Welcome to Physics 1011

After this video you can

- discuss the scope of studying physics
- discuss the ventulness of the metric enjoyen to physicists
- convert within the metric system
- use the units of a measurement to interpret its relationship to other quantities
 connect scientific notation to the nutric prefixes

Measurement - quantity that draws an analogy to a unit

5.7 cm

SI Units >> soon unita >> composite units · length - meter (m)
(distance)

· time - Sacond (s) o Mass - Kilogram (kg)

Table 1.1	SI Base Units		its
Quantity	Unit Name	Symbol	Present Definition (2017)*
Length	meter	m	The distance traveled by light in vacuum during a time interval of 1/299 792 458 s.
Mass	kilogram	kg	The mass of the international prototype of the kilogram.
Time	second	s	The duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two
			hyperfine levels of the ground state of the cesium-133 atom.
Electric	ampere	A	The constant current in two long, thin, straight, parallel conductors placed 1 m apart in vacuum that
current			would produce a force on the conductors of 2×10^{-7} newtons per meter of length.
Temperature	kelvin	K	The fraction 1/273.16 of the thermodynamic temperature of the triple point of water.
Amount of	mole	mol	The amount of substance that contains as many elementary entities as there are atoms in 0.012 kg of
substance			carbon-12.
Luminous	candela†	cd	The luminous intensity, in a given direction, of a source that emits radiation of frequency 540×10^{12} Hz
intensity			and that has a radiant intensity in that direction of 1/683 watts per steradian.

Composite unit - mph miles per hour miles hours - meters per grand -[Newton] Kg m 7

0.01n D.In = | meter -> 10 meters -> 100 meter -> 1000 meter 10 m 10 m 10⁻²m 10⁻¹m 1 decameter 1 Lilometer centimeter decimeter baca deca hecto kilo centi deci milli 10⁻² 10⁻¹ 10° 10' 10² 10³ -3 10 Lm meter cm MM Second m 5 gram max

Table 1.2	SI Prefixes
Prefix (abbreviation)	Power of Ten
peta- (P)	10^{15}
tera- (T)	10^{12}
giga- (G)	10^{9}
mega- (M)	10^{6}
kilo-(k)	10^{3}
deci- (d)	10^{-1}
centi- (c)	10^{-2}
milli- (m)	10^{-3}
micro- (µ)	10^{-6}
nano- (n)	10^{-9}
pico-(p)	10^{-12}
femto- (f)	10^{-15}

Topics/Learning Outcomes:

After this video you can use the chain method to

- convert in two or more steps within the metrics system
- convert between the metric and imperial system

Topics/Learning Objectives:

After this you can

- discuss the uses of ratios
- transform English statements comparing quantities to mathematical ones
- apply the meaning of percent change
- transform from a ratio comparison to a percent change comparison and vice versa

ratio - comparisson between measurements of the same type - you pick twice as many apples as me a, is twia az $\rightarrow \alpha_1 = 2 \cdot \alpha_2$

as many apples as

percent change I picked 300% more apples than I started with. What is the ratio of final apples to just apples not a ratio percent change = final value - initial value x 100 $N\% = \frac{\alpha_2 - \alpha_1}{\alpha_1} \times 100 \iff \frac{N\%}{100} = \frac{\alpha_2 - \alpha_1}{\alpha_1}$ $\frac{n\%}{100} = \frac{\alpha_2}{\alpha_1} - 1$ What I colve

$$\frac{300}{100} = \frac{Q_z}{Q_t} - 1$$

$$3 = \frac{Q_z}{Q_t} - 1$$

$$4 = \frac{Q_z}{Q_t}$$
Tatio

Topics/Learning Objectives

After this video I can

- discuss the usefullness of proportionality statements
- translate useful equations out of proportionality statements
- predict how changes in one quantity will effect another dependent quantity

proportionality -> relationship between different types of quantities

cremment a circumference is directly proportional to the radius a circumference is directly proportional to the radius

First approach direct prop - exponent of 1

-> C = constant.

constant of proportionality - physically sorgnificant or famous

 $\rightarrow A = constant \cdot \Gamma^2$

 $\frac{A}{C^2} = comptant$

Travel time is invoresty proportional to your speed.

time = constant (speed)

time = constant => constant = speed time

speed

travel distance

- do not need to know the concetent of proportionality Second approach - Comparing the change of one quentity and how that changes the other quentity - initial condition -> final condition - compares the ratios of quantities together $\frac{C_2}{C_1} = \begin{bmatrix} r_2 \\ r_1 \end{bmatrix}$ is proportional to $\frac{C_z}{C_1} = \frac{C_z}{C_1}$ $\frac{C_z}{C_1} = \frac{Z}{C_1}$ $\frac{C_z}{C_1} = \frac{Z}{C_1}$

C2 = 2 m C2 is twice C,

$$A \propto r^2 \Rightarrow \frac{A_z}{A_1} = \left(\frac{r_z}{r_1}\right)^2 \qquad r_z = 2r_1 \iff given$$

$$\frac{r_z}{r_1} = 2$$

$$\frac{A_z}{A_i} = (2)^2 = 4$$

$$\frac{A_2}{A_1} = 4 \implies A_2 = A \cdot A_1$$

$$A_2 \times A \text{ times bissor than } A_1$$

$$R \propto A^{-1} \rightarrow \frac{R_z}{R_1} = \left(\frac{A_z}{A_1}\right)^{-1}$$

$$\frac{R_z}{R_1} = \frac{A_1}{A_2}$$