Introduction Distance metrics Cluster analysis algorithms Results

Efficient DNA/RNA sequence clustering Using k-mers as an approximation for sequence similarity

Anders Kiel Hovgaard

Department of Computer Science, University of Copenhagen

June 18, 2015

Introduction

Defining the clustering problem to be solved

Partitioning of sequences into a minimal number of clusters based on a measure of similarity between sequences.

- How to measure similarity/distance between sequences?
- How to cluster sequences based on such a measure?

Distance metrics

There are various distance metrics:

- edit distance, Levenshtein
- sequence alignment
- feature based distance, k-mer counting
 - K-DIST uses a kind of k-mer counting

The simple d2 distance

$$S_1 = ACTACAC$$

 $S_2 = ACAGAT$

• Fill vectors with k-mer counts

Calculate the Euclidean distance

$$d2_2(S_1, S_2) = \sqrt{(3-1)^2 - 1^2 - 1^2 + (1-1)^2 + 1^2 - 1^2 + 1^2}$$

= $\sqrt{9} = 3$

A variant of the simple d2 algorithm:

- a single k-mer vector
- Manhattan distance

$$\sum_{i=1}^{n} |u_i - v_i|$$

window calculation

```
AA AC AG AT CA CC CG CT GA GC GG GT
0
    0
       0
          0
             0
                 0
                    0
                       0
                          0
                              0
                                 0
                                    0
                                       0
                                          0
                                              0
                                                 0
   +1
   - 1
                                           d = 0
    ACGTCT
    ACTACGTCTTAC
```


d=2

d=4

d = 4

ACGTCT ACTACGTCTTAC

- 1

The K-DIST algorithm

ACGTCT
ACTACGTCTTAC

-1

- 1

The K-DIST algorithm

- 1

Time complexity of K-DIST

$$\begin{aligned} &\text{for } i \leftarrow 0 \text{ to } |s| - k \text{ do} \\ &s_i \leftarrow s.substring(i,k) \\ &t_i \leftarrow t.substring(i,k) \\ &\text{update } cur_dist, \, \texttt{kmers}[s_i] \text{ and } \texttt{kmers}[t_i] \end{aligned} \\ &+ \\ &\text{for } i \leftarrow 0 \text{ to } |t| - |s| \text{ do} \\ &kmer_{out} \leftarrow t.substring(i,k) \\ &kmer_{in} \leftarrow t.substring(|s| - k + i + 1, k) \\ &\text{update } cur_dist, \, \texttt{kmers}[kmer_{out}] \text{ and } \texttt{kmers}[kmer_{in}] \\ &min_dist \leftarrow min(min_dist, \, cur_dist) \end{aligned} \\ &\Theta\left(|s| - k\right)$$

Total:
$$\Theta(|t|-k)$$

Cluster analysis algorithms

Various approaches to clustering:

- hierarchical clustering
- graph-based clustering
- greedy clustering

A greedy approach is necessary due to the sizes of the data.

- centroid based
- the clustering algorithm used in klust

Intersection criterion

$$|K(s) \cap K(c)| \ge |K(c)| \cdot id$$

Sequences

Centroids Cluster sequences

10

11

12

13

14

Sequences

Centroids Cluster sequences

10

12

13

14

15

:

Sequences

11 12

13

14

15

16

Centroids Cluster sequences

Clustering the SILVA RNA dataset

Clustering	Time	Throughput	Clusters	Max.
program		(seqs./sec.)		memory
klust, id = 0.90, k = 5	0:42:59	614.16	159,812	≈ 1021 MB
$egin{aligned} ext{USEARCH,} \ id = 0.97, \ ext{-cluster_smallmem} \end{aligned}$	1:04:10	411.10	221,040	≈ 2048 MB

K-Clust k = 5 id = 0.85

clusters: 40 max. size: 10 avg. size: 10 singletons: 0

K-CLUST k = 5 id = 0.85 sort: incr.

clusters: 157 max. size: 43 avg. size: 3.18

singletons: 89