12. Итерационные методы решения линейных систем

Пусть требуется решить линейную систему n-го порядка Ax = b.

Для решения линейной системы итерационными методами ее необходимо привести эквивалентно к виду x = Hx + g.

Выбираем начальное приближение $x^{(0)}$ (например, вектор с нулевыми компонентами).

12.1. Метод простой итерации

12.1.1. Расчетная формула. Условие сходимости

Расчетная формула метода имеет вид:

$$x^{(k+1)} = Hx^{(k)} + g (1)$$

или покомпонентно

$$x_i^{(k+1)} = \sum_{j=1}^n h_{ij} x_j^{(k)} + g_i, \ i = 1, 2, \dots, n.$$
 (2)

Необходимое и достаточное условие сходимости: $\rho(H) < 1$, где $\rho(H)$ — спектральный радиус матрицы H.

Достаточное условие сходимости: ||H|| < 1, где матричная норма мультипликативна.

12.1.2. Получение решения с заданной точностью

Пусть x^* — точное решение системы, $x^{(k)}$ — решение, полученное на k-ой итерации.

Скорость сходимости метода определяется нормой ||H||, так как

$$||x^{(k+1)} - x^*|| \le ||H||||x^{(k)} - x^*||.$$

Требуется найти такое $x^{(k)}$, чтобы $||x^{(k)} - x^*|| < \varepsilon$ (фактическая погрешность $x^{(k)}$).

Для обеспечения заданной точности используется априорная оценка погрешности решения

$$\left\| x^{(k)} - x^* \right\| \le ||H||^k ||x^{(0)}|| + \frac{||H||^k}{1 - ||H||} ||g|| \tag{3}$$

или апостериорная

$$\left\| x^{(k)} - x^* \right\| \le \frac{\|H\|}{1 - \|H\|} \left\| x^{(k)} - x^{(k-1)} \right\|. \tag{4}$$

Очевидно, что если

$$||H|| \le \frac{1}{2},$$

то

$$\left\|x^{(k)} - x^{(k-1)}\right\| < \varepsilon \implies \left\|x^{(k)} - x^*\right\| < \varepsilon.$$

12.2. Метод Зейделя

Расчетная формула покомпонентно имеет следующий вид:

$$x_i^{(k+1)} = \sum_{j=1}^{i-1} h_{ij} x_j^{(k+1)} + \sum_{j=i}^{n} h_{ij} x_j^{(k)} + g_i, \ i = 1, 2, \dots, n.$$
 (5)

Представим эту формулу в векторном виде.

Матрицу H представим в виде $H = H_L + H_R$, где

$$H_L = \begin{bmatrix} 0 & 0 & \dots & 0 \\ h_{21} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ h_{n1} & h_{n2} & \dots & 0 \end{bmatrix}, H_R = \begin{bmatrix} h_{11} & h_{12} & \dots & h_{1n} \\ 0 & h_{22} & \dots & h_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & h_{nn} \end{bmatrix}.$$

Тогда

$$x^{(k+1)} = H_L x^{(k+1)} + H_R x^{(k)} + g,$$

следовательно расчетная формула метода Зейделя в вектороном виде:

$$x^{(k+1)} = (E - H_L)^{-1} H_R x^{(k)} + (E - H_L)^{-1} g.$$
(6)

Метод Зейделя для системы x = Hx + g совпадает с методом итерации для системы

$$x = H_{seid} x + g_{seid}$$
, где $H_{seid} = (E - H_L)^{-1} H_R$, $g_{seid} = (E - H_L)^{-1} g$. (7)

Достаточное условие сходимости: $||H||_{\infty} < 1$ или $||H||_{1} < 1$.

Области сходимости методов итерации и Зейделя различны.

12.3. Приведение системы вида Ax = b к виду x = Hx + g

1. Пусть матрица A имеет диагональное преобладание, тогда $H = E - D^{-1}A, g = D^{-1}b$, где D — диагональная матрица, у которой на диагонали стоят диагональные элементы матрицы A.

В этом случае элементы матрицы H и столбца свободных членов g вычисляются по следующим формулам:

$$h_{ij} = \begin{cases} 0, & i = j, \\ -\frac{a_{ij}}{a_{ii}}, & i \neq j, \end{cases} \qquad g_i = \frac{b_i}{a_{ii}}.$$
 (8)

Очевидно, что достаточное условие сходимости метода простой итерации в этом случае будет выполнено.

Посмотрим, какой вид в этом случае будут иметь H_{seid} и g_{seid} .

Обозначим

$$L = \begin{bmatrix} 0 & 0 & \dots & 0 \\ a_{21} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & 0 \end{bmatrix}, R = \begin{bmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 0 \end{bmatrix},$$

$$D = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix}.$$

Тогда A=L+D+R, так что в прежних обозначениях $H_L=-D^{-1}L,\ H_R=-D^{-1}R,$ $H_{seid}=(E-H_L)^{-1}H_R=-(E+D^{-1}L)D^{-1}R=-(D+L)^{-1}R,\ g_{seid}=(D+L)^{-1}g.$

Известно, что если матрица A положительно определена, то метод Зейделя, называемый в этом случае методом Некрасова, для системы Ax = b сходится.

2. Пусть A самосопряженная $(A = A^*)$ и положительно определенная матрица,

$$0 < m < \lambda(A) < M$$
, $\alpha = 2/(m+M)$.

тогда матрицу H и столбец свободных членов g можно строить следующим образом: $H=E-\alpha A,\ q=\alpha b.$

Параметр α называется оптимальным параметром.

Упраженение

Проверить выполнение необходимого и достаточного условия сходимости.

12.4. Метод верхней релаксации

Расчетная формула метода для системы A x = b:

$$x_i^{(k)} = x_i^{(k-1)} + q \frac{b_i - (a_{i1}x_1^{(k)} + \dots + a_{ii-1}x_{i-1}^{(k)} + a_{ii}x_i^{(k-1)} + \dots + a_{in}x_n^{(k-1)})}{a_{ii}}, \quad i = 1, 2, \dots, n. \quad (9)$$

Метод будет сходиться, если матрица симметрическая, положительно-определенная и кроме того 0 < q < 2.

Для системы x = Hx + g, где H и g строятся по формулам (8), расчетная формула, очевидно, примет следующий вид:

$$x_i^{(k)} = x_i^{(k-1)} + q \left(\sum_{j=1}^{i-1} h_{ij} x_j^{(k)} + \sum_{j=i+1}^{n} h_{ij} x_j^{(k-1)} - x_i^{(k-1)} + g_i \right), \quad i = 1, 2, \dots, n.$$
 (10)

Быстрота сходимости релаксационного циклического процесса определяется наибольшим модулем собственных значений матрицы $S_q = (D+qL)^{-1}(D-qD-qR)$, где D, L и R диагональная, поддиагональная и наддиагональная части матрицы A. Оптимальное значение q вычисляется поформуле:

$$q = \frac{2}{1 + \sqrt{1 - \rho^2(H)}},\tag{11}$$

здесь $\rho(H)$ — спектральный радиус матрицы H.

Если же $\rho(H)$ неизвестно, его определяют экспериментально при решении системы методом простой итерации. Если наибольшее по модулю собственное значение матрицы H отделено от остальных собственных значений, то оно может быть определено из отношений одноименных компонент векторов $x^{(k+1)}-x^{(k)}$ и $x^{(k)}-x^{(k-1)}$. Действительно, $x^{(k+1)}-x^{(k)}=H^k(x^{(1)}-x^{(0)})$, $x^{(k)}-x^{(k-1)}=H^{k-1}(x^{(1)}-x^{(0)})$. В качестве приближения к $\rho(H)$ можно взять отношение норм векторов $x^{(k+1)}-x^{(k)}$ и $x^{(k)}-x^{(k-1)}$ при достаточно больших значениях k.

В численных результатах следует привести значение q и убедиться, что оно является оптимальным, то есть реализовать алгоритм, например, с $q_1=q-0.1$ и $q_2=q+0.1$. Сравнить. результаты.

Метод верхней релаксации совпадает с методом Зейделя при q=1.

12.5. Итерационный метод с чебышевским набором параметров

Пусть $0 < m \le \lambda(A) \le M$.

Расчетная формула метода

$$x^{(k)} = x^{(k-1)} + \tau_k(b - Ax^{(k-1)}), \quad k = 1, \dots, p,$$
(12)

где

$$\tau_k = \frac{2}{M + m - (M - m)\cos\frac{2k - 1}{2p}\pi}.$$
(13)

Этот метод может быть применен, если матрица A симметрическая и положительно-определенная.

Для устойчивости процесса итерационные параметры должны быть упорядочены специальным образом. Для упорядочения итерационных параметров надо построить последовательность нечетных чисел $\theta_p = \{\theta_p(1), \theta_p(2), \dots, \theta_p(p)\}$, таких, что $1 \leq \theta_p(i) \leq 2p-1$, и параметры τ_k вычислять по формуле

$$\tau_k = \frac{2}{(M+m-(M-m)t_k)}, \quad t_k = \cos\frac{\theta_p(k)}{2p}\pi, \quad k = 1, 2, \dots, p.$$
 (14)

Рассмотрим способ упорядочения θ_p для случая, когда p есть степень двойки: $p=2^l,\,l>0.$

Считая, что $\theta_1 = \{1\}$, поэтапно вычисляются $\theta_2, \ \theta_4, \dots, \theta_{2^p}$ следующим образом:

$$\theta_{2l}(2i-1) = \theta_l(i), \ \theta_{2l}(2i) = 4l - \theta_{2l}(2i-1), \ i = 1, 2, \dots, 2^{p-1},$$

так что

$$\begin{aligned} \theta_2 &= \{1,\,3\},\\ \theta_4 &= \{1,\,7,\,3,\,5\},\\ \theta_8 &= \{1,\,15,\,7,\,9,\,3,\,13,\,5,\,11\},\\ \theta_{16} &= \{1,\,31,\,15,\,17,\,7,\,25,\,9,\,23,\,3,\,29,\,13,\,19,\,5,\,27,\,11,\,21\}. \end{aligned}$$

Процесс следует повторять число раз кратное р. Число итераций для достижения заданной точности ε определяется по формуле $n(\varepsilon) \geq \frac{1}{2} \sqrt{\frac{M}{m}} \ln \frac{2}{\varepsilon}$. При p=1 метод совпадает с методом итераций с оптимальным параметром.

12.6. Прием Люстерника для ускорения сходимости метода последовательных приближений

Зная $\rho(H)$ — наибольшее по модулю собственное значение матрицы H, можно уточнить построенное ранее приближение $x^{(k)}$ по формуле

$$\overline{x} = x^{(k-1)} + \frac{1}{1 - \rho(H)} (x^{(k)} - x^{(k-1)}).$$
 (15)

Варианты задания Варианты расширенных матриц