# **EtherScan**

| EtherScan                                                   | 1 |
|-------------------------------------------------------------|---|
| Obiettivo del Progetto                                      | 1 |
| Analisi del Dataset                                         | 2 |
| Sbilanciamento dei Dati                                     | 2 |
| Gestione dei Valori Nulli                                   | 3 |
| Outlier e Normalizzazione                                   | 3 |
| Feature Engineering                                         | 4 |
| Selezione delle Feature                                     | 4 |
| Rimozione di Colonne per Evitare Overfitting (Data Leakage) | 4 |
| Creazione di Nuove Feature                                  |   |
| Sviluppo del Modello                                        | 6 |
| Motivi della Scelta                                         | 6 |
| Risultati Iniziali                                          | 6 |
| Ottimizzazione della Soglia                                 | 6 |
| Conclusioni                                                 | 7 |

### **Obiettivo del Progetto**

Il presente progetto mira a rilevare possibili operazioni fraudolente sulla blockchain di Ethereum, partendo dall'analisi dei movimenti di un singolo account. L'obiettivo è individuare schemi anomali o comportamenti sospetti che possano indicare attività illecite.

L'esigenza di identificare transazioni sospette nasce dalla crescente diffusione delle criptovalute e dall'aumento di fenomeni come il riciclaggio di denaro e le truffe finanziarie. Per affrontare questo problema, è stato sviluppato un modello di Machine Learning in grado di analizzare i dati delle transazioni e distinguere tra operazioni legittime e potenzialmente fraudolente.

Nelle sezioni successive vengono illustrate le varie fasi di sviluppo del progetto: dalla raccolta e preprocessamento dei dati fino alla valutazione del modello, con una particolare attenzione alla precision e all'affidabilità delle previsioni.

### Analisi del Dataset

Il dataset utilizzato per questo studio è stato reperito su Kaggle al seguente link: <u>Ethereum</u> Fraud Detection Dataset.

- Composizione: È composto da 50 parametri per ogni riga e include già le etichette che indicano le transazioni fraudolente.
- Finalità: Costituisce un'ottima base per l'addestramento di un modello di classificazione e fornisce una ricca varietà di informazioni.

#### Sbilanciamento dei Dati

Il dataset risulta sbilanciato, con 7662 transazioni classificate come non fraudolente (Flag = False) e 2179 transazioni classificate come fraudolente (Flag = True). Per gestire questo problema, è stato adottato un approccio a livello algoritmico basato sulla modifica dei pesi delle classi, aumentando quello della classe meno rappresentata. In questo modo, il modello tende ad apprendere in modo più equilibrato, senza trascurare i casi di frode.



### Gestione dei Valori Nulli

Un aspetto critico riguarda la presenza di valori nulli, localizzati esclusivamente nelle transazioni prive di operazioni ERC20. Dopo un'analisi approfondita, si è stabilito che tali valori mancanti non corrispondono a veri e propri errori, ma riflettono l'assenza di interazioni ERC20. Pertanto, sono stati sostituiti con 0, interpretando correttamente la mancanza di movimenti di questo tipo.



#### **Outlier e Normalizzazione**

Durante l'analisi esplorativa, sono stati individuati numerosi outlier: valori che si discostano in modo significativo dal resto dei dati, talvolta presenti una sola volta. Questi outlier possono causare overfitting, poiché il modello rischia di adattarsi a caratteristiche troppo specifiche.

Per attenuare tale rischio e migliorare la convergenza degli algoritmi, è stata effettuata una scalatura e normalizzazione dei dati tramite la funzione StandardScaler di sklearn. Questa procedura riduce l'effetto dei valori estremi e semplifica il processo di apprendimento.

3

# **Feature Engineering**

In questa fase, ci si concentra sull'identificazione, la rimozione o la creazione di feature (variabili) che possano influenzare positivamente la capacità del modello di rilevare attività fraudolente.

### Selezione delle Feature

 Ridondanza: Alcune feature con correlazione superiore al 90% sono state rimosse, poiché introducevano eccessiva ridondanza e aumentavano il rumore, senza fornire informazioni nuove.



## Rimozione di Colonne per Evitare Overfitting (Data Leakage)

- Colonne eliminate: ERC20\_most\_sent\_token\_type\_encoded e ERC20\_most\_rec\_token\_type\_encoded.
- Motivazione: Durante una fase di test iniziale, l'inclusione di tali colonne ha portato a
  risultati insolitamente elevati (F1 score prossimo al 99%), rivelandosi un chiaro caso
  di overfitting. Il modello apprendeva la relazione diretta tra un token specifico e la
  frode, compromettendo la capacità di generalizzare a nuovi token. Pertanto, si è
  preferito rimuoverle.



### Creazione di Nuove Feature

Per arricchire il dataset con variabili più informative, sono state introdotte nuove feature:

- Rapporto tra indirizzi unici e transazioni inviate: Indica la diversificazione degli indirizzi di destinazione rispetto al numero di transazioni totali inviate.
- Rapporto tra indirizzi unici e transazioni ricevute: Rappresenta la varietà degli indirizzi di provenienza, misurando il livello di dispersione delle fonti.

L'obiettivo di queste trasformazioni è ridurre la probabilità di overfitting e migliorare la robustezza del modello, fornendo informazioni più specifiche sul comportamento delle transazioni.



Tramite un'analisi dei grafici, possiamo notare come in realtà queste feature non danno i risultati sperati in quanto non aggiungono informazioni abbastanza rilevanti da permettere al modello di migliorare, per questo motivo sono state successivamente rimosse.

# Sviluppo del Modello

La scelta è ricaduta su un Random Forest, un modello di ensemble capace di combinare i risultati di molti alberi decisionali. Questa strategia riduce il rischio di overfitting legato all'utilizzo di un singolo albero e migliora sensibilmente le prestazioni.

#### Motivi della Scelta

- **Semplicità di Utilizzo:** Rispetto ad altre tecniche, le Random Forest risultano intuitive e veloci da addestrare.
- Buone Prestazioni: Le performance ottenute con un singolo albero decisionale erano già discrete, ma l'adozione di un ensemble ha incrementato ulteriormente la precisione.

### Risultati Iniziali

Nella configurazione iniziale, la Random Forest ha raggiunto circa il 97% di precision e l'83% di recall, riuscendo a discriminare efficacemente le transazioni fraudolente da quelle legittime.

### Ottimizzazione della Soglia

Per massimizzare la recall, è stata abbassata la soglia di probabilità oltre la quale una transazione viene considerata fraudolenta. In particolare, impostando la soglia intorno al 30%, si è ottenuto un compromesso che ha portato a:

Precision: 91%Recall: 89%

Riducendo la soglia, il modello aumenta la capacità di riconoscere transazioni sospette (riducendo i falsi negativi), a costo di una maggiore probabilità di generare falsi positivi. Tuttavia, in un settore come quello delle frodi, è preferibile segnalare qualche falso allarme piuttosto che rischiare di non intercettare attività illecite.

### Conclusioni

Le analisi e gli esperimenti condotti dimostrano l'efficacia dell'approccio scelto nell'individuazione di operazioni fraudolente sulla blockchain di Ethereum. La combinazione di:

- 1. Accurate Operazioni di Preprocessing (gestione valori nulli, normalizzazione e rimozione outlier)
- 2. Feature Engineering Mirata (riduzione della ridondanza)
- 3. Modello Random Forest con tecniche di ensemble e ottimizzazione della soglia

ha consentito di ottenere un buon equilibrio tra precision e recall, dimostrandosi solida anche in contesti dove la mancanza di dati bilanciati e l'elevata presenza di outlier rappresentano criticità significative. Nell'eventualità del deploy del modello, si potrebbero fare ulteriori analisi con stakeholder per valutare se migliorare la precision piuttosto che la recall.