CSE3020 - Data Visualisation

Lab Assignment 1

R Programming: TN District Data

SANJIT KUMAR 18BCE0715 DR. NALINI N LAB - L13 + L14

Question

Consider the following transportation dataset of three districts. It describes district code, District name, Transport mode, Total population and people who drove alone.

D_code	District	Transport Mode	Pop_total	Selfdrive_total
45	Ranipet	Bicycle	73560	2414
45	Ranipet	Bike	1634923	42902
78	Thirupatthur		797818	21348
78	Thirupatthur		3865125	75246
78	Thirupatthur	Bicycle	42880	1088
78	Thirupatthur		7710301	399041
111	Vellore	Car	373402	13922
111	Vellore	Bicycle	27313	1075
111	Vellore	Bike	14525322	557036

Write R code for the below questions

- · Create data frame for the above data
- How many observations of 'district' are missing from the data frame
- Count the number of self-drive in each district.
- Print max and min of pop_total.
- Derive new information/print "percentage of people who drove alone in all three districts" and also rank districts based on the % of people who used bicycle.

Source Code

```
# 18BCE0715 - Sanjit Kumar
# dataset creation
tn transport data <- data.frame(</pre>
  D_{code} = c(45, 45, 78, 78, 78, 78, 111, 111, 111),
  District = c(rep(c("Ranipet"), times=2),
rep(c("Thirupatthur"), times=4), rep(c("Vellore"), times=3)),
  Transport Mode =
c("Bicycle", "Bike", NA, NA, "Bicycle", NA, "Car", "Bicycle", "Bike"),
  Pop total =
c(73560,1634923,797818,3865125,42880,7710301,373402,27313,14525322
  Selfdrive total =
c(2414,42902,21348,75246,1088,399041,13922,1075,557036)
)
tn transport data
# total number of missing values
print("Total number of missing values:")
sum(is.na(tn transport data))
# max and min of population total
print("Maximum value of attribute Pop total is:")
max(tn_transport_data$Pop_total)
print("Minimum value of attribute Pop total is:")
min(tn transport data$Pop total)
# percentage of people who drove alone in all three districts
print("percentage of people who drove alone in all three
districts")
```

```
percentage of selfdriving people =
sum(tn transport data$Selfdrive total)*100/
sum(tn transport data$Pop total)
percentage_of_selfdriving_people
# districts ranked on % of bicycle users
print("districts ranked on % of bicycle users")
ranipet subset = subset(tn transport data,District=="Ranipet")
thirupatthur subset =
subset(tn transport data,District=="Thirupatthur")
vellore subset = subset(tn transport data,District=="Vellore")
s1 <- tn transport data$Pop total[tn transport data$Transport Mode</pre>
== "Bicycle" & tn transport data$District == "Ranipet" ]*100/
sum(tn_transport_data$Pop_total[tn_transport_data$District ==
"Ranipet"])
s1
s2 <- tn transport data$Pop total[tn transport data$Transport Mode
== "Bicycle" & !is.na(tn_transport_data$Transport_Mode) &
tn transport data$District == "Thirupatthur"]*100/
sum(tn transport data$Pop total[tn transport data$District ==
"Thirupatthur"])
s2
s3 <- tn transport data$Pop total[tn transport data$Transport Mode
== "Bicycle" & tn transport data$District == "Vellore" ]*100/
sum(tn_transport_data$Pop_total[tn_transport_data$District ==
"Vellore"])
s3
df bicycle district percent = data.frame(
  District=c("Ranipet","Thirupatthur","Vellore"),
  bicycle percent = c(s1, s2, s3)
)
df bicycle district percent
rank(df bicycle district percent$bicycle percent)
```

Output Screenshots

a. Data frame with given data

```
> source('~/Documents/VIT_DOC/vit_semester_6/B2 - Data Visualisation/lab/submission1/18BCE0715_Assignment1.R')
> tn_transport_data <- data.frame(
  D_{code} = c(45,45,78,78,78,78,111,111,111),
  District = c(rep(c("Ranipet"),times=2), rep(c("Thirupatthur"),times=4), rep(c("Vellore"),times=3)),
   Transport_Mode = c("Bicycle","Bike",NA,NA,"Bicycle",NA,"Car","Bicycle","Bike"),
   Pop_total = c(73560,1634923,797818,3865125,42880,7710301,373402,27313,14525322),
   Selfdrive\_total = c(2414, 42902, 21348, 75246, 1088, 399041, 13922, 1075, 557036)
+ )
> tn_transport_data
 D_code
           District Transport_Mode Pop_total Selfdrive_total
             Ranipet
                     Bicycle
                                      73560
                           Bike 1634923
                                                      42902
2
     45
             Ranipet
    78 Thirupatthur
                                    797818
                                                     21348
                             <NA> 3865125
                                                     75246
4
    78 Thirupatthur
     78 Thirupatthur
                         Bicycle 42880

<NA> 7710301

Car 373402
5
                                                       1088
    78 Thirupatthur
6
                                                     399041
   111 Vellore
                                    373402
                                                     13922
                           Bicycle 27313
   111
             Vellore
                                                      1075
            Vellore
                            Bike 14525322
                                                     557036
   111
```

b. Missing data from frame

```
[1] "Total number of missing values:"
> sum(is.na(tn_transport_data))
[1] 3
```

c. Max and Min of Pop_Total

```
> # max and min of population total
> print("Maximum value of attribute Pop_total is:")
[1] "Maximum value of attribute Pop_total is:"
> max(tn_transport_data$Pop_total)
[1] 14525322
> print("Minimum value of attribute Pop_total is:")
[1] "Minimum value of attribute Pop_total is:"
> min(tn_transport_data$Pop_total)
[1] 27313
```

d.

- Percentage of people who drive bicycle in all three districts

```
[1] "percentage of people who drove alone in all three districts"
> percentage_of_selfdriving_people = sum(tn_transport_data$Selfdrive_total)*100/sum(tn_transport_data$Pop_total)
> percentage_of_selfdriving_people
[1] 3.83493
```

- Districts ranked on % of bicycle users

```
[1] "districts ranked on % of bicycle users"
> ranipet_subset = subset(tn_transport_data,District=="Ranipet")
> thirupatthur_subset = subset(tn_transport_data,District=="Thirupatthur")
> vellore_subset = subset(tn_transport_data,District=="Vellore")
> s1 <- tn_transport_data$Pop_total[tn_transport_data$Transport_Mode == "Bicycle" & tn_transport_data$District == "R
0/sum(tn_transport_data$Pop_total[tn_transport_data$District == "Ranipet"])
> s1
[1] 4.305574
> s2 <- tn_transport_data$Pop_total[tn_transport_data$Transport_Mode == "Bicycle" & !is.na(tn_transport_data$Transp
n_transport_data$District == "Thirupatthur"]*100/sum(tn_transport_data$Pop_total[tn_transport_data$District == "Thir
[1] 0.3453574
> s3 <- tn_transport_data$Pop_total[tn_transport_data$Transport_Mode == "Bicycle" & tn_transport_data$District == "V
0/sum(tn_transport_data$Pop_total[tn_transport_data$District == "Vellore"])
[1] 0.182989
> df_bicycle_district_percent = data.frame(
+ District=c("Ranipet", "Thirupatthur", "Vellore"),
+ bicycle_percent = c(s1,s2,s3)
> df_bicycle_district_percent
     District bicycle_percent
      Ranipet 4.3055740
1
2 Thirupatthur
                   0.3453574
                 0.1829890
     Vellore
> rank(df_bicycle_district_percent$bicycle_percent)
[1] 3 2 1
```