

planetmath.org

Math for the people, by the people.

proof of Cauchy's root test

Canonical name ProofOfCauchysRootTest

Date of creation 2013-03-22 13:23:43

Last modified on 2013-03-22 13:23:43

Owner mathwizard (128)

Last modified by mathwizard (128)

Numerical id 5

Author mathwizard (128)

Entry type Proof

Classification msc 40A05

If for all
$$n \geq N$$

$$\sqrt[n]{a_n} < k < 1$$

then

$$a_n < k^n < 1.$$

Since $\sum_{i=N}^{\infty} k^i$ converges so does $\sum_{i=N}^{\infty} a_n$ by the comparison test. If $\sqrt[n]{a_n} > 1$ then by comparison with $\sum_{i=N}^{\infty} 1$ the series is divergent. Absolute convergence in case of nonpositive a_n can be proven in exactly the same way using $\sqrt[n]{|a_n|}$.