Hash Function Generation by Neural Network Summary

作者: 李靖东

1.动机

随着互联网的不断发展,越来越多的文本和个人信息在网络上不断传递,随之而来的便是信息安全问题。Hash算法(例如: MD5, SHA-1)能够将输入的文本字符串信息转化为固定长度的数字字符串,能够起到压缩数据和保护信息的作用。作者尝试使用**ANN(artificial neural network)** 来拟合出一个符合标准的hash函数,为了评价拟合出的hash函数的效果,引入密码学中的雪崩效应作为评价指标:

在密码学中,**雪崩效应(avalanche effect)**指加密算法(尤其是块密码和加密散列函数)的一种理想属性。雪崩效应是指当输入发生最微小的改变(例如,反转一个二进制位)时,也会导致输出的不可区分性改变(输出中每个二进制位有50%的概率发生反转)。合格块密码中,无论密钥或明文的任何细微变化都必须引起密文的不可区分性改变。(引自wiki)

2.模型

作者使用了一个包含三层神经元的神经网络,如下图所示:

实验目的: 为了找到最优的隐藏层神经元个数

实验设计:在不改变ANN输入层和输入层神经元个数的情况下,将隐藏层神经元个数从10至130每次增加10个,更改输入文本中的某些字符,比较生成的key值位数的变化(以雪崩效应为评价指标)

实验输入:

Testing text - The number of characters				
English	The number of characters	Slovak	The number of characters	
TextEn1	3587	TextSvk1	3912	
TextEn2	11,658	TextSvk2	12,104	
TextEn3	19,782	TextSvk3	20,025	
TextEn4	32,451	TextSvk4	33,147	
TextEn5	61,456	TextSvk5	61,259	

实验结果:

TABLE II. COMPARISON of ANN's for 5 CHANGED CHARACTERS in ANALYZED ENGLIS TEXTS

Number of	Number of changed characters in the hash value		
neurons	5 changed characters in the text	10 changed characters in the text	
10	6	7	
20	9	9	
30	11	10	
40	11	11	
50	10	9	
60	12	11	
70	9	8	
80	11	10	
90	12	13	
100	11	12	
110	10	9	
120	12	12	
130	11	12	

TABLE III. COMPARISON of ANN's for 5 CHANGED CHARACTERS in ANALYZED SLOVAK TEXTS

Number of	Number of changed characters in the hash value		
neurons	5 changed characters in the text	10 changed characters in the text	
10	7	7	
20	8	7	
30	9	10	
40	8	9	
50	9	11	
60	11	11	
70	10	11	
80	9	11	
90	12	12	
100	11	12	
110	12	12	
120	11	12	
130	13	12	

4.结论

作者展示了如何利用ANN来拟合一个符合密码学约束的Hash函数,并且做了相关的优化实验。

5.评论

本文是一篇只有5页的demo,所以很多方面讲的不够具体,而且整个过程存在一些不足之处:

- 对于ANN模型中输入层为什么要添加额外的Hash Value没有做解释
- 实验中没有和现有的一些Hash函数的结果进行对比