

Remarks

Prior to examination, the applicant requests entry of the amendments noted above. Claims 1-32 and a duplicate claim 28 were pending prior to this Amendment.

In the specification, numerous typographical errors were corrected. No new matter was introduced through these corrections.

In the claims section of the original application, claims 2 and 28 were cancelled. Claim 28 was inadvertently listed twice. Claims 11 and 20 were amended to better claim that which the applicant considers his invention. Claim 22 was amended to correct a typographical error. Claims 1-10, 12-19, 21 and 23-32 remain unchanged.

In the drawings, a number of replacement sheets are submitted to correct typographical errors or to enhance the readability of the figures. All of the drawing figure changes, with the exception of Figure 1E and 3, have been amended to look as they did in United States Provisional Patent Application Nos. 60/399,635 entitled "Data Dispersion and Mirroring Method with Fast Dual Erasure Correction and Multi-Dimensional Capabilities" filed on July 29, 2002, and 60/460,545 entitled "Composite Data Protection Method for Micro Level Data" filed April 4, 2003. Since these applications were incorporated into the present application by reference, no new matter has been added through these changes.

With respect to Figure 1E, the changes are supported by at least the text in paragraphs 0077 through 0080.

With respect to Figure 3, the changes are supported by at least the text in paragraph 0062.

If any fee is required for entry of this paper, the Commissioner is authorized to charge Deposit Account No. 06-0029 and is requested to notify us of the same.

Respectfully Submitted,

ROBERT HALFORD

Robert B. Leonard, #33,946
FAEGRE & BENSON LLP
2200 Wells Fargo Center
90 South Seventh Street
Minneapolis, MN 55402-3901
Telephone: (612) 766-8578

Date: January 13, 2005

M2:20572133.04

AMENDMENTS TO THE DRAWINGS

Please replace Figures 1D, 1E, 2A, 2C, 3, 5, 7, 12, 13, 14 and 17, with the attached Replacement Sheets. Annotated marked-up drawings are also provided that identify the changes in the above noted Figures.

FIG 1D

FIG 1E

200

0	0	0	0	0	0	0	0	results after 1 shift
1	0	0	1	1	1	0	0	results after 2 shifts
0	1	0	0	1	1	1	0	results after 3 shifts
0	0	1	0	0	1	1	1	results after 4 shifts
0	0	0	1	0	0	1	1	results after 5 shifts
0	0	0	0	1	0	0	1	results after 6 shifts
0	0	0	0	0	1	0	0	results after 7 shifts
0	0	0	0	0	0	1	0	results after 8 shifts,
0	0	0	0	0	0	0	1	ECC = 80

FIG 2B

210

$$\begin{aligned}
 e0 &= d0 + d3 + d4 + d5 + d6 \\
 e1 &= d1 + d4 + d5 + d6 + d7 \\
 e2 &= d2 + d5 + d6 + d7 \\
 e3 &= d0 + d4 + d5 + d7 \\
 e4 &= d0 + d1 + d3 + d4 \\
 e5 &= d0 + d1 + d2 + d3 + d6 \\
 e6 &= d1 + d2 + d3 + d4 + d7 \\
 e7 &= d2 + d3 + d4 + d5
 \end{aligned}$$

per example

$$\begin{aligned}
 0 + 1 + 1 + 0 + 0 &= 0 \\
 0 + 1 + 0 + 0 + 1 &= 0 \\
 \underline{1 + 0 + 0 + 1} &= 0 \\
 0 + 1 + 0 + 1 &= 0 \\
 0 + 0 + 1 + 1 &= 0 \\
 0 + 0 + 1 + 1 + 0 &= 0 \\
 0 + 1 + 1 + 1 + 1 &= 0 \\
 1 + 1 + 1 + 0 &= 1 \\
 \text{ECC} = 80 \text{ for data byte 9C}
 \end{aligned}$$

FIG 2C

220

$$\begin{aligned}
 d0 &= e2 + e3 + e4 + e5 \\
 d1 &= e0 + e3 + e4 + e5 + e6 \\
 d2 &= e1 + e4 + e5 + e6 + e7 \\
 d3 &= e3 + e4 + e6 + e7 \\
 d4 &= e0 + e2 + e3 + e7 \\
 d5 &= e0 + e1 + e2 + e5 \\
 d6 &= e0 + e1 + e2 + e3 + e6 \\
 d7 &= e1 + e2 + e3 + e4 + e7
 \end{aligned}$$

per example

$$\begin{aligned}
 0 + 0 + 0 + 0 &= 0 \\
 0 + 0 + 0 + 0 + 0 &= 0 \\
 0 + 0 + 0 + 0 + 1 &= 1 \\
 0 + 0 + 0 + 1 &= 1 \\
 0 + 0 + 0 + 1 &= 1 \\
 0 + 0 + 0 + 0 &= 0 \\
 0 + 0 + 0 + 0 + 0 &= 0 \\
 0 + 0 + 0 + 0 + 1 &= 1 \\
 \text{data byte} = 9C \text{ for ECC} = 80
 \end{aligned}$$

FIG 2D

Recovered Data

1F
 D2
 47

FIG 3

FIG 5

FIG 6A

FIG 6B

FIG 7

FIG 12

12/19

[E]	1301	[D]	1300
c6uc2u	u30 u26 u22 u18 u14 u10 u06 u02	c4sc0s	s28 s24 s20 s16 s12 s08 s04 s00
c6vc2v	v30 v26 v22 v18 v14 v10 v06 v02	c4tc0t	t28 t24 t20 t16 t12 t08 t04 t00
c7uc3u	u31 u27 u23 u19 u15 u11 u07 u03	c5sc1s	s29 s25 s21 s17 s13 s09 s05 s01
c7vc3v	v31 v27 v23 v19 v15 v11 v07 v03	c5tc1t	t29 t25 t21 t17 t13 t09 t05 t01
c4uc0u	u28 u24 u20 u16 u12 u08 u04 u00	c6sc2s	s30 s26 s22 s18 s14 s10 s06 s02
c4vc0v	v28 v24 v20 v16 v12 v08 v04 v00	c6tc2t	t30 t26 t22 t18 t14 t10 t06 t02
c5uc1u	u29 u25 u21 u17 u13 u09 u05 u01	c7sc3s	s31 s27 s23 s19 s15 s11 s07 s03
c5vc1v	v29 v25 v21 v17 v13 v09 v05 v01	c7tc3t	t31 t27 t23 t19 t15 t11 t07 t03

Data Flow >>>

<<< NACK

<<< ACK

FIG 13

[E]	1401	[D]	1400
c6uc2u	u30 u26 u22 u18 u14 u10 u06 u02	c4sc0s	s28 s24 s20 s16 s12 s08 s04 s00
c6vc2v	v30 v26 v22 v18 v14 v10 v06 v02	c4tc0t	t28 t24 t20 t16 t12 t08 t04 t00
c7uc3u	u31 u27 u23 u19 u15 u11 u07 u03	c5sc1s	s29 s25 s21 s17 s13 s09 s05 s01
c7vc3v	v31 v27 v23 v19 v15 v11 v07 v03	c5tc1t	t29 t25 t21 t17 t13 t09 t05 t01
c4uc0u	u28 u24 u20 u16 u12 u08 u04 u00	c6sc2s	s30 s26 s22 s18 s14 s10 s06 s02
c4vc0v	v28 v24 v20 v16 v12 v08 v04 v00	c6tc2t	t30 t26 t22 t18 t14 t10 t06 t02
c5uc1u	u29 u25 u21 u17 u13 u09 u05 u01	c7sc3s	s31 s27 s23 s19 s15 s11 s07 s03
c5vc1v	v29 v25 v21 v17 v13 v09 v05 v01	c7tc3t	t31 t27 t23 t19 t15 t11 t07 t03

Data Flow >>>

<<< NACK

<<< ACK

FIG 14

Begin with Byte 00

Transmitted

s00t00 = 18h (data = ts = 81h)

$u00v00 = 77h$ (ECC = vu = 77h)

Received

s00t00 = 1Ah (data = ts = A1h)

$u00v00 = 75h$ (ECC = vu = 57h)

So correction proceeds exactly as before in Figure 8 for byte 00.

All 32 bytes are assembled and corrected then verified via the CRC checkcode comparison.

Data byte 00 input in error is

The ECC for A1 is F8

ECC byte 00 input in error is

The ECC syndrome

EP from Table 1 \equiv d5 & e5

After corrections data = 81 hex.

<u>ECC</u>		<u>Data</u>
		1 0 1 0 0 0 0 1 = A1 hex.
1 1 1 1 1 0 0 0 = F8 hex.		
0 1 0 1 0 1 1 1 = 57 hex.		
1 0 1 0 1 1 1 1 = AF hex.		
0 0 1 0 0 0 0 0 = e5 and 0 0 1 0 0 0 0 0 = d5		
0 1 1 1 0 1 1 1 = 77 hex. and 1 0 0 0 0 0 0 1 = 81 hex.		

FIG 14A

PROCESSOR
NODES

$$[D_i] \quad d^0 d^1 d^2 d^3 d^4 d^5 d^6 d^7 \\ = st$$

$$d^0 d^1 d^2 d^3 \quad s$$

$$\begin{aligned} & su \\ & sv \quad st \quad st = [D_i] \\ & tu \quad uv \\ & tv \\ & uv \end{aligned}$$

$$[E_i] \quad e^0 e^1 e^2 e^3 e^4 e^5 e^6 e^7 \\ = uv$$

$$e^0 e^1 e^2 e^3 \quad u$$

$$e^4 e^5 e^6 e^7 \quad v$$

data encoded
with ECC

data dispersed
across 4 planes

data assembly
and recovery

data verification
and correction

FIG 17