듈인 TOM (Timer Output Module)은
 CMU_FXCLK에 따라 동작한다.
- ✓ 따라서, CMU의 FXU에 대한 설정을 해야 한다.

Clock Modulation Unit

2. Data sheet 분석: GTM 내부 Clock 설정 (2)

- ✓ GTM_CMU_FXCLK_CTRL Register는 CMU_FXCLK의 소스 클럭을 설정한다.
- ✓ CMU_FXCLK의 소스 클럭으로 GTM 모듈의 입력 클럭인 CMU_GCLK_EN 또는 GTM 모듈 내부에서 생성된 CMU_CLKx가 사용될 수 있다.
- ✓ 소스 클럭을 CMU_GCLK_EN으로 설정하기 위해 FXCLK_SEL bits를 0000b로 설정한다.

$GTM_{_}$	CMU	J_FX	(CLK	CT	RL	Regi	ste	r 주	도소:	F01	0_0	344	4h					
										(F0 ¹	00	000	h ⊦	- 344	h)Field	Bits	Туре	Description
GTM_	CMU	J_FX	(CLK	_CT	RL	Regi	ste	r Ŧ	^L 조:						FXCLK_S EL	[3:0]	rw	Input clock selection for EN_FXCLK line
Table 2	5-63	Regist	ters A	ddre	ss Sp	ace												0000 _B CMU GCLK EN selected
Module		Base	Addr	ess		End A	Addr	ess			Not	e						0001 _B CMU_CLK0 selected
GTM		F010	0000	н		F019	FFF	F _H										0010 _B CMU_CLK1 selected 0011 _B CMU_CLK2 selected
GTM C	MU F	XCLK	CTRL															0100 _B CMU_CLK3 selected
CMU FXCLK Control Register (00344 _H) Reset Value: 00000000 _H							lue:	0000				0101 _B CMU_CLK4 selected						
						(-п/							п				0110 _B CMU_CLK5 selected
31 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16				0111 _B CMU_CLK6 selected

••				9								Н			
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ı	1	1	1	ı	ı	Rese	erved	l	ı	ı	1	ı	ı	I
					1										
								r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1				Rese	erved							FXCL	K_SEI	-
				-	-	r				-	-		r	W	
	0000	🧏 л	CE	1 2											

Note: This value can only be written, when the

1000_RCMU CLK7 selected

2. Data sheet 분석 : GTM 내부 Clock 설정 (3)

- ✓ GTM_CMU_CLK_EN Register는 CMU 내부의 클럭에 대한 Enable 설정을 한다.
- ✓ GTM_CMU_CLK_EN Register는 CMU 내부에서 생성된 다양한 클럭에 대한 Enable을 설정할 수 있다.

✓ CMU_FXCLK을 Enable 하기 위해 EN_FXCLK bits를 10b로 설정한다.

Reset Value: 00000000...

GTM_CMU_CLK_EN Register 주소: F010_0300h (F0100000h + 300h)

GTM_CMU_CLK_EN Register 구조:

Table 25-63	Registers	Address	Space
-------------	-----------	----------------	-------

Module	Base Address	End Address	Note
GTM	F010 0000 _H	F019 FFFF _□	

GTM_CMU_CLK_EN CMU Clock Enable Register

••	•		10.0.	veg.5			(555	(H)			reset value stores				
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reserved								EN_I	XCL	EN_	ECLK	EN_	ECLK	EN_I	ECLK

(00300..)

			Rese	erved				_	K	_	2	_	1		י ו
				r				r	w	r	W	r	W	n	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
EN_C	CLK7	EN_	CLK6	EN_	CLK5	EN_	CLK4	EN_	CLK3	EN_	CLK2	EN_	CLK1	EN_C	CLK0
			14/	L .	24/	L .	244		1		344		1		

	<u> </u>		<u></u>
Field	Bits	Туре	Description
EN_CLK4	[9:8]	rw	Enable clock source 4 see bits [1:0]
EN_CLK5	[11:10]	rw	Enable clock source 5 see bits [1:0]
EN_CLK6	[13:12]	rw	Enable clock source 6 see bits [1:0]
EN_CLK7	[15:14]	rw	Enable clock source 7 see bits [1:0]
EN_ECLK 0	[17:16]	rw	Enable ECLK 0 generation subunit see bits [1:0]
EN_ECLK 1	[19:18]	rw	Enable ECLK 1 generation subunit see bits [1:0]
EN_ECLK 2	[21:20]	rw	Enable ECLK 2 generation subunit see bits [1:0]
EN_FXCL K	[23:22]	rw	Enable all CMU_FXCLK see bits [1:0] Note: An enable ODB clock source is disabled (ignore write access)
			reset inte 01 _B disable clock signal and reset internal states
			11 clock signal enabled (ignore write access)

- 2. Data sheet 분석: TOM 구조 분석
 - ✓ PWM 신호 생성을 위해 GTM 모듈 내부의 TOM을 사용한다.
 - ✓ GTM 모듈은 3개의 TOM을 포함하고 있고, 각
 TOM은 2개의 TGC (TOM Global Channel
 Control)와 각8개의 TOM Channel을 보유
 - ✓ TGC는 8개의 TOM Channel과 연결되어 있으며 이를 통해 TOM Channel을 제어할 수 있다.
 - ✓ TOM Channel은 TGC의 제어에 따라 동작을 수행하며 출력 신호를 생성한다.
 - ✓ 본 실습에서는 TOMO_CH1를 사용한다.(TOUT103과 연결되어 있기 때문이다.)
 - ✓ 따라서, TOMO_CH1를 사용하기 위한 설정을

- 2. Data sheet 분석: TOM 동작 분석
 - ✓ TOM Channel은 CNO / CMO / CM1을 사용해 PWM 신호를 생성한다.
 - ✓ CNO: 동작 클럭에 따라 증가하는 Count 값을 저장한다.
 - ✓ CMO: PWM 신호의 주기를 결정하는 값을 저장한다.
 - ✓ **CM1:** PWM 신호의 **Duty** Ratio를 결정하는 값을 저장한다.
 - ✓ CNO는 동작 클럭에 따라 1씩 증가하며 CMO에 도달하면 0으로 초기화된다.
 - ✓ CNO가 CMO에 도달했을 때, 출력 신호는 SL 값으로 설정된다.
 - ✓ CNO가 CM1에 도달했을 때, 출력 신호는 SL 반전 값으로 설정된다.

Figure 25-39 PWM Output with respect to configuration bit SL in continuos mode

- 2. Data sheet 분석: TOMO TGCO 설정 (1)
 - GTM_TOMO_TGCO_GLB_CTRL Register는 Channel 0-7을 제어하는 TGC0에 대한 설정을 한다.
 - ✔ Channel에 대한 Enable/Disable 설정 및 Output Enable 설정은 트리거 신호에 의해 일괄적으로 반영된다.
 - ✓ HOST_TRIG bit를 1로 설정하여 사용자가 소프트웨어적으로 트리거 신호를 발생시킬 수 있다.

RIG

GTM_TOM0_TGC0_GLB_CTRL Register 주소: F010_8030h (F0100000h + 8030h)

GTM_TOM0_TGC0_GLB_CTRL Register 구조:

Table 25-63	Registers Address Space
-------------	-------------------------

Module	Base Address	End Address	Note
GTM	F010 0000 _H	F019 FFFF _H	

TOMi TGC0_GLB_CTRL (i=0-2) TOMi TGC0 Global Control Register(08030 _H +i*800 _H) Reset Value: 00000000 _H															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
UPEI RI	_		N_CT L6		N_CT L5		N_CT _4	UPEN RI	_	UPEN RI	_	UPEN RI	_	UPEI RI	N_CT L0
r	N	r	W	r	N	n	N	r\	V	r\	V	r\	V	n	W
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RST	RST			RST			RST			R	SATV	ed e			HOS T T

ield	Bits	Type	Description
HOST_TRI	0	W	Trigger request signal (see TGC0, TGC1) to update the register ENDIS_STAT and OUTEN_STAT 0 _B no trigger request 1 _B set trigger request Read as 0. Note: This flag is cleared automatically after triggering the update
Reserved	[7:1]	r	Reserved Read as zero, should be written as zero
RST_CH0	8	W	Software reset of channel 0 0 _B No action 1 _B Reset channel Read as 0. Note: This bit is cleared automatically after write by CPU. The channel registers are set to their reset values and channel operation is stopped immediately. The S-r FlipFlop SOUR is set to '1'.

- 2. Data sheet 분석 : TOMO TGCO 설정 (2)
 - ✓ TOM 동작을 위한 CM0 / CM1 / CLK_SRC 값은 먼저 Shadow Register에 저장된다.
 - ✓ 업데이트가 Enable 되어 있으면 업데이트를 할 때 Shadow Register에 저장되어 있는 값이 일괄적으로 반영되어 CM0 / CM1 / CLK_SRC가 설정된다.
 - ✓ TOM Channel 1이 동작하기 위해서는 해당 Channel에 대한 CM0 / CM1 / CLK_SRC 값이 설정되어야 하며 이를 위해 UPEN_CTRL1 bits를 10b로 설정하여 업데이트를 Enable 한다.

- 2. Data sheet 분석 : TOMO TGCO 설정 (3)
 - ✓ GTM_TOMO_TGCO_FUPD_CTRL Register는 트리거 신호에 따른 동작 설정을 한다.
 - ✓ FUPD_CTRLx bits는 CM0 / CM1 / CLK_SRC의 업데이트가 트리거 신호에 의해 실행되도록 설정하며 이를 Channel 1에 적용하기 위해 FUPD_CTRL1 bits를 10b로 설정한다.
 - ✓ RSTCNO_CHx bits는 CNO의 초기화가 트리거 신호에 의해 실행되도록 설정하며 이를 Channel
 1에 적용하기 위해 RSTCNO_CH1 bits를 10b로 설정한다.

- 2. Data sheet 분석 : TOMO TGCO 설정 (4)
 - ✔ GTM_TOMO_TGCO_ENDIS_CTRL Register는 트리거 신호에 따른 Enable/Disable을 설정한다.
 - ✓ 트리거 신호에 따라 각 Channel을 Enable 할지 Disable 할지 설정할 수 있다.
 - ✓ 트리거 신호 발생 시, Channel 1가 Enable 되게 ENDIS_CTRL1 bits를 10b로 설정한다.

GTM_TOM0_TGC0_ENDIS_CTRL Register 주소: F010_8070h (F0100000h + 8070h)

GTM TOMO TGCO ENDIS CTRL Register 구조:

Table 25-63	Registers Ad	dress Space
I able 25-05	Redisters Au	uress space

Modu	ıle		Base Address End Address Note												
GTM			F010	0000	H F019 FFFF _H										
	GTM_TOMi_TGC0_ENDIS_CTRL (i=0-2) OMi TGC0 Enable/Disable Control Register (08070 _H +i*800 _H) Reset Value: 00000000 _H														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
						1	Rese	erved	1						
			'					r							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ENDIS_CT ENDIS_CT ENDIS_CT ENDI							S_CT _4		S_CT L3	ENDI:	_	l	S_CT L1		S_CT L0
rw rw rw					r\	<i>N</i>	r	W	r	rw		rw		rw	

- 2. Data sheet 분석 : TOMO TGCO 설정 (5)
 - ✓ GTM_TOM0_TGC0_OUTEN_CTRL Register는 **트리거 신호에 따른 Output Enable을 설정**한다.
 - ✓ 트리거 신호에 따라 각 Channel의 Output을 Enable 할지 Disable 할지 설정할 수 있다.
 - ✓ 트리거 신호 발생 시, Channel 1의 Output이 Enable 되게 OUTEN_CTRL1 bits를 10b로 설정한다.

Bits

Type

Description

GTM_TOM0_TGC0_OUTEN_CTRL Register 주소: F010_8078h Field $(F0100000h + 8078h_{T}^{O})$ GTM TOMO TGCO OUTEN CTRL Register 구조: Table 25-63 Registers Address Space Module **Base Address End Address** Note GTM F010 0000₁₁ F019 FFFF_H GTM_TOMi_TGC0_OUTEN_CTRL (i=0-2) TOMi TGC0 Output Enable Control Register $(08078_{H}+i*800_{H})$ Reset Value: 00000000_H Reserved OUTEN_C OUTEN_C OUTEN_C OUTEN_C OUTEN_C OUTEN C OUTEN C TRL7 TRL6 TRL5 TRL4 TRL3 TRL2 TRL1 TRL0 rw rw rw

OUTEN_C TRL0	[1:0]	rw	Output (A)TOM_OUT(0) enable/disable update value Write of following double bit values is possible: 00 _B don't care, bits 1:0 of register OUTEN_STAT will not be changed on an update trigger 01 _B disable channel output on an update trigger 10 _B enable channel output on an update trigger 11 _B don't change bits 1:0 of this register Note: if the channel is disabled (ENDIS[0]=0) or the output is disabled (OUTEN[0]=0), the TOM channel 0 output TOM_OUT[0] is the inverted value of bit SL.
OUTEN_C TRL1	[3:2]	rw	Output (A)TOM_OUT(1)enable/disable update value See bits 1:0
OUTEN_C TRL2	[5:4]	rw	Output (A)TOM_OUT(2) enable/disable update value See bits 1:0
OUTEN_C TRL3	[7:6]	rw	Output (A)TOM_OUT(3) enable/disable update value See bits 1:0
OUTEN_C	[9:8]	rw	Output (A)TOM_OUT(4) enable/disable update value
TRL4	[8.0]	1 vv	See bits 1:0
TRL4 OUTEN_C TRL5	[11:10]	rw	

- 2. Data sheet 분석 : TOMO Channel 5 설정 (1)
 - ✓ GTM_TOMO_CHx_CTRL Register는 TOMO의 각 Channel에 대한 동작 설정을 한다.
 - ✓ TOM Channel 1의 동작을 설정하기 위해 GTM_TOMO_CH1_CTRL Register를 설정한다.
 - ✓ 출력 신호의 Duty Cycle에 대한 Signal level을 High로 설정하기 위해 SL bit를 1로 설정한다.

GTM_TOM0_CH1_CTRL Register 주소: F010_8040h (F0100000h + 8040h)

GTM_TOM0_CH1_CTRL Register 구조:

Table 25-63 Registers Address Space

Module	Base Address	End Address	Note
GTM	F010 0000 _H	F019 FFFF _H	

GTM_TOM0_CHx_CTRL (x=0-14)

TOM0 Channel x Control Register'

						(080	000 _H +	x*004	40 _H)		Res	set V	alue:	00000	0800 _H
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Rese	rved	GCM	SPE M	Rese rved	OSM	Rese rved	l I	R	eserve	ed	RST _CC U0		Rese	erved	
r		rw	rw	r	rw	r	rw		r	•	rw			r	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rese rved	CLK	_SRC	_SR	SL					R	eserv	ed				

25.11.8.9 Register TOMi_CHx_CTRL (x:0...14)

GTM_TOM0_CHx_CTRL (x=0-14)
TOM0 Channel x Control Register'

(08000_H+x*0040_H) Rese

Reset Value: 00000800_H

GTM_TOM1_CHx_CTRL (x=0-14)
TOM1 Channel x Control Register'

(08800_H+x*0040_H)

Reset Value: 00000800_H

GTM_TOM2_CHx_CTRL (x=0-14)
TOM2 Channel x Control Register'

(09000_H+x*0040_H)

Reset Value: 00000800_H

Field	Bits	Туре	Description
SL	11	rw	Signal level for duty cycle 0 _B Low signal level 1 _B High signal level If the output is disabled, the output TOM_OUT[x] is set to inverse value of SL.

- 2. Data sheet 분석 : TOMO Channel 1 설정 (2)
 - TOM Channel 1의 동작 클럭을 CMU FXCLK1로 설정하기 위해 CLK SRC SR bits를 001b로 설정한다.
 - CMU_FXCLK1의 주파수는 100MHz / 16 = 6,250kHz 이다.
 - ✓ CLK_SRC_SR bits가 업데이트를 할 때 반영되<u>기 때문에 TOM Channel 1의 동작 클럭 또한</u>

SR

업데이트를 할 때 반영된다.

GTM TOM0 CHx CTRL (x=0-14) TOM0 Channel x Control Register' $(08000_{H}+x*0040_{H})$ Reset Value: 00000800_H 24 23 RST SPE Rese Rese TRIG OSM Reserved GCM Reserved CC Reserved rved OUT rved U0 Rese CLK SRC SR Reserved rved

CLK_SRC [14:12] Clock source select for channel The register CLK SRC is updated with the value of CLK SRC SR together with the update of register CM0 and CM1. The input of the FX clock divider depends on the value of FXCLK SEL (see CMU). 000_B CMU FXCLK(0) selected: clock selected by **FXCLKSEL** 001_B CMU FXCLK(1) selected: clock selected by FXCLKSEL/ 2⁴ 010_B CMU_FXCLK(2) selected: clock selected by FXCLKSEL / 2⁸ 011_B CMU_FXCLK(3) selected: clock selected by FXCLKSEL / 2¹² 100_B CMU_FXCLK(4) selected: clock selected by FXCLKSEL / 2¹⁶ 101_B no CMU FXCLK selected, clock of channel stopped 110_B no CMU FXCLK selected, clock of channel stopped 111_R no CMU FXCLK selected, clock of channel stopped Note: if clock of channel is stopped (i.e. CLK SRC = 101/110/111), the channel can only be restarted by resetting CLK SRC SR to a value of 000 to 100 and forcing an update via the force update mechanism.

- 2. Data sheet 분석 : TOMO Channel 1 설정 (3)
 - ✔ GTM_TOMO_CHx_SRO Register는 CMO에 대한 Shadow Register이다.
 - ✓ TOM Channel 1의 CM0를 설정하기 위해 GTM_TOM0_CH1_SR0 Register를 설정한다.
 - ✔ GTM_TOM0_CH1_SR0 Register에 설정할 CM0 값을 저장하면 업데이트를 할 때 CM0에 반영된다.
 - ✓ 본 실습에서는 PWM 신호의 주기를 2ms로 설정하기 위해 해당 Register의 값을 (12500 1)로

설정한다. GTM_TOM0_CHT_SR0 Register 주소: F010_8044h (F0100000h + 8044h)

GTM_TOM0_CH1_SR0 Register 구조:

Table 25-63	Registers Address Space
-------------	-------------------------

Module	Base Address	End Address	Note
GTM	F010 0000 _H	F019 FFFF _H	

GTM_TOM0_CHx_SR0 (x=0-15)

TOM0 Channel x CCU0 Compare Shadow Register

(08004_H+x*0040_H)

Reset Value: 00000000_H

$$(Period of PWM) = \frac{(Value of CM0) + 1}{(Freq. of CMU_FXCLK1)}$$
$$= \frac{12500}{6250kHz} = 0.002s$$

- 2. Data sheet 분석 : TOMO Channel 1 설정 (4)
 - ✓ GTM_TOMO_CHx_SR1 Register는 CM1에 대한 Shadow Register이다.
 - ✓ TOM Channel 1의 CM1을 설정하기 위해 GTM_TOMO_CH1_SR1 Register를 설정한다.
 - ✓ GTM_TOMO_CH1_SR1 Register에 설정할 CM1 값을 저장하면 업데이트를 할 때 CM1에 반영된다.
 - \checkmark CM1에 의한 **Duty Ratio**는 $\left(\frac{CM1+1}{CM0+1} \times 100\right)$ (%) 이다. GTM_TOM0_CH1_SR1 Register 주소: F010_8048h (F0100000h + 8048h)

GTM_TOM0_CH1_SR1 Register 구조:

Table 25-63 Registers Address Space

Module	Base Address	End Address	Note
GTM	F010 0000 _H	F019 FFFF _H	

GTM_TOM0_CHx_SR1 (x=0-15)

TOM0 Channel x CCU1 Compare Shadow Register

(08008_H+x*0040_H) Reset Value: 00000000_H

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

SR1

- 2. Data sheet 분석: TOUT 설정 (1)
 - ✓ GTM 모듈 내 하위 모듈에서 생성한 출력 신호를 외부에 전달하기 위해서는 GTM 모듈의 출력 포트 (TOUT)와 연결 설정을 해야 한다.
 - ✓ 하나의 출력 포트에는 하위 모듈에서 생성된 출력 신호 4개가 MUX를 통해 연결되어 있으며 MUX 제어를 통해 하나의 신호가 출력 포트와 연결된다.
 - ✓ GTM_TOUTSEL Register는 MUX에 제어 신호를 입력하며 하나의 Register가 16개의 MUX를 제어한다.
 - ✓ 따라서, LED가 연결된 TOUT103 (PORT10 Pin 1)은 **GTM_TOUTSEL1 Register**의 **SEL11 bits**를 통해 설정할 수 있다.

- 2. Data sheet 분석 : TOUT 설정 (2)
 - ✓ GTM_TOUTSEL Register는 TOUT을 통해 출력될 신호를 설정한다.
 - ✓ TOUT103에 대해 설정하기 위해 GTM_TOUTSEL6 Register의 SEL7 bits를 설정한다.
 - ✓ TOMO Channel 1를 통해 생성한 PWM 신호를 TOUT103로 출력하기 위해 SEL7 bits를 00b로

설정한다. GTM_TOUTSEL6 Register 주소: F019_FD48h

(F0100000h + 9FD48h)

GTM_TOUTSEL6 Register 구조:

Table 25-63 Registers Address Space

Modu	ıle		Base	Addı	ess		End	d Add	ress			No	te		
GTM			F010	0000	Н		F01	9 FFF							
		-	= 0-14 Select	-	ster	(9	FD30) _H +n*4	1 _H)		Res	et Va	lue: (0000	0000
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
SE	L15	SE	L14	SE	L13	SE	L12	SE	L11	SE	L10	SE	L9	SE	L8
r	w rw rw		W	r	rw		W	r	W	r	W	r	W		
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	SE	L7	SE	L6	SE	L5	SE	L4	SE	L3	SE	L2	SE	L1	SE	L0
Ì	r	W	r	W	r	W	r	W	r	W	r	N	r\	٧	r	W

103/16 = 6, 103%16 = 7

104/16 = 6, 104%16 = 8

Field	Bits	Туре	Description
SELx (x = 0-15)	[x*2+1: x*2]	rw	TOUT(n*16+x) Output Selection This bit defines which timer out is connected as TOUT(n*16+x). The mapping for each pin is defined by Table 25-67Table 25-68. OOB Timer A form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports O1B Timer B form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports O1B Timer C form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports Timer D form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports O1B Timer D form Table 25-67Table 25-68 is connected as TOUT(n*16+x) to the ports O1B Timer D form Table 25-67Table 25-68 is connected as TOUT(n*16+x) is not defined in Table 25-67Table 25-68 this bit field has to be treated as reserved.

Table 25-67 GTM to Port Mapping for QFP-176 User Manual Page 3483

Port	Input	Output	Input Timer Mapped		Output Tin	I			
			Α	В	Α	В	C	D	
P10.1	TIN103	TOUT103	TIM0_1	TIM1_1	TOM0_1	TOM2_9	ATOM 1_1	ATOM 4_1	
P10.2	TIN104	TOUT104	TIM0_2	TIM1_2	TOM0_2	TOM2_10	ATOM	ATOM	

3. 프로그래밍

1) LED가 연결된 PORT에 대한 설정을 수행하는 함수를 구현한다.

PORT IO 설정관련 레지스터 주소 및 비트 필드 정의

PORT IO 설정 함수

3. 프로그래밍

- 2) GTM을 설정하기 위한 함수를 구현한다.
 - ① SCU_WDTCPU0CON0 Register를 통해 Password/Modify Access를 수행하여 System ENDINIT을 해제한다.
 - ② GTM_CLC Register를 통해 GTM 모듈을 Enable 한다.
 - ③ SCU_WDTCPU0CON0 Register를 통해 Password/Modify Access를 수행하여 System ENDINIT을 설정한다.
 - ④ GTM_CMU_FXCLK_CTRL Register와 GTM_CMU_CLK_EN Register를 통해 CMU_FXCLK를 설정한다.
 - ⑤ GTM_TOM0_TGC0_GLB_CTRL Register를 통해 CM0 / CM1 / CLK_SRC에 대한 업데이트를 Enable 한다.
 - ⑥ GTM_TOMO_TGCO_FUPD_CTRL Register를 통해 트리거 신호에 따른 동작 (Force update, Clear CNO)을 설정한다.
 - ⑦ GTM_TOMO_TGCO_ENDIS_CTRL Register와 GTM_TOMO_TGCO_OUTEN_CTRL Register를 통해 트리거 신호에 따른 동작 (Channel enable, Output enable)을 설정한다.
 - ⑧ GTM_TOMO_CH1_CTRL Register를 통해 Signal level을 설정한다.
 - GTM_TOMO_CH1_CTRL / GTM_TOMO_CH1_SR0 / GTM_TOMO_CH1_SR1 Register를 통해 CM0 / CM1/ CLK_SRC에 대한 Shadow Register를 설정한다.

ACE lab GTM_TOUTSEL5 Register를 통해 TOMO Channel 1의 PWM 신호가 TOUT103로 출력되도록 설정한다!/36

- 3. 프로그래밍
 - 2) GTM을 설정하기 위한 함수를 구현한다.

```
31@ /* Address of Registers */
32 // SCU Registers
33 #define SCU_BASE
                           (0xF0036000)
34 #define SCU_WDT_CPU0CON0 (*(volatile unsigned int*)(SCU_BASE + 0x100))
36 #define LCK
37 #define ENDINIT
39⊖// GTM Registers
40 // GTM - CMU
41 #define GTM BASE
                                        (0xF0100000)
                                        (*(volatile unsigned int*)(GTM BASE + 0x00300))
42 #define GTM CMU CLK EN
43 #define GTM CMU FXCLK CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x00344))
45 #define EN FXCLK
                                       22
46 #define FXCLK SEL
47
48 // GTM - TOMØ
                                        (*(volatile unsigned int*)(GTM BASE + 0x08030))
49 #define GTM_TOM0_TGC0_GLB_CTRL
50 #define GTM_TOM0_TGC0_ENDIS_CTRL
                                        (*(volatile unsigned int*)(GTM_BASE + 0x08070))
51 #define GTM TOM0 TGC0 OUTEN CTRL
                                        (*(volatile unsigned int*)(GTM_BASE + 0x08078))
52 #define GTM TOM0 TGC0 FUPD CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08038))
53 #define GTM TOM0 CH1 CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08040))
54 #define GTM TOM0 CH1 SR0
                                        (*(volatile unsigned int*)(GTM BASE + 0x08044))
55 #define GTM TOM0 CH1 SR1
                                        (*(volatile unsigned int*)(GTM BASE + 0x08048))
57 #define UPEN CTRL5
58 #define HOST TRIG
59 #define ENDIS CTRL1
60 #define OUTEN CTRL1
61 #define RSTCN0 CH1
                                       18
62 #define FUPD CTRL1
63 #define CLK SRC SR
                                        12
64 #define SL
65
66 // GTM
   #define GTM CLC
                                        (*(volatile unsigned int*)(GTM_BASE + 0x9FD00))
                                        (*(volatile unsigned int*)(GTM_BASE + 0x9FD48))
   #define GTM TOUTSEL6
   #define DISS
   #define DISR
   #define SEL7
```


GTM 설정관련 레지스터 주소 및 비트 필드 정의

- 3. 프로그래밍
 - 2) GTM을 설정하기 위한 함수를 구현한다.

```
116⊖ void init GTM TOMØ PWM(void)
117 {
118
         /* GTM Enable */
119
        // Password Access to unlock WDTCPU0CON0
120
     (1) SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) & ~(1 << LCK)) | (1 << ENDINIT);</p>
121
         while((SCU WDT CPU0CON0 & (1 << LCK)) != 0);</pre>
122
123
        // Modify Access to clear ENDINIT bit
124
        SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) | (1 << LCK)) & ~(1 << ENDINIT);
125
         while((SCU WDT CPU0CON0 & (1 << LCK)) == 0);</pre>
126
127
     (2) GTM_CLC &= ~(1 << DISR);</pre>
                                                          // Enable GTM Module
128
129
        // Password Access to unlock WDTCPU0CON0
130
     (3) SCU WDT CPU0CON0 = ((SCU_WDT_CPU0CON0 ^ 0xFC) & ~(1 << LCK)) | (1 << ENDINIT);</p>
131
         while((SCU WDT CPU0CON0 & (1 << LCK)) != 0);</pre>
132
133
        // Modify Access to set ENDINIT bit
134
        SCU WDT CPU0CON0 = ((SCU WDT CPU0CON0 ^ 0xFC) | (1 << LCK)) | (1 << ENDINIT);
        while((SCU WDT CPU0CON0 & (1 << LCK)) == 0);</pre>
135
136
137
                                                         // Wait until module is enabled
        while((GTM CLC & (1 << DISS)) != 0);
138
139
         /* GTM Clock Setting */
140
     (4) GTM CMU FXCLK CTRL &= ~((0xF) << FXCLK_SEL); // Input clock of CMU_FXCLK : CMU_GCLK_EN
141
                                                           // Enable all CMU FXCLK
142
         GTM CMU CLK EN = ((0x2) << EN FXCLK);
```

ACE Lab.

3. 프로그래밍

2) GTM을 설정하기 위한 함수를 구현한다.

```
/* GTM TOM0 PWM Setting */
145
     GTM_TOM0_TGC0_GLB_CTRL |= ((0x2) << UPEN CTRL5);</pre>
                                                          // TOM channel 5 enable update of
146
                                                           // register CM0, CM1, CLK SRC
147
148
    (6) GTM_TOMO_TGCO_FUPD_CTRL |= ((0x2) << FUPD_CTRL1); // Enable force update of TOM channel 1
149
        GTM TOM0 TGC0 FUPD CTRL |= ((0x2) << RSTCN0 CH1); // Reset CN0 of TOM channel 1 on force update
150
151
    (7) GTM TOM0 TGC0 ENDIS CTRL |= ((0x2) << ENDIS CTRL1); // Enable channel 1 on an update trigger
152
        GTM TOMO TGCO OUTEN CTRL |= ((0x2) << OUTEN CTRL1); // Enable channel 1 output on an update trigger
153
154
    8 GTM_TOM0_CH1_CTRL |= (1 << SL);
                                                          // High signal level for duty cycle
155
156
    9 GTM TOMO CH1 CTRL &= ~((0x7) << CLK SRC SR);
                                                           // Clock source : CMU FXCLK(1) = 3125 kHz
157
        GTM TOMO CH1 CTRL |= (1 << CLK SRC SR);
158
        GTM TOM0 CH1 SR0 = 12500 - 1;
                                                           // PWM freg. = 3125 kHz / 12500 = 250 Hz
159⊖ //
         GTM TOM0 CH1 SR1 = 0;
                                                           // Duty cycle = 0 / 12500 = 0
160 //
          GTM TOM0 CH1 SR1 = 6250-1;
                                                            // Duty cycle = 50 / 12500 = 0
161
        GTM TOM0 CH1 SR1 = 12500 - 1;
                                                           // Duty cycle = 100 / 12500 = 0
162
163
    (A) GTM TOUTSEL6 &= ~((0x3) << SEL7);
                                                           // TOUT103 : TOM0 channel 1
164
165
     (B) GTM TOMO TGCO GLB CTRL |= (1 << HOST TRIG); // Trigger request signal to update
166
```

GTM 설정 함수

3. 프로그래밍

3) 동작에 따라 'main' 함수를 구현한다. (앞서 구현한 함수들을 호출한다.)

```
31⊖ /* Address of Registers */
32 // SCU Registers
33 #define SCU BASE
                            (0xF0036000)
34 #define SCU_WDT_CPU0CON0 (*(volatile unsigned int*)(SCU_BASE + 0x100))
35
36 #define LCK
37 #define ENDINIT
38
39⊖ // GTM Registers
40 // GTM - CMU
41 #define GTM BASE
                                        (0xF0100000)
42 #define GTM CMU CLK EN
                                        (*(volatile unsigned int*)(GTM BASE + 0x00300))
43 #define GTM CMU FXCLK CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x00344))
45 #define EN FXCLK
46 #define FXCLK SEL
47
48 // GTM - TOM0
49 #define GTM TOM0 TGC0 GLB CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08030))
50 #define GTM TOM0 TGC0 ENDIS CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08070))
51 #define GTM TOM0 TGC0 OUTEN CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08078))
52 #define GTM TOM0 TGC0 FUPD CTRL
                                        (*(volatile unsigned int*)(GTM_BASE + 0x08038))
53 #define GTM TOM0 CH1 CTRL
                                        (*(volatile unsigned int*)(GTM BASE + 0x08040))
54 #define GTM TOM0 CH1 SR0
                                        (*(volatile unsigned int*)(GTM_BASE + 0x08044))
55 #define GTM TOM0 CH1 SR1
                                        (*(volatile unsigned int*)(GTM BASE + 0x08048))
57 #define UPEN CTRL5
58 #define HOST TRIG
59 #define ENDIS CTRL1
60 #define OUTEN CTRL1
                                        2
61 #define RSTCN0 CH1
                                        18
62 #define FUPD CTRL1
63 #define CLK SRC SR
                                        12
64 #define SL
                                       11
65
66 // GTM
67 #define GTM CLC
                                        (*(volatile unsigned int*)(GTM BASE + 0x9FD00))
68 #define GTM TOUTSEL6
                                        (*(volatile unsigned int*)(GTM BASE + 0x9FD48))
70 #define DISS
71 #define DISR
                                        0
72 #define SEL7
```

```
74 // PORT10 Registers
75 #define PORT10 BASE
                             (0xF003B000)
76 #define PORT10 IOCR0
                             (*(volatile unsigned int*)(PORT10 BASE + 0x10))
77
78
   #define PC1
                            11
79
80
   /* Function Prototype */
   void init LED(void);
   void init GTM TOMO PWM(void);
83
84
   IfxCpu syncEvent g cpuSyncEvent = 0;
85
86⊖ int core0_main(void)
87 {
88
        IfxCpu enableInterrupts();
89
90⊝
        /* !!WATCHDOGO AND SAFETY WATCHDOG ARE DISABLED HERE!!
91
         * Enable the watchdogs and service them periodically if it is required
92
93
        IfxScuWdt disableCpuWatchdog(IfxScuWdt getCpuWatchdogPassword());
94
        IfxScuWdt disableSafetyWatchdog(IfxScuWdt getSafetyWatchdogPassword());
95
96
        /* Wait for CPU sync event */
97
        IfxCpu emitEvent(&g cpuSyncEvent);
98
        IfxCpu waitEvent(&g cpuSyncEvent, 1);
99
100
        init LED();
01
        init GTM TOM0 PWM();
102
103
        while(1)
104
.05
106
        return (1);
.07
```

4. 동작 확인

✓ Build 및 Debug 후 ('Resume' 버튼 클릭), CM1 값을 바꿔보며 Duty Ratio에 따른 LED 밝기를 확인한다.

Duty = 50%

Duty = 100%

실습

- 1. Reference Code 수행
- 2. BLUE LED 추가 P10.2 > TOUT104

Q&A

Thank you for your attention

OOOOO Architecture and
Compiler
for Embedded Systems Lab.

School of Electronics Engineering, KNU

ACE Lab (hn02301@gmail.com)

