SM&FT₂₀₂₂ SM&FT 2022 - Bari

Slow-trip variations

Introduction

Paradigmatic Models

K7 Protocol

Observables

Numerical results

Two-Level Model

Conclusions

Slow round-trip variations across quantum and classical critical points

Francesco Tarantelli francesco.tarantelli@phd.unipi.it

Tarantelli, Vicari PR B 105 235124 (2022)

University of Pisa and INFN

19th December

Introduction

Slow-trip variations

F. Tarantelli

Paradigmatic Models

KZ Protocol

Observables

Numerical

results Quantum Ising

Two-Level Model

Conclusions

 We address out-of-equilibrium dynamics of many-body systems subject to round-trip protocols across quantum and classical phase transitions:

• We perform Kibble-Zurek(KZ) protocols which develop dynamic scaling behavior at both the transitions obtained from a Renormalization Group(RG) framework:

• While classical and quantum models, belonging to the same universality class, show similar dynamic scaling frameworks, substantial differences emerge in the round-trip evolution.

Slow-trip

Classical Ising Model

variations F. Tarantelli

Introduction **Paradigmatic** Models

Classical

KZ Protocol Observables

Numerical results

Two-Level

Model

2D Classical Ising Hamiltonian with size $L \times L$ and with PBC:

 $H_{\rm cl} = -J \sum_{\langle i, j \rangle} S_i \cdot S_j - w \cdot \sum_i S_i , \quad (1)$

 $Z = \sum_{\{S_i\}} e^{-H/T}$;

(2)

Continuous Transition point: at w=0 and $T_c=\frac{2}{\ln(1+\sqrt{2})}$ $(J=1 \ {\rm fixed})$

RG dimensions:

 $w \longrightarrow y_w = 15/8$ $T \longrightarrow y_t = 1$ Metropolis time $t \longrightarrow z = 2.1667(5)$.

F.T., E.V. PR B 105 235124 3/14

Slow-trip

Quantum Ising Model

variations F.Tarantelli

Introduction

Paradigmatic

Models Classical

Quantum

KZ Protocol

Observables

Dynamic scaling

Numerical results Classical Ising Quantum Ising

Kitaev chain
Limit ⊕ ★ --Two-Level

Model Conclusions

1D Quantum Ising Hamiltonian for a chain of size
$$L$$
 and PBC $(\hat{\sigma}_{L+1}^{(k)} = \hat{\sigma}_1^{(k)})$:
$$\hat{H}_{\rm Is} = -\sum_{x=1}^L \hat{\sigma}_x^{(1)} \hat{\sigma}_{x+1}^{(1)} - g \sum_{x=1}^L \hat{\sigma}_x^{(3)} - w \sum_{x=1}^L \hat{\sigma}_x^{(1)} ;$$

$$\sigma_x^{(k)}$$
 are the Pauli matrices on the x^{th} site in the k -axis direction.

Continuous Transition point: at w=0 and $g_c=1$ RG dimensions:

 $w \longrightarrow y_w = 15/8$ $r = g - g_c \longrightarrow y_r = 1$ time $t \longrightarrow z = 1$ $\hat{\sigma}_x^{(1)} \longrightarrow y_l = d + z - y_h = 1/8 .$ (4)

(3)

Slow-trip variations F. Tarantelli

Introduction

Paradigmatic Models

Quantum **KZ** Protocol

Observables

Numerical results

Two-Level Model

Conclusions

Kitaev Hamiltonian mapped into a spin-1/2 XY chain, by a Jordan-Wigner transformation (OBC):

 $\hat{c} \longrightarrow \hat{\sigma}$

 $w = \mu - \mu_c \longrightarrow y_w = 1$ $\hat{c}_r, \hat{c}_r^{\dagger} \longrightarrow y_c = 1/2$

 $\hat{H}_{K}^{(ABC)} = -\sum_{x=1}^{L} \left[\left(\hat{c}_{x}^{\dagger} \, \hat{c}_{x+1} + \hat{c}_{x+1}^{\dagger} \, \hat{c}_{x} \right) + \delta \left(\hat{c}_{x} \, \hat{c}_{x+1} + \hat{c}_{x+1}^{\dagger} \, \hat{c}_{x}^{\dagger} \right) \right] - \sum_{x=1}^{L} \mu \, \hat{c}_{x}^{\dagger} \, \hat{c}_{x} ; \quad (5)$

 $u_c = -2$ and $\delta = 1$ fixed;

dynamic exp: z=1.

F.T., E.V. PR B 105 235124 5/14

RG dimensions:

```
(i) Start at the equilibrium state (classical) and at the
```

$$\frac{d|\Psi(t)\rangle}{dt} = -i\hat{H}[w(t)]|\Psi(t)\rangle ;$$

Two-Level Model

variations

F. Tarantelli Introduction **Paradigmatic**

KZ Protocol Observables

$$\frac{d}{}$$

) quantum case:
$$d\ket{\Psi(t)}$$

original value wi < 0, closing the cycle.

$$\langle (t) \rangle$$
:

(iii) Then, for $t > t_f$, w(t) decreases with the same t_s , from $w_f > 0$ to the

$$(t) = t/t_s$$

$$= t/t_s ;$$

$$t)=t/t_s$$
 : the time s

- from $w_i < 0$ to $w_f > 0$, where t_s is the time scale of the slow variations of w.
- $w(t) = t/t_s$;
- Metropolis algorithm:
- classical one:
- ground state $|\Psi(t=t_i)\rangle \equiv |\Psi(w_i<0)\rangle$ (quantum);

F.T., E.V. PR B 105 235124 6/14

Observables

Classical Ising model

 $M(t) = \frac{1}{L^2} \sum_{i} \langle S_i \rangle_t \; ;$

 $G(t, \boldsymbol{x}, \boldsymbol{y}) \equiv \langle s_{\boldsymbol{x}} s_{\boldsymbol{y}} \rangle_t$.

Quantum models

Adiabaticity function:

Kitaev:

 $C(x,t) \equiv \langle \Psi(t) | c_i^{\dagger} c_{i+x} + c_{i+x}^{\dagger} c_i | \Psi(t) \rangle$.

 $A(t) = \left| \langle \Psi_0[w(t)] | \Psi(t) \rangle \right|;$

Ising:

 $M(t) \equiv \frac{1}{L} \sum \langle \Psi(t) | \sigma_x^{(1)} | \Psi(t) \rangle;$

(6)

(7)

(8)

F.T., E.V. PR B 105 235124 7/14

Introduction **Paradigmatic**

Models

KZ Protocol

Conclusions

Numerical results
Classical Ising
Quantum Ising
Kitaev chain
Limit
$$\Theta_{+-} \rightarrow \infty$$

results

Classical Ising

Quantum Ising

Kitaev chain

Limit
$$\Theta_{\star} \to \infty$$

Slow-trip variations

Dynamic scaling framework for the round-trip

F. Tarantelli

Introduction **Paradigmatic**

Models

KZ Protocol

Observables Dynamic scaling

Numerical results

Two-Level Model

where

with $w_f = -w_i = w_{\star}$, we have:

 $\Upsilon = t_{\circ}/L^{\zeta}$. $\Theta = w(t) t_{\circ}^{1-\kappa}$, $\Theta_{\star} = w_{\star} t_{\circ}^{1-\kappa}$.

 $\zeta = y_w + z$, $\kappa = z/\zeta$, $1 - \kappa = y_w/\zeta$.

The asymptotic dynamic FSS behavior is obtained by taking $t_s \to \infty$ and $L \to \infty$:

 $\Theta_i = w_i t_{\circ}^{1-\kappa}, \qquad \Theta = w(t) t_{\circ}^{1-\kappa} = t/t_{\circ}^{\kappa},$

 $K = w(t)L^{y_w}, \qquad \Upsilon = t_s/L^{\zeta},$

(11)

F.T., E.V. PR B 105 235124 8/14

(9)

(10)

Numerical results - Classical Ising

1.2

Slow-trip variations F. Tarantelli Introduction **Paradigmatic** 1.6 $\Gamma^{y_{\parallel}}M$ Models **KZ** Protocol

Ř

Figure 2: Thermalized classical state for fixed $\Upsilon = 10^{-4}$, and fixed $w_{\star} = 0.02$ and $w_{\star} = 0.04.$

Model Conclusions

Classical Ising

Two-Level

 $\Theta = w(t)t_s^{1-\kappa}$. F.T., E.V. PR B 105 235124 9/14

SM&FT₂₀₂₂

Two-Level

Numerical results - Quantum Ising

Figure 3: $A^{(a/b)}(t,t_s,w_\star,L)\approx \mathcal{A}^{(a/b)}(\Upsilon,\Theta,\Theta_\star) \text{ ; fixed}$

Model $\Upsilon = t_s/L^{\zeta} = 0.1 \text{ and } \Theta_{\star} = w_{\star}L^{1-\kappa} = \sqrt{18},$ for the outward (top) and return (bottom)

Figure 4: Fixed $\Upsilon=0.1$ and $w_\star=1/4,$ for the outward (top) and return (bottom), versus $\Theta=w(t)L^{1-\kappa}.$

for the outward (top) and return (bottom).

F.T., E.V. PR B 105 235124 10/14

Numerical results - Kitaev chain

Figure 5: $A^{(a/b)}(t,t_s,w_\star,L)\approx \mathcal{A}^{(a/b)}(\Upsilon,\Theta,\Theta_\star)$; Finite $\Theta_{\star} = 10$ at fixed $\Upsilon = t_s/L^{\zeta} = 0.001$ and $\Theta_{\star} = w_{\star} L^{1-\kappa} = 10$, for outward and return.

Figure 6: At L=2000 and $\Upsilon=0.001$ for the outward (top) and return (bottom), versus Θ , for various Θ_{\star} . F.T., E.V. PR B 105 235124 11/14

Two-Level Model Conclusions

Kitaev chain

The limit $\Theta_{\star} \to \infty$

values at $\Theta = -\Theta_{\star}$.

Observables

Numerical results

Limit $\Theta_{\star} \to \infty$

Two-Level Model

Conclusions

 Θ_{\star} , close to $\Theta_{\star} = 50$. The top plot shows the values at $\Theta = \Theta_{+}$, while the bottom plot the

Figure 8: **Kitaev** - Fixed L=40, $\Upsilon=0.01$ versus Θ_{\star} , close to $\Theta_{\star} = 70$. The top plot shows the values at $\Theta = \Theta_{\star}$, while the bottom at $\Theta = -\Theta_{\star}.~_{\text{F.T., E.V. PR B 105 235124}}~_{12/14}$

$H_{2\ell}(t) = -\beta(t)\sigma^{(3)} + \frac{\Delta}{2}\sigma^{(1)}$ Two-Level Model:

Slow-trip variations

F. Tarantelli

Introduction

Paradigmatic Models

KZ Protocol

Observables

Numerical results

Conclusions

Figure 10: Dependence on τ_{\star} at the end of round-trip protocol for $v = t_s \Delta^2 = 1$, and $\tau_{\star} \approx 100.$

Conclusions

Slow-trip variations

F. Tarante

Introduction

Paradigmatic Models

Classical Quantum

KZ Protocol

Observables

Dynamic scaling

Numerical

results

Classical Ising

Quantum Ising

Kitaev chain

Limit $\Theta_+ \to \infty$

Two-Level Model • We studied the out-of-equilibrium behavior when Hamiltonian parameters slowly cross phase transition;

- We extend the RG framework from the standard one-way KZ protocols to the round-trip one;
- Analogy of the scaling behaviors at classical and quantum transitions is only partially extended to round-trip KZ protocols. Substantial differences emerge:
 - 1 classical systems develop scaling hysteresis-like scenarios,
 - ② in quantum systems, the persistence of oscillating relative phases make the return way extremely sensitive to the parameters of the protocol;
- Even in the simple two-level quantum model, we have a similar behavior.