Bordism and TQFTs

A brief introduction to topological quantum field theories

Simon Xiang

University of Texas at Austin

May 5, 2022

Bordism

Definition

Let Y_0 , Y_1 be closed n-manifolds. A **bordism** X from Y_0 to Y_1 is a compact (n+1)-manifold X with boundary, a decomposition $\partial X = M_0 \coprod M_1$, and diffeomorphisms $\theta_i \colon Y_i \stackrel{\cong}{\longrightarrow} M_i$.

Definition

Let Ω_n denote the set of equivalence classes of *n*-manifolds under the equivalence relation of bordism. An element of Ω_n is called a **bordism class**.

Bordism groups

Disjoint union gives Ω_n a *commutative monoid* structure, and for $Y \in \Omega_n$, the manifold $[0,1] \times Y$ is a bordism between $Y \coprod Y$ and the unit \emptyset^n . So Ω_n is an *abelian group*.

Example

Some calculations:

- $\Omega_0 \cong \mathbb{Z}/2\mathbb{Z}$ with generator pt . Even points are bordant by intervals, and the single point cannot bound by classification.
- ullet $\Omega_1\cong 0$. Closed 1-manifolds are copies of circles which bound.
- $\Omega_2 \cong \mathbb{Z}/2\mathbb{Z}$ with generator $\mathbb{R}\mathrm{P}^2$.

Symmetric monoidal categories

Definition (Symmetric monoidal categories)

Let C be a category. A **symmetric monoidal structure** on C consists of an object $1_C \in C$, a functor $\otimes : C \otimes C \to C$, and natural isomorphisms

Some other compatibility axioms are required, like $\sigma^2 = \mathrm{id}$, they essentially say that α, ι , and σ behave well with each other.

Symmetric monoidal categories

Example

Consider ($\mathsf{Vect}_k, \otimes, k$), then this is a symmetric monoidal category. Here $1_{\mathsf{Vect}_k} \in \mathsf{Vect}_k$ is k, the functor $\otimes \colon \mathsf{Vect}_k \otimes \mathsf{Vect}_k \to \mathsf{Vect}_k$ is the standard tensor product, and the natural isomorphisms exist.

Definition (Symmetric monoidal functors)

Let C,D be symmetric monoidal categories. A **symmetric monoidal** functor $F\colon C\to D$ is a functor with additional data, namely an isomorphism $1_D\to F(1_C)$ and a natural isomorphism

and many compatibility conditions.

Bordism categories

Definition

Fix $n \in \mathbb{Z}^{\geq 0}$. The **bordism category** $\mathsf{Bord}_{\langle n-1,n\rangle}$ is the symmetric monoidal category defined as follows.

- **①** Objects are closed (n-1)-manifolds.
- ② The hom-set $\operatorname{Bord}_{\langle n-1,n\rangle}(Y_0,Y_1)$ is the set of diffeomorphism classes of bordisms $X\colon Y_0\to Y_1$.
- Omposition of morphisms is by gluing.
- For each Y the bordism $[0,1] \times Y$ is $id_Y \colon Y \to Y$.
- The monoidal product is disjoint union.
- The empty manifold \emptyset^{n-1} is the tensor unit (for the symmetric monoidal structure).

Examples of bordism categories

Example

- Bord $_{\langle -1,0\rangle}$ is a category with a single object \emptyset^{n-1} , hence a monoid, namely the set of morphisms $\operatorname{Bord}_{\langle -1,0\rangle}(\emptyset^{-1},\emptyset^{-1})$. These are finite unions of points with diffeomorphism class $\mathbb{Z}^{\geq 0}$, and composition/disjoint union both induce addition.
- Bord $_{\langle 0,1\rangle}$ has objects points, with four distinct connected bordisms up to diffeomorphism.

Duality

Definition (Duality data)

For a symmetric monoidal category C and $y \in C$, we say y is **dualizable** if there exists *duality data* (y^{\vee}, c, e) , where $y^{\vee} \in C$, $c \colon 1_C \to y \otimes y^{\vee}, e \colon y^{\vee} \otimes y \to 1_C$, such that

$$\left(y \xrightarrow{c \otimes \mathsf{id}_y} y \otimes y^{\vee} \otimes y \xrightarrow{\mathsf{id}_y \otimes e} y\right) = \mathsf{id}_y, \tag{1}$$

$$\left(y^{\vee} \xrightarrow{\mathrm{id}_{y^{\vee}} \otimes c} y^{\vee} \otimes y \otimes y^{\vee} \xrightarrow{e \otimes \mathrm{id}_{y^{\vee}}} y^{\vee}\right) = \mathrm{id}_{y^{\vee}}.$$
 (2)

Example

Recall "evaluation" and "coevaluation" from $Bord_{(0,1)}$.

Simon Xiang

Bordism and TQFTs

Duality in vector spaces

Example

Let $V \in \text{FdVect}_k$. Then we have duality data consisting of the algebraic dual V^* , along with the following maps:

- $e: V^* \otimes V \to k, (f, v) \mapsto f(v)$ (evaluation)
- $c: k \to V \otimes V^*, \lambda \mapsto \sum_i \lambda v_i \otimes v_i^*$ (coevaluation)

Send a vector $v_i \in V$ and a covector $f \in V^*$ through the duality data:

$$v_j \to \left(\sum_i v_i \otimes v_i^*\right) \otimes v_j \to \sum_i v_i \otimes \delta_j^i = v_j,$$
 $f \to f \otimes \left(\sum_i v_i \otimes v_i^*\right) \to \sum_i f(v_i) \otimes v_i^* = f.$

We need V to be *finite dimensional* because otherwise we cannot write down coevaluation, which requires a basis.

TQFTs

Definition (Topological quantum field theories)

Let C be a symmetric monoidal category. Then an **n-dimensional** topological quantum field theory with values in C is a symmetric monoidal functor

$$F : \mathsf{Bord}_{\langle n-1, n \rangle} \to C$$

Usually we consider Vect_k for $k=\mathbb{C}$. Note that n-dimensional TQFTs form a symmetric monoidal category TQFT $_n$ under the natural tensor product.

More on TQFTs

Example

A closed *n*-manifold M can be seen as a bordism $\emptyset^{n-1} \to \emptyset^{n-1}$, under a TQFT F this gets send to an endomorphism of k, or a number.

Proposition (Finiteness)

Let $F : \mathsf{Bord}_{\langle n-1,n\rangle} \to \mathsf{Vect}_{\mathbb{C}}$ be a TQFT. Then for all $Y \in \mathsf{Bord}_{\langle n-1,n\rangle}$, F(Y) is finite dimensional.

Proof.

Note that a point (manifold) in $\operatorname{Bord}_{\langle n-1,n\rangle}$ is dualizable. Symmetric monoidal functors preserve duality data, so the vector space F(Y) is dualizable, which is true iff F(Y) is finite dimensional.

Classification of 1-dimensional TQFTs

Definition (Categorical stuff)

Let C be a symmetric monoidal category. Define C^{fd} as the full subcategory of dualizable objects, and the *groupoid of units* C^{\sim} containing only invertible morphisms.

Theorem (Cobordism hypothesis, 1-categorical version)

Let C be a symmetric monoidal category. Then the map

$$\Phi \colon \mathsf{TQFT}^{\mathrm{or}}_{\langle 0,1 \rangle}(C) \to (C^{\mathrm{fd}})^{\sim}, \quad F \mapsto F(\mathrm{pt}_+)$$

is an equivalence of groupoids.