CLASE 2 - 17/02/2025

Matrices semejantes

Aplicaciones

1. La definición de matriz semejante es muy útil a la hora de calcular potencias; sean A,B dos matrices semejantes, entonces:

•
$$B^2 = (P^{-1}AP)(P^{-1}AP) = P^{-1}A^2P$$

En general:

•
$$B^n = P^{-1}A^nP \quad \forall n \ge 1$$

Esto puede ser útil cuando tenemos que alguna de las dos matrices A, B tiene una forma más sencilla de elevar (por ejemplo que alguna sea diagonal)

Teorema

Sea $A,B\in\mathcal{M}_{n\times n}$; decimos que A,B son semejantes sii:

 $\exists T: V \to V$; con dim(V) = n y bases $\mathcal{C}, \mathcal{C}'$ tales que:

$$A = {}_{\mathcal{C}}(T)_{\mathcal{C}} \quad B = {}_{\mathcal{C}'}(T)_{\mathcal{C}'}$$

Demostración En el libro rojo

Teorema

Si $A,B\in\mathcal{M}_{n\times n}$ son matrices semejantes. Entonces:

- 1. rg(A) = rg(B)
- 2. tr(A) = tr(B)
- 3. det(A) = det(B)

Demostración

PARTE 1 Por el anterior teorema, como A,B son semejantes, entonces: $\exists T:V\to V$ y bases C,C' tal que: $A={}_{\mathcal{C}}(T)_{\mathcal{C}}$ y $B={}_{\mathcal{C}'}(T)_{\mathcal{C}'}$

Entonces:

- $rg(A) = rg(_{\mathcal{C}}(T)_{\mathcal{C}}) = dim(Im(T))$
- $\bullet \ rg(B) = rg\left(_{\mathcal{C}'}(T)_{\mathcal{C}'} \right) = dim(Im(T))$

Por lo tanto:

$$\Rightarrow rg(A) = rg(B)$$

PARTE 2 Recordatorio: 1. La traza es la suma de los elementos de la diagonal de la matriz $2.\ tr(AB)=tr(BA)$

Veamos que:

$$tr(B)=tr(P^{-1}AP)=tr(AP^{-1}P)=tr(A)$$

1

PARTE 3: Recordatorio: $det(AB) = det(A) \cdot det(B)$

Entonces:

$$det(B) = det(P^{-1}AP) = det(P^{-1}) \cdot det(A) \cdot det(P) = det(A)$$

Observación El reciproco NO es cierto, veamos un ejemplo:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 y
$$B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Veamos que:

- rq(A) = rg(B)
- tr(A) = tr(B)
- det(A) = det(B)

Supongamos que SI son semejantes, es decir que: $\exists P$ tal que:

$$B = P^{-1}AP = (I)$$

Pero $B \neq (I)$, entonces esto es absurdo.

Valores y vectores propios

Definición

Sea V un espacio vectorial sobre $\mathbb{K} \mid (\mathbb{R} \circ \mathbb{C})$ y una transformación lineal $T:V \to V$. Decimos que un vector $v \in V, v \neq \vec{0}$ es **vector propio** de T si existe $\lambda \in \mathbb{K}$ tal que:

$$T(v) = \lambda v$$

Decimos que v es un vector propio asociado al valor propio λ

Ejemplo Sea $T:\mathbb{R}^2\to\mathbb{R}^2$ definida por T(x,y)=(-2x+y,6x-y). Veamos que se cumple que:

- T(1,3) = (1,3)
- T(1,-2) = (-4,8) = (-4)(1,-2)

Entonces:

- (1,3) es vep de T asociado a $\lambda=1$
- (1,-2) es **vep** de T asociado a $\lambda=-4$

Definición (subespacio propio)

Sea $T:V\to V$ un operador líneal, con λ un valor propio de T. Se define el subespacio propio asociado a λ de la siguiente forma:

$$S_{\lambda} = \{ v \in V : T(v) = \lambda v \}$$

${\bf Proposici\'on} \quad S_{\lambda} \ {\rm es \ un \ subespacio \ vectorial \ de \ } V$

Demostración

• $\vec{0} \in S_{\lambda} \quad (S_{\lambda} \neq \emptyset)$ • Si $v \in S_{\lambda}, \alpha \in \mathbb{K}$ entonces $T(\alpha v) = \alpha T(v) = \alpha \lambda v = \lambda(\alpha v)$. Entonces $\alpha v \in S_{\lambda}$ • Si $v, w \in S_{\lambda}$ entonces: $T(v+w) = T(v) + T(w) = \lambda v + \lambda w = \lambda(v+w)$. Entonces $(v+w) \in S_{\lambda}$

Entonces S_{λ} es un subespacio vectorial de ${\cal V}$

Observación
$$S_{\lambda} = Ker(T - \lambda \mathbb{I})$$

Demostración Tenemos que:

$$\begin{split} v \in S_{\lambda} &\iff \\ T(v) = \lambda v &\iff \\ T(v) - \lambda v = 0 &\iff \\ (T - \lambda \mathbb{I})(v) = 0 &\iff \\ v \in Ker(T - \lambda \mathbb{I}) \end{split}$$