

SPHERE THEOREM FOR MANIFOLDS WITH POSITIVE CURVATURE

BAZANFARÉ MAHAMAN

ABSTRACT. In this paper, we prove that, for any integer $n \geq 2$, there exists an $\epsilon_n \geq 0$ so that if M is an n -dimensional complete manifold with sectional curvature $K_M \geq 1$ and if M has conjugate radius bigger than $\frac{\pi}{2}$ and contains a geodesic loop of length $2(\pi - \epsilon_n)$, then M is diffeomorphic to the Euclidian unit sphere S^n .

1. INTRODUCTION

One of the fundamental problems in Riemannian geometry is to determine the relation between the topology and the geometry of a Riemannian manifold. In this way the Toponogov's theorem and the critical point theory play an important rule. Let M be a complete Riemannian manifold and fix a point p in M and define $d_p(x) = d(p, x)$. A point $q \neq p$ is called a critical point of d_p or simply of the point p if, for any nonzero vector $v \in T_q M$, there exists a minimal geodesic γ joining q to p such that the angle $(v, \gamma'(0)) \leq \frac{\pi}{2}$. Suppose M is an n -dimensional complete Riemannian manifold with sectional curvature $K_M \geq 1$. By Myers' theorem the diameter of M is bounded from above by π . In [Ch] Cheng showed that the maximal value π is attained if and only if M is isometric to the standard sphere. It was proved by Grove and Shiohama [GS] that if $K_M \geq 1$ and the diameter of M $\text{diam}(M) > \frac{\pi}{2}$ then M is homeomorphic to a sphere.

Hence the problem of removing homeomorphism to diffeomorphism or finding conditions to guarantee the diffeomorphism is of particular interest. In [Xi3] C. Xia showed that if $K_M \geq 1$ and the conjugate radius of M $\rho(M) > \pi/2$ and if M contains a geodesic loop of length 2π then M is isometric to $S^n(1)$.

1.1. Definition. *Let M be an n -dimensional Riemannian manifold and p be a point in M . Let $\text{Conj}(p)$ denote the set of first conjugate points to p on all geodesics issuing from p . The conjugate radius $\rho(p)$ of M*

2000 mathematics subject classification 53C20, 53C21 .

at p is defined as

$$\rho(p) = d(p, \text{Conj}(p)) \quad \text{if } \text{Conj}(p) \neq \emptyset$$

and

$$\rho(p) = +\infty \quad \text{if } \text{Conj}(p) = \emptyset$$

Then the conjugate radius of M is:

$$\rho(M) = \inf_{x \in M} \rho(x).$$

Many interesting results have been proved by using the critical points theory and Toponogov's theorem [C], [GS], [Pe], [S], [Sh], [SS], [Xi1], [Xi2], [Xi3]. In otherwise J. Cheeger and T. Colding in [CC] have proven the following

Theorem A. *There exists a number, $\epsilon(n) > 0$, depending only on the integer n such that, for any two Riemannian manifolds Z_1, Z_2 , if $d_{GH}(Z_1, Z_2) < \epsilon(n)$, then Z_1 and Z_2 are diffeomorphic. where $d_{GH}(Z_1, Z_2)$ denote the Gromov-Hausdroff distance.*

The purpose of this paper is to prove the following :

1.2. Theorem. *For any $n \geq 2$ there exists a positif constant $\epsilon(n)$ depending only on n such that for any $\epsilon \leq \epsilon(n)$, if M is an n -dimensional complete connected Riemannian manifold with sectional curvature $K_M \geq 1$ and conjugate radius $\rho(M) > \frac{\pi}{2}$ and if M contains a geodesic loop of length $2(\pi - \epsilon)$ then M is diffeomorphic to an n -dimensional unit sphere $S^n(1)$.*

2. PROOF

Since $K_M \geq 1$, M is compact. Let $i(M)$ denote the injectivity radius of M .

By definition we have

$$i(M) = \inf_{x \in M} d(x, C(x)).$$

Since M is compact and the function $x \mapsto d(x, C(x))$ is continuous, there exists $p \in M$ such that $i(M) = d(p, C(p))$. Since $C(p)$ is compact there exists $q \in C(p)$ such that $i(M) = d(p, q) = d(p, C(p))$. Then

- a) either there exists a minimal geodesic σ joining p to q such that q is a conjugate point of p or
- b) there exists two minimal geodesics σ_1 and σ_2 joining p to q such that $\sigma'_1(l) = -\sigma'_2(l)$, $l = d(p, q)$. See [C].

2.1. Lemma. *Let M be an n -dimensional complete, connected Riemannian manifold with sectional curvature $K_M \geq 1$ and the conjugate radius $\rho(M) > \frac{\pi}{2}$, then $i(M) > \frac{\pi}{2}$.*

Proof of the lemma

If $a)$ holds, then $i(M) = d(p, q) > \pi/2$.

Suppose $b)$ holds. Since $q \in C(p)$, we have $p \in C(q)$ and consequently $d(p, q) = d(q, C(q))$. This implies that $\sigma'_1(0) = -\sigma'_2(0)$. Set $D(x) = \max_{y \in M} d(x, y)$. Then

$$D(x) \geq \max_{y \in C(x)} d(x, y) \geq \rho(M) > \pi/2.$$

Since M is compact, there exist a point $y \in M$ such that $D(x) = d(x, y) > \pi/2$ and y is the unique farthest point and the critical one for the distance $d(x, .)$. Set $A(x) = y$; thus we define a continuous map $A : M \mapsto M$ (see [Xi3]). By the Berger-Klingenberg theorem, M is homeomorphic to the unit sphere $S^n(1)$ and since $A(x) \neq x$ for all $x \in M$ the Brouwer fixed point theorem sets that the degree of A is $(-1)^{n+1}$ and consequently A is surjective. Let $r \in M$ the point so that $p = A(r)$. Hence $d(p, r) > \pi/2$. If $r = q$ then $i(M) = d(p, q) > \pi/2$ otherwise there exists a minimal geodesic from q to r , σ_3 such that

$$\angle(\sigma'_3(0), -\sigma'_1(l)) \leq \pi/2 \quad \text{or} \quad \angle(\sigma'_3(0), -\sigma'_2(l)) \leq \pi/2.$$

Suppose $\angle(\sigma'_3(0), -\sigma'_1(l)) \leq \pi/2$. Applying the Toponogov's theorem [T] to the hinge (σ_1, σ_3) , we have:

$$\cos d(p, r) \geq \cos d(p, q) \cos d(q, r) + \sin d(p, q) \sin d(q, r) \cos \angle(\sigma'_3(0), -\sigma'_1(l))$$

$$(1) \quad \geq \cos d(p, q) \cos d(q, r).$$

Since r is far from p in the sense that $d(p, r) > \pi/2$ then r is near to q i.e $d(q, r) < \pi/2$ and from (1) we have

$$\cos d(p, q) < 0$$

and consequently

$$i(M) = d(p, q) > \pi/2$$

which proves the lemma.

2.2. Lemma. *Let M be a complete connected n -dimensional Riemannian manifold with sectional curvature $K_M \geq 1$ and conjugate radius $\rho(M) > \frac{\pi}{2}$. If M contains a geodesic loop of length at least $2(\pi - \epsilon)$ then $\text{diam}(M) \geq \pi - \tau(\epsilon)$ where $\tau(\epsilon) \mapsto 0$ when $\epsilon \mapsto 0$.*

Proof

Since $i(M) > \pi/2$ then there exist $\delta > 0$ such that $i(M) > \pi/2 + \delta$. Let γ be a loop with length $2\pi - 2\epsilon$. Let $x = \gamma(0) = \gamma(2\pi - 2\epsilon)$, $y = \gamma(\pi/2 + \delta)$, $m = \gamma(\pi - \epsilon)$ and $z = \gamma(\frac{3(\pi-\epsilon)}{2} - \delta)$

Let

$$\gamma_1 = \gamma_{[0, \frac{\pi}{2} + \delta]}, \quad \gamma_2 = \gamma_{[\frac{\pi}{2} + \delta, \pi - \epsilon]} \quad \gamma_3 = \gamma_{[\pi - \epsilon, \frac{3(\pi-\epsilon)}{2} - \delta]}$$

and $\gamma_4 = \gamma_{[\frac{3(\pi-\epsilon)}{2} - \delta, 2\pi - 2\epsilon]}$.

Then the geodesics γ_i are minimal. Let σ be a minimal geodesic joining m and x .

We claim that $L(\sigma) \geq \pi - \tau(\epsilon)$.

Set $\alpha = \angle(\sigma'(0), -\gamma'(\pi - \epsilon))$ and $\beta = \angle(\sigma'(0), \gamma'(\pi - \epsilon))$. Applying the Toponogov's theorem to the triangles $(\gamma_1, \gamma_2, \sigma)$ and $(\gamma_3, \gamma_4, \sigma)$ respectively, one can take two triangles $(\bar{\gamma}_1, \bar{\gamma}_2, \bar{\sigma})$ and $(\bar{\gamma}_3, \bar{\gamma}_4, \bar{\sigma})$ on the unit sphere $S^2(1)$ with vertices $\bar{x}, \bar{y}, \bar{m}$ and $\bar{x}, \bar{z}, \bar{m}$ respectively satisfying:

$$L(\bar{\gamma}_i) = L(\gamma_i), \quad i = 1, 2, 3, 4; L(\bar{\sigma}) = L(\sigma);$$

hence $\bar{\alpha} \leq \alpha, \bar{\beta} \leq \beta$ where $\bar{\alpha}$ and $\bar{\beta}$ are the angles at \bar{m} of the triangles $(\bar{\gamma}_1, \bar{\gamma}_2, \bar{\sigma})$ and $(\bar{\gamma}_3, \bar{\gamma}_4, \bar{\sigma})$ respectively. We have: $\alpha \leq \pi/2$ or $\beta \leq \pi/2$. Suppose, without lost the generality, that $\alpha \leq \pi/2$. Let \bar{x}' be the antipodal point of \bar{x} on the sphere $S^2(1)$ and $\bar{\sigma}_1$ the minimal geodesic from \bar{m} to \bar{x}' . If $\bar{\alpha}'$ and $\bar{\beta}'$ are the angles at \bar{m} , of triangles $(\bar{y}, \bar{m}, \bar{x}')$ and $(\bar{z}, \bar{m}, \bar{x}')$ respectively then we have:

$$(2) \quad \begin{aligned} d((\bar{y}, \bar{x}') &= \pi - d(\bar{y}, \bar{x}) \\ &= \pi - d(x, y) = \frac{\pi}{2} - \delta \end{aligned}$$

Hence, using the trigonometric law on the triangle $(\bar{y}, \bar{m}, \bar{x}')$ we have:

$$\begin{aligned} \sin d(\bar{m}, \bar{y}) \sin d(\bar{m}, \bar{x}') \cos \bar{\alpha}' &= \cos d(\bar{y}, \bar{x}') - \cos d(\bar{m}, \bar{y}) \cdot \cos d(\bar{m}, \bar{x}') \\ &= \cos(\frac{\pi}{2} - \delta) - \cos(\frac{\pi}{2} - \delta - \epsilon) \cdot \cos d(\bar{m}, \bar{x}') \\ &= \sin(\delta) - \sin(\delta + \epsilon) \cos d(\bar{m}, \bar{x}') \leq 0 \end{aligned}$$

which means that

$$\cos d(\bar{m}, \bar{x}') \geq \frac{\sin(\delta)}{\sin(\delta + \epsilon)}.$$

It follows that

$$L(\sigma) = d(\bar{m}, \bar{x}') \leq \cos^{-1} \left(\frac{\sin(\delta)}{\sin(\delta + \epsilon)} \right) = \tau(\epsilon)$$

with $\tau(\epsilon) \mapsto 0$ when $\epsilon \mapsto 0$.

Hence

$$d(m, x) = d(\bar{m}, \bar{x}) \geq \pi - \tau(\epsilon).$$

2.3. Lemma. *Let M be a complete connected n -dimensional Riemannian manifold with sectional curvature $K_M \geq 1$ and $\text{diam}(M) \geq \pi - \epsilon$, then for all $x \in M$ there exists a point x' such that $d(x, x') \geq \pi - \Gamma(\epsilon)$ hence $\text{Rad}(M) \geq \pi - \Gamma(\epsilon)$ with $\Gamma(\epsilon) \mapsto 0$ when $\epsilon \mapsto 0$ where*

$$\text{Rad}(M) = \min_{x \in M} \max_{y \in M} d(x, y)$$

Proof

Since M is compact, its injectivity radius $i(M)$ is positive and set r_0 a positive number not larger than $i(M)$. Let p, q be two points in M such that $d(p, q) = \text{diam}(M) \geq \pi - \epsilon$. Let $x \in M$ and suppose $x \neq p$ and $x \neq q$. Consider the triangle (p, q, x) and let y be a point of the segment $[q, x]$ such that $d(q, y) = \frac{r}{2}$ with $r < r_0$ and $d(p, x) > 2r$ $d(q, x) > 2r$. For any point $s \in B(y, r)$ the function

$$z \mapsto e_{yz}(s) = d(y, s) + d(z, s) - d(y, z)$$

is continuous and if z is on the prolongation of the geodesic joining y to s we have: $e_{yz}(s) = 0$ (this is possible since $r < r_0$).

Hence the function $z \mapsto e_{yz}(q)$ is continuous on the sphere $S(y, r)$, and consequently there exists $z \in S(y, r)$ such that

$$(3) \quad e_{yz}(q) = d(y, q) + d(z, q) - d(y, z) < \epsilon$$

For any point $v \in M$ we have:

$$d(p, v) + d(q, v) + d(p, q) \leq 2\pi$$

hence

$$(4) \quad |d(p, v) + d(q, v) - \pi| \leq \epsilon.$$

Let \bar{p}' be the antipodal point of \bar{p} on the sphere S^2 .

$$\begin{aligned} d(\bar{p}, \bar{q}) &= d(p, q); \\ d(\bar{z}, \bar{p}') &= \pi - d(\bar{z}, \bar{p}) = \pi - d(p, z). \end{aligned}$$

We have

$$|d(\bar{q}, \bar{y} - d(\bar{y}, \bar{p}'))| = |d(\bar{q}, \bar{y}) - \pi + d(\bar{p}, \bar{y})| < \epsilon.$$

In the same way, we have:

$$|d(\bar{q}, \bar{z}) - \pi + d(\bar{p}, \bar{z})| = |d(q, z) - \pi + d(p, z)| < \epsilon$$

Hence

$$\begin{aligned} (5) \quad d(\bar{y}, \bar{z}) &= d(y, z)d(q, y) + d(q, z) - \epsilon \geq \pi - \epsilon - d(p, y) + d(q, z) - \epsilon \\ &\geq \pi - d(\bar{p}, \bar{y}) + d(\bar{q}, \bar{z}) - 2\epsilon \geq d(\bar{p}', \bar{y}) + d(\bar{q}, \bar{z}) - 2\epsilon \end{aligned}$$

$$(6) \quad \geq d(\bar{p}', \bar{y}) + d(\bar{p}', \bar{z}) - 3\epsilon$$

Thus $d(\bar{p}', \bar{y}) > \frac{r}{2} - \frac{3}{2}\epsilon$ and $d(\bar{p}', \bar{z}) > \frac{r}{2} - \frac{3}{2}\epsilon$.

Suppose $d(\bar{p}', \bar{y}) \leq \frac{r}{2} - \frac{3}{2}\epsilon$ then $d(\bar{p}, \bar{y}) \geq \pi - \frac{r}{2} + \frac{3}{2}\epsilon$
which contradicts (4).

Let

$$\vec{l}'_1 = d(\bar{p}', \bar{y}); \vec{l}'_2 = d(\bar{p}', \bar{z}) \text{ and } \vec{l}'_0 = d(\bar{z}, \bar{y}).$$

Applying the Topogonov's theorem to the triangle $(\bar{y}, \bar{p}', \bar{z})$, we have:

$$\sin \vec{l}'_1 \sin \vec{l}'_2 \cos \angle \bar{p}' = \cos \vec{l}'_0 - \cos \vec{l}'_1 \cos \vec{l}'_2$$

From inequality (6) we get:

$$\begin{aligned} \sin \vec{l}'_1 \sin \vec{l}'_2 \cos \angle \bar{p}' &< \cos(\vec{l}'_1 + \vec{l}'_2 - 3\epsilon) - \cos \vec{l}'_1 \cos \vec{l}'_2 \\ &< -\cos \vec{l}'_1 \cos \vec{l}'_2 (1 - \cos 3\epsilon) - \sin \vec{l}'_1 \sin \vec{l}'_2 \cos 3\epsilon - \sin(\vec{l}'_1 + \vec{l}'_2) \sin 3\epsilon \end{aligned}$$

Hence

$$\cos \angle \bar{p}' < -\cos 3\epsilon + (\cot \vec{l}'_2 + \cot \vec{l}'_1) \sin 3\epsilon - \cot \vec{l}'_1 \cdot \cot \vec{l}'_2 (1 - \cos 3\epsilon).$$

Thus $\angle \bar{p}' > \pi - \tau_1(\epsilon)$ with

$$\tau_1(\epsilon) = \cos^{-1} \left(\cos 3\epsilon - (\cot \vec{l}'_2 + \cot \vec{l}'_1) \sin 3\epsilon + \cot \vec{l}'_1 \cdot \cot \vec{l}'_2 (1 - \cos 3\epsilon) \right)$$

and $\tau_1(\epsilon) \mapsto 0$ as $\epsilon \mapsto 0$.

The trigonometric law on the sphere shows that the angle at \bar{p}' of the triangle $(\bar{y}, \bar{p}', \bar{z})$ is equal to the angle at \bar{p} of the triangle $(\bar{y}, \bar{p}, \bar{z})$ which is not bigger than the angle at p of the triangle (y, p, z) in M .

Hence $\angle(y, p, z) > \pi - \tau_1(\epsilon)$.

By applying the relation (4) to x and y we have:

$$(7) \quad -\epsilon \leq d(p, x) + d(q, x) - \pi \leq \epsilon,$$

$$(8) \quad -\epsilon \leq d(p, y) + d(q, y) - \pi \leq \epsilon.$$

Since $y \in [q, r]$, we conclude from (7) and (8) that $e_{py}(x) < 2\epsilon$, which shows that the angle at x of the triangle (p, x, y) is close to π and consequently its angle at p is small. there exists

$\tau_2(\epsilon)$ such that $\angle p \leq \tau_2(\epsilon)$ where $\tau_2(\epsilon) \mapsto 0$ as $\epsilon \mapsto 0$.

Take r small enough; then $d(p, x) < d(p, y)$; otherwise $d(p, x)$ is close to π and we conclude by taking $x' = p$.

Let $\tilde{x} \in [p, y]$ such that $d(p, \tilde{x}) = d(p, x)$; then

$$(9) \quad d(x, \tilde{x}) \leq \pi \angle(y, p, x) = \tau_3(\epsilon).$$

Since

$$d(p, z) + d(z, q) \geq d(p, q) \geq \pi - \epsilon$$

and

$$d(y, z) = r > d(q, y) + d(q, z) - \epsilon$$

we have:

if $d(p, x) \leq d(q, z) + \epsilon$ then $r < \frac{2}{3}\epsilon$ and it suffices to take $x' = q$ and $\Gamma(\epsilon) \leq \frac{7}{3}\epsilon$; if $d(p, x) > d(q, z) + \epsilon$ then

$$d(p, z) \geq \pi - d(q, z) - \epsilon > \pi - d(p, x)$$

hence there exists a point $x' \in [p, z]$ such that

$$d(p, x') = \pi - d(p, x).$$

It suffices to show that $d(x', \tilde{x}) \geq \pi - \tau_4(\epsilon)$.

Applying the Toponogov theorem to the triangle (\tilde{x}, p, x') , we get

$$\begin{aligned} \cos d(x', \tilde{x}) &= \cos d(p, x') \cos d(p, \tilde{x}) + \sin d(p, x') \sin d(p, \tilde{x}) \cos \angle p \\ &= -\cos^2 d(p, \tilde{x}) + \sin^2 d(p, \tilde{x}) \cos \angle p \end{aligned}$$

Since $x' \in [p, z]$ and $\tilde{x} \in [p, y]$ the angle at \bar{p} of the triangle $(\bar{y}, \bar{p}, \bar{z})$ is less or equal to the angle at \bar{p} of the triangle $(\bar{\tilde{x}}, \bar{p}, \bar{x'})$ which is not bigger than the angle at p of triangle (\tilde{x}, p, x') in M .

$$\angle(\tilde{x}, p, x') \geq \angle(\bar{\tilde{x}}, \bar{p}, \bar{x'}) \geq \angle(\bar{y}, \bar{p}, \bar{z}) \geq \pi - \tau_4(\epsilon).$$

Hence

$$\begin{aligned} \cos d(x', \tilde{x}) &\leq -\cos^2 d(p, \tilde{x}) + \sin^2 d(p, \tilde{x}) \cos(\pi - \tau_4(\epsilon)) \\ &= -\cos(\tau_4(\epsilon)) - \cos^2 d(p, x) (1 - \cos(\tau_4(\epsilon))) \leq -\cos(\tau_4(\epsilon)) \\ &\Rightarrow d(\tilde{x}, x') > \pi - \tau_4(\epsilon). \end{aligned}$$

From the triangle inequality and the inequality (9) we have

$$d(x, x') \geq d(\tilde{x}, x') - d(\tilde{x}, x) \geq \pi - \tau_5$$

Thus, lemma 2.3 follows.

In [Gr] M. Gromov generalized the classic notion of Hausdorff distance between two compact subsets of the same metric space. He considered the set of compact Riemannian manifolds as a subset of the set of all compact metric spaces.

2.4. Definitions. 1) Let X, Y be two metric espaces; a map $f : X \rightarrow Y$ is said to be an ϵ -approximation if the image set $f(X)$ is ϵ -dense in Y and, for any $x, y \in X$, $|d(f(x), f(y)) - d(x, y)| < \epsilon$.

2) The Gromov-Hausdorff distance $d_{GH}(X, Y)$ between X and Y is the infimum of values of $\epsilon > 0$ such that there exist ϵ - approximations $f : X \rightarrow Y$ and $g : Y \rightarrow X$. In [Co1] and [Co2] Colding showed the two equivalent conditions:

- 1) $\text{Rad}(M) \geq \pi - \epsilon$
- 2) $d_{GH}(M, S^n(1)) \leq \tau_5(\epsilon)$ with $\tau_5(\epsilon) \mapsto 0$ as $\epsilon \mapsto 0$.

Then theorem 1.2 follows from these conditions and the theorem A.

3. REFERENCES

- [C] J.Cheeger, Critical points of distance functions and applications to geometry , Lectures notes 1504 (1991) 1-38.
- [CC] J.Cheeger and T. Colding, On the structure of spaces with Ricci curvature bounded from below, J. Diff. Geom. 46 (1997) 406-480.
- [Ch] S.Y.Cheng, Eigenvalue Comparison Theorem and Geometric Applications Math.Z.143(1975) p. 289-297.
- [Co1] T.H. Colding, Shape of manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 175-191
- [Co2] T.H. Colding, Large manifolds with positive Ricci curvature, Invent. Math. 124 (1996), 193-214
- [Gr] M.Gromov, Structures métriques pour les variétés Riemanniennes, Rédigé par J.Lafontaine et P.Pansu,cedic 1981.
- [GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. Math. 106 (1977), 201-211.
- [Pe] P. Petersen, Comparison geometry problem list, Riemannian geometry (Waterloo, ON,(1993) 87-115, fields Inst. Monogr., 4, Amer. Math. Soc., Providence, RI 1996.
- [S] K. Shiohama, A sphere theorem for manifolds of positive Ricci curvature, Trans. Amer. Math. Soc. 275 n.2 (1983) 811-819.
- [Sh] Z. Shen , Complete manifolds with nonnegative Ricci curvature and large volume growth, Invent. Math. 125 (1996) 393-404.
- [SS] J. Sha and Z. Shen, Complete manifolds with nonnegative curvature and quadratically nonnegative curved infinity, Amer. J. Math. 119 (1997) 1399-1404.
- [T] V.A.Toponogov, Computation of length of a closed geodesic on convex surface, Dokl. akad. Nank SSSR 124 (1959) 282-284.
- [Xi1] C.Y. Xia , Large volume growth and topology of open manifolds, Math. Z. 239 (2002) 515-526.
- [Xi2] " ", Complete manifolds with sectional curvature bounded below

and large volume growth, Bull. London Math. Soc. 34 (2002) 229-235.
[Xi3] " " , Some applications of critical point theory of distance functions on Riemannian manifolds, Compos.math.132, n.1(2002)pp 49-55.

Bazanfaré Mahaman
Université Abdou Moumouni
Département de Mathématiques et Informatique Niamey- Niger
E-mail: bmahaman @yahoo.fr