HHL - Algorithmus

Alfred Nguyen

Fakultät der Informatik Technische Universität München 85758 Garching, Bavaria

June 2023

Gliederung

Einführung

Quanten Algorithmen Motivation Das Problem

Mathematische Grundlagen

Gliederung

Einführung

Quanten Algorithmen Motivation Das Problem

Mathematische Grundlager

Quanten Algorithmen

Wir haben schon viel über die wichtigsten Algorithmen gehört

- ► Shors-Algorithmus
- Grover-Algorithmus

Der HHL-Algorithmus

- erstellt von Aram Harrow, Avinatan Hassidim und Seht Lloyd
- lösen von sehr großen linearen Gleichungen

$$A\vec{x} = \vec{b}$$

Motivation

Es löst grundlegendes Probleme in der Mathematik

- Least square fitting
- Optimierungs Probleme
- Simulationen und Imageprocessing
- **.**..

Kleine Revolution insbesondere bei Quantum Machine Learning

- ▶ HHL als Subroutine oder in erweiterten Form benutzt
- ▶ Abschätzung mit Computern brauchen mind N Zeitschritte!

Das Problem

Gegeben:

- ightharpoonup A Matrix der Form $n \times n$
- \triangleright \vec{b}

Löse das System

$$A\vec{x} = \vec{b}$$

HHL verspricht uns einen exponentiellen Speedup!!

Gliederung

Einführung

Quanten Algorithmen Motivation Das Problem

Mathematische Grundlagen

Hermitsche Matrix

Sei:

- ightharpoonup A eine $n \times n$ Matrix
- \triangleright A^T das transponierte von A
- $ightharpoonup \overline{A}$ das komplex konjugierter von A
- $ightharpoonup A^{\dagger}$ die Hermitsche Matrix von A

Dann:

$$A = \overline{A^T} = A^\dagger$$

Hermitsche Matrix

Beispiel:

$$A = \begin{bmatrix} 2 & 1-i \\ 1+i & 3 \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} 2 & 1+i \\ 1-i & 3 \end{bmatrix}$$

$$\overline{A^T} \begin{bmatrix} 2 & 1-i \\ 1+i & 3 \end{bmatrix} = A$$

Die Matrix A^{\dagger} ist Hermitisch.

Hermitsche Matrix

Falls eines Matrix nicht Hermitisch ist:

$$A^{\dagger} = \begin{pmatrix} 0 & A \\ \overline{A^T} & 0 \end{pmatrix}$$

Spektralzerlegung

Sei:

- ightharpoonup A eine $n \times n$ Matrix
- ▶ D ist eine Diagonalmatrix aus den Eigenwerten
- U besteht aus den Eigenvektoren von A

$$A = UDU^{T}$$

$$= \begin{bmatrix} U_{1} & U_{2} & \dots & U_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \lambda_{n} \end{bmatrix} \begin{bmatrix} U_{1}^{T} \\ U_{2}^{T} \\ \dots \\ U_{n}^{T} \end{bmatrix}$$

Spektralzerlegung

Dann:

$$= \begin{bmatrix} U_1^T \\ U_2^T \\ \dots \\ U^T \end{bmatrix} \begin{bmatrix} \lambda_1^{-1} & 0 & 0 & 0 \\ 0 & \lambda_2^{-1} & 0 & 0 \\ 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \lambda^{-1} \end{bmatrix} \begin{bmatrix} U_1 & U_2 & \dots & U_n \end{bmatrix}$$

 $A^{-1} = U^T D^{-1} U$

- $ightharpoonup A^{-1}$ nur durch Eigenwerten und Eigenvektoren bestimmbar!
- Methode im klassischen nicht schneller
- für HHL Algorithmus sehr wichtig

Entangled States

Verschränkte Zustände können nicht durch einzelne Zustände dargestellt werden

$$\left|\Phi\right\rangle \neq\left|\phi\right\rangle \left|\psi\right\rangle$$

Entangled States

Beispiel

$$|\Phi_1
angle=rac{1}{\sqrt{2}}(|10
angle+|11
angle)$$

$$=\ket{1}\otimesrac{1}{\sqrt{2}}(\ket{0}+\ket{1})=\ket{1}\ket{+}$$

Nicht Verschränkt

$$|\Phi_2
angle = rac{1}{\sqrt{2}}(|00
angle + |11
angle)
onumber \
eq |lpha
angle |eta
angle$$