® BUNDESREPUBLIK

DEUTSCHLAND

© Offenlegungsschrift
© DE 3537684 A1

(6) Int. Cl. 4; G 02 B 6/24

G 02 B 6/44

DEUTSCHES PATENTAMT

Aktenzeichen:
 Anmeldetag:

P 35 37 684.8 23. 10. 85

Offenlegungstag: 23.

23. 4.87

Behördeneig-

(7) Anmelder:

AEG KABEL AG, 4050 Mönchengladbach, DE

@ Erfinder:

Haag, Helmut, Dipl.-Phys., 5177 Titz, DE; Lampka, Roman, 5100 Aachen, DE; Lindiar, Rolf, Olpl.-Ing., 4000 Düsseldorf, DE

(A) Lichtwellenleiterkabel-Abzweigung und Verfahren zu deren Herstellung

Bei einer Lichtwellenleiterkabel-Abzweigung mit einem durchgehenden Kabel und einem Abzweigkabel, bei der ein oder mehrere Lichtwellenleiter des durchgehenden Kabels mit mindestens einem Lichtwellenleiter des Abzweigkabels verbunden sind, ist vorgesehen, daß die Auftrennstelle der für die Abzweigung vorgesehenen Lichtwellenleiter des durchgehenden Kabels derart gewählt ist, daß genügend Lichtwellenleiteriänge zum Spielßen zur Verfügung steht.

Patentansprüche

1. Lichtwellenleiterkabel-Abzweigung mit einem durchgehenden Kabel und einem Abzweigkabel, bei der ein oder mehrere Lichtwellenleiter des durchgehenden Kabels mit einem oder mehreren Lichtwellenleitern des Abzweigkabels verbunden sind, dadurch gekennzelchnet, daß die Auftrennstelle der für die Abzweigung vorgesehenen Lichtwellenleiter des durchgehenden Kabels derart ge- 10 wählt ist, daß genügend Lichtwellenleiterlänge zum Spleißen zur Verfügung steht.

2. Lichtwellenleiterkabel-Abzweigung nach Anspruch 1, dadurch gekennzeichnet, daß nur diejenigen Lichtwellenleiter des durchgehenden Kabels 15 aufgetrennt sind, die zur Verbindung mit Lichtwel-

lenleiter des Abzweigkabels vorgesehen sind.

3. Verfahren zum Herstellen einer Lichtwellenleiter-Abzweigung nach Anspruch 1 oder 2 unter Verwendung eines durchgehenden Kabels und eines 20 Abzweigkabels, bei dem ein oder mehrere Lichtwellenleiter des durchgehenden Kabels aufgetrennt und mit einem oder mehreren Lichtwellenleitern des Abzweigkabels verbunden werden, dadurch gekennzeichnet, daß der Mantel des durch- 25 beitsaufwand vermindert werden. gehenden Kabels in einem Bereich geöffnet wird, der eine solche Länge aufweist, daß die nach Trennung der für die Verbindung vorgesehenen, dem Kabel entnommenen Lichtwellenleiter eine zum Soleißen genügend große Länge haben.

4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Mantel des durchgehenden Kabels am Anfang des geöffneten Bereiches entfernt

wird.

5. Verfahren nach Anspruch 3 oder 4, dadurch ge- 35 kennzeichnet, daß das durchgehende Kabel durch Längsschlitze in einem Bereich geöffnet wird, daß im geöffneten Bereich die Kabelseele freigelegt wird, daß die Lichtwellenleiteradern (6) freigelegt werden, daß die zum Anschluß an das Abzweigkabel (2) vorgesehenen Lichtwellenleiter (7) durchtrennt, von der Kabelseele entfernt und mit entsprechend vorbereiteten Lichtwellenleitern des Abzweigkabels verbunden werden.

6. Verfahren zum Herstellen einer Lichtwellenleiterkabel-Abzweigung nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, daß das durchgehende Kabel und das Abzweigkabel an der Abzweigstelle in einer Muffe (5) befestigt werden.

7. Verfahren zum Herstellen einer Lichtwellenlei- 50 terkabel-Abzweigung nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, daß die nach dem Spleißen mit Überlänge vorhandenen Adern derart verlegt werden, daß sie der Muffe ohne Schwierigkeiten entnommen werden können und die Krüm- 55 mungsradien der Lichtwellenleiter beim Ablegen in die Magazine (3, 4) so groß bemessen werden, daß keine Zusatzdämpfung entsteht.

Beschreibung

Die Erfindung betrifft eine Lichtwellenleiterkabel-Abzweigung mit einem durchgehenden Kabel und einem Abzweigkabel, bei der ein oder mehrere Lichtwellenleiter des durchgehenden Kabels mit einem oder 65 mehreren Lichtwellenleitern des Abzweigkabels verbunden sind und ein Verfahren zu deren Herstellung.

Für die Breitbandkommunikation werden in Zukunft

Lichtwellenleiternetze aufgebaut werden. Zur Realisation eines solchen Netzes werden Abzweigmuffen benötigt, wie sie beispielsweise in telcom report 6. Jahrgang, April 1983 Beiheft "Nachrichtenübertragung mit Licht" und telcom report Heft 2 März/April 1984 veröffentlicht sind.

Im vorbekannten Falle wird das Kabel - d.h. alle Lichtwellenleiter - aufgetrennt und mit Verbindungsbzw. Verlängerungsadern gespleißt. Dabei werden nur die wenigsten der Verlängerungsadern mit dem Abzweigkabel verbunden, die überwiegende Zahl der Adern wird zum Durchverbinden der Lichtwellenleiter benötigt. Die Überlänge der Adern ist so groß, daß die Spleiße bequem in der Spleißvorrichtung außerhalb der Muffe angefertigt werden können. Die Adern werden in der Muffe abgelegt und für mehrmaliges Nachsetzen bei Umspleißung wieder entnommen.

Der Erfindung liegt die Aufgabe zugrunde, eine Lichtwellenleiterkabel-Abzweigung der eingangs genannten Art zu schaffen wobei die Abzweigstelle im Prinzip an jeder beliebigen Stelle eines verlegten Kabels anbringbar ist. Dabei soll möglichst wenig Lichtwellenleitermaterial verbraucht werden und die Dämpfung durch Spleiße sowie deren Zahl und der dafür benötigte Ar-

Diese Aufgabe wird bei einer Lichtwellenleiterkabel-Abzweigung der eingangs genannten Art nach der Erfindung dadurch gelöst, daß die Auftrennstelle der für die Abzweigung vorgesehenen Lichtwellenleiter des 30 durchgehenden Kabels derart gewählt ist, daß genügend Lichtwellenleiterlänge zum Spleißen zur Verfügung steht.

Weiterbildungen der Erfindung sind im Unteranspruch 2 gekennzeichnet. In den Ansprüchen 3 bis 7 wird ein Verfahren zur Herstellung einer Lichtwellen-

leiterkabel-Abzweigung gekennzeichnet.

Bei der Lichtwellenleiterkabel-Abzweigung nach der Erfindung wird vorausgesetzt, daß das abzweigende Kabel genügende Länge besitzt, sodaß von dieser Seite her genügend Reservelänge zur Verfügung steht. Andererseits ist jedoch das durchgehende Hauptkabel nicht zur Gewinnung von Reservelänge von Lichtwellenleiteradern, welche zum Spleißen bestimmt sind, vorgesehen. Unter Spleißen versteht man hier das Verbinden zweier Lichtwellenleiter beispielsweise durch Verschmelzen der Enden in einem Lichtbogen. Wesentlich erschwert wird die Aufgabe des Spleißens also dadurch, daß ursprünglich keine ausreichende Reservelänge vorhanden ist.

Der Hauptgedanke der Erfindung ist der, daß man Reservelänge dadurch gewinnen kann, daß diese dem an dieser Stelle gradlinig verlegten Kabel entnommen werden kann. Dies ist möglich, da der Informationsfluß durch das Hauptkabel bzw. durchgehende Kabel nur in

einer Richtung geht.

Das Kabel muß dafür zunächst weiter aufgeschnitten werden, als es der Länge der Muffe entspricht. Nach Entnahme der Reservelänge der Lichtweilenleiteradern wird der Kabelmantel wieder zugeklappt und abgedich-60 tet. Das Abdichten kann mittels einer Spezialmuffe, eines geteilten Schrumpfschlauches oder einer Bewicklung mit Band erfolgen.

Die Vorteile der erfindungsgemäßen Abzweigtechnik bestehen darin, daß der Nachrichtenverkehr über die nicht durchtrennten Lichtwellenleiter weitergeht. Au-Berdem wird dadurch, daß diese Lichtwellenleiter nicht durchtrennt werden, eine unnötige und störende Splei-Bung vermieden. Diese Spleißtechnik eignet sich also vorzugsweise für nachträgliche Anbringung von Abzweigverbindungen an beliebigen Stellen des Kabels.

Die erfindungsgemäße Abzweigtechnik wird anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1 eine schematische Darstellung eine Abzweigs Fig. 2 einen Ausschnitt aus dem durchgehenden Kabei, dessen Mantel aufgeschnitten ist

Fig. 3 die Anordnung der Auftrennstelle sowie die Lage des abzweigenden Kabels beim Spleißen.

Die in Fig. 1 am linken und rechten Bildrand gestri- 10 chelten Felder stellen den Rand des Kabelschachtes dar. Die von den Lichtwellenleitern getragene Information tritt links an der Seite der Muffe 5 in den Kabelschacht ein. Die Information geht von Ebene A über Ebene B nach Ebene C Das Abzweigkabel 2 ist an das durchge- 15 hende Kabel 1 herangeführt und verläuft in einer Schleife bis zum Punkt D. Das durchgehende Kabel wird bis zum Punkt C aufgeschnitten und an dieser Stelle die zum Abzweigen bestimmten Lichtwellenleiter durchtrennt. In Fig. 2 ist dargestellt, wie der Kabelmantel bis 20 zum Punkt Cabgeklappt wird, um die Lichtwellenleiter bequem entnehmen zu können. Diese Adern werden gereinigt, abgemantelt und mit entsprechend vorbereiteten Adern aus dem Abzweigkabel 2 gespleißt. Splei-Ben bedeutet, das Verbinden der Lichtwellenleiter 25 durch Lichtbogenschweißen oder Kleben.

In Fig. 3 ist schematisch dargestellt, welche Funktion die Überlängen der Lichtwellenleiter aus dem durchgebenden Kabel und dem Abzweigkabel haben. Zwischen den Punkten Cund D wird die Spleißung vorgenommen. 30 Der Punkt C wird so gewählt, daß genügend Lichtwellenleiterlänge zum Spleißen zur Verfügung steht. Der Vorteil bei diesem Verfahren der Gewinnung von Überlänge besteht darin, daß man mit wenig Spleißarbeiten auskommt. Außerdem werden nur die Lichtwellenleiter- 35 adern durchtrennt, die mit dem Abzweigkabel verbunden werden, sodaß der Betrieb über die anderen Lichtwellenleiter ungestört weitergehen kann. Nach dem Spleißen werden die Adern in ein Magazin 3 in der Muffe 5 abgelegt. Die Muffe wird abgedichtet, sodaß 40 keine Feuchtigkeit eindringen kann. Es kann eine geschraubte Muffe oder eine mit Schrumpfschlauch verschlossene Muffe verwendet werden. Außerdem dient die Muffe zur Zugentlastung der zum Teil von den Zugentlastungselementen befreiten Kabelseele des durch- 45 gehenden Kabels. Dazu werden die Kabelmäntel in der Nähe der Ebenen A und B am Grundkörper der Muffe 5 befestigt. Äußere Zugentlastungselemente werden durch Schellen an dem Muffenkörper befestigt.

50

55

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

reflects in the images include but are not limited to the items checked:
□ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.