UCAS PATTERN RECOGNITION

Assignment 7

Yuxun Qu

October 2019

Question 1

请简述 Adaboost 算法的设计思想。

下表是一个由 15 个样本组成的贷款申请训练数据,包括四个特征(年龄,有无工作,有无房屋,信贷情况),最后一列是类别,表示是否同意其贷款。问题如下:

- (1) 计算所有特征对上表中数据集的信息增益
- (2) 用 ID3 算法建立决策树

		表 5.1	贷款申请样本数据表		
ID	年龄	有工作	有自己的房子	信贷情况	类别
1	青年	杏	否	一般	否
2	青年	否	否'	. 好	否
3	青年	是	否	好	是
4	青年	是	是	一般	是
5	青年	否	否	一般	否
6	中年	否	否	一般	否
7	中年	杏	否	好	否
8	中年	是	是	好	是
9	中年	否	是	非常好	是
10	中年	杏	是	非常好	是
11	老年	杏	是	非常好	是
12	老年	否	是	好	是
13	老年	是	否	好	是
14	老年	是	否	非常好	是
15	老年	否		一般	否

图 1: 信息表

Solution:

(1) 首先计算经验熵 H(D)

$$H(D) = -\frac{6}{15}\log_2\frac{6}{15} - \frac{9}{15}\log_2\frac{9}{15} = 0.971$$

然后计算各个特征的信息增益,分别以 A_1, A_2, A_3, A_4 代表年龄,有工作,有房子和信贷四个特征

$$\begin{split} g(D,A_1) = & H(D) - \left[\frac{5}{15} H(D_{A_1 = \frac{\pi}{15}}) + \frac{5}{15} H(D_{A_1 = \frac{\pi}{15}}) + \frac{5}{15} H(D_{A_1 = \frac{\pi}{15}}) \right] \\ = & 0.971 - \left[\frac{5}{15} (-\frac{2}{5} \log_2 \frac{2}{5} - \frac{3}{5} \log_2 \frac{3}{5}) + \frac{5}{15} (-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5}) + \frac{5}{15} (-\frac{4}{5} \log_2 \frac{4}{5} - \frac{1}{5} \log_2 \frac{1}{5}) \right] \\ = & 0.971 - 0.888 = 0.083 \end{split}$$

$$\begin{split} g(D,A_2) = & H(D) - \left[\frac{5}{15}H(D_{A_2 = \text{\it filt}}) + \frac{10}{15}H(D_{A_1 = \text{\it filt}}))\right] \\ = & 0.971 - \left[\frac{5}{15}(-0\log_2 0 - \log_2 1) + \frac{10}{15}(-\frac{6}{10}\log_2\frac{6}{10} - \frac{4}{10}\log_2\frac{4}{10})\right] \\ = & 0.971 - 0.647 = 0.324 \end{split}$$

$$g(D, A_3) = H(D) - \left[\frac{6}{15} H(D_{A_2 = \overline{\uparrow} \overline{f} \overline{f} \overline{f}}) + \frac{9}{15} H(D_{A_1 = \overline{\tau} \overline{f} \overline{f} \overline{f}}) \right]$$

$$= 0.971 - \left[\frac{6}{15} (-0 \log_2 0 - \log_2 1) + \frac{9}{15} (-\frac{6}{9} \log_2 \frac{6}{9} - \frac{3}{9} \log_2 \frac{3}{9}) \right]$$

$$= 0.971 - 0.551 = 0.42$$

$$\begin{split} g(D,A_4) = & H(D) - \left[\frac{4}{15}H(D_{A_2 = \sharp \sharp \sharp \sharp}) + \frac{6}{15}H(D_{A_1 = \sharp \sharp})) + \frac{5}{15}H(D_{A_1 = -\frac{1}{80}}))\right] \\ = & 0.971 - \left[\frac{4}{15}(-0\log_2 0 - \log_2 1) + \frac{6}{15}(-\frac{2}{6}\log_2 \frac{2}{6} - \frac{4}{6}\log_2 \frac{4}{6}) + \frac{5}{15}(-\frac{1}{5}\log_2 \frac{1}{5} - \frac{4}{5}\log_2 \frac{4}{5})\right] \\ = & 0.971 - 0.608 = 0.363 \end{split}$$

(2) 第一步取出信息增益最大的一项,即是否有房 (A_3) 作为分类的第一个节点,将数据集分为 D_1 (有房)与 D_2 (无房)两个部分,其中有房已经完全分类,对无房的 D_2 分类。

对 A_1, A_2, A_4 进行分类

计算经验熵 H(D)

$$H(D_2) = -\frac{6}{9}\log_2\frac{6}{9} - \frac{3}{9}\log_2\frac{3}{9} = 0.918$$

$$\begin{split} g(D_2,A_1) = & H(D) - \left[\frac{5}{15} H(D_{A_1 = \frac{\pi}{15}}) + \frac{5}{15} H(D_{A_1 = \frac{\pi}{15}}) + \frac{5}{15} H(D_{A_1 = \frac{\pi}{15}}) \right] \\ = & 0.971 - \left[\frac{3}{9} (-\frac{1}{3} \log_2 \frac{1}{3} - \frac{2}{3} \log_2 \frac{2}{3}) + \frac{3}{9} (-0 \log_2 0 - \log_2 1) + \frac{3}{9} (-\frac{2}{3} \log_2 \frac{2}{3} - \frac{1}{3} \log_2 \frac{1}{3}) \right] \\ = & 0.918 - 0.612 = 0.306 \end{split}$$

$$\begin{split} g(D_2,A_2) = & H(D) - \left[\frac{3}{9}H(D_{A_2 = \text{\it filt}}) + \frac{6}{9}H(D_{A_1 = \text{\it filt}}))\right] \\ = & 0.971 - \left[\frac{3}{9}(-0\log_2 0 - \log_2 1) + \frac{6}{9}(-0\log_2 0 - \log_2 1)\right] \\ = & 0.918 - 0 = 0.918 \end{split}$$

易知, A_4 分类的经验条件熵大于 0,所以最大信息增益的特征为 A_2 。 A_2 的两个分支都能完全分类,决策树停止。

图 2: 决策树

Question 2

用伪代码描述一种决策树剪枝的方法

Solution:

以下算法为预剪枝算法,该算法运行的位置为决策树产生时,选择完最优分割属性之后,产生子节点之前。

Algorithm 1 决策树剪枝 (预剪枝)

Require: 当前节点上的训练集 **D**,当前节点上的验证集 **V**,属性集 $A = \{a_1, a_2, ... a_d\}$,最优分属性 a_* ,已生成的决策树 T,当前节点 Node.

Ensure: 剪枝后的决策树 T

- 1: function Preprint $(\mathbf{D}, \mathbf{V}, A = \{a_1, a_2, ... a_d\}, a_*, T, Node)$
- 2: 在 Node 节点上选取计数最多的类别 C_{Node} ,并取得数据集中属于该类别的数据样本个数 T_{Node} . 初始化计数 T_a

```
a_* for a_* 的每一种取值 a_*^v do
```

- 4: 取 $a_* = a_*^v$ 的训练子集 \mathbf{D}_v 与验证子集 \mathbf{V}_v .
- $if D_v$ 是空集 then
- 6: a_*^v 上的标记类别 $C_{a^v} \leftarrow C_{Node}$
- 7: **else**
- 8: a_*^v 上的标记类别 C_{a^v} 为 \mathbf{D}_v 中最多的类别.
- 9: end if
- 10: 计算验证子集 \mathbf{V}_v 中被分为 C_{a^v} 的个数 T_{a^v}
- $T_a = T_a + T_{a^v}$
- 12: end for
- 13: **if** then $T_a \ge T_a$
- 14: 分支节点 Node 不再产生儿子节点,将其标记为叶子节点.
- 15: end if
- 16: end function

Question 3

有 N 个样本 $x_1,...,x_N$,每个样本维数 D,希望将样本维数降低到 K,请给出 PCA 算法的计算过程 Solution:

Algorithm 2 PCA 算法

Require: $\mathbf{X}_{D\times N} = \{x_1, ... x_N\}$ 数组,D 降维前的维度,K 降维后的样本维度.

Ensure: 降维后的数据 Y

- 1: function $PCA(\mathbf{X} = \{x_1, ...x_N\})$
- 2: 计算协方差矩阵 $\mathbf{S} = \frac{1}{N} \sum_{i=1}^{n} (x_i \bar{x})^T (x_i \bar{x})$
- 3: 计算 **S** 的特征值与特征向量 $\{\lambda_1,\lambda_2...\lambda_N\},\{u_1,u_2...u_N\}$, 其中特征值按绝对值从大到小排列,即 $\lambda_i<\lambda_j,i< j$.
- $_{4:}$ 取前 K 个特征值构成投影矩阵 $\mathbf{U}_{D\times K}$.
- 5: 降维后的数据为 $\mathbf{Y}_{K\times N} = \mathbf{U}^T \mathbf{X}$
- 6: end function