ADA23-HW1

許博翔

September 22, 2023

First, let's solve the following problem: Problem 1.

Given $\{a_i\}_{i=1}^n$, $\{b_i\}_{i=1}^n$, $\{c_i\}_{i=1}^n$, find $\sum_{(i,j) \text{ is an inversion in } \{a_i\}_{i=1}^n} b_i c_j \text{ in } O(n \log n) \text{ complex-}$ ity.

Let
$$d_{l,r}(b,c):=\sum_{(i,j)\text{ is an inversion in }\{a_i\}_{i=l}^{r-1}}b_ic_j.$$

Let's implement $solve(l,r)$ such that it does the following things:

- 1. Sort $\{a_i\}_{i=l}^{r-1}, \{b_i\}_{i=l}^{r-1}, \{c_i\}_{i=l}^{r-1}$ by the order of $\{a_i\}_{i=l}^{r-1}$. (in other words, sort $\{(a_i, b_i, c_i)\}_{i=1}^{r-1}$ by a_i).
- 2. Return $d_{l,r}(b,c)$.

Use divide and conquer to implement it.

For the base case $r \leq l+1$, just do nothing and return $d_{l,r}(b,c)=0$.

For the other case
$$r \ge l+2$$
, let $m := \lfloor \frac{l+r}{2} \rfloor$.

First, do solve(l, m) and solve(m, r).

There are 3 kinds of inversions (i, j):

- 1. i < j < m, the summation of $b_i c_j$ of this kind of inversions is exactly $d_{l,m}(b,c)$, which is counted by solve(l, m).
- 2. $m \leq i < j$, the summation of $b_i c_j$ of this kind of inversions is exactly $d_{m,r}(b,c)$, which is counted by solve(m, r).
- 3. i < m < j.

Since $\{a_i\}_{i=l}^{m-1}$, $\{a_i\}_{i=m}^{r-1}$ have been sorted by solve(l, m), solve(m, r), respectively, we can do the merge part in the merge sort to sort $\{a_i\}_{i=l}^{r-1}$, $\{b_i\}_{i=l}^{r-1}$, $\{c_i\}_{i=l}^{r-1}$ by $\{a_i\}_{i=l}^{r-1}$ in O(r-l) time complexity.

Set C to 0 and $d_{l,r}(b,c)$ to $d_{l,m}(b,c) + d_{m,r}(b,c)$.

Do the following when merging $L := \{a_i\}_{i=1}^{m-1}, R := \{a_i\}_{i=m}^{r-1}$ to the sorted array A:

- 1. If we put an element a_i of R to A, increase C by c_i .
- 2. If we put an element a_i of L to A, increase $d_{l,r}(b,c)$ by b_iC .

Note that for the tie breaker, we put the element in L instead of that in R to A, so that whenever an element a_i of L is put into A, $a_i >$ any element a_j in A that are from R, $a_i \le$ any element a_j that are not in A, and therefore (i, j) forms an inversion of the third kind if and only if a_j is in A and is from R.

Since in 1. we maintain
$$C = \sum_{a_i \text{is from } R \text{ and is in } A} c_i$$
, we'll increase $d_{l,r}(b,c)$ by
$$\sum_{(i,j) \text{ is an inversion and } j \geq m} b_i c_j$$
 in 2.

 \therefore after merging L, R, the arrays are sorted, and we finish counting $d_{l,r}(b,c)$.

Since the time complexity for a single 1. or 2. is O(1), and there are O(r-l) elements to be merged, the time complexity of the merging part is O(r-l).

Let T(r-l) denote the time of solve(l,r).

The time complexity of the dividing part is 2T((r-l)/2), of the merging part is O(r-l).

$$\Rightarrow T(r-l) = 2T((r-l)/2) + O(r-l).$$

By the master theorem, $T(r-l) = O((r-l)\log(r-l))$.

$$T(n) = O(n \log n).$$

Back to (a), (b), (c):

(a) is $d_{l,r}(b,c)$, where $b_i := c_i := 1$, which can be solved in $O(n \log n)$ time complexity.

Trivially, (b) can be solved if (c) is solved.

(c) is
$$\sum_{i=0}^{k} {k \choose i} d_{l,r}(b^{(i)}, c^{(k-i)})$$
 by the binomial theorem, where $b_j^{(i)} := c_j^{(i)} := a_j^i$.

Since
$$\binom{k}{0} = 1$$
, $\forall i$, $\binom{k}{i+1} = \binom{k}{i} \cdot \frac{k-i}{i+1}$.

$$\begin{pmatrix} k \\ 0 \end{pmatrix}, \begin{pmatrix} k \\ 1 \end{pmatrix}, \dots, \begin{pmatrix} k \\ k \end{pmatrix}$$
 can be counted in $O(k)$ time complexity.

Author: 許博翔 2

Since each $d_{l,r}(b^{(i)},c^{(k-i)})$ can be counted in $O(n\log n)$ time complexity, the total time complexity of (c) is $O(nk\log n+k)=O(nk\log n)$.

Problem 2.

Author: 許博翔 3