

SCC0173 – Mineração de Dados Biológicos

Classificação I: Algoritmos 1Rule e KNN

Prof. Ricardo J. G. B. Campello

SCC / ICMC / USP

1

Créditos

- O material a seguir consiste de adaptações e extensões dos originais:
 - gentilmente cedidos pelo Prof. Eduardo R. Hruschka
 - de Tan et al., Introduction to Data Mining, Addison-Wesley, 2006
 - de Witten & Frank, Data Mining: Practical Machine Learning Tools and Techniques, M. Kaufmann, 2005

Aula de Hoje

- Introdução
 - Classificação
- Classificação via Aprendizado de Máquina (AM) Simbólico
 - Algoritmo 1R (One Rule)
- Classificação via AM Baseado em Instâncias
 - Algoritmo KNN

3

Classificação

- Técnica classifica novas entradas (instâncias) em uma ou mais dentre diferentes classes discretas
 - Número definido de classes
 - Freqüentemente apenas duas
 - classificação binária
- Exemplos
 - Diagnóstico, Análise de crédito, ...

Classificação

- Existem várias técnicas, para diferentes contextos de aplicação
 - Sucesso de cada método depende do domínio de aplicação e do problema particular em mãos
 - Técnicas simples muitas vezes funcionam bem!
 - Análise Exploratória de Dados!

13

Exemplo

Árvores de Decisão

Algoritmo Rudimentar (1 Rule – 1R)

- 1R: Aprende uma árvore de decisão de um nível
 - Todas as regras usam somente um atributo
 - Atributo deve assumir valores categóricos
 - Paradigma simbólico de AM
- Versão Básica:
 - Um ramo para cada valor possível do atributo
 - Para cada ramo, atribuir a classe mais frequente
 - Para cada ramo, calcular a taxa de erro de classificação
 - Escolher o atributo com a menor taxa de erro de classificação

15

Prof. Eduardo R. Hruschka

Pseudo-Código para o 1R:

Para cada atributo:

Para cada valor do atributo gerar uma regra como segue:

Contar a freqüência de cada classe;

Encontrar a classe mais frequente*;

Formar uma regra que atribui a classe mais freqüente a este atributo-valor;

Calcular a taxa de erro de classificação das regras;

Escolher as regras com a menor taxa de erro de classificação.

* Empates na classe mais freqüente podem ser decididos aleatoriamente.

NOTA: Está implementado no software Weka

16

Prof. Eduardo R. Hruschka

Exemplo: Problema Weather

(Witten & Frank, 2005)

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Attribute	Rules	Errors	Total Errors
Outlook	$Sunny \to No$	2/5	4/14
	$Overcast \to Yes$	0/4	
	$\text{Rainy} \rightarrow \text{Yes}$	2/5	
Temp	$Hot \to No^*$	2/4	5/14
	$Mild \to Yes$	2/6	
	$Cool \to Yes$	1/4	
Humidity	$High \to \ No$	3/7	4/14
	$Normal \to Yes$	1/7	
Windy	$False \to Yes$	2/8	5/14
	True \rightarrow No*	3/6	

1R seria composto ou das 3 regras para Outlook ou das 2 Regras para Humidity: decisão poderia ser feita, por ex., de acordo com o desempenho em um outro conjunto de dados (dados de teste)

Prof. Eduardo R. Hruschka

Obter um classificador 1R para os dados:

Febre	Enjôo	Mancha	Dor	Diagnóstico
Sim	Sim	Não	Sim	Não
Não	Sim	Não	Não	Sim
Sim	Sim	Sim	Não	Sim
Sim	Não	Não	Sim	Não
Sim	Não	Sim	Sim	Sim
Não	Não	Sim	Sim	Não

 O Algoritmo K-NN (K-Vizinhos-Mais-Próximos ou K-Nearest-Neighbors do inglês) é um dos mais simples e bem difundidos algoritmos do paradigma baseado em instâncias

K-NN Idéia Básica: - Se anda como um pato, "quacks" como um pato, então provavelmente é um pato Calcula objeto Similaridade ainda não visto Objetos de Escolhe K dentre os Treinamento objetos mais similares © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

K-NN

- Escolha do Valor de K:
 - Muito grande:
 - mais robusto a ruído
 - porém, menor flexibilidade de discriminação entre classes
 - privilegia classe majoritária...

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

. .

K-NN: Configuração

- Valor Ideal ?
 - Depende da aplicação
 - Análise Exploratória de Dados!

K-NN

- Como calcular as (dis)similaridades...?
 - Já vimos anteriormente no curso que a medida mais apropriada depende:
 - do(s) tipo(s) do(s) atributos !
 - ◆ do domínio de aplicação !
 - Por exemplo:
 - ◆ Euclidiana, Casamento Simples (Simple Matching), Jaccard, Cosseno, Pearson, ...

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

27

K-NN

- Além da escolha de uma medida apropriada, é preciso condicionar os dados de forma apropriada
 - Por exemplo, atributos podem precisar ser normalizados para evitar que alguns dominem completamente a medida de (dis)similaridade
 - Exemplo:
 - Altura de uma pessoa adulta normal: 1.4m a 2.2m
 - Peso de uma pessoa adulta sadia: 50Kg a 150Kg
 - Salário de uma pessoa adulta: \$400 a \$30.000

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Exercício

 Converta os dados abaixo para valores numéricos em [0, 1] (sem aumentar o no. de atributos) e classifique a última instância com KNN equipado com Distância Euclidiana e K = 1, 3 e 5. Discuta.

Febre Enjôo	Mancha	Diagnóstico
baixa sim	grande	doente
média não	média	saudável
alta sim	grande	doente
alta não	ausente	saudável
baixa não	enorme	doente
média não	pequena	???

29

K-NN Ponderado

- Na versão básica do algoritmo, a indicação da classe de cada vizinho possui o mesmo peso para o classificador
 - 1 voto (+1 ou -1) por vizinho mais próximo
- Isso torna o algoritmo muito sensível à escolha de K
- Uma forma de reduzir esta sensibilidade é ponderar cada voto em função da distância ao respectivo vizinho
 - Heurística Usual: Peso referente ao voto de um vizinho decai de forma inversamente proporcional à distância entre esse vizinho e o objeto em questão
 - Nota: está implementada no software Weka

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 30

Exercício

 Repita o exercício anterior com a ponderação de votos pelo inverso da Distância Euclidiana e discuta o resultado, comparando com o resultado anterior

Febre Enjôo	Mancha	Diagnóstico
baixa sim	grande	doente
média não	média	saudável
alta sim	grande	doente
alta não	ausente	saudável
baixa não	enorme	doente
média não	pequena	???

21

K-NN: Características

- K-NN não constrói explicitamente um modelo
 - Isso torna a classificação de novos objetos relativamente custosa computacionalmente
 - É necessário calcular as distâncias de cada um dos objetos a serem classificados a todos os objetos da base de instâncias rotuladas armazenada
 - Problema pode ser amenizado com algoritmos e estruturas de dados apropriados (além do escopo deste curso)

K-NN: Características

- Sensíveis ao projeto
 - Escolha de K...
 - Escolha da medida de (dis)similaridade...
- Podem ter poder de classificação elevado
 - Função de discriminação muito flexível para K pequeno
- Podem ser sensíveis a ruído
 - Pouco robustos para K pequeno

33

K-NN: Características

- É sensível a atributos irrelevantes
 - distorcem o cálculo das distâncias
 - maldição da dimensionalidade...
 - demanda seleção de atributos (veremos depois no curso)
- Por outro lado, permitem atribuir importâncias distintas para diferentes atributos
 - estratégias de ponderação de atributos
 - geralmente levam a classificadores mais precisos
 - além do escopo deste curso

