Lab 1: Introduction to MATLAB

Lab 1: Introduction to MATLAE

Signal Processing with MATLAB

- MATLAB ("MATrix LABoratory") is a powerful tool for numerical computation and visualization
- The basic data element is a matrix.
- MATLAB has a large number of built-in functions particularly useful for signal processing.
- This lab introduces a few examples of basic MATLAB programming techniques.

Lab 1: Introduction to MATLAB

Writing M-files

- Some simple calculations, we can just use Command Window.
- For serious MATLAB use, you need to write M-files, i.e., files with a .m extension, containing MATLAB statements.
 - You need to save the file before being able to run it.
 - ▶ DO NOT include space characters when naming an M-file.

Lab 1: Introduction to MATLA

Creating vectors

- $x = [3 \ 4 \ 7 \ 11] \%$ create a row vector (spaces)
 - if the statement does not end with a semicolon, the results will be printed on the Command Window.
 - ▶ If the statement ends with a semicolon, the results will NOT be printed on the Command Window. Two ways to view the results
 - Type the name of the variable in the Command Window.
 - Double click on the name of the variable on the Workspace.
- x = 3:10;
- x = 3:2:21:
- x = 8:-1:0;
- x = linspace(0,1,21) % creates 21 points equally spaced between 0 and 1
- x = 0:0.05:1
- length(x) % returns the number of entries in vector x
- x(3) % return the 3rd element of x. Note that Matlab labels the arrays (vectors and matrices) beginning with 1

Creating vectors...

- Create a vector of the even whole numbers between 31 and 75. x=32:2:75
- Let x = [2 5 1 6].
 - ► Add 16 to each element a=x+16;
 - Compute the sum of all elements in x b=sum(x);
 - Compute the square root of each element c=sqrt(x) or c=x.^(0.5);
 - Compute the square of each element c=x.^2 or c=x.*x;
- Element-wise operations: ".*", "./", ".^". Let $x = [3\ 2\ 6\ 8]$ ' and $y = [4\ 1\ 3\ 5]$ ' (i.e, $x = [4\ 1\ 3\ 5]$) (i.e, $x = [4\ 1\ 3\ 5]$) (operations). Compare the following operations
 - ▶ x'*y and y'*x
 - ► x.*y
 - ► x*y
 - ► x.^y

Lab 1: Introduction to MATLAB

Creating vectors...

• Create a vector x with the elements

$$x_n = (-1)^{n+1}/(2n-1), n = 1, 2, \dots, 100$$

and calculate the sum of all elements in x

• Ans:

 $\begin{array}{l} n = 1{:}100; \\ x = (\ (-1).^(n{+}1)\)\ ./\ (2*n - 1);\ \% \ note \ the \ use \ of \ .^ \ and \ ./ \\ y = sum(x) \end{array}$

• We can use a for loop to do the task above but it is not efficient.

Plotting Continuous Signals

- MATLAB is dedicated to discrete signals. In order to work with a continuous signal, we need to generate enough samples over the interval of interest.
- Plot the exponential signal $x(t) = 2e^{-2t}$ over the interval $t \in [-1, 1]$.
- Plot another exponential signal $x(t)=2e^{-4t}$ over the interval $t\in [-1,1]$ on the same figure.
- Plot the sinusoid

$$x_1(t) = \cos(2\pi f_c t)$$

where $f_c=4000$ Hz for two periods, i.e. $t\in [-T_c,T_c]$ and where T_c is the fundamental period.

Ans:

```
fc =4000; % frequency

Tc = 1/fc; % the fundamental period

t = linspace(-Tc,Tc,200); % 200 time instants from -Tc to Tc

\times 1 = cos(2*pi*fc*t);
```

Lab 1: Introduction to MATLAB

Plotting Continuous Signals...

Plot another sinusoid given by

$$x_2(t) = 1.2\cos(2\pi f_c(t - t_0)) \tag{1}$$

where $f_c=4000$ Hz and $t_0=T/4$ for $t\in [-T_c,T_c]$. Note that $x_2(t)$ is an amplitude-scaled and time-shifted version of x(t) in the previous slide.

Ans:

```
t0=Tc/2; % delay
 x2 = 1.2*cos(2*pi*fc*(t-t0));
 plot(t,x)
```

• Plot the sum: $x_3(t) = x_1(t) + x_2(t)$ Ans: We already have x1 and x2, so the sum can be compute easily $x_3 = x_1 + x_2$;

Plotting Continuous Signals...

It is better to plot x1,x2 and x3 in the same figure.
 Ans: Use the subplot command. Type help subplot in Matlab to know the details.

```
subplot(3,1,1)
plot(t,x1)
xlabel('Time (second)')
ylabel('x1')
subplot(3,1,2)
plot(t,x2)
xlabel('Time (second)')
ylabel('x2')
subplot(3,1,3)
plot(t,x3)
xlabel('Time (second)')
ylabel('x3')
```

• What are your observations?

Lab 1: Introduction to MATLAB

$\mathsf{Task}\ 1$

• Plot the discrete sinusoid

$$x[n] = \cos(\frac{1}{6}\pi n) \tag{2}$$

for $n=0,1,2,\ldots,20$ and conclude the period of the signal. Verify your observation by theoretical analysis (cf. Lecture 2).

Plot the discrete sinusoid

$$x[n] = \cos(2n) \tag{3}$$

to show that this signal is not periodic. Explain the reason.

Task 2

Plot the discrete signal

$$\cos\left(\frac{1}{6}\pi n\right) + \cos\left(\frac{1}{3}\pi n\right)$$

and conclude the period of the signal.

ullet Let $f_0=20$ Hz and $T_0=1/f_0.$ Compute and plot the following signal

$$x(t) = \sum_{n=-N}^{N} a_n e^{j2\pi n f_0 t}$$

$$\tag{4}$$

where N=5 and a_n is given by

$$a_n = \begin{cases} 0 & n \text{ even} \\ -\frac{j}{2n} & n \text{ odd} \end{cases}$$
 (5)

for $t \in [0, 2T_0]$.

- Hints:
 - ▶ In MATLAB the complex number j can be represented by i,j, or 1i.
 - First create a time vector t from 0 to T_0 . The number of sampling points is your choice.
 - You need a for loop to go over n, starting from -N, i.e. for n=-N:N end
 - ► For each n, the complex exponential function $e^{j2\pi nf_0t}$ is represented by $\exp(i*2*pi*n*f0*t)$.

Task 4

Let $f_1 = 20Hz$ and $T_1 = 1/f_1$. Compute and plot the following signal

$$f(t) = \frac{8A}{\pi^2} \left[\sin(w_1 t) - \frac{1}{9} \sin(3w_1 t) + \frac{1}{25} \sin(5w_1 t) - \dots + \frac{(-1)^{\frac{k-1}{2}}}{k^2} \sin(kw_1 t) + \dots \right]$$

Where k is odd, A is a constant ,k=5, and $t \in [0,2T_1]$.

Task 5

Increase the value of N in Task 3 to N = 10 and N = 50 and N = 100. Give your comments on the results signal.

Increase the value of k in Task 3 to k = 11 and k = 51 and k = 101. Give your comments on the results signal.

Report

- All the plots you obtained during the lab and the your comments and opinions on the results.
- A summary of what you gained in the lab.
- Each student submits a single report.
- To be uploaded via moodle before 6PM the following day.
- ullet A penalty 10% of each day will be applied to late submission.
- Poorly written report (grammar and spelling issues will be checked) is subject to deduction.