Mex podzbioru

Nazwa zadania	Mex podzbioru
Wejście	Standardowe wejście
Wyjście	Standardowe wyjście
Limit czasu	1 sekunda
Limit pamięci	256 MB

Asia uczęszcza na zajęcia "Wprowadzenie do teorii multizbiorów". Ma problem z pracą domową i poprosiła Cię o pomoc.

Multizbiorem nazwiemy zbiór elementów, w którym mogą występować powtórzenia. Dla przykładu, zbiór:

 $\{0, 0, 1, 2, 2, 5, 5, 5, 8\}$

jest multizbiorem.

Dany jest multizbiór S zawierający nieujemne liczby całkowite oraz nieujemna liczba całkowita n, której nie ma w zbiorze S. Celem w zadaniu jest dodanie liczby n do multizbioru S, korzystając wyłącznie z następującej operacji:

- 1. Wybierz (może być pusty) podzbiór *T* zawierający się w *S*, gdzie *T* jest zbiorem różnych wartości (bez powtórek).
- 2. Usuń elementy należące do T z S (usuń jeden odpowiednik z S dla każdego elementu w T)
- 3. Do *S* dodaj **mex**(*T*), gdzie **mex**(*T*) to najmniejsza nieujemna liczba, której nie ma w *T*. Nazwa **mex** pochodzi od angielskiego "minimum excluded" (minimum poza zbiorem).

Twoim zadaniem jest znalezienie minimalnej liczby operacji które należy wykonać tak, by liczba n znalazła się w S.

Rozmiar S może być bardzo duży, dlatego S będzie podany w formacie listy liczb $(f_0, ..., f_{n-1})$ rozmiaru n, gdzie liczba f_i oznacza liczbę wystąpień liczby i w multizbiorze S. Pamiętaj, że liczba n to liczba, którą chcemy dodać do S.

Wejście

W pierwszej linii standardowego wejścia znajduje się pojedyncza liczba całkowita t (1 \leq t \leq 200) oznaczająca liczbę przypadków testowych. Każde dwie kolejne linie opisują przypadek testowy:

- pierwsza linia każdego przypadku testowego zawiera jedną liczbę całkowitą n (1 $\leq n \leq$ 50) reprezentującą liczbę, którą chcemy dodać do S.
- druga linia każdego przypadku testowego zawiera n liczb $f_0, f_1, ..., f_{n-1}$ ($0 \le f_i \le 10^{16}$) reprezentujących multizbiór S (dokładnie opisane w treści zadania).

Wyjście

Dla każdego przypadku testowego należy wypisać pojedynczą liczbę - minimalną liczbę operacji potrzebnych, by w S znalazła się liczba n.

Podzadania

Podzadanie 1 (5 punktów): $n \le 2$.

Podzadanie 2 (17 punktów): $n \le 20$.

Podzadanie 3 (7 punktów): f_i = 0.

Podzadanie 4 (9 punktów): $f_i \le 1$.

Podzadanie 5 (20 punktów): $f_i \le 2000$.

Podzadanie 6 (9 punktów): $f_0 \le 10^{16}$ oraz $f_j = 0$ (dla każdego $j \ne 0$).

Podzadanie 7 (10 punktów): Istnieje i, dla którego $f_i \le 10^{16}$ oraz $f_j = 0$ (dla każdego $j \ne i$).

Podzadanie 8 (23 punkty): Brak dodatkowych ograniczeń.

Przykłady

Wejście)		Wyjście
2					
4					4
0	3	0	3		10
5					10
4	1	0	2	0	

Komentarz

W pierwszym przykładzie początkowo należy dodać do multizbioru $S = \{1, 1, 1, 3, 3, 3\}$ liczbę 4. Można to osiągnąć poprzez wykonanie następujących operacji:

- 1. Niech $T = \{\}$, wówczas S zmienia się w $\{0, 1, 1, 1, 3, 3, 3\}$
- 2. Niech $T = \{0, 1, 3\}$, wówczas S zmienia się w $\{1, 1, 2, 3, 3\}$
- 3. Niech $T = \{1\}$, wówczas S zmienia się w $\{0, 1, 2, 3, 3\}$
- 4. Niech $T = \{0, 1, 2, 3\}$, wówczas S zmienia się w $\{3, 4\}$