Tema 3 Equación 10 de Transporte

Ecuación 1D de transporte. Métodos explícitos e implícitos.

Referencias del Capítulo:

- Numerical Recipes. W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling. Cambridge University Press (1988).
- Computational Techniques for Fluid Dynamics. C.A.J. Fletcher. Springer-Verlag (1991).

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

 ∂R =frontera

Consideramos un sistema en el que el transporte de información puede ser difusivo y/o convectivo. La forma de ecuación más general tiene la forma:

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

donde T es la variable a estudiar (p.e.: temperatura) que se ve forzada con una velocidad de convección u y se difunde con una difusividad α .

Para tener un problema bien planteado necesitamos aportar:

- Condiciones iniciales (especificar T(x) para un t_o y todo x).
- Condiciones de frontera para todo *t*.
 - 1. Condiciones de Direchlet: T=f en ∂R .

3. Condiciones de mezcla o de Robin: $\frac{\partial T}{\partial n} + kT = f \text{ con } k > 0 \text{ en } \partial R$

M3: Ecuación de Transporte. Esquema FTCS $\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

$$\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

$$\frac{\partial T}{\partial x} = \frac{T_{i+1}^n - T_{i-1}^n}{2\Delta x}$$

$$\Rightarrow \frac{T_i^{n+1} - T_i^n}{\Delta t} + u \frac{T_{i+1}^n - T_{i-1}^n}{2\Delta x} - \alpha \frac{T_{i-1}^n - 2T_i^n + T_{i+1}^n}{\Delta x^2} = 0$$

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^n - 2T_i^n + T_{i+1}^n}{\Delta x^2}$$

Consistencia:

$$E_i^n = Cu(\Delta x/2) \frac{\partial^2 T}{\partial x^2} - [C\alpha \Delta x - u(\Delta x^2/6)(1 + 2C^2)] \frac{\partial^3 T}{\partial x^3}$$

Estabilidad: Factor amplificación: $1-2s(1-\cos\theta)-iC\sin\theta$

Condición Estabilidad: $0 \le C^2 \le 2s \le 1$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

Table 9.3. Algebraic (discretised) schemes for the transport equation $\partial \bar{T}/\partial t + u \partial \bar{T}/\partial x - \alpha \partial^2 \bar{T}/\partial x^2 = 0$

Scheme	Algebraic form	Truncation error ^{a} (E) (leading terms)	Amplification factor G $(\theta = m\pi \Delta x)$	Stability Restrictions	Remarks
FTCS	$\frac{\Delta T_j^{n+1}}{\Delta t} + uL_x T_j^n - \alpha L_{xx} T_j^n = 0$	$Cu(\Delta x/2)\frac{\partial^2 T}{\partial x^2}$	$1-2s(1-\cos\theta)-\mathrm{i}C\sin\theta$	$0 \le C^2 \le 2s \le 1$	$R_{\text{cell}} \ll 2/C$ for accuracy
		$-\left[C\alpha\Delta x - u(\Delta x^2/6)(1+2C^2)\right]\frac{\partial^3 T}{\partial x^3}$			
Upwind	$\frac{\Delta T_{j}^{n+1}}{\Delta t} + u \frac{(T_{j}^{n} - T_{j-1}^{n})}{\Delta x} - \alpha L_{xx} T_{j}^{n} = 0$	$-u(\Delta x/2)(1-C)\frac{\partial^2 T}{\partial x^2} - \left[C\alpha \Delta x\right]$ $-u(\Delta x^2/6)(1-3C+2C^2)\left[\frac{\partial^3 T}{\partial x^3}\right]$	$1 - (2s + C)(1 - \cos\theta) - iC\sin\theta$	$C+2s \le 1$	$R_{\text{cell}} \leqslant 2/(1-C)$ for accuracy
DuFort-Frankel		$\alpha C^2 \frac{\partial^2 T}{\partial x^2} + (1 - C^2) \left[u \Delta x^2 / 6 \right]$	$\frac{B \pm [B^2 - 8s(1+2s)]^{\frac{1}{2}}}{(2+4s)}$	<i>C</i> ≦1	$C^2 \ll 1$ for accuracy
	$-\frac{\alpha}{\Delta x^2} \left\{ T_{j-1}^n - (T_j^{n-1} + T_j^{n+1}) + T_{j+1}^n \right\} = 0$	$-2\alpha^2C^2/u]\frac{\partial^3 T}{\partial x^3}$	where $B = 1 + 4s\cos\theta - i2C\sin\theta$		

M3: Ecuación de Transporte. Esquema completamente implícito

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

$$\frac{\partial T}{\partial t} = \frac{T_i^{n+1} - T_i^n}{\Delta t}$$

$$\frac{\partial T}{\partial x} = \frac{T_{i+1}^{n+1} - T_{i-1}^{n+1}}{2\Delta x} \Rightarrow \frac{T_i^{n+1} - T_i^n}{\Delta t} + u \frac{T_{i+1}^{n+1} - T_{i-1}^{n+1}}{2\Delta x} - \alpha \frac{T_{i-1}^{n+1} - 2T_i^{n+1} + T_{i+1}^{n+1}}{\Delta x^2} = 0$$

$$\frac{\partial^2 T}{\partial x^2} = \frac{T_{i-1}^{n+1} - 2T_i^{n+1} + T_{i+1}^{n+1}}{\Delta x^2}$$

i = 1 ... N - 1

+ 2 cond. frontera

Consistencia:
$$E_i^n \propto \frac{\partial^3 T}{\partial T^3}$$

Estabilidad: incondicionalmente estable

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

Lax-Wendroff
$$\frac{dT_{j}^{n+1}}{dt} + uL_{x}T_{j}^{n} - \alpha^{*}L_{xx}T_{j}^{n} = 0 \qquad -\left[C\alpha \, \Delta x - u(\Delta x^{2}/6)(1-C^{2})\right] \frac{\partial^{3}T}{\partial x^{3}} \qquad 1 - 2s^{*}(1-\cos\theta) - iC\sin\theta \qquad 0 \le C^{2} \le 2s^{*} \le 1 \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$-uC(\Delta x^{3}/8)(C^{2} - 1)\frac{\partial^{4}T}{\partial x^{4}} \qquad \text{where } s^{*} = \alpha^{*}\Delta t/\Delta x^{2}$$

$$\frac{C_{\text{rank-Nicolson}}}{\Delta t} \qquad u(\Delta x^{2}/6)(1+0.5C^{2})\frac{\partial^{3}T}{\partial x^{3}} \qquad \frac{1 - s(1-\cos\theta) - i0.5C\sin\theta}{1 + s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$\frac{1}{1+s(1-\cos\theta) + i0.5C\sin\theta} \qquad \text{None} \qquad \frac{R_{\text{eall}} \le 2}{\text{to avoid spatial oscillations}}$$

$$L_{x} = \frac{1}{2\Delta x} \{-1, 0, 1\}, L_{xx} = \frac{1}{\Delta x^{2}} \{1, 2, 1\}, M_{x} = \{\frac{1}{6}, \frac{2}{3}, \frac{1}{6}\}, C = u\Delta t/\Delta x, s = \alpha \Delta t/\Delta x^{2}, R_{\text{cell}} = C/s = u\Delta x/\alpha x^{2}, R_{\text{$$

⁴ The algebraic scheme is equivalent to $\partial T/\partial t + u \partial T/\partial x - \alpha \partial^2 T/\partial x^2 + E(T) = 0$

$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} - \alpha \frac{\partial^2 T}{\partial x^2} = 0$$

Esquemas de nodos activos para los principales esquemas de integración considerados:

Ecuación Unidimensional de Transporte

Implementar los siguientes algoritmos en un programa que resuelva la ecuación unidimensional de transporte:

Métodos Explícitos:

- 6*.- Esquema Forward in Time Centered in Space (FTCS).
- 7*.- Esquema upstream.
- 8*.- Esquema DuFort-Frankel.

Métodos Implícitos:

- 9.- Esquema totalmente implícito a dos niveles.
- 10.- Esquema Crank-Nicolson.
- 11*.- Calcular la estabilidad y la consistencia de uno de los métodos anteriores.