

2-10. Data Distribution Service (DDS)

(네트워크 연동형 IT 융합시스템을 위한 고신뢰 제어 미들웨어 기술)

분산환경에서 실시간으로 대규모 통신 노드 간 대용량데이터 공유 및 배포를 지원하는 통신 미들웨어 기술

CPS 연구팀 담당자 이수형

1. 요약

→ 기술개발의 필요성(NEEDS)

■ 현재 IT 기술의 급격한 발전에 따라 인간을 둘러싼 모든 환경 및 기기들에 컴퓨팅적인 사이버 요소들이 융합되고 이들간의 네트워크화가 진행되어 새로운 형태의 융복합 서비스가 등장하고 있으며, 이들 서비스의 경우 유연한 구조의 고신뢰, 실시간 데이터 중심 통신 미들웨어 기술이 요구됨

→ 기술적인 독특한 접근법(APPROACH)

■ DDS 미들웨어는 기존 클라이언트-서버 기반의 노드간 상호동작 중심의 통합이 아니라, 노드 상호간 공유/교환되어야 할 데이터 자체에 중심을 둔 데이터 배포 메커니즘을 구현함으로써 다양한 운용/개발 환경에 따른 이종 시스템간의 상호 운용성 확보가 용이함

◆ 기대효과(BENEFIT)

■ DDS 미들웨어는 구조의 유연성과 풍부한 제공 기능을 통해 통신을 이용한 응용 개발 시기존의 클라이언트 -서버 기반의 응용 개발보다 개발 기간, 요구 HW 및 개발 응용의 성능 등에서 최소 100배 이상의 향상을 가져올 수 있음

→ 경쟁사/대체재 대비 우수성(COMPETITION)

■ ETRI DDS 미들웨어는 타 경쟁사 DDS 미들웨어 대비 무선환경에서 통신 노드 이동성을 지원하며, 빠른 탐색 과정과 대용량 데이터 분산 처리를 효과적으로 수행할 수 있는 하이브리드 멀티캐스팅 기능을 제공함으로써 고성능, 고신뢰 데이터 배포를 가능하게 함

2. 기술 개요(1)

● 기술개발의 필요성

→ 고객 및 시장의 니즈

- 기존 제어체계에 IT 자원을 결합함으로써 센싱 정보의 실시간 수집, 분석과 제어정책의 실시간 생성, 전파를 통한 제어체계의 효율성 극대화 및 새로운 융복합 산업 창출이 급증하고 있음
 - 예) 스마트하이웨이, 스마트방재, 스마트그리드, U-City, 스마트국방
- 이들 체계의 운영은 근본적으로 실시간 고신뢰 자율통신에 기반한 센싱, 제어 정보의 자유로운 유통에 기초하고 있음
- 구성 통신 노드의 규모가 예전에 비해 거대하여 이들 간의 통신을 응용 개발 단계에 반영하는 것은 불가능함
- 이들 시스템은 대규모 통신 노드로 구성되며 다양한 이종의 운용 플랫폼, 하부 통신 네트워크 구조 및 프로토콜, 개발 언어 등이 혼재해 이들간의 상호 운용성을 확보할 수 있는 통신 미들웨어가 없는 상태임
- 기존 노드의 상호동작을 위한 미들웨어에서 신규 요구사항을 반영한 데이터 중심의 Pub/Sub 기반의 통신 미들웨어 필요

2. 기술 개요(2)

● 기술개념 및 기술사양

→ 기술개념

- DDS 미들웨어는 분산환경에서 실시간으로 대규모 통신 노드 간 대용량 데이터 공유 및 배포를 지원하는 통신 미들웨어
- 데이터 중심 미들웨어로 통신 노드의 플랫폼, 하부 네트워크 구조 및 프로토콜, 개발 언어에 독립적인 상호 운용성 제공
- 공유 데이터 정의 외의 통신개체 탐색, 협상, 연결 설정 및 시간동기화 등 대부분의 작업을 미들웨어에서 제공을 통한 응용 개발 부하 감소
- Non-real-time에서 extreme realtime의 전송 시간 제약을 가지는
 다양한 응용에 적용 가능
- 데이터 분배 시 제공되는 22개 QoS 파라미터를 이용한 다양한 데이터 분배 품질 제공

3. 개발기술의 주요내용(1)

● 기술의 특징

→ 고객/시장의 니즈를 충족시키는 독특한 점

- 국제 표준 준수를 통한 상호 운용성 및 확장성 확보
 - OMG의 분산 실시간 데이터 배포를 위한 표준 미들웨어
 - 대규모 개체간 실시간, 고신뢰 통신이 필요한 국방분야 미들웨어 실제 표준
- Client/Server 방식이 아닌 Publish/Subscribe 방식의 단순 구조
- 다양한 네트워크 환경에서 통신개체 자동 탐색, QoS 협상 기능
- Single Point of Failure 발생 가능성이 없어 Safety Critical 시스템에 적합

→ 기술의 상세 사양

- QoS 보장형 실시간 데이터배포 기술(DCPS: Data Centric Publish-Subscribe)
- 객체 지향 고속 데이터 처리 기술(DLRL: Data Local Reconstruction Layer)
- 통신 성능보장 및 상호운용 지원 기술(RTPS: Real Time Publish-Subscribe)
- 고신뢰 데이터 전송 기술
- 고속 DDS 엔티티 디스커버리 기술

3. 개발기술의 주요내용(2)

● 경쟁기술대비 우수성

→ 경쟁기술/대체기술 현황

- CORBA(Common Object Request Broker Architecture)
 - Remote Method Call
 - Client/Server 기반 분산 미들웨어
- JMS(Java Message Service)
 - Message-Centric Communication
 - Client/Server 기반 분산 미들웨어

→ 경쟁기술/대체기술 대비 우수성

경쟁기술	본 기술의 우수성		
CORBA	 Peer To Peer Communication(No Single Point of Failure) 실시간성 측면에서 우수 22개의 강력한 QoS 지원 		
JMS	 Peer To Peer Communication(No Single Point of Failure) Interoperability 지원 실시간성 지원 		

3. 개발기술의 주요내용(3)

● 기술의 완성도

◆ 연도별 목표 및 내용

■ 기술개발 완료시기 : 2012년 2월 예정

구 분	2010년	2011년
개발 목표	◆ DDS 핵심 DCPS, RTPS 개발	◆ High Performance Light Weight DDS 개 발
개발 내용	◆ QoS 보장형 실시간 데이터 배포기술◆ 통신성능 보장 및 상호운용 기술◆ DDS 통신보안 기술	◆ Fast Node Discovery ◆ High Performance DDS Execution Engine ◆ GUI 기반 DDS 응용 개발 지원 도구

→ 기술이전 범위

- DDS 통신 미들웨어
- Fast Discovery 핵심 기술
- Data Stream 실시가 Time-Based, Content-Based Filtering 기술
- 미들웨어용 응용 개발 지원 도구

3. 개발기술의 주요내용(4)

● 표준화 및 특허

→ 관련 기술의 표준화 동향

- 국제 표준화 기구인 OMG(Object Management Group)에 의해 2건의 표준 제정
 - "Data Distribution Service for Real-time System Ver. 1.2", 2007
 - "The Real-time Publish-Subscribe Wire Protocol, DDS Interoperability Wire Protocol Specification Ver. 2.1", 2009
 - "Web Enabled DDS", "Security DDS" 등 2건의 표준안 제정이 진행 중
- 국내 표준화 기구인 TTA의 임베디드 PG에서 2건의 관련 표준 제정
 - "실시간 CPS 응용을 위한 데이터 분배 서비스 참조 모델", 2010
 - "실시간 CPS 응용을 위한 데이터 분배 서비스 요구 사항", 2010

◆ 보유 특허

• 4건 국제 특허 출원 중

4. 기술적용 분야 및 기술의 시장성(1)

● 기술이 적용되는 제품 및 서비스

산업 분	·0 ‡	적용 시스템/서비스	관련 사업자	비고
국방		미래 전투 체계 시스템	국방부, 방산업체, 국방 SW업체	차세대 전투체계시스템
에너지	***	고효율 Smart-Grid 시스템	한국전력, 전력통신업체, 전력부품업체, 전력S/W업체	미래형 고효율 Smart Grid
교통		실시간 적응형 Smart 교통	건교부, 도로공사, 통신장비업체, 통신/제어 SW업체	실시간 적응형 스마트 교통
안전	NO.	고신뢰, 고지능형 소방/방재 서비스	소방방재청, 통신제어 SW 업체	고신뢰, 지능형 소방방재
인터넷 비즈니스		주제별 자 율구 성 SNS 서비스	통신사업자, 솔루션사업자, SNS 서비스 제공업자	미래 인간 관계 서비스
인터넷 비즈니스		실세계연동형 가상현실 서비스	SW개발업체, 인터넷서비스 제공업체, IT장비 업체	미래 인터넷 비즈니스, 차세대 UI

4. 기술적용 분야 및 기술의 시장성(2)

- 해당 제품/서비스 시장 규모 및 국내외 동향
 - 해당 제품/서비스 시장 규모

항목

DDS 적용 가능 산업군

타겟 시장 규모

선學

함정: 세계 함정 시장 규모는 향후 10년간 2,080억불로, 2014년 1.0%, 2018 0.6% 성장세 예상 (국방기술품질원) 선박: 세계 조선 IT융합 시장규모는 2010년 208억불, 2020년 351억불로

성장(Clarksons)

적용 가능 시장 동향

무기/전투체계: 향후 10년간 C4I 분야 시장 규모는 약 1,170억불로, 2014년까지 약 3.7%로 지속적으로 성장 (국방기술품질원) 교통시스템: 세계 ITS 시장 2015년 185억불, 교통, 철도 등으로 시장 영역 확대 예상(Global **Industry Analysis)**

군통신: 군통신 (군사통신, 전술radio, 항공/해양 통신) 시장은 2018년까지 3,070억불 예상 (Jane's **Information Group**) 통신서비스: 2010년 세계 통신 시장 규모는 1조 9,880억불에 도달 (Gartner)

別部

체계(실기동, 가상모의, 워게임 훈련 등)는 2009년 84억불로 매년 6% 이상의 성장예상 (Visiongain) 온라인게임: 온라인 게임 시장은 세계 2011년 130억불, 국내 2010년 4조 1,412억 으로 예상(DFC Intelligence)

다양한 복합 데이터 배포 서비스 제공 인프라

※ 미들웨어 자체 시장의 규모는 2006년에 7억 7,300만 달러를 기록했으며, 2013년에는 32억 달러 규모에 달할 것으로 예상됨 (WinterGreen Research Inc.)

5. 기대효과

● 기술도입효과

→ 기존 통신 미들웨어 기술 대비 600배 성능/비용 이득 가능

■ DDS 제품의 미 육군 정보시스템 실제 적용 예

("The Data Distribution Service – Reducing Cost through Agile Integration", US DoD, 2010. 12)

구분	기존 미 육군 사용 시스템	DDS 적용 신 시스템
시스템 형태	미 육군 전용시스템	DDS COTS를 적용한 개방 시스템
아키텍쳐	중앙집중형, 일체형 아키텍쳐	모듈화, 분산형 아키텍처
개발 기간	8년	1년
응용 소스코드 크기	500,000 라인	50,000 라인
트랙킹 데이터 교환 객체 노드 수	- 설계 목표 : 100,000 개 - 실제 지원 : 20,000 개 - 적정 운영 : 10,000 개 이내	- 설계 목표 : 100,000 개 - 실제 지원 : 250,000 개 - 적정 운영 : 500,000 개 이상
소요 서버 수	- 168 cores 서버 시스템 . 21개 서버(8개의 멀티코어)	- 1 core 랩탑 컴퓨터 1대 . Single core
QoS	- 신뢰성, 가용성을 충분히 지원 못함	- Full QoS 지원