

Domain Cartridge: Unsupervised Framework for Shallow Domain Ontology Construction from Corpus

Subhabrata Mukherjee Jitendra Ajmera, Sachindra Joshi

> Max Planck Institute for Informatics IBM India Research Lab

> > **CIKM 2014**

November 17, 2014

Motivation: Domain Term Discovery

Usefulness for Parsing. Consider the examples:

"use sprint zone"

Domain Adaptation for IE and IR

•000

- Parse w/o domain knowledge use/noun sprint/verb zone/noun
- Parse with domain knowledge use/verb {sprint zone}/noun
- "transfer files via usb cable"

- 'sprint' and files' are not verbs
- "sprint zone, usb cable" are multi-word concepts

Motivation: Domain Term Discovery

Usefulness for Parsing. Consider the examples:

"use sprint zone"

Domain Adaptation for IE and IR

•000

- Parse w/o domain knowledge use/noun sprint/verb zone/noun
- Parse with domain knowledge use/verb {sprint zone}/noun
- "transfer files via usb cable"

- 'sprint' and files' are not verbs
- "sprint zone, usb cable" are multi-word concepts

Motivation: Domain Term Discovery

Usefulness for Parsing. Consider the examples:

"use sprint zone"

Domain Adaptation for IE and IR

•000

- Parse w/o domain knowledge use/noun sprint/verb zone/noun
- Parse with domain knowledge use/verb {sprint zone}/noun
- "transfer files via usb cable"

Parser generates noisy or incomplete parse without the domain knowledge

- 'sprint' and files' are not verbs
- "sprint zone, usb cable" are multi-word concepts

Motivation: Domain Relation Discovery

- Interactive dialogue systems
 - For user query "battery of my device depletes fast", the knowledge 'battery' is a Feature-Of 'device' enables system to clarify about Type-Of device
- Query expansion

Domain Adaptation for IE and IR

- E.g. Consider Synonyms along with original query, 'battery' is a
- Query re-formulation
 - ► For user guery "screen freezes E5150", the knowledge 'E5150'

Motivation: Domain Relation Discovery

- Interactive dialogue systems
 - For user query "battery of my device depletes fast", the knowledge 'battery' is a Feature-Of 'device' enables system to clarify about Type-Of device
- Query expansion

Domain Adaptation for IE and IR

- E.g. Consider Synonyms along with original query, 'battery' is a Feature-Of 'phone' as well as 'tablet' 'device'
- Query re-formulation
 - ► For user guery "screen freezes E5150", the knowledge 'E5150'

Motivation: Domain Relation Discovery

- Interactive dialogue systems
 - For user query "battery of my device depletes fast", the knowledge 'battery' is a Feature-Of 'device' enables system to clarify about Type-Of device
- Query expansion

Domain Adaptation for IE and IR

- E.g. Consider Synonyms along with original query, 'battery' is a Feature-Of 'phone' as well as 'tablet' 'device'
- Query re-formulation
 - For user guery "screen freezes E5150", the knowledge 'E5150' is a Type-Of 'Error' results in query re-formulation "screen freezes error E5150"

Unsupervised Framework

Domain Adaptation for IE and IR

- Typically for a domain, a lot of knowledge articles, manuals, tutorials etc. are available in a variety of formats
- Most of these documents have less hyperlink and table
- Challenge is to learn a shallow ontology from raw unannotated

Unsupervised Framework

Domain Adaptation for IE and IR

- Typically for a domain, a lot of knowledge articles, manuals, tutorials etc. are available in a variety of formats
- Most of these documents have less hyperlink and table (info-box as in Wikipedia) information, or extraction is difficult (E.g. pdf)
- Challenge is to learn a shallow ontology from raw unannotated

Unsupervised Framework

- Typically for a domain, a lot of knowledge articles, manuals, tutorials etc. are available in a variety of formats
- Most of these documents have less hyperlink and table (info-box as in Wikipedia) information, or extraction is difficult (E.g. pdf)
- Challenge is to learn a shallow ontology from raw unannotated plain text

Roadmap

Domain Adaptation for IE and IR

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)
- ▶ Use-Case: Improvement of an in-house Question-Answering
- ► Experiments: Manual Evaluation, Comparison with BabelNet,
- Conclusions

Roadmap

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)
- Use-Case: Improvement of an in-house Question-Answering system
- ► Experiments: Manual Evaluation, Comparison with BabelNet,
- Conclusions

Roadmap

Domain Adaptation for IE and IR

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)
- Use-Case: Improvement of an in-house Question-Answering system
- Experiments: Manual Evaluation, Comparison with BabelNet, WordNet, Yago
- Conclusions

Roadmap

Domain Adaptation for IE and IR

- Unsupervised framework for shallow domain ontology construction:
 - Domain Term Discovery (DTD)
 - Improvement of Parser performance by DTD
 - Domain Relation Discovery (DRD)
- Use-Case: Improvement of an in-house Question-Answering system
- Experiments: Manual Evaluation, Comparison with BabelNet, WordNet, Yago
- Conclusions

Corpus: Knowledge articles, manuals, tutorials etc.

Domain Cartridge: Framework

Domain Adaptation for IE and IR

Domain Cartridge: Framework

Parsing

Domain Adaptation for IE and IR

"Turn the wi-fi radio on or off"

English Slot Grammar (ESG) parser used. 50 - 100 times faster than Charniak parser

Prismatic Relations

Shallow semantic relationship (SSR) annotation over ESG parser output generates normalized parser relation

E.g., "Samsung has a battery" and "Samsung's battery died"

Prismatic Relations

Domain Adaptation for IE and IR

Shallow semantic relationship (SSR) annotation over ESG parser output generates normalized parser relation

E.g., "Samsung has a battery" and "Samsung's battery died" both generate the same relation 'nnMod:samsung battery'

Domain Adaptation for IE and IR

Domain Cartridge: Framework

Lucene Index – For efficient retrieval of relations, documents, positional information, proximity based queries etc.

Domain Cartridge: Framework

Domain Relation Discovery

Domain Term Discovery

ESG parser maintains a domain term lexicon of multi-word concepts. E.g. "touch screen, sprint navigation"

Domain Term Discovery

ESG parser maintains a domain term lexicon of multi-word concepts. E.g. "touch screen, sprint navigation"

Noun Phrase Chunking on *document titles* to extract frequently occuring concepts as domain words

Domain Term Discovery

- Enrich lexicon and bootstrap parser
- Parser generates refined output

Domain Term Discovery

- Enrich lexicon and bootstrap parser
- Parser generates refined output

High precision but low recall — as titles are precise, clean but short

To extract more fine-grained domain terms HITS is used on parser output

HITS

- Any Shallow Semantic Relation (SSR) from ESG parser is a hub generating domain terms
- Any domain term is an authority influenced by incoming
- Good authorities incorporated in Parser Domain Term Lexicon
- Parser is re-run, refined relations generated, and previous

- Any Shallow Semantic Relation (SSR) from ESG parser is a hub generating domain terms
- Any domain term is an authority influenced by incoming features from hubs
- Good authorities incorporated in Parser Domain Term Lexicon
- Parser is re-run, refined relations generated, and previous

- Any Shallow Semantic Relation (SSR) from ESG parser is a hub generating domain terms
- Any domain term is an authority influenced by incoming features from hubs
- Good authorities incorporated in Parser Domain Term Lexicon
- Parser is re-run, refined relations generated, and previous

HITS

- Any Shallow Semantic Relation (SSR) from ESG parser is a hub generating domain terms
- Any domain term is an authority influenced by incoming features from hubs
- Good authorities incorporated in Parser Domain Term Lexicon
- Parser is re-run, refined relations generated, and previous steps iterated until convergence

Feedback

Domain Cartridge: Framework

Parser Performance Improvement

Number of incomplete parses went down by 73% after incorporating domain terms in the parser lexicon

Domain Terms

Domain Adaptation for IE and IR

software-version htc-evo wi-fi memory-card microsoftexchange Ig-optimus samsung-m400 samsung-galaxy-victory software-updates samsung-array text-messaging touch-screen blackberry-bold

Table: Snapshot of multi-word domain terms extracted by NP Chunking.

optimus-g set-up novatel-wireless e-mail sierra-wireless appleid google-maps play-music mobile-network 10-digit internetexplorer slacker-radio caller-id google-search address-book mycomputer software-update blackberry-id as-well-as windowsupdate terms-of-service drop-down pro-700 add-on scp-2700 mac-os device-manager voice-mail non-camera

Table: Snapshot of multi-word domain terms extracted by HITS (not found by NP Chunking).

Domain Cartridge: Framework

Random Indexing (RI)

For computing word similarity and dimensionality reduction

RI considers "term X term" co-occurrence, as opposed to "term X document" matrix — allowing for incremental learning of context information, scaling up with the corpus size

Random Indexing (RI)

Domain Adaptation for IE and IR

For computing word similarity and dimensionality reduction

RI considers "term X term" co-occurrence, as opposed to "term X document" matrix — allowing for incremental learning of context information, scaling up with the corpus size

Relational Distributional Similarity — Two terms are similar if they appear in a similar context with similar Shallow Semantic Relations

Random Indexing (RI)

Domain Adaptation for IE and IR

For computing word similarity and dimensionality reduction

RI considers "term X term" co-occurrence, as opposed to "term X document" matrix — allowing for incremental learning of context information, scaling up with the corpus size

Relational Distributional Similarity — Two terms are similar if they appear in a similar context with similar Shallow Semantic Relations

Random Index Vector Update — Neighborhood constitutes of syntactic relations between target term and neighboring terms

Domain Cartridge: Framework

Domain Relation Discovery

00000000

Synonym Discovery

Domain Adaptation for IE and IR

Random Index gives top *N* similar terms for a given term

HITS gives dominant domain terms and domain (SSR) relations

$$Sim(w_i, w_j) = \frac{\sum_{p} \mathbb{I}_{l_i = l_j, k_i = k_j} (f_{w_{k_i}, p}, f_{w_{k_j}, p'})}{\sum_{p} \sum_{r} \mathbb{I}_{l_i = l_r, k_i = k_r} (f_{w_{k_i}, p}, f_{w_{k_r}, p'})}$$

Synonym Discovery

Domain Adaptation for IE and IR

Random Index gives top N similar terms for a given term

HITS gives dominant domain terms and domain (SSR) relations

$$Sim(w_i, w_j) = \frac{\sum_{p} \mathbf{I}_{l_i = l_j, k_i = k_j}(f_{w_{k_i}, p}, f_{w_{k_j}, p'})}{\sum_{p} \sum_{r} \mathbf{I}_{l_i = l_r, k_i = k_r}(f_{w_{k_i}, p}, f_{w_{k_r}, p'})}$$

Numerator — #Freq. of common (dominant) words in both neighborhood with similar dominant SSR relations

Denominator — #Freq. of the common word in any other neighborhood with similar SSR relation

Domain Cartridge: Framework

Relation Discovery

Domain Adaptation for IE and IR

ESG SSR relations exploited to discover domain relation between two words

Feature-Of typically marked by noun-noun modifications and subject-object relations

"rel:nnMod:**network life**, rel:nnMod:**account settings**, rel:svo:phone access internet etc."

Relation Discovery

Domain Adaptation for IE and IR

Action-On marked by "dm" and verb-object relations

E.g. "rel:svo:tap add account, rel:dm obj:activate device, rel:svo:mobile sync phone, rel:svo:account use phone etc."

such-as WhatsApp, rel:npo:features like call, rel:npo:contact such-as address".

Relation Discovery

Domain Adaptation for IE and IR

Action-On marked by "dm" and verb-object relations

E.g. "rel:svo:tap add account, rel:dm obj:activate device, rel:svo:mobile sync phone, rel:svo:account use phone etc."

Type-Of marked by *Hearst* patterns like "or, especially" and SSR relations like "svo:include, npo:like, npo:such-as, npo:as"

E.g. "rel:svo:devices include HTC, rel:npo:applications such-as WhatsApp, rel:npo:features like call, rel:npo:contact such-as address".

Domain Term Evaluation

5000 articles, tutorials and manuals from the smartphone domain

We used the Back-of-the-Book Index (BOI) of manuals, to create ground truth for domain term discovery

Baselines:

- ► WordNet (G. A. Miller. Wordnet: A lexical database for english. COMMUNICATIONS OF THE ACM, 38, 1995.)
- ► BabelNet (R. Navigli and S. P. Ponzetto. BabelNet: Building a very large multilingual semantic network. ACL '10.)
- Yado (F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. WWW '07.)

Domain Term Evaluation

Method	Recall
WordNet	22.62%
NP Chunking on Titles	32.45%
HITS	40.87%
Yago	43.77%
BabelNet	53.74%

Table: Domain term evaluation.

Recall of a Question-Answering System

Domain Adaptation for IE and IR

Recall@N	With Term L	 Without domain term lexicon
recall@1	0.40	0.33
recall@2	0.49	0.45

Table: Performance of a QA system with and without domain term lexicon.

Incorporation of domain terms in parser lexicon improves QA system performance

¹D. Gondek et al. A framework for merging and ranking of answers in DeepQA. IBM Journal of Research and Development, 56(3), 2012.

Domain Relation Evaluation

2000 word pairs (500 for each of *four* categories) are manually annotated by two annotators

System	Type-Of	Feature-Of	Action-On
BabelNet, WordNet	19.27%	-	-
Yago	25.12%	-	-
Domain Cartridge	77%	85.7%	68%

Table: Recall comparison of systems for 3 relations.

Synonym Discovery: Distributional Similarity Comparison

System	Precision	Recall	F-Score
Yago	38%	32%	34.37%
BabelNet, WordNet	83%	31%	45.14%
Domain Cartridge (DC)	58%	41%	47.60%
DC + WordNet	62%	40%	49.00%
DC + ESG Parser Features	65%	39%	49.14%

Table: Precision-Recall comparison of Domain Cartridge (random-indexing, HITS and sim. eqn.) with other systems.

00000000

Synonym Discovery: Comparison with Distributional Similarity Measures in WordNet

WordNet	F-Score
LCH	0.22
RES	0.31
JCN	0.42
PATH	0.42
LIN	0.43
WUP	0.43
LESK	0.45
Domain Cartridge	0.49

Table: F-Score comparison of WordNet similarity measures with Domain Cartridge.

Domain Cartridge Ontology Snapshot

- Unsupervised framework for shallow domain ontology construction, without using manually annotated resources
- Multi-words form an important component of Domain Term Discovery
- Incorporation of domain terms in parser lexicon results in 73% reduction in incomplete parses, improving performance of an in-house QA system by upto 7%
- Synonym discovery approach, using Relational Distributional Similarity, RI, HITS etc., performs better than other existing approaches

