Astro 519A; Problem Set 5

Due Dec 11 by 5pm (in McQuinn's mailbox).

Please use cgs units for all calculations.

- 1.) Suppose relativistic electrons of fixed energy γ_0 are being introduced at a constant rate into a medium with (tangled) magnetic field B. These electrons will emit synchrotron radiation, and, as a result, lose energy. After a sufficiently long time, the electrons will settle into a steady state energy distribution $N(\gamma)$, which we would like to determine. $[N(\gamma)d\gamma]$ is the total number of electrons having energies between γ and $\gamma + d\gamma$.
- a) Show that the rate of change of energy of an individual electron of energy γ is given by

$$\dot{\gamma} = \frac{d\gamma}{dt} = -A\gamma^2$$
, where $A = \frac{4e^4B^2}{9m^2c^3}$. (1)

- b) Show that $-\dot{\gamma}N(\gamma)dt$ is equal to the number of electrons whose energies pass through energy γ during time interval dt.
- c) Argue that in steady-state $\dot{\gamma}N(\gamma)$ must be independent of γ and thus that $N(\gamma) \propto \gamma^{-2}$ up to a cutoff $\gamma = \gamma_0$.
- d) Characterize the synchrotron emission from this medium. (You can assume that the medium is optically thin.)
- 2.) A millisecond pulsar lies behind a cloud of $10^4 \mathrm{K}$ photoionized hydrogen gas. Assume the cloud has a single density. We measure at 1 GHz and 1.1 GHz the timing and duration of a radio pulse from the pulsar. The pulse arrives at 1 GHz a time 10 milliseconds after the pulse arrives in the 1.1 GHz channel. Each pulse's angle of linear polarization is measured to be 0.1 radians larger at 1 GHz than at 1.1 GHz. In between pulses, the intensity of bremsstrahlung emission from the cloud in the direction of the source is measured to be $10^{-7} \mathrm{erg \ s^{-1} \ Hz^{-1} \ cm^{-2} \ sr^{-1}}$.

Through the cloud, what is the density, depth, and average line-of-sight magnetic field?

3.) What column of HI $\lambda 1216 \text{Å}$ and of OVI $\lambda \lambda 1032, 1038 \text{Å}^1$ that has optical depth unity at line center, assuming pure thermal broadening for gas with $T=10^4 \text{K}$? You may use that the oscillator strengths for the lines are respectively 0.42, 0.52, and 0.36 (see *Allen's Astrophysical Quantities*). These are some of the most observable ground state absorption lines for diffuse gas.

¹This "doublet" owes to spin-orbit coupling.

Practice final exam questions. These are not part of the fifth problem set. Questions 2 and 3 on the problem set are at the level that may appear on the exam. (Except I would likely keep everything symbolic so you do not have to plug in numbers.) Here are a couple other questions:

- 1.) Is $(E^2, B_x^2, B_y^2, B_z^2)$ a four vector? Please explain.
- 2.) The intensity of some unspecified optically thin thermal emission process scales as $I_{\nu} \sim \nu^2/(1 + \exp[h\nu/kT])$. Draw a progression of I_{ν} curves showing how the emission of this process would look like as the emission becomes more and more optically thick.
- 3.) Explain how an optical image is distorted by our atmosphere, leading to the "seeing" of a telescope being much worse than the diffraction limit. How does an adaptive optics system correct for this?