Engineering tunable anharmonic potentials with light-atom interaction

<u>C. McGarry</u>^{1,2}, T. Chalermpusitarak^{1,2}, K. Schwennicke³, F. Scuccimarra^{1,2}, C. Valahu^{1,2}, P. Nagpal^{1,2}, V. Matsos^{1,2}, M. Millican^{1,2}, I. Kassal^{3,2,4}, T. R. Tan^{1,2,4}

- 1. School of Physics, University of Sydney, NSW 2006, Australia
- 2. ARC Centre of Excellence for Engineered Quantum Systems, University of Sydney, Australia
- 3. School of Chemistry, University of Sydney, NSW 2006, Australia
- 4. Sydney Nano Institute, University of Sydney, NSW 2006, Australia

XX

We have developed and implemented a scheme for realising anharmonic motion in a trapped ion system. We use this to investigate quantum tunnelling in a double well.

Theory: Quantum Signal Processing for generation of anharmonic potentials

XX

Repeated application of $G_c(\theta, \kappa)$ allows for the realisation of any potential that can be realised by Fourier decomposition. Realising the sine equivalent allows the generation of any arbitrary potential.

Experiment: simulation of cosine potential

Wigner function during evolution (simulation)

Simulated potential and wavefunction

Application: Chemical dynamics

Target ro-vibrational Hamiltonian and non-linear chemical dynamics simulations. See poster 30 (Frank Scuccimarra)

