# MLL 100

# Introduction to Materials Science and Engineering

Lecture-13 (February 02, 2022)

Dr. Sangeeta Santra (<u>ssantra@mse.iitd.ac.in</u>)



# What have we learnt in Lecture-12?

☐ Eutectic phase diagram



# Isomorphous ——— Peritectic phase diagram



 When the melting points of the two components differ significantly, the system tends to form a peritectic phase diagram.



# Iron-carbon phase diagram



Peritectic reaction:  $L + \delta \stackrel{\text{cool}}{\rightarrow} \gamma$ 

1493 °C, 0.16 wt.% C

The 'Eutectoid reaction' holds technological significance.



- ☐ Why the solubility of 'Carbon' is more in the austenite phase (FCC) than in ferrite (BCC)??
- ☐ How does a carbon atom dissolve in an iron matrix?

Carbon occupies the interstitial sites in an iron crystal structure.

Atomic radius of a carbon atom = 70 pm

- Volume fraction of BCC = 68%
- Volume fraction of FCC = 74%
- Empty space is higher in BCC.



# Packing sequence in cubic lattices

Close-packing in 1-D



Close-packing in 2-D



Close-packing in 3-D ?? Air between Air between balls balls

### a) Simple cubic packing



### b) Face-centered cubic packing



### c) Hexagonal packing







**Stacking sequence** 

ABCABC.....

ABAB.....

**Close packing type** 

Cubic close packing (CCP)

Hexagonal close packing (HCP)

### **Face-centred cubic**





- Close-packed plane in FCC: {111}
- Close-packed direction in FCC: <110>

# Empty spaces enclosed by atoms in a crystal: Voids

# Voids in close-packed structures



**Co-ordination number** 

4

6

How many tetrahedral and octahedral voids are present in ferrite (BCC) and austenite (FCC)?

# Tetrahedral voids in BCC



Coordinates of the void: {½, 0, ¼} (four on each face)

- No. of faces: 6
- Total no. of 'T' voids: 24
- No. of 'T' voids per unit cell: (24/2) = 12
- No. of 'T' voids per unit atom: (12/2) = 6

### Octahedral voids in BCC



# **Tetrahedral voids in FCC**

# Octahedral voids in FCC



# Number of voids in BCC and FCC

| BCC voids                | Position                                                                                                                            | Voids / cell | Voids / atom |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Distorted<br>Tetrahedral | • Four on each face: $[(4/2) \times 6 = 12] \rightarrow (0, \frac{1}{2}, \frac{1}{4})$                                              | 12           | 6            |
| Distorted<br>Octahedral  | • Face center: $(6/2 = 3) \rightarrow (\frac{1}{2}, \frac{1}{2}, 0)$<br>• Edge center: $(12/4 = 3) \rightarrow (\frac{1}{2}, 0, 0)$ | 6            | 3            |

| FCC voids   | Position                                                                                                                              | Voids / cell | Voids / atom |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Tetrahedral | $^{1}/_{4}$ way from each vertex of the cube along body diagonal <111> $\rightarrow ((^{1}/_{4}, ^{1}/_{4}, ^{1}/_{4}))$              | 8            | 2            |
| Octahedral  | • Body centre: $1 \rightarrow (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$<br>• Edge centre: $(12/4 = 3) \rightarrow (\frac{1}{2}, 0, 0)$ | 4            | 1            |

- ☐ Number of 'T' voids is greater than those of 'O' voids.
- ☐ But, still Carbon prefers to occupy the 'O' voids.

# What is the size of the largest atom which can fit into a tetrahedral void of BCC?





# What is the size of the largest atom which can fit into a tetrahedral void of BCC?



Consider  $\Delta PQR$ ,

PQ = 
$$\sqrt{\frac{a^2}{(4)^2} + \left(\frac{a^2}{4}\right)} = (r + x) = \frac{\sqrt{5}}{4} \cdot a$$

In a BCC crystal system, 
$$a = \frac{4.r}{\sqrt{3}}$$



$$x = 0.29.r$$

## What is the size of the largest atom which can fit into a octahedral void of BCC?



• Distance (OA) = 
$$\frac{a}{\sqrt{2}}$$
 = 0.707 a

- Distance (OB) =  $(\frac{a}{2})$  = 0.5 a
- Since the length of OB is smaller than OA, the atom situated at the Octahedral void is expected to touch the bodycentred atom (point 'B').



$$OB = r + x = \frac{a}{2}$$

$$r + x = \frac{4r}{2\sqrt{3}}$$

$$BCC: \sqrt{3}a = 4r$$

$$\frac{x}{r} = \left(\frac{2\sqrt{3}}{3} - 1\right) = 0.1547$$

| BCC voids                | Position                                                                                                                            | Voids / cell | Voids / atom |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|
| Distorted<br>Tetrahedral | • Four on each face: $[(4/2) \times 6 = 12] \rightarrow (0, \frac{1}{2}, \frac{1}{4})$                                              | 12           | 6            |
| Distorted<br>Octahedral  | • Face center: $(6/2 = 3) \rightarrow (\frac{1}{2}, \frac{1}{2}, 0)$<br>• Edge center: $(12/4 = 3) \rightarrow (\frac{1}{2}, 0, 0)$ | 6            | 3            |

|             | BCC               | FCC   |
|-------------|-------------------|-------|
| Octahedral  | 0.155 (distorted) | 0.414 |
| Tetrahedral | 0.29 (distorted)  | 0.225 |



Why interstitial atoms prefer to occupy the octahedral positions?