Mineração de Dados Aula 5 – parte 2

Especialização em Ciência de Dados e suas Aplicações

Estudo de diferenças culturais

You are What you Eat (and Drink): Identifying Cultural Boundaries by Analyzing Food & Drink Habits in Foursquare.

ICWS'15

Estudo de diferenças culturais

Grande desafio: encontrar dados apropriados para uso

- Métodos tradicionais: Questionários
 - Não escalam
 - Difícil de detectar mudanças dinâmicas

Estudo de diferenças culturais

Grande desafio: encontrar dados apropriados para uso

- Métodos tradicionais: Questionários
 - Não escalam
 - Difícil de detectar mudanças dinâmicas

É possível propor algum método alternativo?

Você é o que você come

Hábitos alimentares e de bebida são elementos fundamentais em uma cultura

Redes de sensoriamento participativo

Sensoriamento de atividades humanas em larga escala!

Oportunidade sem precedentes para estudar diferenças culturais em escala global e baixo custo

Categorias Slow Food

Mapeia cada usuário n_i n $F_i = f_{1i}, f_{2i}, \dots, f_{mi}$

Mapeia cada usuário n_i n $F_i = f_{1i}, f_{2i}, \dots, f_{mi}$

 $f_{k^i} = 0 | 1$ representa se o usuário n_i gosta de f_k

Mapeia cada usuário n_i n $F_i = f_{1i}, f_{2i}, \ldots, f_{mi}$

 $f_{k^i} = 0 | 1$ representa se o usuário n_i gosta de f_k

Data from LBSNs can be used if and only if:

Data from LBSNs can be used if and only if:

1 - Associate a user to its location;

Data from LBSNs can be used if and only if:

- **1** Associate a user to its location;
- 2 Extract finite set of preferences from the data;

B C D

A

Set of preferences from the system

Data from LBSNs can be used if and only if:

- **1** Associate a user to its location;
- 2 Extract finite set of preferences from the data;
- **3** Map users' actions into the preferences.

Set of preferences from the system

Data from LBSNs can be used if and only if:

- **1** Associate a user to its location;
- 2 Extract finite set of preferences from the data;
- **3** Map users' actions into the preferences.

Data from LBSNs can be used if and only if:

- **1** Associate a user to its location;
- 2 Extract finite set of preferences from the data;
- **3** Map users' actions into the preferences.

We demonstrate with Foursquare data

Analise cultural de indivíduos

Can we define cultural signatures of different areas around the world?

Spatial evaluation

For a given geographical area:

Spatial evaluation

For a given geographical area:

- Aggregate all users' preference in normalized vectors

Spatial evaluation

For a given geographical area:

- Aggregate all users' preference in normalized vectors

Spatial evaluation

Results for countries

Spatial evaluation

Results for countries

Spatial evaluation

Results for countries

Spatial evaluation

Results for cities

Spatial evaluation

Popular areas

London (LND)

Spatial evaluation

Results for areas inside cities

Spatial evaluation

Results for areas inside cities

Temporal evaluation

Temporal evaluation

Weekdays

American cities

Most of the cities follow the general pattern of the country

Considered features: spatial / temporal

- Each area *a* has a normalized preference vector in 4 disjoint periods of the day and on weekdays and weekends

General preference vector

D=drink / **FF**=fast food / **SF**=slow food

Identifying cultural boundaries

Preference vector for area (time and space)

Identifying cultural boundaries

Preference vector for area
(time and space)

Principal Component Analysis (PCA)

Preference vector for area (time and space)

Principal Component Analysis (PCA)

k-means to group areas in the space defined by the PCs

Clustering areas inside cities

Clustering cities

PSN Aplicability: cultural diferences

We can use a **partial set of the features** and **specific time**:

- E.G. Drink at weekend

K = 3 (cities)

PSN Aplicability: cultural diferences

We can use a **partial set of the features** and **specific time**:

- E.G. Drink at weekend

E outros traços culturais?

E outros traços culturais?

Features

→ Cada cidade c é representada por um vetor de preferências composto por classes de cervejas (features)

Cidade A

Cidade B

16

Resultados

→ Dendograma para o agrupamento realizado com as cidades

Engagement of Polarized Groups

Jordan Kobellarz

Alexandre Graeml

UTFPR

Michelle Reddy

Stanford University

• Parrot Talk: Retweeting Among Twitter Users During the 2018 Brazilian Presidential Election Webmedia 2019

Focus

User engagement on Twitter regarding 2018 Brazil presidential election

Collection of

~ 36 Milion tweets

related to 2018 Brazilian Presidential Election

114.512

Unique hashtags

100 most popular

Help of volunteers

#AndradeJaEra, #Eleições2018, #FolhaFakeNews, #UOLnasUrnas, #Brasil, #InformacaocontraoAchismo, #HoraDaVirada, #VemProDebate, #ViraVoto, #VotoEmCedula, #RodaViva, #AFalhaéCafonérrima, #G1, #SeuVotoMePõeEmRisco, #FAKE, #NãoAceitaremosFraude, #SanatórioGeral, #EAgoraTSE, #Folha, #NaoAceitaremosFraude, #IbopeFake, #viravoto, #democracia, #SuasticaFake, #FakeNews, #Brazil, #SomosTodosReginaDuarte, #delegadofrancischini, #Eleicoes2018 e #BrasilDecide.

#NasRuasComBolsonaro, #BolsonaroSim, #MudaBrasil17, #Bolsonaro17, #Bolsonaro, #BrasilComBolsonaro17, #NordesteÉ17, #BolsonaroPresidente, #NemVemQueNaoTemPT, #PTNuncaMais, #BolsonaroPresidenteEleito, #LulaTaPresoBabaca, #HaddadNãoÉCristão, #B17, #Nordeste17, #OLulaTaPresoBabaca, #EleSim, #bolsonaro17, #PTNão, #PTnão, #FolhaP*****DoPT (Conteúdo impróprio), #AcabouaPiranhagemPT, #BolsonaroPresidente17, #elesim, #bolsonaro e #PTnao.

#Haddad13, #Caixa2doBolsonaro, #HaddadPresidente, #HaddadSim, #EleNao, #BrasilViraHaddad, #EleNão, #AgoraÉHaddad, #BolsonaroNão, #ViraVotoHaddad13, #CassaçãoDoBolsonaro, #LulaLivre, #bolsonaroCagao, #Caixa2DoBolsonaro, #Haddad, #elenao, #ViraVirouHaddad13, #ELENAO, #MaisLivrosMenosArmas e #haddadpresidente.

76 agreements

#AndradeJaEra, #Eleições2018, #FolhaFakeNews, #UOLnasUrnas, #Brasil, #InformacaocontraoAchismo, #HoraDaVirada, #VemProDebate, #ViraVoto, #VotoEmCedula, #RodaViva, #AFalhaéCafonérrima, #G1, #SuUVaroVer Etaticap #EAKI, #Da AceitaremosFraude, #SanatórioGeral, #EAgoraTSE, #Folha, #NaoAceitaremosFraude, #IbopeFake, #viravoto, #democracia, #SuasticaFake, #FakeNews, #Brazil, #SomosTodosReginaDuarte, #delegadofrancischini, #Eleicoes2018 e #BrasilDecide.

#Haddad13, #Caixa2doBolsonaro, #HaddadPresidente, #HaddadSim, #EleNao, #BrasilViraHaddad, #EleNão, #AgoraÉHaddad, #BolsonaroNão, #ViraVotoHaddad13, #CassaçãoDoBolsonaro, #LulaLivre, #bolsonaro Control Bolsonaro, #Haddad, #elenao, #ViraVirouHaddad13, #ELENAO, #MaisLivrosMenosArmas e #haddadpresidente.

Network of co-occurrences of hashtags (all tweets)

Semi-supervised learning using gaussian fields and harmonic functions (Zhu, 2003)

Network of co-occurrences of hashtags (all tweets)

Semi-supervised learning using gaussian fields and harmonic functions (Zhu, 2003)

Classification of **78,649** hashtags (68.7% of total)

Only tweets that have one those

Classification of Users

$$P(H) = \frac{|H_R| - |H_L|}{|H|},$$

$$H = H_R + H_L + H_?$$

Classification of Users

$$P(H) = \frac{|H_R| - |H_L|}{|H|},$$

$$H = H_R + H_L + H_?$$

Classification of Users

$$P(H) = \frac{|H_R| - |H_L|}{|H|},$$

$$H = H_R + H_L + H_?$$

							Neutral													
-1.0	6.0-	-0.8	-0.7	9.0-	-0.5	-0.4	-0.3	-0.2	-0.1	0.0	+0.1	+0.2	+0.3	+0.4	+0.5	+0.6	+0.7	+0.8	+0.9	+1.0

Engagement Graph

Weight represents the amount of retweets

Engagement Graph

"Echo Chambers" [Barberá et al. 2015]

Engagement Graph

Polarity distribution

Binominal for polarization [Fiorina e Abrams, 2008]

Interaction between users

Interaction between users

Light in the end of the tunnel?

Ongoing research

Bridge mechanism

Several Phenomena Worth Investigating

Gender Differences

Willy Muller (visiting student)

Method to quantify gender preferences in different regions

Identification of "anomalous" areas

Gender Matters! Analyzing Global Cultural Gender Preferences for Venues Using Social Sensing EPJ Data Science, 2017

Urban Planning and Place Branding UTFPR

Using Social Media to Improve the Management of Branding and Marketing of Cities: Findings from Curitiba CoUrb 2018, Planning Practice & Research, 2019 (under revision)

H: Beer Street

sentiment

Overall

200

400

Number of comments

600

Understanding Success

Juliana Viscenheski

Better understand the success recipes around the world (New recommendation systems)

From Pizza to Curry: Preferences for Recipes Around the World Webmedia 2019

Business Functioning Dynamics

Leonardo de Assis

VLDB Workshops, 2018

Popularity time series of places is an important descriptor ("signature" of a place)

