Classification of representation-finite self-injective algebras

Aaron Chan

February 19, 2013

A = representation-finite self-injective algebras

m-fold mesh algebra (these are self-injective):

Label	Translation quiver	Note
$\Delta^{(m)}$	$\mathbb{Z}\Delta/\langle au^m angle$	$\Delta = A_n, D_n, E_n$
$B_n^{(m)}$	$\mathbb{Z}A_{2n-1}/\langle \rho \tau^m \rangle$	$\rho = \text{reflection in horizontal line}$
$C_n^{(m)}$	$\mathbb{Z}D_{n+1}/\langle \rho \tau^m \rangle$	$ \rho = \text{order 2 auto of } D_{n+1} $
$F_4^{(m)}$ $G_2^{(m)}$ $L_n^{(m)}$	$\mathbb{Z}E_6/\langle \rho \tau^m \rangle$	$\rho = \text{order 2 auto of } E_6$
$G_2^{(m)}$	$\mathbb{Z}D_4/\langle ho au^m angle$	$\rho = \text{fixed order 3 auto of } D_4$
$L_n^{(m)}$	$\mathbb{Z}A_{2n}/\langle ho au^m angle$	ρ = reflection in central horizontal line, then shift half a unit to the right
		$(\rho^2 = \tau^{-1})$

Relation between RFS algebra with m-fold mesh algebras (see Dugas articles):

- (1) Standard RFS algebra A of tree class Δ (ADE type) and torsion order 1
- \rightsquigarrow preprojective algebra $P(\Delta)$
- \rightarrow smash product $P(\Delta)\#k[\mathbb{Z}/m] \cong k(\mathbb{Z}\Delta/\langle \tau^m \rangle)$ the mesh algebra

For torsion order not 1

Use B_{n+1} for (Moebius) A_{2n+1} class, C_{n-1} for D_n order 2 class, (see table above) etc.

- (2) Γ be finite stable translation quiver such that $k(\Gamma)$ f.d.
- \rightsquigarrow valued graph Δ of generalised Dynkin type A to G_2 and L_n
- \rightarrow define Δ' using Δ , this will be in ADE type
- \rightsquigarrow one can construct Galois covering $\mathbb{Z}\Delta' \to \Gamma$.

Theorem (see Erdmann-Skrownski paper on CY-dim)

A basic connected not isom to underlying ground ring K

A is symmetric of finite rep-type if and only if one of the following:

- 1. T(B); B=tilted algebra of Dynkin type A_n, D_n, E_6, E_7, E_8
- 2. $\widehat{B}/\langle \phi \rangle$;

B=tilted algebra of Dynkin type A_n

 \widehat{B} =repetitive algebra of B

 ϕ proper root of Nakayama automorphism $\nu_{\widehat{R}}$

3. Socie deformation of $\widehat{B}/\langle \phi \rangle$

B=titled algebra of Dynkin type D_{3s}

 $\phi{=}\mathrm{root}$ of order 3 of Nakayama auto $\nu_{\widehat{B}}$

(2) = Brauer tree algebra, exceptional multiplicity $m \ge 2$, n = me, e = number of edges $(1 - A_n \text{ case}) = \text{Brauer tree algebra with trivial multiplicity}$

A can be labelled by triple (Δ, f, t)

sAR-quiver of A is $\mathbb{Z}\Delta/\Pi$ with $\Pi = \langle \zeta \tau^{-r} \rangle$, infinite cyclic group

Tree class Δ is a Dynkin graph/quiver

Frequency $f = r/m_{\Delta}$ $(m_{\Delta} = h_{\Delta} - 1 \text{ where } h_{\Delta} \text{ is Coxeter number})$

Torsion order $t = \operatorname{order}(\zeta)$

$$\begin{array}{c|c|c|c} \Delta & A_n, D_{2n+1}, E_6 \ (n \geq 2) & A_1, D_{2n}, E_7, E_8 \ (n \geq 2) \\ \hline h_{\Delta}^* & h_{\Delta} & h_{\Delta}/2 \end{array}$$

Theorem[Dugas]:

 $A-\underline{\text{mod}}$ is d-Calabi-Yau for some $d>0 \Leftrightarrow (h_{\Delta}^*, fm_{\Delta}=1)$

A-mod is d-Calabi-Yau for some
$$d > 0 \Leftrightarrow (h_{\Delta}^*, fm_{\Delta} = 1)$$
In such case:
$$\frac{\Delta \mid A_n, D_{2n+1}, E_6 \ (n \ge 2) \quad A_1, D_{2n}, E_7, E_8 \ (n \ge 2)}{d = 2r + 1} \quad \text{either } 2 \mid f \text{ or char } k = 2$$

$$x \equiv -(h_{\Delta}^*)^{-1} \mod fm_{\Delta} \quad d \equiv 1 - (h_{\Delta}^*)^{-1} \mod fm_{\Delta}$$

Brauer tree algebra: e=number of edges, r = n = e, t = 1, f = 1, d = 2e - 1