Eto matanaaaaliiiis

6 листопада 2022 р.

Зміст

1	Вве	ведення в математичний аналіз		
	1.1	Най простіші логічні символи, квантори	3	
	1.2	Поняття множини, операції над множинами	4	
	1.3	Поняття бінарного відношення. Відношення порядку. Функціональне		
		відношення	5	
	1.4	Відображення(функція). Образ та прообраз множини. Класифікація		
		відображень	6	
	1.5	Зворотнє відображення та композиція відображень.	8	

Розділ 1

Введення в математичний аналіз

1.1 Най простіші логічні символи, квантори

Для запису тверджень використовують вирази, зв'язані з логічними зв'язками:

$$\begin{array}{c|c}
A & \neg A \\
\hline
0 & 1 \\
1 & 0
\end{array}$$

— конюкція (логічне "i") \land , &, Наприклад, $A \land B$

A	В	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

— дизюнкція (логічне "або") \vee , Наприклад, $A \vee B$

— імплікація (логічне слідування) \Rightarrow , Наприклад, $A \Rightarrow B$

— рівносильність (еквівалентність) \Leftrightarrow , Наприклад, $A \Leftrightarrow B$

$$\begin{array}{c|cccc} A & B & A \Rightarrow B \\ \hline 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ \end{array}$$

- ставиться у відповідність \mapsto , Наприклад, $A \mapsto B$
- "такий, що" :, Наприклад, $\{f(x):x\in\mathbb{R}\}$

Логічні квантори

 \forall — квантор загальності (всі, кожний, для всіх, ...)

Приклад 1.1. $(\forall x \in \mathbb{R}) : x^2 + 1 > 0$

∃ — квантор існування ("існує такий елемент, що", ...)

Приклад 1.2. $(\exists x \in \mathbb{R}) : x^2 - 1 = 0$

 $\exists ! - ("існує, і при чому єдиний", ...)$

Приклад 1.3. $(\exists!x \in \mathbb{R}): (x-1)^2 = 0$

1.2 Поняття множини, операції над множинами

Означення 1.1. Множина — це об'єднання (клас, сімейство) деяких об'єктів, об'єднаних по певному признаку.

Цей признак повинен однозначно визначати об'єкти даної множини (наприклад: множина усіх студентів інститута, множина коренів рівняння $x^2+2x+2=0$, множина усіх натуральних чисел і тому подібне).

Означення 1.2. об'єкт, що належить множині — це елемент множини.

Множина, зазвичай позначається великою буквою латинського алфавіта: $A, B, \dots X, Y, \dots$, а їх елементи маленькими: a, b, \dots, x, y, \dots

Якщо елемент x належить множині X, то пишуть $x \in X$. Запис $x \notin X$ означає, що елемент x не належить множині X.

Означення 1.3. Множина, що не містить жодного елемента — це порожня множина (\varnothing)

Елементи множини записують в фігурних дужках, всередині яких вони перечислені (якщо це можливо) або вказано загальна властивість, що об'єднує всі елемети даної множини.

Приклад 1.4.
$$A = \{1, 3, 15\}, B = \{x \in \mathbb{R} : 0 \le x \le 2\}$$

Означення 1.4. Множина A — це **підмножина** множини B ($A \subset B$), якщо ($\forall x \in A$) : $x \in B$ (кожний елемент множини A є елементоммножини B)

$$\forall A: A \subset A, \varnothing \subset A$$

Означення 1.5. Множини A і B — рівні множини або ці множини співпадають, (A=B) якщо $A\subset B$ і $B\subset A$. Інакше кажучи, якщо вони складаються з ожних і тих самих елементів.

Означення 1.6. Перетин множин A і B ($A \cap B$) — це множина, що складається з елементів, що належать одночасно обом множинам: $A \cap B = \{x : x \in A \land x \in B\}$.

Означення 1.7. Різниця множин A і B ($A \setminus B$) — це множина, що складається з елементів множини A, що не належать множині B: $A \setminus B = \{x : x \in A \land x \notin B\}$.

Означення 1.8. Універсальна множина U — це множина, що складається зусіх елементів у даному контексті, (наприклад, множина усіх чисел, множина усіх студентів).

Означення 1.9. Доповнення множини A (\overline{A}) — це множина, що складається зусіх елементів універсальної множини, крім тих, що належать множині A. $\overline{A} = \{x : x \notin A\}$

Означення 1.10. Декартовий добуток множин X та Y (\overline{A}) — це множина всіх упорядкованих пар (x;y), де $x\in X$ та $y\in Y$

Наприклад,
$$X = \{\triangle\}$$
, $Y = \{1; 2\}$, $x \times Y = \{(\triangle; 1); (\triangle; 2)\}$. Аналогічно визначемо декартів добуток n множин, $X^n = \underbrace{X \times X \times ... \times X}_{n \text{ pas}}$.

Зауваження. $X \times Y = \emptyset \Leftrightarrow (X = \emptyset) \vee (Y = \emptyset)$.

1.3 Поняття бінарного відношення. Відношення порядку. Функціональне відношення

Означення 1.11. Бінарне відношення — це деяка підмножина декартового добутку двох множин, тобто довільна множина упорядкованих пар:

$$R \subset X \times Y$$
, $R \subset \{(x, y) : x \in X \land y \in Y\}$.

Запис: $(x,y) \in R$, або xRy, означає, що x зв'язаний з y відношенням R.

Множини перших та других елементів упорядкованих пар, що утворюють деяке відношення, це— **область визначення** і **область значень** цього відношення відповідно.

Якщо $R \subset X^2$ (тобто $R \subset X \times X$), то говорять, що відношення R задано на множині X.

Означення 1.12. Відношення $R \subset X^2$ — це відношення часткового порядку, якщо виконуються наступні властивості:

- 1. $\forall x \in X \ xRx$ (рефлексивність)
- 2. $(xRy \wedge yRx) \Rightarrow x = y$ (антисиметричність)
- 3. $(xRy \land yRz) \Rightarrow xRz$ (транзитивність)

Множина X, на якій введено відношення часткового порядку $R \subset x^2$ є частково упорядкованою.

Для такого відношення, запис xRy означає, що y слідує за x, або x передує y (де x та y — елементи множини X).

Приклад 1.5. Відношення частково порядку на N:

- 1. R: " $a \in дільником <math>b$ ".
- 2. R: "a менше рівно b".

Нехай $R \subset X^2$ — відношення часткового порядку на X. Якщо будь які два елементи x та y множини X при цьому порівнюємі (тобто xRy або yRx), то таке відношення — це відношення порядку, а множина X — упорядкована множина.

Приклад 1.6.

- 1. R: "a менше рівно b".
- 2. R: "a ϵ дільником b— не відношення порядку, бо наприклад числа 2 та 3 не ϵ порівнюваними.

Відношення $R \subset X \times Y$ — це **функціональне відношення**, якщо $(xRy_1 \wedge xRy_2) \Rightarrow y_1 = y_2$, тобто якщо воно не містить різних пар з однаковими першими елементами.

відношення не функціональне

відношення функціональне

1.4 Відображення (функція). Образ та прообраз множини. Класифікація відображень

Нехай $R\subset X\times Y$ — функціональне відношення. Якщо множина X співпадає з областю візначення цього відношення (тобто X утворено першими елементами тільки тих упорядкованих пар, які утворюють відношення R), то це функціональне відношення — це відображення функції із X \underline{s} y

Таким чином, якщо відношення $R \subset X \times Y$ це функція, то для кожного елемента x із X існує, щей при тому єдиний, елемент y із Y, такий, що xRy.

$$R \subset X \times Y$$
 - функція $\Rightarrow \forall x \in X \quad \exists ! y \in Y : xRy$

Якщо не тільки X співпадає з областю визначення, а й Y співпадає з множиною значень, то це відображення — це відображення із X <u>на</u> y

Зауваження. Довільне відображення із X на Y одночасно є відображенням із X в Y, але не навпаки.

Означення 1.13. Відображення множини в себе, тобто із X в X — це **оператор**.

Функції будемо позначати наступним чином:

$$F: X \to Y, X \xrightarrow{f} Y, X \ni x \xrightarrow{f} y \in Y,$$

а якщо із контексту зрозуміло про які X та Y ідеться, то позначають — y=f(x) або прость символом f.

Приклад 1.7.

- 1. Тотожне відображення: $I: X \to X; \forall x \in XI(x) = x$
- 2. Постійне відображення (константа): $C: X \to Y \quad \exists ! y \in Y \quad \forall x \in X \quad C(x) = y$
- 3. відношення $y=x^2$ це функція, а $y^2=x^2$ не функція, бо наприклад при x=5 отримаємо $y=\pm 5$, тобто порущується вимога функціональності.

Для функції y = f(x), x — це **аргумент функції** f, або **незалежна змінна**, а елемент $y_0 \in Y$, що стоїть у відповідності з конкретним значенням $x_0 \in X$ — це **значення функції** в точці x_0 , або **образ елемента** x_0 при відображенні f та позначається $f(x_0) = y_0$. При цьому x_0 — **праобраз** елемента y_0 , що означає, що $x_0 = f^{-1}(y_0)$.

Означення 1.14. Образ множини $A \subset X$ при відображенні $f: x \to Y$ — це множина f(A) тих елементів множини Y, які є відображенням множини A:

$$f(A) \equiv \{ y \in Y \mid \exists x \quad (x \in A \land y = f(x)) \}$$

Означення 1.15. Повний прообраз множини $B \subset Y$ при відображенні $f : X \to Y$ називається множина $f^{-1}(B)$ тих елементів X, образи яких містяться в B:

$$f^{-1}(B) \equiv \{x \in X \mid f(x) \in B\}$$

Зауваження. Нехай $f: X \to Y, A \subset X, B = f(A)$.

Легко помітити, що $A \subset f^{-1}(B)$, тобто $A \subset f^{-1}(f(A))$. Причому в загальному випадку буде саме строге відношення (хоча частина, можливо, є рівністю), тобто $A \neq f^{-1}(B)$. Як приклад, можна привести $f(x) = x^2$ X = [-1; 1], Y = [-1; 1], A = [0; 1], $A \subset X$.

Існування таких прикладів пояснює чому в визначенні праобраз множини називають "повним". В наведеному прикладі множину A можна назвати "неповним" праобразом множини B.

Відображення $f: X \to Y$ по характеру поведінки f класифікують на:

— інективне(інекція), якщо $(\forall x_1, x_2 \in X) : (x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$

тобто різні елементи мають різні образи.

— сюрєктивне (сюрєкція), якщо f(X) = Y

(повний образ всього X є в Y, тобто в Y немає вільних елементів)

— бієктивне (бієкція, взаємно однозначне відображення), якщо воно одночасно є сюрєкцією та інєкцією.

— загального виду – ні сюрєктивне ні інєктивне.

Означення 1.16. Перестановка або **перетворення** — це бієкція множини на саму себе, тобто бієктивний оператор.

1.5 Зворотнє відображення та композиція відображень.