$10_{130} (K10n_{20})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -u^7 + u^6 - 4u^5 + 3u^4 - 4u^3 + 2u^2 + b - 1, \\ &- u^{10} + 2u^9 - 8u^8 + 11u^7 - 20u^6 + 19u^5 - 17u^4 + 8u^3 - u^2 + a - 5u + 1, \\ &u^{11} - 2u^{10} + 8u^9 - 12u^8 + 22u^7 - 24u^6 + 24u^5 - 15u^4 + 7u^3 + 3u^2 - 2u + 1 \rangle \\ I_2^u &= \langle b + 1, \ -u^2 + a - u - 1, \ u^3 + u^2 + 2u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 14 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle -u^7 + u^6 - 4u^5 + 3u^4 - 4u^3 + 2u^2 + b - 1, \ -u^{10} + 2u^9 + \dots + a + 1, \ u^{11} - 2u^{10} + \dots - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{10} = \begin{pmatrix} 1 \\ 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{10} - 2u^{9} + 8u^{8} - 11u^{7} + 20u^{6} - 19u^{5} + 17u^{4} - 8u^{3} + u^{2} + 5u - 1 \\ u^{7} - u^{6} + 4u^{5} - 3u^{4} + 4u^{3} - 2u^{2} + 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \\ \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{10} + 2u^{9} - 7u^{8} + 10u^{7} - 16u^{6} + 15u^{5} - 13u^{4} + 4u^{3} - u^{2} - 4u + 1 \\ u^{8} - u^{7} + 5u^{6} - 4u^{5} + 7u^{4} - 4u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{5} + 2u^{3} + u \\ -u^{7} - 3u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{10} + 2u^{9} - 6u^{8} + 9u^{7} - 11u^{6} + 11u^{5} - 6u^{4} + u^{2} - 3u \\ u^{8} - u^{7} + 5u^{6} - 4u^{5} + 7u^{4} - 4u^{3} + 2u^{2} + u - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{4} - 2u^{2} \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{4} - u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes

$$= -u^{10} + 2u^9 - 7u^8 + 8u^7 - 12u^6 + 3u^5 + 3u^4 - 16u^3 + 15u^2 - 13u + 1$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{11} - 4u^{10} - u^9 + 17u^8 + u^7 - 40u^6 + 3u^5 + 37u^4 - 3u^3 - 9u^2 + 7u - 1$
c_2, c_8	$u^{11} - u^{10} + \dots - 4u - 8$
c_3	$u^{11} + 18u^{10} + \dots + 31u + 1$
c_5, c_6, c_9	$u^{11} + 2u^{10} + \dots - 2u - 1$
C ₇	$u^{11} + 12u^9 + 36u^7 - 2u^6 + 2u^5 - 13u^4 + 13u^3 - u^2 - 1$
c_{10}	$u^{11} - 2u^{10} + \dots - 6u - 9$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{11} - 18y^{10} + \dots + 31y - 1$
c_{2}, c_{8}	$y^{11} + 21y^{10} + \dots + 336y - 64$
c_3	$y^{11} - 46y^{10} + \dots + 863y - 1$
c_5, c_6, c_9	$y^{11} + 12y^{10} + \dots - 2y - 1$
C ₇	$y^{11} + 24y^{10} + \dots - 2y - 1$
c_{10}	$y^{11} + 12y^{10} + \dots - 594y - 81$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.816018 + 0.563764I		
a = -0.368670 - 1.053910I	-12.35850 + 2.70718I	0.47291 - 2.44627I
b = -1.86528 + 0.08844I		
u = 0.816018 - 0.563764I		
a = -0.368670 + 1.053910I	-12.35850 - 2.70718I	0.47291 + 2.44627I
b = -1.86528 - 0.08844I		
u = -0.157733 + 1.338590I		
a = -0.577850 + 0.189675I	-3.43504 - 2.25109I	3.70368 + 2.34373I
b = -0.283200 + 0.366521I		
u = -0.157733 - 1.338590I		
a = -0.577850 - 0.189675I	-3.43504 + 2.25109I	3.70368 - 2.34373I
b = -0.283200 - 0.366521I		
u = 0.05807 + 1.49843I		
a = 1.69315 + 0.17490I	-8.01785 + 1.82060I	-2.54374 - 1.21714I
b = 1.26769 - 0.68760I		
u = 0.05807 - 1.49843I		
a = 1.69315 - 0.17490I	-8.01785 - 1.82060I	-2.54374 + 1.21714I
b = 1.26769 + 0.68760I		
u = -0.480017		
a = -0.562904	0.824865	12.3320
b = -0.182568		
u = 0.238107 + 0.385438I		
a = 0.41631 + 1.75871I	-1.69473 + 0.83621I	-2.12521 - 2.51411I
b = 0.911055 - 0.299346I		
u = 0.238107 - 0.385438I		
a = 0.41631 - 1.75871I	-1.69473 - 0.83621I	-2.12521 + 2.51411I
b = 0.911055 + 0.299346I		
u = 0.28555 + 1.56335I		
a = -1.88149 - 0.96849I	-19.3195 + 6.7782I	-2.17368 - 2.81310I
b = -1.93898 + 0.26128I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.28555 - 1.56335I		
a = -1.88149 + 0.96849I	-19.3195 - 6.7782I	-2.17368 + 2.81310I
b = -1.93898 - 0.26128I		

II.
$$I_2^u = \langle b+1, -u^2+a-u-1, u^3+u^2+2u+1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{2} + u + 1 \\ -1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{2} + u + 2 \\ -1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{2} + u + 1 \\ -1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{2} + 1 \\ -u^{2} - u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u \\ -u^{2} - u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^2 + 4u + 4$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u-1)^3$
c_2, c_8	u^3
c_4	$(u+1)^3$
c_5, c_6	$u^3 + u^2 + 2u + 1$
c_7, c_{10}	$u^3 + u^2 - 1$
<i>c</i> 9	$u^3 - u^2 + 2u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4	$(y-1)^3$
c_2, c_8	y^3
c_5, c_6, c_9	$y^3 + 3y^2 + 2y - 1$
c_7,c_{10}	$y^3 - y^2 + 2y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.215080 + 1.307140I		
a = -0.877439 + 0.744862I	-4.66906 - 2.82812I	-1.84740 + 3.54173I
b = -1.00000		
u = -0.215080 - 1.307140I		
a = -0.877439 - 0.744862I	-4.66906 + 2.82812I	-1.84740 - 3.54173I
b = -1.00000		
u = -0.569840		
a = 0.754878	-0.531480	2.69480
b = -1.00000		

III. u-Polynomials

Crossings	u-Polynomials at each crossing	
c_1	$(u-1)^{3}$ $\cdot (u^{11} - 4u^{10} - u^{9} + 17u^{8} + u^{7} - 40u^{6} + 3u^{5} + 37u^{4} - 3u^{3} - 9u^{2} + 7u^{6})$	$(\iota - 1)$
c_2, c_8	$u^3(u^{11} - u^{10} + \dots - 4u - 8)$	
c_3	$((u-1)^3)(u^{11}+18u^{10}+\cdots+31u+1)$	
c_4	$(u+1)^{3}$ $\cdot (u^{11} - 4u^{10} - u^{9} + 17u^{8} + u^{7} - 40u^{6} + 3u^{5} + 37u^{4} - 3u^{3} - 9u^{2} + 7u^{6})$	$(\iota - 1)$
c_5, c_6	$(u^3 + u^2 + 2u + 1)(u^{11} + 2u^{10} + \dots - 2u - 1)$	
c_7	$(u^3 + u^2 - 1)(u^{11} + 12u^9 + 36u^7 - 2u^6 + 2u^5 - 13u^4 + 13u^3 - u^2 - 1)$	ı
<i>C</i> 9	$(u^3 - u^2 + 2u - 1)(u^{11} + 2u^{10} + \dots - 2u - 1)$	
c_{10}	$(u^3 + u^2 - 1)(u^{11} - 2u^{10} + \dots - 6u - 9)$	

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y-1)^3)(y^{11} - 18y^{10} + \dots + 31y - 1)$
c_2, c_8	$y^3(y^{11} + 21y^{10} + \dots + 336y - 64)$
c_3	$((y-1)^3)(y^{11} - 46y^{10} + \dots + 863y - 1)$
c_5, c_6, c_9	$(y^3 + 3y^2 + 2y - 1)(y^{11} + 12y^{10} + \dots - 2y - 1)$
c ₇	$(y^3 - y^2 + 2y - 1)(y^{11} + 24y^{10} + \dots - 2y - 1)$
c_{10}	$(y^3 - y^2 + 2y - 1)(y^{11} + 12y^{10} + \dots - 594y - 81)$