

Integration planning at SFB (A)

MIM 22 Group 23 – E2

Alexandra Magdei, Jalel Mohib, Jerry Mao, Margherita Mayr and Rijul Sharma

Kusha's Goal

Main Objective

- Design an analytical model to facilitate the headcount reduction following the closure of the SFB Lyon office
- Therefore, the main tasks is to make an unbiased, informed and data-driven decision on which employees to fire or "encourage" to leave
- A further objective when identifying which employees are likely to leave is to avoid a mass exodus

Brand Image

- Since employment-related decisions can have repercussions on reputation and morale, it is key that sample bias is avoided to ensure a diverse working force
- Another objective is to avoid brand dilution by respecting the workforce and offering severance packages
- Furthermore, talent must be maintained (avoiding too many leaves) and the organization needs to remain balanced and integrated with BAP

Severance Agreement: RCC

- We expect 40 employees from the Lyon office to leave voluntarily and accept severance compensation
- Since severance packages are important to minimise regulatory issues, the costs associated to these be controlled and kept as low as possible
- Precisely, the target for the labour cost reduction is of \$3 million

Tools to solve the problem

Process to solve the problem

employees

1. Data Pre-processing and normalization of data	 Since the acquirer and target are from different geographical regions, they likely have different regulations imposed upon them and different norms in terms of culture Due to these reasons, some data points such as income should be coupled with healthcare benefits to understand total capital expenditure per employee Removing features such as gender and nationality is important for an unbiased dataset and therefore an unbiased model for employee dismissal
2. Classification through logistic regression and clustering	 Using either a logistic regression or clustering, we can understand employees that are vital to the company's operation and individuals who are not With logistic regression, since the output variable is binary, we can Create a Regression that That indicates vital and non-vital employees With Clustering, we can visually see employees performance and other metrics in comparison to total capital expenditure and classify them as vital, useful and non-vital
3. Optimization of severance packages of non-vital	 Once we are able to classify employees, we can use 2 optimization models on the non-vital employees. Since we have an inherent incentive to keep the vital employees The first optimization model would use integer programming to minimise reputational damage for the company. This would provide a short-list of employees that can be dismissed with minimal reputational damage

minimise total severance pay as a company

• The second optimization model would use linear programming on the short-listed data from the first optimization model to determine severance package values for each individual to

Details regarding the optimization models (step 3)

Optimization model 1

Decision Variables

 To keep or not to keep specific non-vital employees in regards to reputational damage this decision could cause the firm

Objective

 Minimize impact on reputation due to employee removal

Constraints

- A maximum of 40 employees for severance
- Cannot eliminate a large portion of employees from a singular department since this may cause an exodus within that department

Optimization model 2

Decision Variables

The dollar value required for each employee for their dismissal

Objective

 Minimize value of total severance package to save costs for the merged entity.

Constraints

A maximum of 40 employees for severance