Trabalho Prático 4

Bruno Mota, José Torres e Maria Lourenço

16 de janeiro de 2022

Introdução

O objetivo deste trabalho é desenvolver programas que utilizem diferentes métodos de integração numérica para calcular o valor aproximado do integral de uma função, com erro absoluto inferior a um épsilon dado. Pretende-se ainda comparar os resultados obtidos, através dos programas, no cálculo do integral de uma função específica, com erro absoluto inferior a 10^{-9} , em cada método. A linguagem de programação utilizada foi Python.

Exercício 1

```
Pretende-se calcular I = \int_0^3 f(x)dx, onde f(x) = \sin(\cos(\sin(\cos(x^2)))).
```

Regra dos Retângulos

```
from math import *
  def f(x):
      return sin(cos(sin(cos(x**2))))
  eps = 10**(-9)
_{9} M = 1.3728
n = ceil((M/(2*eps))*(b-a)**2)
  h = (b-a)/n
  #majorante do erro absoluto:
  erro = (M*(b-a)*h)/2
15
  def integral(f,a,b,eps,M):
17
18
19
      for i in range(n):
20
           I+=h*f(x)
           x += h
22
23
      return I
```

Começámos por calcular o valor de n a partir da fórmula do erro:

$$|E_n^R| \le \frac{b-a}{2} hM \le \epsilon \iff \frac{(b-a)^2}{2n} M \le \epsilon \iff \frac{1}{n} \le \frac{2\epsilon}{M(b-a)^2} \iff n \ge \frac{M(b-a)^2}{2\epsilon} \tag{1}$$

onde
$$h=\frac{b-a}{n}$$
e $M=\max_{x\in[0,3]}|f'(x)|.$

Para encontrar o valor de M, utilizamos o Wolfram Alpha para calcular a 1^a e 2^a derivadas de f(x)¹, e, no Desmos, obtivemos os zeros da segunda derivada no intervalo [0,3]. Estes valores foram substituídos na expressão da primeira derivada, e compararam-se os valores obtidos para encontrar o máximo M de |f'(x)| em [0,3].

Figura 1: Zeros da segunda derivada da função.

x	0	0.996	1.511	2.016	2.324	2.683	2.922
f'(x)	0	0.4576	-0.7071	0.9463	-1.0915	1.2604	-1.3728

Tabela 1: Abcissas onde a segunda derivada é nula e valores que a primeira derivada toma nesses pontos.

Assim, obtivemos que M=1.3728 e, a partir deste valor, determinámos o número de subintervalos usando a fórmula na equação 1, com $\epsilon=10^{-9}$: n=6177600000.

Pela regra dos retângulos, temos que $I \approx h \sum_{k=0}^{n-1} f(x_k)$.

A tabela seguinte mostra os resultados obtidos:

Val. do Integral	Maj. do Erro	\mathbf{n}
2.1268539737	1.0×10^{-9}	6177600000

Tabela 2: Valor do integral pela regra dos retângulos, majorante do erro absoluto e número de subintervalos.

O majorante do erro foi obtido pela fórmula do erro absoluto, e arredondado à primeira casa decimal.

 $^{^{1}}$ As expressões das derivadas de f(x) calculadas neste trabalho ($1^{\frac{5}{4}}$ à $5^{\frac{5}{4}}$) tornam-se bastante extensas, e por isso decidimos omiti-las.

Regra dos Trapézios

```
from math import *
  def f(x):
      return sin(cos(sin(cos(x**2))))
  eps = 10**(-9)
    = 17.045
    = ceil(((M/(12*eps))*(b-a)**3)**(1/2))
    = (b-a)/n
 #majorante do erro absoluto:
  erro = (M*(b-a)*h**2)/12
16
  def integral(f,a,b,eps,M):
      I = (h/2)*(f(a)+f(b))
18
      for i in range(1,n):
20
          x += h
21
          I+=h*f(x)
23
      return I
```

Calculámos o valor de n a partir da fórmula do erro:

$$|E_n^T| \le \frac{b-a}{12} h^2 M \le \epsilon \iff \frac{(b-a)^3}{12n^2} M \le \epsilon \iff \frac{1}{n^2} \le \frac{12\epsilon}{M(b-a)^3} \iff n \ge \sqrt{\frac{M(b-a)^3}{12\epsilon}}$$
 (2)

onde
$$h = \frac{b-a}{n}$$
 e $M = \max_{x \in [0,3]} |f''(x)|$.

Pelo Wolfram Alpha, calculámos a 2^a e 3^a derivadas de f(x), e, da mesma forma que anteriormente, encontrámos os zeros da 3^a derivada, de forma a obter os extremos locais de f''(x), e determinar o valor de M.

x	0	0.796	1.321	1.889	2.187	2.582	2.81
f"(x)	0	1.0278	-3.6984	4.8405	-10.3008	8.8920	-17.0449

Tabela 3: Abcissas onde a terceira derivada é nula e valores que a segunda derivada toma nesses pontos.

Assim, obtivemos que M=17.045 e, a partir deste valor, determinámos o número de subintervalos usando a fórmula na equação 2, com $\epsilon=10^{-9}$: n=195835.

Pela regra dos trapézios, temos que $I \approx \frac{h}{2}(f(0) + f(3)) + h \sum_{k=1}^{n-1} f(x_k)$.

A tabela seguinte mostra os resultados obtidos:

Val. do Integral	Maj. do Erro	n
2.1268539519	1.0×10^{-9}	195835

Tabela 4: Valor do integral pela regra dos trapézios, majorante do erro absoluto e número de subintervalos.

O majorante do erro foi obtido pela fórmula do erro absoluto, e arredondado à primeira casa decimal.

Figura 2: Zeros da terceira derivada da função.

Regra de Simpson

```
1 from math import *
3 def f(x):
       return sin(cos(sin(cos(x**2))))
_{6} a = 0
    = 3
8 \text{ eps} = 10**(-9)
_{9} M = 3384.8
    = ceil(((M/(180*eps))*(b-a)**5)**(1/4))+1 #par
h = (b-a)/n
  #majorante do erro absoluto:
13
  erro = (M*(b-a)*h**4)/180
  def integral(f,a,b,eps,M):
16
       x = a
17
       I = (h/3)*(f(a)+f(b))
19
       for i in range(1,n):
           x += h
21
           if i%2 == 1:
22
                I += 4 * h * f(x) / 3
           else:
24
                I += 2 * h * f(x)/3
       return I
```

Calculámos o valor de n:

$$|E_n^S| \leq \frac{b-a}{180}h^4M \leq \epsilon \iff \frac{(b-a)^5}{180n^4}M \leq \epsilon \iff \frac{1}{n^4} \leq \frac{180\epsilon}{M(b-a)^5} \iff n \geq \sqrt[4]{\frac{M(b-a)^5}{180\epsilon}} \tag{3}$$

onde $h = \frac{b-a}{n}$ e $M = \max_{x \in [0,3]} |f^{(4)}(x)|$.

Mais uma vez, calculámos a 4^a e 5^a derivadas de f(x) utilizando o WolframAlpha, determinámos os zeros de $f^{(5)}(x)$ e substituímos esses valores na expressão que obtivemos para a 4^a derivada.

Figura 3: Zeros da quinta derivada da função.

x	0	0.43	0.95	1.40	1.60	1.78	1.97	2.13	2.15
$\overline{\mathbf{f^{(4)}}(\mathbf{x})}$	3.8	4.3	-69.9	242.3	-206.0	68.7	-800.3	811.8	794.3
\mathbf{x}	2.24	2.38	2.51	2.65	2.76	2.80	2.85	2.96	
$\overline{\mathbf{f^{(4)}(x)}}$	1350.4	-1215.7	259.7	-2399.3	2483.0	2272.8	3384.8	-3093.2	

Tabela 5: Abcissas onde a quinta derivada é nula e valores que a quarta derivada toma nesses pontos.

Assim, obtivemos que M=3384.8. Substituindo na expressão da equação 3, com $\epsilon=10^{-9}$, temos que $n\geq 1462.06$. Como n tem que ser par para aplicarmos o método de Simpson, tomámos o valor n=1464.

Pela regra de Simpson, temos que $I \approx \frac{h}{3}(f(0) + 4f(x_1) + 2f(x_2) + ... + 2f(x_{n-2}) + 4f(x_{n-1}) + f(3)).$

A tabela seguinte mostra os resultados obtidos:

V	al. do Integral	Maj. do Erro	n
	2.12685395192	9.9×10^{-10}	1464

Tabela 6: Valor do integral pela regra de Simpson, majorante do erro absoluto e número de subintervalos.

O majorante do erro foi obtido pela fórmula do erro absoluto, e arredondado à primeira casa decimal.

Conclusões

	Retângulos	Trapézios	Simpson
Valor	2.1268539737	2.1268539519	2.12685395192
Maj. do Erro	1.0×10^{-9}	1.0×10^{-9}	9.9×10^{-10}
n	6177600000	195835	1464

Tabela 7: Comparação dos resultados da integração numérica em cada método.