COMPSCI 3MI3

Assignment 1

October 29, 2021

1 Solution Set

1.1 Q1

Define the relation R' as follows:

$$R' = R \cup \{(s, s) \mid s \in S\}$$

To show R' is the reflexive closure of R we must show (1) $R \subseteq R'$, (2) R' is reflexive and (3) R' is the smallest reflexive relation such that $R \subseteq R'$.

(1) Prove $R \subseteq R'$

$$R' = R \cup \{(s, s) \mid s \in S\} \qquad \langle \text{def. of } R' \rangle$$

$$\supseteq R \qquad \langle A \subseteq A \cup B \rangle$$

(2) Show R' is reflexive.

Since the relation R' contains the set of all reflexive pairs in $S\{(s,s) \mid s \in S\}$ we know that R' is reflexive by definition.

(3) Show R' is the smallest reflexive relation possible such that $R \subseteq R'$.

We must show R' is the smallest possible set that satisfies the above two properties. Suppose K is a reflexive relation on S extending R. By reflexivity of K, we know $\{(s,s) \in S\} \subseteq K$. Since we also know K extends R then $R \subseteq K$, it follows that $R \cup \{(s,s) \in S\} \subseteq K$, which is $R' \subseteq K$. Thus, R' must be the smallest possible reflexive relation extending R.

We have shown that R' is the reflexive closure of R.

1.2 Q2

We suppose that R is some binary relation on S and P is a predicate on S that preserves R. Let P^* be the relexive transitive closure of R. We will show that P also preserves P^* . If P preserves P^* then for any $s, t \in S$ the following should hold:

$$P(s) \wedge s \ P^* \ t \to P(t)$$

This is equivalent to saying that for all pairs $(s,t) \in P^*$ if P(s) holds then P(t) holds. We can then define P^* as:

$$P^* = R \cup K \cup T$$

where K contains all reflexive pairs (s, s) in S and T contains all pairs that together make P^* transitive. Thus, to prove P preserves P^* we show that P preserves R, K, T such that for any pair $(s, t) \in R \cup K \cup T$ we have $P(s) \to P(t)$.

- (1) (P preserves R) This is trivial since we know that P preserves R as given in the question, thus for any pair $(s,t) \in R$ we know $P(s) \to P(t)$.
- (2) (P preserves K) Since all pairs in K are reflexive they all share the form (s, s) where $s \in S$. Thus for any $(s, s) \in K$ we have $P(s) \to P(s)$, which is true by reflexivity of implication. Therefore, P preserves K.
- (3) (P preserves T) Since T contains all pairs that together make P^* transitive we know that for any pair $(s,t) \in T$ there must exist two pairs $(s,r),(r,t) \in R \cup T$. We can prove by induction that for any pair $(s,t) \in T$ we have $P(s) \to P(t)$. For any pair $(s,t) \in T$ if $(s,r),(r,t) \in R$ then the pair can be obtained in "one step of transitivity" and from (1) we know such that $P(s) \to P(r)$ and $P(r) \to P(t)$. By transitivity of implication we have that $P(s) \to P(t)$. Similarly, all other pairs $(s,t) \in T$ follow this principle since they are formed in "one step of transitivity" from two pairs (s,r) and (r,t) that already follow the principle. Thus P preserves T.

Therefore, we have shown that P preserves P^* .

1.3 Q3

Define the relation R^+ as given in the question:

$$R_0 = R$$

$$R_{i+1} = R_i \cup \{(s, u) \mid \text{ for some } t, (s, t) \in R_i \text{ and } (t, u) \in R_i\}$$

$$R^+ = \bigcup_i R_i$$

To show R^+ is the *transitive closure* of R we must show (1) $R \subseteq R^+$, (2) R^+ is transitive, (3) R^+ is the smallest transitive relation such that $R \subseteq R^+$.

(1) Prove $R \subseteq R^+$

$$R+$$

$$= \bigcup_{i} R_{i} \qquad \langle \text{def. of } R^{+} \rangle$$

$$\supseteq R_{0} \qquad \langle \text{def. of } \bigcup, A \subseteq A \cup B \rangle$$

$$= R \qquad \langle R_{0} = R \rangle$$

(2) Show R^+ is transitive.

Suppose some $a, b, c \in S$ with $a R_i b$ and $b R_i c$ for some i. By definition of R^+ the pair (a, c) will appear in R_{i+1} such that $a R_{i+1} c$. Since R^+ is the union of all R_i the pairs $(a, b), (b, c), (a, c) \in R^+$, thus R^+ is transitive by definition.

(3) Show R^+ is the smallest transitive relation possible such that $R \subseteq R^+$.

We must show R^+ is the smallest possible set that satisfies the above two properties. Suppose T is a transitive relation on S that extends R. We know T extends R so $R \subseteq T$. Additionally, since T is transitive for any $a,b,c \in S$ such that a R b and b R c we know a T c, which implies $R_1 \subseteq T$. We can then inductively prove that for any $a,b,c \in S$ with a R_i b and b R_i c we will have a T c thus $R_{i+1} \subseteq T$, or simply $R_i \subseteq T$ for all i. It then follows that $\bigcup_i R_i \subseteq T$ which is $R^+ \subseteq T$. Therefore, R^+ must be the smallest transitive relation extending R.

1.4 Q4

Define the function $fib : \mathbb{N} \to \mathbb{N}$ such that fib(n) returns the nth number of the Fibbonaci sequence (0-indexed). fib is defined by:

$$\mathsf{fib}(n) = \left\{ \begin{array}{ll} 0 & \text{if } n = 0 \\ 1 & \text{if } n = 1 \\ \mathsf{fib}(n-1) + \mathsf{fib}(n-2) & \text{if } n \ge 2 \end{array} \right.$$

We will prove that each element in the Fibbonaci sequence above the 2^{nd} is greater than the preceding number. Formally, we prove that $P(n) \equiv \text{fib}(n) > \text{fib}(n-1)$ for all $n \in \mathbb{N}$ with n > 2 by ordinary induction on n.

Base case: n = 3. Show P(3) holds.

$$\begin{split} &\text{fib}(3) & & & & & & & \\ &= &\text{fib}(3-1) + &\text{fib}(3-2) & & & & & \\ &= &\text{fib}(2) + &\text{fib}(1) & & & & & \\ &= &\text{fib}(2) + &\text{fib}(1) & & & & & \\ &= &\text{fib}(2) + &1 & & & & & \\ &= &\text{fib}(2) + &1 & & & & & \\ &> &\text{fib}(2) & & & & & \\ &> &\text{fib}(2) & & & & & \\ &> &\text{fib}(2) & & & & & \\ \end{split}$$

So P(3) holds.

Induction step: n > 3. Assume P(n) holds. We must show P(n+1) holds.

$$\begin{aligned} &\mathsf{fib}(n+1) && \langle \mathsf{RHS} \rangle \\ &= \mathsf{fib}(n+1-1) + \mathsf{fib}(n+1-2) && \langle \mathsf{def. of fib.3} \rangle \\ &= \mathsf{fib}(n) + \mathsf{fib}(n-1) && \langle \mathsf{arithmetic} \rangle \\ &> \mathsf{fib}(n) && \langle b > 0 \to a+b > a \rangle \\ &= \mathsf{fib}(n+1-1) && \langle \mathsf{arithmetic}; \, \mathsf{LHS} \rangle \end{aligned}$$

Thus, P(n+1) holds.

Therefore, P(n) holds for all $n \in \mathbb{N}$ by ordinary induction. We have shown that each element in the Fibbonaci sequence above the 2^{nd} is greater than the preceding number.

1.5 Q5

Using the same definition of fib from Q4 we will prove that each element in the Fibbonaci sequence above the $2^{\rm nd}$ is greater than the preceding number. Formally, we prove that $P(n) \equiv \mathsf{fib}(n) > \mathsf{fib}(n-1)$ for all $n \in \mathbb{N}$ with n > 2 by complete induction on n. Base case: n = 3. Show P(3) holds.

$$\begin{split} & \text{fib}(3) & & \langle \text{RHS} \rangle \\ &= \text{fib}(3-1) + \text{fib}(3-2) & & \langle \text{def. of fib.3} \rangle \\ &= \text{fib}(2) + \text{fib}(1) & & \langle \text{arithmetic} \rangle \\ &= \text{fib}(2) + 1 & & \langle \text{def. of fib.2} \rangle \\ &> \text{fib}(2) & & \langle b > 0 \rightarrow a + b > a; \text{ LHS} \rangle \end{split}$$

So P(3) holds.

Base case: n = 4. Show P(4) holds.

So P(4) holds.

Induction step: n > 4. Assume P(m) holds for all 2 < m < n. We must show P(n) holds.

Thus P(n) holds for n > 4.

Therefore, P(n) holds for all $n \in \mathbb{N}$ by complete induction. We have shown that each element in the Fibbonaci sequence above the 2^{nd} is greater than the preceding number.

1.6 Q6

Define a binary tree data structure BinTree representative of binary search trees over an arbitrary data type a for which the properties of binary search trees are respected. BinTree is defined by pattern matching with the following constructors:

Leaf : $a \rightarrow BinTree$

Fork : BinTree \times a \times BinTree \rightarrow BinTree

We define $P(t) \equiv \text{search operations over the binary search tree } t \mod \text{as a BinTree}$ only need to search one branch of t. We will prove P(t) for all $t \in \text{BinTree}$ by structural induction on t.

Base case: t = Leaf(n). Prove P(t) holds.

It is trivially obvious that the search algorithm over t can only check one element, the leaf of the tree. Thus, there is only one branch to search: the leaf. So P(t) holds.

Inductive step: $t = \text{Fork}(b_1, n, b_2)$. Assume $P(b_1)$ and $P(b_2)$ hold. Prove P(t) holds.

According to the properties of binary search trees we know that t follows the binary search property: that all leaves containing values less than or equal to n are stored in b_1 , and any leaves with values greater than or equal to n are stored in b_2 . Thus, the search operation algorithm can compare the search value x with n and choose which sub-tree to search in.

We then have 3 cases.

- If x = n the search operation has only had to check one value or one branch of possible values so P(t) holds.
- If x < n the search operation can choose the left branch b_1 to continue its search. Since $P(b_1)$ holds we know the search operation will only search one branch in the left sub-tree as well. Together, the search operation will only have to search one branch overall of t. Therefore, P(t) holds for x < n.
- Similarly, we can follow the same logic for x > n with the right branch b_2 since $P(b_2)$ holds. Thus, P(t) holds for all cases.

We have shown that P(t) holds for all binary trees modeled by BinTree, thus search operations need only to search one branch of binary search trees.