Spiro cpds. use in electroluminescent device, esp. 9,9'-spiro:bi:fluorene(s)

Patent number:

DE4446818

Publication date:

1996-07-04

Inventor:

LUPO DONALD DR (DE); SALBECK JOSEF DR (DE); SCHENK HERMANN DR (DE); STEHLIN THOMAS DR (DE); STERN ROLAND DR (DE); WOLF ARNO DR

(DE); KREUDER WILLI DR (DE)

Applicant:

HOECHST AG (DE)

Classification:

- international: C07C13/72; C07D271/107; C07D307/80; C09K11/06;

H01L51/30; H05B33/14; C07C13/00; C07D271/00; C07D307/00; C09K11/06; H01L51/05; H05B33/14; (IPC1-7): C07C47/546; C07C47/56; C07C63/337; C07C69/753; C07D521/00; C07C13/567; C07C211/57; C07D263/32; C07D263/56; C07D271/10; C07D307/79;

C09K11/06; G09F9/33; H05B33/14

- european:

C07C13/72; C07D271/10C; C07D307/80; C09K11/06;

H01L51/30H4; H01L51/30H8; H05B33/14

Application number: DE19944446818 19941227 Priority number(s): DE19944446818 19941227

Report a data error here

Abstract of DE4446818

The use of spiro cpds. of formula (I) in electroluminescent devices is claimed. In (I), K1, K2 = conjugated systems. Also claimed are spiro cpds. of formula (IA); electroluminescent devices contg. cpd(s). (I); and organic electroluminescent material. In (IA), A, B, K, L, M, N = R-Q-(T)m-(CH=CH)n-, R1-(T)m-(CH=CH)n-, R1-(CH=CH)n-(T)m-, R1-(T)p-(CH=CH)n-(T)m- or R2R3N-; and A, B may also = a 1-22 C alkyl, alkoxy or ester gp., CN, NO2; Ar or -O-Ar; Q = (a (het) arylene gp. of formula (II); and T = a (het)arylene gp. of formula (III): Ar = phenyl, biphenyl, 1- or 2-naphthyl, 2-thienyl or 2-furanyl, opt. mono- or di-substd. by R; m, n, p - 0, 1, 2 or 3; X, Y = CR or N; X = -O-, -S-, -CR1R4, -CH=CH- or -CH=N-; R, R1, R4 = H, a 1-22 C alkyl, alkoxy or ester gp., CN, NO2, -NR2R3, Ar or -O-Ar; R2, R3 = H, 1-22 C alkyl, Ar or 3-methylphenyl.

Data supplied from the esp@cenet database - Worldwide

THIS PAGE BLANK (USPTO)

4

. .

!

(9) BUNDESREPUBLIK

DEUTSCHLAND

PATENTAMT

- Offenlegungsschrift
- ₁₀ DE 44 46 818 A 1
- Aktenzeichen:
- P 44 46 818.0
- Anmeldetag:
- 27. 12. 94
- Offenlegungstag:
- 4. 7.98

(5) Int. Cl.6:

C 07 C 13/567

C 07 C 211/57 C 07 D 307/79 C 07 D 271/10 C 07 D 263/58 C 07 D 263/32

H 05 B 33/14 C 09 K 11/08 G 09 F 9/33 // C07C 47/548,

47/56,69/753,63/337

C07D 521/00

(71) Anmelder:

Hoechst AG, 65929 Frankfurt, DE

② Erfinder:

Lupo, Donald, Dr., 60316 Frankfurt, DE; Salbeck, Josef, Dr., 65779 Kelkheim, DE; Schenk, Hermann, Dr., 65719 Hofheim, DE; Stehlin, Thomas, Dr., 65830 Kriftel, DE; Stern, Roland, Dr., 65189 Wiesbaden, DE; Wolf, Arno, Dr., 55131 Mainz, DE; Kreuder, Willi, Dr., 55126 Mainz, DE

Löslichkeit in gängigen organischen Lösungsmitteln, verbes-

serte Filmbildungseigenschaften und eine deutlich verringerte Tendenz zur Kristallisation aus. Dadurch wird die Herstellung von Elektrolumineszenzvorrichtungen erleichtert und

ihre Lebensdauer erhöht.

- (A) Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
- Verwendung von Spiroverbindungen der allgemeinen Formel (I),

wobei

K¹ und K² unabhängig voneinander konjugierte Systeme bedeuten, in Elektrolumineszenzvorrichtungen. Bevorzugte Verbindungen der Formel (I) sind 9,9'-Spirobifluorenderivate der Formel (II),

wobei die Benzogruppen unabhängig voneinander substituiert sein können.

Verbindungen der Formel (I) zeichnen sich durch eine gute

Beschreibung

Es besteht ein hoher industrieller Bedarf an großflächigen Festkörper-Lichtquellen für eine Reihe von Anwendungen, überwiegend im Bereich von Anzeigeelementen, der Bildschirmtechnologie und der Beleuchtungstechnik. Die an diese Lichtquellen gestellten Anforderungen können zur Zeit von keiner der bestehenden Technologien völlig befriedigend gelöst werden.

Als Alternative zu herkömmlichen Anzeigeelementen, wie Glühlampen, Gasentladungslampen und nicht selbstleuchtenden Flüssigkristallanzeigeelementen, sind bereits seit einiger Zeit Elektrolumineszenz(EL)materialien und -vorrichtungen, wie lichtemittierende Dioden (LED), bekannt.

Elektrolumineszenzmaterialien sind Stoffe, die befähigt sind, beim Anlegen eines elektrischen Feldes Licht abzustrahlen. Das physikalische Modell zur Beschreibung dieses Effektes basiert auf der strahlenden Rekombination von Elektronen und Elektronenlücken ("Löchern"). Bei lichtemittierenden Dioden werden die Ladungsträger über die Kathode bzw. Anode in das Elektrolumineszenzmaterial injiziert.

Elektrolumineszenzvorrichtungen enthalten ein Lumineszenzmaterial als lichtemitterende Schicht.

Allgemein sind Elektrolumineszenzmaterialien und -vorrichtungen beispielsweise beschrieben in Ullmann's Encyclopedia of Industrial Chemistry, Vol A9, 5th Ed. VCH Verlag 1987 und der dort zitierten Literatur.

Neben anorganischen Stoffen, wie ZnS/Mn oder GaAs, sind auch organische Verbindungen als EL-Materialien bekannt geworden.

Eine Beschreibung von EL-Vorrichtungen, die niedermolekulare organischen EL-Materialien enthalten, findet sich beispielsweise in US 4.539.507.

Nachteile dieser niedermolekularen organischen Materialien sind beispielsweise die ungenügenden Filmbildungseigenschaften und eine ausgeprägte Tendenz zur Kristallisation.

In jüngerer Zeit sind auch Polymere als EL-Materialien beschrieben worden (siehe z. B. WO-A 90/13148). Jedoch ist die Lichtausbeute (Quanteneffizienz) bei diesen Stoffen beträchtlich geringer als bei den niedermole-kularen Verbindungen.

Wünschenswert war es, EL-Materialien zu finden, die gute Lichtausbeuten zeigen und gleichzeitig zu dünnen homogenen Filmen verarbeitbar sind, die eine geringe Kristallisationsneigung aufweisen.

Es wurde nun überraschend gefunden, daß sich Spiroverbindungen, insbesondere Derivate des 9,9'-Spirobifluorens, in hervorragender Weise als EL-Materialien eignen.

Einzelne Verbindungen dieser Art sind beispielsweise in US-A 5,026,894, J. M. Tour et al. J. Am. Chem. Soc. 112 (1990) 5662 und J. M. Tour et al. Polym. Prepr. (1990) 408 als Verknüpfungselemente für polymere, organische Halbleiter beschrieben und als Materialien für molekulare Elektronik vorgeschlagen. Über eine mögliche Verwendung als EL-Materialien wird jedoch nichts gesagt.

Gegenstand der Erfindung ist daher die Verwendung von Spiroverbindungen der allgemeinen Formel (I),

wobei

35

K¹ und K² unabhängig voneinander konjugierte Systeme bedeuten, in Elektrolumineszenzvorrichtungen.

Verbindungen der Formel (I) zeichnen sich durch eine gute Löslichkeit in gängigen organischen Lösungsmitteln, verbesserte Filmbildungseigenschaften und eine deutlich verringerte Tendenz zur Kristallisation aus. Dadurch wird die Herstellung von Elektrolumineszenzvorrichtungen erleichtert und ihre Lebensdauer erhöht. Die Emissionseigenschaften der erfindungsgemäß eingesetzten Verbindungen können durch die Wahl geeigneter Substituenten über den ganzen Bereich des sichtbaren Spektrums eingestellt werden. Darüberhinaus erlaubt die kovalent gebundene Anordnung der zwei Teile der Spiroverbindung einen molekularen Aufbau in der Weise, daß bei beiden Hälften des Moleküls unabhängig bestimmte Eigenschaften eingestellt werden können. So kann die eine Hälfte z. B. Ladungstransport- oder Ladungsinjektionseigenschaften besitzen, während die andere lichtemittierende Eigenschaften besitzt. Die durch die kovalente Anknüpfung fixierte räumliche Nähe der beiden Hälften ist dabei günstig für die Energieübertragung (siehe z. B. B. Liphardt, W. Lüttke, Liebigs Ann. Chem. (1981) 1118).

Bevorzugte Verbindungen der Formel (I) sind 9,9'-Spirobifluorenderivate der Formel (II),

65

wobei die Benzogruppen unabhängig voneinander substituiert und/oder anelliert sein können. Besonders bevorzugt sind Spirobifluorenderivate der Formel (III),

wobei die Symbole und Indizes folgende Bedeutungen haben: K, L, M, N sind gleich oder verschieden

10

15

20

25

30

35

40

45

50

55

65

R kann, gleich oder verschieden, die gleichen Bedeutungen wie K, L, M, N haben oder ist -H, eine lineare oder verzweigte Alkyl, Alkoxy oder Estergruppe mit 1 bis 22, vorzugsweise 1 bis 15, besonders bevorzugt 1 bis 12 C-Atomen, -CN, -NO₂, -NR²R³, -Ar oder -O-Ar; Ar ist Phenyl, Biphenyl, 1-Naphthyl, 2-Naphthyl, 2-Thienyl, 2-Furanyl, wobei jede dieser Gruppen einen oder

zwei Reste R tragen kann,

m, n, p sind 0, 1, 2 oder 3;

X, Y sind gleich oder verschieden CR oder Stickstoff;

Zist -O-, -S-, $-NR^1-$, $-CR^1R^4-$, -CH=CH-, -CH=N-;

R¹, R⁴ können, gleich oder verschieden, die gleichen Bedeutungen wie R haben;

R², R³ sind gleich oder verschieden H, eine lineare oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, -Ar, 3-Methylphenyl.

Bevorzugte Verbindungen der Formel (III) sind solche der Formel (IIIa)—(IIIg) IIIa) K = L = M = N und ist aus der Gruppe:

 $R = C_1 - C_{22} - Alkyl, C_2 H_4 SO_3 -$

 $R = C_1 - C_{22}$ -Alkyl, $C_2H_4SO_3$ IIIb) K = M = H und N = L und ist aus der Gruppe:

65 IIIc) K = M und ist aus der Gruppe:

5

$$R = Alkyl, C_2H_4SO_3$$

und $N = L$ und ist aus der Gruppe:

 $R = Alkyl, C_2H_4SO_3$
 $R = Alkyl, C_2H_4SO_3$

IIId) K = M und ist aus der Gruppe:

und N = L und ist aus der Gruppe:

20 $R = Alkyl, C_2H_4SO_3$

IIIe) K = L = H und M = N und ist aus der Gruppe:

IIIf) K = M und ist aus der Gruppe:

$$R = AB_0 y, C_2 H_4 SO_3$$

und M = N und ist aus der Gruppe:

$$R = AB_0 y, C_2 H_4 SO_3$$

$$R = AB_0 y, C_2 H_4 S$$

IIIg) K = L und ist aus der Gruppe:

und M = N und ist aus der Gruppe:

30

 $R = Alkyl, C_2H_4SO_3$

Besonders bevorzugte Verbindungen der Formel (III) sind solche der Formeln (IIIaa) bis (IIIdb): (IIIaa) K = L = M = N und ist aus der Gruppe:

40 (IIIba) K = M = H und N = L und ist aus der Gruppe:

(IIIca) K = M und ist aus der Gruppe:

und N = L und ist:

15

20

35

50

65

(IIIda) K - M und ist aus der Gruppe:

(IIIab) K = = M = N und ist aus der Gruppe

(IIIbb) K = L = H und M = N und ist aus der Gruppe:

(IIIcb) K = L und ist aus der Gruppe:

und M = N und ist:

(IIIdb) K = L und ist aus der Gruppe:

und M = N und ist aus der Gruppe:

und N = L und ist aus der Gruppe:

25 Ganz besonders bevorzugte Spiroverbindungen sind solche der Formel (IV),

wobei die Symbole folgende Bedeutungen haben: K, L, M, N, R⁵, R⁶ sind gleich oder verschieden eine der Gruppen G1 bis G14:

44 46 818 DE

und R5, R6 können auch gleich oder verschieden Wasserstoff oder eine lineare oder verzweigte Alkyl-, Alkyloxy-

oder Estergruppe mit 1 bis 22 C-Atomen, —CN oder —NO₂ bedeuten.

Insbesondere bevorzugte Spiroverbindungen der Formel (IV) sind 2,2',4,4',7,7'-Hexakis(biphenylyl)-9,9'-spirobifluoren, 2,2',4,4',7,7'-Hexakis(terphenylyl)-9,9'-spirobifluoren sowie die in der Tabelle 1 aufgeführten Verbindungen, bei denen die Abkürzungen G1 bis G14 die in der Formel (IV) angegebenen Bedeutungen haben.

> Tabelle 1 Spiroverbindungen der Formel (IV) R⁵ = R⁶ = Wasserstoff

Verbindung	K	L	M	N
Spiro-1	G1	G1	G3	G3
Spiro-2	G1	G1	G4	G4
Spiro-3	G1	G 1	G5	G5
Spiro-4	G1	G 1	G6	G6
Spiro-5	G1 -	G1	G7	G7
Spiro-6	G1	G 1	G8	G8
Spiro-7	G1	G1	G9	Ġ9
Spiro-8	G1	G1	G10	G10
Spiro-9	· G1	G1	G11	G11
Spiro-10	G1	G1	G12	G12
Spiro-11	G1	G 1	G13	G13
Spiro-12	G1	G1	G14	G14
Spiro-13	G2	G2	G2	G2
Spiro-14	G2	G2	G3	G3
Spiro-15	G2	G2	G4	G4

50

55

60

65

DE 44 46 818 A1

	Verbindung	К	L	M	N
_	Spiro-16	G2	G2	G 5	G5
5	Spiro-17	G2	. · G2	G6	G6
	Spiro-18	G2	G2	G7	G7
10	Spiro-19	G2	G2	G8	G8
	Spiro-20	G2	G2	G 9	G9
15	Spiro-21	G2	G2	G10	G10
	Spiro-22	G2	G2	G11	G11
20	Spiro-23	G2	G2	G12	G12
	Spiro-24	G2	G2	G13	G13
	Spiro-25	G2	G2	G14	G14
25	Spiro-26	G3	G3	G3	G3
	Spiro-27	G3	G3	G4	G4
30	Spiro-28	G3	G3	G5	G 5
	Spiro-29	G3	G3	G6	G6
35	Spiro-30	G3	G3	G7	G7
	Spiro-31	G3	G3	G8	G8
40	Spiro-32	G3	G3	G9	G9
40	Spiro-33	G3	G3	G10	G10
	Spiro-34	G3	G3 _.	G11	G11
45	Spiro-35	G3	G3	G12	G12
	Spiro-36	G3	G3	G13	G13
50	Spiro-37	G3 .	G3	G14	G14
	Spiro-38	G4	G4	G4	. G4
55	Spiro-39	G5	G5	G5	G5
33	Spiro-40	G6	G6	. G6	G6
	Spiro-41	G7 .	G7	G7	G7
60	Spiro-42	G8	G8	G8	G8
	Spiro-43	G9	G9	G9	G9

DE 44 46 818 A1

Verbindung	, κ	L	M	N
Spiro-44	G10	G10	G10	G10
Spiro-45	G11	·	G11	G11
Spiro-46	G12 ,	G12	G12	G12
Spiro-47	G13	G13	G13 ,	G13
Spiro-48	G14	G14	G14	G14
Spiro-49	Н	Н	G3	G3
Spiro-50	н	. H	G4	G4
Spiro-51	H [*]	н	G5	G5
Spiro-52	Н	н	G6	G6
Spiro-53	Н	н	G7	G7
Spiro-54	Н	Н	G8	G8
Spiro-55	Н	н	G9	G9
Spiro-56	Н .	Н	G10	G10
Spiro-57	Н	н	G11	G11
Spiro-58	Н	н	G12	G12
Spiro-59	Н	н	G13	G13
Spiro-60	H	н	G14	G14
Spiro-61	G1	G3	G3	G1
Spiro-62	G1	G4	G4	G1
Spiro-63	G1	G5	G5	G1
Spiro-64	G1	G6	G6	G1
Spiro-65	G1	G7	G 7	G1
Spiro-66	G1	G8	G8	G1
Spiro-67	G1	G9	G9	G1
piro-68	G1	G10	G10	G1
piro-99	G1	G11	G11	G1
piro-70	G1	G12	G12	G1
piro-71	G1	G13	G13	G1

DE 44 46 818 A1

	Verbindung	, K	L	M	N
	Spiro-72	G1	G14	G14	G1
5	Spiro-7.3	G2	· ; G4	G4	G2
	Spiro-74	G2	G 5	G 5	G2
10	Spiro-75	G2	. G 6	G6 :	G2
	Spiro-76	G2	G7	G7	G2
15	Spiro-77	G2	G8	G8	G2
	Spiro-78	G2	G9	G9	G2
20	Spiro-79	G2	G10	G10	G2
20	Spiro-80	G2	G11	G11 ·	G2
	Spiro-81	G2	G12	G12	G2
25	Spiro-82	G2	G13	G13	G2
	Spiro-83	G2	G14	G14	G2
30	Spiro-84	G3	G4	G4	G3
	Spiro-85	G3	G5	G5	G3
35	Spiro-86	G3	G6	G6	G3
	Spiro-87	G3	G 7	G 7	G3
	Spiro-88	G3	G8	G8	G3
40	Spiro-89	G3	G9	G 9	G3
	Spiro-90	G3	G10	G10	G3
45	Spiro-91	G3	G11	G11	G3
	Spiro-92	G3	G12	G12	G3
50	Spiro-93	· G3 ·	G13	G13	G3
	Spiro-94	. G3	G14	G14	G3
55	Spiro-95	н	G3	G3	Н
J	Spiro-96	Н	G4	G4	н
	Spiro-97	н	G5	G5	н
60	Spiro-98	Н	G6	G6	Н
	Spiro-99	н	G7	G7	н

Verbindung	К	L	M	N	
Spiro-100	Н	G8	G8	Н	5
Spiro-101	·H	G9	G9	Н	3
Spiro-102	н	G10	G10	н	
Spiro-103	. Н	G11	G11	н	10
Spiro-104	Н	G12	G12	н	
Spiro-105	Н	G13	G13	Н	. 15
Spiro-106	Н	G14	G14	н	

Die erfindungsgem
ß verwendeten Spiroverbindungen sind teilweise bekannt und teilweise neu. Gegenstand der Erfindung sind daher auch Spiroverbindungen der Formel (V),

wobei die Symbole folgende Bedeutungen haben: A, B, K, L, M, N sind gleich oder verschieden

25

30

35

40

45

50

55

60

und A, B können auch gleich oder verschieden eine lineare oder verzweigte Alkyl-, Alkyloxy- oder Estergruppe mit 1 bis 22 C-Atomen, —CN, —NO₂, —Ar oder —O—Ar sein; R ist —H, eine lineare oder verzweigte Alkyl, Alkoxy oder Estergruppe mit 1 bis 22, vorzugsweise 1 bis 15, besonders bevorzugt 1 bis 12 C-Atomen, —CN, —NO₂₁ —NR²R³, —Ar oder —O—Ar; Ar ist Phenyl, Biphenyl, 1-Naphthyl, 2-Naphthyl, 2-Thienyl, 2-Furanyl, wobei jede dieser Gruppen einen oder

44 46 818 A1 DE

zwei Reste R tragen kann;

m, n, p sind 0, 1, 2 oder 3;

40

45

50

55

60

65

X, Y sind gleich oder verschieden CR, N; Z ist -O-, -S-, -NR¹-, -CR¹R⁴-, -CH=CH-, -CH=N-;

R¹, R⁴ können, gleich oder verschieden, die gleichen Bedeutungen wie R haben; R², R³ sind gleich oder verschieden H, eine lineare oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, -Ar oder 3-Methylphenyl.

Bevorzugt sind Verbindungen der Formel (V) bei denen K, L, M, N und gegebenenfalls A, B aus der folgenden

Gruppe G1 bis G14 ausgewählt sind:

Insbesondere bevorzugte Spiroverbindungen der Formel (V) sind 2,2',4,4',7,7'-Hexakis(biphenylyl)-9,9'-spirobifluoren, 2,2',4,4',7,7'-Hexakis(terphenylyl)-9,9'-spirobifluoren, sowie die in den Tabellen 2 und 5 aufgeführten Verbindungen, wobei die Abkürzungen G1 bis G14 die selben Bedeutungen wie in der Formel (V) haben.

Tabelle 2 Spiroverbindungen der Formel (V) A = B = G1

					5
Verbindung	Κ.	L	M	N	
Spiro-107	G1	G1	G3	G3	
Spiro-108	G1	G1	G4	G4	10
Spiro-109	G1	G1	G5	G 5	
Spiro-110	G1	G1	G6	G6	15
Spiro-111	G1	G1	G7	G7	
Spiro-112	G1	G1	G8	G8	20
Spiro-113	G1	G1	G9	G9	
Spiro-114	G1	G1	G10	G10	
Spiro-115	G1	G1	G11	G11	25
Spiro-116	G 1	G1	G12	G12	
Spiro-117	G1	G1	G13	G13	30
Spiro-118	G1	.G1	G14	G14	
Spiro-119	G2	G2	G2	G2	35
Spiro-120	G2	G2	G3	G3	
Spiro-121	G2	G2	G4	G4	40
Spiro-122	G2	G2	G5	G5	40
Spiro-123	G2	G2	G6	G6	
Spiro-124	G2	G2	G 7	G7	45
Spiro-125	- G2	G2	G8	. G8	
Spiro-126	G2	G2	G9	G9	50
Spiro-127	G2	G2	G10	G10	
Spiro-128	G2	G2	G11	G11	55
Spiro-129	G2	G2	G12	G12	
Spiro-130	G2	G2	G13	G13	
Spiro-131	G2	G2	G14	G14	60

DE 44 46 818 A1

	Verbindung _	К	L	M	N
5	Spiro-132	G3	G3	G 3	G3
J	Spiro-133	G3	. G3	G4	G4
	Spiro-134	G3 ,	G3	G5	G5
10	Spiro-135	G3	G3	G6 ,	G6
	Spiro-136	G3	G3	G 7	G7
15	Spiro-137	G3	G3	G8	G8
	Spiro-138	G3	G3	G9	G9
20	Spiro-139	G3	G3	G10	G10
	Spiro-140	G3	G3	G11	G11
	Spiro-141	G3	G3	G12	G12
25	Spiro-142	G3	G3	G13	G13
	Spiro-143	G3	G3	G14	G14
30	Spiro-144	G4	G4	G4	G4
	Spiro-145	G5	G5	G5	G5
35	Spiro-146	G6	G6	G6	G6
	Spiro-147	G7	G7	G7	G7
40	Spiro-148	G8	G8	G8	G8
40	Spiro-149	G9	G9	G9	G9
	-Spiro-150	G10	G10	G10	G10
45	Spiro-151	G11	G11	G11	G11
	Spiro-152	G12	G12	G12	G12
50	Spiro-153	· G13 ·	G13	G13	G13
	Spiro-154	G14	G14	G14	G14
E E	Spiro-155	Н	н	G3	G3
55	Spiro-156	Н	н	G4	G4
	Spiro-157	Н	н	G5	G5
60	Spiro-158	Н	н	G6	G6
	Spiro-159	Н	н	G7	G7

DE 44 46 818 A1

Verbindung _	K	L	М	N
Spiro-160	Н	Н	G8	G8
Spiro-161	н	: Н	G9	G9
Spiro-162	H	н	G10	G10
Spiro-163	н	н	G11 ,	G11
Spiro-164	Н	н	G12	G12
Spiro-165	Н	н	G13	G13
Spiro-166	н	н	G14	G14
Spiro-167	G1	G3	G3	G1
Spiro-168	G1	G4	G4 .	G1
Spiro-169	G1	G5	G 5	G1
Spiro-170	G1 '	G6	. G6	G1
Spiro-171	G1	G7	G 7	G1
Spiro-172	G1	G8	G8	G1
Spiro-173	G1	G9	G9	G1
Spiro-174	G1	G10	G10	G1
Spiro-175	G1	G11	G11	G1
Spiro-176	G1	G12	G12	G1
Spiro-177	G1	G13	G13	G1
Spiro-178	G1	G14	G14	G1
Spiro-179	G2	G4	G4	G2
Spiro-180	G2	G5	G 5	G2
Spiro-181	G2	G6	G6	G2
Spiro-182	G2	G7	G7	G2
Spiro-183	G2	G8	G8	G2
Spiro-184	G2	G9	G9	G2
Spiro-185	G2	G10	G10	G2
ipiro-186	G2	G11	G11	G2
piro-187	G2	G12	G12	G2

DE 44 46 818 A1

	Verbindung _	. К .	Ł	М	N
5	Spiro-188	G2	G13	G13	G2
	Spiro-189	G2	G14	G14	G2
	Spiro-190	G3	G4	G4	G3
10	Spiro-191	Ġ3	G 5	G5 :	G3
	Spiro-192	G3	G6	G6	G3
15	Spiro-193	G3	G 7	G7	G3
	Spiro-194	G3	G8	G8	G3
20	Spiro-195	G3	G9	G9	G3
	Spiro-196	G3	G10	G10	G3
	Spiro-197	G3	G11	G11	G3
25	Spiro-198	G3	G12	G12	G3
	Spiro-199	G3	G13	G13	G3
30	Spiro-200	G3	G14	G14	G3
	Spiro-201	Н	G3	G3	н
35	Spiro-202	Н	G4	G4	Н
	Spiro-203	Н	G5	G5	Н
40	Spiro-204	н	G6	G6	Н
40	Spiro-205	Н	G7	G7	Н
	Spiro-206	H	G8	G8	Н
45	Spiro-207	Н	G9	G9	Н
	Spiro-208	Н	G10	G10	Н
50	Spiro-209	. н	G11	G11	Н
	Spiro-210	· H	G12	G12	н
55	Spiro-211	Н	G13	G13	Н
	Spiro-212	Н	G14	G14	Н

Tabelle 3 Spiroverbindungen der Formel (V) A = B = G2

					5
Verbindung	· K	L	M	N	3
Spiro-213	G1	G1	G3 .	G3	
Spiro-214	G1	G1	G4	G4	10
Spiro-215	G1 -	G1	·G5	G5	
Spiro-216	G1	G1	G6	G6	15
Spiro-217	G1	G1	G7	G7	
Spiro-218	G1	G1	G8	G8	20
Spiro-219	G1	G1	G9	G9	24
Spiro-220	- G1	G1	G10	G10	
Spiro-221	G1	G1	G11	G11	25
Spiro-222	G1	G1	G12	G12	
Spiro-223	G1	G1	G13	G13	30
Spiro-224	G1	G1	G14	G14	
Spiro-225	G2	G2	G2	G2	35
Spiro-226	G2	G2	G3	G3	
Spiro-227	G2	G2	G4	G4	
Spiro-228	G2	G2	G5	G 5	40
Spiro-229	G2	G2	G6	G6	
Spiro-230	G2	G2	<u>.</u> G7	G7	45
Spiro-231	G2 .	G2	G8	· G8	
Spiro-232	G2	G2	G9	G9	50
Spiro-233	G2	G2	G10	G10	
Spiro-234	G2	G2	G11	G11	55
Spiro-235	G2	G2	G12	G12	••
Spiro-236	G2	G2	G13	G13	
Spiro-237	G2	G2	G14	G14	60

DE 44 46 818 A1

	Verbindung .	κ .	L	M	N
5	Spiro-238	G3	G3	G3	G3
3	Spiro-239	G3	G3	G4	G4
	Spiro-240	G3	G3	G5	G5
10	Spiro-241	G3	G3	G6 ,	G6
	Spiro-242	G3	G3	G7	G7
15	Spiro-243	G3	G3	G8	G8
	Spiro-244	G3	G3	G9	G9
20	Spiro-245	G3	G3	G10	G10
	Spiro-246	G3	G3	G11	G11
	Spiro-247	G3	G3	G12	G12
25	Spiro-248	G3	G3	G13	G13
	Spiro-249	G3	G3	G14	G14
30	Spiro-250	G4	G4	G4	G4
	Spiro-251	G5	G5	G5	G5
35	Spiro-252	G6	G6	G6	G6
	Spiro-253	G7	G7	G7	G7
40	Spiro-254	G8	G8	G8	G8
40	Spiro-255	G9	G9	G9	G9
	. Spiro-256	G10	G10	G10	G10
45	Spiro-257	G11	G11	G11	G11
	Spiro-258	G12	G12	G12	G12
50	Spiro-259	- G13.	G13	G13	G13
	Spiro-260	· G14	G14	G14	G14
	Spiro-261	Н	Н	G3	G3
55	Spiro-262	н	Н	G4	G4
	Spiro-263	н	н	G5	G5
60	Spiro-264	н	Н	G6	G6
	Spiro-265	н	н	G7	G7

DE 44 46 818 A1

Verbindung	K	L	M	N
Spiro-266	Н	. Н	G8	
Spiro-267	н	, н	G9	G9
Spiro-268	н	н	G10	G10
Spiro-269	H.	 Н	G11 ,	G11
Spiro-270	н	н	G12	G12
Spiro-270	н	н	G13	G13
Spiro-271	н	н	G14	G14
Spiro-272	G1	G3	G3	G1
Spiro-274	G1	G4	G4	G1
Spiro-274 Spiro-275	G1	G5	G5	G1
Spiro-275	G1	G6	G6	G1
Spiro-277	G1	G7	G7	G1
Spiro-278	G1	G8	G8	G1
Spiro-279	G1	G9	G9	G1
Spiró-280	G1	G10	G10	G1
Spiro-281	G1	G11	G11	G1
Spiro-282	G1	G12	G12	G1
Spiro-283	G1	G13	G13	G1
Spiro-284	G1 ·	G14.	G14	G1
Spiro-285	G2	G4	G4	G2
Spiro-286	G2	G 5	G5	G2
Spiro-287	G2	G6	G6	G2
Spiro-288	G2	G7	G7	G2
Spiro-289	G2	G8	G8	G2
Spiro-290	G2	G9	G9	G2
Spiro-291	G2	G10	G10	G2
Spiro-292	G2	G11	G11	G2
Spiro-293	G2	G12	G12	G2
	,			·

DE 44 46 818 A1

	Verbindung	Κ.	L	M	N
5	Spiro-294	G2	G13	G13	G2
3	Spiro-295	G2	´ G14	G14	G2
	Spiro-296	G3 .	G4	G 4	G3
10	Spiro-297	Ğ3	G 5	G5 -	G3
	Spiro-298	G3	G6	G6	G3
15	Spiro-299	G3	G7	G7	G3
	Spiro-300	G3	G8	G8	G3
20	Spiro-301	G3	G9	G9	G3
	Spiro-302	G3	G10	G10	G3
	Spiro-303	G3	G11	G11	G3
25	Spiro-304	G3	G12	G12	G3
	Spiro-305	G3	G13	G13	G3
30	Spiro-306	G3	G14	G14	G3
	Spiro-307	н	G3	G3	Н
35	Spiro-308	н	G4	G4	н
	Spiro-309	Н	G5	G5	н
	Spiro-310	н	G6	G6	Н
40	Spiro-311	Н	G7	G7	Н
	Spiro-312	Н	G8	G8	Н
45	Spiro-313	Н	G9	G9	Н
	Spiro-314	Н	G10	G10	Н
50	Spiro-315	, н.	G11	G11	Н
	Spiro-316	Н	G12	G12	Н
	Spiro-317	H .	G13	G13	н
55	Spiro-318	Н	G14	G14	Н

Tabelle 4 Spiroverbindungen der Formel (V) A = B = G3

					5
Verbindung_	Κ.	L	M	N	
Spiro-319	G1	G1	G3 -	G3	
Spiro-320	G1	G1	G4	G4	10
Spiro-321	G1	G1	G5	G5	
Spiro-322	G1	G1	G6	G6	15
Spiro-323	G1	G1	G7	G7	
Spiro-324	G1	G1	G8	. G8	20
Spiro-325	G1	G1	G9	G9	
Spiro-326	G1	G1	G10	G10	
Spiro-327	G1	G1	G11	G11	25
Spiro-328	G1	G1	G12	G12	•
Spiro-329	G1	G 1	G13	G13	30
Spiro-330	G1	G1	G14	G14	
Spiro-331	G2	G2	G2	G2	35
Spiro-332	G2	G2	G3	G3	
Spiro-333	G2	G2	G4	G4	
Spiro-334	G2	G2	G5	G5	40
Spiro-335	G2	G2	G6	G6	
Spiro-336	G2	G2	G7	G 7	45
Spiro-337	G2 ·	G2	G8	G8	
Spiro-338	G2	G2	G9	G9	50
Spiro-339	G2	G2	G10	G10	
Spiro-340	G2	G2	G11	G11	55
Spiro-341	G2	G2	G12	G12	55
Spiro-342	G2	G2	G13	G13	ě
Spiro-343	G2	G2	G14	G14	60

DE 44 46 818 A1

	Verbindung .	Κ.	L	M	N
5	Spiro-344	G3	G3	G3	G3
3	Spiro-345	G3	. G3	G4	G4
	Spiro-346	G3	G3	G 5	G5
10	Spiro-347	Ġ3	G3	G6 ,	G6
	Spiro-348	G3	G3	G7	G7
15	Spiro-349	G3	G3	G8	G8
	Spiro-350	G3	G3	G9	G9
20	Spiro-351	G3	G3	G10	G10
20	Spiro-352	G3	G3	G11	G11
	Spiro-353	G3	G3	G12	G12
25	Spiro-354	G3	G3	G13	G13
	Spiro-355	G3	G3	G14	G14
30	Spiro-356	G4	G4	G4	G4
	Spiro-357	G5	G5	G5	G5
35	Spiro-358	G6	G6	G6	G6
	Spiro-359	G7	G7	G7	G7
	Spiro-360	G8	G8	G8	G8
40	Spiro-361	G9	G9	_ G9	G9
	Spiro-362	G10	G10	G10	G10
45	Spiro-363	G11	G11	G11	G11
	Spiro-364	G12	G12	G12	G12
50	Spiro-365	G13	G13	G13	G13
	Spiro-366	G14	G14	G14	G14
	Spiro-367	н	н	G3	G3
55	Spiro-368	н	н	G4	G4
	Spiro-369	Н	Н	G5	G5
60	Spiro-370	н	н	G6	G6
	Spiro-371	н	Н	G7	G7

DE 44 46 818 A1

Verbindung _	. К .	L	M	N
Spiro-372	Н	Н	G8	G8
Spiro-373	Н	. Н	G9	G9
Spiro-374	Н	н	G10	G10
Spiro-375	Ĥ	н	G11 :	G11
Spiro-376	н	н	G12	G12
Spiro-377	н	н	G13	G13
Spiro-378	н	H	G14	G14
Spiro-379	G1	G3	G3	G1
Spiro-380	G1	G4	G4	G1
Spiro-381	G1	G5	G5	G1
Spiro-382	G1	G6	G6	G1
Spiro-383	G1	G7	G7	G1
Spiro-384	G1	G8	G8	G1
Spiro-385	G1	G9	G9	G1
Spiro-386	G1	G10	G10	G1
Spiro-387	G1	G11	G11	G1
Spiro-388	G1	G12	G12	G1
Spiro-389	G1	G13	G13	Ģ1
Spiro-390	G1	G14	G14	G1
Spiro-391	G2	G4	G4	G2
Spiro-392	G2	G5	G5	G2
Spiro-393	' G2 '	G6	G6	G2
Spiro-394	G2	G7	G7	G2
Spiro-395	G2	G8	G8	G2
Spiro-396	G2	G9	G9	G2
Spiro-397	G2	G10	G10	G2
Spiro-398	G2	G11	G11	G2
Spiro-399	G2	G12	G12	G2
*				

DE 44 46 818 A1

	Verbindung .	Κ .	L	M	N
5	Spiro-400	G2	G13	G13	G2
-	Spiro-401	G2	′ G14	G14	G2
	Spiro-402	G3 ,	G4	G4	G3
10	Spiro-403	G3	G 5	G5 ,	G3
	Spiro-404	G3	G6	G6	G3
15	Spiro-405	G3	G 7	G 7	G3
	Spiro-406	G3	G8	G8	G3
20	Spiro-407	G3	G9	G9	G3
	Spiro-408	G3	G10	G10	G3
	Spiro-409	G3	G11	G11	G3
25	Spiro-410	G3	G12	G12	G3
	Spiro-411	G3	G13	G13	G3
30	Spiro-412	G3	G14	G14	G3
	Spiro-413	н	G3	G3	Н
35	Spiro-414	Н	G4	G4	н
	Spiro-415	н	G5	G5	н
40	Spiro-416	H	G6	G6	Н
10	Spiro-417	Н	G7	G7	Н
	Spiro-418	н	G8	G8	Н
45	Spiro-419	н	G9	G9	Н
	Spiro-420	н	G10	G10	Н
50	Spiro-421	н .	G11	G11	Н
	Spiro-422	н	G12	G12	Н
55	Spiro-423	Н	G13	G13	Н
33	Spiro-424	н	G14	G14	Н

Tabelle 5
Spiroverbindungen der Formel (V) A = B = G12

			•	
Verbindung	K	L	M	N
Spiro-425	G1	G1	G3 .	G3
Spiro-426	G1	G1	G4	G4
Spiro-427	G1	G1	G5	G5
Spiro-428	G1	G1	G6	G6
Spiro-429	G1	G1	G7	G7
Spiro-430	G1	G1	G8	G8
Spiro-431	G1	G1	G9	G9
Spiro-432	G1	G1	G10	G10
Spiro-433	G1	G1	G11	G11
Spiro-434	G1	Ģ1	Ģ12	G12
Spiro-435	G1	G 1	G13	G13
Spiro-436	G1	G 1	G14	G14
Spiro-437	G2	G2	G2	G2
Spiro-438	G2	G2	G3	G3
Spiro-439	G2	G2	G4	G4
Spiro-440	G2	G2 .	G5	G5
Spiro-441	G2	G2	G6	G6
Spiro-442	G2	G2	G7	G7
Spiro-443	G2	G2	G8	G8
Spiro-444	G2	G2	G9	G9
Spiro-445	G2	G2	G10	G10
Spiro-446	G2	G2	G11	G11
Spiro-447	G2	G2	G12	G12
Spiro-448	G2	G2	G13	G13
Spiro-449	G2	G2	G14	G14

DE 44 46 818 A1

	Verbindung _	К.	L	М	N
5	Spiro-450	G3	G3	G3	G3
3	Spiro-451	G3	, G3	G4	G4
	Spiro-452 -	G3 ·	G3	G 5	G5
10	Spiro-453	G3	G3	G6 '	G6
	Spiro-454	G3	G3	G7	G7
15	Spiro-455	G3	G3	G8	G8
	Spiro-456	G3	- G3	G9	G9
20	Spiro-457	G3	G3	G10	G10
	Spiro-458	G3	G3	G11	G11
	Spiro-459	G3	G3	G12	G12
25	Spiro-460	G3	G3	G13	G13
	Spiro-461	G3	G3	G14	G14
30	Spiro-462	G4	G4	. G4	G4
	Spiro-463	G5	. G5	G5	G5
35	Spiro-464	G6	G6	G6	G6
	Spiro-465	G 7	G7	G7	G7
	Spiro-466	G8	G8	G8	G8
40	Spiro-467	G9	G9	G9	G9
	Spiro-468	G10	G10	G10	G10
45	Spiro-469	G11	G11	G11	G11
	Spiro-470	G12	G12	G12	G12
50	Spiro-471	G13 ·	G13	G13	G13
	Spiro-472	G14	G14	G14	G14
	Spiro-473	н	н	G3	G3
55	Spiro-474	н	н	G4	G4
	Spiro-475	Н	н	G5	G5
60	Spiro-476	Н	н	G6	G6
	Spiro-477	н	. н	G7	G7
			•		

DE 44 46 818 A1

Verbindung _	. K .	L	М	N
Spiro-478	Н	Н	G8	G8
Spiro-479	. н	н	G9	G9
Spiro-480	Н.	Н	G10	G10
Spiro-481	H	н	G11	G11
Spiro-482	н	н	G12	G12
Spiro-483	Н	н .	G13	G13
Spiro-484	н	н	G14	G14
Spiro-485	G1	G3	G3	G1
Spiro-486	G1	G4	G4	G1
Spiro-487	G1	G5	G5	G1
Spiro-488	G1	G6	G6	G1
Spiro-489	G1	G7	G 7	G1
Spiro-490	G1	G8	G 8	G1
Spiro-491	G1	G9	G9	G1
Spiro-492	G1	G10	G10	G1
Spiro-493	G1	G11	G11	G1
Spiro-494	G1	G12	G12	G1
Spiro-495	G1	G13	G13	G1
Spiro-496	G1	G14	G14	G1
Spiro-397	G2	G4	G4	G2
Spiro-398	G2	G5	G5	G2
Spiro-499	· G2 ·	G6	G6	G2
Spiro-500	G2	G7	G7	G2
Spiro-501	G2	G8	G8	G2
Spiro-502	G2	G9	G9	G2
Spiro-503	G2	G10	G10	G2
Spiro-504	G2	G11	G11	G2
Spiro-505	G2	G12	G12	G2

DE 44 46 818 A1

•	Verbindung	Κ .	L	M	N
5	Spiro-506	G2	G13	G13	G2
J	Spiro-507	G2	G14	G14	G2
	Spiro-508	G3	G4	G4	G3
10	Spiro-509	G3	G 5	G5 · ·	G3
	Spiro-510	G3	G6	G6	G3
15	Spiro-511	G3	G7	G7	G3
	Spiro-512	G3	G8	G8	G3
20	Spiro-513	G3	G9	G9	G3
	Spiro-514	G3	G10	G10	G3
	Spiro-515	G3	G11	G11	G3
25	Spiro-516	G3	G12	G12	G3
	Spiro-517	G3	G13	G13	G3
30	Spiro-518	G3	G14	G14	G3
	Spiro-519	н	G3	. G3	Н
35	Spiro-520	Н	G4	G4	н
	Spiro-521	Н	G5	G 5	Н
40	Spiro-522	H	G6	G6	н
	Spiro-523	H	G7	G7	Н
	Spiro-524	Н	G8	G8	Н
45	Spiro-525	Н	G9	G9	Н
	Spiro-526	Н	G10	G10	Н
50	Spiro-527	Н	G11	G11	н
	Spiro-528	H	G12	G12	н
55	Spiro-529	Н	G13	G13	Н
	Spiro-530	н	G14	G14	Н

Die Herstellung der erfindungsgemäß verwendeten Spiroverbindungen erfolgt nach an sich literaturbekannten Methoden, wie sie in Standardwerken zur Organischen Synthese, z. B. Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart und in den entsprechenden Bänden der Serie "The Chemistry of Heterocyclic Compounds" von A. Weissberger und E. C. Taylor (Herausgeber) beschrieben werden.

Die Herstellung erfolgt dabei unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch gemacht werden.

Verbindungen der Formel (III) werden beispielsweise ausgehend vom 9,9'-Spirobifluoren erhalten, dessen Synthese z. B. von R. G. Clarkson, M. Gomberg, J.Am.Chem.Soc. 52 (1930) 2881, beschrieben ist.

Die Herstellung von Verbindungen der Formel (IIIa) kann beispielsweise ausgehend von einer Tetrahaloge-

44 46 818 A1

nierung in den Positionen 2,2',7,7' des 9,9'-Spirobifluorens und anschließender Substitutionsreaktion erfolgen (siehe z. B. US 5,026,894) oder über eine Tetraacetylierung der Positionen 2,2',7,7' des 9,9'-Spirobifluorens mit anschließender C-C-Verknüpfung nach Umwandlung der Acetylgruppen in Aldehydgruppen oder Heterocy-

clenaufbau nach Umwandlung der Acetylgruppen in Carbonsäuregruppen erfolgen.

Die Herstellung von Verbindungen der Formel (IIIb) kann beispielsweise analog zu denen der Formel IIIa erfolgen, wobei die stöchiometrischen Verhältnisse bei der Umsetzung so gewählt werden, daß die Positionen 2,2' bzw. 7,7' funktionalisiert werden (siehe z. B. J. H. Weisburger, E. K. Weisburger, F. E. Ray, J. Am. Chem. Soc. 72 (1959) 4253; F. K. Sutcliffe, H. M. Shahidi, D. Paterson, J. Soc. Dyers Colour 94 (1978) 306 und G. Haas, V. Prelog, Helv. Chim. Acta 52 (1969) 1202).

Die Herstellung von Verbindungen der Formel (IIIc) kann beispielsweise über eine Dibromierung in 2,2'Stel- 10 lung und anschließender Diacetylierung in 7,7' Stellung des 9,9'-Spirobifluorens und anschließende Umsetzung

analog zu der der Verbindungen IIIa erfolgen.

Verbindungen der Formeln (IIIe)—(IIIg) sind beispielsweise durch Wahl geeignet substituierter Ausgangsverbindungen beim Aufbau des Spirobifluorens herstellbar, z. B. kann 2,7-Dibromspirobifluoren aus 2,7-Dibromfluorenon und 2,7-Dicarbethoxy-9,9-spirobifluoren durch Einsatz von 2,7-Dicarbethoxyfluorenon aufgebaut 15 werden. Die freien 2,'7'-Positionen des Spirobifluorens können dann unabhängig weiter substituiert werden.

Für die Synthese der Gruppen K, L, M, N, sei beispielsweise verwiesen auf DE-A 23 44 732, 24 50 088, 24 29 093, 25 02 904, 26 36 684, 27 01 591 und 27 52 975 für Verbindungen mit 1,4-Phenylen-Gruppen;

DE-A 26 41 724 für Verbindungen mit Pyrimidin-2,5-diyl-Gruppen;

DE-A 40 26 223 und EP-A 03 91 203 für Verbindungen mit Pyridin-2,5-diyl-Gruppen;

DE-A 32 31 462 für Verbindungen mit Pyridazin-3,6-diyl-Gruppen; N. Miyaura, T. Yanagi und A. Suzuki in Synthetic Communications 11 (1981) 513 bis 519, DE-A-39 30 663, M. J. Sharp, W. Cheng, V. Snieckus in Tetrahedron Letters 28 (1987), 5093; G. W. Gray in J. Chem. Soc. Perkin Trans II (1989) 2041 und Mol. Cryst. Liq. Cryst. 172 (1989)165, Mol Cryst. Liq. Cryst. 204 (1991) 43 und 91; EP-A 0449 015; WO 89/12039; WO 89/03821; EP-A 0 354434 für die direkte Verknüpfung von Aromaten und Heteroaromaten;

Die Herstellung disubstituierter Pyridine, disubstituierter Pyrazine, disubstituierter Pyrimidine und disubstituierter Pyridazine findet sich beispielsweise in den entsprechenden Bänden der Serie "The Chemistry of Heterocyclic

Compounds" von A. Weissberger und E. C. Taylor (Herausgeber).

Erfindungsgemäß finden die beschriebenen Spiroverbindungen der Formeln (I), (II) und (III) als Elektrolumineszenzmaterialien Verwendung, d. h., sie dienen als aktive Schicht in einer Elektrolumineszenzvorrichtung. Als 30 aktive Schicht im Sinne der Erfindung gelten Elektrolumineszenzmaterialien, die befähigt sind bei Anlegen eines elektrischen Feldes Licht abzustrahlen (lichtemittierende Schicht), sowie Materialien, welche die Injektion und/oder den Transport der positiven und/oder negativen Ladungen verbessern (Ladungsinjektionsschichten und Ladungstransportschichten).

Erfindungsgemäße Elektrolumineszenzmaterialien zeichnen sich unter anderem auch durch eine außerge- 35 wöhnliche Temperaturstabilität im Vergleich zu bekannten organischen Elektrolumineszenzmaterialien aus. Dies zeigt sich z. B. darin, daß das Emissionsmaximum der Verbindungen nach thermischer Belastung nur wenig, in anderen Fällen überhaupt nicht abnimmt und daß bei vielen Verbindungen sogar eine Zunahme des Emis-

sionsmaximums nach thermischer Belastung festgestellt wird.

Gegenstand der Erfindung ist daher auch ein organisches Elektrolumineszenzmaterial, dadurch gekennzeichnet, daß sich sein Emissionsmaximum im Bereich von 400 bis 750 nm, gemessen bei Raumtemperatur, um nicht mehr als 15%, relativ zum Ausgangszustand, vermindert, nachdem das Material, aufgetragen in einer Dicke von nicht mehr als 1 µm auf einem Quarzsubstrat, in einer inerten Atmosphäre bei einem Druck von nicht mehr als 1 mbar für 30 min auf 250°C erhitzt wurde.

Vorzugsweise beträgt die Verminderung des Emissionsmaximums nicht mehr als 10%, besonders bevorzugt 45 5%, relativ zum Ausgangszustand vor der thermischen Behandlung.

Ganz besonders bevorzugt sind Elektrolumineszenzmaterialien die keine Verminderung des Emissionsmaximums unter den oben angegebenen Bedingungen zeigen.

Insbesondere bevorzugt sind solche organische Elektrolumineszenzmaterialien, die unter den angegebenen Bedingungen eine Zunahme des Emissionsmaximums zeigen.

Unter inerter Atmosphäre wird vorzugsweise eine Stickstoff- oder Argonatmosphäre verstanden.

Gegenstand der Erfindung ist daher auch eine Elektrolumineszenzvorrichtung mit einer oder mehreren aktiven Schichten, die eine oder mehrere Verbindungen der Formel (I), (II) und/oder (III). Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht und/oder eine Transportschicht und/oder ein Ladungsinjektionsschicht sein.

Der allgemeine Aufbau solcher Elektrolumineszenzvorrichtungen ist beispielsweise in US 4,539,507 und US

5,151,629 beschrieben.

Sie enthalten üblicherweise eine elektrolumineszierende Schicht zwischen einer Kathode und einer Anode, wobei mindestens eine der Elektroden transparent ist. Zusätzlich kann zwischen der elektrolumineszierenden Schicht und der Kathode eine Elektroneninjektions und/oder Elektronentransportschicht eingebracht sein und/oder zwischen der elektrolumineszierenden Schicht und der Anode eine Lochinjektions und/oder Lochtransportschicht eingebracht sein. Als Kathode kann z. B. Ca, Mg, Al, In, Mg/Ag dienen. Als Anode können z. B. Au oder ITO (Indiumoxid/Zinnoxid auf einem transparentem Substrat, z. B. aus Glas oder einem transparenten Polymer) dienen.

Im Betrieb wird die Kathode auf negatives Potential gegenüber der Anode gesetzt, dabei werden Elektronen 65 von der Kathode in die Elektroneninjektionsschicht/Elektronentransportschicht bzw. direkt in die lichtemittierende Schicht injiziert. Gleichzeitig werden Löcher von der Anode in die Lochinjektionsschicht/Lochtransport-

schicht bzw. direkt in die lichtemittierende Schicht injiziert.

Die injizierten Ladungsträger bewegen sich unter dem Einfluß der angelegten Spannung durch die aktiven Schichten aufeinander zu. Dies führt an der Grenzfläche zwischen Ladungstransportschicht und lichtemittierender Schicht bzw. innerhalb der lichtemittierenden Schicht zu Elektronen/Loch-Paaren, die unter Aussendung von Licht rekombinieren.

Die Farbe des emittierten Lichtes kann durch die als lichtemittierende Schicht verwendete Verbindung variiert werden.

Elektrolumineszenzvorrichtungen finden Anwendung z. B. als selbstleuchtende Anzeigeelemente, wie Kontrollampen, alpha numerische Displays, Hinweisschilder, und ip optoelektronischen Kopplern.

Die Erfindung wird durch die Beispiele näher erläutert, ohne sie darauf beschränken zu wollen.

10

30

35

40

50

55

60

65

Beispiele

A. Ausgangsverbindungen

a) Synthese von 9,9'-Spirobifluoren
 6,3 g Magnesiumspäne und 50 mg Anthracen werden in 120 ml trockenem Diethylether in einem 1 l Dreihalskoben mit Rückflußkühler unter Argon vorgelegt und das Magnesium 15 mit Ultraschall aktiviert.
 62 g 2-Brombiphenyl werden in 60 ml trockenem Diethylether gelöst. Etwa 10 ml dieser Lösung werden dem vorgelegten Magnesium zugegeben, um die Grignard-Reaktion zu starten.
 Nach dem Anspringen der Reaktion wird unter weiterer Ultrabeschallung die 2-Brombiphenyl-Lösung so zugetropft, daß die Lösung gelinde am Rückfluß siedet. Nach beendeter Zugabe wird die Reaktionsmischung eine weitere Stunde am Rückfluß unter Ultraschall gekocht.
 48,8 g 9-Fluorenon werden in 400 ml trockenem Diethylether gelöst und unter weiterer Ultrabeschallung der Grignard-Lösung zugetropft. Nach beendeter Zugabe wird weitere 2 h gekocht. Der nach Abkühlung der Reaktionsmischung ausgefallene gelbe Magnesiumkomplex des 9-(2-Biphenyl)-9-fluorenols wird abge-

der Reaktionsmischung ausgefallene gelbe Magnesiumkomplex des 9-(2-Biphenyl)-9-fluorenols wird abgesaugt und mit wenig Ether gewaschen. Der Magnesiumkomplex wird in 800 ml Eiswasser hydrolysiert, welches 40 g Ammoniumchlorid enthält. Nach 60 min Rühren wird das gebildete 9-(2-Biphenyl)-9-fluorenol abgesaugt, mit Wasser gewaschen und trocken gesaugt.

Das getrocknete 9-(2-Biphenyl)-9-fluorenol wird dann in 500 ml Eisessig in der Hitze gelöst. Zu dieser

Lösung werden 0,5 ml konz. Salzsäure gegeben. Man läßt die Lösung einige Minuten kochen und fällt das gebildete 9,9'-Spirobifluoren aus der heißen Lösung mit Wasser (Wasserzugabe bis Trübung einsetzt). Nach Abkühlung wird das Produkt abgesaugt und mit Wasser gewaschen. Das getrocknete Produkt wird zur weiteren Reinigung aus Ethanol umkristallisiert. Man erhält 66 g (80%, bez. auf 2-Brombiphenyl) 9,9'-Spirobifluoren als farblose Kristalle Smp. 198°C.

b) 2,2'-Dibrnm-9,9'-spirobifluoren (F. K. Sutcliffe, H. M. Shahidi, D. Patterson, J. Soc. Dyers Colour 94 (1978)

3,26 g (10,3 mmol) 9,9'-Spirobifluoren werden in 30 ml Methylenchlorid gelöst und mit 5 mg FeCl₃ (wasserfrei) als Katalysator versetzt. Der Reaktionskolben wird vor Lichtzutritt geschützt. 1,12 ml (21,8 mmol) Brom in 5 ml Methylenchlorid werden innerhalb von 30 min unter Rühren zugetropft. Nach 24 h wird die resultierende braune Lösung mit gesättigter wäßriger NaHCO₃-Lösung und Wasser gewaschen, um überschüssiges Brom zu entfernen. Die organische Phase wird nach dem Trocknen über Na₂SO₄ am Rotationsverdampfer eingeengt. Der weiße Rückstand wird aus Methanol umkristallisiert, man erhält 3,45 g (70%) der Dibromverbindung als farblose Kristalle, Smp. 240°C.

Zu einer Lösung von 3,16 g (10,0 mmol) 9,9'-Spirobifluoren in 30 ml Methylenchlorid werden 80 mg (0,5 mmol) wasserfreies FeCl₃ gegeben und 2,1 ml (41 mmol) Brom in 5 ml Methylenchlorid über 10 min hinweg zugetropft. Die Lösung wird 6 h rückflußgekocht. Beim Abkühlen fällt das Produkt aus. Der Niederschlag wird abgesaugt und mit wenig kaltem Methylenchlorid gewaschen. Nach dem Trocknen erhält man 6,0 g (95%) der Tetrabromverbindung als weißen Feststoff.

d) 2-Bromo-9,9'-spirobifluoren und 2,2',7-Tribrom-9,9'-spirobifluoren sind bei veränderter Stöchiometrie auf analoge Weise herstellbar

e) 9,9'-Spirobifluoren-2,2'-dicarbonsäure aus 2,2'-Dibrom-9,9'-spirobifluoren über 2, 2'-Dicyano-9,9'-spirobifluoren

1,19 g 2,2'-Dibromo-9,9'-spirobifluoren und 0,54 g CuCN werden in 5 ml DMF 6 h zum Rückfluß erhitzt. Die erhaltene braune Mischung wird in eine Mischung aus 3 g FeCl₃ (hydrat.) und 1,5 ml konz. Salzsäure in 20 ml Wasser gegossen. Die Mischung wird 30 min bei 60 bis 70°C gehalten, um den Cu-Komplex zu zerstören. Die heiße wäßrige Lösung wird zweimal mit Toluol extrahiert. Die organischen Phasen werden dann mit verdünnter Salzsäure, Wasser und 10%iger wäßriger NaOH gewaschen. Die organische Phase wird filtriert und eingeengt. Der erhaltene gelbe Rückstand wird aus Methanol umkristallisiert. Man erhält 0,72 g (80%) 2,2'-Dicyano-9,9'-spirobifluoren als schwach gelbliche Kristalle (Schmelzbereich 215 bis 245°C).

3 g 2,2'-Dicyano-9,9'-spirobifluoren werden mit 25 ml 30%iger wäßriger NaOH und 30 ml Ethanol für 6 h unter Rückfluß erhitzt. Das Dinatriumsalz der Spirobifluorendicarbonsäure fällt als gelber Niederschlag aus, der abfiltriert und in 25%iger wäßriger HCl erhitzt wird, um die freie Säure zu gewinnen. Die Spirobifluorendicarbonsäure wird aus Eisessig umkristallisiert. Man erhält 2,2 g (66,6%) weiße Kristalle (Smp. 376°C, IR-Bande 1685 cm⁻¹ C=O).

9,9'-Spirobifluoren-2,2',7,7'-tetracarbonsäure ist aus 2,2',7,7'-Tetrabrom-9,9'-spirobifluoren in analoger Weise darstellbar.

f) 9,9'-Spirobifluoren-2,2'-dicarbonsäure aus 9,9'-Spirofluoren über 2,2'-Diacetyl-9,9'-spirobifluoren (G.

Haas, V. Prelog, Helv. Chim. Acta 52 (1969)1202; V. Prelog, D. Bedekovic, Helv. Chim. Acta 62 (1979) 2285) Eine Lösung von 3,17 g 9,9'-Spirobifluoren in 30 ml abs. Schwefelkohlenstoff wird nach Zugabe von 9,0 g feingepulvertem, wasserfreiem AlCl₃ während 10 min tropfenweise unter Rühren mit 1,58 g Acetylchlorid in 5 ml abs. Schwefelkohlenstoff versetzt und 1 Stunde unter Rückfluß gekocht. Die unter vermindertem Druck zur Trockene eingedampfte Mischung wird bei 0°C mit 100 g Eis und 50 ml 2n Salzsäure versetzt. Nach üblicher Aufarbeitung wird das Rohprodukt chromatographisch mit Benzol/Essigester (10:1) an Kieselgel getrennt. Man erhält 3,62 g (89%) 2,2'-Diacetyl-9,9'-spirobifluoren (umkristallisiert aus Chloroform/Essigester, Smp. 255 bis 257°C) und 204 mg 2-Acetyl-9,9'-spirobifluoren (umkrist. aus Chloroform/Benzol, Smp. 225°C).

[Daneben kann bei der Chromatographie auch 2,2',7-Triacetyl-9,9'-spirobifluoren (Smp. 258 bis 260°C) und 2,2',7,7'-Tetraacetyl-9,9'-spirobifluoren (Smp. > 300°C) isoliert werden, umkristallisiert aus Essigester/He-

xan].

22',7-Triacetyl- und 22',7,7'-Tetraacetyl-9,9'-spirobifluoren 2,2',7,7'-Tetraacetyl-9,9'-spirobifluoren können bei veränderter Stöchiometrie als Hauptprodukt erhalten werden.

Zu einer Lösung von 6,0 g Natriumhydroxid in 30 ml Wasser werden bei 0°C unter Rühren zuerst 7,2 g Brom und dann eine Lösung von 3,0 g 2,2'-Diacetyl-9,9'-spirobifluoren in wenig Dioxan zugetropft. Nach weiterem 1 stündigem Rühren bei Raumtemperatur wird die klare gelbe Lösung mit 1 g Natriumhydrogensulfit, gelöst in 20 ml Wasser, versetzt. Nach Ansäuern mit konz. Salzsäure wird das ausgefallene farblose Produkt abfiltriert und mit wenig Wasser gewaschen. Umkristallisation aus Ethanol liefert 9,9'-Spirobifluoren-2,2'-dicarbonsäure als wasserklare Prismen (Smp 352°C).

9,9'-Spirobifluoren-2-carbonsäure, 9,9'-Spirobifluoren-2,2',7-tricarbonsäure und 9,9'-Spirobifluoren-2,2',7,7'-tetracarbonsäure sind in analoger Weise darstellbar.

g) 2,2'-Bis(brommethy!)-9,9'-spirobifluoren aus 2,2'-Dicarboxy-9,9'-spirobifluoren über 9,9'-Spirobifluoren-2,2'-dimethanol

(V. Prelog, D. Bedekovicc, Helv. Chim. Acta 62 (1979) 2285)

Bei Raumtemperatur wurden 10 g einer 70 gew.-Wigen Lösung von Natrium-dihydro-bis(2-methoxyethoxy)-aluminat (Fluka) in Benzol langsam zu einer Suspension von 2,0 g 2,2'-Dicarboxy-9,9'-spirobifluoren (freie Carbonsäure) in 20 ml Benzol zugetropft. Nach 2 h Kochen unter Rückfluß, wobei sich die Carbonsäure auflöst, wird das überschüssige Reduktionsmittel bei 10°C mit Wasser zersetzt, das Gemisch mit konz. Salzsäure angesäuert und mit Chloroform ausgeschüttelt.

Die mit Wasser gewaschene und über Magnesiumsulfat getrocknete organische Phase wird eingedampft und der Rückstand aus Benzol umkristallisiert. Man erhält 1,57 g 9,9'-Spirobifluoren-2,2'-dimethanol (Smp.

254 bis 255°C).

Zu einer Lösung von 13,5 g 9,9'-Spirofluoren-2,2'-dimethanol in 400 ml Benzol werden 91,5 g einer 33%igen wäßrigen Lösung von Bromwasserstoff in Eisessig zugetropft und das Gemisch 7 h unter Rückfluß gekocht. Danach wird mit 200 ml Wasser versetzt und die mit Wasser gewaschene und über Magnesiumsulfat getrocknete organische Phase eingedampft. Die Chromatograhie an Kieselgel mit Benzol liefert 11,7 g 2,2'-Bis(brommethyl)-9,9'-spirobifluoren als farblose Plättchen (Smp. 175 bis 177°C).

h) Eine Lösung von 380 mg 9,9'-Spirobifluoren-2,2'-dimethanol in 15 ml Toluol wird mit 5 g Chrom(VI)oxid auf Graphit (Seloxcette, Alpha Inorganics) versetzt und 48 h unter Stickstoff am Rückfluß gekocht. Dann wird durch eine Glasfilternutsche abgenutscht und das Filtrat eingedampft. Chromatographie an Kieselgel mit Chloroform und Kristallisation aus Methylenchlorid/Ether liefert 152 mg 9,9'-Spirobifluoren-2,2'-dicarbaldehyd (Smp.) 300°C) und 204 mg 2'-Hydroxymethyl-9,9'-spirobifluoren-2-carbaldehyd (Smp. 262 bis 263°C).

i) 2.2'-Diamino-9.9'-spirobifluoren

Eine Mischung aus 150 ml konz. wäßriger HNO3 und 150 ml Eisessig werden zu einer kochenden Lösung von 15,1 g 9,9'-Spirobifluoren in 500 ml Eisessig über einen Zeitraum von 30 min zugetropft anschließend wird die Lösung 75 min weiter refluxiert. Nach Abkühlung und Stehenlassen der Lösung für 1 h wird das gleiche Volumen Wasser zugesetzt und damit das Produkt ausgefällt. Nach dem Absaugen erhält man 18,5 g gelbe Kristalle (Smp. 220 bis 224°C) von 2,2'-Dinitro-9,9'-Spirobifluoren. Umkristallisation aus 250 ml 50 Eisessig ergibt 12,7 g hellgelbe Kristallnadeln (Smp. 245 bis 249°C, analytisch rein 249 bis 250°C).

Eine Mischung aus 4,0 ml Dinitro-spriobifluoren und 4,0 g Eisenpulver werden in 100 ml Ethanol unter Rückfluß erhitzt, während 15 ml konz. HCl über einen Zeitraum von 30 min zugetropft werden. Nach weiteren 30 min Rückflußkochen wird überschüssiges Eisen abfiltriert. Das grüne Filtrat wird in eine Lösung aus 400 ml Wasser, 15 ml konz. NH₄OH und 20 g Na,K-Tartrat gegeben. Das weiße Diamin wird von der dunkelgrünen Lösung des Eisenkomplexes abfiltriert. Das Diamin wird zur Reinigung in verdünnter HCl gelöst und bei Raumtemperatur mit Aktivkohle (Darco) gerührt und abfiltriert. Die filtrierte Lösung wird unter Rühren (KPG-Rührer) tropfenweise mit NH₄OH neutralisiert und das ausgefallene Produkt abgesaugt. Man erhält 3,5 g weißes 2,2'-Diamino-9,9'-spirobifluoren, das aus Ethanol umkristallisiert werden kann (Smp. 243°C).

j) Synthese von 22',7,7'-Tetrabromo-9,9'-spirobifluoren durch Bromierung von festem 9,9'-Spirobifluoren mit Bromdampf

In eine flache Porzellan-Abdampfschale (Ø2 ca. 15 cm) werden 3.16 g (10 mmol) fein gepulvertes 9,9'-Spirobifluoren gegeben. Diese Schale wird in einen Exsikkator (Ø ca. 30 cm), auf den gelochten Zwischenboden gestellt. Auf dem Boden des Exsikkators befinden sich ein einer Kristallisierschale 15.6 g (4.8 ml., 96 mmol) Brom. Der Exsikkator wird verschlossen, der Belüftungshahn jedoch geöffnet, damit das gebildete HBrentweichen kann. Der Exsikkator wird über Nacht in den Abzug gestellt. Am nächsten Tag wird die Porzellanschale mit dem durch Brom orange gefärbten Produkt aus dem Exsikkator genommen, und im

44 46 818 **A**1

Abzug noch mindestens 4 h stehen gelassen, damit überschüssiges Brom und HBr entweichen kann. Das Produkt wird in 150 ml Dichlormethan gelöst und mit je 50 ml Natriumsulfitlösung (gesättigt), Natriumhydrogenkarbonatlösung (gesättigt) und Wasser farblos gewaschen. Die Dichlormethanlösung wird über Natriumsulfat getrocknet und einrotiert. Zur Reinigung wird aus Dichormethan/Pentan 4:1 umkristallisiert. Ausbeute 5.7 g (92%) farblose Kristalle.

¹H-NMR (CDCl₃, ppm): 6.83 (d₁ J = 1,83 Hz, 4H, H-1,1,8,8'); 7.54 (dd, J = 7.93, 1.83 Hz, 4H, H-3,3',6,6'); 7.68 $(d_1 J = 7.93 Hz, 4H, H-4,4',5,5').$

k) Synthese von 2,2',4,4',7,7'-Hexabromo-9,9 -spirobifluoren

Zu einer Lösung von 3.16 g (10 mmol) 9,9'-Spirobifluoren in 20 ml Methylenchlorid werden 200 mg wasserfreies FeCl₃ gegeben und mit Ultraschall behandelt. Der Reaktionskolben wird mit Al-Folie vor Lichtzutritt geschützt. Anschließend werden in der Siedehitze 9.85 g (3.15 ml, 62 mmol) Brom in 5 ml Methylenchlorid innerhalb von 15 min zugetropft. Die Lösung wird weitere 20 h am Rückfluß gekocht und mit Ultraschall behandelt. Nach Abkühlung wird Petrolether versetzt und abgesaugt. Zur weiteren Reinigung wird aus THF/Methanol umkristallisiert und 5 h bei 80°C getrocknet. Ausbeute 6.15 g (77%) farblose Kristalle.

¹H-NMR (CDCl₃, ppm): 6.76 (d, J = 1.53 Hz, 2 H, H-1,1'); 6.84 (d, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 H, H-8,8'); 7.60 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, 2 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, H-8,8'); 7.80 (dd, J = 1.83 Hz, H-8,8'); 7.80 (d 8.54,1.83 Hz, 2 H, H-6,6'); 7.75 (d, J = 1.53 Hz, 2 H, H-3,3'); 8.49 (d, J = 8.54 Hz, 2 H, H-5,5').

1) Synthese von 2.7-Dibromo-9.9'-spirobifluoren

Das Grignardreagenz bereitet aus 0.72 g (30 mmol) Magnesiumspänen und 5.1 ml (30 mmol) 2-Brombiphenyl in 15 ml Diethylether wird im Verlauf von 2 h, unter Rühren (im Ultraschallbad) zu einer siedenden Suspension von 10.0 g (29.6 mmol) 2,7-Dibrom-9-fluorenon in 100 ml trockenem Diethylether getropft. Nach beendeter Zugabe wird 3 Stunden weiter gekocht. Nach Abkühlung über Nacht wird der ausgefallene Niederschlag abgesaugt und mit kaltem Ether gewaschen. Der abgesaugte Magnesiumkomplex wird in einer Lösung von 15 g Ammoniumchlorid in 250 ml Eiswasser hydrolisiert. Nach 1 h wird das gebildete 9-(2-Biphenylyl)-2,7-dibromo-9-fluorenol abgesaugt, mit Wasser gewaschen und trockengesaugt. Das getrocknete Fluorenol wird für die Ringschlußreaktion in 100 ml Eisessig, nach Zugabe von 3 Tropfen HCl conc. 6 Stunden gekocht. Man läßt über Nacht kristallisieren, saugt das gebildete Produkt ab und wäscht mit Eisessig und Wasser.

Ausbeute: 11 g (77%) 2,7-Dibromo-9,9-spirobifluoren. Zur weiteren Reinigung kann aus THF umkristalli-

siert werden.

5

10

15

20

25

35

40

45

50

55

65

- ¹H-NMR (CDCl₃, ppm): 6.73 (d, J = 7.63 Hz, 2 H, H-1,8'); 6.84 (d, J = 1.83 Hz, 2 H, H-1,8); 7.15 (t 30 7.63,1.22 Hz, 2 H, H-2',7'); 7.41 (td, J = 7.63, 1.22 Hz, 2 H, H-3',6'); 7.48 (dd, J = 8.24, 1.83 Hz, 2 H, H-3,6); 7.67 (d, J = 8.24; 2 H; H-4,5); 7.85 (d, J = 7.63, 2 H, H-4',5'). m) Synthese von 2,7-Dicarbethoxy-9,9'-spirobifluoren
 - Das Grignardreagenz bereitet aus 0.97 g (40 mmol) Magnesiumspänen und 9.32 g (6.8 ml, 40 mmol) 2-Brombiphenyl in 50 ml trockenem Diethylether wird im Verlauf von 2 h zu einer siedenden Lösung von 13 g (40 mmol) 2,7-Dicarbethoxy-9-fluorenon in 100 ml trockenem Diethylether getropft. Nach beendeter Zugabe wird 3 Stunden weiter gekocht. Nach Abkühlung über Nacht wird der ausgefallene Niederschlag abgesaugt und mit kaltem Ether gewaschen. Der abgesaugte Magnesiumkomplex wird in einer Lösung von 15 g Ammoniumchlorid in 250 ml Eiswasser hydrolisiert. Nach 1 h wird das gebildete 9-(2-Biphenylyl)-2,7-dicarbethoxy-9-fluorenol abgesaugt, mit Wasser gewaschen und trockengesaugt. Das getrocknete Fluorenol wird für die Ringschlußreaktion in 100 ml Eisessig, nach Zugabe von 3 Tropfen HCl conc. 6 Stunden gekocht. Man lässt über Nacht kristallisieren, saugt das gebildete Produkt ab und wäscht mit Eisessig und Wasser.

Ausbeute: 15.1 g (82%) 2,7-Dicarbethoxy-9,9'-spirobifluoren. Zur weiteren Reinigung kann aus Ethanol

umkristallisiert werden.

= 7.63 Hz, 2 H, H-1,8'); 7.11 (td, J = 7.48,1.22 Hz, 2H, H-2', 7'); 7.40 (td, J = 7.48, 1.22 Hz, 4H, H-1, 8, 3', 6'); 7.89 (dt, J = 7.63, 0.92 Hz, 2 H), H-4', 5'); 7.94 (dd, J = 7.93, 0.6 Hz, 2 H), H-4, 5); 8.12 (dd, J = 7.93, 1.53 Hz, 2 H), H-4, 5); 8.12 (dd, J = 7.93H-3, 6).

n) Synthese von 2,7-Dibromo, 2',7'-dijodo-9,9'-spirobifluoren In einem 250 ml Dreihalskolben mit Rückflußkühler und Tropftrichter wird bei 80°C eine Suspension von 2.37 g 2,7-Dibrom-9,9'-spirobifluoren in 50 ml Eisessig mit 5 ml Wasser versetzt und nach Zugabe von 2 ml konz. Schwefelsäure, 1.27 g Jod, 0.53 g Jodsäure sowie 5 ml Tetrachlorkohlenstoff bis zum Verschwinden der Jodfarbe gerührt. Anschließend wird abgesaugt und gut mit Wasser gewaschen. Nach dem Trocknen wird der Niederschlag in 150 ml Dichlormethan gelöst, und nacheinander mit Na₂SO₃-Lösung, NaH-CO3-Lösung und mit Wasser gewaschen. Die Dichlormethanphase wird über Na2SO4 getrocknet und anschließend eingeengt. Man erhält farblose Kristalle von 2,7-Dibromo, 2',7'-dijodo-9,9'spirobifluoren in quantitativer Ausbeute. Zur weiteren Reinigung kann aus Dichlormethan/Pentan umkristallisiert werden.

'H-NMR (CHCl3, ppm): $6.80 (d, J = 1..83 \text{ Hz}, 2 \text{ H}), 6.99 (d, J = 1.53 \text{ Hz}, 2 \text{ H}), 7.51 (dd, J = 8.24, 1.83 \text{ Hz}, 2 \text{ H}), 7.54 (d, J = 7.93 \text{$ 7.65 (d, J = 8.24 Hz, 2 H), 7.72 (dd, J = 8.24, 1.53 Hz, 2 H).

B. Synthesebeispiele

Beispiel 1

2,2'-Bis(benzofuran-2-yl)-9,9'-spirobifluoren (analog zu W.Sahm, E.Schinzel, P.Jürges, Liebigs Ann.Chem. (1974) 523)

44 46 818 A1

2,7 g (22 mmol) Salicylaldehyd und 5,0 g (10 mmol) 2,2'-Bis(brommethyl)-9,9'-spirobifluoren werden bei Raumtemperatur in 15 ml DMF gelöst und mit 0,9 g (22,5 mmol) pulverisiertem NaOH sowie einer Spatelspitze KJ versetzt. Man erhitzt zum Sieden und rührt 1 h bei Siedetemperatur. Nach Abkühlung versetzt man die Reaktionslösung mit einem Gemisch aus 0,5 ml konz. Salzsäure, 7 ml Wasser und 7 ml Methanol. Man rührt noch 1 h bei Raumtemperatur, saugt die kristallinen Reaktionsprodukte ab, wäscht zunächst mit kaltem Methanol, dann mit Wasser und trocknet im Vakuum bei 60°C. Man erhält 4,6 g (79%) des Bisbenzylphenylethers.

5.85 g (10 mmol) des Bisbenzylphenylethers werden in 10 ml Toluol mit 2,1 g (22,5 mmol) frisch destilliertem Anilin versetzt. Man gibt eine Spatelspitze p-Toluolsulfonsäure zu und erhitzt am Wasserabscheider so lange zum Sieden, bis sich kein Wasser mehr abtrennt (ca. 3 bis 5 h). Beim Abkühlen des Reaktionsansatzes fällt das korrespondierende bis-Benzylidenphenylamin kristallin aus. Es wird abgesaugt, mit Methanol gewaschen und im 10 Vakuum bei 60°C getrocknet. Zur weiteren Reinigung kann aus DMF umkristallisiert werden. 7,35 g (10 mmol) des bis-Benzylidenphenylamins und 0,62 g (11 mmol) KOH werden unter Stickstoff in 30 ml DMF eingetragen. Anschließend erhitzt man unter Rühren 4 h auf 100°C. Nach Abkühlung auf Raumtemperatur wird der Niederschlag abgesaugt und mit wenig DMF und Wasser gewaschen. Nach Trocknen bei 60°C im Vakuumtrockenschrank kann das 2,2'-Bis(benzofuran-2-yl)-9,9'-spirobifluoren durch Umkristallisation aus Benzoesäuremethyle- 15 ster gereinigt werden.

Beispiel 2

2,2',7,7'-Tetra(benzofuran-2-yl)-9,9'-spirobifluoren

20

25

35

45

65

kann bei entsprechend veränderter Stöchiometrie analog zu Beispiel 1 hergestellt werden.

Beispiel 3

2,2',7,7'-Tetraphenyl-9,9'-spirobifluoren

5 g (7,9 mmol) 2,2',7,7'-Tetrabrom-9,9'-spirobifluoren, 3,86 g (31,6 mmol) Phenylboronsäure, 331 5 mg (1,264 mmol) Triphenylphosphin und 70,9 mg (0,316 mmol) Palladiumacetat werden in einer Mischung aus 65 ml Toluol und 40 ml wäßriger Natriumcarbonatlösung (2 M) aufgeschlämmt. Unter starkem Rühren wird die 30 Mischung 24 h am Rückfluß gekocht. Nach Abkühlung auf Raumtemperatur wird abgesaugt, mit Wasser gewaschen und bei 50°C im Vakuum getrocknet. Man erhält 2,58 g. Das Filtrat wird mit 50 ml Toluol extrahiert und die getrocknete organische Phase zur Trockene eingeengt. Man erhält weitere 1,67 g. Gesamtausbeute 4,25 g (86%).

Beispiel 4

2,2',7,7'-Tetrakis-(biphenyl)-9,9'-spirobifluoren

5 g (7,9 mmol) 2,2',7,7'-Tetrabromspirobifluoren, 6,57 g (33,2 mmol) Biphenylboronsäure, 331,5 mg 40 (1,264 mmol) Triphenylphosphin und 70,9 mg (0,316 mmol) Palladiumacetat werden in einer Mischung aus 65 ml Toluol und 40 ml wäßriger Natriumcarbonatlösung (2 M) aufgeschlämmt. Unter starkem Rühren wird die Mischung 24 h am Rückfluß gekocht. Nach Abkühlung auf Raumtemperatur wird abgesaugt mit Wasser gewaschen und bei 50°C im Vakuum getrocknet. Ausbeute 5,95 g (81%).

Beispiel 5

Synthese von 2,2',7,7'-Tetrabiphenylyl-9,9-spirobifluoren

In einem 250 ml Zweihalskolben mit Rückflußkühler und KPG-Rührer werden 5,5 g Tetrabromspirobifluoren, 7.2 g Biphenylboronsäure und 400 mg Tetrakis(triphenylphosphin)palladium, in einer Mischung aus 100 ml Toluol und 50 ml Kaliumcarbonatlösung aufgeschlämmt. Unter Rühren mit einem KPG-Rührer und Schutzgasüberlagerung wird die Mischung 8 h am Rückfluß gekocht. Nach Abkühlung wird das Produkt abgesaugt, der Niederschlag mit Wasser gewaschen und getrocknet. Im Filtrat wird die Toluol-Phase abgetrennt und die wäßrige Phase einmal mit Chloroform ausgeschüttelt. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und einrotiert, man erhält so eine zweite Fraktion des Produktes. Die beiden Produktfraktionen werden vereinigt (8g) und in Chlorofrom gelöst. Die Chloroformlösung wird mit Aktivkohle aufgekocht und über eine kurze Säule mit Kieselgel filtriert. Nach dem Einrotieren und Umkristallisation aus Chloroform/ Pentan erhält man farblose, unter UV-Beleuchtung blau fluoreszierende Kristalle. Schmelzpunkt 408°C (DSC). ¹H-NMR (CDCl₃, ppm): 7.14 (d₁ J = 1,53 Hz, 4 H); 7.75 (dd, J = 7.93, 1.53 Hz, 4 H); 8.01 (d, J = 7.93 Hz, 4 H); 7.34 (dd, J = 7.32, 1.37 Hz, 4 H); 7.42 (t, J = 7.32 Hz, 8 H); 7.58 (24 H).

Beispiel 6

Synthese von 2,2',4,4',7,7'-Hexabiphenylyl-9,9-spirobifluoren

In einem 250 ml Zweihalskolben mit Rückflußkühler, KPG-Rührer werden 1.6 g Hexabromspirobifluoren und

3 g Biphenylboronsäure in einer Mischung aus 50 ml Toluol und 50 ml 1 M Kaliumcarbonatlösung aufgeschlämmt. Die Mischung wird unter Stickstoff am Rückfluß gekocht und 115 mg Tetrakis(triphenylphosphin)palladium in 5 ml Toluol zugegeben. Die Mischung wird unter Rühren 7 h am Rückfluß gekocht. Nach Beendigung der Reaktion wird die abgekühlte Lösung abfiltriert und das Filtrat 2× mit Wasser ausgeschüttelt (zur besseren Phasentrennung wird Chloroform zugesetzt. Die Organische Phase wird über Natriumsulfat getrocknet, über eine kurze Säule mit Kieselgel filtriert und anschließend einrotiert. Zur weiteren Reinigung wird aus Dichlormethan/Pentan umkristallisiert. Man erhält 2 g (80%) farblose, unter UV-Beleuchtung blau fluoreszierende Kristalle.

¹³C-NMR [360 MHz.; ATP, breitbandentkoppelt] (CDCl₃, ppm): 65.94 (1C, Spiro-C); 126.95 (6C, CH), 126.97 (6C, CH), 127.17 (6C, CH), 127.35 (6C, CH), 127.36 (6C, CH), 127.39 (6C, CH), 127.52 (6C, CH), 128.73 (6C, CH), 128.75 (6C, CH), 128.94 (6C, CH), 129.90 (4 C, CH), 137.77 (2 C), 137.86 (2 C), 139.43 (2 C), 139.69 (2 C), 139.89 (2 C), 140.09 (2 C), 140.17 (2 C), 140.22 (2 C), 140.30 (2 C), 140.63 (2 C), 140.64 (2 C), 140.68 (2 C), 140.72 (2 C), 140.74 (2 C), 150.45 (2C), 150.92 (2C).

Beispiel 7

15

20

60

65

Synthese von 2,2'-Bis[(5(p-t-butylphenyl)-1,3,4-oxadiazol-2yl]-9,9,-spirobifluoren aus 9,9'-Spirobifluoren-2,2'-dicarbonsäurechlorid und 5(4-t-Butylphenyl)tetrazol

a) Synthese von 5(4-t-Butylphenyl)tetrazol

In einem 250 ml Rundkolben mit Rückflußkühler werden 4.9 g p-t-Butylbenzonitril, 3.82 g Lithiumchlorid und 5.85 g Natriumazid und 8.2 g Triethylammoniumbromid in 100 ml DMF für 8 h auf 120°C erhitzt. Nach Abkühlung auf Raumtemperatur wird 100 ml Wasser zugesetzt und im Eisbad mit verd. Salzsäure versetzt, bis kein weiterer Niederschlag mehr fällt. Es wird abgesaugt, der Niederschlag mit Wasser gewaschen und getrocknet. Umkristallisation aus Ethanol/Wasser liefert 4.4 g farblose Kristalle.

b) 9,9'-Spirobifluoren-2,2'-dicarbonsäurechlorid

In einem 100 ml Kolben mit Rückflußkühler und Trockenrohr werden 2 g (5 mmol) 9,9'-Spirobifluoren-2,2'-dicarbonsäure mit 20 ml (frisch destilliertem Thionylchlorid) und 3 Tropfen DMF, 4 h am Rückfluß gekocht. Nach Abkühlung wird der Rückflußkühler gegen eine Destillationsbrücke ausgetauscht und überschüssiges Thionylchlorid wird im Vakuum abdestilliert, dem Rückstand werden 40 ml Petrolether (30° –60°C) zugesetzt und abdestilliert, zurück bleibt das kristalline Säurechlorid.

c) 2,2'-Bis[(5(p-t-butylphenyl)-1,3,4-oxadiazol-2yl]-9,9,-spirobifluoren

Dem Säurechlorid werden 2.0 g (11 mmol) 5(4-t-Butylphenyl)tetrazol gelöst in 20 ml wasserfreiem Pyridin zugesetzt und unter Schutzgas 2 h zum Rückfluß erhitzt. Nach Abkühlung wir die Mischung in 200 ml Wasser gegeben und 2 h stehen gelassen. Das ausgefallene Oxadiazolderivat wird abgesaugt, mit Wasser gewaschen und im Vakuum getrocknet. Anschließend wird über Kieselgel mit Chloroform/Essigester (99:1) chromatographiert und aus Chloroform/Pentan umkristallisiert. Man erhält 2.4 g farblose Kristalle.

¹H-NMR (CDCl₃), ppm): 1.31 (s, 18 H, t-Butyl), 6.77 (d, J = 7.32 Hz, 2 H), 7.18 (td, J = 7.48, 1.22 Hz, 2 H), 7.44 (td, J = 7.40, 1.22 Hz, 2 H), 7.46 (d, J = 8.54 Hz, 4 H), 7.50 (d, J = 1.22 Hz, 2 H), 7.94 (d. J = 8.54 Hz, 4 H), 8.02 (d, J = 7.93 Hz, 6 H), 8.20 (dd, J = 7.93, 1.53 Hz, 2 H).

C. Anwendungsbeispiel

2,2',7,7'-Tetrakis-(biphenyl)-9,9'-spirobifluoren wird in Chloroform gelöst (30 mg/ml) und mittels spin-coating (1000 upm) auf einen mit Indium/Zinn-Oxid (ITO) beschichteten Glasträger aufgebracht, wobei ein homogener, transparenter Film gebildet wird. Auf diesen Film wird durch Vakuumbedampfung eine Elektrode aus Mg/Ag (80/20) aufgebracht. Beim Anlegen einer elektrischen Spannung zwischen der ITO-Elektrode und der Metallektrode, wobei die Metallelektrode negativ gegenüber der ITO-Elektrode gepolt ist, wird eine blaue Elektrolumineszenz beobachtet.

Patentansprüche

1. Verwendung von Spiroverbindungen der allgemeinen Formel (I),

wobei

K¹ und K² unabhängig voneinander konjugierte Systeme bedeuten, in Elektrolumineszenzvorrichtungen.

2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß ein Spirobifluoren der allgemeinen Formel (II) eingesetzt wird,

wobei die Benzogruppen unabhängig voneinander substituiert und/oder anelliert sein können. 3. Verwendung nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß ein Spirobifluorenderivat der Formel (III) eingesetzt wird,

wobei die Symbole und Indizes folgende Bedeutungen haben: K, L, M, N sind gleich oder verschieden

5

10

15

20

25

30

35

40

45

50

55

65

R kann, gleich oder verschieden, die gleichen Bedeutungen wie K, L, M, N haben oder ist —H, eine lineare oder verzweigte Alkyl, Alkoxy oder Estergruppe mit 1 bis 22 C-Atomen, —CN, —NO₂, —NR²R³, —Ar oder —O—Ar;

Ar ist Phenyl, Biphenyl, 1-Naphthyl, 2-Naphthyl, 2-Thienyl, 2-Furanyl, wobei jede dieser Gruppen einen oder zwei Reste R tragen kann,

m, n, p sind 0, 1, 2 oder 3;

X, Y sind gleich oder verschieden CR, N;

 $Z ist -O-, -S-, -NR^1-, -CR^1R^4-, -CH=CH-, -CH=N-;$

R¹, R⁴ können, gleich oder verschieden, die gleichen Bedeutungen wie R haben

R², R³ sind gleich oder verschieden H, eine lineare oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen, —Ar, 3-Methylphenyl.

4. Verwendung nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß ein Spirobifluorenderivat der Formel (IIIa) bis (IIIg) eingesetzt wird,

IIIa) K = L = M = N und ist aus der Gruppe:

 $R = C_1 - C_{22} - Alkyl, C_2 H_4 SO_3 -$

IIIb) K = M = H und N = L und ist aus der Gruppe:

und N = L und ist aus der Gruppe:

IIId) K = M und ist aus der Gruppe:

und N = L und ist aus der Gruppe:

60

65

$$R = Alkyl, C_2H_4SO_3^{-1}$$

IIIe) K = L = H und M = N und ist aus der Gruppe:

und M = N und ist aus der Gruppe:

65

25 IIIg) K = L und ist aus der Gruppe:

und M = N und ist aus der Gruppe:

$$R = Alkyl, C_2H_4SO_3$$

5. Spiroverbindung der Formel (V),

65

wobei die Symbole folgende Bedeutungen haben: A, B, K, L, M, N sind gleich oder verschieden

R1 Z m

15

25

30

40

50

und A, B können auch gleich oder verschieden eine lineare oder verzweigte Alkyl-, Alkyloxy- oder Estergruppe mit 1 bis 22 C-Atomen, -CN, -NO₂, -Ar oder -O-Ar sein;

R ist -H, eine lineare oder verzweigte Alkyl, Alkoxy oder Estergruppe mit 1 bis 22 C-Atomen, -CN, 45 -NO₂, -NR²R³, -Ar oder -O-Ar;

Ar ist Phenyl, Biphenyl, 1-Naphthyl, 2-Naphthyl, 2-Thienyl, 2-Furanyl, wobei jede dieser Gruppen einen oder zwei Reste R tragen kann;

m, n, p sind 0, 1, 2 oder 3;

X, Y sind gleich oder verschieden CR, N;

Zist -O-, -S-, $-NR^1-$, $-CR^1R^4-$, -CH=CH-, -CH=N-;

R1, R4 können, gleich oder verschieden, die gleichen Bedeutungen wie R haben;

R², R³ sind gleich oder verschieden H, eine lineare oder verzweigte Alkylgruppe mit 1 bis 22 C-Atomen,

—Ar oder 3-Methylphenyl.

6. Verwendung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die 55 Spiroverbindung als lichtemittierende Schicht dient.

7. Verwendung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Spiroverbindung als Transportschicht dient.

8. Verwendung nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Spiroverbindung zur Ladungsinjektion dient.

9. Elektrolumineszenzvorrichtung, enthaltend eine aktive Schicht, die eine oder mehrere Verbindungen der Formel (I) bis (III) nach einem oder mehreren der Ansprüche 1 bis 4 enthält.

10. Elektrolumineszenzvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die aktive Schicht eine lichtemittierende Schicht ist.

11. Elektrolumineszenzvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die aktive Schicht eine 65 Transportschicht ist.

12. Elektrolumineszenzvorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die aktive Schicht eine Ladungsinjektionsschicht ist.

	DE 44 40 010 A1
	13. Organisches Elektrolumineszenzmaterial, dadurch gekennzeichnet, daß sich sein Emissionsmaximum im Bereich von 400 bis 750 nm, gemessen bei Raumtemperatur, um nicht mehr als 15%, relativ zum Ausgangszustand, vermindert, nachdem das Material, aufgetragen in einer Dicke von nicht mehr als 1 μm auf einem Quarzsubstrat, une einer inerten Atmosphäre bei einem Druck von nicht mehr als 1 mbar für 30 min auf
5	 250°C erhitzt wurde. 14. Organisches Elektrolumineszenzmaterial nach Anspruch 13, dadurch gekennzeichnet, daß das Emissionsmaximum um nicht mehr als 10%, relativ zum Ausgangszustand, vermindert wird. 15. Organisches Elektrolumineszenzmaterial nach Anspruch 13 und/oder 14, dadurch gekennzeichnet, daß
10	das Emissionsmaximum um nicht mehr als 5%, relativ zum Ausgangszustand, vermindert wird. 16. Organisches Elektrolumineszenzmaterial nach einem oder mehreren der Ansprüche 13 bis 1 5, dadurch gekennzeichnet, daß das Emissionsmaximum, relativ zum Ausgangszustand, nicht vermindert wird. 17. Organisches Elektrolumineszenzmaterial nach einem oder mehreren der Ansprüche 13 bis 16, dadurch
15	gekennzeichnet, daß das Emissionsmaximum, relativ zum Ausgangszustand zunimmt. 18. Elektrolumineszenzvorrichtung, enthaltend eine aktive Schicht, die ein Elektrolumineszenzmaterial nach einem oder mehreren der Ansprüche 13 bis 17 enthält. 19. Elektrolumineszenzvorrichtung nach Ansprüch 18, dadurch gekennzeichnet, daß die aktive Schicht eine lichtemittierende Schicht ist. 20. Elektrolumineszenzvorrichtung nach Ansprüch 18, dadurch gekennzeichnet, daß die aktive Schicht eine
20	Transportschicht ist. 21. Elektrolumineszenzvorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß die aktive Schicht eine Ladungsinjektionsschicht ist.
25	
30	
35	
40	
45	

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

8	
☐ BLACK BORDERS	
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES	
FADED TEXT OR DRAWING	
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING	
☐ SKEWED/SLANTED IMAGES	
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
☐ GRAY SCALE DOCUMENTS	
ZI LINES OR MARKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
□ other:	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPIG)