

Shenzhen Toby Technology Co., Ltd.

Report No.: TB-FCC145568

1 of 51 Page:

FCC Radio Test Report FCC ID: 2ABEPTW1066

Original Grant

Report No. TB-FCC145568

Shenzhen Tianzheng Hongye Technology Co.Ltd **Applicant**

Equipment Under Test (EUT)

EUT Name 10.1 inch MID

Model No. TM101A550L

Series No. TM101A530L, TM101A520L, TW1066G

Brand Name NuVision

Receipt Date 2015-09-29

2015-09-30 to 2015-11-18 **Test Date**

Issue Date 2015-11-18

FCC Part 15, Subpart C (15.247:2015) **Standards**

Test Method ANSI C63.10: 2013

Conclusions PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC and IC requirements

Test/Witness

Engineer

Approved&

Authorized

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Tel: +86 75526509301 Fax: +86 75526509195

2 of 51

Contents

TOBY

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	4
	1.1 Client Information	4
	1.2 General Description of EUT (Equipment Under Test)	4
	1.3 Block Diagram Showing the Configuration of System Tested	5
	1.4 Description of Support Units	5
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	
	1.8 Test Facility	
2.	TEST SUMMARY	
3.	TEST EQUIPMENT	10
4.	CONDUCTED EMISSION TEST	11
	4.1 Test Standard and Limit	11
	4.2 Test Setup	
	4.3 Test Procedure	
	4.4 EUT Operating Mode	
	4.5 Test Data	12
5.	RADIATED EMISSION TEST	21
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 EUT Operating Condition	
	5.5 Test Data	
6.	RESTRICTED BANDS REQUIREMENT	35
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 EUT Operating Condition	36
	6.5 Test Data	
7.	BANDWIDTH TEST	42
	7.1 Test Standard and Limit	
	7.2 Test Setup	
	7.3 Test Procedure	
	7.4 EUT Operating Condition	
	7.5 Test Data	
8.	PEAK OUTPUT POWER TEST	45
1	8.1 Test Standard and Limit	
	8.2 Test Setup	
	r	

Page: 3 of 51

	8.3 Test Procedure	45
	8.4 EUT Operating Condition	
	8.5 Test Data	46
9.	POWER SPECTRAL DENSITY TEST	48
	9.1 Test Standard and Limit	48
	9.2 Test Setup	
	9.3 Test Procedure	48
	9.4 EUT Operating Condition	48
	8.5 Test Data	
10.	ANTENNA REQUIREMENT	51
	10.1 Standard Requirement	51
	10.2 Antenna Connected Construction	
	10.3 Result	

Page: 4 of 51

1. General Information about EUT

1.1 Client Information

Applicant: Shenzhen Tianzheng Hongye Technology Co.Ltd.

Address : Building C, Guancheng High-tech Science and Technology Park,

Zhenxing Road, Carp River Industrial Zone, Lou Village, Gongming

Town, Guangming New District, Shenzhen City, Guangdong

Province, China

Manufacturer : Shenzhen Tianzheng Hongye Technology Co.Ltd.

Address : Building C, Guancheng High-tech Science and Technology Park,

Zhenxing Road, Carp River Industrial Zone, Lou Village, Gongming

Town, Guangming New District, Shenzhen City, Guangdong

Province, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	10.1 inch MID			
Models No.	÷	TM101A550L, TM101A5	30L, TM101A520L, TW1066G		
Model Difference			models are identical in the same PCB layout, interior structure and ectrical circuits, The only difference is model name for commercial rpose.		
		Operation Frequency: BLE: 2402MHz~2480MHz BT: 2402MHz~2480MHz WIFI: 2412~2462 MHz ₍₂₎	7 (2)		
Product		Number of Channel:	Bluetooth 4.0 (BLE): 40 channels see note(4)		
Description	:	RF Output Power: -2.725 dBm Conducted Power			
		Antenna Gain: 2.09 dBi FPC Antenna			
		Modulation Type:	GFSK		
	V.	Bit Rate of Transmitter:	1Mbps(GFSK)		
Power Supply	i	DC Voltage supplied from DC power by Li-ion Batto			
Power Rating		Adapter 2#(TEKA018-05	60Hz 0.5A Output: 5V/2.5A 502500UK 1510): 60Hz 0.5A Output: 5V/2.5A		
Connecting I/O Port(S)	:	Please refer to the User			

Note:

Page: 5 of 51

(1) This Test Report is FCC Part 15.247 for Bluetooth BLE, the test procedure follows the FCC KDB 558074 D01 DTS Meas Guidance v03r02.

- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. The EUT has also been tested and complied the FCC 15C for BT and WIFI function, and recorded in the separate test report.
- (3) Antenna information provided by the applicant.
- (4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

TX Mode

1.4 Description of Support Units

Equipment Information

Page: 6 of 51

Name	Model	S/N	Manufacturer	Used "√"
WURT T	A BULL			
		Cable Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1	NO	NO	0.8M	Accessory

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For (Conducted Test
Final Test Mode	Description
Mode 1	AC Charging With TX Mode

For	Radiated Test
Final Test Mode	Description
Mode 2	AC Charging With TX Mode
Mode 3	TX Mode (Channel 00/20/39)

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.4 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

Bluetooth BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis, X-plane, Y-plane and Z-plane. The worst case was found positioned on Z-plane as the normal use. Therefore only the test data of this Z-plane was used for radiated emission measurement test.

Page: 7 of 51

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	RF KPI Test		
Channel	CH 00	CH 20	CH 39
BLE Mode	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
	Level Accuracy:	
Conducted Emission	9kHz~150kHz	±3.42 dB
	150kHz to 30MHz	±3.42 dB
Dadiated Emission	Level Accuracy:	14 CO dD
Radiated Emission	9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy:	±4.40 dB
Radiated Ellission	30MHz to 1000 MHz	±4.40 db
Radiated Emission	Level Accuracy:	±4.20 dB
Raulateu Elliission	Above 1000MHz	14.20 UD

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at:

1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

FCC List No.: (811562)

The Laboratory is listed in the United States of American Federal Communications Commission

Page: 8 of 51

(FCC), and the registration number is 811562.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

Page: 9 of 51

2. Test Summary

Standa	rd Section	Tool Hom	ludama ant	Domonic
FCC	IC	Test Item	Judgment	Remark
15.203	1	Antenna Requirement	PASS	N/A
15.207	RSS-GEN 7.2.4	Conducted Emission	PASS	N/A
15.205	RSS-GEN 7.2.2	Restricted Bands	PASS	N/A
15.247(a)(2)	RSS 247 5.2 (1)	6dB Bandwidth	PASS	N/A
15.247(b)	RSS 247 5.4 (4)	Peak Output Power	PASS	N/A
15.247(e)	RSS 247 5.2 (2)	Power Spectral Density	PASS	N/A
15.247(d)	RSS 247 5.5	Transmitter Radiated Spurious Emission	PASS	N/A

Note: "/" for no requirement for this test item.

N/A is an abbreviation for Not Applicable.

Page: 10 of 51

3. Test Equipment

AC Main C	onducted Emis	ssion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
EMI Test Receiver	ROHDE& SCHWARZ	ESCI	100321	Aug. 07, 2015	Aug. 06, 2016
50ΩCoaxial Switch	Anritsu	MP59B	X10321	Aug. 07, 2015	Aug. 06, 2016
L.I.S.N	Rohde & Schwarz	ENV216	101131	Aug. 07, 2015	Aug. 06, 2016
L.I.S.N	SCHWARZBECK	NNBL 8226-2	8226-2/164	Aug. 07, 2015	Aug. 06, 2016
Radiation Description	Spurious Emis	Model No.	Serial No.	Cal. Date	Cal. Due
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 29, 2015	Date Aug. 28, 2016
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Mar. 28, 2015	Mar. 27, 2016
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 28, 2015	Mar. 27, 2016
Pre-amplifier	Sonoma	310N	185903	Mar. 28, 2015	Mar. 27, 2016
Pre-amplifier	HP	8447B	3008A00849	Mar. 28, 2015	Mar. 27, 2016
Cable	HUBER+SUHNER	100	SUCOFLEX	Mar. 28, 2015	Mar. 27, 2016
Positioning Controller	ETS-LINDGREN	2090	N/A	N/A	N/A
Antenna C	onducted Emis	ssion			
Description	Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Aug. 29, 2015	Aug. 28, 2016
EMI Test Receiver	Rohde & Schwarz	ESCI	100010/007	Aug. 07, 2015	Aug. 06, 2016

Page: 11 of 51

4. Conducted Emission Test

4.1 Test Standard and Limit

4.1.1Test Standard FCC Part 15.207

4.1.2 Test Limit

Conducted Emission Test Limit

33	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Level	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2 Test Setup

4.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Page: 12 of 51

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

4.4 EUT Operating Mode

Please refer to the description of test mode.

4.5 Test Data

Test data please refer the following pages.

Report No.: TB-FCC145568
Page: 13 of 51

TODI		3	OUT !		Page:
No.	Time.	WIE S		MIL	

EUT:	10.1 inch MID	Model Name :	TM101A550L
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Terminal:	Line		
Test Mode:	AC Charging with TX BLI	E Mode (Adapter 1#)	
Remark:	Only worse case is repor	ted	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1620	28.78	9.94	38.72	65.36	-26.64	QP
2		0.1620	10.76	9.94	20.70	55.36	-34.66	AVG
3		0.1900	24.35	10.00	34.35	64.03	-29.68	QP
4		0.1900	7.51	10.00	17.51	54.03	-36.52	AVG
5		0.2580	22.54	10.02	32.56	61.49	-28.93	QP
6		0.2580	6.08	10.02	16.10	51.49	-35.39	AVG
7		0.3540	23.10	10.02	33.12	58.87	-25.75	QP
8		0.3540	8.89	10.02	18.91	48.87	-29.96	AVG
9	*	0.5020	29.79	10.02	39.81	56.00	-16.19	QP
10		0.5020	15.67	10.02	25.69	46.00	-20.31	AVG
11		14.1540	31.91	10.24	42.15	60.00	-17.85	QP
12		14.1540	12.68	10.24	22.92	50.00	-27.08	AVG

^{*:}Maximum data x:Over limit !:over margin

Page: 14 of 51

EUT:		10.1 inch MID Model Na		Name :		TM101A550L		
emperat	ture:	25 ℃	OBIN.	Relativ	e Hum	idity:	55%	ART
est Volta	age:	AC 120V/60	Hz	Viena.		6	MILES	
erminal:		Neutral	- W	10		1 6		
est Mod	e:	AC Charging	g with TX E	BLE Mode	Adapte	r 1#)	- N	RULE
Remark:		Only worse	case is rep	orted			BROW	
80.0 dBuV								
							QP: AVG:	_
X		y					۸۳۰	
7/1		MAN, I	×				July May	
30	It And Malla	Whaternak	Wyther North Sensitive and principles	Mark of the way would not a second	andready legislations with	hamalikke papagan	W)	
1 M		/\\\					and the same of th	Amount .
	WYVW	In morning	whythelehelyminghelemypilin	by bout on high and by officer	Contract (In public or formation	عام إن يعام إن مواد المام ا	and the same of th	pea
	* 1							AV
-20								
0.150		0.5	()	MHz)	5			30.000
No. M	c. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	
1	0.1780	18.01	10.12	28.13	64.57	-36.44	QP	
2	0.1780	1.54	10.12	11.66	54.57	-42.91	AVG	
3	0.3260	19.06	10.08	29.14	59.55	-30.41	QP	
4	0.3260	6.07	10.08	16.15	49.55	-33.40	AVG	
5 *	0.4860	26.65	10.02	36.67	56.24	-19.57	QP	
6	0.4860	13.01	10.02	23.03	46.24	-23.21	AVG	
7	0.6340	12.09	10.02	22.11	56.00	-33.89	QP	
8	0.6340	-0.02	10.02	10.00	46.00	-36.00	AVG	
9	1.7060	20.10	10.09	30.19	56.00	-25.81	QP	
10	1.7060	6.15	10.09	16.24	46.00	-29.76	AVG	
11	14.3340	30.20	10.07	40.27	60.00	-19.73	QP	
						-27.88		

Emission Level= Read Level+ Correct Factor

*:Maximum data x:Over limit !:over margin

EUT:	10.1 inch MID		Model Na	ime :	TM1	01A550L
Temperature:	25 ℃	-a 1	Relative	Humidity:	55%	
Test Voltage:	AC 240V/60H	z		Hills		7
Terminal:	Line		11/17		dan	79
Test Mode:	AC Charging	with TX BL	E Mode (Ad	dapter 1#)		
Remark:	Only worse ca	se is repor	ted	100	1	A Branch
80.0 dBuV						
						QP: — AVG: —
				_		
. x						X
WM _{Maa}	M. A	XXVI LUMYNI HALI	MAMAM	eMark at the control	The state of the s	
30 VVVV	N MAN	J. J. J. J.	V V V V V V	C Jankardan Markardan	Who.	Julian Maria peak
NAAAAA	" J' \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		$\Delta \Delta $	ΛΛΛΛλλ	A marked are was taken	
0 4 2 0 0 2 4	was "house	AL A	V 4 4 0 4	. 4 6 6 7 7 8 8 9 8 1	"	AVG
-20						
0.150	0.5	(MHz	:)	5		30.000
	Reading	Correct	Measure-			
No. Mk. Fre		Factor	ment		Over	
MH		dB	dBuV	dBuV	dB	Detector
1 0.21		10.02	38.67	63.20 -2	4.53	QP
2 0.21	00 12.25	10.02	22.27	53.20 -3	0.93	AVG
3 0.24	20 27.01	10.02	37.03	62.02 -2	4.99	QP
4 0.24	20 11.61	10.02	21.63	52.02 -3	0.39	AVG
5 * 0.51	00 27.62	10.02	37.64	56.00 -1	8.36	QP
6 0.51	00 15.71	10.02	25.73	46.00 -2	20.27	AVG
7 0.69	00 22.46	10.11	32.57	56.00 -2	23.43	QP
8 0.69	00 10.17	10.11	20.28	46.00 -2	5.72	AVG
	00.00	10.06	32.09	56.00 -2	23.91	QP
9 1.05	00 22.03	10.00				
9 1.05 10 1.05		10.06	19.86	46.00 -2	26.14	AVG
	00 9.80					AVG QP

x:Over limit !:over margin

EUT:	10.1 inch MID	Model Name :	TM101A550L
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 240V/60Hz	The state of the s	
Terminal:	Neutral	T33 6	THE
Test Mode:	AC Charging with TX BLI	E Mode (Adapter 1#)	
Remark:	Only worse case is repor	ted	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1819	29.05	10.12	39.17	64.39	-25.22	QP
2		0.1819	11.60	10.12	21.72	54.39	-32.67	AVG
3		0.2100	26.25	10.12	36.37	63.20	-26.83	QP
4		0.2100	9.93	10.12	20.05	53.20	-33.15	AVG
5	*	0.5100	28.20	10.02	38.22	56.00	-17.78	QP
6		0.5100	15.15	10.02	25.17	46.00	-20.83	AVG
7		0.5420	27.60	10.02	37.62	56.00	-18.38	QP
8		0.5420	15.00	10.02	25.02	46.00	-20.98	AVG
9		1.1060	22.86	10.15	33.01	56.00	-22.99	QP
10		1.1060	9.82	10.15	19.97	46.00	-26.03	AVG
11		13.9940	27.80	10.08	37.88	60.00	-22.12	QP
12		13.9940	7.35	10.08	17.43	50.00	-32.57	AVG

^{*:}Maximum data x:Over limit !:over margin

Report No.: TB-FCC145568
Page: 17 of 51

EUT:	10.1 inch MID	Model Name :	TM101A550L
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz		
Terminal:	Line		THE STATE OF
Test Mode:	AC Charging with TX BLI	E Mode (Adapter 2#)	
Remark:	Only worse case is repor	ted	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1660	32.16	9.95	42.11	65.15	-23.04	QP
2		0.1660	17.29	9.95	27.24	55.15	-27.91	AVG
3		0.1940	25.16	10.01	35.17	63.86	-28.69	QP
4		0.1940	10.75	10.01	20.76	53.86	-33.10	AVG
5	*	0.4900	35.74	10.02	45.76	56.17	-10.41	QP
6		0.4900	25.71	10.02	35.73	46.17	-10.44	AVG
7		0.9820	22.51	10.06	32.57	56.00	-23.43	QP
8		0.9820	11.45	10.06	21.51	46.00	-24.49	AVG
9		1.3380	23.23	10.06	33.29	56.00	-22.71	QP
10		1.3380	12.24	10.06	22.30	46.00	-23.70	AVG
11		14.2700	32.72	10.25	42.97	60.00	-17.03	QP
12		14.2700	23.00	10.25	33.25	50.00	-16.75	AVG

^{*:}Maximum data x:Over limit !:over margin

EUT:	10.1 inch MID	Model Name :	TM101A550L
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	- TOTAL	THE
Terminal:	Neutral	U.	
Test Mode:	AC Charging with TX BI	LE Mode(Adapter 2#)	THE PERSON NAMED IN
Remark:	Only worse case is repo	orted	7:35
80.0 dBuV			

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBu∨	dB	dBuV	dBuV	dB	Detector
1	0.1620	29.25	9.94	39.19	65.36	-26.17	QP
2	0.1620	14.86	9.94	24.80	55.36	-30.56	AVG
3	0.4860	35.61	10.02	45.63	56.24	-10.61	QP
4 *	0.4860	25.82	10.02	35.84	46.24	-10.40	AVG
5	0.9100	24.11	10.08	34.19	56.00	-21.81	QP
6	0.9100	12.98	10.08	23.06	46.00	-22.94	AVG
7	1.3260	23.50	10.06	33.56	56.00	-22.44	QP
8	1.3260	12.86	10.06	22.92	46.00	-23.08	AVG
9	2.7020	22.02	10.04	32.06	56.00	-23.94	QP
10	2.7020	10.78	10.04	20.82	46.00	-25.18	AVG
11	13.7540	34.20	10.24	44.44	60.00	-15.56	QP
12	13.7540	24.00	10.24	34.24	50.00	-15.76	AVG

^{*:}Maximum data x:Over limit !:over margin

Par .		4	10 pt 100	ì
M	M	1		
		Ш		
		"		

Temperature:	25 ℃	Relative Humidity:	55%
			3370
Test Voltage:	AC 240V/60Hz	THU:	13 100
Terminal:	Line	(1) T	
Test Mode:	AC Charging with TX E	BLE Mode (Adapter 2#)	
Remark:	Only worse case is rep	orted	

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1 *	0.5140	38.02	10.03	48.05	56.00	-7.95	QP
2	0.5140	25.94	10.03	35.97	46.00	-10.03	AVG
3	1.0100	30.15	10.06	40.21	56.00	-15.79	QP
4	1.0100	17.99	10.06	28.05	46.00	-17.95	AVG
5	1.3619	29.56	10.06	39.62	56.00	-16.38	QP
6	1.3619	17.41	10.06	27.47	46.00	-18.53	AVG
7	2.6060	28.65	10.04	38.69	56.00	-17.31	QP
8	2.6060	16.41	10.04	26.45	46.00	-19.55	AVG
9	5.7100	25.74	10.00	35.74	60.00	-24.26	QP
10	5.7100	12.43	10.00	22.43	50.00	-27.57	AVG
11	13.5340	37.36	10.23	47.59	60.00	-12.41	QP
12	13.5340	25.29	10.23	35.52	50.00	-14.48	AVG

^{*:}Maximum data x:Over limit !:over margin

EUT:	10.1 inch MID	Model Name :	TM101A550L						
Temperature:	25 ℃	Relative Humidity:	55%						
Test Voltage:	AC 240V/60Hz								
Terminal:	Neutral								
Test Mode:	AC Charging with TX BL	E Mode (Adapter 2#)							
Remark:	Only worse case is repo	rted	The same of						
80.0 dBuV									

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.5060	38.49	10.02	48.51	56.00	-7.49	QP
2		0.5060	26.39	10.02	36.41	46.00	-9.59	AVG
3		1.0060	29.43	10.06	39.49	56.00	-16.51	QP
4		1.0060	17.39	10.06	27.45	46.00	-18.55	AVG
5		1.3820	29.68	10.06	39.74	56.00	-16.26	QP
6		1.3820	17.38	10.06	27.44	46.00	-18.56	AVG
7		1.7380	28.15	10.06	38.21	56.00	-17.79	QP
8		1.7380	15.84	10.06	25.90	46.00	-20.10	AVG
9		2.5300	27.91	10.04	37.95	56.00	-18.05	QP
10		2.5300	14.91	10.04	24.95	46.00	-21.05	AVG
11		13.5060	37.26	10.23	47.49	60.00	-12.51	QP
12		13.5060	25.18	10.23	35.41	50.00	-14.59	AVG

^{*:}Maximum data x:Over limit !:over margin

Page: 21 of 51

5. Radiated Emission Test

5.1 Test Standard and Limit

5.1.1 Test Standard FCC Part 15.209

5.1.2 Test Limit

Radiated Emission Limits (9kHz~1000MHz)

Frequency (MHz	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Radiated Emission Limit (Above 1000MHz)

Frequency	Class A (dBuV	//m)(at 3 M)	Class B (dBuV/m)(at 3 M)			
(MHz)			Peak	Average		
Above 1000	80	60	74	54		

Note:

- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Page: 22 of 51

5.2 Test Setup

Below 30MHz Test Setup

Below 1000MHz Test Setup

Report No.: TB-FCC145568
Page: 23 of 51

TOBY

Above 1GHz Test Setup

5.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

Page: 24 of 51

5.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

5.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

EUT:	10.1 inch MID	Model:	TM101A550L					
Temperature:	25 ℃	Relative Humidity:	55%					
Test Voltage:	AC 120V/60Hz							
Ant. Pol.	Horizontal	0						
Test Mode:	BLE TX 2402 Mode (Adapte	er 1#)	Jan Milliam					
Remark:	Only worse case is reported		13					

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		30.0000	34.76	-13.96	20.80	40.00	-19.20	peak
2		42.1542	40.25	-21.07	19.18	40.00	-20.82	peak
3		63.0916	46.35	-24.25	22.10	40.00	-17.90	peak
4		90.5374	51.39	-22.65	28.74	43.50	-14.76	peak
5	*	199.9856	49.46	-20.39	29.07	43.50	-14.43	peak
6		601.4265	39.64	-9.41	30.23	46.00	-15.77	peak

x:Over limit !:over margin *:Maximum data

Emission Level= Read Level+ Correct Factor

Report No.: TB-FCC145568

Page: 26 of 51

EUT:	10.1 inch MID Model: TM101A550L						0L		
Temperature:	25 ℃	Call	R	elative Hum	nidity:	55%		A British	
Test Voltage:	AC 12	20V/60Hz	1	810	6	1111			
Ant. Pol.	Vertica	al	A PAGE					100	
Test Mode:	BLET	X 2402 M	lode (Adapte	er 1#)		-	1/97		
Remark:	Only v	vorse cas	e is reported			1143			1
80.0 dBuV/m									_
						FCC 1	5B 3M R	adiation	
							Mai	rgin -6 dB	1
2	3 4								\perp
30 1	Was a supplied to the supplied of the supplied						6		
Www	The state of the s	W 1	a fi				Î	المساور والمساورة	and Print
		1		July Jane Hanny Janes Janes	Mary Mary Mary Mary Mary Mary Mary Mary	White was the	HANNEY WATER		
			Mary Arrest	Y	iv.				+
-20									
-20 30.000 40 !	50 60 70	80	(MHz)		300 4	00 500	0 600	700	100
	50 60 70					100 500	0 600	700	100
30.000 40 !		Reading	Correct	Measure-			o 600 Over	700	100
30.000 40 !	Freq.	Reading Level	Correct Factor	Measure- ment	Limi	t C)ver		
30.000 40 ! No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limi dBu\	t C)ver	Detec	ctor
No. Mk.	Freq. MHz).2111	Reading Level dBuV 47.06	Correct Factor dB/m -14.09	Measure- ment dBuV/m	Limi dBu\	t C	over dB 7.03	Detec	ctor ak
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limi dBu\	t C)ver	Detec	ctor ak
No. Mk. 1 30 2 * 43	Freq. MHz).2111	Reading Level dBuV 47.06	Correct Factor dB/m -14.09	Measure- ment dBuV/m	Limi dBu\	t C	over dB 7.03	Detec	ctor ak ak
No. Mk. 1 30 2 * 43 3 ! 49	Freq. MHz 0.2111 3.6584	Reading Level dBuV 47.06 58.55	Correct Factor dB/m -14.09 -21.70	Measure- ment dBuV/m 32.97 36.85	Limi dBuV 40.0	t C	7.03	Detection pea	ctor ak ak ak
No. Mk. 1 30 2 * 43 3 ! 49 4 ! 66	Freq. MHz 0.2111 3.6584 0.3594	Reading Level dBuV 47.06 58.55 59.34	Correct Factor dB/m -14.09 -21.70 -24.12	Measure- ment dBuV/m 32.97 36.85 35.22	Limi dBuV 40.0 40.0	t C	7.03 3.15 4.78	Detection per per	ctor ak ak ak
No. Mk. 1 30 2 * 43 3 ! 49 4 ! 66 5 ! 87	Freq. MHz 0.2111 3.6584 0.3594 6.2662	Reading Level dBuV 47.06 58.55 59.34 58.96	Correct Factor dB/m -14.09 -21.70 -24.12 -23.96	Measure- ment dBuV/m 32.97 36.85 35.22 35.00	Limi dBuV 40.0 40.0 40.0	t C	7.03 3.15 4.78	pea pea pea pea	ak ak ak ak

	EU	T:			10.	1 inc	h N	/IID			Model:			Т	M10	1A5	501	
	Ten	nper	ature:		25	$^{\circ}\!\mathbb{C}$	e	M	33		Relative	Hum	idity:	5	5%			A STATE OF THE PARTY OF THE PAR
	Tes	t Vol	ltage:		AC	120	V/6	0Hz			10		CI					
	Ant	. Pol	l.		Hor	izon	tal		I THE				6				n	W
	Tes	t Mo	de:		BLE	BLE TX 2402 Mode (Adapter 2#)												
	Rer	nark	:		Only worse case is reported								10					
ı	80.0	0 dBu	iV/m															
													FC	C 15B	3M Ra	diation	1	\dashv
							+								Marg	jin -6 c	iB.	ď
1							┵											1
	30						┵			x	_		5		6			
	30		×										Ž					J
		h .			2 X		+		3 M		lu	hopenal	t-andrester of the	MAN	wall proper live	pelan-gradustral	Mayortan	-44
ì		July.	Long of the Control	W.	Λ	بالريالم	hum	queste Mars			Milliph por manera	Mylater	The state of the s					_
				V.,	J			1000	Y 'II'									
	-20																	
ì		0.000	40	50	60	70 80	D		(MHz)		3	100	400	500	600	700	100	00.000
							200	ding	Correc	·+	Measure							
		No.	Mk.	Fre	eq.			vel	Facto		ment	- [_imit	(Ove	r		
				MH	łz		dE	Bu∀	dB/m		dBuV/m	1 (dBuV/n	n	dB		Det	ector
	1		4	13.20	017		47	.59	-21.52		26.07		40.00) -	-13.	93	р	eak
	2		6	34.43	331		39	.40	-24.12		15.28		40.00) -	-24.	72	р	eak
	3		1	70.1	948	3	39	.33	-21.17	,	18.16		43.50) -	-25.	34	р	eak

199.9856

480.5276

601.4265

4

5

6

Emission Level= Read Level+ Correct Factor

54.99

38.53

39.74

-20.39

-11.62

-9.41

34.60

26.91

30.33

-8.90

-19.09

-15.67

peak

peak

peak

43.50

46.00

46.00

^{*:}Maximum data x:Over limit !:over margin

Page: 28 of 51

UT:	10.1 inch	n MID	Mo	odel:		TM101A550L			
emperature:	25 ℃	Carrie	Re	elative Humid	dity:	55%			
est Voltage:	AC 120V	//60Hz		11	Cal	TUBE			
nt. Pol.	Vertical		AHIT:		1 10				
est Mode:	BLE TX	2402 Mod	de (Adapte	e (Adapter 2#)					
Remark:	Only wor	rse case i	s reported	6	e mi	33			
80.0 dBuV/m									
					FC	C 15B 3M Radiatio	on _		
						Margin -6	dB -		
				j		6			
30 1 2 X X	3 4	1	>	₹		×			
market Market	Å, M		·			. بما الله	اديناسان		
Cardina Allin		Mayor may proper	had ordered the	W	photosophia and watch	Mary and Sound Holy Conflict or was	And the same		
		10	W T T	May Hardney atomorphism	'				
20 30.000 40 50	60 70 80		(MHz)	300	400	500 600 700	1000.000		
					400	500 600 700	1000.000		
30.000 40 50	Re	eading	Correct	Measure-	400	500 600 700 Over	1000.000		
30.000 40 50 No. Mk. Fr	Re eq. L	_evel	Correct Factor	Measure- ment	Limit	Over			
No. Mk. Fr	Reeq. L	dBuV	Correct Factor	Measure- ment dBuV/m	Limit dBuV/r	Over n dB	Detecto		
No. Mk. From Miles	Reeq. L	Level dBu∀ 51.62	Correct Factor dB/m -21.39	Measure- ment dBuV/m 30.23	Limit dBuV/r 40.00	Over n dB 0 -9.77			
No. Mk. Fr	Reeq. L	dBuV	Correct Factor	Measure- ment dBuV/m	Limit dBuV/r	Over n dB 0 -9.77	Detecto		
No. Mk. From Miles	Reeq. L Hz 998 5	Level dBu∀ 51.62	Correct Factor dB/m -21.39	Measure- ment dBuV/m 30.23	Limit dBuV/r 40.00	Over n dB 0 -9.77 0 -9.15	Detecto		
No. Mk. From Miles 1 42.8 47.9	Reeq. L Hz 998 5 940 5	Level dBuV 51.62 54.39	Correct Factor dB/m -21.39 -23.54	Measure- ment dBuV/m 30.23 30.85	Limit dBuV/r 40.00	Over n dB -9.77 -9.15 -12.87	Detector peak peak		
No. Mk. From Miles 2 47.9 3 65.1	Reeq. L Hz 998 5 940 5 145 5 652 5	Level dBuV 51.62 54.39 51.19	Correct Factor dB/m -21.39 -23.54 -24.06	Measure- ment dBuV/m 30.23 30.85 27.13	Limit dBuV/r 40.00 40.00	Over dB -9.77 -9.15 -12.87 -12.55	Detector peak peak peak		
No. Mk. From Miles 2 47.9 3 65.1 4 78.9	Reeq. L Hz 998 5 940 5 145 5 652 5	Level dBuV 51.62 54.39 51.19 50.77 56.06	Correct Factor dB/m -21.39 -23.54 -24.06 -23.32	Measure- ment dBuV/m 30.23 30.85 27.13 27.45	Limit dBuV/r 40.00 40.00 40.00 40.00 43.50	Over dB -9.77 -9.15 -12.87 -12.55 -7.83	peak peak peak		
No. Mk. From Mk. 1 42.8 2 47.9 3 65.1 4 78.9 5 * 199.9	Reeq. L Hz 998 5 940 5 145 5 652 5	Level dBuV 51.62 54.39 51.19 50.77	Correct Factor dB/m -21.39 -23.54 -24.06 -23.32 -20.39	Measure- ment dBuV/m 30.23 30.85 27.13 27.45 35.67	Limit dBuV/r 40.00 40.00 40.00 40.00	Over dB -9.77 -9.15 -12.87 -12.55 -7.83	peak peak peak peak peak		

Page: 29 of 51

EUT:	10.1 inch MID Model : TM101A550L								
Temperature:	25 °C Relative Humidity: 55%								
Test Voltage:	AC 120V/60Hz								
Ant. Pol.	Horizontal	Horizontal							
Test Mode:	BLE Mode TX 2480 MHz(A	dapter 1#)	3 HALL						
Remark:	No report for the emission v	which more than 10 dB b	elow the						
	prescribed limit.								
	presented intit:								

	10.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4959.414	42.88	14.36	57.24	74.00	-16.76	peak
2	,	*	4960.081	34.99	14.36	49.35	54.00	-4.65	AVG

		411.00	CHILL STATE OF THE				
EUT:	10.1 inch MID	Model:	TM101A550L				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	BLE Mode TX 2480 MHz	(Adapter 1#)					
Remark:	No report for the emission	n which more than 10	dB below the				
	prescribed limit.						

No	. Mk	. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4959.365	42.48	14.36	56.84	74.00	-17.16	peak
2	*	4960.517	34.62	14.36	48.98	54.00	-5.02	AVG

		17:03					
EUT:	10.1 inch MID	Model:	TM101A550L				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Horizontal						
Test Mode:	BLE Mode TX 2442 MHz	(Adapter 1#)					
Remark:	No report for the emission	n which more than 10	dB below the				
	prescribed limit.						

No	. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4883.457	44.45	13.92	58.37	74.00	-15.63	peak
2	*	4884.321	36.69	13.92	50.61	54.00	-3.39	AVG

Page: 32 of 51

EUT:	10.1 inch MID	Model:	TM101A550L				
Temperature:	25 ℃	Relative Humidity:	55%				
Test Voltage:	AC 120V/60Hz	AC 120V/60Hz					
Ant. Pol.	Vertical						
Test Mode:	BLE Mode TX 2442 MHz	(Adapter 1#)					
Remark:	No report for the emission which more than 10 dB below the						
	prescribed limit.	2 m					

No	o. Ml	k. Freq.	_	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	4884.057	35.29	13.92	49.21	54.00	-4.79	AVG
2		4884.324	42.89	13.92	56.81	74.00	-17.19	peak

		4771.03		
EUT:	10.1 inch MID	Model:	TM101A550L	
Temperature:	25 ℃	Relative Humidity:	55%	
Test Voltage:	est Voltage: AC 120V/60Hz			
Ant. Pol.	Horizontal			
Test Mode:	BLE Mode TX 2480 MHz	(Adapter 1#)		
Remark:	No report for the emissio	n which more than 10	dB below the	
	prescribed limit			

N	o. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		4803.651	45.17	13.44	58.61	74.00	-15.39	peak
2	*	4804.364	36.88	13.44	50.32	54.00	-3.68	AVG

Page: 34 of 51

EUT:	10.1 inch MID	Model:	TM101A550L
Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	AC 120V/60Hz	000	
Ant. Pol.	Vertical		
Test Mode:	BLE Mode TX 2480 MHz	(Adapter 1#)	
Remark:	No report for the emission	n which more than 10 o	dB below the
	prescribed limit.	A 13	

N	10.	Mk.	Freq.	_	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1			4803.854	44.21	13.44	57.65	74.00	-16.35	peak
2		*	4804.075	36.35	13.44	49.79	54.00	-4.21	AVG

Page: 35 of 51

6. Restricted Bands Requirement

6.1 Test Standard and Limit

6.1.1 Test Standard FCC Part 15.209 FCC Part 15.205

6.1.2 Test Limit

Restricted Frequency	Class B (dBuV/m)(at 3 M)				
Band (MHz)	Peak	Average			
2310 ~2390	74	54			
2483.5 ~2500	74	54			

6.2 Test Setup

6.3 Test Procedure

- (1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked

Page: 36 of 51

and then Quasi Peak detector mode re-measured.

- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 KHz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.5 Test Data

Remark: During testing above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 kHz with Peak Detector for Average Values.

Test data please refer the following pages.

Page: 37 of 51

(1) Radiation Test

EUT:	10.1 inch MID	Model:	TM101A550L		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3V				
Ant. Pol.	Horizontal				
Test Mode:	BLE Mode TX 2402 MHz (Adapter 1#)				
Remark:	N/A				

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	39.58	0.77	40.35	74.00	-33.65	peak
2		2390.000	31.57	0.77	32.34	54.00	-21.66	AVG
3	Χ	2402.100	87.87	0.82	88.69	Fundamental Fi	requency	peak
4	*	2402.100	84.84	0.82	85.66	Fundamental Fi	requency	AVG

Page: 38 of 51

		1.56.20			
EUT:	10.1 inch MID	Model:	TM101A550L		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3V				
Ant. Pol.	Vertical				
Test Mode:	BLE Mode TX 2402 MHz (Adapter 1#)				
Remark:	N/A	100	10		

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBu∨	dB/m	dBuV/m	dBuV/m	dB	Detector
1		2390.000	38.80	0.77	39.57	74.00	-34.43	peak
2		2390.000	31.77	0.77	32.54	54.00	-21.46	AVG
3	Χ	2402.100	87.52	0.82	88.34	Fundamental	Frequency	peak
4	*	2402.100	84.19	0.82	85.01	Fundamental	Frequency	AVG

39 of 51 Page:

AN	0	DTZ
		KY.
-	V	\mathbf{r}

EUT:	10.1 inch MID	Model:	TM101A550L		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3V				
Ant. Pol.	Horizontal				
Test Mode:	BLE Mode TX 2480 MHz (Adapter 1#)				
Remark:	N/A				

No.	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.000	87.21	1.15	88.36	Fundamental	Frequency	peak
2	*	2480.000	84.40	1.15	85.55	Fundamental	Frequency	AVG
3		2483.500	56.17	1.17	57.34	74.00	-16.66	peak
4		2483.500	48.19	1.17	49.36	54.00	-4.64	AVG

Page: 40 of 51

EUT:	10.1 inch MID	Model:	TM101A550L		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3V				
Ant. Pol.	Vertical				
Test Mode:	BLE Mode TX 2480 MHz (Adapter 1#)				
Remark:	N/A				

No	. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	Χ	2480.100	85.39	1.15	86.54	Fundamental	Frequency	peak
2	*	2480.100	81.89	1.15	83.04	Fundamental I	requency	AVG
3		2483.500	52.45	1.17	53.62	74.00	-20.38	peak
4		2483.500	44.27	1.17	45.44	54.00	-8.56	AVG

41 of 51 Page:

(2) Conducted Test

ďΒ

Page: 42 of 51

7. Bandwidth Test

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.247 (a)(2)

7.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item	Limit	Frequency Range(MHz)		
Bandwidth	>=500 KHz (6dB bandwidth)	2400~2483.5		

7.2 Test Setup

7.3 Test Procedure

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) The bandwidth is measured at an amplitude level reduced 6dB from the reference level. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst –case (i.e the widest) bandwidth.
- (3)Measure the channel separation the spectrum analyzer was set to Resolution Bandwidth:100 kHz, and Video Bandwidth:300 kHz, Detector: Peak, Sweep Time set auto.

7.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, middle and high channel for the test.

Page: 43 of 51

7.5 Test Data

EUT:	10.1 inch MID	Model:	TM101A550L		
Temperature:	25 ℃	Relative Humidity:	55%		
Test Voltage:	DC 3.7V	WILDS			
Test Mode:	BLE TX Mode				
Channel frequen	cy 6dB Bandwidth	99% Bandwidth	Limit		
(MHz)	(kHz)	(kHz)	(kHz)		
2402	739.578	1040.40			
2442	734.376	1039.30	>=500		
2480	737.943	1041.60			
RI E Mode					

BLE Mode

2402 MHz

Report No.: TB-FCC145568 Page: 44 of 51

BLE Mode 2480 MHz Agilent R Ref 15 dBm Atten 25 dB #Peak Log 10 dB/ Offst + 4 ø→ đΒ Center 2.48 GHz #Res BW 100 kHz Span 3 MHz Sweep 5 ms (401 pts) #VBW 300 kHz Occupied Bandwidth 99.00 % Occ BW % Pwr -6.00 dB 1.0416 MHz x dB Transmit Freq Error × dB Bandwidth 895.854 Hz 737.943 kHz C:PICTURE.GIF file saved

Page: 45 of 51

8. Peak Output Power Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.247 (b)

8.1.2 Test Limit

FCC Part 15 Subpart C(15.247)/RSS-210				
Test Item	Limit	Frequency Range(MHz)		
Peak Output Power	1 Watt or 30 dBm	2400~2483.5		

8.2 Test Setup

8.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement is according to section 9.1.1 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) Set the RBW≥DTS Bandwidth
- (2) Set VBW≥3*RBW
- (3) Set Span≥3*RBW
- (4) Sweep time=auto
- (5) Detector= peak
- (6) Trace mode= maxhold.
- (7) Allow trace to fully stabilize, and then use peak marker function to determine the peak amplitude level.

8.4 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

Page: 46 of 51

8.5 Test Data

		CALL TO SERVICE			
EUT:	10.1 inch MID		Model:		TM101A550L
Temperature:	25 ℃		Relative Humidity:		55%
Test Voltage:	DC 3.7V	ביוה	THILD .		0
Test Mode:	BLE TX M	lode			73
Channel frequen	cy (MHz)	Test Resu	lt (dBm)	ı	_imit (dBm)
2402		-2.74	19		
2442		-2.72	25		30
2480		-3.4	50		
		BLE M	ode		

2402 MHz

Report No.: TB-FCC145568
Page: 47 of 51

Page: 48 of 51

9. Power Spectral Density Test

9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.247 (e)

9.1.2 Test Limit

FCC Part 15 Subpart C(15.247)						
Test Item	Limit	Frequency Range(MHz)				
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5				

9.2 Test Setup

9.3 Test Procedure

The EUT was directly connected to the Spectrum Analyzer and antenna output port as show in the block diagram above. The measurement according to section 10.2 of KDB 558074 D01 DTS Meas Guidance v03r02.

- (1) The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram above.
- (2) Set analyser center frequency to DTS channel center frequency.
- (3) Set the span to 1.5 times the DTS bandwidth.
- (4) Set the RBW to: 3 kHz(5) Set the VBW to: 10 kHz
- (6) Detector: peak(7) Sweep time: auto
- (8) Allow trace to fully stabilize. Then use the peak marker function to determine the maximum amplitude level.

9.4 EUT Operating Condition

The EUT was set to continuously transmitting in each mode and low, Midle and high channel for the test.

Page: 49 of 51

8.5 Test Data

EUT:	10.1 inch MID		Model:	TM101A550L	
Temperature:	25 ℃		Relative Humidit	ty: 55%	
Test Voltage:	DC 3.7V				
Test Mode:	BLE TX Mode				
Channel Frequency		Power Density		Limit	
(MHz)		(3 kHz/dBm)		(dBm)	
2402		-17.46			
2442		-17.52		8	
2480		-18	.20		
		BLF	Mode		

Page: 50 of 51

Page: 51 of 51

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.2 Antenna Connected Construction

The directional gains of the antenna used for transmitting is 2.09 dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

10.3 Result

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type	
☐ Permanent attached antenna	5
▼ Unique connector antenna	
☐ Professional installation antenna	