Formulario general

Virgilio Murillo Ochoa 5 de mayo de 2021

Índice

1.	\mathbf{Alg}	ebra	6
	1.1.	factorization	6
	1.2.	Sintetic divition	7
	1.3.	cubic differences	8
	1.4.	general formula	8
	1.5.	Logarithms	8
2.	Boo	olean Algebra	6
	2.1.	Simple Formulas	Ć
3.	Con	nplex Algebra	S
	3.1.	Polar coordinates	6
	3.2.	Basic identiies and formulas	10
	3.3.	Euler identity	10
	3.4.	Multiplicative cycles	11
			11
			12
	3.7.	Golden Triangle	12
4.	Line	ear Algebra	12
	4.1.	dot and cross product	12
	4.2.		13
			13
			13
5.	Trig	gonometry	L 4
	5.1.	Basic Identities	14
	5.2.	Double Angle	14
	5.3.	Sin in terms of e	14
	5.4.	hyperbolic functions	15
	5.5.		15
			15
6.	Dife	erential Calculus	18
	6.1.	basic formulas	18
			18
	6.3.		18

	6.4.	Derivatives of Hiperbolic functions .	•		•	 •	•	•			19
7.	Inte	egral Calculus									20
	7.1.	basic integral formulas									20
		Weirestrass substitution									20
		Reduction formulas									21
		integrals of Hiperbolic functions									22
		Particular Integrals									22
		Taylor series									23
		Riemann z function									23
		Gamma Function									23
8.	Vec	tor Calculus									23
	8.1.	basic formulas									23
		3d Line equation									24
9.	Diff	Gerential Ecuations									25
		linearity									_
		homogeneous ecuations									
		homogeneous function of grade n									26
		Exact ED									26
		Bernouully ecuation									27
		Ricat Ecuation									27
		Cauchy Euler ecuation									27
		integrant factor									27
		Linear differential equations									28
		Order Reduction									28
	9.11	. Constant coeficients Ecuation									29
		. parameter variation									30
		. Indeterminate Coeficients									31
10	.prol	bability and statistics									32
	_	. Independent Events									32
		. morgan laws									
		separated probabilities									34
11	.Nur	merical Calculus									35
		. Taylor Polinomial									35
		. Newton Raphson									35

	11.3. Complement to one	35
	11.4. complement to two	35
	11.5. complemento a dos	35
	11.6. convertir de punto flotante a decimal	36
	11.7. convert decimal to float	37
	11.8. Convert decimal fraction to float	38
	11.9. Fixed point iteration	39
	11.10Divided differences	40
	11.11Lagrange Polinomial	40
12	Arch Linux	41
	12.1. Mantainance	41
	12.2. Print in arch linux	42
	12.3. configure date and time	42
	12.4. Configure wireless	42
	12.5. mount devices	43
13	.Latex	44
	13.1. commonly used special symbols	44
	13.2. Greek and Hebrew Letters	44
	13.3. math constructs	45
	13.4. Delimeters	45
	13.5. Variable Sized simbols	46
	13.6. binary operation relation symbols	46
	13.7. arrow symbols	46
	13.8. miscelanious	47
	13.9. Matrices	47
14 .	.Electronics	48
	14.1. Logic Gates	48
	14.2. MinTerminos y max terminos	49
		۲0
15	.Physics	50

1. Algebra

1.1. factorization

- 1. common factor
- 2. common factor by agroupation of terms
- 3. cubic differences
- 4. perfect square trinomial
- 5. trinomial of the form $x^2 + bx + c$
- 6. trinomial of the form $ax^2 + bx + c$
- 7. sum and difference of cubes
- 8. sintetic divition
- 9. general formula

1.2. Sintetic divition

Example:

$$x^3 - 5x^2 + 2x + 8$$

Taking the divisors of the independent term

$$p = D_8 = \{\pm 1, \pm 2, \pm 4, \pm 8\}$$

and the divisors of the term with the highest exponent

$$q = D_1 = \{\pm 1\}$$

$$p/q = \{\pm 1, \pm 2, \pm 4, \pm 8\}$$

now all the posibilities are in the space p/q that are integers so:

then:

$$(x^2 - 6x + 8)(x + 1)$$

then:

$$(x+1)(x-4)(x-2)$$

1.3. cubic differences

$$u^{3} + 1 = (u^{2} - u + 1)(u + 1)$$
$$u^{3} - 1 = (u^{2} + u + 1)(u - 1)$$

1.4. general formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

1.5. Logarithms

$$\log_a(p) = \frac{\log p}{\log a}$$

2. Boolean Algebra

2.1. Simple Formulas

$$AA' = 0, \quad A + A' = 1$$

$$AB + AC = A(B + C)$$

$$(AB...Z)' = A' + B' + ... + Z'$$

$$(A + B)(A + C) = A + BC$$

$$AB + AB' = A$$

$$(A + B)(A + C) = A + BC$$

$$A + A + B = A, \quad A(A + D) = A$$

$$(x + y)' = x'.y'$$

$$(x.y)' = x' + y'$$

3. Complex Algebra

3.1. Polar coordinates

 (r, θ)

3.2. Basic identiies and formulas

Basic convertions:

$$y = r(\sin(\theta))$$
$$x = r(\cos(\theta))$$
$$r = \sqrt{x^2 + y^2}$$
$$\theta = \tan^{-1}(\frac{x}{y})$$

Basic Formulas:

$$-i = \frac{1}{i}$$

$$Z = a + bi$$

$$\overline{Z} = a - bi$$

$$\overline{Z} + \overline{w} = \overline{Z + w}$$

$$\overline{Z} \times Z = |Z|^{2}$$

3.3. Euler identity

$$e^{iz} = \cos(z) + i \operatorname{sen}(z)$$
$$e^{\pi i} + 1 = 0$$

3.4. Multiplicative cycles

$$i = i$$

$$i^{2} = -1$$

$$i^{3} = -i$$

$$i^{4} = 1$$

$$i^{5} = i$$

3.5. Graphs

3.6. Triangle inequality

$$|z+w| \le |z| + |w|$$

3.7. Golden Triangle

$$\frac{a}{b} = \frac{b}{a-b}$$

4. Linear Algebra

4.1. dot and cross product

$$|\vec{a} \times \vec{b}| = |\vec{a}||\vec{b}|\sin\theta$$
$$\vec{a}.\vec{b} = |\vec{a}||\vec{b}|\cos\theta$$
$$A^{-1} = frac(adjA)^{T}def(A)$$

4.2. Crammer Rule

$$x = \frac{\delta_x}{\delta_s}, \ y = \frac{\delta_y}{\delta_s}, \ z = \frac{\delta_z}{\delta_s}$$

4.3. Gauss jordan Algorithm

$$A^{-1} = \left(\begin{array}{cc|c} a & b & 1 & 0 \\ c & d & 0 & 1 \end{array} \right)$$

4.4. simetry on matrices

5. Trigonometry

5.1. Basic Identities

$$\cos(\alpha) = \frac{1}{2}[\cos(\alpha - \beta) + \cos(\alpha + \beta)]$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\sinh(x) = \frac{e^x - e^{-x}}{2}$$

$$\cosh(x) = \frac{e^X + e^{-x}}{2}$$

$$\sin(x)\cos(y) = \frac{1}{2}[\sin(x+y) + \sin(x-y)]$$

5.2. Double Angle

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta)$$
$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$
$$\cos(2\theta) = 2\cos^2\theta - 1$$

5.3. Sin in terms of e

$$\sin(x) = \frac{e^{ix} - e^{-ix}}{-2i}$$
$$\cos(x) = \frac{e^{ix} - e^{-ix}}{2}$$

5.4. hyperbolic functions

$$\cosh^{2}(x) - \sinh^{2}(x) = 1$$
$$\operatorname{sech}^{2}(x) + \tan^{2}(x) = 1$$
$$\operatorname{senh}(x \pm y) = \sinh(x) \cosh(y) \pm \cosh(x) \sinh(x)$$
$$\cosh(x \pm y) = \cosh(x) \cosh(y) \pm \sinh(x) \sinh(y)$$

5.5. square reduction

$$\sinh^{2}(x) = \frac{\cosh(x) - 1}{2}$$
$$\cosh^{2}(x) = \frac{\cosh(x) + 1}{2}$$

5.6. Polar Coordinates

$$r\cos(u) = x, \quad r\sin(u) = y$$
$$r^2 = x^2 + y^2$$

The symetry around the x axis:

$$y - r = f(\theta) = f(-\theta)$$

The symetry around the y axis:

$$r = f(\pi - \theta)$$

Symetry around $\theta = \frac{\pi}{2}$

$$f(\pi - \theta) = f(\theta)$$

Symetry around the origin

$$f(\pi + \theta) = -f(\theta)$$

Find the type of graphic the next function is gonna make:

$$r = \pm a + b\sin(u)$$

a < b	a = b	a > b
cola	corazon pasa origen	sin cola

Roses:

$$r = a\sin(n\theta), \ \ r = \cos(n\theta)$$

1. number of petals

```
if(n %2 == 0)
{
          return 2n;
}
else
{
          return n;
}
```

- 2. $angle = \frac{360^{\circ}}{\#petals}$
- 3. first petal

```
if(cos(x))
{
          return "x axis";
}
else
{
          return "theta = \pi / 2n ";
}
```

6. Diferential Calculus

6.1. basic formulas

$$(\tan(x))' = \sec^2(x), \ (\csc(x))' = \csc(x)\cot(x)$$

$$(\sec(x))' = \sec(x)\tan(x), \ (\cot(x))' = -\csc^2(x)$$

$$(\ln(x))' = \frac{1}{x}$$

$$(a^x)' = a^x \ln(a) * x'$$

$$(\frac{f(x)}{g(x)})' = \frac{g(x)f(x)' = g(x)'f(x)}{(g(x))^2}$$

6.2. Limits

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

6.3. Derivatives of inverse trigonometric functions

$$(\sin^{-1}(x))' = \frac{x'}{\sqrt{1 - x^2}}, \ (\cos^{-1}(x))' = \frac{-x'}{\sqrt{1 - x^2}}$$
$$(\tan^{-1}(x))' = \frac{x'}{x^2 + 1}, \ (\cot^{-1}(x))' = \frac{-x'}{x^2 + 1}$$
$$(\sec^{-1}(x))' = \frac{x'}{|x|\sqrt{x^2 + 1}}, \ (\csc^{-1}(x))' = \frac{-x'}{|x|\sqrt{x^2 + 1}}$$

6.4. Derivatives of Hiperbolic functions

$$(\sinh(x))' = \cosh(x), \ (\cosh(x))' = \sinh(x)$$

 $(\tanh(x))' = \operatorname{sech}^{2}(x), \ (\coth(x))' = -\operatorname{csch}^{2}(x)$
 $(\operatorname{sech}(x))' = -\operatorname{sech}(x) \tanh(x), \ (\operatorname{csch}(x))' = -\operatorname{csch}(x) \coth(x)$

7. Integral Calculus

7.1. basic integral formulas

$$\int \frac{1}{X} dx = \ln|x|$$

$$\int a^x dx = \frac{a^x}{\ln a}$$

$$\int \sin(x) dx = -\cos(x)$$

$$\int \cos(x) dx = \sin(x)$$

$$\int \tan(x) dx = \ln|\sec(x)| \quad or \quad -\ln|\cos(x)|$$

$$\int \cot(x) dx = \ln|\sin(x)|$$

$$\int \sec(x) dx = \ln|\sec(x) + \tan(x)|$$

$$\int \csc(x) dx = \ln|\csc(x) - \cot(x)|$$

7.2. Weirestrass substitution

let $t = \tan(x/2)$ where $-\pi < x\pi$ Then:

$$\sin(x) = \frac{2t}{1+t^2}$$
$$\cos(x) = \frac{1-t^2}{1+t^2}$$
$$dx = \frac{2dt}{1+t^2}$$

if all trigonometric functions are pairs then: let $t = \tan(x)$ where $-\pi < x\pi$ Then:

7.3. Reduction formulas

$$\int \sin^{n}(x) = -\frac{\sin^{n-1}(x)\cos(x)}{n} + \frac{n-1}{n} \int \sin^{n-2}(x)dx$$

$$\int \cos^{n}(x) = \frac{\cos^{n-1}(x)\sin(x)}{n} + \frac{n-1}{n} \int \cos^{n-2}(x)dx$$

$$\int \tan^{n}(x) = \frac{\tan^{n-1}(x)}{n-1} - \int \tan^{n-2}(x)dx$$

$$\int \csc^{n}(x) = -\frac{\csc^{n-2}(x)\cot(x)}{n} + \frac{n-2}{n-1} \int \csc^{n-2}(x)dx$$

$$\int \sec^{n}(x) = \frac{\sec^{n-2}(x)\tan(x)}{n} + \frac{n-2}{n-1} \int \sec^{n-2}(x)dx$$

$$\int \cot^{n}(x) = -\frac{\cot^{n-1}(x)}{n-1} - \int \cot^{n-2}(x)dx$$

$$\int \frac{1}{(au^{2}+b)^{n}}du = \frac{2n-3}{2b(n-1)} \int \frac{1}{(au^{2}+b)^{n-1}}du + \frac{u}{2b(n-1)(au^{2}+b)^{n-1}}$$

$$\int \csc^{n}(x)\sec^{n}(x)dx = \frac{-\csc^{n-1}(x)\sec^{n-1}(x)}{n-1} + \frac{m+n-1}{m-1} \int \csc^{m-2}(x)\sec^{n}(x)dx$$

7.4. integrals of Hiperbolic functions

$$\int \sinh(x)dx = \cosh(x), \quad \int \cosh(x)dx = \sinh(x)$$

$$\int \tanh(x)dx = \ln|\cosh(x)|, \quad \int \coth(x)dx = \ln|\sinh|(x)$$

$$\int \operatorname{sech}(x)dx = \tan^{-1}(\sinh(x)), \quad \int \operatorname{csch}(x)dx = \ln|\tanh(x)|$$

$$\int \coth(x)dx = \ln|\sinh(x)|$$

7.5. Particular Integrals

$$\int e^{\alpha x} \sin(\beta x) dx = \left[e^{\alpha x} (\alpha \sin(\beta x) - \beta \cos(\beta x)) \right] \frac{1}{\alpha^2 + \beta^2}$$
$$\int e^{\alpha x} \cos(\beta x) dx = \left[e^{\alpha x} (\alpha \cos(\beta x) + \beta \sin(\beta x)) \right] \frac{1}{\alpha^2 + \beta^2}$$

7.6. Taylor series

$$T(x) = \sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x - a)^n$$

7.7. Riemann z function

$$f(s) = 1 + \frac{1}{2^5} + \frac{1}{3^5} + \frac{1}{4^5} + \dots$$

7.8. Gamma Function

$$\int_0^\infty e^{-t} t^{t-1} dt = \Gamma(t)$$

$$\gamma = \lim_{n \to \infty} \left[\sum_{k=1}^n \frac{1}{k} - \ln(n) \right]$$

8. Vector Calculus

8.1. basic formulas

$$proj_u(v) = \left(\frac{u \cdot v}{u \cdot v}\right) u$$

8.2. 3d Line equation

$$\vec{r} = \vec{p} + t\vec{v}$$

9. Differential Ecuations

9.1. linearity

$$a_n(x)\frac{d^ny}{dx^n} + \dots + a_1(x)\frac{dy}{dx} + a_0(x)y = f(x)$$

9.2. homogeneous ecuations

given:

$$M(x,y)dx + N(x,y)dy = 0$$

the ecuation is homogeneous if M and N are homogeneous functions of the same exponent cambio de variable y=ux o x=uy, dy=xdu+udx Subsección 9.3

9.3. homogeneous function of grade n

$$f(tx, ty) = t^n f(x, y)$$

9.4. Exact ED

para ser exacta tiene que cumplir dos condiciones

1.
$$M(x,y)dx + N(x,y)dy = 0$$

$$2. \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$$

si no las cumple puedes usar el factor integrante para que cumpla Subsección 9.8

para resolver toma en cuenta las siguientes dos cosas

$$f(x,y) = \int Mdx + g(y) = \int Ndy + h(x)$$
$$\frac{\partial F}{\partial x} = M , \frac{\partial F}{\partial y} = N$$

9.5. Bernoully ecuation

aplica cuando la ecuacion diferencial tiene la siguiente forma:

$$P_0(x)\frac{dy}{dx} + P(x)y = F(x)y^n$$

se hace el cambio de variable $u=y^{1-n}$ y se obtiene una ecuacion lineal

9.6. Ricat Ecuation

tiene la siguiente forma

$$y' = Q(x)y^2 + P(x)y + R(x)$$

se hace la sustitución $y = y_1 + u^{-1}$

9.7. Cauchy Euler ecuation

se usa para resolver una ecuación de segundo grado

$$ax^{2}y'' + bxy' + cy = 0$$
$$y = x^{r}, x > 0$$

9.8. integrant factor

aplica cuando hay una f(x,y) tal que f(x,y)(ED) = exacta

• si $\frac{M_y - N_x}{N}$ es funcion solamente de x entonces $P(x) = \frac{M_y - N_x}{N}$

$$f(x) = e^{\int P(x)dx}$$
 es un factor de integracion

• si $M_y - N_x = m\frac{N}{x} - n\frac{M}{y}$ entonces

$$f(x) = x^m y^n$$
 es un factor de integracion

used by Elemento 9.4

9.9. Linear differential equations

$$\frac{dy}{dx} + P(x)y = q(x)$$
$$u(x) = e^{\int P(x)dx}$$

Sol =
$$u(x)y = \int u(x)q(x)dx$$

9.10. Order Reduction

aplica cuando conoces una solucion de una ED Lineal homogenea de segundo orden

$$y_2 = y_1 \int \frac{e^{-\int P(x)dx}}{y_1'} dx$$

$$y'' + P(x)y' + q(x)y = 0$$

9.11. Constant coefficients Ecuation

para poder resolver por este metodo tiene que ser una ecuacion lineal de coeficientes constantes de la forma

$$y''C_1 + y'C_2 + yC_3 = 0$$

se hace la sustitucion

$$y = e^{rx}$$

quedara una funcion cuadratica en terminos de r se puede llegar a usar la identidad de euler la solucion queda de la forma:

$$y = C_1 e^{r_1 x} + C_2 e^{r_2 x}$$

tambien puede servir:

$$r = a + bi$$

$$y_1 = C_1 * e^{\alpha x} \cos(bx)$$

$$y_2 = C_2 * e^{\alpha x} \sin(bx)$$

nota: si hay multiplicidad, ejemplo: $(r-1)^3 = 0$

$$y_h = e^{rx} + xe^{rx} + x^2e^{rx}$$

siendo que r = 1 entonces:

$$y_h = e^x + xe^x + x^2e^x$$

9.12. parameter variation

tienen la forma $k_1y'' + k_2y' + k_3y = f(x)$

$$u_1 = -\int \frac{y_2 f(x)}{W} dx \qquad u_2 = \int \frac{y_1 f(x)}{W} dx$$
$$W = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

 $\operatorname{siendo} y_h$ la solucion de la ecuacion homogenea asociada

$$y_h = C_1 y_1 + C_2 y_2$$

y siendo y_p la solucion definitiva

$$y_p = u_1 y_1 + C_2 y_2$$

9.13. Indeterminate Coeficients

$$r(x) = \text{polinomio}$$
, exponencial, Seno, Coseno

pasos:

- 1. Calcular y_n es decir calcular la ecuación homogenea relacionada, por coeficientes constantes
- 2. Encontrat y_p

caso 1 No hay funciones en comun con r(x)

nota: tomar en cuenta el teorema de superposicion de soluciones si

$$r(x) = x^3 + x + 10 \operatorname{sen} 8x$$

simplemente se suman los proposiciones

$$y_p = Ax^3 + Bx^2 + Cx + D + A\sin(8x) + B\cos(8x)$$

y lo mismo aplica para la multiplicacion

-
$$y'' + C_1 y' + c_2 y = x^3 + x$$

proponer $\to y_p = Ax^3 + Bx^2 + Cx + D$

-
$$y'' + C_1 y' + c_2 y = 10 \operatorname{sen} 8x$$

proponer $\to y_p = A \operatorname{sen}(8x) + B \cos(8x)$

-
$$y'' + C_1 y' + c_2 y = 12e^{5x}$$

proponer $\rightarrow y_p = Ae^{5x}$

caso 2 hay funciones que coinciden con r(x)

simplemente multiplicar la funcion for x hasta que no hayas funciones en comun con x pero tiene que ser la x^n mas pequena posible

10. probability and statistics

$$P(\epsilon^c) = 1 - P(\epsilon)$$

$$P(A \cap B^c) = P(A \backslash B) = P(A) - P(A \cup B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$A \cap (B \cup A) = (A \cap B) \cup (A \cap B)$$
$$A \cup (B \cup A) = (A \cup B) \cup (A \cup B)$$

10.1. Independent Events

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$
$$p(A|B) = P(A \cup B) = p(A) * P(B)$$

10.2. morgan laws

$$A^{c} \cup B^{c} = (A \cap B)^{c}$$
$$A^{c} \cap B^{c} = (A \cup B)^{c}$$
$$| = dadoque$$

10.3. separated probabilities

Sean B_k Eventos mutuamente excluyentes, pariticion de S

$$P(A) = P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + \dots + P(B_k)P(A|B_k!)$$

$$P(A) = \sum_{i=1}^{k} P(B_i)P(A|B_k)$$

$$P(B_i|A) = \frac{P(B_i) * P(A|B_i)}{P(A)}$$

$$P(B_i|A) = \frac{P(B_i) - P(A|B_i)}{\sum_{i=1}^{k} P(B_i)P(A|B_k)}$$

$$a^{\Phi(m)} = 1 \pmod{m}$$

$$\Phi(p \times q) = (p-1)(q-1) \text{ para pq primos}$$

$$\Phi(p_1^{k_1} \times ... \times p_n^{k_n}) = (p_1^{k_1} - p_1^{k_1-1}) \times ... \times (p_n^{k_n} - p_n^{k_n-1})$$

11. Numerical Calculus

11.1. Taylor Polinomial

$$f(x) \approx f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x - x_0)^2}{2!}$$
$$= \sum_{i=0}^n \frac{f^i(x_0)(x - x_0)^i}{i!}$$

11.2. Newton Raphson

$$P_{n+1} = P_n - \frac{f(P_0)}{f'(P_0)}$$

11.3. Complement to one

11.4. complement to two

se cambian 1 por ceros y viceversa

11.5. complemento a dos

de derecha a izquierda y apartir del primer 1 encontrado sin incluirlo se hace la operacion de complemento a uno

11.6. convertir de punto flotante a decimal

Ejemplo:

$$(-1) \times (1 + mantisa) \times 2^{expo-maxExpo}$$

$$(-1) \times (1 + 0.75) \times 2^{124-127}$$

= -0.21875

11.7. convert decimal to float

Ejemplo:

$$171,25 = 10101011,01$$

Se pasa a una forma con exponente dejando solo un entero

$$1,010101101 \times 2^7$$

El primer bit es de signo

$$1 = -$$

$$0 = +$$

Los siguientes 8numeros son el maximo exponente mas el exponente al que esta elevado el $2\,$

$$127 + 7 = 134$$

se convierte el 134 a base 2

$$134_10 = 10000110_2$$

y la parte decimal es la mantiza, que queda igual

010101101

11.8. Convert decimal fraction to float

para convertir de fraccionario a binario primero se convierte la parte entera y la parte fraccionaria se convierte usando el siguiente codigo Codigo:

```
//se da un flotante de la forma 0.321312 con
//el numero de digitos a convertir
//ejemplo
//in: 0.42344 3
//out: .001
string FraccionBinaria(float FraccionDecimal, int NumeroDeDigitos)
{
        string ans = ".";
        for(int i=0;i<NumeroDeDigitos;i++)</pre>
                FraccionDecimal*=2;
                 if(FraccionDecimal > 1.0)
                 {
                         FraccionDecimal-=1.0;
                         ans.push_back('1');
                 }
                 else
                 {
                         ans.push_back('0');
                 }
        }
        return ans;
}
```

11.9. Fixed point iteration

de una ecuacion se despeja x y se substituye, tomando el resultado anterior empezando desde una x arbitraria

11.10. Divided differences

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f(x_1, x_2) - f(x_0, x_1)}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, x_3] = \frac{x_2, x_3) - f(x_0, x_1)}{x_3 - x_0}$$

$$P_n = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0) \times \dots \times (x - x_n)$$

$$\frac{j \quad X_j \quad f(X_j) \quad 1}{0 \quad X_0 \quad f(X_0)} \frac{1}{1 \quad 1}$$

$$\frac{1 \quad X_1 \quad f(X_1) \quad f(X_0, X_1)}{2 \quad X_2 \quad f(X_2) \quad f(X_1, X_2)} \frac{1}{1 \quad 1}$$

11.11. Lagrange Polinomial

$$P_n(x) = \sum_{i=0}^{n} L_i(x) f(x_i)$$
$$L_i(x) = \prod_{\substack{j=0 \ j \neq i}}^{n} \frac{(x - x_j)}{(x_i - x_j)}$$

12. Arch Linux

12.1. Mantainance

#check file size
du -sh .cache/
#remove a file

```
rm -rt .cache/
     #delete what you don't need in .config file
specific mantainance:
     #check the failed systems
     systemctl --failed
     #check the systemd journal
     sudo journalctl -p 3-xb
     #if the system doesn't boots then ctrl+alt+shift then timeshift
     #then update mirrors
     #clar chache
     #then to update the whole system use:
     sudo pacman -Syyu
     #to check system updates
     sudo pacman -Syu
     #if you wan't to remove all packages in the drive use
     sudo pacman -Scc
     #remove all unwanted dependencies
     paru -Yc
     #remove orphan packages
     sudo pacman -Rns \$(pacman - Qdtq)
```

12.2. Print in arch linux

```
install packages: usbutils, lsusb, cups use this to make cups usable sudo systemct enable cups sudo systemctl start cups
```

#sudo pacman -Syyy Syncrhonise data use "mirror1"

localhost:631

lp -d HP_Officejey_Pro_8600]

12.3. configure date and time

hwclock --set --date = $"04/32/2021 \ 19:00:00"$ hwclock -hctosys

12.4. Configure wireless

```
#when entering an iso
iwctl
#then in the ui

#to list all available devices
device list

#to scan networks
station <device> scan

#to get newworks
station <device> get-network

#to connect to a network
station <device> connect "<name of network>"

#to check if the connection is staable
ping -c s 8.8.8.8

#don't forget before rebooting the iso run
pacman nmtui
```

dwm basic configuration

#MODKEY + shift + q to restart X server startx # to start the X server

12.5. mount devices

mount usb sticks:

```
#to mount a usb stick
mount /dev/sdb1 /mnt/<destination folder>
#to unmount a sub stick
umount /dev/sdb1
```

mount an android device:

```
#to mount and android device
simple-mtpfs --device 1 tablet/
#to unmount an android device
fusermount -u /tablet
```

13. Latex

13.1. commonly used special symbols

```
use the shortcut created to don't waste time \= \textbackslash 
|= \textbar 
_ = \_
```

13.2. Greek and Hebrew Letters

α	\ alpha	κ	\ kappa	ψ	\ psi
β	\ beta	λ	\ lambda	ρ	\ rho
χ	\ chi	$\mid \mu \mid$	\ mu	au	\ tau
ϵ	\ epsilon	Ø	\ o	θ	\ theta
$\mid \eta \mid$	\ eta	ω	\setminus omega	v	\ upsilon
γ	\setminus gamma	ϕ	\ phi	$ \xi $	\ xi
ι	\setminus iota	π	\ pi	ζ	\ zeta
F	\setminus digamma	Δ	\ Delta	Θ	\ Theta
ε	\ varepsilon	Γ	\ Gamma	$ \Upsilon $	\ Upsilon
\varkappa	\ varkappa	Λ	\ Lambda	Ξ	\ Xi
φ	\ varphi	Ω	\ Omega		
$\overline{\omega}$	\ varpi	Φ	\ Phi	×	\ aleph
ϱ	\ varrho	П	\ Pi		\ beth
ς	\ varsigma	Ψ	\ Psi	7	\ daleth
ϑ	\ vartheta	\sum	\ Sigma]	\ gimel

13.3. math constructs

$\frac{abc}{xyz}$	$\frac{\cluster{abc}{xyz}}$	\overline{abc}	\overline{abc}	\overrightarrow{abc}	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$\int_{0}^{\infty} f'$	$\setminus f$	\underline{abc}	\underline{abc}	$ \stackrel{\longleftarrow}{abc} $	\overleftarrow{abc}
\sqrt{abc}	\sqrt{abc}	\widehat{abc}	\widehat{abc}	\widehat{abc}	\overbrace{abc}
$\sqrt[n]{abc}$	$\sqrt[n]{abc}$	\widetilde{abc}	$$ \widetilde{abc}	abc	\underbrace{abc}

13.4. Delimeters

	{	\ {	L	\lfloor	/	/
\vert	{	\}		\rfloor		\backslash
	(\langle		\lceil	[[
\Vert		rangle]	\rceil]]

use the pair /lefts and /rights

example:

 $\left| \text{left} \right| expr \left| \text{right} \right|$

13.5. Variable Sized simbols

\sum	\sum	\int	\int	+	\biguplus
\prod	\prod	∮	oint	\cap	\bigcap
$ \coprod$	\coprod		\iint	U	\bigcup
\oplus	\bigoplus	V	\bigvee	\otimes	\bigotimes
\wedge	\bigwedge	\odot	\bigodot	Ū	\bigsqcup

13.6. binary operation relation symbols

\cap	\cap	U	\cup
\forall	\uplus	Ш	\sqcup
П	\sqcap	\land	\wedge
\ \	\vee	=	\equiv
\neq	\neq	\simeq	\simeq
\approx	\approx	Ė	\doteq
	\subset	•••	\because
	\sqsubset		\sqsubseteq
<u>></u>	\geq	· .	\therefore

13.7. arrow symbols

\leftarrow	\leftarrow	(\Leftarrow
\rightarrow	\rightarrow	\Rightarrow	\Rightarrow
\leftrightarrow	\leftrightarrow	\Leftrightarrow	\Leftrightarrow
 	\uparrow	1	Uparrow
↓	\downarrow	₩	Downarrow
1	\updownarrow	1	\Updownarrow
7	\nearrow	7	\searrow
1	\swarrow	_	\nwarrow

13.8. miscelanious

∞	\infty	∂	\partial
	\cdots	:	\vdots
:	\vdots		\ldots
٠٠.	\ddots	\forall	\forall
∃	\exists	∄	nexists
Ø	\emptyset	_	angle
_	\angle	4	\measuredangle
\cap	\cap	\cap	\cap
\cap	\cap	\cap	\cap

13.9. Matrices

matrices					
type	latex markup	Renders as			
Plain	$\begin{<<} opt>\\ matrix \\ 1 2 \\ 2 \\ 3 \\ end {<} opt> matrix \}$	1 2 3 4			

< opt >:

in this part you can specify which kind of matrix you wan't so you can place p: parenthesis matrix ()

b:bracket matrix []

B: for braces matrix

v: for pipes matrix —

V: for double pipe ——

14. Electronics

14.1. Logic Gates

And	A*B
Or	A+B
Nand	A'*B'
Nor	A'+B'
Not	A'
XOr	(A'*B) + (A*B')
XNor	[(A'*B) + (A*B')]'

14.2. MinTerminos y max terminos

a	b	С	term
0	0	0	$m_0 = x'y'z'$
0	0	1	$m_1 = x'y'z$
0	1	0	$m_2 = x'yz'$
0	1	1	$m_3 = x'yz$
1	0	0	$m_4 = xy'z'$
1	0	1	$m_5 = xy'z$
1	1	0	$m_6 = xyz'$
1	1	1	$m_7 = xyz$

15. Physics

15.1. Motion with constant acceleration

$$v = v_0 + at$$

$$x = x_0 + v_0 t + \frac{at^2}{2}$$

$$v^2 = v_0^2 + 2a(x - x_0)$$