CE224 Strength of Materials Fall 2015 **HW-1**

Due: 09/11/2015

1) Generalized Hooke's law provides the following stress-strain relationships:

$$\varepsilon_x = \frac{\sigma_x}{E} - \frac{v}{E} (\sigma_y + \sigma_z)$$

$$\varepsilon_{x} = \frac{\sigma_{x}}{E} - \frac{v}{E}(\sigma_{y} + \sigma_{z})$$
 $\varepsilon_{y} = \frac{\sigma_{y}}{E} - \frac{v}{E}(\sigma_{x} + \sigma_{z})$ $\varepsilon_{z} = \frac{\sigma_{z}}{E} - \frac{v}{E}(\sigma_{x} + \sigma_{y})$

$$\varepsilon_z = \frac{\sigma_z}{E} - \frac{\nu}{E} (\sigma_x + \sigma_y)$$

Determine expressions for σ_x , σ_y , σ_z in terms of ε_x , ε_y , ε_z .

2) A system composed of three pin-connected steel bars supports a load of P as shown in figure. Knowing that $A_{ad}=2A_{bd}=1.5A_{cd}=2A$, compute bar forces and tip deflection for:

a)
$$\alpha_1=\alpha_2=45^\circ$$

b)
$$\alpha_1 = 2\alpha_2 = 60^{\circ}$$

- 3) An aluminum cube is placed in a rigid box. Given a temperature increase of $\Delta T = 100$ °C, determine:
 - a) The normal stresses (σ_x, σ_z)
 - b) Elongation in the y direction.

$$\alpha=23.11\times 10^{-6}/^{\circ}\text{C}$$
, $\nu=0.3$, $\alpha=200\,\text{mm}$ and $E=70\,\text{GPa}$

4) The average shear stress at the pin of hinge *d* due to the horizontal force *P* at point *c* should not exceed 100 MPa. Pin *d* has a cross-sectional area of 1400 mm². Determine the minimum area of bar *ab*, if the allowable normal stress for the bar is given as 200 MPa.

5) A circular tapered bar is subjected to a linearly increasing distributed axial line load p and a concentrated axial load N. Compute the axil tip deflection δ_2 of the bar, if N=25~kN, $r_1=30~mm$, $r_2=10~mm$, L=1~m, $p_1=0~kN/m$, $p_2=12~kN/m$, and E=200000~MPa.

