NYU WIRELESS

Deep Convolutional Dictionary Learning

Nikola Janjušević[†], Amir Khalilian[†], Yao Wang[†]

[†]New York University, Tandon School of Engineering

TANDON SCHOOL OF ENGINEERING

V. EXPERIMENTAL RESULTS

I. Introduction

- o Find optimal and data-driven basis for sparse representation
- o Convolutional structured dictionary

Convolutional Dictionary Learning:

$$\min_{z,d_j} \frac{1}{2} \| \sum_j d_j \star z_j - y \|_2^2 + \lambda \|z\|_1, \quad \forall y \in \mathcal{D}$$

- o Solution via iterating between:
 - Sparse Coding
 - Dictionary Update

- $d_i \to \text{dictionary atom}$
- $z_i \to \text{sparse code}$
- $y \rightarrow \text{noisy image}$

o Slow!

- Sparse Code every signal in dataset
- Dictionary changes every step

Use learnt convolutional sparse coding + dictionary learning to speed-up!

II. LEARNT SPARSE CODING

ISTA and LISTA

o Each step involves soft-thresholding the residual:

$$z^{k+1} = \mathcal{S}_{\lambda} \left(z^k - W_d \left(W_r z^k - y \right) \right)$$

o Use deep learning to to accelerate sparse-coding:

ISTA and LISTA Block Diagram

III. DEEP CONVOLUTIONAL DICTIONARY LEARNING

LISTA + CDL

o Learnt sparse coding and dictionary learning trained end-to-end

IV. DEEP CONVOLUTIONAL DICTIONARY LEARNING WITH FILTER CONSTRAINTS

- o More constraints on dictionary elements removes redundancy
- Only one fixed low-pass channel
- Other channels constrained to sum to 0 (not low-pass)
- Norm constraint on dictionary to remove scale ambiguity

FCDCDL Block Diagram

- o Update the filters (except for the fixed low-pass channel) and the LISTA parameters by gradient back-propagation.
- o Enforce the filter constraint by projection onto constraint set.

$$\min_{z,d_j} \frac{1}{2} \| \sum_{i} d_j \star z_j - y \|_2^2 + \lambda \|z\|_1$$

subject to: $d_i^T 1 = 0$ and $||d_j||_2^2 \le 1$, $\forall j$ not low-pass

Fixing a low-pass channel removes redundancy and allows for multi-resolution processing.

FCDCDL vs. DCDL

- o Improved the sparsity of the codes
- o Less redundant and more directional filters

FCDCDL Sparse Codes

DCDL Sparse Codes

FCDCDL Learnt Filters

DCDL Learnt Filters

VI. CONCLUSION

- o Considered end-to-end training of the sparse coding and convolutional dictionary representation.
- o Improved the result by constraining the dictionary elements to have one fixed low-pass filter and remaining filters are high pass and have less than unit norm.
- o Multi-layer and multi-resolution extensions of the proposed framework will be considered in future work.