DATA STRUCTURES & ALGORITHMS

13: MINIMUM SPANNING TREE

PART - I

Dr Ram Prasad Krishnamoorthy

Associate Professor School of Computing and Data Science

ram.krish@saiuniversity.edu.in

(MST)

Spanning Tree

A subgraph **T** of a connected graph **G** is called a spanning tree of **G** if **T** is a tree and **T** includes all the vertices of **G**.

Minimum Spanning Tree (MST)

Suppose G is a connected weighted graph. That is, each edge of G is assigned a nonnegative number called the weight of the edge. Then any spanning tree T of G is assigned a total weight obtained by adding the weights of the edges in T. A minimal spanning tree of G is a spanning tree whose total weight is as small as possible.

- A town has a set of houses and a set of roads.
- A road connects 2 and only 2 houses.
- A road connecting houses u and v has a repair cost w(u, v).
- Goal: Repair enough (and no more) roads such that
 - 1. everyone stays connected: can reach every house from all other houses, and
 - 2. total repair cost is minimum.

A simple approach to solve MST

Given a connected weighted graph **G** with **n** vertices.

- **Step 1:** Arrange the edges of G in the order of decreasing weights.
- **Step 2:** Proceed sequentially, delete each edge that does not disconnect the graph until n-1 edges remain.
- Step 3: Exit

First we order the edges by decreasing weights, and then we successively delete edges without disconnecting Q until five edges remain. This yields the following data:

Edges	BC	AF	AC	BE	CE	BF	AE	DF	BD
Weight	8	7	7	7	6	5	4	4	3
Delete	Yes	Yes	Yes	No	No	Yes			

Thus the minimal spanning tree of Q which is obtained contains the edges

$$BE$$
, CE , AE , DF , BD

Thus the minimal spanning tree of Q which is obtained contains the edges

