#### **Digital Signal Processing**

Dr. Yu Yajun <u>yuyj@sustech.edu.cn</u> S236, South Tower of Engineering Building

#### **Textbook**

 Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th edition

#### **Classical DSP Books**

- Alan V. Oppenheim and Ronald W. Schafer, Discretetime Signal Processing, Pearson
- Lawrence R. Rabiner and Bernard Gold, Theory and Application of Digital Signal Processing, Prince Hall
- J. Proakis, D. Manolakis, **Digital Signal Processing** 4th ed., Prentice-Hall, 2006

#### **Contents**

- Discrete-time signals and systems in the time domain
- Discrete-time signals and systems in the transform domain
  - Discrete-time Fourier transform
  - Discrete Fourier transform
  - z-Transform
  - Frequency response
- DSP algorithms implementation Fast Fourier Transform (FFT)
- Digital filter structures
- IIR and FIR filter design

Digital Signal Processing by Yu Yajun @ SUSTech

.

#### **Assessment**

• Assignments: 5%

• Two Quiz: 15%

• Laboratories: 30%

Final Exam: 50%

#### **Journals & Conferences in DSP**

#### • Journals:

- IEEE Transactions on Signal Processing (TSP)
- IEEE Transactions on Circuits and Systems I (TCASI)
- IEEE Transactions on Circuits and System II (TCASII)
- IEEE Signal Processing Letter (SPL)
- Signal Processing (Elsevier)
- EURASIP Journal on Applied Signal Processing
- Digital Signal Processing
- Circuits Systems and Signal Processing (CSSP)

Digital Signal Processing by Yu Yajun @ SUSTech

5

#### **Journals & Conferences in DSP**

#### Conference:

- IEEE International Conference on Acoustic, Speech & Signal Processing (ICASSP)
- IEEE International Symposium on Circuits & Systems (ISCAS)
- European Signal Processing Conference (EUSIPCO)
- International Conference on Digital Signal Processing (DSP)

#### **Course Learning Outcomes**

- CLO 1: I have an ability to represent discrete time signals and systems in time and frequency domain;
- CLO 2: I have an ability to understand, represent, and analyse linear time invariant discrete time systems in transformed domain by applying mathematics principles, such as differential calculus, complex variables.
- CLO 3: I have an ability to analyse digital filters and design digital filters to meet given specifications.
- CLO 4: I have an ability to **use a programming language** to conduct **analysis and design** of discrete-time signal processing systems to process discrete-time signals.

Digital Signal Processing by Yu Yajun @ SUSTech

7

# Lecture 1 Introduction

Signal









f(t, x, y)

Digital Signal Processing by Yu Yajun @ SUSTech

#### **Definition**

 A signal can be defined simply as a mathematical function

$$y = f(x)$$

where *x* is the **independent variable** which specifies the domain of the signal.

- $y=\sin(\omega t)$  is a function of a variable in the **time** domain and is thus a time signal;
- An image I(x,y) is in the spatial domain.

Digital Signal Processing by Yu Yajun @ SUSTech

# **Signal Processing**

- A signal carries information.
- The objective of signal processing:
  - Interpretation and information extraction. (e.g. speech recognition, machine learning, etc.)
  - Convert one signal to another. (e.g. filter, generate control command, etc.)
- Signal Processing concerns with:
  - The mathematical representation of the signal
  - The algorithmic operation carried out on the signal

Digital Signal Processing by Yu Yajun @ SUSTech

1

# Representation of Signal

- In terms of basis functions in the domain of original independent variable,
  - Time
  - Spatial, etc., or
- In terms of basis functions in a transformed domain,
  - Discrete Fourier Transform
  - z transform, etc.

# **Classification of Signals**

- Continuous vs. Discrete
- Real-valued vs. Complex-valued
- 1-D signal vs. 2-D signal vs. *M*-D signal
- Stationary vs. Non-stationary
- etc.

Digital Signal Processing by Yu Yajun @ SUSTech

#### 13

# **Characterization of Signals**

- The value of a signal at a specific value of the independent variable is called its **amplitude**.
- The variation of the amplitude as a function of the independent variable is called its **waveform**.
- Let's consider 1-D signal
  - The independent variable is usually labeled as time.

mulmulmul

#### **Continuous and Discrete Signals**

- If the independent variable is continuous, the signal is called a **continuous-time** (CT) **signal**.
  - A continuous time signal is defined at every instant of time.
- If the independent variable is discrete, the signal is called a **discrete-time signal**.
  - A discrete time signal takes certain numerical values at specified discrete instants of time, and between these specified instants of time, the signal is **not defined**.
  - A discrete time signal is basically a sequence of numbers.

Digital Signal Processing by Yu Yajun @ SUSTech

- A continuous-time signal with a continuous amplitude is usually called an analog signal.
  - A speech signal is an example of an analog signal.



- A continuous-time signal with discrete valued amplitudes has been referred to as a quantized boxcar signal.
  - This type of signal occurs in digital electronic circuits where the signal is kept at fixed level (usually one of two values) between two instants of clocking.



- A discrete time signal with continuous valued amplitudes is called a sampled-data signal.
  - The amplitude of the signal may be any value.
- Time, t
- A discrete time signal with discrete valued amplitudes represented by a finite number of digits is referred to as a digital signal.
  - A digital signal is thus a quantized sampled-data signal.



Digital Signal Processing by Yu Yajun @ SUSTech

17

#### **Typical Signal Processing Operations**

- In the case of analog signals, most signal processing operations are usually carried out in the time domain.
- In the case of discrete time signals, both time domain and frequency domain applications are employed.
- In either case, the desired operations are implemented by a combination of some elementary operations such as:
  - Simple time domain operations
  - Filtering
  - Amplitude modulation

#### **Elementary Time-Domain Operations**

- Three most basic time-domain signal operations
  - Scaling
  - Delay
  - Addition

Digital Signal Processing by Yu Yajun @ SUSTech

10

#### **Scaling**

- Scaling is simply the multiplication of a signal by a positive or a negative constant.
  - In the case of analog signal x(t), the scaling operation generates a new signal  $y(t) = \alpha x(t)$ , where  $\alpha$  is the multiplying constant.
  - The operation is called **amplification**, if  $|\alpha| > 1$ ;
  - The operation is called **attenuation**, if  $|\alpha| < 1$ .



Digital Signal Processing by Yu Yajun @ SUSTech

# **Delay**

- **Delay** operation generates a signal that is delayed replica of the original signal.
  - In the case of analog signal x(t),  $y(t) = x(t t_0)$  is the signal obtained by delaying x(t) by the amount  $t_0$ , assuming  $t_0 > 0$ .



• If  $t_0 < 0$ , it is an **advance** operation.

Digital Signal Processing by Yu Yajun @ SUSTech

21

#### **Addition**

• **Addition** operation generates a new signal by the addition of signals. For instance,  $y(t)=x_1(t)+x_2(t)$  is the signal generated by the addition of the three analog signals  $x_1(t)$  and  $x_2(t)$ .



# Why Learn DSP?

Swiss-Army-Knife of modern EE



- Impacts all aspects of modern life
  - Communications (wireless, internet, GPS...)
  - Control and monitoring (cars, machines...)
  - Multimedia (mp3, cameras, videos, restoration ...)
  - Health (medical devices, imaging....)
  - Economy (stock market, prediction)
  - More....

Digital Signal Processing by Yu Yajun @ SUSTech

23

#### DPS在信息技术中的地位和作用



#### DPS在信息技术中的地位和作用



#### 中国制造2025 (高质量发展) 离不开DSP技术的支撑

《中国制造2025》(高质量发展)是中国政府2015年3月提出的实施制造强国战略第一个十年的行动纲领。 围绕实现制造强国的战略目标,《中国制造2025》明确了9项战略任务和重点,提出了8个方面的战略支撑和保障。

五大工程:制造业创新中心建设工程、强化基础工程、智能制造工程、绿色制造工程、高端装备创新工程。

十个重点领域:新一代信息技术产业、高档数控机床和机器人、 航空航天装备、海洋工程装备及高技术船舶、先进轨道交通装备、 节能与新能源汽车、电力装备、农机装备、新材料、生物医药及 高性能医疗器械。

Digital Signal Processing by Yu Yajun @ SUSTech

25

#### **Advantages of DSP**

- Flexibility
- System/implementation does not age
- "Easy" implementation
- Reusable hardware
- Sophisticated processing
- Process on a computer
- (Today) Computation is cheaper and better

# **Example I: Audio Compression**

- Compress audio by 10x without perceptual loss of quality.
- Sophisticated processing based on models of human perception
- 3MB files instead of 30MB -
  - Entire industry changed in less than 10 years!

Digital Signal Processing by Yu Yajun @ SUSTech

27

#### **Historical Forms of Compression**

- Morse code: dots (1 unit) Dashes (3 units)
  - Code Length inversely proportional to frequency
  - E(12.7%) = .(1 unit) Q(0.1%) = --.-(10 units)
- "92 Code" Used by Western-Union in 1859 to reduce BW on telegraph lines by numerical codes for frequently used phrases
  - 1 = wait a minute
  - 73 = Best Regards
  - 88 = Love and Kisses

# **Example II: Digital Imaging Camera**





 Compression of 40x without perceptual loss of quality.

- Example of slight over compression:
  - difference enables x60 compression!



Digital Signal Processing by Yu Yajun @ SUSTech

3

#### **Computational Photography**



Now implemented in smart phones (HDR)



# **Example III Auto Drive**



Digital Signal Processing by Yu Yajun @ SUSTech





FIGURE 1. An ADAS consists of different range radars.

Digital Signal Processing by Yu Yajun @ SUSTech