Machine Learning Interpretability The Good, the Bad, and the Ugly

Patrick Hall

 H_2O ai

Aug. 1 2018

Contents

Front Matter

Notation

Learning Problem

Surrogate DT

PD and ICE

LIME

Tree Shap

Recommendations

Software

Obligatory Front Matter

- What is interpretation? "The ability to explain or to present in understandable terms to a human." Doshi-Velez and Kim, 2017
- What is a good interpretation? "When you can no longer keep asking why." Gilpin et al., 2018
- Why should you care?
 - Understanding of an impactful and quickly expanding set of technologies.
 - Addressing accidental or intentional discrimination.
 - Preventing malicious hacking and adversarial attacks.
 - Enabling regulatory compliance and increased financial margins.

Notation

- Spaces.
 - ullet The input features come from a set ${\mathcal X}$ contained in a P-dimensional input space (i.e. $\mathcal{X} \subset \mathbb{R}^P$).
 - ullet The output responses come from a set ${\mathcal Y}$ contained in a ${\mathcal C}$ -dimensional output space (i.e. $\mathcal{V} \subset \mathbb{R}^C$).
- Dataset. A dataset D consists of N tuples of observations: $[(\mathbf{x}^{(0)}, \mathbf{v}^{(0)}), (\mathbf{x}^{(1)}, \mathbf{v}^{(1)}), \dots, (\mathbf{x}^{(N-1)}, \mathbf{v}^{(N-1)})], \mathbf{x}^{(i)} \in \mathcal{X}, \mathbf{v}^{(i)} \in \mathcal{Y}.$
 - The input data X is composed of the set of row vectors x⁽ⁱ⁾.
 - let $\mathcal P$ be the set of features $\{X_0,X_1,\ldots,X_{P-1}\}$, where $X_j=\left[x_i^{(0)},x_i^{(1)},\ldots,x_i^{(N-1)}\right]^T$.
 - then each *i*-th observation denoted as $\mathbf{x}^{(i)} = \left[x_0^{(i)}, x_1^{(i)}, \dots, x_{P-1}^{(i)}\right]$ is an instance of \mathcal{P} .

Proposed Updates to the Learning Problem

The learning problem. Adapted from *Learning From Data*, Abu-Mostafa, Magdon-Ismail, and Lin, 2012.

Surrogate Decision Trees (DT)

Figure: h_{tree} for Taiwanese credit card data Lichman, 2013, and for machine-learned GBM response function g(X).

- Given a learned function g and set of predictions, $g(X) = \hat{Y}$, a surrogate DT can be trained: $X, \hat{Y} \xrightarrow{\mathcal{A}_{surrogate}} h_{tree}$.
- h_{tree} displays a low-fidelity flow chart of g's decision making process, important features in g, and important interactions in g.

Surrogate Decision Trees (DT)

- Always use error measures to assess the trustworthiness of h_{tree} .
- Prescribed methods (Craven and Shavlik, 1996; Bastani, Kim, and Bastani, 2017) for training h_{tree} do exist. In practice, straightforward cross-validation approaches are typically sufficient.
- Comparing cross-validated error to standard training error can give an indication of the stability of the single tree model, h_{tree} .
- Hu et al., 2018 use local linear surrogate models, h_{glm} , in h_{tree} leaf nodes to increase overall surrogate model accuracy while retaining a high degree of interpretability.
- h_{tree} can provide low-fidelity explanations for model mechanisms in the original feature space if g is defined to include feature extraction.

Partial Dependence (PD) and Individual Conditional Expectation (ICE)

- Following Friedman, Hastie, and Tibshirani, 2001 a single feature $X_j \in \mathcal{P}$, a P-dimensional feature space, and its complement set $\mathcal{P}_{(-j)}$ (where $X_i \cup \mathcal{P}_{(-i)} = \mathcal{P}$) is considered.
- PD(X_j, g) for a given feature X_j is estimated as the average of the output of the learned function g, where all the components of X_j are set to a constant $x_j^{(i)} \in X_j$, and $\mathcal{P}_{(-j)}$ is left untouched.
- ICE($\mathbf{x}_j^{(i)}, g$) for a given row $\mathbf{x}^{(i)}$ and feature X_j is estimated as the output of the learned function g where $\mathbf{x}_j^{(i)}$ is set to a constant $\mathbf{x}_j^{(i)} \in X_j$ and $\mathbf{x}^{(i)} \in \mathcal{P}_{(-j)}$ are left untouched.
- PD and ICE are usually plotted over some set of interesting $x_{j}^{(i)} \in X_{j}$.

Partial Dependence (PD) and Individual Conditional Expectation (ICE)

Figure: PD and ICE curves for $X_j = \text{num}_9$, for known signal generating function $f(X) = \text{num}_1 * \text{num}_4 + |\text{num}_8| * \text{num}_9^2 + e$, and for machine-learned GBM response function g(X).

Overlaying PD and ICE curves is a succinct method for describing global and local prediction behavior and can be used to detect interactions. Goldstein et al., 2015

Partial Dependence (PD) and Individual Conditional Expectation (ICE)

Figure: Surrogate DT, PD, and ICE curves for $X_j = \text{num}_9$, for known signal generating function $f(X) = \text{num}_1 * \text{num}_4 + |\text{num}_8| * \text{num}_9^2 + e$, and for machine-learned GBM response function g(X).

Combining Surrogate DT models with PD and ICE curves is a convenient method for detecting, confirming, and understanding important interactions.

Local Interpretable Model-agnostic Explanations (LIME) - Description

Local Interpretable Model-agnostic Explanations (LIME) - Recommendations

Tree Shap - Description

Tree Shap - Recommendations

Closing Recommendations

- Monotonically constrained XGBoost, Surrogate DT, PD and ICE plots, and Tree Shap are a direct and open source way to create an interpretable nonlinear model.
- Global and local explanatory techniques are often necessary to explain a model.
- Simpler low-fidelity or sparse explanations should help in understanding more accurate and complex high-fidelity explanations.
- Seek consistency in results across multiple explanatory techniques.
- Methods that rely on generated data are sometimes unpalatable to users. They want to understand *their* data.
- Beware of uninterpretable features.
- Consider production deployment of explanatory techniques.

Software Examples and Resources

Comparison of Explanatory Techniques on Simulated Data:

https://github.com/h2oai/mli-resources/tree/master/lime_shap_treeint_compare

In-depth Explanatory Technique Examples:

https://github.com/jphall663/interpretable_machine_learning_with_python

"Awesome" Machine Learning Interpretability Resource List:

https://github.com/jphall663/awesome-machine-learning-interpretability

References 1

- Abu-Mostafa, Yaser S., Malik Magdon-Ismail, and Hsuan-Tien Lin (2012). *Learning from Data*. New York: AMLBook, URL: https://work.caltech.edu/textbook.html.
- Bastani, Osbert, Carolyn Kim, and Hamsa Bastani (2017). "Interpreting blackbox models via model extraction." In: arXiv preprint arXiv:1705.08504. URL: https://arxiv.org/pdf/1705.08504.pdf.
- Craven, Mark W. and Jude W. Shavlik (1996). "Extracting Tree-Structured Representations of Trained Networks." In: Advances in Neural Information Processing Systems. URL:
 - http://papers.nips.cc/paper/1152-extracting-tree-structured-representations-of-trained-networks.pdf.
- Doshi-Velez, Finale and Been Kim (2017). "Towards a rigorous science of interpretable machine learning." In: arXiv preprint arXiv:1702.08608. URL: https://arxiv.org/pdf/1702.08608.pdf.
- Friedman, Jerome, Trevor Hastie, and Robert Tibshirani (2001). *The Elements of Statistical Learning*. New York: Springer. URL:
 - https://web.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf.
- Gilpin, Leilani H et al. (2018). "Explaining Explanations: An Approach to Evaluating Interpretability of Machine Learning." In: arXiv preprint arXiv:1806.00069. URL: https://arxiv.org/pdf/1806.00069.pdf.
- Goldstein, Alex et al. (2015). "Peeking Inside the Black Box: Visualizing Statistical Learning with Plots of Individual Conditional Expectation." In: Journal of Computational and Graphical Statistics 24.1.

References II

Hu, Linwei et al. (2018). "Locally Interpretable Models and Effects based on Supervised Partitioning (LIME-SUP)." In: arXiv preprint arXiv:1806.00663. URL: https://arxiv.org/ftp/arxiv/papers/1806/1806.00663.pdf.
Lichman, M. (2013). UCI Machine Learning Repository. URL: http://archive.ics.uci.edu/ml.

