Predicting the Success of Bank Telemarketing

By: Boyuan Chen Qingyuan Chen Ruiqi Jiang Yumeng Tang

Table of Contents

01. Background

02. Data Exploration

03. Modeling

04. Business Insights & Conclusion

Problem Definition & Data Source

Demographic Information	Business-related features		
Job	Contact		
Marital	day_of_month		
Education	month		
Default	p_outcome		
Housing	duration		
loan	campaign		
age	pdays		
balance	previous		

This dataset pertains to banking marketing initiatives conducted by a bank in Portugal.

The objective of this classification task is to predict whether a client will opt in ('yes') or opt out ('no') of a term deposit (denoted as variable y).

Data Source: Bank Marketing - UCI Machine Learning Repository

O2. Data Exploration

Data cleaning

If null value has no analytical meaning and can not be converted, we drop rows with null (job, education, contact);

If null value can be converted meaningfully, we replace any value except success to failure (poutcome).

Data Exploration

Low Dependence & Correlation between Numeric Features

03. Modeling

Dealing with imbalanced data

Since imbalanced dataset leads to model bias and misleading metrics, we applied the Adaptive Synthetic Sampling on the training dataset.

Class i	mbal	ance	in tra	aining	dataset
---------	------	------	--------	--------	---------

	TRAIN	(70%)	TEST (30%)		
Successful? (Y/N)	Y	N	Y	N	
Before ADASYN	3186	18448	1327	7946	
After ADASYN	18641	18448	1327	7946	

Stacking System Design

Why Stacking System?

Aggregate 4 base models with different underlying assumptions and strengths to make more informed predictions.

Stacking System with Four Base Model Candidates:

- Logistic Regression
- Support Vector Machine
- Decision Tree
- Gradient Boosting Model

Meta Classifier: Random Forest

LightGBM

VS

XGBoost

Stacking System Pipeline

Average CV Training Accuracy: 0.906

Feature Selection for LightGBM

Backward Stepwise Selection
Best Train Accuracy Score:
0.879

Numerical Features: 7

age, balance, duration, campaign, pcontact, previous, day_of_month

Categorical Features:

29

job:

job_blue-collar, job_entrepreneur, job_housemaid, job_management, job_self-employed, job_services, job_student, job_technician, job_unemployed

marital:

marital_married, marital_single

education:

education_secondary, education_tertiary

default:

default_yes

housing:

housing_yes

month:

month_aug, month_dec month_feb, month_jan, month_jul, month_jun, month_mar, month_may, month_nov, month_oct, month_sep

loan:

loan_yes

contact:

contact_telephone

poutcome:

poutcome_success

Feature Selection for XGBoost

Backward Stepwise Selection
Best Train Accuracy Score:
0.890

Numerical Features: 6

age, balance, duration, campaign, pcontact, day_of_month

Categorical Features:

28

job:

job_blue-collar, job_entrepreneur, job_housemaid, job_management, job_self-employed, job_services, job_student, job_technician, job_unemployed

marital:

marital_married, marital_single

education:

education_secondary, education_tertiary

housing:

housing_yes

month:

month_aug, month_dec month_feb, month_jan, month_jul, month_jun, month_mar, month_may, month_nov, month_oct, month_sep

loan:

loan_yes

contact:

contact_telephone

poutcome:

poutcome_success

Hyper-parameter Tuning for LightGBM and XGBoost

Strategy:

Bayesian Optimization

Best Train Accuracy Score:

LightGBM: **0.934**; XGBoost: **0.931**

LightGBM

num_leaves: 104, learning rate: 0.14,

max_depth: 15,

min_child_samples: 13,

subsample: 0.58,

colsample_bytree: 0.39,

reg_alpha: 0.95, reg_lambda: 0.55,

min_child_weight: 5.30, feature fraction: 0.47,

bagging_fraction: 0.99, bagging_freq: 6,

max_bin: 803, min_data_in_leaf: 62

XGBoost

learning_rate: 0.20, max_depth:

10, min_child_weight: 7,

subsample: 0.57,

colsample_bytree: 0.55,

gamma: 0.69,

reg_alpha: 0.78,

reg_lambda: 0.31,

num_leaves: 56,

min_child_samples: 16,

feature_fraction: 0.58,

bagging_fraction: 0.57,

bagging_freq: 2,

max_bin: 238,

min_data_in_leaf: 17

Comparison of Three Classifiers

Stacking

Base models:

Gradient Boosting, Decision Tree, Logistic Regression, Support Vector Machine

Meta model:

Random Forest

Train Accuracy: 0.906

Train Accuracy: 0.934

Test Accuracy: 0.888

XGBoost

Train Accuracy: 0.931

Performance Summary

- The ROC curve leans towards the **upper-left corner**, and the **AUC** is close to **1**.
- The Precision-Recall curve approaches the **upper-right corner**.

Performance Summary

True Positive: 758; True Negative: 7481; False Positive: 465; False Negative: 569

Top 4 features: above 1200; **Top 5-10 features**: below 800

SHAP Summary Plot

SHAP Values vs Duration

- High SHAP value
- Most impactful feature
- Duration > 0, positive impact on successful outcomes

SHAP Values vs Campaign

- Number of contracts
 decreases the possibility
 of successful outcomes
- Focus more on quality rather than quantity

SHAP Values vs Balance

- Lower balance: not clear in either direction
- Higher balance: impact on prediction becomes negative

Thank You!

 $\textbf{Colab Link:} \ https://drive.google.com/file/d/1BFzD6Al5aoldC99X-aGqR2nq7aXUbOpv/view?usp=sharing$