GPU Programming Introduction

National Tsing Hua University Instructor: 周志遠 (Jerry Chou)

Outline

- Heterogeneous Computing & GPU Intro
- GPU Memory Hierarchy & Execution Model
- CUDA Programming Model & API
- Coding Example & Share Memory Optimization

Heterogeneous Computing

- Heterogeneous computing is an integrated system that consists of different types of (programmable) computing units.
 - DSP (digital signal processor)
 - FPGA (field-programmable gate array)
 - ASIC (application-specific integrated circuit)
 - GPU (graphics processing unit)
 - Co-processor (Intel Xeon Phi)
- A system can be a cell phone or a supercomputer

Shift of Computing Paradigm

GPU Servers

 Same HW architecture as commodity server, but memory copy between CPU and GPU becomes the main bottleneck

Memory Bottleneck

Heterogeneous System Architecture (HSA)

 Aim to provide a common system architecture for designing higher-level programming models for all

devices

- Unified coherent memory
 - Single virtual memory address space
 - Prevent memory copy

NVIDIA Grace Hopper Superchip

- Massive Bandwidth for Compute Efficiency
- Using NVIDIA® NVLink®-C2C (900GB/s) for CPU-GPU connections
- High-speed I/O

- HBM3 memory
- On-chip fabrics
- System-on-chip (SoC) design
- Arm-based processors

GPU (Graphic Processing Unit)

- A specialized chip designed for rapidly display and visualization
 - SIMD architecture
- Massively multithreaded manycore chips
 - NVIDIA Tesla products have up to 5120 scalar processors
 - Over 12,000 concurrent threads
 - Over 470 GFOLPS sustained performance

GPGPU (General-Purpose Graphic Processing Unit)

- Expose the horse power of GPUs for general purpose computations
 - Exploit data parallelism for solving embarrassingly parallel tasks and numeric computations
 - Users across science & engineering disciplines are achieving 100x or better speedups on GPUs
- Programmable
 - Early GPGPU: using the libraries in computer graphics, such as OpenGL or DirectX, to perform the tasks other than the original hardware designed for.
 - Now CUDA and openCL provides an extension to C and C++ that enables parallel programming on GPUs

NVIDIA CUDA-Enabled GPUs Products

Architecture & **HPC** CUDA-Enabled NVIDIA GPUs **Compute Capability** (double precision) **Visualization Deep learning** Tesla V Series Volta Architecture Inference (single precision) (compute capabilities 7.x) V100 GeForce 1000 Series Quadro P Series Tesla P Series Pascal Architecture Tegra X2, (compute capabilities 6.x) Jetson TX2 GTX 1080 P6000 P100 Tegra X1 Maxwell Architecture GeForce 900 Series Quadro M Series Tesla M Series (compute capabilities 5.x) Jetson TX2 Tegra K1 GeForce 700 Series Quadro K Series Tesla K Series Kepler Architecture (compute capabilities 3.x) GeForce 600 Series **Applications** Professional Data Center Consumer Workstation Desktop/Laptop

NVIDIA GPU Architecture Roadmap

CUDA SDK Device Query

deviceQuery.cpp

```
Device 0: "Tesla M2090"
 CUDA Driver Version / Runtime Version
                                                 5.0 / 5.0
 CUDA Capability Major/Minor version number:
                                                 2.0
 Total amount of global memory:
                                                 5375 MBytes (5636554752 bytes)
  (16) Multiprocessors x ( 32) CUDA Cores/MP:
                                                 512 CUDA Cores
 GPU Clock rate:
                                                 1301 MHz (1.30 GHz)
 Memory Clock rate:
                                                 1848 Mhz
 Memory Bus Width:
                                                 384-bit
 L2 Cache Size:
                                                 786432 bytes
 Max Texture Dimension Size (x,y,z)
                                                 1D=(65536), 2D=(65536,65535), 3D
 Max Layered Texture Size (dim) x layers
                                                 1D=(16384) x 2048, 2D=(16384,163
 Total amount of constant memory:
                                                 65536 bytes
 Total amount of shared memory per block:
                                                 49152 bytes
 Total number of registers available per block: 32768
                                                 32
 Warp size:
 Maximum number of threads per multiprocessor:
                                                 1536
 Maximum number of threads per block:
                                                 1024
 Maximum sizes of each dimension of a block:
                                                 1024 x 1024 x 64
 Maximum sizes of each dimension of a grid:
                                                 65535 x 65535 x 65535
```


GPU Compute Capability

 Programming ability of a GPU device

Tachwicel anneifications		Compute capability (version)							
Technical specifications	1.0	1.1	1.2	1.3	2.x 3	.0	3.5	5.0	
Maximum dimensionality of grid of thread blocks		2			3				
Maximum x-, y-, or z-dimension of a grid of thread blocks		65535				2 ³¹ -1			
Maximum dimensionality of thread block		3							
Maximum x- or y-dimension of a block		512			1024				
Maximum z-dimension of a block		64							
Maximum number of threads per block		512			1024				
Warp size		32							

CUDA Toolkits

- Software Development Kit(SDK) for CUDA Programming
 - The CUDA-C and CUDA-C++ compiler, nvcc
 - Tools: IDE, Debugger, Profilers, Utilities
 - Library: BLAS, CUDA Device Runtime, FFT, ...
 - Sample Code
 - Documentation

CUDA SDK Version	Compute Capability	Architecture	
6.5	1.X	Tesla ~ Maxwell	
7.5	2.0-5.x	Fermi ~ Maxwell	
8.0	2.0-6.x	Fermi ~ Pascal	
9.0	3.0-7.x	Kepler ~ Volta	
12.2	5.0-9.0	>= Maxwell	

Outline

- Heterogeneous Computing & GPU Intro
- GPU Memory Hierarchy & Execution Model
- CUDA Programming Model & API
- Coding Example & Share Memory Optimization

GPU Architecture

- Consist of multiple stream multi-processors (SM)
- Memory hierarchic:
 - global memory → PBSM/shared memory → local register

GPU Memory Hierarchy

- Registers
 - Read/write per-thread
 - Low latency & High BW
- Shared memory
 - Read/write per-block
 - Similar to register performance
- Global/Local memory (DRAM)
 - Global is per-grid & Local is per-thread
 - High latency & Low BW
 - Not cached
- Constant memory
 - Read only per-grid
 - Cached

Execution Model

Threads are executed by scalar processor

Thread blocks are executed on SM Several concurrent thread block can reside on one SM

A kernel is launched as a grid of thread blocks

Software

Thread block

Hardware

Scalar processor

Stream Processor (SM)

Memory Hierarchy

Outline

- Heterogeneous Computing & GPU Intro
- GPU Memory Hierarchy & Execution Model
- CUDA Programming Model & API
- Coding Example & Share Memory Optimization

GPU program flow

CUDA Programming Model

- CUDA = serial program with parallel kernels, all in C
 - Serial C code executes in a host thread (i.e. CPU thread)
 - Parallel kernel C code executes in many devices threads across multiple processing elements (i.e. GPU threads)

CUDA Program Framework

GPU code (parallel)

CPU code (serial or parallel if p-thread/ OpenMP/T BB/MPI is used.)

```
#include <cuda runtime.h>
  global void my kernel(...) {
int main() {
   cudaMalloc(...)
   cudaMemcpy (...)
      my kernel<<<nblock,blocksize>>>(...)
   cudaMemcpy(...)
```

Program Compilation

- Any source file containing CUDA language must be compiled with NVCC
 - NVCC separates code running on the host from code running on the device
- Two-stage complication:
 - Virtual ISA
 - PTX: Parallel Threads executions
 - Device-specific binary object

Global (Device) memory operations

- Three functions:
 - cudaMalloc(), cudaFree(), cudaMemcpy()
 - Similar to the C's malloc(), free(), memcpy()
- cudaMalloc(void **devPtr, size t size)
 - devPtr: return the address of the allocated device memory
 - size: the allocated memory size (bytes)
- 2. cudaFree (void *devPtr)
- 3. cudaMemcpy(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind)
 - count: size in bytes to copy

cudaMemcpyKind

one of the following four values

cudaMemcpyKind	Meaning	dst	src
cudaMemcpyHostToHost	Host → Host	host	host
cudaMemcpyHostToDevice	Host → Device	device	host
cudaMemcpyDeviceToHost	Device → Host	host	device
cudaMemcpyDeviceToDevice	Device → Device	device	device

host to host has the same effect as memcpy()

Kernel = Many Concurrent Threads

- One kernel is executed at a time on the device
- Many thread execute each kernel
 - Each thread executes the same code
 - $_{\circ}$ $\,$... on the different data based on its threadID
- CUDA thread might be
 - Physical threads
 - As on NVIDIA GPUs
 - GPU thread creation and

context switching are essentially free

- Or virtual threads
 - E.g. 1 CPU core might execute multiple CUDA threads

Thread and Block IDs

- Build-in device variables
 - threadIdx; blockIdx; blockDim; gridDim
- The index of threads and blocks can be denoted by a 3 dimensional struct

```
o dim3 defined in vector_types.h
struct dim3 { x; y; z; };
```

Example:

```
o dim3 grid(3, 2);
o dim3 blk(5, 3); // n x n x 1
o my kernel<<< grid, blk >>>();
```

 Each thread can be uniquely identified by a tuple of index (x,y) or (x,y,z)

Hierarchy of Concurrent Threads

- Threads are grouped into thread blocks
 - Kernel = gird of thread blocks

 By definition, threads in the same block may synchronized with barriers, but not between blocks


```
scratch[threadID] = begin[threadID];
__syncthreads();
int left = scratch[threadID - 1];
```

Block Level Scheduling

- Blocks are independent to each other to give scalability
 - A kernel scales across any number of parallel cores by scheduling blocks to SMs
- No global synchronization among blocks

Warp

- Inside the SM, threads are launched in groups of 32, called warps
 - Warps share the control part (warp scheduler)
 - At any time, only one warp is executed per SM
 - Threads in a warp will be executing the same instruction (SIMD)
- In other words ...
 - Threads in a wrap execute physically in parallel
 - Warps and blocks execute logically in parallel
 - → Kernel needs to sync threads within a block

Warp Scheduler

- SM hardware implements zerooverhead Warp scheduling
 - Warps whose next instruction has its operands ready for consumption are eligible for execution
 - Wraps are switched when memory stalls
 - Eligible Warps are selected for execution on prioritized scheduling
 - All threads in a Warp execute the same instruction when selected

Warp Divergence

- What if different threads in a warp need to do different things:
 - Including any flow control instruction (if, switch, do, for, while)

```
if(foo(threadIdx.x)){
        do_A();
} else {
        do_B();
}
```

- Different execution paths within a warp are serialized
 - Predicated instructions which are carried out only if logical flag is true
 - All threads compute the logical predicate and two predicated instructions/statements
 - Potential large lost of performance

Inside a warp

Outline

- Heterogeneous Computing & GPU Intro
- GPU Memory Hierarchy & Execution Model
- CUDA Programming Model & API
- Coding Example & Share Memory Optimization

Example: add 2 numbers

```
__global__ void add(int *a, int *b, int *c) {
    *c = *a + *b;
}
int main(void) {
    int ha=1,hb=2,hc;
    add<<<1,1>>>(&ha, &hb, &hc);
    printf("c=%d\n",hc);
    return 0;
}
```

- This does not work!!
- int ha, hb, hc are in the host memory (DRAM), which cannot be used by device (GPU).
- We need to allocate variables in "device memory".

The correct main()

```
int main(void) {
   int a=1, b=2, c; // host copies of a, b, c
   int *d a, *d b, *d c; // device copies of a, b, c
  // Allocate space for device copies of a, b, c
   cudaMalloc((void **)&d a, sizeof(int));
   cudaMalloc((void **)&d b, sizeof(int));
   cudaMalloc((void **)&d c, sizeof(int));
  // Copy inputs to device
   cudaMemcpy(d a, &a, sizeof(int), cudaMemcpyHostToDevice);
   cudaMemcpy(d b,&b,sizeof(int),cudaMemcpyHostToDevice);
   // Launch add() kernel on GPU
   add <<<1,1>>> (d a, d b, d c);
   // Copy result back to host
   cudaMemcpy(&c, d c, size, cudaMemcpyDeviceToHost);
   // Cleanup
   cudaFree(d a); cudaFree(d b); cudaFree(d c);
  return 0;
```


Example: add 2 vectors

Let's first look at the sequential code!

```
// function definition
void VecAdd(int N, float* A, float* B, float* C)
     for(int i = 0; i<N; i++)
           C[i] = A[i] + B[i];
int main()
    VecAdd (N, Ah, Bh, Ch);
```

Parallel CUDA code

- Use threadIdx.x as the index of the arrays
 - Each thread processes 1 addition, for the elements indexed at threadIdx.x.

```
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}
int main()
{ ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(Ah, Bh, Ch); ...
}
```

Example: All-Pair-Shortest-Path

Given a weighted directed graph G(V, E, W), where |V| = n,
 |W|=m, and W>0, find the shortest path of all pairs of

vertices (vi,vj).

Example:

0	INF	-2	INF
4	0	3	INF
INF	INF	0	2
INF	-1	INF	0

Initial weight

0	-1	-2	0
4	0	2	4
5	1	0	2
3	-1	1	0

Final result

Floyd-Warshall (Sequential code)

```
Floyd-Warshall (G, W)
{ n ← |V|
    D<sup>(0)</sup> ← W
    for k = 1 to n do
        for j = 1 to n do
            if D<sup>(k-1)</sup>[i,j] > D<sup>(k-1)</sup>[i,k] + D<sup>(k-1)</sup>[k,j]
            then D<sup>(k)</sup>[i,j] ← D<sup>(k-1)</sup>[i,k] + D<sup>(k-1)</sup>[k,j]
            else D<sup>(k)</sup>[i,j] ← D<sup>(k-1)</sup>[i,j]
    return D<sup>(n)</sup>
}
```


Implementation 1

- 1 block and n threads.
- Thread i updates the SP for vertex i.

```
__global___ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
        for (int j =0; j < n; j ++)
              if (D[i][j]>D [i][k]+D[k][j])
              D[i][j]= D[i][k]+D[k][j];
}
int main() { ...
    for (int k = 0; k < n, k ++)
              FW_APSP < < < 1, n >>> (k, D);
}
```


Implementation 2

- Each thread updates one pair of vertices
 - Increase parallelism from n to n²

```
__global___ void FW_APSP(int k, int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    if (D[i][j]>D [i][k]+D[k][j])
        D[i][j]= D[i][k]+D[k][j];
}
int main() { ...
    dim3 threadsPerBlock(n, n);
    for (int k = 0; k<n, k++)
        FW_APSP<<<<1, threadsPerBlock >>>(k, D);
}
```

How about the for-loop of k?

Implementation 3

- It is a synchronous computation
 - There are data dependency on k...

```
__global___ void FW_APSP(int D[n][n]) {
    int i = threadIdx.x;
    int j = threadIdx.y;
    for (int k = 0; k<n, k++)
        if (D[i][j]>D [i][k]+D[k][j])
        D[i][j]= D[i][k]+D[k][j];
}
int main() { ...
    dim3 threadsPerBlock(n, n);
    FW_APSP<<<<1, threadsPerBlock >>>(D);
}
```

Shared Memory: Programmable Cache

- Programmable cache!!
 - Almost as fast as registers
- Scope: shared by all the threads in a block.
 - The threads in the same block can communicate with each other through the shared memory.
 - Threads in different blocks can only communicate with each other through global memory.
- Limited size: 64kB or 96kB per thread block

General Strategy

- 1. Load data from global memory to shared memory
- 2. Process data in the shared memory
- 3. Write data back from shared memory to global memory

Blocks

Shared memory

Global memory

APSP Parallel Implementation Revisit

- Use n*n threads.
- Each updates the shortest path of one pair vertices
- Use global memory to store the matrix D.

Using Shared Memory Optimization

 This way of using shared memory is called dynamic allocation of shared memory, whose size is specified in the kernel launcher.

```
FW_APSP<<<1,n*n, n*n*sizeof(int)>>>(...);
```

The third parameter is the size of shared memory.

```
extern __shared__ int S[][];
__global__ void FW_APSP(int k, int D[n][n]) {
   int i = threadIdx.x;
   int j = threadIdx.y;
   S[i][j]=D[i][j]; // move data to shared memory
   __syncthreads();
   // do computation
   if (S[i][j]>S[i][k]+S[k][j])
       D[i][j]= S[i][k]+S[k][j];
```

Load Everything to Shared Memory

- Matrix Mul<<<1, N, 2*N*N>>>(A, B, C, N);
 - The third parameter is the size of shared memory.

```
extern shared int S[];
inline int Addr(int matrixIdx, int i, int j, int N) {
    return (N*N*matrixIdx + i*N+ j);
 _global__ void Matrix_Mul(int* A, int* B,int* C, int* N) {
    int i = threadIdx.x;
    int j = threadIdx.y;
   //move data to shared memory
   S[Addr(0, i, j, N)]=A[Addr(0, i, j, N)];
    S[Addr(1, i, j, N)]=B[Addr(0, i, j, N)];
    __syncthreads();
   // do computation
    for(int k=0; k<*N; k++)
        C[Addr(1, i, j, N)]=S[Addr(0, j, k, N)]*S[Addr(0, k, j, N)];
```

Reference

Nvidia

- NVIDIA, CUDA C++ Best Practices Guide
- CUDA Tutorial
 - NVIDIA CUDA Library Documentation
 - NIVIDA Advanced CUDA Webinar Memory Optimizations
 - Mark Harris, NVIDIA Developer Technology
- Parallel Prog. Class <u>Recorded video</u>
 - Chap6: Heterogeneous Computing
 - Chpa7: CUDA Intro
 - Chap8: GPU Architecture
 - Chap9: CUDA Optimization
 - With a complete optimization example at the end

