TOPOLOGICAL 1D LANDSCAPE PROFILE

Nikita Yadav, Rishabh Gupta December 1, 2018

PROJECT DESCRIPTION

AIM: To visualize and analyse high dimensional scientific data using topological 1D landscape profile.

INPUT: Augmented join tree

OUTPUT: 1D landscape profile

REFERENCE PAPER: Patrick Oesterling, Christian Heine, Gunther H. Weber, Gerik Scheuermann, "Visualizing nD point clouds as topological landscape profiles to guide local data analysis", 2013

1D Landscape profile

Fig. Topological landscape profile of the image segmentation dataset.

Source: referenced paper

MOTIVATION

- Common data analysis techniques: parallel coordinate plots (PCP), scatter plots, principal component analysis
 - Suffer from occlusion when size of dataset exceeds that of screen.
 - Projective approaches cannot ensure distance preservation for high dimensional data.

- 1D Landscape profile
 - Easy to understand topological structure and variance.
 - Ensures occlusion-free display of a dataset's structure.
 - Allow further analysis by selecting sub-structure.

WORK COMPLETED

- Input generation
- Landscape profile construction
- Ordering of hills
- Analysis of landscape profile
- Comparison with 2D landscape profile

METHOD FOR GENERATING LANDSCAPE

Fig. Landscape profile construction process

Source: Oesterling et. al., "Visualizing nD point clouds as topological landscape profiles to guide local data analysis"

SAMPLE GRID

CONCLUSION

- Landscape profile illustrates the scalar field information without occlusion. The hills show various iso-contour/surface regions simultaneously which allows analysing whole data at once.
- Landscape profile can only be generated for join/split tree. Join/split tree may not contain the entire information about the data and such data cannot be properly visualised and analysed using 1D landscape profiles.