Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Катедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

"Проектування і аналіз алгоритмів для вирішення NP- ск	
- Πηροντυράμμα ι άμαπιο απερημτωίο ππα ομημιμόμμα ΝΡ-εν	η οπυμν γοπου τι Ι΄
IIDUCKI YDANNA I ANAJIIS AJII UDHIMID AJIA DHDIMCHNA INI "CN	ладпих задач ч.т

Виконав(ла)		
Перевірив	<u>Головченко М.Н.</u> (прізвище, ім'я, по батькові)	

3MICT

1	MET.	А ЛАБОРАТОРНОЇ РОБОТИ	3
2	ЗАВД	[АННЯ	4
3	вик	ОНАННЯ	. 10
	3.1 Пр	ОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	. 10
	3.1.1	Вихідний код	. 10
	3.1.2	Приклади роботи	. 11
	3.2 TE	СТУВАННЯ АЛГОРИТМУ	. 15
	3.2.1	Значення цільової функції зі збільшенням кількості ітерацій.	. 15
	3.2.2	Графіки залежності розв'язку від числа ітерацій	. 16
В	иснов	ЗОК	. 18
К	РИТЕР	ії опінювання	19

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою.

2 ЗАВДАННЯ

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

№	Задача і алгоритм
1	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
2	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
3	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
4	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну генів,
	мутація з ймовірністю 10% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.

5	Задача комівояжера (150 вершин, відстань між вершинами випадкова		
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти		
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в		
	різних випадкових вершинах).		
6	Задача розфарбовування графу (250 вершин, степінь вершини не		
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл		
	35 із них 3 розвідники).		
7	Задача про рюкзак (місткість Р=150, 100 предметів, цінність		
	предметів від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)),		
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1		
	різному предмету, оператор схрещування рівномірний, мутація з		
	ймовірністю 5% два випадкові гени міняються місцями). Розробити		
	власний оператор локального покращення.		
8	Задача комівояжера (200 вершин, відстань між вершинами випадкова		
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, ρ		
	= 0,3, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,		
	починають маршрут в різних випадкових вершинах).		
9	Задача розфарбовування графу (150 вершин, степінь вершини не		
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл		
	25 із них 3 розвідники).		
10	Задача про рюкзак (місткість Р=150, 100 предметів, цінність		
	предметів від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)),		
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1		
	різному предмету, оператор схрещування рівномірний, мутація з		
	ймовірністю 10% два випадкові гени міняються місцями). Розробити		
	власний оператор локального покращення.		
11	Задача комівояжера (250 вершин, відстань між вершинами випадкова		
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, ρ		

	= 0,6, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,
	починають маршрут в різних випадкових вершинах).
12	Задача розфарбовування графу (300 вершин, степінь вершини не
	більше 30, але не менше 1), бджолиний алгоритм АВС (число бджіл
	60 із них 5 розвідники).
13	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий 30% і 70%,
	мутація з ймовірністю 5% два випадкові гени міняються місцями).
	Розробити власний оператор локального покращення.
14	Задача комівояжера (250 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм (α = 4, β = 2, ρ = 0,3, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (10 з них дикі,
	обирають випадкові напрямки), починають маршрут в різних
	випадкових вершинах).
15	Задача розфарбовування графу (100 вершин, степінь вершини не
	більше 20, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 30 із них 3 розвідники).
16	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий 30%, 40% і
	30%, мутація з ймовірністю 10% два випадкові гени міняються
	місцями). Розробити власний оператор локального покращення.
17	Задача комівояжера (200 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0.7$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (15 з них дикі,

	обирають випадкові напрямки), починають маршрут в різних		
	випадкових вершинах).		
<mark>18</mark>	Задача розфарбовування графу (300 вершин, степінь вершини не		
	більше 50, але не менше 1), класичний бджолиний алгоритм (число		
	бджіл 60 із них 5 розвідники).		
19	Задача про рюкзак (місткість Р=250, 100 предметів, цінність		
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),		
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1		
	різному предмету, оператор схрещування триточковий 25%, мутація з		
	ймовірністю 5% два випадкові гени міняються місцями). Розробити		
	власний оператор локального покращення.		
20	Задача комівояжера (200 вершин, відстань між вершинами випадкова		
	від 1 до 40), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.7$, Lmin знайти		
	жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні,		
	подвійний феромон), починають маршрут в різних випадкових		
	вершинах).		
21	Задача розфарбовування графу (200 вершин, степінь вершини не		
	більше 30, але не менше 1), класичний бджолиний алгоритм (число		
	бджіл 40 із них 2 розвідники).		
22	Задача про рюкзак (місткість Р=250, 100 предметів, цінність		
	предметів від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)),		
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1		
	різному предмету, оператор схрещування триточковий 25%, мутація з		
	ймовірністю 5% змінюємо тільки 1 випадковий ген). Розробити		
	власний оператор локального покращення.		
23	Задача комівояжера (300 вершин, відстань між вершинами випадкова		
	від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$, Lmin знайти		
	жадібним алгоритмом, кількість мурах М = 45 (15 з них елітні,		
<u> </u>			

	подвійний феромон), починають маршрут в різних випадкових
	вершинах).
24	Задача розфарбовування графу (400 вершин, степінь вершини не
	більше 50, але не менше 1), класичний бджолиний алгоритм (число
	бджіл 70 із них 10 розвідники).
25	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
26	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
27	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
28	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну генів,
	мутація з ймовірністю 10% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
29	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).

30	Задача розфарбовування графу (250 вершин, степінь вершини не
	більше 25, але не менше 2), бджолиний алгоритм АВС (число бджіл
	35 із них 3 розвідники).
31	Задача про рюкзак (місткість Р=250, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування одноточковий по 50 генів,
	мутація з ймовірністю 5% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
32	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0.4$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
33	Задача розфарбовування графу (200 вершин, степінь вершини не
	більше 20, але не менше 1), бджолиний алгоритм АВС (число бджіл
	30 із них 2 розвідники).
34	Задача про рюкзак (місткість Р=200, 100 предметів, цінність
	предметів від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)),
	генетичний алгоритм (початкова популяція 100 осіб кожна по 1
	різному предмету, оператор схрещування двоточковий порівну генів,
	мутація з ймовірністю 10% змінюємо тільки 1 випадковий ген).
	Розробити власний оператор локального покращення.
35	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).

3 ВИКОНАННЯ

3.1 Програмна реалізація алгоритму

3.1.1 Вихідний код

main.py

```
from algorithm import *
import matplotlib.pyplot as matplot
from graph_color import *

if __name__ == '__main__':
    graph = Graph(300, 1, 50)
    graph.firstColor(int(input("Введіть кількість початкових розфарбувань: ")))
    last = graph.beesAlgorithm(60)

g = graphVisualisation()
    last = g.numToCol(last)
    g.addEdges(graph.adjacencyList)
    g.visualize(last, 300)

matplot.plot(graph.X, graph.Y)
    matplot.xlabel('Кількість ітерацій')
    matplot.ylabel('Кількість кольорів в найкращому розфарбуванні')
    matplot.show()
```

graphColor.py

algorithm.py

```
self.adjacencyList[i].append(connect)
                    self.adjacencyList[connect].append(i)
            self.colourings.append(current)
   def beesAlgorithm(self, bees): # 5 розвідників, bees-5 фуражирів
        queue.sort(key=lambda x: self.powers[x])
               neighboursQueue.append(neighbour)
       vergeQueues = [vergeQueue.copy() for i in range(len(self.colourings))]
       neighboursQueues = [neighboursQueue.copy() for i in
range(len(self.colourings))]
```

```
self.Y.append(min(usedColors))
                    chosenList.append(randd)
                if not vergeQueues[self.colourings.index(mostPersp)]:
                    vergeQueues[self.colourings.index(mostPersp)] =
                    neighboursQueues[self.colourings.index(mostPersp)] =
neighboursQueue.copy()
neighboursQueues[self.colourings.index(mostPersp)][0])
                vergeQueues[self.colourings.index(mostPersp)] = vergeQueues[
self.colourings.index(mostPersp)][1:]
                neighboursQueues[self.colourings.index(mostPersp)] =
neighboursQueues[self.colourings.index(
                    mostPersp)][1:]
                if not vergeQueues[self.colourings.index(random)]:
                    vergeQueues[self.colourings.index(random)] =
                    neighboursQueues[self.colourings.index(random)] =
neighboursQueue.copy()
vergeQueues[self.colourings.index(random)][0],
                            neighboursQueues[self.colourings.index(random)][0])
                vergeQueues[self.colourings.index(random)] =
vergeQueues[self.colourings.index(random)][1:]
                neighboursQueues[self.colourings.index(random)] =
neighboursQueues[self.colourings.index(random)][1:]
        noConflicts = 1
                noConflicts = 0
                noConflicts = 0
        if noConflicts:
```

3.1.2 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

Рисунок 3.1 – Візуалізація розфарбування графу на 20 вершин з 5 початковими розфарбуваннями.

Рисунок 3.2 – Візуалізація розфарбування графу на 40 вершин з 15 початковими розфарбуваннями.

3.2 Тестування алгоритму

3.2.1 Значення цільової функції зі збільшенням кількості ітерацій

У таблиці 3.1 наведено значення цільової функції зі збільшенням кількості ітерацій.

Таблиця 3.1

Ітерація	Значення ЦФ
0	14
20	14
40	14
60	14
80	14
100	14
120	14
140	14
160	14
180	14
200	14
220	14
240	14
260	14
280	14
300	14
320	14
340	14
360	13
380	13
400	13
420	13
440	13
460	13
480	13
500	13
520	13
540	13
560	13
580	13
600	13
620	13
640	13
660	13

Продовження таблиці 3.1

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

3.2.2 Графіки залежності розв'язку від числа ітерацій

На рисунку 3.3 наведений графік, який показує якість отриманого розв'язку.

Рисунок 3.3 – Графіки залежності розв'язку від числа ітерацій

ВИСНОВОК

В рамках даної лабораторної роботи було вивчено основні підходи формалізації метаєвристичних алгоритмів і вирішення типових задач з їхньою допомогою. Було досліджено та спроєктовано алгоритм «Класичний бджолиний алгоритм» відповідно до умови варіанту. Ідея бджолиного алгоритму полягає в тому, що всі бджоли на кожному кроці будуть вибирати як елітні ділянки для дослідження, так і ділянки в околиці елітних, що дозволить, по-перше, урізноманітнити популяцію рішень на наступних ітераціях, по-друге, збільшити ймовірність виявлення близьких до оптимальних рішень.

У результаті виконання лабораторної роботи після наведення прикладів, проведеного аналізу та тестування переконуємося, що бджолиний алгоритм дійсно ϵ ефективним для вирішення задачі розфарбування графу, адже з 1000 ітерацій між 340 та 360 ітерацією нашого прикладу кількість кольорів, необхідна для розфарбування, зменшилася на 1 від найкращого початкового.

Використовуючи програмні засоби мови Python, модулі matplotlib і networkx, отримуємо доступну візуалізацію й коректний результат.

КРИТЕРІЇ ОЦІНЮВАННЯ

При здачі лабораторної роботи до 27.11.2021 включно максимальний бал дорівнює — 5. Після 27.11.2021 максимальний бал дорівнює — 1.

Критерії оцінювання у відсотках від максимального балу:

- програмна реалізація алгоритму 75%;
- тестування алгоритму– 20%;
- висновок -5%.