

Online Minimum Matching in Real-Time Spatial Data: Experiments and Analysis

Yongxin Tong¹, Jieying She², Bolin Ding³, Lei Chen², Tianyu Wo¹, Ke Xu¹

¹ SKLSDE Lab, NSTR, and IRI, Beihang University, China
² The Hong Kong University of Science and Technology, Hong Kong, China
³ Microsoft Research, Redmond, WA, USA

¹ {yxtong, woty, kexu}@buaa.edu.cn, ² {jshe, leichen}@cse.ust.hk, ³ bolind@microsoft.com

Introduction

Online Minimum Bipartite Matching in Spatial Data (OMBM)

- Most applications of OMBM need to be addressed in real-time
 - Task Assignment in Spatial Crowdsourcing
 - Taxi Dispatching
 - Food Delivery
 - **Motivations and Contributions**

	Motivations	Contributions		
1	Is Greedy really the worst?	Greedy has good performance.		
2	Is the worst-case analysis appropriate for the OMBM problem in practice?	Worst-case vs. Average-case analysis.		
3	Are implementations and experimental evaluations uniform?	Uniform implementations and evaluations are provided.		

The OMBM Problem

- Given
 - A set of (**static**) service providers W
 - Each $t \in T$: location l_t .
 - A set of (dynamic) users T
 - Each $w \in W$: location l_w and arriving time a_w .
 - Cost Function dis(t, w): any metric distance function
- Find an online matching M to minimize the total cost $MinSum(M) = \sum_{t \in T, w \in W} dis(t, w)$ s.t.
 - Cardinality Constraint: |M|=min{|T|, |W|}
 - Real-Time Constraint: Once a user *t* appears, a service provider must be immediately assigned to *t* before the next user appears.
 - Invariable Constraint: Once a user t is assigned to a service provider w, the match (t, w) cannot be changed
- Online Algorithm Evaluation: Competitive Ratio (CR)
 - Adversarial Model: Worst-Case Analysis
 - $CR_A = max_{\forall G(T,W,U)} and \forall v \in V \frac{MinSum(M)}{MinSum(OPT)}$
 - Radom Order Model: Average-Case Analysis
 - $CR_{RO} = max_{\forall G(T,W,U)} \frac{\mathbb{E}[MinSum(M)]}{MinSum(OPT)}$

Representative Algorithms for OMBM Problem

Algorithms	Time Complexity per Each Arrival Vertex	Randomization	Data Structure	Competitive Ratio
Greedy [SODA 1991]	O(k)	Deterministic	No	O(2 ^k)
Permutation [SODA 1991]	O(k ³)	Deterministic	No	O(2k-1)
HST-Greedy [SODA 2006]	O(k)	Randomized	HST	O(log³k)
HST- Reassignment [ESA 2007]	O(k ²)	Randomized	HST	O(log ² k)

HST: Hierarchically Separated Tree [STOC 2003]

Is the greedy algorithm really the worst in real practice?

Greedy Algorithm Revisited

Competitive Ratio (Random Order Model in this case): 3.195

Experimental Evaluation

- Real Datasets (Shenzhou Taxis)
 - 15082 Shenzhou Taxis at Beijing in May 2015
 - Average 115364 calling-taxi requests per day
- Synthetic Datasets (5000 ×5000 grids)
 - The locations randomly follows Normal distribution, Uniform distribution, Power-law distribution and Exponential distribution.

Results that the locations of service providers in W follow Normal, Power-law, and Exponential distributions while the locations of users follow Normal distribution.