2.15 1) Puisque $10 \equiv 1 \mod 9$, on a $10^k \equiv 1^k \equiv 1 \mod 9$ pour tout $k \geqslant 0$.

2)
$$a \equiv a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \dots + a_{n-1} \cdot 10^{n-1} + a_n \cdot 10^n$$

 $\equiv a_0 + a_1 \cdot 1 + a_2 \cdot 1 + \dots + a_{n-1} \cdot 1 + a_n \cdot 1$
 $\equiv a_0 + a_1 + a_2 + \dots + a_{n-1} + a_n$
 $\equiv \sigma(a) \mod 9$

- 3) Soit un entier a. Les affirmations suivantes sont équivalentes :
 - (a) a est divisible par 9;
 - (b) $a \equiv 0 \mod 9$;
 - (c) $\sigma(a) \equiv 0 \mod 9$;
 - (d) la somme des chiffres du nombre a écrit en base 10 est divisible par 9.

On a ainsi démontré le critère bien connu de divisibilité par 9: un nombre est divisible par 9 si et seulement si la somme de ses chiffres est divisible par 9.