House Prices : Advanced Regression Techniques

Aim: Predict the sale price of a house

Features (80):

MSSubClass, MSZoning, LotFrontage, LotArea, Street, Alley, LotShape, LandContour, Utilities, LotConfig, LandSlope, Neighborhood, Condition1, Condition2, BldgType, HouseStyle, OverallQual, OverallCond, YearBuilt, YearRemodAdd, RoofStyle, RoofMatl, Exterior1st, Exterior2nd, MasVnrType, MasVnrArea, ExterQual, ExterCond, Foundation, BsmtQual, BsmtCond, BsmtExposure, BsmtFinType1, BsmtFinSF1, BsmtFinType2, BsmtFinSF2, BsmtUnfSF, TotalBsmtSF, Heating, HeatingQC, CentralAir, Electrical, 1stFlrSF, 2ndFlrSF, LowQualFinSF, GrLivArea, BsmtFullBath, BsmtHalfBath, FullBath, HalfBath, Bedroom, Kitchen, KitchenQual, TotRmsAbvGrd, Functional, Fireplaces, FireplaceQu, GarageType, GarageYrBlt, GarageFinish, GarageCars, GarageArea, GarageQual, GarageCond, PavedDrive, WoodDeckSF, OpenPorchSF, EnclosedPorch, 3SsnPorch, ScreenPorch, PoolArea, PoolQC, Fence, MiscFeature, MiscVal, MoSold, YrSold, SaleType, SaleCondition

Kaggle dataset: https://www.kaggle.com/c/house-prices-advanced-regression-techniques (<a href="https://www.kaggle.com/c/house-prices-advanced-regression-techniques (<a href="https://www.kaggle.com/c/house-prices-advanced-regression-techniques (<a href="https://www.kaggle.

```
In [1]: # import necessary libraries
        import pandas as pd
        import sys
        import numpy as np
        import seaborn as sns
        from math import sqrt
        from pylab import rcParams
        from sklearn import metrics
        from sklearn.metrics import mean squared error
        from sklearn import linear model
        from sklearn.model selection import train test split
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.model selection import cross val score
        from sklearn.model selection import GridSearchCV
        import sklearn
        from sklearn.linear model import LinearRegression
        from sklearn.linear model import ElasticNet, Lasso
        from sklearn.svm import SVR
        from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
        from sklearn.kernel ridge import KernelRidge
        from sklearn.ensemble import StackingRegressor
        from sklearn.pipeline import make pipeline
        from sklearn.preprocessing import RobustScaler
        from sklearn.model selection import KFold, cross val score, train test split
        from sklearn.metrics import mean squared error
        from sklearn.metrics import accuracy score
        from sklearn.preprocessing import StandardScaler
        %matplotlib inline
        import matplotlib as mpl
        import matplotlib.pyplot as plt
        from matplotlib.colors import ListedColormap
```


• The housing dataset is available on Kaggle under "House Prices: Advanced Regression Techniques". The "train.csv" file contains the training data and "test.csv" contains the testing data. The training data contains data for 1460 rows which corresponds to 1460 house's data and 80 columns which correspond to the feature of those houses. Similarly, the testing data contains data of 1461 houses and their 79 attributes.

```
In [2]: # Load dataset
    csv_path = "train.csv"
    df_train = pd.read_csv(csv_path, sep = ',')

    csv_path = "test.csv"
    df_test = pd.read_csv(csv_path, sep = ',')

In [3]: # check shape
    print(df_train.shape)
    print(df_test.shape)

    (1460, 81)
    (1459, 80)
```

In [4]: # look a first 10 rows of training data
df_train.head(10)

0+	T 4 7	١.
υυτ	141	

:		ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 PoolArea	PoolQC	Fence	MiscFeature	I
•	0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	_
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	NaN	
	5	6	50	RL	85.0	14115	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	MnPrv	Shed	
	6	7	20	RL	75.0	10084	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	
	7	8	60	RL	NaN	10382	Pave	NaN	IR1	Lvl	AllPub	 0	NaN	NaN	Shed	
	8	9	50	RM	51.0	6120	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	
	9	10	190	RL	50.0	7420	Pave	NaN	Reg	Lvl	AllPub	 0	NaN	NaN	NaN	

10 rows × 81 columns

>

In [5]: # Look a first 10 rows of testing data
 df_test.head(10)

Ω	+	[5]	
υu	ľ	L フ 」	٠

:		ld	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	 ScreenPorch	PoolArea	PoolQC	Fence
	0	1461	20	RH	80.0	11622	Pave	NaN	Reg	Lvl	AllPub	 120	0	NaN	MnPn
	1	1462	20	RL	81.0	14267	Pave	NaN	IR1	Lvl	AllPub	 0	0	NaN	NaN
	2	1463	60	RL	74.0	13830	Pave	NaN	IR1	LvI	AllPub	 0	0	NaN	MnPn
	3	1464	60	RL	78.0	9978	Pave	NaN	IR1	LvI	AllPub	 0	0	NaN	NaN
	4	1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS	AllPub	 144	0	NaN	NaN
	5	1466	60	RL	75.0	10000	Pave	NaN	IR1	LvI	AllPub	 0	0	NaN	NaN
	6	1467	20	RL	NaN	7980	Pave	NaN	IR1	LvI	AllPub	 0	0	NaN	GdPn
	7	1468	60	RL	63.0	8402	Pave	NaN	IR1	LvI	AllPub	 0	0	NaN	NaN
	8	1469	20	RL	85.0	10176	Pave	NaN	Reg	Lvl	AllPub	 0	0	NaN	NaN
	9	1470	20	RL	70.0	8400	Pave	NaN	Reg	LvI	AllPub	 0	0	NaN	MnPr

10 rows × 80 columns

>

'GarageYrBlt', 'GarageFinish', 'GarageCars', 'GarageArea', 'GarageQual',

'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'PoolQC', 'Fence', 'MiscFeature', 'MiscVal', 'MoSold', 'YrSold', 'SaleType',

'GarageCond', 'PavedDrive', 'WoodDeckSF', 'OpenPorchSF',

'SaleCondition', 'SalePrice'],

dtype='object')

In [7]: df_train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1460 entries, 0 to 1459
Data columns (total 81 columns):

#	Column	Non-Null Count	Dtype
0	Id	1460 non-null	int64
1	MSSubClass	1460 non-null	int64
2	MSZoning	1460 non-null	object
3	LotFrontage	1201 non-null	float64
4	LotArea	1460 non-null	int64
5	Street	1460 non-null	object
6	Alley	91 non-null	object
7	LotShape	1460 non-null	object
8	LandContour	1460 non-null	object
9	Utilities	1460 non-null	object
10	LotConfig	1460 non-null	object
11	LandSlope	1460 non-null	object
12	Neighborhood	1460 non-null	object
13	Condition1	1460 non-null	object
14	Condition2	1460 non-null	object
15	BldgType	1460 non-null	object
16	HouseStyle	1460 non-null	object
17	OverallQual	1460 non-null	int64
18	OverallCond	1460 non-null	int64
19	YearBuilt	1460 non-null	int64
20	YearRemodAdd	1460 non-null	int64
21	RoofStyle	1460 non-null	object
22	RoofMatl	1460 non-null	object
23	Exterior1st	1460 non-null	object
24	Exterior2nd	1460 non-null	object
25	MasVnrType	1452 non-null	object
26	MasVnrArea	1452 non-null	float64
27	ExterQual	1460 non-null	object
28	ExterCond	1460 non-null	object
29	Foundation	1460 non-null	object
30	BsmtQual	1423 non-null	object
31	BsmtCond	1423 non-null	object
32	BsmtExposure	1422 non-null	object
33	BsmtFinType1	1423 non-null	object
34	BsmtFinSF1	1460 non-null	int64
35	BsmtFinType2	1422 non-null	object

36	BsmtFinSF2	1460 non-null	int64
37	BsmtUnfSF	1460 non-null	int64
38	TotalBsmtSF	1460 non-null	int64
39	Heating	1460 non-null	object
40	HeatingQC	1460 non-null	object
41	CentralAir	1460 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1460 non-null	int64
44	2ndFlrSF	1460 non-null	int64
45	LowQualFinSF	1460 non-null	int64
46	GrLivArea	1460 non-null	int64
47	BsmtFullBath	1460 non-null	int64
48	BsmtHalfBath	1460 non-null	int64
49	FullBath	1460 non-null	int64
50	HalfBath	1460 non-null	int64
51	BedroomAbvGr	1460 non-null	int64
52	KitchenAbvGr	1460 non-null	int64
53	KitchenQual	1460 non-null	object
54	TotRmsAbvGrd	1460 non-null	int64
55	Functional	1460 non-null	object
56	Fireplaces	1460 non-null	int64
57	FireplaceQu	770 non-null	object
58	GarageType	1379 non-null	object
59	GarageYrBlt	1379 non-null	float64
60	GarageFinish	1379 non-null	object
61	GarageCars	1460 non-null	int64
62	GarageArea	1460 non-null	int64
63	GarageQual	1379 non-null	object
64	GarageCond	1379 non-null	object
65	PavedDrive	1460 non-null	object
66	WoodDeckSF	1460 non-null	int64
67	OpenPorchSF	1460 non-null	int64
68	EnclosedPorch	1460 non-null	int64
69	3SsnPorch	1460 non-null	int64
70	ScreenPorch	1460 non-null	int64
71	PoolArea	1460 non-null	int64
72	PoolQC	7 non-null	object
73	Fence	281 non-null	object
74	MiscFeature	54 non-null	object
75	MiscVal	1460 non-null	int64
76	MoSold	1460 non-null	int64
77	YrSold	1460 non-null	int64

78 SaleType 1460 non-null object 79 SaleCondition 1460 non-null object 80 SalePrice 1460 non-null int64 dtypes: float64(3), int64(35), object(43) memory usage: 924.0+ KB

- There are 1460 rows and 81 columns
- There are columns with large number of null entries like PoolQC, MiscFeature
- The columns have Three types of datatypes: float64(3), int64(35), object(43)

In [8]: df_test.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1459 entries, 0 to 1458
Data columns (total 80 columns):

#	Column	Non-Null Count	Dtype
0	Id	1459 non-null	int64
1	MSSubClass	1459 non-null	int64
2	MSZoning	1455 non-null	object
3	LotFrontage	1232 non-null	float64
4	LotArea	1459 non-null	int64
5	Street	1459 non-null	object
6	Alley	107 non-null	object
7	LotShape	1459 non-null	object
8	LandContour	1459 non-null	object
9	Utilities	1457 non-null	object
10	LotConfig	1459 non-null	object
11	LandSlope	1459 non-null	object
12	Neighborhood	1459 non-null	object
13	Condition1	1459 non-null	object
14	Condition2	1459 non-null	object
15	BldgType	1459 non-null	object
16	HouseStyle	1459 non-null	object
17	OverallQual	1459 non-null	int64
18	OverallCond	1459 non-null	int64
19	YearBuilt	1459 non-null	int64
20	YearRemodAdd	1459 non-null	int64
21	RoofStyle	1459 non-null	object
22	RoofMatl	1459 non-null	object
23	Exterior1st	1458 non-null	object
24	Exterior2nd	1458 non-null	object
25	MasVnrType	1443 non-null	object
26	MasVnrArea	1444 non-null	float64
27	ExterQual	1459 non-null	object
28	ExterCond	1459 non-null	object
29	Foundation	1459 non-null	object
30	BsmtQual	1415 non-null	object
31	BsmtCond	1414 non-null	object
32	BsmtExposure	1415 non-null	object
33	BsmtFinType1	1417 non-null	object
34	BsmtFinSF1	1458 non-null	float64
35	BsmtFinType2	1417 non-null	object

36	BsmtFinSF2	1458 non-null	float64
37	BsmtUnfSF	1458 non-null	float64
38	TotalBsmtSF	1458 non-null	float64
39	Heating	1459 non-null	object
40	HeatingQC	1459 non-null	object
41	CentralAir	1459 non-null	object
42	Electrical	1459 non-null	object
43	1stFlrSF	1459 non-null	int64
44	2ndFlrSF	1459 non-null	int64
45	LowQualFinSF	1459 non-null	int64
46	GrLivArea	1459 non-null	int64
47	BsmtFullBath	1457 non-null	float64
48	BsmtHalfBath	1457 non-null	float64
49	FullBath	1459 non-null	int64
50	HalfBath	1459 non-null	int64
51	BedroomAbvGr	1459 non-null	int64
52	KitchenAbvGr	1459 non-null	int64
53	KitchenQual	1458 non-null	object
54	TotRmsAbvGrd	1459 non-null	int64
55	Functional	1457 non-null	object
56	Fireplaces	1459 non-null	int64
57	FireplaceQu	729 non-null	object
58	GarageType	1383 non-null	object
59	GarageYrBlt	1381 non-null	float64
60	GarageFinish	1381 non-null	object
61	GarageCars	1458 non-null	float64
62	GarageArea	1458 non-null	float64
63	GarageQual	1381 non-null	object
64	GarageCond	1381 non-null	object
65	PavedDrive	1459 non-null	object
66	WoodDeckSF	1459 non-null	int64
67	OpenPorchSF	1459 non-null	int64
68	EnclosedPorch	1459 non-null	int64
69	3SsnPorch	1459 non-null	int64
70	ScreenPorch	1459 non-null	int64
71	PoolArea	1459 non-null	int64
72	PoolQC	3 non-null	object
73	Fence	290 non-null	object
74	MiscFeature	51 non-null	object
75	MiscVal	1459 non-null	int64
76	MoSold	1459 non-null	int64
77	YrSold	1459 non-null	int64

```
78 SaleType 1458 non-null object 79 SaleCondition 1459 non-null object dtypes: float64(11), int64(26), object(43) memory usage: 912.0+ KB
```

- There are 1459 rows and 80 columns
- There are columns with large number of null entries like PoolQC, MiscFeature etc
- The columns have Three types of datatypes: float64(11), int64(26), object(43)

Looking at the label to predict

```
In [9]: df_train['SalePrice'].describe()
Out[9]: count
                   1460.000000
                 180921.195890
        mean
                  79442.502883
        std
        min
                  34900.000000
        25%
                 129975.000000
        50%
                 163000.000000
        75%
                 214000.000000
                 755000.000000
        max
        Name: SalePrice, dtype: float64
```

- The average SalePrice of a house is 180,921
- The Maximum SalePrice of a house is 755,000 and Minimum 34,900

Top Correlated Feature HeatMap (Correlation > 0.5 with Sale Price)

• OverallQual and GrLivArea seem to be the most correlated to SalePrice

Correlation Values

COLLETACION VAL	Lues
OverallQual	0.790982
GrLivArea	0.708624
GarageCars	0.640409
GarageArea	0.623431
TotalBsmtSF	0.613581
1stFlrSF	0.605852
FullBath	0.560664
TotRmsAbvGrd	0.533723
YearBuilt	0.522897
YearRemodAdd	0.507101
GarageYrBlt	0.486362
MasVnrArea	0.477493
Fireplaces	0.466929
BsmtFinSF1	0.386420
LotFrontage	0.351799
WoodDeckSF	0.324413
2ndFlrSF	0.319334
OpenPorchSF	0.315856
HalfBath	0.284108
LotArea	0.263843
BsmtFullBath	0.227122
BsmtUnfSF	0.214479
BedroomAbvGr	0.168213
ScreenPorch	0.111447
PoolArea	0.092404
MoSold	0.046432
3SsnPorch	0.044584
BsmtFinSF2	-0.011378
BsmtHalfBath	-0.016844
MiscVal	-0.021190
Id	-0.021917
LowQualFinSF	-0.025606
YrSold	-0.028923
OverallCond	-0.077856
MSSubClass	-0.084284
EnclosedPorch	-0.128578
KitchenAbvGr	-0.135907

Name: SalePrice, dtype: float64


```
In [14]: rcParams['figure.figsize'] = 5,5
cols = ['SalePrice', 'EnclosedPorch', 'KitchenAbvGr', 'MSSubClass', 'LowQualFinSF', 'YrSold', 'OverallCond']
sns_plot = sns.pairplot(df_train[cols])

plt.suptitle('Scatter plots between least 6 corr features', y=1.04, size=20)
plt.tight_layout()
plt.show()
```


------- 2. HANDLING DATA -------

Drop Id Column

Checking for Outliers

```
In [16]: sns.set_style('whitegrid')
edgecolor = 'black'

fig = plt.figure(figsize=(12,12))

#function to plot scatter plot between a feature and the Sale Price
def scatter_plot(a):
    fig, ax = plt.subplots()
    ax.scatter(x = df_train[a], y = df_train['SalePrice'], edgecolor=edgecolor)
    plt.ylabel('SalePrice', fontsize=12)
    plt.xlabel(a, fontsize=12)
    plt.suptitle("Scatter Plot of "+ a + " and SalePrice")
    plt.show()
```

<Figure size 864x864 with 0 Axes>

```
In [17]: scatter_plot('GrLivArea')
```

Scatter Plot of GrLivArea and SalePrice

- It can be observed that there are large outliers which can negatively affect the prediction of sale price highly
- So the outliers need to be deleted

```
In [18]: #Deleting outliers
df_train = df_train.drop( df_train['GrLivArea'] > 4000) & ( df_train['SalePrice']<300000)].index)
#Check the graphic again
scatter_plot('GrLivArea')</pre>
```

Scatter Plot of GrLivArea and SalePrice


```
In [19]: scatter_plot('TotalBsmtSF')
```

Scatter Plot of TotalBsmtSF and SalePrice

• There arent too large outliers, we do not need to delete any points

In [20]: scatter_plot('EnclosedPorch')

Scatter Plot of EnclosedPorch and SalePrice

• There is are some outliers that should be deleted so that it doesnt affect our predictions much

```
In [21]: #Deleting outliers
    df_train = df_train.drop( df_train['EnclosedPorch']>400)].index)

#Deleting outliers
    df_train = df_train.drop( df_train[('SalePrice']>700000)].index)

#check plot again
    scatter_plot('EnclosedPorch')
```

Scatter Plot of EnclosedPorch and SalePrice


```
In [22]: # plot a box plot for categorical feature : Overall Quality

fig = plt.figure(figsize=(7,7))
  data = pd.concat([df_train['SalePrice'], df_train['OverallQual']], axis=1)
  sns.boxplot(x = df_train['OverallQual'], y="SalePrice", data = data)
```

Out[22]: <matplotlib.axes._subplots.AxesSubplot at 0x1ef8b00fb80>


```
In [23]: # plot a box plot for categorical feature : Year Built
        fig = plt.figure(figsize=(18,8))
        data = pd.concat([df_train['SalePrice'], df_train['YearBuilt']], axis=1)
        sns.boxplot(x= df train['YearBuilt'], y="SalePrice", data=data)
        plt.xticks(rotation=90,fontsize= 9)
Out[23]: (array([ 0, 1, 2,
                             3,
                                   4, 5, 6, 7, 8, 9, 10, 11, 12,
                13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
                                                                 24,
                                                                      25,
                26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
                                                                      38,
                39, 40, 41, 42,
                                 43, 44,
                                           45, 46, 47,
                                                        48,
                                                             49,
                                                                      51,
                52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62,
                                                                 63,
                65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77,
                78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
                91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103,
               104, 105, 106, 107, 108, 109, 110, 111]),
         <a list of 112 Text major ticklabel objects>)
```


YearBuilt

In [24]: sns.distplot(df_train['SalePrice']) plt.suptitle("Plot of Sale Price") print("Skewness: %f" % df_train['SalePrice'].skew()) print("Kurtosis: %f" % df_train['SalePrice'].kurt())

Skewness: 1.567473 Kurtosis: 3.888317

Plot of Sale Price


```
In [25]: # applying log transformation to correct the positive skewness in the data
# taking logs means that errors in predicting expensive and cheap houses will affect the result equally

df_train['SalePrice'] = np.log(df_train['SalePrice'])
plt.suptitle("Plot of Sale Price after log transformation")
sns.distplot(df_train['SalePrice'])
plt.show()
```

Plot of Sale Price after log transformation


```
In [26]: |df_train['SalePrice'].describe()
Out[26]: count
                  1455.000000
         mean
                    12.021706
                     0.396112
         std
                    10.460242
         min
         25%
                    11.774520
         50%
                    12.001505
         75%
                    12.272562
                    13.345507
         max
         Name: SalePrice, dtype: float64
In [27]: df_train['SalePrice']
Out[27]: 0
                 12.247694
                 12.109011
         1
         2
                 12.317167
                 11.849398
                 12.429216
                   . . .
         1455
                 12.072541
         1456
                 12.254863
         1457
                 12.493130
         1458
                 11.864462
         1459
                 11.901583
         Name: SalePrice, Length: 1455, dtype: float64
In [28]: df_train.shape
Out[28]: (1455, 80)
```

Handling missing data

```
In [29]: #function to see the missing data in a dataframe
         def missing data(df,n):
             total = df.isnull().sum().sort values(ascending=False)  # Total No of missing values
             percentage = (df.isnull().sum() / df.isnull().count()).sort values(ascending=False)*100 # % of Missing values
             No unique val = df.nunique()
                                                                             # No of unique values
             missing data = pd.concat([total, percentage, No unique val], axis=1,
                                      keys=['Total No of missing val', '% of Missing val', 'No of unique val'], sort = False)
             print(missing data.head(n))
In [30]: #training data
         missing data(df train,20)
         Total No of missing val % of Missing val No of unique val
         PoolQC
                                           1451
                                                        99.725086
                                                                                  2
         MiscFeature
                                           1401
                                                        96.288660
                                                                                  4
         Alley
                                           1364
                                                        93.745704
                                                                                  2
         Fence
                                           1176
                                                                                  4
                                                        80.824742
                                                                                  5
         FireplaceQu
                                            690
                                                        47.422680
                                            259
                                                        17.800687
                                                                                109
         LotFrontage
                                                         5.567010
         GarageType
                                             81
                                                                                  6
         GarageCond
                                             81
                                                         5.567010
                                                                                  5
                                                                                  3
                                             81
         GarageFinish
                                                         5.567010
         GarageQual
                                                                                  5
                                             81
                                                         5.567010
         GarageYrBlt
                                             81
                                                         5.567010
                                                                                 97
         BsmtFinType2
                                             38
                                                         2.611684
                                                                                  6
                                             38
         BsmtExposure
                                                         2.611684
                                                                                  4
                                             37
                                                                                  4
         BsmtQual
                                                         2.542955
         BsmtCond
                                             37
                                                         2.542955
                                                                                  4
                                             37
         BsmtFinType1
                                                         2.542955
                                                                                  6
         MasVnrArea
                                             8
                                                         0.549828
                                                                                324
                                              8
                                                         0.549828
                                                                                  4
         MasVnrType
                                                                                  5
         Electrical
                                              1
                                                         0.068729
                                                                                  7
         RoofMat1
                                                         0.000000
In [31]: df train['PoolOC'].unique()
```

PoolQC,Alley have only two unique values

Out[31]: array([nan, 'Fa', 'Gd'], dtype=object)

- PoolQC has 99.7% of missing data, which means most of the values are NA: No Pool ie most of the houses do not have a pool
- PoolQC,Alley,MiscFeature will be dropped due to large number of missing values

In [32]: #test data missing_data(df_test,34)

% of Missing val	No of unique v	/al
1456	99.794380	2
1408	96.504455	3
1352	92.666210	2
1169	80.123372	4
730	50.034270	5
227	15.558602	115
78	5.346127	5
78	5.346127	3
78	5.346127	97
78	5.346127	4
76	5.209047	6
45	3.084304	4
44	3.015764	4
44	3.015764	4
42	2.878684	6
42	2.878684	6
16	1.096642	4
15	1.028101	303
4	0.274160	5
2	0.137080	3
	0.137080	1
	0.137080	7
	0.137080	4
1	0.068540	161
1	0.068540	669
1	0.068540	793
1	0.068540	736
1	0.068540	15
1	0.068540	9
1	0.068540	13
1	0.068540	4
1	0.068540	459
1	0.068540	6
0	0.000000	10
	1408 1352 1169 730 227 78 78 78 78 78 76 45 44 44 42 42 16 15 4 2 2 2 1 1 1 1 1 1 1 1 1 1	1456 99.794380 1408 96.504455 1352 92.666210 1169 80.123372 730 50.034270 227 15.558602 78 5.346127 78 5.346127 78 5.346127 76 5.209047 45 3.084304 44 3.015764 42 2.878684 42 2.878684 42 2.878684 43 1.096642 15 1.028101 4 0.274160 2 0.137080 2 0.137080 2 0.137080 2 0.137080 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540 1 0.068540

```
In [33]: df_test['Utilities'].unique()
Out[33]: array(['AllPub', nan], dtype=object)
           • all records mostly "AllPub" for Utilities
           • PoolQC,Alley,MiscFeature will be dropped due to large number of missing values
           • Utilities has only 1 unique value
           · Utility will also be dropped
In [34]: # calculate total number of null values in training data
         null_train = df_train.isnull().sum().sum()
         print(null_train)
         # calculate total number of null values in test data
         null_test = df_test.isnull().sum().sum()
         print(null_test)
         6950
          7000
In [35]: # save the 'SalePrice'column as train_label
         train_label = df_train['SalePrice'].reset_index(drop=True)
         # # drop 'SalePrice' column from df train
         df_train = df_train.drop(['SalePrice'], axis=1)
         # # now df train contains all training features
```

```
In [36]: # function to HANDLE the missing data in a dataframe
         def missing (df):
             # drop theses columns due to large null values or many same values
             df = df.drop(['Utilities','PoolOC','MiscFeature','Alley'], axis=1)
             # Null value likely means No Fence so fill as "None"
             df["Fence"] = df["Fence"].fillna("None")
             # Null value likely means No Fireplace so fill as "None"
             df["FireplaceQu"] = df["FireplaceQu"].fillna("None")
             # Lot frontage is the feet of street connected to property, which is likely similar to the neighbourhood houses, so
             df["LotFrontage"] = df["LotFrontage"].fillna(df["LotFrontage"].median())
             # Null value likely means typical(Typ)
             df["Functional"] = df["Functional"].fillna("Typ")
             # Only one null value so fill as the most frequent value(mode)
             df['KitchenQual'] = df['KitchenQual'].fillna(df['KitchenQual'].mode()[0])
             # Only one null value so fill as the most frequent value(mode)
             df['Electrical'] = df['Electrical'].fillna(df['Electrical'].mode()[0])
             # Very few null value so fill with the most frequent value(mode)
             df['SaleType'] = df['SaleType'].fillna(df['SaleType'].mode()[0])
             # Null value likely means no masonry veneer
             df["MasVnrType"] = df["MasVnrType"].fillna("None") #so fill as "None" (since categorical feature)
             df["MasVnrArea"] = df["MasVnrArea"].fillna(0) #so fill as o
             # Only one null value so fill as the most frequent value(mode)
             df['Exterior1st'] = df['Exterior1st'].fillna(df['Exterior1st'].mode()[0])
             df['Exterior2nd'] = df['Exterior2nd'].fillna(df['Exterior2nd'].mode()[0])
             #MSZoning is general zoning classification, Very few null value so fill with the most frequent value(mode)
             df['MSZoning'] = df['MSZoning'].fillna(df['MSZoning'].mode()[0])
             "Null value likely means no Identified type of dwelling so fill as "None"
             df['MSSubClass'] = df['MSSubClass'].fillna("None")
```

```
# Null value likely means No Garage, so fill as "None" (since these are categorical features)
             for col in ('GarageType', 'GarageFinish', 'GarageQual', 'GarageCond'):
                 df[col] = df[col].fillna('None')
             # Null value likely means No Garage and no cars in garage, so fill as 0
             for col in ('GarageYrBlt', 'GarageArea', 'GarageCars'):
                 df[col] = df[col].fillna(0)
             # Null value likely means No Basement, so fill as 0
             for col in ('BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath'):
                 df[col] = df[col].fillna(0)
             # Null value likely means No Basement, so fill as "None" (since these are categorical features)
             for col in ('BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2'):
                 df[col] = df[col].fillna('None')
             return df
In [37]: df train = missing(df train)
         df test = missing(df test)
In [38]: # calculate total number of null values in training data
         null train = df train.isnull().sum().sum()
         print(null_train)
         # calculate total number of null values in test data
         null_test = df_test.isnull().sum().sum()
         print(null test)
         0
         0
In [39]: df_train.shape,df_test.shape
Out[39]: ((1455, 75), (1459, 75))
```

```
In [40]: def add new cols(df):
             df['Total SF'] = df['TotalBsmtSF'] + df['1stFlrSF'] + df['2ndFlrSF']
             df['Total_Bathrooms'] = (df['FullBath'] + (0.5 * df['HalfBath']) + df['BsmtFullBath']
                                      + (0.5 * df['BsmtHalfBath']))
             df['Total_Porch_SF'] = (df['OpenPorchSF'] + df['3SsnPorch'] + df['EnclosedPorch'] +
                                     df['ScreenPorch'] + df['WoodDeckSF'])
             df['Total Square Feet'] = (df['BsmtFinSF1'] + df['BsmtFinSF2'] + df['1stFlrSF'] + df['2ndFlrSF'])
             df['Total Quality'] = df['OverallQual'] + df['OverallCond']
             return df
In [41]: # add the new columns
         df train = add_new_cols(df_train)
         df test = add new cols(df test)
In [42]: df_train.shape,df_test.shape
Out[42]: ((1455, 80), (1459, 80))
```

Check data types

```
In [43]: #training data
g1 = df_train.columns.to_series().groupby(df_train.dtypes).groups
```

```
In [44]: {k.name: v for k, v in g1.items()}
Out[44]: {'int64': Index(['MSSubClass', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt',
                  'YearRemodAdd', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF',
                  '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath',
                  'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr',
                  'TotRmsAbvGrd', 'Fireplaces', 'GarageCars', 'GarageArea', 'WoodDeckSF',
                  'OpenPorchSF', 'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea',
                  'MiscVal', 'MoSold', 'YrSold', 'Total SF', 'Total Porch SF',
                 'Total Square Feet', 'Total Quality'],
                dtvpe='object').
           'float64': Index(['LotFrontage', 'MasVnrArea', 'GarageYrBlt', 'Total Bathrooms'], dtype='object'),
           'object': Index(['MSZoning', 'Street', 'LotShape', 'LandContour', 'LotConfig',
                  'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
                  'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd',
                  'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
                  'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating',
                  'HeatingOC', 'CentralAir', 'Electrical', 'KitchenQual', 'Functional',
                 'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond',
                 'PavedDrive', 'Fence', 'SaleType', 'SaleCondition'],
                dtvpe='object')}
In [45]: #testing data
         g2 = df test.columns.to series().groupby(df test.dtypes).groups
```

```
In [46]: {k.name: v for k, v in g2.items()}
Out[46]: {'int64': Index(['MSSubClass', 'LotArea', 'OverallQual', 'OverallCond', 'YearBuilt',
                  'YearRemodAdd', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea',
                  'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr', 'TotRmsAbvGrd'.
                  'Fireplaces', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
                  'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold',
                  'Total Porch SF', 'Total Quality'],
                dtype='object'),
           'float64': Index(['LotFrontage', 'MasVnrArea', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF',
                  'TotalBsmtSF', 'BsmtFullBath', 'BsmtHalfBath', 'GarageYrBlt',
                  'GarageCars', 'GarageArea', 'Total SF', 'Total Bathrooms',
                  'Total Square Feet'],
                dtype='object'),
           'object': Index(['MSZoning', 'Street', 'LotShape', 'LandContour', 'LotConfig',
                  'LandSlope', 'Neighborhood', 'Condition1', 'Condition2', 'BldgType',
                  'HouseStyle', 'RoofStyle', 'RoofMatl', 'Exterior1st', 'Exterior2nd',
                  'MasVnrType', 'ExterQual', 'ExterCond', 'Foundation', 'BsmtQual',
                  'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtFinType2', 'Heating',
                  'HeatingOC', 'CentralAir', 'Electrical', 'KitchenQual', 'Functional',
                  'FireplaceQu', 'GarageType', 'GarageFinish', 'GarageQual', 'GarageCond',
                  'PavedDrive', 'Fence', 'SaleType', 'SaleCondition'],
                dtype='object')}
In [47]: #get dummy values for categorical data
         df train = pd.get dummies(df train)
         df test = pd.get dummies(df test)
         print(df train.shape)
         print(df test.shape)
         (1455, 292)
         (1459, 278)
In [48]: #align the training and testing data
         df train, df test = df train.align(df test, join = 'inner', axis=1)
```

In [51]: df_train.head(5)

Out[51]:

•		MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFinSF1	BsmtFinSF2	 SaleType_C
	0	60	65.0	8450	7	5	2003	2003	196.0	706	0	 _
	1	20	80.0	9600	6	8	1976	1976	0.0	978	0	
	2	60	68.0	11250	7	5	2001	2002	162.0	486	0	
	3	70	60.0	9550	7	5	1915	1970	0.0	216	0	
	4	60	84.0	14260	8	5	2000	2000	350.0	655	0	

5 rows × 278 columns

<

```
Out[52]:
             MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 ... SaleType C
                                                                                                                        144.0 ...
                      20
                                                                        1961
           0
                                0.08
                                       11622
                                                      5
                                                                 6
                                                                                      1961
                                                                                                   0.0
                                                                                                             468.0
                      20
                                81.0
                                       14267
                                                      6
                                                                 6
                                                                        1958
                                                                                                 108.0
                                                                                                             923.0
                                                                                                                          0.0 ...
                                                                                      1958
                                       13830
                                                                        1997
                                                                                                                          0.0 ...
           2
                      60
                                74.0
                                                      5
                                                                 5
                                                                                      1998
                                                                                                   0.0
                                                                                                             791.0
                      60
                                78.0
                                        9978
                                                                 6
                                                                        1998
                                                                                      1998
                                                                                                  20.0
                                                                                                             602.0
                                                                                                                          0.0 ...
           3
                     120
                                43.0
                                        5005
                                                      8
                                                                 5
                                                                        1992
                                                                                      1992
                                                                                                   0.0
                                                                                                             263.0
                                                                                                                          0.0 ...
          5 rows × 278 columns
                                                                                                                                          >
In [53]: df train.info()
          <class 'pandas.core.frame.DataFrame'>
          Int64Index: 1455 entries, 0 to 1459
          Columns: 278 entries, MSSubClass to SaleCondition_Partial
          dtypes: float64(4), int64(37), uint8(237)
          memory usage: 854.2 KB
In [54]: X_test = df_test
                                       # testing features
In [56]: |df_train["SalePrice"] = train_label
```

In [52]: df_test.head(5)

```
In [58]: df train.head()
Out[58]:
             MSSubClass LotFrontage LotArea OverallQual OverallCond YearBuilt YearRemodAdd MasVnrArea BsmtFinSF1 BsmtFinSF2 ... SaleType N
                     60
          0
                               65.0
                                       8450
                                                               5
                                                                      2003
                                                                                   2003
                                                                                               196.0
                                                                                                           706
                                                                                                                        0 ...
                                                    6
                                                                                                0.0
                                                                                                                        0 ...
          1
                     20
                               0.08
                                      9600
                                                               8
                                                                      1976
                                                                                   1976
                                                                                                           978
                                                                                                                        0 ...
          2
                     60
                               68.0
                                      11250
                                                    7
                                                               5
                                                                      2001
                                                                                   2002
                                                                                              162.0
                                                                                                           486
                     70
                               60.0
                                      9550
                                                               5
                                                                      1915
                                                                                   1970
                                                                                                0.0
                                                                                                           216
                                                                                                                        0 ...
          3
                     60
                                                    8
                                                               5
                                                                      2000
                                                                                                                        0 ...
                               84.0
                                      14260
                                                                                   2000
                                                                                              350.0
                                                                                                           655
          5 rows × 279 columns
                                                                                                                                     >
In [59]: train set, valid_set = train_test_split(df_train,train_size= 0.7, shuffle=False)
         X train = train set.drop(["SalePrice"], axis=1) # training features
         y train = train set["SalePrice"].copy()
                                                                # training label
         X valid = valid set.drop(["SalePrice"], axis=1) # testing features
         y valid = valid set["SalePrice"].copy()
                                                                  # testing label
In [60]: print("X train shape: {}".format(X train.shape))
         print("y train shape: {}".format(y train.shape))
          print()
         print("X_valid shape: {}".format(X_valid.shape))
         print("y valid shape: {}".format(y valid.shape))
         print()
         print("X test shape: {}".format(X_test.shape))
         X train shape: (1018, 278)
         y train shape: (1018,)
         X valid shape: (437, 278)
         y valid shape: (437,)
          X test shape: (1459, 278)
```

Check data type and null values

```
In [61]: X train.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 1018 entries, 0 to 1020
         Columns: 278 entries, MSSubClass to SaleCondition Partial
         dtypes: float64(4), int64(37), uint8(237)
         memory usage: 569.6 KB
In [62]: X_valid.info()
         <class 'pandas.core.frame.DataFrame'>
         Int64Index: 437 entries, 1021 to 1459
         Columns: 278 entries, MSSubClass to SaleCondition_Partial
         dtypes: float64(4), int64(37), uint8(237)
         memory usage: 244.5 KB
In [63]: y_train
Out[63]: 0
                 12.247694
                 12.109011
         1
         2
                 12.317167
         3
                 11.849398
                 12.429216
                   . . .
         1016
                 12.271345
         1017
                 12.078239
         1018
                 12.175613
                 11.373663
         1019
                 12.160029
         1020
         Name: SalePrice, Length: 1018, dtype: float64
```

```
In [64]: y_valid
Out[64]: 1021
                 12.567237
         1022
                 11.630709
         1023
                 12.028739
         1024
                 12.588191
         1025
                 11.561716
                    . . .
         1455
                       NaN
         1456
                       NaN
         1457
                       NaN
         1458
                       NaN
         1459
                       NaN
         Name: SalePrice, Length: 437, dtype: float64
In [65]: null_t_x = X_train.isnull().sum().sum()
         print(null_t_x)
         null_t_y = y_train.isnull().sum().sum()
         print(null_t_y)
In [66]: null_v_x = X_valid.isnull().sum().sum()
         print(null_v_x)
         null_v_y = y_valid.isnull().sum().sum()
         print(null_v_y)
         0
         5
           • No null values in X valid
```

• There are 5 null values in y valid

```
In [67]: np.where(np.isnan(y_valid))
Out[67]: (array([432, 433, 434, 435, 436], dtype=int64),)
In [68]: # replace null values by mean value of y_valid column
         mean = np.nanmean(y valid)
         y_valid = np.nan_to_num(y_valid,nan = mean)
In [69]: #check again
         np.where(np.isnan(y_valid))
Out[69]: (array([], dtype=int64),)
In [70]: y_valid.dtype
Out[70]: dtype('float64')
In [71]: print("Valid data shape:")
         print(X_valid.shape, y_valid.shape)
         print()
         Valid data shape:
         (437, 278) (437,)
```

------ 3. SET CROSS VALIDATION AND RMSE ------- 3.

Cross Validation

- done to avoid underfitting/overfitting of data and to get a better understanging of how good our models are performing
- split data into k subsets, and train on k-1 of those subset, leaving one for testing
- performing 10-fold cross validation for each model#

```
In [72]: # calculating cross validation score with scoring set to negative mean absolute error
def cross_validation(model):
    scores = np.sqrt(-cross_val_score(model, X_train, y_train, cv = 12, scoring = "neg_mean_squared_error"))
    mean = np.mean(scores)
    print("Mean CV score: ",mean)
```

RMSE

```
In [73]: # function to calculate Root mean square error (RMSE)
def rmse(y_pred, y_train):
    rmse_ = np.sqrt(metrics.mean_squared_error(y_pred,y_train))
    print("rmse: ", rmse_)
```

Plot Label

```
In [74]: # function to plot actual vs predicited label
def actual_vs_pred_plot(y_train,y_pred):
    fig = plt.figure(figsize=(12,12))
    fig, ax = plt.subplots()

ax.scatter(y_train, y_pred,color = "teal",edgecolor = 'lightblue')
ax.plot([y_train.min(),y_train.max()], [y_train.min(), y_train.max()], 'k--',lw=0.2)
ax.set_xlabel('Actual')
ax.set_ylabel('Predicted')
plt.suptitle("Actual vs Predicted Scatter Plot",size=14)
plt.show()
```

MODELS

1. LINEAR REGRESSION MODEL

• Linear Regression is the first model used. In this model, the target value is expected to be a linear combination of the features. The coefficients are set to minimize the residual sum of squares between the target predicted and the observed features

```
In [139]: reg = linear_model.LinearRegression()
In [140]: cross_validation(reg)
Mean CV score: 0.4752199075347933
```

```
In [141]: #fit on training
model_reg = reg.fit(X_train, y_train)

#predict value of sale price on the training set
y1_pred = reg.predict(X_train)

#caculate root mean square error
rmse(y1_pred,y_train)
```

In [142]: #predict value of sale price on the validation set y1_pred_v = reg.predict(X_valid) #caculate root mean square error rmse(y1_pred_v, y_valid)

rmse: 0.42793480397157035

In [143]: #plot
 actual_vs_pred_plot(y_valid,y1_pred_v)

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

2. RIDGE MODEL

• The second model used is Ridge Regression. Ridge Regression is a regularized version of linear regression. The parameter alpha is used to regularize the model. For alpha equal to zero, ridge regression is just a linear regression. RidgeCV model is used to implement ridge regression as it has a built-in cross validation of the alpha parameter. Sixteen different values of alpha between 7e-4 and 20 were used with a 10-fold cross validation. A pipeline using min-max scaler was built to apply to training, validation and testing data.

```
In [144]: # to find the best value of alphas from this list, i will use RidgeCV
          alphas = [ 7e-4, 5e-4, 3e-4, 1e-4, 1e-3, 5e-2, 1e-2, 0.1, 0.3, 1, 3, 5, 10, 15, 18, 20 ]
          # use robust scaler as unlike other scalers, the centering and scaling of ro bust scaler
          #is based on percentiles and are therefore is not influenced by a few number of very large marginal outliers.
          ridge = make_pipeline(MinMaxScaler(), linear model.RidgeCV(alphas = alphas . cv = 10))
In [145]: | cross_validation(ridge)
          Mean CV score: 0.41672707496259215
In [146]: #fit
          model_ridge = ridge.fit(X_train, y_train)
          #predict value of sale price on the training set
          y2_pred = ridge.predict(X_train)
          #caculate root mean square error
          rmse(y2 pred,y train)
          rmse: 0.36727237018186476
In [147]: #predict value of sale price on the valid set
          y2 pred v = ridge.predict(X valid)
          #caculate root mean square error
```

rmse(y2 pred v, y valid)

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

3. LASSO MODEL

• Lasso regression is also a regularized version of linear regression. Lasso regression automatically performs feature selection and can estimates sparse coefficients. LassoCV model was used to implement lasso regression as it has a built-in cross validation of the alpha parameter. Different values of alpha were set with a 10-fold cross validation. Robust scaler was used in a pipeline to scale the training, validation and testing data.

```
In [149]: # to find the best value of alphas from this list, i will use LassoCV
          alpha2 = [0.0001, 0.0002, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008]
          #use robust scaler so that predictions are not influenced by a few number of very large marginal outliers
          lasso = make pipeline(RobustScaler(), linear model.LassoCV(alphas = alpha2, random state=42,cv=12,max iter=2000))
In [150]: cross_validation(lasso)
          Mean CV score: 0.4297643272515321
In [151]: #fit
          model lasso = lasso.fit(X train, y train)
          #predict value of quality on the training set
          y3 pred = lasso.predict(X train)
          #caculate root mean square error
          rmse(y3 pred,y train)
          rmse: 0.36267996691815335
In [152]: #predict value of sale price on the validation set
          y3 pred v = lasso.predict(X valid)
          #caculate root mean square error
          rmse(y3_pred_v, y_valid)
```

In [153]: actual_vs_pred_plot(y_valid,y3_pred_v)

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

4. K-NEAREST NEIGHBOUR REGRESSION MODEL

• K -nearest neighbour regressor is another popular model for regression tasks. It is a simple supervised machine learning model. The numbers of neighbours were set to three different values and the performance of this model was noted. Weights were set to uniform to assign equal weights to all points in each neighbourhood. The algorithm used was set to auto so that the best performing algorithm on the values was used. The leaf size was set to 25.

```
In [154]: from sklearn.neighbors import KNeighborsRegressor
          # N = 5 #
          neigh = KNeighborsRegressor(n_neighbors = 5,
                                      weights = 'uniform',
                                      algorithm = 'auto',
                                      leaf_size=25)
          neigh.fit(X_train,y_train)
          #predict value of sale price on the training set
          y4_pred = neigh.predict(X_train)
          #caculate root mean square error
          rmse(y4_pred,y_train)
          rmse: 0.34885424380933583
In [155]: \# N = 7 \#
          neigh1 = KNeighborsRegressor(n_neighbors = 7,
                                       weights = 'uniform',
                                       leaf_size=25)
          neigh1.fit(X_train,y_train)
          #predict value of quality on the training set
          y_pred = neigh1.predict(X_train)
          #caculate root mean square error
          rmse(y_pred,y_train)
```

Note: rmse increases when values of k(no. of neighbours) increase

In [159]: actual_vs_pred_plot(y_valid,y4_pred_v)

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

5. DECISION TREE MODEL

• Decision tree model is also used to fit this data as it does not require much data cleaning and is not influenced by outliers. Decision trees can, unlike linear models, fit linearly inseparable datasets. The values of minimum leaves were set between 1 to 9 because a very small number of minimum leaves can cause overfitting whereas a large number of minimum leaves will prevent the tree from learning. Maximum depth of 7 and 9 were used to fit the data for predictions.

In [113]: from sklearn import tree

```
In [114]: # set max depth to 5
          tree regr1 = tree.DecisionTreeRegressor(max depth = 7, min samples leaf=5,random state=42)
          # set max depth to 9
          tree regr2 = tree.DecisionTreeRegressor(max depth = 9,min samples leaf=9,random state=42)
          #fit the traning data to a decision tree model
          tree regr11 = tree regr1.fit(X train,y train)
          tree regr12 = tree regr2.fit(X train,y train)
          #predict value of sale price on the training set
          y1 = tree regr1.predict(X train)
          y2 = tree regr2.predict(X train)
In [115]: cross_validation(tree_regr1)
          cross validation(tree regr2)
          Mean CV score: 0.4440722344760503
          Mean CV score: 0.45825272349446555
In [116]: #caculate root mean square error
          rmse(y1,y_train)
          rmse: 0.3238501847516405
In [117]: rmse(y2,y_train)
          rmse: 0.319434991726199
In [118]: #predict value of sale price on the validation set
          y5 pred v = tree regr2.predict(X valid)
          #caculate root mean square error
          rmse(y5 pred v, y valid)
          rmse: 0.4583579345988703
```

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

6. Random Forest MODEL

• Random forest model is an ensemble method based on randomized decision trees. Grid search was used to select the best parameters with a 5-fold cross validation. The number of trees in the forest was set to 200 with a maximum depth of 5 and 3 minimum leaves.

In [134]: rforest = RandomForestRegressor(n_estimators=200,max_depth=13,random_state=42)

```
In [146]: # grid search to find best value of C, gamma and epsilon
          param grid = {'n estimators': [100,150,200,250,300,350,400],
                         'max depth': [5,7,9,11,13,15,17],
                         'min samples leaf': [3,5,7,9,11,13,15]}
          # set cross validation to 5
          clf = GridSearchCV(rforest, param_grid, cv = 5, n_jobs = -2)
          clf.fit(X train,y train)
Out[146]: GridSearchCV(cv=5,
                       estimator=RandomForestRegressor(max_depth=7, min_samples_leaf=5,
                                                       n estimators=250,
                                                       random state=42),
                       n jobs=-2,
                       param_grid={'max_depth': [5, 7, 9, 11, 13, 15, 17],
                                   'min samples leaf': [3, 5, 7, 9, 11, 13, 15],
                                   'n estimators': [100, 150, 200, 250, 300, 350, 400]})
In [147]: clf.best params
Out[147]: {'max depth': 5, 'min samples leaf': 3, 'n estimators': 200}
In [135]: rforest = RandomForestRegressor(n_estimators=, max_depth=5, min_samples_leaf=3, random_state=42)
In [155]: cross validation(rforest)
          Mean CV score: 0.403804172243945
In [156]: #fit
          model_rforest = rforest.fit(X_train, y_train)
          #predict value of sale price on the training set
          y6 pred = rforest.predict(X train)
          #caculate root mean square error
          rmse(y6_pred,y_train)
```

```
In [157]: #predict value of sale price on the validation set
y6_pred_v = rforest.predict(X_valid)

#caculate root mean square error
rmse(y6_pred_v, y_valid)
```

In [158]: #0: 0.38852359192540425 #1: 0.38616747296757176

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

7. Support Vector Regressor MODEL

• Support vector regressor is another powerful model. It is memory efficient and offers different kernels to choose from. Grid search was used to find the best value of the hyperparameters C. gamma and epsilon. The sigmoid kernel was used along with the default value of epsilon.

```
In [75]: svr basic = SVR(C = 10, gamma = 0.001)
In [114]: # grid search to find best value of C, gamma and epsilon and default kernel 'rbf'
          param grid = {'C': [5,7,10,15,20,30], 'gamma': [0.001, 0.0001, 0.0011, 0.00011], 'epsilon': [0.1, 0.01, 0.001, 0.005, 0.005]
          # set cross validation to 5
          clf = GridSearchCV(svr basic, param grid, cv = 10, n jobs = -2)
          clf.fit(X train,y train)
Out[114]: GridSearchCV(cv=10, estimator=SVR(C=10, gamma=0.001), n jobs=-2,
                       param_grid={'C': [5, 7, 10, 15, 20, 30],
                                    'epsilon': [0.1, 0.01, 0.001, 0.005, 0.007, 0.008,
                                                0.0091.
                                    'gamma': [0.001, 0.0001, 0.0011, 0.00011]})
In [115]: clf.best params
Out[115]: {'C': 5, 'epsilon': 0.1, 'gamma': 0.0011}
In [116]: #make final SVR model with best parameters found from grid search
          svr = make pipeline(MinMaxScaler(), SVR(C= 5, epsilon= 0.1, gamma=0.0011, kernel = "sigmoid"))
In [117]: cross_validation(svr)
          Mean CV score: 0.40963206887105647
```

```
In [118]: #fit
          model_svr = svr.fit(X_train, y_train)
          #predict value of sale price on the training set
          y7_pred = svr.predict(X_train)
          #caculate root mean square error
          rmse(y7_pred,y_train)
          rmse: 0.38245878515315423
In [119]: #predict value of sale price on the validation set
          y7_pred_v = svr.predict(X_valid)
          #caculate root mean square error
          rmse(y7_pred_v, y_valid)
          rmse: 0.3900469727418305
In [113]: # Linear - 0.4338387095039476
          # Sigmoid - 0.3900469727418305
          # With sigmoid as default kernel - 0.39670545624904924
          # rbf - 0.39420253052849114
```

In [120]: actual_vs_pred_plot(y_valid, y7_pred_v)

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

8. Gradient Boosting Regressor MODEL

• Gradient boosting regression is an ensemble of weak prediction models. Two gradient boosting models with different depths were evaluated. The loss was set to 'huber' which is a combination of least square regression and a highly robust loss function.

```
In [122]: # set max depth to 7, min_samples_leaf to 10
          gbr2 = GradientBoostingRegressor(n estimators=200, learning rate=0.05, max depth = 9,
                                          min samples leaf=10, loss='huber', random state =42)
In [123]: cross validation(gbr1)
          cross validation(gbr2)
          Mean CV score: 0.4287974195276836
          Mean CV score: 0.4292489907640939
In [124]: #fit
          model gbr1 = gbr1.fit(X_train, y_train)
          model gbr2 = gbr2.fit(X train, y train)
          #predict value of sale price on the training set
          y g1 pred = gbr1.predict(X train)
          y_g2_pred = gbr2.predict(X_train)
          #caculate root mean square error
          rmse(y g1 pred,y train)
          rmse(y_g2_pred,y_train)
          rmse: 0.15045439854847656
          rmse: 0.13917493901563793
            • model gbr2 performs best
In [125]: #predict value of sale price on the validation set
          y8_pred_v = gbr2.predict(X_valid)
          #caculate root mean square error
          rmse(y8_pred_v, y_valid)
```

```
In [126]: # plot for gbr2
actual_vs_pred_plot(y_valid, y8_pred_v)
```

<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

9. STACKED REGRESSOR MODEL

• The final model used is the stacked regressor model. Stacking allows the power of each individual estimator to be used by using their output as a final estimator input. Random forest, Support vector regressor, K -nearest neighbour regressor and ridge regressor were stacked with random forest as the final estimator.

```
In [160]: # using Random Forest, Support Vector Regressor and Gradient Boosting to build a stack model because they have lower RMS
          estimators = [('Random Forest', rforest),
                        ("Support Vector Regressor", svr),
                        ("K", neigh),
                        ("Ridge", ridge)
In [161]: stacked = StackingRegressor(estimators = estimators, final estimator = rforest, cv=5)
In [162]: cross_validation(stacked)
          Mean CV score: 0.4093903027876036
In [163]: |#fit
          model_stack = stacked.fit(X_train, y_train)
          #predict value of sale price on the training set
          y9 pred = stacked.predict(X train)
          #caculate root mean square error
          rmse(y9_pred,y_train)
          rmse: 0.40380119116088625
In [164]: #predict value of sale price on the validation set
          y9_pred_v = stacked.predict(X_valid)
          #caculate root mean square error
          rmse(y9_pred_v, y_valid)
```


<Figure size 864x864 with 0 Axes>

Actual vs Predicted Scatter Plot

Observations

RMSE:

• linear reg : 0.42793480397157035

ridge: 0.3957886167433282lasso: 0.4059493256188701

• k-nearest neighbour(k=5) : 0.41351487769327555

• decision tree(maxdepth=9): 0.4583579345988703

• random forest: 0.38616747296757176

- Support Vector Regressor: 0.3900469727418305
- Gradient Boosting Regressor: 0.4118219430457788
- Stacked Regressor model: 0.3769718491202983

How errors compare:

- The lowest error is of: Stacked Regressor model
- The largest error is of : decision tree(maxdepth=9)
- Therefore Stacked Regressor model will be applied to the test data as it is the best performing model


```
In [172]: #undo the log tranformation to get predictions in terms of original label
          predictions = np.expm1(y_final_pred)
          print(predictions)
          [155456.39222118 207088.84134974 167354.09213307 ... 181869.0069438
           133953.74714746 162873.51239215]
In [173]: submit = pd.DataFrame()
          submit['Id'] = test ID
          submit['SalePrice'] = predictions
          submit.to csv('submission.csv',index=False)
In [174]: submit
Out[174]:
                   ld
                          SalePrice
              0 1461 155456.392221
              1 1462 207088.841350
              2 1463 167354.092133
              3 1464 181226.365422
              4 1465 157800.657188
           1454 2915 170084.706175
           1455 2916 166670.224702
           1456 2917 181869.006944
           1457 2918 133953.747147
           1458 2919 162873.512392
          1459 rows × 2 columns
```