"JUST THE MATHS"

UNIT NUMBER

13.1

INTEGRATION APPLICATIONS 1 (The area under a curve)

by

A.J.Hobson

- 13.1.1 The elementary formula
- 13.1.2 Definite integration as a summation
- 13.1.3 Exercises
- 13.1.4 Answers to exercises

UNIT 13.1 - INTEGRATION APPLICATIONS 1

THE AREA UNDER A CURVE

13.1.1 THE ELEMENTARY FORMULA

We shall consider, here, a method of calculating the area contained between the x-axis of a cartesian co-ordinate system and the arc, from x = a to x = b, of the curve whose equation is

$$y = f(x)$$
.

Suppose that A(x) represents the area contained between the curve, the x-axis, the y-axis and the ordinate at some arbitrary value of x.

A small increase of δx in x will lead to a corresponding increase of δA in A approximating in area to that of a narrow rectangle whose width is δx and whose height is f(x).

Thus,

$$\delta A \simeq f(x)\delta x$$
,

which may be written

$$\frac{\delta A}{\delta x} \simeq f(x).$$

By allowing δx to tend to zero, the approximation disappears to give

$$\frac{\mathrm{d}A}{\mathrm{d}x} = f(x).$$

Hence, on integrating both sides with respect to x,

$$A(x) = \int f(x) \, \mathrm{d}x.$$

The constant of integration would need to be such that A = 0 when x = 0; but, in fact, we do not need to know the value of this constant because the required area, from x = a to x = b, is given by

$$A(b) - A(a) = \int_a^b f(x) \, \mathrm{d}x.$$

EXAMPLES

1. Determine the area contained between the x-axis and the curve whose equation is $y = \sin 2x$, from x = 0 to $x = \frac{\pi}{4}$.

Solution

$$\int_0^{\frac{\pi}{4}} \sin 2x \, dx = \left[-\frac{\cos 2x}{2} \right]_0^{\frac{\pi}{4}} = \frac{1}{2}.$$

2. Determine the area contained between the x-axis and the curve whose equation is $y = 3x - x^2$, from x = 1 to x = 2.

Solution

$$\int_{1}^{2} (3x - x^{2}) dx = \left[\frac{3x^{2}}{2} - \frac{x^{3}}{3} \right]_{1}^{2} = \left(6 - \frac{8}{3} \right) - \left(\frac{3}{2} - \frac{1}{3} \right) = \frac{13}{6}.$$

13.1.2 DEFINITE INTEGRATION AS A SUMMATION

Consider, now, the same area as in the previous section, but regarded (approximately) as the sum of a large number of narrow rectangles with typical width δx and typical height f(x). The narrower the strips, the better will be the approximation.

Hence, we may state an alternative expression for the area from x = a to x = b in the form

$$\lim_{\delta x \to 0} \sum_{x=a}^{x=b} f(x) \delta x.$$

Since this new expression represents the same area as before, we may conclude that

$$\lim_{\delta x \to 0} \sum_{x=a}^{x=b} f(x)\delta x = \int_{a}^{b} f(x)\delta x.$$

Notes:

- (i) The above result shows that an area which lies wholly **below** the x-axis will be **negative** and so care must be taken with curves which cross the x-axis between x = a and x = b.
- (ii) If c is any value of x between x = a and x = b, the above result shows that

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

- (iii) To calculate the TOTAL area contained between the x-axis and a curve which crosses the x-axis between x = a and x = b, account must be taken of any parts of the area which are negative.
- (iv) It is usually a good idea to sketch the area under consideration before evaluating the appropriate definite integrals.
- (v) It will be seen shortly that the formula obtained for definite integration as a summation has a wider field of application than simply the calculation of areas.

EXAMPLES

1. Determine the total area between the x-axis and the curve whose equation is $y = \sin 2x$, from $x = \frac{3\pi}{8}$ and $x = \frac{3\pi}{4}$.

Solution

$$\int_{\frac{3\pi}{8}}^{\frac{\pi}{2}} \sin 2x \, dx - \int_{\frac{\pi}{2}}^{\frac{3\pi}{4}} \sin 2x \, dx.$$

That is,

$$\left[-\frac{\cos 2x}{2} \right]_{\frac{3\pi}{8}}^{\frac{\pi}{2}} - \left[-\frac{\cos 2x}{2} \right]_{\frac{\pi}{2}}^{\frac{3\pi}{4}} = \left(\frac{1}{2} - \frac{1}{2\sqrt{2}} \right) - \left(0 - \frac{1}{2} \right) = 1 - \frac{1}{2\sqrt{2}}.$$

2. Evaluate the definite integral,

$$\int_{\frac{3\pi}{8}}^{\frac{3\pi}{4}} \sin 2x \, dx.$$

Solution

$$\int_{\frac{3\pi}{8}}^{\frac{3\pi}{4}} \sin 2x \, dx = \left[-\frac{\cos 2x}{2} \right]_{\frac{3\pi}{8}}^{\frac{3\pi}{4}} = -\frac{1}{2\sqrt{2}}.$$

13.1.3 EXERCISES

- 1. Determine the areas bounded by the following curves and the x-axis between the ordinates x=1 and x=3:
 - (a)

$$y = 2x^2 + x + 1;$$

(b)

$$y = (1 - x)^2;$$

(c)

$$y = 2\sqrt{x}.$$

2. Sketch the curve whose equation is

$$y = (1 - x)(2 + x)$$

and determine the area contained between the x-axis and the portion of the curve above the x-axis.

3. To the nearest whole number, determine the area bounded between x=1 and x=2 by the curves whose equations are

$$y = 3e^{2x}$$
 and $y = 3e^{-x}$.

4. Determine the area bounded between x = 0 and $x = \frac{\pi}{3}$ by the curves whose equations are

$$y = \sin x$$
 and $y = \sin 2x$.

5. Determine the total area, from x=0 to $x=\frac{3\pi}{10}$, contained between the x-axis and the curve whose equation is

$$y = \cos 5x$$
.

13.1.4 ANSWERS TO EXERCISES

1. (a)

 $\frac{70}{3}$;

(b)

 $\frac{8}{3}$;

(c)

 $4\sqrt{3} - \frac{4}{3}.$

2.

 $\frac{9}{2}$.

3.

70.

4.

0.25

5.

$$\frac{2\sqrt{2}-1}{5\sqrt{2}}-\simeq 0.259$$