وَمَا أُوتِيتُوْ مِنَ الْعِلْمِ إِلَّا هَلِيلًا

Ain Shams University – Faculty of Engineering – ECE Dept. – Integrated Circuits Lab. Eng. Moamen Maged and Dr. Hesham Omran

Analog IC Design Lab 01 – Cadence Tutorial

LPF Simulation and MOSFET Characteristics

Part 1: Low Pass Filter Simulation (LPF)

Run the tool from the terminal. Virtuoso and library manager windows will open. If you cannot see library manager window, you can open it from: Tools \rightarrow Library Manger.

Now we will create a new library.

Now we want to create a new cell to draw the schematic in it.

There are some useful shortcuts that will help us during schematic editing.

Hotkey	Function			
i	Instance			
q	Property			
W	Wire			
m	Move with connections			
shift + m	Move without connections			
С	Сору			
r	Rotate			
р	Pin			
ctrl + a	Select all			
d	Deselect			
ctrl + d	Deselect all			
u	Undo			
shift +u	Redo			
f	Fit			
Z	Zoom in			
shift + z	Zoom out			
shift + x	Check and Save			
ctrl + e	Return (after descending into hierarchy)			
	Label			

Some additional hotkeys inside the result viewer (VIVA):

m	Add marker
a + b	Add differential marker
С	Trace
S	Add subwindow

1. Transient Analysis

Schematic of LPF

Launch ADE XL.

If you did not create an ADE XL view before for this schematic, select "Create New View".

You can edit paths of your model files as shown below. If a specific file is giving you error, you can disable it.

View the results from "Results Browser". There are several other methods to view the results.

ITI_Course:LPF_test_bench:1 none

2. AC Analysis

Make sure to replace the vsource with vsin or vdc because vsource doesn't work with AC analysis

ITI_Course:LPF_test_bench:1		expr	VF("/VOUT")	point		
ITI_Course:LPF_test_bench:1		expr	phase(VF("/VOUT"))	point		
ITI_Course:LPF_test_bench:1	VoutdB	expr	dB20(mag(v("/VOUT" ?result "ac")))	point	~	
ITI_Course:LPF_test_bench:1	DCgain	expr	ymax(VoutdB)	point	✓	
ITI_Course:LPF_test_bench:1	BW3dB	expr	cross(VoutdB (DCgain - 3) 1 "either" nil nil)	point	V	

Test	Output	Nominal	Spec	Weight	Pass/Fail
ITI_Course:LPF_test_bench:1	VoutdB	<u>~</u>			
ITI_Course:LPF_test_bench:1	DCgain	0			
ITI_Course:LPF_test_bench:1	BW3dB	158.8M			

3. Pole Zero Analysis

Part 2: MOSFET Characteristics

Create a testbench for NMOS and PMOS characterization as below.

Create a new cell and place the transistors from umc13mmrf library

1. ID vs VGS

→ Cadence Hint: Use DC sweep instead of parametric sweep whenever possible. DC sweep is extremely faster, and uses much less resources and disk space. In this question you should use DC sweep for VGS.

→ Cadence Hint: To simulate both the short channel and the long channel devices in the same simulation run you can use parametric sweep. Define L as a parameter (L = 200n, 2u) and define W as a function of L (W = 5*L).

First launch adexl and set values of parameters.

Create a new text file

Write these commands in the file simulator lang = spectre save *:oppoint sigtype=dev

Save the file and give it a name (e.g., save.txt)

Open Model Libraries and add the file you just created to the libraries.

2. g_m vs VGS

→ Cadence Hint: In order to save gm vs DC sweep variable, create an empty text file and write the following statement (without quotes): "save *:gm sigtype=dev". To save all OP point parameters for all transistors use (without quotes): "save *:oppoint sigtype=dev". Add this text file in adexl (Setup -> Model Libraries).

3. ID vs VDS

→ Cadence Hint: In Mentor Eldo and Synopsys HSPICE you can do nested DC sweep (DC sweep with multiple variables). But in Cadence Virtuoso you can use only one DC sweep variable. Thus, you should use DC sweep for the variable with fine step, i.e., the primary variable (VDS in this case), and parametric sweep for the variable with coarse step, i.e., secondary variable (VGS in this case).

