Datapath Design

Book of John P. Hayes
Pg 240-244
Book of David A. Patterson
Pg 183-189

Combinational Array Multiplier

- ✓ Composed of arrays of simple combinational elements, each of which implements an add/sub and shift operation for small slices of the multiplicand operands.
- \checkmark X= x_{n-1}x_{n-2}....x₁x₀ and Y=y_{n-1}y_{n-2}...y₁y₀ where both X and Y are unsigned integers. Now P = X × Y can be expressed as which can be rewritten as $P = \sum_{i=0}^{n-1} 2^i \left(\sum_{j=0}^{n-1} x_i y_j 2^j\right)$
- \checkmark It requires n × n array of 2-input AND gate.
- \checkmark The product terms are summed by an array of n(n-1) 1-bit full adders.

AND Array for 4×4 bit Unsigned Multiplication

Full Adder Array for 4 × 4 bit Unsigned Multiplication

Array Implementation for Booth Multiplication

✓ It requires a multifunction cell capable of addition, subtraction and no operation (skip).

- ✓ The functions of B are defined by z = a **xor** bH **xor** cH and $C_{out} = (a \text{ xor } D)(b+c) + bc$
- ✓ An n-bit multiplier is constructed from $n^2 + n (n-1)/2$ copies of the B Cell.

Array Implementation for Booth Multiplication

- \checkmark When HD = 10 the equations reduce to full adder equations.
 - z = a xor b xor c and c_{out} = ab + ac + bc
- ✓ When HD = 11 the equations reduce to full subtracter equations:
 - $z = a \text{ xor } b \text{ xor } c \text{ and } c_{out} = ab + \bar{ac} + bc$
- ✓ When H = 0 then z = a and carry plays no role in the final result.
- \checkmark A n × n bit multiplier is constructed from $n^2 + n(n-1)/2$ cells.

Array Implementation for Booth Multiplication

 \checkmark C cell generates control input H and D required by the B cells depending on the combination of $x_i x_{i-1}$.

$$H = x_i \oplus x_{i-1}$$

$$D = x_i \bar{x}_{i-1}$$

X _i	X _{i-1}	Н	D
0	0	0	0
0	1	1	0
1	0	1	1
1	1	0	0

Combinational Array implementing the Booth's Algorithm

Division

✓ Dividend = Quotient × Divisor + Remainder

Division Algorithm and Hardware for Unsigned Number

Read the improved version of the circuit by yourself.

Example ,2

Iteration	Step -	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	1: Rem = Rem - Div	0000	0010 0000	①110 0111
	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0010 0000	0000 0111
	3: Shift Div right	0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	①111 0111
2	2b: Rem < 0 ⇒ +Div, sil Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
1: F	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem < 0 ⇒ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
1: Ren	1: Rem = Rem - Div	0000	0000 0100	@000 0011
4	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	@000 0001
5	2a: Rem ≥ 0 ⇒ sll Q, Q0 = 1	0011	0000 0010	0000 0001
- THE	3: Shift Div right	0011	0000 0001	0000 0001