

Dive into Diffusion Models

Group Meeting Yang Junjie, Lu Feiyang, ASPIRE Lab 05-10, 2024

Diffusion Model Intro

2015年Google发布Deep Dream

2016年提出Diffusion Models

2022 年3月 Midjouney

2022年4月OpenAI发布DALL-E 2

2022年7月 发布Stable diffus

在 AI 艺术生成器的发展历程中,DeepDream 和 DALLE 是两个具有里程碑意义的模型。DeepDream 根据神经网络学到的表征来生成图像。而 DALLE 结合了将图像映射到低维标记的离散变分自编码器 (dVAE) 和自回归建模文本和图像词元的 Transformer 模型。

上海科技大学 ShanghaiTech University

1.AutoEncoder

2.VAE

VAE损失函数推导:

$$egin{align*} KL(q_{ heta}(z|x)||p(z|x)) \ &= \int q_{ heta}(z|x) \ln rac{q_{ heta}(z|x)}{p(z|x)} \mathrm{d}z \ &= \mathbb{E}_{z \sim q_{ heta}(z|x)} [\ln rac{q_{ heta}(z|x)}{p(z|x)}] \ &= \mathbb{E}_{z \sim q_{ heta}(z|x)} [\ln q_{ heta}(z|x) - \ln p(z|x)] \ &= \mathbb{E}_{z \sim q_{ heta}(z|x)} [\ln q_{ heta}(z|x) - \ln rac{p(x|z)p(z)}{p(x)}] \ &= \mathbb{E}_{z \sim q_{ heta}(z|x)} [\ln q_{ heta}(z|x) - \ln p(z) - \ln p(x|z)] + \ln p(x) \ &= KL(q_{ heta}(z|x)||p(z)) - \mathbb{E}_{z \sim q_{ heta}(z|x)} [\ln p(x|z)] + \ln p(x) \ \end{aligned}$$

整理后得到:

$$\ln p(x) - KL(q_{\theta}(z|x)||p(z|x)) = \mathbb{E}_{z \sim q_{\theta}(z|x)}[\ln p(x|z)] - KL(q_{\theta}(z|x)||p(z))$$

$$\ln p(x) \geq ELBO$$
,其中 $ELBO = \mathbb{E}_{z \sim q_{ heta}(z|x)} [\ln p(x|z)] - KL(q_{ heta}(z|x)||p(z))$

为了方便我们假设p(z)~Normal

$$KL(q_{ heta}(z|x)||\mathcal{N}(0,I)) = rac{1}{2}(-\ln\sigma^2 + \sigma^2 + \mu^2 - 1)$$

损失函数为 $\mathcal{L}_{VQ}(E, G, \mathcal{Z}) = \|x - \hat{x}\|^2 + \|\operatorname{sg}[E(x)] - z_{\mathbf{q}}\|_2^2 + \beta \|\operatorname{sg}[z_{\mathbf{q}}] - E(x)\|_2^2$

4.VQGAN

损失函数在VQVAE模型的损失函数上加上一部分

 $\mathcal{L}_{\mathrm{GAN}}(\{E,G,\mathcal{Z}\},D) = [\log D(x) + \log(1-D(\hat{x}))]$

上海科技大学 ShanghaiTech University

5.DDPM

加噪过程: $q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \sqrt{1-\beta_t}\mathbf{x}_{t-1}, \beta_t\mathbf{I})$

可推导出
$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\bar{\alpha}_t}\mathbf{x}_0, (1-\bar{\alpha}_t)\mathbf{I})$$

去噪过程: $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1};\tilde{\boldsymbol{\mu}}(\mathbf{x}_t,\mathbf{x}_0),\tilde{\boldsymbol{\beta}}_t\mathbf{I})$

$$ilde{eta}_t = rac{1-ar{lpha}_{t-1}}{1-ar{lpha}_t} \cdot eta_t \qquad ilde{oldsymbol{\mu}}_t(\mathbf{x}_t,\mathbf{x}_0) = rac{\sqrt{lpha}_t(1-ar{lpha}_{t-1})}{1-ar{lpha}_t} \mathbf{x}_t + rac{\sqrt{ar{lpha}}_{t-1}eta_t}{1-ar{lpha}_t} \mathbf{x}_0$$

用网络去拟合去噪过程

$$egin{aligned} \log p_{ heta}(\mathbf{x}_0) &= \log \int p_{ heta}(\mathbf{x}_{0:T}) d\mathbf{x}_{1:T} \ &= \log \int rac{p_{ heta}(\mathbf{x}_{0:T}) q(\mathbf{x}_{1:T} | \mathbf{x}_0)}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} d\mathbf{x}_{1:T} \ &\geq \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_0)} [\log rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T} | \mathbf{x}_0)}] \end{aligned}$$

$$L = -L_{ ext{VLB}} = \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}[-\log rac{p_{ heta}(\mathbf{x}_{0:T})}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}] = \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}[\log rac{q(\mathbf{x}_{1:T}|\mathbf{x}_0)}{p_{ heta}(\mathbf{x}_{0:T})}]$$

$$\begin{split} &= \underbrace{D_{\mathrm{KL}}(q(\mathbf{x}_{T}|\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{T}))}_{L_{T}} + \sum_{t=2}^{T} \underbrace{\mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \Big[D_{\mathrm{KL}}(q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0}) \parallel p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})) \Big]}_{L_{t-1}} \quad - \underbrace{\mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})}_{L_{0}} \\ L_{t-1} &= \mathbb{E}_{\mathbf{x}_{0}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \Big[\frac{1}{2\sigma_{t}^{2}} \| \frac{1}{\sqrt{\alpha_{t}}} \Big(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon) - \frac{\beta_{t}}{\sqrt{1 - \bar{\alpha}_{t}}} \epsilon \Big) - \mu_{\theta}(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon), t) \|^{2} \Big] \\ &= \mathbb{E}_{\mathbf{x}_{0}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \Big[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2} \alpha_{t}(1 - \bar{\alpha}_{t})} \| \epsilon - \epsilon_{\theta} \Big(\mathbf{x}_{t}(\mathbf{x}_{0}, \epsilon), t \Big) \|^{2} \Big] \\ &= \mathbb{E}_{\mathbf{x}_{0}, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \Big[\frac{\beta_{t}^{2}}{2\sigma_{t}^{2} \alpha_{t}(1 - \bar{\alpha}_{t})} \| \epsilon - \epsilon_{\theta} \Big(\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \epsilon, t \Big) \|^{2} \Big] \end{split}$$

6.DDIM

 $L_{t-1}^{\text{simple}} = \mathbb{E}_{\mathbf{x}_0, \epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[\|\epsilon - \epsilon_{\theta} \left(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon, t \right) \|^2 \right]$

$$\begin{split} &q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \ \frac{\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}\mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}\beta_t}{1-\bar{\alpha}_t}\mathbf{x}_0, \ \frac{1-\bar{\alpha}_{t-1}}{1-\bar{\alpha}_t} \cdot \beta_t \mathbf{I}) \\ & \text{ 修改后 } q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}; \ \sqrt{\bar{\alpha}_{t-1}}\mathbf{x}_0 + \sqrt{1-\bar{\alpha}_{t-1}-\tilde{\beta}_t} \cdot \frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t}\mathbf{x}_0}{\sqrt{1-\bar{\alpha}_t}}, \ \tilde{\beta}_t \mathbf{I}) \\ & \text{ 其中 } \tilde{\beta}_t(\eta) = \eta \frac{(1-\bar{\alpha}_{t-1})}{(1-\bar{\alpha}_t)} \cdot \beta_t \quad \eta = 0, \ \text{ 模型是DDIM}; \ \eta = 1, \ \text{ 模型是DDPM}. \end{split}$$

		CIFAR10 (32 × 32)				CelebA (64 × 64)					
S		10	20	50	100	1000	10	20	50	100	1000
	0.0	13.36	6.84	4.67	4.16	4.04	17.33	13.73	9.17	6.53	3.51
	0.2	14.04	7.11	4.77	4.25	4.09	17.66	14.11	9.51	6.79	3.64
η	0.5	16.66	8.35	5.25	4.46	4.29	19.86	16.06	11.01	8.09	4.28
	1.0	41.07	18.36	8.01	5.78	4.73	33.12	26.03	18.48	13.93	5.98
	$\hat{\sigma}$	367.43	133.37	32.72	9.99	3.17	299.71	183.83	71.71	45.20	3.26

7.classifier guidance

Algorithm 1 Classifier guided diffusion sampling, given a diffusion model $(\mu_{\theta}(x_t), \Sigma_{\theta}(x_t))$, classifier $p_{\phi}(y|x_t)$, and gradient scale s.

```
Input: class label y, gradient scale s x_T \leftarrow \text{sample from } \mathcal{N}(0, \mathbf{I}) for all t from T to 1 do \mu, \Sigma \leftarrow \mu_{\theta}(x_t), \Sigma_{\theta}(x_t) x_{t-1} \leftarrow \text{sample from } \mathcal{N}(\mu + s\Sigma \nabla_{x_t} \log p_{\phi}(y|x_t), \Sigma) end for return x_0
```

本质核心就是利用一个分类器提供分类梯度,用于指导Diffusion Model合理采样

8.classifier-free guidance

通过梯度更新图像会导致对抗攻击效应,生成图像可能会通过人眼不可察觉的细节欺骗分类器,实际上并没有按条件生成。

$$ilde{arepsilon}_{ heta}\left(z_{t},t,\mathcal{C},arnothing
ight)=w\cdotarepsilon_{ heta}\left(z_{t},t,\mathcal{C}
ight)+\left(1-w
ight)\cdotarepsilon_{ heta}\left(z_{t},t,arnothing
ight)$$

9.DDIM Inversion

$$x_t = rac{\sqrt{\overline{lpha_t}}}{\sqrt{\overline{lpha_t}-1}}(x_{t-1} - \sqrt{1-lpha_{t-1}^-}\epsilon_t) + \sqrt{1-\overline{lpha_t}}\epsilon_t$$

Inversion是为了找到一个latent embedding,使其能够经过生成器得到目标图像。而对于 Diffusion来说,Inversion就是找到一个噪音,使得以该噪音为起点,经过采样得到目标图像。

10.Pivotal inversion

11.Null-text Optimization

Pivotal Tuning by Null-text Optimization

在实践中,DDIM Inversion每一步都会产生误差,对于无条件扩散模型,累积误差可以忽略。但是对基于classifier-free guidance的扩散模型,累积误差会不断增加,DDIM Inversion最终获得的噪声向量可能会偏离高斯分布,再经过DDIM采样,最终生成的图像会严重偏离原图像,并可能产生视觉伪影。因此,作者提出Pivotal Inversion来解决classifier-free guidance扩散模型误差累积的问题。

Generative models 区别回顾

DDPM 前后传播回顾

Algorithm 1 Training

1: repeat

- 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
- 3: $t \sim \text{Uniform}(\{1, \dots, T\})$
- 4: $\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
- 5: Take gradient descent step on

$$\nabla_{\theta} \| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_{t}} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \boldsymbol{\epsilon}, t) \|^{2}$$

6: until converged

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: **for**
$$t = T, ..., 1$$
 do

3:
$$\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
 if $t > 1$, else $\mathbf{z} = \mathbf{0}$

4:
$$\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$$

- 5: end for
- 6: return x_0

在 Latent space 推理的可能性

创造具体可行的 LDM 框架

$$L_{DM} = \mathbb{E}_{x,\epsilon\mathcal{N}(0,1),t} \left[\left\| \epsilon - \epsilon_{\theta}(x_t,t) \right\|_2^2 \right] \longrightarrow L_{LDM} = \mathbb{E}_{\mathbf{E}(x),\epsilon\;\mathcal{N}(0,1),t} \left[\left\| \epsilon - \epsilon_{\theta}(z_t,t) \right\|_2^2 \right]$$

Attention(**Q**, **K**, **V**) = softmax(
$$\frac{\mathbf{Q}\mathbf{K}^{\top}}{\sqrt{d}}$$
) · **V**

where **Q** = $\mathbf{W}_{Q}^{(i)} \cdot \varphi_{i}(\mathbf{z}_{i})$,

 $\mathbf{K} = \mathbf{W}_{K}^{(i)} \cdot \tau_{\theta}(y)$,

 $\mathbf{V} = \mathbf{W}_{V}^{(i)} \cdot \tau_{\theta}(y)$

and
$$\mathbf{W}_{Q}^{(i)} \in \mathbb{R}^{d \times d_{\epsilon}^{i}}, \mathbf{W}_{K}^{(i)}, \mathbf{W}_{V}^{(i)} \in \mathbb{R}^{d \times d_{\tau}},$$

$$\varphi_{i}(\mathbf{z}_{i}) \in \mathbb{R}^{N \times d_{\epsilon}^{i}}, \tau_{\theta}(y) \in \mathbb{R}^{M \times d_{\tau}}$$

让推导更可控的Conditioning

生成的临门一脚,U-net

Align Latents, 进入 Video

THANK YOU!

