McCullough T Cells Summary (All)

Stanley Yang
1/5/2018

All T cell data

Sample Summary for all T cells

A tibble: 7 x 2

	Group	N
	<fctr></fctr>	<int></int>
1	Aged.Female.Brain.NoStim	5
2	${\tt Aged.Female.Brain.PlusStim}$	5
3	Aged.Male.Brain.NoStim	6
4	Aged.Male.Brain.PlusStim	4
5	Aged.Male.Spleen.NoStim	5
6	Aged.Male.Spleen.PlusStim	5
7	Young.Male.Brain.NoStim	5

Normalize and Filter the data

Before normalization

	lib.size	norm.factors
AgedFemale.Brain.NoStim.13_S10	9655634	1
AgedFemale.Brain.NoStim.14_S1	14866050	1
AgedFemale.Brain.NoStim.15_S6	6654543	1
AgedFemale.Brain.NoStim.16_S12	10970566	1
AgedFemale.Brain.NoStim.17_S8	12591901	1
${\tt AgedFemale.Brain.PlusStim.23_S11}$	4920738	1
AgedFemale.Brain.PlusStim.24_S9	6062158	1
AgedFemale.Brain.PlusStim.25_S5	9203922	1
AgedFemale.Brain.PlusStim.26_S1	3954801	1
AgedFemale.Brain.PlusStim.27_S8	2216762	1
AgedMale.Brain.NoStim.10_S9	19573103	1
AgedMale.Brain.NoStim.11_S10	18771250	1
AgedMale.Brain.NoStim.12_S11	20589456	1
AgedMale.Brain.NoStim.7_S6	24973886	1
AgedMale.Brain.NoStim.8_S7	10293283	1
AgedMale.Brain.NoStim.9_S8	16088402	1
AgedMale.Brain.PlusStim.19_S4	6391537	1
AgedMale.Brain.PlusStim.20_S3	2241662	1
AgedMale.Brain.PlusStim.21_S7	3850380	1
AgedMale.Brain.PlusStim.22_S2	1156594	1
AgedMaleSpleenNoStim30_S10	8998764	1
AgedMaleSpleenNoStim31_S7	9213356	1
AgedMaleSpleenNoStim32_S12	9650685	1
AgedMaleSpleenNoStim33_S3	14709415	1
AgedMaleSpleenNoStim34_S4	10176505	1
AgedMaleSpleenPlusStim36_S2	11101911	1

AgedMaleSpleenPlusStim37_S6	9932756	1
AgedMaleSpleenPlusStim38_S5	8586075	1
AgedMaleSpleenPlusStim39_S9	6745077	1
AgedMaleSpleenPlusStim40_S11	11188159	1
YoungMale.Brain.NoStim.2_S1	15470386	1
YoungMale.Brain.NoStim.3_S2	15558582	1
YoungMale.Brain.NoStim.4_S3	12213798	1
YoungMale.Brain.NoStim.5_S4	12781536	1
YoungMale.Brain.NoStim.6_S5	13326420	1

before filtering low-count genes

dim.y.counts.
total number of genes detected 38924
total sample number 35

keep the genes that have more than 1 count per million (cpm) in at least 2 samples

dim.y.counts.

total number of genes after filtering 12638 total sample number 35

normalize the filtered genes across all samples

	lih siza	norm.factors
AgedFemale.Brain.NoStim.13_S10	8450652	1.346
AgedFemale.Brain.NoStim.14_S1	12829959	1.249
AgedFemale.Brain.NoStim.15_S6	5775658	1.110
AgedFemale.Brain.NoStim.16_S12	9689366	1.200
AgedFemale.Brain.NoStim.17_S8	10768556	1.200
AgedFemale.Brain.PlusStim.23_S11	3558217	0.780
AgedFemale.Brain.PlusStim.24_S9	3879926	0.589
AgedFemale.Brain.PlusStim.25_S5	6195711	0.559
AgedFemale.Brain.PlusStim.26_S1	2247330	0.941
AgedFemale.Brain.PlusStim.27_S8	1083591	0.692
AgedMale.Brain.NoStim.10_S9	16743058	0.998
AgedMale.Brain.NoStim.11 S10	16260522	1.018
AgedMale.Brain.NoStim.12_S11	17521858	0.967
AgedMale.Brain.NoStim.12_S11 AgedMale.Brain.NoStim.7_S6	21581567	0.966
AgedMale.Brain.NoStim.7_S0	9004501	0.792
_	13854192	0.792
AgedMale.Brain.NoStim.9_S8	4919751	0.925
AgedMale Brain PlusStim 19_S4		
AgedMale.Brain.PlusStim.20_S3	1531051	1.010
AgedMale.Brain.PlusStim.21_S7	2536233	0.631
AgedMale.Brain.PlusStim.22_S2	746962	0.859
AgedMaleSpleenNoStim30_S10	7317320	1.511
AgedMaleSpleenNoStim31_S7	7520542	1.461
AgedMaleSpleenNoStim32_S12	7904050	1.439
AgedMaleSpleenNoStim33_S3	12378836	1.460
AgedMaleSpleenNoStim34_S4	8315177	1.433
AgedMaleSpleenPlusStim36_S2	8927352	1.108
AgedMaleSpleenPlusStim37_S6	7522045	1.149
AgedMaleSpleenPlusStim38_S5	6625479	1.189

Figure 1: MDS plot

AgedMaleSpleenPlusStim39_S9	5092337	1.252
AgedMaleSpleenPlusStim40_S11	8254639	1.057
YoungMale.Brain.NoStim.2_S1	13277300	0.864
YoungMale.Brain.NoStim.3_S2	13244514	0.679
YoungMale.Brain.NoStim.4_S3	10078524	0.959
YoungMale.Brain.NoStim.5_S4	10953635	1.009
YoungMale.Brain.NoStim.6 S5	11336934	0.969

Explore the data samples

MDS plot

to check the distance among samples (Figure 1)

Principal Component Analysis (PCA)

- 1. scree plot to show all possible components for variance explained
- proportion of variance explained for each individual components (Figure 2)
- cumulative proportion of variance explained (Figure 3)
- 2. PCA plot to show the first, second and third components
- Tissue difference between brain and spleen explains the variance for the first component, as most of sample from brain (circle) is larger than -25 on PC1 axis whereas samples from spleen tissue (triangle) is less -25 on PC1 axis (Figure 4).
- Stimulation may explain the variance as the second component, as most of sample without stimulation (circle) is above 0 on PC2 axis whereas samples with stimulation (triangle) is below 0 on PC1 axis (Figure 5).
- Dimention PC2 and PC3 of PCA plot are constructed in Figure 6 and Figure 7. There is no obvious factor that contribute to PC3.

Figure 2: Scree Plot

Figure 3: Scree Plot

Figure 4: PCA Plot

Figure 5: PCA Plot

Figure 6: PCA Plot

Figure 7: PCA Plot

Differential expression analysis

testing for differential expression

- 1. Methods for DE gene analysis (edgeR package)
- I use generalized linear model based quasi-likelihood (QL) F-tests (glmQLFtest) instead of likelihood ratio test (LRT) for find DE genes as they give stricter error rate control by accounting for the uncertainty in dispersion estimation. (The old DE gene lists were made by LRT methods)
- There are two kinds of QL F-tests used in DE gene analysis, they are marked in the output files
 - glmTreat_1 : identifies differential expression based on statistical significance (FDR < 0.05 as a cutoff) regardless of how small the difference might be. (1 means the FC = 1)
 - glmTreat_1.5: identifies the differential expression fold changes are significantly greater than a specified fold change which is 1.5 in this case. (1.5 means FC=1.5, can be changed)
- 2. list of all the comparisions and their meanings:
- a1 BrysSp.A.M.NS = Aged.Male.Brain.NoStim Aged.Male.Spleen.NoStim
 - The difference between unstimulated brain and spleen T-cells in aged male mice.
 - Positive FC indicates the gene expression is higher in Aged.Male.Brain.NoStim than in Aged.Male.Spleen.NoStim, negative FC indicates the gene expression is lower in Aged.Male.Brain.NoStim than in Aged.Male.Spleen.NoStim. The same rule applies to the rest of the comparisons.
 - a1_BrvsSp.A.M.NS will be attached to the output file names indicating this comparison type. The same rule for the rest of the comparisons.
- a2_BrvsSp.A.M.PS = Aged.Male.Brain.PlusStim Aged.Male.Spleen.PlusStim
 - The difference between stimulated brain and spleen T-cells in aged male mice.
- $\hbox{$\circ$ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Brain.NoStim) (Aged.Male.Spleen.PlusStim Aged.Male.Spleen.NoStim) } \\ \hbox{\circ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Brain.NoStim) (Aged.Male.Spleen.PlusStim Aged.Male.Spleen.PlusStim Aged.Male.Spleen.NoStim) } \\ \hbox{\circ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Brain.NoStim) (Aged.Male.Spleen.PlusStim Aged.Male.Spleen.PlusStim Aged.Male.Spleen.PlusStim Aged.Male.Spleen.NoStim) } \\ \hbox{\circ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Spleen.NoStim) (Aged.Male.Spleen.NoStim) } \\ \hbox{\circ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Spleen.NoStim) } \\ \hbox{\circ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Brain.PlusStim Aged.Male.Spleen.NoStim) } \\ \hbox{\circ a3_Stim_BrvsSp.A.M = (Aged.Male.Brain.PlusStim Aged.Male.Brain.PlusStim Aged.Male.Bra$
 - The difference between Brain and Spleen T cells in response to stimulation (interaction effect between tissue and stimulation).
- a4 AvsY.M.Br.NS = Aged.Male.Brain.NoStim Young.Male.Brain.NoStim
 - The difference between unstimulated T-cells in aged and young male mice.
- a5_FvsM.A.Br.NS = Aged.Female.Brain.NoStim Aged.Male.Brain.NoStim
 - The difference between unstimulated T-cells in female and male mice.
- \bullet a6 FvsM.A.Br.PS = Aged.Female.Brain.PlusStim Aged.Male.Brain.PlusStim
 - The difference between stimulated T-cells in female and male mice.
- a7_Stim_FvsM.A.Br = (Aged.Female.Brain.PlusStim Aged.Female.Brain.NoStim) (Aged.Male.Brain.PlusStim Aged.Male.Brain.NoStim),

- The difference between brain T-cells of female and male in response to stimulation (interaction effect between sex and stimulation).
- $a8_Stim_A.M.Br = Aged.Male.Brain.PlusStim Aged.Male.Brain.NoStim$
 - The difference between stimulated and unstimulated T-cells in aged male brain
- a9 PSvsNS A.F.Br = Aged.Female.Brain.PlusStim Aged.Female.Brain.NoStim
 - The difference between stimulated and unstimulated T-cells in aged female brain
- a10 PSvsNS A.M.Sp = Aged.Male.Spleen.PlusStim Aged.Male.Spleen.NoStim
 - The difference between stimulated and unstimulated T-cells in aged male spleen
- 3. Downstream analysis of DE gene set
- Gene ontology analysis:
 - all the genes from **glmTreat_1** or **glmTreat_1.5** lists with FDR<0.05 were put into gene ontology analysis.
 - The Up and Down columns indicate the number of genes within the GO terms that are sigificantly up- and down-regulated in this differential expression comparison, respectively. The P.Up and P.Down columns contain the p-values for over-representation of the GO term in the up- and down-regulated genes, respectively.
 - GO terms with p-value less than 10^{-5} were kept.
- KEGG pathway analysis
 - all the genes from glmTreat_1 or glmTreat_1.5 lists with FDR<0.05 were put into KEGG analysis.
 - same meaning for \mathbf{Up} and \mathbf{Down} , and $\mathbf{P.Up}$ and $\mathbf{P.Down}$ columns as in GO terms
 - I kept p-value < 0.05 for KEGG analysis. May need p $< 10^{-5}$ for more stringent threthold.
- 4. Decode output files of DE gene lists and down stream analysis

Take a2_BrvsSp.A.M.PS comparison as an example: first refer to comparison table to find out this comparison means: The difference between stimulated brain and spleen T-cells in aged male mice. It contains four files starting with all Tcells followed by the name of this comparison:

- all Tcells a2 BrvsSp.A.M.PS glmTreat 1.txt
 - glmTreat using glm QL F-tests for significant DE genes (FDR $\!<\!0.05)$ no matter how small the change is.
 - DE gene list can be further maually put into KEGG or GO online tool for detailed analysis
- all_Tcells_a2_BrvsSp.A.M.PS_glmTreat_1.5.txt
 - glmTreat using glm QL F-tests for significant DE genes (FDR<0.05) that has a fold change greater than 1.5 in either direction
- all Tcells a2 BrvsSp.A.M.PS KEGG 1.txt
 - KEGG analysis of DE genes (FDR<0.05) from glmTreat_1 file
 - not all the comparison has an output file of KEGG analysis, only the gene sets meet KEGG
 analysis p-value standard will have this output file. Same rule applies to gene ontology analysis.
- all Tcells a2 BrvsSp.A.M.PS KEGG 1.5.txt
 - KEGG analysis of DE genes (FDR<0.05) from glmTreat 1.5 file
- all Tcells a2 BrvsSp.A.M.PS Ont 1.5.txt
 - Gene Ontology analysis of DE genes (FDR<0.05) from glmTreat 1.5 file
 - There is no output of Gene Ontology analysis of DE genes (FDR<0.05) from glmTreat 1 file

heatmap visualization of sample clustering

Heatmaps are a popular way to display DE results for publication pruposes. Here I generated a sample heatmap based on top 100 DE genes (**glmTreat_1.5**) between unstimulated brain and spleen T-cells in aged male mice (comparison code: a1_BrvsSp.A.M.NS) (Figure 8).

Figure 8: heat map across all the samples using the top 100 most DE genes between brain and spleen samples (in aged male mice)