Formula sheet Calculus

Derivatives and integrals

Table 1: Some important derivatives and indefinite integrals, $c \in \mathbb{R}$

f(x)	f'(x)	$\int f(x)dx$	remarks
\overline{x}	1	$\frac{1}{2}x^2 + c$	
$\frac{1}{x}$	$-\frac{1}{x^2}$	$\ln x + c$	
x^r	$-\frac{1}{x^2}$ rx^{r-1}	$\begin{vmatrix} \frac{1}{r+1}x^{r+1} + c \\ e^x + c \end{vmatrix}$	$r \neq -1$
e^x	e^x	$e^x + c$	
ln(x)	$\frac{1}{x}$		x > 0
$\sin(x)$	$\cos(x)$	$-\cos(x) + c$	
$\cos(x)$	$-\sin(x)$	$\sin(x) + c$	
tan(x)	$\frac{1}{\cos^2(x)}$		

Trigonometric identities

- $\sin^2(x) + \cos^2(x) = 1$
- $\sin(x+y) = \sin(x)\cos(y) + \sin(y)\cos(x)$
- $\cos(x+y) = \cos(x)\cos(y) \sin(x)\sin(y)$
- $\sin(2x) = 2\sin(x)\cos(x)$
- $\cos(2x) = 2\cos^2(x) 1 = 1 2\sin^2(x)$

Quadratic formula

If
$$Ax^2 + Bx + C = 0$$
, then $x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A}$

Tangent line and tangent plane

- For a function f(x) that is continuous and differentiable at x = a, the equation of the line tangent to the function at (a, f(a)) is given by y = f'(a)(x a) + f(a)
- For a function f(x,y) that is continuous at (x,y), and the partial derivatives exist, the equation of the plane tangent to the function at (a,b,f(a,b)) is given by $z = \frac{\partial f}{\partial a}(x-a) + \frac{\partial f}{\partial y}(y-b) + f(a,b)$

Convergence tests for series

nth term test for divergence

If a sequence $\{a_n\}$ does not converge to zero (i.e. if $\lim_{n\to\infty} a_n = L$, with $L \neq 0$, $\{a_n\}$ diverges or $\{a_n\}$ diverges to $\pm \infty$), then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Convergence tests for positive series

- Integral test: Suppose that $a_n = f(n)$, where f is positive, continuous, and non-increasing on an interval $[N, \infty)$ for some positive integer N. Then $\int_N^\infty f(x)dx$ and $\sum_{n=1}^\infty a_n$ either both converge or both diverge to infinity.
- Comparison test: Let $\{a_n\}$ and $\{b_n\}$ be positive infinite sequences for which there exists a positive constant K such that, ultimately, $0 \le a_n \le Kb_n$.
 - (a) If the series $\sum_{n=1}^{\infty} b_n$ converges, then so does the series $\sum_{n=1}^{\infty} a_n$
 - (b) If the series $\sum_{n=1}^{\infty} a_n$ diverges to infinity, then so does the series $\sum_{n=1}^{\infty} b_n$
- Limit comparison test: Let $\{a_n\}$ and $\{b_n\}$ be positive infinite sequences and let $\lim_{n\to\infty} \frac{a_n}{b_n} = L$, where L is a non-negative number or $+\infty$.
 - (a) If $L < \infty$ and the series $\sum_{n=1}^{\infty} b_n$ converges, then so does the series $\sum_{n=1}^{\infty} a_n$
 - (b) If L>0 and $\sum_{n=1}^{\infty}b_n$ diverges to infinity, then so does the series $\sum_{n=1}^{\infty}a_n$
- Ratio test: Let $\{a_n\}$ be a positive infinite sequence, and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = \rho$, where ρ is a nonnegative number or $+\infty$.
 - (a) If $\rho < 1$, the series $\sum_{n=1}^{\infty} a_n$ converges.
 - (b) If $\rho > 1$, the sequence $\{a_n\}$ and the series $\sum_{n=1}^{\infty} a_n$ both diverge to infinity.
 - (c) If $\rho = 1$, this test gives no information.

The alternating series test

Suppose $\{a_n\}$ is a sequence whose terms satisfy, for some positive integer N, the following three conditions:

- (a) $a_n a_{n+1} < 0$ for n > N (the sequence is alternating)
- (b) $|a_{n+1}| < |a_n|$, for n > N (the sequence decreases in absolute value)
- (c) $a_n \to 0$ (the sequence converges to 0)

Then the series $\sum_{n=1}^{\infty} a_n$ converges.