

General information

Designation

Guaiacum spp. (L)

Typical uses

Bearing & bushing blocks; lining of stern tubes for steamship propeller shafts; underwater use; mallets; pulley sheaves; caster wheels; stencil; chisel block; turned articles; brush backs.

Composition overview

Compositional summary

Cellulose/Hemicellulose/Lignin/12%H2O		
Material family	Natural	
Base material	Wood (tropical)	
Renewable content	100	%

Composition detail (polymers and natural materials)

Price			

100

%

Wood

Price	* 6.7	-	10.8	USD/kg
Price per unit volume	* 7.44e3	-	1.45e4	USD/m^3

Physical properties

Density	1.11e3	_	1.35e3	ka/m/3
Density	1.1163	_	1.5565	kg/III 3

Mechanical properties

wechanical properties				
Young's modulus	* 12.1	-	14.8	GPa
Yield strength (elastic limit)	* 79.6	-	97.3	MPa
Tensile strength	* 133	-	163	MPa
Elongation	* 2.97	-	3.63	% strain
Compressive strength	70.7	-	86.5	MPa
Flexural modulus	11	-	13.4	GPa
Flexural strength (modulus of rupture)	* 143	-	175	MPa
Shear modulus	* 0.9	-	1.1	GPa
Shear strength	* 20.7	-	25.3	MPa
Bulk modulus	* 5.19	-	5.85	GPa
Poisson's ratio	* 0.35	-	0.4	
Shape factor	4.7			
Hardness - Vickers	* 23.7	-	28.9	HV
Hardness - Brinell	* 136	-	167	НВ
Hardness - Janka	* 23.7	-	28.9	kN

Lignumvitae (I)

#EJUPIICK				
Fatigue strength at 10^7 cycles	* 43	-	52.6	MPa
Mechanical loss coefficient (tan delta)	* 0.0068	-	0.0083	
Differential shrinkage (radial)	* 0.32	-	0.39	%
Differential shrinkage (tangential)	* 0.53	-	0.65	%
Radial shrinkage (green to oven-dry)	* 3.2	-	7	%
Tangential shrinkage (green to oven-dry)	* 6.8	-	11.5	%
Volumetric shrinkage (green to oven-dry)	* 11	-	18	%
Work to maximum strength	* 214	-	261	kJ/m^3
Impact & fracture properties				
Fracture toughness	* 13.4	-	16.4	MPa.m^0.5
Thermal properties				
Glass temperature	77	-	102	$\mathcal C$
Maximum service temperature	120	-	140	$\mathcal C$
Minimum service temperature	* -73	-	-23	$\mathcal C$
Thermal conductivity	* 0.54	-	0.66	W/m.℃
Specific heat capacity	1.66e3	-	1.71e3	J/kg.℃
Thermal expansion coefficien	* 2	-	11	µstrain/℃
Electrical properties				
Electrical resistivity	* 6e13	-	2e14	µohm.cm
Dielectric constant (relative permittivity)	* 12	-	14.7	
Dissipation factor (dielectric loss tangent)	* 0.15	-	0.183	
Dielectric strength (dielectric breakdown)	* 0.4	-	0.6	MV/m
Magnetic properties				
Magnetic type	Non-mag	gnet	ic	
Optical properties				
Transparency	Opaque			
Critical materials risk				
Contains >5wt% critical elements?	No			
Durability				
Water (fresh)	Limited			
Water (salt)	Limited	use		
Weak acids	Limited	use		
Strong acids	Unaccep	otab	le	
Weak alkalis	Accepta			
Strong alkalis	Unaccep	otab	le	

Organic solvents	Acceptable
Oxidation at 500C	Unacceptable
UV radiation (sunlight)	Good
Flammability	Highly flammable

Primary production energy, CO2 and water

Embodied energy, primary production	* 11.6	-	12.8	MJ/kg
CO2 footprint, primary production	* 0.574	-	0.633	kg/kg
Water usage	* 665	-	735	l/kg

Processing energy, CO2 footprint & water

Coarse machining energy (per unit wt removed)	* 1.08	-	1.2	MJ/kg
Coarse machining CO2 (per unit wt removed)	* 0.0811	-	0.0897	kg/kg
Fine machining energy (per unit wt removed)	* 6.54	-	7.23	MJ/kg
Fine machining CO2 (per unit wt removed)	* 0.491	-	0.542	kg/kg
Grinding energy (per unit wt removed)	* 12.6	-	13.9	MJ/kg
Grinding CO2 (per unit wt removed)	* 0.946	-	1.05	kg/kg

Recycling and end of life

in a cyaning and a cyan a cyan a					
Recycle		×			
Recycle fraction in current supply		8.55	-	9.45	%
Downcycle		✓			
Combust for energy recovery		✓			
Heat of combustion (net)	*	19.8	-	21.3	MJ/kg
Combustion CO2	*	1.69	-	1.78	kg/kg
Landfill		✓			
Biodegrade		✓			

Notes

Warning

All woods have properties which show variation; they depend principally on growth conditions and moisture

Links

ProcessUniverse	
Reference	
Shape	