Def
$$Var(X|Y) = E[(X-E(X|Y))^2|Y] = E(X^2|Y) - [E(X|Y)]^2$$

1. Consider two continuous random variables X and Y with joint p.d.f.

$$f_{X,Y}(x,y) = \frac{4}{3} x^3 y$$
, $0 < x < 1$, $0 < y < 3x$, zero otherwise.

Recall:
$$f_{\mathbf{X}}(x) = 6x^5$$
, $0 < x < 1$.

$$f_{Y}(y) = \frac{1}{3}y - \frac{1}{243}y^{5}, \qquad 0 < y < 3.$$

$$f_{Y|X}(y|x) = \frac{f(x,y)}{f_X(x)} = \frac{2y}{9x^2},$$
 $0 < y < 3x, \quad 0 < x < 1.$

$$E(Y \mid X = x) = \int_{0}^{3x} y \cdot \frac{2y}{9x^{2}} dy = \frac{2}{9x^{2}} \cdot \frac{(3x)^{3}}{3} = 2x, \quad 0 < x < 1.$$

$$E(Y \mid X) = 2X.$$

$$E(Y^2 \mid X = x) = \int_{0}^{3x} y^2 \cdot \frac{2y}{9x^2} dy = \frac{2}{9x^2} \cdot \frac{(3x)^4}{4} = \frac{9}{2}x^2, \quad 0 < x < 1.$$

$$E(Y^2 \mid X) = \frac{9}{2} X.$$

$$Var(Y | X = x) = \frac{9}{2}x^2 - (2x)^2 = \frac{1}{2}x^2, \quad 0 < x < 1.$$

$$Var(Y | X) = \frac{1}{2} X^2.$$

$$E(X) = \int_{0}^{1} x \cdot 6x^{5} dx = \frac{6}{7}.$$

$$E(X^{2}) = \int_{0}^{1} x^{2} \cdot 6x^{5} dx = \frac{6}{8} = \frac{3}{4}.$$

$$Var(X) = \frac{3}{4} - \left(\frac{6}{7}\right)^2 = \frac{3}{196}.$$

$$E[Var(Y|X)] = E[\frac{1}{2}X^2] = \frac{1}{2}E(X^2) = \frac{3}{8}.$$

$$Var[E(Y|X)] = Var[2X] = 4 Var(X) = \frac{3}{49}$$

$$E(Y) = \int_{0}^{3} y \cdot \left(\frac{1}{3}y - \frac{1}{243}y^{5}\right) dy = \left(\frac{1}{3 \cdot 3}y^{3} - \frac{1}{7 \cdot 243}y^{7}\right) \Big|_{0}^{3} = \frac{12}{7}.$$

$$E(Y^2) = \int_0^3 y^2 \cdot \left(\frac{1}{3}y - \frac{1}{243}y^5\right) dy = \left(\frac{1}{4 \cdot 3}y^4 - \frac{1}{8 \cdot 243}y^8\right) \Big|_0^3 = \frac{27}{8}.$$

$$Var(Y) = \frac{27}{8} - \left(\frac{12}{7}\right)^2 = \frac{171}{392}.$$

$$Var(Y) = Var[E(Y|X)] + E[Var(X|Y)]$$

$$\frac{171}{392} = \frac{3}{49} + \frac{3}{8} = \frac{24 + 147}{392}.$$

2. Consider the following joint probability distribution p(x, y) of two discrete random variables X and Y:

		x		
		1	2	$p_{\mathrm{Y}}(y)$
	1	0.14	0.06	0.20
у	2	0.12	0.18	0.30
	3	0.14	0.36	0.50
	$p_{X}(x)$	0.40	0.60	1.00

Y given $X = 1$		
у	$p_{Y X}(y 1)$	
1	0.14 / 0.40 = 0.35	
2	0.12 / 0.40 = 0.30	
3	0.14 / 0.40 = 0.35	

Y given
$$X = 2$$
 y
 $p_{Y|X}(y|2)$

1
 $0.06 / 0.60 = 0.10$

2
 $0.18 / 0.60 = 0.30$

3
 $0.36 / 0.60 = 0.60$

1.00

$$E(Y | X = 1) = 1 \cdot 0.35 + 2 \cdot 0.30 + 3 \cdot 0.35$$

= 2.00.

1.00

$$E(Y|X=2) = 1 \cdot 0.10 + 2 \cdot 0.30 + 3 \cdot 0.60$$

= 2.50.

$$E(Y^2 | X = 1) = 1 \cdot 0.35 + 4 \cdot 0.30 + 9 \cdot 0.35$$

= 4.70.

$$E(Y^2 | X = 2) = 1 \cdot 0.10 + 4 \cdot 0.30 + 9 \cdot 0.60$$

= 6.70.

$$Var(Y | X = 1) = 4.70 - 2.00^2 = 0.70.$$

$$Var(Y|X=2) = 6.70 - 2.50^2 = 0.45.$$

Var(Y|X):

	values	probabilities
X	Var(Y X = x)	$p_{X}(x)$
1	0.70	0.40
2	0.45	0.60
	•	1.00

$$E[Var(Y|X)] = 0.70 \cdot 0.40 + 0.45 \cdot 0.60 = 0.55.$$

Recall:

E(Y|X):

	values	probabilities
X	E(Y X = x)	$p_{X}(x)$
1	2.00	0.40
2	2.50	0.60
	•	1.00

 $E[E(Y|X)] = 2.00 \cdot 0.40 + 2.50 \cdot 0.60 = 2.30.$

$$E[E(Y|X)^2] = 2.00^2 \cdot 0.40 + 2.50^2 \cdot 0.60 = 5.35.$$

$$Var[E(Y|X)] = 5.35 - 2.30^2 = 0.06.$$

$$E(Y) = 1 \cdot 0.20 + 2 \cdot 0.30 + 3 \cdot 0.50 = 2.30.$$

$$E(Y^2) = 1^2 \cdot 0.20 + 2^2 \cdot 0.30 + 3^2 \cdot 0.50 = 5.90.$$

$$Var(Y) = 5.90 - 2.30^2 = 0.61.$$

$$Var(Y) = Var[E(Y|X)] + E[Var(Y|X)]$$

$$0.61 = 0.06 + 0.55.$$

X given $Y = 1$		X	X given $Y = 2$		X given $Y = 3$	
X	$p_{X Y}(x 1)$	<i>x</i>	$p_{X Y}(x 2)$	X	$p_{X Y}(x 3)$	
1	$\frac{0.14}{0.20} = 0.70$	1	$\frac{0.12}{0.30} = 0.40$	1	$\frac{0.14}{0.50} = 0.28$	
2	$\frac{0.06}{0.20} = 0.30$	2	$\frac{0.18}{0.30} = 0.60$	2	$\frac{0.36}{0.50} = 0.72$	
	1.00		1.00		1.00	
E(X	Y = 1) = 1.30	E(X)	Y = 2) = 1.60	E(X	Y=3) = 1.72	
Var(X Y=1) = 0.21		Var(X	Var(X Y=2) = 0.24		Y = 3) = 0.2016	

Var(X|Y):

	values	probabilities
У	E(X Y=y)	$p_{\rm Y}(y)$
1	0.21	0.20
2	0.24	0.30
3	0.2016	0.50
	•	1.00

 $\mathrm{E} \big[\, \mathrm{Var} \big(\, \mathrm{X} \, \big| \, \mathrm{Y} \, \big) \, \big] \, = \, 0.21 \cdot 0.20 + 0.24 \cdot 0.30 + 0.2016 \cdot 0.50 \, = \, 0.2148.$

Recall:

E(X|Y):

	values	probabilities
У	E(X Y=y)	$p_{\rm Y}(y)$
1	1.30	0.20
2	1.60	0.30
3	1.72	0.50
		1.00

$$E[E(X|Y)] = 1.30 \cdot 0.20 + 1.60 \cdot 0.30 + 1.72 \cdot 0.50 = 1.60.$$

$$E[E(X|Y)^2] = 1.30^2 \cdot 0.20 + 1.60^2 \cdot 0.30 + 1.72^2 \cdot 0.50 = 2.5852.$$

$$Var[E(X|Y)] = 2.5852 - 1.60^2 = 0.0252.$$

$$E(X) = 1 \cdot 0.40 + 2 \cdot 0.60 = 1.60.$$

$$E(X^2) = 1^2 \cdot 0.40 + 2^2 \cdot 0.60 = 2.80.$$

$$Var(X) = 2.80 - 1.60^2 = 0.24.$$

$$Var(X) = Var[E(X|Y)] + E[Var(X|Y)]$$

$$0.24 = 0.0252 + 0.2148.$$

