

Trigonometría

Módulo 3: Formulas de Reducción y gráficos de funciones trigonométricas

Formulas de Reducción

Cofunciones

- Seno y coseno son cofunciones (una de la otra)
 Tangente y cotangente son cofunciones (una de la otra)
 Secante y cosecante son cofunciones. (una de la otra)
- Cada función de un ángulo es la cofunción de su complemento

$$sen(\pi/2-\theta) = cos\theta$$
 $sen\theta = cos(\pi/2-\theta)$
 $tan(\pi/2-\theta) = cot\theta$ $tan\theta = cot(\pi/2-\theta)$
 $sec(\pi/2-\theta) = csc\theta$ $sec\theta = csc(\pi/2-\theta)$

Formulas de Reducción

Sabemos que los valores de las funciones circulares no alteran si el ángulo se aumenta o se disminuye en un múltiplo entero de 2π , de manera que los valores de las funciones se pueden expresar en términos de los valores de las mismas funciones, para algún ángulo entre 0 y 2π .

Más aún, expresaremos las funciones circulares de un ángulo cualquiera en términos de las funciones para un ángulo entre $0 \text{ y } \pi/2$. (Reducción al primer cuadrante)

Formulas de Reducción

Ángulo de Referencia

- Sea θ un ángulo en posición normal, no cuadrantal. El **ángulo de referencia de \theta** es el ángulo agudo θ_R formado por el eje X positivo y el lado final de θ .
- Si θ es un ángulo de alguno de los cuatro cuadrantes $(0 < \theta < 2\pi)$, el ángulo de referencia θ_R se muestra en las figuras siguientes:

Sea θ un ángulo en posición normal, no cuadrantal, con ángulo de referencia θ_R . Entonces, si f es alguna función circular, se cumple:

(el signo es el que corresponde a $f(\theta)$, según el cuadrante donde se encuentre el ángulo θ).

Fórmulas de Reducción

$$f\left(\frac{\pi}{2}\pm\theta\right) = \pm cof(\theta)$$
 $f\left(\frac{3\pi}{2}\pm\theta\right) = \pm cof(\theta)$

$$f(\pi \pm \theta) = \pm f(\theta)$$
 $f(2\pi \pm \theta) = \pm f(\theta)$

Para expresar las funciones circulares de cualquier ángulo en términos de funciones de algún ángulo agudo positivo se puede considerar lo siguiente:

- > Si el ángulo es negativo, usar la **paridad** de las funciones circulares.
- \triangleright Si el ángulo es mayor que 2π (ó 360°), reemplazarlo por un ángulo coterminal con él, menor que 2π , usando **periodicidad**.
- \triangleright Si es mayor que $\pi/2$, usar las **fórmulas de reducción**.

Gráficos de funciones Trigonométricas

Seno:

$$Dom(sen) = R$$

$$\left| \text{Rec(sen)} = \left[-1,1 \right] \right|$$

Coseno:

$$Dom(cos) = R$$

$$Rec(cos) = [-1,1]$$

Gráficos de funciones Trigonométricas

Tangente:

$$Dom(tan) = \left\{ x \in R / x \neq (2n+1) \frac{\pi}{2} \right\}$$

$$Rec(tan) = R$$

