Econ 204 – Problem Set 5

Due Friday, August 14

1. Let be X the set of at most second degree polynomials and $T: X \to X$ a linear transformation defined by T(f(x)) = 2f(x) + xf'(x). Compute the matrix representation of T with respect to the basis $V = \{1, x, x^2\}$, compute $\ker T$, characterize $X/\ker T$, compute the eigenvalues and the corresponding eigenvectors of T. Is T diagonalizable?

Solution For the matrix representation note that

$$T(1) = 3$$
$$T(x) = 3x + 1$$
$$T(x^{2}) = 4x^{2} + 1$$

hence

$$crd_V(T(1)) = \begin{pmatrix} 3\\0\\0 \end{pmatrix}$$
$$crd_V(T(x)) = \begin{pmatrix} 1\\3\\0 \end{pmatrix}$$
$$crd_V(T(x^2)) = \begin{pmatrix} 1\\0\\4 \end{pmatrix}$$

hence

$$Mtx_V(T) = \begin{pmatrix} 3 & 1 & 1 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

For the kernel of T compute $\ker Mtx_V(T) = \{x \in \mathbb{R}^3 : Mtx_V(T)x = 0\}$. Solving this linear system gives the only solution is the zero vector, hence $\ker Mtx_V(t) = \{0\}$ is just the zero vector, therefore $\ker T = \{0\}$ is just the constant zero function.

Since the kernel of T is just the zero element of X, then $[x] = \{x\}$ itself only.

For the eigenvalues of T compute the eigenvalues of $Mtx_V(t)$, hence the roots of the characteristic polynomial of

$$Mtx_V(T) - \lambda I = \begin{pmatrix} 3 - \lambda & 1 & 1\\ 0 & 3 - \lambda & 0\\ 0 & 0 & 4 - \lambda \end{pmatrix}$$

what is $\lambda_1 = 3$ with multiplicity of two and $\lambda_2 = 4$ with multiplicity of one.

The eigenvectors of $Mtx_V(T)$ corresponding to $\lambda_1 = 3$ solve the equation

$$(A-3I)x = 0$$
 hence has the form $E_3 = \left\{ \begin{pmatrix} a \\ 0 \\ a \end{pmatrix} : a \in \mathbb{R} \right\}$. Hence the corre-

sponding eigenvectors of T are the polynomials $E_3 = \{f(x) = a + ax^2 : a \in \mathbb{R}\}$. And the eigenvectors of $Mtx_V(T)$ corresponding to $\lambda_2 = 4$ solve the

equation
$$(A - 4I)x = 0$$
 hence has the form $E_4 = \left\{ \begin{pmatrix} a \\ 0 \\ 0 \end{pmatrix} : a \in \mathbb{R} \right\}$ hence

the corresponding eigenvectors of T are the polynomials $E_4 = \{f(x) = a : a \in \mathbb{R}\}.$

Finally since the eigenspace corresponding the eigenvalue with multiplicity two has a dimension of one, since $dim(E_3) = 1$ then T is not diagonalizable.

2. For the following functions, determine at what points the derivative exists, and if the derivative function is continuous (you may use that the derivative of $\sin x$ is $\cos x$):

$$f(x) = \begin{cases} x \cdot \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}, \quad g(x) = \begin{cases} x^2 \cdot \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Solution For $x \neq 0$ we can find the derivatives of f and g using the simple properties of derivatives:

$$f'(x) = \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x}, \quad g'(x) = 2x\sin\frac{1}{x} - \cos\frac{1}{x}$$

At x=0 we use directly the definition of the derivative. Note that for $h \neq 0$ we have

$$\frac{f(h) - f(0)}{h} = \sin \frac{1}{h}, \quad \frac{g(h) - g(0)}{h} = h \sin \frac{1}{h}$$

Since $\lim_{h\to 0} \sin\frac{1}{h}$ is not defined, f'(0) is not defined. However, note $\left|h\sin\frac{1}{h}\right| \leq |h|$ so g'(0) = 0 and the derivative of g exists everywhere. But $\lim_{x\to 0} \cos\frac{1}{x}$ is not defined, so $\lim_{x\to 0} g'(x) \neq g'(0)$, ie g' is not continuous at x=0

3. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function. Prove that $f'(\mathbb{R})$, the image of the derivative function, is an interval (possibly a singleton).

Solution To prove the claim it suffices to show that for any $a, b \in f'(\mathbb{R})$ with a < b, and any $c \in (a, b)$, we have $c \in f'(\mathbb{R})$. Note that if there are no two distinct values, since f is differentiable we have $f'(\mathbb{R}) \neq \emptyset$; so $f'(\mathbb{R}) = \{c\}$ and we're done (this occurs if f is a constant function).

Choose x_1, x_2 such that $f'(x_1) = a, f'(x_2) = b$, and assume without loss of generality that $x_1 < x_2$. Define the function $g : \mathbb{R} \to \mathbb{R}$ where g(x) = a

f(x) - cx. g is also a differentiable function with g'(x) = f'(x) - x. This implies that g is continuous, hence by the Extreme Value Theorem g attains its minimum (and maximum) on the closed interval $[x_1, x_2]$.

Now note that $g'(x_1) = a - c < 0$, which says

$$\lim_{h \to 0} \frac{g(x_1 + h) - g(x_1)}{h} < 0$$

So for some h'>0 we have that for every $0<\varepsilon< h', \frac{g(x_1+\varepsilon)-g(x_1)}{\varepsilon}<0 \implies g(x_1+\varepsilon)-g(x_1)<0 \implies g(x_1+\varepsilon)< g(x_1), \text{ so } g(x_1)$ is not a minimum of $g([x_1,x_2])$. A similar argument shows that since $g'(x_2)=b-c>0, g(x_2)$ is not a minimum either. So g attains its minimum at some $x_0\in(x_1,x_2)$, and the same argument implies that $g'(x_0)=0$. Thus we have $f'(x_0)=c\iff c\in f'(\mathbb{R})$.

Remark: Note that we can't use the Intermediate Value Theorem since we can't assume f' is a continuous function.

4. If $a_0 + \frac{1}{2}a_1 + \dots + \frac{1}{n}a_{n-1} + \frac{1}{n+1}a_n = 0$, where a_0, \dots, a_n are real constants, prove that the equation

$$a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n = 0$$

has at least one real root between 0 and 1.

Solution Let $f(x) = a_0x + \frac{a_1}{2}x^2 + \cdots + \frac{a_n}{n+1}x^{n+1}$. This function is clearly differentiable everywhere, with $f'(x) = a_0 + a_1x + \cdots + a_{n-1}x^{n-1} + a_nx^n$. Applying the mean value theorem we have f(1) - f(0) = f'(c)(1-0) for some $c \in (0,1)$. Clearly f(0) = 0 and from how the coefficients were constructed we also have f(1) = 0. Thus we must have f'(c) = 0.

5. Compute the second-order Taylor expansion of $f(x) = \sin^2 x + \cos x \sin x$ around the point $x_0 = \frac{\pi}{2}$

Solution The derivatives are

$$f'(x) = \cos^2 x - \sin^2 x + 2\cos x \sin x$$

 $f''(x) = 2\cos^2 x - 2\sin^2 x - 4\cos x \sin x$

hence $f'(x_0) = -1$ and $f''(x_0) = -2$, therefore

$$f(x) = -1 - \left(x - \frac{\pi}{2}\right) - \left(x - \frac{\pi}{2}\right)^2$$