Autonomous Drone Swarms

Danning Yu
CS 35L
26 November 2019

Swarm Robotics: Inspired By Nature

- Social insects (e.g. ants, bees): eusocial behavior
- Researchers at TU Delft, Radboud University of Nijmegen, and University of Liverpool
- 33 g drones, same size as a hand
- Swarm Gradient Bug Algorithm (SGBA):
 - Follow given direction
 - Wall following
 - Odometry
 - Inter-entity detection
 - Gradient based return
- Results in swarm intelligence and behavior
 - Actions that emerge at a group level

SGBA: Advantages and Tradeoffs

Advantages	<u>Tradeoffs</u>
 Computationally cheap No expensive processing power needed, so light drones, longer battery life Less susceptible to odometry drift Can work in GPS denied environments (e.g. underground) 	 Cannot precisely navigate from point A to point B (no internal map) Cannot transmit data back in real time: video saved on SD card

Experiment Overview

- Proof of concept using computer simulations - successful
- Real-life tests in an office environment
 - Used up to 6 drones
 - Explored 80% area in 6 min
- Application: search and rescue
 - Able to find victims in 4 minutes

Real Life Experiment: Setup

- Crazyflie 2.0 drones
 - Laser rangers for obstacle detection and wall following
 - Flow deck for odometry (visual, time of flight sensors)
 - Wi-Fi module for communication
- Setting: empty hallways with offices
- Experiments with 2, 4, and 6 drones
- Start from home beacon, return with 2/3rds of battery left (~2 min)

Real Life Results

4 drones

1 ---- L-44----

6 drones

Real Life Results

- Coverage area increases; area per drone stays constant
- Return rate goes down as number of drones increases

Search and Rescue

- 2 simulated victims placed in rooms
- Drones were able to find both victims quickly
 - 1 drone failed but other drone capture a picture as well
- Can backwards analyze videos to generate a detailed map using simultaneous localization and mapping (SLAM) techniques

Future Improvement

- Using ultra wide band: less communications interference
- Improved obstacle detection: eliminate blind spots
- Different sensors: sonar/radar for smoke filled rooms

Applications

- Well suited for any of the following environments
 - Dangerous, requires unknown amount of resources, large, unstructured, rapidly changing
- Quickly adapt to changing situations
- Tolerate the loss of individual members
- Examples: toxic spill cleanups, buildings at risk of collapse, search and rescue, geographical exploration, disaster recovery

My Reactions

- Cool example of biomimetics
- Large potential due to reduced cost, easy deployability
- Dependent on hardware: main limitation is battery size and computing power

Works Cited

- [1] McGuire KN, De Wagter C, Tuyls K, Kappen HJ, de Croon GE. Minimal navigation solution for a swarm of tiny flying robots to explore an unknown environment. Sci. Robot. 2019 Oct 23;4(35). doi:10.1126/scirobotics.aaw9710.
- [2] Reid CR, Sumpter DT, Beekman M. Optimisation in a natural system: Argentine ants solve the Towers of Hanoi. J. Exp. Biol. 2011;214:50-8. doi:10.1242/jeb.048173.
- [3] Mondada F, Gambardella LM, Floreano D, Nolfi S, Deneuborg JL, Dorigo M. <u>The cooperation of swarm-bots: physical interactions in collective robotics</u>. IEEE Robot. Autom. Mag. 2005;12(2):21-8. doi:10.1109/MRA.2005.1458313.
- [4] Dorigo M, Birattari M, Brambilla M. Swarm robotics. Scholarpedia. 2014;9(1):1463. doi:10.4249/scholarpedia.1463.
- [5] Bitcraze AB. Crazyflie 2.0. Sweden: Bitcraze AB; 2019.
- [6] Fuentes J, Ruiz-Ascencio J, Rendon-Mancha JM. <u>Visual simultaneous localization and mapping: a survey</u>. Artificial Intelligence Review. 2015 Jan;43(1):55-81. doi:10.1007/s10462-012-9365-8.
- [7] Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J. <u>Biomimetics: forecasting the future of science, engineering, and medicine</u>. Int. J. Nanomedicine. 2015 Sep 8;10:5701-13. doi:10.2147/JJN.S83642.