Citric acid cycle

Chapter 19

The Central Role of the Citric Acid Cycle

3 processes play central roles in aerobic metabolism

- The citric acid cycle (TCA cycle)
- Electron transport (Chapter 20)
- Oxidative phosphorylation (Chapter 20)
- Metabolism consists of
 - Catabolism: the oxidative breakdown of nutrients
 - Anabolism: the reductive synthesis of biomolecules
- The citric acid cycle is amphibolic that is, it plays a role in both catabolism and anabolism. It is the central metabolic pathway

The Citric Acid Cycle

- TCA CYCLE (tricarboxylic acid cycle)
- KREBS CYCLE
- Definition:
 - Acetate in the form of acetyl-CoA, is derived from pyruvate and other metabolites, and is oxidized to CO₂
- The citric acid cycle is central to all respiratory oxidation
 - oxidizing acetyl-CoA from glucose, lipid and protein catabolism into aerobic respiration to maximize energy gain.

Relationship of TCA Cycle to Catabolism

@ Brooks/Cole, Cengage Learning

Where does the Citric Acid Cycle Take Place?

- The cycle also supplies some *precursors* for biosynthesis.
- In eukaryotes, All enzymes are in the mitochondrial matrix or inner mitochondrial membrane

The Citric Acid Cycle

Before cycle

Conversion of pyruvate to acetyl-CoA

Stage 1 setup

- Enzyme = Pyruvate dehydrogenase complex
- Location = Mmitochondrial matrix
 - irreversible means acetyl-CoA cannot flow backward to pyruvate

© 2006 Brooks/Cole - Thomson

An overview of the citric acid cycle: Note the names of the enzymes. The loss of CO2 is indicated, as is the phosphorylation of GDP to GTP. The production of NADH and FADH2 is also indicated.

Pyruvate is Converted to Acetyl-CoA

 Pyruvate dehydrogenase complex is responsible for the conversion of pyruvate to CO₂ and the acetyl portion of acetyl-CoA

- Five enzymes in complex:
 - Pyruvate dehydrogenase (=E1) has
 - Coenzyme = Thiamine pyrophosphate (TPP)
 - Pyruvate dehydrogenase kinase
 - Pyruvate dehydrogenase phosphatase
 - Dihydrolipoyl transacetylase (=E2)
 - Coenzymes lipoate and CoA
 - Dihydrolipoyl dehydrogenase (= E3)
 - Coenzymes FAD and NAD+

The structure of the pyruvate dehydrogenase complex.:

- (a) 24 dihydrolipoyl transacetylase (TA) subunits.
- (b) 24 $\alpha\beta$ dimers of pyruvate dehydrogenase are added to the cube two per edge).
- (c) Addition of 12 dihydrolipoyl dehydrogenase subunits (two per face) completes the complex.
- (d) Total = 60 subunits

Pyruvate is Converted to Acetyl-CoA

- First, pyruvate loses CO₂ and hydroxyethylTPP (HETPP) is formed
- In the second step, the active form of lipoic acid is bound to the enzyme, dihydrolipoyl transacetylase, by an amide bond
 - The hydroxyethyl group (HE) is oxidized and transferred to a sulfur atom of the reduced form of lipoamide
 - Lipoamide is reduced to dihydrolipoamide
- In step 3, the acetyl group is transferred to the sulfur group of coenzyme A
 - Next, dihydrolipoamide is oxidized to lipoamide

Mechanism of the Pyruvate Dehydrogenase Complex

Regulation of Pyruvate Dehydrogenase

Irreversible reaction must be tightly Controlled

- Three ways
 - 1. Allosteric Inhibition
 - Inhibited by products: acetyl-CoA, NADH &
 - high ATP
 - 2. Allosteric activation by AMP
 - Ratio ATP/AMP important
 - 3. Phosphorylation dephosphorylation of E1 subunit

Pyruvate Dehydrogenase Regulation

Summary

- The two-carbon unit needed at the start of the citric acid cycle is obtained by converting pyruvate to acetyl-CoA
 - This conversion requires the three primary enzymes of the pyruvate dehydogenase complex, as well as, the cofactors TPP, FAD, NAD+, and lipoic acid
- The overall reaction of the pyruvate dehydogenase complex is the conversion of pyruvate, NAD+, and CoA-SH to acetyl-CoA, NADH + H+, and CO₂

Krebs Cycle: Preparatory Step

- Pyruvic acid is converted to acetyl CoA in three main steps:
 - Decarboxylation
 - Carbon is removed from pyruvic acid
 - Carbon dioxide is released
 - Oxidation
 - Hydrogen atoms are removed from pyruvic acid
 - NAD+ is reduced to NADH + H+
 - Formation of acetyl CoA the resultant acetic acid is combined with coenzyme A, a sulfur-containing coenzyme, to form acetyl CoA

Krebs Cycle

- An eight-step cycle in which acetic acid is decarboxylated and oxidized, generating:
 - Three molecules of NADH + H⁺
 - One molecule of FADH₂
 - Two molecules of CO₂
 - One molecule of GTP=ATP

 For each molecule of glucose entering glycolysis, two molecules of acetyl CoA enter the Krebs cycle

General Features

- Location
 - Eukaryotes
 - mitochondrial matrix and membrane (one step only)
 - Prokaryotes
 - Plasma membrane
- Overall reaction

$$\begin{array}{c} CH_3CSCoA + 3 NAD^+ + FAD + GDP + P_i + 2 H_2O \\ | \\ O \end{array}$$

$$2 CO_2 + HSCoA + 3 NADH + FADH_2 + GTP + 2 H^+$$

Summary

 In the citric acid cycle and the pyruvate dehydrogenase reaction, one molecule of pyruvate is oxidized to three molecules of CO₂ as a result of oxidative decarboxylation

 The oxidations are accompanied by reductions involving NAD+ to NADH & FAD to FADH₂

GDP is phosphorylated to GTP

Oxidation of Pyruvate Forms CO₂ and ATP

Pyruvate dehydrogenase complex:

Pyruvate + CoA-SH + NAD⁺
$$\rightarrow$$
 Acetyl-CoA + NADH + CO₂ + H⁺

Citric acid cycle:

Acetyl-CoA +
$$3NAD^+$$
 + FAD + GDP + P_i + $2H_2O$ \rightarrow $2CO_2$ + CoA -SH + $3NADH$ + $3H^+$ + $FADH_2$ + GTP

Overall reaction:

Pyruvate +
$$4\text{NAD}^+$$
 + FAD + GDP + P_i + $2H_2O \rightarrow 3CO_2$ + 4NADH + $FADH_2$ + GTP + $4H^+$

Eventual ATP production per pyruvate:

Total 12.5 ATP per pyruvate or 25 ATP per glucose

Control of the Citric Acid Cycle

- There are 3 points of control within the cycle:
 - 1. Citrate synthase: inhibited by ATP, NADH, and succinyl CoA; also product inhibition by citrate
 - 2. Isocitrate dehydrogenase: activated by ADP and NAD+, inhibited by ATP and NADH
 - 3. α-ketoglutarate dehydrogenase complex: inhibited by ATP, NADH, and succinyl CoA; activated by ADP and NAD+
- There is one control point outside the cycle
 - Pyruvate dehydrogenase: inhibited by ATP and NADH; also product inhibition by acetyl-CoA

Control of the Citric Acid Cycle

Energetics of the Citric Acid Cycle

Table 19.2 The Energetics of Conversion of Pyruvate to CO ₂			
Step	Reaction	kJ mol ⁻¹	kcal mol ⁻¹
	Pyruvate + CoA-SH + NAD ⁺ \rightarrow Acetyl-CoA + NADH + CO ₂	-33.4	-8.0
1	Acetyl-CoA + Oxaloacetate + $H_2O \rightarrow Citrate + CoA-SH + H^+$	-32.2	-7.7
2	Citrate → Isocitrate	+6.3	+1.5
3	Isocitrate + NAD ⁺ $\rightarrow \alpha$ -Ketoglutarate + NADH + CO ₂ + H ⁺	-7.1	-1.7
4	a-Ketoglutarate + NAD+ + CoA-SH \rightarrow Succinyl-CoA + NADH + CO ₂ + H	-33.4	-8.0
5	Succinyl-CoA + GDP + $P_i \rightarrow$ Succinate + GTP + CoA-SH	-3.3	-0.8
6	Succinate + FAD \rightarrow Fumarate + FADH ₂	~0	~0
7	Fumarate + $H_2O \rightarrow L$ -Malate	-3.8	-0.9
8	I-Malate + NAD ⁺ → Oxaloacetate + NADH + H ⁺	+29.2	+7.0
Overall:	Pyruvate + $4NAD^+$ + FAD + GDP + P_1 + $2H_9O \rightarrow CO_9$ + $4NADH$ + $FADH_9$ + GTP + $4H^+$	-77.7	-18.6

Control of the Citric Acid Cycle (Cont'd)

Table 19.3

Relationship between the Metabolic State of a Cell and the ATP/ADP and NADH/NAD+ Ratios

Cells in a resting metabolic state

Need and use comparatively little energy

High ATP, low ADP levels imply high (ATP/ADP)

High NADH, low NAD+ levels imply high (NADH/NAD+)

Cells in a highly active metabolic state

Need and use more energy than resting cells

Low ATP, high ADP levels imply low (ATP/ADP)

Low NADH, high NAD+ levels imply low (NADH/NAD+)

The glyoxylate cycle

- In plants and some bacteria (NOT animals) acetyl Co-A can serve as the starting material for the biosynthesis of CHO
 - Animals can't convert fats to CHO
- Important
 - In seed germination
 - Seeds are rich in lipids, which contain fatty acids
 - During germination, plants use the acetyl-CoA produced in fatty acid oxidation to produce oxaloacetate and other intermediates for carbohydrate synthesis
 - In some bacteria used during limitation of carbon source

The Glyoxylate Cycle

- The glyoxylate cycle bypasses the two oxidative decarboxylations of the citric acid cycle
 - Instead, it routes isocitrate via glyoxylate to malate
 - Key enzymes in this cycle are
 - Isocitrate lyase
 - Malate synthase
- The glyoxylate cycle takes place:
 - In plant: in glyoxysomes, specialized organelles devoted to this cycle
 - In bacteria in the cytoplasm

The Glyoxylate Cycle

© 2006 Brooks/Cole - Thomson

$$COO^{-}$$
 $O=C-H$
 COO^{-}
 COO^{-}

The link to oxygen

 The citric acid cycle is considered part of the aerobic metabolic process because of its link to the chemical nutrients and ATP

 NADH and FADH₂, two important cofactors generated by the citric acid cycle, ultimately pass their electrons to oxygen

The link to amino acid metabolism

The Link To Amino Acid Metabolism

