The Lean-HoTT library

Floris van Doorn

Carnegie Mellon University

March 24, 2017

Lean HoTT library

It is the Lean standard library without Prop, but with univalence and 2 primitive HITs: the n-truncation and quotients (which are interdefinable with pushouts)

Theorems which were already proven last year:

- Loop space of the circle
- Connectedness of suspensions
- The real and complex hopf fibrations
- The Freudenthal suspension theorem
- The long exact sequence of homotopy groups

Formalized parts of chapter 8:

	1	2	3	4	5	6	7	8	9	10
last year	+	+	+	$\frac{3}{4}$	$\frac{3}{4}$	$\frac{3}{4}$	-	-	$\frac{1}{2}$	-
now	+	+	+	+	+	$\frac{3}{4}$	+	+	+	$\frac{1}{4}$

New Theorems:

- $\pi_n(\mathbb{S}^n) = \mathbb{Z}$ (for $n \ge 1$) and $\pi_n(\mathbb{S}^3) = \pi_n(\mathbb{S}^2)$ (for $n \ge 3$) (j.w.w. Ulrik Buchholtz)
- The Seifert-van Kampen theorem: (with basepoints)
 - "the fundamental groupoid of a pushout is weakly equivalent (as categories) to the pushout of the fundamental groupoids."
- Whitehead's principle:
 - "A weak equivalence between truncated types is an equivalence."
- Eilenberg-MacLane spaces:
 - We can construct pointed types K(G,n) which are n-truncated and (n-1)-connected and n-th homotopy group G,\ldots

Eilenberg-MacLane spaces:

[Let $\mathrm{Type}^{=n}_*$ be the universe of *n*-truncated (n-1)-connected types]

- ... then K(-,1) induces an equivalence between the categories $\operatorname{Grp} \to \operatorname{Type}^{=1}$
- ▶ and for $n \ge 2$ the functor K(-,n) induces an equivalence $Ab\mathrm{Grp} \to \mathrm{Type}_*^{=n}$ (j.w.w. Ulrik Buchholtz and Egbert Rijke)

• Properties about the smash product: (main part of my talk)

$$((-) \land B) \dashv (B \rightarrow^* (-))$$
 (natural in B)

$$A \wedge (B \wedge C) \simeq^* (A \wedge B) \wedge C$$
 (natural in A , B and C)

(j.w.w. Robin Adams, Mark Bezem, Ulrik Buchholtz, Stefano Piceghello, Egbert Rijke)

- [In Progress] Formalization of spectral sequences, in particular the Serre Spectral Sequence.
 - (j.w.w. Jeremy Avigad, Steve Awodey, Ulrik Buchholtz, Egbert Rijke, Mike Schulman)

Spectral Sequences (as described by Mike Shulman)

Definition A (homologically indexed) spectral sequence consists of

- A family $(E^r_{p,q})$ of R-modules (or objects in an abelian category) for $p,q:\mathbb{Z}$ and $r\geq 2$. For a fixed r this gives the r-page of the spectral sequence.
- (homo)morphisms $d^r_{p,q}:E^r_{p,q}\to E^r_{p-r,q+r-1}$ which are called differentials.
- isomorphisms $\alpha_{p,q}^r: H_{p,q}(E^r) \simeq E_{p,q}^{r+1}$ where $H_{p,q}(E^r) = \ker(d_{p,q}^r)/\operatorname{im}(d_{p+r,q-r+1}^r).$

We build these in the following way:

- Given an iterated fibration sequence;
- We construct an exact couple;
- We iteratively build a derived exact couple;
- These give a spectral sequence, which under certain conditions converges.

Iterated fibration sequence

Given a sequence of maps

$$Y_T \xrightarrow{f_T} Y_{T-1} \xrightarrow{f_{T-1}} Y_{T-2} \xrightarrow{f_{T-2}} \cdots$$

Let $X_s :\equiv \operatorname{fib}_{f_s}$ We build the iterated fibration sequence:

$$X_T \to Y_T \to Y_{T-1}$$

$$X_{T-1} \to Y_{T-1} \to Y_{T-2}$$

$$X_{T-2} \to Y_{T-2} \to Y_{T-3}$$

$$\vdots$$

We want to compute $\pi_n(Y_T)$ from the homotopy groups of X_s .

We assume that for every n there is an R that such that $\pi_n(X_s) = \pi_n(Y_s) = 0$ for $s \leq R$.

Exact couple

Define $E_{p,q}^2:\equiv \pi_{p+q}(X_q)$ and $D_{p,q}^2:\equiv \pi_{p+q}(Y_q)$. The long exact sequence of homotopy groups gives

$$\cdots \to \pi_n(X_s) \to \pi_n(Y_s) \to \pi_n(Y_{s-1}) \to \pi_{n-1}(X_s) \to \cdots$$

which gives the exact couple

Derived Exact couple

From an exact couple

we build a derived exact couple

with $E^3_{p,q}=H_{p,q}(E^2)$ with differential $d^2:\equiv j^2k^2:E^2\to E^2.$

Spectral Sequence

We iterate this process, and make construct the exact couple $(E^{r+1},D^{r+1},i^{r+1},j^{r+1},k^{r+1})$ as the derived couple of (E^r,D^r,i^r,j^r,k^r) .

Then $(E^r, d^r)_r$ forms an spectral sequence. For given p, q the sequence $(E^r_{p,q}$ is eventually constant, and we define the eventual value as $E^{\infty}_{p,q}$.

Convergence Theorem

Recall: We assume that for every n there is an R that such that $\pi_n(X_s) = \pi_n(Y_s) = 0$ for $s \leq R$.

Theorem There are abelian groups $B_{n,s}$ with $B_{n,T}=\pi_n(Y)$ and finite iterated extensions (short exact sequences)

$$E_{n-T,T}^{\infty} \to B_{n,T} \to B_{n,T-1}$$

$$\vdots$$

$$E_{n-s,s}^{\infty} \to B_{n,s} \to B_{n,s-1}$$

$$E_{n-s+1,s-1}^{\infty} \to B_{n,s-1} \to B_{n,s-2}$$

$$\vdots$$

$$E_{n-R,R}^{\infty} \to B_{n,R} \to 0$$

This is denoted $\pi_{n+q}(X_q) \Rightarrow \pi_{n+q}(Y_T)$.

Serre Spectral Sequence

Theorem

Given a pointed map $f:X\to B$ with fiber F where B is simply connected. For a spectrum Y we get

$$H^p(B; H^q(F; Y)) \Rightarrow H^{p+q}(X; Y).$$

Here $H^n(X;Y):\equiv \|X\to Y_n\|_0$ and $H^n(X;G):\equiv H^n(X;K(G,-))$ for an abelian group G.

Progress (globally)

We have:

- Eilenberg-MacLane spaces
- basic theory of spectra (LES of homotopy groups)
- cohomology theory satisfies Eilenberg-Steenrod axioms
- Basic algebraic constructions
- Long exact sequence of homotopy groups

To do:

- Derive an exact couple (in progress)
- The Convergence Theorem
- Spectrification and other constructions on spectra
- Cohomology with local coefficients