Examen LU3IN014 « Réseaux » Mardi 7 Janvier 2020 – Durée : 2 heures

Sont autorisées : 1 feuille A4 manuscrite recto/verso, 1 calculatrice (téléphone interdit)

Voici : - 5 feuilles contenant les énoncés et les zones de réponse à compléter (sans déborder).

Vous devez reporter votre numéro d'anonymat sur chacune des feuilles.

- 1 feuille d'annexe que vous pouvez détacher.

Exercice 1 : Algorithmes de routage (5 points)

1. Expliquer les différences entre les algorithmes à état des liens et à vecteurs de distance, du point de vue de l'échange de messages et de la connaissance du réseau, en complétant le tableau ci-dessous :

	échange de messages	connaissance du réseau
état des liens		
vecteurs de distance		

2. On considère le réseau ci-dessous, où les valeurs indiquées correspondent au coût sur le lien correspondant.

a. Compléter la table de routage du nœud C, en utilisant l'algorithme de Dijkstra :

destination	prochain nœud	chemin	coût

b. Le nœud G tombe en panne. Donner les tables de routage des nœuds B et E obtenues après une nouvelle convergence de l'algorithme de Dijkstra:

	table de B		
dest.	prochain	chemin	coût

	table de E		
dest.	prochain	chemin	coût

c. Que	el problème obs	serve-t-on? Pr	oposer une soluti	on possible à c	ce problème.	
2 0 111						
	ere un réseau av : un algorithme			ge des nœuds B	B et E suivante	s ont été obtenues
	table de B				table de E	
destination	prochain	coût	1	destination	prochain	coût
A	E	3		A	A	1
В	-	-		В	В	2
С	С	1		C	В	3
D	D	2		D	A	3
Е	Е	2		E	-	tous ces voisins
			vec les coûts sur			
			réponse précéde el le "comptage à			ntre B et C.

Sorbonne Université
Licence d'Informatique
LU3IN014 - 2019/2020

Reportez ici votre numéro d'anonymat :	

Exercice 2 : Plan d'adressage (5 points)

En Annexe A1 se trouve le	schéma d	ı réseau	de	l'entreprise	3IN&A	ssociés,	pour	lequel	on	se	propose
d'élaborer un plan d'adressage	e efficace.										

La figure montre 5 réseaux locaux (LAN A, ... E). Pour chacun d'eux, est indiqué le nombre de machines hôtes connectées. L'interconnexion est réalisée au moyen de 4 routeurs (R1, ... R4) dont les interfaces sont identifiées comme indiqué dans la figure.

identifiées comme ind	liqué dans la figure.	Syen de 4 fouteurs (K1,	. K4) dont les interfaces sont
On suppose dans un p	oremier temps l'utilisation des c	lasses d'adressage et du d	lécoupage en sous-réseaux.
1. De quelle classe d	'adresses l'entreprise a-t-elle be	esoin ? Justifier.	
	ui a été attribuée l'adresse 134. ura jamais plus de 254 équipen		-
	— — — — — — — — — — — — — — — — — — —	ments connectes par sous	
3. Donner un plan d'	adressage associé à ce masque Adresse de sous-réseau	de sous-réseau, en compl Adresse de diffusion	étant le tableau c1-dessous : Masque de sous-réseau
LAN A	Adresse de sous-reseau	Adresse de diffusion	Wasque de sous-reseau
LAN B			
LAN C			
LAN D			
LAN E			
4. Calculer le taux d' allouées).	utilisation de ce schéma d'adre	ssage (nombre d'adresses	utilisées / nombre d'adresses

On souhaite maintenant utiliser un schéma d'adressage CIDR, avec le bloc d'adresses 134.157.0.0/23 attribué à l'entreprise.

5. Donner le plan d'adressage, en complétant le tableau ci-dessous :

	Adresse de sous-réseau	Adresse de diffusion	Masque de sous-réseau
LAN A			
LAN B			
LAN C			
LAN D			
LAN E			
		, , ,	

6.	Calculer le taux d'utilisation de ce schéma d'adressage (nombre d'adresses utilisées / nombre d'adresses allouées).

7. Donner la table de routage de l'hôte H1, en attribuant des adresses au choix aux routeurs :

Destination	Mask	Gateway	Interface

8. Donner la table de routage du routeur R2, en attribuant des adresses au choix aux routeurs :

Destination	Mask	Gateway	Interface

Sorbonne Université
Licence d'Informatique
LU3IN014 - 2019/2020

Reportez ici votre numéro d'anonymat :	

Exercice 3 : MTU et fragmentation (5 points)

Dans cet exercice, une application cherche à envoyer 1656 octets. L'objectif est de comparer la quantité totale de trafic que génère cet envoi selon que l'application utilise UDP ou TCP.

On supposera:

- la MTU du réseau local est égale à 576 octets,
- la taille minimum d'une trame est égale à 62 octets,
- la longueur de l'entête et de l'enqueue des trames est de 16 octets,
- les entêtes IP et TCP n'ont pas d'options.

1.	Dans cette question, l'application utilise les services de TCP. Remplir le tableau donné en page 7 pour chacun des paquets IP que génère la machine hôte exécutant cette application. Exprimer toutes les valeurs en décimal. Laisser vides les cellules qui n'ont pas lieu d'être.
2.	Donner la taille de la dernière trame envoyée.
3.	Quel est le volume total résultant de l'envoi des 1656 octets en comptabilisant pour toutes les trames, l'ensemble des entêtes et enqueues utilisés.
4.	Dans cette question, l'application utilise les services de UDP. Remplir le tableau donné en page 8 pour chacun des paquets IP que génère la machine hôte exécutant cette application. Exprimer toutes les valeurs en décimal. Laisser vides les cellules qui n'ont pas lieu d'être.
5.	Donner la taille de la dernière trame envoyée.
6.	Quel est le volume total résultant de l'envoi des 1656 octets en comptabilisant pour toutes les trames, l'ensemble des entêtes et enqueues utilisés.

Exercice 4 : Décodage (5 points)

La trace correspond à une trame Ethernet capturée sur le réseau local de la source du paquet IPv4 encapsulé. Les valeurs de certains champs sont en erreur. L'objectif de cet exercice est de corriger ces erreurs lorsque possible en donnant la valeur correcte.

0000	84	b8	02	5a	59	40	f0	18	98	59	ae	32	80	06	6f	00
0010	00	44	00	00	60	00	20	11	7b	94	84	e 3	7d	1b	86	9d
0020	36	88	f5	85	00	35	a1	da	9b	80	a1	da	9b	09	a0	11
0030	ff	ff	89	26	ff	ff	02	04	05	b4	01	03	03	06	01	01
0040	08	0a	2d	d7	8d	61	00	00	00	00	04	02	00	00		

On supposera:

- la trame est donnée sans préambule ni CRC,
- le paquet IP est sans option,
- le paquet n'a pas été fragmenté et ne pourra pas l'être,
- le segment TCP encapsulé est un SYN,
- la valeur par défaut du TTL de la source est égale à 64,
- la destination est un serveur Web.
- 1. Remplir le tableau donné page 9. Pour chaque champ, donner la valeur capturée telle que présente dans la trace. Pour les entrées en gras, donner également la valeur corrigée. Exprimer toutes les valeurs en hexadécimal précédées du suffixe 0x ou en décimal selon la mention présente dans la seconde colonne (Hex/Dec).
- 2. Le tableau donné page 10 concerne le segment TCP SYN ACK reçu en réponse au TCP SYN capturé dans la question 1. L'entête de ce segment contient 20 octets d'options. L'entête IP est sans option. Remplir la dernière colonne du tableau avec les valeurs manquantes concernant ce segment au format demandé selon la mention présente dans la seconde colonne (Hex/Dec).

Sorbonne Université
Licence d'Informatique
LU3IN014 - 2019/2020

Exercice 3 - Question 1

Paquet IP 1	Segment TCP encapsulé			
Longueur entête IP	Longueur entête TCP			
Longueur totale du paquet	Longueur des données TCP			
DF				
MF				
Fragment Offset				
Paquet IP 2	Segment TCP encapsulé			
Taille entête IP	Taille entête TCP			
Longueur totale du paquet	Longueur des données TCP			
DF				
MF				
Fragment Offset				
Paquet IP 3	Segment TCP encapsulé			
Taille entête IP	Taille entête TCP			
Longueur totale du paquet	Longueur des données TCP			
DF				
MF				
Fragment Offset				
Paquet IP 4	Segment TCP encapsulé			
Taille entête IP	Taille entête TCP			
Longueur totale du paquet	Longueur des données TCP			
DF				
MF				
Fragment Offset				
Paquet IP 5	Segment TCP encapsulé			
Taille entête IP	Taille entête TCP			
Longueur totale du paquet	Longueur des données TCP			
DF				
MF				
Fragment Offset				

Exercice 3 - Question 4

Datagramme UDP				
Longueur entête UDP				
Longueur des données UDP				
Paquet IP 1				
Longueur entête IP				
Longueur totale du paquet				
DF				
MF				
Fragment Offset				
Paquet IP 2				
Taille entête IP				
Longueur totale du paquet				
DF				
MF				
Fragment Offset				
Paquet IP 3				
Taille entête IP				
Longueur totale du paquet				
DF				
MF				
Fragment Offset				
Paquet IP 4				
Taille entête IP				
Longueur totale du paquet				
DF				
MF				
Fragment Offset				
Paquet IP 5				
Taille entête IP				
Longueur totale du paquet				
DF				
MF				
Fragment Offset				

Sorbonne Université
Licence d'Informatique
LU3IN014 - 2019/2020

Reportez ici votre numéro d'anonymat :	

Exercice 4 - Question 1

Champ d'entête	Dec Hex	Valeur capturée	Valeur corrigée
Entête Ethernet			
Adresse MAC source	Hex		
Adresse MAC destination	Hex		
Type	Hex		
Entête IPv4			
Version	Dec		
IHL	Dec		
TOS	Hex		
Longueur totale	Dec		
Identificateur	Hex		
Flags-Fragment offset	Hex		
TTL	Dec		
Protocole	Hex		
Checksum	Hex		
Adresse IP source	Dec		
Adresse IP destination	Dec		
Segment TCP			
Port source	Hex		
Port destination	Hex		
Numéro de séquence	Dec		
Numéro d'acquittement	Hex		
THL	Hex		
Drapeaux	Hex		
Fenêtre	Hex		
Checksum	Hex		
Pointeur urgent	Hex		

Exercice 4 - Question 2

Champ d'entête	Dec Hex	Valeur				
Entête Ethernet						
Adresse MAC source	Hex					
Adresse MAC destination	Hex					
Туре	Hex					
Entête IP						
Version	Dec					
IHL	Dec					
TOS	Hex	0x00				
Longueur totale	Dec					
Identificateur	Hex	0xacd3				
Flags-Fragment offset	Hex					
TTL	Dec	254				
Protocole	Hex					
Checksum	Hex	0x10c4				
Adresse IP source	Dec					
Adresse IP destination	Dec					
Segment TCP						
Port source	Hex					
Port destination	Hex					
Numéro de séquence	Hex	0x1a25487e				
Numéro d'acquittement	Hex					
THL	Hex					
Drapeaux	Hex					
Fenêtre	Hex	0x4380				
Checksum	Hex	0x21bf				
Pointeur urgent	Hex	0x0000				

Exercice 2 - Figure

Structure de la trame Ethernet

48 bits —	48 bits —	16 bits	– - 46 to 1500 bytes – –	32 bits —
Destination Address	Source Address	Туре	Payload	CRC

Structure du paquet IP

← 32 bits							
← 4 bits →		<	16 bits				
Ver.	IHL	ToS		Total Length			
Identication					0 D M F OF (Offset Fragment)		
T	TTL Protocol			Header Checksum			
Source Address							
	Destination Address						
Options + Padding							
Data							

Ver. Version d'IP

IHL Longueur de l'entête IP (\times 32 bits)

ToS Type de service (0 généralement)

DF Ne pas fragmenter

MF Fragment suivant existe

0F Décalage du fragment

TTL Durée de vie restante

Quelques protocoles transportés :

1 ICMP 8 EGP

2 IGMP 11 GLOUP

4 IPv4 17 UDP

5 Stream 36 XTP

6 TCP 46 RSVP

Structure du message ARP

	32	bits	
— 8 bits — →	← 8 bits →	← 16 bits —	
Hardwa	ге Туре	Protocol Type	
(Ethernet: 1	, HDLC : 17)	(IPv4: 0x0800)	
Hardware	Protocol	OpCode	
Address Length	Address Length	(1: ARP Request, 2: ARP Reply)	
Sender Hardware Address		Sender Protocol Address (bytes 1-2)	
	ocol Address s 3-4)	Target Hardware Address	
	Target Proto	ocol Address	

Structure du segment TCP

Source Port					Destination Port		
			:	Seq	ueı	nce	Number
		A	Ackı	10V	rlec	dgr	nent Number
THL Reserved U A P R S F R C S S Y I G K H T N N				F I N	Window		
	Checksur	n					Urgent Pointer
			(Opt	ior	ıs +	- Padding
			`			Da	

THL Longueur de l'entête TCP (\times 32 bits)

URG Données urgentes

ACK Acquittement

PSH Données immédiates

RST Réinitialisation

SYN Synchronisation

FIN Fin

Options codées sur :

• 1 octet à 00 : fin des options

• 1 octet à 01 : NOP (pas d'opération)

• Plusieurs octets de type T-L-V:

T = 2 Négociation de la taille max. du segment

T=3 Adaptation de la taille de la fenêtre

T = 4 Autorisation des acquittements sélectifs

T = 8 Estampilles temporelles

← 1 octet →	← 1 octet →	← L − 2 octets →
Type (T)	Length (L)	Option Value (V)

Structure du datagramme UDP

← 32 ← 16 bits →	bits ————————————————————————————————————			
Source Port	Destination Port			
Length	Checksum			
Data				

Services associés aux ports (well-known ports)

ftp-data	20/tcp	smtp	25/tcp	kerberos	88/tcp/udp
ftp	21/tcp	domain	53/tcp/udp	pop-3	110/tcp/udp
ssh	22/tcp/udp	tftp	69/udp	snmp	161/udp
telnet	23/tcp	www	80/tcp/udp	snmp-trap	162/udp