CONCEPÇÃO E ANÁLISE DE ALGORITMOS (CAL)

2020-2021 (2S)

ROSALDO ROSSETTI, ANA PAULA ROCHA, LILIANA FERREIRA, JOÃO PAULO FERNANDES, FILIPA RAMOS, GONÇALO LEÃO

DOCENTES

Rosaldo Rossetti (rossetti@fe.up.pt)

Ana Paula Rocha (arocha@fe.up.pt)

Liliana Ferreira

João Paulo Fernandes (jpaulo@fe.up.pt)

Filipa Ramos (<u>filiparamos@fe.up.pt</u>)

Gonçalo Leão

A UC contará com dois monitores (a partir de 1 Março)

- Acompanhamento dos trabalhos
- · Ajuda com dúvidas da matéria

OBJETIVOS

Gerais

- Complementar e aprofundar conhecimentos de "Prog." e "AED"
- Introduzir técnicas de concepção e implementação de algoritmos eficientes para resolução de diferentes tipos de problemas
- Analisar e avaliar as soluções concebidas

Competências a adquirir

- Conhecer e saber aplicar algoritmos eficientes em grafos, conjuntos e cadeias de caracteres
- Conhecer e saber aplicar técnicas genéricas de concepção e análise de algoritmos
- Conhecer alguns problemas intratáveis e algoritmos que fornecem soluções aproximadas para alguns deles

Resultados da aprendizagem

 caracterizar um problema, formalizá-lo, conceber algoritmos eficientes para solucioná-lo, e avaliar a solução concebida

PROGRAMA

- Técnicas de concepção de algoritmos: divisão e conquista; algoritmos gananciosos; programação dinâmica; algoritmos de retrocesso; algoritmos probabilísticos
- Formalização de problemas; representação de algoritmos; análise da sua complexidade (temporal e espacial); verificação da correcção dos algoritmos
- Estruturas de dados avançadas: filas de prioridade com alteração de prioridade; grafos.
- Algoritmos eficientes em grafos: ordenação topológica; caminho mais curto; árvore de expansão mínima; fluxo máximo e fluxo máximo de custo mínimo em redes de transporte; circuito de Euler e problema do carteiro chinês
- Algoritmos em "strings": pesquisa exacta e aproximada;
 "substring" comum mais comprida; compressão de texto
- Problemas intratáveis: teoria dos problemas NP-completos

BIBLIOGRAFIA

Principal

- T. Cormen; C. Leiserson; R. Rivest; C. Stein. Introduction to Algorithms. Cambridge, MA: MIT Press, 2009.
- M.A. Weiss. Data Structures and Algorithm Analysis in C++, 3/E. New York, NY: Addison Wesley, 2007.
- S. Skiena. The Algorithm Design Manual. Berlin: Springer, 2008.

Outras referências

 R. Sedgewick. Algorithms in C++ Part 5: Graph Algorithms, 3/E. New York, NY: Addison Wesley, 2002.

Material de apoio

· Moodle da disciplina!

MÉTODO DE ENSINO

As aulas teóricas são usadas para a exposição formal da matéria, acompanhada da apresentação de exemplos e sua discussão

As aulas práticas são usadas para a resolução de exercícios e desenvolvimento de pequenos programas em C++, para testar os algoritmos desenvolvidos

Os estudantes também deverão realizar trabalhos práticos, em grupos de 3 (três) estudantes. <u>Apesar de realizados em grupo, a avaliação dos trabalhos é individual!</u>

Avaliação individual, por exame final e pela observação da assiduidade, participação e desempenho nas aula práticas

AVALIAÇÃO

Avaliação distribuída com exame final

Frequência (CD)

- Frequência mínima às aulas práticas de laboratório (75%)
- Trabalho prático de grupo (CG) (3 estudantes/grupo)
 - Parte I: Formalização (25%) ≥ 8.0 valores
 - Parte II: Implementação e Análise (75%) ≥ 8.0 valores
- Nota mínima em cada parte do trabalho: 40%

Exame final (em papel) (EF) ≥ 8.0 valores (Tempo COVID)

- · Parte teórica (escolha múltipla)
- Parte prática (consulta limitada a material impresso!)

Avaliação Final

• AF = $0.6 \times EF + 0.4 \times CD$

AVALIAÇÃO

Atividades extras com possibilidade de bónus

- Kahoot!
 Questões sobre a matéria lecionada nas aulas teóricas
- HackerRank
 Exercícios diversos, a serem realizados em formato de competição de programação

AVALIAÇÃO

Datas Importantes

- 2ª e 3ª Semana (15/Fev-26/Fev)
 Definição dos grupos
- 4ª Semana (1/Mar-5/Mar)
 Escolha dos temas de trabalho
- 9ª Semana (9/Abr, 23:59)
 Entrega 1ª Parte (via Moodle) + discussão
- 15^a Semana (21/Maio, 23:59)
 Entrega 2^a Parte (via Moodle + GitHub) + demonstração

GESTÃO DA UC

Informação da Unidade Curricular

• SIFEUP

Planeamento, datas e material de apoio (principal fonte de informação)

Moodle

Aulas teóricas, práticas, dúvidas e sessões com monitores (online)

MS Teams

EXEMPLOS DE PROBLEMAS: CAMINHO MAIS 'CURTO'

Qual o caminho mais curto / mais rápido / mais barato entre 2 pontos?

Abstraído como problema em grafos, resolúvel em tempo polinomial.

EXEMPLOS DE PROBLEMAS: PROBLEMA DO CAIXEIRO VIAJANTE

Qual o melhor circuito para passar nos pontos de interesse assinalados?

Abstraído como problema em grafos, em geral não resolúvel em tempo polinomial.

EXEMPLOS DE PROBLEMAS: PROBLEMAS DE EMPARELHAMENTO

Todos os anos, dezenas de milhares de professores candidatam-se a vagas nas escolas.

Existem preferências de parte a parte (escolas e professores).

Interessa maximizar o nº de vagas ocupadas e preferências atendidas.

Abstraído como problema de emparelhamento em grafos bipartidos (mais precisamente, problema dos casamentos estáveis), tratável em tempo polinomial.

http://www.dcc.fc.up.pt/Pubs/TR05/dcc-2005-02.pdf