Exercice1

```
>>> 0b100110
38
>>> 0b001101
>>> 0b100110 + 0b001101
51
Exercice2
>>> int("1142",5)
172
>>> int("AC",16)
172
>>> int("B3",16)
179
>>> int("10110011",2)
179
#179=172+7
>>> int("1204",5)
179
Exercice3
def lendian(octet1,octet2,chaine):
  if chaine=="BE":
    return (octet1*16**2+octet2)
 if chaine=="LE":
    return (octet2*16**2+octet1)
print(lendian(0x08,0x00,"LE"))
print(lendian(0x08,0x00,"BE"))
Exercice4
>>> 0b1001
>>> 2**5-10
22
>>> bin(22)
'0b10110'#codage de -10
```

Le codage sur 5 bits permet de coder les entiers relatifs de -16 (10000) à 15 (01111).

Exercice5

```
3,625=2+1+0,5+0,125=(11,101)_2
```

Exercice 6

1)
-4,5=-1,125 ×2²
le signe se code avec 1
l'exposant décalé vaut 1025=(1000000001)²
la mantisse tronquée vaut (0010...00)²
Au final: 1100000000010010......00.

2)
1011111111101000 0000 ... 0000
Il s'agit d'un nombre négatif
>>> 0b01111111110
1022
donc la puissance est -1

La mantisse tronquée est $1000\ 0000\ \dots\ 0000\ ce$ qui correspond à 0,5 Au final il s'agit du réel : -1, 5×2^{-1} = - 0,75

Exercice 7

a	b	a and not(b)	not(a) and	(a and not(b)) or (not(a) and b)
		not(b)	b	not(b)) or
				(not(a)
				and b)
1	1	0	0	0
1	0	1	0	1
0	1	0	1	1
0	0	0	0	0