LG 에너지 솔루션 실습 강의

Pytorch Tutorial

2024.06.21

고려대학교 산업경영공학과

Data Mining & Quality Analytics Lab.

임새린

Pytorch

❖ 파이썬 딥러닝 개발 프레임워크

Pytorch

❖ 파이썬 딥러닝 개발 프레임워크

- VS
- 다양한 지원 범위(C언어, 하드웨어 등) 직관적
- 강력한 배포 기능(TensorFlow Serving, TensorFlow Lite 등)
- 자동화된 최적화

- 직관적인 인터페이스
- 동적 그래프를 활용한 디버깅 및 커스터마이징
- 활발한 커뮤니티 및 오픈소스

Pytorch

❖ 파이썬 딥러닝 개발 프레임워크

- 복잡하고 추상적인 표현
- 정적 그래프로 인한 유연성 부족
- 커뮤니티 분열 (TensorFlow & TensorFlow 2.0)

- 동적 그래프로 인한 속도와 성능 하락
- 배포 및 서비스화 부족
- 문서화된 튜토리얼이 부족

Pytorch

- ❖ 파이썬 딥러닝 개발 프레임워크
 - 연구, 개발을 위해서는 직관성, 쉬운 디버깅, 쉬운 커스터마이징의 특징을 가지는 pytorch가 더 적합함

VS

Pytorch

❖ 파이썬 딥러닝 개발 프레임워크

전 세계. 지난 5년. 웹 검색.

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 1. anaconda prompt 창에서 새로운 가상환경 생성 및 실행

```
Anaconda Prompt

(base) C:쎇Users쌗korea>conda create -n mytorch python=3.11
Retrieving notices: ...working... done
Channels:
- defaults
Platform: win-64
Collecting package metadata (repodata.json): done
Solving environment: done

(base) C:쎇Users쌗korea>conda activate mytorch
(mytorch) C:쌗Users쌗korea>_
```


- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 2. 현재 GPU와 GPU driver에 맞는 CUDA Toolkit 버전 확인
 - 파이썬 버전에 맞는 CUDA toolkit과 cuDNN 설치가 필요
 - 작업 관리자에서 자신의 GPU 확인

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 2. 현재 GPU와 GPU driver에 맞는 CUDA Toolkit 버전 확인
 - 파이썬 버전에 맞는 CUDA toolkit과 cuDNN 설치가 필요
 - https://developer.nvidia.com/cuda-gpus 에서 현재 GPU가 가지고 있는 Compute Capability 확인

CUDA-Enabled GeForce and TITAN Production						
GeForce and TI	TAN Products	GeForce Notebook Products				
GPU	Compute Capability	GPU	Compute Capability			
GeForce RTX 4090	8.9	GeForce RTX 4090	8.9			
GeForce RTX 4080	8.9	GeForce RTX 4080	8.9			
GeForce RTX 4070 Ti	8.9	GeForce RTX 4070	8.9			
GeForce RTX 4060 Ti	8.9	GeForce RTX 4060	8.9			
GeForce RTX 3090 Ti	8.6	GeForce RTX 4050	8.9			
GeForce RTX 3090	8.6	GeForce RTX 3080 Ti	8.6			
GeForce RTX 3080 Ti	8.6	GeForce RTX 3080	8.6			
GeForce RTX 3080	8.6	GeForce RTX 3070 Ti	8.6			
GeForce RTX 3070 Ti	8.6	GeForce RTX 3070	8.6			

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 2. 현재 GPU와 GPU driver에 맞는 CUDA Toolkit 버전 확인
 - 파이썬 버전에 맞는 CUDA toolkit과 cuDNN 설치가 필요
 - https://www.wikiwand.com/en/CUDA#/GPUs_supported 에서 Compute Capability에 맞는 CUDA Toolkit 버전 확인

Compute Capability (CUDA SDK support vs. Microarchitecture)												
CUDA SDK Version(s)	Tesla	Fermi	Kepler (Early)	Kepler (Late)	Maxwell	Pascal	Volta	Turing	Ampere	Ada Lovelace	Hopper	Blackwell
1.0 ^[38]	1.0 – 1.1											
1.1	1.0 – 1.1+x											
2.0	1.0 – 1.1+x											
2.1 – 2.3.1 ^{[39][40][41][42]}	1.0 – 1.3											
3.0 - 3.1 ^{[43][44]}	1.0	2.0										
3.2 ^[45]	1.0	2.1										
4.0 - 4.2	1.0	2.1										
5.0 - 5.5	1.0			3.5								
6.0	1.0		3.2	3.5								
6.5	1.1			3.7	5.x							
7.0 – 7.5		2.0			5.x							
8.0		2.0				6.x						
9.0 – 9.2			3.0				7.0 – 7.2					
10.0 – 10.2			3.0					7.5				
11.0 ^[46]				3.5					8.0			
11.1 - 11.4 ^[47]				3.5					8.6			
11.5 – 11.7.1 ^[48]				3.5					8.7			
11.8 ^[49]				3.5						8.9	9.0	
12.0 – 12.5					5.0						9.0	

Tutorial

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 2. 현재 GPU와 GPU driver에 맞는 CUDA Toolkit 버전 확인
 - 파이썬 버전에 맞는 CUDA toolkit과 cuDNN 설치가 필요
 - 현재 GPU driver에서 설치 가능한 최대 CUDA Toolkit 버전 확인(최대 버전을 높이려면 더 높은 driver 버전 재설치 필요)

현재 GPU driver에서 설치 가능한 최대 CUDA Toolkit 버전

cmd 창 -> nvidia-smi

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 3. 설치 가능한 CUDA Toolkit 버전 중 pytorch와 호환되는 CUDA Toolkit 설치
 - https://pytorch.org/get-started/locally/ 에서 Pytorch 버전 확인
 - cuDNN은 자동으로 CUDA Toolkit 버전에 맞춰서 설치가 됨

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - 4. CUDA Toolkit 버전에 맞는 명령어를 통해 원하는 pytorch 설치 (https://pytorch.org/get-started/previous-versions/)
 - 5. GPU를 사용할 수 있는지 확인
 - Anaconda Prompt conda install -c conda-forge cudnn deactivate deactivate conda install -c conda-forge cudatoolkit=11.8 conda install -c conda-forge cudnn conda... —

```
(mytorch) C:\Users\korea>conda install pytorch==2.3.0 torchvision==0.18.0 torchaudio==2.3.0 pytorch-cuda=11.8 -c pytorch -c nvidia
Channels:
- pytorch
- nvidia
- defaults
- conda-forge
Platform: win-64
Collecting package metadata (repodata.json): \ _
```

```
(mytorch) C:\Users\korea>python
Python 3.11.9 | packaged by Anaconda, Inc. | (main, Apr 19 2024, 16:40:41)
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
>>> torch.cuda.device_count()
1
>>> torch.cuda.get_device_name(0)
'NVIDIA GeForce RTX 4090'
>>>
```

Tutorial

- ❖ 아나콘다 가상환경에 pytorch와 CUDA 설치하기
 - . 가상환경에 주피터 노트북 설치 및 연결하기

(mytorch) C:\Users\korea>python -m ipykernel install --user --name mytorch --display-name mytorch Installed kernelspec mytorch in C:\Users\korea\AppData\Roaming\jupyter\kernels\mytorch

Tutorial

- ❖ 파이토치 자료형
 - 자료형 : 변수가 메모리공간에 저장되는 형태(Type)로 pytorch는 tensor라는 독자적인 자료형이 있음

실수 변수는 FloatTensor

	Data type	dtype	CPU tensor	GPU tensor		
•	32-bit floating point	torch.float32 or torch.float	torch.FloatTensor	torch.cuda.FloatTensor		
	64-bit floating point	torch.float64 O F torch.double	torch.DoubleTensor	torch.cuda.DoubleTensor		
	32-bit integer (signed)	torch.int32 O F torch.int	torch.IntTensor	torch.cuda.IntTensor		
	64-bit integer (signed)	torch.int64 OF torch.long	torch.LongTensor	torch.cuda.LongTensor		
	Boolean	torch.bool	torch.BoolTensor	torch.cuda.BoolTensor		

정수 변수는 LongTensor

Tutorial

- ❖ 파이토치 자료형
 - 자료형: 변수가 메모리공간에 저장되는 형태(Type)로 pytorch는 tensor라는 독자적인 자료형이 있음

- DatFrame 이 기본 자료형
- 3차원 이상의 데이터를 다루기 어려움

- Ndarray 가 기본 자료형
- GPU 연산이 불가능
- 행렬 연산에 최적화된 패키지가 아님

- Numpy와 memory를 공유하여 접근성과 효율성이 좋음

PyTorch tensors 대비 NumPy ndarrays 의 행렬 곱셉 성능 비교

Tutorial

- ❖ 파이토치 자동 미분 with Computational Graph
 - 파이토치는 tensor의 연산이 진행될 때, computational graph를 구성함으로써 어떤 연산이 이루어졌는지를 저장

Traditional computation

computational graph

Tutorial

- ❖ 파이토치 자동 미분 with Computational Graph
 - 파이토치는 tensor의 연산이 진행될 때, computational graph를 구성함으로써 어떤 연산이 이루어졌는지를 저장
 - 저장된 연산 정보를 통해서 빠른 backpropagation 연산을 가능케 함
- Training data: $(x^1, y^1), (x^2, y^2), \dots, (x^N, y^N)$
- Goal: find the optimal parameter w^* , which minimizes the MSE

$$C = \frac{1}{2} \sum_{n=1}^{N} (\hat{y}^n - y^n)^2$$
 where $\hat{y}^n = f(w^T x^n + b)$

• Backpropagation: iteratively updating the model parameters w to decrease C as

$$w_i(t+1) = w_i(t) - \eta \frac{\partial C}{\partial w_i}$$

$$\frac{\partial C}{\partial w_i} = \sum_{n=1}^N \frac{\partial z^n}{\partial w_i} \frac{\partial \hat{y}^n}{\partial z^n} \frac{\partial C}{\partial \hat{y}^n} = \sum_{n=1}^N x_i^n \hat{y}^n (1 - \hat{y}^n) (\hat{y}^n - y^n)$$

Chain rule

- Gradient Descent Algorithm with Pytorch
 - Gradient descent algorithm에 필요한 요소는 데이터, 모델, 손실 함수와 기타 하이퍼파라미터(학습률, 학습 에폭 등)

- Gradient Descent Algorithm with Pytorch
 - Gradient descent algorithm에 필요한 요소는 데이터, 모델, 손실 함수와 기타 하이퍼파라미터(학습률, 학습 에폭 등)

- Gradient Descent Algorithm with Pytorch
 - 파이토치는 데이터셋, 데이터로더, 모델, 옵티마이저, 손실함수를 통해서 Gradient Descent Algorithm을 구현

감사합니다

