ACM 模板

rogeryoungh

2021年4月18日

目录

第一章	上号	1
1.1	头文件	1
1.2	预编译	1
1.3	进制转换	2
1.4	常见技巧	2
1.5	二分查找	2
1.6	矩阵乘法	3
1.7	快速幂	4
1.8	快速排序	5
1.9	第 k 大数	5
第二章	数学	7
2.1	GCD 和 LCM	7
2.2	EXGCD	7
2.3	乘法逆元	7
2.4	筛法	8
2.5	素性测试	9
	2.5.1 试除法	9
	2.5.2 Miller Rabbin	9
2.6	Lucas 定理	10
2.7	约瑟夫 Josephus 问题	10
2.8	中国剩余定理	10
2.9	博弈	11
	2.9.1 Nim 博弈	11
	2.9.2 Wythoff 博奕	11
第三章	图论	12
3.1	链式前项星	12
3.2	最短路	12
	3.2.1 Dijkstra	12
	3.2.2 Bellman-Ford	13
	3.2.3 Floyd	13
3 3	最近公共祖先 LCA	14

	动态规划	15
4.1	背包	15
	4.1.1 01 背包	15
	4.1.2 完全背包	15
	4.1.3 多重背包	15
4.2	最长公共上升序列	
4.3	数字计数	16
第五章	数据结构	18
5.1	链表	18
5.2	树状数组	
5.3	ST 表	20
第六章	字符串	21

第一章 上号

1.1 头文件

</></> </> 代码 1.1: /上号/头文件.hpp

```
1 #include <bits/stdc++.h>
2 using namespace std;
3 typedef long long ll;
4 typedef long double ld;
5 #define _fora(i,a,n) for(ll i=(a);i<=(n);i++)</pre>
6 #define _forz(i,a,n) for(ll i=(a);i>=(n);i--)
7 #define _forb(i,a) for(ll i=(a);i>0;i-=i&(-i))
8 #define _fore(i,a) for(int i=head[(a)];i;i=edge[i].nxt)
9 #define _in(i,min,max) ( ((i)-(min)) | ((max)-(i)) )
10 #define _dbg(...) printf(__VA_ARGS__)
#define LN putchar('\n')
12
13 inline ll rr() {
       11 s = 0, w = 1; char c = getchar();
14
       while(c<'0'||c>'9') { if(c=='-')w=-1; c=getchar(); }
15
       while(c>='0'&&c<='9') { s=s*10+c-'0'; c=getchar(); }</pre>
       return s*w;
17
18 }
```

1.2 预编译

头文件引入方式改为如下,可以把头文件放入 lab.hpp ,然后使用 clang++ lab.hpp 预编译。 实际编译使用 clang++ lab.cpp -D RYLOCAL 添加条件编译参数。

```
#ifdef RYLOCAL
#include "lab.hpp"
#locute * #include * #inclu
```

1.3 进制转换


```
void pr(ll n, ll x) {
    if(n >= x) pr(n / x, x);
    putchar(n%x + (x>10 ? 'A'-10 : '0'));

void pr(ll n) {
    if(n >= 10) pr(n / 10);
    putchar(n % 10 + '0');
}
```

1.4 常见技巧

```
向上取整 p/q 为 (p-1)/q+1。
预计算 \log_n,只需 _fora(i, n, MN) logn[i] = logn[i/n] + 1;。
字典序 strcmp(x,y) < 0。
```

1.5 二分查找

STL 二分 在 [l,r) 查找 $\geq value$ 中最前的一个,找不到则返回 r 。 支持 cmp 函数。

```
1 ForwardIt lower_bound(ForwardIt l, ForwardIt r, const T& value);
```

在 [l,r) 查找 > value 中最前的一个,找不到则返回 r 。 支持 cmp 函数。

1 ForwardIt upper_bound(ForwardIt 1, ForwardIt r, const T& value);

手写二分,在单增(单减)数组中查找 $\geqslant x (\leqslant x)$ 的数中最前的一个。


```
1 while (1 < r) {
2    int mid = (1 + r) >> 1;
3    if (aa[mid] >= x) // <=
4        r = mid;
5    else
6        l = mid + 1;
7  }
8  return l;</pre>
```

在单增(单减)数组中查找 $\leq x (\geq x)$ 的数中最后的一个。

</></> </> 代码 1.4: /上号/二分/02.cpp

```
while (1 < r) {
  int mid = (1 + r + 1) >> 1;
```

对于上凸(∧形)函数,可以使用三分法来查找最大值。对于下凸(∨形)变号即可

</></> </> 代码 1.5: /上号/三分法.cpp

```
while(r - 1 > eps) {
    ld mid = (r + 1) / 2;
    if(f(mid + eps) > f(mid - eps))

1 = mid;
else
    r = mid;
}
```

1.6 矩阵乘法

构建一个 p 行 q 列的矩阵。

</></> </> 代码 1.6: /上号/矩阵乘法.cpp

```
1 struct Mtx {
       11 m[MN][MN], p, q;
       Mtx(11 p, 11 q) : p(p), q(q) {
            memset(m, 0, sizeof(m));
5
       Mtx operator * (Mtx& mtx) {
6
            Mtx c(p, mtx.q);
            _fora(i, 1, p) { _fora(k, 1, q) {
                11 t = m[i][k];
                _fora(j, 1, mtx.q) {
10
                    c.m[i][j] += t * mtx.m[k][j];
11
                    c.m[i][j] %= MOD;
12
13
                }
            } }
14
            return c;
15
       }
16
17 };
```

矩阵的输入、输出。

```
void read(Mtx% mtx) {
```

1.7 快速幂


```
1 ll qpow(ll a, ll b, ll p) {
2     ll rst = 1 % p;
3     for(; b > 0; b >>= 1, a = a * a % p)
4         if(b & 1) rst = a * rst % p;
5     return rst;
6 }
```

</></> </> //> 代码 1.8: /上号/矩阵快速幂.cpp

```
struct QMtx {
        ll m[5][5], p;
2
3
        QMtx(11 p) : p(p) {
            memset(m, 0, sizeof(m));
        }
 5
        QMtx operator * (QMtx& mtx) {
6
            QMtx c(p);
7
            _fora(i, 1, p) { _fora(k, 1, p) {
8
                11 t = m[i][k];
9
                _fora(j,1,p) {
10
                    c.m[i][j] += t * mtx.m[k][j];
11
                    c.m[i][j] %= MOD;
12
                }
13
            } }
14
            return c;
15
        }
16
17 };
18 QMtx base(11 p) {
```

```
QMtx rst(p);
19
        _fora(i, 1, p)
2.0
            rst.m[i][i] = 1;
21
        return rst;
22
23
   }
   QMtx operator ^ (QMtx m, 11 n) {
        QMtx rst = base(3);
25
        for(; n > 0; n >>= 1, m = m * m)
26
            if(n & 1) rst = m * rst;
27
        return rst;
28
29 }
```

1.8 快速排序


```
void quick_sort(ll* nn, ll l, ll r) {
    if(l >= r) return;
    ll i = l, j = r;
    ll x = nn[(l+r)/2];
    while(i <= j) {
        while(nn[j] > x) j--;
        while(nn[i] < x) i++;
        if(i <= j) swap(nn[i++], nn[j--]);
    }
    quick_sort(l, j); quick_sort(i, r);
}</pre>
```

1.9 第 k 大数

</> 代码 1.10: /上号/第 k 大数.cpp

```
1 ll q_sort(ll* nn, ll l, ll r,) {
2     ll i=l, j=r, x=nn[(l+r)/2];
3     while(i <= j) {
4         while(nn[j] > x) j--;
5         while(nn[i] < x) i++;
6         if(i <= j) swap(nn[i++], nn[j--]);
7     } //1 <= j <= i <= r
8     if(k <= j) return q_sort(l, j);
9     else if(k >= i) return q_sort(i, r);
10     else return nn[k+1];
```

第二章 数学

2.1 GCD 和 LCM

2.2 EXGCD

对于方程

```
ax + by = \gcd(a, b)
```

可通过 exgcd 求出一个整数解。


```
void exgcd(ll a, ll b, ll& x, ll& y) {
    if(!b) { y=0; x=1; return; /* gcd = a */ }
    exgcd(b, a%b, y, x); y -= a/b*x;
}
```

方程 ax + by = c 有解的充要条件是 $gcd(a, b) \mid c$ 。


```
1 bool liEu(ll a, ll b, ll c, ll &x, ll &y) {
2    exgcd(a, b, x, y);
3    if(c % gcd != 0) return false;
4    ll k = c / gcd;
5    x *= k, y *= k;
6    return true;
7 }
```

2.3 乘法逆元

方程 $ax \equiv 1 \pmod{p}$ 有解的充要条件是 gcd(a, p) = 1。

容易想到它与方程 ax + py = c 等价,于是可以利用 exgcd 求最小正解。


```
1 ll inv(ll a, ll p) {
2     ll x, y;
3     exgcd(a, p, x, y);
4     return (x % p + p) % p;
5 }
```

仅当 p 为质数时,由 Fermat 小定理知 $x \equiv a^{p-2} \pmod{p}$ 。

</></> </> // /

```
1 ll inv(ll a, ll p) {
2    return qpow(a, p - 2, p);
3 }
```

2.4 筛法

Eratosthenes 筛 复杂度 $O(n \log \log n)$ 。


```
bool notp[100000001];
int prime[20000001], cnt;

void pre_eratosthenes(int n) {
    _fora(i,2,n) { if(!notp[i]) {
        prime[++cnt] = i;
        int tn = n/i;
        _fora(j, i, tn) notp[i*j] = true;
}

}
```

Eular 筛 复杂度 O(n),每个合数只会被筛一次。

```
bool notp[100000001];
int prime[20000001], cnt;
void pre_eular(int n){
    _fora(i, 2, n) {
        if(!notp[i]) prime[++cnt] = i;
        int t = n / i;
        _fora(j,1,cnt) {
        if(prime[j] > t) break;
        notp[i * prime[j]] = true;
```

2.5 素性测试

2.5.1 试除法


```
1 bool isprime(11 n) {
2    if(n < 3) return n == 2;
3    if(n & 1 == 0) return false;
4    ll sn = (11) sqrt(n*1.0);
5    for(11 i = 3; i <= sn; i += 2)
6        if(n % i == 0) return false;
7    return true;
8 }</pre>
```

2.5.2 Miller Rabbin

如果 $n \leq 2^{32}$,那么 ppp 取 2,7,61; 如果 ppp 选择 2,3,7,61,24251,那么 10^{16} 内只有唯一的例外。如果莫名 WA 了,就多取点素数吧。

```
1 bool Miller_Rabbin(ll n) {
       if(n < 3) return n == 2;</pre>
       if(n & 1 == 0) return false;
       int a = n-1, b=0;
       while (1 - a \& 1) a/=2, ++b;
       int ppp[10] = \{2,7,61\};
6
       _fora(i, 0, 2) {
7
            11 x = ppp[i], j;
8
            if(n == x) return true;
9
            11 v = qpow(x,a,n);
            if(v == 1 || v == n-1) continue;
11
            for(j = 0; j < b; ++j) {
12
                v = v*v\%n; if(v == n-1) break;
13
14
            if(j >= b) return false;
15
16
       } return true;
17 }
```

2.6 Lucas 定理

当 n, m 很大而 p 较小的时候,有

$$\binom{n}{m} \bmod p = \binom{\lfloor n/p \rfloor}{\lfloor m/p \rfloor} \cdot \binom{n \bmod p}{m \bmod p} \bmod p$$


```
1 ll Lucas(ll n, ll m, int p){
2    return m ? Lucas(n/p, m/p, p) * comb(n%p, m%p, p) % p : 1;
3 }
```

2.7 约瑟夫 Josephus 问题

对 n 个人进行标号 $0, \dots, n-1$,顺时针站一圈。从 0 号开始,每一次从当前的人继续顺时针数 k 个,然后让这个人出局,如此反复。

设最后剩下的人的编号为 J(n,k), 有递推式

$$J(n+1,k) = (J(n,k) + k) \bmod (n+1)$$

踢出第一个人 k 后, 剩下就转化为 J(n,k) 的情景, 还原编号只需增加相对位移 k。


```
1 int josephus(int n, int k) {
2    int rst = 0;
3    _fora(i, 1, n)
4        rst = (rst + k) % i;
5    return rst;
6 }
```

2.8 中国剩余定理

若 n_i 中任意两个互质,求方程组的解

$$\begin{cases} x \equiv a_1 & \pmod{n_1} \\ x \equiv a_2 & \pmod{n_2} \\ & \vdots \\ x \equiv a_k & \pmod{n_k} \end{cases}$$

```
1 ll china(ll* aa, ll* nn) {
2     ll prod = 1;
3     ll rst = 0;
```

```
fora(i, 1, n)
prod *= nn[i];
fora(i, 1, n) {
    ll m = prod / nn[i];
    rst += aa[i] * m * inv(m, nn[i]);
    rst %= prod;
}
return rst;
}
```

2.9 博弈

下面都是石子游戏,轮流取走物品。方便起见,称场上 n 堆石子 a_1, \dots, a_n 为局势。先手必输的局势称为奇异局势

2.9.1 Nim 博弈

有 n 堆分别有 a_i 个物品,两人轮流取走任意一堆的任意个物品,不能不取,最后取光者获胜。奇异局势判定

$$a_1 \oplus \cdots \oplus a_n = 0$$

2.9.2 Wythoff 博奕

两堆分别有 a, b 各物品,两个人轮流从某一堆或同时从两堆中取同样多的物品,不可不取,最后取光者获胜。


```
1 const ld phi = 1.6180339887498948482045868343656;
2 int wythoff(ll a, ll b) {
3    if(a > b)
4        swap(a, b);
5    ll t = (ll) (b - a) * phi;
6    if(t == a)
7        return false;
8    return true;
9 } // 判先手输赢
```

特点: 所有自然数都出现在奇异局势中, 不重不漏。

第三章 图论

3.1 链式前项星


```
const int MN = 10005; int head[MN];
struct Edge { int too,nxt,len; } edge[MN*2];
void add(int frm, int too, int len) {
   static int cnt = 0;
   edge[++cnt] = { too, head[frm], len };
   head[frm] = cnt;
}

void dfs(int x,int fa) {
   _fore(i,x) if(edge[i].too != fa)
   dfs(edge[i].too,x);
}
```

3.2 最短路

3.2.1 Dijkstra

权值必须是非负,复杂度 $O(E \log E)$ 。

```
int dis[MN];
struct Dis {
   int dis, pos;
   bool operator < (const Dis& x) const
   { return x.dis<dis; }
};

void dijkstra(int ss) {
   memset(dis, 0x3f, sizeof(dis));
   dis[ss] = 0;
   priority_queue<Dis> pq; pq.push({0,ss});
   while(!pq.empty()) {
      Dis td = pq.top(); pq.pop();
}
```

```
int d = td.dis, x = td.pos;
13
            if(d != dis[x]) continue;
14
            _fore(i, x) {
15
                int y = edge[i].too, z = dis[x] + edge[i].len;
16
17
                if(dis[y] > z)
                    dis[y] = z, pq.push({dis[y],y});
18
            }
19
        }
20
21 }
```

3.2.2 Bellman-Ford

复杂度 O(VE)。

3.2.3 Floyd

起始条件 f(i,j) = edge(i,j), f(i,i) = 0。

```
void floyd() {
    _fora(k, 1, n) { _fora(i, 1, n) {
        if(i == k || f[i][k] == 0x3f3f3f3f))

        continue;
        _fora(j, 1, n)
        f[i][j] = min(f[i][j], f[i][k]+f[k][j]);
} }
}
```

3.3 最近公共祖先 LCA

如果数据小,可以不用求 log₂,直接莽 20。

```
int pa[MN][30], lgb[MN], dep[MN];
void lca_dfs(int u, int fa) {
       _fora(i, 1, n) lgb[i] = lgb[i>>1] + 1;
       lgb[1] = 0; pa[u][0] = fa;
       dep[u] = dep[fa] + 1;
5
       _fora(i, 1, lgb[dep[u]])
6
           pa[u][i] = pa[pa[u][i-1]][i-1];
7
       _fore(i, u) if(edge[i].too != fa)
           lca_dfs(edge[i].too, u);
9
10 }
   int lca(int x, int y) {
11
       if(dep[x] < dep[y]) swap(x,y);
12
       while(dep[x] > dep[y])
13
           x = pa[x][lgb[dep[x]-dep[y]]];
       if(x == y) return x;
       _forz(k, lgb[dep[x]]-1, 0)
           if(pa[x][k] != pa[y][k])
17
               x = pa[x][k], y = pa[y][k];
18
       return pa[x][0];
19
20 }
```

第四章 动态规划

4.1 背包

4.1.1 01 背包

给定体积为 v_i , 价值 w_i 的 N 个物品, 背包容积为 M, 每个物品只能取 1 个, 求最大价值。

</> 代码 4.1: /动态规划/01 背包.cpp

```
1 _fora(i, 1, n) _forz(j, m, v[i])
2    dp[j] = max(dp[j], dp[j-v[i]]+w[i]);
3 _fora(j, 1, m) ans = max(ans, dp[j]);
```

4.1.2 完全背包

给定体积为 v_i , 价值 w_i 的 n 个物品, 背包容积为 v, 每个物品任意取, 求最大价值。


```
1 _fora(i, 1, n) _fora(j, v[i], m)
2    dp[j] = max(dp[j], dp[j-v[i]]+w[i]);
3 _fora(j, 1, m) ans = max(ans, dp[j]);
```

4.1.3 多重背包

给定体积为 v_i ,价值 w_i 的 N 个物品,背包容积为 M,每个物品有 c_i 个,求最大价值。 如各种背包组合(如洛谷 P1833 樱花),通常把完全背包转为 99999 个(适当调节)多重背包,再按 01 背包来。

```
int tm=1,vv[],ww[];

int tc = c[i];

for(int b=1;b<p;b<<=1,tc-=b,++tm)

vv[tm] = v[i] * b, ww[tm] = w[i] * b;

vv[tm] = v[i] * tc, ww[tm] = w[i] * tc;

++tm;

}</pre>
```

```
9 _fora(i, 1, n) _forz(j, m, v[i])
10     dp[j] = max(dp[j], dp[j-v[i]]+w[i]);
11 _fora(j, 1, m) ans = max(ans, dp[j]);
```

4.2 最长公共上升序列

给出 $1,2,\ldots,n$ 的两个排列 a 和 b , 求它们的最长公共子序列。

</> 代码 4.4: /动态规划/最长公共上升序列.cpp

```
int f[MN], ma[MN], b[MN], n, len=0;
2 memset(f,0x3f,sizeof(f)); f[0]=0;
3 _fora(i, 1, n) { ma[rr()] = i; } _fora(i, 1, n) { b[i] = rr(); }
4 _fora(i, 1, n) {
       int 1 = 0,r = len;
       if(ma[b[i]] > f[len])
6
           f[++len] = ma[b[i]];
       else { while(1 < r) {</pre>
           int mid = (1 + r) / 2;
           if(f[mid] > ma[b[i]]) r = mid;
10
           else 1 = mid+1;
11
       } }
12
       f[1] = min(ma[b[i]], f[1]);
13
14 }
```

4.3 数字计数

试计算在区间 1 到 n 的所有整数中,数码 $x(0 \le x \le 9)$ 共出现了多少次?

</> 代码 4.5: /动态规划/数字计数/01.cpp

```
int addup(int n, int x) {
        int ans = 0, m = 1;
        while(m <= n){</pre>
            int a = n/(m*10), b = n/m%10, c = n%m;
            ans += a * m;
5
            if(x > 0){
6
                if(b > x) ans += m;
                else if(b == x) ans += c + 1;
8
            } else if(b == 0) {
9
                ans += c + 1 - m;
10
            }
11
            m *= 10;
12
13
        }
```

```
14     return ans;
15 }
```

试计算在区间 1 到 n 的所有整数中,出现数码 $x(0 \le x \le 9)$ 的数字有多少?

```
1 // 预计算
2 \quad 11 \quad dp[20], m = 1;
3 _fora(i,1,9) {
       dp[i] = dp[i-1] * 9 + m;
       m *= 10;
6 }
7 11 addup(11 n, 11 x) {
       11 m = 1, i = 0;
       while(m <= n)</pre>
9
            i++, m *= 10;
10
        11 ans = 0;
11
        while(m) {
12
            11 t = n / m;
13
           n = n \% m;
14
           ans += t * dp[i];
15
           if(t == x) {
16
                ans += n + 1;
17
                break;
            else if(t > x) {
19
                ans += - dp[i] + m;
20
            }
21
            i--; m /= 10;
22
        return ans;
24
25 }
```

第五章 数据结构

5.1 链表

</> 代码 5.1: /数据结构/链表.cpp

```
struct Node { int val; Node *prev, *next; };
   struct List {
       Node *head, *tail; int len;
       List() {
4
           head = new Node(); tail = new Node();
 5
           head->next = tail; tail->prev - head;
6
           len = 0;
7
       } // 在节点后 p 后插入值 v
       void insert(Node *p,int v) {
           Node *q = new Node(); q->val = v;
10
           p->next->prev = q; q->next = p->next;
11
           p->next = q; q->prev = p;
12
13
           len++;
       } // 删除节点 p
14
       void erase(Node *p) {
15
           p->prev->next = p->next;
16
           p->next->prev = p->prev;
17
           delete p; len--;
18
       } // 清空链表
19
       ~List() {
20
           while(head != tail) {
                head = head->next;
22
                delete head->prev;
23
           } delete tail; len = 0;
24
25
       }
26 };
```

链表的遍历。

5.2 树状数组

树状数组可以维护数组 a 实现(1)将某个数加上 x。(2)求前缀和。


```
1 11 aa[MN], cc[MN], n;
2 void build() {
        _fora(i,1,n) {
            cc[i] += aa[i];
            11 j = i + (i&(-i));
            if(j <= n)
                 cc[j] += cc[i];
 7
        }
   }
9
   11 ask(ll *cc, ll x) {
        11 \text{ sum} = 0;
11
        while(x >= 1) {
12
13
            sum += cc[x];
            x \rightarrow x\&(-x);
14
        return sum;
16
17 }
   void add(ll *cc, ll x, ll k) {
        while(x <= n) {</pre>
19
            cc[x] += k;
20
            x += x&(-x);
        }
22
23 }
```

区间加 & **单点查询** 维护数组 a 的额外差分数组 b, 那么 a 的区间加就被转化为 b 的单点增加,且 a 单点查询就被转化为 b 的区间查询。

</> 代码 5.3: /数据结构/树状数组/02.cpp

```
void badd(ll l, ll r, ll k) {
   add(bb, l, k);
   add(bb, r+1, -k);
}

bask(ll x) {
   return ask(bb, x) + aa[x];
}
```

区间加 & 区间求和 维护数组 a 的额外差分数组 b, 当我们对 a 的前缀 r 求和时有

$$\sum_{i=1}^{r} \sum_{j=1}^{i} b_j = \sum_{i=1}^{r} b_i (r-i+1) = (r+1) \sum_{i=1}^{r} b_i - \sum_{i=1}^{r} b_i i$$

因此还需要两个树状数组来维护 $\sum b_i$ 和 $\sum b_i i$ 。查询前缀和 cask。


```
1 ll bb1[MN], bb2[MN];
2 void cadd(ll l, ll r, ll k) {
3    add(bb1, l, k);
4    add(bb1, r+1, -k);
5    add(bb2, l, l*k);
6    add(bb2, r+1, -(r+1)*k);
7 }
8 ll cask(ll x) {
9    return (x+1) * ask(bb1, x) + ask(cc,x) - ask(bb2,x);
10 }
```

5.3 ST 表

需要预处理 \log_{2} 。 令 st(i,j) 表示区间 $[i,i+2^{j}-1]$ 的最大值,显然 $ST(i,0)=a_{i}$ 。 状态转移方程

$$ST(i, j + 1) = \max(f(i, j), f(i + 2^{j}, j))$$


```
1 _fora(j,0,lg2n-1) {
2    ll tj = 1 << j;
3    ll ti = n - (1<<(j+1)) + 1;
4    _fora(i,1,ti)
5    ST[i][j+1] = max(ST[i][j], ST[i+tj][j]);
6 }</pre>
```

对于 RMQ 问题,记 $s = \lfloor \log_2(r-l+1) \rfloor$,我们总是可以用两个区间 $[l, l+2^s-1]$ 和 $[r-2^s+1, r]$ 来覆盖所查询区间。

```
1 ll s = lg2[y-x+1];
2 return max(ST[x][s], ST[y-(1<<s)+1][s]);</pre>
```

第六章 字符串

6.1 KMP

前缀函数 对于长为 n 的字符串 s,定义每个位置的前缀函数 $\pi(i)$,值为右端在 i 的相等真后缀与真前缀中最长的长度。

设最长的长度为 $j_1 = \pi(i)$, 如何找到其次长 j_2 ?

注意到后缀 j_1 位与前缀 j_1 位完全相同,故 j_2 为前缀 j_1 中相等真前缀与真后缀中最长的,即

$$j_{n+1} = \pi(j_n - 1)$$

Knuth - Morris - Pratt 给定一个文本 t 和一个字符串 s (模式串),尝试找到 s 在 t 中所有出现。 构造字符串 s+*+t,其中 * 为不出现在两个字符串中的特殊字符,此时字符串 t 的前缀恰为 s, $\pi(i)$ 的意义为 s 在此处的出现长度。

当 $\pi(i) = |s|$ 时,s 在此处完全出现。

当字符串已经合并时,直接计算 $\pi(i)$ 函数即可,字符串出现位置是 i-2|s|。

```
void kmp(char* s, ll lens, char* t, ll lent) {
   pre_kmp(s, lens);
   ll p = 0;
   _fora(i, 0, lent-1) {
        ll j = p;
        while(j && t[i] != s[j])
        j = pi[j-1];
```