Antes probe mos que $(\exists j': j' \in \mathcal{D}: Hip(j)) \subseteq \{\neg(j') \longrightarrow j' \}$ & concl $(j') = j' \cap \neg j' > 0$

hego D'atestiqua $-(p \rightarrow p) = p \land -p$

Por otro bado

D atestiqua
$$\Gamma \vdash (P \rightarrow P)$$

$$\frac{P_1 \land \neg P_2}{\neg P_2} \land E \qquad \frac{P_2}{\neg P_2} \rightarrow E$$

$$D := \frac{1}{P_2} \frac{1}{P_2} \rightarrow P_3$$

$$D := \frac{P_2}{P_2} \rightarrow P_3$$

lema 32
$$\uparrow \vdash (p_2 \longrightarrow p_5) \Longrightarrow (p_2 \longrightarrow p_5) \in \uparrow$$