Required Problems

- 1. Let $A = \{1, 2, 3, 4\}$. Discribe a codomain B and a function $f: A \to B$ such that f is
 - (a) onto B but not one-to one.
 - Let the codomain be $B = \{1\}$
 - Let the function be f(x) = 1

The range $\mathcal{R}(f) = \{1\}$ is the same as the codomain, so the function is onto. More than one element maps to 1, however, so the function is not one-to-one:

- (b) one-to-one but not onto B.
 - Let the codomain be $B = \{1, 2, 3, 4, 5\}$
 - Let the function be f(x) = x

Every element in B has only one corresponding element in A, satisfying the definition of one-to-one. The range of the function is $\mathcal{R}(f) = \{1, 2, 3, 4\}$; this is smaller than the codomain, so the function is not onto:

- (c) both one-to-one and onto B.
 - Let the codomain be $B = \{1, 2, 3, 4\}$
 - Let the function be f(x) = x

Every element in B has only one corresponding element in A; the range, $\mathcal{R}(f) = \{1, 2, 3, 4\}$, is now the same as the codomain. Thus, the function is one-to-one and onto:

- (d) neither one-to-one nor onto B.
 - Let the codomain be $B = \{1, 2\}$
 - Let the function be f(x) = 1

Now the function maps multiple elements from the domain to the same element in the range; further, the codomain contains more points than the range. Thus, the function is neither one-to-one nor onto:

2. Consider the sequence $\{x_n\}_{n=1}^{\infty}$ such that

$$x_n = \frac{n+1}{n}$$

To what does this sequence converge? Prove that this sequence converges to that limit.

This sequence converges to 1, i.e., $x_n \to 1$.

To show:
$$\left|\frac{n+1}{n}-1\right|<\varepsilon$$
.

Proof:

Let
$$\varepsilon > 0$$
 (by hypothesis)

Let $N > \frac{1}{\varepsilon}$ and $n > N$ (by hypothesis)

$$\left| \frac{n+1}{n} - 1 \right| = \left| \frac{1}{n} \right|$$
 (simplifying)

$$= \frac{1}{n}$$
 (by $n > 0$)

$$< \frac{1}{N}$$
 (by $n > N$)

$$< \frac{1}{1/\varepsilon}$$
 (by $N > 1/\varepsilon$)

$$= \varepsilon$$
 (simplifying)

3. Let S and T be convex sets. Prove that the intersection of S and T is also a convex set.

To show:
$$t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in S \cap T$$

Proof:

Let
$$S$$
 and T be convex sets, $\mathbf{x}_1, \mathbf{x}_2 \in S \cap T$, and $t \in [0, 1]$ (by hypothesis)
$$\Rightarrow \left(\mathbf{x}_1 \in S \wedge \mathbf{x}_1 \in T\right) \wedge \left(\mathbf{x}_2 \in S \wedge \mathbf{x}_2 \in T\right) \qquad \text{(by def. of } \cap)$$

$$\Rightarrow \left(\mathbf{x}_1 \in S \wedge \mathbf{x}_2 \in S\right) \wedge \left(\mathbf{x}_1 \in T \wedge \mathbf{x}_2 \in T\right) \qquad \text{(by associativity)}$$

$$\Rightarrow \left(t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in S\right) \wedge \left(t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in T\right) \qquad \text{(by def. of convex)}$$

$$\Rightarrow t\mathbf{x}_1 + (1-t)\mathbf{x}_2 \in S \cap T \qquad \text{(by def. of } \cap)$$

- 4. The set $S^{n-1} = \{\mathbf{x} | \sum_{i=1}^n x_i = 1, x_i \geq 0, i = 1, \dots, n\}$ is the (n-1)-dimensional unit simplex.
 - (a) Prove that S^{n-1} is a convex set.

To show:
$$t\mathbf{x} + (1-t)\mathbf{y} \in S$$
Proof:

Let $\mathbf{x}, \mathbf{y} \in S$ and $t \in [0,1]$ (by hypothesis)

Consider $t\mathbf{x} + (1-t)\mathbf{y}$ (the convex combo.)

 $0 \le tx_i + (1-t)y_i < 1 \quad \forall i = 1, \dots, n$ (by $t \in [0,1]$)

$$\sum_{i=1}^n \left(tx_i + (1-t)y_i\right)$$
 (summing the elements)

$$= \sum_{i=1}^n tx_i + \sum_{i=1}^n (1-t)y_i$$
 (by associativity)

$$= t \sum_{i=1}^n x_i + (1-t) \sum_{i=1}^n y_i$$
 (by distributivity)

$$= t \cdot 1 + (1-t) \cdot 1$$
 (by $\mathbf{x}, \mathbf{y} \in S$)

$$= 1$$
 (simplifying)

$$\implies t\mathbf{x} + (1-t)\mathbf{y} \in S$$
 (by def. of S)

- (b) Prove that S^{n-1} is a compact set.
 - Theorem (T1): $\mathbf{x}_k \to \mathbf{c} \iff x_{ik} \to c_i$ for all i (each element of the vector converges)
 - Theorem (T2): $a_k \to a$ and $b_k \to b$ implies $a_k + b_k \to a + b$
 - Theorem (T3): Weak inequalities are preserved in in the limit
 - Lemma (L1): Constant sequences converge, i.e., $\{d, d, d \dots\} \to d$

To show: $\mathbf{c} \in S$ Proof:

Let
$$\{\mathbf{x}_k\}_{k=0}^{\infty}$$
 be a sequence in $S \ni (\mathbf{x}_k \to \mathbf{c}) \land (\mathbf{x}_k \in S \ \forall \ k)$ (by hypothesis)
$$\Rightarrow \left(x_{ik} \to c_i, c_i \ge 0 \ \forall \ i\right) \land \left(\sum_{i=1}^n x_{ik} = 1 \ \forall \ k\right) \land \left(x_{ik} \ge 0 \ \forall \ i, k\right) \text{ (by T1, T3, and } \mathbf{x}_k \in S)$$

$$\Rightarrow \left(\sum_{i=1}^n x_{ik} \to \sum_{i=1}^n c_i\right) \land \left(\sum_{i=1}^n x_{ik} \to 1\right) \text{ (by T2 and L1)}$$

$$\Rightarrow \sum_{i=1}^n c_i = 1 \text{ (limits are unique)}$$

$$\Rightarrow \mathbf{c} \in S \text{ (by def. of } S)$$

Because the convergent sequence and limit were arbitrary, it must be the case that the limit point of every convergent sequence is in S. Thus, S is closed.

To show that the sequence is bounded, we need only come up with one example for M such that $B_M(\mathbf{0})$ contains S. Note that $||\mathbf{x}|| \le 1$ (by $0 \le x_i \le 1$). Thus, if M = 2 (or indeed, anything greater than 1), every point in S will be wholly contained in $B_M(\mathbf{0})$. Thus, S is closed and bounded, implying it is compact.

Practice Problems

- 5. Give a relation r from $A = \{5, 6, 7\}$ to $B = \{3, 4, 5\}$ such that
 - (a) r is not a function

This is not a function, as one of the points in the domain is not mapped to the range; further, 5 is mapped to two different elements in the range.

(b) r is a function from A to B with the range $\mathcal{R}(r) = B$

This relation is a function; every element in the codomain has a corresponding element in the domain, so $\mathcal{R}(r) = B$.

(c) r is a function from A to B with the range $\mathcal{R}(r) \neq B$

This relation is a function, but one element in the codomain does not have a corresponding element in the domain, so $\mathcal{R}(r) \neq B$.

- 6. Identify the domain and range of each of the following mappings:
 - (a) $\{(x,y) \in \mathbb{R}^2 | y = \frac{1}{x+1} \}$
 - Domain: $D = \mathbb{R} \{1\}$
 - Range: $R = \mathbb{R} \{0\}$
 - (b) $\{(x,y) \in \mathbb{N} \times \mathbb{N} | y = x + 5 \}$
 - Domain: $D = \mathbb{N}$
 - Range: $R = \mathbb{N} \{1, 2, 3, 4, 5\}$

(c)
$$\left\{ (x,y) \in \mathbb{Z} \times \mathbb{Z} \middle| y = \frac{x^2 - 4}{x - 2} \right\}$$

- Domain: $D = \mathbb{Z} \{2\}$
- Range: $R = \mathbb{Z} \{4\}$
- 7. Recall the definition of the inverse image associated with the function $f: X \to Y$, i.e.,

$$f^{-1}(B) = \{ x \in X | f(x) \in B \}$$

If $B \subset Y$ and $C \subset Y$, prove that $f^{-1}(B \cup C) = f^{-1}(B) \cup f^{-1}(C)$.

To show:
$$x \in f^{-1}(B \cup C) \iff x \in f^{-1}(B) \cup f^{-1}(C)$$

Proof:

- 8. For each of the following sequences, list the first three terms:
 - (a) $a_n = \frac{n+1}{2n+3}$

$$\left\{\frac{2}{5}, \quad \frac{3}{7}, \quad \frac{4}{11}, \dots\right\}$$

(b)
$$b_n = \frac{1}{n!}$$

$$\left\{1, \quad \frac{1}{2}, \quad \frac{1}{6}, \dots\right\}$$

(c)
$$c_n = 1 - 2^{-n}$$

$$\left\{\frac{1}{2}, \quad \frac{3}{4}, \quad \frac{7}{8}, \dots\right\}$$

9. Prove that if $x_n \to L$ and $y_n \to M$, then $x_n + y_n \to L + M$.

To show:
$$|(x_n + y_n) - (L + M)| < \varepsilon$$

Proof:

Let
$$\varepsilon > 0$$
 (by hypothesis)
$$\Longrightarrow \left(\exists N_x \ni n > N_x \Rightarrow |x_n - L| < \frac{\varepsilon}{2} \right) \land \left(\exists N_y \ni n > N_x \Rightarrow |y_n - M| < \frac{\varepsilon}{2} \right)$$
 (by def. of convergence) Let $n > \max\{N_x, N_y\}$ (defining n) Consider $|(x_n + y_n) - (L + M)|$ (summing the sequences & limits)
$$= |(x_n - L) + (y_n - M)|$$
 (by associativity)
$$\le |x_n - L| + |y_n - M|$$
 (by the triangle inequality)

$$\leq |x_n - L| + |y_n - M|$$

(by
$$n > \max\{N_x, N_y\}$$
)

$$<\frac{1}{2}+\frac{1}{2}$$

Proof:

10. Prove that if $a_n \to a$ and $a_n \le b$ for all n, then $a \le b$.

Proof by contradiction to show: $a_n \leq b \ \forall \ n \ \text{and} \ \exists a_n > b$ Let $(a_n \to a) \land (a_n < b \ \forall \ n)$ (by hypothesis) Suppose a > b(towards a contradiction) Let $\varepsilon = a - b$ (defining ε) $\implies \exists N \ni n > N \implies |a_n - a| < \varepsilon$ (by def. of convergence) Consider $|a_n - a| < \varepsilon$ $\implies -\varepsilon < a_n - a < \varepsilon$ (by the absolute value) $\implies a - \varepsilon < a_n < a + \varepsilon$ (rearranging) $\implies a - (a - b) < a_n$ (by def. of ε) $\implies b < a_n$ (simplifying) Buy $a_n \leq b$ by assumption; thus, a contradiction $\implies a < b$

11. Consider the following intervals in R. For each, determine if it is closed. If so, give a proof:

(a) $(-\infty, b]$

This interval is closed. To show: $B_{\varepsilon}(x) \subset (b, \infty)$.

Let
$$[x \in (b, \infty)] \land [\varepsilon = x - b]$$
 (by hypothesis)
Consider $B_{\varepsilon}(x)$ (defining an ε -ball)
Let $y \in B_{\varepsilon}(x)$ (picking a point in $B_{\varepsilon}(x)$)
 $\Rightarrow x - \varepsilon < y < x + \varepsilon$ (by def. of $B_{\varepsilon}(x)$)
 $\Rightarrow x - (x - b) < y < x + (x - b)$ (by def. of ε)
 $\Rightarrow b < y < 2x + b$ (simplifying)
 $\Rightarrow b < y < \infty$ ($2x + b$ is finite)
 $\Rightarrow y \in (b, \infty)$ (by def. of (b, ∞))
 $\Rightarrow B_{\varepsilon}(x) \subset (b, \infty)$ (by def. of subset)

Because x was an arbitrary point and $B_{\varepsilon}(x) \subset (b, \infty)$, the interval is open. Thus, its complement $(-\infty, b]$ is closed.

(b) (a, b]

This interval is neither open nor closed. Consider a sequence $a_n = a + \frac{1}{kn}$, where k is a constant large enough such that $a_n \in (a, b]$ for all n. This sequence converges to a, but a is not in the set. Thus, the set is not closed.

(c) $[a, \infty)$

This interval is closed.

• Theorem (T1): weak inequalities are preserved in the limit (see problem 10)

To show: $x \in [a, \infty)$.

Proof:

Let
$$\{x_n\}_{n=1}^{\infty}$$
 be a sequence $\ni (x_n \to x) \land (x_n \in [a, \infty) \forall n)$ (by hypothesis)
 $\implies x_n \ge a \forall n$ (by $x_n \in [a, \infty)$)
 $\implies x \ge a$ (by T1)

Because the convergent sequence and the limit point were arbitrary, it must be the case that the limit point of every convergent sequence is in $[a, \infty)$.

(d) [a, b)

As in part (b), this interval is neither open nor closed. Consider a sequence $b_n = b - \frac{1}{kn}$, where k is a constant large enough such that $b_n \in [a, b)$ for all n. This sequence converges to b, but b is not in the set. Thus, the set is not closed.

- 12. Consider the following sets. If the set is bounded, provide an M and a x such that $B_M(\mathbf{x})$ contains the set.
 - (a) $A = \{x | x \in \mathbb{R} \land x^2 \le 10\}$

This set is bounded above and below by $\sqrt{10}$ and $-\sqrt{10}$, respectively. Thus, let x = 0 and M = 4. Then $B_M(0)$ contains the entire set.

(b) $B = \{x | x \in \mathbb{R} \land x + \frac{1}{x} < 5\}$

The function is bounded above by $\frac{5+\sqrt{21}}{2}$, but is not bounded below—x can take on any value in the real numbers less than zero.

(c) $C = \{(x, y) | (x, y) \in \mathbb{R}^2_+ \land xy < 1\}$

This set is not bounded. No matter how large x gets, there exists a y such that xy < 1 (and vice versa).

(d) $D = \{(x, y) | (x, y) \in \mathbb{R} \land |x| + |y| \le 10\}$

Both x and y must fall between -10 and 10. Thus, let x = 0 and M = 11. Then $B_M(0)$ contains the entire set.

- 13. Prove that the following functions are continuous using epsilon-delta proofs.
 - (a) f(x) = x + 3

To show: $|(x+3) - (x_0) + 3| < \varepsilon$ Proof:

Let
$$\varepsilon > 0$$
 and $x_0 \in \mathcal{D}(f)$ (by hypothesis)
Let $\delta = \varepsilon$ (defining δ)

Consider $x \in \mathcal{D}(f) \ni |x - x_0| < \delta$

$$\implies |x - x_0| < \varepsilon$$
 (by def. of δ)

$$\implies |x - x_0 + 3 - 3| < \varepsilon$$
 (adding zero)

$$\implies |(x-3)-(x_0-3)| < \varepsilon$$
 (by associativity)

This is the basic format of a simple continuity proof: pick an arbitrary ε and an arbitrary point in the domain; pick a specific δ (typically a function of ε); show that if x is within δ of x_0 , then f(x) must be within ε of $f(x_0)$.

(b) $g(x) = x^2$

 $\frac{\text{To show}}{\text{Proof:}} |x^2 - x_0^2| < \varepsilon$

Let $\varepsilon > 0$ and $x_0 \in \mathcal{D}(q)$

(by hypothesis)

Let
$$\delta \le \min \left\{ 1, \, \frac{\varepsilon}{2 + 2|x_0|} \right\}$$

(defining δ)

Consider $x \in \mathcal{D}(f) \ni |x - x_0| < \delta$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{2 + 2|x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + \delta + 2|x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x - x_0| + 2|x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x - x_0 + 2x_0|}$$

$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x - x_0 + 2x_0|}$$
(by $|x - x_0| < \delta$)
$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x + x_0|}$$
(by the triangle inequality)
$$\Rightarrow |x - x_0| < \frac{\varepsilon}{1 + |x + x_0|}$$
(simplifying)
$$\Rightarrow |x - x_0||x + x_0| < \varepsilon$$
(by $|x + x_0| \ge 0$)
$$\Rightarrow |(x - x_0)(x + x_0)| < \varepsilon$$
(by $|ab| = |a||b|$)
$$\Rightarrow |x^2 - x_0^2| < \varepsilon$$
(simplifying)

Note that throughout, the denominator is slightly more complicated than seems necessary (e.g., there's always a " $1 + \dots$ " on the bottom of a fraction). This is to handle the case where $x_0 = x = 0.$

(c) h(x) = |x|

To show: $||x| - |x_0|| < \varepsilon$

Proof:

Let
$$\varepsilon > 0$$
 and $x_0 \in \mathcal{D}(h)$ (by hypothesis)
Let $\delta = \varepsilon$ (defining δ)
Consider $x \in \mathcal{D}(f) \ni |x - x_0| < \delta$
 $\implies |x - x_0| < \varepsilon$ (by def. of δ)
 $\implies ||x| - |x_0|| < \varepsilon$ (by the reverse triangle ineq.)

This relies on the "reverse triangle inequality," which is easy to show:

$$\begin{aligned} |y| &= |x+y-x| \leq |x| + |y-x| \\ \implies |y| - |x| \leq |y-x| \end{aligned} \qquad \text{(by the triangle inequalit)} \\ |x| &= |y+x-y| \leq |y| + |x-y| \\ \implies |x| - |y| \leq |x-y| \end{aligned} \qquad \text{(by the triangle inequality)}$$

Noting that |x-y| = |y-x|, and |y| - |x| = -(|x| - |y|) we then have two conditions:

$$(|x| - |y| \le |x - y|) \land (-(|x| - |y|) \le |x - y|)$$
 (restating inequalities)
$$\implies ||x| - |y|| \le |x - y|$$
 (combining)