Maschinelles Lernen: Symbolische Ansätze

2. Übungsblatt

31. 10. 2006

Aufgabe 1

Gegeben sei ein Beispielraum, der durch n binäre Attribute aufgespannt wird. Hypothesenraum sind alle möglichen Regeln, die sich durch Konjunktionen von Tests der Form Attribut = Wert ergeben.

- 1. Wie viele mögliche Konzepte gibt es?
- 2. Wie viele mögliche Regeln gibt es?
- 3. Unter der Voraussetzung, daß das zu lernende Konzept im Hypothesenraum darstellbar ist, wie viele Fehler kann der Algorithmus Find-S beim Lernen dieses Konzepts maximal machen?

[Anm: Ein Fehler ist hier ein (Trainings-)Beispiel, das von der momentanen Theorie falsch klassifiziert wird.]

4. Gegeben sei ein Hypothesenraum, der nur *Disjunktionen* von binären Attribut-Wert-Paaren erlaubt. Eine gültige Regel wäre also z.B.

if
$$(att_i = t)$$
 or $(att_j = f)$ or $(att_k = f)$ then +

Überlegen Sie sich Verallgemeinerungs- und Spezialisierungsvorschriften für diesen Hypothesenraum und geben Sie einen geeigneten Lernalgorithmus an.

Aufgabe 2

Sie wollen den Find-S Algorithmus auf numerische Daten anwenden, indem Sie Intervalle definieren.

- 1. Wie sieht das spezifischste und generellste Element der Sprache aus, wenn Sie offene Intervalle verwenden?
- 2. Wie sieht das spezifischste und generellste Element der Sprache aus, wenn Sie geschlossene Intervalle verwenden?

3. Finden Sie eine passende Generalisierungsvorschrift und simulieren den Algorithmus Find-S auf folgenden Beispielen:

A 1	Klasse
0.5	_
1.0	+
2.1	_
0.8	_
1.5	+
1.8	+

- 4. Finden Sie eine passende Spezialisierungsvorschrift und simulieren Sie den Algorithmus Find-GSet auf denselben Beispielen.
- $5.\,$ Skizzieren Sie beide Lösungen und vergleichen Sie die Allgemeinheit.