

:: :: Theories and Practices of Self-Driving Vehicle :: :: ::

无人驾驶

原理与实践

申澤邦 班宾宾 周庆国 李段 李冠憬□讀著

目录

1	初识无	E人驾驶系统	3
	1.1	什么是无人驾驶	
	1.2	为什么需要无人驾驶	7
	1.3	无人驾驶系统基本框架	9
	1.4	开发环境配置	
	1.5	本章参考文献	22
2	ROS 入门		
	2.1	ROS 简介	24
	2.2	ROS 中的概念	
	2.3	catkin 创建系统	27
	2.4	ROS 中的项目组织结构	28
	2.5	基于 Husky 模拟器的实践	30
	2.6	ROS 的基本编程	34
	2.7	ROS services	49
	2.8	ROS Action	52
	2.9	ROS 中的常用工具	52
	2.10	本章参考文献	57
3	无人智	骂驶系统的定位方法	58
	3.1	实现定位的原理	59
	3.2	迭代最近点算法(Iterative Closest Point, ICP)	60
	3.3	正态分布变换(Normal Distribution Transform, NDT)	65
	3.4	基于 GPS+惯性组合导航的定位系统	
	3.5	基于 Slam 的定位系统	
	3.6	本章参考文献	83
4	状态位	古计和传感器融合	84
	4.1 卡	宗人会滤波和状态估计	84
	4.2	高级运动模型和扩展卡尔曼滤波	99
	4.3	无损卡尔曼滤波(Unscented Kalman Filter,UKF)	116
	4.4	本章参考文献	122
5	机器学习和神经网络基础		
	5.1	机器学习基本概念	123
	5.2	监督学习	126
	5.3	神经网络基础	
	5.4	使用 Keras 实现神经网络	
	5.5	本章参考文献	
6	深度学	学习和无人驾驶视觉感知	
	6.1	深度前馈神经网络——为什么要深?	
	6.2	应用于深度神经网络的正则化技术	
	6.3	实战——交通标志识别	
	6.4	卷积神经网络入门	
	6.5	基于 YOLO2 的车辆检测	
	6.6	本章参考文献	
7	迁移学	学习和端到端无人驾驶	183

	7.1	迁移学习	183
	7.2	端到端无人驾驶	185
	7.3	端到端无人驾驶模拟	186
	7.4	本章小结	191
	7.5	本章参考文献	192
8	无人驾驶规划入门		193
	8.1	A* 算法	193
	8.2	分层有限状态机和无人车行为规划	202
	8.3	基于自由边界三次样条插值的无人车路径生成	208
	8.4	基于 Frenet 优化轨迹的无人车动作规划方法	216
	8.5	本章参考文献	229
9 车	辆模型和	高级控制	231
	9.1	运动学自行车模型和动力学自行车模型	231
	9.2	无人车控制入门	235
	9.3	基于运动学模型的模型预测控制	246
	9.4	轨迹追踪	250
	9.5	本章参考文献	258
10	深度	医强化学习及在自动驾驶中的应用	259
	10.1	强化学习概述	259
	10.2	强化学习原理及过程	259
	10.3	近似价值函数	264
	10.4	深度 Q 值网络算法	264
	10.5	策略梯度	268
	10.6	深度确定性策略梯度及 TORCS 游戏的控制	269
	10.7	本章小结	275
	10.8	本章参考文献	276