Séance 4.2: Mesures de tendance centrale

Discussion en classe

Visseho Adjiwanou, PhD.

01 February 2023

A quoi ça sert?

 Une mesure de tendance centrale est une valeur typique ou représentative d'un ensemble de scores

Résumé : Mesure de tendance centrale (paramètres de position)

Symbole	Définition	Formules
Moyenne	Somme des valeurs divisée par l'effectif de la série	$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$
Médiane	Valeur qui divise la distribution en deux parties égales	
Mode	Valeur observée de fréquence maximum	
Percentile	Valeurs qui divisent la distribution en 100 parties égales	

Résumé : Mesure de dispersion

Symbole	Définition	Formules
Étendue	Différence entre la plus grande et la plus petite valeur de la variable	G - P
EIQ	3ème quartile - 1er quartile	Q3 - Q1 <i>X - X</i>
Déviation	La distance d'une valeur à	$X - \bar{X}$
	la moyenne	
Sommes	Somme des carrés des déviations	$SC = \sum_{i=1}^{n} (X_i - \bar{X})^2$
des carrés		
Variance	Moyenne des carrés des déviances	$s^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2$
Écart-type	Racine carrée de la variance	$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})}$

Résumé : Quel type de résumé pour quel type de variable?

Type de variable	Fréquence	Pourcentage	Commentaire
Nominale	Oui	Oui	Toujours
Ordinale	Oui	Oui	Toujours
Ratio/Intervalle	Pas souhaité	Pas souhaité	Oui si peu de modali
Ratio/Intervalle	Oui	Oui	Toujours
(données groupées)			

Résumé : Quel type de résumé pour quel type de variable?

Type de variable	Moyenne	Mode	Médiane	Variance	Écart-typ
Nominale	Non	Oui	Non	Non	Non
Ordinale	Possible	Oui	Oui	Possible	Possible
Ratio/Intervalle	Oui	Oui	Oui	Oui	Oui
Ratio/Intervalle	Oui	Oui	Oui	Oui	Oui
(données groupées)					

Exemple de calcul

Distribution de revenu

Voici les revenus (en millier) d'un échantillon de 15 hommes et de 16 femmes

ind	Revenus	ind	Revenus	ind	Revenus	ind	Revenus
1	2	9	3.1	1	3.1	9	0.5
2	2.5	10	1.4	2	2.7	10	1.3
3	1.7	11	7.1	3	1.2	11	2.9
4	3	12	6.0	4	4.2	12	2.7
5	5	13	3.3	5	5.5	13	5.1
6	4.1	14	4.3	6	4.3	14	3.0
7	8.1	15	6.1	7	2.0	15	6.3
8	5.2			8	1.5	16	4.2

Distribution du revenu des hommes

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1.4	1	6.67	6.67	6.67	6.67
1.7	1	6.67	13.33	6.67	13.33
2	1	6.67	20.00	6.67	20.00
2.5	1	6.67	26.67	6.67	26.67
3	1	6.67	33.33	6.67	33.33
3.1	1	6.67	40.00	6.67	40.00
3.3	1	6.67	46.67	6.67	46.67
4.1	1	6.67	53.33	6.67	53.33
4.3	1	6.67	60.00	6.67	60.00
5	1	6.67	66.67	6.67	66.67
5.2	1	6.67	73.33	6.67	73.33
6	1	6.67	80.00	6.67	80.00
6.1	1	6.67	86.67	6.67	86.67
7.1	1	6.67	93.33	6.67	93.33
8.1	1	6.67	100.00	6.67	100.00
<na></na>	0	2.0.		0.00	100.00
Total	15	100.00	100.00	100.00	100.00

Visseho Adjiwanou, PhD.

Moyenne

- Revenu moyen des hommes
 - = (2 + 2.5 + 1.7 + 3 + 5 + 4.1 + 8.1 + 5.2 + 3.1 + 1.4 + 7.1 + 6.0 + 3.3 + 4.3 + 6.1) / 15
 - revenu moyen des hommes = 4.19
- Revenu moyen des femmes

$$= (3.1 + 2.7 + 1.2 + 4.2 + 5.5 + 4.3 + 2.0 + 1.5 + 0.5 + 1.3 + 2.9 + 2.7 + 5.1 + 3.0 + 6.3 + 4.2)/16$$

• Revenu moyen des femmes = 3.16

Médiane du revenu des hommes

- La Médiane = valeur telle que la moitié des observations lui sont inférieures et donc la moitié lui sont supérieures.
- C'est donc assez facile à calculer, il suffit juste d'ordonner les cas.
- Milieu de la distribution = (15 + 1)/2 = 8

Médiane du revenu des hommes

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
1.4	1	6.67	6.67	6.67	6.67
1.7	1	6.67	13.33	6.67	13.33
2	1	6.67	20.00	6.67	20.00
2.5	1	6.67	26.67	6.67	26.67
3	1	6.67	33.33	6.67	33.33
3.1	1	6.67	40.00	6.67	40.00
3.3	1	6.67	46.67	6.67	46.67
4.1	1	6.67	53.33	6.67	53.33
4.3	1	6.67	60.00	6.67	60.00
5	1	6.67	66.67	6.67	66.67
5.2	1	6.67	73.33	6.67	73.33
6	1	6.67	80.00	6.67	80.00
6.1	1	6.67	86.67	6.67	86.67
7.1	1	6.67	93.33	6.67	93.33
8.1	1	6.67	100.00	6.67	100.00
<na></na>	0			0.00	100.00
Total	15	100.00	100.00	100.00	100.00

Visseho Adjiwanou, PhD.

Médiane du revenu des hommes

- Utilisation des pourcentages cumulés
- 46.67% des participants ont un revenu de 3.3 ou moins et
- 53.33% des participants ont un revenu de 4.1 ou moins
- donc la médiane vaut 4.1
- Médiane Homme = 4.1

Médiane des femmes

• Milieu de la distribution : (16 + 1)/2 = 8.5 entre la 8 et la 9e valeur

	Freq	% Valid	% Valid Cum.	% Total	% Total Cum.
0.5	1	6.25	6.25	6.25	6.25
1.2	1	6.25	12.50	6.25	12.50
1.3	1	6.25	18.75	6.25	18.75
1.5	1	6.25	25.00	6.25	25.00
2	1	6.25	31.25	6.25	31.25
2.7	2	12.50	43.75	12.50	43.75
2.9	1	6.25	50.00	6.25	50.00
3	1	6.25	56.25	6.25	56.25
3.1	1	6.25	62.50	6.25	62.50
4.2	2	12.50	75.00	12.50	75.00
4.3	1	6.25	81.25	6.25	81.25
5.1	1	6.25	87.50	6.25	87.50
5.5	1	6.25	93.75	6.25	93.75
	-				

Visseho Adjiwanou, PhD.

Médiane des femmes

- Médiane se situe entre la 8e et la 9e valeur
- Médiane = (2.9 + 3)/2 = 2.95

Mode

- Homme = il n'y a pas de mode
- Femme = deux modes, 2.7 et 4.2

Premier quartile

Quelle est la localisation du premier quartile?

1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.4	1.7	2	2.5	3	3.1	3.3	4.1	4.3	5	5.2	6	6.1	7.1

Premier quartile

Quelle est la localisation du premier quartile?

$$L_k = k/100 * (n+1)$$

k = 25 si premier quartile n = 15

donc $l_25 = 25/100*(15+1) = 4$ Le premier quartile se trouve donc à la 4e position

premier quartile (Q1) = 2.5

Troisième quartile

$$I_75 = 75/100*(15+1) = 12$$

donc Q3 = 6

$$Q1 = ? Q3 = ?$$

1 2		3	4	5	6	7	8	9	10	11	12	
.5 1	.2	1.3	1.5	2	2.7	2.7	2.9	3.	3.1	4.2	4.2	

•
$$L_25 = 25/100*(16+1) = 4.25$$
 (entre 4 et 5)

- $L_25 = 25/100*(16+1) = 4.25$ (entre 4 et 5)
- \bullet L_75 = 75/100*(16+1) = 12.75 (entre 12 et 13)

- $L_25 = 25/100*(16+1) = 4.25$ (entre 4 et 5)
- $L_75 = 75/100*(16+1) = 12.75$ (entre 12 et 13)
- Q1 = (1.5 + 2)/2 = 1.75

- $L_25 = 25/100*(16+1) = 4.25$ (entre 4 et 5)
- $L_75 = 75/100*(16+1) = 12.75$ (entre 12 et 13)
- Q1 = (1.5 + 2)/2 = 1.75
- Q3 = (4.2 + 4.3)/2 = 4.25

- $L_25 = 25/100*(16+1) = 4.25$ (entre 4 et 5)
- $L_75 = 75/100*(16+1) = 12.75$ (entre 12 et 13)
- Q1 = (1.5 + 2)/2 = 1.75
- Q3 = (4.2 + 4.3)/2 = 4.25
- Une difficulté arrive avec les variables ordinales

Représentation

Boxplot

Représentation

Visseho Adjiwanou, PhD.

Exemple: Attitude envers les immigrants et les emplois

 Q1: Sur une échelle de 1 (totalement en désaccord) à 5 (totalement d'accord), que pensez-vous de l'affirmation suivante: "Les immigrants volent nos emplois"

Valeur	Fréquence	Fréq. cumulée	Pourcentage	Pourc. cumulé
1	170	170		
2	446	616		
3	299	915		
4	301	1216		
5	65	1281		
N	1281			

• Médiane va diviser la distribution en deux partie égale

Valeur	Fréquence	Fréq. cumulée	Pourcentage	Pourc. cumulé
1	170	170		
2	446	616		
3	299	915		
4	301	1216		
5	65	1281		
N	1281			

- Médiane va diviser la distribution en deux partie égale
- (1281 + 1)/2 = 641

Valeur	Fréquence	Fréq. cumulée	Pourcentage	Pourc. cumulé
1	170	170		
2	446	616		
3	299	915		
4	301	1216		
5	65	1281		
N	1281			

- Médiane va diviser la distribution en deux partie égale
- (1281 + 1)/2 = 641
- la médiane est la valeur du 641e score, c'est-à-dire quelque part parmi les 299 scores 3

Valeur	Fréquence	Fréq. cumulée	Pourcentage	Pourc. cumulé
1	170	170		
2	446	616		
3	299	915		
4	301	1216		
5	65	1281		
N	1281			

- Médiane va diviser la distribution en deux partie égale
- (1281 + 1)/2 = 641
- la médiane est la valeur du 641e score, c'est-à-dire quelque part parmi les 299 scores 3

• Convention: on va supposer que derrière les réponses à cette question, il y a une échelle (ratio) allant de 0.5 à 5.5.

- Convention: on va supposer que derrière les réponses à cette question, il y a une échelle (ratio) allant de 0.5 à 5.5.
- Autrement dit, ceux qui ont répondu 1, aurait répondu en réalité entre 0.5 et 1.5. On les ramène donc à la moyenne de l'intervalle qui vaut (0.5+1.5)/2=1

- Convention: on va supposer que derrière les réponses à cette question, il y a une échelle (ratio) allant de 0.5 à 5.5.
- Autrement dit, ceux qui ont répondu 1, aurait répondu en réalité entre 0.5 et 1.5. On les ramène donc à la moyenne de l'intervalle qui vaut (0.5+1.5)/2=1
- Ainsi, les 299 personnes qui ont répondu 3 ont en fait répondu entre 2.5 et 3.5

- Convention: on va supposer que derrière les réponses à cette question, il y a une échelle (ratio) allant de 0.5 à 5.5.
- Autrement dit, ceux qui ont répondu 1, aurait répondu en réalité entre 0.5 et 1.5. On les ramène donc à la moyenne de l'intervalle qui vaut (0.5+1.5)/2=1
- Ainsi, les 299 personnes qui ont répondu 3 ont en fait répondu entre 2.5 et 3.5
- Nous allons donc interpoler pour trouver à quel endroit se situe la médiane

- Interpolation
- Application de la règle de trois
- Si 3 pains coûtent 55\$, combien coûte 2 pains?

$$Md = L + (\frac{N/2 - F}{f})(i)$$

 L = la limite inférieure de l'intervalle contenant la médiane (2.5)

$$Md = L + (\frac{N/2 - F}{f})(i)$$

- L = la limite inférieure de l'intervalle contenant la médiane (2.5)
- N = le nombre de cas (1281)

$$Md = L + (\frac{N/2 - F}{f})(i)$$

- L = la limite inférieure de l'intervalle contenant la médiane (2.5)
- N = le nombre de cas (1281)
- F = la fréquence cumulative des scores inférieurs à l'intervalle contenant la médiane (616)

$$Md = L + (\frac{N/2 - F}{f})(i)$$

- L = la limite inférieure de l'intervalle contenant la médiane (2.5)
- N = le nombre de cas (1281)
- F = la fréquence cumulative des scores inférieurs à l'intervalle contenant la médiane (616)
- f = le nombre de scores que comprend l'intervalle contenant la médiane (299)

$$Md = L + (\frac{N/2 - F}{f})(i)$$

- L = la limite inférieure de l'intervalle contenant la médiane (2.5)
- N = le nombre de cas (1281)
- F = la fréquence cumulative des scores inférieurs à l'intervalle contenant la médiane (616)
- f = le nombre de scores que comprend l'intervalle contenant la médiane (299)
- i = la largeur de l'intervalle contenant la médiane (1)

$$Md = L + (\frac{N/2 - F}{f})(i)$$

- L = la limite inférieure de l'intervalle contenant la médiane (2.5)
- N = le nombre de cas (1281)
- F = la fréquence cumulative des scores inférieurs à l'intervalle contenant la médiane (616)
- f = le nombre de scores que comprend l'intervalle contenant la médiane (299)
- i = la largeur de l'intervalle contenant la médiane (1)
- Md = 2.5 + (1281/2 616)/299*1 = 2.6

Exemple d'application : mesurer l'inégalité

Mesure de l'inégalité

- Moyenne
- Médiane
- Coefficient de Gini
- Indice de Palma

- Le coefficient de Gini sert à mesurer le niveau d'inégalité de la répartition du revenu au sein de diverses populations ou au sein de la même population au fil du temps.
- Il peut être calculé pour d'autres indicateurs autre que le revenu.

- Le coefficient de Gini sert à mesurer le niveau d'inégalité de la répartition du revenu au sein de diverses populations ou au sein de la même population au fil du temps.
- Il peut être calculé pour d'autres indicateurs autre que le revenu.
- La courbe de Lorenz (figure) présente le rapport entre la proportion cumulée de la population, ordonnée selon le niveau de revenu, et la proportion cumulée du revenu total lui revenant.

- Le coefficient de Gini sert à mesurer le niveau d'inégalité de la répartition du revenu au sein de diverses populations ou au sein de la même population au fil du temps.
- Il peut être calculé pour d'autres indicateurs autre que le revenu.
- La courbe de Lorenz (figure) présente le rapport entre la proportion cumulée de la population, ordonnée selon le niveau de revenu, et la proportion cumulée du revenu total lui revenant.
- Le coefficient de Gini provient du calcul de l'aire entre la courbe de Lorenz et la droite de l'égalité parfaite.

Visseho Adjiwanou, PhD.

- Plus cette aire est grande, plus l'inégalité est marquée. Les valeurs du coefficient de Gini varient entre 0 et 1.
- Une valeur de 0 indique que le revenu est également divisé entre tous les membres de la population, ceux-ci recevant exactement la même somme de revenu.

- Plus cette aire est grande, plus l'inégalité est marquée. Les valeurs du coefficient de Gini varient entre 0 et 1.
- Une valeur de 0 indique que le revenu est également divisé entre tous les membres de la population, ceux-ci recevant exactement la même somme de revenu.
- Par contre, une valeur de 1 dénote une distribution parfaitement inégale au sein de laquelle une seule unité possède l'ensemble du revenu de l'économie.

- Plus cette aire est grande, plus l'inégalité est marquée. Les valeurs du coefficient de Gini varient entre 0 et 1.
- Une valeur de 0 indique que le revenu est également divisé entre tous les membres de la population, ceux-ci recevant exactement la même somme de revenu.
- Par contre, une valeur de 1 dénote une distribution parfaitement inégale au sein de laquelle une seule unité possède l'ensemble du revenu de l'économie.
- Une diminution de la valeur du coefficient de Gini peut être interprétée comme une diminution de l'inégalité, et vice versa.

Indice de Palma

https://jeanneemard.wordpress.com/2022/05/19/les-inegalites-auquebec-de-1976-a-2020-selon-lindice-de-palma-et-le-coefficient-degini/

Indice de Palma

- IP est obtenu en divisant le revenu total des membres du 10e décile par le revenu total des membres des quatre premiers déciles (les plus pauvres)
- Un IP égal à 1 signifie que les ménages du décile le plus riche gagnent en moyenne quatre fois plus que ceux des quatre déciles les plus pauvres,

Indice de Palma

- IP est obtenu en divisant le revenu total des membres du 10e décile par le revenu total des membres des quatre premiers déciles (les plus pauvres)
- Un IP égal à 1 signifie que les ménages du décile le plus riche gagnent en moyenne quatre fois plus que ceux des quatre déciles les plus pauvres,
- Un IP égal à 2 équivaut à huit fois plus et ainsi de suite.

 Le revenu ajusté est obtenu en divisant le revenu total de tous les membres d'un ménage par la racine carrée de la taille de ce ménage.

- Le revenu ajusté est obtenu en divisant le revenu total de tous les membres d'un ménage par la racine carrée de la taille de ce ménage.
- Par exemple, le revenu ajusté des membres d'un ménage de quatre personnes qui a un revenu total de 100 000\$ sera de ?

- Le revenu ajusté est obtenu en divisant le revenu total de tous les membres d'un ménage par la racine carrée de la taille de ce ménage.
- Par exemple, le revenu ajusté des membres d'un ménage de quatre personnes qui a un revenu total de 100 000\$ sera de ?
- 50 000 \$ (100 000 \$ / $\sqrt{4}$, soit 2, = 50 000 \$) et ce revenu sera accordé aux quatre membres de ce ménage.

- Le CG et l'IP peuvent être présentés en fonction de trois types de revenus :
 - selon le revenu du marché: somme des revenus d'emploi (travail salarié ou montant net de travail autonome), de placements, de retraite (régime privé de pension) et autres;

- Le CG et l'IP peuvent être présentés en fonction de trois types de revenus :
 - selon le revenu du marché: somme des revenus d'emploi (travail salarié ou montant net de travail autonome), de placements, de retraite (régime privé de pension) et autres;
 - selon le **revenu total** : revenu du marché plus les transferts gouvernementaux (aide sociale, assurance-emploi, pensions de la sécurité de la vieillesse, supplément de revenu garanti, prestations du Régime des rentes du Québec, etc.), avant impôt;

- Le CG et l'IP peuvent être présentés en fonction de trois types de revenus :
 - selon le revenu du marché: somme des revenus d'emploi (travail salarié ou montant net de travail autonome), de placements, de retraite (régime privé de pension) et autres;
 - selon le **revenu total** : revenu du marché plus les transferts gouvernementaux (aide sociale, assurance-emploi, pensions de la sécurité de la vieillesse, supplément de revenu garanti, prestations du Régime des rentes du Québec, etc.), avant impôt;
 - selon le revenu après impôt : revenu total moins l'impôt sur le revenu.

 Le CG et l'IP selon le revenu après impôt sont les plus couramment utilisés, car ils représentent les inégalités après intervention gouvernementale (transferts et impôt) et donc selon le revenu disponible sur lequel se manifestent les inégalités de revenu auxquelles font face les ménages

Évolution de l'inégalité au Québec

Visseho Adjiwanou, PhD.

Pour la semaine prochaine

- Lecture
 - Paramètres de variation (ou de dispersion) Fox : chapitre 4, pp.91-103
 - Distribution d'échantillonnage Fox : Chapitre 4, pp.103-120
- Application
 - https://juba.github.io/tidyverse/01-presentation.html
 - https://juba.github.io/tidyverse/02-prise_en_main.html
 - https://juba.github.io/tidyverse/03-premier_travail.html

Annexe

• Voir le fichier Seance4_Annexe pour voir comment les données sont entrées et analysées avec RStudio.