MT4531/MT5731: (Advanced) Bayesian Inference Prediction

Nicolo Margaritella

School of Mathematics and Statistics, University of St Andrews

Outline

Prior predictive distribution

Outline

Prior predictive distribution

- Suppose that we wish to describe our beliefs about a random vector of future data \mathbf{X} , with likelihood $f(\mathbf{x}|\theta)$, but unknown parameter $\theta \in \Theta$.
- If uncertainty for θ is represented by $p(\theta)$, then the pdf of \boldsymbol{X} is given by,

$$f(\mathbf{x}) = \int_{\theta \in \Theta} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Theta} f(\mathbf{x}|\theta) p(\theta) d\theta.$$

- The term f(x) is called the *prior predictive distribution*, in addition to the 'marginal likelihood' term we encountered earlier.
- Essentially, we are weighting the likelihood $f(x|\theta)$ with the best description of our beliefs for θ .
- Since we have not observed any data, that is the prior distribution for θ .

- Suppose that we wish to describe our beliefs about a random vector of future data \mathbf{X} , with likelihood $f(\mathbf{x}|\theta)$, but unknown parameter $\theta \in \Theta$.
- If uncertainty for θ is represented by $p(\theta)$, then the pdf of \boldsymbol{X} is given by,

$$f(\mathbf{x}) = \int_{\theta \in \Theta} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Theta} f(\mathbf{x}|\theta) p(\theta) d\theta.$$

- The term f(x) is called the *prior predictive distribution*, in addition to the 'marginal likelihood' term we encountered earlier.
- Essentially, we are weighting the likelihood $f(x|\theta)$ with the best description of our beliefs for θ .
- Since we have not observed any data, that is the prior distribution for θ .

- Suppose that we wish to describe our beliefs about a random vector of future data \mathbf{X} , with likelihood $f(\mathbf{x}|\theta)$, but unknown parameter $\theta \in \Theta$.
- If uncertainty for θ is represented by $p(\theta)$, then the pdf of \boldsymbol{X} is given by,

$$f(\mathbf{x}) = \int_{\theta \in \Theta} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Theta} f(\mathbf{x}|\theta) p(\theta) d\theta.$$

- The term f(x) is called the *prior predictive distribution*, in addition to the 'marginal likelihood' term we encountered earlier.
- Essentially, we are weighting the likelihood $f(x|\theta)$ with the best description of our beliefs for θ .
- Since we have not observed any data, that is the prior distribution for θ .

- Suppose that we wish to describe our beliefs about a random vector of future data \mathbf{X} , with likelihood $f(\mathbf{x}|\theta)$, but unknown parameter $\theta \in \Theta$.
- If uncertainty for θ is represented by $p(\theta)$, then the pdf of ${\pmb X}$ is given by,

$$f(\mathbf{x}) = \int_{\theta \in \Theta} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Theta} f(\mathbf{x}|\theta) p(\theta) d\theta.$$

- The term f(x) is called the *prior predictive distribution*, in addition to the 'marginal likelihood' term we encountered earlier.
- Essentially, we are weighting the likelihood $f(x|\theta)$ with the best description of our beliefs for θ .
- Since we have not observed any data, that is the prior distribution for θ .

- Suppose that we wish to describe our beliefs about a random vector of future data \mathbf{X} , with likelihood $f(\mathbf{x}|\theta)$, but unknown parameter $\theta \in \Theta$.
- If uncertainty for θ is represented by $p(\theta)$, then the pdf of \boldsymbol{X} is given by,

$$f(\mathbf{x}) = \int_{\theta \in \Theta} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Theta} f(\mathbf{x}|\theta) p(\theta) d\theta.$$

- The term f(x) is called the *prior predictive distribution*, in addition to the 'marginal likelihood' term we encountered earlier.
- Essentially, we are weighting the likelihood $f(\mathbf{x}|\theta)$ with the best description of our beliefs for θ .
- Since we have not observed any data, that is the prior distribution for θ .

- Consider X such that, $X \sim Exp(\lambda)$, $\lambda > 0$.
- Assume also prior beliefs on λ described by a $\Gamma(\alpha, \beta)$ distribution $(\alpha, \beta > 0)$.
- The prior predictive distribution f(x) was calculated back in lecture 4, as

$$f(x) = \frac{\Gamma(n+\alpha)\beta^{\alpha}}{(n\bar{x}+\beta)^{n+\alpha}\Gamma(a)}.$$

• The calculation is shown again in the next slide as a reminder.

- Consider X such that, $X \sim Exp(\lambda)$, $\lambda > 0$.
- Assume also prior beliefs on λ described by a $\Gamma(\alpha, \beta)$ distribution $(\alpha, \beta > 0)$.
- The prior predictive distribution f(x) was calculated back in lecture 4, as

$$f(x) = \frac{\Gamma(n+\alpha)\beta^{\alpha}}{(n\bar{x}+\beta)^{n+\alpha}\Gamma(a)}.$$

The calculation is shown again in the next slide as a reminder.

- Consider X such that, $X \sim Exp(\lambda)$, $\lambda > 0$.
- Assume also prior beliefs on λ described by a $\Gamma(\alpha, \beta)$ distribution $(\alpha, \beta > 0)$.
- The prior predictive distribution f(x) was calculated back in lecture 4, as

$$f(x) = \frac{\Gamma(n+\alpha)\beta^{\alpha}}{(n\bar{x}+\beta)^{n+\alpha}\Gamma(a)}.$$

The calculation is shown again in the next slide as a reminder.

- Consider X such that, $X \sim Exp(\lambda)$, $\lambda > 0$.
- Assume also prior beliefs on λ described by a $\Gamma(\alpha, \beta)$ distribution $(\alpha, \beta > 0)$.
- The prior predictive distribution f(x) was calculated back in lecture 4, as

$$f(x) = \frac{\Gamma(n+\alpha)\beta^{\alpha}}{(n\bar{x}+\beta)^{n+\alpha}\Gamma(a)}.$$

The calculation is shown again in the next slide as a reminder.

$$\pi(\lambda|\mathbf{x}) \propto f(\mathbf{x}|\lambda)p(\lambda) = f(x_1|\lambda) \times \dots f(x_n|\lambda)p(\lambda)$$

$$= \prod_{i=1}^{n} \lambda \exp(-x_i\lambda) \times \frac{\beta^{\alpha}}{\Gamma(\alpha)} \lambda^{\alpha-1} \exp(-\lambda\beta)$$

$$\propto \lambda^{n} \exp\left(-\lambda \sum_{i=1}^{n} x_i\right) \times \lambda^{\alpha-1} \exp(-\lambda\beta)$$

$$= \lambda^{n+\alpha-1} \exp(-\lambda[n\bar{x} + \beta])$$

$$\propto \frac{(n\bar{x} + \beta)^{n+\alpha}}{\Gamma(n+\alpha)} \lambda^{n+\alpha-1} \exp(-\lambda[n\bar{x} + \beta])$$

$$\Rightarrow \lambda|\mathbf{x} \sim \Gamma(n+\alpha, n\bar{x} + \beta).$$

Given this, we can state that the constant of proportionality (the constant we multiply with to obtain a density that integrates to one) is equal to, $\frac{(n\bar{x}+\beta)^{n+\alpha}}{\Gamma(n+\alpha)}$. Or, by inspection, we can write that,

$$f(x) = \frac{\Gamma(n+\alpha)\beta^{\alpha}}{(n\bar{x}+\beta)^{n+\alpha}\Gamma(a)}.$$

Note on the prior predictive distribution

- Note that the prior predictive distribution is in fact the denominator in the expression for Bayes' Theorem, when the data x have not been substituted by numerical values.
- So, all examples in the lecture notes or tutorial sheets where the expression for f(x) is calculated are also examples of a prior predictive distribution.

Note on the prior predictive distribution

- Note that the prior predictive distribution is in fact the denominator in the expression for Bayes' Theorem, when the data x have not been substituted by numerical values.
- So, all examples in the lecture notes or tutorial sheets where the expression for f(x) is calculated are also examples of a prior predictive distribution.

Outline

Prior predictive distribution

- We observe data x, and wish to predict future observations y, from the same process.
- Assume that conditional on the parameter θ in the process, \boldsymbol{X} and \boldsymbol{Y} are independent.
- Then, the posterior predictive distribution for Y is given by,

$$f(\mathbf{y}|\mathbf{x}) = \int_{\Theta} f(\mathbf{y}, \theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\mathbf{x}, \theta) \pi(\theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\theta) \pi(\theta|\mathbf{x}) d\theta,$$

• Thus, we are now weighting the corresponding pdf for Y with our current (posterior) beliefs for θ having already observed data x.

- We observe data x, and wish to predict future observations y, from the same process.
- Assume that conditional on the parameter θ in the process, \boldsymbol{X} and Y are independent.
- Then, the posterior predictive distribution for Y is given by,

$$f(\mathbf{y}|\mathbf{x}) = \int_{\Theta} f(\mathbf{y}, \theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\mathbf{x}, \theta) \pi(\theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\theta) \pi(\theta|\mathbf{x}) d\theta,$$

• Thus, we are now weighting the corresponding pdf for **Y** with data x.

- We observe data x, and wish to predict future observations y, from the same process.
- Assume that conditional on the parameter θ in the process, ${\bf X}$ and ${\bf Y}$ are independent.
- Then, the posterior predictive distribution for Y is given by,

$$f(\mathbf{y}|\mathbf{x}) = \int_{\Theta} f(\mathbf{y}, \theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\mathbf{x}, \theta) \pi(\theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\theta) \pi(\theta|\mathbf{x}) d\theta,$$

• Thus, we are now weighting the corresponding pdf for Y with our current (posterior) beliefs for θ having already observed data x.

- We observe data x, and wish to predict future observations y, from the same process.
- Assume that conditional on the parameter θ in the process, ${\bf X}$ and ${\bf Y}$ are independent.
- Then, the posterior predictive distribution for Y is given by,

$$f(\mathbf{y}|\mathbf{x}) = \int_{\Theta} f(\mathbf{y}, \theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\mathbf{x}, \theta) \pi(\theta|\mathbf{x}) d\theta$$
$$= \int_{\Theta} f(\mathbf{y}|\theta) \pi(\theta|\mathbf{x}) d\theta,$$

• Thus, we are now weighting the corresponding pdf for \mathbf{Y} with our current (posterior) beliefs for θ having already observed data \mathbf{x} .

- Suppose that the number of calls X to a telephone switchboard in z minutes has a $Poisson(\lambda z/10)$ distribution, where $\lambda > 0$ is unknown.
- (So, for a period of 10 minutes, $X \sim Poisson(\lambda)$.)
- Being an enthusiastic Bayesian research graduate, the operator forms the following prior on λ , (from working in a similar telephone switchboard),

$$\lambda \sim Exp(10)$$
.

- Suppose that the number of calls X to a telephone switchboard in z minutes has a $Poisson(\lambda z/10)$ distribution, where $\lambda > 0$ is unknown.
- (So, for a period of 10 minutes, $X \sim Poisson(\lambda)$.)
- Being an enthusiastic Bayesian research graduate, the operator forms the following prior on λ , (from working in a similar telephone switchboard),

$$\lambda \sim Exp(10)$$
.

- Suppose that the number of calls X to a telephone switchboard in z minutes has a $Poisson(\lambda z/10)$ distribution, where $\lambda > 0$ is unknown.
- (So, for a period of 10 minutes, $X \sim Poisson(\lambda)$.)
- Being an enthusiastic Bayesian research graduate, the operator forms the following prior on λ , (from working in a similar telephone switchboard),

$$\lambda \sim Exp(10)$$
.

- Suppose that the number of calls X to a telephone switchboard in z minutes has a $Poisson(\lambda z/10)$ distribution, where $\lambda > 0$ is unknown.
- (So, for a period of 10 minutes, $X \sim Poisson(\lambda)$.)
- Being an enthusiastic Bayesian research graduate, the operator forms the following prior on λ , (from working in a similar telephone switchboard),

$$\lambda \sim Exp(10)$$
.

Example (prior predictive distribution)

 The prior predictive distribution for the number of calls that they receive in the first 10 minutes of work, denoted by X, is

Example (prior predictive distribution)

 The prior predictive distribution for the number of calls that they receive in the first 10 minutes of work, denoted by X, is

$$P(X = x) = f(x) = \int_0^\infty f(x|\lambda)p(\lambda)d\lambda$$

$$= \int_0^\infty \frac{\lambda^x}{x!} \exp(-\lambda) \times 10 \exp(-10\lambda)d\lambda$$

$$= \frac{10}{x!} \frac{\Gamma(x+1)}{11^{x+1}} \int_0^\infty \frac{11^{x+1}}{\Gamma(x+1)} \lambda^x \exp(-11\lambda)d\lambda$$

$$= \frac{10}{x!} \frac{\Gamma(x+1)}{11^{x+1}}$$

$$= \frac{10}{11^{x+1}},$$

since $\Gamma(x+1)=x!$, as x is a positive integer.

• Does this make sense? What if $\lambda \sim Exp(1)$?

•

Example (prior predictive distribution)

 The prior predictive distribution for the number of calls that they receive in the first 10 minutes of work, denoted by X, is

$$P(X = x) = f(x) = \int_0^\infty f(x|\lambda)p(\lambda)d\lambda$$

$$= \int_0^\infty \frac{\lambda^x}{x!} \exp(-\lambda) \times 10 \exp(-10\lambda)d\lambda$$

$$= \frac{10}{x!} \frac{\Gamma(x+1)}{11^{x+1}} \int_0^\infty \frac{11^{x+1}}{\Gamma(x+1)} \lambda^x \exp(-11\lambda)d\lambda$$

$$= \frac{10}{x!} \frac{\Gamma(x+1)}{11^{x+1}}$$

$$= \frac{10}{11^{x+1}},$$

since $\Gamma(x+1) = x!$, as x is a positive integer.

• Does this make sense? What if $\lambda \sim Exp(1)$?

•

Example (prior predictive distribution)

 The prior predictive distribution for the number of calls that they receive in the first 10 minutes of work, denoted by X, is

$$P(X = x) = f(x) = \int_0^\infty f(x|\lambda)p(\lambda)d\lambda$$

$$= \int_0^\infty \frac{\lambda^x}{x!} \exp(-\lambda) \times 10 \exp(-10\lambda)d\lambda$$

$$= \frac{10}{x!} \frac{\Gamma(x+1)}{11^{x+1}} \int_0^\infty \frac{11^{x+1}}{\Gamma(x+1)} \lambda^x \exp(-11\lambda)d\lambda$$

$$= \frac{10}{x!} \frac{\Gamma(x+1)}{11^{x+1}}$$

$$= \frac{10}{11^{x+1}},$$

since $\Gamma(x+1)=x!$, as x is a positive integer.

• Does this make sense? What if $\lambda \sim Exp(1)$?

Example (prior predictive distribution)

• Task: Complete the example in the lecture notes.