UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Eksamen i: MEK1100 — Feltteori og Vektoranalyse

Eksamensdag: 8 juni - 15 juni 2020

Oppgavesettet er på 3 sider.

Vedlegg: Ingen

Tillatte hjelpemidler: Alle

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Oppgave 1 Divergens og virvling (vekt 15%)

Finn divergensen og virvlingen til følgende vektorfelt

i)
$$\vec{u} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$$

ii)
$$\vec{u} = r \cos \theta \, \mathbf{i_r} + r \sin \theta \, \mathbf{i_\theta} + z \, \mathbf{k}$$

iii)
$$\vec{u} = \mathbf{i_r} + \mathbf{i}$$

Her er \mathbf{i} , \mathbf{j} og \mathbf{k} de Kartesiske enhetsvektorene i henholdsvis x, y og z-retning, mens \mathbf{i}_r , \mathbf{i}_θ , \mathbf{k} er enhetsvektorene i sylindriske koordinater for r, θ og z-retning.

Oppgave 2 Elliptiske koordinater (vekt 35%)

Elliptiske koordinater (u, v) er relatert til Kartesiske gjennom posisjonsvektor

$$\vec{r} = a \cosh u \cos v \, \mathbf{i} + a \sinh u \sin v \, \mathbf{j},$$

der a er en konstant, $u \in [0, 1], v \in [0, 2\pi]$. Vi antar for enkelhets skyld i hele denne oppgaven at a = 1.

2a Enhetsvektorer og skaleringsfaktorer (vekt 10%)

Finn enhetsvektorene \mathbf{e}_u , \mathbf{e}_v og skaleringsfaktorene til de elliptiske koordinatene. Er enhetsvektorene ortogonale?

2b Operatorer (vekt 5%)

Gitt et skalarfelt f og en vektor

$$\vec{w} = w_u \mathbf{e}_u + w_v \mathbf{e}_v.$$

Gi ∇f , $\nabla \cdot \vec{w}$ og Laplace operatoren ∇^2 i elliptiske koordinater.

2c Skisser koordinatkurvene (vekt 10%)

Presenter en skisse av koordinatkurvene i et Kartesisk koordinatsystem. Det vil si, skisser kurver med konstante verdier for både u eller v, jamfør Fig. 6.3 i Vector Calculus.

2d Kontur- og pilplott (vekt 10%)

Lag konturplott av skalarfeltet

$$f(u, v) = (1 - u^2)\cos(2v),$$

i både elliptiske og Kartesiske koordinater.

Finn ∇f (i elliptiske eller Kartesiske koordinater) og lag et pilplott av denne i samme figur som det Kartesiske konturplottet. Kommenter retningen på pilene.

Oppgave 3 Taylor-Green virvel (vekt 50%)

En Taylor-Green virvel er en to-dimensjonell analytisk modell for periodiske strømningsvirvler, som avtar i styrke over tid. Virvlene er gitt ved hastighetsvektoren

$$\vec{u}(x, y, t) = (\cos x \sin y \mathbf{i} - \sin x \cos y \mathbf{j}) \exp^{-2\nu t},$$

for tiden $t \geq 0$ i et domene $\Omega = [-\pi, \pi] \times [-\pi, \pi]$. Parameteren ν er å regne som en konstant.

3a Strømfunksjon og skalarpotensial (vekt 10%)

Vis at strømfunksjonen er

$$\psi(x, y, t) = \cos x \cos y \exp^{-2\nu t}$$

Hvordan kunne vi vite på forhånd at dette feltet har en strømfunksjon? Har dette vektorfeltet et skalarpotensial? Hvis ja, finn skalarpotensialet.

3b Pilplott med strømlinjer (vekt 10%)

Lag et pilplott av vektorfeltet $\vec{u}(x, y, 0)$. Plott i samme figur strømlinjer til \vec{u} .

(Fortsettes på side 3.)

3c Fluks og sirkulasjon (vekt 10%)

Hva blir fluksen

$$\oint_C \vec{u} \cdot \vec{n} ds,$$

ut av et rektangulært område $\Omega = [0, \pi/2] \times [0, \pi/2]$, som omsluttes av kurven C? Her er \vec{n} normalvektoren som peker ut fra området og ds er et linjeelement langs kurven C. Forklar hvorfor man kan bruke Gauss' divergensteorem her selv om det bare er et to-dimensjonalt integral.

Hva blir sirkulasjonen

$$\oint_C \vec{u} \cdot d\vec{r},$$

når vi beveger oss mot klokka (altså fra (0,0) til $(\pi/2,0)$ osv.)? Finn resultatet både ved direkte regning av kurveintegralet, og ved å benytte et passende integralteorem.

3d Ekviskalarflate og buelengde (vekt 10%)

La $\psi(x,y,0)=z$ representere høyde og $\beta(x,y,z)=z-\cos x\cos y=0$ en ekviskalarflate. Finn flatenormalen.

Hvis man holder seg på ekviskalarflaten β og går en full sirkel med radius 1 $(x^2 + y^2 = 1)$ rundt origo, hvor lang er da denne buelengden?

Hint: Her blir utregningen veldig komplisert om man ikke benytter seg av programmeringsverktøy til å gjøre utregningene.

3e Finn trykket (vekt 10%)

Newton's andre lov for inkompressibel strømning (inkludert friksjon) gir oss momentumlikningen

$$\frac{D\vec{u}}{Dt} = -\nabla p + \nu \nabla^2 \vec{u}.$$

Vis at den partikkelderiverte av feltet \vec{u} er gitt ved

$$\frac{D\vec{u}}{Dt} = -2\nu\vec{u} - \frac{1}{2}\left(\sin 2x\mathbf{i} + \sin 2y\mathbf{j}\right)\exp^{-4\nu t}.$$

Bruk dette og videre innsetting i momentumlikningen til å finne trykket p.