COL703: Logic for Computer Science (Aug-Nov 2022)

Lectures 3 & 4 (Propositional Logic, Soundness and Completeness)

Kumar Madhukar

madhukar@cse.iitd.ac.in

August 18th and 22nd, 2022

Recap: Derived rules

- Modus Tollens (MT)
- ¬¬i
- proof by contradiction
- law of excluded middle ($\phi \lor \neg \phi$ is true)

Examples

Use LEM to show the validity of $p o q \vdash \neg p \lor q$

Provable equivalence

•
$$\phi + \psi$$

$$\bullet \ p \land q \rightarrow r \dashv \vdash p \rightarrow (q \rightarrow r)$$

•
$$p \land q \rightarrow p \dashv \vdash r \lor \neg r$$

PBC: Classical vs. Intuitionistic Logicians

This week

- Syntax of propositional logic
- Semantics of propositional logic
- Soundness and completeness

Syntax

- formulas are strings over propositional atoms, logical symbols and left- and right-brackets
- but not everything is allowed, of course; e.g. $(\neg)() \lor pq \to \text{does not seem to make any sense}$
- we would like our formulas to be well-formed

Well-formed formulas

- propositional atoms are well-formed formulas
- if ϕ is well-formed, so is $(\neg \phi)$
- if ϕ and ψ are well-formed, so are $(\phi \land \psi)$, $(\phi \lor \psi)$, and $(\phi \to \psi)$
- nothing else is a well-formed formula

Grammar in BNF

$$\phi ::= p \mid (\neg \phi) \mid (\phi \land \psi) \mid (\phi \lor \psi) \mid (\phi \to \psi)$$

Parse-trees and subformulas

Semantics

• based on the truth value of atomic propositions, and how the logical connectives manipulate the truth values

•
$$\phi_1, \phi_2, \ldots, \phi_n \vDash \psi$$

• truth tables

Example of \vDash notation

Do the following hold?

•
$$p \land q \models p$$

•
$$p \lor q \vDash p$$

•
$$\neg q, p \lor q \vDash p$$

•
$$p \models q \lor \neg q$$

Claim. For every well-formed propositional logic formula, the number of left-brackets is equal to the number of right-brackets.

Claim. For every well-formed propositional logic formula, the number of left-brackets is equal to the number of right-brackets.

Induction on the height of the parse tree (structural induction)

Claim. For every well-formed propositional logic formula, the number of left-brackets is equal to the number of right-brackets.

Induction on the height of the parse tree (structural induction)

base case: atomic formulas do not have any brackets

Claim. For every well-formed propositional logic formula, the number of left-brackets is equal to the number of right-brackets.

Induction on the height of the parse tree (structural induction)

base case: atomic formulas do not have any brackets

inductive step: argue for all possible logical connectives as root

Soundness of propositional logic

If $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid

then it is inconceivable that there there is a valuation in which ψ is false, whereas $\phi_1, \phi_2, \dots, \phi_n$ are all true.

induction on the length of the (natural deduction) proof

can be tricky though (because of the assumption boxes)

Soundness and Completeness

Soundness If $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid, then $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds.

Completeness If $\phi_1, \phi_2, \dots, \phi_n \vDash \psi$ holds, then $\phi_1, \phi_2, \dots, \phi_n \vdash \psi$ is valid.

Next week

- Resolution
- Normal forms
- SAT solving

Thank you!