Relatório Técnico: Simulação de Ataques e Estratégias de Defesa em Arquiteturas IoT Multicamadas

Curso: Superior de Tecnologia em Análise e Desenvolvimento de Sistemas

Disciplina: Tópicos Avançados em WEB I

Discente: Gabriel Lima, Rariel

Docente: Felipe Silva

Data: 24 de Agosto de 2025

Sumário

1. <u>Descrição do Cenário</u>

- 2. <u>Diagrama e Descrição da Arquitetura</u>
- 3. Simulação de Ameaças e Evidências
 - 1. Ataque de Interceptação de Dados (Envio em Texto Plano)
 - 2. Ataque de Acesso Não Autorizado (Token JWT Inválido)
- 4. Estratégias de Defesa Implementadas
 - 1. Criptografia de Ponta a Ponta com AES-GCM
 - 2. Autenticação e Autorização via JWT (JSON Web Tokens)
 - 3. Monitoramento e Alertas de Segurança em Tempo Real
- 5. Análise Crítica
 - 1. Análise de Segurança
 - 2. Análise de Interoperabilidade
 - 3. Análise de Privacidade e Conformidade com a LGPD
- 6. Conclusão

1. Descrição do Cenário

Este projeto simula um ambiente de "Casa Conectada", um cenário de IoT (Internet das Coisas) onde diversos dispositivos monitoram as condições do ambiente para prover segurança e conforto ao morador. O objetivo é demonstrar o impacto de ciberataques comuns nesse tipo de arquitetura e a eficácia de contramedidas de segurança.

Para representar este cenário, foram implementados três tipos de sensores virtuais:

- Sensor de Temperatura: Monitora a temperatura ambiente, reportando dados em graus Celsius (°C). Utiliza o protocolo MQTT para comunicação, ideal para mensagens leves e eficientes.
- Sensor de Presença: Detecta a presença de pessoas em um cômodo, enviando valores booleanos (0 ou 1). Também utiliza o protocolo MQTT.
- Sensor de Gás: Mede a concentração de gás (ex: GLP) no ar, reportando em partes por milhão (ppm). Este sensor utiliza o protocolo CoAP (Constrained Application Protocol), adequado para dispositivos com recursos limitados e comunicação via UDP.

A escolha de múltiplos sensores e protocolos distintos (MQTT e CoAP) atende aos requisitos da atividade, permitindo a análise de diferentes vetores de comunicação e vulnerabilidades associadas.

2. Diagrama e Descrição da Arquitetura

A arquitetura do sistema foi projetada seguindo um modelo multicamadas, dividindo as responsabilidades para aumentar a modularidade, escalabilidade e segurança.

A arquitetura é composta pelas seguintes camadas:

1. Camada de Dispositivos/Borda (Edge Layer):

- Componentes: Sensores simulados (Temperatura, Presença, Gás) e o sensor malicioso.
- Responsabilidade: Coletar dados do ambiente. Os sensores legítimos são responsáveis por criptografar os dados na origem antes de enviá-los, garantindo a segurança desde a borda. A comunicação é feita via protocolos MQTT e CoAP.

2. Camada de Comunicação e Processamento (Fog/Cloud Layer):

- Componentes: Broker MQTT (Mosquitto), Backend (FastAPI), Servidor CoAP.
- o Responsabilidade: Esta camada atua como o cérebro do sistema.
 - O Broker MQTT recebe as mensagens dos sensores de temperatura e presença.
 - O Backend em FastAPI se inscreve nos tópicos do broker para receber os dados, descriptografa as mensagens, processa-as, e as transmite via WebSockets para a camada de visualização. Ele também hospeda o servidor CoAP para receber dados do sensor de gás e um endpoint para gerar tokens JWT.

3. Camada de Aplicação/Visualização (Cloud Layer):

o Componentes: Frontend (HTML, CSS, JavaScript) servido por um Nginx.

 Responsabilidade: Apresentar os dados aos usuários. O frontend estabelece uma conexão segura via WebSocket com o backend (autenticada por JWT), recebendo e exibindo os dados dos sensores e os alertas de segurança em gráficos e listas em tempo real.

Toda a arquitetura é orquestrada utilizando Docker e Docker Compose, garantindo que cada componente (broker, backend, frontend) opere em um contêiner isolado, facilitando a implantação e a interoperabilidade.

3. Simulação de Ameaças e Evidências

Para avaliar a robustez da arquitetura, foram simulados dois tipos de ataque, conforme solicitado na atividade.

3.1. Ataque de Interceptação de Dados (Envio em Texto Plano)

Descrição do Ataque: Um dispositivo não autorizado
(sensor_temperatura_malicioso_mqtt.py) foi introduzido na rede. Este sensor se
conecta ao mesmo broker MQTT e publica mensagens no mesmo tópico que o
sensor de temperatura legítimo. No entanto, o payload é enviado como um JSON em
texto plano, sem qualquer criptografia. Um atacante que consiga acesso à rede
poderia facilmente ler esses dados, violando a confidencialidade das informações.

Evidências:

- 1. **Log do Backend:** O log do backend mostra a detecção da ameaça. Ao receber uma mensagem que não pôde ser descriptografada, o sistema a verifica. Se for um JSON válido, ele a classifica como um ataque de "Dados em Texto Plano", gera um alerta e a descarta.
- 2. **Alerta no Frontend:** O alerta gerado pelo backend é enviado em tempo real para a interface do usuário, notificando sobre a atividade maliciosa.

3.2. Ataque de Acesso Não Autorizado (Token JWT Inválido)

 Descrição do Ataque: Este ataque simula uma tentativa de um cliente não autorizado de se conectar à stream de dados em tempo real. O acesso ao WebSocket do backend é protegido e requer um token JWT válido. Para simular o ataque, o código do cliente no script.js foi modificado para deliberadamente corromper o token antes de tentar a conexão.

• Evidências:

1. **Log do Backend:** O backend valida cada token recebido. Ao receber o token inválido, ele recusa a conexão e registra o evento, informando que a tentativa falhou devido a um "Token inválido".

2. **Console do Navegador:** O navegador do cliente que tentou se conectar com o token inválido exibe um erro no console, indicando que a conexão WebSocket falhou. Isso demonstra que a barreira de proteção funcionou como esperado.

4. Estratégias de Defesa Implementadas

Para mitigar os ataques simulados e proteger o sistema, foram implementados três mecanismos de defesa principais.

4.1. Criptografia de Ponta a Ponta com AES-GCM

Para garantir a

confidencialidade e integridade dos dados em trânsito, todas as mensagens enviadas pelos sensores legítimos são criptografadas na origem usando o algoritmo AES-GCM (Advanced Encryption Standard in Galois/Counter Mode). O backend é o único com a chave secreta para descriptografar essas mensagens. Isso impede que um atacante que intercepte o tráfego de rede (ataque

Man-in-the-Middle) consiga ler ou alterar os dados sem ser detectado.

4.2. Autenticação e Autorização via JWT (JSON Web Tokens)

Para proteger a camada de visualização, foi implementado um sistema de autenticação baseado em tokens.

1. O cliente frontend primeiro solicita um token a um endpoint

/token no backend.

- 2. O backend gera um JWT assinado com uma chave secreta e com tempo de expiração.
- 3. O cliente deve incluir este token ao tentar estabelecer uma conexão WebSocket. O backend valida a assinatura e a expiração do token antes de aceitar a conexão. Isso garante que apenas clientes autenticados possam receber os dados dos sensores, prevenindo o acesso não autorizado.

4.3. Monitoramento e Alertas de Segurança em Tempo Real

O sistema possui um mecanismo de monitoramento ativo. O backend foi programado para identificar anomalias, como o recebimento de mensagens não criptografadas no tópico MQTT. Ao detectar tal evento, ele:

- 1. Registra o incidente em seus logs.
- 2. Gera uma mensagem de alerta estruturada.
- 3. Transmite esse alerta via WebSocket para todos os clientes conectados.

Isso permite uma resposta rápida a possíveis ameaças, transformando a interface de visualização de dados também em um painel de monitoramento de segurança.

5. Análise Crítica

5.1. Análise de Segurança

A simulação demonstrou que, sem as devidas contramedidas, uma arquitetura IoT é altamente vulnerável. O ataque de envio de dados em texto plano expôs informações sensíveis, enquanto o ataque de acesso não autorizado poderia levar ao vazamento de todo o fluxo de dados.

- Antes das defesas: O sistema era frágil. Qualquer dispositivo na rede poderia publicar dados falsos ou ler informações, e qualquer cliente web poderia se conectar para visualizar os dados.
- Após as defesas: A implementação de criptografia e autenticação com JWT elevou drasticamente o nível de segurança. A criptografia garante que os dados sejam ininteligíveis para quem os intercepta. A autenticação com JWT assegura que apenas usuários autorizados tenham acesso à visualização. O sistema de alertas adiciona uma camada de defesa proativa, permitindo a identificação de atividades suspeitas.

5.2. Análise de Interoperabilidade

A escolha de tecnologias e padrões abertos foi fundamental para a interoperabilidade do sistema.

- Protocolos Padrão: O uso de MQTT e CoAP permite que dispositivos de diferentes fabricantes se comuniquem com o backend sem a necessidade de adaptações complexas.
- Conteinerização: O uso de Docker e Docker Compose desacopla os serviços. O broker MQTT, o backend e o frontend rodam em contêineres independentes, podendo ser atualizados, substituídos ou escalados individualmente, sem impactar o resto do sistema. Essa abordagem modular é um pilar para sistemas interoperáveis e de fácil manutenção.

5.3. Análise de Privacidade e Conformidade com a LGPD

Os dados coletados por sensores em uma casa conectada podem ser extremamente pessoais, revelando hábitos e rotinas dos moradores. A Lei Geral de Proteção de Dados (LGPD) exige que dados pessoais sejam tratados com segurança e para finalidades específicas.

- Impacto da Criptografia: A criptografia de ponta a ponta é uma medida técnica essencial para a conformidade com a LGPD, pois protege os dados contra acessos não autorizados, minimizando o risco de vazamentos.
- Boas Práticas: Além da criptografia, outras práticas alinhadas à LGPD poderiam ser implementadas, como a anonimização de dados quando possível, políticas claras de retenção de dados (descartando informações antigas que não são mais necessárias) e a implementação de consentimento explícito do usuário para a coleta de cada tipo de dado.

6. Conclusão

Este trabalho demonstrou com sucesso a implementação de uma arquitetura IoT multicamadas para o cenário de uma casa conectada, a simulação de ataques cibernéticos relevantes e a aplicação de estratégias de defesa eficazes. A utilização de criptografia AES-GCM e autenticação via JWT provou ser robusta na proteção da confidencialidade e do controle de acesso. O projeto ressalta a importância crítica de se considerar a segurança desde a concepção (*Security by Design*) em sistemas IoT, garantindo não apenas a funcionalidade, mas também a privacidade e a confiança do usuário final.