universidade do minho miei

introdução aos sistemas dinâmicos edos separáveis

1.

Considere a equação diferencial

$$\frac{dT}{dt} = -k(T - T_m), \qquad t \geqslant 0,$$

correspondente à lei do arrefecimento de Newton, que permite descrever a variação da temperatura de um corpo em contacto com um meio a uma temperatura constante T_m (k é uma constante, que podemos, de uma forma simples, dizer que depende apenas do material).

- Resolva a equação diferencial, escrevendo a constante arbitrária em função do valor $T_o = T(0)$ que T toma no instante inicial t = 0.
- Para k=2 e $T_m=20$, determine a temperatura do corpo após 2.3 instantes de tempo, sabendo que a sua temperatura inicial T_o é igual a 80.
- Ainda para os mesmos valores de k e T_m , quanto tempo demora o corpo a atingir a temperatura 19.2, se $T_o = 10$?
- Ainda para os mesmos valores de k e T_m , determine a temperatura inicial do corpo sabendo que a sua temperatura após 3.0 instantes de tempo é igual a 24.8.
- Ainda para os mesmos valores de k e T_m , se a temperatura do corpo após 1.5 instantes de tempo é igual a 28.4, determine a sua temperatura passado 3.5 instantes de tempo.

2.

Resolva a equação diferencial

$$\frac{dx}{dt} = 2tx^2.$$

- Resolva a equação diferencial, procurando escrever a constante arbitrária em função do valor $x_0 = x(0)$ que x toma no instante inicial t = 0.
- Determine o valor de x(3), sabendo que no instante inicial $x_0 = -1$.

3.

Considere a seguinte equação diferencial:

$$\frac{dx}{dt} = \frac{2}{x}, \qquad x \neq 0.$$

- Resolva a equação diferencial, procurando escrever a constante arbitrária em função do valor $x_0 = x(0)$ que x toma no instante inicial t = 0.
- Determine o valor de x(2.4), sabendo que no instante inicial $x_0 = 1$.

4

Considere a seguinte equação diferencial:

$$\frac{dx}{dt} = x - 1.$$

- Resolva a equação diferencial, procurando escrever a constante arbitrária em função do valor $x_0 = x(0)$ que x toma no instante inicial t = 0.
- Determine o valor de x(1), sabendo que no instante inicial $x_0 = -1$.

5.

Resolva a equação diferencial:

$$\frac{dx}{dt} = x(x-1).$$

- Resolva a equação diferencial, procurando escrever a constante arbitrária em função do valor $x_0 = x(0)$ que x toma no instante inicial t = 0.
- 5.2 Determine o valor de x(2), sabendo que no instante inicial $x_0 = -1$.
- Determine o valor de x(4.02), sabendo que no instante inicial $x_{\rm o} = 0.75$.

. 6

Resolva a equação diferencial

$$\frac{dx}{dt} \, = \, \sqrt{x}, \quad x > 0 \, ,$$

procurando escrever a constante arbitrária em função do valor $x_{o}=x(0)$ que x toma no instante inicial t=0.

_ 7.

Apresente a solução formal da equação diferencial

$$\frac{dx}{dt} = 3t^2 e^x.$$

8.

Considere a seguinte equação diferencial de primeira ordem sujeita a uma condição inicial:

$$\begin{cases} \frac{dx}{dt} = -3x \\ x(0) = -2 \end{cases}$$

Determine os valores de x(-1.65) e x(2.25).

9.

Considere a seguinte equação diferencial de primeira ordem sujeita a uma condição inicial:

$$\begin{cases} \frac{dx}{dt} = \frac{4t}{2x-1}, & x \neq 1/2 \\ x(0) = -1 \end{cases}$$

Determine os valores de x(-0.274) e x(1.285).