Semi-Supervised Locally Linear Embedding (SSLLE)

Application & Sensitivity Analysis of Critical Hyperparameters

0 AGENDA

- 1 Problem
- 2 Local graph-based manifold learning (LGML)
- 3 Techniques
 - 1 Unsupervised
 - 2 Semi-supervised SSLLE
 - 3 Challenges
- 4 Sensitivity analysis
 - 1 Setup
 - 2 Results
- 5 Discussion

1 PROBLEM MANIFOLD LEARNING

Situation. Rapidly increasing amount of data thanks to novel applications and data sources

Problem. High data dimensionality detrimental to

- → Model functionality
- \rightarrow Interpretability
- → Generalization ability

Manifold assumption. Data in high-dimensional observation space truly sampled from low-dimensional manifold

How to find a meaningful, structure-preserving embedding?

1 PROBLEM MANIFOLD LEARNING

Formal goal of manifold learning.

- ightarrow **Given.** Data $\mathcal{X} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_N)$, with $\mathbf{x}_i \in \mathbb{R}^D \ \forall i \in \{1, 2, ..., N\}$ and $N, D \in \mathbb{N}$, supposedly lying on d-dimensional manifold \mathcal{M} $\Rightarrow \psi : \mathcal{M} \to \mathbb{R}^d$ with $d \ll D, d \in \mathbb{N}$ $\Rightarrow \mathcal{X} \sim \mathcal{M} \subset \mathbb{R}^D$
- ightarrow Goal. Find *d*-dimensional Euclidean representation $\Rightarrow \mathcal{Y} = (\mathbf{y}_1, \mathbf{y}_2, ..., \mathbf{y}_N)$, with $\mathbf{y}_i = \psi(\mathbf{x}_i) \in \mathbb{R}^d \ \forall i \in \{1, 2, ..., N\}$.

2 LGML

2 LGML TAXONOMY

2 LGML CONCEPT

3 TECHNIQUES

3.1 UNSUPERVISED LLE

3.2 SEMI-SUPERVISED SSLLE

3.3 CHALLENGES NEIGHBORHOOD RELATIONS

4 SENSITIVITY ANALYSIS

4.1 SETUP SCENARIOS

4.1 SETUP EVALUATION

4.2 RESULTS FOO

5 DISCUSSION

5 DISCUSSION FOO

REFERENCES

