- 1. Considere la relación R(A, B, C, D, E, G, H) con el conjunto de dependencias funcionales: $F = \{B \to H, AB \to C, ABD \to E, E \to C, GH \to A, C \to D, H \to E, \}$
 - a) Indique si las siguientes dependencias funcionales pueden ser **deducidas** partiendo del conjunto original:
 - $D \to E$
 - $AB \rightarrow D$
 - $GH \rightarrow D$
 - $\mathbf{D} \to \mathbf{E}$

Verifico si E pertence al conjunto de atributos de D, para ver si puedo inferir el atributo E de la dependencia funcional D.

Busco entonces $D^+ = \{D\}$.

- Por ende, no puedo inferir que $D \rightarrow E$ porque E no pertence a D^+ .
- $AB \rightarrow D$

Busco $AB^+ = \{ABCDHE\}.$

Siguiendo los axiomas de Armstrong:

 $AB \rightarrow C, C \rightarrow D$. Luego, por transitividad: $AB \rightarrow D$

- $GH \rightarrow D$

Busco $GH^+ = \{AGH\}.$

- Como D no pertence a GH^+ no puedo deducir que $GH \rightarrow D$
- b) Indique si las siguientes dependencias funcionales tienen atributos implicantes redundantes:
 - $AB \rightarrow C$
 - $ABD \rightarrow E$
 - $GH \rightarrow A$

Para verificar si alguno de los atributos es redundante, partiendo de F, lo elimino de la dependencia funcional conjunta y me fijo si la dependencia se sigue cumpliendo sin ese atributo. Para que se cumpla la dependencia funcional el atributo determinado debe pertenecer a la clausura del conjunto de atributos implicantes restantes.

- $AB \rightarrow C$

Me fijo si B es redundante en esta expresión. Si lo es, debe seguir siendo válido que $\{AB - B\} \rightarrow C$. Con $\{AB - B\}^+ = A^+ = \{A\}$:

Si quitamos B, vemos que A por si solo no puede determinar la dependencia funcional proporcionada. Por lo tanto, B no redundante.

Me fijo si A es redundante en esta expresión. Si lo es, debe seguir siendo válido que $\{AB - A\} \rightarrow C$. Con $\{AB - A\}^+ = B^+ = \{BCDEH\}$.

Como el conjunto aun contiene C, $B \rightarrow C$ sigue siendo valida y por lo tanto **A es un atributo** implicante redundante en la expresión.

- $ABD \rightarrow E$

Realizo el mismo proceso que en el ejemplo anterior. Busco las clausuras de todos los subconjuntos de atributos implicantes

- $AB^+ = \{ABCDE\}$ incluye E por lo tanto **D** es redundante
- $AD^+ = \{AD\}$ no incluye E por lo tanto B no es redundante
- $BD^+ = \{BCDHE\}$ incluye E por lo tanto A es redundante
- $B^+ = \{BCDEH\}$ incluye E.

Me alcanza con $B \rightarrow E$

- $GH \rightarrow A$

Busco las clausuras de todos los subconjuntos de atributos implicantes

- $G^+ = \{G\}$ no incluye A por lo tanto H no es redundante
- $H^+ = \{CDEH\}$ no incluye A por lo tanto G no es redundante
- •
- c) Indique si sería **redundante** incorporar las siguientes dependencias funcionales:
 - $-B \rightarrow D$
 - $-A \rightarrow E$
 - $B \rightarrow D$

Es redundante porque por el axioma de transitividad, partiendo de F se puede deducir que:

Si B
$$\rightarrow$$
 H y H \rightarrow E, por transitividad B \rightarrow E
Si E \rightarrow C y C \rightarrow D por transitividad E \rightarrow D

Aplicando transitividad una vez más, deducimos $B \rightarrow D$

- A→E

Esta dependencia funcional no es redundante pues la clausura $A^+ = \{A\}$ no incluye a E. Si no agrego esta dependencia, yo no tengo forma de determinar E a través de A con la información que ya tenía en F.

- 2. Dada la relación R(A, B, C, D, E, G, H) con el conjunto minimal de dependencias funcionales: F = {AD → C, G → H, BG → E, CH → B} y con clave candidata {ADG}. Suponga que se aplica el primer paso del algoritmo de descomposición FNBC, tomando la df CH → B:
 - $R_1(B, C, H) \text{ con } F_1 \quad CC_1$ ■ $R_2(A, C, D, E, G, H) \text{ con } F_2 \quad CC_2$

Obtenga los conjuntos minimales F_1 F_2 de dependencias funcionales y los conjuntos CC_1 CC_2 de claves candidatas para cada relación. Indique cuál es la máxima forma normal en la que se encuentran R_1 y R_2 .

Recuerde que se proyectan tanto las dependencias explícitas como las implícitas.

a. R1(B, C, H)

Voy a buscar las dependencias funcionales que quedaron en esta relación calculando las clausuras

- $(B)^+ = \{B\}$
- $\bullet \quad (\mathbf{C})^+ = \{\mathbf{C}\}$
- $(H)^+ = \{H\}$
- $\bullet \quad (BC)^+ = \{BC\}$
- $\bullet \quad (BH)^+ = \{BH\}$
- $(CH)^+ = \{CHB\}$
- F1 = {CH →B} es minimal, tengo una única dependencia y CC₁ = {CH} es la única clave candidata que tengo

Rta: para
$$R_1(B, C, H)$$
, $F_1 = \{CH \to B\}$ y $CC_1 = \{CH\}$

La máxima forma normal en la que se encuentra es FNBC; la parte izquierda de la dependencia es superclave y la parte derecha es atributo primo.

b. R2(A, C, D, E, G, H)

$$F = \{AD \rightarrow C, G \rightarrow H, CHG \rightarrow E^1\}$$

Verifico si F es minimal:

- a. Los atributos implicados no son compuestos
- b. ¿Los implicantes son redundantes? No puedo determinar C con solo A o con solo D (porque $(A)^+ = \{A\}$ y $(D)^+ = \{D\}$) Tampoco puedo determinar E solo con C o solo con G o H porque no pertenece a ninguna de sus clausuras.
- c. No hay dependencias redundantes tampoco

Luego, F es minimal.
$$F2 = \{AD \rightarrow C, G \rightarrow H, CH \rightarrow E\}$$
 para R2(ACDEGH)

Busco las claves candidatas utilizando el algoritmo, y partiendo de la forma minimal F2.

Por un lado, {CH} seguro es CC porque es por donde realice partición. Voy a verificar si hay otra

- 1. Busco atributos independientes: A_{indep} = { }
- 2. Busco atributos equivalentes A_{equiv} = { }
- 3. Armo una clave tentativa con los atributos implicantes

¹ Tengo la dependencia BG→E. B no pertenece a R2, pero CH→B, entonces puedo convertirlo en CHG →E, y como H→G, puedo decir que CH→E

A	С	D	Е	G	Н
I	I	I		I	I
	D		D		D

$$K_{tent} = \{ADG\}$$

• $K_{tent}^+=\{A, D, G, C, H, E\}=R2$ por lo tanto $\{ADG\}$ es clave candidata

Rta: Para
$$R_2(ACDEGH)$$
: $F_2 = \{AD \rightarrow C, G \rightarrow H, CHG \rightarrow E\}$, $CC_2 = \{ADG\}$, $\{CH\}$

Máxima forma normal del conjunto

- El conjunto no está FNBC, por la violación de la dependencia: $G \rightarrow H$. G no es superclave.
- El conjunto está en 3FN, porque no hay dependencias donde el lado izquierdo no sea superclave y el derecho no sea primo.

3. Se tiene el siguiente esquema relacional:

Parcela R(ref Catastral, municipio, parcela, cod Municipio)

Se sabe que: el número catastral está compuesto tanto por el código municipal como el de la parcela, entre otras cosas. Los nombres de los municipios son únicos y las referencias catastrales no se repiten en un mismo municipio para distintas parcelas.

Identifique 5 dependencias funcionales no triviales que verifiquen las restricciones del problema.

- 1. {municipio, parcela} -> refCatastral
- 2. {codMunicipio, parcela} -> refCatastral
- 3. {codMunicipio, refCatastral} -> parcela
- 4. {municipio, refCatastral} -> parcela
- 5. {codMunicipio} -> municipio