Practical 11

Calculation of pearson correlation coefficient in MS – Excel

Pearson's r measures the strength and direction of the linear relationship between two continuous variables.

The **requirements** when considering the use of Pearson's correlation coefficient are:

- 1. Scale of measurement should be interval or ratio.
- 2. Variables should be approximately normally distributed.
- 3. The association should be linear.
- 4. There should be no outliers in the data.

Pearson's r is calculated using the formula:

$$r = \frac{\sum_{i} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i} (x_i - \overline{x})^2} \sqrt{\sum_{i} (y_i - \overline{y})^2}}$$

r can take a range of values from +1 to -1

- A value of 0 indicates that there is no association between the two variables.
- A value greater than 0 indicates a positive association; that is, as the value of one variable increases, so does the value of the other variable.
- A value less than 0 indicates a negative association; that is, as the value of one variable increases, the value of the other variable decreases.

Example 1

In the example below of 6 people with different ages and different weight, let us try calculating the value of the Pearson r.

Sr. No	Age (x)	Weight (y)	
1	40	78	
2	21	70	
3	25	60	
4	31	55	
5	38	80	
6	47	66	

Solution:

For the Calculation of the Pearson Correlation Coefficient, we will first calculate the following values:

Sr. No	Age (x)	Weight (y)	ху	x ²	y ²
1	40	78	3120	1600	6084
2	21	70	1470	441	4900
3	25	60	1500	625	3600
4	31	55	1705	961	3025
5	38	80	3040	1444	6400
6	47	66	3102	2209	4356
Total (Σ)	202	409	13937	7280	28365

Here the total number of people is 6 so, n=6

Now the calculation of the Pearson R is as follows:

$$\begin{split} r &= (n \ (\Sigma xy) \text{-} \ (\Sigma x)(\Sigma y)) / (\sqrt{\ [n \ \Sigma x2 \text{-} (\Sigma x)2]} [n \ \Sigma y2 \text{-} \ (\Sigma y)2\) \\ r &= (6 * (13937) \text{-} \ (202)(409)) / (\sqrt{\ [6 *7280 \text{-} (202)2]} * [6 * 28365 \text{-} \ (409)2\) \\ r &= (6 * (13937) \text{-} \ (202) * (409)) / (\sqrt{\ [6 *7280 \text{-} (202)2]} * [6 * 28365 \text{-} \ (409)2\) \\ r &= (83622 \text{-} \ 82618) / (\sqrt{\ [43680 \text{-} 40804]} * [170190 \text{-} \ 167281\) \\ r &= 1004 / (\sqrt{\ [2876]} * [2909\) \\ r &= 1004 / \ (\sqrt{\ 8366284}) \\ r &= 1004 / \ 2892.452938 \\ r &= 0.35 \end{split}$$

The value of the Pearson correlation coefficient is 0.35