Presentation for the Quantum Seminar

José Manuel Rodríguez Caballero

University of Tartu

Spring 2020

Subject

My presentation is about the paper¹:

Bouman, Niek J., and Serge Fehr. "Sampling in a quantum population, and applications." Annual Cryptology Conference. Springer, Berlin, Heidelberg, 2010.

My presentation may differ in some points with respect of the presentation given by the authors.

¹I will not repeat the notation from the paper in this presentation. If someone needs a clarification, either read the paper or ask me during the presentation.

Contributions of the paper

Contribution 1. The authors introduce a framework in for sampling quantum population.

Contribution 2. This framework is used in a new proof of the security of the *quantum key distribution protocol BB84* (entanglement-based version).

Contribution 3. This framework is used in a new proof of the security of the *quantum oblivious-transfer from bit-commitment*.

Presentation of Contribution 1.

The authors introduce a framework in for *sampling quantum* population.

Classical sampling strategy

Let n be a positive integer, \mathcal{A} be a finite alphabet and \mathcal{S} be a finite set of seeds². A classical sampling strategy is a triplet (P_T, P_S, f) , where P_T is a probability distribution over $\mathcal{T} := 2^{[n]}$, P_S is a probability distribution over \mathcal{S} and f is a real-valued function defined on the set

$$\{(t,q,s)\in\mathcal{T} imes\mathcal{A}^* imes\mathcal{S}:\quad |t|=|q|\}$$
 .

²Both "alphabet" and "seeds" are informal labels notions here in order to show the motivation for introducing these sets.

δ -estimation

Let δ be a positive real number. We define

$$B_{t,s}^{\delta}:=\left\{ q\in\mathcal{A}^{n}:\quad\left|\omega\left(q_{\overline{t}}
ight)-f\left(t,q_{t},s
ight)
ight|<\delta
ight\} .$$

δ -estimation random variable

Let T and S be random variables associated to the probability distributions P_T and P_S respectively. Notice that the pair (T,S) is a random variable. Furthermore, the evaluation of $(t,s)\mapsto B_{t,s}^\delta$ at (T,S) determines a random variable, denoted $B_{T,S}^\delta$ and associated to the probability distribution

$$\Pr\left[\mathcal{B}_{\mathcal{T},\mathcal{S}}^{\delta} \in \mathcal{X}\right] := \Pr\left[\left(\mathcal{T},\mathcal{S}\right) \in \left\{\left(t,s\right) \in \mathcal{T} \times \mathcal{S}: \quad \mathcal{B}_{t,s}^{\delta} \in \mathcal{X}\right\}\right]$$

where $X \subset 2^{A^n}$.

Presentation of Contribution 2.

This framework is used in a new proof of the security of the quantum key distribution protocol BB84 (entanglement-based version).

Presentation of Contribution 3.

This framework is used in a new proof of the security of the quantum oblivious-transfer from bit-commitment.

End of my presentation