AtliQo Bank Credit Card Launch ¶

Problem Statement

AtliQo Bank, a new banking company wants to launch a credit card in the highly competitive Indian market. The company needed to identify the most promising target market segment and tailor its credit card offering to meet the specific needs and preferences of that segment. The objective is to make data-driven decisions regarding the target market segment and ensure the successful launch of the new credit card within that segment, enabling the banking company to gain a competitive edge in the Indian market.

Phase 1: AtliQ0 Bank Credit Card Project

Objective: Analyze customers' transactions and credit profiles to figure out a target group for the launch of AtliQo bank credit card

Data Import

```
In [153]:
           import pandas as pd
           import numpy as np
           import seaborn as sns
           from matplotlib import pyplot as plt
           import warnings
           warnings.filterwarnings('ignore')
In [154]: | df transact = pd.read csv('Datasets/transactions.csv')
In [155]: df transact.head()
Out[155]:
               tran_id cust_id
                                tran_date tran_amount platform
                                                              product_category payment_type
            0
                          705 2023-01-01
                                                  63
                                                       Flipkart
                                                                     Electronics
                                                                                    Phonepe
            1
                          385 2023-01-01
                                                  99
                                                       Alibaba
                                                               Fashion & Apparel
                                                                                  Credit Card
            2
                          924 2023-01-01
                                                 471
                                                       Shopify
                                                                         Sports
                                                                                    Phonepe
            3
                          797 2023-01-01
                                                  33
                                                       Shopify
                                                               Fashion & Apparel
                                                                                       Gpay
            4
                          482 2023-01-01
                                                  68
                                                       Amazon
                                                               Fashion & Apparel
                                                                                  Net Banking
In [156]: | df cust = pd.read csv('Datasets/customers.csv')
```

In [157]:	df_	f_cust.head()									
Out[157]:		cust_id	name	gender	age	locat	on	occupation	annual_income	marital_status	
	0	1	Manya Acharya	Female 2		(City	Business Owner	358211.0	Married	
	1	2	Anjali Pandey	Female	47	(City	Consultant	65172.0	Single	
	2	3	Aaryan Chauhan	Male	21	(City	Freelancer	22378.0	Married	
	3	4	Rudra Bali	Male	24	Rı	ıral	Freelancer	33563.0	Married	
	4	5	Advait Malik	Male	48	(City	Consultant	39406.0	Married	
In [158]:	<pre>df_credit = pd.read_csv('Datasets/credit_profiles.csv')</pre>										
In [159]:	df_	_credit	.head()								
Out[159]:		cust_id	credit_score	credit_	utilisa	tion	outst	anding_debt	credit_inquiries_	last_6_months	
	0	1	749		0.585	5171		19571.0		0.0	
	1	2	587		0.107	928		161644.0		2.0	
	2	3	544		0.854	1807		513.0		4.0	
	3	4	504		0.336	938		224.0		2.0	
	4	5	708		0.586	8151		18090.0		2.0	
	4										

Exploring Customers Table

In [160]:	df_cus	st.describe(\odot	
Out[160]:		cust_id	age	annual_income
	count	1000.000000	1000.000000	950.000000
	mean	500.500000	36.405000	139410.314737
	std	288.819436	15.666155	112416.802007
	min	1.000000	1.000000	2.000000
	25%	250.750000	26.000000	47627.500000
	50%	500.500000	32.000000	112218.500000
	75%	750.250000	46.000000	193137.500000
	max	1000.000000	135.000000	449346.000000

```
df_cust.isnull().sum() #50Null Values
In [161]:
Out[161]: cust_id
                               0
           name
                               0
                               0
           gender
                               0
           age
                               0
           location
           occupation
                               0
           annual_income
                              50
           marital_status
                               0
           dtype: int64
```

1. Analyze Income Column

Handle Null Values: Annual income

```
In [162]:
           df_cust[df_cust.annual_income.isna()].head() #now we will fill the Na value
Out[162]:
                 cust_id
                             name
                                   gender
                                           age location
                                                         occupation annual_income
                                                                                  marital_status
                           Sanjana
             14
                     15
                                    Female
                                            25
                                                   Rural
                                                              Artist
                                                                              NaN
                                                                                         Married
                              Malik
                           Reyansh
             82
                     83
                                      Male
                                            27
                                                    City
                                                          Freelancer
                                                                              NaN
                                                                                          Single
                          Mukherjee
                                                           Business
                          Virat Puri
                                                                                         Married
             97
                     98
                                      Male
                                            47
                                                 Suburb
                                                                              NaN
                                                             Owner
                             Aarav
                                                               Data
            102
                    103
                                      Male
                                            32
                                                                                         Married
                                                    City
                                                                              NaN
                              Shah
                                                            Scientist
                             Kiaan
                                                           Fullstack
                                                                                         Married
            155
                    156
                                      Male
                                            24
                                                    City
                                                                              NaN
                            Saxena
                                                          Developer
           occ_wise_inc_median = df_cust.groupby('occupation')['annual_income'].median
           occ_wise_inc_median
Out[163]: occupation
           Accountant
                                       65265.0
           Artist
                                       45794.0
           Business Owner
                                      261191.5
           Consultant
                                       58017.0
           Data Scientist
                                     135759.0
           Freelancer
                                       46759.0
           Fullstack Developer
                                       76774.0
           Name: annual_income, dtype: float64
In [164]: | df cust['annual income'] = df cust.apply(
                lambda row : occ_wise_inc_median[row['occupation']] if pd.isnull(row['a
```

```
df_cust.isnull().sum() #No null values
In [165]:
Out[165]: cust_id
                             0
                              0
           name
                             0
           gender
                             0
           age
                             0
           location
           occupation
                             0
           annual_income
                             0
           marital_status
           dtype: int64
```

In [166]: df_cust.iloc[[14,82]]

Out[166]:

	cust_id name		gender	age	location	occupation	annual_income	marital_status
14	15	Sanjana Malik	Female	25	Rural	Artist	45794.0	Married
82	83	Reyansh Mukherjee	Male	27	City	Freelancer	46759.0	Single

Previously records at location 14 and 82 had null annual income. Now we have a median value per occupation

```
In [167]: plt.figure(figsize = (5,5))
    sns.histplot(df_cust['annual_income'],kde =True,color = 'green',label = 'Da
    plt.title('Histogram of Annual Income')
    plt.show() #rightly skewed
```


In [168]: df_cust.describe() #min value is 2 its an oulier company manager told that

Out[168]:

	cust_id	age	annual_income
count	1000.000000	1000.000000	1000.000000
mean	500.500000	36.405000	138916.765500
std	288.819436	15.666155	110969.408643
min	1.000000	1.000000	2.000000
25%	250.750000	26.000000	48229.500000
50%	500.500000	32.000000	113416.000000
75%	750.250000	46.000000	192614.000000
max	1000.000000	135.000000	449346.000000

In [169]: df_cust[df_cust.annual_income<100]</pre>

Out[169]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
31	32	Veer Mistry	Male	50	City	Business Owner	50.0	Married
262	263	Vivaan Tandon	Male	53	Suburb	Business Owner	50.0	Married
316	317	Yuvraj Saxena	Male	47	City	Consultant	50.0	Married
333	334	Avani Khanna	Female	29	City	Data Scientist	50.0	Married
340	341	Priya Sinha	Female	33	Rural	Fullstack Developer	50.0	Married
543	544	Advait Batra	Male	54	City	Consultant	2.0	Married
592	593	Priya Gandhi	Female	32	City	Business Owner	50.0	Married
633	634	Rudra Mehtani	Male	26	City	Data Scientist	2.0	Married
686	687	Vihaan Jaiswal	Male	40	City	Business Owner	2.0	Married
696	697	Ishan Negi	Male	47	City	Consultant	20.0	Married

In [170]: df_cust[df_cust.annual_income<100].shape</pre>

Out[170]: (10, 8)

Outlier Treatment: Annual income

Above records (with <100\$ income) are outliers. We have following options to treat them,

- 1. **Remove them**: After discussion with business manager, we decided not to remove them as these are valid customers and we want to include them in our analysis
- 2. **Replace them with mean or median**: Mean is sensitive to outliers. It is better to use median for income values

3. Replace them with occupation wise median: Income level may vary based on occupation. For example median income for data scientist can be different from a median income of a business owner. It is better to use occupation wise median income for replacement

In [172]: | df_cust.iloc[[31,262,316]]

Out[172]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
31	32	Veer Mistry	Male	50	City	Business Owner	261191.5	Married
262	263	Vivaan Tandon	Male	53	Suburb	Business Owner	261191.5	Married
316	317	Yuvraj Saxena	Male	47	City	Consultant	58017.0	Married

Record at 31,262, and 316 location had annual income of < 100\$. Now you can see it is replaced by a median income per occupation

```
In [173]: df_cust[df_cust.annual_income<100]
Out[173]: cust id name gender age location occupation annual income marital status</pre>
```

successfully manged outliers values

Data Visualization: Annual Income

[174]:		cust_id	name	name gender age locati		location	occupation	annual_income	marital_status
	0	1	Manya Acharya	Female	2	City	Business Owner	358211.0	Marrie
	1	2	Anjali Pandey	Female	47	City	Consultant	65172.0	Single
	2	3	Aaryan Chauhan	Male	21	City	Freelancer	22378.0	Marrie
	3	4	Rudra Bali	Male	24	Rural	Freelancer	33563.0	Marrie
	4	5	Advait Malik	Male	48	City	Consultant	39406.0	Marrie

```
In [176]:
          df_occupation_mean
Out[176]: occupation
          Artist
                                   45309.236842
          Consultant
                                   60703.154639
          Accountant
                                   64123.562500
          Freelancer
                                  76327.508772
          Fullstack Developer
                                  78727.972973
          Data Scientist
                                 137021.266304
          Business Owner
                                  268447.368512
          Name: annual_income, dtype: float64
In [177]: df_cust.columns
Out[177]: Index(['cust_id', 'name', 'gender', 'age', 'location', 'occupation',
                  'annual_income', 'marital_status'],
                dtype='object')
```

```
In [178]: categories = ['gender','location','marital_status','occupation']

for col in categories:
    df_occupation_mean = df_cust.groupby(col).annual_income.mean().sort_val
    sns.barplot(df_occupation_mean.index,df_occupation_mean.values,palette
    plt.xticks(rotation = 45)
    plt.title(f'Average Annual Income Per {col.capitalize()}')
    plt.xlabel(col.capitalize())
    plt.ylabel('Average Annual Income ($)')
    plt.show()
```


2. Analyze Age Column

Handle Null Values: Age Column

First let us check if there are any NULL values in the Age column

```
In [179]: df_cust.age.isnull().sum()
Out[179]: 0
```

No null values are found in age column.

In [180]: df_cust.describe() #outliers in age

Out[180]:

	cust_id	age	annual_income
count	1000.000000	1000.000000	1000.000000
mean	500.500000	36.405000	140483.548500
std	288.819436	15.666155	110463.002934
min	1.000000	1.000000	5175.000000
25%	250.750000	26.000000	49620.500000
50%	500.500000	32.000000	115328.000000
75%	750.250000	46.000000	195514.250000
max	1000.000000	135.000000	449346.000000

Outlier Treatment: Age

Above we see that min age is 1 and max age is 135. These seem to be outliers. So let's find out age distribution.

```
In [181]: df_outliers = df_cust[(df_cust.age<15) | (df_cust.age>80)]
```

In [182]: df_outliers

		_	_
\cap	r#- I	「10つ	٦.
υι	ı u	102	

	cust_id	name	gender	age	location	occupation	annual_income	marital_status
0	1	Manya Acharya	Female	2	City	Business Owner	358211.0	Married
41	42	Aaryan Shah	Male	110	City	Artist	7621.0	Married
165	166	Sia Dutta	Female	1	City	Freelancer	39721.0	Single
174	175	Rohan Sharma	Male	110	City	Freelancer	23723.0	Married
222	223	Arjun Batra	Male	110	Suburb	Freelancer	210987.0	Married
277	278	Aarav Tandon	Male	110	City	Consultant	96522.0	Single
295	296	Ayush Pandey	Male	1	Rural	Accountant	55254.0	Married
325	326	Virat Goel	Male	110	City	Accountant	61021.0	Single
610	611	Rehan Verma	Male	135	Rural	Business Owner	444776.0	Married
692	693	Dhruv Jha	Male	1	City	Business Owner	83045.0	Married
703	704	Aanya Sharma	Female	110	City	Freelancer	43404.0	Single
709	710	Anika Verma	Female	110	City	Data Scientist	98417.0	Married
728	729	Rehan Yadav	Male	135	City	Business Owner	382836.0	Married
832	833	Ridhi Raj	Female	110	City	Fullstack Developer	95379.0	Single
845	846	Rohan Jaiswal	Male	1	City	Consultant	20838.0	Married
855	856	Aanya Taneja	Female	2	City	Fullstack Developer	30689.0	Married
895	896	Krishna Goswami	Male	1	City	Freelancer	31533.0	Married
923	924	Kunal Patel	Male	110	City	Freelancer	51629.0	Married
951	952	Virat Shetty	Male	135	City	Data Scientist	49677.0	Married
991	992	Arya Dube	Male	135	City	Fullstack Developer	93267.0	Single

In [183]: df_outliers.shape

Out[183]: (20, 8)

we cannot remove 20 rows as they are important. So to treat these outliers we will use median age for each of the occupation

```
age_median = df_cust.groupby('occupation')['age'].median()
In [184]:
In [185]:
           age_median
Out[185]: occupation
            Accountant
                                      31.5
                                      26.0
            Artist
                                      51.0
            Business Owner
            Consultant
                                      46.0
            Data Scientist
                                      32.0
            Freelancer
                                      24.0
            Fullstack Developer
                                      27.5
            Name: age, dtype: float64
In [186]: df_cust['age'] = df_cust.apply(
                lambda row : age_median[row['occupation']] if (row['age'] <15) | (row[</pre>
In [187]:
           df_cust[(df_cust.age<15) | (df_cust.age>80)]
Out[187]:
              cust_id name gender age location occupation annual_income marital_status
In [188]:
           df_cust.iloc[[0,41]]
Out[188]:
                cust_id
                            name
                                  gender
                                           age
                                               location
                                                          occupation annual_income marital_status
                            Manya
                                                            Business
             0
                      1
                                   Female 51.0
                                                    City
                                                                           358211.0
                                                                                          Married
                          Acharya
                                                              Owner
                           Aaryan
                     42
                                     Male 26.0
                                                                             7621.0
            41
                                                               Artist
                                                                                          Married
                                                    City
                             Shah
In [189]:
           df cust.describe()
Out[189]:
                                           annual_income
                       cust_id
                                       age
                               1000.000000
            count
                   1000.000000
                                              1000.000000
                    500.500000
                                 35.541500
                                            140483.548500
             mean
                    288.819436
                                  12.276634
                                            110463.002934
               std
                      1.000000
                                  18.000000
                                              5175.000000
              min
                    250.750000
              25%
                                 26.000000
                                             49620.500000
                    500.500000
              50%
                                 32.000000
                                            115328.000000
                    750.250000
                                 44.250000
                                            195514.250000
              75%
                   1000.000000
                                 64.000000
                                            449346.000000
              max
```

As you can see above, now we don't have any outliers left. min age is 18 and max is 64

Data Visualization: Age Column

```
In [190]: bin_edges = [17,25,48,65]
    bin_labels = ['18-25','26-48','49-65']
    df_cust['age_group'] = pd.cut(df_cust['age'],bins=bin_edges,labels = bin_la
    df_cust.head()
```

Λ.	المعاد	100	т.
OIL	IT I	гчи	Ι.
\sim		1 - 0	

	cust_id	name	gender	age	location	occupation	annual_income	marital_status	age_
(1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
1	2	Anjali Pandey	Female	47.0	City	Consultant	65172.0	Single	
2	2 3	Aaryan Chauhan	Male	21.0	City	Freelancer	22378.0	Married	
3	3 4	Rudra Bali	Male	24.0	Rural	Freelancer	33563.0	Married	
4	i 5	Advait Malik	Male	48.0	City	Consultant	39406.0	Married	
4									•

In [191]: age_group_pct = df_cust.age_group.value_counts(normalize =True) *100
 age_group_pct

Out[191]: 26-48 56.7 18-25 24.6 49-65 18.7

Name: age_group, dtype: float64

In [192]: plt.pie(age_group_pct,labels=age_group_pct.index ,autopct = '%1.1f%%',explo
 plt.title('Distribution of Age Groups')
 plt.show()

18-25

3. Analyze Gender and Location Distribution

```
In [193]: #to create stack bar chart
           df_cust.location.value_counts()
Out[193]: City
                     683
           Suburb
                     232
           Rural
                      85
           Name: location, dtype: int64
          df_cust.gender.value_counts()
In [194]:
Out[194]: Male
                     674
           Female
                     326
           Name: gender, dtype: int64
In [195]:
          cus_location_gen =df_cust.groupby(['location','gender']).size().unstack()
In [196]:
          cus_location_gen.plot(kind='bar',stacked = True)
           plt.title('Customer Distribution by Location and Gender')
           plt.legend(title = "Gender")
           plt.xlabel('Location')
           plt.ylabel('Count')
           plt.show()
                     Customer Distribution by Location and Gender
              700
                                                        Gender
                                                         Female
              600
                                                          Male
              500
              400
              300
              200
              100
                0
                                      Location
```

Explore Credit Score Table

```
df_credit.head()
In [197]:
Out[197]:
                cust id credit score credit utilisation outstanding debt credit inquiries last 6 months
             0
                     1
                               749
                                           0.585171
                                                              19571.0
                                                                                               0.0
             1
                     2
                               587
                                           0.107928
                                                             161644.0
                                                                                               2.0
             2
                     3
                               544
                                           0.854807
                                                               513.0
                                                                                               4.0
             3
                                504
                                                               224.0
                     4
                                           0.336938
                                                                                               2.0
                                708
                                           0.586151
                                                              18090.0
                                                                                               2.0
                     5
           df_credit.shape
In [198]:
Out[198]: (1004, 6)
            Credit table should have same records as customers table, so there are 4 extra records
In [199]: | df_credit.cust_id.nunique() #so some records have duplicates
Out[199]: 1000
In [200]: #Lets print out duplicates
            df_credit[df_credit.cust_id.duplicated(keep = False)]
Out[200]:
                  cust_id
                          credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months
             516
                     517
                                  308
                                                 NaN
                                                                  NaN
                                                                                                NaN
             517
                     517
                                  308
                                              0.113860
                                                                  33.0
                                                                                                 3.0
             569
                     569
                                  344
                                                 NaN
                                                                  NaN
                                                                                                NaN
             570
                     569
                                  344
                                              0.112599
                                                                  37.0
                                                                                                 0.0
             607
                     606
                                  734
                                                 NaN
                                                                  NaN
                                                                                                NaN
             608
                     606
                                  734
                                             0.193418
                                                                4392.0
                                                                                                 1.0
                                                                                                NaN
             664
                     662
                                  442
                                                 NaN
                                                                  NaN
             665
                     662
                                  442
                                              0.856039
                                                                  266.0
                                                                                                 2.0
            df_credit_clean = df_credit.drop_duplicates(subset = 'cust_id',keep= 'last'
In [201]:
In [202]:
            df_credit_clean.shape
Out[202]: (1000, 6)
In [203]: df credit clean[df credit clean.cust id.duplicated(keep = False)]
Out[203]:
               cust_id credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months
```

looks clean now after cleaning duplicates.

Next step would be to see if there are any null values

Data Cleaning Step 2: Handle Null Values

In [204]:	<pre>df_credit_clean.isnull().sum() #Nullvalues are there</pre>									
Out[204]:	cred outs cred cred	it_score it_util: tanding	isation _debt iries_last_ t	0 0 0 0 6_months 0 65						
In [205]:	df_c	redit_c	lean[df_cre	dit_clean.cred	it_limit.isna()	1				
Out[205]:		cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months				
	10	11	679	0.557450	9187.0	2.0				
	35	36	790	0.112535	4261.0	1.0				
	37	38	514	0.296971	238.0	2.0				
	45	46	761	0.596041	24234.0	2.0				
	64	65	734	0.473715	13631.0	0.0				
	912	909	479	0.487555	320.0	3.0				
	931	928	311	0.832244	316.0	2.0				
	948	945	526	0.272734	227.0	1.0				
	954	951	513	0.175914	131.0	3.0				
	957	954	783	0.867421	46451.0	0.0				
	65 ro	ws × 6 co	olumns							
	4									

Credit Score

600

500

400

300

10000

20000

30000

Credit Limit

```
In [206]: sns.scatterplot(x=df_credit_clean.credit_limit, y=df_credit.credit_score)
   plt.xlabel('Credit Limit')
   plt.ylabel('Credit Score')
   plt.grid(True) # Add gridLines
   plt.show()
```

Here we can see clear relationship between credit score and credit limit. Where there are levels for example, upto 650 score is getting a very minor credit limit (<1000\$) where as a score between 650 to 700 is getting around 20000. Score between 700 to 750 is getting around 40K etc.

40000

50000

60000

```
In [207]: bin_ranges = [300, 450, 500, 550, 600, 650, 700, 750, 800]
# Create labels for the bins
bin_labels = [f'{start}-{end-1}' for start, end in zip(bin_ranges, bin_rang)
# Use pd.cut to assign data to bins
df_credit_clean['credit_score_range'] = pd.cut(df_credit_clean['credit_score])
In [208]: df_credit_clean.shape
Out[208]: (1000, 7)
```

```
mode_df = df_credit_clean.groupby('credit_score_range')['credit_limit'].agg
In [209]:
            mode df
            #iloc because if 10 rows have 5 same other 5 also same so it will return on
Out[209]:
                credit_score_range credit_limit
             0
                          300-449
                                        500.0
             1
                          450-499
                                        750.0
             2
                          500-549
                                       1000.0
             3
                          550-599
                                       1250.0
                          600-649
                                       1500.0
             4
                          650-699
                                      20000.0
             5
             6
                          700-749
                                      40000.0
             7
                          750-799
                                      60000.0
            df_credit_clean2 = pd.merge(df_credit_clean,mode_df, on='credit_score_range
In [210]:
In [211]: df_credit_clean2.shape
Out[211]: (1000, 8)
In [212]: df_credit_clean2[df_credit_clean2.credit_limit.isna()]
Out[212]:
                          credit_score credit_utilisation outstanding_debt credit_inquiries_last_6_months
                  cust_id
               9
                      65
                                  734
                                              0.473715
                                                                13631.0
                                                                                                  0.0
              10
                      84
                                  733
                                              0.525567
                                                                16663.0
                                                                                                  1.0
              19
                     160
                                  709
                                              0.759795
                                                                18244.0
                                                                                                  0.0
              20
                     168
                                  737
                                              0.489797
                                                                12421.0
                                                                                                  2.0
              37
                     279
                                  741
                                              0.352932
                                                                10846.0
                                                                                                  1.0
             944
                     758
                                  783
                                              0.801201
                                                                28920.0
                                                                                                  3.0
             951
                     780
                                  787
                                              0.681978
                                                                24711.0
                                                                                                  1.0
             962
                     850
                                  787
                                              0.293520
                                                                 11195.0
                                                                                                  3.0
             981
                     899
                                  775
                                              0.487290
                                                                21548.0
                                                                                                  0.0
             988
                     954
                                  783
                                              0.867421
                                                                46451.0
                                                                                                  0.0
            65 rows × 8 columns
```

Above we can simple replace NaN value in credit_limit column with credit_limit_mode value. This value indicates most frequently occurring credit limit for a given credit_score_range. Hence it can be used as a replacement value.

We will create a new copy of the dataframe so that we have reproducibility and access of the older dataframe in this notebook 25%

50%

75%

max

250.750000

500.500000

750.250000

1000.000000

Data Cleaning Step 3: Handle Outliers: outstanding_debt

```
df_cs_clean_3.describe()
Out[214]:
                         cust_id
                                  credit_score credit_utilisation
                                                                 outstanding_debt credit_inquiries_last_6_r
                     1000.000000
                                                    1000.000000
                                                                                                      1000.
              count
                                   1000.000000
                                                                       1000.000000
                      500.500000
                                                       0.498950
                                                                       9683.597000
              mean
                                    589.182000
                                                                                                          1.
                      288.819436
                                    152.284929
                                                       0.233139
                                                                      25255.893671
                std
                                                                                                          1.
                        1.000000
                                    300.000000
                                                       0.103761
                                                                         33.000000
                                                                                                         0.
               min
```

Outliers are there as max outstanding debt is more than credit limit which is not possible

0.293917

0.487422

0.697829

0.899648

221.000000

550.000000

11819.500000

209901.000000

```
In [215]: plt.figure(figsize=(12, 8))
    plt.boxplot(df_cs_clean_3.outstanding_debt)
    plt.show
```

Out[215]: <function matplotlib.pyplot.show(close=None, block=None)>

460.000000

601.500000

738.000000

799.000000

1.

2.

3.

4.

Out[216

Instead of using any statistical approach (such as standard deviation or IQR), here too we will use a business knowledge. We will mark any outstanding debt that is greater than credit limit as an outlier

In [216]: df_cs_clean_3[df_cs_clean_3.outstanding_debt > df_cs_clean_3.credit_limit]

]:		cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months
	6	39	734	0.573023	122758.0	3.0
	12	94	737	0.739948	137058.0	2.0
	35	272	703	0.446886	154568.0	1.0
	41	302	722	0.608076	122402.0	4.0
	101	726	737	0.136048	205404.0	4.0
	142	2	587	0.107928	161644.0	2.0
	363	205	303	0.364360	187849.0	0.0
	406	351	320	0.285081	150860.0	0.0
	474	637	420	0.323984	140063.0	4.0
	604	647	498	0.658087	128818.0	3.0
	609	724	465	0.658173	140008.0	3.0
	615	767	473	0.611750	195004.0	1.0
	684	20	647	0.439132	205014.0	3.0
	759	731	626	0.762245	209901.0	2.0
	788	26	758	0.250811	190838.0	2.0
	858	331	799	0.363420	208898.0	4.0
	877	447	754	0.178394	206191.0	2.0
	903	545	764	0.337769	135112.0	2.0
	930	699	775	0.385100	190717.0	2.0
	968	863	792	0.399555	208406.0	3.0
	4					•

We will replace these outliers with credit_limit. We can assume that there was some data processing error due to we got these high numbers and it is ok to replace them with a credit_limit

Out[218]:		cust_id	credit_score	credit_utilisation	outstanding_debt	credit_inquiries_last_6_months
	6	39	734	0.573023	40000.0	3.0
	12	94	737	0.739948	40000.0	2.0
	4					•

Outliers managed!

Data Exploration: Visualizing Correlation in Credit Score Table

	Data Exploration: Violatizing Contolation in Croal Cools Table									
	4									
In [220]:	df_	_cust.he	ead()							
Out[220]:		cust_id	name	gender	age	location	occupation	annual_income	marital_status	age_
	0	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
	1	2	Anjali Pandey	Female	47.0	City	Consultant	65172.0	Single	
	2	3	Aaryan Chauhan	Male	21.0	City	Freelancer	22378.0	Married	
	3	4	Rudra Bali	Male	24.0	Rural	Freelancer	33563.0	Married	
	4	5	Advait Malik	Male	48.0	City	Consultant	39406.0	Married	
	4									•
In [221]:	_	_merged _merged	_	st.merg	e(df_	_cs_clea	n_3,on=' <mark>cu</mark>	st_id',how='i	nner')	
Out[221]:		cust_id	name	gender	age	location	occupation	annual_income	marital_status	age_
	0	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
	1	2	Anjali Pandey	Female	47.0	City	Consultant	65172.0	Single	
	2	3	Aaryan Chauhan	Male	21.0	City	Freelancer	22378.0	Married	
	3	4	Rudra Bali	Male	24.0	Rural	Freelancer	33563.0	Married	
	4	5	Advait Malik	Male	48.0	City	Consultant	39406.0	Married	
	4									•
In [222]:	df_	_merged	[['outsta	anding_	debt'	,'credi	t_limit']]	.corr() #stro	ngly correla	ted
Out[222]:			OU	tstanding	n deht	crodit li	mit			
				- Cotaniani	<u></u>	<u> </u>	<u>. </u>			

0.810581

1.000000

credit_limit

Now we will caluclate the correlations between all the numeric columns using heatmap

You can see a high correlation between credit limit and credit score (~0.85)

Also credit limit and annual income has a high correlation.

This correlation table can be used for further analysis. It shows if one variable has relationship with the other variable

Transactions Table

n [225]:	df	_transa	ct.head	()				
ut[225]:	225]: tran_id cust		cust_id	t_id tran_date tran_am		ount platform product_categ		payment_type
	0	1	705	2023-01-01	63	Flipkart	Electronics	Phonepe
	1	2	385	2023-01-01	99	Alibaba	Fashion & Apparel	Credit Card
	2	3	924	2023-01-01	471	Shopify	Sports	Phonepe
	3	4	797	2023-01-01	33	Shopify	Fashion & Apparel	Gpay
	4	5	482	2023-01-01	68	Amazon	Fashion & Apparel	Net Banking

In [226]: df_transact.describe()

Out[226]:

	tran_id	cust_id	tran_amount
count	500000.000000	500000.000000	500000.00000
mean	250000.500000	501.400428	3225.20733
std	144337.711634	288.641924	13098.74276
min	1.000000	1.000000	0.00000
25%	125000.750000	252.000000	64.00000
50%	250000.500000	502.000000	141.00000
75%	375000.250000	752.000000	397.00000
max	500000.000000	1000.000000	69999.00000

Data Cleaning Step 1: Handle NULL Values: platform column

platform has a lot of null values. Let's check them further

In [228]: df_transact[df_transact.platform.isna()]

$\cap \cdot \cdot +$	าาด	
UILL	1 Z Z O	

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
355	356	58	2023-01- 01	237	NaN	Electronics	Net Banking
418	419	383	2023-01- 01	338	NaN	Electronics	Credit Card
607	608	421	2023-01- 01	700	NaN	Electronics	Phonepe
844	845	945	2023-01- 01	493	NaN	Sports	Credit Card
912	913	384	2023-01- 01	85	NaN	Fashion & Apparel	Phonepe
499579	499580	924	2023-09- 05	31	NaN	Fashion & Apparel	Gpay
499646	499647	944	2023-09- 05	58445	NaN	Fashion & Apparel	Phonepe
499725	499726	620	2023-09- 05	15	NaN	Sports	Net Banking
499833	499834	616	2023-09- 05	97	NaN	Fashion & Apparel	Credit Card
499997	499998	57	2023-09- 05	224	NaN	Garden & Outdoor	Phonepe

4941 rows × 7 columns

In [229]: df_transact.platform.value_counts()

Out[229]: Amazon

Amazon 151443 Flipkart 122660 Alibaba 73584 Meesho 73271 Shopify 39416 Cred 24741 Ebay 9944

Name: platform, dtype: int64

We know that Amazon is the platform that users use the most. but still we will see for each category which platform is used the most with the help of count plot

In [230]: sns.countplot(y = 'product_category', hue = 'platform', data = df_transact)
plt.plot() #Amazon is the highestselling in each platform sowe will replace

Out[230]: []


```
In [231]: df_transact.platform.fillna(df_transact.platform.mode()[0],inplace = True)
```

In [232]: df_transact.isnull().sum()

dtype: int64

Data Cleaning Step 2: Treat Outliers: tran_amount

In [233]: df_transact.describe()#minimum transaction amount cannot be 0

Out[233]:

	tran_id	cust_id	tran_amount
count	500000.000000	500000.000000	500000.00000
mean	250000.500000	501.400428	3225.20733
std	144337.711634	288.641924	13098.74276
min	1.000000	1.000000	0.00000
25%	125000.750000	252.000000	64.00000
50%	250000.500000	502.000000	141.00000
75%	375000.250000	752.000000	397.00000
max	500000.000000	1000.000000	69999.00000

```
df_transact_zero = df_transact[df_transact.tran_amount == 0]
In [234]:
In [235]: df_transact_zero.shape
Out[235]: (4734, 7)
In [236]: df_transact_zero.head()
Out[236]:
                 tran_id cust_id
                                 tran_date tran_amount
                                                       platform product_category
                                                                                 payment_type
            120
                    121
                            440
                                2023-01-01
                                                        Amazon
                                                                      Electronics
                                                                                   Credit Card
            141
                    142
                           839
                                2023-01-01
                                                        Amazon
                                                                      Electronics
                                                                                   Credit Card
            517
                    518
                            147 2023-01-01
                                                        Amazon
                                                                      Electronics
                                                                                   Credit Card
                                                                                   Credit Card
            533
                    534
                           891
                                2023-01-01
                                                     0
                                                        Amazon
                                                                      Electronics
            586
                    587
                            108 2023-01-01
                                                                                   Credit Card
                                                        Amazon
                                                                      Electronics
           df_transact_zero[['platform','product_category','payment_type']].value_coun
In [237]:
Out[237]: platform
                      product_category payment_type
           Amazon
                      Electronics
                                           Credit Card
                                                             4734
           dtype: int64
           It appears that when platform=Amazon, product_category=Eletronics and
           payment type=Credit Card, at that time we get all these zero transactions. We need to find
           other transactions in this group and find its median to replace these zero values. We are not
           using mean because we can see some outliers as well in this column
In [238]:
           df_transact1= df_transact[(df_transact.platform == 'Amazon') & (df_transact
           median_value =df_transact1[df_transact1.tran_amount > 0].tran_amount.median
In [239]:
           median value
Out[239]: 554.0
           df_transact.tran_amount.replace(0,median_value,inplace = True)
```

In [241]: df_transact.describe()

Out[241]:

	tran_id	cust_id	tran_amount
count	500000.000000	500000.000000	500000.000000
mean	250000.500000	501.400428	3230.452602
std	144337.711634	288.641924	13097.561071
min	1.000000	1.000000	2.000000
25%	125000.750000	252.000000	66.000000
50%	250000.500000	502.000000	146.000000
75%	375000.250000	752.000000	413.000000
max	500000.000000	1000.000000	69999.000000

In [242]: sns.histplot(df_transact.tran_amount,bins =30) #rightly skewed

Out[242]: <AxesSubplot:xlabel='tran_amount', ylabel='Count'>

In [243]: sns.histplot(df_transact[df_transact.tran_amount<10000].tran_amount,bins=30</pre>

Out[243]: <AxesSubplot:xlabel='tran_amount', ylabel='Count'>


```
In [244]: Q1,Q3 = df_transact.tran_amount.quantile([0.25,0.75])
```

In [245]: IQR = Q3 - Q1 IQR

Out[245]: 347.0

SO THE BUSINESS MANAGER TOLD TO USE 2 INSTEAD OF 1.5 FOR IQR

In [246]: upper = Q3 + 2*IQR
lower = Q1 - 2*IQR
upper,lower

Out[246]: (1107.0, -628.0)

In [247]: df_transact_outlier =df_transact[df_transact.tran_amount >= upper]

In [248]: df_transact_outlier.shape #25000 is outliers so we have to deal with outlie

Out[248]: (25000, 7)

In [249]: df_transact_outlier.head()

Out[249]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
26	27	380	2023-01- 01	61963	Shopify	Beauty & Personal Care	Credit Card
49	50	287	2023-01- 01	57869	Amazon	Toys & Games	Gpay
94	95	770	2023-01- 01	52881	Ebay	Kitchen Appliances	Credit Card
104	105	549	2023-01- 01	58574	Flipkart	Fashion & Apparel	Gpay
113	114	790	2023-01- 01	51669	Shopify	Kitchen Appliances	Credit Card

In [250]: df_transact.head()

Out[250]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
0	1	705	2023-01-01	63	Flipkart	Electronics	Phonepe
1	2	385	2023-01-01	99	Alibaba	Fashion & Apparel	Credit Card
2	3	924	2023-01-01	471	Shopify	Sports	Phonepe
3	4	797	2023-01-01	33	Shopify	Fashion & Apparel	Gpay
4	5	482	2023-01-01	68	Amazon	Fashion & Apparel	Net Banking

In [251]: df_transact_normal = df_transact[df_transact.tran_amount <= upper]</pre>

In [252]: category_mean = df_transact_normal.groupby('product_category')['tran_amount category_mean

Out[252]: product_category

Beauty & Personal Care 92.167205 **Books** 29.553515 510.172685 Electronics Fashion & Apparel 64.553463 Garden & Outdoor 125.630277 Home Decor 302.487561 Kitchen Appliances 176.773288 Sports 269.181631 Toys & Games 50.333298 Name: tran_amount, dtype: float64

In [253]: | df_transact['tran_amount'] = df_transact.apply(lambda row : category_mean[row['product_category']] if row['tran_amount

In [254]: df_transact.iloc[[26]]

Out[254]: tran_id cust_id tran_date tran_amount platform

product_category payment_type 2023-01-Beauty & Personal 27 380 26 92.167205 Credit Card Shopify 01 Care

df_transact.head() In [255]:

Out[255]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
0	1	705	2023-01-01	63.0	Flipkart	Electronics	Phonepe
1	2	385	2023-01-01	99.0	Alibaba	Fashion & Apparel	Credit Card
2	3	924	2023-01-01	471.0	Shopify	Sports	Phonepe
3	4	797	2023-01-01	33.0	Shopify	Fashion & Apparel	Gpay
4	5	482	2023-01-01	68.0	Amazon	Fashion & Apparel	Net Banking

In [256]: sns.histplot(df_transact.tran_amount,kde = True, bins =20)

Out[256]: <AxesSubplot:xlabel='tran_amount', ylabel='Count'>

Without removing outliers we managed it and now the graph is good (rightly skewed)

```
In [257]: df_transact.shape
Out[257]: (500000, 7)
```

Data Visualization: Payment Type Distribution

In [258]: df_transact.head()

Out[258]:

	tran_id	cust_id	tran_date	tran_amount	platform	product_category	payment_type
0	1	705	2023-01-01	63.0	Flipkart	Electronics	Phonepe
1	2	385	2023-01-01	99.0	Alibaba	Fashion & Apparel	Credit Card
2	3	924	2023-01-01	471.0	Shopify	Sports	Phonepe
3	4	797	2023-01-01	33.0	Shopify	Fashion & Apparel	Gpay
4	5	482	2023-01-01	68.0	Amazon	Fashion & Apparel	Net Banking

In [259]: sns.countplot(x='payment_type', data=df_transact)
 plt.xticks(rotation=45)
 plt.show()


```
In [260]: df_merged_2 = pd.merge(df_cust,df_transact,on='cust_id',how ='inner')
df_merged_2.head()
```

Out[260]:

	cust_id	name	gender	age	location	occupation	annual_income	marital_status	age_
0	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
1	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
2	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
3	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
4	1	Manya Acharya	Female	51.0	City	Business Owner	358211.0	Married	
4									•

```
In [261]: sns.countplot(x= 'age_group',hue = 'payment_type', data =df_merged_2)
    plt.title('Distribution of Payment across different Age groups')
    plt.xlabel('Age Group')
    plt.ylabel('count')
    plt.legend(title= 'Payment Type',loc = 'upper right')
    plt.show()
```


From above analysis, we can see that age group 18-25 has less exposure to credit cards compared to other groups

```
In [262]: sns.countplot(x= 'age_group',hue = 'platform', data =df_merged_2)
    plt.title('Platform used across different Age groups')
    plt.xlabel('Age Group')
    plt.ylabel('Count')
    plt.legend(title= 'Payment Type',loc = 'upper right')
    plt.show()
```



```
In [263]: sns.countplot(x= 'age_group',hue = 'product_category', data =df_merged_2)
    plt.title('Product Category used across different Age groups')
    plt.xlabel('Age Group')
    plt.ylabel('Count')
    plt.legend(title= 'Product Category',loc = 'upper right')
    plt.show()
```


Observations:

- 1. Top 3 purchasing categories of customers in age group (18 -25): Electronics, Fashion & Apparel, Beauty & personal care
- 2. Top platforms: Amazon, Flipkart, Alibaba

Data Visualization: Average Transaction Amount

```
In [264]:
         # List of categorical columns
          cat_cols = ['payment_type', 'platform', 'product_category', 'marital_status
          num_rows = 3
          # Create subplots
          fig, axes = plt.subplots(num_rows, 2, figsize=(12, 4 * num_rows))
          # Flatten the axes array to make it easier to iterate
          axes = axes.flatten()
          # Create subplots for each categorical column
          for i, cat_col in enumerate(cat_cols):
              # Calculate the average annual income for each category
              avg_tran_amount_by_category = df_merged_2.groupby(cat_col)['tran_amount
              # Sort the data by 'annual_income' before plotting
              sorted data = avg tran amount by category.sort values(by='tran amount',
              sns.barplot(x=cat_col, y='tran_amount', data=sorted_data, ci=None, ax=a
              axes[i].set_title(f'Average transaction amount by {cat_col}')
              axes[i].set_xlabel(cat_col)
              axes[i].set_ylabel('Average transaction amount')
              # Rotate x-axis labels for better readability
              axes[i].set_xticklabels(axes[i].get_xticklabels(), rotation=45)
          # Hide any unused subplots
          for i in range(len(cat_cols), len(axes)):
              fig.delaxes(axes[i])
          plt.tight_layout()
          plt.show()
```


Further Analysis On Age Group

Let us do further analysis on age group to figure out their average income, credit limit, credit score etc

In [265]:

Group the data by age group and calculate the average credit_limit and cr
age_group_metrics = df_merged.groupby('age_group')[['annual_income', 'credi
age_group_metrics

Out[265]:

_		age_group	annual_income	credit_limit	credit_score
	0	18-25	37091.235772	1130.081301	484.451220
	1	26-48	145869.623457	20560.846561	597.569665
	2	49-65	260165.925134	41699.197861	701.524064

```
# Create subplots
In [266]:
          fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4))
          # Plot 1: Average annual income by age group
          sns.barplot(x='age_group', y='annual_income', data=age_group_metrics, palet
          ax1.set_title('Average Annual Income by Age Group')
          ax1.set_xlabel('Age Group')
          ax1.set_ylabel('Average Annual Income')
          ax1.tick_params(axis='x', rotation=0)
          # Plot 2: Average Max Credit Limit by Age Group
          sns.barplot(x='age_group', y='credit_limit', data=age_group_metrics, palett
          ax2.set_title('Average Credit Limit by Age Group')
          ax2.set_xlabel('Age Group')
          ax2.set_ylabel('Average Credit Limit')
          ax2.tick_params(axis='x', rotation=0)
          # Plot 3: Average Credit Score by Age Group
          sns.barplot(x='age_group', y='credit_score', data=age_group_metrics, palett
          ax3.set_title('Average Credit Score by Age Group')
          ax3.set_xlabel('Age Group')
          ax3.set_ylabel('Average Credit Score')
          ax3.tick_params(axis='x', rotation=0)
          plt.tight_layout()
          plt.show()
```


Finalize Target Market For a Trial Credit Card Launch

Targeting Untapped market

- 1. People with age group of 18 -25 accounts to ~26% of customer base in the data
- 2. Avg annual income of this group is less than 50k
- 3. They don't have much credit history which is getting reflected in their credit score and credit limit
- 4. Usage of credit cards as payment type is relatively low compared to other groups
- Top 3 most shopping products categories : Electronics, Fashion & Apparel, Beauty & Personal care

Phase 2: AtliQ0 Bank Credit Card Project

Business Analysis and launch of AB testing: Targeting Untapped Market (18 - 25 age group)

```
In [267]: import statsmodels.stats.api as sms
    import statsmodels.api as sm
    import pandas as pd
    import numpy as np
    from matplotlib import pyplot as plt
    from scipy import stats as st
    import seaborn as sns
In [268]: alpha = 0.05 # 5% significance
    power = 0.8 #statistical power
```

```
In [268]: alpha = 0.05 # 5% significance
    power = 0.8 #statistical power
    effect_size = 0.2

sms.tt_ind_solve_power(
    effect_size = effect_size,
    alpha=alpha,
    power = power,
    ratio = 1,
    alternative = 'two-sided') #for finding the sample size with the parameter
```

Out[268]: 393.4056989990322

For effect size 2 we need 393 customers. We have to keep in mind budgeting restrictions while running this campaign hence let us run this for different effect sizes and discuss with business to find out which sample size would be optimal

But the product manager wants less number of people as there are some budget constraints as well

```
In [269]: alpha = 0.05 # 5% significance
power = 0.8 #statistical power

effect_sizes = [0.2,0.3,0.4,0.5,1]
for effect in effect_sizes:
    sample_size = sms.tt_ind_solve_power(
        effect_size=effect,
        alpha=alpha,
        power=power,
        ratio=1,
        alternative='two-sided'
    )
    print(f"Effect Size {effect} has {sample_size:.2f} customers")

Effect Size 0.2 has 393.41 customers
```

Effect Size 0.3 has 175.38 customers Effect Size 0.4 has 99.08 customers Effect Size 0.5 has 63.77 customers Effect Size 1 has 16.71 customers Based on business requirements, the test should be capable of detecting a minimum 0.4 standard deviation difference between the control and test groups. For the effect size 0.4, we need 100 customers and when we discussed with business, 100 customers is ok in terms of their budgeting constraints for this trail run

Forming control and test groups

- 1.We have identified approximately 246 customers within the age group of 18 to 25. From this pool, we will select 100 customers for the initial campaign launch.
- 2. The campaign is launched for 100 customers, as determined by the effective size calculation and by considering budgeting costs, and will run campaign for a duration of 2 months
- 3.Got a conversion rate of ~40% (implies 40 out of 100 customers in test group started using credit card)
- 4.To maintain a similar sample size, a control group consisting of 40 customers will be created. Importantly, this control group will be completely exclusive of initial 100 customers used as test group.
- 5.So now we have 40 customers in each of control and test groups

At the end of the 2-month campaign period (from 09-10-23 to 11-10-23), we obtained daily data showing the average transaction amounts made by the entire group of 40 customers in both the control and test groups using existing and newly launched credit cards respectively

The key performance indicator (KPI) for this AB test aims to enhance average transaction amounts facilitated by the new card

(2) Post-Campaign

Two Sample Z Test for Our Hypothesis Testing

In [270]:	<pre>df_post = pd.read_csv('Datasets/avg_transactions_after_campaign.csv') df_post.head()</pre>							
In [271]:								
Out[271]:		campaign_date	control_group_avg_tran	test_group_avg_tran				
	0	2023-09-10	259.83	277.32				
	1	2023-09-11	191.27	248.68				
	2	2023-09-12	212.41	286.61				
	3	2023-09-13	214.92	214.85				
	4	2023-09-14	158.55	344.08				

In [272]: df_post.shape

Out[272]: (62, 3)

In [273]: sns.histplot(df_post.control_group_avg_tran ,kde=True)

Out[273]: <AxesSubplot:xlabel='control_group_avg_tran', ylabel='Count'>

In [274]: sns.histplot(df_post.test_group_avg_tran ,kde=True)

Out[274]: <AxesSubplot:xlabel='test_group_avg_tran', ylabel='Count'>

Definiing hypothesis:

- 1.)Null Hypothesis: our old credit card has more transactions and performing well(meanof c > mean of t).
- 2.)Alternate hypothesis : our new credit card has more transactions and performing well (mean of t > mean of c),

```
In [275]:
          #for control group
          control_mean1 = df_post["control_group_avg_tran"].mean()
          control_std = df_post.control_group_avg_tran.std()
          shape = df_post.shape[0]
          control_mean1,control_std,shape
Out[275]: (221.1751612903226, 21.359192112027014, 62)
In [276]: #for test_group
          test_mean = df_post.test_group_avg_tran.mean()
          test_std = df_post.test_group_avg_tran.std()
          test_mean,test_std
Out[276]: (235.98354838709682, 36.65808210918637)
In [277]: | a = control_std**2/ shape
          b = test_std **2/ shape
          a,b
Out[277]: (7.358307865781887, 21.67443522457822)
In [278]: | z_score = ( test_mean - control_mean1) / np.sqrt(a+b)
In [279]: z_score
Out[279]: 2.748297374569119
In [280]: alpha = 0.05
          z_critical = st.norm.ppf(1 - alpha)
          z critical
Out[280]: 1.6448536269514722
In [281]: z score>z critical # null hypothesis is rejected
Out[281]: True
```

The analysis validated the new credit card's performance, and can now be confidently introduced to the market.