3. Teoremele lui Kirchhoff

1. Probleme rezolvate

1.1 Aplicând teorema I a lui Kirchhoff să se determine curenții I_4 și I_5 , din laturile circuitului cu schema din figura 1.16, dacă se cunosc $I_1 = 5$ mA, $I_2 = 6$ mA, $I_3 = 3$ mA.

Rezolvare:

Se scrie teorema I a lui Kirchhoff pentru nodul 1: suma curenților care intră în nod ($I_3 + I_5$) este egală cu curentul care iese din nod (I_2), $I_3 + I_5 = I_2$, de unde $I_5 = I_2 - I_3 = 6 - 3 = 3mA$.

Similar se scrie teorema I a lui Kirchhoff pentru nodul 2: $I_4 = I_3 + I_5 = 3 + 3 = 6 \, \text{mA}$.

1.2 Aplicând teorema I a lui Kirchhoff să se determine curenții I_2 și I_3 , din laturile circuitului cu schema din figura 1.17, dacă se cunosc $I_1 = 4mA$, $I_{S1} = 12mA$, $I_{S2} = 8mA$.

Fig. 1.17

Rezolvare:

Se scrie teorema I a lui Kirchhoff pentru nodul 1: $I_{SI}=I_I+I_2$, de unde rezultă $I_2=I_{SI}-I_I=12-4=8mA$.

Similar se scrie teorema I a lui Kirchhoff pentru nodul 2: $I_1=I_3+I_{S2}$. Rezultă $I_3=I_1-I_{S2}=4-8=-4mA$.

1.3 Dacă se cunosc $I_{S1} = 12mA$, $I_{S2} = 4mA$, I = 2mA, să se determine curenții I_1 , I_2 și I_3 , din laturile circuitului cu schema din figura 1.18, aplicând teorema I a lui Kirchhoff.

Fig. 1.18

Rezolvare:

Se aplică succesiv teorema I a lui Kirchhoff pentru nodurile 1, 2 și 3:

1: $I_{SI} + I_2 = I_{S2}$, de unde rezultă $I_2 = I_{S2} - I_{S1} = 4 - 12 = -8mA$;

2:
$$I_1 + I_2 + I = 0$$
, rezultă $I_1 = -I_2 - I = -8 - 2 = -10 \text{ mA}$; $I_1 = -I_2 - I = 8 - 2 = 6 \text{ mA}$

3:
$$I_3 + I_{S2} + I = 0$$
, rezultă $I_3 = -I_{S2} - I = -2 - 4 = -6 \text{ mA}$.

1.4 Aplicând teorema a II - a a lui Kirchhoff pentru ochiul de circuit din fig.1.19a, să se determine tensiunea U_x .

Rezolvare:

Se alege un sens de parcurs al ochiului de circuit, ca în fig.1.19b și se scrie ecuația corespunzătoare teoremei a II - a a lui Kirchhoff pentru acest sens. Tensiunile la bornele elementelor de circuit care au același sens cu sensul de parcurs ales vor avea semnul "+", iar cele în sens contrar sensului de parcurs ales vor avea semnul "-":

$$24-6-4+U_x+2=0$$
, rezultând $U_x=-16V$.

1.5 Aplicând teorema a II -a a lui Kirchhoff pentru ochiul de circuit din fig.1.20a, să se determine tensiunea U_{12} .

Rezolvare:

Atunci când se cere determinarea unei tensiuni între două noduri din circuit, se precizează şi sensul acesteia printr-un indice dublu, în acest caz "12", ceea ce înseamnă că sensul tensiunii este de la nodul 1 la nodul 2, conform fig.1.20b.

Tensiunea U_{12} , poate fi determinată pe două căi: alegând fie ochiul fictiv o_1 , fie ochiul fictiv o_2 (fig.1.20b). Pentru sensurile de parcurs alese, se scrie ecuația corespunzătoare teoremei a II - a a lui Kirchhoff:

o₁:
$$U_{12} + 6 + 2 + 12 = 0$$
, rezultă $U_{12} = -20V$.

o₂:
$$U_{12} + 6 + 14 = 0$$
, rezultă $U_{12} = -20V$.

1.6 Aplicând teorema a II - a a lui Kirchhoff pentru ochiul de circuit din fig.1.21a, să se determine tensiunea U_{45} . Se cunosc: U_{21} = -5V, U_{32} = 12V, U_{34} = 5V, U_{65} = 10V, U_{67} = 12V, U_{17} = 6V.

Rezolvare:

Se reprezintă în schema circuitului sensurile tensiunilor la bornele elementelor de circuit (fig.1.21b). Alegând un sens de parcurs al ochiului de circuit se scrie ecuația corespunzătoare teoremei a II - a a lui Kirchhoff:

$$U_{17} - U_{67} + U_{65} - U_{45} - U_{34} + U_{32} + U_{21} = 0$$
,

de unde rezultă $U_{45} = U_{17} - U_{67} + U_{65} - U_{34} + U_{32} + U_{21} = 6 - 12 + 10 - 5 + 12 - 5 = 6V$.

1.7 Să se determine tensiunea U_{23} aplicând consecutiv teorema a II - a a lui Kirchhoff pentru circuitul cu schema din fig.1.22a. Se cunosc: $U_{12} = 2V$, $U_{43} = 6V$, $U_{45} = 12V$, $U_{15} = 12V$.

Rezolvare:

Se reprezintă în schema circuitului sensurile tensiunilor la bornele elementelor de circuit (fig.1.22b) și se aleg sensurile de parcurs ale celor două ochiuri de circuit.

Se scrie ecuația corespunzătoare teoremei a II - a a lui Kirchhoff pentru ochiul 1:

$$U_{15} - U_{45} - U_{24} - U_{12} = 0,$$

în care tensiunea U24 este necunoscută:

$$U_{24} = U_{15} - U_{45} - U_{12} = 12 - 12 - 2 = -2V$$
.

Se scrie apoi teorema a II - a a lui Kirchhoff pentru ochiul 2:

$$U_{24} + U_{43} - U_{23} = 0$$

de unde rezultă $U_{23} = U_{24} + U_{43} = -2 + 6 = 4V$.

1.8 Determinați tensiunea la bornele rezistorului R_1 din circuitul cu schema din fig. 1.23a. Se cunosc: $U_S = 12V$, $R_1 = 1k\Omega$, $R_2 = 2k\Omega$.

Fig. 1.23

Rezolvare:

Se scrie teorema a II- a lui Kirchhoff:

$$-U_S + U_{R1} + U_{R2} = 0$$
.

Folosind legea lui Ohm ($U = R \cdot I$) ecuația devine

$$U_S = I \cdot R_1 + I \cdot R_2,$$

de unde rezultă curentul prin circuit:

$$I = \frac{U_S}{R_1 + R_2} = \frac{12}{1 + 2} = 4mA$$
.

Tensiunea la bornele rezistorului R_1 va fi: $U_{RI} = I \cdot R_I = 4 \cdot 10^{-3} \cdot 1 \cdot 10^3 = 4V$.

1.9 Să se determine curenții din laturile circuitului cu schema din fig. 24a, aplicând teoremele lui Kirchhoff. Se cunosc: $U_S=12V,~R_1=2k\Omega,~R_2=8k\Omega,~R_3=4k\Omega,~R_4=6k\Omega.$

Rezolvare:

Pentru rezolvarea problemei se scrie sistemul de ecuații corespunzător teoremelor lui Kirchhoff (l ecuații cu l necunoscute) pentru un circuit cu n noduri și l laturi:

- teorema I a lui Kirchhoff pentru *n* 1 noduri;
- teorema a II-a a lui Kirchhoff pentru l n + 1 ochiuri independente.

Circuitul din fig.1.24a are n=2 noduri și l=3 laturi. Vom avea un sistem de 3 ecuații cu 3 necunoscute, necunoscutele fiind curenții din laturile circuitului:

- o ecuație (2 1 = 1) cu teorema I a lui Kirchhoff;
- două ecuații cu teorema a II-a a lui Kirchhoff (3-2+1=2).

Se reprezintă în schema circuitului curenții din laturile circuitului și se aleg sensurile de parcurs ale celor două ochiuri independente de circuit (fig.1.24b).

Se scrie teorema I a lui Kirchhoff în nodul l și teorema a II-a a lui Kirchhoff în cele două ochiuri independente o_1 și o_2 :

$$\begin{split} -I_{1} + I_{2} + I_{3} &= 0 \\ -U_{S} + R_{I} \cdot I_{I} + R_{4} \cdot I_{3} &= 0 \\ R_{2} \cdot I_{2} + R_{3} \cdot I_{2} - R_{4} \cdot I_{3} &= 0 \end{split}$$

Înlocuind cu valori numerice și rezolvând sistemul de ecuații rezultă valorile curenților $I_1 = 2mA$, $I_2 = 2/3 = 0.66mA$, $I_3 = 4/3 = 1.33mA$.

1.10 Să se determine curenții din laturile circuitului cu schema din fig. 26a, aplicând teoremele lui Kirchhoff. Se cunosc: $U_S = 12V$, $I_S = 2A$, $R_1 = R_3 = R_4 = 4\Omega$, $R_2 = 2\Omega$.

Fig. 1.26

Rezolvare:

Circuitul are n = 4 noduri și l = 6 laturi, deci vom avea 3 ecuații cu teorema I a lui Kirchhoff (4 - 1) și 3 ecuații cu teorema a II-a a lui Kirchhoff (6 - 4 + 1). În acest circuit curentul I_S este cunoscut, însă tensiunea la bornele acestei sursei ideale de curent este necunoscută, drept urmare vom avea un sistem de 6 ecuatii cu 6 necunoscute.

Se scrie teorema I a lui Kirchhoff în nodurile 1, 2, 3 și teorema a II-a a lui Kirchhoff în cele trei ochiuri independente o_1 , o_2 și o_3 (fig.1.26b):

$$\begin{split} I: I_5 - I_S - I_1 &= 0, \\ 2: I_S - I_2 - I_4 &= 0 \\ 3: I_3 + I_4 - I_5 &= 0 \\ o_1: -U_{Si} - I_1 \cdot R_1 + I_2 \cdot R_2 &= 0 \\ o_2: -U_S + I_3 \cdot R_3 + I_1 \cdot R_1 &= 0 \\ o_3: -I_2 \cdot R_2 - I_3 \cdot R_3 + I_4 \cdot R_4 &= 0 \end{split}$$

Înlocuim cu valori numerice și rezolvând sistemul de ecuații rezultă valorile curenților I_1 = 1,375A, I_2 = 0,25A, I_3 = 1,625A, I_4 = 1,75A, I_5 = 3,375A și tensiunea la bornele sursei ideale de curent U_{Si} =-5V.

1.11 Să se determine curenții din laturile circuitului cu schema din figura 1.27a, aplicând teoremele lui Kirchhoff. Se cunosc: $U_S = 24V$, $I_S = 2A$, $R_1 = R_2 = 2\Omega$, $R_3 = R_4 4\Omega$.

Rezolvare:

Circuitul are n = 2 noduri și l = 4 laturi, deci vom avea 4 ecuații cu 4 necunoscute (cei trei curenți din laturile circuitului și tensiunea la bornele sursei ideale de curent). Se vor scrie (2 - 1) ecuații cu teorema I a lui Kirchhoff și (4 - 2 + 1) ecuații cu teorema a II-a a lui Kirchhoff. Dacă dorim însă să aflăm doar curenții, deoarece tensiunea U_{Si} se poate determina ulterior, vom scrie doar 3 ecuații. Se aleg 3 - 1 = 2 ochiuri independente care să nu includă sursa de curent (fig.1.27b).

Se scrie teorema I a lui Kirchhoff în nodul A și teorema a II-a a lui Kirchhoff în cele două ochiuri independente o_1 , o_2 :

$$A: I_1 + I_2 - I_3 + I_S = 0$$

$$o_1: -U_S + R_1 \cdot I_1 - R_2 \cdot I_2 = 0$$

$$o_2: R_2 \cdot I_2 + R_3 \cdot I_3 + R_4 \cdot I_3 = 0.$$

Înlocuim cu valori numerice și rezolvând sistemul de ecuații rezultă valorile curenților $I_1 = 52/9=5,777A$, $I_2 = -56/9=-6,222A$, $I_3 = 14/9=1,555A$.

Se poate afla și tensiunea la bornele sursei ideale de curent:

$$U_{Si} = -R_2 \cdot I_2 = -2 \cdot \left(-\frac{56}{9}\right) = \frac{112}{9} = 12,444V$$
.

2 Probleme propuse

2.1 Cunoscând curenții $I_{S1} = 12\text{mA}$, $I_{S2} = 4\text{mA}$, $I_1 = 3\text{mA}$, $I_2 = 2\text{mA}$, să se determine curenții I_3 , I_4 și I_5 , din laturile circuitului cu schema din figura 1.28, aplicând teorema I a lui Kirchhoff.

2.2 Să se determine curentul I_2 din laturile circuitului cu schema din figura 1.29, aplicând teorema I a lui Kirchhoff. Se cunosc: $I_{S1} = 12mA$, $I_1 = 2mA$, $I_3 = 4mA$.

Fig. 1.29

2.3 Să se determine tensiunea U_{14} din circuitului cu schema din figura 1.30, aplicând teorema II -a lui Kirchhoff. Se cunosc: $U_{12}=15V,\,U_{32}=-7V,\,U_{43}=15V,\,U_{45}=-7V,\,U_{15}=14V.$

Fig. 1.30

2.4 Determinați tensiunea la bornele rezistorului R_1 (U_{23}) din circuitul cu schema din fig. 1.33. Se cunosc: $U_{21} = 24V$, $U_{45} = 6V$, $R_1 = 5k\Omega$, $R_2 = R_3 = 2k\Omega$.

Fig. 1.33

2.5 Aplicând teoremele lui Kirchhoff să se determine curenții din laturile circuitului cu schema din figura 1.36. Se cunosc: $U_S = 20V$, $I_S = 8A$, $R_1 = R_2 = 10\Omega$, $R_3 = 15\Omega$, $R_4 = 5\Omega$.

Fig. 1.36

2.6 Să se determine tensiunea la bornele rezistorului R_2 (fig. 1.38), aplicând teoremele lui Kirchhoff. Se cunosc: $U_S = 12V$, $I_S = 4A$, $R_1 = 2\Omega$, $R_2 = 4\Omega$, $R_3 = 6\Omega$, $R_4 = 1\Omega$, $R_5 = 6\Omega$.

Fig. 1.38