Implicit Differentiation

Madiba Hudson-Quansah

March 2023

Contents

Chapter 1	Implicity	Page 2
1.1	Explicit vs Implicit	2
1.2	Implicit Differentiation	2

Chapter 1

Implicity

1.1 Explicit vs Implicit

$$y = x^2 + x + 1$$

The dependent variable y is separate from the independent variable x, making this function explicitly written.

$$x^2 + y^2 = 1$$

The dependent variable y is not separate from the independent variable x, making this function implicitly written.

1.2 Implicit Differentiation

Given an implicitly written function, $2x^3 + 2y^3 = 9xy$. We can find the derivative by doing the following:

$$2x^{3} + 2y^{3} = 9xy$$

$$\frac{d}{dx}(2x^{3} + 2^{3}) = \frac{d}{dx}(9xy)$$

$$6x^{2} + 6y^{2}\frac{dy}{dx} = (9)(y) + (9x)\frac{dy}{dx}$$

$$6x^{2} = 9y = 9x\frac{dy}{dx} - 6y^{2}\frac{dy}{dx}$$

$$6x^{2} = 9y = (9x - 6y^{2})\frac{dy}{dx}$$

$$= \frac{6x^{2} - 9y}{9x - 6y^{2}} = \frac{dy}{dx}$$