

LOUISIANA STATE UNIVERITY College of Agriculture School of Plant, Environmental, and Soil Sciences AGRO 7076 HTP in Plant Breeding

Enviromics

Prof. Roberto Fritsche-Neto Dr. Germano Costa-Neto

rfneto@agcenter.lsu.edu

Baton Rouge, Mar 6th, 2024

Prediction-based model

$$RS = \frac{i. \, r_{aP}. \, \sigma_a}{T} \qquad \qquad r_{aP} = \sqrt{h_a^2}$$

$$y = u + X\beta + Zg + Wge + \varepsilon$$

Envirotyping (W):

- Virtually increase the MET
- Allows to better predict gxe
- Optimize cultivar recommendation
- Thus, increase h

Current challenges:

- 1. Obtain high resolution data
- 2. Translate information

MET Prediction (Enviromic + Genomic)

Adaptability and stability – Regression methods

- Adaptability: ability to take advantage of environmental variations
- Stability: predictable behavior in the face of variations in the environment
- Finlay K, Wilkinson G (1963): Linear regression coefficient and the variance

of the regression deviations

$$I_{j} = \overline{I}_{j} - \overline{Y}_{j}$$
.

$$Y_{ij} = m_i + b_i I_j + d_{ij}$$

- di: regression deviations predictability (stability)
- What would be the ideal cultivar?
- Y_{ij}: high overall performance
- $b_i = 1.0$
- $d_{ii}=0$

ARTICLE

Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials

Germano Costa-Neto 601 · Roberto Fritsche-Neto 601 · José Crossa 602

Theoretical gradient of some continuous environmental factor

Shelford (1931, 1932) Tolerance Limits and adaptation

Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize

Germano Costa-Neto 1,2*, Jose Crossa 3,4† and Roberto Fritsche-Neto 1,5

- Cardinals must weight EC
- Not all EC are important:
- -for all traits or
- during the whole cycle

Cumulative values per croplife (poor description)

Environment 2 Environment 2 Days After Emergency

Precipitation: 560 mm/cycle
 Temperature: 962 °C/cycle
 Radiation: 724 MJ m2/ cycle

- Precipitation: 560 mm/cycle
 Temperature: 962 °C/cycle
- Radiation: 724 MJ m2/ cycle

Cumulative values per stage (better)

Days After Emergency

- Precipitation (mm): 300 (T1); 260 (T2); 0 mm (T3)
- Temperature (°C): 150 (T1); 100 (T2); 712 (T3)
- Radiation (MJ/m2): 144.8 (T1); 115.8 (T2); 463.4 (T3)

1 8 (

Environment 2

Days After Emergency

- Precipitation (mm): 224 (T1); 168 (T2); 168 (T3)
- Temperature (°C): 150 (T1); 100 (T2); 712 (T3)
- Radiation (MJ/m2): 144.8 (T1); 115.8 (T2); 463.4 (T3)

• Crop-specific tune

- Tbase1 = 12,
- Tbase2 = 24,
- Topt1 = 33,
- Topt2 = 37,
- Alt = 540

Temporal variations

- From 0 DAE (emergence day) to 14 DAE (appearance of the first leaf, V1).
- From 15 DAE (V1) to 35 DAE (appearance of the fourth leaf, V4).
- From 36 DAE (V4) to 65 DAE (tasseling stage, VT).
- From 66 DAE (VT) to 90 DAE (kernel milk stage, R3).
- From 91 DAE (R3) to 120 DAE (physiological maturity).

Source	Environmental factor	Unit
NASA Power	Top-of-atmosphere insolation	${ m MJ}~{ m m}^{-2}~{ m d}^{-1}$
	Average insolation incident on a horizontal surface	${ m MJ} \ { m m}^{-2} \ { m d}^{-1}$
	Average downward longwave radiative flux	${ m MJ} \ { m m}^{-2} \ { m d}^{-1}$
	Wind speed at 10 m above the surface of the earth	${ m m~s^{-1}}$
	Minimum air temperature at 2 m above the surface of the earth	$^{\circ}\mathrm{C}\mathrm{d}^{-1}$
	Maximum air temperature at 2 m above the surface of the earth	${}^{\circ}\mathbf{C}\mathbf{d}^{-1}$
	Dew-point temperature at 2 m above the surface of the earth	$^{\circ}\mathrm{C}\mathrm{d}^{-1}$
	Relative air humidity at 2 m above the surface of the earth	%
	Rainfall precipitation (P)	${\rm mm}{\rm d}^{-1}$
Calculated ^a	Effect of temperature on radiation-use efficiency	_
	Evapotranspiration (ETP)	${\rm mm}~{\rm d}^{-1}$
	Atmospheric water deficit P-ETP	${\rm mm}{\rm d}^{-1}$
	Deficit of vapor pressure	$kPa d^{-1}$
	Slope of saturation vapor-pressure curve	$kPa C^{\circ} d^{-1}$
	Temperature range	$^{\circ}\mathrm{C}\mathrm{d}^{-1}$
	Global solar radiation based on latitude and Julian Day	${ m MJ} \ { m m}^{-2} \ { m d}^{-1}$

E.g., DS in The Philippines

G3, 2021, 11(4), jkab040

D0I: 10.1093/g3journal/jkab040

Advance Access Publication Date: 6 February 2021

Software and Data Resources

EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture

Germano Costa-Neto [0], 1* Giovanni Galli, 1 Humberto Fanelli Carvalho [0], 1 José Crossa [0] 2 and Roberto Fritsche-Neto [0] 1.3

Received: 30 March 2023 | Accepted: 8 May 2023 DOI: 10.1002/agj2.21383

SPECIAL SECTION: MACHINE LEARNING IN

Agronomy Journal

SoilType: An R package to interplay soil characterization in plant science

Roberto Fritsche-Neto ©

Using enviromics, we can:

- Study reaction norms how a genotype reacts to changes in an environmental component gradient
- Brings more resolution to GxE studies
- It may reduce the total number of trials and cost better allocate resources
- Define the optimal MET in advance
- Identify genomic regions associated with EC responsiveness
- Help to develop models to select more resilient genotypes for future scenarios
- Develop models for epidemiology predict the disease progress
- The limit is your imagination...