Stochastické modelování turbulence v "bedně"

Daniel Pojhan

G Plzeň Mikulášské nám. 23, Plzeň; danpojhan@gmail.com

Garant: doc. Ing. Jaromír Kukal, Ph.D

Abstrakt

Stochastické metody jsou dodnes efektivním řešením některých úloh či k potvrzení hypotéz. Cílem miniprojektu bylo naučit se simulovat pohyb částic v turbulentním prostředí (anomální difuze), generování pseudonáhodných čísel různými algoritmy a následné oveření Richardsonova škálovacího zákona, který definuje vztah mezi vzdáleností dvou částic a časem.

1 Úvod

Modelování turbuletního proudění částic se provádí zejména dvěma způsoby, a to buď popisem pomocí soustavy nelineárních parciálních diferenciálních rovnic (deterministické pojetí) a nebo pomocí stochastických diferenciálních rovnic, které simulují pohyb jednotlivých částic metodou Monte Carlo. První přístup nám dává za výsledek vektorové pole rychlostí a skalární pole koncentrací. V této práci jsem se ale zaměřil na druhý způsob, který využívá stochastické metody. Cílem práce je přiblížit obor modelování pohybu částic a potvrzení Richardsonova škálovacího zákona.

2 Předpoklady pro simulaci

Nejprve se zabývejme časovým a prostorovým vymezením turbulence. Částice se pohybují v oblasti $\mathcal{O} \subset \mathbb{R}^n$, přičemž $n \in 2, 3$.

Jejich koncentrace v čase t je definována jako: $c = c(\mathbf{x}, t) \ge 0$, $\mathbf{x} \in \mathcal{O}$, t > 0. Rychlostní pole je dáno jako $\mathbf{v} = \mathbf{v}(\mathbf{x}, t) \in \mathbb{R}^n$.

Turbulence je speciální případ anomální difuze (vyjímečný pohyb, který nepodléhá zákonitostem Brownova pohybu). Pro simulaci anomální difuze slouží exponent $\alpha=2/3$ s difuzním koeficientem D>0.

Turbulentní proudění je pak popsáno zlomkovou parciální diferenciální rovnicí:

$$\frac{\partial f}{\partial t} = D\nabla^{(\alpha)}C - \mathbf{v} \cdot \nabla C \tag{1}$$

3 Stochastická simulace turbulentních částic

Částice je na počátku v bodě $\mathbf{x}_0 \in \mathcal{O}$, čas se mění s krokem $\Delta t = t/N_i$, kde N_i (kde $N_i \in \mathbb{N}$) je počet iteračních kroků v jedné simulaci (v k-tém kroku je čas tedy $t_k = k\Delta t$ a poloha částice je $\mathbf{X}_k \in \mathcal{O}$). Pohyb částic je řízený Lévyho procesem, který definuje náhodný pohyb:

$$\mathbf{X}_{k+1} = \mathbf{X}_k + \mathbf{v}(\mathbf{X}_k, t_k) \Delta t + (D\Delta t)^{\frac{1}{\alpha}} \xi_k, \tag{2}$$

kde ξ_k je náhodný vektor vygenerovaný ze standardizovaného α -stabilního rozdělení $(\xi_k \sim \mathbf{L}_{\alpha,n})$

Richardson prováděl pokusy, kde sledoval náhodnou veličinu

$$R^{2}(t) = \|\mathbf{X}(t) - \mathbf{Y}(t)\|^{2} = \|\mathbf{X}_{N} - \mathbf{Y}_{N}\|^{2}$$
(3)

Experimentováním pak zjistil, že $ER^2(t) \propto t^3$ (druhá mocnina vzdálenosti mezi dvěmi částicemi je úměrná k třetí mocnině času)

Musí platit předpoklady že \mathbf{X}_N a \mathbf{Y}_N jsou konečné polohy dvou nezávislých částic v čase t > 0 vypuštěných ze společného bodu $\mathbf{x}_0 \in \mathbb{R}^n$. Pro volnou turbulenci (částice nemají nijak omezený pohyb) platí, že $ER^2(t) = +\infty$, a kvůli tomu je nutné mít omezení pohybu částice na oblast $\mathcal{O} \in \mathbb{R}^n$.

4 Implementace

Implementace byla v programovacím jazyku Python, který používá Mersenne Twister pro generování pseudonáhodných čísel. Simulace byly prováděny v 2D prostoru a vizualizace byla pomocí knihoven Matplotlib a OpenCV. Všechny numerické výpočty byly prováděny knihovnou Numpy, která je velmi oblíbená mezi vědci zejména kvůli její rychlosti.

Z hlediska generování pseudonáhodných čísel byly používány následující generátory:

- 1. Mersenne Twister
- 2. Box-Muller transformace
- 3. Levyho proces

V mém pokusu byla oblast \mathcal{O} dvojrozměrná. Pokusy se však dají dělat i v 3D.

5 Výsledky

Měřením pomocí metod Monte Carlo byl dokázán vztah v Richardsonově škálovacím zákoně $(R^2(t) \propto t^3)$

Ostatní proměnné	hodnota
N_{sim}	20
N_i	100
D	3
α	2/3

 N_{sim} - počet simulací celkově N_i - počet iterací v jedné simulaci D - difůzní koeficient α - parametr používaný pro Levyho proces (pro turbulenci se používá hodnota 2/3)

6 Shrnutí

Na tomto projektu jsem se seznámil s problémem modelování turbulence částic, zároveň se povedlo obsáhnout veškerou teorii důležitou pro pochopení modelování turbulence a také se povedlo potvrdit Richardsonův škálovací zákon, což považuji za hlavní výsledek práce.

Poděkování

Děkuji organizátorům Týdne Vědy na Jaderce a hlavně pak také doc. Ing. Jaromíru Kukalovi, který byl skvělým vedoucím mého projektu.

Odkazy

- 1. ELSINGA, G.; ISHIHARA, T.; HUNT, J. Non-local dispersion and the reassessment of Richardson's t^3 -scaling law. *Journal of Fluid Mechanics*. 2022.
- 2. NOLAN, J. P. Multivariate stable densities and distribution functions: general and elliptical case. 2005.
- 3. M. JULLIEN, J. P.; TABELING, P. Richardson Pair Dispersion in Two-Dimensional Turbulence. *Physical review letters*. 1999.