Apontamentos II

Transformações lineares

Álgebra Linear | aulas teóricas

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores $1^{\underline{o}} \text{ semestre } 2016/17$

Lina Oliveira Departamento de Matemática, Instituto Superior Técnico

Índice

Índice				
1	Transformações lineares	1		
	Transformações lineares			
	Matriz associada a uma transformação linear	5		
	Núcleo e imagem	7		
	Composição e invertibilidade			
	Mudança de base	17		
	Espaços próprios e subespaços invariantes	20		

Transformações lineares

Definição de transformação linear em espaços lineares reais. Exemplos de funções: reflexão, projeção ortogonal e translação. Matriz associada a uma transformação linear considerando as bases canónicas em \mathbb{K}^n e \mathbb{K}^k . Imagem de um segmento de recta através de uma transformação linear; imagem de um triângulo a partir das imagens dos seus vértices.

Sejam U e V espaços vetoriais reais (respetivamente, complexos). Uma função $T:U\to V$ diz-se uma **transformação linear** se, quaisquer que sejam $x,y\in U$ e $\alpha\in\mathbb{K}$,

- (i) $T(\boldsymbol{x} + \boldsymbol{y}) = T\boldsymbol{x} + T\boldsymbol{y}$
- (ii) $T(\alpha x) = \alpha T x$

Proposição 1. Sejam U e V espaços vetoriais e seja $T:U\to V$ uma transformação linear. Então

$$T\mathbf{0}_U = \mathbf{0}_V$$
.

Note que este resultado tanto pode ser visto como uma consequência tanto de (i) como de (ii).

Exemplos. Determine quais das funções seguintes são transformações lineares.

- a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ reflexão relativa ao eixo dos xx.
- b) $T: \mathbb{R}^3 \to \mathbb{R}^3$ projeção ortogonal no plano xoy.
- c) $T: \mathbb{R}^2 \to \mathbb{R}^2$ translação pelo vetor $\boldsymbol{u} = (1,0).$

Solução. a) A função T desta alínea é definida, para todo o ${\bf x}=(x_1,x_2)$ de \mathbb{R}^2 , por

$$T(x_1, x_2) = (x_1, -x_2).$$

Verificar se se trata duma transformação linear consiste em verificar se ambas as propriedades (i) e (ii) são satisfeitas por esta função T. Começando com (ii), consideremos um real α e um vetor $(x_1,x_2) \in \mathbb{R}^2$. Então

$$T(\alpha(x_1, x_2)) = T(\alpha x_1, \alpha x_2)$$

$$= (\alpha x_1, -\alpha x_2)$$

$$= \alpha(x_1, -x_2)$$

$$= \alpha T(x_1, x_2),$$

O que mostra que a propriedade (ii) é satisfeita.

Considerando agora os vetores $\boldsymbol{x}=(x_1,x_2), \boldsymbol{y}=(y_1,y_2)\in\mathbb{R}^2$, tem-se

$$T((x_1, x_2) + (y_1, y_2)) = T(x_1 + y_1, x_2 + y_2)$$

$$= (x_1 + y_1, -(x_2 + y_2))$$

$$= (x_1, -x_2) + (y_1, -y_2)$$

$$= T(x_1, x_2) + T(y_1, y_2),$$

donde se conclui que T satisfaz (i). Tem-se assim que a função T é uma transformação linear em \mathbb{R}^2 .

b) Notando que a função T desta alínea é definida, para todo o vetor $\boldsymbol{x}=(x_1,x_2,x_3)$ de \mathbb{R}^3 , por

$$T(x_1, x_2, x_3) = (x_1, x_2, 0)$$

e usando um procedimento análogo ao da alínea anterior, é fácil verificar que também se trata duma transformação linear.

c) Neste caso a expressão da função é $T(x_1,x_2)=(x_1+1,x_2)$, sendo portanto T(0,0)=(1,0). Deste modo $T(0,0)\neq(0,0)$, contrariando a Proposição 1. Temos pois que T não é uma transformação linear.

Imagem de um segmento de reta. Seja $T:\mathbb{R}^2 \to \mathbb{R}^2$ uma transformação linear e considere o triângulo de vértices $\boldsymbol{a}=(0,0), \boldsymbol{b}=(1,1)$ e $\boldsymbol{c}=(2,0).$ Sabendo que $T(\boldsymbol{b})=(2,1)$ e $T(\boldsymbol{c})=(1,0)$, represente geometricamente a imagem do triângulo através da transformação linear T.

Sendo x um ponto que pertence ao segmento de extremos b e c, tem-se

$$\boldsymbol{x} = \boldsymbol{c} + \alpha (\boldsymbol{b} - \boldsymbol{c})$$
 com $\alpha \in [0, 1],$

donde

$$T(\boldsymbol{x}) = T(\boldsymbol{c}) + \alpha (T(\boldsymbol{b}) - T(\boldsymbol{c}))$$
 com $\alpha \in [0, 1].$

Os segmentos de reta que unem dois pontos são transformados em segmentos de reta que unem as imagens desses pontos.

Matriz associada a uma transformação linear $T \colon \mathbb{K}^n \to \mathbb{K}^k$. Sendo $\mathcal{E}_n = (e_1, e_2, \dots, e_n)$ a base canónica ordenada de \mathbb{R}^n (respetivamente, de \mathbb{C}^n) e \mathcal{E}_k a base canónica de \mathbb{R}^k (respetivamente, de \mathbb{C}^k), tem-se

$$T\boldsymbol{x} = T(\alpha_1\boldsymbol{e}_1 + \alpha_2\boldsymbol{e}_2 + \dots + \alpha_n\boldsymbol{e}_n) = \alpha_1T\boldsymbol{e}_1 + \alpha_2T\boldsymbol{e}_2 + \dots + \alpha_nT\boldsymbol{e}_n.$$

Representando por [x] um vetor x quando escrito em forma de vetor coluna, obtemos

$$[T(\boldsymbol{x})] = \underbrace{\begin{bmatrix} [T\boldsymbol{e}_1] & | & [T\boldsymbol{e}_2] & | & \dots & | & [T\boldsymbol{e}_n] \end{bmatrix}}_{\text{matriz associada a } T} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}. \tag{1}$$

Atendendo a que, qualquer que seja o vetor \boldsymbol{u} de \mathbb{R}^m , se tem $[\boldsymbol{u}] = [\boldsymbol{u}]_{\mathcal{E}_m}$, onde $[\boldsymbol{u}]_{\mathcal{E}_m}$ é o vetor das coordenadas de \boldsymbol{u} na base \mathcal{E}_m , podemos reescrever (1) como

$$[T(\boldsymbol{x})]_{\mathcal{E}_k} = \underbrace{\left[[T\boldsymbol{e}_1]_{\mathcal{E}_k} \mid [T\boldsymbol{e}_2]_{\mathcal{E}_k} \mid \dots \mid [T\boldsymbol{e}_n]_{\mathcal{E}_k} \right]}_{[T]_{\mathcal{E}_k,\mathcal{E}_n}} [\boldsymbol{x}]_{\mathcal{E}_n}$$
(2)

Ou seja,

$$[T\boldsymbol{x}]_{\mathcal{E}_k} = [T]_{\mathcal{E}_k, \mathcal{E}_n} [\boldsymbol{x}]_{\mathcal{E}_n} \tag{3}$$

A matriz $[T]_{\mathcal{E}_k,\mathcal{E}_n}$ que representa T em relação às bases canónicas de \mathbb{R}^n e \mathbb{R}^k também pode ser designada abreviadamente por [T].

Exemplos. Determine a matriz associada a cada uma das transformações lineares seguintes.

- a) Em \mathbb{R}^2 : reflexão em relação ao eixo dos xx.
- b) Em \mathbb{R}^3 : projeção no plano xy.
- c) Em \mathbb{R}^2 : rotação em \mathbb{R}^2 em torno da origem de um ângulo θ no sentido contrário ao dos ponteiros do relógio (neste caso, determine também a expressão analítica).
- c) A matriz [T] que representa a rotação T desta alínea tem como colunas as imagens dos vetores da base canónica \mathcal{E}_2 . Sendo $T(1,0)=(\cos\theta,\sin\theta)$ e $T(0,1)=(-\cos\theta,\sin\theta)$, tem-se

$$[T] = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Assim, qualquer que seja $\boldsymbol{x}=(x_1,x_2)\in\mathbb{R}^2$,

$$T\mathbf{x} = [T] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$= \begin{bmatrix} x_1 \cos \theta - x_2 \sin \theta \\ x_1 \sin \theta + x_2 \cos \theta \end{bmatrix}.$$

A expressão analítica é $T(x_1, x_2) = (x_1 \cos \theta - x_2 \sin \theta, x_1 \sin \theta + x_2 \cos \theta).$

Matriz associada a uma transformação linear

Relação entre $\mathbb{M}_{k\times n}(\mathbb{K})$ e o conjunto das transformações lineares $T\colon U\to V$ entre um espaço linear U de dimensão n e um espaço linear V de dimensão k.

Matriz associada a uma transformação linear $T: U \to V$

Sejam U e V espaços vetoriais reais (respetivamente, complexos) tais que $\dim U=n$ e $\dim V=k$. Sendo $B_1=(\boldsymbol{b}_1,\boldsymbol{b}_2,\ldots,\boldsymbol{b}_n)$ uma base de U e B_2 uma base de V, tem-se

$$T(\boldsymbol{x}) = T(\alpha_1 \boldsymbol{b}_1 + \alpha_2 \boldsymbol{b}_2 + \dots + \alpha_n \boldsymbol{b}_n).$$

Assim:

$$(T\boldsymbol{x})_{B_2} = T(\alpha_1 \boldsymbol{b}_1 + \alpha_2 \boldsymbol{b}_2 + \dots + \alpha_n \boldsymbol{b}_n)_{B_2}$$

= $\alpha_1 (T\boldsymbol{b}_1)_{B_2} + \alpha_2 (T\boldsymbol{b}_2)_{B_2} + \dots + \alpha_n (T\boldsymbol{b}_n)_{B_2}$

$$[T\boldsymbol{x}]_{B_2} = \begin{bmatrix} [T\boldsymbol{b}_1]_{B_2} & | & [T\boldsymbol{b}_2]_{B_2} & | & \dots & | & [T\boldsymbol{b}_n]_{B_2} \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}$$

$$[Tm{x}]_{B_2} = \underbrace{\left[[Tm{b}_1]_{B_2} \mid [Tm{b}_2]_{B_2} \mid \dots \mid [Tm{b}_n]_{B_2}
ight]}_{[T]_{B_2,B_1}} [m{x}]_{B_1}$$

Ou seja,

$$[T\boldsymbol{x}]_{B_2} = [T]_{B_2,B_1}[\boldsymbol{x}]_{B_1}$$

onde $[T]_{B_2,B_1}$ é a matriz que representa a transformação relativamente às bases B_1 e B_2 .

Temos assim que à transformação

$$T \colon U \to V$$

 $\boldsymbol{x} \mapsto T(\boldsymbol{x})$

corresponde uma outra transformação linear entre os espaços \mathbb{R}^n e \mathbb{R}^k (respetivamente, entre os espaços \mathbb{C}^n e \mathbb{C}^k) definida por

$$\mathbf{y} \mapsto A\mathbf{y}$$
,

onde $A = [T]_{B_2, B_1}$.

Exemplo. Considere a transformação linear $T:\mathbb{P}_2 \to \mathbb{P}_1$ definida por

$$p \mapsto p'$$
,

onde p' designa a derivada de p. Determine a matriz que representa a transformação linear T quando se consideram as bases canónicas de \mathbb{P}_2 e de \mathbb{P}_1 .

Núcleo e imagem

Núcleo duma transformação linear T e núcleo da matriz associada a T. A imagem de uma transformação linear e o espaço das colunas da matriz que a representa. Transformações lineares injetivas e transformações lineares sobrejetivas; isomorfismo. Teorema das dimensões para transformações lineares.

Sendo U,V espaços vetoriais e sendo $T\colon U\to V$ uma transformação linear, o **núcleo** N(T) da transformação T é o subespaço de U definido por

$$N(T) = \{ \boldsymbol{x} \in U : T(\boldsymbol{x}) = \mathbf{0}_V \}.$$

A imagem I(T) da transformação $T\colon U\to V$ é o subespaço de V definido por

$$I(T) = \{ T(\boldsymbol{x}) \in V : \boldsymbol{x} \in U \}.$$

Núcleo e imagem de $T: \mathbb{K}^n \to \mathbb{K}^k$

Seja $T:\mathbb{R}^n \to \mathbb{R}^k$ uma transformação linear. Então

$$N(T) = \{ \boldsymbol{x} \in \mathbb{R}^n : T(\boldsymbol{x}) = \mathbf{0}_{\mathbb{R}^k} \}.$$

Sendo $A=[T]_{\mathcal{E}_k,\mathcal{E}_n}$ a matriz que representa T em relação às bases canónicas de \mathbb{R}^n e \mathbb{R}^k , tem-se

$$T(x) = 0$$
 sse $Ax = 0$,

donde se conclui que

$$N(T) = N(A).$$

Quanto à imagem I(T), temos, por definição, que

$$I(T) = \{ T(\boldsymbol{x}) \in \mathbb{R}^k : \boldsymbol{x} \in \mathbb{R}^n \}.$$

Atendendo a que

$$[T(\boldsymbol{x})] = A\mathbf{x},$$

a imagem I(T) corresponde a obter todas as combinações lineares $A\mathbf{x}$ das colunas de A. Por outras palavras,

$$I(T) = C(A)$$
.

Obviamente tem-se

$$I(T) = \mathcal{L}(\lbrace T(e_1), T(e_2), \dots, T(e_n) \rbrace)$$

Ou seja, $\{T(e_1), T(e_2), \dots, T(e_n)\}$ é um conjunto gerador de I(T).

Teorema 1. (Teorema das dimensões) Seja $T: \mathbb{R}^n \to \mathbb{R}^k$ uma transformação linear. Então

$$n = \dim N(T) + \dim I(T).$$

Demonstração. Este teorema é uma consequência imediata do teorema das dimensões para matrizes. Seja A a matriz $k \times n$ que representa T em relação às bases \mathcal{E}_n e \mathcal{E}_k . Então

$$n = \dim N(A) + \operatorname{car} A$$

= \dim N(A) + \dim C(A)
= \dim N(T) + \dim I(T).

Injetividade e sobrejetividade

Uma transformação linear $T\colon U\to V$ diz-se **injetiva** se, quaisquer que sejam ${\pmb x},{\pmb y}\in U$,

$$x \neq y \Rightarrow T(x) \neq T(y)$$

ou, equivalentemente, se

$$T(\boldsymbol{x}) = T(\boldsymbol{y}) \Rightarrow \boldsymbol{x} = \boldsymbol{y}.$$

Note-se que

$$T(\boldsymbol{x}) = T(\boldsymbol{y})$$

8

se e só se

$$T(\boldsymbol{x} - \boldsymbol{y}) = 0 \Leftrightarrow \boldsymbol{x} - \boldsymbol{y} \in N(T),$$

donde se conclui que

$$T(\{\boldsymbol{x}\} + N(T)) = \{T(\boldsymbol{x})\}\$$

Proposição 2. Seja $T: U \to V$ uma transformação linear. T é injetiva se e só se $N(T) = \{0\}$.

Uma transformação linear $T\colon U\to V$ diz-se **sobrejetiva** se I(T)=V. Se T é injetiva e sobrejetiva, T diz-se uma transformação linear **bijetiva** ou um **isomorfismo**.

Exemplos. Determine a matriz [T], o núcleo e a imagem das transformações T seguintes:

- (a) $T:\mathbb{R}^2\to\mathbb{R}^2$ rotação em torno da origem de $\pi/2$ radianos no sentido positivo ou direto (contrário aodos ponteiros do relógio);
- (b) $T: \mathbb{R}^2 \to \mathbb{R}^2$ projecção ortogonal no eixo dos xx;
- (c) $T:\mathbb{R}^2 \to \mathbb{R}^2$ reflexão relativa ao eixo dos yy;
- (d) $T: \mathbb{R}^3 \to \mathbb{R}^2 \text{ com } T(x,y) = (x-y,z).$

Verifique se as transformações são sobrejetivas, injetivas ou isomorfismos.

Proposição 3. Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear. As afirmações seguintes são equivalentes.

- (i) T é injetiva.
- (ii) T é sobrejetiva.
- (iii) T é um isomorfismo.

Demonstração. Provar-se-á apenas que (i) \Rightarrow (ii). O teorema das dimensões garante que

$$n=\dim N(T)+\dim I(T)\qquad \text{donde}\qquad n=0+\dim I(T)$$
e, consequentemente, $I(T)=\mathbb{R}^n.$

N.B.- Todos os resultados acima relativos ao núcleo e à imagem duma transformação linear definida entre \mathbb{R}^n e \mathbb{R}^k são igualmente válidos para transformações lineares $T\colon \mathbb{C}^n \to \mathbb{C}^k$.

Núcleo e imagem de $T: U \to V$

Sejam U e V espaços lineares reais (respetivamente, complexos), e considere a base $B_1=(\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_n)$ de U e a base $B_2=(\boldsymbol{v}_1,\boldsymbol{v}_2,\ldots,\boldsymbol{v}_k)$ de V. Seja $T:U\to V$ uma transformação linear.

Como vimos anteriormente, o núcleo N(T) da transformação T é o subespaço de U definido por

$$N(T) = \{ x \in U : T(x) = 0 \}.$$

Sendo $A = [T]_{B_2,B_1}$, tem-se

$$T(\boldsymbol{x}) = \boldsymbol{0}$$
 se e só se $[T(\boldsymbol{x})]_{B_2} = \boldsymbol{0}$,

donde se conclui que

$$T(\boldsymbol{x}) = \boldsymbol{0}$$
 se e só se $A[\boldsymbol{x}]_{B_1} = \boldsymbol{0}$,

e, portanto,

$$N(T) = \{\alpha_1 \boldsymbol{u}_1 + \alpha_2 \boldsymbol{u}_2 + \dots + \alpha_n \boldsymbol{u}_n : (\alpha_1, \alpha_2, \dots, \alpha_n) \in N(A)\}.$$

Note-se que $N(A) \subseteq \mathbb{R}^n$ (respetivamente, \mathbb{C}^n).

Tal como foi definido anteriormente, a imagem I(T) da transformação $T\colon U\to V$ é o subespaço de V definido por

$$I(T) = \{ T(\boldsymbol{x}) : \boldsymbol{x} \in U \}.$$

Sendo

$$[T(\boldsymbol{x})]_{B_2} = A[\boldsymbol{x}]_{B_1},$$

pretendemos obter todas as combinações lineares $A[x]_{B_1}$ das colunas de A. Por outras palavras, o conjunto dos vetores das coordenadas dos vetores de I(T) coincide com C(A). Note-se que $C(A) \subseteq \mathbb{R}^k$ (respetivamente, \mathbb{C}^k).

Assim,

$$I(T) = \{\alpha_1 \boldsymbol{v}_1 + \alpha_2 \boldsymbol{v}_2 + \dots + \alpha_k \boldsymbol{v}_n : (\alpha_1, \alpha_2, \dots, \alpha_k) \in C(A)\}.$$

Exemplo. Considere a transformação linear $T: \mathbb{P}_2 \to \mathbb{P}_2$ definida por

$$p \mapsto p'$$

- a) Determine a matriz que representa a transformação linear T quando se consideram as bases canónicas de \mathbb{P}_2 e de \mathbb{P}_2 .
- b) Determine o núcleo e a imagem de T.
- c) Verifique se T é injetiva, sobrejetiva ou um isomorfismo.

Proposição 4. Seja U um espaço vetorial sobre \mathbb{K} , e seja $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n)$ uma base de U. A transformação linear $T: U \to \mathbb{K}^n$ definida por

$$\boldsymbol{x}\mapsto (\boldsymbol{x})_B$$

é um isomorfismo.

Demonstração. Exercício.

Teorema 2. (Teorema das dimensões) Sejam U e V espaços lineares reais (respetivamente, complexos), e seja dim U = n. Seja $T: U \to V$ uma transformação linear. Então

$$n = \dim N(T) + \dim I(T).$$

Demonstração. Este teorema é uma consequência imediata do Teorema 1 e da Proposição 4. $\hfill\Box$

Composição e invertibilidade

Transformação inversa e composição de transformações lineares. Espaços próprios e subespaços invariantes.

Composição de transformações lineares

Sejam U, V e W espaços vetoriais reais (respetivamente, complexos), e sejam $T\colon U\to V$ e $S\colon V\to W$

Consideremos a função composta $S \circ T$ definida por

$$S \circ T \colon U \to W$$

 $\boldsymbol{x} \mapsto S(T\boldsymbol{x})$.

Esquematicamente,

$$U \xrightarrow{T} V \bigvee_{S \circ T} \bigvee_{W} S$$

Facto 1. A função $S \circ T \colon U \to W$ é uma transformação linear.

A transformação linear $S \circ T$ é designada por **transformação composta**.

Suponhamos que U, V, W são espaços vetoriais sobre \mathbb{K} de dimensões

$$\dim U = n$$
 $\dim V = p$ $\dim W = k$,

e sejam B_U , B_V , B_W bases de U, V, W, respetivamente.

Considerando as matrizes $A=[T]_{B_V,B_U}$ e $B=[S]_{B_W,B_V}$ que representam as transformações T e S em relação às bases fixadas em U,V e W, tem-se que, qualquer que seja $\boldsymbol{x}\in U$,

$$\begin{split} [(S \circ T)(\boldsymbol{x})]_{B_W} &= [S(T\boldsymbol{x})]_{B_W} \\ &= B[(T\boldsymbol{x})]_{B_V} \\ &= BA[\boldsymbol{x}]_{B_U} \;. \end{split}$$

Donde se conclui que a matriz $[S\circ T]_{B_W,B_U}$ que representa a transformação $S\circ T$ é

$$[S \circ T]_{B_W,B_U} = BA.$$

Facto 2. A matriz $[S \circ T]_{B_W,B_U}$ que representa a transformação linear $S \circ T$ é

$$[S \circ T]_{B_W,B_U} = [S]_{B_W,B_V} [T]_{B_V,B_U}.$$

Os esquemas correspondentes em termos dos vetores das coordenadas são:

$$\mathbb{K}^{n} \xrightarrow{A} \mathbb{K}^{p} \qquad \qquad [x]_{B_{U}} \xrightarrow{A} [T(x)]_{B_{V}} \\
\downarrow^{B} \qquad \qquad [S \circ T]_{B_{W}, B_{U}} \qquad \downarrow^{B} \\
\mathbb{K}^{k} \qquad \qquad [S(T(x))]_{B_{W}}$$

Exemplo. Sendo T a reflexão relativa ao eixo dos xx em \mathbb{R}^2 e sendo S a rotação em torno da origem em \mathbb{R}^2 , no sentido direto, determine:

- a) a matriz que representa $S \circ T$ em relação à base canónica \mathcal{E}_2 ;
- b) uma expressão analítica para $S \circ T$.

Transformação inversa

Sejam U,V espaços vetoriais reais (respetivamente, complexos) de dimensão n e sejam B_U,B_V as suas bases. Seja $T\colon U\to V$ um isomorfismo. Nestas circunstâncias, é possível definir a função

$$T^{-1} \colon V \to U$$

 $\mathbf{y} \mapsto \mathbf{x}$,

onde y = Tx.

Facto 3. A função T^{-1} é uma transformação linear.

Sendo $B=[T^{-1}]_{B_U,B_V}$ a matriz que representa T^{-1} quando se consideram as bases B_U de U e B_V de V, e sendo $A=[T]_{B_V,B_U}$ a matriz que representa T quando se consideram as mesmas bases, tem-se então que, qualquer que seja $\boldsymbol{x}\in U$,

$$[(T^{-1} \circ T)(\boldsymbol{x})]_{B_U} = [T^{-1}(T\boldsymbol{x})]_{B_U}$$

$$= [T^{-1}]_{B_U, B_V} [(T\boldsymbol{x})]_{B_V}$$

$$= [T^{-1}]_{B_U, B_V} [T]_{B_V, B_U} [\boldsymbol{x}]_{B_U}$$

$$= BA[\boldsymbol{x}]_{B_U}.$$

Atendendo a que $T^{-1}\circ T$ é a transformação linear **identidade** I_U em U, i.e, a função que a cada $x\in U$ faz corresponder $I_U(x)=x$, resulta BA=I. Deste modo

$$[T^{-1}]_{B_U,B_V} = ([T]_{B_V,B_U})^{-1}$$
.

Exemplo. Seja U o subespaço do espaço dos polinómios reais \mathbb{P}_2 definido por

$$U = \{a_1t + a_2t^2 \colon a_1, a_2 \in \mathbb{R}\}\$$

e considere a transformação linear $T\colon U\to \mathbb{P}_1$ que a cada polinómio faz corresponder a sua derivada. Determine a matriz que representa a transformação T^{-1} relativamente à base $B_U=(t,t^2)$ em U e à base canónica de \mathbb{P}_1 .

No exercício seguinte vai encontrar um método diferente para deduzir que $[T^{-1}]_{B_U,B_V}=[T]_{B_V,B_U}^{-1}.$

Exercício. Seja $T\colon U\to V$ um isomorfismo e considere a transformação linear inversa

$$T^{-1} \colon V \to U$$

 $\boldsymbol{y} \mapsto \boldsymbol{x}$,

onde $\boldsymbol{y} = T\boldsymbol{x}$.

- a) Designando por A a matriz $[T]_{B_V,B_U}$ e supondo que $\dim U=n$, mostre que A é uma matriz $n\times n$ invertível. (Sugestão: use os Teoremas 1 e 2.)
- b) Use a alínea a) e a iguladade ${\pmb y}=T{\pmb x}$ para obter ${\pmb x}$ em função de ${\pmb y}$, e conclua que $[T^{-1}]_{B_U,B_V}=A^{-1}.$

Mudança de base

Matriz associada a uma transformação linear em diferentes bases; matrizes semelhantes.

Matriz associada a uma transformação linear $T \colon \mathbb{R}^n \to \mathbb{R}^n$ em diferentes bases

Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ uma transformação linear e consideremos uma base $\mathcal{B} = (\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n)$ de \mathbb{R}^n .

Dado um vetor arbitrário x de \mathbb{R}^n , o vetor das coordenadas da imagem de x pode ser calculado, quer usando a matriz $A = [T]_{\mathcal{E}_n, \mathcal{E}_n}$, quer usando a matriz $B = [T]_{\mathcal{B}, \mathcal{B}}$, tendo-se:

$$[T(\boldsymbol{x})]_{\mathcal{E}_n} = A[\boldsymbol{x}]_{\mathcal{E}_n}$$
 $[T(\boldsymbol{x})]_{\mathcal{B}} = B[\boldsymbol{x}]_{\mathcal{B}}$

Por outro lado, podemos ver na figura seguinte que $[T(x)]_{\mathcal{E}_n}$ também pode ser calculado à custa da matriz B:

$$[T(\boldsymbol{x})]_{\mathcal{E}_n} = M_{\mathcal{B}\leftarrow\mathcal{E}_n}^{-1}[T(\boldsymbol{x})]_{\mathcal{B}} \qquad [\boldsymbol{x}]_{\mathcal{E}_n} \longmapsto [T(\boldsymbol{x})]_{\mathcal{E}_n}$$

$$= M_{\mathcal{B}\leftarrow\mathcal{E}_n}^{-1}B[\boldsymbol{x}]_{\mathcal{B}} \qquad M_{\mathcal{B}\leftarrow\mathcal{E}_n} \downarrow M_{\mathcal{E}_n\leftarrow\mathcal{B}}$$

$$= M_{\mathcal{B}\leftarrow\mathcal{E}_n}^{-1}BM_{\mathcal{B}\leftarrow\mathcal{E}_n}[\boldsymbol{x}]_{\mathcal{E}_n} \qquad [\boldsymbol{x}]_{\mathcal{B}} \longmapsto_{\boldsymbol{B}} [T(\boldsymbol{x})]_{\mathcal{B}}$$

Obtemos assim

$$A = M_{\mathcal{B} \leftarrow \mathcal{E}_n}^{-1} B M_{\mathcal{B} \leftarrow \mathcal{E}_n}.$$

Exemplo. Seja $T\colon \mathbb{R}^2 \to \mathbb{R}^2$ a reflexão relativa à reta de equação y=2x. Obtenha uma expressão analítica de T usando a matriz que representa a transformação relativamente à base $\mathcal{B}=((1,2),(2,-1))$.

Matriz associada a uma transformação linear $T\colon U\to U$ em diferentes bases

Consideremos agora o caso geral de se ter um espaço vetorial U e duas bases $B_1 = (\boldsymbol{b}_1, \boldsymbol{b}_2, \dots, \boldsymbol{b}_n)$ e $B_2 = (\boldsymbol{v}_1, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n)$. Considerações análogas às

anteriores, levar-nos -ão à seguinte situação:

$$[T]_{B_1,B_1} = M_{B_1 \leftarrow B_2}[T]_{B_2,B_2} M_{B_2 \leftarrow B_1}$$

$$M_{B_1 \leftarrow B_2} = M_{B_2 \leftarrow B_1}^{-1}$$

$$[x]_{B_1} \stackrel{A}{\longmapsto} [T(x)]_{B_1}$$

$$M_{B_2 \leftarrow B_1} \downarrow \qquad \qquad \downarrow^{M_{B_1 \leftarrow B_2}}$$

$$[x]_{B_2} \stackrel{B}{\longmapsto} [T(x)]_{B_2}$$

onde $A = [T]_{B_1,B_1}$ e $B = [T]_{B_2,B_2}$.

Tendo-se

$$[T(\boldsymbol{x})]_{B_1} = M_{B_2 \leftarrow B_1}^{-1} [T(\boldsymbol{x})]_{B_2}$$

$$= M_{B_2 \leftarrow B_1}^{-1} B[\boldsymbol{x}]_{B_2}$$

$$= M_{B_2 \leftarrow B_1}^{-1} B M_{B_2 \leftarrow B_1} [\boldsymbol{x}]_{B_1}$$

e, portanto,

$$A = M_{B_2 \leftarrow B_1}^{-1} B M_{B_2 \leftarrow B_1}.$$

Proposição 5. Seja U um espaço vetorial, seja $T: U \to U$ uma transformação linear e sejam B_1, B_2 bases de U. Então as matrizes $[T]_{B_1,B_1}$ e $[T]_{B_2,B_2}$ são matrizes semelhantes.

Matriz associada a uma transformação linear $T\colon U\to V$ em diferentes bases

Sejam U, V espaços vetoriais reais (respetivamente, complexos) e sejam B_1 e B_1' duas bases de U e sejam B_2 e B_2' duas bases de V. Analogamente ao que tem vindo a ser deduzido nesta secção, tem-se:

$$[T]_{B_2,B_1} = M_{B_2 \leftarrow B_2'}[T]_{B_2',B_1'}M_{B_1' \leftarrow B_1} \qquad \begin{bmatrix} \boldsymbol{x} \end{bmatrix}_{B_1} \stackrel{A}{\longmapsto} [T(\boldsymbol{x})]_{B_2} \\ M_{B_1' \leftarrow B_1} \downarrow \qquad & \uparrow M_{B_2 \leftarrow B_2'} \\ [\boldsymbol{x}]_{B_1'} \longmapsto_{B} [T(\boldsymbol{x})]_{B_2'}$$

onde $A = [T]_{B_2,B_1}$ e $B = [T]_{B'_2,B'_1}$.

Calculando, tem-se

$$[T(\mathbf{x})]_{B_2} = M_{B_2 \leftarrow B_2'} [T(\mathbf{x})]_{B_2'}$$

$$= M_{B_2 \leftarrow B_2'} B[\mathbf{x}]_{B_1'}$$

$$= M_{B_2 \leftarrow B_2'} BM_{B_1' \leftarrow B_1} [\mathbf{x}]_{B_1}$$

donde

$$A = M_{B_2 \leftarrow B_2'} B M_{B_1' \leftarrow B_1}.$$

Espaços próprios e subespaços invariantes

Seja U um espaço vetorial sobre \mathbb{K} e seja $T \colon U \to U$ uma transformação linear.

Diz-se que o vetor $\pmb{x} \in U$, não nulo, é um **vetor próprio** de T se existir $\lambda \in \mathbb{K}$ tal que

$$T\boldsymbol{x} = \lambda \boldsymbol{x}.$$

Nestas condições, λ diz-se um **valor próprio** de A associado (ou correspondente) a \boldsymbol{x} . O **espetro de** T, designado por $\sigma(T)$, é o conjunto dos valores próprios da transformação linear T.

Dado um valor próprio λ , o **espaço próprio** $E(\lambda)$ associado ao valor próprio λ é o núcleo da transformação linear $T-\lambda I$ (onde I designa a identidade em U):

$$E(\lambda) = N(T - \lambda I).$$

Sendo B uma base de U e $A = [T]_{B_U,B_U}$, tem-se

$$Tx - \lambda x = 0$$
 se e só se $(A - \lambda I)[x]_B = 0$,

donde

$$\sigma(T) = \sigma(A),$$

е

$$E(\lambda) = \{ \boldsymbol{x} \in U \colon (\boldsymbol{x})_B \in N(A - \lambda I) \}.$$

Exemplo. Determine os valores próprios e vetores próprios da reflexão em relação à reta de \mathbb{R}^2 com a equação cartesiana y=x.

Exemplo.

- a) Determine os valores próprios e vetores próprios da rotação em torno da origem em \mathbb{R}^2 de $\pi/2$, no sentido direto.
- b) Calcule os valores próprios (reais e complexos) da matriz que representa a rotação em relação à base canónica.

Subespaços invariantes

Seja U um espaço linear e seja $T:U\to U$ uma transformação linear. Diz-se que um subespaço W de U é um **subespaço invariante** de T se

$$T(W) \subseteq W$$
.

Os subespaços $\{{\bf 0}\}$, U e os espaços próprios de T (se existirem) são exemplos de subespaços invariantes de T.