

Lezione 03 - Trasformazioni

Corso di Fisica Tecnica a.a. 2019-2020

*Prof. Gaël R. Guédon*Dipartimento di Energia, Politecnico di Milano

Obiettivi della lezione

- > Calcolare lavoro e calore scambiato
- > Definire i calori specifici ed i loro valori per un gas perfetto
- Definire le trasformazioni politropiche

Il lavoro termodinamico

In un dispositivo cilindro-pistone, uno squilibrio di forze infinitesimo tra forze esterne e forza interna $(P \cdot A)$ provoca uno spostamento infinitesimo del pistone a cui corrisponde un lavoro

$$\delta L^{\rightarrow} = PAds = PdV$$

Il lavoro termodinamico

Si è considerato il sistema costituito dal solo fluido comprimibile e la **trasformazione quasi statica**. In termini di **grandezze specifiche**, la relazione diventa

$$\delta l^{\rightarrow} = P \cdot dv$$

Quando il sistema evolve da uno **stato iniziale** (i) ad uno **stato finale** (f) attraverso una **successione di stati di equilibrio**, allora sarà possibile esprimere una legge, detta **equazione della trasformazione**, tra le variabili di stato P e v e la integrazione di Pdv rappresenterà il lavoro scambiato durante la trasformazione.

Il lavoro termodinamico

$$l^{\to} = \int_{i}^{f} P dv$$

Il calcolo dell'integrale al secondo membro richiede la conoscenza della funzione P = P(v) detta equazione della trasformazione

Consideriamo ora un'espansione isoterma reversibile da V_i a V_f

$$L^{\rightarrow} = Ml^{\rightarrow} = MR^* \int_{v_i}^{v_f} \frac{T}{v} dv = MR^* T \ln \left(\frac{v_f}{v_i} \right)$$

Trasformazione reversibile (lenta): ad ogni istante le molecole dentro il pistone hanno il tempo di andare in uno stato di equilibrio

Trasformazione irreversibile (veloce): le molecole vicine al pistone non hanno il tempo sufficiente per seguire il movimento di esso e si rarefanno nelle immediate vicinanze, provocando una diminuzione di pressione nei pressi del pistone

Trasformazione reversibile: lenta con pressione all'interno del sistema ben definita

Trasformazione irreversibile: veloce con ambiente a $P=P_f$, la forza applicata sul pistone è uguale a $P_f\cdot A$ dall'inizio alla fine

Consideriamo ora un'espansione isoterma reversibile da V_i a V_f

$$L^{\rightarrow} = Ml^{\rightarrow} = MR^* \int_{v_i}^{v_f} \frac{T}{v} dv = MR^* T \ln \left(\frac{v_f}{v_i} \right)$$

Se espandiamo il gas in modo irreversibile, il lavoro compiuto è

$$L_{irr}^{\rightarrow} = M l_{irr}^{\rightarrow} = M P_f \Delta V$$

Il lavoro reversibile è maggiore del lavoro irreversibile (vero in generale)

Funzione di stato

Una funzione di stato è una proprietà del sistema che dipende solamente dallo stato in considerazione, e non dalla natura del processo (cammino) attraverso il quale il sistema è arrivato allo stato attuale.

Un banale esempio di funzione di stato è l'altezza

Funzione di stato

➤ Il lavoro **NON** è una funzione di stato

L'altezza finale **NON DIPENDE** dal cammino.

➤ Il lavoro compiuto **DIPENDE** dal cammino (trasformazione)

Il tempo trascorso **DIPENDE** dal cammino.

Il lavoro termodinamico in un ciclo

 δl^{\rightarrow} non è un differenziale esatto e il lavoro L^{\rightarrow} non è una funzione di stato in quanto l'area sottesa dipende dall'equazione della trasformazione.

II calore

- Non va confuso con la temperatura
- Capacità termica = rapporto tra il calore fornito al sistema e la variazione di temperature del sistema stesso
- Calore specifico = rapporto tra la capacità termica del sistema e la sua massa

$$C_{x} = \left(\frac{\delta Q}{dT}\right)_{x}$$

$$c_{x} = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{dT} \right)_{x}$$

Il pedice x precisa la **trasformazione** lungo la quale viene scambiato il calore δQ .

Calori specifici a pressione costante ed a volume costante

$$c_P = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{dT} \right)_P \qquad c_V = \frac{1}{M} \left(\frac{\delta Q^{\leftarrow}}{dT} \right)_V$$

$$c_P = \left(\frac{\delta q^{\leftarrow}}{dT}\right)_P \qquad c_V = \left(\frac{\delta q^{\leftarrow}}{dT}\right)_V$$

I calori specifici c_P e c_V possono essere interpretati come **derivate parziali di funzioni termodinamiche**.

Calore specifico a volume costante

Essendo u funzione di stato e come tale esprimibile in funzione di due qualsivoglia variabili termodinamiche, si può scrivere u=u(T,v) e di conseguenza $\delta q^{\leftarrow} = \underline{du} + Pdv$

$$\delta q^{\leftarrow} = \left(\frac{\partial u}{\partial T}\right)_{v} dT + \left(\frac{\partial u}{\partial v}\right)_{T} dv + P dv$$

Nel caso di una trasformazione a volume costante (dv = 0), si ha

$$\delta q^{\leftarrow} = \left(\frac{\partial u}{\partial T}\right)_{V} dT \qquad \left(\frac{\delta q^{\leftarrow}}{dT}\right)_{V} = \left(\frac{\partial u}{\partial T}\right)_{V} \qquad c_{V} = \left(\frac{\partial u}{\partial T}\right)_{V}$$

La funzione entalpia

$$h = u + Pv$$

L'entalpia è una **funzione di stato** che esprime la quantità di energia che un sistema termodinamico può scambiare con l'ambiente.

Per le trasformazioni che avvengono a pressione costante, la variazione di entalpia è uguale al calore scambiato dal sistema con l'ambiente esterno.

Calore specifico a pressione costante

Il suo differenziale permette di riscrivere in forma diversa il primo principio

$$dh = du + vdP + Pdv$$

$$dh = \delta q^{\leftarrow} + vdP$$

$$\delta q^{\leftarrow} = dh - vdP$$

$$\delta q^{\leftarrow} = \left(\frac{\partial h}{\partial T}\right)_{P} dT + \left(\frac{\partial h}{\partial P}\right)_{T} dP - vdP$$

Nel caso di una trasformazione a pressione costante (dP = 0), si ha

$$\delta q^{\leftarrow} = \left(\frac{\partial h}{\partial T}\right)_{P} dT \qquad \left(\frac{\delta q^{\leftarrow}}{dT}\right)_{P} = \left(\frac{\partial h}{\partial T}\right)_{P} \qquad c_{P} = \left(\frac{\partial h}{\partial T}\right)_{P}$$

Calori specifici a pressione costante ed a volume costante

$$c_P = \left(\frac{\partial h}{\partial T}\right)_P \qquad c_V = \left(\frac{\partial u}{\partial T}\right)_V$$

Per essere **derivate di funzioni di stato**, possono in generale essere espresse come funzioni di una coppia di variabili termodinamiche (in particolare dalla coppia di variabili termodinamiche intensive T, P)

$$c_V = c_V(T, P)$$

$$c_P = c_P(T, P)$$

Energia interna del gas ideale

> Esperienza di Joule sull'espansione libera

bagno termostatico (sistema composto isolato)

Stato finale

Energia interna del gas ideale

Esperienza di Joule sull'espansione libera

bagno termostatico (sistema composto isolato)

Stato iniziale

Stato finale

Tra istante iniziale e finale, abbiamo

$$\Delta P \neq 0 \leftarrow \\ \Delta V \neq 0$$

$$\Delta T = 0$$

$$u = u(T)$$

Il calore specifico a volume e pressione costante per i gas ideali

$$c_V = c_V(T)$$

$$c_P = c_P(T)$$

Calori specifici di un gas ideale

u = u(T)

> Calore specifico a volume costante

$$c_V = \left(\frac{\partial u}{\partial T}\right)_V = \left(\frac{du}{dT}\right)$$

> Entalpia specifica per un gas ideale

$$h = u + Pv$$

$$Pv = R^*T$$

$$h = h(T)$$

Calori specifici di un gas ideale

$$h = h(T)$$

> Calore specifico a pressione costante

$$c_P = \left(\frac{\partial h}{\partial T}\right)_P = \left(\frac{dh}{dT}\right)$$

Relazione di Mayer

$$c_P = c_V + R^*$$

$$c_P = \left(\frac{dh}{dT}\right) = \left(\frac{du + d(Pv)}{dT}\right) = \left(\frac{du + d(R^*T)}{dT}\right) = \left(\frac{du}{dT}\right) + R^*$$

Calori specifici di un gas ideale

Fonte: https://webbook.nist.gov/chemistry/fluid/

Calori specifici di un gas perfetto

- > I calori specifici di un gas ideale dipendono della temperatura
- > Questa dipendenza dalla temperatura è normalmente abbastanza debole
- ➤ In intervalli ristretti di temperatura i calori specifici dei gas ideali si ritengono spesso costanti: in questo caso il gas viene definito perfetto
- ➤ I gas reali a pressioni basse si comportano come ideali, in quanto per essi si annullano le interazioni molecolari ed i calori specifici risultano funzione della sola temperatura

Calori specifici di un gas perfetto

> Gas Monoatomico

$$c_V = \frac{3}{2}R^*$$

$$c_V = \frac{3}{2}R^* \qquad \qquad c_P = \frac{5}{2}R^*$$

Gas Biatomico o Poliatomico lineare

tomico lineare
$$N_{2}$$
, O_{2} , O_{2

$$c_V = \frac{5}{2}R^*$$

$$c_P = \frac{7}{2}R^*$$

➤ Gas Poliatomico non lineare CH,

$$c_V = \frac{6}{2}R^*$$
 $c_P = \frac{8}{2}R^*$

Il calore specifico del liquido incomprimibile ideale

$$c_V = c_P = c(T)$$

Il calore specifico del liquido incomprimibile perfetto

$$c_V = c_P = c =$$
costante

vale anche per solidi

Si consideri una generica trasformazione quasi-statica per un sistema costituito da un gas ideale

$$\delta q^{\leftarrow} = c_{\chi} dT$$
 $\delta q^{\leftarrow} = du + P dv$ $\delta q^{\leftarrow} = dh - v dP$
$$\delta q^{\leftarrow} = c_{V} dT + P dv$$

$$\delta q^{\leftarrow} = c_{P} dT - v dP$$

$$(c_{x} - c_{P})dT = -vdP$$
$$(c_{x} - c_{V})dT = Pdv$$

$$\left(\frac{c_{x}-c_{P}}{c_{x}-c_{V}}=-\frac{vdP}{Pdv}\right)$$

Si definisce trasformazione politropica, la trasformazione quasi-statica di un gas ideale per la quale $c_x = costante$

In tale caso è anche possibile definire l'indice della politropica n con la relazione:

$$n = \frac{c_{\chi} - c_P}{c_{\chi} - c_V}$$

> Separando le variabili e integrando, si ottiene l'equazione della politropica:

$$\frac{ndv}{v} = -\frac{dP}{P}$$

$$n \ln v = -\ln P$$

$$Pv^n = costante$$

Le trasformazioni politropiche per un gas perfetto

 \triangleright Per un gas perfetto, il valore di n è calcolabile

 $Pv^n = costante$

Le trasformazioni politropiche per un gas perfetto

 \triangleright Per un gas perfetto, il valore di n è calcolabile

1:Isobaro

2:Isotermo

3:Adiabatico

4:Isocoro

Le altre espressioni dell'equazione della politropica

$$Pv^n = \text{costante}$$

$$Pv^n = \text{costante}$$
 $Pvv^{n-1} = \text{costante}$

$$Tv^{n-1} = \text{costante}$$

$$T\left(\frac{R^*T}{P}\right)^{n-1} = \text{costante}$$

$$\frac{T^n}{P^{n-1}} = \text{costante} \qquad PT^{\frac{n}{1-n}} = \text{costante}$$

$$PT^{\frac{n}{1-n}} = \text{costante}$$

Le trasformazioni elementari

TRASFORMAZIONE	c_x	$n = \frac{c_{x} - c_{P}}{c_{x} - c_{V}}$
Isoterma $T = cost$	±∞	1
Isocora $v = cost$	c_V	±∞
Isobara $P = cost$	c_P	0
Adiabatica $q=0$	0	$k = \frac{c_P}{c_V} \blacktriangleleft$

Lavoro scambiato lungo una generica politropica

Per $n \neq 1$ l'integrale del lavoro diventa

$$l^{\rightarrow} = \int_{1}^{2} P dv$$

$$l^{\rightarrow} = \frac{P_1 v_1}{n-1} \left[1 - \left(\frac{v_1}{v_2} \right)^{n-1} \right]$$

$$l^{\rightarrow} = \frac{P_1 v_1}{n-1} \left[1 - \left(\frac{P_2}{P_1} \right)^{\frac{n-1}{n}} \right]$$

Lavoro scambiato lungo una generica politropica

Per n = 1 (trasformazione isoterma) l'integrale del lavoro diventa

$$l^{\to} = \int_{1}^{2} P dv$$

$$l^{\to} = P_1 v_1 \ln \frac{v_2}{v_1} = P_1 v_1 \ln \frac{P_1}{P_2}$$

Gli stati termodinamici e le trasformazioni termodinamiche possono essere rappresentati in un «diagramma T - S»

➤ In un diagramma T – S, l'area sottesa dalla curva rappresentativa di una trasformazione internamente reversibile è uguale al calore scambiato dal sistema nella trasformazione

$$dS_{rev} = \frac{\delta Q_{rev}}{T} \qquad Q_{rev} = \int_{i}^{f} \delta Q_{rev} = \int_{i}^{f} T(S) dS$$

Per una trasformazione ciclica internamente reversibile, le aree incluse nelle curve chiuse rappresentative del ciclo nei diagrammi P - V e T - S sono uguali, essendo, per il primo principio: $L^{\rightarrow} = Q^{\leftarrow}$

\triangleright Equazione della politropica nel piano T-S

Nel caso di **trasformazione internamente reversibile**, possiamo scrivere dalla relazione $\delta q^{\leftarrow} = c_x dT$

$$Tds = c_x dT$$

Separando le variabili e integrando si ottiene l'equazione della politropica nel piano T-s

$$\frac{dT}{T} = \frac{ds}{c_x} \qquad \int_{T_0}^T \frac{dT}{T} = \int_{s_0}^s \frac{ds}{c_x}$$

$$\ln \frac{T}{T_0} = \frac{s - s_0}{c_x}$$

$$T = T_0 e^{\frac{S - S_0}{C_X}}$$

 \triangleright Equazione della politropica nel piano T-S

$$T = T_0 e^{\frac{S - S_0}{C_X}}$$

Nel piano T - s (oppure T - S) tutte le politropiche sono rappresentate da **esponenziali**. In particolare:

- Le **isoterme**, avendo $c_x = \infty$ sono **rette orizzontali** e cosi, per il **gas ideale**, anche le isoentalpiche dato che h = h(T).
- Le adiabatiche reversibili (isoentropiche) invece sono rette verticali visto che $c_x = 0$.
- Le isocore, essendo $c_V < c_P$ sono più ripide delle isobare.

Rappresentazioni delle politropiche nei piani P - V e T - S

TRASF. INTERN. REVERSIBILE	$l = \int P dv$	$oldsymbol{q} = \int oldsymbol{d} oldsymbol{q}$
P = cost	$P\Delta { m v}$	$c_P\Delta T$
v = cost	0	$c_V\Delta \mathrm{T}$
T = cost	$R^*T\lnrac{v_2}{v_1}$	$R^*T\ln\frac{v_2}{v_1}$
	$-R^*T \ln \frac{P_2}{P_1}$	$-R^*T \ln \frac{P_2}{P_1}$
q = 0	$-c_v\Delta T$	0
$c_x = \cos t$	$(c_x - c_V)\Delta T$	$c_{x}\Delta T$

$$\Delta u = c_v \Delta T$$
$$\Delta h = c_P \Delta T$$

Sempre valide per <u>GAS PERFETTI</u>, essendo <u>funzioni di stato</u>!

 $\Delta s = ?$

Valide solo per SISTEMI CHIUSI, determinate trasformazioni e per GAS PERFETTI

Per il calcolo della **variazione di entropia**, sfruttiamo il fatto che essa sia una **funzione di stato**, e quindi calcolabile considerando una **generica trasformazione reversibile**. In tale caso, il primo principio si scrive

$$du = Tds - Pdv$$

$$\delta q - \rho^{-}$$

Ovvero

$$ds = \frac{du}{T} + \frac{P}{T}dv$$

Questa è l'espressione differenziale della variazione di entropia di un **generico** sistema

ightharpoonup Nel ipotesi di **gas ideale** abbiamo $du=c_VdT$ e $Pv=R^*T$. Per cui

$$ds = c_V \frac{dT}{T} + R^* \frac{dv}{v}$$

Per un **gas perfetto** ($c_V = \cos t \, e \, c_P = \cos t$) possiamo integrare l'espressione sopra riportata

$$\Delta s = s_2 - s_1 = c_V \ln \frac{T_2}{T_1} + R^* \ln \frac{v_2}{v_1}$$

Sfruttando l'equazione di stato del gas ideale ($Pv = R^*T$) si ricavano altre espressioni della variazione di entropia

$$\Delta s = s_2 - s_1 = c_V \ln \frac{T_2}{T_1} + R^* \ln \frac{v_2}{v_1}$$

$$\Delta s = s_2 - s_1 = c_P \ln \frac{T_2}{T_1} - R^* \ln \frac{P_2}{P_1}$$

$$\Delta s = s_2 - s_1 = c_P \ln \frac{v_2}{v_1} + c_V \ln \frac{P_2}{P_1}$$

Sempre valide per **GAS PERFETTI**, essendo **funzione di stato**!

Nel caso di **liquido incomprimibile perfetto** (v = cost) abbiamo le seguenti relazioni:

$$\Delta u = c\Delta T$$

$$\Delta s = s_2 - s_1 = c \ln \frac{T_2}{T_1}$$

Sempre valide per <u>LIQUIDI INCOMPRIBILI PERFETTI</u> essendo **funzioni di stato**!

Per <u>SOLIDI INCOMPRIMIBILI PERFETTI</u> si possono usare i medesimi modelli

Note aggiuntive: trasformazioni internamente ed esternamente reversibili

Poiché una trasformazione è una interazione tra sistema e ambiente, una trasformazione reversibile esclude qualsiasi irreversibilità sia nel sistema sia nell'ambiente.

- Trasformazione internamente reversibile: nessuna irreversibilità si verifica all'interno del sistema
- Trasformazione esternamente reversibile: nessuna irreversibilità si verifica all'esterno del sistema
- Trasformazione totalmente reversibile (o reversibile): non implica alcuna irreversibilità sia all'interno che all'esterno del sistema

Fonti di irreversibilità

Le irreversibilità sono tutti quei fenomeni che rendono una trasformazione irreversibile

- > Attrito (forza che si oppone al moto di corpi a contatto)
- Espansione libera
- Miscelazione di due gas
- Scambio termico attraverso una differenza finita di temperatura
- Resistenza elettrica
- Deformazioni anelastiche dei solidi
- Reazioni chimiche

Trasformazione reale (irreversibile) descrivibile tramite una politropica

In alcuni casi particolari, una trasformazione reale, soggetta ad irreversibilità, può essere descritta tramite una politropica di indice n = costante

In tal caso, valgono i modelli e relazioni visti durante la lezione.