Latent Outlier Exposure for Anomaly Detection with Contaminated Data

Chen Qiu *1,2 , Aodong Li *3 , Marius Kloft 2 , Maja Rudolph 1 , Stephan Mandt 3

Motivation & Problem Setup

Anomaly Detection with Contaminated Training Data.

fraud transaction

- → Common assumption: clean training data.
- → What if the training data contains unnoticed anomalies?

Anomaly score in input space

Normality Anomaly

Incorrect normal region characterization.

 \rightarrow A solution: exploit labels.

Supervised learning characterizes boundaries well.

- → However, labels are expensive. Can we have a cheaper way?
- → Contribution: Unsupervised latent outlier exposure.

Problem Setup.

 \rightarrow Training sets contain many normal samples and a few anomalies.

Method: Latent Outlier Exposure

Proposed Loss.

$$\mathcal{L}(\theta, \mathbf{y}) = \sum_{i=1}^{N} (1 - y_i) \mathcal{L}_n^{\theta}(\mathbf{x}_i) + y_i \mathcal{L}_a^{\theta}(\mathbf{x}_i)$$

- \rightarrow **y** are variables to be optimized.
- $\to \mathcal{L}_n^{\theta}(\mathbf{x})$: a normal loss that is designed to be minimized over normal data.
- $\to \mathcal{L}^{\theta}_{a}(\mathbf{x})$: an abnormal loss that is designed to have the opposite effect.
- \rightarrow E.g., for deep SVDD, $\mathcal{L}_n^{\theta}(\mathbf{x}) = ||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$ and $\mathcal{L}_a^{\theta}(\mathbf{x}) = 1/||f_{\theta}(\mathbf{x}) \mathbf{c}||^2$.

Constrained Optimization Problem. Hard LOE.

$$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}} \mathcal{L}(\theta, \mathbf{y})$$
 s.t. $\mathcal{Y} = \left\{ \mathbf{y} \in \{0, 1\}^{N} : \sum_{i=1}^{N} y_i = \alpha N \right\}$

- $\rightarrow \alpha$ is an assumed contamination ratio.
- \rightarrow Block coordinate descent:
 - \triangleright Update θ when **y** is fixed;
 - \triangleright Update **y** when θ is fixed and the constraint is satisfied. (Closed-form solution exists.)

Model Extension. Soft LOE.

$$\min_{\theta} \min_{\mathbf{y} \in \mathcal{Y}'} \mathcal{L}(\theta, \mathbf{y})$$
 s.t. $\mathcal{Y}' = \left\{ \mathbf{y} \in \{0, 0.5\}^N : \sum_{i=1}^N y_i = 0.5 \alpha N \right\}$

Anomaly Score.

$$S_i^{ ext{test}} = \mathcal{L}_n^{ heta}(\mathbf{x}_i)$$

Experiments - Synthetic Data

Experiments - Real Data

Protocol.

- \rightarrow one vs. the rest.
- → Corruption of training set:
- \triangleright Mix abnormal samples to have an anomaly ratio of α_0 .

Data.

Results.

Table. UCSD Peds1

Method	Contamination Ratio		
	10%	20%	30%*
(Tudor Ionescu et al., 2017)	-	-	68.4
(Liu et al., 2018)	-	-	69.0
(Del Giorno et al., 2016)	-	-	59.6
(Sugiyama & Borgwardt, 2013)	55.0	56.0	56.3
(Pang et al., 2020)	68.0	70.0	71.7
Blind	85.2±1.0	76.0 ± 2.7	66.6 ± 2.6
Refine	82.7±1.5	74.9 ± 2.4	69.3 ± 0.7
LOE_H (ours)	82.3±1.6	59.6 ± 3.8	56.8 ± 9.5
LOE_S (ours)	86.8±1.2	79.2 ± 1.3	$71.5{\pm}2.4$
*Default setup in (Pang et al., 2020), corresponding to $\alpha_0 \approx 30\%$.			

5 95.0 93.6 92.7 91.5 <u>9</u> 15 92.8 93.6 94.8 95.2 20 - 91.8 92.4 93.5 94.5 assumed contamination ratio

Sensitivity study: CIFAR-10