अध्याय-12

रैंखिक प्रोग्रामन

(Linear Programming)

(Important Formulae and Definitions)

- 1. एक रैखिक प्रोग्रामन समस्या वह समस्या है जो अनेक चरों के रैखिक फलन के अधिकतम अथवा न्यूनतम मान को ज्ञात करने से सम्बन्धित फलन को उद्देश्य फलन कहते हैं।
- 2. जिन प्रतिबन्धों के अन्तर्गत इष्टतमीकरण किया जाता है, उनको ही व्यवरोध कहते हैं।
- 3. व्यवरोधों को <, =, > से प्रदर्शित किया जाता है।
- 4. सुसंगत क्षेत्र के अंत:भाग के तथा सीमान्त बिन्दु व्यवरोधों के सुसंगत हलों को प्रदर्शित करता है।
- 5. एक रैखिक समस्या को हल करने के लिए निम्नलिखित पदों को ध्यानपूर्वक समझें :
 - (i) सभी दी गई असिमकाओं को रैखिक समीकरणों में व्यक्त करें।
 - (ii) सभी समीकरणों और ऋणेत्तर व्यवरोधों का आलेख र्खीचिए। हमें अब उतनी ही रेखाएँ प्राप्त होंगी, जितनी कि समीकरणों और असिमकाओं की संख्याएँ हैं।
 - (iii) इस प्रकार खींची गई रेखाओं से परिबद्ध सुसंगत बहुभुज प्राप्त हो जाएगा।
 - (iv) सुसंगत बहुभुज के प्रत्येक शीर्ष के निर्देशांकों को उद्देश्य फलन में प्रतिस्थापित कीजिए।
 - (v) निर्देशांकों से प्रतिस्थापित मान इस बात की पुष्टि करते हैं कि किस बिन्दु पर मान अधिकतम या न्यूनतम है।

प्रश्नावली 12·1

ग्राफीय विधि से निम्न रैखिक प्रोग्रामन समस्याओं को हल कीजिए : प्रश्न 1. निम्न अवरोधों के अन्तर्गत Z=3x+4y का अधिकतमीकरण कीजिए :

$$x+y\leq 4,\, x\geq 0,\, y\geq 0$$

हल-प्रश्नानुसार उद्देश्य फलन

$$Z = 3x + 4y$$

तथा अवरोध हैं

$$x + y \le 4$$
, $x, y \ge 0$

(i) $x + y \le 4$ के लिए,

रेखा x + y = 4, बिन्दु A(4, 0) और B(0, 4) से होकर गुजरती है।

दिए गए समीकरण $x + y \le 4$ को समीकरण में बदलने पर प्राप्त x = 0, y = 0 रखने पर $0 \le 4$ जो सत्य है। \therefore मूल बिन्दु इस क्षेत्र में स्थित है। $\Rightarrow x + y \le 4$ के क्षेत्र रेखा x + y = 4 और इसके नीचे मूल बिन्दु की ओर है।

- (ii) $x \ge 0$, का क्षेत्र y-अक्ष की दार्यी ओर y-अक्ष है।
- (ii) $y \ge 0$, क्षेत्र के बिन्दु x-अक्ष पर है और x-अक्ष के ऊपर है, इनसे बना उभयनिष्ठ क्षेत्र $\triangle OAB$ है।

अब चित्र में दिए गए कोनीय बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे-

कोनीय बिन्दु	Z के संगत मान $Z=3x+4y$		
O(0, 0)	0		
A(4, 0)	12		
B(0, 4)	16 (अधिकतम)		

अत: Z अधिकतम B(0, 4) पर है तथा अधिकतम मान = 16.

उत्तर

प्रश्न 2. निम्न अवरोधों के अन्तर्गत
$$Z = -3x + 4y$$
 का न्यूनतमीकरण कीजिए $x + 2y \le 8, 3x + 2y \le 12, x \ge 0, y \ge 0.$

हल : दिया है : Z = -3x + 4y,

अवरोध हैं : $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$

(i) $x + 2y \le 8$ के लिए,

रेखा x + 2y = 8 बिन्दुओं A(8, 0) और B(0, 4) से होकर गुजरती है।

x = 0, y = 0, असिमका $x + 2y \le 8$ में रखने पर $0 \le 8$ जो सत्य है।

अर्थात् $x+2y \le 8$ क्षेत्र के बिन्दु रेखा x+2y=8 पर और उसके नीचे मूल बिन्दु की ओर हैं।

(ii) 3x + 2y ≤ 12 के लिए,

रेखा 3x + 2y = 12 बिन्दु P(4, 0) और Q(0, 6) से होकर गुजरती है। इसका आरेख PQ है। अत: $3x + 2y \le 12$ में x = 0, y = 0 रखने पर $0 \le 12$ जो सत्य है। अर्थात् इसके क्षेत्र के बिन्दु रेखा 3x + 2y = 12 पर और इसके नीचे मूल बिन्दु की ओर है।

- (iii) $x \ge 0$, इस क्षेत्र के बिन्दु y-अक्ष पर और y-अक्ष के दार्थी ओर हैं।
- (iv) $y \ge 0$ का इस क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर हैं।

इस प्रकार इस समस्या का सुसंगत क्षेत्र OBRP है।

रेखा
$$x + 2y = 8 \qquad \dots (1)$$

और
$$3x + 2y = 12$$
 ...(2)

बिन्दु R का प्रतिच्छेदन करती है। समीकरण (2) में से समीकरण (1) को घटाने पर

$$2x = 12 - 8 = 4$$
 या $x = 2$

समीकरण (1) से,

∴ बिन्दु R(2, 3) हैं।

इस प्रकार कोनीय बिन्दु हैं O(0, 0), P(4, 0), R(2, 3) तथा B(0, 4)। अब इन कोनीय बिन्दुओं का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z=-3x+4y$		
O(0, 0)	0		
P(4, 0)	– 12 (न्यूनतम)		
R(2, 3)	6		
B(0, 4)	16		

अत: बिन्दु P(4, 0) पर Z का न्यूनतम मान = -12.

उत्तर

प्रश्न 3. निम्न अवरोधों के अन्तर्गत Z = 5x + 3y का अधिकतमीकरण कीजिए :

$$3x + 5y \le 15$$
, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$

हल : दिया है, Z = 5x + 3y, अवरोध हैं : $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$

(i) $3x + 5y \le 15$ का क्षेत्र—

रेखा 3x + 5y = 15 बिन्दु A(5, 0) और B(0, 3) से होकर जाती है।

 $3x + 5y \le 15$ में x = 0, y = 0 रखने पर $0 \le 15$ जो सत्य है।

अधातू इस क्षेत्र में बिन्दु AB पर और इसके नीचे मूल बिन्दु की ओर है। (ii) $5x + 2y \le 10$ का क्षेत्र— रेखा 5x + 2y = 10 बिन्दु P(2, 0) और Q(0, 5) से होकर गुजरती है। अब $5x + 2y \le 10$ में x = 0, y = 0 रखने पर $0 \le 10$ जो सत्य है। अर्थात् $5x + 2y \le 10$ क्षेत्र के बिन्दु रेखा PQ पर और PQ के नीचे मूलबिन्दु की ओर है। (iii) $x \ge 0$, क्षेत्र के बिन्दु y-अक्ष पर और y-अक्ष के दार्यी ओर है। (iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर है। इस प्रकार इस समस्या का सुसंगत क्षेत्र OBRP है।

रेखा 3x + 5y = 15 और 5x + 2y = 10 बिन्दु $R\left(\frac{20}{19}, \frac{45}{19}\right)$ पर प्रतिच्छेद करता है।

अर्थात् कोनीय बिन्दु हैं O(0,0), P(2,0), $R\left(\frac{20}{19},\frac{45}{19}\right)$ तथा B(3,0)। अब इन कोनीय बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z = 5x + 3y$
O(0, 0) P(2, 0)	0 10
$R\left(\frac{20}{19},\frac{45}{19}\right)$	$\frac{235}{19}$ (अधिकतम)
B(0, 3)	9

अत: बिन्दु
$$R\left(\frac{20}{19}, \frac{45}{19}\right)$$
 पर Z का अधिकतम मान = $\frac{235}{19}$.

उत्तर

प्रश्न 4. निम्न अवरोधों के अन्तर्गत Z = 3x + 5y का न्यूनतमीकरण कीजिए :

$$x + 3y \ge 3$$
, $x + y \ge 2$, x , $y \ge 0$

हल : दिया है : Z = 3x + 5y अवरोध हैं, $x + 3y \ge 3$, $x + y \ge 2$, $x, y \ge 0$

(i) x + 3y ≥ 3 का क्षेत्र—

रेखा x + 3y = 3 बिन्दु A(3, 0) और B(0, 1) से होकर गुजरती है।

इसका आरेख रेखा AB है।

 $x + 3y \ge 3$ में x = 0, y = 0 रखने पर $0 \ge 3$ जो असत्य है।

अर्थात् $x + 3y \ge 3$ के बिन्दु रेखा x + 3y = 3 पर और उसके ऊपर है।

(ii) x + 2y ≥ 2 का क्षेत्र—

रेखा x + y = 2 बिन्दु C(2, 0) और D(0, 2) से होकर जाती हैं। इसका आरेख CD है।

 $x + y \ge 2$ में x = 0, y = 0 रखने पर $0 \ge 2$ जो असत्य है।

अर्थात् $x + y \ge 2$ क्षेत्र के बिन्दु रेखा x + y = 2 पर और उसके ऊपर हैं।

(iii) $x \ge 0$, क्षेत्र के बिन्दु y-अक्ष पर और y-अक्ष के दार्यी ओर हैं।

(iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और x-अक्ष के ऊपर हैं।

इस समस्या का सुसंगत क्षेत्र = YDRAX है। जबिक R बिन्दु AB: x+3y=3 और CD: x+y=2 का प्रतिच्छेदन बिन्दु है।

AB और CD के समीकरणों को हल करने से बिन्दु R के निर्देशांक $\left(\frac{3}{2},\,\frac{1}{2}\right)$ प्राप्त होते हैं।

अर्थात् कोनीय बिन्दु हैं A(3,0), $R\left(\frac{3}{2},\frac{1}{2}\right)$, D(0,2) । अब इन बिन्दुओं पर Z का मान अग्र सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z = 3x + 5y$	
A(3, 0)	9	
$R\left(\frac{3}{2}, \frac{1}{2}\right)$	7 (न्यूनतम)	
D(0, 2)	10	

अत: बिन्दु $R\left(\frac{3}{2}, \frac{1}{2}\right)$ पर Z का न्यूनतम मान = 3.

प्रश्न 5. निम्न अवरोधों के अन्तर्गत Z = 3x + 2y का न्यूनतमीकरण कीजिए : $x + 2y \le 10, 3x + y \le 15, x, y \ge 0$

हल : ज्ञात है कि Z=3x+2y, अवरोध $x+2y\leq 10,\, 3x+y\leq 15,\, x,\, y\geq 0$ (i) $x+2y\leq 10$ का क्षेत्र—

रेखा x + 2y = 10 बिन्दु A(10, 0) और B(0, 5) से होकर जाती है।

 $\therefore x + 2y = 10$ का आरेख रेखा AB है।

 $x+2y \le 10$ में x=0, y=0 रखने से $0 \le 10$ जो सत्य है। अर्थात् $x+2y \le 10$ क्षेत्र के बिन्दु रेखा AB पर और AB के नीचे है।

(ii) $3x + y \le 15$ का क्षेत्र—

रेखा 3x + y = 15 बिन्दु P(5, 0) और Q(0, 15) से होकर जाती है। अत: 3x + y = 15 का आरेख PQ है।

 $3x + y \le 15$ में x = 0, y = 0 रखने पर $0 \le 15$ जो सत्य है। अर्थात् $3x + y \le 15$ क्षेत्र के बिन्दु रेखा PQ पर और PQ के नीचे है।

उत्तर

(iii) $x \ge 0$, क्षेत्र के बिन्दु y-अक्ष पर और उसके दार्यी ओर है।

(iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर है।

समस्या का सुसंगत क्षेत्र OBRP है जबकि R बिन्दु AB और PQ का प्रतिच्छेदन बिन्दु है।

x - 2y = 10 तथा 3x + y = 15 को हल करने पर बिन्दु R(4, 3) प्राप्त होता है।

अर्थात् कोनीय बिन्दु हैं O(0,0), R(4,3) तथा B(0,5)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z = 3x + 2y$	
O(0, 0)	0	
P(5, 0)	15	
R(4, 3)	18 (अधिकतम)	
B(0, 5)	10	

अत: बिन्दु R(4, 3) पर Z का न्यूनतम मान = 18.

प्रश्न 6. निम्न अवरोधों के अन्तर्गत Z=x+2y का न्यूनतमीकरण कीजिए—

 $2x + y \ge 3, x + 2y \ge 6, x, y \ge 0$

हल : उद्देश्य फलन Z=x+2y, अवरोध $2x+y\geq 3, x+2y\geq 6, x,y\geq 0$

(i) $2x + y \ge 3$ का क्षेत्र—

रेखा 2x + y = 3 बिन्दु $A\left(\frac{3}{2}, 0\right)$ और B(0, 3) से होकर जाती है।

 $\therefore 2x + y = 3$ का आरेख रेखा AB है।

 $2x + y \ge 3$ में x = 0, y = 0 रखने पर $0 \ge 3$ जो सत्य नहीं है।

अर्थात् $2x + y \ge 3$ क्षेत्र के बिन्दु रेखा AB पर और उसके ऊपर हैं।

(ii) x + 2y ≥ 6 का क्षेत्र—

x + 2y = 6 बिन्दु P(6, 0) और B(0, 3) से होकर जाती है।

x + 2y = 6 का आरेख PB है।

 $x + 2y \ge 6$ में x = 0, y = 0 रखने पर $0 \ge 6$ जो सत्य नहीं है।

अर्थात् $x = 2y \ge 6$ क्षेत्र के बिन्दु रेखा PB पर और उसके ऊपर है।

उत्तर

(iii) $x \ge 0$, क्षेत्र के बिन्दु y-अक्ष पर और इसके दायीं ओर है।

(iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और इसके ऊपर है।

समस्या का सुसंगत क्षेत्र YBPX है।

P(6,0) तथा B(0,3) कोनीय बिन्दु हैं। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Zके संगत मान $Z=x+2y$
P(6, 0)	6 → न्यूनतम
B(0, 3)	6 → न्यूनतम

अत: (6, 0) और (0, 3) को मिलाने वाली रेखाखण्ड पर स्थित सभी बिन्दुओं पर न्यूनतम Z = 6. उत्तर दिखाइए कि Z का न्यूनतम मान दो बिन्दुओं पर घटित होता है:

प्रश्न 7. निम्न अवरोधों के अन्तर्गत Z=5x+10y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए :

$$x + 2y \le 120, x + y \ge 60, x - 2y \ge 0, x, y \le 0$$

हल : उद्देश्य फलन Z = 5x + 10y, अवरोध $x + 2y \le 120$, $x + y \ge 60$, $x - 2y \ge 0$, $x, y \le 0$

(i) x + 2y ≤ 120 का क्षेत्र—

रेखा x + 2y = 120 बिन्दु A(120, 0) और B(0, 60) से होकर जाती है।

∴ x + 2y = 120 का आरेख रेखा AB है।

 $x + 2y \le 120$ में x = 0, y = 0 रखने से $0 \le 120$ जो सत्य है।

अर्थात् $x + 2y \le 120$ के क्षेत्र के बिन्दु रेखा AB पर और उसके नीचे मूल बिन्दु की ओर स्थित हैं।

(ii) x + y ≥ 60 का क्षेत्र—

रेखा x + y = 60, बिन्दु P(60, 0), B(0, 60) से होकर जाती है।

 $\therefore x + y = 60$ का आरेख रेखा PB है।

 $x + y \ge 60$ में x = 0, y = 0 रखने पर $0 \ge 60$ जो सत्य नहीं है।

अर्थात् $x + y \ge 60$ क्षेत्र के बिन्दु रेखा PB पर और उसके ऊपर होते हैं।

(iii) x - 2y ≥ 0 का क्षेत्र—

रेखा x - 2y = 0 मूल बिन्दु O और Q(120, 60) से होकर जाती है।

 $\therefore x - 2y \ge 0$ का आरेख रेखा OQ है।

 $x - 2y \ge 0$ में x = 1, y = 0 रखने पर $1 \ge 0$ जो सत्य है।

अर्थात् (1,0) इस क्षेत्र में स्थित है। $x-2y \le 0$ क्षेत्र के बिन्दु रेखा OQ पर और इसके नीचे (1,0) की ओर हैं।

- (iv) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और y-अक्ष के दार्यी ओर हैं।
- (v) y ≥ 0 क्षेत्र के बिन्दु x-अक्ष पर और इसके ऊपर हैं।

इस समस्या का सुसंगत क्षेत्र PSRA है जबिक बिन्दु S(40, 20), x + y = 60 और x = 2y का प्रतिच्छेदन बिन्दु है, और R(60, 30), x + 2y = 120 और x = 2y का प्रतिच्छेदन बिन्दु है।

अर्थात् कोनीय बिन्दु हैं P(60, 0), S(40, 20), R(60, 30) तथा A(120, 0). अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z=5x+10y$	
P(60, 0)	30 (न्यूनतम)	
S(40, 20)	400	
R(60, 30)	600	
A(120, 0)	600 (अधिकतम)	

अत: कोनीय बिन्दु (60, 0) पर Z का न्यूनतम मान = 300 तथा (120, 0) और (60, 30) को मिलाने वाली रेखाखण्ड पर स्थित सभी बिन्दुओं पर अधिकतम मान = 600.

प्रश्न 8. निम्न अवरोधों के अन्तर्गत Z = x + 2y का न्यूनतमीकरण तथा अधिकतमीकरण कीजिए :

$$x + 2y \ge 100, \ 2x - y \le 0, \ 2x + y \le 200, \ x, \ y \ge 0$$

हल : उद्देश्य फलन Z=x+2y, अवरोध $x+2y\geq 100,\ 2x-y\leq 0,\ 2x+y\leq 200,\ x,\ y\geq 0$

(i) x + 2y ≥ 100 का क्षेत्र—

रेखा x + 2y = 100 बिन्दु A(100, 0) और B(0, 50) से होकर जाती है ।

∴ x + 2y = 100 का आरेख रेखा AB है।

 $x + 2y \ge 100$ में x = 0, y = 0 रखने पर $0 \ge 100$ जो सत्य नहीं है।

अर्थात् $x+2y\geq 100$ क्षेत्र के बिन्दु रेखा AB पर और उसके ऊपर हैं।

(ii) $2x - y \le 0$ का क्षेत्र—

रेखा 2x - y = 0, मूल बिन्दु O(0, 0) और C(50, 100) से होकर जाती है।

∴ 2x - y = 0 रेखा का आरेख रेखा OC है।

 $2x - y \le 0$ में (1, 0) रखने पर $1 \le 0$ जो सत्य नहीं है।

अर्थात् $2x - y \le 0$ का क्षेत्र OC पर और उसके ऊपर का है।

(iii) 2x + y ≤ 200 का क्षेत्र—

रेखा 2x + y = 200 बिन्दु A(100, 0) और D(0, 200) से होकर जाती है।

∴ 2x + y = 200 का आरेख AD है।

 $2x + y \le 200$ में, x = 0, y = 0 रखने पर $0 \le 200$ जो सत्य है।

अर्थात् $2x + y \le 200$ क्षेत्र के बिन्दु AD पर और उसके नीचे है।

(iv) $\hat{x} \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसके दार्यी ओर होते हैं।

(v) y ≥ 0 क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर होते हैं।

समस्या का सुसंगत क्षेत्र DBEC है। बिन्दु E(20, 40), AB: x + 2y = 100 और OC: 2x - y = 0 का प्रतिच्छेदन बिन्दु है।

अर्थात् कोनीय बिन्दु हैं—D(0, 200), B(0, 50), E(20, 40) तथा C(50, 100)। अब इन बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे :

कोनीय बिन्दु	Z के संगत मान $Z=x+2y$	
D(0, 200)	400 (अधिकतम)	
B(0, 50)	100 (न्यूनतम)	
E(20, 40)	100 (न्यूनतम)	
C(50, 100)	250	

अत: (0, 50) और (20, 40) को मिलाने वाली रेखाखण्ड पर स्थित सभी बिन्दुओं पर Z का मान न्यूनतम = 100 तथा (0, 200) पर अधिकतम मान = 400.

प्रश्न 9. निम्न अवरोधों के अन्तर्गत Z=-x+2y का अधिकतमीकरण कीजिए :

 $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$

हल : उद्देश्य फलन Z = -x + 2yअवरोध $x \ge 3, x + y \ge 5, x + 2y \ge 6, y \ge 0$

(i) $x + y \ge 5$ का क्षेत्र—

रेखा x + y = 5 बिन्दु A(5, 0) और B(0, 5) से होकर जाती है।

 $\therefore x + y = 5$ का आरेख रेखा AB है।

 $x + y \ge 5$ में x = 0, y = 0 रखने पर $0 \ge 5$ जो सत्य नहीं है।

अर्थात् $x + y \ge 5$ क्षेत्र के बिन्दु रेखा AB पर और उसके ऊपर हैं।

(ii) x + 2y ≥ 6 का क्षेत्र—

रेखा x + 2y = 6, बिन्दु C(6, 0) और D(0, 3) से होकर जाती है।

 $\therefore x + 2y = 6$ रेखा का आरेख रेखा CD है।

 $x + 2y \ge 6$ में x = 0, y = 0 रखने पर $0 \ge 6$ जो सत्य नहीं है।

अर्थात् $x + 2y \ge 6$ का क्षेत्र बिन्दु CD पर या उसके ऊपर है।

(iii) $x \ge 3$ क्षेत्र के बिन्दु रेखा x = 3 पर या उसके दार्यी ओर है।

(iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर होते हैं।

समस्या का सुसंगत क्षेत्र PQRCX है। बिन्दु O रेखा x=3 और x+y=5 का प्रतिच्छेदन बिन्दु Q के निर्देशांक (3,2) हैं।

बिन्दु R रेखा x + 2y = 6 और x + y = 5 का प्रतिच्छेदन बिन्दु है जिसके निर्देशांक (4, 1) हैं।

अर्थात् कोनीय बिन्दु हैं Q(3,2), R(4,1) तथा C(20,40)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z=-x+2y$	
Q(3, 2)	1 (अधिकतम)	
R(4, 1)	-2	
C(20, 40)	- 6	

अर्थात् Z का अधिकतम मान 1 है परन्तु सुसंगत क्षेत्र अपरिबद्ध है तो -x+2y>1 क्षेत्र पर विचार करने पर -x+2y>1 तथा सुसंगत क्षेत्र में अनेकों बिन्दु उभयनिष्ठ हैं अर्थात् Z का कोई अधिकतम मान नहीं है।

उत्तर

प्रश्न 10. निम्न अवरोधों के अन्तर्गत Z = x + y का अधिकतमीकरण कीजिए :

$$x-y \le -1, -x+y \le 0, x, y \ge 0$$

हल : उद्देश्य फलन Z = x + y, अवरोध $x - y \le -1$, $-x + y \le 0$, $x, y \ge 0$

(i) x - y ≤ - 1 का क्षेत्र-

रेखा x-y=-1 बिन्दु A(-1,0), B(0,1) से होकर जाती है, इसका आरेख रेखा AB है। $x-y\le -1$ में x=0, y=0 रखने पर $0\le -1$ जो सत्य नहीं है।

अर्थात् $x-y \le -1$ के क्षेत्र बिन्दु रेखा AB पर और उसके ऊपर हैं।

(ii) $-x+y \le 0$ का क्षेत्र—

रेखा -x + y = 0, मूल बिन्दु O(0, 0) और C(1, 1) से होकर जाती है।

 $-x + y \le 0$ में x = 1, y = 0 रखने पर $-1 \le 0$ जो सत्य है।

अर्थात् $-x+y \le 0$ के क्षेत्र बिन्दु OC पर या उसके नीचे (1,0) की ओर है।

(iii) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और x-अक्ष के दार्यी ओर हैं।

(iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और x-अक्ष के ऊपर स्थित हैं।

स्पष्टतः ऐसा कोई बिन्दु नहीं है जो सभी व्यवरोधों को एक साथ सन्तुष्ट कर सके। अतः इस समस्या का कोई सुसंगत क्षेत्र नहीं है।

इस समस्या में Z का अधिकतम मान नहीं है।

उत्तर

प्रश्नावली 12.2

प्रश्न 1. रेशमा दो प्रकार के भोज्य P और Q को इस प्रकार मिलाना चाहती है कि मिश्रण में विटामिन अवयवों में 8 मात्रक विटामिन A तथा 11 मात्रक विटामिन B हों। भोज्य P की लागत \mathbb{Z} 60/kg और भोज्य Q की लागत \mathbb{Z} 80/kg है। भोज्य P में 3 मात्रक/kg विटामिन A और 5 मात्रक/kg विटामिन B है जबकि भोज्य Q में 4 मात्रक/kg विटामिन A और 2 मात्रक/kg विटामिन B है। मिश्रण की न्यूनतम लागत ज्ञात कीजिए।

हल : मान लीजिए रेशमा $x \log$ भोज्य P और $y \log$ भोज्य Q मिश्रण बनाती है।

भोज्य	मात्रा	विटामिन 🔏	विटामिन <i>B</i>	दर
P	x kg	3 मात्रक/kg	5 मात्रक/kg	₹ 60/g
Q	y kg	4 मात्रक/kg	2 मात्रक/kg	₹ 80/g
आवश्यक विटामिन की कम से कम मात्रा		8 मात्रक	11 मात्रक	

उद्देश्य फलन Z = 60x + 80y

विटामिन A की कुल मात्रा 3x + 4y जो कि कम-से-कम 8 मात्रक है।

अर्थात्

$$3x + 4y \ge 8$$

विटामिन B की कुल मात्रा 5x + 2y जो कि कम-से-कम 11 मात्रक है

अर्थात

$$5x + 2y \ge 11$$

इस प्रकार, Z = 60x + 80y का न्यूनतमीकरण करना है जबिक अवरोध $3x + 4y \ge 8$; $5x + 2y \ge 11$, x, $y \ge 0$ है।

(i) $3x + 4y \ge 8$ का क्षेत्र—

रेखा 3x + 4y = 8 बिन्दु $A\left(\frac{8}{3}, 0\right)$ और B(0, 2) से गुजरती है। $3x + 4y \ge 8$ में x = 0, y = 0 रखने पर $0 \ge 8$ जो सत्य नहीं है।

अर्थात् $3x + 4y \ge 8$ के क्षेत्र बिन्दु रेखा AB पर और उसके ऊपर हैं।

(ii) 5x + 2y ≥ 11 का क्षेत्र—

रेखा
$$5x + 2y = 11$$
, बिन्दु $C\left(\frac{11}{5}, 0\right)$ और $D\left(0, \frac{11}{2}\right)$ से होकर जाती है।

 $\therefore 5x + 2y \ge 11$ में x = 0, y = 0 रखने पर $0 \ge 11$ जो सत्य नहीं है।

अर्थात् $5x + 2y \ge 11$ के क्षेत्र बिन्दु रेखा CD पर या उसके ऊपर है।

- (ii) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसके दार्यी ओर हैं।
- (iv) $y \ge 0$ के क्षेत्र के बिन्दु x-अक्ष और उसके ऊपर स्थित हैं।

इस प्रकार समस्या का सुसंगत क्षेत्र YDPAX है।

रेखा 3x + 4y = 8 और 5x + 2y = 11 का प्रतिच्छेदन बिन्दु $P\left(2, \frac{1}{2}\right)$ है।

अर्थात् कोनीय बिन्दु हैं $D\left(0, \frac{11}{2}\right), P\left(2, \frac{1}{2}\right)$ तथा $A\left(\frac{8}{3}, 0\right)$ जिसकी निम्न सारणी दी गयी है :

कोनीय बिन्दु	Z के संगत मान $Z=60x+80y$	
$D\left(0,\frac{11}{2}\right)$	440	
$P\left(2, \frac{1}{2}\right)$	160] न्यूनतम	
$A\left(\frac{8}{3}, 0\right)$	160	

अत: $\left(\frac{8}{3},0\right)$ और $\left(2,\frac{1}{2}\right)$ को मिलाने वाली रेखाखण्ड के सभी बिन्दुओं पर Z का न्यूनतम मान 160 है।

उत्तर

प्रश्न 2. एक प्रकार के केक को 200 g आटा तथा 25 g वसा (fat) की आवश्यकता होती है तथा दूसरी प्रकार के केक के लिए 100 g आटा तथा 50 g वसा की आवश्यकता होती है। केकों की अधिकतम संख्या बताओ जो 5 किलो आटे तथा 1 किलो वसा से बन सकते हैं, यह मान लिया गया है कि केकों को बनाने के लिए अन्य पदार्थों की कमी नहीं रहेगी।

हल : मान लीजिए पहले प्रकार के x केक और दूसरे प्रकार के y केक बनाए जाते हैं। निम्न सारणी में मात्राएँ दी गयी हैं :

केकों के प्रकार	केक की संख्या	आटा (gm में)	वसा (gm) में
I II	x y	200 g 100 g	25 g 50 g
कुल	x + y	5000 g	1000 g

उद्देश्य फलन Z = x + y

कुल आटे की आवश्यकता = 200x + 100y

अर्थात्

 $200x + 100y \le 5000$

या

:.

 $2x + y \le 50$

कुल वसा की आवश्यकता = 25x + 50y

अर्थात्

 $25x+50y\leq 1000$

या

x + 2y < 40

अब उद्देश्य Z = x + y का अधिकतमीकरण करना है जबिक $2x + y \le 50$; $x + 2y \le 40$, $x, y \ge 0$ अवरोध है।

(i) $2x + y \le 50$ का क्षेत्र— रेखा 2x + y = 50 बिन्दु A(25, 0) और B(0, 50) से गुजरती है। $2x + y \le 50$ में x = 0, y = 0 रखने पर $0 \le 50$ जो सत्य है। अर्थात् $2x + 4y \le 50$ के क्षेत्र बिन्दु AB पर और उसके नीचे हैं।

(ii) x + 2y ≤ 40 का क्षेत्र—

रेखा x + 2y = 40, बिन्दु C(40, 0) और D(0, 20) से होकर जाती है।

 $x + 2y \le 40$ में x = 0, y = 0 रखने पर $0 \le 40$ जो सत्य है।

अर्थात् $x + 2y \le 40$ के क्षेत्र बिन्दु रेखा CD पर और उसके नीचे हैं।

(iii) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसके दार्यी ओर हैं।

(iv) $y \ge 0$ के क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर हैं।

अत: समस्या का सुसंगत क्षेत्र OAPD है जबिक 2x + y = 50, x + 2y = 40 का प्रतिच्छेदन बिन्दु P हैं जिसके निर्देशांक (20, 10) हैं।

अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Zका संगत मान $Z=x+y$
A(25, 0)	25
P(20, 10)	30 (अधिकतम)
D(10, 20)	20

∴ Z का अधिकतम मान 30 बिन्दु P(20, 10) पर-है।

पहले प्रकार के 20 और दूसरे प्रकार के 10 केक बनाने चाहिए।

उत्तर

प्रश्न 3. एक कारखाने में टेनिस के रैकेट तथा क्रिकेट के बल्ले बनते हैं। एक टेनिस रैकेट बनाने के लिए 1.5 घण्टा यांत्रिक समय तथा 3 घण्टे शिल्पकार का समय लगता है। एक क्रिकेट बल्ले को तैयार करने में 3 घण्टे यांत्रिक समय तथा 1 घण्टा शिल्पकार का समय लगता है। एक दिन में कारखाने में विभिन्न यंत्रों पर उपलब्ध यांत्रिक समय के 42 घण्टे और शिल्पकार समय के 24 घण्टे से अधिक नहीं हैं।

- (i) रैकेटों और बल्लों को कितनी संख्या में बनाया जाए ताकि कारखाना पूरी क्षमता से कार्य करे।
- (ii) यदि रैकेट और बल्ले पर लाभ क्रमशः ₹ 20 तथा ₹ 10 हों तो कारखाने को अधिकतम लाभ ज्ञात कीजिए यदि कारखाना पूरी क्षमता से कार्य करे।

हल : मान लीजिए कारखाना एक दिन में x टेनिस के रैकेट और y क्रिकेट के बल्ले बनाता है। निम्न सारणी में पूर्ण विवरण दिया गया है :

आइटम	संख्या	मशीनी समय	शिल्पकार का समय	लाभ
रैकेट	x	1.5 ਬਾਾਟੇ	3 घण्टे	₹ 20 प्रति रैकेट
बल्ले	у	3 घण्टे	१ घण्टा	₹ 10 प्रति बल्ला
उपलब्ध समय		42 ਬਾਟੇ	24 घण्टे	

कुल समय मशीनी 1.5x + 3y जो अधिकतम 42 घण्टे है

या

$$1.5x + 3y \le 42$$

$$x + 2y \le 28$$

कुल शिल्पकार का समय 3x + y जो 24 घण्टे तक उपलब्ध है

$$3x + y \leq 24$$

x रैकेट और y बल्लों पर लाभ = 20x + 10y अब समस्या के उद्देश्य फलन Z = 20x + 10y का अधि कितमीकरण करना है जबिक अवरोध हैं : $x + 2y \le 28$, $3x + y \le 24$, $x, y \ge 0$

(a) x + 2y ≤ 28 का क्षेत्र—

रेखा x + 2y = 28 बिन्दु A(28, 0) और B(0, 14) से होकर जाती है। $x + 2y \le 28$ में x = 0, y = 0 रखने पर $0 \le 28$ जो सत्य है।

अर्थात् $x + 2y \le 28$ के क्षेत्र बिन्दु AB पर और उसके नीचे हैं।

(b) $3x + y \le 24$ का क्षेत्र—

रेखा 3x + y = 24, बिन्दु C(8, 0) और D(0, 24) से होकर जाती है।

 $3x + y \le 24$, बिन्दु x = 0, y = 0 रखने पर $0 \le 24$ जो सत्य है।

अर्थात् $3x + y \le 24$ के क्षेत्र बिन्दु रेखा CD पर या उसके नीचे स्थित हैं।

- (c) x + 2y = 28, 3x + y = 24 बिन्दु P(4, 12) पर प्रतिच्छेदन करती है।
- (d) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं।
- (e) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर हैं।

अर्थात् कोनीय बिन्दु हैं C(8,0), P(4,12) तथा D(0,14)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान Z = 20x + 10y
C(8, 0)	160
P(4, 12)	200 (अधिकतम)
D(0, 14)	140

∴ Z का अधिकतम मान 16 है जबिक रैकेट की संख्या 4 है, बल्लों की संख्या 12 है। इस प्रकार, अधिकतम मान ₹ 200 है जब 4 रैकेट और 12 बल्ले बनाए जाते हैं।

उत्त

प्रश्न 4. एक निर्माणकर्ता नट और बोल्ट का निर्माण करता है। एक पैकेट नटों के निर्माण में मशीन A पर एक घण्टा और मशीन B पर 3 घण्टे काम करना पड़ता है, जबकि एक पैकेट बोल्ट के निर्माण में 3 घण्टे मशीन A पर और 1 घण्टा मशीन B पर काम करना पड़ता है। वह नटों से ₹ 17.50 प्रति पैकेट और बोल्टों पर ₹ 7.00 प्रति पैकेट लाभ कमाता है। यदि प्रतिदिन मशीनों का अधिकतम उपयोग 12 घण्टे किया जाए तो प्रत्येक (नट और बोल्ट) के कितने पैकेट उत्पादित किए जाएँ ताकि अधिकतम लाभ कमाया जा सके।

हल : मान लीजिए x पैकेट नट के और y पैकेट बोल्ट का उत्पादन किया जाता है। निम्न सारणी में विवरण पूर्णरूप से दिया गया है :

आइटम	संख्या	मशीन A पर समय	मशीन <i>B</i> पर समय	लाभ
नट पैकेट बोल्ट पैकेट	x v	1 ਬਾਟਾ 3 ਬਾਟੇ	3 ਬਾਟੇ 1 ਬਾਟੀ	₹ 17.50 प्रति पैकेट ₹ 7.00 प्रति पैकेट
कुल समय	,	12 ਬਾਟੇ	12 ਬਾਟੇ	

मशीन A के उपयोग का समय = x + 3y घण्टे

उपलब्ध समय = 12 घण्टे

अत:

 $x + 3y \le 12$

तथा

मशीन B के उपयोग का समय = 3x + y घण्टे

उपलब्ध समय = 12 घण्टे

अत:

 $3x + y \le 12$

यहाँ

उद्देश्य फलन = 17.5x + 7y

अवरोध $x + 3y \le 12$, $3x + y \le 12$, x, y > 0

(i) $x + 3y \le 12$ का क्षेत्र—

रेखा x + 3y = 12 बिन्दु A(12, 0) और B(0, 4) से होकर जाती है। $x + 3y \le 12$ में x = 0, y = 0 रखने पर $0 \le 12$ जो सत्य है। अर्थात् $x + 3y \le 12$ क्षेत्र के बिन्दु AB पर और उसके नीचे स्थित हैं।

(ii) $3x + y \le 12$ का क्षेत्र— रेखा 3x + y = 12 बिन्दु C(4, 0) और D(0, 12) से होकर जाती है।

 $3x + y \le 12$ में x = 0, y = 0 रखने पर $0 \le 12$ जो सत्य है। अर्थात $3x + v \le 12$ के क्षेत्र बिन्द रेखा CD या उसके नीचे स्थित हैं।

(iii) $x \ge 0$ क्षेत्र के बिन्द y-अक्ष पर और उसकी दायीं ओर हैं।

(iv) $v \ge 0$ क्षेत्र के बिन्द x-अक्ष पर और उसके ऊपर हैं।

(v) रेखा x + 3y = 12 और रेखा 3x + y = 12 बिन्दु P(3, 3) पर प्रतिच्छेदित करती है। समस्या का ससंगत क्षेत्र OCPB है।

अर्थात् कोनीय बिन्दु C(4,0), P(3,3) तथा B(0,4)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे-

कोनीय बिन्दु	Z के संगत मान $Z=17.5x+7y$
C(4, 0)	70
P(3, 3)	73.5 (अधिकतम)
B(0, 4)	28

अधिकतम लाभ ₹ 73.5 है जब 3 नट और 3 बोल्ट के पैकेट का उत्पादन किया जाए।

उत्तर

प्रश्न 5. एक कारखाने में दो प्रकार के पेंच A और B बनते हैं। प्रत्येक के निर्माण में दो मशीनों के प्रयोग की आवश्यकता होती है. जिसमें एक स्वचालित और दूसरी हस्तचालित है। एक पैकेट पेंच 🛭 के निर्माण में ४ मिनट स्वचालित और 6 मिनट हस्तचालित मशीन तथा एक पैकेट पेंच B के निर्माण में 6 मिनट स्वचालित और 3 मिनट हस्तचालित मशीन का कार्य होता है। प्रत्येक मशीन किसी भी दिन के लिए अधिकतम 4 घण्टे काम के लिए उपलब्ध है। निर्माता पेंच A के प्रत्येक पैकेट पर ₹ 7 और पेंच B के प्रत्येक पैकेट पर ₹ 10 का लाभ कमाता है। यह मानते हुए कि कारखाने में निर्मित सभी पेंचों के पैकेट बिक जाते हैं, ज्ञात कीजिए कि प्रतिदिन कितने पैकेट विभिन्न पेंचों के बनाए जाएँ जिससे लाभ अधिकतम हो तथा अधिकतम लाभ ज्ञात कीजिए।

हल: मान लीजिए x. A प्रकार के और y. B प्रकार के पेंचों का उत्पादन होता है। पेंचों का विवरण नीचे सारणी में दिया गया है :

पेंच	स्वचालित मशीन पर समय	हस्तचालित मशीन पर समय	लाभ
A	4 मिनट	6 मिनट	₹ 7 प्रति पैकेट
В	6 मिनट	3 मिनट	₹ 10 प्रति पैकेट
उपलब्ध समय	240 मिनट	240 मिनट	

उद्देश्य फलन = 7x + 10y अर्थात् Z = 7x + 10y

अवरोध

$$4x + 6y \le 240, 6x + 3y \le 240, x, y \ge 0$$

$$2x + 3y \le 120, 2x + y \le 80, x, y \ge 0$$

(i) 2x + 3y ≤ 120 का क्षेत्र—

रेखा 2x + 3y = 120, बिन्दु A(0, 40) और B(30, 20) से होकर जाती है।

 $2x + 3y \le 120$ में x = 0, y = 0 रखने पर $0 \le 120$ जो सत्य है।

अर्थात् $2x + 3y \le 120$ के क्षेत्र बिन्द् AB पर और उसके नीचे स्थित हैं।

(ii) 2x + y ≤ 80 का क्षेत्र-

रेखा 2x + y = 80 बिन्दु C(40, 0) और D(0, 80) से होकर जाती है।

 $2x + y \le 80$ में x = 0, y = 0 रखने पर $0 \le 80$ जो सत्य है।

अर्थात् $2x + y \le 80$ क्षेत्र के बिन्दु CD पर या इसके नीचे है।

(iii) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसके दायीं ओर है।

(v) रेखा 2x + 3y = 120, CD = 2x + y = 80 बिन्दु B(30, 20) पर मिलती है। समस्या का सुसंगत क्षेत्र OABC है।

अर्थात् कोनीय बिन्दु हैं A(0, 40), B(30, 20) तथा C(40, 0)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान Z = 7x + 16y	
A(0, 40)	400	
B(30, 20)	410 (अधिकतम)	
C(40, 0)	280	

इस प्रकार, अधिकतम लाभ ₹ 410 है जब 30, A प्रकार के पेंचों के पैकेट और 20, B प्रकार के पेंचों के पैकेटों का उत्पादन होता है।

प्रश्न 6. एक कुटीर उद्योग निर्माता पैडेस्टल लैंप और लकड़ी के शेड बनाता है। प्रत्येक के निर्माण में एक रगड़ने/काटने और एक स्प्रेयर की आवश्यकता पड़ती है। एक लैंप के निर्माण में 2 घण्टे रगड़ने/काटने और 3 घण्टे स्प्रेयर की आवश्यकता होती है, जबिक एक शेड के निर्माण में 1 घण्टा रगड़ने/काटने और 2 घण्टे स्प्रेयर की आवश्यकता होती है। स्प्रेयर की मशीन प्रतिदिन अधिकतम 20 घण्टे और रगड़ने/काटने की मशीन प्रतिदिन अधिकतम 12 घण्टे के लिए उपलब्ध है। एक लैंप की बिक्री पर ₹ 5 और एक शेड की बिक्री पर ₹ 3 का लाभ होता है। यह मानते हुए कि सभी निर्मित लैंप और शेड बिक जाते हैं, तो बताइए वह निर्माण की प्रतिदिन कैसी योजना बनाए कि लाभ अधिकतम हो ?

हल : मान लीजिए x लैंप और y शेड उत्पादित किए जाते हैं। प्रश्नानुसार दिए गए आँकड़ों से—

आइटम	संख्या	रगड़ने/काटने की मशीन का समय	स्प्रेयर मशीन का समय	लाभ
लैंप	х	2 घण्टे	3 ਬਾਟੇ	₹ 5 प्रति पैकेट
शेड	v	1 ਬਾਟੇ	2 घण्टे	₹ 3 प्रति पैकेट
उपलब्ध समय		12 घण्टे	20 घण्टे	

उद्देश्य फलन, Z = 5x + 3y

अवरोध $2x + y \le 12$, $3x + 2y \le 20$

(i) $2x + y \le 12$ का क्षेत्र—

रेखा 2x + y = 12 बिन्दु A(6,0) और B(0,12) से होकर जाती है। $2x + y \le 12$ में x = 0, y = 0 रखने पर $0 \le 12$ जो सत्य है।

अर्थात् $2x + y \le 12$ के क्षेत्र बिन्दु रेखा AB पर और उसके नीचे स्थित हैं।

(ii) 3x + 2y ≤ 20 का क्षेत्र—

रेखा 3x + 2y = 20 बिन्दु $C\left(\frac{20}{3}, 0\right)$ और D(0, 10) से होकर जाती है। $3x + 2y \le 20$ में x = 0, y = 0 रखने पर $0 \le 20$ जो सत्य है। अर्थात् $3x + 2y \le 20$ रेखा CD पर और इसके नीचे का क्षेत्र है।

- (iii) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसके दार्यी ओर हैं।
- (iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर हैं।
- (v) 2x + y = 12, 3x + 2y = 20 बिन्दु P(4, 4) पर मिलती है। समस्या का सुसंगत क्षेत्र OAPD है।

अर्थात् कोनीय बिन्दु हैं A(6,0), P(4,4) तथा D(0,10)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z के संगत मान $Z = 5x + 3y$
A(6, 0)	30
P(4, 4)	32 (अधिकतम)
D(0, 10)	30

अधिकतम लाभ 32 है यदि निर्माता 4 लैंप और 4 शेड प्रतिदिन का उत्पादन करे।

उत्तर

प्रश्न 7. एक कम्पनी प्लाईवुड के अनूठे स्मृति चिह्न का निर्माण करती है। A प्रकार के प्रति स्मृति चिह्न के निर्माण में 5 मिनट काटने और 10 मिनट जोड़ने में लगते हैं। B प्रकार के प्रति स्मृति चिह्न के लिए 8 मिनट काटने और 8 मिनट जोड़ने में लगते हैं। दिया गया है कि काटने के लिए कुल समय 3 घण्टे 20 मिनट तथा जोड़ने के लिए 4 घण्टे उपलब्ध हैं। प्रत्येक A प्रकार के स्मृति चिह्न पर ₹ 5 और प्रत्येक B प्रकार के स्मृति चिह्न पर ₹ 6 का लाभ होना है। ज्ञात कीजिए कि लाभ के अधिकतमीकरण के लिए प्रत्येक प्रकार के कितने-कितने स्मृति चिह्नों का कम्पनी द्वारा निर्माण होना चाहिए ?

हल: मान लीजिए A प्रकार के स्मृति चि \square x और B प्रकार के स्मृति चि \square y कम्पनी द्वारा निर्मित किए जाते हैं।

स्मृति चिह्न	काटने का समय	जोड़ने का समय	लाभ
A B	5 मिनट 8 मिनट	10 मिनट 8 मिनट	₹ 5 प्रति चि ₹ 6 प्रति चि
उपलब्ध समय	200 मिनट	240 मिनट	

उद्देश्य फलन

$$Z = 5x + 6y$$

अवरोध

$$5x + 8y \le 200, \ 10x + 8y \le 240, \ x, \ y \ge 0$$

या

$$5x + 8y \le 200$$
, $5x + 4y \le 120$, $x, y \ge 0$

(i) $5x + 8y \le 200$ का क्षेत्र—

रेखा 5x + 8y = 200 बिन्दु A(40, 0) और B(0, 25) से होकर जाती है। $5x + 8y \le 200$ में x = 0, y = 0 रखने पर $0 \le 200$ जो सत्य है।

 $\Rightarrow 5x + 8y \le 120$ के क्षेत्र बिन्दु AB पर और उसके नीचे स्थित हैं।

(ii) 5x + 4y ≤ 120 का क्षेत्र—

रेखा 5x + 4y = 120 बिन्दु C(24, 0) और D(0, 30) से होकर जाती है।

 $5x + 4y \le 120$ में x = 0, y = 0 रखने पर $0 \le 120$ जो सत्य है।

अत: $5x + 4y \le 120$ रेखा CD पर या उसके नीचे का क्षेत्र है।

- (iii) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं।
- (iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष और उसके ऊपर हैं।
- (v) 5x + 8y = 200 और रेखा 5x + 4y = 120 बिन्दु P(8, 20) पर मिलती है। समस्या का सुसंगत क्षेत्र OBPC है।

अर्थात् कोनीय बिन्दु हैं B(0, 25), P(8, 20) तथा C(24, 0)। अब इन बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान Z = 5x + 6y
B(0, 25)	140
P(8, 20)	160 (अधिकतम)
C(24, 0)	120

∴ Z का अधिकतम मान ₹ 160 है जो 8, A प्रकार के और 20, B प्रकार के स्मृति चि \Box निर्माण करने पर प्राप्त होता है।

प्रश्न 8. एक सौदागर दो प्रकार के निजी कम्प्यूटर—एक डेस्कटॉप नमूना और दूसरा पोर्टेबल नमूना, जिनकी कीमतें क्रमशः ₹ 25,000 और ₹ 40,000 होंगी, बेचने की योजना बनाता है, वह अनुमान लगाता है कि कम्प्यूटर की कुल मासिक माँग 250 नगों से अधिक नहीं होगी। प्रत्येक प्रकार के कम्प्यूटरों के नगों की संख्या ज्ञात कीजिए जिसे सौदागर अधिकतम प्राप्त करने के लिए संग्रह करें, यदि उसके पास निवेश के लिए ₹ 70 लाख से अधिक नहीं है और यदि डेस्कटॉप नमूने पर उसका लाभ ₹ 4,500 और पोर्टेबल नमूने पर ₹ 5,000 लाभ हो।

हल : मान लीजिए x डेस्कटॉप और y पोर्टेबल कम्प्यूटर सौदागर के पास हैं। इनका विवरण नीचे दिया गया है :

कम्प्यूटर	संख्या	कीमत	लाभ
डेस्कटॉप	x	₹ 25,000	₹ 4,500
पोर्टेबल	y	₹ 40,000	₹ 5,000
योगफल	250	₹ 70 लाख	

उद्देश्य फलन Z = 4500x + 5000yअवरोध हैं, $x + y \le 250$ $25000x + 40000y \le 70,00,000$ $5x + 8y \le 1400$

या . तथा

 $x, y \leq 0$

(i) $x + y \le 250$ का क्षेत्र—रेखा x + y = 250 बिन्दु A(250, 0) और B(0, 250) से होकर जाती है।

 $x + y \le 250$ में x = 0, y = 0 रखने पर $0 \le 250$ जो सत्य है। अर्थात् $x + y \le 250$ के क्षेत्र बिन्दु AB पर और उसके नीचे हैं।

(ii) 5x + 8y ≤ 1400 का क्षेत्र-

रेखा 5x + 8y = 1400 बिन्दु C(280, 0) और D(0, 175) से होकर जाती है। $5x + 8y \le 1400$ में x = 0, y = 0 रखने पर $0 \le 1400$ जो सत्य है। अर्थात् $5x + 8y \le 1400$ क्षेत्र के बिन्दु CD पर या उसके नीचे हैं।

- (iii) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं।
- (iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर हैं।
- (v) रेखा x + y = 250, 5x + 8y = 1400 बिन्दु P(200, 50) पर काटती है। समस्या का सुसंगत क्षेत्र OAPD है।

अर्थात् कोनीय बिन्दु हैं A(250,0), P(200,50) तथा D(0,175)। अब इन बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे—

कोनीय	बिन्दु	Z का संगत मान $Z = 4500x + 5000y$	
A(250,	0)	1125000	
P(200,	50)	1150000 (अधिकतम)	
D(0, 1)	75)	875000	

.. सौदागर का अधिकतम लाभ 11,50,000 प्राप्त करने के लिए 200 डेस्कटॉप और 50 पोर्टेबल कम्प्यूटर का स्टॉक रखना चाहिए।

प्रश्न 9. एक भोज्य पदार्थ में कम-से-कम 80 मात्रक विटामिन A और 100 मात्रक खनिज होना चाहिए। दो प्रकार के भोज्य पदार्थ F_1 और F_2 उपलब्ध हैं। भोज्य F_1 की लागत \mathbb{Z} 4 प्रति मात्रक और F_2 की लागत \mathbb{Z} 5 प्रति मात्रक है। भोज्य F_1 की एक इकाई में कम-से-कम 3 मात्रक विटामिन A और 4 मात्रक खनिज है। F_2 की प्रति इकाई में कम-से-कम 6 मात्रक विटामिन A और 3 मात्रक खनिज हैं। इसको एक रैखिक प्रोग्रामन समस्या के रूप में सूत्रबद्ध कीजिए। उस आहार का न्यूनतम मूल्य ज्ञात कीजिए जिसमें इन दो भोज्यों का मिश्रण है और उसमें न्यूनतम पोषक तत्व हैं।

हल : मान लीजिए x मात्रक भोज्य F_1 और y मात्रक भोज्य F_2 की है। इनका विवरण नीचे दिया गया है :

भोज्य	मात्रा	विटामिन 🔏	खनिज	लागत
F_1 F_2	x v	3 मात्रक 6 मात्रक	4 मात्रक 3 मात्रक	₹ 4 प्रति मात्रक ₹ 6 प्रति मात्रक
न्यूनतम आवः	। रयक मात्रक	80 मात्रक	100 मात्रक	() // () // ()

उद्देश्य फलन Z = 4x + 6y

अवरोध हैं : $3x + 6y \ge 80$, $4x + 3y \ge 100$, $x, y \ge 0$

(i) $3x + 6y \ge 80$ का क्षेत्र—

रेखा 3x + 6y = 80 बिन्दु $A\left(\frac{80}{3}, 0\right)$ और $B\left(0, \frac{40}{3}\right)$ से होकर जाती है। $3x + 6y \ge 80$ में x = 0, y = 0 रखने पर $0 \ge 80$ जो सत्य नहीं है।

अर्थात् $3x + 6y \ge 80$ के क्षेत्र बिन्दु AB पर और उसके ऊपर हैं।

(ii) $4x + 3y \ge 100$ का क्षेत्र—

रेखा 4x + 3y = 100 बिन्दु C(25, 0) और

$$D\bigg(0,\,\frac{100}{3}\bigg)$$
 से होकर जाती है।

 $4x + 3y \ge 100$ में x = 0, y = 0 रखने पर $0 \ge 100$ जो सत्य नहीं है।

अर्थात् $4x + 3y \ge 100$ क्षेत्र के बिन्दु CD पर या उसके ऊपर है।

(iii) x ≥ 0 क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर है।

(iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर है।

(v) रेखा 3x + 6y = 80, 4x + 3y = 100 बिन्द

 $P\left(24, \frac{4}{3}\right)$ पर काटती हैं।

समस्या का सुसंगत क्षेत्र YDPAX छायांकित है।

अर्थात् कोनीय बिन्दु हैं $D\!\left(0,\,\frac{100}{3}\right)\!,\;\;P\!\left(24,\,\frac{4}{3}\right)$ तथा $A\!\left(\frac{80}{3},\,0\right)$ । अब इन बिन्दुओं पर Z का निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z=4x+6y$
$D\left(0, \frac{100}{3}\right)$	200
$P\left(24, \frac{4}{3}\right)$	104 (न्यूनतम)
$A\left(\frac{80}{3},0\right)$	$106\frac{2}{3}$

अर्थात् Z का न्यूनतम मान = ₹ 104 है। परन्तु सुसंगत क्षेत्र अपिरबद्ध है। रेखा 4x + 6y < 104 या 2x + 3y < 52 का कोई बिन्दु सुसंगत क्षेत्र में उभयनिष्ठ नहीं है।

इस प्रकार भोज्यों पर कुल लागत ₹ 104 है जब भोज्य F_1 की 24 मात्रक और F_2 की $\frac{4}{3}$ मात्रक प्रयोग की जाए।

प्रश्न 10. दो प्रकार के उर्वरक F_1 और F_2 हैं। F_1 में 10% नाइट्रोजन और 6% फॉस्फोरिक अम्ल है तथा F_2 में 5% नाइट्रोजन तथा 10% फॉस्फोरिक अम्ल है। मिट्टी की स्थितियों का परीक्षण करने के पश्चात् एक किसान पाता है कि उसे अपनी फसल के लिए 14 kg नाइट्रोजन और 14 kg फॉस्फोरिक अम्ल की आवश्यकता है। यदि F_1 की कीमत $\stackrel{7}{\sim}$ 6/kg और F_2 की कीमत $\stackrel{7}{\sim}$ 5/kg है, प्रत्येक प्रकार का कितना उर्वरक उपयोग के लिए चाहिए तािक न्यूनतम मूल्य पर वािछत पोषक तत्व मिल सके ? न्यूनतम लागत क्या है ?

हल : मान लीजिए x kg, F_1 और y kg, F_2 उर्वरक की आवयकता है। इनका विवरण नीचे दिया गया है :

उर्वरक	मात्रा	नाइट्रोजन की मात्रा	फॉस्फोरिक अम्लीय मात्रा	लागत
$\overline{F_1}$	x kg	10%	6%	₹ 6 प्रति kg
F_2	y kg	5%	10%	₹ 5 प्रति kg
उर्वरक की आवश्यकता		14 kg	14 kg	

उद्देश्य फलन Z = 6x + 5y

अवरोध हैं :

$$\frac{10}{100}x + \frac{5}{100}y \le 14,$$

$$\frac{6}{100}x + \frac{10}{100}y \ge 14, x, y \ge 0$$

या

$$2x + y \ge 280$$
,
 $3x + 5y \ge 700$, $x, y \ge 0$

(i) 2x + y ≥ 280 का क्षेत्र—

रेखा 2x + y = 280 बिन्दु A(140, 0) और B(0, 280) से होकर जाती है। $2x + y \ge 280$ में x = 0, y = 0 रखने पर $0 \ge 280$ जो सत्य नहीं है। अर्थात् $2x + y \ge 280$ का क्षेत्र बिन्दु AB पर और उसके ऊपर है।

(ii) 3x + 5y ≥ 700 का क्षेत्र—

रेखा
$$3x + 5y = 700$$
 बिन्दु $C\left(\frac{700}{3}, 0\right)$ और $D(0, 140)$ से होकर जाती है।

 $3x + 5y \ge 700$ में x = 0, y = 0 रखने पर $0 \ge 700$ जो सत्य नहीं है। अर्थात् $3x + 5y \ge 700$ के क्षेत्र बिन्दु CD पर या उसके ऊपर हैं।

- (iii) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं।
- (iv) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर है।
- (v) रेखा 2x + y = 280, 3x + 5y = 700 बिन्दु P(100, 80) पर कटती है। समस्या का सुसंगत क्षेत्र YBPCX है।

अर्थात् कोनीय बिन्दु हैं B(0,280), P(100,80) तथा $C\left(\frac{700}{3},0\right)$ । अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 6x + 5y$		
B(0, 280) P(100, 80)	1400 1000 (न्यूनतम)		
$C\left(\frac{700}{3}, 0\right)$	1400		

अत: उर्वरक F_1 को $100~{
m kg}$ और उर्वरक F_2 को $80~{
m kg}$ मात्रा उपयोग करने से न्यूनतम लागत $1000~{
m to}$. है।

प्रश्न 11. निम्नलिखित असमीकरण निकाय $2x+y\leq 10, x+3y\leq 15, x,y\geq 0$ से निर्धारित सुसंगत क्षेत्र के कोनीय बिन्दु (0,0),(5,0),(3,4) और (0,5) हैं। माना कि Z=px+qy जहाँ p,q>0,p तथा q के लिए निम्नलिखित में कौन प्रतिबन्ध उचित है ताकि Z का अधिकतम (3,4) और (0,5) दोनों पर घटित होता है।

(A)
$$p = q$$
 (B) $p = 2q$ (C) $p = 3q$ (D) $q = 3p$

हल : Z का अधिकतम मान = px + qy

बिन्दु (3, 4) और (0, 5) रखने पर,

बिन्दु (3, 4) पर,

Z = 3p + 4q

बिन्दु (0, 5) पर,

Z = 0 + 5q = 5q

🕆 दोनों ही अधिकतम मान हैं।

÷

3p + 4q = 5q

यां

3p = 5q - 4q = q

अत: विकल्प (D) सही है।

उत्तर

अध्याय 12 पर विविध प्रश्नावेली

प्रश्न 1. एक आहारविद् दो भोज्यों P और Q का उपयोग करते हुए एक विशेष आहार तैयार करता है। भोज्य P का प्रत्येक पैकेट (जिसमें 30 ग्राम अंतर्विष्ट हैं) में कैल्शियम के 12 मात्रक लौह तत्व के 4 मात्रक, कोलेस्ट्रोल के 6 मात्रक और विटामिन A के 6 मात्रक अंतर्विष्ट हैं जबिक उसी मात्रा के भोज्य Q के पैकेट में कैल्शियम तत्व के 3 मात्रक, लौह तत्व के 20 मात्रक, कोलेस्ट्रोल के 4 मात्रक और विटामिन A के 3 मात्रक अंतर्विष्ट है। आहार में कम से कम 240 मात्रक कैल्शियम, लौह तत्व के कम से कम 460 मात्रक, और कोलेस्ट्रोल के अधिक से अधिक 300 मात्रक अपेक्षित हैं। प्रत्येक भोज्य के कितने पैकेटों का उपयोग किया जाए तािक आहार में विटामिन A की मात्रा का न्यूनतम किया जा सके। आहार में विटामिन A की मात्रा का अधिकतमीकरण करने के लिए प्रत्येक भोज्य के कितने पैकेटों का उपयोग होना चािहए ? आहार में विटामिन A की अधिकतम मात्रा क्या है?

हल : मान लीजिए x पैकेट भोज्य A के और y पैकेट भोज्य B के खरीदे गए।

इनका विवरण नीचे तालिका में दिया गया है :

भोज्य	पैकेटों की संख्या	कैल्शियम	लौह	कोलेस्ट्रोल	विटामिन 🔏
P Q	x y	12 मात्रक 3 मात्रक	4 मात्रक 20 मात्रक	6 मात्रक 4 मात्रक	6 मात्रक 3 मात्रक
न्यूनतम आवश्यकता		240 मात्रक	460 मात्रक	300 मात्रक अधिकतम	Z

उद्देश्य फलन

Z = 6x + 3y का अधिकतमीकरण

अवरोध हैं : $12x + 3y \ge 240$, $4x + 20y \ge 460$, $6x + 4y \le 300$, $x, y \ge 0$

या $4x + y \ge 80$, $x + 5y \ge 115$, $3x + 2y \le 150$, $x, y \ge 0$

(i) $4x + y \ge 80$ का क्षेत्र—

रेखा 4x + y = 80, बिन्दु A(20, 0), B(0, 80) से होकर जाती है।

 $4x + y \ge 80$ में x = 0, y = 0 रखने पर $0 \ge 80$ जो सत्य नहीं है।

अर्थात् $4x + y \ge 80$ रेखा AB पर तथा उसके ऊपर का क्षेत्र है।

(ii) x + 5y ≥ 115 का क्षेत्र—

रेखा x + 5y = 115, बिन्दु C(115, 0), D(0, 23) से होकर जाती है। $x + 5y \ge 115$ में x = 0, y = 0 रखने पर $0 \ge 115$ जो सत्य नहीं है। अर्थात् $x + 5y \ge 115$ के क्षेत्र बिन्दु रेखा CD पर है या उसके ऊपर है।

(iii) 3x + 2y ≤ 150 का क्षेत्र—

रेखा 3x + 2y = 150, बिन्दु E(50, 0), F(0, 75) से होकर जाती है।

 $3x + 2y \le 150$ में x = 0, y = 0 रखने पर $0 \ge 150$ जो सत्य है।

अर्थात् $3x + 2y \le 150$ के क्षेत्र बिन्दु रेखा EF पर हैं या उसके नीचे हैं।

- (iv) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसके दार्यी ओर हैं।
- (v) y ≥ 0 क्षेत्र के बिन्दु x-अक्ष पर और उसके ऊपर हैं।
- (vi) रेखा 4x + y = 80, x + 5y = 115 बिन्दु Q(15, 20) पर काटती हैं।
- (vii) रेखा x + 5y = 115, 3x + 2y = 150 बिन्दु R(40, 15) पर काटती हैं।
- (viii) रेखा 4x + y = 80, 3x + 2y = 150 बिन्दु P(2, 72) पर काटती हैं। समस्या का सुसंगत क्षेत्र PQR है।

अर्थात् कोनीय बिन्दु हैं P(2,72), Q(15,20) तथा R(40,15)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z=6x+3y$
P(2, 72)	228
Q(15, 20)	150
R(40, 15)	285 (अधिकतम)

इस प्रकार विटामिन की अधिकतम मात्रा 285 मात्रक है जब भोज्य P के 40 पैकेट और भोज्य Q के 15 पैकेट खरीदे जाएँ।

प्रश्न 2. एक किसान दो प्रकार के चारे P और Q को मिलाता (मिश्रण) है। P प्रकार के चारे, जिसका मूल्य Rs. 250 प्रति थैला जो कि पोषक तत्व A के 3 मात्रक, तत्व B के 2.5 मात्रक है और तत्व C के 2 मात्रक रखता है जबिक Q प्रकार का चारा जिसका मूल्य ₹ 200 प्रति थैला है, पोषक तत्व A का 1.5 मात्रक, तत्व B का 11.25 मात्रक और तत्व C के तीन मात्रक रखता है। पोषक तत्वों A, B और C की न्यूनतम आवश्यकताएँ क्रमशः 18 मात्रक, 45 मात्रक और 24 मात्रक हैं। प्रत्येक प्रकार के थैलों की संख्या ज्ञात कीजिए तािक मिश्रण के प्रत्येक थैले का मूल्य न्यूनतम हो। मिश्रण के प्रत्येक थैले का न्यूनतम मूल्य क्या है ?

हल : मान लीजिए x थैले P प्रकार के चारे के और y थेले Q प्रकार के चारे के मिलाए जाते हैं। इनका विवरण नीचे सारणी में दिया है :

चारे के प्रकार	थैलों की संख्या	तत्व <i>∆</i> (मात्रक में)	तत्व <i>B</i> (मात्रक में)	तत्व <i>C</i> (मात्रक में)	मूल्य
<i>P</i> .	x	3	2.5	2	₹ 250
Q	y	1.5	11.25	3	₹ 200
न्यूनतम आवश्यकता		18	45	24	

उद्देश्य फलन, Z = 250x + 200y का न्यूनतमीकरण करना है

अवरोध हैं : $3x + 1.5y \ge 18$, $2.5x + 11.25y \ge 45$, $2x + 3y \ge 24$, और $x, y \ge 0$

या $2x + y \ge 12$, $2x + 9y \ge 36$, $2x + 3y \ge 24$, $x, y \ge 0$

(i) $2x + y \ge 12$ का क्षेत्र—

रेखा 2x + y = 12, बिन्दु A(6, 0), B(0, 12) से होकर जाती है।

 $2x + y \ge 12$ में x = 0, y = 0 रखने पर $0 \ge 12$ जो सत्य नहीं है।

अर्थात् $2x + y \ge 12$ के क्षेत्र बिन्दु AB या उसके ऊपर हैं।

(ii) 2x + 9y ≥ 36 का क्षेत्र-

2x + 9y = 36 बिन्दु C(18, 0), D(0, 4) से होकर जाती है।

 $2x + 9y \ge 36$ में x = 0, y = 0 रखने पर $0 \ge 36$ जो सत्य नहीं है।

अर्थात् $2x + 9y \ge 36$ के क्षेत्र बिन्दु रेखा CD पर या उसके ऊपर स्थित हैं।

(iii) 2x + 3y ≥ 24 का क्षेत्र—

रेखा 2x + 3y = 24 बिन्दु E(12, 0), F(0, 8) से होकर जाती है।

 $2x + 3y \ge 24$ में x = 0, y = 0 रखने पर $0 \ge 24$ जो सत्य नहीं है।

अर्थात् $2x + 3y \ge 24$ के क्षेत्र बिन्दु रेखा EF पर या उसके ऊपर स्थित हैं।

(iv) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं।

(v) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर हैं और उसके ऊपर हैं।

(vi) रेखा 2x + y = 12 और 2x + 3y = 24 बिन्दु P(3, 6) पर काटती हैं।

(vii) रेखा 2x + 9y = 36 और 2x + 3y = 24 बिन्दु R(9, 2) पर काटती हैं। इस प्रकार समस्या का सुसंगत क्षेत्र YBPRCX है।

अर्थात् कोनीय बिन्दु हैं B(0, 12), P(3, 6), R(9, 2) तथा C(18, 0)। अब इन बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 250x + 200y$	
B(0, 12)	2400	
P(3, 6)	1950 (न्यूनतम)	
R(9, 2)	2650	
C(18, 0)	4500	

अतः Z का न्यूनतम मान 1950 तथा P प्रकार के 3 और Q प्रकार के 6 थैले मिलाए जाते हैं। उत्तर

प्रश्न 3. एक आहारविद् दो प्रकार के भोज्यों X और Y को इस प्रकार मिलाना चाहता है कि मिश्रण में विटामिन A की कम-से-कम 10 मात्रक, विटामिन B की कम-से-कम 12 मात्रक और विटामिन C की 8 मात्रक हों। 1 kg भोज्यों में विटामिनों की मात्रा निम्नलिखित सारणी में दी गई है:

भोज्य	विटामिन A	विटामिन <i>B</i>	विटामिन <i>C</i>
X	. 1	2	3
Y	2	2	1

भोज्य X के 1 kg का मूल्य ₹ 16 और भोज्य Y के 1 kg का मूल्य ₹ 20 है। वांछित आहार के लिए मिश्रण का न्यूनतम मूल्य ज्ञात कीजिए।

हल: मान लीजिए x kg भोज्य X का और y kg भोज्य Y का मिश्रण बनाया जाता है। भोज्य X की लागत ₹ 16 प्रति kg और भोज्य Y की लागत ₹ 20 प्रति kg है।

अत: उद्देश्य फलन,

Z = 16x + 20y

अवरोध है : $x + 2y \ge 10$, $2x + 2y \ge 12$, $3x + y \ge 8$, $x, y \ge 0$ (i) $x + 2y \ge 10$ का क्षेत्र—

रेखा x + 2y = 10, बिन्दु A(10, 0), B(0, 5) से होकर जाती है। $x + 2y \ge 10$ में x = 0, y = 0 रखने पर $0 \ge 10$ जो सत्य नहीं है। अर्थात् $x + 2y \ge 10$ रेखा AB पर है या उसके ऊपर है। (ii) $2x + 2y \ge 12$ या $x + y \ge 6$ का क्षेत्र— रेखा x + y = 6, बिन्दु C(6, 0), D(0, 6) से होकर जाती है। $x + y \ge 6$ में x = 0, y = 0 रखने पर $0 \ge 6$ जो सत्य नहीं है। अर्थात् $x + y \ge 6$ के क्षेत्र बिन्दु रेखा CD पर है या उसके ऊपर है। (iii) $3x + y \ge 8$ का क्षेत्र—

रेखा 3x + y = 8, बिन्दु $E\left(\frac{8}{3}, 0\right)$, F(0, 8) से होकर जाती है।

 $3x + y \ge 8$ में x = 0, y = 0 रखने पर $0 \ge 8$ जो सत्य नहीं है। अर्थात् $3x + y \ge 8$ के क्षेत्र बिन्दु रेखा *EF* पर है या उसके ऊपर है। (iv) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं। (v) $y \ge 0$ के क्षेत्र बिन्दु x-अक्ष पर हैं और उसके ऊपर हैं।

(vi) रेखा x + y = 6 और 3x + y = 8 बिन्दु P(1, 5) पर काटती हैं।

(vii) रेखा x + 2y = 10 और x + y = 6 बिन्दु Q(2, 4) पर काटती हैं।

समस्या का सुसंगत क्षेत्र YFPQAX है।

अर्थात् कोनीय बिन्दु हैं F(0, 8), P(1, 5), Q(2, 4) तथा A(10, 0)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान Z = 16x + 20y
F(0, 8)	160
P(1, 5)	116
Q(2, 4)	112 (न्यूनतम)
A(10, 0)	160

Z का न्यूनतम मान ₹ 112 है। परन्तु सुसंगत क्षेत्र अपरिबद्ध है।

 $\therefore 16x + 20y < 112$ या 4x + 5y < 28 को देखने पर हम पाते हैं कि

इसका कोई भी बिन्दु सुसंगत क्षेत्र के साथ उभयनिष्ठ नहीं है।

अत: Z का न्यूनतम मान ₹ 112 है जिसके लिए भोज्य X के 2 kg और Y का 4 kg मिश्रण बनाना चाहिए।

उत्तर

प्रश्न 4. एक निर्माता दो प्रकार के खिलौने A और B बनाता है। इस उद्देश्य के लिए निर्माण में तीन मशीनों की आवश्यकता पड़ती है और प्रत्येक प्रकार के खिलौने के निर्माण के लिए लगा समय (मिनटों में) निम्नलिखित है—

खिलौने के प्रकार		मशीन		
	I	II	II	
A	12	18	6	
B .	6	0	9	

प्रत्येक मशीन अधिकतम 6 घण्टे प्रतिदिन के लिए उपलब्ध है। यदि A प्रकार के खिलौने की बिक्री पर 7.50 लाभ और B प्रकार के खिलौने पर 7.50 लाभ और 1.50 लाभ और 1.50 खिलौने निर्मित होने चाहिए।

हल : मान लीजिए A प्रकार के x और B प्रकार के y खिलौने बनाए जाते हैं।

उद्देश्य फलन Z = 7.5x + 5y

अवरोध $12x + 6y \le 360$, $18x \le 360$, $6x + 9y \le 360$, $x, y \ge 0$

या $2x + y \le 60, x \le 20, 2x + 3y \le 120, x, y \ge 0$

(i) $2x + y \le 60$ का क्षेत्र—

रेखा 2x + y = 60, बिन्दु A(30, 0), B(0, 60) से होकर जाती है।

 $2x + y \le 60$ में x = 0, y = 0 रखने पर $0 \le 60$ जो सत्य है।

अर्थात् $2x + y \le 60$ रेखा AB पर है या उसके नीचे है।

(ii) $x \le 20$ के बिन्दु x = 0 और x = 20 के बीच में स्थित है।

(iii) 2x + 3y ≤ 120 का क्षेत्र—

रेखां 2x + 3y = 120, बिन्दु C(60, 0), D(0, 40) से होकर जाती है।

 $2x + 3y \le 120$ में x = 0, y = 0 रखने पर $0 \le 120$ जो सत्य है।

अर्थात् $2x + 3y \le 120$ के क्षेत्र बिन्दु रेखा CD पर या उसके नीचे स्थित हैं।

(iv) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसकी दायीं ओर हैं।

(v) $y \ge 0$ के क्षेत्र बिन्दु x-अक्ष पर और उसके ऊपर हैं।

(vi) रेखा 2x + y = 60 और 2x + 3y = 120 बिन्दु P(15, 30) पर काटती है।

(vii) रेखा x = 20, रेखा AB : 2x + y = 60 और Q(20, 20) पर काटती हैं। इस प्रकार समस्या का सुसंगत क्षेत्र ODPQR छायांकित किया गया है।

अर्थात् कोनीय बिन्दु हैं D(0,40), P(15,30), Q(20,20) तथा R(20,0)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 7.5x + 5y$	
D(0, 40)	200	
P(15, 30)	262.50 (अधिकतम)	
Q(20, 20)	250	
R(20, 0)	150	

स्पष्ट है कि अधिकतम लाभ ₹ 262.50 तब होगा यदि 15 खिलौने A प्रकार के और 30 खिलौने B प्रकार के बनाए जाएँ। **इति सिद्धम्**।

प्रश्न 5. एक हवाई जहाज अधिकतम 200 यात्रियों को यात्रा करा सकता है। प्रत्येक प्रथम श्रेणी के टिकट पर ₹ 1000 और सस्ते श्रेणी के टिकट पर ₹ 600 का लाभ कमाया जा सकता है। एयरलाइन कम-से-कम 20 सीटें प्रथम श्रेणी के लिए आरक्षित करती है। तथापि प्रथम श्रेणी की अपेक्षा कम-से-कम 4 गुने यात्री सस्ती श्रेणी के टिकट पर यात्रा करने को वरीयता देते हैं। ज्ञात कीजिए कि प्रत्येक प्रकार के कितने-कितने टिकट बेचे जाएँ ताकि लाभ का अधिकतमीकरण हो ? अधिकतम लाभ कितना है ?

हल: मान लीजिए प्रथम श्रेणी के x यात्री और सस्ती श्रेणी के y यात्री यात्रा करते हैं।

प्रथम श्रेणी के एक यात्री से ₹ 1000 का और सस्ती श्रेणी के एक यात्री से ₹ 600 का लाभ होता है। उद्देश्य फलन, Z=1000x+600y

अवरोध है : $x \ge 20$, $x + y \le 200$, $y \ge 4x$, x, $y \ge 0$

(i) x + y ≤ 200 का क्षेत्र—

रेखा x + y = 200, बिन्दु (200, 0), (0, 200) से होकर जाती है।

 $x + y \le 200$ में x = 0, y = 0 रखने पर $0 \le 200$ जो सत्य है।

अर्थात् $x + y \le 200$ के क्षेत्र बिन्दु रेखा x + y = 200 पर और उसके नीचे हैं।

(ii) $x \ge 20$ के क्षेत्र बिन्दु रेखा x = 20 पर और उसके दार्यी ओर हैं।

(iii) y ≥ 4x का क्षेत्र-

रेखा y = 4x, मूल बिन्दु (0, 0) और B(40, 160) से होकर जाती है। $y - 4x \ge 0$ में x = 0, y = 40 रखने पर $40 \ge 0$ जो सत्य है। अर्थात् y - 4x के क्षेत्र बिन्दु OB पर या उसके ऊपर है।

(iv) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसके दार्यी ओर है।

(v) $y \ge 0$ के क्षेत्र बिन्दु x-अक्ष पर और उसके ऊपर हैं।

(vi) रेखा x = 20 और y = 4x बिन्दु C(20, 80) पर काटती हैं।

(vii) रेखा y = 4x और x + y = 200 बिन्दु B(40, 160) पर काटती हैं।

(viii) रेखा x = 20 और x + y = 200 बिन्दु A(20, 180) पर काटती हैं। इस प्रकार समस्या का सुसंगत क्षेत्र ABC है जिसे छायांकित किया गया है।

अर्थात् कोनीय बिन्दु हैं A(20, 180), B(40, 160) तथा C(20, 80)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 1000x + 600y$
A(20, 180)	128000
B(40, 160)	136000 (अधिकतम)
C(20, 80)	68000

अत: अधिकतम लाभ ₹ 1,36,000 पाने के लिए 40 यात्री प्रथम श्रेणी और 160 सस्ती श्रेणी में होने चाहिए।

प्रश्न 6. दो अन्न भण्डारों A और B की भण्डारण क्षमता क्रमश: 100 विवंटल और 50 विवंटल हैं। उन्हें तीन राशन की दुकानों D, E और F पर अन्न उपलब्ध कराना पड़ता है, जिनकी आवश्यकताएँ क्रमश: 60, 50, और 40 विवंटल हैं। भण्डारों से दुकानों को प्रति विवंटल परिवहन व्यय निम्न सारणी के अनुसार है—

प्रति वि	प्रति क्विंटल परिवहन व्यय (₹ में)		
को/से	A	. B	
D	6	4	
E .	3	2	
. F	2.50	3	

परिवहन व्यय के न्यूनतमीकरण के लिए आपूर्ति का परिवहन कैसे किया जाए ? न्यूनतम परिवहन मूल्य क्या है ?

हल : मान लीजिए भण्डारण A से D दुकान पर x क्विंटल भण्डारण और E को y क्विंटल भण्डार भेजा जाता है। भण्डारण A में कुल 100 क्विंटल की भण्डारण क्षमता है।

- \therefore A से F दुकान को 100 (x + y) िववंटल भंडार भेजा जाता है।
- $\therefore D$ दुकान में कुल 60 क्विंटल अन्न भण्डार भेजा जा सकता है। तथा भण्डार B से दुकान D में 60-x क्विंटल भण्डार भेजा गया है।
- $\therefore B$ से दुकान E को 50-y क्विंटल भण्डार भेजा है।
- चूँकि भण्डार B में कुल 50 क्विंटल भण्डारण क्षमता है।

अर्थात् B से दुकान में F में 50 - (60 - x + 50 - y) = x + y - 60 क्विंटल भण्डार भेजा गया।

भण्डार A और B में दुकान, D, E, F को भेजा गया भण्डार निम्न प्रकार है—

दुकान/भण्डार	A	В
D F	x v	60 - x $50 - y$
F	100 - x - y	50 - (60 - x) - (50 - y) $= x + y - 60$

अवरोध हैं : $x \ge 0$, $y \ge 0$, $100 - x - y \ge 0$, $x + y \le 100$

 $60-x \ge 0$ या $x \le 60$, $50-y \ge 0$ या $y \le 50$

 $x + y - 60 \ge 0$ या $x + y \ge 60$

कुल परिवहन व्यय

$$= 6x + 3y + 2.5 (100 - x - y) + 4(60 - x) + 2(50 - y) + 3(x + y - 60)$$

= $6x + 3y + 250 - 2.5x - 2.5y + 240 - 4x + 100 - 2y + 3x + 3y - 180$
= $2.5x + 1.5y + 410$

- (i) $x \ge 0$ क्षेत्र के बिन्दु y-अक्ष पर और उसकी दार्यी ओर हैं।
- (ii) $y \ge 0$ क्षेत्र के बिन्दु x-अक्ष पर उसके ऊपर हैं।
- (iii) x + y ≤ 100 का क्षेत्र-

रेखा x+y=100 बिन्दु (100, 0) और (0, 100) से होकर जाती है। $x+y\leq 100$ में x=0, y=0 रखने पर $0\leq 100$ जो सत्य है। अर्थात् $x+y\leq 100$ के क्षेत्र बिन्दु रेखा x+y=100 पर या इसके नीचे हैं।

- (iv) $x \le 60$ का क्षेत्र x = 60 पर और इसके बार्यी ओर है।
- (v) $y \le 50$ के क्षेत्र बिन्दु y = 50 पर और उसके नीचे है।
- (vi) $x + y \ge 60$ का क्षेत्र—

रेखा x + y = 60 बिन्दु (60, 0), (0, 60) से होकर जाती है। $x + y \ge 60$ में x = 0, y = 0 रखने पर $0 \ge 60$ जो सत्य नहीं है। अर्थात् $x + y \ge 60$ के क्षेत्र बिन्दु x + y = 60 पर और उसके ऊपर हैं। इस प्रकार इस समस्या का सुसंगत क्षेत्र ABCD है।

- (a) रेखा y = 50 और x + y = 60 बिन्दु A(10, 50) पर काटती है।
- (b) रेखा x + y = 100 ओर y = 50 बिन्दु B(50, 50) पर काटती है
- (c) रेखा x + y = 100 और x = 60 बिन्दु C(60, 40) पर काटती है।
- (d) रेखा x = 60 और x + y = 60 बिन्दु D(60, 0) पर काटती है।

अर्थात् कोनीय बिन्दु हैं A(10,50), B(50,50), C(60,40) तथा D(60,0)। अब इन बिन्दुओं पर Z का मान निम्नांकित सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 2.5x + 1.5y + 410$
A(10, 50)	510 (न्यूनतम)
B(50, 50)	610
C(60, 40)	620
D(60, 0)	560

Z का न्यूनतम मान है ₹ 100 जब भण्डार A से दुकान D पर 10 क्विंटल और दुकान E को 50 क्विंटल भण्डार भेजा जाए।

अतः भण्डार A से दुकान D, E, F को क्रमशः 10, 50, 40 क्विंटल और भण्डार B से दुकान D, E, F को क्रमशः 50, 0, 0 क्विंटल भण्डार भेजने से न्यूनतम परिवहन व्यय ₹ 510 होगा।

प्रश्न 7. एक तेल कारखाने में दो डिपो A और B हैं जिनकी क्षमताएँ क्रमशः 7000 लीटर और 4000 लीटर की हैं। कारखाने द्वारा तीन पेट्रोल पम्पों D, E, F के लिए आपूर्ति करनी है, जिनकी आवश्यकताएँ क्रमशः 4500 लीटर, 3000 लीटर और 3500 लीटर की है। डिपो से पेट्रोल पम्पों की दूरियाँ (km में) निम्नांकित सारणी के अनुसार हैं:

7		ि(km में)
को/से	A	В
D	7	3
E	6	4
F	3	2

यह मानते हुए कि परिवहन व्यय प्रति 10 लीटर पर प्रति किलोमीटर ₹ 1 रुपया है। ज्ञात कीजिए कि कैसी आपूर्ति योजना अपनाई जाए, जिससे परिवहन व्यय का न्यूनतमीकरण हो जाए ? न्यूनतम व्यय क्या है ?

हुल : मान लीजिए डिपो A से D पेट्रोल पम्प के x लीटर और E पम्प के y लीटर तेल की आपूर्ति होती है। डिपो A की कुल क्षमता 7000 लीटर है।

अत: डिपो A पेट्रोल पम्प F के 7000 - (x + y) लीटर तेल की आपूर्ति करता है।

अर्थात्
$$7000 - (x + y) \ge 0$$
 अर्थात् $x + y \le 7000$...(i)

पेट्रोल पम्प D की माँग 4500 लीटर तेल की है।

 \therefore डिपो B से 4500 - x लीटर तेल की आपूर्ति होती है।

पेट्रोल पम्प E को 3000 लीटर तेल की आवश्यकता है।

 \therefore डिपो B पेट्रोल पम्प E को 3000-y लीटर तेल आपूर्ति करता है।

पेट्रोल F की 3500 लीटर तेल की आवश्यकता है।

 $\therefore F$ को डिपो A द्वारा आपूर्ति 7000 - (x + y) हो चुकी है। या डिपो B पेट्रोल पम्प F को 3500 - (7000 - x - y)

= -3500 + x + y लीटर तेल की आपूर्ति होती है।

$$-3500 + x + y \ge 0$$
 या $x + y \ge 3500$

...(iv)

∴ इस समस्या में अवरोध निम्न प्रकार हैं—

 $x + y \le 7000, x \le 4500, y \le 3000, x + y \ge 3500, x, y \ge 0$

परिवहन व्यय प्रति 10 लीटर प्रति किलोमीटर ₹ 1 है।

अर्थात् परिवहन व्यय प्रति लीटर प्रति किलोमीटर ₹ 0.1 है।

परिवहन व्यय जानने के लिए निम्न सारणी की सहायता लेने पर

		व्यय प्रति त	तीटर (₹ में)	आपूर्ति	(लीटर में)
पेट्रोल पम्प	डिपो	A	В	A	В
D		0.7	0.3	x	4500 – x
$\boldsymbol{\mathit{E}}$. !	0.6	0.4	. y	3000 – y
$\boldsymbol{\mathit{F}}$		0.3	0.2	7000 - x - y	x + y - 3500

परिवहन व्यय

$$Z = 0.7x + 0.6y + 0.3(7000 - x - y) + 0.3(4500 - x) + 0.4(3000 - y) + 0.2(x + y - 3500)$$

$$= 0.3x + 0.1y + 3950$$

अब उद्देश्य फलन Z का न्यूनतमीकरण करना है-

(i) x + y ≤ 7000 का क्षेत्र-

रेखा x + y = 7000, बिन्दु A(7000, 0), B(0, 7000) से होकर जाती है।

 $x + y \le 7000$ में x = 0, y = 0 रखने पर $0 \le 7000$ जो सत्य है।

अर्थात् $x + y \ge 7000$ रेखा x + y = 7000 पर और उसके नीचे का क्षेत्र है।

- (ii) $x \le 4500$ के क्षेत्र बिन्दु रेखा x = 4500 पर और उसके बार्यी ओर स्थित हैं।
- (iii) $y \le 3000$ के क्षेत्र बिन्दु रेखा y = 3000 पर और उसके नीचे हैं।
- (iv) x + y ≥ 3500 का क्षेत्र—

रेखा x + y = 3500, बिन्दु (3500, 0), (0, 3500) से होकर जाती है।

 $x + y \ge 3500$ में x = 0, y = 0 रखने पर $0 \ge 3500$ जो सत्य नहीं है।

अर्थात् $x + y \ge 3000$ के क्षेत्र बिन्दु रेखा x + y = 3500 पर हैं या उसके ऊपर हैं।

- (v) $x \ge 0$ के क्षेत्र बिन्दु y-अक्ष पर और उसके दायीं ओर हैं।
- (vi) $y \ge 0$ के क्षेत्र बिन्दु x-अक्ष पर हैं और उसके ऊपर हैं।
- (vii) x + y = 3500 रेखा y = 0 और y = 3000 से क्रमशः B(3500, 0) और A(500, 3000) पर मिलती है।
- (viii) x + y = 7000 रेखा x = 4500 और y = 3000 से क्रमश: C(4500, 2500) और D(4000, 3000) मिलती है।
 - (ix) रेखा x = 4500, x-अक्ष पर E(4500, 0) पर मिलती है। इस प्रकार समस्या का सुसंगत क्षेत्र ABECD है।

अर्थात् कोनीय बिन्दु हैं A(500, 3000), B(3500, 0), E(4500, 0), C(4500, 2500) तथा D(4000, 3000)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 0.3x + 0.1y + 3950$
A(500, 3000)	4400 (न्यूनतम)
B(3500, 0)	5000
E(4500, 0)	5300
C(4500, 2500)	5550
D(4000, 3000)	5450

अत: परिवहन व्यय ₹ 4400 न्यूनतम होगा जब डिपो A पेट्रोल पम्प D, E, F को क्रमश: 500, 3000, 3500 लीटर तेल की आपूर्ति करे और डिपो B पेट्रोल पम्प D, E, F को 4000, 0, 0 लीटर तेल की सप्लाई करे। उत्तर

प्रश्न 8. एक फल उत्पादक अपने बाग में दो प्रकार के खादों P ब्रांड और Q ब्रांड का उपयोग कर सकता है। मिश्रण के प्रत्येक थैले में नाइट्रोजन, फॉस्फोरिक अम्ल, पोटाश और क्लोरीन की मात्रा (kg में) सारणी में दिया गया है। परीक्षण संकेत देते हैं कि बाग को कम-से-कम 240 kg फॉस्फोरिक अम्ल, कम-से-कम 270 kg पोटाश और क्लोरीन की अधिक-से-अधिक 310 kg की आवश्यकता है।

यदि उत्पादक बाग के लिए मिलाई जाने वाली नाइट्रोजन की मात्रा का न्यूनतमीकरण करना चाहता है तथा प्रत्येक मिश्रण के कितने थैलों का उपयोग होना चाहिए ? मिलाई जाने वाली नाइट्रोजन की निम्नतम मात्रा क्या है? kg प्रति थैला

	ब्रांड <i>P</i>	ब्रांड <i>Q</i>	
नाइट्रोजन	3	3.5	
फॉस्फोरिक अम्ल	1	2	
पोटाश	3	1.5	
वलोरीन	1.5	2	

हल: माना कि ब्रांड P के x थैले और ब्रांड Q के y थैले मिलाए जाते हैं। इन थैलों में नाइट्रोजन की मात्रा = 3x + 3.5y

.. उद्देश्य फलन

Z = 3x + 3.5y का मान न्यूनतम करना है।

मिश्रण में फॉस्फोरिक अम्ल की मात्रा = (x + 2y) kg

या

 $x + 2y \ge 240$

मिश्रण में पोटाश की मात्रा = 3x + 1.5y

या

 $3x + 1.5y \ge 270$

मिश्रण में क्लोरीन की मात्रा = 1.5x + 2y

या

 $1.5x + 2y \le 310$

समस्या में अवरोध इस प्रकार हैं-

$$x + 2y \ge 240$$
, $3x + 1.5y \ge 270$, $1.5x + 2y \ge 310$, $x, y \ge 0$

(i) $x + 2y \ge 240$ का क्षेत्र— रेखा x + 2y = 240 बिन्दु A(240, 0), B(0, 120) से होकर जाती है।

 $x+2y\geq 240$ में $x=0,\,y=0$ रखने पर $0\geq 240$ जो सत्य नहीं है। अर्थात् $x+2y\geq 240$ के क्षेत्र बिन्दु AB पर और उसके ऊपर हैं। (ii) $3x+1.5y\leq 270$ रेखा 3x+1.5y=270 बिन्दु $C(90,\,0)$ और $D(0,\,180)$ से होकर जाती है। $3x+1.5y\geq 270$ में $x=0,\,y=0$ रखने पर $0\geq 270$ जो सत्य नहीं है। अर्थात् $3x+1.5y\geq 270$ के क्षेत्र बिन्दु CD पर या इसके ऊपर हैं।

(iii) 1.5x + 2y ≤ 310 का क्षेत्र—

रेखा 1.5x + 2y = 310 बिन्दु $E\left(206\frac{2}{3}, 0\right)$ और F(0, 155) से होकर जाती है। $1.5x + 2y \le 310$ में x = 0, y = 0 रखने पर $0 \le 310$ जो सत्य है। अर्थात् $1.5x + 2y \le 310$ के क्षेत्र बिन्दु EF पर या इसके नीचे हैं। (iv) $x \ge 0$ के क्षेत्र बिन्दु रेखा y-अक्ष पर उसके दायों ओर हैं। (v) $y \ge 0$ के क्षेत्र बिन्दु रेखा x-अक्ष पर उसके ऊपर हैं। (vi) x + 2y = 240 और 3x + 1.5y = 270 बिन्दु Q(40, 100) पर मिलती है। (vii) x + 2y = 240 तथा 1.5x + 2y = 310 बिन्दु R(140, 50) पर मिलती है।

(viii) 3x + 1.5y = 270 और 1.5x + 2y = 310 बिन्दु P(20, 140) पर काटती है।

इस प्रकार समस्या का सुसंगत क्षेत्र त्रिभुज PQR है।

अर्थात् कोनीय बिन्दु हैं P(20, 140), Q(40, 100) तथा R(140, 50)। अब इन बिन्दुओं पर Z का मान निम्न सारणी के अनुसार ज्ञात करेंगे—

कोनीय बिन्दु	Z का संगत मान $Z = 3x + 3.5y$
P(20, 140)	550
Q(40, 100)	470 (न्यूनतम)
R(140, 50)	595

अतः P प्रकार के 40 थैले और Q प्रकार के 100 थैले पर Z का मान न्यूनतम है।

नाइट्रोजन की न्यूनतम मात्रा 470 kg है।

उत्तर

प्रश्न 9. उपरोक्त प्रश्न 8 पर ध्यान दीजिए। यदि उत्पादक बाग में मिलाई जाने वाली नाइट्रोजन की मात्रा का अधिकतमीकरण चाहता है तो मिश्रण के कितने थैलों को मिलाया जाना चाहिए ? मिलाई जाने वाली नाइट्रोजन की अधिकतम मात्रा क्या है ?

हल: प्रश्न 8 के हल से हम पाते हैं कि बिन्दु R(140,50) पर Z अधिकतम है। अत: P प्रकार 140 थैले और Q प्रकार के 50 थैले पर Z का मान अधिकतम है। नाइट्रोजन की अधिकतम मात्रा $595~{
m kg}$ है।

प्रश्न 10. एक खिलौना कम्पनी A और B दो प्रकार की गुड़ियों का निर्माण करती है। मार्किट परीक्षणों तथा उपलब्ध संसाधनों से संकेत मिलता है कि सम्मिलित उत्पादन स्तर प्रति सप्ताह 1200 गुड़ियों से अधिक नहीं होना चाहिए और B प्रकार की गुड़ियों की अधिक-से-अधिक माँग A प्रकार की गुड़ियों से आधी है। इसके अतिरिक्त A प्रकार की गुड़ियों का उत्पादन स्तर दूसरे प्रकार की गुड़ियों के उत्पादन स्तर के तीन गुने से 600 नग अधिक है। यदि कम्पनी A और B प्रत्येक गुड़िया पर क्रमश: ₹ 12 और ₹ 16 का लाभ कमाती है। लाभ का अधिकतमीकरण करने के लिए प्रत्येक के कितने नगों का साप्ताहिक उत्पादन करना चाहिए।

हल : मान लीजिए कम्पनी A प्रकार की x तथा B प्रकार की y गुड़ियों का उत्पादन करती है।

कम्पनी को A प्रकार की गुड़ियों पर ₹ 12 और B प्रकार की गुड़ियों पर ₹ 16 का लाभ होता है।

उद्देश्य फलन Z = 12x + 16y

दोनों प्रकार की गुड़ियों का अधिकतम उत्पादन = 1200

$$\therefore x + y \le 1200 \qquad \dots (i)$$

A प्रकार की गुड़ियों का उत्पादन B प्रकार की गुड़िया 3 गुने से अधिक 600 गुड़िया अधिक है।

या
$$x - 3y \le 600 \tag{ii}$$

B प्रकार की गुड़ियों की माँग अधिक-से-अधिक A प्रकार की गुड़ियों से आधी है।

या
$$y \ge \frac{x}{2}$$
 ...(iii)

इस प्रकार अवरोध ये हैं-

$$x + y \le 1200, x - 3y \le 600, y \ge \frac{x}{2}, x, y \ge 0$$

(i) x + y ≤ 1200 का क्षेत्र—

रेखा x + y = 1200 बिन्दु A(1200, 0) और B(0, 1200) से होकर जाती है।

 $x + y \le 1200$ में x = 0, y = 0 रखने पर $0 \le 1200$ जो सत्य है।

अर्थात् $x + y \le 1200$ के क्षेत्र बिन्दु AB पर और उसके नीचे हैं।

(ii) x - 3y ≤ 600 का क्षेत्र—

रेखा x - 3y = 600 बिन्दु C(600, 0), D(0, -200) से होकर जाती है।

 $x - 3y \le 600$ में x = 0, y = 0 रखने पर $0 \le 600$ जो सत्य है।

अर्थात् $x+3y \le 600$ रेखा CD पर और मूल बिन्दु की ओर है अर्थात् CD के ऊपर हैं।

(iii)
$$y \ge \frac{x}{2}$$
 या $x - 2y \ge 0$ का क्षेत्र—

रेखा x - 2y = 0 मूल बिन्दु O और P(800, 400) से होकर जाती है।

 $x - 2y \ge 0$ में x = 200, y = 0 रख़ने पर $200 \ge 0$ जो सत्य है।

अर्थात् $x-2y\geq 0$ के क्षेत्र बिन्दु OP पर और बिन्दु (200, 0) की ओर है।

या इसका क्षेत्र OP के नीचे है।

- (iv) x ≥ 0 के क्षेत्र बिन्दु y-अक्ष पर और उसके दार्यी ओर हैं।
- (v) $y \ge 0$ के क्षेत्र बिन्दु x-अक्ष पर हैं और उसके ऊपर हैं।
- (vi) रेखा x + y = 1200 और x = 2y बिन्दु P(800, 400) पर मिलती है।
- (vii) रेखा x 3y = 600 और x + y = 1200 बिन्दु Q(1050, 150) पर मिलती है। इस प्रकार समस्या का सुसंगत क्षेत्र *OPQC* छायांकित है।

अर्थात् कोनीय बिन्दु हैं P(800, 400), Q(1050, 150) तथा C(600, 0)। अब इन बिन्दुओं पर Z का मान अग्रांकित सारणी के अनुसार ज्ञात करेंगे-

कोनीय बिन्दु	Z का संगत मान Z = 12x + 16y
P(800, 400)	16000 → अधिकतम
Q(1050, 150)	15000
C(600, 0)	7200

अधिकतम लाभ ₹ 16000 जो x=800, y=400 पर होता है। अत: अधिकतम लाभ ₹ 16000 पाने के लिए A प्रकार को 800 और B प्रकार की 400 गुड़ियों का उत्पादन करना चाहिए। उत्तर