体論(第2回)の解答

問題 2-1 の解答

(1) y = f(x) のグラフを描くと, f(x) は整数の根を持たないことが分かる. 従って, 定理 2-2 より f(x) は $\mathbb Q$ 上既約である.

 $(2) \alpha \in \mathbb{Q}$ と仮定する. $\alpha^2 = 2 + \sqrt{2}$ より、

$$\alpha^4 - 4\alpha^2 + 2 = 0.$$

よって, $f(x)=x^4-4x^2+2$ は α を根にもつ. 因数定理から $f(x)=(x-\alpha)g(x)$ となる $g(x)\in\mathbb{Q}[x]$ が存在する. 一方, f(x) は p=2 でアイゼンシュタインの定理の条件を満たすので, \mathbb{Q} 上既約である. よって矛盾. 従って, α は無理数である.

問題 2-2 の解答

g(x) = f(x+a) が Q 上可約とすると、

$$g(x) = h_1(x)h_2(x), \quad (h_1(x), h_2(x) \in \mathbb{Q}[x] \operatorname{deg} h_1 \ge 1, \operatorname{deg} h_2 \ge 1)$$

と表せる. このとき、

$$f(x) = g(x - a) = h_1(x - a)h_2(x - a)$$

であり, $h_1(x-a), h_2(x-a)$ はともに 1 次以上なので, f(x) が $\mathbb Q$ 上既約に矛盾する. 従って f(x+a) は $\mathbb Q$ 上既約である.

問題 2-3 の解答

$$f(x) = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 5.$$

f(x) は p=5 でアイゼンシュタインの定理の条件を満たすので $\mathbb Q$ 上既約である. 問題 2-2 より, $x^5+4=f(x-1)$ も $\mathbb Q$ 上既約である.

問題 2-4 の解答

(1) $k! \times_p C_k = p \times (p-1) \times \cdots \times (p-k+1) \downarrow b \mid p \mid k! \times_p C_k$ である. $p \nmid k! \downarrow b \mid p \mid_p C_k$.

$$f(x+1)x = (x+1)^p - 1 = x^p + {}_{p}C_{p-1}x^{p-1} + \dots + {}_{p}C_2x^2 + {}_{p}C_1x.$$

よって

$$f(x+1) = x^{p-1} + {}_{p}C_{p-1}x^{p-2} + \dots + {}_{p}C_{2}x + p.$$

(1)から f(x+1) はアイゼンシュタインの定理の条件を満たすので $\mathbb Q$ 上既約である. よって f(x)も $\mathbb Q$ 上既約である.

copyright ⓒ 大学数学の授業ノート