Summary of OCS Slides

Philipp Gabler

1 Introduction

General Form. A general minimization problem has the form

$$\min_{x} f(x)$$
 s.t. $x \in X$,

for a constraint set $X \subseteq \mathbb{R}^n$ (often given by some constraint functions and an objective function $f: X \to \mathbb{R}$. We want to find an optimal value or minimizer $x^* \in X$ such that

$$f(x^*) \le f(x), \quad \forall x \in X.$$

Types of Optimization Problems.

- 1. (a) Discrete: X is a discrete set, also called interger programming.
 - (b) Continuous: X is continuous (ie. uncountable)
- 2. (a) Linear: Objective functions and constraints are all linear:

$$\min_{x} c^{\top} x, \quad \text{s.t. } Ax \le b, \ x \ge 0.$$

Constraints describe a polyhedron. Efficiently solvable.

(b) Quadratic: Objective function is quadratic, constraints linear:

$$\min_{x} \frac{1}{2} x^{\top} Q x + c^{\top} x, \quad \text{s.t. } A x \leq b, \ E x = d.$$

If Q is positive semidefinite, the objective is convex and the problem is polynomially solvable.

- (c) Nonlinear: no further constraints.
- 3. (a) Unconstrained: Optimal solution searched in full \mathbb{R}^n . Easier to characterize, and usually to solve.
 - (b) Constrained: Optimal solution in an admissible region, usually more difficult to setup/characterize.

Convexity. A set X is convex, if for all $x, y \in X$ and $\alpha \in [0, 1]$:

$$\alpha x + (1 - \alpha)y \in X$$
.

This means that X contains all convex combinations of points from it.

Convex Functions. If X is a convex set, then $f : \mathbb{R} \to \mathbb{R}$ is called convex if for all $x, y \in X$ and $\alpha \in [0, 1]$:

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

This means that no points lie below any tangent.

Level Sets. For an objective function $f: X \to \mathbb{R}$, and $c \in \mathbb{R}$, the sets

$$S_c(f) = \{x \in X : f(x) = c\}$$

are called *level sets* of f. They can be convex even if f is not!

Definiteness. A matrix Q is called *positive semidefinite* if $x^{\top}Qx \geq 0$ for all x. Q is called *positive definite* if $x^{\top}Qx > 0$ for all $x \neq 0$. Sometimes this is written as $Q \succeq 0$ and $Q \succ 0$.

Local and Global Minima. A point x^* is called an *unconstrained global minimum* of f if for all x

$$f(x^*) \le f(x)$$
.

 x^* is called an *unconstrained local minimum* of f if it is minimal in some neighbourhood; i.e., there is an $\epsilon > 0$ such that

$$f(x^*) \le f(x) \quad \forall x \text{ with } ||x^* - x|| \le \epsilon.$$

For constrained minima, we just require additionally that $x \in X \subset \mathbb{R}^n$.

First Order Neccessary Condition for Optimality. In a small neighbourhood of x^* , we can by Taylor expansion write f as

$$f(x) = f(x^* + \Delta x) = f(x^*) + \nabla f(x^*)^{\top} \Delta x + o(\|\Delta x\|).$$

Since x^* is a local minimum, $f(x^* + \Delta x) - f(x^*) \ge 0$, and we have

$$f(x^*) + \nabla f(x^*)^\top \Delta x - f(x^*) = \nabla f(x^*)^\top \Delta x \ge 0.$$

Since wlog, we can choose Δx to have the opposite sign, it holds also that

$$\nabla f(x^*)^{\top} \Delta x \le 0,$$

so $\nabla f(x^*)^{\top} \Delta x = 0$, which, since Δx is arbitrary, implies that $\nabla f(x^*) = 0$.

Second Order Neccessary Condition for Optimality. By second order Taylor expansion, we get

$$0 \le f(x^* + \Delta x) - f(x^*)$$

$$= f(x^*) + \underbrace{\nabla f(x^*)^\top \Delta x}_{=0} + \frac{1}{2} \Delta x^\top \nabla^2 f(x^*) \Delta x + o(\|\Delta x\|^2) - f(x^*)$$

$$= \frac{1}{2} \Delta x^\top \nabla^2 f(x^*) \Delta x + o(\|\Delta x\|^2).$$

From this follows that $\Delta x^{\top} \nabla^2 f(x^*) \Delta x \geq 0$. Since Δx is arbitrary, this means that $\nabla^2 f(x^*)$ must be positive semidefinite.

Sufficient Condition for Optimality. If for a point x^* we have $\nabla f(x^*)^{\top} = 0$ and $\nabla^2 f(x^*)$ positive definite (no "semi-"!), then x^* is a strict unconstrained local minimum of f.

Minima of Convex Functions. For a convex function f, local minima are also global minima: suppose x* were a local, but not global minimum. Then there must be some $y^* \neq x^*$ with $f(y^*) < f(x^*)$. By convexity, we have for all $\alpha \in [0,1)$:

$$f(\alpha x^* + (1 - \alpha)y^*) < \alpha f(x^*) + (1 - \alpha)f(y^*) < f(x^*),$$

which contradicts the assumption, so x^* must also be a global minimum.

Furthermore, the neccessary condition for minima, $\nabla f(x^*) = 0$, for convex functions becomes a sufficient condition.

2 Gradient Methods

Basic Idea. To find a minimum of f, we construct a sequence $x^{(k)}$ such that for all k, $f(x^{(k+1)}) < f(x^{(k)})$. To do that, we choose an initial $x^{(0)}$ and then set

$$x^{(k+1)} = x^{(k)} + \alpha^{(k)}d^{(k)}.$$

Here $\alpha^{(k)}$ is some step size, and $d^{(k)}$ is a descent direction which must satisfy

$$\frac{\partial f}{\partial d^{(k)}}(x^{(k)}) = \nabla f(x^{(k)})^{\top} d^{(k)} < 0,$$

where $\frac{\partial f}{\partial d^{(k)}}$ is the directional derivative in direction $d^{(k)}$.

Matrix-Scaled Gradients. Given the above form, one can choose $d^{(k)} = -D^{(k)}\nabla f(x^{(k)})$ for a positive definite $D^{(k)}$:

$$\nabla f(x^{(k)})^{\top} d^{(k)} = -\nabla f(x^{(k)})^{\top} D^{(k)} \nabla f(x^{(k)}) < 0,$$

by the definition of positive definiteness.

Steepest descent. $D^{(k)} = I$. Simple, but slow convergence.

Newton's method. $D^{(k)} = (\nabla^2 f(x^{(k)}))^{-1}$. Fast convergence, but $\nabla^2 f(x^{(k)})$ needs to be positive definite to be invertible. Corresponds to local approximation by a quadratic surface (see below).

Levenberg-Marquart method. $D^{(k)} = (\nabla^2 f(x^{(k)}) + \lambda()^{-1}$. Tries to fix problems with Newton's method by regularization.

Diagonal scaling. $D^{(k)} = \mathrm{diag}(d_1^{(k)},\dots,d_n^{(k)})$. E.g. approximating Newton's method with $d_i^{(k)} = \left(\frac{\partial^2 f}{\partial x_i^2}(x^{(k)})\right)^{-1}.$

Gauss-Newton method. For a nonlinear least-squares problem $f(x) = \frac{1}{2} ||g(x)||^2$, we can choose $D^{(k)} = \left(\nabla g(x^{(k)} \nabla g(x^{(k)})^{\top}\right)^{-1}$. This is related to the pseudo-inverse.