Importing libraries

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from google.colab import drive
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score
```

Load the dataset

drive.mount('/content/drive')

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.m

path='/content/drive/MyDrive/Colab Notebooks/miniproject/abalone.csv'

df=pd.read_csv(path)

df.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell weight	Rings
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	15
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	7
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	9
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	10
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	7

df.describe()

		Length	Diameter	Diameter Height		Shucked weight	Viscera weight		
	count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000		
	mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594		
	std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614		
	<pre>df['age'] = df['Rings']+1.5 df = df.drop('Rings', axis = 1)</pre>								
	EN0/.	0 E4E000	U 43EUUU	0 1/0000	0 700E00	ሀ 33ଟሀሀሀ	N 171NNN		
Univa	Univariate Analysis								

df.hist(figsize=(20,10), grid=False, layout=(2, 4), bins = 30)

```
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f6654da83d0>,
           <matplotlib.axes. subplots.AxesSubplot object at 0x7f6654d40790>,
           cmatnlotlih axes subnlots AxesSubnlot object at 0x7f6654cechd0>
df.groupby('Sex')[['Length', 'Diameter', 'Height', 'Whole weight', 'Shucked weight',
      'Viscera weight', 'Shell weight', 'age']].mean().sort_values('age')
                                     Whole
                                           Shucked
                                                   Viscera
                                                              Shell
           Length Diameter
                           Height
                                                                         age
                                    weight
                                            weight
                                                    weight
                                                             weight
     Sex
      ı
         0.427746 0.326494 0.107996 0.431363 0.191035 0.092010 0.128182
                                                                     9.390462
      M
```

Bivariate and Multivariate Analysis

numerical_features = df.select_dtypes(include = [np.number]).columns
sns.pairplot(df[numerical_features])

Descriptive Statistics

df.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000
4						•

Check for missing values

```
df.isnull().sum()
```

Sex	0
Length	0
Diameter	0
Height	0
Whole weight	0
Shucked weight	0
Viscera weight	0
Shell weight	0
age	0
dtype: int64	

Outlier Handling

```
df = pd.get_dummies(df)
dummy_data = df.copy()
```

#outliers removal for viscera weight

```
var = 'Viscera weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Viscera weight']> 0.5) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Viscera weight']<0.5) & (df['age'] > 25)].index, inplace=True)
```


#outliers removal for shell weight

```
var = 'Shell weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Shell weight']> 0.6) & (df['age'] < 25)].index, inplace=True)
df.drop(df[(df['Shell weight']<0.8) & (df['age'] > 25)].index, inplace=True)
```


#Outliers removal for shuked weight

```
var = 'Shucked weight'
plt.scatter(x = df[var], y = df['age'],)
plt.grid(True)
df.drop(df[(df['Shucked weight']>= 1) & (df['age'] < 20)].index, inplace=True)
df.drop(df[(df['Shucked weight']<1) & (df['age'] > 20)].index, inplace=True)
```


#outliers removal for whole weight

```
var = 'Whole weight'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Whole weight'] >= 2.5) &(df['age'] < 25)].index, inplace = True)
df.drop(df[(df['Whole weight']<2.5) & (df['age'] > 25)].index, inplace = True)
```


#outliers removal for diameters

7.5

```
var = 'Diameter'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Diameter'] < 0.1) &(df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Diameter'] < 0.6) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Diameter'] > = 0.6) & (df['age'] < 25)].index, inplace = True)</pre>
```


#outliers removal for height

```
var = 'Height'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Height'] > 0.4) &(df['age'] < 15)].index, inplace = True)
df.drop(df[(df['Height']<0.4) & (df['age'] > 25)].index, inplace = True)
```



```
#outliers removal for length
```

```
var = 'Length'
plt.scatter(x = df[var], y = df['age'])
plt.grid(True)
df.drop(df[(df['Length'] < 0.1) &(df['age'] < 5)].index, inplace = True)
df.drop(df[(df['Length'] < 0.8) & (df['age'] > 25)].index, inplace = True)
df.drop(df[(df['Length'] > = 0.8) & (df['age'] < 25)].index, inplace = True)</pre>
```


Categorical Columns

```
numerical_features = df.select_dtypes(include = [np.number]).columns
categorical_features = df.select_dtypes(include = [np.object]).columns
```

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: DeprecationWarning: `Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/re

numerical_features

categorical_features

```
Index([], dtype='object')
```

Split the dependent and independent variables

```
x=df.iloc[:,:5]
y=df.iloc[:,5:]
```

Х

	Length	Diameter	Height	Whole weight	Shucked weight
0	0.455	0.365	0.095	0.5140	0.2245
1	0.350	0.265	0.090	0.2255	0.0995
2	0.530	0.420	0.135	0.6770	0.2565
3	0.440	0.365	0.125	0.5160	0.2155
4	0.330	0.255	0.080	0.2050	0.0895
4172	0.565	0.450	0.165	0.8870	0.3700
4173	0.590	0.440	0.135	0.9660	0.4390
4174	0.600	0.475	0.205	1.1760	0.5255
4175	0.625	0.485	0.150	1.0945	0.5310
4176	0.710	0.555	0.195	1.9485	0.9455

3995 rows × 5 columns

У

	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
0	0.1010	0.1500	16.5	0	0	1
1	0.0485	0.0700	8.5	0	0	1
2	0.1415	0.2100	10.5	1	0	0
3	0.1140	0.1550	11.5	0	0	1
4	0.0395	0.0550	8.5	0	1	0
4172	0.2390	0.2490	12.5	1	0	0
4173	0.2145	0.2605	11.5	0	0	1
4174	0.2875	0.3080	10.5	0	0	1
4175	0.2610	0.2960	11.5	1	0	0
4176	0.3765	0.4950	13.5	0	0	1

3995 rows × 6 columns

split the data (train and test)

x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2)

Model Building

lr=LinearRegression()
lr.fit(x_train,y_train)

LinearRegression()

Train the model

x_train[0:4]

	Length	Diameter	Height	Whole weight	Shucked weight
2654	0.545	0.430	0.140	0.8320	0.4355
1927	0.615	0.470	0.150	1.0875	0.4975
3349	0.470	0.375	0.105	0.4680	0.1665
210	0.490	0.365	0.145	0.6345	0.1995

y_train[0:5]

	Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
2654	0.1700	0.2010	10.5	1	0	0
1927	0.2830	0.2685	10.5	0	0	1
3349	0.1080	0.1700	11.5	0	1	0
210	0.1625	0.2200	11.5	1	0	0
2337	0.1695	0.2450	12.5	0	0	1

Test the model

x_test[0:4]

	Length	Diameter	Height	Whole weight	Shucked weight
832	0.44	0.365	0.115	0.501	0.2435
3828	0.68	0.520	0.175	1.543	0.7525
4070	0.48	0.335	0.125	0.524	0.2460
1564	0.46	0.350	0.110	0.400	0.1760

y_test[0:5]

		Viscera weight	Shell weight	age	Sex_F	Sex_I	Sex_M
	832	0.0840	0.1465	10.5	0	1	0
,	3828	0.3510	0.3740	12.5	0	0	1
,	4070	0.1095	0.1450	8.5	0	1	0
	1564	0.0830	0.1205	8.5	0	1	0

ss=StandardScaler()
x_train=ss.fit_transform(x_train)

lrpred=lr.predict(x_test[0:9])

1rpred

```
array([[1.03349797e-01, 1.46176709e-01, 9.94830412e+00, 2.07513223e-01,
        4.76563878e-01, 3.15922899e-01],
       [3.32292403e-01, 3.88571187e-01, 1.13642469e+01, 4.35538674e-01,
        9.09714235e-03, 5.55364184e-01],
       [1.18628384e-01, 1.44426541e-01, 9.74635777e+00, 1.86896709e-01,
        5.41056762e-01, 2.72046529e-01],
       [8.82063319e-02, 1.24706742e-01, 1.00390858e+01, 1.84922115e-01,
        5.62786902e-01, 2.52290983e-01],
       [1.05637045e-01, 1.47109060e-01, 1.05483729e+01, 2.21316254e-01,
        5.06681122e-01, 2.72002624e-01],
       [1.78444588e-01, 2.30724706e-01, 1.08998374e+01, 3.08914597e-01,
        2.89428215e-01, 4.01657189e-01],
       [2.11194701e-01, 2.71185034e-01, 1.13676751e+01, 3.53254514e-01,
        2.00968128e-01, 4.45777358e-01],
       [2.29246508e-01, 3.13521045e-01, 1.34259369e+01, 4.46728441e-01,
        1.23703244e-01, 4.29568315e-01],
       [2.48939082e-01, 3.11716127e-01, 1.07903974e+01, 3.79844823e-01,
        7.47301038e-02, 5.45425073e-01]])
```

Measure the performance using metrics

```
r2_score(lr.predict(x_test),y_test)
```

-3.372075449737968

Colab paid products - Cancel contracts here

• ×