Tobias Riedel, 379133 Phil Pützstück, 377247 Kevin Holzmann, 371116 Gurvinderjit Singh, 369227

Hausaufgabe 9

Aufgabe 2

a)

Zuerst sollten wir die Gleichung so umformen, dass nur noch ein x vorkommt:

$$ax^{2} + bx + c = 0 \qquad | \div a$$

$$x^{2} + \frac{b}{a}x + \frac{c}{a} = 0 \qquad | -\frac{c}{a}$$

$$x^{2} + \frac{b}{a}x = -\frac{c}{a} \qquad | +\left(\frac{b}{2a}\right)^{2}$$

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a} \quad | \text{ quad. Ergänzung}$$

$$\left(x + \frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a}$$

Nun lässt sich die Gleichung nach x lösen:

$$\left(x + \frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \quad | \sqrt{x} + \frac{b}{2a} = \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} \quad | -\frac{b}{2a}|$$
$$x = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}}$$

Dies lässt sich weiter vereinfachen:

$$x = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a}} = -\frac{b}{2a} \pm \sqrt{\left(\frac{b}{2a}\right)^2 - \frac{c}{a} \cdot \frac{2a}{2a}} = \frac{-b \pm \sqrt{\left(\frac{b}{2a}\right)^2 \cdot (2a)^2 - \frac{c}{a} \cdot (2a)^2}}{2a}$$
$$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Damit wären wir bei der allbekannten Mitternachtsformel. Die sogenannte Diskriminante, b^2-4ac , welche unter der Wurzel steht, bestimmt die Anzahl der Lösungen (Nullstellen). Gilt $b^2-4ac<0$, so gibt es keine Lösungen (Nullstellen) in \mathbb{R} , gilt $b^2-4ac=0$ so gibt es genau eine Lösung (Nullstelle) in \mathbb{R} , da stets $\pm\sqrt{0}=0$ gilt. Ist $b^2-4ac>0$ so gibt es genau 2 Lösungen (Nullstellen) in \mathbb{R} .

b)