2/2

3/3

2/2

Note: 20/20 (score total: 26/26)

+70/1/42+

IPS - S7A - Jean-Matthieu Bourgeot

QCM2

	I	PS
Quizz	$d\mathbf{u}$	13/11/2013

Nom et	prénom :
	CENET Valentia

Durée : 10 minutes. Aucun document n'est autorisé. L'usage de la calculatrice est autorisé. PDA et téléphone interdit. Les questions peuvent présenter zéro, une ou plusieurs bonnes réponses. Des points négatifs pourront être affectés à de très mauvaises réponses.

Ne pas faire de RATURES, cocher les cases à l'encre.

Question $1 \bullet$	Classer	ses	différentes	technologies	de	CAN	par	ordre	de	Temps	de	conversion
(du plus rapide a	u plus le	ent)	?									

	approximation successives - flash - double rampe - simple rampe $$
	double rampe - flash - approximation successives - simple rampe $$
	${\it flash - approximation \ successives - \ double \ rampe - simple \ rampe}$
2000	0 1

🌌 flash - approximation successives - simple rampe - double rampe approximation successives - flash - simple rampe - double rampe

Question 2 •

On considère une résistance thermométrique Pt100 de résistance $R_C(T) = R_0(1 + \alpha T)$ où Treprésente la température en °C, $R_0=1$ k Ω la résistance à 0°C et $\alpha=3,85.10^{-3}$ °C $^{-1}$ le coefficient de température. Cette résistance est conditionnée par le montage potentiométrique suivant

Question 3 •

Quelle est la capacité d'un condensateur plan ? On note :

- ε : Permittivité du milieu entre les armatures.
- S : Surface des armatures.
- d : Distance entre les armatures.

Question 4 •

Le capteur sur la photo ci-contre permet de mesurer ...

	Question 5 • Pourquoi faire du sur-echantillonnage ?
	Pour améliorer l'efficacité du filtre antirepliement.
/2	Pour réduire le bruit de quantification
	Pour supprimer les perturbations de mode commun.
	Question 6 • A quoi est reliée la résolution d'un potentiomètre linéaire à piste résistive ?
	La course électrique.
	Le pas de bobinage
/1	La résistance maximale du potentiomètre
	La taille des grains de la poudre utilisée La longueur du potentiomètre
	Question 7 • Des jauges extensométriques permettent de mesurer
/1	des grands déplacements des déformations des flux lumineux des courants des températures des résistances.
	Question 8 • Un capteur LVDT permet de mesurer :
/1	des déplacements angulaires des températures des des courants des déplacement linéaire des flux lumineux
	Question 9 • Quels sont les intérêts d'un amplificateur d'instrumentation ?
	Les voies sont symétriques.
	Les impédances d'entrées sont élevés.
/3	De rejeter les perturbations de mode différentiel.
	Le gain est fixé par une scule résistance.
	Cela permet d'isoler galvaniquement la chaine d'acquisition et le procédé.
	Question 10 •
	Soit un CAN acceptant en entrée des signaux compris entre 0V et 10V, la quantification s'effectu sur 8bits, le temps de conversion est de $T_C = 1$ ms.
	Quel est le pas de quantification de ce CAN ?
/1	39 mV
	Question 11 •
	On rappel que la Fonction de Transfert d'un AOP est $\frac{U_s}{\epsilon}(p) =$
	$\frac{A_0}{1+a_0}$, avec U_s la sortie de l'AOP et $\epsilon = u_+ - u$. Pour le
	montage suivant, quel(s) est(sont) le(s) pole(s) de la FT entre E et U_s , Que dirc de la stabilité du système bouclé ?
/6	$p_1 = A_0/\tau_C \text{ et } p_2 = -A_0/\tau_C \qquad \qquad p = -(1+A_0)/\tau_C$ Le système est instable \text{Le système est stable} p = (A_0+1)/\tau_C p = (A_0-1)/\tau_C