

DATA ANALYSIS

Brian Chung

LAST TIME

I.Pandas

- Series
- DataFrames
- A bit into Group-by
- **II.KNN Intro**
 - Classification Models
 - •KNN in Python with sklearn

TODAY

I.KNN Review

- Review
- Basic Cross Validation
- **II.** Visualization
 - Matplotlib
- **III.NBA** Exercise
 - Entire process!

K NEAREST NEIGHBORS - PREDICT HAPPY/SAD

K NEAREST NEIGHBORS - SCALING, K = 2

K NEAREST NEIGHBORS - SCALING

K NEAREST NEIGHBORS - SCALING

mLiter Beer Drunk

SOLUTION: STANDARDIZE YOUR DATA ONE OPTION: X = X / NP.STD(X)

K NEAREST NEIGHBORS - WEIGHT FUNCTION, K = 20

K NEAREST NEIGHBORS - WEIGHT FUNCTION, SOLUTION

weights: str or callable

weight function used in prediction. Possible values:

- 'uniform': uniform weights. All points in each neighborhood are weighted equally.
- 'distance': weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
- [callable]: a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

Uniform weights are used by default.

K NEAREST NEIGHBORS - WHAT K????

SOLUTION: CROSS VALIDATION (NEXT EXERCISE)

WHAT HAPPENS UNDER THE HOOD

KNN CLASSIFICATION - INITIAL DATASET

		ı

	sepal_length	sepal_width	petal_length	petal_width	species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa

dataset

KNN CLASSIFICATION - DETERMINE DATA AND LABELS

dataset

```
X = data.ix[:,0:4]
X.head()
```

	sepal_length	sepal_width	petal_length	petal_width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2
3	4.7	3.2	1.3	0.2
4	4.6	3.1	1.5	0.2
5	5.0	3.6	1.4	0.2

```
y = data.ix[:,-1]
y.head()
```

```
1 setosa
```

2 setosa

3 setosa

4 setosa

5 setosa

Name: species, dtype: object

KNN CLASSIFICATION - SPLIT INTO TRAIN AND TEST

split dataset

```
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=.8)

print "Total X shape:", X.shape
print "Train X shape:", X_train.shape
print "Total y shape:", X_test.shape
print "Total y shape:", y.shape
print "Train y shape:", y_train.shape
print "Test y shape:", y_test.shape

Total X shape: (150, 4)
Train X shape: (120, 4)
Test X shape: (30, 4)
Total y shape: (150,)
Train y shape: (120,)
Test y shape: (30,)
```

KNN CLASSIFICATION - BUILD MODEL ON TRAIN DATA

fit model on train

KNN CLASSIFICATION - WHAT'S INSIDE THE MODEL?

KNN CLASSIFICATION - PREDICT MODEL ON TRAIN DATA

Predict the class of this row

	sepal_length	sepal_width	petal_length	petal_width	
9	4.4	2.9	1.4	0.2	

model,k=5

Predict the class of this row

	sepal_length	sepal_width	petal_length	petal_width	
9	4.4	2.9	1.4	0.2	

train					y train			
	sepal_length	sepal_width	petal_length	petal_width		109	virginica	
09	6.7	2.5	5.8	1.8		1 82	setosa versicolor	
	5.1	3.5	1.4	0.2		6 29	setosa setosa	
2	5.5	2.4	3.7	1.0	• • •	122	virginica	
	5.4	3.9	1.7	0.4			versicolor versicolor	
9	5.2	3.4	1.4	0.2		149 73	virginica versicolor	
22	5.6	2.8	4.9	2.0		39	setosa	

$$Distance = \sqrt{\frac{\left(sepal_{length}(x_j) - sepal_{length}(x_k)\right)^2 + \left(sepal_{width}(x_j) - sepal_{width}(x_k)\right)^2 + \left(petal_{length}(x_j) - petal_{length}(x_k)\right)^2 + \left(petal_{width}(x_j) - petal_{width}(x_k)\right)^2} + \left(petal_{length}(x_j) - petal_{length}(x_k)\right)^2 + \left(petal_{width}(x_j) - petal_{width}(x_k)\right)^2}$$

KNN CLASSIFICATION - LASTLY, GENERATE THE SCORE

predict y for x_{train}

KNN CLASSIFICATION - REPEAT ON THE TEST SET

KNN DIGITS LAB

VISUALIZATION LAB

NBA EXERCISE

EXIT

- Exit tickets
 - DAT 1, Lesson 4, EDA
- Project Milestone 1, Due Dec 21
- Office Hours, Thursday 5pm to 8pm