Computer Architecture

Course Information

Course HomepageLMS system: https://lms.ncu.edu.tw/

■ Instructor: 鄭旭詠

e-mail: breeze.cheng@gmail.com

Teaching Assistant:

劉亞昇 anderson08121995@gmail.com

Course Information

Textbook

- J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, fifth Edition, Morgan Kaufmann Publishing Co.
- D. A. Patterson and J. L. Hennessy, Computer Organization & Design: The hardware/software interface, Morgan Kaufmann Publishing Co.

Grading Policy

- 15% Quiz and Class Participation
- 28% Mid-term1
- 28% Mid-term2
- 29% Final Examination

Reference Resources

David Patterson

- Electrical Engineering and Computer Sciences, University of California, Berkeley
- http://www.eecs.berkeley.edu/~pattrsn
- http://www-inst.eecs.berkeley.edu/~cs252
- Shih-Hao Hung, National Taiwan University
 Graduate Computer Architecture
 http://www.csie.ntu.edu.tw/~hungsh/CA/ca.htm
- David E. Culler, UC-Berkeley http://www.cs.berkeley.edu/~culler/courses/cs252-s05/

What is "Computer Architecture"?

Applications

- Semiconductor Materials
- Coordination of many levels of abstraction
- Under a rapidly changing set of forces
- Design, Measurement, and Evaluation

The Instruction Set: a Critical Interface

- Properties of a good abstraction
 - Lasts through many generations (portability)
 - Used in many different ways (generality)
 - Provides convenient functionality to higher levels
 - Permits an efficient implementation at lower levels

Computer Architecture Topics

Input/Output and Storage

Computer Engineering Methodology

Growth in Process Performance since the

Crossroads: Conventional Wisdom in Comp. Arch

- Old Conventional Wisdom: Power is free, Transistors expensive
- New Conventional Wisdom: "Power wall" Power expensive (Maximum power dissipation of air-cooled chips)
- Old CW: Sufficiently increasing Instruction Level Parallelism via compilers, innovation (Out-of-order, speculation, VLIW, ...)
- New CW: "ILP wall" law of diminishing returns on more HW for ILP
- Old CW: Multiplies are slow, Memory access is fast
- New CW: "Memory wall" Memory slow, multiplies fast (200 clock cycles to DRAM memory, 4 clocks for multiply)
- Old CW: Uni-processor performance 2X / 3 yrs
- New CW: multiple "cores"

Crossroads

- In 2004, Intel canceled its high-performance uniprocessor projects and joined IBM and Sun
- Declaring that the road to higher performance would be via multiple processor per chip rather than faster uni-processors
- Little Instruction Level Parallelism (ILP) left to exploit efficiently => switch to Thread Level Parallelism (TLP) and Data Level Parallelism (DLP)
- ILP: Compiler and hardware conspire to exploit ILP implicitly without programmer's attention
- TLP and DLP: explicitly parallel, requiring the programmer to write parallel code to gain performance

Syllabus

2. 23	Course Overview
3. 2	Fundamentals of Computer Design
3. 9	Fundamentals of Computer Design
3. 16	Instruction Set Principles and Pipelining
3. 23	Advanced Pipelining and Instruction Level Parallelism (ILP)
3. 30	Midterm 1
4. 6	校際活動週
4. 13	Advanced Pipelining and ILP, scoreboard
4. 20	Scoreboard, Tomasulo
4. 27	Branch Prediction
5. 4	Multi-Processers
5. 11	Midterm 2
5. 18	Memory Hierarchy
5. 25	Memory Hierarchy, Cache
6. 1	Cache, Virtual Memory
6. 8	I/O, Storage
6. 15	Final Exam