Математическая статистика

Домашняя работа № 3

Оценки

Попов Юрий, СКБ-172

ОГЛАВЛЕНИЕ

Задание 3.1 Нахождение выборочного среднего и выборочной дисперсии	3
3.1.1 Геометрическое распределение	3
3.1.2 Экспоненциальное распределение	6
Задание 3.2 Построение доверительного интервала для выборочного среднего и выборочной дисперсии	9
3.2.1 Геометрическое распределение	9
3.2.2 Экспоненциальное распределение	9
Задание 3.3 Нахождение параметров распределений событий	11
3.3.1 Геометрическое распределение	
Оценка методом моментов	11
Оценка методом максимального правдоподобия	11 12
Полная достаточная статистика	12
3.3.2 Экспоненциальное распределение	12
Оценка методом моментов	12
Оценка максимальным правдоподобием	13
Несмещенность оценки	13
Эффективная оценка	14
Оптимальная оценка	15

Предисловие

Все графики, которые в дальнейшем будут вставлены в эту работу, были сконструированы с помощью различных библиотек, основные которые - это matplotlib и numpy в Jupyter Notebook

К работе приложены 2 основных файла: "Geom_Dz_3.ipynb"и "Expon_Dz_3.ipynb в которых указаны расчеты соотвественно геометрического и экспоненциального распределения

Все фотографии, использованные в работе лежат в папке fotos

Когда я начинал третье домашнее задание, обновленного файла с домашней работы еще не было(или я не знал о его существовании), поэтому номер 3.2 сделан из старого файла

Большая часть определений, которые представлены в этой работы взять с лекций нашего курса.

Также некоторые определения взяты из источника Г.И. Ивченко, Ю.И. Медведев "Ведение в математическую статистику"

Задание 3.1 Нахождение выборочного среднего и выборочной дисперсии

Выборочные моменты

Наиболее важными характеристиками случайной величины ξ являются ее моменты $\alpha_k = E\xi^k$, а также центральные моменты $\mu_k = E(\xi - \alpha_1)^k$ (когда они существуют). Их статическими аналогами, вычисляемыми по соответствующей выборке $X = (X_1, \dots, X_n)$, являются выборочные моменты соответственно обычные

$$\hat{\alpha}_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

и центральные

$$\hat{\mu}_k = \frac{1}{n} \sum_{i=1}^n (X_i - \hat{\alpha}_1)^k$$

Особенно важны моменты первого и второго порядков.

При k=1 величину $\hat{\alpha}_1$ называют выборочным средним и обозначают стандартным символом \bar{X} :

$$\bar{X} = \hat{\alpha}_1 = \frac{1}{n} \sum_{i=1}^n X_i$$

При k=2 величину $\hat{\mu}_2$ называют выборочной дисперсией и также обозначают стандартным символом $S^2=S^2(X)$:

$$S^{2} = \hat{\mu}_{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

3.1.1 Геометрическое распределение

Для каждой выборки из домашнего задания 2 посчитаем выборочное среднее и выборочную дисперсию. Для наглядности выведем вариационный ряд для объема 5 и 10 и посчитанные оба параметра.

Вариационный ряд выборки 1 объема 5:

Выборочное среднее этой выборки равно: 4.8 Выборочная дисперсия этой выборки равна: 25.0

Вариационный ряд выборки 2 объема 5:

Выборочное среднее этой выборки равно: 5.4 Выборочная дисперсия этой выборки равна: 14.2

Вариационный ряд выборки 3 объема 5:

Выборочное среднее этой выборки равно: 20.4 Выборочная дисперсия этой выборки равна: 377.2

Вариационный ряд выборки 4 объема 5:

Выборочное среднее этой выборки равно: 5.2 Выборочная дисперсия этой выборки равна: 13.08

Вариационный ряд выборки 5 объема 5:

Выборочное среднее этой выборки равно: 14.8 Выборочная дисперсия этой выборки равна: 51.4

$$n = 5$$

Вариационный ряд выборки 1 объема 10:

Выборочное среднее этой выборки равно: 9.9 Выборочная дисперсия этой выборки равна: 54.57

Вариационный ряд выборки 2 объема 10:

Выборочное среднее этой выборки равно: 20.4 Выборочная дисперсия этой выборки равна: 101.17

Вариационный ряд выборки 3 объема 10:

Выборочное среднее этой выборки равно: 10.4 Выборочная дисперсия этой выборки равна: 75.01

Вариационный ряд выборки 4 объема 10:

Выборочное среднее этой выборки равно: 13.2 Выборочная дисперсия этой выборки равна: 50.97

Вариационный ряд выборки 5 объема 10:

Выборочное среднее этой выборки равно: 27.0 Выборочная дисперсия этой выборки равна: 82.89

$$n = 10$$

```
Выборка 1 объема 100:
Выборочное среднее этой выборки равно: 48.62
Выборочная дисперсия этой выборки равна: 1726.57
Выборка 2 объема 100:
Выборочное среднее этой выборки равно: 33.3
Выборочная дисперсия этой выборки равна: 1566.81
Выборка 3 объема 100:
Выборочное среднее этой выборки равно: 44.52
Выборочная дисперсия этой выборки равна: 1540.57
Выборка 4 объема 100:
Выборочное среднее этой выборки равно: 64.24
Выборочная дисперсия этой выборки равна: 1604.11
Выборка 5 объема 100:
Выборочное среднее этой выборки равно: 42.12
Выборочная дисперсия этой выборки равна: 1658.47
                    n = 100
```

```
Выборка 1 объема 1000:
Выборочное среднее этой выборки равно: 142.901
Выборочная дисперсия этой выборки равна: 18071.18
Выборка 2 объема 1000:
Выборочное среднее этой выборки равно: 156.636
Выборочная дисперсия этой выборки равна: 18001.53
Выборочная дисперсия этой выборки равна: 18001.53
Выборочное среднее этой выборки равно: 131.48
Выборочная дисперсия этой выборки равна: 17941.4
Выборка 4 объема 1000:
Выборочная дисперсия этой выборки равна: 18000.1
Выборка 5 объема 1000:
Выборочное среднее этой выборки равно: 129.98
Выборочная дисперсия этой выборки равна: 18007.92
```

n = 1000

```
: # Для n = 10**5
M = make_vibor(10**5)
  final_func_2(M, 10**5)
  Выборка 1 объема 100000:
  Выборочное среднее этой выборки равно: 397.51218
  Выборочная дисперсия этой выборки равна: 151030.27
  Выборка 2 объема 100000:
  Выборочное среднее этой выборки равно: 437.08329
  Выборочная дисперсия этой выборки равна: 151019.46
  Выборка 3 объема 100000:
  Выборочное среднее этой выборки равно: 422.30579
  Выборочная дисперсия этой выборки равна: 151048.58
  Выборка 4 объема 100000:
  Выборочное среднее этой выборки равно: 478.38213
  Выборочная дисперсия этой выборки равна: 151041.75
  Выборка 5 объема 100000:
  Выборочное среднее этой выборки равно: 413.44772
  Выборочная дисперсия этой выборки равна: 151024.1
                     n = 100000
```

Свойства выборочного среднего

- Выборочное среднее несмещённая оценка теоретического среднего:
- Выборочное среднее сильно состоятельная оценка теоретического среднего:

- Выборочное среднее асимптотически нормальная оценка.
- Выборочное среднее из нормальной выборки эффективная оценка её среднего.

3.1.2 Экспоненциальное распределение

Для каждой выборки из домашнего задания 2 посчитаем выборочное среднее и выборочную дисперсию. Для наглядности выведем вариационный ряд для объема 5 и 10 и посчитанные оба параметра.

Вариационный ряд выборки 1 объема 5:

0.316 0.985 1.532 2.092 2.286 f 1 1 1 1 1 1

Выборочное среднее этой выборки равно: 1.442 Выборочная дисперсия этой выборки равна: 0.524

Вариационный ряд выборки 2 объема 5:

0.269 1.234 2.641 2.835 3.352 f 1 1 1 1 1 1

Выборочное среднее этой выборки равно: 2.066 Выборочная дисперсия этой выборки равна: 1.689

Вариационный ряд выборки 3 объема 5:

0.06 0.199 0.534 1.728 2.804 f 1 1 1 1 1

Выборочное среднее этой выборки равно: 1.065 Выборочная дисперсия этой выборки равна: 1.243

Вариационный ряд выборки 4 объема 5:

0.035 0.18 0.302 0.524 0.883 f 1 1 1 1 1 1

Выборочное среднее этой выборки равно: 0.385 Выборочная дисперсия этой выборки равна: 1.206

Вариационный ряд выборки 5 объема 5:

0.354 0.432 0.715 0.961 1.856

Выборочное среднее этой выборки равно: 0.864 Выборочная дисперсия этой выборки равна: 0.627

n = 5

Вариационный ряд выборки 1 объема 10:

Выборочное среднее этой выборки равно: 1.642 Выборочная дисперсия этой выборки равна: 3.0

Вариационный ряд выборки 2 объема 10:

0.069 0.313 0.341 0.43 0.768 0.825 1.756 2.278 2.303 2.769 f 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Выборочное среднее этой выборки равно: 1.185 Выборочная дисперсия этой выборки равна: 1.0

Вариационный ряд выборки 3 объема 10:

0.103 0.222 0.228 0.703 0.884 0.92 0.986 2.495 6.193 f 1 1 1 1 1 1 1 1 1 2 1

Выборочное среднее этой выборки равно: 1.273 Выборочная дисперсия этой выборки равна: 3.0

Вариационный ряд выборки 4 объема 10:

 0.063
 0.452
 0.492
 0.553
 0.773
 0.816
 1.391
 1.686
 1.863
 6.171

 f
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Выборочное среднее этой выборки равно: 1.426 Выборочная дисперсия этой выборки равна: 3.0

Вариационный ряд выборки 5 объема 10:

 0.041
 0.223
 0.257
 0.47
 0.573
 0.848
 0.882
 1.287
 1.576
 3.593

 f
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

Выборочное среднее этой выборки равно: 0.975 Выборочная дисперсия этой выборки равна: 1.0

n = 10

Выборка 1 объема 100: Выборочное среднее этой выборки равно: 1.161 Выборочная дисперсия этой выборки равна: 1.236 Выборка 1 объема 1000: Выборочное среднее этой выборки равно: 1.164 Выборка 2 объема 100: Выборочная дисперсия этой выборки равна: 1.598 Выборочное среднее этой выборки равно: 1.108 Выборка 2 объема 1000: Выборочная дисперсия этой выборки равна: 1.48 Выборочное среднее этой выборки равно: 1.122 Выборочная дисперсия этой выборки равна: 1.569 Выборка 3 объема 100: Выборочное среднее этой выборки равно: 1.113 Выборка 3 объема 1000: Выборочная дисперсия этой выборки равна: 1.596 Выборочное среднее этой выборки равно: 1.213 Выборочная дисперсия этой выборки равна: 1.853 Выборка 4 объема 100: Выборочное среднее этой выборки равно: 1.232 Выборка 4 объема 1000: Выборочная дисперсия этой выборки равна: 1.631 Выборочное среднее этой выборки равно: 1.172 Выборочная дисперсия этой выборки равна: 1.637 Выборка 5 объема 100: Выборочное среднее этой выборки равно: 1.228 Выборка 5 объема 1000: Выборочная дисперсия этой выборки равна: 1.092 Выборочное среднее этой выборки равно: 1.149 Выборочная дисперсия этой выборки равна: 1.641 n = 100n = 1000

Выборка 1 объема 100000:

Выборочное среднее этой выборки равно: 8.929 Выборочная дисперсия этой выборки равна: 60.515

Выборка 2 объема 100000:

Выборочное среднее этой выборки равно: 8.516 Выборочная дисперсия этой выборки равна: 60.588

Выборка 3 объема 100000:

Выборочное среднее этой выборки равно: 8.336 Выборочная дисперсия этой выборки равна: 60.631

Выборка 4 объема 100000:

Выборочное среднее этой выборки равно: 7.213 Выборочная дисперсия этой выборки равна: 60.599

Выборка 5 объема 100000:

Выборочное среднее этой выборки равно: 5.339 Выборочная дисперсия этой выборки равна: 60.519

n = 100000

Задание 3.2 Построение доверительного интервала для выборочного среднего и выборочной дисперсии

3.2.1 Геометрическое распределение

Для всех выборок построим доверительные интервалы.

3.2.2 Экспоненциальное распределение

Для всех выборок построим доверительные интервалы.

```
func_for_2_ex(5)

Для 1 реализации выборки объема 5 доверительный интервал равен: (2.843 <= a <= 13.557)
Для 2 реализации выборки объема 5 доверительный интервал равен: (8.905 <= a <= 25.325)
Для 3 реализации выборки объема 5 доверительный интервал равен: (8.706 <= a <= 15.694)
Для 4 реализации выборки объема 5 доверительный интервал равен: (8.882 <= a <= 15.694)
Для 5 реализации выборки объема 5 доверительный интервал равен: (8.882 <= a <= 15.694)
Для 7 реализации выборки объема 10 доверительный интервал равен: (9.801 <= a <= 15.793)
Для 6 реализации выборки объема 10 доверительный интервал равен: (5.407 <= a <= 15.793)
Для 7 реализации выборки объема 10 доверительный интервал равен: (5.407 <= a <= 15.793)
Для 7 реализации выборки объема 10 доверительный интервал равен: (5.407 <= a <= 15.793)
Для 7 реализации выборки объема 10 доверительный интервал равен: (5.407 <= a <= 15.46)

П = 100

реализации выборки объема 100 доверительный интервал равен: (50.101 <= a <= 70.859)
Для 3 реализации выборки объема 100 доверительный интервал равен: (15.705 <= a <= 129.91)
Для 3 реализации выборки объема 100 доверительный интервал равен: (15.727 <= a <= 129.93)
Для 3 реализации выборки объема 100 доверительный интервал равен: (115.727 <= a <= 129.93)
Для 5 реализации выборки объема 100 доверительный интервал равен: (115.727 <= a <= 129.93)
Для 5 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 6 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 7 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 8 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 8 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 9 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 9 реализации выборки объема 100 доверительный интервал равен: (115.724 <= a <= 129.93)
Для 9 реализации выборки объема 100 доверительный интервал
```

n = 100000

Аля 1 реализации выборки объема 100000 доверительный интервал равен: (419.841 <= a <= 424.967) Аля 2 реализации выборки объема 100000 доверительный интервал равен: (419.841 <= a <= 424.967) Аля 3 реализации выборки объема 100000 доверительный интервал равен: (419.841 <= a <= 424.967) Аля 4 реализации выборки объема 1000000 доверительный интервал равен: (419.841 <= a <= 424.967) Аля 5 реализации выборки объема 1000000 доверительный интервал равен: (419.841 <= a <= 424.967)

func_for_2_ex(10**5)

Задание 3.3 Нахождение параметров распределений событий

3.3.1 Геометрическое распределение

Найдем оценку для геометрического распределения

$$P(X = k) = q^{k-1}p$$

$$E[X] = \frac{1}{p}$$

$$D(X) = \frac{1 - p}{p^2}$$

Оценка методом моментов

По методу моментов находим оценку параметра р: $p=\frac{1}{x}$ Точечной оценкой параметра р является $\frac{1}{\overline{x}}$

Оценка методом максимального правдоподобия

$$L(x_1, x_2, \cdots, x_n; \theta) = p^n q^{n(\theta - 1)}$$

$$ln(L) = n ln(p) + n(\theta - 1) ln(q)$$

$$\frac{\partial \ln(L)}{\partial \theta} = n \ln q = 0$$

Минимума или максимума нет. Т.е. метод максимального правдоподобия не работает в случае геометрического распределения

Для данного распределения предположим оценку $\hat{\theta} = \frac{n-1}{n} \sum_{i=1}^{n} x_i$

Достаточная статистика

Найдем достаточную статистику:

$$f_n(x;\theta) = \prod_{i=1}^n f(x_i;\theta) = \prod_{i=1}^n \theta (1-\theta)^{x_i-1} = \theta^n (1-\theta)^{-n} (1-\theta)^{\sum_{i=0}^n x_i} = g(T(x),\theta)h(x)$$

Получаем, что $T(x) = \sum_{i=1}^n x_i$ - достаточная оценка, т.к выполняется критерий факторизации. В данном случае h(x)=1

Полная достаточная статистика

Эта статистика является полной достаточной статистикой

3.3.2 Экспоненциальное распределение

Рассмотри "сдвинутое" экспоненциальное распределение с плотность распределения $f(x)=\theta e^{-\theta(x-\theta)}, x\geq 0, \theta\geq 0$

Оценка методом моментов

Математическое ожидание равно $Ex = \theta + \frac{1}{\lambda}$

Дисперсия равна $Dx = \frac{1}{\lambda^2}$

$$\bar{x} = \theta + \frac{1}{\lambda}$$

Оценка:

$$\theta_{\text{OMM}} = \bar{x} - \frac{1}{\lambda}$$

Проверим, является ли данная оценка несмещенной

$$E_{\theta}T = E\left(\bar{X} - \frac{1}{\lambda}\right) = E\bar{X} - \frac{1}{\lambda} = \theta + \frac{1}{\lambda} - \frac{1}{\lambda} = \theta$$

Следовательно, оценка $\theta_{\text{омм}}$ несмещенная оценка параметра θ

$$D\theta_{\text{\tiny OMM}} = D\left(\bar{X} - \frac{1}{\lambda}\right) = D(\bar{X}) + 0 = D(\bar{X}) = \frac{1}{n^2}D\left(\sum_{i=1}^n x_i\right) = \frac{1}{n^2}\frac{1}{\lambda^2} = \frac{1}{n\lambda^2} \to 0\\ ghbn$$

Следовательно, $\theta_{\text{омм}}$ состоятельная оценка параметра θ

Оценка максимальным правдоподобием

$$\theta_{\text{OMM}} = argsupL(x; \theta)$$

$$L(x;\theta) = \lambda^n e^{-\lambda \sum_{i=1}^n (x_i - \theta)}$$

Воспользуемся тем, что экстремумы $L(x;\theta)$ и $\ln L(x;\theta)$ совпадают

$$\ln L(x;\theta) = \ln \lambda^n e^{-\lambda \sum_{i=1}^n (x_i - \theta)} = n \ln \lambda - n\lambda \bar{X} + n\lambda \theta$$

$$\frac{\partial \ln L(x;\theta)}{\partial \theta} = n\lambda > 0$$

Чтобы максимизировать функцию правдоподобия, возьмем максимальное θ

$$\theta_{\text{OMM}} = X_{(1)}$$

Несмещенность оценки

Проверим несмещенность оценки

$$F_{(1)}(x) = 1 - (1 - F(x))^n = 1 - (1 - 1 + e^{-\lambda(x - \theta)})^n = 1 - \left(\frac{e^{\lambda n}}{e^{\lambda \theta}}\right)^n = 1 - \frac{e^{\lambda \theta n}}{e^{\lambda x n}}$$

$$f_{(1)}(x) = F'_{(1)}(x) = \frac{e^{\lambda n} \lambda n}{e^{\lambda x n}} = \lambda n e^{-\lambda n(x-\theta)}$$

$$E_{\theta} x_{(1)} =$$

$$= \int_{0}^{\infty} x f_{(1)}(x; \theta) dx$$

$$= \int_{0}^{\infty} x \lambda n e^{-\lambda n(x-\theta)}$$

$$= \lambda n e^{\lambda n \theta} \left(-\frac{x e^{-\lambda x n}}{\lambda n} + \frac{1}{\lambda n} \int_{0}^{\infty} e^{-\lambda n x} dx \right)$$

$$= -x e^{-\lambda n(x-\theta)} \Big|_{0}^{\infty} - \frac{\lambda n e^{\lambda n(x-\theta)}}{\lambda^{2} n^{2}} \Big|_{0}^{\infty}$$

$$= \theta + \frac{1}{\lambda n}$$

Таким образом, оценка максимальным правдоподобием смещена со смещением $\frac{1}{\lambda n}$

$$\theta = X_{(1)} - \frac{1}{\lambda n}$$

Найдем дисперсию несмещенной оценки:

$$D heta_{ ext{om}\Pi}=D\left(X_{(1)-rac{1}{\lambda n}}
ight)=EX_{(1)}^2-(EX_1)^2= heta^2-rac{2 heta}{\lambda n}-rac{2}{\lambda^2 n^2}-\left(heta+rac{1}{\lambda n}
ight)^2=rac{1}{(\lambda n)^2}$$
 $D heta_{ ext{om}\Pi} o 0$ при $n o \infty o$ оценка состоятельна

Эффективная оценка

x зависит от параметра $\theta \to$ модель не регулярна \to не существует эффективной оценки

Оптимальная оценка

Согласно теореме Рао-Блекуэлла-Колмогорова, оптимальная оценка, если она существует, является функцией от полной достаточной статистики. Найдем достаточную статистику.

Функция правдоподобия имеет вид:

$$L(x;\theta) = \lambda^n e^{-\lambda \sum_{i=1}^n (x_i - \theta)} \nu(X_{(1)} - \theta) = \lambda^n e^{\lambda n \theta} e^{-\sum_{i=1}^n x_i} \nu(X_{(1)} - \theta)$$

Где $\nu(x) = I(x \ge 0), x \in R$ - это функция Хэвисайда

По критерию факторизации статистика $X_{(1)}$ является достаточной статистикой.

Установим ее полноту

Пусть $\varphi(t), t>0$ - произвольная функция. Найдем математическое ожидание случайной величины $\varphi(X_{(1)})$

$$E_{\theta}\varphi(X_{(1)}) = \int_{\theta}^{\infty} \varphi(x) f_{(1)}(x;\theta) dx = \int_{\theta}^{\infty} \varphi(x) \lambda n e^{-\lambda n(x-\theta)} dx = \lambda n e^{-\lambda n \theta} \int_{\theta}^{\infty} \varphi(x) e^{-\lambda n x} dx$$

Из того $E_{\theta}\varphi(X_{(1)})=0$ для любого $\theta\in\Xi$ следует, что $\int\limits_{\theta}^{\infty}\varphi(x)e^{-\lambda nx}dx=0.$ Докажем, что $\varphi(\theta)=0,t\geq0$

Продифференцируем полученный интеграл по параметру θ . Тогда

$$\left(\int\limits_{\theta}^{\infty}\varphi(x)e^{-\lambda nx}dx\right)'=\varphi(\theta)e^{\lambda\theta n}=0$$
 для любого $\theta\in\Xi$

Указанное равенство верно для любого $\theta \in \Xi$ только в случае $\varphi(t)=0$, то есть $X_{(1)}$ - полная достаточная статистика. Поскольку $E_{\theta}X_{(1)}=\theta+\frac{1}{\lambda n}$, то оптимальной оценкой для параметра θ является статистика $T=X_{(1)}-\frac{1}{\lambda n}$

Литература

- [1]
- [2] ссылка1
- [3] ссылка2
- [4] // ссылка3
- [5] // ссылка4