Game Theory: Homework

Caio Figueiredo

December 4, 2019

1 Question 1

1.1 (a)

We can rewrite $V(\mu)$ as:

$$V(\mu) = (1 - \delta)V^*(\mu)$$

$$V^*(\mu) = \max_{a \in \{0,1\}} \{ (\mathbb{E}(y_t) - \frac{1}{2})a + \delta \mathbb{E}(V^*(\mu')) \}$$

$$= \max_{a \in \{0,1\}} \{ (\frac{1}{2}\mu - \frac{1}{4})a + \delta \mathbb{E}(V^*(\mu')) \}$$
(1)

where:

$$\mu' = \mu \text{ if } a = 0$$

$$\mu' = \frac{\frac{3}{4}\mu}{\frac{1}{4} + \frac{1}{2}\mu} \text{ if } a = 1, y = 1$$

$$\mu' = \frac{\frac{1}{4}\mu}{\frac{3}{4} - \frac{1}{2}\mu} \text{ if } a = 1, y = 0$$

Now we can use the standard Recursive Dynamic proof, define:

$$T(f)(x) = \max_{a \in \{0,1\}} \{ (\frac{1}{2}\mu - \frac{1}{4})a + \delta f(\mu') \}$$

T maps weakly increasing functions in weakly increasing functions because μ' is strictly increasing in μ and $(\frac{1}{2}\mu - \frac{1}{4})a$ is strictly increasing as long as a = 1 and constant as long as a = 0.

Therefore by the Contraction Mapping Theorem the fix point of T, which is V^* , is weakly increasing. Moreover, since V^* is weakly increasing and $(1 - \delta) > 0$, then V is weakly increasing.

$1.2 \quad (b)$

First notice that we can use the same argument of (a) to show that V^* is continuous. Now notice that for $\mu = 0$, $\mu' = 0 \ \forall a, y$ and for $\mu = 1$, $\mu' = 1 \forall a, y$, therefore:

$$V^*(0) = \max_{a \in \{0,1\}} \left\{ -\frac{1}{4}a + \delta V^*(0) \right\} \qquad V^*(1) = \max_{a \in \{0,1\}} \left\{ \frac{1}{4}a + \delta V^*(1) \right\}$$

$$= \frac{\max_{a \in \{0,1\}} \left\{ -\frac{1}{4}a \right\}}{(1 - \delta)} \qquad \qquad = \frac{\max_{a \in \{0,1\}} \left\{ \frac{1}{4}a \right\}}{(1 - \delta)}$$

$$= 0 \qquad \qquad \qquad = \frac{1}{4(1 - \delta)} > 0$$

$$V(0) = 0 \qquad \qquad V(1) = \frac{1}{4}$$

Since V is weakly increasing that must be $\mu^* \ge 0$ such that for for all $0 \le \mu < \mu^*, V(\mu) = 0$, and for all $1 \ge \mu > \mu, V(\mu) > 0$.

Moreover, $0 \le \mu < \mu^*$, optimal a is 0 and for $\mu^* < \mu \le 1$, optimal a is 1. Since V^* is continuous at μ^* the agent is indifferent.

1.3 (c)

First notice that the statement is not true for $\mu = 1$, in this case the agent never update his belief and always choose a = 1.

However, for any other μ , such that $\mu^* < \mu < 1$, there exists finite number of bad signals in sequence that is enough to bring it down to a number below μ^* . To see that define: μ_0^n the belief after observing y = 0, n times in a row. It easy to show that:

$$\mu_0^n = \frac{\mu}{3^n - \sum_{i=0}^n (3^{i-1}2)\mu}$$

It is also simple to show that $\mu_0^n \to 0$ as $n \to \infty$. Therefore: we have for any $\epsilon > 0$, in particular, for $\epsilon = \mu^*, \exists n^* \in \mathbb{N}$ such that for any $n > n^*, \mu_0^n < \mu^*$.

We already stablish that once below μ^* the agent always choose a = 0, which implies he don't update his belief anymore and therefore always choose a = 0. Since n^* is a finite number the probability of observing the bad signal n^* times is positive and this part of the statement is proven.

We are left to prove that there is a probability that the belief never falls below μ^* .

I now define a new state:

$$s_t = (\# \text{ Good Signals}) - (\# \text{ Bad Signals})$$

Also define $P_{\infty}(s)$ as the probability that at state s the agent only plays a=1 forever. Notice that by the same argument as above, as $s \to \infty$ the belief goes to 1 and therefore $P_{\infty}(\infty) = 1$. We have:

$$P_{\infty}(s) = P(y=1)P_{\infty}(s+1) + P(y=0)P_{\infty}(s-1)$$

Which follows from the definition of P_{∞} . Moreover since $\theta=1$: $P(y=1)=\frac{3}{4}$ and $P(y=0)=\frac{1}{4}$. For simplification we further assume that the prior μ is such that at s=0 one bad return is enough to bring our belief below μ^* , which implies that $P_{\infty}(-1)=0$. This is WLOG because if the affirmation hold for a μ this low is must also holds for higher μ . Therefore:

$$\begin{split} P_{\infty}(0) &= \frac{3}{4} P_{\infty}(1) \\ &= \frac{3}{4} (\frac{3}{4} P_{\infty}(2) + \frac{1}{4} P_{\infty}(0)) \\ \frac{13}{16} P_{\infty}(0) &= \frac{9}{16} P_{\infty}(2) \end{split}$$
 Therefore:
$$P_{\infty}(1) &= \frac{4}{3} P_{\infty}(0) \\ P_{\infty}(2) &= \frac{13}{9} P_{\infty}(0) \end{split}$$

Moreover:

$$\begin{split} P_{\infty}(n) &= \frac{3}{4} P_{\infty}(n+1) + \frac{1}{4} P_{\infty}(n-1) \\ \frac{3}{4} P_{\infty}(n+1) &= P_{\infty}(n) - \frac{1}{4} P_{\infty}(n-1) \\ P_{\infty}(n+1) &= \frac{4}{3} P_{\infty}(n) - \frac{1}{3} P_{\infty}(n-1) \\ P_{\infty}(n+1) - \frac{1}{3} P_{\infty}(n) &= P_{\infty}(n) - \frac{1}{3} P_{\infty}(n-1) \\ &= P_{\infty}(2) - \frac{1}{3} P_{\infty}(1) \\ &= \frac{13}{9} P_{\infty}(0) - \frac{1}{3} \frac{4}{3} P_{\infty}(0)) \\ P_{\infty}(0) &= P_{\infty}(n+1) - \frac{1}{3} P_{\infty}(n) \end{split}$$

As
$$n \to \infty$$
:
$$P_{\infty}(0) = \frac{2}{3} P_{\infty}(\infty)$$

$$P_{\infty}(0) = \frac{3}{3}$$

Therefore the probability of playing a=1 forever when s=0, that is the initial state, is $\frac{2}{3}$ which concludes our proof.

1.4 (d)

We can use the very same technique as before. Redefine $P_{\infty}(s)$ as the probability that the agent eventually takes action 0 forever. Remember, $P_{\infty}(-\infty) = 1$.

$$P_{\infty}(n) = \frac{1}{4}P_{\infty}(n+1) + \frac{3}{4}P_{\infty}(n-1)$$

$$P_{\infty}(n+1) = 4P_{\infty}(n) - 3P_{\infty}(n-1)$$

$$P_{\infty}(n+1) - P_{\infty}(n) = 3(P_{\infty}(n) - P_{\infty}(n-1))$$

$$P_{\infty}(n+2) - P_{\infty}(n+1) = 3^{2}(P_{\infty}(n) - P_{\infty}(n-1))$$

$$P_{\infty}(\infty) - P_{\infty}(\infty) = 3^{\infty}(P_{\infty}(n) - P_{\infty}(n-1))$$

$$0 = P_{\infty}(n) - P_{\infty}(n-1)$$

$$P_{\infty}(n) = P_{\infty}(n-1)$$

$$P_{\infty}(0) = P_{\infty}(-1) = \dots = P_{\infty}(-\infty) = 1$$

2 Question 2

$$\begin{split} |V^c(\delta,\theta) - V(\delta,\theta)| &= \left| \sum_{t=0}^{\infty} \delta^t a_t^c \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) - \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) \right| \\ &\leq \left| \sum_{t=0}^{\infty} \delta^t a_t^c \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) - \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i \mu(y_i | y_1, \dots, y_t) \right) \right| + \\ & \left| \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i P_{\theta^*}(y_i | y_1, \dots, y_t) \right) - \sum_{t=0}^{\infty} \delta^t a_t \left(\sum_{i=1}^{\infty} y_i \mu(y_i | y_1, \dots, y_t) \right) \right| + \\ &\leq 2 \left(\sum_{t=0}^{\infty} \delta^{2t} \max_{y \in Y} |y|^2 \left(\sum_{i=1}^{\infty} |P_{\theta^*}(y_i | y_1, \dots, y_t) \mu(y_i | y_1, \dots, y_t) \right)^2 \right)^{1/2} + \\ &\leq 2 \max_{y \in Y} |y| \left(\sum_{t=0}^{\infty} \delta^{2t} \right)^{1/2} \left(\sum_{t=0}^{\infty} \sup_{y \in Y} \{P_{\theta^*}(y | y_1, \dots, y_t) \mu(y | y_1, \dots, y_t) \}^2 |y| \right)^{1/2} \\ &\leq \frac{2|y|^{1/2} \max_{y \in Y} |y|}{(1 - \delta^2)^{1/2}} \left(\sum_{t=0}^{\infty} -\ln e^{-(1 - \delta)^{2(t + 1)}} \right)^{1/2} \\ &\leq \frac{2|y|^{1/2} \max_{y \in Y} |y|}{(1 - \delta^2)^{1/2}} \left(\sum_{t=0}^{\infty} -\ln e^{-(1 - \delta)^{2(t + 1)}} \right)^{1/2} \\ &= \frac{2|y|^{1/2} \max_{y \in Y} |y|}{(1 - \delta^2)^{1/2}} \frac{1 - \delta}{(1 - (1 - \delta)^2)^{1/2}} \\ &= 2|y|^{1/2} \max_{y \in Y} |y| \left(\frac{1 - \delta}{(1 + \delta)(1 - (1 - \delta)^2)} \right)^{1/2} \end{split}$$

Finally, notice that $1 - \delta \to 0$ as $\delta \to 1$ while $(1 + \delta)(1 - (1 - \delta)^2) \to 2$. Therefore

$$\lim_{\delta \to 1} V^{c}(\delta, \theta) - V(\delta, \theta)) = 0$$

3 Question 3

3.1 (a)

For simplification:

$$\begin{split} P_{\gamma}(y) &= \mu P_{\gamma}(y|\theta=1) + (1-\mu)P_{\gamma}(y|\theta=-1) \\ P_{\gamma}(1) &= \mu(1/2+\gamma) + (1-\mu)(1/2\gamma) \\ &= 1/2 + \gamma(2\mu-1) \\ P_{\gamma}(0) &= 1/2 - \gamma(2\mu-1) \end{split}$$

Notice:

$$\lim_{\gamma \to 0} P_{\gamma}(0) = \lim_{\gamma \to 0} P_{\gamma}(1) = \frac{1}{2}$$

The Bayesian updates are:

$$\mu_{\gamma}(1) = \frac{(1/2 + \gamma)\mu}{P_{\gamma}(1)}$$
$$\mu_{\gamma}(0) = \frac{(1/2 - \gamma)\mu}{P_{\gamma}(0)}$$

Therefore:

$$\lim_{\gamma \to 0} \mu_{\gamma}(0) = \lim_{\gamma \to 0} \mu_{\gamma}(1) = \mu$$

and:

$$\lim_{\gamma \to 0} V(\mu_{\gamma}(0)) = \lim_{\gamma \to 0} V(\mu_{\gamma}(1)) = V(\mu)$$

Finally:

$$V_{\gamma}(\mu) = P_{\gamma}(0)V(\mu_{\gamma}(0)) + P_{\gamma}(1)V(\mu_{\gamma}(1))$$

= $(1/2 + \gamma(2\mu - 1))V(\mu_{\gamma}(1)) + (1/2 - \gamma(2\mu - 1))V(\mu_{\gamma}(0))$

and:

$$\lim_{\gamma \to 0} V_{\gamma}(\mu) = V(\mu)$$

Which make the question identity equals the derivative of V_{γ} in relation to γ :

$$\frac{\partial V_{\gamma}(\mu)}{\partial \gamma} = \lim_{\gamma \to 0} \frac{V_{\gamma}(\mu) - V(\mu)}{\gamma}$$

We are left to prove that this derivative is zero at $\gamma = 0$:

$$\begin{split} \frac{\partial V_{\gamma}(\mu)}{\partial \gamma}(\gamma) &= (2\mu - 1)V(\mu_{\gamma}(1)) + \frac{\partial V(\mu_{\gamma}(1))}{\partial \gamma}(1/2 + \gamma(2\mu - 1)) - \\ &\qquad \qquad (2\mu - 1)V(\mu_{\gamma}(0)) + \frac{\partial V(\mu_{\gamma}(0))}{\partial \gamma}(1/2 - \gamma(2\mu - 1)) \\ \frac{\partial V_{\gamma}(\mu)}{\partial \gamma}(0) &= (2\mu - 1)V(\mu) + \frac{\partial V(\mu_{0}(1))}{\partial \gamma}(1/2) - (2\mu - 1)V(\mu) + \frac{\partial V(\mu_{0}(0))}{\partial \gamma}(1/2) \\ &= 1/2\left(\frac{\partial V(\mu_{0}(0))}{\partial \gamma} + \frac{\partial V(\mu_{0}(1))}{\partial \gamma}\right) \end{split}$$

But:

$$\begin{split} V(\mu_{\gamma}(1)) &= \mu_{\gamma} u(a_{1}^{*},1) + (1-\mu_{\gamma}) u(a_{1}^{*},-1) \\ &= P_{\gamma}(1)^{-1}[(1/2+\gamma)\mu u(a_{1}^{*},1) + \gamma(2\mu-2)\mu u(a_{1}^{*},-1)] \\ \frac{\partial V(\mu_{\gamma}(1))}{\partial \gamma} &= P_{\gamma}(1)^{-1}[\mu u(a_{1}^{*}) + (2\mu-2)u(a_{1}^{*},-1)] + \\ &\qquad \qquad \frac{1-2\mu}{(1/2+\gamma(2\mu-1))^{2}}[(1/2+\gamma)\mu u(a_{1}^{*},1) + \gamma(2\mu-2)u(a_{1}^{*},-1)] \\ \frac{\partial V(\mu_{0}(1))}{\partial \gamma} &= 2[\mu u(a_{1}^{*}) + (2\mu-2)u(a_{1}^{*},-1)] + (4-8\mu)[1/2\mu u(a_{1}^{*},1)] \end{split}$$

Where a_1^* is the argmax of V for $\gamma = 0$ and:

$$\begin{split} V(\mu_{\gamma}(0)) &= P_{\gamma}(0)^{-1}[(1/2-\gamma)\mu u(a_{0}^{*},1)-\gamma(2\mu-2)\mu u(a_{0}^{*},-1)] \\ \frac{\partial V(\mu_{\gamma}(0))}{\partial \gamma} &= P_{\gamma}(0)^{-1}[-\mu u(a_{0}^{*})-(2\mu-2)u(a_{0}^{*},-1)] + \\ \frac{2\mu-1}{(1/2-\gamma(2\mu-1))^{2}}[(1/2-\gamma)\mu u(a_{0}^{*},1)-\gamma(2\mu-2)u(a_{0}^{*},-1)] \\ \frac{\partial V(\mu_{0}(0))}{\partial \gamma} &= 2[-\mu u(a_{0}^{*})-(2\mu-2)u(a_{0}^{*},-1)] + (8\mu-4)[1/2\mu u(a_{0}^{*},1)] \end{split}$$

And since $a_1^* \to a_0^*$ as $\gamma \to 0$, by what we have seem before, we have:

$$\frac{\partial V(\mu_0(0))}{\partial \gamma} + \frac{\partial V(\mu_0(1))}{\partial \gamma} = 0$$
$$\frac{\partial V_{\gamma}(\mu)}{\partial \gamma}(0) = 0$$
$$\lim_{\gamma \to 0} \frac{V_{\gamma}(\mu) - V(\mu)}{\gamma} = 0$$

3.2(b)

The agent choose γ to maximize:

$$\max_{\gamma} V_{\gamma}(\mu) - \beta \gamma \tag{2}$$

Notice that as long as $\frac{\partial V_{\gamma}}{\partial \gamma}(\mu) < \beta$ the agent has no incentive to invest in learning. Moreover, as

 $\mu \to 0, \gamma \to 0$ since at $\mu = 0$ you have no incentive to learn $(\gamma = 0)$ and $\frac{\partial V_{\gamma}}{\partial \gamma}(\mu)$ is continuous and μ . From question (a) we have that: $\frac{\partial V_{\gamma}}{\partial \gamma}(\mu) \to 0$ as $\gamma \to 0$, therefore: $\exists \bar{\mu}$ such that $\forall \mu \in [0, \bar{\mu}] \frac{\partial V_{\gamma}}{\partial \gamma}(\mu) < \beta$, which imply that the optimal choice of γ is 0.

It is also easy to see that if $\gamma = 0$ the agent doesn't update and then $\mu_t = \mu_0$ for all t. Which concludes our proof.

3.3(c)

I assume that $1/4 < \mu_0 < 3/4$ and that the agent is still myopic. Define:

$$u(a,\theta) = \frac{3}{16}a\theta\tag{3}$$

Which is 0 as long as the agent choose no a = 0, positive as long as he chooses a = 1 and the state $\theta = 1$, negative otherwise. Therefore if $\mu > 1/2$ he chooses a = 1, but choose a = 0 otherwise.

His expected payoff is:

$$E(u(a,\theta)|\mu) - \gamma^{3} =$$

$$= P(y = 1|\mu, \gamma) \max\{\mathbb{E}(u(1,\theta)|\mu_{\gamma}(1)), 0\} +$$

$$P(y = 0|\mu, \gamma) \max\{\mathbb{E}(u(1,\theta)|\mu_{\gamma}(0)), 0\}$$

$$= [\mu(1/2 + \gamma) + (1 - \mu)(1/2 - \gamma)] \frac{3}{16} \frac{\mu - 1/2 + \gamma}{1/2 + 2\gamma\mu - \gamma} - \gamma^{3}$$

$$= [1/2 + 2\gamma\mu - \gamma] \frac{3}{16} \frac{\mu - 1/2 + \gamma}{1/2 + 2\gamma\mu - \gamma} - \gamma^{3}$$

$$= \frac{3}{16} [\mu - 1/2 + \gamma] - \gamma^{3}$$
(4)

FOC is:

$$3/16 - 3\gamma^2 = 0$$

$$\gamma^2 = \frac{1}{16}$$

$$\gamma = \frac{1}{4}$$
(5)

And therefore by Berk Theorem he learns the true state with probability 1.

4 Question 4

4.1 (a)

$$\phi_{\theta',\theta}^{t}(y_1,\ldots,y_t) = \log \frac{\mu^{t}(\theta'|y_1,\ldots,y_t)}{\mu^{t}(\theta|y_1,\ldots,y_t)}$$

$$= \log \frac{\mu(\theta')P_{\theta}'(y_1,\ldots,y_t)}{\mu(\theta)P_{\theta}(y_1,\ldots,y_t)}$$
(6)

$$P_{\theta}(y_{1},...,y_{t}) = \pi_{0}(y_{1}) \prod_{\tau=1}^{t-1} P_{\theta}(y_{t+1}|y_{t})$$

$$\phi_{\theta',\theta}^{t}(y_{1},...,y_{t}) = \log \frac{\mu(\theta')}{\mu(\theta)} + \sum_{\tau=1}^{t-1} \log \frac{P_{\theta}'(y_{t+1}|y_{t})}{P_{\theta}(y_{t+1}|y_{t})}$$

$$\sum_{\tau=1}^{t-1} \log \frac{P_{\theta}'(y_{t+1}|y_{t})}{P_{\theta}(y_{t+1}|y_{t})} = \sum_{y,y'} (t+1)\rho_{y,y'}(y_{1},...,y_{t}) \log \frac{P_{\theta}'(y'|y)}{P_{\theta}(y'|y)}$$
(7)

But since $\rho_{y,y'}(y_1,\ldots,y_t) = \rho_{y,y'}(y_1',\ldots,y_t')$ we have $\mu(\theta|y_1,\ldots,y_t) = \mu(\theta|y_1',\ldots,y_t') \forall \theta \in \Theta$.

4.2 (b)

$$\rho_{y,y'}(y_1, \dots, y_t) \xrightarrow{P} \theta^*(y, y') = \pi^*(y) P_{\theta^*}(y'|y)$$

$$\phi_{\theta',\theta}^t(y_1, \dots, y_t) = \log \frac{\mu(\theta')}{\mu(\theta)} + \sum_{y,y'} (t-1) P_{y,y'} \log$$
(8)

5 Question 5

5.1 (a)

I assume that $y^1, y^2 \in \{0, 1\}$.

Even though the agent don't observe y^1 and y^2 directly they can be inferred from the overall payoff. Since $y^1, y^2 \in \{0, 1\}$, the overall payoff has 4 possible values: $\{1, \alpha, (1 - \alpha), 0\}$ which one of them directly specify one of the 4 possible states realizations, that is, respectively. $\{(y^1=1,y^2=1),(y^1=1,y^2=0),(y^1=0,y^2=1),(y^1=0,y^2=0)\}$. However, there are important exceptions, when $\alpha=1/2$ differentiate between cases 2 and 3, when $\alpha=1$ we don't observe y^2 and when $\alpha=0$ we don't observe y^1 Let y denote the overall payoff, we have the follow rule:

$$\begin{split} P(\theta=1|y=1) &= \frac{P(y=1|\theta=1)\mu}{P(y=1)} \\ &= \frac{P(y^1=1,y^2=1|\theta=1)\mu}{P(y^1,y^2=1)} \\ &= \frac{3/4*1/4\mu}{(3/4)(1/4)\mu + (1/4)(3/4)(1-\mu)} \\ &= \frac{3/16\mu}{3/16} \\ &= \mu \end{split}$$

Similarly:

$$P(\theta = 1|y = \alpha) = \frac{9\mu}{8\mu + 1}$$

$$P(\theta = 1|y = 1 - \alpha) = \frac{\mu}{9 - 8\mu}$$

$$P(\theta = 1|y = 0) = \mu$$
(9)

But, if $\alpha = 1/2$ we have:

$$\begin{split} P(\theta=1|y=1/2) &= \frac{[P(y^1=1,y^0=0|\theta=1) + P(y^1=0,y^0=1|\theta=1)]\mu}{P(y^1=1,y^0=0) + P(y^1=1,y^0=0)} \\ &= \frac{10\mu}{(1+2\mu)^2 + (3-2\mu)^2} \end{split}$$

Finally, and most importantly, if $\alpha = 1$:

$$P(\theta = 1|y = 1) = \frac{3\mu}{1 + 2\mu}$$
$$P(\theta = 1|y = 0) = \frac{\mu}{1 - 2\mu}$$

symmetrically, if $\alpha = 0$:

$$P(\theta = 1|y = 1) = \frac{\mu}{1 - 2\mu}$$
$$P(\theta = 1|y = 0) = \frac{3\mu}{1 + 2\mu}$$

The agent choose alpha to maximize:

$$\max_{\alpha \in [0,1]} \alpha \mathbb{E}(y^1) + (1 - \alpha) \mathbb{E}(y^2)$$

$$\max_{\alpha \in [0,1]} \alpha (1/2\mu + 1/4) + (1 - \alpha)(3/4 - 1/2\mu)$$

$$\max_{\alpha \in [0,1]} \alpha (\mu - 1/2) + (3/4 - 1/2\mu)$$
(10)

So it is clears that as long as $\mu > 1/2$ the best choice is $\alpha = 1$, and as long as $\mu < 1/2$ the best choice is $\alpha = 0$, is $\mu = 1/2$, the agent is indifferent between all α .

With $\alpha = 1$ there is only two outcomes and updating rules. We can now use the same method as Q1, defining s_t as the difference between the number of positive outcomes and the number of negative outcomes. And $P_{\infty}(s)$ as the probability of playing α forever at state s.

As before, since $\mu \to 1$ as $s \to \infty$ we have that $P_{\infty}(\infty) = 1$. Therefore we can use exactly the same argument as Q1 to prove that $P_{\infty}(0) > 0$.