

UNIVERSITÉ DE GENÈVE

Département d'informatique

Imagerie Numérique

FS and FT

TP Class Nº 8

March 10, 2020

Notes: The details of the algebraic calculations must be included in the report. If you do not use an Equation Editor (for Word, Latex or similar) you can easily scan a handwritten page (readable!) and put it in the report.

Exercise 1. Fourier series expansion (2 points)

We consider the following function (square function):

$$\tilde{f}(t) = \begin{cases} 1 & \text{if } t \in [-1, 1] \\ -1 & \text{if } t \in [1, 3] \end{cases}$$

Repeated periodically on all \mathbb{R} .

(a) Compute the periode T and the frequency w_0 and show, by computing the integral, that

$$a_k = \begin{cases} (-1)^{(k-1)/2} \cdot \frac{4}{k\pi} & \text{if k is odd} \\ 0 & \text{if k is even} \end{cases}$$

Hint: Use the formula on page 42 but choose the interval of integration wisely to cut the integral into two parts. You may also need trigonometric formulas from Theme 7 page 30.

- (b) Explain why $b_k = 0$ and compute F_k . Write the function $\tilde{f}(t)$ both in sinusoidal form and exponential form.
- (c) We write

$$f_N(t) = \frac{1}{2}a_0 + \sum_{k=1}^{N} a_k cos(k\omega_0 t) + b_k sin(k\omega_0 t).$$

Implement the functions $\tilde{f}(t)$ and $f_N(t)$ in Python and plot them on the same graph for $t \in [-5, 5]$. Do several plots for N = 0, 1, 3, 5, 10, 100.

(d) Do a small research and explain what is the Gibbs phenomenon.

Exercise 2. Fourier series and Fourier transform (2 points)

We consider the following "hat" function:

$$h(t) = \begin{cases} 1 - |t| & \text{if } |t| \le 1\\ 0 & \text{otherwise.} \end{cases}$$

(a) Compute its Fourier transform $\hat{h}(w)$, using integration by part. Why is it a real-valued function? What is the value $\hat{h}(0)$?

Hint: Start by decomposing $e^{-itw} = cos(tw) - i \cdot sin(wt)$ in the integral and use symmetry of the functions to show that,

$$\hat{h}(w) = 2 \cdot \int_0^1 (1 - t) \cos(wt) dt$$

- (b) Fix a real number $T \geq 2$, and consider $h|_{[-T/2,T/2]}$. Define h_T as the periodic extension of this function on all \mathbb{R} . On separate graphs, visualize h(t), $h_2(t)$, $h_4(t)$ and $h_8(t)$ for $t \in [-10, 10]$.
- (c) Using a result seen in the course, compute the Fourier coefficients F_k for $k \in \mathbb{Z}$ from the Fourier transform. Note that your result will depend on the period T.
- (d) Plot on the same graph the function $\hat{h}(w)$ and the points $(\frac{2\pi k}{T}, T \cdot F_k)$ for

$$|k| \le 3T$$
 and $w \in [-20, 20]$.

Do a different graph for each choice of T = 2, 4, 8, 50, 100. Interprete the result based on the theory seen in class.

Exercise 3. Fourier Transform of Gaussian signal (2 points)

Using complex analysis, one could show that that the Fourier transform of a Gaussian function is again a Gaussian function. Namely :

$$G(t) = e^{-\alpha t^2} \implies \hat{G}(w) = \sqrt{\frac{\pi}{\alpha}} \cdot e^{-\frac{w^2}{4\alpha}}$$

for any real number $\alpha > 0$.

- (a) Represent both functions side-by-side on two different plots for $\alpha = 0.1, 1, 2, 10$. Explain the scaling effect that you observe, based on the property 7 of the FT (Theme 7 : p.69).
- (b) The energy of a function f(t) is given by

$$E(f) = \int_{-\infty}^{\infty} |f(t)|^2 dt$$

Using your knowledge of Gaussian integrals, compute the energy of both G(t) and $\hat{G}(w)$ for a real $\alpha > 0$. Show that $E(G) = \frac{1}{2\pi}E(\hat{G})$.

Hint: Starting from E(G) and $E(\hat{G})$, do a change of variable and use the equality:

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$$

- (c) Write a python function $represent_complex_signal(x, y)$, where
 - x is a real number array representing an interval range in \mathbb{R} .
 - y is a complex numpy array defined by y = f(x).

The function should plot four different representations of the pairs (x, y). Namely:

- Real part : use plt.plot() on the pair (x, np.real(y))
- Imaginary part : use plt.plot() on the pair (x, np.imag(y))
- Magnitude : use plt.plot() with (x, np.abs(y))
- Phase : use plt.plot() with (x, np.angle(y))

- (d) For the rest of the exercise, we fix $\alpha = 1$. We define H(t) = G(t-1).
 - Compute explicitely $\hat{H}(w)$ using the time shift property of the FT.
 - Represent both $\hat{G}(w)$ and $\hat{H}(w)$ using the function you implemented in part (c). Compare similarities and differences and explain them based on the course.
- (e) We define I(t) = H(-t).
 - Compute explicitly $\hat{I}(w)$ using the correct time-reversal property of the FT.
 - Represent both $\hat{I}(w)$ and $\hat{H}(w)$ using part (c). Compare them and explain the differences based on the course.

Submission

Please archive your report and codes in "Name_Surname.zip" (replace "Name" and "Surname" with your real name), and upload to "Assignments/TP7 Fourier transform" on https://moodle.unige.ch before Thursday, March 25 2021, 23:59 PM. Note, the assessment is based not only on your code, but also on your report, which should include your answers to all questions and the experimental results.