Definition and First Properties of Schemes

1 Locally Ringed Space

Definition 1. Let X be a topological space. A *presheaf* of sets (resp. abelian groups, rings, etc.) on X is a contravariant functor \mathcal{F} : **Open**(X) \rightarrow **Set** (resp. **Ab**, **Ring**, etc.), where **Open**(X) is the category of open subsets of X with inclusions as morphisms.

A presheaf \mathcal{F} is a *sheaf* if sections can be glued uniquely. More precisely, for every open covering $\{U_i\}_{i\in I}$ of an open set $U\subset X$ and every family of sections $s_i\in\mathcal{F}(U_i)$ such that $s_i|_{U_i\cap U_j}=s_j|_{U_i\cap U_j}$ for all $i,j\in I$, there exists a unique section $s\in\mathcal{F}(U)$ such that $s|_{U_i}=s_i$ for all $i\in I$.

Example 2. Let X be a real (resp. complex) manifold. The assignment $U \mapsto C^{\infty}(U, \mathbb{R})$ (resp. $U \mapsto \{\text{holomorphic functions on } U\}$) defines a sheaf of rings on X.

Example 3. Let X be a non-connected topological space. The assignment

 $U \mapsto \{\text{constant functions on } U\}$

defines a presheaf \mathcal{C} of rings on X but not a sheaf.

For a concrete example, let $X = [0,1] \cup [2,3]$ with the subspace topology from \mathbb{R} . Consider the open covering $\{(0,1),(2,3)\}$ of X. The sections $s_1 = 1 \in \mathcal{C}((0,1))$ and $s_2 = 2 \in \mathcal{C}((2,3))$ agree on the intersection (which is empty), but there is no global section $s \in \mathcal{C}(X)$ such that $s|_{(0,1)} = s_1$ and $s|_{(2,3)} = s_2$.

Definition 4. A locally ringed space is a pair (X, \mathcal{O}_X) where X is a topological space and \mathcal{O}_X is a sheaf of rings on X such that for every $x \in X$, the stalk $\mathcal{O}_{X,x}$ is a local ring. A morphism of locally ringed spaces $f: (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ consists of a continuous map $f: X \to Y$ and a morphism of sheaves of rings $f^{\sharp}: \mathcal{O}_Y \to f_*\mathcal{O}_X$ such that for every $x \in X$, the induced map on stalks $f_x^{\sharp}: \mathcal{O}_{Y,f(x)} \to \mathcal{O}_{X,x}$ is a local homomorphism, i.e., it maps the maximal ideal of $\mathcal{O}_{Y,f(x)}$ to the maximal ideal of $\mathcal{O}_{X,x}$.

Example 5. Let p be a prime number. Then the inclusion $\mathbb{Z}_{(p)} \to \mathbb{Q}$ is a homomorphism of local rings but not a local homomorphism. Here $\mathbb{Z}_{(p)}$ is the localization of \mathbb{Z} at the prime ideal (p).

Example 6 (Glue morphisms). Let $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ be a morphism of locally ringed spaces. If $U\subset X$ and $V\subset Y$ are open subsets such that $f(U)\subset V$, then the restriction $f|_U:(U,\mathcal{O}_X|_U)\to (V,\mathcal{O}_Y|_V)$ is a morphism of locally ringed spaces. Conversely, if $\{U_i\}_{i\in I}$ is an open covering of X and for each $i\in I$, we have a morphism $f_i:(U_i,\mathcal{O}_X|_{U_i})\to (Y,\mathcal{O}_Y)$ such that $f_i|_{U_i\cap U_j}=f_j|_{U_i\cap U_j}$ for all $i,j\in I$, then there exists a unique morphism $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ such that $f|_{U_i}=f_i$ for all $i\in I$.

Example 7 (Glue open subspace). We construct a locally ringed space by gluing open subspaces. Let (X_i, \mathcal{O}_{X_i}) be locally ringed spaces for $i \in I$ and $(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}})$ be open subspaces for $i, j \in I$. Suppose we have isomorphisms $\varphi_{ij}: (U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \to (U_{ji}, \mathcal{O}_{X_i}|_{U_{ji}})$ such that

Date: September 3, 2025, Author: Tianle Yang, My Homepage

2

- (a) $\varphi_{ii} = \mathrm{id}_{X_i}$ for all $i \in I$;
- (b) $\varphi_{ij}(U_{ij} \cap U_{ik}) = U_{ji} \cap U_{jk}$ for all $i, j \in I$;
- (c) $\varphi_{jk} \circ \varphi_{ij} = \varphi_{ik}$ on $U_{ij} \cap U_{ik}$ for all $i, j, k \in I$.

Then there exists a locally ringed space (X, \mathcal{O}_X) and open immersions $\psi_i : (X_i, \mathcal{O}_{X_i}) \to (X, \mathcal{O}_X)$ uniquely up to isomorphism such that

- (a) $\varphi_i(U_{ij}) = \psi_i(X_i) \cap \psi_j(X_j)$ for all $i, j \in I$;
- (b) the following diagram

$$(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \longleftrightarrow (X_i, \mathcal{O}_{X_i}) \overset{\psi_i}{\longleftrightarrow} (X, \mathcal{O}_X)$$

$$\downarrow^{\varphi_{ij}} \qquad \qquad \downarrow^{=}$$

$$(U_{ji}, \mathcal{O}_{X_j}|_{U_{ji}}) \longleftrightarrow (X_j, \mathcal{O}_{X_j}) \overset{\psi_j}{\longleftrightarrow} (X, \mathcal{O}_X)$$

commutes for all $i, j \in I$;

(c)
$$X = \bigcup_{i \in I} \psi_i(X_i)$$
.

Such (X, \mathcal{O}_X) is called the locally ringed space obtained by gluing the (X_i, \mathcal{O}_{X_i}) along the φ_{ij} .

First φ_{ij} induces an equivalence relation \sim on the disjoint union $\coprod_{i\in I} X_i$. By taking the quotient space, we can glue the underlying topological spaces to get a topological space X. The structure sheaf \mathcal{O}_X is given by

$$\mathcal{O}_X(V) := \left\{ (s_i)_{i \in I} \in \prod_{i \in I} \mathcal{O}_{X_i}(\psi_i^{-1}(V)) \, \middle| \, s_i|_{U_{ij}} = \varphi_{ij}^\sharp(s_j|_{U_{ji}}) \text{ for all } i, j \in I \right\}.$$

Easy to check that (X, \mathcal{O}_X) is a locally ringed space and satisfies the required properties. If there is another locally ringed space $(X', \mathcal{O}_{X'})$ with ψ'_i satisfying the same properties, then by gluing $\psi'_i \circ \psi_i^{-1}$ we get an isomorphism $(X, \mathcal{O}_X) \to (X', \mathcal{O}_{X'})$.

2 Schemes

Example 8 (Glue open subschemes). The construction in Example 7 allows us to glue open subschemes to get a scheme. More precisely, let (X_i, \mathcal{O}_{X_i}) be schemes for $i \in I$ and $(U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}})$ be open subschemes for $i, j \in I$. Suppose we have isomorphisms $\varphi_{ij} : (U_{ij}, \mathcal{O}_{X_i}|_{U_{ij}}) \to (U_{ji}, \mathcal{O}_{X_j}|_{U_{ji}})$ satisfying the cocycle condition as in Example 7. Then the locally ringed space (X, \mathcal{O}_X) obtained by gluing the (X_i, \mathcal{O}_{X_i}) along the φ_{ij} is a scheme.

3

- 3 Integral, reduced and irreducible
- 4 Fiber product
- 5 Dimension
- 6 Noetherian and finite type
- 7 Separated and proper