Тест 3 по курсу «Байесовский выбор моделей»

Время выполнения: 30 минут Максимальный балл: 50 баллов

Задача (50 баллов). Пусть имеется НОР (i.i.d.) выборка x_1, \ldots, x_n из смеси нормальных распределений с одинаковым мат. ожиданием и разными дисперсиями, то есть $x_i \sim \sum_{i=1}^K \pi_i \mathcal{N}(m, \sigma_i^2)$, где K – фиксированная постоянная. Введем априорные распределения на m и σ_i^2 вида

$$m \sim \mathcal{N}(m_0, \sigma_0^2), \frac{1}{\sigma_i^2} \sim \Gamma(\alpha_i, \beta_i),$$

где $\alpha_i,\ \beta_i,\ m_0,\ \sigma_0^2$ – известные гиперпараметры.

- а) Выписать совместное правдоподобие модели $p(\mathbf{x}, m, \sigma_1^2 | \boldsymbol{\alpha}, \boldsymbol{\beta}, m_0, \sigma_0, \boldsymbol{\pi})$ (2 балла);
- б) Выписать $p(m, \sigma^2 | \mathbf{x}, \alpha, \beta, m_0, \sigma_0, \pi)$ с точностью до постоянной. Принадлежит ли оно известному параметрическому семейству (2 балла)?
- в) Ввести матрицу скрытых переменную \mathbf{Z} с $z_{jk}=1$ дающим принадлежность объекта j к компоненте смеси k. Выписать совместное правдоподобие модели $p(\mathbf{x}, m, \boldsymbol{\sigma}^2, \mathbf{Z} | \boldsymbol{\alpha}, \boldsymbol{\beta}, m_0, \sigma_0, \boldsymbol{\pi})$ со скрытой переменной (3 балла);
- г) Получить вариационное приближение $q(m, \sigma^2, \mathbf{Z}) = q(m)q(\mathbf{Z})q(\sigma^2)$ для полного апостериорного распределения $p(m, \sigma^2, \mathbf{Z}|\mathbf{x}, \alpha, \beta, m_0, \sigma_0, \pi)$ при известном векторе весов компонент в смеси π (13 баллов). Что мешает успешно применить обычный ЕМ-алгоритм (2 балла)?
- д) Найти наиболее обоснованные значения весов компонент смеси π , решив задачу (20 баллов)

$$p(\mathbf{x}|\boldsymbol{\alpha}, \boldsymbol{\beta}, m_0, \sigma_0, \boldsymbol{\pi}) \to \max_{\boldsymbol{\pi}}.$$

Дает ли полученный π^* модель с наибольшей апостериорной плотностью вероятности (1 балл)? Как можно проинтерпретировать полученное выражение для π (2 балла)? Что нужно изменить в модели, чтобы «поощрить разреженность», то есть исключение избыточных компонент из смеси (5 баллов)?

Замечание: В формулировке выше векторы σ , α , β комбинируют соответствующие значения по компонентам, например, $\sigma = [\sigma_1, \ldots, \sigma_K]^\mathsf{T}$.