

Minimum-Length Trace Reconstruction

Via Integer Programming

Trace Reconstruction

Bitwise Majority Alignment (BMA)

Depth First Search (DFS)

Sequence is much longer!

Slow!

How to **efficiently** reconstruct a sequence with the **shortest length possible**?

Integer Programming (IP)

Trace Reconstruction Model (Our Paper)

Variable

We created an Estimator $\mathbf{x} = [?,?,...,?]$, and we need you to fill it in.

Constraints

We must observe all the **traces** from the **Estimator**.

Objective

We want you to use as less bits as possible in the **Estimator**.

Copy. Done. Easy. :)

Trace Reconstruction Model (Our Paper)

1. The Estimator must observe all traces.

Variable Selector i				Observed Trace i	Variable Filler i		Variable Estimator	
	1	0	0		[0]		$\lceil 1 \rceil$	
l	0	0	0	Γ₁7	2		2	
l	0	1	0		0		3	
l	0	0	1	$ \ \ _{_{A}}^{3} \ +$	0		4	
l	0	0	0	[']	0		0	
l	0	0	0		0		0	

a. Each entry of the estimator cannot be selected from the **Trace** and filled by **Filler** at the same time.

Constraint 2: Selector and **Filler** cannot fill the same entry of the **Estimator**.

b. The entries selected from the **Trace** must follow the order in the **Trace**.

Constraint 3: Selector must be an identity matrix after deleting empty rows.

Trace Reconstruction Model (Our Paper)

2. The optimal Estimator must have minimal length.

Estimator:
$$\mathbf{x} = \underbrace{[1, 2, 3, 4, 0, 0]}_{\text{Length}}$$

Objective: $\min ||\mathbf{z}||_1$

Estimator: $\mathbf{x} = [1, 2, 3, 4, 0, 0]$

Mask: $\mathbf{z} = [1, 1, 1, 1, 0, 0]$

a. Assign value 1 to the **Mask** entry prior to the last bit used in the **Estimator**.

Constraint 4: $[\mathbf{x}]_i \leq \beta[\mathbf{z}]_i$

Constraint 5: $[\mathbf{z}]_{i-1} \geq [\mathbf{z}]_i$

More Useful Constraints!

Estimator:
$$\mathbf{x} = [x_1, x_2, x_3, x_4, x_5, x_6]$$

Trace i:
$$\mathbf{y}_i = [1,3,4] \implies \begin{cases} x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \ge 1 + 3 + 4 \\ x_1 + x_2 + x_3 + x_4 + x_5 \ge 1 + 3 \\ x_1 + x_2 + x_3 + x_4 \ge 1 \end{cases}$$

Fact: Actual length of the sequence = $||\mathbf{z}||_1$!

Estimator:
$$\mathbf{x} = [x_1, x_2, x_3, x_4, x_5, x_6]$$

Trace i:
$$\begin{cases} \mathbf{y}_i = [1, 3, 4] \\ ||\mathbf{z}||_1 = 4 \end{cases} \implies \begin{cases} x_1 + x_2 + x_3 + x_4 \ge 1 + 3 + 4 \\ x_1 + x_2 + x_3 \ge 1 + 3 \\ x_1 + x_2 \ge 1 \end{cases}$$

$$\mathbf{1.} \ \mathbf{y}_{i} = \begin{bmatrix} 1\\3\\4 \end{bmatrix} \implies \mathbf{U}_{i} = \begin{bmatrix} 1+3+4 & 1+3 & 1 & 0 & 0 & 0\\ 0 & 1+3+4 & 1+3 & 1 & 0 & 0\\ 0 & 0 & 1+3+4 & 1+3 & 1 & 0\\ 0 & 0 & 0 & 1+3+4 & 1+3 & 1\\ 0 & 0 & 0 & 0 & 1+3+4 & 1+3\\ 0 & 0 & 0 & 0 & 0 & 1+3+4 \end{bmatrix}$$

2.
$$[\mathbf{w}_i]_j = \begin{cases} [\mathbf{U}_i \mathbf{z}]_j - [\mathbf{U}_i \mathbf{z}]_{j+1} & j < m \\ [\mathbf{U}_i \mathbf{z}]_j & j = m \end{cases}$$

$$\mathbf{eg.} \ \mathbf{z} = \begin{bmatrix} 1\\1\\1\\0\\0 \end{bmatrix} \implies \mathbf{w}_i = \begin{bmatrix} 0\\1\\1+3\\0\\0 \end{bmatrix}$$

$$\mathbf{2.} \ [\mathbf{w}_{i}]_{j} = \begin{cases} [\mathbf{U}_{i}\mathbf{z}]_{j} - [\mathbf{U}_{i}\mathbf{z}]_{j+1} & j < m \\ [\mathbf{U}_{i}\mathbf{z}]_{j} & j = m \end{cases} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 1 \\ 1+3 \\ 1+3+4 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{eg.} \ \mathbf{z} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \implies \mathbf{w}_{i} = \begin{bmatrix} 0 \\ 1 \\ 1+3 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} \mathbf{y}_i = [1, 3, 4] \\ ||\mathbf{z}||_1 = 4 \end{cases} \implies \begin{cases} x_1 + x_2 + x_3 + x_4 \ge 1 + 3 + 4 \\ x_1 + x_2 + x_3 \ge 1 + 3 \\ x_1 + x_2 \ge 1 \end{cases}$$

Method		Original	Improved	
Sequence length = 50	Mean (s)	1126.7	1144.4	
Estimator Capacity = 60	Std (s)	2106.1	974.5	
	Min (s)	40.7	58.0	
	Max (s)	6989.4	2864.5	
Sequence length = 50	Mean (s)	25907.4	15138.4	
Estimator Capacity = 200	Std (s)	11340.8	8812.3	
	Min (s)	15444.8	8515.4	
	Max (s)	41665.8	27592.5	

Conclusion

Variable

We created an **Estimator** $\mathbf{x} = [?, ?, ..., ?]$, and we need you to fill it in.

Constraints

We must observe all the **traces** from the **Estimator**.

Objective

We want you to use as less bits as possible in the **Estimator**.

Improvement

