Dalles piézoélectriques

Khabouze Mehdi

Scei:10006

Plan de la présentation:

- 1 Introduction et problématique.
- 2 La piézoélectricité et ses applications.
- Propriétés des piézo-cristaux.
- Modélisation, optimisation et Simulation numérique.
- 5 Prototype et Étapes de réalisation.
- **6** Conclusions et perspectives.

Problèmatique:

Enjeux énergétiques : flambée des prix, pénuries.

Solution éco-responsable: La marche

Innovation piézoélectrique: récupération de l'énergie piétonnière.

Qu'est ce que la Piézoélectricité?

Décalage des barycentres des charges positives et négatives

Piézoélectricité

Qu'est ce que l'effet Piézoélectrique?

Générer un champ électrique suite à une contrainte mécanique.

Transformer une énergie électrique en une énergie mécanique.

Figure 1: Schématisation de l'effet piézoélectrique direct et inverse sur un barreau muni d'électrodes

Chronologie

1880

Découverte de la piézoélectricité

1952

Découverte du PZT

2009

Applications de la piézoélectricité

Actionneurs

Générateurs

Capteurs

Montages Piézoélectriques

Montage en série

Montage en parallèle

Montage en série

Montage en série

Courbe indiquant la tension (V) générée en fonction du temps (s)

Courbe illustrant l'intensité du courant (µA) en fonction du temps(s)

Montage en parallèle

Montage en parallèle

Courbe indiquant la tension (V) générée en fonction du temps (s)

Courbe illustrant l'intensité du courant (μ A) en fonction du temps(s)

Comparaison des montages

	Courant	Tension
Montage en parallèle		×
Montage en série	X	

Montage en parallèle

Courbe indiquant la tension (V) générée en fonction du temps (s)

Courbe illustrant l'intensité du courant (μ A) en fonction du temps(s)

L'effet piézoélectrique inverse

Est-ce-que cette tension électrique dure tout le temps ou seulement pendant l'instant de la déformation ?

Expérience 1

Application d'une pression un pic de tension puis une chute à zéro.

Conservation de la pression annulation de tension

Relâchement de la pression une tension négative apparait mais s'amortie pour retomber à zéro.

Conclusion de l'expérience 1

Hypothèse

La tension revient à zéro à cause du faible courant consommé par l'oscilloscope pour mesurer la tension.

Oscilloscope numérique 1

Preuve de l'hypothèse

Maintenir la pression sur le capteur puis Brancher la sonde de l'oscilloscope

Une tension apparaît

La tension a persisté tout le temps où le capteur était déformé

La tension est amortie à cause de l'oscilloscope

La fragilité des capteurs

- Faible résistance à la température.
- Faible résistance aux chocs.

Modélisation du capteur

Masse (m)

Soumise à l'accélération de pesanteur

$$\overrightarrow{g} = -g\overrightarrow{e_y}$$

Modélisation de la rigidité

Relation entre la force appliquée et le déplacement

La constante k du ressort détermine la rigidité du système piézoélectrique.

L'effet piézoélectrique inverse

Les pertes énergétiques : frottements, dissipations internes.

Les coefficients d'amortissement μ déterminent l'amortissement de la tension aux bornes du capteur piézoélectrique. Avec: $\mu = \mu_e + \mu_m$

Modélisation d'un générateur piézoélectrique

Système masse-ressort-amortisseur

Équation différentielle

- On suppose une sollicitation $\overrightarrow{F}(t) = f(t)\overrightarrow{e_y}$ finie du générateur:
- On admet que le système obéit à l'équation suivante :

$$m\ddot{u}(t) + \mu \dot{u}(t) + ku(t) = f(t)$$

où
$$u = y - y_0$$

 $u(0) = u_0 \in \mathbb{R}$ et $\dot{u}(0) = \dot{u}_0 \in \mathbb{R}$.

Résolution de l'équation différentielle

On suppose que:

$$\frac{\mu}{2m} < \sqrt{\frac{k}{m}}$$

 Les racines de l'équation caractéristique sont :

$$\pi_{1,2} = \frac{-\mu}{2m} + \frac{\sqrt{4} \kappa_m - \mu^2}{2m}$$

Résolution de l'équation différentielle

La solution s'écrit :

$$u(t) = e^{-\alpha t} \left(\lambda_1 \cos(\beta t) + \lambda_2 \sin(\beta t) \right)$$

Etude énergétique

Soit E₀ l'énergie mécanique initiale. Donc :

$$E_0 = \frac{1}{2}m\dot{u}_0^2 + \frac{1}{2}ku_0^2$$

L'énergie fournie au capteur correspond au travail induit par la force F:

$$E_m = \int_0^{+\infty} f(t) \dot{u}(t) \, \mathrm{d}t$$

l'énergie électrique produite par le générateur correspond à celle dissipée dans l'amortisseur.

$$E_e = \int_0^{+\infty} \mu_e \left(\dot{u}(t) \right)^2 dt$$

Efficacité

On définit l'efficacité du générateur par:

$$\mathscr{E}_{ff} = \frac{E_e}{E_0 + E_m} = \frac{\mu_e}{\mu}$$

Optimisation

Soit P_e la puissance électrique moyenne effective récupérée :

$$P_{e} = -\mu_{e} \frac{\int_{0}^{\infty}}{2\left(\mu^{2} - m + \frac{k}{\omega^{2}}\right)}$$

Pour quelle pulsation ω , P_e est-elle maximale?

Avec une étude de fonction du dénominateur, on trouve:

Optimisation

Quelle masse m doit-on appliquer sur l'extrémité du capteur afin d'optimiser la conversion d'énergie?

D'après la question précédente :

$$m = \frac{K}{\omega^2} = 509$$

Visioconférence

Bonjour,

Je réalise une thèse sur les absorbeurs piézoélectrique au sein de PYTHEAS et je me propose de vous aider pour votre projet.

Je suis normalement disponible <u>à partir de mercredi</u> pour une visio <u>à 19h</u>, si cela vous convient, pourriez-vous m'envoyer un lien zoom ? Pourriez-vous me décrire votre projet et vos besoins, les questions que vous souhaiteriez m'adresser en amont de notre réunion afin que je puisse y répondre au mieux.

Bon courage pour les concours qui approchent,

Floriane Peyrouse

100 impasse des Houillères ZA Le Pontet 13590 Meyreuil - France Floriane PEYROUSE
PhD Student
PYTHEAS Technology
+33 7 86 04 40 53 // +33 1 30 08 95 95
floriane.peyrouse@pytheas-technology.com

Équations de la piézoélectricité

$$\begin{cases} S = s^{E}T + {}^{t}dE \\ D = dT + \varepsilon^{T}E \end{cases}$$

- D déplacement électrique (Coulomb.m⁻²)
- E champ électrique (V.m⁻¹)
- T contrainte (N.m⁻²)
- S déformation
- ε^T permitivité (constante diélectrique)
- s^E compliance $(m^2.N^{-1})$
- d constante piézoélectrique (m.V⁻¹)

https://blog.nextias.com/piezoelectricity

Équations piézoélectriques simplifiées

 On considère les termes relatifs à la direction de polarisation en négligeant les autres:

$$\begin{cases} S_3 = s_{33}^E T_3 + d_{33} E_3 \\ D_3 = d_{33} T_3 + \varepsilon_{33}^T E_3 \end{cases}$$

Équations (quasi-statique)

On intègre ces équations sur le domaine complet du matériau

avec 1 ddl*:

$$\begin{cases} F = K_p x + \alpha V \\ Q = \alpha x - C_0 V \end{cases}$$

- F chargement appliqué (N)
- x déplacement de l'extrémité du piézo (m)
- Q charge électrique sur la surface encastrée (Coulomb)
- V tension aux bornes du piézo (V)
- C_0 capacité bloquée (aussi notée C_b)
- α facteur de transformation électromécanique
- ullet K_p raideur de l'élément piézo en circuit fermé (aussi notée K_{cc})

Schéma du modèle quasi statique

Cas des céramiques

Pour une céramique fine d'aire A et d'épaisseur e, les paramètres représentatifs sont :

$$K_p = \frac{A}{s_{33}^E e}$$
, $\alpha = \frac{d_{33}}{s_{33}^E} \frac{A}{e}$

- K_p raideur de l'élément piézo en circuit fermé (aussi notée K_{cc})
- d constante piézoélectrique (m.V⁻¹)
- α facteur de transformation électromécanique
 S₃₃ compliance (m².N⁻¹)

Comparaison de 3 piézo-céramiques

PZT

ZnO

AIN

Réponse du ZnO

Réponse du AIN

Réponse du PZT

Réponse des 3 piézo-matériaux

Analyse des résultats

Une pente plus élevée de la courbe du PZT

Une réponse plus sensible du PZT aux variations de déplacement

En effet:

- Le PZT a un paramètre de charge piézoélectrique (d33) élevé donc une meilleure conversion d'énergie.
- Le PZT a une rigidité électromécanique (S33) plus faible donc une meilleure flexibilité .

Étapes de réalisation

Conception et spécifications

Matériel nécessaire

schéma électrique

Assemblage

Tests

Évaluation et validation

http://piezoelectricite.over-blog.com/2014/05/conclusion.html

Conception et spécifications

Matériel nécessaire

Schéma électrique

Schéma électrique de la dalle.

Assemblage

Assemblage

Dalle assemblée

Tests

Application d'une force (700 N)

Allumage des led (sans batterie)

Tests

Rechargement de la batterie après 1h30 de marche.

Évaluation et validation

- Faible différence de tension de 0,14
 volts après la recharge.
- La capacité de conversion d'énergie de la dalle piézoélectrique est limitée.
- Des améliorations ou des ajustements sont nécessaires pour optimiser l'efficacité de conversion d'énergie.

et du develpement un

Conclusion et perspectives

- Étude des propriétés piézoélectriques, modélisation et optimisation de l'effet piézoélectrique.
- Simulation numérique pour sélectionner le matériau le plus adapté à la dalle.
- Faible recharge de la batterie du prototype, nécessitant des améliorations.
- Perspectives prometteuses pour répondre aux besoins énergétiques.

Annexe 1: calcul de l'efficacité

$$E_{m} = \int_{0}^{+\infty} f(t)\dot{u}(t)dt = \int_{0}^{+\infty} [m\ddot{u}(t) + \mu\dot{u}(t) + ku(t)]\dot{u}(t)dt$$

$$= \int_{0}^{+\infty} m\ddot{u}(t)\dot{u}(t) + \mu\dot{u}^{2}(t) + ku(t)\dot{u}(t) dt$$

$$= \frac{m}{2}[\dot{u}^{2}(t)]_{0}^{+\infty} + \mu \int_{0}^{+\infty} \dot{u}^{2}(t) dt + \frac{k}{2}[u^{2}(t)]_{0}^{+\infty}$$

$$= -\frac{m}{2}\dot{u}_{0}^{2} - \frac{k}{2}u_{0}^{2} + \frac{\mu}{\mu_{e}}E_{e}$$

$$E_{m} = -E_{0} + \frac{\mu}{\mu_{e}}E_{e} \qquad \qquad D'o\dot{u} : \frac{E_{e}}{E_{0} + E_{m}} = \frac{\mu_{e}}{\mu}$$

Annexe 2: courbe ZnO

```
import numpy as np
 import matplotlib.pyplot as plt
# Paramètres des capteurs
 A = np.pi * ((35 * 10**(-3))**2)
 e = 0.00001
                                           # epaisseur
# Paramètres piézoélectriques pour le ZnO
D33 zno = 11.4 * (10**(-10)) # Paramètre de charge piézoélectrique pour le Zno
S33 zno = 12 * (10**(-10)) # Paramètre de rigidité électromécanique pour le ZnO
# On suppose que tous les capteurs subissent le même effort F en newton
force = 700
# Définition de la plage de valeurs pour le déplacement d'extrémité des capteurs
x = np.linspace(0.00001, 0.001)
# On définit les constantes C
C = A / e
# Calcule des valeurs correspondantes de la tension pour le ZnO en utilisant la formule F
voltage zno = abs((force - (C * x / S33 zno)) / ((D33 zno * C) / S33 zno))*0.001
# Tracage de la courbe ZnO avec une couleur bleue
plt.plot(x, voltage zno, color='orange', label='ZnO')
# Configuration du graphique
plt.xlabel('Déplacement (m)')
plt.ylabel('Tension (mV)')
plt.title('Courbe de tension pour le matériau piézoélectrique ZnO')
plt.legend()
plt.grid(True)
# Affichage du graphique
 plt.show()
```


Annexe 3: courbe AIN

```
import numpy as np
 import matplotlib.pyplot as plt
 # Paramètres des capteurs
 A = np.pi * ((35 * 10**(-3))**2)
                                           # épaisseur
# Paramètres piézoélectriques pour l'AlN
D33 ain = 3.7 * (10**(-10)) # Paramètre de charge piézoélectrique pour l'AlN
S33 ain = 265 * (10**(-10)) # Paramètre de rigidité électromécanique pour l'AlN
# On suppose que tous les capteurs subissent le même effort F en newton
 force = 700
 # Définition de la plage de valeurs pour le déplacement d'extrémité des capteurs
 x = np.linspace(0.00001, 0.001)
 # On définit les constantes C
 C = A / e
 # Calcule des valeurs correspondantes de la tension pour l'AlN en utilisant la formule F
 voltage ain = abs((force - (C * x / S33 ain)) / ((D33 ain * C) / S33 ain))*0.001
 # Tracage de la courbe AlN avec une couleur verte
 plt.plot(x, voltage ain, color='green', label='AlN')
 # Configuration du graphique
 plt.xlabel('Déplacement (m)')
plt.ylabel('Tension (mV)')
plt.title('Courbe de tension pour le matériau piézoélectrique AlN')
 plt.legend()
 plt.grid(True)
 # Affichage du graphique
 plt.show()
```

Code python pour le traçage de la courbe du AIN

Annexe 4: courbe PZT

```
import numpy as np
import matplotlib.pyplot as plt
# Paramètres des capteurs
A = np.pi * ((35 * 10**(-3))**2)
                                           # aire
e = 0.00001
                                           # épaisseur
# Paramètres piézoélectriques pour le PZT
D33 pzt = 100 * (10**(-10)) # Paramètre de charge piézoélectrique pour le PZT
S33 pzt = 22.7 * (10**(-10)) # Paramètre de rigidité électromécanique pour le PZT
# On suppose que tous les capteurs subissent le même effort F en newton
force = 700
# Définition de la plage de valeurs pour le déplacement d'extrémité des capteurs
x = np.linspace(0.00001, 0.001)
# On définit les constantes C
C = A / e
# Calcule des valeurs correspondantes de la tension pour le PZT en utilisant la formule F
voltage pzt = abs((force - (C * x / S33 pzt)) / ((D33 pzt * C) / S33 pzt))*0.001
# Tracage de la courbe PZT avec une couleur rouge
plt.plot(x, voltage pzt, color='blue', label='PZT')
# Configuration du graphique
plt.xlabel('Déplacement (m)')
plt.ylabel('Tension (mV)')
plt.title('Courbe de tension pour le matériau piézoélectrique PZT')
plt.legend()
plt.grid(True)
# Affichage du graphique
plt.show()
```


Annexe 5: les 3 courbes

```
import numpy as np
import matplotlib.pvplot as plt
# Paramètres des capteurs
A = np.pi * ((35 * 10**(-3))**2)
                                          # aire
e = 0.00001
                                           # épaisseur
# Paramètres piézoélectriques pour chaque matériau
D33 pzt = 100 * (10**(-10)) # Paramètre de charge piezoélectrique pour le PZT
S33 pzt = 22.7 * (10**(-10)) # Parametre de rigidité électromécanique pour le PZT
D33 zno = 11.4 * (10**(-10)) # Paramètre de charge piézoélectrique pour le ZnO
533 zno = 12 * (10**(-10)) # Paramètre de rigidité électromécanique pour le ZnO
D33 ain = 3.7 * (10**(-10)) # Paramètre de charge piézoélectrique pour l'AlN
S33 ain = 265 * (10**(-10)) # Paramètre de rigidité électromécanique pour l'AlN
# On suppose que tous les capteurs subissent le même effort F en newton
force = 700
# Définition de la plage de valeurs pour le déplacement d'extrémité des capteurs
x = np.linspace(0.00001, 0.001)
# On définit les constantes C
C = A / e
# Calcule des valeurs correspondantes de la tension pour chaque matériau en utilisant la formule
voltage pzt = abs((force - (C * x / S33 pzt)) / ((D33 pzt * C) / S33 pzt))*0.001
voltage zno = abs((force - (C * x / S33 zno)) / ((D33 zno * C) / S33 zno))*0.001
voltage ain = abs((force - (C * x / S33 ain)) / ((D33 ain * C) / S33 ain))*0.001
# Tracage des courbes
plt.plot(x, voltage pzt, label='PZT')
plt.plot(x, voltage zno, label='ZnO')
plt.plot(x, voltage ain, label='AlN')
# Configuration du graphique
plt.xlabel('déplacement (m)')
plt.ylabel('Tension (mV)')
plt.title('Courbes de tension pour les matériaux piézoélectriques')
plt.legend()
plt.grid(True)
# Affichage du graphique
plt.show()
```


Code python pour le traçage de la courbe des 3 courbes.