TY CSE AY-2022-23 Sem-I

Artificial Intelligence and Machine Learning Lab

Assignment No 2

Due date- 06/09/2022

1. Consider the below graph, Find the optimal path from start node S to goal node G using A* algorithm.

The length(cost) of each edge is marked on the graph. Use the Manhattan distance as a heuristic function. Assume that each square side on the grid is 10KM.

			Date Page
		Assignment No.	, 2
91.	Solution:-		
→	Calculating the Manhatten distance for each and every node. using the formula $ x_2-x_1 + y_2-y_1 $ where (x_2,y_2) are coordinates of goal node and (x_1,y_1) are the coordinates		
	of cussent		
		(x, Y)	Distance
1	5	(1,7)	14
	D	(2,6)	12
	=F	(1,5)	12
	I	(2,4)	10
	L	(1,3)	10
	0	(2,2)	8
	R	(3,1)	6
	A	(4,7)	11
	В	(5,7)	10
	Н	(5,5)	8
	J	(4,4)	8
	M	(4,3) (5,2)	7
	P	(5,2)	5
	C	(7,7)	8
	E	(9,6)	5
	K	(7,5)	6

2020BTECS00035 Vyankatesh Sanjay Bura

2. Consider below a directed graph given and corresponding heuristic function values given in the table.

heuristic function (goal state: G)								
	S	Α	В	С	D	Е	F	G
	6	4	5	2	2	8	4	0

- a. Implement A^* algorithm and Best first search algorithm to identify an optimal path from Starting state S to goal state G.
- b. What will be the time and space complexity?

	Date Page
Q2]	b. Time and Space Complexity: The time complexity of A* algorithm is O(b'd) in the worst case
	and the space complexity in the worst case is O(N) where N is the number of nodes and this occurs when we searched or traversed all the nodes.
	The time complexity of Best Fixst Search algorithm is of O(b*d) in the worst case and the space complexity in the space complexity is O(N) where N is number of nodes. The time complexity of BFS cana also be represented as O(NIOGN)

3. Consider the following logic puzzle: In five houses, each with a different color, live five persons of different nationalities, each of whom prefers a different brand of candy, a different drink, and a different pet. Given the following facts, the questions to answer are "Where does the zebra live, and in which house do they drink water?"

The Englishman lives in the red house.

The Spaniard owns the dog.

The Norwegian lives in the first house on the left.

The green house is immediately to the right of the ivory house.

The man who eats Hershey bars lives in the house next to the man with the fox.

Kit Kats are eaten in the yellow house.

The Norwegian lives next to the blue house.

The Smarties eater owns snails.

The Snickers eater drinks orange juice.

The Ukrainian drinks tea.

The Japanese eats Milky Ways.

Kit Kats are eaten in a house next to the house where the horse is kept.

Coffee is drunk in the green house.

Milk is drunk in the middle house.

Discuss different representations of this problem as a CSP. Why would one prefer one representation over another?

		, ,		Date	三百
Q3]		ve constr			
House	Yellow	can be	represe		
Trouse	T611000	Blue		INORY	Green
Nationalit	y Noxwegi-		4		
Drink	19-19-19-19-19-19-19-19-19-19-19-19-19-1		Milk		
Candy	kit kats				
Pet					
			10000		
			1		
House	Yellow	Blue	Two Red	Ivory	Green
National	gian	Ukranian	English	Spaniard	Japanes
Drink	Water	Tea	Milk	Orange Juice	Coffee
candy	kit kats	Hershey	Smaxtics	Snickers	Milky
Pet	Fox	Horse	Snails	Dog	Zebra
			1		

Date
Solution So the zebsa lives in the Green house. They daink water in the yellow house

4. Given a set of cities and distance between every pair of cities, the problem is to find the shortest possible tour that visits every city exactly once and returns to the starting point.

Identify the optimal path and implement this TS problem using branch and bound concept.

Code:-

```
#include <bits/stdc++.h>
using namespace std;
#define N 4

int TSP(int graph[][N], int s)
{
    vector<int> vertex;
    for (int i = 0; i < N; i++)
        if (i != s)
            vertex.push_back(i);
    int min_path = INT_MAX;
    do {
        int current_pathweight = 0;
    }
}</pre>
```

```
int k = s;
        for (int i = 0; i < vertex.size(); i++) {</pre>
            current_pathweight += graph[k][vertex[i]];
            k = vertex[i];
        }
        current_pathweight += graph[k][s];
        min_path = min(min_path, current_pathweight);
    } while (
        next_permutation(vertex.begin(), vertex.end()));
    return min_path;
int main()
    int graph[N][N];
    for(int i=0;i<N;i++){</pre>
        for(int j=0;j<N;j++){</pre>
            cin>>graph[i][j];
        }
    int s = 0;
    cout << TSP(graph, s) << endl;</pre>
    return 0;
```

Output:-

```
C++ Question_no_5.cpp C++ Question_no_4.cpp X
                                                                                                                                                 $>∨ 🕸 🖽 …
       Local: Question_no_4
 Q
                                              // problem using naive approach.
#include <bits/stdc++.h>

∧ Testcase

                                               using namesp
#define N 4
       1 Passed 54ms
                             Û
       Input:
0 10 15 20
 vector<int> vertex;
for (int i = 0; i < N; i++)
    if (i != s)</pre>
       Expected Output:
       Received Output:
ılı.
                                                             vertex.push_back(i);
                                                    int min_path = INT_MAX;
       + New Testcase
       Set ONLINE JUDGE
                                                        int current_pathweight = 0;
        5) Run All + New
 (2)
                                                        int k = s;
for (int i = 0; i < vertex.size(); i++) {
    current_pathweight += graph[k][vertex[i]];
                    @
 £33
                                                             k = vertex[i];
△ 🗊 📶 🏳 (1) 10:00 PM
```


2020BTECS00035 Vyankatesh Sanjay Bura

5. Using branch and bound identify optimal path of below graph from starting state S to goal state G.

