



## Analyse de données :

# Les tremblements de terre sur la période 1990-2023

Groupe "Room One" Andreea / Loic / Xavier / Zacharia

Jedha Bootcamp - Data Essentials - dse-ft-99 - Demoday 17/01/2025



Comment analyser et utiliser les données sismiques historiques pour identifier des tendances et prédire les séismes à fort impact ?





#### Aperçu du dataset

#### Contenu

- 12 colonnes
- 3,4 millions de lignes (toutes les mesures mondiales) entre 1990 et 2023

#### Informations clés

- Date
- Géographie de l'épicentre
- Caractéristiques: Magnitude, Longitude
- Conséquences : Significativité, Tsunami



#### Visualisation globale des épicentres



Visualisation du dataset sous Tableau



Carte des plaques tectoniques

[source futura-sciences]



#### Visualisation locale des épicentres



Filtre Europe sous Tableau



**Zoom sur la France** 



## Analyse du nombre de séismes



**Volume important** 

Croissance régulière

Devons-nous nous inquiéter de cette croissance?



## Analyse du nombre de séismes



## Une croissance soutenue par les micro-séismes

Probablement de meilleures techniques de détection et/ou d'enregistrement ?



## Significativité

#### Significativité 500 7.5 10.0 -10.0-7.5 2.5 5.0 Magnitude Filtrage / Nettoyage Significativité en fonction de la magnitude 2000

Mesure les conséquences (impacts humains et environnementaux) d'un séisme

Exemple: Valeur > 600 -> Événement significatif



Très forte relation avec la magnitude





## Significativité et Machine Learning

Objectif: Modèle de prédiction de la significativité (conséquences)

en fonction des caractéristiques initiales (lieu, magnitude, profondeur)

0.9

R<sup>2</sup> score



Facteur principal



Prédiction d'une valeur numérique :

Modèle de régression linéaire





## Significativité et Machine Learning

Application du même modèle en réduisant le dataset aux significativités > 600



O.15
R<sup>2</sup> score Test
Performance trop faible



Test en ajoutant des colonnes de magnitude (puissance 2, puissance 3...)



Amélioration légère du modèle, mais pas suffisante (maximum atteint : 0.28)

Conclusion : Le modèle ne performe pas suffisamment pour la prédiction des grosses catastrophes

Néanmoins il peut être utilisé sur des données spécifiques (par exemple : l'Europe)



#### **Localisation des Tsunamis**





## Performance du modèle de régression logistique

#### Données d'entraînement



#### Données de test



| Tsunami non prédit qui ne se produit pas | Tsunami prédit qui ne se produit pas |
|------------------------------------------|--------------------------------------|
| Tsunami non prédit qui se produit        | Tsunami prédit qui se produit        |

58% VS 60%

prédiction



## Impact des coefficients sur ce modèle





## Modèle de forêt aléatoire pour la prédiction de tsunami





#### Performance du modèle de la forêt

#### Données d'entraînement



82% VS 75% prédiction

F1 score: 78%

#### Données de test



| Tsunami non prédit qui ne se produit pas | Tsunami prédit qui ne se produit pas |
|------------------------------------------|--------------------------------------|
| Tsunami non prédit qui se produit        | Tsunami prédit qui se produit        |



## Impact des coefficients sur ce modèle





#### Conclusion

#### Prédire l'impact d'un séisme

Est complexe

Demande plus!

