STEP 1

Convert vol/ele/azi files to netcdf

- ❖ RUN convert-raine-x-band-time-series.sh
 - > CALLS convert-raine-x-band-day.sh foreach day
 - CALLS convert-raine-x-band-hour.sh for 6 hours of data
 - CALLS get-raine-input-files.sh

raine_defaults.cfg sets the chunk size which is currently 6 hours.

RadxConvert uses the parameters file:

/home/users/lbennett/lrose/ingest_params/raine/RadxConvert.raine.uncalib

Example output:

[INFO] Running for: 2019123123

[INFO] Running: sbatch -p short-serial -t 03:00:00 -o

/gws/smf/j04/ncas_radar/lbennett/lotus-output//raine/2020/07/23/2019123118.out -e

/gws/smf/j04/ncas_radar/lbennett/lotus-output//raine/2020/07/23/2019123118.err --wrap="time"

/home/users/lbennett/proc_test/convert-rai

ne-x-band-hour-scratch.sh -t vol 2019123118 2019123119 2019123120 2019123121 2019123122

2019123123"

INPUT: /gws/nopw/j04/ncas_obs/amf/raw_data/ncas-mobile-x-band-radar-1/data/raine/

OUTPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/cfradial/uncalib_v1/

STEP 2

Process the uncalibrated cfradials to calculate offsets for ZDR (same methodology as that written up in raine directory, see pdf there)

- * Run process raine vert scans.sh
 - CALLS process_raine_vert_scans.py

INPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/cfradial/uncalib_v1/vert/OUTPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/calibrations/ZDRcalib/

- Run process raine hourly zdr.sh
 - CALLS process_raine_hourly_zdr.py

INPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/calibrations/ZDRcalib/*/day_ml_zdr.csv OUTPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/calibrations/ZDRcalib/*/hourly_ml_zdr.csv

Use notebook plot_raine_zdr_full_series.ipynb to plot the results and calculate biases

STEP 3

Process the uncalibrated cfradials to calculate offsets for Z

- Run process raine dbz.sh
 - CALLS process_raine_dbz.py
 - CALLS calibrate_day_att in calib_functions.py

INPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/cfradial/uncalib_v1/sur/

OUTPUT:

/gws/nopw/j04/ncas_radar_vol2/data/xband/raine/calibrations/Zcalib/phi_files/010620_att//gws/nopw/j04/ncas_radar_vol2/data/xband/raine/calibrations/Zcalib/phase/

Use notebook *plot_raine_zcalib.ipynb* to plot whole time series and estimate a bias for the project. Use *plot_initial_phase.ipynb* to examine changes in initial differential phase

See PDFs for ZDR and Z Calibration methods and results raine_zdr_calibration_method.pdf raine_Z_calibration_method.pdf

STEP 4

Apply the calibration offsets to the data

- Run python calibrate_raine_by_date.py
 - > CALLS calibrate raine.sh
 - CALLS calibrate raine chunk.sh

Example usage:

python calibrate_raine_by_date.py start_time end_time scan_type params_index python calibrate_raine_by_date.py 20181025000000 20181113235959 sur 1

Where the date strings correspond to the start and end days/times, sur is the scan_type and the params_index refers to which parameters file to use:

/home/users/lbennett/lrose/ingest_params/raine/RadxConvert.raine.calib.0X

The python script finds all the data files for the specified time period and then breaks them into equal "chunks". For example, for vol files which are the largest files (~40-70MB), we split into 6-hourly chunks, which equates to approximately 60 files for each chunk. Each chunk of files is submitted to SLURM for processing.

INPUT: /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/cfradial/uncalib_v1/OUTPUT: First written to scratch /work/scratch-nopw/lbennett/raine/calib_v1/and then immediately copied to the GWS /gws/nopw/j04/ncas_radar_vol2/data/xband/raine/cfradial/calib_v1/

Log files are written to:
/gws/smf/j04/ncas_radar/lbennett/logs/
Lotus output files are written to:
/gws/smf/j04/ncas_radar/lbennett/lotus-output/