	Shira Saran
	BE-B → 20 Date:/_/
	AIR
×	Assin
4	Assignment 2
*	Question 1
	Rule based expert system is also known
U	as product systems of expert systems.
	A Polivier Systems
2	A rule pased expert system is one whose knowledge base contains the
	whose knowledge base contains the
	domain knowledge coded in the form of
	rules.
(
	Rules are used for representation of knowledge. Rules are expressed as a set of it-then
4	thiles are expressed as a set of it-then
	statements
3	Kules tells what to do or what to
	Rules telle what to do or what to conclude in different situation.
	44-
	P + 1 T + C +
•	Components of Expert System:

Injerence Engine Interface

Kindedge Base

Date:	 /	 /	

0	Knowled	e Base						
	It is	a col	lection	0	nles	or	other	information
	derived	from	the	hum	an e	apent	•	4
	_	٧					÷	

- (ii) Inference Engine It is the main processing element of expert system. It chooses rules from agenda to five.
- (iii) User Interface It is the method by which the expert system interacts with the user.
- (iv) Working Memory

 It contains the data that is received from the user during expert system session. Values in working memory are used to evaluate rules in the knowledge base.
- · Advantages:
- 1) High reproducible.
 2) Can be used in 2 Can be used in areas where human emor is high.
 3 It kB has correct into, low possibilty of error
 6 Performance remains Steedy
 6 High speed response to a greny.

#learnthesmarterway

· Disadvantages / Limitations:
il KB has less / wrong into.
Response of expert system to may get many if KB has less surong info. 2 Creative output not; possible for different scenarios 3 Maintenance & development costs are high
3 For each domain, a specific Es is needed.
6 Canit beam itself, hunce vegulor updates need.
Dlock World problem using STRIPS. It is known example to demonstrate plenning
It is known example to demonstrate plenning using STRIPS (Standford Research Institute Problem Solver).
· Block world consists of:
ii) Identical blocks with unique letter. iii) Blocks can be put one on another to John a stack.
iv This stack is built with robot am.
Eg. The arm can pret perform aparations of lifting a single black at a time & placing it.

	Date: / /
	B
AB	A
Initial State	Goal state
-	
Predicates used here are:	
On (A, table) } Both blad On (B, table) } Both blad	he are on the table
On (B, table) J Doin our	
On (B, A) -> Bis on A	
Clear (A) -> Block A has	nothing on it.
Holding (B) -> Robot's have	d is holding block (B)
Holding (B) -> Robot's hand Empty-Hand: Robot's hand	is not holding anything.
State representation:	
State representation: - On (A, table) ^ On (B,	table) ^ (lear (A) ^
(lear (B) 1 Empty Hand	> hitial Stage.
On (A, table) ~ Holding (B)	A Clear (A)
Chear (B) ^ Empty Hand On (A, table) ^ Holding (B) On (A, table) ^ On (B, F	1) ~ Clear (B) ~ Empty_
Hand (N)	, \
Actoin Actions:	
Unstack (A,A)	
Stack (B,A)	

*	Question 3
	Goal Stack Planning
0	Goal Stack Planning Main problem with Backward State of space Search is goal regression is not sound & algorithm may be handling goal dis descriptions that are not consistent with any state.
	Search is goal regression is not sound &
	algorithm may be handling goal dis descriptions
	that are not consistent with any state.
0	Basic idea of Goal Stack planning is to handle interactive compound goals using goal stacks. Here the stack contains:
	handle interactive compound goals using goal stacks.
_	Here the stack contains:
	Coals
	Operators - Add, Delete & Prerequiste lists A database maintaining the or current situation for
•	A database maintaining the or current situation for
	each operator used.
5	
	B C B
	ACDAD
	Start Goal
	On (B,A) A On (A, table) On (C,A) ^ On (B,D)
	1 O(c, table) 1 On (D, table) 1 on (A, table) 1 On (D, table).
	1 Empty Hand. On (D, table).

#learnthesmarterway

The stack for good will be: on (C, A)On (B,D)On (B,D)On (C,A) \wedge on (B,D) \wedge on (A, fable) \wedge On (D, fable)Here the last operation leads to final goal state where D&A dreed placed on table. Question 4 * Partial order planning The idea of partial order planning is to have a partial order between actions 4 only commit to an ordering between actions when forced.

This is sometimed also also between actions when forced. · This is sometimes also called as non-linear planner which is misnomer because such plannes ofter produce a linear plan. · A partial ordering is a less-than relation that is transitive & asymmetric. A partial - order plan is a set of actions together with a partial ordering, representing a before relation or actions, such as that any total ordering of the actions, consistent with the partial ordering which will solve the goal from the initial

Eg.	Begin Get Lock Lock the door End
	(a) Partial order planning
	Begin + Get Lock + Get Keys + Lock the door + End
	Bagin Get keys Get Lock Lock the door Find
- 7	(b) Total Order Planning.
	Question 5
*	Constraint Statisfaction Problem Constraints are the natural medium for people
•	to express problems in many fields. Many real problems in AI can be modded as constraint satisfaction problem and are solved
	TWOUGH Sourch.
•	Eg. of constraint The sum of 3 angles in triangle.

•	Constraint is a logical relation among variables.
•	Constraint satisfaction is a process of disding
	Constraint is a logical relation amony variables. Constraint satisfaction is a process of dividing finding a solution to a set of problems
	constraints.
,	Types of constaints:
\bigcirc	Types of constaints: Unary — involves a single variable Eq. South Africa + green. Binary — involves a pair of variables
	Eg. South Alvice of green.
(2)	Binary - involves a pair of variables
	Eg. South Africa + washington.
(3)	Migher Order Constraints - Involves 3 ar more variables.
3	Eq. Prolessos A. B. C. cou't be on committee.
4	Preference (Soft) Constraints)
G.	Suppose you have CSP with variables A, B, C
1.	each with domain (1,2,3,4). Suppose the
	contraints are A < B & B < C.
\rightarrow	Variables: { A, B, C }
	Donain: [1,2,3,43
	Constraint: 1 A < B
	2 B < c