函数

Lijie Wang

Τν.

.

函数基本定义

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

引言

函数基本定义

Liiie Wang

定)

举

数:

比较

38

函数是数学中的一个基本概念,它非常古老,这个词出现于十七世纪下半叶,比关系理论早两个多世纪,由伟大的数学家莱布尼兹提出,他也与牛顿各自独立的发现了微积分的基本定理.

在高等数学中,函数一般是在实数集的基础上来研究,通常是连续或间断连续的函数.在这里,我们将函数看作是一种特殊的二元关系,从离散量的角度讨论函数的定义,运算和性质.

函数的概念在日常生活和计算机科学中非常重要 例如,各种高级程序语言中都大量的使用了函数。实际上,计算机的任何输出都可看成是某些输入的函数.

引例

函数基本定义

Lijie Wang

定义

举例

数量

比较

Example

假定你需要编写一个函数,函数的输入是目标的距离 x,函数的输出是大炮射角 α . 考虑这个函数的输入 x 和输出 α 应该满足什么性质?

函数

函数基本定义

Liiie Wang

定义

举仍

比较

Definition

设 f 是集合 A 到 B 的关系, 如果对每个 $x \in A$, 都存在惟一的 $y \in B$, 使得 $\langle x, y \rangle \in f$, 则称关系 f 为 A 到 B 的函数或映射, 记为 $f: A \to B.A$ 为函数 f 的定义域, 记为 dom f = A; f(A) 为函数 f 的值域, 记为 ranf.

当 $< x, y > \in f$ 时,通常记为 y = f(x),这时称 x 为函数 f 的自变量 (或原像),y 为 x 在 f 下的函数值 (或像). 注意区分 f 和 f(x) ,二者是不同的。

函数

函数基本定义

Lijie Wang

疋.

平份

迷行手

比较

Example

设
$$A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$$
, 则.

设
$$A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$$
, 则.

• $f_1 = \{ <1, a>, <2, a>, <3, d>, <4, c> \};$

- $f_1 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \};$

- $f_1 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \};$
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$

- $f_1 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$
- $f_2 = \{ <1, a>, <2, a>, <2, d>, <4, c> \};$
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$
- $f_4 = \{ \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \}.$

- $f_1 = \{ <1, a>, <2, a>, <3, d>, <4, c> \};$ 函数
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \};$
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$
- $f_4 = \{ \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \}.$

- $f_1 = \{ <1, a>, <2, a>, <3, d>, <4, c> \};$ 函数
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \};$ 非函数
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$
- $f_4 = \{ \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \}.$

- $f_1 = \{ <1, a>, <2, a>, <3, d>, <4, c> \};$ 函数
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \}$; 非函数
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$ 函数
- $f_4 = \{ \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \}.$

- $f_1 = \{ <1, a>, <2, a>, <3, d>, <4, c> \};$ 函数
- $f_2 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 2, d \rangle, \langle 4, c \rangle \};$ 非函数
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$ 函数
- $f_4 = \{\langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle\}$. 非函数

设 $A = \{1, 2, 3, 4\}, B = \{a, b, c, d\}$, 则.

- $f_1 = \{ \langle 1, a \rangle, \langle 2, a \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$ 函数
- $f_3 = \{ \langle 1, a \rangle, \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \};$ 函数
- $f_4 = \{ \langle 2, b \rangle, \langle 3, d \rangle, \langle 4, c \rangle \}$. 非函数

如果关系 f 具备下列两种情况之一, 那么 f 就不是函数:

- 存在元素 $a \in A$, 在 B 中没有像;
- 存在元素 $a \in A$, 有两个及两个以上的像。

函数

函数基本定义

Lijie Wang

中ツ

举例

淡ケ音

比较

函数

函数基本定义

Lijie Wang

定)

平位

388y-

$$\bullet \ f: \mathbf{N} \to \mathbf{N}, f(x) = x+1;$$

- $f: \mathbf{N} \to \mathbf{N}, f(x) = x + 1;$
- $g: \mathbf{R} \to \mathbf{R}, g(x) = x^2 + 2x + 1;$

平份

数

比為

- $f : \mathbf{N} \to \mathbf{N}, f(x) = x + 1;$
- $g: \mathbf{R} \to \mathbf{R}, g(x) = x^2 + 2x + 1;$
- $h: A \to P(A), h(x) = \{x\};$

- $f: \mathbf{N} \to \mathbf{N}, f(x) = x + 1;$
- $g: \mathbf{R} \to \mathbf{R}, g(x) = x^2 + 2x + 1;$
- $h: A \to P(A), h(x) = \{x\};$
- 设 $V = \{a_1, a_2, \dots, a_n\}$ 是 n 项任务的集合, $M = \{b_1, b_2, \dots, b_m\}$ 是 m 个人的集合, 则 $t: V \to M$ 表示任务的安排方案: $t(a_i) = b_i$ 表示 a_i 任务由 b_i 来完成.

函数

函数基本定义

Lijie Wang

....

+17

数:

比

Example (更多函数的例子)

- $f: \mathbf{N} \to \mathbf{N}, f(x) = x + 1;$
- $g: \mathbf{R} \to \mathbf{R}, g(x) = x^2 + 2x + 1;$
- $h: A \to P(A), h(x) = \{x\};$
- 设 $V = \{a_1, a_2, \dots, a_n\}$ 是 n 项任务的集合, $M = \{b_1, b_2, \dots, b_m\}$ 是 m 个人的集合, 则 $t: V \to M$ 表示任务的安排方案: $t(a_i) = b_i$ 表示 a_i 任务由 b_i 来完成.

Definition

所有从 A 到 B 的一切函数构成的集合记为 BA:

$$B^{A} = \{ f | f : A \to B \}.$$

函数基本定义

Lijie Wang

定.

平

W#-5

~~·

Example

函数基本定义

Lijie Wang

定

举化

数量

Had

Example

函数基本定义

Lijie Wang

定)

华节

数量

Example

- ② $f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$

函数基本定义

Lijie Wang

定)

4-17

数量

. . . .

Example

- ② $f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$
- **3** $f_3 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \};$

Lijie Wang

数量

Example

- **1** $f_1 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \};$
- $f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$
- **3** $f_3 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \};$
- **4** $f_4 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \};$

Lijie Wang

数量

Example

- **1** $f_1 = \{\langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle\};$ **2** $f_5 = \{\langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle\};$
- $f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$
- **3** $f_3 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \};$
- **4** $f_4 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \};$

- ② $f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$

- **1** $f_1 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \};$
 - **6** $f_5 = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 1 \rangle \};$
- $f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$
- **6** $f_6 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \}$:
- **3** $f_3 = \{\langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle\}$:
- $f_7 = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$
- **4** $f_4 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \};$

$$f_7 = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$$

3
$$f_8 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \}.$$

设 $A = \{a, b, c\}, B = \{1, 2\}$,则 A 到 B 的所有不同函数有:

②
$$f_2 = \{ \langle a, 1 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$$

6
$$f_6 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle c, 1 \rangle \};$$

$$\bullet$$
 $f_7 = \{ \langle a, 2 \rangle, \langle b, 1 \rangle, \langle c, 2 \rangle \};$

$$\mathbf{4} \quad f_4 = \{ \langle a, 1 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \};$$

3
$$f_8 = \{ \langle a, 2 \rangle, \langle b, 2 \rangle, \langle c, 2 \rangle \}.$$

设函数 $f: A \to B, |A| = m, |B| = n,$ 对 A 中的每个元素而言, 其序偶的第二元素都有 n 种可能的选择, 因而总共有 n^m 种选法, 也就是有 n^m 个不同的函数.

关系与函数的差别

函数基本定义

Lijie Wang

定)

举

₩4r-

比车

当 A 和 B 都是有限集合时, 函数和一般关系具有如下差别:

• 关系和函数的数量不同: 从 A 到 B 的不同关系有 $2^{|A| \times |B|}$ 个, 从 A 到 B 的不同函数却仅有 $|B|^{|A|}$ 个;

关系与函数的差别

函数基本定义

Lijie Wang

たン

举

※ケ:

比车

当 A 和 B 都是有限集合时, 函数和一般关系具有如下差别:

- 关系和函数的数量不同: 从 A 到 B 的不同关系有 $2^{|A| \times |B|}$ 个, 从 A 到 B 的不同函数却仅有 $|B|^{|A|}$ 个;
- 关系和函数的基数不同: 每一个关系的基数可以从零一直到 $|A| \times |B|$, 每一个函数的基数都为 |A| 个;

关系与函数的差别

函数基本定义

Lijie Wang

正〉

举

数

比车

当 A 和 B 都是有限集合时, 函数和一般关系具有如下差别:

- 关系和函数的数量不同: 从 A 到 B 的不同关系有 $2^{|A| \times |B|}$ 个, 从 A 到 B 的不同函数却仅有 $|B|^{|A|}$ 个;
- 关系和函数的基数不同: 每一个关系的基数可以从零一直到 $|A| \times |B|$, 每一个函数的基数都为 |A| 个:
- 关系和函数的第一元素存在差别: 关系的第一个元素可以相同, 函数的第一元素一定是互不相同的.

函数基本定义

Lijie Wang

+-1

级队

比较

THE END, THANKS!