present

Table of Contents

The four methods to differentiate a function

The history of autodiff

Differentiating the Bessel function

Poorman's Bessel function

Finite difference

Example: central finite difference to the 4th order

Forward mode automatic differentiation

Reverse mode automatic differentiation

Rule based autodiff

Deriving the backward rule of matrix multiplication

Rule based or not?

Obtaining Hessian

Optimal checkpointing, towards solving the memory wall problem

Game: Pass the ball

Homeworks

The four methods to differentiate a function

"谁要你教,不是草头底下一个来回的回字么?"

孔乙己显出极高兴的样子,将两个指头的长指甲敲着柜台,点头说,"对呀对呀!……回字有四样写法,你知道么?"我愈不耐烦了,努着嘴走远。

孔乙己刚用指甲蘸了酒,想在柜上写字,见我毫不热心,便又叹一口气,显出极惋惜的样子。

The history of autodiff

- 1964 ~ Robert Edwin Wengert, A simple automatic derivative evaluation program.
 - ◀ first forward mode AD
- 1970 ~ Seppo Linnainmaa, Taylor expansion of the accumulated rounding error.
 - **◄** first backward mode AD
- 1986 ~ Rumelhart, D. E., Hinton, G. E., and Williams, R. J., Learning representations by back-propagating errors. **bring AD to machine learning people.**
- 1992 ~ Andreas Griewank, Achieving logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. < also known as optimal checkpointing.

•••

- 2000s ~ The boom of tensor based AD frameworks for machine learning.
- 2018 ~ Re-inventing AD as differential programming (wiki.)

OK, Deep Learning has outlived its usefulness as a buzz-phrase. Deep Learning est mort. Vive Differentiable Programming!

• 2020 ~ Moses, William and Churavy, Valentin, Instead of Rewriting Foreign Code for Machine Learning, Automatically Synthesize Fast Gradients **AD on LLVM**.

Differentiating the Bessel function

$$J_{
u}(z) = \sum_{n=0}^{\infty} rac{(z/2)^{
u}}{\Gamma(k+1)\Gamma(k+
u+1)} (-z^2/4)^n$$

Poorman's Bessel function

poor_besselj (generic function with 1 method) 1 function poor_besselj(ν , z::T; atol=eps(T)) where Tk = 0 $s = (z/2)^{\nu}$ / factorial(ν) 3 out = s5 while abs(s) > atol 6 k += 1 7 $s *= (-1) / k / (k+v) * (z/2)^2$ out += s 9 end 10 out 11 end

In each step, the state transfer can be described as $(k_i, s_i, out_i) o (k_{i+1}, s_{k+1}, out_{i+1})$.

```
1 using Plots
```



```
Manual 🕶
```

1 @bind select_gradient_method Select(["Manual", "Forward", "Backward", "FiniteDiff"])


```
1 let
 2
       x = 0.0:0.01:10
 3
       plt = plot([], []; label="", xlabel="x", ylabel="y")
       for i=0:3
 4
           yi = poor_besselj.(i, x)
 5
 6
           if select_gradient_method == "Forward"
 7
               gi = [autodiff(Forward, poor_besselj, i, Enzyme.Duplicated(xi, 1.0))[1]
               for xi in x]
           elseif select_gradient_method == "Manual"
 8
 9
               gi = ((i == 0 ? -poor_besselj.(i+1, x) : poor_besselj.(i-1, x)) -
               poor_besselj.(i+1, x)) ./ 2
           elseif select_gradient_method == "Backward"
10
               gi = [autodiff(Reverse, poor_besselj, i, Enzyme.Active(xi))[1] for xi in
11
               x ]
           elseif select_gradient_method == "FiniteDiff"
12
               gi = [autodiff(Reverse, poor_besselj, i, Enzyme.Active(xi))[1] for xi in
13
               x]
           end
14
           plot!(plt, x, yi; label="J(\nu=\$i)", lw=2, color=i)
15
           plot!(plt, x, gi; label="g(v=$i)", lw=2, color=i, ls=:dash)
16
17
       end
       plt
18
19 end
```

Finite difference

First order forward Difference

$$rac{\partial f}{\partial x}pprox rac{f(x+\Delta)-f(x)}{\Delta}$$

First order backward Difference

$$rac{\partial f}{\partial x}pprox rac{f(x)-f(x-\Delta)}{\Delta}$$

First order central Difference

$$rac{\partial f}{\partial x}pprox rac{f(x+\Delta)-f(x-\Delta)}{2\Delta}$$

Table of finite difference coefficient: wiki page.

Example: central finite difference to the 4th order

1. Check the table

2. Apply the fomula

$$rac{\partial f}{\partial x}pprox rac{f(x-2\Delta)-8f(x-\Delta)+8f(x+\Delta)-f(x+2\Delta)}{12\Delta}$$

$$egin{pmatrix} f(x-2\Delta) \ f(x-\Delta) \ f(x) \ f(x+\Delta) \ f(x+2\Delta) \end{pmatrix} pprox egin{pmatrix} 1 & (-2)^1 & (-2)^2 & (-2)^3 & (-2)^4 \ 1 & (-1)^1 & (-1)^2 & (-1)^3 & (-1)^4 \ 1 & 0 & 0 & 0 & 0 \ 1 & (1)^1 & (1)^2 & (1)^3 & (1)^4 \ 1 & (2)^1 & (2)^2 & (2)^3 & (2)^4 \ \end{pmatrix} egin{pmatrix} f(x) \ f'(x)\Delta \ f''(x)\Delta^2/2 \ f'''(x)\Delta^3/6 \ f''''(x)\Delta^4/24 \ \end{pmatrix}$$

Let the finite difference coefficients be $\vec{\alpha}^T=(\alpha_{-2},\alpha_{-1},\alpha_0,\alpha_1,\alpha_2)$, we want $\alpha^T\vec{f}=f'(x)\Delta+O(\Delta^5)$, where $\vec{f}=A\vec{g}$ is the vector on the left side. $\vec{\alpha}$ can be solved by $A^T\setminus(0,1,0,0,0)^T$

```
[0.0833333, -0.666667, -2.37905e-16, 0.666667, -0.0833333]
```

```
1 let
2    b = [0.0, 1, 0, 0, 0]
3    A = [i^j for i=-2:2, j=0:4]
4    A' \ b
5 end
```

```
5×5 Matrix{Int64}:

1 -2 4 -8 16

1 -1 1 -1 1

1 0 0 0 0

1 1 1 1 1

1 2 4 8 16

1 [i^j for i=-2:2, j=0:4]
```

```
1 using FiniteDifferences
```

0.11985236384013791

```
1 central_fdm(5, 1)(x->poor_besselj(2, x), 0.5)
```

1 using BenchmarkTools

```
BenchmarkTools.Trial: 10000 samples with 8 evaluations. Range (min ... max): 3.604 \mus ... 1.081 ms | GC (min ... max): 0.00% ... 98.88% Time (median): 3.827 \mus | GC (median): 0.00% Time (mean \pm \sigma): 4.187 \mus \pm 14.999 \mus | GC (mean \pm \sigma): 5.03% \pm 1.40%
```


Memory estimate: 2.59 KiB, allocs estimate: 36.

```
1 @benchmark central_fdm(5, 1)(y->poor_besselj(2, y), x) setup=(x=0.5)
```

Forward mode automatic differentiation

Forward mode AD attaches a infitesimal number ϵ to a variable, when applying a function f, it does the following transformation

$$f(x+g\epsilon)=f(x)+f'(x)g\epsilon+\mathcal{O}(\epsilon^2)$$

The higher order infinitesimal is ignored.

In the program, we can define a dual number with two fields, just like a complex number

$$f((x, g)) = (f(x), f'(x)*g)$$

1 using ForwardDiff

res = Dual{Nothing}(0.7071067811865475,1.4142135623730951)

1 res = $sin(ForwardDiff.Dual(\pi/4, 2.0))$

true

1 res === ForwardDiff.Dual(
$$sin(\pi/4)$$
, $cos(\pi/4)*2.0$)

We can apply this transformation consecutively, it reflects the chain rule.

$$rac{\partial ec{y}_{i+1}}{\partial x} = \left[rac{\partial ec{y}_{i+1}}{\partial ec{y}_i}
ight] rac{\partial ec{y}_i}{\partial x}$$
 local Jacobian

Example: Computing two gradients $\frac{\partial z \sin x}{\partial x}$ and $\frac{\partial \sin^2 x}{\partial x}$ at one sweep

1 using Enzyme

0.11985236384014333

1 autodiff(Forward, poor_besselj, 2, Duplicated(0.5, 1.0))[1]

```
BenchmarkTools.Trial: 10000 samples with 993 evaluations.

Range (min ... max): 35.001 ns ... 55.673 ns GC (min ... max): 0.00% ... 0.00%

Time (median): 35.212 ns GC (median): 0.00%

Time (mean ± σ): 35.565 ns ± 1.585 ns GC (mean ± σ): 0.00% ± 0.00%

Memory estimate: 0 bytes, allocs estimate: 0.

1 @benchmark autodiff(Forward, poor_besselj, 2, Duplicated(x, 1.0))[1] setup=(x=0.5)
```

What if we want to compute gradients for multiple inputs?

The computing time grows **linearly** as the number of variables that we want to differentiate. But does not grow significantly with the number of outputs.

Reverse mode automatic differentiation

On the other side, the back-propagation can differentiate **many inputs** with respect to a **single output** efficiently

0.11985236384014332

```
1 autodiff(Reverse, poor_besselj, 2, Enzyme.Active(0.5))[1]

BenchmarkTools.Trial: 10000 samples with 918 evaluations.

Range (min ... max): 115.186 ns ... 221.536 ns | GC (min ... max): 0.00% ... 0.00%

Time (median): 119.291 ns | GC (median): 0.00%

Time (mean ± σ): 120.377 ns ± 4.129 ns | GC (mean ± σ): 0.00% ± 0.00%

Memory estimate: 0 bytes, allocs estimate: 0.

1 @benchmark autodiff(Reverse, poor_besselj, 2, Enzyme.Active(x))[1] setup=(x=0.5)
```

How to visit local Jacobians in the reversed order?

Rule based autodiff

The backward rule of the Bessel function is

$$J_
u'(z) = rac{J_{
u-1}(z) - J_{
u+1}(z)}{2} \ J_0'(z) = -J_1(z)$$

```
0.11985236384014333
```

```
1 0.5 * (poor_besselj(1, 0.5) - poor_besselj(3, 0.5))

BenchmarkTools.Trial: 10000 samples with 993 evaluations.

Range (min ... max): 33.998 ns ... 91.596 ns | GC (min ... max): 0.00% ... 0.00%

Time (median): 34.315 ns | GC (median): 0.00%

Time (mean ± σ): 34.770 ns ± 1.747 ns | GC (mean ± σ): 0.00% ± 0.00%

34 ns Histogram: log(frequency) by time 42.6 ns <
```

Memory estimate: 0 bytes, allocs estimate: 0.

1 @benchmark 0.5 * ($poor_besselj(1, x) - poor_besselj(3, x)$) setup=(x=0.5)

Deriving the backward rule of matrix multiplication

Please check blog

Rule based or not?

	rule based	differential programming
meaning	defining backward rules manully for functions on tensors	defining backward rules on a limited set of basic scalar operations, and generate gradient code using source code transformation
pros and cons	 Good tensor performance Mature machine learning ecosystem Need to define backward rules manually 	 Reasonalbe scalar performance hard to utilize BLAS
packages	Jax PyTorch	<u>Tapenade</u> <u>Adept</u> <u>Enzyme</u>

Obtaining Hessian

Hessian is the Jacobian of the gradient. We can use forward over backward.

Optimal checkpointing, towards solving the memory wall problem

Game: Pass the ball

In each step, if you have the ball, you pick one of the following actions

- 1. raise your hand, and pass the ball to the next,
- 2. pass the ball to the next without raising your hand,
- 3. only if you are the last one in the queue, you can left the queue and pass the ball to those raising hands.

Otherwise, you may

- 1. put down your hand, or
- 2. do nothing.

Goal: We require the number of raised hands being at most m at the same time, please empty the queue while minimizing the number of ball passings.

The connection to checkpointing

- A person: a computing state s_k ,
- The queue: a linear program s_1, s_2, \ldots, s_n ,
- ullet Passing ball: program running forward $s_k o s_{k+1}$,
- Left queue: the gradient g_k being computed,
- Rasing hand: create a checkpoint in the main memory,
- put down the hand: deallocate a checkpoint.

Homeworks

1. Given the binomial function $\eta(\tau,\delta)=\frac{(\tau+\delta)!}{\tau!\delta!}$, show that the following statement is true.

$$\eta(au,\delta) = \sum_{k=0}^{\delta} \eta(au-1,k)$$

2. Given the following program to compute the l_2 -norm of a vector $x \in R^n$.

```
function poorman_norm(x::Vector{<:Real})
   nm2 = zero(real(eltype(x)))
   for i=1:length(x)
        nm2 += abs2(x[i])
   end
   ret = sqrt(nm2)
   return ret
end</pre>
```

In the program, the abs2 and sqrt functions can be treated as primitive functions, which means they should not be further decomposed as more elementary functions.

Tasks

- 1. Rewrite the program (on paper or with code) to implement the forward mode autodiff, where you can use the notation $\dot{y}_i \equiv \frac{\partial y}{\partial x_i}$ to denote a derivative.
- 2. Rewrite the program (on paper or with code) to implement the reverse mode autodiff, where you can use the notation $\overline{y} \equiv \frac{\partial \mathcal{L}}{\partial y}$ to denote an adjoint, $y \to T$ to denote pushing a variable to the global stack, and $y \leftarrow T$ to denote poping a variable from the global stack. In your submission, both the forward pass and backward pass should be included.
- 3. Estimate how many intermediate states is cached in your reverse mode autodiff program?

Reference

• Griewank A, Walther A. Evaluating derivatives: principles and techniques of algorithmic differentiation[M]. Society for industrial and applied mathematics, 2008.