[3]

Present your answers in order, showing the working for each answer.

1. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined via

$$f([u \ v]^T) = \begin{bmatrix} u^3v \\ uv^2 - e^{u+v} \end{bmatrix}.$$

Further, define the function $g: \mathbb{R}^2 \to \mathbb{R}^{2\times 2}$

$$g(x) = f(x)[2 \ 1].$$

Note here that $[2 \ 1]$ is a row vector. Also let $z = [-1 \ 1]^T$ be a (column) vector in \mathbb{R}^2 .

- (a) Evaluate f(z). [1]
- (b) Evaluate g(z). [1]
- (c) Evaluate ||g(z)z||. [1]
- (d) Evaluate the inner product between the two columns of g(z). [1]
- (e) Find det(g(x)) for any $x \in \mathbb{R}^2$. Explain why the answer does not depend on x. [2]
- (f) Find the Jacobian matrix Df(u, v) associated with the function $f(\cdot)$. [2]
- (g) Consider now the linear approximation around z at a point $x \in \mathbb{R}^2$,

$$\hat{f}(x) = f(z) + Df(z)(x - z).$$

Find a point $x^0 \in \mathbb{R}^2$ such that $\hat{f}(x^0) = 0$.

- 2. Let A and B be two lower triangular $n \times n$ matrices. That is for i < j, $A_{i,j} = 0$ and $B_{i,j} = 0$. Consider now the unit vector $e_1 \in \mathbb{R}^n$ with 0 entries everywhere except the first entry which is 1. Determine the value of $e_1^T A B e_1$. [2]
- 3. Let $u, v \in \mathbb{R}^n$. Use the definition of the 2-norm $||\cdot||$ to prove that if $u^T v = 0$ then [2]

$$||u + v||^2 - ||u||^2 - ||v||^2 = 0.$$

Total: [15]