

K. Lisa Yang Center for Conservation Bioacoustics

Ciclo de análises em MAP e performance de modelos

Larissa Sugai

Modelos pré-treinados

- Contém > 6,000 espécies de ave
- Dados de treinament: Macaulay Library e Xeno-canto
- MAP > 80%
- Várias plataformas (inclusive o GUI)

~230,000 ML recordings

~400,000 XC recordings

Modelos pré-treinados

• Entrada: áudios

• Entrada: lista de espécies ou região

Output: predições

A anatomia de uma predição do BirdNET

- Escala: 3 segundos
- Frequência: default 0-1500 Hz
- Species Code and Common Name*
- Confidence score
 - Varia entre 0 1
 - NÃO é uma probabilidade
 - NÃO é comparável entre classes diferentes

Selection Table: S19_20180214_080003_resampled.BirdNET.selection.table.txt									
Selection	View	Channel	Begin Time	End Time	Low Freq	High Freq	Species Code	Common Name	Confidence
			(s)	(s)	(Hz)	(Hz)			
1	≣ 1	1	111.0000	114.00	150.000	15000			0.6280
2	≣ 1	1	114.0000	117.00	150.000	15000			0.7648
□ 3	≣ 1	1	135.0000	138.00	150.000	15000			0.5023
4	≣ 1	1	183.0000	186.00	150.000	15000			0.7398
5	≣ 1	1	198.0000	201.00	150.000	15000			0.5269
□ 6	≣ 1	1	201.0000	204.00	150.000	15000			0.5144
□ 7	≣ 1	1	1389.00	1392.0	150.000	15000			0.5758
□ 8	≣ 1	1	1392.00	1395.0	150.000	15000			0.9818
9	≣ 1	1	1395.00	1398.0	150.000	15000			0.9948
1 0	≣ 1	1	1398.00	1401.0	150.000	15000		_	0.7465

 Transferência de aprendizado: saindo de um domínio e indo para outro (similar)

https://zenodo.org/records/8415090

- Entrada: dataset de treinamento: clips de 3 segundos
 - Classe alvo (1 ou mais)
 - Dados vindo de gravações manuais / outros datasets
 - Boa qualidade
 - Criado com anotações (caixas de seleção) e clipagem (pode ser feito no Raven)
 - Pode ser menor do que 3 segundos (centraliza e adiciona silêncio)
 - Se possui > 3 segundos, centraliza e corta 3 segundos
 - Atenção com o que está presente nesses 3 segundos
 - Classe 'Other': barulho de fundo, exemplos de falsos positivos
 - → Controle de qualidade do dataset de treinamento (criar de forma que consiga remover sinais, e.g. anotar qualidade som, tipo de som, etc)!

Avaliação da performance: dataset de teste

- Um dataset que seja representativo do seu universo amostral (e.g. 5% do total)
- Áudios anotados em total (para todas as classes de interesse)
- Predições do BirdNET são comparadas às anotações manuais

Avaliação da performance: dataset de teste

- Um dataset que seja representativo do seu universo amostral (e.g. 5% do total)
- Áudios anotados em total (para todas as classes de interesse)
- Predições do BirdNET são comparadas às anotações manuais

Avaliação da performance: dataset de teste

Limiar (threshold): tornando uma predição em detecção

• Critério de corte para classificação: Acima do valor = 1; Abaixo do valor = 0

2.1

Limiar (threshold): tornando uma predição em detecção

• Critério de corte para classificação: Acima do valor = 1; Abaixo do valor = 0

Limiar (threshold): tornando uma predição em detecção

- Critério de corte para classificação: Acima do valor = 1; Abaixo do valor = 0
- O que acontece com a quantidade de VP e FP com limiar baixo?

Limiar (threshold): tornando uma predição em detecção

- Critério de corte para classificação: Acima do valor = 1; Abaixo do valor = 0
- O que acontece com a quantidade de VP e FP com limiar baixo? E alto?

2.1

Limiar (threshold): tornando uma predição em detecção

 Precisão e revocação (recall): devem ser analisados no conjunto teste para entender qual limiar ser selecionado

Precisão

> VP VP + FP

2.1

Limiar (threshold): tornando uma predição em detecção

 Precisão e revocação (recall): devem ser analisados no conjunto teste para entender qual limiar ser selecionado
 Precisão

Tutorial!