An Introduction to cxreg

Younghoon Kim Navonil Deb Sumanta Basu

July 01, 2025

Contents

Introduction	1
Installation	
Example: classo	3
Example: cglasso	7

Introduction

cxreg is a package that fits complex-valued penalized regressions (Lasso) and Gaussian likelihoods (graphical Lasso) using an exact pathwise coordinate descent method. Similar to the well-known package glmnet (2010) for Lasso, cxreg computes the regularization path for complex-valued linear regression with a lasso penalty, referred to as classo, over a grid of values for the regularization parameter lambda. Likewise, to fit complex-valued Graphical Lasso models (2008), the regularization path is computed via cglasso. The package includes methods for prediction, cross-validation functions, printing and plotting utilities, as well as fitting for both model types.

The authors of cxreg are Navonil Deb and Sumanta Basu, with contributions from Younghoon Kim. The R package is maintained by Younghoon Kim.

This vignette describes basic usage of functions related to classo and cglasso models in 'cxreg' package in R. There is an original description of the algorithm that should be useful:

• "Regularized estimation of sparse spectral precision matrices"

classo solves the following problem: For $Y \in \mathbb{C}^n$ and $X \in \mathbb{C}^{n \times p}$,

$$\min_{\beta \in \mathbb{C}^p} \frac{1}{2n} \|Y - X\beta\|_2^2 + \lambda \|\beta\|_1,$$

over a grid of values of λ covering the entire range of possible solutions. Here, since the absolute of complex-values means a complex modulus, $\beta \in \mathbb{C}^p$ so that the ℓ_1 -penalty can be viewed as

$$\|\beta\|_1 = \sum_{j=1}^p |\beta_j| = \sum_{j=1}^p \|\text{Re}(\beta_j) + \text{Im}(\beta_j)\|_2,$$

which is a group Lasso with p groups, each of size 2.

Similarly, cglasso seeks the minimizer of Whittle's approximate likelihood (1951). For a p-dimensional Gaussian time series $X_{t=1}^n$, one can compute the p-dimensional complex-valued discrete Fourier transforms (DFT) at the Fourier frequencies $\omega_j = 2\pi j/n$, where $j \in F_n := \left\{-\left[\frac{n-1}{2}\right], \ldots, \left[\frac{n}{2}\right]\right\}$:

$$d_j := d(\omega_j) = \frac{1}{\sqrt{n}} \sum_{t=1}^n X_t \exp(-it\omega_j).$$

Note that $d_j \sim \mathcal{N}_{\mathbb{C}}(0, f(\omega_j))$, where $f(\omega_j)$ is the spectral density, commonly estimated by averaging the periodogram $I(\omega_j) = d(\omega_j)d^{\dagger}(\omega_j)$ over a bandwidth of 2m+1 frequencies:

$$\hat{f}(\omega_j) = \frac{1}{2\pi(2m+1)} \sum_{|k| \le m} I(\omega_{j+k}), \quad j \in F_n.$$
 (1)

The approximation to the negative log-likelihood then takes the form:

$$\sum_{k=j-m}^{j+m} \log \det f^{-1}(\omega_j) - \sum_{k=j-m}^{j+m} d_k^{\dagger} f^{-1}(\omega_j) d_k.$$

Finally, by rearranging the components used to construct $\hat{f}(\omega_j)$ and adding an ℓ_1 -penalty on the off-diagonal entries of the inverse spectral density, $\|\Theta\|_{1,\text{off}} = \sum_{k \neq \ell} |\Theta_{k,\ell}| = \sum_{k \neq \ell} \|\text{Re}(\Theta_{k,\ell}) + \text{Im}(\Theta_{k,\ell})\|_2$, one obtains the estimator:

$$\hat{\Theta}_j := \hat{\Theta}(\omega_j) = \arg\min_{\Theta \in \mathcal{H}_{++}^p} \left\{ \operatorname{trace}(\Theta \hat{f}(\omega_j)) - \log \det \Theta + \lambda \|\Theta\|_{1, \text{off}} \right\},\,$$

where \mathcal{H}^p_{++} represents the set of $p \times p$ symmetric positive definite matrices. Throughout the illustrative example in this document, we drop the subscript j and focus on deriving $\hat{\Theta}$ for a given \hat{f} .

From a numerical standpoint, there are two formulations for complex-valued graphical Lasso (see Section 5 in (2024)), where a similar argument can be made in standard graphical Lasso (e.g., (2018)).

CGLASSO-sc1: The first formulation is to solve the complex-valued graphical Lasso with scaled spectral density matrix (called spectral coherence), $\hat{R} = D^{-1}\hat{f}D^{-1}$ with $D^2 = \text{diag}(\hat{f}_{1,1}, \dots, \hat{f}_{p,p})$, and scale back once the estimates are obtained. The corresponding optimization problem is

$$\hat{\Theta} = D^{-1}\hat{K}D^{-1}, \quad \hat{K} = \arg\min_{\Theta \in \mathcal{H}_{++}^p} \left\{ \operatorname{trace}(\hat{R}\Theta) - \log \det \Theta + \lambda \|\Theta\|_{1, \text{off}} \right\}.$$
 (CGLASSO-sc1)

This is equivalent to a equation (9) in (2018) for the graphical lasso with weighted penalty. The entry-wise weights determined by D as $\lambda_{k,\ell} \propto D_{k,k} D_{\ell,\ell} = \sqrt{\hat{f}_{k,k} \hat{f}_{\ell,\ell}}$.

CGLASSO-sc2: The second formulation takes the spectral density as the original input. In each iteration of CLASSO.COV within Algorithm 3 in (2024), we scale the partitioned W, working inverse spectral density, with the corresponding diagonal entries of the estimated spectral density. The Lasso outputs are scaled back to obtain rows and columns of W. Specifically, we implement the following update for kth row and column:

$$W_{11}^{\text{scl}} \leftarrow D_{11}^{-1} W_{11} D_{11}^{-1}, \quad D_{11}^{2} = \text{diag}(W_{11}) = \text{diag}(P_{11}), \quad \mathbf{p}_{12}^{\text{scl}} \leftarrow D_{11}^{-1} \mathbf{p}_{12},$$

$$\hat{\beta}^{\text{scl}} = \text{CLASSO.COV}(W_{11}^{\text{scl}}, \mathbf{p}_{12}^{\text{scl}}, \mathcal{B}_{.,k}^{(0)}, \lambda), \qquad (CGLASSO\text{-sc2})$$

$$\mathcal{B}_{.,k}^{(0)} \leftarrow \hat{\beta}^{\text{scl}}, \quad \hat{\beta} \leftarrow D_{11}^{-1} \hat{\beta}^{\text{scl}}, \quad \mathbf{w}_{12} \leftarrow W_{11} \hat{\beta},$$

where the scaling matrix D_{11} is similar to D is CGLASSO-sc1, except that the last diagonal entry $D_{p,p}$ is disregarded in every update due to absence of the last row and column.

Installation

Like other R packages on Github, it can be downloaded by the command:

```
# library(devtools)
# devtools::install_github("yk748/cxreg")
```

Example: classo

The purpose of this section is to give users a general sense of the package regarding classo. We will briefly go over the main functions, basic operations and outputs. cxreg can be loaded using the library command:

```
library(cxreg)
```

We load a set of data created beforehand for illustration:

```
data(classo_example)
x <- classo_example$x
y <- classo_example$y</pre>
```

Note that 'x' is already standardized, which makes the columns in X orthogonal. The classo provides the orthogonalization, and standardization=TRUE is the default. The necessity of the standardization is described in the original paper (2024).

We fit the model using the most basic call to classo. In addition to standardization, the intercept=FALSE is used as a default, which means the complex-valued constant is not considered. This is another difference from the glmnet package.

```
fit <- classo(x,y)
```

fit is an object of class classo that contains all the relevant information of the fitted model for further use. Various methods are provided for the object such as plot, coef, and predict, just like glmnet package.

We can visualize the coefficients by executing the 'plot' method:

```
plot(fit)
```


Unlike glmnet, the real (Re) and imaginary (Im) parts of the coefficients are displayed separately. It shows the path of its coefficients in the two parts separately against the ℓ_1 -norm of the whole coefficient vector as λ varies. Users may also wish to annotate the curves: this can be done by setting label = TRUE in the plot command.

We can obtain the model coefficients at one or more λ 's within the range of the sequence:

coef(fit, s=0.1)

```
##
                                 s1
##
  V1
        4.009883e-01-2.971462e-01i
  ٧2
        9.890659e-01+1.954857e+00i
##
##
   VЗ
        1.034953e-01-3.122989e-02i
##
   ۷4
        0.000000e+00+0.000000e+00i
##
   ۷5
        0.000000e+00+0.000000e+00i
##
  ۷6
        2.280758e-02-6.980758e-02i
##
  ۷7
       -5.060984e-05-7.355635e-04i
       -1.128296e-01+2.628501e-02i
##
  ٧8
        0.000000e+00+0.000000e+00i
##
  ۷9
##
  V10
        8.409314e-02-2.585528e-04i
  V11 -3.891646e-02+4.569846e-02i
        7.757692e-02-1.015113e-02i
  V13 -5.601959e-02-5.477926e-03i
##
  V14
        0.000000e+00+0.000000e+00i
## V15 -8.651153e-02+6.299678e-03i
## V16 0.000000e+00+0.000000e+00i
```

```
## V17 0.000000e+00+0.000000e+00i
## V18 -1.724885e-05-4.515108e-04i
## V19 -9.358841e-02-1.049761e-01i
## V20 -3.741381e-02-5.181979e-03i
```

Users can also make predictions at specific λ 's with new input data: Note that the third line in the following chunk is about standardization, whose purpose is mentioned above.

The function classo returns a sequence of models for the users to choose from. In many cases, users may prefer the software to select one of them. Cross-validation is perhaps the simplest and most widely used method for that task. cv.classo is the main function to do cross-validation here, along with various supporting methods such as plotting and prediction.

```
cvfit <- cv.classo(x,y,trace.it = 1)</pre>
```

```
## Training
## Fold: 1/10
## Fold: 2/10
## Fold: 3/10
## Fold: 4/10
## Fold: 5/10
## Fold: 6/10
## Fold: 7/10
## Fold: 8/10
## Fold: 9/10
## Fold: 10/10
```

'cv.classo' returns a 'cv.classo' object, a list with all the ingredients of the cross-validated fit.

```
plot(cvfit)
```


This plots the cross-validation curve (red dotted line) along with upper and lower standard deviation curves along the λ sequence (error bars). Two special values along the λ sequence are indicated by the vertical dotted lines. 'lambda.min' is the value of λ that gives minimum mean cross-validated error, while 'lambda.lse' is the value of λ that gives the most regularized model such that the cross-validated error is within one standard error of the minimum.

We can use the following code to get the value of 'lambda.min' and the model coefficients at that value of λ :

```
cvfit$lambda.min
```

[1] 0.2574575

```
coef(cvfit, s = "lambda.min")
```

```
##
                            s1
## V1
        0.30900105-0.2366801i
        0.94977208+1.8260644i
##
   V2
##
   VЗ
        0.0000000+0.0000000i
##
   ۷4
        0.00000000+0.0000000i
##
   ۷5
        0.00000000+0.0000000i
   V6
        0.00000000+0.0000000i
  ۷7
        0.00000000+0.0000000i
##
##
   ٧8
        0.00000000+0.0000000i
        0.00000000+0.0000000i
  ۷9
  V10
        0.00000000+0.0000000i
        0.00000000+0.0000000i
## V11
```

```
## V12 0.0000000+0.0000000i

## V13 0.00000000+0.0000000i

## V14 0.00000000+0.0000000i

## V15 0.00000000+0.0000000i

## V16 0.00000000+0.0000000i

## V17 0.00000000+0.0000000i

## V18 0.00000000+0.0000000i

## V19 -0.01006015-0.0100882i

## V20 0.00000000+0.00000000i
```

To get the corresponding values at 'lambda.1se', simply replace lambda.min with lambda.1se above, or omit the s argument, since lambda.1se is the default.

Note that unlike glmnet package, the coefficients are not represented in sparse matrix format, rather they are in the dense format. This is because of the traits of complex values in the function.

Predictions can be made based on the fitted cv.glmnet object as well. The code below gives predictions for the new input matrix news at lambda.min:

```
predict(cvfit, newx = x[1:5,], s = "lambda.min")
```

```
## lambda.min
## [1,] 0.2465621+0.0726532i
## [2,] -0.3463653-0.5161582i
## [3,] 0.5169684-1.4347468i
## [4,] 0.1364305+0.7100920i
## [5,] -0.4222057+3.4612903i
```

This concludes the basic usage of classo.

Example: cglasso

In this section, we illustrate our function cglasso for the two variants described in Section above. Again, we load a set of data created beforehand for illustration:

```
data(cglasso_example)
f_hat <- cglasso_example$f_hat
n <- cglasso_example$n</pre>
```

where the number of variables and sample size used in this example are p = 30 and n = 500, respectively, and the covariance matrix of the white noise process $\{X_t\}_{t=1}^n$ is

$$\Sigma = C^{-1} = (C_{k\ell})^{-1}, \quad C_{kk} = 0.7, \ C_{k,k-1} = C_{k-1,k} = 0.3.$$

Then the estimated spectral density \hat{f} is obtained by DFT in (1).

First, consider CGLASSO-sc1.

```
fit_cglasso_I <- cglasso(S=f_hat,type="I",nobs=n)</pre>
```

[1] "The algorithm was terminated at 24 th lambda"

Now, let's look at the example of CGLASSO-sc2.

```
fit_cglasso_II <- cglasso(S=f_hat,type="II",nobs=n)</pre>
```

[1] "The algorithm was terminated at 28 th lambda"

Finally, we can plot the heatmap using the list of estimated spectral precision matrices and specify the index to select a particular matrix from the list. The argument type determines whether the display shows the real part (real), imaginary part (imaginary), both (using both. in parallel), or the modulus (mod).

plot(fit_cglasso_I\$Theta_list,index=fit_cglasso_I\$min_index,type="mod",label=TRUE)

plot(fit_cglasso_II\$Theta_list,index=fit_cglasso_II\$min_index,type="real",label=FALSE)

This concludes the basic usage of cglasso.

Deb, Navonil, Amy Kuceyeski, and Sumanta Basu. 2024. "Regularized Estimation of Sparse Spectral Precision Matrices." arXiv Preprint arXiv:2401.11128.

Friedman, Jerome, Trevor Hastie, and Rob Tibshirani. 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent." *Journal of Statistical Software* 33 (1): 1.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2008. "Sparse Inverse Covariance Estimation with the Graphical Lasso." *Biostatistics* 9 (3): 432–41.

Janková, Jana, and Sara van de Geer. 2018. "Inference in High-Dimensional Graphical Models." In *Handbook of Graphical Models*, 325–50. CRC Press.

Whittle, Peter. 1951. Hypothesis Testing in Time Series Analysis. Uppsala, Sweden: Almqvist & Wiksells.