General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

"Made available under NASA sponsorship in the interest of early and wide dissemination of Earth Resources Survey Program information and without liability for any use made thereut."

E82-10192 NASAGR-16104.7

Progress Report for NASA Contract NAS9-15476

ANALYSIS OF SCANNER DATA FOR CROP INVENTORIES

Program Manager
ROBERT HORVATH

Program Area Managers RICHARD C. CICONE RICHARD J. KAUTH WILLIAM A. MALILA

15 NOVEMBER 1980 -14 FEBRUARY 1981

(E82-10192) ANALYSIS OF SCANNER DATA FGR CROP INVENTORIES Progress Report, 15 Nov. 1980 - 14 Feb. 1981 (Environmental Research Inst. of Michigan) 141 p BC A07/MF A01 CSCL 02C G3/43

N82-22626

Unclas 3 00192

BOX 8618 • ANN ARBOR • MICHIGAN 48107

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No.	2. Government Accession No.	3. Recipient's Catalo	g No.
4. Title and Subtitle Progress Report for 15 1 14 February 1981	November 1980 -	5. Report Date April 1981 6. Performing Organ	ization Code
7. Author(s) R. Horvath, R. (B. Thelen, A. Sellman	Cicone, R. Kauth, W. Pont,	8. Performing Organ 152400-4-P	ization Report No.
9. Performing Organization Name and Environmental Research P.O. Box 8618 Ann Arbor, Michigan 4810 12. Sponsoring Agency Name and Addr	Institute of Michigan	10. Work Unit No. 11. Contract or Gran NAS9-15476 13. Type of Report at Progress Re	nd Period Covered
National Aeronautics & S Johnson Space Center Houston, Texas 77058 Attn: Mr. I. Dale Brown	Space Administration	15 November 14 February 14. Sponsoring Agence	1980
15. Supplementary Notes			
quarter of the 1981 conf	ne progress on subject cont cract year. It is comprise oject management reviews an	ed of the prese	entations
17. Key Words Crop Inventor Sampling, Temporal Profit Machine Labeling, Area Es Through-the-Season Estima Fields, Argentina	Le Fitting, stimation,	ntement	
19. Security Classif. (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22. Price
Unclassified	Unclassified	139	

PRECEDING PAGE BLANK NOT FILMED

ď	_	
1	rn	183
7	rĸ	IM
/	-	

PREFACE

The following report serves as the Quarterly Report for Contract NAS9-15476 which is entitled "Analysis of Scanner Data for Crop Inventories". This report describes the work carried out under that contract for the period 15 November 1980 - 14 February 1981.

Work on this contract is performed in the Infrared and Optics Division directed by Mr. Richard R. Legault. Mr. Robert Horvath is the Program Manager for this contract.

This contract, performed by the Environmental Research Institute of Michigan (ERIM) for the Space and Life Sciences Directorate of the NASA/Johnson Space Center, is part of the multi-agency AgRISTARS Program and supports both the Supporting Research (SR) and Foreign Commodity Production Forecasting (FCPF) Projects within AgRISTARS. The overall goal of AgRISTARS is to determine the usefulness, cost and extent to which aerospace remote sensing data can be integrated into existing or future U.S. Department of Agriculture (USDA) systems to improve the objectivity, reliableity, timeliness and adequacy of information required to carry out USDA missions.

PRECEDING PAGE BLANK NOT FILMED

ERIM.

TABLE OF CONTENTS

	Page
QUARTERLY PROJECT MANAGEMENT REVIEW FOR SR	
Activities and Accomplishments in Support of Supporting Research Project	1
QUARTERLY PROJECT MANAGEMENT REVIEW FOR FCPF	
Corn and Soybean Classification Technology Development for Area Estimation for Foreign Commodity Production Forecasting	23
QUARTERLY TECHNICAL INTERCHANGE	
Overview of Corn/Soybeans Pattern Recognition	45
Small Fields Research	53
Through-the-Season Techniques Research	77
Corn and Soybeans P-2 Development	95
Argentina Field Trip	127
Distribution List	139

ACTIVITIES AND ACCOMPLISHMENTS

In Support Of

SUPPORTING RESEARCH PROJECT

Environmental Research Institute of Michigan University of California at Berkeley

SR Quarterly Project Review

10 March 1981

PRESENTATION OUTLINE

ACCOMPLISHMENTS:

- Machine-Oriented Small Grains Labeler T&E
- Argenting Ground Data Collection

GENERAL CONCEPTS OF SMALL GRAINS LABELER

Temporal-Spectral Profiles

- Characterize continuous patterns of crop spectral development
- Landsat observations represent discrete samples from continuous patterns

GENERAL CONCEPTS (Continued)

- Crop Calendar Shift Estimation
- Adjust for planting date differences of fields within a crop type

Spring Grain Crop Calendar

Calendar Time

- Extract information of use in crop identification

Calendar Time

DESCRIPTION OF TEST DATA SET

38 SEGMENTS, 3 YEARS (1976-78)

(4)

 $\Rightarrow = 1976$

Labeling Accuracies

- Overall Grain Labeling Accuracies Up to 89%
- Non-Grain Accuracy (% of Non-Grain <u>Not</u> Called Grain) Tends to be Inversely Relatea to Grain Accuracy
- Optimal Balance and Accuracy

68% Grain Correct 63% Non-Grain Correct

TEST AND EVALUATION RESULTS (Continued)

- Labeling Error Characterization
- Grass profile was primary competitor for grain blobs
- Grass was primary error class for grain profile
- Test-Statistic Weightings
- Use of all three probability variables was best
- After time shifting based on Greenness profiles
- •• Brightness correlation was best single discriminator for grain
- •• Greenness fit wds worst
- Profile Set Configurations
- Grain labeling accuracy maximized (and non-grain accuracy decreased) by omitting grass and flax profiles
- Ability to Assign Labels
- Minimum of three acquisitions required in range of growing season
- For test and developmental data combined, 57% of blobs were labelable
- Most segments were either !abelable or not;
- •• 16 segments were 0-20% labelable
- •• 31 segments were 80-100% labelable

Labeling Error Characterization <u>Errors of Anission – Grains Cailed Non-Grain</u>

- Grass Profile is Frimary Competitor for Grain Blobs
- With both profiles present, approximately equal numbers of Grain blobs are assigned to each
- Elimination of Grass pr⊖file increases Grain accuracy ∿15%
- Flax Profile is Second Most Common Competitor
- Greenness profiles are identical
- Average of 10-15% of Grains are called Flax
- Elimination of Flax profile increases Grain accuracy ∿10%
- Elimination of Both Profiles Increases Grain Accuracy 25-30%
- Other Profiles Draw Less Than 10% of Grain Blobs

Labeling Error Characterization

Errors of Commission - Non-Grains Called Grain

- Grass is Primary Error Source
- ∿25% called Grain
- With no Grass profile, 50-75% called Grain
- Flax 40-50% Called Grain
- Sunflowers 30-60% Called Grains
- Corn and Soy 15-20% Called Grain
- Commission Errors Increase When Grass and/or Flax Frofiles are Eliminated

Labeling Error Characterization

Comparison of Test-Statistic Weightings

- Weightings Which Utilize Only One of the Three Probabilities or Most Pairs are Inferior to Those Utilizing All Three
- Brightness correlation is the best single discriminator for Grain

- Greenness fit is the worst single discriminator for Grain

TEST AND EVALUATION RESULTS
Qualitative Component Evaluation
Profiles and Profile-Fitting

Most Data for a Given Crop (Based on Ground Truth) Do Follow the Expected Pattern of Greenness Development

TEST AND EVALUATION RESULTS Qualitative Component Evaluation

Profiles and Profile-Fitting (Continued)

- Fields of a Particular Crop Type (Based on Ground Truth) Do Not Always Follow the Characteristic Spectral Development Pattern of the Crop
- Misregistration
- Ground truth errors
- · Abandonment, early cutting, hail damage, etc.

TEST AND EVALUATION RESULTS Qualitative Component Evaluation

Profiles and Profile-Fitting (Continued)

Spacing of Acquisitions Relative Both to Each Other and to the Growing Season is Critical to Accurate Crop Discrimination

CONCLUSIONS

- Use of Temporal-Spectral Patterns of Development and Spectrallywith Minimal Analyst Resources, Provide Moderately Good Labeling Based Information Related to Planting and Development Stage Can, Accuracies
- A Technology Based Only on Greenness Profiles is Probably Not Going to be Sufficient
- An Enhanced Ability to Detect the Grass/Passture Class Would Significantly Improve Overall Labeling Accuracy
- Analyst screening of labels
- Machine utilization of other features (e.g., field size, shape, texture)

ARGENTINA DATA COLLECTION

Retrospective Schedule

- December 1980 Implementation planning identifies critical data need/lack
- 2 January 1381 ERIM/UCB commit to current-year field expedition
- 15 January 1981 USDA (C. Candill, ESCS; J. Olmes, OICD) supports intent and need; offers assistance
- 21 January 1981 OICD cables assistance request to FAS attache in Buenos Aires
- 10 February 1981 NASA approves trip

27 January 1981 - ERIM/UCB submit collection plan to NASA

- LEGAL MASA UPPLOYES UITP
 OICD indicates receipt of enthusiastic response from Argentina
- 15 February 1981 ERIM/UCB team arrives in Buenos Aires
- 1 March 1981 ERIM/UCB departs Buenos Aires for home

ORIGINAL PAGE IS OF POOR QUALITY

ARGENTINA SEGMENTS INVENTORY

Segments	Province	Segment Name	Aerial Photos	Ground Truth
2	Cordoba	San Justo Juarez Cellman Rio Quarto	Yes Yes Yes	Yes Yes Yes
	Santa Fe	San Martin	No	ċ.
5 in South	Buenos Aires	Tornquist Puan (2) Col, Suarez	N N N N	Yes Yes
6 in North		Gen. Arengles (2) Junin Salto	ON ON ON	Yes Yes Yes
		Rojas Brazado	NO NO	Yes

(Ag Attache - Buenos Aires - U.S. Embassy) Foreign Agricultural Service U.S. Department of Agriculture James Parker

Antonio T, Parsons Director, International Agriculture Service -State Secretariat for Agriculture and Livestock Argentina Ministry of Economy

Julia Elena Rivarola Deputy Director -

Ezequiel Fonsela

Eduardo Anchubidart (Chief) Dept. of Ag Estimates -

*Claudio Fonda

Dept. of Natural Resources - *Miguel Abraham and Ecology

*Nestor Darwich National Technological Institute - *Carlos Scopa of Agriculture

J. J. Tosso National Commission for Space Investigations -

Eugenio Ernesto Portalet *Cecilia Espoz

* We had closest contact with these people (field work).

ORIGINAL PAGE IS OF POOR QUALITY

REPORTING ORG./ACTIVITY:	ARGENTINA AND BRAZIL AGRONOMIC UNDERSTANDING	2/10/81
	PAGE	
ACTIVITY	FY19	
	ONDJFMAMJJASONDJFMAM	J A S
REFERENCE MILESTONES		
DEFINE, COLLECT & ORGANIZE FOREIGN UNDERSTANDING DATA BASE	REPORT	
NOAA (weather & climate)	PRELIMINARY FINAL	
USDA		
NASA	ARGENTINA BRAZIL. SEGMENTS V V SEGMENTS	
OTHER.		
FOREI	_ ৪ ►	OVERLAYS V REPORT
	TIEID TRIP ARGENTINA TRIP TRIP TRIP	
PREPARE COUNTRY SPECIFIC REPORTS		
ARGENTINA	CROF CAL'SV 75 AG. CHAR V REPORT	
BRAZIL		
SUPPORT TO NASA ON COOPERATIVE		
AGREEMENT & GROUND TRUTH DATA COLLECTION	BRAZIL (INPE) V ARGENTINA (TENTATIVE)	
OUTPUT PRODUCT MILESTONES		
14 fam 245 [11] fam 340		

PRECEDING PAGE BLANK NOT FILMED

CORN AND SOYBEAN

CLASSIFICATION TECHNOLOGY DEVELOPMENT

FOR AREA ESTIMATION

for

FOREIGN COMMODITY PRODUCTION FORECASTING

Environmental Research Institute of Michigan University of California at Berkeley

FCPF Quarterly Project Review

11 March 1981

PRECEDING PAGE ELANK NOT FILMED

C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT

FCPF Objectives

Conduct Foreign Exploratory Experiments in Classification Technology for Corn and Soybeans in Support of Pilot Experime ts

• Deliver Pilot-Compatible C/S Classification Procedures

Support Pilots

Support Technology Transfer to User

TECHNOLOGY PHASE I

U.S. C/S CLASSIFICATION TECHNOLOGY DEVELOPMENT TECHNICAL OBJECTIVE

DEVELOP AND IMPLEMENT BASELINE SEGMENT CLASSIFICATION PROCEDURE FOR AT-HARVEST ESTIMATES SUITABLE FOR APPLICATION IN THE U.S. CORN BELT

ORIGINAL PAGE IS OF POOR QUALITY

- 14		3/2/81
0	and Soybeans	
,0	•	
	NDJFMAMJJASONDJFMAMJ	JAS
REFERENCE MILESTONES		,
IMPLEMENTATION	Training Course Training for Tr	
SUPPORT TO PILOT SEGMENT PROCESSING EXPERIMENT DESIGN ACCURACY ASSESSMENT.	Shake- of 78-79 Covn Thata The Processing of 180 lata The Pilot PDR for 180 lata The Pilot PDR for 1900 late The Pilot Complete 1000 late 1980 Evaluation The Processing of 180 lata The Pilot Complete 1000 late 1980 Evaluation 1980 late 1980	Comp. all
OUTPUT PRODUCT MILESTONES		

FY81 U.S. C/S PILOT IMPLEMENTATION APPROACH

- OVERALL IMPLEMENTATION MANAGED BY ERIM
- ANALYST FUNCTIONS INTEGRATED BY UCB
- SOFTWARE DEVELOPMENT ON LARS COMPUTER PENDING AVAILABILITY OF ERSYS AT JSC
- EXISTING TECHNOLOGY MODIFIED AND IMPLEMENTED
- PROCEDURE M TUNED FOR CORN/SOYBEANS
- JSC LABELING PROCEDURE ADAPTED TO FIELD-LIKE TARGETS RATHER THAN DOTS
- CROP GROUP STRATIFICATION INTEGRATING
- ANALYST
- CROP CALENDARS
- MACHINE

KEY ELEMENTS OF END-TO-END PROCEDURE DESIGN

- Integrated Analyst and Machine Functions
- Crop Calendars Formally Integrated
- Preprocessing for Data Normalization and Feature Extraction
- Analyst Labeling of Field Like Targets
- Convergence of Evidence Labeling Logic
- Stratified Area Estimation
- Modular Component Structure

CORN/SOYBEAN BASELINE SEGMENT CLASSIFICATION PROCEDURE

ORIGINAL PAGE IS OF POOR QUALITY

NORMALIZATION

ATMOSPHERIC CORRECTION

LANDSAT II

SENSOR CALIBRATION

TEMPORAL VEGETATIVE DEVELOPMENT

Crop Group Decision Logic

Cop Type Decision Loyic

SYSTEM ORGANIZATION

USER LANGUAGE

DATAPREP

PREPROCESS

DFS

CLUSTER

SAMPLE

CLEAR

ESTIMATE

ASK

¥

CLUSTER

Enter Segment Name

Segment 844

Enter Acquisition Dates in the Form yyddd

78151, 78232, 78251

SAMPLE

CLUSTER

DFSTRATA

ACCURACY ASSESSMENT SOFTWARE

- Blob Labels from Ground Truth
- "Correct" Spectral Biowindows from Ground Truth and GRABS
- Iterate BCLUSTER, SAMPLE, and ESTIMATE with Varying Numbers of Clusters and Samples
- Proportion Estimates from Ground Truth

QUALITY ASSURANCE

 Analyst Decisions for 5-10% of the Segments Processed Will be Examined Several (5) of the Segments Processed Will be Independently Processed by ERIM/UCB Personnel

MODIFICATIONS FOR PHASE II

Is Analyst <u>Team</u> Needed?

• Do Queuing Problems Exist?

• Can Procedure be Further Automated?

•• DFS assignment

•• Placement of linear discriminant

ORIGINAL 'PAGE IS OF POOR QUALITY

೦⊄≪ದೂ

ANALYST CONTACT TIME

FUNCTION	TIME (minutes)	ANALYSTS
Gain familiarity with segment	09	5
Adjust ĉrop calendar	120	2
Choose acquisitions	04	2
Determine Expected TPCs	30	2
QA, fill out forms	10	2
Assign TPC's to DFS	145	2
Execute DF3	10	.2
Execute SCATTER	120	2
Find linear discriminants	15	2
Select blob acquisitions	10	2
Paper work	10	2
Make crop biowindow overlay	10	proced.
Labeling	009	-
Quality Assurance	120	(miles)

ORIGINAL PAGE IS OF POOR QUALITY

OVERVIEW of CORN / SOYBEANS PATTERN RECOGNITION

Technical Issues

Quarterly Technical Interchange

23 march 1981

R, Cicone

ENVIRONMENTAL SYSTEM

General

Specific

Weather

- Cloud cover - moisture - temperature - episodic events

Geomorphology

Insects and Disease

Impact of Cloud Cover on South America Acquisition Profile

External Effects Correction (esp. TM) (seperating internal and external effects manifested in features)

Crop / Weather interaction

MEASUREMENT SYSTEM

General

Specific

Dynamic Range X Scene of Interest

Noise Characteristics

Measurement Parameters - frequency - viewing geometry - IFOV - radiometric characteristics

MSS maintainance - impact of deterioration - calibration

Thematic Mapper Characteristics
- data rate
- incremental gain over MSS
- data structure
- response to external effects

Potential Use of Multiple Sensors

DATA SYSTEMS

Genera]

Specific

Data Base Data System

Continued Augmentation of Image Data Base Foreign Ground Truth Potential of Interactive Analysis Image Processing System

INFORMATION EXTRACTION SYSTEM

General

Specific

Information Content

feature space crop space information need

labeling / estimation methodology

agronomic features

stable features

Accuracy

extraction methodology

crop inseparability estimation performance

summer crop confusors (e.g.corn,sorghum) impact of mixed pixels

bias in classifiers stability of dirct estimators

streamlining

multisegment / regression aggregation

self assessment

Timeliness

processing intensity

rate of error

Efficiency

periodic & timely information early as possible

through – the – season methods Landsat alone inadequate multiyear potential

'TALL POLES' PIONG TECHNICAL ISSUES IN CORN/SOYBEAN PATTERN RECOGNITION RESEARCH

- DATA (IMAGE DATA CONTINJITY, FOREIGN GROUND DATA AND HISTORICAL/AGRONONIC/MIX DATA)
- THROUGH-THE-SEASON TECHNOLOGY (WITH EXPLORATION OF LANDSAT ANGMINTED ECONOPETRIC APPROACHES) 0
 - PARCTICABLE PROCEDURES AT A COUNTRY LEVEL (I.E. REDUCTION OF PROCESSING INTENSITY) 0
- REDUCTION OF BIAS AND VARIANCE CHARACTERISTICS ASSOCIATED WITH CORREST LARELING, SAMPLING AND ESTIMATION TECHNOLOGICS 0
- THOROUGH UNDERSTANDING OF CROP CHARACTERISTICS AND THEIR RENOTE SEYSING MANIFESTATIONS 0
- DETERMINATION OF PARAMETERS THAT DRIVE DIRECTIONAL CHANGES WITHIN THE DATA STRUCTURE HE ORSERVE
 - CONFRONTING A NEW SET OF 'CONFUSION CROPS' (E.G. CORN AND SORGHUM)

0

UNDERSTANDING AGROPHYSICAL ENVIRONMENT OF BRAZIL AND ARGENTINA AND ADAPTING TECHNOLOY TO IT 0

CHALLENGE OF CORN / SOYBEANS PATTERN RECOGNITION RESEARCH

Challenge lies in both confronting remote sensing issues on a generic level and delving into the specific detail of crop and country parameters to produce a viable technology

SMALL FIELDS RESEARCH

W. Holsztynski H. Horwitz F. Pont Environmental Research Institute of Michigan

Quarterly Technical Interchange Meeting

March 23-26, 1981

OBJECTIVES OF SMALL FIELDS RESEARCH

- Short Range
- Gain understanding of small fields phenomena
- •• Interaction between ground and sensor space geometries
- •• Impact of small fields on crop signatures
- Impact of field size on existing technologies (Blob, CLASSY, etc.)
- Longer Range
- Support the development of small fields procedures

APPROACH

- Define Small Field as a Field Which Contains No Pure Pixels
- (As Pixel Size Increases, Number of Small Fields Increases) Use a Series of Fixed Field Patterns and Vary Pixel Size
- Uses Several Field Patterns
- Simulated
- Landsat
- Ground truth polygons
- Uses Crop Profiles Obtained from Real Data

- Model for Fixed Pixel Time t
- (No Misregistration)

$$N(\sum_{\alpha_{j}\mu_{j}}(t), \sum_{\alpha_{j}} \hat{x}_{j}(t))$$

- Model for Fixed Pixel
- (Misregistration)

$$N(\Sigma \alpha_{\mathbf{j}}(t)\mu_{\mathbf{j}}(t), \Sigma \alpha_{\mathbf{j}}(t)\sharp_{\mathbf{j}}(t))$$

Model for a Randomly Selected Pixel

(No Misregistration)

$$N(\Sigma A_j \mu_j(t), \Sigma A_j \ddagger_j(t))$$

where A_{I} is a random mixing coefficient

$$(\Sigma A_j = 1 \quad \text{and} \quad A_j \ge 0)$$

 Model for a Randomly Selected Pixel (Misregistration)

$$N(\Sigma A_j(t)\mu_j(t), \Sigma A_j(t)\sharp_j(t))$$

ORIGINAL PAGE IS OF POOR QUALITY

```
33333333349999999924444444444666666666111119999955555777772666666999999955555
33333333399999999924444444444666666666611111999995555577777266666999999955555
3333333337999999924444444446666666611111999995555577777266666999999955555
33333333379999999244444444466666666611111999995555577777266666999999955555
333333333333339999992444444444488688888881111999995555577777266666999999955555
333333333777777777244444444448888888888111199999555557777726666699999995555
33333333777777777244444444455555555511117777777788888888255555777777766666
33333333377777777724444444455555555551111177777777888888825555577777777766666
333333333777777772444444444445555555555111117777777788888888255555577777777766666
3333333337777777777255556666677777999911111777777788888882555557777777766666
55555555555555555555555666667777799991111177777778888888299999999
555555555555555555555555666667777799991111177777778888888299999999888888888
77777777777777777772555566666777779991111199999555555555555299999999888888888
777777777777777777725556666667777799911111999995555555555529999999988888888
7777777777777777777725556666667777799911111999995555555555529999999888888888
77777777777777777777725555666667777799911111999995555555555529999999888888888
777777777777999999233333333333999911111999955555666666628888888885555555555
777777777777779999992333333333339999111119999555555666666288888888555555555
77777777777777777999999233333333333399991111199995555556666666288888888885555555555
77777777777777999999233333333333999911111999955555566666668888888888555555555
7777777777777999999233333333333333131111999955555566666668888888888888
77777777<mark>777799</mark>999923<sub>3</sub>3333333399991111199995555556666662888888888888855555555
7777777<del>777999999233333333333999911111999955555566666288888888888</del>8555555555
```

- 1. Water
- 2. Road
- 3. Late Soybeans
- 4. Early Soybeans

- 5. Late Corn
- 6. Early Corn
- 7. Late Grain
- 8. Early Grain
- 9. Grass

Days 160, 178, 196, 214

ORIGINAL PAGE IS OF POOR QUALITY

•					
N ដ ដ ង ង ង ង ង	4 3 4 4 4 4	•••••	***	*****************	~~~~~
ကစောဆာထာထာဆ		าเกาเก	000	о ммммммм	0000, 1
ကသဘဘဘဘဘ	. وووو	• • • • • •	o o = = = o	ъ ммммми	0000 r
ကျောသာလာတာတာတ	444		o o o	о ммммммм	0000 -
က ဆလာဆသာ မ		กษณฑษา	oo	- 6	nooso r
လက္ထေထာက္က ပ		ισυνο	o	· ф ммммммм	noode r
ကျော်ထာတာသာတ က	0000	าเกมเกษ	o	-	N0000 F
~~~~~~~	~~~~	י א א א א יי	NN		~~~~~
00000 W	មាលមាមមា	00000		rr 666 RR	N
oppop v	របាលលាលាល	- 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0	999 55	011111
00000			66	000 00	
00000N	888871		0.01	ии	លលលលល
00000NB	8888		001	••• • • • • • • • • • • • • • • • •	មា មា មា មា មា
00000NB	88886		001		មាមមាមមា
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	888861		<b></b>		reren
トトト55508	888871		www	NNAAAAAAA	μ
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	88886		www	ហេហមមខមត្ត	rrrrr
<b>トトト555</b> 0 8	8 8 8 8 7 1		w w w w	ហេសងងងងងង	
000000 -	~~~~~	0000-	<b>→</b> သင်းထောင်	00000000	
00 000 7	~~~~~~	0000-	<b>⊸</b> නෙනෙන		6 6 6 6 6 6 M M
00 999 1	~~~~	000-	<b></b> ∞ ∞ ∞ ∞	00044444	00000MM
66 999 1	~~uuu	666	0000	00000000	0 0 0 0 0 0 M
66 999 1	~ 555	000-	0000	0.00000000	000000M
66 999 1	~ www	000-	0000	00000000	000000M
		-	ent ent	N	
rrrr 23	वयववयः	वयय -	mmm	, www.ww.ww.	~~~~~
rrrr 33	विवववव	वयम 🗝	МИМ	. พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ	
0000000 <del>2</del> 2	ववववव	7 <b>7</b> 7 7		หมายเกิดเลา	rrrr 8
LLLL 22	ययययय	444 6	мм	nooooo mi	<b>च च च च च च च</b>
rrrr 23	<b>e a a a a</b>	3 <b>3 4</b> 0	ما نما سه مد لما لم	1000000 m	व च च च च च च
rrrr 23	द्यव्यव्	333 O		000000	444444
សម្រាលស្រុកម្	M W W W W I	4 tu tu			यय वच चच च
លក់លាលលេសម	M M H. M M I	9 M M O		4 444 444 444 444	
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		9 M M O			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
νανκάναν	M M M M M	~ m m &	य य य य य य	*******	8888777
ักพากเการา		4 m m &	9 9 9 9 9 9		5550000
N.		6	च व व व व व	**********	N N N N N
<b>න</b> ඥ භ භ භ භ	<b></b>	0 00 00 0	च्याच्याच्य		<b>~~~~~</b>
သလာလာတာလ သာသ	သက္ကေတာက	0 00 20 07 37	चंचचचच	।वचवचच⊶⊶ Ω	44455
					10 10 10 10 5 5 5

NAME OF THE GROUNDFIELD: FAKE-FIELD-14 9 CROPS, VERTICES ( 70, 1), ( 73, 60), ( 13, 60), ( 10, 40 COLUMNS AND 40 RUMS

PURE PIXELS

### ORIGINAL PAGE IS OF POOR QUALITY,

,			æ	œ	æ	80		9	•	•		'n	Ŋ	ហ	0			<b></b>	o	6	M	M	M	M	M	M		0	o		~
			Φ	œ	æ	<b>æ</b>		9	9	9		ស	v	•	o				•	6	M	М	M	M	М	M		Φ	Ç*		_
			80	æ	œ	æ		9	9	9		ហ	ß		σ			-	٥	6	M	M	M	M	M			0	o		٢
			œ	ဆ	æ	æ		9	9	9		w	ഗ		6			-	6	Φ	M	M	M	M	M	,	6	Φ	o		~
10,			0	6	σ	6		ß	S	ហ	Ś	S	ው	0				0		~	~	•	9		S		~	_	~	-	~
~			0	O-	0		'n	ហ	'n	ľ	Ŋ	ß	Ç	Ġ.				6		1		9	9		ហ		_	-	-	~	~
) '(09			0	0	σ			<b>3</b> 0		_						-		Ġ		-			•		ហ				S		
13,			o-	6	Ġ		æ	00	œ	Œ	7	~	~	7		==		o	~	1		•	9		ın		w	S	S	S	S
							æ	œ	Ø	æ	-	۳	7	7	-	-	o	o	~	7		9	9		ហ						
•		7	-	ហ	Ŋ		Œ	œ	<b>60</b>	æ	۲	7	7		-	-				•							~	_	1	~	М
73, 60), (		~	~	S	'n		80	æ	∞	æ	7	2	~		•=		ίŲ	ιÑ	ĽÑ	ιñ		7	7	7	चं		~	<u>_</u>	<u>~</u>	7	ŀΫ
ŭ.																						4	₫	4	4		-	1	7	-	M
C		0	6	•	9		-	7		ហ	ស	0	6		-		<b>6</b> 0	80	Ø	æ		#	4	4	7						M
1),		6	6	•	•		۲	1		S	īυ	0	0				æ	æ	æ	Ø		<b>3</b>	₽	4	4		o	o	o	M	М
		Φ	6	9	9		-	7	'n	S	Ŋ	0	6			-4	9	9	9	9		4	4	4	4		o	Φ	0	o	M
70,		٥	Φ	9	•		7	٢	ß	ហ	ın	6	6		4 4		•	9	9	9	,	7	7	4	7		ው	Φ	Φ	Φ	М
- S															***																
FAKE-FIELD- VERTICES ( 30 ROWS		7	-	~	~		4	4	7	4	q	7	4		-	<b></b> -		M	W	M	S	S	ľ	r	N		7	~	-	~	រោ
3011							7	4	7	⋾	4	7	7			-		M	M	M	Ŋ	Ŋ	Ŋ	ស	ß		_	٦	1		'n
FAK VE		_	~	~	~		7	7	7	4	4	4	7			-		~	₩	M	•	9	9	9	9		4	4	7	7	7
		7	~	7	~		4	7	4	7	4	7	7	6	<b>,-4</b>	-	-			M	9	9	9	9	9		4	4	す	4	7
TEL A														0	-			-						9	•		7	~	7	7	4
45 Z		S	ហ	ഗ	ហ		~	M	M	M	M	М	M	0	-		-	-	-	-	-	-	-								
GROUNDFIELD: ROPS, COLUMNS AND	<b>'</b> 0	ហ	'n	Ŋ	S		۲,	M	~	М	M	М	M	6												S	ιń	ß		7	7
	Ë	Ŋ	'n	ហ	ഗ		M	M	M	M	M	M	M	6	7	⇉	7	7	7	7	4	7		-		S	S	Ň		10	7
THE GRO 9 CROPS 10 COLL	PIXELS													6	7	7	<b>=</b>	4	4	₹.	ø	7		_		S	Ŋ	ın		~	~
OF.	PURE	80	ထ	ထ		æ	8	80	<b>œ</b>	80	80	æ	89	6	7	J	4	4	<b>3</b>	7	4	3				S	S	ហ		_	7
NAHE	P	80	<b>40</b>	60		œ	æ	пO	æ	æ	Ø	æ	<b>a</b>	6	ਬ	7	7	7	đ	4	₫	⇉		<b></b>		S	Ŋ	'n		7	7
<b>-</b>																															

### ORIGINAL PAGE IS OF POOR QUALITY

;	=																					
	•																					
•	_																	•				
;	1), ( 73, 60), ( 13, 60), ( 10,																					
	*																					
;	-			ထ	0		Φ	9		S			~			~	~	1		6	0	r
•	<b>ب</b>			8	œ		9	٠,		ហ			-			M	~	m		Φ		r
•	<b>6</b> 03 <b>,</b>			œ	æ		•	•	Ŋ	'n			-4			М	М	М		٥		r
,	٠. د			8	ඟ		9	9	ហ	Ŋ			-	6		M	M	M		0		r
,	_											<b>⊶</b>										
			٠	0	0							•==			~	•		ហ				
				6	Φ.		<b>40</b>	80	~	_			<b>o</b> -		7	9		ហ		S	ហ	u
4	92						œ		_	~			o			•		'n				
7	_ ,,		7		Ŕ		Ø		~	_		-	S	S		4	4	4		-	~	•
TEL	VERIYCES ( 20 ROMS												٠			7	4	ø		7	1	٢
	20.2		6					S		0						7	7			Ò		۲
FAK	<b>*</b>		Φ			7		ın		6			•	9		₫	4		o	0	0	٢
	AND										-											
IEL	Ž					7	7	4	4	4		-		<b>1</b>		ហ	S		_	~		Ļ
NON	82		~	-		ব	4	7	7	7				M		9	9		₫	₹	ø	=
THE GROUNDFIELD: FAKE-FIELD-14	9 CRUPS,	ġ										yes							4	ಶ	4	5
<u>u</u>		XEI	Ŋ	S		~	~	~	M	14		-	-		-							
Ŧ.	20	PIXELS	2	S		M	M	M	М	M		7	7	4	4	7			Ŋ	S	~	r
<u>0</u> F	14	PURE										₹	7	7	4	⇉			ហ	ហ	~	۲
NAME	.•	ā.	<b>2</b> 0	<b>æ</b>		æ	ø	ဆ	æ			7	<b>=</b>	4	Þ		-		Ŋ	ß	_	•

Conditional Profile Distribution

- 
$$f_{XIA=\alpha}(x) \sim N(\Sigma \alpha_1 \mu_1, \Sigma \alpha_1 t_1)$$

Mixing Distribution

- Function of:
- •• Ground field patterns
- •• Misregistration
- •• Generals unknown
- Joint Mixture-Profile Distribution

- 
$$f_{X,A}(x,\alpha) = f_A(\alpha)f_{XIA=\alpha}(x,\alpha)$$

Marginal Distribution of X

$$- f_{X}(x) = \int_{0}^{1} f_{X,A}(x,\alpha) d\alpha$$



POSSIBLE 2-CROP MIXING DISTRIBUTIONS













						ORIG OF P	INAL PAGI OOR QUAI	E IS LITY					
		00.09	54.00	48.00	42.00	36.00	30.00	24.00	.8.00	12.00	6.00	0.0	
м	114,00	-  -	, m + m m m	4 mg .dr sug mg bin	5 part of part 6		. See jees dip jees deel jees	and do and and i	, pag pag ap., pag, pag ; 1 1 1 1 1 1 2 3 4 3	* * * * * * * * * * * * * * * * * * *		• ••• • • • • • • • • • • • • •	
PAGE	102,00		•		*	**************************************	239265422 445996762 - 3989973 ** 43689382 ** *4*32 *		8 D V E B B B B B B B B B B B B B B B B B B	* * * * * * * * * * * * * * * * * * *			00.801 00.99
03/17/81	90,00					# M 27	4 4 4 4 4 4 4 4 4 4		* 242* 2 * 444632 223653* * 822223	*3 222* 2*546*2 * 355542*2 * 22645*2* 24389794	24 576542 33 3322** 3523 2	· •	•
	(ACROSS) B		s bad had tool pad ja	a pad bad jad fod ba	9 and 1m3 and		) you good bood book you	pred hand hand hand			12000	*4689794**	72
E PIXELS	54,00	i i			:	0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						* +	00 00
NATION PURE	42.		d deed level level level level	ul time time time time time	4 s=4 s=4 s=4	T T T T T T T T T T T T T T	) jud þvá þvá þvá þvá þvá	bed feel feel feel	i bod bod bod bod	ird ped land gand ga	ud bed bed bed bed	; 1 1 1 1 1 1 1 1	
I SREGISTH	81)					0 8 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							M
=q.0 R=0.0 NO HISREGISTRATIO	FIUN DATE = 4) GREEN 18.00	1			·	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			- 6		40**		00
)AY=160 V=		 	4 844 44 844 844 8	y bang nije pang band ban	1 Sees	; 	Date Date Ap Date Date Date	time who good freed (			1 3 4 3 2 2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		0.0
PATTERN-14 DAY=160 V=4.0	FILE NONAME SCATTERGRAM OF	00.09	54.00	48.00	42.00	36,00	30.00	24.00	18.00	12,00	00*9	0.0	

						ORIGIN OF PC	NAL PA	GE IS ALITY				
		00*09	54.00	48.00	42.00	36.00	30,00	24.00	18,00	12,00	6.00	0.0
	0	• +		nd 8000 after Secol Secol Se	-1 am sh am but 1 1 1	prof book afte prof book pass	pad ab prod pad pa	of long age long gang lan B	) (mai api pang dani pa		g pang aga jang gang	1 1 1 20.00
*	114.00							9		4 M	٠	İ
PAGE	102,00				1 6 6 8 8		* * * * * * * * * * * * * * * * * * *	9432 9432 92422 99422	18249935 * 446699446	1331-348 23632 # 3363 # # #2443 ##2# #2344		108.00
03/17/81	00 406						* ************************************	33979432 4447999983 23959999983 26699999983	558249935 * 23236	291	ek Tek	4.00 96.00
	8RIGH1 78,00			nd bod bod bod bod bo	-4 (ma) (ma) (ma)	ped had led jud had had	pang gang bang pang da	 	N #	1 * * 2 * 4 * 4 * 4 * 4 * 4 * 4 * 4 * 4 *	* * 38** * 2225 I 2	1 1 84+00
	(ACROSS) 6.00							0 0 9 1 0 0 0				72,00
PIXELS			٠		# # # # # # #		,	0 0 0 0 0 0				00.09.
Plyse P1	c											48.00
2	42.0	6  - 	-4 sed ped sed sed s	nd deed their deed deed de		tend find their trad part fired		T B B Serie Genry Spany (pany B B B B B B B B B B B B B B B B B B B	and bull part and a	nd land done done done do	4 deed deed deed geed	I I I I 36.00
SREG1ST	30,00	1 1 5 6 6			1 1 1 1			! ! !				ţ
IH ON C	" =	[  -  -  -						ý 1 3 1 1				24.00
V=4.0 R=0.C	110N N) G	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			, I 9 9 9 5 9 0	ı	•	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
1Y=178			د سد دوو بغر ويو وي	- <b> بار بار پار</b> پ		در سد منظ على لينظ وسا	- مند مند بود پرور	i i i i i i i	) 	* *	W 12 49 42	### 1000 ### ### ### ### ### ##########
PATTERN-14 DAY=178 V=4.0 R=0.0 NO HISREGISTRATIO	FILE NONAHE SCATTERGRAH OF	00 09	54,00	46.00	42,00	. 36 ° 00 ° .	30.00	24.00 H	. C) . C) . c		6.00 + I	0

		00*09	54.00	48.00	42.00	36.00	30.00	24.00	18.00	12.00	00*9	o • o
w	=	!	uni bini dip bini bini bi	od prog. aju prod prod	pand pand up pand to	4 pag pag 40° pag pag pag	panel refer panel pro-	t beed paral after freed band in		* * * 1 * *2 332** + *2*54975*2 1	997993 2 *I 67699* 4 I 5882* * 2+ 5882* * 44I	•
81 PAGE	102,00				-	* * * * * * * * * * * * * * * * * * *	* *428973. *2**799574* 2359669*** 64999953	3797999724 3389999942 *58979943 3297573*2		4 4 4	233 5997993 547867699* *2369869965** *287825482* *	X X X X X X X X X X X X X X X X X X X
03/17/81	0*06	<u> </u>						M * M ` `   *C	*			84.00
	(ACROSS) 6.00	# 1	ad 2001 Dag 2003 Dag 2	nt pad bag pad bant.	book book book book	ma pag bad pag bag pag	bud and bud du	M M M M F	<b></b>	bed and bed bed be	if had beed beed good board be	I I 72.00
PIXELS	. 6	∮ + 1 1 1	-									00.09
STRATION PURE P	00		nd had had bad bad b	nd pand pand pand	panji panji panji Sard	and and tend and and and	1-4, 1-4 1-4 1-4 1-4	r 100 100 100 100 100 100 100 100 100 10		and jud and jud bu	d grad final band gand gand fo	1 1 48.00
3REG1STRAT	30,00	1 1 1 2 1 1 1										36.00
R=0.0 NO MISSEGT	= 03/	; ; ; ; ; ; ;							; ; ;			24.00
=196 V=4.0 R=0	(CREATION DATE (DOWN) GREEN 6.00 18.01									* *	33 200 2422 2452*** 26554* -56554*	***2* ***2* 0 12.00
PATTERN-14 DAY=196 V=4.0	FILE NUNAHE SCATTERGRAH OF	F 00.09	54,00 +.	48.00 +	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	36.00	30.00	Z4.00 +	18.00 + H	12°00 12°00	6.00 6.00 1.4 1.4 1.4	0.0
ORIGINAL PAGE IS OF POOR QUALITY												

ORIGINAL PAGE IS OF POOR QUALITY



03/17/81		90,00 102	中间 医医疗病性医疗 医克克克姆 医马克洛姆 医马克克姆 医医克克姆氏 医克克克姆氏征 医克克姆氏征 医克姆氏征 医克姆氏征 医克克姆氏征 医克克姆氏征 医克克姆氏征 医多角性 化苯甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基
U	(ACRUSS) BRIGHT	66.03 78.00	
	(ACRUSS)	66,03	; } } } } }
PATTERN-14 DAY=214 V=4.0 R=0.0 NN HISREGISTRATION 30 BY 30 PIXEL		24,00	+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
RATION 30 B		42,00	
HISREG1STH	03/17/81)	6,00 18,00 30,00 42,00 54,00	***************************************
0 R=0.0 NO	FILE NUMAME (CREATION DATE = 03/17/81) SCATTERGRAM OF (DOWN) GREEN	18,00	B = 0 1 + 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
=214 V=4.	FILE NUNAME (CREATION DATE SCATTERGRAM OF (DOWN) GREEN	00.9	2   4   4   4   4
ERN-14 DAY	NONAME TERGRAM OF	•	+ 00.09
PATT	FILE		

PAGE

CATTERGRAM OF	+ 00°09	54.00 + 1	78°00 78°00 78°00	45.00 ±	36.00 36.00 HH	1 30.00 +	24°00 + H M M	18,00 H	, 12°00 . 11°11 . 11°11		
(DOWN) GH									# 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2.00
18.00				•							100.25
30,00		ı							* *	*	. *************************************
42.00		that had had had had had	9 had bad bad bad tad	pad pad pad 3mg	just just just just just	<b></b>	) tree treet treet treet treet		proj jej proj proj proj		
54.00							C) #		***	, , , , , , , , , , , , , , , , , , ,	* * * 2 *
(ACRUSS) BRIGHT							*			44	4, *
BRICHT 78,00	- 	<b></b>	) and and and and and a	ind ind ind ind	jung jung gang gang gang j	dC bed bed bed bed	; jump gamp jump jump gamp gamp gamp gamp gamp gamp gamp ga	4C (mile (mile (mile)	4C true sand sand true band to	nd bod bod jad bad (	1 * II + I
90,00 102,00				*		** * ** * ** * * *	. 8322 42 824427434 2446542 84887653 8443844 824435 824435	* * \$25 * * * * * * * * * * * * * * * * * * *	* K * K K		* 00 96 00
114,00		POR POR - DO DOR DOR	) jed pod op jed pod	***************************************	#455452 ##389694** I ##4879532* + #363953 * I	**************************************	* * * * * * * * * * * * * * * * * * *	* ~ ~	2 ** **** I *3*2** * \$2 * I *2 ***2*3*2 + 22 **** * 1 2** * 2	# # # # # # # # # # # # # # # # # # #	*2*15955 CCC5*1 *********************************
•	60.00	54.00	00 <b>"</b> 84	42,00	36,00	30,00	24.00	18,00	12,00	00 4	o•o .
					ORIG OF F	INAL POOR	PAGE IS QUALITY				

ORIGINAL PAGE IS OF POOR QUALITY

		00*09	54.00	48.00	42,00	36,00	30.00	24.00	18,00	12.00	00.00	0.0
**1	114,00		tond tare the tare tare to	و پسر پسر جہ جسر ک		, prog. Sport . Sport . Sport . Sport	, <del></del> , ;		*	. **	10,4 4 10,4 4 4 4 4 4 4 14 4 14 4 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	2**4222 ** I *2 * 25 * I + + + + + + + + + + + + + + + + + + +
PAGE	00				* 2 * * * * * * * * * * * * * * * * * *	** ** ** ** ** ** ** ** ** ** ** ** **	* n *	2	**************************************	4 M M 4	(U 4 4 4 4 4 4 4 4	# 00 # 00
05/17/81	00.06				1 1. 1 1 1 0 1	*	<b>*</b>	* * * * * * * * * * * * * * * * * * *			**	84.00 96.
	USS) BRIGHT 78,00	 	per per per per per per		2 peed from from for	and and and and and an	g jaag gang gang g	and find and buy and suc	44 44 44 44 44 44 44 44 44 44 44 44 44	4 para para para para) 42 34 - 34 - 34	* * * * * * * * * * * * * * * * * * *	21 * * * 1 72,00 84
I XEL	¥) 1								0 2 5 6 4 4 8 6 1 9	* *	*	00.09
20 BY 20 P	00 24 00				i ; ; ; ;			*	*		# # #	48.00
EGISTRATION	781) •00 42.00		jung band hand gaug band be	nd find gad bid gad g		had had pad had had na	) 1mg 1mg 1mg (	neg find had put) had ping	baq bad pad -kt pa	nd prod gang gang gang eX E eAC	* * *	I I 36.00
O.O NO MISR	DATE = 03/17/81) REEN 18,00 30,00	; ; ; ;					,			* *	* * *	24.00
14 V=4.0 R=	(CREATIUN DATE : (DONN) GREEN 6,00 18,00				; ; ; ; ; ;						2	12.00
PATTEHN-14 DAY=214 V=4.0 R=0.0 NO HISREGISTRATION 20 BY 20 PIXEL	FILE NONAHE SCATTERGRAM OF	60.00 + 1 1	1 1 1 1 1 1 1 1	48,00 +	1 45.00 +	9 00 • 00 • 00	30°00 +	24.00 +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12.00 + 12.00 +	7 H + H H 1	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PAT	FILI											

#### CONCLUSIONS

 The Impact of f_a, the Within Pixel Crop Mixing Distribition is Potentially Large Even When the Pure Pixels Have Nice, Well Behaved Distributions, Mixed Pixels can Have Complicated Distributions

#### PRECEDING PAGE BLANK NOT FILMED

THROUGH-THE-SEASON TECHNIQUES RESEARCH

Project: Supporting Research

Project Element: Pattern Recognition - Corn/Soybeans

Task: Through-the-Season Estimation

Performing Organizations: ERIM/UCB

Presentor: Christian Pestre

March 23, 1981

### OUTLINE OF PRESENTATION

- Problem Addressed
- Problem Context
- Our Conceptual Approach
- Our Technical Approach
- Our Programmatic Approach
- Concluding Remarks

#### PROBLEM ADDRESSED

- Area Estimates of Target Crops Are Required Periogically Throughout the Growing Season, But Current Technology Supports Only Near-Harvest Estimates
- Focus of Research is on Through-the-Season (TTS)
   Techniques for:
- •• Corn and Soybeans
- •• Argentina and Brazil

USDA FORECAST ACCURACIES FOR COUNTRY/CROP PRODUCTION ESTIMATES

	At-Harvest		22/90	37/90		75/90	80/90
Forecast	on Pre-Harvest	· · · · · · · · · · · · · · · · · · ·		37/90	Goal 1985	20/90	06/09
	Mid-Season	7	1	!	91	1	!
	Early Season		17/90	34/90		30/90	20/90
Country/Crop	Country/Crop		Argenting/Corn	Bruzii/corn		Argentina/Corn	BrdZ11/Corn

# DESIRABLE OUTPUT OF A THROUGH-THE-SEASON PROCEDURE:

- Acreages of Target Crops Present on Fields
- Estimate of Accuracy Allowing User to Compare this Information with Information from Other Sources
- Ancillary Information on Factors Affecting Acreages, Allowing Projections to At-Harvest, e.g.,
- •• Status of Earlier Crops
- •• Current Status of Target Crops

#### CONTEXT:

- Through-the-Season Estimation Requires New or Different Uses of Landsat Information, that Depend on:
- Local agronomy
- Current year crop calendars
- Economic Statistics can be Used in Econometric Models in Order to Complete Partial Answers from Landsat
- Acreages, productions, weather, prices, etc.
- Not available at segment-level
- EStimation Will Combine Observation and Prediction
- Some features translate farmer's intention
- But intention may change due to weather or prices

### OUR CONCEPTUAL APPROACH:

- Direction of Our Efforts
- •• We must consider the general problem in order to understand what, of general value, can come from Landsat, but:
- •• Our primary technical emphasis will be on developing the Landsat information extraction technology

# UUR CUNCEPTUAL APPROACH (continued);

### Landsat Information

- Take advantage of local agronomic understanding to know information content of Landsat observables and develop extraction of appropriate features
- Use adjusted crop calendars for labeling guidelines as well as quantitatively, for estimating ratios •
- Use all land cover classes

### Econometric Models

- Produce ratios applicable to Landsat classes
- We may not use them at segment level
- Envisage Landsat inputs (indicator classes, this year's data)
- Merge Informations from Different Sources into a Best TTS Estimator (see Example)

Expected Increasing Importance of Landsat and Collateral as Season Progresses

## THROUGH-THE-SEASON ESTIMATOR

• Example

•• May Have Competitive Estimates

Medium-quality [corn] vs. [soybean] separability ightharpoonup P $_{
m l}$  corn

P₂ corn 1 Good [SC] estimate + ratio ( $\rho$ )

•• Model for best estimate

where  $_{lpha,eta}$  function of variance of P $_{
m l}$ , P $_{
m 2}$  $P = \alpha P_1 + \beta P_2$ 

More Generally, How to Merge Outputs from Different Paths

 $P = \alpha \left[ \text{Crop} \right]_{\text{ECON}} + \epsilon_{\text{B}_{\text{I}}} \left( \left[ \text{Group} \right]_{\text{LS}} \right)_{\text{i}} + \gamma \left[ \text{Crop} \right]_{\text{LS}}$ group group ECON, LS

function of variances and covariances of component estimators (need for accuracy self-assessment)

Vary through-the-season (Landsat increases)

### OUR TECHNICAL APPROACH:

- Refine Baseline Procedure Components
- Spatial stratification (Blob)
- Spectral stratification (DFS)
- Labeling features hierarchial labeling – target crops as well as other classes
- Develop Ratios
- Econometric models
- statistics only
- use of Landsat classes as inputs
- Other segments
- Crop calendars
- Develop Accuracy Assessment
- Empirical
- Self-dssessment
- parameters to feed models, e.g.,
- analyst's label confidence
- timing of acquisitions

#### 4000Asos Planting Observed on From Crop Calendars Nov 6 Segment: Oct i THROUGH-THE-SEASON ESTIMATION From Other Segments RATIOS Current Year Su Years From Model Based on Historical Statistics Acreages

P [SC]

**Dec 30** 

# EXAMPLE OF SHAPE OF AN ECONOMETRIC MODEL

#### Inputs

• This Year's Crop Group and Type Estimates from Landsat

Historical Crop Acreages

Historical Prices

Other Relevant Factors (e.g., government policy, meteorological data)

#### **Development**

Modified Agricultural Econometric Models (use this year's input)

Use of USDA Data on U.S.

Extend to Foreign Countries (Argenting, Brazil)

#### Example.

Let  $\mathsf{CC}_{\mathsf{it}}$  be acreage of crop class i in year t (e.g., summer crops, winter small grains) i=1,..., n

 $\mathsf{C}_{\mathsf{jt}}$  be acreage of crop type j in year t (e.g., corn, soy)

Let 
$$\Delta CC_{it} = \frac{CC_{it} - CC_{it-1}}{CC_{it-1}}$$
,  $\Delta CC_{it} = \frac{\widehat{CC}_{it} - CC_{it-1}}{CC_{it-1}}$  estimated  $\Delta CC_{it}$ 

$$\begin{pmatrix} c_{jt} \\ c_{c_{jt}} \end{pmatrix} = f(\Delta \hat{cc}_{1t}, \dots, \Delta \hat{cc}_{nt}, c_{jt-1}/cc_{jt-1}, \text{ prices})$$

OUR PROGRAMMATIC APPROACH:

Progression of Supporting Research for

- Discrete

Continuous

- Continuous, multiyear Landsat

FY81 Emphasis on Discrete Case

## ESTIMATORS FOR DISCRETE INTERVALS

- Start from Landsat TTS Guidelines Developed Last Year
- Investigate Ratio Methods Using Non-Landsat Data
- Build Experimental TTS Techniques A.S.A.P. for Different Times of the Growing Season (see Examples)
- . Modified baseline procedure components
  - And/or separate analysis routines
- Select Segments from Foreign Similarity Region
- Develop a TTS Data Simulation Capability
- Make Trial Runs with Real and Simulated Data, to Gain a Better Perception of What is Needed for TTS Techniques
- Modify Techniques, as Indicated
- Initiate Study of Error Characterization

## EXAMPLE OF DISCRETE ESTIMATORS:

	SC5	
	SC4	
	803	
	SC2	
	SC1	
Cummer Cron	Biowindows	

SC4, SC5: • Quasi-Baseline

Ratios from Other Segments (when missing acquisitions)

[C], [S], Using Through-the-Season Labeling **SC3** 

. Good  $[SC]_{LS}$  + Ratio (Econometric, Other Segments)

Best Estimate  $^{\alpha}P_1$  +  $^{\dot{\beta}}P_2$ 

Emergence Not Completed, Use C.C. Ratios for [SC] SC2

[SC] + Ratio (Econometric)

Crop Calendar Ratio for C/S (By Rate of Planting)

### CONTINUOUS ESTIMATOR

Objective:

Estimation of Any User Designated Time Using the Then-Best Estimator

Approach:

- Refine "discrete" technology

- Include error self-assessment

- Incorporate a multisource TTS estimator

- Use profile technology

- For efficiency, take advantage of prior processing

on same segment

# CONTINUOUS ESTIMATOR, MULTIYEAR LANDSAT

Early in the Season, Comparison with Previous Year Will be Helpful for Landsat Information Extraction, e.g.,

- Crop mix

- Crop calendars

- Crop rotations

Use of Multiyear Acquisitions Helps to Improve Estimates of Crop Area Shifts, Therefore Enhances Econometric Prediction (of Ratios)

### CONCLUDING REMARKS:

- Content of Landsat Features, Thus Drives Information Extraction Need Local Agronomic Understanding Which Reveals Information **Efforts**
- Need TTS Features for Other Crops as Well as for Target Crops, Thus Need Adjusted Crop Calendars for all Crops
- Need Econometric Models at Some Times to Reach the Final Answer
- Should incorporate current-year Landsat inputs
- •• Will give their full potential with Landsat inputs in a multiyear context

CORN AND SOYBEANS P-2 DEVELOPMENT

A Technical Gestalt

Presented by: Claire Hay/UCB

With F. Pont and R. Kauth/ERIM

March 23, 1981

Quarterly Technical Interchange Meeting Supporting Research Division, Johnson Space Center, Houston, TX 77058

## CORN AND SOYBEANS P-2 DEVELOPMENT

#### Outline

#### Introduction

- P-2 Initial Design
- P-2 Research Requirements
- Resource Considerations

#### INTRODUCTION

• Objectives and Technical Thrust of P-2

Approach

_ _ _

## **JBJECTIVES AND THRUST OF P-2**

### Objectives of P-2

- Increased efficiency in area estimation
- . Reduced turnaround time from data acquisition to estimates
- Extraction of other information from remotely sensed data
- •• Indicators of crop condition
- Spectral indicators which support crop yield

### Technical Thrust of P-2

- Full frame multitemporal registered Landsat data *
- Flexible stratification and sampling strategies
- Intensive use of machine processing
- Analyst critical overview of processing
- Full frame based features for condition assessment

*The options for "Full Frame Registration" are discussed in later viewgraphs.

### APPROACH TO P-2 DEVELOPMENT

- Chicken or egg?
- . If you could implement P-2 you could conduct research
- If you had the research you could design P-2
- If you could design P-2 you could implement P-2
- The Evolutionary Approach:
- Both chickens of eggs exist
- Both evolved Jointly

### APPROACH TO P-2 DEVELOPMENT

- Do an Initial Design Based on Gestalt of LACIE/TY Experience
- Use Preliminary Design to Identify Research Issues Which Will Affect Later Design Decisions
- Implement a (Compromise) P-2 Research Testbed
- Based on preliminary design
- Within resource constraints
- Flexible usage
- Conduct Research Both Outside and Inside the Testbed Environment
- Evolve Advanced Design Based on Research

#### P-2 INITIAL DESIGN

- Past Experience Summary
- System Considerations
- Conclusions from Past Experience and System Considerations
- An Initial P-2 Design (The Model TP2)

#### BACKGROUND

## (Past Research Related to P-2)

#### UCB Study

- Analyst gives quick proportion estimate, p' for every possible segment
- Analyst provides best accuracy proportion estimate,  $\hat{\textbf{p}}_{\text{c}}$  for a sample of segments
- Regress p̂ and p' and produce a total area estimate based on regression

## Procedure B in Kansas (ERIM)

- Across segment clustering
- Developed procedure for choosing representative training units
- Extension of training to population

## Multisegment Estimation (IBM)

- CLASSY clusters
- Developed procedure for choosing representative training units
- Extension of training to population

### BACKGROUND (Continued)

## (Past Research Related to P-2)

- Multisegment Estimation (ERIM)
- Across segment clustering
- Data normalization to remove some of between segment variability
- Dynamic strata (UCB's degree days and precipitation strata)
- Cluster Sampling Inefficiency (LARS)
- Used various sample unit sizes ranging from LACIE segment to single pixels
- Total number of pixels labelled a constant
- Measure variance as function of sample unit size
- Factor of 8 available in sampling efficiency, by labelling isolated pixels

### OVERALL CONCLUSIONS FROM PREVIOUS EXPERIENCE

- Regression Techniques Have a Higher Potential for Training Gain Than Multisegment Stratified Areal Estimation Techniques
- Large (LACIE) Segments Limit Sampling Variance Due to Inefficiency of Cluster Sampling
- Variations in Signatures Limit the Area Over Which Training is Applicable and Therefore Limit the Training Gain Which can be Achieved
- General LACIE/TY Experience
- About 3 sample segments/full frame area
- Sampling Variance about equal to measurement variance

n is the number of analyst decisions f is the inefficiency factor due to cluster sampling (the cost per analyst decision is an important ingredient of total cost)

LARS study shows f to be about 8. For LACIE, TY the two terms, f  $\frac{S}{\eta}$ ,  $\frac{m}{\eta}$  are about equal. Hence in order to reduce cost significantly both f and  ${}_{\text{M}}$  must be reduced.

to reduce cost significantly, the inefficiencies of cluster sampling must be reduced The primary source of  $\sigma_{
m M}$  is poor or marginal acquisition histories. Hence in order and the acquisition histories must be improved. Both these factors point to a requirement for a flexible sampling strategy,

# FRAMEWORK FOR REMOTE SENSING BASED RESOURCE INVENTORY SYSTEM (Generic)

Data acquisition/survey/evaluate

User Request



## MODEL T P-2 (Page 1)

- User Request (Identify Region in World Coordinates)
- Data Survey
- Acquire all revelent P-Tapes
- Screen for cloud cover/compile multi-acquisition bit mask/assign acquisition history quality values/display on screen with region overlay and APU overlay
- Evaluate sample adequacy
- Initial Response to User
- Stratify
- Green wave
- Machine stratify
- Analyst preliminary estimates of proportions from one good acquisition

options which Imply research 2

## MODEL T P-2 (Page 2)

#### Sample

- Use cloud mask, apply to A-Tapes
- 64 x 64 segments (sdy), within 96 x 96 element cookie cutter
  - Register 64 x 64's overnight
- Overlay segment locations on region map

#### Analyze

- 512 x 512 display screen allows 16 temporal segments to be displayed at 4 reselms/pixel
- Adapt C/S baseline to small segments
- preprocessing, BLOB, DFS, TPC's
  - 10 20 dots to label
- analyst aids on second screen
- Using only very good acquisition histories
  - Do for 20 30 segments

### Evaluate

- Internal consistency checks

- Aggregate to Strata
- Evaluate Strava Variance
- Aggregate to Region
- Evaluate Region Variance

Report

## MODEL T P-2 (Page 4)

- Resource Constraints
- Equipment is available on a non-interference basis
- (2 512 x 512 RAMTEK displays with overlay and 8 bit grey scale or color)
- (2 VTM 100 terminals which can be used to display analyst
- Software must be developed

## SCOPE OF P-2 RESEARCH

- CREATE AN OVERALL STRUCTURE FOR P-2
- C/S consortium, P-2 technology phase
- · Coordination with Sampling & Aggregation Research
- DEVELOP CANDIDATE TECHNIQUES SUITABLE FOR INCLUSION IN P-2
- Dynamic stratification
- Multisegment estimation
- Change detection
- Full frame features*
- Methods of clustering the new USDA strata *
- •• Static variables (soil type, etc.)
- •• Dynamic variables (green wave, etc.)
- Regression approach to aggreate machine and analyst proportion estimates*
- RESEARCH TO ASSIST IN P-2 DESIGN DECISIONS
- Cost/error model for P-2
- Sample unit size, interpretive unit size, interaction
- Cloud cover analysis for acquisition histories*

*Related research being conducted under other tasks (not P-2),

## P-2 RESEARCH TASKS

N.

- Corn and Soybeans (P-2 Research)
- Dynamic stratification
- Multisegment estimation
- Change detection
- Sampling and Aggregation (Generic Research)
- Somple unit size, interpretive unit size, interaction
  - Methods of clustering the new USDA strata
- Static variables (seil type, etc.)
- •• Dynamic stratification (green wave, etc.)
  Regression approach to aggregate machine and analyst based proportion estimates

## DYNAMIC STRATIFICATION and MULTISEGMENT ESTIMATION

### Background

- Profile technology has shown that a shift different can make a large difference in the spectral response of a given crop
- Times of planting and greenup are spatially correlated
- spectral/temporal response of the crops are expected to be "Signature extension" should be limited to regions where the same 1

#### FIRST STAGE SAMPLING STRATA

- APU
- Clustered USDA Strata
   Dynamic Partitioning Based on Smoothed "Green Wave"
- Linear Discriminant: GRABS ≥ 6



Acquisition 2

Spectrally Emerged

Spacially Smoothed



1 -

• Intersected



Refined Strata COMPOSITE STRATA Strata Dynamic Sampling Strata

- If Data Base is Flexible Then Sample Unit can be Allocated to Refined Strata
- Representative Sample Units for Training
- Extension to Other Units or Entire Strata

3

## ISSUES/PROBLEMS

- CONSTRAINTS ON THE NUMBER OF SAMPLE UNITS MAY NOT ALLOW SUFFICIENT TRAINING
- SMALLER SAMPLE UNIT SIZE MAY ALLOW MORE TRAINING
- MISMATCHING ME TI-TEMPORAL ACQUISITION HISTORY
- Profile technology may help
- Full frame sampling could stabilize acquisition history
- "THROUGH THE SEASON" ESTIMATION IS A PROBLEM SINCE THE INCLUSION OF NEW ACQUISITIONS MAY CHANGE THE SUBSET OF TRAINING UNITS
- ATMOSPHERIC AND BACKGROUND EFFECTS MAY MAKE EACH SEGMENT UNIQUE
- EXISTING DATA NORMALIZATION TECHNIQUES MAY EXPLAIN THE BETWEEN SEGMENTS VARIABILITY DUE TO ATMOSPHERIC EFFECTS

# SAMPLING AND AGGREGATION RESEARCH (FULL FRAME)

- MOTIVATED BY EXPECTATION THAT P2/FULL FRAME PROCEDURES WILL MERGE MEASUREMENT AND SAMPLING AND AGGREGATION INTO ONE ESTIMATION PROCEDURE
- COORDINATION VIA SERIES OF WORK SHOPS
- JOINT EFFORT TO DEFINE DATA NEEDS AND DATA BASE

# SAMPLING AND AGGREGATION TECHNOLOGY SUPPORT

#### **OBJECTIVE**

Provide General Support in the Development/Advancement of Generic Full Frame/ P2 Technology

#### **APPROACH**

- Take Technical Lead in R&D Support to Full Frame/P-2 Sampling and Aggregation
- Assessment of Performance of Automated Proportion Estimation Relative to Sample Unit Size
- Evaluation of USDA Strata-Other Stratification (Using Different Clustering Approaches)
- Dynamic Stratification/Within-Stratum Variances Estimation
- Investigate the Utility of a Regression Approach to Aggregate Machine and Analyst Labels
- Ald in Beveloping/Determining Common/Standard Test Data Set

# MACHINE/ANALYST REGRESSION/AGGREGATION APPROACH

- OBTAIN MACHINE PROPORTION ESTIMATES OVER ALL OR LARGE PART OF SEGMENTS
- OBTAIN ANALYST BASED PROPORTION ESTIMATES ON APPROPRIATELY CHOOSEN SUBSET OF SEGMENTS
- USE REGRESSION TECHNIQUES TO AGGREGATE PROPORITION ESTIMATES



SAMPLING UNIT SIZE STUDY

USE AN AUTOMATIC CLASSIFIER TO STUDY THE EFFECT OF UNIT SIZE ON

$$-\frac{\hat{p}}{P_{gT}}$$

ASSUMES STRONG CORRELATION BETWEEN ANALYST AND MACHINE BASED ESTIMATES



SAMPIK VWIT SIZE

5×6

100











## P-2 AID FULL FRAME

#### Rationale

- Detailed (analyst based) decisions are (or will be) the single highest recurring cost element as computing and data management costs reduce in the future
- Flexible full frame based sampling strategies can greatly improve sampling efficiency by distributing these high cost decisions over full frames
- To achieve a total reduction in cost the accuracy of decisions will also have to be improved since, currently, measurement error and sampling variance contribute equally to total variance
- The primary perceived source of decision error is in inadequate acquisition histories due to cloud cover losses
- Flexible full frame based sampling strategies may improve acquisition histories by allowing resampling when acqui-sitions are lost

ARGENTINA FIELD TRIP (16-30 FEBRUARY 1981)

BUZZ SELLMAN BYRON WOOD

**ERIM/UCB** 

QUARTERLY TECHNICAL INTERCHANGE MEETING MARCH 23-26, 1981

# OBJECTIVES OF ARGENTINA FIELD TRIP

- MEET AGRONOMY AND REMOTE SENSING PEOPLE
- GATHER DATA
- ESTABLISH RAPPORT FOR FUTURE NEGOTATIONS AND COLLABORATIVE WORK ON AGRISTARS

50	FIELD (Northern	BUENOS AIRES	PROVINCE)		Junin	Bragado
19	Field (Northern	Buenos Aires	Province)		Rojas	GEN, ARENALES(2)
18	FIELD (Northern	Buenos Aires	PROVINCE)		SALTO	
17	Castelar	NATIONAL	INSTITUTE FOR	CROP-LIVESTOCK	TECHNOLOGY	(INTA)
16	Buenos Aires	INTERNATIONAL	AGRICULTURAL SERVICE,	STATE SECRETARIAT	FOR AGRICULTURE AND	LIVESTOCK (SEAG)

Buenos Aires

NATIONAL COMMISSION FOR SPACE INVESTIGA-TIONS (CNIE)

> ERIM/UCB GROUND DATA COLLECTION MISSION TO ARGENTINA 16-30 FEBRUARY 1981

## DAILY ACTIVITY SUMMARY

23	24	25	26	27
Field (Bahía Blanca – Southern Buenos Aires Province)	Field (Southern Buenos Aires Province)	FIELD (Southern Buenos (Southern Buenos Aires Province) Aires Province)	Field (Southern Buenos Aires Province)	Return to Buenos Aires
Villarino	Tornguist Col, Suárez	Puán (649)	Puán (556)	
FIELD (CÓRDOBA) RÍO CUARTO JUAREZ CELMAN BUENOS AIRES	Field (Córdoba/ Sante Fe) San Justo San Martin	Field (Córdoba) San Justo	RETURN TO BUENOS AIRES	INFORMAL INFORMATION EXCHANGE AT SEAG

ERIM/UCB GROUND DATA COLLECTION MISSION TO ARGENTINA 16-30 FEBRUARY 1981

Processing Center (CNIE) DAILY ACTIVITY SUMMARY

## 16 FEBRUARY 1981

### MEETING AT

## STATE SECRETARIAT FOR AGRICULTURE AND LIVESTOCK (SEAG) ARGENTINA MINISTRY OF ECONOMY,

<ul> <li>CHIEF, AGRICULTURAL ESTIMATES</li> <li>COORDINATOR, SOIL SURVEY PROGRAM, NATIONAL INSTITUT</li> <li>CROP-LIVESTOCK TECHNOLOGY (INTA), CASTELAR</li> <li>INTA, BALCARSE</li> <li>INTA</li> </ul>	EDUARDO ANCHUBIDART CARLOS O. SCGPPA NESTOR A. DARWICH CARLOS M. LIBERATORI
	CARLOS O. SCGPPA
	EDUARDO ANCHUBIDART
- Advisor, Subsecretariat for Economic Agriculture	Ezequiel A. Fonseca
- DEPUTY DIRECTOR, INTERNATIONAL AGRICULTURE SERVICE	JULIA ELENA RIVAROLA

CARLOS U, SCGPPA	- COORDINATOR, SOIL SURVEY PROGRAM, NATIONAL INSTITUTE FOR
	CROP-LIVESTOCK TECHNOLOGY (INTA), CASTELAR
NESTOR A. DARWICH	- INTA, BALCARSE
CARLOS M. LIBERATORI	- INTA
CARLOS A. SENIGAGLIESI	- CROP PRODUCTION, INTA, PERGAMINO
Jorge E. Nisi	- INTA, Marcos Juárez
ADELQUI L. DAMILANO	- COORDINATOR, CORN PROGRAM
Norberto V. Rodriquez	- Mational Statistical Service for Economy and Rural Living
CLAUDIO A. FONDA	- Department of Agricultural Estimates
MIGUEL A. ABRAHAM	- Subsecretary for Natural Resources and Ecology
James Parker	- AGRICULTURAL ATTACHE, USDA(FAS), BUENOS AIRES
Byron Wood	- University of California-Berkeley
ED SHEFFNER	- University of California-Berkeley

- ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN - ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN

BUZZ SELLMAN GENE THOMAS

#### SAMPLE SEGMENTS VISITED IN ARGENTINA



## 20 February 1981

# MEETING AT NATIONAL COMMISSION FOR SPACE INVESTIGATIONS (CNIE, VICENTE LOPEZ)

J.J. Tosso	- National Commission for Space Investigations
JULIA ELENA RIVAROLA	- INTERNATIONAL AGRICULTURE SERVICE, SEAG
Miguel Conde Prat	- COORDINATOR, CROP-LIVESTOCK ESTIMATES, SEAG
EDUARDO ANCHUBIDART	- CHIEF, AGRICULTURAL ESTIMATES
CECILIA ESPOZ	- AGRONOMIST, CNIE (UNDP/FAO REMOTE SENSING PROJECT)
Eugenio E, Portalet	- METEOROLOGIST, CNIE (UNDP/FAO REMOTE SENSING PROJECT)
Buzz Sellman	- Environmental Research Institute of Michigan

23 FEBRUARY 1981

MEETING AT PROCESSING CENTER, CNIE (AV. DORREGO)

LUIS SOCOLOVSKY - CHIEF, PROCESSING CENTER VICTOR D. LARIAS - DATA SERVICES
SEVERINO FERNANDEZ- SOFTWARE DEVELOPMENT
ALEJANDRO ZABALA - ELECTRONIC TECHNICIAN



*"RETIRED" AS OF DECEMBER, 1980.

## 30 FEBRUARY 1981

### MEETING AT

STATE SECRETARIAT FOR AGRICULTURE AND LIVESTOCK (SEAG) ARGENTINA MINISTRY OF ECONOMY,

JULIA ELENA RIVAROLA EDUARDO ANCHUBIDART† EZEQUIEL A. FONSECA ANTONIO T. PARSONS MIGUEL ABRAHAM* CLAUDIO FONDA*

CARLOS SCOPPA*

**LESTOR DARWICH*** 

EUGENIO ERNESTO PORTALET ECILIA ESPOZ* J. Jossot

JAMES PARKER BUZZ SELLMAN DAVE HICKS

DIRECTOR, INTERNATIONAL AGRICULTURE SERVICE

DEPUTY DIRECTOR, INTERNATIONAL AGRICULTURE SERVICE

ADVISOR, SUBSECRETARIAT FOR ECONOMIC AGRICULTURE

CHIEF, AGRICULTURAL ESTIMATES

DEPARTMENT OF AGRICULTURAL ESTIMATES

COORDINATOR, SOIL SURVEY PROGRAM, NATIONAL INSTITUTE FOR Subsecretary for Natural Resources and Ecology

CROP-LIVESTOCK TECHNOLDGY (INTA), CASTELAR

INTA, BALCARSE

NATIONAL COMMISSION FOR SPACE INVESTIGATIONS

AGRONOMIST, CNIE (UNDP/FAO REMOTE SENSING PROJECT)

METEOROLOGIST, CNIE (UNDP/FAO REMOTE SENSING PROJECT) AGRICULTURAL ATTACHE, USDA(FAS), BUENOS AIRES

ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN

ENVIRONMENTAL RESEARCH INSTITUTE OF MICHIGAN

*Co-Director, UNDP/FAO Remote Sensing Project (WHEAT)

* WE HAD CLOSEST CONTACT WITH THESE PEOPLE (FIELD WORK).

#### HDDT LANDSAT DATA AVAILABLE FROM ARGENTINA GROUND STATION FOR PAMPA REGION

PATH/ROW	DATE	CC*	CCT (YES/No)	AGRISTARS	SEGMENT	Numbers
241/85	10/24/80	0	YES			
241/86	10/24/80	1010				
242/82	11/12/80	0 .				
242/83	9/ 1/80	0	YES			
	9/19/80	0	YES			
	11/12/80	0	YES			
242/84	9/ 1/80	0100				
	9/19/80	0				
	10/25/80	0				
	11/12/80	0				
242/85	9/ 1/80	0				
	9/19/80	0				
	10/25/80	0	YES			
	11/12/80	0				
242/86	9/ 1/80	0				
	9/19/80	0				
	10/25/80	0010				
	11/12/80	0				
	12/18/80	0011				
243/81	11/13/80	0				
	9/ 2/80	2100				
243/82	9/ 2/80	0				
243/83	9/ 2/80	0	YES			
243/84	9/ 2/80	0				
	9/20/80	0				
243/85	9/ 2/80	0				
	9/20/80	0				
	10/26/80	0				
243/86	9/ 2/80	1010				•
	9/20/80	0	YES			
	10/26/80	0				*
243/87	9/ 2/80	0023				
	9/20/80	0	YES			
	10/ 8/80	0	YES			
	10/26/80	1010				
			136			

#### HDDT LANDSAT DATA AVAILABLE FROM ARGENTINA GROUND STATION FOR PAMPA REGION (PAGE 2)

PATH/Row	DATE	CC*	CCT (YES/No)	AGRISTARS S	Segment	Numbers
244/81	9/ 3/80 9/21/80 10/ 9/80 11/14/80	0 0 0	YES YES			
244/82	9/ 3/80 9/21/80 10/ 9/80 11/14/80	0 0 1111 0				
244/83	9/ 3/80 9/21/80 10/ 9/80 11/14/80 12/20/80	0 0 0001 0				
244/84	9/ 3/80 9/21/80 10/17/80 11/14/80 12/20/80	0 0 0 0 0001 0				
244/85	9/ 3/80 9/21/80 11/14/80 12/20/80	0 0 0301 0				
245/82	9/ 4/80 9/22/80 11/15/80	0 0 0	YES			
245/83	9/ 4/80 9/22/80 12/21/80	0 0 0	YES			
245/84	9/ 4/80 9/22/80 12/21/80	0 0 0				

^{*}CC - CLOUD COVER LISTED BY QUADRANTS,