DM2

Dernière modification 12 juin 2023

Exercice 1

Considérons l'équation différentielle $\dot{X}=f(X)$ où $f:\mathbb{R}^N\to\mathbb{R}^N$ est de classe \mathcal{C}^1 . Pour tout $Z_0\in\mathbb{R}^N$, on note $T_{max}(Z_0)>0$ le temps d'existence maximal de la solution Z(t) de l'équation différentielle $\dot{Z}=f(Z)$ de donnée initiale $Z(0)=Z_0$. On fixe $X_0\in\mathbb{R}^N$. Soit $T\in\mathbb{R}$ tel que $0< T< T_{max}(X_0)$.

(a) Montrer l'existence de R > 1 tel que $X(t) \in B_f(X_0, R)$ pour tout $t \leq T$.

On raisonne par l'absurde.

Supposons que $\forall R > 1, \exists t \in [0,T]$ tel que $X(t) \notin B_f(X_0,R) \implies \exists T^* \in [0,T]$ tel que X(t) explose en $T^* \leq T < T_{max}(X_0)$ ce qui est absurde.

(b) Montrer l'existence de $k_R > 0$ telle que f soit k_R -lipschitzienne sur $B_f(X_0, 2R)$.

On note que f est de classe \mathcal{C}^1 et $\forall X, Y \in B_f(X_0, 2R) \subset \mathbb{R}^N$ le segment joignant X à Y est contenu dans $B_f(X_0, 2R)$.

Donc, par l'inégalité des accroissements finis, $\forall X, Y \in B_f(X_0, 2R)$,

$$||f(X) - f(Y)|| \le \sup_{0 \le \theta \le 1} ||J_f(X + \theta(Y - X))|| \cdot ||Y - X||$$

Donc, il suffit de poser $k_R = \sup_{0 < \theta < 1} ||J_f(X + \theta(Y - X))||$

Soit $\epsilon > 0$ tel que $\epsilon < R$ et soit $Y_0 \in B_f(X_0, \epsilon)$.

On note Y(t) la solution maximale de l'équation $\dot{X} = f(X)$ telle que $Y(0) = Y_0$. Son temps maximal d'existence est $T_{max}(Y_0)$.

(c) Montrer qu'il existe $T' \in]0,T]$ tel que $Y(t) \in B_f(X_0,2R)$ pour tout $t \leq T'$.

Soit $g: [0, \min(T_{max}(Y_0, T))] \to \mathbb{R}$ tel que $g(t) = ||Y(t) - X_0|| - 2R$.

g(t) est continue car Y(t) est de classe \mathcal{C}^1 .

On note que $g(0) = ||Y(0) - X_0|| - 2R \le \epsilon - 2R < -R < 0$

On pose

$$T' = \begin{cases} &\inf\{t : t \in [0, \min(T_{max}(Y_0, T))] \text{ et } g(t) = 0\} \\ &T \text{ sinon} \end{cases}$$
 si l'infimum existe (1)

On note que $0 < T' \le T$ et $\forall t \in [0, T']$ $g(t) \le 0 \iff Y(t) \in B_f(X_0, 2R)$.

(d) Montrer que pour un tel T', on a $||X(t) - Y(t)|| \le \epsilon e^{k_R t}$ pour tout $t \in [0, T']$.

Soit $g:[0,T']\to\mathbb{R}$ tel que g(t)=||Y(t)-X(t)||

$$\dot{g}(t) = ||\dot{Y}(t) - \dot{X}(t)|| \tag{2}$$

$$= ||f(Y(t)) - f(X(t))|| \tag{3}$$

$$\leq k_R||Y(t) - X(t)||\tag{4}$$

$$=k_R g(t) \tag{5}$$

On considère ϕ solution du problème de Cauchy

$$\begin{cases} \phi(t) &= k_R \phi(t) \\ \phi(0) &= \epsilon \end{cases}$$
 (6)

On note que $\phi(t) = \epsilon e^{k_R t} \quad \forall t \in [0, T'].$

On note que $g(0) = ||Y(0) - X(0)|| < \epsilon \implies \phi(0) \ge |g(0)|$.

Par le lemme de Gronwall, $|g(t)| = g(t) \le \phi(t)$.

Donc, $||Y(t) - X(t)|| \le \epsilon e^{k_R t} \quad \forall t \in [0, T'].$

(e) Montrer qu'il existe $\epsilon > 0$ tel que $T_{max}(Y_0) > T$ (on pourra raisonner par l'absurde en supposant que $T_{max}(Y_0) \leq T$ et que donc Y explose en temps fini).

On raisonne par l'absurde.

Supposons $\forall \epsilon > 0 \quad T_m ax(Y)$

()