Problem 1.39. The construction in Theorem 1.54 shows that every GNFA is equivalent to a GNFA with only two states. We can show that an opposite phenomenon occurs for DFAs. Prove that for every k > 1, a language $A_k \subseteq \{0,1\}^*$ exists that is recognized by a DFA with k states but not by one with only k-1 states.

Proof. Let A_k be the language of all strings of length at least k-1.

$$A_k = \{ w \mid w \in \{0,1\}^* \text{ and } |w| \ge k - 1 \}$$

$$w = w_1 w_2 w_3 \cdots w_{k-1} \cdots w_n$$
, where $n \ge k-1$

The state diagram of a DFA D_k that recognizes A_k with k states is given below. Each symbol w_i , where $1 \le i \le k-1$, requires a transition between two states q_i and q_{i+1} . To construct a new DFA D_{k-1} that recognizes A_k with k-1 states by using D_k , there are three options:

- 1. Remove state q_1 and make q_2 the start state. First symbol w_1 is skipped.
- 2. Remove state q_k , make q_{k-1} the accept state and add a new transition from q_{k-1} to q_{k-1} for symbols 0 and 1. Symbol w_{k-1} is skipped.
- 3. Remove any intermediate state q_i , where 1 < i < k, and add a new transition for symbols 0 and 1 from state q_{i-1} to q_{i+1} . Symbol w_i is skipped.

In all three cases the minimum length of strings, which are recognized by the DFA D_{k-1} is reduced by one. Therefore, there does not exist a DFA that recognizes A_k with k-1 states.

State diagrams of DFA D_k that recognizes A_k . Each $w_i \in \{0, 1\}$.