Use of Hawkes processes in a Cramér-Lundberg type model

Poisson processes project

Sébastien Grand, Léo Géré, Ababacar Camara

INSA - GMM - 5 ModIA

Tutor: Anthony Reveillac

December 12th 2021

Introduction

Main aim of the project

Modelling events that occur in chain

Seismic events, retweets on a post, drops in financial market...

Outline

- I. Hawkes processes: mathematical aspects
- II. Comparison of Poisson and Hawkes processes for the Cramér-Lundberg model
- III. Fitting a Hawkes process on real data

I. Hawkes processes: mathematical aspects

Counting process: models events occurring over time

Homogeneous Poisson process:

- Well suited for independent events
- Intensity of the process: λ → linked to the frequency of events
- Intensity constant: frequency always the same over time

Inhomogeneous Poisson process intensity 12 10 8 4 2 0 0 1 2 3 4 5 6 7 8

Inhomogeneous Poisson process:

- **Intensity** of the process **not** constant
- Frequency of events varying over time
- Intensity function fixed and known

$$\lambda(t) = igl[0.8 imes\cos{(t-8)}+1igr]^4+1igr]$$

Hawkes process:

- Intensity of the process not constant
 → Frequency of events varying
- Intensity function unknown
- Increment in intensity at each event
 → self exciting process
- Progressive exponential decay after some time without event

$$egin{aligned} \lambda(t) &= \mu + \sum_{\{k|t_k < t\}} lpha e^{-eta(t-t_k)} \ & \mu > 0, \quad 0 < lpha < eta \end{aligned}$$

I. Hawkes processes: mathematical aspects

Influence of parameters

$$\lambda(t) = \mu + \sum_{\{k | t_k < t\}} lpha e^{-eta(t - t_k)}$$

- μ : baseline intensity
 - Minimum intensity the process can have
- α: increment size
 - Reinforcement of the chain effect
- β : decay rate
 - Speed at which the process "forgets" events

II. Application in the context of the Cramér-Lundberg model

- What is ruin theory?
 - Mathematical model that reflects the risk incurred by an insurer to experience ruin, in other words bankruptcy.
 - The model to evaluate the risk R(t) is known as Cramér-Lundberg model.
 - It is defined as follow:

$$R(t) = u + pt - \sum_{i=1}^{N_t} X_i \quad ext{for } t \geq 0$$

II. Comparison of Poisson and Hawkes processes for the Cramér-Lundberg model

$$R(t) = u + pt - \sum_{i=1}^{N_t} X_i \quad ext{for } t \geq 0$$

- What defines the Cramér-Lundberg model?
 - \circ u ≥ 0 : initial capital at time t=0 ;
 - o p > 0 : constant premium rate ;
 - \circ X_i : the amount of the i-th claim (real random variable);
 - \circ N_t: the counting process (Poisson, Hawkes...)

II. Comparison of Poisson and Hawkes processes for the Cramér-Lundberg model

And now what does the risk look like graphically?

What is the influence of the parameters u (initial resources)
 and p (premium) on the arrival time of the ruin?

Evolution of the arrival time of the ruin

Aim: Fit a Hawkes processes on financial data (CAC 40).

- <u>CAC 40</u>:
 - The main stock market index of the Paris stock exchange.
 - A bucket of 40 French companies selected from the 100 French companies with the highest trading volume.
- High variations during certain periods of time.
 - Can lead to loss of money
- Need of a model representing it's evolution.

How did we fit a Hawkes processes on the CAC 40?

- **Define the Events**: When CAC40 drop by 150 in values
- <u>Use *Tick*</u>: Python library to be able to fit the Hawks process
- <u>Tuning</u>: Find the best parameters to the exponential kernel of

Results

- **Two major peak**: 2008 and in 2020.
 - Corresponds to the subprime and covid 19 crisis
- <u>Self exciting property</u>: Before reaching these peak
 - Reflects the snowball effect and the history of the process

Visualization of the snowball effect.

- Increase drastically when there is posteriors events
- For example : the year 2009 and 2020

Validation on the Hawkes process property.

- Transformed realizations of Hawkes processes follow Poisson process.
- The aim is to check:
 - The law of the transformed events.
 - The independence of the points.

Conclusion

Conclusion

Hawkes processes:

- Represent phenomena where history matters.
- Models the snowball effect :
 - Geological field: earthquakes.
 - Epidemiology: propagation of a virus.
 - Finance: big drops in market stocks
- Decrease the time of ruin in the Cramér-Lundberg model.

References

Chen, Yuanda. Thinning Algorithms for Simulating Point Processes. 2016.

Daw, Andrew and Pender, Jamol. Queues Driven by Hawkes Processes. 2018.

Laub, Patrick. Hawkes Processes: Simulation, Estimation, and Validation. 2014.

Lesage, Laurent et al. Hawkes processes framework with a Gamma density as excitation function: application to natural disasters for insurance. 2020.

Contact details

Ababacar Camara: ababacar.camara@outlook.fr

Léo Géré : gere@insa-toulouse.fr

Sébastien Grand: sebastien.grand@etu.enseeiht.fr

Appendix: Thinning method

Numerical simulations of Hawkes processes: thinning algorithm

