Diseño Automático de sistemas

Repaso Lógica Digital

Prof. Pablo Sarabia Ortiz

- 1. Lógica Combinacional
- 2. Lógica Secuencial
- 3. Hazard (lógica combinacional)
- 4. Tiempos
- 5. Circuitos Secuenciales Mealy y Moore

Bibliografía

 Chapter 1: Digital Systems Design Using VHDL (Second Edition), Charles H. Roth, Jr and Lizy Kurian John.

- 1. Lógica Combinacional
- 2. Lógica Secuencial
- 3. Hazard (lógica combinacional)
- 4. Tiempos
- 5. Circuitos Secuenciales Mealy y Moore

Lógica combinacional

- Aquel sistema cuyas salidas son función exclusiva del valor de sus entradas en un momento dado.
- NO tiene memoria de estados anteriores.
- Pueden ser puertas lógicas o circuitos aritméticos más complejos.

- 1. Lógica Combinacional
- 2. Lógica Secuencial
- 3. Hazard (lógica combinacional)
- 4. Tiempos
- 5. Circuitos Secuenciales Mealy y Moore

Lógica secuencial

- Aquel sistema cuyas salidas dependen de las entradas actuales y de los estados anteriores del sistema.
- Necesita memoria, en el caso de la FPGA utilizaremos registros.

- 1. Lógica Combinacional
- 2. Lógica Secuencial
- 3. Hazard (lógica combinacional)
- 4. Tiempos
- 5. Circuitos Secuenciales Mealy y Moore

Hazard (I) (Lógica combinacional)

- Cuando la salida toma un valor incorrecto respecto a un cambio en las entradas.
- Transitorios no deseados debido a los tiempos de propagación.
- Hay 2 tipos: Estáticos y Dinámicos

Hazard (II) - Estáticos

• Un valor que debiera ser constante varia, ej:

(a) Simple circuit with static 1-hazard

Retraso ≠ 0 => Output ≠1

03/02/2022

Hazard (III) - Dinámicos

 Al modificarse una entrada la salida se modifica más de una vez

03/02/2022

Hazard (IV) - Resumen

- Los hazards son inevitables.
- Ignorar los valores transitorios.
- Usar registros (diseños síncronos).

- 1. Lógica Combinacional
- 2. Lógica Secuencial
- 3. Hazard (lógica combinacional)
- 4. Tiempos
- 5. Circuitos Secuenciales Mealy y Moore

Tiempos (I) Circuitos no ideales

- Los circuitos no ideales => tiempos de propagación.
- Señal estable durante: Setup / Hold

Tiempos (II) Cálculo del reloj

1.
$$t_{ck} \ge t_{pmax} + t_{cmax} + t_{su}$$

2.
$$t_{pmin} + t_{cmin} \ge t_h$$

•
$$t_{ck}$$
 Reloj

- t_{pmax} Propagación
- t_{cmax} Combinacional
- t_{su} Setup
- t_h Hold flip flop

03/02/2022

Tiempos (III) Resumen Tiempos

- Las características del circuito determinan la frecuencia máxima del reloj.
- Las entradas y las salidas deben de estar estables durante un tiempo dado.
- Usar registros (diseños síncronos).

- 1. Lógica Combinacional
- 2. Lógica Secuencial
- 3. Hazard (lógica combinacional)
- 4. Tiempos
- 5. Circuitos Secuenciales Mealy y Moore

Circuitos Secuenciales: Mealy (I)

 Las salidas dependen de las entradas y del estado actual.

Circuitos Secuenciales: Mealy (II)

Ejercicio: Detector secuencia 101

Circuitos Secuenciales: Moore (I)

Las salidas dependen del estado actual.

Circuitos Secuenciales: Moore (II)

Ejercicio: Detector secuencia 101

Circuitos Secuenciales: Resumen

	Mealy	Moore
Salida	Instantáneo	1 ciclo de retraso
Complejidad	Mayor	Menor
Estados	Menor	Mayor
Tipo de salida	Asíncrona	Síncrona

Resumen

- Dos tipos de lógica: Combinacional y Secuencial
- Frecuencia máxima, periodo mínimo, circuitos reales y riesgos (Hazards) en su diseño.
- Menor tiempo combinacional => Mayor frecuencia del sistema
- Máquinas de estados, diferencias entre Mealy y Moore

Próxima hora

- Repaso a VHDL
- Explicación del proyecto

¿Preguntas?

