Year 12 Physics Current Balance

Practical test part 2

ANSWERS

13 Marks

The aim of this experiment is to calculate a theoretical value for $\mu_{\!0}$

The following data was collected from a current balance experiment.

Mass of wire = $1.45 \times 10^{-5} \text{ kg}$

Length of loop (see saw balance) $\ell_{loop} = 3.00 \times 10^{-2} \text{ m}$

Number of coils (N) on the solenoid = 730

Length of solenoid $\ell_{\text{soleniod}} = 0.150 \text{ m}$

1. Complete the table by calculating B_{solenoid}.

(3 marks)

Working space

$$I\ell B = mg$$

$$B = mg/I_{loop} \ell_{loop}$$

$$= (1.45 \times 10^{-5} \times 9.8)/1.2 \times 0.03) \qquad (= 4.74 \times 10^{-3}/I_{loop})$$

$$= 3.9 \times 10^{-3} \text{ T}$$

- -1 mark each error (eg using I_{solenoid} or N=730 for loop) to max -2 marks
- 1 mark for 2 sig figs. (I_{loop} only has 2 sf)

I _{solenoid} (A)	I _{loop} (A)	B _{solenoid} (T)
0.65	1.2	3.9 x 10 ⁻³
0.42	1.8	2.6 x 10 ⁻³
0.30	2.6	1.8 x 10 ⁻³
0.24	3.2	1.5 x 10 ⁻³
0.20	4.0	1.2 x 10 ⁻³

- Use this data to draw a graph of B_{solenoid} vs I_{solenoid} (4 marks)
 1 data points, 1 LOBF, 1 Labels, 1 Correct current used
- 3. Calculate the gradient of this graph (4 marks)

Eg:
$$m = (3.6 - 1.2) \times 10^{-3}/(0.60 - 0.2)$$

= $6.0 \times 10^{-3} \text{ TA}^{-1}$ (1) ANS

Must show how gradient is calculated from graph (1) Units (1)

2 sig fig (1)
-1 if (0,0) used. (Since this is a point on LOBF it should be ok but not so for WACE!)

4. The relationship between the current in a solenoid and the field in the solenoid is

$$B_{\text{solenoid}} = \underline{\mu_0 \text{ N } I_{\text{solenoid}}}$$
 Use this relationship to find a value for μ_0 (2 marks)

Slope =
$$\underline{\mu_0 N}$$
 ℓ_{solenoid}

$$\mu_0$$
 = Slope x ℓ_{solenoid} /N

=
$$6.2 \times 10^{-3} \times (0.15/730)$$
 -1 if slope not used.
= $1.2 \times 10^{-6} \, \text{NA}^{-2}$ (units and 2 sig fig not required).