Feuille 3.2 - Théorèmes d'inversion locale et des fonctions implicites

Exercice 1 – Valeurs propres. Soient $A_0 \in \mathcal{M}_n(\mathbb{R})$ et $\lambda_0 \in \mathbb{R}$ une valeur propre de multiplicité 1 dans le polynôme caractéristique. Montrer qu'il existe une fonction "valeur propre" de classe C^1 dans un voisinage de A_0 . De façon précise, montrer qu'il existe un voisinage V de A_0 dans $\mathcal{M}_n(\mathbb{R})$, un voisinage W de λ_0 et une fonction $vp:V\longrightarrow W$ tel que vp(A) soit une valeur propre de A pour tout $A\in V$.

Exercice 2 – Locale injectivité et injectivité de la différentielle. Soit Ω un ouvert de \mathbb{R}^m et $f:\Omega\to\mathbb{R}^n$ une application de classe C^1 localement injective ($ie\ \forall a\in\Omega$ il existe un voisinage de a sur lequel f est injective). On pose $X=\{x\in\Omega|\ \mathrm{d} f_x\ \mathrm{est}\ \mathrm{injective}\ \}$. Montrer que X est ouvert dense de Ω .

Exercice 3 – Un difféomorphisme global. Soient $f : \mathbb{R} \to \mathbb{R}$ et $g : \mathbb{R} \to \mathbb{R}$ C^1 , on pose

$$F: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \to & (x+y,f(x)+g(y)) \end{array}$$

- a) Montrer que F est un C^1 difféomorphisme local ssi il existe $a \in \mathbb{R}$ tel tel que soit $\forall x \in \mathbb{R}$ $f'(x) \leq a$ et $g'(x) \geq a$ soit $\forall x \in \mathbb{R}$ $f'(x) \geq a$ et $g'(x) \leq a$ avec à chaque fois l'une des inégalités stricte.
- **b)** On suppose cette condition vérifiée. Montrer que F est un difféomorphisme global sur son image.

Exercice 4 – Système différentiel. Soit $\mu \in \mathbb{R}$. On considère le système différentiel

$$S_{\mu} \left\{ \begin{array}{c} \frac{\mathrm{d}x}{\mathrm{d}t} = y^2 - \cos x \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -y\sin x - \mu y e^y \end{array} \right.$$

- a) Montrer que pour tout $0 \le \mu < 1$ le système S_{μ} admet un unique point d'équilibre $C(\mu) = (x_c(\mu, y_c(\mu)))$ dans la bande $B = \{(x, y) \in \mathbb{R}^2 | -\frac{\pi}{2} < x \le 0, y > 0\}.$
- **b)** Montrer que la fonction : $\mu \to C(\mu)$ est de classe C^1 au voisinage de 0 et donner un développement limité à l'ordre 1 de $x_c(\mu)$ et $y_c(\mu)$.
- c) On note $A(\mu)$ la matrice du problème linéarisé au point $C(\mu)$. Écrire le développement limité à l'ordre 1 de $A(\mu)$ en 0.

Exercice 5 – Lemme de Morse. Soit $S_n(\mathbb{R}) \subset M_n(\mathbb{R})$ le sous-espace des matrices symétriques d'ordre n. On rappelle qu'une forme quadratique Q sur \mathbb{R}^n (identifiée à une matrice de $S_n(\mathbb{R})$ dans une base fixée) est dite de signature (p,q) avec $p,q \in \mathbb{N}, p+q \leqslant n$ s'il existe une matrice inversible B telle que

$$\forall x \in \mathbb{R}^n, (Bx)^T Q(Bx) = x_1^2 + \dots + x_p^2 - x_{p+1}^2 - \dots - x_{p+q}^2$$

a) Soit $A_0 \in S_n(\mathbb{R})$ inversible. Soit Φ de $M_n(\mathbb{R})$ dans $S_n(\mathbb{R})$ telle que $\Phi(M) = M^T A_0 M$. Montrer que $d\Phi(I_n)$ est surjective et préciser son noyau.

- **b)** En considérant la restriction de Φ au sous-espace $A_0^{-1}S_n(\mathbb{R})$ montrer qu'il existe un voisinage V de A_0 dans $S_n(\mathbb{R})$ et une application de classe C^1 de V à valeurs dans $GL_n(\mathbb{R})$ qui à A associe M telle que $\forall A \in V$, $A = M^T A_0 M$.
- c) Soit maintenant U un ouvert de \mathbb{R}^n contenant 0 et $f: U \to \mathbb{R}$ une application de classe C^3 . On suppose que df(0) = 0 et que la forme quadratique hessienne $d^2f(0)$ est non dégénérée de signature (p, n - p). Montrer que $f(x) - f(0) = x^T Q(x) x$ où Q est une fonction de classe C^1 de \mathbb{R}^n dans $S_n(\mathbb{R})$.
- d) Montrer qu'au voisinage de $0 \in \mathbb{R}^n$ il existe une fonction $x \to M(x)$ de classe C^1 à valeurs dans $GL_n(\mathbb{R})$ telle que $Q(x) = M(x)^T Q(0) M(x)$. En déduire l'existence d'un difféomorphisme : $x \to \Psi(x) = (\Psi_1(x), ..., \Psi_n(x))$ entre deux voisinages de l'origine dans \mathbb{R}^n tel que $\Psi(0) = 0$ et $f(x) f(0) = \Psi_1(x)^2 + ... + \Psi_p(x)^2 \Psi_{p+1}(x)^2 ... \Psi_n(x)^2$.

Exercice 6 – Isométrie locale. Soit Ω un ouvert convexe de \mathbb{R}^n et $f: \Omega \to \mathbb{R}^n$ une application de classe C^1 telle que pour tout $x \in \Omega$, $\mathrm{d} f_x \in O_n(\mathbb{R})$. On va montrer que f est en fait une isométrie affine.

- a) Justifier qu'il suffit de prouver que df est localement constante sur Ω .
- **b)** Si $x_0 \in \Omega$, montrer que pour x et y assez proches de x_0 on a ||f(x) f(y)|| = ||x y||.
- c) Montrer que df(x) = df(y) et conclure.

Exercice 7 - TFI => TIL.

On suppose que le théorème des fonctions implicites est vrai. Soit f définie sur un ouvert U d'un espace de Banach E et à valeur dans F, espace de Banach telle que f soit de classe C^1 et telle qu'il existe $a \in U$ tel que df(a) soit un isomorphisme. On note b = f(a).

- a) Vérifier que les hypothèses du théorème des fonctions implicites s'appliquent à la fonction $\Phi: U \times F \to F$ définie par $\Phi(x,y) = y f(x)$.
- **b)** En déduire l'existence de voisinages de a et de b et de f^{-1} définie sur un de ces voisinages.
- c) Conclure.

Exercice 8 - TIL=>TFI.

On suppose que le théorème d'inversion locale est vrai. On se donne trois espaces de Banach E, F, G et on considère f définie sur un ouvert U de $E \times F$ à valeur dans G et de classe C^1 . On suppose qu'il existe $(a,b) \in U$ vérifiant f(a,b) = 0 et tel que la différentielle partielle par rapport à y en (a,b) c'est-à-dire $d_y f(a,b)$ soit un isomorphime.

- a) Montrer que la fonction $\Psi: U \to E \times G$ définie par $\Psi(x,y) = (x,f(x,y))$ est de classe \mathcal{C}^1 et calculer sa différentielle.
- b) Vérifier que cette différentielle est inversible en (a, b), montrer en utilisant le théorème d'inversion locale que Ψ est un \mathcal{C}^1 -difféomorphisme sur des espaces que l'on précisera.
- c) Reprendre les questions précédentes dans le cas où $E = \mathbb{R}^n$ et $F = G = \mathbb{R}^p$
- **d)** En remarquant que l'on peut écrire $\Psi^{-1}(x,z)$ sous la forme(x,g(x,z)), conclure.