

Report No: CCISE181116403

FCC REPORT

Applicant: Interglobe Connection Corp

Address of Applicant: 8228 NW 30th Terrace. Doral, Miami, FL 33122

Equipment Under Test (EUT)

Product Name: Mobile Phone

Model No.: EKO Star 5.5 G55

Trade mark: EKO

FCC ID: 2AC7IEKONG55

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 30 Nov., 2018

Date of Test: 30 Nov., to 21 Dec., 2018

Date of report issued: 24 Dec., 2018

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	24 Dec., 2018	Original

Tested by: Quen (hen Date: 24 Dec., 2018

Test Engineer

Reviewed by: Date: 24 Dec., 2018

Project Engineer

3 Contents

			Page
1	COV	/ER PAGE	1
2	VERSION		2
3	CON	ITENTS	3
4		T SUMMARY	
5	GEN	IERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND TEST MODE	6
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	T RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	
	6.4	OCCUPY BANDWIDTH	
	6.5	Power Spectral Density	
	6.6	BAND EDGE	
	6.6.1		
	6.6.2		
	6.7	Spurious Emission	
	6.7.1		
	6.7.2		
7	TES	T SETUP PHOTO	54
Q	FUT	CONSTRUCTIONAL DETAILS	55

4 Test Summary

Test Items	Section in CFR 47	Result
Antenna requirement	15.203 & 15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247 (d)	Pass
Spurious Emission	15.205 & 15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

N/A: N/A: Not Applicable.

5 General Information

5.1 Client Information

Applicant:	Interglobe Connection Corp	
Address:	8228 NW 30th Terrace. Doral, Miami, FL 33122	
Manufacturer/ Factory: INTERGLOBE CONNECTION LTD		
Address:	RM 1101 11F SAN TOI BLDG 139 CONNAUGHT RD CENTRAL HK	

5.2 General Description of E.U.T.

Product Name:	Mobile Phone	
Model No.:	EKO Star 5.5 G55	
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(H20)) 2422MHz~2452MHz (802.11n(H40))	
Channel numbers:	11 for 802.11b/802.11g/802.11(H20) 7 for 802.11n(H40)	
Channel separation:	5MHz	
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)	
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)	
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps	
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps	
Data speed (IEEE 802.11n):	Up to 150Mbps	
Antenna Type:	Internal Antenna	
Antenna gain:	-3.4dBi	
Power supply:	Rechargeable Li-ion Battery DC3.85V-2920mAh	
AC adapter:	Model: Ara 5.7 B5719 Input: AC100-240V, 50/60Hz, 0.15A Output: DC 5.0V, 1000mA	
Test Sample Condition:	The test samples were provided in good working order with no visible defects.	

Operation Frequency each of channel for 802.11b/g/n(H20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

- 1. For 802.11n-HT40 mode, the channel number is from 3 to 9;
- 2. Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel, Channel; 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest channel, Channel.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,
Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCISE181116403

5.3 Test environment and test mode

Operating Environment:		
Temperature:	24.0 °C	
Humidity:	54 % RH	
Atmospheric Pressure:	1010 mbar	
Test mode:		

Transmitting mode Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

	*		
Per-scan all kind of data rate, the follow list were the worst case.			
Mode Data rate			
802.11b	1Mbps		
802.11g	6Mbps		
802.11n(H20)	6.5Mbps		
802.11n(H40)	13.5Mbps		

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement:

FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The WiFi antenna is an Inernal antenna which cannot replace by end-user, the best case gain of the antenna is -3.4dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 1	5.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 k	 Н7		
Limit:	Frequency range	Limit (dRu\/)	
Liffiit.	(MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the loga	arithm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment E.U.T Remark: E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for d	etails		
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	Mobile Phone	Product model:	EKO Star 5.5 G55
Test by:	Carey	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>20</u>	MHz	dBu∇	<u>d</u> B		dBu∀	dBu₹	<u>ab</u>	
1	0.186	30.41	0.73	10.76	41.90	64.20	-22.30	QP
2	0.186	13.73	0.73	10.76	25.22	54.20	-28.98	Average
3	0.497	28.73	0.76	10.76	40.25	56.05	-15.80	QP
4	0.505	14.33	0.76	10.76	25.85	46.00	-20.15	Average
5	1.065	29.85	0.78	10.88	41.51	56.00	-14.49	QP
6	1.610	8.96	0.78	10.93	20.67	46.00	-25.33	Average
7	3.964	11.06	0.77	10.89	22.72			Average
1 2 3 4 5 6 7 8	4.598	30.98	0.76	10.86	42.60		-13.40	
9	4.647	15.20	0.76	10.86	26.82	46.00	-19.18	Average
10	17.661	30.13	0.70	10.92	41.75		-18.25	
11	18.622	13.16	0.70	10.92	24.78			Average
12	19.845	29.41	0.70	10.93	41.04		-18.96	

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Notes

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Toot CU	Max	Bm)	Limit(dDm)	Result		
Test CH 802.11b 802.11g 802.11n(H20)		802.11n(H40)	Limit(dBm)	Result		
Lowest	14.31	13.13	12.78	11.41		
Middle	13.69	13.19	12.48	11.76	30.00	Pass
Highest	13.93	13.05	12.39	11.57		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2013 and KDB 558074			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Test CH		6dB Emission B	andwidth (MHz)		Limit/IrU=\	Result	
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	Limit(kHz)	Result	
Lowest	9.76	15.44	16.80	35.52			
Middle	9.68	15.28	16.32	35.52	>500	Pass	
Highest	9.76	15.28	15.28	35.52			
Test CH		99% Occupy Ba	Limit(kHz)	Result			
Test CH	802.11b	802.11g	802.11n(H20)	802.11n(H40)	LIIIII(KHZ)	Result	
Lowest	12.48	16.40	17.60	35.84			
Middle	12.56	16.48	17.60	35.84	N/A	N/A	
Highest	12.64	16.40	17.60	35.84			

Test plot as follows:

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	8dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Toot CU		Limit(dDm)	Dogult			
Teston	Test CH 802.11b 802.11g		802.11n(H20)	802.11n(H40)	Limit(dBm)	Result
Lowest	4.74	1.61	0.87	-3.52		
Middle	4.89	1.43	0.56	-3.65	8.00	Pass
Highest	4.34	1.23	-0.16	-4.26		

Test plot as follows:

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 30 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

6.6.2 Radiated Emission Method

6.6.2 Radiated Emission Method										
	Test Requirement:	FCC Part 15 C	FCC Part 15 C Section 15.209 and 15.205							
	Test Method:	ANSI C63.10: 2	2013 and	KDE	3 558074					
	Test Frequency Range:	2.3GHz to 2.5G	GHz							
	Test Distance:	3m								
	Receiver setup:	Frequency	Frequency Detector RBW VBW Remark							
		Above 1GHz	Above 1GHz Peak		1MHz		MHz	Peak Value		
			RMS		1MHz		MHz I	Average Value		
	Limit:	Frequenc		LIN	nit (dBuV/m @ 54.00	3m)	Δν	Remark verage Value		
		Above 1G	Hz		74.00			Peak Value		
	Test Procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 								
	Test setup:	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	AE E	· .	Hor 3m Ground Reference Plane	n Antenna	Antenna Tox	wer		
	Test Instruments:	Refer to section	n 5.8 for c	detail	S					
	Test mode:	Refer to section	n 5.3 for c	detail	S					
	Test results:	Passed								

802.11b mode:

Mobile Phone		Product Model:	EKO Star 5.	EKO Star 5.5 G55	
Carey		Test mode:	802.11b Tx r	802.11b Tx mode	
Lowest channel		Polarization:	Vertical		
AC 120/60Hz		Environment:	Temp: 24℃	Huni: 57%	
				ī	
			1		
			FQC P	ART 15 (PK)	
www.	- procuredo	man of and	FCC P	ART 15 (AV)	
		2			
2		(MHz)		2422	
ReadAntenna Cab Level Factor Lo	le Preamp	Limit Over	Remark		
	Carey Lowest channel AC 120/60Hz	Carey Lowest channel AC 120/60Hz 2350 Frequency ReadAntenna Cable Preamp	Carey Lowest channel AC 120/60Hz Environment: 2350 Frequency (MHz) ReadAntenna Cable Preamp Limit Over	Carey Lowest channel AC 120/60Hz Environment: FCC P FCC P Frequency (MHz) ReadAntenna Cable Preamp Limit Over	

0.00 54.53 74.00 -19.47 Peak 0.00 42.89 54.00 -11.11 Average

Remark:

1

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

2390.000 20.79 27.37 4.69 2390.000 9.15 27.37 4.69

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:							Model:	EKO	Star 5.5 G	355 355		
est By:		Carey				Test mod	le:	802.1	1b Tx mo	de		
est Channel:	Lowest channel Polarization:				Lowest channel Polarization: Horizontal							
est Voltage:		AC 120/6	60Hz			Environn	nent:	Temp	Temp: 24℃ Huni: 57°			
Lavel (dDu)	Hera \											
110 Level (dBu	v/m)									1		
100												
										~		
80									FCC PAR	T 15 (PK)		
									1			
60			m-/m			^-	1	m	FCC PAR	T 15 (AV)		
		-01-0-0	4				2	100				
40												
20												
2310 232	0			2350		STATES I				242		
	376				requency (
F	req	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit	Over Limit	Remark			
	WHz	dBu∇		ā		dBuV/m						
1 2390.1 2 2390.1	000	19.69 8.12	27.37 27.37	4.69	0.00	53.43 41.86	74.00	-20.57 -12.14	Peak			
2 2300.1	500	0.12	41. JI	4.00	0.00	41.00	04.00	12.19	uverag	,0		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	Name:	Mobile	e Phone			Pro	duct Mod	leI:	EKO Star 5.5	G55		
st By:		Carey	,			Tes	t mode:		802.11b Tx mode			
st Cha	annel:	Highe	Highest channel			Pola	arization:		Vertical			
st Vol	tage:	AC 12	20/60Hz			Env	rironment	i:	Temp: 24℃	Huni: 57%		
*	Lovel /dDv4//-	-1										
110	Level (dBuV/n	1)										
100												
			~									
80				1					FCC P	ART 15 (PK)		
				1								
60					~	m		1	FCCP	ART 15 (AV)		
								,				
40												
20												
0	2452							e)		250		
					Frequ	ency (MH	z)					
	Frea	ReadA Level	intenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark			
,	MHz	dBu∀				dBu√/m						
1 2	2483.500 2483.500	20.98	27.57	4.81 4.81	0.00	55.06	74.00	-18.94	Peak Average			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct Name:	Mobile Phone	Pro	oduct Model:	EKO Star 5.5 G55
st By:	Carey	Tes	st mode:	802.11b Tx mode
st Channel:	Highest channel	Pol	larization:	Horizontal
st Voltage:	AC 120/60Hz	Env	vironment:	Temp: 24°C Huni: 57%
110 Level (dBuV/m)				
100				
80				FCC PART 15 (PK)
60		and the same of th	1	FCC PART 15 (AV)
40			2	
20				
0 2452		Frequency (MHz)		2500
Freq	ReadAntenna Cable Level Factor Loss	Preamp	Limit Over	
MHz	dBuV dB/m dB	dB dBu√/m	dBuV/m dI	3
1 2483,500 2 2483,500	19.18 27.57 4.81 8.79 27.57 4.81	0.00 53.26 0.00 42.87	74.00 -20.74 54.00 -11.13	1 Peak 3 Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11g mode:

oduct	Name:	Mobile Ph	none		Pi	roduct M	odel:	EKO Star 5.5	G55		
st By:		Carey			Te	est mode	:	802.11g Tx m	node		
st Cha	annel:	Lowest cl	hannel		P	olarizatio	n:	Vertical			
st Vol	tage:	AC 120/6	0Hz		E	nvironme	ent:	Temp: 24℃ Huni: 5			
	aval /dDuV/										
110	evel (dBuV/m)										
100									~~~		
								5	1		
80								FCC PAI	RT 15 (PK)		
								1			
60		. ******			^ = N-11/4	70.00	1.0	FCC PAI	RT 15 (AV)		
	an marke	V-0 - 1 - 0 (Varion			2				
40											
20											
02	310 2320		235						2422		
					ency (MH:	Z)					
	Freq	ReadAnte	enna Cabl	le Preamp ss Factor	Level	Limit		Remark			
	MHz	dBuV 0				dBuV/m					
952											
1	2390.000		7.37 4.6 7.37 4.6	39 0.00 39 0.00	53.47	74.00	-20.53	Peak -			

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	I	Mobile P	hone			Product	Model:	EKO	Star 5.5 G	355 355					
est By:		Carey				Test mo	de:	802.	11g Tx mo	de					
est Channel:	Lowest channel Polarization:				Lowest channel Polarization:				Horizontal				Horizontal		
est Voltage:		AC 120/	60Hz			Environi	ment:	Tem	Temp: 24°C Huni: 579						
Level (dBu)	(I/m)														
110 Level (dBd	vana														
100															
									M	m					
80									FCC PART	T 15 (PK)					
										1					
60			Nena		Λ		. 1	الرمي	FCC PART	Γ 15 (AV)					
moun	money		Mr. July	- Andrews	prom	many	Mr. rang	was de							
40															
20															
ta)															
2310 232	20	-	2	2350						2422					
					requency (0	020 200200	7/4/100							
F	rea I	ReadA Level	ntenna Factor	Cable Loss	Preamp Factor	Level	Limit Line	Over Limit	Remark						
	MHz	dBu∀		dB	<u>a</u> B	dBuV/m	dBu√/m	<u>d</u> B							
			-6399.	4 00			74.00		D1-						
1 2390.	000 1	18.71	27.37	4.69	11. 1111	07.40	14.101	-/ L : (101	reak						

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	Mobile Phone	Product Model:	EKO Star 5.5 G55
Test By:	Carey	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	−−−−dB	<u>dB</u>	dBuV/m	dBuV/m	dB	
2483.500 2483.500								

1 2

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct Nam	ne:	Mobile	Phone			Produ	ct Model:	Eł	KO Star 5.5	G55	
est By:		Carey				Test m	ode:	80)2.11g Tx m	ode	
st Channe	l:	Highes	t channel			Polariz	zation:	Н	Horizontal		
st Voltage	:	AC 120	AC 120/60Hz				nment:	Te	Temp: 24°C Huni: 57%		
						•		•			
110 Leve	el (dBuV/m)									
100				-					-		
			~~	~							
80				1					FCC DA	RT 15 (PK)	
									TOOTA	15 (15)	
60					~	m.	_ 1		ECC DA	RT 15 (AV)	
						0			TCCPA	KI IS (AV)	
40							4				
20											
23											
0											
2452	2				Frequenc	cv (MHz)				2500	
		Readi	Int enna	Cable		5 5	Limit	Over			
	Freq	Level	Factor	Loss	Factor	Level			Remark		
	MHz	dBu₹	dB/m		<u>ab</u>	$\overline{dBuV/m}$	dBuV/m				
	83.500	19.66	27.57	4.81	0.00	53.74	74.00	-20.26	Peak		
	83.500	8.88	27.57	4.81	0.00	42.96	54.00	-11.04	Average		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

802.11n(HT20):

roduct l	Name:	Mobile	Phone			Proc	luct Mode	el:	EKO Star 5.5 G55			
est By:		Carey				Test	mode:		802.11n(HT20) Tx mode			
est Cha	nnel:	Lowest	Lowest channel			Pola	rization:		Vertical			
est Volt	age:	AC 120)/60Hz			Envi	ronment:		Temp: 24℃ Huni: 57			
47-14-	TO THE STORY OF					•		•				
110 Le	evel (dBuV/m)											
100												
									house	morry		
80										ADT 45 (DIC)		
									ACC P	ART TO IPKII		
10									FCC P	ART 15 (PK)		
60												
60	~~~	~~~	m	VVVVV	marken	www	man	and a		ART 15 (PK)		
60	~~~~	~~~	-Am-	V~~~V~	and the same of th	www	man	~~ 1				
~	mm	···	m	VIII.	www.Vest	www	mm	~~i				
~	m	~~~	-Arramon	Van-wy	munum	www	man					
40	m	~~~	mm	www.vv	and the same of th	mm	mm	2				
40	~~~~	~~~	m			www	ma	2		ART 15 (AV)		
40	310 2320	~~~	-ym	2350				2				
40	310 2320			2350	Freque	ncy (MHz)		2	FCC P	ART 15 (AV)		
40		ReadA Level	ntenna	2350 Cable	Frequer	ncy (MHz)	Limit	2 Over	FCC P	ART 15 (AV)		
40	Freq	Level	ntenna Factor	2350 Cable	Frequei Preamp Factor	ncy (MHz) Level	Limit Line	Over Limit	FCC P	ART 15 (AV)		
40		ReadA Level dBuV 18.96	ntenna Factor	2350 Cable Loss	Frequer Preamp Factor	ncy (MHz) Level dBuV/m	Limit Line	Over Limit	FCC P	ART 15 (AV)		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct	Name:	Mobile Pl	none			Product	Model:	EKO	EKO Star 5.5 G55			
st By:		Carey				Test mo	de:	802.	802.11n(HT20) Tx mode			
st Cha	nnel:	Lowest channel Polarization: Horizonta						Horizontal				
st Volt	age:	AC 120/6	0Hz			Environ	ment:	Tem	Temp: 24°C Huni: 57			
	evel (dRuV/m)							·				
110	evel (dBuV/m)											
100										-		
									1	many .		
80									FCC PAR	T 15 (PK)		
60					15			1-2000	FCC PAR	T 15 (AV)		
	a parameter p. Au	And Andrew	7	- Argania	- Anna							
40								1				
20												
0	2310 2320			2350						242		
	2320				requency	(MHz)				242.		
		ReadA	nt enna	Cable	Preamp		Limit	Over				
	Freq	Level			Factor		Line	Limit	Remark			
	MHz	dBu∜			<u>ab</u>	$\overline{dBuV/m}$	dBu√/m	<u>dB</u>				
1	2390.000	20.78	27.37	4.69	0.00	54.52		-19.48				
2	2390.000	8.50	27.37	4.69	0.00	42.24			Average			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

oduct Name:	Mobile	e Phone			Prod	uct Mode	l:	EKO Star 5.5 G55 802.11n(HT20) Tx mode				
st By:	Carey	,			Test	mode:	8					
st Channel:	Highe	st channel			Pola	Polarization:		Vertical			Vertical	
st Voltage:	AC 12	20/60Hz			Envi	ronment:	-	Temp: 24°C Huni: 5				
Loyal /dPuV/	ina)											
110 Level (dBuV/	111)								-			
100												
		~~	~									
80			1	1				FCC PA	ART 15 (PK)			
				1								
60					han	~ 1		FCC PA	RT 15 (AV)			
							~~~	~~~	~~~			
40						4						
20												
02452									250			
2452				Frequer	ncy (MHz)				250			
	Read	Antenna	Cable	Preamp		Limit		129				
Free	l Level	Factor	Loss	Factor	Level	Line	Limit	Remark				
MH	z dBuV	dB/m	₫B	₫B	dBuV/m	dBuV/m	dB		-			
1 2483.500		27.57	4.81	0.00	54.02	74.00	-19.98	Peak				
2 2483.500	8.49	27.57	4.81	0.00	42.57	54.00	-11.43	Average				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Name:	Mobile Phone	Product Mode	EKO Star 5.5 G55
st By:	Carey	Test mode:	802.11n(HT20) Tx mode
st Channel:	Highest channel	Polarization:	Horizontal
st Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
110 Level (dBuV/m)			
100			
80			FCC PART 15 (PK)
60		format	FCC PART 15 (AV)
40		2	
20			
02452		Frequency (MHz)	2500
Freq I	ReadAntenna Cable : Level Factor Loss :	Preamp Limit	Over Limit Remark
MHz	dBuV dB/m dB	dB dBuV/m dBuV/m	dB
1 2483,500 2 2483,500	19.37 27.57 4.81 8.54 27.57 4.81	0.00 53.45 74.00 0.00 42.62 54.00	-20.55 Peak -11.38 Average

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





# 802.11n(HT40):

oduct	Name:	Mobile	e Phone			Pro	duct Mod	lel:	EKO Star 5.5 G55		
st By:		Carey	i			Tes	t mode:		802.11n(HT40	0) Tx mode	
st Cha	annel:	Lowes	st channel			Pol	arization:		Vertical		
st Vol	ltage:	AC 120/60Hz Environment: Tem				Temp: 24℃	Huni: 57%				
		8"			-7-12-2				v		
110	Level (dBuV/m	1)	TV VI							1	
100											
								no	mommon	m.	
80									,	- may	
									FCC PA	RT 15 (PK)	
60							1000	m			
-			٨		war war	merch	wy r		FCC PA	RT 15 (AV)	
-	mm	And does	" None	mannaman			2				
40			1								
20											
0	2240 2220		22	50						2442	
4	2310 2320		23	50	Freque	ency (MHz	)			2442	
	- T		ıntenna		Preamp	-	Limit				
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	t Remark		
	MHz	dBu₹	dB/m		<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>d</u> B			
	2390.000	25. 24	27.37	4.69	0.00	58.98	74.00	-15.02	Peak		
1	2390.000		27.37	4.69			TOTAL PROPERTY.	-11.43			

#### Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



uucı	Name:						duct Mod	lel:	EKO Star 5.5 G55		
t By:		Carey			_	Tes	t mode:		802.11n(HT4	0) Tx mode	
t Cha	annel:	Lowes	t channel			Pol	arization		Horizontal		
t Vol	tage:	AC 12	AC 120/60Hz					Environment: Temp: 24			
		671				•			•		
110	evel (dBuV/m	)								1	
100											
										\$ <b>_</b> \$	
80								1 m	FCC PA	RT 15 (PK)	
									100,11		
	60						-	1	FCC PART 15 (AV		
60									HI U DA	N I TO LAW I	
2000	www	more	Mary Mary	www	m	~~~	MAN	(N)	FCC PA	(K1 15 (AV)	
2000	www	money	~~~	nm	mm	~~~	2	~~\ 	FCC PA	KT 15 (AV)	
~	www	mornin	Mar way	mm	m	~~~	2		FCC PA	KI 15 (AV)	
~	www	maram	www	mm	m	~~~	2	~~	FCC PA	INT 15 (AV)	
40	www	morn	Maria Maria	~~~	m		2	(A)	FCC PA	IKT 15 (AV)	
40		month	Mar Mary	v	mun	~~~	2		FCC PA		
40	2310 2320	mprom	23:	50			2		FCC PA	244	
40					Freque	ency (MHz	2		FCC PA		
40	2310 2320		ntenna	Cable		ency (MHz	) Limit	Over Limit			
40	2310 2320	ReadA	ntenna Factor	Cable	Freque Preamp Factor	ency (MHz	) Limit Line	Over			
40	2310 2320 Freq	ReadA Level	ntenna Factor	Cable Loss dB	Freque Preamp Factor dB	ency (MHz Level dBuV/m	) Limit Line	Over Limit	Remark		

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



Produc	t Name:	Mobile	Phone			Prod	luct Mode	el:	EKO Star 5.5 G55			
Test By	<i>r</i> :	Carey				Test	mode:		802.11n(HT40	) Tx mode		
Test Ch	nannel:	Highe	st channel			Pola	Polarization:		Vertical			
Test Vo	oltage:	AC 12	0/60Hz			Envi	ronment:		Temp: 24℃ Huni:			
									***			
1	110 Level (dBuV	/m)								1		
1	100							-				
	80		am	mm	~~~	my			FCC PART	15 (PK)		
						1	6					
	60						V~	with	FCC PART	15 (AV)		
								2	A COLOR			
	40											
	20											
	02432		2450			79.5				2500		
					Freque	ncy (MHz)						
	Freq		intenna Factor			Level	Limit Line		Remark			
	MHz	dBu₹	<u>dB</u> /m	<u>d</u> B	<u>d</u> B	dBuV/m	dBu√/m	<u>d</u> B		_		
			27.57	4.81			T4 00	-18.16				

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



oduct Name:	Mobile	Phone			Pro	duct Mod	EKO Star 5.5 G55				EKO Star 5.5 G55 802.11n(HT40) Tx mode		
st By:	Carey				Tes	t mode:		802.11n(H	lT40) Tx	mode			
st Channel:	Highes	t channel			Pola	Polarization:		Horizontal					
st Voltage:	AC 120	)/60Hz			Env	ironment	:	Temp: 24°	°C	Huni: 579			
Level (dBuV/m)													
110 Lever (dBdV/III)													
100		-		+									
		940											
80	~~~		, Marie	m	7			FCC	PART 1	5 (DK)			
1		_			1			100	TAINT	J (FIX)			
f					10								
60						1		1					
60					,	\~~	~	FCC	PART 1	5 (AV)			
						\~~	~	FCC	PART 1	5 (AV)			
40						\~~		FCC	PART 1	5 (AV)			
						\		FCC	PART 1	5 (AV)			
						\		FCC 2	PART 1	5 (AV)			
40						\		FCC	PART 1	5 (AV)			
20		2452				\		FCC	PART 1	5 (AV)			
20		2450		Freque	ncy (MHz)	\		FCC	PART 1	5 (AV) 2500			
20	D. JA		Calla	- 50	ncy (MHz)			PCC	PART 1	5 (AV) 2500			
20 0 2432	ReadAr Level F	nt enna	Cable Loss	Freque Preamp Factor		Limit	Over Limit	Remark	PART 1	5 (AV) 2500			
20 0 2432 Freq	Level H	ntenna Factor	Loss	Preamp Factor	Level	Limit Line	Limit	2	PART 1	5 (AV) 2500			
20 0 2432 Freq MHz	Level F	ntenna Factor dB/m	Loss dB	Preamp Factor dB	Level	Limit Line dBuV/m	Limit ———————————————————————————————————	Remark	PART 1	2500			
20 0 2432 Freq	Level F	ntenna Factor dB/m	Loss dB	Preamp Factor dB	Level dBuV/m 57.82	Limit Line dBuV/m 74.00	Limit dB -16.18	Remark	PART 1	2500			

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are very lower than the limit and not show in test report.



# 6.7 Spurious Emission

# 6.7.1 Conducted Emission Method

0.7.1 Conducted Linission	
Test Requirement:	FCC Part 15 C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 and KDB 558074
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
Test setup:	
	Spectrum Analyzer  E.U.T  Non-Conducted Table  Ground Reference Plane
Test Instruments:	Refer to section 5.8 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed



# Test plot as follows:









# 6.7.2 Radiated Emission Method

6.7.2 Radiated Emission M	etilou							
Test Requirement:	FCC Part 15 C S	ection 15.209	and 15.205					
Test Method:	ANSI C63.10:201	3						
Test Frequency Range:	9kHz to 25GHz							
Test Distance:	3m							
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak							
· ·	30MHz-1GHz	〈Hz	Quasi-peak Value					
	Above 1GHz	Peak			Hz	Peak Value		
		RMS				Average Value		
Limit:	Frequency 30MHz-88MH		nit (dBuV/m @3 40.0	m)	0	Remark Jasi-peak Value		
	88MHz-216MH		43.5			uasi-peak Value		
	216MHz-960M		46.0			uasi-peak Value		
	960MHz-1GH		54.0			uasi-peak Value		
			54.0			Average Value		
	Above 1GHz		74.0 he top of a rot			Peak Value		
Test Procedure:	The table was highest radia?  The EUT was antenna, who tower.  The antenna the ground to Both horizon make the med.  For each suscase and the meters and to find the med.  The test-reconspecified Bases.  If the emission the limit specified bases.	as rotated 36 ation. s set 3 mete ich was mount height is van betermine to determine to determine to determine to determine the antenrate aximum reactiver system and width with the cified, then to would be reponargin would	of degrees to degrees to degrees to degrees to degrees to degree the total on the top degree	he inter of a value of us of the was arr o height om 0 de ak Dete ld Mode mode v stoppe se the e one by o	ne the rferen rariable o four f the f e ante rrange ets from egrees ect Fu e. was 1 ed and emissi one us	meters above field strength. In a are set to set to its worst m 1 meter to 4 s to 360 degrees inction and odB lower than d the peak values ions that did not sing peak, quasi-		
Test setup:	Below 1GHz  EUT  Turn Table  Ground P  Above 1GHz	anny			_			







# Measurement Data (worst case):

#### **Below 1GHz:**

Product Name:	Mobile Phone	Product Model:	EKO Star 5.5 G55
Test By:	Carey	Test mode:	Wi-Fi Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%



	Freq		Antenna Factor				Limit Line	Over Limit	Remark
_	MHz	dBu∜	— <u>d</u> B/π	<u>d</u> B	<u>ab</u>	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1	31.180	41.94	10.88	0.78	29.97	23.63	40.00	-16.37	QP
2	52.945	36.83	13.57	1.32	29.81	21.91	40.00	-18.09	QP
2 3 4	77.051	41.19	8.38	1.64	29.66	21.55	40.00	-18.45	QP
4	95.427	44.55	10.94	2.01	29.55	27.95	43.50	-15.55	QP
5	155.910	42.65	8.90	2.56	29.17	24.94	43.50	-18.56	QP
6	625.078	28.91	19.51	3.90	28.86			-22.54	

# Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.



roduct Name:	Mobile Phone		Pr	oduct Mo	del:	EKO Star 5	5.5 G55
est By:	Carey		Те	est mode:		Wi-Fi Tx m	ode
est Frequency:	30 MHz ~ 1 GH	Z	Po	olarizatio	ո։	Horizontal	
est Voltage:	AC 120/60Hz		Er	nvironme	nt:	Temp: 24°C	Huni: 57%
70 60 50						FCC PA	RT15 CLASS B
40							
30			3		4	5 9.	0.00
10	han sumple the second	Aman	Ludge per	"Upon sopported	Address of the Control of the Contro	March March	horaster of the state of the st
M. Maryanthand		100 Freq	20 uency (M	0	A Long		
0 30 50	)		20 uency (M	O  Hz)  Limit	Over	500	
0 30 50	) ReadAntenna	Freq Cable Preamp Loss Factor	20 uency (M Level	O  Hz)  Limit	Over	500	1000

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.





#### **Above 1GHz**

Above 1GHz								
				802.11b				
				annel: Lowe				
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	48.11	36.06	6.81	41.82	49.16	74.00	-24.84	Vertical
4824.00	47.82	36.06	6.81	41.82	48.87	74.00	-25.13	Horizontal
			Dete	ctor: Averag	je Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4824.00	38.78	36.06	6.81	41.82	39.83	54.00	-14.17	Vertical
4824.00	37.18	36.06	6.81	41.82	38.23	54.00	-15.77	Horizontal
				annel: Midd				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	48.31	36.32	6.85	41.84	49.64	74.00	-24.36	Vertical
4874.00	49.32	36.32	6.85	41.84	50.65	74.00	-23.35	Horizontal
			Dete	ctor: Averag	je Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4874.00	38.85	36.32	6.85	41.84	40.18	54.00	-13.82	Vertical
4874.00	39.84	36.32	6.85	41.84	41.17	54.00	-12.83	Horizontal
			Test ch	annel: Highe	est channel			
			De	tector: Peak	Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	48.94	36.58	6.89	41.86	50.55	74.00	-23.45	Vertical
4924.00	48.23	36.58	6.89	41.86	49.84	74.00	-24.16	Horizontal
			Dete	ctor: Averaç	e Value			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4924.00	38.93	36.58	6.89	41.86	40.54	54.00	-13.46	Vertical
4924.00	38.64	36.58	6.89	41.86	40.25	54.00	-13.75	Horizontal

# Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





802.11g										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.41	36.06	6.81	41.82	49.46	74.00	-24.54	Vertical		
4824.00	47.51	36.06	6.81	41.82	48.56	74.00	-25.44	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	38.42	36.06	6.81	41.82	39.47	54.00	-14.53	Vertical		
4824.00	37.53	36.06	6.81	41.82	38.58	54.00	-15.42	Horizontal		
Test channel: Middle channel										
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.72	36.32	6.85	41.84	49.05	74.00	-24.95	Vertical		
4874.00	47.80	36.32	6.85	41.84	49.13	74.00	-24.87	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.73	36.32	6.85	41.84	40.06	54.00	-13.94	Vertical		
4874.00	37.82	36.32	6.85	41.84	39.15	54.00	-14.85	Horizontal		
Test channel: Highest channel  Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	47.63	36.58	6.89	41.86	49.24	74.00	-24.76	Vertical		
4924.00	48.40	36.58	6.89	41.86	50.01	74.00	-23.99	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	37.65	36.58	6.89	41.86	39.26	54.00	-14.74	Vertical		
4924.00	38.42	36.58	6.89	41.86	40.03	54.00	-13.97	Horizontal		
Remark:  1. Final Level = Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor.										

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Page 51 of 55





				802.11n(HT	20)					
			Test ch	annel: Lowe	est channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	48.52	36.06	6.81	41.82	49.57	74.00	-24.43	Vertical		
4824.00	47.56	36.06	6.81	41.82	48.61	74.00	-25.39	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4824.00	38.41	36.06	6.81	41.82	39.46	54.00	-14.54	Vertical		
4824.00	37.49	36.06	6.81	41.82	38.54	54.00	-15.46	Horizontal		
Test channel: Middle channel										
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.76	36.32	6.85	41.84	49.09	74.00	-24.91	Vertical		
4874.00	47.83	36.32	6.85	41.84	49.16	74.00	-24.84	Horizontal		
			Dete	ctor: Averag	ge Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	38.74	36.32	6.85	41.84	40.07	54.00	-13.93	Vertical		
4874.00	37.81	36.32	6.85	41.84	39.14	54.00	-14.86	Horizontal		
Test channel: Highest channel										
				tector: Peak						
	Read	Antenna	Cable	Preamp						
Frequency (MHz)	Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	47.68	36.58	6.89	41.86	49.29	74.00	-24.71	Vertical		
4924.00	48.37	36.58	6.89	41.86	49.98	74.00	-24.02	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4924.00	37.62	36.58	6.89	41.86	39.23	54.00	-14.77	Vertical		
4924.00	38.49	36.58	6.89	41.86	40.10	54.00	-13.90	Horizontal		

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.





802.11n(HT40)										
Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	48.69	36.06	6.81	41.82	49.74	74.00	-24.26	Vertical		
4844.00	47.73	36.06	6.81	41.82	48.78	74.00	-25.22	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4844.00	38.52	36.06	6.81	41.82	39.57	54.00	-14.43	Vertical		
4844.00	37.53	36.06	6.81	41.82	38.58	54.00	-15.42	Horizontal		
Test channel: Middle channel										
				tector: Peak						
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	47.87	36.32	6.85	41.84	49.20	74.00	-24.80	Vertical		
4874.00	47.91	36.32	6.85	41.84	49.24	74.00	-24.76	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4874.00	37.89	36.32	6.85	41.84	39.22	54.00	-14.78	Vertical		
4874.00	37.98	36.32	6.85	41.84	39.31	54.00	-14.69	Horizontal		
Test channel: Highest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	47.92	36.45	6.87	41.85	49.39	74.00	-24.61	Vertical		
4904.00	48.73	36.45	6.87	41.85	50.20	74.00	-23.80	Horizontal		
Detector: Average Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4904.00	37.69	36.45	6.87	41.85	39.16	54.00	-14.84	Vertical		
4904.00	38.57	36.45	6.87	41.85	40.04	54.00	-13.96	Horizontal		
Remark:  1 Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor										

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.