Solutions to Presentation Exercises

(Bb(a) Let f: [a, k] → R be a bounded function. Then f is Riemann integrable

(b) f is Continuous on [a, b] except on a set of measure 0.

(b) f, g monotone ⇒ f bounded between f(0) and f(1)

g bounded between g(b) and g(1)

⇒ H, Mz > 0 Such that ∀x = [0,1], If [x, y] < M, Ig [x, y] ≤ M,

⇒ H, Mz > 0 Such that | f(x) ± g(x) | ≤ | f(x) | + | g(x) | ≤ M, + Mz

⇒ h is bounded by an example of measure 0 set.

f, g monotone ⇒ f, g Riemann integrable ⇒ P=f-g, g=ftg Riemann integrable

Now Sq ⊆ (Sp ∩ [0,1/2)) U (Sq ∩ [/2,1]) U (\$\frac{1}{2}\$} ⇒ Sq is of measure 0

measure 0

A is Riemann integrable

(215) (6) Since for is Riemann integrable on [0,1], Sfor is of measure O.

Then Sfor ((1,1) is also of measure O. Now Sg = [0,1,1,...] u ((1,1)).

Since $\{0,\frac{1}{2},\frac{1}{3},...\}$, Sfor ((1,1) are of measure O, so $\{0,\frac{1}{2},\frac{1}{3},...\}$ u ((1,1)).

Contable

Contable

1's of measure O. Then Sg is of measure O, i. g is Riemannintegrable by Lebesque's theorem

217 By Taylor's theorem, $f(x) = f(\frac{1}{2}) + f(\frac{1}{2})(x-\frac{1}{2}) + f(\frac{1}{2})(x-\frac{1}{2})^2$ for some 0x between x and $\frac{1}{2}$. Thun $\int_{0}^{1} f(x) dx = f(\frac{1}{2}) \int_{0}^{1} (x-\frac{1}{2}) dx + \int_{0}^{1} \frac{f''(0x)}{2}(x-\frac{1}{2})^2 dx$ $= \frac{x^2}{2} - \frac{1}{2}x|_{0}^{1} = \frac{1}{2} - \frac{1}{2} = 0$ $= \frac{1}{2} \frac{(x-\frac{1}{2})^3}{3} \Big|_{0}^{1} = \frac{1}{24}.$

By Taylor's Theorem, $f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2$ for some θ_x between χ and 0. Letting $\chi = -1$ and 1, we get $0 = f(-1) = 2 + \frac{f''(0_1)}{2}$ and $5 = f(1) = 2 + \frac{f''(0_1)}{2}$. This implies $f''(0_1) = -4$ and $f''(0_1) = 6$. Since f'(x) = 6. Continuous and $-4 < \sqrt{2} < 6$, by the intermediate value theorem, there exists $C \in \mathbb{R}$ such that $f''(c) = \sqrt{2}$.

(266) If f(x) is Continuous at $x = x_0 \in [0,1]$, then |f(x)-1| is Continuous at $x = x_0$.

Taking Contrapositive, we get $S_{1f-11} \subseteq S_f$. Since f is integrable on [0,1], so S_f and S_{1f-11} are of measure O.

If f(x) is Continuous at $x = x_1 \in [0,1]$, then h(x) = f(x-1) is Continuous at $x = x_1 + 1 \in [1,2]$. Taking Contrapositive, we get $x_1 + 1 \in [1,2] \cap S_h$ implies $x_1 \in [0,1] \cap S_f \subseteq S_f$. So $[1,2] \cap S_h \subseteq \{1+x:x \in S_f\}$.

We will show $T = \{1+x:x \in S_f\}$ is of measure O. Since S_f is of measure O, $\forall z > 0$, $\exists (a_n,b_n)$ such that $S_f \subseteq O(a_n,b_n)$ and $\sum_{n=1}^{\infty} |a_n-b_n| < \epsilon$. Then $T \subseteq O(1+a_n,1+b_n)$ and $\sum_{n=1}^{\infty} |(1+a_n)-(1+b_n)| = \sum_{n=1}^{\infty} |a_n-b_n| < \epsilon$. Tis of measure O.

Finally, $S_f \subseteq S_{f-11} \cup ([1,2] \cap S_h) \cup \{1\} \subseteq S_{[f-11} \cup T \cup \{1\}]$ Let S_f is of measure O and F is Riemann integrable on [0,2]

For every $\varepsilon > 0$, by Archimedian Principle, $\exists N \in \mathbb{N}$ such that $N > \frac{3}{\varepsilon}$. 1 2

The principle of (1,2) such that $U(g,P_1)-L(g,P_1)<\frac{\varepsilon}{3}$. Let $P_0=\{x-1:x\in P_1\}$ for k=1,2,...,N, choose $a_k<\frac{\varepsilon}{k}\leq b_k$ so $b_k-a_k<\frac{\varepsilon}{3N}$ and $a_k=\frac{\varepsilon}{N-3}$ and

281)(a) A is given to be bounded. Yxe [0,3)u(3,1), if x & Sf U {1, \frac{1}{2},\frac{1}{3},...}ufof then h(x)=f(x) is continuous at x. $\forall x \in [\frac{2}{3}, \frac{2}{4}], \text{ if } x \notin S_g \cup \{\frac{2}{3}, \frac{2}{4}\}, \text{ then}$ h(x) = g(x) is Continuous at x. So $S_k \subseteq S_f \cup S_g \cup \left\{\frac{2}{3}, \frac{3}{4}\right\} \cup \left\{1, \frac{1}{2}, \frac{1}{3}, \dots\right\} \cup \left\{0\right\}$.

This implies S_k is of measure O.

measure Omeasure OTherefore h is Riemann integrable on To, 1] by Lebesgue's theorem. (b) Note OSh(x) SI for ill xe [0,1]. YEZO, choose NEW such that 1/2 < 4 (⇔N>€). Next choose 8>0 such that 2NS < € and S < \(\frac{\xi}{\tau} - \hat{\tau}\), $S < \frac{1}{2}(\frac{3}{3} - \frac{1}{2}) = \frac{1}{12}, S < \frac{1}{2}(1 - \frac{7}{4}) = \frac{1}{8} \iff S < \min \left\{ \frac{1}{2}(\frac{1}{N-1} - \frac{1}{N}), \frac{\epsilon}{8N}, \frac{1}{12} \right\}$ Since f is Riemann integrable, 3 partition P. of [G,1] Such that $U(f, P_i) - L(f, P_i) < \frac{\epsilon}{4}$ Next partition $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ into k subintervals of lengths $\frac{1}{4}(\frac{3}{4}-\frac{2}{3})=\frac{1}{12}$ with $P_2=\{\frac{2}{3}+\frac{1}{12},j=0,1,...,k\}$ Then U(g, Pz)-L(g, Pz)=\(\frac{\text{E}}{3}\)\(\frac{(g(\frac{2}{3}+\frac{3}{12k})}{3}\)\(\frac{1}{3}\)\(\frac{1}{12k}\) for k> 1/2 < (1-0) 1/2 = 1/2 × 5 € and P=P,UP2UP3. We have $U(-R, P) - L(R, P) < (1-0) \frac{1}{N} + 2NS + (U(f, P,) - L(f, P,)) + (U(g, P_2) - L(g, P_2))$ $\langle \xi + \xi + \xi + \xi + \xi - \xi \rangle$

(93) Since f is continuous on [0,1] Q, $S_f = \{x \in [0,1]: f$ is discretion at $x\} \subseteq [0,1] \cap Q$.

So of measure O. therefore, f is Riemann integrable on [0,1].

For $h(x) = f(\frac{x}{\sqrt{2}})$, $S_d \subseteq \{x \in [0,1]: W = \frac{x}{\sqrt{2}} \text{ for some } W \in \mathcal{F}_f\} = [0,1] \cap \{U \in \mathcal{F}_d\}$ Is countable since S_f is countable. Then $h(x) = f(x/\sqrt{2})$ is Riemann integrable on [0,1].

So $g(x) = f(x) f(x/\sqrt{2})$ is Riemann integrable on [0,1]. Countable Alternatively we can also point out $S_g \subseteq S_f \cup S_h$ (Since $x \notin \mathcal{F}_g \cup S_h$). $\Rightarrow x \notin S_f$ and $x \notin S_g \Rightarrow f$ and h are continuous at $x \Rightarrow g$ is continuous at $x \Rightarrow x \notin S_g$).