Отчет

Игнатович Пётр

23 марта 2025 г.

Содержание

1	Анализ данных		2
	1.1 Описание набора данных		2
2	Описание набора данных		
	2.1 Визуализация распределений		3
	2.2 Проверка пропусков и выброс		
3	Выбор модели		4
	3.1 Описание архитектуры нейрон	иной сети	4
4	Описание архитектуры нейронной сети		
		Обоснование выбора активационных функций, оптимиза-	
	тора и loss-функции		
	4.2 Гиперпараметры		5
5	Результаты		6
	5.1 Таблица с метриками		6
	5.2 График обучения		
	5.3 Ссылка на submission в leader		

1 Анализ данных

1.1 Описание набора данных

2 Описание набора данных

Данный набор данных содержит из соревнования по определению типа ожирения 20 758 записей и 17 столбцов, включающих признаки участников исследования и целевую переменную, определяющую тип веса. Ниже приведено подробное описание каждого столбца:

Gender Пол участника. Возможные значения: 'Male', 'Female'.

Аде Возраст участника.

Height Рост участника (например, в метрах).

Weight Вес участника (например, в килограммах).

family_history_with_overweight Семейная история лишнего веса. Возможные значения: 'yes', 'no'.

FAVC Частое потребление калорийной пищи. Возможные значения: 'yes', 'no'.

FCVC Частота потребления овощей. Значения: от 1 до 3 (например, 1 — редко, 3 — часто).

NCP Количество основных приёмов пищи. Значения: от 1 до 4.

CAEC Перекусы между приёмами пищи. Возможные значения: 'no', 'Sometimes', 'Frequently', 'Always'.

SMOKE Курит ли человек. Возможные значения: 'yes', 'no'.

СН2О Потребление воды (приблизительное количество литров в день). Значения: от 1 до 3.

SCC Контроль калорий. Возможные значения: 'yes', 'no'.

FAF Физическая активность. Количество часов физической активности в неделю. Значения: от 0 до 3+.

TUE Использование технологий. Количество часов в день, в течение которых участник использует электронные устройства. Значения: от 0 до 3+.

- CALC Употребление алкоголя. Возможные значения: 'no', 'Sometimes', 'Frequently'.
- MTRANS Транспорт. Основной способ передвижения участника. Возможные значения: 'Walking', 'Bike', 'Motorbike', 'Automobile', 'Public_Transportation'.
- NObeyesdad Целевая переменная (тип веса), предсказываемая моделью. Возможные значения: 'Insufficient_Weight', 'Normal_Weight', 'Overweight_Level_I', 'Overweight_Level_II', 'Obesity_Type_I', 'Obesity_Type_II', 'Obesity_Type_III'.

2.1 Визуализация распределений

2.2 Проверка пропусков и выбросов

Пропусков не было изначально, а что касается выбросов, то при сравнении нескольких результатов с разным ограничением на предел того, что считать выбросом стало понятно, что лучше их все сохранять, т.к иначе модель не сможет нормально обучиться, ведь данных не хватит.

3 Выбор модели

3.1 Описание архитектуры нейронной сети

4 Описание архитектуры нейронной сети

В данной работе используется полносвязная нейронная сеть, состоящая из следующих слоев:

1. Входной слой: Принимает вектор из 22 признаков.

2. Первый скрытый слой (FC1):

- Полносвязный слой, преобразующий 22 входных признака в 100 нейронов.
- Batch Normalization для стабилизации и ускорения обучения.
- Функция активации **ReLU** для введения нелинейности.
- **Dropout** с вероятностью 0.3 для регуляризации и предотвращения переобучения.

3. Второй скрытый слой (FC2):

- Полносвязный слой, преобразующий 100 нейронов в 200 нейронов.
- Batch Normalization.
- Функция активации **ReLU**.
- **Dropout** с вероятностью 0.4.

4. Третий скрытый слой (FC3):

- Полносвязный слой, преобразующий 200 нейронов в 100 нейронов.
- Batch Normalization.
- Функция активации **ReLU**.
- **Dropout** с вероятностью 0.4.

5. Выходной слой (FC4):

• Полносвязный слой, отображающий 100 нейронов в 7 выходов, соответствующих 7 классам целевой переменной.

4.1 Обоснование выбора активационных функций, оптимизатора и loss-функции

Функция активации ReLU была выбрана из-за ее надежности и практичности, оптимизатор Adam чтобы сходиться быстрее и не застревать в локальных минимумах и CrossEntropyLoss в качестве функции потерь, т.к первое что в голову пришло.

4.2 Гиперпараметры

Укажите гиперпараметры, использованные в обучении:

• Число слоев: 3

• Размер батча: 128

• Количество эпох: 25

• Скорость обучения: 0.01

5 Результаты

5.1 Таблица с метриками

Ниже представлена таблица с основными метриками (например, accuracy, loss, RMSE и др.):

Метрика	Значение
Accuracy Loss	0.8814 0.3268

5.2 График обучения

Рис. 1: График обучения: loss и accuracy на train/val

5.3 Ссылка на submission в leaderboard

Так соревнование же закончилось уже, мы никак в лидерборд не попадем