MAD map for multivariate discrete distributions

goal: approximate *multivariate* discrete posterior $p(x), x \in \mathbb{N}^M$

augmented target: $\tilde{p}(x,u) = p(x) \cdot 1_{[0,1]^M}(u)$

idea: sequentially apply univariate map to full conditionals

conditional of mth entry given the rest / $\tilde{p}_m(x_m, u_m) = \tilde{p}(x_m, u_m | x_{-m}, u_{-m})$

$$= p(x_m \,|\, x_{-m}) \cdot 1_{[0,1]}(u_m)$$
 only need full conditional of posterior!

(which \propto joint)

start with (x, u)

update (x_1',u_1') with MAD map targeting $ilde{p}_1$

update (x_2',u_2') with MAD map targeting $ilde{p}_2$

conditioning on (x'_1, x_3, \dots, x_M)

update (x'_M, u'_M) with MAD map targeting \tilde{p}_M conditioning on x'_{-M}

end with $(x', u') =: T_{\text{MAD}}(x, u)$

does it work?

does it work? yes! T_{MAD} :

does it work? yes! T_{MAD} :

- is invertible

inverse order, i.e., M to 1

does it work? yes! T_{MAD} :

- is invertible
- has tractable density

if
$$(x,u)\sim q_0$$
 then
$$p(T_{\rm MAD}(x,u))=\frac{q_0(T_{\rm MAD}^{-1}(x,u))}{J_{\rm c}(T_{\rm MAD}^{-1}(x,u))}$$

"continuous restriction" ($\rightarrow = \prod_{m=1}^{M} \frac{p_m(x_m)}{p_m(x'_m)}$ of Jacobian

does it work? yes! T_{MAD} :

- is invertible
- has tractable density
- is measure-preserving for augmented posterior

MAD map for multivariate discrete distributions

goal: approximate *multivariate* discrete posterior $p(x), x \in \mathbb{N}^M$

augmented target: $\tilde{p}(x,u) = p(x) \cdot 1_{[0,1]^M}(u)$

idea: sequentially apply univariate map to full conditionals

start with (x,u) update (x_1',u_1') with MAD map targeting \tilde{p}_1 update (x_2',u_2') with MAD map targeting \tilde{p}_2

- conditioning on (x'_1, x_3, \dots, x_M)

update (x'_M, u'_M) with MAD map targeting \tilde{p}_M conditioning on x'_{-M}

end with $(x', u') =: T_{\text{MAD}}(x, u)$

does it work? yes! T_{MAD} :

- is invertible
- has tractable density
- is measure-preserving for augmented posterior

MAD Mix: flow family for discrete distributions

goal: approximate *multivariate* discrete posterior $p(x), x \in \mathbb{N}^M$