

IN THE SPECIFICATION:

Please insert the following new paragraph after the Title and before the first paragraph on page 1:

-- This application is the U.S. National Phase under 35 U.S.C. § 371 of International Application No. PCT/JP05/000559, filed January 19, 2005, which in turn claims the benefit of Japanese Application No. 2004-013107, filed January 21, 2004, the disclosures of which Applications are incorporated by reference herein in their entirety. --

Please replace the paragraph beginning on page 9, line 5 and ending on page 9, line 21 with the following:

In order to solve the above-mentioned problems, a fuel cell system according to the present invention includes: a fuel cell; fuel gas supply means for supplying a fuel gas to an anode of the fuel cell; oxidant gas supply means for supplying an oxidant gas to a cathode of the fuel cell; inert gas supply means for supplying an inert gas to the anode and/or cathode of the fuel cell; and means for measuring a pressure P_a in an inlet-side flow path leading to the anode of the fuel cell and a pressure P_c in an inlet-side flow path leading to the cathode. The fuel cell is subjected to a purge operation of replacing the fuel gas and/or oxidant gas in the fuel cell with the inert gas supplied from the inert gas supply means when the fuel cell is started up or shut-down. The fuel cell system further includes control means for increasing or decreasing the amount of the inert gas supplied to the fuel cell based on the values of P_a and P_c during the purge operation of the fuel cell. The differential pressure ΔP is defined as $P = P_a - P_c$, and the

during operation ΔP_o and the differential pressure during the purge operation ΔP_p satisfy the relation relations: $0 < \Delta P_o \times \Delta P_p$ and $|\Delta P_p| \leq |\Delta P_o|$.

Please delete the paragraph beginning on page 9, line 23 and ending on page 9, line 24 and replace it with the following paragraph:

~~Preferably, ΔP_o and ΔP_p satisfy $|\Delta P_p| \leq |\Delta P_o|$. Preferably, $\Delta P_o = \Delta P_p$.~~

According to the present invention, since the relation between ΔP_o and ΔP_p can be controlled favorably, it is possible to prevent this relation from becoming $\Delta P_o \times \Delta P_p < 0$ even temporarily.

Please delete the paragraph beginning on page 9, line 25 and ending on page 10, line 7 and replace it with the following paragraph:

~~In a preferable embodiment of the present invention, the system includes means for increasing or decreasing the amount of the inert gas supplied to the fuel cell based on the values of P_a and P_c during the purge operation of the fuel cell. According to this embodiment, since the relation between ΔP_o and ΔP_p can be controlled favorably, it is possible to prevent this relation from becoming $\Delta P_o \times \Delta P_p < 0$ even temporarily.~~

It is preferred that ΔP_o and ΔP_p satisfy the relation: $\Delta P_o = \Delta P_p$.