1012014 中国国家集训队第一次作业

ACM/ICPC World Finals 试题泛做表格

姓名: <u>未欣凯 (SHUXK97)</u>

试题编 号	名称	题目大意	算法讨论	时空复杂度
2013 A	Self-Assembl y	有52种标号和N种四边 有标号的方块。标号匹配的边可以拼在一起。 问是否可以用它们拼 出无限大的结构。方块 允许旋转和翻转。 N≤40000。	由于允许旋转和翻转,只要这些方块能够拼出无限序列就一定能拼出无限序列就一定能拼出无限大的结构。这时肯定形成了环。 N个方块找环显然会超时,但是标号只有52种。所以将标号建图,对于每一个方块,将连入该方块和连出该方块的标号建边,用Floyd算法找环即可。	时间:
2013 B	Hey, Better Bettor	给你一种赌博方法: 赌一局1块钱,你有p%的概率赢,可以在任意时刻结束。如果结束时仍变钱,可以返还亏损的x%。问最佳策略下的期望获利。 x < 100, p < 50, x和p最多只包含两位小数。	仔细想一想可以发现,真正有用的信息只有。我们的策略就是设定a和b,当输了a元或赢了b元以后停止赌前。设f(i)表示利,通过计算可以得出: $f(i) = \frac{(\alpha^a-1)(a\lambda+b)}{\alpha^a+b-1} - a\lambda$ $\left(\alpha = \frac{1-p}{p}, \lambda = 1-x\right)$ 然后发现a和b都满足一个三人为性质,是分性质,我是一个大小人,我们是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	时间: O(log ² r) 空间: O(r)
2013 C	Surely You	一个图有N个点和M条	求出每辆车到1号点的最	时间:

	Congest	无向边。有C辆车同时	短路长度D _i 。可以发现D	O(N ² MC)
		出发,要到1号点。每	值不同的两辆车永远不	空间:
		辆车只会沿最短路走,	会同时走过同一条边。所	O(M + C)
		一条边上不能有两辆	以只需要按照D值相同的	
		车同时走过(但可以先	车分组考虑。	
		后走过)。求最多可以	D值相同的车如果到达同	
		满足的车的数量。	一条边一定是同时到的,	
		N ≤ 25000 ,	所以这道题变成了最短	
		$M \le 50000 \qquad ,$	路图中边容量为1的最大	
		C ≤ 1000°	流问题。但是用 SAP 会超	
			时,只有 Dinic 才能过。	
2013 D	Factors	f(n)表示n的质因子分	满足f(N) = K的最小的N	时间:
		解的排列方案数。给定	一定是最小的几个质数	O(39912 + T)
		K, 求满足f(N) = K的	的乘积, 而且它们的指数	空间:
		最小的N。	单调不增。预处理出这些	0(39912)
		$K \le 2^{63}$, $N \le 2^{63}$, 数	最小的N(一共只有	
		据组数T ≤ 1000。	39912个),然后回答时直	
			接查找即可。	
2013 E	Harvard	有b个内存库,每个内	易知唯一影响总操作次	时间:
		存库大小为s。0号内存	数的就是 BSR 的转换次	O(N/A)
		库可以直接访问, 其余	数。	空间:
		内存库访问前必须将	先枚举变量的分组(不要	$O(V^2L)$
		BSR 指向该内存库。	考虑存在哪个内存库),	
		现有一个程序(含有循	使得任意两组合并以后	
		环语句),需要使用若	大小会超过s。	
		干个变量,将每个变量	然后枚举在0号内存库的	
		放到某个内存库的某	一组, 计算出其余组之间	
		个位置,使得总操作次	相互转换的次数即可。	
		数最小。		
		b ≤ 13, s ≤ 13, 变量		
		数V ≤ min(b $*$ s, 13),		
		程序长度L ≤ 1000,程		
		序访问变量的总次数		
		$N \le 10^{12}$.		
2013 F	Low Power	将2NK个数分成N组。	二分答案转为判定。	时间:
		每组2K个数再分成大	判定时将数字从小到大	0(NKlog 10 ⁹)
		小为K的两组,其能量	排序,可知两组的最小值	空间:
		为这两组的最小值之	一定相邻。贪心选择靠前	O(NK)
		差。要求最小化每组能	的组,因为越靠前越有利	
		量的最大值。	于后面选择的2(K-1)个	
		2NK ≤ 1000000°	数。对于选择的每个组,	
			判断后面的数是否够用	
		A A A DESCRIPTION AND A SECOND	即可。	
2013 H	Матрёш	有N个俄罗斯套娃共若	这道题一看就知道是 DP	时间:

	ка	干套拆散了排成一列。	题。	O(N ³ logN)
		一套俄罗斯套娃是依	设f[i,j]表示将i~j的套娃	空间:
		次嵌套的大小1~M的	合成一个所需的时间,则	$O(N^2)$
		M个。	$f[i,j] = \min\{f[i,k] + $,
		你要将这些套娃恢复	f[k + 1,j] + 合并步数}。	
		原样。一步操作是指拆	合并步数的计算是 0 (N)	
		开一个套娃, 然后再合	的,所以总复杂度达到	
		上。问最少要多少步才	$O(N^4)_{\circ}$	
		能恢复原样。	但是可以发现, 合并时不	
		N ≤ 500°	需拆开的套娃就是最小	
			的前k个,所以在最小的	
			套娃两边,合并步数是单	
			调的, 所以时间复杂度可	
			以降为O(N³logN)。	
			求出f[i,j]以后剩下来的	
			就是一个O(N²)的 DP 了。	
2013 I	Pirate Chest	将一个宝箱藏在N*M	枚举宝箱的上下边的位	时间:
		的水里。每个格子有一	置,就可以把问题变成一	$O(N^2M)$
		个水深,将宝箱放进水	维的情况。	空间:
		里以后水面会上升。	如果固定了水深的最小	O(NM)
		求底面不超过a*b的	值,显然宝箱越长高度也	
		完全淹没于水中的最	会越高。那么以每个位置	
		大的宝箱体积。	为最小值向左右延伸,因	
			为单调性复杂度是0(M)	
			的。于是就可以在时限内	
		***	AC 了。	1. 5
2013 Ј	Pollution	简单N边形与以原点为	以原点为中心将N边形分	时间:
	Solution	圆心的半圆求交的面	为N个三角形(面积带正	0(N)
		积。	负),求面积时将三角形	空间:
0010 P	0 111	N ≤ 100°	与半圆求交,再相加。	0(N)
2012 B	Curvy Little	一个瓶子是由一条从	如果给定了X,那么用定	时间:
	Bottles	$X = X_{low}$ 到 $X = X_{high}$	积分可以轻松算出X以下	O(N ² KlogΔX)
		的多项式曲线绕 X 轴旋	部分的体积。	空间:
		转一周构成,求瓶子的	对于每个标记,二分位置 即可。	O(N)
		体积。现在从瓶底开始 每隔inc体积就画一个	아 마 비식	
		标记,求标记的位置。		
		多项式次数 $N \leq 100$,		
		y 场 y		
2013 C	Bus Tour	在N个点的无向图中,		时间:
2010	202 1001	求一条1~N和N~1的	路,然后状压 DP。	$0(2^{N}N^{2})$
		最短路, 使得两条路径	设f1[i,j]表示从1到i,经	空间:
		中前 $\left[\frac{N}{2}\right]$ 个点的集合相	过城市集合为j的最短路;	$O(2^NN)$

		同。	城市集合为j的最短路。	
		N ≤ 20°	求出来以后合并结果即	
		N <u>3</u> 20°	可。	
2012 D	Fibonacci	给定字符串数组F _i 满足	一个字符串P在F _i 中出现	时间:
2012 D	Words	$F_0 = 0, F_1 = 1, F_i =$	有三种情况:	$0(10^7 + 10^5 \text{NT})$
	WOLUS			
		$F_{i-1} + F_{i-2}$	1. 全部在F _{i-1} 中;	空间:
		给定N和一个字符串P,	2. 全部在F _{i-2} 中;	$0(10^7)$
		求P在F _N 中出现的次	3. 前一部分在F _{i-1} 中,	
		数。	后一部分在 F_{i-2} 中。	
		$ P \le 10^5, N \le 100,$	预处理出F _i 的前100000	
		数据组数 $T ≤ 30$ 。	位和后100000位,然后	
			在递推时将第三种情况	
			用 KMP 处理。	
			有一个优化: 若i>17, F _i	
			的前后100000位将以2	
			为周期,于是后面就可以	
			不用 KMP 重新计算了。	
2012 E	Infiltration	给定一个N个点的竞赛	存在一种只要6个点的方	时间:
		题,求最小覆盖集。	法:每次选择出度最大的	$O(N^5)$
		N ≤ 75°	点,删去它和它指向的	空间:
			点。	$O(N^2)$
			所以先枚举1~5个点的	, ,
			情况, 若没有再按照上述	
			方法求。	
2012 K	Stacking	有N堆上小下大排列的	显然应该先将N个堆分	时间:
	Plates	盘子,每堆有h _i 个。可	裂, 然后再合并。	· (·\sum_ ·)
		以将一堆盘子从上面	不同大小的盘子之间没	$O\left(NT\sum h_i\right)$
		拿几个分成两堆,也可	有影响, 所以我们只考虑	空间:
		以将一堆盘子堆在另	相同大小的盘子。	$\langle \nabla \rangle$
		一堆上面(仍要满足上	设f[i,j]表示大小1~i的盘	$O(N\sum h_i)$
		小下大)。	子,合并后最底下为第i堆	
		问最少要多少步才能	时最少分成多少堆,现在	
		合并成一堆。	考虑大小为i的盘子。那	
		N ≤ 50,h _i ≤ 50,数	么分成的堆数只与i的第	
		R ≤ 30, n _i ≤ 30, 数 据组数T ≤ 400。	一个、最后一个和i – 1的	
		√日×L-3X.1 △ T UU。	最后一个有关系。这样 DP	
			就可以了。	
			就可以了。 需要注意一些细节,并且	
			加上一些计算上的优化	
0010 1	Т-1	正 Λ Ϳ ク ΝΙ ΦΙΝΙ Λ	以通过清澄上的数据。	中山
2012 L	Takeover	两个人各有N和M个	首先只会删除对方最大	时间:
	Wars	数。一个人可以将自己	的数。第一个人可以选择	O(NlogN)
		手上的两个数合并,或	删除或者合并。之后的游	空间:
		者删除对方比自己最	戏是固定的:	O(N)

				1
		大值小的一个数。两个 人轮流操作,问第一个	如果最大值被删掉,则只能合并,否则如果能删掉	
		人	形合开; 否则如果能删掉 对方最大的就删, 不如就	
		八肥百 犹胜。 N, M ≤ 10^5。	內力 取入的 机 加, 不 如 机 合 并 。	
		11,111 \(\sime\) 10 \(\J\)	off。 这样的策略就可以了。	
2011 A	To Add or to		易知一个数i进行操作以	时间:
2011 A	Multiply	作:将数字乘m或加a。	后得到的数一定是	$O(\text{Tlog}^2 10^9)$
	Mdltiply	你需要写一个最短的	$m^{k}i + b$.	空间:
		程序使得处理器读入	枚举k,对于每一个k找出	0(1)
		任意一个p~q之间的	b的范围[u,v],然后在其	0(1)
		数字并处理之后得到	中找出加法次数最小的b	
		的数字一定在r~s之	(同时保证字典序):	
		间。		
		输入的所有数均为小	若 $\left \frac{\mathbf{u}}{\mathbf{m}^k}\right \le \left \frac{\mathbf{v}}{\mathbf{m}^k}\right $, 则	
		于等于109的正整数,	, w[u]	
		数据组数T ≤ 15。	$b = m^k \left \frac{u}{m^k} \right ;$	
			否则若 $\left[\frac{\mathbf{u}}{\mathbf{m}^{k-1}}\right] \leq \left[\frac{\mathbf{v}}{\mathbf{m}^{k-1}}\right]$,	
			则 $b = m^{k-1} \left[\frac{u}{m^{k-1}} \right] \cdots \cdots$	
			因为A比M的字典序小,	
			当程序长度相同时应该	
			优先选取k较小的方案。	
2011 C	Ancient	给定6种古老文字,你	由于这6种文字的内部空	时间:
	Messages	需要从一个H×W的	洞数量不同,于是只要用	O(HW)
		16进制表示的黑白图	Floodfill 就可以了。	空间:
		像中找到它们。		O(HW)
		H ≤ 200, W ≤ 50 _°		
2011 E	Coffee	在X*Y的方格中有N个	将坐标轴转 45° 就可以	时间:
	Central	咖啡馆,Q个人愿意为	将曼哈顿距离转为横纵	O(XYQ)
		喝咖啡走不超过R _i 的	距离的最大值,然后这个	空间:
		曼哈顿距离。求在什么	问题可以用前缀和搞定。	O(XY + N)
		位置出发可以到最多		
		的咖啡馆。		
		$X, Y \le 1000$,		
2011 0	Monis Call	N ≤ 500000, Q ≤ 20。	拉人 ໄ丽 至	中间
2011 G	Magic Sticks	有连续的N条线段,你可以选择某工品用或	这个问题主要在于求多	时间:
		可以选择若干段围成	边形面积。 有一个定理说圆内接多	0(N³log10 ⁹) 空间。
		若干个多边形, 使得总 面积最大。	有一个定理说圆内接多 边形边面积最大, 所以要	空间: O(N)
		国你取入。 N≤500。	求这个圆的半径,于是二	O(N)
		N ≥ 200°	水这个圆的千位, 丁定—— 分半径。	
			万十位。 有一个大问题需要考虑,	
			就是最长边的圆心角是	
			机 定取 下 也 的 四 心 用 定	

			否超过180°。可以这样做:如果以最长边为直	
			径, 其它边圆心角之和小	
			于360°,那么最长边的圆	
			心角就超过180°; 否则就	
			没有超过。	
			还有一点,如果有一条边	
			不用,那么一定是最长	
			边,于是复杂度可以降一	
			阶。	
2011 H	Mining Your	在N条边的连通图中设	如果割点被切断, 图就会	时间:
	Own Business	置最少的"安全点",	分成几个部分,这几个部	O(NT)
		使得无论哪个点被切	分内都应该至少有一个	空间:
		断,其它结点都与"安	"安全点"。	O(N)
		全点"连通。求最少要	去除所有割点后,只与一	
		设置多少个"安全点"	个割点相连的连通块内	
		以及在满足最少的前	必须设置一个,其它的点	
		提下有多少种方案。	至少有两条路通向"安全	
		$N \le 50000, T \le 20$	点",所以不需要设置。	
			那么需要求出只与一个	
			割点相连的连通块的数	
			量,方案数可以按照乘法	
			原理求出来。	
0011 T	D	ちょんて社長亜油柱砂	注意没有割点的情况。	时间:
2011 J	Pyramids	有N个石块堆两种特殊 的金字塔,堆出的金字	金字塔的种类M最多也 就三百多,而且大小差距	O(M ⁶)
		的	特别大。于是用迭代加深	空间:
		少能堆几个。	搜索+剪枝,速度暴快(据	O(M)
		N≤1000000。	说可以证明能堆出来的	O(M)
		11 ~1000000	不会超过6个)。	
2011 K	Trash	计算让一个给定的简	求出凸包以后旋转卡壳	时间:
	Removal	单N边形物体通过的最	即可。	O(N)
		小管道宽度。		空间:
		N ≤ 100 _°		O(N)
2010 C	Tracking	在N*M的方格内有W	离散化以后直接暴力即	时间:
	Bio-bots	个横着的宽度不超过1	可。	$O(C^2)$
		的墙。一个只能向左或		空间:
		下走的机器从(N,M)出		$O(\mathbb{C}^2)$
		发,不能到墙,问有多		
		少位置无法到达。		
		$N, M \le 1000000$,		
		C ≤ 1000°		
2010 D	Castles	你要攻占有N个城堡的	首先死亡和留守人数可	时间:
		树形地区。给定每个城	以合并。	O(N ² logN)

				Г
2010 G	The Islands Robots on Ice	坚攻占所需人数、死亡 人数。	如果知道每个子树文的 所需的人数Ai和消耗明要 按照Ai—Bi递减的顺序 按照Ai—Bi递减的顺序 攻举根,然后按照从叶和Bi的值,求出最小值即可。 本题显然是 DP。 f(i,j)表子。 等的时间,第二条转间,第二条转移间,第二条转移间,不能有时注意特殊点。 爆搜+优化: 1. 限定时间优化:不也一个的。 是数优个个格子。 是现一个,不能有,不能有	空间:
2010 Ј	Sharing Chocolate	N个朋友要分X*Y的巧克力,每次可以将一个矩形从中间分块变成两个矩形。问能否满足要求。 $N \leq 15$, $X,Y \leq 100$,	一步将左右连通性隔断。 然后就可以AC了。	时间: 0(2 ^N X ²) 空间: 0(2 ^N X)
2009 A	A Careful Approach	数据组数 $T \le 10$ 。 有 N 架飞机,每一架只 能在 $[A_i, B_i]$ 降落,求最 大的最小降落间隔。 $N \le 8$, $A_i, B_i \le 1440$, 数据组数 $T \le 20$ 。	枚举降落顺序,然后二分 降落间隔,判断是否可行 即可。	时间: 0(N! NTlog1440) 空间: 0(N)
2009 D	Conduit Packing	有四个圆不重叠地放进一个大圆里,求大圆的最小半径。	二分大圆的半径,四个小圆在大圆中的情况不多 (因为肯定要相切),只 需枚举即可	时间: O(Tlog10 ⁹) 空间: O(1)
2009 E	Fare and Balanced	有 N 个点 M 条边的有向 无环图。增加某些边的	求出1到每个点和每个点 到N的最短路。	时间: O(NTlogN)

		长度使得所有从1到N	如果从1到一个点有两条	空间:
		的路径长度相同,且没	长度不同的路径,从该点	O(N + M)
		有一条路径上有两条	到N也有两条长度不同的	
		被增加长度的边。要保	路径则不存在。	
		证增加的总长度最小。	现在可以将点划分成两	
		N, M ≤ 50000,数据组 数T ≤ 100。	个集合:从1到它的所有 路径长度相同,从它到N	
		数1 ≤ 100。	的所有路径长度相同。那	
			公必须且只须改变两个	
			集合之间所连的边的权	
			值即可。	
2009 F	Deer-Proof	有N棵树,现在要修建	围住若干个点的最短围	时间:
	Fence	围栏围住这N棵树,且	栏周长必然是将其凸包	$O(3^NT)$
		围栏离树的距离至少	的周长+2πR,如果有两个	空间:
		为R。	围栏相交, 要将两个集合	0(2 ^N)
		N ≤ 9 , 数据组数	合并显然更短。	
		T ≤ 10°	枚举集合求出围栏周长,	
2009 Н	The	M个大臣给N个议案投	然后 DP 即可。 如果大臣给1~2个议案	时间:
2003 11	Ministers'	票。每个大臣给1~4个	投票,则必须全部满足;	0(N ²)
	Major Mess	以案投票,最终决定必	一	空间:
	Magger Megg	须有超过半数符合他	然后我们就可以用 2-SAT	O(N)
		的投票。	来解决。	
		问哪些议案一定会被		
		通过或否决,或者不存		
		在可行的方案。		
		N ≤ 100, M ≤ 500。		
2009 J	Subway	某个铁路线有N站,呈	可以证明误差最大值不	时间:
	Timing	树形,每条边的通过时	会超过 120,然后二分误	0(120N ² Tlog120)
		间以秒计。将通过时间 以分钟计,通过向上或	差最大值,判断能否满足。	空间:
		向下取整使得任意两	[,]	O(120N)
		点之间误差最大值最	i满足误差限制的所有情	
		小。	况下每个子结点到i的误	
		N ≤ 100°	差所在区间。然后从叶子	
			结点向根节点递推。这样	
			可以保证正确性,但是	
			TLE 且 MLE。	
			有一个很强的优化:如果	
			两个区间互相包含,那么	
			去掉大的区间。这样不同	
			的区间最多就只剩120个	
2000 P	A 1	如此 . An为夕西子左	了。	1141日
2008 B	Always an	判断一个N次多项式在	只要对于x = 0,1,…,N结	时间:

	Integer	x取整数时结果是否总	果都是整数就可以了。	$O(N^2T)$
	_	是整数。	重点在于读取多项式时	空间:
		N ≤ 100°	要细心判断多种特殊情	O(N)
			况。	
2008 E	Huffman	给定一棵N个结点的哈	可以按照生成哈夫曼树	时间:
	Codes	夫曼树,要求所有左结	的逆序过程, 从根到叶子	O(N/A)
		点的权值不大于右结	枚举它分给左右结点的	空间:
		点,所有权值均为正整	权值。自然,它们要小于	0(N + 100)
		数,总权值为 100。求	等于之前分配过的最小	
		满足以上条件的哈夫	权值。	
		曼树总数。	然后可以发现每次分配	
		$N \le 20$ °	的必须是当前权值最大	
			的结点(因为它一定是最	
			后一步才合并的)。	
2008 F	Glenbow	一个内角仅为90°和	根据内角和,序列中有	时间:
	Museum	270°的多边形可以用	$\frac{L+4}{2}$ 个 R 和 $\frac{L-4}{2}$ 个 0; 然后	0(T)
		内角序列表示(R 表示 90°, 0 表示270°)。	根据星形多边形,不能有	空间:
		90,0农小270万。 给定内角序列的长度	连续两个0(包括头尾)。	0(1)
		L,求出满足要求的星	用组合数学很容易算出	
		形多边形(内部有一点	答案是 $ C_{R+1}^4 - C_{R-1}^4 $ 。	
		可以看到整个多边形)	_	
		的内角序列总数。	$(R = \frac{L+4}{2})$	
		L ≤ 1000。		
2008 I	Password	己知长度为N的串的M	将M个子串建立 AC 自动	时间:
2000 1	Suspects	个子串,求可能的N的	机,然后在 AC 自动机上	O(26NML2 ^M)
	Suspects	数量。若不超过 42 则	DP.	空间:
		全部输出。	f[i,j,k]表示长度为i,走到	O(NML2 ^M)
		$N \le 25$, $M \le 10$, 子	- : -	0(22)
		串长度L ≤ 10。	子串为k的方案数。在 AC	
		1 74/200	自动机上转移。	
			输出方案时倒推。	
2008 Ј	The Sky is	有N个重叠的山,求天	求出所有交点, 然后每一	时间:
	the Limit	际线的长度。	段取最高的线段。	$O(N^3)$
		N ≤ 100 _°		空间:
				$O(N^2)$
2008 K	Steam Roller	在N*M的网格中从	增加几维状态,(i,j,k,l)	时间:
		(R1,C1)到(R2,C2),每	表示到了(i,j),方向为k,	O(NM)
		条边有时间。但是转向	刚刚走过的边是否加倍。	空间:
		要减速, 起步和刹车会	然后用最短路算法即可。	O(NM)
		使时间加倍。求最短时		
		间。		
		N, M ≤ 100,数据组数		
		T ≤ 21 _°		

2007 A	Consanguine	给定父母和孩子的 ABO	稍微有一点生物学常识,	时间:
	Calculations	和Rh血型,有一个人	血型的判断是非常容易	0(T)
		不知道,问他可能的血	的事情。处理一些细节即一	空间:
		型。	可。	0(1)
2007 B	Grand Prix	数据组数T ≤ 10。 有N段二维的赛道,现	当θ ≠ 0°时,问题等价于	时间:
2007 B	Grand Frix	有N权一维的负担,现 在将赛道搬到倾角为θ	x 坐标不降。	O(NT)
		的山上,需要保证赛道	将N个向量提出来,每个	空间:
		高度单调不降。问需要	向量都计算它所需要的	O(N)
		将赛道旋转多少度。	旋转角,然后取交集即	0 (1.1)
		N ≤ 10000°	可。需要注意一些细节。	
			注意当θ = 0°时不需要转	
			动。	
2007 I	Water Tanks	有N个有高度的水管排	这是一道好的物理题,就	时间:
		成一排,除了第一个管	是N值太小了。	O(N)
		子是开放的,其余都是	如果一个水管中水的高	空间:
		封闭的。	度达到了它右侧的连接	O(N)
		相邻的两个管子之间	管,那么之后它就与左侧	
		有粗细不计但透水透	封闭。这样就很好计算	
		气的连接管,连接管高	了。	
		度递增。	所以倒水就是这样一个	
		向1号管倒水,问在符	过程:将2号管水位提到	
		合连通器原理和压强	它左侧的连接管,将2号	
		定律的情况下最多能 道多少水。	管水位提到它右侧的连接管,将3号管水位提到	
		N ≤ 10 。	它左侧的连接管直	
		N ≤ 10°	到压强使得1号管溢出。	
			在整个过程中只需要知	
			道当前整个体系最低点	
			的压强和每个水管被封	
			闭时的压强(以方便后面	
			计算水的高度)。	
			值得注意的是, 在结束时	
			水管中的水可能分为两	
			部分(最后一个管子压强	
			不够,高度达不到)。	
2007 Ј	Tunnels	有一个N个点M条边的	初看这道题, 觉得这就是	时间:
		无向图。一个人从1号	一个简单的最小割,但是	$O(N^4MT)$
		点出发要到0号点。你	实际上不然。因为可以在	空间:
		要阻止这一行为。	对方决策后再炸毁边。	O(M)
		你可以在他走到结点 时炸掉一些边,最终使	设f(i)表示从i号点出发在 最坏情况下要炸毁多少	
		的炸掉一些边,最终使	東州 情况 下 安 炸 段 多 少 条 道 路。那 么 炸 毁 道 路 时	
		最坏情况下最少要炸	余坦路。那么炸致坦路的 一定是将f值较大的炸	
		取勿用见了取少安拜	足足付1但以入的好	

		站夕小夕边	毁,迫使他走向f值较小	
		掉多少条边。		
		$N \le 50 , M \le 1000 ,$	的点。	
		数据组数T ≤ 5。	那么可以通过类似于	
			Dijkstra 的迭代求解:将	
			当前f值最小的点删掉,	
			在剩下的所有点到0号点	
			求最小割来更新。	
2006 A	Low Cost Air	有N种机票,每张机票	对于每个旅行,用(i,j)表	时间:
	Travel	上有价格和一系列城	示已经经过路线上的i个	$O(N^2IC^2T)$
		市的航线, 你可以从第	 城市,现在在第j个城市。	空间:
		一个城市出发完成一	然后每张机票的每种使	O(NC)
		部分航线。	用方法作为它们之间的	0(110)
		上, 一先有I条旅游路线,询	特移。	
		问用N种机票依次访问	建完图以后用 SPFA 最短	
		完路线上所有城市的	路即可。	
		最少价钱。		
		N, I ≤ 20, 机票和询问		
		的城市数量C ≤ 10。		
2006 B	Remember the	有P种饼片和I种冰淇	直接求最小费用最大流	时间:
	A La Mode!	淋,每种有若干个。给	和最大费用最大流即可。	$O(P^3I)$
		定每个饼片和冰淇淋		空间:
		结合在一起的收益, 求		O(PI)
		出用完所有饼片和冰		
		淇淋的利润范围。		
		P, I ≤ 50 °		
2006 D	Bipartite	二段数就是可以分为	很明显二段数可以表示	时间:
	Numbers	两段,每一段数字都相	成 两 个 形 如 aa…a 和	O(90NT)
		同的数。求最小的大于	bb…b的数的和或者差。	空间:
		N的是N的倍数的二段	设f[i,j]和g[i,j]表示模N为	0(10N)
		数。	i的由j组成的最大和最小	
		^{双。} N ≤ 100000,数据组数	数。	
		N ≤ 100000, 数船组数 T ≤ 200。	数。 然后在求出f和g值的同	
		1 \(\(\) \(\) \(\)	然后在永田和夏祖的问 时就可以判断是否存在N	
			的倍数了。最后注意二段	
			数一定要大于N,所以需	
		, A	要特判。	
2006 F	Building a	给定一个固定转速的	这道题显然是搜索。	时间:
	Clock	转轴和N个可用的齿轮	分析可知,分针和时针是	O(N/A)
		(另外可以再用无限	两个独立的系统,只有开	空间:
		根转轴), 求一种在转	头部分可能是公用的。	O(N)
		轴上安装齿轮组成时	可以先构建分针系统。每	
		钟的方案。每根转轴上	个齿轮和前一个要么咬	
		最多有3个齿轮。	合,要么在同一个转轴	
1		N ≤ 6 , 数据组数	上。如果成功构造出分	

2006 G		$T \le 1000$ °	针,再枚举两个系统的分	
2006 C	i .		界点,最后构造时针。	
2006 C			写程序时要注意细节。	
2006 G	Pilgrimage	一些人去朝圣,途中有	可以发现只有PAY操作时	时间:
		人离开或者加入,每次	才有可能不是整数倍,所	O(NT)
		需要分钱时总钱数恰	以只要考虑 PAY 操作。	空间:
		好都是人数的整数倍,	求出在两个 IN 和 OUT 之	0(T)
		求原先的人数可能值。	间的 PAY 总和,则这个总	
		操作数 $N \leq 50$,数据组	和应该是前一个 IN 或	
		数T ≤ 30000。	OUT 后人数的倍数。这也	
			是本题唯一的有关整除	
			性的限制。	
			当然每次 OUT 的之后必须	
			人数大于 0, 这是本题有	
			关人数下限的限制。	
			枚举开局人数(根据第一	
			个条件只需枚举约数),	
			按照上述条件进行判断 即可。	
2006 I	Degrees of	在N个点的图中求最远	直接 Floyd 即可。	
2000 1	Separation	的两个点之间的距离。	T-1X 1 10 \ \(\text{At the cl o}\)	ο(N ³ T)
	Soparation			` '
2006 J	Routing	有一个N个点M条边的	设f[i,j]表示两条路均从1	时间:
		有向图, 问最少要选择	号点出发,分别到达i号点	$O(N^2MT)$
		多少个点才能满足仅	和j号点时最少选择的点	空间:
		通过选择的点就能让1	数,然后按照i或j下一步	$O(N^2)$
		号点和2号点强连通。	走的结点递推。	
		N ≤ 100, 数据组数	注意路径共用结点的问	
		$T \leq 5$ °	题。如果是同方向的共	
			用,则没有问题;如果是	
			- :-	
0005 5	0: 1:0: 1	ナル		ार्थ सेना
2005 B	_			
	GSM Network	. , , , , , , , , , , , , , , , , , , ,	, , , , , , , , , , , , , , , , , , , ,	
				U(K)
1		ŭ		
		通信最少需要几个信		
		ind to By / y to ++ 11.11.1= 1		
			31 VIII 0	
		世信取少而安儿不信 号塔。 B, C ≤ 50, R ≤ 2500,	21 /m °	
2006 J 2005 B		N \leq 50。 有一个N个点M条边的有有向外个点M条边选择仅通最少个点数是足仅通过点和2号点数能能通。 N \leq 100,数据组数 T \leq 5。 在地图上有B个的通点数据自由R条通信每近的通行,线路点信号的近时,以路点信号的通过的通过的通过的通过的通过的通过的通过的通过的通过的通过的通过的通过的通过的	号点出发,分别到达i号点 和j号点时最少选择的一步 表,然后按照i或j下一步 表,然后接推。 注意如果是问题;如果可 意。如果有问题;如果可 有问题,则f[i,j]还 转移到f[j,i]。 这个要求 Voronoi 图,出来分 不需要真的把它求出一分两则 临界点:如果线段的,则是 临界点:如果线段的,则是 。 以表现是一个,则是 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。	空间:

2005 C	The	有N个点和M条边的	这个问题一眼看上去就	时间:
2005 C	Traveling	图, 个人要到达目标点	要求斯坦纳树。于是我们	$O(2^{N}N^{2})$
	Judges	D。中途可以拼车,求	采用枚举中间结点的方	空间:
	Problem	D。中医可以拼车,从 最短的总行驶距离。	法。	工问: O(N ²)
	Proprem			O(N-)
		$N \leq 20, J \leq 10$	枚举中间结点,然后求出	
			每种情况下的最小生成	
		_t A = A = t_t_atII. III. D	树即可。	- 1)
2005 E	Lots of	有N个建筑物排成一	根据其他楼遮挡阳光的	时间:
	Sunlight	排,给定每层的高度和	情况求出倾角范围,然后	O(NQT)
		楼与楼之间的距离。有	再根据倾角范围求出时	空间:
		Q个询问,问某个建筑	间。	O(N)
		物的某层能看到阳光	注意细节即可。	
		的时间。		
		$N \le 100, Q \le 1000$		
2005 Н	The Great	在N*N的棋盘上有N	移动到同一行, 那么一定	时间:
	Wall Game	个棋子,问将它们移动	是中位数那一行, 然后再	O(NTlogN)
		到同一行或同一列或	从左到右依次移动到	空间:
		同一条对角线的最短	1,2,…,N列即可。	O(N)
		总距离。	移动到同一列的情况类	
		N ≤ 15 , 数据组数	似。	
		T ≤ 500°	对于对角线的情况也不	
			难。每个棋子可以得到一	
			个距离相同的区间	
			$[A_i,B_i]$,然后可以贪心:	
			对于一个目标格子K,如	
			果有棋子的A值≤ K,那么	
			优先分配这些棋子中B值	
			最小的。	
			如果没有,那么优先分配	
			A值最小的;如有多个,	
			优先分配B值最小的。	
			然后去除该棋子继续分	
			配即可。	
2005 J	Zones	有N座服务塔,给定它	枚举K个塔,计算它们服	时间:
		们服务的人数和M个	务的人数取最大值即可。	O(KN ^K)
		公共部分服务的人数,	可以用位运算加快速度。	空间:
		求修建K个塔服务的最		0(2 ^N)
		多人数及方案。		
		$N, K \leq 20, M \leq 10.$		
2004 C	Image is	一个N×N×N的立方	—————————————————————————————————————	时间:
	everything	体,每个单位立方体六	果有不符合要求的单位	$O(6N^3T)$
	2.02,0111115	个面颜色相同。	立方体就删除,直至没	空间:
		现有部分单位立方体	有。这样一定是最多的。	$0(6N^3)$
		缺失。给你六个面的视	本题需要有很强的空间	0(011)
		四八八、 21 ハハ 1 田口 17元	一个四头日本周的工 門	

		図 <u></u>	相色化力 冷辛加世	
		图,求它最多由多少个	想象能力,注意细节。	
		单位立方体组成。		
		N ≤ 10 , 数据组数		
		T ≤ 5000°	Note that the second second	
2004 H	Tree-Lined	在N条道路上种树。一	求出所有路的交点, 然后	时间:
	Streets	条街上树之间的距离	把路分成若干个小段来	$O(N^2)$
		不能低于 50 米, 树与	考虑。	空间:
		路口的距离不能低于	注意端点的情况。	$O(N^2)$
		25米。问最多能种多少		
		棵树。		
		N ≤ 100 _°		
2003 Н	A Spy in the	有N个线性分布的地铁	设f[i,j]表示在时间i到达	时间:
	Metro	站,M ₁ 条从1到N的地	第j站的最短停留时间。然	O(NPT)
		铁和M ₂ 条从N到1的地	后就可以很简单地转移	空间:
		铁。给定相邻两站之间	了。	O(NP)
		的时间和每趟地铁的	因为M ₁ 条线路都是一样	
		出发时间, 求要在时间	的, 所以可以利用单调性	
		P正好到达第N站,在地	优化; M_2 也是如此。	
		铁站最短的停留时间。		
		$N, M_1, M_2 \le 50 \qquad ,$		
		P ≤ 200°		
2003 I	The Solar	给定行星轨道的半长	根据开普勒第二定律求	时间:
	System	轴、半短轴和环绕周	出扫过的面积, 然后二分	O(Tlog10 ⁹)
		期,询问在特定时间的	倾角。对于每个倾角算出	空间:
		位置。	次数扫过的面积。	0(1)
		数据组数T ≤ 100。	只需要注意是否超过	
			180°即可。	
2003 J	Toll	在有N条路的地方,有P	从目的城市到出发城市	时间:
		件货需要运达,但是经	逆推, 然后就有类似于最	O(NT)
		过一个城市要交 $\frac{1}{20}$ 的	短路的迭代过程,SPFA	空间:
		20	即可。	O(N)
		税,经过一个村庄要交		
		1件货的税。问如何选		
		取路径使得最开始准		
		备的货数量最少。		
		城市和村庄数不超过		
		52,数据组数T ≤ 10。		
2002 A	Balloons in a	在盒子中有N个点有气	直接暴力搜索,注意判断	时间:
	Box	球,可以按任意顺序	点在盒子外和点在其它	O(N!)
		吹。气球膨胀直到碰到	气球内部的情况。	空间:
		盒壁或其它吹好的气		0(N)
		球。不能吹盒子外和在		
		其它气球内部的气球。		
		求吹完气球后盒子剩		

		下的最小体积。		
		N ≤ 6.		
2002 C	Crossing the Desert	你要穿越沙漠,走一英 里要消耗一单位水和 一单位食物。但中途有 N个绿洲可以存储食物 和获得无限水。给定你 的最大负重M,询问穿 越沙漠所需准备的最 少食物量。 N≤20。	首先,由于水的供给无限,我们只要考虑食物。f(i)表示想要到达终点,在绿洲i至少要有的食物量,然后考虑i之前一个的绿洲j。从j到i可以储存M-2d _{i,j} 的食物,在i和j之间来回一趟可以在i多储存M-3d _{i,j} 的食物。然后就可以算出f(j)。于是就有了一个类似于最短路的迭代,SPFA即可。注意样例三的名词单数。	时间:
2002 E	Island Hopping	有N个岛,1号岛连入了 网络,你要使所有岛都 连入网络。给定N个岛 的坐标,在两个岛屿之 间修电缆的时间正比 于距离。所有电缆同时 修建,求在电缆总长最 小的情况下的平均接 入网络时间。 N≤50。	求出最小生成树后直接求即可。	时间: O(N ² logN) 空间: O(N ² logN)
2002 G	Partitions	给定N*M矩形的两个 划分,求出两个划分的 并和交。 N,M≤20,数据组数 T≤6。	两个划分的并就直接将两个图合并即可。 两个划分的交也可以将两个图求交,但是结果可能不是划分。然后需要修正:用floodfill寻找每一个矩形,将矩形内部的边全部删掉即可。 注意一些细节。	时间: O(NMT) 空间: O(NM)
2002 Н	Silly Sort	一个长度为N的序列要排序。交换两个数的位置代价是被交换的两个数的和。求最小总代价。N≤1000。	可以将序列分成若干个 轮换,在每个轮换中有两 种方法: 1. 将轮换中的最小值与 其他每个数交换一 遍; 2. 将整个序列中的最小 值与轮换中的每个数	时间: O(NT) 空间: O(N)

			交换一次。	
			然后求出两种情况的最	
			小值即可。	
2001 A	Airport	给定一个N个城市之间	直接求出每个方案的代	 时间:
2001 A	_	等机情况和M个机场	自	$O(N^2M + M^2)$
	Configuratio		7月,然归3H/了时月。	
	n	布局方案,将每个方案		
		的最优性排序。		
		$N \le 25$, $M \le 20$.		
2001 B	Say Cheese	在一块奶酪中有N个球	将起点和终点看作半径	时间:
		形的小泡, 问从起点到	为 0 的小泡,然后用N个	$O(N^2T)$
		终点所需要经过的最	球心直接最短路即可(如	空间:
		少的奶酪长(小泡不	果两个球相交则距离为	O(N)
		算)。	0)。	
		N ≤ 100, 数据组数		
		T ≤ 10∘		
2001 F	A Major	一个关于音乐的变调	打表然后就0(1)了,不过	时间:
	Problem	问题。	打表挺麻烦的。	O(T)
		数据组数T ≤ 100。		空间:
				0(1)
2001 G	Fixed	有N个程序和M个内存	考虑每个程序对排在它	时间:
	Partition	分区,给定每个程序在	后面的程序的影响。	$O(N^3M)$
	Memory	每个分区的运行时间。	(x,y)表示第x个分区倒数	
	Management	同一个分区同一时刻	第y个程序。将N个程序与	$O(N^2M)$
		只能运行一个程序。求	N个位置匹配,用KM求出	0 (11 11)
		所有程序运行完成的	最优方案。	
		最少总时间和方案。	以 <i>四万</i> 人。	
		$N \leq 50, M \leq 10.$		
2001 Н	Professor	判断一个M个比较器	第一问用 0-1 原则,所以	时间:
2001 11	Monotonic's	的N值比较网络是否是	只需要判断2 ^N 个01序列	$O(2^{N}M + M)$
	Network	排序网络以及求它的	就可以了。	O(2 M + M) 空间:
	METMOTK	新	, 就可以了。 第二问更简单, 记录每个	工问: O(N + M)
		运打时间。 N ≤ 12,M ≤ 150。		U(N + M)
		$ N \leq 12, N \leq 150_{\circ}$	值最后用到的时刻就可以加满这个比较累工作	
			以知道这个比较器工作	
0001 7	A 37	AND	的时间。	마사리
2001 I	A Vexing Game	一个NR×NC的消方块	这道题显然是搜索,但是	时间:
		的游戏。方块可以相邻	朴素的 BFS 要超时。要加	0(N/A)
		的空位移动一格,悬空	两个优化:	空间:
		的会下落,有两个或以	1. Hash 表判重;	O(N/A)
		上相同的方块相邻则	2. 考虑一个字母出现了	
		可以消掉。问最少移动	几次,利用它们横坐标的	
		多少步可以使所有方	差值对步数下界进行估	
		块消掉,并求方案。	计,来剪枝。	
		数据保证存在11步以	也许有其它更好的方法。	
		内的解法。		

		NR,NC ≤ 9,数据组数		
		T ≤ 5°		
2000 E	Internet	计算的N个结点,M条	直接最大流即可。	时间:
	Bandwidth	无向边连接的网络中		$O(N^2M)$
		两点之间带宽的大小。		空间:
		N ≤ 100 _°		O(M)
2000 F	Page Hopping	求N个点的有向图中任	直接 Floyd 求最短路即	时间:
		意两点之间的平均距	可。	$O(N^3T)$
		这		空间:
		N ≤ 100°		$O(N^2)$
1999 A	Bee Breeding	给定一个螺旋状标号	建立斜坐标系, 预处理每	时间:
		的蜂巢,求第a个蜂巢	一个蜂巢的位置。	O(10000 + T)
		和第b个蜂巢的距离。	对于两个蜂巢, 算出它们	空间:
		a,b≤10000,数据组	在 x 和 y 方向上的距离,	0(10000)
		数T ≤ 100。	然后再考虑一下第三个	
			方向即可。	
1999 D	The	有N棵树,砍伐一些树	枚举砍伐的树, 求剩下的	时间:
	Fortified	将剩下的树围起来, 使	树的凸包周长, 然后判断	O(2 ^N NT)
	Forest	得砍伐的树价值最小。	是否可行即可。	空间:
		N ≤ 15 , 数据组数		O(N)
		T ≤ 10∘		
1999 E	Trade on	有N个工厂,每个工厂	先求出在每个工厂的最	时间:
	Verweggistan	有B _i 个箱子的货物。在	大利润和在最大利润的	$O\left(N\left(\sum B_{i}\right)^{2}\right)$
		每个工厂只能买前几	情况下可以买多少个,然	
		个货物,然后以10元的	后 DP 即可。	空间:
		价格卖掉。问买几个利		$O(N \sum B_i)$
		润最大,并求出所有的		
		买的数量。		
		$N \leq 50$, $B_i \leq 20$, 数		
1000 11	01 1 11	据组数T ≤ 10。		H 1 2-
1999 Н	flooded!	在一个N*M地图中每	将点按照高度排序,然后	时间:
		个点有高度,有体积V	依次判断即可。	O(NMTlogNM)
		的积水,问水的高度和	注意细节。	空间:
		覆盖面积。		O(NM)
1000 B	Diant	N, M ≤ 30。 又却又N热言度 每二	ff: :1 丰二역: 印卫宁宣帝	中间
1998 B	Flight	飞机飞N段高度,每一	f[i,j]表示第i段飞完高度	时间:
	Planning	段用特定高度飞消耗 特定量的燃油 四孔真	为j的最少燃油消耗,然后	0(20 ² NT)
		特定量的燃油,爬升高度也消耗燃油。问到终	直接 DP 即可。	空间:
				O(20N)
		点消耗的最少燃油。 N < 100		
1998 C	Lead or Gold	N ≤ 100。 给定三种金属的N种合	收入分(a b a) 丰二出上	时间:
1999	read or Pold	给定二种金属的N种合 金,询问另一种合金能	将合金(a,b,c)表示成点	
			$\left(\frac{a}{a+b+c}, \frac{b}{a+b+c}\right)$,然后就是	0(NT) 空间:
		否由已有的合金混合	Carbic arbic/	工門:

		出来。	询问一个点是否在若干	0(N)
		$N \le 100$, $T \le 100$.	个点的凸包中。	
			求出N个点的凸包,然后	
			判断一个点是否在凸包	
			中就很简单了。	
1998 G	Spatial	在N×N的黑白图和四	按照题目的意思模拟即	时间:
	Structures	分树黑色结点序列之	可。可以用前缀和加速子	O(N ² logNT)
		间互相转化。	矩阵全黑或全白的判断。	空间:
		N ≤ 64∘	注意一行输出12个数。	$O(N^2)$