积空间

定义 1 (积拓扑). 设 X,Y 为拓扑空间,任意开集 $U \subset X$, $V \subset Y$,则集族 $\beta = \{U \times V\}$ 是一个拓扑基,称 β 生成的 $X \times Y$ 上的拓扑为**积拓扑**.

需要说明 β 是一个拓扑基,因为 $\bigcup \beta = X \times Y$, β 中任意两个集合的交仍在 β 中.

定义 2 (投影映射). 对任意 $x \in X$, $y \in Y$, 映射 $p_1 : X \times Y \to X$, $(x,y) \to x$ 和 $p_2 : X \times Y \to Y$, $(x,y) \to y$ 称为 $X \times Y$ 上的投影映射.

定理 1. 设 $X \times Y$ 带有积拓扑,则它的投影映射为连续映射,且把开集映射到开集.

证明. 设开集 $U \subset X$,映射 $p_1: X \times Y \to X$, $(x,y) \to x$,则 $p_1^{-1}(U) = U \cap Y$ 为开集,故 p_1 为连续映射. 只需考虑基础开集 $U \times V \in \beta$, $p_1(U \times V) = U$ 为 X 中的开集,故 p_1 把开集映射到开集. 对于 p_2 同理.

定理 2. $X \times Y$ 上的积拓扑是满足投影映射连续的最小拓扑.

证明. 设我们在 $X \times Y$ 上有一些拓扑满足投影映射连续,设开集 $U \subset X$, $V \subset Y$,则 $p_1^{-1}(U) \cap p_2^{-1}(V) = U \times V$ 是开集. 这个拓扑包含了积拓扑中所有的基础开集,于是这个拓扑至少要和积拓扑一样大.

下文中,若无特殊说明, $X \times Y$ 均指积拓扑空间.

定理 3. 设 X, Y, Z 为拓扑空间,映射 $f: Z \to X \times Y$ 连续当且仅当 $p_1 \circ f: Z \to X$ 和 $p_2 \circ f: Z \to Y$ 都连续.

证明. 若 f 连续,连续映射的复合仍连续,故 $p_1 \circ f: Z \to X$ 和 $p_2 \circ f: Z \to Y$ 都连续. 若 $p_1 \circ f$ 和 $p_2 \circ f$ 都连续,对任意开集 $U \subset X$, $V \subset Y$,有 $U \times V$ 是开集,且

$$f^{-1}(U \times V) = (p_1 \circ f)^{-1}(U) \cap (p_2 \circ f)^{-1}(V),$$

其中 $(p_1 \circ f)^{-1}(U)$ 和 $(p_2 \circ f)^{-1}(V)$ 都是开集,于是 $f^{-1}(U \times V)$ 是开集,f 连续.

定理 4. 积空间 $X \times Y$ 是 Hausdorff 空间当且仅当 X 和 Y 都是 Hausdorff 空间.

证明. 若 $X \times Y$ 是 Hausdorff 空间,对不同的 x_1 , $x_2 \in X$, $y \in Y$, 存在基础开集 $U_1 \times V_1$, $U_2 \times V_2 \subset X \times Y$ 满足 $(x_1, y) \in U_1 \times V_1$, $(x_2, y) \in U_2 \times V_2$, $y \in V_1 \cap V_2$, 那么 $U_1 \cap U_2 = \emptyset$. 对 y 同理.

若 X 和 Y 均是 Hausdorff 空间,仅考虑 $x_1 \neq x_2$ 时即可.则对不同的 $x_1, x_2 \in X$,有 $U_1 \ni x_1, U_2 \ni x_2$,使得 $U_1 \cap U_2 = \varnothing$,那么 $(U_1 \times Y) \cap (U_2 \times Y) = \varnothing$.

引理 1. 设 X 是拓扑空间, β 是 X 的一个拓扑基,则 X 为紧的当且仅当 β 中的一些基础 开集可以组成 X 的一个开覆盖,且存在有限的子覆盖.

证明. 设 β 中的一些基础开集可以组成 X 的一个开覆盖,且存在有限的子覆盖,对 X 的任一开覆盖 \mathcal{F} ,对任意 \mathcal{F} 中的集合,都可以由 β 中的若干基础开集生成,取所有用到的基础 开集,构成 β' ,则 $\bigcup \beta' = \bigcup \mathcal{F} = X$,所以 β' 是 X 的一个开覆盖,且存在有限子覆盖。那 么对于 β' 的有限子覆盖中的基础开集,都能从 \mathcal{F} 中选出一个集合覆盖,这样构造了 \mathcal{F} 的有限子覆盖,故 X 是紧的. 反之显然.

定理 5. 积拓扑空间 $X \times Y$ 是紧的当且仅当 X 和 Y 都是紧的.

证明. 若 $X \times Y$ 是紧的,由于 $p_1: X \times Y \to X$, $p_2: X \times Y \to Y$ 都是连续映射,于是 X 和 Y 都是紧的.

若 X 和 Y 都是紧的,对于任意 $x \in X$,考虑 $p_2\big|_{\{x\}}: \{x\} \times Y \to Y$,则容易验证这是同胚映射. 由于 Y 是紧的,那么 $\{x\} \times Y$ 是紧的,考虑基础开集组成的任一开覆盖存在有限子覆盖

$$U_1^x \times V_1^x, \ U_2^x \times V_2^x, \cdots, \ U_{n_x}^x \times V_{n_x}^x$$

覆盖 $\{x\} \times Y$,而且这些 U_i^x 覆盖了 $U^x = \bigcap_{i=1}^{n_x} U_i^x$.

由于 X 是紧的, 所以 X 存在有限的开覆盖

$$U^{x_1}, U^{x_2}, \cdots, U^{x_s},$$

于是

$$X \times Y = \bigcup_{i=1}^{s} U^{x_i} \times Y \subset \bigcup_{i=1}^{s} \left(\bigcap_{j=1}^{n_{x_i}} U_j^{x_i} \times V_j^{x_i} \right) = \bigcup_{i=1}^{s} \bigcap_{j=1}^{n_{x_i}} \left(U_j^{x_i} \times V_j^{x_i} \right),$$

即由基础开集组成的 $X \times Y$ 的开覆盖存在有限子覆盖,故 $X \times Y$ 是紧的.

定理 6 (Tychonoff). 任意个紧空间的积空间仍是紧的.

注. 这里的"任意"包括有限和无限的情形,是定理5的延伸,Tychonoff 定理最终被证明与选择公理等价.