Homework 23 - Deadline 18/12/2020

Problem 23.1

A system consists of a machine M dispatching Poisson arrivals, as shown in the figure. When the machine is working it dispatches items at rate μ , and fails with rate μ_1 , both exponentially distributed. Failures can be of type 1 and type 2, which occurs with probabilities p_1 and p_2 , respectively:

- type :1 the machine is repaired during a time exponentially distributed with rate μ_2 . During repair no items are dispached.
- type 2: the machine is replaced by a new one.
- 23.1.A Use an absorbing chain to compute the distribution of the service time, $S: f_s(t), t \ge 0$.
- 23.1.B Compute E[S] and $E[S^2]$.
- 23.1.C Compute the expected time in the system using the P-K formula.
- 23.1.D Compute the expected number in the system.
- 23.1.E Assume the process with states (n,i), $n \ge 0$, $i \in \{1,2\}$, where n is the number in the system, and i the machine state: 1: woring, 2: repair. Draw the chain state transition diagram.
- 23.1.F Derive the rate matrix, Q, ordering the states lexicographically. Identify the states that form the initial and repetitive part. Identify the submatrices that would be used for a matrix geometric solution: \mathbf{B}_0 , \mathbf{L}_0 , \mathbf{F}_0 , \mathbf{B} , \mathbf{L} , \mathbf{F} .
- 23.1.G Compute the matrix **R**.
- 23.1.H Compute π_0 and π_1 .
- 23.1.I Use the previous results to compute the expected number in the system. Compare it with the one obtained before.
- 23.1.J Compute the expected number of machines repaired per time unit.
- 23.1.K Compute the expected number of new machines bought per time unit.