WuS - Lecture Notes Week 7

Ruben Schenk, ruben.schenk@inf.ethz.ch

June 22, 2022

0.0.1 Unabhängigkeit

Satz: Seien $X_1,...,X_n$ diskrete Zufallsvariablen mit gemeinsamer Verteilung $p=(p(x_1,...,x_n))_{x_1\in W_1,...,x_n\in W_n}$. Die folgenden Aussagen sind äquivalent:

- 1. $X_1, ..., X_n$ sind unabhängig.
- 2. $p(x_1, ..., x_n) = \mathbb{P}[X_1 = x_1] \cdots \mathbb{P}[X_n = x_n]$ für jedes $x_1 \in W_1, ..., x_n \in W_n$.

0.1 Stetige Gemeinsame Verteilung

0.1.1 Definition

Def: Sei $n \geq 1$. Wir sagen, dass die Z.V. $X_1, ..., X_n : \Omega \to \mathbb{R}$ eine **stetige gemeinsame Verteilung** besitzen, falls eine Abbildung $f : \mathbb{R}^n \to \mathbb{R}_+$ existiert, sodass

$$\mathbb{P}[X_1 \le a_1, ..., X_n \le a_n] = \int_{-\infty}^{a_1} \cdots \int_{-\infty}^{a_n} f(x_1, ..., x_n) \, dx_n ... dx_1$$

für jedes $a_1, ..., a_n \in \mathbb{R}$ gilt. Obige Abbildung f nennen wir gerade **gemeinsame Dichte von** $(X_1, ..., X_n)$.

Satz: Sei f die gemeinsame Dichte der Zufallsvariablen $(X_1,...,X_n)$. Dann gilt

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} f(x_1, ..., x_n) dx_n ... dx_1 = 1.$$

Intuition: Nehmen wir zum Beispiel zwei Z.V. X, Y. Intuitiv beschreibt f(x, y) dxdy die Wahrscheinlichkeit, dass ein Zufallspunkt (X, Y) in einem Rechteck $[x, x + dx] \times [y, y + dy]$ liegt.

0.1.2 Erwartungswert unter Abbildungen

Satz: Sei $\phi : \mathbb{R}^n \to \mathbb{R}$ eine Abbildung. Falls $x_1, ..., X_n$ eine gemeinsame Dichte f besitzen, dann lässt sich der Erwartungswert der Z.V. $Z = \phi(X_1, ..., X_n)$ mittels

$$\mathbb{E}[Z] = \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \phi(x_1, ..., x_n) \cdot f(x_1, ..., x_n) dx_1 ... dx_n,$$

berechnen (solange das Integral wohldefiniert ist).