

Abel-konkurransen 1995–96

Fasit til første runde

Oppgave 1: Gjennomsnittet av -3 og x er (x-3)/2 = 2, hvilket gir x = 7.

Oppgave 2: Siden arealet er 36 må sidelengdene være 6. Dette gir at sirkelen har radius 3 og dermed areal 9π .

Oppgave 3: Siden $p(1) = 1^3 + a \cdot 1 + 1 = a + 2$ skal være lik 1, må a = -1. Dette gir $p(2) = 2^3 - 2 + 1 = 7$.

Oppgave 4: To av eskene inneholder både blyanter og penner, tre av eskene inneholder bare blyanter (ikke penner) og to av eskene inneholder bare penner. Det gjenstår da tre esker som må være tomme.

Oppgave 5: Del firkanten opp i en firkantet bit med sidelengder 6 og 8 og en rettvinklet trekant med hypetenus 10 og katet 8. Lengden av den siste siden i den store firkanten finnes ved hjelp av Pyagoras setning å være 6 + 6 = 12. Arealet av hele firkanten blir da $8 \cdot (6 + 12)/2 = 72$.

Oppgave 6: Først kjøpes a epler for tilsammen ab kroner og så kjøpes b epler for ytterligere ab kroner. Man har da betalt 2ab kroner for a+b epler hvilket gir en pris på 2ab/(a+b) kroner pr. eple.

Oppgave 7: Første siffer (100-sifferet) kan velges på 9 forskjellige måter og andre siffer (10-erne) på 10 forskjellige måter. Tredje siffer må være lik det første. Dette gir $9 \cdot 10 = 90$ forskjellige palindromiske tall.

Oppgave 8: C kan velges på to forskjellige måter slik at AC = AB, på to måter slik at BC = AB og på én måte slik at AC = BC. Ingen av disse tilfellene sammenfaller: trekanten kan ikke bli likesidet. Derfor utgjør dette fem forskjellige tilfeller. \mathbf{E}

Oppgave 9: Pytagoras setning gir $a^2 + (a+b)^2 = (a+9b)^2$. Ved å gange ut og dele med b^2 på begge sider, fåes en annengradsligning i a/b som har 20 som eneste positive løsning.

Oppgave 10: La n være antall gardister. Da er n-1 delelig med 2, 3, 4, 5 og 6, mens n er delelig med 7. Et tall n-1 er delelig med 2, 3, 4, 5 og 6 hvis og bare hvis det er delelig med deres minste felles multiplum: 60. Dette gir mulighetene n-1=60, 120, 180, etc. Den minste slike n som er delelig med 7 er da 301.

Oppgave 11: Pytagoras gir $c^2 = a^2 + b^2 = 16$, men vi har også at $(a + b)^2 = a^2 + b^2 + 2ab = 19$. Dette gir 2ab = 3 og dermed areal lik ab/2 = 3/4.

Oppgave 12: Vi har at $(x+1/x)^2 = x^2 + 2 + 1/x^2 = 9$ som gir $x^2 + 1/x^2 = 7$. Videre blir da $(x^2 + 1/x^2)^2 = x^4 + 2 + 1/x^4 = 49$ som gir $x^4 + 1/x^4 = 47$.

Oppgave 13: Sidene BH og GH er begge 1/2. Arealet av trekantene ABH og AGH blir derfor 1/4 hver: 1/2 tilsammen. Arealet av hele figuren blir da arealet av hver av firkantene minus den overlappende biten: 3/2.

Oppgave 14: Vi har at $v = \angle ECD - \angle EBC$. Dette kan vises ved å sette inn at $v + \angle EBC + (180^{\circ} - \angle ECD) = 180^{\circ}$. Tilsvarende er $\angle CAB = \angle ACD - \angle ABC = 2(\angle ECD - \angle EBC) = 2v$.

Oppgave 15: La s være strekningen han skal gå. Hvis han går med 15 km/t bruker han s/15 timer, mens med 10 km/t bruker han s/10 timer. Differansen skal være to timer: s/10 - s/15 = 2 hvilket gir s = 60 og at tiden brukt er s/10 = 6 timer eller s/15 = 4 timer. For å komme frem midt imellom de to klokkeslettene må han gå med hastigheten v der s/v = 5, hvilket gir v = s/5 = 12 km/t.

Oppgave 16: La P være bunnpunktet der hjulet treffer bakken, Q topppunktet på sirkelen,R hjørnet av fortauskanten og S punktet der fortauet og bakken møtes. Da er RS = a, RP = b og PQ = 2r der r er sirkelens radius. Vi har at de to trekantene PRQ og SRP er likeformede og derfor at PR/RS = PQ/PR. Dette gir at 2r/b = b/a som gir $r = b^2/2a$.

Oppgave 17: Vi har at $720 = 2^4 \cdot 3^2 \cdot 5$. De naturlige tall som deler 720 er da $2^a 3^b 5^c$ der a = 0, 1, 2, 3, 4, b = 0, 1, 2 og c = 0, 1. Dette gir $5 \cdot 3 \cdot 2 = 30$ forskjellige muligheter.

D

Oppgave 18: Antall slike tall er lik antall måter å velge ut 7 av de 9 sifrene. Dette er igjen det samme som antall mulige måter ta bort to av de 9 sifrene. Det første sifferet som man tar bort kan man velge på 9 forskjellige måter. Det andre sifferet kan man velge på 8 forskjellige måter. Dette gir $9 \cdot 8 = 72$ muligheter, men da er hvert par tatt med to ganger: de to rekkefølgene de to tallene kan velges i. Vi må derfor dele med to: $9 \cdot 8/2 = 36$.

Oppgave 19: La $x = \sqrt{3 + 2\sqrt{2}} + \sqrt{3 - 2\sqrt{2}}$. Da blir $x^2 = 3 + 2\sqrt{2} + 3 - 2\sqrt{2} + 2\sqrt{(3 + 2\sqrt{2})(3 - 2\sqrt{2})} = 6 + 2\sqrt{1} = 8$. Det gir at $x = 2\sqrt{2}$. Man kan også vise at $\sqrt{3 \pm 2\sqrt{2}} = \sqrt{2} \pm 1$.

Oppgave 20: La B' være punktet slik at BB' står normalt på veien og AB' er parallel med veien. Da blir BB' = 60 og $AB'^2 = 80^2 - 60^2$. Hvis vi tar bor veien blir den nye avstanden mellom B og B' 50 meter. Den korteste veien mellom A og B blir da en rett linje som vil ha lengde $\sqrt{50^2 + AB'^2} = 10\sqrt{53}$ meter. I tillegg kommer de 10 meterne som Napoleon må gå for å krysse veien.