CONCORDIA UNIVERSITY

DEPARTMENT OF COMPUTER SCIENCE AND SOFTWARE ENGINEERING

COMP 6651: Algorithm Design Techniques

Fall 2019

Quiz # 1

2.5 per question for questions 1 to 4: .5 for each correct answer + 0.5 if all answers for a given question are correct.

1.	Complexity o	$f 1^3 + 2^3 + 3^3 + + n$
	a. $\Omega(n^3)$	\checkmark
	b. $\Theta(n^4)$	\checkmark
	c. <i>O</i> (<i>n</i> ²)	X
	d. $\Omega(n^2)$	\checkmark
2.	$e^{\log_2 n}$ is	
	a. $O(n^2)$	\checkmark
	b. <i>O</i> (<i>n</i>)	X
	c. $O(2^n)$	\checkmark
	d. <i>O</i> (log <i>n</i>)	X

- 3. An array of n numbers is given, where n is an even number. The maximum as well as the minimum of these n numbers needs to be determined. Which of the following is TRUE about the minimum number of comparisons needed?
 - a. At most 1.5n-2 comparisons are needed.
 - b. At least $n \log_2 n$ comparisons are needed.
 - c. At least 2n c comparisons, for some constant c, are needed.
 - d. None of the above X
- 4. Complexity of log *n*!
 - a. $O(2^n)$ \checkmark
 - b. $O(n \log n)$
 - c. $O(2^{\log n})$ X
 - d. *O*(*n*!) ✓

5. Solve the following recurrence equation

$$t_n = 2t_{n-2} - t_{n-4}$$
 $n \ge 4$
 $t_n = n$ $0 \le n \le 3$.

Express your solution with the simplest expression using the Θ notation.

Characteristic equation : $x^4 - 2x^2 + 1 = 0$ (2 points) $\Rightarrow (x^2 - 1)^2$ because of the identity:

$$(a-b)^2 = a^2 + b^2 - 2ab.$$

Then $x^2 - 1$ is a difference of two squared terms, we use the identity

$$a^2 - b^2 = (a - b)(a + b).$$

It leads to: $x^2 - 1 = (x - 1)(x + 1)$.

Characteristic equation is then equivalent to:

$$(x-1)^2(x+1)^2 = 0.$$
 (2 points)

Both two roots 1 and -1 are of multiplicity two. (2 points)

$$G(n) = (C_1 + C_2 n)(1)^n + (C_3 + C_4 n)(-1)^n = C_1 + C_2 n + (C_3 + C_4 n)(-1)^n$$
 (2 points)

$$n = 2k$$
: $G(2k) = C_1 + C_3 + n(C_2 + C_4) = A_1 + B_1 n$
 $n = 2k + 1$: $G(2k + 1) = C_1 - C_3 + n(C_2 - C_4) = A_2 + B_2 n$

It follows:

$$C_1 = \frac{A_1 + A_2}{2}$$
, $C_2 = \frac{B_1 + B_2}{2}$, $C_3 = \frac{A_1 - A_2}{2}$, $C_4 = \frac{B_1 - B_2}{2}$.

Clearly, the coefficient of n is not zero, as otherwise $t_n = \text{constant}$ and then the recurrence solution is not satisfied unless $t_n = 0$, consequently

$$t_n = \Theta(n)$$
. (2 points)