Musical Instrument Detection Using Deep Learning

By: Nouran Hassan Ahmed 2022/00062

Course: Advanced AI

Presented to: Dr. Alaa Hamdy

Date: May 2025

Contents

Abstract	3
1. Introduction	3
2. Dataset	3
3. Methodology	3
4. Results & Evaluation	5
5. Model Insights	6
6. Conclusion	8
7. Future Work	8
8. Recommendations	9
9. Saved Model	9
10. References	9

Abstract

This project focuses on classifying musical instruments using deep learning techniques, utilizing a dataset of 30 classes. Multiple pre-trained CNN models (MobileNet, GoogLeNet, ResNet, VGG) were evaluated. With image augmentation and fine-tuning, MobileNet achieved 98% test accuracy.

1. Introduction

Musical instrument detection has applications in music education, automated tagging, and sound processing. This project explores image-based classification using convolutional neural networks (CNNs) including GoogleNet, MobileNet, ResNet, and VGG to identify 30 different musical instrument categories.

2. Dataset

- **Source:** Kaggle gpiosenka/musical-instruments-image-classification
- **Classes:** 30 musical instruments
- Format: JPG, 224x224 pixels
- Distribution:
 - ~4793 training images
 - o 150 validation images
 - o 150 test images
- Note: Class imbalance was addressed through augmentation and class weighting.

3. Methodology

3.1 Data Preprocessing

- Resizing: 224×224 pixels
- Normalization: [0,1] pixel values

- Data Augmentation:
 - o Random rotations (±20°)
 - Width/height shifts (±20%)
 - Shearing, zooming, horizontal flipping

Class: Didgeridoo Class: Didge

3.2 Handling Class Imbalance

Given that some instrument classes were underrepresented in the dataset, special attention was given to this issue during model training. A **dual approach** was employed to address class imbalance:

1. Data Augmentation:

As described above, aggressive augmentation was applied to the training set to artificially boost underrepresented classes and reduce overfitting.

2. Class Weighting:

In addition to augmentation, class weights were computed using sklearn.utils.class_weight.compute_class_weight from the scikit-learn library. These weights ensure that underrepresented classes contribute more significantly to the loss function during training.

3.3 Models Used

Pre-trained CNNs with transfer learning:

- MobileNet
- GoogLeNet
- ResNet50
- VGG16

Model customization:

- include top=False
- GlobalAveragePooling2D
- Dense layers
- Dropout (0.5)
- Softmax output

3.3 Training Process

- Phase 1: Train with frozen base layers
- Phase 2: Fine-tune top 100 layers
- Hyperparameters:
 - o Learning rate: 0.0001
 - o Batch size: 64
 - o Callbacks: EarlyStopping (patience=10), ReduceLROnPlateau

4. Results & Evaluation

4.1 MobileNet Performance

- Accuracy: 98%Loss: 0.0564
- Best generalization on unseen images

4.2 Model Comparison Table

Model	Accuracy	Training Time	Parameters	Notes
MobileNet	98%	~120 mins	4.2M	Lightweight, fast, efficient
InceptionV3	98%	~180 mins	23.8M	Parallel convolutions
ResNet50	94.67%	~150 mins	25.5M	Deep residual architecture

VGG16

89.33% ~210 mins

138M

Simple but memory intensive

5. Model Insights

5.1 Key Architecture Features

MobileNet

x = GlobalAveragePooling2D()(x)

x = Dense(512)(x)

x = Dropout(0.5)(x)

InceptionV3

x = GlobalAveragePooling2D()(x)

x = Dense(1024)(x)

x = Dropout(0.5)(x)

ResNet50

x = GlobalAveragePooling2D()(x)

x = Dense(512)(x)

x = BatchNormalization()(x)

VGG16

x = GlobalAveragePooling2D()(x)

x = Dense(1024)(x)

x = Dropout(0.5)(x)

5.2 Observations

- MobileNet and InceptionV3 tied at 98% accuracy.
- MobileNet trained 1.5× faster than InceptionV3.
- MobileNet had the most stable validation curve.
- VGG16 used 3× more memory than MobileNet.

6. Conclusion

- MobileNet achieved the best overall performance.
- Data augmentation mitigated class imbalance.
- Transfer learning was highly effective.
- Potential applications: music education tools, inventory systems, real-time classification apps.

7. Future Work

- Integrate audio-based detection
- Experiment with ensemble methods
- Deploy as a web or mobile application

8. Recommendations

- # Use MobileNet for:
- # Mobile apps
- # Real-time detection
- # Low-resource environments
- # Alternatives:
- # InceptionV3: Best for server-side applications
- # ResNet50: Best for complex visual patterns
- # VGG16: Avoid due to inefficiency
- # Possible Improvements:
- # 1. Ensemble MobileNet + InceptionV3
- # 2. Add attention mechanisms
- # 3. Use test-time augmentation

9. Saved Model

• File: musical_instruments_model_Mobile_Net.h5

10. References

- Kaggle: gpiosenka/musical-instruments-image-classification
- TensorFlow & Keras Documentation
- CNN & Transfer Learning Research Papers