EQ2410 - Advanced Digital Communications

Project 1: Channel Equalization

Baptiste Cavarec 940321-T197

Hugo Lime 920707-4635

February 14, 2016

1 Problem 1

1.a Identification of signals

- Vect_1: Random QPSK data symbol sequence $\texttt{Vect_1} \in \{1+i, 1-i, -1+i, -1-i\}^{\texttt{N_symbols}}$
- Signal_1: Vect_1 upsampled by factor T_sym/ delta_t and normalized Signal_1(1 + $k * T_sym/delta_t$) = Vect_1(1 + k)/delta_t with $k \in [0, N_symbols 1]$
- Signal_2: Complex baseband data transmitted waveform Signal_2 = Signal_1 * Filter_1
- Signal_3: Complex baseband data received waveform Signal_3 = Signal_2 * Filter_2
- Signal_4: Complex baseband noise waveform with two-sided variance N_0
- Signal_5: Complex baseband total received waveform
 Signal_5 = Signal_3 + Signal_4
- Signal_6: Complex baseband total received waveform matched filtered Signal_6 = Signal_5 * Filter_4
- Vect_2: Sampler output received symbol sequence after synchronization $\texttt{Vect_2}(k) = \texttt{Signal_6}(k*\texttt{T_sym/delta_t} + \delta_{offset}) \; (\texttt{Signal_6} \; \text{downsampled})$

1.b Identification of filters

- Filter_1: Transmitter filter
- Filter_2: Channel filter
- Filter_3: Transmitter and Channel chain filter
- Filter_4: Matched filter of Filter_3, can be used as receiver filter
- Filter_5: Transmitter, channel and receiver chain filter, used to simulate the overall system response

1.c Normalization coefficient

In the program, we use a small time resolution (delta_t) to represent continuous-time signals. We consider the signals to be constant over these small intervals. With this approximation, the integrals, used in the convolutions for example, are transformed into sums in the following way:

$$(f \star g)(m\delta_t) = \int_{-\infty}^{+\infty} f(t)g(m\delta_t - t)dt = \sum_{k = -\infty}^{\infty} \left(\int_{k\delta_t}^{(k+1)\delta_t} f(t)g(m\delta_t - t)dt \right) \approx \delta_t \sum_{k = -\infty}^{\infty} f(k\delta_t)g((m-k)\delta_t)$$

And we can notice that, compared to the discrete-time convolution formula used by Matlab, the last sum is multiplied by delta_t.

The factor 1/delta_t when we generate Signal_1 is another normalization used to keep the signal power indepedant of the time resolution. In the same manner we have:

$$P = \frac{1}{N_{symbols}T_{sym}} \int_{0}^{N_{symbols}T_{sym}} |S_{1}(t)|^{2} dt$$

$$\approx \frac{1}{N_{symbols}T_{sym}} \sum_{k=0}^{(N_{symbols}-1)T_{sym}\delta_{t}} |S_{1}(k\delta_{t})|^{2} \delta_{t}$$

$$\approx \frac{\delta_{t}^{2}}{N_{symbols}T_{sym}\delta_{t}} \sum_{k=0}^{(N_{symbols}-1)T_{sym}\delta_{t}} |S_{1}(k\delta_{t})|^{2}$$

$$\approx \frac{1}{N_{symbols}T_{sym}\delta_{t}} \sum_{k=0}^{(N_{symbols}-1)T_{sym}\delta_{t}} |\delta_{t}^{2}S_{1}(k\delta_{t})|^{2}$$

And by dividing by 1/delta_t, the discrete-time signal power of Signal_1 is independent of delta_t and equal to the one of Vect_1.

2 Problem 2

We know that $\mathbf{r}[n] = \mathbf{U}\mathbf{b}[n] + \mathbf{w}[n]$, that $\mathbf{R} = \mathbb{E}[\mathbf{r}[n]\mathbf{r}[n]^H]$ and that $\mathbf{p} = \mathbb{E}[b^*[n]\mathbf{r}[n]]$ Therefore:

$$\mathbf{r}[n]^H = \mathbf{b}[n]^H \mathbf{U}^H + \mathbf{w}[n]^H$$

so that:

$$\mathbf{r}[n]\mathbf{r}[n]^{H} = \mathbf{U}\mathbf{b}[n]\mathbf{b}[n]^{H}\mathbf{U}^{H} + \mathbf{U}\mathbf{b}[n]\mathbf{w}[n]^{H} + \mathbf{w}[n]\mathbf{b}[n]^{H}\mathbf{U}^{H} + \mathbf{w}[n]\mathbf{w}[n]^{H}$$
(1)

with

$$\mathbb{E}[\mathbf{w}[n]\mathbf{w}[n]^H] = \mathbf{C}_{\mathbf{w}}$$

As the data values b[n] are independent, we have

$$\mathbb{E}[\mathbf{b}[n]\mathbf{b}[n]^H] = P_s\mathbf{I} \qquad \text{with } P_s = \mathbb{E}[|b[n]|^2]$$

Moreover, as b[n] and w[k] are independent for every n and k, it remains in the expectation of (1):

$$\mathbf{R} = P_s \mathbf{U} \mathbf{U}^H + \mathbf{C}_{\mathbf{w}} \tag{2}$$

We can also write:

$$b^*[n]\mathbf{r}[n] = \mathbf{U}b^*[n]\mathbf{b}[n] + b^*[n]\mathbf{w}[n]$$
(3)

and b[n] is independent of w[k] for every k and independent of b[k] for every $k \neq 1$. It gives:

$$\mathbb{E}[b^*[n]\mathbf{b}[n]] = P_s\mathbf{e}$$

Taking the expectation of (3), it remains:

$$\mathbb{E}[b^*[n]\mathbf{r}[n]] = P_s\mathbf{U}\mathbf{e} \tag{4}$$

3 Problem 3

4 Problem 4