Project 1

Alignement des séquences et programmation dynamique

À rendre pour le 13/10/17

Énoncé du problème

Input

- Deux séquences de taille variable, par example :
 - GGVTTF
 - MEAIAKY
- Pénalité de gap, par example g = -4
- Matrice de substitution, par example BLOSUM 62

Étapes

- 1. Calcule les scores de la matrice de scoring
- 2. Backtrace pour identifier tous les alignements possibles

Output

k meilleurs alignements/au maximum / alignements (NW/SW)

GGVTTF (m=6) MGGETFA (n=7) Gap = -4 Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde

	M	G	G	E	Т	F	A
G							
G							
V							
Т							
Т							
F							

GGVTTF (m=6) MGGETFA (n=7) g = -4

- Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde
- 2. Remplir la première ligne/colonne avec les multiples de g

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4							
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde
- 2. Remplir la première ligne/colonne avec les multiples de g
- 3. Remplir les autres cellules selon :

$$max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

		M	G	G	E	Т	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4							
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde
- 2. Remplir la première ligne/colonne avec les multiples de g
- 3. Remplir les autres cellules selon :

$$max{S(i-1,j) + g, S(i,j-1) + g, S(i-1,j-1) + t(i,j)}$$

Max{-4+g,-4+g, 0+t('G','M')}

·		M	G	G	E	Т	F	А
	0	-4	-8	-12	-16	-20	-24	-28
G	-4							
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- 1. Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde
- 2. Remplir la première ligne/colonne avec les multiples de g
- Remplir les autres cellules selon :

$$max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

 $Max{-4+g,-4+g, 0+t('G','M')}$ = $Max{-8,-8,-3}$ = -3

$$= Max{-8,-8,-3} = -3$$

10 1000																				
C	9																			
S	-1	4																		
Т	-1	1	5																	
Р	-3	-1	-1	7				┡	く Ⅰ			"				V		6		_
Α	0	1	0	-1	4			L					J					V	L	
G	-3	0	-2	-2	0	6														
Ν	-3	1	0	-2	-2	0	6													
D	-3	0	-1	-1	-2	-1	1	6												
Ε	-4	0	-1	-1	-1	-2	0	2	5											
Q	-3	0	-1	-1	-1	-2	0	0	2	5										
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8									
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
K	-3	0	-1	-1	-1	-2	0		1	1	-1	2	5							
М	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5						
1.	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	3	2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	C	S	Т	Р	Α	G	Ν	D	Е	Q	Н	R	Κ	М	- 1	L	V	F	Υ	W

		M	G	G	E	Т	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3						
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde
- 2. Remplir la première ligne/colonne avec les multiples de g
- 3. Remplir les autres cellules selon :

$$\max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

$$Max{-8 +g,-3+g,-4+t('G','G')} = Max{-12,-7,2} = 2$$

C	9																			
S	-1	4																		
Т	-1	1	5							•							•			
Р	-3	-1	-1	7				┡	X۱			"		l		V	1	6		
Α	0	1	0	-1	4			L	J				J					U		
G	-3	0	-2	-2	0	6														
N	-3	1	0	-2	-2	0	6													
D	-3	0	-1	-1	-2	-1	1	6												
Е	-4	0	-1	-1	-1	-2	0	2	5											
Q	-3	0	-1	-1	-1	-2	0	0	2	5										
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8									
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5							
М	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5						
1	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				
٧	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	3	2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	C	S	Т	Р	Α	G	Ν	D	Е	Q	Н	R	K	M	- 1	L	V	F	Υ	W

		M	G	G	Е	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2					
G	-8							
V	-12							
Т	-16							
Т	-20							
F	-24							

- Créer une matrice S de dimension (m+1)x(n+1) avec les lignes pour la 1ère séquence et les colonnes pour la seconde
- 2. Remplir la première ligne/colonne avec les multiples de g
- 3. Remplir les autres cellules selon :

$$\max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$$

С	9																			
S	-1	4																		
Т	-1	1	5							ı						4				
Р	-3	-1	-1	7				₽	X١			"			П	V		6		
Α	0	1	0	-1	4			L					J					U	L	
G	-3	0	-2	-2	0	6														
N	-3	1	0	-2	-2	0	6													
D	-3	0	-1	-1	-2	-1	1	6												
Ε	-4	0	-1	-1	-1	-2	0	2	5											
Q	-3	0	-1	-1	-1	-2	0	0	2	5										
Н	-3	-1	-2	-2	-2	-2	1	-1	0	0	8									
R	-3	-1	-1	-2	-1	-2	0	-2	0	1	0	5								
K	-3	0	-1	-1	-1	-2	0	-1	1	1	-1	2	5							
M	-1	-1	-1	-2	-1	-3	-2	-3	-2	0	-2	-1	-1	5						
-1	-1	-2	-1	-3	-1	-4	-3	-3	-3	-3	-3	-3	-3	1	4					
L	-1	-2	-1	-3	-1	-4	-3	-4	-3	-2	-3	-2	-2	2	2	4				
V	-1	-2	0	-2	0	-3	-3	-3	-2	-2	-3	3	2	1	3	1	4			
F	-2	-2	-2	-4	-2	-3	-3	-3	-3	-3	-1	-3	-3	0	0	0	-1	6		
Υ	-2	-2	-2	-3	-2	-3	-2	-3	-2	-1	2	-2	-2	-1	-1	-1	-1	3	7	
W	-2	-3	-2	-4	-3	-2	-4	-4	-3	-2	-2	-3	-3	-1	-3	-2	-3	1	2	11
	C	S	Т	Р	Α	G	Ν	D	Ε	Q	Н	R	K	М	- 1	L	V	F	Υ	W

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

1. Commencer avec l'élément de la dernière ligne, dernière colonne

		M	G	G	Е	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Commencer avec l'élément de la dernière ligne, dernière colonne
- 2. Identifier l'étape précédente qui a résulté en cette valeur:
 - 14 + g?
 - 7 + g?
 - 9 + t('F','A')?

		M	G	G	E	T	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Commencer avec l'élément de la dernière ligne, dernière colonne
- 2. Identifier l'étape précédente qui a résulté en cette valeur:
 - 14 + g?
 - 7 + g?
 - 9 + t('F','A')?

		M	G	G	E	T	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Commencer avec l'élément de la dernière ligne, dernière colonne
- 2. Identifier l'étape précédente qui a résulté en cette valeur:
 - 14 + g?
 7 + g?
 9 + t('F','A')?
- 3. Répéter l'étape 2 jusqu'à arriver à (0,0)

		M	G	G	E	Т	F	Α
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

- 1. Commencer avec l'élément de la dernière ligne, dernière colonne
- 2. Identifier l'étape précédente qui a résulté en cette valeur:
 - 14 + g?
 7 + g?
 9 + t('F','A')?
- 3. Répéter l'étape 2 jusqu'à arriver à (0,0)
- 4. Déterminer tous les alignements possibles

		M	G	G	E	Т	F	A
	0	-4	-8	-12	-16	-20	-24	-28
G	-4	-3	2	-2	-6	-10	-14	-18
G	-8	-7	3	8	4	0	-4	-8
V	-12	-7	-1	4	6	4	0	-4
Т	-16	-11	-5	0	3	11	7	3
Т	-20	-15	-9	-4	-1	8	9	7
F	-24	-19	-13	-8	-5	4	14	10

Example : pénalité affine

 $\max\{S(i-1,j)+g,S(i,j-1)+g,S(i-1,j-1)+t(i,j)\}$

On ne sait pas savoir si le gap a été introduit avant les valeurs S(i-1,j) et S(I,j-1)

Pénalités différentes pour le gap initial I et le gap d'extension E

AB-BBD vs AB----BBD

- L'initialisation de la matrice score doit prendre ça en compte
- Besoin de 2 matrices supplémentaires pour garder l'information des gaps en mémoire, une pour chaque séquence

	M	G	G	Е	Т	F	Α
G							
G							
V							
Т							
Т							
F							

Example : pénalité affine

Pénalités différentes pour le gap initial I et le gap d'extension E

Première séquence:

- Valeur précédente n'était pas un gap
 ➤ S(i-1,j) et I
- Valeur précédente était un gap
 V(i-1,j) et E
 V(i,j) = max{S(i − 1, j) − I, V(i − 1, j) − E}

Seconde séquence:

- Valeur précédente n'était pas un gap
 ➤ S(i,j-1) et I
- Valeur précédente était un gap
 ➤ W(i,j-1) et E
 W(i,j) = max{S(i,j-1) I, W(i,j-1) E}

Matrice de score S:

$$S(i,j) = \max\{S(i-1,j-1) + t(i,j), \mathbf{V}(\mathbf{i},\mathbf{j}), \mathbf{W}(\mathbf{i},\mathbf{j})\}\$$

AB-BBD vs AB----BBD

- L'initialisation de la matrice score doit prendre ça en compte
- Besoin de 2 matrices supplémentaires pour garder
 l'information des gaps en mémoire, une pour chaque séquence

		M	G	G	E	Т	F	Α
	0	-4	-5	-6	-7	-8	-9	-10
G	-4							
G	-5							
V	-6							
Т	-7							
Т	-8							
F	-9							

Example avec I = 4 et E = 1

Alignement global vs local

Global

 Les valeurs négatives sont possibles dans la matrice score

 Le backtracking commence à la valeur de la dernière ligne, dernière colonne

Local

- Les valeurs négatives sont remplacées par 0 dans la matrice score
- Le backtracking commence à la valeur maximale de la matrice score

Conseils pour la réalisation du projet

- Comme un rapport scientifique (Intro, Méthodes, Résultats, Discussion)
 - Pas de copier-coller des slides du cours
 - Pas de captures d'écran du terminal
 - Illustrez vos explications/discussions avec des graphiques/figures
- Répondez clairement aux questions posées

 Pas de gros blocs de code! Structurez les blocs pour expliquer pertinemment vos implémentations

Séances de TP: Le 06/10/17 Le 13/10/17 (last chance!)