Permutations

STAT 330 - Iowa State University

Outline

In this lecture students will learn about permutations. The permutation number gives us the number of ways to select k objects from n when we have an ordered sample, without replacement. We will use the permutation number to find probabilities.

Ordered With Replacement

A box has n items numbered $1, \ldots, n$. Draw k items with replacement. (A number can be drawn twice).

Sample Space:
$$\Omega = \{(x_1, \dots, x_k) : x_i \in \{1, \dots, n\}\}$$

What is $|\Omega|$?

Break complex action into a series of k single draws.

- 1. n possibilities for x_1
- 2. n possibilities for x_2

:

k. n possibilities for x_k

Multiplication principle: $|\Omega| = n \cdot n \cdot n \cdot \dots n = n^k$

Permutation

Ordered Without Replacement

A box has n items numbered $1, \ldots, n$. Select k items without replacement. This means once a number is chosen, it can't be selected again.

Sample Space:
$$\Omega = \{(x_1, ..., x_k) : x_i \in \{1, ..., n\}, x_i \neq x_j\}$$

What is $|\Omega|$?

Break complex action into a series of k single draws.

- 1. n possibilities for x_1
- 2. n-1 possibilities for x_2
- 3. n-2 possibilities for x_2
- :
- k. n (k 1) possibilities for x_k

Multiplication principle: $|\Omega| = n \cdot (n-1) \cdot (n-2) \cdots (n-(k-1))$

This is equivalent to $\frac{n!}{(n-k)!}$

Permutation

Definition

A *permutation* is an ordering of k distinct objects chosen from n objects. This is another name for the *ordered without replacement* scenario.

Theorem

P(n, k), called the *permutation number*, is the number of permutations of k distinct objects out of n objects.

$$P(n,k) = \frac{n!}{(n-k)!}$$

Note (factorials):
$$n!=n\cdot (n-1)\cdot (n-2)\cdots 3\cdot 2\cdot 1$$
 $0!=1$ Ex. $4!=4\cdot 3\cdot 2\cdot 1=24$

Permutation Example

Example 5:

Out of a group of 10 students, I choose 3 distinct students to give prizes to. How many ways can I select 3 students?

$$n = 10$$
 $k = 3$

$$P(n,k) = \frac{n!}{(n-k)!}$$

$$P(10,3) = \frac{10!}{(10-3)!}$$

$$= \frac{10!}{7!}$$

$$= \frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!}$$

$$= 10 \cdot 9 \cdot 8 = 720$$

Permutation Example

Example 6:

University phone exchange starts with $641 - ___$ What is the probability that a randomly selected phone number

contains 7 distinct digits?

Sample space: (All possibilities for 4 chosen numbers)

$$|\Omega| =$$

Event: (4 chosen numbers are distinct - no repeats!)

$$|A| =$$

$$\mathbb{P}(A) = \frac{|A|}{|\Omega|} =$$

Recap

Students should be familiar with permutations and the permutation number. They should be able to apply it to probability questions under ordered without replacement samples.