Всутпление

Wav2Lip - это генеративная сеть принимающая на вход видеоряд и аудио с записью человеческой речи. Финальная задача - максимально точно синхронизировать движения губ на видео с записью речи. У этой технологии может быть много применений, но самое, как нам кажется, очевидное - синхронизация губ при дубляже в фильмах.

У данное работы есть два аналога - это SyncNet и LipGAN, но оба они дают результаты значительно хуже. Wac2Lip является продолжением идеи LipGAN, основные изменения тут лежат в дискриминаторе, в то время как генератор модели остался практически неизменным.

Генератор

Как уже было сказано выше, генератор Wav2Lip особо не выделяется на фоне конкурентов. На вход в генератор подаются отдельно мелспектрограмма записи речи и кадр из видеоряда. Мелспектрограмма прогоняется через speech энкодер, а изоражения соответственно через identity энкодер, после чего полученные feature map конкатенируются и подаются в face декодер, на выходе из которого уже будет готовый фрейм.

Оба энкодера представляют из себя обычные свертки, декодер - набор двумерных конволюций с добавлением ConvTransposed. В целом, архитектура без изменений была скопирована из LipGAN.

Дискриминатор

Основное же нововведение статьи заключается в дискриминаторе. Авторы замечают, что проблема LipGAN заключается именно в плохом дискриминаторе(его точности достигает лишь 54% в распознавание десинхронизации губ с речью). Корень проблемы заключается в том, что при обучении дискриминатора на результатах генератора, как это обычно делается в GAN, дискриминатор начинает концентрироваться на визуальных артефактах, чего ему абсолютно достаточно для обнаружения сгенерированного изображения, особенно в начале обучения, в то время как сама синхронизация мимики остается не у дел. Авторы предлагают использовать предобученный заранее на реальных данных дискриминатор, и штрафовать генератор за неверную синхронизацию уже им. Этот дискриминатор в статье называется Lip-Sync Expert, и по архитектуре схож с SyncNet.

Этого дискриминатора недостаточно, так как визуальные артефакты все еще остаются проблемой, поэтому при обучении также используется уже привычный нам дискриминатор для обнаружения этих артефактов обучаемый совместно с генератором, на его выходах. Собственно, тот же самый дискриминатор, что и в LipGAN.

В итоге добавление нового дискриминатора для синхронизации привело к существенному улучшению результатов.

Помимо описанных выше нововведений авторы также подают в дискриминатор несколько кадров, что логично, ведь контекст в аудио очень важен.

Обучение сети

Первым делом обучается дискриминатор синхронизации. Для его обучения используются цветные(в отличие от SyncNet) изображения. В качестве функции потерь используется косинусное расстояние и бинарная кросс энтропия. В итоге вероятности десинхронизации определяется как:

$$P_{sync} = \frac{v^*s}{\max(||v||_2 + ||s||_2, e)}$$

, где v и s - эмбеддинги видео и аудио соответственно. При обучении используется размер батча 64, окно в 5 кадров и оптимизатор Adam с шагом в 1e-3. Авторы статьи утверждают, что им удалось обучить данный Lip-Sync Expert до точности 91%, напомним, что точности дискриминатора в LipGAN составил 54%.

Далее обучается генератор и обычный дискриминатор. У дискриминатора лосс стандартный - $L_{disc} = E_{x L_g} [log(D(x))] + L_{gen}$, где $L_{gen} = E_{x L_g} [log(1 - D(x))]$. Лосс синхронизации

считается как $E_{sync}=\frac{1}{N} \sum -\ log(P_{sync}^{i}).$ Также считается ошибка реконструкции, сверяющая

оригинальное видео с восстановленным с помощью генератора $L_{rec} = \frac{1}{N} \sum_{g} ||L_{g} - L_{g}||_{1}$.

Финальный лосс генератора выглядел следующим образом:

$$L_{total} = (1 - s_g - s_w)L_{recon} + s_w E_{sync} + s_g L_{gen}$$

sw и sg - веса лоссов, которые авторы статьи предлагают устанавливать как 0.03 и 0.07 соответственно. Обучение проводится с помощью оптимизатора Adam с шагом 1е-4

	LRW [8]			LRS2 [1]			LRS3 [3]		
Method	LSE-D↓	LSE-C ↑	FID ↓	LSE-D↓	LSE-C ↑	FID ↓	LSE-D↓	LSE-C ↑	FID ↓
Speech2Vid [17]	13.14	1.762	11.15	14.23	1.587	12.32	13.97	1.681	11.91
LipGAN [18]	10.05	3.350	2.833	10.33	3.199	4.861	10.65	3.193	4.732
Wav2Lip (ours)	6.512	7.490	3.189	6.386	7.789	4.887	6.652	7.887	4.844
Wav2Lip + GAN (ours)	6.774	7.263	2.475	6.469	7.781	4.446	6.986	7.574	4.350
Real Videos	7.012	6.931	_	6.736	7.838	_	6.956	7.592	_

Что было сделано нами

Данные

За основу взяли реализацию модели авторов. Они обучались на закрытых данных <u>LRS2</u>, при этом очень большого размера. Поэтому для обучения мы взяли открытый датасет <u>VoxCeleb2</u> с ~1 миллионом видео, из которых мы взяли 50000 объектов.

На обучение ушло приблизительно 4 дня. Также много времени потратили на фикс багов и переписывание кода, т. к. изначально код оказался нерабочим.

Препроцесинг

Был переписан модуль препроцессинга данных. Около дня ушло, чтобы разбить видео на фреймы с частотой 25fps и аудио (т. к. данных было очень много). Так много времени ушло, так как на каждом фрейме была использована модель <u>face-alignment</u> для нахождения лица (для нее использовали уже обученную модель)

Обучение

Также были переписаны модули обучения первого дискриминатора SyncNet, на обучение которого ушел ~1 день.

Графики обучения:

Модуль обучения Wav2lip тоже изменили, так опять же ничего не запускалось. На обучение ушло ~2 дня.

Графики обучения:

В дополнительные дни для обучения увеличили датасет до 100000 объектов на новом сервере с 4 видеокартами, но к сожалению визуально результаты лучше не стали.

Результаты

В целом результаты получились неплохие, но хуже, так как в оригинальной статье использовалось больше данных и большего разрешения.

Примеры видео будут лежать в папке results.

К сожалению веса модели пока не можем прислать, так как сервер, на котором обучались, после перезапуска пока не доступен. Веса постараемся прислать как только появится доступ к серверу.

