Dynamic Programming

Not So Efficient DP

Dynamic Programming

A simpler guideline

- Find subproblems.
- Check whether we are in a DAG and find the topological order of this DAG. (Usually, by hand.)
- Solve & store the subproblems by the topological order.

Traveling Salesman Problem (TSP)

- **Input:** A complete weighted undirected graph G, such that d(u,v) > 0 for each pair u,v ($u \neq v$).
- Output: the cycle of n vertices with the minimum weight.

How to brute-force

What is the time complexity?

TSP vs. Shortest Path

- TSP
 - Output: the cycle of n vertices with the minimum weight.
- All Pair Shortest Path
 - Output: the minimum weight path from u to v.

Subproblems in Shortest Path Problem

- f[k, u, v]
 - The shortest path from u to v, with inter-vertex chosen in $v_1 \dots v_k$.
- What we should do now?
- We can directly try this subproblem!

Plan A

- f[k, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $v_1 \dots v_k$ except u and v.
- Hot to solve TSP?
 - $\min_{u} f[|V|, u, u]$ is what we want!
- How to solve f[k, u, v]?

Floyd-Warshall: Solving Subproblems

- dist[k, u, v]: the shortest distance from u to v that only across inter-vertices in $\{v_1 \dots v_k\}$.
- Solve dist[k, u, v] (give addition power k to all pairs)
 - Case 1: the shortest path do not go across k.
 - Case 2: the shortest path go across k.
 - $dist[k, u, v] = \min\{dist[k 1, u, v], dist[k 1, u, k] + dist[k 1, k, v]\}$

Plan A: Subproblem Definition

- f[k, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $v_1 \dots v_k$ except u and v.
 - $\min_{u} f[|V|, u, u]$ is what we want!
- How to solve f[k, u, v]?
- What is the problem now?

Two sub paths can not contain same vertices.

Plan A: Why it is not enough?

- f[k, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $v_1 \dots v_k$ except u and v.
 - $\min_{u} f[|V|, u, u]$ is what we want!
- How to solve f[k, u, v]?
- What is the problem now?

We need to know

- what vertices $u \rightarrow k$ use?
- what vertices $k \rightarrow v$ use?

Plan A: Why it is not enough?

- f[k, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $v_1 \dots v_k$ except u and v.
 - $\min_{u} f[|V|, u, u]$ is what we want!
- How to solve f[k, u, v]?
- What is the problem now?

We need to know

- what vertices $u \to k$ use?
- what vertices $k \rightarrow v$ use?

Plan A: Why it is not enough?

- f[k, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $v_1 \dots v_k$ except u and v.
 - $-\min_{u} f[|V|, u, u]$ is what we want!
- How to solve f[k, u, v]?
- What is the problem now?

We need to know

- what vertices $u \to k$ use?
- what vertices $k \rightarrow v$ use?

We do not solve the subproblem $u \rightarrow k$ with $\{v_1, v_3, v_6 \dots\}$

Do you know how to fix?

Plan B: Subproblem Definition

- f[S, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $S \subset V$ except u and v.
 - $-\min_{u} f[V, u, u]$ is what we want!
- How to solve f[S, u, v]?

Plan B: Solving Subproblems

- f[S, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $S \subset V$ except u and v.
 - $-\min_{u} f[V, u, u]$ is what we want!
- How to solve f[S, u, v]?
- $f[S, u, v] = \min_{k \in V} f[S \{k\}, u, k] + d(k, v)$

Summarize

- f[S, u, v]
 - The shortest path from u to v with inter-vertex **exactly** $S \subset V$ except u and v.
 - $-\min_{u} f[V, u, u]$ is what we want!
- $f[S, u, v] = \min_{k \in V} f[S \{k\}, u, k] + d(k, v)$
- Do you know the topological order of the DP?

A little improvement:

- $\bullet \ \forall u, v, f[V, u, u] = f[V, v, v]!$
- We only need to know one fixed f[V, u, u].
- Can we fix an arbitrary u and only solve f[S, v]?

Solve f[S, v]!

- $f[S, u, v] = \min_{k \in V} f[S \{k\}, u, k] + d(k, v)$
- f[S,u,v] only comes from $f[S-\{k\},u,k]$.
- It is enough for us to only record f[S, v].
- $f[S, v] = \min_{k \in V} f[S \{k\}, k] + d(k, v)$.

Time Complexity

- Time complexity (n = |V|)?
 - $O(n2^n)$ subproblems.
 - O(n) solving.
 - $O(n^2 2^n)$ totally!
- Comparing to Brute-force
 - Brute-force: O(n!)
 - Do you know why $O(n^2 2^n)$ is better than O(n!)?
 - Do you know why DP is better than brute-force?
- Do you know how to implement f[S, v]?

Solve Problems on Trees

Maximize Independent Set on Trees

- **Input:** an undirected tree G = (V, E).
- Output: an independent set with maximum cardinality (number of vertices)
- Independent Set: a set S of vertices:
 - $\forall u, v \in S$, we have $(u, v) \notin E$

Maximize Independent Set on Trees

- Maximize Independent Set on Trees is NP-hard.
- Is the tree special case easier?

Solve it Recursively

- Start from the root
 - Case 1: We choose the root, what happens?
 - Case 2: We do not choose the root, what happens?

Start from recursive

- Start from the root
 - Case 1: We choose the root, what happens?
 - Case 2: We do not choose the root, what happens?

Case 1: We can not choose its children.

Start from recursive

- Start from the root
 - Case 1: We choose the root, what happens?
 - Case 2: We do not choose the root, what happens?

Case 2: We can choose its children.

What subproblems do we need to solve?

Case 1: We can not choose its children.

We need to know the max independent set here.

What subproblems do we need to solve?

How to define subprobelms?

Subproblem Definition

• Subproblem f[v]: the maximized size of independent set of the subtree rooted at v.

Subproblem Solving

- Subproblem f[v]: the maximized size of independent set of the subtree rooted at v.
- $f[v] = \max\{\sum_{u \in children(v)} f[u], \sum_{u \in grandchildren(v)} f[u] + 1\}$

Running Time

- $f[v] = \max\{\sum_{u \in children(v)} f[u], \sum_{u \in grandchildren(v)} f[u] + 1\}$
- Looks $O(n^2)$.
 - We have n subproblems.
 - Each take O(n) times.
- But it is O(n)!
 - Each of its children and its grandchildren cost one.
 - On other words, each vertex only need to pay one for its parent and one for its grandparent.
 - Totally O(n).
 - Question: how to find a bottom-up order?

What is the topological order of the DP?

It is also a greedy algorithm!

Try to solve it bottom-up!

It is also a greedy algorithm!

Try to solve it bottom-up!

It is also a greedy algorithm!

Try to solve it bottom-up!

They are useless!

• Try to solve it bottom-up!

Why not use $f[u_1] + f[u_2]$ without restriction?

- Try to solve it bottom-up!
- $\sum_{u \in children(v)} f[u]$

Why not use $f[u_1] + f[u_2]$ without restriction?

We may use f[u] = 2, with restriction.

- Try to solve it bottom-up!
- $\sum_{u \in grandchildren(v)} f[u] + 1$

Why not use $f[u_1] + f[u_2]$ without restriction?

We may use f[u] = 2, without restriction.

• Try to solve it bottom-up!

They are useless!

• Try to solve it bottom-up!

They are super useful!
They can update their
ancestor without restriction!

• Try to solve it bottom-up!

• Try to solve it bottom-up!

• Try to solve it bottom-up!

Try to solve it bottom-up!

The Greedy Algorithm

- 1. Choose all Leaves.
- 2. Remove all leaves' parents.
- 3. Repeat 1 again.
- How to implement it in O(|V|)?

TSP on General Graphs

Look at the following graph.

It looks like a tree!

A Tree-like Graph

- It is a tree is we view the triangle as a super node.
- Question: Can we still use DP?
- Consider the subtree rooted at the orange super node.
 - Case 1: We choose the super node, what happens?
 - Case 2: We do not choose the super node, what happens?

"Choose" a Super Node.

- "Choose" a Super Node.
- How many cases?
- We have at most 2³ possible way!
- Different way means different restriction for next level selection.

"Choose" a Super Node.

- "Choose" a Super Node.
- How many cases?
- We have at most 2³ possible way!
- Different way means different restriction for next level selection.
- We can design a DP for f[i, way].
- Time: $O(2^{3\times 3} \cdot n)$

"Choose" a Super Node.

- What if super node has k vertices?
- We have at most 2^k possible way!
- Time: $O(2^{O(k)} \cdot n) \rightarrow O(2^k \cdot n)$
- It hold when the largest super node has k vertices!

Tree-width (Idea)

- The best way to make a graph to tree-like!
- Best: minimize the number of vertices (k) in the largest super node.
- Tree-width: *k* − 1
 - Cycle: 2
 - Clique: n-1
 - Tree: 1 (special)
 - series-parallel graphs: ≤ 2
- Many Optimization Problem in these graphs can use tree DP to get $O\left(2^{O(k)} \cdot poly(n)\right)$.

Fixed-Parameter Tractable

- $O(f(k) \cdot n^c)$
- f(k) do not need to be polynomial.
- Many Optimization Problem in these graphs can use tree DP to get $O\left(2^{O(k)} \cdot poly(n)\right)!$
- They are FPT in terms of the treewidth!
- Compare to Approximation Algorithms!