Basic Operators

Symbol	Meaning	Example
sg(x)	Sign function	sg(0) = 1, $sg(x) = 0$ for $x > 0$
s g (x)	Complemented sign	$s\overline{g}(0) = 0$, $s\overline{g}(x) = 1$ for $x > 0$
μу	Minimization operator	$\mu y.P(y) = least y where P(y) holds$
x-y	Absolute difference	5-3 = 2
rm(x,y)	Remainder	rm(7,3) = 1
qt(x,y)	Quotient	qt(7,3) = 2
	Monus (truncated subtraction)	x - y = max(0, x-y)

Case Function Notation

Standard Form

```
f(x) = {
   value1 if condition1
   value2 if condition2
   ... otherwise
}
```

Minimization Form

For converting conditions:

```
x = y becomes sg(|x-y|)
```

- x > y becomes $s\overline{g}(y-x)$
- $x \ge y$ becomes $s\overline{g}(y-x-1)$
- x divides y becomes sg(rm(y,x))

Boolean Operations in Minimization

Operation	Minimization Form
AND	Multiplication (*)

Operation	Minimization Form
OR	Addition with sg
NOT	Complement using sg
x = y	sg(x-y)
x > y	s g (y-x)
x≥y	s g (y-x-1)

Common Patterns

Equality Test

```
f(x) = {
    1 if x = y
    0 otherwise
}
```

Minimization: sg(|x-y|)

Greater Than

```
f(x) = {
    1 if x > y
    0 otherwise
}
```

Minimization: $s\overline{g}(y-x)$

Divisibility

```
f(x) = {
    1 if x divides y
    0 otherwise
}
```

Minimization: sg(rm(y,x))

Function Composition

When combining multiple cases:

```
f(x) * condition1 + g(x) * condition2 + h(x) * condition3
```

where conditions are expressed using sg and $s\overline{g}$

Special Cases

Finite Domain

When function is defined only for certain values:

```
f(x) = value * sg(|x-target|)
```

Threshold Functions

For functions with different behavior above/below threshold:

```
f(x) = value1 * sg(threshold-x) + value2 * sg(threshold-x)
```