

Knowledge-aware Zero-shot Learning (K-ZSL): Concepts, Methods and Resources

Yuxia Geng¹, Zhuo Chen², Jiaoyan Chen³, Wen Zhang² and Jeff Z. Pan⁴

- Hangzhou Dianzi University, China
 - 2. Zhejiang University, China
- 3. The University of Manchester & University of Oxford, UK
 - 4. The University of Edinburgh, UK

https://china-uk-zsl.github.io/kg-zsl-tutorial-ijcai-2023/

Tutorial of The 32nd International Joint Conference on Artificial Intelligence (19th August, 2023, Macao, S.A.R)

Part III – Resources, Benchmarking and Lessons

T8

Hands-on with Resource, Benchmarking and Demo

- Zero-shot Image Classification -
- Zero-shot Knowledge Graph Completion -

Zero-shot Image Classification (ZS-IMGC)

- Revisit Task Definition
- ZS-IMGC Benchmarks
- Existing External Knowledge vs KG
- Benchmarking Results

Task Definition

Classifying the images of new (unseen) classes without seeing their training examples

Zero-shot Animal Image Classification

AwA2

- A popular ZSL benchmark on animal image classification, with images from the Web, by [Xian et al. 2018]
- 50 classes (usually 40 used as seen classes and 10 used as unseen classes), 37,322 images, 85 realvalued attributes for visual characteristics
- Pros: high quality attributes, classes aligned with WordNet
- Cons: small scales

AwA is an older version of AwA2, but does not have public copyright license for its images

Other similar benchmarks as AwA2 with visual annotations

CUB [Wah et al. 2011]: fine-grained bird classification, 150/50 seen/unseen classes, 312 attributes

SUN [Xiao et al, 2010]: fine-grained sense classification, 645/72 seen/unseen classes, 102 attributes

aPy [Farhadi et al. 2009]: coarsegrained classification, 20/12 seen/unseen classes, 64 attributes

ImageNet

- ~14 million images and ~21K classes (aligned with the WordNet hierarchy) in total
- In ZSL studies e.g., [Wang et al. 2018] and [Kampffmeyer et al. 2019]:
 - 1K classes with balanced images as seen classes for training
 - Classes that are 2-hops or 3-hops away from the seen classes according to the class hierarchy as unseen classes
 - Pros:
 - Large image and class scales
 - Aligned with a popular KG --- WordNet
 - Cons:
 - Short of other external knowledge such as visual annotations

A segment of the class hierarchy

Summary

Datasets	class text e.g., names or descriptions	class attribute	class hierarchy	granularity
AwA2	✓	✓	✓	coarse
CUB	✓	√		fine
SUN	✓	√		fine
aPY	✓	✓		coarse
ImageNet	✓		✓	coarse + fine

- The above datasets often have only one kind or two kinds of external knowledge
- ImNet-A and ImNet-O for single-label image classification are proposed
 - two fine-grained subsets extracted from ImageNet by [Geng et al. 2021, 2022]
 - ImNet-A: 80 animal classes (28 seen, 52 unseen)
 - o ImNet-O: 35 general object classes (10 seen, 25 unseen)
 - Equipped with different kinds of knowledge including visual annotations, textual descriptions,
 common sense knowledge from ConceptNet, class hierarchy from WordNet and logical
 relationships such as disjointness

Existing External Knowledge vs KG

Existing External Knowledge vs KG

Datasets	class text e.g., names or descriptions	class attribute	class hierarchy	KG	granularity
AwA2	✓	✓	✓	✓	coarse
CUB	✓	✓			fine
SUN	✓	✓			fine
aPY	✓	√			coarse
ImageNet	✓		✓		coarse + fine
ImNet-A	✓	✓	✓	✓	fine
ImNet-O	✓	✓	✓	✓	fine

The KG contains different kinds of <u>class knowledge</u> including visual annotations, textual descriptions, class hierarchy from WordNet, as well as common sense knowledge from ConceptNet, and logical relationships such as disjointness

A Segment of KG for AwA2

Benchmarking GAN-based Methods KGZSL

modifying the input class embedding

Benchmarking GAN-based Methods KGZSL

modifying the input class embedding

Training Stage
Testing Stage

- 1. word embeddings (w2v)
- by [1] & Glove;
- 2. multi-hot attribute vectors (att)
- 3. class hierarchy (hie)
- by GAE [2]
- 4. Basic KG
- class hierarchy, class attributes, attribute hierarchy;
- 5. Basic KG + literals
- + literal names
- Basic KG + CN
- + triples from ConceptNet
- 7. Basic KG + logics
- + triples of disjointness

[1] Soravit Changpinyo, et al., "Synthesized Classifiers for Zero-Shot Learning", CVPR 2016.

[2] Thomas N. Kipf et al., "Variational Graph Auto-Encoders"

Benchmarking GAN-based Methods KGZSL

generating image features rather than raw images

Training Stage

Testing Stage

- 1. word embeddings (w2v)
- by [1] & Glove;
- 2. multi-hot attribute vectors (att)
- 3. class hierarchy (hie)
- by GAE [2]
- 4. Basic KG
- class hierarchy, class attributes, attribute hierarchy;
- 5. Basic KG + literals
- + literal names
- Basic KG + CN
- + triples from ConceptNet
- 7. Basic KG + logics
- + triples of disjointness

[1] Soravit Changpinyo, et al., "Synthesized Classifiers for Zero-Shot Learning", CVPR 2016.

[2] Thomas N. Kipf et al., "Variational Graph Auto-Encoders"

Classifying the images of new (unseen) classes without seeing their training examples

Zero-shot Animal Image Classification

Classifying the images of new (unseen) classes without seeing their training examples

Zero-shot Animal Image Classification

macro accuracy:

$$acc = \frac{1}{||Y_u||} \sum_{c=1}^{||Y_u||} \frac{\text{\# correct predictions in } c}{\text{\# samples in } c}$$

standard ZSL setting: classifying the testing samples of <u>unseen classes</u> with <u>candidates</u> of <u>all</u> <u>unseen classes</u>

Classifying the images of new (unseen) classes without seeing their training examples

Zero-shot Animal Image Classification

Classifying the images of new (unseen) classes without seeing their training examples

Zero-shot Animal Image Classification

Results

- KG-based external knowledge achieves better performance than traditional none-KGbased external knowledge in most situations.
- Although more semantics are introduced in Basic KG+CN and Basic KG+logics, their results are not better than Basic KG on most metrics.

External	1	Av	νA			ImN	et-A			ImN	et-O	
Knowledge	acc	acc_s	acc_u	H	acc	acc_s	acc_u	H	acc	$ acc_s $	acc_u	H
w2v(500)	45.39	57.83	34.53	43.24	20.94	34.50	15.62	21.50	20.00	41.20	14.33	21.27
w2v(300)	20.80	22.67	12.88	16.43	27.76	40.50	20.40	27.13	24.73	37.20	17.52	23.83
att	58.47	59.90	44.24	50.89	37.87	33.50	27.62	30.28	32.98	42.00	20.67	27.71
hie	38.89	51.08	31.38	38.88	33.32	40.93	23.06	29.50	33.17	36.80	<u>21.13</u>	26.85
Basic KG	62.65	59.59	50.58	54.71	38.21	45.71	23.21	30.79	32.14	44.60	18.74	26.39
Basic KG $+$ literals	59.21	62.39	45.55	52.66	38.58	35.64	27.64	31.13	32.57	44.80	19.35	27.03
Basic KG $+$ CN	54.61	63.31	39.19	48.41	35.24	39.86	24.97	30.71	29.39	42.20	19.64	26.80
Basic KG + logics	54.65	<u>65.37</u>	40.76	50.21	–	–	_	_	_	_	_	_

Zero-shot Knowledge Graph Completion (ZS-KGC)

- Revisit Task Definition
- ZS-KGC Benchmarks
- Existing External Knowledge vs KG's KG (Ontological Schema)
- Benchmarking Results

Task Definition

- Completing the KG triples with new (unseen) relations without seeing their training triples
- also known as Inductive KGC

ZS-KGC Benchmarks

- NELL-ZS and Wiki-ZS, two sub-KGs from NELL and Wikidata
 - o relations are selected and split into two **disjoint** sets: \mathcal{R}_s (seen) and \mathcal{R}_u (unseen);
 - a closed set of entities shared during training and testing;
 - \circ triples of \mathcal{R}_s are collected for training, triples of \mathcal{R}_u are collected for validation and testing

ZS-KGC Benchmarks

- NELL-ZS and Wiki-ZS, two sub-KGs from NELL and Wikidata
 - o relations are selected and split into two **disjoint** sets: \mathcal{R}_s (seen) and \mathcal{R}_u (unseen);
 - a closed set of entities shared during training and testing;
 - \circ triples of \mathcal{R}_s are collected for training, triples of \mathcal{R}_u are collected for validation and testing

Datasets # Entities			# R	elations			# Triples			
	Total	Training	Validation	Testing	Total	Training	Validation	Testing		
		Total	Seen	Unseen	Unseen	Total	Seen	Unseen	Unseen	
NELL-ZS	65,567	181	139	10	32	188,392	181,053	1,856	5,483	
Wiki-ZS	605,812	537	469	20	48	724,928	701,977	7,241	15,710	

Existing External Knowledge vs Ontological Schema

Existing External Knowledge KG's KG: Ontological Schema competes with country_cities rdfs:domain rdfs:ranae Seen KG Relation: **Textual Descriptions** radiostation in city company city radionstationincity: specifies rdfs:domain rdfs:range rdfs:comment that a particular radio station is headquarted in a particular city **Feature Transfer** an organization whose has_office_in_city rdfs:comment goal is to make money hasofficeincity: specifies that a particular company has offices in specifies... a rdfs:subPropertyOf a particular city particular company **Unseen KG Relation:** has offices ... in a radiostation_in_city has office_in_city particular city rdfs:subPropertyOf organization acts in location

The Ontological Schemas contains different kinds of <u>relation knowledge</u> including textual names and descriptions, and relation semantics from RDFS and OWL.

Benchmarking GAN-based Methods OntoZSL

Benchmarking GAN-based Methods OntoZSL

Task-specific Feature Extractor

- relation sample: a pair of associated entities
- learn clustered features of KG relations.

• Completing the KG triples with new (unseen) relations without seeing their training triples

	Training Set	Testing Set
Entity Set	arepsilon	arepsilon
Relation Set	\mathcal{R}_s	\mathcal{R}_u
Triple Set	$\{(h, r_{\scriptscriptstyle S}, t)\}$ $h \in \mathcal{E} , r_{\scriptscriptstyle S} \in \mathcal{R}_{\scriptscriptstyle S}$	$ \{(h, r_u,?)\} $ $h \in \mathcal{E}, r_u \in \mathcal{R}_u $

MRR: the average of the reciprocal predicted ranks of all the ground truths (right tail entities)

hit@k: the ratio of testing samples whose ground truths are ranked in the top-k positions (k is set to 1, 5, 10)

Results

- RDFS graphs and the text-aware RDFS graph always lead to better performance than relations' textual descriptions
- Text-aware graph combines the advantages of relation semantics in RDF schema and text.

	OntoZSL									
External Knowledge	NELL-ZS hit@			MDD	Wiki-ZS hit@					
	MRR	10	5	1	MRR	10	5	1		
Text	0.215	34.5	28.3	14.5	0.185	27.3	22.3	13.5		
RDFS-hie	0.225	34.8	28.9	15.9	0.175	25.4	20.4	13.1		
RDFS-cons	0.220	34.3	28.0	15.4	0.177	25.7	21.2	13.0		
RDFS graph	0.223	35.1	29.1	15.3	0.185	27.5	22.3	13.4		
RDFS+literals	0.227	35.6	29.4	15.6	0.188	28.1	22.6	13.5		

Hands-on practice

- Download data and Run codes on Google Codelabs
 - ZS-IMGC and ZS-KGC with unseen relations
 - Well-experimented KGZSL and OntoZSL models
- Things you need to prepare
 - Google Drive for saving codes and data
 - Download codes from our Github repository (<u>https://github.com/China-UK-ZSL/Resources for KZSL/tree/master/demo codes</u>)

Resources

- More resources are here
 - https://github.com/China-UK ZSL/Resources for KZSL

Summary

- Resource review
 - There have been diverse resources in different domains, but there is still a shortage of resources for evaluating KG/Ontology-based ZSL methods
- KG Construction for ZSL benchmarks.
 - o principle: a standard procedure for guidance
 - cost: semi-automatic (extract from existing open resources + human check)
- Benchmarking
 - Different Class (Relation) Semantics
 - KG/Ontology-based semantics are always superior to traditional external knowledge
 - different kinds of semantics perform differently on different datasets/tasks
 - some semantics of the KG/Ontology are not fully utilized by the current methods
- Demonstration

T9

Conclusions, Discussions, and Future Directions

Overall Conclusion

What have we introduced?

- ZSL concepts, background and paradigm
- Knowledge-aware ZSL, different external knowledge and typical methods
- Resources and benchmarking on KG-aware ZSL, demonstration
- O Methods:
 - OntoZSL (Data Augmentation with GAN)
 - Feature Propagation-based Methods
 - Zero-shot Visual Question Answering
 - DUET (better utilize the attributes with Transformer)
 - KG Structure Pretraining

Open Challenges

Quality of knowledge graphs

- Impact of low quality knowledge
- Task oriented knowledge retrieval
- Other forms of structured knowledge, such as databases and web tables
- Crowd sourcing and human in the loop methods

Learning paradigm

- Data augmentation based methods only have few works and have good potential to help avoid data bias
- Belief propagation has not been widely investigated, but would be a good solution for some CV tasks, such as scene graph extraction and VQA
- With the wide adoption of PLMs, Class feature based methods become more popular
- ZSL in KG Construction
- Benchmarking
 - Domain specific benchmarks

Acknowledgement

- We would like to thank all the researchers who participated our works or contributed comments/discussion to our tutorial, especially
 - Prof. Ian Horrocks from University of Oxford
 - Prof. Huajun Chen from Zhejiang University
- This work is funded by
 - the EPSRC projects ConCur (EP/V050869/1)
 - Samsung Research UK
 - o NSFCU19B2027/91846204
 - Zhejiang Provincial Natural Science Foundation of China (No. Q23F020051)
 - the joint project DH-2022ZY0012 from Donghai Lab
 - the Chang Jiang Scholars Program (J2019032).

A List of Our Works

- [1]. Chen, J., Geng, Y., Chen, Z., Horrocks, I., Pan, J.Z., et al.: Knowledge-aware zero-shot learning: Survey and perspective. In: IJCAI (2021)
- [2]. Chen, J., Geng, Y., Chen, Z., Pan, J. Z., He, Y., Zhang, W., ... & Chen, H. Zero-shot and Few-shot Learning with Knowledge Graphs: A Comprehensive Survey. Proceedings of the IEEE (2023).
- [3]. Geng, Y., Chen, J., Zhuang, X., Chen, Z., Pan, J. Z., Li, J., Yuan, Z., & Chen, H. Benchmarking Knowledge-driven Zero-shot Learning. Journal of Web Semantics (2022).
- [4]. Geng,Y.,Chen,J.,Chen,Z.,Pan,J.Z.,Ye,Z.,Yuan,Z.,Jia,Y.,Chen,H.:OntoZSL: Ontology-enhanced zero-shot learning. In: WWW. pp. 3325-3336 (2021).
- [5] Geng, Y., Chen, J., Ye, Z., Zhang, W., Chen, H.: Explainable zero-shot learning via attentive graph convolutional network and knowledge graphs. Semantic Web (2021)
- [6]. Chen, Z., Chen, J., Geng, Y., Pan, J. Z., Yuan, Z., & Chen, H. Zero-shot visual question answering using knowledge graph. In International Semantic Web Conference (pp. 146-162) (2021).
- [7]. Geng, Y., Chen, J., Zhang W., Xu Y., Chen Z., Pan, J. Z., Huang, Y., Xiong F. & Chen, H. Disentangled Ontology Embedding for Zero-shot Learning. In: ACM SIGKDD (2022).
- [8] Geng, Y., Chen, J., Zhang, W., Pan, J. Z., Yang, M., Chen, H. & Jiang, S. Relational Message Passing for Fully Inductive Knowledge Graph Completion.In: ICDE (2023).
- [9] Chen, Z., Huang, Y., Chen, J., Geng, Y., Zhang, W., Fang, Y., ... & Chen, H. DUET: Cross-modal Semantic Grounding for Contrastive Zero-shot Learning. In: AAAI (2023).
- [10] Zhang, W., Zhu, Y., Chen, M., Geng, Y., Huang, Y., Xu, Y., Song, W. and Chen, H., 2023. Structure Pretraining and Prompt Tuning for Knowledge Graph Transfer. In: WWW (2023).

Thanks!

Please feel free to contact all the presenters

Click https://china-uk-zsl.github.io/kg-zsl-tutorial-ijcai-2023/ for more information and all the materials

Q & A