1. (a). Here
$$n = 21+5-1 = 25$$
, $r = 5$

$$C(25,5) = \frac{25!}{(25-5)!5!}$$

$$= \frac{25!}{20!5!}$$

(b) Since now there are only
$$21-5=16$$
 cookies available to distribute, $n=16$, $r=5$.

$$C(16+5-1,5)$$

$$= 20!$$

$$15!5!$$

2. (a) The number of strings of Length 12 = 26¹²,

Since there are 12 characters, and each

character has 26 possibilities.

(b) If NINJA is at the start of the string.

"NINJAXXXXXXXX", since there are 7 available

Spaces, there are 26 possibilities.

Then, there are 8 possible starting positions

for the word "NINJA",

there are 8.268 possibilities.

Lastly, check for repeated strings, there are 6. Therefore, there are 8.26^8-6 strings.

(c). For the strings that contain "Turtles", there are 6.26 possibilities. Since there are exactly two strings "NINJATURILES" and "TURILESNINJA", we need to subtract 2. Thus, the answer is 2612 - (8.268-6 + 6.265)+2. (a). The total outcomes is: 65 = 7776 The total unique outcoms is: 6x5x4x3x2 The probability = $\frac{720}{65} = \frac{5}{54}$ (b) case; [1 2 3 4 n case ij : 2 3 4 5 n case iij: 3 4 5 6 n In each case, n has 6 possibilities. However, we are double counting when Th= 5 in case i & n= 1 in case ii 2 n=6 in case ii & n=2 in case iii. Hence, the number of total small straight is 6+6+6-2=16The probability = $\frac{16}{65} = \frac{1}{486}$

2 3 (c). case ij : 2 3 4 5 n case iii: 3 4 5 6 n For the dices of above small stright in each case to be unique, n has two possibilities. Thus, 2×3=6, The number of total small straight is 6. and the number of total unique outcome is 720, Thus, the probability of me have rolled a small straight is $\frac{6}{720} = \frac{1}{120}$. 4. (a). Thm: $(x+y)^{100} = \sum_{k=0}^{100} {100 \choose 0} x^{100-k} y^k$ The cofficient: (100) x 100-43 y 43 $= (\frac{100}{43}) x^{57} y^{43}$ = 100! 57!431 (b). The cofficient: $(100)(-x)^{100-43}(-3y)^{43}$ $= (43) (-x)^{57} (-3y)^{43}$ $=\frac{100!}{57!43!}\cdot(-1)^{57}(-3)^{43}$ $=\frac{100!}{57!43!}\cdot 3^{43}$

(c).	Thm: $(x+y)^{100} = \sum_{k=0}^{100} {100 \choose 0} x^{100-k} y^k$
	From above, the exponent of x and y sum to 100, However, in the given term $x^{58}y^{43}$, $58+43=101$. Thereform, this term does not exist in the expansion of $(x+y)^{100}$.
	expansion of (x+y) 100.