distribution	pmf and domain	$\mod E(X)$	nean $E(X)$ variance $var(X)$	
Bernoulli(p)	$p(x) = p^{x}(1-p)^{1-x}, \ x = 0, 1$	p	p(1-p)	$1 - p + pe^s$
Binomial(n,p)	$p(x) = \binom{n}{x} p^x (1-p)^{n-x}, \ x = 0, 1, \dots, n$	np	np(1-p)	$(1 - p + pe^s)^n$
$Poisson(\lambda)$	$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}, \ x = 0, 1, 2, \dots$	λ	λ	$e^{\lambda(e^s-1)}$
Geometric(p)	$p(x) = p(1-p)^{x-1}, x = 1, 2, 3, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^s}{1-(1-p)e^s}$
Neg.bin(r,p)	$p(x) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r},$ $x = r, r+1, r+2, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left(\frac{pe^s}{1-(1-p)e^s}\right)^T$
Hyp.geom(n,M,N)	$p(x) = \frac{\binom{M}{x} \binom{N-M}{n-x}}{\binom{N}{n}}, \ x = 0, 1, \dots, n$ $x \le M, \ n - x \le N - M$	$rac{nM}{N}$	$\frac{nM}{N}(1-\frac{M}{N})(\frac{N-n}{N-1})$	

distribution	pdf and domain	mean $E(X)$	variance $var(X)$	$\operatorname{mgf} M(s)$
uniform(a,b)	$f(x) = \frac{1}{b-a}, \ a < x < b$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{sb}-e^{sa}}{b-a}$
$exp(\lambda)$	$f(x) = \lambda e^{-\lambda x}, \ x > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$(1-\frac{s}{\lambda})^{-1}$
Gamma(lpha,eta)	$f(x) = \frac{x^{\alpha - 1}e^{-x/\beta}}{\beta^{\alpha}\Gamma(\alpha)}, \ x > 0$	lphaeta	$lphaeta^2$	$(1-\beta s)^{-\alpha}$
$Normal(\mu,\sigma^2)$	$f(x) = \frac{e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}}{\sqrt{2\pi\sigma^2}}, -\infty < x < \infty$	μ	σ^2	$e^{\mu s + \frac{\sigma^2 s^2}{2}}$
chi – square with ν d.f. χ^2_{ν}	$f(x) = \frac{x^{\frac{\nu}{2} - 1}e^{-x/2}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}, \ x > 0$	ν	2ν	$(1-2s)^{-\frac{\nu}{2}}$
Beta(lpha,eta)	$f(x) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha-1} (1-x)^{\beta-1}, \ 0 < x < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	

Euler Gamma function: for $\alpha > 0$, $\Gamma(\alpha) = \int_0^\infty u^{\alpha-1} e^{-u} du$.

Some properties of the Euler Gamma function:

- 1. If n > 0 is an integer, then $\Gamma(n) = (n-1)!$
- 2. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$ 3. (Reduction property) If x > 1, then $\Gamma(x) = (x-1)\Gamma(x-1)$

	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	a5714	5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	6950	.6985	.7019	.7054	.7088	.7123	.7157	7190	.7224
0.6	7257	7291	.7324	7357	.7389	.7422	.7454	.7486	7517	.7549
0.7	.7580	<u> </u>	.7642	.7673	7704	.7734	.7764	.7794	7823	.7852
0.8	7881	7910	.7939	7967	7995	.8023	.8051	.8078	8106	.8133
0.9	.8159	8186	.8212	8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	-8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	-8925	.8944	.8962	.8980	8997	.9015
1.3	.9032	.9049	.9066	.9082	,9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	,9616	.9625	.9633
1.8	.9641	9649	.9656	9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	,9992	.9992	,9992	.9993	-9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	9996	.9996	.9997
3.4	.9997	.9997	.9997	.9997	.9997	9997	.9997	.9997	.9997	.9998
	ALC:									

The standard normal table. The entries in this table provide the numerical values of $\Phi(y) = \mathbf{P}(Y \leq y)$, where Y is a standard normal random variable, for y between 0 and 3.49. For example, to find $\Phi(1.71)$, we look at the row corresponding to 1.7 and the column corresponding to 0.01, so that $\Phi(1.71) = .9564$. When y is negative, the value of $\Phi(y)$ can be found using the formula $\Phi(y) = 1 - \Phi(-y)$.