

Development of Health Web App with Integration of Ensemble Machine Learning for Early Diagnosis in Obesity

Wong Qi Yuan, Jeffrey (20053371)

Specialist Diploma in Applied Artificial Intelligence (Part-Time)

C3379C - Capstone Project 2021

Project Supervisor: Dr. Wee Kah Huat

Co-Supervisor: Dr. Ho Chee Wai

Problem Statement

The Word Health Organization (WHO) reports that obesity has reached epidemic proportions globally, with at least 2.8 million people dying each year as a result of being overweight or obese. Without immediate intervention, deaths may reach 52 million annually by 2030. Furthermore, COVID-19 accelerates this, with increased sedentary lifestyles and weight gain. As such, many people are unaware of their health status.

Source: https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity
Source: https://www.who.int/news-room/facts-in-pictures/detail/6-facts-on-obesity
Source: https://www.straitstimes.com/singapore/health/people-in-singapore-less-healthy-and-covid-19-may-worsen-situation-national

Solution

A cost-effective and user-friendly web application, developed using Streamlit, incorporates with optimized ensemble machine learning model to predict the likelihood of having obesity, providing individuals as an effective means to monitor their health.

Project Objectives

- 1. Explore data processing techniques to handle missing values, outliers, non-gaussian like distribution, etc, and ensure the integrity of the dataset.
- 2. Explore the possibility of creating new features that may enhance the model's performance.
- 3. Explore and evaluate the impact of combine data sampling techniques such as SMOTE-Tomek, etc, for imbalanced class and determine the most effective approach.
- 4. Evaluate and compare any **three** ensemble machine learning algorithms such as gradient boosting, decision trees, random forest, etc, and choose **one** machine learning algorithms with the most suitable model for early diagnosis of obesity.
- 5. Fine-tune the hyperparameters of the chosen model to maximize predictive accuracy and efficiency.
- 6. Implement an appropriate cross-validation technique for data splitting and to assess the generalizability of the model and validate its performance during model selection and fine-tuning process.
- 7. Design and use appropriate evaluation metrics such as precision, f1-score, etc, to assess the performance of the model, with a specific focus on achieving high sensitivity in early diagnosis of obesity.
- 8. Develop an intuitive and user-friendly interface for general user to interact with the machine learning application.
- 9. Explain the rationale behind for all the findings with aid of visual media such as poster, PowerPoint presentation slides, etc.
- 10. Document all codes with appropriate comments.

Received August 9, 2019, accepted September 27, 2019, date of publication October 2, 2019, date of current version October 17, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2945129

Development of Disease Prediction Model Based on Ensemble Learning Approach for Diabetes and Hypertension

NORMA LATIF FITRIYANI^{®1}, MUHAMMAD SYAFRUDIN^{®1}, GANJAR ALFIAN^{®2}, AND JONGTAE RHEE¹

¹Department of Industrial and Systems Engineering, Dongguk University, Seoul 04620, South Korea

Corresponding authors: Muhammad Syafrudin (udin@dongguk.edu) and Jongtae Rhee (jtrhee@dongguk.edu)

This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) and the Korea Institute for Advancement of Technology (KIAT) through the International Cooperative Research and Development Program under Grant N0002301.

ABSTRACT Early diseases prediction plays an important role for improving healthcare quality and can help individuals avoid dangerous health situations before it is too late. This paper proposes a disease prediction model (DPM) to provide an early prediction for type 2 diabetes and hypertension based on individual's risk factors data. The proposed DPM consists of isolation forest (iForest) based outlier detection method to remove outlier data, synthetic minority oversampling technique tomek link (SMOTETomek) to balance data distribution, and ensemble approach to predict the diseases. Four datasets were utilized to build the model

²Nano Information Technology Academy, Dongguk University, Seoul 04626, South Korea

Software, Libraries & Frameworks

Project Roadmap

Ingesting Insights: Loading and Preparing the Dataset for Analytical Exploration

Refining Raw Potential: Unveiling the Art of Data Preprocessing for Enhanced Model Performance

Strategic Segmentation:
Optimizing Model
Performance through
Effective Data Splitting

Unveiling Insight: Navigating Numerical Features through Exploratory Feature Analysis

Fine-Tuning the Forest:
Exploring Optimal
Performance with
Hyperparameter Tuning for
Random Forest Classifier

Ensemble Mastery: Navigating Model Selection and Evaluation Strategies for Robust Ensemble Machine Learning

Striking Balance: Exploring
Hybrid Data Sampling
Techniques through the
Fusion of Over- and Undersampling for Imbalanced
Class

Unveiling Insight: Navigating Categorical Features through Exploratory Feature Analysis

Classifier Performance with Optimized Hyperparameters on Test Data

Preserving Predictive Power: Saving the Trained Random Forest Classifier for Future Use

Seamless Integration: Deploying a Predictive Random Forest Model with Streamlit for Obesity Detection

Ingesting Insights:
Loading and Preparing the
Dataset for Analytical
Exploration

Data Loading

1 # read the obesity datafile from the Google drive 2 obesity_df = pd.read_csv('/content/drive/MyDrive/rp_capstone_project/obesity.csv')

	gender	age	height	weight	family_history_with_overweight	caloric_food	vegetables	number_meals	<pre>food_between_meals</pre>	smoke	water	са
0	Female	21	1.62	64.0	yes	no	2	3	2	no	2	
1	Female	21	1.52	56.0	yes	no	3	3	2	yes	3	
2	Male	23	1.80	77.0	yes	no	2	3	2	no	2	
3	Male	27	1.80	87.0	no	no	3	3	2	no	2	
4	Male	22	1.78	89.8	no	no	2	1	2	no	2	

obesity_level	transportation	alcohol	technology	activity	calories
2	public_transportation	1	1	0	no
2	public_transportation	2	0	3	yes
2	public_transportation	3	1	2	no
3	walking	3	0	2	no
4	public_transportation	2	0	0	no

1 # display the data information 2 obesity_df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 2111 entries, 0 to 2110 Data columns (total 17 columns):

Daca	cordinis (cocar in cordinis).		
#	Column	Non-Null Count	Dtype
0	gender	2111 non-null	object
1	age	2111 non-null	int64
2	height	2111 non-null	float64
3	weight	2111 non-null	float64
4	<pre>family_history_with_overweight</pre>	2111 non-null	object
5	caloric_food	2111 non-null	object
6	vegetables	2111 non-null	int64
7	number_meals	2111 non-null	int64
8	food_between_meals	2111 non-null	int64
9	smoke	2111 non-null	object
10	water	2111 non-null	int64
11	calories	2111 non-null	object
12	activity	2111 non-null	int64
13	technology	2111 non-null	int64
14	alcohol	2111 non-null	int64
15	transportation	2111 non-null	object
16	obesity_level	2111 non-null	int64
dtvpe	es: float64(2), int64(9), object	(6)	

dtypes: float64(2), int64(9), object(6)

memory usage: 280.5+ KB

Data Description

Attribute	Description
gender	Male or Female
age	Age (in years)
height	Measure the height of an individual (in m)
weight	Measure the weight of an individual (in kg)
family_history_ow	To check whether if there is a family history with overweight. $(0 = No \text{ and } 1 = Yes)$
caloric_food	Does an individual consume high caloric food? $(0 = No \text{ and } 1 = Yes)$
vegetables	How frequent consumption of vegetables? (1 = Not always, 2 = Frequently, 3 = Often)
number_meals	What is the number of meals per day? (1, 2, 3, or 4)
food_between_meals	How often do you consume foods between meals? (1 = Not always, 2 = Sometimes, 3 = Frequently, 4 = Always)
smoke	Do you smoke? $(0 = \text{No}, 1 = \text{Yes})$
water	How often do you drink water daily? (1 = Not always, 2 = Sometimes, 3 = Frequently)
calories	Do you often monitor your calories? $(0 = No, 1 = Yes)$
activity	How often do you exercise? $(0 = \text{Not always}, 1 = \text{Sometimes}, 2 = \text{Frequently}, 3 = \text{Always})$
technology	How often do you use your electronic devices? (0 = Sometimes, 1 = Frequently, 2 = Always)
alcohol	Do you drink alcohol? (1 = Not always, 2 = Sometimes, 3 = Frequently, 4 = Always)
transportation	Types of transportation used: Automobile, Motorbike, Bike, Public Transportation, Walking
obesity_level	1 = Insufficient Weight, 2 = Normal Weight, 3 = Overweight Level I, 4 = Overweight Level II, 5 = Obesity Type I, 6 = Obesity Type II, 7 = Obesity Type III

Refining Raw Potential:
Unveiling the Art of Data
Preprocessing for Enhanced
Model Performance

Rename Column in DataFrame

```
1 # rename the target column
2 obesity_df.rename({'obesity_level': 'obesity_class'}, axis = 1, inplace = True)
```

New Column in DataFrame

```
1 # create new columns
2 obesity_df['bmi'] = obesity_df['weight'] / obesity_df['height']**2
3 obesity_df.head(5)
```

g	ender	age	height	weight	family_history_with_overweight	caloric_food	vegetables	number_meals	food_between_meals	smoke	water	calories	activity	technology	alcohol	transportation	obesity_class	bmi
0 F	emale	21	1.62	64.0	yes	no	2	3	2	no	2	no	0	1	1	public_transportation	2	24.386526
1 F	emale	21	1.52	56.0	yes	no	3	3	2	yes	3	yes	3	0	2	public_transportation	2	24.238227
2	Male	23	1.80	77.0	yes	no	2	3	2	no	2	no	2	1	3	public_transportation	2	23.765432
3	Male	27	1.80	87.0	no	no	3	3	2	no	2	no	2	0	3	walking	3	26.851852
4	Male	22	1.78	89.8	no	no	2	1	2	no	2	no	0	0	2	public_transportation	4	28.342381

```
1 # check for missing values
2 obesity_df.isnull().sum()
    use heatmap to visualize the presence of missing values
2 sns.heatmap(obesity df.isnull(), annot = False, cmap = 'viridis')
3 plt.show()
```

```
0.100
                                                               0 -
82 -
gender
                                                             164 -
246 -
328 -
410 -
492 -
574 -
656 -
738 -
820 -
age
                                                                                                                             - 0.075
                                                     0
height
weight
                                                                                                                             0.050
family history with overweight
caloric food
                                                                                                                             0.025
                                                             902
984
vegetables
                                                            1066 -
1148 -
1230 -
1312 -
                                                                                                                             0.000
number meals
food between meals
                                                                                                                              -0.025
                                                             1394
1476
smoke
                                                            1558
1640
1722
1804
1886
water
                                                                                                                              -0.050
calories
                                                                                                                              -0.075
activity
technology
alcohol
transportation
obesity class
dtype: int64
```

sometimes sometimes public transportation

overweight 28.342381

Integer-to-Categorical Label Mapping for Specific Categorical Features

```
1 # convert the num values to cat values for the respective categorical columns
 2 # categorical columns: vegetables, food between meals, water, activity, technology, alcohol, obesity class
4 obesity_df['vegetables'] = obesity_df['vegetables'].map({1: 'not always', 2: 'frequently', 3: 'often'})
5 obesity df['food between meals'] = obesity df['food between meals'].map({1: 'not always', 2: 'sometimes', 3: 'frequently', 4: 'always'})
6 obesity df['water'] = obesity df['water'].map({1: 'not always', 2: 'sometimes', 3: 'frequently'})
7 obesity_df['activity'] = obesity_df['activity'].map({0: 'not always', 1: 'sometimes', 2: 'frequently', 3: 'always'})
8 obesity df['technology'] = obesity df['technology'].map({0: 'sometimes', 1: 'frequently', 2: 'often'})
9 obesity df['alcohol'] = obesity df['alcohol'].map({1: 'not always', 2: 'sometimes', 3: 'frequently', 4: 'always'})
10 obesity_df['obesity_class'] = obesity_df['obesity_class'].map({1: 'underweight', 2: 'normal_weight', 3: 'overweight', 4: 'overweight', 5: 'obesity_type_I', 6: 'obesity_type_II',
   gender age height weight family_history_with_overweight caloric_food vegetables number_meals food_between_meals smoke
                                                                                                            water calories activity technology
                                                                                                                                             alcohol
                                                                                                                                                       transportation obesity class
               1.62
                     64.0
                                                                                 3
                                                                                                                                            not always public transportation
 0 Female
                                                                 frequently
                                                                                           sometimes
                                                                                                      no sometimes
                                                                                                                       no
                                                                                                                            always
                                                yes
                                                                                           sometimes
                                                                                                         frequently
                                                                                                                            always
                                                                                                                                                    public transportation
                                                                                                                                                                     normal weight 24.238227
                                                                 frequently
                                                                                           sometimes
                                                                                                      no sometimes
                                                                                                                                                    public transportation
                                                                                                                                                                     normal weight 23.765432
                                                                                                                       no frequently
               1.80
                                                                                 3
                                                                                           sometimes
                                                 no
                                                                    often
                                                                                                      no sometimes
                                                                                                                                                              walking
                                                                                                                                                                       overweight 26.851852
                                                                                                                       no frequently
          22
               1.78
                      89.8
                                                                frequently
                                                                                           sometimes
                                                                                                      no sometimes
```

no

13

CDC Body Mass Index and Category Requirements

obesity_class	bmi
underweight	18.565866
underweight	19.082206
underweight	18.545503
underweight	19.036573

An of BMI category that does not comply with the CDC BMI category

Filter Rows with Multiple Conditions

```
1 # create a function to verify the violation of the underweight range
  2 def check underweight range(obesity df):
  3 # create a boolean mask to filter rows based on multiple conditions that to verify the violation of the underweight range
         mask_obs_underweight = ((obesity_df['obesity class'] == 'underweight') & (obesity_df['bmi'] > 18.5))
         res obs underweight = obesity df[mask obs underweight]
      return res obs underweight
1 # create a function to verify the violation of the normal weight range
 2 def check normal weight range(obesity df):
        # create a boolean mask to filter rows based on multiple conditions to verify the violation of the normal weight range
       mask obs normalweight = ((obesity df['obesity class'] == 'normal weight') & (obesity df['bmi'] >= 25.0)) | ((obesity df['obesity df['obesi
       res obs normalweight = obesity df[mask obs normalweight]
      return res obs normalweight
  1 # create a function to verify the violation of the overweight range
  2 def check overweight range(obesity df):
       # create a boolean mask to filter rows based on multiple conditions that violated the overweight range
        mask obs overweight = ((obesity df['obesity class'] == 'normal weight') & (obesity df['bmi'] >= 30.0)) | ((obesity df['obesity cl
        res obs overweight = obesity df[mask obs overweight]
  6 return res obs overweight
1 # create a function to verify the violation of the obesity type i range
 2 def check obesity type I range(obesity df):
       # create a boolean mask to filter rows based on multiple conditions that violated the obesity class I range
       mask obs type i = ((obesity df['obesity class'] == 'obesity type I') & (obesity df['bmi'] >= 35)) | ((obesity df['obesity class']
       res_obs_type_i = obesity_df[mask_obs_type_i]
      <u>return_res_obs_type_i</u>
1 # create a function to verify the violation of the obesity type ii range
2 def check obesity type II range(obesity df):
       # create a boolean mask to filter rows based on multiple conditions that vioplated the obesity class II range
       mask obs type ii = ((obesity df['obesity class'] == 'obesity type II') & (obesity df['bmi'] >= 40)) | ((obesity df['obesity class')
       res obs type ii = obesity df[mask obs type ii]
     <u>return res obs type ii</u>
```

Filter Rows with Multiple Conditions (con't)

```
1 # create a function to verify the violation of the obesity type ii range
2 def check_obesity_type_II_range(obesity_df):
3 # create a boolean mask to filter rows based on multiple conditions that vioplated the obesity class II range
4 mask_obs_type_ii = ((obesity_df['obesity_class'] == 'obesity_type_II') & (obesity_df['bmi'] >= 40)) | ((obesity_df['obesity_class'] == 'obesity_type_III') & (obesity_df['bmi'] >= 40)) | ((obesity_df['obesity_class'] == 'obesity_type_III') & (obesity_df['obesity_class'] == 'obesity_type_III' range'
2 def check_obesity_type_III_range(obesity_df):
3 # create a boolean mask to filter rows based on multiple conditions that violated the obesity class III range mask_obs_type_iii = ((obesity_df['obesity_class'] == 'obesity_type_III') & (obesity_df['bmi'] < 40))
5 res_obs_type_iii = obesity_df[mask_obs_type_iii]
6 return res_obs_type_iii</pre>
```

Update Obesity Class based on BMI values

```
1 def corrected_obesity_class(bmi):
2    if bmi < 18.5:
3         corrected_class = 'underweight'
4    elif bmi >= 18.5 and bmi < 25.0:
5         corrected_class = 'normal_weight'
6    elif bmi >= 25.0 and bmi < 30.0:
7         corrected_class = 'overweight'
8    elif bmi >= 30.0 and bmi < 35.0:
9         corrected_class = 'obesity_type_I'
10    elif bmi >= 35.0 and bmi < 40.0:
11         corrected_class = 'obesity_type_II'
12    elif bmi >= 40:
13         corrected_class = 'obesity_type_III'
14         return corrected_class
```

1 # update the obesity class column by applying the corrected obesity class based on BMI values
2 obesity_df['obesity_class'] = obesity_df['bmi'].apply(lambda x: corrected_obesity_class(x))

Strategic Segmentation:
Optimizing Model
Performance through
Effective Data Splitting

Stratified K-Fold for Data Splitting

```
1 # splitting the dataset into features (X) and target variable (y)
2 X = obesity_df.drop('obesity_class', axis = 1)
3 y = obesity_df['obesity_class']
4
5 # creating an instance of stratifiedkfold
6 stratified_k_fold = StratifiedKFold(n_splits = 5, shuffle = True, random_state = 42)
7
8 # iterating through the folds generated by stratifiedkfold
9 for train_index, test_index in stratified_k_fold.split(X, y):
10  # splitting the data into training and testing sets based on the current fold indices
11  X_train, X_test = X.loc[train_index], X.loc[test_index]
12  y_train, y_test = y.loc[train_index], y.loc[test_index]
```

- Using Stratified K-Fold to split the data over a simple train-test-split because the number of row data present in this dataset is limited and has imbalanced class distribution (i.e. some classes have significantly fewer samples than others).
- Simple random splitting may lead to a training set that does not adequately represent the minority class, so Stratified K-Fold helps ensure that each fold has a representative distribution of classes.

Detecting Outliers, Gaussian Distribution, and the Art of Normalizing and Scaling

Detect Presence of Outliers and Gaussian Distribution

How do we remove outliers and achieve more-like Gaussian Distribution?

How do we remove outliers and achieve more-like Gaussian Distribution?

StandardScaler and **Min-Max Scaler** simply standardize or normalize the data, respectively, without addressing distribution shape, while **Robust Scaler** is designed to handle outliers but might not be as effective in transforming the data to a Gaussian distribution.

How do we remove outliers and achieve more-like Gaussian Distribution?

- **Power Transformer** uses the Yeo-Johnson transformation that can handle both positive and negative values. By estimating the optimal transformation parameters through maximum likelihood estimation, the Yeo-Johnson transformation applies a family of power transformation to the data. This flexibility allows it to adapt to different patterns of skewness and variance within the dataset. The transformation stabilizes variance by mitigating the impact of extreme values and asymmetry, making the distribution more symmetry.
- QuantileTransformer helps in achieving Gaussian-like properties, but it does not necessarily remove the outliers entirely. Outliers may still exist in the transformed data if they were present in the original distribution tails.

Unveiling Insight: Navigating Categorical Features through Exploratory Feature Analysis

Empowering Transformation with Label Encoding

Visualizing Distribution of Various Categorical Features with respect to Obesity Class

Visualizing Distribution of Various Categorical Features with respect to Obesity Class

Label Encoder

• This LabelEncoder is a simple and straightforward method as it maps each category to an integer and the transformation is reversible.

Visualizing Distribution of Obesity Class

What would happen if imbalanced classes were trained in the ML models?

- **Biased:** The model may tend to be biased towards the majority class since it is more prevalent in the training data. As a result, the model may struggle to accurately predict instances of the minority class.
- Poor Generalization: The model may not be generalised well to unseen data, especially for the minority class. It may perform well on majority class instances but poorly on minority class instances, leading to suboptimal overall performance.
- Misleading Evaluation Metrics: A model could achieve high accuracy by simply predicting the majority class, even if it fails to identify minority class instances.

How do we achieve a balanced for each class?

Striking Balance: Exploring
Hybrid Data Sampling
Techniques through the Fusion
of Over- and Under- sampling for
Imbalanced Class

SMOTE-Tomek

```
1 # initializing smote-tomek for resampling to address imbalanced class labels
2 smt = SMOTETomek(random_state = 42)
3 # applying smote-tomek to the training data to balance the class distribution :
4 X_train_smt, y_train_smt = smt.fit_resample(X_train, y_train)
```

- SMOTE (Synthetic Minority Over-Sampling Technique) and Tomek links are two techniques used to address the imbalanced class distribution.
- **SMOTE** helps to overcome the class imbalance by generating synthetic examples for the minority class, increasing it representation. The algorithm works by selecting examples that are close in the feature space, drawing a line between the examples in the feature space and draw a new sample at a point along that line.
- **Tomek** links aim to remove overlapping instances that might cause misclassification, in which identify and remove instances that form Tomek pairs. A Tomek pair consists of two instances of different classes that are nearest to each other.

Tomek

Before applying SMOTE-Tomek

After applying SMOTE-Tomek

SMOTE-ENN

```
6 # initializing smote-enn for resampling to address imbalanced class labels
7 smtenn = SMOTEENN(random_state = 42)
8 # applying smote-enn to the training data to balance the class distribution
9 X_train_smtenn, y_train_smtenn = smtenn.fit_resample(X_train, y_train)
```

- **SMOTE** focuses on oversampling the minority class by generating synthetic instances.
- ENN (Edited Nearest Neighbors) aims to clean the dataset by removing potentially
 mislabel instances using a nearest neighbour's approach, by which identifies and
 removes instances that might be causing misclassification. If the majority class of
 the observation KNN and the observation class is different, then the observation
 and its K-nearest neighbor are deleted from the dataset.
- **SMOTE-ENN** combines the strengths of both methods to enhance the model's performance on imbalanced datasets.

 SMOTE-ENN may not always result in a fully balanced distribution because ENN might not remove enough instances to achieve perfect balance, especially if there are complex noise or overlaps in the dataset.

Before applying SMOTE-ENN

After applying SMOTE-ENN

Ensemble Mastery:
Navigating Model Selection
and Evaluation Strategies
for Robust Ensemble
Machine Learning

Ensemble Machine Learning Algorithms

Gradient Boosting Classifier Extra Trees Classifier

Cross-Validation Score (Train + Validation)

```
1 # perform cross-validation for the respective model using StratifiedKFold
2 def cross_validation_score(model, X_train_data, y_train_data):
3    cv = StratifiedKFold(n_splits=5, shuffle = True, random_state = 42)
4    # define a scorer for evaluation during the cross-validation
5    myScorer = make_scorer(balanced_accuracy_score)
6    # calculate the balanced accuracy scores for each fold and store them in the form of array list
7    scores = cross_val_score(model, X_train_data, y_train_data, cv=cv, n_jobs = 1,
8    # calculate the average balanced accuracy scores across all folds
9    avgScores = np.mean(scores)
10    return avgScores
```

- Cross-validation score able to provide a more robust estimate of a model performance by averaging the performance metrics across multiple folds, reducing the impact of variability introduced by a single train-test split.
- This helps to obtain a more reliable assessment of a model's generalization ability and helps in selecting a model that performs well
 across different subsets of the data.
- Stratified K-Fold ensures that each fold maintains the same class distribution as the original training datasets, addressing imbalances in class representation.
- "balanced_accuracy_score" was used in this context as metrics because of robustness to class imbalance by considering the performance across all classes, providing a balanced view of the model effectiveness.

Cross-Validation Score (Train + Validation)

```
1 # create a baseline random forest classifier
2 rfc = RandomForestClassifier(random_state = 42)
3
4 # call the function to calculate cross validation scores for the random forest classifier usir
5 rfc_scores_smt = cross_validation_score(rfc, X_train_smt, y_train_smt)
6 rfc_scores_smtenn = cross_validation_score(rfc, X_train_smtenn, y_train_smtenn)
7
8 # display the cross-validation scores for the random forest classifier
9 print("Random Forest Classifier CV-Scores with SMOTE-Tomek: {:.4f}".format(rfc_scores_smtenn))
0 print("Random Forest Classifier CV-Scores with SMOTE-ENN: {:.4f}".format(rfc_scores_smtenn))
```

```
1 # create a baseline gradient boosting classifier
2 gbc = GradientBoostingClassifier(random_state = 42)
3
4 # call the function to calculate cross validation scores for the gradient boosting classifier usi
5 gbc_scores_smt = cross_validation_score(gbc, X_train_smt, y_train_smt)
6 gbc_scores_smtenn = cross_validation_score(gbc, X_train_smtenn, y_train_smtenn)
7
8 # display the cross-validation scores for the gradient boosting classifier
9 print("Gradient Boosting Classifier CV-Scores with SMOTE-Tomek: {:.4f}".format(gbc_scores_smtenn))
10 print("Gradient Boosting Classifier CV-Scores with SMOTE-ENN: {:.4f}".format(gbc_scores_smtenn))
```

```
1 # create a baseline extra trees classifier
2 etc = ExtraTreesClassifier(random_state = 42)
3
4 # call the function to calculate cross validation scores for the extra trees classifier usi
5 etc_scores_smt = cross_validation_score(etc, X_train_smt, y_train_smt)
6 etc_scores_smtenn = cross_validation_score(etc, X_train_smtenn, y_train_smtenn)
7
8 # display the cross-validation scores for the extra trees classifier
9 print("Extra Trees Classifier CV-Scores with SMOTE-Tomek: {:.4f}".format(etc_scores_smt))
10 print("Extra Trees Classifier CV-Scores with SMOTE-ENN: {:.4f}".format(etc_scores_smtenn))
```

Why do we choose default parameters for CV?

Default parameters often represent a baseline configuration that may provide a reasonable performance and can serve as a benchmark against which we can compare the performance of models with customized parameters.

Random Forest Classifier CV-Scores with SMOTE-Tomek: 0.9963 Random Forest Classifier CV-Scores with SMOTE-ENN: 0.9982

Gradient Boosting Classifier CV-Scores with SMOTE-Tomek: 0.9992 Gradient Boosting Classifier CV-Scores with SMOTE-ENN: 0.9996

Extra Trees Classifier CV-Scores with SMOTE-Tomek: 0.9820 Extra Trees Classifier CV-Scores with SMOTE-ENN: 0.9970

Cross Validation Predict (Train + Test)

```
1 # perform cross-validation for the respective model using StratifiedKFold
2 def cross_validation_predict(model, X_test_data, y_test_data):
3    cv = StratifiedKFold(n_splits=5, shuffle = True, random_state = 42)
4    # generate cross-validation prediction for the test data using the specified model
5    y_pred = cross_val_predict(model, X_test_data, y_test_data, cv=cv, n_jobs = 1)
6    return y_pred
```

• Cross-validation predict allows for predictions on each fold, providing insights of how well the model generalizes to unseen data and helping to identify potential issues like overfitting and underfitting.

Cross Validation Predict (Train + Test)

Classification Re					
	precision	recall	f1-score	support	
normal_weight	0.99	1.00	0.99	445	
underweight	0.99	1.00	0.99	445	
obesity_type_II	1.00	1.00	1.00	451	
overweight	1.00	1.00	1.00	453	
obesity_type_III	1.00	0.99	0.99	441	
obesity_type_I	1.00	1.00	1.00	451	
accuracy			1.00	2686	
macro avg	1.00	1.00	1.00	2686	
weighted avg	1.00	1.00	1.00	2686	
Classification De	anont for Dan	dom Fonos	+ Classific	n (SMOTE ENN	\
Classification Re	eport for Ran precision)
	precision	recall	f1-score	support)
normal_weight	precision	recall	f1-score	support 282)
normal_weight underweight	precision 1.00 1.00	recall 1.00 1.00	f1-score 1.00 1.00	support 282 353)
normal_weight underweight obesity_type_II	precision 1.00 1.00 1.00	recall 1.00 1.00 1.00	f1-score 1.00 1.00 1.00	support 282 353 418)
normal_weight underweight obesity_type_II overweight	precision 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00	f1-score 1.00 1.00 1.00	support 282 353 418 437)
normal_weight underweight obesity_type_II overweight obesity_type_III	precision 1.00 1.00 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00 0.99	f1-score 1.00 1.00 1.00 1.00	support 282 353 418 437 241)
normal_weight underweight obesity_type_II overweight	precision 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00	f1-score 1.00 1.00 1.00	support 282 353 418 437)
normal_weight underweight obesity_type_II overweight obesity_type_III	precision 1.00 1.00 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00 0.99	f1-score 1.00 1.00 1.00 1.00	support 282 353 418 437 241)
normal_weight underweight obesity_type_II overweight obesity_type_III obesity_type_I	precision 1.00 1.00 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00 0.99	f1-score 1.00 1.00 1.00 1.00 1.00	support 282 353 418 437 241 422)

Classification Re	sport for Grad	116HC 0008							
	precision	recall	f1-score	support		precision	recall	f1-score	support
normal_weight	1.00	1.00	1.00	445	normal_weight	0.95	0.97	0.96	445
underweight	1.00	1.00	1.00	445	underweight	0.99	0.99	0.99	445
obesity_type_II	1.00	1.00	1.00	451	obesity_type_II	0.99	0.99	0.99	451
overweight	1.00	1.00	1.00	453	overweight	1.00	1.00	1.00	453
besity_type_III	1.00	1.00	1.00	441	obesity_type_III	0.97	0.96	0.96	441
obesity_type_I	1.00	1.00	1.00	451	obesity_type_I	0.99	0.99	0.99	451
accuracy			1.00	2686	accuracy			0.98	2686
macro avg	1.00	1.00	1.00	2686	macro avg	0.98	0.98	0.98	2686
weighted avg	1.00	1.00	1.00	2686	weighted avg	0.98	0.98	0.98	2686
Classification F	Report for Gr	adient Boo	osting Clas	sifier (SMOTE-ENN)	Classification Re	port for Ext	ra Trees	Classifie	`(SMOTE-ENN)
Classification F	Report for Gr precision		osting Clas		Classification Re	port for Ext precision		Classifier f1-score	(SMOTE-ENN) support
Classification F	precision				Classification Re normal_weight			f1-score	
	precision	recall	f1-score	support		precision	recall	f1-score 0.99	support
normal_weight underweight	precision 1.00 1.00	recall	f1-score	support 282	normal_weight	precision 0.99	recall	f1-score 0.99 1.00	support 282
normal_weight underweight obesity_type_IJ	precision 1.00 1.00 1.00	recall 1.00 1.00	f1-score 1.00 1.00	support 282 353	normal_weight underweight	precision 0.99 1.00	recall 1.00 0.99	f1-score 0.99 1.00 1.00	support 282 353
normal_weight underweight obesity_type_IJ overweight	precision 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00	f1-score 1.00 1.00 1.00	support 282 353 418	normal_weight underweight obesity_type_II	precision 0.99 1.00	recall 1.00 0.99 1.00	f1-score 0.99 1.00 1.00	support 282 353 418
normal_weight underweight obesity_type_IJ overweight	precision 1.00 1.00 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00	f1-score 1.00 1.00 1.00	support 282 353 418 437	normal_weight underweight obesity_type_II overweight	precision 0.99 1.00 1.00	recall 1.00 0.99 1.00 1.00	f1-score 0.99 1.00 1.00 1.00	support 282 353 418 437
normal_weight underweight obesity_type_IJ overweight obesity_type_IIJ	precision 1.00 1.00 1.00 1.00 1.00 1.00 1.00	recall 1.00 1.00 1.00 1.00 1.00 1.00	f1-score 1.00 1.00 1.00 1.00	support 282 353 418 437 241	normal_weight underweight obesity_type_II overweight obesity_type_III	0.99 1.00 1.00 1.00	recall 1.00 0.99 1.00 1.00	f1-score 0.99 1.00 1.00 1.00	support 282 353 418 437 241

weighted avg

2153

- Random Forest Classifier is less prone to overfitting as it builds multiple decision trees independently and combines their prediction through averaging or voting, which helps mitigate overfitting.
- On the other hand, Gradient Boosting builds tree sequentially, with each tree correcting the errors of its predecessors, making it more susceptible to overfitting.

weighted avg

Fine-Tuning the Forest:
Exploring Optimal Performance
with Hyperparameter Tuning for
Random Forest Classifier

Grid-Search CV on Random Forest Classifier with SMOTE-Tomek Training Sets

GridSearchCV automates the process of search through predefined a hyperparameter grid, testing different combinations of hyperparameters, and evaluate the model performance using CV. It performs an exhaustive search the specified hyperparameter considering space, all possible combinations, helps to identify the set of hyperparameters that produces the best model performance.

- "n_estimators": number of trees in the RFC; more trees can increase model robustness (but may increase computation time)
- "max_depth": maximum depth of each decision tree; a deeper tree can capture more complex pattern (but may lead to overfitting)
- "criterion": to measure the quality of a split
- "min_samples_leaf": minimum number of samples required to be at leaf node which can be useful to prevent the overfitting
- "min_samples_split": minimum number of samples required to split an internal node which can be useful to prevent overfitting

Grid-Search CV on Random Forest Classifier with **SMOTE-Tomek Training Sets**

```
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=1, n estimators=140;, score=(train=nan, test=nan) total time=
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=50;, score=(train=0.959, test=0.961) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=50;, score=(train=0.958, test=0.952) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=50;, score=(train=0.959, test=0.954) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=50;, score=(train=0.961, test=0.950) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=50;, score=(train=0.955, test=0.939) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=60;, score=(train=0.965, test=0.972) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=60;, score=(train=0.964, test=0.955) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=60;, score=(train=0.970, test=0.970) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=60;, score=(train=0.974, test=0.965) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=60;, score=(train=0.964, test=0.954) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=70;, score=(train=0.971, test=0.972) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=70;, score=(train=0.973, test=0.972) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=70;, score=(train=0.974, test=0.981) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=70;, score=(train=0.981, test=0.974) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=70;, score=(train=0.973, test=0.959) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=80;, score=(train=0.976, test=0.980) total time=
                                                                                                                                             0.3s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=80;, score=(train=0.968, test=0.961) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=80;, score=(train=0.969, test=0.974) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=80;, score=(train=0.975, test=0.974) total time=
                                                                                                                                             0.2s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=80;, score=(train=0.972, test=0.955) total time=
                                                                                                                                             0.3s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=90;, score=(train=0.974, test=0.974) total time=
                                                                                                                                             0.3s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=90;, score=(train=0.952, test=0.931) total time=
                                                                                                                                             0.3s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=90;, score=(train=0.964, test=0.970) total time=
                                                                                                                                             0.3s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=90;, score=(train=0.971, test=0.970) total time=
                                                                                                                                             0.3s
END criterion=entropy, max depth=3, min samples leaf=2, min samples split=2, n estimators=90;, score=(train=0.961, test=0.946) total time=
                                                                                                                                             0.38
```

Grid-Search CV on Random Forest Classifier with **SMOTE-Tomek Training Sets**

```
Best score for Random Forest Classifier (SMOTETomek): 0.9918
Best parameters for Random Forest Classifier (SMOTETomek):
{'criterion': 'entropy', 'max_depth': 4, 'min_samples_leaf': 4, 'min_samples_split': 2, 'n_estimators': 120}
```

Grid-Search CV on Random Forest Classifier with SMOTE-ENN Training Sets

```
Best score for Random Forest Classifier (SMOTE-ENN + Feature Selected): 0.9907

Best parameters for Random Forest Classifier (SMOTE-ENN + Feature Selected):

{'criterion': 'entropy', 'max_depth': 4, 'min_samples_leaf': 2, 'min_samples_split': 2, 'n_estimators': 70}
```


Evaluating Random Forest Classifier Performance with Optimized Hyperparameters on Test Data

Random Forest Classifier (trained with SMOTE-Tomek + Hyperparameter Optimization) on Test Set (Unseen)

Classification Report for Random Forest Classifier (SMOTE-Tomek + Optimized Hyperparameters)

	precision	recall	f1-score	support
normal_weight	0.98	0.98	0.98	60
underweight	1.00	1.00	1.00	73
obesity_type_II	1.00	1.00	1.00	67
overweight	1.00	1.00	1.00	54
obesity_type_III	0.99	0.99	0.99	113
obesity_type_I	1.00	1.00	1.00	55
accuracy			1.00	422
macro avg	1.00	1.00	1.00	422
weighted avg	1.00	1.00	1.00	422

Random Forest Classifier (trained with SMOTE-ENN + Hyperparameter Optimization) on Test Set (Unseen)

Classification Report for Random Forest Classifier (SMOTE-ENN + Optimized Hyperparameters)

	precision	recall	f1-score	support
normal_weight	0.92	0.93	0.93	60
underweight	1.00	0.99	0.99	73
obesity_type_II	0.99	1.00	0.99	67
overweight	1.00	1.00	1.00	54
obesity_type_III	0.99	0.96	0.97	113
obesity_type_I	0.95	1.00	0.97	55
accuracy			0.98	422
macro avg	0.97	0.98	0.98	422
weighted avg	0.98	0.98	0.98	422

Preserving Predictive
Power: Saving the
Trained Random Forest
Classifier for Future Use

Save the model

```
1 import pickle
2 # save the trained random forest classifier with optimized hyperparameters
3 pickle.dump(rfc_smt_gs, open('_/content/drive/MyDrive/rp_capstone_project/rfc_smt_fs_gs.pkl', 'wb'))
```


Seamless Integration:
Deploying a Predictive Random
Forest Model with Streamlit for
Obesity Detection

Medical Disclaimer: This platform is not serve as an alternative to medical advice from medical professional healthcare provider. If you have any specific questions about any

medical matter, you should consult your doctor or other medical professional healthcare

General guideline(s) to the user:

provider.

1) You are required to fill up all the information in this form in less than 5 mins.

Enter your name:		
Tan Jia Hao		
Enter your identification no.:		
PA435		

Gender: Male Female Enter your age: 20 Enter your height (in m): 1.76 Enter your weight (in kg): 87.90 Does your family have a history of obesity? Yes O No Do you often consume high caloric foods? Yes O No How often do you consume fruits and vegetables? I do not eat fruits and vegetables. Frequently Often What is the number of main meals per day? 0 1 O 2 3 O 4 How often do you consume foods between meals? I do not consume foods between meals. Sometimes Frequently

 \equiv

How often do you consume foods between meals? I do not consume foods between meals. Sometimes Frequently Always
Do you smoke? Yes No
How often do you drink water daily? I do not always drink water. Sometimes Frequently
Do you often monitor your own calories? Yes No
How often do you exercise? I do not exercise. Sometimes Frequently Always
How often do you use your electronic devices? Sometimes Frequently Always
Do you drink alcohol? I do not drink alcohol. Sometimes Frequently Always Predict

47 **Capstone Project 2021**

-	
≍	Sometimes Frequently
X	
0	Always
How	often do you use your electronic devices?
0	Sometimes
0	Frequently
0	Always
юу	ou drink alcohol?
0	I do not drink alcohol.
0	Sometimes
0	Frequently
0	Always
Pi	redict
Ou	tcomes:
-	ii Tan Jia Hao! You have about [57.13606829]% chance at moderate risk for obesity-
	elated diseases.
1	nervo uminimos
Re	commendation:
(7,5)	commendation: lease try to aim to lose at least 5% to 10% of your body weight over 6 to 12 months by
Р	

=

 \equiv

Project Timeline

References