

(ist106322, ist106157)

I. Pen-and-paper

Formularly
$$N=3$$
:

I. $Im-and-Bapte$

$$\phi(y_1,y_2)=y_1\times y_2$$

1. OLS

$$g(n) = Z = Ub + Un y_1 + Ua y_2$$

$$U = (X^TX)^{-1}X^TZ$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 2 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}$$

$$V = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 3 \\ 1 & 3x^2 \\ 1 & 3 & 1 & 2 \\ 1 & 3 & 2 & 2 \\ 1 & 3$$

(ist106322, ist106157)

(ist106322, ist106157)

2. Pridge sugression parelty fector =
$$\lambda = 1$$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

W = $(\phi T \phi + \lambda I)^{-1} \phi T = \lambda = 1$

A regressão Rigde teve como resultados menores coeficientes, quando comparado com o modelo OLS. Isto era expectável, tendo em conta que o modelo Ridge adiciona um termo de penalização (neste caso de 1), sendo este responsável pela diminuição dos maiores coeficientes. Adicionalmente, para variáveis que têm pouco ou nenhum efeito no resultado, o fator de penalização também reduz os seus coeficientes. Portanto a regularização mantém todas as variáveis e enfatiza as com maior importância e as menos significativas são desvalorizadas. Como consequência, haverá uma melhoria na capacidade de generalização e menor propensão a grandes variações nos outputs provocadas por pequenas mudanças nos inputs. Do modelo

(ist106322, ist106157)

OLS, por outro lado, ao não utilizar a regularização, já resultam coeficientes com um valor absoluto mais elevado, e pode ajustar-se excessivamente aos dados de treino, especialmente quando há multicolinearidade, isto é, quando duas ou mais variáveis estão fortemente correlacionadas. Em tais situações, o modelo OLS tende a atribuir coeficientes muito grandes para tentar ajustar pequenas variações entre estas variáveis, o que pode levar a overfitting. Este modelo corre o risco de capturar as "noisy features" durante o treino, e pode ficar demasiado complexo para fazer uma generalização equilibrada. Como tal, podemos concluir como a regularização procura simplificar o modelo e melhorar a sua generalização como também prevenir o overfitting.

	3.						
0		0	カコ	42	4 num	compare the train	and
		76	2	2	017	test RMSE of t	No. 02 to 160 mile 200 - 700 - 10 - 10 - 10
		717	1	2	1,1	2 models in ?) and 2)
		ня	5	1	2,2		
	M					Em teste,	
	RM	SE =	VMSE	= \[\int	1 区 (水-水	12 nnew'= B(n	meW) =
				V	m < (4-2	= 00 +	Wy Monwat +
	orod	clo 1): [oLS			+ W ₀	m mucum
	716) = {()	16) =	8 (2,2)) = 3,31593	1+0,11372 ×2×2.	= 3,77081
C	NA) = f(2	17)= {	(1,2)=	3131593 +0	111372×1×2 = 3,5	4337
	ng) = f(ng)= f(5,1) = 3,31593 +0,11372 × 5×1= 3,88453						
	71.	' = R(2	nn) = 0	(1,1) =	: 3,31593+1	01 11372×1×1 = 314	2965
	y_1 = $f(y_1) = f(y_1) = 3,31593+0,11372 \times 1 \times 1 = 3,42965$ y_2 = $f(y_2) = f(y_1) = 3,31593+0,11372 \times 1 \times 3 = 3,65709$						
	n_3 ' = $\beta(n_3)$ = $\beta(3,2)$ = 3,31593 + 0111372×3×2 = 3,99825						
	21.0	n41 = f(n4) = f(3,3)=3,31593+0,11372 ×3×3=4,33941					
						11372 ×2×4 = 4,22	
			0				
•				y num)		
	74	7	1		3,42965	(your - yourn) -2117965	(pour man)
	712	1	3	710	3,65709	3, 34 297	
	713	3	2	2,7	3,99825	-1,29825	
	714	3	3	3,2	4,33941	-1, 13947	
	715	a a	4	5,5	4,22569	1,27431	
	316	a	2	0) 7	3,77081	-3,07081	
•		ī	a	1,1	3154337	0 (-6222	
_	717	S. A. Carlotte in	~	and the second second second	3/2/1-3/	-2,44337	
C	718	5	1	2,2	3, 884 53	-1,68453	

ENSE =
$$\langle \text{PISE} \rangle = \sqrt{\frac{1}{5} \left((-2,17+965)^2 + (3,34291)^2 + (-1,29325)^2 + (-1,13341)^2 + (1,127431)^2 \right)} = \sqrt{\frac{1}{5} \left((-2,17+965)^2 + (3,34291)^2 + (-1,29325)^2 + (-1,68453)^2 \right)} = \sqrt{\frac{1}{5} \left((-3,107081)^2 + (-2,146337)^2 + (-1,68453)^2 \right)} = \sqrt{\frac{1}{5} \left((-3,107081)^2 + (-2,146337)^2 + (-1,68453)^2 \right)} = \sqrt{\frac{1}{5} \left((-3,107081)^2 + (-2,146337)^2 + (-1,68453)^2 \right)} = \sqrt{\frac{1}{5} \left((-3,1)^2 + (1,81809 + 0,32376 \times 1 \times 1 = 0,14485 + (-1,68453)^2 + (-1,68453$$

(ist106322, ist106157)

RHSE =
$$\sqrt{\frac{1}{5}} \left((-0.89185)^2 + (4.21063)^2 + (-1.06065)^2 + (-1.53193)^2 + (4.09183)^2 \right) = \sqrt{4.637736423} \approx 2.15354$$

RMSE = $\sqrt{\frac{1}{3}} \left((-2.41313)^2 + (-1.36561)^2 + (-1.23689)^2 \right)$

= $\sqrt{\frac{2}{3.072661314}} \approx 1.75290$

Após determinar os valores de *RMSE* para cada modelo, podemos observar que o erro de treino para o modelo que utiliza *OLS* é inferior ao erro de teste respetivo, enquanto para o modelo de regressão *Ridge* se verifica o contrário.

O facto de que o erro para o conjunto de treino do modelo *OLS* é inferior ao erro para o conjunto de teste, indica que o modelo faz overfitting aos dados de treino, isto é, adequa-se aos dados conhecidos, mas não é tão capaz de estimar resultados para observações novas. Efetivamente, esta conclusão está de acordo com o esperado para o modelo *OLS*, já que é sabido que este modelo tem tendência a apresentar *overfitting*, sendo bastante flexível e não restringido pela regularização.

Por outro lado, para o modelo *Ridge*, constatamos que o erro para o conjunto de treino é superior ao erro para o conjunto de teste. Neste caso, a regularização reduz o problema de overfitting do *OLS*, sendo que a penalização introduzida torna o modelo menos complexo, permitindo uma melhor generalização e capacidade de avaliar novas observações. Note-se ainda que apesar de o erro de treino da regressão *Ridge* ser ligeiramente superior ao de treino do *OLS*, o erro de teste é significativamente inferior, o que corrobora a expectativa de que o *Ridge* apresente uma melhor capacidade de generalização. Mais uma vez, estes resultados concordam com o expectável, visto que a regularização é uma forma de reduzir o risco de *overfitting*, forçando a diminuição dos coeficientes com valores maiores e tornando o modelo mais simples e com menor variância.

(ist106322, ist106157)

$$\pi(2) = \operatorname{roftmox}(2(2)) = \frac{2(2)}{2} = \begin{bmatrix} \operatorname{loftmox}(2,7) \\ \operatorname{loftmax}(2,3) \\ \operatorname{loftmax}(2) \end{bmatrix} = \begin{bmatrix} \operatorname{loftmox}(2,3) \\ \operatorname{loftmax}(2,3) \\ \operatorname{loftmax}(2,3) \end{bmatrix}$$

$$= \begin{bmatrix} 2/7 & /(2^{17} & +2^{2}) & +2^{2} \\ 2/3 & /(2^{2})^{\frac{1}{7}} & +2^{2} \\ 2/3 & +2^{2} \\ 2/(2^{2})^{\frac{1}{7}} & +2^{2} \\$$

$$\frac{(i) \pi}{5} = \frac{(i) \pi e}{(i) \pi e}$$

$$\frac{(i) \pi e}{(i) \pi e}$$

$$\frac{(i) \pi e}{(i) \pi e}$$

$$\frac{(i) \pi e}{(i) \pi e}$$

Na função softman, todos as saídos estão interconedadas por meio do denominados que é a some dos exportenciais de todes as entrados. Alteren uma entrade afete torreto a prépria soile (coso i= j) quento on saides des outres entredes (coso i + j)

(ist106322, ist106157)

Calcula a derivade jouise de softmex (2i) em selez a Zi , ou sejo,

Calcula a derivate format de nofrmax (2i) em nelle, a
$$\pm i$$
 | on sign |

 $\frac{\partial \operatorname{noftmax}(\Xi i)}{\partial \Xi i}$

Cano $i = y$:

 $\frac{\partial \operatorname{noftmax}(\Xi i)}{\partial \Xi i} = \frac{\left(\underbrace{z^{2i}} \right)^{1} \cdot \left(\underbrace{\sum_{l=1}^{m} z^{2l}} \right) - \underbrace{z^{2i}}_{l} \cdot \left(\underbrace{\sum_{l=1}^{m} z^{2l}} \right)^{2}}{\left(\underbrace{\sum_{l=1}^{m} z^{2l}} \right)^{2}}$

*

 $\frac{z^{2i}}{z^{2i}} \left(\underbrace{\sum_{l=1}^{m} z^{2l}} \right) - \underbrace{z^{2i}}_{l} \cdot \underbrace{z^{2i}}$

$$\frac{\sum_{l=1}^{m} 2^{2l} \left(\sum_{l=1}^{m} 2^{2l} \right)^{2}}{\left(\sum_{l=1}^{m} 2^{2l} \right)^{2}} = \frac{2^{2l} \left(\sum_{l=1}^{m} 2^{2l} - 2^{2l} \right)}{\left(\sum_{l=1}^{m} 2^{2l} \right)^{2}}$$

$$= \frac{1}{\left(\sum_{l=1}^{m} \frac{2l}{2l}\right)^{2}} \cdot \left(\frac{\sum_{l=1}^{m} \frac{2l}{2l}}{\sum_{l=1}^{m} \frac{2l}{2l}} - \frac{2i}{\left(\sum_{l=1}^{m} \frac{2l}{2l}\right)}\right) =$$

roftmase (Zi). (1- softmax (Zi))

* $\left(\sum_{l=1}^{m} \frac{2l}{2l}\right)^{l} = l^{2l}$ pois apros o termo correspondent a Zi contribii pare a derivade de $\sum_{l=1}^{m} l^{2l}$ por outros termos que não depondem de Zi, tâm derived =0.

 $\frac{\partial \operatorname{softma}(z_i)}{\partial z_i} = \frac{\left(z_i^2\right)^1 \cdot \left(z_{i=1}^m z_i^2\right) - z_i \cdot \left(z_{i=1}^m z_i^2\right)^2}{\left(z_{i=1}^m z_i^2\right)^2} = \frac{\left(z_{i=1}^m z_i^2\right)^2}{\left(z_{i=1}^m z_i^2\right)^2}$

(

$$= -\frac{2i}{2i} \frac{2i}{z^{m}} = -\text{softmax}(2i). \left(\text{softmax}(2j)\right)$$

Entro

$$\frac{\partial n[i]}{\partial z[j]} = \begin{cases}
-\text{reffmax}(z[i]) \cdot (1 - \text{reffmax}(z[i])) & \text{if } i = j \\
-\text{reffmax}(z[i]) \cdot (2[i]) \cdot (2[i]) & \text{if } i = j
\end{cases}$$

Into

$$\frac{\partial n[i]}{\partial z[i]} = \text{reffmax}(z[i]) \cdot (1 - \text{reffmax}(z[i])) & \text{if } i = j \\
\text{into}$$

$$\frac{\partial n[i]}{\partial z[i]} = \text{reffmax}(z[i]) \cdot (1 - \text{reffmax}(z[i])) & \text{lago}$$

$$\frac{\partial n[i]}{\partial z[i]} = \text{reffmax}(z[i]) \cdot (1 - \text{reffmax}(z[i])) & \text{lago}$$

$$\frac{\partial n[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = 1$$

$$\frac{\partial n[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = 1$$

$$\frac{\partial n[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = 1$$

$$\frac{\partial n[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = 1$$

$$\frac{\partial n[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = 1$$

$$\frac{\partial n[i]}{\partial z[i]} = \frac{\partial z[i]}{\partial z[i]} = 1$$

$$S[2] = \frac{\partial E}{\partial x_{13}} \circ \frac{\partial x_{12}}{\partial z_{12}} = \frac{1}{x_{12}} - \frac{1}{x_{12}} = \frac{1}{x_{12}} =$$

$$\omega(2)^{null} = \omega_{1}(2)^{null} - \eta \frac{2\epsilon}{2w(2)} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} - 0_{1}1 \begin{bmatrix} 8(2) \\ 8(2) \end{bmatrix}.$$

$$\frac{3\epsilon(2)}{2w(2)} = \begin{bmatrix} 1 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{bmatrix} - 0_{1}1 \begin{bmatrix} 0_{1}4\epsilon_{1}487 + \epsilon_{2}34 \\ -0_{1}66065555951 \\ 0_{1}2291\epsilon_{7}991\epsilon \end{bmatrix} \cdot \begin{bmatrix} 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 \end{bmatrix} = \begin{bmatrix} 0_{1}98616 & 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 \end{bmatrix} = \begin{bmatrix} 0_{1}98616 & 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 \end{bmatrix} = \begin{bmatrix} 0_{1}99312 & 0_{1}93616 & 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 & 0_{1}3 \end{bmatrix} = \begin{bmatrix} 0_{1}10296 & 0_{1}10200 & 0_{1}10296 & 0$$