Университет ИТМО

Факультет информационных технологий и программирования Направление прикладной математики и информатики

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ

курса «Методы оптимизации»

Выполнили студенты:

Мозжевилов Данил, Кучма Андрей

Группы: М3238, М3239

Содержание

Лабораторная работа 1

Методы многомерной оптимизации

1.1. Постановка задачи и цель работы

- 1. Реализовать алгоритмы:
 - Метод градиентного спуска
 - Метод наискорейшего спуска
 - Метод сопряженных градиентов

Оценить как меняется скорость сходимости, если для поиска величины шага используются различные методы одномерного поиска.

- 2. Проанализировать траектории методов для нескольких квадратичных функций: придумайте две-три квадратичные двумерные функции, на которых работа каждого из методов будет отличаться. Нарисовать графики с линиями уровня функций и траекториями методов.
- 3. Исследовать, как зависит число итераций, необходимое методам для сходимости, от следующих двух параметров:
 - ullet числа обусловленности $k\geq 1$ оптимизируемой функции
 - \bullet размерности пространства n оптимизируемых переменных

Сгенерировать от заданных параметров k и n квадратичную задачу размерности n с числом обусловленности k и запустить на ней методы многомерной оптимизации с некоторой заданной точностью. Замерить число итераций T(n,k), которое потребовалось сделать методу до сходимости.

1.2. Иллуюстрации работы градиентных методов на двумерных квадратичных функцкиях

Рассмотрим функцию $f(x,y)=x^2-xy+4y^2+2x+y$. В матричном виде ее вид f(x)=1/2*(Ax,x)+b*x, где $A=\begin{pmatrix}2&-1\\-1&8\end{pmatrix}$ и $b=\begin{pmatrix}2\\1\end{pmatrix}$. $det(A-\lambda E)=\begin{vmatrix}2-\lambda&-1\\-1&8-\lambda\end{vmatrix}=(2-\lambda)*(8-\lambda)-1=15-10*\lambda+\lambda^2=(5+\sqrt{10}-\lambda)*(5+\sqrt{10}-\lambda)$. Собственные значение матрицы A положительны,

следовательно квадратичная форма f положительно определенная, а следовательно выпукла вниз. Таким образом к этой квадратчной форме можно применить алгоритмы минимизации. Для начала найдем точку минимума функции аналитически.

Надем точку, в которой градиент данной функции обращается в ноль. Это и будет точка минимума функции. $grad\ f=\left(2*x-y+2\right.$ $-x+8y+1\right)^T=(0\ 0)^T$ Решив систему линейных уравнений, получаем x=-17/15,y=-4/15 и min(f(x,y))=-19/15

1.3. Общая схема того, как мы реализовывали алгоритмы

В начале мы создали классы Matrix, DiagonalMatix и Vector и для них перегрузили операторы '+', '-', '*' и $'[\]'$ (класс DiagonalMatix появился только под конец, когда мы уже начали тестировать и узнали, что для тестов нужны только диагональные матрицы и оказалось, что в коде для матриц исплызовался только оператор '*', поэтому мы не стали реализовывать остальные перегрузки для этого класса).

Далее мы решили не использовать лямда-функции для задания квадратичных форм, а сделать отдельные классы QuadraticFunction и

Diagonal Quadratic Function, в которых храниться матрица A, вектор b и число c, и просто передавать их в качестве параметров в реализуемые алгоритмы, к тому же в классе можно хранить всю историю обращения к функции, что мы и сделали.

Также мы создали класс GeneratorQudraticFunction, который генерировал рандомые вектора по заданной размерности и числу обусловленности.

Точность для алгоритмов мы решили задать всего лишь 0.1, так как при тестировании не хотелось ждать по 30 минут, пока алгоритмы найдут необходимый минимум для всех сгенерированных функций.

1.4. Метод градиентного спуска

Заметим, что в методе градиентного спуска константа линейной скорости сходимости не зависит от размерности пространства, а только от собственных чисел матрицы квадратичной формы, а следовательно для всех размерностей должны получится похожие результаты, что мы как раз таки видим на графике ниже.

1.5. Метод наискорейшего спуска

1.6. Метод сопряженных градиентов

