ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM)

Multi-Carrier Modulation

How to communicate across an ISI channel with bandwidth W?

2. Multicarrier

- \Rightarrow Carve band into N narrow subbands
- \Rightarrow Transmit at rate W/N across each, independently
- \Rightarrow Avoids ISI when N is large

Identical Bit Rates

A single 64-QAM signal with symbol rate *W*:

N independent 64-QAM signals, each with rate W/N:

Both achieve the same bit rate, namely $R_b = 6W$.

Remark 2: Same power efficiency too.

 \Rightarrow The "point" in the SNR-v-BW plane is independent of N!

OFDM Widely Used

- Wireless LAN (WiFi 802.11a, 802.11g)
- Wireless MAN (WiMax, 802.16)
- Power line communications
- ADSL
- Digital Video Broadcast (DVB)
- Digital Audio Broadcast (DAB)
- Ultrawideband (UWB)
- Flarion OFDMA Mobile data

OFDM Advantages

- OFDM is a spectrally efficient modulation technique
- It is conveniently implemented using IFFT and FFT operations
- It handles frequency selective channels well when combined with error correction coding

OFDM Disadvantages

- More complex than single-carrier modulation
- Requires a more linear power amplifier

Naïve Implementation—Too Complex

Each symbol rate is 1/T = W/N

Transmitter Block Diagram

Sub-Carriers

- Each branch corresponds to a subcarrier
- Subcarriers are separated by 1/T_u
 Hz
- Each subcarrier modulates a different symbol
 - ullet b_k can be QAM

Sub-Carrier Spectra

 Each modulated subcarrier has a spectrum in the shape of a sinc squared function

Cyclic Prefix

 To avoid losing the power from echoes, a copy of the end is appended to the beginning of the "useful" part

Cyclic Prefix

Removal of ISI using a cyclic suffix

Fading

 The subcarrier spacing is typically much less than the coherence bandwidth

Correlator Block Diagram

FFT Based Implementation

- These correlations are conveniently performed by the Fast Fourier Transform (FFT)
- The modulation is performed by the inverse FFT (IFFT)
- There are very fast and efficient implementations of the FFT and IFFT, which is a big reason for the popularity of OFDM

Modulator

FFT-based OFDM Transmitter

Demodulator

FFT-based OFDM Receiver

OFDM System

 $OFDM\ System$

Summary

- OFDM is a multi-carrier modulation technique
- Each subcarrier carries BPSK, QPSK or QAM
- The subcarriers are so close, that each subcarrier sees a flat-faded channel
- The Guard Interval ensures that successive OFDM symbols do not interfere with each other
- FEC and interleaving provide frequency diversity
- OFDM modulation and demodulation is conveniently performed by fast DSP operations (FFT and IFFT)

POWER SPECTRAL DENSITY (PSD)

PSD of ASK Signals

PSD of ASK with a root-raised cosine pulse

PSD of OFDM without prefix (N=16)

PSD OFDM with 25% Prefix (N=16)

PSD of OFDM without prefix (N=256)

PSD OFDM with 25% Prefix (N=256)

FFT Based OFDM Spectrum (N=16, No Prefix)

FFT Based OFDM Spectrum (N=16, 25% prefix)

PSD of MSK and GMSK

Summary

- OFDM is a multi-carrier modulation scheme
- Each subcarrier carries BPSK, QPSK, or QAM
- The subcarriers are so close, that each subcarrier sees a flat-faded channel
- Guard interval ensues low interference
- OFDM modulation and demoduation is conveniently performed by fast FFT/IFFT operations.