Datrysiadau i Daflen Problemau 5

- 1. Mae cwmni past dannedd yn gallu creu dwy fath o bast dannedd:
 - 'Dant Pendant': past dannedd rhatach sy'n gwneud elw o £1000 y dunnell, a
 - 'Gwenau Gwyn': past dannedd premiwm sy'n gwneud elw o £8000 y dunnell.

Mae angen mewnforio dau gynhwysyn, felly mae cyfyngiadau ar eu defnydd dyddiol: ond 12kg o Galsiwm Carbonad sydd ar gael pob dydd, ac ond 24kg o Sodiwm Fflworid sydd ar gael pob dydd.

- Mae pob tunnell o 'Dant Pendant' angen 3kg o Sodiwm Fflworid ac 1kg o Galsiwm Carbonad.
- Mae pob tunnell o 'Gwenau Gwyn' angen 1kg o Sodiwm Fflworid ac 2kg o Galsiwm Carbonad.

Hefyd, er mwyn sicrhau bod yna digon o bast dannedd rhatach ar gael i'r boblogaeth, mae'r llywodraeth wedi deddfu ni all y cwmni cynhyrchu mwy na 2 tunnell yn rhagor o'r past dannedd premiwm na'r past dannedd rhatach pob dydd.

- (a) Gan ddefnyddio'r dull graffigol, faint o dunelli o bob past dannedd dylai'r cwmni cynhyrchu pob dydd er mwyn uchafsymio'i elw dyddiol?
- (b) Os yw'r llywodraeth nawr yn deddfu bod y cwmni ond yn gallu gwneud £1600 o elw ar gyfer pob tunnell o 'Gwenau Gwyn', faint o dunelli o bob past dannedd dylai'r cwmni cynhyrchu pob dydd nawr er mwyn uchafsymio'i elw dyddiol?

Datrysiad 1 Gadewch i S bod y nifer o dunelli o 'Dant Pendant' ac W bod y nifer o dunelli o 'Gwenau Gwyn'. Yna:

Uchafsymio:

800W + 100S

$$W + 3S \le 24$$
$$2W + S \le 12$$
$$B \le A + 2$$
$$W, S > 0$$

(a) Pan taw'r ffwythiant amcan yw £8000 W + £1000 S:

Pwynt	Amcan = 8000W + 1000S
(0,0)	0
(0, 2)	16,000
(8,0)	8,000
(8/3, 14/3)	40,000
(36/5, 12/5)	26,400

Felly $W = \frac{14}{3}$ ac $S = \frac{8}{3}$.

(b) Pan taw'r ffwythiant amcan yw £1600 W + £1000 S:

Pwynt	Amcan = 1600W + 1000S
(0,0)	0
(0, 2)	3,200
(8,0)	8,000
(8/3, 14/3)	10, 133.33
(36/5, 12/5)	11,040

Felly $W = {}^{12}/_{5}$ ac $S = {}^{36}/_{5}$.

2. Defnyddiwch y dull Simplecs er mwyn datrys y broblem rhaglennu llinol canlynol:

Uchafsymio:

$$3x_1 + 5x_2$$

$$-5x_1 + 17x_2 \le 425$$
$$5x_1 + 4x_2 \le 205$$

$$x_1, x_2 \ge 0$$

Datrysiad 2 Yn ysgrifennu i lawr y tablo Simplecs cychwynnol:

	x_1	x_2	s_1	s_2
425	-5	(17)	1	0
205	5	4	0	1
0	-3	-5	0	0

Gan ddewis 17 fel y colyn, perfformiwn $\bar{r}_1=\frac{1}{17}r_1$, $r_2=r_2-4\bar{r}_1$, ac $r_3=r_3+5\bar{r}_1$:

	x_1	x_2	s_1	s_2
25	$\frac{-5}{17}$	1	$^{1}/_{17}$	0
105	(105/17)	0	-4/17	1
125	-76/17	0	5/17	0

Yn dewis 105 /17 fel y colyn, perfformiwn $\bar{r}_2^{'}=rac{17}{105}r_2$, $r_1=r_1+rac{5}{17}\bar{r}_2$, ac $r_3=r_3+rac{76}{17}\bar{r}_1$:

	x_1	x_2	s_1	s_2
30	0	1	$^{1}/_{21}$	$^{1}/_{21}$
17	1	0	-4/105	$^{17}/_{105}$
201	0	0	13/105	76/105

Yn rhoi datrysiad o $x_1 = 17$, $x_2 = 30$, a gwerth ffwythiant amcan uchaf o $3x_1 + 5x_2 = 201$.

3. Ystyriwch y broblem rhaglennu llinol canlynol:

Uchafsymio:

$$3x_1 + x_2 + 3x_3$$

$$x_1 - x_2 + 4x_3 \le 17$$

$$2x_1 + x_3 \le 6$$

$$2x_2 + 3x_3 \le 14$$

$$x_1, x_2, x_3 \ge 0$$

- (a) Defnyddiwch y dull Simplecs er mwyn canfod un datrysiad gorau posib.
- (b) Colynnwch unwaith yn rhagor er mwyn canfod yr holl ddatrysiadau gorau posib. Rhowch eich ateb yn y ffurf $\{(1-t)\underline{\bf a}+t\underline{\bf b}\ \ {\rm ar}\ {\rm gyfer}\ {\rm pob}\ \ t\in[0,1]\}.$
- (c) Os sefydlwn $x_3 = 1$, canfyddwch y gerthoedd sydd rhaid i x_1 ac x_2 cymryd er mwyn i'r datrysiad aros yn un gorau posib.

Datrysiad 3 *Mae gennym:*

(a) Ysgrifennu i lawr y tablo Simplecs cychwynnol:

_		x_1	x_2	x_3	s_1	s_2	s_3
	17	1					
	6	(2)	0	1	0	1	0
	14	0	2	3	0	0	1
-	0	-3	-1	-3	0	0	0

Gan ddewis 2 i fod y colyn, perfformiwn $\bar{r}_2 = \frac{1}{2}r_2$, $r_1 = r_1 - \bar{r}_2$, $r_3 = r_3$, ac $r_4 = r_4 + 3\bar{r}_2$:

	x_1	x_2	x_3	s_1	s_2	s_3
14	0	-1	(7/2)	1	-1/2	0
3	1	0	1/2	0	$1/_{2}$	0
14	0	2	3	0	0	1
9	0	-1	-3/2	0	3/2	0

Gan ddewis $^7/_2$ i fod y colyn, perfformiwn $\bar{r}_1=\frac{2}{7}r_1$, $r_2=r_2-\frac{1}{2}\bar{r}_1$, $r_3=r_3-3\bar{r}_1$, ac $r_4=r_4+\frac{3}{2}\bar{r}_1$:

	x_1	x_2	x_3	s_1	s_2	s_3
4	0	-2/7	1	$^{2}/_{7}$	-1/7	0
1	1	$\frac{1}{7}$	0	-1/7		0
2	0	20/7	0	-6/7	-3/7	1
15	0	-10/7	0	$3/_{7}$	9/7	0

Gan ddewis $^{20}/_{7}$ i fod y colyn, perfformiwn $\bar{r}_{3}=\frac{7}{20}r_{3}$, $r_{1}=r_{1}-\frac{1}{10}r_{3}$, $r_{2}=r_{2}-\frac{1}{20}r_{3}$, ac $r_{4}=r_{4}+\frac{1}{2}r_{3}$:

	x_1	x_2	x_3	s_1	s_2	s_3
21/5	0	0	1	$1/_{5}$	$-\frac{13}{70}$	1/10
9/10	1	0	0	-1/10	$^{11}/_{20}$	-1/20
7/10	0	1	0	-3/10	-3/20	-7/20
16	0	0	0	0	$^{15}/_{14}$	1/2

Ac felly'r datrysiad gorau posib yw $x_1 = 9/10$, $x_2 = 7/10$, ac $x_3 = 21/5$, yn rhoi gwerth ffwythiant amcan o 16.

(b) Gan fod yna newidyn ansylfaenol gyda sero yn y rhes amcan (s_1) , colynnwn unwaith yn rhagor ar $^1/_5$. Gan ddewis $\bar{r}_1=5r_1$, $r_2=r_2+\frac{1}{2}r_1$, $r_3=r_3+\frac{3}{2}r_1$, ac $r_4=r_4$:

	x_1	x_2	x_3	s_1	s_2	s_3
21	0	0	5	1	$-\frac{13}{14}$	$\frac{1}{2}$
3	1	0	1/2	0	$\frac{5}{28}$	$^{3}/_{20}$
7	0	1	$^{3/_{2}}$	0	$-\frac{13}{14}$	$1/_{2}$
16	0	0	0	0	$^{15}/_{14}$	1/2

Ac felly datrysiad gorau posib arall yw $x_1 = 3$, $x_2 = 7$, ac $x_3 = 21$. Yna ysgrifennwn i lawr yr holl ddatrysiadau gorau posib yn y ffurf:

$$\left\{ (1-t) \left(\frac{9}{10}, \frac{7}{10}, \frac{21}{5}\right) + t \left(3, 7, 0\right) \ \text{ ar gyfer holl } \ t \in [0, 1] \right\}$$

Datrysiad 3 (continuing from p. 4) (c) Mae sefydlogi $x_3=1$ yn cyfateb i osod $t={}^{16}/_{21}$, mae hwn yn rhoi:

$$x_{1}, x_{2}, x_{3} = \left(1 - \frac{16}{21}\right) \left(\frac{9}{10}, \frac{7}{10}, \frac{21}{5}\right) + \frac{16}{21}(3, 7, 0)$$

$$x_{1}, x_{2}, x_{3} = \frac{5}{21} \left(\frac{9}{10}, \frac{7}{10}, \frac{21}{5}\right) + \frac{16}{21}(3, 7, 0)$$

$$= \left(\frac{45}{210}, \frac{35}{210}, 1\right) + \left(\frac{48}{21}, \frac{112}{21}, 0\right)$$

$$= \left(\frac{525}{210}, \frac{1155}{210}, 1\right)$$

$$= \left(\frac{5}{2}, \frac{11}{2}, 1\right)$$

Ac felly'r datrysiad gorau posib nawr fydd $x_1 = 5/2$, $x_2 = 11/2$, ac $x_3 = 1$.

4. Datryswch y broblem rhaglennu llinol canlynol gan ddefnyddio'r dull dwy-gam:

Uchafsymio:

yn amodol ar

$$2x_1 + 3x_2 + 4x_3$$

$$3x_1 + 2x_2 + x_3 \le 10$$

$$2x_1 + 3x_2 + 3x_3 \le 15$$

$$x_1 + x_2 - x_3 \ge 4$$

$$x_1, x_2, x_3 \ge 0$$

Datrysiad 4 Trwy ail-ysgrifennu'r cyfyngiadau gan ddefnyddio newidynnau llac, cawn:

$$3x_1 + 2x_2 + x_3 + s_1 = 10$$

$$2x_1 + 3x_2 + 3x_3 + s_2 = 15$$

$$x_1 + x_2 - x_3 - s_3 + a_1 = 4$$

ac felly'r cam gyntaf yw lleiafsymio $a_1-4=-x_1-x_2+x_3+s_3$.

	x_1	x_2	x_3	s_1	s_2	s_3	a_1
10	(3)	2	1	1	0	0	0
15	2	3	3	0	1	0	0
4	1	1	-1	0	0	-1	1
0	-2	-3	-4	0	0	0	0
-4	-1	-1	1	0		1	0

Gan ddewis 3 fel y colyn, perfformiwn $\bar{r}_1=\frac{1}{3}r_1$, $r_2=r_2-2\bar{r}_1$, $r_3=r_3-\bar{r}_1$, $r_4=r_4+2\bar{r}_1$, ac $r_5=r_5+\bar{r}_1$:

	x_1	x_2	x_3	s_1	s_2	s_3	a_1
10/3	1	$^{2}/_{3}$	1/3	1/3	0	0	0
$^{25}/_{3}$	0	$\frac{5}{3}$	$7/_{3}$	$-\frac{2}{3}$	1	0	0
$^{2}/_{3}$	0	1/3	-4/3	-1/3	0	-1	1
$\frac{20}{3}$	0	$-\frac{5}{3}$	-10/3	2/3	0	0	0
$-\frac{2}{3}$	0	-1/3	$\frac{4}{3}$	1/3	0	1	0

Gan ddewis $^1/_3$ fel y colyn, perfformiwn $\bar{r}_3=3r_3$, $r_1=r_1-2r_3$, $r_2=r_2-5r_3$, $r_4=r_4+5r_3$, ac $r_5=r_5+r_3$:

	x_1	x_2	x_3	s_1	s_2	s_3	a_1
2	1	0	3	1	0	2	-2
5	0	0	9	1	1	5	-5
2	0	1	-4	-1	0	-3	3
10	0	0	-10	-1	0	-5	5
0	0	0	0	0	0	0	1

Mae hwn yn gorffen y cam cyntaf. Mae dileu'r colofnau a rhesi priodol yn rhoi:

	x_1	x_2	x_3	s_1	s_2	s_3
2	1	0	3	1	0	2
5	0	0	9	1	1	5
2	0	1	-4		0	
10	0	0	-10	-1	0	-5

Gan ddewis 9 fel y colyn, perfformiwn $\bar{r}_2 = \frac{1}{9}r_2$, $r_1 = r_1 - 3\bar{r}_2$, $r_3 = r_3 + 4\bar{r}_2$, ac $r_4 = r_4 + 10\bar{r}_2$:

	x_1	x_2	x_3	s_1	s_2	s_3
1/3	1	0	0	$^{2}/_{3}$	-1/3	1/3
5/9	0	0	1	1/9	1/9	5/9
$\frac{38}{9}$	0	1	0	-5/9	4/9	-7/9
140/9	0	0	0	1/9	10/9	5/9

Ac felly'r datrysiad gorau posib yw $x_1=1/3$, $x_2=38/9$, ac $x_3=5/9$, yn rhoi gwerth ffwythiant amcan uchaf o 140/9.

5. Mae Prifysgol Caerdydd angen creu ei amserlen arholiadau. Mae ganddo set M o arholiadau (wedi'u indecsio gan m) sydd angen eu hamserlennu. Ar gyfer pob pâr o arholiadau i, j, mae ganddo ddangosydd C_{ij} sydd wedi'i setio i 1 os nad yw'r modiwlau yn gallu cael eu hamserlennu ar yr un pryd (gan ei fod yn rhannu myfyrwyr), a 0 os allen nhw gael ei hamserlennu ar yr un pryd. Gadewch i T bod y set o slotiau amser sydd ar gael, wedi'u indecsio gan t. Fformiwleiddiwch broblem rhaglennu llinol sy'n canfod amserlen ddichonadwy sy'n defnyddio'r nifer lleiaf o slotiau amser.

Does dim ofyn i chi datrys y broblem rhaglennu llinol!

Datrysiad 5 Diffiniwn X_{mt} fel newidyn deuaidd yn dynodi os yw modiwl $m \in M$ wedi'i amserlennu ar amser $t \in T$. Diffiniwn Y_t fel y newidyn deuaidd sy'n dynodi os oes yna arholiad ar amser $t \in T$. Yna un fformiwleiddiad posib fydd:

Lleiafsymio:

$$\sum_{t \in T} Y_t$$

$$\sum_{t \in T} X_{mt} = 1 \ \forall \ m \in M$$

$$|M|Y_t \geq \sum_{m \in M} X_{mt} \ \forall \ t \in T$$

$$C_{ij} \left(X_{it} + X_{jt}\right) \leq 1 \ \forall \ t \in T \ \forall \ i,j \in M$$

$$X_{mt}, Y_t \ \textit{yn deuaidd} \ \forall \ t \in T \ \forall \ m \in M$$