

Energy infrastructure scenarios for the UK: are they resilient?

Jim Watson

(with Ioanna Ketsopoulou, Modassar Chaudry, Simon Tindemans, Paul Dodds, Matt Woolf and Goran Strbac)

IIESI Conference, NREL, Denver, 5-6 December 2017

Outline

- Project rationale
- New UKERC scenarios
- Indicator framework
- Selected results
- Emerging conclusions

Rationale

UKERC

Dashboard approach

2017 UKERC energy scenarios

UK climate policy	Strong commitment to meeting targets	Policy commitment falters: 4 th carbon budget only	Climate legislation repealed: 3 rd carbon budget only		
UK governance	Centralised decision-making at UK level	Decisions shared: central, devolved, local government	Centralised decision-making; Scottish independence		
UK economic policy	Small state; weak approach to infrastructure	Selective state action; co-investment in infrastructure	Active state; high infrastructure co-investment		
Relationship with the EU	The UK stays in the EU	The UK leaves the EU but has significant single market access	The UK leaves the EU with poor access to single market		

Energy island Slow Decarbonisation

Low carbon no BECCS Low carbon

Tech optimism

2017 UKERC energy scenarios

Indicator dashboard

Summary dashboard 2050 vs 2016

	Energy island	Slow decarb	Low carbon	Low carbon (no CCS)	Low carbon (no BECCS)	Tech optimism
Energy diversity	1	1	←	1	1	←
Electricity diversity	←	1	1	↓ ↓	←	1
Public opposition (elec)	←	↓	↓	\	↓	↓ ↓
Oil imports	↓ ↓	1	←	↓	Ţ	Ţ
Biomass imports	↓	1	1	1	1	1
Gas imports	↓	1	1	↓ ↓	1	←
Gas LOLE	←	1	11	←	←	←
Electricity LOLE	1	1	11	11	1	↓ ↓
Interconector capacity	←	1	1	1	1	1

Summary dashboard 2050 vs 2016

	Energy island	Slow decarb	Low carbon	Low carbon (no CCS)	Low carbon (no BECCS)	Tech optimism
Energy diversity	1	1	←	1	1	←
Electricity diversity	←	1	1	↓	←	1
Public opposition (elec)	←	↓	↓	↓	Ţ	↓ ↓
Oil imports	↓ ↓	1	←	↓	↓	↓
Biomass imports	↓	1	1	1	1	1
Gas imports	↓	1	1	↓ ↓	1	←
Gas LOLE	←	1	1 1	←	←	←
Electricity LOLE	1	1	1 1	11	1	↓ ↓
Interconector capacity	←	1	1	1	1	1

Availability indicators Electricity diversity

Availability indicators Potential public opposition to electricity mix

Availability indicators Crude oil imports / demand

■ 2016 **■** 2030 **■** 2050

Net imports in 2050 as % of consumption (2016: 17%)

Availability indicators Bioenergy imports / demand

Imports in 2050 as % of consumption (2016: 61%)

Reliability indicators Gas: loss of load expectation

Expected energy unserved in 2050 (mcm) (Peak daily demand in 2010: 470mcm)

Reliability indicators Electricity: loss of load expectation

Reliability indicators Electricity: loss of load expectation

Emerging conclusions

- The relationship between decarbonisation and security is not straightforward
- Energy Island & Tech Optimism have fewer 'red lights':
 - Tech Optimism also meets carbon targets and energy demand in 2050 is 25% lower
- Slow decarbonisation and low carbon scenarios could have higher risks?

Emerging conclusions

- Energy imports can be a misleading indicator: share of demand plus diversity of sources / routes matter too
- Energy diversity increases as non-fossil energy grows, but could fall again in longer term
- Gas and electricity system reliability could get worse in some low carbon scenarios
 - But measures such as DSR and storage can be used to improve reliability
- Some important risks have not been assessed and are hard to quantify: especially cyber security

UKERC

Thanks

www.ukerc.ac.uk

@UKERCHQ

2017 UKERC energy scenarios Electricity generation in 2050

2017 UKERC energy scenarios Transport fuel demand in 2050

Availability indicators Primary energy diversity

Availability indicators Gas production and imports (2030)

Availability indicators Gas production and imports (2050)

Reliability indicators Electricity: Interconnection

Reliability indicators Electricity: Storage

NB: 2016 figure is for pumped storage only

