Monthly Meeting on October

Yuichiro Honda Morita lab. M1

2016/11/02

- 1 Previous work
- Progress
- 3 Next step
- 4 Reference

Last month

• read a paper about an algorithm to find all common bases in two matroids in $O(n(n^2 + t)\lambda)$

- Previous work
- 2 Progress
- 3 Next step
- 4 Reference

Problem

input: $M_1=(E,\mathcal{I}_1),\ M_2=(E,\mathcal{I}_2)$: matroids output: maximum-cardinality set $S\in\mathcal{I}_1\cap\mathcal{I}_2$

note: Generally, $(E, I_1 \cap I_2)$ is not a matroid.

Lemma: unique perfect matching implies exchange

 $M_1 := (E, \mathcal{I})$: matroid

 $S \in \mathcal{I}$

 $G(S) := (S + E \setminus S, A)$: bipartite graph

Suppose that $T \subset E$, |T| = |S|, and $\mathcal{G}(S)$ has unique perfect matching X

between $T \setminus S$ and $S \setminus T$. Then $T \in \mathcal{I}$.

$$T := \{e_1, e_2, e_3, e_4, f_5\}$$

 $T \setminus S = \{e_1, e_2, e_3, e_4\}$
 $S \setminus T = \{f_1, f_2, f_3, f_4\}$

Figure: $G(S) := (S + E \setminus S, A)$

$$T := \{e_1, e_2, e_3, e_4, f_5\}$$

 $T \setminus S = \{e_1, e_2, e_3, e_4\}$
 $S \setminus T = \{f_1, f_2, f_3, f_4\}$

Figure: unique perfect matching between $T \setminus S$ and $S \setminus T$

Lemma: shortest implies augmenting

 $M_1 := (E, \mathcal{I}_1), \ M_2 := (E, \mathcal{I}_2)$: matroid

 $S \in \mathcal{I}_1 \cap \mathcal{I}_2$

 $\mathcal{G}(S) := (S + E \setminus S, A)$: bipartite digraph

If *P* is a shortest source-sink dipath in $\mathcal{G}(S)$, then *P* is augmenting path.

source: $e \in E \setminus S$ s.t. $S + e \in \mathcal{I}_1$

sink: $e \in E \setminus S$ s.t. $S + e \in I_2$

Note that all edges from source and all edges to sink are omitted in G(S).

Figure: $G(S) := (S + E \setminus S, A)$: bipartite digraph

Figure: source-sink dipath is augmenting path

Matroid Intersection Algorithm

input: $M_1 = (E, I_1), M_2 = (E, I_2)$: matroids output: maximum-cardinality set $S \in I_1 \cap I_2$

- **1** Start with $S \in \mathcal{I}_1 \cap \mathcal{I}_2$ such as $S := \emptyset$
- 2 While G(S) has a source-sink dipath:
 - (1) $P := (e_0, f_1, e_1, ..., f_n, e_n)$ be an augmenting sequense
 - (2) $S := S \cup \{e_j | 0 \le j \le n\} \setminus \{f_j | 1 \le j \le n\}$
- finding P in G(S) requires $O(n^2)$
- after step 2(2), regenerate G(S) requires $O(\tau n)$ (τ is time complexity of independence oracle)
- \rightarrow totally we have $O(\tau n^3)$ as time complexity

- Previous work
- 2 Progress
- 3 Next step
- 4 Reference

next month

TODO:

learn about alogrithm for finding k-best perfect matching

- 1 Previous work
- 2 Progress
- Next step
- 4 Reference

Reference

Jon Lee: "A First Course in Combinatorial Optimization"