## Vzorové riešenie 3. zadania

# SYNTÉZA SYNCHRÓNNYCH SEKVENČNÝCH OBVODOV

**Ciel':** Urobte syntézu synchrónneho sekvenčného obvodu s D-PO v pamäťovej časti, kombinačnú časť navrhnite s minimálnym počtom púzdier IO SSI.

Príklad: Navrhnite obvod pre porovnávanie dvoch binárnych čísel

 $A = (a_{n-1}, a_{n-2}, ... a_0), B = (b_{n-1}, b_{n-2}, ... b_0),$  ktoré prichádzajú na vstupy  $a_i$ ,  $b_i$  v sériovom kóde, počnúc najnižším rádom. Obvod má výstupy  $y_1, y_2, y_3$ .

$$y_1=1$$
 ak  $A > B$ ,  $y_2=1$  ak  $A = B$ ,  $y_3=1$  ak  $A < B$ .

Obvod sa nachádza v začiatočnom stave, do ktorého sa dostane vždy vonkajším zásahom ( nastavovacie vstupy preklápacích obvodov). Na výstupoch sa objavujú výsledky porovnania v každom takte, t.j. porovnávajú sa počiatočné úseky vstupných slov.

Vlastné riešenie overte programovými prostriedkami

ESPRESSO a LOG, LogiSim, FitBoard

#### Riešenie:



Správanie komparátora opíšeme automatom typu Moore v prechodovej tabuľke:

|      | Nový stav   |             |             |      | Y | Y | Y |
|------|-------------|-------------|-------------|------|---|---|---|
| stav | a=0,<br>b=0 | a=1,        | a=1,<br>b=1 | a=0, |   |   |   |
|      | b=0         | a=1,<br>b=0 | b=1         | b=1  |   |   |   |
| S0   | S0          | S1          | S0          | S2   | 0 | 1 | 0 |
| S1   | S1          | S1          | S1          | S2   | 1 | 0 | 0 |
| S2   | S2          | S1          | S2          | S2   | 0 | 0 | 1 |

Stavy nesú informáciu:

S0: 
$$A_i = B_i$$
  
S1:  $A_i > B_i$   
S2:  $A_i < B_i$ 

#### Prechodový graf typu Moore



#### Voľba vnútorného kódu:

Pri obvodoch s viacerými vstupnými premennými je vhodné si vytvárať Karnaughovu mapu (KM) najskôr do stĺpca, v ktorom sú zakódovné stavy. V ďalšej KM pridáme rovnaký počet stĺpcov ako v majú v prechodovej tabuľke. Týmto spôsobom vieme doplniť do KM celý riadok z prechodovej tabuľky bez nutnosti zložitejšieho hľadania pozícií. Samozrejme je to použiteľné len, keď je pomer vstupných premenných a stavových premenných rozumný.

Stavy zakódujeme pomocou dvoch stavových premenných (z<sub>1</sub>, z<sub>2</sub>).

$$\begin{array}{c|c}
z1 & 0 \\
\hline
1 \\
X \\
\hline
2
\end{array}$$

### Mapy budiacich funkcií:



Mapy výstupných funkcií:



Riešenie pre D-PO:

Výrazy pre budiace a výstupné funkcie:

MDNF:

$$D1 = a_{i}. \overline{b_{i}} + a_{i}. z_{1} + \overline{b_{i}}. z_{1}$$

$$D2 = \overline{a_{i}}. b_{i} + b_{i}. z_{2} + \overline{a_{i}}. z_{2}$$

$$y1 = z_{1}$$

$$y2 = \overline{z_{1}}. \overline{z_{2}}$$

$$y3 = z_{2}$$

Schéma logického obvodu s D-PO: