ALGA — Agrupamento IV (ECT, EET, EI)

Época de Recurso – Exame de Recurso 26 de janeiro de 2015 — Duração: **2h30**

	N.° Mec	Escreva o número mecanográfico também na(s) folha(s) de rascunho
30 pontos	1. Considere as matrizes $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$	
	(a) marque para que varores do p	
	possível e determinado:	
	possível e indeterminado:	
	impossível:	
	(b) Considere $\alpha = 1$. Diga se B	$\in \mathcal{C}(A)$: $\boxed{\mathbb{S}}$ $\boxed{\mathbb{N}}$.
	Indique o espaço $\mathcal{C}(A)$:	
	(c) Considere $\alpha = 2$. Indique dir	$\operatorname{m}\mathcal{N}(A)=$
	e uma base do espaço $\mathcal{N}(A)$:	
30 pontos	2. Considere as matrizes $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\1\\1\\1 \end{bmatrix}, \ B = \begin{bmatrix} 1&1\\1&0\\0&1 \end{bmatrix} \ \text{e} \ C \ \text{uma matriz quadrada de ordem 3 tal que} \ \det(C) = 3.$
	(a) Calcule $det(A) = $	assinale as igualdades que podem obter-se pelo desenvolvimento de Laplace:
	$\begin{bmatrix} \mathbf{i} \end{bmatrix} A = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}; \begin{bmatrix} \mathbf{i} \end{bmatrix}$	$ A = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} + \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix}; A = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix}; A = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix}.$
	(b) Indique $car(A) = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$A(A) = \boxed{}$ e diga se a matriz A é invertível: \boxed{S} \boxed{N} .
	(c) Determine a dimensão da mat	triz X que satisfaz a equação matricial $(A^{-1}X)^T=B^TC$:
	(d) Calcule $\det(-2A^TC^{-1}) = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	

15 pontos 3. (a) Para cada um dos seguintes conjuntos assinale se é, ou não, um subespaço vetorial real de \mathbb{R}^3 :

A reta de equação
$$X=(6,1,4)+t(3,1,2),$$
 com $t\in\mathbb{R}$

[S] [N]

$$\{(2\alpha + \beta, \alpha - 1, \beta - \alpha) : \alpha, \beta \in \mathbb{R}\}\$$

[S] [N]

(b) Assinale se o conjunto $\{(1,0,2),(0,0,0),(0,-3,0),(2,0,-1)\}$

gera \mathbb{R}^3 : \mathbb{S} \mathbb{N} ;

é ortogonal: S N.

25 pontos	4. Considere a reta \mathcal{R} em \mathbb{R}^3 definida pelo sistema de equações $\begin{cases} x+2z+1=0, \\ 2x+y+3z=1. \end{cases}$		
	(a) Calcule o produto externo $v=(1,0,2)\times(2,1,3)=$ (b) Uma equação do plano $\mathcal P$ que passa no ponto $Q(1,2,3)$ e é ortogonal à reta $\mathcal R$ é:		
	(c) O conjunto de interseção do plano de equação cartesiana $x+2y=5$ com a reta $\mathcal R$ é:		
30 pontos	5. Considere a matriz simétrica $A = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$, cujos valores próprios são 1 e -1 .		
	(a) Especifique a multiplicidade de 1:		
	(b) Indique o subespaço próprio de 1:		
	e o conjunto de vetores próprios de -1 :		
	(c) Indique uma matriz D diagonal e uma matriz P ortogonalmente diagonalizante de A tais que $P^{-1}AP = D$:		
	$D = \begin{bmatrix} & & & & & & & & & & & & & & & & & &$		
	(d) Indique a equação reduzida da seguinte superfície $y^2 - 2xz + 4 = 0$ e identifique-a .		
20 pontos	6. Identifique, escrevendo A e B na caixa correspondente, os conjuntos definidos pelas seguintes equações. $A: x^2 + 2y^2 + z^2 = 4(x-y-2) \text{ em } \mathbb{R}^3; \qquad B: 3x^2 + y = 6x - 2 \text{ em } \mathbb{R}^2.$		
	elipse hipérbole parábola cónica degenerada quádrica degenerada		
	elipsóide hipérbolóide de 1 ou 2 folhas parabolóide elíptico ou hiperbólico		
50 pontos	 7. Sejam ω₁, ω₂, ω₃ ∈ ℝ³ dados por ω₁ = [1 0 0]^T, ω₂ = [1 1 0]^T e ω₃ = [1 1 1]^T e considere a aplicação linear φ : ℝ³ → ℝ³ definida por φ(ω₁) = ω₂, φ(ω₂) = ω₁ + ω₃ e φ(ω₃) = ω₁. Responda às seguintes questões e justifique convenientemente as suas resposta e todos os cálculos efetuados. (a) Prove que B = (ω₁, ω₂, ω₃) é uma base (ordenada) de ℝ³. (b) Determine a projeção ortogonal de ω₃ sobre o subespaço S = ⟨ω₁, ω₂⟩. 		
	(c) Construa a matriz representativa da aplicação linear ϕ relativamente à base $\mathcal B$ do espaço de partida e à base		

(e) Dado o vector $x = \begin{bmatrix} -2 & 1 & 1 \end{bmatrix}^T$, represente-o como combinação linear dos vectores da base \mathcal{B} . (f) Caracterize (indicando uma base) o subespaço $\mathcal{T} = \langle x, \phi(x) \rangle$ e diga qual a sua dimensão.

canónica ${\mathcal C}$ do espaço de chegada. (d) A aplicação ϕ é sobrejetiva? É injetiva?