Ex4.9 Suitable Stereographic Projection Gives Birational Map.

X:: projective variety in \mathbb{P}^n_k とし, $r=\dim X\leq n-2$ とする.また H:: hyperplane in \mathbb{P}^n とし,適宜 \mathbb{P}^{n-1} と同一視する.適切に点 $P\not\in X$ をとれば,P から H への stereographic projection :: $\pi:X\to\mathbb{P}^{n-1}$ が X と $\pi(X)$ の間の birational map になることを示す.

ある morphism が birational map であるかどうかというのは local な問題なので、X の affine open subset に絞って考える。X は射影変換によって $(1:\dots:1)\in X$ かつ $(1:0:\dots:0)\not\in X$ であるように 出来るのでそのようにし, $Y:=X\cap (\mathcal{Z}_p(x_0))^c\subseteq \mathbb{A}^n$ とおく.すると $Y\neq\emptyset$, $(0,\dots,0)\not\in Y$ となる.

 $I = \mathcal{I}_a(Y) \subseteq k[y_1, \dots, y_n]$ とし、 $\bar{y}_i = y_i \mod I, K := K(Y) = k(\bar{y}_1, \dots, \bar{y}_n)$ とおくと,K = K(X). Thm4.8 より拡大 K/k は finitely and separably generated. Thm4.7 より, $\{\bar{y}_i\}_{i=1}^n$ は separating transcendence base を部分集合として含む.そこで番号を付け替えて, $\{\bar{y}_i\}_{i=1}^n$ に含まれる separating transcendence base を $\{\bar{y}_i\}_{i=1}^r$ としよう.base の濃度が $r(=\dim X = \dim Y)$ であることは Thm3.2 による.そして以下の拡大は finite generated extension である.

$$k(\{\bar{y}_i\}_{i=1}^n)/k(\{\bar{y}_i\}_{i=1}^r).$$

 $J=k(\{ar{y}_i\}_{i=1}^r)$ とおけばこの拡大は K/J と書ける。 Thm4.6 から,この拡大は以下のような元 η で生成することが出来る。

$$\eta = \sum_{i=r+1}^{n} \eta_i x_i \text{ where } \eta_{r+1}, \dots, \eta_n \in J.$$

stereographic projection の像 :: $\pi(Y) \subseteq H$ の function field を L とする. π から誘導される準同型 π^* を次で定める.

$$\pi^*: L \to K$$

$$f \mapsto f \circ \pi$$

 π は $Q \in Y$ を直線 :: tP+Q と H の交点へ写す写像であった。 $(P \not\in H$ なので $P=1 \cdot P+0 \cdot Q$ は予め除いている。) したがって $R \in \pi(Y)$ をとると $(\pi^*f)(tP+R)$ は $t \in k$ について定数. この値は f(R) であるから π^* は単射である. 逆に $g \in K$ から得られる関数 g(tP+Q) が t について定数ならば, f(R) $(R \in \pi(Y))$ を $g(\pi^{-1}(R))$ $^{\dagger 1}$ と置くことで $g=\pi^*f$ となる $f \in L$ が取れる. 以上から, K の任意 の元 g について次の条件 C(g) が成立すれば π^* は同型写像と成る:任意の $Q \in X$ に対し g(tP+Q) は $t \in k$ について定数である.

さて、既に分かっている通り $K=k(\bar{y}_1,\ldots,\bar{y}_r,\eta)$ であった。なので $\mathcal{C}(\bar{y}_1),\ldots,\mathcal{C}(\bar{y}_r),\mathcal{C}(\eta)$ の全てが成立すれば良い。

引き続き $Q \in Y$ とする. $P = (p_1, \dots, p_n), Q = (q_1, \dots, q_n)$ とすると

$$tP + Q = (tp_1 + q_1, \dots, tp_n + q_n).$$

なので $p_1=\dots=p_r=0$ すなわち $P\in\mathcal{Z}_a(y_1,\dots,y_r)\subseteq\mathbb{A}^n$ であれば $\mathcal{C}(\bar{y}_1),\dots,\mathcal{C}(\bar{y}_r)$ は成立する.以下,P はこのようにとる. $tP+Q\in X$ であるような t について $\eta(tP+Q)$ は次のように成る.

$$\eta(tP+Q) = \sum_{i=r+1}^{n} \eta_i(q_1, \dots, q_r)(tp_i + q_i) = \left(\sum_{i=r+1}^{n} \eta_i(q_1, \dots, q_r)p_i\right)t + \left(\sum_{i=r+1}^{n} \eta_i(q_1, \dots, q_r)q_i\right)$$

 $^{^{\}dagger 1}$ これは $\{g(tP+R) \mid t \in k, tP+R \in Y\}$ に等しい. 単元集合なので関数 f を定めることが出来る.

よって $p_{r+1}=\cdots=p_n=0$ であれば $\mathcal{C}(\eta)$ も成立する. 結局, $P=(0,\ldots,0)$ であれば良い. 最初に $(0,\ldots,0)\not\in Y$ としていたから,これは正しく stereographic projection を定める.この stereographic projection はもとの射影空間で言うと $P=(1:0:\cdots:0)\not\in X$ から定まるものに一致する.