Equilibrium Concepts

Joseph Chuang-Chieh Lin

Dept. CSE, National Taiwan Ocean University, Taiwan

Lecture Notes in Economics and Computation

Fall 2024

Outline

- Cost Minimization and Payoff Maximization
- Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)

A hierarchy of equilibrium concepts

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)

Cost-Minimization Games

A cost-minimization game has the following ingredients:

- a finite number of k agents;
- a finite set S_i of pure strategies for each agent i;
- a nonnegative cost function $C_i(\mathbf{s})$ for each agent i.
 - $\mathbf{s} \in S_1 \times S_2 \times \cdots \times S_k$: a strategy profile or outcome.

For example, the network creation game.

Fall 2024

Payoff-Maximization Games

A payoff-maximization game has the following ingredients:

- a finite number of k agents;
- a finite set S_i of pure strategies for each agent i;
- a nonnegative payoff function $\pi_i(s)$ for each agent i.
 - $\mathbf{s} \in S_1 \times S_2 \times \cdots \times S_k$: a strategy profile or outcome.

For example, the Rock-Paper-Scissors game, two-party election game, etc.

Outline

- Cost Minimization and Payoff Maximization
- Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)

Pure Nash Equilibrium (PNE)

Pure Nash Equilibrium (PNE)

A strategy profile **s** of a cost-minimization game is a pure Nash equilibrium (PNE) if for every agent $i \in \{1, 2, \dots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$C_i(\mathbf{s}) \leq C_i(s_i', \mathbf{s}_{-i}).$$

• \mathbf{s}_{-i} : the vector \mathbf{s} with the *i*th component removed.

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)

Mixed Nash Equilibrium (MNE)

Mixed Nash Equilibrium (MNE)

Distributions $\sigma_1, \ldots, \sigma_k$, over strategy sets S_1, \ldots, S_k respectively, of a cost-minimization game constitute a mixed Nash equilibrium (MNE) if for every agent $i \in \{1, 2, ..., k\}$ and every unilateral deviation $s'_i \in S_i$,

$$\mathsf{E}_{\mathsf{s}\sim\sigma}[\mathit{C}_i(\mathsf{s})] \leq \mathsf{E}_{\mathsf{s}\sim\sigma}[\mathit{C}_i(\mathit{s}_i',\mathsf{s}_{-i})].$$

• σ : the product distribution $\sigma_1 \times \cdots \times \sigma_k$.

Product of Mixed Strategies

Player 2

probabilities

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)

Correlated Equilibrium (CE)

Correlated Equilibrium (CE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$\mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}) \mid \mathbf{s}_i] \leq \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}_i', \mathbf{s}_{-i}) \mid \mathbf{s}_i].$$

Matrix of costs

	Stop	Go
Stop	1, 1	1, 0
Go	0, 1	5, 5

Two PNEs.

Matrix of costs

	Stop	Go
Stop	1, 1	1, 0
Go	0, 1	5, 5

Two PNEs.

Matrix of costs

	Stop	Go
Stop	$\begin{array}{c} \text{prob.} = 0 \\ 1, 1 \end{array}$	prob. = 1/2 1, 0
Go	prob. = 1/2 0, 1	prob. = 0 5, 5

- A CE for example.
- Cannot correspond to a MNE.

Fall 2024

Matrix of costs

	Stop	Go
Stop	$\begin{array}{c} \text{prob.} = 0 \\ 1, 1 \end{array}$	prob. = 1/2 1, 0
Go	prob. = 1/2 0, 1	prob. = 0 5, 5

- A CE for example.
- Cannot correspond to a MNE.

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

Fall 2024

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE:

- A.k.a. Hawk-Dove Game.
 - A model of conflict for two players.

	Dare	Chicken
Dare	0, 0	7, 2
Chicken	2, 7	6, 6

- Two PNE & One MNE.
- The expected utility of each player in the MNE: $\frac{1}{3} \cdot \frac{2}{3} \cdot 7 + \frac{2}{3} \cdot \frac{1}{3} \cdot 2 + \frac{2}{3} \cdot \frac{2}{3} \cdot 6 = \frac{14}{3}$.

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	prob. = 0 0, 0	prob. = 1/3 7, 2
Chicken	prob. = 1/3 2, 7	prob. = 1/3 6, 6

• The expected utility for each player:

$$7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5$$

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	prob. = 0 0, 0	prob. = 1/3 7, 2
Chicken	prob. = 1/3 2, 7	prob. = 1/3 6, 6

The expected utility for each player:

$$7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5$$

- A correlated equilibrium.
 - Check that it is an equilibrium if a player is assigned "Dare".
 - Check that it is an equilibrium if a player is assigned "Chicken Out".

	Dare	Chicken
Dare	prob. = 0 0, 0	prob. = 1/3 7, 2
Chicken	prob. = 1/3 2, 7	prob. = 1/3 6, 6

• The expected utility for each player:

$$7 \cdot (1/3) + 2 \cdot (1/3) + 6 \cdot (1/3) = 5.$$

Fall 2024

Outline

- Cost Minimization and Payoff Maximization
- 2 Pure Nash Equilibria (PNE)
- Mixed Nash Equilibria (MNE)
- 4 Correlated Equilibria (CE)
- 5 Coarse Correlated Equilibria (CCE)

Coarse Correlated Equilibrium (CCE)

Coarse Correlated Equilibrium (CCE)

A distribution σ on the set $S_1 \times ... \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \dots, k\}$ and every unilateral deviation $s'_i \in S_i$,

$$\mathsf{E}_{\mathsf{s}\sim\sigma}[C_i(\mathsf{s})] \leq \mathsf{E}_{\mathsf{s}\sim\sigma}[C_i(s_i',\mathsf{s}_{-i})].$$

$$\mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s})] = \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$\leq \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$= \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}_{-i})]$$

Coarse Correlated Equilibrium (CCE)

Coarse Correlated Equilibrium (CCE)

A distribution σ on the set $S_1 \times \ldots \times S_k$ of outcomes of a cost-minimization game is a correlated equilibrium (CE) if for every agent $i \in \{1, 2, \ldots, k\}$ and every unilateral deviation $s_i' \in S_i$,

$$\mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(\mathbf{s})] \leq \mathbf{E}_{\mathbf{s}\sim\sigma}[C_i(s_i',\mathbf{s}_{-i})].$$

 $CE \subset CCE$?

$$\mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s})] = \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(\mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$\leq \sum_{a \in S_i} \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}) \mid s_i = a] \Pr[s_i = a]$$

$$= \mathbf{E}_{\mathbf{s} \sim \sigma}[C_i(s_i', \mathbf{s}_{-i})]$$

	A	В	С
A	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed *C* while the opponent randomized according to the distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

	Α	В	С
A	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed *C* while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

	Α	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed C while the opponent randomized according to the distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

	Α	В	С
A	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	$\begin{array}{c} {\rm prob.} = 1/3 \\ -1.1, -1.1 \end{array}$

- The payoff for each player (playing according to this distribution): $\frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1.1 = 0.3$.
- A player playing fixed A or B while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 1 \frac{1}{3} \cdot 1 + \frac{1}{3} \cdot 0 = 0$.
- A player playing fixed C while the opponent randomized according to this distribution: $\frac{1}{3} \cdot 0 + \frac{1}{3} \cdot 0 + \frac{1}{3} \cdot (-1.1) < 0$.

	A	В	С
A	prob. = 1/3 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	prob. = 1/3 -1.1, -1.1

- A player playing fixed C and the strategy profile follows this distribution:
 ⇒ deviation is possible.
 - Not a CE.

	Α	В	С
A	prob. = $1/3$ 1, 1	-1, -1	0, 0
В	-1, -1	prob. = 1/3 1, 1	0, 0
С	0, 0	0, 0	prob. = 1/3 -1.1, -1.1

- A player playing fixed C and the strategy profile follows this distribution:
 ⇒ deviation is possible.
 - Not a CE.

A hierarchy of equilibrium concepts

Fall 2024