Realizado por:

- Francisco José Cotán López
- Ignacio Vellido Expósito
- 1. Usando la notación O, determinar la eficiencia de los siguientes segmentos de código:

```
int n,j; int i=1; int x=0; O(1)
 do{
                                     0(1)
     j=1;
     while (j \le n){
                                     O(1)
                                     O(1)
                                                             O(n) \times O(\log_2 n)
         j=j*2;
                                               O(\log_2 n)
                                                                                     O(n \times \log_2 n)
                                     0(1)
         x++;
     }
                                     0(1)
     i++;
  }while (i<=n);</pre>
int n,j; int i=2; int x=0; O(1)
 do{
                                     O(1)
       j=1;
       while (j \le i){
                                     O(1)
                                                             O(n + \log_2 n!)
                                               O(log_2 i)
                                                                                     O(log_2 n!)
                                     O(1)
            j=j*2;
            x++;
                                     0(1)
       }
                                     0(1)
       i++;
    }while (i<=n);</pre>
```

2. Para cada función f(n) y cada tiempo t de la tabla siguiente, determinar el mayor tamaño de un problema que puede ser resuelto en un tiempo t (suponiendo que el algoritmo para resolver el problema tarda f(n) microsegundos, es decir, $f(n) \times 10^{-6}$ sg.)

	t				
f(n)	1 sg.	1 h.	1 semana	1 año	1000 años
$\log_2 n$	$\approx 10^{300000}$	∞	00	∞	∞
n	10 ⁶	$\approx 3.6 \times 10^9$	≈6 × 10 ¹¹	≈3,15 × 10 ¹³	≈3,15 × 10 ¹⁶
$n \log_2 n$	$\approx 6 \times 10^4$	$\approx 1.33 \times 10^8$	≈10 ¹⁰	≈ 7 × 10 ¹¹	≈ 6 × 10 ¹⁴
n^3	100	1532	8456	≈3,15 × 10 ⁴	≈3,15 × 10 ⁵
2^n	19	31	39	44	54
n!	9	12	14	16	18

Notas

Ejercicio 1:

$$\bullet \sum_{i=1}^{n} (\log_2 n) = n \times \log_2 n$$

Ejercicio 2:

1 hora = 3600 segundos 1 semana = 604.800 segundos $1 \text{ año} = 3,15 \times 10^7 \text{ segundos}$ $1000 \text{ años} = 3,15 \times 10^{10} \text{ segundos}$

Derivando de la fórmula: $T(n) = n^{o}$ de operaciones \times velocidad del procesador (s⁻¹) Donde T(n) es el tiempo (en segundos) que tarda en hacer el número de operaciones.

En los casos en los que no se ha podido despejar ha sido a base de prueba y error (sustituciones)

Fórmula para n:
$$n^{\underline{o}}$$
 de operaciones $=\frac{tiempo\ en\ segundos}{velocidad\ del\ procesador}$

Fórmula para n³:
$$n^{\underline{o}}$$
 de operaciones = $\sqrt[3]{\frac{tiempo\ en\ segundos}{velocidad\ del\ procesador}}$

tiempo en segundos

Fórmula para $\log_2 n$: $n^{\underline{o}}$ de operaciones = $2^{\frac{1}{\text{velocidad del procesador}}}$

(Los resultados eran tan grandes que se ha aproximado a infinito)