CSI 2103: Data Structures

Priority Queues and Heaps (Ch 9)

Yonsei University
Spring 2022

Seong Jae Hwang

Aims

-01

- More practical version of queue: Priority Queue
- Another data structure based on binary tree: Heap
- How PQ and Heap are related
- How we can sort a sequence of elements using PQ and Heap

Recall Queue

- Queue: FIFO
 - always first in, first out
 - no consideration of the elements' priorities
- Some applications may want to remove based on the priority
 - It's not a matter of "who came first", but "who is the most important"
- Priority Queue (PQ):
 - Each entry is a pair of (key, value)
 - Priority determined by key
 - key can be anything as long as it is ordinal
 - Highest priority entry to be removed is the one with the minimum (or maximum) key in the PQ

Priority Queue ADT

01

- For a priority queue P (priority based on min):
 - P.add(k, v): insert an item with key k and value v into P
 - P.remove_min(): return a tuple (k, v) with minimum key and remove it
 - P.min(): return a tuple (k, v) with minimum key without removing it
 - P.is_empty()
 - len(P)

Operation	Return Value	Priority Queue
P.add(5,A)		{(5,A)}
P.add(9,C)		{(5,A), (9,C)}
P.add(3,B)		{(3,B), (5,A), (9,C)}
P.add(7,D)		{(3,B), (5,A), (7,D), (9,C)}
P.min()	(3,B)	{(3,B), (5,A), (7,D), (9,C)}
P.remove_min()	(3,B)	{(5,A), (7,D), (9,C)}
$P.remove_min()$	(5,A)	{(7,D), (9,C)}
len(P)	2	{(7,D), (9,C)}
$P.remove_min()$	(7,D)	{(9,C)}
P.remove_min()	(9,C)	{ }
P.is_empty()	True	{ }
P.remove_min()	"error"	{ }

Implementation of PQ

(O)

- At this point, you may already be thinking if the list to implement PQ should be sorted or not
 - A: Both work with pros and cons trade-off
- Unsorted list 4—5—2—3—1
 - add: O(1) time since we can add at the front or end
 - ullet remove_min and min: O(n) time since we have to find the smallest key
- Sorted list 1 2 3 4 5
 - add: O(n) time since we have to find the place to add and keep it sortrted
 - remove_min and min: O(1) time since the smallest key is already at the front

Application of PQ

- A simple application of PQ is to directly use PQ to sort a list of comparable elements: PQ sorting
- Give an unsorted input list, simply add all the elements one by one into the PQ
- Then, remove the elements using remove_min()
- The output is, by construction of PQ, sorted (by key)!
- The running time depends on the PQ implementation

Again, the Trade-off

(O)

- Can we use another data structure to balance this trade-off?
 - Instead of an array-based list, use a binary tree

Operation	Unsorted List	Sorted List
len	O(1)	O(1)
is_empty	O(1)	O(1)
add	O(1)	O(n)
min	O(n)	O(1)
remove_min	O(n)	<i>O</i> (1)

Heaps

- A heap is a binary tree with the following properties:
 - Heap-Order: for every internal node v, $key(v) \ge key(parent(v))$
 - If max-heap, then $key(v) \le key(parent(v))$
 - min (or max) of the tree (or subtree) at the top
 - heap means a pile
 - Complete Binary Tree: A heap T with height h is complete if
 - for levels i = 0, ..., h 1, each level has the maximum number of nodes possible (level i has 2^i nodes)
 - \bullet at level h, all leaves are at the left most possible positions
 - another way to say this is that the level-numbering is from 0 to n-1

Height of a Heap

-O1

- Why complete tree? Small height!
- Proposition 9.2: A heap T storing n entries has height $O(\log n)$. Precisely, $h = \lfloor \log n \rfloor$.
 - levels 0 through h-1: $1+2+4+\cdots+2^{h-1}=2^h-1$ nodes
 - level h: at least 1 node to at most 2^h nodes
 - Thus, $2^h \le n \le 2^{h+1} 1$
 - taking the log (base 2) : $h \le \log n$ and $\log(n+1) 1 \le h$
 - Since h is an integer, $h = \lfloor \log n \rfloor$

PQ with Heap

01

 We saw that unsorted or sorted lists for PQ have trade-offs in time complexity

Operation	Unsorted List	Sorted List
len	O(1)	<i>O</i> (1)
is_empty	<i>O</i> (1)	<i>O</i> (1)
add	O(1)	O(n)
min	O(n)	<i>O</i> (1)
remove_min	O(n)	<i>O</i> (1)

- Heap is an efficient data structure for keeping track of the min (or max) key
- Use heap to implement a PQ: perform add and remove_min
 - Pro: by construction, keeps track of the min (or max) node
 - Pro: time complexity of operations depend on height h, not n, and a complete binary tree has $h \ll n!$

PQ with Heap

Implement PQ with a Heap

- 1. Each node has (key, value)
- 2. Keep track of the "last node"
 - 1. last level numbering index, which is also
 - 2. the right-most node of the bottom most level

Insertion into a Heap

- add(k, v) in PQ = heap insertion
- Simply add a new node just next to the rightmost node at the bottom level (or leftmost position if the bottom level is full)
- But this may violate the heap-order property!
- Need to organize the tree to restore the heap-order property

- Swap the inserted node up the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
- Up-heap bubbling (up-heap for short)

- Swap the inserted node up the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
- Up-heap bubbling (up-heap for short)

(O)

- Swap the inserted node up the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
- Up-heap bubbling (up-heap for short)

- Swap the inserted node up the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
- Up-heap bubbling (up-heap for short)
- add(k, v) requires insert + up-heap

• up-heap is $O(h) = O(\lfloor \log n \rfloor)$!

Removal from a Heap

- remove_min() in PQ = heap removal of root node
- Again, we know the min by how heap is constructed
- ullet But removing the root turns T into a two disconnected subtrees
- Instead, (1) replace root with the "last" node, (2) then remove the "last" node

remove

last node: rightmost, bottommost node

Removal from a Heap

- remove_min() in PQ = heap removal of root node
- Again, we know the min by how heap is constructed
- ullet But removing the root turns T into a two disconnected subtrees
- Instead, (1) replace root with the "last" node, (2) then remove the "last" node

swap

last node: rightmost, bottommost node

Removal from a Heap

-01

- remove_min() in PQ = heap removal of root node
- Again, we know the min by how heap is constructed
- ullet But removing the root turns T into a two disconnected subtrees
- Instead, (1) replace root with the "last" node, (2) then remove the "last" node
- heap-property violated again

- Swap the inserted node down the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
 - left child or right child?: the one with the smaller key
 - Otherwise, the swapped sibling will violate the heap property again!
- Down-heap bubbling (down-heap for short)

- Swap the inserted node down the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
 - left child or right child?: the one with the smaller key
 - Otherwise, the swapped sibling will violate the heap property again!
- Down-heap bubbling (down-heap for short)

-01

- Swap the inserted node down the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
 - left child or right child?: the one with the smaller key
 - Otherwise, the swapped sibling will violate the heap property again!
- Down-heap bubbling (down-heap for short)

01

- Swap the inserted node down the tree until the heap-order property is satisfied
 - in a min-heap, parent key ≤ children keys
 - left child or right child?: the one with the smaller key
 - Otherwise, the swapped sibling will violate the heap property again!
- Down-heap bubbling (down-heap for short)

remove_min is also $O(h) = O(\lfloor \log n \rfloor)$!

swap (13)

- After an insertion, the new node must be somewhere, and that node now needs to be the new last node
- How do we locate where to add the new node ??
 - Hint: we know the current "last node"

- Starting from the last node, go up until a left child or root is reached
- If a left child is reached (this includes the last node itself), go to the right child
- Go down left until a leaf is reached

- Starting from the last node, go up until a left child or root is reached
- If a left child is reached (this includes the last node itself), go to the right child
- Go down left until a leaf is reached

- Starting from the last node, go up until a left child or root is
- If a left child is reached (this includes the last node itself), go to the right child
- Go down left until a leaf is reached

reached

10 VV to apaate the last mode.

• What about the update after the last node () is removed?

• Hint: very similar to what we did for the insertion update

- Starting from the last node, go up until a right child or root is reached
- If a right child is reached (this includes the last node itself), go to the left child
- Go down right until a leaf is reached

- Starting from the last node, go up until a right child or root is reached
- If a right child is reached (this includes the last node itself), go to the left child
- Go down right until a leaf is reached

- Starting from the last node, go up until a right child or root is reached
- If a right child is reached (this includes the last node itself), go to the left child
- Go down right until a leaf is reached

Implementation of Heap

01

• Array-based just like the binary tree (because it is!)

• Linked-based just like the binary tree

Complexity Analysis

01

• heap is a very efficient way to implement PQ for both insertion and removal compared to unsorted or sorted list

Operation	Unsorted List	Sorted List	Неар
len	0(1)	0(1)	0(1)
is_empty	0(1)	0(1)	0(1)
min	O(n)	0(1)	0(1)
add	0(1)	O(n)	$O(\log n)$
remove_min	O(n)	0(1)	$O(\log n)$

Bottom-Up Heap Construction

0)

- Given a list of numbers, how can we construct a heap?
- 1. Simply perform add n times: $O(n \log n)$
- 2. Bottom-up heap construction
 - When a new node is added, use the node as a new "root" and merge two subtrees
 - Perform this from the bottom most level and recursively move up
 - Down-heap to preserve the heap-property

Bottom-Up Heap Construction

01

• The first n/2 entries of the given list become the "roots" of the bottom most layer

Bottom-Up Heap Construction

01

• The next n/4 entries of the given list become the "roots" of the subtrees (which are leaves in this case)

01

• Down-heap on each subtree

01

• The next n/8 nodes of the given list become the "roots" of the subtrees

• Down-heap on each subtree

• The next n/16 entry of the given list becomes the "root" of the subtrees

• Down-heap on each subtree

Analysis

- -O1
- Seems there are lots of down-heap operations which is $O(\log n)$ each...is this really efficient? this path is one of possible paths that reaches a leaf
- Simple worst-case analysis:
 - Suppose each new node always performs the down-heap which reaches the "inorder successor": right child -> left children until left leaf is reached (shown in red dashed lines)
 - Based on those down-heap paths, each node is involved in those paths at most two times (this because we construct from bottom-up)
 - Implies that the worst-case down-heap operations is O(n)
 - Other operations (merge and add) are O(1), so the bottom-up heap construction is O(n)

Recall: Sorting with PQ

(O)

- We can use PQ straight-up to sort a list of keys
 - insert all entries and remove all entries
- But the complexity depends on the implementation of PQ

Selection-sort

PQ with an unsorted list: search for min when removing $O(n^2)$

		Collection C	Priority Queue P
Input		(7,4,8,2,5,3)	()
Phase 1	(a)	(4,8,2,5,3)	(7)
	(b)	(8,2,5,3)	(7,4)
	:	:	:
	(f)	()	(7,4,8,2,5,3)
Phase 2	(a)	(2)	(7,4,8,5,3)
	(b)	(2,3)	(7,4,8,5)
	(c)	(2,3,4)	(7, 8, 5)
	(d)	(2,3,4,5)	(7,8)
	(e)	(2,3,4,5,7)	(8)
	(f)	(2,3,4,5,7,8)	()

Insertion-sort

PQ with a sorted list: search for min when inserting $O(n^2)$

		Collection C	Priority Queue P
Input		(7,4,8,2,5,3)	()
Phase 1	(a)	(4,8,2,5,3)	(7)
	(b)	(8,2,5,3)	(4,7)
	(c)	(2,5,3)	(4,7,8)
	(d)	(5,3)	(2,4,7,8)
	(e)	(3)	(2,4,5,7,8)
	(f)	()	(2,3,4,5,7,8)
Phase 2	(a)	(2)	(3,4,5,7,8)
	(b)	(2,3)	(4,5,7,8)
	:	:	:
	(f)	(2,3,4,5,7,8)	()

(-O1)

- PQ with Heap for sorting: Heap-Sort
 - sorting a sequence of n elements in $O(n \log n)$

*currently not a heap

01

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

-Ot

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

(-O)

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

-O1

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

FO1

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

-Ot

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

01

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

-Ot

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

-Ot

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

01

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

- Down-heap from bottom (recall bottom-up construction)
 - Also called "heapify"

(FO)

• Delete the maximum and down-heap

"delete" root by swapping with last node

(FO)

• Delete the maximum and down-heap

"delete" root by swapping with last node

F01

• Delete the maximum and down-heap

remove last node and down-heap 1

• Delete the maximum and down-heap

remove last node and down-heap 1

01

• Delete the maximum and down-heap

remove last node and down-heap 1

(O)

• Delete the maximum and down-heap

swap 37 and 15 delete last node

101 11

• Delete the maximum and down-heap

swap 37 and 15 remove last node down-heap 15

01

• Delete the maximum and down-heap

swap 37 and 15 remove last node down-heap 15

• Delete the maximum and down-heap

swap 31 and 7 remove last node down-heap 7

(O)

• Delete the maximum and down-heap

swap 31 and 7 remove last node down-heap 7

• Delete the maximum and down-heap

swap 31 and 7 remove last node down-heap 7

• Delete the maximum and down-heap

swap 24 and 3 remove last node down-heap 3

• Delete the maximum and down-heap

swap 24 and 3 remove last node down-heap 3

• Delete the maximum and down-heap

swap 24 and 3 remove last node down-heap 3

• Delete the maximum and down-heap

swap 23 and 5 remove last node down-heap 5

01

• Delete the maximum and down-heap

swap 23 and 5 remove last node down-heap 5

• Delete the maximum and down-heap

swap 23 and 5 remove last node down-heap 5

• Delete the maximum and down-heap

swap 15 and 4 remove last node down-heap 4

01

• Delete the maximum and down-heap

swap 15 and 4 remove last node down-heap 4

• Delete the maximum and down-heap

swap 9 and 1 remove last node down-heap 1

101 11

• Delete the maximum and down-heap

swap 9 and 1 remove last node down-heap 1

• Delete the maximum and down-heap

swap 9 and 1 remove last node down-heap 1

01

• Delete the maximum and down-heap

swap 7 and 3 remove last node down-heap 3

101 1

• Delete the maximum and down-heap

swap 7 and 3 remove last node down-heap 3

(O)

• Delete the maximum and down-heap

swap 5 and 1 remove last node down-heap 1

101 11

• Delete the maximum and down-heap

swap 5 and 1 remove last node down-heap 1

• Delete the maximum and down-heap

swap 4 and 1 remove last node down-heap 1

• Delete the maximum and down-heap

swap 4 and 1 remove last node down-heap 1

01

• Delete the maximum and down-heap

swap 3 and 1 remove last node down-heap 1

• Delete the maximum and down-heap

remove 1

• Much faster than selection-sort and insertion-sort

Summary

(-O1)

- Priority Queue
 - More practical than the queue
 - Also for sorting a sequence of elements
- Heap
 - Special binary tree
 - Very useful
 - Seemingly complicated operations, but very worth it
 - Fast construction
- PQ with Heap: Heap-Sort
 - Faster than other PQ-based sorting methods (selection-sort and insertion-sort)
- Next: An even more generic data structure to store (key, value) pairs