Summary A Deterministic Trends & Leasonalities

If we assume ETX, J= fylt, where Y is a self parameters of the deferministic trends seasonality, then time series modelly can be pursued in the form $u_{i}u_{i} = \frac{1}{2} a_{t}^{2}$ $\phi_{i}, \theta_{i}, \theta_{i}$

$$a_{t} = (X_{t} - f_{\psi}(t_{1}) - \phi_{1}(X_{t-1} - f_{\psi}(t-1)) - \dots - \phi_{n}(X_{t-n} - f_{\psi}(t-n))$$

$$+ \partial_{1}a_{t-1} + \dots + \partial_{n-1}a_{t-n+1}$$

$$(*)$$

Deterministic trends 1 season alities frequently encoun sered;

(Sinusoidal trends or seasonalities with parameters 4= {8, 4, 6, B2, B2, 62, 62, 62, 62)

Easy way of finding parameters

- in Fit in creating orders of deterministic models

 (Increating traces of polynomials i number of exponentials)

 number of exponentially modulated sinusoids)

 until Foriterion says "enough" -> parameters 4
- ii) Use F-testing or AIC based procedure on the residuals

 of step i) to obtain parameters & and &.
- iii) The parameters of from stepi) and \$4 to kom stepii)
 as in had guesses for the aphinization (*)

Many (most) people) do not go to step 3. Doing it in your project would be a plus @,

Problem 1.

An engineer decides to do system identification by exposing the system to a Structordal input and fitting a model of the form

$$Y_{i} = m + \sum_{j=1}^{i} \left[A_{j} \sin(j\omega_{0}t) + B_{j} \cos(j\omega_{0}t) \right] + X_{i}$$

$$X_{i} = \phi_{i} X_{i+1} + \phi_{2} X_{i+2} + \dots + \phi_{n} X_{i+n} + \alpha_{i} + \theta_{1} \alpha_{i+1} + \dots + \theta_{m} \alpha_{i+m}$$

to the output time-series Y_i . The output time-series has N=200 samples and the engineer successively increased the number of harmonics and the order of the ARMA(n,n-1) model describing the time-series X_i by 1 until the residual sum of square (RSS) did not reduce significantly. In other words, he first fits a model with one harmonic (one sinusoid and cosine term), one Autoregressive (AR) term and 0 Moving Average (MA) terms, then he fits a model with 2 harmonics (two sinusoidal and cosine terms), 2 AR terms and 1 MA term, followed by a model with 3 harmonics (three sinusoidal and cosine terms), 3 AR and 2 MA terms, etc. Table 1 describes the modeling procedure and order of the model (r_1, r_2, r_3) denotes a model with r_1 harmonics, r_2 AR terms and r_3 MA terms.

	The Late of			<u> </u>	
Model Order	(1,1,0)	Table 1 (0.2.1)	(3,3,2)	(2,2,0)	
Parameters)		311	
m	12.2 ± 0.6	9.1 ± 0.7	9.0±0.7	92±0.6	
Aı	130.3 ± 3 1	120.2 ± 4.2	119±4.0	120.1 ± 4.0	
B_1	0.2±0.1	12.15:05	19±0.5	2.0±0.5	
A_2	the same of the sa	15.2 ± 0.2	5.1 ± 0.1	5.0±0.1	
B_2	Min man I i manager minor yang bi bergalanga	0.3 ± 0.1	11.4 ± 0.2	0.3 ± 0.2	
$\frac{A_3}{B}$			102 ± 0.3		
B_3			9.0 ± 4.2	The transfer of the second sec	
ϕ_1	0.6±01	0,9±0.2	9.85 ± 0.3	0.8 ± 0.1	
ϕ_2		-0.1510,A	-0,15±01	-0.12±0.07	
ϕ_3			0.1 ± 62		
θ_1	The same of deposits on	0.1 ± 0.2	0.1 ± 0,2		
θ_{2}			0,05±0,1		
RSS	400	300	290	305	

YOUR QUESTIONS START ON THE NEXT PAGE, PLEASE, TURN THE PAGE!

Part a

What model did the engineer choose to be adequate for the time-series Y, (conduct the necessary F-tests).

 $F_{0.95}(1,\infty) = 3.8601; F_{0.95}(2,\infty) = 3.0138; F_{0.95}(4,\infty) = 2.3898; F_{0.95}(6,\infty) = 2.1167$

Test 1:
$$(2,2,1)$$
 vs (7,7,0)

RSS_=300 RSS_=900

 $F = \frac{(RSS_{1} - RSS_{0})/S}{RSS_{0}/(N-r)}$
 $S = 4$
 $F = \frac{(400-300)/4}{300/(200-8)} = 16$
 $F_{0.5} = (4,2) = 2.3858$
 $F > F_{0.5} = (4,2) = 3$

Couplex would a note of the couples.

Test 2:
$$(3,3,2)$$
 vs $(2,2,1)$

RSS_=250 RSS_=300 F=
$$\frac{(RSS_1-RSS_0)/S}{RSS_0/(N-r)} = \frac{(300-290)/4}{250/(200-12)} = 1.621$$

Fo.95 (4, 21=2.3858 => F<F, 24, 261=) no need for higher order

Note that $\hat{\theta}_2$ estimate is such that its contileure interval encompasses 0 = > we can try to test (2,2,1) vs (2,2,0)

RSS, = 305

r=8

F= (RSS,-RSS.)/S RSS. /(N-r) = (305-300)/1 300/(200-81

= 3.2

 $F_{0.95}(1,2)=3.86=5$ $F< F_{0.95}(1,26)=5$ we can use the world (2,2,0)

 $V_{t} = 9.2 + 12.1 \text{ Jin} \omega_{0} t + 2.0 \cos \omega_{0} t + 5.0 \text{ Dia} 2 \omega_{0} t + 0.3 \text{ Jin} 2 \omega_{0} t + 4$ $+ X_{t}$ $X_{t} - 0.8 X_{t-1} + 0.12 X_{t-2} = q_{t}$

RSS = 300

5=1

Deferministic seasonalities with trequencies wo & 2 wo

Do we have stockastic trends seasonalities in 4?

\$ 112 = 0.2 & 0.6 (not come on the unit drule)

1

Stochastic Trends & Seasonalities

Def. Stockastic trends and/or seasonalities exist in the it appropriate trends/seasonalities exist in the Green's Function of a fine-series

Ex. If Green's Function of a time-series shows polynomial trend of 3rd order => we say that that time-series displays a 3rd order polynomial shockashe trend!

In the case of deterministic frenchs Eix3=fylt, 70

In the case of stochastic trends or Kasonolitics Eix3=0

i) Stochastic trends

Polynomial stochastic trend of order l'exists if the AR roof of multiplicity lt1 exists exactly at 1, while all other AR rooks are inside the unit circle, or it they are ON the unit circle, they are if multiplicity 1.

Note: soot of multiplicity C+1 carries the term $\begin{array}{c} \text{Co1}^2 + \text{C}_1 2 \lambda_1^2 + \dots + \text{C}_2 2 \lambda_r^2 \\ \text{into the 6r.f.} \\ \text{Hence, if λ_r is at 1, we have a polynomial Weading the 6.f.} \end{array}$

ii) Stochastic seasonalities

Stochashe seasonality of period $\frac{2\pi}{\omega}$ exists if AR characteristic pregnount has a pair of roote $\lambda_{12} = e^{\pm j\omega}$

which are of multiplicity one, white all other AR characteristic rooks are either inside the unit circle or if they are ON the unit cricle, they are of multiplicity 1.

No be: A pair of complex conjugate AR rook $\lambda_{12} = e^{\pm i\omega J}$ corresponds to a 2^{ud} criter polynomial factor $(1-\lambda_1 B)(1-\lambda_2 B) = 1-2\cos\omega B + B^2$ inside the AR characteristic polynomial

" /4 kireshing" seasonali hes;

G) Period of 12 $\rightarrow \omega = \frac{2\pi}{12} = 2$ Black corresponding to this seasonality is $1 - 2\cos\frac{2\pi}{12}B + B^{2} = 1 - \sqrt{3}B + B^{2}$

6) Period of 3 (quarterly) $\rightarrow \omega = \frac{2\pi}{3} \Rightarrow Block corresponding to this seasonality is <math display="block">1-2\cos\frac{2\pi}{3}B+B^2=$ $=1-B+B^2$

How to contirm or discontirm existance of some stochastic seasonality? AR rook in reality NEVER tall on to "nice" season alities...

If In fall "near" some seasonalities that make sense (quarterly, yearly, weekly...), we should dix 2 roots of the AR polynomial to exactly shose "nice" values and the it the Rss increases significantly or not. It not -> they the corresponding seasonally exists.

Eg. Let's suspect that there is a scasonality with period p in a model (1-4,B-...- \$4 B") X = (1-6,B-...- On B") ? AR block corresponding to periodicity pis $(1-\lambda,B)(1-\lambda,B) = 1-2\cos\frac{2\pi}{P}B + B^2$ Since In = e J P 1 = (1-2005 PB+B2) 4 i) Create a new time series ii) Fit an ARMA(n-2, m) model to it and note the new RSS. This new model of the is referred to as the "parsemonious" model! iii) It the RSS corresponding to the parsimonious wodel does not increase significantly, then RSS Athe pursimonious world

(RSS purs - RSS original) 12

F =

N F. RSSoriginal 1(N-1)
Number of Number of parameters of
samples the action the original model ARMA(n, m)