

Bangladesh University of Business & Technology (BUBT)

Department of Computer Science and Engineering

Final Examination: Summer 2021 CSE 205 | Course Title: Digital Logic Design

Intake: 37th, Program: B.Sc. in CSE (Diploma Holders)

Marks-40

[Answer all the questions]

- 1. a) How do combinational circuits differ from sequential logic circuit? Explain with an [05] example.
 - b) **Design** a 3×8 decoder using only NAND logic gates and verify the circuit an [05] example.
- 2. a) Implement the following Boolean function using a multiplexer (MUX). [05] $F1 = \sum (0, D+1, D+2, D+3, 11, 12, 14, 15)$

Here, $D = (X_1X_2X_3 + 5) \mod 7$ where $X_1X_2X_3$ denotes the last 3 digits of your ID.

b) A combination circuit is defined by the following function F1: **Implement** the [05] combinational circuit using a suitable decoder.

$$F1 = \sum (N, N+1, N+3, N+4, N+7, N+8, N+10)$$

Here, $N = (X_1 X_2 X_3 + 5)$ mod 11 where $X_1 X_2 X_3$ denotes the last 3 digits of your ID.

- **3.** a) Analyze R-S flip-flop to find out the limitations and **characterize** a solution to **[05]** overcome the limitation.
 - b) Derive the state table and state diagram for the sequential circuit given below. [05]

- 4. a) Explain briefly the implementation of BCD ripple counter with J-K flip flop. [05]
 - b) Consider the following operating mode and **design** a shift register using MUX to perform all the operations.

S0	S1	Operating Mode
0	0	Locked
1	0	Shift-Right
0	1	Shift-Left
1	1	Parallel Loading

[05]