

Efficient Evidence Accumulation Clustering for large datasets

Diogo Silva¹, Helena Aidos² and Ana Fred²

¹Portuguese Air Force Academy, Sintra, Portugal ²Instituto de Telecomunicações, Instituto Superior Técnico, Lisbon, Portugal dasilva@academiafa.edu.pt, {haidos, afred}@lx.it.pt

INTRODUCTION

Partition 1

Partition P

Co-association

matrix

Single-Link (SL)

- Evidence Accumulation Clustering (EAC) is a robust ensemble method but its computational complexity restricts its use to small datasets.
- We optimized propose an implementation of the different EAC steps for faster execution and decreased memory usage.

VALIDATION AND SPEED-UP

- The clustering accuracy of the optimized version relative to the original on several small benchmark datasets is negligible, validating its use on large datasets.
- Speed-up over the original version on small datasets varied between 6 and 200 on the different EAC phases.

RULES FOR ENSEMBLE

The rules for the minimum and maximum number of clusters of the ensemble have a big impact on performance and memory usage. Four rules were tested.

Evolution of K_{min} with different rules

Production of the ensemble 104 We used a 2dimensional 10^{3} mixture of 6 10^{2} Time [s] Gaussians for most tests. 2sqrt sk=300, th=30% sk=sqrt2, th=30% 10⁻² 10-3 Number of samples

Challenge O(n²) space complexity Upper triangular matrices are referred to as condensed.

Solution

Parallel GPU

K-Means

Solution CSR sparse matrix with optimized

building

Challenge

COMBINATION OF PARTITIONS Building with different matrix

full condensed sparse complete sparse condensed const sparse condensed linear lime [s] 10° 10-1 10-2 10⁻³ 10^{3} 106

Number of samples

— SLINK

formats

Density of associations relative to the full square matrix

Total time (A) Recovery phase with SL-MST 2sqrt sk=300, th=30% sk=sqrt2, th=30% Time [s] 10¹ 105 Number of samples (B) Recovery phase with \$L-M\$T-Disk 2sqrt sk=300, th=30% sk=sqrt2, th=30% Time [s] 10° Number of samples

RECOVERY OF FINAL PARTITION

Comparison of three methods

for extraction

SL-MST completeSL-MST-Disk complete

SL-MST-Disk condensed

SL-MST condensed

O(n²) space complexity SLINK is a fast implementation of SL that works over non-sparse matrices.

 10^{2} Time 10^{1} 10° 10⁻¹ Solution 10⁻² MST based SL MST disk-based SL 10^{-3} 10^{4} 10^{3} Number of samples

CONCLUSIONS

- EAC is now applicable to a wider spectrum of datasets – we clustered datasets of up to 10 times bigger what was before possible and the implementation supports bigger.
- Speed-up from 6 to 200 compared to original implementation on the different phases for small datasets.
- Better understanding of how ensemble rules affect the performance of the overall algorithm.