PEMODELAN GRAF: NETWORKS Algoritma Dijkstra - Floyd

C. Kuntoro Adi, SJ Universitas Sanata Dharma MATEMATIKA DISKRIT 2020/2021

Referensi:

Rosen, 2019, Discrete Mathematics and Its Applications, Bab 11 Taha, 2017, Operation Research an Introduction, Bab 6

•

Pokok Bahasan

- 1. Pengantar
- 2. Minimal spanning tree
- 3. Route terpendek: Dijkstra
- 4. Route terpendek: Floyd

3. ROUTE TERPENDEK: ALGORITMA FLOYD

Ada dua model dalam menentukan jarak terpendek

- 1. Dijkstra Algorithm: untuk menentukan jarak terpendek suatu sumber (asal) terhadap node lain yang ada dalam jaringan
- 2. Floyd Algorithm: dipergunakan untuk menentukan jarak atau route terpendek setiap node dalam suatu jaringan

3

Algoritma Floyd

Catatan awal

- Algoritma Floyd mencoba menemukan jarak atau route terpendek tiap node dalam suatu jaringan
- Digambarkan melalui matriks n-nodes ukuran (n x n)
- Menggunakan "triple operation" untuk menemukan perlu tidaknya jarak antar node diganti dengan jarak yang lebih pendek

Triple operation Floyd

(Taha, 2017)

• Triple operation: jika $d_{ik}+d_{kj} < d_{ij}$, maka jarak terpendek node i ke node j adalah $d_{ik}+d_{kj}$

Ę

Algoritma Floyd

Langkah 0:

Tentukan matriks jarak Do dan matriks sequence So, set k = 1

Langkah k:

- 1. tentukan "pivot row" dan "pivot column" k; lakukan "triple operation" untuk setiap elemen jarak d_{ij} di matriks D_{k-1} untuk semua node i dan j
- 2. Jika $d_{ik}+d_{kj}< d_{ij}$, (dengan $i\neq k$, $j\neq k$ dan $i\neq j$) maka d_{ij} di D_{k-1} diganti dengan ($d_{ik}+d_{kj}$) dan s_{ij} di S_{k-1} diganti dengan k
- 3. k=k+1. Jika k = n+1 stop. Otherwise ulang step k

-

Menemukan jarak terpendek dari matrix Dn dan Sn

Kita bisa menemukan jarak terpendek setiap node i dan node j dari matrix Dn dan Sn dengan patokan sebagai berikut:

- 1. Dari matrix Dn, d_{ij} memberi informasi jarak terpendek antara node i dan node j
- Dari matrix Sn, temukan node intermediate k = s_{ij} yang memberi informasi mengenai route i → k → j. Jika s_{ik} = k dan s_{kj} = j, stop. Semua node intermediate ditemukan. Otherwise, ulang prosedur antar node i dan k dan antar node k dan j.

Contoh

Pada jaringan sebagaimana terlihat di gambar, temukan route terpendek untuk setiap node. Link (3,5) adalah jalur satu arah. Kendaraan tidak diperbolehkan mengambil jalur dari 5 ke 3; sedangkan yang lain adalah jalur dua arah.

•

Penyelesaian

Iterasi 0

Matrix Do dan So merupakan representasi awal jaringan. Do adalah matrix simetri, kecuali $d_{53} = \infty$ mengingat kendaraan tidak diperkenankan menggunakan jalur 5 ke 3

	1	2	$\frac{D_0}{3}$	4	5
1	_	3	10	8	8
2	3	(∞	5	∞
3	10	8	_	6	15
4	∞	5	6	_	4
5	∞	8	∞	4	×

			S_0		
	1	2	$\frac{S_0}{3}$	4	5
1	_	2	3	4	5
2	1	_	3	4	5
3	1	2		4	5
4	1	2	3	Ī	5
5	1	2	3	4	- 2

			D_0		
	\bigcirc	2	$\frac{D_0}{3}$	4	5
(1)		3	10	∞	8
2	3	<u> </u>	8	5	8
3	10	\bigcirc	-	6	15
4	8	5	6	-	4
5	∞	∞	∞	4	

			S_0		
	1	2	$\frac{S_0}{3}$	4	5
1	_	2	3	4	5
2	1	y 	(3)	4	5
3	1	(2)	l	4	5
4	1	2	3	_	5
5	1	2	3	4	1 - 2

Set k=1; pivot row dan pivot column berupa daerah terarsir di baris pertama dan kolom pertama pada matrix Do (slide sebelumnya). Sel d_{23} dan d_{32} adalah sel yang bisa diupdate melalui triple operation.

D1 dan S1 diperoleh dari Do dan So dengan cara sebagai berikut:

- 1. Modifikasi d23 dengan $d_{21}+d_{13} = 3+10 = 13$; dan ubah $s_{23} = 1$
- 2. Ganti d_{32} dengan $d_{31} + d_{12} = 10+3 = 13$ dan ubah $s_{32} = 1$

 D_1 S_1 ∞ ∞

Perubahan nilai	iarak terlihat	di huruf tebal	nada matrix	D1 dan S1	ı
i Ci ubanan milai	jarak termiat	ui ilui ui tobai	paua matrix	. Di dan Si	

	1	2	$\frac{D_1}{3}$	4	5
1		3	10	∞	∞
(2)	3	_	13	5	∞
3	10	13	_	6	15
4	∞	5	6	_	4
5	∞	∞	8	4	

	1	2	$\frac{3}{3}$	4	5
1	_	2	3	(4)	5
2	1	_	1	4	5
3	1	1	_	4	5
4	(1)	2	3	_	5
5	1	2	3	4	=

- Set k = 2; pivot row dan pivot column berupa daerah terarsir di baris kedua dan kolom kedua pada matrix D1 (slide sebelumnya).
- Triple operation dilakukan untuk sel d₁₄ dan d₄₁, menghasilkan perubahan (sel berisi angka dengan huruf tebal di matrix D2 dan S2)

13

	D_2							
	1	2	D_2	4	5			
1	 30	3	10	8	∞			
2	3	<u> </u>	13	5	8			
3	10	13	-	6	15			
4	8	5	6	-	4			
5	∞	∞	∞	4	_			

	S_2						
	1	2	3	4	5		
1	_	2	3	2	5		
2	1	-	1	4	5		
3	1	1	_	4	5		
4	2	2	3	_	5		
5	1	2	3	4	_		

			D_2		
	1	2	3	4	5
1	_	3	10	8	∞
2	3		13	5	$^{\circ}$
3	10	13	-	6	15
4	8	5	6	10 00	4
5	8	8	8	4	-

			\mathfrak{I}_2		
	1	2	3	4	5
1	-	2	3	2	(5)
2	1		1	4	5
3	1	1	_	4	5
4	2	2	3	I—	5
5	1	2	3	4	_

Set k = 3; pivot row dan pivot column berupa daerah terarsir di baris ketiga dan kolom ketiga pada matrix D2.

15

Iterasi 3

Set k = 3; pivot row dan pivot column berupa daerah terarsir di baris ketiga dan kolom ketiga pada matrix D2. Triple operation membentuk matrix D3 dan S3 sebagai berikut:

			D_3		
	1	2	3	4	5
1	_	3	10	8	25
2	3	_	13	5	28
3	10	13	_	6	15
4	8	5	6		4
5	∞	∞	∞	4	_

	S_3					
	1	2	3	4	5	
1	_	2	3	2	3	
2	1		1	4	3	
3	1	1	-	4	5	
4	2	2	3		5	
5	1	2	3	4		

Iterasi 4

Set k = 4; pivot row dan pivot column berupa daerah terarsir di baris keempat dan kolom keempat pada matrix D3.

			D_3		
	1	2	3	4	5
1	_	3	10	8	25
2	3	_	13	5	28
3	10	13	_	6	15)
4	8	5	6	_	4
5	8	8	8	4	_

			S_3		
	1	2	3	4	5
1	_	2	3	2	3
2	1	_	1	4	3
3	1	1	_	4	5
4	2	2	3	_	5
5	1	2	3	4	1—

1

Iterasi 4

Set k = 4; pivot row dan pivot column berupa daerah terarsir di baris keempat dan kolom keempat pada matrix D3. Triple operation membentuk matrix D4 dan S4 sebagai berikut:

			D_4		
	1	2	3	4	5
1	-	3	10	8	12
2	3		11	5	9
3	10	11	_	6	10
4 5	8	5	6	_	4
5	12	9	10	4	_

	S_4				
	1	2	3	4	5
	: 1	2	3	2	4
	1	-	4	4	4
Γ	1	4	_	4	4
	2	2	3	1	5
T	4	4	4	4	_

- Set k=5; pivot row dan pivot column berupa daerah terarsir di baris kelima dan kolom kelima pada matrix D4. Tidak ada lagi kemungkinan modifikasi dengan triple operation. Iterasi berhenti.
- Matrix D5 dan S5 memberi informasi lengkap jarak dan route terdekat antar node

19

Membaca jarak dan route terdekat (dengan D4 dan S4)

		D_4		
1	2	$\frac{D_4}{3}$	4	5
_	3	10	8	12
3	-	11	5	9
10	11	1-	6	10
8	5	6	-	4
12	9	10	4	_

S_4					
1	2	3	4	5	
7-1	2	3	2	4	
1	-	4	4	4	
1	4	_	4	4	
2	2	3	1-1	5	
4	4	4	4	-	
	1 - 1 1 2 4	1 2 - 2 1 - 1 4 2 2 4 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Misalkan ditanyakan, berapa jarak terdekat node 1 ke node 5, dan routenya seperti apa?

- o Jarak node 1 ke node $5 = d_{15} = 12 \text{ km}$
- o Route? Segmen (i,j) merupakan sambungan langsung jika s_{ij} = j. Otherwise: tersambung melalui node lain. Oleh karena itu
 - $s_{15} = 4 \neq 5$ sehingga routenya $1 \rightarrow 4 \rightarrow 5$
 - $s_{14} = 2 \neq 4$ sehingga routenya $1 \rightarrow 2 \rightarrow 4 \rightarrow 5$
 - $s_{12} = 2$, $s_{24} = 4$ dan $s_{45} = 5$; tidak ada modifikasi lebih lanjut
 - 1→2→4→5 menggambarkan route terpendek node 1 ke node 5

Soal Latihan		
		21