Youtube Views Prediction

Agi Rahmawandi Batch 57

Top 5 Youtube Videos

title	views	likes
YouTube Rewind: The Shape of 2017 #YouTubeRe	125432237	2912710
YouTube Rewind: The Shape of 2017 #YouTubeRe	113876217	2811216
YouTube Rewind: The Shape of 2017 #YouTubeRe	100911567	2656672
Marvel Studios' Avengers: Infinity War Officia	89930713	2606663
Marvel Studios' Avengers: Infinity War Officia	87449453	2584674

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 36791 entries, 0 to 36790
Data columns (total 18 columns):
   Column
                            Non-Null Count Dtype
    trending date
                            36791 non-null object
    title
                            36791 non-null object
    channel title
                            36791 non-null object
    category id
                            36791 non-null int64
    publish time
                            36791 non-null object
                            36791 non-null object
     tags
                            36791 non-null int64
    likes
                            36791 non-null int64
    dislikes
                            36791 non-null int64
    comment count
                            36791 non-null int64
 10 comments disabled
                            36791 non-null bool
    ratings disabled
                            36791 non-null bool
 12 video error or removed 36791 non-null bool
 13 description
                            36746 non-null object
 14 No tags
                            36791 non-null int64
 15 desc len
                            36791 non-null int64
 16 len title
                            36791 non-null int64
 17 publish date
                            36791 non-null datetime64[ns]
dtypes: bool(3), datetime64[ns](1), int64(8), object(6)
memory usage: 4.3+ MB
```

- Terdapat nilai null pada kolom description
- Type data tidak sesuai pada colom trending_date dan publish_time harusnya type data datetime

pr								
	count	mean	std	min	25%	50%	75%	max
category_id	36791.00	21.55	6.59	1.00	23.00	24.00	24.00	43.00
views	36791.00	1071490.26	3207149.05	4024.00	125604.00	307836.00	806631.50	125432237.00
likes	36791.00	27450.69	97831.29	0.00	879.00	3126.00	14095.00	2912710.00
dislikes	36791.00	1685.36	16197.32	0.00	109.00	331.00	1032.00	1545017.00
comment_count	36791.00	2714.02	14978.11	0.00	83.00	336.00	1314.50	827755.00
No_tags	36791.00	18.94	9.84	1.00	12.00	19.00	25.00	72.00
desc_len	36791.00	923.08	815.04	3.00	368.00	677.00	1237.00	5136.00
len_title	36791.00	70.61	22.41	5.00	53.00	74.00	91.00	100.00

- Dari nilai standar deviasinya data cukup beragam
- Pada beberapa kolom terdapat perbedaan yang cukup jauh antara mean dan mediannya artinya data memiliki outlier

 Hampir semua kolom numerik terihat ada outlier terutapa pada kolom views dislike, like dan comment count terdapat outlier yang cukup jauh dari iqrnya

 hampir seluruh kolom datanya tidak terdistribusi secara normal/skewed

- Kolom yang berkorelasi kuat dengan target ('views') ialah like, dislike,comment count berada di atas 0.5.
- Sama halnya korelasi antar feature ketiga kolom like, dislike, serta commen_count berkorelasi cukup kuat(redundan)
- Category_id, no_tags, desc_len, len_title memiliki korelasi hampi mendekati nol dengan sebagian besar feature.

Dari hasil EDA dapat ditarik kesimpulan bahwa:

- Akan dilakukan penyesuaian pada kolom description yang memiliki nilai null
- Menyesuiakan tipe data pada kolom trending_date dan publish_time
- Pembersihan outlier pada kolom-kolom yang memiliki outlier
- Feature yang akan digunakan semua kolom numeric, kecuali kolom comment_count akan di drop/dihilanngkan karena redundan dengan kolom like dan dislike

Data Cleansing

- Drop baris bernilai null pada kolom description
- Permbesihan data dengan mempertahankan data yang pertama muncul dengan duplicated (keep='first')terdapat data duplikat sebesar 4228 dan akan dihapus.
- Penyesuaian type data pada kolom trending_date dan publish_time menjadi datetime
- Handling outlier dengan IQR

Feature Engineering

Feature Selection

- Semua table numeric bertipe float,int, dan boolean dipilih menjadi feature kecuali kolom comment_count
- dislike, like, comment_count ketiganya memiliki nilai korelasi yang kuat satu sama lain, dan berkorelasi kuat juga dengan target, maka salah satu kolom akan didrop yakni kolom comment_count karena redundan cukup tinggi dengan kolom like dan dislike.

Feature Engineering

Feature encoding

 Karena kolom category_id berjenis kategori maka dilakukan encoding dengan one hot encoding.

Feature encoding

 Membuat feature baru dari feature publish_date untuk menjadi kolom hari, yang tujuannya melihat pada hari apa, publish video yang berpotensi mendapatkan jumlah views banyak.

Modeling

- Memilih feature numeric dan boolean
- Membagi data train dan data test sebersar ¼ untuk data test dan sisanya untuk data train.
- Standarisasi feature menggunkan menggunkan robustscaller, karena meruapakan teknik penskalaan data yang tidak sensitif terhadap outlier, teknik ini menggunakan median dan interquartile range (IQR).
- Standarisasi dilakukan hanya pada feature.
- Model yang digunakan adalah LinearRegression,RandomForest, HistGradientBoosting, dan LGBMRegressor.

Model	Linear Regression		
	Training Metrics		
	R^2	0.468	
	MAE	143352.6074	
	RMSE	213248.7381	
			Underfitting
	Testing Metrics		
	R^2	0.4737	
	MAE	143459.0941	
	RMSE	214821.6837	

Model	RandomForest		
	Training Metrics		
	R^2	0.9592	
	MAE	35738.8006	
	RMSE	59068.5475	
			Overfitting
	Testing Metrics		
	R^2	0.7301	
	MAE	95618.6604	
	RMSE	153829.7892	

Model	HistGradientBoosting		
	Training Metrics		
	R^2	0.7881	
	MAE	87826.1877	
	RMSE	134597.1508	
			Good Fit
	Testing Metrics		
	R^2	0.6862	
	MAE	104935.3179	
	RMSE	165877.2464	

Model	LGBMRegressor		
	Training Metrics		
	R^2	0.7901	
	MAE	87686.4751	
	RMSE	133961.8174	
			Good Fit
	Testing Metrics		
	R^2	0.6907	
	MAE	104460.5965	
	RMSE	164692.0312	

- Linear Regression

Memiliki R² yang cenderung rendah yakni **0,46** pada data train dan **0,47** pada data testing, tergolong rendah, serta memiliki nilai MAE dan RMSE cukup besar **143ribu** dan **214ribu**, artinya nilai errornya cukup besar, dan data tergolong underfitting.

- Random Forest

Model sangat akurat di data training namun mengalami penurunan didata tetsting, begitupun nilai error mengalami lonjakan pada data testing, maka model ini tergolong overfitting,

- HistGradientBoosting

Dilihat di R^2 antara data tenting dan data training model cukup konsisten dan stabil, selilih nilai errornya pun masih wajar, model ini termasuk goodfit.

- LightGBM (LGBMRegressor)

Kondisinya sama seperti HistGradientBoosting, hanya lebih tinggi nilainya, perbedaan nilai pada datatest dan data train tergolong stabil, maka model ini termasuk goodfit

Model yang dipilih ialah LightGBM (LGBMRegressor) karena:

- Memilik nilai R^2 yang konsisten/stabil pada data train **0,79**, data testing **0,69**
- Memiliki nilai error paling rendah dari pada yang lain, Data train MAE 87686 RMSE 133961, Pada Data testing MAE 104460 RMSE 164692.
- Data tidak termasuk underfitting atau overfitting
- Selajutnya dilakukan tuning hyperparameter

Tunning Hyperparameter

- Dilakukan tuning dengan metode RandomizedSearchCV
- Setelah melakukan tuning didapat nilai R^2 naik dari sebelum dilakukan tuning pada data train sebesar **0,75** dan data testing sebesar **0,76**
- Hasil akhir dari model menggunakan tuning hyperparameter dari **LightGBM (LGBMRegressor)** dengan nilai hyperparameter terbaik:
 - 'subsample': 0.8,
 - 'reg_lambda': 0,
 - 'reg_alpha': 1.0,
 - 'n_estimators': 411,
 - 'max_depth': -1,
 - 'learning_rate': 0.2,
 - 'colsample_bytree': 1.0

Feature Importance

Feature yang berperan penting dalam melakukan prediksi terhadap view

Insight

- video dengan deskripsi panjang cenderung mendapat lebih banyak views (mungkin karena SEO, atau informasi lebih lengkap).
- Judul yang informatif atau menarik kemungkinan mengundang lebih banyak views.
- Kemungkinan tag membantu sistem rekomendasi YouTube danmengundang lebih banyak views.
- Likes/dislikes bisa jadi indikator kualitas sebuah video
- Topik popoler lebih banyak pada kategori kategori 24 dan 23.