

# **Graph-based Machine Learning**

# Analogy for Knowledge Base Completion

(H Liu et al. ICML 2017)

1



#### **Outline**

- Recap of KG completion methods (previous lecture)
- Analogy Modeling (Hanxiao Liu, et al., ICML 2017)

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



3



- What method is missing above?
- How the above methods related to KE-GCN?

 $-log\sigma(y \mathbf{h}^T W_r \mathbf{t})$ 

3/25/2024

Analogy

(ICML'2017)

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

?

Δ



#### Recap of TransE (Bordels et al., NIPS 2013)

- Learning a real vector embedding for each entity and relation
- Predicting the missing element in (h, r, ?) by calculating  $f(h, r) = h + r \triangleq \hat{t}$
- Minimizing distance  $d(t,\hat{t}) = ||t \hat{t}|| = ||h + r t||$  during training (iterative optimization of embedding vectors)



Vector  $\mathbf{r}$  is added to vector  $\mathbf{h}$ .

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

5



#### Recap of RotatE (Zhiqing Sun et al., ICLR 2019)

- Learning a complex vector embedding for each entity and relation
- Predicting the missing element in (h,r,?) by calculating  $f(h,r) = h \circ r \triangleq \hat{t}$
- Minimizing distance  $d_r(\pmb{h}, \pmb{t}) = \|\pmb{h} \circ \pmb{r} \pmb{t}\|$  during training



r is a unit-length rotation operator

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



#### Important Types of KG Relations

- Symmetric (h and t) (H Liu, ICML 2017)
  - $\phi(h, r, t) = \phi(t, r, h)$ , e.g., marriage, divorce
- Antisymmetric (h and t) (H Liu, ICML 2017)
  - $\phi(h, r, t) \gg \phi(t, r, h)$ , e.g., a-parent-of
- Inversive (r and r') (H Liu, ICML 2017)
  - $\phi(h,r,t) = \phi(h,r',t)$ , e.g., hypernym (r) vs. hyponym (r')
- Compositive (or "transitive") (r and r') (Z Sun, ICLR 2019)
  - $\phi(a,r,b) \times \phi(b,r',c) = \phi(a,r \circ r',c)$ , e.g., my mother's husband is my father
- Commutative (r and r'):  $r \circ r' = r' \circ r$  (H Liu, ICML 2017)
  - $\phi(a,r\circ r',d)=\phi(a,r'\circ r,d)$ , e.g., king to queen as man to women

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

7

7



#### **Outline**

- Recap of KG completion methods (previous lecture)
- Analogical inference for multi-relational embeddings (H Liu, et al., ICML 2017)
  - Mathematical modeling of analogy with differentiable optimization
  - A unified framework subsuming several representative methods
  - Fast algorithm for linear scalability

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding







#### **Geometric Property of Analogy**

 If two systems form an analogy, then understanding one of them would help the understanding of the other.



Figure: Solar System (red) v.s. Rutherford-Bohr Model (blue).

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

11



#### **Notation**

- Triplet (s, r, o) is any subject-relation-object (or head-relation-tail) combinations;
- Labeled training set  $\mathcal{D} = \{((s, r, o), y)\}$  with  $y = \pm 1$  as the labels (positive vs. negative);
- Vectors  $v_s \in \mathbb{R}^d$  and  $v_o \in \mathbb{R}^d$  are the learned embeddings for s and o, respectively;
- Matric  $W_r \in \mathbb{R}^{d \times d}$  is the learned embedding of relation r;
- Boldfaced v is the collection of the vector embeddings for all entities in D;
- Boldfaced  $\mathbf{W}$  is the collection of the matrix embeddings for all relations in  $\mathcal{D}$ .

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

12



# Treating Relation as a Linear Translation Operator

• Linear transformation (via  $W_r^T$ ) from  $v_s$  to  $v_o$ 



• For each semantically valid triplet (s, r, o), we want

$$W_r^T v_s = \hat{v}_o \approx v_o \tag{1}$$

Scoring Function (higher is better):

$$\phi(s,r,o) = \langle W_r^T v_s, v_o \rangle = v_s^T W_r v_o = v_0^T W_r^T v_s$$
 (2)

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

12

13



## **Constrained Optimization**

$$\min_{v,W} \mathbb{E}_{((s,r,o),y)\in\mathcal{D}} l(\phi_{v,W}(s,r,o),y)$$
 (3)

$$s.t. W_r W_r^T = W_r^T W_r, \forall r (4)$$

$$W_r W_{r,} = W_{r,} W_{r,} \ \forall r, r' \tag{5}$$

- Formula (4) restricts the matrices to be in the normality family;
- Formula (5) restricts the matrices to have the commutative property;
- Together they define the desirable properties of relations.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



## Normal Matrices (Formula 4)

• Def. A linear transformation  $W_r$  which satisfies

$$W_r^T W_r = W_r W_r^T \tag{4}$$

Properties ("well-behaved")

• Symmetric: 
$$W_r = W_r^T$$
 (4a)

 $\phi(s,r,o) = \phi(o,r,s)$  (e.g., r = "is-married-to")

• Anti-symmetric: 
$$W_r = -W_r^T$$
 (4b)

$$\phi(s,r,o) = -\phi(o,r,s)$$
 (e.g., "is-parent-of")

"Inversive" 
$$\rightarrow$$
 Orthogonal (bijective):  $W_r^T W_r = I$  or  $W_r^T = W_r^{-1}$  (4c)

- Useful for one-to-one mapping in both directions

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

15



# Concrete Example: Parent-child Relationship

• As an anti-symmetric relationship, its embedding should satisfy the equality below

$$W_r = -W_r^T \tag{4b}$$

This yields  $\phi(s,r,o) = -\phi(o,r,s)$ , which is the definition of anti-symmetric relation.

■ Proof

$$\phi(s,r,o) \stackrel{\text{\tiny def}}{=} \langle W_r^T v_s, v_o \rangle = \langle v_o, W_r^T v_s \rangle = v_o^T W_r^T v_s \quad \text{(dot-product is symmetric)}$$

$$\phi(o,r,s) \stackrel{\text{\tiny def}}{=} \langle W_r^T v_o, v_s \rangle = v_o^T \ W_r v_s = -v_o^T W_r^T v_s \quad \text{(substituting } W_r \text{ by } -W_r^T \text{ in 4b)}$$

 $\phi(s,r,o) = -\phi(o,r,s) \qquad \text{("A is a parent of B."} \to \text{"B is not a parent of A.")}$ 

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



# Bijective vs. "Inversive"

- Orthogonal (bijective):  $W_r^T W_r = I$  or  $W_r^T = W_r^{-1}$  (4c)
  - Useful for one-to-one mapping in both directions
- Equivalent to the "inversive relationship" (between r1 and r2) in Z Sun ICLR 2019
  - $r_1$  and  $r_2$  are inverse if and only if  $\mathbf{r}_1 \circ r_2 = \mathbf{1}$  or  $\mathbf{r}_2 = \overline{\mathbf{r}_1}$  or  $\boldsymbol{\theta}_2 = -\boldsymbol{\theta}_1$



3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

17



# Commutativity (Formula 5)

Notice that commutativity is a necessary condition for analogy.

$$W_r W_{r\prime} = W_{r\prime} W_{r\prime}, \quad \forall r, r' \tag{5}$$

Equivalently, we can express this property as

$$r \circ r' = r' \circ r \quad \forall r, r'$$

• Geometrically, r, r' define a parallelogram



3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



#### Concrete Example of Analogical Structure

- Well-known example
  - "man is to king as woman is to queen"
- Abstract notion
  - "a is to b as c is to d"



(4)

• Geometrically, consider that r and r' define a parallelogram, where we have

$$\phi(a, r \circ r', d) = \phi(a, r' \circ r, d)$$

In words, analogy is defined by the commutativity of relations.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

19



# **Computational Challenge**

$$\min_{v,W} \mathbb{E}_{((s,r,o),y)\in\mathcal{D}} l(\phi_{v,W}(s,r,o),y)$$

s.t. 
$$W_rW_r^T = W_r^TW_r$$
,  $\forall r$ 

$$W_r W_{r,l} = W_{r,l} W_{r,l} \quad \forall r, r' \tag{5}$$

- Good news: Our objective is differentiable (supporting gradient descend).
- Bad news: The number of constraints can be very large (quadratic in the # of relations), and each relation has a dense-matrix representation.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

20



#### The Remedy?

**Lemma 4.1.** (Wilkinson & Wilkinson, 1965) For any real normal matrix A, there exists a real orthogonal matrix Q and a block-diagonal matrix B such that  $A = QBQ^{\top}$ , where each diagonal block of B is either (1) A real scalar, or (2) A 2-dimensional real matrix in the form of  $\begin{bmatrix} x & -y \\ y & x \end{bmatrix}$ , where both x, y are real scalars.

The lemma suggests any real normal matrix can be blockdiagonalized into an almost-diagonal canonical form.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

21



#### The Magic?

ullet We can rotate the vectors using matrix Q as

$$\forall r, \ \phi(s,r,o) = v_s^T W_r v_o = \underbrace{v_s^T Q^T}_{v_s'} B_r \underbrace{Q v_0}_{v_0'} = v_s'^T B_r v_0'$$

where  $B_r$  has  $1 \times 1$  or  $2 \times 2$  non-zero diagonal blocks and zero's anywhere else.

Now, we can solve the optimization problem for  $\{v'\}$  and  $\{B_r\}$  instead of  $\{v\}$  and  $\{W_r\}$  in the original objective function.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



# Replacing dense $w_r$ by sparse $w_r'$

Original Objective

$$\min_{v,W} \mathbb{E}_{((s,r,o),y)\in\mathcal{D}} l(\phi_{v,W}(s,r,o),y)$$

New Equivalent Objective

$$\min_{v',B} \mathbb{E}_{((s,r,o),y) \in \mathcal{D}} l(\phi_{v',B_r}(s,r,o),y)$$

where each  $B_r \in \mathbf{B}$  is a block-diagonal whose block sizes are bounded by 2.

Time/Space Saving

 $O(d^2) \rightarrow O(d)$  where d is the embedding size.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

23



# **Implementation Details**

Use logistic loss

$$l(\phi(s,r,o),y) = -log\sigma(y\phi(s,r,o))$$
  $y \in \{\pm 1\}$ 

- Optimization algorithm
  - Asynchronous AdaGrad
- Negative training instances
  - For each valid (s, r, o), generate the negative examples (s', r, o), (s, r', o) and (s, r, o') by corrupting s, r, o, respectively.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



# Analogy subsumes other well-known methods

Multiplicative Embedding (DistMult by Yang et al. CoRR 2014)

$$\phi(s,r,o) = \langle v_s, v_r, v_o \rangle$$
 where  $v_s, v_r, v_o \in \mathbb{R}^d$ 

- equivalent to Analogy by setting  $W_r \stackrel{\text{def}}{=} diag(v_r)$  as a special case
- Complex Embedding (Complex by Trouillon et al, ICML 2016)

$$\phi(s,r,o) = RealPart(v_s, v_r, \overline{v_o})$$
 where  $v_s, v_r, v_o \in \mathbb{C}^d$ 

where <., ., .> denote the generalized dot-product.

■ The solution can be fully recovered by Analogy with embedding size of 2d because any complex number a+bj is isomorphic to the  $2\times 2$  matrix  $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ .

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

25



#### Analogy subsumes other well-known methods (cont'd)

Holographic Embeddings (HolE by Nickel et al., AAAI 2016)

$$\phi(s,r,o) = \langle v_s, v_r * v_o \rangle$$

where  $v_s, v_r$  ,  $v_o \in \mathbb{R}^d$  and \* denotes circular correlation.

This is equivalent to solving

$$\phi(s,r,o) = RealPart(\langle v_s, v_r, \overline{v_o} \rangle)$$

where  $v_s, v_r, v_o \in FFT(\mathbb{R}^d) \in \mathbb{C}^d$  are the Fast Fourier Transform of real vectors.

Hence, HolE is a restricted case of Complex and ANALOGY.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

26



# Evaluation Results (Hanxiao Liu et al., ICML 2017)

- Use Mean Reciprocal Rank (MRR) and Hits@k as the metrics
- Benchmark datasets of FreeBase-15K and WordNet-18

|                             | WN18                 |                      |                      | FB15K                  |                      |                        |                      |                      |
|-----------------------------|----------------------|----------------------|----------------------|------------------------|----------------------|------------------------|----------------------|----------------------|
| Models                      | MRR<br>(filt.)       | MRR<br>(raw)         | Hits@1<br>(filt.)    | Hits@3<br>(filt.)      | MRR<br>(filt.)       | MRR<br>(raw)           | Hits@1<br>(filt.)    | Hits@3<br>(filt.)    |
| RESCAL                      | 89.0                 | 60.3                 | 84.2                 | 90.4                   | 35.4                 | 18.9                   | 23.5                 | 40.9                 |
| TransE                      | 45.4                 | 33.5                 | 8.9                  | 82.3                   | 38.0                 | 22.1                   | 23.1                 | 47.2                 |
| DistMult<br>HolE<br>ComplEx | 82.2<br>93.8<br>94.1 | 53.2<br>61.6<br>58.7 | 72.8<br>93.0<br>93.6 | $91.4 \\ 94.5 \\ 94.5$ | 65.4<br>52.4<br>69.2 | $24.2 \\ 23.2 \\ 24.2$ | 54.6<br>40.2<br>59.9 | 73.3<br>61.3<br>75.9 |
| Our ANALOGY                 | 94.2                 | 65.7                 | 93.9                 | 94.4                   | 72.5                 | 25.3                   | 64.6                 | 78.5                 |

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

27

27



# Merged Results of ICML 2017 (H Liu) & ICLR 2019 (Z Sun)

Let's focus on Mean Reciprocal Rank (MRR) only

| Models   | WN18 (2017) | WN18 (2019) | FB15k (2017) | FB15k (2019) |
|----------|-------------|-------------|--------------|--------------|
| RESCAL   | 89          | -           | -            | -            |
| TransE   | 45.4        | 49.5        | 38.0         | 46.3         |
| DistMult | 82.2        | 79.7        | 65.4         | 79.8         |
| HolE     | 93.8        | 93.8        | 52.4         | 52.4         |
| ComplEx  | 94.1        | 94.1        | 69.2         | 69.2         |
| ANALOGY  | 94.2        | -           | 72.5         |              |
| ConvE    | -           | 94.3        |              | 65.7         |
| RotatE   | -           | 94.9        |              | 79.9         |

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



#### **Concluding Remarks**

- Analogy can be formulated geometrically in a real vector space, supporting differentiable optimization of KG embedding with linear scalability.
- It provides a unified framework for several representative KG embedding methods.
- Limitation: Cannot model compositional relations? (we omit detailed discussion)
- Connection/difference from KE-GCN
  - All the KG completion methods are designed without consideration of downstream tasks, but KE-GCN is.

3/25/2024

@Yiming Yang, 11-741 Lecture on Architecture Search

. .

29



# KG-embedding Methods vs. KE-GCN

KG-embedding methods (e.g., Analogy)

$$\min_{v,W} \mathbb{E}_{((s,r,o),y)\in\mathcal{D}} l(\phi_{v,W}(s,r,o),y)$$

KE-GCN for multi-class classification

$$\mathcal{L} = -\sum_{(\boldsymbol{X}_{i}, \boldsymbol{Y}_{i}) \in \mathcal{D}_{l}} \sum_{j=1}^{K} \boldsymbol{Y}_{ij} \ln \hat{Y}_{ij}$$

KE-GCN for cross-language KG Alignment

$$\mathcal{L} = -\sum_{(u,v)\in S} \sum_{(u',v')\in S'} [\|h_u - h_v\|_1 - \|h_{u'} - h_{v'}\|_1 + \gamma]$$

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

30



# Is the winning method for KG-completion necessarily be the best choice for down-stream tasks?

Table 11: Entity classification accuracy results over 5 different runs on AM and WN datasets by incorporating different knowledge graph embedding methods into our model.

| KE-GCN (X)   | AM             | WN             |
|--------------|----------------|----------------|
| X = TransE   | $91.2 \pm 0.2$ | $57.8 \pm 0.5$ |
| X = TransH   | $90.5 \pm 0.3$ | $57.4 \pm 0.3$ |
| X = DistMult | $89.5 \pm 0.4$ | $56.4 \pm 0.1$ |
| X = TransD   | $90.1 \pm 0.2$ | $57.1 \pm 0.2$ |
| X = RotatE   | $90.6 \pm 0.4$ | $56.6 \pm 0.3$ |
| X = QuatE    | $91.0\pm0.4$   | $56.9 \pm 0.3$ |

Table 4: Knowledge graph entity alignment results over 5 different runs on  $\rm DBP_{ZH-EN}$  by incorporating different knowledge graph embedding methods into our model.

| KE-GCN (X)   | MRR                            | H@1                              | H@10           |
|--------------|--------------------------------|----------------------------------|----------------|
| X = TransE   | $0.648 \pm 0.003$              | $54.3 \pm 0.3$                   | $83.4 \pm 0.3$ |
| X = TransH   | $0.650 \pm 0.003$              | $54.3 \pm 0.4$                   | $84.4 \pm 0.3$ |
| X = DistMult | $0.621 \pm 0.003$              | $52.0 \pm 0.4$                   | $80.3 \pm 0.4$ |
| X = TransD   | $0.635 \pm 0.003$              | $53.1 \pm 0.3$                   | $82.7 \pm 0.4$ |
| X = RotatE   | $0.653 \pm 0.004$              | $54.9 \pm 0.4$                   | $83.8 \pm 0.4$ |
| X = QuatE    | $\boldsymbol{0.664 \pm 0.004}$ | $\textbf{56.2} \pm \textbf{0.4}$ | $84.2\pm0.4$   |

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding

. .

31



# KE-GCN uses KG-embedding methods as building blocks

Node embedding at each layer

$$\boldsymbol{h}_{v}^{(k+1)} = \sigma_{ent} \left( W_{0}^{(k)} \; \boldsymbol{h}_{v}^{(k)} + \sum_{(u,r) \in N_{in}(v)} W_{1}^{(k)} \frac{\partial f_{in} \left(\boldsymbol{h}_{u}^{(k)}, \boldsymbol{h}_{r}^{(k)}, \boldsymbol{h}_{v}^{(k)}\right)}{\partial \boldsymbol{h}_{v}^{(k)}} + \sum_{(u,r) \in N_{out}(v)} W_{2}^{(k)} \frac{\partial f_{out} \left(\boldsymbol{h}_{u}^{(k)}, \boldsymbol{h}_{r}^{(k)}, \boldsymbol{h}_{v}^{(k)}\right)}{\partial \boldsymbol{h}_{v}^{(k)}} \right)$$

• For example, we can define  $f_{in}$  as

$$f_{in}\left(\pmb{h}_{u}^{(k)}, \pmb{h}_{r}^{(k)}, \pmb{h}_{v}^{(k)}\right) \triangleq \pmb{h}_{u}^{(k)} \cdot \pmb{h}_{r}^{(k)} \cdot \pmb{h}_{v}^{(k)} \triangleq \sum_{i=1}^{d} h_{ui}^{(k)} \; h_{ri}^{(k)} \; h_{vi}^{(k)} \in \mathbb{R}$$

$$\frac{\partial f_{in}(h_u^{(k)},h_r^{(k)},h_v^{(k)})}{\partial \boldsymbol{h}_r^{(k)}} = \boldsymbol{h}_u^{(k)} \circ \boldsymbol{h}_r^{(k)} \in \mathbb{R}^d \qquad ( \circ \text{ is the Hadamard product})$$

- Instead of directly aggregating neighbor vector  $\mathbf{h}_u^{(k)} \in N_{in}(v)$ , we aggregate after it's "convoluted" by  $\mathbf{h}_r^{(k)}$ .
- In other words, the neighborhood signal passing is "conditioned on" edge embeddings for  $(u,r) \in N_{in}(v)$ .
- We can replace  $f = \left( \mathbf{h}_u^{(k)} \cdot \mathbf{h}_r^{(k)} \cdot \mathbf{h}_v^{(k)} \right)$  above by any function  $\phi\left( \mathbf{h}_u^{(k)}, \mathbf{h}_r^{(k)}, \mathbf{h}_v^{(k)} \right)$  in a KG-embedding method.

3/25/2024

@Yiming Yang, 11-741 Lecture on Analogy for Graph Embedding



33



 Hanxiao Liu, Yuexin Wu, Yiming Yang. Analogical inference for multi-relational embeddings. ICML 2017.

 Zhiqing Sun, Zhi-hone Deng, Jian-yun Nie, Jian Tang. RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space. ICLR 2019.

3/25/2024

@Yiming Yang, 11-741 Lecture on Architecture Search