Results

April 6, 2021

Tables of Friedman, Bonferroni-Dunn, Holm, Hochberg and Hommel Tests

Table 1: Average Rankings of the algorithms

Ranking	2.97727272727257	1.954545454545454	1.068181818181818
Algorithm	parzen	parzen des	parzen desthr

Friedman statistic considering reduction performance (distributed according to chi-square with 2 degrees of freedom: 40.159090909063. P-value computed by Friedman Test: 1.940566929370391E-9. Iman and Davenport statistic considering reduction performance (distributed according to F-distribution with 2 and 42 degrees of freedom: 219.5680473372606.

P-value computed by Iman and Daveport Test: 5.762466112908107E-23.

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.025 .

Table 2: Holm / Hochberg Table for $\alpha = 0.05$

	Holm/Hochberg/Hommel	0.025	0.05
0	d	2.4241450423501257E-10	0.0032849241616237554
_	$z = (R_0 - R_i)/SE$	6.331738236133032	2.939735609633194
	algorithm	parzen	parzen des
	·z	2	П

Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hommel's procedure rejects all hypotheses.

Table 3: Holm / Hochberg Table for $\alpha = 0.10$

Bonferroni-Dunn's procedure rejects those hypotheses that have a p-value ≤ 0.05 . Hochberg's procedure rejects those hypotheses that have a p-value ≤ 0.1 . Hommel's procedure rejects all hypotheses.

Table 4: Adjusted p-values

	p_{Homm}	4.848290084700251E-10	0.0032849241616237554	
	p_{Hoch}	4.848290084700251E-10	0.0032849241616237554	
7	p_{Holm}	4.848290084700251E-10	0.0032849241616237554	
	p_{Bonf}	4.848290084700251E-10	0.006569848323247511	
	unadjusted p	2.4241450423501257E-10	0.0032849241616237554	
	algorithm	parzen	parzen des	
		1	7	

Table 5: Holm / Shaffer Table for $\alpha = 0.05$

		, minori .0 oromi	range of troiting / minding range of a cooper	3	
i	algorithms	$z = (R_0 - R_i)/SE$	d	Holm	Shaffer
8	parzen vs. parzen desthr	6.331738236133032	2.4241450423501257E-10	0.01666666666666666	0.01666666666666666
7	parzen vs. parzen des	3.3920026264998375	6.938377508993372E-4	0.025	0.05
П	parzen des vs. parzen desthr	2.939735609633194	0.0032849241616237554	0.05	0.05

Bergmann's procedure rejects these hypotheses:

- parzen vs. parzen des
- $\bullet\,$ parzen vs. parzen desthr
- parzen des vs. parzen desthr

Table 6: Holm / Shaffer Table for $\alpha = 0.10$

Shaffer	0.0333333333333333	0.1	0.1
Holm	0.03333333333333333	0.05	0.1
d	2.4241450423501257E-10	6.938377508993372E-4	0.0032849241616237554
$z = (R_0 - R_i)/SE$	6.331738236133032	3.3920026264998375	2.939735609633194
algorithms	parzen vs. parzen desthr	parzen vs. parzen des	parzen des vs. parzen desthr
.2	3	7	-

- parzen vs. parzen des
- $\bullet\,$ parzen vs. parzen desthr
- $\bullet\,$ parzen des vs. parzen desthr