Assignment Levy processes

Abstract

We elaborate some results from chapter 25 of Sato's *Lévy processes and infinitely divisible distributions* Sato 2013. Additions are denoted in blue, while deletions are signified in red.

Proof of Existence of Moments from Smoothness of Characteristic Function

Definition 0.0.1 (Δ_h^k)

We define $\forall h > 0 : \Delta_h$ (h-central difference) of $f : \mathbb{R} \to \mathbb{R}$ as follows:

$$\Delta_h f(t) = f(t+h) - f(t-h), \tag{1}$$

and $\forall k \in \mathbb{N} : \Delta_h^k$ is defined as applying Δ_h applying k times and k = 0 as the identity. Note that Δ_h^k is a linear operator. We will always take differences in respect to the t variable.

Lemma 0.0.2 $(\Delta_h^k e^{at})$

$$\forall k \in \mathbb{N} : \Delta_h^k e^{at} = e^{at} \left(e^{ah} - e^{-ah} \right)^k. \tag{2}$$

Proof. This follows simply by induction. k = 0 is trivial. Base case:

$$\Delta_h e^{at} = \left(e^{a(t+h)} - e^{a(t-h)} \right) \tag{3}$$

$$=e^{at}\left(e^{ah}-e^{-ah}\right). (4)$$

Induction hypothesis:

$$\Delta_h^{k-1}e^{at} = e^{at} \left(e^{ah} - e^{-ah}\right)^{k-1}.$$
 (5)

Induction step:

$$\Delta_h^k e^{at} = \Delta_h \Delta_h^{k-1}(e^{at}) \tag{6}$$

$$= \Delta_h \left(e^{at} \left(e^{ah} - e^{-ah} \right)^{k-1} \right) \tag{7}$$

$$= \Delta_h \left(e^{at} \right) \left(e^{ah} - e^{-ah} \right)^{k-1} \tag{8}$$

$$=e^{at}\left(e^{ah}-e^{-ah}\right)\left(e^{ah}-e^{-ah}\right)^{k-1}\tag{9}$$

$$=e^{at}\left(e^{ah}-e^{-ah}\right)^k. (10)$$

Theorem 0.0.3 (central finite difference formula)

 $\forall k \in \mathbb{N} \ \forall \ k$ -continuously differentiable f's at 0:

$$f^{(k)}(0) = \lim_{h \to 0} \frac{\Delta_h^k f(t)|_{t=0}}{(2h)^k}.$$
 (11)

Proof. Follows by the mean value theorem.

$$\lim_{h \to 0} \frac{\Delta_h^k f(t)|_{t=0}}{(2h)^k} \tag{12}$$

$$= \lim_{h \to 0} \frac{\Delta_h \Delta_h^{k-1} f(t)|_{t=0}}{(2h)^k}$$
 (13)

$$= \lim_{h \to 0} \frac{\Delta_h^{k-1} f(t)(|_{t=h} - |_{t=-h})}{(2h)^k}$$
 (14)

$$= \lim_{h \to 0} \frac{2h(\Delta_h^{k-1} f(t))'|_{t=z_h^1}}{(2h)^k}, z_h^1 \in [-h, h]$$
 (15)

$$= \lim_{h \to 0} \frac{\Delta_h^{k-1} f'(t)|_{t=z_h^1}}{(2h)^{k-1}}, z_h^1 \in [-h, h]$$
(16)

$$= \lim_{h \to 0} \frac{\Delta_h^{k-2} f^{(2)}(t)|_{t=z_h^2}}{(2h)^{k-2}}, z_h^2 \in [z_h^1 - h, z_h^1 + h] \subset [-2h, 2h]$$
(17)

$$\dots$$
 (18)

$$= \lim_{h \to 0} f^{(k)}(t)|_{t=z_h^k}, z_h^k \in [-kh, kh]$$
(19)

$$= \lim_{h \to 0} f^{(k)}(z_h^k) = f^{(k)}(0). \tag{20}$$

Last line follows because f^k is continuous at 0.

Lemma 0.0.4

 $\forall k \in \mathbb{N} : \phi_X(t) \text{ is } 2k\text{-time continuous differentiable} \Rightarrow E[X^{2k}] < \infty$

Proof. Use the central finite difference formula and previous lemma:

$$|\phi_X^{(2k)}(0)| = \left| \lim_{h \to 0} \frac{\Delta_h^{2k}|_{t=0} \phi_X(t)}{(2h)^{2k}} \right|$$
 (21)

$$= \left| \lim_{h \to 0} \frac{\Delta_h^{2k}|_{t=0} E\left[e^{itX}\right]}{(2h)^{2k}} \right| \tag{22}$$

$$= \left| \lim_{h \to 0} \frac{E\left[\Delta_h^{2k}|_{t=0} e^{itX}\right]}{(2h)^{2k}} \right| \tag{23}$$

$$= \left| \lim_{h \to 0} \frac{E\left[e^{itX} |_{t=0} (e^{ihX} - e^{-ihX})^{2k} \right]}{(2h)^{2k}} \right|$$
 (24)

$$= \left| \lim_{h \to 0} \frac{E\left[(e^{ihX} - e^{-ihX})^{2k} \right]}{(2h)^{2k}} \right| \tag{25}$$

$$= \left| \lim_{h \to 0} \frac{1}{i^{2k}} E\left[\frac{(e^{ihX} - e^{-ihX})^{2k}}{(2h)^{2k}} \right] \right| \tag{26}$$

$$= \lim_{h \to 0} E\left[\frac{\sin(Xh)^{2k}}{h^{2k}}\right] \tag{27}$$

$$= \lim_{h \to 0} E \left[X^{2k} \frac{\sin(Xh)^{2k}}{X^{2k} h^{2k}} \right]$$
 (28)

$$= \lim_{h \to 0} E\left[X^{2k}\operatorname{sinc}(Xh)^{2k}\right] \tag{29}$$

$$\geq E\left[X^{2k}\right] \tag{30}$$

Where last line follows by Fatou's lemma.

25. Moments

We define the g-moment of a random variable and discuss finiteness of the g-moment of X_t for a Lévy process $\{X_t\}$.

DEFINITION 25.1. Let g(x) be a nonnegative measurable function on \mathbb{R}^d . We call $\int g(x)\mu(\mathrm{d}x)$ the g-moment of a measure μ on \mathbb{R}^d . We call E[g(X)] the g-moment of a random variable X on \mathbb{R}^d .

DEFINITION 25.2. A function g(x) on \mathbb{R}^d is called submultiplicative if it is nonnegative and there is a constant a > 0 such that

$$g(x+y) \le ag(x)g(y) \text{ for } x, y \in \mathbb{R}^d$$
 (25.1)

A function bounded on every compact set is called locally bounded.

LEMMA 25.i1 Let q(x) be a submultiplicative with constant a then:

$$\forall (x_i)_i \subset \mathbb{R}^d : g\left(\sum_{i=1}^n x_i\right) \le a^{n-1} \prod_{i=1}^n g(x_i).$$

Proof. This follows by induction on n.

Base case: n=2 is true by submultiplicativity.

Induction hypothesis: assume $2 \le n \le k$.

Induction step: n = k + 1:

$$\begin{aligned} \forall (x_i)_i \subset \mathbb{R}^d: \\ g\left(\sum_{i=1}^{k+1} x_i\right) &= g\left(\sum_{i=1}^k x_i + x_{k+1}\right) \\ &\leq ag\left(\sum_{i=1}^k x_i\right) g(x_{k+1}) \text{ by submultiplicativity} \\ &\leq aa^{k-1} \prod_{i=1}^k g\left(x_i\right) g(x_{k+1}) \text{ by induction hypothesis} \\ &\leq a^k \prod_{i=1}^{k+1} g\left(x_i\right). \end{aligned}$$

THEOREM 25.3 (g-Moment). Let g be a submultiplicative, locally bounded, measurable function on \mathbb{R}^d . Then, finiteness of the g-moment is not a time dependent distributional property in the class of Lévy processes. Let $\{X_t\}$ be a Lévy process on \mathbb{R}^d with

Lévy measure ν . Then, X_t has finite g-moment for every t > 0 if and only if $[\nu]_{\{|x|>1\}}$ has finite g-moment.

The following facts indicate the wide applicability of the theorem.

PROPOSITION 25.4.

- (i) The product of two submultiplicative functions is submultiplicative.
- (ii) If g(x) is submultiplicative on \mathbb{R}^d , then so is $g(cx+\gamma)^{\alpha}$ with $c \in \mathbb{R}$, $\gamma \in \mathbb{R}^d$, and $\alpha > 0$.
- (iii) Let $0 < \beta \le 1$. Then the following functions are submultiplicative:

$$|x| \vee 1, |x_j| \vee 1, x_j \vee 1, \exp\left(|x|^{\beta}\right), \exp\left(|x_j|^{\beta}\right)$$

$$\exp\left((x_j \vee 0)^{\beta}\right), \log(|x| \vee e), \log(|x_j| \vee e), \log(x_j \vee e)$$

$$\log\log\left(|x| \vee e^e\right), \log\log\left(|x_j| \vee e^e\right), \log\log\left(x_j \vee e^e\right)$$

Here x_j is the j th component of x.

Proof. (i) Immediate from the definition.

Let $g, h : \mathbb{R}^d \to \mathbb{R}$ be submultiplicative functions then:

$$\forall x, y \in \mathbb{R}^d : g(x+y)h(x+y) \le a_1g(x)g(y)a_2h(x)h(y) \le a_1a_2g(x)h(x)g(y)h(y).$$

So $gh: \mathbb{R}^d \to \mathbb{R}$ is submultiplicative.

(ii) Let $g_1(x) = g(cx), g_2(x) = g(x+\gamma), \text{ and } g_3(x) = g(x)^{\alpha}$. Then it follows from (25.1) that $g_1(x+y) \leq ag_1(x)g_1(y), g_2(x+y) \leq a^2g_1(x)g_2(y), \text{ and } g_3(x+y) \leq a^{\alpha}g_3(x)g_3(y).$

$$\forall x, y \in \mathbb{R}^d: g_1(x+y) = g(c(x+y)) = g(cx+cy) \le ag(cx)g(cy) = ag_1(x)g_1(y) g_2(x+y) = g(x+y+\gamma) = g(x+\gamma+y+\gamma-\gamma) \le a^2g(-\gamma)g(x+\gamma)g(y+\gamma) \le a^2g(-\gamma)g_2(x)g_2(y) g_3(x+y) = g(x+y)^{\alpha} \le (ag(x)g(y))^{\alpha} = a^{\alpha}g(x)^{\alpha}g(y)^{\alpha} = a^{\alpha}g_3(x)g_3(y).$$

(iii) Let h(u) be a positive increasing function on \mathbb{R} such that, for some $b \geq 0$, h(u) is constant on $(-\infty, b]$ and $\log h(u)$ is concave on $[b, \infty)$. Then h(u) is submultiplicative on \mathbb{R} . In fact, for $u, v \geq b \geq 0$, by concaveness the function $f(u) = \log h(u)$ satisfies

$$\frac{f(u+b) - f(u)}{b} \le \frac{f(2b) - f(b)}{b} \Leftrightarrow f(u+b) - f(u) \le f(2b) - f(b)$$

$$\frac{f(u+v) - f(v)}{u} \le \frac{f(u+b) - f(b)}{u} \Leftrightarrow f(u+v) - f(v) \le f(u+b) - f(b)$$

the first line is for $b \neq 0, b = 0$ is trivial and hence

$$f(u+v) \le f(u+b) - f(b) + f(v) \le f(2b) - 2f(b) + f(u) + f(v) \Leftrightarrow h(u+v) \le \frac{h(2b)}{h(b)^2} h(u)h(v)$$

which shows

$$h(u+v) \le \text{const } h(u)h(v)$$
 (25.2)

It follows (we miss the cases for $u \ge b \ge v, b \ge u, v$) that (25.2) holds for all $u, v \in \mathbb{R}$. The functions $u \lor 1$, $\exp((u \lor 0)^{\beta})$, $\log(u \lor e)$, and $\log\log(u \lor e)$ fulfil the conditions on h(u). By (25.2) and by the increasingness of h, the functions $h(|x|), h(|x_j|)$, and $h(x_j)$ are submultiplicative on \mathbb{R}^d .

We prove Theorem 25.3 after three lemmas.

LEMMA 25.5. If g(x) is submultiplicative and locally bounded, then

$$g(x) \le be^{c|x|} \tag{25.3}$$

with some b > 0 and c > 0.

Proof. Choose b in such a way that $\sup_{|x| \le 1} g(x) \le b$ and ab > 1. If $n-1 < |x| \le n$, then $\exists b : \sup_{|x| \le 1} g(x) \le b$ and ab > 1 because g is locally bounded. $\forall x$ set $n_x = \lceil |x| \rceil$ implying $n_x - 1 < |x| \le n_x$, $\frac{x}{n_x} \in \{u | |u| \le 1\}$, then

$$g(x) = g\left(\sum_{i=1}^{n_x} \frac{x}{n_x}\right) \le a^{n_x - 1} g\left(\frac{x}{n_x}\right)^{n_x} \le a^{n_x - 1} b^{n_x} \le b(ab)^{|x|} \le be^{\ln(ab)|x|}$$

which shows (25.3).

LEMMA 25.6. Let μ be an infinitely divisible distribution on \mathbb{R}^d with Lévy measure ν supported on a bounded set S. Then $\widehat{\mu}(t)$ can be extended to an entire function on \mathbb{C}^d .

Proof. There is a finite a > 0 such that $S_{\nu} \subset [-a, a]$. The Lévy representation of $\widehat{\mu}(t)$ is written as

$$\widehat{\mu}(t) = \exp\left[-\frac{1}{2}\langle t, At \rangle + \int_{S} \left(e^{i\langle t, x \rangle} - 1 - i\langle t, x \rangle \right) \nu(\mathrm{d}x) + i\langle \gamma', t \rangle \right]$$

with some $\gamma' \in \mathbb{R}^d$. The right-hand side is meaningful even if t is complex. Denote this function by $\Phi(t)$. Then $\Phi(t)$ is an entire function in each of its variables, since we can exchange the order of integration and differentiation and innerproducts are analytical. Thereby $\Phi(t)$ is also entire by Hartogs's theorem.

LEMMA 25.7. If μ is a probability measure on \mathbb{R} and $\widehat{\mu}(z)$ is extendible to an entire function on \mathbb{C} , then μ has finite exponential moments, that is, it has finite $e^{c|x|}$ -moment for every c>0.

Proof. It follows from Proposition 2.5(x) (see 0.0.4) that $\alpha_n = \int x^n \mu(\mathrm{d}x)$ and $\beta_n = \int |x|^n \mu(\mathrm{d}x)$ are finite for any $n \ge 1$. Since $\frac{\mathrm{d}^n \widehat{\mu}}{\mathrm{d}z^n}(0) = \mathrm{i}^n \alpha_n$, we have

$$\widehat{\mu}(z) = \sum_{n=0}^{\infty} \frac{1}{n!} i^n \alpha_n z^n$$

the radius of convergence of the right-hand side being infinite. Notice that $\beta_{2k} = \alpha_{2k}$ and $\beta_{2k+1} \leq \frac{1}{2} (\alpha_{2k+2} + \alpha_{2k})$, since $|x|^{2k+1} \leq \frac{1}{2} (x^{2k+2} + x^{2k})$. It follows that

$$\int e^{|x|} \mu(dx) = \sum_{n=0}^{\infty} \frac{1}{n!} \beta_n c^n < \infty$$

completing the proof.

5

Proof of Theorem 25.3. Let $\nu_0 = [\nu]_{\{|x| \le 1\}}$ and $\nu_1 = [\nu]_{\{|x| > 1\}}$. Construct independent Lévy processes $\{X_t^0\}$ and $\{X_t^1\}$ on \mathbb{R}^d such that $\{X_t\} =_d \{X_t^0 + X_t^1\}$ and $\{X_t^1\}$ is compound Poisson with Lévy measure ν_1 . Let μ_0^t and μ_1^t be the distributions of X_t^0 and X_t^1 , respectively.

Suppose that X_t has finite g-moment for some t > 0. It follows from

$$E[g(X_t)] = E[g(X_t^0 + X_t^1)] = \iint g(x+y)\mu_0^t(dx)\mu_1^t(dy)$$

that $\int g(x+y)\mu_1^t(dy) < \infty$ for some x. This means (see (24.1) in sato)

$$\sum_{n=0}^{\infty} \frac{t^n}{n!} \int g(x+y) \nu_1^n(dy) < \infty$$

Since $g(y) \le ag(-x)g(x+y) \le abe^{c|x|}g(x+y)$ by Lemma 25.5, we get

$$\sum_{n=0}^{\infty} \frac{t^n}{n!} \int g(y) \nu_1^n(dy) < \infty \tag{25.4}$$

Hence $\int g(y)\nu_1(dy) < \infty$.

Conversely, suppose that $\int g(y)\nu_1(dy) < \infty$. Let us prove that $E[g(X_t)] < \infty$ for every t. By the submultiplicativity,

$$\int g(y)\nu_1^n(dy) = \int \cdots \int g(y_1 + \cdots + y_n)\nu_1(dy_1)\dots\nu_1(dy_n)$$

$$\leq a^{n-1} \left(\int g(y)\nu_1(dy)\right)^n$$

Hence we have (25.4) for every t. That is, X_t^1 has finite g-moment. Since

$$E\left[g\left(X_{t}\right)\right] \leq E\left[g\left(X_{t}^{0} + X_{t}^{1}\right)\right] \leq abE\left[e^{c\left|X_{t}^{0}\right|}\right]E\left[g\left(X_{t}^{1}\right)\right]$$

by (25.1) and (25.3), it remains only to show that $E\left[e^{c|X_t^0|}\right]<\infty$. Let $X_j^0(t),\,1\leq j\leq d$, be the components of X_t^0 . Then

$$E\left[e^{c|X_{t}^{0}|}\right] \leq E\left[\exp\left(c\sum_{j=1}^{d}|X_{j}^{0}(t)|\right)\right] \leq E\left[\prod_{j=1}^{d}\left(e^{cX_{j}^{0}(t)} + e^{-cX_{j}^{0}(t)}\right)\right]$$

$$\leq E\left[\sum_{\alpha_{j}\in\{-1,1\}}e^{c\sum_{j=1}^{d}\alpha_{j}X_{j}^{0}(t)}\right] \leq \sum_{\alpha_{j}\in\{-1,1\}}E\left[e^{c\sum_{j=1}^{d}\alpha_{j}X_{j}^{0}(t)}\right]$$

which is written as a sum of a finite number of terms of the form $E\left[\exp X_t^\sharp\right]$ with X_t^\sharp being a linear combination of $X_j^0(t), 1 \leq j \leq d$. Since $\left\{X_t^\sharp\right\}$ is a Lévy process on $\mathbb R$ with Lévy measure supported on a bounded set (use Proposition 11.10), $E\left[\exp X_t^\sharp\right]$ is finite by virtue of Lemmas 25.6 and 25.7. This proves all statements in the theorem.

Since X_t^0 is a Lévy process with a Lévy measure supported on a bounded set, $X_j^0(t)$ is a Lévy process on $\mathbb R$ with a Lévy measure supported on a bounded set therefore it has finite (exponential) moments by (25.7) and so do any linear combinations $\sum_{j=1}^d \alpha_j X_j^0(t)$. I.e. $E\left[e^{c\left|X_t^0\right|}\right] \leq E\left[e^{c\sum_{j=1}^d \alpha_j X_j^0(t)}\right] < \infty$.

Corollary 25.8. Let $\alpha > 0, 0 < \beta \le 1$, and $\gamma \ge 0$. None of the properties $\int |x|^{\alpha} \mu(\mathrm{d}x) < \infty$, $\int (0 \vee \log |x|)^{\alpha} \mu(\mathrm{d}x) < \infty$, and $\int |x|^{\gamma} e^{\alpha |x|^{\beta}} \mu(\mathrm{d}x) < \infty$ is time dependent in the class of Lévy processes. For a Lévy process on \mathbb{R}^d with Lévy measure ν , each of the properties is expressed by the corresponding property of $[\nu]_{\{|x|>1\}}$.

Proof. This follows from Theorem 25.3 and Proposition 25.4.

EXAMPLE 25.12. Let $\{X_t\}$ be a Lévy process on \mathbb{R}^d generated by (A, ν, γ) . In components, $X_t = (X_j(t)), \gamma = (\gamma_j)$, and $A = (A_{jk})$. Then X_t has finite mean for t > 0 if and only if $\int_{\{|x|>1\}} |x|\nu(\mathrm{d}x) < \infty$. When this condition is met, we can find $m_j(t) = E[X_j(t)]$ expressed as

$$m_j(t) = t \left(\int_{|x|>1} x_j \nu(\mathrm{d}x) + \gamma_j \right) = t \gamma_{1,j}, \quad j = 1, \dots, d$$
 (25.7)

differentiating $\widehat{\mu}(z)$ (Proposition 2.5(ix), $m_j(t) = \frac{1}{i} \partial z_j|_{z=0} \widehat{\mu}_t(z)$).

$$\widehat{\mu}_{t}(z) = \exp\left[-t\left(\frac{1}{2}\langle z, Az\rangle + i\langle \gamma, z\rangle + \int_{\mathbb{R}^{d}} \left(\exp(i\langle z, x\rangle) - 1 - i\langle z, x\rangle I_{D}(x)\right)\nu(dx)\right)\right],$$

$$\partial z_{j}|_{z=0} \left(-\frac{1}{2}\langle z, Az\rangle\right) = -\frac{1}{2}\langle\partial z_{j}(z), Az|_{z=0}\rangle - \frac{1}{2}\langle z|_{z=0}, A\partial z_{j}(z)\rangle = 0,$$

$$\partial z_{j}|_{z=0} \left(i\langle \gamma, z\rangle\right) = i\langle \gamma, \partial z_{j}|_{z=0}(z)\rangle = i\langle \gamma, e_{j}\rangle = i\gamma_{j},$$

$$\partial z_{j}|_{z=0} \left(\int_{\mathbb{R}^{d}} \left(\exp(i\langle z, x\rangle) - 1 - i\langle z, x\rangle I_{D}(x)\right)\nu(dx)\right)$$

$$= \int_{\mathbb{R}^{d}} \left(ix_{j} - ix_{j}I_{D}(x)\right)\nu(dx)$$

$$= i\int_{D^{c}} x_{j}\nu(dx)$$

Here $\gamma_{1,j}$ is the j th component of the center γ_1 in (8.8). Similarly, $E\left[|X_t|^2\right] < \infty$ for all t > 0 if and only if $\int_{|x|>1} |x|^2 \nu(\mathrm{d}x) < \infty$. In this case,

$$\begin{split} v_{jk}(t) &= E\left[\left(X_{j}(t) - m_{j}(t)\right)\left(X_{k}(t) - m_{k}(t)\right)\right], \quad j, k = 1, \dots, d \\ &= E\left[X_{j}(t)X_{k}(t)\right] - m_{j}(t)m_{k}(t) \\ &= -\partial z_{j}\partial z_{k}\widehat{\mu}_{t}(z)|_{z=0} - m_{j}(t)m_{k}(t) \\ &= -\partial z_{j}\left(\partial z_{k}(\ln\widehat{\mu}_{t}(z))\widehat{\mu}_{t}(z)\right)|_{z=0} - m_{j}(t)m_{k}(t) \\ &= -\partial z_{j}\partial z_{k}|_{z=0}(\ln\widehat{\mu}_{t}(z))\widehat{\mu}_{t}(z) - \partial z_{j}(\ln\widehat{\mu}_{t}(z))\partial z_{k}(\ln\widehat{\mu}_{t}(z))\widehat{\mu}_{t}(z)|_{z=0} - m_{j}(t)m_{k}(t) \\ &= -\partial z_{j}\partial z_{k}|_{z=0}(\ln\widehat{\mu}_{t}(z))\widehat{\mu}_{t}(z) - \partial z_{j}(\ln\widehat{\mu}_{t}(z))\partial z_{k}(\ln\widehat{\mu}_{t}(z)) & \widehat{\mu}_{t}(z)|_{z=0} - m_{j}(t)m_{k}(t) \\ &= -\partial z_{j}\partial z_{k}|_{z=0}(\ln\widehat{\mu}_{t}(z)) \end{split}$$

the (j,k) elements of the covariance matrix of X(t) calculated with the cumulant generating function, are expressed as

$$v_{jk}(t) = t \left(A_{jk} + \int_{\mathbb{R}^d} x_j x_k \nu(\mathrm{d}x) \right)$$

$$-\partial z_j \partial z_k \left(-\frac{t}{2} \langle z, Az \rangle \right) = \frac{t}{2} \partial z_j \left(\langle e_k, Az \rangle + \langle z, Ae_k \rangle \right)$$
(25.8)

$$\begin{split} &= \frac{t}{2} \left(\langle e_k, A e_j \rangle + \langle e_j, A e_k \rangle \right) \\ &= t A_{jk} \\ &- \partial z_j \partial z_k \left(i \left\langle \gamma, z \right\rangle \right) = -i \partial z_j \left\langle \gamma, e_k \right\rangle \\ &= 0 \\ &- \partial z_j \partial z_k |_{z=0} \left(t \int_{\mathbb{R}^d} \left(\exp(i \langle z, x \rangle) - 1 - i \langle z, x \rangle I_D(x) \right) \nu(dx) \right) \\ &= -t \int_{\mathbb{R}^d} \partial z_j \partial z_k |_{z=0} \exp(i \langle z, x \rangle) \nu(dx) \\ &= t \int_{\mathbb{R}^d} x_j x_k \nu(dx) \end{split}$$

Theorem 25.3 shows that, for a Lévy process $\{X_t\}$ with Lévy measure ν , the tails of P_{X_t} and ν have a kind of similarity. Are they actually equivalent in some class of Lévy processes? This question was answered by Embrecht, Goldie, and Veraverbeke [109] for subordinators. We state their result without proof in two remarks below.

THEOREM 25.17 (Exponential moment). Let $\{X_t\}$ be a Lévy process on \mathbb{R}^d generated by (A, ν, γ) . Let

$$C = \left\{ c \in \mathbb{R}^d : \int_{|x| > 1} e^{\langle c, x \rangle} \nu(\mathrm{d}x) < \infty \right\}$$

- (i) The set C is convex and contains the origin.
- (ii) $c \in C$ if and only if $Ee^{\langle c, X_t \rangle} < \infty$ for some t > 0 or, equivalently, for every t > 0.
- (iii) If $w \in \mathbb{C}^d$ is such that $\operatorname{Re} w \in C$, then

$$\Psi(w) = \frac{1}{2} \langle w, Aw \rangle + \int_{\mathbb{R}^d} \left(e^{\langle w, x \rangle} - 1 - \langle w, x \rangle 1_D(x) \right) \nu(\mathrm{d}x) + \langle \gamma, w \rangle$$
 (25.11)

is definable, $E\left|e^{(w,X_t)}\right| < \infty$, and

$$E\left[e^{\langle \boldsymbol{w}, X_t \rangle}\right] = e^{t\Psi(w)} \tag{25.12}$$

Proof. (i) Obviously C contains the origin. If c_1 and c_2 are in C, then, for any 0 < r < 1 and s = 1 - r,

$$\int_{|x|>1} e^{\langle rc_1 + sc_2, x \rangle} \nu(\mathrm{d}x) \le \left(\int_{|x|>1} e^{\langle c_1, x \rangle} \nu(\mathrm{d}x) \right)^{\tau} \left(\int_{|x|>1} e^{\langle c_2, x \rangle} \nu(\mathrm{d}x) \right)^{s} < \infty$$

by Hölder's inequality. Hence C is convex.

- (ii) The function $g(x) = e^{(c,x)}$ is clearly submultiplicative. Hence Theorem 25.3 gives the assertion.
- (iii). Any linear transformation U of \mathbb{R}^d to \mathbb{R}^d can be uniquely extended to a linear transformation of \mathbb{C}^d to \mathbb{C}^d . Regarding U as a $d \times d$ matrix, it is easy to see that $\langle w, Uv \rangle = \langle U'w, v \rangle$ for $w, v \in \mathbb{C}^d$, where U' is the transpose of U. Now let $\operatorname{Re} w \in C$.

Then $\int_{|x|>1} \left| \mathrm{e}^{\langle w,x\rangle} \right| \nu(\mathrm{d}x) = \int_{|x|>1} \mathrm{e}^{\langle \mathrm{Re}\, w,x\rangle} \nu(\mathrm{d}x) < \infty$, which shows that $\Psi(w)$ of (25.11) is definable and finite. Also, $E\left| \mathrm{e}^{\langle w,X_t\rangle} \right| = Ee^{\langle \mathrm{Re}v,X_t\rangle} < \infty$ by (ii). Let us show (25.12) in three steps.

Step 1. Let e_1 be the unit vector with first component 1. Assume that $e_1 \in C$. Let us prove (25.12) for all $w = (w_j)_{1 \le j \le d}$ with $\text{Re } w_1 \in [0, 1]$ and

Re $w_j = 0, 2 \le j \le d$. Fix t > 0 and $w_2, \ldots, w_d \in \mathbb{C}$ with Re $w_j = 0, 2 \le j \le d$, and regard w_1 as variable in $F = \{w_1 \in \mathbb{C} : \text{Re } w_1 \in [0,1]\}$. Consider $f(w_1) = Ee^{\langle w, X_t \rangle}$. Then $f(w_1)$ is continuous on F, since

$$\left| e^{\langle \boldsymbol{w}, X(t) \rangle} \right| = e^{(\operatorname{Re} w_1)X_1(t)} \le (\operatorname{Re} w_1) e^{X_1(t)} + (1 - \operatorname{Re} w_1) \le e^{X_1(t)} + 1$$

by the convexity of $e^{uX_1(t)}$ in u, where $X_1(t)$ is the first component of X(t). Moreover, $f(w_1)$ is analytic in the interior of F, since it is the limit of the analytic functions $E\left[e^{\langle v,X_t\rangle};|X_t|\leq n\right]$ as $n\to\infty$. Similarly, $h(w_1)=e^{\operatorname{tw}(w)}$ is continuous on F and analytic in the interior of F. If $\operatorname{Re} w_1=0$, then $f(w_1)=h(w_1)$, which is the Lévy-Khintchine representation of P_{X_i} . Therefore, as in the proof of Theorem 24.11, the principle of reflection and the uniqueness theorem yield (25.12) when $\operatorname{Re} w_1\in[0,1]$.

Step 2. Let U be a linear transformation from \mathbb{R}^d onto \mathbb{R}^d . Let $Y_t = UX_t$. Then $\{Y_t\}$ is a Lévy process with generating triplet (A_U, ν_U, γ_U) by Proposition 11.10. Write

$$C_U = \left\{ c \in \mathbb{R}^d : \int_{|x| > 1} e^{\langle c, x \rangle} \nu_U(dx) < \infty \right\}$$

Since $\nu_U = \nu U^{-1}$, we have $C_U = (U')^{-1} C$. Given $w \in \mathbb{C}^d$ satisfying Re $w \in C$, let $v = (U')^{-1} w$. Then Re $v \in C_U$. Define

$$\Psi_U(v) = \frac{1}{2} \langle v, A_U v \rangle + \int_{\mathbb{R}^d} \left(e^{\langle v, x \rangle} - 1 - \langle v, x \rangle 1_D(x) \right) \nu_U(dx) + \langle \gamma_U, v \rangle$$

We claim that if

$$E\left[e^{\langle v_i Y_t \rangle}\right] = e^{t\Psi_U(v)} \tag{25.13}$$

then w satisfies (25.12). In fact, $\langle v, Y_t \rangle = \left\langle \left\langle U^{-1} \right\rangle' w, Y_t \right\rangle = \left\langle w, X_t \right\rangle$ and

$$\Psi_U(v) = \frac{1}{2} \langle U'v, AU'v \rangle + \int \left(e^{\langle v, Ux \rangle} - 1 - \langle v, Ux \rangle 1_D(x) \right) v(dx) + \langle U\gamma, v \rangle$$
$$= \Psi(w)$$

by (11.8)-(11.10). That is, (25.13) is identical with (25.12).

Step 3. Given $w \in \mathbb{C}^d$ satisfying $\operatorname{Re} w \in C$, we shall show (25.12). If $\operatorname{Re} w = 0$, there is nothing to prove. Assume $\operatorname{Re} w \neq 0$. Choose a linear transformation U from \mathbb{R}^d onto \mathbb{R}^d such that $\operatorname{Re} w = U'e_1$. Consider the Lévy process $Y_t = UX_t$. Since $C_U = (U')^{-1}C$, we have $e_1 \in C_U$. We know, by Step 1, that, if $v \in \mathbb{C}^d$ satisfies $\operatorname{Re} v = e_1$, then (25.13) holds. Hence, by the result of Step 2, w satisfies (25.12).

We close this section with a discussion of the g-moments of $\sup_{s \in [0,t]} |X_s|$

THEOREM 25.18. Let $\{X_t\}$ be a Lévy process on \mathbb{R}^d . Define

$$X_t^* = \sup_{s \in [0,t]} |X_s| \tag{25.14}$$

Let g(r) be a nonnegative continuous submultiplicative function on $[0, \infty)$, increasing to ∞ as $r \to \infty$. Then the following four statements are equivalent.

- (1) $E\left[g\left(X_{t}^{*}\right)\right] < \infty$ for some t > 0.
- (2) $E\left[g\left(X_{t}^{*}\right)\right] < \infty$ for every t > 0.
- (3) $E[g(|X_t|)] < \infty$ for some t > 0.
- (4) $E[g(|X_t|)] < \infty$ for every t > 0.

Proof. Since g(|x|) is submultiplicative on \mathbb{R}^d , (3) and (4) are equivalent by Theorem 25.3. As $|X_t| \leq X_t^* \implies g(|X_t|) \leq g(X_t^*)$, all we have to show is that, for any fixed t > 0, $E[g(|X_t|)] < \infty$ implies $E[g(X_t^*)] < \infty$. We claim that, for any a > 0 and b > 0,

$$P[X_t^* > a + b] \le P[|X_t| > a] / P[X_t^* \le b/2]$$
 (25.15)

Fix t and let $t_{n,j}=jt/2^n$ for $j=1,\ldots,2^n$ and $X_{(n)}^*=\max_{1\leq j\leq 2^n} \left|X_{t_{n,j}}\right|$. Choosing $Z_j(s)=Z_j=X_{t_{n,j}}-X_{t_{n,j-1}}$ in Lemma 20.2 and using Remark 20.3, we have

$$P\left[X_{(n)}^{*} > a + b\right] \le P\left[|X_{t}| > a\right] / P\left[X_{(n)}^{*} \le b/2\right]$$

in (20.2). Hence, letting $n \to \infty$, we get (25.15). Choose b > 0 such that $P[X_t^* \le b/2] > 0$. Let $\tilde{g}(r)$ be a continuous increasing function on $[0, \infty)$ such that $\bar{g}(0) = 0$ and $\tilde{g}(r) = g(r)$ for $r \ge 1$. Apply Lemma 17.6 to $k(r) = 1 - P||X_t| \le r|$ and $l(r) = \tilde{g}(r)$. Then

$$\int_{0+}^{\infty} P[|X_t| > r] \,\mathrm{d}\tilde{g}(r) = \int_{(0,\infty)} \tilde{g}(r) P[|X_t| \in \mathrm{d}r] = E[\tilde{g}(|X_t|)]$$

14 follows from (25.15) that

$$\int_{0+}^{\infty} P\left[X_t^* > r + b\right] d\widetilde{g}(r) \le E\left[\widetilde{g}\left(|X_t|\right)\right] / P\left[X_t^* \le b/2\right]$$

The integral in the left-hand side equals

$$\int_{(0,\infty)} \tilde{g}(r) P[X_t^* - b \in dr] = E[\tilde{g}(X_t^* - b); X_t^* > b]$$

similarly. Hence, if $E\left[g\left(|X_t|\right)\right]<\infty$, then $E\left[g\left(X_t^*-b\right);X_t^*>b\right]<\infty$ and, by the submultiplicativity of $g,E\left[g\left(X_t^*\right)\right]<\infty$.

References

Sato, Ken-iti (2013). Lévy processes and infinitely divisible distributions. en. Revisted edition, corrected paperback edition. Cambridge studies in advanced mathematics 68. Cambridge: Cambridge Univ. Press. ISBN: 978-0-521-55302-5 978-1-107-65649-9.