

A Novel Field Method for the Flux Divergence

NORTHWEST GLACIOLOGISTS OCTOBER 20-21, 2023

Albin Wells, David Rounce

Collaborators: Louis Sass, Caitlyn Florentine

Background

- Mountain glaciers are changing rapidly
- We can measure surface elevation change for all glaciers on Earth (e.g., Hugonnet et al. 2021, Jakob & Gourmelen 2023)
- We need to translate distributed elevation change observations into climatic mass balance observations that can constrain global glacier models

The *flux divergence* is a critical component needed to obtain the climatic mass balance

Climatic Mass Balance

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

Flux Divergence

Total Mass Balance

The *flux divergence* is a critical component needed to obtain the climatic mass balance

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

Climatic Mass Balance

"Glacier mass change due to the climate"

"Surface (+ internal) mass balance"

Total Mass Balance

"Glacier surface elevation change"

"Change in glacier thickness"

Flux Divergence

"Dynamic contribution to glacier surface change" "Elevation change from a difference in mass flux"

Climatic mass balance <u>requires</u> flux divergence without in-situ observations available

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

Climatic Mass Balance

- Ablation stakes
- Snow pits (in-situ)

Total Mass Balance

DEM differencing (remote sensing)

Flux Divergence

- Derived from ice thickness & velocity (remote sensing)
- Field methods? (in-situ)

We have no scaled constraints on modeled climatic mass balance which is crucial for processbased understanding of present and future glacier changes

Climatic mass balance <u>requires</u> flux divergence without in-situ observations available

This is what we want, globally...

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

Climatic Mass Balance

Total Mass Balance

- Ablation stakes
- Snow pits (in-situ)

DEM differencing (remote sensing) ...so we need this...

Flux Divergence

- Derived from ice thickness & velocity (remote sensing)
- Field methods? (in-situ)

...for which ground-truth data is essential

We have no scaled constraints on modeled climatic mass balance based understanding of present and future glac

How do conventional remote-sensing approaches perform?

Remote sensing flux divergence is unreliable for point estimates

Remote sensing flux divergence is unreliable for point estimates

Flux gate approach can yield reasonable values

Parameter Value

Flux Zone Area (sq.km): 0.34

Flux Zone DHDT (m/yr): -1.70

Flux Zone DIVQ (m/yr): 1.89

Flux Zone CMB (m/yr): -3.59

Flux gate approach is sensitive to gate placement

Parameter	Value	[min, max]
Flux Zone Area (sq.km):	0.31	[0.21, 0.41]
Flux Zone DHDT (m/yr):	-1.70	[-1.77, -1.67]
Flux Zone DIVQ (m/yr):	1.55	[0.32, 2.03]
Flux Zone CMB (m/vr):	-3.25	[-3.742.01]

Can we use novel in-situ methods to get contemporaneous measurements of climatic mass balance, total mass balance, and flux divergence?

YES!

Cryologger GNSS Systems

Instantaneous flux divergence

from GNSS station 'fixed' to ablation stake (& DEM-derived slope)

Instantaneous flux divergence

from GNSS station 'fixed' to ablation stake (& DEM-derived slope)

Results from Gulkana Site AB (ablation area)

Spring Surface

Fall Surface

Spring stake bossion

Direction of Flow

Gulkana Glacier Site AB Stake and Slope Elevation Change

Results from Gulkana Site AB (ablation area)

1.5

1.0

0.5

-0.5

-1.0

Elevation Change (m)

divide flux divergence by time for emergence velocity!

Weekly flux divergence reveals strong link with velocity

negative flux divergence is "emergence" (following Cogley et al. 2011)

Reliable flux divergence estimate after ~2 weeks

Gulkana Glacier Site AB Flux Divergence

Reliable flux divergence estimate after ~2 weeks

Spring-Fall divQ measurement: -2.6 m/yr

Instantaneous total mass balance

from GNSS station 'floating' on ice surface (& DEM-derived slope)

Instantaneous climatic mass balance

from GNSS systems (with monitored ablation stake for validation)

Mass balance from GNSS systems

Takeaways

- Potential for "robust" methods of flux divergence from remote sensing
 - Require ground-truth measurements
- GNSS system fixed to an ablation stake enables precise flux divergence
- A <u>fixed GNSS system with a monitored ablation stake</u> accurately derives all elements of the continuity equation
- The fixed-floating system has redundancy for flux divergence and climatic mass balance

Next Steps

- Deployment of more systems next Spring
- GNSS-IR?

...other projects I'm excited about...

- simplify and manipulate geometries
- control for noise/bias in data
- assess error and uncertainty propagate through velocity and ice thickness

Long-term changes on Kennicott from historical imagery

Velocity Signals at Sites AB (terminus) and D (accumulation area)

Calculating flux divergence as the residual

from monitored stake with 'fixed' and 'floating' GNSS stations

Independent flux divergence methods show decent agreement

$$\Delta z_{\text{divQ}} = \Delta z_{\text{slope}} - \Delta z_{\text{stake}}$$

$$\Delta z_{\text{divQ}} = z_{\text{cmb}} - (\Delta z_{\text{total}} - \Delta z_{\text{slope}})$$

Gulkana Glacier Site AB *Cumulative* Flux Divergence Comparison

Both methods see the same flux divergence speed-up

$$\Delta z_{\text{divQ}} = \Delta z_{\text{slope}} - \Delta z_{\text{stake}}$$

$$\Delta z_{\rm divQ} = z_{\rm cmb} - (\Delta z_{\rm total} - \Delta z_{\rm slope})$$

Gulkana Glacier Site AB *Weekly* Flux Divergence Comparison

GNSS System Accuracy – Base Station results

Full Overview

Spring Surface

Climatic Mass Balance (2 methods):

from monitored stake

$$Z_{cmb} = Z_{total} - Z_{stake}$$

Total Mass Balance:

$$\Delta z_{dhdt} = \Delta z_{total} - \Delta z_{slope}$$

Flux Divergence (2 methods):

$$\Delta z_{\text{divQ}} = \Delta z_{\text{slope}} - \Delta z_{\text{stake}}$$

$$\Delta z_{\text{divQ}} = z_{\text{cmb}} - (\Delta z_{\text{total}} - \Delta z_{\text{slope}})$$

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

from monitored ablation stake

Gulkana Glacier Site AB Monitored Ablation Stake

Monitored Ablation Stakes

climatic mass balance record

Site AB GNSS Elevation Results

Gulkana 2023 Site AB GNSS Fixed and Floating Station Daily Elevation

Reliable flux divergence estimate after ~2 weeks

Gulkana Glacier Site AB *Cumulative* Flux Divergence

negative flux divergence is emergence; this is just a sign convention

Weekly flux divergence reveals strong link with velocity

Gulkana Glacier Site AB Weekly Flux Divergence

Mayo = Maisse - Maiss

Instantaneous flux divergence

 $\Delta z_{\text{divQ}} = \Delta z_{\text{slope}} - \Delta z_{\text{stake}}$

Gulkana Glacier Site AB *Cumulative* Flux Divergence Comparison

 $\Delta z_{\text{divQ}} = z_{\text{cmb}} - (\Delta z_{\text{total}} - \Delta z_{\text{slope}})$

Instantaneous flux divergence

 $\Delta z_{\text{divQ}} = \Delta z_{\text{slope}} - \Delta z_{\text{stake}}$

Gulkana Glacier Site AB *Weekly* Flux Divergence Comparison

 $\Delta z_{\text{divQ}} = z_{\text{cmb}} - (\Delta z_{\text{total}} - \Delta z_{\text{slope}})$

Carnegie Mellon University₀

Flux divergence from ablation stakes

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

Ablation stakes give us summer flux divergence

$$\dot{b}_{
m clim} = rac{dh}{dt} +
abla q$$

Gulkana Site AB -- Summer '23:

From ablation stake measurements:

- Climatic Mass Balance: -4.85 m
- Total Mass Balance: -3.93 m
- Flux Divergence: -0.92 m

o ~-2.62 m/yr

