Exam 2 - Information

1 Exam format

• When: Thursday 29 October in class

• How long: 50 minutes (1 period)

• What: Lessons 10-19

• One 3 in \times 5 in index card of handwritten notes (both sides) allowed

• No other outside materials allowed

No calculators

2 Schedule

Tuesday 27 October Double period class: Review

Wednesday 28 October Exam EI, 19:00-20:30, CH348

Thursday 29 October Single period class: Exam

3 Review Problems

This collection of problems is <u>not</u> meant to represent the length of the exam. You are responsible for <u>all</u> the material covered in Lessons 10-19, not just what is represented in the problems below.

Problem 1. Solve the differential equation $\frac{dy}{dt} - 2ty = t$ with the initial condition y(0) = 1. Verify your solution.

Problem 2. Is the differential equation $(1 + t^2) dy + 2ty dt = 0$ is exact? Why? Solve this differential equation.

Problem 3. Is the differential equation $\frac{1}{y} dy + \frac{2t}{1+t^2} dt = 0$ separable? Why? Solve this differential equation.

Problem 4. Solve the differential equation $\frac{dy}{dt} = \frac{-2ty}{1+t^2}$.

Problem 5. Solve the differential equation $\frac{dy}{dt} - \frac{3}{t}y = t^4y^{1/3}$.

Problem 6. Plot the phase line for the differential equation $\frac{dy}{dt} = y^2 - 4y + 3$. What are the equilibrium points? Are they dynamically stable or unstable?

Problem 7. Solve the difference equation $y_{t+1} - \frac{1}{2}y_t = 3$ with the initial condition $y_0 = 5$. Verify your solution. Is y_t oscillating? Is y_t divergent?

Problem 8. Consider the following model of a market with a single product in continuous time. The model variables are

P = unit price $Q_d = \text{quantity demanded}$ $Q_s = \text{quantity supplied}$

The model equations are:

$$\frac{dP}{dt} = \frac{1}{2}(Q_d - Q_s)$$
$$Q_d = 5 - 2P + \frac{dP}{dt}$$
$$Q_s = -1 + 3P$$

- a. Combine these equations to find a single equivalent differential equation.
- b. Solve this differential equation.
- c. What can you say about the price of the product in the long run?

Problem 9. Consider the following version of the Solow growth model. The model variable is

k = capital-to-labor ratio

The model equation is

$$\dot{k} = 2k^{1/2} - k$$

- a. Plot the phase line of the model equation.
- b. What are the equilibrium points? Are they dynamically stable or unstable?
- c. What can you say about the capital-to-labor ratio in the long run?

Problem 10. Consider the following model of a market with a single product in discrete time. The model variables are

 P_t = unit price in period t Q_{dt} = quantity demanded in period t Q_{st} = quantity supplied in period t

The model equations are

$$Q_{dt} = Q_{st}$$

$$Q_{dt} = 5 - 2P_t$$

$$Q_{st} = -1 + 4P_{t-1}$$

- a. Combine these equations to find a single equivalent difference equation.
- b. Solve this difference equation.
- c. What can you say about the price of the product in the long run?