

University of Luxembourg

THESIS FOR THE BACHELOR OF MATHEMATICS

High Dimensional Regression Models

BY JORIS LIMONIER

Supervisor: Mark PODOLSKIJ Submitted: June 4, 2021

Abstract

Abstract goes here.

Contents

1	Introduction			
	1.1	Notes for chapter 1	1	
2	Classical theory of Linear Regression 3			
	2.1	Linear models	3	
	2.2	The least squares method	4	
		2.2.1 Estimation of the model parameters	4	
		2.2.2 Maximum-likelihood estimation	7	
3	Theory for LASSO in high dimensions			
	3.1	Assuming the truth is linear	G	
		Linear approximation of the truth		

vi *CONTENTS*

Chapter 1

Introduction

1.1 Notes for chapter 1

Chapter 2

Classical theory of Linear Regression

Part of this chapter follows *Introduction to Linear Regression Analysis*, fifth edition by Douglas C. Montgomery, Elizabeth A. Peck and G. Geoffrey Vining.

2.1 Linear models

We consider the setting of having a sample of n observations

$$(\mathbf{X}_1, \mathbf{Y}_1), \dots, (\mathbf{X}_n, \mathbf{Y}_n)$$

where $X_i \in \mathcal{X} \subseteq \mathbb{R}^p$, i = 1, ..., n and $Y_i \in \mathcal{Y} \subseteq \mathbb{R}$, i = 1, ..., n.

Definition 2.1 (The linear model). The relationship between an observation $X_i \in \mathscr{X}$ and its outcome $Y_i \in \mathscr{Y}$ can be established by a linear model, that is

$$i = 1, \dots, n$$
 $\mathbf{Y}_i = \sum_{j=1}^p \boldsymbol{\beta}_j \mathbf{X}_i^{(j)} + \boldsymbol{\varepsilon}_i$ (2.1)

where $\varepsilon_1, \ldots, \varepsilon_n$ are independent and identically distributed (i.i.d.). Moreover, $\forall i = 1, \ldots, n$, we have that $\mathbb{E}[\varepsilon_i] = 0$ and each ε_i is independent of all of the X_j , $j = 1, \ldots, n$.

Instead of seeing each observation individually we can deal with all of them together by expressing the linear model in matrix notation

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon} \tag{2.2}$$

Definition 2.2. (a) \mathbf{X} is called the **design matrix**. It has dimension $n \times p$. \mathbf{X} consists of stacking the vectors relative to each observation inside of a matrix

$$X = \begin{bmatrix} - & X_1^T & - \\ & \vdots & \\ - & X_n^T & - \end{bmatrix}$$

- (b) β is called the **parameter vector**. It has dimension $p \times 1$.
- (c) ε is called the **error vector**. It has dimension $n \times 1$.
- (d) Y is called the **response vector**. It has dimension $n \times 1$.

2.2 The least squares method

2.2.1 Estimation of the model parameters

The least squares method consists of finding a vector minimizing a function. We call that function the objective function and we define it as follows.

Definition 2.3. We define the **objective function** S as follows

$$S(\boldsymbol{\beta}) := \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2} = \boldsymbol{\varepsilon}^{T}\boldsymbol{\varepsilon}$$
 (2.3)

We may rewrite the objective function as

$$S(\boldsymbol{\beta}) = \|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}$$

$$= (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T}(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= \mathbf{Y}^{T}\mathbf{Y} - \mathbf{Y}^{T}\mathbf{X}\boldsymbol{\beta} - \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{Y} + \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}$$

$$= \mathbf{Y}^{T}\mathbf{Y} - 2\boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{Y} + \boldsymbol{\beta}^{T}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta}$$

As mentioned previsouly, the least squares method aims at finding the vector $\hat{\beta}$ minimizing S, that is

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} S(\boldsymbol{\beta})$$

We find $\hat{\beta}$ by differentiating S with respect to β and setting the result to 0.

$$\frac{\partial}{\partial \boldsymbol{\beta}} S(\boldsymbol{\beta}) \Big|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}} = 0$$

$$\Longrightarrow \frac{\partial}{\partial \boldsymbol{\beta}} \left(\mathbf{Y}^T \mathbf{Y} - 2 \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{Y} + \boldsymbol{\beta}^T \mathbf{X}^T \mathbf{X} \boldsymbol{\beta} \right) \Big|_{\boldsymbol{\beta} = \hat{\boldsymbol{\beta}}} = 0$$

$$\Longrightarrow -2 \mathbf{X}^T \mathbf{Y} + 2 \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = 0$$

$$\Longrightarrow \mathbf{X}^T \mathbf{X} \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$$
 (LSNE)

where equation (LSNE) is called the least squares normal equations.

If we assume that $\mathbf{X}^T\mathbf{X}$ is invertible, then (LSNE) yields that our least squares estimator $\hat{\boldsymbol{\beta}}$ is given by

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y} \tag{2.4}$$

Now, we can take a look at a few properties of our estimator, namely the expected value and the variance.

Proposition 2.4. $\hat{\boldsymbol{\beta}}$ is unbiased, that is $\mathbb{E}[\hat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$.

Proof.

$$\mathbb{E}\left[\hat{\boldsymbol{\beta}}\right] = \mathbb{E}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{Y}\right]$$

$$= \mathbb{E}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}(\mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon})\right]$$

$$= \mathbb{E}\left[\left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{X}\boldsymbol{\beta} + \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\boldsymbol{\varepsilon}\right]$$

$$= \boldsymbol{\beta}$$

Moreover, we want to study the estimator's variance. For this purpose we will use the covariance matrix. Let $U, V \in \mathbb{R}^p$, recall that the covariance matrix is defined as

$$Cov(U, V) := \mathbb{E}\left[\left(U - \mathbb{E}(U)\right)\left(V - \mathbb{E}(V)\right)^{T}\right] \in \mathcal{M}_{p \times p}(\mathbb{R})$$

where $\forall i, j = 1, ..., p$, $Cov(U, V)_{ij}$ is the covariance between U_i and V_j . In the particular case U = V, the diagonal of the covariance matrix is nothing else than the variance of U, that is:

$$Var(U)_i = Cov(U, U)_{ii}$$
 $i = 1, ..., p$

Proposition 2.5. For i, j = 1, ..., p, we have that:

(i)
$$\operatorname{Cov}(\hat{\boldsymbol{\beta}}_i, \hat{\boldsymbol{\beta}}_j) = \boldsymbol{\sigma}^2 \left[\left(\mathbf{X}^T \mathbf{X} \right)^{-1} \right]_{ij}$$

(ii)
$$\operatorname{Var}(\hat{\boldsymbol{\beta}}_i) = \boldsymbol{\sigma}^2 \left[\left(\mathbf{X}^T \mathbf{X} \right)^{-1} \right]_{ii}$$

Proof. (i) One can note that

$$Cov(\hat{\boldsymbol{\beta}}, \hat{\boldsymbol{\beta}}) = Var \left[\underbrace{\left(\mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \mathbf{Y}}_{\text{constant}} \right]$$

$$= \left(\mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \underbrace{Var(\mathbf{Y})}_{=\boldsymbol{\sigma}^{2}I} \left[\left(\mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \right]^{T}$$

$$= \boldsymbol{\sigma}^{2} \left(\mathbf{X}^{T} \mathbf{X} \right)^{-1} \mathbf{X}^{T} \mathbf{X} \left(\mathbf{X}^{T} \mathbf{X} \right)^{-1}$$

$$= \boldsymbol{\sigma}^{2} \left(\mathbf{X}^{T} \mathbf{X} \right)^{-1}$$

(ii) This is a direct consequence of the first point.

Now that we confirmed that $\hat{\beta}$ does indeed exhibit the above properties, we are interested in estimating the quality of our prediction. The residuals can help us do that.

Definition 2.6 (Residuals). For a given set of observations Y, the **residuals** (or **vector of residuals**) is the difference between the prediction of our model and the observed value, that is

$$X(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \in \mathbb{R}^n$$

Building up from the residuals, we would like a measure that indicates how far our predictions are from the measurements. We will use the prediction error for that purpose.

Definition 2.7. For a given set of observations \mathbf{Y} , the **prediction error** (also called **residual sum of squares**) is the squared ℓ^2 -norm of the difference between the prediction of our model and the observed value, that is

$$\mathcal{E} = \|\mathbf{Y} - \hat{\mathbf{Y}}\|_2^2 = \|\boldsymbol{\varepsilon}\|_2^2$$

The prediction error can be rewritten as follows:

$$\mathcal{E} = \|\boldsymbol{\varepsilon}\|_{2}^{2}$$

$$= \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon}$$

$$= \left(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}\right)^{T} \left(\mathbf{Y} - \mathbf{X} \hat{\boldsymbol{\beta}}\right)$$

$$= \mathbf{Y}^{T} \mathbf{Y} - \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{Y} - \mathbf{Y}^{T} \mathbf{X} \hat{\boldsymbol{\beta}} + \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}}$$

$$= \mathbf{Y}^{T} \mathbf{Y} - 2 \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{Y} + \hat{\boldsymbol{\beta}}^{T} \underbrace{\mathbf{X}^{T} \mathbf{X} \hat{\boldsymbol{\beta}}}_{=\mathbf{X}^{T} \mathbf{Y}}$$

$$= \mathbf{Y}^{T} \mathbf{Y} - \hat{\boldsymbol{\beta}}^{T} \mathbf{X}^{T} \mathbf{Y}$$

2.2.2 Maximum-likelihood estimation

Let the error vector $\boldsymbol{\varepsilon}$ be normally and independently distributed with constant variance $\boldsymbol{\sigma}^2$ (in other words, $\boldsymbol{\varepsilon}$ is $\mathcal{N}(0, \boldsymbol{\sigma}^2 I)$). Then the maximum-likelihood estimation model is given by

$$Y = X\beta + \varepsilon$$

where each component of the error vector has density function:

$$f(\boldsymbol{\varepsilon}_i) = \frac{1}{\boldsymbol{\sigma}\sqrt{2\pi}} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^2}\boldsymbol{\varepsilon}_i^2\right), \quad i = 1, \dots, n$$

Subsequently, the likelihood function is the joint density of $\varepsilon_1, \ldots, \varepsilon_n$, therefore it is given by

$$L\left(\boldsymbol{\varepsilon}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\right) = \prod_{i=1}^{n} f\left(\boldsymbol{\varepsilon}_{i}\right)$$

$$= \left(\frac{1}{\sqrt{2\pi}\boldsymbol{\sigma}}\right)^{n} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^{2}} \sum_{i=1}^{n} \boldsymbol{\varepsilon}_{i}^{2}\right)$$

$$= \frac{1}{(2\pi)^{n/2}\boldsymbol{\sigma}^{n}} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^{2}} \boldsymbol{\varepsilon}^{T} \boldsymbol{\varepsilon}\right)$$

which, using that $\varepsilon = \mathbf{Y} - \mathbf{X}\boldsymbol{\beta}$, we may rewrite as

$$L\left(\mathbf{Y}, \mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\right) = \frac{1}{(2\pi)^{n/2} \boldsymbol{\sigma}^{n}} \exp\left(-\frac{1}{2\boldsymbol{\sigma}^{2}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})\right)$$

We can apply the logarithm function on both sides of the above equation in order to cancel out the exponential and make our lives simpler for the rest of the analysis. Since the logarithm is an increasing function, it will not disturb the search for the argument maximizing L. We call the result of the operation the log-likelihood.

$$\ln \left[L\left(\mathbf{Y}, \mathbf{X}, \boldsymbol{\beta}, \boldsymbol{\sigma}^{2}\right) \right]$$

$$= \ln \left[\frac{1}{(2\pi)^{n/2} \boldsymbol{\sigma}^{n}} \exp \left(-\frac{1}{2\boldsymbol{\sigma}^{2}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}) \right) \right]$$

$$= -\ln[(2\pi)^{n/2} \boldsymbol{\sigma}^{n}] - \frac{1}{2\boldsymbol{\sigma}^{2}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

$$= -\frac{n}{2} \ln(2\pi) - n \ln(\boldsymbol{\sigma}) - \frac{1}{2\boldsymbol{\sigma}^{2}} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^{T} (\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$$

Since σ is fixed, we can only let $(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})^T(\mathbf{Y} - \mathbf{X}\boldsymbol{\beta})$ vary. Naturally, we need to minimize it in order to maximize the log-likelihood. We already went through this procedure in (LSNE) and obtained in equation (2.4) that the result is $\hat{\boldsymbol{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y}$. Thus the maximum-likelihood estimator of σ^2 is

$$\tilde{\sigma}^2 = \frac{(\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})^T (\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n}$$

Chapter 3

Theory for LASSO in high dimensions

3.1 Assuming the truth is linear

In this section, we assume that there exists some "true value" that would make the parameter β fit the observations to the predictions perfectly. We call this ideal parameter vector β^0 . However, we work with an underdetermined system: there are more variables than equations, or in our context, there are more parameters than observations (i.e. p > n).

We define $\hat{\boldsymbol{\beta}}$ as follows

$$\hat{\boldsymbol{\beta}} := \arg\min_{\boldsymbol{\beta}} \left\{ \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1} \right\}$$
(3.1)

Lemma 3.1 (Basic Inequality).

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_2^2}{n} + \lambda \|\boldsymbol{\beta}\|_1$$

In particular for $\beta = \beta^0$ we have

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^0\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

We now replace \mathbf{Y} using equation (2.2):

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{X}\boldsymbol{\beta}^{0} + \boldsymbol{\varepsilon}) - \mathbf{X}\boldsymbol{\beta}^{0}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}})\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle \mathbf{X}(\boldsymbol{\beta}^{0} - \hat{\boldsymbol{\beta}}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\langle \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}), \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})}{n} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

This completes the proof.

We define \mathcal{T} as follows

$$\mathscr{T} := \left\{ \max_{1 \le j \le p} 2 \frac{\left| \varepsilon^T \mathbf{X}^{(j)} \right|}{n} \le \lambda_0 \right\}$$

Lemma 3.2 (Lemma 6.2.). Suppose $\forall j = 1, \ldots, p, \hat{\sigma}_j^2 = 1$ and for all t > 0 and

$$\lambda_0 := 2\boldsymbol{\sigma} \sqrt{\frac{t^2 + 2\log p}{n}}$$

we have

$$\mathbb{P}(\mathscr{T}) \ge 1 - 2\exp\left[-t^2/2\right]$$

Proof. We define

$$V_j := \frac{\varepsilon^T \mathbf{X}^{(j)}}{\sqrt{n\boldsymbol{\sigma}^2}}$$

Then we have

$$\mathbb{P}(\mathscr{T}) = \mathbb{P}\left(\max_{1 \leq j \leq p} 2 \frac{\left|\varepsilon^{T} \mathbf{X}^{(j)}\right|}{n} \leq 2\boldsymbol{\sigma}\sqrt{\frac{t^{2} + 2\log p}{n}}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} \left|\frac{\varepsilon^{T} \mathbf{X}^{(j)}}{\sqrt{n\boldsymbol{\sigma}^{2}}}\right| \leq \sqrt{t^{2} + 2\log p}\right) \\
= \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| \leq \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\max_{1 \leq j \leq p} |V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
= 1 - \mathbb{P}\left(\bigcup_{j=1}^{p} \left\{|V_{j}| > \sqrt{t^{2} + 2\log p}\right\}\right) \\
\geq 1 - \sum_{j=1}^{p} \mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \\
\geq 1 - p \,\mathbb{P}\left(|V_{j}| > \sqrt{t^{2} + 2\log p}\right) \tag{3.2}$$

Now, let us define $\zeta := \sqrt{t^2 + 2 \log p}$. Since V_j is $\mathcal{N}(0,1)$ -distributed and $\zeta > 0$, it follows that

$$\mathbb{P}(V_j > \zeta) = \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} e^{-y^2/2} dy$$

$$< \frac{1}{\sqrt{2\pi}} \int_{\zeta}^{\infty} \frac{y}{\zeta} e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} \int_{\zeta}^{\infty} y e^{-y^2/2} dy$$

$$= \frac{1}{\zeta\sqrt{2\pi}} e^{-\zeta^2/2}$$

We note that $p \geq 2 \implies \zeta \sqrt{2\pi} \geq 1$ therefore

$$\mathbb{P}(V_i > \zeta) < e^{-\zeta^2/2}$$

Moreover by symmetry of the $\mathcal{N}(0,1)$ distribution,

$$\mathbb{P}(|V_j| > \zeta) = 2\mathbb{P}(V_j > \zeta)$$

$$< 2e^{-\zeta^2/2}$$

Inserting this result into (3.2) we obtain

$$\mathbb{P}(\mathscr{T}) \ge 1 - p \, \mathbb{P}\left(|V_j| > \sqrt{t^2 + 2\log p}\right)$$
$$\ge 1 - p \, \frac{2}{p} \exp\left[\frac{-t^2}{2}\right]$$
$$= 1 - 2\exp\left[\frac{-t^2}{2}\right]$$

Corollary 3.3 (Consistency of the LASSO). Assume $\sigma^2 = 1$ for all j. We define the regularization parameter as

$$\lambda = 4\hat{\boldsymbol{\sigma}}^2 \sqrt{\frac{t^2 + 2\log p}{n}}$$

where $\hat{\boldsymbol{\sigma}}$ is some estimator of $\boldsymbol{\sigma}$.

Then with probability at least $1-\alpha$, where $\alpha := 2\exp(-t^2/2) + \mathbb{P}(\hat{\sigma} \leq \sigma)$ we have

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} \le 3\lambda \|\boldsymbol{\beta}^0\|_1$$

Lemma 3.4 (Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 2\lambda_0$,

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_0^c}\|_1 \le 3\lambda \|\hat{\boldsymbol{\beta}}_{S_0} - \boldsymbol{\beta}_{S_0}^0\|_1$$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le 2 \frac{\varepsilon^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)}{n} + \lambda \|\boldsymbol{\beta}^0\|_1$$

Now since we are on \mathcal{T} and since $2\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda_{0} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + \lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0)\|_2^2}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^0\|_1 + 2\lambda \|\boldsymbol{\beta}^0\|_1$$

Let $\beta_{j,S} := \beta_j 1\{j \in S\}$. We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{0}}^{0} - \boldsymbol{\beta}_{S_{0}}^{0} + \hat{\boldsymbol{\beta}}_{S_{0}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} &= \|(\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}}) - (\boldsymbol{\beta}_{S_{0}}^{0} + \underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=0})\|_{1} \\ &= \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \end{split}$$

Injecting these two results, we get that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \left(\|\boldsymbol{\beta}_{S_{0}}^{0}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1}\right) + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + 2\lambda \|\underbrace{\boldsymbol{\beta}_{S_{0}^{c}}^{0}}_{=\boldsymbol{\beta}^{0}}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + 2\lambda \|\boldsymbol{\beta}^{0}\|_{1}$$

$$\Rightarrow 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \leq 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

Definition 3.5 (Compatibility condition). We say that the compatibility condition is met for the set S_0 , if for some $\phi_0 > 0$, and for all $\boldsymbol{\beta}$ satisfying $\|\boldsymbol{\beta}_{S_0^c}\|_1 \leq 3\|\boldsymbol{\beta}_{S_0}\|_1$, it holds that

$$\|\boldsymbol{\beta}_{S_0}\|_1^2 \le \left(\boldsymbol{\beta}^T \hat{\boldsymbol{\Sigma}} \boldsymbol{\beta}\right) \frac{s_0}{\phi_0^2} \tag{3.3}$$

Theorem 3.6 (Theorem 6.1.). Suppose the compatibility condition holds for S_0 . Then on \mathscr{T} , we have for $\lambda \geq 2\lambda_0$,

$$\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1} \le 4\lambda^{2} \frac{s_{0}}{\phi_{0}^{2}}$$

Proof. Using Lemma 3.4 we have that

$$2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} + \hat{\boldsymbol{\beta}}_{S_{0}^{c}} - \boldsymbol{\beta}_{S_{0}}^{0} - \underline{\boldsymbol{\beta}}_{S_{0}^{c}}^{0}\|_{1}$$

$$= 2\frac{\|\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{0})\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1} + \lambda \|\hat{\boldsymbol{\beta}}_{S_{0}^{c}}\|_{1} \quad (by \ lemma \ 3.4)$$

$$\leq 4\lambda \|\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\|_{1}$$

$$= 4\lambda \sqrt{\left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right)^{T}} \hat{\boldsymbol{\Sigma}} \left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right) s_{0}/\phi_{0}^{2}$$

$$\leq \sqrt{\left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right)^{T}} \mathbf{X}^{T} \mathbf{X} \left(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0}\right) \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} \frac{4\lambda \sqrt{s_{0}}}{\phi_{0}\sqrt{n}}$$

$$\leq \|\mathbf{X}(\hat{\boldsymbol{\beta}}_{S_{0}} - \boldsymbol{\beta}_{S_{0}}^{0})\|_{2}^{2} + \frac{4\lambda^{2}s_{0}}{\phi_{0}^{2}n}$$

Where the last inequality follows from $4uv \le u^2 + 4v^2$.

3.2 Linear approximation of the truth

Now $\mathbf{Y} := \mathbf{f}^0 + \boldsymbol{\varepsilon}$, therefore $\mathbb{E}[\mathbf{Y}] := \mathbf{f}^0$.

Lemma 3.7 (New version of the Basic Inequality). $\forall \boldsymbol{\beta}^* \in \mathbb{R}^p$ we have

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(3.4)

Proof. By definition of $\hat{\beta}$, we have that

$$\forall \boldsymbol{\beta} \quad \frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}\|_{1}$$

In particular for $\beta = \beta^*$ we have

$$\forall \boldsymbol{\beta}^* \quad \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\hat{\beta}}\|_2^2}{n} + \lambda \|\boldsymbol{\hat{\beta}}\|_1 \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^*\|_2^2}{n} + \lambda \|\boldsymbol{\beta}^*\|_1$$

Since
$$\mathbf{Y} = \mathbf{f}^0 + \boldsymbol{\varepsilon}$$
:

$$\frac{\|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{\|(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\|_{2}^{2}}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\langle(\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}, (\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}) + \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\hat{\boldsymbol{\beta}}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1}$$

$$\leq \frac{\|\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}\|_{2}^{2} + \|\boldsymbol{\varepsilon}\|_{2}^{2} + 2\langle\mathbf{f}^{0} - \mathbf{X}\boldsymbol{\beta}^{*}, \boldsymbol{\varepsilon}\rangle}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1}$$

$$\Rightarrow \frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \frac{2\boldsymbol{\varepsilon}^{T}\mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*})}{n} + \lambda \|\boldsymbol{\beta}^{*}\|_{1} + \frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Lemma 3.8 (New version of Lemma 6.3.). We have on \mathscr{T} , with $\lambda \geq 4\lambda_0$,

$$\frac{4\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \le 5\lambda \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \frac{4\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
(3.5)

where $S_* := \{j : \beta_j^* \neq 0\}.$

Proof. We start with the Basic Inequality

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$

Now since we are on \mathcal{T} and since $4\lambda_0 \leq \lambda$

$$\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + \lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \frac{2\boldsymbol{\varepsilon}^T \mathbf{X}(\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*)}{n} + \lambda \|\boldsymbol{\beta}^*\|_1 + \frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$
$$\implies 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^0\|_2^2}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_1 \le \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 + 4\lambda \|\boldsymbol{\beta}^*\|_1 + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^* - \mathbf{f}^0\|_2^2}{n}$$

We use the triangle inequality on the left hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}}\|_{1} &= \|\hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &= \|\boldsymbol{\beta}_{S_{*}}^{*} - \boldsymbol{\beta}_{S_{*}}^{*} + \hat{\boldsymbol{\beta}}_{S_{*}}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \\ &\geq \|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1} \end{split}$$

whereas on the right hand side

$$\begin{split} \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^*\|_1 &= \|(\hat{\boldsymbol{\beta}}_{S_*} + \hat{\boldsymbol{\beta}}_{S_*^c}) - (\boldsymbol{\beta}_{S_*}^* + \underbrace{\boldsymbol{\beta}_{S_*^c}^*}_{=0})\|_1 \\ &= \|\hat{\boldsymbol{\beta}}_{S_*} - \boldsymbol{\beta}_{S_*}^*\|_1 + \|\hat{\boldsymbol{\beta}}_{S_*^c}\|_1 \end{split}$$

Injecting these two results, we get that

$$4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\hat{\boldsymbol{\beta}}\|_{1} \leq \lambda \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \left(\|\boldsymbol{\beta}_{S_{*}}^{*}\|_{1} - \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right)$$

$$\leq \lambda \left(\|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}\|_{1}\right) + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 4\lambda \|\underline{\boldsymbol{\beta}}_{S_{*}^{*}}^{*}\|_{1} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1}$$

$$\leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\lambda \|\boldsymbol{\beta}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

$$\Rightarrow 4\frac{\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{f}^{0}\|_{2}^{2}}{n} + 3\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}^{c}}^{*}\|_{1} \leq 5\lambda \|\hat{\boldsymbol{\beta}}_{S_{*}} - \boldsymbol{\beta}_{S_{*}}^{*}\|_{1} + 4\frac{\|\mathbf{X}\boldsymbol{\beta}^{*} - \mathbf{f}^{0}\|_{2}^{2}}{n}$$

Definition 3.9 (Compatibility condition for general sets). We say that the compatibility condition holds for the set S, if for some constant $\phi(S) > 0$, and for all β , with $\|\beta_{S^c}\|_1 \leq 3 \|\beta_S\|_1$, one has

$$\|\boldsymbol{\beta}_S\|_1^2 \le \left(\boldsymbol{\beta}^T \hat{\boldsymbol{\sigma}} \boldsymbol{\beta}\right) \frac{|S|}{\phi^2(S)}$$

We define $\mathscr S$ as the collection of sets S for which the compatibility condition holds.

Definition 3.10 (The oracle). We define the oracle β^* as

$$\boldsymbol{\beta}^* = \arg\min_{\boldsymbol{\beta}: S_{\boldsymbol{\beta}} \in \mathcal{S}} \left\{ \frac{\|\mathbf{X}\boldsymbol{\beta} - \mathbf{f}^0\|_2^2}{n} + \frac{4\lambda^2 s_{\boldsymbol{\beta}}}{\phi^2(S_{\boldsymbol{\beta}})} \right\}$$

where $S_{\beta} := \{j : \beta_j \neq 0\}$, $s_{\beta} := |S_{\beta}|$ denotes the cardinality of S_{β} and the factor 4 in the right hand side comes from choosing $\lambda \geq \lambda_0$.