Pontifícia Universidade Católica do Rio Grande do Sul Simulação e Métodos Analíticos Engenharia de Software

Arthur Foltz, Carolina Ferreira e Mateus Caçabuena

Trabalho 2

Porto Alegre 2025

Sumário

Sumário	2
Descrição	3
Resultados	4
Proposta de Melhoria	7
Comparação de Resultados	8
Conclusão	9

Descrição

Neste trabalho, foi modelado um sistema de atendimento genérico com três filas (Q1, Q2 e Q3), representando setores de um serviço (por exemplo, um hospital, central de atendimento ou sistema de triagem técnica), com fluxos de clientes que podem retornar a etapas anteriores.

A rede foi construída de forma a não seguir um fluxo contínuo ou tandem. Em vez disso, há retornos entre as filas, respeitando a exigência de complexidade do modelo. Os clientes entram no sistema por Q1, que os direciona para Q2 (70%) ou Q3 (30%). Há também retornos:

- Q2 → Q1 com 20% de probabilidade
- Q3 \rightarrow Q1 com 30% e Q3 \rightarrow Q2 com 70%

A estrutura de filas é a seguinte:

- Q1: G/G/1/5, serviço entre 10–12 min, capacidade 5, 1 servidor, chegadas externas entre 20–40 min.
- Q2: G/G/2/5, serviço entre 30–120 min, capacidade 5, 2 servidores.
- Q3: G/G/2/5, serviço entre 15–60 min, capacidade 5, 2 servidores.

0.2 30..120min 20..40min 1 0.7 G/G/2/5 0.7 15..60min 3 0.8

Figura 1: Modelo

Resultados

Fila Q1 (G/G/1/5)

- **Tempo ocioso** (estado 0): 45,66%
- Probabilidade de estado 1: 44,97%
- Estados cheios (4 e 5): ≈ 0,03% e 0,00%
- Perdas: 0
- População média estimada: ~1 cliente
- Utilização: ~54%
- Vazão estimada: compatível com taxa de chegada, sem congestionamento
- Tempo de resposta médio: baixo (~10–12 min)

Fila Q2 (G/G/2/5)

- Probabilidade em estado 5 (lotada): 64,32%
- Estados intermediários (3 e 4): ~35%
- Perdas: 64.411 clientes
- População média estimada: alta (entre 4 e 5 clientes)
- **Utilização**: muito alta (>95%)
- Vazão: prejudicada por perda elevada
- Tempo de resposta: elevado (30 a 120 min por cliente)

Fila Q3 (G/G/2/5)

- Estados 1 e 2: mais frequentes (~65%)
- Estado 5 (lotada): 0,82%
- **Perdas**: 279 clientes

• População média: moderada (~2 clientes)

Utilização: moderada (~60%)

Vazão: estável

• Tempo de resposta: razoável

Resultado do Terminal:

Queue: Q1 (G/G/1/5)
Arrival: 20.0 ... 40.0
Service: 10.0 ... 12.0

State	Time	Probability
0	886951.1976	45.66%
1	873564.4280	44.97%
2	168766.2647	8.69%
3	12872.6592	0.66%
4	488.6193	0.03%
5	0.0826	0.00%

Number of losses: 0

Queue: Q2 (G/G/2/5)
Service: 30.0 ... 120.0

State	Time	Probability
0	416.0621	0.02%
1	151.1489	0.01%
2	2755.5058	0.14%
3	110939.0151	5.71%
4	578804.0153	29.79%

Number of losses: 64411

Queue: Q3 (G/G/2/5)
Service: 15.0 ... 60.0

State	Time	Probability
0	295159.4273	15.19%
1	672227.4010	34.60%
2	596207.4280	30.69%
3	281992.4788	14.52%
4	81040.1906	4.17%
5	16016.3258	0.82%

Number of losses: 279

Simulation average time: 388528.6503

Proposta de Melhoria

Após análise, Q2 é o principal **gargalo** do sistema, com taxa de perdas extremamente elevada e utilização excessiva. Para mitigar isso, foram implementadas as seguintes alterações:

Q2:

- Capacidade aumentada de 5 para 10
- Número de servidores aumentado de 2 para 3

Essas mudanças visam reduzir perdas, melhorar o tempo de resposta e distribuir melhor a carga do sistema.

Comparação de Resultados

Métrica	Q2 (Antes)	Q2 (Após Melhoria)
Capacidade	5	10
Servidores	2	3
Estado mais frequente	Estado 5 (lotado): 64,32%	Estado 10 (lotado): 53,43%
Perdas	64.411 clientes	49.453 clientes
Estados médios (7–9)	Pouco frequentes	>45% do tempo
Probabilidade de fila cheia	Muito alta (acima de 64%)	Reduzida, mas ainda significativa
População média estimada	Entre 4 e 5 clientes	Entre 8 e 10 clientes
Utilização dos servidores	Praticamente 100%	Reduzida, mas ainda alta (>90%)
Tempo de resposta estimado	Muito alto (frequente rejeição)	Reduzido, mas ainda elevado

Outras filas (Q1 e Q3):

- Q1: Leve aumento no tempo em estados mais altos, mas perdas praticamente nulas (2).
- **Q3**: Pequeno aumento na ocupação (mais tempo nos estados 3, 4 e 5), perdas subiram levemente (de 279 para 3336).

Conclusão

A proposta de melhoria no modelo, aumentando capacidade e número de servidores da fila Q2, gerou benefícios moderados:

- Redução nas perdas da fila Q2 em cerca de 23% (de ~64 mil para ~49 mil).
- Distribuição da população nos estados indica que o sistema ainda enfrenta sobrecarga, mas os clientes conseguem permanecer mais tempo nos estados intermediários (7 a 9), não apenas no estado de saturação.
- As filas Q1 e Q3 continuaram operando com estabilidade, embora Q3 apresente leve aumento na taxa de ocupação e perdas.

Apesar de não ter resolvido completamente o gargalo, a alteração melhorou parcialmente o desempenho da fila Q2, tornando o sistema mais equilibrado. Outras possíveis intervenções futuras poderiam envolver:

- Balanceamento do roteamento (ex: reduzir o envio de Q1 para Q2 de 70% para 60%)
- Ajuste nos tempos de serviço ou políticas de priorização
- Expansão da capacidade em Q3, que começa a mostrar sinais de sobrecarga

Portanto, o modelo melhorado apresenta avanços significativos, mas ainda há oportunidade de otimização adicional para alcançar um desempenho ideal do sistema.