1 RELATIVNA ZRAČNA VLAŽNOST

Slika 1: Psihometrični diagram suhega in mokrega termometra.

Slika 2: Ravnovesna vlažnost lesa v odvisnosti od relativne zračne vlažnosti in temperature.

2 HIGROSKOPIČNOST LESA

2.1 NAJVEČJI SKRČEK:

$$\Delta L_{max} = \beta L_{TNCS} \tag{1}$$

- ΔL maksimalni skrček
- β koeficient maksimalnega krčenja lesa (od TNCS -> 0%)
- L_{TNCS} dolžina kosa pri vlažnosti TNCS

2.2 DELNI KOEFICIENT KRČENJA:

$$\beta_{\Delta u} = \frac{\beta \Delta u}{30\%} \tag{2}$$

- $\,eta_{\Delta u}\,$ delni koeficient krčenja
- β koeficient maksimalnega krčenja
- Δu razlika relativne vlažnosti lesa (v območju pod TNCS)

2.3 DEJANSKI SKRČEK

$$\Delta L = \beta_{\Delta u} L \tag{3}$$

- ΔL dejanski skrček
- $\beta_{\Delta u}$ delni odstotek krčenja L prvotna dolžina

2.4 KOEFICIENT MAKSIMALNEGA KRČENJA LESA

Tabela 1: Koeficienti maksimalnih relativnih skrčkov lesa.

Vrsta lesa	vzdolžno - eta_L	radialno - eta_R	tangencialno - eta_T
smreka	0.3	3.6	7.9
macesen	0.3	3.8	9.1
bukovina	0.3	5.8	11.8

Vrsta lesa	vzdolžno - eta_L	radialno - eta_R	tangencialno - eta_T
hrast	0.4	4.3	8.9
lipa	0.25	6.1	9.9
topol	0.3	4.3	8.5

2.5 RELATIVNA RAVNOVESNA VLAŽNOST VGRAJENIH LESNIH IZDELKOV

Tabela 2: Tabela ravnovesnih vlažnosti lesa glede na mesto vgradnje.

Mesto vgradnje lesnih izdelkov	Ravnovesna vlažnost lesa [%]
gradbeni les, ograje, balkoni, ostrešje	13 - 17
okna, zunanja vrata	12 - 16
pohištvo v prostorih s centralnim ogravanjem	8 - 10
pohištvo, kjer ogrevamo s klasičnimi pečmi	10 - 12
stopne obloge v prostorih s centralnim ogrevanjem	6 - 8
stopne obloge (ogrevanje s klasičnimi pečmi)	8 - 10
glasbila (prostori s centralnim ogrevanjem)	5 - 8
glasbila (prostori s klasičnimi pečmi)	8 - 11

3 TRDNOST LESA

$$\sigma = \frac{F}{A}; \ \epsilon = \frac{\Delta l}{l_0}; \ \sigma = E \epsilon$$
 (4)

- σ napetost v materialu zaradi zunanje sile
- $\it F$ zunanja sila F
- $\it A$ presek predmeta na katerega deluje zunanja sila
- ϵ specifični raztezek
- Δl raztezek

- l_0 prvotna dimenzija
- E elastični modul

3.1 DOPUSTNA NAPETOST

$$\sigma_{dop} = \frac{\sigma_{max}}{k_v} \tag{5}$$

- σ_{dop} dopustna napetost
- σ_{max} največja, porušna napetost
- k_v varnostni koeficient [2 .. 15]

Tabela 3: Dopustne napetosti za nekatere vrste lesa pri mirni obremenitvi (v MPa).

Vrsta les	smer	Nateg	Tlak	Upogib	Strig	Mod. Ealst.
Smreka, Jelka,Bor	ll	10	11	13	0.9	12000
	Т	-	2	-	0.9	460
Hrast,Bukev	ll	11	12	14	1.2	13000
	Т	-	3	-	1.2	1000

3.2 NATEZNA in TLAČNA TRDNOST

$$\sigma_N = \frac{F}{A} = E \frac{\Delta l}{l_0} = E \epsilon \tag{6}$$

- σ_N natezna napetost v materialu

- F zunanja sial F A presek predmeta E elastični modul Δl absolutni skrček
- $\it l_0$ prvotna dolžina izdelka
- ϵ specifični raztezek

3.3 UPOGIBNA TRDNOST

$$\sigma_U = \frac{M_{max}}{W_x} \tag{7}$$

- σ_U mehanska napetost v nosilcu
- $\,M_{max}$ največji navor, ki ga povzroča mehanska obremenitev na nosilec
- W_{x} odpornostni moment nosilca (odvisen od oblike prereza nosilca)

Tabela 4: Vztrajnostni in odpornostmi momenti za različne prereze nosilcev. Kjer je: a - dolžina stranice kvadratnega, b - širina in h - višina pravokotnega ter d - premer okroglega prereza.

Prerez nosilca	Vztrajnostni moment	Odpornostni moment
kvadratni	$I_x = \frac{a^4}{12}$	$W_x = \frac{a^3}{6}$
pravokotni	$I_x = \frac{b h^3}{12}$	$W_x = rac{b \ h^2}{6}$
okrogli	$I_x = \frac{\pi d^4}{64}$	$W_x = \frac{\pi d^3}{32}$

Slika 3: Poves in napetosti v nosilcu pri različnih obremenitvah.

- *f* poves
- \bullet F sila obremenitve
- L dolžina nosilca

- E elastični modul
- $\,I_{X}$ vztrajnostni moment v vodoravni smeri
- σ_U upogibna napetost v nosilcu