

Computer Vision – Lecture 11

Deep Learning II

28.05.2019

Bastian Leibe
Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
- Segmentation & Grouping
- Object Recognition & Categorization
 - Sliding Window based Object Detection
- Local Features & Matching
 - Local Features Detection and Description
 - Recognition with Local Features
- Deep Learning
 - Convolutional Neural Networks
- 3D Reconstruction

Topics of This Lecture

- Recap: Convolutional Neural Networks
 - Convolutional Layers
 - Pooling Layers
 - Nonlinearities
- Background: Deep Learning
 - Recap from ML lecture
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet

Recap: CNN Structure

- Feed-forward feature extraction
 - 1. Convolve input with learned filters
 - 2. Non-linearity
 - 3. Spatial pooling
 - 4. (Normalization)
- Supervised training of convolutional filters by back-propagating classification error

Recap: Intuition of CNNs

Slide adapted from Marc'Aurelio Ranzato

Convolutional net

- Share the same parameters across different locations
- Convolutions with learned kernels

Learn *multiple* filters

- E.g. 1000×1000 image100 filters10×10 filter size
- ⇒ 10k parameters
- Result: Response map
 - > size: 1000×1000×100
 - Only memory, not params!

5

Recap: Convolution Layers

Naming convention:

- All Neural Net activations arranged in 3 dimensions
 - Multiple neurons all looking at the same input region, stacked in depth
 - Form a single $[1 \times 1 \times depth]$ depth column in output volume.

Recap: Activation Maps

Activation maps

Each activation map is a depth slice through the output volume.

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

Example: 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5 \times 5$ output

What about stride 2?

Example:

 7×7 input assume 3×3 connectivity stride 1 $\Rightarrow 5\times5$ output

What about stride 2?

Example:

 7×7 input assume 3×3 connectivity stride 1

 \Rightarrow 5×5 output

What about stride 2?

 \Rightarrow 3×3 output

0	0	0	0	0		
0						
0						
0						
0						

Example:

 7×7 input assume 3×3 connectivity stride 1

 \Rightarrow 5×5 output

What about stride 2?

 \Rightarrow 3×3 output

- Replicate this column of hidden neurons across space, with some stride.
- In practice, common to zero-pad the border.
 - Preserves the size of the input spatially.

Effect of Multiple Convolution Layers

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Commonly Used Nonlinearities

Sigmoid

$$g(a) = \sigma(a)$$

$$= \frac{1}{1 + \exp\{-a\}}$$

Hyperbolic tangent

$$g(a) = tanh(a)$$
$$= 2\sigma(2a) - 1$$

Rectified linear unit (ReLU)

$$g(a) = \max\{0, a\}$$

Preferred option for deep networks

Convolutional Networks: Intuition

- Let's assume the filter is an eye detector
 - How can we make the detection robust to the exact location of the eye?

Convolutional Networks: Intuition

Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8		
3	4		

• Effect:

- Make the representation smaller without losing too much information
 - Achieve robustness to translations

Max Pooling

Single depth slice

max pool with 2x2 filters and stride 2

6	8
3	4

Note

Pooling happens independently across each slice, preserving the number of slices.

Compare: SIFT Descriptor

Compare: Spatial Pyramid Matching

Topics of This Lecture

- Recap: Convolutional Neural Networks
 - Convolutional Layers
 - Pooling Layers
 - Nonlinearities
- Background: Deep Learning
 - Recap from ML lecture
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet

Recap: Generalized Linear Discriminants

Linear classifiers with fixed feature transformation

Output layer

Weights

Feature layer

Mapping (fixed)

Input layer

- Outputs
 - Linear outputs

$$y_k(\mathbf{x}) = \sum_{i=0}^d W_{ki} \phi(x_i)$$

Logistic outputs

$$y_k(\mathbf{x}) = \sigma \left(\sum_{i=0}^d W_{ki} \phi(\mathbf{x}_i) \right)$$

Recap: Multi-Layer Perceptrons

Also learning the feature transformation

Output layer

Hidden layer

Mapping (learned!)

Input layer

Output

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

Two Important Remarks

1. Why are hierarchical multi-layered models attractive?

An MLP with 1 hidden layer can implement *any* function (universal approximator)

However, if the function is deep, a very large hidden layer may be required.

Two Important Remarks

2. Nonlinearities are essential for deep models

$$y_k(\mathbf{x}) = g^{(2)} \left(\sum_{i=0}^h W_{ki}^{(2)} g^{(1)} \left(\sum_{j=0}^d W_{ij}^{(1)} x_j \right) \right)$$

If we leave out the nonlinearity $g^{(1)}(\cdot)$, the two layers collapse into a single linear function

$$\widetilde{W} = W^{(1)}W^{(2)}$$

⇒ The nonlinearities make multi-layer representation more powerful!

Recap: Supervised Learning

- Given
 - > Training data set $\mathbf{X} = (\mathbf{x}_1, ..., \mathbf{x}_N)^T$ with target labels $\mathbf{t} = (t_1, ..., t_N)^T$.
- Solve an optimization problem
 - Set up an error function

$$E(\mathbf{W}) = \sum_{n} L(t_n, y(\mathbf{x}_n; \mathbf{W})) + \lambda \Omega(\mathbf{W})$$

with a loss $L(\cdot)$ and a regularizer $\Omega(\cdot)$.

> E.g.,
$$L(t,y(\mathbf{x};\mathbf{W})) = \sum_n \left(y(\mathbf{x}_n;\mathbf{W}) - t_n\right)^2$$
 L₂ loss

$$\Omega(\mathbf{W}) = ||\mathbf{W}||_F^2$$

L₂ regularizer ("weight decay")

 \Rightarrow Update each weight $W_{ij}^{(k)}$ in the direction of the gradient $\frac{\partial E(\mathbf{W})}{\partial W_{ij}^{(k)}}$

Recap: Loss Functions

We can now also apply other loss functions

Least-squares regression
$$L(t,y(\mathbf{x})) = \sum_n \left(y(\mathbf{x}_n) - t_n\right)^2$$

L1 loss:

$$L(t, y(\mathbf{x})) = \sum_{n} |y(\mathbf{x}_n) - t_n|$$

Cross-entropy loss

$$L(t, y(\mathbf{x})) = -\sum_{n} \{t_n \ln y_n + (1 - t_n) \ln(1 - y_n)\}$$

Hinge loss

$$L(t, y(\mathbf{x})) = \sum_{n} [1 - t_n y(\mathbf{x}_n)]_{+}$$

Softmax loss

 $L(t, y(\mathbf{x})) = -\sum_{n} \sum_{k} \left\{ \mathbb{I}\left(t_{n} = k\right) \ln \frac{\exp(y_{k}(\mathbf{x}))}{\sum_{j} \exp(y_{j}(\mathbf{x}))} \right\}$

B. Leibe

$$\Rightarrow$$
 Logistic regression $(1 - u)$

⇒ Median regression

(1 gn)

⇒ Multi-class probabilistic classification

$$\Rightarrow$$
 SVM classification

Recap: Obtaining the Gradients

Approach: Incremental Analytical Differentiation

- Idea: Compute the gradients layer by layer.
- Each layer below builds upon the results of the layer above.
- ⇒ The gradient is propagated backwards through the layers.
- ⇒ Backpropagation algorithm

Recap: Backpropagation Algorithm

- More general formulation (used in deep learning packages)
 - Convert the network into a computational graph.
 - Perform reverse-mode-differentiation this graph
 - Each new layer/module just needs to specify how it affects the
 - forward pass

$$y = \text{module.fprop}(x)$$

backward pass

$$\frac{\partial E}{\partial \mathbf{x}} = \text{module.bprop}(\frac{\partial E}{\partial \mathbf{y}})$$

⇒ Very general framework, *any differentiable layer* can be used.

Recap: Supervised Learning

- Two main steps
 - 1. Computing the gradients for each weight
 - Adjusting the weights in the direction of the gradient
- Gradient Descent: Basic update equation

$$w_{kj}^{(\tau+1)} = w_{kj}^{(\tau)} - \eta \left. \frac{\partial E(\mathbf{w})}{\partial w_{kj}} \right|_{\mathbf{w}^{(\tau)}}$$

- Important considerations
 - ➤ On what data do we want to apply this? ⇒ Minibatches
 - > How should we choose the step size η (the learning rate)?
 - More advanced optimizers (Momentum, RMSProp, Adam, ...)

RWTHAACHEN UNIVERSITY

Practical Considerations

- Vanishing gradients problem
 - In multilayer nets, gradients need to be propagated through many layers
 - The magnitudes of the gradients are often very different for the different layers, especially if the initial weights are small.
 - ⇒ Gradients can get very small in the early layers of deep nets.

- When designing deep networks, we need to make sure gradients can be propagated throughout the network
 - By restricting the network depth (shallow networks are easier)
 - By very careful implementation (numerics matter!)
 - By choosing suitable nonlinearities (e.g., ReLU)
 - By performing proper initiatialization (Glorot, He)

Topics of This Lecture

- Recap: Convolutional Neural Networks
 - Convolutional Layers
 - Pooling Layers
 - Nonlinearities
- Background: Deep Learning
 - Recap from ML lecture
- CNN Architectures
 - LeNet
 - AlexNet
 - VGGNet
 - GoogLeNet
 - ResNet

CNN Architectures: LeNet (1998)

- Early convolutional architecture
 - 2 Convolutional layers, 2 pooling layers
 - Fully-connected NN layers for classification
 - Successfully used for handwritten digit recognition (MNIST)

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, <u>Gradient-based learning applied to document recognition</u>, Proceedings of the IEEE 86(11): 2278–2324, 1998.

ImageNet Challenge 2012

ImageNet

- ~14M labeled internet images
- 20k classes
- Human labels via Amazon Mechanical Turk

Challenge (ILSVRC)

- 1.2 million training images
- > 1000 classes
- Goal: Predict ground-truth class within top-5 responses
- Currently one of the top benchmarks in Computer Vision

[Deng et al., CVPR'09]

CNN Architectures: AlexNet (2012)

- Similar framework as LeNet, but
 - Bigger model (7 hidden layers, 650k units, 60M parameters)
 - More data (10⁶ images instead of 10³)
 - GPU implementation
 - Better regularization and up-to-date tricks for training (Dropout)

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012.

ILSVRC 2012 Results

- AlexNet almost halved the error rate
 - > 16.4% error (top-5) vs. 26.2% for the next best approach
 - ⇒ A revolution in Computer Vision
 - Acquired by Google in Jan '13, deployed in Google+ in May '13

AlexNet Results

RWTHAACHEN UNIVERSITY

AlexNet Results

Test image

Retrieved images

CNN Architectures: VGGNet (2014/15)

K. Simonyan, A. Zisserman, <u>Very Deep Convolutional Networks for Large-Scale Image Recognition</u>, ICLR 2015

RWTHAACHEN UNIVERSITY

CNN Architectures: VGGNet (2014/15)

Main ideas

- Deeper network
- Stacked convolutional layers with smaller filters (+ nonlinearity)
- Detailed evaluation of all components

Results

Improved ILSVRC top-5 error rate to 6.7%.

ConvNet Configuration							
A	A-LRN	В	С	D	Е		
11 weight	11 weight	13 weight	16 weight	16 weight	19 weight		
layers	layers	layers	layers	layers	layers		
	input (224 × 224 RGB image)						
conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
	LRN	conv3-64	conv3-64	conv3-64	conv3-64		
	maxpool						
conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
		conv3-128	conv3-128	conv3-128	conv3-128		
maxpool							
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
			conv1-256	conv3-256	conv3-256		
					conv3-256		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
		max	pool				
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
			conv1-512	conv3-512	conv3-512		
					conv3-512		
	maxpool						
20.000				iviairii	/ used		
FC-4096							
FC-1000							
soft-max							

Comparison: AlexNet vs. VGGNet

Receptive fields in the first layer

AlexNet: 11×11, stride 4

Zeiler & Fergus: 7×7, stride 2

VGGNet: 3×3, stride 1

Why that?

- If you stack three 3×3 on top of another 3×3 layer, you effectively get a 5×5 receptive field.
- \rightarrow With three 3×3 layers, the receptive field is already 7×7.
- ▶ But much fewer parameters: $3.3^2 = 27$ instead of $7^2 = 49$.
- In addition, non-linearities in-between 3×3 layers for additional discriminativity.

CNN Architectures: GoogLeNet (2014)

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Main ideas

- "Inception" module as modular component
- Learns filters at several scales within each module

C. Szegedy, W. Liu, Y. Jia, et al, <u>Going Deeper with Convolutions</u>, arXiv:1409.4842, 2014.

GoogLeNet Visualization

Results on ILSVRC

Method	top 1 vol arror (%)	top-5 val. error (%)	top 5 tost error (%)
	top-1 val. error (%)	top-3 val. error (%)	top-3 test error (%)
VGG (2 nets, multi-crop & dense eval.)	23.7	6.8	6.8
VGG (1 net, multi-crop & dense eval.)	24.4	7.1	7.0
VGG (ILSVRC submission, 7 nets, dense eval.)	24.7	7.5	7.3
GoogLeNet (Szegedy et al., 2014) (1 net)	-	7.9	
GoogLeNet (Szegedy et al., 2014) (7 nets)	-	6.7	
MSRA (He et al., 2014) (11 nets)	-	-	8.1
MSRA (He et al., 2014) (1 net)	27.9	9.1	9.1
Clarifai (Russakovsky et al., 2014) (multiple nets)	-	-	11.7
Clarifai (Russakovsky et al., 2014) (1 net)	-	-	12.5
Zeiler & Fergus (Zeiler & Fergus, 2013) (6 nets)	36.0	14.7	14.8
Zeiler & Fergus (Zeiler & Fergus, 2013) (1 net)	37.5	16.0	16.1
OverFeat (Sermanet et al., 2014) (7 nets)	34.0	13.2	13.6
OverFeat (Sermanet et al., 2014) (1 net)	35.7	14.2	-
Krizhevsky et al. (Krizhevsky et al., 2012) (5 nets)	38.1	16.4	16.4
Krizhevsky et al. (Krizhevsky et al., 2012) (1 net)	40.7	18.2	-

- VGGNet and GoogLeNet perform at similar level
 - Comparison: human performance ~5% [Karpathy]

http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/

RWTHAACHEN UNIVERSITY

Newest Development: Residual Networks

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

GoogleNet, 22 layers (ILSVRC 2014)

Newest Development: Residual Networks

AlexNet, 8 layers (ILSVRC 2012)

VGG, 19 layers (ILSVRC 2014)

ResNet, 152 layers (ILSVRC 2015)

- Core component
 - Skip connections bypassing each layer
 - Better propagation of gradients to the deeper layers

B. Leibe

ImageNet Performance

ImageNet Classification top-5 error (%)

PASCAL VOC Object Detection Performance

PASCAL VOC 2007 Object Detection mAP (%)

References and Further Reading

 More information on Deep Learning and CNNs can be found in Chapters 6 and 9 of the Goodfellow & Bengio book

> I. Goodfellow, Y. Bengio, A. Courville Deep Learning MIT Press, 2016 http://www.deeplearningbook.org/

