§7.7-7.9 Ordinary Differential Equations IV, §8.1-8.4 Vectors, Lines and Planes in ${\bf R}^3$

illusion

Especially made for zqc

School of Mathematical Science, XMU

Sunday 16th March, 2025

http://illusion-hope.github.io/25-Spring-ZQC-Calculus/

HW-3: Liouville's Theorem

例 1

设 $y_1(x), y_2(x)$ 是二阶齐次线性方程 y'' + p(x)y' + q(x)y = 0 的两个解,令

$$W(x) = \det \begin{bmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{bmatrix} = \underbrace{y_1(x)y_2'(x) - y_1'(x)y_2(x)}_{\blacktriangleleft},$$

$$W_{-} = \underbrace{y_1'y_2'' - y_1''y_2' - y_1''y_2}_{\blacktriangleleft} = \underbrace{y_1'y_2'' - y_1''y_2}_{\blacktriangleleft}$$

证明:

$$W' = y_1' y_2' + y_1 y_2'' - y_1' y_2' - y_1'' y_2 = y_1 y_2'' - y_1'' y_2 .$$

(1)
$$W(x)$$
 满足方程 $W' = -p(x)W$;
(2) $W(x) = W(x_0) \exp\left\{-\int_{x_0}^x p(t) dt\right\}$. $= y_1 \left(-p_2 - y_3\right) - \left(-p_3 - y_1\right) / 2$.

$$= - p y_1 y_2 + p y_1 y_2 = - p w .$$
(Liouville) $W' = \operatorname{tr}[\boldsymbol{A}(x)]W \rightsquigarrow W = W(x_0) \exp\left\{\int_{x_0}^x \operatorname{tr}[\boldsymbol{A}(t)] \, \mathrm{d}t\right\}$

Sunday 16th March, 2025 (illusion) Lecture 4

$$y' = A(x)y$$

$$A(x) = (a_{ij}(x))_{n \times n}$$

$$y' = A(x)y$$

$$y' = A(x)y$$

$$A(x) = (a_{ij}(x))_{n \times n}$$

$$y' = A(x)y$$

$$A(x) = (a_{ij}(x))_{n \times n}$$

$$Y' = X(x)$$

_	列 2	+
	求解下列微分方程的通解:	
_	求解下列微分方程的通解: $\frac{\mathrm{d}^2 y}{\frac{\mathrm{d}^2 y}{x^2} - 2 \frac{\mathrm{d}y}{x^2} + 2y = 2e^x \cos x \cos 2x.}$	\top
	$\frac{-v}{v} - 2 \frac{-v}{v} + 2u = 2e^x \cos x \cos 2x$.	_
	- - - - - - - - - -	٤/
	λ²-=λ+<=0 (λ-1)=-1 = 1= 1± 1 w (e-1)	Ⅎ
		1
	<u>₹6,001 √ 6,001 √ 6,001 √ 6</u>	
	(126) x x (200) + (200	+
	e" = e (cosx + isinx) = c cosx + isinx	
	y, x y x	Т
	31. h 91 4.	-
	C ω/λ = 1,+h	+
	2	
		+
	ρ ² ς·1 ²	
		+
	det /= 41 - 41 = -21 + 0.	Т
		+
		\top

$$C_{1}(x) = \frac{1}{2} \cos x + C_{2}(x) = \frac{1}{2} \cos x + C_{1}(x) = \frac{1}{2} \cos x + C_{2}(x) = \frac{1}{2} \cos x + C_{1}(x) = \frac{1}{2} \cos x + C_{2}(x) = \frac{1}{2} \cos x + C_{1}(x) = \frac{1}{2} \cos x + C_{2}(x) = \frac{1}{2} \cos x + C_{1}(x) = \frac{1}{2} \cos x + C_{2}(x) = \frac{1}{2} \cos x + C_{1}(x) = \frac{1}{2} \cos x + C_{2}(x) = \frac{1}{2}$$

$$|x| = |x| + |x|$$

 $= -\frac{2}{4}\cos^{4}x. + \frac{1}{7}\cos^{2}x + c_{1}$

Preparation

定义复值函数 $z: \mathbb{R} \to \mathbb{C}, z(t) = \varphi(t) + i \psi(t)$, 其中 $\varphi(t), \psi(t)$ 都是实值函数,

那么类似定义如下概念:

(1)
$$\lim_{t \to t_0} z(t) = \lim_{t \to t_0} \varphi(t) + i \lim_{t \to t_0} \varphi(t); \quad v = a + ib. \quad v$$
(2) $z(t)$ 在 t_0 处连续 $\Leftrightarrow \varphi(t), \quad \psi(t)$ 在 t_0 处连续; $v = a + ib. \quad v =$

- (3) $z'(t) = \varphi'(t) + i \psi'(t)$.

容易验证下面的求导法则也成立:

- $(\alpha z_1(t) \pm \beta z_2(t))' = \alpha z_1'(t) \pm \beta z_2'(t), \ \alpha, \beta \in \mathbb{R}$:
- $(z_1(t)z_2(t))' = z_1'(t)z_2(t) + z_1(t)z_2'(t)$.

Lemma 4

(illusion) Lecture 4

An important Lemma

Lemma 5

设
$$z(x) = \varphi(x) + i\psi(x)$$
 为 $y^{(n)} + a_1(x)y^{(n-1)} + \dots + a_{n-1}(x)y' + a_n(x)y = 0$ 的一个复值解,其中 $\varphi(x)$, $\psi(x)$, $a_i(x)$ $(1 \le i \le n)$ 均为实值函数,那么

- (1) $\varphi(x), \psi(x)$ 也为原方程的解; \checkmark
- (2) $\overline{z(x)}$ 也为原方程的解.

吉方程有两解 $z_{1,2}=e^{(a\pm bi)x}=e^{ax}(\cos bx\pm i\sin bx)$ $\Rightarrow z_3=e^{ax}\cos bx$ $z_4=e^{ax}\sin bx$ 也为原方程的解。且 z_3,z_4 可以表示为 z_1,z_2 的线性组合。

<[(μx)]+i<[(μx)] =0.

• 记 $L[y] = y^{(n)} + a_1(x)y^{(n-1)} + a_{n-1}(x)y' + a_n(x)y$,若上述引理的方程修改为 L(y) = u(x) + iv(x),那么 $y_1 = \varphi(x), y_2 = \psi(x)$ 分别为 L[y] = u(x) 和 L(y) = v(x) 的解。

$$\frac{1}{25} \frac{1}{12} = \frac{1}{12} \left[\frac{1}{12} \left[\frac{1}{12} \right] + \frac{1}{12} \left[\frac{1}{12} \right] \right] = \frac{1}{12} \left[\frac{1}{12} \left[\frac{1}{12} \right] + \frac{1}{12} \left[\frac{1}{12} \right] \right] = \frac{1}{12} \left[\frac{1}{12} \left[\frac{1}{12} \right] + \frac{1}{1$$

给定 $y^{(n)}+a_1y^{(n-1)}+\cdots+a_{n-1}y'+a_ny=0, \ a_i\in\mathbb{R}.$ λ in $\underline{y'-ay}=0$ 我们已经知道它有形如 e^{ax} 的解,我们考虑待定 λ ,将 $y=e^{\lambda x}$ 带入到方程中,观察 λ 需要满足怎样的条件。容易得到

$$(\lambda^n + a_1\lambda^{n-1} + \dots + a_{n-1}\lambda + a_n)e^{\lambda x} = 0.$$

称 $F(\lambda) = \lambda^n + a_1 \lambda^{n-1} + \dots + a_{n-1} \lambda + a_n = 0$ 为该微分方程的一个特征方程。

考虑
$$F(\lambda)$$
 在 $\mathbb C$ 上的标准分解式 $\int_{\mathbb R} \int_{\mathbb R} \int$

Case I: 如果 $F(\lambda)$ 没有重根,即 $k_1 = \cdots = k_s = 1, s = n$,那么容易观察到 $y = e^{\lambda_i x}$ 都是原方程的解。

为了说明此时 $e^{\lambda_1 x}, \dots, e^{\lambda_n x}$ 构成一个基本解组,也即解集 $\mathcal S$ 的一组基,我们考察 Wronsky 行列式

$$W(x) = \det \begin{bmatrix} e^{\lambda_1 x} & e^{\lambda_2 x} & \cdots & e^{\lambda_n x} \\ \lambda_1 e^{\lambda_1 x} & \lambda_2 e^{\lambda_2 x} & \cdots & \lambda_n e^{\lambda_n x} \\ \vdots & \vdots & & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \cdots & \lambda_n^{n-1} e^{\lambda_n x} \end{bmatrix}$$

$$\det \begin{bmatrix} \lambda_1 & \lambda_1 & \vdots & \vdots \\ \lambda_1^{n-1} e^{\lambda_1 x} & \lambda_2^{n-1} e^{\lambda_2 x} & \cdots & \lambda_n^{n-1} e^{\lambda_n x} \end{bmatrix}$$

$$\exp \begin{bmatrix} \sum_{i=1}^n \lambda_i x \end{bmatrix} \begin{bmatrix} \prod_{1 \le j < i \le n} (\lambda_i - \lambda_j) \\ \vdots \end{bmatrix}$$

而在标准分解中我们已经假定 $\lambda_i \neq \lambda_j$ 所以上式不为 0 是显然的。

4 D > 4 B >

Case II: 现在考虑更一般的情形,即 $F(\lambda)$ 在 \mathbb{C} 上有重根。先从一个特殊情况入手,不妨 $\lambda_1=0$,这说明特征方程变为

这说明 $1, x, x^2, \cdots, x^{k_1-1}$ 都是原方程的解,更重要的<mark>它们都是线性无关的!</mark> 进一步,你可以把它们看<mark>成 $1 \cdot e^{0x}, xe^{0x}, \cdots, x^{k_1-1}e^{0x}$ 。」这</mark>给我们启发:当 λ_t 为 $F(\lambda)$ 的 k 重根时,是否 $1 \cdot e^{\lambda_t x}, xe^{\lambda_t x}, \cdots, x^{k_t-1}e^{\lambda_t x}$ 均为方程的解?

《ロシペラ》(意)《意) を Ecture 4 Sunday 16th March, 2025 14/4′

接下来考察 $\lambda_1 \neq 0$,为了化归到我们刚才讨论的 $\lambda_1 = 0$ 的情形,使用变量代换 $y = ze^{\lambda_1 x}$,高阶导数的 Leibniz 公式告诉我们

$$\begin{split} y^{(m)} &= (ze^{\lambda_1 x})^{(m)} \\ &= z^{(m)}e^{\lambda_1 x} + \dots + C_m^k z^{(m-k)} \cdot (\lambda_1^k e^{\lambda_1 x}) + \dots + \lambda_1^m ze^{\lambda_1 x} \\ &= e^{\lambda_1 x} \left[\sum_{j=0}^m C_m^j \underbrace{z^{(j)} \lambda_1^{m-j}}_{\Lambda_1} \right]. \end{split}$$

带入原微分方程 $a_0y^{(n)}+a_1y^{(n-1)}+\cdots+a_{n-1}y'+a_ny=0,\ a_0=1$,即

$$e^{\lambda_1 x} \sum_{m=0}^{n} a_{n-m} \left[\sum_{j=0}^{m} C_m^j z^{(j)} \lambda_1^{m-j} \right] = 0.$$

变量代换 $y = ze^{\lambda_1 x}$ 后我们得到

注意到

$$e^{\lambda_1 x} \sum_{m=0}^n a_{n-m} \left[\sum_{j=0}^m C_m^j z^{(j)} \lambda_1^{m-j} \right] = 0.$$

这个新的微分方程的特征方程无非就是把 $z^{(j)}$ 变成 λ^j , 这巧妙让我们可以使 用二项式定理,新的特征方程为

$$\sum_{m=0}^{n} a_{n-m} \left[\sum_{j=0}^{m} C_m^j \lambda^j \lambda_1^{m-j} \right] = \sum_{m=0}^{n} a_{n-m} (\lambda + \lambda_1)^m = G(\lambda) = 0.$$

$$G(\lambda) = F(\lambda + \lambda_1) \leadsto G(0) = F(0 + \lambda_1) = 0.$$

(illusion) Lecture 4

这就说明变换后我们有解 $z=1,x,x^2,\cdots,x^{k_1-1}$,也就对应上我们想要的 $y=e^{\lambda_t x},xe^{\lambda_t x},\cdots,x^{k_t-1}e^{\lambda_t x}$. 我们于是得到了 n 个解,为了说明它们是线性无关的,下面采用反证法:设存在不全为 0 的数 c_{rj} 满足

注意这里如果 $P_r(x)$ 不为 0 的话, $Q_r(x)$ 也必不为0,且保持次数! 对下面的式子两边同除 $(\lambda_2-\lambda_1)$,再求导 k_2 次,得到

$$\left\{\sum_{r=2}^{s} Q_r(x)e^{(\lambda_r - \lambda_2)x}\right\}^{(k_2)} = 0 \leadsto \sum_{r=3}^{s} R_r(x)e^{(\lambda_r - \lambda_2)x} = 0.$$

重复这样的操作,直到只剩下一种 r,不妨就设定为 s,那么得到 s-1s-1

$$V_s(x) e^{(\lambda_s - \lambda_{s-1})x} = 0.$$

但是按照原设定,左边必定是一种非零数,导出矛盾!

(illusion) Lecture 4

Summary I

对于
$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 0, \ a_i \in \mathbb{R}.$$

- 特征方程为 $y^{(k)} \rightsquigarrow \lambda^k$;

•
$$\lambda$$
 为 k 重根对应 $e^{\lambda x}(1, x, \dots, x^{k-1});$ $e^{\lambda x}$ $\rho(x)$ $\rho(x)$

 $e^{\operatorname{Re}\lambda x}\cos(\operatorname{Im}\lambda x), e^{\operatorname{Re}\lambda x}\sin(\operatorname{Im}\lambda x).$

Examples

例 7

例 6

设 f(x) 在 (a,b) 内二阶可导,且存在常数 α,β ,满足对任意 $x \in (a,b)$,有 $f'(x) = \alpha f(x) + \beta f''(x)$,证明: f(x) 在 (a,b) 内无穷次可导。

Sunday 16th March, 2025

Euler's Ordinary Differential Equation

(illusion)

下面我们使用变量代换方法求解一类特殊的变系数高阶齐次线性微分方程

Euler's Ordinary Differential Equation

(illusion)

下面我们使用变量代换方法求解一类特殊的变系数高阶齐次线性微分方程

$$x^{n}y^{(n)} + x^{n-1}a_{1}y^{(n-1)} + \dots + xa_{n-1}y' + a_{n}y = 0, a_{i} \in \mathbb{R}.$$
不考虑特解 $y = 0$,换元 $x = e^{t} \leadsto t = \ln x(x > 0).$

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \frac{\mathrm{d}t}{\mathrm{d}x} = \frac{1}{x} \frac{\mathrm{d}y}{\mathrm{d}t}, \implies y' = -\frac{1}{x^{2}} \frac{\mathrm{d}y}{\mathrm{d}t} + \frac{1}{x} \frac{\mathrm{d}t}{\mathrm{d}x} \frac{\mathrm{d}}{\mathrm{d}t} \left\{ \frac{\mathrm{d}y}{\mathrm{d}t} \right\} = \frac{1}{x^{2}} \left\{ \frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}} - \frac{\mathrm{d}y}{\mathrm{d}t} \right\},$$

$$y^{(3)} = \frac{1}{x^{3}} \left\{ \frac{\mathrm{d}^{3}y}{\mathrm{d}t^{3}} - 3 \frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}} + 2 \frac{\mathrm{d}y}{\mathrm{d}t} \right\}.$$

$$y^{(3)} = \frac{1}{x^{3}} \left\{ \frac{\mathrm{d}^{3}y}{\mathrm{d}t^{3}} - 3 \frac{\mathrm{d}^{2}y}{\mathrm{d}t^{2}} + 2 \frac{\mathrm{d}y}{\mathrm{d}t} \right\}.$$

Lecture 4

Euler's Ordinary Differential Equation

(illusion) Lecture 4 Sunday 16th March, 2025

22 / 45

Summary II

对于
$$x^n y^{(n)} + x^{n-1} a_1 y^{(n-1)} + \dots + x a_{n-1} y' + a_n y = 0, a_i \in \mathbb{R}.$$

- 特征方程为 $x^k y^{(k)} \rightsquigarrow \lambda(\lambda-1)\cdots(\lambda-k+1);$ 文
- λ 为 k 重根对应 $e^{\lambda t}$ $(1,t,\cdots,t^{k-1}) \leadsto x^{\lambda} (1,\ln|x|,\ln^2|x|,\cdots,\ln^{k-1}|x|);$ 对 $\lambda \in \mathbb{C}$ 的情形, $e^{\lambda t}$ 和 $e^{\overline{\lambda} t}$,般取为。 $x^{\mathrm{Re}\lambda} \cos(\mathrm{Im}\lambda \ln|x|), \ e^{\mathrm{Re}\lambda} \sin(\mathrm{Im}\lambda \ln|x|).$

Outline of Chapter 8: Operators on Vectors and Analytical Geometry in Space

向量代数:

- 线性运算:加法,数乘 ~ R³ 成为线性空间;
- 欧氏空间 $E^3 = (\mathbf{R}^3, \langle \cdot, \cdot \rangle)$: 内积,投影, Schmidt 正交化;
- 其他运算: 叉乘(向量积), 混合积, 双重向量积;
- ▶上述运算的坐标表示.

空间中的直线和平面:

- 平面方程的建立: 点法式, 法式, 参数方程, +
- 直线方程的建立: 点向式, 一般式, 参数方程;
 - 位置关系,距离和夹角的讨论;
- 平面束方程.

Outline of Chapter 8: Operators on Vectors and Analytical Geometry in Space

