1 The algorithms

1.1 Network Algorithm

1.1.1 Background definitions

- \mathbb{R}^2 is the two dimensional Euclidian space.
- P is the given set of points in \mathbb{R}^2
- L_1 distance is the distance between two points in taxicab geometry.
- Rectilinear minimum spanning tree RMST is the tree spanning all points in P such that the sum of its edge L_1 distances is the minimum.
- RN_{min} is a minimum reconstruction of the road network that adds missing straight road segments to the RMST.
- RN_{com} is a complete reconstruction of the road network in which juctions and round-abouts are connected in a correct way.

1.1.2 Outline

The algorithm consists of the following steps:

- 1. Given a set V of points in \mathbb{R}^2 create a graph G(V, E) where V = P and $E = V \times V$.
- 2. Compute the RMST of G.
- 3. Mark points that are only in one segment and find RN_{min} .
- 4. Find segments with a divergent angle and compute RN_{com} .

1.1.3 Description

Given the set V of points in \mathbb{R}^2 we first generate a graph G in which every point $p \in V$ is connected to every point $q \in V$. Then the algorithms computes the RMST, see algorithm $\ref{eq:connected}$, using kruskal's algorithm $\ref{eq:connected}$, for G resulting in a connected graph that gives a good approximation of the road network but some straight road segments may not be connected, see figure $\ref{eq:connected}$?

We now find a set of points S for which every $s \in S$ is a endpoint of a road segment, see algorithm ??. For these points a edge $e \in E$ is found such that e = (s, x) where $x \in V$. The slope of the edge determines the direction for the road segment for which s is the endpoint. A line l_1 perpendicular to the slope is calculated and it is checked whether a nearby point $x \in V$ is below l_1 for e with a negative slope or if x is above l_1 for e with a positive slope, see figure ??.

Finally we calculate RN_{com} , see algorithm ??. First we find all segments $e \in E$ for which the slope of the following segment $e' \in E$ is divergent. For the segment e we draw a line in the same direction and look for a intersection with a segment $x \in E$, see figure ??. If the distance between e and x is sufficiently small segment e' is removed from e to e is added to e in e

Figure 1: RMST for P with a missing road segment indicated by the red circle.

Figure 2: Left: RN_{min} road segment in circle is connected. Middle: Slope of e is positive, check if x is above l_1 . Right: Slope of e is negative, check if x is below l_1 .

Figure 3: Calculation steps for RN_{com} . Left: Edge e' with divergent angle in red. Middle: Blue line intersects at p. Right: e' is remove from RN_{min} and new edge s is added to RN_{com}

Algorithm 1 Calculate RMST for graph G(V, E)

```
A = \emptyset

Sort by increasing L_1 distance(E)

for all v \in V do

MAKE-SET(v)

end for

for all u, v \in E do

if FIND-SET(u) \neq FIND-SET(v) then

A = A \cup \{(u, v)\}

UNION(u, v)

end if

end for

return A
```

Algorithm 2 Calculate RN_{min} for RMST(V, E)

```
A = RMST
for all v \in V do

if v is a endpoint and adjacentnodes(v) \neq \emptyset then

e = \text{FIND-SEGMENT}(V)

repeat

if adjacentnodes[i].direction = e.direction then

A.\text{add(new Segment}(e,\text{adjacentnodes}[i]))

end if

i++

until new segment is added

end if

end for

return A
```

Algorithm 3 Calculate RN_{com} given RN_{min})

```
A = RN_{min}
for all e \in E do

e' = e.NEXT-SEGMENT

if e'.getSlope \neq e.getSlope then

if Direction e intersect with segment x \in E then

if Distance between e and x < 0.2f then

p = \text{new Point at intersection with } x

A = A - e'

s = \text{new Segment from } e \text{ to } p

A = A + s

end if

end if

end if

end for

return A
```

References

- [1] J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman problem. In *Proceedings of the American Mathematical Society*,7: 48-50, 1956.
- [2] D. Chen, L.J. Guibas, J. Hershberger, J. Sun. Road Network Reconstruction for Organizing Paths. In *Proceedings of 21st ACM-SIAM Symposium on Discrete Algorithms*, 10: 1309-1320, 2010.