	CTGTGCTGAC	CCCAAGCAGA	AGTGGGTTCA	GGATTCCATG	GACCACCTGG	ACAAGCAAAC	1380
	CCAAACTCCG	AAGACTTGAA	CACTCACTCC	ACAACCCAAG	AATCTGCAGC	TAACTTATTT	1440
5	TCCCCTAGCT	TTCCCCAGAC	ACCCTGTTTT	ATTTTATTAT	AATGAATTT	CTTTCTTGAT	1500
	GTGAAACATT	ATGCCTTAAG	TAATGTTAAT	TCTTATTTAA	GTTATTGATG	TTTTAAGTTT	1560
10	ATCTTTCATG	GTACTAGTGT	TTTTTAGATA	CAGAGACTTG	GGGAAATTGC	TTTTCCTCTT	1620
	GAACCACAGT	TCTACCCCTG	GGATGTTTTG	AGGGTCTTTG	CAAGAATCAT	TAATACAAAG	1680
	AATTTTTTTT	AACATTCCAA	TGCATTGCTA	AAATATTATT	GTGGAAATGA	ATATTTTGTA	1740
15	ACTATTACAC	САААТАААТА	TATTTTTGTA	САААААААА	АААААААА	АААААААА	1800
	AAGSGGCCGC	TCGAATTAAG	cc	•			1822

20

(2) INFORMATION FOR SEQ ID NO: 106:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1712 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

30

25

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 106:

	CGTGCCCCAG	CCTCCCGAGT	AGCTGGRACT	ACAGGCACGT	SCCACCACGC	CCAGCTAATT	60
35	TTWATATTTT	WAGTAGAGAC	GGGGTTTTSC	TGTKTTGGCC	AGGCTGGTCT	CAAACTCCTG	120
33	ACCTCAAGTA	ATCCACCTGG	CCTGCTCTTT	TCATGTCTTA	ACATGGCATG	TCTTTTAGTT	180
	TCATTATTTT	CCTACTCCTT	GTATGTCAAG	AAATTACATT	TTGCATGTCT	TATGGAGATG	240
40	CTGTTAATTG	CTTCAGTGAG	TGCTTTTCTA	ATCTGCAGAC	CATTTACATT	TECTGTTTGC	300
	AGCATGCTGT	GTGCAAACAC	TCAGTAATTT	GGAGTATTCA	ATTATTTGTT	AGGGCTCTTC	360
15	СТАТТТССАА	ATGTGCTGAA	TTGTCTATTG	ATGGGATTTT	CAGATCTTTT	CATGAGAACT	420
45	GGAAATGTAG	CTGGGTGGCA	CCTACCTAGG	TTGCTACGTA	GTGAGTAGAC	TTTCTCTTGG	480
	GTATAGTAAG	CCTCAGACAG	CTTTCACTTT	TATCTACTTT	ACTTGTGGAA	ATAAAACAGT	540
50	CATTTTGTTC	TGAAAGAATA	AGATAGCTTT	CTGTAGAGAA	GGAATTCCTA	CCTCTAAAAG	600
	CTGCCTTGAG	AACTCAGAAC	TGGCAGTTTT	CTGAGGTGAT	TTTTAAATTT	CAGTATTAGG	660
<i></i>	GAGAGTCCAG	CATTTGCTGA	CACAGATICT	ACATAACTAA	TGTATGATAG	CAAATGCAAA	720
55	ACTATTATAA	TGTGGTGTAT	CTTGCGCATA	CACAGGTTAG	AACAAGTAGA	CTCTGGCAGC	780
	AGATCTCCAG	AGACCCAAGT	TTAGGTTCTC	ATAGTGTATT	TGAAGTAGTT	ATACTCCTGG	840
60	CTTAAGTAGT	TTAGTGCCTG	GGAGAATCCA	TTACTGAAAA	GCATTTAACT	ТАААААААА	900

248

ACTCGAGACG GGCCCGG 2237

5

10

20

25

30

35

40

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 105:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1822 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

15 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 105:

GGTCGACCCA CGCGTCCGGA ATTTTCGTAG CAATAAGTTT GTGCATGTAT AGTAATTTGC 60 ATTAGCAAGG TTGTAACCTC TGCCTCTTGG GTTCAAGTGA TTCTCGTGCC CCAGCCTCCC 120 GAGTAGCTGG GACTACAGGC ACGTGCCACC ACGCCCAGCT AATTTTTATA TTTTTAGTAG 180 AGACGGGTT TTGCTGTGTT GGCCAGGCTG GTCTCAAACT CCTGACCTCA AGTAATCCAC 240 CTGGCCTGCT CTTTTCATGT CTTAACATGG CATGTCTTTT AGTTTCATTA TTTTCCTACT 300 CCTTGTATGT CAAGAAATTA CATTTTGCAT GTCTTATGGA GATGCTGTTA ATTGCTTCAG 360 TGAGTGCTTT TCTAATCTGC AGACCATTTA CATTTCCTGT TTGCAGCATG CTGTGTGCAA 420 480 ACACTCAGTA ATTIGGAGTA TICAATTATT TGTTAGGGCT CTTCCTATTT CCAAATGTGC TGAATTGTCT ATTGATGGGA TTTTCAGATC TTTTCATGAG AACTGGAAAT GTAGCTGGGT 540 GGCACCTACC TAGGTTGCTA CGTAGTGAGT AGACTTTCTC TTGGGTATAG TAAGCCTCAG 600 ACAGCTITCA CTTTATCTA CTTTACTTGT GGAAATAAAA CAGTCATTTT GTTCTGAAAG 660 AATAAGATAG CTTTCTGTAG AGAAGGAATT CCTACCTCTA AAAGCTGCCT TGAGAACTCA 720 780 GAACTGGCAG TITTCTGAGG TGATTTTTAA ATTTCAGTAT TAGGGAGAGT CCAGCATTTG CTGACACAGA TTCTACATAA CTAATGTATG ATAGCAAATG CAAAACTATT ATAATGTGGT 840 900 GTATCTTGCG CATACACAGG TTAGAACAAG TAGACTCTGG CAGCAGATCT CCAGAGACCC AAGTTTAGGT TCTCATAGTG TATTTGAAGT AGTTATACTC CTGGCTTAAG TAGTTTAGTG 960 1020 AAACCTCGTG CCGAATTCGG CACGAGCTAA CCCAGAAACA TCCAATTCTC AAACTGAAGC 1080 TCGCACTCTC GCCTCCAGCA TGAAAGTCTC TGCCGCCCTT CTGTGCCTGC TGCTCATAGC 1140 1200 AGCCACCTTC ATTCCCCAAG GGCTCGCTCA GCCAGATGCA ATCAATGCCC CAGTCACCTG CTGYTATAAC TTCACCAATA GGAAGATCTC AGTGCAGAGG CTCGCGAGCT ATAGAAGAAT 1260 CACCAGCAGC AAGTGTCCCA AAGAAGCTGT GATCTTCAAG ACCATTGTGG CCAAGGAGAT 1320

	CAAGAAACCA	CTTTATCTTC	ATCTACATCA	AACTTTGCAC	AAGGAATGAT	CCTGACATGA	480
5	TGAACCTGGA	ACTICIGIGA	ATTTTACCAC	TĊAGTAGAAA	CCATCATAGC	TCTGTGTAGC	540
J	ATATTCACCC	TTCAACAGGC	AGGAAGCAAG	CCGTACCCAG	ACCAGTAGGC	CGGACGGAGT	600
	CAATNGCAAA	GCTGTACCAC	AGAATTCAGA	GTCCAGCACA	TCACACTGAC	GTATAGGACT	660
10	CCTTGGGATA	CAGGTTTATT	GTAGATTTTG	AAACATGTTT	TTACTTTTCT	ATTAATTGTG	720
	CAATTAATAG	TCTATTTTCT	AATTTACCAC	TACTCCTACC	CTGCTTCCTG	GAACAATACT	780
1.5"	GTTGTGGGTA	GGATGTGCTC	ATCTTCAGAC	TTAATACAGC	AATAAGAATG	TGCTAGAGTT	840
15	TACACATCTG	TTCACTTTTG	CTCCAATATG	CTCTTTTGAC	TTAACGTCAA	GCTTTGGGTT	900
	GATGTGGGTA	GGGTAGTGTC	AAACTGCTTT	GAGAGGAATG	GGACCAGTTC	TGCTGCCTAA	960
20	GAAGGTCTGT	CTGGATGTTT	ATAGGCAGCA	CCTCTGAAGT	GGCCTAAATT	CACCCTGATC	1020
	TGATAGTTTT	CCTGCTTAGA	AAGTGTGCCT	TGGCCAGATC	AGTATCCCAC	ATGGGAGTGT	1080
25	TCCCTAGGTT	GTAGCTGTGA	TTGTTTCCAG	ATGACCAGAT	TGTTTTTCTG	AAAATGAGCA	1140
25	TATTTTTAGT	CATGTCGATT	AGCTGTTCTT	CTACATCACA	TIGTTACTCT	TTCTGATGAT	1200
	GATTCTAGGG	TTAACATTGG	AACCATCTCA	AAATAATTAC	AAAGITTTAG	ATGGGTTTAC	1260
30	AATGTCTTCT	AAACAATGTA	АТСТАААААТ	AATTGAGTCA	GATGCTAACG	AGATACTGCA	1320
	GGCATAACTG	CIGITITICT	GACAACTGAT	TGTGAAACCT	TAAAACCTGC	ATACCTCTTC	1380
35	TTACAGTGAG	GAGTATGCAA	AATCTGGAAA	GATATTCTAT	TTTTTTTATA	TAGGTAGATA	1440
33	GGATCGCCAT	TTATTTCCTA	TTTAGATATA	CTGACATTCA	TCCATATGAA	AATATGCAGG	1500
	TCATTAGCTT	ACTATAATTT	ACTTTTGACT	TAATGGGGCA	TAAATAAAAC	TTTCATAGTA	1560
40	CACATGAGGT	GGATATTTGA	TACACAGAAC	ATTTGCGGTG	GGCTTTCTGT	GGGTTAGATG	1620
	TAAAGCCCAC	: ATATTTTAAT	ATTCACTATT	TTAAATGAGC	AATGCATGAG	GGGAATGCAG	1680
45	TGTCAGTACO	TGGCCTATTT	TTAAACTAGT	GTAATCACCC	TAGTCATACC	ATTCAGTATG	1740
45	TTTGCTTTTT	AAAATAAGTA	ACCACAATTA	AGTTGTTGTA	GCCCTTGCAC	TTCAAGAGAT	1800
	CTAGTCTTTA	CTTTCAGTTG	TCTGTTAGGT	CCATTCTGTT	TACTAGACGG	ATGTTAATAA	1860
50	AAACTATGCG	AGCCTGAATG	AATTCTCAGC	CAAATTTAGT	CTTGTCTCTC	ATCTTGATTG	1920
	GATTAATTCC	: AAATTCTAAA	ATGATTCAGT	CCACAATAGC	TCTAGGGGAT	GAAGAATTTG	1980
	CCTTACTTTC	CCCAGTTCCT	AAGACTGTGA	GTTGTCAAAT	CCCTAGACTG	TAAGCTCTTC	2040
55	AAGGAGCAAG	G AGGCGCATTT	TCTCCGTGTC	ATGTAATTT	TCTAAGGTGT	TTGGCAGCAC	2100
	TCTGTACCCT	r giggagtact	CAGTACCTTI	TGTTTGATGT	TGCTGACAAG	ACCTGAAAAA	2160
60	ааатссстт	DAAAAAAA	CCATTAAAGT	GTAGCAAAAC	CGAAAAAAA	AAAANAAAA	2220

	CTGTGAGGTG GCCCCTGAGA GGTGGGGGCC TCTCCAGGGC ACATCTGGAG TTCTTCTCCA	900
	GCTTACCCTA GGGTGACCAA GTAGGGCCTG TCACACCAGG GTGGCGCAST TTCTGTGTGA	960
5	TGCAGATGTG TCCTGGTTTC GGCAGCGTAG CCAGCTGCTG CTTGAGGCCA TGGCTCGTCC	1020
	CCGGAGTTGG GGGTACCCGT TGCAGAGCCA GGGACATGAT GCAGGCGAAG YTTGGGATCT	1080
10	GGCCAAGTTG GACTTTGATC CTTTGGGCAG ATGTCCCATT GCTCCCTGGA GCCTGTCATG	1140
10	CCTGTTGGGG ATCAGGCAGC CTCCTGATGC CAGAACACCT CAGGCAGAGC CCTACTCAGC	1200
	TOTACCTOTC TGCCTGGACT GTCCCCTGTC CCCGCATCTC CCCTGGGACC AGCTGGAGGG	1260
15	CCACATGCAC ACACAGCCTA GCTGCCCCCA GGGAGCTCTG CTGCCCTTGC TGGCCCTGCC	1320
	CTTCCCACAG GTGAGCAGGG CTCCTGTCCA CCAGCACACT CAGTTCTCTT CCCTGCAGTG	1380
20	TTTTCATTIT ATTTTAGCCA AACATTTTGC CTGTTTTCTG TTTCAAACAT GATAGTTGAT	1440
20	ATGAGACTGA AACCCCTGGG TTGTGGAGGG AAATTGGCTC AGAGATGGAC AACCTGGCAA	1500
	CTGTGAGTCC CTGCTTCCCG ACACCAGCCT CATGGAATAT GCAACAACTC CTGTACCCCA	1560
25	GTCCACGGTG TTCTGGCAGC AGGGACACCT GGGCCAATGG GCCATCTGGA CCAAAGGTGG	1620
	GGTGTGGGGC CCTGGATGGC AGCTCTGGCC CAGACATGAA TACCTCGTGT TCCTCCTCCC	1680
30	TCTATTACTG TITCACCAGA GCTGTCTTAG CTCAAATCTG TTGTGTTTCT GAGTCTAGGG	1740
	TCTGTACACT TGTTTATAAT AAATGCAATC GTTTNGGAAA AAAAAAAAAAA AAAAAAAAGG	1800
	GGSGGCGCTC TAAAAGGATN CCCCNAAGGG GG	1832
35		
	(2) INFORMATION FOR SEQ ID NO: 104:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2237 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
45	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 104:	
	AGTTCCCGGT ACTTTATTAC CAAGGTTGCC ATCGGAACCA GGAATGACAT TACTCACTAT	60
50	CAGAATTGAG AAAATTGGTT TGAAAGATGC TGGGCAGTGC ATCGATCCCT ATATTACAGT	120
	TAGTGTAAAG GATCTGAATG GCATAGACTT AACTCCTGTG CAAGATACTC CTGTGGCTTC	180
55	AAGAAAAGAA GATACATATG TTCATTTTAA TGTGGACATT GAGCTCCAGA AGCATGTTGA	240
	AAAATTAACC AAAGGTGCAG CTATCTTCTT TGAATTCAAA CACTACAAGC CTAAAAAAAG	300
	GTTTACCAGC ACCAAGTGTT TTGCTTTCAT GGAGATGGAT GAAATTAAAC CTGGGCCAAT	360
60	ማረም አልማል መመመር አልመር እንደምን የመመር ለመመር ለመመር ለመመር ለመመር ለመመር ለመመር ነው።	420

	CTGCCCTTCC CACAGGTGAG CAGGGCTCCT GTCCACCAGC ACACTCAGTT CTCTTCCCTG	1320
	CAGTGTTTTC ATTTTATTTT AGCCAAACAT TTTGCCTGTT TTCTGTTTCA AACATGATAG	1380
5	TTGATATGAG ACTGAAACCC CTGGGTTGTG GAGGGAAATT GGCTCAGAGA TGGACAACCT	1440
	GGCAACTGTG AGTCCCTGCT TCCCGACACC AGCCTCATGG AATATGCAAC AACTCCTGTA	1500
10	CCCCAGTCCA CGGTGTTCTG GCAGCAGGGA CACCTGGGCC AATGGGCCAT CTGGACCAAA	1560
	GGTGGGGTGT GGGGCCCTGG ATGGCAGCTC TGGCCCAGAC ATGAATACCT CGTGTTCCTC	1620
	CTCCCTCTAT TACTGTTTCA CCAGAGCTGT CTTAGCTCAA ATCTGTTGTG TTTCTGAGTC	1680
15	TAGGGTCTGT ACACTTGTTT ATAATAAATG CAATCGTTTG GAAAAAAAAA AAAAAAAAAC	1740
,	TCGTAGGGGG GGCCCGTACC CAATSGCCTA	1770
20		
	-	
	(2) INFORMATION FOR SEQ ID NO: 103:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1832 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
30	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 103:	
	TGTGGCTGAC GTCATCTGGA GGAGATTTGC TTTCTTTTTC TCCAAAAGGG GAGGAAATTG	. 60
35	AAACTGCAGT GGCCCACGAT GGGAAGAGGG GAAAGCCCAG GGGTACAGGA GGCCTCTGGG	120
	TGAAGGCAGA GGCTAACATG GGGTTCGGAG CGACCTTGGC CGTTGGCTGA CCATCTTTGT	180
40	GCTGTCTGTC GTCACTATCA TCATCTGCTT CACCTGCTCC TGCTGCTGCC TTTACAAGAC	240
	GTGCCGCCGA CCACGTCCGG TTGTCACCAC CACCACATCC ACCACTGTGG TGCATGCCCC	300
	TTATCCTCAG CCTCCAAGTG TGCCGCCCAG CTACCCTGGA CCAAGCTACC AGGGCTACCA	360
45	CACCATGCCG CCTCAGCCAG GGATGCCAGC AGCACCCTAC CCAATGCAGT ACCCACCACC	420
	TTACCCAGCC CAGCCCATGG GCCCACCGGC CTACCACGAG ACCCTGGCTG GAGGAGCAGC	480
50	CGCGCCCTAM CCCGSCAGCC AGCCTCCTTA CAACCCGGCC TACATGGATG CCCGAAGCGG	540
50	CCCTCTGAGC ATTCCCTGGC CTCTYTGGCT GCCACTTGGT TATGTTGTGT GTGTGCGTRA	600
	GTGGTGTGCA GGCGCGGTTC CTTACGCCCC ATGTGTGCTG TGTGTGTCCA GGCACGGTTC	660
55	THE PROPERTY OF THE PROPERTY O	720
	CTTACGCCCC ATGTGTGCTG TGTGTGTCCT GCCTGTATAT GTGGCTTCCT CTGATGCTGA	
	CAACTGGGGA ACAATCCTTG CCAGAGTGGG CTGGGACCAG ACTTTGTTCT CTTCCTCACC	780

1260

60

244

	CTGGCAGGGA TGTCCCTGTG CCCAGCACTG GGGGCTCGAA GACTGGTTTC TAGCACTACC	540
	GGTCACGGCC ATGTCGTCCT AGAAGGGTCC AGAAGATTAT TTTACGTTGA GTCCATTTTT	600
5	AATGTTCTG	609
10	(2) THEODMANICAL FOR CEO TO NO. 102.	
10	(2) INFORMATION FOR SEQ ID NO: 102:	Å.
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1770 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 102:	
20	ACGGYCCGGA ATCCCGGGTC GACCCACGCG TCCGGGAAAT TGAAACTGAG TGGCCCACGA	60
	TGGGAAGAGG GGAAAGCCCA GGGGTACAGG AGGCCTCTGG GTGAAGGCAG AGGCTAACAT	120
25	GGGGTTCGGA GCGACCTTGG CCGTTGGCCT GACCATCTTT GTGCTGTCTG TCGTCACTAT	180
	CATCATCTGC TTCACCTGCT CCTGCTGCTG CCTTTACAAG ACGTGCCGCC GACCACGTCC	240
	GGTTGTCACC ACCACCACAT CCACCACTGT GGTGCATGCC CCTTATCCTC AGCCTCCAAG	300
30	TGTGCCGCCC AGCTACCCTG GACCAAGCTA CCAGGGCTAC CACACCATGC CGCCTCAGCC	360
	AGGGATGCCA GCAGCACCT ACCCAATGCA GTACCCACCA CCTTACCCAG CCCAGCCCAT	420
35	GGCCCACCG GCCTACCACG AGACCCTGGC TGGAGGAGCA GCCGCCCCT ACCCCGCCAG	480
	CCAGCCTCCT TACAACCCGG SCTACATGGA TGCCCCGAAG SGGNCCTCTG AGCATTCCCT	540
	GGCCTCTYTG GCTGCCACTT GGTTATGTTG TGTGTGTGCG TGARTGGTGT GCAGGCGCGG	600
40	TTCCTTACGC CCCATGTGTG CTGTGTGTGT CCTGCCTGTA TATGTGGCTT CCTCTGATGC	660
	TGACAAGGTG GGGAACAATC CTTGCCAGAG TGGGCTGGGA CCAGACTTTG TTCTCTTCCT	720
45	CACCTGAAAT TATGCTTCCT AAAATCTCAA GCCAAACTCA AAGAATGGGG TGGTGGGGGG	780
,,,	CACCCTGTGA GGTGGCCCCT GAGAGGTGGG GGCCTCTCCA GGGCACATCT GGAGTTCTTC	840
	TCCAGCTTAC CCTAGGGTGA CCAAGTAGGG CCTGTCACAC CAGGGTGGCG CAGCTTTCTG	900
50	TGTGATGCAG ATGTGTCCTG GTTTCGGCAG CGTAGCCAGC TGCTGCTTGA GGCCATGGCT	960
	CGTCCCCGGA GTTGGGGGTA CCCGTTGCAG AGCCAGGGAC ATGATGCAGG CGAAGCTTGG	1020
55	GATCTGGCCA AGTTGGACTT TGATCCTTTG GGCAGATGTC CCATTGCTCC CTGGAGCCTG	1080
- -	TCATGCCTGT TGGGGATCAG GCAGCCTCCT GATGCCAGAA CACCTCAGGC AGAGCCCTAC	1140
	TCAGCTGTAC CTGTCTGCCT GGACTGTCCC CTGTCCCCGC ATCTCCCCTG GGACCAGCTG	1200

GAGGGCCACA TGCACACAC GCCTAGCTGC CCCCAGGGAG CTCTGCTGCC CTTGCTGGCC

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 611 base pairs (B) TYPE: nucleic acid	
5	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 100:	
10	GGTCTGGGGA GGTGACATGT TGGGCTGTGG GATCCCAGCG CTGGGCCTGC TCCTGCTGCT	60
	GCAGGSWTCG GCAGACGGAA ATGGAATCCA GGGATTCTTC TACCCATGGA GCTGTGAGGG	120
15	TGACATATGG GACCGGGAGA GCTGTGGGGG CCAGGCGGCC ATTCGATAGC CCCAACYTCT	180
13	GCCTGCGTCT CCGGTGCTGC TACCGCAATG GGTCTGCTAC CACCAGCGTC CAGACGAAAA	240
	COTGCGGAGG AAGCACATGT GGGCGCTGGT CTGGACGTGC AGCGGCCTCC TCCTCCTGAG	300
20	CTGCAGCATC TGCTTGTTMT GGTGGGCCAA GCGCCGGGAC GTGCTGCATA TGCCCGGTTT	360
	CCTGGCGGGT CCGTGTGACA TGTCCAAGTC CGTCTCGCTG CTCTCCAAGC ACCGAGGGAC	420
25	CAAGAAGACG CCGTCCACGG GCAGCGTGCC AGTCGCCCTG TCCAAAGAGT CCAGGGATGT	480
23	GGAGGGAGGC ACCGAGGGGG AAGGGACGGA GGAGGGTGAG GAGACAGAGG GCGAGGAAGA	540
	GGAGGATTAG GGGAGTCCCC GGGGGACTGG TCAATACAGA TACGGTGGAC GGAAAAAAAA	600
30	а ааааааааа	611
35	(2) INFORMATION FOR SEQ ID NO: 101:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 609 base pairs(B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 101:	
45	GCATTGGTAA AGCTGGCAGT TGAAACCAGT TGGACGGCCC AGCTTGCGTC TCTTCTGCCT	60
	GAGTGGGCCT CTCAGGTCAC TCGTGCCCTG CTGGAGGACA GAGGGGCACC TCAGCCGCCC	120
	CCAAGCCCAG AGCACAGCAA TAAGGTCGGC CTGCAGGAGC CGGGGTGGGG GTGGGGGTGG	180
50	GGGGRGCAGG ACCCTRARAT GCCACCAGGA CCTGATGGGC CAGGAAGGGC GTGGACATGG	240
	AGGCTGTTTT TACAGTTTTT TTTTTTTTGT TGTTTTGTTT	300
55	CAAGCTTTTT TGCACTTTGT ATCCAGCTGC AAGCTCAGGG CAGAGTCAAG GGCCTGGGTT	360
	GGAAAAACCT GACTCACAGG AATGCATAAT TGACCCTTGC AGCTACCCAA TAGCCCTTGG	420
.	AGCTGGCACT GAACCAGGCT GCAAGATTTG ACTGCCTTAA AAACACAAGG CCCTCTAGGC	480
60		

	GGCCTCTCAT TTCCTTACAC TCTGACATGA ATGAATTATT ATTATTTTTC TTTTTCTTTT	540
5	TTTTTTTACA TTTTGTATAG AAACAAATTC ATTTAAACAA ACTTATTATT ATTATTTTTT	600
3	ACAAAATATA TATATGGAGA TGCTCCCTCC CCCTGTGAAC CCCCCAGTGC CCCCGTGGGC	660
	TGNAGTCTGT GGGCCCATTC GGCCAAGCTG GATTCTGTGT ACCTAGTACA CAGGCATGAC	720
10	TOGGATCCCG TOTACCGAGT ACACGACCCA GGTATGTACC AAGTAGGCAC CCTTGGGCGC	780
	ACCCACTGGG GCCAGGGGTC GGGGGAGTGT TGGGAGCCTC CTCCCCACCC CACCTCCCTC	840
15	ACTICACTGC ATTCCAGATT GGACATGTTC CATAGCCTTG CTGGGGAAGG GCCCACTGCC	900
	AACTCCCTCT GCCCCAGCCC CACCCTTGGC CATCTCCCTT TGGGAACTAG GGGGCTGCTG	960
	GTGGGAAATG GGAGCCAGGG CAGATGTATG CATTCCTTTA TGTCCCTGTA AATGTGGGAC	1020
20	TACAAGAAGA GGAGCTGCCT GAGTGGTACT TTCTCTTCCT GGTAATCCTC TGGCCCAGCC	1080
	TTATGCAGA ATAGAGGTAT TTTTAGGCTA TTTTTGTAAT ATGGCTTCTG GTCAAAATCC	1140
25	CTGTGTAGCT GAATTCCCAA GCCCTGCATT GTACAGCCCC CCACTCCCCT CACCACCTAA	1200
	TAAAGGAATA GTTAACACTC AAAAAAAAAA AAAAAAAAAA	1253
30	(2) INFORMATION FOR SEQ ID NO: 99:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 447 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 99:	
	CAAAGAATGA AATTTACCAC TCTCCTCTC TTGGCAGCTG TAGCAGGGGC CCTGGTCTAT	60
	GCTGAAGATG CCTCCTCTGA CTCGACGGGT GCTGATCCTG CCCAGGAAGC TGGGACCTCT	120
45	AAGCCTAATG AAGAGATCTC AGGTCCAGCA GAACCAGCTT CACCCCCAGA GACAACCACA	180
	ACAGCCCAGG AGAYTTCGGC GGCAGCAGTT CAGGGGACAG CCAAGGTCAC CTCAAGCAGG	240
50	CAGGAACTAA ACCCCCTGAA ATCCATAGTG GAGAAAAGTA TCTTACTAAC AGAACAAGCC	300
50	CTTGCAAAAG CAGGAAAAGG AATGCACGGA GGCGTGCCAG GTGGAAAACA ATTCATCGAA	360
	AATGGAAGTG AATTTGCACA AAAATTACTG AAGAAATTCA GTCTATTAAA ACCATGGGCA	420
55	TGAGAAGCTG AAAAGAATKG GATCATT	447

	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 678 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 97:	
10	ATATTITITT AGGCTAATGT CCAAGATACA GCATTGAGGA GGCAGCTATG TCTAATGAGG	60
	GCTCTCTTGT TTGCTAGAGA TGAGAGAAAT GTATACTAAT CATTTAATT TGTACTTAAA	120
	ATACATTITA CTAATCATAT TGATTTTAAA TATGACAAAT TCTTCTAGTA GATACTAATC	180
15	TTTCTTGTTT ATCATATTGT CCTAGAGAAG CCTAGGTAAA AATGGGTTCC ACCTAGTCTG	240
	TTTGTATAAC ACCTTCCCCC GTCCCCTCTC CATCCCTGCC AATTGGGCTC TATGCATATT	300
20	GACAAGCAAA TAAGAAAACC TTAGGTTTCT TGTATTTGAA TTTCCAAAAC AATAAAAGGT	360
20	TTTGACTCAA GATTTGCATT CAAGAAGAGG CAGAAATTTT GTCTTATCTT TTTATCATTT	420
	TOTGAACTTG TGTTTCTCTG TATGCTTAGA AAATTTTACA CACAAGGAAT GTTTGAAAAA	480
25	GTGAGAATTT TAGAGTGCTT GGGTGGTTTT TATTTGGTCA GTGCTGATGT GTTARGTGTT	540
	TAGGGAAATA ATGCTTCAGG ACCTTTTTGA CAACACAGYT TCATGAATGA CYGGGGGATA	600
30	TTWAKGTTGT GCTGAGAAAA GGGAGGGAGT GGGCAGTTGG AATGGGGGAC CCTTACCATT	660
50	GGAAAACATG CATTCNGN	678
35	(2) INFORMATION FOR SEQ ID NO: 98:	
	(i) SEQUENCE CHARACTERISTICS:	
40	(A) LENGTH: 1253 base pairs (B) TYPE: nucleic acid	
40	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 98:	60
	ACCTCCCTCC CTCTCAGACT GGTCCGAATC CACGCCTAGC CCAGCCACTG CCACTGGGGC	60
50	CATGGCCACC ACCACTGGGG CACTGCCTGC CCAGCCACTT CCCTTGTCTG TTCCCAGCTC	120
50	CCTTGCTCAG GCCCAGACCC AGCTGGGGCC CCACCGGNAA GTTACCCCCA AGAGGCAAGT	180
	NTTGGCCTGA GACGCTCGTC AGTTCTTAGA TCTTGGGGGC CTAAAGAGAC CCCCGTCCTG	240
55	CCTCCTTTCT TTCTCTGTCT CTTCCTTCCT TTTAGTCTTT TTCATCCTCT TCTCTTTCCA	300
	CCAACCCTCC TGCATCCTTG CCTTGCAGCG TGACCGAGAT AGGTCATCAG CCCAGGGCTT	360
	CAGTCTTCCT TTATTTATAA TGGGTGGGGG CTACCACCCA CCCTGCTGCA GTCTTGTGAA	420
60	GAGTCTGGGA CCTCCTTCTT CCCCACTTCT CTCTTCCCTC ATTCCTTTCT CTCTCCTTCT	480

	GGCAGAGACT	GGAATCTCTC	TTCATGAAAA	AATGCAGCCC	CTTAACTTCA	GTTCGACARA	. 60
5	GTGCAGCTCC	TTCTCTCCAC	CCACCACAGT	GATTCTCCTT	ATCCTGCTGT	GCTTTGAGGG	120
J	CCTGCTCTTC	CTCATTTTCA	CATCAGTGAT	GTTTGGGACC	CAGGTGCACT	CCATCTGCAC	180
	AGATGAGACG	GGAATAGAAC	AATTGAAAAA	GGAAGAGAGA	AGATGGGCTA	ААААААСААА	240
10	ATGGATGAAC	ATGAAAGCCG	TTTTTGGCCA	CCCCTTCTCT	CTAGGCTGGG	CCAGCCCCTT	300
	TGCCACGCCA	GACCAAGGGA	AGGCAGACCC	GTACCAGTAT	GTGGTCTGAA	GGACCCCGAC	360
15	CGGCATGGCC	ACTCAGACAC	AAGTCCACAC	CACAGCACTA	CCGTCCCATC	CGTTCTCATG	420
J	AATGTTTAAA	TCGAAAAAGC	AAAACAACTA	CTCTTAAAAC	TTTTTTTATG	TCTCAAGTAA	480
	AATGGCTGAG	CATTGCAGAG	ARAAAAAAA	GTCCCCACAT	TTTATTTTT	AAAAACCATC	540
20	CTTTCGATTT	CTTTTGGTGA	CCGAWGCTGC	TCTCTTTTCC	TTTTAAAATC	ACTICICIGG	600
	CCTCTGGTTT	CTCTCTGCTG	TCTGTCTGGC	ATGACTAATG	TAGAGGGCGC	TGTCTCGCGC	660
25	TGTGCCCATT	CTACTAACTG	AGTGAGACAT	GACGCTGTGC	TGGATGGAAT	AGTCTGGACA	720
	CCTGGTGGG	GATGCATGGG	AAAGCCAGGA	GGGCCCTGAC	CTCCCACTGC	CCAGGAGGCA	780
	GTGGCGGGCT	CCCCGATGGG	ACATAAAACC	TCACCGAAGA	TGGATGCTTA	CCCCTTGAGG	840
30	CCTGAGAAGG	GCAGGATCAG	AAGGGACCTT	GGCACAGCGA	CCTCATCCCC	CAAGTGGACA	900
	CGGTTTGCCT	GCTAACTCGC	AAAGCAATTG	CCTGCCTTGT	ACTITATGGG	CTTGGGGTGT	960
35	GTAGAATGAT	TTTGCGGGGG	AGTGGGGAGA	AAGATGAAAG	AGGTCTTATT	TGTATTCTGA	1020
	ATCAGCAATT	ATATTCCCTG	TGATTATTIG	GAAGAGTGTG	TAGGAAAGAC	GTTTTTCCAG	1080
	TTCAAAATGC	CTTATACAAT	CAAGAGGAAA	AAAAATTACA	CAATTTCAGG	CAAGCTACGT	1140
40	TTTCCTTTGT	TTCATCTGCT	TCCTCTCTCA	CCACCCCATC	TCCCTCTCTT	CCCCAGCAAG	1200
	ATGTCAATTA	AGCAGTGTGA	ATTCTGACTG	CAATAGGCAC	CAGTGCCCAA	CACATACAGC	1260
45	CCCACCATCA	TCCCCTTCTC	AAATTTTAAAA	CCTCAAAGTG	GATTCACTTT	CTGATAGTTA	1320
	ACCCCCATAA	ATGTGCACGT	ACCTGTGTCT	TATCTATATT	TTAACCKGGG	AGACTGTTGT	138
	CCTGGGCATG	GGAGATGACC	ATGATGCTGG	GGTTACCTCA	CAGTCCCCAC	CCTTTCAAAG	144
50	TTNGACATAT	GGCCATCCC	ATTGGGCCAG	GAATTCCACA	GGACACACCT	AAGGCTGTGG	150
	GMAYTGGGGG	ACAAATAGAT	TTTCCATTTT	GAGGAGGGCA	CTTTCCCTGT	TGTTCAGTTC	156
55	TTGTTTTGAA	GGGAGGTINGG					158

(2) INFORMATION FOR SEQ ID NO: 95:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1099 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 95:

10	•			~	•		
10	GGCTTTGTAG	CTGCTCCGCA	GCCCAGCCCG	GCCCCCTCG	CAGAGTCCTA	GGCGGTGCGC	60
	GGCNTCCTGC	CTCCTCCCTC	CTCGGCGGTC	GCGGCCCGCG	CCTCCGCGGT	GCCTGCCTTC	120
15	GCTCTCAGGT	TGAGGAGCTC	AAGCTTGGGA	AAATGGTGTG	CATTCCTTGT	ATCGTCATTC	180
	CAGTTCTGCT	CTGGATCTAC	AAAAATTCC	TGGAGCCATA	TATATACCCT	CTGGTTTCCC	240
20	CCTTCGTTAG	TCGTATATGG	CCTAAGAAAG	CAATACAAGA	ATCCAATGAT	ACAAACAAAG	300
20	GCAAAGTAAA	CTTTAAGGGT	GCAGACATGA	ATGGATTACC	AACAAAAGGA	CCAACAGAAA	360
	TCTGTGATAA	AAAGAAAGAC	TAAAGAAATT	TTCCTAAAGG	ACCCCATCAT	TTAAAAAATG	420
25	GACCTGATAA	TATGAAGCAT	CTTCCTTGTA	ATTGTCTCTG	ACCTTTTTAT	CTGAGACCGG	480
	AATTCAGGAT	AGGAGTCTAG	ATATTTACCT	GATACTAATC	AGGAAATATA	TGATATCCGT	540
30	ATTTAAAATG	TAGTTAGTTA	TATTTAATGA	CCTCATTCCT	AAGTTCCTTT	TTCGTTAATG	600
50	TAGCTTTCAT	TTCTGTTATT	GCTGTTTGAA	TAATATGATT	AAATAGAAGG	TTTGTGCCAG	660
	TAGACATTAT	GTTACTAAAT	CAGCACTTTA	AAATCTTTGG	TTCTCTAATT	CATATGAATT	720
35	TGCTGTTTGC	TCTAATTTCT	TTGGGCTCTT	CTAATTTGAG	TGGAGTACAA	TTTTGTTGTG	780
	AAACAGTCCA	GTGAAACTGT	GCAGGGAAAT	GAAGGTAGAA	TTTTGGGAGG	TAATAATGAT	840
40	GTGAAACATA	AAGATTTAAT	AATTACTGTC	CAACACAGTG	GAGCAGCTTG	TCCACAAATA	900
10	TAGTAATTAC	TATTTATTGC	TCTAAGGAAG	AAAAAATTA	GATAGGGAAA	AGGGGGAAAC	960
	TTCTTTGAAA	AATGAAACAT	CTGTTACATT	AATGTCTAAT	TATAAAATTT	TAATCCTTAC	1020
45	TGCATTTCTT	CTGTTCCTAC	AAATGTATTA	AACATTCAGT	TTAACTGGTA	АААААААА	1080
	AAAAAAACCC	GGGGGGGG					1099

50

55

- (2) INFORMATION FOR SEQ ID NO: 96:
 - (i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1580 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 96:

	TTCCCCAGGC	TCACAGTGTA	GAGACATTGA	GCCCATCACA	ACTGTTTTGA	CTGCTGGCAG	1440
5	TCTAAAACAG	TCCACCCACC	CCATGGCACT	GCCGCGTGAT	TCCCGCGCCA	TTCAGAAGTT	1500
3	CAAGCCGAGA	TGCTGACGTT	GCTGAGCAAS	AGATGGTGAG	CATCAGTGCA	AATGCACCAT	1560
	TCAGCACATC	AGTCATATGC	CCAGTGCAGT	TACAAGATGT	TGTTTCGGCA	AAGCATTTIG	1620
10	ATGGAATAGG	GAACTGCAAA	TGTATGATGA	TTTTGAAAAG	GCTCAGCAGG	ATTTGTTCTT	1680
	AAACCGACTC	AGTGTGTCAT	CCCCGGTTAT	TTAGAATTAC	AGTTAAGAAG	GAGAAACTTC	1740
15	TATAAGACTG	TATGAACAAG	GTGATATCTT	CATAGTGGGC	TATTACAGGC	AGGAAAATGT	1800
1.5	TTTAACTGGT	TTACAAAATC	CATCAATACT	TGTGTCATTC	CCTGTAAAAG	GCAGGAGACA	1860
	TGTGATTATG	ATCAGGAAAC	TGCACAAAAT	TATTGTTTTC	AGCCCCCGTG	TTATTGTCCT	1920
20	TTTGAACTGT	TTTTTTTTA	TTAAAGCCAA	ATTTGTGTTG	TATATATTCG	TATTCCATGT	1980
	GTTAGATGGA	AGCATTTCCT	ATCCAGTGTG	AATAAAAAGA	ACAGTTGTAG	TAAATTATTA	2040
25	TAAAGCCGAT	GATATTTCAT	GGCAGGTTAT	TCTACCAAGC	TGTGCTTGTT	GGTTTTTCCC	2100
	ATGACTGTAT	TGCTTTTATA	AATGTACAAA	TAGTTACTGA	AATGACGAGA	CCCTTGTTTG	2160
	CACAGCATTA	ATAAGAACCT	TGATAAGAAC	CATATTCTGT	TGACAGCCAG	CTCACAGTTT	2220
30	CTTGCCTGAA	GCTTGGTGCA	CCCTCCAGTG	AGACACAAGA	TCTCTCTTTT	ACCAAAGTTG	2280
	AGAACAGAGC	TGGTGGATTA	ATTAATAGTC	TTCGATATCT	GGCCATGGGT	AACCTCATTG	2340
35	TAACTATCAT	CAGAATGGGC	AGAGATGATC	TTGAAGTGTC	ACATACACTA	AAGTCCAAAC	2400
	ACTATGTCAG	ATGGGGGTAA	AATCCATTAA	AGAACAGGAA	ATTAATTA	TAAGATGATA	2460
	AGCAAATGTT	TCAGCCCAAT	GTCAACCCAG	ТТААААААА	AATTAATGCT	GTGTAAAATG	2520
40	GTTGAATTAG	TTTGCAAACT	ATATAAAGAC	ATATGCAGTA	AAAAGTCTGT	TAATGCACAT	2580
	CCTGTGGGAA	TGGAGTGTTC	TAACCAATTG	CCTTTTCTTG	TTATCTGAGC	TCTCCTATAT	2640
45	TATCATACTC	AGATAACCAA	ATTAAAAGAA	TTAGAATATG	ATTTTTAATA	CACTTAACAT	2700
	TAAACTCTTC	TAACTTTCTT	CTTTCTGTGA	TAATTCAGAA	GATAGTTATG	GATCTTCAAT	2760
	GCCTCTGAGT	CATTGTTATA	AAAAATCAGT	TATCACTATA	CCATGCTATA	GGAGACTGGG	2820
50	CAAAACCTGT	ACAATGACAA	CCCTGGAAGT	TGCTTTTTT	АААААААТАА	TAAATTTCTT	2880
	AAATCAACTC	TTTTTTCTGG	TTGTCTGTTT	GTTATAAAGT	GCAACGKATT	CAAGTCCTCA	2940
55	ATATCCTGAT	CATAATACCA	TGCTATAGGA	GACTGGGCAA	AACCTGTACA	ATGACAACCC	3000
	TGGAAGTTGC	TTTTTTAAAA	АААТААТААТ	TTNTTAATCC	AAAAAAANAA	AAAAANTT	3058

10

TTTGRTAATC TCCCCGTCCT TGGTAAAGGT TG

5 (2) INFORMATION FOR SEQ ID NO: 94:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3058 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

	(xi)	SEQUENCE D	ESCRIPTION	SEQ ID NO:	94:	•	
15	ACCCTAAATC	AACAGACAAT	GGCATTGTCG	AAGAGCAACC	TGTTAATGAA	ATCATGTTAA	60
	AAATCAAGGT	TIGGCTTCAG	TTTAAATCAC	TTGAGGTATG	AAGTTTATCC	TGTTTTCCAG	120
20	AGATAAACAT .	AAGTTGATCT	TCCCAAAATA	CCATCATTAG	GACCTATCAC	ACAATATCAC	180
	TAGTTTTTTT	TGTTTGTTTG	TTTTTTGTTT	TTTTTCTTGG	TAAAGCCATG	CACCACAGAC	240
25	TTCTGGGCAG	AGCTGAGAGA	CAATGGTCCT	GACATAATAA	GGATCTTTGA	TTAACCCCCA	300
23	TAAGGCATGT	GTGTGTATAC	AAATATACTT	CTCTTTGGCT	TTTCGACATA	GAACCTCAGC	360
	TGTTAACCAA	GGGGAAATAC	ATCAGATCTG	CAACACAGAA	ATGCTCTGCC	TGAAATTTCC	420
30	ACCATGCCTA	GGACTCACCC	CATTTATCCA	GGTCTTTCTG	GATCTGTTTA	ATCAATAAGC	480
	CCTATAATCA	CTTGCTAAAC	ACTGGGCTTC	ATCACCCAGG	GATAAAAACA	GAGATCATTG	540
35	TCTTGGACCT	CCTGCATCAG	CCTATTCAAA	ATTATCTCTC	TCTCTAGCTT	TCCACAAATC	600
33	CTAAAATTCC	TGTCCCAAGC	CACCCAAATT	CTCAGATCTT	TTCTGGAACA	AGGCAGAATA	660
	TAAATAAAT	ATACATTTAG	TEGETTEGEC	TATGGTCTCC	AAAGATCCTT	CAAAAATACA	720
40	TCAAGCCAGC	TTCATTCACT	CACTTTACTT	AGAACAGAGA	TATAAGGCCC	TGGGATGCAT	780
	TTATTTTATC	AATACCAATT	TTTGTGGCCA	TGGCAGACAT	TGCTAATCAA	TCACAGCACT	840
45	ATTTCCTATT	AAGCCCACTG	ATTTCTTCAC	AATCCTTCTC	AAATTACAAT	TCCAAAGAGC	900
45	CGCCACTCAA	CAGTCAGATG	AACCCAACAG	TCAGATGAGA	GAAATGAACC	CTACTTGCTA	960
	TCTCTATCTT	AGAAAGCAAA	AACAAACAGG	AGTTTCCAGG	GAGAATGGGA	AAGCCAGGGG	1020
50	GCATAAAAGG	TACAGTCAGG	GGAAAATAGA	TCTAGGCAGA	GTGCCTTAGT	CAGGGACCAC	1080
	GGGCGCTGAA	TCTGCAGTGC	CAACACCAAA	CTGACACATC	TCCAGGTGTA	CCTCCAACCC	1140
55	TAGCCTTCTC	CCACAGCTGC	CTACAACAGA	GTCTCCCAGC	CTTCTCAGAG	AGCTAAAACC	1200
33	AGAAATTTCC	AGACTCATGA	AAGCAACCCC	CCAGCCTCTC	CCCAACCCTG	CCGCATTGTC	1260
	TAATTTTTAG	AACACTAGGC	TICITCIIIC	ATGTAGTTCC	TCATAAGCAG	GGGCCAGAAT	1320
60	ATCTCAGCCA	CCTGCAGTGA	CATTGCTGGA	CCCCTGAAAA	CCATTCCATA	GGAGAATGGG	1380

	TTCTACTCAA	GTGAACTAAG	AAGAAGTCAG	CAAGCAAACT	GAGAGAGGTG	AAATCCATGT	720
	TAATGAŢGCT	TAAGAAACTC	TTGAAGGCTA	TTTGTGTTGT	TTTTCCACAA	TGTGCGAAAC	780
5	TCAGCCATCC	TTAGAGAACT	GTGGTGCCTG	TTTCTTTTCT	TTTTATTTTG	AAGGCTCAGG	840
	AGCATCCATA	GGCATTTGCT	TTTTAGAAAT	GTCCACTGCA	ATGGCAAAAA	TATTTCCAGT	900
10	TGCACTGTAT	CTCTGGAAGT	GATGCATGAA	TTCGATTGGA	TTGTGTCATT	TTAAAGTATT	960
10	AAAACCAAGG	AAACCCCAAT	TTTGATGTAT	GGATTACTTT	TTTTTTTAAA	CATGGTTAAA	1020
	ATAAAACTTC	TGTGGTTCTT	CTGAATCTTA	ATATTTCAAA	GCCAGGTGAA	AATCTGAACT	1080
15	AGATATTCTT	TGTTGGAATA	TGCAAAGGTC	ATTCTTTACT	AACTTTTAGT	ТАСТАААТТА	1140
	TAGCTAAGTT	TTGTCAGCAG	CATACTCCGG	AAAGTCTCAT	ACTTCTTGGG	AGTCTGCCCT	1200
20	CCTAAGTATC	TGTCTATATC	ATTCATTACG	TGTAAGTATT	ТААСААААА	GCATTCTTGA	1260
20	CCATGAATGA	AGTAGTTTGT	TTCATAGCTT	GTCTCATTGA	ATAGTATTAT	TGAAGATACT	1320
	AAATGATGCA	AACCAAATGG	ATTTTTTCCA	TGTCATGATG	TAATTTTTCT	TTCTTCTTTC	1380
25	TTTTTTTTAA	ATTTTAGCAG	TGGCTTATTA	TTTGTTTTTC	AAATTAAATA	ATAACTTTTG	1440
	ATAATGTTTA	CTTTAAGACA	TGTAACATGT	TAAAAGGTTA	AACTTATGGC	TGTTTTTAAA	1500
30	GGGCTATTCA	TTTAATCTGA	GTTTTCCCTT	ATTTTCAGCT	TTTTCCTAGC	ATATAATAGT	1560
50	CATTAAGCAT	GACATATCCT	TCATATGATC	ACTCATCTTG	AGTTAATTAG	AAAATACCTG	1620
	AGTTCACGTG	CTAAAGTCAT	TTCACTGTAA	TAAACTGACT	RTGGTTTCTT	AAGAACATGA	1680
35	CACTAAAAA	AAAGTGGTTT	TTTTCCACCG	TTGCTGATTA	TTAGACAGTA	GGAAATAGCT	1740
	GTTTTCTTTA	GTTTTACAAG	ATGTGACAGC	TTTAGTGGTA	GATGTAGGGA	AACATTTCAA	1800
40	CAGCCATAGT	ACTATTTGTT	TTACCACTGA	TTGCACTGTT	TIGITITIT	AACAGTTGCA	1860
10	AAGCTTTTTA	ATGCATAAAA	GTATAATTGA	AATCTGTGGT	ATTTATTTAC	AAACATGTCT	1920
	ACAAAAATAG	ATTACAGCTT	ATTTTATTTT	TAGTTAAATC	TCTTAATACA	CAGAGNAACT	1980
45	CCCAATCTTG	CTCATCTAAA	TAAGGAAAGA	CTTGGTGTAT	ACTCTCATCC	TTTAGTCTTA	2040
	AGGATTAAGA	CATTTTTGGT	ACTTGCATTT	GACTTACGAT	GTATCTGTGA	AAATGGGATG	2100
50	ATATTGACAA	ATGGAGACTC	CTACCTCAAT	AGTTAATGGA	ATAATAAGAG	GCTACTGTTG	2160
50	TGTCTAATGT	TCTTCAAAAA	AGTAATATCC	TCACTTGGAG	AGTGTCAAAT	ACATACTTTG	2220
	AGGATTGACT	TTATATAAGG	TGCCCTGTAG	AAMTCTGTTA	CACATATTTT	TGACCCATAT	2280
55	TATTTACAAT	GTCTTGATAA	TTCTACCTTT	TTAGAGCAAG	AATAGTATCT	GCTAATGTAA	2340
	GGGACATCTG	TATTTAACTC	CTTTGTAGAC	ATGAATTTCT	ATCAAAATGT	TCTTTGCACT	2400
60	GTAACAGAGA	TTCCTTTTT	CAATAATCTT	AATTCAAAGC	ATTATTAGGM	CTTGAAAGGG	2460

	GGGTGGCACT CTCACCATTA CGCTGCGGAA TCTACAACCC CATGATGCC	G GTCTCTACCA	420
5	GTGCCAGAGC CTCCATGGCA GTGAGGCTGA CACCCTCAGG AAGGTCCT	G TGGAGGTGCT	480
5	GGCAGACCCC CTGGATCACC GGGATGCTGG AGATCTCTGG TTCCCCGGC	eg agtetgagag	540
	CTTCGAGGAT GCCCATGTGG AGCACAGCAT CTCCAGGAGC CTCTTGGA	AG GAGAAATCCC	600
10	CTTCCCACCC ACTTCCATCC TTCTCCTCCT GGCCTGCATC TTTCTCATC	CA AGATTCTAGC	660
	AGCCAGCGCC CTCTGGGCTG CAGCCTGGCA TGGACAGAAG CCAGGGAC	AC ATCCACCCAG	720
15	TGAACTGGAC TGTGGCCATG ACCCAGGGTA TCAGCTCCAA ACTCTGCC	AG GGCTGAGAGA	780
	CACGTGAAGG AAGATGATGG GAGGAAAAGC CCAGGAGAAG TCCCACCAC	G GACCAGCCCA	840
	GCCTGCATAC TTGCCACTTG GCCACCAGGA CTCCTTGTTC TGCTCTGG	CA AGAGACTACT	900
20	CTGCCTGAAC ACTGCTTCTC CTGGACCCTG GAAGCAGGGA CTGGTTGA	G GACTGGGGAG	960
	GTGGTAAGAA CACCTGACAA CTTCTGAATA TTGGACATTT TAAACACT	PA CAAATAAATC	1020
25	CAAGACTGTC ATATITAAAA AAAAAAAAA AAAAAAAACN CGAGGGGG	EN CCCGG	1075
	(2) INFORMATION FOR SEQ ID NO: 93:		
30	(i) SEQUENCE CHARACTERISTICS:		
	(A) LENGTH: 2492 base pairs(B) TYPE: nucleic acid		
35	(C) STRANDEDNESS: double (D) TOPOLOGY: linear		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 93:		
40	TCCCGACTCA GCTTCCCACC CTGGGCTTTC CGAGGTGCTK TCGCCGCT	GT CCCCACCACT	60
40	GCAGCCATGA TCTCCTTAAC GGACACGCAG AAAATTGGAA TGGGATTA	AC AGGATTTGGA	120
	GTGTTTTTCC TGTTCTTTGG AATGATTCTC TTTTTTGACA AAGCACTA	CT GGCTATTGGA	180
45	AATGTTTAT TTGTAGCCGG CTTGGCTTTT GTAATTGGTT TAGAAAGA	AC ATTCAGATTC	240
	TTCTTCCAAA AACATAAAAT GAAAGCTACA GGTTTTTTTC TGGGTGGT	gr attigragic	300
50	CTTATTGGTT GGCCTTTGAT AGGCATGATC TTCGAAATTT ATGGATTT	IT TCTCTTGTTC	360
50	AGGGGCTTCT TTCCTGTCGT TGTTGGCTTT ATTAGAAGAG TGCCAGTC	CT TGGATCCCTC	420
	CTAAATTTAC CTGGAATTAG ATCATTTGTA GATAAAGTTG GAGAAAGC	AA CAATATGGTA	480
55	TAACAACAAG TGAATTTGAA GACTCATTTA AAATATTGTG TTATTTAT	AA AGTCATTTGA	540
	AGAATATTCA GCACAAAATT AAATTACATG AAATAGCTTG TAATGTTC	IT TACAGGAGTT	600
60	TAAAACGTAT AGCCTACAAA GTACCAGCAG CAAATTAGCA AAGAAGCA	GT GAAAACAGGC	660

	CTCTTTTCTG	CAGTTCAAGG	GAAAGACGAG	ATCTTGCACA	AGGCACTCTG	CTTCTGCCCT	60
	TGGCTGGGGA	AGGGTGGCAT	GGARCCTCTC	CGGCTGCTCA	TCTTACTCTT	TGTCACAGAG	120
5	CTGTCCGGAG	CCCACAACAC	CACAGTGTTC	CAGGGCGTGG	CGGGCCAGTC	CCTGCAGGTG	180
	TCTTGCCCCT	ATGACTCCAT	GAAGCACTGG	GGGAGGCGCA	AGGCCTGGTG	CCGCCAGCTG	240
10	GGAGAGAAGG	GCCCATGCCA	GCCTGTGGTC	AGCACGCACA	ACTTGTGGCT	GCTGTCCTTC	300
10	CTGAGGAGGT	GGAATGGGAG	CACAGCCATC	ACAGACGATA	CCCTGGGTGG	CACTCTCACC	360
	ATTACGCTGC	GGAATCTACA	ACCCCATGAT	GCGGGTCTCT	ACCAGTGCCA	GAGCCTCCAT	420
15	GGCAGTGAGG	CTGACACCCT	CAGGAAGGTC	CTGGTGGAGG	TGCTGGCAGA	CCCCTGGAT	480
	CACCGGGATG	CTGGAGATCT	CTGGTTCCCC	GGGGAGTCTG	AGAGCTTCGA	GGATGCCCAT	540
20	GTGGAGCACA	GCATCTCCAG	GAGCCTCTTG	GAAGGAGAAA	TCCCCTTCCC	ACCCACTTCC	600
20	ATCCTTCTCC	TCCTGGCCTG	CATCTTTCTC	ATCAAGATTC	TAGCAGCCAG	CGNCCTCTGG	660
	GCTGCAGCCT	GGCATGGACA	GAAGCCAGGG	ACACATCCAC	CCAGTGAACT	GGACTGTGGC	720
25	CATGACCCAG	GGTATCAGCT	CCAAACTCTG	CCAGGGCTGA	GAGACACGTG	AAGGAAGATG	780
	ATGGGAGGAA	AAGCCCAGGA	GAAGTCCCAC	CAGGGACCAG	CCCAGCCTGC	ATACTTGCCA	840
30	CTTGGCCACC	AGGACTCCTT	GTTCTGCTCT	GGCAAGAGAC	TACTCTGCCT	GAACACTGCT	900
50	TCTCCTGGAC	CCTGGAAGCA	GGGACTGGTT	GAGGGAGTGG	GGAGGTGGTA	AGAACACCTG	960
	ACAACTTCTG	AATATTGGAC	ATTTTAAACA	CTTACAAATA	AATCCAAGAC	TGTCATATTT	1020
35	AAAAAAAA	AAAAAAAA	AACNCGAGGG	GGC			1053

40 (2) INFORMATION FOR SEQ ID NO: 92:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1075 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 92:

50	GCACGAGCCT	GATCCTCTCT	TTTCTGCAGT	TCAAGGGAAA	GACGAGATCT	TGCACAAGGC	60
	ACTCTGCTTC	TGCCCTTGGC	TGGGGAAGGG	TGGCATGGAG	CCTCTCCGGC	TGCTCATCTT	120
55	ACTCTTTGTC	ACAGAGCTGT	CCGGAGCCCA	CAACACCACA	GTGTTCCAGG	GCGTGGCGGG	180
33	CCAGTCCCTG	CAGGTGTCTT	GCCCCTATGA	CTCCATGAAG	CACTGGGGGA	GGCGCAAGGC	240
	CTGGTGCCGC	CAGCTGGGAG	AGAAGGCCC	ATGCCAGCGT	GTGGTCAGCA	CGCACAACTT	300
60	GTGGCTGCTG	TCCTTCCTGA	GGAGGTGGAA	TGGGAGCACA	GCCATCACAG	ACGATACCCT	360

	GTCTGGAAGC CCAACTGCCT ATGGGGTTAT TGCAGCTGCT GCGGTGCTCA GTGCAAGCCT	600
	GGTCACCGCC ACCCTCCTCC TTTTGTCCTG GCTCCGAGCC CAGGAGCGCC TCCGCCCACT	660
5	GGGGTTACTG GTGGCCATGA AGGAGTCCCT GCTGCTGTCA GAACAGAAGA CCTCGCTGCC	720
	CTGAGGACAA GCACTTGCCA CCACCGTCAC TCAGCCCTGG GCGTACNGSA CAGGAGGAGA	780
10	GCAGTGATGC GGATGGGTAC CGGGCACACC AGCCCTTCAG AGACCTGAGC NCTTCTGGCC	840
.0	ACTGGAACTT CGAAC	855
15	(2) INFORMATION FOR SEQ ID NO: 90:	
	(i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 628 base pairs	
20 .	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 90:	
	AAGGACGTGC CGTGCCGCTG GGTTCTGAGC CGGAGTGGTC GGTGGGTGGG ATGGAGGCGA	60
	CCTTGGAGCA GCACTTGGAA GACACAATGA AGAATCCCTC CATTGTTGGA GTCCTGTGCA	120
30	CAGATTCACA AGGACTTAAT CTGGGTTGCC GCGGGACCCT GTCAGATGAG CATGCTGGAG	180
	TGATATCTGT TCTAGCCCAG CAAGCAGCTA AGCTAACCTC TGACCCCACT GATATTCCTG	240
35	TGGTGTGTCT AGAATCAGAT AATGGGAACA TTATGATCCA GAAACACGAT GGCATCACGG	300
	TOGCAGTGCA CAAAATGGCC TCTTGATGCT CATATCTGTT CTTCAGCAGC CTGTCATAGG	360
	AACTGGATCC TACCTATGTT AATTACCTTA TAGAACTACT AAAGTTCCAG TAGTTAGGCC	420
40	ATTCATTTAA TGTGCATTAG GCACTTTTCT GTTTATTTAA GAGTCAATTG CTTTCTAATG	480
	CTCTATGGAC CGACTATCAA GATATTAGTA AGAAAGGATC ATGTTTTGAA GCAGCAGGTC	540
45	CAGGTCACTT TGTATATAGA ATTTTGCTGT ATTCAATAAA TCTGTTTGGA GGNAAAAAAA	600
-	AAAAARAAA AAMTSGAGGG CCGAAGCT	628
50	(2) INFORMATION FOR SEQ ID NO: 91:	
	(i) SEQUENCE CHARACTERISTICS:	
c	(A) LENGTH: 1053 base pairs	
55	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 91:	

540

55

60

	(2) INFORMATION FOR SEQ ID NO: 88:	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 539 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 88:	
	AGGGTAATTA ATATGAAGTG CAAAAAGTTG AATGTTCCAG TCTAAAAGGC AGTGGGAGAA	60
15	ATTACATAGC ATGGAAATAA TAAAATGAAY TCTTATTAAT GAGAACGAGG YTCTTGCAGT	120
13	GGCAAGTTCT GCTGGTCACC CGATGGGGAT GGGAGCCTTT CAAGCTTTTT TTTGGGTAAT	180
	ACTCACAGTT TCCAACGTCT GTGTACTTTT CAAAATGAGC TTGTTCTTCC TTCTGACACT	240
20	CATCTCAAAG CTCCATGGTG ACGCAGAGGT CTGTTGAAGG TCACAGGGTC CTCGCTTGCA	300
	TTGGCATACG GTCCTGTAGC ATCACTTGTT AGCCCACTGC TGCTTGAAGG AACTAAGAGT	360
25	ATTCAGGGAT AGAGAGCTGA AAATAGGATT AATTNNTTCC TTTTGACTCT CCCCTCAAGA	420
23	TGTCCTTGCT TTGGTCTGAA AACCTCTCCT GACAACTTTT GCCCAAAGCA AACCATCTGC	480
	CTTTTCTGAA CTCTGAGTGA ATATATTAGC ATCTTCCCTT CTGAGCCCTC GTACTGCCA	539
30		
	(2) INFORMATION FOR SEQ ID NO: 89:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 855 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 89:	
	CCTCTGCCCA GGCCGCACCC GAGCTCAGGC TCGTGCCCAC CCACCAAGTT CCAGTGCCGC	60
45	ACCAGTGGCT TATGCGTGCC CCTCACCTGG CGCTGCGACA GGNACTTGGA CTGCAGCGAT	120
	GCCAGCGATG AGGAGGAGTG CAGGATTGAG CCATGTACCC AGAAAGGGCA ATGCCCCACCG	180
50	CCCCCTGGCC TCCCCTGCCC CTGCACCGGC GTCAGTGACT GCTCTGGGGG AACTGACAAG	240
	AAACTGCGCA ACTGCAGCCG CCTGGCCTGC CTAGCAGCGG AGCTCCGTTG CACGCTGAGC	300
	GATGACTGCA TTCCACTCAC GTGGCGCTGC GACGGCCACC CAGACTGTCC CGACTCCAGC	360

GACGACCTCG GCTGTGGAAC CAATGAGATC CTCCCGGAAG GGGATGCCAC AACCATGGGG

CCCCCTGTGA CCCTGGAGAG TGTCACCTCT CTCAGGAATG CCACAACCAT GGGGCCCCCT

GTGAACCCTG GAGAGTGTCC CCTCTGTCGG GAATGCCACA TCCTCCTCTG CCGGAGACCA

	GGTGATTACA	CAAATGGGCT	TGGCCTCCTT	ACCCCACTGC	AAACTGCTGA	GGCGCAAGGG	180
	AGCTCCCAGC	CCTCAGCCTG	GACCCTGGGA	CAGTGCCACC	TGAGCCCGAG	GCTCTGNAAG	240
5	CACTGCGTGA	TGACAGTTCC	CACCTGCAAC	TCAGCAGCCA	GGGAATGAAT	GAGAGTTAGG	300
	GGTGGCAGGG	GCCCCGGCCA	TCAGTGGGGC	CTGCGCTGCC	GCCTCCGCTG	CACTGCCTGG	360
10	CGCAGAGCCT	CCAGCAGCTG	CTCCTGGTTG	TTGCAGACAT	TGTAATGTGT	CAGGTGCAGC	420
•	AGCTTGTCCA	CGTCCTCCTG	GCTGTAGGTC	ACCTTCGTGT	AGTGGTAGGG	AGAGTCCGAT	480
	GAAGACAGGT	TCACCTCCCC	AGCTGCCGCC	TCCTCGGGTG	TCCGCCGGAC	CCCAGGGGCC	540
15	GAGTACTCCC	GGAAGGAGTC	GCTGACCAGA	GGAAAGTGCA	GCACCGCAGG	GGCTCCGGGG	600
	CAGGTGGGGT	CGGAGAAGGT	GTGGCACTCC	CGAGGCTGGA	GCTGCTCTTC	GGGGCTGGGC	660
20	GAGATGGGTG	GGAACGGGAT	CCCCTGCTCC	TGGCAGAACC	GGCCCAGGAG	CTGCAACTGC	720
	TGGAAGGCTC	CGTGGAGGTT	GTAGTCCAAT	GACAGGATGA	GGTCCACGTC	CCGAGTGGGC	780
	TGCAGGAGGG	GCAGGCAGCT	GGTATTGATG	AGGTAGCCAA	CATCCAGCAG	GCACAGGTGG	840
25	GGCTCCGAGG	GTGTCAGCTG	GTTGGGGAGC	CCATCCAGAG	TGGTAGCTTT	CCATGTGGAG	900
	AAGTGAGGAT	GCTGAAAGTA	GTCTTTGTGG	AAATGGAGGC	CACGCAGGAA	ATTATGTGTG	960
30	GCCTGGGCCA	GTGGACGCCA	CGTCAGAAGA	TCGGTGAAAA	ACTCAGCTAT	TCTGCCGGCT	1020
	GTTGAGGGTG	GTTCTTCTAT	CTTCAGAAGG	GGGACCTGCT	CCTTGTCCAG	GTTGGCCTGG	1080
	TTCCTGACCC	AGCGGTCCCA	GAACTGGCTG	GGCTCTGAGG	CCCAGTATAA	GCTGTCCTGG	1140
35	AGGTTGGCTG	CATACAGGTT	GCTCCAGATA	CCTTCTAAGA	AGCAGATGCG	GGACTCAGGA	1200
	AGCCTCTTCA	TCAGCTGCCC	CATAAAGAAC	TCGGAGCCAA	AGAGCTCAGA	GGGGATGAAG	1260
40	GCCCCGTACT	TGGGGAAGCC	GACCTCGTAG	GGAGAGAACT	CGCACCACTC	CCCAAATTCA	1320
	AAAGTGGTCA	GGCTCTGCCC	TTTGGTGTTG	AGGGCACAGT	AGATGGGCAG	AGGGTTCTGG	1380
	CCATGACTCA	GGGCCTCCCG	TTGATCTGAG	AGCTTGTGAT	CATGGGGCTC	ATCATGCAGC	1440
45	AGCGCCTCGT	TGATGAGGC	CCACAGGTTG	GTGAAGCAGC	TTGGGTAGCC	CAAGCGGGCA	1500
	CGCTCGGCCA	GCTCCTGCCG	GTACCGCTGC	AGCTGGCTGG	GGGCCAGCAC	ACCCAGCTTG	1560
50	TTCTTGGTCA	CCTGGGTCTT	CAGCAACTCA	GTGGGCCCTG	CCAGGTCCTT	CTGAGACCAC	1620
	TCTGGGTCCT	YATAAAGGTT	GGCCAAGGCC	CAGGTGGAGC	CCGAGGCCCC	GGTGATGTAG	1680
	GAGACGCAAT	CCAAGAGGCC	CCAGCTCCTT	TCAGGCCAGC	CAGCTGCCCA	TACAGGGAAG	1740
55	TCATTGCCCG	GATCCCACCA	CCAGTGGCCA	TAATAGCTAC	CACTGGGATC	TCATCCTCCT	1800
	GCAGGTCTCC	ATCCAGCT					1818

	AGGCTTCCTG	AGTCCCGCAT	CTGCTTCTTA	GAAGGTATCT	GGAGCAACCT	GTATGCAGCC	780
5	AACCTCCAGG	ACAGCTTATA	CTGGGCCTCA	GAGCCCAGCC	AGTTCTGGGA	CCGCTGGGTC	840
J	AGGAACCAGG	CCAACCTGGA	CAAGGAGCAG	GTCCCCCTTC	TGAAGATAGA	AGAACCACCC	900
	TCAACAGCCG	GCAGAATAGC	TGAGTTTTTC	ACCGATCTTC	TGACGTGGCG	TCCACTGGCC	960
10	CAGGCCACAC	ATAATTTCCT	GCGTGGCCTC	CATTTCCACA	AAGACTACTT	TCAGCATCCT	1020
	CACTTCTCCA	CATGGAAAGC	TACCACTCTG	GATGGGCTCC	CCAACCAGCT	GACACCCTCG	1080
1.5	GAGCCCCACC	TGTGCCTGCT	GGATGTTGGC	TACCTCATCA	ATACCAGCTG	CCTGCCCCTC	1140
15	CTGCAGCCCA	CTCGGGACGT	GGACCTCATC	CTGTCATTGG	ACTACAACCT	CCACGGAGCC	1200
	TTCCAGCAGT	TGCAGCTCCT	GGCCGGTTC	TGCCAGGAGC	AGGGGATCCC	GTTCCCACCC	1260
20	ATCTCGCCCA	GCCCCGAAGA	GCAGCTCCAG	CCTCGGGAGT	GCCACACCTT	CTCCGACCCC	1320
	ACCTGCCCCG	GAGCCCCTGC	GGTGCTGCAC	TTTCCTCTGG	TCAGCGACTC	CTTCCGGGAG	1380
25	TACTCGGCCC	CTGGGGTCCG	GCGGACACCC	GAGGAGGCGG	CAGCTGGGGA	GGTGAACCTG	1440
25	TCTTCATCGG	ACTCTCCCTA	CCACTACACG	AAGGTGACCT	ACAGCCAGGA	GGACGTGGAC	1500
	AAGCTGCTGC	ACCTGACACA	TTACAATGTC	TGCAACAACC	AGGAGCAGCT	GCTGGAGGCT	1560
30	CTGCGCCAGG	CAGTGCAGCG	GAGGCGGCAG	CGCAGGCCCC	ACTGATGGCC	GGGGCCCCTG	1620
	CCACCCCTAA	CTCTCATTCA	TTCCCTGGCT	GCTGAGTTGC	AGGTGGGAAC	TGTCATCACG	1680
25	CAGTGCTTCA	GAGCCTCGGG	CTCAGGTGGC	ACTGTCCCAG	GGTCCAGGCT	GAGGGCTGGG	1740
35	AGCTCCCTTG	CGCCTCAGCA	GTTTGCAGTG	GGGTAAGGAG	GCCAAGCCCA	TTTGTGTAAT	1800
	CACCCAAAAC	CCCCCGCCT	GTGCCTGTTT	TCCCTTCTGC	GCTACCTTGA	GTAGTTGGAG	1860
40	CACTTGATAC	ATCACAGACT	CATACAAATG	TGAGGCGCTG	AGAAAAAAA	АААААААА	1920
	CTCGA						1925
45							
45							

50

(2) INFORMATION FOR SEQ ID NO: 87:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1818 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 87:

> CCGGGCCCCC CCNCGNGNTT TTTTTTTTT TTTTTTTTK TATGAGTCTG TRATGTATCA 60 AGTGCTCCAA CTACTCAAGG TAGCGCAGAA GGGAAAACAG GCACAGGCCG GGGGGTTTTG 120

(2) INFORMATION FOR SEQ ID NO: 85:

	·	
5	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 394 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 85:	
	GCGCGCTCTA GGAACTAGTG GATCCCCCGG GNCTGCAGGT GTGGAGTGGG CCATCGTAAA	60
	TAGTATCTGT GCATAAGGTG GTTGTGCGAT AAATGAGTTA ATGTATGCAA AGCCCTTGGC	120
15	CCAGAGCCGG CGCAGAGCAT TGTGTAAGTS CTGGCAGGCG TCATGATGGA GATATCATGT	180
	CTCCTCTTRT TGATTCAGGA TTCTGATGAG ATGGAGGATG GGCCTGGGGT TCAGGATTAG	240
20	GCCTTGAGGC ACTGCTCCAG CCTCCTTTGT GGGCCCTGTC ACCCTTGGCT TCATCGGGCC	300
20	GTARCAAGTC TCCCCTCTCC CACTYTGCAG CAGARGTGTT CAAGAACTGC CTGCTCACGG	360
	TTCGTGTTCT GCAAGGCCAT CGCCTAACCT CTAA	394
25		
30	(2) INFORMATION FOR SEQ ID NO: 86: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1925 base pairs	
35	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 86:	
	AGTGAAGGGA GCTGGCCGTG CGACTGGGCT TCGGGCCCTG TGCCAGAGGA GCANGCCTTC	60
40	CTGAGCAGGA GGAAGCAGGT GGTGGCCGCG GCCTTGAGGC AGGCCCTGCA GCTGGATGGA	120
	GACCTGCAGG AGGATGAGAT CCCAGTGGTA GCTATTATGG CCACTGGTGG TGGGATCCGG	180
45	GCAATGACTT CCCTGTATGG GCAGCTGGCT GGCCTGAAGG AGCTGGGCCT CTTGGATTGC	240
45	KTCTCCTACA TCACCGGGGC CTCGGGCTCC ACCTGGGCCT TGGCCAACCT TTATAAGGAC	300
	CCAGAGTGGT CTCAGAAGGA CCTGGCAGGG CCCACTGAGT TGCTGAAGAC CCAGGTGACC	360
50	AAGAACAAGC TGGGTGTGCT GGCCCCCAGC CAGCTGCAGC GGTACCGGCA GGAGCTGGCC	420
	GAGCGTGCCC GCTTGGGCTA CCCAAGCTGC TTCACCAACC TGTGGGCCCT CATCAACGAG	480
55	GCGCTGCTGC ATGATGAGCC CCATGATCAC AAGCTCTCAG ATCAACGGGA GGCCCTGAGT	540
<i>J J</i>	CATGGCCAGA ACCCTCTGCC CATCTACTGT GCCCTCAACA CCAAAGGGCA GAGCCTGACC	600
	ACTITIGAAT TIGGGGAGTG GIGCGAGTTC TCTCCCTACG AGGTCGGCTT CCCCAAGTAC	660
60	GGGCCTTCA TCCCCTCTGA GCTCTTTGGC TCCGAGTTCT TTATGGGGCA GCTGATGAAG	720

WO 98/39446 PCT/US98/04482

228

(2) INFORMATION FOR SEQ ID NO: 84:

5

10

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1285 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 84:

	GCTACGTGGC	TGGCATGCAT	GGGAACGAGG	CCCTGGGGCG	GGAGTTGCTT	CTGCTCCTGA	. 60
15	TGCAGTTCCT	GTGCCATGAG	TTCCTGCGAG	SGAACCCACG	GGTGACCCGG	CTGCTCTCTG	120
	AGATGCGCAT '	TCACCTGCTG	CCCTCCATGA	ACCCTGATGG	CTATGAGATC	GCCTACCACC	180
20	GGGGTTCAGA	RCTGGTGGGC	TGGGCCGARG	GCCGCTGGAA	CAACCAGAGC	ATCGATCTTA	240
	ACCATAATTT	TGCTGAMCTC	AACACACCAC	TGTGGGAAGC	ACAGGACGAT	GGGAAGGTGC	300
25	CCCACATCGT	CCCCAACCAT	CACCTGCCAT	TGCCCACTTA	CTACACCCTG	CCCAATGCCA	360
	CCCTGGCTCC	TGAAACGCGG	GCAGTAATCA	ACTCGATGAA	GCGGATCCCC	TTTGTGCTAA	4 20
	GTGCCAACCT	CCACGGGGGT	GAGCTCGTGG	TGTCCTACCC	ATTCGACATG	ACTCGCACCC	480
30	CGTGGGCTGC	CCGCGAGCTC	ACGCCCACAC	CAGATGATGC	TGTGTTTCGC	TGGCTCAGCA	540
	CTGTCTATGC	TGGCAGTAAT	CTGGCCATGC	AGGACACCAG	CCGCCGACCC	TGCCACAGCC	€00
35	AGGACTTCTC	CGTGCACGGC	AACATCATCA	ACGGGGCYTG	ACTNGGCACA	CGGTCCCCGG	660
55	GANGCATGAA	TGAYTTCAGC	TACCTACACA	CCAACTGCTT	TGAGGTCACT	GTGGAGCTGT	720
	SCTGTGACAA	GTTCCCTCAC	GAGAATGAAT	TGCCCCAGGA	GTGGGAGAAC	AACAAAGACG	780
40	CCCTCCTCAC	CTACCTGGAG	CAGGTGCGCA	TGGGCATTGC	AGGAGTGGTG	AGGGACAAGG	840
	ACACGGAGCT	TGGGATTGCT	GACGCTGTCA	TTGCCGTGGA	TGGGATTAAC	CATGACGTGA	900
45	CCACGCCGTG	GGGCGGGGAT	TATTGGCGTC	TGCTGACCCC	AGGGGACTAC	ATGGTGACTG	960
73	CCAGTKCCGA	GGGCTACCAT	TCAGTGACAC	GGAACTGTCG	GGTCACCTTT	GAAGAGGCC	1020
	CCTTCCCCTG	CAATTTCGTG	CTCACCAAGA	CTCCCAAACA	GAGGCTGCGC	GAGCTGCTGG	1080
50	CAGCTGGGGC	CAAGGTGCCC	CCGGACCTTC	GCAGGCGCCT	GGAGCGGCTA	AGGGGACAGA	1140
	AGGATTGATA	CCTCCCCTTT	AAGAGCCCTA	GGCAGCCTG	GACCTGTCAA	GACGGGAAGG	1200
55	GGAAGAGTAG	AGAGGGAGGG	ACAAAGTGAG	GAAAAGGTGC	TCATTAAAGC	TACCGGGCAC	1260
33	СТТАААААА	ИААААААА	AAAAA				1285

(2) INFORMATION FOR SEQ ID NO: 83:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1494 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 83: 10 CTCAGGCTTC TGTCTCACTT TTCCGGGGG GGGATTAGGG CAAGGAGGGC ATGAGGGACT 60 GTCTCTCCCT AAAACCCAGA CCCCTGTTCC CCACTCAGTT CTTCTTCATC CTCCTCCTCA · 120 15 TCTTCATTGC TGAGGTTGCA GCTGCTGTGG TCGCCTTGGT GTACACCACA ATGGTGAGAC 180 ACTGGGATGG AGGAAGGGAA GAAGATTGGG CAAAACCCTG GGAGTGGGCT GTGGCCTGTG 240 AATGGCCACC TTCTGTACCA GCCCCTAAAC ACTGGCCTGC CTCACCCAGG CTGAGCACTT 300 20 CCTGACGTTG CTGGTAGTGC CTGCCATCAA GAAAGATTAT GGTTCCCAGG AAGACTTCAC 360 TCAAGTGTGG AACACCACCA TGAAAGGGGT AAGGTTGGCT GGGGGAGGTT TTAGGGTGGA 420 25 GAGAAGAG CAAGGCCCCA CCTCCACCCT CATCTTGTCT CCAGCTCAAG TGCTGTGGCT 480 TCACCAACTA TACGGATTTT GAGGACTCAC CCTACTTCAA AGAGAACAGT GCCTTTCCCC 540 CATTCTGTTG CAATGACAAC GTCACCCAAC ACAGCCCAAT GAAACCTGCA CCAAGCAAAA 600 30 GGCTCACSAC CNAAAARTAN AGGTGTGGGC TGGCATGAGT GGGTGGGGAC TGTTTTCATG 660 GCCTCAGAGT GGCAAACGGG GATGGGAGTA GGGCAGCTGC CAACTATAAA TGCTCTTTTC 720 35 TCTTCCYGAA GGGTTGCTTC AATCAGCTTT TGTATGACAT CCGAACTAAT GCAGTCACCG 780 TGGGTGGTGT GGCAGCTGGA ATTGGGGGCC TCGAGGTAAG CAGATSAGGA GCTGGGACTG 840 GGACATGGGC ATGAGACCAG GGCTGCTCAA CCCATCTGAG GCCTCTCTGG AGGAAACAGA 900 40 CTTCTAACTG GGCCTCAGGT AGGGTGTCTG TGGGACAGGC TTCAGGATCC CTATCATGTT 960 CCCTCATCTC TCCCTGTTCC TCCCTCTCCA GCTGGCTGCC ATGATTGTGT CCATGTATCT 1020 45 GTACTGCAAT CTACAATAAG TCCACTTCTG CCTCTGCCAC TACTGCTGCC ACATGGGAAC 1080 TOTGAAGAGG CACCOTGGCA AGCAGCAGTG ATTGGGGGAG GGGACAGGAT CTAACAATGT 1140 CACTTGGGCC AGAATGGACC TGCCCTTTCT GCTCCAGACT TGGGGCTAGA TAGGGACCAC 1200 50 TCCTTTTAGC GATGCCTGAC TTTCCTTCCA TTGGTGGGTG GATGGGTGGG GGGCATTCCA 1260 GAGCCTCTAA GGTAGCCAGT TCTGTTGCCC ATTCCCCCAG TCTATTAAAC CCTTGATATG 1320 55 CCCCTAGGC CTAGTGGTGA TCCCAGTGCT CTACTGGGGG ATGAGAGAAA GGCATTTTAT 1380 AGCCTGGGCA TAAGTGAAAT CAGCAGAGCC TCTGGGTGGA TGTGTAGAAG GCACTTCAAA 1440 ATGCATAAAC CTGTTACAAT GTTAAAAAAA AAAAAAAAA AACTCGACTC TGCC 1494 60

(2) INFORMATION FOR SEQ ID NO: 82:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1324 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

10	(xi)) SEQUENCE 1	DESCRIPTION	: SEQ ID NO	: 82:		
	NAGGCTTTAA	AGCGCCTACC	CTGCCTGCAG	GTGAGCAGTG	GTGTGTGAGA	GCCAGGCGTC	60
15	CCTCTGCCTG	CCCACTCAGT	GGCAACACCC	GGGAGCTGTT	TIGTCCTTTG	TGGAGCCTCA	120
15	GCAGTTCCCT	CTTTCAGAAC	TCACTGCCAA	GAGCCCTGAA	CAGGAGCCAC	CATGCAGTGC	180
	TTCAGCTTCA	TTAAGACCAT	GATGATCCTC	TTCAATTTGC	TCATCTTTCT	GTGTGGTGCA	240
20	GCCCTGTTGG	CAGTGGGCAT	CTGGGTGTCA	ATCGATGGGG	CATCCTTTCT	GAAGATCTTC	300
	GGGCCACTGT	CGTCCAGTGC	CATGCAGTTT	GTCAACGTGG	GCTACTTCCT	CATCGCAGCC	360
25	GGCGTTGTGG	TCTTTGCTCT	TGGTTTCCTG	GGCTGCTATG	GTGCTAAGAC	TGAGAGCAAG	420
	TGTGCCCTCG	TGACGTTCTT	CTTCATCCTC	CTCCTCATCT	TCATTGCTGA	GGTTGCAGCT	480
	GCTGTGGTCG	CCTTGGTGTA	CACCACAATG	GCTGAGCACT	TCCTGACGTT	GCTGGTAGTG	540
30	CCTGCCATCA	AGAAAGATTA	TGGTTCCCAG	GAAGACTICA	CTCAAGTGTG	GAACACNACC	600
	ATGAAAGGGC	TCAAGTGCTG	TGGCTTCACC	AACTATACGG	ATTTTGAGGA	CTCACCCTAC	660
35	TTCAAAGAGA	ACAGTGCCTT	TCCCCCATTC	TGTTGCAATG	ACAACGTCAC	CAACACAGCC	720
	AATGAAACCT	GCACCAAGCA	AAAGGCTCAC	GACCAAAAAG	TAGAGGGTTG	CTTCAATCAG	780
	CTTTTGTATG	ACATCCGAAC	TAATGCAGTC	ACCGTGGGTG	GTGTGGCAGC	TGGAATTGGG	840
40	GGCCTCGAGC	TGGCTGCCAT	GATTGTKTCC	ATGTATCTGT	ACTGCAATCT	ACAATAAGTC	900
	CACTTCTGCC	TCTGCCACTA	CTGCTGCCAC	ATGGGAACTG	TGAAGAGGCA	CCCTGGCAAG	960
45	CAGCAGTGAT	TGGGGGAGGG	GACAGGATCT	AACAATGTCA	CTTGGGCCAG	AATGGACCTG	1020
	CCCTTTCTGC	TCCAGACTTG	GGGCTAGATA	GGGACCACTC	CTTTTAGCGA	TGCCTGACTT	1080
	TCCTTCCATT	GGTGGGTGGA	TGGGTGGGG	GCATTCCAGA	GCCTCTAAGG	TAGCCAGTTC	1140
50	TGTTGCCCAT	TCCCCCAGTC	TATTAAACCC	TTGATATGCC	CCCTAGGCCT	AGTGGTGATC	1200
	CCAGTGCTCT	ACTGGGGGAT	GAGAGAAAGG	CATTTTATAG	CCTGGGCATA	AGTGAAATCA	1260
55	GCAGAGCCTC	TGGGTGGATG	TGTAGAAGGC	ACTTCAAAAT	GCATAAACCT	GITACAATGT	1320
	TAAA						1324

795

225

	CCCAGTCCAC CATGATCCAT CTGGGTCACA TCCTCTTCCT GCTTTTGCTC CCAGTGGCTG	180
5	CAGCTCAGAC GACTCCAGGA GAGAGATCAT CACTCCCTGC CTTTTACCCT GGCACTTCAG	240
3	GCTCTTGTTC CGGATGTGGG TCCCTCTCTC TGCCGCTCCT GGCAGGCCTC GTGGCTGCTG	300
	ATGCGGTGGC ATCGCTGCTC ATCGTGGGGG CGGTGTTCCT GTGCGCACGC CCACGCCGCA	360
10	GCCCCGCCCA AGAAGATGGC AAAGTCTACA TCAACATGCC AGGCAGGGGC TGACCCTCCT	420
	GCAGCTTGGA CCTTTGACTT CTGACCCTCT CATCCTGGAT CGTGTGTGT CGCACAGGAA	480
1.5	CCCCCGCCCC AACTITTGGA TIGTAATAAA ACAATTGAAA CACCAAAAAA AAAAAAAAAA	540
15	AAAAAAAA AANTCGA	557
20	(a) Thromagan Top (To No. 01	
	(2) INFORMATION FOR SEQ ID NO: 81:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 795 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 81:	
30	GCCGGGGGA TGTGGAGCGC GGGCCGCGC GGGGCTGCCT GCCCGCTGCT GTTGGGGCTG	60
	CTGCTGGCGC TGTTAGTGCC GGGCGGTGGT GCCGCCAAGA CCGGTGCGGA CTCGTGACCT	120
35	GCGGGTCGGT GCTGAAGCTG CTCAATACGC ACCACCGCGT GCGCTGCACT CGCACGACAT	180
	CAAATACGGA TCCGGCAGCG GCCAGCAATC GGTGACCGGC GTAGAGGCGT CGGACGACGC	240
	MAATAGCTAC TGGCGGATCC GCGGCGGCTC GGAGGGCGGG TGCCCGCGC GGTCCCCGGT	300
40	GCGCTGCGGG CAGGCGGTGA GGCTCACGCA TGTSCTTACG GGCAAGAACY TGCACACGCA	360
	CCAYTTCCCG TCGCCGCTGT CCAACAACCA GGAGGTGAGT GCCTTTGGGG AAGACGGCGA	420
45	GGGCGACGAC CTGGACCTAT GGACAGTGCG CTGCTCTGGA CAGCACTGGG AGCGTGAGGC	480
	TGCTGTGCCT TCCAGCATGT GGGCACCTCT GTGTTCCTGT CAGTCACGGG TGAGCAGTAT	540
	GGAAGCCCCA TCCGTGGGCA GCATGAGGTC CACGGCATGC CCAGTGCCAA CACGCACAAT	600
50	ACGTGGAAGG CCATGGAAGG CATCTTCATC AAGCCTAGTG TGGAGCCCTC TGCAGGTCAC	660
	GATGAACTCT GAGTGTGTGG ATGGATGGGT GGATGGAGGG TGGCAGGTGG GGCGTCTGCA	720

55 GGGCCACTCT TGGCAGAGAC TTTGGGTTTG TAGGGGTCCT CAAGTGCCTT TNTGATTAAA

GAATGTTGGT CTATG

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 79:

5	CCCCTCCAAC	TCTCAACCCA	CTTCTCCAGC	CAGCGCCCCA	GCCCTCCCGC	CGCCCGCTCG	60
	CAGGTCCCGA	GGAGCGCAGA	CTGTGTCCCT	GACAATGGGA	ACAGCCGACA	GTGATGAGAT	120
10	GGCCCCGGAG	GCCCCACAGC	ACACCCACAT	CGATGTGCAC	ATCCACCAGG	AGTCTGCCCT	180
10	GGCCAAGCTC	CTGCTCACCT	GCTGCTCTGC	GCTGCGGCCC	CGGGCCACCC	AGGCCAGGGG	24
	CAGCAGCCGG	CICCIGGIGG	CCTCGTGGGT	GATGCAGATC	GTGCTGGGGA	TCTTGAGTGC	30
15	AGTCCTAGGA	GGATTTTTCT	ACATCCGCGA	CTACACCCTC	CTCGTCACCT	CGGGAGCTGC	36
	CATCTGGACA	GGGGCTGTGG	CTGTGCTGGC	TGGAGCTGCT	GCCTTCATTT	ACGAGAAACG	42
20	GGGTGGTACA	TACTGGGCCC	TGCTGAGGAC	TCTGCTAGCG	CTGGCAGCTT	TCTCCACAGC	48
20	CATCGCTGCC	CTCAAACTTT	GGAATGAAGA	TTTCCGATAT	GGCTACTCTT	ATTACAACAG	54
	TGCCTGCCGC	ATCTCCAGCT	CGAGTGACTG	GAACACTCCA	GCCCCACTC	AGAGTCCAGA	60
25	AGAAGTCAGA	AGGCTACACC	TATGTACCTC	CTTCATGGAC	ATGCTGAAGG	CCTTGTTCAG	66
	AACCCTTCAG	GCCATGCTCT	TGGGTGTCTG	GATTCTGCTG	CTTCTGGCAT	CTCTGGCCCC	72
30	TCTGTGGCTG	TACTGCTGGA	GAATGTTCCC	AACCAAAGGG	AAAAGAGACC	AGAAGGAAAT	78
50	GTTGGAAGTG	AGTGGAATCT	AGCCATGCCT	CTCCTGATTA	TTAGTGCCTG	GIGCITCTGC	84
	ACCGGGCGTC	CCTGCATCTG	ACTGCTGGAA	GAAGAACCAG	ACTGAGGAAA	AGAGGCTCTT	90
35	CAACAGCCCC	AGTTATCCTG	GCCCCATGAC	CGTGGCCACA	GCCCTGCTCC	AGCAGCACTT	96
	GCCCATTCCT	TACACCCCTT	CCCCATCCTG	CTCCCCTTCA	TGTCCCCTCC	TGAGTAGTCA	102
40	TGTGATAATA	AACTCTCATG	TTATTGTTNN	NAAAAAAAA	АААААААА	AATTTGGGGG	108
.0	GGGGCCGGTA	CCCATTGGGC	CTNNGGGGGN	GGTTTAAAAT	TAATGGGGG	GGTTTAAAAG	114
	GGN						114

45

(2) INFORMATION FOR SEQ ID NO: 80:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 557 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55

60

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 80:

GGCAGAGAGC AGATGGCCTT GACACCAGCA GGGTGACATC CGCTATTGCT ACTTCTCTGC 60
TCCCCCACAG TTCCTCTGGA CTTCTCTGGA CCACAGTCCT CTGCCAGACC CCTGCCAGAC 120

	GAAGAAGAAA	ACAAAGACAG	CCTTGTAGAT	GATGAAGAAG	AGAAAGAAGA	TCTTGGCGAT	840
5	GAGGATGAAG	CAGAGGAAGA	AGAGGAGGAG	GACAACTTGG	CTGCTGGTGT	GGATGAGGAG	900
3	AGAAGTGAGG	CCAATGATCA	GGGCCCCCA	GGAGAGGACG	GTGTGACCCG	GGAGGNAAGT	960
	AGAGCCTGAG	GAGGCTGAAG	AAGGCATCTC	TGAGCAACCC	TGCCCAGCTG	ACACAGAGGT	1020
10	GGTGGAAGAC	TCCTTGAGGC	AGCGTAAAAG	TCAGCATGCT	GNCAAGGGAC	TGTAGATTTA	1080
	ATGATGCGTT	TICAAGAATA	CACACCAAAA	CAATATGTCA	GCTTCCCTTT	GGCCTGCAGT	1140
15	TTGTACCAAA	TCCTTAATTT	TTCCTGAATG	AGCAAGCTTC	TCTTAAAAGA	TGCTCTCTAG	1200
15	TCATTTGGTC	TCATGGCAGT	AAGCCTCATG	TATACTAAGG	AGAGTCTTCC	AGGTGTGACA	1260
	ATCAGGATAT	AGAAAAACAA	ACGTAGTGTN	TGGGATCTGT	TTGGAGACTG	GGATGGGAAC	1320
20	AAGTTCATTT	ACTTAGGGGT	CAGAGAGTCT	CGACCAGAGG	AGGCCATTCC	CAGTCCTAAT	1380
	CAGCACCTTC	CAGAGACAAG	GCTGCAGGCC	CTGTGAAATG	AAAGCCAAGC	AGGAGCCTTG	1440
25	GNTCTGAGGC	ATCCCCAAAG	TGTAACGTAG	AAGCCTTGCA	TCCTTTTCTT	GTGTAAAGTA	1500
	TTTATTTTTG	TCAAATTGCA	GGAAACATCA	GGCACCACAG	TGCATGAAAA	ATCTTTCACA	1560
	GCTAGAAATT	GAAAGGGCCT	TGGGTATAGA	GAGCAGCTCA	GAAGTCATCC	CAGCCCTCTG	1620
30	AATCTCCTGT	GCTATGTTTT	ATTTCTTACC	TTTAATTTT	CCAGCATTTC	CACCATGGGC	1680
	ATTCAGGCTC	TCCACACTCT	TCACTATTAT	CTCTTGGTCA	GAGGACTCCA	ATAACAGCCA	1740
35	GGTTTACATG	AACTGTGTTT	GTTCATTCTG	ACCTAAGGGG	TTTAGATAAT	CAGTAACCAT	1800
	AACCCCTGAA	GCTGTGACTG	CCAAACATCT	CAAATGAAAT	GTTGTGGCCA	TCAGAGACTC	1860
	AAAAGGAAGT	AAGGATTTTA	CAAGACAGAT	ТАААААААА	TIGITITGTC	CAAAATATAG	1920
40	TTGTTGTTGA	TTTTTTTTTA	AGTTTTCTAA	GCAATATTTT	TCAAGCCAGA	AGTCCTCTAA	1980
	GTCTTGCCAG	TACAAGGTAG	TCTTGTGAAG	AAAAGTTGAA	TACTGTTTTG	TTTTCATCTC	2040
45	AAGGGGTTCC	CTGGGTCTTG	AACTACTTTA	АТААТААСТА	AAAAACCACT	TCTGATTTTC	2100
	CTTCAGTGAT	GTGCTTTTGG	TGAAAGAATT	AATGAACTCC	AGTACCTGAA	AGTGAAAGAT	2160
	TTGATTTTGT	TTCCATCTTC	TGTAATCTTC	CAAAGAATTA	TATCTTTGTA	AATCTCTCAA	2220
50	TACTCAATCT	ACTGTAAGTA	CCCAGGGAGG	CTAATTTCYT	ТАААААААА	ААААААА	2278

55 (2) INFORMATION FOR SEQ ID NO: 79:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1143 base pairs

(B) TYPE: nucleic acid

60 (C) STRANDEDNESS: double

222

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 77:	
	GGCACGAGGC CTTGCAGAAC TTCTACTTGC CTGCCTCCCT GCCTCTGGCC ATGGCCTGCC	60
5	GGTGCCTCAG CTTCCTTCTG ATGGGGACCT TCCTGTCAGT TTCCCAGACA GTCCTGGCCC	120
	AGCTGGATGC ACTGCTGGTC TTCCCAGGCC AAGTGGCTCA ACTCTCCTGC ACGCTCAGCC	180
10	CCCAGCACGT CACCATCAGG GACTACGGTG TGTCCTGGTA CCAGCAGCGG GCAGGCAGTG	240
10	CCCCTCGATA TCTCCTCTAC TACCGCTCGG AGGAGGATCA CCACCGGCCT GCTGACATCC	300
	CCGATCGATT CTCGGCAGCC AAGGATGAGG CCCACAATGC CTGTGTCCTC ACCATTAGTC	360
15	CCGTGCAGCC TGAAGACGAC GCGGATTACT ACTGCTCTGT TGGCTACGGC TTTAGTCCCT	420
	AGGGGTGGGG TGTGAGATGG GTGCCTCCCC TCTGCCTCCC ATTTCTGCCC CTGACCTTGG	480
20	GTCCCTTTTA AACTTTCTCT GAGCCTTGCT TCCCCTCTGT AAAATGGGTT AATAATATTC	540
20	AACATGTCAA CAACAAAAAA NAAAAAWAAA AACTCGA	577
25	(2) INFORMATION FOR SEQ ID NO: 78:	

(i) SEQUENCE CHARACTERISTICS:

30

35

40

45

50

55

60

WO 98/39446

(A) LENGTH: 2278 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 78:

GTAATTCGGC ACGAGGCGCC CAACATGGCG GGTGGGCGCT GCGGCCCGCA SCTAACGGCG 60 CTCCTGGCCG CCTGGATCGC GGCTGTGGCG GCGACGGCAG GCCCCGAGGA GGCCGCGCTG 120 CCGCCGGAGC AGAGCCGGGT CCAGCCCATG ACCGCCTCCA ACTGGACGCT GGTGATGGAG 180 GGCGAGTGGA TGCTGAAATT TTACGCCCCA TGGTGTCCAT CCTGCCAGCA GACTGATTCA 240 GAATGGGAGG CTTTTGCAAA, GAATGGTGAA ATACTTCAGA TCAGTGTGGG GAAGGTAGAT 300 GTCATTCAAG AACCAGGITT GAGTGGCCGC TTCTTTGTCA CCACTCTCCC AGCATTTTTT 360 CATGCAAAGG ATGGGATATT CCGCCGTTAT CGTGGCCCAG GAATCTTCGA AGACCTGCAG AATTATATCT TAGAGAAGAA ATGGCAATCA GTCGAGCCTC TGACTGGCTG GAAATCCCCG GCTTCTCTAA CGATGTCTGG AATGGCTGGT CTTTTTAGCA TCTCTGGCAA GATATGGCAT 540 CTTCACAACT ATTTCACAGT GACTCTTGGA ATTCCTGCTT GGTGTTCTTA TGTCTTTTTC 600 GTCATAGCCA CCTTGGTTTT TGGCCTTTTT ATGGGTCTGG TCTTGGTGGT AATATCAGAA 660 TGTTTCTATG TGCCACTTCC AAGGCATTTA TCTGAGCGTT CTGAGCAGAA TCGGAGATCA 720 GAGGAGGCTC ATAGAGCTGA ACAGTTGCAG GATGCGGAGG AGGAAAAAGA TGATTCAAAT 780

	AGTTCATGAC AAGACTCTTC TCTTCAAAAT CATCTGGCAA ATCTAGCAGC GGCAGCAGTA	720
	AAACAGGCAA AAGTGGGGCT GGCAAAAGGA GGTAGTCAGG CCGTCCAGAG CTGGCATTTG	780
5	CACAAACACG GCAACACTGG GTGGCATCCA AGTCTTGGAA AACCGTGTGA AGCAACTACT	840
	ATAAACTTGA GTCATCCCGA CGTTGATCTC TTACAACTGT GTATGTTAAC TTTTTAGCAC	900
10	ATGTTTTGTA CTTGGTACAC GAGAAAACCC AGCTTTCATC TTTTGTCTGT ATGAGGTCAA	960
10	TATTGATGTC ACTGAATTAA TTACAGTGTC CTATAGAAAA TGCCATTAAT AAATTATATG	1020
	AACTACTATA CATTATGTAT ATTAATTAAA ACATCTTAAT CCAGAAAAAA AAAAAAARAA	1080
15	AACTCGAGGG GGGGCCCGGT ACCCAATTIN CCAAATGGGA GTCGTAAAAA ATC	1133
20		
20	(2) INFORMATION FOR SEQ ID NO: 76:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 585 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 76:	
30	ATGTTTACAA TGTTGTGTAT AAATGGGACA ACTCCTCGCC CTCTACCTGT CCCCTCCCCC	60
	TYTGGTTGTA TGATTTTCTT CTTTTTTAAG AACCCCTGGA AGCAGCGCCT CCTTCAGGGT	120
35	TEGCTEGGAG CTCGGCCCAT CCACCTCTTG GGGTACCTGC CTCTCTCTCT CCTGTGGTGT	180
	CCCTTCCCTC TCCCATGTGC TCGGTGTTCA GTGGTGTATA TTTCTTCTCC CAGACATGGG	240
	GCACACGCCC CAAGGGACAT GATCCTCTCC TTAGTCTTAG CTCATGGGGC TCTTTATAAG	300
40	GAGTTGGGGG GTAGAGGCAG GAAATGGGAA CCGAGCTGAA GCAGAGGCTG AGTTAGGGGG	360
	CTAGAGGACA GTGCTCCTGG CCACCCAGCC TCTGCTGAGA ACCATTCCTG GGATTAGAGC	420
45	TGCCTTTCCC AGGGAAAAAG TGTCGTCTCC CCGACCCTCC CGTGGGCCCT GTGGTGTGAT	480
43	GCTGTGTCTG TATATTCTAT ACAAAGGTAC TTGTCCTTTC CCTTTGTAAA CTACATTTGA	540
	CATGGATTAA ACCAGTATAA ACAGTTAAAA AAAAAAAAAA	585
50		
	(2) INFORMATION FOR SEQ ID NO: 77:	
55	(i) SECTIFICE CHARACTERISTICS:	

(A) LENGTH: 577 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear

220

	ATTTTCCCCG	CAGATATGGT	GCCCATGCCA	GCCTCCGCTA	TAACCCCCGA	GAACGCCAGC	1260
5	TCTATGCCTG	GGATGATGGC	TACCAGATTG	TCTATAAGCT	GGAGATGAGG	AAGAAAGAGG	1320
3	AGGAGGTTTG	AGGAGCTAGC	CTTGTTTTT	GCATCTTTCT	CACTCCCATA	CATTTATATT	1380
	ATATCCCCAC	TAAATTTCTT	GTTCCTCATT	CTTCAAATGT	GGGCCAGTTG	TGGCTCAAAT	1440
10	CCTCTATATT	TTTAGCCAAT	GGCAATCAAA	TTCTTTCAGC	TCCTTTGTTT	CATACGGAAC	1500
	TCCAGATCCT	GAGTAATCCT	TTTAGAGCCC	GAAGAGTCAA	AACCCTCAAT	GTTCCCTCCT	1560
15	GCTCTCCTGC	CCCATGTCAA	CAAATTTCAG	GCTAAGGATG	CCCCAGACCC	AGGGCTCTAA	1620
13	CCTTGTATGC	GGGCAGGCCC	AGGGAGCAGG	CAGCAGTGTT	CTTCCCCTCA	GAGTGACTTG	1680
	GGGAGGAGA	AATAGGAGGA	GACGTCCAGC	TCTGTCCTCT	CTTCCTCACT	CCTCCCTTCA	1740
20	GTGTCCTGAG	GAACAGGACT	TTCTCCACAT	TGTTTTGTAT	TGCAACATTT	TGCATTAAAA	1800
	GGAAAATCCA	CTGCAAAAAA	АААААААА	АААААААА	AAAAAAACGG	CACGAGGGGG	1860
25	GGTCCCGTAC	CCAATNGCCC	TCACATGCAT				1890

(2) INFORMATION FOR SEQ ID NO: 75:

30

35

40

45

50

55

60

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1133 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 75:

GCCGGTCTGA GTGCAGAGCT GCTGTCATGG CGGCCGCTCT GTGGGGCTTC TTTCCCGTCC 60 120 TGCTGCTGCT GCTGCTATCG GGGGATGTCC AGAGCTCGGA GGTGCCCGGG GCTGCTGCTG 180 AGGGATCGGG AGGGAGTGGG GTCGGCATAG GAGATCGCTT CAAGATTGAG GGGCGTGCAG TTGTTCCAGG GGTGAAGCCT CAGGACTGGA TCTCGGCGGC CCGAGTGCTG GTAGACGGAG 240 AAGAGCACGT CGGTTTCCTT AAGACAGATG GGAGTTTTGT GGTTCATGAT ATACCTTCTG 300 GATCTTATGT AGTGGAAGTT GTATCTCCAG CTTACAGATT TGATCCCGTT CGAGTGGATA 360 TCACTTCGAA AGGAAAAATG AGAGCAAGAT ATGTGAATTA CATCAAAACA TCAGAGGTTG 420 TCAGACTGCC CTATCCTCTC CAAATGAAAT CTTCAGGTCC ACCTTCTTAC TTTATTAAAA 480 GGGAATCGTG GGGCTGGACA GACTTTCTAA TGAACCCAAT GGTTATGATG ATGGTTCTTC 540 600 CTTTATTGAT ATTTGTGCTT CTGCCTAAAG TGGTCAACAC AAGTGATCCT GACATGAGAC GGGAAATGGA GCAGTCAATG AATATGCTGA ATTCCAACCA TGAGTTGCCT GATGTTTCTG 660

	ACCGCGCGCG GGGCGCTCCC TGGTGGCGAT GGCGGGCAC TGGCCGAGCA CTGCGGGGGC	540
	TTTCCTCCTT GTTGGTTGCT GAGTGGGCGG CCAAGGGGAG AAAAGGAGCC GCTTCTGCCT	600
5	CCCTTGCCAA AACTCCGTTT CTAATTAAAT TATTTTTAGT AGAAAAAAAA AAAAAAAA	660
	AAAAAAA AAAAAAAA AAAAAAAA	688
10		
10	(2) THEORYGEON FOR CEO TO NO. 74.	
	(2) INFORMATION FOR SEQ ID NO: 74:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1890 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 74:	
	GAGCAGGAGA GAAGGCACCG CCCCACCCCG CCTCCAAAGC TAACCCTCGG GCTTGAGGGG	60
25	AAGAGGCTGA CTGTACGTTC CTTCTACTCT GGCACCACTC TCCAGGCTGC CATGGGGCCC	120
	AGCACCCCTC TCCTCATCTT GTTCCTTTTG TCATGGTCGG GACCCCTCCA AGGACAGCAG	180
	CACCACCTTG TGGAGTACAT GGAACGCCGA CTAGCTGCTT TAGAGGAACG GCTGGCCCAG	240
30	TGCCAGGACC AGAGTAGTCG GCATGCTGCT GAGCTGCGGG ACTTCAAGAA CAAGATGCTG	300
	CCACTGCTGG AGGTGGCAGA GAAGGAGCGG GAGGCACTCA GAACTGAGGC CGACACCATC	360
35	TCCGGGAGAG TGGATCGTCT GGAGCGGGAG GTAGACTATC TGGAGACCCA GAACCCAGCT	420
	CTGCCCTGTG TAGAGTTTGA TGAGAAGGTG ACTGGAGGCC CTGGGACCAA AGGCAAGGGA	480
	AGAAGGAATG AGAAGTACGA TATGGTGACA GACTGTGGCT ACACAATCTC TCAAGTGAGA	540
40	TCAATGAAGA TTCTGAAGCG ATTTGGTGGC CCAGCTGGTC TATGGACCAA GGATCCACTG	600
	GGGCAAACAG AGAAGATCTA CGTGTTAGAT GGGACACAGA ATGACACAGC CTTTGTCTTC	660
45	CCAAGGCTGC GTGACTTCAC CCTTGCCATG GCTGCCCGGA AAGCTTCCCG AGTCCGGGTG	720
43	CCCTTCCCCT GGGTAGGCAC AGGGCAGCTG GTATATGGTG GCTTTCTTTA TTTTGCTCGG	780
	AGGCCTCCTG GAAGACCTGG TGGAGGTGGT GAGATGGAGA ACACTTTGCA GCTAATCAAA	840
50	TTCCACCTGG CAAACCGAAC AGTGGTGGAC AGCTCAGTAT TCCCAGCAGA GGGGCTGATC	900
	CCCCCCTACG GCTTGACAGC AGACACCTAC ATCGACCTGG CAGCTGATGA GGAAGGTCTT	960
55	TOGGCTGTCT ATGCCACCCG GGAGGATGAC AGGCACTTGT GTCTGGCCAA GTTAGATCCA	1020
JJ	CAGACACTGG ACACAGAGCA GCAGTGGGAC ACACCATGTC CCAGAGAGAA TGCTGAGGCT	1080
	GCCTTTGTCA TCTGTGGGAC CCTCTATGTC GTCTATAACA CCCGTCCTGC CAGTCGGGCC	1140
60	CGCATCCAGT GCTCCTTTGA TGCCAGCGGA CCCTGACCCC TGAACGGGCA GCACTCCCTT	1200

	TGATGTGGGT	GCTTTTTTT	TAATTTTTTT	TTGAATAAAA	AGAATTAGAA	GTGATGTCCT	480
5	TTTATAAAAT	GCCTTCTCCC	CCTTCCCGCC	TACAGTCTCT	TCCTCTCCCC	TTAGAGGGGG	540
3	GAAAGTGTAT	AAACCTACAG	GGTTGTGAGT	CTGAAAAGAG	GATCCCCCTC	ACCCCCACCC	600
	TGGGCAGAGC	AGTGGGGGTT	GGGGGTGGG	AGAGGGGGAC	ACAGATCCTG	GCACACTGTG	660
10	GATATTTCTT	GCAGATTGCA	GTCTCTTGTG	GCCCAAACAG	GTTAGGTAGA	CTATCGCCTC	720
	TGGCAGGTGC	CACCTTTTGG	TACCAACATG	TTCTGAGGTG	TTAGGATTTG	GGTTGGGTTT	780
15	TTTTTTTTT	TTTTTTTTT	CCTTTTGGTC	TTTTTTTTT	TCTCCTTTTA	AAGAAAAGCT	840
1.5	AAAGGCCGCT	GTGAGTCCTG	GTGGCAGGCT	CTCCATGGAT	GTAGCATATC	GAAGATAATT	900
	TTTATACTGC	ATTTTTATGG	ATTATTTTGT	AATGTGTGAT	TCCGTCTGCT	GAGGAGGTGG	960
20	GAGGGGCTCC	AGGGAAAGCC	ACCCACCTTC	AGTGAGGTTG	CTCCCCAGCT	GAGCGCACCG	1020
	GGCATGGGAT	GTGGAGGCTG	GCGACACACC	CTGTGCCTCT	CCAAGGCTGG	GCGCGTGGGG	1080
25	CGTCCAGAGT	CTCTCTGGGT	CTCAGATGTC	CATCTGCCAC	CTCTTGTTAA	GGCTCTAGCC	1140
23	AGAAGGGAGG	GTGAGGGTAG	AAGAAAGTTA	TTCCCGAAGA	AAAAAAGAAT	GAAAAGTCAT	1200
	TGTACTGAAC	TGTTTTTATA	TTTTTAAAAG	TTACTATTWA	AAGGTAAAAA	AAAGGGGGGG	1260
30	CCCGGTACCC	AATT		•			1274

35 (2) INFORMATION FOR SEQ ID NO: 73:

40

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 688 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 73:

45	GGCACGAGTG	GAGGCAATGC	CAGCTCCAGG	ACAGAGGCTC	AGGTGCCCAA	CGGGCAAGGC	60
	AGCCCAGGGG	GCTGTGTCTG	TTCAAGTCAG	GCTTCCCCGG	CCCTCGCGCA	CAGCGCTTCC	120
50	ACGGCCAGCC	CGGGGCCCCA	CCCCACGCAC	TGAAGAGGCC	GCCTGGGCTG	CCATGGCCCT	180
50	GACCTTCCTG	CTGGTGCTGC	TCACCCTGGC	CACGTCTGCA	CACGGCTGCA	CAGAAACTTC	240
	CGACGCGGG	AGAGCATCTA	CTGGGGGCCC	ACAGCGGACA	GCCAGGACAC	AGTGGCTGCT	300
55	GTGCTGAAGC	GGAGGCTGCT	GCAGCCCTCG	CGCCGGGTCA	AGCGCTCGCG	CCGGAGACCC	360
	CTCTCCCGCC	CACGCCGGAC	AGCGGCCCGG	AAGGCGAGAG	CTCGGAGTGA	CGGCCTGGGA	420
60	CCTGCCACTG	TGGCCTGCGG	CTCCTCCCCG	CGCCGCGAGG	CCGCGACCTC	TGCCACGTGG	480
OU							

WO 98/39446 PCT/US98/04482

217

(D) TOPOLOGY: linear

(vi) SEOI	TENCE DES	CRIPTION	SEC	TD	NO.	71 -

	,,	~		•			
5	AGCTATTGAC	ACTTCCTGGT	GGGATCCGAG	TGAGGCGACG	GGGTAGGGGT	TGGCGCTCAG	60
	GCGCCGACCA	TGGCGTATCA	CGGCCTCACT	GTGCCTCTCA	TTGTGATGAG	CGTGTTCTGG	120
10	GCCTTCCTCG	GCTTCTTGGT	GCCTTGGTTC	ATCCCTAAGG	GTCCTAACCG	GGGAGTTATC	180
10	ATTACCATGT	TGGTGACCTG	TTCAGTTTGC	TGCTATCTCT	TTTGGCTGAT	TGCAATTCTG	240
	GCCCAACTCA	ACCCTCTCTT	TGGACCGCAA	TTGAAAAATG	AAACCATCTG	GTATCTGAAG	300
15	TATCATTGGC	CTTGAGGAAG	AAGACATGCT	CTACAGTGCT	CAGTCTTTGA	GGTCACGAGA	360
	AGAGAATGCC	TTCTAGATGC	AAAATCACCT	CCAAACCAGA	CCACTTTTCT	TGACTTGCCT	420
20	GTTTTGGCCA	TTAGCTGCCT	TAAACGTTAA	CAGCACATTT	GAATGCCTTA	TTCTACAATG	480
	CAGCGTGTTT	TCCTTTGCCT	TTTTTGCACT	TTGGTGAATT	ACGTGCCTCC	ATAACCTGAA	540
	CTGTGCCGAC	TCCACAAAAC	GATTATGTAC	TCTTCTGAGA	TAGAAGATGC	TGTTCTTCTG	600
25	AGAGATACGT	TACTCTCTCC	TTGGAATCTG	TGGATTTGAA	GATGGCTCCT	GCCTTCTCAC	660
	GTGGGAATCA	GTGAAGTGTT	TAGAAACTGC	TGCAAGACAA	ACAAGACTCC	AGTGGGGTGG	720
30	TCAGTAGGAG	AGCACGTTCA	GAGGGAAGAG	CCATCTCAAC	AGAATCGCAC	CAAACTATAC	780
50	TTTCAGGATG	AATTTCTTCT	TTCTGCCATC	TTTTGGAATA	AATATTTTCC	TCCTTTCTAW	840
	RRAAAAAAA	ANANN					855
35							
	(2) INFORM	ATION FOR SI	FO TO NO: 7:	2.			
40		SEQUENCE C	-				
	(17	(A) LEN	GTH: 1274 b	ase pairs			
		(C) STR	ANDEDNESS:	double			
45	/vi			: SEQ ID NO	. 72.		
		. ~		~		CTGGAATGCG	60
50						CTGAGGGATG	
30				•		,	
						CTTTCTGTGG	
55						TCTCTCCCTC	
						TGAGCAATGG	
	AAGTTCAAAG	GAACTCCCTC	TCCAGCTCTT	CIGAATCIIG	GGACACAGCC	TAAAAAGGAC	360

AAAAAGTTAG AAGACAGCAT AGCAACTCAG CTCAGGGAGC TACCAGAGAA AAATAGCAAC

420

САТGААТСТТ GCAAAAAAA АААAAAAAAA АА

1292

5

10

(2) INFORMATION FOR SEQ ID NO: 70:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1031 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 70:

15	(XI) SECONDE DESCRIPTION. SEC IS NO	-
	GGGCTGTTGC TTTTGAACAG AACCCTATAT TACTCTCCTG GGATCTGAGT TTCTGCAGGT	60
	CATTTGTATG TAGGACCAGG AGTATCTCCT CAGGTGACCA GTTTTGGGGA CCCGTATGTG	120
20	GCAAATTCTA AGCTGCCATA TTGAACATCA TCCCACTGGG AGTGGTTATG TTGTATCCCC	180
	ATCTTGGCTG GCTTCAGTTT TTGCTGTAGC CCTAGAGCAC TTTGTTTGTG GGAGGCTGGC	240
25	CTCTTGCCTA CCTCCTTGCA TGGACAGGGG GATGAATATT TACTTTCCCA CCTCCTTGCT	300
	TTTTCTTTCA CTGATACCAC TGAATGGAAC TGGTGCTGTG ACTCCTGCTG CTGGGGATTT	360
	ATGTCCCGAG ACCTTAGCCT GGCTGAGTGG AGCCTGAGAC CTGCACAACA GCTCATGGTC	420
30	ATGCATGARA GAGAAGTGGC TGGCCACAGC AGAGGGAACA GTAACAGCCC AGGGGCCTTT	480
	ATTTTGGGAA AGGCTGTCCG GGGCTGTTAC TGTCTCTTCT GGTTATAAAG CAGACATGTG	540
35	GCCATCTTTT CCGCAGGTTA GAGTGGGCTC CTTTCTTTTT GGAATCCTTT TCTTCTCTT	600
33	TGGTAGCAGC TCCCTGCCTC CAGGGCTTCC GCCACCAGCG TCTCTGCTGT GTTGCGCAGT	660
	GCAGTGGGGT GCAAGGGCTT TGTTTCTGCC TGCCTGAAAG AGAGGGCTCT GGGGATGGAG	720
40	ATGAGAAACA ACACGCTCTC CTTCAGACAA TGAGGCATTC TGTCCTCCTG CTGCCATTCT	780
	TCATCTCCAC TGAGAGCCAG AGCTGGTAGG AGCCGAGTGC CACAGGCATT CTGCATTGCT	840
15	CTACTCTTAG GTTTGTGTG GTGATCCTTC CCCTCCTGT CGCCCACTCC TCCCTCCTCT	900
45	GGCTATCCTA CCCTGTCTGT GGGCTCTTTT ACTACCAGCC TATGCTGTGG GACTGTCATG	960
	GCATTTAGTT CAGAGTGGAN GGGCTTTGGS CTGAAATAAA ATGCAAGTAT TTAAAAAAAAA	1020
50	AAAAAAAA A	1031

55 (2) INFORMATION FOR SEQ ID NO: 71:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 855 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

	CICGCIKACG TGGCAGCAGG CGCICACGGG GCTKCTKGAG CGCATKCAGA CCTATCAGGA	120
5	CGCGGAGTTG AGGCAGGTCT TGCTTCCTTG ATGAAAGANC GNNT	124
10	(2) INFORMATION FOR SEQ ID NO: 69: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1292 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 69:	
20	GGCACGAGCA GCGACGCGAC TCTGGTGCGG GCCGTCTTCT TCCCCCCGAG CTGGGCGTGC	60
	GCGGCCGCAA TGAACTGGGA GCTGCTGCTG TGGCTGCTGG TGCTGTGCGC GCTGCTCCTG	120
25	CTCTTGGTGC AGCTGCTGCG CTTCCTGAGG GCTGACGGCG ACCTGACGCT ACTATGGGCC	180
	GAGTGGCAGG GACGACGCCC AGAATGGGAG CTGACTGATA TGGTGGTGTG GGTGACTGGA	240
	GCCTCGAGTG GAATTGGTGA GGAGCTGGCT TACCAGTTGT CTAAACTAGG AGTTTCTCTT	300
30	GTGCTGTCAG CCAGAAGAGT GCATGAGCTG GAAAGGGTGA AAAGAAGATG CCTAGAGAAT	360
	GGCAATTTAA AAGAAAAAGA TATACTTGTT TTGCCCCTTG ACCTGACCGA CACTGGTTCC	420
35	CATGAAGCGG CTACCAAAGC TGTTCTCCAG GAGTTTGGTA GAATCGACAT TCTGGTCAAC	480
	AATGGTGGAA TGTCCCAGCG TTCTCTGTGC ATGGATACCA GCTTGGATGT CTACAGAAAG	540
	CTAATAGAGC TTAACTACTT AGGGACGGTG TCCTTGACAA AATGTGTTCT GCCTCACATG	600
40	ATCGAGAGGA AGCAAGGAAA GATTGTTACT GTGAATAGCA TCCTGGGTAT CATATCTGTA	660
	CCTCTTTCCA TTGGATACTG TGCTAGCAAG CATGCTCTCC GGGGTTTTT TAATGGCCTT	720
	CGAACAGAAC TTGCCACATA CCCAGGTATA ATAGTTTCTA ACATTTGCCC AGGACCTGTG	780
45	CAATCAAATA TTGTGGAGAA TTCCCTAGCT GGAGAAGTCA CAAAGACTAT AGGCAATAAT	840
	GGAGACCAGT CCCACAAGAT GACAACCAGT CGTTGTGTGC GGCTGATGTT AATCAGCATG	900
50	GCCAATGATT TGAAAGAAGT TTGGATCTCA GAACAACCTT TCTTGTTTAG TAACATATTT	960
	GTGGCAATAC ATGCCAACCT GGGCCTGGTG GATAACCAAC AAGATGGGGA AGAAAAGGAT	1020
55	TGAGAACTTT AAGAGTGGTG TGGATGCAGA CTCTTCTTAT TTTAAAATCT TTAAGACAAA	1080
	ACATGACTGA AAAGAGCACC TGTACTTTTC AAGCCACTGG AGGGAGAAAT GGAAAACATG	1140
	AAAACAGCAA TCTTCTTATG CTTCTGAATA ATCAAAGACT AATTTGTGAT TTTACTTTTT	1200
60	AATAGATATG ACTITGCTTC CAACATGGAA TGAAATAAAA AATAAATAAT AAAAGATTGC	1260

WO 98/39446 PCT/US98/04482

214

	TTGGAGTAGA	ATGGCAACTA	ATTCTAATTT	TTATTTATTA	AATATTTGGG	GITTTGGTTT	1320
	TAAAGCCAGA	ATTACGGCTA	GCACCTAGCA	TTTCAGCAGA	GGGACCATTT	TAGACCAAAA	1380
5	TGTACTGTTA	ATGGGTTTTT	TTTTAAAATT	AAAAGATTAA	АТАААААТА	ТТАААТАААА	1440
	CATGGCAATA	AGTGTCAGAC	TATTAGGAAT	TGAGAAGGGG	GATCAACTAA	ATAAACGAAG	1500
10	AGAGTCTTTC	TTATGCAAAA	ААААААААА	AAAAA			1535
10							

(2) INFORMATION FOR SEQ ID NO: 68:

15

20

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1244 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 68:

25	GGGCACCCAC	CAGCGGCGCC	GACCTCAGCG	CGCACCTATG	GGCTCGCTAC	CAGGACATGC	60
	GGAGACTGGT	GCACGACCTC	CTGCCCCCCG	AGGTCTGCAG	TCTCCTGAAC	CCAGCAGCCA	120
	TCTACGCCAA	CAACGAGATC	AGCCTGCGTG	ACGTTGAGGT	CTACGGCTT1	GACTACGACT	180
30	ACACCCTGGC	CCAGTATGCA	GACGCACTGC	ACCCCGAGAT	CTTCAGTACC	GCCCGTGACA	240
	TCCTGATCGA	GCACTACAAG	TACCCAGAAG	GGATTCGGAA	GTATGACTAC	AACCCCAGCT	300
35	TTGCCATCCG	TGGCCTCCAC	TATGACATTC	AGAAGAGCCT	TCTGATGAAG	ATTGACGCCT	360
33	TCCACTACGT	GCAGCTGGGG	ACAGCCTACA	GGGCCTCCA	GCCTGTGCCA	GACGAGGAGG	420
	TGATTGAGCT	GTATGGGGGT	ACCCAGCACA	TCCCACTATA	CCAGATGAGT	GGCTTCTATG	480
40	GCAAGGGTCC	CTCCATTAAG	CAGTTCATGG	ACATCTTCTC	GCTACCGGAG	ATGGCTCTGC	540
	TGTCCTGTGT	GGTGGACTAC	TTTCTGGGCC	ACAGCCTGGA	GTTTGACCAA	GCACATCTCT	600
45	ACAAGGACGT	GACGGACGCC	ATCCGAGACG	TGCATGTGAA	GGGCCTCATG	TACCAGTGGA	660
73	TCGAGCAGGA	CATGGAGAAG	TACATCCTGA	GAGGGGATGA	GACGTTTGCT	GTCCTGAGCC	720
	GCCTGGTGGC	CCATGGGAAA	CAGCTGTTCC	TCATCACCAA	CAGTCCTTTC	AGCTTCGTAG	780
50	ACAAGGGGAT	GCGGCACATG	GTGGGTCCCG	ATTGGCGCCA	CTCTTCGATG	TGGTCATTGT	840
	CCAGGCAGAC	AAGCCCAGCT	TCTTCACTGA	CCGGCGCAAG	CTTINCAGAA	AACTCGATGA	900
55	GAAGGGCTCA	CTTCAGTGGG	ACCGGATCAC	CCGCTTGGAA	AAGGGCAAGA	TCTATCGGCA	960
33	GGGAAACCTG	TTTGACTTCT	TACGCTTGAC	GGAATGGCGT	GCCCCCCCC	TGCTCTACTT	1020
	CGGGGACCAC	CTCTATAGTG	ATCTGGCGGA	TCTCATGCTG	CGGCACGGCT	GGCGCACAGG	1080
60	CGCCATCATC	CCCGAGCTGG	AGCGTGAGAT	CCGCATCATC	AACACGGAGC	AGTACATGCA	1140

PCT/US98/04482

	AGCCAGGAAG AGGATCCAGC CATTGTAGAA GGCCATCTTG AAGAAGTACT TGGCACTGGG	3300
5	G	3301
10	(2) INFORMATION FOR SEQ ID NO: 67: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1535 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 67:	
20	GGCACGAGGT CAAGCGAAAG GATTTCAAGG AACAGATCAT CCACCATGTG TTCACCATCA	60
20	TTCTCATCAG CTTTTCCTGG TTTGCCAATT ACATCCGAGC TGGGACTCTA ATCATGGCTC	120
	TGCATGGACT CTTCCGATTA CCTGCTGGAG TCAGCCAAGA TGTTTAACTA CGCGGGATGG	180
25	AAGAACACCT GCAACAACAT CTTCATCGTC TTCGCCATTG TTTTTATCAT CACCCGACTG	240
	GTCATCCTGC CCTTCTGGAT CCTGCATTGC ACCCTGGTGT ACCCACTGGA GCTCTATCCT	300
30	GCCTTCTTTG GCTATTACTT CTTCAATTCC ATGATGGGAG TTCTACAGCT GCTGCATATC	360
	TTCTGGGCCT ACCTCATTTT GCGCATGGCC CACAAGTTCA TAACTGGAAA GCTGGTAGAA	420
	GATGAACGCA GTACCGGGAA GAAACAGAGA GCTCAGAGGG GGAGGAGGCT GCAGCTGGGG	4 80
35	GAGGAGCAAA GAGCCGGCCC CTAGCCAATG GCCACCCCAT CCTCAATAAC AACCATCGTA	540
	AGAATGACTG AACCATTATT CCAGCTCCCT CCCAGATTAA TGCATAAAGC CAAGGAACTA	600
40	CCCCGCTCCC TGCGCTATAG GGTCACTTTA AGCTCTGGGG AAAAAGGAGA AAGTGAGAGG	660
40	AGAGTTCTCT GCATCCTCCC TCCTTGCTTG TCACCCAGTT GCCTTTAAAC CAAATTCTAA	720
	CCAGCCTATC CCCAGGTAGG GGGACGTTGG TTATATTCTG TTAGAGGGGG ACGGTCGTAT	780
45	TITCCTCCCT ACCCGCCAAG TCATCCTTTC TACTGCTTTT GAGGCCCTCC CTCAGCTCTC	840
	TGTGGGTAGG GGTTACAATT CACATTCCTT ATTCTGAGAA TTTGGCCCCA GCTGTTTGCC	900
	TTTGACTCCC TGACCTCCAG AGCCAGGGTT GTGCCTTATT GTCCCATCTG TGGGCCTCAT	960
50	TCTGCCAAAG CTGGACCAAG GCTAACCTTT CTAAGCTCCC TAACTTGGGC CAGAAACCAA	1020
	AGCTGAGCTT TTAACTTTCT CCCTCTATGA CACAAATGAA TTGAGGGTAG GAGGAGGGTG	1080
55	CACATAACCC TTACCCTACC TCTGCCAAAA AGTGGGGGCT GTACTGGGGA CTGCTCGGAT	1140
	GATCTTTCTT AGTGCTACTT CTTTCAGCTG TCCCTGTAGC GACAGGTCTA AGATCTGACT	1200
	GCCTCCTCT TTCTCTGGCC TCTTCCCCCT TCCCTCTTCT CTTCAGCTAG GCTAGCTGGT	1260
60		

	TCCTTAACAA	ATGCAACCAC	CAACACCCAG	ATCTCTCTCT	CTCTTTATTT	TCAGTTTTTT	1500
5	TGCTGTTATC	CAGATAATTA	ATAAAAACCA	ACCACGCAAA	ACTGGGTCCC	ACCCTCTCCT	1560
3	TTTGCTCCCA	GCCTACCTCC	CCAGTTGTGG	GAACAGGTCT	GGAGTGAGAG	GCAGGGAGTG	1620
	GCTAATGCCN	CCAGGAAGAA	ATGAAAACTG	GCTCAGAGAG	GGGGAAGCCT	CAACAGAAAA	1680
10	AGAAATAAAT	TAAAAGCCCT	CCTATCCCCT	CCAGCCAGGG	TTCGTTCCTT	TCCCCAACTC	1740
	CCCAGGGGGC	AGAAGTGAGT	GCAGCACCTG	ATGTCTGCTT	CTTCCCCTTG	TGTCTGGTGA	1800
15	GATGGTGCAG	CAGGGCTGCA	GGGGGCTGGG	TGGGGTCATG	TCCACTGAAG	AACTGTACTA	1860
10	TGGGGACAGA	AAACCAGAAA	TGTGGAGACT	GAACTGGTAT	CCCAGAGAGT	GCACGACCCT	1920
	GGGCATCTGG	GCAAGGCAG	GCATGAGACC	TCTGAATTAG	AAGGGTCCAG	CCCCCACTGA	1980
20	CAGGAGGCTA	CACTGGGAGG	GAAGGTGAAG	GTGCTGAGGA	AAGCTCCCAT	GATGAGCCTG	2040
	GGAGTGCTTC	AGGTATCAGC	TTCCAGCCAG	AGGGCGAGAA	GTCCTCCTCA	CAAATGGATG	2100
25	AGTCCATTGA	ATCCATGGAC	TTTGGAGTGG	GGGGGATTTG	TTCCAAAGAA	TGGATGAGTC	2160
20	CACTGGCCAA	TGTGGGGTAG	AGGGGTAGAG	AAGACCACAT	AGGAAGAGAC	TCCACTGGGG	2220
	ATGGAATGTT	CCCCTCCCTT	GTGTAGGCTG	AGTCACTGGA	GATGAGGGGG	AGGCAACTGT	2280
30	CCCACAGACA	ARACAGTAGG	AGGTGGGGGT	CAAGAGTGGA	GACTGCACCG	AGGCAAGAGT	2340
	CCATGGATGG	GGCCAAGAGG	GGGCAGGAGT	GGCGCTGTAT	CCACATTTCA	CTTCAGAAGT	2400
35	TGAAGATTCC	AAAGAGGAGA	ATAAGTGGGG	AGAGGGGAGA	CAAGGAAGAG	GGTTTKGCCC	2460
55	TGCTTCAGGG	CCCACTGGGT	GGGTAGGTGT	GGGGAGGAAG	ATGGGGACAG	ATGGGAGGAG	2520
	AGCTCAGAGC	CAGGGTTCAC	CCACCGCCCC	CAGGCTTCTT	CAGATAGTCA	CCACCACCCC	2580
40	GGCCATCAGT	GGAGATTTCC	CGGAAAACAG	TGAAGCATGG	AGTGCCGGAC	TCTGTCAGCC	2640
	AGAGCTGGGA	CGTCATCTGG	TGTCAGCCCT	TCCGTGGGCA	CTGGGGGCAG	CACCCGCACC	2700
45	TGACATTGTC	CCGAGGTGAA	GCGACGCTCC	TTCTTGCAGT	AGAAGTCTTG	GTAGGAGGAC	2760
15	ATGACTATGG	GGACAATGGG	AACCTGGGCC	TGCACTGCAA	GATGGAAGGC	GCCACGTTTG	2820
	AAGGGCAGCA	TGGAGCCATT	GTGGTTTCTC	GTTCCCTCAG	GAAACACCCA	GACCYTCACG	2880
50	TCCTGGGTGA	GCAGGGTCTG	GGCGACCTCA	GACATGACAC	TGATGGCATC	CCCCGTGCGC	2940
	TTCCGGTCGA	TGAAGATGAC	TCCTGCCAGC	CAGCAGGCCA	GCCCGCAGAG	CCAGCCCACA	3000
55	GTANTCGCGC	TTGGCAATGG	GCACACAGCG	GCCTGGCAGT	ACCTCCATCA	TCCCAAGCAG	3060
JJ	ATCGAGAGAG	CTCTGGTGGT	TGGAGACAAC	AACATAGGGC	TGCGAGGGAG	GGAAGTGGTG	3120
	AGCCCCTCGC	ACCTCCACTC	GGATCCCGTA	CAGGTATTTG	ATGTGGAGCA	GCATTAGACG	3180
60	CAAGATCTTC	ATGTTCTCGA	CGTTGCGTCC	TCGCACGGCA	CACACAGGGA	TGGCGAGCAC	3240

(2) INFORMATION FOR SEQ ID NO: 66:

5

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 3301 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10 (D) TOPOLOGY: linear

	(xi)	SEQUENCE I	DESCRIPTION:	: SEQ ID NO:	: 66:		
15	GGTCATAAGG	GGAGGGTTGN	NGTGTGTCCC	TCCAGGTTGT	GCAGAGGGGA	TTAGAAGTAA	. 60
15	GTAGGTTAGA	GGGGAGGTGG	AGGGAGTGTG	CTGGGGTGTG	AGCTTTTATG	ATGCTGAAAG	120
	GATCATGATA	TGCTAAGGAC	AGGATAGTGT	TGGGTTGTAC	ACACAGGTGT	AGGCAATCCT	180
20	GGTGGCTAGT	ATGTAAAAGT	GAATGTCCTG	ACTCCCTTAG	AGGGTACCTG	NCAGAGTGCC	240
	CTTGGARGGA	CTAGTGCTGG	AGAAATTAAT	AGGAGAGGG	ACGGCCATCC	ATTAACCTTT	300
25	TCTTGCCTGC	AGCCTGTAGG	GTCCAGCGTC	AAAGCGAATC	ATGGGGTCCA	GGGCTGAGCT	360
	GTGCACTCTC	TTAGGCGGAT	TCTCCTTCCT	CCTGCTACTG	ATACCAGGCG	AGGGGCCAA	420
	GGGTGGATCC	CTCAGAGAGA	GTCAGGGAGT	CTGCTCCAAG	CAGACACTGG	TGGTCCCGCT	480
30	CCACTACAAC	GAGTCCTACA	GCCAACCAGT	GTACAAGCCC	TACCTGACCT	TGTGCGCTGG	540
	GAGCGCATCT	GCAGCACTTA	CAGGACCATG	TACCGCGTTA	TGTGGCGGGA	GGTGAGGCGG	600
35	GAGGTTCAGC	AGACCCATGC	AGTGTGCTGC	CAGGGCTGGA	AGAAGCGGCA	CCCGGGGGGCG	660
	CTCACCTGTG	AAGCCATCTG	CGCCAAGCCT	TGCCTGAACG	GAGGCGTCTG	CGTTAGGCCT	720
	GACCAGTGCG	AGTGCGCCCC	CGGCTGGGGA	GGGAAGCACT	GTCATGTGGA	CGTGGATGAA	780
40	TGTAGGACCA	GCATCACCCT	CTGCTCGCAC	CATIGITITA	ATACGGCARG	CAGCTTCAMC	840
	TGCGGCTGCC	CCATGACCTA	GTGCTAGGCG	TGGACGGGCG	CACCTGCATG	GAGGGGTCCC	900
45	CAGAGCCCCC	AACCAGTGCC	AGCATACTCA	GCCTGGCCST	TCGGGARGCG	GAAAAAGATG	960
	ACGCGCTCTG	AAGCAGGAGA	TTCACGAGCT	GCGAGGCCCT	TGAAGCGGCT	GGAGCAGTGG	1020
	NCCGGTCAGC	TGGGCCCTGG	NTCAGACGGT	GCTGCCCGTG	CCGCCTGAAG	WGCTGCAGCC	1080
50	AGAACAGGTG	GCTGAGCTGT	GGGGCCGGGG	TGACCGGATC	GAATCTCTCA	GCGACCAGGT	1140
	GCTGCTGCTG	GAGGAGAGGC	TAGGTGCCTG	CTCCTGTGAG	GACAACAGCC	TGGGCCTCGG	1200
55	CGTCÁATCAT	CGATAAGAAG	CCTCTACAGC	ACCCCTGCCC	CCTAATTTAT	ACAGAAACCG	1260
	GACCCACTAA	TCCTCTGGGA	TTGGCCGACT	GTGAGCTGCA	GATAAGGCTA	TCAGCCACCA	1320
	AAGAGCAATG	AACAATGGAA	ACTTCAGAGA	GCTGAAGAAA	GGGGGAGGCC	TGTGTTCTTG	1380
60	GCCTGCCCCT	GAGTCTTCTG	GCTGGGGGCA	GGTTGCCTGG	GCAAGAACTG	CTTCTTCAAT	1440

WO 98/39446 PCT/US98/04482

210

	TTCATACTTC	CTTTACAAAT	ATAAAGATAG	CTGTTTAGGA	TATTTTGTTA	CATTTTTGTA	1200
5	AATTTTTGAA	ATGCTAGTAA	TGTGTTTTCA	CCAGCAAGTA	TTTGTTGCAA	ACTTAATGTC	1260
J	ATTITCCTTA	AGATGGTTAC	AGCTATGTAA	CCTGTATTAT	TCTGGACGGA	СТТАТТАААА	1320
	TACAAACAGA	САААААТАА	AACAAAACTT	GAGTTCTATT	TACCTTGCAC	ATTTTTTGTT	1380
10	GTTACAGTGA	AAAAAATGGT	CCAAGAAAAT	GTTTGCCATT	TTTGCATTGT	TTCGTTTTTA	1440
	ACTGGAACAT	TTAGAAAGAA	GGAAATGAAT	GTGCATTITA	TTAATTCCTT	AGGGCACAA	1500
15	GGAGGACAAT	AATAGCTGAT	CTTTTGAAAT	TTGAAAAACG	TCTTTAGATG	ACCAAGCAAA	1560
	AAGCTTTAAA	AAATGGTAAT	GAAAATGGAA	TGCAGCTACT	GCAGCTAATA	AAAAATTTTA	1620
	GATAGCAATT	GTTACAACCA	TATGCCTTTA	TAGCTAGACA	TTAGAATTAT	GATAGCATGA	1680
20	GTTTATACAT	TCTATTATTT	TTCCTCCCTT	TCTCATGTTT	TTATAAATAG	GTAATAAAA	1740
	ATGTTTTGCC	TGCCAATTGA	ATGATTTCGT	AGCTGAAGTA	GAAACATTTA	GGTTTCTGTA	1800
25	GCATTAAATT	GTGAAGACAA	CTGGAGTGGT	ACTTACTGAA	GAAACTCTCT	GTATGTCCTA	1860
	GAATAAGAAG	CAATGATGTG	CTGCTTCTGA	TTTTTCTTGC	ATTTTAAATT	CTCAGCCAAC	1920
	CTACAGCCAT	GATCTTTAGC	ACAGTGATAT	CACCATGACT	TCACAGACAT	GGTCTAGAAT	1980
30	CTGTACCCTT	ACCCACATAT	GAAGAATAAA	AAATTADTTA	GGTTAAAAAA	AAA	2033
35	(2) INFORM	ATION FOR SE	EQ ID NO: 65	5 :			
	(i)	SEQUENCE CI	HARACTERIST:	ICS:			
			GTH: 440 ba E: nucleic	-			
40			ANDEDNESS: OLOGY: line				
	(xi) SEQUENCE I	DESCRIPTION	: SEQ ID NO	: 65:		
45	ATGTTTCTTA	CTAGAATACT	GTGTCCAACC	TATATAGCCC	TAACTTTCCT	GGTTTACATT	60
	GTGGCCCTAG	TATCTGGGCA	GCTGTGCATG	GAGATAGCCA	GAGGAAACAT	TTTTTTTCTT	120
	AATGAATTGG	TGACCACATT	TTGTTGTTCT	TGCCTCCTAT	TATCCGTGCC	CTATTTGCAT	180
50	CCTGGTTTCT	TCTACAGTAG	TTTATGTAAA	TGTTGTTTTG	TCCTTGTCGT	TCTCAGTAGA	240
	ATTGGTTCTG	TAAACGAAAC	CTGGTCCTGT	AATTTCAGTA	TATGCTCATA	TCTCATCTTT	300
55	GGCTCTCCCA	TTTTCACAGC	AGTGATCCCT	AAAAGATGTG	CCCTAGAGGA	TATCCAGAAC	360
	AATCCAATTG	GATGTCTTCT	CCGCTGCACT	CCAGCCTGGG	AGACAGAGGG	AGACTONATO	420

ТСААААААА ТТААААААА

60

WO 98/39446 PCT/US98/04482

209

	CGGGATCGAT ACCCCCACCC CTCCACTGGC CAGCCTGGGG GTGCCCTGCC TGCCCTCCT	G 1260
	GTACTGTTGT CTTCCCCTCG GCCCCCTCAC ATGTGTATTC AGCAGCCCTA TGGCCTTGG	c 1320
5	TCTGGGCCTG ATGGGACAGG GGTAGAGGGA AGGTGAGCAT AGCACATTTT CCTAGAGCG	A 1380
	GAATTGGGGG AAAGCTGTTA TTTTTATATT AAAATACATT CAGATGTAAA AAAAAAAAA	A 1440
10	AAAAACTCGA GGGGGGCCC CGGNAACCAA TTCGCCCT	1478
	(2) INFORMATION FOR SEQ ID NO: 64:	
15	(i) SEQUENCE CHARACTERISTICS:	•
	(A) LENGTH: 2033 base pairs (B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
20	,	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 64:	
25	GGCACGAGGA AGAACGCAAA GCTGAGAACA TGGACGTTAA TATCGCCCCA CTCCGCGCC	
	GGGACGATTT CTTCCCGGGT TCCGATCGCT TTGCCCGGCC GGACTTCAGG GACATTTCC	
20	AATGGAACAA CCGCGTAGTG AGCAACCTGC TCTATTACCA GACCAACTAC CTGGTGGTG	
30	CTGCCATGAT GATTTCCATT GTGGGGTTTC TGAGTCCCTT CAACATGATC CTGGGAGGA	A 240
	TCGTGGTGGT GCTGGTGTTC ACAGGGTTTG TGTGGGCAGC CCACAATAAA GACGTCCTT	C 300
35	GCCGGATGAA GAAGCGCTAC CCCACGACGT TCGTTATGGT GGTCATGTTG GCGAGCTAT	T 360
	TCCTTATCTC CATGITTGGA GGAGTCATGG TCTTTGTGTT TGGCATTACT TTTCCTTTG	C 420
	TGTTGATGTT TATCCATGCA TCGTTGAGAC TTCGGAACCT CAAGAACAAA CTGGAGAAT	A 480
40	AAATGGAAGG AATAGGTTTG AAGAGGACAC CGATGGGCAT TGTCCTGGAT GCCCTAGAA	C 540
	AGCAGGAAGA AGGCATCAAC AGACTCACTG ACTATATCAG CAAAGTGAAG GAATAAACA	T 600
45	AACTTACCTG AGCTAGGGTT GCAGCAGAAA TTGAGTTGCA GCTTGCCCTT GTCCAGACC	т 660
	ATGTTCTGCT TGCGTTTTTG AAACAGGAGG TGCACGTACC ACCCAATTAT CTATGGCAG	C 720
	ATGCATGTAT AGGCCGAACT ATTATCAGCT CTGATGTTTC AGAGAGAAGA CCTCAGAAA	C 780
50	CGAAAGAAAA CCACCACCCT CCTATTGTGT CTGAAGTTTC ACGTGTGTTT ATGAAATCT	A 840
	ATGGGAAATG GATCACACGA TTTCTTTAAG GGAATTAAAA AAAATAAAAG AATTACGGC	т 900
55	TTTACAGCAA CAATACGATT ATCTTATAGG AAAAAAAAT CATTGTAAAG TATCAAGAC	A 960
رر	ATACGAGTAA ATGAAAAGGC TGTTAAAGTA GATGACATCA TGTGTTAGCC TGTTCCTAA	т 1020
	CCCCTAGAAT TGTAATGTGT GGGATATAAA TTAGTTTTTA TTATTCTCTT AAAAATCAA	A 1086

GATGATCTCT ATCACTTTGC CACCTGTTTG ATGTGCAGTG GAAACTGGTT AAGCCAGTTG

1140

60

208

	ATTAGAAAAA CCATAAAATC TCTGGCCTAT GCACATTGTC CCTGTTTTGT GAAAACATTA	480
5	AAGGGTAAAT AAAAAGGAAG GAGAACAGTC AATAATGTGC ATCAAATATA TTCTGAGTTC	540
3	TAGAGAAATT AATGACCAAG CATTAGAACT AGAAGCAAAA AAAAAAAAA AAAAA	595
10		
	(2) INFORMATION FOR SEQ ID NO: 63:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1478 base pairs	
15	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 63:	
	CGGCGCTGAG GACGCACGGA TGCCTTCCGT GCCTTCCATC AAGATCTCAA TTTTGTGCGC	60
	AAGTTCCTAC AGCCCCTGTT GATTGGAGAG CTGGCTCCGG AAGAACCCAG CCAGGATGGA	120
25	CCCCTGAATG CGCATGGTCG AGGACTTCCG AGCCCTGCAC CAGGCAGCCG AGGACATGAA	180
	GCTGTTTGAT GCCAGTCCCA CCTTCTTTGC TTTCCTACTG GGCCACATCC TGGCCATGGA	240
30	GGTGCTGGCC TGGCTCCTTA TCTACCTCCT GGGTCCTGGC TGGGTGCCCA GTGCCCTGGN	300
30	CCGCCTTCAT CCTGGCCATC TCTCAGGCTC AGTCCTGGTG TCTGCAGCAT GACCTGGGCC	360
	ATGCTCCATC TTCAAGAAGW CCTGGTGGAA CCACGTGGCC CAGAAGTTCG TGATGGGCA	420
35	GCTAAAGGGC TTCTCCGCCC ACTGGTGGAA CTTCCGCCAC TTCCAGCACC ACGCCAAGCC	480
	CAACATCTTC CACAAAGACC CAGACGTGAC GGTGGCGCCC GTCTTCCTCC TGGGGGAGTC	540
40	ATCCGTCGAG TATCGCAAGA AGAAACGCAG ATACCTACCC TACAACCAGC AGCACCTGTA	600
40	CTTCTTCCTG ATCGGCCCGC CGCTGCTCAC CCTGGTGAAC TTTGAAGTGG AAAATCTGGC	660
	GTACATGCTG GTGTGCATGC AGTGGGCGGA TTTGCTCTGG GCCGCCAGCT TCTATGCCCG	720
45	CTTCTTCTTA TCCTACCTCC CCTTCTACGG CGTCCCTGGG GTGCTGCTCT TCTTTGTTGC	780
	TGTCAGGGTC CTGGAAAGCC ACTGGTTCGT GTGGATCACA CAGATGAACC ACATCCCCAA	840
50	GGAGATCGGC CACGAGAAGC ACCGGGACTG GGTCAGCTCT CAGCTGGCAG CCACCTGCAA	900
50	CGTGGAGCCC TCACTTTTCA CCAACTGGTT CAGCGGGCAC CTCAACTTCC AGATCGAGCA	960
	CCACCTCTTC CCCAGGATGC CGAGACACAA CTACAGCCGG GTGGCCCCGC TGGTCAAGTC	1020
55	GCTGTGTGCC AAGCACGGCC TCAGCTACGA ATGAAGCCCT TCCTCACCGC GCTGGTGGAC	1080
	ATTOCKED COOKSAGAA CHOTGGTGAC ATCTGGCTGG ACGCCTACCT CCATCAGTGA	1140

AGGCAACACC CAGGCGGGCA GAGAAGGGCT CAGGGCACCA GCAACCAAGC CAGCCCCCGG

PCT/US98/04482

	AGATGGCGGC CCAGGATTTC TTCCAGCGCT GGAAGCAGCT GAGCCTCCCT CAACAGGAGG	240
	CGCAGAAAAT CTTCAAAGCC AACCACCCCA TGGACGCAGA AGTTACTAAG GCCAAGCTTC	300
5	TGGGGTTTGG CTCTGCTCTC CTGGACAATG TGGACCCCAA CCCTGAGAAC TTCGTGGGGG	360
	CGGGGATCAT CCAGACTAAA GCCCTGCAGG TGGGCTGTCT GCTTCGGCTG GAGCCCAATG	420
10	CCCAGGCCCA GATGTACCGG CTGACCCTGC GCACCAGCAA GGAGCCCGTC TCCCGTCACC	480
ı	TGTGTGAGCT GCTGGCACAG CAGTTCTGAG CCCTGGACTC TGCCCCGGGG GATGTGGCCG	540
	GCACTGGGCA GCCCCTTGGA CTGAGGCAGT TTTGGTGGAT GGGGGACCTC CACTGGTGAC	600
15	AGAGAAGACA CCAGGGTTTG GGGGATGCCT GGGACTTTCC TCCGGCCTTT TGTATTTTTA	660
	TTTTTGTTCA TCTGCTGCTG TTTACATTCT GGGGGGTTAG GGGGAGTCCC CCTCCCTCCC	720
20	TTTCCCCCCC AAGCACAGAG GGGAGAGGGG CCAGGGAAGT GGATGTCTCC TCCCCTCCCA	780
20	CCCCACCCTG TTGTAGCCCC TCCTACCCCC TCCCCATCCA GGGGCTGTGT ATTATTGTGA	840
	GCGAATAAAC AGAGAGACGC TAACAGCCCC ATGTCTGTGT CCATCACCCA CTGTTAGGTA	900
25	GTCAAAGAAG TGGGGTGAGG GCATGCAGAG TGTGGGTGGC CAGNTTCGCA GCCCATGGGT	960
	GGGACTCTGG GGAGACAGCA GCAGCAGCAG CCGCCGAAGC CCCAGCTGCA AGGCCACCAG	1020
30	ACGCACTCCT GTGCCTGGTT CCTYAGTCCC CAACACCAGG TAGCAAGCTY TGGGCAGCTG	1080
50	GGCCTGGTAG ACCTCATCTT CTGTCTTCTY TGGTGGCCCT GGCTCTGGTG GGAAGTGCGT	1140
	GGAGGTGACC AGGGTATAGA AGTTTCGGAG CTGATTGGAA GAGGATTAAC TTCCCGC	1197
35		
	(2) INFORMATION FOR SEQ ID NO: 62:	
40	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 595 base pairs (B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 62:	
	ATTNANGACK TKYAGCCTYT WATACMATCA TTATAGGGAR AAGCTGGTAC GCCTGMARGT	60
50	ACCGGTCYGG AATTCNCGGG TCGACCCACG CGTCCGGCAC AGCGGGAGTT GGTTCTGACA	120
	CCAGATGTTC TCTGCTCCTG GTTAATGTCA GTGAGGGCTG GAAGTTGAAT AAATGAGAAC	180
	AGGAGTGGTC TGGGCCCATG TAAATGATCC TCCCTTGAAA GGAGGAACAG CTTTCATCAT	240
55	TIGITCCAGC TAAGCCTTGC ATGCATTATA GATCTGGTGC TAAGCAGTGG GAAAGATCTC	300
	ATAAGTAATG TTTTATGTTC TTTCTGTCTC TCCTCTTCTG TWGTTCTTGG CITGTGGGTT	360
60	GTGTTTGTGT GTTAACTGGA AAATTGCTAT AAGCCAGTTG TCTCTAAGTT TTAAAAACGA	420

PCT/US98/04482

	TGCTTTTTC ATTACGTACT GTTGTTTTC CTTGTTAGGT GTGCTTTGGT GGTTTTAATA	240
	TTATTGTGCC AGGGATGGGG AAATGGGGGG GGTTGTGTGG GAAGAGTACT TATTATTGTG	300
5	TTTTCTTCAG TGTAATTGTT CTTGGTAATT GATACCTCTC TGTTTTATTT NTCTCATTCT	360
	TTCAAAATAA AACITTTTGA AATTTGAAAA AAAAAAAAAA NAAAAAACTC GGGGGGGGC	420
10	CCGGTACC	428
10		
15	(2) INFORMATION FOR SEQ ID NO: 60:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 501 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 60:	
25	GGCACGAGCT TTCAGCAGGG GACAGCCCGA TTGGGGACAA TGGCGTCTCT TGGCCACATC	60
	TIGGTITICT GIGIGGGICT CCTCACCATG GCCAAGGCAG AAAGTCCAAA GGAACACGAC	120
	CCGTTCACTT ACGACTACCA GTCCCTGCAG ATCGGAGGCC TCGTCATCGC CGGGATCCTC	180
30	TTCATCCTGG GCATCCTCAT CGTGCTGAGC AGAAGATGCC GGTGCAAGTT CAACCAGCAG	240
	CAGAGGACTG GGGAACCCGA TGAAGAGGAG GGAACTTTCC GCAGCTCCAT CCGCCGTCTG	300
35	TCCACCCGCA GGCGGTAGAA ACACCTGGAG CGATGGAATC CGGCCAGGAC TCCCCTGGCA	360
33	CCTGACATCT CCCACGCTCC AACTGCGCGC CCACCGCCCC CTCCGCCGCC CCTTCCCCAG	420
	CCCTGCCCCC GCAGACTCCC CCTGCCGCCA AGACTTCCAA TAAAACGTGC GTTCCTCTCG	480
40	AAAAAAAAA AAATAAAAAA A	501
45	(2) INFORMATION FOR SEQ ID NO: 61:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1197 base pairs	
50	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 61:	
55	ACATGATGGN TACCAAAGAA TTCGGCANAG GGCGCGCAGT GCAGCAGGTG CTCAATATCG	60
	AGTGCCTGCG GGACTTCCTG ACGCCCCCGC TGCTGTCCGT GCGCTTCCGG TACGTGGGCG	120
60	CCCCCCAGGC CCTCACCCTG AAGCTCCCAG TGACCAKCAA CAAGTTCTTC CAGCCCACCG	180
60		

60

120

CGCCATGGAG AATGGCTCCG CTTCTGTTGC AGCTGGCGGT GCTCGGCGG GCGCTGGCGG

CCGCAGCCCT CGTACTGATT TCCATCGTTG CATTTACAAC TGCTACAAAA ATGCCAGCAC

	TCCATCGACA TGAAGAAGAG AAATTCTTCT TAAATGCCAA AGGCCAGAAA GAAACTTTAC	180
	CCAGCATATG GGACTCACCT ACCAAACAAC TTTCTGTCGT TGTGCCTTCA TACAATGAAC	240
10	AAAAACGGTT GCCTGTGATG ATGGATGAAG CTCTGAGCTA TCTAGAGAAG AGACAGAAAC	300
	GAGATCCTGC GTTCACTTAT GAAGTGATAG TAGTTGATGA TGGCAGTAAA GATCAGACCT	360
15	CAAAGGTAGC TTTTAAATAT TGCCAGAAAT ATGGAAGTGA CAAAGTACGT GTGATAACCC	420
••	TGGTGAAGAA TCGTGGAAAA GGTGGAGCGA TTAGAATGGG TATATTCAGT TCTCGAGGAG	480
	AAAAGATCCT TATGGCAGAT GCTGATGGAG CCACAAAGTT TCCAGATGTT GAGAAATTAG	540
20	AAAAGGGGCT AAATGATCTA CAGCCTTGGC CTAATCAAAT GGCTATAGCA TGTGGATCTC	600
	GAGCTCATTT AGAAAAAGAA TCAATTGCTC AGCGTTCTTA CTTCCGTACT CTTCTCATGT	660
25	ATGGGTTCCA CTTTCTGGTG TGGTTCCTTT GTGTCAAAGG AATCAGGGAC ACACAGTGTG	720
	GGTTCAAATT ATTTACTCGA GAAGCAGCTT CACGGACGTT TTCATCTCTA CACGTTGAAC	780
	GATGGGCATT TGATGTAGAA CTACTGTACA TAGCACAGTT CTTTAAAATT CCAATAGCAG	840
30	AAATTGCTGT CAACTGGACA GAAATTGAAG GTTCTAAATT AGTTCCATTC TGGAGCTGGC	900
	TACAAATGGG TAAAGACCTA CTTTTTATAC GACTTCGATA TTTGACTGGT GCCTGGAGGC	960
35	TTGAGCAAAC TCGGAAAATG AATTAGGTTG TTTGCAGTCT TCAGTTGTGT TCTTATGCTT	1020
	CAGTGTCACA TITCATTTCA TTTGAAACTA AAATTTTAAG TAAAGCTGAA ATAAACTTCT	1080
	TGTCATTGTC TGCCTTTTGA TAATTTTAAA GAAATAACTT TCCATAAGTA AAAAATTATA	1140
10	TATCTCTTTG GATATAAATG ATTTTTAAAA GATGTTTATT TAAAAA	1186
1 5	(2) INFORMATION FOR SEQ ID NO: 59:	
	(i) SEQUENCE CHARACTERISTICS: .	
50	(A) LENGTH: 428 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 59:	
55	GATCCCCCGG CTGCAGGATT CGGCACGAGT ACTGATTCTT CACTGAGCTT KGTTAGTATA	60
	AGCAGAGTTC CAAGTCTCCC CTAGGGTTGT CTCTACATTT CTTTATCATT CCAGTGGGTA	120
50 .	RGGTTTAGCT GGGGGAAGGA CATTTCATAA GGGTTAGTTG GACTGAGCAG TATGGACATT	180

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 57:	
	ACCETEGTCG TEEGCEGACE CEGECTECAE CGYGGAGGAG CTGGGGTCGC TETGGGTCGC	60
10	GAACAGAGCC CGGGACGTGC GCGCTTGGTG CACGATCCTG AAGGGGAGCT CCGAGGGGCC	120
10	CGGGTCKCCA GGGCTGCTGC GGCCATTCCC GGAGCCCGGC GCGGGGCCCG NRAGATACTG	180
	GTTTAGGCCG TCCCAGGGCT CCGGGCGCAC CCGKTGGCCG CTGCTGCAGC GGAGGGAGCG	240
15	CGGCGGCGSG NGGGCTCGGA GACAGCGTTT CTCCCGGAAT CTTCCTCGGG CAGCARGTGG	300
	GAAGTGGGAG CCGGAGCGGC ACTGGCARCG TTCTCTCCGC ANGTCGGCAC CATGCGCCCT	360
20	GCAGCCCTGC GCGGGGCCCT GCTGGGCTGC CTCTGCCTTGG CGTTGCTTTG CCTGGGCGGT	420
20	- GCGGACAAGC GCCTGCGTGA CAACCATGAG TGGAAAAAAC TAATTATGGT TCAGCACTGG	480
	CCTGAGACAG TATGCGAGAA AATTCAAAAC GACTGTAGAG ACCCTCCGGA TTACTGGACA	540
25	ATACATGGAC TATGGCCCGA TAAAAGTGAA GGATGTAATA GATCGTGGCC CTTCAATTTA	600
	GAAGAGATTA AGGATCTTTT GCCAGAAATG AGGCCATACT GGCCTGACGT AATTCACTCG	660
20	TTTCCCAATC GCAGCCGCTT CTGGAAGCAT GAGTGGGAAA AGCATGGGAC CTGCGCCGCC	720
30	CAGGTGGATG CGCTCAACTC CCAGAAGAAG TACTTTGGCA GAAGCCTGGA ACTCTACAGG	780
	GAGCTGGACC TCAACAGTGT GCTTCTAAAA TTGGGGATAA AACCATCCAT CAATTACTAC	840
35	CAAGTTGCAG ATTTTAAAGA TGCCCTTGCC AGAGTATATG GAGTGATACC CAAAATCCAG	900
	TGCCTTCCAC CAAGCCAGGA TGAGGAAGTA CAGACAATTG GTCAGATAGA ACTGTGCCTC	960
40	ACTAAGCAAG ACCAGCAGCT GCAAAACTGC ACCGAGCCGG GGGAGCAGCC GTCCCCCAAG	1020
40	CAGGAAGTCT GGCTGGCAAA TGGGGCCGCC GAGAGCCGGG GTCTGAGAGT CTGTGAAGAT	1080
	GGCCCAGTCT TCTATCCCCC ACCTAAAAAG ACCAAGCATT GATGCCCAAG TTTTGGAAAT	1140
45	ATTCTGTTTT AAAAAGCAAG AGAAATTCAC AAACTGCAGC TTTCTNAAAA AAAAANAAAA	1200
	AAAAATTGGG GGGTTTTTTT GGGGSGCCCCG GGGCCCTTGG TTTTTCCCCC CGGGGGGGT	125

50

55

(2) INFORMATION FOR SEQ ID NO: 58:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGIH: 1186 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 58:

	ATCCCGCTGG	TCATGAAGCA	GTGCCACCCG	GACACCAAGA	AGTTCCTGTG	CTCGCTCTTC	420
5	GCCCCCGTCT	GCCTCGATGA	CCTAGACGAG	ACCATCCAGC	CATGCCACTC	GCTCTGCGTG	480
	CAGGTGAAGG	ACCGCTGCGC	CCCGGTCATG	TCCGCCTTCG	GYTTCCCCTG	GCCCGACATG	540
	CTTGAGTGCG	ACCGTTTCCC	CCAGGACAAC	GACCTTTGCA	TCCCCCTCGC	TAGCAGCGAC	600
10	CACCTCCTGC	CAGCCACCGA	GGAAGCTCCA	AAGGTATGTG	AAGCCTGCAA	ТАДАДАТАДА	660
	GATGATGACA	ACGACATAAT	GGAAACGCTT	TGTAAAAATG	ATTTTGCACT	GAAAATAAAA	720
15	GTGAAGGAGA	TAACCTACAT	CAACCGAGAT	ACCAAAATCA	TCCTGGAGAC	CAAGAGCAAG	780
	ACCATTTACA	AGCTGAACGG	TGTGTCCGAA	AGGGACCTGA	AGAAATCGGT	GCTGTGGCTC	840
	AAAGACAGCT	TGCAGTGCAC	CTGTGAGGAG	ATGAACGACA	TCAACGCGCC	CTATCTGGTC	900
20 _	ATGGGACAGA	AACAGGGTGG	GGAGCTGGTG	ATCACCTCGG	TGAAGCGGTG	GCAGAAGGGG	960
	CAGAGAGAGT	TCAAGCGCAT	CTCCCGCAGC	ATCCGCAAGC	TGCAGTGCTA	GTCCCGGCAT	1020
25	CCTGATGGCT	CCGACAGGCC	TGCTCCAGAG	CACGGCTGAC	CATTTCTGCT	CCGGGATCTC	1080
	AGCTCCCGTT	CCCCAAGCAC	ACTCCTAGCT	GCTCCAGTCT	CAGCCTGGGC	AGCTTCCCCC	1140
	TGCCTTTTGC	ACGTTTGCAT	CCCCAGCATT	TCCTGAGTTA	TAAGGCCACA	GGAGTGGATA	1200
30	GCTGTTTTCA	CCTAAAGGAA	AAGCCCACCC	GAATCTTGTA	GAAATATTCA	AACTAATAAA	1260
	ATCATGAATA	TTTTTATGAA	GTTTAAAAAT	AGCTCACTTT	AAAGCTAGTT	TTGAATAGGT	1320
35	GCAACTGTGA	CTTGGGTCTG	GITGGTTGTT	GITTGTTGTT	TTGAGTCAGC	TGATTTTCAC	1380
	TTCCCACTGA	GGTTGTCATA	ACATGCAAAT	TGCTTCAATT	TTCTCTGTGG	CCCAAACTTG	1440
	TGGGTCACAA	ACCCTGTTGA	GATAAAGCTG	GCTGTTATCT	CAACATCTTC	ATCAGCTCCA	1500
Ю	GACTGAGACT	CAGTGTCTAA	GTCTTACAAC	AATTCATCAT	TTTATACCTT	CAATGGGAAC	1560
	TTAAACTGTT	ACATGTATCA	CATTCCAGCT	ACAATACTTC	CATTTATTAG	AAGCACATTA	1620
15	ACCATTTCTA	TAGCATGATT	TCTTCAAGTA	AAAGGCAAAA	GATATAAATT	TTATAATTGA	1680
	CTTGAGTACT	TTAAGCCTTG	TTTAAAACAT	TTCTTACTTA	ACTITIGCAA	ATTAAACCCA	1740
	TTGTAGCTTA	CCTGTAATAT	ACATAGTAGT	TTACCTITAA	AAGTTGTAAA	AATATIGCTT	1800
50	TAACCAACAC	TGTAAATATT	TCAGATAAAC	ATTATATTCT	TGTATATAAA	CTTTACATCC	1860
	TGTTTTACC					•	1869

⁽²⁾ INFORMATION FOR SEQ ID NO: 57:

WO 98/39446 PCT/US98/04482

202

	TTTTTGCTCA	CTCAAGCTGG	TACACGTATG	CAGCCATGCT	CAGGATATAT	AAACACTGGG	900
	ACTICAACAT	CATAGATAAA	GATACCAGCA	GTAGTCGCCT	CTCTTTCAGC	AGTTACCCAG	960
5	GGTTTTTGGA	GTCTCTGGAT	GATTTTTACA	TTCTTAGCAG	TGGATTGATA	TTGCTGCAGA	1020
	CCACAAACAG	TGTGTTTAAT	AAAACCCTGC	TAAAGCAGGT	AATACCCGAG	ACTCTCCTGT	1080
10	CCTGGCAAAG	AGTCCGTGTG	GCCAATATGA	TGGCAGATAG	TGGCAAGAGG	TGGGCAGACA	1140
10	TCTTTTCAAA	ATACAACTCT	GGCACCTATA	ACAATCAATA	CATGGTTCTG	GACCTGAAGA	1200
	AAGTAAAGCT	GAACCACAGT	CTTGACAAAG	GCACTCTGTA	CATTGTGGAG	CAAATTCCTA	1260
15	CATATGTAGA	ATATTCTGAA	CAAACTGATG	TTCTACGGAA	AGGATATTGG	CCCTCCTACA	1320
	ATGTTCCTTT	CCATGAAAAA	ATCTACAACT	GGAGTGGCTA	TCCACTGTTA	GTTCAGAAGC	1380
20	TGGGCTTGGA	CTACTCTTAT	GATTTAGCTC	CACGAGCCAA	AATTITCCGG	CGTGACCAAG	1440
	GGAAAGTGAC	TGATACGGCA	TCCATGAAAT	ATATCATGCG	ATACAACAAT	TATAAGAAGG	1500
	ATCCTTACAG	TAGAGGTGAC	CCCTGTAATA	CCATCTGCTG	CCGTGAGGAC	CCTGAACTCA	1560
25	CCTAACCCAA	GTCCTTGGAG	GTTGTTATGA	CACAAAAGGT	GGCAGATATY	TACCTAGCAT	1620
	CTCAGTACAC	ATCCTATGCC	ATAAGTGGTC	CCACAGTACA	AGGTGGCCTC	CCTGTTTTTC	1680
30	GCTGGGACCG	TTTCAACAAA	ACTCTACATC	AGGGCATGCC	AGAGGTCTAC	AACTTTGATT	1740
	TTATTACCAT	GAAACCAATT	TTGAAACTTG	ATATAAAATG	AAGGAGGGAG	ATGACGGACT	1800
	AGAAGACTGT	AAATAAGATA	CCAAAGGCAC	TATTTTAGCT	ATGTTTTTCC	CATCAGAATT	1860
35	ATGCAATAAA	АТАТАТТААТ	TTGTCAAAAA	АААААААА	AAA		1903

40 (2) INFORMATION FOR SEQ ID NO: 56:

45

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1869 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 56:

50	ACAGCTTTTC	GGGCCCGAG	TCGCACCCAG	CGAAGAGAGC	GGCCCGGGA	CAAGCTCGAA	60
	CTCCGGCCGC	CTCGCCCTTC	CCCGCTCCG	CTCCCTCTGC	CCCCTCGGGG	TCGCGCGCCC	120
55	ACGATGCTGC	AGGCCCTGG	CTCGCTGCTG	CTGCTCTTCC	TCGCCTCGCA	CTGCTGCCTG	180
JJ	GGCTCGGCGC	GCGGGCTCTT	CCTCTTTGGC	CAGCCCGACT	TCTCCTACAA	GCGCANCAAT	240
	TGCAAGCCCA	TCCCGGTCAA	CCTGCAGCTG	TGCCACGGCA	TCGAATACCA	GAACATGCGG	300
60	CTGCCCAACC	TGCTGGGCCA	CGAGACCATG	AAGGAGGTGC	TGGAGCAGGC	CGGCGCTTGG	360

	CIATORGIOC ACCIGICANO ICCOGITTAC ASSIANSONO IGCCAATOGA CCGATGCCIG	900
5	CCTGTCTCAT CCCTGTGCAA ATGGAAGTAC CTGTACCACT GTGGCCAACC ATTTCCTGCA	720
J	ANTICCTCAC AGGCTTCACA GGGCAGAAGT GTGAGACTGA TGTCAATGAG TGTGACATTC	780
	CAGGACACTG CCAGCATGGT GGCACCTGCC TCAACCTGCC TGGTTCCTAC CAGTGCCAGT	840
10	GCCTTCAGGG CTTCACAGGC CAGTACTGTG ACAGCCTGTA TGTGCCCTGT GCACCCTCGC	900
	CTTGTGTCAA TGGAGGCACC TGTCGGCAGA CTGGTGACTT CACTTTTGAG TGCAACTGCC	960
15	TTCCAGAAAC AGTGAGAAGA GGAACAGAGC TCTGGGAAAG AGACAGGGAA GTCTGGAATG	1020
15	GAAAAGAACA CGATGAGAAT TAGACACTGG AAAATATGTA TGTGTGGTTA ATAAAGTGCT	1080
	ТТАЛАСТGАЛ АЛАЛАЛАЛА ЛАЛАЛАЛАЛ ЛАЛАЛАЛ	1117
20		
25	(2) INFORMATION FOR SEQ ID NO: 55: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 1903 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 55:	
	GGCACGAGCT CGGAGAGGCG GCGCCCCTGA GTAGGCCAGG AGCCTCTCTT GCAACTTCTG	60
35 、	CCACCGCGGG CCACCGCGGC CGCCTGATCC CGCAGAGGAA GGTCGCGGCC GTGGAGCGAT	120
	GACCCGCGGC GGTCCGGGCG GGCGCCCGGG GCTGCCACAG CCGCCGCCGC TTCTGCTGCT	180
40	GCTGCTGCTG CCGCTGTTGT TAGTCACCGC GGAGCCGCCG AAACCTGCAG GAGTCTACTA	240
	TGCAACTGCA TACTGGATGC CTGCTGAAAA GACAGTACAA GTCAAAAATG TAATGGACAA	300
	GAATGGGGAC GCCTATGGCT TTTACAATAA CTCTGTGAAA ACCACAGGCT GGGGCATCCT	360
45	GGAGATCAGA GCTGGCTATG GCTCTCAAAC CCTGAGCAAT GAGATCATCA TGTTTGTGGC	420
	TGGCTTTTTG GAGGGTTACC TCATTGCCCC ACACATGAAT GACCACTACA CAAACCTCTA	480
50	CCCACAGCTG ATCACGAAAC CTTCCATCAT GGATAAAGTG CAGGATTTTA TGGAGAAGCA	540
	AGATAAGGTG GACCCGGAAA AATATCAAAG AATACAAGAC TGATTCATTT TGGAGACATA	600
	CAGGCTATGT GATGGCACAA ATAGATGGCC TCTATGTAGG AGCAAAGAAG AGGGCTATAT	660
55	TAGAAGGGAC AAAGCCAATG ACCCTGTTCC AGATTCAGTT CCTGAATAGT GTTGGAGATC	720
	TATTGGATCT GATTCCCTCA CTCTCTCCCA CAAAAAACGG CAGCCTAAAG GTTTTTAAGA	780
60	GATGGGACAT GGGACATTGC TCCGCTCTTA TCAAGGTTCT TCCTGGATTT GAGAACATCC	840

	GCTAGCTGAT	GGCAGTGTGC	GCTACCCCAT	CGTCACACCC	AGCCAGCGCT	GIGGIGGGG	960
	CTTGCCTGGT	GTCAAGACTC	TCTTCCTCTT	CCCCAACCAG	ACTGGCTTCC	CCAATAAGCA	1020
5	CAGCCGCTTC	AACGTCTACT	GCTTCCGAGA	CTCGGCCCAG	CTTCTGCCAT	CCCTGAGGCC	1080
	TCCAACCCAG	CCTCCAACCC	AGCTTTGATG	GACTAGAGGC	TATCGTCACA	GTGACAGAGA	1140
0	CCCTGGAGGA	ACTGCAGCTG	CCTCAGGAAG	CCACAGAGAG	TGAATCCCGT	GGGGCCATCT	1200
U	ACTCCATCCC	CATCATGGAG	GACGGAGGAG	GTGGAAGCTC	CACTCCAGAA	GACCCAGCAG	1260
	AGGCCCCTAG	GACGCTCCTA	GAATTTGAAA	CACAATCCAT	GGTACCGCCC	ACGGGGTTCT	1320
15	CAGAAGAGGA	AGGTAAGGCA	TTGGAGGAAG	AAGAGAAATA	TGAAGATGAA	GAAGAGAAAG	1380
	AGGAGGAAGA	AGAAGAGGAG	GAGGTGGAGG	ATGAGGCTCT	GTGGGCATGG	CCCAGCGAGC	1440
20	TCAGCAGCCC	GGGCCCTGAG	GCCTCTCTCC	CCACTGAGCC	AGCAGCCCAG	GAGGAGTCAC	1500
20	TCTCCCAGGC	GCCAGCAAGG	GCAGTCCTGC	AGCCTGGTGC	ATCACCACTT	CCTGATGGAG	1560
	AGTCAGAAGC	TTCCAGGCCT	CCAAGGGTCC	ATGGACCACC	TACTGAGACT	CTGCCCACTC	1620
25	CCAGGGAGAG	GAACCTAGCA	TCCCCATCAC	CTTCCACTCT	GGTTGAGGCA	AGAGAGGTGG	1680
	GGGAGGCAAC	TGGTGGTCCT	GAGCTATCTG	GGTCCCTCGA			1720

35

45

50

55

60

(2) INFORMATION FOR SEQ ID NO: 54:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1117 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

40 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 54:

60	ACTCCGGGGG	GGAGCGGCGG	CGGCGGCCGA	GCGGCTGAGG	CAAACTTCGG	GGCACGAGGC
120	AGCCTTTGAA	CCAGGGCCTG	CGGAGCGTAC	GCCTGGGCTT	AGGCATTTGC	CGGGGAGTCG
180	CATGTGGATC	ACCCCCTCCC	CTCTATCGGG	AGTGGGGCTC	GGGAGGAGAG	GCAGGAGGAG
240	GCCCCGCTCT	CCCGCCCTGC	CGAGAAGATG	AGGAGGCGAC	cccccccc	TGCCCAGGCG
300	CATTGCAGTG	CCCGCGCATG	CTGCGCGACC	TCTGGCTGTG	CTGCTGGCGC	GCTGTGGGCG
360	ACAATGGCAC	GTTACCTACC	AGGAATGTGT	GTGTAAATGA	TATGAACCCT	TCGAGATGGC
420	GAGACCCCTG	TGTCAACATC	GGGGAATAT	AAGGCTTCTT	AAAGGTCCAG	AGGATACTGC
480	TGGGGAAAGC	CAGGCCATGC	TTGTGTGGCC	ATGGTGGGAC	CGCTGCCAGA	TGAGAAGAAC
540	CATCTCATCC	CAGTACTCGA	AGAGGACTGC	GGTTTACAGG	TGTGCCTCAG	CACGTGCCGA
600	GCCGGGATAC	CATATGCTCA	CGGCACATGC	GCCTGAATGG	TCTCGACCTT	ATGCTTTGTG

	CACCOMOCOA O COCCOMOCOMO MONTO ACCACAMANTA	
	CAGGTGCCAG CGGCTCCTCT TTTGAGGAGC TGGACTTTGG AGGGCGAGGG GCCCTTAAGG	1020
5	GGAGTCACGG CTGGACCCTG GGACTTGAGC CCCTGGGGGA CTACCAAGTG GCTCTGGGAG	1080
	CCCACTGCCC CTGAGAAGGG CAAGGAGTAA CCCATGGCCT GCACCCTCCT GCAGTGCAGT	1140
	TGCTGAGGAA CTGAGCAGAC TCTCCAGCAG ACTCTCCAGC CCTCTTCCTC CTTCCTCTGG	1200
10	GGGAHGAGGG GTTCCTGAGG GACCTGACTT CCCCTGCTCC AGGCCTCTTG CTAAGCCTTC	1260
	TCCTCACTGC CCTTTAGGCT CCCAGGGCCA GAGGAGCCAG GGACTATTTT CTGCACCAGC	1320
15	CCCCAGGCCT GCCCCCCTG TTGTGTCTTT TTTTCAGACT CACAGTGGAG CTTCCAGGAC	1380
IJ	CCAGAATAAA GCCAATGATT TACTTGTTAA AAAAAAAAAA	1426
20	(0) The same than 100 and 100	
	(2) INFORMATION FOR SEQ ID NO: 53:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1720 base pairs	
25	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 53:	
30	GGCACGAGTG CGGCCCCAGC CTCTCCTCAC GCTCGCGCAG TCTCCGCCGC AGTCTCAGCT	60
	GCAGCTGCAG, GACTGAGCCG TGCACCCGGA GGAGACCCCC GGAGGAGGCG ACAAACTTCG	120
35	CAGTGCCGCG ACCCAACCCC AGCCCTGGGT AGCCTGCAGC ATGGCCCAGC TGTTCCTGCC	180
	CCTGCTGGCA GCCCTGGTCC TGGCCCAGGC TCCTGCAGCT TTAGCAGATG TTCTGGAAGG	240
10	AGACAGCTCA GAGGACCGCG CTTTTCGCGT GCGCATCGCG GGCGACGCGC CACTGCAGGG	300
+0	CGTGCTCGGC GGCGCCCTCA CCATCCCTTG CCACGTCCAC TACCTGCGGC CACCGCCGAG	360
	CCGCCGGGCT GTGCTGGGCT CTCCGCGGGT CAAGTGGACT TTCCTGTCCC GGGGCCGGGA	420
45	GGCAGAAGTG CTGGTGGCGC GGGGAGTGCG CGTCAAGGTG AACGAGGCCT ACCGGTTCCG	480
	CGTGGCACTG CCTGCGTACC CAGCGTCGCT CACCGACGTC TCCCCTGGCG CTGAGCGAGC	540
50	TGCGCCCCAA CGACTCAGGT ATCTATCGCT GTGAGGTCCA GCACGGCATC GATGACAGCA	600
JU	GCGACGCTGT GGAGGTCAAG GTCAAAGGTA TCCCATCCAG ACCCCACGAG AGGCCTGTTA	660
	CGGAGACATG GATGGCTTCC CCGGGGTCCG GAACTATGGT GTGGTGGACC CGGATGACCT	720
55	CTATGATGTG TACTGTTATG CTGAAGACCT AAATGGAGAA CTGTTCCTGG GTGACCCTCC	780
	AGAGAAGCTG ACATTGGAGG AAGCACGGGC GTACTGCCAG GAGCGGGGTG CAGAGATTGC	840
	CACCACGGG CAACTGTATG CAGCCTGGGA TGGTGGCCTG GACCACTGCA GCCCAGGGTG	900

PCT/US98/04482

198

	GTCACCCATC	TTCCAGTAAG	CAGTTTATTC	TGAGCCCCGG	GGGTAGACAG	TCCTCAGTGA	1680
	GGGGTTTTGG	GGAGTTTGGG	GTCAAGAGAG	CATAGGTAGG	TTCCACAGTT	ACTCTTCCCA	1740
5	CAAGTTCCCT	TAAGTCTTGC	CCTAGCTGTG	CTCTGCCACC	TTCCAGACTC	ACTCCCCTCT	1800
	GCAAATACCT	GCATTTCTTA	CCCTGGTGAG	AAAAGCACAA	GCGGTGTAGG	CTCCAATGCT	1860
10	GCTTTCCCAG	GAGGGTGAAG	ATGGTGCTGT	GCTGAGGAAA	GGGGATGCAG	AGCCCTGCCC	1920
10	AGCACCACCA	CCTCCTATGC	TCCTGGATCC	CTAGGCTCTG	TTCCATGAGC	CTGTTGCAGG	1980
	TTTTGGTACT	TTAGAAATGT	AACTTTTTGC	TCTTATAATT	TTATTTTATT	AAATTAAATT	2040
15	ACTGCAAAAA	ааааааааа	АААААААА			•	2070

20 (2) INFORMATION FOR SEQ ID NO: 52:

25

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1426 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 52:

30 CCCTCACTAA AGGGAACAAA AGCTGGAGCT CCACCGCGGT GGCGGCCGCT CTAGAACTAG 60 TGGATCCCC GGGCTGCAGG AATTCGGCAC ACGGATCGGC GTCCGCAGCG GGCGGCTGCT 120 GAGCTGCCTT GAGGTGCAGT GTTGGGGATC CAGAGCCATG TCGGACCTGC TACTACTGGG 180 35 CCTGATTGGG GGCCTGACTC TCTTACTGCT GCTGACGCTG CTGGCCTTTG CCGGGTACTC 240 AGGGCTACTG GCTGGGTGG AAGTGAGTGC TGGGTCACCC CCCATCCGCA ACGTCACTGT 300 40 GGCCTACAAG TTCCACATGG GGCTCTATGG TGAGACTGGG CGGCTTTTCA CTGAGAGCTG 360 CAGCATCTCT CCCAAGCTCC GCTCCATCGC TGTCTACTAT GACAACCCCC ACATGGTGCC 420 CCCTGATAAG TGCCGATGTG CCGTGGGCAG CATCCTGAGT GAAGGTGAGG AATCGCCCTC 480 45 CCCTGAGCTC ATCGACCTCT ACCAGAAATT TGGCTTCAAG GTGTTCTCCT TCCCGGAACC 540 CAGCCATGTG GTGACAGCCA CCTTTCCCCT AACACCACCA TTCTGTCCCA TCTGGCTGGG 600 50 CTACCCGCCG TGTCCATCCT GCCTTGGACA CCTACATCAA GGAGCGGAAG CTGTGTGCCT 660 ATCCTCGGCT GGSGATCTAC CAGGAAGACC AGAATCCATT TCATGTGCCC ACTGGCACGG 720 CCAGGGAGAC TTCTATGTGC CTGAGATGAA GGAGACAGAG TGGAAATGGC GGGGGCTTGT 780 55 GGAGGCCATT GACACCCAGG TGGATGGCAC AGGAGCTGAC ACAATGAGTG ACACGAGTTC 840 TGTAAGCTTG GAAGTGAGCC CTGGCAGCCG GGAGACTTCA GCTGCCACAC TGTCACCTGG 900 60 GGCGAGCAGC CGTGGCTGGG ATGACGGTGA CACCCGCAGC GAGCACAGCT AACAGCGAGT 960

(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 51:

	CCACGCGTCC	GGAAGAGCGC	GGCACTTCCG	CTGGCCGCTG	GCTCGCTGGC	CGCTCCTGGA	60
10	GCCGCCGCC	GGAGCGCAGG	GGGGGGGGG	CCCGGGGACT	CGCATTCCCC	GGTTCCCCCT	120
10	CCACCCCACG	CGGCCTGGAC	CATGGACGCC	AGATGGTGGG	CAGTGGTGGT	GCTGGCTGCG	180
	TTCCCCTCCC	TAGGGGCAGG	TGGGGAGACT	CCCGAAGCCC	CTCCGGAGTC	ATGGACCCAG	240
15	CTATGGTTCT	TCCGATTTGT	GGTGAATGCT	GCTGGCTATG	CCAGCTTTAT	GGTACCAGGC	300
	TACCTCCTGG	TGCAGTACTT	CAGGCGGAAG	AACTACCTGG	AGACCGGTAG	GGCCTCTGC	360
20	TTTCCCCTGG	TGAAAGCTTG	TGTGTTTGGC	AATGAGCCCA	AGGCCTCTGA	TGAGGTTCCC	420
20	CTGGCGCCCC	GAACAGAGGC	GGCAGAGACC	ACCCCGATGT	GGCAGGCCCT	GAAGCTGCTC	480
	TTCTGTGCCA	CAGGGCTCCA	GGTGTCTTAT	CTGACTTGGG	GTGTGCTGCA	GGAAAGAGTG	540
25	ATGACCCGCA	GCTATGGGGC	CACAGCCACA	TCACCGGGTG	AGCGCTTTAC	GGACTCGCAG	600
	TTCCTGGTGC	TAATGAACCG	AGTGCTGGCA	CTGATTGTGG	CTGGCCTCTC	CTGTGTTCTC	660
20	TGCAAGCAGC	CCCGGCATGG	GGCACCCATG	TACCGGTACT	CCTTTTGCCA	GCCTGTCCAA	720
30	TGTGCTTAGC	AGCTGGTGCC	AATACGAAGC	TCTTAAGTTC	GTCAGCTTCC	CCACCCAGGT	780
	GCTGGCCAAG	GCCTCTAAGG	TGATCCCTGT	CATGCTGATG	GGAAAGCTTG	TGTCTCGGCG	840
35	CAGTAACGAA	CACTGGGAGT	ACCTGACAGC	CACCCTCATC	TCCATTGGGG	TCAGCATGTT	900
	TCTGCTATCC	AGCGGACCAG	AGCCCCGCAG	CTCCCCAGCC	ACCACACTCT	CAGGCCTCAT	960
40	CTTACTGGCA	GGTTATATTG	CTTTTGAACA	GCTTCACCTC	AAACTGGCAG	GATGCCCTGT	1020
40	TTGCCTATAA	GATGTCATCG	GTGCAGATGA	TGTTTGGGGG	TCAATTTCTT	CTCCTGCCTC	1080
	TTCACAGTGG	GCTCACTGCT	AGAAACAGGG	GCCCTACTG	GAGGGAACCC	GCTTCATGGG	1140
45	GCGACACAGT	GAGTTTGCTG	CCCATGCCCT	GCTACTCTCC	ATCTGCTCCG	CATGTGGCCA	1200
	GCTCTTCATC	TTTTACACCA	TTGGGCAGTT	TGGGGCTGCC	GTCTTCACCA	TCATCATGAC	1260
	CCTCCGCCAG	GCCTTTGCCA	TCCTTCTTTC	CTGCCTTCTC	TATGGCCACA	CTGTCACTGT	1320
50	GGTGGGAGGG	CTGGGGGTGG	CTGTGGTCTT	TGCTGCCCTC	CTGCTCAGAG	TCTACGCGCG	1380
	GGGCCGTCTA	AAGCAACGGG	GAAAGAAGGC	TGTGCCTGTT	GAGTCTCCTG	TGCAGAAGGT	1440
55	TTGAGGGTGG	AAAGGGCCTG	AGGGGTGAAG	TGAAATAGGA	CCCTCCCACC	ATCCCCTTCT	1500
	GCTGTAACCT	CTGAGGGAGC	TGGCTGAAAG	GGCAAAATGC	AGGTGTTTTC	TCAGTATCAC	1560
	AGACCAGCTC	TGCAGCAGGG	GATTGGGGAG	CCCAGGAGGC	AGCCTTCCCT	TTTGCCTTAA	1620
60							

	TCAGGTGGCA	GTGGCTGCCA	ATCAGCATCT	CATTGTGCAG	GATCTGGTGA	ACATCGGGGC	360
5	ACAGGTGAAC	ACCACAGACT	GCTGGGGAAG	AACACCTCTG	CATGTGTGTG	CTGAGAAGGG	420
3	CCACTCCCAG	GTGCTTCAGG	CGATTCAGAA	GGGAGCAGTG	GGAAGTAATC	AGTTTGTGGA	480
	TCTTGAGGCA	ACTAACTATG	ATGGCCTGAC	TCCCCTTCAC	TGTGCAGTCA	TAGCCCACAA	540
10	TGCTGTGGTC	CATGAACTCC	AGAGAAATCA	ACAGCCTCAT	TCACCTGAAG	TTCAGGAGCT	600
	TTTACTGAAG	AATAAGAGTC	TGGTTGATAC	CATTAAGTGC	CTAATTCAAA	TGGGAGCAGC	660
15	GGTGGAAGCG	AAGGATCGCA	AAAGTGGCCG	CACAGCCCTG	CATTTGGCAG	CTGAAGAAGC	720
13	AAATCTGGAA	CTCATTCGCC	TCTTTTTGGA	GCTGCCCAGT	TGCCTGTCTT	TTGTGAATGC	780
	AAAGGCTTAC	AATGGCAACA	CTGCCCTCCA	TGTTGCTGCC	AGCTTGCAGT	ATCGGTTGAC	840
20	ACAATTAGAT	GCTGTCCGCC	TGTTGATGAG	GAAGGGAGCA	GACCCAAGTA	CTCGGAACTT	900
	GGAGAACGAA	CAGCCAGTGC	ATTTGGTTCC	CGATGGCCCT	GTGGGAGAAC	AGATCCGACG	960
25	TATCCTGAAG	GGAAAGTCCA	TTCAGCAGAG	AGCTCCACCG	TATTAGCTCC	ATTAGCTTGG	1020
20	AGCCTGGCTA	GCAACACTCA	CTGTCAGTTA	GGCAGTCCTG	ATGTATCTGT	ACATAGACCA	1080
	TTTGCCTTAT	ATTGGCAAAT	GTAAGTTGTT	TCTATGAAAC	AAACATATTT	AGTTCACTAT	1140
30	TATATAGTGG	GTTATATTAA	AAGAAAAGAA	RAAAAATATC	TAATTWCTCT	TGGCAGATTT	1200
	GCATATTTCA	TACCCAGGTA	TCTGGATCTA	GACATCTGAA	TTTGATCTCA	ATGGTAACAT	1260
35	TGCCTTCAAT	TAACAGTAGC	TTTTGAGTAG	GAAAGGACTT	TGATTTGTGG	CACAAAACAT	1320
22	TATTAATATA	GCTATTGACA	GTTTCAAAGC	AGGTAAATTG	TAAATGTTTC	TTTAAGAAAA	1380
	AGCATGTGAA	AGGAAAAAGG	TAAATACAGC	ATTGAGGCTT	CATTTGGCCT	TAGTCCCTGG	1440
40	GAGTTACTGG	CGTTGGACAG	GCTTCAGTCA	TTGGACTAGA	TGAAAGGTGT	CCATGGTTAG	1500
						ATTGTACATA	1560
45	CTTGGTTGTT	AACATGGTCA	TATTTGAAAT	GTATAAGTCC	ATAAAATAGA	AAAGAACAAG	1620
	TGAATTGTTG	СТАТТТАААА	AAATTTTACA	ATTCTTACTA	AGGAGTTTTT	ATTGTGTAAT	1680
	CACTAAGTCT	TTGTAGATAA	AGCAGATGGG	GAGTTACGGA	GTTGTTCCTT	TACTGGCTGA	1740
50	AAGATATATT	CGAATTGTAA	AGATGCTTTT	YCTCATGCAT	TGAAATTATA	CATTATTTGT	1800
	AGGGAATTGC	ATG					1813

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2070 base pairs

⁽²⁾ INFORMATION FOR SEQ ID NO: 51:

	AGAGCAGCAC CCTCTGAGAA TAATCAAACT GATTAGTAAT ATTCATCTAT ACTGCAAAAT	360
	AATATGTACA AAGGAAAGIT AGTGATTGTA CTGATTTTAT TACTTTTACC AAGCCATTTT	420
5	ATGTTCCTCA CTCAATGCAA AGAAATAAAA CATAATCTGA AGAAAAATAT GTCCTTATTA	480
	TTATTCACAA TAAAAAGTTG GCTTTATTCT GCAAGCCTGG GCATATTGTA CAATTGGCAG	540
10	CACTTAACGG CTCAAGTGGA TCAATGTACC AGTTTGATTC TGATCCACTG AATAGAATCT	600
10	CTCATCCATA TCTGGTGACC AGACTAACTC CATGGGAGCT GTGATAGACT GAACCATTTC	660
	TOTGGTATCC CTAGATCTCA CTAAATAAGA AAGACCCTAC ACCAGAAAAT ATAGCAACTG	720
15	ATCTATCTAT AAATTACATC TATATGCTAG CTCTTTAGTA TAAGTTGGAA AAAGGGGCCC	780
	TTTCTTGAGC ACATGGATAA AAGTATTATT GTAGTCTAAA GATTGCTGGA TTGATATTGT	840
20	GTTGTTATAA TGAAGATAAG GTACACACTG AAACCACTGT CAGATTAAGA AACTTCCACA	900
20	ACTTGTCTCA GTTCTTCAAA CAATGGAGCA AGTTCCTTTT CTAGGCTGAC AATTAGTCCT	960
	GTATTGGCAC TGCTGCTGGC TATGAAACTC ACCACCAAAG GTAAACGATT AAATTGAACC	1020
25	ACCTGGTAGG TGTTATAGTA ACAGATGATA CTTTTATTTT TGGAAAGTCC AAGTTTGCTT	1080
	CCTTGGTCTG TTGCAAGGGC AAAAGTGGAT AAGAAACCAG GTCGCAAAGC ATGCTCTGGA	1140
20	GCATTGTCAT TTGCCACTTT AATAACAGGT ACTCCATCTC TATCTGACAC AACAATGGCA	1200
30	TGGAGCCCTT CAACACTTGG TAACTTTTTA TACAAGAATC GCTTTAGGTC ATCCGCCATG	1260
	ATGAACCCCC TTCTCTCGCA GGATCAATCT CCACGCCTGG GGTTTCTGGG CTGCCTGGTT	1320
35	CTCTCCGCTG TCACTTCAGG GACAGCTTTA AAGACAGGTT CCTCCTCAAG CCACCGTCAC	1380
	ATGATTCATG ACCTCGTCTG CGCTCCAG	1408
40		
40		
	(2) INFORMATION FOR SEQ ID NO: 50:	
45	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1813 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 50:	
	CATGGTGGGG CACGAGATGG CCTCTRACTC TTCWAACACT TCACTGCCAT TCTCAAACAT	60
	GGGAAATCCA ATGAACACCA CACAGTTAGG GAAATCACTT TTTCAGTGGC AGGTGGAGCA	120
55	GGAAGAAAGC AAATTGGCAA ATATTTCCCA AGACCAGTTT CTTTCAAAGG ATGCAGATGG	180
	TGACACGTTC CTTCATATTG CTGTTGCCCA AGGGAGAAGG GCACTTTCCT ATGTTCTTGC	240
60	AAGAAAGATG AATGCACTTC ACATGCTGGA TATTAAAGAG CACAATGGAC AGAGTGCCTT	300

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 805 base pairs

5	(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
	· ·	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 48:	
10	TGCAGAAGAG ATGGAGTTGC TGTTGGAAAA CTACTACCGA TTGGCTGACG ATCTCTCCAA	60
	TGCAGCTCGT GAGCTTAGGG TGCTGATTGA TGATTCACAA AGTATTATTT TCATTAATCT	120
15	GGACAGCCAC CGAAACGTGA TGATGAGGTT GAATCTACAG CTGACCATGG GAACCTTCTC	180
13	TCTTTCGCTC TTTGGACTAA TGGGAGTTGC TTTTGGAATG AATTTGGAAT CTTCCCTTGA	240
	AGAGGACCAT AGAATTITTT GGCTGATTAC AGGAATTATG TICATGGGAA GTGGCCTCAT	300
20	CTGGAGGCGC CTGCTTTCAT TCCTTGGACG ACAGCTAGAA GCTCCATTGC CTCCTATGGT	360
	ATGAAGGATA TOGTTCACGG CGGTATTGTG GAAGGGTTAT GATCATGGGC CCTAAAGTCA	420
	GAGCGCCTGG GATTAAGTTG TCACAGGCAC TATGGCCCTT GCGAGTTGCT TTCTCAAACT	480
25	TCCTTCAGTT TCCCTATCTG TCAGTTAAGT CGGTATTACC TGCTTCATAG GGTTATGGGA	540
	AGAATTAAAC AATATGTGTA AAGCACTTAC TAGCACACTG CCTAACACAA TAAGTTAGAA	600
30	ATATAATTTG TGTAGAACTC TGACAACATA CATTTAAACA GATGTTAGTA ATTCTGGTAT	660
	AAGGTTTGTC ATAACCAAAT GGAAATGTAG GAAACATTTA TAATGTTCTT AAAAGATAGR	720
	AAATTCACCT CCATTTTCTT TGTACTTGAA GATGGCACCA CTGGAATAAA TACTTAAGAC	780
35	ACTGAAAAA AAAAAAAAA AACTC	805
40		
	(2) INFORMATION FOR SEQ ID NO: 49:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1408 base pairs	
45	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 49:	
50	TCATTATTTA TTCATGTGGC TGAAAGAGTA TATTAATTAT GTTTAGATTT TTGGAAAAAG	60
	TCTGAACAAA AAAAGGACCT ATACAGTGCT CAAACTATAT TTTTAAAAAAT ACTATTTTAT	120
55	TTTTACTCAC ATATGAAAAA AATGGCTGTA CTATCATGTT TACATACATA CTAACATTGG	180
	AAACAGAATA ACGAATTGTA TITAAATTTT ATGAAGAACA CACAAACATT AAAACACTGA	240
	TTGGTTACAG AAAGCAGAGT TTGAGGAAAA AACATTAGCT ATAATTTTCA TTTTCATTAA	30
60		

	AACCATTATT GGATAACTGG CTTTTTTCT TCCTCTTTGG AATGTAACAA TAAAAATAAT	1740
5	TTTTGAAACA TCAAAAAAAA AAAAAAAAAA AA	1772
10	(2) INFORMATION FOR SEQ ID NO: 47: (i) SEQUENCE CHARACTERISTICS:	
15	(A) LENGTH: 1107 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 47:	
20	CGGGCGAGAA GGGCAGACGG GACATGCAGC CTCTTCCGCC TGAGCCCCCGG AAGTGATGTG	60
20	GCTGCGGCAT CGCGGCCTCG CTATGTCTGC CATTTTCAAT TTTCAGAGTC TATTGACTGT	120
	AATCTTGCTG CTTATATGTA CCTGTGCTTA TATTCGATCC TTGGCACCCA GCCTCCTGGA	180
25	CAGAAATAAA ACTGGATTGT TGGGTATATT TTGGAAGTGT GCCAGAATTG GTGAACGGAA	240
	GAGTCCTTAT GTTGCAGTAT GCTGTATAGT AATGGCCTTC AGCATCCTCT TCATACAGTA	300
30	GCTGGGGAAA ATGCCAGAAT GTAGTTGCCA TCAGATTTGA TTGTGAACAA GGACTGACTG	360
50	CAGAAAATAA TGGAAAGGAT GTTTAACTCT TTTATCTCCG AACATTGAAT GAGATAAATT	420
	TCCAGATGCT GTTCTCTATT TTAATGTTAT TGGACCAATG TTCTGTATAA ACAATTAAGA	480
35	TGTAACCATT TAATAGTCTG TAACAATCAA CCTCAGTACT GTCACTACAA TATTACATTC	540
	TGCAAATGTT ATTCTGTTGT ATCAGATACA AAATTTTAGT GAGGTATCTC TAAGGCACAT	600
40	AGTAGAAAAC AAAATTGGTT AATTACTCAA GTTCCTTTCA CTGTGATTTG GAAATGATTT	660
40	AATCTTTATA GAATGAGAAC CTTTTTTGGA CTAGCTTTTT TATTAAAATG GCTCAATTTG	720
	TGTTGATAAG GATTGCATTA ATATTTAATA GTGCTTGCTT TTCCTCTGGG CACACCATTT	780
45	TGATCATTAA CCAGAGTACC TCTACTCTTA GCAAACTCTA GTTTATGACA AGTATTTAAA	840
	ATATTTAAAA CAAGCTTATG CAGTTCTTAA GGACGAAGGT AAATGAGATG TAACTTAAAA	900
50	ATAGTATTGG GAAAATGTTG ATAGTTAACA TTAGTGGATT TAGACTAGCC AAATGACATA	960
50	GTAGGCTCTG AAACATCTTG TCAAGTATAT GTATTTTGTG CATGAATTTT TGCTGGAAAG	1020
	CTGTCTTTCT CTGAAAAACA CAACGTTCTT AGAATGAAAA GAACAATTAT AAAATAAAAA	1080
55	AAAAATTTAA AAAAAACTGG GCGGGGG	1107

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 46:	
5	TCGACCCACG CGTCCGGGAG GATCCCCAGC CGGGTCCCAA GCCTGTGCCT GAGCCTGAGC	60
	CTGAGCCTGA GCCGAGCCGG GAGCCGGTCG CGGGGCTCC GGGCTGTGGG ACCGCTGGGC	120
10	CCCCAGCGAT GGCGACCCTG TGGGGAGGCC TTCTTCGGCT TGGCTCCTTG CTCAGCCTGT	180
	COTOCCTOCC CCTTTCCCTC CTCCTCCTCC CCCACTCTCA GACGCCCCCA AGAATTTCGA	240
1.5	GGATGTCAGA TGTAAATGTA TCTGCCCTCC CTATAAAGAA AAATTCTGGG CATATTTATA	300
15	ATAAGAACAT ATCTCAGAAA GATTGTGATT GCCTTCATGT TGTGGAGCCC ATGCCTGTGC	360
	GGGGCCTGA TGTAGAAGCA TACTGTCTAC GCTGTGAATG CAAATATGAA GAAAGAAGCT	420
20	CTGTCACAAT CAAGGTTACC ATTATAATTT ATCTCTCCAT TTTGGGCCTT CTACTTCTGT	480
	ACATGGTATA TCTTACTCTG GTTGAGCCCA TACTGAAGAG GCGCCTCTTT GGACATGCAC	540
25	AGTTGATACA GAGTGATGAT GATATTGGGG ATCACCAGCC TTTTGCAAAT GCACACGATG	600
23	TGCTAGCCCG CTCCCGCAGT CGAGCCAACG TGCTGAACAA GGTAGAATAT GGCACAGCAG	660
	CGCTGGAAGC TTCAAGTCCA AGAGCAGCGA AAAGTCTGTC TTTGACCGGC ATGTTGTCCT	720
30	CAGCTAATTG GGGAATTGAA TTCAAGGTGA CTAGAAAGAA ACAGGCAGAC AACTGGAAAG	780
	GAACTGACTG GGTTTTGCTG GGTTTCATTT TAATACCTTG TTGATTTCAC CAACTGTTGC	840
35	TGGAAGATTC AAAACTGGAA GKAAAAACTT GCTTGATTTT TTTTTCTTGT TAACGTAATA	900
33	ATAGAGACAT TTTTAAAAGC ACACAGCTCA AAGTCAGCCA ATAAGTCTTT TCCTATTTGT	960
	GACTITIACT AATAAAAATA AATCTGCCTG TAAAATAAAT TAAAAAAATCC TTTACCTGGA	1020
40	ACAAGCACTC TCTTTTCAC CACATAGTTT TAACTTGACT TTCCAAGATA ATTTTCAGGG	1080
	TTTTIGTTGT TGTTGTTTT TGTTTGTTTG TTTTGGTGGG AGAGGGGAGG GATCCCTGGG	1140
45	AAGTGGTTAA CAACTTTTTT CAAGTCACTT TACTAAACAA ACTTTTGTAA ATAGACCTTA	1200
73	CCTTCTATTT TCGAGTTTCA TTTATATTTT GCAGTGTAGC CAGCCTCATC AAAGAGCTGA	1260
	CTTACTCATT TGACTTTTGC ACTGACTGTA TTATCTGGGT ATCTGCTGTG TCTGCACTTC	1320
50	ATGGTAAACG GGATCTAAAA TGCCTGGTGG CTTTTCACAA AAAGCAGATT TTCTTCATGT	1380
	ACTGTGATGT CTGATGCAAT GCATCCTAGA ACAAACTGGC CATTTGCTAG TTTACTCTAA	1440
55	AGACTAAACA TAGTCTTGGT GTGTGTGGTC TTACTCATCT TCTAGTACCT TTAAGGACAA	1500
55	ATCCTAAGGA CTTGGACACT TGCAATAAAG AAATTTTATT TTAAACCCAA GCCTCCCTGG	1560
	ATTGATAATA TATACACATT TGTCAGCATT TCCGGTCGTG GTGAGAGGCA GCTGTTTGAG	1620
60	CTCCAATGTG TGCAGCTTTG AACTAGGGCT GGGGTTGTGG GTGCCTCTTC TGAAAGGTCT	1680

	GGGGGAAAG	AGGGCGGACA	GGCCCCTCCC	TCTGCCCTCT	CCCTGCAGAA	TGTGGCAGGC	900
	GGACCTGGAA	TGTGTTGGAG	GGAAGGGGGA	GTACCACCTG	AGTCTCCAGC	TTCTCCGGAG	960
5	GASCCAGCTG	TCCTGGTGGG	ACGATAGCAA	CCACAAGTGG	ATTCTCCTTC	AATTCCTCAG	1020
	CTTCCCCTCT	GCCTCCAAAC	AGGGGACACT	TCGGGAATGC	TGAACTAATG	AGAACTGCCA	1080
10	GGGAATCTTC	AAACTTTCCA	ACGGAACTTG	TTTGCTCTTT	GATTTGGTTT	AAACCTGAGC	1140
10	TGGTTGTGGA	GCCTGGGAAA	GGTGGAAGAG	AGAGAGGTCC	TGAGGCCCC	AGGGCTGCGG	1200
	GCTGGCGAAG	GAAATGGTCA	CACCCCCCGC	CCACCCCAGG	CGAGGATCCT	GGTGACATGC	1260
15	TCCTCTCCCT	GCTCCGGG	AGAAGGGCTT	GGGTGACCT	GAAAGGGAAC	CATCCTGGTG	1320
	CCCCACATCC	TCTCCTCCGG	GACAGTCACC	GAAAACACAG	GTTCCAAAGT	CTACCTGGTG	1380
20	CCTGAGAGCC	CAGGGCCCTT	CCTCCGTTTT	AAGGGGGAAG	CAACATTTGG	CACGAGATGG	1440
20	GCTGGTCAGC	TGGTCTCCTT	TTCCTACTCA	TACTATACCT	TCCTGTACCT	GGGTGGATGG	1500
	AGCGGGAGGA	TGGAGAGACG	GGACATCTTT	CACCTCAGGC	TCCTGGTAGA	GAATACAGGG	1560
25	GATTCTACTC	TGTGCCTCCT	GACTATGTCT	GGCTAAGAGA	TTCGCCTTAA	ATGCTCCCTG	1620
	TCCCATGGAG	AGGGACCCAG	CATAGGAAAG	CCACATACTC	AGCCTGGATG	GGTGGAGAGG	1680
30	CTGAGGGACT	CACTGGAGGG	CACCAAGCCA	GCCCACAGCC	AGGGAAGTGG	GGAGGGGGC	1740
20	GGAAACCCAT	GCCTCCCAGC	TGAGCACTGG	GAATGTCAGC	CCAGTAAGTA	TTGGCCAGTC	1800
	AGGCGCCTCG	TGGTCAGAGC	AGAGCCACCA	GCTCCCACTG	CCCCGAGCCC	TGCACAGCCC	1860
35	TCCCTCCTGC	CTGGGTGGGG	GAGGCTGGAG	GTCATTGGAG	AGGCTGGACT	GCTGCCACCC	1920
	CGGGTGCTCC	CGCTCTGCCA	TAGCACTGAT	CAGTGACAAT	TTACAGGAAT	GTAGCAGCGA	1980
40	TGGAATTACC	TGGAACAGTT	TTTTGTTTTT	GTTTTTGTTT	TIGITITIGT	GGGGGGGGC	2040
, ,	AACTAAACAA	ACACAAAGTA	TTCTGTGTCA	GGTATTGGGC	TGGACAGGGC	AGTTGTGTGT	2100
	TGGGGTGGTT	ттттстста	TTTTTTTGTT	TGTTTCTTGT	TTTTTAATAA	TGTTTACAAT	2160
45	CTGCCTCAAT	CACTCTGTCT	TTTATAAAGA	TTCCACTCCA	GTCCTCTCTC	CTCCCCCTA	2220
	CTCAGGCCCT	TGAGGCTATT	AGGAGATGCT	TGAAGAACTC	AACAAAATCC	CAATCCAAGT	2280
50	CAAACTTTGC	ACATATTTAT	ATTTATATTC	* AGAAAAGAAA	CATTTCAGTA	АТТТАТААТА	2340
50	AAGAGCACTA	TTTTTTAATG	ААААААААА	AAAAAAA			2378

- (2) INFORMATION FOR SEQ ID NO: 46:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1772 base pairs

PCT/US98/04482 WO 98/39446

190

	TTCAGATCTT TTCATGAGAA CTGGAAATGT AGCTGGGTGG CACCTACCTA GGTTGCTACG	300
5	TAGTGAGTAG ACTITCTCTT GGGTATAGTA AGCCTCAGAC AGCTTTCACT TTTATCTACT	360
,	TTACTTGTGG AAATAAAACA GTCATTTTGT TCTGAAAGAA TAAGATAGCT TTCTGTAGAG	420
	AAGGAATTCC TACCTCTAAA AGCTGCCTTG AGAACTCAGA ACTGGCAGTT TTCTGAGGTG	480
10	ATTTTTAAAT TTCAGTATTA GGGAGAGTCC AGCATTTGCT GACACAGATT CTACATAACT	540
	AATGTATGAT AGCAAATGCA AAACTATTAT AATGTGGTGT ATCTTGCGCA TACACAGGTT	600
15	AGAACAAGTA GACTCTGGCA GCAGATCTCC AGAGACCCAA GTTTAGGTTC TCATAGTGTA	660
	TTTGAAGTAG TTATACTCCT GGCTTAAGTA GTTTAGTGCC TGGGAGAATC CATTACTGAA	720
	AAGCATTTAA CTTAAAAAAA AAAAAAAAA AAAACTGAAA AGGTAGTGAA TACAGAATAG	780
20	- ·	
	(2) INFORMATION FOR SEQ ID NO: 45:	
25	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 2378 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
50	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 45:	
	GCGAAGCAGC TGAAGCCGCC GCCGCGCAGA ATCCACGCTG GCTCCGTGCG CCATGGTCAC	60
35	CCACAGCAAG TITCCCGCCG CCGGGATGAG CCGCCCCCTG GACACCAGCC TGCGCCTCAA	120
	GACCTTCAGC TCCAAGAGCG ACTACCAGCT GGTGGTGAAC GCAGTGCGCA AGTGCAGGAG	180
40	AGCGGCTTCT ACTGGAGCGC AGTGACCGGC GGCGAGGCGA	240
	CCCGCCGGCA CCTTTCTGAT CCGCGACAGC TCGGGACCAG CGCCACTTCT TCACGCTCAG	300
	CGTCAAGACC CAGTCTGGGA CCAAGAACCT GCGCATCCAG TGTGAGGGGG GCAGCTTCTC	360
45	TCTGCAGAGC GATCCCCGGA GCACGCAGCC CGTGSCCCGC TTCGACTGCG TGCTCAAGCT	420
	GGTGCACCAC TACATGCCGC CCCCTGGAGC CCCCTCCTTC CCCTCGCCAC CTACTGAACC	480
50	CTCCTCCGAG GTGCCCGAGC AGCCGTCTGC CCAGCCACTC CCTGGGAGTC CCCCCAGAAG	540
	AGCCTATTAC ATCTACTCCG GGGGCGAGAA GATCCCCCTG GTGTTGAGCC GGCCCCTCTC	600
	CTCCAACGTG GCCACTCTTC AGCATCTCTG TCGGAAGACC GTCAACGGCC ACCTGGACTC	660
55	CTATGAGAAA GTCACCCAGC TGCCGGGGCC CATTCGGGAG TTCCTGGACC AGTACGATGC	720
	CCCGCTTTAA GGGGTAAAGG GCGCAAAGGG CATGGGTCGG GAGAGGGGAC GCAGGCCCCT	780
	CTCCTCCGTG GCACATGGCA CAAGCACAAG AAGCCAACCA GGAGAGAGTC CTGTAGCTCT	840

60

	GGACAGGGAA GACATTACAC TAGTTGAGGC TACCGAACCT TACATTITGC TAGAGCTCAA	540
	GTAATAGAAA CTTAGTTTCA GAATCCTGAA TTCAGCACCT ATTTTGAATT AATGTGAGAC	600
5	CACAGGTGGC AGGCAGATTC CTGCTTGGCA TAAGCATTTG TAGGTCTTCA TTCAATTCTG	660
	TTAGATTTT TTATTGGACT TACATAATGC CGTTTATTTG AGAAACACAT AACATCTCTC	720
10	CTTTCTATGA AAAATTTTTT AAAAGGTGGT TAAAATTGCC TTTAATTGCC CAGTAGACTA	780
10	ATTCCACAGT CAGAACATGC AAACTTTTTT GAAGAAATTA CTTGAATAAG TAGTTTTCAT	840
	GTTTTCAATA TGCAGTTTTG AAAATGAGGA TTCACCTAGA CTTTTTTAGA TTTACTACYA	900
15	GGAAACCTTC CYCATATGAA TAACCATTTA TATGTGTTTT GCTTAAAGTA TTCCAATGCC	960
	TATTTTCCAA GCACAGTTCT GCCCCCCGGT TGACTTTTAT GCCACGTGTG CTTCATGATG	1020
20	GAACTTTTAG GTCAGTTCCT ATTAAATGAG CTCTTYTGCA GATAGCACAT TCAGTAGCCT	1080
20	TATTTTGTTG ATGGAATACT GTATCATATG CTCAACTCTG AAAACCTTGA ACACGGCCAA	1140
	AATCCATAAA GATTATAAAA GCAAACTAAG TTGTGAAGCT ATAGTACATG TAGGCATTTA	1200
25	GTTAAGTATA GCAATTCAAA CTGACCTGCA TCCATCCAAA ACAAATTCCT CCTTCAACCT	1260
	TATTTTTACT TGAAATTTGC TAGAAGAAAT AGCAAACCGA AATTTGTTTT ATGCATGAGT	1320
30	TAATACCACT GGCTCAGCAA ATACAAGTTA GTTTGCTTTA AGCAGGTAAC TTTTTTTGTA	1380
30	ATGGAAGAAA TGCACTACAA AGTTAAGACA GATTTTTGCT AAGTGCAGGA GGCCCTTTAT	1440
	TATTGCTGCA GAAAACAAAA GCCTGGCTGA GTTGATGTTT TACATTCTCC CTTACTGAAA	1500
35	TCTACATGAC ATGATGCTTC TTGCTGGGTT TTTGTACATG TAAACATTGT CAAGCTGTGA	1560
	AAGAAAATGG CTGGAGGTGT GCTTTGTGTG AAAGGTGAGC ACTGAAAGTA TCTGTTAAGT	1620
40	TCTCCNGAAA AAAAA	1635
40	4	
45	(2) INFORMATION FOR SEQ ID NO: 44:	
	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 780 base pairs(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 44:	
	AACATGGTCA TGTCTTTTAG TTTCATTATT TTCCTACTCC TTGTATGTCA AGAAATTACA	. 60
55	TITTGCATGT CTTATGGAGA TGCTGTTAAT TGCTTCAGTG AGTGCTTTTC TAATCTGCAG	120
	ACCATTTACA TITCCTGTTT GCAGCATGCT GTGTGCAAAC AYTCAGTAAT TTGGAGTATT	186
60	CAATTATTTG TTAGGGCTCT TCCTATTTCC AAATGTGCTG AATTGTCTAT TGATGGGATT	240

WO 98/39446 PCT/US98/04482

188

	ATACCTCTTC	TTACAGTGAG	GAGTATGCAA	AATCTGGAAA	GATATTCTAT	TTTTTTTATA	1860
5	TAGGTAGATA	GGATCGCCAT	TTATTTCCTA	TTTAGATATA	CTGACATTCA	TCCATATGAA	1920
J	AATATGCAGG	TCATTAGCTT	ACTATAATTT	ACTITIGACT	TAATGGGGCA	TAAATAAAAC	1980
	TTTCATAGTA	CACATGAGGT	GGATATTTGA	TACACAGAAC	ATTTGCGGTG	GGCTTTCTGT	2040
10	GGGTTAGATG	TAAAGCCCAC	ATATTTTAAT	ATTCACTATT	TTAAATGAGC	AATGCATGAG	2100
	GGGAATGCAG	TGTCAGTACC	TGGCCTATTT	TTAAACTAGT	GTAATCACCC	TAGTCATACC	2160
15	ATTCAGTATG	TTTGCTTTTT	AAAATAAGTA	ACCACAATTA	AGTTGTTGTA	GCCCTTGCAC	2220
13	TTCAAGAGAT	CTAGTCTTTA	CTTTCAGTTG	TCTGTTAGGT	CCATTCTGTT	TACTAGACGG	2280
	ATGTTAATAA	AAACTATGCG	AGCCTGGAAT	GGAATTCTCC	AGCCAAATTT	TAGTCTTGTC	2340
20	CTCTCCATCT	TGATTGGATT	AATTCCAAAT	TCTAAAATGA	TTCAGTCCAC	AATAGCTCTA	2400
	GGGGATGAAG	AATTTGCCTT	ACTTTGCCCA	GTTCCTAAGA	CTGTGAGTTG	TCAAATCCCT	2460
25	AGACTGTAAG	CTCTTCAAGG	AGCAAGAGGC	GCATTTTCTC	CGTGTCATGT	AATTTTTCTA	2520
25	AGGTGTTTGG	CAGCACTCTG	TACCCTGTGG	AGTACTCAGT	ACCTTTTGTT	TGATGTTGCT	2580
	GACAAGACCT	GAAAAAAAT	CCCTTAAAAA	AAAAACCCAT	TAAAGTGTAG	CAAAACCGAA	2640
30	AAAAAAWA	АААААААА					2659

35 (2) INFORMATION FOR SEQ ID NO: 43:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1635 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 43:

45	CGAGGAGGTC	ATGAACAAGG	AGGCGGGAGA	GGTGGACGTG	GTGGCTATGA	CCATGGTGGC	60
	CGAGGGGGAG	GAAGAGGAAA	TAAGCATCAA	GGAGGCTGGA	CAGATGGAGG	GAGTGGTGGA	120
50	GGAGGTGGCT	ACCAAGATGG	TGGTTATCGA	GATTCAGGTT	TCCAGCCAGG	TGGCTATCAT	180
50	GGTGGCCACA	GCAGTGGTGG	CTATCAAGGC	GGAGGTTATG	GTGGCTTCCA	AACATCTTCT	240
	TCATATACAG	GAAGTGGATA	CCAGGGTGGT	GGCTACCAGC	AGGACAATAG	ATACCAAGAT	300
55	GGCGGGCACC	ATGGTGATCG	TCCTCCTCCT	CGTGCTGGGC	GAGGTGGTCG	TGGAGGCCGA	360
	GGTGGTCGTG	CAGGCCAGGG	AGGAGGCTGG	GGAGGAAGAG	GGAGCCAGAA	TTATCACCAA	420
60	GGGGTCAAT	TTGAACAGCA	TTTCCAGCAT	GGAGGTTATC	AGTATAATCA	TTCTGGATTT	480

60

	GGCACGAGCT	TTTCTCTAGA	GTCTGAAAGA	TGCTAGAAAG	AAATAAATT	TAACTTACTT	60
5	AAGAGAATTA	TGGATCTTTT	AAAATTIA	ATTAACTTGA	TGATTTGAAC	TAACAGTTAT	120
J	GATAATTCTG	GTATTTATAG	CTTTTTTTAT	TCCCCTGCAG	AAAACCATAG	GCAAAATTGC	180
	AACATGCTTG	GAATTGCGAA	GTGCAGCTTT	ACAGTCCACA	CAGTCTCAAG	AAGAATTTAA	240
10	ACTGGAGGAC	CTGAAGAAGC	TAGAACCAAT	CCTAAAGAAT	ATTCTTACAT	ATAATAAAGA	300
	ATTCCCATTT	GATGTTCAGC	CTGTCCCATT	AAGAAGAATT	TTGGCACCTG	GTGAAGAAGA	360
15	GAATTTGGAA	TTTGAAGAAG	ATGAAGAAGA	GGGTGGTGCT	GGAGCAGGTC	TCCTGATTCT	420
15	TTCCTGCTAG	AGTTCCCGGT	ACTTTATTAC	CAAGGTTGCC	ATCGGAACCA	GGAATGACAT	480
	TACTCACTAT	CAGAATTGAG	AAAATTGGTT	TGAAAGATGC	TGGGCAGTGC	ATCGATCCCT	540
20	ATATTACAGT	TAGTGTAAAG	GATCTGAATG	GCATAGACTT	AACTCCTGTG	CAAGATACTC	600
	CTGTGGCTTC	AAGAAAGAA	GATACATATG	TTCATTTTAA	TGTGGACATT	GAGCTCCAGA	660
25	AGCATGTTGA	AAAATTAACC	AAAGGTGCAG	CTATCTTCTT	TGAATTCAAA	CACTACAAGC	720
23	CTAAAAAAAG	GTTTACCAGC	ACCAAGTGTT	TTGCTTTCAT	GGAGATGGAT	GAAATTAAAC	780
	CTGGGCCAAT	TGTAATAGAA	CTATACAAGA	AACCCACTGA	CTTTAAAAGA	AAGAAATTGC	840
30	AATTATTGAC	CAAGAAACCA	CTTTATCTTC	ATCTACATCA	AACTITGCAC	AAGGAATGAT	900
	CCTGACATGA	TGAACCTGGA	ACTICTGTGA	ATTTTACCAC	TCAGTAGAAA	CCATCATAGC	960
35	TCTGTGTAGC	ATATTCACCC	TTCAACAGGC	AGGAAGCAAG	CCGTACCCAG	ACCAGTAGGC	1020
55	CGGACGGAGT	CAAATGCAAA	GCTGTACCAC	AGAATTCAGA	GTCCAGCACA	TCACACTGAC	1080
	GTATAGGACT	CCTTGGGATA	CAGGTTTATT	GTAGATTTTG	AAACATGTTT	TTACTTTTCT	1140
40	ATTAATTGTG	CAATTAATAG	TCTATTTTCT	AATTTACCAC	TACTCCTACC	CTGCTTCCTG	1200
	GAACAATACT	GTTGTGGGTA	GGATGTGCTC	ATCTTCAGAC	TTAATACAGC	AATAAGAATG	1260
45	TGCTAGAGTT	TACACATCTG	TTCACTTTTG	CTCCAATATG	CTCTTTTGAC	TTAACGTCAA	1320
43	GCTTTGGGTT	GATGTGGGTA	GGGTAGTGTC	AAACTGCTTT	GAGAGGAATG	GGACCAGTTC	1380
	TGCTGCCTAA	GAAGGTCTGT	CTGGATGTTT	ATAGGCAGCA	CCTCTGAAGT	GGCCTAAATT	1440
50	CACCCTGATC	TGATAGTTTT	CCTGCTTAGA	AAGTGTGCCT	TGGCCAGATC	AGTATCCCAC	1500
	ATGGGAGTGT	TCCCTAGGTT	GTAGCTGTGA	TTGTTTCCAG	ATGACCAGAT	TGTTTTTCTG	1560
55	AAAATGAGCA	TATTTTTAGT	CATGTCGATT	AGCTGTTCTT	CTACATCACA	TTGTTACTCT	1620
J.J	TTCTGATGAT	GATTCTAGGG	TTAACATTGG	AACCATCTCA	AAATAATTAC	AAAGTTTTAG	1680
	ATGGGTTTAC	AATGTCTTCT	AAACAATGTA	ATCTAAAAAT	AATTGAGTCA	GATGCTAACG	1740
60	AGATACTGCA	GGCATAACTG	CTGTTTTTCT	GACAACTGAT	TGTGAAACCT	TAAAACCTGC	1800

	TGAGGCCATG	GCTCCGTCCC	CGGAGTTGGG	GGTACCCGTT	GCAGAGCCAG	GGACATGATG	1140
	CAGGCGAAGT	TGGGGATCTG	GCCAAGTTGG	ACTTTGATCC	TTTGGGCAGA	TGTCCCATTG	1200
5	CTCCCTGGAG	CCTGTCATGC	CTGTTGGGGA	TCAGGCAGCC	TCCTGATGCC	AGAACACCTC	1260
	AGGCAGAGCC	CTACTCAGCT	GTACCTGTCT	GCCTGGACTG	TCCCCTGTCC	CCGCATCTCC	1320
10	CCTGGGACCA	GCTGGAGGGC	CACATGCACA	CACAGCCTAG	CTGCCCCCAG	GGAGCTCTGC	1380
	TGCCCTTGCT	GCCCTGCCC	TTCCCACAGG	TGAGCAGGGC	TCCTGTCCAC	CAGCACACTC	1440
	AGTTCTCTTC	CCTGCAGTGT	TTTCATTTTA	TTTTAGCCAA	ACATTTTGCC	TGTTTTCTGT	1500
15	TTCAAACATG	ATAGTTGATA	TGAGACTGAA	ACCCCTGGGT	TGTGGAGGGA	AATTGGCTCA	1560
	GAGATGGACA	ACCTGGCAAC	TGTGAGTCCC	TGCTTCCCGA	CACCAGCCTC	ATGGAATATG	1620
20	CAACAACTCC	TGTACCCCAG	TCCACGGTGT	TCTGGCAGCA	GGGACACCTG	GGCCAATGGG	1680
	CCATCTGGAC	CAAAGGTGGG	GTGTGGGGCC	CTGGATGGCA	GCTCTGGCCC	AGACATGAAT	1740
	ACCTCGTGTT	CCTCCTCCCT	CTATTACTGT	TTCACCAGAG	CTGTCTTAGC	TCAAATCTGT	1800
25	TGTGTTTCTG	AGTCTAGGGT	CTGTACACTT	GTTTATAATA	AATGCAATCG	TTTGGAAAAA	1860
	АААААААА	AAACTCGTAG	eeeeeeccce	TACCCAATGG	GCYCMMARAT	AGTAGARWAC	1920
30	RAAAAYAMCA	ANTGCAACCA	AAGAGGGCC	AGGGGANTTT	TAAGAGGCC	CCCTTTTGGG	1980
,,	GGNATCCANT	TTAGCCGGGG	TTNTTAAGGG	AAGTTGCNTG	GCGGGGTTA	GGGCCCSGTT	2040
	KYTWCTTCCA	ACCAAGGGTT	YTYGTGGTTA	GGCCGGGTTG	GGCCCMATGG	GCTGGGCTGG	2100
35	GTAAAGTGGT	GGGTMAYTGC	MATTGGGTAG	GGTGCTGCTG	GCATTCCTGG	CTGAGGCGGC	2160
	ATGGTGTGGT	AGCCCTGGTA	GCTTGGTCCA	GGGTAGCTGG	GCGGCACACT	TGGAGGCTGA	2220
40	GGATAAGGGG	CATGCACCCA	CACTGGTGGA	TCTCCTCCTC	GTGACAACCG	GACGTGGTCG	2280
••	GCGGCACGTC	TTGTAAAGGC	AGCAGCAGGA	GCAGGTGAAG	CAGATGATGA	TAGTGACGAC	2340
	AGACAGCACA	AAGATGGTCC	AGCCAACGGC	CAAGGTCGCT	CCGAACCCCA	TGTTAGCCTC	2400
45	TGCCTTCACC	CAGAGGCCTC	CTGTACCCCT	GGCTTTCCC	CTCTTCCCAT	CGTGGGCCAC	2460
	TCACTCGTGC	С					2471

55

(2) INFORMATION FOR SEQ ID NO: 42:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 2659 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 42:

60

	TGTCTGGCCC CCACCCACTG MCCATCCCCC ATTGTTGTCT GGATGTGGTT CTATTTTTTA	240
5	TOGGTCTCCT TICCCCTCCT CCCCGTTYTC GCCCCCGMCC CACCCCCTGC TCCCACTACC	300
3	CTTTGTCTCT TGCTCTTTCT TGGGYTTCTG TACAACTCAA CTTGTATACA CTGTGTACAC	360
	ACAACCAGYC WAACGCAAAA CCCAACGGCA AACACTTTAA AAAAAAAAAA	420
10	GGGGT	425
15	(2) INFORMATION FOR SEQ ID NO: 41:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2471 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 41:	
25	GGCACGAGTA TGGCTTCCCG TGGACTCAGC CTCTTCCCCG ANTCCTGGCA CGAGGGGGCT	60
	TOGOGETOTE GOTTCCTGTG GOTGACGTCA TOTGGAGGAG ATTTGCTTTC TTTTTCTCCA	120
	AAAGGGGAGG AAATTGAAAC TGAGTGGCCC ACGATGGGAA GAGGGGAAAG CCCAGGGGTA	180
30	CAGGAGGCCT CTGGCTGAAG GCAGAGGCTA ACATGGGCTT CGGAGCGACC TTGGCCGTTG	240
	GCCTGACCAT CTTTGTGCTG TCTGTCGTCA CTATCATCAT CTGCTTCACC TGCTCCTGCT	300
35	GCTGCCTTTA CAAGACGTGC CGCCGACCAC GTCCGGTTGT CACCACCACC ACATCCACCA	360
	CTGTGGTGCA TGCCCCTTAT CCTCAGCCTC CAAGTGTGCC GCCCAGCTAC CCTGGACCAA	420
	GCTACCAGGG CTACCACACC ATGCCGCCTC AGCCAGGGAT GCCAGCAGCA CCCTACCCAA	480
40	TGCAGTACCC ACCACCTTAC CCAGCCCAGC CCATGGGCCC ACCGGCCTAC CACGAGACCC	540
	TGGCTGGAGA GCAGCCGCGC CCTACCCCGC CAGCCAGCCT CCTTACAACC CGGCCTACAT	600
45	GGATGCCCCG AAGGCGGCCC TCTGAGCATT CCCTGGCCTC TCTGGCTGCC ACTTGGTTAT	660
	GTTGTGTGT TGCGTGAGTG GTGTGCAGGC GCGGTTCCTT ACGCCCCATG TGTGCTGTGT	720
	GTGTCCAGGC ACGGTTCCTT ACGCCCCATG TGTGCTGTGT GTGTCCTGCC TGTATATGTG	780
50	GCTTCCTCTG ATGCTGACAA GGTGGGGAAC AATCCTTGCC AGAGTGGGCT GGGACCAGAC	840
	TTTGTTCTCT TCCTCACCTG AAATTATGCT TCCTAAAATC TCAAGCCAAA CTCAAAGAAT	900
55	GGGGTGGTGG GGGGCACCCT GTGAGGTGGC CCCTGAGAGG TGGGGGGCCTC TCCAGGGCAC	960
	ATCTGGAGTT CTTCTCCAGC TTACCCTAGG GTGACCAAGT AGGGCCTGTC ACACCAGGGT	1020

GGCGCAGCTT TCTGTGTGAT GCAGATGTGT CCTGGTTTCG GCAGCGTACC AGCTGCTGCT

	ATGTGGGCGC TGGTCTGGAC GTGCAGCGGC CTCCTCCTCC TGAGCTGCAG CATCTGCTTG	300
5	TTCTGGTGGG CCAAGCGCCG GGACGTGCTG CATATGCCCG GTTTCCTGGC GGGTCCGTGT	360
J	GACATGTCCA AGTCCGTCTC GCTGCTCTCC AAGCACCGAG GGACCAAGAA GACGCCGTCC	420
	ACGGGCAGCG TGCCAGTCGC CCTGTCCAAA GAGTCCAGGG ATGTGGAGGG AGGCACCGAG	480
10	GGGGAAGGGA CGGAGGAGGG TGAGGAGACA GAGGGCGAGG AAGAGGAGGA TTAGGGGAGT	540
	CCCCGGGGGA CTGGTCAATA CAGATACGGT GGACGGAAAA AAAAAAAAA AAAAAAAA	598
15		
15		
	(2) INFORMATION FOR SEQ ID NO: 39:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 454 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 39:	
	ATGGAGGCTG TTTTTACAGT TTTTTTTTT GTTGTTGTTT TGTTTTTAAA GAATACAGAA	60
30	GGAGCCAAGC TTTTTTGCAC TTTGTATCCA GCTGCAAGCT CAGGGCAGAG TCAAGGGCCT	120
50	GGGTTGGAAA AACCTGACTC ACAGGAATGC ATAATTGACC CTTGCAGCTA CCCAATAGCC	180
	CTTGGAGCTG GCACTGAACC AGGCTGCAAG ATTTGACTGC CTTAAAAACA CAAGGCCCTC	240
35	TAGGCCTGGC AGGGATGTCC CTGTGCCCAG CACTGGGGGC TCGAAGACTG GTTTCTAGCA	300
	CTACCGGTCA CGGCCATGTC GTCCTAGAAG GGTCCAGAAG ATTATTTTAC GTTGAGTCCA	360
40	TTTTTAATGT TCTGATCACC TGACAGGGCA CCCCAAACCC CCAACTCCCA ATAAAAGCCG	420
70	TGACGTTCGG ACAAAAAAAA AAAAAAAAAA AAAA	454
45	(2) INFORMATION FOR SEQ ID NO: 40:	
50	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 425 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear	
EE	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 40:	
55	GCTAAAGGCC ATTCCCTCCG CAGGGCATTT GGCGTCGGGT GGGAGGGGAA AACGCATCTT	60
	GTTAATTATT TTTAATCTTA TTTATTGTAC ATACCTGGGG CAGGGGCTTG GGGAGGTGGA	120
4۵	COMPANY OF THE COMPAN	190

	AGCCGGGGAG GAAGACCTGC GGTTCCGTGA GAGGCGTCCA GGGCTGCAGG CCACGGCGAC	300
5	AGGCTCCGGG GAACATGGGG CTTTCCCTGT CCACTCCCAA GGAGTGTGGG CCTCAACGCA	360
5	TTGGCAGGGG ACGGCCGTGT GCCCTCTYCA GACCCCACCC CCAGATGCAT TTATTAGAAA	420
	TAATAAATIC TTTCTTAGCT AAAAAAAAAA AAAAAAAAT	459
10		
	(2) INFORMATION FOR SEO ID NO: 37:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 509 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double	
20	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 37:	
	ATGAAATTTA CCACTCTCCT CTTCTTGGCA GCTGTAGCAG GGGCCCTGGT CTATGCTGAA	60
25	GATGCCTCCT CTGACTCGAC GGGTGCTGAT CCTGCCCAGG AAGCTGGGAC CTCTAAGCCT	120
	AATGAAGAGA TCTCAGGTCC AGCAGAACCA GCTTCACCCC CAGAGACAAC CACAACAGCC	180
30	CAGGAGACTT CGGCGGCAGC AGTTCAGGGG ACAGCCAAGG TCACCTCAAG CAGGCAGGAA	240
	CTAAACCCCC TGAAATCCAT AGTGGAGAAA AGTATCTTAC TAACAGAACA AGCCCTTGCA	300
	AAAGCAGGAA AAGGAATGCA CGGAGGCGTG CCAGGTGGAA AACAATTCAT CGAAAATGGA	360
35	AGTGAATTTG CACAAAAATT ACTGAAGAAA TTCAGTCTAT TAAAACCATG GGCATGAGAA	420
	GCTGAAAAGA ATGGGATCAT TGGACTTAAA GCCTTAAATA CCCTTGTAGC CCAGAGCTAT	480
40	TAAAACGAAA GCATCCAAAA AAAAAAAAA	509
45	(2) INFORMATION FOR SEQ ID NO: 38: (i) SEQUENCE CHARACTERISTICS:	,
50	(A) LENGTH: 598 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 38:	
55	ATGTTGGGCT GTGGGATCCC AGCGCTGGGC CTGCTCCTGC TGCTGCAGGG CTCGGCAGAC	60
JJ	GGAAATGGAA TCCAGGGATT CTTCTACCCA TGGAGCTGTG AGGGTGACAT ATGGGACCGG	120
	GAGAGCTGTG GGGGCCAGGC GGCCATCGAT AGCCCCAACC TCTGCCTGCG TCTCCGGTGC	180
60	TGCTACCGCA ATGGGGTCTG CTACCACCAG CGTCCAGACG AAAACGTGCG GAGGAAGCAC	240

	AGGGGGCTGC TGGTGGGAAA TGGGAGCCAG GGCAGATGTA TGCATTCCTT TATGTCCCTG	540
_	TAAATGTGGG ACTACAAGAA GAGGAGCTGC CTGAGTGGTA CTTTCTCTTC CTGGTAATCC	600
5	TCTGGCCCAG CCTTATGGCA GAATAGAGGT ATTTTTAGGC TATTTTTGTA ATATGGCTTC	660
	TGGTCAAAAT CCCTGTGTAG CTGAATTCCC AAGCCCTGCA TTGTACAGCC CCCCACTCCC	720
10	CTCACCACCT AATAAAGGAA TAGTTAACAC TCAAAAAAAA AAAAAAAAA AAA	773
15	(A) THEORETON FOR CEO ID NO. 25.	
13	(2) INFORMATION FOR SEQ ID NO: 35:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 453 base pairs	
20	(B) TYPE: nucleic acid	
20	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 35:	
25	TAAAATGTTA CACGCTTGTC ATATTCCAGG CACTGCACTA TGTATGCCGT TTATCAACAG	60
	TTAGCTCAGC TAACCCTCAT GGTAACCTTG TTAGCCCCGA TTTTGCCAGA TGAGCAAAGT	120
30	GAGGTTTTTG AGGCCTTAAG TAACTTGCCC AAGGTCACGT GGCTGGGAAG TAACTCTCCC	180
50	AGTTCTGAGA TGCCCGAGCC TGGACGCTTT GTCATTGTAC ACCATCAACT CAGTGCTGCC	240
	AGTCATTCCA GCAGCCAGCT AGCGTAGTCA AGGTTTCTCC ACCTTAGCAC TGTTGACATT	300
35	TCGAGCCAGA TAATTCTCTG TGGTGAGGAG CTGTCCTATG CCTTGTAGGA TATACAACAG	360
	CATCYTGGCT TTACCCACCA GATGYTGGAA CACCTCCCCA GTCGTGACAG CCCAAAATGT	420
40	CTATAGACGT TGCCACGTAT ACCCAGGGGT TCC	453
, ,		
	(2) INFORMATION FOR SEQ ID NO: 36:	
45		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 459 base pairs	
	(B) TYPE: nucleic acid	
50	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
_	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 36:	
	GTGACTGCCG CCCTGCCCGC AGCCATGTGG CCCCCGCTGT TGCTGCTGCT GCTGCTGCTC	60
55		
	CCGGCCGCCC CGGTCCCCAC CGCCAAAGCC GCTCCCCACC CGGATGCTAA CACCCAGGAA	120
	GGCCTTCAGA ACCTGCTCCA AGGAGTCGGG GCTGGCGGAG ACGGAGAGCT GCGGGCAGAC	180
60	TO A CONTROL CONCRETE TRANSPORT CARRESCENT TRANSPORT CONCRETE TRANSPORT CARRESCENT CONTROL CONTROL CONTROL CARRESCENT CAR	240

	GGCACGAGGT CTAATGAGGG CTCTCTTGTT TGCTAGAGAT GAGAGAAATG TATACTAATC	60
	ATTITAATTI GTACTTAAAA TACATTITAC TAATCATATI GATTITAAAT ATGACAAATT	120
5	CTTCTAGTAG ATACTAATCT TICTTGTTTA TCATATTGTC CTAGAGAAGC CTAGGTAAAA	180
	ATGGGTTCCA CCTAGTCTGT TTGTATAACA CCTTCCCCCG TCCCCTCTCC ATCCCTGCCA	240
10	ATTGGGCTCT ATGCATATTG ACAAGCAAAT AAGAAAACCT TAGGTTCTTG TATTTGAATT	300
10	TCCAAAACAA TAAAAGGTTT TGACTCAAGA TTTGCATTCA AGAAGAGGCA GAAATTTTGT	360
	CTTATCTTTT TATCATTTTG TGAACTTGTG TTTCTCTGTA TGCTTAGAAA ATTTACACAC	420
15	AAGGAATGIT TGAAAAAGTG AGAATTITAG AGTGCTTGGG TGGTTTTTAT TTGGTCAGTG	480
	CTGATGTGTT AGGTGTTTAG GGAAATAATG CTTCAGGACC TTTTTGACAA CACAGCTTCA	540
	TGAATGACTG GGGGATATTT ATGTTTGTGC TGAGAAAAGG GAGGGAGTGG GCAGGTTGGA	600
20	GTGGGGACCT TTCCATTGAA AGCAGTGCAG TCAGCTGTTT CGTAGATGCA TTTTTTCTTT	660
	ATGCTTGTAA CATTGTTCTT GTGTCCATAA TTGACTGAAA TGTCAAGCTC CAGGAATGCA	720
25	AGGCATTTAT CAGGTGACCA GAAGTAGAAC CTTGTTGATT ATGAAATGGA AGAATAATGT	780
	CAAGGTAGTG GGGGTAAAAT GACAAATAAG ATTTTACTGG TGAATTTCCA TGCTTAGTAT	840
	GTACATTAAC CTCTTTTTAA GTTGCATGTT AATCTGGTAT AACGTATTGT GTCTGGTTTA	900
30	TGCTTTGAGT AAAAAAAAAA AAAAAAAA	928
35		
	(2) INFORMATION FOR SEQ ID NO: 34:	
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 773 base pairs	
40	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
45	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 34:	60
	GGCACGAGTT CTGGCCTCTC ATTTCCTTAC ACTCTGACAT GAATGAATTA TTATTATTTT	
50	TCTTTTCTT TTTTTTTTT ACATTTTGTA TAGAAACAAA TICATTTAAA CAAACITATT	120
	ATTATTATTT TTTACAAAAT ATATATATGG AGATGCTCCC TCCCCCTGTG AACCCCCCAG	180
55	TGCCCCCGTG GGGCTGAGTC TGTGGGCCCA TTCGGCCCAAG CTGGATTCTG TGTACCTAGT	240
	ACACAGGCAT GACTGGGATC CCGTGTACCG AGTACACGAC CCAGGTATGT ACCAAGTAGG	300
	CACCCTTGGG CGCACCCACT GGGGCCAGGG GTCGGGGGAT GTTGGGAGCC TCCTCCCCAC	360
		420
۲۸	CCCACCTCCC TCACTTCACT GCATTCCAGA TTGGACATGT TCCATAGCCT TGCTGGGGAA	

(A) LENGTH: 1142 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: double(D) TOPOLOGY: linear

5

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:

	CGGCACGAGG	AAGAAATGGC	AGAGACTGGA	ATCTCTCTTC	ATGAAAAAAT	GCAGCCCCTT	60
10	AACTTCAGTT	CGACAGAGTG	CAGCTCCTTC	TCTCCACCCA	CCACAGTGAT	TCTCCTTATC	120
	CTGCTGTGCT	TTGAGGCCT	GCTCTTCCTC	ATTTTCACAT	CAGTGATGTT	TGGGACCCAG	180
15	GTGCACTCCA	TCTGCACAGA	TGAGACGGGA	ATAGAACAAT	TGAAAAAGGA	AGAGAGAAGA	240
13	TGGGCTAAAA	AAACAAAATG	GATGAACATG	AAAGCCGTTT	TTGGCCACCC	CTTCTCTCTA	300
	GGCTGGGCCA	GCCCCTTTGC	CACGCCAGAC	CAAGGGAAGG	CAGACCCGTA	CCAGTATGTG	360
20	GTCTGAAGGA	CCCCGACCGG	CATGGCCACT	CAGACACAAG	TCCACACCAC	AGCACTACCG	420
	TCCCATCCGT	TCTCATGAAT	GTTTAAATCG	AAAAAGCAAA	ACAACTACTC	TTAAAACTTT	480
25	TTTTATGTCT	CAAGTAAAAT	GGCTGAGCAT	TGCAGAGARA	AAAAAAAGTC	CCCACATTTT	540
23	ATTTTTTAAA	AACCATCCTT	TCGATTTCTT	TTGGTGACCG	AAGCTGCTCT	CTTTTCCTTT	600
	TAAAATCACT	TCTCTGGCCT	CIGGITICIC	TCTGCTGTCT	GTCTGGCATG	ACTAATGTAG	660
30	AGGCGCTGT	CTCGCGCTGT	GCCCATTCTA	CTAACTGAGT	GAGACATGAC	GCTGTGCTGG	720
	GATGGAATAG	TCTGGACACC	TGGTGGGGGA	TGCATGGGAA	AGCCAGGAGG	GCCCTGACCT	780
35	TCCCACTGCC	CAGGAGGCAG	TGGCGGGCTC	CCCGATGGGA	CATAAAACCT	CACCGAAGAT	840
33	GGATGCTTAC	CCCTTGAGGC	CTGAGAAGGG	CAGGATCAGA	AGGGACCTTG	GCACAGCGAC	900
	CTCATCCCCC	AAGTGGACAC	GGTTTGCCTG	CTAACTCGCA	AAGCAATTGC	CTGCCTTGTA	960
40	CTTTATGGGC	TTGGGGTGTG	TAGAATGATT	TTGCGGGGGA	GTGGGGGAGA	AAGATGAAAG	1020
	AGGTCTTATT	TGTATTCTGA	ATCAGCAATT	ATATTCCCTG	TGATTATTTG	GAAGAGTGTG	1080
45	TAGGAAAGAC	GTTTTTCCAG	TTCAAAATGC	CTTATACAAT	CAAGAGGAAA	АААААААА	1140
43	AG						1142

50

- (2) INFORMATION FOR SEQ ID NO: 33:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 928 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 33:

	CCACGCGTCC	GCGGACGCGT	GGGGAAGGTT	TGTGCCAGTA	GACATTATGT	TACTAAATCA	60
5	GCACTTTAAA	ATCTTTGGTT	CTCTAATTCA	TATGAATTTG	CTGTTTGCTC	TAATTTCTTT	120
	GGGCTCTTCT	AATTTGAGTG	GAGTACAATT	TTGTTGTGAA	ACAGTCCAGT	GAAACTGTGC	180
	AGGGAAATGA	AGGTAGAATT	TTGGGAGGTA	ATAATGATGT	GAAACATAAA	GATTTAATAA	240
10	TTACTGTCCA	ACACAGTGGA	GCAGCTTGTC	CACAAATATA	GTAATTACTA	TTTATTGCTC	300
	TAAGGAAGAT	TAAAAAAAGA	TAGGGAAAAG	GGGGAAACTT	CTTTGAAAAA	TGAAACATCT	360
15	GTTACATTAA	TGTCTAATTA	TAAAATTTTA	ATCCTTACTG	CATTTCTTCT	GTTCCTACAA	420
	ATGTATTAAA	CATTCAGTTT	AACTGGTAAA	АААААААА	AAAAA		469
20	(2) INFORM	ATION FOR SI	EQ ID NO: 31	l:			
25	(i)	(A) LEN (B) TYP (C) STR	HARACTERIST GTH: 702 ba E: nucleic ANDEDNESS: OLOGY: line	se pairs acid double		•	
30	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 31:		
50	GCAACAAGCG	GCCCACCTTC	CTGAAGATCA	AGAAGCCACT	GTCGTACCGC	AAGCCCATGG	60
	ACACGGACCT	GGTGTACATC	GAGAAGTCGC	CCAACTACTG	CGAGGAGGAC	CCGGTGACCG	120
35	GCAGTGTGGG	CACCCAGGGC	CGCGCCTGCA	ACAAGACGGC	TCCCCAGGCC	AGCGGCTGTG	180
	ACCTCATGTG	CTGTGGGCGT	GGCTACAACA	CCCACCAGTA	CGCCCGCGTG	TGGCAGTGCA	240
40	ACTGTAAGTT	CCACTGGTGC	TGCTATGTCA	AGTGCAACAC	GTGCAGCGAG	CGCACGGANG	300
	ATGTACACGT	GCAAGTGAGC	CCCGTGTGCA	CACCACCCTC	CCGCTGCAAG	TCAGATTGCT	360
	GGGAGGACTG	GACCGTTTCC	AAGCTGCGGG	CTCCCTGGCA	GGATGCTGAG	CITGICTITT	420
45	CTGCTGAGGA	GGGTACTTTT	CCTGGGTTTC	CTGCAGGCAT	CCGTGGGGGA	AAAAAAATCT	480
	CTCAGAGNCC	TCAACTATTC	TGTTCCACAC	CCAATGCTGS	TCCACCCTCC	CCCAGACACA	540
50	GCCCAGGTCC	CTCCGCGGCT	GGAGCGAAGC	CTTCTGCAGC	AGGAACTCTG	GACCCCTGGG	600
	CCTCATCACA	GCAATATTTA	ACAATTTATT	CCTGATAAAA	ATAATATTAA	TTATTTATT	660
	TAAAAAGAAT	TCTTCCAAAA	AAAAAAAA	AAAAAAACNT	CG		702
55							

(2) INFORMATION FOR SEQ ID NO: 32:

60 (i) SEQUENCE CHARACTERISTICS:

178

(2) INFORMATION FOR SEQ ID NO: 29:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1139 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 29:

10							
	GGTGATATCT	TCATAGTGGG	CTATTACAGG	CAGGAAAATG	TTTTAACTGG	TTTACAAAAT	60
	CCATCAATAC	TTGTGTCATT	CCCTGTAAAA	GGCAGGAGAC	ATGTGATTAT	GATCAGGAAA	120
15	CTGCACAAAA	TTATTGTTTT	CAGCCCCCGT	GITATTGTCC	TTTTGAACTG	TTTTTTTTT	180
	ATTAAAGCCA	AATTTGTGTT	GTATATATTC	GTATTCCATG	TGTTAGATGG	AAGCATTTCC	240
20	TATCCAGTGT	GAATAAAAAG	AACAGTTGTA	GTAAATTATT	ATAAAGCCGA	TGATATTTCA	300
20	TGGCAGGTTA	TTCTACCAAG	CTGTGCTTGT	TGGTTTTTCC	CATGACTGTA	TTGCTTTTAT	360
	AAATGTACAA	ATAGTTACTG	AAATGACGAG	ACCCTTGTTT	GCACAGCATT	AATAAGAACC	420
25	TTGATAAGAA	CCATATTCTG	TTGACAGCCA	GCTCACAGTT	TCTTGCCTGA	AGCTTGGTGC	480
	ACCCTCCAGT	GAGACACAAG	ATCTCTCTTT	TACCAAAGTT	GAGAACAGAG	CTGGTGGATT	540
30	AATTAATAGT	CTTCGATATC	TGGCCATGGG	TAACCTCATT	GTAACTATCA	TCAGAATGGG	600
,0	CAGAGATGAT	CTTGAAGTGT	CACATACACT	AAAGTCCAAA	CACTATGTCA	GATGGGGGTA	660
	AAATCCATTA	AAGAACAGGA	AAAAATAATT	ATAAGATGAT	AAGCAAATGT	TTCAGCCCAA	720
35	TGTCAACCCA	GTTAAAAAAA	AAATTAATGC	TGTGTAAAAT	GGTTGAATTA	GTTTGCAAAC	780
	TATATAAAGA	CATATGCAGT	AAAAAGTCTG	TTAATGCACA	TCCTGTGGGA	ATGGAGTGTT	840
40	CTAACCAATT	GCCTTTTCTT	GTTATCTGAG	CTCTCCTATA	TTATCATACT	CAGATAACCA	900
••	AATTAAAAGA	ATTAGAATAT	GATTTTTAAT	ACACTTAACA	TTAAACTCTT	CTAACTTTCT	960
	TCTTTCTGTG	ATAATTCAGA	AGATAGTTAT	GGATCTTCAA	TGCCTCTGAG	TCATTGTTAT	1020
1 5	AAAAAATCAG	TTATCACTAT	ACCATGCTAT	AGGAGACTGG	GCAAAACCTG	TACAATGACA	1080
	ACCCTGGAAG	TIGCTITITI	ТААААААТ	ATAAATTICT	ТАААТСАААА	АААААААА	1139

(2) INFORMATION FOR SEQ ID NO: 30:

50

55

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 465 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

60 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30:

	AAAATTGGAA TGGGATTAAC AGGATTTGGA GTGTTTTTCC TGTTCTTTGG AATGATTCTC	180
	TTTTTTGACA AAGCACTACT GGCTATTGGA AATGITTTAT TTGTAGCCGG CTTGGCTTTT	`240
5	GTAATTGGTT TAGAAAGAAC ATTCAGATTC TTCTTCCAAA AACATAAAAT GAAAGCTACA	300
	GGTTTTTTTC TGGGTGGTGT ATTTGTAGTC CTTATTGGTT GGCCTTTGAT AGGCATGATC	360
• •	TTCGAAATTT ATGGATTITT TCTCTTGTTC AGGGGCTTCT TTCCTGTCGT TGTTGGCTTT	420
10	ATTAGAAGAG TGCCAGTCCT TGGATCCCTC CTAAATTTAC CTGGAATTAG ATCATTTGTA	480
	GATAAAGTTG GAGAAAGCAA CAATATGGTA TAACAACAAG TGAATTTGAA GACTCATTTA	540
15	AAATATTGTG TTATTTATAA AGTCATTTGA AGAATATTCA GCACAAAATT AAATTACATG	600
	AAATAGCTTG TAATGTTCTT TACAGGAGTT TAAAACGTAT AGCCTACAAA GTACCAGCAG	660
20	CAAATTAGCA AAGAAGCAGT GAAAACAGGC TTCTACTCAA GTGAACTAAG AAGAAGTCAG	720
20	CAAGCAAACT GAGAGAGGTG AAATCCATGT TAATGATGCT TAAGAAACTC TTGAAGGCTA	780
	TTTGTGTTGT TTTTCCACAA TGTGCGAAAC TCAGCCATCC TTAGAGAACT GTGGTGCCTG	840
25	TTTCTTTTCT TTTTATTTTG AAGGCTCAGG AGCATCCATA GGCATTTGCT TTTTAGAAAT	900
	GTCCACTGCA ATGGCAAAAA TATTTCCAGT TGCACTGTAT CTCTGGAAGT GATGCATGAA	960
30	TTCGATTGGA TTGTGTCATT TTAAAGTATT AAAACCAAGG GAAACCCCAA AAAAAAA	1017
30		
	(2) INFORMATION FOR SEQ ID NO: 28:	
35		
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 391 base pairs	
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double	
40	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:	
45	CCCTGGAAAG AGGAACTGAT GTTTGAGGGG ACAGATGTGG GTCACTTTCC CTGGCAGTGC	60
43	CCTCTAGCCT TGCTGCCTTG GCTTTCTGAC CCCTTCCAGG CTTCAGGGGC CTGGGAGATC	120
	TCATGCCTCA GCCCAGGAAA CATTTAATAG GGAAAGCAGA GACATGTCAT GTCAGCCCCA	180
50	CAGACAAGAA TTTCTAGAGC ACTTGTCCTG TTGTTCCTTG CCCCGACATT ACTCAGTCTG	240
	GGCCATGGAA TCCATCCAAT AAACACAGCA ACACCCTATG NTACTGACCA AGCAAAGCTT	300
e e	GCCCCTGGTA CCAAAGAGCT AAATCATGAC CAAAGTGTGA CATGAATGTA ACTGAAATGC	360
55	GGGTTAGTTG CTCAATGTAT GCAAAGTCCC A	393

(C)	STRANDEDNI	ESS:	double
(D)	TOPOLOGY:	line	ear

5	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:								
3	CCTGATCCTC	TCTTTTCTGC	AGTTCAAGGG	AAAGACGAGA	TCTTGCACAA	GGCACTCTGC	60		
	TTCTGCCCTT	GGCTGGGGAA	GGGTGGCATG	GAGCCTCTCC	GGCTGCTCAT	CTTACTCTTT	120		
10	GTCACAGAGC	TGTCCGGAGC	CCACAACACC	ACAGTGTTCC	AGGGCGTGGC	GGGCCAGTCC	180		
	CTGCAGGTGT	CTTGCCCCTA	TGACTCCATG	AAGCACTGGG	GGAGGCGCAA	GCCTGGTGC	240		
15	CGCCAGCTGG	GAGAGAAGGG	CCCATGCCAG	CGTGTGGTCA	GCACGCACAA	CTTGTGGCTG	300		
13	CTGTCCTTCC	TGAGGAGGTG	GAATGGGAGC	ACAGCCATCA	CAGACGATAC	CCTGGGTGGC	360		
	ACTCTCACCA	TTACGCTGCG	GAATCTACAA	CCCCATGATG	CGGGTCTCTA	CCAGTGCCAG	420		
20 _	AGCCTCCATG	GCAGTGAGGC	TGACACCCTC	AGGAAGGTCC	TGGTGGAGGT	GCTCGCAGAC	480		
	CCCTGGATC	ACCGGGATGC	TGGAGATCTC	TGGTTCCCCG	GGGAGTCTGA	GAGCTTCGAG	540		
25	GATGCCCATG	TGGAGCACAG	CATCTCCAGG	AGCTCTTCKT	AGGAAAGGCC	GCAAATTCCC	600		
	ATTCCTTCCC	CTCTTGCCTA	TCYTTCTCCT	CCAAGAYCTG	CATCTTTCTC	ATCAAGATTC	660		
	TAGCAGCCAG	CGCCCTCTGG	GCTGCAGCCT	GGCATGGACA	GAAGCCAGGG	ACACATCCAC	720		
30	CCAGTGAACT	GGACTGTGGC	CATGACCCAG	GGTATCAGCT	CCAAACTCTG	CCAGGGCTGA	780		
	GAGACACGTG	AAGGAAGATG	ATGGGAGGAA	AAGCCCAGGA	GAAGTCCCAC	CAGGGACCAG	840		
35	CCCAGCCTGC	ATACTTGCCA	CTTGGCCACC	AGGACTCCTT	GTTCTGCTCT	GGCAAGAGAC	900		
55	TACTCTGCCT	GAACACTGCT	TCTCCTGGAC	CCTGGAAGCA	GGGACTGGTT	GAGGGAGTGG	960		
	GGAGGTGGTA	AGAACACCTG	ACAACTTCTG	AATATTGGAC	ATTTTAAACA	CTTACAAATA	1020		
40	AATCCAAGAC	TGTCATATTT	ААААААА А	AAAAAAAAA	AAARRRRRC	CCCGGTACCC	1080		
	AATTCGCCCT	ATAGTGAGTC	GTATA				1105		

45

50

(2) INFORMATION FOR SEQ ID NO: 27:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1017 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:

CTCGCCTGGG CTGTTTCCCG GCTTCATTC TCCCGACTCA GCTTCCCACC CTGGGCTTTC 60
CGAGGTGCTT TCGCCGCTGT CCCCACCACT GCAGCCATGA TCTCCTTAAC GGACACGCAG 120

	AGCGATGACT GCATTCCACT CACGTGGCGC TGCGACGGCC ACCCAGACTG TCCCGACTCC	480
5	AGCGACGAGC TCGGCTGTGG AACCAATGAG ATCCTCCCGG AAGGGGATGC CACAACCATG	540
J	GGGCCCCCTG TGACCCTGGA GAGTGTCACC TCTCTCAGGA ATGCCACAAC CATGGGGCCC	600
	CCTGTGACCC TGGAGAGTGT CCCCTCTGTC GGGAATGCCA CATCCTCCTC TGCCGGAGAC	660
10	CAGTCTGGAA GCCCAACTGC CTATGGGGTT ATTGCAGCTG CTGCGGTGCT CAGTGCAAGC	720
	CTGGTCACCG CCACCCTCCT CCTTTGTCC TGGCTCCGAG CCCAGGAGCG CCTCCGCCCA	780
15	CTGGGGTTAC TGGTGG	796
20 _	(2) INFORMATION FOR SEQ ID NO: 25: (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 662 base pairs (B) TYPE: nucleic acid	
25	(C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:	
30	TAATTCGGCA CGAGGCTGTG GTGGAGAAGG ACGTGCCGTG CCGCTGGGTT CTGAGCCGGA	60
	GTGGTCGGTG GGTGGGATGG AGGCGACCTT GGAGCAGCAC TTGGAAGACA CAATGAAGAA	120
	TCCCTCCATT GTTGGAGTCC TGTGCACAGA TTCACAAGGA CTTAATCTGG GTTGCCGCGG	180
35	GACCCTGTCA GATGAGCATG CTGGAGTGAT ATCTGTTCTA GCCCAGCAAG CAGCTAAGCT	240
	AACCTCTGAC CCCACTGATA TTCCTGTGGT GTGTCTAGAA TCAGATAATG GGAACATTAT	300
40	GATCCAGAAA CACGATGGCA TCACGGTGGC AGTGCACAAA ATGGCCTCTT GATGCTCATA	360
	TCTGTTCTTC AGCAGCCTGT CATAGGAACT GGATCCTACC TATGTTAATT ACCTTATAGA	420
	ACTACTAAAG TICCAGTAGI TAGGCCATTC ATTTAATGIG CATTAGGCAC TITTCTGTIT	480
45	ATTTAAGAGT CAATTGCTTT CTAATGCTCT ATGGACCGAC TATCAAGATA TTAGTAAGAA	540
	AGGATCATGT TTTGAAGCAG CAGGTCCAGG TCACTTTGTA TATAGAATTT TGCTGTATTC	600
50	AATAAATCTG TTTGGAGGAA AAAAAAAAA AAAAAAATTA CTGCGGNCCG ACAAGGGAAT	662
	TC	902

(2) INFORMATION FOR SEQ ID NO: 26:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1105 base pairs

60 (B) TYPE: nucleic acid

PCT/US98/04482

174

(2) INFORMATION FOR SEQ	ID	NO:	23:
-------------------------	----	-----	-----

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 694 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

10 GGCACGAGTC TTATTGTGCA CTGTAGCCTG AATCCCCCAG GGTAATTAAT ATGAAGTGCA 60 AAAAGTTGAA TGTTCCAGTC TAAAAGGCAG TGGGAGAAAT TACATAGCAT GGAAATAATA 120 15 AAATGAACTC TTATTAATGA GAACGAGGCT CTTGCAGTGG CAAGTTCTGC TGGTCACCCG 180 ATGGGGATGG GAGCCTTTCA AGCTTTTTTT TGGGTAATAC TCACAGTTTC CAACGTCTGT 240 GTACTTTCA AAATGAGCTT GTTCTTCCTT CTGACACTCA TCTCAAAGCT CCATGGTGAC 300 20 GCAGAGGTCT GTTGAAGGTC ACAGGTCCTC GCTTGCATTG GCATACGGTC CTGTAGCATC 360 ACTTGTTAGC CCACTGCTGC TTGAAGGAAC TAAGAGTATT CAGGGATAGA GAGCTGAAAA 420 25 TAGGATTAAT TCCTTCCTTT TGACTCTCCC CTCAAGATGT CCTTGCTTTG GTCTGAAAAC 480 CTCTCCTGAC AACTTTTGCC CAAAGCAAAC CATCTGCCTT TTCTGAACTC TGAGTGAATA 540 TATTAGCATC TTCCCTTCTG AGCCCTCGTA CTGCCANGTT TGTTTGTTTG TTTGTTTCCA 600 30 AGAGACTGTG TCTTGCTCTG TCACCCAGGA GTTTGAAACC AGCCTGGCAA CATAGCAAGA 660 СССТАТСТСТ АСААААААА ААААААААА АААА 694

35

5

(2) INFORMATION FOR SEQ ID NO: 24:

40 (i) SEQUENCE CHARACTERISTICS:

> (A) LENGTH: 796 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear

45

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

ATGAGCGCG GTTGGATGGC GCAGGTTGGA GCGTGGCGAA CAGGGGCTCT GGGCCTGGCG 60 50 CTGCTGCTGC TGCTCGGCCT CGGACTAGGC CTGGAGGCGC CGCGAGCCCG CTTTCCACCC 120 CGACCTCTGC CCAGGCCGCA CCCGAGCTCA GGCTCGTGCC CACCCACCAA GTTCCAGTGC 180 CGCACCAGTG GCTTATGCGT GCCCCTCACC TGGCGCTGCG ACAGGACTTG GACTGCAGCG 240 55 ATGCCAGCGA TGAGGAGGAG TGCAGGATTG AGCCATGTAC CCAGAAAGGG CAATGCCCAC 300 CGCCCCTGG CCTCCCCTGC CCCTGCACCG GCGTCAGTGA CTGCTCTGGG GGAACTGACA 360 60 AGAAACTGCG CAACTGCAGC CGCCTGGCCT GCCTAGCAGS GRAGSKCMCG WKGCACGCTG 420

5	(2) INFORMATION FOR SEQ ID NO: 22:	
3	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1224 base pairs	
10	(B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:	
15	CCGCCGAAGC TCCGTCCCGC CCGCGGCCGG CTCCGCCTCA CCTCCCGGCC GCGGCTGCCC	60
13	TCTGCCCGGG TTGTCCAAGA TGGAGGGCGC TCCACCGGGG TCGCTCGCCC TCCGGCTCCT	120
	GCTGTTCGTG GCGCTACCCG CCTCCGGCTG GCTGACGACG GGCGCCCCCG AGCCGCCGCC	180
20	GCTGTCCGGA GCCCCACAGG ACGGCATCAG AATTAATGTA ACTACACTGA AAGATGATGG	240
	GGACATATCT AAACAGCAGG TTGTTCTTAA CATAACCTAT GAGAGTGGAC AGGTGTATGT	300
	AAATGACTTA CCTGTAAATA GTGGTGTAAC CCGAATAAGC TGTCAGACTT TGATAGTGAA	360
25	GAATGAAAAT CTTGAAAATT TGGAGGAAAA AGAATATTTT GGAATTGTCA GTGTAAGGAT	420
	TTTAGTTCAT GAGTGGCCTA TGACATCTGG TTCCAGTTTG CAACTAATTG TCATTCAAGA	480
30	AGAGGTAGTA GAGATTGATG GAAAACAAGT TCAGCAAAAG GATGTCACTG AAATTGATAT	540
	TTTAGTTAAG AACCGGGGAG TACTCAGACA TTCAAACTAT ACCCTCCCTT TGGAAGAAAG	600
35	CATGCTCTAC TCTATTTCTC GAGACAGTGA CATTTTATTT ACCCTTCCTA ACCTCTCCAA	660
	AAAAGAAAGT GTTAGTTCAC TGCAAACCAC TAGCCAGTAT CTTATCAGGA ATGTGGAAAC	720
	CACTGTAGAT GAAGATGTTT TACCTGGGCA AGTTACCTGA AACTCCTCTC AGAGCAGAGC	780
40	CGCCATCTTC ATATAAGGTA ATGTGTCAGT GGATGGAAAA GTTTAGAAAA GATCTGTGTA	840
	GGTTCTGGAG CAACGTTTTC CCAGTATTCT TTCAGTTTTT GAACATCATG GTGGTTGGAA	900
45	TTACAGGAGC AGCTGTGGTA ATAACCATCT TAAAGGTGTT TTTCCCAGTT TCTGAATACA	960 .
	AAGGAATTCT TCAGTTGGAT AAAGTGGACG TCATACCTGT GACAGCTATC AACTTATATC	1020
	CAGATGGTCC AGAGAAAAGA GCTGAAAACC TTGAAGATAA AACATGTATT TAAAACGCCA	1080
50	TCTCATATCA TGGACTCCGA AGTAGCCTGT TGCCTCCAAA TTTGCCACTT GAATATAATT	1140
	TTCTTTAAAT CGTTAAGAAT CAGTTTATAC ACTAGAGAAA TTGCTAAACT CTAAGACTGC	1200
	CTGAAAATTG ACCTTTACAG TGCC	1224

	KTCTCCTACA TCACCGGGGC CTCGGGCTCC ACCTGGGCCT TGGCCAACCT TTATAAGGAC	300
	CCAGAGTGGT CTCAGAAGGA CCTGGCAGGG CCCACTGAGT TGCTGAAGAC CCAGGTGACC	360
	AAGAACAAGC TGGGTGTGCT GGCCCCCAGC CAGCTGCAGC GGTACCGGCA GGAGCTGGCC	420
	GAGCGTGCCC GCTTGGGCTA CCCAAGCTGC TTCACCAACC TGTGGGCCCT CATCAACGAG	480
5	GCGCTGCTGC ATGATGAGCC CCATGATCAC AAGCTCTCAG ATCAACGGGA GGCCCTGAGT	540
	CATGGCCAGA ACCCTCTGCC CATCTACTGT GCCCTCAACA CCAAAGGGCA GAGCCTGACC	600
	ACTITICANT TIGGGAGTG GIGCGAGTTC TCTCCCTACG AGGTCGGCTT CCCCAAGTAC	660
	GGGGCCTTCA TCCCCTCTGA GCTCTTTGGC TCCGAGTTCT TTATGGGGCA GCTGATGAAG	720
	AGGCTTCCTG AGTCCCGCAT CTGCTTCTTA GAAGGTATCT GGAGCAACCT GTATGCAGCC	780
10	AACCTCCAGG ACAGCTTATA CTGGGCCTCA GAGCCCAGCC AGTTCTGGGA CCGCTGGGTC	840
	AGGAACCAGG CCAACCTGGA CAAGGAGCAG GTCCCCCTTC TGAAGATAGA AGAACCACCC	900
	TCAACAGCCG GCAGAATAGC TGAGTTTTTC ACCGATCTTC TGACGTCGCG TCCACTGGCC	960
	CAGGCCACAC ATAATTTCCT GCGTGGCCTC CATTTCCACA AAGACTACTT TCAGCATCCT	1020
	CACTTCTCCA CATGGAAAGC TACCACTCTG GATGGGCTCC CCAACCAGCT GACACCCTCG	1080
15	GAGCCCCACC TGTGCCTGCT GGATGTTGGC TACCTCATCA ATACCAGCTG CCTGCCCCTC	1140
	CTGCAGCCCA CTCGGGACGT GGACCTCATC CTGTCATTGG ACTACAACCT CCACGGAGCC	1200
	TTCCAGCAGT TGCAGCTCCT GGGCCGGTTC TGCCAGGAGC AGGGGATCCC GTTCCCACCC	1260
	ATCTCGCCCA GCCCCGAAGA GCAGCTCCAG CCTCGGGAGT GCCACACCTT CTCCGACCCC	1320
	ACCTGCCCCG GAGCCCCTGC GGTGCTGCAC TTTCCTCTGG TCAGCGACTC CTTCCGGGAG	1380
20	TACTCGGCCC CTGGGGTCCG GCGGACACCC GAGGAGGCGG CAGCTCGCGA GGTGAACCTG	1440
	TCTTCATCGG ACTCTCCCTA CCACTACACG AAGGTGACCT ACAGCCAGGA GGACGTGGAC	1500
	AAGCTGCTGC ACCTGACACA TTACAATGTC TGCAACAACC AGGAGCAGCT GCTGGAGGCT	1560
	CTGCGCCAGG CAGTGCAGCG GAGGCGGCAG CGCAGGCCCC ACTGATGGCC GGGGCCCCTG	1620
	CCACCCCTAA CTCTCATTCA TTCCCTGGCT GCTGAGTTGC AGGTGGGAAC TGTCATCACG	1680
25	CAGTGCTTNC AGAGCCTCGG GCTCAGGTGG CACTGTCCCA GGGTCCAGGC TGAGGGCTGG	1740
	GAGCTCCCTT GCGCCTCAGC AGTTTGCAGT GGGGTAAGGA GGCCAAGCCC ATTTGTGTAA	1800
20	TCACCCAAAA CCCCCCGGCC TGTGCCTGTT TTCCCTTCTG CGCTACCTTG AGTAGTTGGA	1860
30	GCACTTGATA CATCACAGAC TCATACAAAT GTGAGGCGCT GAGAAAAAAA AAAAAAAAAA	1920
	ACTCGA	1926

TTTTAAATAA TTTATGCACG CACACACAC TACATATATC CCCCGAGTAC ATATTTTTC	360
CCTTTTTACT TGTGTGCAAT CAGTAGCTAC AATGACTGAA ATCCACTTCT TTGGGACTGT	420
GACATTTAAG CAAATCTTGT NTCTAGAAAN CGAAATGCCA NANTCTCGCA CAAAGCTGCT	480
CCGTCTGGGG CAACAAATCC ACA	503
(2) INFORMATION FOR SEQ ID NO: 20:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 358 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	÷
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
GGGCTGTCTC CCCAGTAGTA ACTTGCTGGC CCTGCCCTTG AAGTGGGGAA ACTGTGAAGG	60
GCTCCTTGAT CAAGCTTGTC CTCTTTTCTT ACCTCTTCCT CTCTTCTGTT TCCGCTGCAG	120
CTGAACAGGC CAGCAGGCAA CCTGCCATGG GGTCCTGCTC CAAGAACCGG TCCTTCTTCT	180
GGATGACTGG GCTCCTGGTA TTCATCAGCC TCCTCCTCAG TGAGTGGCAG GGTCCCTGGG	240
AAGGGAGGC AATTGGAGAG GGCTGGGCTA GCTGGGCTCT GACCAACGGG TGGGCTGTTC	300
AACTTCTGAT GTCTTTGGGC AACAACACAG AAAAACACTC TGTTATGATT TACGAAAN	358
(2) INFORMATION FOR SEQ ID NO: 21:	
(i) SEQUENCE CHARACTERISTICS:	
(A) LENGTH: 1926 base pairs	
(B) TYPE: nucleic acid	
(C) STRANDEDNESS: double	
(D) TOPOLOGY: linear	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:	
AGTGAAGGGA GCTGGCCGTG CGACTGGGCT TCGGGCCCTG TGCCAGAGGA GCANGCCTTC	60
CTGAGCAGGA GGAAGCAGGT GGTGGCCGCG GCCTTGAGGC AGGCCCTGCA GCTGGATGGA	120
GACCTGCAGG AGGATGAGAT CCCAGTGGTA GCTATTATGG CCACTGGTGG TGGGATCCGG	180
GCAATGACTT CCCTGTATGG GCAGCTGGCT GGCCTGAAGG AGCTGGGCCT CTTGGATTGC	240

	AAGGTGCTCA TTAAAGCTAC CGGGCACCTT AAAAAAAAA AAAAAAAAA AAAAAAA	1310
	(2) INFORMATION FOR SEQ ID NO: 18:	
	(i) SEQUENCE CHARACTERISTICS:	
5	(A) LENGTH: 436 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
10	AAAAAAATTC AATGGATATT ATGAAAATAA GAGAGTATTT CCAGAAGTAT GGATATAGTC	60
	CACGTGTCAA GAAAAATTCA GTACACGAGC AAGAAGCCAT TAACTCTGAC CCAGAGTTGT	120
	CTAATTGTGA AAATTTTCAG AAGACTGATG TGAAAGATGA TCTGTCTGAT CCTCCTGTTG	180
	CAAGCAGTIG TATTTCTGAG AAGTCTCCAC GTAGTCCACA ACTTTCAGAT TTTGGACTTG	240
	AGCGGTACAT CGTATCCCAA GTTCTACCAA ACCCTCCACA GGCAGTGAAC AACTATAAGG	300
15	AAGAGCCCGT AATTGTAACC CCACCTACCA AACAATCACT AGTAAAAGTA CTAAAAACTC	360
	CAAAATGTGC ACTAAAATGG ATGATTTTGA GTGTGTACTC CTAAATTAGA ACACTTTGGT	420
	ATCTCTGAAT ATACTA	436
	(2) INFORMATION FOR SEQ ID NO: 19:	
20	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 503 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
	TGTGCATATC CTGGGGAAAA AAATGGTACA TGTTTTAGAA ATTTTACTGT TTATAACAAT	6
	GCAGGCAGTC AGTTTCCCGT TTCAAACACA GATAGATACA TGCAACACTC AAGATCCTGC	12
	AGAGAGGCAG CCAGCATCTA TYGTTTAAAA AGGTTTCAAA AAGAATTCGG ATTGCTCKTT	18
	TCTCTTTTGA ATCTGTGTGC CAAATGACAG GGACCAATAT TCGTCTTCTT TTTCKGTAAA	24
30	AYTCAGAAAG AMACATGAAA GAACCCAGAA TGCATTTCTT AAAGGGATTT AGTGCAGTTA	30

WO 98/39446 PCT/US98/04482

169

ATAGC 425

(2) INFORMATION FOR SEQ ID NO: 17:

(i) SEQUENCE CHARACTERISTICS:

5 (A) LENGTH: 1316 base pairs

10

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:

GGCACGAGGA GCTGGGGGAG CCTGAGGTGC GCTACGTGGC TGGCATGCAT GGGAACGAGG

60

CCCTGGGGG GGAGTTGCTT CTGCTCCTGA TGCAGTTCCT GTGCCATGAG TTCCTGCGAG 120 GGAACCCACG GGTGACCCGG CTGCTCTCTG AGATGCGCAT TCACCTGCTG CCCTCCATGA 180 ACCCTGATGG CTATGAGATC GCCTACCACC GGGGTTCAGA GCTGGTGGGC TGGGCCGAGG 240 GCCGCTGGAA CAACCAGAGC ATCGATCTTA ACCATAATTT TGCTGACCTC AACACACCAC 300 15 TGTGGGAAGC ACAGGACGAT GGGAAGGTGC CCCACATCGT CCCCAACCAT CACCTGCCAT 360 TGCCCACTTA CTACACCCTG CCCAATGCCA CCGTGGCTCC TGAAACGCGG GCAGTAATCA 420 AGTGGATGAA GCGGATCCCC TTTGTGCTAA GTGCCAACCT CCACGGGGGT GAGCTCGTGG 480 TGTCCTACCC ATTCGACATG ACTCGCACCC CGTGGGCTGC CCGCGAGCTC ACGCCCACAC 540 CAGATGATGC TGTGTTTCGC TGGCTCAGCA CTGTCTATGC TGGCAGTAAT CTGGCCATGC 600 20 AGGACACCAG CCGCCGACCC TGCCACAGCC AGGACTTCTC CGTGCACGGC AACATCATCA 660 ACGGGGCTGA CTGGCACACG GTCCCCGGGA GCATGAATGA CTTCAGCTAC CTACACACCA 720 ACTGCTTTGA GGTCACTGTG GAGCTGTCCT GTGACAAGTT CCCTCACGAG AATGAATTGC 780 CCCAGGAGTG GGAGAACAAC AAAGACGCCC TCCTCACCTA CCTGGAGCAG GTGCGCATGG 840 GCATTGCAGG AGTGGTGAGG GACAAGGACA CGGAGCTTGG GATTGCTGAC GCTGTCATTG 900 25 CCGTGGATGG GATTAACCAT GACGTGACCA CGGCGTGGGG CGGGGATTAT TGGCGTCTGC 960 TGACCCCAGG GGACTACATG GTGACTGCCA GTGCCGAGGG CTACCATTCA GTGACACGGA 1020 ACTGTCGGGT CACCTTTGAA GAGGGCCCCT TCCCCTGCAA TTTCGTGCTC ACCAAGACTC 1080 CCAAACAGAG GCTGCGCGAG CTGCTGGCAG CTGGGGCCAA GGTGCCCCCG GACCTTCGCA 1140 GGCGCCTGGA GCGGCTAAGG GGACAGAAGG ATTGATACCT GCGGTTTAAG AGCCCTAGGG 1200 30 CAGGCTGGAC CTGTCAAGAC GGGAAGGGGA AGAGTAGAGA GGGAGGGACA AAGTGAGGAA 1260

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 502 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	
	TAAAACAGTG CCTGCCTCAA AGGGAGGACT CAGTCAATAT CTGTTGAATG AATGAATGAA	60
	TAATTECCTG GGTCAACGAA TGAATGGCTG AATGAATGAT TTCTCCTTTC CCTCGGCACT	120
	GTCTGGAGTC CCCAGGACAG GCATGGGCAG CAGTCGCTGG TCTGTGGCCT GTCCCACTGG	180
10	ACTTGGGGTT CTCATGCTTG GTCTGGGCGG AGATCACCCA CCAGGCTCCC AGGTCGATCC	240
	TCTGCTCATG GGAARCTGCG TCCGGCCCNA GCTGCCAGAA CTCACTGCAS GGTGGAGGGA	300
	ARARCAGGRA CGATCTGCGA GCGCCTGAAC AGCCGCACAAG AGCCGAGGAG CCGCTGCTTA	360
	AAATGCAGGC GTTGAGAGGA GTTTCGCCTC CTTTTTTGAG TTGAATATGA GATTTCCGAG	420
	CAGCCATGAC GAGTTGGGTT GGTGGAAGTG GGGAGTCCGT TCCTCAGTCA GATGGAGGAG	480
15	GGGGTCCCCT TGGATCTCCT CT	502
	(2) INFORMATION FOR SEQ ID NO: 16:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 425 base pairs	
20	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
•	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
-	ATCTCTAGTG GTGGCTGCCG TCGCTCCAGA CAATCGGAAT CCTGCCTTCA CCACCATGGG	60
25	CTGGCTTTT CTAAAGGTTT TGTTGGCGGG AGTGAGTTTC TCAGGATTTC TTTATCCTCT	120
	TGTGGATTTT TGCATCAGTG GGAAAACAAG AGGACAGAAG CCAAACTTTG TGATTATTTT	180
	GGCCGATGAC ATGGGGTGGG GTGACTGGGG AGCAAACTGG GCAGAAACAA AGGACACTGC	240
	CAACCIDICAD AACADICCOMD CCCACCCAAD CADCIDCADDO DITCADADOCO ADOCCAACOND	300
	CAACCTTGAT AAGATGGCTT CGGAGGGAAT GARGTGARTC TTGARATGCC ARGCCAGCTT	500
	TCTTTGGAWG TCTTACTCCC GTTCTTGAAA AGGGAAAGGG GCGTGCAAAG CACTTAARGA	360

(A) LENGTH: 1376 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

5 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:

GAATTCGGCA CGAGGCGCCT ACCCTGCCTG CAGGTGAGCA GTGGTGTGTG AGAGCCAGGC 60 GTCCCTCTGC CTGCCCACTC AGTGGCAACA CCCGGGAGCT GTTTTGTCCT TTGTGGAGCC 120 TCAGCAGTTC CCTCTTTCAG AACTCACTGC CAAGAGCCCT GAACAGGAGC CACCATGCAG 180 TGCTTCAGCT TCATTAAGAC CATGATGATC CTCTTCAATT TGCTCATCTT TCTGTGTGGT 240 10 GCAGCCCTGT TGGCAGTGGG CATCTGGGTG TCAATCGATG GGGCATCCTT TCTGAAGATC 300 TTCGGGCCAC TGTCGTCCAG TGCCATGCAG TTTGTCAACG TGGGCTACTT CCTCATCGCA 360 GCCGCCTTG TGGTCTTTGC TCTTGGTTTC CTGGCCTGCT ATGGTGCTAA GACTGAGAGC 420 AAGTGTGCCC TCGTGACGTT CTTCTTCATC CTCCTCCTCA TCTTCATTGC TGAGGTTGCA 480 GCTGCTGTGG TCGCCTTGGT GTACACCACA ATGGCTGAGC ACTTCCTGAC GTTGCTGGTA 540 15 GTGCCTGCCA TCAAGAAAGA TTATGGTTCC CAGGAAGACT TCACTCAAGT GTGGAACACC 600 ACCATGAAAG GGCTCAAGTG CTGTGGCTTC ACCAACTATA CGGATTTTGA GGACTCACCC 660 TACTTCAAAG AGAACAGTGC CTTTCCCCCA TTCTGTTGCA ATGACAACGT CACCAACACA 720 780 GCCAATGAAA CCTGCACCAA GCAAAAGGCT CACGACCAAA AAGTAGAGGG TTGCTTCAAT 840 CAGCTTTTGT ATGACATCCG AACTAATGCA GTCACCGTGG GTGGTGTGGC AGCTGGAATT 20 GGGGGCCTCG AGCTGGCTGC CATGATTGTG TCCATGTATC TGTACTGCAA TCTACAATAA 900 GTCCACTTCT GCCTCTGCCA CTACTGCTGC CACATGGGAA CTGTGAAGAG GCACCCTGGC 960 AAGCAGCAGT GATTGGGGGA GGGGACAGGA TCTAACAATG TCACTTGGGC CAGAATGGAC 1020 1080 CTGCCCTTTC TGCTCCAGAC TTGGGGCTAG ATAGGGACCA CTCCTTTTAN GCGATGCCTG ACTITICCTIC CATTGGTGGG TGGATGGGTG GGGGGCATTC CAGAGCCTCT AAGGTAGCCA 1140 25 GTTCTGTTGC CCATTCCCCC AGTCTATTAA ACCCTTGATA TGCCCCCTAG GCCTAGTGGT 1200 GATCCCAGTG CTCTACTGGG GGATGAGAGA AAGGCATTTT ATAGCCTGGG CATAAGTGAA 1260 1320 ATCAGCAGAG CCTCTGGGTG GATGTGTAGA AGGCACTTCA AAATGCATAA ACCTGTTACA ATGTTRAAAA AAAAAAAAAA AAAAAAAAA AAAAAAYTCG AGGGGGGTCC CGTACC 1376

AAAA						844
TGTAGGGGTC	CTCAAGTGCC	TTTGTGATTA	AAGAATGTTG	GTCTATGAAA	ААААААААА	840
GTGGATGGAG	GGTGGCAGGT	GGGGCGTCTG	CAGGGCCACT	CTTGGCAGAG	ACTTTGGGTT	780
TCAAGCCTAG	TGTGGAGCCC	TCTGCAGGTC	ACGATGAACT	CTGAGTGTGT	GGATGGATGG	720
TCCACGGCAT	GCCCAGTGCC	AACACGCACA	ATACGTGGAA	GGCCATGGAA	GGCATCTTCA	660

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 776 base pairs

10

15

20

25

5

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

TTCGAAATAA AAGATCTGCT CAAGAGAGCC GCAGAAAAAG AAGGTGTATG TTGGGGGT	TT 60
AGAGAGCAGG GTCTTGAAAT ACACAGCCCA GAATATGGAG CTTCAGAACA AAGTACAG	CT 120
TCTGGAGGAA CAGAATTTGT CCCTTCTAGA TCAACTGAGG AAACTCCAGG CCATGGTG	AT 180
TGAGATATCA AACAAAACCA GCAGCAGCAG CACCTGCATC TTGGTCCTAC TAGTCTCC	TT 240
CTGCCTCCTC CTTGTACCTG CTATGTACTC CTCTGACACA AGGGGGAGCC TGCCAGCT	GA 300
SCATGGAGTG TTGTCCCGCC AGCTTCGTGC CCTCCCCAGT GAGGACCCTT ACCAGCTG	GA 360
GCTGCCTGCC CTGCAGTCAG AAGTGCCGAA AGACAGCACA CACCAGTGGT TGGACGGC	TC 420
AGACTGTGTA CTCCAGGCCC CTGGCAACAC TTCCTGCCTG CTGCATTACA TGCCTCAG	GC 480
TCCCAGTGCA GAGCCTCCCC TGGAGTGGCC ATTCCCTGAC CTCTTCTCAG AGCCTCTC	TG 540
CCGAGGTCCC ATCCTCCCCC TGCAGGCAAA TCTCACAAGG AAGGGAGGAT GGCTTCCT	AC 600
TOGTAGCCCC TCTGTCATTT TGCAGGACAG ATACTCAGGC TAGATATGAG GATATGTC	GG 660
GGGTCTCAGC AGGAGCCTGG GGGGCTCCCC ATCTGTGTCC AAATAAAAAG CGGTGGGC	AA 720
GGGCTGGCCG CAGCTCCTGT GCCCTGTCAG GACGACTGAG GGCTCAAACA CACCAC	776

(2) INFORMATION FOR SEQ ID NO: 14:

30 (i) SEQUENCE CHARACTERISTICS:

	TTGTAGAGAC	AGTTTCATGT	GGAGGAAATC	TTTTGATGAA	TATTGGGCCC	ACACTAGATG	1080
	GCACCATTTC	TGTAGTTTTT	GAGGAGCGAC	TGAGGCAAAT	GGGTCCTGG	CTAAAAGTCA	1140
	ATGGAGAAGC	TATTTATGAA	ACCCATACCT	GGCGATCCCA	GAATGACACT	GTCACCCCAG	1200
	ATGTGTGGTA	CACATCCAAG	CCTAAAGAAA	AATTAGTCTA	TGCCATTTTT	CTTAAATGGC	1260
5	CCACATCAGG	ACAGCTGTTC	CTTGGCCATC	CCAAAGCTAT	TCTGGGGGCA	ACAGAGGTGA	1320
	AACTACTGGG	CCATGGACAG	CCACTTAACT	GGATTTCTTT	GGAGCAAAAT	GGCATTATGG	1380
	TAGAACTGCC	ACAGCTAACC	ATTCATCAGA	TGCCGTGTAA	ATGGGGCTGG	GCTCTAGCCC	1440
	TRACTAATGT	GATCTAAAGT	GCAGCAGAGT	GGCTGATGCT	GCAAGTTATG	TCTAAGGCTA	1500
	GGAACTATCA	GGTGTCTATA	ATTGTAGCAC	ATGGAGAAAG	CAAATGTAAA	ACTGGATAAG	1560
10	AAAATTATTT	TGGCAGTTCA	GCCCTTTCCC	TTTTTCCCAC	TAAATTTTTT	CTTAAATTAC	1620
	CCATGTAACC	ATTTTAACTC	TCCAGTGCAC	TTTGCCATTA	AAGTCTCTTC	ACATTGAAAA	1680
	АААААААА	AAAAACCCCG	GGGGGGGGC	CCGGGNACCC	CATTTCGCCC	NTAAAGGGG	1739

(2) INFORMATION FOR SEQ ID NO: 12:

15 (i) SEQUENCE CHARACTERISTICS:

25

30

(A) LENGTH: 844 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

20 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:

GGCCCCTGGG CCCGAGGGGC TGGAGCCCGG CCGGGGGGAT GTGGAGCGCG GGCCGCGGGG 60 GGGCTGCCTG GCCGCTGCTG TTGGGGCTGC TGCTGGCGCT GTTAGTGCCG GGCGGTGGTG 120 CCGCCAAGAC CGGTGCGGAG CTCGTGACCT GCGGGTCGGT GCTGAAGCTG CTCAATACGC 180 ACCACCGCGT GCGCTGCAC TCGCACGACA TCAAATACGG ATCCGGCAGC GGCCAGCAAT 240 CGGTGACCGG CGTAGAGGCG TCGGACGACG CCAATAGCTA CTGGCGGATC CGCGGCGGCT 300 CGGAGGCGG GTGCCGCCGC GGGTCCCCGG TGCGCTGCGG GCAGGCGGTG AGGCTCACGC 360 ATGTGCTTAC GGGCAAGAAC CTGCACACGC ACCACTTCCC GTCGCCGCTG TCCAACAACC 420 AGGAGGTGAG TGCCTTTGGG GAAGACGGCG AGGGCGACGA CCTGGACCTA TGGACAGTGC 480 GCTGCTCTGG ACAGCACTGG GAGCGTGAGG CTGCTGTGCG CTTCCAGCAT GTGGGCACCT 540 CTGTGTTCCT GTCAGTCACG GGTGAGCAGT ATGGAAGCCC CATCCGTGGG CAGCATGAGG 600

PCT/US98/04482

164

CAATTAGTCA	GCAACCATAG	TCCCGCCCCT	AACTCCGCCC	ATCCCGCCCC	TAACTCCGCC	120
CAGTTCCGCC	CATTCTCCGC	CCCATGGCTG	ACTAATTTT	TTTATTTATG	CAGAGGCCGA	180
GCCGCCTCG	GCCTCTGAGC	TATTCCAGAA	GTAGTGAGGA	GGCTTTTTTG	GAGGCCTAGG	240
CTTTTGCAAA	AAGCTT					256

5

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1739 base pairs

(B) TYPE: nucleic acid

10

15

20

25

30

(C) STRANDEDNESS: double

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

GCGCTCCCGA GGCCGCGGGA CCTGCAGAGA GGACAGCCGG CCTGCGCCGG GACATGCGGC 60 CCCAGGAGCT CCCCAGGCTC GCGTTCCCGT TGCTGCTGTT GCTGTTGCTG CTGCTGCCGC 120 CGCCGCCGTG CCCTGCCCAC AGCGCCACGC GTTTCGACCC CACCTGGGAG TCCCTGGACG 180 CCCGCCAGCT GCCCGCGTGG TTTGACCAGG CCAAGTTCGG CATCTTCATC CACTGGGGAG 240 300 TGTTTTCCGT GCCCAGCTTC GGTAGCGAGT GGTTCTGGTG GTATTGGCAA AAGGAAAAGA TACCGAAGTA TGTGGAATTT ATGAAAGATA ATTACCCTCC TARTTTCAAA TATGAAGATT 360 420 TTGGACCACT ATTTACAGCA AAATTTTTTA ATGCCAACCA RTGGGCARAT ATTTTYCAGG CCTCTGGTGC CAAATACATT GTCTTAACTT CCAAACATCA TGAAGGCTTT ACCTTGTGGG 480 540 GGTCAGAATA TTCGTGGAAC TGGAATGCCA TAGATGAGGG GCCCAAGAGG GACATTGTCA 600 AGGAACTIGA GGTAGCCATT AGGAACAGAA CTGACCTGCG TTTTGGACTG TACTATTCCC 660 TITTTGAATG GITTCATCCG CTCTTCCTTG AGGATGAATC CAGTTCATTC CATAAGCGGC 720 AATTTCCAGT TTCTAAGACA TTGCCAGAGC TCTATGAGTT AGTGAACAAC TATCAGCCTG 780 AGGTTCTGTG GTCGGATGGT GACGGAGGAG CACCGGATCA ATACTGGAAC ANCACAGGCT TCTTGGCCTG GTTATATAAT GAAAGCCCAG TTCGGGGCAC AGTAGTCACC AATGATCGTT 840 GGGGAGCTGG TAGCATCTGT AAGCATGGTG GCTTCTATAC CTGCAGTGAT CGTTATAACC 900 CAGGACATCT TTTGCCACAT AAATGGGAAA ACTGCATGAC AATAGACAAA CTGTCCTGGG 960 1020 GCTATAGGAG GGAAGCTGGA ATCTCTGACT ATCTTACAAT TGAAGAATTG GTGAAGCAAC

	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 12 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
5	(D) TOPOLOGY: linear	•
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	GGGGACTTTC CC	12
10	(2) INFORMATION FOR SEQ ID NO: 9:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 73 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
	GCGGCCTCGA GGGGACTTTC CCGGGGACTT TCCGGGGACT TTCCATCCTG	60
	CCATCTCAAT TAG	73
20		
	(2) INFORMATION FOR SEQ ID NO: 10:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 256 base pairs	
25	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	

30 CTCGAGGGGA CTTTCCCGGG GACTTTCCGG GGACTTTCCA TCTGCCATCT

(2) INFORMATION FOR SEQ ID NO: 8:

	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:	
	CTCGAGATTT CCCCGAAATC TAGATTTCCC CGAAATGATT TCCCCGAAAT GATTTCCCCG	60
5	AAATATCTGC CATCTCAATT AGTCAGCAAC CATAGTCCCG CCCCTAACTC CGCCCATCCC	120
	GCCCCTAACT CCGCCCAGTT CCGCCCATTC TCCGCCCCAT GGCTGACTAA TTTTTTTTAT	180
	TTATGCAGAG GCCGAGGCCG CCTCGGCCTC TGAGCTATTC CAGAAGTAGT GAGGAGGCTT	240
	TTTTGGAGGC CTAGGCTTTT GCAAAAAGCT T	271
10	(2) INFORMATION FOR SEQ ID NO: 6:	
	- (i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 32 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
15	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:	
	GCGCTCGAGG GATGACAGCG ATAGAACCCC GG	32
20	(2) INFORMATION FOR SEQ ID NO: 7:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 31 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
25	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
	GCGAAGCTTC GCGACTCCCC GGATCCGCCT C	31

161

	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	Trp Ser Xaa Trp Ser	
5	1 5	
	(2) INFORMATION FOR SEQ ID NO: 3:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 86 base pairs	
10	(B) TYPE: nucleic acid	
	- (C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	•	
. ~	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:	
15	GCGCCTCGAG ATTTCCCCGA AATCTAGATT TCCCCGAAAT GATTTCCCCG AAATGATTTC	60
	CCCGAAATAT CTGCCATCTC AATTAG	86
	(2) INFORMATION FOR GEO ID NO. 4	
	(2) INFORMATION FOR SEQ ID NO: 4: (i) SEQUENCE CHARACTERISTICS:	
20	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: double	
	(D) TOPOLOGY: linear	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
25	GCGGCAAGCT TTTTGCAAAG CCTAGGC	27
	(2) INFORMATION FOR SEQ ID NO: 5:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 271 base pairs	

(B) TYPE: nucleic acid

(vi) TELECOMMUNICATION	INFORMATION:
------------------------	--------------

(A) TELEPHONE: (301) 309-8504

(B) TELEFAX: (301) 309-8439

5 (2) INFORMATION FOR SEQ ID NO: 1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 733 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: double

10

(D) TOPOLOGY: linear

	(xi) SEQUENCE	DESCRIPTION	: SEQ ID NO	: 1:		,
	GGGATCCGGA GCCCAAATCT	TCTGACAAAA	CTCACACATG	CCCACCGTGC	CCAGCACCTG	60
	AATTCGAGGG TGCACCGTC	GTCTTCCTCT	TCCCCCAAA	ACCCAAGGAC	ACCCTCATGA	120
15	TCTCCCGGAC TCCTGAGGTC	: ACATGCGTGG	TGGTGGACGT	AAGCCACGAA	GACCCTGAGG	180
	TCAAGTTCAA CTGGTACGTC	GACGGCGTGG	AGGTGCATAA	TGCCAAGACA	AAGCCGCGGG	240
	AGGAGCAGTA CAACAGCACC	TACCGTGTGG	TCAGCGTCCT	CACCGTCCTG	CACCAGGACT	300
	GGCTGAATGG CAAGGAGTAG	AAGTGCAAGG	TCTCCAACAA	AGCCCTCCCA	ACCCCCATCG	360
	AGAAAACCAT CTCCAAAGCC	AAAGGCAGC	CCCGAGAACC	ACAGGTGTAC	ACCCTGCCCC	420
20	CATCCCGGGA TGAGCTGACC	: AAGAACCAGG	TCAGCCTGAC	CTGCCTGGTC	AAAGGCTTCT	480
	ATCCAAGCGA CATCGCCGT	GAGTGGGAGA	GCAATGGGCA	GCCGGAGAAC	AACTACAAGA	540
	CCACGCCTCC CGTGCTGGAG	TCCGACGGCT	CCTTCTTCCT	CTACAGCAAG	CTCACCGTGG	600
	ACAAGAGCAG GTGGCAGCAG	GGGAACGTCT	TCTCATGCTC	CGTGATGCAT	GAGGCTCTGC	660
	ACAACCACTA CACGCAGAAG	G AGCCTCTCCC	TGTCTCCGGG	TAAATGAGTG	CGACGCCCCC	720
25	GACTCTAGAG GAT					733

(2) INFORMATION FOR SEQ ID NO: 2:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 5 amino acids

30

(B) TYPE: amino acid

(1) GENERAL INFORMATION:

- (i) APPLICANTS: Human Genome Sciences, Inc. et al.
- (ii) TITLE OF INVENTION: 70 Human Secreted Proteins
- 5 (iii) NUMBER OF SEQUENCES: 273
 - (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Human Genome Sciences, Inc.
 - (B) STREET: 9410 Key West Avenue
 - (C) CITY: Rockville
- 10 (D) STATE: Maryland
 - (E) COUNTRY: USA
 - (F) ZIP: 20850

(v) COMPUTER READABLE FORM:

- 15 (A) MEDIUM TYPE: Diskette, 3.50 inch, 1.4Mb storage
 - (B) COMPUTER: HP Vectra 486/33
 - (C) OPERATING SYSTEM: MSDOS version 6.2
 - (D) SOFTWARE: ASCII Text
 - (vi) CURRENT APPLICATION DATA:
- 20 (A) APPLICATION NUMBER:
 - (B) FILING DATE: March 6, 1998
 - (C) CLASSIFICATION:
 - (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER:
- 25 (B) FILING DATE:
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: A. Anders Brookes
 - (B) REGISTRATION NUMBER: 36,373
 - (C) REFERENCE/DOCKET NUMBER: PS001PCT

WO 98/39446 PCT/US98/04482

158

It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.

5

The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference.

WO 98/39446 PCT/US98/04482

157

At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks.

pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindIII and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.

The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a HindIII site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and HindIII fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.

The amphotropic pA317 or GP+am12 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells).

Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is being produced.

The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.

5

10

15

20

25

10

15

20

25

30

Example 24: Method of Treating Decreased Levels of the Polypeptide

It will be appreciated that conditions caused by a decrease in the standard or normal expression level of a secreted protein in an individual can be treated by administering the polypeptide of the present invention, preferably in the secreted form. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a pharmaceutical composition comprising an amount of the polypeptide to increase the activity level of the polypeptide in such an individual.

For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the polypeptide for six consecutive days. Preferably, the polypeptide is in the secreted form. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 23.

Example 25: Method of Treating Increased Levels of the Polypeptide

Antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, preferably a secreted form, due to a variety of etiologies, such as cancer.

For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The formulation of the antisense polynucleotide is provided in Example 23.

Example 26: Method of Treatment Using Gene Therapy

One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin, is added. The flasks are then incubated at 37°C for approximately one week.

WO 98/39446 PCT/US98/04482

155

The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.

The secreted polypeptide is typically formulated in such vehicles at a concentration of about 0.1 mg/ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.

Any polypeptide to be used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutic polypeptide compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Polypeptides ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous polypeptide solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized polypeptide using bacteriostatic Water-for-Injection.

The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the polypeptides of the present invention may be employed in conjunction with other therapeutic compounds.

5

10

15

20

25

10

15

20

25

30

35

intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.

The secreted polypeptide is also suitably administered by sustained-release systems. Suitable examples of sustained-release compositions include semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules. Sustained-release matrices include polylactides (U.S. Pat. No. 3,773.919, EP 58.481). copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman, U. et al., Biopolymers 22:547-556 (1983)), poly (2-hydroxyethyl methacrylate) (R. Langer et al., J. Biomed. Mater. Res. 15:167-277 (1981), and R. Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (R. Langer et al.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomally entrapped polypeptides. Liposomes containing the secreted polypeptide are prepared by methods known per se: DE 3,218,121; Epstein et al., Proc. Natl. Acad. Sci. USA 82:3688-3692 (1985); Hwang et al., Proc. Natl. Acad. Sci. USA 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl. 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal secreted polypeptide therapy.

For parenteral administration, in one embodiment, the secreted polypeptide is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceutically acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to polypeptides.

Generally, the formulations are prepared by contacting the polypeptide uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as liposomes.

10

15

20

25

30

35

described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.

The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbounded polypeptide.

Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbounded conjugate.

Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y-axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.

Example 23: Formulating a Polypeptide

The secreted polypeptide composition will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the secreted polypeptide alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.

As a general proposition, the total pharmaceutically effective amount of secreted polypeptide administered parenterally per dose will be in the range of about 1 µg/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the secreted polypeptide is typically administered at a dose rate of about 1 µg/kg/hour to about 50 µg/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.

Pharmaceutical compositions containing the secreted protein of the invention are administered orally, rectally, parenterally, intracistemally, intravaginally,

10

15

20

25

30

35

The intron-exon borders of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations is then cloned and sequenced to validate the results of the direct sequencing.

PCR products is cloned into T-tailed vectors as described in Holton, T.A. and Graham, M.W., Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals is identified by mutations not present in unaffected individuals.

Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson, Cg. et al., Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.

Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometrics, Tucson, AZ) and variable excitation wavelength filters. (Johnson, Cv. et al., Genet. Anal. Tech. Appl., 8:75 (1991).) Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.

Example 22: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample

A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs.

For example, antibody-sandwich ELISAs are used to detect soluble polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method

10

15

20

phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.

Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (1ug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (100ng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4°C until use.

A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supernatants obtained in Example 11 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.

After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (10ng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (1ug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation.

25

30

35

Example 21: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide

RNA isolated from entire families or individual patients presenting with a phenotype of interest (such as a disease) is be isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X. Suggested PCR conditions consist of 35 cycles at 95°C for 30 seconds; 60-120 seconds at 52-58°C; and 60-120 seconds at 70°C, using buffer solutions described in Sidransky, D., et al., Science 252:706 (1991).

PCR products is then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase. (Epicentre Technologies).

10

15

20

25

30

35

biotinylated peptide). Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from Boehringer Mannheim.

The tyrosine kinase reaction is set up by adding the following components in order. First, add 10ul of 5uM Biotinylated Peptide, then 10ul ATP/Mg₂₊ (5mM ATP/50mM MgCl₂), then 10ul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, 1mM EGTA, 100mM MgCl₂, 5 mM MnCl₂, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(1mM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30°C for 2 min. Initial the reaction by adding 10ul of the control enzyme or the filtered supernatant.

The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.

Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37°C for 20 min. This allows the streptavadin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37°C for one hour. Wash the well as above.

Next add 100ul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity.

Example 20: High-Throughput Screening Assay Identifying Phosphorylation Activity

As a potential alternative and/or compliment to the assay of protein tyrosine kinase activity described in Example 19, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, p38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other

10

15

20

25

30

35

Because of the wide range of known factors capable of stimulating tyrosine kinase activity, the identification of novel human secreted proteins capable of activating tyrosine kinase signal transduction pathways are of interest. Therefore, the following protocol is designed to identify those novel human secreted proteins capable of activating the tyrosine kinase signal transduction pathways.

Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, IL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4°C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.

To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 11, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 mM Na3VO4, 2 mM Na4P2O7 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum. Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4°C at 16,000 x g.

Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.

Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a

WO 98/39446 PCT/US98/04482

148

A stock solution of 1 mg/ml fluo-3 is made in 10% pluronic acid DMSO. To load the cells with fluo-3, 50 ul of 12 ug/ml fluo-3 is added to each well. The plate is incubated at 37° C in a CO_2 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.

For non-adherent cells, the cells are spun down from culture media. Cells are re-suspended to 2-5x10⁶ cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-3 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37°C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to 1x10⁶ cells/ml, and dispensed into a microplate, 100 ul/well. The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley CellWash with 200 ul, followed by an aspiration step to 100 ul final volume.

For a non-cell based assay, each well contains a fluorescent molecule, such as _fluo-3. The supernatant is added to the well, and a change in fluorescence is detected.

To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling even which has resulted in an increase in the intracellular Ca⁺⁺ concentration.

20

25

5

10

15

Example 19: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity

The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins.

30

35

Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the Interleukins, Interferons, GM-CSF, and Leptin).

PCT/US98/04482

5

10

15

23	125	6.25
24	130	6.5
25	135	6.75
26	140	7
27	145	7.25
28	150	7.5
29	155	7.75
30	160	8
31	165	8.25
32	170	8.5
33	175	8.75
34	180	9
35	185	9.25
36	190	9.5
37	195	9.75
38	200	10
39	205	10.25
40	210	10.5
-41	215	10.75
42	220	11
43	225	11.25
44	230	11.5
45	235	11.75
46	240	12
47	245	12.25
48	250	12.5
49	255	12.75
50	260	13

Example 18: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability

Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supernatants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.

The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-3, used here.

For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a CO₂ incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.

10

15

20

25

Once NF-kB/SV40/SEAP/Neo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 13. Similarly, the method for assaying supernatants with these stable Jurkat T-cells is also described in Example 13. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and H11, with a 5-10 fold activation typically observed.

Example 17: Assay for SEAP Activity

As a reporter molecule for the assays described in Examples 13-16, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below.

Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 μ l of 2.5x dilution buffer into Optiplates containing 35 μ l of a supernatant. Seal the plates with a plastic sealer and incubate at 65°C for 30 min. Separate the Optiplates to avoid uneven heating.

Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 µl Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the table below). Add 50 µl Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on luminometer, one should treat 5 plates at each time and start the second set 10 minutes later.

Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.

Reaction Ruffer Formulation:

Reaction 1	builer rormulation:	
# of plates	Rxn buffer diluent (ml)	CSPD (ml)
10	60	3
11	65	3.25
12	70	3.5
13	75	3.75
14	80	4
15	85	4.25
16	90	4.5
17	95	4.75
18	100	5
19	105	5.25
20	110	5.5
21	115	5.75
22	120	6

diseases. For example, inhibitors of NF-kB could be used to treat those diseases related to the acute or chronic activation of NF-kB, such as rheumatoid arthritis.

To construct a vector containing the NF-κB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-κB binding site (GGGGACTTTCCC) (SEQ ID NO:8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an XhoI site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCGGGGACTTTCCATCTGCATCTCAATTAG:3' (SEQ ID NO:9)

The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site:

5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

5

10

20

PCR amplification is performed using the SV40 promoter template present in the pB-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI and Hind III and subcloned into BLSK2-. (Stratagene)

Sequencing with the T7 and T3 primers confirms the insert contains the following sequence:

5':CTCGAGGGACTTTCCCGGGGACTTTCCGGGACTTTCC
ATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCA
TCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACT
AATTTTTTTATTTATTCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTC
CAGAAGTAGTGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTTGCAAAAAGCTT:
3' (SEQ ID NO:10)

Next, replace the SV40 minimal promoter element present in the pSEAP2promoter plasmid (Clontech) with this NF-κB/SV40 fragment using XhoI and HindIII. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

In order to generate stable mammalian cell lines, the NF-κB/SV40/SEAP

cassette is removed from the above NF-κB/SEAP vector using restriction enzymes Sall and NotI, and inserted into a vector containing neomycin resistance. Particularly, the NF-κB/SV40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with SalI and NotI.

To assay for neuronal activity, a 10 cm plate with cells around 70 to 80% confluent is screened by removing the old medium. Wash the cells once with PBS (Phosphate buffered saline). Then starve the cells in low serum medium (RPMI-1640 containing 1% horse serum and 0.5% FBS with antibiotics) overnight.

The next morning, remove the medium and wash the cells with PBS. Scrape off the cells from the plate, suspend the cells well in 2 ml low serum medium. Count the cell number and add more low serum medium to reach final cell density as $5x10^5$ cells/ml.

Add 200 ul of the cell suspension to each well of 96-well plate (equivalent to 1×10^5 cells/well). Add 50 ul supernatant produced by Example 11, 37°C for 48 to 72 hr. As a positive control, a growth factor known to activate PC12 cells through EGR can be used, such as 50 ng/ul of Neuronal Growth Factor (NGF). Over fifty-fold induction of SEAP is typically seen in the positive control wells. SEAP assay the supernatant according to Example 17.

15

20

25

30

5

10

Example 16: High-Throughput Screening Assay for T-cell Activity

NF-κB (Nuclear Factor κB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-κB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF-κB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses.

In non-stimulated conditions, NF- κB is retained in the cytoplasm with I-κB (Inhibitor κB). However, upon stimulation, I- κB is phosphorylated and degraded, causing NF- κB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- κB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.

Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-κB promoter element are used to screen the supernatants produced in Example 11. Activators or inhibitors of NF-kB would be useful in treating

10

15

20

25

30

35

When cells undergo differentiation and proliferation, a group of genes are activated through many different signal transduction pathways. One of these genes, EGR1 (early growth response gene 1), is induced in various tissues and cell types upon activation. The promoter of EGR1 is responsible for such induction. Using the EGR1 promoter linked to reporter molecules, activation of cells can be assessed.

Particularly, the following protocol is used to assess neuronal activity in PC12 cell lines. PC12 cells (rat phenochromocytoma cells) are known to proliferate and/or differentiate by activation with a number of mitogens, such as TPA (tetradecanoyl phorbol acetate), NGF (nerve growth factor), and EGF (epidermal growth factor). The EGR1 gene expression is activated during this treatment. Thus, by stably transfecting PC12 cells with a construct containing an EGR promoter linked to SEAP reporter, activation of PC12 cells can be assessed.

The EGR/SEAP reporter construct can be assembled by the following protocol. The EGR-1 promoter sequence (-633 to +1)(Sakamoto K et al., Oncogene 6:867-871 (1991)) can be PCR amplified from human genomic DNA using the following primers:

5' GCGCTCGAGGGATGACAGCGATAGAACCCCGG -3' (SEQ ID NO:6)
5' GCGAAGCTTCGCGACTCCCCGGATCCGCCTC-3' (SEQ ID NO:7)

Using the GAS:SEAP/Neo vector produced in Example 12, EGR1 amplified product can then be inserted into this vector. Linearize the GAS:SEAP/Neo vector using restriction enzymes XhoI/HindIII, removing the GAS/SV40 stuffer. Restrict the EGR1 amplified product with these same enzymes. Ligate the vector and the EGR1 promoter.

To prepare 96 well-plates for cell culture, two mls of a coating solution (1:30 dilution of collagen type I (Upstate Biotech Inc. Cat#08-115) in 30% ethanol (filter sterilized)) is added per one 10 cm plate or 50 ml per well of the 96-well plate, and allowed to air dry for 2 hr.

PC12 cells are routinely grown in RPMI-1640 medium (Bio Whittaker) containing 10% horse serum (JRH BIOSCIENCES, Cat. # 12449-78P), 5% heatinactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 ug/ml streptomycin on a precoated 10 cm tissue culture dish. One to four split is done every three to four days. Cells are removed from the plates by scraping and resuspended with pipetting up and down for more than 15 times.

Transfect the EGR/SEAP/Neo construct into PC12 using the Lipofectamine protocol described in Example 11. EGR-SEAP/PC12 stable cells are obtained by growing the cells in 300 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 300 ug/ml G418 for couple of passages.

10

15

20

25

30

35

Example 14: High-Throughput Screening Assay Identifying Myeloid Activity

The following protocol is used to assess myeloid activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre-monocyte cell line, although TF-1, HL60, or KG1 can be used.

To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in Example 12, a DEAE-Dextran method (Kharbanda et. al., 1994, Cell Growth & Differentiation, 5:259-265) is used. First, harvest 2x10e⁷ U937 cells and wash with PBS. The U937 cells are usually grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin.

Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KCl, 375 uM Na₂HPO₄.7H₂O, 1 mM MgCl₂, and 675 uM CaCl₂. Incubate at 37°C for 45 min.

Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37°C for 36 hr.

The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.

These cells are tested by harvesting $1x10^8$ cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of $5x10^5$ cells/ml. Plate 200 ul cells per well in the 96-well plate (or $1x10^5$ cells/well).

Add 50 ul of the supernatant prepared by the protocol described in Example 11. Incubate at 37°C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 17.

Example 15: High-Throughput Screening Assay Identifying Neuronal Activity.

PCT/US98/04482

5

10

15

20

25

30

with 10 ug of plasmid DNA in a T25 flask. Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins.

During the incubation period, count cell concentration, spin down the required number of cells (10^7 per transfection), and resuspend in OPTI-MEM to a final concentration of 10^7 cells/ml. Then add 1ml of 1 x 10^7 cells in OPTI-MEM to T25 flask and incubate at 37°C for 6 hrs. After the incubation, add 10 ml of RPMI + 15% serum.

The Jurkat:GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supernatants containing a polypeptide as produced by the protocol described in Example 11.

On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supernatants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required.

Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).

After all the plates have been seeded, 50 ul of the supernatants are transferred directly from the 96 well plate containing the supernatants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and H11 to serve as additional positive controls for the assay.

The 96 well dishes containing Jurkat cells treated with supernatants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20°C until SEAP assays are performed according to Example 17. The plates containing the remaining treated cells are placed at 4°C and serve as a source of material for repeating the assay on a specific well if desired.

As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells.

10

15

20

25

30

35

Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sall and NotI, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 13-14.

Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing NFK-B and EGR promoter sequences are described in Examples 15 and 16. However, many other promoters can be substituted using the protocols described in these Examples. For instance, SRE, IL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, Il-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUVAC (aortic), or Cardiomyocyte.

Example 13: High-Throughput Screening Assay for T-cell Activity.

The following protocol is used to assess T-cell activity by identifying factors, such as growth factors and cytokines, that may proliferate or differentiate T-cells. T-cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 12. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC Accession No. TIB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.

Jurkat T-cells are lymphoblastic CD4+ Th1 helper cells. In order to generate stable cell lines, approximately 2 million Jurkat cells are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.

Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with 1%Pen-Strep. Combine 2.5 mls of OPTI-MEM (Life Technologies)

10

15

20

25

30

35

To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 13-14, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the IRF1 promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al., Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an XhoI site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTCCCCGAAATGATTTC

The downstream primer is complementary to the SV40 promoter and is flanked with a Hind III site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO:4)

PCR amplification is performed using the SV40 promoter template present in the B-gal:promoter plasmid obtained from Clontech. The resulting PCR fragment is digested with XhoI/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:

5':CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATG
ATTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCC
CTAACTCCGCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGC
CCCATGGCTGACTAATTTTTTTTATTTATTTATGCAGAGGCCGAGGCCGCCTCGGC
CTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTTTTGGAGGCCTAGGCTTT
TGCAAAAAAGCTT:3' (SEQ ID NO:5)

With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetyltransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.

The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using HindIII and XhoI, effectively replacing the SV40 promoter with the amplified GAS:SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.

	<u>Ligand</u>	tyk2	JAKs Jakl	Jak2	Jak3	<u>STATS</u>	GAS(elements) or ISRE
5	IFN family IFN-a/B IFN-g II-10	+	+ + ?	- + ?	-	1,2,3 1 1,3	ISRE GAS (IRF1>Lys6>IFP)
10	gp130 family IL-6 (Pleiotrohic) Il-11(Pleiotrohic) OnM(Pleiotrohic) LIF(Pleiotrohic)	+ ? ? ?	+ + +	+ ? +	? ? ? ?	1,3 1,3 1,3 1,3	GAS (IRF1>Lys6>IFP)
15	CNTF(Pleiotrohic) G-CSF(Pleiotrohic) IL-12(Pleiotrohic)	-/+ ? +	+ + -	+ ? +	? ? ? +	1,3 1,3 1,3	
20	g-C family IL-2 (lymphocytes) IL-4 (lymph/myeloid) IL-7 (lymphocytes) IL-9 (lymphocytes) IL-13 (lymphocyte) IL-15	- - - - - ?	+ + + + + + +	- - - ? ?	+ + + + ? +	1,3,5 6 5 5 6 5	GAS GAS (IRF1 = IFP >>Ly6)(IgH) GAS GAS GAS GAS
25 30	gp140 family IL-3 (myeloid) IL-5 (myeloid) GM-CSF (myeloid)	- -	-	+ + +	- - -	5 5 5	GAS (IRF1>IFP>>Ly6) GAS GAS
35	Growth hormone fami GH PRL EPO	ily ? ? ?	<u>-</u> +/- -	+ + +	- - -	5 1,3,5 5	GAS(B-CAS>IRF1=IFP>>Ly6)
40	Receptor Tyrosine Kir EGF PDGF CSF-1	nases ? ? ?	+ + +	+ + +	- -	1,3 1,3 1,3	GAS (IRF1) GAS (not IRF1)

Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway.

Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway. (See Table below.) Thus, by using GAS elements linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.

10

15

20

25

30

Methyl-B-Cyclodextrin complexed with Oleic Acid	33.33
Methyl-B-Cyclodextrin complexed with Retinal Acetate	10

Adjust osmolarity to 327 mOsm

Example 12: Construction of GAS Reporter Construct

One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.

GAS and ISRE elements are recognized by a class of transcription factors called Signal Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Stat1 and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.

The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jak1, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.

The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995).) A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for IL-2, IL-3, IL-4, IL-6, IL-7, IL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G-CSF, GM-CSF, LIF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, IFN-g, and IL-10. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proxial region encoding Trp-Ser-Xxx-Trp-Ser (SEQ ID NO:2)).

L-Aspartic Acid	6.65
L-Cystine-2HCL-	29.56
H ₂ 0	[
L-Cystine-2HCL	31.29
L-Glutamic Acid	7.35
L-Glutamine	365.0
Glycine	18.75
L-Histidine-HCL-	52.48
H_2O	
L-Isoleucine	106.97
L-Leucine	111.45
L-Lysine HCL	163.75
L-Methionine	32.34
L-Phenylalainine	68.48
L-Proline	40.0
L-Serine	26.25
L-Threonine	101.05
L-Tryptophan	19.22
L-Tryrosine-2Na-	91.79
$2H_{2}0$	
L-Valine	99.65

Vitamins

Biotin	0.0035 mg/L
D-Ca Pantothenate	3.24
Choline Chloride	11.78
Folic Acid	4.65
i-Inositol	15.60
Niacinamide	3.02
Pyridoxal HCL	3.00
Pyridoxine HCL	0.031
Riboflavin	0.319
Thiamine HCL	3.17
Thymidine	0.365
Vitamin B ₁₂	0.680

Other Components

HEPES Buffer	25 mM
Na Hypoxanthine	2.39 mg/L
Lipoic Acid	0.105
Sodium Putrescine-2HCL	0.081
Sodium Pyruvate	55.0
Sodium Selenite	0.0067
Ethanolamine	20uM
Ferric Citrate	0.122
Methyl-B-Cyclodextrin complexed with Linoleic Acid	41.70

proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.

5 HGS-CHO-5 medium formulation:

Inorganic Salts

_	
CaCl2 (anhyd)	116.6 mg/L
CuSO ₄ -5H ₂ O	0.00130
$Fe(NO_3)_3-9H_2O$	0.050
FeSO ₄ -7H ₂ O	0.417
KCl	311.80
MgCl ₂	28.64
$MgSO_4$	48.84
NaCl	6995.50
NaHCO ₃	2400.0
NaH ₂ PO ₄ -H ₂ 0	62.50
Na ₂ HPO4	71.02
ZnSO ₄ -7H ₂ O	.4320

Lipids

Arachidonic Acid	.002 mg/L
Cholesterol	1.022
DL-alpha-	.070
Tocopherol-Acetate	
Linoleic Acid	0.0520
Linolenic Acid	0.010
Myristic Acid	0.010
Oleic Acid	0.010
Palmitric Acid	0.010
Palmitic Acid	0.010
Pluronic F-68	100
Stearic Acid	0.010
Tween 80	2.20

10 Carbon Source

D-Glucose	4551 mg/L

Amino Acids

L- Alanine	130.85 mg/ml
L-Arginine-HCL	147.50
L-Asparagine-H ₂ 0	7.50

10

15

20

25

30

35

Plate 293T cells (do not carry cells past P+20) at 2 x 10⁵ cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/1x Penstrep(17-602E Biowhittaker). Let the cells grow overnight.

The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco/BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8 or 9, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each well. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.

Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-1ml PBS. Person A then aspirates off PBS rinse, and person B, using a12-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37°C for 6 hours.

While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with 1x penstrep, or CHO-5 media (see below) with 2mm glutamine and 1x penstrep. (BSA (81-068-3 Bayer) 100gm dissolved in 1L DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.

The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well. Incubate at 37°C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.

On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supernatants from each well can then be used in the assays described in Examples 13-20.

It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide directly (e.g., as a secreted protein) or by the polypeptide inducing expression of other

10

15

20

mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the protein-specific antibody can be blocked by the polypeptide. Such antibodies comprise anti-idiotypic antibodies to the protein-specific antibody and can be used to immunize an animal to induce formation of further protein-specific antibodies.

It will be appreciated that Fab and F(ab')2 and other fragments of the antibodies of the present invention may be used according to the methods disclosed herein. Such fragments are typically produced by proteolytic cleavage, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). Alternatively, secreted protein-binding fragments can be produced through the application of recombinant DNA technology or through synthetic chemistry.

For in vivo use of antibodies in humans, it may be preferable to use "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric antibodies are known in the art. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al., Nature 312:643 (1984); Neuberger et al., Nature 314:268 (1985).)

Example 11: Production Of Secreted Protein For High-Throughput Screening Assays

25

30

35

The following protocol produces a supernatant containing a polypeptide to be tested. This supernatant can then be used in the Screening Assays described in Examples 13-20.

First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (1mg/ml in PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.

10

15

20

25

30

35

PCT/US98/04482

ACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGAGTGC GACGGCCGCGACTCTAGAGGAT (SEQ ID NO:1)

Example 10: Production of an Antibody from a Polypeptide

The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) For example, cells expressing a polypeptide of the present invention is administered to an animal to induce the production of sera containing polyclonal antibodies. In a preferred method, a preparation of the secreted protein is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity.

In the most preferred method, the antibodies of the present invention are monoclonal antibodies (or protein binding fragments thereof). Such monoclonal antibodies can be prepared using hybridoma technology. (Köhler et al., Nature 256:495 (1975); Köhler et al., Eur. J. Immunol. 6:511 (1976); Köhler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981).) In general, such procedures involve immunizing an animal (preferably a mouse) with polypeptide or, more preferably, with a secreted polypeptide-expressing cell. Such cells may be cultured in any suitable tissue culture medium; however, it is preferable to culture cells in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/l of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.

The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP2O), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981).) The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide.

Alternatively, additional antibodies capable of binding to the polypeptide can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody. In accordance with this method, protein specific antibodies are used to immunize an animal, preferably a

10

15

20

25

30

35

activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. All of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.

Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.

For example, if pC4 (Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.

If the naturally occurring signal sequence is used to produce the secreted protein, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

Human IgG Fc region:

GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCC
CAGCACCTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACC
CAAGGACACCCTCATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGT
GGACGTAAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACG
GCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAAC
AGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTG
AATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAACCCC
ATCGAGAAAACCATCTCCAAAGCCAAAGGCCACCGGAGAACCACAGGT
GTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT
GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGA
GAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGG
ACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCA
GGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTTGC

10

30

35

secreted protein, the vector does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., WO 96/34891.)

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. *E. coli* HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid pC6 using, for instance, restriction enzyme analysis.

Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five µg of the expression plasmid pC6 is cotransfected with 0.5 µg of the plasmid pSVneo using lipofectin (Felgner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that 15 confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of metothrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6-well petri 20 dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 µM, 2 µM, 5 µM, 10 mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 -25 200 µM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.

Example 9: Protein Fusions

The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988).) Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subcellular localization, while covalent heterodimer or homodimers can increase or decrease the

15

20

25

30

35

Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.

Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as dhfr, gpt, neomycin, hygromycin allows the identification and isolation of the transfected cells.

The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C., Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991).) Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.

Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No. 209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985).) Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, XbaI and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.

Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.

A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If the naturally occurring signal sequence is used to produce the

and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.

5

10

15

20

25

30

35

After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, *supra*. An agarose gel with "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 µl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 cells seeded in 35 mm dishes. Four days later the supernatants of these culture dishes are harvested and then they are stored at 4° C.

To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies Inc., Rockville, MD). After 42 hours, 5 μ Ci of ³⁵S-methionine and 5 μ Ci ³⁵S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).

Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.

Example 8: Expression of a Polypeptide in Mammalian Cells

The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HIVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter).

WO 98/39446

5

10

15

20

25

30

35

translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).

Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon and the naturally associated leader sequence identified in Table 1, is amplified using the PCR protocol described in Example 1. If the naturally occurring signal sequence is used to produce the secreted protein, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).

The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.

The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).

The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. *E. coli* HB101 or other suitable *E. coli* hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.

Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA", Pharmingen, San Diego, CA), using the lipofection method described by Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate

WO 98/39446

5

10

15

Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.

Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water. The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0. Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A₂₈₀ monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.

The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 µg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.

20

25

30

35

Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System

In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the *Autographa californica* nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from *E. coli* under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell-mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.

Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIM1, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription,

Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.

The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.

5

10

15

20

25

30

Example 6: Purification of a Polypeptide from an Inclusion Body

The following alternative method can be used to purify a polypeptide expressed in *E coli* when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.

Upon completion of the production phase of the *E. coli* fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.

The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min. The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.

The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride (GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.

Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.

To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 µm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive

10

15

20

25

30

35

Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCl by stirring for 3-4 hours at 4°C. The cell debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., *supra*). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., *supra*).

Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8, the column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine-HCl, pH 5.

The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4°C or frozen at -80°C.

In addition to the above expression vector, the present invention further includes an expression vector comprising phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called pHE4a. (ATCC Accession Number XXXXXX.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (lacIq). The origin of replication (oriC) is derived from pUC19 (LTI, Gaithersburg, MD). The promoter sequence and operator sequences are made synthetically.

DNA can be inserted into the pHEa by restricting the vector with NdeI and XbaI, BamHI, XhoI, or Asp718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for NdeI (5' primer) and XbaI, BamHI, XhoI, or

15

20

25

30

primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions is analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.

10 Example 5: Bacterial Expression of a Polypeptide

A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and XbaI, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and XbaI correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, Inc., Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp^r), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.

The pQE-9 vector is digested with BamHI and XbaI and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lacI repressor and also confers kanamycin resistance (Kan^I). Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.

Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.⁶⁰⁰) of between 0.4 and 0.6. IPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lacI repressor, clearing the P/O leading to increased gene expression.

be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.

This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.

Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide

A human genomic P1 library (Genomic Systems, Inc.) is screened by PCR using primers selected for the cDNA sequence corresponding to SEQ ID NO:X., according to the method described in Example 1. (See also, Sambrook.)

Example 3: Tissue Distribution of Polypeptide

5

10

20

25

30

35

Tissue distribution of mRNA expression of polynucleotides of the present invention is determined using protocols for Northern blot analysis, described by, among others, Sambrook et al. For example, a cDNA probe produced by the method described in Example 1 is labeled with P³² using the rediprimeTM DNA labeling system (Amersham Life Science), according to manufacturer's instructions. After labeling, the probe is purified using CHROMA SPIN-100TM column (Clontech Laboratories, Inc.), according to manufacturer's protocol number PT1200-1. The purified labeled probe is then used to examine various human tissues for mRNA expression.

Multiple Tissue Northern (MTN) blots containing various human tissues (H) or human immune system tissues (IM) (Clontech) are examined with the labeled probe using ExpressHybTM hybridization solution (Clontech) according to manufacturer's protocol number PT1190-1. Following hybridization and washing, the blots are mounted and exposed to film at -70°C overnight, and the films developed according to standard procedures.

Example 4: Chromosomal Mapping of the Polynucleotides

An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This

10

15

20

25

30

35

The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.

Alternatively, two primers of 17-20 nucleotides derived from both ends of the SEQ ID NO:X (i.e., within the region of SEQ ID NO:X bounded by the 5' NT and the 3' NT of the clone defined in Table 1) are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 µl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl₂, 0.01% (w/v) gelatin, 20 µM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.

Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont-Racine et al., Nucleic Acids Res. 21(7):1683-1684 (1993).)

Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.

This above method starts with total RNA isolated from the desired source, although poly-A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then

20

25

30

35

are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the f1 origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f1 ori generates sense strand DNA and in the other, antisense.

Vectors pSport1, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. E., et al., Focus 15:59 (1993).) Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR[®]2.1, which is available from Invitrogen, 1600 Faraday Avenue, 10 Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).) Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 1, as well as the 15 corresponding plasmid vector sequences designated above.

The deposited material in the sample assigned the ATCC Deposit Number cited in Table 1 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each cDNA clone identified in Table 1. Typically, each ATCC deposit sample cited in Table 1 comprises a mixture of approximately equal amounts (by weight) of about 50 plasmid DNAs, each containing a different cDNA clone; but such a deposit sample may include plasmids for more or less than 50 cDNA clones, up to about 500 cDNA clones.

Two approaches can be used to isolate a particular clone from the deposited sample of plasmid DNAs cited for that clone in Table 1. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to SEQ ID NO:X.

Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with ³²P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982).) The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above.

polypeptide, polynucleotide, or antibody of the claimed invention effective to increase the level of said protein activity in said individual.

Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.

Examples

Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample

10

15

30

35

5

Each cDNA clone in a cited ATCC deposit is contained in a plasmid vector. Table 1 identifies the vectors used to construct the cDNA library from which each clone was isolated. In many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The table immediately below correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 1 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."

	Vector Used to Construct Library	Corresponding Deposited Plasmid
	Lambda Zap	pBluescript (pBS)
20	Uni-Zap XR	pBluescript (pBS)
	Zap Express	pBK
	lafmid BA	plafmid BA
	pSport1	pSport1
	pCMVSport 2.0	pCMVSport 2.0
25	pCMVSport 3.0	pCMVSport 3.0
	pCR [®] 2.1	pCR [®] 2.1

Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for SacI and "K" is for KpnI which

10

15

20

25

30

35

90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host.

Also preferred is an isolated nucleic acid molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.

Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a secreted portion of a human secreted protein comprising an amino acid sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y beginning with the residue at the position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y wherein Y is an integer set forth in Table 1 and said position of the First Amino Acid of the Secreted Portion of SEQ ID NO:Y is defined in Table 1; and an amino acid sequence of a secreted portion of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The isolated polypeptide produced by this method is also preferred.

Also preferred is a method of treatment of an individual in need of an increased level of a secreted protein activity, which method comprises administering to such an individual a pharmaceutical composition comprising an amount of an isolated

10

15

20

25

30

35

amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.

Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

In any of these methods, the step of detecting said polypeptide molecules includes using an antibody.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least

WO 98/39446 PCT/US98/04482

amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

5

10

15

20

25

30

35

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of the secreted portion of the protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1; and a complete amino acid sequence of a protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.

Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: an

10

15

20

25

30

35

Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y wherein Y is any integer as defined in Table 1.

Also preferred is a polypeptide, wherein said sequence of contiguous amino acids is included in the amino acid sequence of SEQ ID NO:Y in the range of positions beginning with the residue at about the position of the First Amino Acid of the Secreted Portion and ending with the residue at about the Last Amino Acid of the Open Reading Frame as set forth for SEQ ID NO:Y in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the complete amino acid sequence of SEQ ID NO:Y.

Further preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a secreted portion of the secreted protein encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the

WO 98/39446 PCT/US98/04482

whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.

5

10

15

20

25

30

35

Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.

A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a gene encoding a secreted protein identified in Table 1, which method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1.

The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.

10

15

20

25

30

35

Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.

Also preferred is a composition of matter comprising a DNA molecule which comprises a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the material deposited with the American Type Culture Collection and given the ATCC Deposit Number shown in Table 1 for said cDNA Clone Identifier.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in the nucleotide sequence of a human cDNA clone identified by a cDNA Clone Identifier in Table 1, which DNA molecule is contained in the deposit given the ATCC Deposit Number shown in Table 1.

Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of the complete open reading frame sequence encoded by said human cDNA clone.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by said human cDNA clone.

A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA Clone Identifier in Table 1 and contained in the deposit with the ATCC Deposit Number shown for said cDNA clone in Table 1; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining

10

15

20

25

30

35

Other Preferred Embodiments

Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Clone Sequence and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the Start Codon and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Similarly preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of SEQ ID NO:X in the range of positions beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X.

A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of SEQ ID NO:X beginning with the nucleotide at about the position of the 5' Nucleotide of the First Amino Acid of the Signal Peptide and ending with the nucleotide at about the position of the 3' Nucleotide of the Clone Sequence as defined for SEQ ID NO:X in Table 1.

A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ID NO:X.

antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.

All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptide from suitably manipulated cells or tissues.

Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.

15

10

5

Other Activities

A polypeptide or polynucleotide of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage.

20

A polypeptide or polynucleotide of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide or polynucleotide of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.

25

A polypeptide or polynucleotide of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.

30

35

A polypeptide or polynucleotide of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.

10

15

20

25

30

35

disorders. Thus, a polynucleotide or polypeptide of the present invention could be used as an inhibitor of chemotaxis.

Binding Activity

A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology 1(2):Chapter 5 (1991).) Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.

Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or *E. coli*. Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.

The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.

Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.

Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The

Moreover, a polynucleotide or polypeptide of the present invention may increase regeneration of tissues difficult to heal. For example, increased tendon/ligament regeneration would quicken recovery time after damage. A polynucleotide or polypeptide of the present invention could also be used prophylactically in an effort to avoid damage. Specific diseases that could be treated include of tendinitis, carpal tunnel syndrome, and other tendon or ligament defects. A further example of tissue regeneration of non-healing wounds includes pressure ulcers, ulcers associated with vascular insufficiency, surgical, and traumatic wounds.

Similarly, nerve and brain tissue could also be regenerated by using a polynucleotide or polypeptide of the present invention to proliferate and differentiate nerve cells. Diseases that could be treated using this method include central and peripheral nervous system diseases, neuropathies, or mechanical and traumatic disorders (e.g., spinal cord disorders, head trauma, cerebrovascular disease, and stoke). Specifically, diseases associated with peripheral nerve injuries, peripheral neuropathy (e.g., resulting from chemotherapy or other medical therapies), localized neuropathies, and central nervous system diseases (e.g., Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome), could all be treated using the polynucleotide or polypeptide of the present invention.

20

25

30

35

15

5

10

Chemotaxis

A polynucleotide or polypeptide of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.

A polynucleotide or polypeptide of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.

It is also contemplated that a polynucleotide or polypeptide of the present invention may inhibit chemotactic activity. These molecules could also be used to treat

Leprosy, Paratuberculosis, Tuberculosis, Lupus, Botulism, gangrene, tetanus, impetigo, Rheumatic Fever, Scarlet Fever, sexually transmitted diseases, skin diseases (e.g., cellulitis, dermatocycoses), toxemia, urinary tract infections, wound infections. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Moreover, parasitic agents causing disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following families: Amebiasis, Babesiosis, Coccidiosis, Cryptosporidiosis, Dientamoebiasis, Dourine, Ectoparasitic, Giardiasis, Helminthiasis, Leishmaniasis, Theileriasis, Toxoplasmosis, Trypanosomiasis, and Trichomonas.

These parasites can cause a variety of diseases or symptoms, including, but not limited to: Scabies, Trombiculiasis, eye infections, intestinal disease (e.g., dysentery, giardiasis), liver disease, lung disease, opportunistic infections (e.g., AIDS related), Malaria, pregnancy complications, and toxoplasmosis. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Preferably, treatment using a polypeptide or polynucleotide of the present invention could either be by administering an effective amount of a polypeptide to the patient, or by removing cells from the patient, supplying the cells with a polynucleotide of the present invention, and returning the engineered cells to the patient (ex vivo therapy). Moreover, the polypeptide or polynucleotide of the present invention can be used as an antigen in a vaccine to raise an immune response against infectious disease.

Regeneration

5

20

25

30

35

A polynucleotide or polypeptide of the present invention can be used to differentiate, proliferate, and attract cells, leading to the regeneration of tissues. (See, Science 276:59-87 (1997).) The regeneration of tissues could be used to repair, replace, or protect tissue damaged by congenital defects, trauma (wounds, burns, incisions, or ulcers), age, disease (e.g. osteoporosis, osteocarthritis, periodontal disease, liver failure), surgery, including cosmetic plastic surgery, fibrosis, reperfusion injury, or systemic cytokine damage.

Tissues that could be regenerated using the present invention include organs (e.g., pancreas, liver, intestine, kidney, skin, endothelium), muscle (smooth, skeletal or cardiac), vascular (including vascular endothelium), nervous, hematopoietic, and skeletal (bone, cartilage, tendon, and ligament) tissue. Preferably, regeneration occurs without or decreased scarring. Regeneration also may include angiogenesis.

Viruses are one example of an infectious agent that can cause disease or symptoms that can be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of viruses, include, but are not limited to the following DNA and RNA viral families: Arbovirus, Adenoviridae, Arenaviridae, Arterivirus, Birnaviridae, Bunyaviridae, Caliciviridae, Circoviridae, Coronaviridae, Flaviviridae, 5 Hepadnaviridae (Hepatitis), Herpesviridae (such as, Cytomegalovirus, Herpes Simplex, Herpes Zoster), Mononegavirus (e.g., Paramyxoviridae, Morbillivirus, Rhabdoviridae), Orthomyxoviridae (e.g., Influenza), Papovaviridae, Parvoviridae, Picornaviridae, Poxviridae (such as Smallpox or Vaccinia), Reoviridae (e.g., Rotavirus), Retroviridae (HTLV-I, HTLV-II, Lentivirus), and Togaviridae (e.g., 10 Rubivirus). Viruses falling within these families can cause a variety of diseases or symptoms, including, but not limited to: arthritis, bronchiollitis, encephalitis, eye infections (e.g., conjunctivitis, keratitis), chronic fatigue syndrome, hepatitis (A, B, C, E, Chronic Active, Delta), meningitis, opportunistic infections (e.g., AIDS), pneumonia, Burkitt's Lymphoma, chickenpox, hemorrhagic fever, Measles, Mumps, 15 Parainfluenza, Rabies, the common cold, Polio, leukemia, Rubella, sexually transmitted diseases, skin diseases (e.g., Kaposi's, warts), and viremia. A polypeptide or polynucleotide of the present invention can be used to treat or detect any of these symptoms or diseases.

Similarly, bacterial or fungal agents that can cause disease or symptoms and that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but not limited to, the following Gram-Negative and Gram-positive bacterial families and fungi: Actinomycetales (e.g., Corynebacterium, Mycobacterium, Norcardia), Aspergillosis, Bacillaceae (e.g., Anthrax, Clostridium), Bacteroidaceae, Blastomycosis, Bordetella, Borrelia, Brucellosis, Candidiasis, Campylobacter, Coccidioidomycosis, Cryptococcosis, Dermatocycoses, Enterobacteriaceae (Klebsiella, Salmonella, Serratia, Yersinia), Erysipelothrix, Helicobacter, Legionellosis, Leptospirosis, Listeria, Mycoplasmatales, Neisseriaceae (e.g., Acinetobacter, Gonorrhea, Menigococcal), Pasteurellacea Infections (e.g., Actinobacillus, Heamophilus, Pasteurella), Pseudomonas, Rickettsiaceae, Chlamydiaceae, Syphilis, and Staphylococcal. These bacterial or fungal families can cause the following diseases

or symptoms, including, but not limited to: bacteremia, endocarditis, eye infections (conjunctivitis, tuberculosis, uveitis), gingivitis, opportunistic infections (e.g., AIDS related infections), paronychia, prosthesis-related infections, Reiter's Disease, respiratory tract infections, such as Whooping Cough or Empyema, sepsis, Lyme Disease, Cat-Scratch Disease, Dysentery, Paratyphoid Fever, food poisoning, Typhoid, pneumonia, Gonorrhea, meningitis, Chlamydia, Syphilis, Diphtheria,

10

15

20

25

30

35

Hyperproliferative Disorders

A polypeptide or polynucleotide can be used to treat or detect hyperproliferative disorders, including neoplasms. A polypeptide or polynucleotide of the present invention may inhibit the proliferation of the disorder through direct or indirect interactions. Alternatively, a polypeptide or polynucleotide of the present invention may proliferate other cells which can inhibit the hyperproliferative disorder.

For example, by increasing an immune response, particularly increasing antigenic qualities of the hyperproliferative disorder or by proliferating, differentiating, or mobilizing T-cells, hyperproliferative disorders can be treated. This immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, decreasing an immune response may also be a method of treating hyperproliferative disorders, such as a chemotherapeutic agent.

Examples of hyperproliferative disorders that can be treated or detected by a polynucleotide or polypeptide of the present invention include, but are not limited to neoplasms located in the: abdomen, bone, breast, digestive system, liver, pancreas, peritoneum, endocrine glands (adrenal, parathyroid, pituitary, testicles, ovary, thymus, thyroid), eye, head and neck, nervous (central and peripheral), lymphatic system, pelvic, skin, soft tissue, spleen, thoracic, and urogenital.

Similarly, other hyperproliferative disorders can also be treated or detected by a polynucleotide or polypeptide of the present invention. Examples of such hyperproliferative disorders include, but are not limited to: hypergammaglobulinemia, lymphoproliferative disorders, paraproteinemias, purpura, sarcoidosis, Sezary Syndrome, Waldenstron's Macroglobulinemia, Gaucher's Disease, histiocytosis, and any other hyperproliferative disease, besides neoplasia, located in an organ system listed above.

Infectious Disease

A polypeptide or polynucleotide of the present invention can be used to treat or detect infectious agents. For example, by increasing the immune response, particularly increasing the proliferation and differentiation of B and/or T cells, infectious diseases may be treated. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, the polypeptide or polynucleotide of the present invention may also directly inhibit the infectious agent, without necessarily eliciting an immune response.

10

15

20

25

30

35

inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.

Examples of autoimmune disorders that can be treated or detected by the present invention include, but are not limited to: Addison's Disease, hemolytic anemia, antiphospholipid syndrome, rheumatoid arthritis, dermatitis, allergic encephalomyelitis, glomerulonephritis, Goodpasture's Syndrome, Graves' Disease, Multiple Sclerosis, Myasthenia Gravis, Neuritis, Ophthalmia, Bullous Pemphigoid, Pemphigus, Polyendocrinopathies, Purpura, Reiter's Disease, Stiff-Man Syndrome, Autoimmune Thyroiditis, Systemic Lupus Erythematosus, Autoimmune Pulmonary Inflammation, Guillain-Barre Syndrome, insulin dependent diabetes mellitis, and autoimmune inflammatory eye disease.

Similarly, allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be treated by a polypeptide or polynucleotide of the present invention. Moreover, these molecules can be used to treat anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.

A polynucleotide or polypeptide of the present invention may also be used to treat and/or prevent organ rejection or graft-versus-host disease (GVHD). Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. The administration of a polypeptide or polynucleotide of the present invention that inhibits an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD.

Similarly, a polypeptide or polynucleotide of the present invention may also be used to modulate inflammation. For example, the polypeptide or polynucleotide may inhibit the proliferation and differentiation of cells involved in an inflammatory response. These molecules can be used to treat inflammatory conditions, both chronic and acute conditions, including inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusion injury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, or resulting from over production of cytokines (e.g., TNF or IL-1.)

WO 98/39446 PCT/US98/04482

103

may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides could be used to treat the associated disease.

Immune Activity

5

10

15

20

25

30

35

A polypeptide or polynucleotide of the present invention may be useful in treating deficiencies or disorders of the immune system, by activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune deficiencies or disorders may be genetic, somatic, such as cancer or some autoimmune disorders, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, a polynucleotide or polypeptide of the present invention can be used as a marker or detector of a particular immune system disease or disorder.

A polynucleotide or polypeptide of the present invention may be useful in treating or detecting deficiencies or disorders of hematopoietic cells. A polypeptide or polynucleotide of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat those disorders associated with a decrease in certain (or many) types hematopoietic cells. Examples of immunologic deficiency syndromes include, but are not limited to: blood protein disorders (e.g. agammaglobulinemia, dysgammaglobulinemia), ataxia telangiectasia, common variable immunodeficiency, Digeorge Syndrome, HIV infection, HTLV-BLV infection, leukocyte adhesion deficiency syndrome, lymphopenia, phagocyte bactericidal dysfunction, severe combined immunodeficiency (SCIDs), Wiskott-Aldrich Disorder, anemia, thrombocytopenia, or hemoglobinuria.

Moreover, a polypeptide or polynucleotide of the present invention could also be used to modulate hemostatic (the stopping of bleeding) or thrombolytic activity (clot formation). For example, by increasing hemostatic or thrombolytic activity, a polynucleotide or polypeptide of the present invention could be used to treat blood coagulation disorders (e.g., afibrinogenemia, factor deficiencies), blood platelet disorders (e.g. thrombocytopenia), or wounds resulting from trauma, surgery, or other causes. Alternatively, a polynucleotide or polypeptide of the present invention that can decrease hemostatic or thrombolytic activity could be used to inhibit or dissolve clotting. These molecules could be important in the treatment of heart attacks (infarction), strokes, or scarring.

A polynucleotide or polypeptide of the present invention may also be useful in treating or detecting autoimmune disorders. Many autoimmune disorders result from

10

15

20

25

30

35

millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing Inc. (1982).)

Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression of a polypeptide of the present invention in cells or body fluid of an individual; (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a disorder.

Moreover, polypeptides of the present invention can be used to treat disease. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B), to inhibit the activity of a polypeptide (e.g., an oncogene), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth).

Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease. For example, administration of an antibody directed to a polypeptide of the present invention can bind and reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor).

At the very least, the polypeptides of the present invention could be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the following biological activities.

Biological Activities

The polynucleotides and polypeptides of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules

10

15

20

25

30

35

In the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.

Uses of the Polypeptides

Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.

A polypeptide of the present invention can be used to assay protein levels in a biological sample using antibody-based techniques. For example, protein expression in tissues can be studied with classical immunohistological methods. (Jalkanen, M., et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987).) Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.

In addition to assaying secreted protein levels in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.

A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, 112In, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously, or intraperitoneally) into the mammal. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20

10

15

20

25

30

35

present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell.

The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel. In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.

The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique ID database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.

Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992).) Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.

There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers specific to particular tissue prepared from the sequences of the present invention. Panels of such reagents can identify tissue by species and/or by organ type. In a similar fashion, these reagents can be used to screen tissue cultures for contamination.

10

15

20

25

30

35

analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library).) Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.

Thus, once coinheritance is established, differences in the polynucleotide and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.

Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using polynucleotides of the present invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker.

In addition to the foregoing, a polynucleotide can be used to control gene expression through triple helix formation or antisense DNA or RNA. Both methods rely on binding of the polynucleotide to DNA or RNA. For these techniques, preferred polynucleotides are usually 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988).) Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease.

Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the

10

15

20

25

30

35

Uses of the Polynucleotides

Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.

The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each polynucleotide of the present invention can be used as a chromosome marker.

Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the SEQ ID NO:X will yield an amplified fragment.

Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, and preselection by hybridization to construct chromosome specific-cDNA libraries.

Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).

For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Preferred polynucleotides correspond to the noncoding regions of the cDNAs because the coding sequences are more likely conserved within gene families, thus increasing the chance of cross hybridization during chromosomal mapping.

Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage

10

15

20

25

30

35

293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.

Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXT1 and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Other suitable vectors will be readily apparent to the skilled artisan.

Introduction of the construct into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.

A polypeptide of this invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.

Polypeptides of the present invention, and preferably the secreted form, can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N-terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked.

preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein. (Wilson et al., Cell 37:767 (1984).)

Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the claimed invention.

10

15

20

25

30

35

Vectors, Host Cells, and Protein Production

The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by recombinant techniques. The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.

The polynucleotides may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.

The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.

As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418 or neomycin resistance for eukaryotic cell culture and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells; insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS,

10

15

20

25

30

35

Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences.

Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides are familiar and routine techniques in the art.

Moreover, polypeptides of the present invention, including fragments, and specifically epitopes, can be combined with parts of the constant domain of immunoglobulins (IgG), resulting in chimeric polypeptides. These fusion proteins facilitate purification and show an increased half-life in vivo. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. (EP A 394,827; Traunecker et al., Nature 331:84-86 (1988).) Fusion proteins having disulfide-linked dimeric structures (due to the IgG) can also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. (Fountoulakis et al., J. Biochem. 270:3958-3964 (1995).)

Similarly, EP-A-O 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. (EP-A 0232 262.) Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995).)

Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a peptide which facilitates purification of the fused polypeptide. In

10

15

20

25

30

35

Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.)

In the present invention, antigenic epitopes preferably contain a sequence of at least seven, more preferably at least nine, and most preferably between about 15 to about 30 amino acids. Antigenic epitopes are useful to raise antibodies, including monoclonal antibodies, that specifically bind the epitope. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe, J. G. et al., Science 219:660-666 (1983).)

Similarly, immunogenic epitopes can be used to induce antibodies according to methods well known in the art. (See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow, M. et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle, F. J. et al., J. Gen. Virol. 66:2347-2354 (1985).) A preferred immunogenic epitope includes the secreted protein. The immunogenic epitopes may be presented together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse) or, if it is long enough (at least about 25 amino acids), without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting.)

As used herein, the term "antibody" (Ab) or "monoclonal antibody" (Mab) is meant to include intact molecules as well as antibody fragments (such as, for example, Fab and F(ab')2 fragments) which are capable of specifically binding to protein. Fab and F(ab')2 fragments lack the Fc fragment of intact antibody, clear more rapidly from the circulation, and may have less non-specific tissue binding than an intact antibody. (Wahl et al., J. Nucl. Med. 24:316-325 (1983).) Thus, these fragments are preferred, as well as the products of a FAB or other immunoglobulin expression library. Moreover, antibodies of the present invention include chimeric, single chain, and humanized antibodies.

Fusion Proteins

Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, the polypeptides of the present invention can be used as targeting molecules once fused to other proteins.

10

15

20

25

30

35

includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes.

Preferred polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotide fragments encoding these polypeptide fragments are also preferred.

Also preferred are polypeptide and polynucleotide fragments characterized by structural or functional domains, such as fragments that comprise alpha-helix and alpha-helix forming regions, beta-sheet and beta-sheet-forming regions, turn and turn-forming regions, coil and coil-forming regions, hydrophilic regions, hydrophobic regions, alpha amphipathic regions, beta amphipathic regions, flexible regions, surface-forming regions, substrate binding region, and high antigenic index regions.

Polypeptide fragments of SEQ ID NO:Y falling within conserved domains are specifically contemplated by the present invention. Moreover, polynucleotide fragments encoding these domains are also contemplated.

Other preferred fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.

Epitopes & Antibodies

In the present invention, "epitopes" refer to polypeptide fragments having antigenic or immunogenic activity in an animal, especially in a human. A preferred embodiment of the present invention relates to a polypeptide fragment comprising an epitope, as well as the polynucleotide encoding this fragment. A region of a protein molecule to which an antibody can bind is defined as an "antigenic epitope." In contrast, an "immunogenic epitope" is defined as a part of a protein that elicits an antibody response. (See, for instance, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998-4002 (1983).)

10

15

20

25

30

35

For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. (Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993).)

Polynucleotide and Polypeptide Fragments

In the present invention, a "polynucleotide fragment" refers to a short polynucleotide having a nucleic acid sequence contained in the deposited clone or shown in SEQ ID NO:X. The short nucleotide fragments are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in the deposited clone or the nucleotide sequence shown in SEQ ID NO:X. These nucleotide fragments are useful as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., 50, 150, 500, 600, 2000 nucleotides) are preferred.

Moreover, representative examples of polynucleotide fragments of the invention, include, for example, fragments having a sequence from about nucleotide number 1-50, 51-100, 101-150, 151-200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 651-700, and 701 to the end of SEQ ID NO:X or the cDNA contained in the deposited clone. In this context "about" includes the particularly recited ranges, larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide which has biological activity.

In the present invention, a "polypeptide fragment" refers to a short amino acid sequence contained in SEQ ID NO:Y or encoded by the cDNA contained in the deposited clone. Protein fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 102-120, 121-140, 141-160, and 161 to the end of the coding region. Moreover, polypeptide fragments can be about 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, or 150 amino acids in length. In this context "about"

WO 98/39446 PCT/US98/04482

91

phenotypically silent amino acid substitutions is provided in Bowie, J. U. et al., Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.

5

10

15

20

25

30

35

The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.

The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. (Cunningham and Wells, Science 244:1081-1085 (1989).) The resulting mutant molecules can then be tested for biological activity.

As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ile; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gln, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.

Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitution with one or more of amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), or (iv) fusion of the polypeptide with additional amino acids, such as an IgG Fc fusion region peptide, or leader or secretory sequence, or a sequence facilitating purification. Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.

10

15

20

25

30

35

organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985).) These allelic variants can vary at either the polynucleotide and/or polypeptide level. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.

Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C-terminus of the secreted protein without substantial loss of biological function. The authors of Ron et al., J. Biol. Chem. 268: 2984-2988 (1993), reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7:199-216 (1988).)

Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL-1a. They used random mutagenesis to generate over 3,500 individual IL-1a mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." (See, Abstract.) In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.

Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-terminus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art.

Thus, the invention further includes polypeptide variants which show substantial biological activity. Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. For example, guidance concerning how to make

10

15

20

25

30

35.

will encode a polypeptide identical to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

Similarly, by a polypeptide having an amino acid sequence having at least, for example, 95% "identity" to a reference polypeptide, is intended that the amino acid sequence of the polypeptide is identical to the reference polypeptide except that the polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the total length of the reference polypeptide. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a reference amino acid sequence, up to 5% of the amino acid residues in the reference sequence may be deleted or substituted with another amino acid, or a number of amino acids up to 5% of the total amino acid residues in the reference sequence may be inserted into the reference sequence. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence.

Further embodiments of the present invention include polypeptides having at least 80% identity, more preferably at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone. Preferably, the above polypeptides should exhibit at least one biological activity of the protein.

In a preferred embodiment, polypeptides of the present invention include polypeptides having at least 90% similarity, more preferably at least 95% similarity, and still more preferably at least 96%, 97%, 98%, or 99% similarity to an amino acid sequence contained in SEQ ID NO:Y or the expressed protein produced by the deposited clone.

The variants may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations which produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, variants in which 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli).

Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an

10

15

20

25

30

35

When using any of the sequence alignment programs to determine whether a particular sequence is, for instance, 95% identical to a reference sequence, the parameters are set so that the percentage of identity is calculated over the full length of the reference polynucleotide and that gaps in identity of up to 5% of the total number of nucleotides in the reference polynucleotide are allowed.

A preferred method for determing the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990).) The term "sequence" includes nucleotide and amino acid sequences. In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is in percent identity. Preferred parameters used in a FASTDB search of a DNA sequence to calculate percent identity are: Matrix=Unitary, k-tuple=4, Mismatch Penalty=1, Joining Penalty=30, Randomization Group Length=0, and Cutoff Score=1, Gap Penalty=5, Gap Size Penalty 0.05, and Window Size=500 or query sequence length in nucleotide bases, whichever is shorter. Preferred parameters employed to calculate percent identity and similarity of an amino acid alignment are: Matrix=PAM 150, k-tuple=2, Mismatch Penalty=1, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=1, Gap Penalty=5, Gap Size Penalty=0.05, and Window Size=500 or query sequence length in amino acid residues, whichever is shorter.

As an illustration, a polynucleotide having a nucleotide sequence of at least 95% "identity" to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone, means that the polynucleotide is identical to a sequence contained in SEQ ID NO:X or the cDNA except that the polynucleotide sequence may include up to five point mutations per each 100 nucleotides of the total length (not just within a given 100 nucleotide stretch). In other words, to obtain a polynucleotide having a nucleotide sequence at least 95% identical to SEQ ID NO:X or the deposited clone, up to 5% of the nucleotides in the sequence contained in SEQ ID NO:X or the cDNA can be deleted, inserted, or substituted with other nucleotides. These changes may occur anywhere throughout the polynucleotide.

Further embodiments of the present invention include polynucleotides having at least 85% identity, more preferably at least 90% identity, and most preferably at least 95%, 96%, 97%, 98% or 99% identity to a sequence contained in SEQ ID NO:X or the cDNA contained in the deposited clone. Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the polynucleotides having at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity

15

uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.

10 Polynucleotide and Polypeptide Variants

"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.

"Identity" per se has an art-recognized meaning and can be calculated using published techniques. (See, e.g.: (COMPUTATIONAL MOLECULAR BIOLOGY, Lesk, A.M., ed., Oxford University Press, New York, (1988); BIOCOMPUTING: INFORMATICS AND GENOME PROJECTS, Smith, D.W., ed., Academic Press, New York, (1993); COMPUTER ANALYSIS OF SEQUENCE DATA, PART I,

- 20 Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey, (1994);
 SEQUENCE ANALYSIS IN MOLECULAR BIOLOGY, von Heinje, G., Academic Press, (1987); and SEQUENCE ANALYSIS PRIMER, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, (1991).) While there exists a number of methods to measure identity between two polynucleotide or polypeptide sequences, the
 25 term "identity" is well known to skilled artisans. (Carillo, H., and Lipton, D., SIAM I.
- term "identity" is well known to skilled artisans. (Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988).) Methods commonly employed to determine identity or similarity between two sequences include, but are not limited to, those disclosed in "Guide to Huge Computers," Martin J. Bishop, ed., Academic Press, San Diego, (1994), and Carillo, H., and Lipton, D., SIAM J Applied Math 48:1073 (1988).
- Methods for aligning polynucleotides or polypeptides are codified in computer programs, including the GCG program package (Devereux, J., et al., Nucleic Acids Research (1984) 12(1):387 (1984)), BLASTP, BLASTN, FASTA (Atschul, S.F. et al., J. Molec. Biol. 215:403 (1990), Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park,
- 575 Science Drive, Madison, WI 53711 (using the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2:482-489 (1981).)

WO 98/39446

86

PCT/US98/04482

It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.

The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural or recombinant sources using antibodies of the invention raised against the secreted protein in methods which are well known in the art.

Signal Sequences

5

10

15

20

25

30

35

Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271-286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.

In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10:1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table 1.

As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 5 residues (i.e., + or - 5 residues) of the predicted cleavage point. Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely

10

15

20

25

30

35

Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).

Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table 1. The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.

The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, or the deposited clone. The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.

Also provided in the present invention are species homologs. Species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for the desired homologue.

The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.

The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below).

10

15

20

25

30

35

Table 1 summarizes the information corresponding to each "Gene No." described above. The nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the "cDNA clone ID" identified in Table 1 and, in some cases, from additional related DNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.

The cDNA Clone ID was deposited on the date and given the corresponding deposit number listed in "ATCC Deposit No:Z and Date." Some of the deposits contain multiple different clones corresponding to the same gene. "Vector" refers to the type of vector contained in the cDNA Clone ID.

"Total NT Seq." refers to the total number of nucleotides in the contig identified by "Gene No." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." and the "3' NT of Clone Seq." of SEQ ID NO:X. The nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep."

The translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be easily translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.

The first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." The predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion." Finally, the amino acid position of SEQ ID NO:Y of the last amino acid in the open reading frame is identified as "Last AA of ORF."

SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to the secreted proteins encoded by the cDNA clones identified in Table 1.

Last AA of OR	52	92
NT SEQ of S' NT Grant SEQ AA First Last Predicted of S' NT First SEQ AA First AA Last NO: NT Seq. Seq. Start Signal NO: Sig Sig Secreted of Seq. Codon Pep Y Pep Pep Portion F	28	26
Last AA of Sig Pep	27	1 25
First AA of Sig Pep	1	
AA SEQ ID NO: Y	255 1 27	203
5' NT of First AA of Signal Pep	588	132
5' NT of Start Codon	588	557 132
3' NT of Clone Seq.	1043	557
5' NT of Clone Seq.	535	_
Total NT Seq.	1088	80 557
SEQ NO:	132	08
Vector	Uni-ZAP XR 132 1088 535 1043 588	97904 Uni-ZAP XR 12/26/97 209050 15/15/97
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HPEBD70	70 HMCAB89
Gene No.	69	70

Last AA of OR F	112	108	122	314	44	314	235
Predicted First AA of Secreted Portion	70	40	24	24	21	28	7
	69	39	23	23	20	27	9
First Last AA AA of of Sig Sig Pep Pep	1		-	-	-	1	-
SEQ YÖ:	199	252	200	201	253	254	202
5' NT of First AA of Signal Pep	1	2133	51	25	701	25	95
5' NT of Start Codon		2133	51	25	701		95
3' NT of Clone Seq.	585	2713	577	1935	1011	1929	1097
Sont 3' NT of Of Clone Clone Seq. Seq.	-	2023	-	1458	479		109
Total NT Seq.	585	2713	577	2278	1011	2278	1143
X Š B Š X	9/	129	77	78	130	131	61
Vector	Uni-ZAP XR	pBluescript	Uni-ZAP XR				
ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97976 04/04/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HTXCT40	HTXCT40	HRGDF73	HRDBF52	HRDBF52	HKMND45	HPEBD70
Gene No.	99	99		89	89	89	69

	Gene No.	79	63	63	64	2 9	65
	cDNA Clone ID	HHFGL41	HBJEM49	HBJEM49	HSLDJ95	HSLDJ95	HSREG44
	ATCC Deposit No: Z and Date	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
	Vector	Uni-ZAP XR					
ΓN	×Se SE	126	73	127	74	128	75
	Total NT Seq.	1296	889	737	1890	1925	1133
5' NT	of Clone Seq.	& .	_		, 1	_	408
3, NT	of Clone Seq.	1237	889	737	1890	1829	1133
	of of Start	133	173	174	112	81	531
5, NT of	First SEQ AA of ID Signal NO: Signal NO: Pep Y	133	173	174	112	87	531
*	SEQ YÖBÖ.	249	196	250	197	251	198
First Last	AA of iig ep	_	_	—	-	_	_
		39	<u>&</u>	20	21	23	<u>&</u>
Predicted	First AA of Secreted Portion	40	19	21	22	24	19
		95	4	78	354	353	73

Last AA of OR	17	317	338	52	41	101
First Last Predicted AA AA First AA Last of of of AA Sig Sig Secreted of Pep Pep Portion OR		29	22	31	29	43
Last AA of Sig Pep		28	21	30	28	42
First AA of Sig Pep	-	-	_	-		
¥ŠΘŠ÷ ∀ÖΘÖ⊁	247	192	248	193	194	195
5' NT of AA I First SEQ AA of ID Signal NO: Pep Y	501	70	70	536	187	118
<u> </u>	501	70	70	536	187	118
NT SEQ of of S' N SEQ OF S' N OS: NT Seq. Seq. Code	1526	1278	1088	1031	855	1274
5' NT of Clone Seq.	402	-	31	498	178	58
Total NT Seq.	1804	1292	1282	1031	855	1274
SEQ SÜBÜX	124	69	125	70	71	72
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript SK-	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97904 02/26/97 209050 05/15/97	97904 02/26/97 209050 05/15/97
cDNA Clone ID	HSSEP68	HRDEV41	HRDEV41	HILCJ01	HSATP28	HHFGL41
Gene No.	58	59	59	09	61	62

Gene No.	55	26	57	57	28	28
cDNA Clone ID	HODAZ50	HSDGE59	HE6ES13	HE6ES13	HSSEP68	HSSEP68
ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
Vector	Uni-ZAP XR					
NA NO: NO:	121	99	<i>L</i> 9	122	89	123
Total NT Seq.	219	3301	1535	1686	1244	1211
S' NT 3' NT of of Clone Clone Seq.		349	_	239	402	_
S' NT 3' NT of of Clone Seq.	219	1478	1535	1678	1244	1211
S' NT of Start Codoi		341	331		57	08
S' NT of AA F F First SEQ AA of ID Signal NO: S	Ī	341	331	36 <i>7</i>	57	80
AA SEQ NÖ: Y	244	189	190	245	191	246
irst AA of Sig	_			-	-	_
Last AA of Sig Pep	10	30	26	27	30	30
Predicted First AA of Secreted Portion	11	31	27	28	31	31
Last AA of OR	72	83	57	48	310	338

	Last AA of OR F	27	28	23	187	122	145
:	of AA First Last Predicted AA of ID of of of of AA AA First AA L AA of ID of of of AA	27	40	26	31	24	27
	Last AA of Sig Pep	26	39	25	30	23	26
	First AA of Sig Pep	-		-	_	1	•
	¥ŠeŠe}⊁	241	186	242	187	243	188
5' NT	of First AA of Signal Pep	198	176	317	30	296	
	of of Start	198	176	317	30	296	—
	3' NT of Clone Seq.	453	1436	1957	2033	2134	440
	Seq. Seq.		40	211		110	-
	Total NT Seq.	453	1478	2016	2033	2136	440
	ZÄÐÖ×	118	63	119	64	120	65
	Vector	pSport1	Uni-ZAP XR				
	ATCC Deposit No: Z and Date	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97	97903 02/26/97 209049 05/15/97
	cDNA Clone ID	HMMAB12	HSKDW02	HSKDW02	HETGL41	HETGL41	HODAZ50
	Gene No.	52	53	53	54	54	55

Last AA of OR	255	323	46	92	91	42
Predicted First AA of Secreted Portion	27	61	32	63	23	30
Last AA of Sig Pep	26	18	34	62	22	29
First AA of Sig Pep	I	1	1	-	1	1
AA SEQ ID NO: Y	180	181	182	183	238	185
of AA F of Pirst SEQ AA of D Signal NO: (9 Pep Y 1	352	12	172	40	73	308
s' NT of Start Jodon	352	12	172	40	73	308
3' NT of Clone Seq.	1010	557	304	501	536	595
S' NT 3' NT of of Clone Clone Seq.	320	33		-	73	_
Total NT Seq.	1259	1186	428	501	536	595
SEQ NÖ:	57	58	59	09	115	62
Vector	Uni-ZAP XR	pSport1				
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97903 02/26/97 209049 05/15/97
cDNA Clone ID	HMCBP63	HEMGE83	HHSDC22	HHSDZ57	HHSDZ <i>S7</i>	HMMAB12
Gene No.	47	48	49	50	50	52

Last AA of OR F	178	33	154	312	294	295
First Last Predicted AA AFirst AA I of of of of Sig Secreted Pep Pep Portion C	26	24	32	37	25	25
Last AA of Sig Pep	25	23	31	36	24	24
First AA of Sig Pep	-		-	-		Space of the Space
AA SEQ NÖ: Y	177	235	178	236	179	237
5' NT of AA F First SEQ AA of ID Signal NO: Pep Y	218	225	119	08	124	165
5' NT of Start Codon	218		119	08	124	165
3' NT of Clone Seq.	1107	1087	1903	1832	1838	1960
Song Seq.	-	30	-		133	06
Total NT Seq.	1117	1785	1903	1842	1869	1960
SEQ NÖ:	54	112	55	113	56	114
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97	97902 02/26/97 209048 05/15/97
cDNA Clone ID	HE8CJ26	HE8CJ26	HTTDS54	HTTDS54	HLHDY31	HLHDY31
Gene No.	44	44	45	45	46	46

d Last AA d of OR	195	300	264	312	137	47
Predicte First Af of Secrete Portion	21	23	26	30	23	34
Last AA of Sig Pep	20	22	25	29	22	33
First AA of Sig Pep	I	1	I	1	1	1
AA SEQ ID NO: Y	174	232	175	233	176	234
S'NT AA F of AA F First SEQ AA AA of D Signal NO: Signal NO: Y	142	89	158	41	161	995
of of Start	142	89	158	41	161	
3' NT of Clone Seq.	2070	1957	1426	1311	1720	1962
5' NT of Clone Seq.	74	15	-	80		299
Total NT Seq.	2070	2003	1426	1320	1720	1962
SEQ NO:	51	109	52	110	53	=
Vector	pSport1	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HNTME13	HNTME13	HSXB125	HSXB125	HSXCK41	HSXCK41
Gene No.	41	41	42	42	43	43

Last AA of OR F	231	08	71	64	74	333
Predicted First AA of Secreted Portion	31	30	31	24	23	2
First Last AA AA of of Sig Sig Pep Pep	30	29	30	23	22	-
First AA of Sig Pep	.	-		1	_	1
SEQ NÖ: Y	169	231	170	171	172	173
S' NT of AA IF SEQ AA of D Signal NO: Pep Y	129	100	83	167	364	2
of of Start Codon	129	100	83	167	364	2
3' NT of Clone Seq.	1772	1734	1107	764	1258	1184
5' NT of Clone Seq.	69	65	70	167	131	_
Total NT Seg.	1772	1734	1107	805	1408	1813
SEQ NO:	46	108	47	48	46	50
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97	97901 02/26/97 209047 05/15/97
cDNA Clone ID	HMHBN40	HMHBN40	HFVGS85	HERAH81	HMSEU04	HNEDJ57
Gene No.	36	36	37	38	39	40

Last AA of OR	19	08	92	93	93	57	36
Predicted First AA of Secreted Portion		21	24	24	22	31	24
Last AA of Sig Pep		20	23	23	21	30	23
First AA of Sig Pep	-		, —	1	1	-	
AA SEQ ID NO: Y	227	166	167	228	229	168	230
5' NT of AA I of Erist SEQ AA of ID Signal NO: Pep Y	1134	299	10	272	168	1437	686
of of Start Codon		299	10	272	168	1437	686
3' NT of Clone Seq.	2237	1580	717	1023	1669	2378	1892
S' NT 3' NT of of Clone Seq. Seq.	878	100	61		-	1337	1068
Total NT Seq.	2237	1635	780	1822	1712	2378	1969
SEQ X:SEQ	104	43	4	105		45	107
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pSport1	pBluescript	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	209236 09/04/97	209084 05/29/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HAGBB70	HETDG84	HTEGA81	HKGAJ40	HKMLK44	HTXAK60	HTXAK60
Gene No.	32	33	34	34	34	35	35

Last AA of OR F	14	99	154	154	6	103
Predictec First AA of Secreted Portion		61	31	32		19
First Last I AA AA of of Sig Sig Pep		18	30	31		18
First AA of Sig Pep	1	1	1	-	I	1
AA SEQ D NO: Y	224	163	164	225	226	165
of AA H First SEQ AA of ID Signal NO: Pep Y	237	223	213	119	138	119
5' NT of Start Codon	237	223	213	611	138	119
S' NT 3' NT of of Clone Clone Seq.	609	376	2471	1721	1777	2659
5' NT 3' NT of of Clone Clone Seq. Seq.	176		141	47	96	1172
Total NT Seq.	609	425	2471	1770	1832	2659
NA SEQ	101	40	41	102	103	42
Vector	Uni-ZAP XR					
ATCC Deposit No: Z and Date	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HCEIU14	HEBDA39	HTHBA79	НТНВА79	HTHBA79	HAGBB70
Gene No.	29	30	31	31	31	32

1 H ' O I	80	138	137	177	49	71
YA A	25	20	24	22	27	22
First Last AA AA of of Sig Sig Pep Pep	24	19	23	21	26	21
First AA of Sig Pep	_	-	*******			T
AA SEQ ID NO: Y	159	160	222	161	223	162
S' NT AA Fi of AA of AA of AA of AA of AA of BO c Signal NO: S Pep Y Pa	25	1	7	-	17	
of of Start	25	1		-	17	1
3' NT of Clone Seq.	459	509	447	598	611	454
Soperations of Service Seq. (Seq. (S	1				37	Ī
Total NT Seq.	459	509	447	598	611	454
NT SEQ DO:	36	37	66	38	001	39
Vector	Uni-ZAP XR	pSport1	pSport1	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HTLEV12	HSPAF93	HSPAF93	HHFGL62	ннгог62	HCEIU14
Gene No.	26	27	27	28	28	29

Last AA of OR F	104	28	28	52	16	74
Predicted First AA of Secreted Portion	48	28	28	23		26
First Last AA AA of of of Sig Sig Pep Pep	47	27	27	22		25
First AA of Sig Pep		-	1	I	1	
¥ŞEŞ ¥ŞEŞ	219	156	220	157	221	158
of AA F First SEQ AA of D Signal NO: Pep Y	32	48	68	39	202	40
of of Start Codor	32	48	68	39	507	40
3' NT of Clone Seq.	422	928	593	773	1253	453
5' NT of Clone Seq.	23		72		507	
Total NT Seq.	1580	928	8/9	773	1253	453
X SEQ	96	33	97	34	86	35
Vector	Uni-ZAP XR	pBluescript	pBluescript	pBluescript	pBluescript	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HTEAL31	HBMCT32	нвмст32	HSKXE91	HSKXE91	HPWTB39
Gene No.	22	23	23	24	24	25

. 69

d Last AA AA OR	47	46	41	40	71	105
First Last Predicted AA AA First AA Last of of of AA Sig Sig Secreted of Pep Pep Portion OR	45	47	29	34	25	48
Last AA of Sig Pep	4	46	28	33	24	47
First AA of Sig Pep		_		-	-	-
¥.ö.eQ	152	217	153	218	154	155
S' NT of AA Frirst SEQ AA of ID Signal NO: Pep Y	109	1868	47	699	403	49
of of Start	109	1868	47	699	403	49
3' NT of Clone Seq.	1139	2847	370	1000	702	518
5' NT of Clone Seq.	9	1795		664		
Total NT Seq.	1139	3058	465	6601	702	1142
NT SEQ BD NO:	29	94	30	95	31	32
Vector	Uni-ZAP XR	Uni-ZAP XR	pSport1	pSport1	Uni-ZAP XR	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
	HOSFF45	HOSFF45	HMJAA51	HMJAA51	HTEBF05	HTEAL31
Gene No.	19	19	20	20	21	22

d Last AA 1 of OR	34	164	229	138	126	57
Predicte First AA of Secreted Portion	32	19	23	31	28	30
First Last I AA AA of of Sig Sig Pep	31	18	22	30	27	29
First AA of Sig Pep	1	_		1		-
AA SEQ ID NO: Y	213	149	214	150	216	151
Start Signal NO: Start Septon Start Signal NO: Start Start Signal NO: Start Start Signal NO: Start Start Start Signal NO: Start Sta	275	& &	79	26	100	169
5' NT 3' NT of of 5' NT Clone Clone of Seq. Seq. Start Codon		& &	79	6	100	169
3' NT of Clone Seq.	625	1105	1009	1017	943	391
5' NT of Clone Seq.	198	40	61			
Total NT Seq.	628	1105	1053	1017	2492	391
SEQ NÖ:	06	26	91	27	93	28
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	pBluescript	pBluescript	Uni-ZAP XR
ATCC Deposit No: Z and Date	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
cDNA Clone ID	HTEBY26	НМАВН07	HMABH07	HSKNY94	HSKNY94	HMCDA67
Gene No.	15	16	16	17	17	18

υ.						15 HTI
cDNA Clone ID	HCSRA90				HSNBL85	HTEBY26
ATCC Deposit No: Z and Date	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97	97899 02/26/97 209045 05/15/97
Vector	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR		Uni-ZAP XR	Uni-ZAP XR
NS B SA	22	23	88	24	68	25
Tot NJ Sec	1224	694	539	962	855	662
5' NT of Clone Seq.	64	-		405	300	205
3' NT of Clone Seq.	257	694	539	796	855	653
5 NT 3' NT of of S' NT Follows Clone Clone of A Clone Clone of A Start Signary Start Signary S	08	181	215	-	513	77
of AA First SEQ AA of ID Signal NO:	08	181	215		513	77
AA SEQ NO:	145	146	211	147	212	148
First AA of Sig Pep	-	-	_		-	
Last AA of Sig Pep	30	39	<u>8</u>	30	37	30
Predicted First AA of Secreted Portion	31	40	61	31	38	31
Last AA of OR F	225	4	19	131	54	91

NT Seq. Seq. Seq. Seq. Seq. Seq. Seq. Seq.	19 503 1 503 23 23 142 1 19 20 40	20 358 1 358 147 147 143 1 31 32 69	21 1926 573 1926 157 157 144 1 30 31 482	85 394 1 394 166 166 208 1 20 21 23	86 1925 573 1925 157 157 209 1 30 31 482	87 1818 30 1298 1137 210 1 12
ATCC S Deposit No: Z and Date Vector	97897 Uni-ZAP XR 02/26/97 209043 05/15/97	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR	Uni-ZAP XR
cDNA Clone ID	HNGIT22 9 02 20 20 20	HERAD57 9 02 20 20 05	HCEN140 9	HCENJ40 9 02 02 02 05 05 05 05	HCENJ40 9	HCENJ40 9
Gene No.	6	10		=	=	

Last AA of OR F	84	09	72	376	207	42
Predicted First AA of Secreted Portion	35	34	18	27	29	22
First Last AA AA of of of Sig Sig Pep Pep	34	33	17	26	28	21
First AA of Sig Pep					1	1
AA SEQ ID NO: Y	206	138	139	140	207	141
Signal NO:	51	143	56	45	15	157
5' NT of Start Codon	51	143	56	45	15	157
3' NT of Clone Seq.	1484	502	425	1298	1271	384
5' NT of Clone Seq.	-	_	_		_	87
Total NT Seq.	1494	502	425	1316	1285	436
NA NÖ NÖ NÖ	83	15	16	17	84	18
Vector	Uni-ZAP XR	Uni-ZAP XR	pBluescript	Uni-ZAP XR	Uni-ZAP XR	pBluescript
ATCC Deposit No: Z and Date	209010 04/28/97 209085 05/29/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97	97897 02/26/97 209043 05/15/97
cDNA Clone ID	HETBI87	HTEAU17	HBMCY91	HSSGE07	HSSGE07	HBMBX59
Gene No.	4	5	9	1	7	∞

Last AA of OR	466	221	34	155	232	42
Predicted First AA of Secreted Portion	59	29	30	36	21	32
First Last AA AA of of Sig Sig Pep Pep	28	28	29	35	20	31
First AA of Sig Pep	1	1	-		1	_
SEQ NÖ: Y	134	135	204	136	137	205
S' NT of AA II First SEQ AA of ID Signal NO: Pep Y	54	39	10	173	202	861
of of Start	54	39	01	173	202	
3' NT of Clone Seq.	1658	844	434	929	1343	1309
5' NT of Clone Seq.	25	-		134	727	741
Total NT Seq.	1739	844	795	176	1376	1324
SEQ NÖ:	11	12	81	13	14	82
Vector	pSport1	pCMVSport 3.0	pCMVSport 3.0	Uni-ZAP XR	pBluescript	pBluescript
ATCC Deposit No: Z and Date	97901 02/26/97 209047 05/15/97	97898 02/26/97 209044 05/15/97	97898 02/26/97 209044 05/15/97	97899 02/26/97 209045 05/15/97	97900 02/26/97 209046 05/15/97	97900 02/26/97 209046 05/15/97
cDNA Clone ID	HGCMD20	HLDBG33		HTGEW86		HKCSR70
Gene No.		2	2	ĸ	4	4

WO 98/39446 PCT/US98/04482

63

development, and cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematopoietic systems expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and certain cell types (e.g., macrophages, T-cells, dendritic cells, and fetal tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. There is some evidence that the polynucleotide is mapped to chromosome 19. Thus, the polynucleotide can be a marker for genetic analysis for chromosome 19.

5

10

15

20

25

30

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 70 are useful for treatment, prophylaxis, and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AIDS. The polypeptides or polynucleotides of the present invention are also useful in the treatment, prophylaxis, and detection of thymus disorders, such as Graves Disease, lymphocytic thyroiditis, hyperthyroidism, and hypothyroidism. The expression observed predominantly in hematopoietic cells also indicates that the polynucleotides or polypeptides are important in treating and/or detecting hematopoietic disorders, such as graft versus host reaction, graft versus host disease, transplant rejection, myelogenous leukemia, bone marrow fibrosis, and myeloproliferative disease. The polypeptides or polynucleotides are also useful to enhance or protect proliferation, differentiation, and functional activation of hematopoietic progenitor cells (e.g., bone marrow cells), useful in treating cancer patients undergoing chemotherapy or patients undergoing bone marrow transplantation. The polypeptides or polynucleotides are also useful to increase the proliferation of peripheral blood leukocytes, which can be used in the combat of a range of hematopoietic disorders, including immunodeficiency diseases, leukemia, and septicemia.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 203 as residues: Thr-21 to Ser-27, Pro-33 to Ser-38, and Arg-73 to Lys-84.

various hematopoietic disorders and influence the development and differentiation of blood cell lineages, including hematopoeitic stem cell expansion. The polypeptide does contain a thioredoxin family active site at amino acids 64-82. Polypeptides comprising this thioredoxin active site are contemplated.

5

10

15

20

FEATURES OF PROTEIN ENCODED BY GENE NO: 69

Gene NO: 69 is expressed primarily in liver and kidney and to a lesser extent in macrophages, uterus, placenta, and testes.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, renal disorders, neoplasms (e.g., soft tissue cancer, hepatacellular tumors), immune disorders, endocrine imbalances, and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hepatic, urogenital, immune, and reproductive systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., liver, kidney, uterus, placenta, testes, and macrophages and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

25

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 69 are useful for diagnosis and treatment of disorders in the hepatic, urogenital, immune, and reproductive systems.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 202 as residues: Arg-41 to Ser-50, Glu-138 to Asn-148, Ser-155 to Arg-172, Pro-219 to Glu-228.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 70

Gene NO: 70 is expressed primarily in the immune system, including macrophages, T-cells, and dendritic cells and to a lesser extent in fetal tissue.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune disorders, inflammatory diseases, lymph node disorders, fetal

10

15

20

25

30

35

marrow, spleen, lymph tissue, and B-cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to 8hs20 protein precursor [Mus musculus], indicates that polypeptides and polynucleotides corresponding to Gene NO: 67 are useful for therapeutic and/or diagnostic purposes, targeting Hodgkin's Lymphoma, B-cell lymphomas, Common Variable Immunodeficiency, or other immune disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 200 as residues: Asp-51 to Trp-56, Arg-72 to Asp-85, and Gln-106 to Asp-112.

FEATURES OF PROTEIN ENCODED BY GENE NO: 68

Gene NO: 68 is expressed primarily in fetal liver/spleen, rhabdomyosarcoma, and to a lesser extent in 9 week-old early stage human embryo and bone marrow.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, rhabdomyosarcoma and other cancers, hematopoietic disorders, and immune dysfunction. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., embryonic tissue, striated muscle, liver, spleen, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that the protein product of Gene NO: 68 is useful for diagnostic and/or therapeutic purposes directed to cancer, preferably rhabdomyosarcoma. Enhanced expression of this gene in fetal liver, spleen, and bone marrow indicates that this gene plays an active role in hematopoiesis. Polypeptides or polynucleotides of the present invention may therefore help modulate survival, proliferation, and/or differentiation of various hematopoietic lineages, including the hematopoietic stem cell. Thus, polynucleotides or polypeptides can be used treat

10

15

20

25

30

35

this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., brain, lymph tissue, monocytes, and T-cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Moreover, polynucleotides of this gene have been mapped to chromosome 1. Therefore, polynucleotides of the present invention can be used in linkage analysis as a marker for chromosome 1.

The tissue distribution and homology to human papilloma virus E5 region indicates that polypeptides and polynucleotides corresponding to Gene NO: 66 are useful for development of diagnostic and/or therapeutic modalities directed at the diagnosis and/or treatment of cancer and/or human papilloma virus infection (HPV).

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 199 as residues: Asn-31 to Arg-36 and Leu-102 to Ser-112.

FEATURES OF PROTEIN ENCODED BY GENE NO: 67

The translation product of Gene NO: 67 shares sequence homology with the 8hs20 protein precursor [*Mus musculus*] which is thought to be important in B-Cell mu chain assembly. (See, Accession No. PID/d1002996; Shiraswa, T., EMBO. J. 12(5):1827-1834 (1993).) A polypeptide fragment starting at amino acid 53 is preferred, as well as 1-20 amino acid N-terminus and/or C-terminus deletions. Based on the sequence similarity between 8hs20 protein and the translation product of this gene, the two polypeptides are expected to share certain biological activities, particularly immunologic activities.

Gene NO: 67 is expressed primarily in human B-cells and to a lesser extent in Hodgkin's Lymphoma. It is also likely that the polypeptide will be expressed in B-cell specific cells, bone marrow, and spleen, as is observed with 8hs20.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, Hodgkin's Lymphoma, Common Variable Immunodeficiency, and/or other B-cell lymphomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., bone

10

15

20

25

30

35

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer and/or diseases involving defects in protein secretion. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, cartilage and bone, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., placenta, testis, adrenal gland, and osteoclastoma, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the yeast YKL1GG protein indicates that polypeptides and polynucleotides corresponding to Gene NO: 65 are useful for the development of therapeutic and/or diagnostic modalities targeted at cancer or secretory anomalies, such as genetically caused secretory diseases.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 198 as residues: Ser-18 to Ser-29 and Lys-53 to Arg-74.

FEATURES OF PROTEIN ENCODED BY GENE NO: 66

The translation product of Gene NO: 66 shares sequence homology with the human papilloma virus (HPV) E5 ORF region which is thought to be important as a secreted growth factor. Although this is described as a viral gene product, it is believed to have several cellular secretory homologues. Therefore, based on the sequence similarity between the HPV E5 ORF and the translated product of this gene, this gene product is likely to have activity similar to HPV E5 ORF.

Gene NO: 66 is expressed primarily in activated T-Cells, monocytes, cerebellum and to a lesser extent in infant brain.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer and/or human papilloma virus infection. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of

10

15

20

25

30

35

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the lung as well as neural development, particularly of the lung. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the pulmonary system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., lungs and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the olfactomedin family indicates that polypeptides and polynucleotides corresponding to Gene NO: 64 are useful for the development of diagnostic and/or therapeutic modalities directed at detection and/or treatment of pulmonary disease states, e.g., cystic fibrosis.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 197 as residues: Gly-17 to Gln-23, Gln-45 to Arg-50, Arg-56 to Lys-61, Glu-70 to Leu-76, Asp-88 to Glu-93, Pro-117 to Met-131, Asp-161 to Glu-167, Arg-224 to Asn-237, Asp-302 to Trp-312, Pro-315 to Asn-320, and Thr-337 to Ser-341.

FEATURES OF PROTEIN ENCODED BY GENE NO: 65

The translation product of Gene NO: 65 shares sequence homology with Saccharomyces cerevisiae hypothetical protein YKL166 (Accession No. gi/687880) which is thought to be important in secretory and/or vesicular transport mechanisms. Based on this homology, it is likely that the gene product would have similar activity to YKL166, particularly secretory or transport mechanisms. Preferred polypeptide fragments of this gene include those fragments starting with the amino acid sequence ISAARV (SEQ ID NO:271). Other polypeptide fragments include the former fragment, which ends with the amino acid sequence PDVSEFMTRLF (SEQ ID NO:272). Further preferred fragments include those polypeptide fragments comprising the amino acid sequence FDPVRVDITSKGKMRAR (SEQ ID NO:273). Also preferred are polypeptide fragments having exogenous signal sequences fused to the polypeptide.

Gene No 65 is expressed primarily in placenta, testis, osteoclastoma and to a lesser extent in adrenal gland.

10

15

20

25

organism development, as well as other collagen genes. Thus, based on sequence homology, polypeptides of this gene are expected to have activity similar to collagen, including involvement in organ development.

Gene NO: 63 is expressed primarily in human B-Cell Lymphoma, and to a lesser extent in human pituitary tissue. This gene has also demonstrated expression in keratinocytes.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, B-Cell Lymphoma, other lymphomas, leukemias, and other cancers, as well as disorders related to development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., tissue and/or cells of the immune system, and pituitary, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to *Caenorhabditis elegans* alpha-collagen gene indicates that polypeptides and polynucleotides corresponding to Gene NO: 63 are useful for development of diagnostic and/or therapeutic modalities directed at the detection and/or treatment of cancer, specifically B-Cell Lymphomas, leukemias, or diseases related to development.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 196 as residues: Thr-22 to Arg-27 and Ser-29 to Thr-39.

FEATURES OF PROTEIN ENCODED BY GENE NO: 64

The translation product of Gene NO: 64 shares sequence homology with human extracellular molecule olfactomedin, which is thought to be important in the maintenance, growth, or differentiation of chemosensory cilia on the apical dendrites of olfactory neurons. Based on this sequence homology, it is likely that polypeptides of this gene have activity similar to the olfactomedin, particularly the differentiation or proliferation of neurons.

Gene NO: 64 is expressed primarily in fetal lung tissue.

10

15

20

25

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 62

The translation product of Gene NO: 62 shares sequence homology with the murine LAG3 gene which is thought to be important in the mediation of natural killer cell (NK cell) activity as previously determined by experiments in mice containing null mutations of LAG3. The similarity of this gene to the CD4 receptor may imply that the gene product may be a secreted, soluble receptor and immune mediator.

Gene NO: 62 is expressed primarily in human fetal heart, meningima, and to a lesser extent in tonsils. This gene also is expressed in the breast cancer cell line MDA 36.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, lymphomas, leukemias, breast cancer and any immune system dysfunction, including those dysfunctions which involve natural killer cell activities. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system or breast cancer, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., heart, meningima, and tonsils and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the LAG3 gene (murine) indicates that the polynucleotides and polypeptides corresponding to Gene NO: 62 are useful for diagnostic and/or therapeutic modalities directed at abnormalities or disease states involving defective immune systems, preferably involving natural killer cell activity, as well as breast cancer.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 195 as residues: Pro-10 to Trp-17, Cys-58 to Pro-67, Thr-76 to Glu-85, and Arg-93 to Asn-101.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 63

The translation product of Gene NO: 63 shares sequence homology with a Caenorhabditis elegans alpha-collagen gene (Clg), which is thought to be important in

10

15

20

25

30

35

gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 60 are useful for diagnosis or treatment of immune system disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 61

The translation product of Gene NO: 61, a vacuolar proton-ATPase, shares sequence homology with a *Caenorhabditis elegans* protein which is thought to be important in development. This protein may be a human secretory homologue that may also influence embryo development. Ludwig, J., also recently cloned this gene from chromaffin granules. (See, Accession No. 2584788.) Although Table 1 indicates the predicted signal peptide sequence, the translated product of this gene may in fact start with the upstream methionine, beginning with the amino acid sequence MAYHGLTV (SEQ ID NO:270). Thus, polypeptides comprising this upstream sequence, as well as N-terminus deletions, are also contemplated in the present invention.

Gene NO: 61 is expressed primarily in human placenta, liver, and Hodgkin's Lymphoma and to a lesser extent in bone marrow. Modest levels of expression were also observed in dendritic cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hyperproliferative disorders, defects in embryonic development, and diseases or disorders caused by defects in chromaffin granules. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly cancer, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., placenta, liver, lymph tissue, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to *Caenorhabditis elegans* indicates that polypeptides and polynucleotides corresponding to Gene NO: 61 are useful for diagnostic or therapeutic modalities for hyperproliferative disorders, embryonic development disorders, and chromaffin granules disorders.

10

15

20

25

30

35

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cardiovascular, immunological, and renal disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular, renal, and immune, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., liver, spleen, lung, brain, and prostrate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to hypertension-induced protein indicates that polypeptides and polynucleotides corresponding to Gene NO: 59 are useful for treating hypertension.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 192 as residues: Gln-40 to Glu-45, Glu-96 to Glu-102, Asn-256 to Thr-266, and Asp-308 to Asp-317.

FEATURES OF PROTEIN ENCODED BY GENE NO: 60

Gene NO: 60 is expressed primarily in activated T-cell and jurkat cell and to a lesser extent in apoptic T-cell and CD34+ cell. It is likely that alternative open reading frames provide the full length amino acid sequence, which can be verified using standard molecular biology techniques.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, T lymphocyte related diseases or hematopoiesis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., T-cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard

10

15

20

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the central nervous system including dimentia, stroke, neurological disorders, respiratory distress, and diseases affecting the endothelium including inflammatory diseases, restenosis, and vascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the placenta, liver, endothelial cells, prostate, thymus, and lung, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., brain, and endothelial cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology indicates that polypeptides and polynucleotides corresponding to Gene NO: 58 are useful for the diagnosis and /or treatment of diseases on the central nervous system, such as a factor that promote neuronal survival or protection, in the treatment of inflammatory disorders of the endothelium, or in disorders of the lung. In addition this protein may inhibit or promote angiogenesis and therefore is useful in the treatment of vascular disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 191 as residues: His-66 to Pro-80, Gly-139 to Ser-146 and Ser-262 to Pro-267.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 59

The translation product of Gene NO: 59 is homologous to the rat hypertension-induced protein which is thought to be important in hypertension, and found expressed mainly in kidneys. (See Accession No. B61209.) Thus, it is likely that this gene product is involved in hypertension in humans. Preferred polypeptide fragments comprise the short chain dehydrogenase/reductase motif SILGIISVPLSIGYCASKHALRGFFNGLR (SEQ ID NO:269), as well as polynucleotides encoding this polypeptide fragment. Also preferred are polynucleotide fragments of 337-639, as well as the polypeptide fragments encoded by this polynucleotide fragment.

Gene NO: 59 is expressed primarily in liver, spleen, lung, brain, and prostate.

10

15

20

25

30

35

polynucleotide fragments comprise nucleotides 6-125 and 118-432, as well as the polypeptides encoded by these polynucleotides. It is likely that a second signal sequence exists upstream from the predicted signal sequence in Table 1. Moreover, a frame shift likely occurs between nucleotides 118-125, which can be elucidated using standard molecular biology techniques.

Gene NO: 57 is expressed primarily in fetal liver, kidney, brain, thymus, and bone marrow.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immunological diseases and hyperproliferative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the fetal liver, kidney, brain, thymus, and bone marrow expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., liver, kidney, brain, thymus, and bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to longevity-assurance protein suggest that Gene NO: 57 encodes a protein useful in increasing life span and in replacement therapy for those suffering from immune system disorders or hyperproliferative disorders caused by underexpression or overexpression of this gene.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 190 as residues: Val-29 to Arg-46 and Gly-50 to Gly-56.

FEATURES OF PROTEIN ENCODED BY GENE NO: 58

Domains of the Gene NO: 58 product are homologous to porcine surfactant protein-A receptor. (See Accession No. B48516.) The bovine gene binds surfactant protein-A receptor, modulating the secretion of alveolar surfactant. Based on this homology, the gene product encoded by this gene will likely have activity similar to the porcine gene. Preferred polynucleotide fragments comprise nucleotides 887-1039, as well as the polypeptide fragments encoded by this nucleotide fragment.

Gene NO: 58 is expressed primarily in brain and to a lesser extent in endothelial cells.

10

15

20

25

30

WO 98/39446 PCT/US98/04482

51

signaling response in cells. It is likely that a signal peptide is located upstream from this translated product. Preferred polypeptide fragments comprise the amino acid sequence: GLACWLAGVIFIDRKRTGDAISVMSEVAQTLLTQDVXVWVFPEGTRNHNGSML PFKRGAFHLAVQAQVPIVPIVMSSYQDFYCKKERRFTSGQCQVRVLPPVPTEGL TPDVPALADRVRHSMLHCF(SEQ ID NO: 265);

PSAKYFFKMAFYNGWILFLAVLAIPVCAVRGRNVENMKILRLMLLHIKYLYGI RVEVRGAHHFPPSQPYVVVSNHQSSLDLLGMMEVLPGRCVPIAKR (SEQ ID NO:266); TVFREISTD (SEQ ID NO:267); or LWAGSAGWPAG (SEQ ID NO: 268). Also provided are polynucleotide fragments encoding these polypeptide fragments.

Gene NO: 56 is expressed primarily in infant adrenal gland, hypothalamus, 7 week old embryonic tissue, fetal lung, osteoclastoma stromal cells, and to a lesser extent in a large number of additional tissues.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of developmental disorders and osteoclastoma. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s) in which it is highly expressed. For a number of disorders of the above tissues or cells, particularly during development or of the nervous or bone systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., adrenal, embryonic tissue, lung, and osteoclastomal stromal cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Further, expression of this protein can be used to alter the fatty acid composition of a given cell or membrane type.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 56 are useful for diagnosis and treatment of osteoclastoma and other bone and non-bone-related cancers, as well as for the diagnosis and treatment of developmental disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 189 as residues: Gly-29 to Gly-36 and Tyr-49 to Tyr-58.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 57

The translation product of Gene NO: 57 shares sequence homology with longevity-assurance protein-1. (See Accession No. g1123105.) Preferred

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 55

Gene NO: 55 encodes a protein having sequence identity to the rat galanin receptor GALR2.

Gene NO: 55 is expressed primarily in ovarian cancer.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of ovarian cancer. Similarly, polypeptides and antibodies directed to those polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and reproductive system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., ovary, and tissues and cells of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. GALR2 antagonists can be used to treat obesity, bulimia, or Alzheimer's disease, while GALR2 agonists can be used to treat anorexia or pain, or to decrease nociception (claimed). Agonists and antagonists can also be used to treat numerous other disorders, including cognitive disorders, sensory disorders, motion sickness, convulsion/epilepsy, hypertension, diabetes, glaucoma, reproductive disorders, gastric and intestinal ulcers, inflammation, immune disorders, and anxiety.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 55 are useful for diagnosis and treatment of ovarian cancer.

FEATURES OF PROTEIN ENCODED BY GENE NO: 56

As indicated in Table 1, the predicted signal sequence of Gene NO: 56 relates to an open reading frame that is homologous to the mouse major histocompatibility locus class III. (See Accession No. 2564953.) Any frame shift mutations that alter the correct open reading frame can easily be clarified using known molecular biology techniques. Moreover, in the opposite orientation, a second translated product is disclosed. This second translation product of this contig is identical in sequence to intracellular protein lysophosphatidic acid acyltransferase. The nucleotide and amino acid sequences of this translated product have since been published by Stamps and colleagues (Biochem. J. 326 (Pt 2), 455-461 (1997)), West and coworkers (DNA Cell Biol. 6, 691-701 (1997)), Rowan (GenBank Accession No. U89336), and Soyombo and Hofmann (GenBank Accession No. AF020544). This gene is thought to enhance cytokine

10

15

20

25

30

35

bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to mucin indicates that polypeptides and polynucleotides corresponding to Gene NO: 53 are useful as a surface antigen for diagnosis of diseases such as prostate cancer and as tumor vaccine.

FEATURES OF PROTEIN ENCODED BY GENE NO: 54

Gene NO: 54 encodes a polypeptide which exhibits sequence identity with the rab receptor and VAMP-2 receptor proteins. (Martincic, et al., J. Biol. Chem. 272 (1997).)

Gene NO: 54 is expressed primarily in placenta, fetal liver, osteoclastoma and smooth muscle and to a lesser extent in T cell, fetal lung and colon cancer.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers, osteoporosis and immuno-related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, hematopoiesis system and bone system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., placenta, liver, osteoclastama, smooth muscle, T-cells, and lung, and colon, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 54 are useful for treating cancer, osteoporosis and immuno-disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 187 as residues: Pro-16 to Phe-21, Pro-24 to Arg-35, Arg-92 to Pro-98, Asn-143 to Lys-151, and Leu-169 to Ile-176.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 52

Gene NO: 52 is expressed primarily in metastic melanoma and to a lesser extent in infant brain.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer and cancer metastasis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., epidermis, and brain, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 52 are useful for diagnosis and treatment of melanoma.

FEATURES OF PROTEIN ENCODED BY GENE NO: 53

The translation product of Gene NO: 53 shares sequence homology with mucin which is thought to be important cell surface molecule. It also exhibits sequence identity with a calcium channel blocker of Agelenopsis aperta. In particular, with those calcium channel blockers which affect neuronal and muscle cells.

Gene NO: 53 is expressed primarily in prostate, endothelial cells, smooth muscle and fetal tissues and to a lesser extent in T cells and placenta.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, prostate cancer, immune disorders, angina, hypertension, cardiomyopathies, supraventricular arrhythmia, oesophogeal achalasia, premature labour, and Raynaud's disease. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues or cell types (e.g., prostrate, and tissue and cells of the immune system, and cancerous and wounded tissues) or

10

15

20

25

30

35

fact, a group also recently cloned the human phospholemman gene, and mapped this gene to chromosome 19. (See Accession No.1916010.) Phospholemman is a type I integral membrane protein that gets phosphorylated in response to specific extracellular stimuli such as insulin and adrenalin. Phospholemman forms ion channels in the cell membrane and appears to regulate taurine transport, suggesting an involvement in cell volume regulation. It has been proposed that phospholemman is a member of a superfamily of membrane proteins, characterized by single transmembrane domains, which function in transmembrane ion flux. They are capable of linking signal transduction to the regulation of such cellular processes as the control of cell volume.

Gene No 50 is expressed primarily in fetal liver and to a lesser extent in adult brain and kidney, as well as other organs.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, insulin and/or adrenalin defects; diabetes; aberrant ion channel signaling; defective taurine transport; and defects in cell volume regulation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain and/or immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., liver, brain, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to phospholemman indicates that polypeptides and polynucleotides corresponding to Gene NO: 50 are useful for treatment of disorders involving the transport of ions and small molecules, in particular taurine. It could also be beneficial for control of pathologies or diseases wherein aberrancies in the control of cell volume are a distinguishing feature, due to the predicted role for phospholemman in the normal control of cell volume. It also may play a role in disorders involving abnormal circulating levels of insulin and/or adrenalin - along with other active secreted molecules - as revealed by its phosphorylation upon stimulation with insulin or adrenalin.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 183 as residues: Ala-20 to Gln-34, Arg-58 to Thr-79, and Leu-87 to Arg-92.

10

15

20

25

30

35

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to dolichyl-phosphate glucosyltransferase indicates that polypeptides and polynucleotides corresponding to Gene NO: 48 are useful in diagnosing and treating defects in N-linked glycosylation pathways that contribute to disease conditions and/or pathologies.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 181 as residues: Lys-50 to Thr-55, Ser-73 to Arg-79, Glu-92 to Pro-99, Asp-110 to Ser-117, Gln-125 to Lys-131, Gly-179 to Asn-188, Ile-231 to Cys-236, and Glu-318 to Asn-324.

FEATURES OF PROTEIN ENCODED BY GENE NO: 49

Gene NO: 49 is expressed primarily in brain, most notably in the hypothalamus and amygdala. This gene is also mapped to chromosome X, and therefore, can be used in linkage analysis as a marker for chromosome X.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, tumors of a brain origin; neurodegenerative disorders, and sex-linked disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., brain and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 49 are useful for the diagnosis of tumors of a brain origin, and the treatment of neurodegenerative disorders, such as Parkinson's disease, and sex-linked disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 50

The translation product Gene NO: 50 shares sequence homology with canine phospholemman, a major plasma membrane substrate for cAMP-dependent protein kinases A and C. (See Accession No. M63934; see also Accession No. A40533.) In

10

15

20

25

30

35

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to the Rh/T2/S-glycoprotein family of ribonuclease-encoding genes indicates that polypeptides and polynucleotides corresponding to Gene NO: 47 are useful as a cytotoxin that could be directed against specific cell types (e.g. cancer cells; HIV- infected cells), and that would be well tolerated by the human immune system.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 180 as residues: Ala-24 to Asp-30, Ile-51 to Tyr-61, Pro-69 to Ser-78, Pro-105 to Phe-110, Asn-129 to Phe-135, Pro-187 to Glu-192, Lys-205 to Gln-224, and Pro-250 to His-256.

FEATURES OF PROTEIN ENCODED BY GENE NO: 48

The translation product of Gene NO: 48 shares sequence homology with dolichyl-phosphate glucosyltransferase, a transmembrane-bound enzyme of the endoplasmic reticulum which is thought to be important in N-linked glycosylation, by catalyzing the transfer of glucose from UDP-glucose to dolichyl phosphate. (See Accession No. 535141.) Based on homology, it is likely that this gene product also play a role similar in humans. Preferred polynucleotide fragments comprise nucleotides 132-959. Also preferred are the polypeptide fragments encoded by this nucleotide fragment.

Gene NO: 48 is expressed primarily in endothelial cells and to a lesser extent in hematopoietic cells and brain.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, defects in proper N-linked glycosylation of proteins, such as Wiskott-Aldrich syndrome; tumors of an endothelial cell origin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the vascular and hematopoietic systems, as well as brain, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell tpes (e.g., endothelial cells, hematopoietic cells, and brain, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

30

35

the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to frizzled indicates that polypeptides and polynucleotides corresponding to Gene NO: 46 are useful for influencing cell proliferation, differentiation, and apoptosis. The full-length protein or a truncated domain could potentially bind to and regulate the function of specific factors, such as Wnt proteins or other apoptotic genes, and thereby inhibit uncontrolled cellular proliferation. Expression of this protein within a cancer - such as via gene therapy or systemic administration - could effect a switch from proliferation to differentiation, thereby arresting the progression of the cancer.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 179 as residues: Pro-31 to Arg-37.

FEATURES OF PROTEIN ENCODED BY GENE NO: 47

The translation product of Gene NO: 47 shares sequence homology with members of the Rh/T2/S-glycoprotein family of ribonuclease-encoding genes. These ribonuclease proteins are found predominantly in fungi, plants, and bacteria and have been implicated in a number of functions, including phosphate-starvation response, self-incompatibility, and responses to wounding. A second group has recently cloned this same gene, calling it a ribonuclease 6 precursor. (See Accession No. 2209029.) This group also mapped the gene to chromosome 6, thus, the polynucleotides of the present invention can be used in linkage analysis as a marker for chromosome 6.

Gene NO: 47 is expressed primarily in hematopoietic cells and tissues, including macrophages, eosinophils, CD34 positive cells, T-cells, and spleen. It is also expressed to a lesser extent in brain and spinal cord.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, tumors of a hematopoietic origin, graft rejection, wounding, inflammation, and allergy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., hematopoietic cells, and tissues and cells of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal

fluid) or another tissue or cell sample taken from an individual having such a disorder,

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 46

The translation product of Gene NO: 46 is novel and shares sequence homology with the product of the Drosophila tissue polarity gene frizzled. In vertebrates, it appears that there is a family of proteins that represent frizzled gene homologs. (See, e.g., Accession Nos. 1946343 and AFO17989.) The Drosophila frizzled protein is thought to transmit polarity signals across the plasma membrane of epidermal cells. The structure of frizzled proteins suggest that they may function as a G-protein-coupled receptor. The frizzled proteins are thought to represent receptors for Wnt gene products - secreted proteins that control tissue differentiation and the development of embryonic and adult structures. Inappropriate expression of Wnts has also been demonstrated to contribute to tumor formation. Moreover, mammalian secreted frizzled related proteins are thought to regulate apoptosis. (See Accession No. AFO17989.) The human homolog has also been recently cloned by other groups. (See Accession No. H2415415.) Thus, the protein encoded by this gene plays a role in mediating tissue differentiation, proliferation, tumorigenesis and apoptosis. Preferred polypeptide fragments lack the signal sequence as described in Table 1, as well as N-terminal and C-terminal deletions. Preferred polynucleotide fragments encode these polypeptide fragments.

Gene NO: 46 is expressed primarily in fetal tissues - particularly fetal lung - and adult cancers, most notably pancreas tumor and Hodgkin's lymphoma. Together, this distribution is consistent with expression in tissues undergoing active proliferation. The gene is also expressed to a lesser extent in other organs, including stomach, prostate, and thymus.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer (particularly pancreatic cancer and/or Hodgkin's lymphoma), as well as other forms of aberrant cell proliferation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and hyperproliferative disorders, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., fetal tissue, pancreas, and tissue of the immune system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e.,

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 45

The translation product of this gene shares sequence homology with Laminin A which is thought to be important in the binding of epithelial cells to basement membrane and is associated with tumor invasion. Moreover, the translated protein is homologous to the *Drosophila* LAMA gene (Accession No. 1314864), a gene expressed in the first optic ganglion of *Drosophila*. Thus, it is likely that the gene product from this gene is involved in the development of the eye. Nucleotide fragments comprising nucleotides 822-1223, 212-475, 510-731, and 1677-1754 are preferred. Also preferred are the polypeptide fragments encoded by these polynucleotide fragments. It is likely that a frame shift occurs somewhere between nucleotides 475 to 510, shifting the open reading frame from +2 to +3. However, the open reading frame can be clarified using known molecular biology techniques.

This gene is expressed primarily in human testes tumor and to a lesser extent in placenta and activated monocytes.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, invasive cancers or tumors of the epithelium, as well as disorders relating to eye development. Similarly, polypeptides and antibodies directed to these polypeptides are useful as immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of neoplastic conditions, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., testes, placenta, and monocytes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Laminin A indicates that polypeptides and polynucleotides corresponding to Gene NO: 45 are useful for study and diagnosis of malignant or benign tumors, fibrotic disorders, and eye disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 178 as residues: Met-1 to Gly-8, Glu-32 to Ala-37, Met-113 to Asn-119, and Glu-139 to Gln-153.

10

15

20

25

30

35

homology, it is likely that this gene products also involved in cell differentiation and development. Although the predicted signal sequence is indicated in Table 1, it is likely that a second signal sequence is located further upstream. Moreover, further translated coding regions are likely found downstream from the disclosed sequence, which can easily be obtained using standard molecular biology techniques. A frameshift occurs somewhere around nucleotide 714, causing a frame shift in amino acid sequence from frame +2 to frame +3. However, using the homology of Notch-2 and EGF repeat transmembrane protein, the complete open reading frame can be elucidated. Preferred polynucleotide fragments comprise nucleotides 146-715, 281-715, and 714-965. Other preferred polypeptide fragments comprise the following EGF-like motifs: CRCASGFTGEDC (SEQ ID NO:260), CTCQVGFTGKEC (SEQ ID NO:261), CLNLPGSYQCQC (SEQ ID NO:262), CKCLTGFTGQKC (SEQ ID NO:263), and CQCLQGFTGQYC (SEQ ID NO:264).

Gene NO: 44 is expressed primarily in placenta and to a lesser extent in stromal and immune cells.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hemophelia and other blood disorders, central nervous system disorders, muscle disorders, and any other disorder resulting from abnormal development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, hematopoietic and vascular systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., placenta, stromal and immune cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to Notch-2 indicates that polypeptides and polynucleotides corresponding to Gene NO: 44 are useful for diagnosing and treating disorders relating to abnormal regulation of cell fate, induction, and differentiation of cells (e.g., cancer), epidermal growth factors, axonal pathfinding, and hematopoiesis.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 177 as residues: Gln-27 to Tyr-32, His-45 to Glu-55, Tyr-61 to Gly-77, Glu-99 to Ser-106, Ser-125 to Cys-131, and Thr-138 to Trp-144.

10

15

20

25

30

35

aggrecan/versican family. The translation product of this gene may also contain a hyaluronan (HA)-binding region domain in frame with, but downstream of, the predicted open reading frame (Barta, et al., Biochem. J. 292:947-949 (1993)). The HA-binding domain, also termed the link domain, is found in proteins of vertebrates that are involved in the assembly of extracellular matrix, cell adhesion, and migration. It is about 100 amino acids in length. The structure has been shown to consist of two alpha helices and two antiparallel beta sheets arranged around a large hydrophobic core similar to that of C-type lectin. This domain typically contains four conserved cysteines involved in two disulfide bonds.

This gene is expressed primarily in early stage human brain and to a lesser extent in frontal cortex and epileptic tissues.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of disorders associated with, or observed during, neuronal development. Similarly, polypeptides and antibodies directed to these polypeptides are useful as immunological probes for differential identification of neuronal and associated tissues and cell types. For a number of disorders of the above tissues or cells, particularly for those of the nervous system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., brain and cancerous and wounded tissues) or bodily fluids (c.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to brevican indicates that polypeptides and polynucleotides corresponding to Gene NO: 43 are useful for neuronal regulation and signaling. The uses include directing or inhibiting axonal growth for the treatment of neuro-fibromatosis and in detection of glioses.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 176 as residues: Asp-28 to Arg-33 and Arg-126 to Arg-131.

FEATURES OF PROTEIN ENCODED BY GENE NO: 44

Gene NO: 44 is the human homolog of Notch-2 (Accession No. 477495) and mouse EGF repeat transmembrane protein (Accession No. 1336628), both genes are important in differentiation and development of an organism. The EGF repeat transmembrane protein is regulated by insulin like growth factor Type I receptor. These proteins are involved in cell-cell signaling and cell fate determination. Based on

10

15

20

25

30

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 41 are useful for development of factors involved in ovarian or endometrial and general reproductive organ disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 174 as residues: Glu-22 to Trp-31, Asn-84 to Asp-90, and Ser-144 to Asp-151.

FEATURES OF PROTEIN ENCODED BY GENE NO: 42

The translation product of Gene 42 has sequence identity with a gene designated PTHrP(B). The PTHrP(B) polypeptide inhibits parathyroid hormone related peptide (PTHrP) activity.

This gene is expressed primarily in adult testis, and to a lesser extent in pituitary.

Therefore polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of male reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., testes, and pituitary, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Furthermore, based in part on sequence identity with PTHrP(B), nucleic acids and polypeptides of the present invention may be used to diagnose or treat such conditions as hypercalcemia, osteoporosis, and disorders related to calcium metabolism.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 42 are useful for treatment of male reproductive disorders, hypercalcemia, osteoporosis, and other disorders related to calcium metabolism.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 175 as residues: Tyr-81 to Met-86, Gly-103 to Ser-108, Glu-127 to Pro-128, Pro-175 to Ser-180, Glu-196 to Lys-203, Pro-235 to Ser-241, and Ala-249 to Ser-264.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 43

The translation product of Gene NO: 43 shares sequence homology with brevican, which is thought to be important as a proteoglycan core protein of the

10

15

20

25

30

35

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, chronic lymphocytic leukemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., neutrophils, osteoclastoma, and kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily—fluid from an individual not having the disorder.

The tissue distribution and homology to lymphoma 3-encoded protein (bcl-3) indicates that polypeptides and polynucleotides corresponding to Gene NO: 40 are useful for treatment of lymphoma and related cancers.

FEATURES OF PROTEIN ENCODED BY GENE NO: 41

Gene NO: 41 is expressed primarily in ovary tumor, and to a lesser extent in endometrial stromal cells and fetal brain.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, ovarian or endometrial cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the female reproductive system and the developing central nervous system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., ovary, endometrium and brain, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/39446 PCT/US98/04482

plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 38 are useful for diagnosis and treatment of defects of the skin.

FEATURES OF PROTEIN ENCODED BY GENE NO: 39

5

10

15

20

25

30

35

Gene NO: 39 is expressed primarily in Amygdala, activated monocytes, testis, and fetal liver. Moreover, this gene is mapped to chromosome 4. Thus, polynucleotides of the present invention can be used in linkage analysis as markers for chromosome 4.

Therefore, polynucleotides and polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, defects of the brain, immune system and testis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the brain, immune system and testis, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., Amygdala, monocytes, testes, and liver and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 39 are useful for detecting defects of the brain, immune system and testis because of its abundance in these tissues.

FEATURES OF PROTEIN ENCODED BY GENE NO: 40

The translation product of Gene NO: 40 shares sequence homology with lymphoma 3-encoded protein (bcl-3) which is thought to contribute to leukemogenesis when abnormally expressed.

This gene is expressed primarily in Human Neutrophils, and to a lesser extent in Human Osteoclastoma Stromal Cells (unamplified), Hepatocellular Tumor, and Human Neutrophils, (Activated).

10

15

25

30

35

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer, wound, pathological conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues or cell types (e.g., stromal cells, dendritic cells, liver, and placenta and, cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 37 are useful for fundamental role in basic growth and development of human.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 170 as residues: Leu-32 to Thr-37 and Arg-48 to Pro-55.

20 FEATURES OF PROTEIN ENCODED BY GENE NO: 38

The translation product of Gene NO: 38 shares sequence homology with a yeast protein, Lpe10p, which may be involved in mRNA processing. (See Accession Nos. 2104457 and 1079682.) It is likely that an upstream signal sequence exists, other than the predicted sequence described in Table 1. Preferred polypeptide fragments comprise the open reading frame upstream from the predicted signal sequence, as well as polynucleotide fragments encoding these polypeptide fragments.

This gene is expressed primarily in skin, and to a lesser extent in embryonic tissues, and fetal liver.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, defects of the skin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., epidermis, liver, and embryanic tissues, and cancerous and wounded tissues) or bodily fluids (e.g., serum,

10

15

20

25

30

expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to cytokine inducible inhibitor of signaling indicates that polypeptides and polynucleotides corresponding to Gene NO: 35 are useful for diagnosis and treatment of diseases of the hematopoietic system including autoimmune diseases, inflammatory diseases, infectious diseases and neoplasia. For example, administration of, or upregulation of this gene could by used to decrease the response of immune-system to lymphokines and cytokines.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 168 as residues: Arg-23 to His-30, Ala-35 to Gly-42.

FEATURES OF PROTEIN ENCODED BY GENE NO: 36

Gene NO: 36 is expressed primarily in infant brain and to a lesser extent in osteoclastoma, placenta, and a wide variety of other tissues.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., osteoclastoma, placenta, and tissue of the central nervous system, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 36 are useful for diagnosis and treatment of neurologic disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 169 as residues: Gln-31 to Ser-37, Ile-49 to Gly-54, Tyr-57 to Asp-67, Gln-141 to Pro-151, and Val-207 to Thr-219.

35 FEATURES OF PROTEIN ENCODED BY GENE NO: 37

Gene NO: 37 is expressed primarily in osteoclastoma stromal cells, dendritic cells, liver, and placenta.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 35

The translation product of Gene NO: 35 shares sequence similarity with the mouse cytokine-inducible inhibitor of signaling. See, e.g., Nature 1997 Jun 26;387(6636):917-921. Cytokines are secreted proteins that regulate important cellular responses such as proliferation and differentiation. Key events in cytokine signal transduction are well defined: cytokines induce receptor aggregation, leading to activation of members of the JAK family of cytoplasmic tyrosine kinases. In turn, members of the STAT family of transcription factors are phosphorylated, dimerize and increase the transcription of genes with STAT recognition sites in their promoters. Less is known of how cytokine signal transduction is switched off. Expression of the mouse SOCS-1 protein inhibited both interleukin-6- induced receptor phosphorylation and STAT activation. We have also cloned two relatives of SOCS-1, named SOCS-2 and SOCS-3, which together with the previously described CIS form a new family of proteins. Transcription of all four SOCS genes is increased rapidly in response to interleukin-6, in vitro and in vivo, suggesting they may act in a classic negative feedback loop to regulate cytokine signal transduction. The translation product of this gene is believed to have similar biological activities as this family of mouse genes. The biological activity of the translation product of this gene may be assayed by methods shown in Nature 1997 Jun 26;387(6636): 917-921, which is incorporated herein by reference in its entirety.

Gene NO: 35 is expressed primarily in tissues of hematopoietic origin including activated monocytes, neutrophils, activated T-cells and to a lesser extent in breast, adipose tissue and dendritic cells.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the hematopoietic system including cancer autoimmune diseases and inflammatory diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic system expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., hematopoietic cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene

10

15

20

25

30

35

the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 33 are useful for treatment and diagnosis of cancer in the hematopoietic system developing organs and tissues. It may also be useful for induction of cell growth in disorders of the hematopoietic system and other tissue and organs. The homology to fatty acid synthetases indicates that this gene product is useful in the diagnosis and treatment of lipid metabolism disorders such as hyperlipidemia.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 166 as residues: Arg-27 to Glu-34.

FEATURES OF PROTEIN ENCODED BY GENE NO: 34

Gene NO: 34 is expressed primarily in breast and testes tissues and to a lesser extent in hematopoietic tissues including tonsils, T cells and monocytes.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the reproductive organs and systems, including cancer, autoimmune diseases and inflammatory diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive organs and hematopoietic tissues, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., hemotopoietic cells, T-cells and monocytes, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Nucleic acids comprising sequence of this gene are also useful as chromosome markers since this gene maps to Chr.15, D15S118-D15S123.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 34 are useful for treatment of diseases of the reproductive organs and hematopoietic system including cancer, autoimmune diseases and inflammatory diseases.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 167 as residues: Phe-81 to Lys-86.

10

15

20

25

30

35

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 165 as residues: Ser-33 to Lys-41 and Glu-86 to Glu-91.

FEATURES OF PROTEIN ENCODED BY GENE NO: 33

Residues 141-156 in the translation product for Gene NO: 33 as shown in the sequence listing matches phosphopantetheine binding site motifs. Phosphopantetheine (or pantetheine 4' phosphate) is the prosthetic group of acyl carrier proteins (ACP) in some multienzyme complexes where it serves as a 'swinging arm' for the attachment of activated fatty acid and amino-acid groups. Phosphopantetheine is attached to a serine residue in these proteins. ACP proteins or domains have been found in various enzyme systems which are listed below. Fatty acid synthetase (FAS), which catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. Bacterial and plant chloroplast FAS are composed of eight separate subunits which correspond to the different enzymatic activities; ACP is one of these polypeptides. Fungal FAS consists of two multifunctional proteins, FAS1 and FAS2; the ACP domain is located in the N-terminal section of FAS2. Vertebrate FAS consists of a single multifunctional enzyme; the ACP domain is located between the beta-ketoacyl reductase domain and the C-terminal thioesterase domain. Based on the presence of a phosphopantetheine binding site in the translation product of this gene, it is believed to share activities fatty acid synthetase polypeptides. Such activities may be assayed by methods known in the art.

This gene is expressed primarily in developing and rapidly growing tissues like placenta fetal heart and endometrial tumor and to a lesser extent in B and T cell lymphoma tissues

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer and disorders of developing tissues and organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the hematopoietic tissues and developing organs and tissues, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., embryonic tissue, endometrium, B-cells, and T-cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to

WO 98/39446 PCT/US98/04482

31

identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly CNS disorders, hematopoietic system disorders, disorders of the endocrine system, bone, and skin, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g.,

hematopoietic cells, brain, thymus, liver, bone, and epidermis, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

35

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 31 are useful for treatment and diagnosis of CNS disorders, hematopoietic system disorders, disorders of the endocrine system, and of bone and skin.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 164 as residues: Thr-35 to Arg-40, Pro-55 to His-75, Pro-93 to Ala-98, Ala-111 to Pro-119, and Pro-132 to Glu-138.

FEATURES OF PROTEIN ENCODED BY GENE NO: 32

Gene NO: 32 is expressed primarily in organs and tissue of the nervous system and to a lesser extent in various developing tissues and organs.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, disorders of the central nervous system and disorders of developing and growing tissues and organs. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly disorders of the CNS, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., tissue of the nervous system and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 32 are useful for diagnosis and treatment of disorders of the central nervous system, general neurological diseases and neoplasias.

10

15

20

25

30

35

Tissue distribution suggests polypeptides and polynucleotides corresponding to Gene NO: 29 are useful in study and treatment of neurodegenerative and immune disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 162 as residues: Asn-18 to Glu-20, Ser-33 to Gln-48, Cys-55 to Ser-56, Pro-67 to Cys-69.

FEATURES OF PROTEIN ENCODED BY GENE NO: 30

Gene NO: 30 is expressed primarily in early stage human brain and to a lesser extent in cord blood, heart, and some tumors.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of developing CNS tissue present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cardiovascular and neurodegenerative disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the nervous and immune systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., brain and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that that polypeptides and polynucleotides corresponding to Gene NO: 30 are useful for the treatment of cancer and of neurodegenerative and cognitive disorders.

FEATURES OF PROTEIN ENCODED BY GENE NO: 31

Gene NO: 31 is expressed primarily in brain and thymus and to a lesser extent in several other organs and tissues including the hematopoietic system, liver skin and bone

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, CNS disorders, hematopoietic system disorders, disorders of the endocrine system, bone, and skin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential

biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune, olfactory and cardiovascular disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune, olfactory and vascular systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., olfactory tissue, and heart, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

5

10

15

20

25

30

35

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 28 are useful for diagnosis and treatment of immune, olfactory and vascular disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 161 as residues: Cys-33 to Gly-44, Arg-71 to Arg-78, Ser-130 to Gly-142, Lys-150 to Gly-157, and Thr-159 to Asp-177.

FEATURES OF PROTEIN ENCODED BY GENE NO: 29

Gene NO: 29 is expressed primarily in brain and to a lesser degree in activated macrophages, endothelial and smooth muscle cells, and some bone cancers.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of brain and endothelial present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurodegeneration, inflammation and other immune disorders, fibrotic conditions. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification brain, smooth muscle, and endothelium. For a number of disorders of the above tissues or cells, particularly of the brain and endothelium, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues or cell types (e.g., brain, endothelial cells, macrophages, smooth muscle, and bone, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 159 as residues: Pro-24 to Gly-33 and Arg-70 to Gly-76.

FEATURES OF PROTEIN ENCODED BY GENE NO: 27

The translation product of Gene NO: 27 shares sequence homology with salivary protein precursors which are thought to be important in immune response and production of secreted proteins.

Gene NO: 27 is expressed primarily in salivary gland tissue.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune disorders, diseases of the salivary gland. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, digestive system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., salivary gland, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to salivary secreted protein indicates that polypeptides and polynucleotides corresponding to Gene NO: 27 are useful for treatment of immune disorders and diagnostic uses related to secretion of protein in disease states. For example, the gene product can be used as an anti-microbial agent, an ingredient for oral or dental hygiene, treatment of xerostomia, sialorrhea, intervention for inflammation including parotitis, and an indication for tumors in the salivary gland (adenomas, carcinomas).

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 160 as residues: Asp-21 to Gly-28, Asp-30 to Glu-43, Glu-49 to Glu-62, and Thr-75 to Pro-83.

FEATURES OF PROTEIN ENCODED BY GENE NO: 28

Gene NO: 28 is expressed primarily in human fetal heart tissue and to a lesser extent in olfactory tissue.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a

10

15

20

25

30

35

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 25 are useful for the diagnosis and treatment of prostate disorders (such as cancer) and developmental abnormalities and fetal deficiencies. The homology to PAMP-1 indicates that this gene and gene product are useful in detecting pregnancy.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 158 as residues: Pro-23 to Glu-28 and Ser-44 to Gly-55.

FEATURES OF PROTEIN ENCODED BY GENE NO: 26

Gene NO: 26 is expressed primarily in testes and to a lesser extent in epididymis.

Therefore, polynucleotides or polypeptides of the invention are useful as -reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, reproductive and endocrine disorders, as well as testicular cancer. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the male reproductive and endocrine systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., testes, and epididymis, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 26 are useful for the treatment and diagnosis of conditions concerning proper testicular function (e.g., endocrine function, sperm maturation), as well as cancer. Therefore, this gene product is useful in the treatment of male infertility and/or impotence. This gene product is also useful in assays designed to identify binding agents as such agents (antagonists) are useful as male contraceptive agents. Similarly, the protein is believed to by useful in the treatment and/or diagnosis of testicular cancer. The testes are also a site of active gene expression of transcripts that may be expressed, particularly at low levels, in other tissues of the body. Therefore, this gene product may be expressed in other specific tissues or organs where it may play related functional roles in other processes, such as hematopoiesis, inflammation, bone formation, and kidney function, to name a few possible target indications.

10

15

20

25

30

35

directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular, reproductive and skeletal systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., placenta, smooth muscle, prostrate, and osteoblasts, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 24 are useful for detection and treatment of neoplasias and developmental abnormalities associated with these tissues.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 157 as residues: Asn-21 to Thr-26.

FEATURES OF PROTEIN ENCODED BY GENE NO: 25

The translation product of Gene NO: 25 shares sequence homology with Pregnancy Associated Mouse Protein (PAMP)-1. (See, FEBS Lett 1993 May 17;322(3):219-222). Based on the sequence similarity the translation product of this gene is expected to share certain biological activities with PAMP-1.

Gene NO: 25 is expressed primarily in 12-week-old human embryos and prostate.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, prostate disorders (cancer). Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., embryonic tissue, and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

WO 98/39446 PCT/US98/04482

25

role in immune function and immune surveillance (breast lymph node). This gene is believed to be useful as a marker for breast cancer.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 155 as residues: Gln-57 to Lys-70 and Ala-91 to Pro-100.

5

10

15

20

25

FEATURES OF PROTEIN ENCODED BY GENE NO: 23

Gene NO: 23 is expressed primarily in bone marrow and brain (whole and fetal).

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, neurological, immune and hematopoietic disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the central nervous and hematopoietic systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., bone marrow, brain, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 23 are useful in the diagnosis and treatment of disorders related to the central nervous system (e.g. neuro-degenerative conditions, trauma, and behavior abnormalities) and hematopoiesis. In addition, the expression in fetal brain indicates a role for this gene product in diagnosis of predisposition to developmental defects of the brain.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 156 as residues: Thr-23 to Tyr-29.

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 24

Gene NO: 24 is expressed primarily in smooth muscle, placenta, prostate, and osteoblasts.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cardiovascular pathologies. Similarly, polypeptides and antibodies

WO 98/39446 PCT/US98/04482

24

standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to mouse wnt7a indicates that polypeptides and polynucleotides corresponding to Gene NO: 21 are useful to restore abnormal limb development in an affected individual. Furthermore, its oncogenic potential and tissue distribution indicates that it could serve as a diagnostic for testicular cancer.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 154 as residues: Gly-22 to Arg-28.

10

15

20

25

30

35

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 22

Gene NO: 22 is expressed primarily in fetal liver/spleen, breast, testes and - placenta and to a lesser extent in brain, and a series of cancer tissues.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immune disorders, brain diseases, male infertility, and disposition to pregnant miscarriages. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, hematopoietic system, and sexual organs, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., liver, spleen, testes, placenta, and brain, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution of this gene indicates that polypeptides and polynucleotides corresponding to Gene NO: 22 are useful as a marker for non-differentiated, dividing cells and hence could serve as an oncogenic marker. Its high expression in fetal liver, suggests an involvement in hematopoiesis and/or the immune system. Hence it is useful as a factor to enhance an individuals immune system, e.g., in individuals with immune disorders. It is also thought to affect the survival, proliferation, and differentiation of a number of hematopoietic cell lineages, including hematopoietic stem cells. Its disruption, e.g., mutation or altered expression, may also be a marker of immune disorder. Its expression in the testes, suggests it may be important in controlling male fertility. Expression of this gene in breast further reflects a

polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the prostate and brain, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., prostate, leukocytes, memingima, liver, brain, pancreas and lung, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Prostate cancer cell lines are known to be responsive to estrogen and androgen. The protein expression of Gene NO: 20 appears to be influenced by both estrogen and androgen levels. The prostate cancer tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 20 are is useful in the intervention and detection of prostate hyperplasia and prostate cancer.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 21

The translation product of Gene NO: 21 is identical to the human wnt-7a gene. Wnt-7a is a secreted signaling molecule, thought to be important in signaling and the regulation of cell fate and pattern formation during embryogenesis. Specifically, knock out studies in mice have demonstrated that wnt7a plays a critical role in the development of the dorsal-ventral patterning in the developing limb, and to a lesser extent plays a role in the development of anterior-posterior patterning. Overexpression of wnt7a can induce transformation of cultured mammary cells, suggesting that it is an oncogene.

Expression of Gene NO: 21 has only been observed in testes.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, testicular cancer; abnormal limb development. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the testes or developing embryo. For a number of disorders of the above tissues or cells, particularly of the developing embryo, expression of this gene at significantly higher or lower levels may routinely be detected in the developing embryo or amniotic fluid taken from a pregnant individual and compared relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder. Also, expression of this gene at significantly higher or lower levels may routinely be detected in the testes of patient suffering from testicular cancer and compared relative to the

NO: 18 are useful for diagnosing and treating immune response disorders, including inflammation, antigen presentation and immunosurveillance.

FEATURES OF PROTEIN ENCODED BY GENE NO: 19

5

10

15

20

25

30

35

The translation product of Gene NO: 19 shares sequence homology with proline rich proteins which are thought to be important in protein-protein interaction.

This gene has a wide range of tissue distribution, but is expressed primarily in normal prostate, synovial fibroblasts, brain amygdala depression, fetal bone and fetal cochlea, and to a lesser extent in adult retina, umbilical vein endothelial cells, atrophic endometrium, osteoclastoma, melanocytes, pancreatic carcinoma and smooth muscle.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancer metastasis, wound healing, tissue repair. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal, connective tissues, reproductive and central nervous system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., brain, prostrate, fibroblasts, bone, cochlea, retina, endothelial cells, endometrium, pancreas and smooth muscle, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to proline-rich proteins indicates that the protein is a extracellular matrix protein or an ingredient of bodily fluid. Polypeptides and polynucleotides corresponding to Gene NO: 19 are useful for cancer metastasis intervention, tissue culture additive, bone modeling, wound healing and tissue repair.

FEATURES OF PROTEIN ENCODED BY GENE NO: 20

Gene NO: 20 is expressed primarily in prostate cancer, leukocytes, meningima, adult liver, pancreas, brain, and to a lesser extent in lung.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, prostate cancers. Similarly, polypeptides and antibodies directed to these

10

15

20

25

30

35

immunosuppression, angiogenesis and cell growth stimulation. The tissue distribution of this gene in cells of the immune system indicates that polypeptides and polynucleotides corresponding to Gene NO: 17 are useful for treatment, prophylaxis and diagnosis of immune and autoimmune diseases, such as lupus, transplant rejection, allergic reactions, arthritis, asthma, immunodeficiency diseases, leukemia, and AIDS. Its expression predominantly in hematopoietic cells also indicates that the gene could be important for the treatment and/or detection of hematopoietic disorders such as graft versus host reaction, graft versus host disease, transplant rejection, myelogenous leukemia, bone marrow fibrosis, and myeloproliferative disease. The protein can also be used to enhance or protect proliferation, differentiation and functional activation of hematopoietic progenitor cells such as bone marrow cells, which could be useful for cancer patients undergoing chemotherapy or patients undergoing bone marrow transplantation. The protein may also be useful to increase the proliferation of peripheral blood leukocytes, which could be useful in the combat of a range of hematopoietic disorders including immunodeficiency diseases, leukemia, and septicemia.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 150 as residues: Val-131 to Asn-136.

FEATURES OF PROTEIN ENCODED BY GENE NO: 18

The translation product of Gene NO: 18 shares sequence homology with immunoglobulin, which is thought to be important in immunoreactions.

Gene NO: 18 is expressed primarily in macrophage.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, inflammation. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., macrophage and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in macrophages and the weak homology to immunoglobin indicates that polypeptides and polynucleotides corresponding to Gene

disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to immunoglobulins and secretory component protein indicates that polypeptides and polynucleotides corresponding to Gene NO: 16 are useful for diagnosis and treatment of inflammation and bacterial infection, and other diseases where immunomodulation would be beneficial.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 149 as residues: Pro-37 to Cys-51, Gln-53 to Cys-60, Asn-99 to Gly-106, Gly-145 to Glu-151, and Ile-159 to Ser-164.

10

15

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 17

The translation product of Gene NO: 17 is evolutionarily conserved and shares sequence homology with proteins from yeast and *C. elegans*. See, for example, Genbank accession no.gil746540. As is known in the art, strong sequence similarity to a secreted protein from C. elegans is predictive of cellular location of human proteins.

Gene NO: 17 is expressed primarily in colon carcinoma cell lines, messangial cells, many tumors like T cell lymphoma, osteoclastoma, Wilm's tumor, adrenal gland tumor, testes tumor, synovial sarcoma, and to a lesser extent in placenta, lung and brain.

20

25

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, rapidly growing/dividing cells such as cancerous tissue, including, colon carcinoma, lymphomas, and sarcomas. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the gastrointestinal, hematological and immune systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., placenta, lung, brain, colon, messangial cells, adrenal gland, T-cells, testes, and lymph tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

35

30

The tissue distribution in colon cancer and many other tumors indicates that the polynucleotides and polypeptides of Gene NO: 17 are useful for cancer diagnosis and therapeutic targeting. The extracellular nature may contribute to solid tumor

10

15

20

25

30

35

at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., kidney, placenta, lung, endothelial cells, melanocytes, liver, and adipose tissue, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology to kallikrein indicates that polypeptides and polynucleotides corresponding to Gene NO: 15 are useful for treating renovascular hypertension, renal secretion, electrolyte metabolism, toxemia of pregnancy and hydronephrosis. The protein expression in the organs like kidney, lung and vascular endothelial cells indicates the gene involvement in hemodynamic regulatory functions. The translation product of this gene is also useful in the treatment of viral infection, particularly liver infection, and particularly hepatitis B virus(es).

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 148 as residues: Leu-9 to Asn-15 and Thr-56 to Asp-61.

FEATURES OF PROTEIN ENCODED BY GENE NO: 16

The translation product of Gene NO: 16 shares sequence homology with secretory component protein, immunoglobulins and their receptors which are thought to be important in immunological functions. The amino acid sequence of secretory component protein can be accessed as accession no. pirlA02112, incorporated herein by reference.

Gene NO: 16 is expressed primarily in macrophages, monocytes and dendritic cells and to a lesser extent in placenta and brain.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, inflammation and tumors. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues or cells (e.g., macrophages, monocytes, dendritic cells, plancenta and brain, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a

and other cardiovascular diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cardiovascular and hematological systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., endothelium, thymus meningioma, hypothalmus, testes, liver, and spleen and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution in the vascular endothelial cells and homology to VLDL receptors indicates that polypeptides and polynucleotides corresponding to Gene NO: 14 are useful for diagnosis and treatment of atherosclerosis, ataxia malabsortion, and hyperlipidemia. These and other factors often result in other cardiovascular diseases. Additionally, the presence of the gene product in cells of blood lineages indicates that it may be useful in hematopoietic regulation and hemostasis.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 147 as residues: Pro-39 to Ser-52, Trp-71 to Thr-76, and Pro-94 to His-100.

20

25

5

10

15

FEATURES OF PROTEIN ENCODED BY GENE NO: 15

The translation product of Gene NO: 15 shares sequence homology with kallikrein which is thought to be important in blood pressure and renal secretion. Furthermore, this gene has now been characterized as a novel hepatitis B virus X binding protein that inhibits viral replication. See, for example, J. Virol. 72 (3), 1737-1743 (1998).

This gene is expressed primarily in kidney, placenta, lung, aorta and other endothelial cells, caudate nucleus and to a lesser extent in melanocytes, liver, adipose tissue.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, renovascular hypertension, renal secretion, electrolyte metabolism, toxemia of pregnancy. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells,

particularly of the renovascular or respiratory vascular systems, expression of this gene

10

15

20

30

35

Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., bone marrow and B-cells and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Enhanced expression of this gene product in B cell lymphoma indicates that it may play a role in the proliferation of hematopoietic cells. It is also believed to be involved in the survival and/or differentiation of various hematopoietic lineages. Expression in lymphoma also indicates that it may be involved in other cancers and abnormal cellular proliferation. The tissue distribution, therefore, indicates that polypeptides and polynucleotides corresponding to Gene NO: 13 are useful for the diagnosis and/or therapeutic treatment of hematopoietic disorders, particularly B cell lymphoma. Furthermore, since overexpression of this gene is associated with the development of B cell lymphoma, antagonists of this protein are useful to interfere with the progression of the disease. This protein is useful in assays for identifying such antagonists. Assays for identifying antagonists are known in the art and are described briefly elsewhere herein. Preferred antagonists include antibodies and antisense nucleic acid molecules. Preferred are antagonists which inhibit B-cell proliferation.

25 FEATURES OF PROTEIN ENCODED BY GENE NO: 14

The translation product of Gene NO: 14 shares sequence homology with very low density lipoprotein receptor which is thought to be important in transport of lipoproteins. Owing to the sequence similarity the translation product of this gene is believed to share certain biological activities with VLDL receptors. Assaying such activity may be achieved by assays known in the art and set forth elsewhere herein.

This gene is expressed primarily in human synovium, umbilical vein endothelial cells, CD34+ cells, Jurkat cells, and HL60 cells, and to a lesser extent in thymus, meningioma, hypothalmus, adult testis, and fetal liver and spleen.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, atherosclerosis, ataxia malabsortion, vascular damage, hyperlipidemia,

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 11 are useful for diagnosis and treatment of cerebellum disorders, rheumatoid arthritis, sepsis, ischemia, and thrombosis. This gene is also useful as a chromosome marker. It is believed to map to Chr.15, D15S118-D15S123.

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 12

Gene NO: 12 is expressed primarily in highly vascularized tissues such as placenta, uterus, tumors, fetal liver, fetal spleen and also in the C7MCF7 cell line treated with estrogen.

10

15

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, endometriosis, endometritis, endometrial carcinoma, primary hepatocellular carcinoma, and spleen-related diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the endometrium, liver and spleen, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., endometrium, liver, and spleen, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

20

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 12 are useful for diagnosis and treatment of diseases of the endometrium (such as endometrial carcinoma, endometriosis, and endometritis), liver diseases (such as primary hepatocellular carcinoma), and spleen-related diseases.

25

SEQ ID NO: 145 as residues: Ala-29 to Leu-35, Leu-50 to Ser-57, Glu-96 to Glu-105, Asp-140 to Asp-148, and Asn-191 to Ser-197.

30

FEATURES OF PROTEIN ENCODED BY GENE NO: 13

Gene NO: 13 is expressed primarily in B cell lymphoma and to a lesser extent in other tissues.

35

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, B cell lymphoma; hematopoietic disorders; immune dysfunction.

PCT/US98/04482

relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 10 are useful for diagnosis and treatment of skin conditions and as an aid in the healing of various epidermal injuries including wounds, and diabetic ulcers.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 143 as residues: Ser-3 to Ser-9 and Trp-27 to Glu-32.

10 FEATURES OF PROTEIN ENCODED BY GENE NO: 11

5

15

20

25

30

35

The translation product of Gene NO: 11 shares sequence homology with phosphatidylcholine 2-acylhydrolase (PLA2). See, for example, Genbank accession no. gil190004. PLA2 is involved in inflammation, where it is responsible for the conversion of cell membrane phospholipids into arachidonic acid. Arachidonic acid in turn feeds into both the lipoxygenase and cyclooxygenase pathways to produce leukotrienes (involved in chemotaxis, vasoconstriction, bronchoconstriction, and increased vascular permeability) and prostaglandins (responsible for vasodilation, potentiate edema, and increased pain). Diseases in which PLA2 is implicated as a major factor include rheumatoid arthritis, sepsis, ischemia, and thrombosis. The inventors refer to the translation product of this gene as PLA2-like protein based on the sequence similarity. Furthermore, owing to the sequence similarity PLA2 and PLA2-like protein are expected to share certain biological activities.

Gene NO: 11 is expressed primarily in human cerebellum and in T-cells. Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cerebellum disorders, rheumatoid arthritis, sepsis, ischemia, and thrombosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the cerebellum and Purkinje cells, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., brain, bone marrow, T-cells, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

10

15

20

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 9

Gene NO: 9 is expressed primarily in neutrophils.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the cell type present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, inflammatory diseases. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the cell type indicated. For a number of disorders of the above tissues or cells, particularly of the immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues or cell types (e.g., neutrophils, bone marrow, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 9 are useful for immune modulation or as a growth factor to stimulate neutrophil differentiation or proliferation that may be useful in the treatment of neutropenia.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 142 as residues: Thr-22 to Pro-37.

FEATURES OF PROTEIN ENCODED BY GENE NO: 10

Gene NO: 10 is expressed primarily in the epidermis.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the epidermis such as psoriasis or eczema or may be involved in the normal proliferation or differentiation of the epithelial cells or fibroblasts constituting the skin. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skin, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., epidermis and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder,

Furthermore, it is overexpressed in cancers of these same tissues (i.e., in sarcomas). Moreover, hOSF-5 shares very strong sequence similarity with mOSF-5 which is a known bone growth factor and is thought to be useful in obtaining products for the diagnosis and treatment of bone metabolic diseases, e.g., osteoporosis and Paget's disease. Like OSF-5, the translation product of this gene is believed to be a bone-specific carboxypeptidase which acts as an adhesion molecule/growth factor and takes part in osteogenesis at the site of bone induction. hOSF-5 can, therefore, be used to treat bone metabolic diseases, osteoporosis, Paget's disease, osteomalacia, hyperostosis or osteopetrosis. Furthermore, hOSF-5 can be used to stimulate the regeneration of bone at the site of mechanical damage, e.g., accidentally or surgically caused fractures.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: -140 as residues: Leu-24 to Val-30, Ala-89 to Lys-94, Phe-150 to Trp-157, Leu-162 to Asp-167, Asp-187 to Ser-199, His-241 to Asp-254, and Pro-362 to Asp-376.

15

20

25

30

35

10

5

FEATURES OF PROTEIN ENCODED BY GENE NO: 8

Gene NO: 8 is expressed primarily in bone marrow, and to a lesser extent in an erythroleukemia cell line.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, hematological disorders including cancer and anemia. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune and hematologic systems, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., bone marrow, kidney, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution indicates that polypeptides and polynucleotides corresponding to Gene NO: 8 are useful as a growth factor for hematopoietic stem cells or progenitor cells, e.g., in the treatment of bone marrow stem cell loss in chemotherapy patients and in the treatment of kidney disease.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 141 as residues: Gly-30 to Lys-35.

10

15

20

25

30

35

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 139 as residues: Gly-29 to Pro-36 and Glu-57 to Leu-64.

FEATURES OF PROTEIN ENCODED BY GENE NO: 7

The translation product of Gene NO: 7 shares sequence homology with carboxy peptidase E and H (carboxypeptidase E is thought to be important in the biosynthesis of numerous peptide hormones and neurotransmitters). The translation product of this gene also shares sequence homology with bone-related carboxypeptidase "OSF-5" from the mouse. See European patent application EP-588118-A. Based on the sequence similarity to OSF-5, the translation product of this gene will hereinafter sometimes be referred to as "human-OSF-5" or "hOSF-5".

Gene NO: 7 is expressed primarily in tumor cell lines derived from connective tissues including chondrosarcoma, synovial sarcoma, Wilm's tumor and rhabdomyosarcoma and to a lesser extent in a myeloid progenitor cell line, bone marrow, and placenta.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, various cancers involving the skeletal system and connective tissues in general, in particular at cartilage interfaces. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the skeletal system and various other tumor tissues, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., connective tissues and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The restricted tissue distribution and homology of Gene NO: 7 to carboxypeptidase E and mouse OSF-5 indicates that polypeptides and polynucleotides corresponding to Gene NO: 7 are for processing of peptides to their mature form that may have various activities similar to the activities of neuropeptides but in the periphery. In addition the abundance of expression in cancer tissues indicates that aberrant expression and subsequent processing may play a role in the progression of malignancies, e.g., growth factor and/or adhesion factor activities. In particular, the expression of this gene is restricted to connective tissues and embryonic tissues.

10

15

20

25

30

35

The tissue distribution of Gene NO: 5 indicates that the protein product of this gene is useful for treatment/diagnosis of diseases of the testes, particularly testicular cancer since expression is observed primarily in the testes.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 138 as residue: Gly-22 to Gln-30.

FEATURES OF PROTEIN ENCODED BY GENE NO: 6

The translation product of Gene NO: 6 shares sequence homology with GALNS (N-acetylgalactosamine 6-sulphatase) which is thought to be important in the storage of the glycosaminoglycans, keratan sulfate and chondroitin 6-sulfate. See Genbank accession no. gil618426. Based on the sequence similarity, the translation product of this gene is expected to share biological activities with GALNS.

Gene NO: 6 is expressed primarily in human bone marrow.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, storage disorders of glycosaminoglycans, keratan sulfate and chondroitin 6-sulfate, e.g., Morquio A syndrome. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly involving cell storage disorder, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., bone marrow and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology of Gene NO: 6 to N-acetylgalactosamine 6-sulphatase indicates that polypeptides and polynucleotides corresponding to Gene NO: 6 are useful for the treatment and diagnosis of storage disorders of glycosaminoglycans, keratan sulfate and chondroitin 6-sulfate. Such disorders are known in the art and include, e.g., Morquio A syndrome which is caused by an error of mucopolysaccharide metabolism with excretion of keratan sulfate in urine. Morquio A syndrome is characterized by severe skeletal defects with short stature, severe deformity of spine and thorax, long bones with irregular epiphyses but with shafts of normal length, enlarged joints, flaccid ligaments, and waddling gait; autosomal recessive inheritance.

15

20

25

30

35

malignant cancer, or of a predisposition to malignancy, in a subject. Gene therapy can be used to restore the wild-type gene product to a subject. Additionally, the antibodies are a useful tool for the identification of hematopoietic neoplasms, and may prove helpful for identifying morphologically poorly defined cells. Moreover, this protein can be used to isolate cognate receptors and ligands and identify potential agonists and antagonists using techniques known in the art. The protein also has immunomodulatory activity, regulates hematopoiesis and stimulates growth and regeneration as a male/female contraceptive, increases fertility depending on activin and inhibin like activities. Other uses are as a chemotactic agent for lymphocytes, treatment of coagulation disorders, an anti-inflammatory agent, an antimicrobial or analgesic and as a modulator of behavior and metabolism. The DNA can be used in genetic diagnosis or gene therapy, and for the production of recombinant protein. It can also be used to - identify protein expressing cells, isolate related sequences, prepare primers for genetic fingerprinting and generate anti-protein or anti-DNA antibodies. In addition, residues 1-71, in the translation product for this gene are believed to be the extracellular domain. Thus, polypeptide comprising residues 1-71 or derivatives (including fragments) or analogs thereof, are useful as a soluble polypeptide which may be routinely used therapeutically to antagonize the activities of the receptor.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 137 as residues: Lys-118 to Phe-127, Asn-145 to Ala-160, and Thr-177 to Val-188.

FEATURES OF PROTEIN ENCODED BY GENE NO: 5

Gene NO: 5 is expressed primarily in human testes.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, diseases of the testes including cancer and reproductive disorders. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the reproductive system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., testes and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 136 as residues: Asn-7 to Ser-12, Tyr-32 to Gly-38, Pro-55 to Tyr-60, Glu-70 to Thr-76, and Pro-104 to Leu-110.

5 FEATURES OF PROTEIN ENCODED BY GENE NO: 4

The translation product of Gene NO: 4 shares sequence homology with a number of tetraspan transmembrane surface molecules such as human metastasis tumor suppressor gene, CO-029 tumor associated antigen protein, CD53 hematopoietic antigen, human membrane antigen TM4 superfamily protein, metastasis controlling peptide, and human CD9 sequence, which are thought to be important in development of cancer, immune system development and functions.

Gnee NO: 4 is expressed primarily in cancers of several different tissues and to a lesser extent in normal tissue like prostate, skin and kidney.

Therefore, polynucleotides or polypeptides of the invention are useful as 15 reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, cancers and disorders of the immune system, prostate and kidney. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell 20 type(s). For a number of disorders of the above tissues or cells, particularly of the kidney, skin, prostate and immune system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., kidney, skin and prostate, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from 25 an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology of Gene NO: 4 to tetraspan transmembrane surface molecules such as human metastasis tumor suppressor gene,

CO-029 tumor associated antigen protein, CD53 hematopoietic antigen, human membrane antigen TM4 superfamily protein, metastasis controlling peptide, and human CD9 sequence, indicates that polypeptides and polynucleotides corresponding to Gene NO: 4 are involved with the cellular control of growth and differentiation. Therefore, the translation product of this gene is believed to be useful for diagnosis and treatment of neoplasia and disorders of the kidney, skin and prostate. For example, recombinant protein can be produced in transformed host cells for diagnostic and prognostic applications. Alterations in the protein sequence are indicative of the presence of

10

15

20

25

30

35

vitro and activates CRE-containing promoters when transfected into COS7 cells. The complete amino acid sequence of Luman reported in Mol. Cell. Biol. 17 (9): 5117-5126 (1997) is:

MELELDAGDQDLLAFLLEESGDLGTAPDEAVRAPLDWALPLSEVPSDWEVDDLL CSLLSPPASLNILSSSNPCLVHHDHTYSLPRETVSMDLESESCRKEGTQMTPQH MEELAEQEIARLVLTDEEKSLLEKEGLILPETLPLTKTEEQILKRVRRKIRNKRSA QESRRKKKVYVGGLESRVLKYTAQNMELQNKVQLLEEQNLSLLDQLRKLQAM VIEISNKTSSSSTCILVLLVSFCLLLVPAMYSSDTRGSLPAEHGVLSRQLRALPSE DPYQLELPALQSEVPKDSTHQWLDGSDCVLQAPGNTSCLLHYMPQAPSAEPPL EWPFPDLSS EPLCRGPILPLQANLTRKGGWLPTGSPSVILQDRYSG (SEQ ID N:259).

Gene NO: 3 is expressed primarily in apoptotic T-cells and Soares senescent cells and to a lesser extent in multiple tissues and cell types, including, multiple sclerosis tissue, and hippocampus.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, immunologically mediated disorders, transplantation, immunodeficiency, and tumor necrosis. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the immune system and transplantation, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues (e.g., multiple sclerosis tissue, hippocampus, bone marrow and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology of Gene NO: 3 to leucine zipper nucleic acid binding proteins indicates that polypeptides and polynucleotides corresponding to Gene NO: 3 are useful for diagnosis and treatment of immunologically mediated disorders, transplantation, immunodeficiency, and tumor necrosis. The secreted nucleic acid binding protein in the apoptotic tissues may be involved in the disposal of the DNA released by apoptotic cells. Furthermore, the studies conducted in support of Luman suggest that the translation product of this gene may be used to identify transcriptional regulation elements which in turn are useful in modulation of immune function.

10

15

20

25

30

35

from chronic lymphocytic leukemia, hemangiopericytoma, pharynx carcinoma, breast cancer, thyroid, bone marrow, osteoblasts and to a lesser extent in a few other tissues such as kidney pyramids.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of the diseases and conditions which include, but are not limited to, disorders in kidney, liver, and immune organs, particularly cancers. Similarly, polypeptides and antibodies directed to these polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues or cells, particularly of the kidney, liver, thyroid, and bone marrow expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., liver, spleen, B-cells, pharynx, thyroid, mammary tissue, bone marrow, osteoblasts and kidneys, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology of Gene NO: 2 to stromal cell-derived factor-2 indicates that polypeptides and polynucleotides corresponding to Gene NO: 2 are useful for diagnosis and therapeutic treatment of disorders in kidney, liver, and immune organs since stromal cells play important role in organ function. Stroma carries the blood supply and provides support for the growth of parenchymal cells and is therefore crucial to the growth of a neoplasm. Nucleic acids of the present invention comprise, but preferably do not consist of, and more preferably do not comprise, SEQ ID NO: 3 from US Patent No. 5,576,423, incorporated herein by reference, and shown herein as SEQ ID NO: 258).

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 135 as residues: His-56 to Gly-65, Ala-74 to Ser-80, Ile-84 to Pro-97, Leu-124 to Glu-129, Glu-135 to Asp-143, Gly-175 to Ser-180, and Ala-194 to Thr-199.

FEATURES OF PROTEIN ENCODED BY GENE NO: 3

The translation product of Gene NO: 3 shares sequence homology with LZIP-1, LZIP-2 and other leucine zipper proteins, which are thought to be important in nucleic acid binding. This gene has been reported in Mol. Cell. Biol. 17 (9), 5117-5126 (1997) as "Luman". Luman is a cyclic AMP response element (CRE)-binding protein/activating transcription factor 1 protein of the basic leucine zipper superfamily. It binds CREs in

10

15

20

that aberrations in the concentration and/or composition of this product may be causative in lysosome storage disorders. Preferred polypeptide fragments comprise the amino acid sequence PGHLLPHKWENC (SEQ ID NO: 257).

Gene NO: 1 is expressed primarily in stromal cells, and to a lesser extent in human fetal kidney and human tonsils.

Therefore, polynucleotides or polypeptides of the invention are useful as reagents for differential identification of the tissue(s) or cell type(s) present in a biological sample and for diagnosis of diseases and conditions which include, but are not limited to, fucosidosis and other lysosome storage disorders. Similarly, polypeptides and antibodies directed to the polypeptides are useful in providing immunological probes for differential identification of the tissue(s) or cell type(s). For a number of disorders of the above tissues of cells, particularly of the nervous system, expression of this gene at significantly higher or lower levels may routinely be detected in certain tissues and cell types (e.g., stromal cells, kidney, tonsils, and cancerous and wounded tissues) or bodily fluids (e.g., serum, plasma, urine, synovial fluid or spinal fluid) or another tissue or cell sample taken from an individual having such a disorder, relative to the standard gene expression level, i.e., the expression level in healthy tissue or bodily fluid from an individual not having the disorder.

The tissue distribution and homology of Gene NO: 1 to alpha-L-fucosidase indicates that polypeptides and polynucleotides corresponding to Gene NO: 1 are useful for the treatment of fucosidosis and general lysosomal disorders.

Preferred epitopes include those comprising a sequence shown in SEQ ID NO: 134 as residues: Met-1 to Leu-6, Thr-32 to Glu-39, Lys-80 to Lys-85, and Met-90 to Pro-96.

25

30

35

FEATURES OF PROTEIN ENCODED BY GENE NO: 2

The translation product of Gene No. 2 shares sequence homology with stromal cell-derived factor-2 (SDF-2) which is a novel secreted factor. See, for example, Gene, 176(1-2):211-214, (1996, Oct. 17.) The amino acid sequence of SDF-2 shows similarity to yeast dolichyl phosphate-D-mannose:protein mannosyltransferases, Pmt1p [Strahl-Bolsinger et al. Proc. Natl. Acad. Sci. USA 90, 8164-8168 (1993)] and Pmt2p [Lussier et al. J. Biol. Chem. 270, 2770-2775 (1995)], whose activities have not been detected in higher eukaryotes. Based on the sequence similarity, the translation product of this gene is expected to share certain biological activities with SDF-2, Pmt1p and Pmt2p.

Gene NO: 2 is expressed primarily in immune system tissue and cancerous tissues, such as liver hepatoma, human B-cell lymphoma, spleen in a patient suffering

10

30

35

formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth Enzymol 182:626-646 (1990); Rattan et al., Ann NY Acad Sci 663:48-62 (1992).)

"SEQ ID NO:X" refers to a polynucleotide sequence while "SEQ ID NO:Y" refers to a polypeptide sequence, both sequences identified by an integer specified in Table 1.

"A polypeptide having biological activity" refers to polypeptides exhibiting
activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.)

25 Polynucleotides and Polypeptides of the Invention

FEATURES OF PROTEIN ENCODED BY GENE NO: 1

The translation product of Gene NO: 1 shares sequence homology with alpha-L-fucosidase which is thought to be important as a lysosomal enzyme that hydrolyzes fucose from fucoglycoconjugates. (See Accession No. gi/178409.) Lysosome fructosidase is involved in certain lysosome storage diseases. (See Biochem. Biophys. Res. Commun., 164(1):439-445 (1989).) Fucosidosis, an autosomal recessive lysosomal storage disorder characterized by progressive neurological deterioration and mental retardation. The disease results from deficient activity of alpha-L-fucosidase, a lysosomal enzyme that hydrolyzes fucose from fucoglycoconjugates. This gene likely encodes a novel fucosidase isoenzyme. Based on homology, it is likely that the translated product of this gene is also involved in lysosome catabolism of molecules and

10

15

20

25

30

35

complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone).

The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single-and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double-stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.

The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine,

10

15

20

25

30

35

analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X was deposited with the American Type Culture Collection ("ATCC"). As shown in Table 1, each clone is identified by a cDNA Clone ID (Identifier) and the ATCC Deposit Number. The ATCC is located at 12301 Park Lawn Drive, Rockville, Maryland 20852, USA. The ATCC deposit was made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for purposes of patent procedure.

A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, the complement thereof, or the cDNA within the clone deposited with the ATCC. "Stringent hybridization conditions" refers to an overnight incubation at 42° C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1x SSC at about 65°C.

Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37°C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH₂PO₄; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50°C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).

Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.

Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a

10

15

20

25

30

35

Summary of the Invention

The present invention relates to novel polynucleotides and the encoded polypeptides. Moreover, the present invention relates to vectors, host cells, antibodies, and recombinant methods for producing the polypeptides and polynucleotides. Also provided are diagnostic methods for detecting disorders related to the polypeptides, and therapeutic methods for treating such disorders. The invention further relates to screening methods for identifying binding partners of the polypeptides.

Detailed Description

Definitions

The following definitions are provided to facilitate understanding of certain terms used throughout this specification.

In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.

In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.

As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence contained in SEQ ID NO:X or the cDNA contained within the clone deposited with the ATCC. For example, the polynucleotide can contain the nucleotide sequence of the full length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, with or without the signal sequence, the secreted protein coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having the translated amino acid sequence generated from the polynucleotide as broadly defined.

In the present invention, the full length sequence identified as SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig

WO 98/39446 PCT/US98/04482

1

70 Human Secreted Proteins

Field of the Invention

This invention relates to newly identified polynucleotides and the polypeptides encoded by these polynucleotides, uses of such polynucleotides and polypeptides, and their production.

5

10

15

20

25

30

35

Background of the Invention

Unlike bacterium, which exist as a single compartment surrounded by a membrane, human cells and other eucaryotes are subdivided by membranes into many functionally distinct compartments. Each membrane-bounded compartment, or organelle, contains different proteins essential for the function of the organelle. The cell uses "sorting signals," which are amino acid motifs located within the protein, to target proteins to particular cellular organelles.

One type of sorting signal, called a signal sequence, a signal peptide, or a leader sequence, directs a class of proteins to an organelle called the endoplasmic reticulum (ER). The ER separates the membrane-bounded proteins from all other types of proteins. Once localized to the ER, both groups of proteins can be further directed to another organelle called the Golgi apparatus. Here, the Golgi distributes the proteins to vesicles, including secretory vesicles, the cell membrane, lysosomes, and the other organelles.

Proteins targeted to the ER by a signal sequence can be released into the extracellular space as a secreted protein. For example, vesicles containing secreted proteins can fuse with the cell membrane and release their contents into the extracellular space - a process called exocytosis. Exocytosis can occur constitutively or after receipt of a triggering signal. In the latter case, the proteins are stored in secretory vesicles (or secretory granules) until exocytosis is triggered. Similarly, proteins residing on the cell membrane can also be secreted into the extracellular space by proteolytic cleavage of a "linker" holding the protein to the membrane.

Despite the great progress made in recent years, only a small number of genes encoding human secreted proteins have been identified. These secreted proteins include the commercially valuable human insulin, interferon, Factor VIII, human growth hormone, tissue plasminogen activator, and erythropoeitin. Thus, in light of the pervasive role of secreted proteins in human physiology, a need exists for identifying and characterizing novel human secreted proteins and the genes that encode them. This knowledge will allow one to detect, to treat, and to prevent medical disorders by using secreted proteins or the genes that encode them.