Technische und logische Grundlagen der Informatik Wintersemester 2021/22

Signale im Zeit und Frequenzbereich Benjamin.Troester@HTW-Berlin.de PGP: ADE1 3997 3D5D B25D 3F8F 0A51 A03A 3A24 978D D673

Benjamin Tröster

University of Applied Sciences

Road-Map

- 1 Signal
 - Illustratives Beispiel
 - Analoge/Digitale Signale
- 2 Digital vs. Analog
- 3 Anwendungsbeispiel: Netzwerke

- Signalverarbeitungsarchitekturen
- **4** Grundlegende Signalverarbeitung: Deterministische Signale
- 5 Fourier-Reihen
- 6 Bit-Rate des Übertragungskanals

Illustratives Beispiel Analoge/Digitale Signale

Hochschule für Technik und Wirtschaft Berlin

University of Applied Science

Signal

Definition (Signal)

Informationstragende, physikalische Größe, die sich über der Zeit, über dem Ort oder über einer anderen Variablen ändert.

Mathematisch: Funktion einer oder mehrerer Variablen, z.B. $y(t) = m \cdot x + n, r^2 = (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2$

Bit-Rate des Übertragungskanals

- Beispiele: Temperatur über der Zeit x(t), Helligkeit eines Bildes I(x, y), Schalldruck $\rho(x, y, z, t)$ etc.
- Unterscheidung in deterministische (periodische) oder stochastische Signale

Zeitkontinuierlich Luftdruckschwankungen: Musik und Sprache

Illustratives Beispiel Analoge/Digitale Signale

Hochschule für Technik und Wirtschaft Berlin

University of Applied Sciences

Analoge/Digitale Signale

- Analoge Signale sind wert- & zeitkontinuierlich
 - Werte kontinuierlich (stetig)
 - I.A. alle natürlichen physikalischen Signale & Prozesse
- Digitale Signale sind wert- & zeitdiskret
 - Diskrete Werte
 - Variablen-Diskretisierung (Abtastung, führt zu diskreten Signalen)
 - Amplituden- bzw. Wert-Diskretisierung (Quantisierung)

Hochschule für Technik und Wirtschaft Berlin

niversity of Applied Science

Digital vs. Analog

Analog:

Hochschule für Technik und Wirtschaft Berlin

Digital vs. Analog

Digital:

Hochschule für Technik und Wirtschaft Berlin

Iniversity of Applied Sciences

Digital vs. Analog

Analog:

University of Applied Science

Bits

- Digitale Signale: diskret
- Einfachste Diskretisierung: binäres Alphabet $\mathbb{B} = \{0,1\}$
 - Bit Kunstwort von Binary Digit
- Darstellung in "An, Aus; Strom, kein Strom; Licht, kein Licht"

Bit-Rate des Übertragungskanals

Fourier-Reihen

Hochschule für Technik und Wirtschaft Berlin

University of Applied Science

Anwendungsbeispiel: Netzwerke

- Daten werden konvertiert über einen Kanal gesendet
- Übertragungskanal: Access Point +
 Übertragungsmedium des physikalischen
 Mediums
 - Kupferkabel, Glasfaser, Radiowelle, etc.

Fourier-Reihen

Bit-Rate des Übertragungskanals

Hochschule für Technik und Wirtschaft Berlin

University of Applied Science

Computers deal with digital signals

- Quantisierung The need to convert
 - Computer arbeiten ausschließlich mit digitalen Daten to diskreten Signalen
 - Physikalische Medien sind aber immer analoge to kontinuierliche Signale
 - Also muss eine Konvertierung von digital zu analog erfolgen (vice versa)

Anwendungsbeispiel: Netzwerke Grundlegende Signalverarbeitung: Deterministische Signale Fourier-Reihen Bit-Rate des Übertragungskanals

Computers deal with digital signals

- Abstastung The need to measure
 - Computer haben nur eine diskrete Auflösung der Zeit (Quarz)
 - Zustand des physikalische Mediums variiert stetig

Bit-Rate des Übertragungskanals

Fourier-Reihen

Signalverarbeitungsarchitekturer

Hochschule für Technik und Wirtschaft Berlin

Iniversity of Applied Sciences

Signal verar beitungs architekturen

Analoge Signalverarbeitung:

Digitale Signalverarbeitung:

Fourier-Reihen

Bit-Rate des Übertragungskanals

Hochschule für Technik und Wirtschaft Berlin

Analog \rightarrow Digital

University of Applied Sciences

Grundlegende Signalverarbeitung: Deterministische Signale

- lacktriangleup Periodische Signale ightarrow deterministisch, Periode gibt fixen Bereich vor
- Parameter periodische Signale:
 - Periode T
 - Frequenz $f = \frac{1}{T}$,
 - Amplitude S(t)
 - Phase φ
- Beispiele:
 - Sinus: Periode 2π
 - Phase shift φ (sin \to cos : $\varphi = \frac{3}{2}\pi$)

University of Applied Sciences

Komposition periodischer Signale

- Periodische Funktionen als Kompositionen
 - Beispiel: $s(t) = \sin(2\pi f t) + \frac{1}{3}\sin(2\pi (3f)t)$
- Signal: Sin mit Frequenz f und 3f

University of Applied Science

Einschub Fourier-Reihen

- Jede periodische Funktion kann als Summe von Sinus- und Kosinusfunktionen dargestellt werden ← Fourier-Reihe
- Reihenentwicklung: Darstellung (komplizierten) Funktion durch die Summe (einfachen) Ersatzfunktionen
 - Lineare mathematische Umformungen (Addition, Differentiation, Integration usw.) als Ersatzfunktionen statt Originalfunktion
 - Reihendarstellung: Approximation, bei unendlich vielen Reihengliedern exakt (sofern Konvergent)
- ullet Stetiges periodisches Signal x(t) kann durch Fourier-Reihe approximiert werden
- Wie viele Reihenglieder und somit Koeffizienten notwendig sind, hängt von den Eigenschaften von x(t)

Iniversity of Applied Sciences

Bit-Rate des Übertragungskanals

- Beispiel: Rechteckschwingung
 - Positiver Puls 1-Bit
 - Negativer Puls 0-Bit
 - Dauer des Pulses $\frac{1}{2}f$
 - Datenrate ist 2f Bits pro Sekunde
- Bandbreite ist physikalisch begrenzt (Eigenschaft des Mediums)
 - Berechnung: $\delta = f_{max} f_{min}$

Iniversity of Applied Sciences

Bit-Rate vs. Bandbreite: Signalfrequenz

- Ziel: Komposition der Rechteckschwingung durch periodische Funktion
- Signal besteht aus f, 3f und 5f

$$\sin(2\pi ft) + \frac{1}{3}\sin(2\pi 3ft) + \frac{1}{5}\sin(2\pi 5ft)$$

- Signal besteht aus f, 3f, 5f und 7f
 - $sin(2\pi ft) + \frac{1}{3}sin(2\pi 3ft) + \frac{1}{5}sin(2\pi 5ft) + \frac{1}{7}sin(2\pi 7ft)$
- Rechteckschwingung:

$$s(t) = A \cdot \frac{4}{\pi} \cdot \sum_{k=1,k \text{ ungearde}}^{\infty} \frac{1}{k} \sin(2\pi k f t)$$

Iniversity of Applied Sciences

Bit-Rate vs. Bandbreite: Medium limiting harmonics

Bit-Rate vs. Bandbreite: Numerisches Beispiel

- Beispiel Frequenz: f = 1MHz
 - Bandbreite des Signals:

$$s(t) = 5 \cdot 10^6 Hz) - (1 \cdot 10^6 Hz) = 4MHz$$

Periode:
$$T = \frac{1}{T} = \frac{1}{10^6} s = 10^{-6} s = 1 \mu s$$

- 1 Bit alle $0.5\mu s$
- Datenrate: $r = 2Bit \cdot 10^6 Hz = 2\frac{MBit}{s}$
- Beispiel: f = 2MHz?

University of Applied Science

Bit-Rate vs. Bandbreite: Multilevel Digital Signals

- Binäres Signal: Signal mit zwei Werten
- Multilevel digital Signal:
 - Digitales Signal mit mehr als nur zwei Werten, DIBIT = zwei Bit pro Wert (quartär Signal)
 - Anzahl der diskreten Werte eines Signals können wie folgt beschrieben werden:
 - n = 2 binary (binär)
 - n = 3 ternary (trinär)
 - n = 4 quaternary (quartär)
 - ...
 - n = 8 octonary
 - n = 10 denary

Iniversity of Applied Science

Bit-Rate vs. Bandbreite: Multilevel Digital Signals

University of Applied Science

Bit-Rate vs. Bandbreite: Datenrate

Symbolrate = Anz. der physikalischen Ereignisse pro Zeiteinheit auf dem Medium Einheit: Symbole/s = Baud (bd)

University of Applied Sciences

Bit-Rate vs. Bandbreite: Datenrate

- Datenrate = Anzahl der dekodierten Bits der Symbolrate pro Zeiteinheit Einheit: Bits/s (bps)
- Binäre Signale mit Frequenz v: Data rate = v Jedes Signal dekodiert 1 Bit
- Multilevel-Signale n mögliche Werte: Data rate = $v \cdot \log_2(n)$
- Beispiel:
 - DIBIT \Leftarrow 1 baud = 2 bps (quaternary signal)
 - TRIBIT $\Leftarrow 1$ baud = 3 bps (octonary signal)

University of Applied Sciences

Bits & Bytes

Name of bit rate	Symbol	Multiple	Explicit
Bit per second	bps	100	1
Kilobit per second	kbps	10 ³	1,000
Megabit per second	Mbps	10 ⁶	1,000,000
Gigabit per second	Gbps	10 ⁹	1,000,000,000
Terabit per second	Tbps	1012	1,000,000,000,000
Petabit per second	Pbps	1015	1,000,000,000,000,000
Exabit per second	Ebps	1018	way too many zeroes