

K-Nearest Neighbors (KNN)

Prof. Dr. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

KNN

One of the simplest (instance-based) classification algorithms.

It works for binary or multiclass problems.

Training Set

mean grade	wekly study hours	approved at a university?
0.9	0.5	No
2.2	2	No
9.00	7.2	Yes
6.5	8.00	Yes
•••	•••	•••

No Training

hyperparameter

Step 1: Choose the number K of neighbors;

- **Step 1:** Choose the number **K of neighbors**;
- Step 2: Take the K nearest neighbors of the new instance, according to a given distance measure (e.g., Euclidean);

- **Step 1:** Choose the number **K of neighbors**;
- **Step 2**: Take the K nearest neighbors of the **new instance**, according to a given **distance measure** (*e.g.*, Euclidean);
- **Step 3:** Among these K neighbors, **count** the number of training instances in each class/category.

- Step 1: Choose the number K of neighbors;
- **Step 2**: Take the K nearest neighbors of the **new instance**, according to a given **distance measure** (*e.g.*, Euclidean);
- **Step 3:** Among these K neighbors, **count** the number of training instances in each class/category.
- Step 4: Assign the new test instance to the most frequent class (majority voting).

- Step 1: Choose the number K of neighbors;
- **Step 2**: Take the K nearest neighbors of the **new instance**, according to a given **distance measure** (*e.g.*, Euclidean);
- **Step 3:** Among these K neighbors, **count** the number of training instances in each class/category.
- Step 4: Assign the new test instance to the most frequent class (majority voting).

- Step 1: Choose the number K of neighbors;
- **Step 2**: Take the K nearest neighbors of the **new instance**, according to a given **distance measure** (*e.g.*, Euclidean);
- **Step 3:** Among these K neighbors, **count** the number of training instances in each class/category.
- Step 4: Assign the new test instance to the most frequent class (majority voting).

- Step 1: Choose the number K of neighbors;
- **Step 2**: Take the K nearest neighbors of the **new instance**, according to a given **distance measure** (*e.g.*, Euclidean);
- **Step 3:** Among these K neighbors, **count** the number of training instances in each class/category.
- Step 4: Assign the new test instance to the most frequent class (majority voting).

hyperparameter

- Step 1: Choose the number K of neighbors;
- **Step 2**: Take the K nearest neighbors of the **new instance**, according to a given **distance measure** (*e.g.*, Euclidean);
- **Step 3:** Among these K neighbors, **count** the number of training instances in each class/category.
- Step 4: Assign the new test instance to the most frequent class (majority voting).

sklearn.neighbors.KNeighborsClassifier

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

- Common distance measure;
- Suitable for low-dimensional data;

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2} \qquad d(a,b) = \sum_{i=1}^{n} |b_i - a_i|$$

- Common distance measure;
- Suitable for low-dimensional data;

Manhattan

$$d(a,b) = \sum_{i=1}^{n} |b_i - a_i|$$

- Work quite well when your data has discrete and/or binary attributes;
- Work ok for high-dimensional data;
- Less intuitive than Euclidean distance;
- In general, give a higher distance value than Euclidean distance;

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

- Common distance measure;
- Suitable for low-dimensional data:

Manhattan

$$d(a,b) = \sum_{i=1}^{n} |b_i - a_i| \qquad d(a,b) = \max_{i} (|b_i - a_i|)$$

- Work quite well when your data has discrete and/or binary attributes;
- Work ok for high-dimensional data;
- Less intuitive than Euclidean distance:
- In general, give a higher distance value than Euclidean distance;

Chebyshev

$$d(a,b) = \max_{i}(|b_i - a_i|)$$

- It can be used to extract the minimum number of moves needed to get from one square to another;
- Used in very specific use-cases, such as warehouse logistics;

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

- Common distance measure;
- Suitable for low-dimensional data;

Manhattan

$$d(a,b) = \sum_{i=1}^{n} |b_i - a_i|$$

- Work quite well when your data has discrete and/or binary attributes;
- Work ok for high-dimensional data;
- Less intuitive than Euclidean distance;
- In general, give a higher distance value than Euclidean distance;

Chebyshev

$$d(a,b) = \max_{i}(|b_i - a_i|)$$

- It can be used to extract the minimum number of moves needed to get from one square to another;
- Used in very specific use-cases, such as warehouse logistics;

$$d(a,b) = \left(\sum_{i=1}^{n} |b_i - a_i|^p\right)^{\frac{1}{p}}$$

- Metric in a normed vector space;
- The upside to p is the possibility to iterate over it and find the distance measure that works best for your use case.
- p=1 → Manhattan distance
- p=2 → Euclidean distance
- p=∞ → Chebyshev distance

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

- Common distance measure:
- Suitable for low-dimensional data;

Manhattan

$$d(a,b) = \sum_{i=1}^{n} |b_i - a_i|$$

- Work quite well when your data has discrete and/or binary attributes;
- Work ok for high-dimensional data;
- Less intuitive than Euclidean distance;
- In general, give a higher distance value than Euclidean distance;

__|

$$d(a,b) = \max_{i}(|b_i - a_i|)$$

- It can be used to extract the minimum number of moves needed to get from one square to another;
- Used in very specific use-cases, such as warehouse logistics;

$$d(a,b) = \left(\sum_{i=1}^{n} |b_i - a_i|^p\right)^{\overline{p}}$$

- Metric in a normed vector space;
- The upside to p is the possibility to iterate over it and find the distance measure that works best for your use case.
- p=1 → Manhattan distance
- p=2 → Euclidean distance
- p=∞ → Chebyshev distance 8

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

- Common distance measure;
- Suitable for low-dimensional data:

Manhattan

$$d(a,b) = \sum_{i=1}^{n} |b_i - a_i|$$

- Work quite well when your data has discrete and/or binary attributes;
- Work ok for high-dimensional data;
- Less intuitive than Euclidean distance;
- In general, give a higher distance value than Euclidean distance;

$$d(a,b) = \max_{i}(|b_i - a_i|)$$

- It can be used to extract the minimum number of moves needed to get from one square to another;
- Used in very specific use-cases, such as warehouse logistics;

$$d(a,b) = \left(\sum_{i=1}^{n} |b_i - a_i|^p\right)^{\overline{p}}$$

- Metric in a normed vector space;
- The upside to p is the possibility to iterate over it and find the distance measure that works best for your use case.
- p=1 → Manhattan distance
- $p=2 \rightarrow Euclidean distance$
- $p=\infty \rightarrow$ Chebyshev distance

Euclidean

$$d(a,b) = \sqrt{\sum_{i=1}^{n} (b_i - a_i)^2}$$

- Common distance measure;
- Suitable for low-dimensional data;

Manhattan

$$d(a,b) = \sum_{i=1}^{n} |b_i - a_i|$$

- Work quite well when your data has discrete and/or binary attributes;
- Work ok for high-dimensional data;
- Less intuitive than Euclidean distance;
- In general, give a higher distance value than Euclidean distance;

Chebyshev

$$d(a,b) = \max_{i}(|b_i - a_i|)$$

- It can be used to extract the minimum number of moves needed to get from one square to another;
- Used in very specific use-cases, such as warehouse logistics;

$$d(a,b) = \left(\sum_{i=1}^{n} |b_i - a_i|^p\right)^{\frac{1}{p}}$$

- Metric in a normed vector space;
- The upside to p is the possibility to iterate over it and find the distance measure that works best for your use case.
- p=1 → Manhattan distance
- $p=2 \rightarrow$ Euclidean distance
- p=∞ → Chebyshev distanc@0

KNN with and without Feature Scaling

https://stats.stackexchange.com/a/287439

- If K is too small:
 - KNN is sensitive to outliers;
 - KNN overfits the training data:
 - Higher error on different sets;

- If K is too small:
 - KNN is sensitive to outliers;
 - KNN overfits the training data:
 - Higher error on different sets;
- If K is too large:
 - Neighbors can include samples from other classes;
 - KNN performs poorly on both train and validation set;

- If K is too small:
 - KNN is sensitive to outliers;
 - KNN overfits the training data:
 - Higher error on different sets;
- If K is too large:
 - Neighbors can include samples from other classes;
 - KNN performs poorly on both train and validation set;
- **K** is a **hyperparameter** so we can **optimize** it for our problem;
 - For example, by Cross-Validation Grid Search

- If K is too small:
 - KNN is sensitive to outliers;
 - KNN overfits the training data:
 - Higher error on different sets;
- If K is too large:
 - Neighbors can include samples from other classes;
 - KNN performs poorly on both train and validation set;
- **K** is a **hyperparameter** so we can **optimize it** for our problem;
 - For example, by Cross-Validation Grid Search
 - By plotting an **elbow curve**

KNN: Pros and Cons

Pros

- 1. Extremely easy to implement it;
- 2. It does not require training;
- By not requiring training before making estimation/classifications, new training samples can be added without any problems (no models' retraining);
- 4. There is **only a single hyperparameter** required by KNN
 - Number of neighbors K
 - If we consider other distances, we can have more required hyperparameters (Minkowski, ...);

KNN: Pros and Cons

Pros

- 1. Extremely easy to implement it;
- It does not require training;
- By not requiring training before making estimation/classifications, new training samples can be added without any problems (no models' retraining);
- 4. There is **only a single hyperparameter** required by KNN
 - Number of neighbors K
 - If we consider other distances, we can have more required hyperparameters (Minkowski, ...);

Cons

- It does not work well for high dimensionality data (the curse of dimensionality)
- The prediction time can be high if the size of the training set is large;

The outcome (label / dependent variable) of a new test sample is computed based on the mean of the outcomes/labels of its K nearest neighbors.

$$k = 3$$

The outcome (label / dependent variable) of a new test sample is computed based on the mean of the outcomes/labels of its K nearest neighbors.

$$k = 3$$

The outcome (label / dependent variable) of a new test sample is computed based on the mean of the outcomes/labels of its K nearest neighbors.

$$k = 3$$

The outcome (label / dependent variable) of a new test sample is computed based on the mean of the outcomes/labels of its K nearest neighbors.

$$k = 3$$

sklearn.neighbors.KNeighborsRegressor

K-Nearest Neighbors (KNN)

Prof. Dr. Samuel Martins (Samuka)

samuel.martins@ifsp.edu.br

