BÖLÜM 4 TREES (AĞAÇLAR)

GİRİŞ

Bir ağaç

- □ **v** ve **w** düğüm çiftinden oluşan basit bir graftır
- v'den w'ya tek bir yol vardır
- dairesel bir yapı içermez

Köklü Ağaç (Rooted tree)

Düğümlerinden biri kök olarak (root) belirlenmiş bir ağaçtır

Düğüm seviyesi ve ağacın yüksekliği

T köklü bir ağaç olsun:

- Bir düğümün seviyesi, o düğümün l(v) bulunduğu yerden ağacın köküne olan yolun uzunluğudur
- Bir ağacın yüksekliği, o ağacın maksimum seviyeye sahip olan düğümünün değerine eşittir

$$h = \max_{v \in V(T)} \{ I(v) \}$$

- □ Örnek:
 - sağdaki ağacın yüksekliği 3

Terminoloji

- □ Parent (ana/baba)
- Ancestor (ata)
- □ Child (çocuk)
- Descendant (torun)
- □ Siblings(kardeş düğüm)
- □ Terminal vertices (uç düğüm)
- Internal vertices (ara düğüm)
- □ Subtrees (alt ağaçlar)

Ara (internal) ve Uç (terminal) Düğümler

- En az bir çocuğa sahip olan düğümler ara (internal) düğümlerdir
- Hiç çocuğu olmayan düğümler uç (terminal) düğümlerdir
- terminal terminal © Örnekteki ağaçta 4 adet internal ve 4 adet terminal düğüm mevcuttur

Alltağaçlar (Subtrees)

Bir T ağacının altağacı (subtree) T' olup

- \square E(T') \subseteq E(T)

Ağaçların Karakteristiği

Theorem

Eğer **T**, *n* düğümlü bir graf ise aşağıdakiler doğrudur:

- a) T bir ağaçtır
- b) T bağlantılı (connected) ve acyclic
- ("acyclic" = döngü mevcut değil)
- c) T bağlantılı ve n-1 kenara sahiptir
- d) T acyclic ve n-1 kenara sahiptir

İkili Ağaçlar (Binary trees)

Bir ikili ağaçta, her bir düğüm en fazla iki çocuğa sahiptir. Bir düğüm 0,1 veya 2 çocuğa sahip olabilir

Binary Tree -- Örnek

- A is the root.
- B is the left child of A, and C is the right child of A.
- D doesn't have a right child.
- H doesn't have a left child.
- B, F, G and I are leaves.

10

Binary Tree – Matematiksel İfadelerin Gösterilimi

Aynı düğüm sayısına sahip farklı İkili Ağaçlar

13

Tam İkili Ağaç (Full binary tree)

Bir *full* binary tree 'de uç düğümler hariç her düğüm iki çocuğa sahiptir.

İkili Arama Ağaçları (Binary search trees)

- □ Veri alfabetik sırada ağaca yerleştirilir. Düğümün sol tarafındaki veri.
 - düğümdeki veriden daha küçüktür
- Ve düğümün sağ tarafındaki veri de düğümdeki veriden daha büyüktür

□ Veri düğümlere yerleştirilir □ Örnek: "Computers are an important technological tool"

Dengeli Ağaç (Balanced Tree)

Yüksekliği *h* olan bir ağacın yapraklarının seviyesi *h* veya *h-1* ise dengeli ağaç adını alır

Dengeli ağaç

Dengesiz ağaç

Ağacın Düğümlerinin Listesi (Tree Traversals)

□ 1: Pre-order traversal (önden sıralı)

□ 2: In-order traversal (içten sıralı)

devam....

□ 3: Post-order traversal (sondan sıralı)

■ 4: Reverse post-order traversal (ters önden sıralı)

Aritmetik İfadeler

□ Standart: *infix* formu

$$(A+B) * C - D/ E$$

□ Tüm parentezli form (in-order & parenthesis):

$$(((A + B) * C) - (D / E))$$

□ *Postfix* formu (Polish notasyonunun tersi):

□ *Prefix* formu (Polish notasyonu):

Huffman Kodları (Huffman Codes)

- □ Sol taraftaki ağacı kullanarak *rate* kelimesini kodlarsak 001 000 011 100
- □ Sağ taraftaki ağacı kullanarak *rate* kelimesini kodlarsak 11 000 001 10

Spanning Trees

Verilen **G** grafında, **T** bir spanning tree ise;

T,

□ **G** grafının bir *subtree*'sidir ve

□ **G** grafının bütün düğümlerini içerir

Spanning tree oluşturma yöntemleri

■ Breadth-first search method

Depth-first search method (backtracking)

Minimal spanning trees

Verilen ağırlıklı bir **G** grafının Minimal spanning tree'si

- □ **G** grafının spanning tree 'si olup (tüm düğümlerden geçilmiş)
- □ Ağırlıklar toplamıda minimumdur

