COL 352 Introduction to Automata and Theory of Computation

Nikhil Balaji

Bharti 420 Indian Institute of Technology, Delhi nbalaji@cse.iitd.ac.in

January 11, 2023

Lecture 4: Closure properties of regular languages, nondeterminism

Recap

- Languages, Decision problems.
- Finite State Automata devices with finite memory.
- Deterministic Finite State Automata (DFA)
 - From one state, reading an action we move to exactly one other state.
 - So, for each input word, there is exactly one run!
- Regular languages
 - L is regular if there exists some DFA A such that L = L(A).
 - Closed under Union, Intersection, Complement.
 - Other operations of languages: Concatenation $(L \circ L')$, Kleene star (L^*)

Example

Let $\Sigma = \{a\}$ for this example.

Let
$$L_1 = \{ w \mid |w| \equiv 0 \pmod{2} \}$$

Let
$$L_2 = \{ w \mid |w| \equiv 0 \pmod{3} \}$$

What is $L_1 \cap L_2$?

$$L_1 \cap L_2 = \{ w \mid |w| \equiv 0 \pmod{6} \}$$

$$L_1 \cap L_2 = \{ w \mid |w| \equiv 0 \pmod{6} \}$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cap L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

$$\begin{array}{rcl} Q & = & \{(q,q') \mid q \in Q_1, q' \in Q_2\} \\ q_0 & = & (q_0^1, q_0^2) \\ F & = & \{(q,q') \mid q \in F_1, \text{ and } q' \in F_2\} = F_1 \times F_2 \\ \delta((q,q'),a) & = & (\delta_1(q,a), \delta_2(q',a)) \end{array}$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cap L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

Let A be a finite state automaton $(Q, \Sigma, q_0, F, \delta)$ s.t.

$$Q = \{(q, q') \mid q \in Q_1, q' \in Q_2\}$$

$$q_0 = (q_0^1, q_0^2)$$

$$F = \{(q, q') \mid q \in F_1, \text{ and } q' \in F_2\} = F_1 \times F_2$$

$$\delta((q, q'), a) = (\delta_1(q, a), \delta_2(q', a))$$

Correctness

 $\forall w \in \Sigma^*$, w is accepted by A iff w is accepted by both A_1 and A_2 .

Proof.

Recall, $\delta((q,q'),a) \coloneqq (\delta_1(q,a),\delta_2(q',a))$

Proof.

Recall,
$$\delta((q, q'), a) := (\delta_1(q, a), \delta_2(q', a))$$

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Proof.

Recall,
$$\delta((q,q'),a) := (\delta_1(q,a),\delta_2(q',a))$$

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Proof.

Recall,
$$\delta((q,q'),a) := (\delta_1(q,a),\delta_2(q',a))$$

Inductively, we have

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Claim: $L(A) = L(A_1) \cap L(A_2)$

Proof.

Recall,
$$\delta((q,q'),a) := (\delta_1(q,a),\delta_2(q',a))$$

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Claim:
$$L(A) = L(A_1) \cap L(A_2)$$

$$x \in L(A) \iff \hat{\delta}(q_0, x) \in F$$

Proof.

Recall,
$$\delta((q,q'),a) := (\delta_1(q,a),\delta_2(q',a))$$

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Claim:
$$L(A) = L(A_1) \cap L(A_2)$$

$$x \in L(A) \iff \hat{\delta}(q_0, x) \in F$$

 $\iff \hat{\delta}((q_0^1, q_0^2), x) \in (F_1 \times F_2)$

Proof.

Recall,
$$\delta((q, q'), a) := (\delta_1(q, a), \delta_2(q', a))$$

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Claim:
$$L(A) = L(A_1) \cap L(A_2)$$

$$x \in L(A) \iff \hat{\delta}(q_0, x) \in F$$

$$\iff \hat{\delta}((q_0^1, q_0^2), x) \in (F_1 \times F_2)$$

$$\iff (\hat{\delta}_1(q_0^1, x), \hat{\delta}_2(q_0^2, x)) \in (F_1 \times F_2)$$

Proof.

Recall,
$$\delta((q, q'), a) \coloneqq (\delta_1(q, a), \delta_2(q', a))$$

Inductively, we have

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Claim:
$$L(A) = L(A_1) \cap L(A_2)$$

$$x \in L(A) \iff \hat{\delta}(q_0, x) \in F$$

$$\iff \hat{\delta}((q_0^1, q_0^2), x) \in (F_1 \times F_2)$$

$$\iff (\hat{\delta}_1(q_0^1, x), \hat{\delta}_2(q_0^2, x)) \in (F_1 \times F_2)$$

$$\iff \hat{\delta}_1(q_0^1, x) \in F_1 \text{ and } \hat{\delta}_2(q_0^2, x) \in F_2$$

Proof.

Recall,
$$\delta((q,q'),a) := (\delta_1(q,a),\delta_2(q',a))$$

$$\hat{\delta}((q,q'),\varepsilon) = (q,q')
\hat{\delta}((q,q'),xa) = \delta(\hat{\delta}((q,q'),x),a)$$

Claim:
$$\forall x \in \Sigma^*$$
, $\hat{\delta}((p,q),x) = (\hat{\delta}_1(p,x),\hat{\delta}_2(q,x))$

Claim:
$$L(A) = L(A_1) \cap L(A_2)$$

$$x \in L(A) \iff \hat{\delta}(q_0, x) \in F$$

$$\iff \hat{\delta}((q_0^1, q_0^2), x) \in (F_1 \times F_2)$$

$$\iff (\hat{\delta}_1(q_0^1, x), \hat{\delta}_2(q_0^2, x)) \in (F_1 \times F_2)$$

$$\iff \hat{\delta}_1(q_0^1, x) \in F_1 \text{ and } \hat{\delta}_2(q_0^2, x) \in F_2$$

$$\iff x \in L(A_1) \cap L(A_2)$$

Example

Let $\Sigma = \{a\}$ for this example.

Let
$$L_1 = \{ w \mid |w| \equiv 0 \pmod{2} \}$$

Let
$$L_2 = \{ w \mid |w| \equiv 0 \pmod{3} \}$$

What is $L_1 \cap L_2$?

$$L_1 \cup L_2 = \{ w \mid |w| \equiv 0 \pmod{2} \text{ or } |w| \equiv 0 \pmod{3} \}$$

$$L_1 \cup L_2 = \{ w \mid |w| \equiv 0 \pmod{2} \text{ or } |w| \equiv 0 \pmod{3} \}$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

$$Q = \{(q, q') \mid q \in Q_1, q' \in Q_2\}$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

$$Q = \{(q, q') \mid q \in Q_1, q' \in Q_2\}$$

$$q_0 = (q_0^1, q_0^2)$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

$$Q = \{(q, q') \mid q \in Q_1, q' \in Q_2\}$$

$$q_0 = (q_0^1, q_0^2)$$

$$F = \{(q, q') \mid q \in F_1 \text{ or } q' \in F_2\}$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let $A_1 = (Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and $A_2 = (Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

$$Q = \{(q, q') \mid q \in Q_1, q' \in Q_2\}$$

$$q_0 = (q_0^1, q_0^2)$$

$$F = \{(q, q') \mid q \in F_1 \text{ or } q' \in F_2\}$$

$$\delta((q, q'), a) = (\delta_1(q, a), \delta_2(q', a))$$

Lemma

Let $L_1, L_2 \subseteq \Sigma^*$ be two regular languages, then $L_1 \cup L_2$ is also a regular language.

Proof.

Product construction

Let A_1 = $(Q_1, \Sigma, q_0^1, F_1, \delta_1)$ and A_2 = $(Q_2, \Sigma, q_0^2, F_2, \delta_2)$ be the automata accepting L_1, L_2 , respectively.

Let A be a finite state automaton $(Q, \Sigma, q_0, F, \delta)$ s.t.

$$Q = \{(q, q') \mid q \in Q_1, q' \in Q_2\}$$

$$q_0 = (q_0^1, q_0^2)$$

$$F = \{(q, q') \mid q \in F_1 \text{ or } q' \in F_2\}$$

$$\delta((q, q'), a) = (\delta_1(q, a), \delta_2(q', a))$$

Correctness

 $\forall w \in \Sigma^*$, w is accepted by A iff w is accepted by either A_1 or A_2 .

Complementation

Let
$$L = \{ w \mid |w| \equiv 0 \pmod{3} \}$$

Complementation

Let
$$L = \{w \mid |w| \equiv 0 \pmod{3}\}$$

$$\overline{L} = \{ w \mid |w| \not\equiv 0 \pmod{3} \}$$

Complementation

Let
$$L = \{ w \mid |w| \equiv 0 \pmod{3} \}$$

$$\overline{L} = \{ w \mid |w| \not\equiv 0 \pmod{3} \}$$

Closure under complement

Lemma

Let $L\subseteq \Sigma^*$ be a regular language, then $\overline{L}=\{w\mid w\notin L\}$ is also a regular language.

Proof.

Let $A = (Q, \Sigma, q_0, F, \delta)$ be the automata accepting L.

Let A' be a finite state automaton $(Q', \Sigma', q'_0, F', \delta')$ s.t.

$$\begin{array}{rcl} Q' & = & Q \\ q'_0 & = & q_0 \\ F' & = & \{q \in Q \mid q \notin F\} \\ \delta' & = & \delta \end{array}$$

Correctness

 $\forall w \in \Sigma^*$, w is accepted by A' iff w is not accepted by A.

Concatenation and Kleene star

Let
$$L_1, L_2, L \subseteq \Sigma^*$$

$$L_1 \circ L_2 \coloneqq \{xy \mid x \in L_1, y \in L_2\}$$

$$L^k := \{x_1 x_2 \dots x_k \mid x_i \in L\}$$

$$L^* := \bigcup_{k \ge 0} L^k$$

Example

Input: Text file over the alphabet $\{a,b\}$

Check: does the file end with the string 'aa'

Example

Input: Text file over the alphabet $\{a,b\}$

Check: does the file end with the string 'aa'

Note that: $\delta(q_0, a) = \{q_0, q_1\}$

Example

Input: Text file over the alphabet $\{a,b\}$

Check: does the file end with the string 'aa'

Note that: $\delta(q_0, a) = \{q_0, q_1\}$

Runs of a NFA

$$q_0 \xrightarrow{b}$$

$$q_0 \xrightarrow{b} q_0 \xrightarrow{a}$$

Runs on b a b a b $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b}$

- $q_0 \stackrel{b}{\rightarrow} q_0 \stackrel{a}{\rightarrow} q_1 \stackrel{b}{\rightarrow} q_2 \stackrel{a}{\rightarrow} :$ stuck! * unfinished runs are not accepted.

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.

Runs on b a b a b

- $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.

Runs on b a b a b

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.

Runs on b a b a b

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.
- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_0 \xrightarrow{b} q_0$. * run not accepted.

Runs on b a b a b

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.
- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_0 \xrightarrow{b} q_0$. * run not accepted.

 $ightharpoonup q_0 \xrightarrow{b}$

Runs on b a b a b

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.
- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_0 \xrightarrow{b} q_0$. * run not accepted.

 $parabox{0.5}{q_0} \xrightarrow{b} q_0 \xrightarrow{a}$

▶
$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$$
stuck! * unfinished runs are not accepted.

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$ stuck! * unfinished runs are not accepted.
- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_0 \xrightarrow{b} q_0$. * run not accepted.

▶
$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$$
stuck! * unfinished runs are not accepted.

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_0 \xrightarrow{b} q_0$. * run not accepted.

▶
$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$$
stuck! * unfinished runs are not accepted.

- ▶ $q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_0 \xrightarrow{b} q_0$. * run not accepted.
- $ightharpoonup q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_0 \xrightarrow{b} q_0 : \xrightarrow{a} q_1 \xrightarrow{b} q_2.$ * accepted!
- Much more concise than a DFA.

▶
$$q_0 \xrightarrow{b} q_0 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{a} :$$
stuck! * unfinished runs are not accepted.

- Much more concise than a DFA.
- Exercise: List all runs of bbaba.

- Much more concise than a DFA.
- Exercise: List all runs of bbaba.
- Nondeterminism can be thought of as a guess!

Example

Input: $w \in \{a, b\}^*$

Example

Input: $w \in \{a, b\}^*$

Check: Is a the second-last letter of w?

Example

Input: $w \in \{a, b\}^*$

Check: Is a the second-last letter of w?

Example

Input: $w \in \{a, b\}^*$

Check: Is a the second-last letter of w?

Informal description: A finite state automaton which can branch out to different states on the same letter.

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

 ${\cal Q}$ is a set of states,

 Σ is the input alphabet

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 Σ is the input alphabet

 q_0 is the initial state

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 Σ is the input alphabet

 q_0 is the initial state,

 $F \subseteq Q$ is the set of final states

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 $\boldsymbol{\Sigma}$ is the input alphabet

 q_0 is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 $\boldsymbol{\Sigma}$ is the input alphabet

 q_0 is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$

 $\forall q \in Q, \forall a \in \Sigma, |\delta(q, a)| \le 1.$

Informal description: A finite state automaton which can branch out to different states on the same letter.

NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, where

Q is a set of states,

 $\boldsymbol{\Sigma}$ is the input alphabet

 q_0 is the initial state,

 $F \subseteq Q$ is the set of final states,

 δ is a set of transitions, i.e. $\delta \subseteq Q \times \Sigma \times Q$

 $\forall q \in Q, \forall a \in \Sigma, |\delta(q, a)| \le 1.$

 $\forall q \in Q, \forall a \in \Sigma, \ \delta(q, a) \subseteq Q.$

Acceptance by NFA

Acceptance by NFA

A non-deterministic finite state automaton (NFA) $A=(Q,\Sigma,q_0,F,\delta)$, is said to accept a word $w\in \Sigma^*$, where $w=w_1w_2\dots w_n$ if

there exists a sequence of states $p_0, p_1, \dots p_n$ s.t.

Acceptance by NFA

Acceptance by NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, is said to accept a word $w \in \Sigma^*$, where $w = w_1 w_2 \dots w_n$ if

there exists a sequence of states $p_0, p_1, \dots p_n$ s.t.

$$p_0 = q_0$$

Acceptance by NFA

Acceptance by NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, is said to accept a word $w \in \Sigma^*$, where $w = w_1 w_2 \dots w_n$ if

there exists a sequence of states $p_0, p_1, \dots p_n$ s.t.

$$p_0 = q_0,$$

$$p_n \in F$$

Acceptance by NFA

Acceptance by NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, is said to accept a word $w \in \Sigma^*$, where $w = w_1 w_2 \dots w_n$ if

there exists a sequence of states $p_0, p_1, \dots p_n$ s.t.

```
p_0 = q_0,
```

$$p_n \in F$$
,

$$p_{i+1} \in \delta(p_i, x_{i+1})$$
 for all $0 \le i \le n-1$.

Acceptance by NFA

Acceptance by NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, is said to accept a word $w \in \Sigma^*$, where $w = w_1 w_2 \dots w_n$ if

there exists a sequence of states $p_0, p_1, \dots p_n$ s.t.

$$p_0=q_0,$$

$$p_n\in F,$$

$$p_{i+1}\in \delta(p_i,x_{i+1}) \text{ for all } 0\leq i\leq n-1.$$

Extended Transition Function Let $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ be defined as:

$$\hat{\delta}(q,\varepsilon) = q$$
 $\hat{\delta}(q,wa) = \delta(\hat{\delta}(q,w),a)$

Acceptance by NFA

Acceptance by NFA

A non-deterministic finite state automaton (NFA) $A = (Q, \Sigma, q_0, F, \delta)$, is said to accept a word $w \in \Sigma^*$, where $w = w_1 w_2 \dots w_n$ if

there exists a sequence of states $p_0, p_1, \dots p_n$ s.t.

$$p_0=q_0$$
,
$$p_n\in F$$
,
$$p_{i+1}\in \delta(p_i,x_{i+1}) \text{ for all } 0\leq i\leq n-1.$$

Extended Transition Function Let $\hat{\delta}: Q \times \Sigma^* \to 2^Q$ be defined as:

$$\hat{\delta}(q,\varepsilon) = q$$
 $\hat{\delta}(q,wa) = \delta(\hat{\delta}(q,w),a)$

$$L(A) = \{ w \in \Sigma^* \mid \hat{\delta}(q_0, w) \in 2^F \}$$

An NFA A is said to accept a language L if $L = \{w \mid A \text{ accepts } w\}$.

Lemma

Let A be an NFA. Then L(A) is a regular language.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

$$\varnothing$$
 {0} {1} {2} {0,1} {0,2} {1,2} {0,1,2}
 $a \varnothing$ {0,1} {2} \varnothing {0,1,2} {0,1,2}

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

	Ø	{0}	{1}	{2}	$\{0, 1\}$	$\{0, 2\}$	$\{1, 2\}$	$\{0, 1, 2\}$
a	Ø	$\{0, 1\}$	{2}	Ø	$\{0, 1, 2\}$	$\{0, 1\}$	{2}	$\{0, 1, 2\}$
b	Ø	{0}	{2}	Ø	$\{0,2\}$	{0}	{2}	$\{0, 2\}$

Equivalent DFA

Equivalent DFA

Example

Example

$$L = \{x \in \{a\}^* \mid |x| \text{ is divisible by } 3 \text{ or } 5\}$$

Example

$$L = \{x \in \{a\}^* \mid |x| \text{ is divisible by } 3 \text{ or } 5\}$$

