WQO 入門3 — クラスカルの木定理

齊藤哲平

August 3, 2024

概要

1. WQO の復習

2. クラスカルの木定理の主張 (項上の埋め込み順序は WQO)

3. 証明 (極小悪列論法)

Definition

擬順序 ≤ を考える

○ 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること

Definition

擬順序 ≤ を考える

- 。 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (例えば比較不能列など) は悪列と呼ぶ

Definition

擬順序 ≤ を考える

- 。 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (例えば比較不能列など) は悪列と呼ぶ
- 。 ≤ の悪列が存在しないとき ≤ をWQOと呼ぶ

Definition

擬順序 ≤ を考える

- \circ 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (例えば比較不能列など) は悪列と呼ぶ
- < の悪列が存在しないとき < をWQOと呼ぶ

命題

以下は同値

- 。 < は WQO
- $\circ \leqslant$ の任意の拡張 \leqslant' が整礎 (無限降下列 $a_0 >' a_1 >' \cdots$ がない)

Definition

擬順序 ≤ を考える

- 。 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (例えば比較不能列など) は悪列と呼ぶ
- < の悪列が存在しないとき < をWQOと呼ぶ

命題

以下は同値

- 。 < は WQO
- $\circ \leqslant$ の任意の拡張 \leqslant' が整礎 (無限降下列 $a_0 >' a_1 >' \cdots$ がない)
- \circ 任意の無限列 a_0,a_1,\ldots は単調部分列 $a_{\phi(0)}\leqslant a_{\phi(1)}\leqslant \cdots$ を含む

Definition

擬順序 ≤ を考える

- \circ 無限列 a_0, a_1, \ldots が良列とはある i < j について $a_i \leqslant a_j$ となること
- そうでない無限列 (例えば比較不能列など) は悪列と呼ぶ
- 。 ≤ の悪列が存在しないとき ≤ をWQOと呼ぶ

命題

以下は同値

- 。 < は WQO
- $\circ \leqslant$ の任意の拡張 \leqslant' が整礎 (無限降下列 $a_0 >' a_1 >' \cdots$ がない)
- \circ 任意の無限列 a_0,a_1,\ldots は単調部分列 $a_{\phi(0)}\leqslant a_{\phi(1)}\leqslant \cdots$ を含む

命題 (Dickson, 1912)

2つの WQO \leq_A , \leq_B の積 $\leq_{A\times B}$ は WQO

項の埋め込み順序

Definition

- ∑を関数記号の集合として、項の集合を帰納的に定義
 - 引数が 0 個の関数記号 c は項
 - \circ f が引数が n>0 個の関数記号で t_1,\ldots,t_n が項のとき $f(t_1,\ldots,t_n)$ も項

また、以下の関係 \sim の反射推移閉包を埋め込み \geqslant_{emb} という

$$f(t_1,\ldots,t_n) \rightsquigarrow t_i$$

Example

$$\Sigma = \{\mathbf{f}^{(2)}, \mathbf{g}^{(1)}, \mathbf{a}^{(0)}\}$$
 のとき

$$f(g(a),f(a,a))\geqslant_{\text{emb}}f(a,f(a,a))\geqslant_{\text{emb}}f(\underline{a},a)\geqslant_{\text{emb}}a$$

以下、関数記号の集合 ∑ が有限だと仮定する

命題 (Kruskal)

項の埋め込み関係 ≤_{emb} は WQO

以下、関数記号の集合 ∑ が有限だと仮定する

命題 (Kruskal)

項の埋め込み関係 ≤emb は WQO

|t|で項 t に現れる関数記号の数(項のサイズ)を表すとする

Lemma (極小悪列補題)

 $\leq_{\sf emb}$ の悪列が存在するならば、以下の極小悪列 t_0,t_1,\ldots が存在する: 任意の i について t_0,\ldots,t_{i-1},t' で始まり $|t'|<|t_i|$ を満たす悪列はない

以下、関数記号の集合 ∑ が有限だと仮定する

命題 (Kruskal)

項の埋め込み関係 ≤_{emb} は WQO

|t|で項 t に現れる関数記号の数(項のサイズ)を表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 t_0, t_1, \ldots が存在する:

任意の i について t_0,\ldots,t_{i-1},t' で始まり $|t'|<|t_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 t_0, t_1, \ldots のこと

 $t_0(i=0)$ 悪列 t_0',t_1',\dots で $|t_0'|<|t_0|$ となるものは存在しない

以下、関数記号の集合 ∑ が有限だと仮定する

命題 (Kruskal)

項の埋め込み関係 ≤_{emb} は WQO

|t|で項 t に現れる関数記号の数(項のサイズ)を表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の極小悪列 t_0, t_1, \ldots が存在する:

任意の i について t_0,\ldots,t_{i-1},t' で始まり $|t'|<|t_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 t_0, t_1, \ldots のこと

(i=0) 悪列 t_0', t_1', \dots で $|t_0'| < |t_0|$ となるものは存在しない

 $\overline{(i=1)}$ 悪列 $\overline{t_0}, t_1', t_2', \ldots$ で $|t_1'| < |t_1|$ となる \overline{t} のは存在しない

00000

以下、関数記号の集合 ∑ が有限だと仮定する

命題 (Kruskal)

項の埋め込み関係 ≤emb は WQO

|t|で項 t に現れる関数記号の数(項のサイズ)を表すとする

Lemma (極小悪列補題)

 \leqslant_{emb} の悪列が存在するならば、以下の極小悪列 t_0,t_1,\dots が存在する: 任意の i について t_0,\dots,t_{i-1},t' で始まり $|t'|<|t_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 t_0, t_1, \ldots のこと

- (i=0) 悪列 t_0', t_1', \dots で $|t_0'| < |t_0|$ となるものは存在しない
- $\overline{(i=1)}$ 悪列 $\overline{t_0}, t_1', t_2', \ldots$ で $|t_1'| < |t_1|$ となる \overline{t} のは存在しない
- t_0 (t=2) 悪列 t_0,t_1,t_2',t_3',\ldots で $|t_2'|<|t_2|$ となるものは存在しない

0 0 0 0 0

以下、関数記号の集合 ∑ が有限だと仮定する

命題 (Kruskal)

項の埋め込み関係 ≤_{emb} は WQO

|t|で項 t に現れる関数記号の数(項のサイズ)を表すとする

Lemma (極小悪列補題)

 \leq_{emb} の悪列が存在するならば、以下の<mark>極小悪列 t_0,t_1,\ldots が存在する:</mark> 任意の i について t_0,\ldots,t_{i-1},t' で始まり $|t'|<|t_i|$ を満たす悪列はない

任意の prefix に関する最小性を満たす悪列 t_0, t_1, \ldots のこと

- (i=0) 悪列 t_0', t_1', \dots で $|t_0'| < |t_0|$ となるものは存在しない
- $\overline{(i=1)}$ 悪列 $oldsymbol{t_0}, t_1', t_2', \dots$ で $|t_1'| < |t_1|$ となるものは存在しない
- (i=2) 悪列 $t_0, t_1, t_2, t_3, \dots$ で $|t_2'| < |t_2|$ となるものは存在しない
- (t=2) 恋妇 t_0,t_1,t_2,t_3,\dots と $|t_2|<|t_2|$ となるものは存在しない

(以下同様)

命題 (Kruskal)

証明.

≤emb の悪列が存在すると仮定して矛盾を導く

- 1. 極小悪列 t_0, t_1, \ldots をとる
- 2. \leq_{emb} は $T = \bigcup_i T_i$ 上で WQO $(T_i$ は t_i の引数の集合)
- 3. ある関数記号 $f^{(n)}$ (n > 0) が頭部に無限回現れる

$$t_{\phi(i)} = f(t_1^{\phi(i)}, \dots, t_n^{\phi(i)})$$

4. Dickson の補題からある i < j について

$$t_1^{\phi(i)} \leqslant_{\mathsf{emb}} t_1^{\phi(j)}, \quad \cdots, \quad t_n^{\phi(i)} \leqslant_{\mathsf{emb}} t_n^{\phi(j)}$$

5.
$$t_{\phi(i)} = f(t_1^{\phi(i)}, \dots, t_n^{\phi(i)}) \leqslant_{\mathsf{emb}} f(t_1^{\phi(j)}, \dots, t_n^{\phi(j)}) = t_{\phi(j)}$$
 5

ステップ2の詳細

- \circ 極小悪列 t_0, t_1, \ldots
- $\circ T = \bigcup_i T_i (T_i \ \mathsf{d} \ t_i \ \mathsf{o} \ \mathsf{f})$ 数の集合)
- \circ t'_0, t'_1, \dots はT の悪列
- t₀ t₀ は t₂ の引数である
- 。 十分大きい $N\geqslant k$: 任意の $i\geqslant N$ について $t_i'\notin T_1\cup\cdots\cup T_k$

 $\overline{[t_0,t_1,\ldots,t_{k-1},}t_0',t_N',t_{N+1}',\ldots$ は良列; いずれの場合も矛盾 \sharp

- \circ $t_i \leqslant_{\mathsf{emb}} t_j \nleq$
- \circ $t_i \leqslant_{\mathsf{emb}} t'_{N+j} \leqslant_{\mathsf{emb}} t_{N+j}$
- $\circ t'_0 \leqslant t'_{N+j}$
- \circ $t'_{N+j} \leqslant t'_{N+j'}$ 5

補足

クラスカルの木定理も「タネ」となる順序を取るようにできる

命題 (Higman 1952)

≼がWQOなら≤_{emb}もWQO

Knuth「プログラムの停止性解析に応用できないか?」

補足

クラスカルの木定理も「タネ」となる順序を取るようにできる

命題 (Higman 1952)

≼がWQOなら≤embもWQO

Knuth「プログラムの停止性解析に応用できないか?」

 \sim Dershowitz \mathcal{O} recursive path order