Fundamentals of Information & Network Security ECE 471/571

Lecture #38: Intrusion Detection

Instructor: Ming Li

Dept of Electrical and Computer Engineering
University of Arizona

Why we need IDS?

- IDS: Intrusion Detection System
- Second line of defense: Prevention, Detection, Recovery
- Motivation:
 - Detect an attack: the sooner an attack is detected, the less the amount of damage and the more quickly that recovery can be achieved.
 - An effective IDS can serve as a deterrent, so acting to prevent intrusions.
 - IDS collects information about intrusion techniques that can be used to strengthen the intrusion prevention facility.

Who are the Intruders?

- significant issue for networked systems is hostile or unwanted access
- either via network or local
- can identify classes of intruders:
 - masquerader
 - misfeasor
 - clandestine user
- varying levels of competence

Examples of Intrusion

- remote root compromise
- web server defacement
- guessing / cracking passwords
- copying viewing sensitive data / databases
- running a packet sniffer
- distributing pirated software
- using an unsecured modem to access net
- impersonating a user to reset password
- using an unattended workstation

Intruder behavior patterns

Hackers

- motivated by thrill of access and status
- benign intruders might be tolerable
- IDS / IPS / VPNs can help counter

Criminal Enterprise

- organized groups of hackers now a threat
- corporation / government / loosely affiliated gangs
- criminal hackers usually have specific targets
- IDS / IPS help but less effective

Insider Attacks

- among most difficult to detect and prevent
- employees have access & systems knowledge
- IDS / IPS may help but also need others

Hacker Behavior Example

- 1. select target using IP lookup tools
- 2. map network for accessible services
- 3. identify potentially vulnerable services
- 4. brute force (guess) passwords
- 5. install remote administration tool
- 6. wait for admin to log on and capture password
- 7. use password to access remainder of network

Criminal Enterprise

- organized groups of hackers now a threat
 - corporation / government / loosely affiliated gangs
 - typically young
 - often Eastern European or Russian hackers
 - often target credit cards on e-commerce server
- criminal hackers usually have specific targets
- once penetrated act quickly and get out
- IDS / IPS help but less effective
- sensitive data needs strong protection

Criminal Enterprise Behavior

- act quickly and precisely to make their activities harder to detect
- 2. exploit perimeter via vulnerable ports
- 3. use trojan horses (hidden software) to leave back doors for re-entry
- 4. use sniffers to capture passwords
- do not stick around until noticed
- 6. make few or no mistakes.

Insider Attacks

- among most difficult to detect and prevent
- employees have access & systems knowledge
- may be motivated by revenge / entitlement
 - when employment terminated
 - taking customer data when move to competitor
- IDS / IPS may help but also need:
 - least privilege, monitor logs, strong authentication, termination process to block access & mirror data

Insider Behavior Example

- create network accounts for themselves and their friends
- 2. access accounts and applications they wouldn't normally use for their daily jobs
- 3. e-mail former and prospective employers
- 4. conduct furtive instant-messaging chats
- 5. visit web sites that cater to disgruntled employees, such as f'dcompany.com
- 6. perform large downloads and file copying
- 7. access the network during off hours.

Intrusion Techniques

- aim to gain access and/or increase privileges on a system
- often use system / software vulnerabilities
- key goal often is to acquire passwords
 - so then exercise access rights of owner
- basic attack methodology
 - target acquisition and information gathering
 - initial access
 - privilege escalation
 - covering tracks
- Password Guessing
- Password Capture

Password Guessing

- one of the most common attacks
- attacker knows a login (from email/web page etc)
- then attempts to guess password for it
 - defaults, short passwords, common word searches
 - user info (variations on names, birthday, phone, common words/interests)
 - exhaustively searching all possible passwords
- check by login or against stolen password file
- success depends on password chosen by user
- surveys show many users choose poorly

Password Capture

- another attack involves password capture
 - watching over shoulder as password is entered
 - using a trojan horse program to collect
 - monitoring an insecure network login
 - eg. telnet, FTP, web, email
 - extracting recorded info after successful login (web history/cache, last number dialed etc)
- using valid login/password can impersonate user
- users need to be educated to use suitable precautions/countermeasures

Intrusion Detection Approaches

Rule-based detection

- Attempt to define a set of rules that can be used to decide that a given behavior is that of an intruder
- Define improper behavior, for known attacks.

Statistical anomaly detection

- Collect data relating to the behavior of legitimate users over a period of time, then apply statistical tests to observed behavior to determine with a high level of confidence whether that behavior is not legitimate user behavior.
- Define normal, or expected, behavior, use threshold or profile to detect abnormal behavior, could be used for unknown attacks.

Intrusion Detection

Statistical Anomaly Detection

threshold detection

- count occurrences of specific event over time
- if exceed reasonable value assume intrusion
- alone is a crude & ineffective detector

profile based

- characterize past behavior of users
- detect significant deviations from this
- profile usually multi-parameter

Audit Record Analysis

- foundation of statistical approaches
- analyze records to get metrics over time
 - counter, gauge, interval timer, resource use
- use various tests on these to determine if current behavior is acceptable
 - mean & standard deviation, multivariate, Markov process, time series, operational
- key advantage is no prior knowledge used

Rule/Signature-Based Intrusion Detection

- observe events on system & apply rules to decide if activity is suspicious or not
- Rule-based anomaly detection
 - analyze historical audit records to identify usage patterns & auto-generate rules for them
 - then observe current behavior & match against rules to see if conforms
 - like statistical anomaly detection does not require prior knowledge of security flaws
- Rule-based penetration identification

How good can an IDS be?

- practically an intrusion detection system needs to detect a substantial percentage of intrusions with few false alarms
 - if too few intrusions detected -> false security
 - if too many false alarms -> ignore / waste time
- this is very hard to do
- existing systems seem not to have a good record

Base-Rate Fallacy

- Consider the following: A patient has a test for some disease that comes back positive (indicating he has the disease). You are told that
 - The accuracy of the test is 87% (i.e., if a patient has the disease, 87% of the time, the test yields the correct result, and if the patient does not have the disease, 87% of the time, the test yields the correct result).
 - The incidence of the disease in the population is 1%.
- Q: Given that the test is positive, how probable is it that the patient does not have the disease? That is, what is the probability that this is a false alarm?

Base-Rate Fallacy

We need Bayes' Theorem:

$$Pr[well/positive] = \frac{Pr[positive/well]Pr[well]}{Pr[positive/disease]Pr[disease] + Pr[positive/well]Pr[well]}$$
$$= \frac{(0.13)(0.99)}{(0.87)(0.01) + (0.13)(0.99)} = 0.937$$

How to fix this problem?

Honeypots

- decoy systems to lure attackers
 - away from accessing critical systems
 - to collect information of their activities
 - to encourage attacker to stay on system so administrator can respond
- are filled with fabricated information
- instrumented to collect detailed information on attackers activities
- single or multiple networked systems
- cf IETF Intrusion Detection WG standards

Password Management

- front-line defense against intruders
- users supply both:
 - login determines privileges of that user
 - password to identify them
- passwords often stored encrypted
 - Unix uses multiple DES (variant with salt)
 - more recent systems use crypto hash function
- should protect password file on system

Password Studies

- Purdue 1992 many short passwords
- Klein 1990 many guessable passwords
- conclusion is that users choose poor passwords too often
- need some approach to counter this

Table 20.4 Observed Password Lengths [SPAF92a]

Length	Number	Fraction of Total	
1	55	.004	
2	87	.006	
3	212	.02	
4	449	.03	
5	1260	.09	
6	3035	.22	
7	2917	.21	
8	5772	.42	
Total	13787	1.0	

 Table 20.5
 Passwords Cracked from a Sample Set of 13,797 Accounts [KLEI90]

Type of Password	Search Size	Number of Matches	Percentage of Passwords Matched	Cost/Benefit Ratio ^a
User/account name	130	368	2.7%	2.830
Character sequences	866	22	0.2%	0.025
Numbers	427	9	0.1%	0.021
Chinese	392	56	0.4%	0.143
Place names	628	82	0.6%	0.131
Common names	2239	548	4.0%	0.245
Female names	4280	161	1.2%	0.038
Male names	2866	140	1.0%	0.049
Uncommon names	4955	130	0.9%	0.026
Myths & legends	1246	66	0.5%	0.053
Shakespearean	473	11	0.1%	0.023
Sports terms	238	32	0.2%	0.134
Science fiction	691	59	0.4%	0.085
Movies and actors	99	12	0.1%	0.121
Cartoons	92	9	0.1%	0.098
Famous people	290	55	0.4%	0.190
Phrases and patterns	933	253	1.8%	0.271
Surnames	33	9	0.1%	0.273
Biology	58	1	0.0%	0.017
System dictionary	19683	1027	7.4%	0.052
Machine names	9018	132	1.0%	0.015
Mnemonics	14	2	0.0%	0.143
King James bible	7525	83	0.6%	0.011
Miscellaneous words	3212	54	0.4%	0.017
Yiddish words	56	0	0.0%	0.000
Asteroids	2407	19	0.1%	0.007
TOTAL	62727	3340	24.2%	0.053

Managing Passwords - Reactive Checking

- reactively run password guessing tools
 - note that good dictionaries exist for almost any language/interest group
- cracked passwords are disabled
- but is resource intensive
- bad passwords are vulnerable till found

Managing Passwords - Proactive Checking

- most promising approach to improving password security
- allow users to select own password
- but have system verify it is acceptable
 - simple rule enforcement (see earlier slide)
 - compare against dictionary of bad passwords
 - use algorithmic (markov model or bloom filter) to detect poor choices

Reading Assignment

• [Stallings] Chapter 23