Case No.: 21127P

Page 3

Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (original) A compound represented by Formula I:

$$Z = \begin{bmatrix} (R^{5})_{0-3} & R^{3} & R^{1} & R^{2} & R^{1} \\ N - C - C & C - C & C \\ R^{1} & R^{1} & R^{1} & R^{1} \end{bmatrix}_{m}^{P}$$

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

m is 0 or 1;

p is 1, 2 or 3;

G is selected from the group consisting of $-C(R^4)_2$ -, -O-, -S(O)k-, wherein k is 0, 1 or 2, and -N(R⁴)-,

A is selected from the group consisting of: $-CO_2H$, $-PO_3H_2$, $-PO_2H$, $-SO_3H$, $-PO(C_{1-3}alkyl)OH$ and 1H-tetrazol-5-yl;

each R¹ is independently selected from the group consisting of: hydrogen, halo, hydroxy, C₁₋₆alkyl and C₁₋₅alkoxy, each C₁₋₆alkyl and C₁₋₅alkoxy optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from halo and hydroxy;

R² is selected from the group consisting of: hydrogen, halo, hydroxy, C₁₋₆alkyl and C₁₋₅alkoxy, said C₁₋₆alkyl and C₁₋₅alkoxy optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from halo and hydroxy;

Case No.: 21127P

Page

R³ is selected from the group consisting of: hydrogen and C₁₋₄alkyl, optionally substituted with from one up to the maximum number of substitutable positions with a substituent independently selected from the group consisting of: halo and hydroxy;

or R² and R³ may be joined together to form a 4, 5 or 6-membered monocyclic ring defined as follows:

$$\begin{cases} R^{1} & R^{1} \\ R^{1} & R^$$

or $\begin{array}{c|c}
R^1 & R^1 \\
R^1 & C \\
C & C
\end{array}$ $\begin{array}{c|c}
R^1 & R^1 \\
C & C
\end{array}$ $\begin{array}{c|c}
R^1 & R^1 \\
R^1 & R^1
\end{array}$

each R^4 is independently selected from the group consisting of: hydrogen and C_{1-4} alkyl, said C_{1-4} alkyl optionally substituted from one up to the maximum number of substitutable positions with halo,

each R^5 is independently selected from the group consisting of: halo, C_{1-4} alkyl and C_{1-3} alkoxy, said C_{1-4} alkyl and C_{1-3} alkoxy optionally substituted from one up to the maximum number of substitutable positions with halo,

Z is selected from the group consisting of:

- (1) C₁₋₈alkyl, C₁₋₈alkoxy, -(C=O)-C₁₋₆alkyl or -CHOH-C₁₋₆alkyl, said C₁₋₈alkyl, C₁₋₈alkoxy, -(C=O)-C₁₋₆alkyl and -CHOH-C₁₋₆alkyl optionally substituted with phenyl and C₃₋₆cycloalkyl, and
- (2) phenyl or HET¹, each optionally substituted with 1-3 substituents independently selected from the group consisting of:

Case No.: 21127P

Page 5

(a) halo,

(b) phenyl, optionally substituted with 1 to 5 groups independently selected from the group consisting of: halo and C₁₋₄alkyl, said C₁₋₄alkyl optionally substituted with 1-3 halo groups, and

(c) C₁₋₄alkyl or C₁₋₄alkoxy, said C₁₋₄alkyl and C₁₋₄alkoxy optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from halo and hydroxy,

or Z is not present;

when **Z** is not present then **X** is selected from the group consisting of: phenyl, C_{5-16} alkyl, C_{5-16} alkenyl, C_{5-16} alkynyl, -CHOH-C₄₋₁₅alkyl, -CHOH-C₄₋₁₅alkynyl, -CHOH-C₄₋₁₅alkynyl, C₄₋₁₅alkynyl, C₄₋₁₅alkynyl, -O-C₄₋₁₅alkynyl, C₄₋₁₅alkylthio, -S-C₄₋₁₅alkynyl, -CH₂-C₃₋₁₄alkoxy, -CH₂-O-C₃₋₁₄alkenyl, -CH₂-O-C₃₋₁₄alkynyl, -(C=O)-C₄₋₁₅alkyl, -(C=O)-C₄₋₁₅alkyl, -(C=O)-C₃₋₁₄alkyl, -(C=O)-C₃₋₁₄alkynyl, -(C=O)-N(R⁶)(R⁷)-C₃₋₁₄alkyl, -(C=O)-N(R⁶)(R⁷)-C₃₋₁₄alkyl, -(C=O)-N(R⁶)(R⁷)-C₃₋₁₄alkynyl, -N(R⁶)(R⁷)-(C=O)-C₃₋₁₄alkynyl, -N(R⁶)(R

when **Z** is phenyl or HET¹, optionally substituted as defined above, then **X** is selected from the group consisting of: $-C_{1-6}$ alkyl-, $-(C=O)-C_{1-5}$ alkyl-, $-(C=O)-C_{1-5}$ alkyl-, $-(C=O)-N(R^6)(R^7)-C_{1-4}$ alkyl-,

O , phenyl and HET2, said phenyl and HET2 each optionally substituted with 1-3 substituents independently selected from the group consisting of: halo, C1-4alkyl and C1-4alkoxy, and wherein when $\bf X$ is -C1-6alkyl-, -O-C1-5alkyl-, -(C=O)-C1-5alkyl-, -(C=O)-N(R6)(R7)-C1-4alkyl-, or

$$\{-C_{1-3}alkyl$$
 N
 $\{-C_{1-3}alkyl\}$
 $\{-C_{1-$

and

Case No.: 21127P

Page 6

when **Z** is C₁₋₈alkyl, C₁₋₈alkoxy, -(C=O)-C₁₋₆alkyl or -CHOH-C₁₋₆alkyl, optionally substituted as defined above, then **X** is phenyl, said phenyl optionally substituted with 1-3 substituents independently selected from the group consisting of: halo, C₁₋₄alkyl and C₁₋₄alkoxy;

R6 and R7 are independently selected from the group consisting of: hydrogen, C₁-9alkyl and -(CH₂)_p-phenyl, wherein p is 1 to 5 and phenyl is optionally substituted with 1-3 substituents independently selected from the group consisting of: C₁-3alkyl and C₁-3alkoxy, each optionally substituted with 1-3 halo groups; and

HET¹ and HET² are each independently selected from the group consisting of: benzimidazolyl, benzofuranyl, benzopyrazolyl, benzotriazolyl, benzothiophenyl, benzoxazolyl, carbazolyl, carbolinyl, cinnolinyl, furanyl, imidazolyl, indolinyl, indolyl, indolazinyl, indazolyl, isobenzofuranyl, isoindolyl, isoquinolyl, isothiazolyl, isoxazolyl, naphthyridinyl, oxadiazolyl, oxazolyl, pyrazinyl, pyrazolyl, pyridopyridinyl, pyridazinyl, pyridyl, pyrimidyl, pyrrolyl, quinazolinyl, quinolyl, quinoxalinyl, thiadiazolyl, thiazolyl, thienyl, triazolyl, azetidinyl, 1,4-dioxanyl, hexahydroazepinyl, piperazinyl, piperidinyl, pyrrolidinyl, morpholinyl, thiomorpholinyl, dihydrobenzimidazolyl, dihydrobenzofuranyl, dihydrobenzothiophenyl, dihydrobenzoxazolyl, dihydrofuranyl, dihydroimidazolyl, dihydroimidazolyl, dihydrooxazolyl, dihydrooxazolyl, dihydrooxadiazolyl, dihydrooxazolyl, dihydropyrazinyl, dihydropyridinyl, dihydropyrimidinyl, dihydropyrrolyl, dihydroquinolinyl, dihydrotetrazolyl, dihydrothiadiazolyl, dihydrothiazolyl, dihydrothianyl, dihydrotriazolyl, dihydroazetidinyl, methylenedioxybenzoyl, tetrahydrofuranyl, and tetrahydrothienyl.

- 2. (original) The compound according to Claim 1 wherein p is 1.
- 3. (original) The compound according to Claim 1 wherein:

Z is phenyl or HET¹, each optionally substituted with 1-3 substituents independently selected from the group consisting of:

- (a) halo,
- (b) phenyl, optionally substituted with 1 to 5 groups independently selected from the group consisting of: halo and C₁-4alkyl, said C₁-4alkyl optionally substituted with 1-3 halo groups, and
- (c) C₁₋₄alkyl or C₁₋₄alkoxy, said C₁₋₄alkyl and C₁₋₄alkoxy optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from halo and hydroxy,

Case No.: 21127P

Page 7

or Z is not present;

when **Z** is not present then **X** is selected from the group consisting of: C_{7-12} alkyl, C_{7-12} alkynyl, C_{6-11} alkoxy, $-O-C_{6-11}$ alkenyl, $-O-C_{6-11}$ alkynyl, $-(C=O)-C_{6-11}$ alkynyl, $-(C=O)-C_{6-11}$ alkynyl, $-(C=O)-O-C_{5-10}$ alkynyl, and $-(C=O)-O-C_{5-10}$ alkynyl;

and

when **Z** is phenyl or HET¹, optionally substituted as defined above, then **X** is selected from the group consisting of -C₁-5alkyl-, -C₁-4alkoxy-, -(C=O)-C₁-4alkyl-, -(C=O)-O-C₁-3alkyl-, phenyl and HET², and wherein when **X** is -C₁-4alkoxy-, -(C=O)-C₁-5alkyl- or -(C=O)-O-C₁-4alkyl-, the point of attachment of the group **Z** is on the alkyl.

4. (original) The compound according to Claim 1 wherein HET¹ and HET² are indepedently selected from the group consisting of:

wherein R8 is selected from hydrogen, hydroxy and halo.

5 to 6. (canceled)

7. (original) The compound according to Claim 1 wherein **X** is selected from the group consisting of: C₇₋₁₂alkyl, C₇₋₁₂alkenyl, C₇₋₁₂alkynyl, C₆₋₁₁alkoxy, -O-C₆₋₁₁alkoxy, -O-C₆₋₁₂alkynyl, C₆₋₁₁alkoxy, -O-C₆₋₁₂alkynyl, C₆₋₁₁alkoxy, -O-C₆₋₁₂alkynyl, C₆₋₁₃alkynyl, C₆₋₁₄alkoxy, -O-C₆₋₁₄alkynyl, C₆₋₁₅alkynyl, C₆₋₁₅alkynyl, C₆₋₁₅alkynyl, C₆₋₁₆alkynyl, C₆₋₁₆alkynyl, C₆₋₁₆alkynyl, C₆₋₁₇alkynyl, C₆₋₁₇alkynyl,

Case No.: 21127P

Page 8

 $\begin{array}{l} \label{eq:condition} 11 \text{alkenyl, -O-C}_{6-11} \text{alkynyl, -(C=O)-C}_{6-11} \text{alkyl, -(C=O)-C}_{6-11} \text{alkenyl, -(C=O)-C}_{6-11} \text{alkenyl, -(C=O)-O-C}_{5-10} \text{alkyl, -(C=O)-O-C}_{5-10} \text{alkyl, and -(C=O)-O-C}_{5-10} \text{alkyl, alkyl, alkyl$

8. (original) The compound according to Claim 1 wherein:

X is methoxy and Z is HET 1 substituted with phenyl and C_{1-4} alkyl, said C_{1-4} alkyl optionally substituted with 1-3 halo groups, and said phenyl optionally substituted with 1 to 5 substituents independently selected from the group conisting of: halo and C_{1-4} alkyl, optionally substituted with 1-3 halo groups.

- 9. (canceled)
- 10. (original) The compound according to Claim 1 wherein:

X is HET², optionally substituted with 1-3 substituents independently selected from the group consisting of: halo, C_{1-4} alkyl and C_{1-4} alkoxy, and

Z is phenyl or HET¹, each optionally substituted with 1-3 substituents independently selected from the group consisting of:

- (a) halo,
- (b) phenyl, optionally substituted with 1 to 5 groups independently selected from the group consisting of: halo and C₁-4alkyl, said C₁-4alkyl optionally substituted with 1-3 halo groups, and
- (c) C₁₋₄alkyl or C₁₋₄alkoxy, said C₁₋₄alkyl and C₁₋₄alkoxy optionally substituted from one up to the maximum number of substitutable positions with a substituent independently selected from halo and hydroxy.

11 to 12. (canceled)

13. (original) The compound according to Claim 1 wherein:

Z is C₁₋₈alkyl, C₁₋₈alkoxy, -(C=O)-C₁₋₆alkyl or -CHOH-C₁₋₆alkyl, said C₁₋₈alkyl, C₁₋₈alkoxy, -(C=O)-C₁₋₆alkyl and -CHOH-C₁₋₆alkyl optionally substituted with phenyl and C₃₋₆cycloalkyl, and

X is phenyl, said phenyl optionally substituted with 1-3 substituents independently selected from the group consisting of: halo, C_{1-4} alkyl and C_{1-4} alkoxy.

14. (original) The compound according to Claim 1 wherein G is -CH2-.

Case No.: 21127P

Page 9

15. (canceled)

16. (original) The compound according to Claim 1 wherein R^2 and R^3 are not joined together to form a ring.

17. (original) The compound according to Claim 1 wherein R² and R³ are joined together to form a 4-membered monocyclic ring defined as follows:

$$\begin{cases} R^1 & R^1 \\ C & R^1 \\ C & R^1 \end{cases}$$

18. (original) The compound according to Claim 1 wherein R² and R³ are joined together to form a 5-membered monocyclic ring defined as follows:

$$\begin{array}{c|c}
R^1 & R^1 \\
R^1 & C & R^1 \\
C & C & R^1
\end{array}$$

$$\begin{array}{c|c}
R^1 & R^1 \\
C & C & R^1
\end{array}$$

19. (canceled)

20. (original) A compound according to Claim 1 of Formula II:

$$Z$$
 X
 $(R^5)_{0-3}$
 O
 R^4
 R^4
 O
 O

II

or a pharmaceutically acceptable salt or hydrate thereof, wherein n is 0 or 1.

Case No.: 21127P Page 10

21. (original) The compound according to Claim 20 wherein n is 0 and -X-Z is selected from the following group:

22. (original) The compound according to Claim 20 of Formula III

III

or a pharmaceutically acceptable salt or hydrate thereof, wherein:

n is 0 or 1,

Y is oxygen or a bond,

R¹⁰ is C₁₋₄alkyl,

Case No.: 21127P Page 11

each R^9 is independently halo, $C_{1\text{-4}}$ alkyl or $C_{1\text{-4}}$ alkoxy.

23. (currently amended) The compound according to Claim 21 Claim 22 wherein n is 0, each R^4 is hydrogen and R^5 and R^9 are both not present.

24. (original) A compound or a pharmaceutically acceptable salt thereof selected from the following table:

To be assigned 21127P

Serial No.: Case No.: Page 12

To be assigned 21127P

Serial No.: Case No.: Page

F S O O O O O O O O O O O O O O O O O O
ОН
F F O O O O O O O O O O O O O O O O O O
F F OH O

To be assigned 21127P

Serial No.: Case No.: Page

_OH `ОН

Case No.: 21127P Page 15

25. (original) A compound selected from the following:

- (1) (RS)-1-(5-(5-(4-(2-Methylpropyl)phenyl)-1,2,4-oxadiazol-3-yl]-2,3-dihydro-1H-inden-1-yl)azetidine-3-carboxylic acid or a pharmaceutically acceptable salt thereof,
- (2) (R)-1-(5-(5-(4-(2-Methylpropyl)phenyl)-1,2,4-oxadiazol-3-yl]-2,3-dihydro-1H-inden-1-yl)azetidine-3-carboxylic acid or a pharmaceutically acceptable salt thereof, and
- (3) (S)-1-(5-(4-(2-Methylpropyl)phenyl)-1,2,4-oxadiazol-3-yl]-2,3-dihydro-1H-inden-1-yl)azetidine-3-carboxylic acid or a pharmaceutically acceptable salt thereof.

26. (original) A method of treating an immunoregulatory abnormality in a mammalian patient in need of such treatment comprising administering to said patient a compound in accordance with Claim 1 in an amount that is effective for treating said immunoregulatory abnormality.

27 to 39. (canceled)

40. (original) A pharmaceutical composition comprised of a compound in accordance with Claim 1 in combination with a pharmaceutically acceptable carrier.

41 to 42. (canceled)