DIGITAL CIRCUITS

- * Basic building blocks of digital computer.
- Broadly classified as combinational & sequential.
 - ❖ In combinational circuits, output depends only on the present inputs.
 - ❖ In sequential circuits, output not only depends on present inputs but also on the previous outputs.
- ❖ Boolean algebra plays important role in the design and analysis of digital circuits .
- ❖ Boolean algebra is a branch of algebra in which values of the variable either 0 or 1.

logic 1=HIGH (or) TRUE=5V logic 0=LOW (or) FALSE=0V

The logical functions involved in Boolean expressions are NOT,OR and AND

NOT Gate

❖ It has one input and one output signal. The output is complement of the input.

❖ Truth table is a table the describes output values for all the combination of input values.

Α	Y
0	1
1	0

OR Gate

- ❖ It has two or more input signals but only one output signal.
- The output is HIGH, if any or all the inputs are HIGH.

Truth table of two input OR gate

A ₁	A_0	Y
0	0	0
0	1	1
1	0	1
1	1	1

AND Gate

- ❖ AND gate has two or more inputs but only one output.
- Output is HIGH if all the inputs one HIGH.

Boolean laws and theorems

Laws of complementation	OR laws	<u>AND laws</u>
(1) = A = A	(1) A+0=A	(1) A.0=0
(2) $\frac{1}{1} = 0$	(2) A+1=1	(2) A.1=A
$(3) \bar{0} = 1$	$(3) A+\underline{A}=A$	$(3) A.\underline{A} = A$
	$(4) A + \overline{A} = 1$	$(4) A.\overline{A} = 0$

$$\begin{array}{ccc} \underline{Commutative} & \underline{Associative} & \underline{Distributive} \\ A+B=B+A & (A+B)+C=A+(B+C) & A(B+C)=AB+AC \\ AB=BA & =A+B+C & A+BC=(A+B)(A+C) \\ & (AB)C=A(BC)=ABC & \end{array}$$

De Morgan's Theorem

$$\overline{A + B + C} + \cdots = \overline{A} \overline{B} \overline{C} + \cdots$$

$$\overline{ABC} + \overline{B} + \overline{C} + \cdots$$

Conversion of English statements to Boolean expression.

Ex:- Seat Belt warning system.

 $S=1 \implies Seat beat fastened$

 $K=1 \implies \text{key inserted}$

 $P=1 \Rightarrow Person is seat$

Let W= Output seat belt warning system.

$$: W=PSK$$

Ex-OR Gate

$$A \longrightarrow Y = A\overline{B} + \overline{A}B = A \oplus B$$

Α	В	Υ
0	0	0
0	1	1
1	0	1
1	1	0

if inputs are same output is zero if inputs are different output is 1

Ex-NOR Gate

	330.3	
Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

$$=AB+\overline{A}\overline{B}$$

if inputs are same output is 1 otherwise output is zero.

Hence act as equality detector.

Universal Gates (NAND and NOR)

NAND Gate

NOT using NAND

	Α	$\overline{}$		
Α	$-\Box$	Y	= A.A	=A
	Λ	_		

AND using NAND

Α	В	Υ
0	0	1
0	1	1
1	0	1
1	1	0

OR using NAND

Ex-OR using NAND

NOR Gate

NOT using NOR

Α	$Y = \overline{A + B}$
в —	

Α	В	Υ
0	0	1
0	1	0
1	0	0
1	1	0

OR using NOR

AND using NOR

Ex-OR using NOR

