アルゴリズム論1

第 12 回: 計算量理論の基本概念

関川 浩

2016/07/06

第 12 回から第 14 回の目標

計算量理論の紹介

第12回: 計算量理論の基本概念

第 13 回: 計算量クラス, とくに NP について

NP 完全性について

第 14 回: NP 完全問題の例

- 多テープ Turing 機械の定義
 - k テープ TM (直観的な説明)
 - k テープ非決定性 TM
 - 様相
 - 動作
 - 受理
 - 1 テープ TM の動作例
- ② 多テープ Turing 機械と計算量
 - 計算量理論
 - 最小ステップ数
 - 時間限定
 - NTIME, DTIME
 - 正規言語受理の計算量
- ③ 計算量クラスの概観
 - 計算量クラス P と NP
 - 真偽問題

- ① 多テープ Turing 機械の定義
- ② 多テープ Turing 機械と計算量
- ③ 計算量クラスの概観

k テープ TM (直観的な説明) (1/4)

k テープ TM $(k \ge 1)$ は, 以下の部分からなる

- 読み取り専用の入力ヘッドを持った入力テープ
- 読み書きのできる作業用ヘッドを持った k 本の作業用テープ
- ヘッドの動きを制御する有限制御部

k テープ TM (直観的な説明) (2/4)

各部の詳細:

• 入力記号列 x は、両端をエンドマーカとよばれる特別の記号 ϕ と \$ ではさまれた入力テープ上に与えられる

入力テープ	¢	x	\$

作業用テープの左端のマス目には \$ が書かれている (左端のマス目は書き直しができない)

第	1 作業用テープ	\$	
			:
第	k 作業用テープ	\$	

M の有限制御部は有限種類の状態をとることができる (受理状態とよばれる特別の状態がいくつかある)

k テープ TM (直観的な説明) (3/4)

入力記号列 x が与えられたときの M の計算は以下の状況で開始:

- 入力ヘッドは x\$ の左端の記号上 ($x = \varepsilon$ の場合もある)
- 作業用テープの左端以外のマス目には空白記号が書かれて おり,作業用ヘッドは \$ の書かれている右隣のマス目
- *M* は初期状態とよばれる特別の状態にある

k テープ TM (直観的な説明) (4/4)

M の動作は

- 入力ヘッドが見ている記号
- 各作業ヘッドが見ている記号
- 有限制御部の状態

によって决まり,以下の三種類

- (1) 有限制御部の状態を変える
- (2) 各作業用ヘッドは、今見ているマス目に記号を書き込む
- (3) 入力ヘッド, 各作業用ヘッドは, それぞれ左または右へ 1 マス動くか, 今見ているマス目にとどまって動かない

入力ヘッドが右エンドマーカ \$ 上にあり、有限制御部が受理状態 のとき、M は x を受理する、という

入力テープ

定義 1

Σ: アルファベット

 ϕ , \$ $\neq \Sigma$: エンドマーカとよばれる特別な記号

このとき, $x \in \Sigma^*$ を入力とする入力テープを, 組

$$(h, \not\in x\$) \qquad (0 \le h \le |x| + 1)$$

で定義

h: 入力ヘッドが見ている入力テープのマス目の番号 (0 番目のマス目には ϕ)

定義 2

 Γ : アルファベット $\Gamma \not\ni \$$, $\Gamma \ni B$ (空白記号とよばれる特別の記号)

 Γ をアルファベットとする作業用テープ:

- $h \in \mathbb{N}$ と写像 $\xi : \mathbb{N} \to \Gamma \cup \{\$\}$ の組 (h, ξ) ただし, $\xi(0) = \$$, $\xi(n) \in \Gamma$ $(n \ge 1)$
- h: 作業用ヘッドが見ているマス目の番号
- $\xi(i) \in \Gamma \cup \{\$\}$: i 番目のマス目に書き込まれている記号

初期作業用テープ: 組 $(1,\xi_0)$ のこと ただし, $\xi_0(0) = \$$, $\xi_0(n) = B$ $(n \ge 1)$

注: (h,ξ) を $\xi(0)\xi(1)\dots\xi(h)\dots\xi(n)\dots$ と表すこともある

k テープ非決定性 TM (1/3)

定義 3 (1/3)

k テープ非決定性 TM: $M = (K, \Sigma, \Gamma, \delta, q_0, B, F)$

- K, Σ , Γ , F は空ではない有限集合 $F \subset K$
- K の要素を状態, F の要素を受理状態という
- \bullet $q_0 \in K$ を初期状態という
- Σ: 入力アルファベット
- Γ: 作業用テープのアルファベット
- Γ は空白記号 B を含む

注: 非決定性 TM を NTM と略す

k テープ非決定性 TM (2/3)

定義 3 (2/3)

$$\delta \subseteq K \times (\Sigma \cup \{\phi,\$\}) \times (\Gamma \cup \{\$\})^k \times K \times (\Gamma \cup \{\$\})^k \times \{L,R,N\}^{k+1}$$
 $(p,a,X_1,\ldots,X_k,q,Y_1,\ldots,Y_k,D_0,\ldots,D_k) \in \delta$ は遷移とよばれ,以下の 4 条件を満たす (ヘッドがテープからはみ出さない条件)

- (1) $a = e \$ $b \$
- (2) a = \$ $x \in U$ $D_0 = L$ $x \in U$
- (3) $X_i = \$$ ならば $Y_i = \$$ であり $D_i = R$ または N $(1 \le i \le k)$
- (4) $Y_i = \$$ であるのは $X_i = \$$ のときに限る $(1 \le i \le k)$

k テープ非決定性 TM (3/3)

定義 3 (3/3)

TM $M = (K, \Sigma, \Gamma, \delta, q_0, B, F)$ に対し

$$Q_1 \stackrel{\text{def}}{=} K \times (\Sigma \cup \{\emptyset, \$\}) \times (\Gamma \cup \{\$\})^k$$
$$Q_2 \stackrel{\text{def}}{=} K \times (\Gamma \cup \{\$\})^k \times \{L, R, N\}^{k+1}$$

このとき各 $u \in Q_1$ に対し

$$\delta(u) \stackrel{\text{def}}{=} \{ v \in Q_2 \mid (u, v) \in \delta \}$$

 $|\delta(u)| \le 1$ ($\forall u \in Q_1$) のとき, M を決定性 TM (DTM) という $\delta(u) = \{v\}$ のとき, 単純化のため $\delta(u) = v$ と書く

様相

 \bullet 入力 x を与えられた TM M の<mark>様相</mark>とは

状態
$$q$$
 入力テープ (h, x^{\sharp}) 作業用テープ (h_i, ξ_i) $(1 \le i \le k)$

の組

$$C(x): (q, (h, \not e x\$), (h_1, \xi_1), \ldots, (h_k, \xi_k))$$

のこと

初期作業用テープを (1,ξ₀) として, 様相

$$(q_0, (1, \not\in x\$), (1, \xi_0), (1, \xi_0), \dots, (1, \xi_0))$$

を, x を入力とする M の初期様相とよび $C_0(x)$ と表す

• 受理様相: q が受理状態で (h, x) = (|x| + 1, x)

動作 (1/2)

x を入力とする M の様相

$$C(x):(p, (h, \not e x\$), (h_1, \xi_1), \ldots, (h_k, \xi_k))$$

が

$$x_h = a$$
 $(\not e x \$ = x_0 x_1 \dots x_{n+1}, \ x_i \in \Sigma \cup \{\not e, \$\})$
 $\xi_i(h_i) = X_i$ $(1 \le i \le k)$

を満たしているとき, 遷移

$$(q, Y_1, \dots, Y_k, D_0, \dots, D_k) \in \delta(p, a, X_1, \dots, X_k)$$

によって、以下で定義される様相 D(x) へ移ることができる

動作 (2/2)

$$D(x)$$
: $(q, (h + \tilde{D}_0, \not e x\$), (h_1 + \tilde{D}_1, \tilde{\xi}_1), \dots, (h_k + \tilde{D}_k, \tilde{\xi}_k))$

$$\tilde{D}_i = \left\{ \begin{array}{ll} 1, & D_i = R \text{ のとき} \\ -1, & D_i = L \text{ のとき} \\ 0, & D_i = N \text{ のとき} \end{array} \right. \quad \tilde{\xi}_i(n) = \left\{ \begin{array}{ll} Y_i, & n = h_i \text{ のとき} \\ \xi_i(n), & n \neq h_i \text{ のとき} \end{array} \right.$$

さらに

$$0 \le h + \tilde{D}_0 \le |x| + 1$$
, かつ, $h_i + \tilde{D}_i \ge 0 \ (1 \le i \le k)$

が成立するときに限って,この動作は可能であるとする

これを $C(x) \Rightarrow D(x)$ と書く

- M は様相 C(x) で停止:
 - $C(x) \Rightarrow D(x)$ となる様相 D(x) が存在しないこと
- 計算: 様相の列 $D_0(x) \Rightarrow D_1(x) \Rightarrow \cdots \Rightarrow D_t(x)$ のこと 計算ステップ数を明示して $D_0(x) \stackrel{t}{\Rightarrow} D_t(x)$ と書き, $D_0(x)$ から $D_t(x) \land t$ ステップで到達可能という
- *M* は *x* を受理:

M の初期様相 $C_0(x)$ から、ある受理様相 D(x) に到達する M の計算 (受理計算という) が少なくとも一つあるとき M が D(x) で停止のとき、M は x を受理して停止するという

L(M): M によって受理される記号列の集合 M は L(M) を受理するという

1 テープ TM の動作例 (1/2)

例 1

$$M = (K, \Sigma, \Gamma, \delta, q_0, B, F)$$
 を 1 テープ TM とする ただし,
$$K = \{q_0, q_1, q_2, q_3\}$$
 $\Sigma = \{0, 1, \#\}$ $\Gamma = \{B, 0, 1\}$ $F = \{q_3\}$ かつ, δ は右表
$$\Rightarrow M \$$
は DTM,
$$L(M) = \{w\#w \mid w \in \{0, 1\}^*\}$$

q	a	X	$\delta(q, a, X)$
q_0	0	B	$(q_0, 0, R, R)$
q_0	1	B	$(q_0, 1, R, R)$
q_0	#	B	(q_1, B, N, L)
q_1	#	0	$(q_1, 0, N, L)$
q_1	#	1	$(q_1, 1, N, L)$
q_1	#	\$	$(q_2,\$,R,R)$
q_2	0	0	$(q_2, 0, R, R)$
q_2	1	1	$(q_2, 1, R, R)$
q_2	\$	B	(q_3, B, N, N)

L(M) は pda では受理されない (文脈自由言語ではない)

1 テープ TM の動作例 (2/2)

入力 10#10 に対する M の動き

- ① 多テープ Turing 機械の定義
- ② 多テープ Turing 機械と計算量
- ③ 計算量クラスの概観

計算量理論

入力 x を与えたときの、

- TM のステップ数 (時間量),
- 使用される作業用テープの量 (領域量),

が入力の長さ |x| に対してどのようにふるまうかを考察

以下では、ステップ数 (時間量) のみ扱う

最小ステップ数 (1/2)

M: TM $x \in L(M)$ に対して

- x を受理する計算は複数ある場合があり
- 計算のステップ数も異なる場合がある

 $time_M(x)$: x を受理する最小ステップ数

$$\mathsf{time}_M(x) \stackrel{\mathrm{def}}{=} \min \left\{ t \mid$$
 ある受理様相 $D(x)$ に対して $C_0(x) \stackrel{t}{\Rightarrow} D(x) \right\}$

入力ヘッドは、すべての入力記号を読んで右エンドマーカに到達 $\Longrightarrow \operatorname{time}_M(x) \geq |x|$

最小ステップ数 (2/2)

例 2

M: 例 1 の 1 テープ DTM x = w # w に対して, time M(x) = 3|w| + 3

時間限定

非負整数から非負整数への関数を単に関数とよぶ

定義 4

T(n): 関数

M: k テープ NTM

言語 L に対して

- L = L(M)
- 有限個の例外を除き、任意の $x \in L$ に対して $time_M(x) \le T(|x|)$

が成立するとき, M は L を時間 T(n) で受理するというそして, M は T(n) 時間限定であるという

NTIME, DTIME

定義 5

k > 1 とする

$$\mathsf{NTIME}_k(T(n)) \stackrel{\mathrm{def}}{=} \left\{ L \ \middle| \ L \ \mathsf{lt} \ \mathsf{lt$$

$$\mathsf{DTIME}_k(T(n)) \stackrel{\mathrm{def}}{=} \left\{ L \ \middle| \ L \ \mathsf{lt} \ \mathsf{lt$$

$$\mathsf{NTIME}(T(n)) \ \stackrel{\mathrm{def}}{=} \bigcup_{k \geq 1} \mathsf{NTIME}_k(T(n))$$

$$\mathsf{DTIME}(T(n)) \ \stackrel{\mathrm{def}}{=} \bigcup_{k \geq 1} \mathsf{DTIME}_k(T(n))$$

正規言語受理の計算量

命題 1

L を正規言語とすると $L \in \mathsf{DTIME}(n)$

証明

M: L を受理する dfa (L は正規言語だから存在) 作業用テープを持たない DTM とみなせる

M は長さ n の入力 $x \in L$ を n ステップで受理

- ① 多テープ Turing 機械の定義
- ② 多テープ Turing 機械と計算量
- ③ 計算量クラスの概観

計算量クラス P と NP (1/2)

NP (P)

- NTM (DTM) によって多項式時間で受理される言語のクラス
- $P \neq NP$ と信じられており $(P \neq NP)$ 予想), 多くの状況証拠があるが, まだ証明されていない

NP 完全な言語

- NP に属し、かつ、NP に属するすべての言語の複雑さを 代表する言語. S. A. Cook が存在することを示した
- NP 完全な言語が P に属するなら P = NP

NP 完全性の意義

- 多項式時間で解けそうにないという漠然とした感覚が NP 完全性という概念によりはっきりと位置づけられた点
- 多項式時間アルゴリズムがなさそうだと思われていた非常に 多くの重要な問題が NP 完全であることが示された点

計算量クラス P と NP (2/2)

定義 6 (計算量クラス P と NP)

$$\mathsf{P} \stackrel{\mathrm{def}}{=} \bigcup_{d \geq 1} \mathsf{DTIME}(n^d), \qquad \mathsf{NP} \stackrel{\mathrm{def}}{=} \bigcup_{d \geq 1} \mathsf{NTIME}(n^d)$$

定義 6 からすぐに分かる結果:

定理1

 $P \subseteq NP$

O 記号

f(n), g(n): 関数

ある定数 c > 0 と整数 $n_0 > 0$ が存在して

すべての $n \ge n_0$ に対して $f(n) \le cg(n)$

となるとき, f(n) = O(g(n)) と書く

例

- $n = O(n^2)$
- 任意の d > 0 に対し, $2^n \neq O(n^d)$, $n^d = O(2^n)$

Pと NP の定義のいいかえ

命題 2

 $\lim_{n o \infty} T_2(n)/n = \infty$, $T_1(n) = O(T_2(n))$ とするこのとき, すべての $k \geq 1$ に対して以下が成り立つ

- (1) $\mathsf{DTIME}_k(T_1(n)) \subseteq \mathsf{DTIME}_{k+1}(T_2(n))$
- (2) $\mathsf{NTIME}_k(T_1(n)) \subseteq \mathsf{NTIME}_{k+1}(T_2(n))$

最高次の係数が正である任意の多項式 p(n) に対して, d>1 を十分大きくとれば $\lim_{n\to\infty} n^d/n=\infty$ かつ $p(n)=O(n^d)$

- 一 命題 2 より, $\mathsf{DTIME}(p(n)) \subseteq \mathsf{DTIME}(n^d)$ $\mathsf{NTIME}(p(n)) \subseteq \mathsf{NTIME}(n^d)$
- \rightarrow P は DTM によって9項式時間で受理される言語のクラス NP は NTM によって9項式時間で受理される言語のクラス

k テープ TM と 1 テープ TM の関係

命題 3

任意の整数 $k \ge 1$ に対して, 以下の (1), (2) が成立

- (1) $\mathsf{DTIME}(n^k) \subseteq \mathsf{DTIME}_1(n^{2k})$
- (2) $\mathsf{NTIME}(n^k) \subseteq \mathsf{NTIME}_1(n^{2k})$
- \implies 多項式時間で受理するか否か (次数は問わない) を問題にする ときは 1 テープ TM のみで考えてよい

真偽問題

- 写像 $A: \Sigma^* \to \{0,1\}$ をアルファベット Σ で表現された 真偽問題、または、単に問題という
- A は $\{x \in \Sigma^* \mid A(x) = 1\} \subseteq \Sigma^*$ と同一視可能
 - $\Longrightarrow A$ は Σ 上の言語とみなせる
 - 写像 A の複雑さは言語 $\{x \in \Sigma^* \mid A(x) = 1\}$ を受理する TM の時間量などではかることができる

以後,整数は2進数で表現されているものとする

真偽問題の例

COMPOSITE NUMBERS

 $= \{x \in \{0,1\}^* \mid x \text{ は合成数の 2 進表現}\} \in \mathsf{NP}$

COMPOSITE NUMBERS を受理する 3 テープ NTM M の動作:

- ① 入力 w が与えられると, 非決定的に動いて第 1 作業テープと第 2 作業テープにそれぞれ x と y を書き出す
- ② x, y が 2 以上の 2 進数であることを確認後, xy を第 3 作業 テープに書き出し, これが w と一致すれば w を受理

w が受理される場合, |x|, $|y| \leq |w|$ より, 多項式時間で受理される

注: $\mathsf{PRIMES} = \{x \in \{0,1\}^* \mid x \text{ は素数の } 2 \text{ 進表現 } \} \in \mathsf{P} \text{ が } 2002 年に証明されたので, COMPOSITE NUMBERS} \in \mathsf{P}$