

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA SEMESTRE AGOSTO – DICIEMBRE 2021

Proyecto Integrador de Aprendizaje

Sistema de vacunación COVID-19

Modelado y Simulación de Sistemas Dinámicos Dra. Alicia Yesenia López Sánchez

Hora: M6

Equipo 4:

Nombre	Matrícula
Rolando de Jesús Arguello Balboa	1793986
Santiago Valenzuela Federico	1943524
Gilberto Carlos Rodriguez Betancourt	1627548
Christopher Alan Peña Treviño	1986715

Resumen

El sistema de vacunación COVID-19 tiene como propósito el poder gestionar de la manera más optima a los interesados por la aplicación de la vacuna. Esto con el fin, de poder llevar acabo un mayor control sobre las personas que desean aplicarse la vacuna, si estas cumplen con los requisitos mínimos, si existe módulos disponibles y si se cuenta con la cantidad suficiente de vacunas.

Palabras clave

-Vacunación, COVID-19.

Descripción del sistema

El proyecto consiste en la creación de un modelo en base a un sistema real, en este caso se trata de un sistema de vacunación. Esta trata de como las personas llegan a los diferentes centros de vacunación y pasan por un protocolo ya definido como lo viene siendo desde la llegada, formación de la fila, revisión de documentos, la asignación de un módulo en el cual se aplicará la vacuna, sitio de espera para descartar cualquier efecto secundario y finalmente el desalojo de las personas que ya concluyeron con éxito el proceso de vacunación.

Justificación

Actualmente el mundo sigue luchando contra la pandemia de COVID-19, a pesar de que casi se cumplen dos años de su inicio, se siguen enfrentando muchos problemas gracias a él, nosotros decidimos apoyar de alguna manera a esta causa, definiendo un sistema de vacunación eficaz, la realización de este proyecto puede contribuir de una manera satisfactoria para que los módulos de vacunación estén preparados con un sistema bien planteado, seguro pero como lo mencionamos anteriormente, eficaz, a pesar de que ya existen vacunas para combatir el virus, este no ha desaparecido y no lo hará en un futuro próximo, se estima que nos estaremos vacunando a nivel mundial, cada 6 meses contra el virus, por eso, es necesario un sistema de vacunación adecuado.

Metodología

Formulación del problema

Algo que se ve en la organización de las campañas de vacunación es cómo funciona, sin importar la manera en la que se organiza se usan las filas y varios grupos donde están 3 personas, quien vacuna, quien le asiste preparando la siguiente dosis, y quien registra los datos de los que se vacunan, a su vez hay quienes organizan a las personas que entran y salen, y quienes restablecen las unidades con vacunas.

Usando como base la experiencia que fue administrarse la vacuna, como caso general lo menos organizado eran las salas de espera, en ambas dosis me di cuenta de la falta de organización en ese aspecto, las salas de espera son lo que diferencia una campaña a otra, ya que la metodología de administración parece ser la misma de una a otra con tres enfermeros en cada módulo.

Definición de elementos en el modelo

Componentes

- Módulos de vacunación
- Personas
- Vacunas

Parámetros

- TLimite: Tiempo límite a simular.
- NP: Personas por vacunarse.
- CV: Cantidad de vacunas.

Exógenas

- Tmn: Tiempo de servicio en el que se tarda el módulo n en vacunar a un grupo de personas.

De Estado

- Npmn: Número de personas atendidas en el módulo n.
- Cymn: Cantidad de vacunas administradas en el módulo n.
- Ttmn: Tiempo total que se tardó el módulo n.

Endógenas

- NTpv: Número total de personas vacunadas.
- CTv: Cantidad total de vacunadas administradas.
- TTV: Tiempo total de la vacunación.

Datos Reales

Reales
142
121
135
120
126
150
120
141
122
143
130
134
146
130
150
134
130
120
122
142
144
124
124
139
141
140
150
143
125
128
133
127
143
130
130
150
149
148
123
142

Análisis de Datos: Reales

data points	39
minimum	120
maximum	150
mean	134.59
median	133
mode	130
standard deviation	10.1092
variance	102.196
coefficient of variation	7.51111
skewness	0.0873753
kurtosis	-1.4241

autofit of distributions			
distribution	rank	acceptance	aicc prob
Poisson(135)	100	do not reject	0
Binomial(518, 0.26)	37.2	do not reject	1

Datos Generados aleatorios

Simulados
122
127
153
143
142
160
137
140
110
128
154
144
136
127
134
124
130
134
123
137
133
102
119
131
155
141
137
155
132
160
139
113
139
146
134
131
134
136
120
122

Análisis de Datos: Simulados

descriptive statistics			
data points minimum maximum mean median mode standard deviation variance coefficient of variation skewness kurtosis	39 102 160 134.923 134 134 13.0996 171.599 9.70893 -0.144871 0.100649		

autofit of distributions			
distribution	rank	acceptance	aicc prob
Poisson(135)	100	do not reject	1

Modelo de simulacion

Lanzador de Hilos

Generador de variable Aleatoria

Comparacion de Resultados

P-Valor es igual a 0.7524, que es mayor a .05, que nos indica que los tiempos de la simulacion si son similares a los tiempos reales.