ミクロ経済学 I 演習 第11回 解答

作成日 | 2017年7月27日

問題 1

確率論的には、当たりを選ぶためには選択を変更すべきである。便宜上三つの箱に A,B,C と名前を付け、一般性を失わず第1 ステップで A の箱を選んだとする。この A の箱が当たりである確率は 1/3 である。

第 2 ステップで B の箱が選ばれたとする. この事象が起こるのは、「A が正解で、B と C から B が選ばれた時」または「C が正解の時」である. それぞれの確率は、

$$\Pr[A$$
が正解かつ B が選ばれる $]=rac{1}{3} imesrac{1}{2}=rac{1}{6}$ $\Pr[C$ が正解 $]=rac{1}{3}$

なので、Bが開いたのを観察したときのA,Cが当たりである確率はそれぞれ、

$$\Pr[A \text{ が正解} \mid B \text{ が開いた}] = \frac{1/6}{1/6 + 1/3} = \frac{1/6}{1/2} = \frac{1}{3}$$

$$\Pr[C \text{ が正解} \mid B \text{ が開いた}] = \frac{1/3}{1/6 + 1/3} = \frac{1/3}{1/2} = \frac{2}{3}$$

となる. したがって C が正解である確率の方が高くなる. 第 2 ステップで C が開いた場合. 同様に B が正解である確率の方が高くなる.

問題 2

タイプ c_H , c_L の企業 2 の均衡での生産量をそれぞれ q_H , q_L とする. 企業 1 の目的関数 :

$$\pi_1(q_1) = \theta(a - q_1 - q_H - c)q_1 + (1 - \theta)(a - q_1 - q_L - c)q_1$$
$$= (a - q_1 - c - \theta q_H - (1 - \theta)q_L)q_1$$

 q_1 に関する一階条件より,

$$\frac{\partial \pi_1}{\partial q_1} = -q_1 + a - q_1 - c - \theta q_H - (1 - \theta) q_L = 0$$

$$\iff q_1 = \frac{a - c - \theta q_H - (1\theta) q_L}{2}$$
(1)

を得る.

タイプ c_H の企業 2 の目的関数:

$$\pi_H(q_H) = (a - q_1 - q_H - c_H)q_H$$

■ 厳密には生産量は非 負なので得られた q_1 が 0 以上になる条件 が必要である. それ が満たされない場合 は $q_1 = 0$ が最適反応 になる. q_H に関する一階条件より,

$$\frac{\partial \pi_H(q_H)}{\partial q_H} = -q_H + a - q_1 - q_H - c_H = 0$$

$$\iff q_H = \frac{a - q_1 - c_H}{2}$$
(2)

を得る.

タイプ c_L の企業2の目的関数:

$$\pi_L(q_L) = (a - q_1 - q_L - c_L)q_L$$

 q_L に関する一階条件より、

$$\frac{\partial \pi_L(q_L)}{\partial q_L} = -q_L + a - q_1 - q_L - c_L = 0$$

$$\iff q_L = \frac{a - q_1 - c_L}{2}$$
(3)

を得る.

(1), (2), (3) を連立して解くと,

$$q_{1} = \frac{a - 2c + \theta c_{H} + (1 - \theta)c_{L}}{3}$$

$$q_{H} = \frac{a - 2c_{H} + c}{3} + \frac{1 - \theta}{6}(c_{H} - c_{L})$$

$$q_{L} = \frac{a - 2c_{L} + c}{3} - \frac{\theta}{6}(c_{H} - c_{L})$$

が得られる.

問題 3

タイプBのプレイヤーの利得を考える.

	BB	BS	SB	SS
B	$p_B \cdot 2 + (1 - p_B) \cdot 2$	$p_B \cdot 2 + (1 - p_B) \cdot 0$	$p_B \cdot 0 + (1 - p_B) \cdot 2$	$p_B \cdot 0 + (1 - p_B) \cdot 0$
В	= 2	$=2p_B$	$=2(1-p_B)$	= 0
S	$p_B \cdot 0 + (1 - p_B) \cdot 0$	$p_B \cdot 0 + (1 - p_B) \cdot 1$	$p_B \cdot 1 + (1 - p_B) \cdot 0$	$p_B \cdot 1 + (1 - p_B) \cdot 1$
	=0	$=1-p_B$	$= p_B$	= 1

タイプSのプレイヤーの利得を考える.

	BB	BS	SB	SS
В	$(1-p_S)\cdot 1+p_S\cdot 1$	$(1-p_S)\cdot 1+p_S\cdot 0$	$(1-p_S)\cdot 0+p_S\cdot 1$	$(1-p_S)\cdot 0+p_S\cdot 0$
Ъ	= 1	$=1-p_S$	$= p_S$	=0
S	$(1-p_S)\cdot 0+p_S\cdot 0$	$(1-p_S)\cdot 0+p_S\cdot 2$	$(1-p_S)\cdot 2+p_S\cdot 0$	$(1-p_S)\cdot 2+p_S\cdot 2$
3	=0	$=2p_S$	$=2(1-p_S)$	= 2

(a) $p_B < \frac{1}{3}$, $p_S < \frac{1}{3}$ のとき,

$$2p_B < 1 - p_B$$
, $2(1 - p_B) > p_B$
 $1 - p_S > 2p_S$, $2(1 - p_S) > p_S$

なので、最適反応戦略をまとめると、

	BB		BS		SB		S	S
BB	√	√						
BS					√	\checkmark		
SB			√	√				
SS							\checkmark	\checkmark

となる. よってこの信念の下での純粋戦略ベイジアンナッシュ均衡は

((B,B),(B,B)), ((B,S),(S,B)), ((S,B),(B,S)), ((S,S),(S,S)) の四つである.

(b) $\frac{1}{3} < p_B < \frac{2}{3}$, $\frac{1}{3} < p_S < \frac{2}{3}$ のとき,

$$2p_B > 1 - p_B$$
, $2(1 - p_B) > p_B$
 $1 - p_S < 2p_S$, $2(1 - p_S) > p_S$

なので, 最適反応戦略をまとめると,

	BB		BS		SB	S	S
BB	√	\checkmark					
BS			√	√	✓		
SB				√			
SS						√	√

となる. よってこの信念の下での純粋戦略ベイジアンナッシュ均衡は ((B,B),(B,B)),((B,S),(B,S)),((S,S),(S,S)) の三つである.

(c) $p_B > \frac{2}{3}$, $p_B > \frac{2}{3}$ のとき,

$$2p_B > 1 - p_B$$
, $2(1 - p_B) < p_B$
 $1 - p_S < 2p_S$, $2(1 - p_S) < p_S$

なので, 最適反応戦略をまとめると,

	BB		В	S	SB		S	S
BB	√	\checkmark						
BS			√	✓				
SB					√	\checkmark		
SS							√	√

となる. よってこの信念の下での純粋戦略ベイジアンナッシュ均衡は ((B,B),(B,B)), ((B,S),(B,S)), ((S,B),(S,B)), ((S,S),(S,S)) の四つである.

は、どのタイプも相手は 自分と違うタイプの可能 性が高いと予想している ことにより均衡になる.

◀ 二つ目と三つ目の均衡

問題 4

(a) プレイヤー1の最適反応はタイプによらず以下の通りである.

よってプレイヤー1の最適反応戦略は

$$\begin{cases}
D, D & \text{for L} \\
U, U & \text{for M} \\
U, U & \text{for R}
\end{cases}$$

である.

プレイヤー2の最適反応を求める.

	L	M	R
U, U	$\frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot \frac{2}{3} = \frac{2}{3}$	$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$	$\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$
U, D	$\frac{1}{2} \cdot \frac{2}{3} + \frac{1}{2} \cdot 2 = \frac{4}{3}$	$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 3 = \frac{3}{2}$	$\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 0 = \frac{1}{2}$
D, U	$\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot \frac{2}{3} = \frac{4}{3}$	$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 1 = \frac{1}{2}$	$\begin{array}{ c c }\hline \frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 0 = \frac{3}{2}\end{array}$
D, D	$\frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 2 = \underline{2}$	$\frac{1}{2} \cdot 0 + \frac{1}{2} \cdot 3 = \frac{3}{2}$	$\frac{1}{2} \cdot 3 + \frac{1}{2} \cdot 0 = \frac{3}{2}$
A _° 1		r. 1 😕 1	

各プレイヤーの最適反応を重ねると,

よって ((D,D), L) が純粋戦略ベイジアンナッシュ均衡である.

(b) プレイヤー1はタイプによらず以下のように最適反応が得られる.

	LL	LM	LR	ML	MM	MR	RL	RM	RR
U	1	1	1	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	<u>1</u>	1
D	2	2	2	0	0	0	0	0	0
2 1	<u> </u>	D -0°1	2 1 -	2 ~ =	が 二 止、	2 12 12	7		

タイ \overline{J} t_1 のプレイヤー 2 の最適反応を求める.

$$\begin{array}{c|cccc} & L & M & R \\ U, U & \frac{2}{3} & 0 & \underline{1} \\ U, D & \frac{2}{3} & 0 & \underline{1} \\ D, U & 2 & 0 & \underline{3} \\ D, D & 2 & 0 & 3 \end{array}$$

タイプ t_2 のプレイヤー 2 の最適反応を求める.

	L	M	R
U, U	$\frac{2}{3}$	1	0
U, D	$\frac{2}{3}$	1	0
D, U	2	3	0
D, D	2	3	0

これら二つをまとめるとプレイヤー2の最適反応戦略は、プレイヤー1の任意の 純粋戦略に対して(R, M)である。各プレイヤーの最適反応戦略を重ねると、

	LL	LM	LR	ML	MM	MR	RL	RN	1	RR
UU				✓	✓	✓	✓	√	✓	\checkmark
UD									✓	
DU									✓	
DD	√	✓	✓						✓	

となる. したがって純粋戦略ベイジアンナッシュ均衡は ((U,U), (R,M)) である.

(c) (a) のプレイヤー 2 が状態を知らない場合の均衡でのプレイヤー 2 の利得は 2, (b) のプレイヤー 2 が状態を知っている場合の均衡でのプレイヤー 2 の均衡利得は 1 である. よって情報を得ることは必ずしも均衡利得の改善にはつながらず, かえって利得を下げてしまう可能性があることがわかる.