Dérivation

Dérivation II

Quelques calculs généraux pour commencer

Calcul 1.1

0000

Donner (sous la forme d'un intervalle) l'ensemble des solutions des inégalités suivantes.

a)
$$\frac{4}{3}x > \frac{6}{5}$$

c)
$$-2x - \frac{2}{9} < \frac{1}{2}x$$

b)
$$-\frac{2}{3}x + 1 \leqslant \frac{5}{7}$$

d)
$$2x - \frac{1}{3} \ge \frac{1}{5} + \frac{7}{3}x$$

Calcul 1.2

0000

Simplifier les fractions suivantes.

a)
$$\frac{2^5 \times 3^4}{2^8 \times 3^2} \dots$$

b)
$$\frac{3^3 \times 2^5}{6^4}$$
 c) $\frac{12^3 \times 10^4}{15^2 \times 8^2}$...

c)
$$\frac{12^3 \times 10^4}{15^2 \times 8^2} \dots$$

Calcul 1.3

Soit f la fonction définie sur \mathbb{R} par

$$f(x) = 3x^2 - 10x - 3.$$

Calculer f(a) pour les valeurs de a suivantes.

a)
$$a = -\frac{1}{2}$$

c)
$$a = \frac{\sqrt{2}}{5} \dots$$

e)
$$a = -\frac{1 - \sqrt{5}}{2}$$

b)
$$a = \sqrt{3}$$

$$d) \quad a = \frac{1 + \sqrt{2}}{2} \dots$$

f)
$$a = \frac{\sqrt{8} - 4}{2}$$
 ...

Dérivation de polynômes

Calcul 1.4

Donner l'expression de f'(x) pour chacune des fonctions f suivantes, définies sur \mathbb{R} .

a)
$$f(x) = 2x^4 + 5x^3 - x^2 - 6x + 2$$

b)
$$f(x) = \frac{1}{10}x^5 - \frac{5}{12}x^4 + \frac{3}{2}x^3 - \frac{3}{10}x^2 - \frac{592}{3247}$$

c)
$$f(x) = \frac{2x^{10}}{5} - x^3 + \frac{2x^7}{7} - \frac{x^6}{12} + \frac{x^2}{4} + 46$$

Fiche nº 1. Dérivation II

Calcul 1.5

Pour chacune des questions suivantes, calculer f'(a).

a)
$$f(x) = 5x^3 + 3x - 2$$
 et $a = 1 + \sqrt{6}$

b)
$$f(x) = x^3 + 5x^2 - x - 1$$
 et $a = 1 + \sqrt{3}$

d)
$$f(x) = x^4 - \frac{1}{2}x^2 + 3x - 5$$
 et $a = \sqrt{\frac{3}{2}}$

Opérations usuelles et polynômes

On admet que les fonctions de cette partie sont dérivables sur leur domaine de définition, qu'on ne cherchera pas à expliciter.

Calcul 1.6 — Inverses (I).

Donner l'expression de f'(x) pour chacune des fonctions f suivantes.

a)
$$f(x) = \frac{1}{3x+1}$$

b)
$$f(x) = \frac{1}{2x^2 - 3x + 4}$$

c)
$$f(x) = \frac{1}{-\frac{1}{3}x^3 - 3x^2 + x - 2}$$

Calcul 1.7 — Inverses (II).

Donner l'expression de f'(x) pour chacune des fonctions f suivantes.

a)
$$f(x) = \frac{1}{\frac{-2}{3}x^3 + 2x^2 - 2x}$$

b)
$$f(x) = \frac{1}{\frac{2}{3}x^3 - \frac{5}{4}x^4 - \frac{17}{2}x^2}$$

Calcul 1.8 — Quotients (I).

Donner l'expression de f'(x) pour chacune des fonctions f suivantes.

a)
$$f(x) = \frac{2x+3}{-5x+4}$$

b)
$$f(x) = \frac{4x^3 - 5x^2 + 3x - 2}{2x - 1}$$

Calcul 1.9 — Quotients (II).

Donner l'expression de f'(x) pour chacune des fonctions f suivantes.

a)
$$f(x) = \frac{2x^3 - 5x^2 - 2}{-x^3 - x}$$

b)
$$f(x) = \frac{x^4 - x^3 + x^2 + 1}{x^2 + x + 1}$$

Calcul 1.10 — Quotients à simplifier (I).

Simplifier les expressions suivantes en enlevant les fractions au numérateur et au dénominateur.

a)
$$f(x) = \frac{\frac{1}{x} + 3}{2 - \frac{3}{x}}$$

b)
$$f(x) = \frac{3 + \frac{2}{x^2} - \frac{1}{x}}{-2 - \frac{2}{x^3} + \frac{-2}{x}}$$

À l'aide des calculs précédents, donner l'expression de f'(x) pour chacune des fonctions f suivantes.

c)
$$f(x) = \frac{\frac{1}{x} + 3}{2 - \frac{3}{x}}$$

d)
$$f(x) = \frac{3 + \frac{2}{x^2} - \frac{1}{x}}{-2 - \frac{2}{x^3} + \frac{-2}{x}}$$

Calcul 1.11 — Quotients à simplifier (II).

Simplifier les expressions suivantes en enlevant les fractions au numérateur et au dénominateur.

a)
$$f(x) = \frac{\frac{2x+3}{x-4}}{\frac{-x-2}{x^2+x}}$$

b)
$$f(x) = \frac{\frac{1}{2x} - \frac{-x-2}{x+2}}{3x-1}$$

À l'aide des calculs précédents, donner l'expression de f'(x) pour chacune des fonctions f suivantes.

c)
$$f(x) = \frac{\frac{2x+3}{x-4}}{\frac{-x-2}{x^2+x}}$$

d)
$$f(x) = \frac{\frac{1}{2x} - \frac{-x-2}{x+2}}{3x-1}$$

Calcul 1.12 — Signe de la dérivée.

Pour chacune des fonctions suivantes, donner l'ensemble des solutions de l'inéquation $f'(x) \ge 0$. On attend les solutions sous la forme d'une intervalle ou d'une réunion d'intervalle.

On commencera par déterminer l'ensemble de définition de f.

a)
$$f(x) = \frac{2}{3}x^2 - \frac{4}{7}x + 2 \dots$$
 c) $f(x) = \frac{\frac{1}{8}x - \frac{2}{3}}{\frac{1}{2}x + \frac{1}{4}} \dots$

b)
$$f(x) = \frac{3x^2 - 5}{x^2 + 1}$$
 d) $f(x) = \frac{1}{\frac{1}{2}x^2 - \frac{4}{5}x + 5}$

Calcul 1.13 — Dériver puis factoriser (I).

Pour chacune des fonctions suivantes, calculer f'(x) puis factoriser le numérateur du quotient obtenu.

a)
$$f(x) = \frac{-1}{\frac{1}{3}x^3 + 2x^2 + 4x - 1}$$

b)
$$f(x) = \frac{1}{x^3 - 9x^2 + 27x - 5}$$

c)
$$f(x) = \frac{-1}{\frac{x^3}{3} - 64x + 21}$$

d)
$$f(x) = \frac{-1}{\frac{1}{12}x^3 + \frac{3}{2}x^2 + 9x}$$

Calcul 1.14 — Dériver puis factoriser (II).

Pour chacune des fonctions suivantes, calculer f'(x) puis factoriser le numérateur du quotient obtenu.

- a) $f(x) = \frac{1}{\frac{-1}{3}x^3 \frac{1}{2}x^2 + 2x + 3}$
- b) $f(x) = \frac{1}{\frac{1}{3}x^3 + \frac{1}{8}x^2 \frac{3}{8}x 1}$
- c) $f(x) = \frac{-1}{2x^3 + 6x^2 14x + 7}$
- d) $f(x) = \frac{1}{\frac{1}{6}x^3 5x^2 + 3x 4}$

Calculs plus avancés

Calcul 1.15 — Avec des racines.

Si u est une fonction dérivable à valeurs strictement positives, alors la fonction \sqrt{u} est dérivable et on a

$$(\sqrt{u})' = \frac{u'}{2\sqrt{u}}.$$

Donner l'expression de f'(x) pour chacune des fonctions f suivantes. On ne cherchera pas à déterminer les ensembles de dérivabilité.

- a) $f(x) = \sqrt{3x^2 2x 10}$
- b) $f(x) = \sqrt{2x^3 + 6x^2 x + 3}$
- c) $f(x) = \sqrt{\frac{2x+1}{-3x+9}}$
- d) $f(x) = \sqrt{\frac{2x^3 x}{x^5 x^2}}$

Calcul 1.16 — Avec des sommes.

0000

Soit $n \in \mathbb{N}^*$. Dériver les fonctions suivantes, définies sur \mathbb{R} .

On note, pour $n \in \mathbb{N}^*$, $n! = 1 \times 2 \times 3 \times \cdots \times (n-1) \times n$ et 0! = 1.

b)
$$f(x) = \sum_{k=0}^{n} (-1)^{k+1} \frac{x^k}{k}$$

c)
$$f(x) = \sum_{k=0}^{n} \frac{x^k}{k!}$$

d)
$$f(x) = \sum_{k=0}^{n} \frac{(3x)^{2k}}{(2k)!}$$

Calcul 1.17 — Expressions formelles.

Soient f, g et h trois fonctions définies et dérivables sur \mathbb{R} ne s'annulant pas. Exprimer les dérivées des fonctions suivantes en fonction de f, g, h et leurs dérivées.

Par exemple, la dérivée de fg + h est f'g + fg' + h'.

On pourra utiliser que

$$(f^n)' = nf'f^{n-1}.$$

- a) fg + gh
- e) f^3g^2
- b) $\frac{f^2}{g}$
- f) $\frac{f}{\frac{g}{2}}$
- c) $\frac{f^3+g}{gh}$
- g) $\sqrt{\frac{f}{g}}$
- $d) \quad g \frac{f}{h^3} \quad \dots$
- h) fgh

$$\frac{-5x^4 - 4x^3 - x^2 - 2}{(x^3 + x)^2} \frac{-11}{(2x - 3)^2} \left] -\infty, -\frac{1}{2} \right[\cup \left] -\frac{1}{2}, +\infty \right[\quad 108 + 30\sqrt{6} \right] \\ \frac{6\left(x + 1 + \sqrt{\frac{10}{3}}\right)\left(x + 1 - \sqrt{\frac{10}{3}}\right)}{(2x^3 + 6x^2 - 14x + 7)^2} \quad 3 + 5\sqrt{\frac{3}{2}} \quad f'g + fg' + g'h + gh' \quad \sum_{k=0}^{n-1} \frac{x^k}{k!} \right] \\ \sum_{k=1}^{n} (-1)^{k+1}x^{k-1} \quad [0, +\infty[\quad -\frac{23}{4} - \frac{7\sqrt{2}}{2} \quad \frac{3x^3 - x^2 + 2x}{-2x^3 - 2x^2 - 2} \quad \frac{16x^3 - 22x^2 + 10x + 1}{(2x - 1)^2} \right] \\ \sum_{k=1}^{n} kx^{k-1} \quad \left] -\infty, -\frac{8}{5} \right] \quad \frac{3x + 1}{2x - 3} \quad \frac{-2x^4 + 8x^3 + 61x^2 + 80x + 24}{(-x^2 - 2)^2(x - 4)^2} \\ \frac{-2x^2 + 5x^3 + 17x}{\left(\frac{3}{3}x^3 - \frac{5}{5}x^4 - \frac{17}{2}x^2\right)^2} \quad \frac{(x - 8)(x + 8)}{\left(\frac{x^3}{3} - 64x + 21\right)^2} \quad \frac{-3(x - 3)^2}{(x^3 - 9x^2 + 27x - 5)^2} \quad \frac{f'gh - fg'h + fgh'}{g^2} \\ \frac{1}{9^10} + \infty \left[-4x^9 + 2x^6 - \frac{x^5}{2} - 3x^2 + \frac{x}{2} \right] \quad \frac{2x^2 - 4x + 2}{\left(\frac{-3}{3}x^3 + 2x^2 - 2x\right)^2} \quad -\frac{69}{25} - 2\sqrt{2} \\ \frac{\left(\frac{1}{2}x + 3\right)^2}{\left(\frac{1}{12}x^3 + \frac{3}{2}x^2 + 9x\right)^2} \quad \frac{x^4}{3} - \frac{5x^3}{3} + \frac{9x^2}{3} - \frac{3x}{5} \quad \frac{2}{3} \quad \frac{-4x^5 + 4x^3 - 2x^2 - 1}{2(x^4 - x)^2} \sqrt{\frac{x^4 - x}{2x^2 - 1}} \\ \frac{11}{4} \quad \frac{2f'fg + f^2g'}{g^2} \quad \frac{x^2 + 6x - 1}{\left(-\frac{1}{3}x^3 - 3x^2 + x - 2\right)} \quad \frac{(x + 2)^2}{\left(\frac{1}{3}x^3 + 2x^2 + 4x - 1\right)^2} \\ \frac{f'g - fg'}{2g^2\sqrt{\frac{f}{g}}} \quad g' - \frac{f'h^3 - 3fh'h^2}{h^6} \quad \frac{23}{(-5x + 4)^2} \quad \frac{7}{6(3 - x)^2} \sqrt{\frac{-3x + 9}{2x + 1}} \quad \frac{7}{3}, +\infty \right[\\ \frac{2x^3 + 5x^2 + 3x}{2x^2 + 2x + 8} \quad 8x^3 + 15x^2 - 2x - 6 \quad 6 - \frac{10}{\sqrt{3}} \quad \frac{-\frac{1}{2}(x - 10 + \sqrt{94})(x - 10 - \sqrt{94})}{\left(\frac{1}{6}x^3 - 5x^2 + 3x - 4\right)^2} \\ \frac{2x^2 + 2x^2 + 2x^2 + 2x^2 - 2}{(2x^2 - 3x + 4)^2} \quad \frac{2x^5 + 2x^4 + 2x^3 - 2x^2 - 1}{(x^2 + x + 1)^2} \quad \frac{(x - 1)(x + 2)}{\left(\frac{1}{3}x^3 - \frac{1}{2}x^2 + 2x + 3\right)^2} \quad 21 + 16\sqrt{3} \\ \frac{3f'f^2g^2 + 2f^3g'g}{(2x^3 + x^2 + 1)^2} \quad \frac{-4x^5 + 4x^3 - 7x^2 + 2x + 3}{(2x^3 - 1)^3} \quad \frac{3x - 1}{(2x^3 - 1)$$

► Réponses et corrigés page 8

Fiche nº 1. Dérivation II

Fiche nº 1. Dérivation II

Réponses

1.1 b)
$$\left\lceil \frac{3}{7}, + \infty \right\rceil$$

1.1 c)
$$\left[-\frac{4}{45}, +\infty \right[$$

1.1 d)
$$\left[-\infty, -\frac{8}{5} \right]$$

1.3 c)
$$\left| -\frac{69}{25} - 2\sqrt{2} \right|$$

1.3 d)
$$-\frac{23}{4} - \frac{7\sqrt{2}}{2}$$

1.3 e)
$$\frac{13}{2} - \frac{13\sqrt{5}}{2}$$

1.4 a)
$$8x^3 + 15x^2 - 2x - 6$$

1.4 b)
$$\frac{x^4}{2} - \frac{5x^3}{3} + \frac{9x^2}{2} - \frac{3x}{5}$$

1.4 c)
$$4x^9 + 2x^6 - \frac{x^5}{2} - 3x^2 + \frac{x}{2}$$

1.5 c)
$$\frac{5}{2} - 2\sqrt{2}$$

1.6 b)
$$\frac{3-4x}{(2x^2-3x+4)^2}$$

1.6 c)
$$\frac{x^2 + 6x - 1}{\left(-\frac{1}{3}x^3 - 3x^2 + x - 2\right)}$$

1.7 a)
$$\frac{2x^2 - 4x + 2}{\left(\frac{-2}{3}x^3 + 2x^2 - 2x\right)^2}$$

1.7 b)
$$\frac{-2x^2 + 5x^3 + 17x}{\left(\frac{2}{3}x^3 - \frac{5}{4}x^4 - \frac{17}{2}x^2\right)^2}$$

1.8 a)
$$\frac{23}{(-5x+4)^2}$$

1.8 b)
$$\frac{16x^3 - 22x^2 + 10x + 1}{(2x-1)^2}$$

1.9 a)
$$\frac{-5x^4 - 4x^3 - x^2 - 2}{(x^3 + x)^2}$$

1.10 b)
$$\frac{3x^3 - x^2 + 2x}{-2x^3 - 2x^2 - 2}$$

1.10 c)
$$\frac{-11}{(2x-3)^2}$$

1.10 d).....
$$\frac{-4x^4 + 4x^3 - 7x^2 + 2x - 2}{2(x^3 + x^2 + 1)^2}$$

1.11 a).....
$$\frac{2x^3 + 5x^2 + 3x}{-x^2 + x + 8}$$

Fiche nº 1. Dérivation II 9

1.17 h) f'gh + fg'h + fgh'

Corrigés

1.2 c) On a
$$\frac{12^3 \times 10^4}{15^2 \times 8^2} = \frac{(2^2)^3 \times 3^3 \times 5^4 \times 2^4}{3^2 \times 5^2 \times (2^3)^2} = 3 \times 5^2 \times 2^4 = 1200.$$

1.3 d) On a
$$a^2 = \frac{1 + 2\sqrt{2} + 2}{4} = \frac{3}{4} + \frac{\sqrt{2}}{2}$$
.

1.3 f) On a
$$a = \frac{2\sqrt{2} - 4}{2} = \sqrt{2} - 2$$
, ce qui allège les calculs.

1.4 b) On a
$$f'(x) = \frac{1}{10} \times 5 \times x^4 - \frac{5}{12} \times 4x^3 + \frac{3}{2} \times 3x^2 - \frac{3}{10} \times 2x - 0$$
.

1.5 a) On a
$$f'(x) = 15x^2 + 3$$
.

1.5 b) On a
$$f'(x) = 3x^2 + 10x - 1$$
.

1.5 c) On a
$$f'(x) = 3x^2 - 4x + 1$$
 et $a = \frac{\sqrt{2}}{2}$.

1.5 d) On a
$$f'(x) = 4x^3 - x + 3$$
.

1.6 a) On pose
$$u(x) = 3x + 1$$
. On a $u'(x) = 3$ donc $f'(x) = \frac{-u'(x)}{u(x)^2} = \frac{-3}{(3x+1)^2}$.

1.6 b) On pose
$$u(x) = 2x^2 - 3x + 4$$
. On a $u'(x) = 4x - 3$ donc $f'(x) = \frac{-(4x - 3)}{(2x^2 - 3x + 4)^2}$.

1.8 a) On pose
$$u(x) = 2x + 3$$
 et $v(x) = -5x + 4$. On a $u'(x) = 2$ et $v'(x) = -5$. Donc

$$f'(x) = \frac{2(-5x+4) - (2x+3) \times (-5)}{(-5x+4)^2}.$$

1.9 a) Pour le dénominateur, on a
$$(-x^3 - x)^2 = (x^3 + x)^2$$
.

1.10 a) On multiplie le numérateur et le dénominateur par
$$x$$
.

1.10 b) On multiplie le numérateur et le dénominateur par
$$x^3$$
.

1.10 d) On trouve
$$f'(x) = \frac{-8x^4 + 8x^3 - 14x^2 + 4x - 4}{(2x^3 + 2x^2 + 2)^2} = \frac{2(-4x^4 + 4x^3 - 7x^2 + 2x - 2)}{4(x^3 + x^2 + 1)^2}$$
.

1.11 a) On multiplie le numérateur et le dénominateur par
$$(x-4)$$
 et par x^2+x . On trouve que

$$f(x) = \frac{(2x+3)(x^2+x)}{(x-4)(-x-2)} = \frac{2x^3+5x^2+3x}{-x^2+2x+8}.$$

.....

1.11 b) On multiplie le numérateur et le dénominateur par 2x et par x + 2, on trouve :

$$f(x) = \frac{(x+2) - 2x(-x-2)}{(3x^2 - 1)(2x)(x+2)} = \frac{2x+1}{6x^3 - 2x}.$$

1.12 a) On a
$$\mathcal{D}_f = \mathbb{R}$$
 et $f'(x) = \frac{4}{3}x - \frac{4}{7}$.

1.12 b) On a $\mathcal{D}_f = \mathbb{R}$ car $x^2 + 1 \neq 0$ pour tout $x \in \mathbb{R}$, et $f'(x) = \frac{16x}{(x^2 + 1)^2}$. Or on a $(x^2 + 1)^2 > 0$ donc f'(x) est du signe de 16x.

.....

1.12 c) On a
$$\frac{1}{2}x + \frac{1}{4} = 0 \iff x = -\frac{1}{2}$$
 donc $\mathcal{D}_f = \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}$ et $f'(x) = \frac{35}{6(2x+1)^2}$. Donc, pour tout $x \in \mathcal{D}_f$, $f'(x) > 0$ comme quotient de nombres strictement positifs. Donc l'ensemble des solutions est \mathcal{D}_f .

.....

1.12 d) Étudions
$$\frac{1}{2}x^2 - \frac{4}{5}x + 5$$
. Le discriminant de cette expression est $\Delta = \frac{16}{25} - 10 < 0$; donc, il n'y a pas de racine et $\frac{1}{2}x^2 - \frac{4}{5}x + 5 \neq 0$ pour tout $x \in \mathbb{R}$ donc $\mathcal{D}_f = \mathbb{R}$. De plus, $f'(x) = \frac{-x + \frac{4}{5}}{\left(\frac{1}{2}x^2 - \frac{4}{5}x + 5\right)^2}$. Le dénominateur étant strictement positif, $f'(x)$ est du signe de $-x + \frac{4}{5}$.

Ÿ

1.13 a) On a
$$f'(x) = \frac{x^2 + 4x + 4}{\left(\frac{1}{3}x^3 + 2x^2 + 4x - 1\right)^2}$$
: on reconnaît la première identité remarquable.

1.13 b) On a $f'(x) = \frac{-3x^2 + 18x - 27}{(x^3 - 9x^2 + 27x - 5)^2} = \frac{-3(x^2 - 6x + 9)}{(x^3 - 9x^2 + 27x - 5)^2}$. On conclut avec la seconde identité remarquable.

.....

1.13 c) On a
$$f'(x) = \frac{x^2 - 64}{\left(\frac{x^3}{3} - 64x + 21\right)^2}$$
. On conclut avec la troisième identité remarquable.

1.13 d) On a $f'(x) = \frac{\frac{1}{4}x^2 + 3x + 9}{\left(\frac{1}{12}x^3 + \frac{3}{2}x^2 + 9x\right)^2}$. On conclut avec la première identité remarquable car

$$\frac{1}{4}x^2 + 3x + 9 = \left(\frac{1}{2}x\right)^2 + 2 \times 3 \times \frac{1}{2}x + 3^2 = \left(\frac{1}{2}x + 3\right)^2.$$

.....

1.14 a) On a $f'(x) = \frac{x^2 + x - 2}{\frac{-1}{3}x^3 + \frac{1}{2}x^2 - 2x + 3}$. Le numérateur est de degré 2. On cherche ses racines. Le discriminant est $\Delta = 9$; il y a donc deux racines : 1 et -2. Ainsi, le numérateur est égal à (x - 1)(x + 2).

1.14 b) On a $f'(x) = \frac{-x^2 - \frac{1}{4}x + \frac{3}{8}}{\frac{1}{3}x^3 + \frac{1}{8}x^2 - \frac{3}{8}x - 1}$. Le numérateur est de degré 2 et a pour racines $\frac{1}{2}$ et $-\frac{3}{4}$.

1.14 c) On a
$$f'(x) = \frac{6x^2 + 12x - 14}{(2x^3 + 6x^2 - 14x + 7)^2}$$
. Le numérateur est égal à $2(3x^2 + 6x - 7)$. On étudie alors

 $3x^2 + 6x - 7$ qui a pour racines $-1 - \sqrt{\frac{10}{3}}$ et $-1 + \sqrt{\frac{10}{3}}$.

1.14 d) On a $f'(x) = \frac{-\frac{1}{2}x^2 + 10x - 3}{\left(\frac{1}{6}x^3 - 5x^2 + 3x - 4\right)^2}$. Le numérateur a pour racines $10 - \sqrt{94}$ et $10 + \sqrt{94}$.

1.15 a) On pose $u(x) = 3x^2 - 2x - 10$. On a u'(x) = 6x - 2 = 2(3x - 1). Donc $f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{3x - 1}{\sqrt{3x^2 - 2x - 10}}$.

1.15 d) On commence par simplifier par x dans la fraction.

1.16 a) Pour tout $k \in \{1, 2, ..., n\}$, la dérivée de $x \mapsto x^k$ et $x \mapsto kx^{k-1}$. On conclut en utilisant que la dérivée d'une somme est la somme des dérivées.

1.16 b) Si
$$u(x) = (-1)^{k+1} \frac{x^k}{k}$$
, alors $u'(x) = (-1)^{k+1} \frac{kx^{k-1}}{k}$.

1.16 c) Si $u(x) = \frac{x^k}{k!}$ alors $u'(x) = \frac{k}{k!}x^{k-1} = \frac{k}{1 \times 2 \times ... \times (k-1) \times k}x^{k-1} = \frac{1}{1 \times 2 \times ... \times (k-1)}x^{k-1}$.

En dérivant f, on trouve donc $\sum_{k=1}^{n} \frac{x^{k-1}}{(k-1)!}$, ce qui se réécrit en $\sum_{k=0}^{n-1} \frac{x^k}{k!}$.

1.16 d) Si $u(x) = \frac{(3x)^{2k}}{(2k)!} = \frac{3^{2k}x^{2k}}{(2k)!}$, alors $u'(x) = 3^{2k}\frac{2k}{(2k)!}x^{2k} = \frac{3(3x)^{2k-1}}{(2k-1)!}$.

1.17 b) La dérivée de f^2 est 2f'f.

1.17 c) La dérivée de $f^3 + g$ est $3f'f^2 + g'$.

- **1.17** d) La dérivée de h^3 est $3h'h^2$.
- **1.17** e) La dérivée de f^3 est $3f'f^2$ et celle de g^2 est 2g'g.

1.17 f) La dérivée de $\frac{g}{h}$ est $\frac{g'h-gh'}{g^2}$ donc la dérivée de $\frac{f}{\frac{g}{h}}$ est $\frac{f'\frac{g}{h}-f\frac{g'h-gh'}{h^2}}{\left(\frac{g}{h}\right)^2}$. Pour simplifier l'expression, on

termine en multipliant par h^2 le numérateur et le dénominateur.

- **1.17** g) La dérivée de $\frac{f}{g}$ est $\frac{f'g fg'}{g^2}$. On utilise que la dérivée de \sqrt{u} et $\frac{u'}{2\sqrt{u}}$.
- **1.17** h) On a (fgh)' = ((fg)h)' = (f'g + fg')h + fgh'.