Let assume x1, x2, and x3 are the number of units of three almirahs, respectively.

Primal Problem:

$$Max Z = 40 x1 + 80 x2 + 60 x3$$

s. t.

$$x1 + 4/3 x2 + 2/3 x3 \le 600$$

$$2/3 \times 1 + 1/3 \times 2 + 2/3 \times 3 \le 400$$

$$1/3 \times 1 + 1/3 \times 2 + 1/3 \times 3 \le 800$$

$$x1, x2, x3 >= 0$$

Microsoft Excel 16.0 Answer Report

Worksheet: [OR.xlsx]Sheet3

Report Created: 05-02-2022 11:59:40

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.063 Seconds. Iterations: 5 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001, Use Automatic Scaling Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume NonNegative

Objective Cell (Max)

Cell	Name	Original Value	Final Value
\$B\$7	Maximize	0	46000

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	X1	0	0	Contin
\$B\$3	X2	0	200	Contin
\$B\$4	Х3	0	500	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$B\$10		600	\$B\$10<=\$D\$10	Binding	0
\$B\$11		400	\$B\$11<=\$D\$11	Binding	0
\$B\$12		533.3333333	\$B\$12<=\$D\$12	Not Binding	266.6666667

\$B\$13	0	\$B\$13>=\$D\$13	Binding	<u> </u>
70713		70713/-70713	Diridirig	
\$B\$14	200	\$B\$14>=\$D\$14	Not Binding	200
\$B\$15	500	\$B\$15>=\$D\$15	Not Binding	500

Dual Problem:

$$Min K = 600 y1 + 400 y2 + 800 y3$$

s. t.

$$y1 + (2/3) y2 + (1/3) y3 >= 40$$

$$(4/3)$$
 y1 + $(1/3)$ y2 + y3 >= 80

$$(2/3)$$
 y1 + $(2/3)$ y2 + $(2/3)$ y3 >= 60

$$Y1, y2, y3 >= 0$$

Microsoft Excel 16.0 Answer Report

Worksheet: [OR.xlsx]Sheet3

Report Created: 05-02-2022 11:58:27

Result: Solver found a solution. All Constraints and optimality conditions are satisfied.

Solver Engine

Engine: Simplex LP

Solution Time: 0.047 Seconds. Iterations: 5 Subproblems: 0

Solver Options

Max Time Unlimited, Iterations Unlimited, Precision 0.000001

Max Subproblems Unlimited, Max Integer Sols Unlimited, Integer Tolerance 1%, Assume

NonNegative

Objective Cell (Min)

Cell	Name	Original Value	Final Value	
\$B\$7	Minimize	0	46000	

Variable Cells

Cell	Name	Original Value	Final Value	Integer
\$B\$2	y1	0	50	Contin
\$B\$3	y2	0	40	Contin
\$B\$4	у3	0	0	Contin

Constraints

Cell	Name	Cell Value	Formula	Status	Slack
\$B\$10		76.66666667	\$B\$10>=\$D\$10	Not Binding	36.66666667
\$B\$11		80	\$B\$11>=\$D\$11	Binding	0
\$B\$12		60	\$B\$12>=\$D\$12	Binding	0

\$B\$13	50	\$B\$13>=\$D\$13	Not Binding	50
\$B\$14	0	\$B\$14>=\$D\$14	Binding	0
\$B\$15	0	\$B\$15>=\$D\$15	Binding	0