Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Омский государственный технический университет»

Кафедра «Информатика и вычислительная техника»

Лабораторная работа № 3 с дополнительным заданием

по дисциплине «Сети и телекоммуникации»

Цифровое и логическое кодирование сигналов

Выполнила:

Студентка гр. ПИ-161 Шарипова М.С.

Проверил:

Старший преподаватель каф. ИВТ Звонов

A.O.

Задание

С помощью таблицы 2 (см. ниже) запишите своё ФИО и дату рождения в 16-ричном коде.

- 3.2 Переведите полученную запись в двоичный код (как известно, каждому символу 16-ричного кода соответствуют числа от 0 до 15 в двоичном коде).
- 3.3 Наглядно представьте первые 10 бит сообщения в трёх из перечисленных методов кодирования.
 - 3.4 Рассчитайте характеристики сформированного двоичного сообщения:
- нижнюю частоту;
- максимальную частоту;
- среднюю частоту;
- ширину спектра;
- полосу пропускания.
- 3.5 Преобразуйте сообщение кодом 4В/5В, снова рассчитайте характеристики по п. 3.4.
- 3.6 Преобразуйте сообщение по п. 3.5 скремблером по п. 2.10. Снова рассчитайте характеристики по п. 3.4.

Сделайте выводы.

Дополнительное задание

Попробуйте разработать более эффективный скремблер для своего сообщения.

Результат выполнения

Исходные данные:

ШариповаМайнураСерикпаевна 1801 1997

Исходные данные в 16-ном коде:

D8E0F0E8EFEED2E0CCE0E9EDF3F0E0D1E5F0E8EAEF0E5E2EDE03138303 131393937

Исходные данные в 2-ном коде:

(536 бит =67 байт)

Первые 10 бит: 0010110100

1.Потенциальный код без возврата к нулю (NRZ)

Наиболее простым и очевидным методом кодирования двоичных сообщений является метод потенциального кодирования без возврата к нулю – NRZ (Non Return to Zero), в котором значению бита «1» соответствует высокий уровень потенциала, а значению «0» – низкий. Графически этот код представлен на рисунке1.

Рисунок 1. Потенциальный код без возврата к нулю

2.Биполярный импульсный код RZ

Одним из наиболее простых среди импульсных кодов является трехуровневый биполярный импульсный код с возвратом к нулю (Return to Zero, RZ), в котором единица представлена импульсом одной полярности, а ноль — импульсом другой полярности. Графически код представлен на рисунке 2.

Рисунок 2. Биполярный импульсный код RZ

3.Пятиуровневый код РАМ-5

В пятиуровневом коде РАМ-5 используется 5 уровней сигнала, причем четыре уровня кодируют два бита передаваемых данных: 00, 01, 10, 11. Графически код представлен на рисунке 3.

Рисунок 3. Пятиуровневый код РАМ-5

Расчет характеристик сформированного двоичного сообщения

Последовательность «0» -5

Последовательность «1» - 4

C = 2.5 Мбит/c

Нижняяя и верхняя границы частот в передаваемом сообщении:

 $f_{\text{в}} = C /2 = 2,5/2 = 125 \text{к} \Gamma \text{ц}$

 $f_H = C / 9 = 2.5/6 = 28 \kappa \Gamma ц$

Полоса пропускания и ширина спектра:

 $S = f_{\scriptscriptstyle B} - f_{\scriptscriptstyle H} = 125\text{-}28\text{=}97$ к Γ ц._

 $F = 98к\Gamma$ ц

Среднее значение частоты передаваемого сообщения:

Соответствующая частота сигнала для каждого битового интервала:

F0 = 130

F0/2 = 54

F0/3 = 56

F0/4=29

F0/5=5

$$\mathbf{f_{cp}} = (130 \text{ f}_0 + 54 \text{f}_0 / 2 + 56 \text{f}_0 / 3 + 29 \text{f}_0 / 4 + 5 \text{f}_0 / 5) / 536 =$$

(16250+3375+2333+906+125)/536=43к Γ ц

<u>5.Преобразование сообщения кодом</u> <u>4В5В</u>

До:

Длина сообщения: 67 байт (536 бит)

После:

Длина сообщения: 84 байт (672бит)

Избыточность: (84-67)/67*100%=25%

6.Расчет характеристик сформированного преобразованного двоичного сообщения кодом 4В/5В

Первые 10 бит: 1010011011

Рисунок 4. Графическое изображение 10 бит после кодирования 4В/5В

<u>7.Расчет характеристик сформированного двоичного сообщения после</u> преобразования 4B/5B

Последовательность «0» -4

Последовательность «1» - 4

C = 2,5 Мбит/c

Нижняяя и верхняя границы частот в передаваемом сообщении:

$$f_{\scriptscriptstyle B} = C /2 = 2,5/2 = 125 к \Gamma$$
ц

$$f_{H} = C / 8 = 2,5/8 = 31 к \Gamma ц$$

Полоса пропускания и ширина спектра:

$$S = f_{\text{\tiny B}} - f_{\text{\tiny H}} = 125\text{-}31\text{=}94$$
к Γ ц._

$$F = 95 \kappa \Gamma \mu$$

Среднее значение частоты передаваемого сообщения:

Соответствующая частота сигнала для каждого битового интервала:

F0 = 172

F0/2 = 101

F0/3=55

F0/4=10

F0/5=0

 $\mathbf{f_{cp}} = (172f_0 + 101f_0 / 2 + 55f_0 / 3 + 10f_0 / 4) / 672 = (21500 + 6312 + 2255 + 312) / 672 = 45.2$ κ Γ _{II}

8.Преобразование сообщения скремблером

Скремблирование считалось программой.

Правильность работы программы проверялась на примере из пособия.

Пусть исходное сообщение включает последовательность из 5 нулей:1101100000

Результирующее сообщение не будет содержать длинных последовательностей: 1100011011.

Результат выполнения на рисунке 5.

Рисунок 5. Результат проверки правильности работы программы скремблирования

На Рисунке 6 изображен результат скремблирования своего сообщения (4B/5B) длиной 672 символа. Полное сообщение после скремблинга представлено выше.

Рисунок 6. Результат скремблирования сообщения после 4В/5В.

Код программы

```
import java.util.ArrayList;
public class Screml {
 public static void main(String[] args) {
// int intArr[]=\{1,1,0,1,1,0,0,0,0,0,0,0\};
  int count=0;
  String str= "1010011011101000100110100010" +
    001110010100111" +
11100010011001110011110100100110101" +
String items [] = str.split("");
 int intArr[] = new int[items.length];
  for(int i=0;i<items.length;i++){</pre>
    intArr[i] = Integer.parseInt(items[i]);
  }
  System.out.println(" \nИсходный Сигнал = ");
  for(int i=0;i<intArr.length;i++) {</pre>
   System.out.print(intArr[i]);
```

```
}
    System.out.println("\nДлина сигнала до скремблинга= "+intArr.length);
    System.out.println("\nСкремблированный сигнал: ");
       for (int i=0;i <intArr.length; i++) {
         if(i < 3)
            intArr[i] = 0;
         else if (i < 5)
            intArr[i]^=intArr[i-3]^0;
         else {
            intArr[i]^= intArr[i - 3] ^ intArr[i - 5];
         count++:
         System.out.print(intArr[i]);
    System.out.println("\пДлина сигнала после скремблинга= "+ count );
       System.out.println("\n");
  }
}
```

Начальные данные после кодирования 4В/5В:

После скремблинга:

Длина=672 символа

<u>8.Расчет характеристик сформированного двоичного сообщения после</u> <u>скремблирования</u>

Последовательность «0» -8 Последовательность «1» - 8

C = 2.5 Мбит/с

Нижняяя и верхняя границы частот в передаваемом сообщении:

 $f_{\text{в}} = C /2 = 2,5/2 = 125 \text{к} \Gamma \text{ц}$

 $f_{H} = C / 16 = 2,5/16 = 16 к \Gamma ц$

Полоса пропускания и ширина спектра:

 $S = f_{\text{\tiny B}} - f_{\text{\tiny H}} = 125\text{-}16 = 109$ к Γ ц.

 $F = 110 \kappa \Gamma \Pi$

Среднее значение частоты передаваемого сообщения:

F0 = 145

F0/2 = 86

F0/3 = 38

F0/4=23

F0/5=10

F0/6=6

F0/7=4

F0/8=4

$$\mathbf{f_{cp}} = \left(145\,\mathbf{f_0} + 86\,\mathbf{f_0}\,/2 + 38\,\mathbf{f_0}\,/3 + 23\,\,\mathbf{f_0}\,\,/4 + 10\,\,\mathbf{f_0}\,\,/5 + 6\,\,\mathbf{f_0}\,\,/6 + 4\,\,\mathbf{f_0}\,/7 + 4\,\,\mathbf{f_0}\,/8\right)\,/\,\,672 = \\ \left(18125 + 5375 + 1583 + 719 + 250 + 125 + 71,4 + 62,5\right)/672 = 39\,\mathrm{k}\Gamma\mathrm{L}\mathrm{L}$$

В ходе выполнения лабораторной работы были выполнены все пункты задания, а именно, ФИО и дата рождения записаны в 16-чном коде с помощью таблицы 2 в пособии, затем из 16-чного кода запись преобразована в двоичный код, 10 первых бит данного сообщения наглядно представлены с помощью трёх методов кодирования, таких как, потенциальный код без возврата к нулю (NRZ), биполярного импульсного кода (RZ), пятиуровневого кода PAM-5. Также после этого, были рассчитаны характеристики сформированного двоичного сообщения. Затем, исходное сообщение было преобразовано кодом 4В/5В и для уже преобразованного сообщения также были рассчитаны характеристики двоичного сообщения.

В заключении, можно сделать вывод, что при каждом кодировании изменяется числовые характеристики нижней границы частот в передаваемом сообщение (28,31,16 кГц). Наименьшая частота получается при скремблировании. Что касается средней частоты передаваемого сообщения, то при различных методах кодирования, она получилась разной, но отличия небольшие, а именно 43кГц(простое кодирование), 45кГц(4В/5В) и 39кГц (Скремблирование). Исходя из результата скремблирования, можно увидеть что, скремблирование гарантирует полную синхронизацию в линии передач. Скремблирование выполнено как написано в дополнительном задании.