數位IC設計

Semi Custom Design Flow

Top-Down Design Methodology

Design Domain

Register Transfer Level -- RTL

Cell-Based Design Flow (1/2)

Semi Custom Design

- a. Product specification
- b. Modeling with HDL
- c. Synthesis (by using suitable standard cell)
- d. Simulation and verification
- e. Physical placement and layout
- f. Tape-out (real chip) -- implemented by suitable Fab companies
- g. Testing -- implemented by suitable tools and mechanisms

more flexible, shorter design cycle, suitable for smaller production

PLD

FPGA or CPLD

Xilinx, Altera

-- implemented with

suitable tools

Two different solutions:

Real ASIC chip

Standard cell

Fab (TSMC, UMC, ..)

less flexible, long design cycle, larger-scale production to reduce price

Cell-Based Design Flow (2/2)

Hardware Description Language (1/3)

Structural description

1. module OR_AND_STRUCTURAL(IN,OUT);

```
2. input [3:0] IN;
```

outputOUT;

wire [1:0] TEMP;

- or u1(TEMP[0], IN[0], IN[1]);
- 6. or u2(TEMP[1], IN[2], IN[3]);
- 7. and (OUT, TEMP[0], TEMP[1]);
- endmodule

Register Transfer Level -- RTL

Hardware Description Language (2/3)

- Behavioral descrition
 - 1. module OR_AND_BEHAVIORAL(IN, OUT);
 - 2. input [3:0] IN;
 - 3. output OUT;
 - 4. reg OUT;
 - 5. always @(IN)
 - 6. begin
 - 7. OUT = (IN[0] | IN[1]) & (IN[2] | IN[3]);
 - 8. end
 - 9. endmodule

Register Transfer Level -- RTL

Hardware Description Language (3/3)

3 to 8 decoder

Е	In[2]	In[1]	In[0]	Out
0	X	X	X	00000000
1	0	0	0	00000001
1	0	0	1	00000010
1	0	1	0	00000100
1	0	1	1	00001000
1	1	0	0	00010000
1	1	0	1	00100000
1	1	1	0	01000000
1	1	1	1	10000000

Behavioral description

```
module Decoder_Behavioral (E, In, Out);Input E;
```

```
input [2:0] In;
output [7:0] Out;
reg [7:0] Out;
```

```
always @(E or In)
begin
 if(!E)
     Out = 8'h00;
 else
      begin
         case(In)
             3'b000: Out = 8'h01;
             3'b001: Out = 8'h02;
             3'b010: Out = 8'h04;
             3'b011: Out = 8'h08;
             3'b100: Out = 8'h10;
             3'b101: Out = 8'h20;
             3'b110: Out = 8'h40;
             default: Out = 8'h80;
          endcase
      end
end
endmodule
```


Design Flow Using ModelSim

FPGA/CPLD Design Flow

Note: What is the difference between standard-cell design and FPGA/CPLD design?何者相同?何者不同? Flow, tool, cost, time, ...

Design Ideas

- Main design consideration
 - Design feasibility?
 - Design spec.?
 - Cost?
 - FPGA or standard-cell ASIC?
 - FPGA vendor?
 - Device family?
 - Development time?

Programmable Logic Device

■ PLD (Programmable Logic Device)依其架構及密 度可分成三類:

- SPLD (Simple Programmable Logic Device)
- CPLD (Complex Programmable Logic Device)
- FPGA (Field Programmable Gate Array)

SPLD

- SPLD (Simple Programmable Logic Device):
 - 邏輯閘約在數百閘左右
 - IC腳位在28pin以內
 - Bipolar process,只能作單次燒錄,資料無法抹除
 - GAL process,多次燒錄,可縮短設計時程

4

CPLD

- CPLD (Complex Programmable Logic Device)
 - 邏輯閘在800~5000之間
 - IC腳位高於28pin
 - 44pin以上IC的封裝以PLCC為主
 - CMOS設計技術
 - 多次燒錄抹除

FPGA

- FPGA:(Field Programmable Gate Array)
 - 使用和CPLD不同的架構設計方式
 - 以暫存器居多,其密度在5K以上
 - ■腳位數多
 - Routing複雜,非固定式,延遲時間較長
- FPGA的架構
 - SRAM Base -可重覆燒錄但需外部電源維持資料
 - Anti-fuse -只有一次燒錄,提供較佳保密性

Configurable VLSI

- Advantages
 - Short time-to-market
 - Low tooling costs
 - Low penalty on design changes
 - Low testing cost
 - Product advantage (new process, .35, .25, .18, .13)
- Disadvantages
 - capacity
 - cost
 - speed

Altera Devices

Products

- MAX3000/5000/7000/9000 devices family
- FELX6K/8K/10K devices family
- APEX20K devices family
- ACEX1K

Workbench

- MaxplusII & QuartusII
- FPGA express, Leonard Spectrum

Xilinx Devices

- Products
 - XC9500/4000, Coolrunner(XPLA3), Spartan, Vertex
- Workbench
 - Foundation & ISE
- Virtex Architecture

Gate-array like architecture, Configurable logic blocks I/O blocks 16 signal standards, Block RAM On-chip memory for higher performance

Clocks & delay-locked loop, Interconnect resources

FPGA/CPLD Design Flow

Note: What is the main difference between cell-based design and FPGA/CPLD design?何者相同?何者不同? Flow, tool, cost, time, ...

Detailed Design (1/2)

- Choose the suitable architecture
 - Algorithm, spec. to architecture mapping
 - Parallel, pipeline, serial, DA,

- Choose the design entry method
 - Schematic
 - Gate level design
 - Intuitive & easy to debug
 - HDL (Hardware Description Language), Verilog & VHDL
 - Descriptive & portable
 - Easy to modify
 - RTL (register transfer level) coding
 - Mixed HDL & schematic

Detailed Design (2/2)

- Manage the design hierarchy
 - Design partitioning
 - Chip partitioning
 - Logic partitioning
 - Use vendor-supplied libraries or parameterized libraries to reduce design time
 - Create & manage user-created libraries (circuits)

Functional Simulation

- Preparation for simulation
 - Generate simulation patterns
 - Waveform entry
 - HDL testbench
 - Generate simulation netlist
- Functional simulation
 - To verify the functionality of your design only
- Simulation results
 - Waveform display
 - Text output
- Challenge
 - Sufficient & efficient test patterns

Design Implementation (1/2)

- Implementation flow
 - Natlist merging, flattening, data base building
 - Design rule checking
 - Logic optimization
 - Block mapping & placement
 - Net routing
 - Configuration bitstream generation

Design Implementation (2/2)

- Implementation results
 - Design error or warnings
 - Device utilization
 - Timing reports
- Challenge
 - –How to reach high performance & high utilization implementation?

Timing Analysis & Simulation

Timing analysis

- Timing analysis is static, i.e., independent of input & output patterns
- To examine the timing constraints
- To show the detailed timing paths
- Can find the critical path

Timing simulation

To verify both the functionality & timing of the design

Device Programming (1/2)

- Choose the appropriate configuration scheme
 - SRAM-basedFPGA/CPLD devices
 - Downloading the bitstream via a download cable
 - Programming onto a non-volatile memory device & attaching it on the circuit board
 - OTP, EPROM, EEPROM or Flash-based FPGA/CPLD devices
 - Using hardware programmer
 - ISP

Device Programming (2/2)

- Finish the board design
- Program the device
- Challenge
 - Board design
 - System considerations

Altera Design Flow (Max-Plus II)

Operate seamlessly with other EDA tools

MAX+PLUS II Altera Fully-Integrated Development System

Design Entry (1/2)

- MAX+PLUS II design entry tools
 - Graphic Editor & Symbol Editor
 - For schematic designs
 - Text Editor
 - For AHDL, Verilog HDL, and VHDL designs
 - Waveform Editor
 - Floorplan Editor
 - Hierarchy Display

Design Entry (2/2)

Project Processing (1/2)

- MAX+PLUS II tools for project processing (implementation)
 - MAX+PLUS II Compiler
 - MAX+PLUS II Floorplan Editor
 - For pin, logic cell location assignments
 - Message Processor
 - For error detection & location

Project Processing (2/2)

Project Verification (1/2)

- MAX+PLUS II tools for project verification
 - MAX+PLUS II Simulator
 - MAX+PLUS II Waveform Editor
 - MAX+PLUS II Timing Analyzer

Project Verification (2/2)

Device Programming

- MAX+PLUS tool for device programming
 - MAX+PLUS II Programmer

MAX+PLUS II Features (1/2)

- MAX+PLUS II, Altera's fully integrated design environment (jump to page 4)
 - Schematic, text (AHDL, VHDL, and Verilog HDL), waveform design entry & hierarchy display
 - Floorplan editing
 - RC, logic synthesis & fitting, timing-driven compilation
 - Multi-device partitioning
 - Automatic error location

MAX+PLUS II Features (2/2)

- Functional simulation, timing simulation, and multi-device simulation
- Timing analysis
- Programming file generation & device programming
- EDA interface : industry-standard library support, EDA design entry & output formats (EDIF, Verilog & VHDL)
- On-line help

Xilinx Design Flow (Foundation)

References

- (1) http://www.xilinx.com/xilinx FPGA.pdf
- (2) http://www.altera.com/alt_lab.pdf
- (3) http://www.cic.edu.tw/~steven/stratix.htm/
- (4) http://www.altera.com/literature/ds/acex.pdf
- (5) 教育部P&L聯盟-FPGA系統設計實務(摘自陳漢臣老師部份)