Iloczyn skalarny

1. Iloczynem skalarnym $\vec{u}\cdot\vec{v}$, dwóch wektorów \vec{u} , \vec{v} nazywamy nazywamy iloczyn długości tych wektów przez cosinus kąta zawartego między nimi. Czyli

$$\vec{u} \cdot \vec{v} = |\vec{u}| |\vec{v}| \cos \angle (\vec{u}, \vec{v})$$
.

- 2. Jeśli mnożone wektory są równoległe, to $\vec{u} \cdot \vec{v} = \pm |\vec{u}| |\vec{v}|$.
- 3. Kąt między niezerowymi wektorami można obliczyć według wzoru

$$\cos \angle (\vec{u}, \vec{v}) = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| |\vec{v}|}.$$

Iloczyn skalarny podlega prawom:

1. prawu przemienności

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u},$$

2. Prawu rozdzielności względem dodawania:

$$\vec{w} \cdot (\vec{u} + \vec{v}) = \vec{w} \cdot \vec{u} + \vec{w} \cdot \vec{v},$$

3. Prawu łączności względem czynnika liczbowego

$$a(\vec{u} \cdot \vec{v}) = (a\vec{u}) \cdot \vec{v} = \vec{u} \cdot (a\vec{v}), \quad a \in \mathbb{R}.$$

4. Na ogół

$$\vec{w} \cdot (\vec{u} \cdot \vec{v}) \neq (\vec{w} \cdot \vec{u}) \cdot \vec{v}.$$

- 5. Wektory \vec{u} oraz \vec{v} są prostopadłe, jeśli $\vec{u} \cdot \vec{v} = 0$.
- 6. Jeśli wektor $\vec{u} = [x_1, ..., x_n], \ \vec{v} = [y_1, ..., y_n],$ to iloczyn skalarny

$$\vec{u} \cdot \vec{v} = x_1 y_1 + \dots + x_2 y_2.$$

Przykład. Znaleźć wartość liczbową skalara $3|\vec{v}|-2\vec{v}\cdot\vec{w}+4\vec{w}^2$, gdy $|\vec{v}|=\frac{1}{3}$, $|\vec{w}|=6$, $\angle(\vec{v},\vec{w})=60^0$.

Iloczyn wektorowy

Obok mnożenia wektorów dającego w wyniku liczbę, czyli skalar, rozważamy jeszcze jeden typ mnożenia wektorowego w wyniku którego, otrzymujemy wektor.

 $Iloczynem\ wektorowym$, dwóch wektorów \vec{u} i \vec{v} nazywamy wektor \vec{w} mający następujące własności:

1. Długość wektora \vec{w} jest równa polu równoległoboku zbudowanego na wektorach \vec{u} i \vec{v} , czyli

$$|\vec{w}| = |\vec{u}| |\vec{v}| \sin \angle (\vec{u}, \vec{v}).$$

- 2. Wektor \vec{w} jest prostopadły do płaszczyzny tego równoległoboku, jest więc prostopadły do wektora \vec{u} i wektora \vec{v} . Zatem $\vec{w} \cdot \vec{u} = 0$ i $\vec{w} \cdot \vec{v} = 0$.
- 3. Wektory \vec{u} , \vec{v} , \vec{w} wzięte we wskazanym porządku tworzą układ prawoskrętny. Iloczyn wektorowy wektorów \vec{u} i \vec{v} oznaczamy symbolem $\vec{u} \times \vec{v}$. Iloczyn wektorowy:
- 1. Nie podlega prawu przemienności. Jest antysymetryczny, tzn.

$$\vec{u} \times \vec{v} = -\vec{v} \times \vec{u},$$

2. Jest rozdzielny względem sumy wektorów:

$$\vec{u} \times (\vec{v}_1 + \vec{v}_2) = \vec{u} \times \vec{v}_1 + \vec{u} \times \vec{v}_2,$$

3. Podlega prawu łączności względem czynnika liczbowego

$$a(\vec{u} \times \vec{v}) = (a\vec{u}) \times \vec{v} = \vec{u} \times (a\vec{v}), \quad a \in \mathbb{R}.$$

Jeśli iloczyn wektorowy dwóch wektorów $\vec{u} \times \vec{v}$ pomnożymy skalarnie przez trzeci wektor \vec{w} , to otrzymamy tak zwany iloczyn mieszany $(\vec{u} \times \vec{v}) \cdot \vec{w}$.

Iloczyn mieszany ma prosty sens geometryczny, a mianowicie wartość bezwzględna iloczynu mieszanego jest równa objętości rownoległościanu zbudowanego na wektorach $\vec{u}, \vec{v}, \vec{w}$.

Iloczyn mieszany trzech wektorów jest równy zeru wtedy i tylko wtedy gdy istnieją reprezentanty tych wektorów, które dają się umieścić na jednej płaszczyźnie.

Iloczyn mieszany ma tę własność, że nie zmienia się przy cyklicznym przestawieniu czynników:

$$(\vec{u} \times \vec{v}) \cdot \vec{w} = (\vec{v} \times \vec{w}) \cdot \vec{u} = (\vec{w} \times \vec{u}) \cdot \vec{v}.$$