FIZIKA

EMELT SZINTŰ ÍRÁSBELI VIZSGA

2013. május 16. 8:00

Az írásbeli vizsga időtartama: 240 perc

Pótlapok száma								
Tisztázati								
Piszkozati								

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fontos tudnivalók

A feladatlap megoldásához 240 perc áll rendelkezésére.

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, kérjen pótlapot!

A pótlapon tüntesse fel a feladat sorszámát is!

írásbeli vizsga 1312 2 / 16 2013. május 16.

Azonosító								
jel:								

ELSŐ RÉSZ

Az alábbi kérdésekre adott válaszok közül minden esetben pontosan egy jó. Írja be a helyesnek tartott válasz betűjelét a jobb oldali fehér négyzetbe! Ha szükségesnek tartja, kisebb számításokat, rajzokat készíthet a feladatlapon.

- 1. A fürdőszobamérleg 70 kg-ot mutat, amikor Péter rajta áll. Hogyan mozog az a lift, amelyben Péter csak 63 kg-osnak méri magát ugyanezzel a mérleggel? ($g \approx 10 \text{ m/s}^2$)
 - A) A lift 0,7 m/s sebességgel egyenletesen mozog lefelé.
 - **B)** A lift 0,7 m/s² gyorsulással mozog lefelé.
 - C) A lift 1 m/s² gyorsulással mozog lefelé.
 - **D)** A lift 1 m/s sebességgel egyenletesen mozog lefelé.

- 2. A kertben egy hideg téli, illetve egy meleg nyári napon azonos a relatív páratartalom. Melyik esetben tartalmaz több vizet a levegő köbméterenként?
 - A) Nyáron.
 - B) Télen.
 - C) Egyforma mennyiségű vizet tartalmaz a levegő mindkét esetben.

2 pont

3. Két hosszú, párhuzamos vezetőben egyenáram folyik. Melyik esetben lesznek a vezetékek között fellépő kölcsönhatási erők az ábrának megfelelő irányúak?

- **A)** Amikor a vezetékekben folyó áramok egyirányúak.
- B) Amikor a vezetékekben folyó áramok ellentétes irányúak.
- C) Egyik esetben sem, a kölcsönható erők ilyen elrendeződése lehetetlen.

4. Az mellékelt grafikon egy egyenes vonalú mozgást végző test sebesség-idő függvényét mutatja. Melyik pillanatban lesz a test a legtávolabb a t=0 s pillanatban elfoglalt kiindulási helyétől?

- A) t = 9 s pillanatban.
- **B)** t = 13 s pillanatban.
- C) t = 15 s pillanatban.
- **D)** t = 25 s pillanatban.

2 pont	

5. A Napban nukleáris fúzió zajlik. Mely anyag mennyisége nő a Napban a fúzió során?

- A) A fúzió során a Napban lévő hidrogén mennyisége nő.
- B) A fúzió során a Napban lévő hélium mennyisége nő.
- C) A fúzió során a Napban lévő nukleonok száma nő.

2 pont	
--------	--

6. A Föld Nap körüli keringése során körülbelül 6·10⁻³m/s²-es centripetális gyorsulással mozog. A Jupiter körülbelül ötször távolabb van a Naptól, mint a Föld. Mekkora a Jupiter centripetális gyorsulása? (Mindkét bolygó pályáját tekintsük körpályának!)

- **A)** $30 \cdot 10^{-3} \text{ m/s}^2$
- **B)** $150 \cdot 10^{-3} \text{ m/s}^2$
- C) $1.2 \cdot 10^{-3} \,\mathrm{m/s^2}$
- **D)** $0.24 \cdot 10^{-3} \,\mathrm{m/s^2}$

7. Egy elektron a papír síkjában a szaggatott vonallal jelzett pályán mozog légüres térben. A pályája egyenes szakaszán (1. tartomány) homogén elektromos és mágneses téren halad át, a második, félköríves szakaszon (2. tartomány) csak homogén mágneses tér van jelen. Mit mondhatunk a két tartományban a mágneses indukcióvektor irányáról?

- A) A két tartományban egymásra merőleges az indukcióvektor iránya.
- B) A két tartományban ugyanolyan az indukcióvektor iránya.
- C) A két tartományban ellentétes az indukcióvektor iránya.

2 pont	

8. Az ábrán látható csigasorral egyenletesen emelünk föl egy testet. Mit állíthatunk a test G súlya és az emeléséhez szükséges F erő arányáról? (A csigák és a kötél ideálisak, tömegük elhanyagolható.)

- $\mathbf{A)} \qquad \frac{F}{G} = \frac{1}{4}$
- $\mathbf{B)} \qquad \frac{F}{G} = \frac{1}{5}$
- $\frac{\mathbf{C}}{G} = \frac{1}{6}$
- $\mathbf{D)} \qquad \frac{F}{G} = \frac{1}{8}$

Fizi	ka — e	emelt szint jel:						
9.	kezde A ren kihúz F erő végén kezdő Melyi	rízszintes hengerben súrlódásmentesen mozgatható, etben egyensúlyban lévő dugattyú levegőt zár el. deszer nem hőszigetelt. A dugattyút hirtelen ezuk a henger végéig, és megmérjük, hogy mekkora szükséges ahhoz, hogy a dugattyút a henger hél megtartsuk. Ezután a kísérletet azonos bállapotból megismételjük úgy, hogy a dugattyút nagyon lassanik esetben kell nagyobb erő a dugattyú megtartásához a henger h húzzuk ki a dugattyút, vagy amikor hirtelen?						
	A) B) C)	Amikor lassan húzzuk ki a dugattyút. Amikor hirtelen húzzuk ki a dugattyút. A szükséges erő nem függ attól, hogy milyen gyorsan hi a dugattyút.	ı húzzuk ki					
			2 pont					
10.	Az ala A) B) C)	Ábbi, domború tükörre vonatkozó állítások közül melyik helyes A domború tükörnek nincs fókuszpontja, mert nem képes összegy a párhuzamos sugarakat. A domború tükör esetén, ha a tárgytávolság a fókusztávolságnál k a kép nagyított. Domború tükör esetén a látszólagos kép mindig közelebb van a ti	yűjteni kisebb,					
	Ο)	mint a tárgy.	, anomoz,					
			2 pont					
11.		dó hullámhosszú, monokromatikus megvilágítással fényelektro nk létre. Az alábbiak közül melyik állítás igaz?	omos jele	nséget				
	A)	A megvilágítás intenzitásának el kell érnie egy küszöbértéket ahh tapasztalhassunk kilépő elektronokat.	oz, hogy					
	B)	A megvilágítás intenzitása semmilyen hatással nincs a kilépő elektronokra.						
	C)	A megvilágítás intenzitásának növelésével nő a kilépő elektronok energiája.	-					
	D)	A megvilágítás intenzitásának növelésével nő a kilépő elektronok	száma.					
			2 pont					

12. Függőlegesen fellövünk egy golflabdát. Az alábbi grafikonokon a labda mozgási energiáját ábrázoltuk az idő függvényében. Melyik grafikon helyes? (A közegellenállás elhanyagolható!)

III.

IV.

- A) Az I. grafikon.
- B) A II. grafikon.
- C) A III. grafikon.
- D) A IV. grafikon.

2 pont

- 13. Mi a fizikai tartalma annak a kijelentésnek, hogy a víz forráshője 2256 kJ/kg?
 - A) A forrás során keletkező 1 kg gőz belső energiája 2256 kJ.
 - B) 2256 kJ tágulási munkát végez 1 kg víz, miközben gőzzé alakul.
 - C) 2256 kJ hő szabadul fel, miközben 1 kg forrásban lévő víz gőzzé alakul és eltávozik.
 - **D)** 1 kg forrásban lévő víz 2256 kJ hőt vesz fel, miközben gőzzé alakul.

- 14. Egy semleges héliumatomnak 2 alapállapotú (1s) elektronja van. Egymást követően leszakítjuk ezeket. Az első vagy a második elektron leszakításához szükséges nagyobb energia?
 - A) Az első elektron leszakításához.
 - B) A második elektron leszakításához
 - C) Ugyanakkora energia befektetésére van szükség mindkét elektron leszakításához.
 - **D)** A leszakításhoz szükséges energia csak az elektron mozgási energiájától függ, nem attól, hogy elsőként vagy másodikként szakítjuk le.

2 pont	
--------	--

- 15. Napfelkelte előtt egy fél órával a fogyó hold keskeny sarlója látható az égen. Körülbelül melyik égtáj felé látjuk?
 - A) Kelet felé.
 - B) Nyugat felé.
 - C) Dél felé.
 - **D)** Attól függ, hogy a déli vagy az északi féltekéről látjuk a jelenséget.

2 pont	
--------	--

Azonosító								
jel:								

MÁSODIK RÉSZ

Az alábbi három téma közül válasszon ki egyet és fejtse ki másfél-két oldal terjedelemben, összefüggő ismertetés formájában! Ügyeljen a szabatos, világos fogalmazásra, a logikus gondolatmenetre, a helyesírásra, mivel az értékelésbe ez is beleszámít! Mondanivalóját nem kell feltétlenül a megadott szempontok sorrendjében kifejtenie. A megoldást a következő oldalakra írhatja.

1. Eötvös Loránd munkássága

"A tudomány emberének érzelmi világa a költőétől alig különbözik egyébben, mint abban, hogy eszményeit versekben kifejezésre juttatni nem tudja, s azokat azért talán még mélyebben rejti szívébe..."

Eötvös Loránd

A nyugvónak és gömb alakúnak képzelt Föld és a rajta elhelyezkedő tárgyak között fellépő gravitációs kölcsönhatás segítségével értelmezze a Föld felszínére jellemző gravitációs gyorsulás értékét! Mutassa be, hogyan számítható ki ez az érték a Föld jellemző adatainak segítségével!

A forgó Föld felszínén nyugalomban lévő tárgyak körmozgást végeznek. Készítsen ábrát, amelyen megmutatja, hogy a gravitációs vonzóerő és a felszíni tartóerő hogyan biztosítja az Egyenlítő mentén nyugvó test körmozgását! Magyarázza el, hogy ebben az esetben miért kisebb a nyomóerő – és ezzel az általunk észlelt nehézségi erő is – a gravitációs vonzóerőnél!

Ha egy test az Egyenlítő mentén kelet felé mozog a Földhöz képest, a tartóerő és ezzel a test súlya is lecsökken. Ha a test nyugat felé mozog, akkor a súlya megnő. Magyarázza meg ezt a jelenséget az ábrája alapján! (Ez a jelenség az Eötvös-effektus egy speciális esete.)

Ismertesse, mikor és hol élt Eötvös Loránd! Munkássága gyakorlatban is alkalmazott eredménye az Eötvös-inga. Ismertesse, milyen fizikai mennyiség mérésére volt alkalmas az inga, és milyen területen alkalmazták az Eötvös-ingát!

Azonosító								
jel:								

2. A fény törése, a szeműveg

A távol és közellátás többnyire inkább a rossz szokásnak, mint a szem hibájának következelme, honnét valami rossz szokás által láttávolunkat elronthatjuk, úgy kímélet és gyakorlás által ezen hibán javíthatunk is. A vadászok, szántóvető emberek többnyire távollátásúak, az apró tárgyakkal foglalkozó emberek ellenben közellátásúak.

Tapasztalati természettudomány: Tscharner Bodogbul fordította Bugát Pál – Budán, 1836.

Vázlatos rajz segítségével ismertesse az emberi szem képalkotását, s nevezze meg a szem két legfontosabb részét a leképezés szempontjából! Ismertesse, hogyan érvényesül a leképezési törvény az emberi szem esetében, ahol a képtávolság állandónak tekinthető! Hogyan láthatjuk élesen a közeli és a távoli tárgyakat is? Milyen változás következik be, ha egy távoli tárgy után egy közelire pillantunk?

Írja le, milyen látáshiba esetén beszélünk közel-, illetve távollátásról! Magyarázza meg,

mit jelent az, hogy egy szeműveg "pluszos" vagy "mínuszos". Írja le, melyik látáshiba esetén és miért rendelnek "pluszos" vagy "mínuszos" szeműveget!

Az ábrán látható úgynevezett bifokális szemüveg lencséjét úgy csiszolták, hogy a +2 dioptriás lencse alsó részében egy +3,5 dioptriás kisebb lencsét alakítottak ki. Kiknek ajánlható ez a szemüveg, és mennyiben teszi könnyebbé a használója életét?

Azonosító								
jel:								

3. Halmazállapot-változások

Jegülés mely által a föloldott testnek részecskéi híg állapotból merőbe térnek, és magukra szabályos idomokat öltenek. Jegülésnél tehát a fő föltét az, hogy a jegőczczé válandó test híg legyen, miszerint részecskéi akadálytalanul engedhessenek kölcsönös vonzalmuknak, továbbá hogy a folyadék lassan térjen merő állapotba, s ez idő alatt a képelődésben miáltal sem gátoltassék.

Schirkhuber Móricz: Az elméleti és tapasztalati természettan alaprajza – Pesten, 1851.

Ismertesse a szilárd, folyékony és légnemű halmazállapotok részecskemodelljét! Mutassa be az olvadás folyamatát! Ismertesse az olvadáspont és az olvadáshő fogalmát! Milyen tényezők befolyásolják az olvadáspontot? Értelmezze az olvadáshőt a részecskemodell segítségével!

Mutassa be a párolgás jelenségét, a párolgást befolyásoló tényezőket! Ismertesse a párolgáshő fogalmát! Értelmezze a párolgás jelenségét és sajátságait a részecskemodell segítségével!

Mutassa be a forrás jelenségét, a forráspont és a forráshő fogalmát! Magyarázza el, miért befolyásolja a gőztér nyomása a forráspont értékét! Adjon meg egy gyakorlati példát a forráspont eltolódásra!

Tartalom	Kifejtés	Összesen
18 pont	5 pont	23 pont

HARMADIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Egy m = 10 kg tömegű létrát ferdén a falnak támasztunk. A létra és a talaj közötti súrlódási együttható 0,5. A létra és a fal közötti súrlódás elhanyagolható. (A létra tömegközéppontja hosszának felénél van.)
 - a) Készítsen ábrát, amely a létrára ható erőket ábrázolja! Mekkora szögben lehet az üres létrát a falhoz támasztani anélkül, hogy megcsúszna?
 - b) A létrát úgy támasztjuk a falhoz, hogy a vízszintessel 60°-os szöget zár be. Hosszának hányad részéig mászhat fel rá egy 50 kg-os ember, mielőtt a létra megcsúszna?

a)	b)	Összesen
8 pont	6 pont	14 pont

2. A bagoly jól lát a sötétben is, szeme már 5·10⁻¹³ W/m² fényintenzitásra is érzékeny. A bagoly kör alakú pupillája sötétben 8,5 mm átmérőjűre tud kitágulni.

Legalább hány 510 nm hullámhosszúságú fotonnak kell másodpercenként a bagoly pupilláján bejutnia a szemébe ahhoz, hogy fényt érzékeljen?

$$c = 3.10^8 \frac{\text{m}}{\text{s}}, h = 6.63.10^{-34} \text{ J} \cdot \text{s}$$

Összesen

- 3. Egy 1 ohmos ellenállást 4 voltos egyenfeszültségre kapcsolunk. Szeretnénk az ellenálláson átfolyó áram erősségét megmérni, de csak egy 1 amperes méréshatárú, 0,01 Ω ellenállású árammérő műszerünk van. Ezért az ábra szerint beiktatunk az áramkörbe egy, a műszerrel párhuzamosan kötött ellenállást (sönt), amivel a méréshatárt 5-szörösére növeljük. (A feszültségforrásnak nincs belső ellenállása.)
 - a) Mekkora lehet a kapcsolásban a söntön átfolyó áram maximális értéke? Mekkora a sönt ellenállása?
 - b) Számítsuk ki, hogy mennyivel változtatja meg az 1 Ω-os ellenálláson átfolyó áram erősségét a mérőműszer és a sönt beiktatása ahhoz az állapothoz képest, amikor csak az ellenállás van a telepre kapcsolva! Hány ezrelék pontatlanságot okoz a műszer és a sönt beiktatása az áramkörbe?

a)	b)	Összesen
5 pont	5 pont	10 pont

- 4. Bizonyos mennyiségű héliummal a mellékelt ábrán látható körfolyamatot hajtjuk végre. $V_1 = V_3 = 25 \text{ dm}^3$, $p_1 = p_2 = 4 \cdot 10^5 \text{ Pa}$, $V_1 = 300 \text{ K}$, $v_2 = 20 \text{ dm}^3$.
 - a) Mekkora T_2 és T_3 ?
 - b) Mennyi a gázon végzett munka és a gázzal közölt hő az egyes részfolyamatokban?
 - c) Mennyi a teljes körfolyamat hatásfoka?

a)	b)	c)	Összesen
2 pont	9 pont	3 pont	14 pont

Azonosító								
jel:								

Figyelem! Az értékelő tanár tölti ki!

I. Feleletválasztós kérdéssor II. Esszé: tartalom II. Esszé: kifejtés módja III. Összetett feladatok Az írásbeli vizsgarész pontszáma	90ntszám 30 18 5 47	pontszám
II. Esszé: tartalom II. Esszé: kifejtés módja III. Összetett feladatok	18 5	
II. Esszé: kifejtés módja III. Összetett feladatok	5	
III. Összetett feladatok		
	47	
Az írásbeli vizsgarész pontszáma	400	
	100	
Dátum:		tanár
	elért pontszám	
		programba beírt egész pontszám
I. Feleletválasztós kérdéssor	pontszám egész számra	beírt egész
II. Esszé: tartalom	pontszám egész számra	beírt egész
	pontszám egész számra	beírt egész