Medical/Bio Research Topics I: Week 01 (03.03.2023)

Introduction to the brain imaging-based artificial intelligence models (뇌영상 기반 인공지능 모델 소개)

Practice of Radiology

- Disease detection
- Disease management
- Patient outcome prediction

Brain lesion detection

Brain Imaging

CT, Computed Tomography (컴퓨터단층촬영) MRI, Magnetic Resonance Imaging (자기공명영상) PET, Positron Emission Tomography (양전자방출단층촬영)

MRI

- "A workhorse technology because of the diversity of information attainable using the same scanner to acquire images" (D.C. Van Essen)
- Three main types of MRI
 - Structural MRI
 - Functional MRI
 - Diffusion-weighted MRI

Clinical MRI Studies

Brain changes in recovery after stroke [Park et al, 2011]

Classification beyond describing group differences

MRI Machine Learning Studies

Difference between traditional machine learning and deep learning [Mazurowski et al., 2018]

Classification

[Park et al., 2020]

Features

Samples
Odmpics

		Brain area 1 volume	Brain area 2 volume	Brain area 3 volume	
,	Subject 1	-	-	-	-
	Subject 2	-	-	-	-
	Subject 3	-	-	-	-
	:	-	-	-	-

Healthy subjects

Patients with Alzheimer's disease

Structural MRI

Convolutional neural network

Healthy subjects

Patients with Alzheimer's disease

[EL-Geneedy et al., 2023]

[Koch et al., 2021]

Features

ı		Brain areas 1 – 2 connection	Brain areas 1 – 3 connection	Brain areas 1 – 4 connection	
	Subject 1	-	-	-	-
Samples	Subject 2	-	-	-	-
*	Subject 3	-	-	-	-
	:	-	-	-	-

Healthy subjects

Patients with mild cognitive impairment

Diffusion-weighted MRI: connection

Convolutional neural network

Healthy subjects

Patients with mild cognitive impairment

[Kolahkaj et al., 2023]

Regression

[Park et al., 2023]

Features

1		Brain area 1 PVS volume	Brain area 1 PVS linearity	Brain areas 1 PVS width	
	Subject 1	-	-	-	-
Samples	Subject 2	-	-	-	-
*	Subject 3	-	-	-	-
	:	-	-	-	-

Actual age (chronological age) vs. estimated age (brain age)

Healthy subjects

Structural MRI

Convolutional neural network

Brain age

[Yin et al., 2023]

Actual age (chronological age) vs. estimated age (brain age)

Demands for MRI Machine Learning

- Good Machine Learning Practices (GMLPs)
- Explainable artificial intelligence (XAI)
 - For visualizing and interpreting machine learning predictions
 - Article 15 GDPR (General Data Protection Regulation) [https://gdpr-info.eu/art-15-gdpr]: right of access by the data subject
 - Patients have the right to request an explanation for how a given diagnosis was reached

Checklist of GMLPs for brain MRI					
1.	Are neuroradiologists, neuroimaging scientists, MR technician and data scientist working together throughout the whole life cycle of the product?				
2.	Is the patient's personal information anonymous in the brain MR images?				
3.	Is the metadata being filled for each patient scan with proper details of all parameters?				
4.	Does training and testing MR datasets contain different scans? There shouldn't be any common scan in both datasets.				
5.	Does reference MR dataset for validation of model have completely unique scans with same parameters as training and testing dataset?				
6.	Are you using the model for segmenting brain structures from the specific contrast for which it has been trained for? If so, don't use it for other contrasts.				
7.	Is the output of the model accepted and readable by the neuroradiologist?				
8.	Has the model been tested in the neuroradiology department under the supervision of an expert neuroradiologist before deployment?				
9.	Are the precautions and potential dangers of using the model explicitly mentioned?				
10.	Is the model being updated frequently for incorporating the changes in the new scans that may occur naturally?				

[https://doi.org/10.48550/arXiv.2301.01241]

Publications of MRI machine learning

Today

Tomorrow

Wide range of techniques with varying applicability depending on type of data and Al Occlusion Deep Neural Nets (Grad) CAM **Gradient Attributions** LIME **SHAP** Counterfactuals **Model-Specific Partial Dependence Plots** methods Learning Machine **Interpretable Machine Learning Models Model-Agnostic** methods Feature Importance (Ranking) Tabular Time Series **Images** (incl. Text) [MathWorks Online Seminar: eXplainable AI and AI V&V]

[Koch et al., 2021]

Brain areas contributing to predictions

[Yin et al., 2023]

Summary: MRI Data Analytics

