Вариант 0.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(1; -4; 6; -3; 2), \mathbf{a}_2(2; -5; 6; -4; 5), \mathbf{a}_3(0; -2; 5; -1; -3).$
- 2. Доказать, что векторы $e_1(1; -1; 6)$, $e_2(1; 1; 3)$, $e_3(-2; -3; -4)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-6; -6; -17)$, в новом базисе $\boldsymbol{c}(3; 6; -4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;5;-2;3),\ \boldsymbol{a}_2(1;3;-1;2),\ \boldsymbol{a}_3(1;2;-1;1),\ \boldsymbol{a}_4(-1;-4;2;-2).$ Найти координаты вектора $\boldsymbol{b}(0;-3;1;-2)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = \mathbf{a} \cdot \Pi p_{\mathbf{b}} \mathbf{x}$, где $\mathbf{a}(5;6;6)$, $\mathbf{b}(5;6;5)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i,j,k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -7 & 1 & -5 \\ 12 & -2 & 8 \\ 6 & 0 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} -11 & -3 & -7 \\ -14 & -12 & -11 \\ 18 & 9 & 12 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x_1^2+4x_1x_2+12x_1x_3-3x_2^2-14x_2x_3-20x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $11x^2 12xy + 6xz + 6y^2 4yz + 3z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 4xy + 5y^2 = 1$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 1.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(5; -4; -4; 1; -2), \mathbf{a}_2(-2; 1; -1; 0; 1), \mathbf{a}_3(-1; -1; -7; 1; 1).$
- 2. Доказать, что векторы $e_1(0;1;2)$, $e_2(1;1;3)$, $e_3(-1;0;-2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(3;10;20)$, в новом базисе $\boldsymbol{c}(-4;5;-2)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;-2;-2;1), \, \boldsymbol{a}_2(1;-1;-2;3), \, \boldsymbol{a}_3(-1;1;3;-5), \, \boldsymbol{a}_4(1;-3;-2;-1).$ Найти координаты вектора $\boldsymbol{b}(5;-12;-12;5)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (x_1; x_2; x_3)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (-6x_1 + 2x_2 + 3x_3; -3x_1 x_2 + 3x_3; 4x_1 4x_2 + x_3)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 13 & -15 & 0 \\ 10 & -11 & -1 \\ 4 & -5 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} -2 & 1 & 2 \\ 2 & -3 & -4 \\ -1 & 1 & 1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x^2+4xy+4xz-5y^2-6yz-7z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-x^2 + 8xz y^2 2yz 17z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $6x^2 4xy + 9y^2 = 10$.

Вариант 2.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(4;1;0;5;6)$, $a_2(3;1;2;4;5)$, $a_3(2;1;1;3;3)$.
- 2. Доказать, что векторы $e_1(-1;3;0)$, $e_2(2;5;2)$, $e_3(2;0;1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(1;4;2)$, в новом базисе $\boldsymbol{c}(3;4;-4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-3;-1;-2), \boldsymbol{a}_2(-1;-1;-1;-2), \boldsymbol{a}_3(-1;-2;-1;-2), \boldsymbol{a}_4(-1;-3;-2;-3).$ Найти координаты вектора $\boldsymbol{b}(-3;-2;-1;-4)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $\boldsymbol{c}(-3;-2;-1;-4)$ в построенном ортонормированном базисе, если $\boldsymbol{b}(-3;-2;-1;-4)$ в построенном ортонормированном ортонормированном
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{a}, \mathbf{x})\mathbf{a}$, где $\mathbf{a}(5; 1; -1)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -12 & -8 & -9 \\ 11 & 7 & 9 \\ 4 & 3 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} -10 & 12 & -6 \\ -10 & 13 & -6 \\ -2 & 4 & -1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2-2x_1x_2+6x_1x_3-2x_2^2+4x_2x_3-11x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $x^2 4xz + y^2 6yz 11z^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 + 4xy y^2 = 3$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 3.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(1;-1;0;-3;3), \, \boldsymbol{a}_2(-3;5;2;7;7), \, \boldsymbol{a}_3(-1;2;1;2;5).$
- 2. Доказать, что векторы $e_1(-1;2;-1)$, $e_2(-2;3;-1)$, $e_3(-2;4;-1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(1;-2;4)$, в новом базисе $\boldsymbol{c}(-6;-3;-5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-2;-4;-2), \, \boldsymbol{a}_2(1;1;2;2), \, \boldsymbol{a}_3(-2;-2;-3;-3), \, \boldsymbol{a}_4(1;2;1;-1).$ Найти координаты вектора $\boldsymbol{b}(4;4;13;13)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{a} \times \mathbf{x}]$, где $\mathbf{a}(5; -5; -4)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -2 & -6 & -4 \\ 12 & 15 & 6 \\ -3 & -6 & -3 \end{pmatrix}, \qquad B = \begin{pmatrix} -5 & 8 & 4 \\ -2 & -10 & -6 \\ 3 & 18 & 11 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2+8xy-4xz-10y^2+16yz-13z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-2x_1^2+6x_1x_2-6x_1x_3-10x_2^2+18x_2x_3-10x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 8xy 4y^2 = 5$.

Вариант 4.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(1; 1; -5; 1; 2), a_2(-1; 4; -5; -6; 3), a_3(0; 1; -2; -1; 1).$
- 2. Доказать, что векторы $e_1(-3; -2; 3)$, $e_2(-2; -1; 2)$, $e_3(6; 3; -7)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(21; 10; -24)$, в новом базисе $\boldsymbol{c}(2; -4; -4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(2;3;2;-4),\ \boldsymbol{a}_2(1;2;1;-2),\ \boldsymbol{a}_3(2;2;3;-5),\ \boldsymbol{a}_4(1;2;3;-4).$ Найти координаты вектора $\boldsymbol{b}(3;1;1;-4)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t))=(6t+1)\frac{\mathrm{d}}{\mathrm{d}t}f(t)-2f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{1,t,t^2\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 1 & -2 & 2 \\ 4 & 1 & 2 \\ -6 & 3 & -6 \end{pmatrix}, \qquad B = \begin{pmatrix} -6 & 9 & -7 \\ 1 & -11 & 5 \\ 3 & -11 & 5 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-3x_1^2+6x_1x_2-6x_1x_3-6x_2^2+18x_2x_3-19x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $6x^2 + 12xy + 4xz + 11y^2 + 6yz + 3z^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $6x^2 4xy + 9y^2 = 20$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 5.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(-1;2;1;-3;0), \, \boldsymbol{a}_2(2;1;3;1;5), \, \boldsymbol{a}_3(2;-3;-1;5;1).$
- 2. Доказать, что векторы $e_1(-1;2;0)$, $e_2(-1;-1;1)$, $e_3(0;4;-1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(2;-9;1)$, в новом базисе $\boldsymbol{c}(1;4;4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(3;-1;-1;-2),\ \boldsymbol{a}_2(-2;1;1;1),\ \boldsymbol{a}_3(-4;2;3;2),\ \boldsymbol{a}_4(3;-2;-1;-1).$ Найти координаты вектора $\boldsymbol{b}(11;-7;-8;-4)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{x}, \mathbf{a})\mathbf{b}$, где $\mathbf{a}(6; 2; 5)$, $\mathbf{b}(-6; -2; -4)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -2 & -6 & -12 \\ -2 & -7 & -12 \\ 2 & 6 & 11 \end{pmatrix}, \qquad B = \begin{pmatrix} -11 & -5 & 6 \\ 4 & 1 & -4 \\ -20 & -10 & 9 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2+6x_1x_2+2x_1x_3-11x_2^2+6x_2x_3-20x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $7x^2 8xy 2xz + y^2 4yz + 3z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 + 2xy + 2y^2 = 1$.

Вариант 6.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(-6;4;-3;1;-5), \, \boldsymbol{a}_2(0;-2;3;1;1), \, \boldsymbol{a}_3(-1;1;-1;0;-1).$
- 2. Доказать, что векторы $e_1(-5;2;3)$, $e_2(7;-3;-3)$, $e_3(8;-3;-5)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(16;-6;-8)$, в новом базисе $\boldsymbol{c}(-2;-2;2)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-3;-1;-1;3), \ \boldsymbol{a}_2(2;1;1;-2), \ \boldsymbol{a}_3(3;2;2;-3), \ \boldsymbol{a}_4(1;2;1;-2).$ Найти координаты вектора $\boldsymbol{b}(9;11;8;-12)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = \mathbf{a} \cdot \Pi p_b \mathbf{x}$, где $\mathbf{a}(-5; 5; 1)$, $\mathbf{b}(2; -4; 1)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -2 & -2 & 2 \\ 2 & -6 & 2 \\ 1 & -1 & -3 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 & 2 & -4 \\ -7 & 5 & -6 \\ -1 & 1 & 1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-3x_1^2+12x_1x_2+6x_1x_3-16x_2^2-20x_2x_3-10x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-8xy 4xz 6y^2 8yz 7z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $x^2 + 10xy + y^2 = 4$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 7.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(1;1;2;2;-1)$, $\mathbf{a}_2(-4;1;3;-1;2)$, $\mathbf{a}_3(0;-2;-4;-5;2)$.
- 2. Доказать, что векторы $e_1(4;1;3)$, $e_2(1;1;-1)$, $e_3(0;1;-2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(20;10;4)$, в новом базисе $\boldsymbol{c}(6;-1;4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-2;-1;4;-1), \, \boldsymbol{a}_2(-1;2;2;-3), \, \boldsymbol{a}_3(2;-1;-4;3), \, \boldsymbol{a}_4(2;-1;-3;2).$ Найти координаты вектора $\boldsymbol{b}(-3;-4;8;-1)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal V$ задан соотношением $A(\boldsymbol x) = \boldsymbol a \cdot \Pi p_{\boldsymbol b} \boldsymbol x$, где $\boldsymbol a(6;2;-6)$, $\boldsymbol b(2;-2;-3)$. Доказать линейность оператора A и найти его матрицу в базисе $\{\boldsymbol i,\boldsymbol j,\boldsymbol k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 6 & -1 & 6 \\ 8 & 6 & 12 \\ -4 & 0 & -4 \end{pmatrix}, \qquad B = \begin{pmatrix} -5 & 2 & 0 \\ -9 & 8 & 3 \\ 12 & -12 & -5 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2-2x_1x_2-2x_1x_3-3x_2^2+6x_2x_3-11x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-14x_1^2+8x_1x_2+16x_1x_3+x_2^2-4x_2x_3-2x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $-4x^2 6xy + 4y^2 = 5$.

Вариант 8.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(8;1;-2;-7;3), a_2(1;0;1;-2;1), a_3(2;1;-8;5;-3).$
- 2. Доказать, что векторы $e_1(2;2;-1)$, $e_2(1;1;0)$, $e_3(1;0;-1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-11;-4;6)$, в новом базисе $\boldsymbol{c}(-1;2;-3)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;1;-2;-2), \ \boldsymbol{a}_2(1;1;2;2), \ \boldsymbol{a}_3(1;1;3;3), \ \boldsymbol{a}_4(-1;-2;3;1).$ Найти координаты вектора $\boldsymbol{b}(-8;-10;1;-3)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t)) = (-4t-6)\frac{\mathrm{d}}{\mathrm{d}t}f(t) + 5f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{1,t,t^2\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -19 & -10 & -17 \\ 12 & 7 & 9 \\ 18 & 9 & 17 \end{pmatrix}, \qquad B = \begin{pmatrix} 12 & -1 & 6 \\ 12 & -1 & 6 \\ -12 & 0 & -6 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 8xy + 8xz 10y^2 12yz 11z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-x^2 + 4xy + 2xz y^2 + 2yz$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $-3x^2 8xy + 3y^2 = 5$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 9.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(7;0;2;1;5), a_2(4;1;1;2;3), a_3(1;2;0;3;1).$
- 2. Доказать, что векторы $e_1(5; -5; -4)$, $e_2(-1; 2; 3)$, $e_3(-4; 2; -1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-5; -8; -23)$, в новом базисе $\boldsymbol{c}(0; -1; 5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;2;-1;1),\ \boldsymbol{a}_2(2;5;-2;3),\ \boldsymbol{a}_3(-2;-2;1;1),\ \boldsymbol{a}_4(3;2;-1;-3).$ Найти координаты вектора $\boldsymbol{b}(6;6;-2;-4)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{x}, \mathbf{a})\mathbf{b}$, где $\mathbf{a}(-1; 2; -1)$, $\mathbf{b}(-1; -6; -3)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -5 & -5 & 5 \\ 2 & 2 & -2 \\ -4 & -4 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} -7 & 4 & 0 \\ 0 & 7 & 5 \\ 10 & -10 & -3 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2+12xy-4xz-20y^2+8yz-7z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2x_1^2 + 6x_1x_2 + 4x_1x_3 + 10x_2^2 + 12x_2x_3 + 5x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $3x^2 + 6xy 5y^2 = 6$.

Вариант 10.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(1; 2; -2; -2; -2), a_2(1; 3; -4; -3; -3), a_3(-3; -6; 5; 7; 4).$
- 2. Доказать, что векторы $e_1(-3;1;8)$, $e_2(-1;0;2)$, $e_3(-1;-1;1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(4;2;-8)$, в новом базисе $\boldsymbol{c}(5;6;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-3;-1;3;-1),\ \boldsymbol{a}_2(-2;-1;2;-1),\ \boldsymbol{a}_3(1;-4;4;1),\ \boldsymbol{a}_4(2;2;-3;1).$ Найти координаты вектора $\boldsymbol{b}(-1;13;-12;0)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (x_1; x_2; x_3)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (-9x_1 5x_2 + 2x_3; 7x_1 8x_2 8x_3; -3x_1 4x_2 + x_3)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 8 & -16 & 4 \\ 2 & -6 & 4 \\ 4 & -10 & 4 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 2 & -2 \\ 6 & 2 & 6 \\ -3 & -3 & 5 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x^2-2xy+6xz-2y^2+8yz-11z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $10x_1^2 6x_1x_2 6x_1x_3 + 2x_2^2 + 2x_2x_3 + 2x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $9x^2 + 6xy + 9y^2 = 4$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 11.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(-3; 0; 4; -1; 1)$, $\mathbf{a}_2(7; -1; -5; 1; -2)$, $\mathbf{a}_3(-1; 1; -3; 1; 0)$.
- 2. Доказать, что векторы $e_1(-5;3;-2)$, $e_2(6;-5;3)$, $e_3(4;-3;2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-2;2;-1)$, в новом базисе $\boldsymbol{c}(-4;4;-5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;-1;-1;2), \ \boldsymbol{a}_2(-3;2;2;-5), \ \boldsymbol{a}_3(1;-2;1;-3), \ \boldsymbol{a}_4(-2;1;2;-5).$ Найти координаты вектора $\boldsymbol{b}(3;-1;-6;14)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{a}, \mathbf{x})\mathbf{a}$, где $\mathbf{a}(-3; -1; -4)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -4 & 5 & -3 \\ 1 & -12 & 5 \\ 2 & -14 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} -12 & -1 & -7 \\ 18 & 0 & 12 \\ 12 & 1 & 7 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2+8xy+12xz-10y^2-20yz-21z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-7x_1^2+6x_1x_2-18x_1x_3+x_2^2+6x_2x_3-7x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $5x^2 + 8xy + 5y^2 = 5$.

Вариант 12.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(-3;-2;5;-1;-3), \, \boldsymbol{a}_2(1;1;-2;2;2), \, \boldsymbol{a}_3(-1;0;1;3;1).$
- 2. Доказать, что векторы $e_1(-1;2;-2)$, $e_2(-1;1;-1)$, $e_3(2;-2;3)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-1;-3;-1)$, в новом базисе $\boldsymbol{c}(3;0;6)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;2;-2;-1),\ \boldsymbol{a}_2(-2;-3;3;2),\ \boldsymbol{a}_3(-1;2;-1;3),\ \boldsymbol{a}_4(-3;-2;2;3).$ Найти координаты вектора $\boldsymbol{b}(2;9;-6;4)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = \mathbf{a} \cdot \prod_{\mathbf{b}} \mathbf{x}$, где $\mathbf{a}(-4; 2; -6)$, $\mathbf{b}(-3; 1; -6)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 17 & -17 & 4 \\ 9 & 11 & 12 \\ -18 & -6 & -16 \end{pmatrix}, \qquad B = \begin{pmatrix} -10 & 1 & -2 \\ -14 & -1 & -4 \\ 10 & -2 & -1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x^2 + 6xy + 6xz 10y^2 12yz 19z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2x^2 2xy + 6xz + 2y^2 6yz + 10z^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $3x^2 + 10xy + 3y^2 = 1$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 13.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(1;1;-3;-1;1), \ \boldsymbol{a}_2(2;1;-2;0;-1), \ \boldsymbol{a}_3(-7;-3;5;-1;5).$
- 2. Доказать, что векторы $e_1(3;7;2)$, $e_2(-3;-2;4)$, $e_3(2;1;-3)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-10;-14;5)$, в новом базисе $\boldsymbol{c}(-6;6;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;1;-1;1),\ \boldsymbol{a}_2(-2;-2;1;-2),\ \boldsymbol{a}_3(-2;-1;2;-3),\ \boldsymbol{a}_4(3;2;-3;4).$ Найти координаты вектора $\boldsymbol{b}(-5;-5;2;-5)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t)) = 4\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t) \frac{\mathrm{d}}{\mathrm{d}t}f(t) + f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{1,t,t^2\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 2 & -2 & -1 \\ -4 & 2 & 0 \\ 12 & 8 & 6 \end{pmatrix}, \qquad B = \begin{pmatrix} -1 & 15 & -10 \\ -2 & 10 & -4 \\ -1 & 3 & 2 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-3x_1^2+6x_1x_2+12x_1x_3-5x_2^2-8x_2x_3-18x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $3x_1^2 + 8x_1x_2 2x_1x_3 + 18x_2^2 8x_2x_3 + 3x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $-4x^2 8xy + 2y^2 = 3$.

Вариант 14.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(0; -5; -5; 1; 2), a_2(2; 3; 1; -1; 0), a_3(3; 7; 4; -2; -1).$
- 2. Доказать, что векторы $e_1(1;3;2)$, $e_2(0;1;1)$, $e_3(-2;2;5)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(9;14;4)$, в новом базисе $\boldsymbol{c}(-3;5;1)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;1;-1;-1),\ \boldsymbol{a}_2(-2;1;-1;-1),\ \boldsymbol{a}_3(-4;2;-1;-3),\ \boldsymbol{a}_4(1;-1;5;-3).$ Найти координаты вектора $\boldsymbol{b}(-7;6;-12;0)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(4;5;-2)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i,j,k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -4 & 6 & 6 \\ 4 & -2 & -4 \\ -8 & 0 & 6 \end{pmatrix}, \qquad B = \begin{pmatrix} -1 & 16 & 4 \\ -4 & -6 & -6 \\ 9 & 14 & 14 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x^2+2xy+6xz-2y^2-2yz-14z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $7x_1^2 + 6x_1x_2 18x_1x_3 x_2^2 6x_2x_3 + 7x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 4xy y^2 = 3$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 15.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(3; -8; 2; 0; -1), a_2(-7; -3; -3; -5; -1), a_3(2; -1; 1; 1; 0)$.
- 2. Доказать, что векторы $e_1(3;-1;-3)$, $e_2(2;1;1)$, $e_3(-2;0;1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(14;0;-6)$, в новом базисе $\boldsymbol{c}(-1;3;-2)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-2;-3;4), \ \boldsymbol{a}_2(1;1;1;-1), \ \boldsymbol{a}_3(1;1;2;-2), \ \boldsymbol{a}_4(-1;1;-3;1).$ Найти координаты вектора $\boldsymbol{b}(-2;3;-7;2)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (x; y; z)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (-2x + 2y + 3z; -7x 4y + 9z; 5x 6y + 6z)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -6 & 4 & 1 \\ -15 & 7 & -3 \\ 10 & -4 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 0 & 1 \\ -10 & -5 & 7 \\ -8 & -4 & 7 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x_1^2+4x_1x_2+4x_1x_3-3x_2^2+2x_2x_3-13x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $3x^2 4xy 4xz + 2yz$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $5x^2 4xy + 2y^2 = 1$.

Вариант 16.

- 1*. Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(-7; 0; -8; 1; 5), a_2(-5; -4; -4; -1; 3), a_3(4; -1; 5; -1; -3).$
- 2. Доказать, что векторы $e_1(-3;0;1)$, $e_2(4;-1;-3)$, $e_3(2;-1;-2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-19;5;14)$, в новом базисе $\boldsymbol{c}(-3;-2;3)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-3;-1;-2;-4),\ \boldsymbol{a}_2(-2;-1;-1;-3),\ \boldsymbol{a}_3(2;2;1;4),\ \boldsymbol{a}_4(1;1;1;2).$ Найти координаты вектора $\boldsymbol{b}(5;5;3;10)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(-4;4;6)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i,j,k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 2 & -1 & -2 \\ 11 & -7 & -17 \\ -3 & 2 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} -5 & 6 & -2 \\ -2 & 3 & -2 \\ -3 & 9 & -6 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2+2x_1x_2+6x_1x_3-2x_2^2-19x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2xz 2yz + z^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $6x^2 8xy + 6y^2 = 1$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 17.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(2;-1;-1;1;-1), \ \boldsymbol{a}_2(4;-3;3;1;-5), \ \boldsymbol{a}_3(-5;3;0;-2;4).$
- 2. Доказать, что векторы $e_1(0;-1;-1)$, $e_2(1;-1;1)$, $e_3(1;1;4)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-4;17;12)$, в новом базисе $\boldsymbol{c}(-1;-5;-5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-3;-4;2;-1), \ \boldsymbol{a}_2(1;1;-1;1), \ \boldsymbol{a}_3(4;4;-1;1), \ \boldsymbol{a}_4(2;2;-1;1).$ Найти координаты вектора $\boldsymbol{b}(3;0;3;0)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t))=2\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t)-\frac{\mathrm{d}}{\mathrm{d}t}f(t)-4f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{t^2,t,1\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 5 & -8 & 5 \\ 4 & -13 & 10 \\ 7 & -18 & 13 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 8 & 4 \\ 2 & 10 & 4 \\ -4 & -16 & -6 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-4x_1^2+16x_1x_2+8x_1x_3-19x_2^2-10x_2x_3-10x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-x_1^2 + 2x_1x_3 x_2^2 + 2x_2x_3$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 4xy + 5y^2 = 2$.

Вариант 18.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(2; -5; -1; 1; 4), a_2(1; -4; 0; 1; -3), a_3(0; -3; 1; 1; -10).$
- 2. Доказать, что векторы $e_1(-1;-1;0)$, $e_2(-1;0;1)$, $e_3(1;-1;-3)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(6;-2;-11)$, в новом базисе $\boldsymbol{c}(4;-4;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;2;-2;1),\ \boldsymbol{a}_2(-1;1;-1;1),\ \boldsymbol{a}_3(-2;2;-1;1),\ \boldsymbol{a}_4(-1;2;-3;2).$ Найти координаты вектора $\boldsymbol{b}(-4;4;1;-1)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(3; -1; -2)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -7 & 7 & 16 \\ 3 & -9 & -13 \\ -2 & 5 & 7 \end{pmatrix}, \qquad B = \begin{pmatrix} 2 & -7 & -6 \\ 2 & -7 & -6 \\ 6 & 14 & 17 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 4xy 4xz 5y^2 + 16yz 18z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-x_1^2 4x_1x_3 x_2^2 + 8x_2x_3 2x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $7x^2 4xy + 4y^2 = 8$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 19.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(1;2;-2;1;1)$, $\mathbf{a}_2(-2;-3;5;0;-1)$, $\mathbf{a}_3(-1;-3;1;-3;-2)$.
- 2. Доказать, что векторы $e_1(-5; -4; -2)$, $e_2(1; 0; -1)$, $e_3(-6; -3; 1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-4; -4; -4)$, в новом базисе $\boldsymbol{c}(-4; -1; 5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\mathbf{a}_1(-3;2;-4;-1), \mathbf{a}_2(-2;1;-3;-1), \mathbf{a}_3(4;-2;3;2), \mathbf{a}_4(2;-1;2;1).$ Найти координаты вектора $\mathbf{b}(-6;4;-10;-2)$ в построенном ортонормированном базисе, если \mathbf{b} принадлежит $<\mathbf{a}_1,\ldots,\mathbf{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(-5; -3; 4)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -4 & -13 & 14 \\ 5 & 18 & -20 \\ 2 & 13 & -16 \end{pmatrix}, \qquad B = \begin{pmatrix} 9 & -4 & 2 \\ 17 & -8 & 4 \\ 6 & -4 & 2 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2-2x_1x_2+2x_1x_3-2x_2^2+8x_2x_3-11x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-4xy + 2xz 2yz + z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $x^2 + 4xy 2y^2 = 4$.

Вариант 20.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(9; -4; -7; 1; 1), a_2(-2; -1; 2; 0; -1), a_3(-1; -9; 3; 1; -4).$
- 2. Доказать, что векторы $e_1(-5; -2; 2)$, $e_2(-2; -3; -1)$, $e_3(-7; 1; 6)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-13; -1; 9)$, в новом базисе $\boldsymbol{c}(5; 2; 0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(2;3;1;-1),\ \boldsymbol{a}_2(-1;-2;-1;1),\ \boldsymbol{a}_3(1;3;1;-2),\ \boldsymbol{a}_4(-1;-4;-1;3).$ Найти координаты вектора $\boldsymbol{b}(2;12;4;-10)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{a}, \mathbf{x})\mathbf{b}$, где $\mathbf{a}(-5; -1; 2)$, $\mathbf{b}(-3; 3; -5)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 5 & 10 & 2 \\ -4 & -8 & -1 \\ -8 & -16 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} -8 & 12 & 4 \\ -9 & 0 & -2 \\ 18 & 12 & 10 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 8xy + 8xz 9y^2 10yz 18z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $7x_1^2 + 6x_1x_2 + 18x_1x_3 x_2^2 + 6x_2x_3 + 7x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $3x^2 + 8xy 3y^2 = 5$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 21.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(-3; -6; 5; 1; 3), a_2(9; 9; -4; -2; -3), a_3(4; 5; -3; -1; -2).$
- 2. Доказать, что векторы $e_1(4;0;-3)$, $e_2(1;1;-1)$, $e_3(0;-3;1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-24;-7;20)$, в новом базисе $\boldsymbol{c}(3;0;-6)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-3;1;-1),\ \boldsymbol{a}_2(1;4;-1;2),\ \boldsymbol{a}_3(2;2;-1;-1),\ \boldsymbol{a}_4(-2;-1;1;2).$ Найти координаты вектора $\boldsymbol{b}(6;2;-2;-6)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (x; y; z)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (3x + 5y 8z; 4y 6z; 6x + 9y 7z)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -1 & 1 & -2 \\ 4 & 2 & 2 \\ 4 & -2 & 5 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & -5 & -3 \\ 11 & -11 & -5 \\ -12 & 9 & 1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-3x_1^2-6x_1x_2+12x_1x_3-5x_2^2+8x_2x_3-17x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $7x^2 6xy 18xz y^2 + 6yz + 7z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 8xy 4y^2 = 3$.

Вариант 22.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(-1;2;-5;-3;1), a_2(1;2;1;-1;7), a_3(0;1;-1;-1;2).$
- 2. Доказать, что векторы $e_1(-2; -3; 3)$, $e_2(-2; -2; 1)$, $e_3(-1; 0; -2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-10; -10; 6)$, в новом базисе $\boldsymbol{c}(-3; 3; 0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-2;1;2),\ \boldsymbol{a}_2(1;3;-1;-3),\ \boldsymbol{a}_3(-2;-1;1;2),\ \boldsymbol{a}_4(1;1;-1;-1).$ Найти координаты вектора $\boldsymbol{b}(10;7;-7;-10)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t))=3\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t)+5\frac{\mathrm{d}}{\mathrm{d}t}f(t)-2f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{1,t,t^2\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -2 & -4 & -5 \\ 6 & 12 & 15 \\ -4 & -8 & -10 \end{pmatrix}, \qquad B = \begin{pmatrix} 11 & -1 & 3 \\ 18 & 0 & 7 \\ -6 & 0 & 1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2+12xy+4xz-19y^2-10yz-5z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-10x_1^2-18x_1x_2-6x_1x_3-10x_2^2-6x_2x_3-2x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $7x^2 + 10xy + 7y^2 = 3$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 23.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(1;4;-3;-1;7), a_2(-3;6;-1;-1;-1), a_3(2;-1;-1;0;4).$
- 2. Доказать, что векторы $e_1(3;5;-1)$, $e_2(3;8;0)$, $e_3(2;2;-1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(6;12;-2)$, в новом базисе $\boldsymbol{c}(-1;6;-3)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-2;-2;3), \, \boldsymbol{a}_2(-1;-1;-1;1), \, \boldsymbol{a}_3(-1;1;1;-3), \, \boldsymbol{a}_4(2;4;3;-4).$ Найти координаты вектора $\boldsymbol{b}(11;15;12;-13)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{a} \times \mathbf{x}]$, где $\mathbf{a}(-1;5;2)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i,j,k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 3 & 8 & 2 \\ -1 & -6 & -4 \\ 1 & 4 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 13 & 3 & -12 \\ -8 & -1 & 8 \\ 11 & 4 & -9 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2-4xy+8xz-3y^2+10yz-11z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $3x_1^2 + 8x_1x_3 + 3x_2^2 + 4x_2x_3 + 4x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $8x^2 8xy 7y^2 = 8$.

Вариант 24.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(7;1;-2;-3;-5), \, \boldsymbol{a}_2(1;1;0;-1;-3), \, \boldsymbol{a}_3(2;-1;-1;0;2).$
- 2. Доказать, что векторы $e_1(3; -5; 1)$, $e_2(-4; 7; -2)$, $e_3(-1; 2; 0)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(1; -3; 1)$, в новом базисе $\boldsymbol{c}(3; 1; 6)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-3;-4;-2;2),\ \boldsymbol{a}_2(-4;-2;-1;1),\ \boldsymbol{a}_3(-2;3;2;-1),\ \boldsymbol{a}_4(-3;-2;-1;1).$ Найти координаты вектора $\boldsymbol{b}(0;12;7;-5)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{a}, \mathbf{x})\mathbf{b}$, где $\mathbf{a}(6; -2; -6)$, $\mathbf{b}(2; -3; -4)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 1 & 0 & 4 \\ 6 & -3 & 6 \\ -4 & 1 & -5 \end{pmatrix}, \qquad B = \begin{pmatrix} 5 & -12 & 6 \\ 2 & -5 & 2 \\ -3 & 6 & -4 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2 + 2x_1x_2 + 2x_1x_3 3x_2^2 + 2x_2x_3 4x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $3x_1^2 12x_1x_3 + 3x_2^2 + 6x_2x_3 + 7x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $7x^2 10xy + 7y^2 = 12$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 25.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(1;3;-1;0;2), a_2(0;2;-1;1;3), a_3(-6;-4;-1;7;9).$
- 2. Доказать, что векторы $e_1(0; -3; -4)$, $e_2(1; 1; 2)$, $e_3(-1; 1; 1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(3; 7; 9)$, в новом базисе $\boldsymbol{c}(-3; 5; -3)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $a_1(1;1;1;-2), a_2(-2;-1;-2;3), a_3(2;1;3;-3), a_4(-1;-4;-1;5)$. Найти координаты вектора b(-2;-7;-5;9) в построенном ортонормированном базисе, если b принадлежит $a_1,\ldots,a_4>0$.
- 4. Оператор A в пространстве $\mathcal V$ задан соотношением $A(\boldsymbol x)=(\boldsymbol a,\boldsymbol x)\boldsymbol a$, где $\boldsymbol a(-3;3;2)$. Доказать линейность оператора A и найти его матрицу в базисе $\{\boldsymbol i,\boldsymbol j,\boldsymbol k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -4 & -2 & -1 \\ -1 & -5 & -1 \\ 3 & 6 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 8 & 3 & 6 \\ -16 & 3 & 6 \\ 8 & 3 & 6 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-3x_1^2+12x_1x_2-6x_1x_3-14x_2^2+20x_2x_3-13x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2x_1^2 + 4x_1x_3 + 2x_2^2 + 8x_2x_3 + 3x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $7x^2 3xy + 3y^2 = 5$.

Вариант 26.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(-3; 1; 5; -1; 2), a_2(-1; 1; 2; 0; 1), a_3(1; 1; -1; 1; 0).$
- 2. Доказать, что векторы $e_1(0;1;-1)$, $e_2(-1;6;0)$, $e_3(1;-3;-2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(2;-9;-2)$, в новом базисе $\boldsymbol{c}(-4;1;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;-1;-2;3), \ \boldsymbol{a}_2(1;-1;-3;4), \ \boldsymbol{a}_3(-2;2;3;-5), \ \boldsymbol{a}_4(1;-2;-3;5).$ Найти координаты вектора $\boldsymbol{b}(2;-3;-8;11)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (x_1; x_2; x_3)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (8x_1 + 9x_2 + 8x_3; -7x_1 4x_2 + 7x_3; -9x_1 + 4x_2 + 4x_3)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -3 & -16 & 10 \\ 4 & 7 & 0 \\ 0 & 10 & -9 \end{pmatrix}, \qquad B = \begin{pmatrix} 8 & 12 & 0 \\ -5 & -9 & 1 \\ -6 & -12 & 2 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x_1^2+4x_1x_2+12x_1x_3-5x_2^2-18x_2x_3-25x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $x^2 + 2xy 8xz + y^2 + 8yz 14z^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $7x^2 + 4xy + 4y^2 = 3$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 27.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(1;0;-1;-1;1), \mathbf{a}_2(6;1;-5;-7;8), \mathbf{a}_3(2;1;-1;-3;4).$
- 2. Доказать, что векторы $e_1(3; -1; -1)$, $e_2(-6; 2; 1)$, $e_3(-2; 1; 3)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(3; 1; 12)$, в новом базисе $\boldsymbol{c}(6; 5; 0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;1;-1;2),\ \boldsymbol{a}_2(-2;3;-2;5),\ \boldsymbol{a}_3(2;-1;1;-3),\ \boldsymbol{a}_4(-3;2;-2;5).$ Найти координаты вектора $\boldsymbol{b}(0;2;0;2)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит < $\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(6; 6; -5)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 8 & 5 & -6 \\ -13 & -14 & 0 \\ 9 & 5 & -7 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 & -4 & 2 \\ 1 & -8 & 2 \\ 2 & -8 & 0 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 4xy + 4xz 6y^2 + 12yz 21z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2x_1^2 4x_1x_2 8x_1x_3 + 2x_2^2 + 8x_2x_3 + 18x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $5x^2 6xy + 5y^2 = 6$.

Вариант 28.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(2;1;1;-4;1), a_2(-1;-3;2;-3;-8), a_3(-1;0;-1;3;1).$
- 2. Доказать, что векторы $e_1(1;3;-3)$, $e_2(-1;2;-1)$, $e_3(4;1;-3)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-5;-12;13)$, в новом базисе $\boldsymbol{c}(-1;-1;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;-1;-1;2),\ \boldsymbol{a}_2(2;-1;-2;3),\ \boldsymbol{a}_3(-1;-2;-2;4),\ \boldsymbol{a}_4(-1;-1;-1;2).$ Найти координаты вектора $\boldsymbol{b}(-5;-1;0;1)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{x}, \mathbf{a})\mathbf{a}$, где $\mathbf{a}(4; -6; -3)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -9 & -4 & -2 \\ 0 & -1 & -1 \\ 6 & 6 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} -10 & -10 & -9 \\ 7 & 7 & 9 \\ -2 & -3 & -6 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x_1^2-4x_1x_2+12x_1x_3-3x_2^2+10x_2x_3-21x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-6xy 6xz 8y^2 18yz 8z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 2xy + 2y^2 = 3$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 29.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(0; 5; 4; 1; 1), \mathbf{a}_2(7; -4; 1; 9; 2), \mathbf{a}_3(-1; -3; -3; -2; -1).$
- 2. Доказать, что векторы $e_1(-3;-1;-2)$, $e_2(1;1;1)$, $e_3(-3;0;-2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(7;-2;6)$, в новом базисе $\boldsymbol{c}(-4;-1;4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(2;-1;-1;2), \, \boldsymbol{a}_2(-1;1;1;-2), \, \boldsymbol{a}_3(2;-2;-1;3), \, \boldsymbol{a}_4(-1;-1;2;-1).$ Найти координаты вектора $\boldsymbol{b}(-10;3;9;-12)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{x}, \mathbf{a})\mathbf{b}$, где $\mathbf{a}(-3; 4; -4)$, $\mathbf{b}(2; 4; -2)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 6 & 4 & 8 \\ -4 & -4 & -4 \\ -4 & -6 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} -1 & 4 & -4 \\ 0 & -4 & 3 \\ 3 & 1 & 2 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 4xy + 8xz 4y^2 12yz 13z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-2x_1^2 8x_1x_2 + 4x_1x_3 2x_2^2 + 4x_2x_3 + x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $-x^2 10xy y^2 = 4$.

Вариант 30.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(3;1;5;-2;5), a_2(1;0;2;-1;1), a_3(1;1;1;0;3).$
- 2. Доказать, что векторы $e_1(4; -5; -2)$, $e_2(2; -3; -1)$, $e_3(-1; 1; 0)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-13; 19; 8)$, в новом базисе $\boldsymbol{c}(-2; 0; 3)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;1;1;1),\ \boldsymbol{a}_2(1;4;3;2),\ \boldsymbol{a}_3(2;1;1;1),\ \boldsymbol{a}_4(-4;-1;-1;-1).$ Найти координаты вектора $\boldsymbol{b}(-2;-10;-8;-6)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal V$ задан соотношением $A(\boldsymbol x) = (\boldsymbol x, \boldsymbol a)\boldsymbol a$, где $\boldsymbol a(2; -2; 3)$. Доказать линейность оператора A и найти его матрицу в базисе $\{\boldsymbol i, \boldsymbol j, \boldsymbol k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -6 & 3 & 3 \\ -6 & 3 & 6 \\ 6 & -6 & -9 \end{pmatrix}, \qquad B = \begin{pmatrix} -5 & 12 & -18 \\ 0 & -5 & 9 \\ 3 & -10 & 16 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x^2 + 6xy + 2xz 10y^2 11z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2x_1^2 2x_1x_2 + 4x_1x_3 + 2x_2^2 + 4x_2x_3 x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $x^2 6xy + y^2 = 10$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 31.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(2; -4; -3; -3; 1), \mathbf{a}_2(-1; -1; 3; 0; 1), \mathbf{a}_3(1; -1; -2; -1; 0).$
- 2. Доказать, что векторы $e_1(0;4;-7)$, $e_2(-3;3;-8)$, $e_3(1;-4;8)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-19;4;-24)$, в новом базисе $\boldsymbol{c}(5;-2;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;1;1;-1),\ \boldsymbol{a}_2(4;3;2;-1),\ \boldsymbol{a}_3(1;2;2;-2),\ \boldsymbol{a}_4(3;2;2;-2).$ Найти координаты вектора $\boldsymbol{b}(-6;-7;-9;11)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal V$ задан соотношением $A(\boldsymbol x) = [\boldsymbol a \times \boldsymbol x]$, где $\boldsymbol a(-4;4;6)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i,j,k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 5 & -17 & 2 \\ 3 & -9 & 1 \\ -2 & 6 & -2 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 & 2 & -4 \\ -10 & 0 & 4 \\ 5 & 2 & -12 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2-4xy+4xz-5y^2-2yz-9z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $5x^2 8xy 12xz + 5y^2 + 12yz + 10z^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $9x^2 + 2xy + 9y^2 = 8$.

Вариант 32.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(4; -9; 3; -2; 1), a_2(1; -4; 1; -1; 1), a_3(-1; -10; 1; -3; 5).$
- 2. Доказать, что векторы $e_1(-1;-1;-3)$, $e_2(1;2;0)$, $e_3(1;1;2)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-1;-5;5)$, в новом базисе $\boldsymbol{c}(-1;-6;-1)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;-2;1;-1), \, \boldsymbol{a}_2(-1;3;-1;2), \, \boldsymbol{a}_3(2;-1;3;1), \, \boldsymbol{a}_4(-1;-1;-1;-2).$ Найти координаты вектора $\boldsymbol{b}(-1;3;-3;2)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t)) = 2\frac{\mathrm{d}^2}{\mathrm{d}t^2}f(t) + \frac{\mathrm{d}}{\mathrm{d}t}f(t) 6f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{1,t,t^2\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 7 & 6 & -4 \\ -10 & -10 & 8 \\ -18 & -10 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 16 & -4 \\ -2 & -12 & 2 \\ -5 & -20 & 1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 4xy 4xz 3y^2 + 2yz 4z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $x_1^2 + 6x_1x_3 + x_2^2 4x_2x_3 11x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 xy + 2y^2 = 3$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 33.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(3;2;-1;2;6), \, \boldsymbol{a}_2(-5;6;-1;-10;10), \, \boldsymbol{a}_3(-2;1;0;-3;1).$
- 2. Доказать, что векторы $e_1(1;5;-3)$, $e_2(1;2;-1)$, $e_3(2;2;-1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-11;9;-7)$, в новом базисе $\boldsymbol{c}(-3;-4;-5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;-3;-1;5),\ \boldsymbol{a}_2(1;2;1;-4),\ \boldsymbol{a}_3(-2;-3;-1;5),\ \boldsymbol{a}_4(-1;-1;-1;3).$ Найти координаты вектора $\boldsymbol{b}(3;1;0;-1)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $<\boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве $\mathcal{P}_2[t]$ многочленов степени не выше второй задан соотношением $A(f(t)) = -6 \frac{\mathrm{d}^2}{\mathrm{d}t^2} f(t) 6 \frac{\mathrm{d}}{\mathrm{d}t} f(t) 6 f(t)$. Доказать линейность оператора A и найти его матрицу в базисе $\{1,t,t^2\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -5 & 5 & -5 \\ -2 & 2 & -2 \\ 2 & 10 & 8 \end{pmatrix}, \qquad B = \begin{pmatrix} -12 & -4 & 8 \\ 13 & -8 & -2 \\ -6 & -8 & 7 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2+4x_1x_2+4x_1x_3-5x_2^2-2x_2x_3-14x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $6x_1x_3 + 4x_2x_3 12x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $6x^2 4xy + 3y^2 = 3$.

Вариант 34.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(-3; -2; -6; 0; 1), \mathbf{a}_2(2; 3; -1; 1; -1), \mathbf{a}_3(-7; -8; -4; -2; 3).$
- 2. Доказать, что векторы $e_1(-3;5;-3)$, $e_2(1;-2;1)$, $e_3(3;-4;4)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(11;-18;9)$, в новом базисе $\boldsymbol{c}(2;-6;-5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-2;3;1;4), \ \boldsymbol{a}_2(-1;1;1;1), \ \boldsymbol{a}_3(-2;2;1;2), \ \boldsymbol{a}_4(-3;1;2;-1).$ Найти координаты вектора $\boldsymbol{b}(5;1;-4;7)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = \mathbf{a} \cdot \prod_{\mathbf{b}} \mathbf{x}$, где $\mathbf{a}(-3; -2; 4)$, $\mathbf{b}(-6; 1; -4)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 2 & -2 & 11 \\ -13 & 12 & 3 \\ -7 & 6 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & 6 & 6 \\ 3 & 1 & 5 \\ 0 & -6 & -6 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2 + 8xy + 4xz 11y^2 + 4yz 18z^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-2x_1^2 2x_1x_3 2x_2^2 4x_2x_3 6x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $2x^2 + 2xy + 2y^2 = 1$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 35.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(1;2;-1;3;-1), \, \boldsymbol{a}_2(2;8;-1;5;0), \, \boldsymbol{a}_3(-2;-9;2;-6;1).$
- 2. Доказать, что векторы $e_1(3;3;-4)$, $e_2(2;1;-2)$, $e_3(7;3;-7)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-12;-14;17)$, в новом базисе $\boldsymbol{c}(0;-5;5)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\mathbf{a}_1(-1;2;1;-2), \ \mathbf{a}_2(-1;1;1;-2), \ \mathbf{a}_3(2;-3;-1;3), \ \mathbf{a}_4(-1;2;2;-3).$ Найти координаты вектора $\mathbf{b}(4;-7;-8;12)$ в построенном ортонормированном базисе, если \mathbf{b} принадлежит $< \mathbf{a}_1,\ldots,\mathbf{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (x_1; x_2; x_3)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (2x_1 2x_2 + 4x_3; 7x_1 2x_2 + 4x_3; 9x_1 + 4x_2 + 8x_3)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 5 & 4 & 0 \\ -6 & 9 & -9 \\ -6 & 2 & -4 \end{pmatrix}, \qquad B = \begin{pmatrix} -3 & 2 & 1 \\ 6 & 1 & 7 \\ 5 & -3 & -1 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x_1^2 + 8x_1x_2 + 8x_1x_3 11x_2^2 10x_2x_3 13x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-7x_1^2+12x_1x_2-12x_1x_3-2x_2^2+8x_2x_3-2x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $9x^2 + 4xy + 6y^2 = 20$.

Вариант 36.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\boldsymbol{a}_1, \boldsymbol{a}_2, \boldsymbol{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\boldsymbol{a}_1(0;1;3;-10;2), \boldsymbol{a}_2(-5;2;1;-4;10), \boldsymbol{a}_3(1;0;1;-3;-1).$
- 2. Доказать, что векторы $e_1(1;1;-1)$, $e_2(0;1;-1)$, $e_3(4;2;-1)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(-6;-4;2)$, в новом базисе $\boldsymbol{c}(0;6;0)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(-1;2;-4;-3), \ \boldsymbol{a}_2(-1;1;-1;-1), \ \boldsymbol{a}_3(1;-1;2;2), \ \boldsymbol{a}_4(1;2;-2;1).$ Найти координаты вектора $\boldsymbol{b}(0;6;-3;3)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = (\mathbf{x}, \mathbf{a})\mathbf{a}$, где $\mathbf{a}(-1; -6; -5)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 9 & 2 & 2 \\ -12 & -1 & -4 \\ -12 & -4 & -1 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & -3 & 15 \\ -6 & 1 & -17 \\ -4 & 2 & -13 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-4x_1^2+16x_1x_2-8x_1x_3-19x_2^2+10x_2x_3-11x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-3x_1^2+2x_1x_2-8x_1x_3-3x_2^2+8x_2x_3-18x_3^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $7x^2 8xy 8y^2 = 10$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 37.

- 1^* . Найти нетривиальную линейную комбинацию векторов $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $\mathbf{a}_1(-3; -6; -1; -2; -7), \mathbf{a}_2(0; 1; 1; -1; 1), \mathbf{a}_3(4; 0; 3; -4; 2).$
- 2. Доказать, что векторы $e_1(0;-1;-1)$, $e_2(2;5;6)$, $e_3(1;3;4)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(6;7;7)$, в новом базисе $\boldsymbol{c}(1;-1;4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(1;-2;1;3), \ \boldsymbol{a}_2(1;-1;1;2), \ \boldsymbol{a}_3(-1;6;2;-1), \ \boldsymbol{a}_4(-2;2;-1;-2).$ Найти координаты вектора $\boldsymbol{b}(2;-9;-6;-5)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(-1;5;6)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i,j,k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} -11 & -12 & -18 \\ 5 & 17 & 10 \\ 1 & -11 & 0 \end{pmatrix}, \qquad B = \begin{pmatrix} -11 & 18 & 6 \\ -2 & 6 & -3 \\ -2 & 6 & -3 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-3x_1^2+12x_1x_2+12x_1x_3-14x_2^2-20x_2x_3-16x_3^2$ к диагональному виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $3x^2-4xy-4xz+2yz$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $x^2 + 8xy + y^2 = 10$.

Вариант 38.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(3;6;0;-1;-4), a_2(4;1;1;0;-1), a_3(5;-4;2;1;2).$
- 2. Доказать, что векторы $e_1(2;2;-1)$, $e_2(-4;-3;2)$, $e_3(-5;-6;3)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(13;5;-5)$, в новом базисе $\boldsymbol{c}(-1;1;-2)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\boldsymbol{a}_1(2;-1;1;-1), \ \boldsymbol{a}_2(3;-2;2;-1), \ \boldsymbol{a}_3(-2;2;-1;1), \ \boldsymbol{a}_4(3;-3;2;-1).$ Найти координаты вектора $\boldsymbol{b}(2;3;1;-1)$ в построенном ортонормированном базисе, если \boldsymbol{b} принадлежит $< \boldsymbol{a}_1,\ldots,\boldsymbol{a}_4>$.
- 4. В базисе $\{e_1, e_2, e_3\}$ вектор \boldsymbol{x} имеет координаты $\boldsymbol{x} = (a; b; c)$. Оператор A переводит вектор \boldsymbol{x} в вектор $A(\boldsymbol{x}) = (-6a 9b c; -8a + 2b 8c; 6a + b 9c)$. Доказать линейность оператора A и найти его матрицу в этом базисе.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 3 & 4 & -13 \\ 7 & 3 & -17 \\ 4 & 3 & -12 \end{pmatrix}, \qquad B = \begin{pmatrix} -7 & -6 & 4 \\ -2 & -9 & 3 \\ -6 & -12 & 4 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-x_1^2+6x_1x_2+6x_1x_3-11x_2^2-6x_2x_3-28x_3^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $-x^2 8xy 4xz y^2 4yz + 2z^2$ к каноническому виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $5x^2 4xy + 2y^2 = 6$.

Индивидуальное ДЗ по курсу «Линейная алгебра» 2022. Группа МТ5-21.

Вариант 39.

- 1^* . Найти нетривиальную линейную комбинацию векторов a_1, a_2, a_3 , равную ноль-вектору (если она существует). Сделать вывод относительно их линейной зависимости или независимости. $a_1(-5;7;2;-3;3), a_2(-1;1;0;1;1), a_3(-2;3;1;-2;1).$
- 2. Доказать, что векторы $e_1(4;4;-3)$, $e_2(1;-1;0)$, $e_3(-6;-5;4)$ образуют базис в \mathbb{R}^3 . Найти координаты вектора \boldsymbol{b} в этом базисе и вектора \boldsymbol{c} в исходном, если в исходном базисе $\boldsymbol{b}(23;7;-11)$, в новом базисе $\boldsymbol{c}(-2;-1;4)$.
- 3. Построить ортонормированный базис в линейной оболочке системы векторов $\mathbf{a}_1(2;-1;1;3),\ \mathbf{a}_2(2;1;3;1),\ \mathbf{a}_3(3;-1;1;5),\ \mathbf{a}_4(-2;2;1;-5).$ Найти координаты вектора $\mathbf{b}(-3;5;5;-11)$ в построенном ортонормированном базисе, если \mathbf{b} принадлежит $<\mathbf{a}_1,\ldots,\mathbf{a}_4>$.
- 4. Оператор A в пространстве \mathcal{V} задан соотношением $A(\mathbf{x}) = [\mathbf{x} \times \mathbf{a}]$, где $\mathbf{a}(-4; -3; -5)$. Доказать линейность оператора A и найти его матрицу в базисе $\{i, j, k\}$.
- 5^* . Найти собственные значения и собственные векторы операторов A и B. Если возможно, привести матрицу оператора (A или B или обоих) к диагональному виду и записать матрицу перехода.

$$A = \begin{pmatrix} 2 & -12 & 0 \\ -8 & -10 & 16 \\ 0 & -8 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 0 & -1 & -2 \\ -18 & -16 & -14 \\ 9 & 8 & 7 \end{pmatrix}.$$

- 6. Привести квадратичную форму $-2x^2-4xy+8xz-5y^2+2yz-13z^2$ к каноническому виду методом Лагранжа и указать новый базис. Записать матрицу перехода к новому базису.
- 7. Привести квадратичную форму $2x_1^2 8x_1x_3 + 2x_2^2 + 4x_2x_3 + 3x_3^2$ к диагональному виду ортогональным преобразованием. Записать матрицу преобразования.
- 8. Построить кривую $3x^2 2xy + 3y^2 = 4$.