(9) BUNDESREPUBLIK DEUTSCHLAND

[®] Offenlegungsschrift[®] DE 197 07 106 A 1

(5) Int. Cl.⁶: B 60 T 8/32 B 60 T 8/60

DEUTSCHES PATENTAMT

(1) Aktenzeichen: 197 07 106.8
 (2) Anmeldetag: 22. 2. 97

Offenlegungstag: 2. 10. 97

66 Innere Priorität:

196 12 833.1

30.03.96

(7) Anmelder:

Robert Bosch GmbH, 70469 Stuttgart, DE

② Erfinder:

Brachert, Jost, 71254 Ditzingen, DE; Mueller, Elmar, 71706 Markgröningen, DE

(5) System zur Ansteuerung von Bremssystemen

Das erfindungsgemäße System dient zur Ansteuerung der Bremssysteme wenigstens zweier, vorzugsweise an einer Fahrzeugachse angebrachten Räder eines Fahrzeugs. Wie schon eingangs erwähnt, sind bei der Erfindung Mittel vorgesehen, mittels der der Bremsdruck an dem sogenannten Low-Rad in Reaktion auf eine erkannte Blockierneigung dieses Rades im Sinne einer Blockiervermeidung gesteuert wird. Weiterhin sind bei der Erfindung Erfassungsmittel vorgesehen, mittels der eine Größe ermittelt wird, die die Fahrdynamik des Fahrzeugs beeinflußt und/oder repräsentiert. Zu dieser Größe wird weiterhin ein entsprechender Schwellwert abgeleitet. Mittels Vergleichsmitteln wird die ermittelte Größe mit dem ermittelten Schwellwert verglichen und ein Vergleichsergebnis erzeugt. Der Kern des erfindungsgemäßen Systems besteht darin, daß Ansteuermittel zur Ansteuerung des Bremssystems des High-Rades vorgesehen sind, die in Reaktion auf die erkannte Blockierneigung des Low-Rades den Bremsdruckverlauf am High-Rad abhängig von dem ermittelten Vergleichsergebnis täti-

Beschreibung

Stand der Technik

Die Erfindung betrifft ein System zur Ansteuerung der Bremssysteme wenigstens zweier Räder eines Fahr-

Aus dem Stand der Technik sind vielerlei Möglichkeiten bekannt, durch einen Bremseingriff an den Rad- 10 bremssystemen ein Blockieren der Räder zu verhindern. Hierzu wird im allgemeinen aus der Radverzögerung und dem Radschlupf ein Instabilitätskriterium abgeleitet. Steuert man nun den Bremsdruck an den einzelnen Rädern derart, daß jedes Rad unabhängig von den anderen die optimale Verzögerung realisiert, so kann es bei sogenannten μ-Split-Bedingungen zu einem Schleudern des Fahrzeugs kommen. Eine solche µ-Split-Bedingung liegt dann vor, wenn sich das Fahrzeug auf einer Fahrbahn bewegt, deren Reibwerte auf der rechten und lin- 20 ken Fahrzeughälfte sehr unterschiedlich sind. In diesem Fall übertragen die Räder, die sich auf dem Fahrbahnteil mit dem höheren Reibwert bewegen eine höhere Bremskraft als die Räder, die sich auf der Fahrbahn mit des Fahrzeuges in diesem Fall zu verhindern, wird eine sogenannte Giermomentenaufbauverzögerung vorgenommen, damit bei solchen asymmetrischen Reibbeiwerten der Fahrbahn der Bremskraftunterschied an den Rädern einer Fahrzeugachse nicht zu groß wird. Im 30 Grundsatz wird bei der Giermomentenaufbauverzögerung der Druckanstieg am zuletzt Blockierneigung zeigenden Rad, dem sogenannten High-Rad, begrenzt, wenn an dem anderen Rad, dem sogenannten Low-Rad, eine Blockierneigung auftritt. Es sind verschiedene Lö- 35 sungen für solche Giermomentenaufbauverzögerungen bekannt, so kann beispielsweise der Druckaufbau an dem High-Rad bei Vorliegen einer Blockierneigung am Low-Rad nur noch mit verminderter Steigung stattfinden. Weiterhin ist bekannt, daß bei einer Blockiernei- 40 gung am Low-Rad der Bremsdruck am High-Rad so lange konstant gehalten wird, bis am Low-Rad wieder Bremsdruck aufgebaut wird.

Aus der EP,B1,0 235 515 ist bekannt, daß bei einer Kurvenfahrt eine Verminderung des Bremsdruckan- 45 stiegs an den Hinterrädern mit dem Auftreten einer Instabilität an dem zuerst Blockierneigung zeigenden Vorderrad eingeleitet wird. Der verminderte Druckanstieg wird dabei von der Größe der vorliegenden Querbeschleunigung abhängig gewählt. Auf diese Weise ge- 50 des Fahrzeugs beeinflussenden und/oder repräsentielangt man zu einer verbesserten Funktion der Giermomentenaufbauverzögerung bei Kurvenfahrten. Darüber hinaus ist aus der DE-OS 39 25 828 bekannt, daß die Differenz des Bremsdrucks zwischen dem High- und dem Low-Rad an einer Achse beobachtet wird, um bei 55 Überschreiten einer vorgegebenen Solldruckdifferenz den Bremsdruck am High-Rad konstant zu halten bzw. abzusenken. Diese vorgegebene Solldruckdifferenz wird dabei abhängig von dem Reibwert am Low-Rad

In dem Artikel ATZ Automobiltechnische Zeitschrift '96 (1994) "FDR-Fahrdynamikregelung von Bosch" wird ein System vorgestellt, bei dem im wesentlichen die Gierwinkelgeschwindigkeit des Fahrzeugs gemessen wird und mit einem aus der Fahrzeuglängsgeschwindig- 65 keit und dem Lenkwinkel des Fahrzeugs abgeleiteten Sollwert verglichen wird. Überschreitet die gemessene Gierwinkelgeschwindigkeit den entsprechenden Sollwert, so kann durch radindividuelles über- bzw. Unterbremsen das Gierverhalten des Fahrzeugs bezüglich einer Erhöhung der Fahrstabilität beeinflußt werden.

Die Aufgabe der vorliegenden Erfindung besteht dar-5 in, das Bremsverhalten bei μ-Split-Bedingungen zu optimieren.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.

Vorteile der Erfindung

Das erfindungsgemäße System dient zur Ansteuerung der Bremssysteme wenigstens zweier, vorzugsweise an einer Fahrzeugachse angebrachten, Räder eines Fahrzeugs. Wie schon eingangs erwähnt, sind bei der Erfindung Mittel vorgesehen, mittels der der Bremsdruck an dem sogenannten Low-Rad in Reaktion auf eine erkannte Blockierneigung dieses Rades im Sinne einer Blockiervermeidung gesteuert wird. Weiterhin sind bei der Erfindung Erfassungsmittel vorgesehen, mittels der eine Größe ermittelt wird, die die Fahrdynamik des Fahrzeugs beeinflußt und/oder repräsentiert. Zu dieser Größe wird weiterhin ein entsprechender Schwellwert abgeleitet. Mittels Vergleichsmitteln wird dem niedrigeren Reibwert befinden. Um ein Schleudern 25 die ermittelte Größe mit dem ermittelten Schwellwert verglichen und ein Vergleichsergebnis erzeugt. Der Kern des erfindungsgemäßen Systems besteht darin, daß Ansteuermittel zur Ansteuerung des Bremssystems des High-Rades vorgesehen sind, die in Reaktion auf die erkannte Blockierneigung des Low-Rades den Bremsdruckverlauf am High-Rad abhängig von dem ermittelten Vergleichsergebnis tätigen.

Die Erfindung hat den Vorteil, daß eine optimale Reibwertausnutzung an allen Rädern, d. h. eine Minimierung des Bremsweges, stattfindet, ohne die Fahrstabilität in nennenswertem Umfang zu gefährden. Weiterhin ist durch die Erfindung eine einfache Anpassung an unterschiedliche Fahrzeuge möglich, da beispielsweise durch die Vorgabe des oben erwähnten Schwellwertes in einfacher Weise die Fahrstabilität beeinflußt werden kann. Ein weiterer Vorteil der Erfindung besteht darin, daß auf eine eingangs erwähnte Giermomentenaufbauverzögerung, beispielsweise an der Vorderachse, verzichtet werden kann. Darüber hinaus wird durch die Erfindung eine unterstützende Wirkung bei Kurvenbremsungen in Verbindung mit kürzeren Bremswegen erreicht.

In einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, daß zur Ermittlung der die Fahrdynamik renden Größe wenigstens die Gierbewegung des Fahrzeugs, vorzugsweise die Gierwinkelgeschwindigkeit, erfaßt wird. Auf diese Weise erhält man als Fahrdynamikgröße direkt einen momentanen Wert für die Fahrzeugbewegung, die durch ein Bremsen unter µ-Split-Bedingungen bevorzugt induziert wird.

Besonders vorteilhaft ist es, die Ermittlung des Schwellwertes für die Fahrdynamikgröße wenigstens abhängig von der ermittelten Fahrzeuglängsgeschwin-60 digkeit zu tätigen. Hierdurch wird in vorteilhafter Weise erreicht, daß bei niedrigeren Fahrzeuggeschwindigkeiten die Fahrstabilität gegenüber dem Bremsweg weniger im Vordergrund steht als bei höheren Fahrzeuggeschwindigkeiten. Hierzu ist vorgesehen, daß die Ermittlung dieses Schwellwerts derart geschieht, daß der Schwellwert mit steigender Fahrzeuglängsgeschwindigkeit abnimmt.

Zur Ermittlung der die Fahrdynamik des Fahrzeugs

beeinflussenden und/oder repräsentierenden Größe kann über die schon erwähnte Gierwinkelgeschwindigkeit hinaus auch der Lenkwinkel des Fahrzeugs erfaßt werden. Insbesondere ist dabei vorgesehen, daß aus der erfaßten Fahzeuglängsgeschwindigkeit und dem erfaßten Lenkwinkel des Fahrzeugs, vorzugsweise mittels eines Fahrzeugmodells, ein Wert abgeleitet wird, woraufhin dieser Wert mit der tatsächlich vorliegenden Gierwinkelgeschwindigkeit des Fahrzeugs verglichen wird. namikgröße abgeleitet.

Die Ansteuermittel des Bremssystems des High-Rades sind derart ausgelegt, daß auf eine Blockierneigung des Low-Rades hin eine Bremsdruckabsenkung am High-Rad dann stattfindet, wenn die ermittelte Fahrdy- 15 namikgröße den ermittelten Schwellwert überschreitet. Ein Bremsdruckaufbau am High-Rad findet dann statt, wenn die ermittelte Fahrdynamikgröße den ermittelten Schwellwert unterschreitet.

Besonders vorteilhaft ist es, daß das Ausmaß der 20 Bremsdruckabsenkung und/oder des Bremsdruckaufbaus am High-Rad, z. B. der Bremsdruckabbau- und/ oder Bremsdruckaufbaugradient, abhängig von dem ermittelten Vergleichsergebnis getätigt wird. Übersteigt also die Fahrdynamikgröße in erheblichem Umfang den 25 zugehörigen Schwellwert, so wird eine Bremsdruckabsenkung, z. B. der Bremsdruckabbaugradient, am High-Rad weitaus stärker ausfallen als in dem Falle, in dem die Abweichung geringer ist. Ebenso kann der Bremsdruckaufbau, z. B. der Bremsdruckabbaugradient, am 30 High-Rad weitaus stärker getätigt werden, wenn die Fahrdynamikgröße weit unterhalb ihres Schwellwertes

Neben der im vorigen Abschnitt erwähnten Abhängigkeit des Bremsdruckauf- und/oder -abbaus von dem 35 ermittelten Vergleichsergebnis ist es besonders vorteilhaft, den Bremsdruckaufbau und/oder den Bremsdruckabbau, z. B. den Bremsdruckaufbau- und/oder Bremsdruckabbaugradienten, abhängig von der zeitlichen Änderung des ermittelten Vergleichsergebnisses zu wäh- 40

Die Bremsdruckabsenkung und/oder der Bremsdruckaufbau geschieht vorteilhafter Weise stufenweise mittels vorgebbarer Druckaufbau- und/oder Druckabbaupulsen mit vorgebbaren Druckhaltephasen. Die 45 Druckhaltephasen können dabei abhängig von dem Ausmaß des ermittelten Vergleichsergebnisses vorgegeben werden.

Hierbei kann vorgesehen sein, daß insbesondere die Dauer der Druckhaltephasen abhängig von dem ermit- 50 telten Vergleichsergebnis und/oder abhängig von der zeitlichen Änderung des ermittelten Vergleichsergebnisses vorgegeben wird.

Weitere vorteilhafte Ausgestaltungen sind den Unteransprüchen zu entnehmen.

Zeichnung

Die Fig. 1a zeigt ein Übersichtsblockschaltbild eines Bremssystems, während die Fig. 1b und 1c Blockschalt- 60 bilder zweier Ausführungsbeispiele der Erfindung darstellen. Die Fig. 2 und 4 zeigen zeitliche Bremsdruckverläufe bzw. das zeitliche Verhalten der Fahrdynamikgrö-Be. Die Fig. 3 offenbart die Wahl des erfindungsgemä-Ben Schwellwertes, während die Fig. 5a und 5b einen 65 Ablauf gemäß eines Ausführungsbeispiels zeigen. Die Fig. 6 zeigt die Berechnung der Bremsdruckhaltezeit.

Ausführungsbeispiel

Im folgenden soll anhand von Ausführungsbeispielen die Erfindung detailliert erläutert werden.

Die Fig. 1a zeigt als Übersichtsblockschaltbild ein bekanntes Bremssystem. Hierzu sind vier Räder eingezeichnet, deren Raddrehgeschwindigkeiten Nij durch die Raddrehzahlsensoren 101ij detektiert werden. Der Index i gibt dabei die Zugehörigkeit zur vorderen (i=v) Aus diesem Vergleich wird dann die erwähnte Fahrdy- 10 beziehungsweise hinteren (i=h) Achse des Fahrzeugs an, während der Index j die Zugehörigkeit zur rechten (j=r) beziehungsweise linken (j=l) Fahrzeugseite anzeigt. Die Raddrehzahlsignale Nij werden der Steuereinheit 1 zugeführt. Abhängig von den Raddrehzahlsignalen Nij werden dabei in der Steuereinheit 1 Ansteuersignal pij für die Radbremssysteme 2ij gebildet. Dies geschieht im allgemeinen dadurch, daß abhängig von der Radverzögerung und dem Radschlupf für jedes Rad ein Instabilitätskriterium gebildet wird. Aus diesen Instabilitätskriterium wird dann erkannt, ob ein Rad eine Blockierneigung aufweist. Ist dies der Fall, so kann durch ein Konstanthalten beziehungsweise durch eine Absenkung des Bremsdruckes an diesem Rad dieser Blockierneigung entgegengetreten werden. Zusätzlich zu den Raddrehzahlsignalen Nij werden dem Steuergerät 1 die Ausgangssignale eines Lenkwinkelsensors 3, der Lenkwinkel δ, eines Gierwinkelgeschwindigkeitssensors 4, die momentane Gierwinkelgeschwindigkeit ωist, und das Ausgangssignal eines Fahrzeuglängsgeschwindigkeitssensors 5 (Fahrzeuglängsgeschwindigkeit V1) zugeführt. Die Fahrzeuglängsgeschwindigkeit V₁ kann dabei durch an sich bekannte Verfahren aus den Raddrehzahlen Nij ermittelt werden.

> Wie schon eingangs erwähnt wird bei bekannten Antiblockierregelsystemen aus fahrdynamischen Gründen, insbesondere zum Stabilisierung des Fahrzeugs bei μ-Split-Bremsungen, an der Hinterachse nach dem sogenannten Select-Low-Prinzip der Bremsdruck gesteuert. Dies bedeutet, daß der Radbremsdruck an dem High-Rad abhängig von dem Radbremsdruck am Low-Rad gewählt wird. Dieser stabilisierende Effekt hat aber aufgrund des schlecht ausgenutzten Reibwertes am High-Rad eine Bremswegverlängerung zum Nachteil. Stehen nun, wie in der Fig. 1a mit den Sensoren 3 und 4 zu sehen ist, dem Antiblockierregelsystem Zusatzinformationen zur Erfassung der Fahrzeugdrehbewegung, beispielsweise der Giergeschwindigkeit, zur Verfügung, so kann, beispielsweise in Verbindung mit einem Fahrzeugmodell, von dem Select-Low-Prinzip auf die sogenannte Individualregelung der Hinterräder übergegangen werden.

> Anhand der Fig. 2 soll dies kurz erläutert werden. Bei Bremsungen auf Fahrbahnen mit asymmetrischer Reibwertverteilung (µ-Split-Bremsungen) liegen die Blokkierbremsdrücke pBlock,H und pBlock,L von der High- und Lowseite auf unterschiedlich hohem Niveau. Während das Low-Rad bei Bremsbeginn relativ frühzeitig das Antiblockier-Anregelkriterium (Instabilitätskriterium) erfüllt, wird auf der High-Seite erst zu einem späteren Zeitpunkt der entsprechende Blockierdruck erreicht. Dies ist in der Fig. 2 mit dem Verlauf "Low-Rad" und dem Verlauf a des High-Rades gekennzeichnet. Aus Stabilitätsgründen wird zum Zeitpunkt des Blockierregelbeginns auf der Low-Seite (Zeitpunkt t₁) der Bremsdruck an dem High-Rad gepulst in Form von festen Puls-Pause-Sequenzen aufgebaut, wie in dem Verlauf b der Fig. 2 zu sehen ist. Auf diese Weise gelangt das High-Rad erst zum Zeitpunkt t2 an seine Blockiergren-

Die Fig. 1b zeigt die für die vorliegende Erfindung relevanten Teile bzw. Funktionsweise der in der Fig. 1a mit dem Bezugszeichen 1 dargestellten Steuereinheit. Hierzu ist mit dem Bezugszeichen 104 das System Fahrer bzw. Fahrzeug symbolisiert, an dem mittels der schon beschriebenen Sensoren 3, 4 und 5 der Lenkwinkel δ, der Istwert der Giergeschwindigkeit ωist und die Fahrzeuglängsgeschwindigkeit V₁ detektiert wird. Aus winkel δ des Fahrzeugs wird mittels des im Block 105 abgelegten Fahrzeugmodells die Sollgiergeschwindigkeit ωsoll gebildet. Diese Sollgiergeschwindigkeit repräsentiert einen Wert für die Gierwinkelgeschwindigkeit, der insbesondere durch eine vom Fahrer gewollte Kur- 15 venfahrt bei einer bestimmten Fahrzeuggeschwindigkeit aufgebracht werden muß, um die vom Fahrer gewünschte Fahrzeugrichtung einzuschlagen. In dem Fahrzeugmodell 105 ist dabei in an sich bekannter Weise im wesentlichen das Fahrzeugverhalten, d. h. die Re- 20 aktion des Fahrzeugs auf einen vom Fahrer induzierten Lenkwinkel bei einer bestimmten Fahrzeuglängsgeschwindigkeit abgespeichert.

In dem Verknüpfungspunkt 106 wird der Istwert ωist der Gierwinkelgeschwindigkeit mit dem Sollgierwinkelgeschwindigkeitswert wsoll verglichen, woraufhin das Vergleichsergebnis Δω der Situationserkennung 107 zugeleitet wird. Weiterhin werden in der Situationserkennung 107 die einzelnen Radbremsdrücke verarbeitet, um einen Stabilitätswert fzstabist abzuleiten. Je nach- 30 dem, in wieweit die Istgiergeschwindigkeit von der Sollgiergeschwindigkeit abweicht kann unter Berücksichtigung der Bremsvorgänge an den einzelnen Rädern ein gutes Maß für die Stabilität des Fahrzeugs ermittelt werden. Dieser Stabilitätswert wird in der Verknüpfung 35 108 mit einem entsprechenden Sollwert fzstabsoll verglichen. Dieser Stabilitätssollwert wird in der Einheit 109 abhängig von der Fahrzeuglängsgeschwindigkeit gebildet. Abhängig von diesem Vergleichsergebnis Δfzstab wird in der Einheit 103 der Bremsdruck an dem High- 40 Rad gesteuert. Diese Bremsdrucksteuerung am High-Rad geschieht allerdings nur dann, wenn der Schalter S geschlossen ist. Ein Schließen des Schalters S geschieht nur dann, wenn an dem Low-Rad der Achse ein ABS-Regelvorgang eingeleitet worden ist und gleichzeitig 45 das High-Rad stabil läuft. Dies geschieht in bekannter Weise abhängig von den Raddrehzahlsignalen Nij in der Einheit 102.

Ist der Schalter S geschlossen, so wird abhängig von dem Vorzeichen des Vergleichsergebnisses Afzstab der 50 Bremsdruck am High-Rad erhöht, erniedrigt oder konstant gehalten. Dies geschieht, wie in dem Block 103 zu sehen ist, insbesondere dadurch, daß die Bremsdruckänderung phR' am High-Rad als Funktion des Vergleichsergebnisses Afzstab gewählt wird. Hierzu soll auf die 55 noch zu beschreibende Fig. 5 verwiesen werden. Der im Block 103 ermittelte Bremsdruck für das High-Rad wird entsprechend eingestellt, was durch die Einspeisung 110 symbolisiert sein soll. Der Radbremsdruck am Low-Rad oder, falls der Schalter S geöffnet ist, an beiden Rädern 60 wird durch die Einheit 102 in bekannter Weise mittels der Einspeisung 111 gesteuert. Durch die Steuerung des Bremsdrucks an den einzelnen Rädern wird die Fahrdynamik des Fahrzeugs 104 geändert.

wobei die mit der Fig. 1b übereinstimmenden Blöcke und Signale mit den selben Bezugszeichen versehen sind. Der einzige Unterschied zwischen dem in der

Fig. 1b gezeigten Ausführungsbeispiel besteht darin, daß die Abweichung zwischen der Sollgiergeschwindigkeit und der Istgiergeschwindigkeit dem Verknüpfungspunkt 108 direkt zugeführt wird. Das in der Fig. 1c gezeigte Beispiel benötigt somit keine Situationserkennung 107 und ändert den Bremsdruck am High-Rad direkt abhängig von dem Soll-Istwertvergleich der Giergeschwindigkeit.

Zur Darstellung der Funktionsweise der Ausfühder Fahrzeuglängsgeschwindigkeit V1 und dem Lenk- 10 rungsbeispiele soll zunächst auf die Fig. 5 mit den Teilen a und b im Zusammenhang mit der Fig. 4 eingegangen werden. Nach dem Startschritt 501 wird im Schritt 502 überprüft, ob eine ABS-Regelung am Low-Rad und gleichzeitig keine ABS-Regelung am High-Rad vorliegt. Hierzu wird, wie in den Fig. 1b und 1c zu sehen ist, der Schalter S durch die Signale ABSHR bzw. ABSLR angesteuert. Ist die in dem Schritt 502 abgefragte Bedingung nicht erfüllt, so wird im Schritt 507 ein Bremsdruckaufbaupuls bzw. eine Zeit Thalt für den Bremsdruck ermittelt. Dieser Fall ist in der Fig. 4 vor Erreichen des Zeitpunktes t₁ dargestellt.

> Die Fig. 4 zeigt im oberen Teil den zeitlichen Verlauf des Stabilitätssollwertes fzstabsoll (Variante Fig. 1b) bzw. den Verlauf des Schwellwertes SW (Variante Fig. 1c). Weiterhin ist im oberen Teil der Fig. 4 der zeitliche Verlauf des Stabilitätswertes fzstabist (Variante Fig. 1b) bzw. der zeitliche Verlauf der Giergeschwindigkeitsabweichung $\Delta\omega$ (Variante Fig. 1c) dargestellt. Im unteren Teil der Fig. 4 sind die Druckverläufe des High-Rades und des Low-Rades dargestellt, wobei hier von einer Pulsstufenregelung ausgegangen wird, d. h. daß der Bremsdruck in den Rädern pulsförmig aufgebaut bzw. abgebaut wird.

> Im schon beschriebenen Schritt 507 der Fig. 5a wird also in dem Fall, daß keine ABS-Regelung am Low-Rad vorliegt der Bremsdruck am High-Rad unabhängig von dem am Low-Rad aufgebaut bzw. gehalten (Zeitraum vor dem Zeitpunkt t₁).

Zum Zeitpunkt t₁ (Fig. 4) gelangt das Low-Rad an seine Blockiergrenze, woraufhin der Bremsdruck, wie in der Fig. 4 zu sehen ist, abgesenkt wird. Das High-Rad befindet sich zum Zeitpunkt t₁ noch unterhalb seiner Blockierschwelle, woraufhin vom Schritt 502 auf den Schritt 503 übergegangen wird. Im Schritt 503 wird die Differenz zwischen dem Soll- und Iststabilitätswert gebildet (Variante Fig. 1b) bzw. die Differenz zwischen dem Schwellwert und der Gierwinkelgeschwindigkeitsabweichung (Variante Fig. 1c). Der zeitliche Verlauf dieser Werte ist im oberen Teil der Fig. 4 zu sehen. Im Schritt 504 wird festgestellt, ob ein Vorzeichenwechsel der im Schritt 503 ermittelten Werte im Vergleich zu den im letzten Zyklus ermittelten Werten stattgefunden hat. Ein solcher Vorzeichenwechsel hat beispielsweise zum Zeitpunkt t2 (Fig. 4) stattgefunden. Darauf hin wird im Schritt 505 die Haltezeit Thalt des Bremsdrucks auf den Wert Null gesetzt. Dies hat, wie in der Fig. 4 nach dem Zeitpunkt t2 zu sehen ist, eine unmittelbare Absenkung des Bremsdrucks am High-Rad zur Folge. Findet kein Vorzeichenwechsel der im Schritt 503 ermittelten Werte statt (Zeitraum zwischen t1 und t2), so wird der Schritt 505 umgangen, woraufhin für die restliche Haltezeit Thalt der Bremsdruck am High-Rad konstant gehalten wird (Bremsdruckverlauf am High-Rad zwischen den Zeitpunkten t₁ und t₂). Im Schritt 506 wird abge-Die Fig. 1c zeigt eine weitere Variante der Erfindung, 65 fragt, ob die Haltezeit Thalt größer als Null ist. Hat, wie im Schritt 504 festgestellt wurde, ein Vorzeichenwechsel stattgefunden, so ist die Haltezeit im Schritt 505 auf Null gesetzt worden, woraufhin durch die Abfrage 506 direkt die Abfrage 509 (Fig. 5b) vorgenommen wird. In der Abfrage 509 wird das Vorzeichen der im Schritt 503 ermittelten Werte abgefragt, d. h. es wird abgefragt, ob der Sollwert den Istwert über- oder unterschreitet.

Überschreitet der Istwert den Sollwert, wie beispielsweise bei den in der Fig. 4 gezeigten Zeitpunkten t₂, t₅ und t₈, so wird im Schritt 512 ein erneuter Bremsdruckabbaupuls am High-Rad induziert. Nach diesem Abbaupuls wird im Schritt 513 erneut eine Haltezeit T_{halt} in Abhängigkeit (Funktion F2) von der im Schritt 503 10 ermittelten Abweichung (Δfzstab bzw. Δ) beziehungsweise von deren zeitlichen Änderung d/dt(Δfzstab bzw. Δ) berechnet.

Unterschreitet der Istwert den zugehörigen Sollwert, wie zu den Zeitpunkten t3, t6 und t9, so wird im Schritt 15 510 ein Bremsdruckaufbaupuls am High-Rad induziert. Danach wird im Schritt 511 eine Bremsdruckhaltezeit Thalt in Abhängigkeit (Funktion F1) von dem im Schritt 503 ermittelten Wert berechnet. Alternativ oder ergänzend kann vorgesehen sein, daß im Schritt 511 die 20 Bremsdruckhaltezeit Thalt in Abhängigkeit von der zeitlichen Änderung d/dt(Δ fzstab bzw. Δ) berechnet wird. Bei dem funktionalen Zusammenhang (Funktion F1) zwischen der Haltezeit Thalt und der Differenz Afzstab zwischen dem Soll- und Iststabilitätswert (Variante 25 Fig. 1b) bzw. der Differenz A zwischen dem Schwellwert und der Gierwinkelgeschwindigkeitsabweichung (Variante Fig. 1c) ist an einen proportionalen und besonders an einen differentiellen Anteil gedacht. Durch den proportionalen Anteil wird erreicht, daß im fahrsta- 30 bilen Bereich (Δ fzstab bzw. $\Delta \geq 0$) die Haltezeit Thalt beim Druckaufbau bei größeren Abweichungen Δfzstab bzw. A kürzer ist als bei kleineren Abweichungen Δfzstab bzw. Δ. Der Bremdruckanstieg, der Druckaufbaugradient, ist damit bei größeren Abweichungen 35 Δfzstab bzw. Δ größer als bei kleineren Abweichungen Δfzstab bzw. Δ.

Wie erwähnt ist es besonders vorteilhaft, einen differentiellen Anteil der Funktion F1 vorzusehen. Hierdurch wird erreicht, daß im fahrstabilen Bereich 40 (Δ fzstab bzw. $\Delta \geq 0$) die Haltezeit T_{halt} beim Druckaufbau bei einer größeren Änderung der Abweichungen Δ fzstab bzw. Δ kürzer ist als bei kleineren Änderungen der Abweichungen Δ fzstab bzw. Δ . Der Bremdruckanstieg, der Druckaufbaugradient, ist damit bei einer grögeren Änderungen der Abweichung Δ fzstab bzw. Δ größer als bei einer kleineren Abweichung Δ fzstab bzw. Δ

Der in der Fig. 4 in den stabilen Bereichen a bzw. d (Zeiträume zwischen t3 und t5 bzw. t6 und t8) dargestellte 50 Verlauf der Druckaufbaugradienten zeigt besonders deutlich den erwähnten differentiellen Anteil der Funktion F1. So sind kurz nach den Zeitpunkten t3 und t6 größere Änderungen der Abweichungen Δfzstab bzw. Δ zu sehen, woraufhin relativ kurze Haltezeiten und damit 55 steilere Druckaufbaugradienten gewählt werden. Ab den Zeitpunkten t4 bzw. t7 werden die Haltezeiten Thalt mit den geringeren Änderungen der Abweichungen Δfzstab bzw. Δ verlängert, was zu einem flacheren Druckaufbaugradienten führt.

In der Fig. 6 ist beispielhaft die Berechnung der Haltezeit Thalt im Bereich a (Fig. 4) dargestellt. Dabei sind die einzelnen Anteile, der Proportionalanteil Tp und der Differentialanteil TD der Haltezeit Thalt, stark linearisiert dargestellt. Der mit Kreisen markierte Verlauf 65 stellt dabei den differentiellen Anteil TD der Haltezeit Thalt dar mit:

 $T_D = (K_{D1} \text{ bzw. } K_{D2}) \cdot d/dt(\Delta fzstab \text{ bzw. } \Delta)$

Dieser differentielle Anteil T_D gibt mit dem Proportionalanteil T_P (gestrichelter Verlauf) gemäß

 $T_{halt} = T_{haltmax} - [|T_D| + T_P]$

die Bremsdruckhaltezeit Thalt. Der Wert Thaltmax stellt dabei eine maximale Haltezeit dar.

Wird im Schritt 506 festgestellt, daß die Bremsdruckhaltezeit Thalt am High-Rad größer als Null ist, so wird im Schritt 508 weder der Bremsdruck auf- noch abgebaut. Es wird dann gemäß des Schritts 508 der Wert für die Haltezeit Thalt um einen Zählerwert herabgesetzt (inkrementiert). Nach dem Endschritt 514 wird der in der Fig. 5 gezeigte Ablauf erneut gestartet.

Die Fig. 3 zeigt das Übertragungsverhalten des Blocks 109 (Fig. 1b) bzw. 109' (Fig. 1c). Hier wird der Stabilitätssollwert fzstabsoll bzw. der Grenzwert SW zwischen zwei Extremwerten Sollmax und Sollmin abhängig von der Fahrzeuglängsgeschwindigkeit V₁ ermittelt.

Zusammenfassend kann gesagt werden, daß in Verbindung mit einer Fahrdynamikregelung, insbesondere mit einer zu einer solchen Regelung erweiterten Sensorik, sich der Druckgradient am High-Rad sehr genau an die momentan herrschende Fahrsituation anpassen läßt. Unter der erweiterten Sensorik einer Fahrdynamikregelung ist insbesondere ein Gierwinkelgeschwindigkeitsgeber und ein Lenkwinkelgeber zu verstehen. Solange der Fahrdynamikregler einen stabilen Fahrzustand erkennt, wird der Bremsdruck im High-Rad aufgebaut. Dabei ist der Druckgradient abhängig von der aktuellen Fahrzeuggierbewegung, d. h. proportional zur Differenz Δfzstab bzw. Δ zwischen dem Stabilitätssollund -istwert und proportional zur Änderung Differenz zwischen Stabilitätssoll- und -istwert. Größere Abweichungen beziehungsweise größere Änderungen im stabilen Bereich führen zu höheren, geringere Abweichungen beziehungsweise Änderungen zu entsprechend flachen Druckaufbaugradienten. Dies ist in der Fig. 4 beispielhaft in den schon beschriebenen Teilen a und d gezeigt.

Überschreitet der fahrdynamische Istwert die Sollwertvorgabe (Bereiche b und c, Zeiträume zwischen t2 und t3 bzw. t5 und t6), so wird proportional zu dieser Abweichung beziehungsweise proportional zur Änderung dieser Abweichung der Druck im High-Rad reduziert. Im Anschluß an diese Druckabsenkung folgt im instabilen Bereich je nach Verlauf der Fahrzeugbewegung eine Druckhalte- bzw. Druckaufbauphase.

Besondere Vorteile ergeben sich, wenn der Stabilitätssollwert fzstab_{soll} bzw. der Grenzwert SW in Abhängigkeit von der Fahrzeuglängsgeschwindigkeit gebildet wird (Fig. 3). Dadurch wird erreicht, daß bei hohen Anbremsgeschwindigkeiten geringere Anforderungen an den Fahrer gestellt werden, während im unteren Geschwindigkeitsbereich durchaus höhere Giergeschwindigkeiten des Fahrzeugs zugelassen werden können. Beispielhaft können folgende Werte angegeben werden:

maximal zulässiger Sollwert SW

bei Vgrenz,O > 200km/h: 0.05 rad/sec.

maximal zulässiger Sollwert SW

bei V_{grenz,u} < 25km/h: 0.20 rad/sec.

Patentansprüche

1. System zur Ansteuerung der Bremssysteme (2ij) wenigstens zweier, vorzugsweise an einer Fahrzeugachse angebrachten, Räder eines Fahrzeugs, 5 bei dem vorgesehen sind:

- Mittel (1, 102), mittels der der Bremsdruck (pLow-Rad) des einen Rades (Low-Rad) in Reaktion auf eine erkannte Blockierneigung (ABSL) dieses Rades im Sinne einer Blockiervermei- 10

dung gesteuert wird,

- Ermittlungsmittel (4, 104, 105, 107, 109, 109') zur Ermittlung einer die Fahrdynamik des Fahrzeugs beeinflussenden und/oder repräsentierenden Größe (Δω, fzstabist) und wenig- 15 stens eines Schwellwertes (SW, fzstabsoll),

- Vergleichsmittel (106, 108) zum Vergleich der ermittelten Größe (Δω, fzstabist) mit wenigstens dem ermittelten Schwellwert (SW, fzstabsoil) und Ermittlung eines Vergleichser- 20

gebnisses (Δ, Δfzstab) und

- Ansteuermittel (103) zur Ansteuerung des Bremssystems (2ij) des anderen Rades (High-Rad) in Reaktion auf die erkannte Blockierneigung (ABSL) des einen Rades (Low-Rades) 25 derart, daß der Bremsdruckverlauf (pHigh-Rad) abhängig von dem ermittelten Vergleichsergebnis (Δ, Δfzstab) getätigt wird.

2. System nach Anspruch 1, dadurch gekennzeichnet, daß zur Ermittlung der die Fahrdynamik des 30 Fahrzeugs beeinflussenden und/oder repräsentierenden Größe (Δω, fzstabist) wenigstens die Gierbewegung des Fahrzeugs, vorzugsweise die Gier-

winkelgeschwindigkeit (ωist), erfaßt wird.

3. System nach Anspruch 1, dadurch gekennzeich- 35 net, daß die Ermittlung des Schwellwertes (SW, fzstabsoil) wenigstens abhängig von der ermittelten Fahrzeuglängsgeschwindigkeit (V1) geschieht.

- System nach Anspruch 1, dadurch gekennzeichnet, daß die Ermittlung des Schwellwertes (SW, 40 fzstabsoll) derart geschieht, daß dieser Schwellwert mit steigender Fahrzeuglängsgeschwindigkeit (V1) abnimmt.
- 5. System nach Anspruch 2, dadurch gekennzeichnet, daß zur Ermittlung der die Fahrdynamik des 45 Fahrzeugs beeinflussenden und/oder repräsentierenden Größe (Δω) weiterhin der Lenkwinkel (δ) des Fahrzeugs erfaßt wird.
- 6. System nach Anspruch 5, dadurch gekennzeichnet, daß zur Ermittlung der die Fahrdynamik des 50 Fahrzeugs beeinflussenden und/oder repräsentierenden Größe (Δω) ein aus der erfaßten Fahrzeuglängsgeschwindigkeit (V1) und dem erfaßten Lenkwinkel (δ), vorzugsweise mittels eines Fahrzeugmodells, abgeleiteter Wert (\omega_{soll}) mit dem die Gierwin- 55 kelgeschwindigkeit des Fahrzeugs, repräsentierenden Wert (ωist) verglichen wird.
- 7. System nach Anspruch 1, dadurch gekennzeichnet, daß die Ansteuermittel (103) das Bremssystem (2ij) des anderen Rades (High-Rad) in Reaktion auf 60 die erkannte Blockierneigung (ABSL) des einen Rades (Low-Rades) derart ansteuern, daß ein Bremsdruckabsenkung an dem Bremssystem (2ij) des anderen Rades (High-Rad) dann stattfindet, wenn die ermittelte Größe (Δω, fzstabist) den ermittelten 65 Schwellwert (SW, fzstabsoil) überschreitet, und/ oder ein Bremsdruckaufbau an dem Bremssystem (2ij) des anderen Rades (High-Rad) dann stattfin-

det, wenn die ermittelte Größe (Δω, fzstabist) den ermittelten Schwellwert (SW, fzstabsoll) unterschreitet

8. System nach Anspruch 7, dadurch gekennzeichnet, daß das Ausmaß der Bremsdruckabsenkung und/oder des Bremsdruckaufbaus an dem Bremssystem (2ij) des anderen Rades (High-Rad) abhängig von dem ermittelten Vergleichsergebnis ($\Delta\omega$, Δ fzstab) getätigt wird, wobei insbesondere der Gradient der Bremsdruckabsenkung und/oder des Bremsdruckaufbaus abhängig von dem ermittelten Vergleichsergebnis (Δω, Δfzstab) und/oder abhängig von der zeitlichen Änderung des ermittelten Vergleichsergebnisses ($\Delta \omega$, Δfz stab) gewählt wird. 9. System nach Anspruch 7, dadurch gekennzeichnet, daß die Bremsdruckabsenkung und/oder der Bremsdruckaufbau stufenweise mittels vorgebbaren Druckaufbau- und/oder Druckabbaupulsen mit vorgebbaren Druckhaltephasen (Thalt) getätigt wird.

10. System nach Anspruch 9, dadurch gekennzeichnet, daß die Druckhaltephasen (Thalt) abhängig von dem Ausmaß des ermittelten Vergleichsergebnisses (Δω, Δfzstab) vorgegeben werden, wobei insbesondere die Dauer der Druckhaltephasen (Thait) abhängig von dem ermittelten Vergleichsergebnis (Δω, Δfzstab) und/oder abhängig von der zeitlichen Anderung des ermittelten Vergleichsergebnisses $(\Delta\omega, \Delta fz$ stab) vorgegeben werden.

Hierzu 8 Seite(n) Zeichnungen

•1

Nummer: Int. Cl.⁶: DE 197 07 106 A1 B 60 T 8/32

Offenlegungstag:

2. Oktober 1997

Fig. 1a

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 197 07 106 A1 B 60 T 8/32

2. Oktober 1997

• 1

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 197 07 106 A1 B 60 T 8/32

2. Oktober 1997

Nummer: Int. Cl.⁶: Offenlegungstag: DE 197 07 106 A1 B 60 T 8/32 2. Oktober 1997

Nummer: Int. Cl.⁶:

Offenlegungstag:

DE 197 07 106 A1 B 60 T 8/32

2. Oktober 1997

Nummer: Int. Cl.6:

Offenlegungstag:

B 60 T 8/32 2. Oktober 1997

DE 197 07 106 A1

Offenlegungstag:

2. Oktober 1997

Fig. 5b

Nummer: Int. Cl.⁶: Offenlegungstag: DE 197 07 106 A1 B 60 T 8/32 2. Oktober 1997

Fig. 6

