Semester One Examination 2015

Question/Answer Booklet

HUMAN BIOLOGICAL SCIENCE

Name	Solution
Class	
Teacher Name	

Time allowed for this paper

Reading time before commencing work:

Ten minutes

Working time for paper:

Stage 3

Three hours

Materials required/recommended for this paper

To be provided by the supervisor:

This Question/ Answer Booklet

Multiple Choice Answer Sheet

Two Extended Answer Booklets: Part A and Part B

To be provided by the candidate

Standard items:

Pens, pencils, eraser, correction fluid, ruler, highlighters

Special items:

Non-programmable calculators satisfying the conditions set by the Curriculum Council for

this course

Important note to candidates

No other items may be taken into the examination room. It is **your** responsibility to ensure that you do not have any unauthorised notes or other items of a non-personal nature in the examination room. If you have any unauthorised material with you, hand it to the supervisor **before** reading any further.

SECTION ONE:

MULTIPLE CHOICE

Total

CROSS THE BEST ALTERNATIVE

1	A	В	С	D	
2	Α	В	0	D	
3	Α	В	0	D	
4	Α	В		D	
5	Α	В	С	0	
6	Α	В	С	0	
7	Α	B	С	D	
8	Α	B	С	D	
9	Α	В	(C)	D	
10	Α	B	С	D	
11	Α	B	С	D	
12	Α	В	0	D	
13	Α	В	0	D	
14	Α	B	С	D	

15 A B

16		В	С	D
17	Α	B	С	D
18	Α	В	С	0
19	Α	В	С	
20	Α	В	(C)	D
21	A	В	С	D
22	Α	B	С	D
23	Α	В	(C)	D
24	Α	В	(C)	D
24 25	A A	В	C C	D
			CCC	D D
25	A		_	D
25 26	A	В	С	D
25 26 27	A A A	В В В	C	D
25 26 27 28	A A A	В В В	C C	

Part II

(100 marks)

Write answers to ALL questions on the ruled lines after each question or in the spaces provided within each table. Write your answers in blue or black ballpoint or ink pen.

Question 31 (13 marks)

A pharmaceutical company was investigating the possibility of a new drug for the treatment of patients with heat stroke or hyperthermia. The designed effect of the drug was to increase the skin blood flow of the patients within minutes of administering the drug intra-venously.

In order to test the efficacy of the drug a trial was conducted in which patients admitted to the emergency rooms of hospitals with heat stroke were asked if they wished to participate. A total of 180 patients agreed to take part over the duration of the trial.

Participants were put in to one of two groups. One group of patients would receive an intra-venous injection of the new trial drug and the other group would receive an intra-venous injection of saline (sterile salty water). The normal protocols for treating patients with heat stroke were also carried out for both experimental groups. Each group had 90 individuals.

The skin temperature of participants was recorded on their administration to the ER and every ten minutes after their intra-venous injection. A summary of this data is included in the table below.

Examine the data presented and answer the questions that follow.

The effects of new drug on lowering body temperature of patients suffering heat stroke

Treatment group	Number of patients	Average Temperature (°C) on	Average Temperature (°C) following administrati drug or saline					
		admission	10 min	20 min	30 min	40 min	50 min	60 min
New drug	90	40.8	39.9	38.6	37.5	37.3	37.2	37.2
Saline	90	40.6	39.9	39.3	38.7	38.2	37.8	37.4

The new drug will reduce body temperature quicker than savine.

BOOL KIND (°C)		provid	ed at th	e bac	ed, constr k of this	booklet).				_						s 4 marl
3 7	AND STREET, ST																
<i>r</i> a –																	
8					X												
								7			(50)						
											D,	J					
	, (E	Ø		Tiw	so e (mi,	*			i i	6 2 (2110r	ing	¥	N-O N-O	wi	ned	
		write a Le ŽVÌ (<u> </u>		usion for		<u>M</u>	ation.	1)	ten				(tent	1 (CO)

b) State the following variables:

e) Why wa	as one group given the saline injection?	
	This was the control group	***************************************
0	Used to compare the results of the new to see if it was more effective at redubledy temperature.	
,	data above to explain the effect of this drug on blood flow to the skin.	
0	1 blood from to skin	
<u> </u>	t hear loss in radiation	
Ouestion 32	(5 marks)	(3 marks)

A lady has been diagnosed with 'hyperthyroidism'. Complete the table summarising the cause, symptoms and treatment for this disease.

Cause	Auto immune disease (Grave's Disease) 1 thyroxine revels Excess iodine in diet Tumour of thyroid or Pihitary grand
Symptoms (x2)	horight 1955 Protracting eyes thinger anxiety sweating Restless ness
Treatment(s)	Radioactive iodine to destroy thyroid cens Anti-thyroid medication to & thyroxine production Surgey to remove part of the thyroid.

Question 33 (11 marks)

With reference to the diagram below:

a) Label the following:

one of the second	A	Plasmid
12.	В	Insulin gene (O if state gene of interest)
12	С	Recombinant DNA
1	D	Transactive organism

(2 marks)

b) In the table below, describe the sequence of events that results in the formation of recombinant DNA in a transgenic organism. Step Description of events Removal of insuling gene using restriction ensyme

(12)

Removal of bacterial planned + treating with 1 2 some restriction enzyme (1/2) DNA ligare to combine troub gere into 3 4 Plasmid taken up by bactera (4 marks) c) Insulin is an important hormone for regulating blood glucose levels. e) Which cells are responsible for secreting insulin in the human body? Beta cells (1 mark) ii) What is the advantage of using recombinant technology instead of more traditional techniques to harvest insulin? * Any one (1 mark) to body Hycching the insulin Insulin is identical to human insulin iii) Explain why individuals suffering from Type 1 Diabetes require insulin injections. * Max 3 marks. (3 marks) Reduced levels of insulin lasurin injections required to V by levels

Will at not resistant to insulin.

Question 34 (17 marks)

This diagram is an illustration of a cross-section through the brain. Use this diagram to answer part (a) below.

a) In terms of body movement, what is the role of the structures labelled A, B and C.

STRUCTURE	ROLE IN MOVEMENT
A	Initiate never impulse
В	receives sensory information from intel
С	Regulates breathing rate I blood vessel
	diameter / heart rate / bisson pressure

This diagram is an illustration of a motor neuron. Use this diagram to answer parts (b) and (c) below.

b) In terms of normal function, what is the role of the structures labelled D, E and F?

STRUCTURE	FUNCTION
D	Carry never impulse into cell body (soma)
E	Speeds up reve impulse
F	Releases neuro transmitters to diffuse
	(3 mark

c) A student researching the term "saltatory conduction" stated that the region in the motor neuron labelled G experiences depolarisation.

i)	What is n	neant by the	term: saltatory	conduction?
----	-----------	--------------	-----------------	-------------

(1 mark)

The never impulse "jumps" from one node of
Ranvier to another.

ii) Describe the events that occur during depolarisation of a neuron.

		Nat	chan	els one						(4 mark	s)
	1	Nat	ions	frond i	110	12U10.	~~				
	<i>]</i> >	Mila	10 L	NEWON	be	CONRI	MUT	200	sitive	compared	
U		} _o	0~14h					\$		46	
		MEN	hor Class	pstenti	A I	intec	ses	+7	30 K	7~~	
V. and				*					f .		-

an are an are a second		
	A stimulus must crack the thresehold of	
	SI my for a nerve impulse to occur.	
	If stimules does not reach the thresehold	
	then a new impulse is not generated.	
	**	
$-(\!$	Once the threshold is reached, a new impulse	
***************************************	of the same size is produced.	
\bigcirc	A neve impulse is generated or nothing	
	loud soils = made as cool dis soled	
V	Loud noise = more neurous stimulated	
	The state of the s	
	re. San Charley	
	Soft noise = less neurons stimulated (6 marks	s)
The same of the sa	less impulses generated.	

d) The action potential is described as an all or nothing response. Explain what this means and explain how neuron transmission differ so that the brain can distinguish between a loud noise and a quiet

noise.

Question 35 (3 marks)

a) Our body's internal environment can be disrupted by the things we do in our everyday lives and also by disease. Explain how caffeine, alcohol and emphysema disrupts homeostasis within the human body.

Disruption to	Describe ONE way homeostasis is disrupted?
Homeostasis	
Caffeine max 1 max 1	Ocaffeine binds to receptor molecules of heart Or heart rate or blood flow through kidneys = f wine outpur Or dir in lungs = f gas exchange
Alcohol max 7 maxk	1) I ADH = t water exemplion from body 1) t insulin production = 1 b) g levels
Emphysema	(1) I gas exchange

Question 36 (8 marks)

Examine the following diagram of two neurons. One found in the peripheral nervous system and the other in the central nervous system.

a) Is this diagram illustrating the efferent or afferent division of the peripheral nervous system? Explain your answer.

(2 marks)

O Afternt

b) Based on its structure, classify the neuron in the central nervous system.

(1 mark)

Multipolar

c) Where would part "V" in the above diagram be located?

(1 mark)

Dorsal root ganglion

The diagram below is of the reflex arc. The Red-back spider is one of Western Australia's most deadly spiders. The spider's venom acts specifically at nerve endings to reduce the release of contents from synaptic vesicles at motor nerve endings.

d) On the diagram, indicate where this venom would act.

(1 mark)

e) Explain the effect of the venom.

O V neurotiansmitter (acety) classice) from
Vessicits
(1) I remo transmitted diffusing across wrange t
binding to receptors
(1) The muches will not be stimulated to contract.

Question 37 (10 marks)

There are several different ways hormones are recognised by cells.

a) Identify the location of each receptor associated with each type of hormone and then describe the effect on the cell.

Hormone	Location of receptor protein	Effect on the cell		
Protein/ amine hormone	(ell	Stronday message &		
not mone	membrane	enter all Enzyme activation		
Steroid hormone	Cytopiasmi	Protein synthesis		
Nucleus				

Tack cell (4 marks)

b) Complete the following table.

	Prolactin	Oxytocin	Adrenocorticotrophic hormone
Where produced	APG	typothalanus	APG
Where released	APG	PPG	APL
Target organ(s)	Mammay	while muscles mamney glands	Admon)
Effect	7 milk	uttile contraction	
	production	tject milkinto	1 aldosteine

2) tack (6 marks)

Question 38 (8 marks)

A man is swimming in the ocean and gets a huge fright when seeing a large, dark shape below him. As a result, a number of physiological changes occur to his body to assist his survival in this situation. Discuss one action of each of the following organs and how that action may assist survival.

ORGAN	ACTION	ASSISTANCE WITH SURVIVAL			
Liver	hycogenolysis	Breakdown of Stringen to ghow for energy			
Iris	Dilation of pupil	Increased light into the			
Bronchioles	Dilation of bronchiotes	1 gas exchange			
Blood vessels of the intestine	Constrict	Allows greater blood flow			

(8 marks)

Question 39 (6 marks)

Complete the table below indicating

- i. Which modes of transport are passive and which are active.
- ii. Identify one molecule which uses each process to cross the cell membrane.

Water, oxygen, alcohol, amino acids, salivary amylase, glucose, sodium ions, cholesterol

Type of transport	Passive or Active	One Substance transported by this method
DIFFUSION	P	02/Nat/A1(040)
OSMOSIS	P	H ₂ 0
FACILITATED DIFFUSION	7	almose / Amino acids
ACTIVE TRANSPORT	A	amico adds
ENDOCYTOSIS	A	Colesteros
EXOCYTOSIS	R	salivary amyrase

Question 40

(9 marks)

The graph below shows the fluctuations in body fluid over time.

Time

a) Draw in the optimal intercellular fluid concentration onto the graph.

(1 mark)

b) Name the receptors that detect changes in body fluid and their location in the body.

Name:

- Osmo receptors - Hypothalamus

Location:

(2 marks)

c) Describe the physiological changes the body undergoes at point B and the effect of this change on the concentration and volume of urine.

(D) 1 ADM

App production

1) 1 princability of replace ((D+D.(.T)

(2) Decreased volume of vine:

d) The thirst reflex assists in the regulation of body fluids.
i) Name the stimulus that initiates the thirst reflex.
O 1 asmotic pressure
ii) Identify the effector that carries out the response.
Dembal cortex) body muscles eg. biceps
iii) Is this an example of positive or negative feed back. Explain your answer.
(12) Negative Feedback
(2) The original strimmens has been removed.
(3 marks)

,

Question 41 (10 marks)

a) Complete the table below by writing transcription or translation next to the statement in reference to protein synthesis

Statement	Stage of Protein Synthesis
Ribosomes are involved	Tianslation
tRNA is involved	Translation
mRNA is made	Transcription
DNA acts as a template	Transciption.

(4 marks)

The table shows some amino acids and their corresponding tRNA anti-codon. The tRNA anti-codon for a stop signal is also shown. Below the table, a section of DNA is also shown. Use this information to answer questions (b) to (f).

Amino acid/stop signal	tRNA anti- codon
Alanine	CGG, CGA, CGU, CGC
Arginine	GCA, GCG, GCU, GCC
Cysteine	ACA, ACG
Glutamine	CUU, CUC
Glycine	CCU, CCG, CCA, CCC
Leucine	GAA, GAG, GAU, GAC
Proline	GGU, GGG, GGA
Serine	AGG, AGA, AGU, AGC
Stop signal	AUU, AUC, ACU
Threonine	UGC, UGA, UGU, UGG

DNA Template Strand:

A C A	СТТ	A C A	GCC	GGT	G G G
Triplet 84	Triplet 85	Triplet 86	Triplet 87	Triplet 88	Triplet 89

b) What amino acid is coded for by triplet 85?
(I) a Mtanine
(1 mark)
c) List the sequence of amino acids found in the polypeptide chain that is coded for by the DNA strand above.
Cysteine automine Custeine Accione Proline
Dysteine automine, Cysteine, Aginine, Proline,
(1 mark)
d) List the sequence of bases on a molecule of messenger RNA (mRNA) synthesised from the DNA
strand above.
Vau, GAA, VGU, CGG, CCA, CCC
·
(1 mark)
e) Triplet 89 coded for the last amino acid in the polypeptide chain. What is the next triplet?
Stop triplet ATT/ATC/ACT
(1 mark)
f) Describe the polypeptide chain if triplet 90 was ACT and the next triplet was CTT on the DNA molecule.
1) Polypephical chain terminated at triplet 90 (stop)
Dem perpetiale chain begins with amino and
(2 marks)

$\frac{42\alpha}{}$	* Feedback loop
	Stimulus 2 mx1 x
	I hay time
Feedback	Receptors
1 Negative	Themsiecephos
	V
Response	Madwator
vaso-constriction	Mypotherienne
1 thy oxina	Efficitors &
shireing Behavistral	Blood ressels ARC. Middles/
Stimulus	Gretzel wifex
O . I bedy temp	
Recephis	
(* Thermorecephis	
1) * Located in SKin +	- Lypothalanns
Modulator	
1 . Hy pothalamus	
Effectors (3mks only)	Response (3 mks only)
(RISON VEIRIS	1) · vaso - constriction of blood vessell
(1) · APG Thyroid	D. T thyroxine The tabolism
· · ·	t heat production
(T) = Muscles	(1) · Shiveing & heat production
De Cerebral whex	n. Behaviours response to put
<u> </u>	or a jumper to & heat
<u>Feedback</u>	Poss
Q . A body kmp due	to response
no Negative Feedback	

<u> </u>
1) Holding breath causes a build up of
This t co, is detected by chemoreceptors
Desated in the carotic travitic bodies. The message is sent to diadragen t
intercostal muchel
D Increased movement of diaphragm + IM mucher.
(1) Child is forced to breathe

* Max DMXI NEINONI Endouine Electrical impulsa Nature of Hormonel message Transport of Bloodstream Neuron membrane message All body. Muscles, glands, ems affected ani 7 other remons General + Local + Type of Specific widespread Migonse slower-from Rapid - milli Time taken to seconds to days. (ond s RSpond Longer lasting-Birt - stops Duration of response may When stimulus Continue days 4260-25 after stimuly has stobi

44 6)
(1) Antibody medicated immunity (Humoral)
(1) Involves (1) lymphocytes
O 13 lymphogytes are stimulated by: o antigen presenting cerns Helper Tells antigens on bacteria
DB coms enarge
1) Perelop into close cells
1) Most close cells become plasma cells
1) Planne celle produce antibodies
a Antibodie enter blood stream and mactivate
bacteral toxin
1) Memory cells are also produced
1) Memory cells remain in tymphoid tissue
Memory cells recognise the same bacters in
The Future and initiate a much quicker
innu response.
* Max 10 marks. *

446)
Antibodies
* Prevent pathogens entering cen by bindling to their
* Enhance phagocytosis by macrophages * Inactivate prenticipe bacterial toxis
* Aggintination (clumping) of pathogens and tohoning phagorytois
by phagory pris
44)
Vaccines * attemated - reduced virulence
* dead micro-organisms
* bacterial toxins (toxoids)
* Sub-unit- a piece of the organism
D Listing the type of vaccine > x3
max 6 ma/Ks.