Fundamental Limits of Coded Caching: From Uncoded Prefetching to Coded Prefetching

Kai Zhang and Chao Tian

Texas A&M University

ISIT 2018

Coded Caching and Its Applications

- A data management strategy to reduce delay during peak-traffic time;
- ► Single user setting, e.g. on-CPU caches, RAM in computers;
- ▶ Multiple user setting, e.g. networked system.

Coded Caching and Its Applications

- A data management strategy to reduce delay during peak-traffic time;
- Single user setting, e.g. on-CPU caches, RAM in computers;
- Multiple user setting, e.g. networked system.

An Information-theoretic Formulation

- ▶ *N* files of same size, *K* users, each with local cache of size *M*;
- Prefetching phase: users fill cache before knowing requests;
- Delivery phase: each user requests a single file, server multicasts information to accommodate requests.

Maddah-Ali & Niesen¹ scheme uses uncoded prefetching,

- Prefetching strategy:
 - Partition each file into $\binom{K}{t}$ segments, each associated with a cardinality-t subset;
 - Each user caches $\binom{K-1}{t-1}$ segments, e.g.: (N,K)=(3,4), t=2,

User 1	A_{12}	A_{13}	A ₁₄	B_{12}	B_{13}	B_{14}	C_{12}	C_{13}	C_{14}
User 2	A_{12}	A_{23}	A_{24}	B_{12}	B_{23}	B_{24}	C_{12}	C_{23}	C_{24}
User 3	A ₁₃	A_{23}	A ₃₄	B ₁₃	B_{23}	B ₃₄	C_{13}	C_{23}	C_{34}
User 4	A ₁₄	A ₂₄	A ₃₄	B ₁₄	B_{24}	B ₃₄	C_{14}	C_{24}	C_{34}

¹Maddah-Ali M A, Niesen U. Fundamental limits of caching[J]. IEEE Transactions on Information Theory, 2014, 60(5): 2856-2867.

Delivery strategy

• For any (t + 1)-user set \mathcal{B} , send XOR of requested segments, e.g., demand (A,A,B,C), server transmits:

$$\mathcal{B} = \{1, 2, 3\} : A_{23} + A_{13} + B_{12};$$

$$\mathcal{B} = \{1, 2, 4\} : A_{24} + A_{14} + C_{12};$$

$$\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13};$$

$$\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23}.$$

An improved scheme by Yu et al² by identifying redundancies.

²Yu Q, Maddah-Ali M A, Avestimehr A S. The exact rate-memory tradeoff for caching with uncoded prefetching[J]. IEEE Transactions on Information Theory, 2017.

► For example, user 1 decodes as:

• Step 1: using A_{13} and B_{12} to decode A_{23} ;

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

► For example, user 1 decodes as:

• Step 2: using A_{14} and C_{12} to decode A_{24} ;

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

For example, user 1 decodes as:

• Step 3: using B_{14} and C_{13} to decode A_{34} .

$$A_{23} + A_{13} + B_{12}$$
, $A_{24} + A_{14} + C_{12}$
 $A_{34} + B_{14} + C_{13}$, $A_{34} + B_{24} + C_{23}$

Tian-Chen scheme¹ uses coded prefetching.

- Prefetching strategy:
 - Partition each file into $\binom{K}{t}$ segments, each user allocated $\binom{K-1}{t}$ segments;
 - Encode using rank metric code, store the parities; e.g.: (N, K) = (3, 4), t = 2, user 1 stores

 $(A_{12}, A_{13}, A_{14}, B_{12}, B_{13}, B_{14}, C_{12}, C_{13}, C_{14})^T$.

Tian C, Chen J. Caching and delivery via interference elimination[C]. Information Theory 2016 IEEE International Symposium on. IEEE, 2016: 830-834.

Delivery strategy:

- Linear combination of segments from one file;
- Serve two roles: content delivery and resolve coded symbols;
- E.g.: demand (A,A,B,C), transmits:

$$A_{34}$$
, B_{12} , B_{14} , B_{24} , C_{12} , C_{13} , C_{23} , $A_{13} + A_{23}$, $A_{14} + A_{24}$.

► For example, user 1 decodes as:

$$(A_{12}, A_{13}, A_{14}, B_{12}, B_{13}, B_{14}, C_{12}, C_{13}, C_{14})^T$$

• Step 1: user 1 collects 4 symbols B_{12} , B_{14} , C_{12} , C_{13} , decodes all 9 symbols;

► For example, user 1 decodes as:

• Step 2: user 1 uses A_{13} , A_{14} to decode A_{23} , A_{24} ;

$$A_{34}$$
, B_{12} , B_{14} , B_{24} , C_{12} , C_{13} , C_{23} , $A_{13} + A_{23}$, $A_{14} + A_{24}$

▶ For example, user 1 decodes as:

User 1 A ₁₂ A	$A_{13} \mid A_{14} \mid B_1$	$B_{13} \mid B_{14}$	$C_{12} C_{13}$	C ₁₄
------------------------------	-------------------------------	----------------------	-----------------	-----------------

• Step 3: user 1 collects A₃₄.

$$A_{34}$$
, B_{12} , B_{14} , B_{24} , C_{12} , C_{13} , C_{23} , $A_{13} + A_{23}$, $A_{14} + A_{24}$

Two Quite Different Schemes

- Uncoded vs. coded prefetching;
- ▶ Binary vs. non-binary code;
- ► En(De)coding using simple combinatorics *vs.* sophisticated coding techniques (rank metric codes);
- Performs better at high cache memory regime vs. low cache memory regime.

Largely unrelated ...
Are there any connections?

A Hidden Connection

Putting them together will give some insights,

▶ Yu scheme transmits (4 symbols):

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34} + B_{14} + C_{13}, \quad A_{34} + B_{24} + C_{23}$
 $\downarrow \downarrow$

► Tian-Chen scheme (9 symbols):

$$A_{23} + A_{13}$$
, B_{12} , $A_{24} + A_{14}$, C_{12}
 A_{34} , B_{14} , C_{13} , B_{24} , C_{23}

Question: full decomposition \rightarrow partial decomposition?

An Alternative Scheme

An alternative partial decomposition scheme:

- Choose some transmissions to decompose;
- From those transmissions, choose some files to decompose;
- ► E.g., (N, K) = (3, 4), t = 2,
 - Demand (A,A,B,C), transmits

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34}, \quad B_{14} + C_{13}, \quad B_{24} + C_{23}$

An Alternative Scheme

Apply this decomposition pattern to all degenerate demands:

• Demand (A,A,B,B), transmits

$$A_{23} + A_{13} + B_{12}, \quad A_{24} + A_{14} + B_{12}$$

 $A_{34}, \quad B_{14} + B_{13}, \quad B_{24} + B_{23}$

Demand (A,A,A,C), transmits

$$A_{23} + A_{13} + A_{12}, \quad A_{24} + A_{14} + C_{12}$$

 $A_{34}, \quad A_{14} + C_{13}, \quad A_{24} + C_{23}$

Demand (A,A,A,A), transmits

$$A_{23} + A_{13} + A_{12}$$
, $A_{24} + A_{14} + A_{12}$
 A_{34} , $A_{14} + A_{13}$, $A_{24} + A_{23}$

An Alternative Scheme

- ► A good choice of decomposition: produces $(M, R) = (\frac{4}{3}, \frac{5}{6})$, a new corner poin;
- Decompose which transmissions and what files are "good"?
- ▶ First, we need a generalized framework to describe "decomposition".

A formal description of partial decomposition:

- ▶ Demand vector $\mathbf{d} = \{d_1, \dots, d_K\}$: demands by K users, $d_k \in [1 : N]$.
- ► Transmission type $\mathbf{t} = (t_1, \dots, t_N)$: associated with a transmission in Yu scheme:

$$\bigoplus_{k\in\mathcal{B}}W_{d_k,\mathcal{B}\setminus k},\quad |\mathcal{B}|=t+1,$$

 \bigcirc

 t_n : the number of users in \mathcal{B} requesting file W_n .

▶ Decomposition pattern $\mathcal{P}_{t,d}$: a partition of supp(t).

- ▶ The collection of all valid t is $\mathcal{T}_{d}^{(t)}$.
- ▶ The collection of all $\mathcal{P}_{t,d}$ is $\mathcal{P}_{d}^{(t)} = \{\mathcal{P}_{t,d} | t \in \mathcal{T}_{d}^{(t)}\}.$

lacktriangle The collection of all possible $\mathcal{P}_{m{d}}^{(t)}$ is $\mathfrak{P}_{m{t},m{d}}$.

▶ E.g.,
$$(N, K) = (3, 4), t = 2, \mathbf{d} = (A, A, B, C) = (1, 1, 2, 3)$$
:

We have $\mathcal{T}_{\mathbf{d}}^{(t)} = \{(2, 1, 0), (2, 0, 1), (1, 1, 1)\}$, for example, consider $\mathbf{t} = (1, 1, 1)$:

 $\mathcal{B} = \{1, 3, 4\} : A_{34} + B_{14} + C_{13} \xrightarrow{\text{decompose}} A_{34}, B_{14} + C_{13}$
 $\mathcal{B} = \{2, 3, 4\} : A_{34} + B_{24} + C_{23} \xrightarrow{A_{34}, B_{24} + C_{23}}$

then $\mathcal{P}_{\mathbf{t}, \mathbf{d}} = \mathcal{P}_{(1,1,1)(1,1,2,3)} = \{\{1\}, \{2,3\}\}$.

- ▶ Code instance: instance is a "copy" of $N\binom{K}{t}$ file segments.
- Auxiliary variable $\alpha_{d,\mathcal{P}_d^{(t)}}$: a portion of all instances adopting decomposition pattern $\mathcal{P}_d^{(t)}$,

$$\begin{split} &\sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t}, \boldsymbol{d}}} \alpha_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} = 1, \quad \boldsymbol{d} \in \mathcal{D}, \\ &1 \geq \alpha_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} \geq 0, \quad \boldsymbol{d} \in \mathcal{D}, \quad \mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{\boldsymbol{t}, \boldsymbol{d}}. \end{split}$$

The new partial decomposition coding scheme:

- Prefetching
 - Partition each file into $r\binom{K}{t}$ segments (r instances each of $\binom{K}{t}$ segments), each in finite field \mathbb{F}_{2^m} ;
 - Each user is allocated $P = rN\binom{K-1}{t-1}$ symbols;

The new partial decomposition coding scheme:

- Prefetching
 - Encode P symbols using (P_o, P) systematic rank metric code, s.t.

$$P_o - P = rM_r'\binom{K}{t}$$
 (M_r' to be defined later),

caches the parity symbols;

• Rank metric code existence condition: $m \ge P_o$.

Delivery:

• Find all possible decomposition patterns $\mathfrak{P}_{t,d}$;

- Find how many coding instances use each pattern, i.e. $\alpha_{d,\mathcal{P}^{(t)}}$;
- E.g., (N, K) = (3, 4), t = 2, the following code produces a good corner point.

1) Demand $\pmb{d}=(A,A,B,C)=(1,1,2,3),$ one decomposition pattern: $\mathcal{P}_{\pmb{d}}^{(t)}=\mathcal{P}_{(1,1,2,3)}^{(2)}$:

$$\mathcal{P}_{(2,1,0),(1,1,2,3)} = \{\{1,2\}\} = \{\{A,B\}\} : A_{23} + A_{13} + B_{12},$$

$$\mathcal{P}_{(2,0,1),(1,1,2,3)} = \{\{1,3\}\} = \{\{A,C\}\} : A_{24} + A_{14} + C_{12},$$

$$\mathcal{P}_{(1,1,1),(1,1,2,3)} = \{\{1\},\{2,3\}\} = \{\{A\},\{B,C\}\} :$$

$$A_{34}, \quad B_{14} + C_{13}, \quad B_{24} + C_{23}$$

$$R_{d,\mathcal{P}_d^{(t)}} = 5, M_{d,\mathcal{P}_d^{(t)},k} = 8, k \in [1:4], \text{ we let } \alpha_{d,\mathcal{P}_d^{(t)}} = 1.$$

2) Demand $\mathbf{d} = (A,A,B,B) = (1,1,2,2)$, two decomposition patterns: $1^{\text{st}} \mathcal{P}_{\mathcal{A}}^{(t)}$: without any decomposition

$$A_{23}^{(1)} + A_{13}^{(1)} + B_{12}^{(1)}, \quad A_{24}^{(1)} + A_{14}^{(1)} + B_{12}^{(1)},$$

 $A_{34}^{(1)} + B_{14}^{(1)} + B_{13}^{(1)}, \quad A_{34}^{(1)} + B_{24}^{(1)} + B_{23}^{(1)}$

$$R_{d,\mathcal{P}_{d}^{(t)}} = 4, M_{d,\mathcal{P}_{d}^{(t)},k} = 9, k \in [1:4], \text{ we let } \alpha_{d,\mathcal{P}_{d}^{(t)}} = 1/2.$$

2) Demand $\mathbf{d} = (A,A,B,B) = (1,1,2,2)$, two decomposition patterns: $2^{\text{nd}} \mathcal{P}_{\mathbf{d}}^{(t)}$: as following

$$\mathcal{P}_{(2,1,0),(1,1,2,2)} = \{\{1\}, \{2\}\} = \{\{A\}, \{B\}\} : A_{23}^{(2)} + A_{13}^{(2)}, B_{12}^{(2)},$$

$$A_{24}^{(2)} + A_{14}^{(2)}, B_{12}^{(2)};$$

$$\mathcal{P}_{(1,2,0),(1,1,2,2)} = \{\{1\}, \{2\}\} = \{\{A\}, \{B\}\} : A_{34}^{(2)}, B_{14}^{(2)} + B_{13}^{(2)},$$

$$A_{24}^{(2)}, B_{24}^{(2)} + B_{23}^{(2)};$$

$$R_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}}=6, M_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)},k}=7, k\in[1:4], \text{ we let } \alpha_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}}=1/2.$$

3) Demand d = (A,A,A,A) = (1,1,1,1), two decomposition patterns: $1^{\text{st}} \mathcal{P}_{d}^{(t)}$: without any decomposition

$$A_{23}^{(i)} + A_{13}^{(i)} + A_{12}^{(i)}, \quad A_{24}^{(i)} + A_{14}^{(i)} + A_{12}^{(i)},$$
 $A_{34}^{(i)} + A_{14}^{(i)} + A_{13}^{(i)}, \quad \text{for } i = 1, 2, 3, 4, 5.$

$$R_{{\pmb d}, {\mathcal P}_{\pmb d}^{(t)}} = 3, M_{{\pmb d}, {\mathcal P}_{\pmb d}^{(t)}, k} = 9, k \in [1:4], \text{ we let } \alpha_{{\pmb d}, {\mathcal P}_{\pmb d}^{(t)}} = 5/6.$$

3) For demand $\mathbf{d} = (A,A,A,A) = (1,1,1,1)$, two decomposition patterns:

 $2^{\text{nd}} \mathcal{P}_{d}^{(t)}$: special uncoded decomposition pattern

$$A_{23}^{(6)},A_{13}^{(6)},A_{24}^{(6)},A_{14}^{(6)},A_{12}^{(6)},A_{34}^{(6)}\\B_{23}^{(6)},B_{13}^{(6)},B_{24}^{(6)},B_{14}^{(6)},B_{12}^{(6)},B_{34}^{(6)}$$

$$R_{{\bm{d}}, \mathcal{P}_{\bm{d}}^{(t)}} = 12, M_{{\bm{d}}, \mathcal{P}_{\bm{d}}^{(t)}, k} = 3, k \in [1:4], \text{ we let } \alpha_{{\bm{d}}, \mathcal{P}_{\bm{d}}^{(t)}} = 1/6.$$

▶ The above example uses r = 6 instances of code,

Demand	(1,1,2,3)	(1,1,2,2)		(1, 1, 1, 2)		(1, 1, 1, 1)	
Pattern	1	1	2	1	2	1	2
$(M_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)},k},R_{\boldsymbol{d},\mathcal{P}_{\boldsymbol{d}}^{(t)}})$	(8,5)	(9,4)	(7,6)	(9,4)	(7,6)	(9,3)	(3, 12)
$r_{d,\mathcal{P}_d^{(t)}}$	6	3	3	3	3	5	1
$\alpha_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}}$	1	1/2	1/2	1/2	1/2	5/6	1/6

Memory-rate pair

$$(M,R) = \frac{1}{r\binom{K}{t}} \left(\max_{k \in [1:K]} \sum_{\mathcal{P}_d^{(t)}} r_{d,\mathcal{P}_d^{(t)}} M_{d,\mathcal{P}_d^{(t)},k}, \sum_{\mathcal{P}_d^{(t)}} r_{d,\mathcal{P}_d^{(t)}} R_{d,\mathcal{P}_d^{(t)}} \right)$$

would be $(\frac{4}{3}, \frac{5}{6})$.

A New Information-Theoretic Inner Bound

Figure \bigcap lew information-theoretic inner-bound for the example caching system (N, K) = (3, 4), t = 2.

A New Information-Theoretic Inner Bound

- Special uncoded transmission to keep the decomposition rule;
- ► As system parameters grow, no. of decomposition patterns will be huge;
- ► Hand-calculate best decompositions for all *d*, *t*? Impossible.

We need a computer-aided approach.

A New Information-Theoretic Inner Bound

Figure: A new information-theoretic inner-bound for the example caching system (N, K) = (4, 8), t = 2.

A Linear Programming Framework

Searching optimal decomposition patterns by linear programming:

▶ Rate region $\mathcal{R}^{(t)}$: collection of memory-rate pairs (M, R) s.t. there exists set of $\{\alpha_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}}\}$ satisfying

$$\begin{split} &\sum_{\mathcal{P}_{d}^{(t)} \in \mathfrak{P}_{t,d}} \alpha_{\boldsymbol{d},\mathcal{P}_{d}^{(t)}} = 1, \quad \boldsymbol{d} \in \mathcal{D}, \\ &1 \geq \alpha_{\boldsymbol{d},\mathcal{P}_{d}^{(t)}} \geq 0, \quad \boldsymbol{d} \in \mathcal{D}, \quad \mathcal{P}_{\boldsymbol{d}}^{(t)} \in \mathfrak{P}_{t,d}, \\ &\sum_{\mathcal{P}_{d}^{(t)} \in \mathfrak{P}_{t,d}} \alpha_{\boldsymbol{d},\mathcal{P}_{d}^{(t)}} R_{\boldsymbol{d},\mathcal{P}_{d}^{(t)}} \leq R\binom{K}{t}, \quad \boldsymbol{d} \in \mathcal{D}, \\ &\sum_{\mathcal{P}_{d}^{(t)} \in \mathfrak{P}_{t,d}} \alpha_{\boldsymbol{d},\mathcal{P}_{d}^{(t)}} M_{\boldsymbol{d},\mathcal{P}_{d}^{(t)},k} \leq M\binom{K}{t}, \quad \boldsymbol{d} \in \mathcal{D}, k \in [1:K]. \end{split}$$

A Linear Programming Framework

► Further define

$$(M_{\boldsymbol{d}}', R_{\boldsymbol{d}}') = \frac{1}{r\binom{K}{t}} \left(\max_{k \in [1:K]} \sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)}} r_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} M_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}, k}, \sum_{\mathcal{P}_{\boldsymbol{d}}^{(t)}} r_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} R_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} \right)$$

and

$$M'_r \triangleq \max_{\boldsymbol{d} \in \mathcal{D}} M'_{\boldsymbol{d}}, \qquad R'_r \triangleq \max_{\boldsymbol{d} \in \mathcal{D}} R'_{\boldsymbol{d}}.$$

A Linear Programming Framework

► Choose number of instances r s.t. exist integers $\{r_{\boldsymbol{d},\mathcal{P}_d^{(t)}}\}$

$$\left| \frac{r_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}}}{r} - \alpha_{\boldsymbol{d}, \mathcal{P}_{\boldsymbol{d}}^{(t)}} \right| \leq \epsilon,$$

s.t. $\epsilon \geq 0$ and arbitrarily small, we have

$$\lim_{r\to\infty}(M'_r,R'_r)=(M,R)$$

be the effective memory-rate pair of the new code.

Conclusion

- ▶ A single scheme unifying two general classes of schemes;
- ▶ Yu scheme and Tian-Chen scheme are two extreme points;
- Transmission type plays an important role and was overlooked before;
- Performance improvement not large, reside in the middle M regime → not a surprise.

Conclusion

- ► The new coding scheme cannot incorporate Gómez-Vilardebó¹'s scheme, a more generalized code may exist?
- Simplify linear programming: identify and remove those "bad" decomposing patterns?