1 Interazioni

Interazione	Gravità	Electromagnetic	Forte	Debole
Between	tutte	tutte	quark	lep, quark, l-q
Teoria	Newton	$_{ m QED}$	QCD	
Bosone	gravitone	fotone γ	8 gluoni g	W^+, Z^0
Massa bos		0	0	$100\mathrm{GeV}$
Source	massa	electric ch.	colore	weak ch.
CC	KM^2	$\alpha = e^2/4\pi$ $= 1/137$	$\alpha_s \le 1$	$ \begin{array}{r} M^2 G_F \\ = 1/29 \end{array} $
Potenziale	-GMm/r	$-\alpha/r$	$-4\alpha_s/3r + kr$	$-f\alpha_s/r$
Lifetime (s) $\sigma \text{ (cm}^{-3}\text{)}$		10^{-19}	$10^{-23} \\ 10^{-26}$	$10^{-10} \\ 10^{-38}$

2 Simmetrie

Parità	Р	С	CP	G
Espressione	$P\Phi\left(\mathbf{r}\right) = \Phi\left(-\mathbf{r}\right)$	$C\Phi(\pi^{+}) = \Phi(\pi^{-})$ $C\Phi(\pi^{0}) = \pm\Phi(\pi^{0})$	$H = \frac{\mathbf{s} \cdot \mathbf{p}}{sp}$	$G = CR$ $= Ce^{i\pi I_2}$
Conservazione	forte, e.m.	forte, e.m.	debole	

3 Leptoni

Leptone		Massa (MeV)	Carica (e)	L_e	L_{μ}	$L_{ au}$
Elettrone	e^{-}	0.5	-1	1	0	0
Neutrino	$ u_e$	${<}3\mathrm{eV}$	0	1	0	0
Muone	μ^-	105	-1	0	1	0
Neutrino	$ u_{\mu}$	< 0.19	0	0	1	0
Tau	$ au^-$	1777	-1	0	0	1
Neutrino	$ u_{ au}$	<18.2	0	0	0	1

Particella	I	II	III	Q(e)	Isospin	Ipercarica	Colore
Leptoni LH	$ \nu_e $	$ u_{\mu}$	$\nu_{ au}$	0	1/2	-1	_
	e	μ	au	-1	1/2	-1	_
Leptoni RH	$\mid e \mid$	μ	au	-1	0	-2	_

4 Quarks

Quark	(Ge	1 Y	Q (e)	S	C	В	T	I_3	Y
Up Down	$\begin{array}{c c} u & 0.3 \\ d & 0.3 \end{array}$		2/3 - 1/3	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	0	0	0	$\begin{array}{ c c c }\hline 1/2\\ -1/2\\ \end{array}$	$\frac{1/3}{1/3}$
Charme Strange	$\begin{array}{c c} c & 1.5 \\ s & 0.4 \end{array}$		2/3 - 1/3	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	1 0	0	0	1/2	1/3 - 2/3
Top Bottom	$\begin{array}{c c} t & 17 \\ b & 4.5 \end{array}$		2/3 - 1/3	0 0	0	0 -1	1 0	$\begin{array}{ c c c }\hline 1/2\\ -1/2\\ \end{array}$	1/3 1/3

Particella	I	II	III	Q(e)	Isospin	Ipercarica	Colore
Quarks LH	u	c	t	+2/3	1/2	+1/3	r, b, g
	d	s	b	-1/3	1/2	+1/3	r, b, g
Quarks RH	u	c	t	+2/3	0	+4/3	r,b,g
	d	s	b	-1/3	0	-2/3	r, b, g

4.1 Quark top

$$p + \bar{p} \rightarrow t + \bar{t} + any$$

$$t \rightarrow W + b \rightarrow l + \nu_l + b \qquad t \rightarrow W + b \rightarrow \bar{q} + q' + b$$

$$t + \bar{t} \rightarrow W^+ + B + W^- + \bar{b} \rightarrow \bar{l} + \nu_l + b + l + \bar{\nu}_l + \bar{b} \rightarrow l + \bar{l} + \mathbf{p_T} + (\leq 2 \text{ jets})$$

$$t + \bar{t} \rightarrow W^+ + B + W^- + \bar{b} \rightarrow \tau^+ + \nu_\tau + b + \tau^- + \bar{\nu}_\tau + \bar{b} \rightarrow \tau^+ + \tau^- + \mathbf{p_T} + (\leq 2 \text{ jets})$$

$$t + \bar{t} \rightarrow W^+ + B + W^- + \bar{b} \rightarrow \tau + \nu_\tau + b + l + \bar{\nu}_l + \bar{b} \rightarrow \tau + l + \mathbf{p_T} + (\leq 2 \text{ jets})$$

$$t + \bar{t} \rightarrow W^+ + B + W^- + \bar{b} \rightarrow \bar{l} + \nu_l + b + q' + \bar{q} + \bar{b} \rightarrow l + \mathbf{p_T} + (\leq 4 \text{ jets})$$

$$t + \bar{t} \rightarrow W^+ + B + W^- + \bar{b} \rightarrow \tau + \nu_\tau + b + q' + \bar{q} + \bar{b} \rightarrow \tau + \mathbf{p_T} + (\leq 4 \text{ jets})$$

$$t + \bar{t} \rightarrow W^+ + B + W^- + \bar{b} \rightarrow \bar{q}' + q + b + q' + \bar{q} + \bar{b} \rightarrow (\leq 6 \text{ jets})$$

5 Mesoni

$$\Delta E_{hf}\left(qq\right) = \frac{4\pi\alpha_{s}}{9} \left|\Psi\left(0\right)\right| \sigma_{\mathbf{i}}\sigma_{\mathbf{j}} = \frac{\Delta E_{hf}\left(q\bar{q}\right)}{2}$$
$$J^{PC}: \begin{cases} 0 & \text{pseudoscalari} \\ 1 & \text{vettori} \end{cases}$$

Mesone	Composizione	Carica (e)	Massa (MeV)	Decadimento	J^{PC}
π^+	$u\bar{d}$	+1	140	$\mu^+ u_\mu$	0-
π^0	$\frac{d\bar{d} - u\bar{u}}{\sqrt{2}}$	0	135	$\gamma\gamma$	0-+
π^-	$d\bar{u}$	-1	140	$\mu^-ar u_\mu$	0-
$\overline{\eta_8}$	$\frac{d\bar{d}+u\bar{u}-2s\bar{s}}{\sqrt{6}}$	0	549	$\gamma\gamma$	0-+
η_0	$\frac{d\bar{d} + u\bar{u} + s\bar{s}}{\sqrt{3}}$	0	958	$2\gamma, \eta + 2\pi$	0-+
$\overline{B^+}$	$u\bar{b}$	+1	5279		0-
B^0	$d\bar{b}$	0	5279.4		0-
B^-	$sar{b}$	-1	5369.6		0-
$B^ B_c^+$	$egin{array}{c} sar{b} \ car{b} \end{array}$	+1	6400		0-
$ \begin{array}{c} D^+ \\ D^0 \end{array} $	$c\bar{d}$	+1	1869		0-
D^0	$c\bar{u}$	0	1864		0-
D^-	$sar{c}$	-1	1968		0-
K^+	$u\bar{s}$	+1	494	$\mu^+ u_\mu$	0-
K^0	$d\bar{s}$	0	498	$\pi^+\pi^-$	0-
K^-	$s\bar{u}$	-1	494	$\mu^-ar{ u}_\mu$	0-
K^0 $K^ \bar{K}^0$	$s\bar{d}$	0	498	$\pi^+\pi^-$	
K^{*+} K^{*0} K^{*-}	$u\bar{s}$	+1	892	$K\pi$	1
K^{*0}	$d\bar{s}$	0	892	$K\pi$	1
K^{*-}	$s\bar{u}$	-1	892	$K\pi$	1 1 1 1 1
ρ^+ ρ^0	$d\bar{u}$	+1	776	2π	1-
ρ^0	$\frac{u\bar{u}-d\bar{d}}{\sqrt{2}}$	0	776	2π	1
$ ho^-$	$\begin{vmatrix} \frac{u\bar{u}-d\bar{d}}{\sqrt{2}} \\ u\bar{d} \end{vmatrix}$	-1	776	2π	1-
ω	$\frac{d\bar{d} + u\bar{u}}{\sqrt{2}}$	0	783	3π	1
Φ	$s\bar{s}$	0	1019	$Kar{K}$	1 1 1 1 1 1 0 +
J/Ψ	$c\bar{c}$	0	3097		1
Υ	$egin{array}{c} car{c} \ bar{b} \end{array}$	0	9460.3	$B^0ar{B}^0$	1
θ	$t\bar{t}$	0		2π	$ 1^-, 0^+$

5.1 Mesone K

$$\begin{split} |K_1\rangle &= \frac{\left|K^0\right\rangle + \left|\bar{K}^0\right\rangle}{\sqrt{2}} \qquad |K_2\rangle = \frac{\left|K^0\right\rangle - \left|\bar{K}^0\right\rangle}{\sqrt{2}} \\ CP \left|K_1\right\rangle &= +1 \left|K_1\right\rangle \qquad CP \left|K_2\right\rangle = -1 \left|K_2\right\rangle \end{split}$$

	Produzione	Decadime	nto	Lifetime (s)
K^0 \bar{K}^0	S = +1 $S = -1$	$K_1 = K_S \to 2\pi$ $K_2 = K_L \to 3\pi$	CP = +1 CP = -1	$\tau_1 = 0.9 \cdot 10^{-10}$ $\tau_2 = 0.5 \cdot 10^{-7}$

$$\pi^- + p \to \Lambda + K^0 \qquad \pi^- + p \to \bar{K}^0 + K^+ + p \qquad \pi^- + p \to \bar{K}^0 + \bar{\Lambda} + n + n$$
 S: 0; 0; -1; +1 S: 0; 0; -1; +1; 0 S: 0; 0; -1; +1; 0; 0

$$\left|K_S^0\right> = \frac{\left|K_1\right> + \epsilon \left|K_2\right>}{\sqrt{1+\epsilon^2}} \qquad \left|K_L^0\right> = \frac{\left|K_2\right> + \epsilon \left|K_1\right>}{\sqrt{1+\epsilon^2}} \qquad \left|\epsilon\right| = 2.3 \cdot 10^{-3}$$

6 Barioni

$$\begin{split} M &= M_0 + M_1 Y + M_2 \left[I \left(I + 1 \right) - \frac{Y^2}{4} \right] \\ K &= \frac{4\pi \alpha_s}{9} \left| \Psi \left(0 \right) \right|^2 \\ \Delta E_{fs} &= -\alpha^4 m \left(\frac{1}{4n^2} \right) \left(\frac{4n}{2J+1} - \frac{3}{2} \right) \\ \Delta E_{hf} &= \alpha^4 m \left(\frac{m}{m_p} \right) \left(\frac{\gamma_p}{2n^3} \right) \left(\frac{\pm 4}{(2F+1)\left(2I+1 \right)} \right) \end{split}$$

Barione		Quark	Carica (e)	Massa (MeV)	$\Delta E_{hf}/K$	J^P
\overline{N}		qqq		~ 939	$-3/m_n^2$	
	p	uud	+1		, , ,	$1/2^{+}$
	n	udd	0			$1/2^+$ $1/2^+$
Δ		qqq		~ 1232		
	Δ^{++}	uuu	+2			$3/2^{+}$
	Δ^+	duu	+1			$3/2^{+}$
	Δ^0	ddu	0			$3/2^{+}$
	Δ^-	ddd	-1			$3/2^{+}$
Σ		qqs		~ 1193	$1/m_n^2 - 4/(m_n m_s)$	
Σ		qqs		~ 1384	$1/m_n^2 + 2/(m_n m_s)$	
	$\Sigma^+ \ \Sigma^0$	uus	+1			$1/2^{+}$
		dus	0			$1/2^{+}$
	Σ^-	dds	-1			$1/2^{+}$
	Σ_c^{++}	uuc	+2	2455		$1/2^{+}$
Ξ		qss		~ 1318	$1/m_n^2 - 4/(m_n m_s)$	
Ξ		qss		~ 1533	$1/m_n^2 + 2/(m_n m_s)$	
	Ξ^0	uss	0			$1/2^{+}$
	Ξ^-	dss	-1			$1/2^{+}$
	Λ	uds	0	1116	$-3/m_n^2$	$1/2^{+}$
	Λ_b^0	udb	0	5624		$1/2^{+}$
	Λ_c^+	udc	+1	2285		$1/2^{+}$
	Ω^-	sss	-1	1672	$ $ $3/m_n^2$	$3/2^{+}$

7 Reazioni e decadimenti

$$N\left(t\right)=N\left(0\right)e^{-\Gamma t}=\sigma L_{int}$$
 Cross section: $\sigma=\frac{W_{if}}{\Phi}$ Decay rate: $\Gamma=W_{if}$

Event rate:
$$R=\frac{dN}{dt}=\sigma L$$
 Luminosity: $L_{\rm int}=\int Ldt$ Flux: $\Phi=n_av_i$
$$\frac{dN}{dt}=\Phi n_b\sigma=n_av_in_b\sigma$$
 Transition rate: $W_{if}=\Phi\sigma=v_i\sigma$ $M_{if}=\int \Psi L_{int}dV$ $\rho_f=\frac{dN}{dE_0}$

Fermi golden rule: $W_{if} = \frac{2\pi}{\hbar} |M_{if}|^2 \rho_f$

Decadimento	$a \rightarrow b + c$	$a + b \to c + d$
Diff decay rate	$\frac{1}{8\pi m_a} \int M_{if} ^2 \frac{ \mathbf{p} }{E^*} dE^* \delta (m_a - E^*)$	
Decay rate	$\frac{ \mathbf{p} M_{if} ^2}{8\pi m_a^2}$	$\sigma\Phi$
Diff cross section	$rac{\Gamma}{\Phi}$	$\frac{1}{(8\pi)^2} \frac{ M_{if} ^2}{(E_a + E_b)^2} \frac{\mathbf{p}_f}{\mathbf{p}_i}$

Breit-Wigner formula relativistica:
$$P(m) \propto \frac{1}{(m-m_0)^2 + \frac{\Gamma}{4}}$$

8 QED

$$\begin{aligned} & \text{Schrödinger: } \left(-\frac{1}{2m}\right) \nabla^2 \Psi = i \frac{\partial \Phi}{\partial t} \\ & \text{Klein-Gordon spin 0: } -\frac{\partial^2 \Psi}{\partial t^2} + \nabla^2 \Psi = m^2 \Psi \qquad \text{Dirac spin } \frac{1}{2} \colon i \gamma^\mu \partial_\mu \Psi = m \Psi \\ & (\gamma^\mu p_\mu \pm m) \, u = 0 \qquad E = \pm \sqrt{\mathbf{p}^2 + m^2} \qquad g_e = \sqrt{4\pi e^2} = \sqrt{4\pi \alpha} \\ & \text{Vertice: } i \gamma_\mu g_e \left(2\pi\right)^4 \delta^4 \left(k_1 + k_2 + k_3\right) \\ & \text{Leptoni, quarks: } \frac{i \left(\gamma^\mu q_\mu + m\right)}{q^2 - m^2} \frac{d^4 q}{\left(2\pi\right)^4} \qquad \text{Fotoni: } \frac{i g^{\mu\nu}}{q^2} \frac{d^4 q}{\left(2\pi\right)^4} \\ & M_{if} = -\frac{g_e^2}{\left(p_1 - p_3\right)^2} \left[\bar{u}_{s_3} \left(p_3\right) \gamma^\mu u_{s_1} \left(p_1\right)\right] \left[\bar{u}_{s_4} \left(p_4\right) \gamma_\mu u_{s_2} \left(p_2\right)\right] \end{aligned}$$

Scattering	Nome
$\begin{array}{c} e^{-} + \mu^{-} \rightarrow e^{-} + \mu^{-} \\ e^{-} + e^{-} \rightarrow e^{-} + e^{-} \\ e^{-} + e^{+} \rightarrow e^{-} + e^{+} \\ e^{-} + e^{+} \rightarrow e^{-} + \gamma \\ e^{-} + p \rightarrow e^{-} + \gamma \\ e^{-} + p \rightarrow e^{-} + X \\ e^{-} + e^{+} \rightarrow \gamma, Z^{0} \rightarrow q + \bar{q} \rightarrow adroni \end{array}$	elastic scattering (particelle di Dirac) scattering scattering Compton scattering elastic scattering (esclusiva) inelastic scattering (inclusiva) annihilation into hadrons

$$g_R = g_e \sqrt{1 - \frac{g_e^2}{12\pi^2} \left[\ln\left(\frac{M_{\text{cutoff}}^2}{m^2}\right) \right]} = \sqrt{4\pi\alpha \left(q^2\right)}$$

$$\alpha \left(q^2\right) \equiv \alpha \left(q_0^2\right) \left[1 + \frac{\alpha \left(q_0^2\right)}{3\pi} f\left(-\frac{q^2}{m^2}\right) \right]$$

$$M_{if} = -g_R^2 \left[\bar{u} \left(3\right) \gamma^{\mu} u \left(1\right) \right] \frac{g_{\mu\nu}}{q^2} \left[1 + \frac{g_R^2}{12\pi^2} f\left(-\frac{q^2}{m^2}\right) \right] \left[\bar{u} \left(4\right) \gamma^{\nu} u \left(2\right) \right]$$

9 Interazione elettromagnetica

9.1 $e^- + \mu^- \rightarrow e^- + \mu^-$

$$\begin{split} M_{if} &= -\frac{g_e^2}{\left(p_1 - p_3\right)^2} \left[\bar{u}_{s_3} \left(p_3 \right) \gamma^\mu u_{s_1} \left(p_1 \right) \right] \left[\bar{u}_{s_4} \left(p_4 \right) \gamma_\mu u_{s_2} \left(p_2 \right) \right] = -\frac{g_e^2}{\left(p_1 - p_3\right)^2} J_e^\lambda J_{\mu,\lambda} \\ & \left\langle |M_{if}|^2 \right\rangle = \frac{8g_e^4}{\left(p_1 - p_3\right)^4} \left[\left(p_1 \cdot p_2 \right) \left(p_3 \cdot p_4 \right) + \left(p_1 \cdot p_4 \right) \left(p_3 \cdot p_2 \right) - \left(p_1 \cdot p_3 \right) m_2^2 \right] \\ & \text{Formula di Dirac: } \frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2 \sin^4 \left(\frac{\theta}{2} \right)} \frac{E'}{E} \left[\cos^2 \left(\frac{\theta}{2} \right) - \frac{q^2}{2m_\mu^2} \sin^2 \left(\frac{\theta}{2} \right) \right] \end{split}$$

9.2 $e^- + p \rightarrow e^- + p$

$$J_{p,\lambda} \equiv \bar{u}(4) \left[F_1(q^2) \gamma_{\lambda} + \frac{k}{2M_p} F_2(q^2) i \sigma_{\lambda \nu} q^{\nu} \right] u(2) \qquad k = 1.79$$

Fattore di forma elettrico: F_1 Fattore di forma magnetico: F_2

$$G_E = F_1 + \frac{kq^2}{4M^2}F_2$$
 $G_M = F_1 + kF_2$

$$\text{Rosenbluth: } \frac{d\sigma}{d\Omega} = \frac{\alpha^2}{4E^2\sin^4\left(\frac{\theta}{2}\right)} \frac{E'}{E} \left\{ \left[F_1^2 - \frac{kq^2}{4M_p^2} F_2^2 \right] \cos^2\frac{\theta}{2} - \frac{q^2}{2M_p^2} \left[F_1 + kF_2 \right]^2 \sin^2\left(\frac{\theta}{2}\right) \right\}$$

9.3
$$e^- + p \rightarrow e^- + X$$

$$\frac{d\sigma}{dE'd\Omega} = \frac{\alpha^2}{4E^2\sin^4\left(\frac{\theta}{2}\right)} \left[2W_1\left(q^2,x\right)\sin^2\left(\frac{\theta}{2}\right) + W_2\left(q^2,x\right)\cos^2\left(\frac{\theta}{2}\right) \right]$$

$$\text{Fattori di struttura: } W_1 = \frac{\left[F_1 + kF_2\right]^2}{2M_p} \delta\left(x-1\right) \qquad W_2 = -\frac{2M}{q^2} \left[F_1^2 - \frac{kq^2}{4M_p^2} F_2^2\right] \delta\left(x-1\right)$$

9.4 Deep inelastic scattering

Relazione Callan-Gross: $2xF_1(x) = F_2(x)$

Funzione di struttura: $F_1 = W_1 M_p$ Funzione di struttura: $F_2 = -\frac{q^2}{2M_n x} W_2$

$$W_{1}^{i}=\frac{Q_{i}^{2}}{2M_{n}}\delta\left(x-z_{i}\right) \qquad W_{2}^{i}=-\frac{2x^{2}M_{p}Q_{i}^{2}}{q^{2}}\delta\left(x-z_{i}\right)$$

Considerando il protone come uud:

$$F_{1}(x) = \frac{1}{2} \left[2\left(\frac{2}{3}\right)^{2} \delta\left(\frac{m_{u}}{M_{p}} - x\right) + \left(-\frac{1}{3}\right)^{2} \delta\left(\frac{m_{d}}{M_{p}} - x\right) \right] = \frac{1}{2} \delta\left(\frac{m_{u}}{M_{p}} - x\right)$$
$$F_{2}(x) = x\delta\left(\frac{m_{u}}{M_{p}} - x\right)$$

9.5
$$e^- + e^+ \rightarrow \gamma, Z^0 \rightarrow q + \bar{q} \rightarrow adroni$$

$$M_{if} = -\frac{Qg_e^2}{\left(p_1 + p_2\right)^2} \left[\bar{v}\left(2\right)\gamma_{\mu}u\left(1\right)\right] \left[\bar{u}\left(3\right)\gamma^{\mu}v\left(4\right)\right]$$

$$\sigma = \frac{\pi}{3} \left(\frac{Q\alpha}{E}\right)^2 \sqrt{1 - \frac{M^2}{E^2}} \sqrt{1 - \frac{m^2}{E^2}} \left(1 + \frac{M^2}{2E^2}\right) \left(1 + \frac{m^2}{2E^2}\right)$$

10 Interazione debole

Corrente	Carica CC	Neutra NC
Mediatore	W^{\pm}	Z^0
ΔQ	$\neq 0$	=0

$$W^{\pm}$$
 propagatore: $-\frac{i\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{M_W^2}\right)}{q^2 - M_W^2}$ Z^0 propagatore: $-\frac{i\left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{M_Z^2}\right)}{q^2 - M_Z^2}$

Se
$$q^2 \ll M_{W,Z}^2 \Longrightarrow \frac{ig_{\mu\nu}}{M_{W,Z}^2}$$

Vertice CC:
$$-\frac{ig_W}{\sqrt{8}} \left[\gamma^{\mu} \left(1 - \gamma^5 \right) \right]$$
 Vertice NC: $-\frac{ig_Z}{2} \left[\gamma^{\mu} \left(C_V - C_A \gamma^5 \right) \right]$
$$C_V = \left(T_f^3 \right) - 2 \sin^2 \left(\theta_W \right) Q_f \qquad \sin^2 \left(\theta_W \right) = 0.231\,53 \pm 0.000\,16$$

$$M_W = 80.419 \pm 0.056\,\text{GeV} \qquad M_Z = 91.1882 \pm 0.0022\,\text{GeV}$$

	$Q_f(e)$	$\left(T_f^3\right)_{LH}$	$\left(T_f^3\right)_{RH}$	$C_{V,f}$	$C_{A,f}$
$\begin{array}{c} \nu_e, \nu_\mu, \nu_\tau \\ e, \mu, \tau \end{array}$	$\begin{vmatrix} 0 \\ -1 \end{vmatrix}$	$+1/2 \\ -1/2$	0	$\begin{vmatrix} +1/2 \\ -1/2 + 2\sin^2\theta_W \end{vmatrix}$	$+1/2 \\ -1/2$
$\begin{array}{c} u,c,t \\ d,s,b \end{array}$	$\begin{vmatrix} +2/3 \\ -1/3 \end{vmatrix}$	$+1/2 \\ -1/2$	0 0	$\begin{array}{ c c c c } +1/2 - 4/3\sin^2\theta_W \\ -1/2 + 2/3\sin^2\theta_W \end{array}$	$+1/2 \\ -1/2$

Mediatore	Decadimento
$W^ W^+$ W^\pm	$e^{-ar{ u}_{e},\mu^{-}ar{ u}_{\mu}, au^{-}ar{ u}_{ au}}\ e^{+} u_{e},\mu^{+} u_{\mu}, au^{+} u_{ au}\ q'ar{q}$
Z^0	$e^{+}e^{-}, \mu^{+}\mu^{-}, \tau^{+}\tau^{-}, \nu\bar{\nu}, q\bar{q}$

Scattering	Nome
$\begin{array}{c} \nu_{\mu} + e^{-} \rightarrow \mu^{-} + \nu_{e} \\ \mu^{-} \rightarrow \bar{\nu}_{e} + \nu_{\mu} + e^{-} \\ n \rightarrow \bar{\nu}_{e} + p + e^{-} \\ \pi \rightarrow l + \nu_{l} \\ \nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-} \\ e^{-} + e^{+} \rightarrow \gamma, Z^{0} \rightarrow f + \bar{f} \\ \nu_{e} + e^{-} \rightarrow e^{-} + \nu_{e} \\ \bar{\nu}_{e} + e^{-} \rightarrow e^{-} + \bar{\nu}_{e} \\ \nu_{\mu} + q \rightarrow \mu^{-} + q' \end{array}$	quasi-elastic scattering muon decay neutron β decay π meson decay elastic scattering electron-positron annihilation at Z^0 pole elastic scattering elastic scattering scattering

10.1 $\nu_{\mu} + e^{-} \rightarrow \mu^{-} + \nu_{e}$

$$M_{if} = \frac{g_W^2}{8M_W^2} \left[\bar{u} (3) \gamma^{\mu} (1 - \gamma^5) u (1) \right] \left[\bar{u} (4) \gamma_{\mu} (1 - \gamma^5) u (2) \right]$$
$$\left\langle |M_{if}|^2 \right\rangle = 2 \left(\frac{g_W}{M_W} \right)^4 (p_1 \cdot p_2) (p_3 \cdot p_4) \qquad \sigma = \frac{1}{8\pi} \left[\left(\frac{g_W}{M_W} \right)^2 E \right]^2 \left[1 - \left(\frac{m_{\mu}}{2E} \right)^2 \right]^2$$

10.2 $\mu^- \to \bar{\nu}_e + \nu_\mu + e^-$

$$\begin{split} M_{if} &= \frac{g_W^2}{8M_W^2} \left[\bar{u} \left(3 \right) \gamma^\mu \left(1 - \gamma^5 \right) u \left(1 \right) \right] \left[\bar{u} \left(4 \right) \gamma_\mu \left(1 - \gamma^5 \right) u \left(2 \right) \right] \\ \left\langle \left| M_{if} \right|^2 \right\rangle &= 2 \left(\frac{g_W}{M_W} \right)^4 \left(p_1 \cdot p_2 \right) \left(p_3 \cdot p_4 \right) \qquad \Gamma = \left(\frac{g_W}{M_W} \right)^4 \frac{m_\mu^5}{12 \left(8 \pi \right)^3} = \frac{G_F^2 m_\mu^5}{192 \pi^3} \end{split}$$
 Fermi CC: $G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{M_W} \right)^2 = 1.166 \cdot 10^{-5} \, \text{GeV}^{-2}$

10.3 Decadimento β : $n \to p + e^- + \bar{\nu}_e$

$$M_{if} = \frac{g_W^2}{8M_W^2} \left[\bar{u} (3) \gamma^{\mu} \left(C_V - C_A \gamma^5 \right) u (1) \right] \left[\bar{u} (4) \gamma_{\mu} \left(1 - \gamma^5 \right) v (2) \right]$$

$$\left\langle \left| M_{if} \right|^2 \right\rangle = \left(\frac{g_W}{M_W} \right)^4 M_n E_{\nu} \left(M_n^2 - M_p^2 - m_e^2 - 2M_n E_{\nu} \right)$$

$$C_V = 1.0 \pm 0.003 \qquad C_A = 1.26 \pm 0.02$$

10.4
$$\pi \rightarrow l + \nu_l$$

$$M_{if} = \frac{g_W^2}{8M_W^2} \left[\bar{u} \left(3 \right) \gamma_\mu \left(1 - \gamma_5 \right) v \left(2 \right) \right] f_\pi p^\mu \qquad f_\pi = m_\pi \cos \left(\theta_C \right)$$

$$\left\langle \left| M_{if} \right|^2 \right\rangle = \left(\frac{g_W}{2M_W} \right)^4 f_\pi^2 m_l^2 \left(m_\pi^2 - m_l^2 \right) \qquad \Gamma = \left(\frac{g_W}{4M_W} \right)^4 \frac{f_\pi^2}{\pi m_\pi} m_l^2 \left(m_\pi^2 - m_l^2 \right)^2$$

$$\theta_C = 13.1^\circ$$

10.5
$$\nu_{\mu} + e^{-} \rightarrow \nu_{\mu} + e^{-}$$

$$M_{if} = \frac{g_Z^2}{8M_Z^2} \left[\bar{u} (3) \gamma_\mu (1 - \gamma_5) u (1) \right] \left[\bar{u} (4) \gamma^\mu (C_V - C_A \gamma_5) u (2) \right]$$
$$\sigma = \frac{2}{3\pi} \left[\left(\frac{g_Z}{2M_Z} \right)^2 E_\nu \right]^2 \left(C_V^2 + C_A^2 + C_V C_A \right)$$

10.6
$$e^- + e^+ \to \gamma, Z^0 \to f + \bar{f}$$

$$\sigma_{\gamma} = \frac{g_e^4 Q_f^2}{48\pi E^2} \qquad \sigma_Z = \frac{\left(g_Z^2 E\right)^2}{48\pi} \left\{ \frac{\left[\left(C_V^f\right)^2 + \left(C_A^f\right)^2\right] \left[\left(C_V^e\right)^2 + \left(C_A^e\right)^2\right]}{\left(4E^2 - M_Z^2\right)^2 + M_Z^2 \Gamma_Z^2} \right\}$$

$$M_{if} = -\frac{g_Z^2}{4\left(q^2 - M_Z^2\right)} \left[\bar{u}\left(4\right)\gamma^{\mu}\left(C_V^f - C_A^f\gamma_5\right)v\left(3\right)\right] \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{M_Z^2}\right) \left[\bar{v}\left(2\right)\gamma^{\mu}\left(C_V^f - C_A^f\gamma_5\right)u\left(1\right)\right]$$

10.7
$$\nu_e + e^- \rightarrow e^- + \nu_e$$

$$\left\langle \left| M_{if} \right|^2 \right\rangle = 2 \left(\frac{g_W}{M_W} \right)^4 \left(p_1 \cdot p_2 \right) \left(p_3 \cdot p_4 \right) \qquad \sigma = \frac{G_F^2}{\pi} s \qquad G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{M_W} \right)^2$$

10.8
$$\bar{\nu}_e + e^- \to e^- + \bar{\nu}_e$$

$$\left\langle \left| M_{if} \right|^2 \right\rangle = 2 \left(\frac{g_W}{M_W} \right)^4 \left(p_1 \cdot p_2 \right) \left(p_3 \cdot p_4 \right) \qquad \sigma = \frac{G_F^2}{3\pi} s \qquad G_F = \frac{\sqrt{2}}{8} \left(\frac{g_W}{M_W} \right)^2$$

10.9 Neutrino-nucleon deep inelastic scattering. $\nu_{\mu}\left(\bar{\nu}_{\mu}\right)+N \rightarrow \mu^{-}\left(\mu^{+}\right)+X$

$$q^{2} = -4EE'\sin^{2}\left(\frac{\theta}{2}\right) \qquad x = -\frac{q^{2}}{2M\left(E - E'\right)} \qquad y = \frac{(E - E')}{E}$$

$$\frac{d\sigma^{eN}}{dq^{2}dx} = \frac{4\pi\alpha^{2}}{q^{4}} \left[\frac{y^{2}}{2} \frac{2xF_{1}^{eN}\left(x\right)}{x} + (1 - y) \frac{F_{2}^{eN}\left(x\right)}{x}\right]$$

$$\frac{4\pi\alpha^{2}}{q^{4}} = \frac{G_{F}^{2}}{2\pi} \qquad dq^{2} = 2M_{N}Exdy$$

$$\frac{d\sigma^{\nu N}}{dxdy} = \frac{G_{F}^{2}M_{N}E}{2\pi} \left[\left(F_{2}^{\nu N}\left(x\right) + xF_{3}^{\nu N}\left(x\right)\right)\left(F_{2}^{\nu N}\left(x\right) - xF_{3}^{\nu N}\left(x\right)\right)\left(1 - y\right)^{2}\right]$$

$$F_{2}^{\nu N} = 2x\left[Q\left(x\right) + \bar{Q}\left(x\right)\right] \qquad F_{2}^{\nu N} = \frac{18}{5}F_{2}^{eN} \qquad xF_{3}^{\nu N} = 2x\left[Q\left(x\right) - \bar{Q}\left(x\right)\right]$$

$$Q\left(x\right) = d^{p}\left(x\right) + d^{n}\left(x\right) = d\left(x\right) + u\left(x\right) \qquad \bar{Q}\left(x\right) = \bar{u}^{p}\left(x\right) + \bar{u}^{n}\left(x\right) = \bar{u}\left(x\right) + \bar{d}\left(x\right)$$
 Gross-Llewellyn-Smith:
$$\int_{0}^{1} F_{3}^{\nu N} dx = 3$$

11 QCD

$$\begin{split} g_s &= \sqrt{4\pi\alpha_s} \\ \langle 1| = r\bar{b} \qquad \langle 2| = r\bar{g} \qquad \langle 3| = b\bar{r} \qquad \langle 4| = b\bar{g} \qquad \langle 5| = g\bar{r} \qquad \langle 6| = g\bar{b} \\ \langle 7| &= \frac{r\bar{r} - g\bar{g}}{\sqrt{2}} \qquad \langle 8| = \frac{r\bar{r} + g\bar{g} - 2b\bar{b}}{\sqrt{6}} \qquad \langle 9| = \frac{r\bar{r} + g\bar{g} + b\bar{b}}{\sqrt{3}} \\ f &= \frac{1}{4} \left[c_3^+ \lambda^\alpha c_1 \right] \left[c_2^+ \lambda^\alpha c_4 \right] \qquad \text{Vertice quark-gluone: } \frac{-ig_s \lambda^\alpha \gamma^\mu}{2} \\ \text{Propagatore quark: } \frac{i \left(\gamma^\mu q_\mu + m \right)}{q^2 - m^2} \qquad \text{Propagatore gluone: } -\frac{ig^{\mu\nu} \delta^{\alpha\beta}}{q^2} \\ M_{if} &= -\frac{g_s^2}{\left(p_1 - p_3 \right)^2} \left[\bar{u} \left(3 \right) \gamma^\mu u \left(1 \right) \right] \left[\bar{v} \left(2 \right) \gamma_\mu v \left(4 \right) \right] f \\ \alpha_s \left(q^2 \right) &= \frac{\alpha_s \left(\mu^2 \right)}{1 + \left(\frac{\alpha_s (\mu^2)}{12\pi} \right) \left(11n - 2f \right) \ln \left(\frac{q^2}{\mu^2} \right)} \\ \alpha_s \left(q \right) &= \frac{12\pi}{\left(11n - 2f \right) \ln \left(\frac{q^2}{\Lambda^2} \right)} \qquad 100 \, \text{MeV} < \Lambda < 500 \, \text{MeV} \end{split}$$

11.1 Produzione di jet

$$\begin{split} \frac{d\sigma}{dx_1dx_2d\left(\cos\left(\theta^*\right)\right)} &= \sum_{l,m} \frac{F_l\left(x_1\right)}{x_1} \frac{F_m\left(x_2\right)}{x_2} \frac{d\sigma_{l,m}}{d\left(\cos\left(\theta^*\right)\right)} K \\ \text{Cross section elementare: } \frac{d\sigma_{l,m}}{d\left(\cos\left(\theta^*\right)\right)} \quad \text{Densità partoni: } \frac{F_{l,m}\left(x_{1,2}\right)}{x_{1,2}} \qquad K \simeq 2.5 \\ F\left(x\right) &= G\left(x\right) + \frac{4}{9} \left(Q\left(x\right) + \bar{Q}\left(x\right)\right) \end{split}$$

11.2 Drell-Yan production

$$p + p \to l^{+} + l^{-} + X \qquad q + \bar{q} \to l^{+} + l^{-}$$

$$e^{+} + e^{-} \to adroni, e^{+} + e^{-} \to \bar{q} + q \qquad l^{\pm} + p \to l^{\pm} + X, l^{\pm} + q \to l^{\pm} + q$$

$$\sigma \left(q\bar{q} \to l^{+}l^{-} \right) = \frac{4\pi\alpha^{2}}{9M^{2}}Q_{f}^{2}K \qquad \frac{d^{2}\sigma}{dx_{1}dx_{2}} = \frac{4\pi\alpha^{2}}{9M^{2}}KS\left(x_{1}, x_{2}\right)$$

$$S\left(x_{1}, x_{2}\right) = \sum_{f} Q_{f}^{2} \left[q_{B}\left(x_{1}\right) \bar{q}_{T}\left(x_{2}\right) + \bar{q}_{B}\left(x_{1}\right) q_{T}\left(x_{2}\right) \right]$$