微积分复习

MikeWalrus

2020年11月27日

1

¹我的博客 MikeWalrus.github.io 上可能可以找到更新版本

4 极限与连续

1 极限与连续

1.1 函数极限存在的条件

1.1.1 归结原理

定理 5.1 海涅定理或归结原理 设函数 y=f(x) 在点 x_0 的某个去心邻域 $\dot{U}(x_0)$ 内有定义,则极限 $\lim_{x\to\infty}f(x)=A$ 存在的充分必要条件是: 对于任何含于 $\dot{U}(x_0)$ 且以 x_0 为极限的数列 x_n ,都有 $\lim_{x\to\infty}x_n=A$.

1.1.2 夹逼准则与两个重要极限

定理 5.2 夹逼准则 如果函数 f(x), g(x), h(x) 满足下列条件:

- (1) 当 $x \in \dot{U}(x_0)$ 时,有 $g(x) \leqslant f(x) \leqslant h(x)$;
- (2) 当 $x \to \infty$ 时,有 $g(x) \to A$, $h(x) \to A$,则当 $x \to \infty$ 时,f(x) 的极限存在,且为 A.

两个重要极限

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)$$

1.2 闭区间上连续函数的性质

定义 8.1 最值 设函数 f(x), $x \in I$; 对于 $x_0 \in I$, $\forall x \in I$, 若 $f(x) \leq f(x_0)$ 则称 $f(x_0)$ 为 f(x) 在区间 I 上的最大值, x_0 是最大值点; 若 $f(x) \geq f(x_0)$ 则称 $f(x_0)$ 为 f(x) 在区间 I 上的最小值, x_0 是最小值点.

定理 8.1 最大值最小值定理 闭区间 [a,b] 上的连续函数 f(x) 在区间上取得最大值及最小值,即存在 $\alpha,\beta \in [a,b]$,使得 $\forall x \in [a,b]$,均有 $f(a) \leq f(x) \leq f(b)$.

定理 8.2 有界性定理 若 f 在闭区间 [a,b] 连续,则 f 在 [a,b] 有界.

定理 8.3 零点定理 设函数 f(x) 在区间 [a,b] 上连续,且 $f(a)\dot{f}(b) < 0$ 则至少存在一点 $\xi \in (a,b)$,使得 $f(\xi) = 0$. [关于开闭区间]

定理 8.4 介值定理 设函数 f(x) 在区间 [a,b] 上连续,且 $f(a) \neq f(b)$,则对于介于 f(a),f(b) 之间的任意 一个数 A,总存在 $\xi \in [a,b]$ 使得 $f(\xi) - A$. [关于开闭区间]

推论 1 闭区间上的连续曲线必取得介于最大值和最小值之间的任何值.

2 导数与微分

2 导数与微分

2.1 函数的求导法则

$$\begin{split} (C)' &= 0 & (x^{\alpha})' = \alpha x^{\alpha - 1} \\ (\log_a |x|)' &= \frac{1}{x \ln a} & (\ln(|x|))' = \frac{1}{x} \\ (a^x)' &= a^x \ln x & (e^x)' &= e^x \\ (\sin x)' &= \cos x & (\cos x)' &= -\sin x \\ (\tan x)' &= \sec^2 x & (\cot x)' &= -\csc^2 x \\ (\sec x)' &= \sec x \tan x & (\csc x)' &= -\csc x \cot x \\ (\arcsin x)' &= \frac{1}{\sqrt{1 - x^2}} & (\arccos x)' &= -\frac{1}{\sqrt{1 - x^2}} \\ (\arctan x)' &= \frac{1}{1 + x^2} & (\arccos x)' &= -\frac{1}{1 + x^2} \\ (\ln(x + \sqrt{x^2 \pm a^2}))' &= \frac{1}{\sqrt{x^2 \pm a^2}} \end{split}$$

2.2 高阶导数

2.2.1 高阶导数的定义

2.2.2 高阶导数的运算法则

加法减法

$$(u \pm v)^{(n)} = u^{(n)} \pm v^{(n)}$$

乘法莱布尼兹公式

$$(u \cdot v)^n = \sum_{k=0}^n \mathcal{C}_n^k u^{(n-k)} v^{(k)}$$

常用的高阶导数

$$(a^x)^{(n)} = a^x (\ln x)^n$$

$$(e^x)^{(n)} = e^x$$

$$(\sin(x))^{(n)} = \sin(x + n \cdot \frac{\pi}{2})$$

$$(\cos(x))^{(n)} = \cos(x + n \cdot \frac{\pi}{2})$$

$$\left(\frac{1}{a + bx}\right)^{(n)} = (-1)^n \frac{b^n n!}{(a + bx)^{n+1}}$$

$$(\ln(1+x))^{(n)} = (-1)^{n-1} \frac{(n-1)!}{(1+x)^n}$$

3 中值定理与导数的应用

3.1 微分中值定理

3.1.1 费马定理

定义 1.1 极值 设函数 f(x) 在区间 (a,b) 内有定义,点 x_0 是区间 (a,b) 内一点,若存在 x_0 的邻域 $U(x_0)$,使得 $\forall x \in U(x_0)$,有 $f(x_0) \ge f(x)$,则称 f(x) 在点 x_0 取得极大值,称点 x_0 为极大值点.

定理 1.1 Fermat 定理 设函数 f(x) 在点 x_0 处取得极值,若 $f'(x_0)$ 存在,则必有

$$f'(x_0)=0$$

3.1.2 罗尔中值定理

定理 1.2 Rolle 中值定理 设函数 f(x) 在闭区间 [a,b] 上连续,开区间 (a,b) 内可导,并且满足 f(a)=f(b),则 $\exists \xi \in (a,b)$,使得 $f'(\xi)=0$

3.1.3 拉格朗日中值定理

定理 1.3 Lagrange 中值定理 设函数 f(x) 在闭区间 [a,b] 上连续,开区间 (a,b) 内可导,则 $\exists \xi \in (a,b)$,使得

$$\begin{split} f'(\xi) &= \frac{f(b) - f(a)}{b - a} \\ f(b) - f(a) &= f'(\xi)(b - a) \\ f(b) - f(a) &= f'(a + \theta(b - a))(b - a), \quad 0 < \theta < 1 \\ f(a + h) - f(a) &= f'(a + \theta h)h, \qquad 0 < \theta < 1 \end{split}$$

有限增量公式

$$\Delta y = f'(x + \theta \Delta x) \Delta x$$

 Δx 不一定很小,所以不是 dx

推论 1 若 $f'(x) \equiv 0$, $x \in I$, 则 f(x) 在 I 上恒等于常数.

推论 2 若函数 f(x) 和 g(x) 在区间 (a,b) 内满足条件 f'(a) = g'(b),则有 $f(x) = g(x) + C, x \in (a,b)$.

推论 3 若 $f'(x) \equiv C$, $x \in I$, 则 f(x) 在 I 内为一线性函数,即 f(x) = Cx + b.

3.1.4 柯西中值定理

定理 1.4 Cauchy 中值定理 如果函数 f(x) 和 F(x) 在闭区间 [a,b] 上连续,开区间 (a,b) 内可导,且 F'(x) 在 (a,b) 的每一点均不为零,那么在 (a,b) 内至少有一点 ξ ,使得

$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}$$

3.2 泰勒公式

定理 2.1 Taylor 中值定理(Lagrange 余项) 如果函数 f(x) 在含有 x_0 的某个开区间 (a,b) 内具有直到 (n+1) 阶的导数,则对任一 $x\in(a,b)$,有

$$\begin{split} f(x) &= f(x_0) + f'(x_0)(x-x_0) + \frac{f''(x_0)}{2!}(x-x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x) \\ R_n(x) &= \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-x_0)^{(n+1)} \end{split}$$

Maclaurin 公式

$$\begin{split} f(x) &= f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \dots + \frac{f^{(n)}(0)}{n!}x^n + R_n(x) \\ R_n(x) &= \frac{f^{(n+1)}(\xi)}{(n+1)!}x^{(n+1)} \end{split}$$

Peano 余项

$$R_n(x)=o(x^n)$$

误差估计式

$$\begin{split} |R_n(x)| \leqslant \frac{M}{(n+1)!} |x|^{(n+1)} \\ |R_n(x)| \leqslant \frac{M}{(n+1)!} |(x-x_0)|^{(n+1)} \end{split}$$

常用的麦克劳林公式

$$\begin{split} e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + \frac{e^{\theta x}}{(n+1)!} x^{n+1} \\ \sin(x) &= x - \frac{x^3}{3!} + \dots + (-1)^{k-1} \frac{x^{2k-1}}{(2k-1)!} + R_{2k}(x) or R_{2k-1}(x) \\ \cos(x) &= 1 - \frac{x^2}{2!} + \dots + (-1)^k \frac{x^{2k}}{(2k)!} + R_{2k+1}(x) or R_{2k}(x) \\ \ln(1+x) &= x - \frac{x^2}{2!} + \dots + (-1)^{n+1} \frac{x^n}{n!} + R_n(x) \qquad R_n &= \frac{(-1)^n}{(n+1)(1+\theta x)} x^{n+1} \\ (1+x)^\alpha &= 1 + \alpha x + \frac{(\alpha)(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!} x^n + R_n(x) \end{split}$$

- 3.3 函数的单调性与极值
- 3.4 洛必达法则
- 3.5 曲线的凸性与函数作图
- 3.5.1 曲线的凸性

定义 5.1 设函数 f(x) 在区间 I 上有定义, $\forall x_1, x_2 \in I$ 和 $\forall \lambda \in (0,1)$ 总有

$$f[\lambda x_1 + (1 - \lambda)x_2] \leqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则称 f 为区间 I 上的**下凸函数**,称曲线 y = f(x) 在区间 I 上是**下凸**的. 反之,如果总有

$$f[\lambda x_1 + (1 - \lambda)x_2] \leqslant \lambda f(x_1) + (1 - \lambda)f(x_2)$$

则称 f 为区间 I 上的**上凸函数**,称曲线 y = f(x) 在区间 I 上是**上凸**的.

定义 5.1' 设函数 f(x) 在区间 I 上有定义, $\forall x_1, x_2 \in I$,如果

$$f\left(\frac{x_1+x_2}{2}\right)\leqslant \frac{f(x_1)+f(x_2)}{2}$$

则称 f 为区间 I 上的**下凸函数**,称曲线 y = f(x) 在区间 I 上是**下凸**的. 反之...

定理 5.1 设 f(x) 在区间 I 上可导,则 f(x) 在区间 I 下凸(上凸)的充分必要条件是 f'(x) 在区间 I 单调递增(递减).

定理 5.2 设 f(x) 在 [a,b] 上连续,(a,b) 上具有二阶导数,那么

- (1) 若在 (a,b) 内 f''(x) > 0,则 y = f(x) 在 [a,b] 的图形是下凸的;
- (2) 若在 (a,b) 内 f''(x) > 0,则 y = f(x) 在 [a,b] 的图形是上凸的;

定义 5.2 拐点 设 f(x) 在区间 I 上连续, x_0 是区间 I 内的点. 如果曲线在点 $(x_0, f(x_0))$ 的两侧凸性相反,则称点 $(x_0, f(x_0))$ 为此曲线的拐点.

3.5.2 渐近线

定义 5.3 若曲线 C 上的动点 P 沿着曲线无限地远离原点时,点 P 与某一固定直线 L 的距离趋于零,则称直线 L 为曲线的渐近线. 特别地,

- (1) 如果 $\lim f(x) = A$,则直线 y = A 是曲线 y = f(x) 的一条水平渐近线。
- (2) 如果 $\lim_{x\to\infty} f(x_0) = \infty$, 则直线 $x=x_0$ 是曲线 y=f(x) 的一条铅直(或垂直)渐近线。(3)斜渐近线

定理 5.3 如果下述两极限存在(有限)

$$k = \lim_{x \to \pm \infty} \frac{f(x)}{x}$$

$$b = \lim_{x \to +\infty} [f(x) - kx]$$

则 y = kx + b 是 y = f(x) 的斜渐近线.

3.6 平面曲线的曲率

3.6.1 弧微分

弧微分公式

$$\begin{split} ds &= \sqrt{1+(y')^2} = \sqrt{(\mathrm{d}x)^2+(\mathrm{d}y)^2} \\ ds &= \sqrt{(x'(t))^2+(y'(t))^2} \\ ds &= \sqrt{\rho^2(\theta)+\rho'^2(\theta)} \end{split}$$

3.6.2 曲线的曲率

平均曲率

$$\overline{k} = |\frac{\Delta \alpha}{\Delta s}|$$

曲率

$$k = \lim_{\Delta s \to 0} \left| \frac{\Delta \alpha}{\Delta s} \right| = \left| \frac{\mathrm{d}\alpha}{\mathrm{d}s} \right|$$

3.6.3 曲率的计算

参数方程

$$k = \frac{|x'(t)y''(t) - x''(t)y'(t)|}{[x'^2(t) + y'^2(t)]^{\frac{2}{3}}}$$

普通方程

$$k = \frac{|y''|}{[1 + y'^2]^{\frac{2}{3}}}$$

极坐标

$$k = \frac{\left|\rho^2(\theta) + 2\rho'^2(\theta) - \rho(\theta)\rho''(\theta)\right|}{\left[\rho'^2(\theta) + \rho^2(\theta)\right]^{\frac{2}{3}}}$$

3.6.4 曲率圆与曲率半径

曲率半径

$$R = \frac{1}{k}$$

4 不定积分

4.1 原函数与不定积分的概念

定义 1.1 原函数 设函数 f(x) 和 F(x) 在区间 I 上有定义,若 $\forall x \in I$,有 F'(x) = f(x),则称函数 F(x) 是 f(x) 在区间 I 上的一个原函数.

$$(C)' = 0 \qquad \qquad \int 0 = C$$

$$(x^{\alpha})' = \alpha x^{\alpha - 1} \qquad \qquad \int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C$$

$$(\log_a |x|)' = \frac{1}{x \ln a}$$

$$(\ln(|x|))' = \frac{1}{x} \qquad \qquad \int \frac{1}{x} dx = \ln |x| + C$$

$$(a^x)' = a^x \ln x \qquad \qquad \int a^x dx = \frac{a^x}{\ln a} + C$$

$$(e^x)' = e^x \qquad \qquad \int e^x dx = e^x + C$$

$$(\sin x)' = \cos x \qquad \qquad \int \cos x dx = \sin x + C$$

$$(\cos x)' = -\sin x \qquad \qquad \int \sin x dx = -\cos x + C$$

$$(\tan x)' = \sec^2 x \qquad \qquad \int \frac{1}{\sin^2 x} dx = \int \sec^2 x dx = \tan x + C$$

$$(\cot x)' = -\csc^2 x \qquad \qquad \int \frac{1}{\sin^2 x} dx = \int \csc^2 x dx = -\cot x + C$$

$$(\sec x)' = -\csc x \cot x \qquad \qquad \int \sec x \tan x dx = \sec x + C$$

$$(\csc x)' = -\csc x \cot x \qquad \qquad \int \csc x \cot x dx = -\csc x + C$$

$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}} \qquad \qquad \int \frac{1}{\sqrt{1 - x^2}} dx = \arcsin x + C$$

$$(\arctan x)' = \frac{1}{1 + x^2} \qquad \qquad \int \frac{1}{1 + x^2} dx = \arctan x + C$$

$$(\ln(x + \sqrt{x^2 \pm a^2}))' = \frac{1}{\sqrt{x^2 \pm a^2}} \int \frac{1}{\sqrt{x^2 \pm a^2}} dx = \ln(x + \sqrt{x^2 \pm a^2}) + C$$

4 不定积分 9

4.2 不定积分的换元积分法与换元积分法

4.2.1 换元积分法

定理 2.1 第一换元积分法 设 f(u) 存在原函数 F(u) , 函数 $u = \varphi(x)$ 可导,则有

$$\int f[\varphi(x)]\varphi'(x)\mathrm{d}x = \int f[\varphi(x)]d\varphi(x) = \left[\int f(u)\mathrm{d}u\right]_{u=\varphi(x)} = F(\varphi(x)) + C$$

以下当作公式记忆

$$\int \frac{\mathrm{d}x}{x^2 - a^2} = \int \frac{\mathrm{d}x}{(x - a)(x + a)} = \frac{1}{2a} \int (\frac{1}{x - a} - \frac{1}{x + a}) \mathrm{d}x = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$$

$$\int \frac{\mathrm{d}x}{a^2 + x^2} = \frac{1}{a^2} \int \frac{\mathrm{d}x}{1 + (\frac{x}{a})^2} = \frac{1}{a} \int \frac{\mathrm{d}(\frac{x}{a})}{1 + (\frac{x}{a})^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{\mathrm{d}x}{\sqrt{a^2 - x^2}} = \int \frac{\frac{1}{a} \mathrm{d}x}{\sqrt{1 - (\frac{x}{a})^2}} = \int \frac{\mathrm{d}(\frac{x}{a})}{\sqrt{1 - (\frac{x}{a})^2}} = \arcsin \frac{x}{a} + C$$

$$\int \csc x \mathrm{d}x = \int \frac{1}{\sin x} \mathrm{d}x = \int \frac{\sin x}{\sin^2 x} \mathrm{d}x = \int \frac{\mathrm{d}\cos x}{\cos^2 x - 1}$$

$$= \frac{1}{2} \ln \left| \frac{\cos x - 1}{\cos x + 1} \right| + C = \ln \left| \frac{\cos x - 1}{\sin x} \right| + C = \ln \left| \cot x - \csc x \right| + C$$

$$\int \sec x \mathrm{d}x = \ln \left| \tan x + \sec x \right| + C$$

$$\int \tan x \mathrm{d}x = \int \frac{\sin x}{\cos x} \mathrm{d}x = -\int \frac{\mathrm{d}\cos x}{\cos x} = -\ln \cos x + C$$

$$\int \cot x \mathrm{d}x = \int \frac{\cos x}{\sin x} \mathrm{d}x = \int \frac{\mathrm{d}\sin x}{\sin x} = \ln \sin x + C$$

定理 2.2 第二换元积分法 设函数 $x = \varphi(t)$ 有连续的导数,且 $\varphi'(x) \neq 0$,若函数

公式推导

$$\int \sqrt{a^2 - x^2} dx \xrightarrow{\underline{x = a \sin t}} \int \sqrt{a^2 - a^2 \sin^2 t} \cdot a \cos t dt$$

$$= a^2 \int \cos^2 t dt$$

$$= a^2 \int \frac{\cos 2t + 1}{2} dt$$

$$= \frac{1}{2} a^2 t + \frac{a^2}{2} \sin t \cos t + C$$

$$= \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C$$

补充公式汇总

$$\int \sec x dx = \ln|\tan x + \sec x| + C$$

$$\int \csc x \mathrm{d}x = \ln|\cot x - \csc x| + C$$

$$\int \tan x \mathrm{d}x = -\ln(\cos x) + C$$

$$\int \cot x \mathrm{d}x = \ln(\sin x) + C$$

$$\int \frac{1}{x^2 + a^2} \mathrm{d}x = \frac{1}{a} \arctan \frac{x}{a} + C$$

$$\int \frac{1}{x^2 - a^2} \mathrm{d}x = \frac{1}{2a} \ln\left|\frac{x - a}{x + a}\right| + C$$

$$\int \frac{\mathrm{d}x}{ax^2 + bx + c} (\text{可以解决})$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} \mathrm{d}x = \arcsin \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{x^2 \pm a^2}} \mathrm{d}x = \ln(x^2 + \sqrt{x^2 \pm a^2}) + C$$

$$\int \frac{\mathrm{d}x}{\sqrt{ax^2 + bx + c}} (\text{可以解决})$$

$$\int \sqrt{x^2 \pm a^2} \mathrm{d}x = \frac{a^2}{2} \ln(x^2 + \sqrt{x^2 \pm a^2}) + \frac{x}{2} \sqrt{x^2 \pm a^2} + C$$

$$\int \sqrt{a^2 - x^2} \mathrm{d}x = \frac{a^2}{2} \arcsin \frac{x}{a} + \frac{x}{2} \sqrt{a^2 - x^2} + C$$

$$\int \sqrt{ax^2 + bx + c} \mathrm{d}x (\text{可以解决})$$

$$\int \frac{1}{(x^2 + a^2)^2} = \frac{1}{2a^2} \left(\frac{x}{x^2 + a^2} + \frac{1}{a} \arctan \frac{x}{a}\right) + C$$

.

5 定积分及其应用

5.1 定积分的概念

5.1.1 具体实例

步骤

- 1. 划分
- 2. 近似
- 3. 求和
- 4. 取极限

 $^{^{2}}$ 可以不用递推,换元 $x = a \tan x$

5.1.2 定积分的定义

定义 1.1 设 f(x) 是定义在闭区间 [a,b] 上的有界函数,在闭区间 [a,b] 上任取分割

$$T: a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

将闭区间 [a,b] 分为若干个小闭区间 $[x_0,x_1],[x_1,x_2],\cdots,[x_{i-1},x_i],\cdots[x_{n-1},x_n]$. 第 i 个小闭区间 $[x_i,x_{i+1}]$ 的长度表示为 $\Delta x_i = x_i - x_{i-1}$,取 $\lambda = \max_{1 \leqslant i \leqslant n} \{\Delta x_i\}$,在 $[x_i,x_{i+1}]$ 上任取点 ξ_i ,作和式 $\sum_{n=1}^n f(\xi_i)\Delta x_i$ (称为 f(x) 在 [a,b] 上的积分和). 如果不论如何选择分割 T 及取在 $[x_i,x_{i+1}]$ 上的点 ξ_i ,只要当 $\lambda \to 0$ 时,该和式总趋于确定的常数 I,那么称极限 I 为 f(x) 在 [a,b] 上的**定积分**,记作 $\int_a^b f(x)\mathrm{d}x$,即

$$\int_a^b f(x) \mathrm{d}x = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i$$

规定

$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$$
$$\int_{a}^{a} f(x)dx = 0$$

- 5.1.3 定积分的几何意义
- 5.2 定积分的性质

性质 1 $\int_a^b \mathrm{d}x = b - a$

性质 2 线性性

性质 3 保号性

推论 1 单调性

推论 2 有点像夹逼准则

推论 3 定积分的绝对值 ≤ 绝对值的定积分

性质 4 区间可加性 c 不用在 a 和 b 之间

5.2.1 积分中值定理

定理 2.1 设函数 f(x), g(x) 在闭区间 [a,b] 上连续, g(x) 在区间 [a,b] 上不变号, 则

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx \quad (a \leqslant \xi \leqslant b)$$

推论 4 ³ 设 $f(x) \in C[a,b]$, 则存在 $\xi \in [a,b]$, 使

$$\int f(x)\mathrm{d}x = f(\xi)(b-a)$$

5.3 微积分基本定理

5.3.1 积分上限的函数及其导数

定理 若 $f(x) \in C[a,b]$,则变上限函数

$$\Phi(x) = \int_{0}^{x} f(t) dt$$

是 f(x) 在 [a,b] 上的一个原函数.

证明 对 $\forall x, x + h \in [a, b]$, 有

$$\begin{split} \Phi'(x) &= \lim_{h \to \infty} \frac{\Phi(x+h) - \Phi(x)}{h} \\ &= \lim_{h \to \infty} \frac{1}{h} \left[\int_a^{a+h} f(t) \mathrm{d}t - \int_a^x f(t) \mathrm{d}t \right] \\ &= \lim_{h \to \infty} \frac{1}{h} \int_x^{x+h} f(t) \mathrm{d}t \\ &= \lim_{h \to \infty} f(\xi) \qquad (x < \xi < x+h)^4 \\ &= f(x) \end{split}$$

变限积分求导

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}x} \int_{x}^{b} f(t) \mathrm{d}t &= -f(t) \\ \frac{\mathrm{d}}{\mathrm{d}x} \int_{a}^{\varphi(x)} f(t) \mathrm{d}t &= f[\varphi(x)] \varphi'(x) \\ \frac{\mathrm{d}}{\mathrm{d}x} \int_{\Psi(x)}^{\varphi(x)} f(t) \mathrm{d}t &= \frac{\mathrm{d}}{\mathrm{d}x} \left[\int_{\Psi(x)}^{a} f(t) \mathrm{d}t + \int_{a}^{\varphi(x)} f(t) \mathrm{d}t \right] \\ &= f[\varphi(x)] \varphi'(x) - f[\Psi(x)] \Psi'(x) \end{split}$$

5.3.2 牛顿-莱布尼兹公式

设 F(x) 是连续函数 f(x) 在 [a,b] 上的一个原函数,则

$$\int_a^b f(x)\mathrm{d}(x) = F(b) - F(a)$$

³老师说这个可能比上面的更常用

⁴积分中值定理

5.4 定积分的计算方法

5.4.1 定积分的换元积分法

[定积分的换元法]

定理 4.1 设 f(x) 在 [a,b] 上连续,函数 $x=\varphi(t)$ 在 $[\alpha,\beta]$ 或 $[\beta,\alpha]$