S

93202A

SUPERVISOR'S USE ONLY

TOP SCHOLAR NZOA

QUALIFY FOR THE FUTURE WORLD KIA NOHO TAKATŪ KI TŌ ĀMUA AO!

NEW ZEALAND QUALIFICATIONS AUTHORITY MANA TOHU MĀTAURANGA O AOTEAROA

Scholarship 2016 Calculus

9.30 a.m. Friday 25 November 2016 Time allowed: Three hours Total marks: 40

ANSWER BOOKLET

There are five questions in this examination. Answer ALL FIVE questions, choosing ONE option from part (b) of Question Five.

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

Write ALL your answers in this booklet.

Make sure that you have Formulae and Tables Booklet S-CALCF.

Show ALL working. Start your answer to each question on a new page. Carefully number each question.

Answers developed using a CAS calculator require **ALL commands to be shown**. Correct answers only will not be sufficient.

Check that this booklet has pages 2–27 in the correct order and that none of these pages is blank.

The graph for Question Five (b) is repeated on pages 26 and 27 of this booklet.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

This examination consists of five questions. Answer all FIVE questions, choosing ONE option from part (b) of Question Five.

QUESTION						
L	a) $\frac{y}{z} = k$, $y = kx$. Maximum gradient k					
	$k=\tan\theta=\sqrt{3}$					
San	J3 //					
* 22 V.	$\frac{1}{2}$					
	(b)i) $\frac{df}{da} = 2\pi \left[n(x+1) + \frac{\pi^2}{x+1} \right]$					
. تعد المشاهر ا	$\frac{d^{2}f}{dx^{2}} = \frac{2x}{x+1} + 2\ln(x+1) + \frac{2x+2x-x^{2}}{(x+1)^{2}}$					
	$= \frac{2x}{7(+1)} + 2/n(x+1) + 1 - \frac{1}{(7(+1)^2 - 1)^2}$					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	$\frac{d^{2}}{dx^{4}} = -2(x+1)^{-2} - 4(x+1)^{-3} - 6(x+1)^{-4} + f^{(4)}(0) = -2 - 4 - 6$					
e agente e e e	La Company of the Com					
was de-	$\frac{d^{3}f}{dx^{5}} = 4(\pi + 1)^{-3} + 12(\pi + 1)^{-4} + 24(\pi + 1)^{-5}f^{(5)}(0) = 2\times2! + 2\times3! + 4!$ $\frac{d^{5}f}{dx^{5}} = -12(\pi + 1)^{-4} - 48(\pi + 1)^{-5} - 120(\pi + 1)^{-6}f^{(6)}(0) = -2\times3! - 2\times4!$					
	$\frac{df}{d\pi^{6}} = -12(\pi+1)^{-4} - 48(\pi+1)^{-5} - 120(\pi+1)^{-6} - 100(\pi+1)^{-6} - 100(\pi+1)^{-6}$					
	VI A					
e man e e e e e e e e e e e e e e e e e e e	$f^{(2600)}(0) = -2 \times 2013! - 2 \times 2014! = 2015!$					
	(0) - 2 \ - 2 \ 1 \ 2 \ 2 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \					

QUESTION

b) i)
$$\frac{d(e^{2x}y)}{dx} = 2e^{2x}y + e^{2x}x \frac{dy}{dx}$$

 $= 2e^{2x}y + e^{2x}(x-2y)$
 $= 2e^{2x}y + e^{2x}x - 2e^{2x}y$
 $= xe^{2x}x + e^{2x}x - 2e^{2x}y + e^{2x}x - 2e^{2x}y + e^{2x}x + 2e^{2x}y + 2e^{2x}x + 2e^{2x}y + 2e^{2x}y + 2e^{2x}$

$$\frac{1}{4} + \tan \theta = 3$$

$$\frac{\pi}{2} - \theta = \frac{1}{3}$$

$$\hat{Q} = 2 \times (\frac{\pi}{z} - \varphi).$$

$$\tan 2 \times (\frac{\pi}{z} - \varphi) = \frac{3 + \frac{3}{3}}{1 - \frac{1}{3} \times 1} = \frac{3}{4} = \tan \theta$$

 $at^{b+1} = csc^{b} = \frac{3}{9} \cdot sinb = \frac{3}{5}$

b)
$$P(a,b)$$
. $AP = \frac{13a-b!}{\sqrt{3^2+1^2}} = \frac{13a-b!}{\sqrt{10}}$
 $BP = \frac{13a+b!}{\sqrt{3^2+1^2}} = \frac{13a-b!}{\sqrt{10}}$

 $AP \times BP = \frac{190^2 - b^2}{10} \frac{1}{10} \frac{99^2 - b^2}{10} \frac{1}{10} \frac{99^2 - b^2}{10} \frac{1}{10} \frac{1}{10}$

As P is on
$$\frac{\chi^2}{4} - \frac{y^2}{36} = 1$$
, it satisfies $\frac{\alpha^2}{4} - \frac{b^2}{36} = 1 + \frac{9\alpha^2}{36} = \frac{36}{36} = \frac{3$

$$\overrightarrow{AP} \times \overrightarrow{BP} = \frac{36}{10} = \frac{18}{5}$$

Top Script (for 93202 Cald 37 – A111	Total Score	40		
Question	Mark	Annotation			
		This paper was remarkable because it was completed in only 8 pages. It was awarded the top script because of the use of succinct and exact answers, showing flair and clear communication throughout.			