Fig. 1: Identification of differentially expressed genes in a fluorescence differential display screen **AD Patient Non-AD Control**

BEST AVAILABLE COPY

Fig. 5 : SEQ ID NO: 1, amino acid sequence of human MAL2 protein

Length: 176 aa

- 1 MSAGGASVPP PPNPAVSFPP PRVTLPAGPD ILRTYSGAFV CLEILFGGLV
- 51 WILVASSNVP LPLLQGWVMF VSVTAFFFSL LFLGMFLSGM VAQIDANWNF
- 101 LDFAYHFTVF VFYFGAFLLE AAATSLHDLH CNTTITGQPL LSDNQYNINV
- 151 AASIFAFMTT ACYGCSLGLA LRRWRP

Fig. 6: SEQ ID NO: 2, nucleotide sequence of human MAL2 cDNA

Length: 2808 bp

1	GGCGGCGCG	GCAGGAGCCC	GGGAGGCGGA	GGCGGGAGGC	GGCGGCGGCG
51	CGCGGAGACG	CAGCAGCGGC	AGCGGCAGCA	TGTCGGCCGG	CGGAGCGTCA
101	GTCCCGCCGC	CCCCGAACCC	CGCCGTGTCC	TTCCCGCCGC	CCCGGGTCAC
151	CCTGCCCGCC	GGCCCCGACA	TCCTGCGGAC	CTACTCGGGC	GCCTTCGTCT
201	GCCTGGAGAT	TCTGTTCGGG	GGTCTTGTCT	GGATTTTGGT	TGCCTCCTCC
251	AATGTTCCTC	TACCTCTACT	ACAAGGATGG	GTCATGTTTG	TGTCCGTGAC
301	AGCGTTTTTC	TTTTCGCTCC	TCTTTCTGGG	CATGTTCCTC	TCTGGCATGG
351	TGGCTCAAAT	TGATGCTAAC	TGGAACTTCC	TGGATTTTGC	CTACCATTTT
401	ACAGTATTTG	TCTTCTATTT	TGGAGCCTTT	TTATTGGAAG	CAGCAGCCAC
451	ATCCCTGCAT	GATTTGCATT	GCAATACAAC	CATAACCGGG	CAGCCACTCC
501	TGAGTGATAA	CCAGTATAAC	ATAAACGTAG	CAGCCTCAAT	TTTTGCCTTT
551	ATGACGACAG	CTTGTTATGG	TTGCAGTTTG	GGTCTGGCTT	TACGAAGATG
601	GCGACCGTAA	CACTCCTTAG	AAACTGGCAG	TCGTATGTTA	GTTTCACTTG
651	TCTACTTTAT	ATGTCTGATC	AATTTGGATA	CCATTTTGTC	CAGATGCAAA
701	AACATTCCAA	AAGTAATGTG	TTTAGTAGAG	AGAGACTCTA	AGCTCAAGTT
751	CTGGTTTATT	TCATGGATGG	AATGTTAATT	TTATTATGAT	ATTAAAGAAA
801	TGGCCTTTTA	TTTTACATCT	CTCCCCTTTT	TCCCTTTCCC	CCTTTATTTT
851	CCTCCTTTTC	TTTCTGAAAG	TTTCCTTTTA	TGTCCATAAA	ATACAAATAT
901	ATTGTTCATA	AAAAATTAGT	ATCCCTTTTG	TTTGGTTGCT	GAGTCACCTG
951	AACCTTAATT	TTAATTGGTA	ATTACAGCCC	CTAAAAAAAA	CACATTTCAA
1001	ATAGGCTTCC	CACTAAACTC	TATATTTTAG	TGTAAACCAG	GAATTGGCAC
1051	ACTTTTTTTA	GAATGGGCCA	GATGGTAAAT	ATTTATGCTT	CACGGTCCAT
1101	ACAGTCTCTG	TCACAACTAT	TCAGTTCTGC	TAGTATAGCG	TGAAAGCAGC
1151	TATACACAAT	ACAGAAATGA	ATGAGTGTGG	TTATGTTCTA	ATAAAACTTA
1201	TTTATAAAAA	CAAGGGGAGG	CTGGGTTTAG	CCTGTGGGCC	ATAGTTTGTC
1251	AACCACTGGT	GTAAAACCTT	AGTTATATAT	GATCTGCATT	TTCTTGAACT
1301	GATCATTGAA	AACTTATAAA	CCTAACAGAA	AAGCCACATA	ATATTTAGTG
1351	TCATTATGCA	ATAATCACAT	TGCCTTTGTG	TTAATAGTCA	AATACTTACC
1401	TTTGGAGAAT	ACTTACCTTT	GGAGGAATGT	ATAAAATTTC	TCAGGCAGAG
1451	TCCTGGATAT	AGGAAAAAGT	AATTTATGAA	GTAAACTTCA	GTTGCTTAAT
1501	CAAACTAATG	ATAGTCTAAC	AACTGAGCAA	GATCCTCATC	TGAGAGTGCT
1551	TAAAATGGGA	TCCCCAGAGA	CCATTAACCA	ATACTGGAAC	TGGTATCTAG
1601	CTACTGATGT	CTTACTTTGA	GTTTATTTAT	GCTTCAGAAT	ACAGTTGTTT
1651	GCCCTGTGCA	TGAATATACC	CATATTTGTG	TGTGGATATG	TGAAGCTTTT
1701	CCAAATAGAG	CTCTCAGAAG	AATTAAGTTT	TTACTTCTAA	TTATTTTGCA
1751	TTACTTTGAG	TTAAATTTGA	ATAGAGTATT	AAATATAAAG	TTGTAGATTC
1801	TTATGTGTTT	TTGTATTAGC	CCAGACATCT	GTAATGTTTT	TGCACTGGTG
1851	ACAGACAAAA	TCTGTTTTAA	AATCATATCC	AGCACAAAAA	CTATTTCTGG
1901	CTGAATAGCA	CAGAAAAGTA	TTTTAACCTA	CCTGTAGAGA	TCCTCGTCAT
1951	GGAAAGGTGC	CAAACTGTTT	TGAATGGAAG	GACAAGTAAG	AGTGAGGCCA
2001	CAGTTCCCAC	CACACGAGGG	CTTTTGTATT	GTTCTACTTT	TTCAGCCCTT
2051	TACTTTCTGG	CTGAAGCATC	CCCTTGGAGT	GCCATGTATA	AGTTGGGCTA
2101	TTAGAGTTCA	TGGAACATAG	AACAACCATG	AATGAGTGGC	ATGATCCGTG
2151	CTTAATGATC	AAGTGTTACT	TATCTAATAA	TCCTCTAGAA	AGAACCCTGT
2201	TAGATCTTGG	TTTGTGATAA	AAATATAAAG	ACAGAAGACA	TGAGGAAAAA

2251	CAAAAGGTTT	GAGGAAATCA	GGCATATGAC	TTTATACTTA	ACATCAGATC
2301	TTTTCTATAA	TATCCTACTA	CTTTGGTTTT	CCTAGCTCCA	TACCACACAC
2351	CTAAACCTGT	ATTATGAATT	ACATATTACA	AAGTCATAAA	TGTGCCATAT
2401	GGATATACAG	TACATTCTAG	TTGGAATCGT	TTACTCTGCT	AGAATTTAGG
2451	TGTGAGATTT	TTTGTTTCCC	AGGTATAGCA	GGCTTATGTT	TGGTGGCATT
2501	AAATTGGTTT	CTTTAAAATG	CTTTGGTGGC	ACTTTTGTAA	ACAGATTGCT
2551	TCTAGATTGT	TACAAACCAA	GCCTAAGACA	CATCTGTGAA	TACTTAGATT
2601	TGTAGCTTAA	TCACATTCTA	GACTTGTGAG	TTGAATGACA	AAGCAGTTGA
2651	ACAAAAATTA	TGGCATTTAA	GAATTTAACA	TGTCTTAGCT	GTAAAAATGA
2701	GAAAGTGTTG	GTTGGTTTTA	AAATCTGGTA	ACTCCATGAT	GAAAAGAAAT
2751	TTATTTTATA	CGTGTTATGT	CTCTAATAAA	GTATTCATTT	GATAAAAAAA
2801	AAAAAAA				

Fig. 7: SEQ ID NO: 3

251 TAATAAAGTA TTCATTTGAT

Length: 270 bp

1TGGTGGCACTTTTGTAAACAGATTGCTTCTAGATTGTTACAAACCAAGCC51TAAGACACATCTGTGAATACTTAGATTTGTAGCTTAATCACATTCTAGAC101TTGTGAGTTGAATGACAAAGCAGTTGAACAAAAATTATGGCATTTAAGAA151TTTAACATGTCTTAGCTGTAAAAATGAGAAAGTGTTGGTTGGTTTTAAAA201TCTGGTAACTCCATGATGGAAAGAAATTTATTTTATACGTGTTATGTCTC

Fig. 8: SEQ ID NO: 4, nucleotide sequence of human MAL2 coding sequence

Length: 531 bp

1	ATGTCGGCCG	GCGGAGCGTC	AGTCCCGCCG	CCCCGAACC	CCGCCGTGTC
51	CTTCCCGCCG	CCCCGGGTCA	CCCTGCCCGC	CGGCCCCGAC	ATCCTGCGGA
101	CCTACTCGGG	CGCCTTCGTC	TGCCTGGAGA	TTCTGTTCGG	GGGTCTTGTC
151	TGGATTTTGG	TTGCCTCCTC	CAATGTTCCT	CTACCTCTAC	TACAAGGATG
201	GGTCATGTTT	GTGTCCGTGA	CAGCGTTTTT	CTTTTCGCTC	CTCTTTCTGG
251	GCATGTTCCT	CTCTGGCATG	GTGGCTCAAA	TTGATGCTAA	CTGGAACTTC
301	CTGGATTTTG	CCTACCATTT	TACAGTATTT	GTCTTCTATT	TTGGAGCCTT
351	TTTATTGGAA	GCAGCAGCCA	CATCCCTGCA	TGATTTGCAT	TGCAATACAA
401	CCATAACCGG	GCAGCCACTC	CTGAGTGATA	ACCAGTATAA	CATAAACGTA
451	GCAGCCTCAA	TTTTTGCCTT	TATGACGACA	GCTTGTTATG	GTTGCAGTTT
501	GGGTCTGGCT	TTACGAAGAT	GGCGACCGTA	A	

Fig. 9: Alignment of SEQ ID NO: 2 with SEQ ID NO: 3

Length: 270 bp

1	TGGTGGCACTTTTGTAAACAGATTGCTTCTAGATTGTTACAAACCAAGCC	50
2524	TGGTGGCACTTTTGTAAACAGATTGCTTCTAGATTGTTACAAACCAAGCC	2573
51	TAAGACACATCTGTGAATACTTAGATTTGTAGCTTAATCACATTCTAGAC	100
71		100
2574	TAAGACACATCTGTGAATACTTAGATTTGTAGCTTAATCACATTCTAGAC	2623
101	TTGTGAGTTGAATGACAAAGCAGTTGAACAAAATTATGGCATTTAAGAA	150
2624	TTGTGAGTTGAATGACAAAGCAGTTGAACAAAAATTATGGCATTTAAGAA	2673
151	TTTAACATGTCTTAGCTGTAAAAATGAGAAAGTGTTGGTTG	200
2674	TTTAACATGTCTTAGCTGTAAAAATGAGAAAGTGTTGGTTG	2723
2014	TITACATOTCTIAGCTGTAAAATGAGAAAGTGTTGGTTTAAAA	2123
201	TCTGGTAACTCCATGATGGAAAGAAATTTATTTTATACGTGTTATGTCTC	250
2724	TCTGGTAACTCCATGATGAAAAGAAATTTATTTTATACGTGTTATGTCTC	2773
251	TAATAAAGTATTCATTTGAT 270	
2774	TAATAAAGTATTCATTTGAT 2793	

Fig. 11:

sample Δ (fold) (hippocampus/ frontal cortex)

control C005 control C008 control C004

patient P012
patient P016
patient P010
patient P011
patient P014

Fig.12: Analysis of absolute mRNA expression of MAL2

Fig. 13: Western Blot of H4APPsw cell protein extracts labeled with anti-MAL2-myc antibodies

BEST AVAILABLE COPY

Fig. 15: Images of human pre-central brain sections labeled with anti-MAL2 $\mathbf{\omega}$ CT antibodies and with DAPI x10 4

BEST AVAILABLE COPY