

MODULE-2

Random variables And Special Probability distribution

### **CONTENT**

Introduction to Random variables, - One dimensional Random Variables, Discrete and Continuous RV- Density and Distribution function of RV, Expectation, Variance, and its properties, Covariance, and Moments. Moment Generating function

### **Special Distributions**

Binomial and Poisson distributions – Normal distribution, Exponential distributions, Weibull distribution

## RANDOM VARIABLE

- Stochastic variable
- Chance variable

## TYPES OF R.V

- 1. Discrete random variable
- 2. Continuous random variable

## DISCRETE RANDOM VARIABLE

It takes only finite and countable number of values

Probability function of a discrete Random Variable.

## QUESTION

Let X be a discrete random variable with

$$P(X = j) = C.(\frac{1}{2})^{j}, j = 1, 2, ....$$

Find C, E(X), Var(X)

## **QUESTION**

The probability function of a discrete random variable is as follows:

| X=X    | 0 | 1 | 2  | 3  | 4  | 5     | 6      | 7       |
|--------|---|---|----|----|----|-------|--------|---------|
| P(X=x) | 0 | k | 2k | 2k | 3k | $k^2$ | $2k^2$ | $K^2+k$ |

Find (i) k

(ii) p(X<6)

(iii) p(0<x<5)

(iv) distribution function of x

### **MOMENTS**

Moments in statistics measure something relative to the center of the values.

### **MOMENTS**

#### Interpretation of Moment Statistics

Mean  $(M_1)$  -  $1^{st}$  moment about the origin - central tendency measure.

Variance  $(m_2)$  -  $2^{nd}$  moment about the mean - dispersion measure.

Skewness  $(a_3)$  -  $3^{rd}$  standardize moment - skewness measure.

 $a_3 = 0 \rightarrow \text{symmetrical}$ 

 $a_3 > 0 \rightarrow$  positively skewed

 $a_3 < 0 \rightarrow$  negatively skewed

for  $a_3$  between  $\pm$  0.2, the distribution can be assumed to be normal with respect to skewness.

Kurtosis  $(a_4-3.0)$  -  $(4^{th}$  standardized moment - 3) - kurtosis measure.

 $a_4 - 3 = 0 \rightarrow$  same peakedness as normal curve.

 $a_4 - 3 > 0 \rightarrow$  more peakedness than normal curve.

 $a_4 - 3 < 0 \rightarrow$  flatter than normal curve.

for  $a_4 - 3$  between  $\pm 0.5$ , the curve can be considered normal with respect to kurtosis.

Moments about the origin  $\alpha = 0$ ,  $X_i = \text{raw score}$ 

First Moment  $(M_1)$  - Mean  $= \bar{X}$ 

$$M_1 = \frac{1}{N} \sum_{i=1}^{N} X_i = \frac{1}{N} \sum_{i=1}^{N} (freq * X)$$

Second Moment  $(M_2)$ 

$$M_2 = \frac{1}{N} \sum_{i=1}^{N} X_i^2 = \frac{1}{N} \sum_{i=1}^{N} (freq * X^2)$$

Third Moment  $(M_3)$ 

$$M_3 = \frac{1}{N} \sum_{i=1}^{N} X_i^3 = \frac{1}{N} \sum_{i=1}^{N} (freq * X^3)$$

Fourth Moment  $(M_4)$ 

$$M_4 = \frac{1}{N} \sum_{i=1}^{N} X_i^4 = \frac{1}{N} \sum_{i=1}^{N} (freq * X^4)$$

Example 3.9. Calculate the first four moments of the following distribution about the mean and hence find  $\beta_1$  and  $\beta_2$ .

x: 0 1 2 3 4 5 6 7 8 f: 1 8 28 56 70 56 28 8 1 Solution.

### CALCULATION OF MOMENTS

| x     | f   | d=x-4 | fd                | fd <sup>2</sup> . | fd <sup>3</sup> | fd <sup>A</sup> |
|-------|-----|-------|-------------------|-------------------|-----------------|-----------------|
| 0     | 1   | -4    | -4                | 16                | -64             | 256             |
| 1     | 8   | -3    | -24               | 72                | -216            | 648             |
| 2     | 28  | -2    | -56               | 112               | -224            | 448             |
| 3     | 56  | -1    | -24<br>-56<br>-56 | 56                | -56             | 56              |
| 4     | 70  | 0     |                   | 0                 | 0.              | 0               |
| 5     | 56  | 1     | 0<br>56<br>56     | 56                | 56              | 56              |
| 6     | 28  | 2     | 56                | 112               | 224             | 448             |
| 7     | 8   | 3     | 24                | 72                | 216             | 648             |
| 8     | 1   | 4     | 4                 | 16                | 64              | 256             |
| Total | 256 | 0     | 0                 | 512               | 0               | 2,816           |

Moments about the points x = 4 are

$$\mu_1' = \frac{1}{N} \Sigma f d = 0$$
,  $\mu_2' = \frac{1}{N} \Sigma f d^2 = \frac{512}{256} = 2$ ,  
 $\mu_3' = \frac{1}{N} \Sigma f d^3 = 0$  and  $\mu_4' = \frac{1}{N} \Sigma f d^4 = \frac{2816}{256} = 11$ 

Moments about mean are:

$$\mu_{1} = 0, \ \mu_{2} = \mu_{2}' - \mu_{1}'^{2} = 2$$

$$\mu_{3} = \mu_{3}' - 3\mu_{2}'\mu_{1}' + 2\mu_{1}'^{3} = 0$$

$$\mu_{4} = \mu_{4}' - 4\mu_{3}'\mu_{1}' + 6\mu_{2}'\mu_{1}'^{2} - 3\mu_{1}'^{4} = 11$$

$$\beta_{1} = \frac{\mu_{3}^{2}}{\mu_{2}^{2}} = 0, \ \beta_{2} = \frac{\mu_{4}}{\mu_{2}^{2}} = \frac{11}{4} = 2.75$$

### Moment Generating Function.

The moment generating function

(m.g.f.) of a random variable X (about origin) having the probability function f(x) is given by

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f(x) dx,$$
(for continuous probability distribution)
$$\sum_{x} e^{tx} f'(x),$$
(for discrete probability distribution)

Example 6:37. Let the random variable X assume the value 'r' with the probability law:

$$P(X=r)=q^{r-1}p; r=1,2,3,...$$

Find the m.g.f. of X and hence its mean and variance.

Solution. 
$$M_{\mathbf{x}}(t) = E(e^{t\mathbf{x}})$$

$$= \sum_{r=1}^{\infty} e^{tr} \quad q^{r-1} p = \frac{p}{q} \sum_{r=1}^{\infty} (qe^{t})^{r}$$

$$= \frac{p}{q} q e^{t} \sum_{r=1}^{\infty} (qe^{t})^{r-1} = p e^{t} \left[ 1 + q e^{t} + (qe^{t})^{2} + \dots \right]$$

$$= \left( \frac{p e^{t}}{1 - q e^{t}} \right)$$

If dash (') denotes the differentiation w.r.t. t; then we have

$$M_{X}'(t) = \frac{pe^{t}}{(1 - qe^{t})^{2}}, \quad M_{X}''(t) = pe^{t} \frac{(1 + qe^{t})}{(1 - qe^{t})^{3}}$$

$$\therefore \qquad \mu_{1}' \text{ (about origin)} = M_{X}' \text{ (0)} = \frac{p}{(1 - q)^{2}} = \frac{1}{p}$$

$$\mu_{2}' \text{ (about origin)} = M_{X}'' \text{ (0)} = \frac{p(1 + q)}{(1 - q)^{3}} = \frac{1 + q}{p^{2}}.$$
Hence
$$\text{mean} = \mu_{1}' \text{ (about origin)} = \frac{1}{p}$$

$$\text{variance} = \mu_{2} = \mu_{2}' - \mu_{1}'^{2} = \frac{1 + q}{p^{2}} - \frac{1}{p^{2}} = \frac{|q|}{p^{2}}$$

# TYPES OF PROBABILITY DISTRIBUTION

**Binomial** 

Poisson

Normal

## BINOMIAL DISTRIBUTION

Binomial distribution is a discrete probability distribution.

Example: Number of defectives in a lot of size 'n'

### Probability function

### Constants

Mean = np

Variance = npq

$${}^{n}C_{r}p^{r}q^{n-r}$$

# A COIN IS TOSSED FOUR TIMES. WHAT IS THE PROBABILITY OF GETTING-

No head

Exactly one head

Exactly two heads

Exactly three heads

Exactly four heads

At least two heads

More than two heads

At most 2 heads

Less than three heads

### **SOLUTION**

Number of trails (n) = 4

Probability of getting a head (p) =  $\frac{1}{2}$ 

Probability of not getting a head (q) = 1-  $(1/2) = \frac{1}{2}$ 

Binomial distribution = 
$$P(r) = {}^{n}C_{r}p^{r}q^{n-r}$$

# NO HEADS P(R=0) $P(0) = {}^{4}C_{0}p^{0}q^{4-0}$

$$P(0) = {}^{4} C_{0} p^{0} q^{4-0}$$

$$P(0) = \frac{1}{16}$$

## EXACTLY ONE HEAD $P(1) = {}^{4}C_{1}p^{1}q^{4-1}$

$$P(1) = \frac{1}{4}$$

Exactly two heads P(2) = 3/8Exactly three heads  $P(3) = \frac{1}{4}$ Exactly four heads  $P(4) = \frac{1}{16}$ 

### AT LEAST 2 HEADS

$$P(r=2 \text{ or more}) = P(2)+P(3)+P(4) = 11/16$$

### More than 2 heads

$$P(r = 3 \text{ or more}) = P(3) + P(4) = 5/16$$

### At most 2 heads

$$P(r = 0 \text{ or } 1 \text{ or } 2) = P(0) + P(1) + P(2) = 11/16$$

### Less than 3 heads

$$P(r = 0 \text{ or } 1 \text{ or } 2) = P(0) + P(1) + P(2) = 11/16$$

### AN UNBIASED CUBIC DIE IS THROWN FOUR TIMES. WHAT IS THE PROBABILITY OF OBTAINING

No six

At least one six

At least one even digit

A multiple of 3

A multiple of 2 or 3

### AN UNBIASED CUBIC DIE IS THROWN FOUR TIMES. WHAT IS THE PROBABILITY OF OBTAINING

No six

= 625/1296

At least one six

= 671/1296

At least one even digit

= 15/16

A multiple of 3

= 2/3

A multiple of 2 or 3

= 8/81

# CALCULATE MEAN OF THE BINOMIAL DIST.

No. of trails = 6, probability of success = 1/3

No. of trails = 9, probability of failure = 1/3

Probability of failure = 2/3, standard deviation = 2

Probability of failure = 5/6, variance = 25

# CALCULATE MEAN OF THE BINOMIAL DIST.

```
No. of trails = 6, probability of success = 1/3
2
No. of trails = 9, probability of failure = 1/3
6
Probability of failure = 2/3, standard deviation = 2
6
Probability of failure = 5/6, variance = 25
30
```

## POISSON DISTRIBUTION

The Poisson distribution is used as a limiting form of binomial distribution.

It is a discrete prob. Dist.

It applies in a situations where the prob. of success (p) is very small and that of failure (q) is very high, almost equal to 1.

### **Example**

The number of cars arriving per minute at a service station

The number of persons born blind per year in a city

## PROBABILITY FUNCTION

$$P(r) = \frac{e^{-\lambda} \lambda^x}{x!}$$

Constants

where

Mean = Variance = np ( $\lambda$ )

$$x = 0,1,2,....$$

$$e = 2.7183$$

$$\lambda = mean$$

IF A RANDOM VARIABLE X FOLLOWS POISSON DISTRIBUTION SUCH THAT P(X = 1) = P(X = 2), FIND THE MEAN AS WELL AS VARIANCE OF THE DISTRIBUTION

IF A RANDOM VARIABLE X FOLLOWS POISSON DISTRIBUTION SUCH THAT P(X = 1) = P(X = 2), FIND THE MEAN AS WELL AS VARIANCE OF THE DISTRIBUTION

$$P(X = 1) = P(X = 2)$$

$$\frac{e^{\lambda} \lambda^{1}}{1!} = \frac{e^{\lambda} \lambda^{2}}{2!}$$

$$\lambda = 2$$

$$mean = var = 2$$

## QUESTION

In a town 10 accidents take place in span of 50 days. Find the probability that there will be 3 or more accidents in a day.

$$\Box e^{-0.2} = 0.8187$$

## **QUESTION**

In a town 10 accidents take place in span of 50 days. Find the probability that there will be 3 or more accidents in a day.

$$( e^{-0.2} = 0.8187)$$

Solution

Average no. of accidents per day = 10/50 = 0.2

Prob. Of 3 or more accidents would be 1-[p(x=0)+p(x=1)+p(x=2)]

0.0012

## QUESTIONS

In a radio manufacturing factory, average number of defective is 1 in 10 radios. Find the probability of getting exactly 2 defective radios in a random sample of 10 radios using Poisson distribution

In a certain manufacturing process, 5% of the tools produced turn out to be defective. Find the probability that in a sample of 40 tools, utmost 2 will be defective

A manufacturer of lenses knows that on an average 5% of his product is defective. He sells lenses in boxes of 100 and gives guarantee to consumer that not more than 4 lenses will be defective in a box. What is the probability that each box will meet the guaranteed quality?