PRECISION RECALL

		Real	
		Positive	Negative
cted	Positive	1	2
Predicted	Negative	0	7

$precision = \frac{tp}{tp + fp} = \frac{1}{3} = 33\%$
$recall = \frac{tp}{tp + fn} = \frac{1}{1} = 100\%$
$specificity = \frac{tn}{tn + fp} = \frac{7}{9} = 78\%$ $sensitivity = recall = 100\%$

		Real	
		Positive	Negative
Predicted	Positive	True Positive (tp)	False Positive (fp)
Pred	Negative	False Negative (fn)	True Negative (tn)

$$precision = \frac{tp}{tp + fp}$$

Precision — Out of all the examples that predicted as positive, how many are really positive?

$$recall = \frac{tp}{tp + fn}$$

Recall — Out of all the positive examples, how many are predicted as positive?

$$specificity = \frac{tn}{tn + fp}$$

Specificity — Out of all the people that do not have the disease, how many got negative results?

$$sensitivity = \frac{tp}{tp + fn}$$

Sensitivity — Out of all the people that have the disease, how many got positive test results?

		Real	
		Positive	Negative
Predicted	Positive	9	1
	Negative	0	0

$$recall = \frac{tp}{tp + fp} = \frac{9}{10} = 90\%$$

$$recall = \frac{tp}{tp + fn} = \frac{9}{9} = 100\%$$

$$specificity = \frac{tn}{tn + fp} = \frac{0}{1} = 0\%$$

$$sensitivity = recall = 100\%$$

Example 3 — High Precision, Low Recall, and High Specificity

Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances, while **recall** (also known as sensitivity) is the fraction of relevant instances that were retrieved. Both precision and recall are therefore based on relevance.

PRECISION: FRACTION OF RELAVANT AMONG RETRIEVED

RECALL: FRACTION OF RETRIEVED WERE RELEVANT

Recall and Precision

- Recall $\left(\begin{array}{c} \frac{|R_a|}{|R|} \right)$
 - The fraction of the relevant documents which has been retrieved
- Precision ($\frac{|R_a|}{|A|}$)
 - The fraction of the retrieved documents which is relevant

IR - Berlin Chen 7

Introduction to Information Retrieval

Sec. 8.3

Unranked retrieval evaluation:

Precision and Recall

- Precision: fraction of retrieved docs that are relevant
 = P(relevant | retrieved)
- Recall: fraction of relevant docs that are retrieved = P(retrieved|relevant)

	Relevant	Nonrelevant
Retrieved	tp	fp
Not Retrieved	fn	tn

- Precision P = tp/(tp + fp)
- Recall R = tp/(tp + fn)

True state of patient's health

		Disease	No disease
Test result	Alert	5	3
	No alert	4	8