Ouroboros: A Simple, Secure and Efficient Key Exchange Protocol Based on Coding Theory

www.unilim.fr/pages_perso/deneuville/files/ ba43bf8d80cef2999dbf4308828213ec.pdf

(paper by Jean-Christophe Deneuville, Philippe Gaborit, and Gilles Zémor)

Tung Chou

Post-quantum key-exchange schemes

Isogeny-based

Similar to ECDH.

Lattice-based

- Popularized by NewHope (ePrint/2015/1092).
- Ephemeral, passively-secure KEMs.
- Protected by signature schemes.

Code-based

- Ouroboros and CAKE (ePrint/2017/757)
- Built from QC-MDPC codes
- The Asiacrypt-2016 attack can't be applied.

Preliminaries

- ullet S^n_w : the set of weight-w vectors in \mathbb{F}^n_2
- H_w : hash function; hashing into S_w^n
- Vectors are often considered as element in $\mathbb{F}_2[x]/(x^n+1)$

• DSD problem (NP-complete)

Let
$$H \stackrel{\$}{\leftarrow} \mathbb{F}_2^{(n-k) \times n}$$
, $x \stackrel{\$}{\leftarrow} S_w^n$, $y' \stackrel{\$}{\leftarrow} \mathbb{F}_2^{n-k}$, distinguish $(y = Hx, H)$ and (y', H)

Conjectured hard problems

2-DQCSD problem

Let
$$h,y' \stackrel{\$}{\leftarrow} \mathbb{F}_2^n$$
, $x_1,x_2 \stackrel{\$}{\leftarrow} S_w^n$, distinguish $(y=x_1+x_2h,h)$ and (y',h)

$$\vec{y} = \begin{pmatrix} I & h \end{pmatrix} \vec{x}$$

3-DQCSD problem

Let
$$g,h,y_1',y_2' \stackrel{\$}{\leftarrow} \mathbb{F}_2^n$$
, $x_1,x_2,x_3 \stackrel{\$}{\leftarrow} S_w^n$, distinguish
$$(y_1=x_1+x_3g,y_2=x_2+x_3h,g,h) \text{ and } (y_1',y_2',g,h)$$

$$\vec{y} = \begin{pmatrix} I & 0 & g \\ 0 & I & h \end{pmatrix} \vec{x}$$

The Ouroboros protocol

$$r_1, r_2 \stackrel{\$}{\leftarrow} S_w^n$$

$$\mathbf{s_r} \leftarrow r_1 + \mathbf{h} r_2$$

$$e_r \leftarrow H_{cw}(r_1, r_2)$$

$$\epsilon \stackrel{\$}{\leftarrow} S_{w_{\epsilon}}^n$$

$$\mathbf{s_{\epsilon}} \leftarrow \mathbf{s} r_2 + e_r + \epsilon$$

The Ouroboros protocol (simplified)

- Can be viewed as a KEM that encrypts ϵ .
- The protocol is secure if the KEM satisfies IND-CPA.

Decoding

Decoding for QC-LDPC codes

• Given x_1,\ldots,x_{n_0} , $s=x_1r_1+x_2r_2+\cdots+x_{n_0}r_{n_0}$, r_1,\ldots,r_{n_0} can be recovered using the bit-flipping algorithm.

Ouroboros

- $e_c = s_{\epsilon} + ys_r = xr_2 + yr_1 + (e_r + \epsilon)$.
- Claimed that given x, y, e_c , $r_1, r_2, (e_r + \epsilon)$ can be recovered.

IND-CPA

Hybrid argument

To prove two distributions D_0 and D_1 are indistinguishable, define

$$H_1 := D_0, H_2, \ldots, H_t := D_1$$

and show that for any PPT A

$$Adv_{H_i,H_{i+1}}(A) = \left| Pr[x \xleftarrow{\$} H_i : A(x) = 1] - Pr[x \xleftarrow{\$} H_{i+1} : A(x) = 1] \right|$$

are negligible.

IND-CPA security with hybrid argument

An alternative way to prove IND-CPA security

- $G_{b=0}$: IND-CPA game with b=0
- $G_{b=1}$: IND-CPA game with b=1
- Show that G_0 and G_1 are indistinguishable

With hybird argument

- Define $G_1 := G_{b=0}, G_2, \ldots, G_t := G_{b=1}$
- Show that G_i and G_{i+1} are indistinguishable

Proof for Ouroboros

- using hybrid argument t = 8
- b = 0 for h_1, h_2, h_3, h_4 ; b = 1 for h_5, h_6, h_7, h_8
- h_i and h_{9-i} only differs in b

Security proof (G_1)

$$\mathbf{s} \leftarrow x + \mathbf{h}y$$

$$\mathbf{s_r} \leftarrow r_1 + \mathbf{h}r_2$$

$$e_r \leftarrow H_{cw}(r_1, r_2)$$

$$\mathbf{s_\epsilon} \leftarrow \mathbf{s}r_2 + e_r + \epsilon^{(0)}$$

$$\mathbf{s_r}, \mathbf{s_\epsilon}$$

Security proof (G_2)

$$\mathbf{s} \leftarrow x + \mathbf{h}y$$

$$\mathbf{s_r} \leftarrow r_1 + \mathbf{h}r_2$$

$$\mathbf{e_r} \leftarrow H_{cw}(r_1, r_2)$$

$$\mathbf{s_\epsilon} \leftarrow \mathbf{s}r_2 + e_r + \epsilon^{(0)}$$

$$\mathbf{s_r}, \mathbf{s_\epsilon}$$

Indistinguishable from G_1 in the **Random Oracle** model.

Security proof (G_3)

$$\mathbf{s} \leftarrow \mathbf{x} + \mathbf{h} \mathbf{y}$$

$$\mathbf{s}_{\mathbf{r}} \leftarrow r_{1} + \mathbf{h} r_{2}$$

$$e_{r} \leftarrow H_{cw}(r_{1}, r_{2})$$

$$\mathbf{s}_{\epsilon} \leftarrow \mathbf{s} r_{2} + e_{r} + \epsilon^{(0)}$$

$$\mathbf{s}_{\mathbf{r}}, \mathbf{s}_{\epsilon}$$

Indistinguishable from G_2 because of **2-DQCSD**.

Security proof (G_4)

$$\begin{array}{c} \mathbf{s} \leftarrow \mathbf{x} + \mathbf{h} \mathbf{y} \\ \\ \mathbf{s_r} \leftarrow \mathbf{r_1} + \mathbf{h} \mathbf{r_2} \\ \\ \underline{e_r} \leftarrow H_{cw}(r_1, r_2) \\ \\ \mathbf{s_\epsilon} \leftarrow \mathbf{s} \mathbf{r_2} + \mathbf{e_r} + \epsilon^{(0)} \\ \\ \\ & \underbrace{\qquad \qquad \qquad }_{\mathbf{s_r}, \mathbf{s_\epsilon}} \\ \\ \end{array}$$

Indistinguishable from G_3 because of **3-DQCSD**.

G_3 versus G_4

Security proof (G_5)

Indistinguishable from G_4 : (s_r, s_ϵ) is still **uniform random**.

Parameters

	Ouroboros Parameters								
Instance	n	w	$w_{\mathbf{e}}$	threshold	security	DFR			
Low-I	5,851	47	94	30	80	$0.92\cdot 10^{-5}$			
Low-II	5,923	47	94	30	80	$2.3 \cdot 10^{-6}$			
Medium-I	13,691	75	150	45	128	$0.96 \cdot 10^{-5}$			
Medium-II	14,243	75	150	45	128	$1.09 \cdot 10^{-6}$			
Strong-I	40,013	147	294	85	256	$4.20 \cdot 10^{-5}$			
Strong-II	40,973	147	294	85	256	$< 10^{-6}$			

 ${\bf Table~1.~~Parameter~sets~for~Ouroboros}$

	Ouroboros Optimized Parameters								
Instance	n	w	$w_{\mathbf{e}}$	threshold	security	DFR			
Low-I	4,813	41	123	27	80	$2.23 \cdot 10^{-5}$			
Low-II	5,003	41	123	27	80	$2.60 \cdot 10^{-6}$			
Medium-I	10,301	67	201	42	128	$1.01 \cdot 10^{-4}$			
Medium-II	10,837	67	201	42	128	$< 10^{-7}$			
Strong-I	32,771	131	393	77	256	$< 10^{-4}$			
Strong-II	33,997	131	393	77	256	$< 10^{-7}$			

 ${\bf Table~2.~~Optimized~parameter~sets~for~Ouroboros~in~Hamming~metric}$