// Assume global shared θ , θ^- , and counter T=0. Initialize thread step counter $t \leftarrow 0$ Initialize target network weights $\theta^- \leftarrow \theta$

Algorithm 1 Asynchronous one-step Q-learning - pseu-

Initialize network gradients $d\theta \leftarrow 0$ Get initial state s repeat

docode for each actor-learner thread.

Take action a with ϵ -greedy policy based on $Q(s, a; \theta)$ Receive new state s' and reward r $y = \begin{cases} r & \text{for an extractions} \\ r + \gamma \max_{a'} Q(s', a'; \theta^{-}) & \text{for non-terminal } s' \end{cases}$ for terminal s'

Accumulate gradients wrt
$$\theta$$
: $d\theta \leftarrow d\theta + \frac{\partial (y - Q(s, a; \theta))^2}{\partial \theta}$

s = s'

$$T \leftarrow T + 1$$
 and $t \leftarrow t + 1$
if $T \mod I_{target} == 0$ then

Undate the target network $\theta^- \leftarrow \theta$

if $T \mod I_{target} == 0$ then

if
$$T \mod I_{target} == 0$$
 then
Update the target network $\theta^- \leftarrow \theta$
end if

if $t \mod I_{AsyncUpdate} == 0$ or s is terminal then

Perform asynchronous update of θ using $d\theta$.

Clear gradients $d\theta \leftarrow 0$.

end if

until $T > T_{max}$