

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}$, $b^{[1]}$, ..., $W^{[L]}$, $b^{[L]}$ and reshape into a big vector θ . $\mathcal{J}(\omega^{CD}, b^{CD}, \omega^{CD}, b^{CD}) = \mathcal{J}(\theta)$

Take $dW^{[1]}$, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

Is do the gradet of J(0)?

Gradient checking (Grad check)

for each
$$\bar{c}$$
:

 $\Rightarrow \underline{Mogpar}[\bar{c}] = \underline{J(0_{1},0_{2},...,0_{1}+\epsilon_{1},...)} - \underline{J(0_{1},0_{2},...,0_{1}-\epsilon_{1},...)}$
 $\Rightarrow \underline{Mogpar}[\bar{c}] = \underline{JJ}$
 $\& \underline{Mo[\bar{c}]} = \underline{JJ}$
 $\& \underline{Mo[\bar{c}]} = \underline{JJ}$
 $\& \underline{Mo[\bar{c}]} = \underline{JJ}$
 $\& \underline{Mo[\bar{c}]} = \underline{JJ}$
 $\& \underline{Mogpar} = \underline{Joe}$
 $\& \underline{Mogpar} = \underline{Joe}$
 $\Rightarrow \underline{Mogpar} = \underline{Joe}$