Stationary and weakly stationary time series

François Roueff

http://perso.telecom-paristech.fr/~roueff/

Telecom Paris

BGDIA703 2023/2024

Outline

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series
 - L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series

Basic (important) definitions

Definition: Data set

A data set is a collection of values, say $X_{1:n} = X_1, \dots, X_n$. Time series data sets are usually sampled from recorded measurements.

Basic (important) definitions

Definition: Data set

A data set is a collection of values, say $X_{1:n} = X_1, \dots, X_n$. Time series data sets are usually sampled from recorded measurements.

Definition: Model

A model is a collection of probability distributions. The data set is assumed to be distributed according to one of them.

Basic (important) definitions

Definition: Data set

A data set is a collection of values, say $X_{1:n} = X_1, \dots, X_n$. Time series data sets are usually sampled from recorded measurements.

Definition: Model

A model is a collection of probability distributions. The data set is assumed to be distributed according to one of them.

Definition: Statistic

A statistic is any value which can be computed from the data.

A time series X_1, \ldots, X_n is usually presented as

 \triangleright a list of real values X_1, \dots, X_n in a data or spreadsheet file,

- \triangleright a list of real values X_1,\ldots,X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency.

- ightharpoonup a list of real values X_1,\ldots,X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - ightharpoonup a date in years and frequency= 12 corresponds to monthly data,

- \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - ightharpoonup a date in years and frequency= 12 corresponds to monthly data,
 - ightharpoonup a date in years and frequency= 4 corresponds to quarterly data,

- \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - \triangleright a date in years and frequency= 12 corresponds to monthly data,
 - ightharpoonup a date in years and frequency= 4 corresponds to quarterly data,
 - ightharpoonup a date in days and frequency= 1 corresponds to daily data,
 - > :

- \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - \triangleright a date in years and frequency= 12 corresponds to monthly data,
 - ightharpoonup a date in years and frequency= 4 corresponds to quarterly data,
 - ightharpoonup a date in days and frequency= 1 corresponds to daily data,
 - **>**
- Remarks :
 - ▶ There may be missing values (usually expressed as 'NA')

- \triangleright a list of real values X_1, \ldots, X_n in a data or spreadsheet file,
- ▶ a corresponding list of dates (days, years, seconds...)
- or, equivalently, a starting date (in some unit), and a frequency. For instance :
 - $\, \triangleright \,$ a date in years and frequency= 12 corresponds to monthly data,
 - \triangleright a date in years and frequency= 4 corresponds to quarterly data,
 - \triangleright a date in days and frequency= 1 corresponds to daily data,
 - \triangleright
- ▶ Remarks :
 - ▶ There may be missing values (usually expressed as 'NA')
 - ▶ In the case of multivariate time series, each variable usually corresponds to a column (so each row corresponds to a date).

Example: US GNP data set

```
# Title:
# Source:
# Frequency:
DATE, VALUE
1947-01-01,238.1
1947-04-01,241.5
1947-07-01,245.6
1947-10-01,255.6
1948-01-01,261.7
1948-04-01,268.7
1948-07-01,275.3
1948-10-01,276.6
1949-01-01,271.3
1949-04-01,267.5
1949-07-01,268.9
```

Gross National Product U.S. Department of Commerce Quarterly

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series

 \triangleright Consider a time series X_1, \ldots, X_n .

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.
- ▶ Then X = D + Y where D belongs to a finite dimensional space V and Y is a centered random process.

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.
- ▶ Then X = D + Y where D belongs to a finite dimensional space V and Y is a centered random process.
- ▶ Trends can be estimated or removed by
 - Fitting the trend using least squares,

$$\widehat{D} = \underset{d \in V}{\operatorname{argmin}} \sum_{t} |X_t - d_t|^2 .$$

- \triangleright Consider a time series X_1, \ldots, X_n .
- ▶ It often includes an additive trend, for instance:
 - ▷ a polynomial trend,
 - ▷ a seasonal trend.
- ▶ Then X = D + Y where D belongs to a finite dimensional space V and Y is a centered random process.
- ▶ Trends can be estimated or removed by
 - ▶ Fitting the trend using least squares,

$$\widehat{D} = \underset{d \in V}{\operatorname{argmin}} \sum_{t} |X_t - d_t|^2 .$$

 \triangleright Or applying a well chosen filter F_{ψ} , such that $F_{\psi}(D) = 0$ and thus

$$F_{\psi}(X) = F_{\psi}(Y)$$
.

trend-adjustment.html

Second step : choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

Second step : choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Second step : choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Example

 Y_1, \ldots, Y_n is the sample of a Gaussian ARMA(p,q) model with (unknown) parameter $\vartheta = (\theta_1, \ldots, \theta_q, \phi_1, \ldots, \phi_p, \sigma^2)$.

Second step: choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Example

 Y_1,\ldots,Y_n is the sample of a Gaussian ARMA(p,q) model with (unknown) parameter $\mathbf{0} = (\mathbf{0}_1,\ldots,\mathbf{0}_q,\phi_1,\ldots,\phi_p,\sigma^2)$.

▶ a non-parametric model.

Second step: choose a stochastic model on the random part

In time series analysis, one is interested in modeling the time dependence in the trend adjusted data Y_1, \ldots, Y_n .

This can be done by using

▶ a parametric model.

Example

 Y_1,\ldots,Y_n is the sample of a Gaussian ARMA(p,q) model with (unknown) parameter $\boldsymbol{\vartheta}=(\pmb{\theta}_1,\ldots,\pmb{\theta}_q,\pmb{\phi}_1,\ldots,\pmb{\phi}_p,\sigma^2)$.

▶ a non-parametric model.

Example

 Y_1, \ldots, Y_n is the sample of a centered stationary Gaussian process with (unknown) autocovariance γ (or spectral density f).

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

 \triangleright Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

- \triangleright Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...
 - \rightarrow Define an estimator, say $\widehat{\vartheta}_n$, which is a statistic based on the sample Y_1, \ldots, Y_n .

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

- \triangleright Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, ...
 - \rightarrow Define an estimator, say $\widehat{\vartheta}_n$, which is a statistic based on the sample Y_1, \ldots, Y_n .
- ▶ Test hypotheses, for instance

```
H_0 = \{Y \text{ is white noise}\} against H_1 = \{Y \text{ is ARMA}(p,q)\}
```

Once a model is fixed for Y_1, \ldots, Y_n , it can be used to

- ightharpoonup Estimate a parameter of the model such as ϑ , $\gamma(t)$, σ^2 , f, . . .
 - \rightarrow Define an estimator, say $\widehat{\vartheta}_n$, which is a statistic based on the sample Y_1, \ldots, Y_n .
- ▶ Test hypotheses, for instance

$$H_0 = \{Y \text{ is white noise}\}$$
 against $H_1 = \{Y \text{ is ARMA}(p,q)\}$

→ Define a statistical test, say

$$\delta = \begin{cases} 1 & \text{if } T_n > t_n ,\\ 0 & \text{otherwise }, \end{cases}$$

where T_n is a statistic based on the sample Y_1, \ldots, Y_n and t_n is a threshold.

Stationary and ergodic models

ightharpoonup We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.

Stationary and ergodic models

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- ▶ Stationary means that the model is shift invariant, more details hereafter.

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- ▶ Stationary means that the model is shift invariant, more details hereafter.
- ightharpoonup Ergodic means that observing one path $(Y_t)_{t\in T}$ allows one to recover the distribution entirely.

- ightharpoonup We see Y_1,\ldots,Y_n as a finite sample of a stochastic process $(Y_t)_{t\in T}$, with $T=\mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- ▶ Stationary means that the model is shift invariant, more details hereafter.
- Ergodic means that observing one path $(Y_t)_{t \in T}$ allows one to recover the distribution entirely.
- ▶ Examples:
 - An IID process is stationary and ergodic;

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- ▶ Stationary means that the model is shift invariant, more details hereafter.
- ightharpoonup Ergodic means that observing one path $(Y_t)_{t\in T}$ allows one to recover the distribution entirely.
- ▶ Examples:
 - ▶ An IID process is stationary and ergodic;
 - ▶ A sequence of independent variables that are not identically distributed is not stationary;

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- Stationary means that the model is shift invariant, more details hereafter.
- ightharpoonup Ergodic means that observing one path $(Y_t)_{t\in T}$ allows one to recover the distribution entirely.
- ▶ Examples:
 - ▶ An IID process is stationary and ergodic;
 - ▶ A sequence of independent variables that are not identically distributed is not stationary;
 - ▶ a random walk is not stationary but its increments are;

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- ▶ Stationary means that the model is shift invariant, more details hereafter.
- ightharpoonup Ergodic means that observing one path $(Y_t)_{t\in T}$ allows one to recover the distribution entirely.
- Examples:
 - ▶ An IID process is stationary and ergodic;
 - ▶ A sequence of independent variables that are not identically distributed is not stationary;
 - ▶ a random walk is not stationary but its increments are;
 - ightharpoonup A sequence of variables $(Y_t)_{t\in\mathbb{Z}}$ that is constant, *i.e.* $Y_t=Y_0$ for all t, is stationary but is not ergodic;

- We see Y_1, \ldots, Y_n as a finite sample of a stochastic process $(Y_t)_{t \in T}$, with $T = \mathbb{N}$ or \mathbb{Z} , distributed according to a statistical model.
- ▶ It is crucial to work with stationary and ergodic models.
- ▶ Stationary means that the model is shift invariant, more details hereafter.
- ightharpoonup Ergodic means that observing one path $(Y_t)_{t\in T}$ allows one to recover the distribution entirely.
- ▶ Examples:
 - ▶ An IID process is stationary and ergodic;
 - ▶ A sequence of independent variables that are not identically distributed is not stationary;
 - ▶ a random walk is not stationary but its increments are;
 - A sequence of variables $(Y_t)_{t \in \mathbb{Z}}$ that is constant, *i.e.* $Y_t = Y_0$ for all t, is stationary but is not ergodic;
 - ▶ A Markov chain on a finite state space can be made stationary by choosing the initial state adequately. If it is irreducible, then it is ergodic.

R code example: dependent data

non-iid-data.html

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series

Random processes

- ightharpoonup A random or stochastic process valued in (E,\mathcal{E}) , defined on the probability space $(\Omega,\mathcal{F},\mathbb{P})$ and indexed on T is
 - ightharpoonup A collection of random variables $(X_t)_{t\in T}$ such that each X_t is defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and valued in (E, \mathcal{E}) .

or

ightharpoonup A random path X valued in the trajectory space $(E^T, \mathcal{E}^{\otimes T})$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$.

Random processes

- ightharpoonup A random or stochastic process valued in (E,\mathcal{E}) , defined on the probability space $(\Omega,\mathcal{F},\mathbb{P})$ and indexed on T is
 - ightharpoonup A collection of random variables $(X_t)_{t\in T}$ such that each X_t is defined on $(\Omega, \mathcal{F}, \mathbb{P})$ and valued in (E, \mathcal{E}) .

or

- ightharpoonup A random path X valued in the trajectory space $(E^T, \mathcal{E}^{\otimes T})$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$.
- ▶ We can go back and forth from one definition to another
 - \triangleright Define $X: \Omega \to E^T$ by $X(\omega) = (X_t(\omega))_{t \in T}$.
 - Define for all $t \in T$, $X_t : \Omega \to E$ by $X_t(\omega) = \xi_t(X(\omega))$, where $\xi_t : (x_s)_{s \in T} \mapsto x_t$ denotes the canonical projection from E^T to E.

Law of X

ightharpoonup Exactly as usual random variables, the random path X admits a distribution defined by

$$\mathbb{P}^X: A \mapsto \mathbb{P}^X(A) = \mathbb{P}(X \in A) ,$$

where A is a subset of possible trajectories $(A \in \mathcal{E}^{\otimes T})$.

Law of X

 \triangleright Exactly as usual random variables, the random path X admits a distribution defined by

$$\mathbb{P}^X: A \mapsto \mathbb{P}^X(A) = \mathbb{P}(X \in A) ,$$

where A is a subset of possible trajectories $(A \in \mathcal{E}^{\otimes T})$.

- ▶ Alternatively, one can consider finite-dimensional distributions: for all finite subset $I = \{t_1, \dots, t_n\} \subset T$ of indices,
 - \triangleright denote by Π_I is the canonical projection $(x_t)_{t\in T}\mapsto (x_t)_{t\in I}$,
 - \triangleright denote by X_I the random vector $(X_t)_{t\in I} = \Pi_I \circ X$,
 - \triangleright denote by \mathbb{P}^{X_I} the distribution of X_I , which is defined by

$$\mathbb{P}^{X_I}\left(A_{t_1}\times\cdots\times A_{t_n}\right)=\mathbb{P}\left(X_t\in A_t,\,t\in I\right),\,$$

BGDIA703 2023/2024

where $A_{t_1} \dots A_{t_n}$ are subset of E (in \mathcal{E}).

- ightharpoonup The collection $(\mathbb{P}^{X_I})_{I\in\mathcal{I}(T)}$ are called the fidi distributions.
- $ightharpoonup \mathbb{P}^X$ can be constructed from $\left(\mathbb{P}^{X_I}\right)_{I\in\mathcal{I}(T)}$ (Kolmogorov theorem).

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series

Independent and i.i.d. processes

ightharpoonup Let $(\nu_t)_{t\in T}$ be a collection of probability measures on (E,\mathcal{E}) .

Independent and i.i.d. processes

- \triangleright Let $(\nu_t)_{t\in T}$ be a collection of probability measures on (E,\mathcal{E}) .
- An independent process $X=(X_t)_{t\in T}$ with marginals $(\nu_t)_{t\in T}$ is a process that satisfies

$$\mathbb{P}\left(X_{t} \in A_{t} \text{ for all } t \in I\right) = \prod_{t \in I} \mathbb{P}\left(X_{t} \in A_{t}\right) = \prod_{t \in I} \nu_{t}(A_{t}) \; .$$

Independent and i.i.d. processes

- ▶ Let $(\nu_t)_{t \in T}$ be a collection of probability measures on (E, \mathcal{E}) .
- ightharpoonup An independent process $X=(X_t)_{t\in T}$ with marginals $(\nu_t)_{t\in T}$ is a process that satisfies

$$\mathbb{P}\left(X_t \in A_t \text{ for all } t \in I\right) = \prod_{t \in I} \mathbb{P}\left(X_t \in A_t\right) = \prod_{t \in I} \nu_t(A_t) \ .$$

▶ If $\nu_t = \nu$ for all $t \in T$ we say that $(X_t)_{t \in T}$ is a independent and identically distributed (IID) with marginal ν .

ightharpoonup Let T be an arbitrary set of indices.

- ▶ Let T be an arbitrary set of indices.
- Let $\mu = (\mu_t)_{t \in T}$ be real-valued and $(\gamma_{s,t})_{s,t \in T}$ be such that, for all $I \in \mathcal{I}(T)$

 $\Gamma_I = [\gamma_{s,t}]_{s,t \in I}$ is real symmetric semi-definite positive .

- ightharpoonup Let T be an arbitrary set of indices.
- Let $\mu = (\mu_t)_{t \in T}$ be real-valued and $(\gamma_{s,t})_{s,t \in T}$ be such that, for all $I \in \mathcal{I}(T)$

$$\Gamma_I = [\gamma_{s,t}]_{s,t \in I}$$
 is real symmetric semi-definite positive .

▶ Then there exists a process $(X_t)_{t \in T}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that, for all $I \in \mathcal{I}(T)$

$$\mathbb{P}^{X_I} = \mathcal{N}\left((\underline{\mu}_t)_{t \in I}, \underline{\Gamma}_I\right) ,$$

which is equivalent to have for all $(x_s)_{s\in I}\in E^I$

$$\mathbb{E}\left[e^{i\sum_{s\in I}x_sX_s}\right] = \exp\left(i\sum_{s\in I}x_s\mu_s - \frac{1}{2}\sum_{s\in I}x_s\gamma_{s,t}x_t\right).$$

- \triangleright Let T be an arbitrary set of indices.
- Let $\mu = (\mu_t)_{t \in T}$ be real-valued and $(\gamma_{s,t})_{s,t \in T}$ be such that, for all $I \in \mathcal{I}(T)$

$$\Gamma_I = [\gamma_{s,t}]_{s,t \in I}$$
 is real symmetric semi-definite positive .

▶ Then there exists a process $(X_t)_{t \in T}$ on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ such that, for all $I \in \mathcal{I}(T)$

$$\mathbb{P}^{X_I} = \mathcal{N}\left((\underline{\mu}_t)_{t \in I}, \underline{\Gamma}_I\right) ,$$

which is equivalent to have for all $(x_s)_{s\in I}\in E^I$

$$\mathbb{E}\left[e^{i\sum_{s\in I}x_sX_s}\right] = \exp\left(i\sum_{s\in I}x_s\mu_s - \frac{1}{2}\sum_{s\in I}x_s\gamma_{s,t}x_t\right).$$

We denote $X \sim \mathcal{N}(\mu, \gamma)$ and say that X is a Gaussian process with mean μ and covariance function γ .

- Stationary Time series
 - The statistical approach
 - Classical steps of statistical inference
 - Random processes in a nutshell
 - Examples
 - Stationary time series
- Weakly stationary time series

Shift and backshift operators

ightharpoonup Suppose that $T=\mathbb{Z}$ or $T=\mathbb{N}$. Random processes are then called time series.

Shift and backshift operators

- Suppose that $T = \mathbb{Z}$ or $T = \mathbb{N}$. Random processes are then called time series.
- ightharpoonup The shift operator $S \ : \ E^T
 ightarrow E^T$ is defined by

$$S(x) = (x_{t+1})_{t \in T}$$
 for all $x = (x_t)_{t \in T} \in E^T$.

For all $\tau \in T$, we define S^{τ} by

$$S^{\tau}(x) = (x_{t+\tau})_{t \in T}$$
 for all $x = (x_t)_{t \in T} \in E^T$.

Shift and backshift operators

- Suppose that $T = \mathbb{Z}$ or $T = \mathbb{N}$. Random processes are then called time series.
- ightharpoonup The shift operator $S:E^T
 ightharpoonup E^T$ is defined by

$$S(x) = (x_{t+1})_{t \in T}$$
 for all $x = (x_t)_{t \in T} \in E^T$.

For all $\tau \in T$, we define S^{τ} by

$$S^{\tau}(x) = (x_{t+\tau})_{t \in T}$$
 for all $x = (x_t)_{t \in T} \in E^T$.

 \triangleright The operator S^{-1} is called the backshift operator, denoted by B.

Strict stationarity

Definition: Strict stationarity

Let $X = (X_t)_{t \in T}$ be a random process defined on $(\Omega, \mathcal{F}, \xi)$ with $T = \mathbb{Z}$ or $T = \mathbb{N}$. We say that X is stationary (in the strict sense) if

$$X \stackrel{\text{fidi}}{=} S \circ X$$
,

which is equivalent to

$$\mathbb{P}^X = \mathbb{P}^{S \circ X} .$$

Examples based on finite distributions

▶ A constant process,

$$X_t = X_0$$
 for all $t \in T$

is stationary.

Examples based on finite distributions

▶ A constant process,

$$X_t = X_0$$
 for all $t \in T$

is stationary.

➤ A sequence of independent random variables is strictly stationary if and only if they are indentically distributed. (Thus it is an i.i.d. process).

Examples based on finite distributions

▶ A constant process,

$$X_t = X_0$$
 for all $t \in T$

is stationary.

- ➤ A sequence of independent random variables is strictly stationary if and only if they are indentically distributed. (Thus it is an i.i.d. process).
- ▶ Gaussian processes : $X \sim \mathcal{N}(\mu, \Gamma)$ is stationary if and only if $\mu_t = \mu_0$ and $\gamma_{s,t} = \gamma_{s-t,0}$ for all $s,t \in T$.

ightharpoonup Let $g: E^{\mathbb{Z}} \to F^{\mathbb{Z}}$.

- ightharpoonup Let $g: E^{\mathbb{Z}} \to F^{\mathbb{Z}}$.
- \triangleright Suppose that X is stationary.

- ightharpoonup Let $g: E^{\mathbb{Z}} \to F^{\mathbb{Z}}$.
- ▶ Suppose that X is stationary.
- \triangleright Is g(X) stationary ?
 - ▶ If

$$g \circ S = S \circ g$$
,

then the answer is yes:

$$g(X) = g \circ X \stackrel{\text{fidi}}{=} g \circ S \circ X = S \circ g \circ X = S \circ g(X)$$
.

- ightharpoonup Let $g: E^{\mathbb{Z}} \to F^{\mathbb{Z}}$.
- \triangleright Suppose that X is stationary.
- ightharpoonup Is g(X) stationary ?
 - ▶ If

$$g \circ S = S \circ g$$
,

then the answer is yes:

$$g(X) = g \circ X \stackrel{\text{fidi}}{=} g \circ S \circ X = S \circ g \circ X = S \circ g(X)$$
.

ightharpoonup Time reversing operator: $g:(x_t)_{t\in\mathbb{Z}}\mapsto (x_{-t})_{t\in\mathbb{Z}}$. Here

$$g \circ S = S^{-1} \circ g$$
.

Starting from an IID sequence

ightharpoonup Consider the case where $(\epsilon_t)_{t\in\mathbb{Z}}$ is IID (hence stationary).

Starting from an IID sequence

- ightharpoonup Consider the case where $(\epsilon_t)_{t\in\mathbb{Z}}$ is IID (hence stationary).
- ▶ A linear process is defined by

$$X_t = \sum_{k \in \mathbb{Z}} \psi_k \epsilon_{t-k} ,$$

where $(\psi_t)_{t\in\mathbb{Z}}$ is an ℓ^2 sequence.

Starting from an IID sequence

- ightharpoonup Consider the case where $(\epsilon_t)_{t\in\mathbb{Z}}$ is IID (hence stationary).
- ▶ A linear process is defined by

$$X_t = \sum_{k \in \mathbb{Z}} \psi_k \epsilon_{t-k} ,$$

where $(\psi_t)_{t\in\mathbb{Z}}$ is an ℓ^2 sequence.

ightharpoonup All stationary Markov processes $(X_n)_{n\in\mathbb{N}}$ can be defined iteratively as

$$X_{n+1} = f(X_n, \epsilon_n) ,$$

for a convenient mapping f.

Starting from an IID sequence

- ightharpoonup Consider the case where $(\epsilon_t)_{t\in\mathbb{Z}}$ is IID (hence stationary).
- ▶ A linear process is defined by

$$X_t = \sum_{k \in \mathbb{Z}} \psi_k \epsilon_{t-k} ,$$

where $(\psi_t)_{t\in\mathbb{Z}}$ is an ℓ^2 sequence.

ightharpoonup All stationary Markov processes $(X_n)_{n\in\mathbb{N}}$ can be defined iteratively as

$$X_{n+1} = f(X_n, \epsilon_n) ,$$

for a convenient mapping f.

▶ Many stationary and ergodic models can be defined as a Causal "Bernoulli" shift:

$$X_t = \phi(\epsilon_t, \epsilon_{t-1}, \epsilon_{t-2}, \dots)$$

for a convenient mapping ϕ .

- Stationary Time series
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

- Stationary Time series
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

L^2 space

We set $E = \mathbb{C}^d$. We denote

$$L^2(\Omega,\mathcal{F},\mathbb{P}) = \left\{ X \ \mathbb{C}^d\text{-valued r.v. such that } \mathbb{E}\left[|X|^2\right] < \infty \right\} \ .$$

 (L^2,\langle,\rangle) is a Hilbert space with

$$\langle X, Y \rangle = \mathbb{E}\left[X^T \overline{Y}\right] .$$

Definition : L^2 Processes

The process $\mathbf{X} = (\mathbf{X}_t)_{t \in T}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in \mathbb{C}^d is an L^2 process if $\mathbf{X}_t \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ for all $t \in T$.

Let $\mathbf{X} = (\mathbf{X}_t)_{t \in T}$ be an L^2 process.

Let
$$\mathbf{X} = (\mathbf{X}_t)_{t \in T}$$
 be an L^2 process.

ightharpoonup Its mean function is defined by $\mu(t) = \mathbb{E}\left[\mathbf{X}_t\right]$,

Let
$$\mathbf{X} = (\mathbf{X}_t)_{t \in T}$$
 be an L^2 process.

- ightharpoonup Its mean function is defined by $\mu(t) = \mathbb{E}\left[\mathbf{X}_t\right]$,
- ▶ Its covariance function is defined by

$$\Gamma(s,t) = \text{cov}(\mathbf{X}_s, \mathbf{X}_t) = \mathbb{E}\left[\mathbf{X}_s \mathbf{X}_t^H\right] - \mathbb{E}\left[\mathbf{X}_s\right] \mathbb{E}\left[\mathbf{X}_t\right]^H$$
.

Let $\mathbf{X} = (\mathbf{X}_t)_{t \in T}$ be an L^2 process.

- ightharpoonup Its mean function is defined by $\mu(t) = \mathbb{E}\left[\mathbf{X}_t\right]$,
- ▶ Its covariance function is defined by

$$\Gamma(s,t) = \text{cov}(\mathbf{X}_s, \mathbf{X}_t) = \mathbb{E}\left[\mathbf{X}_s \mathbf{X}_t^H\right] - \mathbb{E}\left[\mathbf{X}_s\right] \mathbb{E}\left[\mathbf{X}_t\right]^H$$
.

Linear combinations \rightarrow scalar case

Let $\mathbf{X}=(\mathbf{X}_t)_{t\in T}$ be an L^2 process with mean function $\boldsymbol{\mu}$ and covariance function $\boldsymbol{\Gamma}$. This is equivalent to say that for all $\mathbf{u}\in\mathbb{C}^d$, $\mathbf{u}^H\mathbf{X}$ is a scalar L^2 process with mean function $\mathbf{u}^H\boldsymbol{\mu}$ and covariance function $\mathbf{u}^H\boldsymbol{\Gamma}\mathbf{u}$.

Scalar case $E = \mathbb{C}$, examples

▶ If $E = \mathbb{C}$, then the auto-covariance function is \mathbb{C} -valued, and denoted by γ .

Scalar case $E = \mathbb{C}$, examples

 ${\bf \triangleright}$ If $E=\mathbb{C}$, then the auto-covariance function is $\mathbb{C}\text{-valued},$ and denoted by ${\bf \gamma}.$

Hermitian symmetry, non-negative definiteness

For all $I \in \mathcal{I}(T)$, $\Gamma_I = \operatorname{Cov}([X(t)]_{t \in I}) = [\gamma(s,t)]_{s,t \in I}$ is a hermitian non-negative definite matrix.

Scalar case $E=\mathbb{C}$, examples

 ${\bf \triangleright}$ If $E=\mathbb{C}$, then the auto-covariance function is $\mathbb{C}\text{-valued},$ and denoted by ${\bf \gamma}.$

Hermitian symmetry, non-negative definiteness

For all $I \in \mathcal{I}(T)$, $\Gamma_I = \operatorname{Cov}([X(t)]_{t \in I}) = [\gamma(s,t)]_{s,t \in I}$ is a hermitian non-negative definite matrix.

Examples

ho L^2 independent random variables $(X_t)_{t\in\mathbb{Z}}$ have mean $\mu(t)=\mathbb{E}(X_t)$ and covariance

$$\gamma(s,t) = \begin{cases} \operatorname{var}(X_t) & \text{if } s = t, \\ 0 & \text{otherwise.} \end{cases}$$

ightharpoonup A Gaussian process is an L^2 process whose law is entirely determined by its mean and covariance functions.

- Stationary Time series
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .

- Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .
- ▶ Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$ for all $s,t \in T$.

- Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .
- ▶ Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$ for all $s,t \in T$.

Definition: Weak stationarity

We say that a random process X is weakly stationary with mean $\mu \in \mathbb{C}$ and autocovariance function $\gamma : \mathbb{Z} \to \mathbb{C}$ if it is L^2 with mean function $t \mapsto \mu$ and covariance function $(s,t) \mapsto \gamma(s-t)$.

- Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function γ .
- ▶ Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$ for all $s,t \in T$.

Definition: Weak stationarity

We say that a random process X is weakly stationary with mean $\mu \in \mathbb{C}$ and autocovariance function $\gamma : \mathbb{Z} \to \mathbb{C}$ if it is L^2 with mean function $t \mapsto \mu$ and covariance function $(s,t) \mapsto \gamma(s-t)$.

▶ The autocorrelation function is then defined (when $\gamma(0) > 0$) by

$$\rho(h) = \frac{\gamma(h)}{\gamma(0)} \in [-1, 1] .$$

Autocorrelation=slope of regression line

We have, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$,

$$X_{t+h} = \mathsf{Constant} + \rho(h)X_t + \epsilon_{t,h} \quad \mathsf{with} \quad \epsilon_{t,h} \perp \mathrm{Span}\left(1, X_t\right) \;.$$

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{\epsilon_{t,h}}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$,

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{\epsilon_{t,h}}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

- ▶ In the following, we plot successively
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the regression line;

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$,

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{2}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

- ▶ In the following, we plot successively
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the regression line;
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the predictor

Constant
$$+\sum_{k=1}^{n-1} \phi_k X_{t-k} + \kappa(h) X_{t-h}$$
.

 \triangleright We can also write, for all $t \in \mathbb{Z}$ and $h = 1, 2, \ldots$

$$X_t = \mathsf{Constant} + \sum_{k=1}^{h-1} rac{\phi_k X_{t-k} + \kappa(h) X_{t-h} + \epsilon_{t,h}}{2}$$

where

$$\epsilon_{t,h} \perp \operatorname{Span}(1, X_{t-1}, \dots, X_{t-h})$$
.

- ▶ In the following, we plot successively
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the regression line;
 - $\triangleright X_t$ as a function of X_{t-h} , compared to the predictor

Constant
$$+\sum_{k=1}^{h-1} \phi_k X_{t-k} + \kappa(h) X_{t-h}$$
.

 $> X_t - \left(\mathsf{Constant} + \sum_{k=1}^{h-1} \phi_k X_{t-k} \right) \text{ as a function of } X_{t-h},$ compared to the regression line $X_{t-h} \mapsto \kappa(h) X_{t-h}.$

Partial Autocorrelation=slope of partial regression

ightharpoonup An L^2 strictly stationary process is weakly stationary.

- ightharpoonup An L^2 strictly stationary process is weakly stationary.
- \triangleright The constant L^2 process has constant autocovariance function.

- ightharpoonup An L^2 strictly stationary process is weakly stationary.
- \triangleright The constant L^2 process has constant autocovariance function.

Strong and weak white noise

A sequence of L^2 i.i.d. random variables is called a strong white noise, denoted by $X \sim \text{IID}(\mu, \sigma^2)$.

- ightharpoonup An L^2 strictly stationary process is weakly stationary.
- \triangleright The constant L^2 process has constant autocovariance function.

Strong and weak white noise

- A sequence of L^2 i.i.d. random variables is called a strong white noise, denoted by $X \sim \text{IID}(\mu, \sigma^2)$.
- An L^2 process X with constant mean μ and constant diagonal covariance function equal to σ^2 is called a weak white noise. It is denoted by $X \sim \mathrm{WN}(\mu, \sigma^2)$. (It does not have to be i.i.d.)

Examples based on stationarity preserving linear filters

 \triangleright Let X be weakly stationary with mean μ and autocovariance γ .

Examples based on stationarity preserving linear filters

- ▶ Let X be weakly stationary with mean μ and autocovariance γ .
- ▶ In the following examples, Y = g(X) is weakly stationary with mean μ' and autocovariance γ' .
 - \triangleright Let g be the time reversing operator: $Y_t = X_{-t}$. Then

$$\mu' = \mu$$
 and $\gamma' = \overline{\gamma}$.

Examples based on stationarity preserving linear filters

- ▶ Let X be weakly stationary with mean μ and autocovariance γ .
- ▶ In the following examples, Y = g(X) is weakly stationary with mean μ' and autocovariance γ' .
 - \triangleright Let g be the time reversing operator: $Y_t = X_{-t}$. Then

$$\mu' = \mu$$
 and $\gamma' = \overline{\gamma}$.

$$\qquad \qquad \vdash \ \, \mathrm{Let} \,\, g = \sum_k \psi_k \, \mathrm{B}^k \colon \, Y_t = \sum_k \psi_k X_{t-k} \,\, \mathrm{with} \,\, \psi \in \ell^1. \,\, \mathrm{Then} \,\,$$

$$\mu' = \mu \sum_{k} \psi_{k}$$

$$\gamma'(\tau) = \sum_{\ell,k} \psi_{k} \overline{\psi_{\ell}} \gamma(\tau + \ell - k)$$
(1)

- Stationary Time series
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?

- ▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?
- ightharpoonup A necessary and sufficient condition is that $\Gamma_I = [\gamma(s-t)]_{s,t\in I}$ is a hermitian non-negative definite matrix for all finite subset $I\subset \mathbb{Z}$.

- ▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?
- A necessary and sufficient condition is that $\Gamma_I = [\gamma(s-t)]_{s,t\in I}$ is a hermitian non-negative definite matrix for all finite subset $I \subset \mathbb{Z}$.
- \triangleright We say that γ is hermitian symmetric and non-negative definite.

- ▶ Given a function $\gamma : \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process $(X_t)_{t \in \mathbb{Z}}$ with autocovariance γ ?
- ightharpoonup A necessary and sufficient condition is that $\Gamma_I = [\gamma(s-t)]_{s,t\in I}$ is a hermitian non-negative definite matrix for all finite subset $I\subset \mathbb{Z}$.
- ightharpoonup We say that γ is hermitian symmetric and non-negative definite.

Herglotz Theorem

Let $\gamma : \mathbb{Z} \to \mathbb{C}$. Then the two following assertions are equivalent:

- (i) γ is hermitian symmetric and non-negative definite.
- (ii) There exists a finite non-negative measure ${m \nu}$ on ${\mathbb T}={\mathbb R}/2\pi{\mathbb Z}$ such that,

for all
$$t \in \mathbb{Z}$$
, $\gamma(t) = \int_{\mathbb{T}} e^{i\lambda t} \nu(d\lambda)$. (2)

When these two assertions hold, ν is uniquely defined by (2).

40 / 46

Spectral density

If moreover $\gamma \in \ell^1(\mathbb{Z})$, these assertions are equivalent to

$$f(\lambda) := \frac{1}{2\pi} \sum_{t \in \mathbb{Z}} e^{-i\lambda t} \gamma(t) \ge 0 \text{ for all } \lambda \in \mathbb{R} ,$$

and ν has density f (that is, $\nu(d\lambda) = f(\lambda)d\lambda$).

Spectral density

If moreover $\gamma \in \ell^1(\mathbb{Z})$, these assertions are equivalent to

$$f(\lambda) := \frac{1}{2\pi} \sum_{t \in \mathbb{Z}} e^{-i\lambda t} \gamma(t) \ge 0 \text{ for all } \lambda \in \mathbb{R} ,$$

and ν has density f (that is, $\nu(d\lambda) = f(\lambda)d\lambda$).

Definition: spectral measure and spectral density

If γ is the autocovariance of a weakly stationary process X, the corresponding measure ν is called the spectral measure of X. Whenever the spectral measure ν admits a density f, it is called the spectral density function.

▶ Let $X \sim WN(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.

- ▶ Let $X \sim WN(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- ▶ Let X be a weakly stationary process with covariance function γ /spectral measure ν . Define

$$\boldsymbol{Y}_t = \sum_k \psi_k \boldsymbol{X}_{t-k}$$

for a sequence $\psi \in \ell^1$.

- ▶ Let $X \sim \text{WN}(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- ▶ Let X be a weakly stationary process with covariance function γ /spectral measure ν . Define

$$Y_t = \sum_k \psi_k X_{t-k}$$

for a sequence $\psi \in \ell^1$.

ightharpoonup Recall that Y is a weakly stationary process with covariance function

$$\gamma'(\tau) = \sum_{\ell,k} \psi_k \overline{\psi_\ell} \gamma(\tau + \ell - k) .$$

- ightharpoonup Let $X \sim \mathrm{WN}(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- ▶ Let X be a weakly stationary process with covariance function γ /spectral measure ν . Define

$$\boldsymbol{Y}_t = \sum_k \psi_k \boldsymbol{X}_{t-k}$$

for a sequence $\psi \in \ell^1$.

ightharpoonup Recall that Y is a weakly stationary process with covariance function

$$\gamma'(\tau) = \sum_{\ell,k} \psi_k \overline{\psi_\ell} \gamma(\tau + \ell - k) .$$

▶ Then Y is a weakly stationary process with spectral measure ν' having density $\lambda \mapsto \left|\sum_k \psi_k \mathrm{e}^{-\mathrm{i}\lambda k}\right|^2$ with respect to ν ,

$$\mathbf{\nu}'(\mathrm{d}\lambda) = \left| \sum_{k} \psi_{k} \mathrm{e}^{-\mathrm{i}\lambda k} \right|^{2} \mathbf{\nu}(\mathrm{d}\lambda) .$$

A special one : the harmonic process

Let $(A_k)_{1 \leq k \leq N}$ be N real valued L^2 random variables. Denote $\sigma_k^2 = \mathbb{E}\left[A_k^2\right]$. Let $(\Phi_k)_{1 \leq k \leq N}$ be N i.i.d. random variables with a uniform distribution on $[0,2\pi]$, and independent of $(A_k)_{1 \leq k \leq N}$. Define

$$X_t = \sum_{k=1}^{N} A_k \cos(\lambda_k t + \Phi_k) , \qquad (3)$$

where $(\lambda_k)_{1 \leq k \leq N} \in [-\pi, \pi]$ are N frequencies. The process (X_t) is called a harmonic process. It satisfies $\mathbb{E}\left[X_t\right] = 0$ and, for all $s, t \in \mathbb{Z}$,

$$\mathbb{E}\left[X_s X_t\right] = \frac{1}{2} \sum_{k=1}^{N} \sigma_k^2 \cos(\lambda_k(s-t)) .$$

Hence X is weakly stationary with autocovariance

$$\gamma(t) = \frac{1}{2} \sum_{k=1}^{N} \sigma_k^2 \cos(\lambda_k t) = \int_{\mathbb{T}} e^{i\lambda t} \left(\frac{1}{4} \sum_{k=1}^{N} \sigma_k^2 (\delta_{-\lambda_k}(d\lambda) + \delta_{\lambda_k}(d\lambda)) \right) .$$

- Stationary Time series
- Weakly stationary time series
 - \bullet L^2 processes
 - Weak stationarity
 - Spectral measure
 - Empirical estimation

Empirical estimates

Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n .

Empirical estimates

- Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n .
- ▶ Define the empirical mean as

$$\widehat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k \;,$$

Empirical estimates

- Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n .
- ▶ Define the empirical mean as

$$\widehat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k \;,$$

▶ Define the empirical autocovariance and autocorrelation functions as

$$\begin{split} \widehat{\gamma}_n(h) &= \frac{1}{n} \sum_{k=1}^{n-|h|} (X_k - \widehat{\mu}_n) (X_{k+|h|} - \widehat{\mu}_n) \quad \text{and} \\ \widehat{\rho}_n(h) &= \frac{\widehat{\gamma}_n(h)}{\widehat{\gamma}_n(0)} \; . \end{split}$$

 \triangleright The previous formula only work for $h=-n+1,\ldots,n-1$.

- ▶ The previous formula only work for h = -n + 1, ..., n 1.
- ightharpoonup Define $\widehat{\gamma}_n(h) = \widehat{\rho}_n(h) = 0$ for all $|h| \geq n$.

- ▶ The previous formula only work for h = -n + 1, ..., n 1.
- ▶ Define $\widehat{\gamma}_n(h) = \widehat{\rho}_n(h) = 0$ for all $|h| \ge n$.
- $ightharpoonup \operatorname{Now} \widehat{\gamma}_n$ is defined on \mathbb{Z} and satisfies

$$\widehat{\gamma}_n(h) = \int_{-\pi}^{\pi} e^{i\lambda h} I_n(\lambda) d\lambda$$

where I_n is called the (raw) periodogram and is defined by

$$I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{k=1}^n (X_k - \widehat{\mu}_n) e^{-i\lambda k} \right|^2.$$

- ▶ The previous formula only work for h = -n + 1, ..., n 1.
- ▶ Define $\widehat{\gamma}_n(h) = \widehat{\rho}_n(h) = 0$ for all $|h| \ge n$.
- $ightharpoonup \operatorname{Now} \widehat{\gamma}_n$ is defined on \mathbb{Z} and satisfies

$$\widehat{\gamma}_n(h) = \int_{-\pi}^{\pi} e^{i\lambda h} I_n(\lambda) d\lambda$$
,

where I_n is called the (raw) periodogram and is defined by

$$I_n(\lambda) = \frac{1}{2\pi n} \left| \sum_{k=1}^n (X_k - \widehat{\mu}_n) e^{-i\lambda k} \right|^2.$$

 $ightharpoonup I_n(\lambda)$ can be seen as a (bad) estimator of the spectral density $f(\lambda)$.