9. Užití diferenciálního počtu

9.1. Monotónnost funkce

Při vyšetřování průběhu funkce se mimo jiné zjišťuje, zda je daná funkce v některém intervalu (resp. v některém bodě) monotónní (definice viz v kap. 3). Velmi vhodným nástrojem pro zjišťování monotónnosti funkce je derivace funkce.

V: Jestliže existuje okolí $U(x_0) \subset D(f)$ a $f'(x_0) > 0$, pak f je rostoucí v bodě x_0 .

Princip důkazu: Ježto $f'(x_0) > 0$, má v jistém okolí $U(x_0)$ stejné znaménko i diferenciální podíl a z toho plyne i tvrzení věty.

Tato věta vyjadřuje jen postačující podmínku, neplatí obráceně. Funkce rostoucí v bodě může mít i nulovou derivaci (nebo derivaci nemít). Např. funkce $y = x^3$ je v bodě 0 rostoucí, ale má zde nulovou derivaci. Funkce y = 2x + |x| je v bodě 0 rostoucí, ale derivaci v tomto bodě nemá. Podobné výsledky platí i pro funkce klesající v bodě a pro zápornou derivaci.

D: Říkáme, že x_0 je stacionárním bodem funkce f, právě když $f'(x_0) = 0$.

Ve stacionárním bodě může být funkce rostoucí, klesající nebo v něm nemusí být monotónní.

V (o monotónnosti na intervalu): Má-li funkce f derivaci na (a,b), pak platí:

1° Funkce f je na (a,b) neklesající [nerostoucí], právě když $\forall x \in (a,b)$ je $f(x) \ge 0$ [≤ 0].

2° Funkce f je na (a,b) rostoucí [klesající], právě když $\forall x \in (a,b)$ je $f'(x) \ge 0$ [≤ 0], přičemž neexistuje interval $(\alpha,\beta) \subset (a,b)$ tak, aby $\forall x \in (\alpha,\beta)$ f'(x) = 0.

Princip důkazu (pro funkce neklesající, resp. rostoucí):

- (1)/1 Je-li f neklesající na (a,b), je v každém bodě intervalu (a,b) diferenciální podíl nezáporný, tedy i $f'(x) \ge 0$.
- (1)/2 Je-li $f'(x) \ge 0$ na (a,b), $x_1 < x_2$, jsou na $\langle x_1, x_2 \rangle$ splněny předpoklady Lagrangeovy věty, tedy $f(x_2) f(x_1) = (x_2 x_1) f'(\xi)$, odkud plyne $f(x_1) \le f(x_2)$.
- (2)/1 Je-li f rostoucí, je podle (1)/1 $f'(x) \ge 0$. Kdyby na nějakém (α, β) platilo f'(x) = 0, bylo by zde f(x) = konst., což by byl spor.
- (2)/2 Nechť $f'(x) \ge 0$ na (a,b), $x_1 < x_2$ a neexistuje (α,β) ... Podle (1)/1 je $f(x_1) \le f(x_2)$ a podle předpokladu o (α,β) existuje mezi x_1 , x_2 bod x' tak, že f'(x') > 0, tj funkce f roste v x', a z toho se pomocí okolí bodu x' a definice funkce rostoucí v bodě vyvodí, že $f(x_1) < f(x_2)$.

Tuto větu lze rozšířit na uzavřený interval tak, že pro f předpokládáme derivaci na (a,b) a spojitost na $\langle a,b\rangle$.

Úloha 9.1.1. Vyšetřete intervaly monotónnosti funkce f: $y = x^2 e^{-x}$.

[D(f) = R. Máme $y' = (2x - x^2) e^{-x} = x (2 - x) e^{-x}$; ježto $e^{-x} > 0$, rozdělí se číselná osa body 0 a 2 na intervaly:

- (1) na intervalu $(-\infty,0)$ je $y' \le 0$, přičemž y' je nulová v jediném bodě, f je klesající,
- (2) na intervalu (0,2) je $y' \ge 0$, přičemž y' je nulová ve dvou bodech, f je rostoucí,
- (3) na intervalu $(2,+\infty)$ je $y' \le 0$, f je klesající.]

9.2. Lokální extrémy

V kap. 3 jsou definovány pojmy (ostré) lokální maximum, (ostré) lokální minimum – se souhrnným názvem (ostré) lokální extrémy. V kap. 8 byla odvozena nutná podmínka existence lokálního extrému: Má-li funkce f v bodě x_0 lokální extrém a existuje-li $f'(x_0)$, pak $f'(x_0) = 0$. Funkce tedy může mít extrém jen ve stacionárním bodě nebo v bodě, v němž nemá derivaci (jako tomu je např. u funkce y = |x|).

Zjišťování lokálních extrémů funkcí má velký význam teoretický i praktický, proto je důležité znát správný postup. Máme několik základních možností.

Postup při určování lokálních extrémů:

Najdeme body, v nichž může nastat extrém, tj. body, v nichž je derivace funkce rovna nule (body stacionární) nebo v nichž derivace neexistuje; dále takový bod označíme x_0 .

(1) Užití monotónnosti v okolí bodu x_0 .

Necht' f je spojitá v x_0 a existuje okolí $U(x_0) \subset D(f)$. Je-li f rostoucí v $P(x_0-)$ a klesající v $P(x_0+)$, má funkce f v bodě x_0 (ostré) lokální maximum.

Podobně lze formulovat další případy: ostré lokální minimum, neostré extrémy a případ, kdy extrém neexistuje.

(2) U*žití 1. derivace v okolí bodu x*₀.

Necht' f je spojitá v x_0 a existuje okolí $P(x_0) \subset D(f)$, v němž má funkce f derivaci. Je-li f'(x) > 0 v $P(x_0-)$ a f'(x) < 0 v $P(x_0+)$, má funkce f v bodě x_0 (ostré) lokální maximum. Podobně lze formulovat další případy.

(3) $U\check{z}iti$ 2. $derivace\ v\ bode\ x_0$.

Nechť f má derivaci v nějakém okolí $U(x_0) \subset D(f)$ a existuje $f''(x_0)$. Je-li $f''(x_0) < 0$, má funkce f v bodě x_0 (ostré) lokální maximum, je-li $f''(x_0) > 0$, má funkce f v bodě x_0 (ostré) lokální minimum.

Pozor: Pokud $f''(x_0) = 0$, neznamená to, že extrém neexistuje, ale že musíme rozhodnout podle jiného pravidla.

Odvození postupu dle (1) plyne z definice extrému, (2) plyne z (1) užitím vztahu mezi monotónností a znaménkem derivace, (3) plyne z (2) uvážíme-li, že např. vlastnost $f''(x_0) < 0$ říká, že funkce f' je klesající v bodě x_0 , a protože $f'(x_0) = 0$, platí v nějakém $P(x_0-)$, že f'(x) > 0 a v $P(x_0+)$, že $f'(x_0) < 0$.

Úloha 9.2.1. Zjistěte extrém funkce $f: y = x e^{-x}$.

[Vypočteme derivaci $y' = (1-x) e^{-x}$ a položíme ji rovnu 0; dostáváme stacionární bod $x_0 = 1$. Dále vypočteme $y'' = (x-2) e^{-x}$. Ježto $y''(1) = -e^{-1} < 0$, má funkce f v bodě 1 lokální maximum.]

(4) Užití Taylorova vzorce.

Jestliže funkce f má derivace v $U(x_0)$ a platí (n > 1) $f'(x_0) = f''(x_0) = ... = f^{(n-1)}(x_0) = 0$, $f^{(n)}(x_0) \neq 0$, pak

- (1) pro *n* sudé existuje v bodě x_0 extrém:
- lokální maximum pro $f^{(n)}(x_0) < 0$,
- lokální minimum pro $f^{(n)}(x_0) > 0$.

(2) pro n liché extrém v bodě x_0 neexistuje.

Tvrzení plyne z toho, že z Taylorova vzorce máme za daných předpokladů

 $f(x_0 + \Delta x) - f(x_0) = \frac{f^{(n)}(x_0 + \theta \Delta x)}{n!} \Delta x^n$, přičemž okolí bodu x_0 , tedy $U(x_0)$, lze volit tak ma-

lé, že $f^{(n)}(x_0 + \theta \Delta x)$ má stejné znaménko jako $f^{(n)}(x_0)$.

Úloha 9.2.2. Vyšetřete extrém funkce f: $y = x^5$.

[Máme y' = 5 x^4 , stacionární bod 0. Dále pak y'' = 20 x^3 , y''(0) = 0, y''' = 60 x^2 , y'''(0) = 0, $y^{(4)} = 120$ x, $y^{(4)}(0) = 0$, $y^{(5)} = 120 > 0$. První nenulová derivace je lichého řádu, tedy extrém neexistuje.]

9.3. Největší a nejmenší hodnota funkce na intervalu

Mějme funkci f definovanou a spojitou na intervalu $\langle a,b \rangle$. Podle 2. Weierstrassovy věty nabývá funkce f v některém bodě c_1 své největší hodnoty a v některém bodě c_2 své nejmenší hodnoty

obr. 9.3.1.

noty. Jiné názvy: *absolutní extrémy, globální extrémy*. Každý z bodů c_1 , c_2 přitom může být vnitřním nebo krajním bodem intervalu $\langle a,b\rangle$, viz obr. 9.3.1.

Pokud je c_i vnitřním bodem, je to současně bod, v němž nastává lokání extrém, tedy stacionární bod nebo bod, v němž neexistuje derivace. Z toho pak plyne:

Postup při určování největší a nejmenší hodnoty funkce na uzavřeném intervalu $\langle a,b \rangle$:

- (1) Určíme všechny stacionární body a body, v nichž neexistuje derivace a vypočteme v nich funkční hodnoty.
- (2) Vypočteme funkční hodnoty v bodech *a*, *b*.
- (3) Maximum množiny všech těchto hodnot funkce z (1) a (2) je největší hodnotou funkce na $\langle a,b\rangle$.

minimum množiny všech těchto hodnot funkce z (1) a (2) je nejmenší hodnotou funkce na $\langle a,b\rangle$.

Tedy: není třeba určovat lokální extrémy dle 9.2.

Úloha 9.3.1. Máme určit největší a nejmenší hodnotu funkce f: $y = x^3 - 3x + 1$ na intervalu $\langle 0,2 \rangle$.

 $[y' = 3x^2 - 3; f \text{ má na } \langle 0,2 \rangle \text{ jediný stacionární bod 1. Vypočteme } f(1) = -1 \text{ a dále } f(0) = 1, f(2) = 3.$ Funkce f tedy nabývá největší hodnoty 3 v bodě 2 a nejmenší hodnoty -1 v bodě 1.]

9.4. Konvexnost a konkávnost

Označme $k(u,v) = \frac{f(v) - f(u)}{v - u}$; je-li f funkce spojitá, je pro $u \neq v$ také funkce k(u,v)

spojitá vzhledem k u i vzhledem k v. Geometrický význam: k(u,v) je směrnice sečny grafu funkce f.

D: Funkce f se nazývá *konvexní* (*konkávní*) na intervalu $(a,b) \Leftrightarrow$ pro každé tři body $x_1, x, x_2 \in (a,b)$, kde $x_1 < x < x_2$, platí $k(x_1,x) < k(x,x_2)$ ($k(x_1,x) > k(x,x_2)$).

Funkce dle této definice je *ryze konvexní* nebo *konkávní*, při neostrých nerovnostech jde o neryzí vlastnosti.

Úloha 9.4.1. Doplňte obrázek 9.4.1 (9.4.2), tak aby ilustroval definici funkce konvexní (konkávní).

V (1.věta o konvexnosti a konkávnosti): Nechť funkce f má na intervalu (a,b) derivaci f'. Pak funkce f je na (a,b) konvexní (konkávní) \Leftrightarrow je f' na (a,b) rostoucí (klesající).

Důkaz: 1) Nechť f je konvexní. Zvolme libovolné $x_1, x_2 \in (a,b), x_1 < x_2$; dokážeme, že $f'(x_1) < f'(x_2)$. Mezi x_1 a x_2 zvolme další 3 body tak, aby platilo $x_1 < \overline{x}_1 < x_0 < \overline{x}_2 < x_2$. Pak platí $k(x_1, x_0) < k(x_0, x_2)$ a též $k(x_1, \overline{x}_1) < k(\overline{x}_1, x_0), k(x_0, \overline{x}_2) < k(\overline{x}_2, x_2)$. Přejdeme k limitám: $\lim_{\overline{x}_1 \to x_1 +} k(x_1, \overline{x}_1) = f'(x_1 +) = f'(x_1), \lim_{\overline{x}_2 \to x_2 -} k(\overline{x}_2, x_2) = f'(x_2 -) = f'(x_2),$

$$\lim_{\bar{x}_1 \to x_1^+} k(\bar{x}_1, x_0) = k(x_1, x_0), \lim_{\bar{x}_2 \to x_2^-} k(x_0, \bar{x}_2) = k(x_0, x_2) \text{ a z toho}$$

$$f'(x_1) \le k(x_1, x_0) < k(x_0, x_2) < f'(x_2).$$

2) Naopak nechť f' je rostoucí na (a,b). Uvažujme libovolné dva body $x_1, x_2 \in (a,b)$ a nechť $x \in (x_1, x_2)$. Dokážeme, že $k(x_1, x) < k(x, x_2)$ a to tak, že najdeme taková $\xi_1 < \xi_2$, že $f'(\xi_1) = k(x_1, x), f'(\xi_2) = k(x, x_2)$. K tomu použijeme Lagrangeovu větu, podle níž existuje bod $\xi_1 \in \langle x_1, x \rangle$ tak, že $f'(\xi_1) = k(x_1, x)$, a podobně existuje $\xi_2 \in \langle x, x_2 \rangle$ tak, že $f'(\xi_2) = k(x, x_2)$, přičemž $x_1 < x < x_2$. Proto $k(x_1, x) = f'(\xi_1) < f'(\xi_2) = k(x, x_2)$, funkce je konvexní. \square

Na funkci f' lze nyní použít větu o monotónnosti na intervalu (viz 9.1). Podle ní platí:

V (2. věta o konvexnosti a konkávnosti): Má-li funkce f druhou derivaci na (a,b), pak tato funkce je na (a,b) konvexní [konkávní], právě když $\forall x \in (a,b)$ je $f''(x) \ge 0$ [≤ 0], přičemž neexistuje interval $(\alpha,\beta) \subset (a,b)$ tak, aby $\forall x \in (\alpha,\beta)$ bylo f''(x) = 0.

9.5. Inflexe a inflexní body

D: Říkáme, že funkce f má v bodě x_0 *inflexi* \Leftrightarrow má derivaci $f'(x_0)$ a je v levém okolí $U(x_0-)$ konvexní [konkávní] a v pravém okolí $U(x_0+)$ konkávní [konvexní]. Bod $[x_0,f(x_0)]$ roviny se nazývá *inflexní bod* funkce f resp. grafu funkce f.

Tedy v inflexním bodě přechází funkce z konvexního průběhu na konkávní nebo naopak. *Inflexní tečna*, tj. tečna ke grafu funkce f v inflexním bodě, má tu vlastnost, že v bodě dotyku graf přechází z jedné poloroviny do druhé. Např. osa x je inflexní tečnou ke grafu funkce $y = x^3$. Tím se inflexní tečna liší od tečen v bodech, které nejsou inflexní.

V (vztah inflexe a derivace): Má-li funkce f v nějakém okolí $U(x_0)$ derivaci f', pak má v bodě x_0 inflexi \Leftrightarrow má f' v bodě x_0 lokální extrém.

 $D\mathring{u}kaz$: 1) Nechť f má v bodě x_0 inflexi. Pak nastává jedna z těchto možností:

- a) f je v $U(x_0-)$ konvexní (tj. f' je rostoucí) a v $U(x_0+)$ konkávní (tj. f' je klesající), takže f' má v bodě x_0 lokální maximum;
- b) f je v $U(x_0-)$ konkávní (tj. f' je klesající) a v $U(x_0+)$ konvexní (tj. f' je rostoucí), takže f' má v bodě x_0 lokální minimum.
- 2) Má-li f' lokální extrém v bodě x_0 , je to buď lokální maximum nebo lokální minimum a podobnými úvahami (proveďte je!) pro levé a pravé okolí dojdeme k existenci inflexe. \Box

V (nutná podmínka existence inflexe): Má-li funkce f v bodě x_0 inflexi a existuje $f''(x_0)$, je $f''(x_0) = 0$.

Důkaz plyne z nutné podmínky existence extrému funkce f'.

Vztah inflexe a derivace lze dalšími větami specifikovat pro případ existence druhé resp. i třetí derivace.

V (vztah inflexe a druhé derivace): Má-li funkce f v nějakém okolí bodu x_0 derivaci f'' a má-li tato derivace v $P(x_0-)$ a $P(x_0+)$ různá znaménka, má funkce f v bodě x_0 inflexi. Má-li f'' stejné znaménko v $P(x_0-)$ a $P(x_0+)$, pak funkce f v bodě x_0 inflexi N nemá.

V (vztah inflexe a 3. derivace): Má-li funkce f v nějakém okolí bodu x_0 derivaci f'', platí $f''(x_0) = 0$ a $f'''(x_0) \neq 0$, pak funkce f má v bodě x_0 inflexi.

Tuto větu bychom mohli rozšířit (podobně jako odpovídající pravidlo pro určování lokálního extrému) i na případ, kdy $f''(x_0) = f'''(x_0) = \dots = f^{(k-1)}(x_0) = 0$, $f^{(k)}(x_0) \neq 0$. Pro k liché existuje v bodě x_0 inflexe, pro k sudé nikoli.

Úloha 9.5.1. Stanovte konvexnost, konkávnost a inflexi funkce $y = x e^{-x}$.

[Tato funkce má potřebné derivace, vypočteme

$$y' = (1 - x) e^{-x}$$
, $y'' = (x - 2) e^{-x}$, kde $e^{-x} > 0$.

Pro x < 2 je y'' < 0, funkce je konkávní, pro x > 2 je y'' > 0, funkce je konvexní. Pro x = 2 má funkce inflexi, inflexní bod je [2; 2 e⁻²].

9.6. Asymptoty

Asymptoty jsou přímky a představujeme si je jako tečny ke grafu funkce v nekonečnu. Např. souřadnicové osy jsou asymptotami grafu funkce y = 1/x. Máme asymptoty dvou druhů a vyslovíme pro ně dvě různé definice, protože to je praktické, i když z hlediska geometrického jde o tentýž jev.

D: Přímka x = c se nazývá *vertikální asymptota* grafu funkce $f \Leftrightarrow funkce f$ má v bodě c alespoň jednu jednostrannou limitu nevlastní.

Takových asymptot může mít funkce nekonečně mnoho, příkladem je funkce tangens. Kromě toho mohou pro danou funkci existovat ještě nejvýše dvě asymptoty s rovnicemi tvaru y = kx + q.

D: Přímka y = kx + q se nazývá *asymptota* (*se směrnici*) grafu funkce $f \Leftrightarrow \text{pro } x \to -\infty$ nebo pro $x \to +\infty$ je $\lim [f(x) - (kx + q)] = 0$.

Asymptoty se směrnicí se zpravidla zjišťují podle následující věty.

V (o výpočtu asymptot): Přímka y = kx + q je asymptotou grafu funkce $f \Leftrightarrow$ existují limity (pro $x \to -\infty$ nebo pro $x \to +\infty$) $\lim \frac{f(x)}{x} = k$ a $\lim [f(x) - kx] = q$.

Důkaz: Všechny dále uvedené limity bereme pro $x \to -\infty$ nebo pro $x \to +\infty$.

- 1) Nechť přímka y = kx + q je asymptotou. Pak $\lim [f(x) (kx + q)] = 0$, tedy též $\lim \frac{f(x) kx q}{x} = 0$. Ježto $\frac{q}{x} \to 0$, platí $\lim \frac{f(x)}{x} k = 0$, tedy $\lim \frac{f(x)}{x} = k$. Druhá rovnost je zřejmá, neboť ve vztahu $\lim [f(x) (kx + q)] = 0$ lze provést rozdělení na dvě limity $\lim [f(x) kx] q = 0$.
- 2) Existují-li naopak limity pro k a pro q, plyne ze vztahu $\lim [f(x) kx] = q$ definiční vztah $\lim [f(x) (kx + q)] = 0$. \square

Praktický postup v běžných případech:

- 1° Vyšetříme okolí těch hromadných bodů D(f), které leží v $\mathbf{R} D(f)$ (body nespojitosti zejména izolované body množiny $\mathbf{R} D(f)$ nebo krajní body intervalů, jež jsou součástí D(f)). Zjistíme ve kterém z těchto bodů existují alespoň jednostranné nevlastní limity.
- 2° Je-li +∞ nebo -∞ hromadným bodem D(f), hledáme lim f(x)/x. Jestliže tato limita (nebo obě) existuje, je to směrnice k asymptot, pokud asymptoty existují. Dále ještě hledáme lim [f(x) kx] s oním k, jež bylo vypočteno v předchozí limitě. Existuje-li tato limita, je to q a asymptota existuje.

Při výpočtu $k = \lim \frac{f(x)}{x}$ lze použít l'Hospitalova pravidla, z něhož $k = \lim f'(x)$.

Také tento vztah se často využívá k výpočtu směrnice asymptot (ovšem neexistuje-li $\lim f'(x)$, neznamená to neexistenci asymptot).

Úloha 9.6.1. Určete asymptoty pro funkci $y = 2x + \operatorname{arctg} x$.

$$\left[k = \lim \frac{f(x)}{x} = \lim \left(2 + \frac{\arctan x}{x}\right)\right] = 2$$
, neboť v posledním zlomku je funkce v čitateli ome-

zená, takže tento zlomek konverguje k 0. Dále $q = \lim (2x + \arctan x - 2x) = \pm \pi/2$. Existují tedy 2 asymptoty: $y = 2x - \pi/2$ pro $x \to -\infty$ a $y = 2x + \pi/2$ pro $x \to +\infty$.

Úloha 9.6.2. Určete asymptoty pro funkci $y = x + \sqrt{x}$.

[Zde je nevlastním hromadným bodem D(f) jen $+\infty$. Počítáme $k = \lim \frac{f(x)}{x} = 1 + \lim \frac{\sqrt{x}}{x} = 1$, $q = \lim (x + \sqrt{x} - x) = +\infty$, asymptota neexistuje.]

9.7. Průběh funkce

O vyšetřování průběhu funkce lze pojednat dvěma způsoby:

- uvést věcně, ze kterých činností se vyšetřování průběhu funkce skládá,
- popsat praktický postup při vyšetřování průběhu funkce.

Dle 1. hlediska uvažujeme tyto složky:

- 1° Definiční obor, body nespojitosti.
- 2° Funkční obor, omezenost; nulové body funkce; intervaly, kde je funkce kladná, kde je záporná.
- 3° Funkční vlastnosti funkce: parita, periodičnost.
- 4° Limity (jednostranné) v bodech nespojitosti funkce, v krajních bodech definičního oboru, resp. $v \infty$, $+ \infty$.
- 5° Intervaly monotónnosti (kde funkce roste, kde klesá) nebo konstantnosti.
- 6° Lokální extrémy funkce.
- 7° Intervaly konvexnosti a konkávnosti.
- 8° Inflexe, inflexní body grafu funkce.
- 9° Asymptoty grafu funkce.
- 10° Sestrojení grafu funkce.

Praktický postup při vyšetřování průběhu funkce sleduje v běžném případě i myšlenku správného a přehledného záznamu výsledků a mezivýsledků do tabulky. Proto postupujeme takto:

- **A.** Zjistíme údaje potřebné pro sestavení tabulky, sestavíme tabulku a zaznamenáme do ní dosud známé údaje o funkci,
- **B.** postupně zjišť ujeme další vlastnosti funkce a zaznamenáváme je do tabulky,
- C. doplníme údaje potřebné pro sestrojení grafu a sestrojíme graf funkce.

Lze tak doporučit toto pořadí prací:

- **A1**. Provedeme 1 (určíme D(f) a body nespojitosti).
- **A2**. Provedeme 3 (stanovení parity a periodičnosti), tj. zjistíme, zda bychom mohli zmenšit rozsah vyšetřování funkce tím, že se omezíme např. jen na interval $(0, +\infty)$ nebo jen na jednu periodu u funkce periodické.
- **A3**. Vypočteme 1.derivaci, položíme ji rovnu 0 a řešením získáme stacionární body. K nim přidáme ty body z D(f), v nichž 1. derivace neexistuje. Má-li funkce lokální extrém, pak nastane v některém z těchto bodů.
- **A4**. Vypočteme 2. derivaci, položíme ji rovnu 0 a řešením získáme body, v nichž může mít funkce inflexi. K nim přidáme ty body z D(f'), v nichž 2. derivace neexistuje.
- **A5**. Sestavíme tabulku, kde v horizontálním záhlaví zaznamenáme rozčlenění číselné osy s ohledem na A1, A2, A3, A4; ve vertikálním záhlaví jsou řádky pro x, y, y', y'', a pro záznam vlastností funkce f. Do tabulky přeneseme údaje již zjištěné.
- B1. Užitím znaménka 1. derivace určíme 5 (intervaly monotonnosti).
- **B2**. Na základě B1 zjistíme 6 (lokální extrémy), včetně funkčních hodnot v těchto bodech.
- **B3**. Užitím znaménka 2. derivace určíme 7 (konvexnost a konkávnost).

B4. Na základě B3 zjistíme 8 (inflexi), včetně funkčních hodnot v těchto bodech a hodnot 1. derivací.

B5. Určíme 9 (asymptoty).

B6. Určíme 4 (limity), pokud je to po B5 ještě třeba.

B7. Určíme 2 (funkční obor, nulové body, znaménka funkce).

C1. Podle potřeby doplníme např. průsečík grafu funkce s osou y, hodnoty funkce v dalších bodech D(f), případně i hodnoty derivací (připojíme k tabulce jako dodatek).

C2. Provedeme bod 10 (sestrojíme graf funkce).

Úloha 9.7.1. Sestavte tabulku pro vyšetření průběhu funkce $y = x + \frac{1}{x}$.

 $[D(f) = (-\infty, 0) \cup (0, +\infty),$ funkce je lichá, tj. graf bude souměrný podle počátku.

$$y'=1-\frac{1}{x^2}$$
; $y'=0 \Rightarrow x \in \{-1; 1\}$ (stacionární body); $y''=\frac{2}{x^3} \neq 0$. Sestavíme tabulku (např. jen) pro interval $(0,+\infty)$.

х	0	→0+	(0, 1)	1	$(1, +\infty)$	$\rightarrow +\infty$
У	n.d.	$\rightarrow +\infty$	_	2	_	$\rightarrow +\infty$
y'	n.d.	→-∞	< 0	0	> 0	→1
y"	n.d.	-	> 0	> 0	> 0	_
funkce	n.d.		klesá	lok.min.	roste	→ +∞
		asymptota $x = 0$	konvexní			asymptota $y = x$

Inflexní body neexistují.]

9.8. Užití extrémů funkcí

Na výpočet extrémů vede řada praktických úloh.

Úloha 9.8.1. Ze čtvercového listu papíru o straně a má být po vystřižení čtverečků v rozích složena krabice o maximálním objemu. Vypočtěte stranu čtverečků, jež mají být v rozích vystřiženy a rozměry výsledné krabice (obr. 9.8.1).

[
$$V = (a-2x)^2 x$$
, $V' = 12x^2 - 8ax + a^2 \Rightarrow x_1 = \frac{a}{6}$, $x_2 = \frac{a}{2}$ (nevyhovuje praktické úloze); roz-

měry krabice jsou $\frac{2}{3}a \times \frac{2}{3}a \times \frac{1}{6}a$, výška je rovna čtvrtině šířky čtvercového dna.]

Úloha 9.8.2. Pracoviště je v konstantní vzdálenosti *a* od průmětu světla na vodorovnou rovinu. Při jaké výšce *h* světla (viz obr. 9.8.2) je osvětlení pracoviště maximální?

[Intenzita osvětlení závisí na vstupních podmínkách takto: $I = c \cdot \frac{\sin \varphi}{r^2}$, kde $\sin \varphi = \frac{h}{r}$ a $r = \sqrt{h^2 + a^2}$, takže I = I(h); po dosazení $I = c \cdot \frac{h}{\left(h^2 + a^2\right)^{\frac{3}{2}}}$, $I' = c \cdot \frac{a^2 - 2h^2}{\left(h^2 + a^2\right)^{\frac{3}{2}}}$ (=0) $\Rightarrow h = \frac{a}{\sqrt{2}} \approx 0.7 \ a.$]

Úloha 9.8.3. Výkon Peltonova kola je $P = k \cdot u \cdot (v - u)$, kde u je obvodová rychlost Peltonova kola a v je rychlost vodního paprsku. Při jaké rychlosti u je výkon Peltonovy turbiny maximální?

$$[P = P(u), P' = kv - 2ku \ (=0) \Rightarrow u = \frac{v}{2}.]$$

Úloha 9.8.4. Určete rozměry konzerv tvaru rotačního válce o daném objemu V tak, aby se při jejich výrobě spotřebovalo co nejmenší množství plechu.

[Hledá se minimum funkce $S=2\pi xv+2\pi x^2$, kde x je poloměr dna konzervy a v výška konzervy, za podmínky, že $V=\pi x^2$ v je zadané (tedy konstantní). Po dosazení za v z této podmín-

ky máme
$$S = \frac{2V}{x} + 2\pi x^2$$
, odkud $S' = -\frac{2V}{x^2} + 4\pi x$. Z rovnice $S' = 0$ máme $x_0 = \sqrt[3]{\frac{V}{2\pi}}$.

Odsud je
$$v_0 = \frac{V}{\pi x_0^2} = ... = 2.\sqrt[3]{\frac{V}{2\pi}} = 2 x_0 : výška konzervy je rovna průměru dna.]$$

_ * -