Chemical Kinetics:

→ The branch of Physical chemistry which deals with the rate of reactions is called Chemical Kinetics.

Reaction Rate:

 \rightarrow The rate of a reaction tells as to what speed the reaction occurs.

Let us consider a simple reaction

$$A \rightarrow B$$

The concentration of the reactant **A decreases** and that of **B** increases as time passes.

The rate of reactions is defined as **the change in concentration of any of reactant or products per unit time**. For the given reaction the rate of reaction may be equal to the rate of disappearance of A which is equal to the rate of appearance of B.

 \rightarrow Thus

rate of reaction = rate of disappearance of A = rate of appearance of B

Or

$$rate = -\frac{d[A]}{dt}$$
$$= +\frac{d[B]}{dt}$$

where [] represents the concentration in moles per litre whereas 'd' represents infinitesimally small change in concentration. Negative sign shows the concentration of the reactant A decreases whereas the positive sign indicates the increase in concentration of the product B.

Rate Laws:

→ At a fixed temperature the rate of a given reaction depends on concentration of reactants.

It is shown that; the rate of a reaction is directly proportional to the reactant concentrations, each concentration being raised to some power.

Thus for a substance A undergoing reaction,

rate
$$\propto [A]^n$$
 or, rate = k $[A]^n$

An expression which shows how the reaction rate is related to concentrations is called the rate law or rate equation.

The power (exponent) of concentration n in the rate law is usually a small whole number integer (1, 2, 3) or fractional. The proportionality constant k is called the **rate constant** for the reaction.

	REACTIONS	RATE LAW
(1)	$2N_2O_5 \longrightarrow 4NO_2 + O_2$	$rate = k [N_2O_5]$
(2)	$H_2 + I_2 \longrightarrow 2HI$	$rate = k [H_2] [I_2]$
(3)	$2NO_2 \longrightarrow 2NO + O_2$	$rate = k [NO_2]^2$
(4)	$2NO + 2H_2 \longrightarrow N_2 + 2H_2O$	$rate = k [H_2] [NO]^2$

Order of a Reaction:

The order of a reaction is defined as the sum of the powers of concentrations in the rate law.

Let us consider the example of a reaction which has the rate law

rate =
$$k [A]^m [B]^n ...(1)$$

The order of such a reaction is (m + n).

Examples of reaction order:

RATE LAW	REACTION ORDER
$rate = k [N_2O_5]$	1
$rate = k [H_2] [I_2]$	1+1=2
$rate = k [NO_2]^2$	2
$rate = k [[H_2] [NO]^2$	1+2=3
rate = $k [CHC1_3] [C1_2]^{1/2}$	$1 + \frac{1}{2} = 1\frac{1}{2}$

Molecularity of a Reaction:

Chemical reactions may be classed into two types:

- (a) Elementary reactions
- (b) Complex reactions

An elementary reaction is a simple reaction which occurs in a single step.

A complex reaction is that which occurs in two or more steps.

■ Molecularity of an Elementary Reaction:

→ The molecularity of an elementary reaction is defined as : the number of reactant molecules involved in a reaction.

(b) Bimolecular reactions: (molecularity = 2)

$$A+B \longrightarrow products$$

 $A+A \longrightarrow products$

Examples are:

(i)
$$CH_3COOC_2H_5 + H_2O \longrightarrow CH_3COOH + C_2H_5OH$$

Ethyl acetate acetic acid ethyl alcohol

(ii)
$$2HI \longrightarrow H_2 + I_2$$

(c) Termolecular reactions: (molecularity = 3)

$$A+B+C \longrightarrow products$$

Examples are:

$$2NO+O_2 \longrightarrow 2NO_2$$

 $2NO+Cl_2 \longrightarrow 2NOC1$

■ Differences Between Order and Molecularity:

Order of a Reaction

- It is the sum of powers of the concentration terms in the rate law expression.
- It is an experimentally determined value.
- It can have fractional value.
- It can assume zero value.
- Order of a reaction can change with the conditions such as pressure, temperature, concentration.

Molecularity of a Reaction

- It is number of reacting species undergoing simultaneous collision in the elementary or simple reaction.
- It is a theoretical concept.
- 3. It is always a whole number.
- 4. It can not have zero value.
- Molecularity is invariant for a chemical equation.