ATP Is the Most Widely Used Activated Carrier Molecule

Hydrolysis of the terminal phosphate of ATP yields between 46 and 54 kJ/mole of usable energy

Biosynthetic reaction driven by ATP hydrolysis

$$A-H + B-OH \rightarrow A-B + H_2O$$

- 1. $B-OH + ATP \rightarrow B-O-PO_3 + ADP$
- 2. $A-H+B-O-PO_3 \rightarrow A-B+P_i$

Net result: B-OH + ATP + A-H \rightarrow A-B + ADP + P_i

Synthesis of a polynucleotide, RNA or DNA, is a multistep process driven by ATP hydrolysis

NADH and NADPH Are Important Electron Carriers

NAD+/NADH

The electron transfer reaction may be summarized as:

$$NAD^+ + 2e^- + H^+ \leftrightarrow NADH$$
.

It may also be written as:

$$NAD^+ + 2e^- + 2H^+ \leftrightarrow NADH + H^+$$

FADH₂

Flavin adenine dinucleotide

acetyl CoA

acetyl CoA transfers two-carbon acetyl groups used to add two carbon units in the biosynthesis of larger molecules

Glycolysis is a Central ATP-Producing Pathway

The overall equation for glycolysis

Glucose +
$$2NAD^+ + 2ADP + 2P_i \longrightarrow$$

2 pyruvate + $2NADH + 2H^+ + 2ATP + 2H_2O$

Some types of enzymes involved in glycolysis

Enzyme type	General function	Role in glycolysis
Kinase	catalyzes the addition of a phosphate group to molecules	a kinase transfers a phosphate group from ATP to a substrate in steps 1 and 3; other kinases transfer a phosphate to ADP to form ATP in steps 7 and 10
Isomerase	catalyzes the rearrangement of bonds within a single molecule	isomerases in steps 2 and 5 prepare molecules for the chemical alterations to come
Dehydrogenase	catalyzes the oxidation of a molecule by removing a hydrogen atom plus an electron (a hydride ion, H ⁻)	the enzyme glyceraldehyde 3-phosphate dehydrogenase generates NADH in step 6
Mutase	catalyzes the shifting of a chemical group from one position to another within a molecule	the movement of a phosphate by phosphoglycerate mutase in step 8 helps prepare the substrate to transfer this group to ADP to make ATP in step 10

Anaerobic breakdown of pyruvate

The anaerobic metabolism of glucose in tumor cells

glucoso uptako 6-Phosphogluconate 6-phosphate Нурохіа Oxythiamino HIF Glyceraldehyde 3-phosphate Glycolytic enzymes 2 ATP/glucose Hypoxia Aerobic respiration Mitochondrion

3 CO2

High glycolytic rate in tumor cells also has diagnostic usefulness.

Positron emission tomography (PET) using isotopically Labeled glucose analog

Entry of glycogen, starch, disaccharides, and hexoses into the preparatory stage of glycolysis

Opposing pathways of glycolysis and gluconeogenesis

Gluconeogenesis is Energetically Expensive, but Essential

2 Pyruvate +
$$4ATP + 2GTP + 2NADH + 2H^{+} + 4H_{2}O \longrightarrow$$

glucose + $4ADP + 2GDP + 6P_{i} + 2NAD^{+}$

Pentose Phosphate Pathway of Glucose Oxidation

Rapidly dividing cells, such as those of bone marrow, skin, and intestinal mucosa, and those of tumors, use the pentose ribose 5-phosphate to make RNA, DNA, and such coenzymes as ATP, NADH, FADH2, and coenzyme A.

electron donor NADPH, needed for reductive biosynthesis or to counter the damaging effects of oxygen radicals

Tissues that carry out extensive fatty acid synthesis (liver, adipose, lactating mammary gland) or very active synthesis of cholesterol and steroid hormones (liver, adrenal glands, gonads) require the NADPH provided by this pathway.

Also known as phosphogluconate pathway, or hexose monophosphate pathway

Glucose 6-Phosphate Is Partitioned between Glycolysis and the Pentose Phosphate Pathway

Whether glucose 6-phosphate enters glycolysis or the pentose phosphate pathway depends on the current needs of the cell and on the concentration of NADP⁺ in the cytosol.

Role of NADPH and glutathione in protecting cells against highly reactive oxygen derivatives

H₂O₂ is also broken down to H₂O and O₂ by catalase, which also requires NADPH

Sugars and Fats Are Both Degraded to Acetyl CoA in Mitochondria

How stored fats are mobilized for energy production in animals

MITOCHONDRIA AND CHLOROPLASTS

Pyruvate is Oxidized to Acetyl-CoA and CO2

The PDH complex contains three enzymes—pyruvate dehydrogenase (E1), dihydrolipoyl transacetylase (E2), and dihydrolipoyl dehydrogenase (E3)—each present in multiple copies.

Thiamine pyrophosphate (TPP), flavin adenine dinucleotide (FAD), coenzyme A (CoA, sometimes denoted CoA-SH, to emphasize the role of the —SH group), nicotinamide adenine dinucleotide (NAD), and lipoate.

Four different vitamins required in human nutrition are vital components of this system:

Thiamine (in TPP), riboflavin (in FAD), niacin (in NAD), and pantothenate (in CoA).

citric acid cycle

NET RESULT: ONE TURN OF THE CYCLE PRODUCES THREE NADH, ONE GTP, AND ONE FADH₂ MOLECULE, AND RELEASES TWO MOLECULES OF CO₂

Hans Krebs, 1900-1981

Role of the citric acid cycle in anabolism

Anaplerotic Reactions Replenish Citric Acid

Alternative paths from pyruvate to phosphoenolpyruvate

The final stages of oxidation of food molecules

Electron Transport Drives the Synthesis of the Majority of the ATP in Most Cells

High-energy electrons from NADH are passed to a membrane-bound electron-transport chain

Membrane-based mechanisms use the energy provided by food or sunlight to generate ATP

Electron transfers release energy that is used to pump protons

Generate an electrochemical proton gradient

An ion gradient across a membrane is a form of stored energy that can be harnessed to do useful work

Membrane-based systems use the energy stored in an electrochemical proton gradient to synthesize ATP

Electron-transport processes

The final stages of oxidation of food molecules

Both stages of photosynthesis depend on the chloroplast.

1. Chlorophyll's structure allows it to absorb energy from light. Each chlorophyll molecule contains a porphyrin ring with a magnesium atom (*pink*) at its center. This porphyrin ring is structurally similar to the one that binds iron in heme. Light is absorbed by electrons within the bond network shown in *blue*, while the long, hydrophobic tail (*gray*) helps hold the chlorophyll in the thylakoid membrane.

2. A photon (a quantum of light) knocks an electron out of the green pigment molecule *chlorophyll* in the first reaction center, creating a positively charged chlorophyll ion. This electron then moves along an electron-transport chain and through a second reaction center in much the same way that an electron moves along the respiratory chain in mitochondria.

High-energy electrons are transferred through three respiratory enzyme complexes in the inner mitochondrial membrane

Transition Metal Ions and Quinones Accept and Release Electrons Readily

The structure of an iron—sulfur cluster

Heme group, in which an iron atom is tightly held by four nitrogen atoms at the corners of a square in a porphyrin ring

Quinone electron carriers

Electron-transport in NADH dehydrogenase (complex 1)

$$NADH + 5H_N^+ + Q \longrightarrow NAD^+ + QH_2 + 4H_P^+$$

NADH donates two electrons, via a bound flavin mononucleotide (FMN)

How a directional release and uptake of protons by a quinone pumps protons across a membrane

The structure of cytochrome c reductase

The two-step mechanism of the cytochrome c reductase Q-cycle

Net equation: $QH_2 + 2 \text{ cyt } c_1 \text{ (oxidized)} + 2H_N^{+} \longrightarrow Q + 2 \text{ cyt } c_1 \text{ (reduced)} + 4H_P^{+}$

The structure of cytochrome c oxidase

Summary of the flow of electrons and protons through the four complexes of the respiratory chain

$$NADH + 11H_N^+ + \frac{1}{2}O_2 \longrightarrow NAD^+ + 10H_P^+ + H_2O$$

ATP synthase acts like a motor to convert the energy of protons flowing down their electrochemical gradient to chemical-bond energy in ATP

Redox potential changes along the mitochondrial electron transport chain

Product Yields from the Oxidation of Sugars and Fats

A. Net products from oxidation of one molecule of glucose

```
In cytosol (glycolysis)
```

1 glucose → 2 pyruvate + 2 NADH + 2 ATP

In mitochondrion (pyruvate dehydrogenase and citric acid cycle)

2 pyruvate → 2 acetyl CoA + 2 NADH

2 acetyl CoA → 6 NADH + 2 FADH₂ + 2 GTP

Net result in mitochondrion

2 pyruvate → 8 NADH + 2 FADH₂ + 2 GTP

B. Net products from oxidation of one molecule of palmitoyl CoA (activated form of palmitate, a fatty acid)

In mitochondrion (fatty acid oxidation and citric acid cycle)

1 palmitoyl CoA → 8 acetyl CoA + 7 NADH + 7 FADH₂

8 acetyl CoA → 24 NADH + 8 FADH₂ + 8 GTP

Net result in mitochondrion

1 palmitoyl CoA → 31 NADH + 15 FADH₂ + 8 GTP

NADH produced in mitochondria can provide energy for the formation of about 2.5 molecules of ATP

FADH₂ produced can provide 1.5 molecules of ATP

The importance of H⁺-driven transport in bacteria

(B) ANAEROBIC CONDITIONS

The breakdown of food molecules occurs in three stages

Three types of metabolic pathways

Glycolysis and the citric acid cycle provide the precursors needed to synthesize many important biological molecules

Glycolysis and the citric acid cycle are at the center of an elaborate set of metabolic pathways in human cells

Factors affecting the activity of enzymes

Feedback inhibition

Feedback inhibition of a single biosynthetic pathway

Multiple feedback inhibition

Coupled transport processes

ROS formation in mitochondria and mitochondrial defenses

Factors that slow the flow of electrons through the respiratory chain increase the formation of superoxide