

回归模型

主讲人:谢建春

百度百科

回归分析 是确定两种或两种以上变数间相互依赖的定量 关系的一种统计分析方法。

- 按照涉及的**自变量的多少**,可分为一元回归分析和多元 回归分析;
- 按照**自变量和因变量之间的关系**类型,可分为线性回归 分析和非线性回归分析。

回归分析方法

例1测16名成年女子的身高与腿长所得数据如下:

身高	143	145	146	147	149	150	153	154	155	156	157	158	159	160	162	164
腿长	88	85	88	91	92	93	93	95	96	98	97	96	98	99	100	102

一般地,称由 $y = \beta_0 + \beta_1 x + \varepsilon$ 确定的模型为一元线性回归模型,

记为

$$\begin{cases} y = \beta_0 + \beta_1 x + \varepsilon \\ E\varepsilon = 0, D\varepsilon = \sigma^2 \end{cases}$$
 (1)

固定的未知参数 β_0 、 β_1 称为回归系数,自变量 x 也称为回归变量.

$$Y = \beta_0 + \beta_1 x$$
,称为 y 对 x 的回归直线方程.

• 模型参数估计

有 n 组独立观测值, (x_1, y_1) , (x_2, y_2) ,…, (x_n, y_n)

设
$$\begin{cases} y_i = \boldsymbol{\beta}_0 + \boldsymbol{\beta} x_i + \boldsymbol{\varepsilon}_i, i = 1, 2, ..., n \\ E\boldsymbol{\varepsilon}_i = \boldsymbol{0}, D\boldsymbol{\varepsilon}_i = \boldsymbol{\sigma}^2 \quad \boldsymbol{\mu}_1 \boldsymbol{\varepsilon}_1, \dots, \boldsymbol{\varepsilon}_n \boldsymbol{\mu}_2 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_2, \dots, \boldsymbol{\varepsilon}_n \boldsymbol{\mu}_2 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_2 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_2 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_2 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}_2 \boldsymbol{\varepsilon}_1 \boldsymbol{\varepsilon}$$

记
$$Q = Q(\beta_0, \beta_1) = \sum_{i=1}^n \varepsilon_i^2 = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

最小二乘法就是选择 β_0 和 β_1 的估计 $\hat{\beta}_0$, $\hat{\beta}_1$ 使得 $Q(\hat{\beta}_0,\hat{\beta}_1) = \min_{\beta_0,\beta_1} Q(\beta_0,\beta_1)$

将上式分别对
$$\beta_0$$
, β_1 求偏导,得
$$\begin{cases} \frac{\partial Q}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) \\ \frac{\partial Q}{\partial \beta_1} = -2\sum_{i=1}^n x_i (y_i - \beta_0 - \beta_1 x_i) \end{cases}$$

 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i, \, \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \qquad \overline{x^2} = \frac{1}{n} \sum_{i=1}^{n} x_i^2, \, \overline{xy} = \frac{1}{n} \sum_{i=1}^{n} x_i y_i$

令上两式为0,解得 β_0 , β_1 ,得

• 可线性化的一元非线性回归--曲线回归

例: 指数曲线方程
$$\hat{y} = ae^{bx}$$
 的线性化 $\hat{y} = ae^{bx}$

- 两边取对数: $\ln \hat{y} = \ln a + bx$
- 令 $y' = \ln y$, 可得直线回归方程: $\hat{y}' = \ln a + bx$

幂函数曲线方程 $\hat{y} = ax^b$ 的线性化

$$\hat{\mathbf{y}} = a\mathbf{x}^b$$

当 y 和 x 都大于0时可线性化为:

$$\ln \hat{y} = \ln a + b \ln x$$

若令 $y' = \ln y$, $x' = \ln x$, 即有线性回归方程:

$$\hat{y}' = \ln a + bx'$$

通常选择的六类曲线如下:

(1) 双曲线
$$\frac{1}{y} = a + \frac{b}{x}$$

- (2) **幂函数曲线** y=x^b ,其中 x>0,a>0
- (3) **指数曲线** $y=ae^{bx}$ 其中参数 a>0.
- (4) **倒指数曲线** $y=ae^{b/x}$ 其中 a>0,
- (5) 对数曲线 y=a+blogx,x>0
- (6) **S**型曲线 $y = \frac{1}{a + be^{-x}}$

2.多元线性回归

2.1数学模型及定义

一般地,影响试验指标的因素不只一个,假设它们之间有如下的线性关系:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \varepsilon$$
 (1)

其中y为可观测的随机变量, $x_1, x_2, ..., x_k$ 为非随机的可精确观测的变量, β_0 , β_1 ,...., β_k 为k+1个未知参数, ε 为随机变量,设 $E(\varepsilon)=0$, $D(\varepsilon)=\sigma^2>0$.

为了估计未知参数 β_0 , β_1 ,...., β_k 和 σ^2 ,我们对 $x_1, x_2, ..., x_k$ 和y作n次观测得n组观测值 $(x_{i1}, x_{i2}, ..., x_{ik}, y_i)$ (i=1, 2, 3, ..., n).

它们满足关系式:

$$y_i = \beta_0 + \beta_1 x_{i1} + ... + \beta_k x_{ik} + \varepsilon_i$$
 (2)
i=1, 2, 3, ... n

其中 $\varepsilon_1, \varepsilon_2, ..., \varepsilon_n$ 相互独立且是与 ε 同分布的随机变量。

$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}, \quad X = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1k} \\ 1 & x_{21} & x_{22} & \dots & x_{2k} \\ \dots & \dots & \dots & \dots \\ 1 & x_{n1} & x_{n2} & \dots & x_{nk} \end{bmatrix}, \quad \beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \dots \\ \beta_k \end{bmatrix}, \quad \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \dots \\ \varepsilon_n \end{bmatrix}$$

$$\varepsilon$$
满足: $E\varepsilon = 0$, $COV(\varepsilon, \varepsilon) = \sigma^2 I_n$.

 $Y = X\beta + \varepsilon \tag{3}$

一般称
$$\begin{cases} Y = X\beta + \varepsilon \\ E(\varepsilon) = 0, COV(\varepsilon, \varepsilon) = \sigma^2 I_n \end{cases}$$

为 k 元线性回归模型,并简记为 $(Y, X\beta, \sigma^2 I_n)$

解得估计值

$$\hat{\beta} = (X^T X)^{-1} (X^T Y)$$

得到的 $\hat{\beta}_i$ 代入回归平面方程得:

$$y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + ... + \hat{\beta}_k x_k$$

称为经验回归平面方程. $\hat{\beta}_i$ 称为经验回归系数.

注意: $\hat{\beta}$ 服从k+1维正态分布,且为 β 的无偏估计,协方差阵为 $\sigma^2(X^TX)^{-1}$.

2.1 牙膏的销售量

问题

建立牙膏销售量与价格、广告投入之间的模型

预测在不同价格和广告费用下的牙膏销售量 收集了30个销售周期本公司牙膏销售量、价格、广告费用,及同期

其它厂家同类牙膏的平均售价

销售	本公司价	其它厂家	广告费用	价格差	销售量
周期	格(元)	价格(元)	(百万元)	(元)	<u>(日/7文)</u>
1	3.85	3.80	5.50	-0.05	7.38
2	3.75	4.00	6.75	0.25	8.51
• • •	•••	•••	• • •	•••	•••
29	3.80	3.85	5.80	0.05	7.93
30	3.70	4.25	6.80	0.55	9.26

莫型

y~公司牙膏销售量

 x_1 ~其它厂家与本公司价格差

$$x_2$$
~公司广告费用
$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$

 x_1, x_2 ~解释变量(回归变量,自变量)

$$\beta_0$$
, β_1 , β_2 , β_3 ~回归系数

 ϵ ~随机误差(均值为零的正态分布随机变量) $y = \beta_0 + \beta_1 x_2 + \beta_2 x_2^2 + \varepsilon$

模型求解

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$$
 由数据 y, x_1, x_2 估计 β

[b,bint,r,rint,stats]=regress(y,x,alpha)

输入 y~n维数据向量	输出 $b \sim \beta$ 的估计值
x = $[1 x_1 x_2 x_2^2]$ ~ $n \times 4$ 数	bint~b的置信区间
据矩阵,第1列为全1向量	r~残差向量y-xb
alpha(置信水平,0.05)	rint~r的署信区间

	参数	参数估计值	置信区间		
	$oldsymbol{eta}_{\! exttt{0}}$	17.3244	[5.7282 28.9206]		
	$oldsymbol{eta_1}$	1.3070	[0.6829 1.9311]		
	$oldsymbol{eta_2}$	-3.6956	[-7.4989 0.1077]		
	$oldsymbol{eta}_3$	0.3486	[0.0379 0.6594]		
	$R^2=$	0.9054 $F=82.94$	09 $p=0.0000$		
结果分析 $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \varepsilon$					

检验统计量 R^2 ,F,p

Stats~

y的90.54%可由模型确定

F远超过F检验的临界值 模型从整体上看成立

p远小于 α =0.05

销售量预测
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2$$

价格差 x_1 =其它厂家价格 x_3 -本公司价格 x_4

估计 x_3 调整 x_4 口 控制 x_1 口 通过 x_1, x_2 预测y

控制价格差 $x_1=0.2$ 元,投入广告费 $x_2=650$ 万元

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2 = 8.2933 \ (百万支)$$

销售量预测区间为[7.8230, 8.7636](置信度95%)

模型改进

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_2^2 + \beta_4 x_1 x_2 + \varepsilon$$

x_1 和 x_2 对y	,
的影响独立	

J	
I II	,

x_1 和 x_2 对 y
的影响有
交互作用

参数	参数估计值	置信区间
$oldsymbol{eta}_{\! exttt{o}}$	29.1133	[13.7013 44.5252]
$oldsymbol{eta_1}$	11.1342	[1.9778 20.2906]
$oldsymbol{eta_2}$	-7.6080	[-12.6932 -2.5228]
$oldsymbol{eta_3}$	0.6712	[0.2538 1.0887]
$oldsymbol{eta_4}$	-1.4777	[-2.8518 -0.1037]

F=72.7771

p=0.0000

 $R^2=0.9209$

两模型销售量预测比较

控制价格差 x_1 =0.2元,投入广告费 x_2 =6.5百万元

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2$$

 $\hat{y} = 8.2933$ (百万支)

区间 [7.8230, 8.7636]

$$\hat{y} = \beta_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_2^2 + \hat{\beta}_4 x_1 x_2$$

 $\hat{y} = 8.3272$ (百万支)

区间 [7.8953, 8.7592]

ŷ略有增加

预测区间长度更短

