SORTING

Bubble Sort 3 4

[4;83 12] 48312 Inser Hon travel spot Selection [43812] trooper throsper smelket [3 8 4 2] [12843] T, 2343 $O(n^2)$ 0(n) Ø (n3)

[4,2,8,1] T8, [4,2] 3 U Mary 2,4,83 (nlag(n)) n work

[1,3,6,7] [4, 5, 6, 9] 1 3 a 7 4 5 6 1 3 4 5 6 6 7 9

, 2, [1,6,3,8, Э, T1,6,3,8

MERGE SORT

- divide and conquer algorithm
- recursive
- process:
 - divide array into 2 halves
 - recursively sort each half (by calling mergesort on each half)
 - merge sorted halves (take 2 sorted lists and combine into one sorted list)

MERGE SORT - COMPLEXITY

- 1ος_a Tree like, recursive halving/combining
 - How much work at each step of tree?

thre complexity: O(nlog(n))

Space complexity: O(n)

QUICK SORT

- divide and conquer algorithm
- recursive
- process:
 - choose pivot (often leftmost or rightmost element)
 - place:
 - everything less than pivot to it's left
 - everything greater than pivot to it's right
 - pivot in between
 - repeat process for left chunk and right chunk (use quicksort to sort each chunk)

QUICK SORT

- How to move elements to correct side of pivot?
- Start scanning from both sides
 - Scan from left -> until find entry > pivot
 - Scan from <- right until find entry < pivot
 - Swap entries
- Stop once scan indices cross and swap pivot element into place
 - leftmost pivot, swap pivot with rightmost in left subarray
 - rightmost pivot, swap pivot with leftmost in right subarray

[34 30 62 28 27 9 84 33 67] [9 30 33 28 27 34 84 62 67

QUICK SORT - COMPLEXITY

- Recursive halving of problems how many levels?
- How much work at each level

	best	mark	worst	space complexity	Stuble
quich.sort	nleg(n)	n log(n)	O(n2)	10g(n)	<i>no</i>
mergesort	nlos(n)	nlos(n)	nlas(n)	\bigcap	yes
bubble sort	\bigcap	Ug	nà	1	ye>
insertion sort	\bigcap	Ug	\bigcup_{g}		yes
selection sort	$V_{\mathcal{Y}}$	Ua		1	VO