Universidade de Brasília

Delineamento e Análise de Experimentos

Professora Juliana Betini Fachini Gomes e-mail: jfachini@unb.br

Brasília - 2023

O modelo do delineamento em blocos casualizados completo para a tratamentos e b blocos é definido por:

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., b$$
 (1)

em que μ é a média geral, τ_i é a média ou efeito dos tratamentos, β_j é o efeito de blocos e ε_{ij} componente de erro aleatório com distribuição $N(0,\sigma^2)$.

 Usualmente, pensamos nos efeitos de tratamento e bloco como desvios da média geral, de modo que

$$\sum_{i=1}^{a} \tau_i = 0 \qquad \sum_{j=1}^{b} \beta_j = 0$$

 Também podemos escrever o modelo (31) como modelo de médias:

$$y_{ij}=\mu_{ij}+\varepsilon_{ij},\quad i=1,2,...,a;\quad j=1,2,...,b$$
 em que $\mu_{ij}=\mu+\tau_i+\beta_j.$

• As hipóteses de interesse para o modelo (31) são definidas por:

$$\begin{cases} H_0: \tau_1=\tau_2=...=\tau_{\it a}=0, & \hbox{(O efeito de tratamento \'e nulo)} \\ H_1: \exists \tau_i \neq 0 \end{cases}$$

• Ou de forma equivalente:

$$\begin{cases} H_0: \mu_1 = \mu_2 = \dots = \mu_a \\ H_1: \exists \mu_i \neq \mu_j, \ i \neq j, \end{cases}$$

em que
$$\mu_i = (1/b) \sum_{j=1}^{b} (\mu + \tau_i + \beta_j) = \mu + \tau_i$$
.

A análise de variância pode ser estendida para o modelo (31). Seja:

- $y_{i.} = \sum_{j=1}^{b} y_{ij}$ o total de todas as observações do i tratamento;
- $y_{.j} = \sum_{i=1}^{a} y_{ij}$ o total de todas as observações no j bloco;
- $y_{..} = \sum_{i=1}^{a} \sum_{j=1}^{b} y_{ij}$ o total geral de todas as observações e N = ab o número total de observações.

Similarmente, tem-se as médias:

- $\bar{y}_{i.} = y_{i.}/b$ é a média das observações do i tratamento;
- $\bar{y}_{.j} = y_{.j}/a$ é a média das observações no j bloco;
- $\bar{y}_{..} = y_{..}/N$ é a média geral de todas as observações.

• A *SS_T* pode ser escrita como:

$$\sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y_{..}})^{2} = b \sum_{i=1}^{a} (\bar{y_{i.}} - \bar{y_{..}})^{2} + a \sum_{j=1}^{b} (\bar{y_{.j}} - \bar{y_{..}})^{2} + \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \bar{y_{.j}} - \bar{y_{i.}} + \bar{y_{..}})^{2}$$

$$= SQ_{Trat} + SQ_{Bloco} + SQ_{Res}$$

- Relembrando o Teorema de Cochran temos:
 - Seja $Z_i \sim \mathcal{N}(0,1)$ para $i=1,2,\ldots,
 u$ e

$$\sum_{i=1}^{\nu} Z_i^2 = Q_1 + Q_2 + \ldots + Q_s$$

em que $s \leq \nu$, e Q_i tem ν graus de liberdade $(i=1,2,\ldots,s)$. Então, Q_1,Q_2,\ldots,Q_s são variáveis aleatórias independentes com distribuição qui-quadrado com ν_1,ν_2,\ldots,ν_s graus de liberdade, respectivamente, se e somente se

$$\nu = \nu_1 + \nu_2 + \ldots + \nu_s$$

- Ao analisar a equação (2) é possível verificar que a soma dos graus de liberdade do lado direito da equação é igual ao grau de liberdade da SQ_{Total};
- E ao fazer as suposições de normalidade dos erros, tem-se que

$$\frac{SQ_{Trat}}{\sigma^2}$$
, $\frac{SQ_{Bloco}}{\sigma^2}$ e $\frac{SQ_{Res}}{\sigma^2}$

são variáveis aleatórias independentes com distribuição qui-quadrado;

 Cada soma de quadrados dividida por seus graus de liberdade é um quadrado médio.

 Então, a esperança dos quadrados médios, se tratamentos e blocos forem fixos, podem ser definidos por:

$$E(QM_{Trat}) = \sigma^2 + rac{b\sum_{i=1}^a au_i^2}{a-1}$$
 $E(QM_{Bloco}) = \sigma^2 + rac{a\sum_{j=1}^a eta_j^2}{b-1}$
 $E(QM_{Res}) = \sigma^2$

 Sendo assim, para testar a igualdade das médias de tratamento, a estatística de teste é definida por:

$$F_0 = \frac{QM_{Trat}}{QM_{Res}},$$

com distribuição $F_{a-1,(a-1)(b-1)}$ se a hipótese nula for verdadeira.

• A região crítica é a cauda superior da distribuição F, e rejeitamos H_0 se $F_0 > F_{\alpha,a-1,(a-1)(b-1)}$.

- É possível testar efeito de bloco $(H_0: \beta_j = 0)$?
- Qual a estatística do teste?
- É possível seguir a mesma ideia da estatística de teste para efeitro de tratamento. Então, tem-se que:

$$F_0 = \frac{QM_{Bloco}}{QM_{Res}}$$

- No entanto, lembre-se de que a aleatorização foi aplicada apenas para tratamentos em cada blocos; ou seja, os blocos representam uma restrição à aleatorização;
- Que efeito isso tem na estatística do teste?

TABELA 1: Tabela de Análise de Variância

Fonte de Variação	SQ	g.l.	QM	F
Tratamentos	SQ_{Trat}	a - 1	QM_{Trat}	QM_{Trat}/QM_{Res}
Bloco	SQ_{Bloco}	b - 1	QM_{Bloco}	
Resíduo	SQ_{Res}	(a-1)(b-1)	QM_{Res}	
Total	SQ_T	N - 1		

Comparações de médias

- Caso seja verificado pela ANOVA a diferença entre as médias de tratamentos;
- Pode-se utilizar todas as técnicas de comparaçoes múltiplas aprendidas em Delineamento Inteiramente Casualizados;
- Porém, deve-se substituir o número de repetições (n) por número de blocos (b);
- E o número de graus de liberdade do resíduo de (a(n-1)) por ((a-1)(b-1).

Qual o tamanho da amostra ou o número de blocos?

 Em qualquer problema de planejamento experimental, uma decisão crítica é a escolha do tamanho da amostra, isto é, determinar o número de blocos a serem executadas, ao considerar o delineamento em blocos casualizados;

 Aumentar o número de blocos aumenta o número de repetições e o número de graus de liberdade do erro, tornando o experimento mais sensível.

TAMANHO DA AMOSTRA

 A probabilidade do erro tipo II do modelo de efeitos fixos é definida por:

$$\beta = P\{\text{não rejeitar}H_0|H_0\text{\'e falsa}\}$$

$$= P\{F_0 < F_{\text{crítico}}|H_0\text{\'e falsa}\}$$
(3)

Tamanho da amostra

- Para avaliar a probabilidade do erro tipo II, definida na equação (3), é preciso conhecer a distribuição da estatística do teste F₀ se a hipótese nula for falsa;
- Pode-se mostrar que, se H_0 for falsa, a estatística $F_0 = QM_{Trat}/QM_{Res}$ tem distribuição F não central com a-1 e (a-1)(b-1) graus de liberdade e parâmetro de não centralidade δ ;
- Se $\delta=0$, a distribuição F não central torna-se a distribuição F usual (central).

Tamanho da amostra

 O parâmetro de não centralidade da distribuição F pode ser obtido ao calcular:

$$E\left[\frac{SQ_{Trat}}{\sigma^2}\right],$$

• E esse parâmetro será igual a:

$$\delta = \frac{b\sum_{i=1}^{a} \tau_i^2}{\sigma^2},\tag{4}$$

• É possível observar que sob H_0 , a equação (4) é igual a 0.

Tamanho da amostra

- O pesquisador deve especificar os valores de τ e σ^2 ;
- A estimativa de σ^2 pode estar disponível a partir de uma experiência anterior, um experimento anterior ou uma estimativa de julgamento.
- Ao calcular δ , β e o poder do teste $(1-\beta)$ para diferentes valores de n, é possível encontrar o tamanho da amostra.

ESTIMAÇÃO DOS PARÂMETROS

• Para encontrar os estimadores de mínimos quadrados de μ , τ_i e β_j , é necessário escrever a soma dos quadrados dos erros:

$$L = \sum_{i=1}^{a} \sum_{j=1}^{b} \varepsilon_{ij}^{2} = \sum_{i=1}^{a} \sum_{j=1}^{b} (y_{ij} - \mu - \tau_{i} - \beta_{j})^{2}$$
 (5)

e os valores de μ , τ_i e β_j que minimizam a equação (5) são os estimadores de mínimos quadrados, $\hat{\mu}$, $\hat{\tau}_i$ e $\hat{\beta}_j$.

Os valores apropriados seriam as soluções para as equações simultâneas:

$$\frac{\partial L}{\partial \mu}|\hat{\mu},\hat{\tau}_i,\hat{\beta}_j=0,$$

$$\frac{\partial L}{\partial \tau_i} | \hat{\mu}, \hat{\tau}_i, \hat{\beta}_j = 0 \quad i = 1, 2, ..., a.$$

е

$$\frac{\partial L}{\partial \beta_i} | \hat{\mu}, \hat{\tau}_i, \hat{\beta}_j = 0 \quad j = 1, 2, ..., b.$$

ESTIMAÇÃO DOS PARÂMETROS

• Ao aplicar as restrições: $\sum_{i=1}^{a} \hat{\tau}_i = 0$ e $\sum_{j=1}^{b} \hat{\beta}_j = 0$, mostre que a solução para o sistema de equações normais é:

$$\hat{\mu}=\bar{\mathbf{y}}_{\cdot\cdot},$$

$$\hat{\tau}_i = \bar{y}_{i.} - \bar{y}_{..}$$

е

$$\hat{\beta}_j = \bar{y}_{.j} - \bar{y}_{..}$$

DIAGNÓSTICO

• É fundamental verificar a adequabilidade do modelo antes de tirar conclusões sobre o processo inferencial.

Verificar as características do modelo.

- Para avaliar a adequabilidade do modelo serão usados:
 - Métodos gráficos
 - Testes estatísticos

Resíduo

- Violações das suposições básicas e adequação do modelo podem ser facilmente investigadas através da análise dos resíduos.
- O resíduo no i-ésimo tratamento do j-ésimo bloco é definido por:

$$e_{ij} = y_{ij} - \hat{y}_{ij}, \tag{6}$$

em que \hat{y}_{ij} é o valor estimado obtido por:

$$\hat{y}_{ij} = \hat{\mu} + \hat{\tau}_i + \hat{\beta}_j
= \bar{y}_{..} + (\bar{y}_{i.} - \bar{y}_{..}) + (\bar{y}_{.j} - \bar{y}_{..})
= \bar{y}_{i.} + \bar{y}_{.j} - \bar{y}_{..}$$
(7)

Resíduo

• Para o modelo (31), assume-se que o erros, ε_{ij} são variáveis aleatórias independentes, identicamente distribuídos com distribuição Normal com média 0 e variância σ^2 .

• Se o modelo (31) for apropriado para os dados em estudo, os resíduos observados, e_{ij} , devem refletir as propriedades assumidas para o erro do modelo, ε_{ij} .

Suposição de Normalidade

- Pode ser inicialmente verificada ao construir um histograma dos resíduos. Se a suposição sobre os erros for satisfeita, este gráfico deve se parecer com uma amostra de uma distribuição normal centrada em zero;
- Outro recurso gráfico importante é o Gráfico de Probabilidade Normal dos resíduos - cada resíduo é colocado em um gráfico versus seu valor esperado sob normalidade.
- Se o resultado gráfico for aproximadamente linear, há evidências da suposição de normalidade.
- Se o resultado gráfico afasta substancialmente da linearidade, não há evidências de que a distribuição do erro é normal.

Suposição de Normalidade

- As vezes é útil padronizar os resíduos para a análise de resíduos.
- Como o desvio padrão dos erros, ε_{ij} , é σ , que pode ser estimado por $\hat{\sigma} = \sqrt{\text{MSRes}}$. É natural considerar a seguinte padronização:

$$d_{ij} = \frac{e_{ij}}{\sqrt{\mathsf{MSRes}}}.$$
 (8)

- Se $\varepsilon_{ij} \sim N(0, \sigma^2)$, os resíduos padronizados (8) deve ser aproximadamente normal com média zero e variância constante;
- Teste de hipótese também pode ser utilizado, como o teste de Shapiro-Wilk.

Suposição de independência

- O objetivo é verificar se existe qualquer correlação entre os erros que são próximos um dos outros em uma sequência;
- Quando os erros são independentes espera-se que os resíduos versus a ordem das observações flutuem em um padrão mais ou menos aleatório em torno da linha de referência Zero.

Variância constante

- Gráficos dos resíduos versus valores ajustados podem ser usados para verificar se a variância dos erros é constante.
 Pois, os sinais dos resíduos não são importantes para examinar a constância da variância do erro;
- Testes de hipóteses.

Variância constante

Para verificar as hipóteses:

$$\begin{cases} H_0: \sigma_1 = \sigma_2 = \dots = \sigma_a = 0 \\ H_1: \exists \sigma_i \neq 0 \end{cases}$$

pode-se utilizar os seguintes testes de hipóteses:

- F;
- Bartlett, e
- Levene

ADITIVIDADE DO MODELO EM BLOCOS CASUALIZADOS

Outro aspecto do delineamento em blocos casualizados é supor que o modelo linear

$$y_{ij} = \mu + \tau_i + \beta_j + \varepsilon_{ij}, \quad i = 1, 2, ..., a; \quad j = 1, 2, ..., b$$

é completamente aditivo.

Para verificar esse pressuposto deve-se:

- 1. Ajustar um modelo de regressão com as variáveis explicativas: Tratamento e Bloco;
- Ajustar um modelo de regressão com as variáveis explicativas: Tratamento e Bloco, e o efeito de Interação entre Tratamento e Bloco;
- Comparar os dois modelos e verificar se o parâmetro de Interação não é siginificativo ⇒ o pressuposto de aditividade é atendido.