Northwestern Campus Safety Check

May 30th 2017

TEAM NEARBY

JASON DONG, WILL FINNEGAN, BEOMSEOK KIM, SAM KIM

Introduction: Objectives

We aim to give students a data-driven way to measure

the safety level around the campus

Introduction: Data Collection

Source of data: University Police Evanston Campus Blotter (http://www.northwestern.edu/up/blotter/blotter ev.html)

	he Evanston Police Department can be found at p/police/reports/daily-crime-reports/ jun may			
Case Number	2017-00000613			
Date & Time: Reported	May 01, 2017 at 11:06:10 AM			
Date & Time: Occurred	April 26, 2017 at 4:00:00 PM			
	April 28, 2017 at 4:00:00 PM			
Location:	2245 SHERIDAN RD			
Common Name:	Sargent Hall			
Incident Type:	Theft - Bicycle			
Criminal Offense:	Theft \$500 and Under			
Disposition:	Closed			

Brainstorming

Total Number of Incidents by Day of the Week

Total Number of Incidents on Dillo Day vs. Average Number of Incidents on Saturday

North Campus vs. South Campus

Heatmap of All Incidents

Heatmap of Substance-Related Incidents

Heatmap of Noise-Related Incidents

Sources: Google Maps.

Our Questions

- Do more incidents take place on the North Campus compared to the South Campus?
- Do more incidents take place on the special occasions like Dillo Day? How do weekends compare to weekdays in general?
- Do more incidents take place on the months when students are on break or months during classes?

North Campus vs. South Campus?

Approximately Normally Distributed

North Campus vs. South Campus?

Hypothesis Test

```
H_0: \mu_1 = \mu_2 vs. H_1: \mu_1 \neq \mu_2 (\mu_1: Average number of incidents North of Foster per month)
```

Two-Sample T-Test and CI: Num of Occurrences N of Foster, Num of Occurrences S of Foster

```
Two-sample T for Num of Occurrences N of Foster vs Num of Occurrences S of Foster N Mean StDev SE Mean Num of Occurrences N of 65 59.0 23.1 2.9 Num of Occurrences S of 65 58.4 21.9 2.7 Difference = \mu (Num of Occurrences N of Foster) - \mu (Num of Occurrences S of Foster) Estimate for difference: 0.65 95% CI for difference: (-7.18, 8.47) T-Test of difference = 0 (vs \neq): T-Value = 0.16 P-Value = 0.871 DF = 127
```

Fail to reject H₀; Statistically no significant difference

North Dorms vs. South Dorms?

Heatmap of All Incidents in Student Housings only

Sources: Google Maps.

North Dorms vs. South Dorms?

Approximately Normally Distributed

North Dorms vs. South Dorms?

Hypothesis Test

```
H_0: \mu_1 = \mu_2 vs. H_1: \mu_1 \neq \mu_2 (\mu_1: Average number of incidents in North Dorms per month) \mu_2: Average number of incidents in South Dorms per month)
```

Two-Sample T-Test and CI: N, S

```
Two-sample T for N vs S

N Mean StDev SE Mean
N 65 10.57 6.52 0.81
S 65 13.83 7.11 0.88

Difference = μ (N) - μ (S)
Estimate for difference: -3.26
95% CI for difference: (-5.63, -0.89)
T-Test of difference = 0 (vs ≠): T-Value = -2.72 P-Value = 0.007 DF = 127
```

How crazy are Dillo Days?

Approximately Normally Distributed

How crazy are Dillo Days?

Hypothesis Test

```
H_0: \mu_1 = \mu_2 \text{ vs. } H_1: \mu_1 \neq \mu_2
```

 $(\mu_1:$ Average number of incidents on each Dillo Day, $\mu_2:$ Average number of incidents on regular Saturdays)

Two-Sample T-Test and CI: Number of Occurances on Dillo D, Number of Occurances Saturday

Hypothesis Test

$$H_0: \mu_1 = \mu_2 = \dots = \mu_7 \ vs.$$

 H_1 : at least one μ_i is different

(where each μ_i represents the average number of incidents on a day of the week, Monday through Sunday)

Reject H₀; Statistically significant difference

```
call:
lm(formula = Count \sim ... data = DAY)
Residuals:
    Min
            1Q Median
-21.969 -5.254 -0.754
                        3.354 45.031
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.8308
                        1.0862 14.575
             -0.1846
                               -0.120
                                        0.9044
Tues
            -1.0154
                        1.5361 -0.661
                                        0.5089
             0.7077
                        1.5361
                                0.461
                                        0.6452
Wed
                       1.5361
Thurs
             0.1385
                                0.090
                                        0.9282
Fri
             2.9231
                        1.5361
                                1.903
                                        0.0577 .
sat
             7.1385
                        1.5361
                                4.647 4.43e-06 ***
Sun
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 8.757 on 448 degrees of freedom
Multiple R-squared: 0.08266, Adjusted R-squared: 0.07037
F-statistic: 6.728 on 6 and 448 DF, p-value: 7.752e-07
Analysis of Variance Table
Response: Count
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
                  187 187.26 2.4420 0.11883
Mon
Tues
                       553.60
                               7.2194
                                        0.00748 **
wed
                       176.49
                               2.3016
Thurs
                       504.01 6.5727 0.01068 *
Fri
                       18.09 0.2359 0.62739
                 1656 1656.12 21.5971 4.43e-06 ***
sat
Residuals 448
                34354
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Sources: R.

Grouping Weekend vs. Weekday


```
call:
lm(formula = Count \sim ., data = DAY)
Residuals:
    Min
             10 Median
-21.969 -5.254 -0.754 3.354 45.031
Coefficients: (1 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 15.8308
                        1.0862 14.575 < 2e-16 ***
Mon
             -0.1846
                        1.5361 -0.120
                                         0.9044
Tues
             -1.0154
                        1.5361 -0.661
                                         0.5089
wed
              0.7077
                        1.5361 0.461
                                         0.6452
Thurs
              0.1385
                        1.5361
                                 0.090
                                         0.9282
Fri
                        1.5361
                                 1.903
              2.9231
                                         0.0577 .
              7.1385
                         1.5361
                                 4.647 4.43e-06 ***
sat
Sun
                                    NA
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 8.757 on 448 degrees of freedom
Multiple R-squared: 0.08266, Adjusted R-squared: 0.07037
F-statistic: 6.728 on 6 and 448 DF, p-value: 7.752e-07
```


Approximately Normally Distributed

Hypothesis Test

```
H_0: \mu_1 = \mu_2 \text{ vs. } H_1: \mu_1 \neq \mu_2
```

 $(\mu_1$: Average number of incidents on weekends per day, μ_2 : Average number of incidents on weekdays per day)

Two-Sample T-Test and CI: Num per Day on Weekends, Num per Day on Weekdays

Multiple Regression: Incident Rate

Source	DF	Adj SS	Adj MS	F-Value	P-Value
Regression	7	155.593	22.2275	15.23	0.000
North	1	3.705	3.7051	2.54	0.112
Weekday	1	12.883	12.8832	8.83	0.003
Away	1	37.231	37.2314	25.52	0.000
North*Weekday	1	0.074	0.0741	0.05	0.822
North*Away	1	0.008	0.0080	0.01	0.941
Weekday*Away	1	1.162	1.1616	0.80	0.373
North*Weekday*Away	1	0.018	0.0180	0.01	0.912
Error	252	367.693	1.4591		
Total	259	523.286			

Model Summary

S	R-sq	R-sq(adj)	R-sq(pred)
1.20793	29.73 %	27.78 %	25.66 %

Coefficients

Term	Coef	SE Coef	T-Value	P-Value	VIF
Constant	3.064	0.193	15.84	0.000	
North	-0.436	0.274	-1.59	0.112	3.33
Weekday	-0.813	0.274	-2.97	0.003	3.33
Away	-1.545	0.306	-5.05	0.000	4.00
North*Weekday	-0.087	0.387	-0.23	0.822	5.00
North*Away	0.032	0.433	0.07	0.941	5.33
Weekday*Away	0.386	0.433	0.89	0.373	5.33
North*Weekday*Away	0.068	0.612	0.11	0.912	6.00

Sources: Minitab.

Incident Per Day = 3.064 –
0.436*North –
0.813*Weekday –
1.545*Away –
0.087*North*Weekday +
0.032*North*Away +
0.386*Weekday*Away +
0.068*North*Weekday*Away

Multiple Regression: Incident Rate

Incident Per Day = 3.064 - 0.436*North - 0.813*Weekday - 1.545*Away - 0.087*North*Weekday + 0.032*North*Away + 0.386*Weekday*Away + 0.068*North*Weekday*Away

Sources: Minitab.

Multiple Regression: Incident Rate

Incident Per Day = 3.064 - 0.436*North – 0.813*Weekday – 1.545*Away – 0.087*North*Weekday + 0.032*North*Away + 0.386*Weekday*Away + 0.068*North*Weekday*Away

Data Terra	95% Confide	ence Intervals	95% Prediction Intervals		
Data Type	Lower	Upper	Lower	Upper	
(North, Weekend, Students present)	2.25	3.01	0.22	5.04	
(North, Weekend, Students away)	0.65	1.58	-1.31	3.54	
(North, Weekday, Students present)	1.35	2.11	-0.68	4.14	
(North, Weekday, Students away)	0.20	1.14	-1.76	3.09	
(South, Weekend, Students present)	2.68	3.45	0.65	5.47	
(South, Weekend, Students away)	1.06	1.99	-0.91	3.94	
(South, Weekday, Students away)	0.63	1.56	-1.33	3.52	
(South, Weekday, Students present)	1.87	2.63	-0.16	4.66	

Sources: Minitab.

Conclusion

- Overall summary of our findings
 - Statistically significant differences between incidents rate on dorms in North vs South campus; weekend vs weekdays; Dillo vs regular Saturdays; months students are on campus vs months students are away on break
 - Multiple regression on incident rate on campus
- Limitations
- Possible improvements for the future

Questions & Answers

How do different months compare?

Hypothesis Test

$$H_0: \mu_1 = \mu_2 = \dots = \mu_{12}$$
 vs.

 H_1 : at least one μ_i is different

(where each μ_i represents the average number of incidents on different months, January through December)

```
call:
lm(formula = Count ~ Jan + Feb + Mar + Apr + May + Jun + Jul +
    Aug + Sep + Oct + Nov, data = MONTH)
Residuals:
           10 Median
   Min
-57.33 -12.40 -2.50
                       9.80 110.83
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
               45.20
(Intercept)
                          12.38
                                  3.651 0.000598 ***
               96.97
                          16.76
                                  5.785 3.98e-07 ***
Jan
Feb
               83.63
                          16.76
                                 4.989 6.90e-06 ***
               50.30
                          16.76
                                  3.001 0.004100 **
Mar
               72.80
                          16.76
                                 4.343 6.37e-05 ***
Apr
              110.13
                          16.76
                                6.570 2.22e-08 ***
May
               70.40
                                 4.021 0.000185 ***
Jun
                          17.51
Jul
               53.20
                                 3.039 0.003686 **
               30.60
                          17.51
Aug
                                1.748 0.086298 .
              108.00
                          17.51 6.169 9.75e-08 ***
Sep
oct
              139.80
                          17.51
                                7.985 1.18e-10 ***
Nov
               80.60
                          17.51
                                4.604 2.63e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 27.68 on 53 degrees of freedom
Multiple R-squared: 0.6674 Adjusted R-squared: 0.5983
F-statistic: 9.667 on 11 and 53 DF, p-value: 2.847e-09
```

How do different months compare?

Grouping Months Students are present vs. away


```
lm(formula = Count ~ Jan + Feb + Mar + Apr + May + Jun + Jul +
    Aug + Sep + Oct + Nov, data = MONTH)
Residuals:
   Min
          10 Median
                        30
-57.33 -12.40 -2.50
                      9.80 110.83
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
              45.20
                                 3.651 0.000598 ***
              96.97
Jan
                                 5.785 3.98e-07 ***
              83.63
                         16.76
                                4.989 6.90e-06 ***
Feb
Mar
              50.30
                         16.76 3.001 0.004100 **
              72.80
                         16.76
                                4.343 6.37e-05 ***
Apr
May
             110.13
                         16.76 6.570 2.22e-08 ***
              70.40
                         17.51
                               4.021 0.000185 ***
Jun
              53.20
                         17.51 3.039 0.003686 **
วนไ
Aug
              30.60
                         17.51 1.748 0.086298 .
             108.00
                         17.51
                                6.169 9.75e-08 ***
Sep
             139.80
                         17.51 7.985 1.18e-10 ***
oct
              80.60
                         17.51 4.604 2.63e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 27.68 on 53 degrees of freedom
Multiple R-squared: 0.6674, Adjusted R-squared: 0.5983
F-statistic: 9.667 on 11 and 53 DF, p-value: 2.847e-09
```

How do different months compare?

Hypothesis Test

```
H_0: \mu_1 = \mu_2 vs. H_1: \mu_1 \neq \mu_2 (\mu_1: Average number of incidents in months students are away, \mu_2: Average number of incidents in months students are here)
```

Two-Sample T-Test and CI: Num Per Month on Break, Num Per Month During Classes

```
Two-sample T for Num Per Month on Break vs Num Per Month During Classes

N Mean StDev SE Mean
Num Per Month on Break 5 85.84 3.82 1.7
Num Per Month During Cla 5 147.3 14.3 6.4

Difference = μ (Num Per Month on Break) - μ (Num Per Month During Classes)
Estimate for difference: -61.50

95% CI for difference: (-79.92, -43.09)

T-Test of difference = 0 (vs ≠): T-Value = -9.27 P-Value = 0.001 DF = 4
```