Лабораторная работа № 5

Дискреционное разграничение прав в Linux. Исследование влияния дополнительных атрибуто

Алади Принц Чисом

Содержание

1	Цель работы	5
2	Выполнение лабораторной работы	6
3	Исследование Sticky-бита.	12
4	ВАЖНОЕ ПРИМЕЧАНИЕ	15
5	Выводы	16
Список литературы		17

Список иллюстраций

2.1	Компиляция первой программы	6
2.2	Запуск первой программы	6
2.3	Вторая программа	7
2.4	Запуск второй программы	7
2.5	Изменение прав для root	7
2.6	Проверка работы для root	8
2.7	Установка SetUID-бита	8
2.8	Установка SetUID-бита	8
2.9	Компиляция readfile	8
2.10	Проверка на root u guest пользователях	9
2.11	Смена владельца	9
2.12	Запуск c guest	10
2.13	Запуск с root	11
3.1	Проверка наличия атрибута	12
3.2	Выдача прав для файла	12
3.3	Выдача прав для файла	12
3.4	Проверка от второго пользователя	13
3.5	Проверка без атрибута	13
3.6	Возвращение атрибута	13
3.7	Возвращение атрибута	14

Список таблиц

1 Цель работы

Изучение механизмов изменения идентификаторов, применения SetUID- и Sticky-битов. Получение практических навыков работы в консоли с дополнительными атрибутами. Рассмотрение работы механизма смены идентификатора процессов пользователей, а также влияние бита Sticky на запись и удаление файлов.

2 Выполнение лабораторной работы

1) Я создал файл "simpleid.c" и внёс в него программу.

Первая программа

2) Скомпилировал программу и убедился, что файл создан правильно.

Рис. 2.1: Компиляция первой программы

3) Запустил программу и посмотрел, как она работает. Затем прописал команду "id", чтобы сравнить данные. Все данные сходятся.

```
guest@user:-/lab5

[guest@user lab5]$ touch simpleid.c
[guest@user lab5]$ gcc simpleid.c
[guest@user lab5]$ ./simpleid

id=1001, gid=1001
[guest@user lab5]$ id

uid=1001[guest] id=1001[guest) groups=1001(guest) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[guest@user lab5]$ |
```

Рис. 2.2: Запуск первой программы

4) Создал второй файл и назвал его "simlpeid2.c". Усложнил первую программу и внёс ее в файл.

Рис. 2.3: Вторая программа

5) Скомпилировал и посмотрел вторую программу. Проверил как она работает.

```
[guest@user tab5]$ touch simplefu2.c
[guest@user lab5]$ gcc simpleid2.c -o simpleid2
[guest@user lab5]$ ./simpleid2
e_uid=1001, e_gid=1001
real_uid=1001, real_gid=1001
[guest@user lab5]$ [
```

Рис. 2.4: Запуск второй программы

6) От имени суперпользователя я выполнил команды и временно повысил свои права. Команды сменили пользователя файла на root и установили SetUID-бит. Я запустил файл от имени root-пользователя и проверил сходство с командой "id".

```
[guest@user lab5]$ touch simpleid2.c
[guest@user lab5]$ [
```

Рис. 2.5: Изменение прав для root

```
oot@user lab5]# chown root:guest /home/guest/lab5/simpleid2
oot@user lab5]# chmod u+s /home/guest/lab5/simpleid2
oot@user lab5]# [
```

Рис. 2.6: Проверка работы для root

```
exit
[guest@user lab5]$ ls -l simpleid2
-rwsr-xr-x. 1 root guest 26064 Apr 13 01:06 <mark>simpleid2</mark>
[guest@user lab5]$ [
```

Рис. 2.7: Установка SetUID-бита

```
-rwsr-xr-x. 1 root guest 26064 Apr 13 01:06 Simple1d2
[guest@user lab5]$ ./simpleid2
e_uid=0, e_gid=1001
real_uid=1001, real_gid=1001
[guest@user lab5]$ id
uid=1001(guest) gid=1001(guest) groups=1001(guest) context=unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
[guest@user lab5]$ []
```

Рис. 2.8: Установка SetUID-бита

7) Я создал файл "readfile.c". Внёс туда программу.

Программа readfile

8) Скомпилировал программу readfile.

```
[guest@user lab5]$ su
Password:
[root@user lab5]# chmod u+s /home/guest/lab5/readfile
[root@user lab5]# chmod 700 readfile
[root@user lab5]# chown root:guest readfile
[root@user lab5]# chown -r readfile.c
chown: invalid option -- 'r'
Try 'chown --help' for more information.
[root@user lab5]# chmod -r readfile.c
[root@user lab5]# chmod u+s readfile
[root@user lab5]# chmod u+s readfile
```

Рис. 2.9: Компиляция readfile

9) Я выдал программе "readfile" права так, чтобы root пользователь мог прочитать файл, а простой пользователь нет.

```
[guest@user lab5]$ cat readfile.c
cat: readfile.c: Permission denied
[guest@user lab5]$ ./readfile readfile.c
bash: ./readfile: Permission denied
[guest@user lab5]$ [
```

Рис. 2.10: Проверка на root и guest пользователях

10) Я сменил владельца программы "readfile" на root-пользователя.

```
[guest@user lab5]$ ./readfile readfile.c
bash: ./readfile: Permission denied
[guest@user lab5]$ su
Password:
[root@user lab5]# cat readfile.c
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
int
main (int argc, char* argv[])
unsigned char buffer[16];
size_t bytes_read;
int i;
int fd = open (argv[1], O_RDONLY);
bytes_read = read (fd, buffer, sizeof (buffer));
for (i =0; i < bytes_read; ++i) printf("%c", buffer[i]);
while (bytes_read == sizeof (buffer));
close (fd);
return 0;
```

Рис. 2.11: Смена владельца

11) Попытался запустить программу и прочитать два файла с простого пользователя, но программа выдала ошибку. А если запускать с аккаунта root, то программа запускается нормально и работает. Связано это с тем, что владельцем программы является root-пользователь, а у других пользователей нет доступа и прав на использование программы.

```
[rootguser lab5]# ./readfile /etc/shadow
root;$65,MSTGcde0MIsCD15Gle3JHy4KGFHDHH5LnZyzUngetY8MXY/h0FT2h5sYqTDR0o89QPyRto0AwhYQdFKmfEXgP2Dtg9nslnL./jj.::8:99999:7:::
demon;*1916978.9999977::
demon;*1916978.9999977::
lp:*1946978.9999977::
lp:*1946978.9999977::
shutdonn:*1946978.9999977::
mall:*1946978.9999977::
mall:*1946978.9999977::
mall:*1946978.9999977::
mall:*1946978.9999977::
dobs:*1946978.99999977::
dobs:*1946978.99999977::
dobs:*1946978.9999977::
dobs:*1947878:::
games:*1946978.9999977::
dobs:*119778::::
spstemd-come;*19778::::
spstemd-come;*19778::::
spstemd-come;*19778::::
spstemd-come;*19778::::
spstemd-come;*19778::::
colord:*119778::::
colord:*119778::::
colord:*119778::::
colord:*119778::::
colord:*119778::::
sefroubleshoot:*119778::::
colord:*119778::::
sefroubleshoot:*119778::::
sefroubleshoot:*119778::::
sefroubleshoot:*119778::::
toptump:*119778::::
toptump:*119778:::
toptump:*
```

Рис. 2.12: Запуск с guest

```
Activities

    Terminal

 ⅎ
[root@user lab5]# ./readfile /etc/shadow
root:$6$ru5ErG4o01MIsCD1$GleJiJHv4CGFHDkH5LnZyzUngetY8MXY/h0
bin:*:19469:0:99999:7:::
daemon:*:19469:0:99999:7:::
adm:*:19469:0:99999:7:::
lp:*:19469:0:99999:7:::
sync:*:19469:0:99999:7:::
shutdown:*:19469:0:99999:7:::
halt:*:19469:0:99999:7:::
mail:*:19469:0:99999:7:::
operator: *: 19469:0:99999:7:::
games:*:19469:0:99999:7:::
ftp:*:19469:0:99999:7:::
nobody:*:19469:0:99999:7:::
systemd-coredump:!!:19770:::::
dbus:!!:19770:::::
polkitd:!!:19770:::::
avahi:!!:19770:::::
rtkit:!!:19770:::::
pipewire:!!:19770:::::
sssd:!!:19770::::::
libstoragemgmt:!*:19770::::::
systemd-oom:!*:19770::::::
tss:!!:19770:::::
geoclue:!!:19770:::::
cockpit-ws:!!:19770::::::
cockpit-wsinstance:!!:19770:::::
flatpak:!!:19770:::::
colord:!!:19770:::::
clevis:!!:19770:::::
setroubleshoot:!!:19770:::::
gdm:!!:19770:::::
pesign:!!:19770:::::
gnome-initial-setup:!!:19770:::::
sshd:!!:19770:::::
chrony:!!:19770:::::
dnsmasq:!!:19770:::::
tcpdump:!!:19770:::::
aladipc.:$6$j2deloafQI0eB1Zm$RvmujyXVZSZGo7Rlp.KSLgn9SAFjz4
vboxadd:!!:19770:::::
guest:$6$ovMPQo54NebMcmL1$37L3G0S1lVEKpRgxOY7Pk5tp1C/PpuXpMI
guest2:$6$1gWJuWc39BJ7EpjP$ivmvzkWNJ7cmCaTVJpo7Dn508M5BQTPLI
[root@user lab5]# exit
exit
```

Рис. 2.13: Запуск с root

3 Исследование Sticky-бита.

1) Я выяснил, установлен ли атрибут Sticky (t) на директории "/tmp". Атрибут установлен.

```
[guest@user lab5]$ ls -l / | grep tmp
drwxrwxrwt. 17 root root 4096 Apr 13 01:57 tmp
```

Рис. 3.1: Проверка наличия атрибута

2) От пользователя "guest" я создал файл "file01.txt" в директории "/tmp". Вписал в файл слово "test". И дал права на чтение и запись для категории "все остальные (о)".

```
[guest@user lab5]$ echo "test" > /tmp/file01.txt
```

Рис. 3.2: Выдача прав для файла

```
[guest@user lab5]$ ls -l /tmp/file01.txt
-rw-r--r-. 1 guest guest 5 Apr 13 01:59 /tmp/file01.txt
[guest@user lab5]$ chmod o+rw /tmp/file01.txt
[guest@user lab5]$ ls -l /tmp/file01.txt
-rw-r--rw-. 1 guest_guest 5 Apr 13 01:59 /tmp/file01.txt
```

Рис. 3.3: Выдача прав для файла

3) От пользователя "guest2", который не явлется владельцем, я попробовал прочитать файл. Я могу прочитать файл. Но не могу дописывать содержимое, вписывать новое или удалять этот файл.

```
[guest@user lab5]$ su guest2
Password:
[guest2@user lab5]$ cat /tmp/file01.txt
test
```

Рис. 3.4: Проверка от второго пользователя

4) я отключил атрибут "t" у директории "/tmp". Попробовал повторить все предыдущие действия. Я так же не смог вписать в файл данные или дописать их. Но смог прочитать файл и удалить его.

```
[guest2@user lab5]$ echo "test2" > /tmp/file01.txt
bash: /tmp/file01.txt: Permission denied
[guest2@user lab5]$ cat /tmp/file01.txt
test
[guest2@user lab5]$ [
```

Рис. 3.5: Проверка без атрибута

5) Чтобы в дальнейшем у меня не было проблем в работе с директорией "/tmp" я вернул атрибут на директорию, используя суперпользователя.

```
[root@user lab5]# exit
exit

[guest2@user lab5]$ ls -l / | grep tmp
drwxrwxrwx. 17 root root 4096 Apr 13 02:11 tmp
[guest2@user lab5]$ cat /tmp/file01.txt
test
[guest2@user lab5]$ echo "test2" > /tmp/file01.txt
bash: /tmp/file01.txt: Permission denied
[guest2@user lab5]$ |
```

Рис. 3.6: Возвращение атрибута

```
[guest2@user lab5]$ su
Password:
[root@user lab5]# chmod +t /tmp
[root@user lab5]# exit
exit
[guest2@user lab5]$ ]
```

Рис. 3.7: Возвращение атрибута

4 ВАЖНОЕ ПРИМЕЧАНИЕ

По итогам лабораторной работы я понял, что Sticky-бит создан для защиты файла от удаления. Даже не смотря на то, что я дал права на запись и чтение файлов для категории "все остальные", я не смог вписать в файл данные с пользователя "guest2". А не смог я это сделать, так как этот аккаунт у меня находится в группе с "guest". То есть я не дал права на вписывание для категории "группа", но дал права для категории "все остальные". Из-за этого Sticky-бит не влиял на возможность записи, а влиял только на возможность удаления. А изменять файл я не мог, так как мой аккаунт находился не в той группе. Если бы я использовал другой аккаунт, который не находится в группе, результаты бы были другие.

5 Выводы

Я изучил механизмы изменения идентификатора, применил SetUID-бит и Sticky-бит. Получил практические навыки работы в консоли с дополнительными атрибутами. Рассмотрел работы механизма смены идентификатора процессов пользователя, а так же влияние бита Sticky на запись и удаление файлов.

Список литературы