Automi e Linguaggi Formali - Esame del 15 Settembre 2021

Problema 1 (8 punti)

Considera il linguaggio $L = \{0^m 1^n | m > 3n\}$. Dimostra che L non è regolare.

Dimostrazione per contraddizione usando il Pumping Lemma

Assunzione: Supponiamo per contraddizione che L sia regolare.

Applicazione del Pumping Lemma: Allora esiste una costante p > 0 (pumping length) tale che ogni stringa $w \in L$ con $|w| \ge p$ può essere decomposta come w = xyz con:

- 1. $|xy| \le p$
- 2. |y| > 0
- 3. $xy^i z ∈ L per ogni i ≥ 0$

Scelta della stringa di test: Consideriamo $w = 0^{(3p+1)} 1^p \in L$.

Verifichiamo che w ∈ L: dobbiamo avere m > 3n, cioè 3p+1 > 3p ✓

Inoltre, $|w| = 4p+1 \ge p$, quindi il pumping lemma si applica.

Analisi della decomposizione: Poiché $|xy| \le p$ e w inizia con 3p+1 occorrenze di 0, la substring xy deve essere contenuta interamente nella parte degli '0'. Quindi:

- $x = 0^a$ per qualche $a \ge 0$
- $y = 0^b per qualche b > 0 (da |y| > 0)$
- $z = 0^{(3p+1-a-b)} 1^p$

Nota che a + b \leq p, quindi 3p+1-a-b \geq 3p+1-p = 2p+1 > 0.

Derivazione della contraddizione: Consideriamo $xy^0z = xz = 0^(3p+1-b) 1^p$.

Per essere in L, questa stringa deve soddisfare:

$$3p+1-b > 3p$$

Questo implica 1-b > 0, cioè b < 1.

Ma b è un intero positivo (da |y| > 0), quindi b ≥ 1 , che contraddice b < 1.

Problema 2 (8 punti)

Dimostra che se L è context-free, allora substring(L) = $\{v \mid uvw \in L \text{ per qualche } u,w\}$ è context-free.

Dimostrazione costruttiva

Dato: L è un linguaggio context-free con CFG $G = (V, \Sigma, R, S)$.

Obiettivo: Costruire una CFG G' per substring(L).

Intuizione: Una stringa v è in substring(L) se esiste una derivazione in G che produce una stringa contenente v come substring. Dobbiamo "estrarre" tutte le possibili substring dalle derivazioni di G.

Costruzione di G': $G' = (V \cup \{S', X\}, \Sigma, R', S')$ dove:

- S' è un nuovo simbolo iniziale
- X è un nuovo simbolo ausiliario
- R' contiene le seguenti produzioni:
- 1. Avvio dell'estrazione: $S' \rightarrow X$
- 2. **Copia delle produzioni originali:** Per ogni $A \rightarrow \alpha$ in R, aggiungi $A \rightarrow \alpha$ a R'
- 3. **Regole di "taglio" a sinistra:** Per ogni $A \rightarrow \alpha$ in R, aggiungi $X \rightarrow \alpha$ a R'
- 4. **Regole di "taglio" a destra:** Per ogni simbolo A ∈ V, aggiungi A \rightarrow ε a R'

Spiegazione delle regole:

- Le regole (2) preservano la capacità di generare stringhe di L
- Le regole (3) permettono di iniziare la generazione da qualsiasi variabile, simulando il "taglio" del prefisso
- Le regole (4) permettono di fermare la generazione prematuramente, simulando il "taglio" del suffisso

Formalizzazione alternativa più rigorosa:

Definiamo R' come segue:

1. $S' \rightarrow S$ (può generare qualsiasi stringa di L)

- 2. Per ogni A $\rightarrow \alpha$ in R:
 - Aggiungi $A \rightarrow \alpha$ a R'
 - Aggiungi S' $\rightarrow \alpha$ (può iniziare da qualsiasi produzione)
- 3. Per ogni $A \in V$, aggiungi $A \rightarrow \varepsilon$ a R' (può terminare prematuramente)

Correttezza:

Lemma: Se $v \in \text{substring}(L)$, allora $v \in L(G')$.

Dimostrazione: Se $v \in \text{substring}(L)$, allora esiste $uvw \in L$ per qualche u,w. Poiché $uvw \in L$, abbiamo $S \Rightarrow^* G uvw$. Questa derivazione può essere vista come una sequenza di passi che prima genera u, poi genera v, poi genera v. In G', possiamo:

- Usare S' $\rightarrow \alpha$ dove α inizia la generazione della parte che produce v
- Applicare le produzioni per generare v
- Usare le regole $A \rightarrow \epsilon$ per fermarci prima di generare il suffisso

Lemma: Se $v \in L(G')$, allora $v \in substring(L)$.

Dimostrazione: Se $v \in L(G')$, allora $S' \Rightarrow *_{G'} v$. Questa derivazione può essere trasformata in una derivazione che genera una stringa completa di L contenente v come substring, estendendo opportunamente con prefisso e suffisso usando le produzioni originali.

Pertanto substring(L) = L(G') è context-free. □

Problema 3 (8 punti)

Mostra che ogni linguaggio Turing-riconoscibile può essere riconosciuto da un automa deterministico a coda.

Dimostrazione di equivalenza

Definizione formale di automa a coda: Un automa deterministico a coda è una tupla $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ dove:

- Q è l'insieme finito di stati
- Σ è l'alfabeto di input
- Γ è l'alfabeto della coda
- $\delta: Q \times (\Sigma \cup \{\sqcup\}) \times (\Gamma \cup \{\epsilon\}) \rightarrow Q \times (\Gamma \cup \{\epsilon\})$ è la funzione di transizione

- $q_0 \in Q$ è lo stato iniziale
- F ⊆ Q è l'insieme di stati finali

La transizione $\delta(q, a, b) = (q', c)$ significa:

- Stato corrente: q, simbolo input: a, simbolo in testa alla coda: b
- Nuovo stato: q', simbolo da scrivere in coda (push): c
- Se b ≠ ε, il simbolo b viene rimosso dalla coda (pull)

Teorema: Automi a coda deterministici ≡ Turing Machine

Dimostrazione:

Parte 1: TM ⊆ Automa a coda

Data: Una TM M = $(Q, \Sigma, \Gamma, \delta, q_0, q_acc, q_rej)$

Obiettivo: Costruire un automa a coda M' equivalente

Strategia: Simulare il nastro della TM usando la coda come memoria di lavoro.

Rappresentazione del nastro: Il contenuto del nastro viene rappresentato nella coda come: [simbolo_pos_-k]...[simbolo_pos_-1][MARKER][simbolo_pos_0][simbolo_pos_1]...[simbolo_pos_j] dove MARKER è un simbolo speciale che indica la posizione corrente della testina.

Algoritmo di simulazione:

1. Inizializzazione:

- Copia l'input nella coda preceduto da MARKER
- Stato iniziale corrisponde a q₀

2. Simulazione di una transizione $\delta(q,a) = (q',b,D)$: Per movimento a destra (D = R):

- a. Estrai tutti i simboli fino a trovare MARKER (memorizza in stati)
- b. Estrai il simbolo successivo a (quello sotto la testina)
- c. Reinserisci i simboli estratti
- d. Push b (nuovo simbolo)
- e. Push MARKER (nuova posizione testina)
- f. Cambia stato a q'

Per movimento a sinistra (D = L):

- a. Estrai simboli fino a MARKER
- b. L'ultimo simbolo estratto prima di MARKER è quello a sinistra
- c. Riorganizza: push MARKER, poi b, poi gli altri simboli
- d. Cambia stato a q'

3. Accettazione/Rifiuto:

- L'automa entra in stato finale quando la TM raggiunge q_acc
- L'automa si ferma senza accettare quando la TM raggiunge q_rej

Dettagli implementativi:

- Servono stati ausiliari per memorizzare i simboli durante la riorganizzazione
- Il numero di stati è finito perché dobbiamo memorizzare al più una quantità finita di simboli durante ogni transizione

Parte 2: Automa a coda ⊆ TM

Data: Un automa a coda M = (Q, Σ , Γ , δ , q_0 , F)

Obiettivo: Costruire una TM M' equivalente

Strategia: Simulare la coda usando il nastro della TM.

Rappresentazione della coda:

- La coda è rappresentata su una porzione del nastro
- Una marca speciale indica la testa (destra) della coda
- Un'altra marca indica la fine (sinistra) della coda

Simulazione:

- Pull: La TM si sposta alla testa della coda, legge il simbolo, lo cancella, e aggiorna la marca
- Push: La TM si sposta alla fine della coda, scrive il nuovo simbolo, e aggiorna la marca
- Il controllo degli stati è diretto

Correttezza: Ogni operazione della coda è fedelmente simulata sul nastro.

Conclusione: Automi a coda deterministici ≡ TM ≡ Linguaggi Turing-riconoscibili. □

Problema 4 (8 punti)

Parte (a): Constrained-4-Color ∈ NP

Problema:

```
Constrained-4-Color = \{\langle G, f_1, ..., f_n \rangle \mid \exists \text{ colorazione } c_1, ..., c_n \}
tale che c_v \neq f_v \ \forall v \in c_u \neq c_v \text{ se } (u,v) \in E\}
```

Certificato: Una colorazione c: V → {rosso, blu, verde, giallo}

Verificatore polinomiale:

```
Verify(⟨G, f<sub>1</sub>, ..., f<sub>n</sub>⟩, c):
1. Per ogni vertice v:

a. Verifica che c(v) ≠ f<sub>v</sub>

2. Per ogni arco (u,v) ∈ E:

a. Verifica che c(u) ≠ c(v)

3. Return true se tutte le verifiche passano
```

Analisi di complessità:

- Dimensione del certificato: O(n log 4) = O(n) bit
- Tempo di verifica: O(n + |E|) per controllare vincoli
- La verifica è polinomiale

Quindi Constrained-4-Color \in NP. \square

Parte (b): Constrained-4-Color è NP-hard

Riduzione: 3-Color ≤_p Constrained-4-Color

Problema 3-Color (NP-completo):

```
3-Color = {(G) | G può essere colorato con 3 colori}
```

Dato: Un grafo G = (V, E) con V = $\{v_1, v_2, ..., v_n\}$

Costruzione dell'istanza Constrained-4-Color:

- Grafo G' = G (stesso grafo)
- Colori proibiti: f_i = giallo per ogni v_i ∈ V

Spiegazione: Proibiamo il quarto colore (giallo) a tutti i vertici, effettivamente riducendo il problema a una 3-colorazione.

Correttezza della riduzione:

⇒: Se G ∈ 3-Color, allora G può essere colorato con {rosso, blu, verde}. Questa stessa colorazione è valida per Constrained-4-Color perché:

- Non usa il colore giallo (rispetta i vincoli f_i = giallo)
- Rispetta i vincoli di adiacenza (era una 3-colorazione valida)

Quindi $\langle G', f_1, ..., f_n \rangle \in Constrained-4-Color.$

 \Leftarrow : Se $\langle G', f_1, ..., f_n \rangle \in$ Constrained-4-Color, allora esiste una colorazione valida c. Poiché f_i = giallo per ogni vertice, la colorazione c usa solo {rosso, blu, verde}. Poiché c rispetta i vincoli di adiacenza, è una 3-colorazione valida di G.

Quindi $G \in 3$ -Color.

Computabilità: La trasformazione è chiaramente polinomiale (identità sul grafo, assegnazione costante dei colori proibiti).

Alternativa più sofisticata (riduzione da 4-Color): Se preferissimo usare 4-Color come riferimento:

Dato: Un grafo G

Costruzione:

- G' = G ∪ {nuovo vertice v_new}
- Connetti v_new a tutti i vertici di G
- f_i = rosso per tutti i vertici originali
- f_new = blu per il nuovo vertice

Questo forza una struttura più complessa ma la riduzione da 3-Color è più diretta e elegante.

Poiché 3-Color è NP-completo e 3-Color \leq_p Constrained-4-Color, concludiamo che Constrained-4-Color è NP-hard. \square

Conclusione: Constrained-4-Color è NP-completo.