数据挖掘和大数据分析

Outline |

1 Probability Review

2 Regression

3 DM Lab3

The English word for "probability" is "probability". If you take any letter out of all the letters that make up the word, the probability of taking the letter "b" is ()

$$\frac{1}{2}$$

$$\frac{2}{11}$$

- (1) Draw out a red heart [
- (2) Draw out a red old K [
- (3) Draw a plum J [
- (4) Draw a card that is not Q [

正常使用填空题需3.0以上版本雨课堂

Assignment

- ✓ Two point distribution
- ✓ Binomial distribution
- ✓ Geometric distribution
- ✓ Poisson distribution

- ✓ Uniform distribution
- ✓ Exponential distribution
- ✓ Normal distribution

1 Formula **2** Coding **3** Figure

Do you finish the assignment by yourself?

- (A)
- Yes
- В

No

DATA ANALYTICS:

DATA MINING AND BIG DATA

Variables (dependent and independent)

$$C = \pi \times d \qquad Y = \mathbf{a} + \mathbf{b}X + \mathbf{f}$$

$$(x_1, Y_1) \quad (x_2, Y_2) \quad (x_3, Y_3) \quad (x_i, Y_i) \quad Y_i = a + bx_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2)$$

```
import matplotlib.pyplot as plt
x = [154,157,158,159,160,161,162,163]
y = [155,156,159,162,161,164,165,166]
plt.plot(x, y, 'go', markersize=8)
plt.grid(True)
plt.show()
```

```
import matplotlib.pyplot as plt

x = [154, 157, 158, 159, 160, 161, 162, 163]
y = [155, 156, 159, 162, 161, 164, 165, 166]
plt.scatter(x, y)
plt.grid(True)
plt.show()
```


Please coding the task in 5 minutes.

- A Yes
- B No

$$f(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad \mu^{mle} = \underset{i=1}{\operatorname{arg max}} p(x_1, x_2, ..., x_N \mid \mu, \sigma^2)$$

$$Q(a,b) = \sum_{i=1}^{n} (y_i - a - bx_i)^2$$

$$= (\frac{1}{\sigma\sqrt{2\pi}})^n \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - a - bx_i)^2\right]$$

$$\lim_{n \in \mathbb{N}} \frac{\partial Q}{\partial a} = -2\sum_{i=1}^{n} (y_i + a - bx_i) = 0$$

$$\lim_{n \in \mathbb{N}} \frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\lim_{n \in \mathbb{N}} \frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\lim_{n \in \mathbb{N}} \frac{\partial Q}{\partial b} = -2\sum_{i=1}^{n} (y_i - a - bx_i) = 0$$

$$\frac{\sum_{i=1}^{n} (x_i - x_i)}{\bar{x}} = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad \bar{y} = \frac{1}{n} \sum_{i=1}^{n} y$$

Mum H x/cm	154	157	158	159	160	161	162	163
Daughter Hy/cm	155	156	159	162	161	164	165	166

$$r = \frac{\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}}) (\mathbf{y}_{i} - \overline{\mathbf{y}})}{\sqrt{\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2}}} = \frac{\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2}}{\sqrt{\sum_{i=1}^{n} (\mathbf{x}_{i} - \overline{\mathbf{x}})^{2} \sum_{i=1}^{n} (\mathbf{y}_{i} - \overline{\mathbf{y}})^{2}}}$$

$$\sum_{i=1}^{n} x_{i} y_{i} - n x_{i} y$$

$$\sqrt{\sum_{i=1}^{n} x_{i}^{2} - n \left(\frac{1}{x} \right)^{2} \left(\sum_{i=1}^{n} y_{i}^{2} - n \left(\frac{1}{y} \right)^{2} \right)}$$

i	xi	yi	$(xi)^2$	(yi) ²	xi*yi
1	154	155	23716	24025	23870
2	157	156	24649	24336	24492
3	158	159	24964	25281	25122
4	159	162	25281	26244	25758
5	160	161	25600	25921	25760
6	161	164	25921	26896	26404
7	162	165	26244	27225	26730
8	163	166	26569	27556	27058
Σ	1274	1288	202944	207484	205194

$$\underbrace{\hat{b}}_{i=1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - n \bar{x} \bar{y}}_{i=1} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - 8 \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - n (\bar{x})^{2}} = \frac{\sum_{i=1}^{n} x_{i} y_{i} - 8 \bar{x} \bar{y}}{\sum_{i=1}^{n} x_{i}^{2} - 8 (\bar{x})^{2}} \approx 1.345$$

$$\stackrel{\wedge}{a} = \stackrel{-}{y} - \stackrel{\wedge}{b} \stackrel{-}{x} \approx -53.191$$


```
csv_data =

'square_feet,price\n150,6450\n200,7450\n250,8450\n3

00,9450\n350,11450\n400,15450\n600,18450\n'

df = pd.read_csv(StringIO(csv_data))
```

```
regr = linear_model.LinearRegression()
regr.fit(df['square_feet'].values.reshape(-1, 1), df['price'])
```

a, b = regr.coef_, regr.intercept_

print(df)

plt_scatter(df['square_feet'], df['price'], color='blue')
plt.plot(df['square_feet'],

regr.predict(df['square_feet'](values.reshape(-1,1)),

color='red', linewidth=4)

plt.show()

DM Lab3

1	19	60
2	45	113
3	35	94
4	31	90
5	25	60
6	32	88
7	21	59
8	26	61
9	24	57
10	27	78
11	9	27
12	23	72
13	33	85
1 4 :p://b	log. csc 29 et/jac	ky_zh63_1u

Please Open "test1.csv" File

DMM Lab33

活动推广费 (60) 销售额=?

序号 1.000000 -0.297891 -0/392672 活动推广费 -0.297891 1.000000 0.941814 销售额 -0.393672 0.941814/1.000000

Please coding the task in 15 minutes.

- A Yes
- B No

DM Lab3


```
IrModel = LinearRegression()
                                               就多次 = 7
IrModel.fit(x,y)
IrModel.predict([[60]])
alpha = IrModel.intercept_
beta = IrModel.coef
                                                >>> new r
new r = alpha + beta*numpy.array([60])
                                                array([\overline{1}50.0667131])
```

活动推广费 = 60, 销售额=150

DM Lab3

orange 3

Data Mining COVID-19 Epidemics: Part 1

贵在坚持!