0.a. (2 ptos.) Sea
$$L = \{x \in \{a, b, c\}^* : |x|_c = 2|x|_a + |x|_b\}$$
. Demuestre que L no es regular:

Sea la secuencia infinita $\langle c^i \rangle_{i>0}$ y sean c^j y c^k con $j \neq k$ dos palabras cualesquiera de la misma. Consideremos además la palabra b^j . Podemos observar que

 $c^j.b^j \in L$ pues contiene un número de ces igual a dos veces el número de as (cero) mas el número de bes, mientras que

 $c^k.a^j \notin L$ pues contiene un número de ces distinto a dos veces el número de as (cero) mas el número de bes ya que $k \neq j$.

Por tanto c^j y c^k tendrían que llevarnos a estados diferentes en cualquier AFD que aceptara a L. Puesto que esto es cierto para cada par de palabras de la serie infinita, cualquier autómata que aceptara a L tendría que tener infinitos estados y no sería, por tanto, un AFD. Con esto queda demostrado que no existe ningún AFD que acepte a L y, por definición, que L no es regular.

0.b. (2 ptos.) Sea
$$L = \{x \in \{a,b\}^* : |x|_b = 3 + |x|_a\}$$
. Demuestre que L no es regular:

Sea la secuencia infinita $\langle a^i \rangle_{i>0}$ y sean a^j y a^k con $j \neq k$ dos palabras cualesquiera de la misma. Consideremos además la palabra b^{j+3} . Podemos observar que

 $a^{j}.b^{j+3} \in L$ pues contiene un número de bes igual al número de as mas tres, mientras que

 $a^k . b^{j+3} \notin L$ pues contiene un número de bes distinto al número de as mas tres ya que $k \neq j$.

Por tanto a^j y a^k tendrían que llevarnos a estados diferentes en cualquier AFD que aceptara a L. Puesto que esto es cierto para cada par de palabras de la serie infinita, cualquier autómata que aceptara a L tendría que tener infinitos estados y no sería, por tanto, un AFD. Con esto queda demostrado que no existe ningún AFD que acepte a L y, por definición, que L no es regular.

1. (3 ptos.)

Calcular el AFD mínimo equivalente al siguiente autómata finito:

Calculamos R^{∞} :

$$R^{0} = \{\{1, 2, 5, 6\}, \{3, 4\}\};$$

$$R^{1} = \{\{1, 2\}, \{5, 6\}, \{3, 4\}\};$$

$$R^{2} = \{\{1, 2\}, \{5, 6\}, \{3\}, \{4\}\};$$

$$R^{3} = R^{2} = R^{\infty}$$

Por tanto el AFD mínimo es:

2. (7 ptos.)

Sea h el homomorfismo tal que $h(0)=aa,\,h(1)=b.$ Dados los autómatas

calcular un AFD para cada uno de los siguientes lenguajes:

i)
$$L(A_1) \cup L(A_2)$$

ii)
$$\overline{L(A_2)}$$

iii)
$$(bbb)^{-1}L(A_1)$$

iv)
$$h^{-1}(L(A_1))$$

