

Willkommen!

Und herzlichen Dank für den Kauf unseres AZ-Delivery SPI Reader Micro Speicherkartenmoduls für den Atmega328p. Auf den folgenden Seiten gehen wir mit dir gemeinsam die ersten Schritte von der Einrichtung auf dem Atmega328p durch.

Viel Spaß!

Dieses Datenlogger Modul ist für FAT16/FAT32 formatierte SD-Karten bis 32GB geeignet und unterstützt 5V Versorgungsspannung.

Verdrahten des Moduls mit einem Atmega328p:

+5V wird mit 5V am Atmega328p verbunden
GND wird mit GND verbunden
MOSI wird mit D11 verbunden
MISO wird mit D12 verbunden
SCK wird mit D13 verbunden
CS wird mit D10 verbunden

Rote Leitung Schwarze Leitung Orange Leitung Violette Leitung Gelbe Leitung Grüne Leitung

Nachdem alles verdrahtet ist kann der Atmega328p mit Spannung versorgt

werden. "Programmieren" des SD-Kartenlesers:

Um eine SD Karte mit dem Atmega328p verwenden zu können muss diese erst als FAT16 oder FAT32 formatiert werden. Dazu empfiehlt sich das Programm SDFormatter: https://www.sdcard.org/downloads/formatter 4/

Anschließend lassen wir die SD-Karteninformationen anzeigen. Dazu starten wir:

Wähle dazu unter Datei > Beispiele > SD > CardInfo aus.

Da es verschiedene SD-Karten Shields gibt, müssen wir im Code noch unseren Pin angeben:

```
// change this to match your SD shield or module;
// Atmega328p Ethernet shield: pin 4
// Adafruit SD shields and modules: pin 10
// Sparkfun SD shield: pin 8
// MKRZero SD: SDCARD_SS_PIN
const int chipSelect = 10;
```

Evtl. kann nun noch die Baudrate angepasst werden.

Serial.println (57600);

Oder wir müssen im Serial Monitor die Baudrate anpassen (auf 9600

Baud). Öffnen wir den Serial Monitor in der Arduino-IDE Software:

Werkzeuge > Serial Monitor

Wenn wir alles richtig gemacht haben, wird die SD Karte erkannt:

```
Initializing SD card...Wiring is correct and a card is present.

Card type: SDHC
Clusters: 122112
Blocks x Cluster: 64
Total Blocks: 7815168

Volume type is: FAT32
Volume size (Kb): 3907584
Volume size (Mb): 3816
Volume size (Gb): 3.73

Files found on the card (name, date and size in bytes):
```


Nun können wir auch daten auf die SD-Karte schreiben. Dafür gibt es das Beispiel DataLogger:

Hier wieder das Shield einstellen:

const int chipSelect = 10;

und evtl. die Baudrate ändern. Nach dem Upload werden die Werte vom Analogeingang 0, 1 und 2 auf die SD Karte in eine Datei "datalog.txt" geschrieben.

Du hast es geschafft dein Datenlogger schreibt Messwerte auf deine µSD-Karte!

Ab jetzt heißt es lernen und eigene Projekte verwirklichen.

Und für mehr Hardware sorgt natürlich dein Online-Shop auf:

https://az-delivery.de

Viel Spaß! Impressum

https://az-delivery.de/pages/about-us