Answering Complex Questions by Joining Multi-Document Evidence with Quasi Knowledge Graphs

XiaoluLu, Soumajit Pramanik, Rishiraj Saha Roy, Abdalghani Abujabal, Yafang Wang, Gerhard Weikum

Outline

- Abstract
- Introduction
- System overview
- Graph construction
- Graph Algorithm
- Evaluation setup
- Main results and insights
- Analysis and discussion
- Related work
- Conclusion

Abstract

• QA

- Answering questions which involve multiple entities and relations
- Curated KG
 - limited by its inherent incompleteness and potential staleness

QUEST

- Answering complex questions from textual sources on-the-fly
- Unsupervised
- Builds a noisy quasi KG to compute the answers by an algorithm for Group Steiner Trees(GST)

Introduction

- Motivation
 - Web search
 - Queries have the form of questions
 - Providing direct answers
 - Tapped into textual sources
 - Translating questions into KG/KB/DB
 - Challenge: complex questions that refer to multiple entities and multiple relations

Introduction

- State of the art and the limitation
 - QA over KGs
 - Question-to-query is weak and infeasible
 - Depends on KG's completeness and freshness
 - Queries is tied to language and style
 - Translation procedure is sensitive to choice KG/KB source
 - QA over textual
 - Match significant terms in the same document
 - Syntactic decomposition patterns break with ungrammatical constructs
 - Deep learning method rely on training data critically
 - Recent work consider a specific set of documents contain the answer

Introduction

- Approach and Contribution
 - First construct a KG by retrieving question-relevant text documents and running OpenIE to produce SPO, compute edges connect potentially synonymous names and phrases
 - Then matching nodes as cornerstones as terminal in GST, non-terminal nodes are candidate answers

System overview

- Don't consider the complex question like requiring grouping, comparison, and aggregation or involving negations
- Two phases:
 - On-the-fly construction of quasi KG
 - Graph algorithm for computing ranked answers

Graph construction

- Extracting SPO Triples
 - Devise own IE method
 - POS tagging and NER
 - Extra SPO triples

Graph construction

- Building the Quasi KG
 - Nodes
 - S,P,O
 - Types of S, O
 - Edges
 - S to P, P to O
 - Equal or high similarity
 - S or O to their types
 - Node weights: similarity score (compute by word2vec/GloVE/BERT)
 - Edge weights:
 - Triple edges: confidence score
 - Alignment edges: similarity
 - Type edges: 1.0

Graph algorithm

- Computing Group Steiner trees
 - Cornerstones
 - Every node matching a word or phrase with high similarity
 - Group Steiner Trees
 - key idea: candidate nodes should be tightly connected to many cornerstones
 - Algorithm
 - NP-complete problems
 - Relaxation to GST-k

Graph algorithm

- Filtering and Ranking Answers
 - Remove all candidates that are not entities (relation and type nodes)
 - Drop candidates do not have types with similarity above a threshold
- Answer aggregation
 - two answers are merged if
 - one is a subsequence
 - there is an alignment edge between them

Evaluation setup

- Rationale for experiments
 - Compiled a new benchmark of complex questions
 - Focus on unsupervised and distantly supervised methods
- Question benchmarks
 - Complex questions from WikiAnswers (CQ-W)
 - Complex questions from Trends (CQ-T)
- Text corpora and quasi KGs
 - Similarities and thresholds
 - Graph-based algorithms
 - Metrics: Mean Reciprocal Rank (MRR)/Precision@1/Hit@5

Main results and insights

Dataset		#Nodes		#Edges				
	Entity	Relation	Type	Triple	Alignment	Type		
cq-w	501	466	28	1.2k	5.2k	434		
CQ-T	472	375	23	1k	13.2k	436		

Table 1: Basic properties of quasi KGs, averaged over all questions.

Method	Metric	ComplexQuestions from WikiAnswers (CQ-W)					ComplexQuestions from Trends (CQ-T)						
		Тор	Strata-1	Strata-2	Strata-3	Strata-4	Strata-5	Тор	Strata-1	Strata-2	Strata-3	Strata-4	Strata-5
QUEST	MRR	0.355*	0.380*	0.340*	0.302*	0.356*	0.318*	0.467*	0.436*	0.426*	0.460*	0.409*	0.384*
DrQA [12]		0.226	0.237	0.257	0.256	0.215	0.248	0.355	0.330	0.356	0.369	0.365	0.380
BFS [38]		0.249	0.256	0.266	0.212	0.219	0.254	0.287	0.256	0.265	0.259	0.219	0.201
ShortestPaths		0.240	0.261	0.249	0.237	0.259	0.270	0.266	0.224	0.248	0.219	0.232	0.222
QUEST	P@1	0.268*	0.315	0.262	0.216	0.258*	0.216	0.394*	0.360*	0.347*	0.377*	0.333*	0.288
DrQA [12]		0.184	0.199	0.221	0.215	0.172	0.200	0.286	0.267	0.287	0.300	0.287	0.320
BFS [38]		0.160	0.167	0.193	0.113	0.100	0.147	0.210	0.170	0.180	0.180	0.140	0.130
ShortestPaths		0.147	0.173	0.193	0.140	0.147	0.187	0.190	0.140	0.160	0.160	0.150	0.130
QUEST	Hit@5	0.376	0.396	0.356	0.344	0.401	0.358	0.531	0.496*	0.510	0.500	0.503	0.459
DrQA [12]		0.313	0.315	0.322	0.322	0.303	0.340	0.453	0.440	0.473	0.487	0.480	0.480
BFS [38]		0.360	0.353	0.347	0.327	0.327	0.360	0.380	0.360	0.370	0.360	0.310	0.320
ShortestPaths		0.347	0.367	0.387	0.327	0.393	0.340	0.350	0.320	0.340	0.310	0.330	0.290

Table 2: Performance comparison of methods on top-10 and stratified search results from the Web. For every metric, the best value per column is in **bold**. "*" denotes statistical significance of QUEST over DrQA, with p-value ≤ 0.05 for a one-tailed paired t-test.

Main results and insights

Benchmark	cQ-	·w	CQ-T			
GST Ranks	4.7	#Q's with A in GST	Avg. #Docs in GST	1792		
01 - 10	2.637	48	3.139	52		
11 - 20	2.789	56	3.156	53		
21 - 30	2.778	54	3.245	55		
31 - 40	2.833	54	3.267	54		
41 - 50	2.882	57	3.278	51		
#Docs in GST	Avg. Rank of GST	#Q's with A in GST	Avg, Rank of GST	#Q's with A in GST		
1	24.525	12	22.124	7		
2	27.003	37	24.216	23		
3	25.777	53	27.165	50		
4	27.064	36	27.069	49		
5	29.291	25	26.554	29		

Table 3: Effect of multi-document evidence shown via edge contributions by distinct documents to GSTs (on top-10 corpora).

Main results and insights

Figure 2: Robustness of QUEST to various system configuration parameters, on CQ-W with top-10 corpora (similar trends on CQ-T).

Analysis and discussion

- Graph ablation experiments
 - Type nodes and edges are essential
 - informative edge weights and alignment levels
 - Alignment edges
- Answer ranking variants
 - Weighted (with reciprocal of tree cost) sum

Graph configuration	CQ-W	CQ-T	T Answer ranking criterion		CQ-T	Error scenario	cq-w	CQ-T
Full configuration	0.355	0.467	Wted. sum of GSTs (inv. tree cost sum)	0.355	0.467	Ans. not in corpus	1%	7%
No types	0.321	0.384*	Wted. sum of GSTs (node wt. sum)	0.318*	0.426*	Ans. in corpus but not in quasi KG	23%	30%
Degenerate edge weights	0.282*	0.377*	Count of GSTs	0.334	0.432*	Ans. in quasi KG but not in top-50 GSTs	10%	6%
No entity alignment	0.329*	0.413*	Wted. dist. to cornerstones	0.321*	0.417*	Ans. in top-50 GSTs but not in candidates	1%	7%
No predicate alignment	0.337	0.403*	Unwted. dist. to cornerstones	0.257*	0.372*	Ans. in candidates but not in top-5	66%	49%

Table 5: Understanding QUEST's mechanism with top-10 corpora. Left: Graph ablation (MRR); Middle: Answer ranking (MRR); Right: Error analysis (Hit@5 = 0). Highest column values in the first two sections in bold. Significant drops from these values are shown with *.

Analysis and discussion

- Error analysis
- Effect of OpenIE
- Answering simple questions
- Effect of threshold variations
 - Number of GSTs k, the alignment edge insertion threshold on nodenode similarity, and cornerstone selection thresholds on node weight
- Run-time

Related work

- QA over text
- QA over KGs
- QA over hybrid sources
- Reading comprehension

Conclusion

 Presented QUEST, an unsupervised method for QA over dynamically retrieved text corpora based on Group Steiner Trees.