## EECS 16A Designing Information Devices and Systems I Discussion 6D $\,$

## 1. Least Squares: A Toy Example

Let's start off by solving a little example of least squares.

We're given the following system of equations:

$$\begin{bmatrix} 1 & 4 \\ 3 & 8 \\ 5 & 16 \end{bmatrix} \vec{x} = \begin{bmatrix} 3 \\ 1 \\ 9 \end{bmatrix},$$

where 
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
.

- (a) Why can we not solve for  $\vec{x}$  exactly?
- (b) Find  $\vec{x}$ , the *least squares estimate* of  $\vec{x}$ , using the formula we derived in lecture.

Reminder: 
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

## 2. Least Squares with Orthogonal Columns

(a) Consider a least squares problem of the form

$$\min_{\vec{x}} \quad \left\| \vec{b} - \mathbf{A}\vec{x} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \mathbf{A}\vec{x} - \vec{b} \right\|^2 \quad = \quad \min_{\vec{x}} \quad \left\| \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} - \begin{bmatrix} | & | \\ \vec{a_1} & \vec{a_2} \\ | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2$$

Let the solution be  $\vec{\hat{x}} = \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \end{bmatrix}$ .

Label the following elements in the diagram below.

span
$$\{\vec{a_1}, \vec{a_2}\}, \quad \vec{\hat{e}} = \vec{b} - \mathbf{A}\hat{\hat{x}}, \quad \mathbf{A}\hat{\hat{x}}, \quad \vec{a_1}\hat{x_1}, \vec{a_2}\hat{x_2}, \quad \text{colspace}(\mathbf{A})$$



(b) We now consider the special case of least squares where the columns of **A** are orthogonal (illustrated in the figure below). Given that  $\vec{x} = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \vec{b}$  and  $A\vec{x} = \operatorname{proj}_{\mathbf{A}}(\vec{b}) = \hat{x_1}\vec{a_1} + \hat{x_2}\vec{a_2}$ , show that

$$\operatorname{proj}_{\vec{a_1}}(\vec{b}) = \hat{x_1}\vec{a_1}$$
$$\operatorname{proj}_{\vec{a_2}}(\vec{b}) = \hat{x_2}\vec{a_2}$$



(c) Compute the least squares solution to

$$\min_{\vec{x}} \quad \left\| \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \right\|^2.$$

## 3. Polynomial Fitting

Let's try an example. Say we know that the output, y, is a quartic polynomial in x. This means that we know that y and x are related as follows:

$$y = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4$$

We're also given the following observations:

| X   | У     |
|-----|-------|
| 0.0 | 24.0  |
| 0.5 | 6.61  |
| 1.0 | 0.0   |
| 1.5 | -0.95 |
| 2.0 | 0.07  |
| 2.5 | 0.73  |
| 3.0 | -0.12 |
| 3.5 | -0.83 |
| 4.0 | -0.04 |
| 4.5 | 6.42  |

- (a) What are the unknowns in this question? What are we trying to solve for?
- (b) Can you write an equation corresponding to the first observation  $(x_0, y_0)$ , in terms of  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ , and  $a_4$ ? What does this equation look like? Is it linear in the unknowns?
- (c) Now, write a system of equations in terms of  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ , and  $a_4$  using all of the observations.
- (d) Finally, solve for  $a_0$ ,  $a_1$ ,  $a_2$ ,  $a_3$ , and  $a_4$  using IPython. You have now found the quartic polynomial that best fits the data!