КН, ФМИ, задачи за упражнение по УП

Задача 1. (*ЛАБИРИНТ*) Дадена е правоъгълна символна матрица A с размери $N \times M$, която представлява "лабиринт". Лабиринта се състои единствено от символите *, \$ и празната клетка.

- -* е лава, през която не може да се премине и върху която не може да се стъпи;
- \$ е съкровище;
- празната клетка е проходим път.

В лабиринта може да се движим само на север, на изток, на юг и на запад (забранено е диагонално движение като например североизток). Да се напише функция, която:

- а) проверява дали от дадена стартова позиция в лабиринта, с координати (x, y), може да се достигне до съкровище;
- б) намира броя на всички съкровища, до които може да се достигне от дадена стартова позиция с координати (x, y).

Пример: На фигурата по-долу съществува път до съкровище от позиция с координати (4,1), но не и от позиция с координати (0,0). Също така, броя на съкровищата, до които може да се достигне от позиция с координати (4,1) е 3, а от позиция с координати (2,0) е 1.

*	\$	*	*	
*		\$		
\$	*	*	*	
*				
		*	*	\$

автор: Трифон Трифонов

Задача 2. (вариации) Да се образуват всички n - мерни вектори с компоненти 0 и 1.

Например, при n=3 всички 3-мерни вектори с компоненти 0 и 1 са:

- (0,0,0)
- (0.0.1)
- (0.1.0)
- (0,1,1)
- (1,0,0)
- (1,0,1)
- (1,1,0)
- (1,1,1)

Задачата да се реши по два начина:

- а) с помощта на бинарни оператори и представянето на всяко число в двоична бройна система:
- б) без да се използват бинарни оператори.

Задача 3. (вариации без повторения) Нека n и k са дадени естествени числа $(n \le k)$. Да се напише програма, която намира всички вариации без повторение от елементите $0, 1, \ldots, k-1$ от n-ти клас.

За решаването на тази задача е необходимо в предходната задача с вариациите да се извършат следните промени:

- a) да се провери дали $(n \le k)$;
- б) да се изведат само онези n-орки, които се състоят от различни елементи. За целта ще използваме булевата функция bool diff(), Която проверява дали редицата от n естествени числа a_1, a_2, \ldots, a_n се състои от различни елементи.

Задача 4. (комбинации) Да се напише програма, която намира всички комбинации от елементите $0, 1, \ldots, k-1$ от n-ти клас $n \le k$.

Задача 5. (комбинаторни алгоритми) Да се напише програма, която намира всички nцифрени естествени числа (n е дадено естествено число).