External Flow

Correlation		Geometry	Conditions ^c
$\delta = 5x Re_x^{-1/2}$	(7.19)	Flat plate	Laminar, T_f
$C_{f,x} = 0.664 Re_x^{-1/2}$	(7.20)	Flat plate	Laminar, local, T_f
$Nu_x = 0.332 Re_x^{1/2} Pr^{1/3}$	(7.23)	Flat plate	Laminar, local, T_f , $Pr \gtrsim 0.6$
$\delta_t = \delta P r^{-1/3}$	(7.24)	Flat plate	Laminar, T_f
$\overline{C}_{f,x} = 1.328 Re_x^{-1/2}$	(7.29)	Flat plate	Laminar, average, T_f
$\overline{Nu_x} = 0.664 Re_x^{1/2} Pr^{1/3}$	(7.30)	Flat plate	Laminar, average, T_f , $Pr \ge 0.6$
$Nu_x = 0.564 Pe_x^{1/2}$	(7.32)	Flat plate	Laminar, local, T_f , $Pr \leq 0.05$, $Pe_x \geq 100$
$C_{f,x} = 0.0592 Re_x^{-1/5}$	(7.34)	Flat plate	Turbulent, local, T_f , $Re_x \leq 10^8$
$\delta = 0.37x Re_x^{-1/5}$	(7.35)	Flat plate	Turbulent, T_f , $Re_x \lesssim 10^8$
$Nu_x = 0.0296 \ Re_x^{4/5} \ Pr^{1/3}$	(7.36)	Flat plate	Turbulent, local, T_f , $Re_x \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$
$\overline{C}_{f,L} = 0.074 \ Re_L^{-1/5} - 1742 \ Re_L^{-1}$	(7.40)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$
$\overline{Nu_L} = (0.037 Re_L^{4/5} - 871) Pr^{1/3}$	(7.38)	Flat plate	Mixed, average, T_f , $Re_{x,c} = 5 \times 10^5$, $Re_L \lesssim 10^8$, $0.6 \lesssim Pr \lesssim 60$
$\overline{Nu_D} = C Re_D^m P r^{1/3}$ (Table 7.2)	(7.52)	Cylinder	Average, T_f , $0.4 \lesssim Re_D \lesssim 4 \times 10^5$, $Pr \gtrsim 0.7$
$\overline{Nu_D} = C Re_D^m Pr^n (Pr/Pr_s)^{1/4}$ (Table 7.4)	(7.53)	Cylinder	Average, T_{∞} , $1 \leq Re_D \leq 10^6$, $0.7 \leq Pr \leq 500$
$ \overline{Nu_D} = 0.3 + [0.62 Re_D^{1/2} Pr^{1/3} \\ \times [1 + (0.4/Pr)^{2/3}]^{-1/4}] \\ \times [1 + (Re_D/282,000)^{5/8}]^{4/5} $	(7.54)	Cylinder	Average, T_f , $Re_D Pr \gtrsim 0.2$
$ \overline{Nu_D} = 2 + (0.4 Re_D^{1/2} + 0.06 Re_D^{2/3})Pr^{0.4} \times (\mu/\mu_s)^{1/4} $	(7.56)	Sphere	Average, T_{∞} , $3.5 \lesssim Re_D \lesssim 7.6 \times 10^4$, $0.71 \lesssim Pr \lesssim 380$, $1.0 \lesssim (\mu/\mu_S) \lesssim 3.2$
$\overline{Nu_D} = 2 + 0.6 \ Re_D^{1/2} \ Pr^{1/3}$	(7.57)	Falling drop	Average, T_{∞}
$\overline{Nu_D} = C_1 C_2 Re_{D,\text{max}}^m Pr^{0.36} (Pr/Pr_s)^{1/2}$ (Tables 7.5, 7.6)	(7.58), (7.59)	Tube bank ^d	Average, \overline{T} , $10 \lesssim Re_D \lesssim 2 \times 10^6$, $0.7 \lesssim Pr \lesssim 500$

^dFor tube banks and packed beds, properties are evaluated at the average fluid temperature, $\overline{T} = (T_i + T_o)/2$.

Table 7.3 Constants of Equation 7.52 for noncircular cylinders
in cross flow of a gas [13, 14]"

Table 7.2 Constants of Equation 7.52 for the circular cylinder in cross flow [11, 12]

in cross now of a gas [15, 14]						
		Re_D	С	m		
D D		6000-60,000	0.304	0.59		
$\overline{\underline{t}}D$		5000-60,000	0.158	0.66		
Ť		5200-20,400	0.164	0.638		
¥		20,400-105,000	0.039	0.78		
₽ D ±		4500-90,700	0.150	0.638		
endicular	to flow					
Ŧ	Front	10,000-50,000	0.667	0.500		
<i>₽</i>	Back	7000-80,000	0.191	0.667		
	TD T	TD TD TD TD TD	Rep T D D D D D D D D D D D D D D D D D D D	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		

These tabular values are based on the recommendations of Sparrow et al. [14] for air, with extension to other fluids through the Pr^{10} dependence of Equation 7.52. A Prandt number of Pr=0.7 was assumed for the experimental results for air that are described in [14].

the circular cymider in cross now [11, 12]				
Re_D	C	m		
0.4-4	0.989	0.330		
4-40	0.911	0.385		
40-4000	0.683	0.466		
4000-40,000	0.193	0.618		
40,000-400,000	0.027	0.805		

TABLE 7.4 Constants of Equation 7.53 for the circular

Re_D	С	m
1-40	0.75	0.4
40-1000	0.51	0.5
$10^3 - 2 \times 10^5$	0.26	0.6
2×10^{5} – 10^{6}	0.076	0.7

计算流程

$$\begin{aligned} Re_{L\not\in \underline{\mathcal{R}}} &= \frac{\rho VL}{\mu} = \frac{VL}{\nu} \\ Re_{D\underline{\underline{\mathcal{M}}}\underline{\mathbf{K}}} &= \frac{\rho VD}{\mu} = \frac{VD}{\nu} \\ \overline{h} &= \frac{k}{L} \cdot \overline{Nu} \\ q &= h \cdot A_s \cdot (T_s - T_{\infty}) \end{aligned}$$

Internal Flow (Tube)

 Table 8.4
 Summary of convection correlations for flow in a circular tube a,b,e

Correlation		Conditions
$f = 64/Re_D$	(8.19)	Laminar, fully developed
$Nu_D = 4.36$	(8.53)	Laminar, fully developed, uniform q''s 恒定热通道
$Nu_D = 3.66$	(8.55)	Laminar, fully developed, uniform T _s 恒定表面流
$\overline{Nu_D} = 3.66 + \frac{0.0668 Gz_D}{1 + 0.04 Gz_D^{2/5}}$	(8.57)	Laminar, thermal entry (or combined entry with $Pr \gtrsim 5$), uniform T_s , $Gz_D = (D/x) Re_D Pr$
$\overline{Nu_D} = \frac{3.66}{\tanh[2.264 Gz_D^{-1/3} + 1.7 Gz_D^{-2/3}]} + 0.0499 Gz_D \tanh(Gz_D^{-1})}{\tanh(2.432 Pr^{1/6} Gz_D^{-1/6})}$	(8.58)	Laminar, combined entry, $Pr \approx 0.1$, uniform T_s , $Gz_D = (D/x) Re_D Pr$
$Nu_D=0.023Re_D^{4/5}Pr^s$ 湍流混合比较均匀,所以 Nu局部=平均	$(8.60)^d$	Turbulent, fully developed, $0.6 \lesssim Pr \lesssim 160$, $Re_D \gtrsim 10,000$, $(L/D) \gtrsim 10$, $n = 0.4$ for $T_s > T_m$ and $n = 0.3$ for $T_s < T_m$
$Nu_D = 0.027 Re_D^{4/5} P r^{1/5} \left(\frac{\mu}{\mu_s}\right)^{0.14}$	$(8.61)^d$	Turbulent, fully developed, $0.7 \le Pr \le 16,700$, $Re_D \ge 10,000$, $L/D \ge 10$
$Nu_D = \frac{(f/8)(Re_D - 1000)Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)}$	$(8.62)^d$	Turbulent, fully developed, $0.5 \lesssim Pr \lesssim 2000$, $3000 \lesssim Re_D \lesssim 5 \times 10^6$, $(L/D) \gtrsim 10$
$Nu_D = 4.82 + 0.0185(Re_D Pr)^{0.827}$	(8.64)	Liquid metals, turbulent, fully developed, uniform q_0^μ , $3.6 \times 10^3 \lesssim Re_D \lesssim 9.05 \times 10^5$, $3 \times 10^{-3} \lesssim Pr \lesssim 5 \times 10^{-2}$, $10^3 \lesssim Re_D Pr \lesssim 10^4$
$Nu_D = 5.0 + 0.025(Re_D Pr)^{0.8}$	(8.65)	Liquid metals, turbulent, fully developed, uniform T_s , $Re_D Pr \gtrsim 100$
$\frac{1}{\sqrt{f}} = -2.0 \log \left[\frac{e/D}{3.7} + \frac{2.51}{Re_D \sqrt{f}} \right]$	(8.20) ^c	Turbulent, fully developed
$f = (0.790 \ln Re_D - 1.64)^{-2}$	(8.21) ^c	Turbulent, fully developed, smooth walls, $3000 \le Re_D \le 5 \times 10^6$

^bProperties in Equations 8.53, 8.55, 8.60, 8.61, 8.62, 8.64, and 8.65 are based on T_m; properties in Equations 8.19, 8.20, and 8.21 are based on $T_f = (T_r + T_m)/2$; properties in Equations 8.57 and 8.58 are based on $T_m = (T_{m,i} + T_{m,o})/2$. Equation 8.20 pertains to smooth or rough tubes. Equation 8.21 pertains to smooth tubes.

 d As a first approximation, Equations 8.60, 8.61, or 8.62 may be used to evaluate the average Nusselt number $\overline{Nu_p}$ over the entire tube length, if $(L/D) \ge 10$. The properties should then be evaluated at the average of the mean temperature, $\overline{T}_m = (T_{m,l} + T_{m,o})/2$. For tubes of noncircular cross section, $Re_D = D_h u_m / \nu$, $D_h = 4 A_c / P$, and $u_m = m / \rho A_c$. Results for fully developed laminar flow are provided in Table 8.1. For turbulent flow, Equation 8.60 may be used as a first approximation.

TABLE 8.1 Nusselt numbers and friction factors for fully developed laminar flow in tubes of differing cross section

		Nu_D		
Cross Section	$\frac{b}{a}$	(Uniform q_s'')	(Uniform T _s)	Re_{D_h}
	_	4.36	3.66	64
a	1.0	3.61	2.98	57
a	1.43	3.73	3.08	59
a	2.0	4.12	3.39	62
ab	3.0	4.79	3.96	69
ab	4.0	5.33	4.44	73
a	8.0	6.49	5.60	82
Heated	00	8.23	7.54	96
Insulated	∞	5.39	4.86	96
\triangle	_	3.11	2.49	53

NTU Method

Flow Arrangement

	Parallel flw	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 + C_r)\right]}{1 + C_r}$		(11.28a)
	Counterflw	$\varepsilon = \frac{1 - \exp\left[-\text{NTU}(1 - C_r)\right]}{1 - C_r \exp\left[-\text{NTU}(1 - C_r)\right]}$	$(C_r < 1)$	
R		$\varepsilon = \frac{NTU}{1 + NTU}$	$(C_r = 1)$	(11.29a)
温度	Shell-and-tube			
	One shell pass (2, 4, tube passes)	$\varepsilon_1 = 2 \left\{ 1 + C_r + (1 + C_r^2)^{1/2} \times \frac{1 + ex}{1 - ex} \right\}$	$\frac{p\left[-(NTU)_{1}(1+C_{r}^{2})^{1/2}\right]}{p\left[-(NTU)_{1}(1+C_{r}^{2})^{1/2}\right]}$	(11.30a)
	n shell passes $(2n, 4n, \dots$ tube passes)	$\varepsilon = \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n - 1 \right] \left[\left(\frac{1 - \varepsilon_1 C_r}{1 - \varepsilon_1} \right)^n \right]$	$-C_r$ $^{-1}$	(11.31a)
	Cross-flw (single pass)			
	Both fluids unmixed	$\varepsilon = 1 - \exp\left[\left(\frac{1}{C_r}\right)(\text{NTU})^{0.22} \left\{\exp\left[-\frac{1}{C_r}\right]\right]\right]$	$C_r(NTU)^{0.78}] - 1\}$	(11.32)
	C_{\max} (mixed), C_{\min} (unmixed)	$\varepsilon = \left(\frac{1}{C_r}\right)(1 - \exp\{-C_r[1 - \exp(-N)]\})$	TU)]})	(11.33a)
	C_{\min} (mixed), C_{\max} (unmixed)	$\varepsilon = 1 - \exp(-C_r^{-1}\{1 - \exp[-C_r(NT)]\})$	J)]})	(11.34a)
	All exchangers $(C_r = 0)$	$\varepsilon = 1 - \exp(-NTU)$		(11.35a)
	Parallel fiw	$NTU = -\frac{\ln\left[1 - \varepsilon(1 + C_r)\right]}{1 + C_r}$		(11.28b)
	Counterflw	$NTU = \frac{1}{C_r - 1} \ln \left(\frac{\varepsilon - 1}{\varepsilon C_r - 1} \right) $ (C	,< 1)	
		$NTU = \frac{\varepsilon}{1 - \varepsilon}$ (C	, = 1)	(11.29b)
	Shell-and-tube			
	One shell pass (2, 4, tube passes)	$(NTU)_1 = -(1 + C_r^2)^{-1/2} \ln \left(\frac{E-1}{E+1} \right)$		(11.30b)
		$E = \frac{2/\varepsilon_1 - (1 + C_r)}{(1 + C_r^2)^{1/2}}$		(11.30c)
	n shell passes ($2n, 4n, \dots$ tube passes)	Use Equations 11.30b and 11.30c with		
	paralle parall	$\varepsilon_1 = \frac{F-1}{F-C_r}$ $F = \left(\frac{\varepsilon C_r - 1}{\varepsilon - 1}\right)^{1/n}$ NTU	$J = n(NTU)_1$	(11.31b, c, d)
	Cross-flw (single pass)	F ()		
	C_{miax} (mixed), C_{min} (unmixed)	$NTU = -\ln\left[1 + \left(\frac{1}{C_r}\right)\ln(1 - \varepsilon C_r)\right]$		(11.33b)

LMTD Method

 $NTU = -\left(\frac{1}{C_r}\right) \ln[C_r \ln(1-\varepsilon) + 1]$

 $NTU = \frac{UA}{C_{\min}}$

 $NTU = -\ln(1-\varepsilon)$

$$q = UA\Delta T_{lm}$$
 $q_h = \dot{m}_h c_{p,h} \Delta T_h$ $q_c = \dot{m}_c c_{p,c} \Delta T_c$

$$\Delta T_{lm} = \frac{\Delta T_1 - \Delta T_2}{ln(\Delta T_1/\Delta T_2)}$$

 C_{\min} (mixed), C_{\max} (unmixed)

All exchangers $(C_r = 0)$

Hydraulic diameter

截面不是圆形的近似

 $NTU = f(\varepsilon, C_r)$

 $q_{Max} = C_{Min} \Delta T_{Max}$

(11.34b)

(11.35b)

Boundary Layer

Free Convection

Mixed Convection

• Heat Transfer Correlations for Mixed Convection:

$$Nu^n \approx Nu_{FC}^n \pm Nu_{NC}^n$$

 $Nu_{FC} \rightarrow$ Nusselt number for forced convection $Nu_{NC} \rightarrow$ Nusselt number for natural (free) convection

- $+ \rightarrow$ assisting and transverse flows
- \rightarrow opposing flows
- $n \approx 3$ normally but there are more values of possible n depending on the configurations

Internal Flow (Tube)

温度边界层 Thermal
完全发展流 → 入口长度 Fully developed Flow → Entry Length
$\left(rac{x_{ m fd,t}}{D} ight)_{ m ec{ m gih}}pprox 0.05 Re_D Pr$
$10 \lesssim \left(\frac{x_{\mathrm{fd,t}}}{D}\right)_{$ 洲流

 Table 8.2
 Nusselt number for fully developed laminar
 flow in a circular tube annulus with one surface insulated and the other at constant temperature

D_i/D_o	Nu_i	Nu_o	Comments
0	_	3.66	See Equation 8.55
0.05	17.46	4.06	
0.10	11.56	4.11	
0.25	7.37	4.23	
0.50	5.74	4.43	
≈1.00	4.86	4.86	See Table 8.1, $b/a \rightarrow \infty$

Table 8.3 Influence coefficients for fully developed laminar flow in a circular tube annulus with uniform heat flux maintained at both surfaces

D_i/D_o	Nu_{ii}	Nu_{oo}	$\boldsymbol{\theta}_{i}^{*}$	$\boldsymbol{\theta}_{o}^{*}$
0	_	4.364 ^a	∞	0
0.05	17.81	4.792	2.18	0.0294
0.10	11.91	4.834	1.383	0.0562
0.20	8.499	4.833	0.905	0.1041
0.40	6.583	4.979	0.603	0.1823
0.60	5.912	5.099	0.473	0.2455
0.80	5.58	5.24	0.401	0.299
1.00	5.385	5.385^{b}	0.346	0.346

Case 2 污染

$$\frac{1}{\mathit{UA}} = \frac{1}{(\mathit{hA})_{\text{limit}}} + \frac{R''_{\mathit{fi,limin}}}{A_{\text{limit}}} + R_{\text{times}} + \frac{R''_{\mathit{fi,limin}}}{A_{\text{timin}}} + \frac{1}{(\mathit{hA})_{\text{timin}}}$$

Case 3 污染+鳍片

$$\frac{1}{UA} = \frac{1}{(\eta_o h A)_{|\partial M|}} + \frac{R_{f/|\partial M|}'}{(\eta_o A)_{|\partial M|}} + R_{\frac{MM}{2}}^{\frac{M}{2}} + R_{f/|\partial M|}^{\frac{M}{2}} + \frac{1}{(\eta_o h A)_{|\partial M|}} + \frac{1}{(\eta_o h A)_{|\partial M|}} + \frac{1}{\eta_o h A)_{|\partial M|}} + \frac{1}{\eta_o h A)_{|\partial M|}}$$
Overall surface efficiency of fin array

$$A=A_t=$$
 总表面积 (fin + base)
$$\eta_{fin}=\frac{\tanh mL}{mL} \qquad m=\sqrt{1+mL}$$

Case 4 污染+鳍片 (整合版)

$$\frac{1}{UA} = \frac{1}{(\eta_o U_p A)_{\text{冷端}}} + R$$
管盤 $+ \frac{1}{(\eta_o U_p A)_{\text{ᢢ端}}}$
 \downarrow
 $U_p = \frac{h}{1 + hR'}$ Partial overall coefficient 部分整合系数

Dimensionless Number

St = Stanton number 斯坦顿数

$$St = \frac{h}{\rho V c_p} = \frac{Nu}{Re \cdot Pr}$$

Gr = Grashof number 格拉晓夫数

$$\begin{aligned} Gr_L &= Re_L^2 \\ Gr_L &= \frac{g\beta(T_S - T_\infty)L^3}{v^2} \end{aligned}$$

Pr = Prandtl number 普朗特数

$$Pr = \frac{c_p \mu}{k} = \frac{v_{\text{粘度}}}{\alpha_{\text{the proper}}}$$

Ra = Rayleigh number 瑞利数

$$Ra_{L} = Gr_{L} \cdot Pr = \left(\frac{UL}{\nu}\right)^{2} \left(\frac{\nu}{\alpha}\right) = \frac{U^{2}L^{2}}{\nu\alpha} = \frac{g\beta(T_{s} - T_{\infty})L^{3}}{\nu\alpha}$$

