University of Waterloo CO 454 — Scheduling Spring 2013 Problem Set 1 Siwei Yang - 20258568

1. [Problem 1: LCL rule]

• (a)

Applying LCL from the completion time of last job at time 4 + 8 + 12 + 7 + 6 + 9 + 9 = 55

Jobs 1 2 3 4 5 6 7
$$f_i(x)$$
 165 77 3025 82.5 $70 + \sqrt{55}$ 88 77

picking job 2 with minimum weight at the time at time 4 + 12 + 7 + 6 + 9 + 9 = 47

Jobs 1 3 4 5 6 7

$$f_i(x)$$
 141 2209 70.5 $70 + \sqrt{47}$ 75.2 65.8

picking job 7 with minimum weight at the time at time 4 + 12 + 7 + 6 + 9 = 38

Jobs 1 3 4 5 6
$$f_j(x)$$
 114 1444 57 $70 + \sqrt{38}$ 60.8

picking job 4 with minimum weight at the time at time 4 + 12 + 6 + 9 = 31

Jobs 1 3 5 6
$$f_j(x) 93 961 70 + \sqrt{31} 49.6$$

picking job 6 with minimum weight at the time at time 4 + 12 + 6 = 22

Jobs 1 3 5

$$f_j(x)$$
 66 484 $70 + \sqrt{22}$

picking job 1 with minimum weight at the time at time 12 + 6 = 18

$$\frac{\text{Jobs} \quad 3}{f_j(x) \quad 324 \quad 70 + \sqrt{18}}$$

picking job 5 with minimum weight at the time at time 12 = 12

$$\frac{\text{Jobs}}{f_i(x)} \frac{3}{144}$$

picking job 3 with minimum weight at the time thus, the schedule comes out as 3, 5, 1, 6, 4, 7, 2 with objective value 144

• (b)

At any step of the modified LCL rules, let l' be the job being scheduled. If $l' \notin L(J)$, then there is at least one job l such that $l' \to l$. In the final schedule being produced, we have job l scheduled before l' which violates the prec constraints. Thus, at each step, given l' is the job being scheduled, we have $l' \in L(J)$.

Assuming the minimum possible f_{max} at each step is v, referring to the proof we have in class, we always have the equation as we proceed with scheduling:

$$v \ge \min_{k \in L(J)} f_k(\sigma_{j \in J} p_j) \tag{1}$$

and let J' be any subset of J, we have $v \geq$ the minimum possible f_{max} from scheduling J'.

Thus, the modified LCL is making optimal decision at every step which means it's an optimal algorithm for the problem.

• (c)

Applying modified LCL from the completion time of last job at time 4+8+12+7+6+9+9=55

Jobs 1 2 3 4 5 6 7
$$f_i(x)$$
 165 77 3025 82.5 $70 + \sqrt{55}$ 88 77

where J = 2, 3, 4, 6. Picking job 2 with minimum weight at the time

at time
$$4 + 12 + 7 + 6 + 9 + 9 = 47$$

Jobs 1 3 4 5 6 7

$$f_i(x)$$
 141 2209 70.5 $70 + \sqrt{47}$ 75.2 65.8

where J = 3, 4, 6. Picking job 6 with minimum weight at the time at time 4 + 12 + 7 + 6 + 9 = 38

where J = 3, 4, 7. Picking job 7 with minimum weight at the time at time 4 + 12 + 7 + 6 = 29

Jobs 1 3 4 5
$$f_j(x)$$
 87 841 43.5 $70 + \sqrt{29}$

where J = 1, 3, 4. Picking job 4 with minimum weight at the time at time 4 + 12 + 6 = 22

Jobs 1 3 5
$$f_i(x)$$
 66 484 $70 + \sqrt{22}$

where $J=1,\,3,\,5$. Picking job 1 with minimum weight at the time at time 12+6=18

$$\frac{\text{Jobs} \quad 3}{f_j(x) \quad 324 \quad 70 + \sqrt{18}}$$

where $J=3,\,5.$ Picking job 5 with minimum weight at the time at time 12=12

$$\frac{\text{Jobs}}{f_i(x)} \frac{3}{144}$$

where J=3. Picking job 3 with minimum weight at the time thus, the schedule comes out as 3, 5, 1,4, 7, 6, 2 with objective value 144

2. [Problem 2: Running time analysis and O(.) notation]

• (a) Driven by the two loops, the inner statements will be executed $\frac{n*(n+1)}{2}$ times. And the three statements cost n+1 operations on average. Thus, the running time of this algorithm is bounded by $\Theta(n^3)$

```
• (b)

for i = 1, 2, ..., n do

initialize MAX, MIN = A[i]

for j = i, i + 1, ..., n do

Update MAX if A[j] i MAX

Update MIN if A[j] i MIN

Set B[i, j] = MAX - MIN.

end for

end for
```

This algorithm has the same bahavior as the previous one because for every i, j pair, MAX and MIN represents the max and min values from A[i], A[i+1] through A[j]. And B[i, j] is assigned to MAX - MIN for every i, j pair.

Driven by the two loops, the inner statements will be executed $\frac{n*(n+1)}{2}$ times. And the three statements cost 3 operations. Thus, the running time of this algorithm is bounded by $\Theta(n^2)$

- 3. [Problem 3: $1|prec|f_{max}$ and EDD rules for $1|r_i, pmtn|L_{max}$ and $1|r_i, pmtn, prec|L_{max}$]
 - (a)

Consider any schedule S for I, it's objective value v is obtained at:

$$v = \max_{j \in J} f_j(C_j) \tag{2}$$

And, use the same schedule S for I', it's objective value v' is obtained at:

$$v' = \max_{j \in J} f_j'(C_j) \tag{3}$$

For any pair of jobs J_m, J_n such that $J_m \to J_n$, if $f'_{J_m}(C_{J_m}) \le f'_{J_n}(C_{J_n})$ then have $J_m \in J'$. Then we easily have:

$$v' = \max_{j \in J} f'_{j}(C_{j}) = \max_{j \notin J'} f'_{j}(C_{j})$$
 (4)

By observing the definition of f's, we also know that $f'_j = f_j$ for $j \notin J'$ because any j such that $f'_j(t) = f'_{j'}(t + p_{j'})$ where j' is

dependent on j will have $f'_{j}(C_{j}) = f'_{j'}(C_{j} + p_{j'}) \leq f'_{j'}(C_{j'})$ which means $j \in J'$. This leads to:

$$v' = \max_{j \notin J'} f_j(C_j) \le \max_{j \in J} f_j(C_j) = v \tag{5}$$

On the other hand, we have:

$$v = \max_{j \in J} f_j(C_j) \le \max_{j \in J} f'_j(C_j) = v'$$
 (6)

since $f_j \leq f'_i$ for all j.

Therefore, v = v' and S have same object value for I and I' And now assume S is a schedule produced for I', let J_m, J_n be any pair of jobs such that $J_m \to J_n$ in I. If $C_{J_m} \ge C_{J_n}$, then we must have:

$$f'_{J_m}(C_{J_m}) \le f'_{J_n}(C_{J_m})$$
 (7)

However, since $f'_{Jm}(t) = \max f'_{J_m}(t)$, $f'_{J_n}(t+p_{J_n})$, $f'_{J_m}(t) > f'_{J_n}(t)$ which means equation 7 is not satisfable. Thus, we have $C_{J_m} < C_{J_n}$. Therefore, S is a schedule satisfy all precedence requirement from I. In other words, S is a feasible schedule for I;

• (b)
Follow the procedure defined in part (a) except the function definition part where we have:

$$d_j' = \min d_j', d_k' - p_k \tag{8}$$

- (c)
- (d)

4. [Problem 4: $1|r_j; pmtn|\Sigma_j w_j C_j$]

Consider the following instance where ϵ is a small positive number:

Job	release date	weight	processing time
1	0	1	2
2	1	$2 + \epsilon$	2
3	2	$2 + \epsilon$	1

The optimal schedule is to process the jobs in the sequence 1, 3, 2 where the end cost comes at:

$$2 * 1 + 3 * (2 + \epsilon) + 5 * (2 + \epsilon) \tag{9}$$

However, the schedule generated by WSRPT heuristic goes as: run job 1 from time 0 to 1; run job 2 to completion from time 1 to 3; run job 3 to completion from time 3 to 4; run job 1 from time 4 to 5 where the end cost comes at:

$$3 * (2 + \epsilon) + 4 * (2 + \epsilon) + 5 * 1 \tag{10}$$