Hoja 1 Problema 10. Sean A y B dos conjuntos no vacíos de números reales tales que a < b para todo $a \in A$ y $b \in B$. Demostrar que existen $\sup A$, $\inf B$, y que además, $\sup A \leq \inf B$. Dar un ejemplo donde estos dos valores coincidan.

Sean A y B dos conjuntos no vacíos de números reales tales que $a < b \ \forall a \in A \ \forall b \in B$, se puede deducir que $\forall a \in A \ \exists b \in B : a < b \Leftrightarrow \forall a \in A \ \exists n \in \mathbb{R} : n \geq a \Leftrightarrow n \ es \ cota \ superior \ de \ A \Leftrightarrow \exists \ \sup A.$

Análogamente, $\forall b \in B \ \exists a \in A : a < b \Leftrightarrow \forall b \in B \ \exists n \in \mathbb{R} : b \geq n \Leftrightarrow n \ es \ cota \ inferior \ de \ B \Leftrightarrow \exists \inf B.$

Demostrada la existencia de $\sup A$ y de $\inf B$, y sabiendo que $a < b \ \forall a \in A \ \forall b \in B$, se deduce que los conjuntos A y B no tienen elementos en común y por tanto, $\sup A \leq \inf B$.

Los valores de sup A e inf B pueden coincidir cuando se dan dos intervalos del tipo A=(x,y) y B=(y,z). Un ejemplo concreto podría ser A=(0,2), B=(2,4), donde sup $A=\inf B=2$.