SOLUTIONS

MATH102-CALCULUS 2 TEST 2

SPRING 2022

NAME:					
STUDENT ID:					
SECTION:	A service of the serv				
TOTAL MARKS: 25					
DATE: 12.03.2022					
b. Find the	at every vertical line in the xy -analogous polar equation for b	horizontal lines	s in the xy —plane.	, _{[3 II}	narksj
a) Every	vertical line	has e	quation to	x = a $x = a$	real num
⇒	$r\cos\theta = a$ $r = asect$	Dis Ve	the polar	r equations	on for
b) Every	horizontal $y = 0$	line ha	for som	tion e a E	R
	\Rightarrow rsin θ = $r = a \alpha$	= a 05ec0	Trepresent line in	s any ho	rizont

2. Find a parametrization for the curve $y = \sqrt{x}$ ending at the point (0,0) using the angle θ (see figure) as the parameter.

$$\Rightarrow r = \frac{\cos\theta}{\sin^2\theta}$$

$$\Rightarrow r = \cot\theta \csc\theta, 0 < \theta \leq \frac{\pi}{2}$$

$$\alpha = \frac{\cos\theta}{\sin^2\theta} \cdot \cos\theta = \cot^2\theta$$

$$y = \frac{\cos\theta}{\sin^2\theta} \cdot \sin\theta = \frac{1}{\tan\theta}$$

the curve := $\angle (ot^2\theta, \frac{1}{\tan \theta})$, $0 \angle \theta \leq \frac{\pi}{2}$

3. Find the equation of the plane passing through the points $P_1 = (1, 2, 1), P_2 = (6, 5, 2)$ and $P_3 = (10, 6, 4)$. Explain your result. [5 marks]

$$=5i-6j-7k^{2}$$

$$5(x-1)-6(y-2)-7(z-1)=0$$

$$5x - 6y - 72 - 5 + 12 + 7 = 0$$

$$\int 5x - 6y - 7 = -14$$

4. Let $\vec{u} = (u_1, u_2)$, $\vec{v} = (v_1, v_2)$ and $\vec{w} = (w_1, w_2)$ be three non-zero vectors in \mathbb{R}^2 such that $\vec{u} \cdot \vec{v} = 0$ and $\vec{u} \cdot \vec{w} = 0$. Show that $\vec{v} = k\vec{w}$ for some scalar k. [3 marks]

We have,

$$U_1V_1 + U_2V_2 = 0 - (1)$$

 $U_1W_1 + U_2W_2 = 0 - (2)$

We want,

1) =0
$$U_1 V_1 = -U_2 V_2$$

2) =0 $U_1 W_1 = -U_2 W_2$

Dividing both equations:

$$\frac{V_1}{W_1} = \frac{V_2}{W_2}$$

as desired.

$$\frac{V_1}{W_1} = \frac{V_2}{W_2} = K$$
 (Same ratio)

$$\overrightarrow{V}_{=}(V_{1},V_{2})=K(W_{1},W_{2})$$
 $\overrightarrow{V}_{=}K\overrightarrow{W}$

Functions

Contour Plots

6. Find the equation of the tangent plane for the function $f(x,y) = x^2 + y^2 - 1$ at the point [3 marks]

$$f_x = 2x$$
, $f_y = 2y$

$$f(1,3) = 9$$

$$(z-9) - 2(x-1) - 6(y-3) = 0$$

$$Z-9-2x+2-6y+18=0$$

7. Find the derivative of
$$f(x,y) = \frac{x-y}{xy+2}$$
 at the point $(1,-1)$ in the direction of $\vec{u} = 12\hat{\imath} + 5\hat{\jmath}$ [4 marks]

unit
$$\hat{u} = \frac{1}{\sqrt{12^2 + 5^2}} (12\hat{i} + 5\hat{j}) = \frac{13}{13}\hat{i} + \frac{5}{13}\hat{j}$$

Vector $\hat{u} = \frac{1}{\sqrt{12^2 + 5^2}} (12\hat{i} + 5\hat{j}) = \frac{13}{13}\hat{i} + \frac{5}{13}\hat{j}$

$$f_{x} = \frac{xy + 2 - y(x - y)}{(xy + 2)^{2}} = \frac{2 + y^{2}}{(xy + 2)^{2}}$$

$$f_y = \frac{-(xy+2) - x(x-y)}{(xy+2)^2} = \frac{-2-x^2}{(xy+2)^2}$$

$$f_y|_{(1,-1)} = \frac{-3}{1} = -3$$

$$Df(1,-1)|_{\vec{U}} = \langle f_n, f_2 \rangle - \langle f_3 |_{\vec{B}} \rangle$$

$$= \frac{36}{13} - \frac{15}{13}$$