Assignment 2

Use the Big M method to solve the following LPs:

1 min
$$z = 4x_1 + 4x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 \le 2$
 $2x_1 + x_2 \le |3|$
 $2x_1 + x_2 + 3x_3 \ge 3$
 $x_1, x_2, x_3 \ge 0$

2 min
$$z = 2x_1 + 3x_2$$

s.t. $2x_1 + x_2 \ge 4$
 $x_1 - x_2 \ge -1$
 $x_1, x_2 \ge 0$

3 max
$$z = 3x_1 + x_2$$

s.t. $x_1 + x_2 \ge 3$
 $2x_1 + x_2 \le 4$
 $x_1 + x_2 = 3$
 $x_1, x_2 \ge 0$

4 min
$$z = 3x_1$$

s.t. $2x_1 + x_2 \ge 6$
 $3x_1 + 2x_2 = 4$
 $x_1, x_2 \ge 0$

5 min
$$z = x_1 + x_2$$

s.t. $2x_1 + x_2 + x_3 = 4$
 $x_1 + x_2 + 2x_3 = 2$
 $x_1, x_2, x_3 \ge 0$

6 min
$$z = x_1 + x_2$$

s.t. $x_1 + x_2 = 2$
 $2x_1 + 2x_2 = 4$
 $x_1, x_2 \ge 0$

7.

Use the Big M method and the two-phase method to find the optimal solution to the following LP:

max
$$z = 5x_1 - x_2$$

s.t. $2x_1 + x_2 = 6$
 $x_1 + x_2 \le 4$
 $x_1 + 2x_2 \le 5$
 $x_1, x_2 \ge 0$