Formal Languages and Computational Models

Programming Languages
CS 214

Turing Machines

In 1936 (years before the first programmable computer), *Alan Turing* created a model for the process of computation known today as the *Turing Machine (TM)*, consisting of:

- -An *I/O tape* consisting of an arbitrary number of *cells*, each able to store an arbitrary symbol;
- A tape head able to read/write a cell; and
- A finite-state control that governs movement of the head over the cells.

Calvin College

Turing Machines (ii)

Each "execution cycle", a TM reads a *symbol* from the tape.

Depending on that *symbol* and its current state, it may then:

- Write a symbol to the tape;
- Move its head left or right; and
- Change to a new state.

The finite state controller starts in state 0: the *start state*, and continues execution until it enters an *accept state*, at which point it halts and its I/O tape contains the result of the computation.

Example: TM Addition

To add two numbers *m* and *n*:

- Precond: I/O tape contains m ones, a zero, and n ones.
- Postcond: I/O tape contains m+n ones.

Our finite state controller uses these states and rules:

- State 0: If *symbol* is 1 or blank: move head right; goto State 0. If *symbol* is 0: goto State 1
- State 1: Write 1; move head right; goto State 2.
- State 2: If *symbol* is 1: move head right; goto State 2. If *symbol* is blank: move head left; goto State 3
- State 3: Write blank; goto State 4.
- State 4: Accept.

Example: 3 + 2

To compute 3 + 2, we start with:

Step State, Read Write Move State,

_		<u>-</u>			
1	0	1	-	right	0
2	0	1	-	right	0
3	0	1	-	right	0
4	0	0	-	-	1
5	1	-	1	right	2
6	2	1	-	right	2
7	2	1	-	right	2
8	2	blank	-	left	3
9	3	-	blank	-	4
10	4	_	-	_	-

 1		1	0	1	1	
 1	1	1	0	1	1	
 1	1	1		1	1	
 1	1	1		1	1	
 1	1	1	1	1	1	
 1	1	1	1	1	1	
 1	1	1	1	1	1	\
 1	1	1	1	1	1	
 1	1	1	1	1		•••
 1	1	1	1	1		

TMs and Computability

In 1931, *Kurt Godell* proved that there exist easily-described functions that cannot be computed.

In 1936, Turing proved that a TM can be built for any computable function.

He later proved that a universtal TM can be built that can perform the task of any single-function TM, implying:

- → Since it is independent of any particular hardware details, a proof about a UTM applies to <u>every</u> computer that will <u>ever</u> be built!
- \rightarrow If a function f can be computed, then a UTM can compute f.
- → If a UTM cannot compute a function *g*, then *g* cannot be computed (by any computer, ever).

Turing proved the *Halting Problem* cannot be solved by a UTM.

The Chomsky Hierarchy

In 1956, *Noam Chomsky* classified languages as follows:

Level	Language	Recognizer
3	Regular expression (REs)	Finite stawte machine (FSM)
2	Context free (CFLs)	Pushdown automata (PDA)
1	Context sensitive (CSLs)	Linear bounded automata (LBA)
0	Unrestricted (ULs)	Turing Machine (TM)

Chomsky's categories form a hierarchy, organized by their power of expression (language) and power of recognition (automaton):

Chomsky and BNFs

The Chomsky Hierarchy specifies that:

- A TM can recognize any language able to be recognized.
- A LBA can recognize CSLs, CFLs, & REs but not ULs.
- A PDA can recognize CFLs & REs but not CSLs or ULs.
- A FSM can recognize REs but not CFLs, CSLs or ULs.

The BNF is a tool for specifying CFL syntax.

- Programming language syntax is relatively "easy", linquistically.

It can also be used to specify RE syntax (but doing so is overkill -- simpler tools are available).

Different tools are needed to specify CFL and/or UL syntax.

PDAs and (BNF) Parsing

A PDA is a FSM with a stack on which it can save things...

Recall our basic parsing algorithm (for BNFs):

- 0. Push *S* (the starting symbol) onto a stack.
- 1. Get the first terminal symbol *t* from the input file.
- 2. Repeat the following steps:
 - a. Pop the stack into *topSymbol*;
 - b. If *topSymbol* is a nonterminal:
 - 1) Choose a production *p* of *topSymbol* based on *t*
 - 2) If $p != \epsilon$:

Push *p* right-to-left onto the stack.

- c. Else if topSymbol is a terminal && topSymbol == t: Get the next terminal symbol t from the input file.
- d. Else

Generate a 'parse error' message.

while the stack is not empty.

A FSM cannot parse a CFL/ BNF because it has no stack.

The Random Access Machine (RAM)

Proving things about TMs was a bit clumsy...

1963: *Shepherdson and Sturgis* devise the RAM as a model that is equivalent to a TM but more convenient to use:

The RAM has four components

- A memory: an integer array, indexed from zero.
- A program: a sequence of numbered instructions.
- An input file.
- An output file.

Shepherdson and Sturgis proved a RAM can compute anything a UTM can compute, and vice versa.

The RAM Instruction Set

```
\cdot M[i] = n
                     → store n at index i
\bullet M[i] = M[j]
                  → copy value at j to i
•M[i] = M[j] + M[k] → add and store
•M[i] = M[j] - M[k] → subtract and store
\bullet M[M[j]] = M[k]
               → indirection
                → input (destructive)
• read M[i]
•write M[i]
                   → output
• goto s
                    → unconditional branch
•if M[i] >= 0 goto s → conditional branch
• halt
                     → terminate execution
```

Later extensions added other operators (arithmetic, relational)
The result was quite similar to a *RISC* assembly language.

Example 1

Here is a RAM for a computation...

What does it do (try some sample inputs)?

```
program

1. M[0] = 0.
2. read M[1].
3. if M[1] >= 0 goto 5.
4. M[1] = M[0] - M[1].
5. write M[1].
6. halt.

input

output

memory

[0]

[1]

[1]

[3]

...
```


Example 2

Here is a different RAM. What does it compute?

```
program
                                   memory
                                [0]
1. M[0] = 64.
2. M[1] = 91.
                                [1]
3. M[2] = 32.
4. read M[3].
5. if M[3] >= 0 goto 7.
                                [3]
6. goto 14.
                                [4]
7. M[4] = M[0] - M[3].
                                [5]
8. M[5] = M[3] - M[1].
9. if M[4] >= 0 goto 12.
10. if M[5] >= 0 goto 12.
11. M[3] = M[3] + M[2].
12. write M[3].
                             <u>input</u>
                                          output
13. goto 4.
14. halt.
```

RAM Extensions

Like a TM, a RAM can compute anything that is computable. With these simple extensions:

- Symbolic names instead of memory locations
- multiplication and division operators
- other relational (==, !=, <, >, >=) operators
- literals within arithmetic expressions

it becomes a convenient tool for studying HLL constructs, as a "portable assembly language" to study how a compiler can translate HLL constructs.

RAM Extension Examples

Example 1 program

- 1. read val.
- 2. if val >= 0 goto 4.
- 3. val = 0 val.
- 4. write val.
- 5. halt.

Example 2 program

- 1. read ch.
- 2. if ch < 0 goto 10.
- 3. 10 = ch 65.
- 4. hi = ch 90
- 5. if lo < 0 goto 8.
- 6. if hi > 0 goto 8.
- 7. ch = ch + 32.
- 8. write ch.
- 9. goto 1.
- 10. halt.

Even with the improvements, such programs are hard to read because of their coding style (aka *spaghetti code*), just as Assembly language is harder to read than a HLL...

.5/16) ム Joel C. Adams. All Rights Re

Dept of Computer Science

Calvin College

Summary

The Chomsky Hierarchy names four "levels" of language, plus the weakest machine able to recognize at each level:

- 3 Regular Expressions
- → Finite State Machine
- 2 Context Free Languages → Pushdown Automata
- 1 Context Sensitive Languages → Linear Bounded Automata
- 0 Unrestricted Languages
- → Turing Machine

The TM is the most powerful of the machines, able to

- recognize any language capable of being recognized.
- compute any function capable of being computed.

The RAM is a computational model that is

- as powerful as the TM
- more convenient than the TM for studying HLL constructs.

