1. Proceso Estocastico

• Coleccion de variables aleatorias indexadas por un parametro (en general tiempo)

$$\{X(t)\}_{t\in T}$$

T: Tiempo discreto o continuo

E: Espacio de estados \rightarrow Valores posibles de X(t)

1.1. Simplificaciones utiles

· Procesos estacionarios

Las probabilidades son independientes del tiempo

Las reglas del juego no dependen del momento en que empezamos

$$f(x_1, t_1 + \Delta t, x_2, t_2 + \Delta t, ...) = f(x_1, t_1, x_2, t_2, ...)$$

• Incrementos independientes

Los cambios en intervalos de tiempo no solapados son independientes

• Incrementos estacionarios

Las distribuciones de los incrementos solo dependen del tamaño del intervalo, no del momento

1.2. Procesos de Markov

El futuro depende solo del presente, no de todo el pasado

$$P(X(t_n) = x_n | X(t_{n-1}) = x_{n-1}, ..., X(t_1) = x_1) = P(X(t_n) = x_n | X(t_{n-1}) = x_{n-1})$$

Se ignora el pasado, solo te importa el lugar final

• En tiempos discretos:

$$p(x_3,t_3|x_1,t_1) = \sum_{x_2} p(x_3,t_3|x_2,t_2).p(x_2,t_2|x_1,t_1)$$

1.2.1. Cadenas de Markov

Son procesos de Markov con espacio de estados discreto:

- 1. Distribucion inicial $p_{j(0)}$
- 2. Matriz de transicion P, donde cada elemento p_{ij} es:

$$p_{ij} = P\big(X_{n+1} = s_j | X_n = s_i\big)$$

• Evolcion/Paso:

$$\vec{p}(n+1) = \vec{p}(n).P$$

• Si es homogenea (transiciones no dependen de n):

$$\vec{p}(n) = \vec{p}(0).P^n$$

• Existe un estado estacionario si:

$$\pi = \pi P$$

Se resuelve el sistema con la condicion inicial:

$$\sum \pi_i = 1$$

Nota a π se lo llama "autovector" a izquierda porque multiplica a la matriz desde la izquierda y "a 1" porque en ese calculo $\lambda = 1$ (deberia estar multiplicando a π)

• Estados de una cadena de Markov

Hacer grafo de estados para este ejercicio

- Accesible: Existe camino de un estado al otro
- Irreducible: Todos se comunican (comunicar: Si puedo llegar de A a B entonces puedo llegar de B
- **Recurrente**: Vuelve seguro
- Transitorio: Puede que no vuelva al estado inicial
- · Periodico/Aperiodico
- Regular: Algun P^n tiene todas sus entradas positivas

1.3. Random Walk (Caminata aleatoria)

- $X_n = \sum_{k=1}^n Z_k$ Los Z_k son va. i.i.d.
- Si $Z_k \in \{-1, 1\}$, es el caso simple:
 - $E[Z_k] = 0, V[Z_k] = 1$
 - $E[X_n] = 0, V[X_n] = n$
- Si Z_k generalizado, calcular $E[Z_k], V[Z_k]$, y luego:
 - $\bullet \ E[X_n] = nE[Z_k]$
 - $V[X_n] = nV[Z_k]$

Posibles recorridos de random walks:

IMPORTANTE: tener en cuenta que cuando la caminata es binaria no puedo moverme 0 pasos, si o si +10-1

- Binaria(± 1): $R_{X_n} = \{-n, -n+2, -n+4, ..., n-2, n\}$
- Multivaluada(los pasos pueden ser de mayor modulo que 1): Todas las sumas posibles de n incrementos

1.3.1. Random walk continua

Gaussiana: $X_n \sim N(n\mu, n\sigma^2)$ (su recorrido es $\mathbb R$)

1.4. Procesos de Poisson

- **Proceso estocastico** uso:→ arribos, fallas, particulas
 - λ : Eventos por unidad de tiempo \Rightarrow Tiempo entre eventos sucesivos $T_i \sim$ Exponencial (λ)

Cumple con...

- 1. Incrementos independientes
- 2. Incrementos estacionarios
- 3. La probabilidad de 1 evento en $\Delta t \approx \lambda \Delta t$ (leer que es lambda)
- 4. La probabilidad de 2 o mas eventos en Δt es despreciable
- Distribucion:

$$P(N(t) = k) = \frac{(\lambda t)^k}{k!} e^{-\lambda t}$$

$$N(t) \sim \text{Pois}(\lambda t)$$

• Los tiempos entre eventos son exponenciales con parametro λ

1.5. Tiempo hasta absorcion

• Si algunos estados son absorbentes, sse trabaja con una particion de la matriz:

$$P = \begin{pmatrix} I & 0 \\ F & Q \end{pmatrix}$$

$$M = (I - Q)^{-1}$$

- Probabilidades de absorcion ${\cal G}=M{\cal F}$