```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Load dataset (make sure file is in the same directory or give full
path)
df = pd.read csv("/kaggle/input/titanic-dataset/Titanic-Dataset.csv")
# Update path if needed
# Overview
print("Dataset Shape:", df.shape)
print("\nData Types:\n", df.dtypes)
print("\nMissing Values:\n", df.isnull().sum())
# Handle missing values
df['Age'].fillna(df['Age'].median(), inplace=True)
df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
df.drop(columns=['Cabin'], inplace=True) # Too many missing values
# Univariate analysis
fig, axs = plt.subplots(2, 3, figsize=(18, 10))
sns.histplot(df['Age'], kde=True, ax=axs[0, 0]).set(title='Age
Distribution')
sns.countplot(x='Survived', data=df, ax=axs[0, 1]).set(title='Survival
Count')
sns.countplot(x='Pclass', data=df, ax=axs[0, 2]).set(title='Passenger
Class')
sns.countplot(x='Sex', data=df, ax=axs[1, 0]).set(title='Sex Count')
sns.histplot(df['Fare'], kde=True, ax=axs[1, 1]).set(title='Fare
Distribution')
sns.boxplot(x='Pclass', y='Age', data=df, ax=axs[1, 2]).set(title='Age
by Pclass')
plt.tight layout()
plt.show()
# Bivariate analysis
plt.figure(figsize=(10, 6))
sns.heatmap(df.corr(numeric only=True), annot=True, cmap='coolwarm')
plt.title("Correlation Heatmap")
plt.show()
plt.figure(figsize=(8, 5))
sns.barplot(x='Pclass', y='Survived', hue='Sex', data=df)
plt.title("Survival Rate by Class and Sex")
plt.show()
Dataset Shape: (891, 12)
Data Types:
```

PassengerId	int64
Survived	int64
Pclass	int64
Name	object
Sex	object
Age	float64
SibSp	int64
Parch	int64
Ticket	object
Fare	float64
Cabin	object
Embarked	object
11 1 1 1	

dtype: object

Missing Values:

PassengerId	(
Survived	0
Pclass	0
Name	0
Sex	0
Age	177
SibSp	0
Parch	0
Ticket	0
Fare	0
Cabin	687
Embarked	2

dtype: int64

/tmp/ipykernel_36/491629994.py:14: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Age'].fillna(df['Age'].median(), inplace=True)
/tmp/ipykernel_36/491629994.py:15: FutureWarning: A value is trying to
be set on a copy of a DataFrame or Series through chained assignment
using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

df['Embarked'].fillna(df['Embarked'].mode()[0], inplace=True)
/usr/local/lib/python3.11/dist-packages/seaborn/_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed
in a future version. Convert inf values to NaN before operating
instead.

with pd.option_context('mode.use_inf_as_na', True):
/usr/local/lib/python3.11/dist-packages/seaborn/_oldcore.py:1119:
FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.

with pd.option_context('mode.use_inf_as_na', True):

Summary of Insights

```
print("\n[] Summary of Key Insights:")
print("- Most passengers were in 3rd class and male.")
print("- Survival rate was higher for females and 1st class passengers.")
print("- Age and fare distributions are right-skewed.")
print("- Strong correlation between Pclass and Fare (higher class → higher fare).")
print("- Missing Age values were filled with median; Cabin column dropped.")
```