가 .

시스템	정의	EF ₃ [kg N ₂ O-N (kg 질소배설)-1]	EF₃의 불확도 범위	출처
집중 야적식 퇴비화	혼합과 공기 주입을 위한 규칙적인 뒤집음 이 있는 건초 줄의 퇴비화	0.1	2배	IPCC 전문가 그룹의 견해. 배출은 전환 빈도의 함수이므로 건초 줄의 강한 퇴비화 작용보다 클 것으로 기대됨.
T 되미와	혼합과 공기 주입을 위한 때때로의 뒤집음 이 있는 창에서의 퇴비화	0.01	2배	Hao et al.(2001)
깔짚을 쓰는 가금류 분뇨	깊은 바닥 깔개 시스템과 유사함. 전형적으로 모든 종류의 닭고기 생산용 유형에서 사용한다.	0.001	2배	질화/탈질화에서의 질소 유효성이 제한된 시스템으로부터의 암모니아 의 높은 손실량에 기초한 IPCC 전 문가 그룹 견해
깔짚을 쓰지 않는 가금류 분뇨	분뇨가 축적됨에 따라 분뇨를 말리기 위해 설계되고 운영됨.	0.001	2배	질화/탈질화에서의 질소 유효성이 제한된 시스템으로부터의 암모니아 의 높은 손실량에 기초한 IPCC 전 문가 그룹의 견해

Table 18. 분뇨 처리로부터 직접적인 N_2O 배출계수 기본(계속)

가

시스 템	정의		EF ₃ [kg N ₂ O-N(kg 질소배설) ⁻¹]	EF₃의 불확도 범위	출처
호 기 성 처	액체 상태로 수집된 분 뇨를 강제적이거나 자 연적인 폭기와 함께 생 물학적 산화를 시킨다. 자연적인 폭기는 호기 성, 연못과 습지에 제한 되고 우선적으로 광합 성에 의존하므로 이러 한 시스템은 전형적으 로 태양광이 없는 곳에 서는 기간 중에 무산소 성 상태가 된다.	자연적 폭기 체계	0.01	2배	IPCC 전문가 그룹의 견해. 질화-탈질화는 N_2O 배출은 무시할만하고, 한곳에 국한된 공업 폐수의 생물학적 처리 안에서 질소제거를 위해 널리 사용된다. 제한된 산화는 강제된 폭기 체계와 비교하여 배출을 증가시킬 수 있다.
리		강제된 폭기 체계	0.005	2배	IPCC 전문가 그룹의 견해. 질화-탈질화는 N_2O 배출은 무시할만하고, 한곳에 국한된 공업 폐수의 생물학적 처리 안에서 질소 제거를 위해 널리 사용된다.