8.3.1 Eigenschaften in Abhängigkeit von n - Übungen

Eigenschaften der Binomialverteilung P(X = k) = B(n; p; k)

- (1) Je größer n ist, umso breiter und flacher ist das Diagramm der Verteilung.
- (2) Je größer n ist, umso weiter rechts liegt das Maximum der Verteilung.
- (3) Je größer n ist, umso symmetrischer wirkt das Verteilungsbild.
 - Buch S. 122 Ü4)

8.4 Erwartungswert und Standardabweichung bei Bernoulli-Kette

Drehen eines Glücksrades:

Versuchsanzahl: n = 10 Treffer: Es kommt ROT Trefferwahrsch.: p = 0,4

Beobachtete Zufallsgröße X:

X = Anzahl der Treffer

- 1. Mit welcher Trefferz kann man im Mittel rechnen?
- 2. Wie stark streuen die Trefferzahlen um den Erwartungswert?

8.4.1 Formeln für die Streumaße

Satz III.2 Erwartungswert von X

X sei die Trefferzahl in einer Bernoulli-Kette der Länge n mit der Trefferwahrscheinlichkeit p. Dann gilt:

$$\mu = E(X) = n \cdot p$$
.

Satz III.3 Varianz und Standardabweichung von X

X sei die Trefferzahl in einer Bernoulli-Kette der Länge n mit der Trefferwahrscheinlichkeit p. Dann gilt:

$$\sigma^2 = V(X) = n \cdot p \cdot (1 - p),$$

 $\sigma = \sigma(X) = \sqrt{V(X)}.$

Aufgabe: Buch S. 124 lesen!

8.5 Die Sigmaregeln

Satz III.4: Sigmaregeln zu gegebenen Umgebungen des Erwartungswertes

X sei eine binomialverteilte Zufallsgröße mit den Parametern n und p. $\mu = n \cdot p$ sei der Erwartungswert und $\sigma = \sqrt{n \cdot p \cdot (1-p)}$ die Standardabweichung von X. Wenn die sog. *Laplace-Bedingung* $\sigma > 3$ erfüllt ist, erhält man mit den Sigmaregeln folgende zuverlässige Werte.

- 1. $P(\mu \sigma \le X \le \mu + \sigma) \approx 68,3\%$ (68,3% der Werte von X liegen im Intervall $[\mu \sigma; \mu + \sigma]$.
- 2. $P(\mu 2\sigma \le X \le \mu + 2\sigma) \approx 95.5\%$ (95.5% der Werte von X liegen im Intervall $[\mu 2\sigma; \mu + 2\sigma]$.
- 3. $P(\mu 3\sigma \le X \le \mu + 3\sigma) \approx 99,7\%$ (99,7% der Werte von X liegen im Intervall $[\mu 3\sigma; \mu + 3\sigma]$.

8.5.1 Die Sigmaregeln – Beispiele/Aufgaben

Lesen Sie im Buch S. 125+126 beide Beispiele und bearbeiten Sie Aufgabe 10) bis
 12).

- Falls Sie noch Zeit haben, arbeiten Sie bitte weiter an den Abituraufgaben.
- Ich lade die Lösungen der Aufgaben zur Selbstkontrolle hoch.