TRẦN QUỐC NGHĨA

744 CÂU TRẮC NGHIỆM OXYZ

CÓ ĐÁP ÁN

744 CÂU TRẮC NGHIỆM OXYZ

Vấn đề 1. TOA ĐỘ ĐIỂM. TOA ĐỘ VÉCTƠ

Câu 1. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC biết A(3;1;2), B(1;-4;2), C(2;0;-1). Tìm tọa độ trọng tâm G của tam giác ABC.

A. G(2;-1;1).

B. G(6;-3;3).

C. G(2;1;1)

D. G(2;-1;3).

[2H3-1] Trong mặt không gian tọa độ Oxyz, cho tam giác ABC với A(-2;1;-3), B(5;3;-4), Câu 2. C(6, -7, 1). Tọa độ trọng tâm G của tam giác là

A. G(6;-7;1).

B. G(3;-1;-2). **C.** G(3;1;-2).

D. G(-3;1;2).

[2H3-1] Trong không gian Oxyz, cho hai điểm A(3;4;2), B(-1;-2;2) và G(1;1;3) là trọng Câu 3. tâm của tam giác ABC. Tọa độ điểm C là

A. C(1;1;5).

B. C(1;3;2).

C. C(0;1;2).

D. C(0;0;2).

[2H3-1] Trong không gian với hệ toạ độ Oxyz cho 4 điểm M(1;2;3), N(-1;0;4), P(2;-3;1), Câu 4. Q(2;1;2). Cặp véctơ nào sau đây là véc tơ cùng phương?

A. \overrightarrow{OM} và \overrightarrow{NP} .

B. \overrightarrow{MP} và \overrightarrow{NO} . **C.** \overrightarrow{MO} và \overrightarrow{NP} . **D.** \overrightarrow{MN} và \overrightarrow{PO} .

[2H3-1] Trong không gian tọa độ Oxyz, cho ba vécto $\vec{a}(3;0;1), \ \vec{b}(1;-1;-2), \ \vec{c}(2;1;-1)$. Tính Câu 5. $T = \vec{a} \cdot (\vec{b} + \vec{c})$.

A. T = 3.

B. T = 6.

C. T = 0.

D. T = 9.

[2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;0;-3), B(2;4;-1), Câu 6. C(2;-2;0). Tọa độ trọng tâm của tam giác ABC là

A. $\left(\frac{5}{2};1;-2\right)$.

B. $\left(\frac{5}{3}; \frac{2}{3}; -\frac{4}{3}\right)$. **C.** (5; 2; 4).

D. $\left(\frac{5}{3}; \frac{2}{3}; \frac{4}{3}\right)$.

[2H3-1] Cho vécto $\vec{a} = (1;3;4)$, tìm vécto \vec{b} cùng phương với vécto \vec{a} . Câu 7.

A. $\vec{b} = (-2, 6, 8)$.

B. $\vec{b} = (-2; -6; -8)$. **C.** $\vec{b} = (-2; -6; 8)$. **D.** $\vec{b} = (2; -6; -8)$.

[2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;2;1), B(-1;0;5). Tìm tọa Câu 8. độ trung điểm của đoạn AB.

A. I(2;2;6)

B. *I* (2;1;3)

C. *I*(1;1;3)

D. I(-1;-1;1)

Câu 9. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho A(1;1;0), B(3;-1;2). Tọa độ điểm Csao cho B là trung điểm của đoan thẳng AC là

A. C(4;-3;5).

B. C(-1;3;-2).

C. C(2;0;1).

D. C(5;-3;4).

Câu 10. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0; -2; -1) và A(1;-1;2). Tọa độ điểm M thuộc đoạn AB sao cho MA=2MB là

A. $M\left(\frac{2}{3}; -\frac{4}{3}; 1\right)$. **B.** $M\left(\frac{1}{2}; -\frac{3}{2}; \frac{1}{2}\right)$. **C.** M(2; 0; 5). **D.** M(-1; -3; -4).

	độ điểm C sao cho A I A . $C(1;-3;2)$.		C. C(-2·0·-1)	D. C(2:-2:2)
Câu 12	,	,	,	truc là \vec{i} , \vec{j} , \vec{k} . Cho
Cau 12.	$M(2;-1;1)$. Khi đó \overline{ON}		vecto don vi tien cae	true la i , j , k . Cho
	$\mathbf{A.} \ -\vec{k} + \vec{j} + 2\vec{i} \ .$	B. $2\vec{k} - \vec{j} + \vec{i}$.	$\mathbf{C.} \ \ \vec{2i} + \vec{j} - \vec{k} \ .$	$\mathbf{D.} \ \vec{k} - \vec{j} + 2\vec{i} \ .$
Câu 13.	[2H3-1] Trong không $\vec{c} = (-6; 1; -1)$. Tìm tọa			$\vec{b} = (5;7;2), \ \vec{b} = (3;0;4),$
	A. $\vec{m} = (3; -22; 3).$	B. $\vec{m} = (3;22;3).$	C. $\vec{m} = (-3; 22; -3)$.	D. $\vec{m} = (3; 22; -3).$
Câu 14.	[2H3-1] Trong không gi	an với hệ tọa độ $\left(O; \vec{i}; \vec{j} ight)$	(\vec{k}) , cho véctor $\overrightarrow{OM} = \vec{j}$	$-ec{k}$. Tìm tọa độ điểm M .
	A. $M(1;-1;0)$.	B. $M(1;-1)$.	C. $M(0;1;-1)$.	D. $M(1;1;-1)$.
Câu 15.	[2H3-1] Hai điểm <i>M</i> và sau đây là đúng? A. Hai điểm <i>M</i> và <i>M'</i> B. Hai điểm <i>M</i> và <i>M'</i> C. Hai điểm <i>M</i> và <i>M'</i> D. Hai điểm <i>M</i> và <i>M'</i>	có cùng tung độ và cao có cùng hoành độ và ca có hoành độ đối nhau.	độ. 10 độ.	áng (Oxy). Phát biểu nào
Câu 16.	[2H3-1] Trong không g tọa độ trung điểm <i>I</i> củ A. <i>I</i> (-2; 2;1).	a đoạn thẳng AB .		2;3) và $B(-1;2;5)$. Tìm D. $I(2;-2;-1)$.
Câu 17.		G của tam giác ABC	thuộc trục Ox khi cặp (` '
Câu 18.	[2H3-1] Trong không g tọa độ của vécto \vec{b} thỏa $\mathbf{A} \cdot \left(\frac{1}{2}; -2; -1\right)$.	a mãn biểu thức $2\vec{b} - \vec{a}$	$+4\vec{c}=\vec{0}$	$(0;2), \vec{c} = (1;-1;0).$ Tim $\mathbf{D}. \left(\frac{-1}{2};2;-1\right).$
Câu 19.	[2H3-1] Trong không g độ điểm N sao cho I	9		-2;3), I(1;0;4). Tìm tọa
	A. $N(5;-4; 2)$.	B. $N(0; 1; 2)$.	C. $N\left(2;-1; \frac{7}{2}\right)$.	D. $N(-1; 2; 5)$.
Câu 20.	[2H3-1] Trong không gia A. $\overrightarrow{AB} = (1; -1; 1)$.			
Câu 21.	[2H3-1] Trong không	gian với hệ tọa độ	Oxyz, cho ba điểm	A(1;2;-1), B(2;-1;3),

C(-3;5;1). Tìm tọa độ điểm D sao cho tứ giác ABCD là hình bình hành.

A. D(-4;8;-5). **B.** D(-2;2;5). **C.** D(-4;8;-3). **D.** D(-2;8;-3).

Câu 11. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;-2;1), B(2;-4;3). Tìm toạ

Câu 24.	[2H3-1] Trong không gian $Oxyz$, cho ba vécto: $\vec{a} = (2; -5; 3)$, $\vec{b} = (0; 2; -1)$, $\vec{c} = (1; 7; 2)$. Tọa					
	độ véctor $\vec{x} = 4\vec{a} - \frac{1}{3}\vec{b} + 3\vec{c}$ là					
	A. $\vec{x} = \left(11; \frac{5}{3}; \frac{53}{3}\right)$.	B. $\vec{x} = \left(5; -\frac{121}{3}; \frac{17}{3}\right)$. C. $\vec{x} = \left(11; \frac{1}{3}; \frac{55}{3}\right)$.	D. $\vec{x} = \left(\frac{1}{3}; \frac{1}{3}; 18\right)$.		
Câu 25.	[2H3-1] Trong không	gian Oxyz, cho bốn	n điểm $A(1;-2;0)$, B	(1;0;-1) và $C(0;-1;2)$,		
	D(0;m;k). Hệ thức giữ	ữa <i>m</i> và <i>k</i> để bốn điển	n <i>ABCD</i> đồng phẳng là			
	A. $m + k = 1$.	B. $m + 2k = 3$.	C. $2m-3k=0$.	D. $2m + k = 0$.		
Câu 26.	[2H3-1] Trong không	gian Oxyz, cho hai véc	eto $\vec{a} = (2;1;-2), \ \vec{b} = (0)$	$(;-\sqrt{2};\sqrt{2})$. Tất cả giá trị		
	của m để hai vécto \vec{u} =	$= 2\vec{a} + 3m\vec{b} \text{ và } \vec{v} = m\vec{a} - \vec{b}$	$ec{b}$ vuông là			
	A. $\frac{\pm\sqrt{26}+\sqrt{2}}{6}$.	B. $\frac{11\sqrt{2} \pm \sqrt{26}}{18}$.	C. $\frac{26 \pm \sqrt{2}}{6}$.	D. $\frac{\pm 26 + \sqrt{2}}{6}$.		
Câu 27.	[2H3-1] Trong không	gian Oxyz, cho hình h	nộp <i>ABCD.A'B'C'D</i> ' cớ	S A(1;1;-6), B(0;0;-2),		
		–1). Thể tích khối hộp c				
	A. 12.	B. 19.	C. 38.	D. 42.		
Câu 28.	[2H3-1] Trong không g	gian với hệ tọa độ <i>Oxyz</i>	, cho ba điểm $A(3;-4;$	0), B(0;2;4), C(4;2;1).		
	Tìm tọa độ điểm D thuộc trục Ox sao cho $AD = BC$.					
	$\mathbf{A.} \begin{bmatrix} D(0;0;0) \\ D(6;0;0) \end{bmatrix}.$	B. <i>D</i> (0;-6;0).	$\mathbf{C.} \begin{bmatrix} D(0;0;0) \\ D(-6;0;0) \end{bmatrix}.$	D. $D(6;0;0)$.		
Câu 29.	[2H3-1] Trong không gi thức nào?	ian với hệ tọa độ Oxyz,	độ dài của véctor $\vec{u} = (a$;b;c) được tính bởi công		
		B. $ \vec{u} = a^2 + b^2 + c^2$.	$\mathbf{C.} \ \left \vec{u} \right = \sqrt{a+b+c}.$	D. $ \vec{u} = \sqrt{a^2 + b^2 + c^2}$.		
Câu 30.	[2H3-1] Trong không g	gian $Oxyz$, cho $\vec{u} = (-1)$	$(3;2)$, $\vec{v} = (-3;-1;2)$ kh	ni đó $\vec{u}.\vec{v}$ bằng		
	A. 10.	B. 2.	C. 3.	D. 4.		
Câu 31.	[2H3-1] Trong không	gianvới hệ trục Oxyz	, cho tam giác ABC	có $A(1;1;0)$, $B(0;-1;1)$,		
	C(1;2;1). Khi đó diện tích tam giác ABC là					
	A. $\sqrt{11}$.	B. $\frac{1}{2}$.	C. $\frac{\sqrt{11}}{2}$.	D. $\frac{3}{2}$.		
•						
GV TRẦN QUỐC NGHĨA-sưu tẩm và biên tập Trang 3/94						

Câu 22. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;0;2), B(-2;1;3),

Câu 23. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho $\vec{a} = (-2; 3; 1)$, $\vec{b} = (1; -3; 4)$. Tìm tọa độ

A. $\vec{x} = (3; -6; 3)$. **B.** $\vec{x} = (-3; 6; -3)$. **C.** $\vec{x} = (-1; 0; 5)$. **D.** $\vec{x} = (1; -2; 1)$.

C. (2;3;-1).

D. (2;-3;1)

C(3;2;4), D(6;9;-5). Hãy tìm tọa độ trọng tâm của tứ diện ABCD.

B. (-2;3;1).

A. (2;3;1).

véctor $\vec{x} = \vec{b} - \vec{a}$.

Câu 32.	[2H3-1] Trong không	gian với hệ trục tọa độ (Oxyz, cho các điểm	A(0;-2;-1) và $A(1;-1;2)$.
	Tọa độ điểm M thuộ	c đoạn AB sao cho MA =	= 2MB là	
	A. $M\left(\frac{2}{3}; -\frac{4}{3}; 1\right)$.	B. $M\left(\frac{1}{2}; -\frac{3}{2}; \frac{1}{2}\right)$.	C. $M(2; 0; 5)$.	D. $M(-1;-3;-4)$.
CA 22	FATTO 43 TD 11 A	// 1 4 14	→	(2.1.0) 7 (.1.0.0) 7(1

Câu 33. [2H3-1] Trong không gian với hệ tọa độ Oxyz cho hai vecto a = (2;1;0), b = (-1;0;-2). Tính $\cos(\vec{a}, \vec{b})$

A.
$$\cos(\vec{a}, \vec{b}) = \frac{2}{25}$$
. **B.** $\cos(\vec{a}, \vec{b}) = -\frac{2}{5}$. **C.** $\cos(\vec{a}, \vec{b}) = -\frac{2}{25}$. **D.** $\cos(\vec{a}, \vec{b}) = \frac{2}{5}$.

Câu 34. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho ba vécto $\vec{a} = (-1;1;0)$, $\vec{b} = (1;1;0)$ và $\vec{c} = (1;1;1)$. Trong các mệnh đề sau mệnh đề nào đúng?

A.
$$\cos(\vec{b}, \vec{c}) = \frac{2}{\sqrt{6}}$$
.

B.
$$\vec{a}.\vec{c} = 1$$
.

C. \vec{a} và \vec{b} cùng phương.

D.
$$\vec{a} + \vec{b} + \vec{c} = \vec{0}$$
.

Câu 35. [2H3-2] Cho tam giác ABC với A(1;2;-1), B(2;-1;3), C(-4;7;5). Độ dài phân giác trong của $\triangle ABC$ kẻ từ đỉnh B là

A.
$$\frac{2\sqrt{74}}{5}$$
.

B.
$$\frac{2\sqrt{74}}{3}$$
. **C.** $\frac{3\sqrt{73}}{3}$.

C.
$$\frac{3\sqrt{73}}{3}$$

D.
$$2\sqrt{30}$$
.

Câu 36. [2H3-2] Trong không gian với hệ trục toạ độ Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA.

A.
$$OA = 3$$
.

B.
$$OA = 9$$
.

C.
$$OA = \sqrt{5}$$
.

D.
$$OA = 5$$
.

Câu 37. [2H3-2] Trong không gian với hệ tọa độ Oxyz cho hai điểm M(3;0;0), N(0;0;4). Tính độ dài đoan thẳng MN.

A.
$$MN = 10$$
.

B.
$$MN = 5$$
.

$$\mathbf{C}$$
, $MN = 1$

D.
$$MN = 7$$
.

Câu 38. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;-2;-1) và B(1;-1;2). Tọa độ điểm M thuộc đoạn thẳng AB sao cho MA = 2MB là

B.
$$\left(\frac{1}{2}; -\frac{3}{2}; \frac{1}{2}\right)$$
. **C.** $\left(\frac{2}{3}; -\frac{4}{3}; 1\right)$. **D.** $\left(-1; -3; -4\right)$.

$$\mathbf{C.}\left(\frac{2}{3}; -\frac{4}{3}; 1\right).$$

[2H3-2] Trong không gian với hệ tọa độ Oxyz, bộ ba điểm A, B, C nào sau đây không tạo thành **Câu 39.** tam giác?

A.
$$A(0;-2;5)$$
, $B(3;4;4)$, $C(2;2;1)$. **B.** $A(1;2;4)$, $B(2;5;0)$, $C(0;1;5)$.

B.
$$A(1;2;4)$$
, $B(2;5;0)$, $C(0;1;5)$.

C.
$$A(1;3;1)$$
, $B(0;1;2)$, $C(0;0;1)$.

D.
$$A(1;1;1)$$
, $B(-4;3;1)$, $C(-9;5;1)$.

[2H3-2] Trong hệ tọa độ Oxyz cho $\vec{u} = (x;0;1), \ \vec{v} = (\sqrt{2};-\sqrt{2};0)$. Tìm x để góc giữa \vec{u} và \vec{v} Câu 40. bằng 60°?

A.
$$x = -1$$
.

B.
$$x = +1$$
.

C.
$$x = 0$$
.

D.
$$x = 1$$
.

Câu 41. [2H3-2] Cho bốn điểm A(a;-1;6), B(-3;-1;-4), C(5;-1;0) và D(1;2;1) thể tích của tứ diện ABCD bằng 30. Giá trị của a là

Câu 42.	2. [2H3-2] Trong không gian với hệ tọa độ $Oxyz$, cho $A(1;-3;2)$, $B(0;1;-1)$, $G(2;-1;1)$ tọa độ điểm C sao cho tam giác ABC nhận G là trọng tâm.			
	A. $C(1;-1;\frac{2}{3})$.			D. $C(1;1;0)$.
Câu 43.	[2H3-2] Trong không g \overline{MN} là	gian với hệ tọa độ Oxy	$ \overline{C} $, cho $ \overrightarrow{OM} = 2\overrightarrow{j} - \overrightarrow{k} $, $ \overrightarrow{C} $	$\overrightarrow{DN} = 2\overrightarrow{j} - 3\overrightarrow{i}$. Tọa độ của
	A. (-3;0;1).	B. (1;1;2).	C. (-2;1;1).	D. (-3;0;-1).
Câu 44.		gian với hệ trục tọa đ $\dot{0}$ điểm D sao cho tứ giá		A(1; 2; -1), B(2; -1; 3), ành.
	A. $D(-4; 8; -5)$.	B. $D(-4; 8; -3)$.	C. $D(-2;2;5)$.	D. $D(-2; 8; -3)$.
Câu 45.				\overrightarrow{NP} biết $\overrightarrow{MN} = (2;1;-2)$, tam giác \overrightarrow{MNP} . Hệ thức
	A. $\overrightarrow{QP} = 3\overrightarrow{QM}$.	$\mathbf{B.} \ \overrightarrow{QP} = -3\overrightarrow{QM} \ .$	$\mathbf{C.} \ \overrightarrow{QP} = -5\overrightarrow{QM} \ .$	$\mathbf{D.} \ \overrightarrow{QP} = 5\overrightarrow{QM} \ .$
Câu 46.	[2H3-2] Cho ba vécto vécto $\vec{d} = (-3; -4; 5)$ p), $\vec{c} = (2; -1; 4)$. Khi đó, \vec{c} là
	$\mathbf{A.} \ \vec{d} = 2\vec{a} - 3\vec{b} - \vec{c} \ .$			
Câu 47.	[2H3-2] Trong không g M thỏa mãn $\overrightarrow{AB} = 2.\overrightarrow{M}$ A. $M\left(-2; 3; \frac{7}{2}\right)$.	\overrightarrow{IA} ?		; 0; 2). Tìm tọa độ điểm D. $M(-2; -3; \frac{7}{2})$.
Câu 48.	A(-3;2;1), C(4;2;0) ABCD.A'B'C'D'.	(-2;1;1), D'(3;5;4). Tìm tọa đ	p <i>ABCD.A'B'C'D'</i> . Biết ộ <i>A'</i> của hình hộp
	A. $A'(-3;3;3)$.	B. $A'(-3;-3;3)$.	C. $A'(-3;-3;-3)$.	D. $A'(-3;3;1)$.
Câu 49.	[2H3-2] Cho A(2;1;-1 ABCD bằng 5. Tọa độ), điểm D nằm trên trụ	ac Oy và thể tích tứ diện
	A. $(0; -7; 0)$.		B. (0;-7;0) hoặc (0;	8;0).
	C. (0;8;0).		D. $(0;7;0)$ hoặc $(0;-6)$	8;0).

Câu 50. [2H3-2] Trong không gian với hệ tọa độ Oxyz cho các vécto $\vec{a} = (1;2;1), \vec{b} = (-2;3;4), \vec{c} = (0;1;2), \vec{d} = (4;2;0)$. Biết $\vec{d} = x.\vec{a} + y.\vec{b} + z.\vec{c}$. Tổng x + y + z là **A.** 2. **B.** 3. **C.** 5. **D.** 4.

A. 2. B. 3. C. 5. D. 4.

Câu 51. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(3;4;5). Gọi N là điểm thỏa mãn $\overrightarrow{MN} = -6\overrightarrow{i}$. Tìm tọa độ của điểm N. **A.** N(3;-4;-5). **B.** N(-3;-4;-5). **C.** N(3;4;-5). **D.** N(-3;4;5).

	Mệnh đề nào sau đây sa	i?			
	$\mathbf{A.} \left[\vec{a}, \vec{b} \right] = \vec{0} .$	B. $\left[\vec{a}, \vec{b}\right] \neq \vec{0}$.	$\mathbf{C.} \ \left \vec{a} \right = 2 \left \vec{b} \right .$	$\mathbf{D.} \ \vec{a} = 2\vec{b} \ .$	
Câu 53.	[2H3-2] Trong không ş	gian với hệ trục tọa độ	Oxyz cho ba vécto d	$\vec{a} = (-1;1;0), \ \vec{b} = (1;1;0),$	
	$\vec{c} = (1;1;1)$. Mệnh đề nào	o dưới đây sai ?			
	A. $\vec{b} \perp \vec{c}$.	$\mathbf{B.} \ \left \vec{a} \right = \sqrt{2}.$	C. $\vec{b} \perp \vec{a}$.	$\mathbf{D.} \ \left \overrightarrow{c} \right = \sqrt{3}.$	
Câu 54.	[2H3-2] Trong không g	ian với hệ tọa độ Oxyz	, cho hai điểm $A(1;1;0)$), $B(2;-1;2)$. Điểm M	
	thuộc trục Oz mà MA^2				
	A. $M(0,0;-1)$.	B. $M(0;0;0)$.	C. $M(0;0;2)$.	D. $M(0;0;1)$.	
Câu 55.	[2H3-2] Trong không g Gọi <i>M</i> là điểm nằm trê			B(0; 3; 1); C(-3; 6; 4).	
	A. $2\sqrt{7}$.	B. $\sqrt{29}$.	$C = 2MB$. By dai doại $C = 3\sqrt{3}$.	D. $\sqrt{30}$.	
C)^ = (•			·	
Cau 56.			xyz, cho hai diem A ,	$B \text{ v\'oi } OA = (2; -1; 3),$	
	OB = (5; 2; -1). Tìm tọa độ của véctor AB .		→ , , ,		
	A. $AB = (3;3;-4)$.		B. $\overrightarrow{AB} = (2; -1; 3)$.		
	$\mathbf{C.} \ \overrightarrow{AB} = (7;1;2).$		D. $\overrightarrow{AB} = (-3; -3; 4)$.		
Câu 57.	[2H3-2] Trong không	gian với hệ toạ độ ($Oxyz$, cho ba vécto \overline{a}	$\vec{b} = (-1;1;0), \vec{b} = (1;1;0),$	
	$\vec{c} = (1;1;1)$. Trong các m	nệnh đề sau, mệnh đề nà	o sai?		
	$\mathbf{A.} \ \left \vec{a} \right = \sqrt{2} \ .$	B. $\vec{a} \perp \vec{b}$.	$\mathbf{C.} \ \left \vec{c} \right = \sqrt{3} \ .$	D. $\vec{b} \perp \vec{c}$.	
Câu 58.	[2H3-2] Trong không	gian với hệ trục tọa đ	ộ Oxyz, cho ba điểm	A(3;-2;3), B(-1;2;5),	
	C(1;0;1). Tìm toạ độ tr	ọng tâm G của tam giá	c ABC?		
	A. $G(1;0;3)$.	B. $G(3;0;1)$.	C. $G(-1;0;3)$.	D. $G(0;0;-1)$.	
Câu 59.	[2H3-2] Trong không ş	gian với hệ tọa độ <i>Ox</i>	yz, tam giác ABC có	A(1;2;3), B(2;1;0) và	
	trọng tâm $G(2;1;3)$. Tọa độ của đỉnh C là				
	A. $C(1;2;0)$.	B. $C(3;0;6)$.	C. $C(-3;0;-6)$.	D. $C(3;2;1)$.	
Câu 60.				A'B'C'D' có $A(1;2;-1)$,	
	C(3;-4;1), B'(2;-1;3)	và $D'(0;3;5)$. Giả sử	tọa độ $D(x; y; z)$ thì	giá trị của $x+2y-3z$ là	
	kết quả nào dưới đây?	B. 0.	C. 2.	D 2	
	A. 1.			D. 3.	
Câu 61.	[2H3-2] Trong không g tọa độ của điểm <i>N</i> .	ian với hệ tọa độ Oxyz.	, cho điểm $M(3;1;0)$ v	$N\dot{a} \ MN = (-1; -1; 0)$. Tim	
	A. $N(4; 2; 0)$.		B. $N(-4;-2; 0)$.		
	C. $N(-2; 0; 0)$.		D. $N(2; 0; 0)$.		
	*		*		

Câu 52. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai vécto $\vec{a} = (2;2;-4)$, $\vec{b} = (1;1;-2)$.

Câu 62. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho các điểm A(1;2;-1), B(2;3;4) và C(3;5;-2). Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC.

A.
$$I\left(-\frac{27}{2};15;2\right)$$
. **B.** $I\left(\frac{5}{2};4;1\right)$. **C.** $I\left(2;\frac{7}{2};-\frac{3}{2}\right)$. **D.** $I\left(\frac{37}{2};-7;0\right)$.

B.
$$I\left(\frac{5}{2};4;1\right)$$
.

C.
$$I\left(2; \frac{7}{2}; -\frac{3}{2}\right)$$
.

D.
$$I\left(\frac{37}{2}; -7; 0\right)$$

Câu 63. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2), B(-1;3;-9). Tìm tọa độ điểm M thuộc Oy sao cho $\triangle ABM$ vuông tại M.

A.
$$\begin{bmatrix} M\left(0;2+2\sqrt{5};0\right) \\ M\left(0;2-2\sqrt{5};0\right) \end{bmatrix}$$
 B. $\begin{bmatrix} M\left(0;2+\sqrt{5};0\right) \\ M\left(0;2-\sqrt{5};0\right) \end{bmatrix}$ **C.** $\begin{bmatrix} M\left(0;1+\sqrt{5};0\right) \\ M\left(0;1-\sqrt{5};0\right) \end{bmatrix}$ **D.** $\begin{bmatrix} M\left(0;1+2\sqrt{5};0\right) \\ M\left(0;1-2\sqrt{5};0\right) \end{bmatrix}$

Câu 64. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-2;2), B(-5;6;4), C(0;1;-2). Độ dài đường phân giác trong của góc A của $\Delta\!ABC$ là

A.
$$\frac{3}{2\sqrt{74}}$$
.

B.
$$\frac{2}{3\sqrt{74}}$$

A.
$$\frac{3}{2\sqrt{74}}$$
. **B.** $\frac{2}{3\sqrt{74}}$. **C.** $\frac{2\sqrt{74}}{3}$. **D.** $\frac{3\sqrt{74}}{2}$.

D.
$$\frac{3\sqrt{74}}{2}$$

Câu 65. [2H3-2] Trong không gian Oxyz, cho điểm A(2;0;-2), B(3;-1;-4), C(-2;2;0). Điểm Dtrong mặt phẳng (Oyz) có cao độ âm sao cho thể tích của khối tứ diện ABCD bằng 2 và khoảng cách từ D đến mặt phẳng (Oxy) bằng 1. Khi đó có tọa độ điểm D thỏa mãn bài toán là **B.** D(0;-3;-1). **C.** D(0;1;-1).

A. D(0;3;-1).

D. D(0;2;-1).

Câu 66. [2H3-2] Trong không gian Oxyz, cho A(2;0;0), B(0;2;0), C(0;0;2). Tập hợp các điểm Mtrên mặt phẳng Oxy sao cho $\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}^2 = 3$ là

A. Tập rỗng.

B. Một mặt cầu.

C. Môt điểm.

D. Môt đường tròn.

Câu 67. [2H3-2] Cho hai vécto \vec{a} và \vec{b} tạo với nhau một góc 120° và $|\vec{a}| = 2$, $|\vec{b}| = 4$. Tính $|\vec{a} + \vec{b}|$.

A.
$$|\vec{a} + \vec{b}| = \sqrt{8\sqrt{3} + 20}$$
. **B.** $|\vec{a} + \vec{b}| = 2\sqrt{7}$. **C.** $|\vec{a} + \vec{b}| = 2\sqrt{3}$. **D.** $|\vec{a} + \vec{b}| = 6$.

B.
$$|\vec{a} + \vec{b}| = 2\sqrt{7}$$

$$\mathbf{C.} \left| \vec{a} + \vec{b} \right| = 2\sqrt{3}$$

$$\mathbf{D.} \left| \vec{a} + \vec{b} \right| = 6$$

Câu 68. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho các điểm M(-1; 1; 2), N(1; 4; 3), P(5; 10; 5). Khẳng định nào sau đây là **sai**?

A. M, N, P là ba đỉnh của một tam giác.

B. $MN = \sqrt{14}$.

C. Trung điểm của NP là I(3; 7; 4).

D. Các điểm O, M, N, P cùng thuộc một mặt phẳng.

Câu 69. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD trong đó A(2;3;1), B(4;1;-2), C(6;3;7), D(-5;-4;8). Tính chiều cao h kẻ từ D của tứ diện.

A.
$$h = \sqrt{\frac{86}{19}}$$
. **B.** $h = \sqrt{\frac{19}{86}}$. **C.** $h = \frac{\sqrt{19}}{2}$. **D.** $h = 11$.

[2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(a; b; c). Mệnh đề nào sau đây là sai? **A.** Điểm M thuộc Oz khi và chỉ khi a = b = 0. **B.** Khoảng cách từ M đến Oxy bằng c.

C. Tọa độ hình chiếu của M lên Ox là (a;0;0). D. Tọa độ OM là (a;b;c).

Câu 71.	[2H3-2] Cho ba điểm . B, M thẳng hàng?	A(2;-1;5), B(5;-5;7)	và $M(x; y; 1)$. Với giá	trị nào của x , y thì A ,
	A. $x = 4$ và $y = -7$.	B. $x = 4$ và $y = 7$.	C. $x = -4$ và $y = -7$	D. $x = -4$ và $y = 7$
Câu 72.	[2H3-2] Cho tứ diện A cao AH của tứ diện.	ABCD biết $A(0;-1;3)$,	B(2;1;0), C(-1;3;3),	D(1;-1;-1). Tính chiều
	A. $AH = \frac{\sqrt{29}}{2}$.	B. $AH = \frac{14}{\sqrt{29}}$.	C. $AH = \sqrt{29}$.	D. $AH = \frac{1}{\sqrt{29}}$.
Câu 73.	[2H3-2] Trong không g	gian với hệ tọa độ Oxyz	, các điểm $A(1;2;3)$, B	(3;3;4), C(-1;1;2)
	A. là ba đỉnh của một taC. thẳng hàng và B nằ	am giác. m giữa A và C .	B. thẳng hàng và C naD. thẳng hàng và A n	, -
Câu 74.	[2H3-2] Trong không	gian với hệ tọa độ <i>Oxyz</i>	, cho tứ diện ABCD c	6 $A(1;6;2), B(4;0;6),$
	C(5;0;4) và $D(5;1;3)$	$\bigr)$. Tính thể tích V của từ	r diện ABCD.	
	A. $V = \frac{1}{3}$.	B. $V = \frac{3}{7}$.	C. $V = \frac{2}{3}$.	D. $V = \frac{3}{5}$.
Câu 75.	[2H3-2] Trong không	gian với hệ tọa độ <i>Oxy</i>	z, cho các vécto $\vec{a} = (-$	$-2;0;3$), $\vec{b} = (0;4;-1)$ và
	$\vec{c} = (m-2; m^2; 5)$. Tìm giá trị của m để \vec{a} , \vec{b} và \vec{c} đồng phẳng.			
	A. $m = 2$ hoặc $m = -4$ C. $m = -2$ hoặc $m = 4$		B. $m = -2$ hoặc $m = -4$ D. $m = 1$ hoặc $m = 6$.	l.
Câu 76.	[2H3-2] Trong không gian với hệ trục tọa độ $Oxyz$, cho các điểm $A(1;0;0)$, $B(0;1;0)$,			
	C(0;0;1) và $D(-2;1;-$	1). Thể tích của khối tú	diện ABCD bằng	
	A. 2.	B. 1.	C. $\frac{1}{3}$.	D. $\frac{1}{2}$.
Câu 77.	[2H3-2] Trong không g	gian Oxyz, cho 3 vécto	$\vec{a} = (-1;1;0); \ \vec{b} = (1;1;0)$	(\vec{c}) ; $\vec{c} = (1;1;1)$. Trong các
	kết luận sau, có bao nhi	êu kết luận <i>sai</i> ?		
	(I). $\vec{a} = -\vec{b}$; A. 3.	(II). $ \overrightarrow{b} = \overrightarrow{a} $;	(III). $\vec{b}.\vec{c}=2$;	(IV). $\vec{a} \perp \vec{b}$,
	A. 3.	B. 4.	C. 1.	D. 2.
Câu 78.	[2H3-2] Trong không g	gian với hệ tọa độ <i>Oxyz</i>	, cho $\vec{a} = (2; -1; 0)$, biế	t $ec{b}$ cùng chiều với $ec{a}$ và
	có $ \vec{a}.\vec{b} = 10$. Chọn phương án đúng.			
	A. $\vec{b} = (-6; 3; 0).$	B. $\vec{b} = (-4;2;0)$.	C. $\vec{b} = (6; -3; 0).$	D. $\vec{b} = (4; -2; 0).$
Câu 79.	[2H3-2] Trong không	g gian với hệ tọa đ	iộ Oxyz, cho hình	bình hành ABCD với
	A(1;0;1), B(2;1;2) và	giao điểm của hai đườ	rng chéo là $I\left(\frac{3}{2};0;\frac{3}{2}\right)$.	Tính diện tích của hình
	bình hành.	_		
	$\mathbf{A.} \sqrt{2}$.	B. $\sqrt{5}$.	C. $\sqrt{6}$.	D. $\sqrt{3}$.
Câu 80.	[2H3-2] Trong không	gian với hệ tọa độ	Oxyz, cho ba điểm A	A(1;0;-1), B(0;2;1) và

A. $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{0}$.

C(3;0;0). Khẳng định nào sau đây là đúng?

B. $\overrightarrow{AB}.\overrightarrow{AC} = 0$.

C. $|\overrightarrow{AB}| = |\overrightarrow{AC}|$. D. $\overrightarrow{AB} = 2.\overrightarrow{AC}$.

Câu 81. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-1;5), B(5;-5;7) và

	A. (2;1;-1).	B. (1;1;-2).	C. $(2;1;-2)$.	D. $(1;2;-1)$.
Câu 93.	[2H3-3] Trong không g	ian với hệ tọa độ Oxyz,	cho hai điểm $A(-2;1;$	3), $B(2;1;1)$. Tìm tọa độ
	tất cả các điểm M , biết	rằng M thuộc trục Ox	và $\left \overrightarrow{MA} + \overrightarrow{MB} \right = 6$.	
	A. $M(\sqrt{6};0;0)$ và $M($	$-\sqrt{6};0;0$).	B. $M(-3;0;0)$ và M	(3;0;0).
	C. $M(-2;0;0)$ và $M(2)$	2;0;0).	D. $M(-\sqrt{31};0;0)$ và	$M\left(\sqrt{31};0;0\right)$.
Câu 94.	[2H3-3] Trong không g $B'(2;1;2), D'(1;-1;1),$			A'B'C'D'. Biết $A(1;0;1)$, Khi đó $2a+b+c$ bằng
	A. 3.	B. 7.	C. 2.	D. 8.
Câu 95.	[2H3-3] Trong không g Điểm D thuộc Oy và t A. $D(0;-7;0)$.			1), $B(3;0;1)$, $C(2;-1;3)$. ểm D là
	C. $D(0;7;0)$ hoặc $D(0;7;0)$	0;-8;0).	D. $D(0;-7;0)$ hoặc	D(0;8;0).
Câu 96.	[2H3-3] Trong không $D(d;d;d)$. Tìm d để			B(-2;-6;2), C(1;2;-1),
	D(a,a,a). Tilli a de A. $d = 3$.	$\mathbf{B.} \ d = 4.$	C. $d = 1$.	D. $d = 2$.
Câu 97.			,), $B(5;1;-2)$, $C(7;9;1)$.
cau 77.	Tính độ dài đường phân		•	$(7, 10)^{10}$
	A. $\frac{3\sqrt{74}}{2}$.	B. $2\sqrt{74}$.	C. $3\sqrt{74}$.	D. $\frac{2\sqrt{74}}{3}$.
Câu 98.				-6;2, $C(1;2;-1)$. Để
	$MA^2 - MB^2 - MC^2$ đạt			
	A. $3\sqrt{10}$.	B. $3\sqrt{5}$.	C. $3\sqrt{3}$.	D. $2\sqrt{3}$.
Câu 99.	[2H3-4] Trong không g phân giác trong góc A			(2;1), $C(1;-2;2)$. Đường
	A. $\left(0; -\frac{4}{3}; \frac{2}{3}\right)$.			
C≏ 100	(3 3)	(5 5)	(3 3)	(3 3)
Cau 100.				ật $ABCD.A'B'C'D'$ có A với $m, n > 0$ và $m + n = 4$.
	0		0	đạt giá trị lớn nhất bằng
	A. $\frac{245}{108}$.	B. $\frac{9}{4}$.	C. $\frac{64}{27}$.	D. $\frac{75}{32}$.
	100	•	~ .	5 <u>2</u>

Câu 92. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có A(0;0;0),

 $B\big(3;0;0\big),\ D\big(0;3;0\big)$ và $D'\big(0;3;-3\big).$ Tọa độ trọng tâm của tam giác A'B'C là

Vấn đề 2. PHƯƠNG TRÌNH MẶT PHẮNG

Câu 101. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x-5y+2z-2=0. Vécto nào dưới đây là vécto pháp tuyến của mặt phẳng (P).

A. $\overrightarrow{n_1} = (3;5;2)$.

B. $\overrightarrow{n_1} = (3; -5; 2)$. **C.** $\overrightarrow{n_1} = (3; -5; -2)$ **D.** $\overrightarrow{n_1} = (-3; -5; 2)$.

Câu 102. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (α) : y-2z+4=0. Vécto nào dưới đây là vécto pháp tuyến của (α) ?

A. $\overrightarrow{n_2} = (1; -2; 0)$. **B.** $\overrightarrow{n_1} = (0; 1; -2)$. **C.** $\overrightarrow{n_3} = (1; 0; -2)$. **D.** $\overrightarrow{n_4} = (1; -2; 4)$.

Câu 103. [2H3-1] Trong không gian với hệ Oxyz, mặt phẳng (α) đi qua M(2;-1;1) nhận $\vec{n}=(3;2;-4)$ làm vécto pháp tuyến có phương trình là

A. $(\alpha): 3x-2y-4z-4=0$.

B. $(\alpha): 3x + 2y - 4z - 8 = 0$.

C. $(\alpha): 3x-2y-4z=0$.

D. $(\alpha): 2x - y + z - 8 = 0$.

Câu 104. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho vécto $\vec{n} = (2; -4; 6)$. Trong các mặt phẳng có phương trình sau đây, mặt phẳng nào nhận vécto \overrightarrow{n} làm vécto pháp tuyến?

A. 2x+6y-4z+1=0.

B. x-2y+3=0.

C. 3x-6y+9z-1=0.

D. 2x-4y+6z+5=0.

Câu 105. [2H3-1] Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) có phương trình 3x+2y-3=0. Phát biểu nào sau đây là đúng?

A. $\vec{n} = (6; 4; 0)$ là một véctơ pháp tuyến của mặt phẳng (P).

B. $\vec{n} = (6; 4; -6)$ là một vécto pháp tuyến của mặt phẳng (P).

C. $\vec{n} = (3; 2; -3)$ là một vécto pháp tuyến của mặt phẳng (P).

D. $\vec{n} = (3; 2; 3)$ là một vécto pháp tuyến của mặt phẳng (P).

Câu 106. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;2;3), B(-1;0;1) và C(0;4;-1). Mặt phẳng đi qua A và vuông góc với BC có phương trình là

A. x+4y-2z-3=0. **B.** x-4y+7=0. **C.** x+4y-2z+3=0. **D.** x+2y+3z-14=0.

Câu 107. [2H3-1] Trong không gian với hệ trục toạ độ Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng (Oyz)?

A. y = 0.

B. x = 0.

C. y - z = 0.

D. z = 0.

Câu 108. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;0;1) và B(-2;2;3). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB?

A. 3x + y + z - 6 = 0. **B.** 3x - y - z = 0. **C.** 6x - 2y - 2z - 1 = 0. **D.** 3x - y - z + 1 = 0.

Câu 109. [2H3-1] Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P) đi qua gốc toạ độ và nhận $\vec{n} = (3, 2, 1)$ là vécto pháp tuyến. Phương trình của mặt phẳng (P) là

A. 3x + 2y + z - 14 = 0. **B.** 3x + 2y + z = 0. **C.** 3x + 2y + z + 2 = 0. **D.** x + 2y + 3z = 0.

Câu 110. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho vécto $\vec{n} = (0;1;1)$. Mặt phẳng nào trong các mặt phẳng được cho bởi các phương trình dưới đây nhận vécto \vec{n} làm vécto pháp tuyến?

A. x = 0.

B. x + y = 0.

C. y + z = 0.

Câu 111. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x - y + z - 1 = 0. Vécto nào dưới đây là vécto pháp tuyến của (P)?

A. $\vec{n} = (2; -1; -1)$. **B.** $\vec{n} = (-2; 1; -1)$. **C.** $\vec{n} = (2; 1; -1)$. **D.** $\vec{n} = (-1; 1; -1)$.

Câu 112. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2), B(1; 5; 4). Phương trình nào dưới đây là phương trình của mặt phẳng trung trực của đoan AB?

A. x-2y-z+7=0. **B.** x+y+z-8=0.

C. x + y - z - 2 = 0.

D. 2x + y - z - 3 = 0.

Câu 113. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z}{2}$. Viết phương trình mặt phẳng (P) đi qua điểm M(2;0;-1) và vuông góc với d.

A. (P): x-y+2z=0. **B.** (P): x-2y-2=0. **C.** (P): x+y+2z=0. **D.** (P): x-y-2z=0.

Câu 114. [2H3-1] Trong không gian Oxyz, cho mặt phẳng (P): x-z-1=0. Vécto nào sau đây không là vécto pháp tuyến của mặt phẳng (P).

A. $\vec{n} = (2; 0; -2)$. **B.** $\vec{n} = (1; -1; -1)$. **C.** $\vec{n} = (-1; 0; 1)$. **D.** $\vec{n} = (1; 0; -1)$.

Câu 115. [2H3-1] Mặt phẳng đi qua gốc tọa độ và song song với mặt phẳng 5x-3y+2z-3=0 có phương trình:

A. 10x+9y+5z=0. **B.** 5x-3y+2z=0. **C.** 4x+y+5z-7=0. **D.** 5x-3y+2z-3=0.

Câu 116. [2H3-1] Trong không gian Oxyz, cho điểm A(3;2;1) và mặt phẳng (P): x-3y+2z-2=0. Phương trình mặt phẳng (Q) đi qua A và song song mặt phẳng (P) là

A. (Q): x-3y+2z+4=0.

B. (Q): x-3y+2z-1=0.

C. (Q): 3x + y - 2z - 9 = 0.

D. (Q): x-3y+2z+1=0.

Câu 117. [2H3-1] Trong không gian Oxyz, mặt phẳng (P) qua điểm A(1;1;1) và vuông góc với đường thẳng OA có phương trình là

A. (P): x - y + z = 0.

B. (P): x + y + z = 0.

C. (P): x + y + z - 3 = 0.

D. (P): x + y - z - 3 = 0

Câu 118. [2H3-1] Trong không gian Oxyz, cho mặt cầu $(S):(x-1)^2+(y+3)^2+(z-2)^2=49$ và điểm M(7;-1;5). Phương trình mặt phẳng tiếp xúc với mặt cầu (S) tại điểm M là

A. x + 2y + 2z - 15 = 0.

B. 6x-2y-2z-34=0.

C. 6x + 2y + 3z - 55 = 0.

- **D.** 7x y + 5z 55 = 0.
- Câu 119. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(6;2;-5), B(-4;0;7). Gọi (S) là mặt cầu đường kính AB. Phương trình mặt phẳng (P) tiếp xúc với mặt cầu (S) tại điểm A là

A. 5x - y - 6z - 62 = 0.

B. 5x + y - 6z - 62 = 0.

C. 5x + y + 6z - 62 = 0.

- **D.** 5x + y 6z + 62 = 0.
- Câu 120. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x+1}{2} = \frac{y-1}{1} = \frac{z+3}{3}$ và điểm A(-4;1;3). Phương trình mặt phẳng đi qua A và vuông góc với đường thẳng d là

A. 2x - y - 3z + 18 = 0.

B. 2x - y + 3z = 0.

C. 2x - y - 3z - 18 = 0.

D. 2x - y - 3z + 36 = 0.

Câu 121. [2H3-1] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) qua điểm A(1; -3; 2) và vuông góc với hai mặt phẳng (α) : x+3=0, (β) : z-2=0 có phương trình là

A. y + 3 = 0.

B. y-2=0.

C. 2y-3=0.

D. 2x-3=0.

Câu 122. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;0), B(0;-1;0) và C(0;0;3). Viết phương trình mặt phẳng (ABC).

A. 3x + 6y + 2z - 6 = 0.

B. 3x - 6y + 2z + 6 = 0.

C. 3x-6y+2z-6=0.

D. 3x-2y+2z-6=0.

Câu 123. [2H3-1] Trong không gian với hệ toạ độ Oxyz cho ba điểm A(2;0;0), B(0;-3;0), C(0;0;5). Viết phương trình mặt phẳng (ABC).

A. $\frac{x}{2} + \frac{y}{3} + \frac{z}{5} = 0$. **B.** $\frac{x}{2} - \frac{y}{2} + \frac{z}{5} = 1$. **C.** 2x - 3y + 5z = 1. **D.** 2x - 3y + 5z = 0.

Câu 124. [2H3-1] Trong không gian Oxyz, cho các điểm A(0;1;1), B(2;5;-1). Tìm phương trình mặt phẳng (P) qua A, B và song song với trục hoành.

A. (P): y + 2z - 3 = 0.

B. (P): y+3z+2=0.

C. (P): x + y - z - 2 = 0.

D. (P): y+z-2=0.

Câu 125. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho A(1;-1;5), B(0;0;1). Mặt phẳng chứa A, B và song song với Oy có phương trình là

A. 2x+z-3=0. **B.** x-4z+2=0. **C.** 4x-z+1=0. **D.** 4x-z-1=0.

Câu 126. [2H3-1] Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (α) đi qua A(2;-1;4), B(3;2;-1) và vuông góc với mặt phẳng (Q): x+y+2z-3=0.

A. 5x + 3y - 4z + 9 = 0.

B. 5x + 3y - 4z = 0.

C. 11x-7y-2z-21=0.

D. 3x - y - z - 3 = 0.

Câu 127. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho A(0;0;a); B(b;0;0); C(0;c;0) với $a,b,c \in \mathbb{R}$ và $abc \neq 0$. Khi đó phương trình mặt phẳng (ABC) là

A. $\frac{x}{b} + \frac{y}{c} + \frac{z}{a} = 1$. **B.** $\frac{x}{c} + \frac{y}{b} + \frac{z}{a} = 1$. **C.** $\frac{x}{b} + \frac{y}{a} + \frac{z}{c} = 1$. **D.** $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$.

Câu 128. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho H(1;4;3). Mặt phẳng (P) qua H cắt các tia Ox, Oy, Oz tại ba điểm là ba đỉnh của một tam giác nhận H làm trực tâm. Phương trình mặt phẳng (P) là

A. x-4y-3z+12=0.

B. x + 4y + 3z + 26 = 0.

C. x-4y-3z+24=0.

D. x+4y+3z-26=0.

Câu 129. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(1;0;0); B(0;-2;0); C(0;0;3). Phương trình nào dưới dây là phương trình mặt phẳng (ABC)?

A. $\frac{x}{3} + \frac{y}{-2} + \frac{z}{1} = 1$. **B.** $\frac{x}{-2} + \frac{y}{1} + \frac{z}{3} = 1$. **C.** $\frac{x}{1} + \frac{y}{-2} + \frac{z}{3} = 1$. **D.** $\frac{x}{3} + \frac{y}{1} + \frac{z}{-2} = 1$.

Câu 130. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;2;0), B(1;0;0), C(0;0;-3). Phương trình mặt phẳng (ABC) là

A. $\frac{x}{2} + \frac{y}{1} + \frac{z}{-3} = 1$. **B.** $\frac{x}{1} + \frac{y}{2} + \frac{z}{-3} = 0$. **C.** $\frac{x}{1} + \frac{y}{2} - \frac{z}{3} = 1$. **D.** $\frac{x}{1} + \frac{y}{2} - \frac{z}{3} = 0$.

Câu 131.	[2H3-1] Trong không g dưới đây không thuộc (cho mặt phẳng (α) : x	+y+z-6=0. Điểm nào
	A. $N(2;2;2)$.	B. $M(3;-1;-2)$.	C. $P(1;2;3)$.	D. $M(1;-1;1)$.
Câu 132.	0	0		$(\alpha): 2x-3y-z-1=0.$
	Điểm nào dưới đây khô	ng thuộc mặt phẳng $(lpha)$?	
	A. $P(3;1;3)$.	B. $Q(1;2;-5)$.	C. $M(-2;1;-8)$.	D. $N(4;2;1)$.
Câu 133.	đúng nhất trong các nhậ	in xét sau:		x-2z+1=0. Chọn câu
	A. (P) đi qua gốc tọa đ	tộ O .	B. (P) song song mặt	phăng (Oxy) .
	\mathbf{C} . (P) vuông góc với t	rục O_Z .	D. (P) song song với	trục tung.
Câu 134.		C(0;1;0), D(4;1;2). Đớ		D có tọa độ các đỉnh là ỉnh D xuống mặt phẳng
	A. 11.	_	C. 1.	D. 2.
Câu 135.	•	$-(z-3)^2 = 9$, điểm M (mặt cầu (S) tại M .	hệ tọa độ Oxy (2;1;1) thuộc mặt cầu. B. $(P): x+2y-2z-2$ D. $(P): x+2y+2z-6$	Lập phương trình mặt $= 0$.
Câu 136.	[2H3-2] Trong không Phương trình mặt phẳng	gian với hệ trục tọa độ	Oxyz, cho hai điểm A	A(1;0;1) và $B(3;2;-3)$.
Câu 137.			`): $2x - y - 3z + 10 = 0$ và t phẳng (α) có phương 0.
Câu 138.				(S) có phương trình m $P(-4;1;4)$ có phương

A.
$$2x-5y-10z+53=0$$
.

B. 6x + 3y + 2z + 13 = 0.

C.
$$8x + 7y + 8z - 7 = 0$$
.

D. 9y + 16z - 73 = 0.

$$C. 6x + 7y + 62 - 7 = 0$$

Câu 139. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;2;0) và đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z-1}{-1}$. Tìm phương trình mặt phẳng (P) đi qua A và vuông góc với d.

A.
$$x + 2y - z + 4 = 0$$

A. x + 2y - z + 4 = 0. **B.** 2x + y - z - 4 = 0. **C.** 2x + y + z - 4 = 0. **D.** 2x - y - z + 4 = 0.

Câu 140. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-1;3), B(4;0;1) và C(-10;5;3). Vécto nào dưới đây là vécto pháp tuyến của mặt phẳng (ABC)?

A. $\overrightarrow{n_1} = (1;2;0)$. **B.** $\overrightarrow{n_2} = (1;2;2)$. **C.** $\overrightarrow{n_3} = (1;8;2)$. **D.** $\overrightarrow{n_4} = (1;-2;2)$.

Câu 141. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-2;-1), B(1;0;2) và C(0;2;1). Viết phương trình mặt phẳng qua A và vuông góc với đường thẳng BC

A. x-2y+z-4=0. **B.** x-2y-z+4=0. **C.** x-2y-z-6=0. **D.** x-2y+z+4=0.

Câu 142. [2H3-2] Trong không gian với hệ trục Oxyz, cho mặt phẳng (P): 2x - y - 2z + 6 = 0. Khẳng đinh nào sau đây sai?

A. Điểm M(1; 3; 2) thuộc mặt phẳng (P).

- **B.** Một vécto pháp tuyến của mặt phẳng (P) là $\vec{n} = (2; -1; -2)$.
- C. Mặt phẳng (P) cắt trục hoành tại điểm H(-3;0;0)
- **D.** Khoảng cách từ gốc tọa độ O đến mặt phẳng (P) bằng 2.
- Câu 143. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;1) và đường thẳng $d: \frac{x+1}{1} = \frac{y-2}{-1} = \frac{z}{1}$. Viết phương trình mặt phẳng chứa A và vuông góc với d.

A. x-y+z-1=0. **B.** x-y+z-1=0. **C.** x-y+z=0. **D.** x-y+z-2=0.

Câu 144. [2H3-2] Trong *Oxyz*, cho M(1;1;1), $(\alpha): 2x - y + z - 1 = 0$ và $\Delta: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-3}$. Phương trình mặt phẳng đi qua M, vuông góc với (α) và song song với Δ là

A. 2x + y - 3z = 0.

B. 2x - y + z - 2 = 0.

C. x + 4y + 2z - 7 = 0.

- **D.** 2x + 8y + 4z + 14 = 0.
- Câu 145. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(3;-1;-2) và mặt phẳng $(\alpha):3x-y+2z+4=0$. Phương trình nào dưới đây là phương trình mặt phẳng đi qua M và song song với (α) ?

A. $(\alpha): 3x + y - 2z - 14 = 0$.

B. (α) : 3x - y + 2z + 6 = 0.

C. $(\alpha): 3x - y + 2z - 6 = 0$.

- **D.** $(\alpha): 3x y 2z + 6 = 0$.
- Câu 146. [2H3-2] Trong không gian tọa độ Oxyz cho điểm A(0;1;1) và B(1;2;3). Viết phương trình mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB.

A. x + y + 2z - 3 = 0.

B. x + y + 2z - 6 = 0. **C.** x + 3y + 4z - 7 = 0. **D.** x + 3y + 4z - 26 = 0.

- Câu 147. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho A(2;-3;0), mặt phẳng (α) : x+2y-z+3=0. Tìm mặt phẳng (P) qua A, vuông góc (α) và song song với Oz.

A. y + 2z + 3 = 0.

B. x+2y-z+4=0. **C.** 2x+y-1=0. **D.** 2x-y-7=0.

- Câu 148. [2H3-2] Cho điểm M(3;2;1). Mặt phẳng (P) đi qua điểm M và cắt các trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là

A. $\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 0$. **B.** x + y + z - 6 = 0. **C.** 3x + 2y + z - 14 = 0. **D.** $\frac{x}{3} + \frac{y}{2} + \frac{z}{1} = 1$.

- Câu 149. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(0;2;0), B(-2;4;8). Viết phương trình mặt phẳng (α) trung trực của đoạn AB.
 - **A.** $(\alpha): x-y+4z-12=0$.

B. (α) : x + y - 4z + 12 = 0.

C. (α) : x - y - 4z + 20 = 0.

- **D.** (α) : x y 4z + 40 = 0.
- Câu 150. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho A(1;0;2), B(2;-1;3). Viết phương trình mặt phẳng (P) qua A và vuông góc với AB.
 - **A.** (P): x-y+z-3=0.

B. (P): 2x - y + z - 4 = 0.

C. (P): -x + 2y + z - 1 = 0.

- **D.** (P): x + y + z 3 = 0.
- Câu 151. [2H3-2] Trong không gian với hệ trục Oxyz, viết phương trình mặt phẳng (P) đi qua điểm A(1; 2; 0) và vuông góc với đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-1}$.
 - **A.** x + 2y 5 = 0.

B. 2x + y - z + 4 = 0.

C. -2x - y + z - 4 = 0.

- **D.** -2x y + z + 4 = 0.
- Câu 152. [2H3-2] Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1;3;-2) và song song với mặt phẳng (P): 2x - y + 3z + 4 = 0 là

A
$$2x - y + 3z + 7 = 0$$
 B $2x + y$

A.
$$2x - y + 3z + 7 = 0$$
. **B.** $2x + y - 3z + 7 = 0$. **C.** $2x + y + 3z + 7 = 0$. **D.** $2x - y + 3z - 7 = 0$.

- Câu 153. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-1;3), B(2;0;5), C(0;-3;-1). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua A và vuông góc với BC?
 - **A.** x y + 2z + 9 = 0.

B. x - y + 2z - 9 = 0.

C. 2x+3y-6z-19=0.

- **D.** 2x + 3y + 6z 19 = 0.
- Câu 154. [2H3-2] Viết phương trình mặt phẳng qua A(1;1;1), vuông góc với hai mặt phẳng (α) : x + y - z - 2 = 0, (β) : x - y + z - 1 = 0.

A.
$$y + z - 2 = 0$$
.

B.
$$x + y + z - 3 = 0$$
. **C.** $x - 2y + z = 0$. **D.** $x + z - 2 = 0$.

C.
$$x-2y+z=0$$

- Câu 155. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x-y+z=0, (Q): 3x + 2y - 12z + 5 = 0. Viết phương trình mặt phẳng (R) đi qua Q và vuông góc với (P), (Q).
 - **A.** (R): 2x + 3y + z = 0.

B. (R): 3x + 2y + z = 0.

C. (R): x + 2y + 3z = 0.

- **D.** (R): 2x-3y+z=0.
- Câu 156. [2H3-2] Trong không gian Oxyz, cho G(2;-3;1). Phương trình mặt phẳng cắt các trục Ox, Oy, Oz lần lượt tại A, B, C sao cho G là trọng tâm tam giác ABC là
 - **A.** $\frac{x}{3} + \frac{y}{9} + \frac{z}{6} = 1$.

B. 3x-2y+6z-18=0.

C. $\frac{x}{6} + \frac{y}{0} + \frac{z}{3} = 0$.

- **D.** 2x-3y+z-14=0.
- **Câu 157.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho A(1;-3;2), B(1;0;1), C(2;3;0). Viết phương trình mặt phẳng (ABC).
 - **A.** 3x y 3z = 0.
- **B.** 3x + y + 3z 6 = 0. **C.** 15x y 3z 12 = 0. **D.** y + 3z 3 = 0.

Câu 158. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho A(1;2;-5). Gọi M, N, P là hình chiếu của A lên các trục Ox, Oy, Oz. Phương trình mặt phẳng (MNP) là

A.
$$x + \frac{y}{2} - \frac{z}{5} = 1$$
.

B.
$$x+2z-5z+1=0$$
. **C.** $x+2y-5z=1$. **D.** $x+\frac{y}{2}-\frac{z}{5}+1=0$.

C.
$$x + 2y - 5z = 1$$
.

D.
$$x + \frac{y}{2} - \frac{z}{5} + 1 = 0$$

Câu 159. [2H3-2] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (Q) đi qua ba điểm không thẳng hàng M(2;2;0), N(2;0;3), P(0;3;3) có phương trình

A.
$$-9x-6y-4z-30=0$$
.

B.
$$-9x + 6y - 4z - 6 = 0$$
.

C.
$$9x - 6y + 4z - 6 = 0$$
.

D.
$$9x + 6y + 4z - 30 = 0$$
.

Câu 160. [2H3-2] Trong không gian với hệ trục Oxyz, mặt phẳng (Q) đi qua ba điểm không thẳng hàng M(2;2;0), N(2;0;3), P(0;3;3) có phương trình:

A.
$$9x + 6y + 4z - 30 = 0$$

B.
$$9x - 6y + 4z - 6 = 0$$

C.
$$-9x-6y-4z-30=0$$

D.
$$-9x + 6y - 4z - 6 = 0$$

Câu 161. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P): x-3y+2z-5=0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).

A.
$$(Q): 2y+3z-1=0$$
.

B.
$$(Q): 2x+3z-11=0$$
.

C.
$$(Q): 2y+3z-12=0$$
.

D.
$$(Q): 2y+3z-11=0$$
.

Câu 162. [2H3-2] Trong không gian với hệ toạ độ Oxyz, phương trình mặt phẳng đi qua hai điểm A(-1;2;3), B(1;4;2) đồng thời vuông góc với mặt phẳng (P): x-y+2z+1=0 là

A.
$$3x - y - 2z + 11 = 0$$
.

B.
$$5x-3y-4z+23=0$$
.

C.
$$3x + 5y + z - 10 = 0$$
.

D.
$$3x-5y-4z+25=0$$
.

Câu 163. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;0), B(2;0;1) và mặt phẳng (Q): x-y-1=0. Viết phương trình mặt phẳng (P) đi qua A, B và vuông góc với mặt phẳng (Q).

A.
$$(P)$$
: $x + y - 3z - 1 = 0$.

B.
$$(P)$$
: $x-2y-6z+2=0$.

C.
$$(P)$$
: $2x+2y-5z-2=0$.

D.
$$(P)$$
: $x + y - z - 1 = 0$.

Câu 164. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(0;1;0); mặt phẳng

$$(Q): x+y-4z-6=0$$
 và đường thẳng $d: \begin{cases} x=3\\ y=3+t \end{cases}$. Phương trình mặt phẳng (P) qua A , $z=5-t$

song song với d và vuông góc với (Q) là

A.
$$x+3y+z-3=0$$
. **B.** $3x-y-z+1=0$. **C.** $x+y+z-1=0$. **D.** $3x+y+z-1=0$.

B.
$$3x - y - z + 1 = 0$$
.

C.
$$x + y + z - 1 = 0$$
.

D
$$3x + y + z - 1 = 0$$

Câu 165. [2H3-2] Trong không gian Oxyz, cho mặt phẳng (P) đi qua hai điểm A(3;1;-1), B(2;-1;4)và vuông góc với mặt phẳng (Q):2x-y+3z-1=0. Phương trình nào dưới đây là phương trình của (P)?

A.
$$x-13y-5z+5=0$$
.

B.
$$x-13y+5z+5=0$$
.

C.
$$x+13y-5z+5=0$$
.

D.
$$x-13y-5z+12=0$$
.

Câu 166. [2H3-2] Cho tứ diện *ABCD* với A(5;1;3), B(1;6;2), C(5;0;4), D(4;0;6). Phương trình mặt phẳng qua AB song song với CD là

A.
$$10x - 9y + 5z - 56 = 0$$
.

B.
$$21x-3y-z-99=0$$
.

C.
$$12x-4y-2z+13=0$$
.

D.
$$10x + 9y + 5z - 74 = 0$$
.

Câu 167. [2H3-2] Mặt phẳng chứa hai điểm A(2;0;1) và B(-1;2;2) và song song với trục Ox có phương trình là

A.
$$2y - z + 1 = 0$$
.

B.
$$x+2y-3=0$$
. **C.** $y-2z+2=0$. **D.** $x+y-z=0$.

C.
$$y-2z+2=0$$
.

D.
$$x + y - z = 0$$
.

Câu 168. [2H3-2] Cho hai điểm A(1;-1;5) và B(0;0;1). Mặt phẳng (P) chứa A, B và song song với Oy có phương trình là

A.
$$4x+y-z+1=0$$
. **B.** $2x+z-5=0$. **C.** $4x-z+1=0$. **D.** $4x-z-1=0$.

B.
$$2x + z - 5 = 0$$
.

C.
$$4x-z+1=0$$
.

D.
$$4x-z-1=0$$

Câu 169. [2H3-2] Cho mặt phẳng (α) đi qua hai điểm E(4;-1;1), F(3;1;-1) và song song với trục Ox. Phương trình nào sau đây là phương trình tổng quát của (α) ?

A.
$$x + y = 0$$
.

B.
$$y + z = 0$$
.

C.
$$x + y + z = 0$$
.

D.
$$x + z = 0$$
.

Câu 170. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z+1}{1}$. Viết phương trình mặt phẳng qua điểm A(3;1;0) và chứa đường thẳng d.

A.
$$x + 2y + 4z - 1 = 0$$
.

B.
$$x-2y+4z-1=0$$
.

A.
$$x+2y+4z-1=0$$
. **B.** $x-2y+4z-1=0$. **C.** $x-2y+4z+1=0$. **D.** $x-2y-4z-1=0$.

- Câu 171. [2H3-2] Viết phương trình mặt phẳng (P) chứa đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{3}$ và vuông góc với mặt phẳng (Q): 2x + y - z = 0.

A.
$$x + 2y - 1 = 0$$
.

B.
$$x - 2y + z = 0$$

C.
$$x-2y-1=0$$

A.
$$x+2y-1=0$$
. **B.** $x-2y+z=0$. **C.** $x-2y-1=0$. **D.** $x+2y+z=0$.

Câu 172. [2H3-2] Viết phương trình mặt phẳng vuông góc với mặt phẳng $(\alpha): 2x-3y+z-2=0$ và chứa đường thẳng $d: \frac{x}{-1} = \frac{y+1}{2} = \frac{z-2}{-1}$.

A.
$$x-y+z-3=0$$

A.
$$x-y+z-3=0$$
. **B.** $2x+y-z+3=0$. **C.** $x+y+z-1=0$. **D.** $3x+y-z+3=0$.

C.
$$x + y + z - 1 = 0$$

$$3x + y - z + 3 = 0$$

Câu 173. [2H3-2] Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) chứa đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{3}$ và vuông góc với mặt phẳng (Q): 2x + y - z = 0.

A.
$$x + 2y + z = 0$$

A.
$$x + 2y + z = 0$$
. **B.** $x - 2y - 1 = 0$. **C.** $x + 2y - 1 = 0$. **D.** $x - 2y + z = 0$.

C.
$$x+2y-1=0$$
.

D.
$$x-2y+z=0$$
.

Câu 174. [2H3-2] Trong không gian với hệ trục Oxyz, mặt phẳng (P) chứa đường thẳng $d: \frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{3}$ và vuông góc với mặt phẳng (Q): 2x + y - z = 0 có phương trình là

A.
$$x-2y-1=0$$
.

B.
$$x-2y+z=0$$
. **C.** $x+2y-1=0$. **D.** $x+2y+z=0$.

C.
$$x+2y-1=0$$
.

D.
$$x + 2y + z = 0$$

Câu 175. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + y - 3z + 2 = 0. Viết phương trình mặt phẳng (Q) song song và cách (P) một khoảng bằng $\frac{11}{2\sqrt{14}}$.

A.
$$-4x-2y+6z+7=0$$
; $4x+2y-6z+15=0$. **B.** $-4x-2y+6z-7=0$; $4x+2y-6z+5=0$.

C.
$$-4x-2y+6z+5=0$$
; $4x+2y-6z-15=0$. **D.** $-4x-2y+6z+3=0$; $4x+2y-6z-15=0$.

Câu 176. [2H3-2] Trong không gian Oxyz, cho hai đường thẳng d_1 : $\begin{cases} x=2+t & \begin{cases} x=2-2t \\ y=1-t \end{cases}$ và d_2 : $\begin{cases} x=2-2t \\ y=3 \end{cases}$. Mặt

phẳng cách đều hai đường thẳng d_1 và d_2 có phương trình là

A.
$$x+5y+2z+12=0$$
.

B.
$$x + 5y - 2z + 12 = 0$$
.

C.
$$x-5y+2z-12=0$$
.

D.
$$x + 5y + 2z - 12 = 0$$
.

Câu 177. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P) cắt ba trục Ox, Oy, Ozlần lượt tại A, B, C sao cho tam giác ABC có trọng tâm là G(-1,-3,2). Phương trình mặt phẳng (P) là

A.
$$6x + 2y - 3z + 18 = 0$$
. **B.** $\frac{x}{3} + \frac{y}{9} - \frac{z}{6} = 1$. **C.** $\frac{x}{-3} + \frac{y}{-9} + \frac{z}{6} = 0$. **D.** $\frac{x}{-1} + \frac{y}{-3} + \frac{z}{2} = 1$.

C.
$$\frac{x}{-3} + \frac{y}{-9} + \frac{z}{6} = 0$$
.

D.
$$\frac{x}{-1} + \frac{y}{-3} + \frac{z}{2} = 1$$

Câu 178. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (α) đi qua điểm M(5;4;3) và chắn trên các tia Ox, Oy, Oz các đoạn bằng nhau có phương trình là

A.
$$x - y + z - 4 = 0$$
.

B.
$$x + y + z - 12 = 0$$
.

C.
$$5x + 4y + 3z - 50 = 0$$
.

D.
$$x - y - z + 2 = 0$$
.

Câu 179. [2H3-2] Trong không gian với hệ tọa độ Oxyz, gọi M, N, P lần lượt là hình chiếu vuông góc của A(2; -1; 1) lên các trục Ox, Oy, Oz. Mặt phẳng đi qua A và song song với mặt phẳng (MNP) có phương trình là

A.
$$x-2y+2z-2=0$$
.

A.
$$x-2y+2z-2=0$$
. **B.** $x-2y+2z-6=0$. **C.** $x-2y-4=0$.

D.
$$x + 2z - 4 = 0$$
.

Câu 180. [2H3-2] Cho điểm M(-3;2;4), gọi A, B, C lần lượt là hình chiếu của M trên trục Ox, Oy, O_Z . Trong các mặt phẳng sau, tìm mặt phẳng song song với mặt phẳng (ABC).

A.
$$6x-4y-3z-12=0$$
.

B.
$$3x-6y-4z+12=0$$
.

C.
$$4x-6y-3z+12=0$$
.

D.
$$4x-6y-3z-12=0$$
.

Câu 181. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(-3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng nào sau đây song song với mp(ABC)?

A.
$$4x-6y-3z+12=0$$
.

B.
$$3x-6y-4z+12=0$$
.

C.
$$4x-6y-3z-12=0$$
.

D.
$$6x-4y-3z-12=0$$
.

Câu 182. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;-1;1), B(2;1;-2), C(0;0;1). Gọi H(x; y; z) là trực tâm tam giác ABC thì giá trị x + y + z là kết quả nào dưới đây?

Câu 183. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M (12;8;6). Viết phương trình mặt phẳng (α) đi qua các hình chiếu của M trên các trục tọa độ.

A.
$$2x+3y+4z-24=0$$
. **B.** $\frac{x}{-12}+\frac{y}{-8}+\frac{z}{-6}=1$. **C.** $\frac{x}{6}+\frac{y}{4}+\frac{z}{3}=1$. **D.** $x+y+z-26=0$.

Câu 184. [2H3-2] Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) đi qua hai điểm A(1;-2;1), B(3;0;2) đồng thời cắt các tia đối của tia O_{Y} , O_{Z} lần lượt tại M, N(không trùng với góc tọa độ O) sao cho OM = 3ON.

A.
$$(P): 2x - y + z - 5 = 0$$
.

B.
$$(P): x+2y-z+4=0$$
.

C.
$$(P)$$
: $-5x + 2y + 6z + 3 = 0$.

D.
$$(P): 3x + y - z + 1 = 0$$
.

- Câu 185. [2H3-2] Trong không gian Oxyz, cho điểm H(1;2;3). Mặt phẳng (P) đi qua điểm H, cắt Ox, Oy, Oz tại A, B, C sao cho H là trực tâm của tam giác ABC. Phương trình của mặt phẳng (P) là
 - **A.** (P): 3x + y + 2z 11 = 0.

B. (P): 3x + 2y + z - 10 = 0.

C. (P): x+3y+2z-13=0.

- **D.** (P): x + 2y + 3z 14 = 0.
- Câu 186. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): -y + 5z + 6 = 0. Hỏi mặt phẳng này có gì đặc biệt?
 - **A.** (P) đi qua gốc tọa độ.

- **B.** (P) vuông góc với (Oxy).
- \mathbf{C} . (P) vuông góc với (Oyz).

- **D.** (P) vuông góc với (Oyz).
- Câu 187. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z+1=0 và mặt cầu (S): $x^2 + y^2 + z^2 - 4x - 2y + 4z = 0$. Gọi (Q) là mặt phẳng song song với (P) và tiếp xúc với mặt cầu (S). Viết phương trình của mặt phẳng (Q).
 - **A.** (Q): x+2y-2z-17=0.

B. (Q): x + 2y - 2z - 35 = 0.

C. (Q): x+2y-2z+1=0.

- **D.** (Q): 2x + 2y 2z + 19 = 0.
- Câu 188. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;-1) và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?
 - **A.** x + y 3z 8 = 0. **B.** x y 3z + 3 = 0. **C.** x + y + 3z 9 = 0. **D.** x + y 3z + 3 = 0.

- Câu 189. [2H3-2] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz tại A, B, C; trực tâm tam giác ABC là H(1,2,3). Phương trình của mặt phẳng (P) là
 - **A.** x + 2y + 3z 14 = 0. **B.** x + 2y + 3z + 14 = 0. **C.** $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1$. **D.** $\frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 0$.
- Câu 190. [2H3-2] Mặt phẳng đi qua A(2;3;1) và giao tuyến hai mặt phẳng x+y=0 và x-y+z+4=0có phương trình là
- **A.** x-3y+6z-1=0. **B.** 2x-y+z-2=0. **C.** x-9y+5z+20=0. **D.** x+y+2z-7=0.
- **Câu 191.** [2H3-2] Trong không gian với hệ tọa độ Oxy, cho mặt phẳng (P): 2x y + 1 = 0 và điểm I(4;-1;2). Mặt phẳng (Q) vuông góc với hai mặt phẳng (P) và (Oxy), đồng thời (Q) cách điểm I một khoảng bàng $\sqrt{5}$. Mặt phẳng (Q) có phương trình là
 - **A.** x-2y-1=0 hoặc 2x-y-4=0.
- **B.** x+2y-7=0 hoặc x+2y+3=0.
- C. y-2z+10=0 hoặc y-2z=0.
- **D.** 2x + y 2 = 0 hoặc 2x + y 12 = 0.
- Câu 192. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) nhận $\vec{n} = (3; -4; -5)$ là vector pháp tuyến và (P) tiếp xúc với mặt cầu $(S):(x-2)^2+(y+1)^2+(z-1)^2=8$. Phương trình của mặt phẳng (P) là
 - **A.** 3x-4y-5z-15=0 hoặc 3x-4y-5z-25=0.
 - **B.** 3x-4y-5z+15=0 hoặc 3x-4y-5z-25=0.
 - C. 3x-4y-5z-15=0 hoặc 3x-4y-5z+25=0.
 - **D.** 3x-4y-5z+15=0 hoặc 3x-4y-5z+25=0.

Câu 193	[2H3-2] Trong không g	ian với hệ tọa độ <i>Oxyz</i> , c	ho các điểm $A(3;-1;2)$, B(1;1;-2), M(1;1;1).	
	Gọi (S) là mặt cầu đi c	qua A , B và có tâm thư	nộc trục $O_{\mathcal{Z}}$, $\left(P\right)$ là một	mặt phẳng thay đổi và đi	
	qua M . Giá trị lớn nhất	của khoảng cách từ tâm	của mặt cầu $ig(Sig)$ đến mặ	t phẳng (P) là	
	A. 1.	B. $\frac{\sqrt{2}}{2}$.	C. $\sqrt{2}$.	D. $\sqrt{3}$.	
Câu 194	. [2H3-3] Trong không	gian với hệ trục toạ	độ Oxyz, cho ba điển	n $A(a;0;0)$, $B(0;b;0)$,	
	C(0;0;c) trong đó a ,	b , c là các số dương t	hay đổi thoả mãn $\frac{2}{a} - \frac{2}{b}$	$c + \frac{1}{c} = 1$. Khoảng cách từ	
	gốc toạ độ đến mặt phẳ	ng (ABC) có giá trị lới	nhất là bao nhiêu?		
	A. 3.	B. 2.	C. 1.	D. 4.	
Câu 195	. [2H3-3] Trong không	gian với hệ tọa độ Oz	xyz cho hai mặt phẳng	(P): x + y - z + 1 = 0 và	
	(Q): x-y+z-5=0. Có bao nhiều điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng (P) và (Q) ?				
	A. 0.	B. 1.	C. 2.	D. 3.	
Câu 196. [2H3-3] Trong không gian với hệ trục tọa độ $Oxyz$, cho $H(1;2;3)$. Viết phương trình mặt					
phẳng (P) đi qua điểm G và cắt các trục tọa độ tại ba điểm phân biệt A , B , C sao cho H là trực tâm của tam giác ABC .					

A.
$$(P)$$
: $x + y + z - 6 = 0$.

B.
$$(P): x + \frac{y}{2} + \frac{z}{3} = 1$$
.

C.
$$(P)$$
: $x + 2y + 3z - 14 = 0$.

D.
$$(P): \frac{x}{3} + \frac{y}{6} + \frac{z}{9} = 1$$
.

Câu 197. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(1;-2;-4) và N(5;-4;2). Biết N là hình chiếu vuông góc của M lên mặt phẳng (P). Khi đó mặt phẳng (P) có phương trình là

A.
$$2x - y + 3z + 20 = 0$$
.

B.
$$2x + y - 3z - 20 = 0$$
.

C.
$$2x - y + 3z - 20 = 0$$
.

D.
$$2x + y - 3z + 20 = 0$$
.

Câu 198. [2H3-3] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (α) chắn các trục Ox, Oy, Oz lần lượt tại A, B, C sao cho H(3,-4,2) là trực tâm của $\triangle ABC$. Phương trình mặt phẳng (α) là

A.
$$2x-3y+4z-26=0$$
.

B.
$$x-3y+2z-17=0$$
.

C.
$$4x + 2y - 3z + 2 = 0$$
.

D.
$$3x-4y+2z-29=0$$
.

Câu 199. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A, B nằm trên mặt cầu có phương trình $(x-4)^2 + (y+2)^2 + (z+2)^2 = 9$. Biết rằng AB song song với OI, trong đó O là gốc tọa độ và I là tâm mặt cầu. Viết phương trình mặt phẳng trung trực AB .

A.
$$2x - y - z - 12 = 0$$
. **B.** $2x + y + z - 4 = 0$. **C.** $2x - y - z - 6 = 0$. **D.** $2x + y + z + 4 = 0$.

Câu 200. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P): x-3y+2z-5=0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).

A.
$$(Q): 2y+3z-1=0$$
.

B.
$$(Q): 2y + 3z - 12 = 0$$
.

C.
$$(Q): 2x+3z-11=0$$
.

D.
$$(Q): 2y+3z-11=0$$
.

Câu 201. [2H3-3] Trong không gian với hệ trục Oxyz, mặt phẳng chứa 2 điểm A(1; 0; 1) và B(-1; 2; 2) và song song với trục Ox có phương trình là **B.** 2y-z+1=0. **C.** y-2z+2=0. **D.** x+2z-3=0. **A.** x + y - z = 0.

- **Câu 202.** [2H3-3] Trong không gian Oxyz, cho A(1;1;0), B(0;2;1), C(1;0;2), D(1;1;1). Mặt phẳng (α) đi qua A, B và song song với đường thẳng CD. Phương trình mặt phẳng (α) là **B.** 2x - y + z - 2 = 0. **C.** 2x + y + z - 3 = 0. **D.** x + y - 2 = 0. **A.** x + y + z - 3 = 0.
- Câu 203. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;4;-3). Viết phương trình mặt phẳng chứa trục tung và đi qua điểm A. **C.** 3x - z = 0. **D.** 3x + z = 0. **A.** 3x + z + 1 = 0. **B.** 4x - y = 0.

Câu 204. [2H3-3] Viết phương trình tổng quát của mặt phẳng (α) đi qua giao tuyến của hai mặt phẳng $(\beta_1): 2x - y - z - 1 = 0$, $(\beta_2): 3x - y + z - 1 = 0$ và vuông góc với mp $(\beta_3): x - 2y - z + 1 = 0$. **A.** 7x + y + 9z - 1 = 0. **B.** 7x - y + 9z - 1 = 0. **C.** 7x + y - 9z - 1 = 0. **D.** 7x - y - 9z - 1 = 0.

Câu 205. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho ba mặt phẳng (P): x+2z-4=0, (Q): x+y-z-3=0, (R): x+y+z-2=0. Viết phương trình mặt phẳng (α) qua giao tuyến của hai mặt phẳng (P) và (Q), đồng thời vuông góc với mặt phẳng (R).

A. (α) : x + 2y - 3z + 4 = 0.

B. $(\alpha): 2x-3y-z-4=0.$

C. (α) : 2x + 3y - 5z - 5 = 0.

D. $(\alpha): 3x-2y-5z-5=0.$

Câu 206. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y+2z-1=0, điểm A(2;1;5). Mặt phẳng (Q) song song với (P), (Q) cắt các tia Ox,Oy lần lượt tại các điểm B,C sao cho tam giác ABC có diện tích bằng $5\sqrt{5}$. Khi đó phương trình nào dưới đây là phương trình của mặt phẳng (Q)?

A. (Q): x + 2y + 2z - 4 = 0.

B. (O): x + 2y + 2z - 6 = 0.

C. (Q): x+2y+2z-3=0.

D. (Q): x+2y+2z-2=0.

Câu 207. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng $d: \frac{x+3}{2} = \frac{y+1}{1} = \frac{z}{1}$ và điểm A(1;2;3). Mặt phẳng (P) chứa đường thẳng d và có khoảng cách từ A đến (P) là lớn nhất. Khi đó (P) có một vectơ pháp tuyến là

A. $\vec{n} = (4;5;13)$.

B. $\vec{n} = (4;5;-13)$. **C.** $\vec{n} = (4;-5;13)$. **D.** $\vec{n} = (-4;5;13)$.

Câu 208. [2H3-3] Trong không gian với hệ trục Oxyz, cho đường thẳng d có phương trình $d: \frac{x-1}{-1} = \frac{y+2}{1} = \frac{z}{2}$ và điểm A(1;4;2). Gọi (P) là mặt phẳng chứa d. Khoảng cách lớn nhất từ A đến (P) bằng

A. 5.

B. $2\sqrt{5}$.

C. $\frac{\sqrt{210}}{3}$.

Câu 209. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_1 , d_2 lần lượt có phương trình $d_1: \frac{x-2}{2} = \frac{y-2}{1} = \frac{z-3}{3}$, $d_2: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+1}{4}$. Viết phương trình mặt phẳng cách đều hai đường thẳng d_1 , d_2 .

A. 14x + 4y + 8z + 13 = 0.

B. 14x - 4y - 8z - 17 = 0.

C. 14x-4y-8z-13=0.

D. 14x - 4y + 8z - 17 = 0.

Câu 210. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-2}{1} = \frac{y-1}{2} = \frac{z}{2}$ và

$$d_2: \begin{cases} x=2-t \\ y=3 \end{cases}$$
. Tìm phương trình mặt phẳng cách đều hai đường thẳng d_1, d_2 . $z=t$

A.
$$x+3y+z-8=0$$
. **B.** $x+5y-2z+12=0$. **C.** $x-5y+2z-12=0$. **D.** $x+5y+2z+12=0$.

Câu 211. [2H3-3] Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) song song và cách đều hai đường thẳng $d_1: \frac{x-2}{1} = \frac{y}{1} = \frac{z}{1}$ và $d_2: \frac{x}{2} = \frac{y-1}{1} = \frac{z-2}{1}$

A.
$$(P): 2x-2z+1=0$$
.

B.
$$(P): 2y-2z+1=0$$
.

C.
$$(P): 2x-2y+1=0$$
.

D.
$$(P): 2y-2z-1=0$$
.

Câu 212. [2H3-3] Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P) song song và cách đều hai đường thẳng $d_1: \frac{x-2}{1} = \frac{y}{1} = \frac{z}{1}$ và $d_2: \frac{x}{2} = \frac{y-1}{1} = \frac{z-2}{1}$.

A.
$$(P): 2x-2z+1=0$$
. **B.** $(P): 2y-2z+1=0$. **C.** $(P): 2x-2y+1=0$. **D.** $(P): 2y-2z-1=0$.

Câu 213. [2H3-3] Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm M(4;9;1) và cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho thể tích tứ diện OABC nhỏ nhất.

A.
$$9x + 4y + 1945z - 2017 = 0$$
.

B.
$$-9x + 4y - 36z + 36 = 0$$
.

C.
$$9x + 4y + 36z - 108 = 0$$
.

D.
$$9x-4y+z-18=0$$
.

Câu 214. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;0), B(1;-1;3), C(1;-1;-1) và mặt phẳng (P):3x-3y+2z-15=0. Gọi $M(x_M;y_M;z_M)$ là điểm trên mặt phẳng (P) sao cho $2MA^2 - MB^2 + MC^2$ đạt giá trị nhỏ nhất. Tính giá trị của biểu thức $T = x_M - y_M + 3z_M.$

A.
$$T = 5$$
.

B.
$$T = 3$$
.

C.
$$T = 4$$
.

D.
$$T = 6$$
.

Câu 215. [2H3-3] Trong không gian Oxyz, cho 3 điểm A(0;1;2), B(1;1;1), C(2;-2;3) và mặt phẳng (P): x-y+z+3=0. Tìm điểm M trên mặt phẳng (P) sao cho $|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}|$ đạt giá trị nhỏ nhất.

A.
$$M(1;0;2)$$
.

B.
$$M(0;1;1)$$

B.
$$M(0;1;1)$$
. **C.** $M(-1;2;0)$. **D.** $M(-3;1;1)$.

D.
$$M(-3;1;1)$$

Câu 216. [2H3-3] Cho ba điểm A(1; 1; 0), B(3; -1; 2), C(-1; 6; 7). Tìm điểm $M \in (Oxz)$ sao cho $MA^2 + MB^2 + MC^2$ nhỏ nhất?

A.
$$M(3;0;-1)$$
.

B.
$$M(1; 0; 0)$$
.

C.
$$M(1; 0; 3)$$
.

Câu 217. [2H3-3] Trong không gian với hệ trục toạ độ Oxyz, cho đường thẳng $\Delta : \frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{2}$ và mặt phẳng (α) : x-2y+2z-5=0. Gọi (P) là mặt phẳng chứa Δ và tạo với (α) một góc nhỏ nhất. Phương trình mặt phẳng (P) có dạng ax + by + cz + d = 0 $(a,b,c,d \in \mathbb{Z} \ \text{và } a,b,c,d < 5)$. Khi đó tích a.b.c.d bằng bao nhiệu?

Câu 218. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;-2;0), B(0;-1;1), C(2;1;-1), D(3;1;4). Hỏi có bao nhiều mặt phẳng cách đều bốn điểm đó? **C.** 7. D. Vô số. **B.** 4. Câu 219. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;2), mặt phẳng (P) qua M cắt các hệ trục tọa độ Ox, Oy, Oz lần lượt tại A, B, C. Gọi V_{OABC} là thể tích tứ diện OABC . Khi $\left(P\right)$ thay đổi tìm giá trị nhỏ nhất của V_{OABC} . **A.** $\min V_{OABC} = \frac{9}{2}$. **B.** $\min V_{OABC} = 18$. **C.** $\min V_{OABC} = 9$. **D.** $\min V_{OABC} = \frac{32}{3}$. Câu 220. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 10 = 0 và mặt cầu (S): $x^2 + y^2 + z^2 - 2x + 4y - 6z - 11 = 0$ mặt phẳng (Q) song song với (P) và tiếp xúc với mặt cầu (S) có phương trình là **A.** 2x + 2y - z + 10 = 0. **B.** 2x + 2y - z = 0. C. 2x + 2y - z - 20 = 0. **D.** 2x + 2y - z + 20 = 0. Câu 221. [2H3-3] Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ có phương trình $\frac{x-1}{2} = \frac{y}{1} = \frac{z+1}{-1}$ và mặt phẳng (P): 2x - y + 2z - 1 = 0. Viết phương trình mặt phẳng (Q) chứa Δ và tạo với (P) một góc nhỏ nhất. **B.** 10x - 7y + 13z + 3 = 0. **A.** 2x - y + 2z - 1 = 0. **D.** -x + 6y + 4z + 5 = 0. C. 2x + y - z = 0. Câu 222. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho ba đường thẳng $d_1: \begin{cases} x=t_1 \\ y=0, d_2: \begin{cases} x=1 \\ z=0 \end{cases} \end{cases}$ $\begin{cases} x=t_1 \\ z=0 \end{cases}$ $\begin{cases} x=1 \\ y=0 \text{ . Viết phương trình mặt phẳng đi qua điểm } H\left(3;2;1\right) \text{ và cắt ba đường thẳng } d_1,\ d_2, \end{cases}$ d_3 lần lượt tại A, B, C sao cho H là trực tâm tam giác ABC. **A.** 2x + 2y + z - 11 = 0. **B.** x + y + z - 6 = 0. C. 2x + 2y - z - 9 = 0. **D.** 3x + 2y + z - 14 = 0. Câu 223. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(1;-1;1), B(3;1;2), D(-1;0;3). Xét điểm C sao cho tứ giác ABCD là hình thang có hai đáy AB, CD và có góc tại C bằng 45°. Chọn khẳng định đúng trong bốn khẳng định sau: **B.** $C(0;1;\frac{7}{2})$. A. Không có điểm C như thế. C. C(5;6;6). **D.** C(3;4;5). Câu 224. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho 4 điểm A(1;2;0), B(3;-1;2), C(2;-1;1), D(0;2;-1). Hỏi có bao nhiều mặt phẳng cách đều năm điểm O, A, B, C, D với O là gốc tọa độ?

C. 4.

B. 6.

A. 7.

D. 5.

Câu 225. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M (1;2;5). Mặt phẳng (P) đi qua điểm M và cắt trục tọa độ Ox, Oy, Oz tại A, B, C sao cho M là trực tâm tam giác ABC. Phương trình mặt phẳng (P) là

A.
$$x + 2y + 5z - 30 = 0$$
. **B.** $\frac{x}{5} + \frac{y}{2} + \frac{z}{1} = 1$. **C.** $x + y + z - 8 = 0$. **D.** $\frac{x}{5} + \frac{y}{2} + \frac{z}{1} = 0$.

Câu 226. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(0;4;0), mặt phẳng (P) có phương trình 2x-y-2z+2017=0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A,B và tạo với mặt phẳng (P) một góc nhỏ nhất.

A.
$$2x-y-z-4=0$$
. **B.** $2x+y-3z-4=0$. **C.** $x+y-z+4=0$. **D.** $x+y-z-4=0$.

Câu 227. [2H3-4] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):ax+by+cz+d=0 (với $a^2+b^2+c^2>0$) đi qua hai điểm B(1;0;2), C(-1;-1;0) và cách A(2;5;3) một khoảng lớn nhất. Khi đó giá trị của biểu thức $F=\frac{a+c}{b+d}$ là

A. 1. **B.**
$$\frac{3}{4}$$
. **C.** $-\frac{2}{7}$. **D.** $-\frac{3}{2}$.

Câu 228. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $\Delta : \frac{x-3}{1} = \frac{y}{2} = \frac{z+1}{3}$ và đường thẳng $d : \frac{x+3}{3} = \frac{y-1}{1} = \frac{z+2}{2}$. Viết phương trình mặt phẳng (P) đi qua Δ và tạo với đường thẳng d một góc lớn nhất.

A.
$$19x-17y-20z-77=0$$
. **B.** $19x-17y-20z+34=0$. **C.** $31x-8y-5z+91=0$. **D.** $31x-8y-5z-98=0$.

Câu 229. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho điểm A(0;8;2) và mặt cầu (S) có phương trình $(S):(x-5)^2+(y+3)^2+(z-7)^2=72$ và điểm B(9;-7;23). Viết phương trình mặt phẳng (P) qua A tiếp xúc với (S) sao cho khoảng cách từ B đến (P) là lớn nhất. Giả sử $\vec{n}=(1;m;n)$ là một vectơ pháp tuyến của (P). Khi đó

A.
$$m.n = 2$$
. **B.** $m.n = -2$. **C.** $m.n = 4$. **D.** $m.n = -4$

Câu 230. [2H3-4] Cho hai đường thẳng d_1 : $\begin{cases} x=2+t \\ y=1-t \text{ và } d_2 : \begin{cases} x=2-2t' \\ y=3 \end{cases}$. Mặt phẳng cách đều hai đường z=2t

thẳng d_1 và d_2 có phương trình là

A.
$$x+5y+2z+12=0$$
.
B. $x+5y-2z+12=0$.
C. $x-5y+2z-12=0$.
D. $x+5y+2z-12=0$.

Câu 231. [2H3-4] Trong không gian với hệ tọa độ Oxyz. Viết phương trình mặt phẳng (P) đi qua điểm M(1; 2; 3) và cắt các trục Ox, Oy, Oz lần lượt tại ba điểm A, B, C khác với gốc tọa độ O sao cho biểu thức $\frac{1}{OA^2} + \frac{1}{OC^2} + \frac{1}{OC^2}$

$$OA^2 OB^2 OC^2$$
A. $(P): x+2y+3z-11=0$.
B. $(P): x+2y+3z-14=0$.
C. $(P): x+2y+z-14=0$.
D. $(P): x+y+z-6=0$.

Câu 232. [2H3-4] Có bao nhiều mặt phẳng đi qua điểm M(1;9;4) và cắt các trục tọa độ tại các điểm A, B, C (khác gốc tọa độ) sao cho OA = OB = OC. **A.** 1. **B.** 2. **C.** 3. **D.** 4.

Câu 233. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(a;0;0), B(0;b;0), C(0;0;c), trong đó a>0, b>0, c>0. Mặt phẳng (ABC) đi qua điểm I(1;2;3) sao cho thể tích khối tứ diện OABC đạt giá trị nhỏ nhất. Khi đó các số a, b, c thỏa mãn đẳng thức nào sau đây?

A. a+b+c=12.

B. $a^2 + b = c + 6$

C. a+b+c=18

Câu 234. [2H3-4] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (α) đi qua M(2;1;2) đồng thời cắt các tia Ox, Oy, Oz lần lượt tại A, B, C sao cho tứ diện OABC có thể tích nhỏ nhất. Phương trình mặt phẳng (α) là

A. 2x + y + z - 7 = 0. **B.** x + 2y + z - 6 = 0. **C.** x + 2y + z - 1 = 0. **D.** 2x + y - 2z - 1 = 0.

Câu 235. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;1;0), B(-1;3;2) và mặt phẳng $(\alpha): x-y+z-3=0$. Tìm tọa độ điểm M thuộc mặt phẳng (α) sao cho $S = MA^2 + MB^2$ đạt giá tri nhỏ nhất.

A. $M\left(\frac{4}{3}; \frac{2}{3}; \frac{7}{3}\right)$. **B.** M(1;1;3). **C.** M(2;1;2). **D.** M(0;2;1).

Câu 236. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x+2y-2z+15=0và mặt cầu (S): $x^2 + y^2 + z^2 - 2y - 2z - 1 = 0$. Khoảng cách nhỏ nhất từ một điểm thuộc mặt phẳng (P) đến một điểm thuộc mặt cầu (S) là

A. $\frac{3\sqrt{3}}{2}$.

B. $\sqrt{3}$.

C. $\frac{\sqrt{3}}{2}$.

D. $\frac{\sqrt{3}}{2}$.

Câu 237. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 3x + y - z + 5 = 0 và hai điểm A(1;0;2), B(2;-1;4). Tìm tập hợp các điểm M(x;y;z) nằm trên mặt phẳng (P)sao cho tam giác MAB có diện tích nhỏ nhất.

A. $\begin{cases} x - 7y - 4z + 7 = 0 \\ 3x - y + z - 5 = 0 \end{cases}$ C. $\begin{cases} x - 7y - 4z + 7 = 0 \\ 3x + y - z + 5 = 0 \end{cases}$

B. $\begin{cases} x - 7y - 4z + 14 = 0 \\ 3x + y - z + 5 = 0 \end{cases}$ D. $\begin{cases} 3x - 7y - 4z + 5 = 0 \\ 3x + y - z + 5 = 0 \end{cases}$

Câu 238. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho các điểm sau A(1;-1;1), B(0,1,-2) và điểm M thay đổi trên mặt phẳng tọa độ (Oxy). Giá trị lớn nhất của biểu thức T = |MA - MB| là

A. $\sqrt{6}$.

B. $\sqrt{12}$.

 $\mathbf{C}_{\bullet} \sqrt{14}$

D. $\sqrt{8}$.

Câu 239. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz cho hình lập phương ABCD.A'BC'D' biết rằng A(0;0;0), B(1;0;0), D(0;1;0), A'(0;0;1). Phương trình mặt phẳng (P) chứa đường thẳng BC' và tạo với mặt phẳng (AA'C'C) một góc lớn nhất là

A. x + y + z - 1 = 0. **B.** -x - y + z - 1 = 0. **C.** x - y + z - 1 = 0. **D.** x + y - z - 1 = 0.

Câu 240. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x+1}{2} = y+1 = z-3$ và mặt phẳng (P): x+2y-z+5=0. Mặt phẳng (Q) chứa đường thẳng d và tạo với (P) một góc nhỏ nhất có phương trình

A. x - z + 3 = 0.

B. x + y - z + 2 = 0. **C.** x - y - z + 3 = 0. **D.** y - z + 4 = 0.

Vấn đề 3. PHƯƠNG TRÌNH ĐƯỜNG THẮNG

- Câu 241. [2H3-1] Trong không gian Oxyz, cho đường thẳng d đi qua $M_0(x_0; y_0; z_0)$ và nhận $\vec{u} = (a;b;c)$ với $a^2 + b^2 + c^2 > 0$ làm một véctơ chỉ phương. Hãy chọn khẳng định đúng trong các khẳng định sau?
 - **A.** Phương trình chính tắc của $d: \frac{x-x_0}{a} = \frac{y-y_0}{b} = \frac{z-z_0}{c}$.
 - **B.** Phương trình tham số của d: $\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases} (t \in \mathbb{R}).$
 - C. Với mọi $k \in \mathbb{R}$ thì $\vec{v} = k\vec{u}$ là một vécto chỉ phương của d.
 - **D.** Phương trình chính tắc của $d: \frac{x+x_0}{a} = \frac{y+y_0}{b} = \frac{z+z_0}{c}$.
- Câu 242. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1;3) và B(1;-2;1). Lập phương trình đường thẳng Δ đi qua hai điểm A, B.
 - **A.** $\frac{x-2}{1} = \frac{y-1}{3} = \frac{z-3}{2}$.

B. $\Delta : \frac{x+2}{1} = \frac{y+1}{2} = \frac{z+3}{2}$.

C. $\Delta : \frac{x+1}{1} = \frac{y-2}{2} = \frac{z+1}{2}$.

- **D.** $\Delta : \frac{x-2}{1} = \frac{y-1}{2} = \frac{z-3}{1}$.
- Câu 243. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho A(1; 0; 2), B(2; -1; 3). Viết phương trình đường thẳng Δ đi qua hai điểm A, B.

$$\mathbf{A.} \ \Delta : \begin{cases} x = 1 + t \\ y = -t \\ z = 2 + t \end{cases}$$

B.
$$\Delta : \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z}{1}$$
.

C.
$$\Delta: x - y + z - 3 = 0$$
.

D.
$$\Delta : \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{1}$$
.

Câu 244. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;2;-4) và B(1;0;2). Viết phương trình đường thẳng d đi qua hai điểm A và B

A.
$$d: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z-4}{3}$$
.

B.
$$d: \frac{x+1}{1} = \frac{y-2}{1} = \frac{z+4}{3}$$
.

C.
$$d: \frac{x+1}{1} = \frac{y-2}{-1} = \frac{z+4}{3}$$
.

D.
$$d: \frac{x-1}{1} = \frac{y+2}{-1} = \frac{z-4}{3}$$
.

Câu 245. [2H3-1] Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm A(1;2;-3) và B(3;-1;1)?

A.
$$\frac{x+1}{2} = \frac{y+2}{-3} = \frac{z-3}{4}$$
.

B.
$$\frac{x-1}{3} = \frac{y-2}{-1} = \frac{z+3}{1}$$
.

$$C_{\bullet} \frac{x-3}{1} = \frac{y+1}{2} = \frac{z-1}{-3}.$$

- **D.** $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+3}{4}$.
- Câu 246. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây là phương trình

chính tắc của đường thẳng $d: \begin{cases} x = 1 + 2t \\ y = 3t \end{cases}$?

A.
$$\frac{x+1}{3} = \frac{y}{3} = \frac{z-2}{1}$$

B.
$$\frac{x-1}{1} = \frac{y}{3} = \frac{z+2}{-2}$$

A.
$$\frac{x+1}{3} = \frac{y}{3} = \frac{z-2}{1}$$
. **B.** $\frac{x-1}{1} = \frac{y}{3} = \frac{z+2}{-2}$. **C.** $\frac{x+1}{1} = \frac{y}{3} = \frac{z-2}{-2}$. **D.** $\frac{x-1}{2} = \frac{y}{3} = \frac{z+2}{1}$.

D.
$$\frac{x-1}{2} = \frac{y}{3} = \frac{z+2}{1}$$
.

Câu 247. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-3), B(3;-1;1). Tìm phương trình chính tắc của đường thẳng đi qua A và B.

A.
$$\frac{x+1}{2} = \frac{y+2}{-3} = \frac{z-3}{4}$$
.

B.
$$\frac{x-1}{3} = \frac{y-2}{-1} = \frac{z+3}{1}$$
.

C.
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$$
.

D.
$$\frac{x-3}{1} = \frac{y+1}{2} = \frac{z-1}{-3}$$
.

Câu 248. [2H3-1] Trong không gian với hệ tọa độ Oxyz cho đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z+3}{2}$. Trong các vécto sau vécto nào là vécto chỉ phương của đường thẳng d .

A.
$$\vec{u} = (1; -1; -3).$$

A.
$$\vec{u} = (1; -1; -3)$$
. **B.** $\vec{u} = (-2; -1; -2)$. **C.** $\vec{u} = (-2; 1; -2)$.

C.
$$\vec{u} = (-2;1;-2)$$
.

D.
$$\vec{u} = (2;1;2)$$
.

Câu 249. [2H3-1] Trong không gian với hệ tọa độ Oxyz cho A(1; 2; 3), B(1; 0; 2). Phát biểu nào sau đây

A. $\vec{u} = (0; 2; 1)$ là một vécto chỉ phương của đường thẳng AB.

B. $\vec{u} = (0; -2; 1)$ là một véctơ chỉ phương của đường thẳng AB.

C. $\vec{u} = (0; 2; -1)$ là một vécto chỉ phương của đường thẳng AB.

D. $\vec{u} = (2; 2; 5)$ là một véctơ chỉ phương của đường thẳng AB.

Câu 250. [2H3-1] Trong không gian với hệ tọa độ Oxyz, đường thẳng d đi qua hai điểm M(2; 3; 4), N(3; 2; 5) có phương trình chính tắc là

A.
$$\frac{x-3}{1} = \frac{y-2}{-1} = \frac{z-5}{1}$$
.

B.
$$\frac{x-2}{1} = \frac{y-3}{-1} = \frac{z-4}{-1}$$
.

C.
$$\frac{x-3}{-1} = \frac{y-2}{-1} = \frac{z-5}{1}$$
.

D.
$$\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{1}$$
.

Câu 251. [2H3-1] Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;1;0) và B(0;1;2). Vécto nào dưới đây là một véctơ chỉ phương của đường thẳng AB.

A.
$$\vec{b} = (-1,0,2)$$

A.
$$\vec{b} = (-1;0;2)$$
. **B.** $\vec{c} = (1;2;2)$.

C.
$$\vec{d} = (-1;1;2)$$
.

C.
$$\vec{d} = (-1;1;2)$$
. D. $\vec{a} = (-1;0;-2)$.

Câu 252. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \begin{cases} x=1 \\ y=2+3t \ (t \in \mathbb{R}) \end{cases}$. Véctor

nào dưới đây là vécto chỉ phương của d?

A.
$$\vec{u}_1 = (0; 3; -1)$$

B.
$$\vec{u}_2 = (1;3;-1)$$

A.
$$\vec{u}_1 = (0; 3; -1)$$
. **B.** $\vec{u}_2 = (1; 3; -1)$. **C.** $\vec{u}_3 = (1; -3; -1)$. **D.** $\vec{u}_4 = (1; 2; 5)$.

D.
$$\vec{u}_4 = (1; 2; 5)$$

Câu 253. [2H3-1] Trong không gian với hệ trục Oxyz, cho đường thẳng Δ đi qua điểm M(2; 0; -1) và có vécto chỉ phương a = (4, -6, 2). Phương trình tham số của đường thẳng Δ là

$$\mathbf{A.} \begin{cases} x = 2 + 2t \\ y = -3t \\ z = -1 + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = -2 + 2t \\ y = -3t \\ z = 1 + t \end{cases}$$

A.
$$\begin{cases} x = 2 + 2t \\ y = -3t \end{cases}$$

$$z = -1 + t$$
B.
$$\begin{cases} x = -2 + 2t \\ y = -3t \end{cases}$$
C.
$$\begin{cases} x = -2 + 4t \\ y = -6t \end{cases}$$
D.
$$\begin{cases} x = 4 + 2t \\ y = -3t \end{cases}$$

$$z = 1 + 2t$$

$$\mathbf{D.} \begin{cases} x = 4 + 2t \\ y = -3t \\ z = 2 + t \end{cases}$$

Câu 254. [2H3-1] Phương trình tham số của đường thẳng d đi qua điểm M(1,2,3) và có vécto chỉ

A.
$$\begin{cases} x = -1 + t \\ y = -2 + 3t \\ z = -3 + 2t \end{cases}$$
B.
$$\begin{cases} x = 1 + t \\ y = 2 + 3t \\ z = 3 + 2t \end{cases}$$
C.
$$\begin{cases} x = -1 - t \\ y = -2 - 3t \\ z = -3 - 2t \end{cases}$$
D.
$$\begin{cases} x = 1 - t \\ y = -2 - 3t \\ z = 3 - 2t \end{cases}$$

B.
$$\begin{cases} x = 1 + t \\ y = 2 + 3t \\ z = 3 + 2t \end{cases}$$

C.
$$\begin{cases} x = -1 - t \\ y = -2 - 3t \\ z = -3 - 2t \end{cases}$$

D.
$$\begin{cases} x = 1 - t \\ y = -2 - 3t \\ z = 3 - 2t \end{cases}$$

Câu 255. [2H3-1] Cho hai điểm M(1;-2;1), N(0;1;3). Phương trình đường thẳng qua hai điểm M, N là

A.
$$\frac{x}{-1} = \frac{y-1}{3} = \frac{z-3}{2}$$
.

B.
$$\frac{x+1}{-1} = \frac{y-2}{3} = \frac{z+1}{2}$$
.

C.
$$\frac{x}{1} = \frac{y-1}{-2} = \frac{z-3}{1}$$
.

D.
$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z-2}{1}$$
.

Câu 256. [2H3-1] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường thẳng Δ đi qua điểm A(2;-1;3) và vuông góc với mặt phẳng (P): y+3=0.

A.
$$\Delta : \begin{cases} x = 2 \\ y = -1 + t. \\ z = 3 \end{cases}$$
 B. $\Delta : \begin{cases} x = 2 \\ y = 1 + t. \\ z = -3 \end{cases}$ **C.** $\Delta : \begin{cases} x = 1 \\ y = 1 - t. \\ z = 3 \end{cases}$ **D.** $\Delta : \begin{cases} x = 2 + t \\ y = -1 + t. \\ z = 3 \end{cases}$

B.
$$\Delta : \begin{cases} x = 2 \\ y = 1 + t. \\ z = -3 \end{cases}$$

C.
$$\Delta : \begin{cases} x = 1 \\ y = 1 - t \\ z = 3 \end{cases}$$

D.
$$\Delta : \begin{cases} x = 2 + t \\ y = -1 + t \end{cases}$$

Câu 257. [2H3-1] Trong không gian với hệ tọa độ Oxyz, gọi Δ là giao tuyến của hai mặt phẳng x-y+3z-1=0 và 3x-7z+2=0. Một vécto chỉ phương của Δ là

A.
$$\vec{u} = (7;16;3)$$
.

A.
$$\vec{u} = (7;16;3)$$
. **B.** $\vec{u} = (7;0;-3)$.

C.
$$\vec{u} = (-4;1;-3)$$
. D. $\vec{u} = (0;-16;3)$.

D.
$$\vec{u} = (0; -16; 3)$$

Câu 258. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng $d: \begin{cases} y = 2 + 3t & (t \in \mathbb{R}) \\ z = 5 - t \end{cases}$

Đường thẳng d không đi qua điểm nào sau đây?

A.
$$M(1;2;5)$$
.

B.
$$N(2;3;-1)$$
. **C.** $P(3;5;4)$.

C.
$$P(3;5;4)$$
.

D.
$$Q(-1;-1;6)$$

Câu 259. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d:\begin{cases} x=1+2t\\ y=2+(m-1)t \end{cases}$. Tìm tất

cả các giá trị của tham số m để d có thể viết được dưới dạng chính tắc.

A.
$$m \neq 0$$
.

B.
$$m \neq -1$$
.

C.
$$m \neq 1$$
.

D.
$$m = 1$$
.

Câu 260. [2H3-1] Trong không gian Oxyz, cho đường thẳng d có phương trình tham số $\begin{cases} x = -2 + t \\ y = 1 - 3t \end{cases}$.

Viết phương trình chính tắc của d.

A.
$$d: \frac{x+2}{1} = \frac{y-1}{-3} = \frac{z}{2}$$
.

B.
$$d: \frac{x-2}{1} = \frac{y+1}{-3} = \frac{z}{2}$$
.

C.
$$d: \frac{x+2}{1} = \frac{y-1}{3} = \frac{z}{2}$$
.

D.
$$d: \frac{x-2}{1} = \frac{y+1}{-3} = \frac{z}{2}$$
.

Câu 261. [2H3-2] Trong không gian với hệ tọa độ Oxyz, viết phương trình chính tắc của đường thẳng đi qua điểm A(1;-2;3) và vuông góc với mặt phẳng (P): 2x+3y-5z+1=0.

A.
$$\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+3}{-5}$$
.

B.
$$\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-3}{-5}$$
.

C.
$$\begin{cases} x = 1 + 2t \\ y = -2 + 3t, \ (t \in \mathbb{R}). \\ z = 3 - 5t \end{cases}$$

D.
$$\frac{x-2}{1} = \frac{y-3}{-2} = \frac{z+5}{3}$$
.

Câu 262. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;-3;4), B(-2;-5;-7), C(6;-3;-1). Phương trình đường trung tuyến AM của tam giác là

A.
$$\begin{cases} x = 1 + t \\ y = -1 - 3t (t \in \mathbb{R}). \\ z = -8 - 4t \end{cases}$$
B.
$$\begin{cases} x = 1 - 3t \\ y = -3 - 2t (t \in \mathbb{R}). \\ z = 4 - 11t \end{cases}$$

$$\begin{aligned}
&z = -3 - 4t \\
&x = 1 + t \\
&y = -3 - t \ (t \in \mathbb{R}). \\
&z = 4 - 8t
\end{aligned}$$

$$\begin{aligned}
&x = 1 + 3t \\
&y = -3 + 4t \ (t \in \mathbb{R}). \\
&z = 4 - t
\end{aligned}$$

Câu 263. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho điểm M(1;2;3) và đường thẳng $\Delta:\begin{cases} x=1-t\\ y=t\end{cases}$, z=-1-4t

 $(t \in \mathbb{R})$. Viết phương trình đường thẳng đi qua M và song song với đường thẳng Δ .

A.
$$\frac{x+1}{-1} = \frac{y+2}{1} = \frac{z+3}{-4}$$
. **B.** $\frac{x-1}{-2} = \frac{y+2}{2} = \frac{z-3}{-8}$.

C.
$$\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{4}$$
. D. $\frac{x}{1} = \frac{y-3}{-1} = \frac{z+1}{4}$.

Câu 264. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng (P):4x+3y-7z+1=0. Tìm phương trình của đường thẳng đi qua A và vuông góc với (P)

A.
$$\frac{x-1}{4} = \frac{y-2}{3} = \frac{z-3}{-7}$$
. **B.** $\frac{x+1}{8} = \frac{y+2}{6} = \frac{z+3}{-14}$.

C.
$$\frac{x-1}{3} = \frac{y-2}{-4} = \frac{z-3}{-7}$$
. D. $\frac{x+1}{4} = \frac{y+2}{3} = \frac{z+3}{-7}$.

Câu 265. [2H3-2] Trong không gian với hệ tọa độ Oxyz cho ba điểm A(0;-1;3), B(1;0;1), C(-1;1;2). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng đi qua A và song song với đường thẳng BC?

A.
$$\begin{cases} x = -2t \\ y = -1 + t \\ z = 3 + t \end{cases}$$
 B.
$$\frac{x}{-2} = \frac{y+1}{1} = \frac{z-3}{1}$$
 C.
$$\frac{x-1}{-2} = \frac{y}{1} = \frac{z-1}{1}$$
 D.
$$x-2y+z=0$$
.

Câu 266. [2H3-2] Trong không gian với hệ tọa độ Oxyz, đường thẳng nào dưới đây đi qua A(3;5;7) và song song với $d: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$.

A.
$$\begin{cases} x = 3 + 2t \\ y = 5 + 3t \\ z = 7 + 4t \end{cases}$$
B.
$$\begin{cases} x = 2 + 3t \\ y = 3 + 5t \\ z = 4 + 7t \end{cases}$$
C.
$$\begin{cases} x = 1 + 3t \\ y = 2 + 5t \\ z = 3 + 7t \end{cases}$$
D. Không tồn tại.

Câu 267. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;-1;0), B(-1;2;-2) và C(3;0;-4). Viết phương trình đường trung tuyến đỉnh A của tam giác ABC.

A.
$$\frac{x-2}{1} = \frac{y+1}{1} = \frac{z}{-3}$$
. **B.** $\frac{x-2}{1} = \frac{y+1}{-2} = \frac{z}{3}$. **C.** $\frac{x-2}{1} = \frac{y+1}{-2} = \frac{z}{-3}$. **D.** $\frac{x-2}{-1} = \frac{y+1}{-2} = \frac{z}{3}$.

Câu 268. [2H3-2] Viết phương trình đường thẳng đi qua gốc tọa độ O và vuông góc với mặt phẳng

A.
$$\begin{cases} x = -2 + 4t \\ y = 1 - 2t \\ z = 1 - 2t \end{cases}$$
B.
$$\begin{cases} x = 2t \\ y = t \\ z = t \end{cases}$$
C.
$$\begin{cases} x = -2 + 2t \\ y = 1 + t \\ z = 1 - t \end{cases}$$
D.
$$\begin{cases} x = -2t \\ y = t \\ z = -t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 2t \\ y = t \\ z = t \end{cases}$$

C.
$$\begin{cases} x = -2 + 2t \\ y = 1 + t \\ z = 1 - t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = -2t \\ y = t \\ z = -t \end{cases}$$

- Câu 269. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho (P): y+2z=0, $d_1: \begin{cases} x=1-t \\ y=t \end{cases}$, z=4t
 - $d_2: \begin{cases} x=2-k \\ y=4+2k \text{ . Gọi } M \text{ , } N \text{ lần lượt là giao điểm của } d_1, \ d_2 \text{ với } (P) \text{ . Phương trình đường} \end{cases}$

thẳng đi qua hai điểm M, N là

$$\mathbf{A.} \begin{cases} x = 1 + t \\ y = 2t \\ z = 0 \end{cases}$$

A.
$$\begin{cases} x = 1 + t \\ y = 2t \\ z = 0 \end{cases}$$
 B. $5x - 2y + z - 5 = 0$. C.
$$\begin{cases} x = 5 + t \\ y = -2t \\ z = t \end{cases}$$
 D.
$$\begin{cases} x = 1 + 4t \\ y = -2t \\ z = t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 + 4t \\ y = -2t \\ z = t \end{cases}$$

Câu 270. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;-3), B(-1;4;1) và đường thẳng $d: \frac{x+2}{1} = \frac{y-2}{-1} = \frac{z+3}{2}$. Phương trình nào dưới đây là phương trình đường thẳng đi qua trung điểm của đoạn thẳng AB và song song với d?

A.
$$d: \frac{x}{1} = \frac{y-1}{1} = \frac{z+1}{2}$$
.

B.
$$d: \frac{x}{1} = \frac{y-2}{-1} = \frac{z+2}{2}$$
.

C.
$$d: \frac{x}{1} = \frac{y-1}{-1} = \frac{z+1}{2}$$
.

D.
$$d: \frac{x-1}{1} = \frac{y-1}{-1} = \frac{z+1}{2}$$
.

Câu 271. [2H3-2] Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm E(1;2;-3), F(3;-1;1)?

A.
$$\frac{x-1}{3} = \frac{y-2}{-1} = \frac{z+3}{1}$$
.

B.
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z+3}{4}$$
.

C.
$$\frac{x-3}{1} = \frac{y+1}{2} = \frac{z-1}{-3}$$
.

D.
$$\frac{x+1}{2} = \frac{y+2}{-3} = \frac{z-3}{4}$$
.

Câu 272. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3;-1), B(1;2;4). Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB.

A.
$$\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-4}{-5}$$
.

B.
$$\begin{cases} x = 1 - t \\ y = 2 - t \\ z = 4 + 5t \end{cases}$$

C.
$$\begin{cases} x = 2 - t \\ y = 3 - t \end{cases}$$
$$z = -1 + 5t$$

D.
$$\frac{x+2}{1} = \frac{y+3}{1} = \frac{z-1}{-5}$$
.

Câu 273. [2H3-2] Trong không gian với hệ toạ độ Oxyz, viết phương trình của đường thẳng đi qua A(1;2;1) và vuông góc với hai đường thẳng $d_1: \frac{x-1}{1} = \frac{y+1}{1} = \frac{z}{-1}$; $d_2: \frac{x+1}{2} = \frac{y-3}{1} = \frac{z-1}{2}$.

A.
$$\frac{x-1}{-3} = \frac{y-2}{4} = \frac{z-1}{1}$$
.

B.
$$\frac{x-1}{3} = \frac{y-2}{4} = \frac{z-1}{-1}$$
.

C.
$$\frac{x-1}{3} = \frac{y-2}{4} = \frac{z-1}{1}$$
.

D.
$$\frac{x+3}{-2} = \frac{y-4}{6} = \frac{z-1}{2}$$
.

Câu 274. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): 2x + y - z - 1 = 0 và (Q): x-2y+z-5=0. Khi đó, giao tuyến của (P) và (Q) có một vécto chỉ phương là

A. $\vec{u} = (1;3;5)$. **B.** $\vec{u} = (-1;3;-5)$. **C.** $\vec{u} = (2;1;-1)$. **D.** $\vec{u} = (1;-2;1)$.

Câu 275. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$. Gọi d' là hình chiếu của d lên mặt phẳng (Oxy). Đường thẳng d' có phương trình là

A. $\begin{cases} x = 0 \\ y = -1 - t \end{cases}$ B. $\begin{cases} x = 1 + 2t \\ y = -1 + t \end{cases}$ C. $\begin{cases} x = -1 + 2t \\ y = 1 + t \end{cases}$ D. $\begin{cases} x = 1 - 2t \\ y = -1 + t \end{cases}$ z = 0

Câu 276. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;-3), B(3;-1;0). Phương trình của đường thẳng d là hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (Oxy) là

A. $\begin{cases} x = 0 \\ y = 0 \end{cases}$ z = -3 + 3tB. $\begin{cases} x = 1 + 2t \\ y = 0 \end{cases}$ z = -3 + 3tC. $\begin{cases} x = 0 \\ y = -t \end{cases}$ z = -3 + 3tD. $\begin{cases} x = 1 + 2t \\ y = -t \end{cases}$

Câu 277. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(3;3;-2) và hai đường thẳng $d_1: \frac{x-1}{1} = \frac{y-2}{3} = \frac{z}{1}; \ d_2: \frac{x+1}{-1} = \frac{y-1}{2} = \frac{z-2}{4}$. Đường thẳng d qua M cắt d_1 , d_2 lần lượt Avà B. Tính đô dài đoan thẳng AB.

A. AB = 2.

B. AB = 3.

C. $AB = \sqrt{6}$

Câu 278. [2H3-2] Cho điểm M(2;1;0) và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-1}$. Gọi d là đường thẳng đi qua M, cắt và vuông góc với Δ . Khi đó, vécto chỉ phương của d là \mathbf{A} . $\vec{u} = (0;3;1)$. \mathbf{B} . $\vec{u} = (2;-1;2)$. \mathbf{C} . $\vec{u} = (-3;0;2)$. \mathbf{D} . $\vec{u} = (1;-4;-2)$.

Câu 279. [2H3-2] Cho hai đường thẳng $d_1: \frac{x-2}{2} = \frac{y+2}{-1} = \frac{z-3}{1}$, $d_2: \begin{cases} x = 1-t \\ y = 1+2t \end{cases}$ và điểm A(1;2;3).

Đường thẳng Δ đi qua A, vuông góc với $d_{\scriptscriptstyle 1}$ và cắt $d_{\scriptscriptstyle 2}$ có phương trình là

A. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{5}$.

B. $\frac{x-1}{1} = \frac{y-2}{3} = \frac{z-3}{-5}$.

C. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{5}$.

D. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{5}$.

Câu 280. [2H3-2] Cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{2}$. Phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d là

A. $\frac{x-1}{5} = \frac{y+1}{1} = \frac{z-1}{2}$.

B. $\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{2}$.

C. $\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{2}$.

D. $\frac{x-1}{5} = \frac{y+1}{1} = \frac{z-1}{2}$.

Câu 281. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $\Delta: \frac{x-3}{1} = \frac{y+5}{1} = \frac{z-1}{1}$ và mặt phẳng (P): x+2y-3z+4=0. Đường thẳng d nằm trong mặt phẳng (P) sao cho d cắt và vuông góc với đường thẳng Δ . Một vecto chỉ phương của Δ là

A. $\vec{u} = (-1; 2; -1)$. **B.** $\vec{u} = (1; 2; 1)$.

C. $\vec{u} = (-1, 2, 1)$. D. $\vec{u} = (-1, -2, 1)$.

Câu 282. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng $d: \frac{x+3}{2} = \frac{y+1}{1} = \frac{z-3}{1}$ và mặt phẳng (P) có phương trình: x+2y-z+5=0. Tọa độ giao điểm của d và (P) là **B.** (-3;-2;0). **C.** (-1;4;0).

A. (-1;0;4).

D. (4;0;-1).

Câu 283. [2H3-2] Trong không gian hệ trục tọa độ Oxyz, đường thẳng $\Delta : \frac{x}{1} = \frac{y+2}{-1} = \frac{z-1}{3}$ đi qua điểm M(2; m; n). Tìm giá trị của m, n.

A. m = -2; n = 1.

B. m = 0; n = 7.

C. m = -4; n = 7. **D.** m = 2; n = -1.

Câu 284. [2H3-2] Cho hai điểm A(3;3;1), B(0;2;1), mặt phẳng (P): x+y+z-7=0. Đường thẳng dnằm trên (P) sao cho mọi điểm của d cách đều hai điểm A, B có phương trình là

A. $\begin{cases} x = t \\ y = 7 - 3t \\ z = 2t \end{cases}$ **B.** $\begin{cases} x = t \\ y = 7 + 3t \\ z = 2t \end{cases}$ **C.** $\begin{cases} x = -t \\ y = 7 - 3t \\ z = 2t \end{cases}$ **D.** $\begin{cases} x = 2t \\ y = 7 - 3t \\ z = 2t \end{cases}$

Câu 285. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(1;-2;2). Viết phương trình đường thẳng Δ đi qua A và cắt tia Oz tại điểm B sao cho OB = 2OA.

A. $\Delta : \frac{x}{1} = \frac{y}{2} = \frac{z-6}{4}$.

B. $\Delta: \frac{x}{1} = \frac{y}{2} = \frac{z-4}{2}$.

C. $\Delta : \frac{x}{-1} = \frac{y}{2} = \frac{z+6}{4}$.

D. $\Delta: \frac{x+1}{-1} = \frac{y}{2} = \frac{z-6}{4}$.

Câu 286. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;-1), B(2;-1;1) và mặt phẳng (P): 2x + y + z - 3 = 0. Viết phương trình đường thẳng Δ chứa trong (P) sao cho mọi

A. $\begin{cases} x = 1 - 2t \\ y = t \\ z = 3t \end{cases}$ B. $\begin{cases} x = -2t \\ y = 1 + t \\ z = 2 + 3t \end{cases}$ C. $\begin{cases} x = -2 \\ y = 1 + t \\ z = 3 + 2t \end{cases}$ D. $\begin{cases} x = t \\ y = 1 + 3t \\ z = 2 - 2t \end{cases}$

Câu 287. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-2}{1} = \frac{y+3}{2} = \frac{z-1}{2}$. Viết phương trình đường thẳng d' là hình chiếu vuông góc của d lên mặt phẳng (Oyz).

A. $d': \begin{cases} x = 2 + t \\ y = -3 + 2t \end{cases}$ **B.** $d': \begin{cases} x = t \\ y = 2t \end{cases}$ **C.** $d': \begin{cases} x = 0 \\ y = -3 + 2t \end{cases}$ **D.** $d': \begin{cases} x = 0 \\ y = 3 + 2t \end{cases}$ z = 0

Câu 288. [2H3-2] Cho đường thẳng $d: \frac{x+1}{2} = \frac{y-1}{1} = \frac{z-2}{3}$ và mặt phẳng (P): x-y-z-1=0. Phương trình chính tắc của đường thẳng đi qua điểm M(1;1;-2) song song với (P) và vuông góc với d là

A. $\frac{x-1}{2} = \frac{y-1}{5} = \frac{z+2}{2}$.

B. $\frac{x+1}{2} = \frac{y-2}{1} = \frac{z+5}{-3}$.

C. $\frac{x+1}{2} = \frac{y}{1} = \frac{z+5}{2}$.

D. $\frac{x-1}{2} = \frac{y-1}{1} = \frac{z+2}{2}$.

Câu 289. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho M(-2;3;1), N(5;6;-2). Đường thẳng qua M, N cắt mặt phẳng (xOz) tại A. Khi đó điểm A chia đoạn MN theo tỷ số nào?

C. $\frac{-1}{4}$.

Câu 290. [2H3-2] Trong không gian tọa độ Oxyz, cho hai điểm A(1;0;-3), B(3;-1;0). Viết phương trình tham số của đường thẳng d là hình chiếu vuông góc của đường thẳng AB trên mặt phẳng (Oxy).

A. $\begin{cases} x = 0 \\ y = -t \end{cases}$ B. $\begin{cases} x = 1 + 2t \\ y = 0 \end{cases}$ C. $\begin{cases} x = 1 + 2t \\ y = -t \end{cases}$ D. $\begin{cases} x = 0 \\ y = 0 \end{cases}$ z = -3 + 3t

Câu 291. [2H3-2] Trong không gian Oxyz, cho hai đường thẳng cắt nhau $\Delta_1: \begin{cases} x=2+t \\ y=2+2t \end{cases}, \Delta_2: \begin{cases} x=1-t' \\ y=-t' \end{cases}$

 $(t,t' \in \mathbb{R})$. Viết phương trình đường phân giác của góc nhọn tạo bởi Δ_1 và Δ_2 .

A. $\frac{x-1}{2} = \frac{y}{3} = \frac{z}{-3}$. **B.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$. **C.** $\frac{x+1}{2} = \frac{y}{-3} = \frac{z}{3}$. **D.** Cå A, B, C đều sai.

Câu 292. [2H3-2] Trong không gian với hệ tọa độ Oxyz. Cho mặt phẳng (P): 2x - y + z - 10 = 0, điểm

A(1;3;2) và đường thẳng $d:\begin{cases} y=1+t \\ z=1-t \end{cases}$. Tìm phương trình đường thẳng Δ cắt P và d lần

lượt tại hai điểm M và N sao cho A là trung điểm cạnh MN.

A. $\frac{x-6}{7} = \frac{y-1}{4} = \frac{z+3}{1}$.

B. $\frac{x+6}{7} = \frac{y+1}{4} = \frac{z-3}{1}$.

C. $\frac{x-6}{7} = \frac{y-1}{4} = \frac{z+3}{1}$.

D. $\frac{x+6}{7} = \frac{y+1}{4} = \frac{z-3}{1}$.

Câu 293. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(5;-3;2) và mặt phẳng (P): x-2y+z-1=0. Tìm phương trình đường thẳng d đi qua điểm M và vuông góc (P).

A. $\frac{x+5}{1} = \frac{y-3}{2} = \frac{z+2}{1}$.

B. $\frac{x-5}{1} = \frac{y+3}{2} = \frac{z-2}{1}$.

C. $\frac{x-6}{1} = \frac{y+5}{2} = \frac{z-3}{1}$.

D. $\frac{x+5}{1} = \frac{y+3}{2} = \frac{z-2}{1}$.

Câu 294. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2), B(2;-1;3). Viết phương trình đường thẳng AB.

A. $\frac{x-1}{3} = \frac{y-1}{2} = \frac{z-2}{1}$.

B. $\frac{x-1}{1} = \frac{y-1}{-2} = \frac{z-2}{1}$.

C. $\frac{x-3}{1} = \frac{y+2}{1} = \frac{z-1}{2}$.

D. $\frac{x+1}{3} = \frac{y+1}{-2} = \frac{z+2}{1}$.

Câu 295. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho đường thẳng $d: \begin{cases} y = -3 + 2t \end{cases}$. Viết phương

trình đường thẳng d' là hình chiếu vuông góc của d lên mặt phẳng (Oyz).

A. $d': \begin{cases} x = 0 \\ y = -3 + 2t \\ z = 1 + 3t \end{cases}$ **B.** $d': \begin{cases} x = 0 \\ y = 3 + 2t \\ z = 0 \end{cases}$ **C.** $d': \begin{cases} x = 2 + t \\ y = -3 + 2t \\ z = 0 \end{cases}$ **D.** $d': \begin{cases} x = t \\ y = 2t \\ z = 0 \end{cases}$

- **Câu 296.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; 1; 0) và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-1}$. Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là
 - **A.** $d: \begin{cases} x = 2 + t \\ y = 1 4t \end{cases}$ **B.** $d: \begin{cases} x = 2 t \\ y = 1 + t \end{cases}$ **C.** $d: \begin{cases} x = 1 + t \\ y = -1 4t \end{cases}$ **D.** $d: \begin{cases} x = 2 + 2t \\ y = 1 + t \end{cases}$ $z = -t \end{cases}$
- Câu 297. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và hai mặt phẳng (P): 2x+3y=0, (Q): 3x+4y=0. Đường thẳng qua A song song với hai mặt phẳng (P), (Q) có phương trình tham số là
 - **A.** $\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 3 + t \end{cases}$ **B.** $\begin{cases} x = 1 \\ y = 2 \\ z = t \end{cases}$ **C.** $\begin{cases} x = t \\ y = 2 \\ z = 3 + t \end{cases}$ **D.** $\begin{cases} x = 1 \\ y = t \\ z = 3 \end{cases}$
- Câu 298. [2H3-2] Trong không gian Oxyz, cho hai điểm A(1;0;1), B(-1;2;1). Viết phương trình đường thẳng Δ đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).
 - A. $\Delta: \begin{cases} x = t \\ y = 1 + t \end{cases}$ z = 1 tB. $\Delta: \begin{cases} x = t \\ y = 1 + t \end{cases}$ C. $\Delta: \begin{cases} x = 3 + t \\ y = 4 + t \end{cases}$ z = 1 tD. $\Delta: \begin{cases} x = -1 + t \\ y = t \end{cases}$ z = 3 t
- **Câu 299.** [2H3-2] Trong không gian Oxyz, đường thẳng $d: \frac{x-3}{1} = \frac{y+2}{-1} = \frac{z-4}{2}$ cắt mặt phẳng (Oxy) tại điểm có tọa độ là **A.** (-3; 2; 0). **B.** (3; -2; 0). **C.** (-1; 0; 0). **D.** (1; 0; 0).
- A. (-3; 2; 0).

 B. (3, -2, 0).

 C. (-1, 0, 0).

 S. (-1, 0, 0).
 - thẳng $d_2: \frac{x}{2} = \frac{y-1}{1} = \frac{z+2}{-5}$. Viết phương trình đường thẳng đi qua A(1;-1;2), đồng thời vuông góc với cả hai đường thẳng d_1 và d_2 .
 - **A.** $\frac{x-1}{14} = \frac{y+1}{17} = \frac{z-2}{9}$. **B.** $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-2}{4}$. **C.** $\frac{x-1}{3} = \frac{y+1}{-2} = \frac{z-2}{4}$. **D.** $\frac{x-1}{1} = \frac{y+1}{2} = \frac{z-2}{3}$.
- Câu 301. [2H3-2] Trong không gian với hệ trục Oxyz, cho tam giác ABC có A(-1;3;2), B(2;0;5) và C(0;-2;1). Phương trình trung tuyến AM của tam giác ABC là
 - A. $\frac{x+1}{-2} = \frac{y-3}{-2} = \frac{z-2}{-4}$.

 B. $\frac{x+1}{2} = \frac{y-3}{-4} = \frac{z-2}{1}$.

 C. $\frac{x-2}{-1} = \frac{y+4}{3} = \frac{z-1}{2}$.

 D. $\frac{x-1}{2} = \frac{y+3}{-4} = \frac{z+2}{1}$.
- **Câu 302.** [2H3-2] Trong không gian với hệ toa độ Oxyz, lập phương trình đường thẳng đi qua điểm A(0;-1;3) và vuông góc với mặt phẳng (P): x+3y-1=0.
 - A. $\begin{cases} x = t \\ y = -1 + 2t \\ z = 3 + 2t \end{cases}$ B. $\begin{cases} x = 1 \\ y = 3 t \\ z = 3 \end{cases}$ C. $\begin{cases} x = t \\ y = -1 + 3t \\ z = 3 t \end{cases}$ D. $\begin{cases} x = t \\ y = -1 + 3t \\ z = 3 \end{cases}$

- Câu 303. [2H3-2] Trong không gian Oxyz, đường thẳng đi qua điểm M(1;2;2), song song với mặt phẳng (P): x-y+z+3=0 đồng thời cắt đường thẳng $d:\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$ có phương trình là
- A. $\begin{cases} x = 1 t \\ y = 2 t \end{cases}$ z = 2B. $\begin{cases} x = 1 t \\ y = 2 t \end{cases}$ z = 3 tC. $\begin{cases} x = 1 + t \\ y = 2 t \end{cases}$ z = 3 tD. $\begin{cases} x = 1 t \\ y = 2 + t \end{cases}$
- Câu 304. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ là giao tuyến của hai mặt phẳng (P): z-1=0 và (Q): x+y+z-3=0. Gọi d là đường thẳng nằm trong mặt phẳng (P), cắt đường thẳng $\frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{-1}$ và vuông góc với đường thẳng Δ . Phương trình của đường thẳng d là
- A. $\begin{cases} x = 3 + t \\ y = t \end{cases}$ z = 1 + tB. $\begin{cases} x = 3 t \\ y = t \end{cases}$ C. $\begin{cases} x = 3 + t \\ y = t \end{cases}$ C. $\begin{cases} x = 3 + t \\ y = -t \end{cases}$ z = 1 + t
- Câu 305. [2H3-2] Trong không gian Oxyz, đường thẳng đi qua điểm A(-2;4;3) và vuông góc với mặt phẳng 2x-3y+6z+19=0 có phương trình là
 - **A.** $\frac{x+2}{2} = \frac{y-4}{3} = \frac{z-3}{6}$.

B. $\frac{x+2}{2} = \frac{y+3}{4} = \frac{z-6}{3}$.

C. $\frac{x-2}{2} = \frac{y+4}{2} = \frac{z+3}{6}$.

- **D.** $\frac{x+2}{2} = \frac{y-3}{4} = \frac{z+6}{3}$.
- Câu 306. [2H3-2] Trong không gian Oxyz, đường thẳng Δ đi qua A(1;2;-1) và song song với đường thẳng $d: \frac{x-3}{1} = \frac{y-3}{2} = \frac{z}{2}$ có phương trình là
 - **A.** $\frac{x-1}{-2} = \frac{y-2}{-6} = \frac{z+1}{-4}$.

B. $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{2}$.

C. $\frac{x-1}{1} = \frac{y-2}{3} = \frac{z+1}{2}$.

- **D.** $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z+1}{1}$.
- Câu 307. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 3; 1), B(0; 2; 1) và mặt thẳng (P): x + y + z - 7 = 0. Viết phương trình đường thẳng d nằm trong mặt phẳng (P) sao cho mọi điểm thuộc đường thẳng d luôn cách đều hai điểm A và

- **A.** $\begin{cases} x = 2t \\ y = 7 3t \end{cases}$ **B.** $\begin{cases} x = t \\ y = 7 + 3t \end{cases}$ **C.** $\begin{cases} x = -t \\ y = 7 3t \end{cases}$ **D.** $\begin{cases} x = t \\ y = 7 3t \end{cases}$ $\begin{cases} x = -t \\ y = 7 3t \end{cases}$ $\begin{cases} x = -t \\ y = 7 3t \end{cases}$
- Câu 308. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và

- A. $\begin{cases} x = -1 + 4t \\ y = -2 + 3t \\ z = -3 7t \end{cases}$ B. $\begin{cases} x = 1 + 4t \\ y = 2 + 3t \\ z = 3 7t \end{cases}$ C. $\begin{cases} x = 1 + 3t \\ y = 2 4t \\ z = 3 7t \end{cases}$ D. $\begin{cases} x = -1 + 8t \\ y = -2 + 6t \\ z = -3 14t \end{cases}$
- Câu 309. [2H3-2] Trong không gian Oxyz, phương trình nào dưới đây không phải là phương trình đường thẳng đi qua hai điểm A(4;2;0), B(2;3;1).
 - **A.** $\frac{x-2}{-2} = \frac{y-3}{1} = \frac{z-1}{1}$. **B.** $\frac{x}{-2} = \frac{y-4}{1} = \frac{z-2}{1}$. **C.** $\begin{cases} x = 1-2t \\ y = 4+t \end{cases}$. z = 2+t.

Câu 310. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1; -3; 4), $B\left(-2;-5;-7\right)$, $C\left(6;-3;-1\right)$. Phương trình đường trung tuyến AM của tam giác là

A.
$$\begin{cases} x = 1 + t \\ y = -3 - t, (t \in \mathbb{R}). \\ z = 4 - 8t \end{cases}$$

B.
$$\begin{cases} x = 1 + t \\ y = -1 - 3t, \ (t \in \mathbb{R}). \\ z = 8 - 4t \end{cases}$$

C.
$$\begin{cases} x = 1 + 3t \\ y = -3 + 4t, \ (t \in \mathbb{R}). \\ z = 4 - t \end{cases}$$

D.
$$\begin{cases} x = 1 - 3t \\ y = -3 - 2t, (t \in \mathbb{R}). \\ z = 4 - 11t \end{cases}$$

Câu 311. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{3}$. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.

A.
$$\frac{x-1}{5} = \frac{y+3}{-1} = \frac{z-1}{3}$$
.

B.
$$\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{-3}$$
.

C.
$$\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{2}$$
.

D.
$$\frac{x-1}{5} = \frac{y-1}{-1} = \frac{z-1}{-3}$$
.

Câu 312. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và hai mặt phẳng (P): 2x + 3y = 0, (Q): 3x + 4y = 0. Đường thẳng qua A song song với hai mặt phẳng (P), (Q) có phương trình tham số là

A.
$$\begin{cases} x = 1 + t \\ y = 2 + t \\ z = 3 + t \end{cases}$$
 B.
$$\begin{cases} x = 1 \\ y = 2 \\ z = t \end{cases}$$
 C.
$$\begin{cases} x = t \\ y = 2 \\ z = 3 + t \end{cases}$$
 D.
$$\begin{cases} x = 1 \\ y = t \\ z = 3 \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 1 \\ y = 2 \\ z = t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = t \\ y = 2 \\ z = 3 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 \\ y = t \\ z = 3 \end{cases}$$

Câu 313. [2H3-2] Trong không gian Oxyz, cho hai điểm A(1;0;1), B(-1;2;1). Viết phương trình đường thẳng Δ đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

A.
$$\Delta$$
:
$$\begin{cases} x = t \\ y = 1 + t \\ z = 1 - t \end{cases}$$

B.
$$\Delta$$
:
$$\begin{cases} x = t \\ y = 1 + t \\ z = 1 + t \end{cases}$$

C.
$$\Delta$$
:
$$\begin{cases} x = 3 + t \\ y = 4 + t \\ z = 1 - t \end{cases}$$

A.
$$\Delta$$
:
$$\begin{cases} x = t \\ y = 1 + t \end{cases}$$

$$z = 1 - t$$
B. Δ :
$$\begin{cases} x = t \\ y = 1 + t \end{cases}$$

$$z = 1 + t$$
C. Δ :
$$\begin{cases} x = 3 + t \\ y = 4 + t \end{cases}$$

$$z = 1 - t$$
D. Δ :
$$\begin{cases} x = -1 + t \\ y = t \end{cases}$$

$$z = 3 - t$$

Câu 314. [2H3-2] Phương trình đường thẳng song song với đường thẳng $d: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z}{1}$ và cắt hai

đường thẳng $d_1: \frac{x+1}{2} = \frac{y+1}{1} = \frac{z-2}{-1}$; $d_2: \frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{3}$ là

A.
$$\frac{x+1}{-1} = \frac{y+1}{-1} = \frac{z-2}{1}$$
.

B.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$$
.

C.
$$\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{-1}$$
.

D.
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{1}$$
.

 Câu 315. [2H3-2] Cho hai điểm M(1;2;-4) và M'(5;4;2) biết M' là hình chiếu vuông góc của M lên mặt phẳng (α) . Khi đó mặt phẳng (α) có một vécto pháp tuyến là

A.
$$\vec{n} = (3; 3; -1)$$
.

A.
$$\vec{n} = (3;3;-1)$$
. **B.** $\vec{n} = (2;-1;3)$. **C.** $\vec{n} = (2;1;3)$. **D.** $\vec{n} = (2;3;3)$.

C.
$$\vec{n} = (2;1;3)$$
.

D.
$$\vec{n} = (2;3;3)$$
.

Câu 316. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng $\Delta: \frac{x-2}{1} = \frac{y-1}{1} = \frac{z}{-2}$ và vuông góc với mặt phẳng $(\beta): x+y+2z+1=0$. Khi đó giao tuyến của hai mặt phẳng (α) , (β) có phương trình

A.
$$\frac{x-2}{1} = \frac{y+1}{-5} = \frac{z}{2}$$
. **B.** $\frac{x+2}{1} = \frac{y-1}{-5} = \frac{z}{2}$. **C.** $\frac{x}{1} = \frac{y+1}{1} = \frac{z}{-1}$. **D.** $\frac{x}{1} = \frac{y+1}{1} = \frac{z-1}{1}$.

Câu 317. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; 1; 0) và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-1}$. Phương trình tham số của đường thẳng d đi qua M, cắt và vuông góc với Δ là

A.
$$d: \begin{cases} x = 2 + t \\ y = 1 - 4t \end{cases}$$
 B. $d: \begin{cases} x = 2 - t \\ y = 1 + t \end{cases}$ **C.** $d: \begin{cases} x = 1 + t \\ y = -1 - 4t \end{cases}$ **D.** $d: \begin{cases} x = 2 + 2t \\ y = 1 + t \end{cases}$ $z = -t$

Câu 318. [2H3-2] Trong không gian với hệ tọa độ Oxyz. Cho mặt phẳng (P): 2x - y + z - 10 = 0, điểm A(1;3;2) và đường thẳng $d: \begin{cases} x = -2 + 2t \\ y = 1 + t \\ z = 1 - t \end{cases}$. Tìm phương trình đường thẳng Δ cắt (P) và d lần

lượt tại hai điểm M và N sao cho A là trung điểm cạnh MN.

A.
$$\frac{x-6}{7} = \frac{y-1}{-4} = \frac{z+3}{-1}$$
. **B.** $\frac{x+6}{7} = \frac{y+1}{4} = \frac{z-3}{-1}$.

C.
$$\frac{x-6}{7} = \frac{y-1}{4} = \frac{z+3}{-1}$$
. D. $\frac{x+6}{7} = \frac{y+1}{-4} = \frac{z-3}{-1}$.

Câu 319. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz cho M(1;-2;1), N(0;1;3). Phương trình đường thẳng qua hai điểm M, N là

A.
$$\frac{z+1}{-1} = \frac{y-2}{3} = \frac{z+1}{2}$$
. **B.** $\frac{z+1}{1} = \frac{y-3}{-2} = \frac{z-2}{1}$.

C.
$$\frac{x}{-1} = \frac{y-1}{3} = \frac{z-3}{2}$$
. D. $\frac{x}{1} = \frac{y-1}{-2} = \frac{z-3}{1}$.

Câu 320. [2H3-2] Trong không gian Oxyz, cho hai điểm A(1;0;1), B(-1;2;1). Viết phương trình đường thẳng Δ đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

A.
$$\Delta$$
:
$$\begin{cases} x = t \\ y = 1 + t \\ z = 1 - t \end{cases}$$
B. Δ :
$$\begin{cases} x = t \\ y = 1 + t \\ z = 1 + t \end{cases}$$
C. Δ :
$$\begin{cases} x = 3 + t \\ y = 4 + t \\ z = 1 - t \end{cases}$$
D. Δ :
$$\begin{cases} x = -1 + t \\ y = t \\ z = 3 - t \end{cases}$$

Câu 321. [2H3-2] Phương trình đường thẳng song song với đường thẳng $d: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z}{-1}$ và cắt hai

đường thẳng
$$d_1: \frac{x+1}{2} = \frac{y+1}{1} = \frac{z-2}{-1}; d_2: \frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{3}$$
 là

A.
$$\frac{x+1}{-1} = \frac{y+1}{-1} = \frac{z-2}{1}$$
. **B.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{-1}$.

C.
$$\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{-1}$$
. D. $\frac{x-1}{1} = \frac{y}{-1} = \frac{z-1}{1}$.

Câu 322. [2H3-2] Cho hai điểm M(1;2;-4) và M'(5;4;2) biết M' là hình chiếu vuông góc của M lên mặt phẳng (α) . Khi đó mặt phẳng (α) có một vécto pháp tuyến là

B. $\vec{n} = (2; -1; 3)$. **C.** $\vec{n} = (2; 1; 3)$.

D. $\vec{n} = (2:3:3)$.

Câu 323. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng $\Delta: \frac{x-2}{1} = \frac{y-1}{1} = \frac{z}{-2}$ và vuông góc với mặt phẳng $(\beta): x+y+2z+1=0$. Khi đó giao tuyến của hai mặt phẳng (α) , (β) có phương trình

A. $\frac{x-2}{1} = \frac{y+1}{-5} = \frac{z}{2}$. **B.** $\frac{x+2}{1} = \frac{y-1}{-5} = \frac{z}{2}$. **C.** $\frac{x}{1} = \frac{y+1}{1} = \frac{z}{-1}$. **D.** $\frac{x}{1} = \frac{y+1}{1} = \frac{z-1}{1}$.

Câu 324. [2H3-3] Trong không gian với hệ toạ độ Oxyz, cho điểm A(1;-2;3) và hai mặt phẳng (P): x+y+z+1=0, (Q): x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thắng đi qua A, song song với (P) và (Q)?

A. $\begin{cases} x = 1 \\ y = -2 \end{cases}$ B. $\begin{cases} x = -1+t \\ y = 2 \end{cases}$ C. $\begin{cases} x = 1+2t \\ y = -2 \end{cases}$ D. $\begin{cases} x = 1+t \\ y = -2 \end{cases}$ D. $\begin{cases} x = 1+t \\ y = -2 \end{cases}$

Câu 325. [2H3-3] Trong không gian với hệ (Oxyz) cho điểm M(1;2;3), A(1;0;0), B(0;0;3). Đường thẳng Δ đi qua M và thỏa mãn tổng khoảng cách từ các điểm A, B đến Δ lớn nhất có phương trình là

A. $\Delta: \frac{x-1}{6} = \frac{y-2}{2} = \frac{z-3}{2}$.

B. $\Delta : \frac{x-1}{c} = \frac{y-2}{2} = \frac{z-3}{2}$.

C. $\Delta : \frac{x-1}{3} = \frac{y-2}{6} = \frac{z-3}{2}$.

D. $\Delta : \frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{6}$.

Câu 326. [2H3-3] Trong không gian với hệ tọa độ Oxyz, gọi (α) là mặt phẳng chứa đường thẳng Δ có phương trình $\frac{x-2}{1} = \frac{y-1}{1} = \frac{z}{2}$ và vuông góc với mặt phẳng (β) : x + y - 2z - 1 = 0. Giao tuyến của (α) và (β) đi qua điểm nào trong các điểm sau

B. C(1;2;1).

C. D(2;1;0).

D. B(0;1;0).

Câu 327. [2H3-3] Cho đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$. Hình chiếu vuông góc của d trên mặt phăng (Oxy) có phương trình là

A. $\begin{cases} x = 0 \\ y = -1 - t. \\ z = 0 \end{cases}$ B. $\begin{cases} x = 1 + 2t \\ y = -1 + t. \\ z = 0 \end{cases}$ C. $\begin{cases} x = -1 + 2t \\ y = 1 + t \\ z = 0 \end{cases}$ D. $\begin{cases} x = -1 + 2t \\ y = -1 + t \\ z = 0 \end{cases}$

Câu 328. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d: \frac{x+1}{2} = \frac{y-1}{1} = \frac{z-1}{1}$,

 $d': \frac{x-1}{1} = \frac{y-2}{1} = \frac{z+1}{2}$ và mặt phẳng (P): x-y-2z+3=0. Viết phương trình đường thẳng Δ nằm trên mặt phẳng (P) và cắt hai đường thẳng d , d^\prime .

A. $\Delta : \frac{x+1}{1} = \frac{y}{2} = \frac{z+2}{1}$.

B. $\Delta : \frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{1}$.

C. $\Delta : \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$.

D. $\Delta : \frac{x-1}{1} = \frac{y}{3} = \frac{z-2}{1}$.

Câu 329. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho $d_1: \frac{x}{2} = \frac{y-1}{1} = \frac{z+2}{1}$,

 $d_2: \left\{ y = 1 + t \mid (t \in \mathbb{R}) \text{ . Dường thẳng vuông góc với mặt phẳng } \left(P\right): 7x + y - 4z = 0 \text{ và cắt cả} \right\}$

hai đường thẳng d_1 , d_2 có phương trình là

A.
$$\frac{x}{7} = \frac{y-1}{1} = \frac{z+2}{-4}$$
.

B.
$$\frac{x-2}{7} = \frac{y}{1} = \frac{z+1}{-4}$$
.

C.
$$\frac{x+1}{7} = \frac{y-1}{1} = \frac{z-3}{-4}$$
.

D.
$$\frac{x+\frac{1}{2}}{7} = \frac{y-1}{1} = \frac{z-\frac{1}{2}}{-4}$$

Câu 330. [2H3-3] Trong không gian với hệ toạ độ Oxyz, cho đường thẳng Δ nằm trong mặt phẳng (α) : x+y+z-3=0 đồng thời đi qua điểm M(1;2;0) và cắt đường thẳng $d: \frac{x-2}{2} = \frac{y-2}{1} = \frac{z-3}{1}$. Một vectơ chỉ phương của Δ là

A.
$$\vec{u} = (1;1;-2)$$
.

B.
$$\vec{u} = (1;0;-1)$$
.

A.
$$\vec{u} = (1;1;-2)$$
. **B.** $\vec{u} = (1;0;-1)$. **C.** $\vec{u} = (1;-1;-2)$. **D.** $\vec{u} = (1;-2;1)$.

D.
$$\vec{u} = (1; -2; 1)$$

Câu 331. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;1;0) và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z}{-1}$. Viết phương trình của đường thẳng d đi qua điểm M, cắt và vuông góc

A.
$$d: \frac{x-2}{1} = \frac{y-1}{4} = \frac{z}{1}$$
.

B.
$$d: \frac{x-2}{1} = \frac{y-1}{-4} = \frac{z}{1}$$
.

C.
$$d: \frac{x-2}{2} = \frac{y-1}{-4} = \frac{z}{1}$$
.

D.
$$d: \frac{x-2}{1} = \frac{y-1}{-4} = \frac{z}{-2}$$
.

Câu 332. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x+1}{-2} = \frac{y}{-1} = \frac{z-2}{1}$ và hai điểm A(-1; 3; 1), B(0; 2; -1). Tìm tọa độ điểm C thuộc d sao cho diện tích của tam giác ABC bằng $2\sqrt{2}$.

A.
$$C(-1; 0; 2)$$
.

B.
$$C(1; 1; 1)$$
.

C.
$$C(-3;-1;3)$$
.

C.
$$C(-3;-1;3)$$
. D. $C(-5;-2;4)$.

Câu 333. [2H3-3] Cho đường thẳng $d: \frac{x+1}{2} = \frac{y-4}{-2} = \frac{z+2}{1}$ và mặt phẳng (P): x+2y-z-6=0 cắt nhau tại I. Gọi M là điểm thuộc d sao cho IM = 6. Tính khoảng cách từ M đến mặt phẳng (P).

A.
$$\sqrt{6}$$
 .

B.
$$2\sqrt{6}$$
.

C.
$$\sqrt{30}$$

D.
$$\frac{\sqrt{6}}{2}$$
.

Câu 334. [2H3-3] Trong không gian với hệ trục toạ độ Oxyz, cho ba mặt phẳng (P): x-2y+z-1=0, (Q): x-2y+z+8=0 và (R): x-2y+z-4=0. Một đường thẳng d thay đổi cắt ba mặt phẳng (P), (Q), (R) lần lượt tại A, B, C. Đặt $T = \frac{AB^2}{A} + \frac{144}{AC}$. Tìm giá trị nhỏ nhất của T.

A. min
$$T = 54\sqrt[3]{2}$$
.

B.
$$\min T = 108$$
.

C. min
$$T = 72\sqrt[3]{3}$$
.

D. min
$$T = 96$$
.

Câu 335. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1; 2; -3) và mặt phẳng (P): 2x+2y-z+9=0. Đường thẳng d đi qua A và có vécto chỉ phương $\vec{u}=(3;4;-4)$ cắt (P) tại B. Điểm M thay đổi trong (P) sao cho M luôn nhìn đoạn AB dưới góc 90° . Khi độ dài MB lớn nhất, đường thẳng MB đi qua điểm nào trong các điểm sau?

A. H(-2;-1;3).

B. I(-1,-2,3).

C. K(3;0;15).

Câu 336. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, gọi d là đường thẳng đi qua A(1;-1;2), song song với mặt phẳng (P): 2x - y - z + 3 = 0, đồng thời tạo với đường thẳng $\Delta: \frac{x+1}{1} = \frac{y-1}{2} = \frac{z}{2}$ một góc lớn nhất. Phương trình của đường thẳng d là

A. $\frac{x-1}{4} = \frac{y+1}{5} = \frac{z+2}{7}$.

B. $\frac{x-1}{1} = \frac{y+1}{5} = \frac{z-2}{7}$.

 $C_{\bullet} \frac{x-1}{4} = \frac{y+1}{5} = \frac{z-2}{7}$.

D. $\frac{x-1}{1} = \frac{y+1}{5} = \frac{z-2}{7}$.

Câu 337. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho 2 điểm $M\left(-2;-2;1\right)$, $A\left(1;2;-3\right)$ và đường thẳng $d: \frac{x+1}{2} = \frac{y-5}{2} = \frac{z}{-1}$. Tìm vecto chỉ phương \vec{u} của đường thẳng Δ đi qua M, vuông góc với đường thẳng $\,d\,$ đồng thời cách điểm $\,A\,$ một khoảng lớn nhất. C. $\vec{u} = (1;1;-4)$. D. $\vec{u} = (8;-7;2)$.

A. $\vec{u} = (4; -5; -2)$. **B.** $\vec{u} = (1; 0; 2)$.

Câu 338. [2H3-3] Cho đường thẳng $d: \begin{cases} x=t \\ y=-1+t \end{cases}$ và hai điểm A(5;0;-1), B(3;1;0). Một điểm M thay

đổi trên đường thẳng đã cho. Tính giá trị nhỏ nhất của diện tích tam giác BAM.

A. $\frac{\sqrt{82}}{2}$.

B. $2\sqrt{5}$.

C. $\sqrt{22}$.

Câu 339. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d:\begin{cases} x=2+3t\\ y=-3+t \end{cases}$ và

 $d': \frac{x-4}{2} = \frac{y+1}{1} = \frac{z}{2}$. Phương trình nào dưới đây là phương trình đường thẳng thuộc mặt phẳng chứa d và d', đồng thời cách đều hai đường thẳng đó.

A. $\frac{x-3}{2} = \frac{y+2}{1} = \frac{z-2}{2}$.

B. $\frac{x+3}{2} = \frac{y+2}{1} = \frac{z+2}{2}$.

C. $\frac{x+3}{2} = \frac{y-2}{1} = \frac{z+2}{-2}$.

D. $\frac{x-3}{2} = \frac{y-2}{1} = \frac{z-2}{2}$.

Câu 340. [2H3-3] Cho đường thẳng $\Delta : \frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{-1}$ và hai điểm A(1;2;-1), B(3;-1;-5). Gọi d là đường thẳng đi qua điểm A và cắt đường thẳng Δ sao cho khoảng cách từ B đến đường thẳng d là lớn nhất. Phương trình của d là

A. $\frac{x-3}{2} = \frac{y}{2} = \frac{z+5}{1}$.

B. $\frac{x}{1} = \frac{y+2}{3} = \frac{z}{4}$.

C. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$.

D. $\frac{x+2}{2} = \frac{y}{1} = \frac{z-1}{1}$.

- Câu 341. [2H3-3] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng $d: \frac{x-2}{2} = \frac{y-3}{3} = \frac{z+4}{-5}$ và $d': \frac{x+1}{3} = \frac{y-4}{-2} = \frac{z-4}{-1}$.
 - **A.** $\frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$.

B. $\frac{x-2}{2} = \frac{y-2}{2} = \frac{z-3}{4}$.

C. $\frac{x-2}{2} = \frac{y+2}{2} = \frac{z-3}{2}$.

- **D.** $\frac{x}{2} = \frac{y-2}{2} = \frac{z-3}{1}$.
- Câu 342. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y+z-4=0 và đường thẳng $d: \frac{x+1}{2} = \frac{y}{1} = \frac{z+2}{3}$. Viết phương trình đường thẳng Δ nằm trong mặt phẳng (P), đồng thời cắt và vuông góc với đường thẳng d.
 - A. $\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{2}$.

B. $\frac{x-1}{5} = \frac{y-1}{1} = \frac{z-1}{3}$.

C. $\frac{x-1}{5} = \frac{y+1}{1} = \frac{z-1}{2}$.

- **D.** $\frac{x+1}{5} = \frac{y+3}{1} = \frac{z-1}{2}$.
- Câu 343. [2H3-3] Phương trình đường thẳng song song với đường thẳng $d: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z}{1}$ và cắt hai

đường thẳng
$$d_1: \frac{x+1}{2} = \frac{y+1}{1} = \frac{z-2}{-1}; d_2: \frac{x-1}{-1} = \frac{y-2}{1} = \frac{z-3}{3}$$
 là

A. $\frac{x+1}{1} = \frac{y+1}{1} = \frac{z-2}{1}$.

B. $\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{1}$.

C. $\frac{x-1}{1} = \frac{y-2}{1} = \frac{z-3}{1}$.

- **D.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z-1}{1}$.
- **Câu 344.** [2H3-3] Trong không gian Oxyz, cho ba điểm A(1;1;1), B(-1;2;0), C(2;-3;2). Tập hợp tất cả các điểm M cách đều ba điểm A, B, C là một đường thẳng d. Phương trình tham số của

A.
$$\begin{cases} x = -8 - 3t \\ y = t \\ z = 15 + 7t \end{cases}$$

B.
$$\begin{cases} x = -8 + 3t \\ y = t \\ z = 15 - 7t \end{cases}$$

C.
$$\begin{cases} x = -8 + 3t \\ y = -t \\ z = -15 - 7t \end{cases}$$

A.
$$\begin{cases} x = -8 - 3t \\ y = t \end{cases}$$

$$z = 15 + 7t$$
B.
$$\begin{cases} x = -8 + 3t \\ y = t \end{cases}$$

$$z = 15 - 7t$$
C.
$$\begin{cases} x = -8 + 3t \\ y = -t \end{cases}$$

$$z = -15 - 7t$$
D.
$$\begin{cases} x = -8 + 3t \\ y = t \end{cases}$$

$$z = 15 + 7t$$

Câu 345. [2H3-3] Trong không gian cho đường thẳng $\Delta : \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$. Tìm hình chiếu vuông góc của Δ trên mặt phẳng (Oxy).

$$\mathbf{A.} \begin{cases} x = 0 \\ y = -1 - t \\ z = 0 \end{cases}$$

B.
$$\begin{cases} x = 1 + 2t \\ y = -1 + t \\ z = 0 \end{cases}$$

A.
$$\begin{cases} x = 0 \\ y = -1 - t \\ z = 0 \end{cases}$$
B.
$$\begin{cases} x = 1 + 2t \\ y = -1 + t \\ z = 0 \end{cases}$$
C.
$$\begin{cases} x = -1 + 2t \\ y = 1 + t \\ z = 0 \end{cases}$$
D.
$$\begin{cases} x = -1 + 2t \\ y = -1 + t \\ z = 0 \end{cases}$$

D.
$$\begin{cases} x = -1 + 2t \\ y = -1 + t \\ z = 0 \end{cases}$$

Câu 346. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2;0;0); B(0;3;0); C(0;0;4). Gọi H là trực tâm tam giác ABC. Phương trình tham số của đường thẳng OH là

A.
$$\begin{cases} x = 4t \\ y = 3t \end{cases}$$

$$z = -2t$$
B.
$$\begin{cases} x = 3t \\ y = 4t \end{cases}$$

$$z = 2t$$
C.
$$\begin{cases} x = 6t \\ y = 4t \end{cases}$$

$$z = 3t$$
D.
$$\begin{cases} x = 4t \\ y = 3t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 3t \\ y = 4t \\ z = 2t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = 6t \\ y = 4t \\ z = 3t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 4t \\ y = 3t \\ z = 2t \end{cases}$$

Câu 347. [2H3-3] Trong không gian Oxyz, cho ba đường thẳng $d_1: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{2}$,

 $d_2: \frac{x+1}{3} = \frac{y}{-2} = \frac{z+4}{-1}$ và $d_3: \frac{x+3}{4} = \frac{y-2}{-1} = \frac{z}{6}$. Đường thẳng song song d_3 , cắt d_1 và d_2 có

A.
$$\frac{x-3}{4} = \frac{y+1}{1} = \frac{z-2}{6}$$
.

B.
$$\frac{x-3}{-4} = \frac{y+1}{1} = \frac{z-2}{-6}$$
.

C.
$$\frac{x+1}{4} = \frac{y}{-1} = \frac{z-4}{6}$$
.

D.
$$\frac{x-1}{4} = \frac{y}{-1} = \frac{z+4}{6}$$
.

Câu 348. [2H3-3] Trong không gian Oxyz, cho mặt phẳng $(\alpha): y+2z=0$ và hai đường thẳng:

$$d_1:\begin{cases} x=1-t\\ y=t\\ z=4t \end{cases}; \ d_2:\begin{cases} x=2-t'\\ y=4+2t'. \text{ Dường thẳng } \Delta \text{ nằm trong mặt phẳng } (\alpha) \text{ và cắt hai đường } z=4 \end{cases}$$

thẳng d_1 ; d_2 có phương trình là

A.
$$\frac{x-1}{7} = \frac{y}{8} = \frac{z}{-4}$$
. **B.** $\frac{x+1}{7} = \frac{y}{-8} = \frac{z}{4}$. **C.** $\frac{x-1}{7} = \frac{y}{-8} = \frac{z}{4}$. **D.** $\frac{x-1}{7} = \frac{y}{8} = \frac{z}{4}$.

B.
$$\frac{x+1}{7} = \frac{y}{-8} = \frac{z}{4}$$

C.
$$\frac{x-1}{7} = \frac{y}{-8} = \frac{z}{4}$$
.

D.
$$\frac{x-1}{7} = \frac{y}{8} = \frac{z}{4}$$

Câu 349. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và mặt phẳng (P):2x+y-4z+1=0, đường thẳng d đi qua điểm A, song song với mặt phẳng (P), đồng thời cắt trục Oz. Phương trình tham số của đường thẳng d là

A.
$$\begin{cases} x = 1 + 5t \\ y = 2 - 6t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = t \\ y = 2t \\ z = 2 + t \end{cases}$$

C.
$$\begin{cases} x = 1 + 3t \\ y = 2 + 2t \\ z = 3 + t \end{cases}$$

A.
$$\begin{cases} x = 1 + 5t \\ y = 2 - 6t \\ z = 3 + t \end{cases}$$
B.
$$\begin{cases} x = t \\ y = 2t \\ z = 2 + t \end{cases}$$
C.
$$\begin{cases} x = 1 + 3t \\ y = 2 + 2t \\ z = 3 + t \end{cases}$$
D.
$$\begin{cases} x = 1 - t \\ y = 2 + 6t \\ z = 3 + t \end{cases}$$

Câu 350. [2H3-3] Trong không gian Oxyz, cho đường thẳng $d: \frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$ và mặt phẳng (P): 2x - y - 2z + 1 = 0. Đường thẳng nằm trong (P), cắt và vuông góc với d có phương trình là

A.
$$\frac{x+2}{3} = \frac{y-1}{4} = \frac{z+3}{1}$$
.

B.
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-3}{-1}$$
.

C.
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-3}{1}$$
.

D.
$$\frac{x-1}{3} = \frac{y+1}{4} = \frac{z-1}{1}$$
.

Câu 351. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ : $\begin{cases} x - 1 + 2t \\ y = 2 - t \end{cases}$ và đường thẳng $\Delta = \frac{1}{2}$

$$\Delta':\begin{cases} x=3+2t'\\ y=1-t' \end{cases} . \text{ Vị trí tương đối của } \Delta \text{ và } \Delta' \text{ là } \\ z=-3 \end{cases}$$

A.
$$\Delta // \Delta'$$

B.
$$\Delta \equiv \Delta'$$

C.
$$\Delta$$
 cắt Δ' .

D. Δ và Δ' chéo nhau.

Câu 352. [2H3-3] Trong không gian với hệ tọa độ Descartes Oxyz, cho điểm M(0; -1; 2) và hai đường thẳng $d_1: \frac{x-1}{1} = \frac{y+2}{1} = \frac{z-3}{2}$, $d_2: \frac{x+1}{2} = \frac{y-4}{-1} = \frac{z-2}{4}$. Phương trình đường thẳng đi qua M,

A.
$$\frac{x}{\frac{9}{2}} = \frac{y+1}{\frac{9}{2}} = \frac{z+3}{8}$$
. **B.** $\frac{x}{3} = \frac{y+1}{-3} = \frac{z-2}{4}$. **C.** $\frac{x}{9} = \frac{y+1}{-9} = \frac{z-2}{16}$. **D.** $\frac{x}{-9} = \frac{y+1}{9} = \frac{z-2}{16}$.

B.
$$\frac{x}{3} = \frac{y+1}{-3} = \frac{z-2}{4}$$

C.
$$\frac{x}{9} = \frac{y+1}{-9} = \frac{z-2}{16}$$
.

D.
$$\frac{x}{-9} = \frac{y+1}{9} = \frac{z-2}{16}$$
.

Câu 353. [2H3-3] Trong không gian với hệ tọa độ Oxyz cho hai điểm A(a;0;0), B(0;b;0), 1. Tập hợp tất cả các điểm cách đều ba điểm O, A, B là một đường thẳng có phương trình là

A.
$$\begin{cases} x = 0 \\ y = 0 \\ z = t \end{cases}$$
B.
$$\begin{cases} x = \frac{a}{2} \\ y = \frac{b}{2} \\ z = t \end{cases}$$
C.
$$\begin{cases} x = a \\ y = b \\ z = t \end{cases}$$
D.
$$\begin{cases} x = at \\ y = bt \\ z = t \end{cases}$$

Câu 354. [2H3-3] Trong không gian Oxyz, cho ba đường thẳng $d_1: \frac{x-1}{2} = \frac{y}{3} = \frac{z+1}{-1};$ $d_2: \frac{x+2}{1} = \frac{y-1}{-2} = \frac{z}{2};$ $d_3: \frac{x+3}{-3} = \frac{y-2}{-4} = \frac{z+5}{8}$. Đường thẳng song song với d_3 , cắt d_1 và d_2 có phương trình là

A.
$$\frac{x-1}{-3} = \frac{y}{-4} = \frac{z+1}{8}$$
. **B.** $\frac{x+1}{-3} = \frac{y-3}{-4} = \frac{z}{8}$. **C.** $\frac{x-1}{-3} = \frac{y-3}{-4} = \frac{z}{8}$. **D.** $\frac{x-1}{-3} = \frac{y}{-4} = \frac{z-1}{8}$.

Câu 355. [2H3-3] Trong không gian Oxyz, đường vuông góc chung của hai đường thẳng $d:\begin{cases} x=1+t\\ y=0\\ z=-5+t \end{cases}$

và
$$d'$$
:
$$\begin{cases} x = 0 \\ y = 4 - 2t' \text{ có phương trình là} \\ z = 5 + 3t' \end{cases}$$

A.
$$\frac{x-4}{-1} = \frac{y}{3} = \frac{z+2}{1}$$
. **B.** $\frac{x-4}{2} = \frac{y}{-3} = \frac{z-2}{-2}$. **C.** $\frac{x+4}{-2} = \frac{y}{3} = \frac{z-2}{2}$. **D.** $\frac{x-4}{-2} = \frac{y}{3} = \frac{z+2}{2}$.

Câu 356. [2H3-3] Trong không gian Oxyz, cho điểm A(1;2;-1), đường thẳng d có phương trình $\frac{x-3}{1} = \frac{y-3}{3} = \frac{z}{2} \text{ và mặt phẳng } (\alpha) \text{ có phương trình } x+y-z+3=0 \text{ . Đường thẳng } \Delta \text{ đi qua}$ điểm A, cắt d và song song với mặt phẳng (α) có phương trình là

A.
$$\frac{x-1}{1} = \frac{y-2}{-2} = \frac{z+1}{-1}$$
.

B.
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$$
.

C.
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-1}{1}$$
.

D.
$$\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z+1}{1}$$
.

Câu 357. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC biết điểm A(1; 2; 3),

đường trung tuyến BM và đường cao CH có phương trình tương ứng là $\begin{cases} x = 5t \\ y = 0 \end{cases}$ và z = 1 + 4t

 $\frac{x-4}{16} = \frac{y+2}{-13} = \frac{z-3}{5}$. Viết phương trình đường phân giác góc A.

A.
$$\frac{x-1}{7} = \frac{y-2}{-1} = \frac{z-3}{10}$$
.

B.
$$\frac{x-1}{4} = \frac{y-2}{13} = \frac{z-3}{5}$$
.

C.
$$\frac{x-1}{2} = \frac{y-2}{-3} = \frac{z-3}{-1}$$
.

D.
$$\frac{x-1}{2} = \frac{y-2}{-11} = \frac{z-3}{-5}$$
.

- Câu 358. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x}{2} = \frac{y-3}{1} = \frac{z-2}{-3}$ và mặt phẳng (P): x-y+2z-6=0. Đường thẳng nằm trong mặt phẳng (P), cắt và vuông góc với d có phương trình
 - **A.** $\frac{x+2}{1} = \frac{y-2}{7} = \frac{z-5}{2}$.

B. $\frac{x-2}{1} = \frac{y-4}{7} = \frac{z+1}{2}$.

C. $\frac{x-2}{1} = \frac{y+2}{7} = \frac{z+5}{3}$.

- **D.** $\frac{x+2}{1} = \frac{y+4}{7} = \frac{z-1}{3}$.
- Câu 359. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;-2;4), B(5;3;-2), C(0;4;2), đường thẳng d cách đều ba điểm A, B, C có phương trình là

A.
$$\begin{cases} x = \frac{8}{3} + 26t \\ y = \frac{5}{3} + 22t \\ z = \frac{4}{3} + 27t \end{cases}$$

B.
$$\begin{cases} x = 4 + 26t \\ y = 2 + 22t \\ z = \frac{9}{4} + 27t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = \frac{11}{6} \\ y = \frac{1}{6} + 22t \\ z = 27t \end{cases}$$

A.
$$\begin{cases} x = \frac{8}{3} + 26t \\ y = \frac{5}{3} + 22t \end{cases}$$
B.
$$\begin{cases} x = 4 + 26t \\ y = 2 + 22t \end{cases}$$

$$z = \frac{4}{3} + 27t$$
C.
$$\begin{cases} x = \frac{11}{6} \\ y = \frac{1}{6} + 22t \end{cases}$$

$$z = 27t$$
D.
$$\begin{cases} x = 4 + 26t \\ y = 2 + 38t \end{cases}$$

$$z = \frac{9}{4} + 27t$$

- Câu 360. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng $d: \frac{x-3}{1} = \frac{y-3}{3} = \frac{z}{2}$, mặt phẳng $(\alpha): x+y-z+3=0$ và điểm A(1;2;-1). Viết phương trình đường thẳng Δ đi qua Acắt d và song song với mặt phẳng (α) .
 - A. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$.

B. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$.

C. $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$.

- **D.** $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z+1}{1}$
- Câu 361. [2H3-3] Trong không gian Oxyz, cho hai đường thẳng chéo nhau $d: \frac{x-3}{-4} = \frac{y+2}{1} = \frac{z+1}{1}$ và $d': \frac{x}{-6} = \frac{y-1}{1} = \frac{z-2}{2}$. Phương trình nào dưới đây là phương trình đường thẳng vuông góc

- A. $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z}{2}$. B. $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z}{2}$. C. $\frac{x+1}{1} = \frac{y-1}{2} = \frac{z}{2}$. D. $\frac{x-1}{1} = \frac{y-1}{2} = \frac{z+1}{2}$.
- Câu 362. [2H3-3] Trong không gian Oxyz, cho tam giác ABC với A(3;0;0), B(0;6;0), C(0;0;6). Phương trình nào dưới đây là phương trình đường thẳng đi qua trực tâm của tam giác ABC và vuông góc với mặt phẳng (ABC).
 - **A.** $\frac{x+1}{2} = \frac{y+2}{1} = \frac{z+3}{1}$.

B. $\frac{x-2}{2} = \frac{y-1}{1} = \frac{z-1}{1}$.

C. $\frac{x-3}{2} = \frac{y-6}{1} = \frac{z-6}{1}$.

- **D.** $\frac{x-1}{2} = \frac{y-3}{1} = \frac{z-3}{1}$.
- Câu 363. [2H3-3] Trong không gian Oxyz, cho hai điểm A(2;1;-3) và B(-3;2;1). Viết phương trình đường thẳng d đi qua gốc toạ độ sao cho tổng khoảng cách từ A và B đến đường thẳng d

- **A.** $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$. **B.** $\frac{x}{1} = \frac{y}{1} = \frac{z}{1}$. **C.** $\frac{x}{1} = \frac{y}{1} = \frac{z}{2}$. **D.** $\frac{x}{-1} = \frac{y}{1} = \frac{z}{2}$.

Câu 364. [2H3-3] Cho hai đường thẳng $d_1: \frac{x-2}{2} = \frac{y+2}{-1} = \frac{z-3}{1}; d_2: \begin{cases} x = 1-t \\ y = 1+2t \end{cases}$ và điểm A(1;2;3).

Đường thẳng Δ đi qua A, vuông góc với d_1 và cắt d_2 có phương trình là

A.
$$\frac{x-1}{1} = \frac{y-2}{3} = \frac{z-3}{1}$$
.

B.
$$\frac{x-1}{-1} = \frac{y-2}{-3} = \frac{z-3}{-1}$$
.

$$C_* \frac{x-1}{1} = \frac{y-2}{3} = \frac{z-3}{5}$$
.

D.
$$\frac{x-1}{1} = \frac{y-2}{-3} = \frac{z-3}{-5}$$
.

Câu 365. [2H3-3] Trong không gian Oxyz, cho hai đường thẳng cắt nhau Δ_1 : $\begin{cases} x = 2+t \\ y = 2+2t \\ z = -1-t \end{cases} = \begin{cases} x = 1-t' \\ z = -t' \\ z = 2t' \end{cases}$

 $(t,t'\in\mathbb{R})$. Viết phương trình đường phân giác của góc nhọn tạo bởi Δ_1 và Δ_2

A.
$$\frac{x+1}{2} = \frac{y}{-3} = \frac{z}{3}$$

B.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$$
.

A.
$$\frac{x+1}{2} = \frac{y}{-3} = \frac{z}{3}$$
. **B.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$. **C.** $\frac{x-1}{2} = \frac{y}{3} = \frac{z}{-3}$. **D.** $\frac{x-1}{1} = \frac{y}{-1} = \frac{z}{1}$.

D.
$$\frac{x-1}{1} = \frac{y}{-1} = \frac{z}{1}$$
.

Câu 366. [2H3-3] Trong không gian Oxyz, cho ba đường thẳng $d_1: \frac{x-3}{2} = \frac{y+1}{1} = \frac{z-2}{2}$,

 (d_2) : $\frac{x+1}{3} = \frac{y}{-2} = \frac{z+4}{-1}$ và (d_3) : $\frac{x+3}{4} = \frac{y-2}{-1} = \frac{z}{6}$. Đường thẳng song song d_3 , cắt d_1 và d_2

A.
$$\frac{x-3}{4} = \frac{y+1}{1} = \frac{z-2}{6}$$
.

B.
$$\frac{x-3}{-4} = \frac{y+1}{1} = \frac{z-2}{-6}$$
.

C.
$$\frac{x+1}{4} = \frac{y}{-1} = \frac{z-4}{6}$$
.

D.
$$\frac{x-1}{4} = \frac{y}{-1} = \frac{z+4}{6}$$
.

Câu 367. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho các điểm A(2;0;0); B(0;3;0); C(0;0;4). Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH.

A.
$$\begin{cases} x = 4t \\ y = 3t \end{cases}$$

$$z = -2t$$
B.
$$\begin{cases} x = 3t \\ y = 4t \end{cases}$$

$$z = 2t$$
C.
$$\begin{cases} x = 6t \\ y = 4t \end{cases}$$

$$z = 3t$$

$$z = 3t$$
D.
$$\begin{cases} x = 4t \\ y = 3t \end{cases}$$

$$z = 2t$$

$$\mathbf{B.} \begin{cases} x = 3t \\ y = 4t \\ z = 2t \end{cases}$$

C.
$$\begin{cases} x = 6t \\ y = 4t \\ z = 3t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 4t \\ y = 3t \\ z = 2t \end{cases}$$

Câu 368. [2H3-3] Trong không gian với hệ tọa độ Oxyz. Cho mặt phẳng (P): 2x - y + z - 10 = 0, điểm

 $A\big(1;3;2\big) \text{ và đường thẳng } d: \begin{cases} x=-2+2t \\ y=1+t \end{cases}. \text{ Tìm phương trình đường thẳng } \Delta \text{ cắt } (P) \text{ và } d \text{ lần}$

lượt tại hai điểm M và N sao cho A là trung điểm cạnh MN

A.
$$\frac{x-6}{7} = \frac{y-1}{-4} = \frac{z+3}{-1}$$
.

B.
$$\frac{x+6}{7} = \frac{y+1}{4} = \frac{z-3}{-1}$$
.

C.
$$\frac{x-6}{7} = \frac{y-1}{4} = \frac{z+3}{-1}$$
.

D.
$$\frac{x+6}{7} = \frac{y+1}{-4} = \frac{z-3}{-1}$$
.

Câu 369. [2H3-3] Trong không gian Oxyz, cho hai đường thẳng cắt nhau $\Delta_1: \begin{cases} x=2+t \\ y=2+2t \end{cases}$, $\Delta_2: \begin{cases} x=1-t' \\ y=-t' \end{cases}$

 $\left(t,t'\in\mathbb{R}\right)$. Viết phương trình đường phân giác của góc nhọn tạo bởi Δ_1 và Δ_2 .

A.
$$\frac{x-1}{2} = \frac{y}{3} = \frac{z}{-3}$$
.

B.
$$\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$$
.

C.
$$\frac{x+1}{2} = \frac{y}{-3} = \frac{z}{3}$$
.

A. $\frac{x-1}{2} = \frac{y}{3} = \frac{z}{-3}$. **B.** $\frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$. **C.** $\frac{x+1}{2} = \frac{y}{-3} = \frac{z}{3}$. **D.** Cả A, B, C đều sai.

Câu 370.		_	_	_	-				\ /	-					_
	thẳng Δ_1 :	$\frac{x}{2} = \frac{y}{1} =$	$=\frac{z-1}{-1}.$	Đường	thẳng A	Δ_2 nằi	n tro	ng mặt j	phẳng ((R)	đồng t	hời c	cắt v	à vuớ	ìng
	góc với đ	uờng th	${a}$ ng $\Delta_{_1}$ (có phươ	ong trìnl	h là									

$$\mathbf{A.} \begin{cases} x = t \\ y = -3t \\ z = 1 - t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = t \\ y = -2t \\ z = 1+t \end{cases}$$

C.
$$\begin{cases} x = 2 + t \\ y = 1 - t \end{cases}$$
$$z = t$$

A.
$$\begin{cases} x = t \\ y = -3t \\ z = 1 - t \end{cases}$$
B.
$$\begin{cases} x = t \\ y = -2t \\ z = 1 + t \end{cases}$$
C.
$$\begin{cases} x = 2 + t \\ y = 1 - t \\ z = t \end{cases}$$
D.
$$\begin{cases} x = 2 + 3t \\ y = 1 - t \\ z = t \end{cases}$$

Câu 371. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-3}{3} = \frac{y-1}{1} = \frac{z+1}{-1}$ và mặt phẳng (P): x-z-4=0. Viết phương trình đường thẳng là hình chiếu vuông góc của

$$\mathbf{A.} \begin{cases} x = 3 + t \\ y = 1 + t \\ z = -1 + t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = 3 + t \\ y = 1 \\ z = -1 - t \end{cases}$$

A.
$$\begin{cases} x = 3 + t \\ y = 1 + t \end{cases}$$

$$z = -1 + t$$
B.
$$\begin{cases} x = 3 + t \\ y = 1 \end{cases}$$

$$z = -1 - t$$
C.
$$\begin{cases} x = 3 + 3t \\ y = 1 + t \end{cases}$$

$$z = -1 - t$$
D.
$$\begin{cases} x = 3 - t \\ y = 1 + 2t \end{cases}$$

$$z = -1 + t$$

D.
$$\begin{cases} x = 3 - t \\ y = 1 + 2t \\ z = -1 + t \end{cases}$$

Câu 372. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;3;0), $B(0;-\sqrt{2};0)$,

$$M\left(\frac{6}{5};-\sqrt{2};2\right)$$
 và đường thẳng $d:\begin{cases} x=t\\y=0\\z=2-t \end{cases}$. Điểm C thuộc d sao cho chu vi tam giác ABC

là nhỏ nhất thì đô dài CM bằng

A.
$$2\sqrt{3}$$
.

D.
$$\frac{2\sqrt{6}}{5}$$
.

Câu 373. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;0;0), B(0;2;0), C(0;0;6), D(1;1;1). Gọi Δ là đường thẳng đi qua D và thỏa mãn tổng khoảng cách từ các điểm A, B, C đến Δ là lớn nhất. Hỏi Δ đi qua điểm nào trong các điểm dưới đây?

A.
$$M(7;13;5)$$
.

B.
$$M(3;4;3)$$
.

C.
$$M(-1;-2;1)$$

C.
$$M(-1;-2;1)$$
. D. $M(-3;-5;-1)$.

Câu 374. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-5=0 và hai điểm A(-3;0;1), B(1;-1;3). Trong tất cả các đường thẳng đi qua A và song song với mặt phẳng (P), gọi Δ là đường thẳng sao cho khoảng cách từ B đến Δ là lớn nhất. Hãy viết phương trình đường thẳng Δ

A.
$$\frac{x-5}{2} = \frac{y}{-6} = \frac{z}{-7}$$
.

B.
$$\frac{x-1}{-2} = \frac{y+12}{6} = \frac{z+13}{7}$$
.

C.
$$\frac{x+3}{-2} = \frac{y}{-6} = \frac{z-1}{7}$$
.

D.
$$\frac{x-1}{-2} = \frac{y+1}{6} = \frac{z-3}{7}$$
.

Câu 375. [2H3-4] Cho hai điểm A(3;3;1), B(0;2;1) và mặt phẳng $(\alpha): x+y+z-7=0$. Đường thẳng d nằm trên (α) sao cho mọi điểm của d cách đều 2 điểm A, B có phương trình là

$$\mathbf{A.} \begin{cases} x = t \\ y = 7 - 3t \\ z = 2t \end{cases}$$

$$\mathbf{B.} \begin{cases} x = t \\ y = 7 + 3t \\ z = 2t \end{cases}$$

$$\mathbf{C.} \begin{cases} x = -t \\ y = 7 - 3t \\ z = 2t \end{cases}$$

A.
$$\begin{cases} x = t \\ y = 7 - 3t. \\ z = 2t \end{cases}$$
B.
$$\begin{cases} x = t \\ y = 7 + 3t. \\ z = 2t \end{cases}$$
C.
$$\begin{cases} x = -t \\ y = 7 - 3t. \\ z = 2t \end{cases}$$
D.
$$\begin{cases} x = 2t \\ y = 7 - 3t. \\ z = t \end{cases}$$

Câu 376. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $\Delta_1: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z-1}{2}$ và $\Delta_2: \frac{x}{1} = \frac{y+1}{2} = \frac{z-3}{2}$ cắt nhau và cùng nằm trong mặt phẳng (P). Lập phương trình đường phân giác d của góc nhọn tạo bởi Δ_1 , Δ_2 và nằm trong mặt phẳng (P).

A.
$$\begin{cases} x = 1 + t \\ y = 1 - 2t (t \in \mathbb{R}). \end{cases}$$
 B.
$$\begin{cases} x = 1 \\ y = 1 \\ z = 1 - 2t \end{cases}$$
 C.
$$\begin{cases} x = 1 \\ y = 1 \\ z = 1 + t \end{cases}$$
 D.
$$\begin{cases} x = 1 + t \\ y = 1 + 2t (t \in \mathbb{R}). \end{cases}$$
 D.
$$\begin{cases} x = 1 + t \\ z = 1 + t \end{cases}$$

- Câu 377. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(3;0;0), B(0;2;0), C(0;0;6)và D(1;1;1). Gọi Δ là đường thẳng đi qua D và thỏa mãn tổng khoảng cách từ các điểm A, B, C đến Δ là lớn nhất, hỏi Δ đi qua điểm nào trong các điểm dưới đây?
 - **A.** M(-1;-2;1).
- **B.** *M* (5;7;3).
- **C.** *M* (3; 4; 3).
- **D.** M (7;13;5).
- Câu 378. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng $d: \frac{x+1}{2} = \frac{y-5}{2} = \frac{z}{-1}$. Tìm vécto chỉ phương \vec{u} của đường thẳng Δ đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng bé nhất. **A.** $\vec{u} = (2;1;6)$. **B.** $\vec{u} = (1;0;2)$. **C.** $\vec{u} = (3;4;-4)$. **D.** $\vec{u} = (2;2;-1)$.

- Câu 379. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho hình vuông ABCD biết A(1;0;1), B(1;0;-3) và điểm D có hoành độ âm. Mặt phẳng (ABCD) đi qua gốc tọa độ O. Khi đó đường thẳng d là trục đường tròn ngoại tiếp hình vuông ABCD có phương trình

A.
$$d: \begin{cases} x = -1 \\ y = t \end{cases}$$
 B. $d: \begin{cases} x = 1 \\ y = t \end{cases}$ **C.** $d: \begin{cases} x = -1 \\ y = t \end{cases}$ **D.** $d: \begin{cases} x = t \\ y = 1 \end{cases}$ $z = t$

B.
$$d: \begin{cases} x = 1 \\ y = t \\ z = -1 \end{cases}$$

C.
$$d: \begin{cases} x = -1 \\ y = t \\ z = 1 \end{cases}$$

- Câu 380. [2H3-4] Trong không gian Oxyz, cho tam giác nhọn ABC có $H\left(2;2;1\right)$, $K\left(-\frac{8}{3};\frac{4}{3};\frac{8}{3}\right)$, O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Đường thẳng d qua A và vuông góc với mặt phẳng (ABC) có phương trình là

A.
$$d: \frac{x+4}{1} = \frac{y+1}{-2} = \frac{z-1}{2}$$
.

B.
$$d: \frac{x-\frac{8}{3}}{1} = \frac{y-\frac{2}{3}}{-2} = \frac{z+\frac{2}{3}}{2}$$
.

C.
$$d: \frac{x+\frac{4}{9}}{1} = \frac{y-\frac{17}{9}}{-2} = \frac{z-\frac{19}{9}}{2}$$
.

D.
$$d: \frac{x}{1} = \frac{y-6}{-2} = \frac{z-6}{2}$$
.

Vấn đề 4. Vị trí tương đối. Khoảng cách. Góc

- Câu 381. [2H3-1] Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P) có phương trình 3x+2y-3z+1=0. Phát biểu nào sau đây là **sai**?
 - A. Phương trình của mặt phẳng (Q) song song với mặt phẳng (P) là 3x + 2y 3z + 2 = 0.
 - **B.** Phương trình của mặt phẳng (Q) song song với mặt phẳng (P) là 6x+4y-6z-1=0.
 - C. Phương trình mặt phẳng (Q) song song với mặt phẳng (P) là -3x-2y+3z-5=0.
 - **D.** Phương trình mặt phẳng (Q) song song với mặt phẳng (P) là -3x-2y+3z-1=0.
- Câu 382. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz cho mặt phẳng (P): x-3y+2z-3=0. Xét mặt phẳng (Q): 2x-6y+mz-m=0, m là tham số thực. Tìm m để (P) song song với (Q).
 - **A.** m = 2.
- **B.** m = 4.
- C. m = -6.
- **D.** m = -10.
- Câu 383. [2H3-1] Trong không gian Oxyz, cho hai mặt phẳng (P): 2x-3y+z-4=0; (Q):5x-3y-2z-7=0. Vị trí tương đối của hai mặt phẳng (P) và (Q) là
 - A. Song song.

B. Cắt nhưng không vuông góc.

C. Vuông góc.

- **D.** Trùng nhau.
- **Câu 384. [2H3-1]** Giao điểm của hai đường thẳng $d : \begin{cases} x = -3 + 2t \\ y = -2 + 3t \end{cases}$ và $d' : \begin{cases} x = 5 + t' \\ y = -1 4t' \end{cases}$ có tọa độ là z = 6 + 4t**A.** (5;-1;20). **B.** (3;7;18).
- C. (-3;-2;6). D. (3;-2;1).
- **Câu 385.** [2H3-1] Cho mặt phẳng (P): 2x + y + 3z + 1 = 0 và đường thẳng $d: \begin{cases} x = -3 + t \\ y = 2 2t \\ z = 1 \end{cases}$

Trong các mệnh đề sau, mệnh đề nào đúng?

- **A.** $d \subset (P)$.
- **B.** $d \perp (P)$.
- C. $d \cot (P)$. D. d // (P).
- Câu 386. [2H3-1] Cho đường thẳng $d: \begin{cases} x = 2 3t \\ y = 5 + 7t \end{cases}$ và mặt phẳng (P): 3x 7y + 13z 91 = 0. Tìm

giá trị của tham số m để d vuông góc với (P).

A. 13.

- **B.** −10.
- **C.** -13.
- **D.** 10.
- Câu 387. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz, đường thẳng $d: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+1}{1}$ song song với mặt phẳng (P): x + y - z + m = 0. Khi đó giá trị của m là
 - **A.** $\forall m \in \mathbb{R}$.
- **B.** m = 0.
- C. $m \neq 0$.
- **D.** $m \neq 2$.
- Câu 388. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-5y-3z-7=0 và đường thẳng $d: \frac{x-2}{2} = \frac{y}{-1} = \frac{z+1}{3}$. Kết luận nào dưới đây là đúng?
- **B.** $d \cot (P)$. **C.** $d \perp (P)$.
- **D.** (P) chứa d.

	$(Q): \sqrt{2}x - \sqrt{2}y + 7 = 0 \text{ bằng}$					
	A. $\frac{\pi}{4}$.	B. $\frac{\pi}{2}$.	C. $\frac{\pi}{6}$.	D. $\frac{\pi}{3}$.		
Câu 391.	[2H3-1] Trong không	gian với hệ tọa độ	Oxyz, cho mặt phẳng	(P): x+2y-2z+3=0.		
	Khoảng cách từ điểm A	A(1;-2;-3) đến mặt phẩ	$\operatorname{ling}(P)$ bằng			
	A. 2.	B. $\frac{2}{3}$.	C. $\frac{1}{3}$.	D. 1.		
Câu 392.	[2H3-1] Trong không g	gian với hệ tọa độ Oxyz	, cho mặt phẳng (P) : x	-2y-2z+5=0 và điểm		
		eách d từ điểm A đến i		_		
	A. $d = 1$.	B. $d = \frac{2}{3}$.	C. $d = \frac{3\sqrt{14}}{14}$.	D. $d = \frac{\sqrt{14}}{7}$.		
Câu 393.	[2H3-1] Trong không	g gian Oxyz, cho n	nặt phẳng $(P):2x-3$	y + 6z + 19 = 0 và diễm		
			nặt phẳng (P) . Khi đó ι			
	A. $d = 4$.		C. $d = 1$.	D. $d = 3$.		
Câu 394.				+2y-z+3=0 và diễm		
			đến mặt phẳng (P) bằn			
	A. $\frac{8}{3}$.	B. $\frac{10}{3}$.	C. 0.	D. $\frac{2}{3}$.		
Câu 395.	[2H3-1] Trong khôn	g gian Oxyz, cho	mặt phẳng $(P): 2x -$	2y - z + 3 = 0 và diễm		
	M(1;-2;13). Tính khoảng cách d từ M đến (P) .					
	A. $d = \frac{4}{3}$.	B. $d = \frac{7}{3}$.	C. $d = \frac{10}{3}$.	D. $d = -\frac{4}{3}$.		
Câu 396.	[2H3-1] Trong không §	gian với hệ trục tọa độ	Oxyz, cho mặt phẳng (P): $x + 2y - 2z + 1 = 0$ và		
	điểm $M(1; -2; 2)$. Tín	h khoảng cách từ điểm	M đến mặt phẳng (P) .			
	A. $d(M,(P)) = 2$.	B. $d(M,(P)) = \frac{2}{3}$.	C. $d(M, (P)) = \frac{10}{3}$.	D. $d(M, (P)) = 3$.		
Câu 397.	Câu 397. [2H3-1] Trong không gian với hệ tọa độ $Oxyz$, tính khoảng cách từ O đến mặt phẳng $2x+2y+z-3=0$.					
	A. 1.	B. $\frac{1}{3}$.	C. 2.	D. 3.		
Câu 398.	[2H3-1] Trong không g	gian <i>Oxyz</i> , mặt phẳng ((P): 6x-3y+2z-6=0	. Tính khoảng cách d từ		
	điểm $M(1;-2;3)$ đến r					
	A. $d = \frac{12\sqrt{85}}{85}$.	B. $d = \frac{12}{7}$.	C. $d = \frac{\sqrt{31}}{7}$.	D. $d = \frac{18}{7}$.		
GV TRẦI	N QUỐC NGHĨA-sưu tần	m và biên t â p		Trang 50/94		

Câu 389. [2H3-1] Cho đường thẳng $d: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{-3}$ và mặt phẳng $(\alpha): x+y+z-4=0$. Trong

Câu 390. [2H3-1] Trong không gian Oxyz, góc giữa hai mặt phẳng (P):8x-4y-8z-11=0;

C. $d \perp (\alpha)$. D. $d \operatorname{c\'{a}t} (\alpha)$.

các khẳng định sau, khẳng định nào đúng?

B. $d//(\alpha)$.

A. $d \subset (\alpha)$.

- Câu 399. [2H3-1] Mệnh đề nào sau đây sai?
 - **A.** Mặt phẳng 2x+3y-2z=0 đi qua gốc tọa độ.
 - **B.** Mặt phẳng (P): 4x+2y+3=0 song song với mặt phẳng (Q): 2x+y+5=0.
 - C. Khoảng cách từ điểm $M(x_0, y_0, z_0)$ đến mặt phẳng 2x + 2y + z + 1 = 0 là $\frac{2x_0 + 2y_0 + z_0 + 1}{2}$.
 - **D.** Mặt phẳng 3x z + 2 = 0 có tọa độ vectơ pháp tuyến là (3,0,-1).
- Câu 400. [2H3-1] Cho điểm A(1;2;-4) và mặt phẳng (P):2x-y+3z-1=0. Tính khoảng cách từ điểm A đến mặt phẳng (P).
 - **A.** $d(A,(P)) = \frac{13}{\sqrt{14}}$. **B.** $d(A,(P)) = \frac{14}{\sqrt{13}}$. **C.** $d(A,(P)) = \sqrt{14}$. **D.** $d(A,(P)) = \sqrt{13}$.
- Câu 401. [2H3-1] Trong không gian với hệ tọa độ Oxyz, điểm M(1;2;3) có hình chiếu vuông góc trên trục Ox là điểm
 - **A.** (0;0;3).
- **B.** (0;0;0).
- C. (0;2;0).
- **D.** (1;0;0).
- **Câu 402.** [2H3-1] Cho điểm A(3,5,0) và mặt phẳng (P): 2x+3y-z-7=0. Tìm tọa độ điểm M là điểm đối xứng với điểm A qua (P).
 - **A.** M(-1;-1;2). **B.** M(0;-1;-2). **C.** M(2;-1;1). **D.** M(7;1;-2).

- **Câu 403.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): 2x + ay + 3z 5 = 0 và (Q): 4x - y - (a+4)z + 1 = 0. Tìm a để (P) và (Q) vuông góc với nhau.
 - **A.** a = 1.
- **B.** a = 0. **C.** a = -1.
- **D.** $a = \frac{1}{2}$.
- Câu 404. [2H3-2] Trong không gian với hệ tọa độ Oxyz cho ba mặt phẳng (P):3x+y+z-4=0, (Q):3x+y+z+5=0 và (R):2x-3y-3z+1=0. Xét các mệnh đề:
 - (1): (P)//(Q).

(2): $(P) \perp (R)$.

Khẳng định nào sau đây đúng?

A. (1) đúng, (2) sai.

B. (1) sai, (2) đúng.

C. (1) đúng, (2) đúng.

- **D.** (1) đúng, (2) sai.
- Câu 405. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;6;-3) và các mặt phẳng $(\alpha): x-2=0, (\beta): y-6=0, (\gamma): z+3=0$. Tìm mệnh đề sai.

 - **A.** $(\gamma) // Oz$. **B.** $(\beta) // (xOz)$.
- C. (α) qua I.
- **D.** $(\alpha) \perp (\beta)$.
- Câu 406. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): -2x+6y-4z-1=0và (Q): x-3y-2z+1=0. Mệnh đề nào sau đây là đúng?
 - **A.** (P) cắt và không vuông góc với (Q).
- **B.** (P) vuông góc với (Q).

 \mathbf{C} . (P) song song với (Q).

- **D.** (P) và (Q) trùng nhau.
- Câu 407. [2H3-2] Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P): x + my + 3z + 2 = 0 và mặt phẳng (Q): nx + y + z + 7 = 0 song song với nhau khi
 - **A.** m = n = 1.

- **B.** m = 3; $n = \frac{1}{3}$. **C.** m = 2; $n = \frac{1}{3}$. **D.** m = 3; $n = \frac{1}{2}$.

Câu 408. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d: \frac{x-2}{2} = \frac{y+4}{2} = \frac{1-z}{2}$

và d': $\begin{cases} x = 4t \\ y = 1 + 6t \\ \end{cases}$ $(t \in \mathbb{R})$. Xác định vị trí tương đối giữa hai đường thẳng d và d'.

A. d và d' song song với nhau.

B. d và d' trùng nhau.

 \mathbf{C} . d và d' cắt nhau.

D. d và d' chéo nhau.

Câu 409. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-1}{2}$;

$$d_2:\begin{cases} x=3+2t\\ y=3t \end{cases} . \text{ Vị trí tương đối giữa } d_1 \text{ và } d_2 \text{ là } \\ z=3+t \end{cases}$$

A. $d_1 \text{ cắt } d_2$. **B.** $d_1 \equiv d_2$.

C. d_1, d_2 chéo nhau. **D.** $d_1 // d_2$.

Câu 410. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d_1: \frac{x+1}{2} = \frac{y-1}{1} = \frac{z+1}{2}$ và

đường thẳng $d_2: \frac{x+3}{2} = \frac{y+2}{2} = \frac{z+2}{-1}$. Vị trí tương đối của d_1 và d_2 là

A. cắt nhau.

C. chéo nhau.

Câu 411. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{m} = \frac{y-3}{1} = \frac{z+5}{m}$

$$(m \neq 0)$$
 cắt đường thẳng Δ :
$$\begin{cases} x = 5 + t \\ y = 3 + 2t \text{. Giá trị } m \text{ là} \\ z = 3 - t \end{cases}$$

A. Một số nguyên âm.

B. Một số hữu tỉ âm.

C. Một số nguyên dương.

D. Một số hữu tỉ dương.

Câu 412. [2H3-2] Trong mặt phẳng tọa độ Oxyz, cho hai đường thẳng $\Delta_1: \begin{cases} x=-3+2t \\ y=1-t \end{cases}$ và

 $\Delta_2: \frac{x+4}{3} = \frac{y+2}{2} = \frac{z-4}{1}$. Khẳng định nào sau đây đúng?

A. Δ_1 và Δ_2 chéo nhau và vuông góc nhau. **B.** Δ_1 cắt và không vuông góc với Δ_2 .

C. Δ_1 cắt và vuông góc với Δ_2 .

D. Δ_1 và Δ_2 song song với nhau.

Câu 413. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-3}{2} = \frac{y-1}{1} = \frac{z+2}{2}$

và $d_2: \frac{x+1}{4} = \frac{y+5}{2} = \frac{z-1}{6}$. Xét vị trí tương đối giữa d_1 và d_2

A. d_1 song song với d_2 .

B. d_1 trùng d_2 .

C. d_1 chéo d_2 .

D. d_1 cắt d_2 .

Câu 414. [2H3-2] Trong không gian với hệ trục toạ độ Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$

A. Cắt nhau nhưng không vuông góc.

B. Không vuông góc và không cắt nhau.

C. Vừa cắt nhau vừa vuông góc.

D. Vuông góc nhưng không cắt nhau.

Câu 415. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{1} = \frac{y+3}{2} = \frac{z+3}{3}$

và
$$d_2$$
: $\begin{cases} x=3t \\ y=-1+2t, (t\in\mathbb{R}). \text{ Mệnh đề nào dưới đây đúng?} \\ z=0 \end{cases}$

A. d_1 song song d_2 .

B. d_1 chéo d_2 .

C. d_1 cắt và vuông góc với d_2 .

D. d_1 cắt và không vuông góc với d_2 .

Câu 416. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $\Delta_1: \frac{x-1}{1} = \frac{y}{1} = \frac{z}{1}$ và

$$\Delta_2: \frac{x}{2} = \frac{y+1}{1} = \frac{z}{1}$$
. Phát biểu nào dưới đây là đúng?

A. Đường thẳng Δ_1 song song với đường thẳng Δ_2 .

 ${\bf B.}$ Đường thẳng $\Delta_{\!_1}$ và đường thẳng $\Delta_{\!_2}$ chéo nhau.

C. Đường thẳng Δ_1 trùng với đường thẳng Δ_2 .

D. Đường thẳng Δ_1 cắt đường thẳng Δ_2 .

Câu 417. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{1}$

và
$$d_2: \begin{cases} x=1+kt \\ y=t \end{cases}$$
. Tìm giá trị của k để d_1 cắt d_2 . $z=-1+2t$

A. k = 0. **B.** k = 1. **C.** k = -1. **D.** $k = -\frac{1}{2}$.

Câu 418. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho $d_1: \frac{x-1}{1} = \frac{y}{2} = \frac{z-3}{3}$ và

$$d_2: \begin{cases} x=2t \\ y=1+4t \end{cases}$$
. Khẳng định nào sau đây là khẳng định đúng?
$$z=2+6t$$

A. Hai đường thẳng d_1 , d_2 song song với nhau. **B.** Hai đường thẳng d_1 , d_2 trùng nhau.

C. Hai đường thẳng d_1 , d_2 cắt nhau.

D. Hai đường thẳng d_1 , d_2 chéo nhau.

Câu 419. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ và

$$d': \frac{x-3}{4} = \frac{y-5}{6} = \frac{z-7}{8}$$
. Mệnh đề nào dưới đây đúng?

A. d vuông góc với d'.

B. d song song với d'.

 \mathbf{C} . d trùng với d'.

D. d và d' chéo nhau.

Câu 420. [2H3-2] Trong không gian với hệ tọa độ Oxyz. Cho hai đường thẳng $d_1: \begin{cases} x=t \\ y=-t \end{cases}$ và $d_2: \begin{cases} x=0 \\ y=2 \end{cases}$ z=t'

Khẳng định nào sau đây đúng?

A. $d_1 // d_2$.

B. d_1 và d_2 chéo nhau.

C. d_1 và d_2 cắt nhau.

D. $d_1 = d_2$.

Câu 421. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng

$$d: \frac{x-1}{1} = \frac{y-1}{2} = \frac{z-2}{-3} \text{ và } d': \begin{cases} x = 2t \\ y = 1+4t \quad (t \in \mathbb{R}) \text{. Mệnh đề nào dưới đây đúng?} \\ z = 2+6t \end{cases}$$

A. d và d' trùng nhau.

B. d song song d'.

C. d và d' chéo nhau.

D. d và d' cắt nhau.

Câu 422. [2H3-2] Tìm m để hai đường thẳng $d : \begin{cases} x = 1 + mt \\ y = t \end{cases}$, $d' : \begin{cases} x = 1 - t' \\ y = 2 + 2t' \end{cases}$ cắt nhau. z = 3 - t'

A. m = -1.

B. m = 1.

D. m = 2.

Câu 423. [2H3-2] Cho hai đường thẳng d_1 : $\begin{cases} x = 1 + 2t \\ y = 2 + 3t \text{ và } d_2 \end{cases} : \begin{cases} x = 3 + 4t' \\ y = 5 + 6t' \end{cases}$

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Đường thẳng d_1 vuông góc đường thẳng d_2 . **B.** Đường thẳng d_1 song song đường thẳng d_2 .

C. Đường thẳng d_1 trùng đường thẳng d_2 . Dường thẳng d_1 , d_2 chéo nhau.

Câu 424. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng $d: \frac{x-2}{-3} = \frac{y+2}{1} = \frac{z+1}{-2}$ và $d': \frac{x}{6} = \frac{y-4}{-2} = \frac{z-2}{4}$. Mệnh đề nào sau đây đúng?

 $\mathbf{A}. d / / d'$.

 $\mathbf{B}, d \equiv d'$

 \mathbf{C} . d và d' cắt nhau.

D. d và d' chéo nhau.

Câu 425. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng có phương trình $d: \frac{x-2}{1} = \frac{y-1}{1} = \frac{z-1}{-1}$. Xét mặt phẳng $(P): x + my + (m^2 - 1)z - 7 = 0$, với m là tham số thực.

Tìm m sao cho đường thăng d song song với mặt phăng (P).

$$\mathbf{A.} \begin{bmatrix} m = -1 \\ m = 2 \end{bmatrix}.$$

B. m = -1. **C.** m = 2.

D. m = 1.

Câu 426. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x - 4y + 2z - 2017 = 0. Trong các đường thẳng sau, đường thẳng nào song song với mặt phẳng (P)?

A.
$$d_4: \frac{x-1}{3} = \frac{y-1}{-4} = \frac{z-1}{2}$$
.

B.
$$d_1: \frac{x-1}{2} = \frac{y-1}{2} = \frac{z-1}{1}$$
.

C.
$$d_2: \frac{x-1}{4} = \frac{y-1}{-3} = \frac{z-1}{1}$$
.

D.
$$d_3: \frac{x-1}{3} = \frac{y-1}{5} = \frac{1-z}{4}$$
.

Câu 427. [2H3-2] Trong không gian với hệ tọa độ Oxyz, đường thẳng $\Delta : \frac{x}{1} = \frac{y}{1} = \frac{z}{2}$ vuông góc với mặt phẳng nào trong các mặt phẳng sau?

A. (P): x + y + z = 0. **B.** $(\beta): x + y - z = 0$. **C.** $(\alpha): x + y + 2z = 0$. **D.** (Q): x + y - 2z = 0.

Câu 428. [2H3-2] Cho đường thẳng $d: \frac{x-1}{-1} = \frac{y}{2} = \frac{z-3}{4}$ và mặt phẳng (P): 2x - y + z - 5 = 0. Xét vị trí tương đối của d và (P).

A. d nằm trên (P).

B. d song song với (P).

C. d cắt và không vuông góc với (P).

D. d vuông góc với (P).

A. m = 1 và $m = -\frac{1}{2}$. **B.** m = 0 và $m = \frac{1}{2}$. **C.** m = 1. **D.** $m = -\frac{1}{2}$.

Câu 436. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;-1;2), B(4;-1;-1), C(2;0;2) và đường thẳng $d:\frac{x}{1}=\frac{y+2}{3}=\frac{z-3}{-1}$. Gọi M là giao điểm của đường thẳng d và mặt phẳng (ABC). Độ dài đoạn thẳng OM bằng

A. $2\sqrt{2}$.

B. 3.

C. $\sqrt{6}$.

D. $\sqrt{3}$.

Câu 437. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x-2y-z+2=0, (Q): 2x - y + z + 1 = 0. Góc giữa (P) và (Q) là B. 90°. C. 30° D. 120°. Câu 438. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (P): x+2y-2z+3=0 và (Q): x+2y-2z-1=0. Khoảng cách giữa hai mặt phẳng đã cho là **B.** $\frac{4}{2}$. $C. \frac{2}{2}$. **D.** 4. Câu 439. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, gọi d là giao tuyến của hai mặt phẳng có phương trình lần lượt là 2x-y+z+2017=0 và x+y-z+5=0. Tính số đo độ góc giữa đường thẳng d và truc O_Z . **A.** 60°. C. 45°. **B.** 0°. Câu 440. [2H3-2] Trong không gian với hệ tọa độ Oxyz, tính góc giữa hai đường thẳng $d_1: \frac{x}{1} = \frac{y+1}{-1} = \frac{z-1}{2} \text{ và } d_2: \frac{x+1}{-1} = \frac{y}{1} = \frac{z-3}{1}.$ Câu 441. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(-1;2;1), B(-4;2;-2), C(-1;-1;-2), D(-5;-5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC). **A.** $d = \sqrt{3}$. **B.** $d = 2\sqrt{3}$. **C.** $d = 3\sqrt{3}$.

A. $d = \sqrt{5}$.

Câu 442. [2H3-2] Góc giữa đường thẳng $d : \begin{cases} x = 2 - t \\ y = 5 \end{cases}$ và mặt phẳng (P) : y - z + 2 = 0 là z = 1 + tC. 30°.

D. 45°.

Câu 443. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng $(\alpha): x-y+2z+1=0$ và đường thẳng $\Delta : \frac{x}{1} = \frac{y}{2} = \frac{z-1}{-1}$. Góc giữa đường thẳng Δ và mặt phẳng (α) bằng

A. 30°.

B. 60°.

C. 150°.

D. 120°.

Câu 444. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho đường thẳng $d: \frac{x+2}{1} = \frac{y-1}{1} = \frac{z-2}{2}$. Viết phương trình đường thẳng d' là hình chiếu của d lên mặt phẳng Oxy.

A.
$$d'$$
:
$$\begin{cases} x = -3 + t \\ y = 1 + t \\ z = 0 \end{cases}$$

B.
$$d': \begin{cases} x = -3 + t \\ y = t \\ z = 0 \end{cases}, (t \in \mathbb{R}).$$

C. $d':\begin{cases} x = -3 + t \\ y = -t \end{cases}, (t \in \mathbb{R}).$

$$\mathbf{D.} \ d' : \begin{cases} x = 3 - t \\ y = -t \\ z = 0 \end{cases}, (t \in \mathbb{R}).$$

Câu 445. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y + z + 6 = 0. Tìm tọa độ điểm M thuộc tia Oz sao cho khoảng cách từ M đến (P) bằng 3.

A. M(0;0;21).

B. M(0;0;3).

C. M(0;0;3), M(0;0;-15).

D. M(0;0;-15).

Câu 446.	[2H3-2] Trong khôn	ng gian với hệ trục	Oxyz, khoảng cách	giữa hai mặt phẳng		
	$(\alpha): x-2y-2z+4=0$	o và (β) : $-x + 2y + 2z -$	-7 = 0 là			
	A. 1.	B. −1.	C. 3.	D. 0.		
Câu 447.	[2H3-2] Trong không	gian với hệ trục tọa c	độ <i>Oxyz</i> , cho điểm <i>M</i>	Y(1;2;-3) và mặt phẳng		
	(P): $x-2y+2z+3=0$. Khi đó khoảng cách từ M đến mặt phẳng (P) là					
	A. 1.	B. 2.	C. 3.	D. 4.		
Câu 448.	[2H3-2] Cho mặt	cầu tâm $I(4;2;-2)$	bán kính R tiếp	xúc với mặt phẳng		
	(P): 12 x – 5 z – 19 = 0. Khi đó bán kính R bằng					
	A. 39.	B. $\frac{39}{\sqrt{13}}$.	C. 13.	D. 3.		
Câu 449.	[2H3-2] Khoảng cách	từ điểm $M\left(2;0;1\right)$ đến G	Turờng thẳng $d: \frac{x-1}{1} = \frac{1}{2}$	$\frac{y}{2} = \frac{z - 2}{1}$ là		
	A. $\sqrt{12}$.	B. $\sqrt{3}$.	C. $\sqrt{2}$.	D. $\frac{12}{\sqrt{6}}$.		
Câu 450.	[2H3-2] Trong không	g gian với hệ tọa độ	Oxyz, cho ba điểm	A(1;0;2), B(1;1;1) và		
	C(2;3;0). Tính khoản	ng cách h từ O đến mặt	phẳng (ABC) .			
	A. $h = \sqrt{3}$.	B. $h = \frac{1}{3}$.	C. $h = 3$.	D. $h = \frac{\sqrt{3}}{3}$.		
Câu 451.	[2H3-2] Trong không	gian với hệ tọa độ Oxyz	, tính khoảng cách từ đị	$\stackrel{\circ}{\text{em}} M(1; 2; -3)$ đến mặt		
	phẳng (P) : $x+2y-2z$	x-2=0.				
	A. 1.	B. $\frac{11}{3}$.	C. $\frac{1}{3}$.	D. 3.		
Câu 452.	[2H3-2] Trong không	gian với hệ tọa độ Oxyz	, cho bốn điểm $A(0;0;$	2), B(3;0;5), C(1;1;0),		
	D(4;1;2). Độ dài đườ:	ng cao của tứ diện ABC	D hạ từ đỉnh D xuống	mặt phẳng (ABC) là		
	A. $\frac{\sqrt{11}}{11}$.	B. $\sqrt{11}$.	C. 1.	D. 11.		
Câu 453.	[2H3-2] Trong không	g gian <i>Oxyz</i> , cho cá	c điểm $A(1;0;0)$, $B($	(-2;0;3), $M(0;0;1)$ và		
	N(0;3;1). Mặt phẳng	(P) đi qua các điểm M	M , N sao cho khoảng α	cách từ điểm B đến (P)		
	gấp hai lần khoảng các	h từ điểm A đến (P) . $($	Có bao nhiêu mặt phẳng	(P) thỏa mãn đề bài?		
	A. Có vô số mặt phẳng	(P).	B. Có hai mặt phẳng ((P).		
	C. Chỉ có một mặt phẳ	ng(P).	D. Không có mặt phẳ	ng (P) nào.		
Câu 454.	[2H3-2] Trong không	gian với hệ tọa độ <i>Oxyz</i>	, cho đường thẳng $d: \frac{\lambda}{2}$	$\frac{z-1}{1} = \frac{y-2}{2} = \frac{z+2}{-2}$. Tính		
	khoảng cách từ điểm M	$M\left(-2;1;-1\right)$ tới d .				
	A. $\frac{5\sqrt{2}}{3}$.	_	C. $\frac{\sqrt{2}}{3}$.	D. $\frac{5}{3}$.		

- Câu 455. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y-z+1=0 và đường thẳng $\Delta : \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-1}{2}$. Tính khoảng cách d giữa Δ và (P).
 - **A.** $d = \frac{1}{2}$.
- **B.** $d = \frac{5}{2}$.
- C. $d = \frac{2}{3}$.
- Câu 456. [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho hai đường thẳng $\Delta_1: \frac{x-3}{4} = \frac{y+2}{1} = \frac{z+1}{1}$,
 - $\Delta_2: \frac{x}{-6} = \frac{y-1}{1} = \frac{2-z}{-2}$. Khoảng cách giữa Δ_1 và Δ_2 là
 - **A.** $\frac{27}{\sqrt{200}}$.

C. 1.

- **D.** $\frac{5}{2}$.
- **Câu 457.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho A(3;0;0), B(0;2;0), C(0;0;2), $M\left(1;1;1\right),\ N\left(3;-2;-1\right).$ Gọi $V_{_{1}},\ V_{_{2}}$ lần lượt là thể tích của khối chóp M.ABC , N.ABC . Tỉ số $\frac{V_1}{V}$ bằng
 - **A.** $\frac{2}{2}$.

- **B.** $\frac{1}{2}$.
- $C. \frac{4}{9}$.
- **D.** $\frac{5}{9}$.
- Câu 458. [2H3-2] Trong không gian với hệ tọa độ Oxyz, hai mặt phẳng 4x-4y+2z-7=0 và 2x-2y+z+1=0 chứa hai mặt của hình lập phương. Thể tích khối lập phương đó là

 - **A.** $V = \frac{27}{8}$ **B.** $V = \frac{81\sqrt{3}}{8}$ **C.** $V = \frac{9\sqrt{3}}{2}$ **D.** $V = \frac{64}{27}$

- Câu 459. [2H3-2] Trong không gian Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{1}$. Hình chiếu vuông góc của d trên mặt phẳng (Oxy) là đường thẳng
- A. $\begin{cases} x = 0 \\ y = -1 t \end{cases}$ B. $\begin{cases} x = 1 + 2t \\ y = -1 + t \end{cases}$ C. $\begin{cases} x = -1 + 2t \\ y = -1 + t \end{cases}$ D. $\begin{cases} x = -1 + 2t \\ y = -1 + t \end{cases}$
- Câu 460. [2H3-2] Trong không gian với hệ tọa độ Oxyz, tọa độ hình chiếu vuông góc của điểm A(6;5;4) lên mặt phẳng (P):9x+6y+2z+29=0 là
- **B.** (-1;-3;-1). **C.** (-5;3;-1).
- **D.** (-3,-1,2).
- Câu 461. [2H3-2] Trong không gian Oxyz, cho mặt phẳng (P): 2x+2y-z-3=0 và điểm M(1;-2;4). Tìm tọa độ hình chiếu vuông góc của điểm M trên mặt phẳng (P).
 - **A.** (5;2;2).
- **B.** (0;0;-3).
- **C.** (3;0;3).
- Câu 462. [2H3-2] Trong không gian với hệ trục toạ độ Oxyz, cho điểm M(2;-1;1) và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+1}{-1} = \frac{z}{2}$. Tìm tọa độ điểm K là hình chiếu vuông góc của điểm M lên đường thắng Δ .
- **A.** $K\left(\frac{17}{3}; -\frac{13}{3}; \frac{8}{3}\right)$. **B.** $K\left(\frac{17}{9}; -\frac{13}{9}; \frac{8}{9}\right)$. **C.** $K\left(\frac{17}{12}; -\frac{13}{12}; \frac{2}{5}\right)$ 1. **D.** $K\left(\frac{17}{6}; -\frac{13}{6}; \frac{8}{6}\right)$.

	và điểm $A(-1;3;6)$. Gọi A' là điểm đối xứng với A qua (P) . Tính $\mathit{OA'}$.							
	A. $OA' = 3\sqrt{26}$.	B. $OA' = 5\sqrt{3}$.	C. $OA' = \sqrt{46}$.	D. $OA' = \sqrt{186}$.				
Câu 464	. [2H3-2] Trong không g	gian <i>Oxyz</i> , cho điểm <i>A</i>	(4;1;-2). Tọa độ điểm	đối xứng với A qua mặt				
	phẳng (Oxz) là							
	A. $A'(4;-1;2)$.	B. $A'(-4;-1;2)$.	C. $A'(4;-1;-2)$.	D. $A'(4;1;2)$.				
Câu 465.	Câu 465. [2H3-2] Cho điểm $M(2;-6; 4)$ và đường thẳng $d: \frac{x-1}{2} = \frac{y+3}{1} = \frac{z}{-2}$. Tìm tọa độ điểm M'							
	đối xứng với điểm M							
	A. $M'(3;-6; 5)$.	B. $M'(4; 2; -8)$.	C. $M'(-4; 2; 8)$.	D. $M'(-4;-2; 0)$.				
Câu 466	. [2H3-2] Gọi <i>H</i> là	hình chiếu vuông	góc của điểm $A(2;$	-1;-1) lên mặt phẳng				
	(P):16x-12y-15z-4	4 = 0. Độ dài của đoạn	AH là					
	A. 55.	B. $\frac{11}{5}$.	C. $\frac{11}{25}$.	D. $\frac{22}{5}$.				
Câu 467	. [2H3-2] Gọi <i>H</i> là	hình chiếu vuông g	góc của điểm $M(2;$	0;1) trên đường thẳng				
	$\Delta : \frac{x-1}{1} = \frac{y}{2} = \frac{z-2}{1}$. He	I có tọa độ là						
	A. (1;0;2).	B. (2;2;3).	C. $(0;-2;1)$.	D. $(-1;-4;0)$.				
Câu 468	. [2H3-2] Trong không g	gian Oxyz, cho hai điển	n $M(-2;6;1)$ và $M'(a$	(a;b;c) đối xứng nhau qua				
	mặt phẳng (Oyz) . Tính	S = 7a - 2b + 2017c - 3	1.					
	A. $S = 2017$.	B. $S = 2042$.	C. $S = 0$.	D. $S = 2018$.				
Câu 469	. [2H3-2] Cho hai điểm	A(0;-1;2), B(4;1;-1)	và mặt phẳng (α) : $3x$	z-y+z-2=0. Xét vị trí				
	tương đối của hai điểm	A , B và (α) .						
	A. $A \notin (\alpha)$, $B \in (\alpha)$		B. $A \in (\alpha)$, $B \notin (\alpha)$.					
	C. A, B nằm về một p	phía đối với $(lpha)$.	D. A , B nằm về hai	phía đối với $(lpha)$.				
Câu 470	. [2H3-2] Trong kh	nông gian với hệ	tọa độ <i>Oxyz</i> ,	cho hai mặt cầu				
$(S_1): (x-2)^2 + y^2 + (z+1)^2 = 16$ và $(S_2): (x+3)^2 + (y-2)^2 + z^2 = 1$. Khẳng định nào sau đây là đúng?								
	A. (S_1) và (S_2) cắt nh	au.	B. (S_1) và (S_2) khôn	ng có điểm chung.				
	C. (S_1) và (S_2) tiếp xư	úc trong.	D. (S_1) và (S_2) tiếp	xúc ngoài.				
Câu 471	. [2H3-2] Trong không	gian với hệ tọa độ Ox	cyz, cho hai điểm A(2;	0;1), B(0;-2;3) và mặt				
		2		c mặt phẳng (P) sao cho				
	MA = MB = 3. Tọa độ	0	-	,				

B. (0;-1;5). **C.** (0;1;-3).

Câu 463. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 6x-2y+z-35=0

A. (0;1;3).

D. $\left(\frac{6}{7}; -\frac{4}{7}; \frac{12}{7}\right)$.

Câu 472. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng $d_1: \frac{x-1}{2} = \frac{y-7}{1} = \frac{z}{4}$ và $d_2: \frac{x+1}{1} = \frac{y-2}{2} = \frac{z-2}{1}$. Mệnh đề nào sau đây đúng?

A. d_1 và d_2 vuông góc với nhau và cắt nhau. **B.** d_1 và d_2 song song với nhau.

C. d_1 và d_2 trùng nhau.

D. d_1 và d_2 chéo nhau.

Câu 473. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \begin{cases} y = -m + 2t \text{ và mặt phẳng} \end{cases}$

(P): 2mx - y + mz - n = 0. Biết đường thẳng d nằm trong mặt phẳng (P). Khi đó hãy tính m + n.

Câu 474. [2H3-3] Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị thực của m để đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z+1}{1}$ song song với mặt phẳng (P): x+y-z+m=0.

A. $m \neq 0$.

B. m = 0.

C. $m \in \mathbb{R}$.

D. Không có giá tri nào của m.

Câu 475. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;-1), B(0;4;0) và mặt phẳng (P) có phương trình 2x - y - 2z + 2017 = 0. Gọi (Q) là mặt phẳng đi qua hai điểm A, B và tạo với mặt phẳng (P) góc nhỏ nhất bằng α . Tính $\cos \alpha$.

A. $\frac{1}{0}$.

B. $\frac{2}{2}$.

 $C.\frac{1}{\epsilon}$.

D. $\frac{1}{\sqrt{2}}$.

Câu 476. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng $d_1: \frac{x-4}{1} = \frac{y+2}{1} = \frac{z-1}{1}$, $d_2: \frac{x-2}{1} = \frac{y+1}{1} = \frac{z-1}{1}$. Viết phương trình đường thẳng d đi qua điểm A , vuông góc với đường thẳng $d_{\scriptscriptstyle 1}$ và cắt đường thẳng $d_{\scriptscriptstyle 2}$.

A. $d: \frac{x-1}{4} = \frac{y+1}{1} = \frac{z-3}{4}$.

B. $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{3}$.

C. $d: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-3}{1}$.

D. $d: \frac{x-1}{2} = \frac{y+1}{2} = \frac{z-3}{3}$.

Câu 477. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-4}{1} = \frac{y-5}{2} = \frac{z}{3}$ mặt phẳng (α) chứa đường thẳng d sao cho khoảng cách từ O đến (α) đạt giá trị lớn nhất. Khi đó góc giữa mặt phẳng (α) và trục Ox là φ thỏa mãn:

A. $\sin \varphi = \frac{1}{2\sqrt{3}}$. **B.** $\sin \varphi = \frac{1}{\sqrt{3}}$. **C.** $\sin \varphi = \frac{2}{3\sqrt{3}}$. **D.** $\sin \varphi = \frac{1}{2\sqrt{2}}$.

Câu 478. [2H3-3] Trong không gian Oxyz, cho A(3;1;2), B(-3;-1;0) và mặt phẳng (P): x + y + 3z - 14 = 0. Điểm M thuộc mặt phẳng (P) sao cho ΔMAB vuông tại M. Tính khoảng cách từ điểm M đến mặt phẳng Oxy.

A. 5.

B. 4.

C. 3.

D. 1.

Câu 479.	[2H3-3] Trong không	gian với hệ tọa độ	Oxyz cho hai điểm	A(1;2;1) và mặt phẳng
	(P): $x + 2y - 2z - 1 = 0$. Gọi B là điểm đối xứ	ng với A qua (P) . Độ	dài đoạn thẳng AB là
	A. 2.	B. $\frac{4}{3}$.	C. $\frac{2}{3}$.	D. 4.
Câu 480.	[2H3-3] Trong không	gian với hệ trục tọa đ	tộ $Oxyz$, cho đường th	nẳng d có phương trình
	1 2 3	,		d = d = d có cao độ
	dương sao cho khoảng α . $M(10;21;32)$.			D M (7.15.22)
			9	
Câu 481.	4		•	(P): 2x + 2y - z + 3 = 0 và
	đường thẳng $d: \frac{x-1}{1} =$	$\frac{y+3}{2} = \frac{z}{2}$. Gọi A là gi	iao điểm của (d) và (F)	P); gọi M là điểm thuộc
	d thỏa mãn điều kiện I	MA = 2. Tính khoảng cá	ách từ M đến mặt phẳn	g(P).
	A. $\frac{4}{9}$.	B. $\frac{8}{3}$.	$C. \frac{8}{9}.$	D. $\frac{2}{9}$.
Câu 482.	[2H3-3] Trong không g	gian với hệ tọa độ Oxy	z, cho tam giác ABC	có $A(1;0;0)$, $B(0;-2;3)$
	và $C(1;1;1)$. Mặt phẳng	$g\left(P ight)$ chứa A , B và cá	ich C một khoảng bằng	$\frac{2}{\sqrt{3}}$ có phương trình là
	A. $x+2y+z-1=0$ how B. $x+y+z-1=0$ how C. $2x+3y+z-1=0$ how D. $x+y+2z-1=0$ how	c -23x +37y +17z +23 pặc $3x + y +7z +6 = 0$.	= 0.	
Câu 483.	[2H3-3] .Trong không g	gian với hệ tọa độ Oxyz	S, cho $S(1;2;3)$ và các S	tiểm A, B, C thuộc các
	trục Ox , Oy , Oz sao c nhau. Tính thể tích khối		có các canh SA, SB, SO	C đôi một vuông góc với
		_	C. $\frac{343}{12}$.	D 343
	6	18	12	36
Câu 484.	[2H3-3] Trong không g	ian với hệ tọa độ Oxyz	cho ba điểm $A(0;1;1)$; $B(1;1;0)$; $C(1;0;1)$ và
	mặt phẳng (P) : $x + y - M$. ABC là	z-1=0. Điểm M thuộ	c(P) sao cho $MA = MB$	C = MC. Thể tích khối chóp
		B. $\frac{1}{2}$.	$C^{\frac{1}{2}}$	D. $\frac{1}{3}$.
	$\frac{1}{6}$	$\frac{\mathbf{b}}{2}$.	$\frac{6}{9}$.	$\frac{1}{3}$.
Câu 485.	[2H3-3] Trong không g	gian với hệ tọa độ <i>Oxy</i>	yz , cho mặt phẳng $\left(Q ight)$: 2x + 2y - z - 4 = 0. Gọi
	M, N , P lần lượt là S	giao điểm của mặt phẳ	ng (Q) với ba trục tọa	độ Ox , Oy , Oz . Đường
	cao MH của tam giác			D - (5, 4,2)
	A. $\vec{u} = (-3;4;-2)$.	,	,	,
Câu 486.				$\stackrel{\circ}{\text{em}} A(1;1;1), B(0;1;2),$
			-z+1=0. Tìm điển	n $N \in (P)$ sao cho
	$S = 2NA^2 + NB^2 + NC^2$	=		(2 1)
	A. $N\left(-\frac{1}{2}; \frac{5}{4}; \frac{3}{4}\right)$.	B. $N(3;5;1)$.	C. $N(-2;0;1)$.	D. $N\left(\frac{3}{2}; -\frac{1}{2}; -2\right)$.

Câu 487. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;6), B(0;1;0) và mặt cầu $(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = 25$. Mặt phẳng (P): ax + by + cz - 2 = 0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T = a + b + c.

A. T = 3.

- **B.** T = 5.

- Câu 488. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -1; 2), B(-1; 2; 3) và đường thẳng $d: \frac{x-1}{1} = \frac{y-2}{1} = \frac{z-1}{2}$. Tìm điểm M(a; b; c) thuộc d $MA^2 + MB^2 = 28$, biết c < 0.

- **A.** M(-1;0;-3). **B.** M(2;3;3). **C.** $M(\frac{1}{6};\frac{7}{6};-\frac{2}{3})$. **D.** $M(-\frac{1}{6};-\frac{7}{6};-\frac{2}{3})$.
- Câu 489. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm A(a;0;0), B(0;b;0), C(0;0;c)trong đó a > 0, b > 0, c > 0 và $\frac{1}{a} + \frac{2}{b} + \frac{3}{c} = 7$. Biết mặt phẳng (ABC) tiếp xúc với mặt cầu $(S): (x-1)^2 + (y-2)^2 + (z-3)^2 = \frac{72}{7}$. Thể tích của khối tứ diện *OABC* là

- B. $\frac{1}{6}$. C. $\frac{3}{8}$. D. $\frac{5}{6}$.
- Câu 490. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;3;1), B(1;1;0) và M(a;b;0)sao cho $P = \left| \overrightarrow{MA} - 2 \overrightarrow{MB} \right|$ đạt giá trị nhỏ nhất. Khi đó a + 2b bằng

A. 1.

- C. 2.
- **D.** -1.
- **Câu 491.** [2H3-3] Trong không gian Oxyz, cho A(3;5;0), B(2;0;-3), C(0;1;-4) và D(2;-1;-6). Tọa độ của điểm A' đối xứng với A qua mặt phẳng $\begin{pmatrix} BCD \end{pmatrix}$ là

A. (-1; 1; 2).

- **B.** (1; 1; 2).
- C. (-1; -1; 2).
- **D.** (1;-1;2).
- Câu 492. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $\Delta : \frac{x+1}{2} = \frac{y+2}{1} = \frac{z}{2}$. Tìm tọa độ điểm H là hình chiếu vuông góc của điểm A(2;-3;1) lên Δ .

A. H(-3;-1;-2). **B.** H(-1;-2;0). **C.** H(3;-4;4).

- **D.** H(1;-3;2).
- Câu 493. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y+5}{1} = \frac{z-3}{4}$. Phương trình nào dưới đây là phương hình hình chiếu vuông góc của d trên mặt phẳng x + 3 = 0?

- A. $\begin{cases} x = -3 \\ y = -5 t \end{cases}$ B. $\begin{cases} x = -3 \\ y = -5 + t \end{cases}$ C. $\begin{cases} x = -3 \\ y = -5 + 2t \end{cases}$ D. $\begin{cases} x = -3 \\ y = -6 t \end{cases}$ z = 3 + 4t
- Câu 494. [2H3-3] Cho A(5;1;3), B(-5;1;-1), C(1;-3;0), D(3;-6;2). Tọa độ của điểm A' đối xứng với A qua mặt phẳng (BCD) là

A. (-1;7;5).

- **B.** (1;7;5).
- **C.** (1;-7;-5). **D.** (1;-7;5).

Câu 495. [2H3-3] Trong không gian với hệ tọa độ Oxyz cho hai điểm A(1;2;1), B(3;0;-1) và mặt phẳng (P): x+y-z-1=0. Gọi M và N lần lượt là hình chiếu của A và B trên mặt phẳng (P). Tính độ dài đoạn MN.

A. $2\sqrt{3}$.

B. $\frac{4\sqrt{2}}{\sqrt{3}}$. C. $\frac{2}{\sqrt{3}}$.

D. 4.

Câu 496. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho M(4;1;1) và mặt phẳng (P): 3x + y - z - 1 = 0. Xác định tọa độ hình chiếu vuông góc H của M lên mặt phẳng (P).

A. H(1;1;3).

B. H(1;0;2).

C. H(0;1;-1).

D. H(2;0;5).

Câu 497. [2H3-3] Trong không gian với hệ trục Oxyz, tìm tọa độ hình chiếu vuông góc của điểm A(0; 1; 2) trên mặt phẳng (P): x + y + z = 0.

A. (-1; 0; 1).

B. (-2; 0; 2). **C.** (-1; 1; 0). **D.** (-2; 2; 0).

Câu 498. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm M(2;-3;1) và đường thẳng $d: \frac{x+1}{2} = \frac{y+2}{-1} = \frac{z}{2}$. Tìm tọa độ điểm M' đối xứng với M qua d.

A. M'(3;-3;0).

B. M'(1;-3;2).

C. M'(0;-3;3).

D. M'(-1;-2;0).

Câu 499. [2H3-3] Cho hình hộp chữ nhật ABCD.A'B'C'D' (như hình vẽ) có AD = 4, DD' = 3, D'C' = 6. Chọn hệ trục tọa độ Oxyz có gốc tọa độ O trùng đỉnh A, các vécto \vec{i} , \vec{j} , \vec{k} cùng phương với các vecto \overrightarrow{AD} , \overrightarrow{AB} , $\overrightarrow{AA'}$. Lúc đó khoảng cách giữa hai mặt phẳng (B'AC) và (DA'C') là

A. $\frac{24}{\sqrt{20}}$.

B. $\frac{12}{\sqrt{29}}$. C. $\frac{29}{\sqrt{12}}$.

D. $\frac{29}{\sqrt{24}}$

Câu 500. [2H3-3] Trong không gian hệ trục tọa độ Oxyz, cho 3 điểm A(-2; 2; 3); B(1; -1; 3); C(3;1;-1) và mặt phẳng (P): x+2z-8=0. Gọi M là điểm thuộc mặt phẳng (P) sao cho giá trị của biểu thức $T=2MA^2+MB^2+3MC^2$ nhỏ nhất. Tính khoảng cách từ điểm M đến mặt phẳng (Q): -x + 2y - 2z - 6 = 0.

A. 4.

C. $\frac{4}{2}$.

Câu 501. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho (P): x-2y+2z-5=0, A(-3;0;1), B(1;-1;3). Viết phương trình đường thẳng d đi qua A, song song với (P) sao cho khoảng cách từ B đến d là lớn nhất.

A. $\frac{x+3}{1} = \frac{y}{1} = \frac{z-1}{2}$.

B. $\frac{x+3}{3} = \frac{y}{2} = \frac{z-1}{2}$.

C. $\frac{x-1}{1} = \frac{y}{2} = \frac{z-1}{2}$.

D. $\frac{x+3}{2} = \frac{y}{-6} = \frac{z-1}{-7}$.

Câu 502. [2H3-3]	Trong không	gian Oxyz,	cho mặt phẳ	$ag (\alpha): 2x + y - 1$	2z-2=0,	đường thẳng
$d:\frac{x+1}{1}=$	$=\frac{y+2}{2}=\frac{z+3}{2}$	và điểm $A\left(\frac{1}{2}\right)$	$\left(\frac{1}{2};1;1\right)$. Gọi Δ	à đường thẳng nằ	ấm trong mặ	ặt phẳng $(lpha)$
song son	g với d đồng t	thời cách d n	nột khoảng bằn	g 3. Đường thẳng	Δ cắt mặt	phẳng (Oxy
tại điểm	B. Độ dài đoạn	thẳng AB bầ	ing.			
		_				

A. $\frac{7}{2}$.

B. $\frac{\sqrt{21}}{2}$. C. $\frac{7}{3}$.

D. $\frac{3}{2}$.

Câu 503. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ đi qua gốc tọa độ O và điểm I(0;1;1). Gọi S là tập hợp các điểm nằm trên mặt phẳng (Oxy), cách đường thẳng Δ một khoảng bằng 6. Tính diện tích hình phẳng giới hạn bởi S.

A. 36π .

B. $36\sqrt{2\pi}$.

C. $18\sqrt{2}\pi$.

D. 18π .

Câu 504. [2H3-3] Trong không gian với hệ trục toạ độ Oxyz, cho ba điểm A(2;0;0), B(0;3;1), C(-1;4;2). Độ dài đường cao từ đỉnh A của tam giác ABC:

 $A. \sqrt{6}$

 $\mathbf{B}_{\bullet} \sqrt{2}$.

C. $\frac{\sqrt{3}}{2}$.

D. $\sqrt{3}$.

Câu 505. [2H3-3] Trong không gian Oxyz cho mặt cầu $(S):(x-1)^2+(y-2)^2+(z-3)^2=9$ và mặt phẳng (P):2x-2y+z+3=0. Gọi M(a;b;c) là điểm trên mặt cầu sao cho khoảng cách từ M đến (P) lớn nhất. Khi đó:

A. a+b+c=8.

B. a+b+c=5. **C.** a+b+c=6. **D.** a+b+c=7.

Câu 506. [2H3-3] Trong không gian Oxyz, cho hai điểm M(-2;-2;1), A(1;2;-3) và đường thẳng $d: \frac{x+1}{2} = \frac{y-5}{2} = \frac{z}{-1}$. Tìm vécto chỉ phương \vec{u} của đường thẳng Δ đi qua M, vuông góc với đường thẳng d, đồng thời cách điểm A một khoảng lớn nhất.

A. $\vec{u} = (4; -5; -2)$. **B.** $\vec{u} = (1; 0; 2)$. **C.** $\vec{u} = (8; -7; 2)$. **D.** $\vec{u} = (1; 1; -4)$.

Câu 507. [2H3-3] Trong không gian Oxyz cho hai đường thẳng Δ_1 : $\begin{cases} x=1\\ y=2+t\\ z=-t \end{cases}$, Δ_2 : $\begin{cases} x=4+t\\ y=3-2t\\ z=1-t \end{cases}$. Gọi

 $\left(S\right)$ là mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai đường thẳng $\Delta_{_{\!1}}$ và $\Delta_{_{\!2}}$. Bán kính mặt cầu (S).

A. $\frac{\sqrt{10}}{2}$.

B. $\frac{\sqrt{11}}{2}$.

C. $\frac{3}{2}$.

D. $\sqrt{2}$.

Câu 508. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho A(a;0;0), B(0;b;0), C(0;0;c) với a, b, c dương. Biết A, B, C di động trên các tia Ox, Oy, Oz sao cho a+b+c=2. Biết rằng khi a, b, c thay đổi thì quỹ tích tâm hình cầu ngoại tiếp tứ diện OABC thuộc mặt phẳng (P)cố định. Tính khoảng cách từ $M\left(2016;0;0\right)$ tới mặt phẳng $\left(P\right)$.

A. 2017.

B. $\frac{2014}{\sqrt{3}}$.

C. $\frac{2016}{\sqrt{3}}$.

D. $\frac{2015}{\sqrt{3}}$.

Câu 509.	. [2H3-4] Trong không gian với hệ tọa độ $Oxyz$, cho lăng trụ đứng $ABC.A'B'C'$ có $A(a;0;0)$,						
	B(-a;0;0), $C(0;a;0)$, $B'(-a;0;b)$ với a , b dương thay đổi thỏa mãn $a+b=4$. Khoảng						
	cách lớn nhất giữa hai đường thẳng $B'C$ và AC' là						
	A. 1.	B. 2.	C. $\sqrt{2}$.	D. $\frac{\sqrt{2}}{2}$.			
Câu 510.	[2H3-4] Trong không gi	an với hệ tọa độ (Oxyz	(1), cho các điểm $A(1;-1)$	1;1), $B(0;1;-2)$ và điểm			
	M thay đổi trên mặt phẳng tọa độ (Oxy) . Giá trị lớn nhất của biểu thức $T = MA - MB $ là						
	A. $\sqrt{6}$.	B. $\sqrt{14}$.	C. $\sqrt{8}$.	D. $\sqrt{12}$.			
Câu 511.	[2H3-4] Trong không g	ian với hệ tọa độ Oxyz	, cho các điểm $A(1;2;0)$	(0), B(0;1;5), C(2;0;1).			
	Gọi M là điểm thuộc	mặt phẳng $(P): x+2$	2y - z - 7 = 0. Giá trị 1	nhỏ nhất của biểu thức			
	$P = MA^2 + MB^2 + MC^2$						
	A. 36.	B. 24.	C. 30.	D. 29.			
Câu 512.	[2H3-4] Trong không g	ian với hệ tọa độ Oxyz	, cho điểm $M(1;2;1)$.	Mặt phẳng (P) thay đổi			
			A, B , C khác O . Tính	h giá trị nhỏ nhất của thể			
	tích khối tứ diện OABC		C. 9.	D 10			
	A. 54.	B. 6.		D. 18.			
Câu 513.	[2H3-4] Trong không gi	an với hệ tọa độ Oxyz,	, cho đường thẳng $d: \frac{x}{a}$	$\frac{-2}{2} = \frac{y}{-1} = \frac{z}{4} \text{ và mặt cầu}$			
	$(S):(x-1)^2+(y-2)^2+$	$(z-1)^2 = 2$. Hai mặt p	hẳng (P) và (Q) chứa	d và tiếp xúc với (S) .			
	Gọi M , N là tiếp điểm	. Tính độ dài đoạn thẳn	g MN.				
	A. $2\sqrt{2}$.	B. $\frac{4}{\sqrt{3}}$.	$C. \sqrt{6}$.	D. 4.			
Câu 514.	[2H3-4] Trong không	gian với hệ tọa độ	Oxyz, cho ba điểm	A(-2;0;0), B(0;-2;0),			
	C(0;0;-2). Gọi D là	điểm khác O sao cho	DA, DB, DC đôi i	một vuông góc nhau và			
	I(a;b;c) là tâm mặt cầu						
	A. $S = -4$.	B. $S = -1$.	C. $S = -2$.	D. $S = -3$.			
Câu 515.	[2H3-4] Trong không gi	an với hệ tọa độ Oxyz	, cho hai điểm $A(4;6;2)$	B) và $B(2;-2;0)$ và mặt			
	chiếu vuông góc của A Tính bán kính R của đu	trên d . Biết rằng khi a ờng tròn đó.	d thay đổi thì H thuộc	đi qua B , gọi H là hình một đường tròn cố định.			
	A. $R = 1$.	B. $R = \sqrt{6}$.	C. $R = \sqrt{3}$.	D. $R = 2$.			
Câu 516.	[2H3-4] Trong không g	ian với hệ trục tọa độ	Oxyz, cho mặt phẳng	(P): $x + y - z + 2 = 0$ và			
	hai điểm $A(3;4;1)$, $B($	7; -4; -3). Tìm hoành	độ của điểm $\it M$. Biết $\it i$	rằng M thuộc (P) , tam			
	giác ABM vuông tại M	, diện tích nhỏ nhất và		hon 2.			
	$\mathbf{A.} \ x_{M} = 6.$		B. $x_M = 3$.				
	C. $x_M = 4$.		D. $x_M = 5$.				

Câu 517. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;-2) và hai đường thẳng

 $\Delta_1: \frac{x-2}{1} = \frac{y}{1} = \frac{z-1}{1}, \ \Delta_2: \frac{z}{2} = \frac{y+1}{1} = \frac{z+6}{1}. \text{ Lấy điểm } N \text{ trên } \Delta_1 \text{ và } P \text{ trên } \Delta_2 \text{ sao cho } M,$

N, P thẳng hàng. Tìm tọa độ trung điểm của đoạn thẳng NP.

- **A.** (0;2;3).
- **B.** (2;0;-7).
- C. (1;1;-3).
- **D.** (1;1;-2).

Câu 518. [2H3-4] Trong không gian với hệ tọa độ Oxyz, xét các điểm A(0;0;1), B(m;0;0), C(0;n;0), D(1;1;1) với m>0, n>0 và m+n=1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố

định tiếp xúc với mặt phẳng (ABC) và đi qua d. Tính bán kính R của mặt cầu đó.

- **A.** R = 1.

- **B.** $R = \frac{\sqrt{2}}{2}$. **C.** $R = \frac{3}{2}$. **D.** $R = \frac{\sqrt{3}}{2}$.

Câu 519. [2H3-4] Cho 3 số thực x, y, z thỏa mãn $x^2 + y^2 + z^2 - 2x - 4y - 4z - 7 = 0$. Tìm giá trị lớn nhất của biểu thức T = 2x + 3y + 6z.

- **A.** T = 49.
- B T = 7.
- $C_{\bullet} T = 48$.

Câu 520. [2H3-4] Trong không gian với hệ trục tọa độ Oxyz, cho hai đường thẳng $\Delta_1: \frac{x}{2} = \frac{y-1}{1} = \frac{z}{1}$ và

 $\Delta_2: \frac{x-1}{1} = \frac{y}{2} = \frac{z+2}{1}$. Một mặt phẳng (P) vuông góc với Δ_1 , cắt trục Oz tại A và cắt Δ_2 tại

- B. Tìm độ dài nhỏ nhất của đoạn AB.
- **A.** $\frac{2\sqrt{31}}{5}$.
- **B.** $\frac{24}{5}$. **C.** $\frac{2\sqrt{30}}{5}$. **D.** $\sqrt{\frac{6}{5}}$.

Vấn đề 5. Phương trình mặt cầu

Câu 521. [2H3-1] Trong không gian với hệ trục tọa độ Oxyz. Tọa độ tâm I và bán kính R của mặt cầu $(x-1)^2 + (y+2)^2 + (z-4)^2 = 20$ lần lượt là

A.
$$I(-1;2;-4), R = 5\sqrt{2}$$
.

B.
$$I(-1;2;-4), R = 2\sqrt{5}$$
.

C.
$$I(1;-2;4), R = 20.$$

D.
$$I(1;-2;4), R = 2\sqrt{5}.$$

Câu 522. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;3) và B(-1;4;1). Phương trình mặt cầu đường kính AB là

A.
$$x^2 + (y-3)^2 + (z-2)^2 = 3$$
.

B.
$$(x-1)^2 + (y-2)^2 + (z-3)^2 = 12$$
.

C.
$$(x+1)^2 + (y-4)^2 + (z-1)^2 = 12$$
.

D.
$$x^2 + (y-3)^2 + (z-2)^2 = 12$$
.

Câu 523. [2H3-1] Trong không gian Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 6z - 2 = 0$. Xác định tọa độ tâm I và bán kính của mặt cầu (S).

A.
$$I(1;0;-3); R = \sqrt{7}$$
.

B.
$$I(1;0;-3); R = 2\sqrt{3}$$
.

C.
$$I(-1;0;3); R = \sqrt{7}$$
.

D.
$$I(-1;0;3); R = 2\sqrt{3}$$
.

Câu 524. [2H3-1] Trong không gian với hệ trục toạ độ Oxyz, cho các phương trình sau, phương trình nào không phải là phương trình của mặt cầu?

A.
$$x^2 + y^2 + z^2 - 2x - 2y - 2z - 8 = 0$$
.

B.
$$(x+1)^2 + (y-2)^2 + (z-1)^2 = 9$$
.

C.
$$2x^2 + 2y^2 + 2z^2 - 4x + 2y + 2z + 16 = 0$$

C.
$$2x^2 + 2y^2 + 2z^2 - 4x + 2y + 2z + 16 = 0$$
.
D. $3x^2 + 3y^2 + 3z^2 - 6x + 12y - 24z + 16 = 0$.

cầu Câu 525. [2H3-1] Trong không hệ toa độ Oxyz, cho măt $(S): x^2 + y^2 + z^2 - 4x + 2y + 6z - 2 = 0$. Mặt cầu (S) có tâm I và bán kính R là

A.
$$I(2;-1;-3), R = \sqrt{12}$$
.

B.
$$I(-2;1;3), R = 4$$
.

C.
$$I(2;-1;-3), R = 4$$
.

D.
$$I(-2;1;3), R = 2\sqrt{3}$$
.

Câu 526. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình $x^2 + y^2 + z^2 - 2x + 2y - 4z - 3 = 0$. Tọa độ tâm I và bán kính R của mặt cầu (S) là

A.
$$I(2;-2;4), R=5.$$

B.
$$I(-2;2;4), R=3.$$

C.
$$I(-1;1;2), R = 5$$
.

A.
$$I(2;-2;4), R=5$$
. **B.** $I(-2;2;4), R=3$. **C.** $I(-1;1;2), R=5$. **D.** $I(1;-1;2), R=3$.

Câu 527. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình $x^2 + y^2 + z^2 - 2x + 4y - 6z + 9 = 0$. Tìm tâm I và bán kính R của mặt cầu

A.
$$I(-1;2;-3), R = \sqrt{5}$$
.

B.
$$I(1;-2;3), R = \sqrt{5}$$
.

C.
$$I(1;-2;3), R = 5$$
.

D.
$$I(-1;2;-3), R = 5$$
.

gian cầu **Câu 528.** [2H3-1] Trong không với hê Oxvz. cho măt (S): $x^2 + y^2 + z^2 - 4x + 2y + 6z - 2 = 0$. Mặt cầu (S) có tâm I và bán kính R là:

A.
$$I(-2;1;3), R = 2\sqrt{3}$$
.

B.
$$I(2;-1;-3), R = \sqrt{12}$$
.

C.
$$I(2;-1;-3)$$
, $R=4$.

D.
$$I(-2;1;3), R = 4$$
.

Câu 529. [2H3-1] câu Trong không gian với Oxyzcho măt $(S):(x-5)^2+(y-1)^2+(z+2)^2=9$. Tính bán kính R của (S).

- **B.** R = 18.
- **D.** R = 6.
- **Câu 530.** [2H3-1] Trong không gian với hệ toạ độ Oxyz, cho mặt cầu (S): $x^2 + (y+2)^2 + (z-2)^2 = 8$. Tính bán kính R của (S).

A. R = 8.

- **B.** R = 4.
- C. $R = 2\sqrt{2}$.
- **D.** R = 64.
- Câu 531. [2H3-1] Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của mặt cầu tâm I(-1;2;3) và có bán kính bằng 2?

A. $(x-1)^2 + (y-2)^2 + (z-3)^2 = 4$.

B. $(x+1)^2 + (y-2)^2 + (z-3)^2 = 2$.

C. $(x+1)^2 + (y+2)^2 + (z+3)^2 = 4$.

- **D.** $(x+1)^2 + (y-2)^2 + (z-3)^2 = 4$.
- Câu 532. [2H3-1] Trong không gian với hệ tọa độ Oxyz, tìm m để phương trình $x^2 + y^2 + z^2 - 2mx + 2(m-2)y - 2(m+3)z + 8m + 37 = 0$ là phương trình của một mặt cầu.

A. m < -2 hoặc m > 4.

B. $m \le -2$ hoặc $m \ge 4$.

C. m < -4 hoặc m > -2.

- **D.** m < -4 hoặc m > 2.
- Câu 533. [2H3-1] Trong không gian với hệ tọa độ Oxyz, mặt cầu đi qua bốn điểm A(6;-2;3), $B\big(0;1;6\big),\;C\big(2;0;-1\big)$ và $D\big(4;1;0\big)$ có phương trình là

A. $x^2 + y^2 + z^2 - 4x + 2y - 6z + 3 = 0$.

B. $x^2 + y^2 + z^2 + 4x + 4y - 6z - 3 = 0$.

- C. $x^2 + y^2 + z^2 4x + 2y + 6z 3 = 0$. D. $x^2 + y^2 + z^2 4x + 2y 6z 3 = 0$.
- Câu 534. [2H3-1] Trong không gian Oxyz, viết phương trình mặt cầu (S) đi qua bốn điểm O, A(1;0;0), B(0,-2,0) và C(0,0,4).

A. (S): $x^2 + y^2 + z^2 + x - 2y + 4z = 0$. **B.** (S): $x^2 + y^2 + z^2 - 2x + 4y - 8z = 0$.

C. (S): $x^2 + y^2 + z^2 - x + 2y - 4z = 0$.

- **D.** (S): $x^2 + y^2 + z^2 + 2x 4y + 8z = 0$.
- Câu 535. [2H3-1] Viết phương trình mặt cầu tâm I(1,-1,1) và tiếp xúc với mặt phẳng (α) có phương trình x + 2y - 2z - 3 = 0.

A. $(x-1)^2 + (y+1)^2 + (z-1)^2 = 2$.

B. $(x-1)^2 + (y+1)^2 + (z-1)^2 = 4$.

C. $(x-1)^2 + (y-1)^2 + (z+1)^2 = 2$.

- **D.** $(x+1)^2 + (y-1)^2 + (z+1)^2 = 4$.
- Câu 536. [2H3-1] Trong không gian hệ tọa độ Oxyz, cho điểm I(1;2;4) và (P):2x+2y+z-1=0. Viết phương trình mặt cầu (S) tâm I tiếp xúc với mặt phẳng (P).

A. $(x-1)^2 + (y-2)^2 + (z-4)^2 = 9$.

B. $(x-1)^2 + (y-2)^2 + (z-4)^2 = 3$.

C. $(x+1)^2 + (y+2)^2 + (z+4)^2 = 9$.

- **D.** $(x-1)^2 + (y+2)^2 + (z-4)^2 = 4$.
- **Câu 537.** [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;0;0), B(0;3;0), C(0;0;6). Tìm phương trình mặt cầu (S) tiếp xúc với O_Y tại B, tiếp xúc với O_Z tại C và (S) đi qua A.

A. $(x+5)^2 + (y-3)^2 + (z-6)^2 = 61$.

B. $(x-5)^2 + (y-3)^2 + (z+6)^2 = 61$.

C. $(x-5)^2 + (y-3)^2 + (z-6)^2 = 61$.

D. $(x-5)^2 + (y+3)^2 + (z-6)^2 = 61$.

Câu 538. [2H3-1] Trong không gian Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$. Mặt phẳng (Oxy) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Đường tròn giao tuyến ấy có bán kính r bằng

A. r = 4.

B. r = 2.

C. $r = \sqrt{5}$.

D. $r = \sqrt{6}$.

Câu 539. [2H3-1] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình $x^2 + y^2 + z^2 + 2x - 4y + 2z + 2 = 0$. Tìm tọa độ tâm I của mặt cầu trên.

A. I(1;-2;1).

B. I(-1;-2;-1).

C. I(-1;2;-1).

D. I(-1;-2;1).

Câu 540. [2H3-1] Tìm mệnh đề sai trong các mệnh đề sau:

A. Mặt cầu tâm I(2;-3;-4) tiếp xúc với mặt phẳng (Oxy) có phương trình $x^2 + y^2 + z^2 - 4x + 6y + 8z + 12 = 0$.

B. Mặt cầu (S) có phương trình $x^2 + y^2 + z^2 - 2x - 4y - 6z = 0$ cắt trục Ox tại A (khác gốc tọa độ O). Khi đó tọa đô là A(2;0;0).

C. Mặt cầu (S) có phương trình $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$ tiếp xúc với trục Ox thì bán kính mặt cầu (S) là $r = \sqrt{b^2 + c^2}$.

D. $x^2 + y^2 + z^2 + 2x - 2y - 2z + 10 = 0$ là phương trình mặt cầu.

Câu 541. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x + 2y - z - 3 = 0 và điểm I(1;2;-3). Mặt cầu (S) tâm I và tiếp xúc với mặt phẳng (P) có phương trình là

A. $(x-1)^2 + (y-2)^2 + (z+3)^2 = 4$.

B. $(x+1)^2 + (y-2)^2 + (z-3)^2 = 4$.

C. $(x-1)^2 + (y-2)^2 + (z+3)^2 = 16$.

D. $(x-1)^2 + (y-2)^2 + (z+3)^2 = 2$.

Câu 542. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm E(2;1;1), F(0;3;-1). Mặt cầu (S) đường kính EF có phương trình là

A. $(x-1)^2 + (y-2)^2 + z^2 = 3$.

B. $(x-1)^2 + (y-2)^2 + z^2 = 3$.

C. $(x-2)^2 + (y-1)^2 + (z+1)^2 = 3$. D. $(x-1)^2 + y^2 + z^2 = 3$.

Câu 543. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1; -2; 3) và B(5; 4; 7). Phương trình mặt cầu nhận AB làm đường kính là

A. $(x-5)^2 + (y-4)^2 + (z-7)^2 = 17$.

B. $(x-6)^2 + (y-2)^2 + (z-10)^2 = 17$.

C. $(x-1)^2 + (y+2)^2 + (z-3)^2 = 17$.

D. $(x-3)^2 + (y-1)^2 + (z-5)^2 = 17$.

với gian hê toa cầu (S): $x^2 + y^2 + z^2 - 4x + 2y + 6z - 2 = 0$. Tìm tọa độ tâm I và tính bán kính R của (S).

A. I(-2;1;3) và R=4.

B. I(-2;1;3) và $R = 2\sqrt{3}$.

C. I(2;-1;-3) và R=4.

- **D.** I(2;-1;-3) và $R=2\sqrt{3}$.
- Câu 545. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm M(3;-2;5), N(-1;6;-3). Phương trình nào sau đây là phương trình mặt cầu có đường kính MN?

A. $(x+1)^2 + (y+2)^2 + (z+1)^2 = 36$.

B. $(x-1)^2 + (y-2)^2 + (z-1)^2 = 6$.

C. $(x+1)^2 + (y+2)^2 + (z+1)^2 = 6$.

D. $(x-1)^2 + (y-2)^2 + (z-1)^2 = 36$.

- Câu 546. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-3;2;0), B(1;2;4). Viết phương trình mặt cầu (S) đường kính AB.
 - **A.** $(S):(x-1)^2+(y+2)^2+(z+2)^2=8$. **B.** $(S):(x+1)^2+(y-2)^2+(z-2)^2=8$.
 - C. $(S):(x+1)^2+(y-2)^2+(z-2)^2=16$. D. $(S):(x-1)^2+(y-2)^2+(z-2)^2=32$.
- Câu 547. [2H3-2] Trong không gian Oxyz cho hai điểm M(6;2;-5), N(-4;0;7). Viết phương trình mặt cầu đường kính MN.
 - **A.** $(x-1)^2 + (y-1)^2 + (z-1)^2 = 62$. **B.** $(x-5)^2 + (y-1)^2 + (z+6)^2 = 62$.
 - C. $(x+1)^2 + (y+1)^2 + (z+1)^2 = 62$.
- **D.** $(x+5)^2 + (y+1)^2 + (z-6)^2 = 62$.
- Câu 548. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz cho A(1; 2; 0); B(3; -2; 2). Viết phương trình mặt cầu (S) đường kính AB.
 - **A.** $(S): (x-1)^2 + (y+2)^2 + (z+1)^2 = 6$. **B.** $(S): (x-1)^2 + y^2 + (z-2)^2 = 6$.
 - C. $(S): (x+2)^2 + y^2 + (z-1)^2 = 6$.
- **D.** $(S):(x-2)^2+y^2+(z-1)^2=6$.
- Câu 549. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-2;1;1) và B(0;-1;1). Viết phương trình mặt cầu đường kính AB.
 - **A.** $(x+1)^2 + y^2 + (z-1)^2 = 8$.
- **B.** $(x+1)^2 + v^2 + (z-1)^2 = 2$.
- C. $(x-1)^2 + y^2 + (z+1)^2 = 2$.
- **D.** $(x-1)^2 + y^2 + (z+1)^2 = 8$.
- Câu 550. [2H3-2] Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(-1;2;1) và đi qua điểm A(0;4;-1) là
 - **A.** $(x+1)^2 + (y-2)^2 + (z-1)^2 = 9$. **B.** $(x+1)^2 + (y-2)^2 + (z+1)^2 = 3$.

 - C. $(x+1)^2 + (y-2)^2 + (z-1)^2 = 3$. D. $(x+1)^2 + (y-2)^2 + (z+1)^2 = 9$.
- Câu 551. [2H3-2] không gian với hệ toa cầu cho mặt (S): $x^2 + y^2 + z^2 - 2x + 4y - 4z - m = 0$ có bán kính R = 5. Tìm giá trị của m.
 - **A.** m = -16.
- **B.** m = 16.
- $C_{\bullet} m = 4$.
- **D.** m = -4.
- **Câu 552.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;8;0), B(4;6;2), C(0;12;4). Gọi (S) là mặt cầu đi qua A, B, C và có tâm thuộc mặt phẳng (Oyz). Giao điểm của (S) và trục Oy có tọa độ là
 - **A.** (0;8;0), (0;6;0)
- **B.** (0;6;0)
- **C.** (0;8;0)
- **D.** (0;8;0), (0;-6;0)
- Câu 553. [2H3-2] Trong không gian với hệ trục toạ độ Oxyz, cho các điểm A(1;0;0), B(0;1;0), C(0;0;1), D(1;1;1). Mặt cầu ngoại tiếp tứ diện ABCD có bán kính bằng bao nhiều?
 - $A_{\bullet}\sqrt{2}$
- **B.** $\frac{\sqrt{3}}{2}$.
- **C.** $\sqrt{3}$.
- **D.** $\frac{3}{4}$.
- Câu 554. [2H3-2] Gọi I là tâm mặt cầu đi qua 4 điểm M(1;0;0), N(0;1;0), P(0;0;1), Q(1;1;1). Tìm toa đô tâm I .

- **A.** $\left(\frac{1}{2}; -\frac{1}{2}; \frac{1}{2}\right)$. **B.** $\left(\frac{2}{3}; \frac{2}{3}; \frac{2}{3}\right)$. **C.** $\left(\frac{1}{2}; \frac{1}{2}; \frac{1}{2}\right)$. **D.** $\left(-\frac{1}{2}; -\frac{1}{2}; -\frac{1}{2}\right)$.

Câu 555.	[2H3-2] Trong không g	ian với hệ tọa độ Oxyz	, mặt cầu $ig(Sig)$ có tâm tl	huộc <i>Ox</i> và tiếp xúc với
	hai mặt phẳng $(P): x + x$	2y + 2z - 1 = 0, $(Q): x - 1$	2y - 2z + 3 = 0 có bán	kính R bằng
	A. $\frac{1}{3}$.	B. 2.	C. $\frac{2}{3}$.	D. 3.
Câu 556.	[2H3-2] Trong không	gian với hệ trục tọa c	độ Oxyz, cho điểm I	Y(1;-1;1) và mặt phẳng
	$(\alpha): 2x + y - 2z + 10 = 0$). Mặt cầu $ig(Sig)$ tâm I ti	iếp xúc $(lpha)$ có phương	trình là
	A. $(S):(x-1)^2+(y+1)$	$^{2} + (z-1)^{2} = 1$.	B. $(S):(x-1)^2+(y+1)^2$	$(1)^2 + (z-1)^2 = 9.$

C.
$$(S):(x+1)^2 + (y-1)^2 + (z+1)^2 = 3$$
. D. $(S):(x+1)^2 + (y-1)^2 + (z+1)^2 = 1$. Câu 557. [2H3-2] Trong không gian với hệ trục tọa độ $Oxyz$, cho điểm $I(2;-1;5)$ và mặt phẳng

$$(\alpha): x - y + z - 5 = 0$$
. Mặt cầu (S) tâm I tiếp xúc (α) có phương trình là
A. $(S): (x+2)^2 + (y-1)^2 + (z+5)^2 = 3$. **B.** $(S): (x-2)^2 + (y+1)^2 + (z-5)^2 = \sqrt{3}$.

C.
$$(S):(x-2)^2+(y+1)^2+(z-5)^2=3$$
.
D. $(S):(x-2)^2+(y+1)^2+(z-5)^2=1$.

- Câu 558. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;2;-1) và mặt phẳng (P): x+2y-z+5=0. Mặt phẳng (Q) đi qua đi điểm I, song song với (P). Mặt cầu (S)tâm I tiếp xúc với mặt phẳng (P). Xét các mệnh đề sau:
 - (1) Mặt phẳng cần tìm (Q) đi qua điểm M(1;3;0).
 - (2) Mặt phẳng cần tìm (Q) song song đường thẳng $\{y = -t \mid (t \in \mathbb{R}).$
 - (3) Bán kính mặt cầu (S) là $R = 3\sqrt{6}$.

Hỏi có bao nhiều mệnh đề sai?

Câu 559. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;2;-3) và mặt phẳng (P): x+2y-2z-2=0. Viết phương trình mặt cầu tâm M và tiếp xúc với mặt phẳng (P).

A.
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 9$$
. **B.** $(x+1)^2 + (y+2)^2 + (z-3)^2 = 9$.

C.
$$(x-1)^2 + (y-2)^2 + (z+3)^2 = 81$$
.
D. $(x+1)^2 + (y+2)^2 + (z-3)^2 = 25$.

Câu 560. [2H3-2] Trong không gian với hệ trục Oxyz, mặt cầu tâm I(2;1;-1) tiếp xúc với mặt phẳng (α) : x+2y-2z+9=0 có phương trình là

A.
$$(x+2)^2 + (y+1)^2 + (z-1)^2 = 25$$
. **B.** $(x+2)^2 + (y+1)^2 + (z-1)^2 = 5$.

C.
$$(x-2)^2 + (y-1)^2 + (z+1)^2 = 25$$
.
D. $(x-2)^2 + (y-1)^2 + (z+1)^2 = 5$.

Câu 561. [2H3-2] Viết phương trình mặt cầu có tâm I(-1;2;3) và tiếp xúc với mặt phẳng (P): 2x - y - 2z + 1 = 0

A.
$$(x+1)^2 + (y-2)^2 + (z-3)^2 = 3$$
. **B.** $(x+1)^2 + (y-2)^2 + (z-3)^2 = 4$.

C.
$$(x+1)^2 + (y-2)^2 + (z-3)^2 = 9$$
.
D. $(x+1)^2 + (y-2)^2 + (z-3)^2 = 2$.

- Câu 562. [2H3-2] Cho điểm I(1;2;-1) và mặt phẳng (P): x+2y-2z+2=0. Viết phương trình mặt cầu tâm I và tiếp xúc với (P).
 - **A.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$.
- **B.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 3$.
- C. $(x+1)^2 + (y+2)^2 + (z-1)^2 = 9$.
- **D.** $(x+1)^2 + (y+2)^2 + (z-1)^2 = 3$.
- Câu 563. [2H3-2] Viết phương trình mặt cầu tâm I(1; 2; 3) và tiếp xúc với (Oyz).
 - **A.** $(x-1)^2 + (y-2)^2 + (z-3)^2 = 4$.
- **B.** $(x-1)^2 + (y-2)^2 + (z-3)^2 = 1$. **D.** $(x-1)^2 + (y-2)^2 + (z-3)^2 = 25$
- C. $(x-1)^2 + (y-2)^2 + (z-3)^2 = 9$.
- **D.** $(x-1)^2 + (y-2)^2 + (z-3)^2 = 25$.
- Câu 564. [2H3-2] Mặt cầu (S) có tâm I(1;2;-1) và tiếp xúc với mặt phẳng (P): x-2y-2z-8=0 có phương trình là
 - **A.** $(x-1)^2 + (y-2)^2 + (z-1)^2 = 9$.
- **B.** $(x-1)^2 + (y-2)^2 + (z-1)^2 = 3$.
- C. $(x-1)^2 + (y-2)^2 + (z+1)^2 = 3$.
- **D.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$.
- Câu 565. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;6;7) và mặt phẳng (P): x+2y+2z-11=0. Tìm phương trình mặt cầu (S) tâm I và tiếp xúc với (P):
 - **A.** $x^2 + y^2 + z^2 6x 12y + 14z 58 = 0$.
- **B.** $x^2 + y^2 + z^2 + 3x + 6y + 7z + 58 = 0$.
 - C. $(x-3)^2 + (y-6)^2 + (z-7)^2 = 6$.
- **D.** $(x-3)^2 + (y-6)^2 + (z-7)^2 = 36$.
- Câu 566. [2H3-2] Trong không gian Oxyz, cho các điểm A(1;1;3), B(-1;3;2), C(-1;2;3). Tính bán kính r của mặt cầu tâm O và tiếp xúc với mặt phẳng (ABC).
 - **A.** r = 3.
- **B.** $r = \sqrt{3}$.
- **D.** r = 2.
- Câu 567. [2H3-2] Trong không gian với hệ tọa độ Oxyz cho điểm I(1;2;3) và mặt phẳng (P): 2x-2y-z-4=0. Mặt cầu tâm I tiếp xúc mặt phẳng (P) tại điểm H. Tìm tọa độ điểm H.
 - **A.** H(-1;4;4).
- **B.** H(-3;0;-2).
- C. H(3;0;2).
- **D.** H(1;-1;0).
- Câu 568. [2H3-2] Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới dây là phương trình mặt cầu có tâm I(1;2;-1) và tiếp xúc với mặt phẳng (P): x-2y-2z-8=0?
 - **A.** $(x+1)^2 + (y+2)^2 + (z-1)^2 = 3$.
- **B.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 3$.
- C. $(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$.
- **D.** $(x+1)^2 + (y+2)^2 + (z-1)^2 = 9$.
- Câu 569. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y-z-1=0. Viết phương trình mặt cầu (S) có tâm I(2;1;-1) và tiếp xúc với (P).
 - **A.** $(S): (x-2)^2 + (y-1)^2 + (z+1)^2 = \frac{1}{2}$.
- **B.** $(S):(x+2)^2+(y+1)^2+(z-1)^2=3$.
- C. $(S): (x+2)^2 + (y+1)^2 + (z-1)^2 = \frac{1}{3}$.
- **D.** $(S):(x-2)^2+(y-1)^2+(z+1)^2=3$.
- Câu 570. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+2y-2z+3=0 và điểm I(7;4;6). Gọi (S) là mặt cầu tâm I và tiếp xúc với mặt phẳng (P). Tọa độ tiếp điểm của (P) và (S) là

- **A.** $\left(\frac{8}{3}; \frac{22}{3}; \frac{19}{3}\right)$. **B.** $\left(\frac{8}{3}; \frac{19}{3}; \frac{22}{3}\right)$. **C.** $\left(\frac{22}{3}; \frac{19}{3}; \frac{8}{3}\right)$. **D.** $\left(\frac{19}{3}; \frac{8}{3}; \frac{22}{3}\right)$.

- Câu 571. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{1}$ và điểm I(1,-2,3). Phương trình mặt cầu có tâm I và tiếp xúc với d là
 - **A.** $(x-1)^2 + (y+2)^2 + (z-3)^2 = 5\sqrt{2}$. **B.** $(x-1)^2 + (y+2)^2 + (z-3)^2 = 50$.
 - C. $(x+1)^2 + (y-2)^2 + (z-3)^2 = 50$. D. $(x+1)^2 + (y-2)^2 + (z+3)^2 = 50$.
- Câu 572. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho I(0;2;3). Phương trình mặt cầu tâm Itiếp xúc với trục Oy là
 - **A.** $x^2 + (y+2)^2 + (z+3)^2 = 3$.
- **B.** $x^2 + (y-2)^2 + (z-3)^2 = 4$.
- C. $x^2 + (y-2)^2 + (z-3)^2 = 9$.
- **D.** $x^2 + (y+2)^2 + (z+3)^2 = 2$.
- **Câu 573.** [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho I(2;3;1), $\Delta: \frac{x+2}{1} = \frac{y-1}{2} = \frac{z+1}{2}$. Phương trình mặt cầu (S) tâm I và tiếp xúc với Δ là
 - **A.** $(x+2)^2 + (y+3)^2 + (z+1)^2 = \frac{200}{9}$.
 - **B.** $(x-2)^2 + (y-3)^2 + (z-1)^2 = 9$.

 - C. $(x+2)^2 + (y+3)^2 + (z+1)^2 = 9$. D. $(x-2)^2 + (y-3)^2 + (z-1)^2 = \frac{200}{9}$.
- Câu 574. [2H3-2] Trong không gian Oxyz, cho điểm I(1;0;-1) là tâm của mặt cầu (S) và đường thẳng $d: \frac{x-1}{2} = \frac{y+1}{2} = \frac{z}{1}$, đường thẳng d cắt mặt cầu (S) tại hai điểm A, B sao cho AB = 6. Mặt cầu (S) có bán kính R bằng
 - **A.** $2\sqrt{2}$.
- **B.** $\sqrt{10}$
- $C_{-}\sqrt{2}$
- **D.** 10.
- Câu 575. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho điểm I(2;4;1) và mặt phẳng (P): x + y + z - 4 = 0. Tìm phương trình mặt cầu (S) có tâm I sao cho (S) cắt mặt phẳng (P)theo một đường tròn có đường kính bằng 2.
 - **A.** $(x+2)^2 + (y+4)^2 + (z+1)^2 = 4$.
- **B.** $(x-2)^2 + (y-4)^2 + (z-1)^2 = 4$.
- C. $(x-2)^2 + (y-4)^2 + (z-1)^2 = 3$. D. $(x-1)^2 + (y+2)^2 + (z-4)^2 = 3$.
- không gian với hệ tọa độ Oxyz, cho mặt **Câu 576.** [2H3-2] Trong $(S): (x-2)^2 + (y+1)^2 + (z-4)^2 = 10$ và mặt phẳng $(P): -2x + y + \sqrt{5}z + 9 = 0$. Gọi (Q) là tiếp diện của (S) tại M(5; 0; 4). Tính góc giữa (P) và (Q).
 - **A.** 60°.
- **B.** 120°.
- C. 30°.
- **D.** 45°.
- với hê Câu 577. [2H3-2] Trong không gian tọa độ Oxyz, $(S):(x-3)^2+(y+2)^2+(z-1)^2=100$ và mặt phẳng $(\alpha):2x-2y-z+9=0$. Mặt phẳng (α) cắt mặt cầu (S) theo một đường tròn (C). Tính bán kính R của (C).
 - **A.** R = 6.
- **B.** R = 3.
- C, R = 8.
- Câu 578. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) và mặt cầu (S) có phương trình lần lượt là (P): $2x + 2y + z - m^2 + 4m - 5 = 0$, (S): $x^2 + y^2 + z^2 - 2x + 2y - 2z - 6 = 0$. Tất cả các giá trị của mdel (P) tiếp xúc với (S) là
 - **A.** m = -1 hoặc m = 5.

B. m = -1 hoặc m = -5.

C. m = -1.

D. m = 5.

- **Câu 579.** [2H3-2] Trong không gian với hệ toạ độ Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 2x + 4y 2z 3 = 0$. Hỏi trong các mặt phẳng sau, đâu là mặt phẳng không có điểm chung với mặt cầu (S)?
 - **A.** $(\alpha_1): x-2y+2z-1=0$.

B. $(\alpha_2): 2x - y + 2z + 4 = 0$.

C. $(\alpha_3): x-2y+2z-3=0$.

- **D.** $(\alpha_4): 2x + 2y z + 10 = 0$.
- **Câu 580.** [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 2x y + 3z + 4 = 0 và mặt cầu $(S): (x-4)^2 + (y-3)^2 + (z+3)^2 = 16$. Mệnh đề nào sau đây đúng?
 - **A.** (P) và (S) không có điểm chung.
 - **B.** (P) và (S) tiếp xúc nhau.
 - C. (P) cắt (S) theo giao tuyến là một đường tròn có tâm là tâm của mặt cầu.
 - \mathbf{D} . (P) cắt (S) theo giao tuyến là một đường tròn có tâm không là tâm của mặt cầu.
- **Câu 581.** [2H3-2] Cho mặt cầu (S): $x^2 + y^2 + z^2 2x 2z = 0$ và mặt phẳng (P): 4x + 3y + 1 = 0. Tìm mệnh đề đúng trong các mệnh đề sau:
 - **A.** (P) cắt (S) theo một đường tròn.
- **B.** (S) không có điểm chung với (P).

C. (S) tiếp xúc với (P).

- **D.** (P) đi qua tâm của (S).
- Câu 582. [2H3-2] Cho mặt cầu $(S):(x+1)^2+(y-2)^2+(z-3)^2=25$ và mặt phẳng $(\alpha):2x+y-2z+m=0$. Các giá trị của m để (α) và (S) không có điểm chung là
 - A. $m \le -9$ hoặc $m \ge 21$.

B. m < -9 hoặc m > 21.

C. $-9 \le m \le 21$.

- **D.** -9 < m < 21.
- **Câu 583.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $(S):(x-2)^2+(y+1)^2+(z-3)^2=9$. Mệnh đề nào đúng?
 - **A.** Mặt cầu (S) tiếp xúc với (Oxy).
 - **B.** Mặt cầu (S) không tiếp xúc với cả ba mặt (Oxy), (Oxz), (Oyz).
 - C. Mặt cầu (S) tiếp xúc với (Oyz).
 - **D.** Mặt cầu (S) tiếp xúc với (Oxz).
- **Câu 584.** [2H3-2] Trong không gian với hệ trục Oxyz, cho mặt phẳng $(P): 2x + 2y + z m^2 3m = 0$ và mặt cầu $(S): (x-1)^2 + (y+1)^2 + (z-1)^2 = 9$. Tìm tất cả các giá trị thực của tham số m để mặt phẳng (P) tiếp xúc với mặt cầu (S).
 - **A.** m = 2; m = -5.

B. m = -2; m = 5.

C. m = 4; m = -7.

- **D.** Không tồn tại giá trị của m.
- **Câu 585.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu $(S): x^2 + y^2 + z^2 2x 4y + 4z 16 = 0$ và đường thẳng $d: \frac{x-1}{1} = \frac{y+3}{2} = \frac{z}{2}$. Mặt phẳng nào trong các mặt phẳng sau chứa d và tiếp xúc với mặt cầu (S).
 - **A.** (P): 2x-2y+z-8=0.

- **B.** (P): -2x+11y-10z-105=0.
- C. (P): 2x-11y+10z-35=0.
- **D.** (P): -2x + 2y z + 11 = 0.

- Câu 586. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình $(x-1)^2 + (y-2)^2 + (z+1)^2 = 1$, phương trình mặt phẳng (Q) chứa trục hoành và tiếp xúc với mặt cầu (S) là
 - **A.** (Q): 4y+3z=0.

B. (Q): 4y-3z+1=0.

C. (Q): 4y+3z+1=0.

- **D.** (Q): 4y 3z = 0.
- Câu 587. [2H3-2] gian với hệ tọa độ Oxyz, cho câu (S): $x^2 + y^2 + z^2 - 2x + 4y + 2z - 3 = 0$. Viết phương trình mặt phẳng (P) chứa Ox và cắt mặt cầu theo một đường tròn có chu vi bằng 6π .
 - **A.** (P): 3y z = 0.
- **B.** (P): y-2z=0.
- C. (P): 2y-z=0. D. (P): y-2z+1=0.
- Câu 588. [2H3-2] Trong không gian với hệ tọa độ Oxyz, xác định tọa độ tâm I của đường tròn giao cầu $(S): (x-1)^2 + (y-1)^2 + (z-1)^2 = 64$ với măt $(\alpha): 2x + 2y + z + 10 = 0.$

- **A.** $\left(-\frac{7}{3}; -\frac{7}{3}; -\frac{2}{3}\right)$. **B.** $\left(-2; -2; -2\right)$. **C.** $\left(-\frac{2}{3}; -\frac{7}{3}; -\frac{7}{3}\right)$. **D.** $\left(-\frac{7}{3}; -\frac{2}{3}; -\frac{7}{3}\right)$.
- Câu 589. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;-4) và mặt phẳng (P): x+y-2z+1=0. Biết rằng mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính bằng 1. Viết phương trình mặt cầu (S).
 - **A.** $(S): (x-2)^2 + (y-1)^2 + (z+4)^2 = 25$. **B.** $(S): (x+2)^2 + (y+1)^2 + (z-4)^2 = 13$.

 - C. $(S): (x+2)^2 + (y+1)^2 + (z-4)^2 = 25$. D. $(S): (x-2)^2 + (y-1)^2 + (z+4)^2 = 13$.
- Câu 590. [2H3-2] Trong không gian Oxyz, mặt cầu tâm I(1;2;-1) và cắt mặt phẳng (P): x-2y-2z-8=0 theo một đường tròn có bán kính bằng 4 có phương trình là
 - **A.** $(x+1)^2 + (y+2)^2 + (z-1)^2 = 5$.
- **B.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$.
 - C. $(x-1)^2 + (y-2)^2 + (z+1)^2 = 25$.
- C. $(x+1)^2 + (y+2)^2 + (z-1)^2 = 3$.
- **Câu 591.** [2H3-2] Trong không gian với hệ tọa độ Oxyz, mặt cầu (S): $x^2 + y^2 + z^2 2x + 4y 4 = 0$ cắt mặt phẳng (P): x+y-z+4=0 theo giao tuyến là đường tròn (C). Tính diện tích S của hình giới hạn bởi (C).
 - **A.** $S = \frac{2\pi\sqrt{78}}{2}$. **B.** $S = 2\pi\sqrt{6}$. **C.** $S = 6\pi$.
- **D.** $S = \frac{26\pi}{2}$.
- **Câu 592.** [2H3-2] Mặt cầu (S) có tâm I(-1,2,-5) cắt (P): 2x-2y-z+10=0 theo thiết diện là hình tròn có diện tích 3π có phương trình (S) là
 - **A.** $x^2 + y^2 + z^2 + 2x 4y + 10z + 18 = 0$. **B.** $(x+1)^2 + (y-2)^2 + (z+5)^2 = 25$.
 - C. $x^2 + y^2 + z^2 + 2x 4y + 10z + 12 = 0$.
- **D.** $(x+1)^2 + (y-2)^2 + (z+5)^2 = 16$.
- Câu 593. [2H3-2] Trong không gian tọa độ Oxyz, cho đường thẳng $\Delta: \frac{x-1}{2} = \frac{y}{1} = \frac{z}{2}$; và A(2;1;0), B(-2;3;2). Phương trình mặt cầu đi qua A, B có tâm thuộc đường thẳng d là
 - **A.** $(x+1)^2 + (y+1)^2 + (z-2)^2 = 17$.
 - **B.** $(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$.
 - C. $(x-1)^2 + (y-1)^2 + (z-2)^2 = 5$.
- **D.** $(x+1)^2 + (y+1)^2 + (z+2)^2 = 16$.

Câu 594.	[2H3-2]	Trong	không	gian	với	hệ	tọa	độ	Ox	yz,	cho 1	mặt j	phẳng	(P):	2x - y	+2z-	-3=	0	và
	I(1;3;-1). Gọi	(S) là	mặt	cầu	tâm	I	và	cắt 1	mặt	phẳn	g(P)) theo	một	đường	tròn	có (chu	vi
	bằng 2π	. Viết 1	ohương	trình	mặt	cầu	ı (S).											

A.
$$(S): (x-1)^2 + (y-3)^2 + (z+1)^2 = \sqrt{5}$$
.

B.
$$(S): (x+1)^2 + (y+3)^2 + (z-1)^2 = 5$$
.

C.
$$(S): (x-1)^2 + (y-3)^2 + (z+1)^2 = 3$$
.
D. $(S): (x-1)^2 + (y-3)^2 + (z+1)^2 = 5$.

D.
$$(S): (x-1)^2 + (y-3)^2 + (z+1)^2 = 5$$

Câu 595. [2H3-2] Trong không gian với hệ trục tọa độ Oxyz, mặt cầu đi qua ba điểm A(2;0;1), B(1;0;0), C(1;1;1) và có tâm thuộc mặt phẳng (P): x+y+z-2=0 có phương trình là

A.
$$(x-1)^2 + y^2 + (z-1)^2 = 1$$
.

B.
$$(x-1)^2 + y^2 + (z-1)^2 = 4$$
.

C.
$$(x-3)^2 + (y-1)^2 + (z+2)^2 = 1$$
.

D.
$$(x-3)^2 + (y-1)^2 + (z+2)^2 = 4$$
.

Câu 596. [2H3-2] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(3;1;1), B(0;1;4), C(-1;-3;1)và mặt phẳng (P): x+y-2z+4=0. Mặt cầu (S) đi qua ba điểm A, B, C và có tâm thuộc mặt phẳng (P) là

A.
$$(x+1)^2 + (y-1)^2 + (z+2)^2 = 3$$
.

B.
$$(x-1)^2 + (y+1)^2 + (z-2)^2 = 9$$
.

C.
$$(x+1)^2 + (y-1)^2 + (z+2)^2 = 9$$
.

D.
$$(x-1)^2 + (y+1)^2 + (z+2)^2 = 3$$
.

Câu 597. [2H3-2] Trong không gian với hệ trục toạ độ Oxyz, cho các mặt phẳng (P): x-y+2z+1=0và (Q): 2x + y + z - 1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q)theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ đúng một mặt cầu (S) thoả yêu cầu.

A.
$$r = \sqrt{3}$$
.

B.
$$r = \frac{3}{\sqrt{2}}$$
. **C.** $r = \sqrt{2}$.

C.
$$r = \sqrt{2}$$
.

D.
$$r = \sqrt{\frac{7}{2}}$$
.

Câu 598. [2H3-2] Mặt phẳng (P): 2x + 2y - z - 4 = 0 và mặt cầu $(S): x^2 + y^2 + z^2 - 2x + 4y - 6z - 11 = 0$. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn. Tính bán kính đường tròn này.

A. 4.

B. 3.

C. 5.

D. $\sqrt{34}$.

Câu 599. [2H3-2] Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị của tham số m để phương trình $x^2 + y^2 + z^2 - 4x + 2my + 6z + 13 = 0$ là phương trình của mặt cầu.

A. m > 0.

B. $m \neq 0$.

C. $m \in \mathbb{R}$.

D. m < 0.

Câu 600. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y-z-4=0 và mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0$. Mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có tâm là H. Xác định tọa độ tâm của đường tròn đó.

A. H(0;2;-8).

B. H(5;-2;1).

C. *H* (1;1;4).

D. H(3;0;2).

không với hê cầu Câu 601. [2H3-3] Trong gian toa đô Oxyz, cho (S): $x^2 + y^2 + z^2 + 2x - 4y + 6z + 5 = 0$. Tiếp diện của (S) tại điểm M(-1;2;0) có phương trình là

A. y = 0.

B. x = 0.

C. 2x + y = 0.

D. z = 0.

- Câu 602. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;-1;0), B(1;1;-1) và mặt cầu (S): $x^2 + y^2 + z^2 - 2x + 4y - 2z - 3 = 0$. Mặt phẳng (P) đi qua A, B và cắt mặt cầu (S)theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là **A.** x-2y+3z-2=0. **B.** x-2y-3z-2=0. **C.** x+2y-3z-6=0. **D.** 2x-y-1=0.
- độ Oxyz, Câu 603. [2H3-3] Trong không gian với hệ tọa câu $(S): x^2 + y^2 + z^2 - 2x - 4y - 6z - 11 = 0$ và cho mặt phẳng (P): 2x + 2y - z - 18 = 0. Tìm phương trình mặt phẳng (Q) song song với mặt phẳng (P) đồng thời (Q) tiếp xúc với mặt cầu (S).
 - **A.** (Q): 2x + 2y z + 22 = 0.

B. (Q): 2x + 2y - z - 28 = 0.

C. (Q): 2x + 2y - z - 18 = 0.

- **D.** (Q): 2x + 2y z + 12 = 0.
- Câu 604. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;3;-1), B(-2;1;1), C(4;1;7). Tính bán kính R của mặt cầu đi qua bốn điểm O, A, B, C.
 - **A.** $R = \frac{\sqrt{83}}{2}$.
- **B.** $R = \frac{\sqrt{77}}{2}$. **C.** $R = \frac{\sqrt{115}}{2}$. **D.** $R = \frac{9}{2}$.
- Câu 605. [2H3-3] Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x-2y+2z+9=0. Mặt cầu (S) tâm O tiếp xúc với mặt phẳng (P) tại H(a;b;c). Tổng a+b+c bằng **A.** 2.
- Câu 606. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho điểm A(2;1;3) và đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z}{1}$. Mặt phẳng chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
 - **A.** $x^2 + y^2 + z^2 = \frac{12}{5}$. **B.** $x^2 + y^2 + z^2 = 3$. **C.** $x^2 + y^2 + z^2 = 6$. **D.** $x^2 + y^2 + z^2 = \frac{24}{5}$.

- Câu 607. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) và mặt phẳng (P) lần lượt có phương trình $x^2 + y^2 + z^2 - 2x + 2y - 2z - 6 = 0$, 2x + 2y + z + 2m = 0. Có bao nhiều giá trị nguyên của m để (P) tiếp xúc với (S)?
 - **A.** 0.

B. 2.

C. 1.

- **D.** 4.
- Câu 608. [2H3-3] Trong không gian với hệ tọa độ Oxyz. Hãy viết phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng $d: \frac{x-1}{1} = \frac{y}{2} = \frac{z-2}{1}$.
 - **A.** $(x-2)^2 + y^2 + (z-1)^2 = 2$.
- **B.** $(x-2)^2 + y^2 + (z-1)^2 = 9$.
- C. $(x-2)^2 + y^2 + (z-1)^2 = 4$.

- **D.** $(x-1)^2 + (y-2)^2 + (z-1)^2 = 24$.
- Câu 609. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{-1} = \frac{y}{2} = \frac{z+3}{-1}$ và mặt cầu (S) tâm I có phương trình $(S):(x-1)^2+(y-2)^2+(z+1)^2=18$. Đường thẳng d cắt (S)tại hai điểm A, B. Tính diện tích tam giác IAB.
 - **A.** $\frac{8\sqrt{11}}{2}$.
- **B.** $\frac{16\sqrt{11}}{2}$. **C.** $\frac{\sqrt{11}}{6}$.
- **D.** $\frac{8\sqrt{11}}{9}$.

A.
$$(x+1)^2 + (y+1)^2 + z^2 = 20$$
.

B.
$$(x+1)^2 + (y+1)^2 + z^2 = 12$$
.

C.
$$(x-1)^2 + (y-1)^2 + z^2 = 12$$
.

D.
$$(x-1)^2 + (y-1)^2 + z^2 = 20$$
.

Câu 611. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho (P): 2x - y + 2z - 14 = 0 và mặt cầu $\left(S\right):x^2+y^2+z^2-2x+4y+2z-3=0$. Tìm tọa độ điểm $M\in\left(S\right)$ sao cho khoảng cách từ Mđến mặt phẳng (P) là lớn nhất.

A.
$$M(0;0;2)$$
.

B.
$$M(-1;-1;-3)$$
. **C.** $M(3;-3;1)$.

C.
$$M(3;-3;1)$$
.

D.
$$M(1;0;2)$$
.

Câu 612. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y-z+2=0 và mặt cầu $(S):(x-2)^2+(y+1)^2+(z-1)^2=9$. Mệnh đề nào dưới đây đúng?

A.
$$(P)$$
 không cắt (S) .

B.
$$(P)$$
 tiếp xúc với (S) .

C.
$$(P)$$
 cắt (S) theo giao tuyến là một đường tròn có bán kính bằng 3 .

D.
$$(P)$$
 cắt (S) theo giao tuyến là một đường tròn có bán kính bé hơn 3 .

Câu 613. [2H3-3] Trong không gian tọa độ Oxyz cho mặt cầu $(S): x^2 + y^2 + z^2 - 2x - 4y - 6z - 2 = 0$ và mặt phẳng (P) có phương trình 2x+2y-z-15=0. Gọi m là số tiếp diện của (S) và song song với (P). Tính giá tri của m.

A.
$$m = 0$$
.

B.
$$m = 1$$
.

C.
$$m = 2$$
.

D.
$$m = 3$$
.

Câu 614. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) có phương trình $(x-2)^2 + (y-1)^2 + (z-1)^2 = 1$ và mặt phẳng (P): 2x + y - 2z + m = 0. Tìm giá trị không âm của tham số m để mặt cầu (S) và mặt phẳng (P) tiếp xúc với nhau.

A.
$$m = 1$$
.

B.
$$m = 0$$
.

C.
$$m = 2$$
.

D.
$$m = 5$$
.

măt Câu 615. [2H3-3] Trong không gian với hê đô Oxvz.cầu toa $(S): (x+1)^2 + (y-2)^2 + (z-3)^2 = 25$ và mặt phẳng $(\alpha): 2x + y - 2z + m = 0$. Tìm các giá trị của m để (α) và (S) không có điểm chung.

A.
$$m < -9$$
 hoặc $m > 21$.

B.
$$-9 < m < 21$$
.

C.
$$-9 \le m \le 21$$
.

D.
$$m \le -9$$
 hoặc $m \ge 21$.

Câu 616. [2H3-3] Trong không gian với hệ tọa độ Oxyz cho mặt phẳng (P): x-2y+2z+9=0. Mặt cầu (S) tâm O tiếp xúc với mặt phẳng (P) tại H(a;b;c), tổng a+b+c bằng **B.** 1. C. 2. **A.** -1.

Câu 617. [2H3-3] Trong không gian Oxyz, gọi (C) là đường tròn giao tuyến của mặt phẳng (P): 3x + 2y + 3z = 0 và mặt cầu (S): $x^2 + y^2 + z^2 - 2x - 2y - 4z = 0$. Phương trình của mặt cầu chứa đường tròn (C) và đi qua điểm A(1;2;-1) là

A.
$$x^2 + y^2 + z^2 + 5x - 4y - 7z = 0$$
.

B.
$$x^2 + y^2 + z^2 + 4x + 2y + 2z = 0$$
.

C.
$$x^2 + y^2 + z^2 - 5x - 4y - 7z = 0$$
.

D.
$$x^2 + y^2 + z^2 - 7x - z = 0$$
.

- Câu 618. [2H3-3] Trong không gian hệ tọa độ mặt phẳng Oxyz, cho mặt phẳng $(\alpha): 2x + y + 2z + m = 0$ và mặt cầu (S): $x^2 + y^2 + z^2 - 2x + 4y - 6z - 2 = 0$. Giá trị m để (α) cắt mặt cầu (S) theo giao tuyến là đường tròn có diên tích bằng 7π là **C.** m = 6, m = -18. **D.** m = 0. **B.** m = -3, m = 15. **A.** m = 3, m = -15.
- Câu 619. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I thuộc đường thẳng $\Delta: \frac{x}{1} = \frac{y+3}{1} = \frac{z}{2}$. Biết rằng mặt cầu (S) có bán kính bằng $2\sqrt{2}$ và cắt mặt phẳng (Oxz) theo một đường tròn có bán kính bằng 2. Tìm tọa độ của điểm I.
 - **A.** I(5;2;10), I(0;-3;0).

B. I(1;-2;2), I(0;-3;0).

C. I(1;-2;2), I(5;2;10).

- **D.** I(1;-2;2), I(-1;2;-2).
- Câu 620. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng $(P): \sqrt{3}x y + 6 = 0$ cắt mặt cầu (S) tâm O theo giao tuyến là một đường tròn có bán kính r=4. Phương trình mặt cầu (S) là
- **A.** $x^2 + y^2 + z^2 = 25$. **B.** $x^2 + y^2 + z^2 = 5$. **C.** $x^2 + y^2 + z^2 = 1$. **D.** $x^2 + y^2 + z^2 = 7$.
- **Câu 621.** [2H3-3] Trong không gian với hệ tọa độ Oxyz, mặt phẳng $(\alpha): 2x y + 2z 3 = 0$ cắt mặt cầu (S) tâm I(1;-3;2) theo giao tuyến là đường tròn có chu vi bằng 4π . Bán kính của mặt cầu (S) là
 - **A.** 2.

- **B.** $2\sqrt{2}$.
- **C.** 3.
- **D.** $\sqrt{20}$.
- Câu 622. [2H3-3] Trong hệ tọa độ Oxyz, mặt cầu (S) đi qua A(-1;2;0), B(-2;1;1) và có tâm nằm trên trục Oz, có phương trình là
 - **A.** $x^2 + y^2 + z^2 z 5 = 0$.
- **B.** $x^2 + y^2 + z^2 + 5 = 0$.
- C. $x^2 + y^2 + z^2 x 5 = 0$.

- **D.** $x^2 + y^2 + z^2 y 5 = 0$.
- Câu 623. [2H3-3] Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S) đi qua điểm A(2;-2;5)và tiếp xúc với các mặt phẳng (α) : x = 1, (β) : y = -1, (γ) : z = 1. Bán kính mặt cầu (S) bằng
 - **A.** 3.

B. 1.

- $C_{1} = 3\sqrt{2}$
- **Câu 624.** [2H3-3] Trong không gian Oxyz, cho điểm $M\left(\frac{1}{2}; \frac{\sqrt{3}}{2}; 0\right)$ và mặt cầu $(S): x^2 + y^2 + z^2 = 8$.

Đường thẳng d thay đổi, đi qua điểm M, cắt mặt cầu (S) tại hai điểm phân biệt. Tính diện tích lớn nhất S của tam giác OAB.

- **A.** $S = \sqrt{7}$.

- **B.** S = 4. **C.** $S = 2\sqrt{7}$. **D.** $S = 2\sqrt{2}$.
- Câu 625. [2H3-3] Trong không gian với hệ tọa độ Oxyz, cho $(S):(x-2)^2+(y-1)^2+(z-1)^2=9$ và $M(x_0;y_0;z_0)\in(S)$ sao cho $A=x_0+2y_0+2z_0$ đạt giá trị nhỏ nhất. Khi đó $x_0 + y_0 + z_0$ bằng

- C_{1} -2.
- **D.** 1.
- Câu 626. [2H3-3] Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt cầu có tâm thuộc mặt phẳng (Oxy) và đi qua 3 điểm M(1;2;-4), N(1;-3;1), P(2;2;3)?
- **A.** $x^2 + y^2 + z^2 + 4x 2y 21 = 0$. **B.** $(x+2)^2 + (y+1)^2 + z^2 = 16$. **C.** $x^2 + y^2 + z^2 + 4x 2y + 6z 21 = 0$. **D.** $x^2 + y^2 + z^2 4x + 2y 21 = 0$.

Câu 633. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;2;1), B(3;2;3) và mặt phẳng (P): x-y-3=0. Trong các mặt cầu đi qua hai điểm A, B và có tâm thuộc mặt phẳng (P), (S) là mặt cầu có bán kính nhỏ nhất. Tính bán kính R của mặt cầu (S).

A. $R = 2\sqrt{2}$.

B. $R = 2\sqrt{3}$.

C. $R = \sqrt{2}$.

D. R = 1.

Câu 634. [2H3-4] Trong không gian với hệ tọa độ Oxyz, xét mặt cầu (S) đi qua hai điểm A(1;2;1), B(3;2;3), có tâm thuộc mặt phẳng (P): x-y-3=0, đồng thời có bán kính nhỏ nhất, hãy tính bán kính R của mặt cầu (S).

A. 1.

B. $\sqrt{2}$.

C. 2.

D. $2\sqrt{2}$.

Câu 635.	[2H3-4] Cho mặt cầu ($(S): x^2 + y^2 + z^2 - 2x + 3$	4z + 1 = 0 và đường thẳng	$\begin{cases} x = -1 + 2t \\ y = 0 \\ z = m + 2t \end{cases} (t \in \mathbb{R}).$
	Biết có hai giá trị thực	của tham số m để d	cắt $ig(Sig)$ tại hai điểm phâ	n biệt A , B và các mặt
	phẳng tiếp diện của (S)) tại A và tại B luôn v	ruông góc với nhau. Tích	của hai giá trị đó bằng
	A. 16.	B. 12.	C. 14.	D. 10.
Câu 636.	[2H3-4] Trong không gi	an với hệ tọa độ Oxyz,	cho điểm $A(0;0;4)$, điển	n M nằm trên mặt phẳng
			góc của O lên AM và E	

Biệt đường thăng DE luôn tiếp xúc với một mặt câu cô định. Tính bán kính mặt câu đó.

A. R = 2.

B. R = 1.

C. R = 4.

D. $R = \sqrt{2}$.

Câu 637. [2H3-4] Cho mặt cầu $(S):(x-2)^2+(y+1)^2+(z+2)^2=4$ và điểm M(2;-1;-3). Ba mặt phẳng thay đổi đi qua M và đôi một vuông góc với nhau, cắt mặt cầu (S) theo giao tuyến là ba đường tròn. Tổng bình phương của ba bán kính ba đường tròn tương ứng là **A.** 4. **C.** 10.

Câu 638. [2H3-4] Cho ba tia Ox, Oy, Oz đôi một vuông góc với nhau. Gọi C là điểm cố định trên Oz, đặt OC = 1, các điểm A, B thay đổi trên Ox, Oy sao cho OA + OB = OC. Tìm giá trị bé nhất của bán kính mặt cầu ngoại tiếp tứ diện OABC.

A. $\frac{\sqrt{6}}{2}$.

B. $\sqrt{6}$.

C. $\frac{\sqrt{6}}{4}$. D. $\frac{\sqrt{6}}{2}$.

Câu 639. [2H3-4] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0; 1; 1), B(3; 0; -1), C(0; 21;-19) và mặt cầu $(S):(x-1)^2+(y-1)^2+(z-1)^2=1$. M(a; b; c) là điểm thuộc mặt cầu (S) sao cho biểu thức $T = 3MA^2 + 2MB^2 + MC^2$ đạt giá trị nhỏ nhất. Tính tổng a + b + c.

A. $a+b+c=\frac{14}{5}$. **B.** a+b+c=0. **C.** $a+b+c=\frac{12}{5}$. **D.** a+b+c=12.

Câu 640. [2H3-4] Trong không gian cho 3 tia Ox, Oy, Oz vuông góc với nhau đôi một. Điểm A cổ định thuộc tia O_z và $OA = \sqrt{2}$. Các điểm M và N lần lượt lưu động trên các tia O_x và O_y sao cho OM + ON = 2(M, N) không trùng O). Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện OAMN.

 $A. \sqrt{2}$.

B. 1.

C. 2.

D. $\frac{\sqrt{3}}{2}$.

Vấn đề 6. Trích đề Bộ giáo dục

Câu 641. [2H3-1-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 3x-z+2=0. Vecto nào dưới đây là một vecto pháp tuyến của (P)?

A. $\overrightarrow{n_4} = (-1;0;-1)$. **B.** $\overrightarrow{n_1} = (3;-1;2)$. **C.** $\overrightarrow{n_3} = (3;-1;0)$. **D.** $\overrightarrow{n_2} = (3;0;-1)$.

Câu 642. [2H3-1-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình $(x+1)^2 + (y-2)^2 + (z-1)^2 = 9$. Tìm tọa độ tâm I và tính bán kính R của (S)

A. I(-1;2;1) và R=3.

B. I(1;-2;-1) và R=3.

C. I(-1;2;1) và R=9.

D. I(1;-2;-1) và R=9.

Câu 643. [2H3-1-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) có phương trình 3x+4y+2z+4=0 và điểm A(1,-2,3). Tính khoảng cách d từ A đến (P)

A. $d = \frac{5}{9}$. **B.** $d = \frac{5}{29}$. **C.** $d = \frac{5}{\sqrt{29}}$. **D.** $d = \frac{\sqrt{5}}{3}$.

Câu 644. [2H3-2-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ có phương trình: $\frac{x-10}{5} = \frac{y-2}{1} = \frac{z+2}{1}$. Xét mặt phẳng (P): 10x + 2y + mz + 11 = 0, m là tham số thực. Tìm tất cả các giá trị của m để mặt phẳng (P) vuông góc với đường thẳng Δ

A. m = -2.

B. m = 2.

D. m = 52.

Câu 645. [2H3-2-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0;1;1) và B(1;2;3). Viết phương trình của mặt phẳng (P) đi qua A và vuông góc với đường thẳng AB

A. x + y + 2z - 3 = 0.

B. x + y + 2z - 6 = 0.

C. x+3y+4z-7=0.

D. x+3y+4z-26=0.

Câu 646. [2H3-2-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(2;1;1) và mặt phẳng (P): 2x + y + 2z + 2 = 0. Biết mặt phẳng (P) cắt mặt cầu (S) theo giao tuyến là một đường tròn có bán kính bằng 1. Viết phương trình của mặt cầu (S)

A. $(S): (x+2)^2 + (y+1)^2 + (z+1)^2 = 8$. **B.** $(S): (x+2)^2 + (y+1)^2 + (z+1)^2 = 10$.

C. $(S):(x-2)^2+(y-1)^2+(z-1)^2=8$. D. $(S):(x-2)^2+(y-1)^2+(z-1)^2=10$.

Câu 647. [2H3-3-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;0;2) và đường thẳng d có phương trình $\frac{x-1}{1} = \frac{y}{1} = \frac{z+1}{2}$. Viết phương trình đường thẳng Δ đi qua A, vuông góc và cắt d.

A. $\Delta : \frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$.

B. $\Delta : \frac{x-1}{1} = \frac{y}{1} = \frac{z-2}{1}$.

C. $\Delta : \frac{x-1}{2} = \frac{y}{2} = \frac{z-2}{1}$.

D. $\Delta : \frac{x-1}{1} = \frac{y}{2} = \frac{z-2}{1}$.

Câu 648. [2H3-4-MH1-17] Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A(1;-2;0), B(0;-1;1), C(2;1;-1) và D(3;1;4). Hỏi có tất cả bao nhiều mặt phẳng cách đều bốn điểm đó?

A. 1 mặt phẳng.

B. 4 mặt phẳng.

C. 7 mặt phẳng.

D. Có vô số mặt phẳng.

Câu 649. [2H3-1-MH2-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;3) và B(-1;2;5). Tìm tọa độ trung điểm I của đoạn thẳng AB.

A. I(-2;2;1).

B. I(1;0;4).

C. I(2;0;8). D. I(2;-2;-1).

Câu 650. [2H3-1-MH2-17] Trong không gian với hệ tọa độ Oxyz, cho đường $d: \begin{cases} y = 2 + 3t ; (t \in R). \text{ V\'ecto nào du\'oi đây là v\'ecto chỉ phương của } d? \end{cases}$

A. $\vec{u}_1 = (0;3;-1)$. **B.** $\vec{u}_2 = (1;3;-1)$. **C.** $\vec{u}_3 = (1;-3;-1)$. **D.** $\vec{u}_4 = (1;2;5)$.

Câu 651. [2H3-2-MH2-17] Trong không gian với hệ tọa độ Oxyz, cho 3 điểm A(1;0;0); B(0;-2;0); C(0;0;3). Phương trình nào dưới dây là phương trình mặt phẳng (ABC)?

A. $\frac{x}{2} + \frac{y}{2} + \frac{z}{1} = 1$. **B.** $\frac{x}{2} + \frac{y}{1} + \frac{z}{2} = 1$. **C.** $\frac{x}{1} + \frac{y}{2} + \frac{z}{2} = 1$. **D.** $\frac{x}{2} + \frac{y}{1} + \frac{z}{2} = 1$.

Câu 652. [2H3-2-MH2-17] Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới dây là phương trình mặt cầu có tâm I(1;2;-1) và tiếp xúc với mặt phẳng (P): x-2y-2z-8=0?

A. $(x+1)^2 + (y+2)^2 + (z-1)^2 = 3$. **B.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 3$. **C.** $(x-1)^2 + (y-2)^2 + (z+1)^2 = 9$. **D.** $(x+1)^2 + (y+2)^2 + (z-1)^2 = 9$.

Câu 653. [2H3-2-MH2-17] Trong không gian với hệ tọa độ Oxyz, cho đường $d: \frac{x+1}{1} = \frac{y}{2} = \frac{z-5}{-1}$ và mặt phẳng (P): 3x-3y+2z+6=0. Mệnh đề nào dưới đây đúng?

A. d cắt và không vuông góc với (P).

B. d vuông góc với (P).

C. d song song với (P).

D. d nằm trong (P).

Câu 654. [2H3-2-MH2-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-2;3;1) và B(5; 6; 2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tính tỉ số $\frac{AM}{BM}$.

A. $\frac{AM}{RM} = \frac{1}{2}$. **B.** $\frac{AM}{RM} = 2$. **C.** $\frac{AM}{RM} = \frac{1}{3}$. **D.** $\frac{AM}{RM} = 3$.

Câu 655. [2H3-3-MH2-17] Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng (P)song song và cách đều hai đường thẳng $d_1: \frac{x-2}{-1} = \frac{y}{1} = \frac{z}{1}$ và $d_2: \frac{x}{2} = \frac{y-1}{-1} = \frac{z-2}{-1}$.

A. (P): 2x-2z+1=0.

B. (P): 2y-2z+1=0

C. (P): 2x-2y+1=0.

D. (P): 2y-2z-1=0.

Câu 656. [2H3-4-MH2-17] Trong không gian với hệ tọa độ Oxyz, xét các điểm A(0;0;1), B(m;0;0), C(0;n;0), D(1;1;1) với m>0;n>0 và m+n=1. Biết rằng khi m, n thay đổi, tồn tại một mặt cầu cố định tiếp xúc với mặt phẳng (ABC) và đi qua d. Tính bán kính R của mặt cầu đó?

A. R = 1.

B. $R = \frac{\sqrt{2}}{2}$. **C.** $R = \frac{3}{2}$.

D. $R = \frac{\sqrt{3}}{2}$.

Câu 657. [2H3-1-MH3-17] Trong không gian với hệ trục tọa độ Oxyz, tìm tọa độ tâm I và bán kính Rcủa mặt cầu $(x-1)^2 + (y+2)^2 + (z-4)^2 = 20$.

A.
$$I(-1;2;-4), R = 5\sqrt{2}$$
.

B.
$$I(-1;2;-4), R = 2\sqrt{5}$$
.

C.
$$I(1;-2;4), R = 20.$$

D.
$$I(1;-2;4), R = 2\sqrt{5}$$
.

Câu 658. [2H3-1-MH3-17] Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng d: |y| = 3t?

A.
$$\frac{x+1}{2} = \frac{y}{2} = \frac{z-2}{1}$$

B.
$$\frac{x-1}{1} = \frac{y}{3} = \frac{z+2}{-2}$$
.

A.
$$\frac{x+1}{2} = \frac{y}{3} = \frac{z-2}{1}$$
. **B.** $\frac{x-1}{1} = \frac{y}{3} = \frac{z+2}{-2}$. **C.** $\frac{x+1}{1} = \frac{y}{3} = \frac{z-2}{-2}$. **D.** $\frac{x-1}{2} = \frac{y}{3} = \frac{z+2}{1}$.

D.
$$\frac{x-1}{2} = \frac{y}{3} = \frac{z+2}{1}$$

Câu 659. [2H3-2-MH3-17] Trong không gian với hệ tọa độ Oxyz, cho các điểm A(3;-4;0), B(-1;1;3), C(3,1,0). Tìm tọa độ điểm M(x;y) trên trục hoành sao cho AD = BC.

A.
$$D(-2;0;0)$$
, $D(-4;0;0)$.

B.
$$D(0;0;0)$$
, $D(-6;0;0)$.

C.
$$D(6;0;0)$$
, $D(12;0;0)$.

D.
$$D(0;0;0)$$
, $D(6;0;0)$.

Câu 660. [2H3-2-MH3-17] Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm I(3;2;-1)và đi qua điểm A(2;1;2). Mặt phẳng nào dưới đây tiếp xúc với (S) tại A?

A.
$$x + y - 3z - 8 = 0$$
.

B.
$$x - y - 3z + 3 = 0$$
.

C.
$$x + y + 3z - 9 = 0$$
.

A.
$$x + y - 3z - 8 = 0$$
. **B.** $x - y - 3z + 3 = 0$. **C.** $x + y + 3z - 9 = 0$. **D.** $x + y - 3z + 3 = 0$.

Câu 661. [2H3-2-MH3-17] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): 2x-2y-z+1=0 và đường thẳng $\Delta: \frac{x-1}{2} = \frac{y+2}{1} = \frac{z-1}{2}$. Tính khoảng cách d giữa Δ và(P).

A.
$$d = \frac{1}{3}$$
.

B.
$$d = \frac{5}{3}$$
. **C.** $d = \frac{2}{3}$. **D.** $d = 2$.

C.
$$d = \frac{2}{3}$$
.

D.
$$d = 2$$

Câu 662. [2H3-3-MH3-17] Trong không gian với hệ tọa độ Oxyz, cho đường thẳng $d: \frac{x-1}{2} = \frac{y+5}{-1} = \frac{z-3}{4}$. Phương trình nào dưới đây là phương hình hình chiếu vuông góc của d trên mặt phẳng x+3=0? A. $\begin{cases} x=-3 \\ y=-5-t \\ z=-3+4t \end{cases}$ B. $\begin{cases} x=-3 \\ y=-5+t \\ z=3+4t \end{cases}$ C. $\begin{cases} x=-3 \\ y=-5+2t \\ z=3-t \end{cases}$ D. $\begin{cases} x=-3 \\ y=-6-t \\ z=7+4t \end{cases}$

A.
$$\begin{cases} x = -3 \\ y = -5 - t \\ z = -3 + 4t \end{cases}$$

B.
$$\begin{cases} x = -3 \\ y = -5 + t \\ z = 3 + 4t \end{cases}$$

C.
$$\begin{cases} x = -3 \\ y = -5 + 2t \\ z = 3 - t \end{cases}$$

D.
$$\begin{cases} x = -3 \\ y = -6 - t \\ z = 7 + 4t \end{cases}$$

- Câu 663. [2H3-2-MH3-17] Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P): 6x-2y+z-35=0 và điểm A(-1;3;6). Gọi A' là điểm đối xứng với A qua (P). Tính

- **A.** $OA' = 3\sqrt{26}$. **B.** $OA' = 5\sqrt{3}$. **C.** $OA' = \sqrt{46}$. **D.** $OA' = \sqrt{186}$.
- Câu 664. [2H3-4-MH3-17] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+2z-3=0 và mặt cầu $(S): x^2+y^2+z^2+2x-4y-2z+5=0$. Giả sử điểm $M \in (P)$ và $N \in (S)$ sao cho \overline{MN} cùng phương với $\vec{u} = (1,0,1)$ và khoảng cách giữa M và N là lớn nhất. Tính MN.
 - **A.** MN = 3.
- **B.** $MN = 1 + 2\sqrt{2}$. **C.** $MN = 3\sqrt{2}$.
- **D.** MN = 14.

Câu 665. [2H3-1-101-17] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x-2y+z-5=0. Điểm nào dưới đây thuộc (P)?

A. Q(2;-1;5).

B. P(0;0;-5). **C.** N(-5;0;0). **D.** M(1;1;6).

Câu 666. [2H3-1-101-17] Trong không gian với hệ tọa độ Oxyz, vectơ nào sau đây là một vectơ pháp tuyến của mặt phẳng (Oxy)?

A. $\vec{i} = (1,0,0)$.

B. $\vec{k} = (0;0;1)$. **C.** $\vec{j} = (-5;0;0)$. **D.** $\vec{m} = (1;1;1)$.

Câu 667. [2H3-2-101-17] Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(3;-1;1) và vuông góc với đường thẳng

 $\Delta: \frac{x-1}{2} = \frac{y+2}{2} = \frac{z-3}{1}$?

A. 3x - 2y + z + 12 = 0.

B. 3x + 2y + z - 8 = 0.

C. 3x-2y+z-12=0.

D. x-2y+3z+3=0.

Câu 668. [2H3-2-101-17] Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình của đường thẳng đi qua điểm A(2;3;0) và vuông góc với mặt phẳng (P): x+3y-z+5=0

A. $\begin{cases} x = 1 + 3t \\ y = 3t \end{cases}$ z = 1 - t **B.** $\begin{cases} x = 1 + t \\ y = 3t \end{cases}$ z = 1 - t **C.** $\begin{cases} x = 1 + t \\ y = 1 + 3t \end{cases}$ z = 1 - t **D.** $\begin{cases} x = 1 + 3t \\ y = 3t \end{cases}$ z = 1 + t

Câu 669. [2H3-2-101-17] Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;-2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I, bán kính IM?

A. $(x-1)^2 + y^2 + z^2 = 13$.

B. $(x+1)^2 + y^2 + z^2 = 13$.

C. $(x-1)^2 + y^2 + z^2 = \sqrt{13}$.

D. $(x+1)^2 + v^2 + z^2 = 17$

Câu 670. [2H3-3-101-17] Trong không gian với hệ tọa độ Oxyz, cho điểm M(-1;1;3) và hai đường thẳng $\Delta: \frac{x-1}{3} = \frac{y+3}{2} = \frac{z-1}{1}$, $\Delta': \frac{x+1}{1} = \frac{y}{3} = \frac{z}{-2}$. Phương trình nào dưới đây là phương trình

A. $\begin{cases} x = -1 - t \\ y = 1 + t \end{cases}$ z = 1 + 3tB. $\begin{cases} x = -t \\ y = 1 + t \end{cases}$ z = 3 + tC. $\begin{cases} x = -1 - t \\ y = 1 - t \end{cases}$ z = 3 + tC. $\begin{cases} x = -1 - t \\ y = 1 - t \end{cases}$ z = 3 + t

Câu 671. [2H3-3-101-17] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_1 : $\begin{cases} x = 1 + 3t \\ y = -2 + t \end{cases}$

 $d_2: \frac{x-1}{2} = \frac{y+2}{-1} = \frac{z}{2}$ và mặt phẳng (P): 2x+2y-3z = 0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua giao điểm của d_1 và (P), đồng thời vuông góc với d_2 .

A. 2x - y + 2z + 22 = 0.

B. 2x - y + 2z + 13 = 0.

C. 2x - y + 2z - 13 = 0.

D. 2x + y + 2z - 22 = 0.

Câu 672.	[2H3-1-101-17] Trong kl	hông gian với hệ tọa độ	Oxyz, cho mặt cầu (S): $x^2 + y^2 + z^2 = 9$, điểm
	M(1;1;2) và mặt phẳng	(P): x + y + z - 4 = 0.	Gọi Δ là đường thẳng	đi qua M , thuộc (P) và
	cắt (S) tại hai điểm A $\vec{u} = (1; a; b)$. Tính $T = a$		nhất. Biết rằng Δ có n	nột vectơ chỉ phương là
	A. $T = -2$.	B. $T = 1$.	C. $T = -1$.	D. $T = 0$.
Câu 673.	[2H3-1-102-17] Trong k thẳng <i>OA</i> .	hông gian với hệ tọa đ	\hat{O} $Oxyz$, cho điểm $A(2)$;2;1). Tính độ dài đoạn
	A. $OA = 3$.	B. $OA = 9$.	C. $OA = \sqrt{5}$.	D. $OA = 5$
Câu 674.	[2H3-1-102-17] Trong k	hông gian với hệ tọa đ	ộ Oxyz, phương trình	nào dưới đây là phương

trình của mặt phẳng (Oyz)?

A.
$$y = 0$$
.

B.
$$x = 0$$
.

C.
$$y - z = 0$$
.

D.
$$z = 0$$

Câu 675. [2H3-2-102-17] Trong không gian với hệ tọa độ Oxyz, tìm tất cả các giá trị m để phương trình $x^2 + y^2 + z^2 - 2x - 2y - 4z + m = 0$ là phương trình của một mặt cầu.

A.
$$m > 6$$
.

B.
$$m \ge 6$$
.

C.
$$m \le 6$$
.

D.
$$m < 6$$
.

Câu 676. [2H3-2-102-17] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(0;-1;3), B(1;0;1), C(-1;1;2). Phương trình nào dưới đây là phương trình chính tắc của đường thẳng đi qua A và song song với đường thẳng BC?

A.
$$\begin{cases} x = -2t \\ y = -1 + t \\ z = 3 + t \end{cases}$$

B.
$$x - 2y + z = 0$$
.

A.
$$\begin{cases} x = -2t \\ y = -1 + t \\ z = 3 + t \end{cases}$$
 B. $x - 2y + z = 0$. C.
$$\frac{x}{-2} = \frac{y+1}{1} = \frac{z-3}{1}$$
. D.
$$\frac{x-1}{-2} = \frac{y}{1} = \frac{z-1}{1}$$

Câu 677. [2H3-2-102-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;0;1) và B(-2;2;3). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB?

A.
$$3x - y - z = 0$$
.

B.
$$3x + y + z - 6 = 0$$
.

C.
$$3x - y - z + 1 = 0$$
.

D.
$$6x-2y-2z-1=0$$

Câu 678. [2H3-3-102-17] Trong không gian với hệ tọa độ $(S): (x+1)^2 + (y-1)^2 + (z+2)^2 = 2$ và hai đường thẳng $d: \frac{x-2}{1} = \frac{y}{2} = \frac{z-1}{-1}, \ \Delta: \frac{x}{1} = \frac{y}{1} = \frac{z-1}{-1}.$ Phương trình nào dưới đây là phương trình của một mặt phẳng tiếp xúc với (S), song song với d và Δ ?

A.
$$x + z + 1 = 0$$
.

B.
$$x + y + 1 = 0$$
.

B.
$$x + y + 1 = 0$$
. **C.** $y + z + 3 = 0$. **D.** $x + z - 1 = 0$

D.
$$x + z - 1 = 0$$

Câu 679. [2H3-2-102-17] Trong không gian với hệ toạ độ Oxyz, cho điểm A(1,-2,3) và hai mặt phẳng (P): x+y+z+1=0, (Q): x-y+z-2=0. Phương trình nào dưới đây là phương trình đường thẳng đi qua A, song song với (P) và (Q)

$$\mathbf{A.} \begin{cases} x = -1 + t \\ y = 2 \\ z = -3 - t \end{cases}$$

B.
$$\begin{cases} x = 1 \\ y = -2 \\ z = 3 - 2t \end{cases}$$

A.
$$\begin{cases} x = -1 + t \\ y = 2 \end{cases}$$

$$z = -3 - t$$
B.
$$\begin{cases} x = 1 \\ y = -2 \end{cases}$$

$$z = 3 - 2t$$
C.
$$\begin{cases} x = 1 + 2t \\ y = -2 \end{cases}$$

$$z = 3 + 2t$$
D.
$$\begin{cases} x = 1 + t \\ y = -2 \end{cases}$$

$$z = 3 - t$$

$$\mathbf{D.} \begin{cases} x = 1 + t \\ y = -2 \\ z = 3 - t \end{cases}$$

Câu 680. [2H3-4-102-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4;6;2) và B(2;-2;0)và mặt phẳng (P): x + y + z = 0. Xét đường thẳng d thay đổi thuộc (P) và đi qua B, gọi Hlà hình chiếu vuông góc của A trên d. Biết rằng khi d thay đổi thì H thuộc một đường tròn cố định. Tính bán kính R của đường tròn đó.

A.
$$R = \sqrt{6}$$
.

B.
$$R = 2$$
.

C.
$$R = 1$$
.

D.
$$R = \sqrt{3}$$

Câu 681. [2H3-1-103-17] Trong không gian với hệ toạ độ Oxyz cho mặt phẳng (α) : x+y+z-6=0. Điểm nào dưới đây không thuộc (α) .

A. N(2;2;2).

B. M(3;-1;-2).

C. P(1;2;3).

D. M(1;-1;1).

Câu 682. [2H3-1-103-17] Trong không gian với hệ tọa độ Oxyzcho măt câu $(S):(x-5)^2+(y-1)^2+(z+2)^2=9$. Tính bán kính R của (S).

D. R = 6.

Câu 683. [2H3-2-103-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;-2;-3), B(-1;4;1)và đường thẳng $d: \frac{x+2}{1} = \frac{y-2}{-1} = \frac{z+3}{2}$. Phương trình nào dưới đây là phương trình đường thẳng đi qua trung điểm của đoạn thẳng AB và song song với d?

A. $d: \frac{x}{1} = \frac{y-1}{1} = \frac{z+1}{2}$.

B. $d: \frac{x}{1} = \frac{y-2}{1} = \frac{z+2}{2}$.

C. $d: \frac{x}{1} = \frac{y-1}{1} = \frac{z+1}{2}$.

D. $d: \frac{x-1}{1} = \frac{y-1}{1} = \frac{z+1}{2}$.

Câu 684. [2H3-2-103-17] Trong không gian với hệ tọa độ Oxyz, cho ba điểm M(3;-1;-2) và mặt phẳng (α) : 3x - y + 2z + 4 = 0. Phương trình nào dưới đây là phương trình mặt phẳng đi qua M và song song với (α) ?

A. $(\alpha): 3x + y - 2z - 14 = 0$.

B. $(\alpha): 3x - y + 2z + 6 = 0$.

C. $(\alpha): 3x - y + 2z - 6 = 0$.

D. $(\alpha): 3x - y - 2z + 6 = 0$.

Câu 685. [2H3-1-103-17] Trong không gian với hệ tọa độ Oxyz cho hai vecto $\vec{a}(2;1;0)$, $\vec{b}(-1;0;-2)$. Tính $\cos(\vec{a}, \vec{b})$

A. $\cos(\vec{a}, \vec{b}) = \frac{2}{25}$. **B.** $\cos(\vec{a}, \vec{b}) = -\frac{2}{5}$. **C.** $\cos(\vec{a}, \vec{b}) = -\frac{2}{25}$. **D.** $\cos(\vec{a}, \vec{b}) = \frac{2}{5}$.

Câu 686. [2H3-3-103-17] Trong không gian với hệ tọa độ Oxyz cho điểm I(1;2;3) và mặt phẳng (P): 2x-2y-z-4=0. Mặt cầu tâm I tiếp xúc mặt phẳng (P) tại điểm H. Tìm tọa độ điểm. **A.** H(-1;4;4). **B.** H(-3;0;-2). **C.** H(3;0;2).

D. H(1;-1;0).

Câu 687. H [2H3-3-103-17] Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d: $\begin{cases} x = 2 + 3t \\ y = -3 + t \end{cases}$

và $d': \frac{x-4}{2} = \frac{y+1}{1} = \frac{z}{2}$. Phương trình nào dưới đây là phương trình đường thẳng thuộc mặt phẳng chứa d và d', đồng thời cách đều hai đường thẳng đó.

A. $\frac{x-3}{3} = \frac{y+2}{1} = \frac{z-2}{-2}$.

B. $\frac{x+3}{2} = \frac{y+2}{1} = \frac{z+2}{2}$.

C. $\frac{x+3}{2} = \frac{y-2}{1} = \frac{z+2}{2}$.

D. $\frac{x-3}{3} = \frac{y-2}{1} = \frac{z-2}{2}$.

Câu 688. [2H3-4-103-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;-2;6), B(0;1;0) và mặt cầu $(S):(x-1)^2+(y-2)^2+(z-3)^2=25$. Mặt phẳng (P):ax+by+cz-2=0 đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính T = a + b + c.

A. T = 3.

B. T = 5.

C. T = 2.

D. T = 4.

P(1; m-1; 2). Tìm m để tam giác MNP vuông tại N.

A.
$$m = -6$$
.

B.
$$m = 0$$
.

C.
$$m = -4$$
.

D.
$$m = 2$$
.

Câu 692. [2H3-2-104-17] Trong không gian với hệ tọa độ Oxy, cho điểm M(1;2;3). Gọi M_1 , M_2 lần lượt là hình chiếu vuông góc của M lên các trục Ox, Oy. Vecto nào dưới đây là một vécto chỉ phương của đường thẳng M_1M_2 ?

A.
$$\overrightarrow{u_2} = (1;2;0)$$
.

B.
$$\overrightarrow{u_3} = (1;0;0)$$
.

B.
$$\overrightarrow{u_3} = (1;0;0)$$
. **C.** $\overrightarrow{u_4} = (-1;2;0)$. **D.** $\overrightarrow{u_1} = (0;2;0)$.

D.
$$\overrightarrow{u_1} = (0; 2; 0)$$
.

Câu 693. [2H3-1-104-17] Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm M(1;2;-3) và có một vecto pháp tuyến $\vec{n} = (1;-2;3)$?

A.
$$x-2y+3z-12=0$$
.

B.
$$x-2y+3z+6=0$$
.

C.
$$x-2y+3z+12=0$$
.

D.
$$x-2y+3z-6=0$$
.

Câu 694. [2H3-3-104-17] Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; -1; 2), $B\left(-1;\ 2;\ 3\right)$ và đường thẳng $d:\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-1}{2}$. Tìm điểm $M\left(a;\ b;\ c\right)$ thuộc d sao cho $MA^2 + MB^2 = 28$, biết c < 0.

A.
$$M(-1; 0; -3)$$

C.
$$M\left(\frac{1}{6}; \frac{7}{6}; -\frac{2}{3}\right)$$
.

A.
$$M(-1; 0; -3)$$
. **B.** $M(2; 3; 3)$. **C.** $M(\frac{1}{6}; \frac{7}{6}; -\frac{2}{3})$. **D.** $M(-\frac{1}{6}; -\frac{7}{6}; -\frac{2}{3})$.

Câu 695. [2H3-3-104-17] Trong không gian với hệ trục tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu đi qua ba điểm M(2;3;3), N(2;-1;-1), P(-2;-1;3) và có tâm thuộc mặt phẳng $(\alpha): 2x + 3y - z + 2 = 0$.

A.
$$x^2 + y^2 + z^2 - 2x + 2y - 2z - 10 = 0$$
.

B.
$$x^2 + y^2 + z^2 - 4x + 2y - 6z - 2 = 0$$
.

C.
$$x^2 + y^2 + z^2 + 4x - 2y + 6z + 2 = 0$$

C.
$$x^2 + y^2 + z^2 + 4x - 2y + 6z + 2 = 0$$
.
D. $x^2 + y^2 + z^2 - 2x + 2y - 2z - 2 = 0$.

Câu 696. [2H3-4-104-17] Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(-2;0;0), B(0;-2;0), C(0;0;-2). Gọi D là điểm khác O sao cho DA, DB, DC đôi một vuông góc nhau và I(a;b;c) là tâm mặt cầu ngoại tiếp tứ diện ABCD. Tính S = a+b+c.

A.
$$S = -4$$
.

B.
$$S = -1$$
.

C.
$$S = -2$$
.

D.
$$S = -3$$
.

Câu 697. [2H3-2-MH-18] Trong không gian Oxyz, cho điểm A(3;-1;1). Hình chiếu vuông góc của Atrên mặt phẳng (Oyz) là điểm

A.
$$M(3;0;0)$$
.

B.
$$N(0;-1;1)$$
.

C.
$$P(0;-1;0)$$
. D. $Q(0;0;1)$.

D.
$$O(0;0;1)$$
.

Câu 698. [2H3-1-MH-18] Trong không gian Oxyz, cho đường thẳng $d: \frac{x-2}{-1} = \frac{y-1}{2} = \frac{z}{1}$. Đường thẳng d có một vec tơ chỉ phương là

A.
$$\overrightarrow{u_1} = (-1, 2, 1)$$
.

B.
$$\overrightarrow{u_2} = (2;1;0)$$
.

C.
$$\overrightarrow{u_3} = (2;1;1)$$

A.
$$\overrightarrow{u_1} = (-1; 2; 1)$$
. **B.** $\overrightarrow{u_2} = (2; 1; 0)$. **C.** $\overrightarrow{u_3} = (2; 1; 1)$. **D.** $\overrightarrow{u_4} = (-1; 2; 0)$.

Câu 699.	[2H3-1-MH-18]	Trong mặt	phẳng	tọa độ	Oxyz,	cho	ba điển	M(2;0;0),	N(0;-1;0)	và
	P(0;0;2). Mặt p	hẳng (<i>MNF</i>) có ph	uong trì	nh là					

A.
$$\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = 0$$
.

A.
$$\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = 0$$
. **B.** $\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = -1$. **C.** $\frac{x}{2} + \frac{y}{1} + \frac{z}{2} = 1$. **D.** $\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = 1$.

C.
$$\frac{x}{2} + \frac{y}{1} + \frac{z}{2} = 1$$
.

D.
$$\frac{x}{2} + \frac{y}{-1} + \frac{z}{2} = 1$$

Câu 700. [2H3-2-MH-18] Trong không gian
$$Oxyz$$
, cho hai điểm $A(-1;2;1)$ và $B(2;1;0)$. Mặt phẳng qua A và vuông góc với AB có phương trình là $A \cdot 3x - y - z - 6 = 0$. B. $3x - y - z + 6 = 0$. C. $x + 3y + z - 5 = 0$. D. $x + 3y + z - 6 = 0$.

A.
$$3x - y - z - 6 = 0$$
.

B.
$$3x - y - z + 6 = 0$$
.

C.
$$x + 3y + z - 5 = 0$$
. D.

D.
$$x + 3y + z - 6 = 0$$
.

Câu 701. [2H3-3-MH-18] Trong không gian
$$Oxyz$$
, cho hai đường thẳng $d_1: \frac{x-3}{-1} = \frac{y-3}{-2} = \frac{z+2}{1}$; $d_2: \frac{x-5}{-3} = \frac{y+1}{2} = \frac{z-2}{1}$ và mặt phẳng $(P): x+2y+3z-5=0$. Đường thẳng vuông góc với (P) , cắt d_1 và d_2 có phương trình là

A.
$$\frac{x-1}{1} = \frac{y+1}{2} = \frac{z}{3}$$
.

B.
$$\frac{x-2}{1} = \frac{y-3}{2} = \frac{z-1}{3}$$
.

C.
$$\frac{x-3}{1} = \frac{y-3}{2} = \frac{z+2}{3}$$
.

D.
$$\frac{x-1}{3} = \frac{y+1}{2} = \frac{z}{1}$$
.

Câu 702. [2H3-3-MH-18] Trong không gian Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiều mặt phẳng (P) đi qua M và cắt các trục x'Ox, y'Oy, z'Oz lần lượt tại điểm A, B, C sao cho $OA = OB = OC \neq 0$?

Câu 703. [2H3-3-MH-18] Trong không gian Oxyz, cho hai điểm A(2; 2; 1), $B\left(-\frac{8}{3}; \frac{4}{3}; \frac{8}{3}\right)$. Đường thẳng đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB) có phương trình là

A.
$$\frac{x+1}{1} = \frac{y-3}{-2} = \frac{z+1}{2}$$
.

B.
$$\frac{x+1}{1} = \frac{y-8}{-2} = \frac{z-4}{2}$$
.

C.
$$\frac{x+\frac{1}{3}}{1} = \frac{y-\frac{5}{3}}{-2} = \frac{z-\frac{11}{6}}{2}$$
.

D.
$$\frac{x+\frac{2}{9}}{1} = \frac{y-\frac{2}{9}}{-2} = \frac{z+\frac{5}{9}}{2}$$
.

Câu 704. [2H3-4-MH-18] Trong không gian Oxyz, cho ba điểm A(1;2;1), B(3;-1;1) và C(-1;-1;1). Gọi $\left(S_1\right)$ là mặt cầu có tâm A, bán kính bằng 2; $\left(S_2\right)$ và $\left(S_3\right)$ là hai mặt cầu có tâm lần lượt là B, C và bán kính bằng 1. Hỏi có bao nhiều mặt phẳng tiếp xúc với cả ba mặt cầu (S_1) , $(S_2), (S_3).$

Câu 705. [2H3-1-101-18] Trong không gian Oxyz, mặt phẳng (P): x+2y+3z-5=0 có một véc-tơ pháp tuyến là

A.
$$\overrightarrow{n_1} = (3; 2; 1)$$
.

B.
$$\overrightarrow{n_3} = (-1; 2; 3)$$

B.
$$\overrightarrow{n_3} = (-1; 2; 3)$$
. **C.** $\overrightarrow{n_4} = (1; 2; -3)$. **D.** $\overrightarrow{n_2} = (1; 2; 3)$.

D.
$$\overrightarrow{n_2} = (1; 2; 3)$$
.

Câu 706. [2H3-1-102-18] Trong không gian Oxyz, mặt phẳng (P):3x+2y+z-4=0 có một vector pháp tuyến là

A.
$$\overrightarrow{n_3} = (-1;2;3)$$
. **B.** $\overrightarrow{n_4} = (1;2;-3)$. **C.** $\overrightarrow{n_2} = (3;2;1)$. **D.** $\overrightarrow{n_1} = (1;2;3)$.

B.
$$n_4 = (1;2;-3)$$

C.
$$\vec{n_2} = (3; 2; 1)$$

D.
$$\overrightarrow{n_1} = (1;2;3)$$
.

Câu 707.	[2H3-1-103-18] Trong	không gian <i>Oxyz</i> , mặt _I	chẳng (P): 2x + 3y + z -	-1=0 có một vectơ pháp
	tuyến là			
	A. $\overrightarrow{n_2} = (-1; 3; 2)$.	B. $\overrightarrow{n_1} = (2;3;-1)$.	$\mathbf{C}.\ \overrightarrow{n_3} = (1;3;2).$	D. $\overrightarrow{n_4} = (2;3;1)$.
Câu 708.	[2H3-1-104-18] Trong I tuyến là	không gian <i>Oxyz</i> , mặt p	ohẳng (P): 2x + y + 3z -	-1=0 có một vectơ pháp
	•	B. $\overrightarrow{n_4} = (1;3;2)$.	C. $\overrightarrow{n_3} = (2;1;3)$.	D. $\overrightarrow{n_1} = (3;1;2)$.

Câu 709. [2H3-1-101-18] Trong không gian Oxyz, đường thẳng d: $\begin{cases} x - 2 - t \\ y = 1 + 2t \text{ có một vécto chỉ phương là} \\ z = 3 + t \end{cases}$

A. $\overrightarrow{u_3} = (2;1;3)$. **B.** $\overrightarrow{u_4} = (-1;2;1)$. **C.** $\overrightarrow{u_2} = (2;1;1)$. **D.** $\overrightarrow{u_1} = (-1;2;3)$.

Câu 710. [2H3-1-102-18] Trong không gian Oxyz, đường thẳng $d: \frac{x+3}{1} = \frac{y-1}{-1} = \frac{z-5}{2}$ có một vector chỉ phương là **A.** $\overrightarrow{u_1} = (3; -1; 5)$. **B.** $\overrightarrow{u_4} = (1; -1; 2)$. **C.** $\overrightarrow{u_2} = (-3; 1; 5)$. **D.** $\overrightarrow{u_3} = (1; -1; -2)$.

Câu 711. [2H3-1-103-18] Trong không gian Oxyz, cho mặt cầu $(S):(x+3)^2+(y+1)^2+(z-1)^2=2$. Xác định tọa độ tâm của mặt cầu (S).

A.
$$I(-3;-1;1)$$
.

B.
$$I(3;-1;1)$$
.

C.
$$I(3;1;-1)$$
.

C.
$$I(3;1;-1)$$
. D. $I(-3;1;-1)$.

Câu 712. [2H3-1-104-18] Trong không gian Oxyz, mặt cầu $(S):(x-5)^2+(y-1)^2+(z+2)^2=3$ có bán kính bằng

A.
$$\sqrt{3}$$
.

B.
$$2\sqrt{3}$$
.

Câu 713. [2H3-1-102-18] Trong không gian Oxyz, cho hai điểm A(1;1;-2) và B(2;2;1). Vector \overline{AB} có tọa độ là

A.
$$(3;3;-1)$$
.

B.
$$(-1;-1;-3)$$
. **C.** $(3;1;1)$.

Câu 714. [2H3-1-103-18] Trong không gian Oxyz, điểm nào sau đây thuộc đường thẳng $d: \frac{x+2}{1} = \frac{y-1}{1} = \frac{z+2}{2}$?

A.
$$N(2;-1;2)$$
.

A.
$$N(2;-1;2)$$
. **B.** $M(-2;-2;1)$. **C.** $P(1;1;2)$. **D.** $Q(-2;1;-2)$.

C.
$$P(1;1;2)$$

D.
$$Q(-2;1;-2)$$

Câu 715. [2H3-1-104-18] Trong không gian Oxyz, điểm nào dưới đây thuộc đường thẳng $d:\begin{cases} x=1-t\\ y=5+t\end{cases}$? z=2+3t

A.
$$Q(-1;1;3)$$
. **B.** $P(1;2;5)$. **C.** $N(1;5;2)$.

B.
$$P(1;2;5)$$
.

C.
$$N(1;5;2)$$
.

D.
$$M(1;1;3)$$
.

Câu 716. [2H3-1-101-18] Trong không gian Oxyz, cho hai điểm A(2;-4;3) và B(2;2;7). Trung điểm của đoạn AB có tọa độ là

C.
$$(2;-1;5)$$
. **D.** $(4;-2;10)$.

D.
$$(4;-2;10)$$
.

Câu 717. [2H3-2-101-18] Trong không gian Oxyz, mặt phẳng đi qua điểm A(2;-1;2) và song song với mặt phẳng (P): 2x - y + 3z + 2 = 0 có phương trình là

A.
$$2x - y + 3z - 9 = 0$$
.

A.
$$2x - y + 3z - 9 = 0$$
. **B.** $2x - y + 3z + 11 = 0$. **C.** $2x - y - 3z + 11 = 0$. **D.** $2x - y + 3z - 11 = 0$.

Câu 718. [2H3-2-102-18] Trong không gian Oxyz, mặt phẳng đi qua điểm A(1;2;-2) và vuông góc với đường thẳng $\Delta : \frac{x+1}{2} = \frac{y-2}{1} = \frac{z+3}{3}$ có phương trình là

A. 3x + 2y + z - 5 = 0. **B.** 2x + y + 3z + 2 = 0. **C.** x + 2y + 3z + 1 = 0. **D.** 2x + y + 3z - 2 = 0.

Câu 719. [2H3-2-103-18] Trong không gian Oxyz, cho ba điểm A(-1;1;1), B(2;1;0) và C(1;-1;2). Mặt phẳng đi qua A và vuông góc với đường thẳng BC có phương trình là

A. x + 2y - 2z - 1 = 0.

B. 3x + 2z + 1 = 0.

C. x + 2y - 2z + 1 = 0.

D. x + 2z - 1 = 0.

Câu 720. [2H3-2-104-18] . Trong không gian Oxyz, cho hai điểm A(5;-4;2) và B(1;2;4). Mặt phẳng đi qua A và vuông góc với đường thẳng AB có phương trình là

A. 2x-3y-z-20=0.

B. 2x-3y-z+8=0.

C. 3x - y + 3z - 13 = 0.

D. 3x - y + 3z - 25 = 0.

Câu 721. [2H3-2-101-18] Trong không gian Oxyz, cho điểm A(1;2;3) và đường thẳng $d: \frac{x-3}{2} = \frac{y-1}{1} = \frac{z+7}{-2}$. Đường thẳng đi qua A, vuông góc với d và cắt trục Ox có phương

A. $\begin{cases} x = -1 + 2t \\ y = 2t \end{cases}$ B. $\begin{cases} x = 1 + t \\ y = 2 + 2t \end{cases}$ C. $\begin{cases} x = -1 + 2t \\ y = -2t \end{cases}$ D. $\begin{cases} x = 1 + t \\ y = 2 + 2t \end{cases}$ z = 3 + 2t

Câu 722. [2H3-2-102-18] Trong không gian Oxyz, cho điểm A(2;1;3) và đường thẳng $d: \frac{x+1}{1} = \frac{y-1}{-2} = \frac{z-2}{2}$. Đường thẳng đi qua A, vuông góc với d và cắt trục Oy có phương

A. $\begin{cases} x = 2t \\ y = -3 + 4t \end{cases}$ B. $\begin{cases} x = 2 + 2t \\ y = 1 + t \end{cases}$ C. $\begin{cases} x = 2 + 2t \\ y = 1 + 3t \end{cases}$ D. $\begin{cases} x = 2t \\ y = -3 + 3t \end{cases}$ z = 3 + 2t

Câu 723. [2H3-3-103-18] Trong không gian Oxyz, cho đường thẳng $\Delta: \frac{x+1}{2} = \frac{y}{-1} = \frac{z+2}{2}$ và mặt phẳng (P): x+y-z+1=0. Đường thẳng nằm trong (P) đồng thời cắt và vuông góc với Δ có

A. $\begin{cases} x = 3 + t \\ y = -2 + 4t \end{cases}$ B. $\begin{cases} x = 3 + 2t \\ y = -2 + 6t \end{cases}$ C. $\begin{cases} x = 3 + t \\ y = -2 - 4t \end{cases}$ D. $\begin{cases} x = -1 + t \\ y = -4t \end{cases}$ z = 2 + t z = 2 - 3t

Câu 724. [2H3-3-104-18] Trong không gian Oxy, cho đường thẳng $\Delta : \frac{x}{1} = \frac{y+1}{2} = \frac{z-1}{1}$ và mặt phẳng (P): x-2y-z+3=0. Đường thẳng nằm trong (P) đồng thời cắt và vuông góc với Δ có

A. $\begin{cases} x = -3 \\ y = -t \\ z = 2t \end{cases}$ B. $\begin{cases} x = 1 \\ y = 1 - t \\ z = 2 + 2t \end{cases}$ C. $\begin{cases} x = 1 + 2t \\ 1 - t \\ 2 \end{cases}$ D. $\begin{cases} x = 1 + t \\ y = 1 - 2t \\ 2 + 3t \end{cases}$

Cau 123	. [2H3-3-101-18] Trong	không gian Oxyz, cho	o mặt cầu $(S):(x+1)^2$	$+(y+1)^2 + (z+1)^2 = 9$ và
	điểm $A(2;3;-1)$. Xét o	các điểm M thuộc (S)	sao cho đường thẳng A	AM tiếp xúc với (S) , M
	luôn thuộc mặt phẳng c	= =		D (, 0 , 11 , 0
		B. $3x + 4y + 2 = 0$.		
Câu 726	. [2H3-4-102-18] Trong	không gian Oxyz, cho	mặt cầu $(S):(x-2)^2$	$+(y-3)^2 + (z-4)^2 = 2$ và
	điểm $A(1;2;3)$. Xét cá	ac điểm M thuộc (S) s	sao cho đường thẳng A	M tiếp xúc với (S) , M
	luôn thuộc mặt phẳng c		P 2 2 2- 15-	- 0
	A. $2x + 2y + 2z + 15 = 0$ C. $x + y + z + 7 = 0$.	<i>)</i> .	B. $2x + 2y + 2z - 15 =$ D. $x + y + z - 7 = 0$	=0.
C/^ = 25	•	11.5	,	$(2)^{2} \cdot (2)^{2} \cdot 1$
Cau /2/				$+(y-2)^2 + (z-3)^2 = 1$ và
	luôn thuộc mặt phẳng c	, ,	sao cho duong thang A	M tiếp xúc với (S) , M
	A. $x + y + z + 7 = 0$.	to phuong triin ia	B. $2x + 2y + 2z + 15 =$	= 0 .
	C. $x + y + z - 7 = 0$.		D. $2x + 2y + 2z - 15 =$	= 0.
Câu 728	. [2H3-4-104-18] Trong	không gian Oxyz, cho	mặt cầu $(S):(x-2)^2+$	$(y-3)^2 + (z+1)^2 = 16$ và
				ng AM tiếp xúc với (S) ,
	M thuộc mặt phẳng có		,	()
	A. $3x + 4y - 2 = 0$.	B. $3x + 4y + 2 = 0$.	C. $6x + 8y - 11 = 0$.	D. $6x + 8y + 11 = 0$.
Câu 729	. [2H3-4-101-18] Trong	không gian Oxyz, cho	mặt cầu (S) có tâm I	I(-2;1;2) và đi qua điểm
Câu 729	A(1;-2;-1). Xét các đ	$fi\mathring{em}\ B$, C , D thuộc ((S) sao cho AB , AC ,	I(-2;1;2) và đi qua điểm , AD đôi một vuông góc
Câu 729	A(1;-2;-1). Xét các ở với nhau. Thể tích của l	$ ag{tiểm} \; B \; , \; C \; , \; D \; ag{thuộc} \; ($ khối tứ diện $ABCD \; ag{color}$	(S) sao cho AB , AC , giá trị lớn nhất bằng	, AD đôi một vuông góc
	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72.	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có B. 216.	(S) sao cho AB, AC, giá trị lớn nhất bằng C. 108.	AD đôi một vuông gócD. 36.
	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72. [2H3-4-102-18] Trong	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có B. 216. không gian $Oxyz$, cho	(S) sao cho AB, AC, giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm	 AD đôi một vuông góc D. 36. I(-1;2;1) và đi qua điểm
	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72. • [2H3-4-102-18] Trong A(1;0;-1). Xét các điể	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có B . 216. không gian $Oxyz$, choếm B , C , D thuộc (S)	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm sao cho AB, AC, A	AD đôi một vuông gócD. 36.
	 A(1;-2;-1). Xét các đ với nhau. Thể tích của land. 72. [2H3-4-102-18] Trong A(1;0;-1). Xét các điể nhau. Thể tích của khối 	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có B . 216. không gian $Oxyz$, cho B , C , D thuộc (S) i tứ diện $ABCD$ có giá t	(S) sao cho AB, AC, giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng	D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với
	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72. • [2H3-4-102-18] Trong A(1;0;-1). Xét các điể	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có B . 216. không gian $Oxyz$, choếm B , C , D thuộc (S)	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm sao cho AB, AC, A	 AD đôi một vuông góc D. 36. I(-1;2;1) và đi qua điểm
Câu 730	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72. • [2H3-4-102-18] Trong A(1;0;-1). Xét các điể nhau. Thể tích của khối A. $\frac{64}{3}$.	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có \mathbf{B} . 216. không gian $Oxyz$, cho $\mathop{\mathrm{Em}} B$, C , D thuộc (S) i tứ diện $ABCD$ có giá t \mathbf{B} . 32.	(S) sao cho AB, AC, giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng C. 64.	D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với
Câu 730	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72. • [2H3-4-102-18] Trong A(1;0;-1). Xét các điể nhau. Thể tích của khối A. $\frac{64}{3}$. • [2H3-4-103-18] Trong	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có \mathbf{B} . 216. không gian $Oxyz$, cho \mathcal{B} B , C , D thuộc (S) i tứ diện $ABCD$ có giá t \mathcal{B} . 32. không gian $Oxyz$, cho	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng C. 64.	 AD đôi một vuông góc D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với D. 32/3.
Câu 730	$A(1;-2;-1)$. Xét các đ với nhau. Thể tích của la A. 72. • [2H3-4-102-18] Trong $A(1;0;-1)$. Xét các điể nhau. Thể tích của khối A. $\frac{64}{3}$. • [2H3-4-103-18] Trong $A(5;-2;-1)$. Xét các đ với nhau. Thể tích của la Với nhau. Thể tích của la $\frac{64}{3}$.	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có \mathbf{B} . 216. không gian $Oxyz$, cho \mathcal{B} B , C , D thuộc (S) i tứ diện $ABCD$ có giá t \mathcal{B} . 32. không gian $Oxyz$, cho	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng C. 64. mặt cầu (S) có tâm (S) sao cho AB, AC, A	D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với D. $\frac{32}{3}$. I(1;2;3) và đi qua điểm, AD đôi một vuông góc
Câu 730	A(1;-2;-1). Xét các đ với nhau. Thể tích của l A. 72. • [2H3-4-102-18] Trong A(1;0;-1). Xét các điể nhau. Thể tích của khối A. $\frac{64}{3}$. • [2H3-4-103-18] Trong A(5;-2;-1). Xét các đ	tiểm B , C , D thuộc (khối tứ diện $ABCD$ có \mathbf{B} . 216. không gian $Oxyz$, cho ểm B , C , D thuộc (S) i tứ diện $ABCD$ có giá t \mathbf{B} . 32. không gian $Oxyz$, cho điểm B , C , D thuộc (S) điểm S ,	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng C. 64. mặt cầu (S) có tâm (S) sao cho AB, AC, A	 D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với D. 32/3. I(1;2;3) và đi qua điểm
Câu 730 Câu 731	$A(1;-2;-1)$. Xét các đ với nhau. Thể tích của la A. 72. • [2H3-4-102-18] Trong $A(1;0;-1)$. Xét các điể nhau. Thể tích của khối A. $\frac{64}{3}$. • [2H3-4-103-18] Trong $A(5;-2;-1)$. Xét các đ với nhau. Thể tích của la A . $\frac{256}{3}$.	tiểm B, C, D thuộc (khối tứ diện ABCD có B. 216. không gian Oxyz, cho ểm B, C, D thuộc (S) i tứ diện ABCD có giá the B. 32. không gian Oxyz, cho điểm B, C, D thuộc khối tứ diện ABCD có B. 256.	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng C. 64. mặt cầu (S) có tâm (S) sao cho AB, AC, A giá trị lớn nhất bằng C. 64.	D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với D. $\frac{32}{3}$. I(1;2;3) và đi qua điểm, AD đôi một vuông góc
Câu 730 Câu 731	$A(1;-2;-1)$. Xét các đ với nhau. Thể tích của la A. 72. • [2H3-4-102-18] Trong $A(1;0;-1)$. Xét các điể nhau. Thể tích của khối A. $\frac{64}{3}$. • [2H3-4-103-18] Trong $A(5;-2;-1)$. Xét các đ với nhau. Thể tích của la $\frac{256}{3}$. • [2H3-4-104-18] Trong	tiểm B, C, D thuộc (khối tứ diện ABCD có B. 216. không gian Oxyz, cho ểm B, C, D thuộc (S) i tứ diện ABCD có giá the B. 32. không gian Oxyz, cho điểm B, C, D thuộc (khối tứ diện ABCD có B. 256. không gian Oxyz, cho không gian Oxyz, cho	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A sao cho AB, AC, A trị lớn nhất bằng C. 64. mặt cầu (S) có tâm (S) sao cho AB, AC giá trị lớn nhất bằng C. 128. mặt cầu (S) có tâm C. 128.	AD đôi một vuông góc $D. 36.$ $I(-1;2;1)$ và đi qua điểm D đôi một vuông góc với $D. \frac{32}{3}.$ $I(1;2;3)$ và đi qua điểm AD đôi một vuông góc $D. \frac{128}{3}.$
Câu 730 Câu 731	$A(1;-2;-1)$. Xét các để với nhau. Thể tích của la A . 72. • [2H3-4-102-18] Trong $A(1;0;-1)$. Xét các điể nhau. Thể tích của khối A . $\frac{64}{3}$. • [2H3-4-103-18] Trong $A(5;-2;-1)$. Xét các đười nhau. Thể tích của la A . $\frac{256}{3}$. • [2H3-4-104-18] Trong $A(0;1;1)$. Xét các điển	tiểm B, C, D thuộc (khối tứ diện ABCD có B. 216. không gian Oxyz, cho ểm B, C, D thuộc (S) i tứ diện ABCD có giá the B. 32. không gian Oxyz, cho điểm B, C, D thuộc (khối tứ diện ABCD có B. 256. không gian Oxyz, cho không gian Oxyz, cho	giá trị lớn nhất bằng C. 108. mặt cầu (S) có tâm A ri lớn nhất bằng C. 64. mặt cầu (S) có tâm (S) sao cho AB, AC, A trị lớn nhất bằng C. 64. mặt cầu (S) có tâm (S) sao cho AB, AC giá trị lớn nhất bằng C. 128. mặt cầu (S) có tâm A cầu (S) sao cho AB,	D. 36. I(-1;2;1) và đi qua điểm D đôi một vuông góc với D. $\frac{32}{3}$. I(1;2;3) và đi qua điểm, AD đôi một vuông góc D. $\frac{128}{3}$. I(-1;0;2) và đi qua điểm, AC, AD đôi một vuông

Câu 733. [2H3-4-101-18] Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+3t \\ y=1+4t \end{cases}$. Gọi Δ là đường

thẳng đi qua điểm A(1;1;1) và có vecto chỉ phương $\vec{u}=(1;-2;2)$. Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là

A.
$$\begin{cases} x = 1 + 7t \\ y = 1 + t \\ z = 1 + 5t \end{cases}$$

A.
$$\begin{cases} x = 1 + 7t \\ y = 1 + t \end{cases}$$

$$z = 1 + 5t$$
B.
$$\begin{cases} x = -1 + 2t \\ y = -10 + 11t \end{cases}$$

$$z = -6 - 5t$$
C.
$$\begin{cases} x = -1 + 2t \\ y = -10 + 11t \end{cases}$$

$$z = 6 - 5t$$
D.
$$\begin{cases} x = 1 + 3t \\ y = 1 + 4t \end{cases}$$

$$z = 1 + 3t$$

C.
$$\begin{cases} x = -1 + 2t \\ y = -10 + 11t \\ z = 6 - 5t \end{cases}$$

D.
$$\begin{cases} x = 1 + 3t \\ y = 1 + 4t \\ z = 1 - 5t \end{cases}$$

Câu 734. [2H3-4-102-18] Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+3t\\ y=-3 \end{cases}$. Gọi Δ là đường

thẳng đi qua điểm A(1;-3;5) và có vecto chỉ phương $\vec{u}(1;2;-2)$. Đường phân giác của góc nhon tạo bởi d và Δ có phương trình là

A.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = 6 + 11t \end{cases}$$

A.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = 6 + 11t \end{cases}$$
B.
$$\begin{cases} x = -1 + 2t \\ y = 2 - 5t \\ z = -6 + 11t \end{cases}$$
C.
$$\begin{cases} x = 1 + 7t \\ y = -3 + 5t \\ z = 5 + t \end{cases}$$
D.
$$\begin{cases} x = 1 - t \\ y = -3 \\ z = 5 + 7t \end{cases}$$

C.
$$\begin{cases} x = 1 + 7t \\ y = -3 + 5t \\ z = 5 + t \end{cases}$$

$$\mathbf{D.} \begin{cases} x = 1 - t \\ y = -3 \\ z = 5 + 7t \end{cases}$$

Câu 735. [2H3-4-103-18] Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+t \\ y=2+t \end{cases}$. Gọi Δ là đường

thẳng đi qua A(1;2;3) và có vecto chỉ phương $\vec{u} = (0;-7;-1)$. Đường phân giác của góc nhọn tạo bởi d và Δ có phương trình là

A.
$$d: \begin{cases} x = 1 + 5t \\ y = 2 - 2t \\ z = 3 - t \end{cases}$$

B.
$$d: \begin{cases} x = 1 + 6t \\ y = 2 + 11t \\ z = 3 + 8t \end{cases}$$

A.
$$d: \begin{cases} x = 1 + 5t \\ y = 2 - 2t \end{cases}$$
B. $d: \begin{cases} x = 1 + 6t \\ y = 2 + 11t \end{cases}$

$$z = 3 - t$$
C. $d: \begin{cases} x = -4 + 5t \\ y = -10 + 12t \end{cases}$

$$z = -2 + t$$
C. $d: \begin{cases} x = -4 + 5t \\ y = -10 + 12t \end{cases}$

$$z = 2 + t$$

Câu 736. [2H3-4-104-18] Trong không gian Oxyz, cho đường thẳng $d:\begin{cases} x=1+3t\\ y=1+4t \end{cases}$. Gọi Δ là đường

thẳng đi qua điểm A(1;1;1) và có vecto chỉ phương $\vec{u} = (-2;1;2)$. Đường phân giác của góc

$$\mathbf{A.} \begin{cases} x = 1 + 27t \\ y = 1 + t \\ z = 1 + t \end{cases}$$

B.
$$\begin{cases} x = -18 + 19t \\ y = -6 + 7t \\ z = -11 - 10t \end{cases}$$

C.
$$\begin{cases} x = 1 - t \\ y = 1 + 17t \\ z = 1 + 10t \end{cases}$$

A.
$$\begin{cases} x = 1 + 27t \\ y = 1 + t \end{cases}$$

$$z = 1 + t$$
B.
$$\begin{cases} x = -18 + 19t \\ y = -6 + 7t \\ z = -11 - 10t \end{cases}$$
C.
$$\begin{cases} x = 1 - t \\ y = 1 + 17t \\ z = 1 + 10t \end{cases}$$
D.
$$\begin{cases} x = -18 + 19t \\ y = -6 + 7t \\ z = 11 - 10t \end{cases}$$

- Câu 737. [2H3.1-1-MH19] Trong không gian Oxyz, cho hai điểm A(1;1;-1) và B(2;3;2). Véctor AB có toa đô là
 - **A.** (1;2;3).
- **B.** (-1;-2;3). **C.** (3;5;1). **D.** (3;4;1).

- Câu 738. [2H3.2-1-MH19] Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là
 - **A.** 5.
- **B.** x + y + z = 0. **C.** y = 0.
- **D.** x = 0.

Câu 739. [2H3.3-1-MH19] Trong không gian Oxyz, đường thẳng $d: \frac{x-1}{2} = \frac{y-2}{-1} = \frac{z-3}{2}$ đi qua điểm nào sau đây?

A.
$$Q(2;-1;2)$$
.

B.
$$M(-1;-2;-3)$$
. **C.** $P(1;2;3)$.

C.
$$P(1;2;3)$$

D.
$$N(-2;1;-2)$$
.

Câu 740. [2H3.1-1-MH19] Trong không gian Oxyz, cho hai điểm I(1;1;1) và A(1;2;3). Phương trình của mặt cầu có tâm I và đi qua điểm A là

A.
$$(x+1)^2 + (y+1)^2 + (z+1)^2 = 29$$
.
B. $(x-1)^2 + (y-1)^2 + (z-1)^2 = 5$.
C. $(x-1)^2 + (y-1)^2 + (z-1)^2 = 25$.
D. $(x+1)^2 + (y+1)^2 + (z+1)^2 = 5$.

B.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 5$$
.

C.
$$(x-1)^2 + (y-1)^2 + (z-1)^2 = 25$$

D.
$$(x+1)^2 + (y+1)^2 + (z+1)^2 = 5$$
.

Câu 741. [2H3.2-2-MH19] Trong không gian Oxyz, khoảng cách giữa hai mặt (P): x+2y+2z-10=0 và (Q): x+2y+2z-3=0 bằng

A.
$$\frac{8}{3}$$
.

B.
$$\frac{7}{3}$$
.

D.
$$\frac{4}{3}$$
.

Câu 742. [2H3.3-3-MH19] Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z-3=0và đường thẳng $d: \frac{x}{1} = \frac{y+1}{2} = \frac{z-2}{-1}$. Hình chiếu của d trên (P) có phương trình là

A.
$$\frac{x+1}{-1} = \frac{y+1}{-4} = \frac{z+1}{5}$$
.

B.
$$\frac{x-1}{3} = \frac{y-1}{-2} = \frac{z-1}{-1}$$
.

C.
$$\frac{x-1}{1} = \frac{y-1}{4} = \frac{z-1}{-5}$$
.

D.
$$\frac{x-1}{1} = \frac{y+4}{1} = \frac{z+5}{1}$$
.

Câu 743. [2H3.2-2-MH19] Trong không gian Oxyz, cho hai điểm A(2;-2;4), B(-3;3;-1) và mặt phẳng (P): 2x - y + 2z - 8 = 0. Xét M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của $2MA^2 + 3MB^2$ bằng

Câu 744. [2H3.3-4-MH19] Trong không gian Oxyz, cho điểm E(2;1;3), (P): 2x + 2y - z - 3 = 0 và mặt cầu $(S): (x-3)^2 + (y-2)^2 + (z-5)^2 = 36$. Gọi Δ là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình

A.
$$\begin{cases} x = 2 + 9t \\ y = 1 + 9t \\ z = 3 + 8t \end{cases}$$

B.
$$\begin{cases} x = 2 - 5t \\ y = 1 + 3t \\ z = 3 \end{cases}$$

C.
$$\begin{cases} x = 2 + t \\ y = 1 - t \\ z = 3 \end{cases}$$

A.
$$\begin{cases} x = 2 + 9t \\ y = 1 + 9t \\ z = 3 + 8t \end{cases}$$
 B.
$$\begin{cases} x = 2 - 5t \\ y = 1 + 3t \\ z = 3 \end{cases}$$
 C.
$$\begin{cases} x = 2 + t \\ y = 1 - t \\ z = 3 \end{cases}$$
 D.
$$\begin{cases} x = 2 + 4t \\ y = 1 + 3t \\ z = 3 - 3t \end{cases}$$

N PHÒNG PHẨM TẬ

CHUYÊN: BÁN VĂN PHÒNG PHẨM - DỤNG CỤ HỌC SINH - IN MÀU - PHOTOCOPY

Đc: 33/3 Nguyễn Du - Kp. Thắng Lợi 1 - P. Dĩ An - Tx. Dĩ An - Bình Dương ĐT: 098 373 4349 (Thầy Nghĩa) Website: vpptamphuc.vn

Email: vpptamphuc@gmail.com

Phần 1. TỌA ĐỘ ĐIỂM. TỌA ĐỘ VÉCTƠ

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
A	В	A	C	В	В	В	C	D	A	C	D	D	C	D	В	В	В	D	C
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
C	A	A	C	В	A	C	A	D	D	C	A	В	A	В	A	В	C	D	D
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
C	C	A	В	C	D	A	A	В	A	D	В	A	D	D	A	D	A	В	В
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
D	В	A	C	A	C	C	A	D	В	D	В	D	C	В	D	C	D	A	В
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
D	D	A	D	D	C	C	A	A	В	A	C	C	A	D	D	D	A	C	C

Vấn đề 2. PHƯƠNG TRÌNH MẶT PHẮNG

101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
В	В	C	D	A	A	В	В	В	C	В	A	A	В	В	D	C	C	A	A
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140
A	C	B	A	C	C	A	D	C	C	D	A	D	В	B	A	A	B	B	В
141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160
A	A	C	C	C	A	D	C	C	A	D	A	D	A	A	B	D	A	D	A
161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180
D	D	D	D	A	D	C	C	B	B	C	C	B	A	A	D	A	В	B	D
181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197	198	199	200
C	A	A	C	D	D	A	D	A	C	B	B	C	A	B	C	C	D	A	C
201	202	203	204	205	206	207	208	209	210	211	212	213	214	215	216	217	218	219	220
C	C	D	В	C	A	A	C	C	A	В	В	C	A	C	C	D	C	C	D
221	222	223	224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239	240
В	A	D	D	A	D	C	D	D	D	В	D	C	В	A	A	C	A	D	D

Vấn đề 3. PHƯƠNG TRÌNH ĐƯỜNG THẮNG

241	242	243	244	245	246	247	248	249	250	251	252	253	254	255	256	257	258	259	260
В	A	A	C	D	D	C	C	A	A	A	A	A	В	A	A	A	В	C	A
261	262	263	264	265	266	267	268	269	270	271	272	273	274	275	276	277	278	279	280
В	C	D	A	В	A	В	A	D	C	В	D	A	A	В	D	В	D	В	В
281	282	283	284	285	286	287	288	289	290	291	292	293	294	295	296	297	298	299	300
C	A	C	A	A	В	C	A	D	C	A	D	C	В	A	A	В	A	D	A
301	302	303	304	305	306	307	308	309	310	311	312	313	314	315	316	317	318	319	320
В	D	A	C	A	A	D	В	C	A	D	В	A	В	C	C	A	D	C	A
321	322	323	324	325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	340
В	C	C	D	В	A	В	D	В	A	D	В	A	A	В	В	A	D	A	C
341	342	343	344	345	346	347	348	349	350	351	352	353	354	355	356	357	358	359	360
A	A	В	A	В	D	В	C	В	C	В	C	В	A	D	A	D	A	В	C
361	362	363	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380
A	В	A	D	C	В	D	D	A	A	A	C	D	В	A	D	В	В	A	A

Vấn đề 4. Vị trí tương đối. Khoảng cách. Góc

381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400
D	В	В	В	A	В	C	D	A	A	A	В	D	D	A	A	A	В	C	A
401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
D	A	C	C	A	A	В	A	A	A	D	C	A	C	D	В	A	A	C	В
421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440
C	C	C	A	A	В	C	A	D	D	A	В	В	A	D	C	A	В	C	D
441	442	443	444	445	446	447	448	449	450	451	452	453	454	455	456	457	458	459	460
D	C	A	В	В	A	В	D	C	D	D	A	A	A	D	В	A	A	В	D
461	462	463	464	465	466	467	468	469	470	471	472	473	474	475	476	477	478	479	480
C	В	D	C	D	В	A	D	D	В	A	D	D	A	D	C	В	В	В	A
481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	500
C	В	D	A	C	A	A	C	A	В	C	D	D	C	В	В	A	C	В	A
501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	517	518	519	520
D	A	В	В	D	A	В	D	C	A	A	C	В	В	В	В	D	A	C	C

Vấn đề 5. Phương trình mặt cầu

521	522	523	524	525	526	527	528	529	530	531	532	533	534	535	536	537	538	539	540
D	A	В	C	C	D	В	C	A	C	D	A	D	C	В	A	C	C	C	D
541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560
A	A	D	C	D	В	A	D	В	A	В	A	В	C	C	В	C	D	A	C
561	562	563	564	565	566	567	568	569	570	571	572	573	574	575	576	577	578	579	580
C	A	В	D	D	A	C	C	D	D	В	C	D	В	В	A	C	A	В	C
581	582	583	584	585	586	587	588	589	590	591	592	593	594	595	596	597	598	599	600
A	В	A	A	C	A	В	A	A	C	C	A	A	D	A	В	В	A	В	D
601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620
D	В	D	A	C	D	В	A	A	D	В	D	В	В	A	A	C	A	C	A
621	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640
В	A	A	A	В	A	C	C	D	В	C	A	A	D	В	A	D	C	A	В

Vấn đề 6. Trích đề Bộ giáo dục

641	642	643	644	645	646	647	648	649	650	651	652	653	654	655	656	657	658	659	660
D	A	C	В	A	D	В	C	В	A	C	C	A	A	В	A	D	D	D	D
661	662	663	664	665	666	667	668	669	670	671	672	673	674	675	676	677	678	679	680
D	D	D	C	D	В	C	В	A	D	C	C	A	В	D	C	A	A	D	A
681	682	683	684	685	686	687	688	689	690	691	692	693	694	695	696	697	698	699	700
D	A	C	C	В	C	A	A	C	A	В	C	C	C	В	В	В	A	D	В
701	702	703	704	705	706	707	708	709	710	711	712	713	714	715	716	717	718	719	720
A	A	A	В	D	C	D	C	В	В	A	A	D	D	C	C	D	В	C	A
721	722 7 :	23 72	4 725	726	727	728 7	29 7 3	73 1	1 732	733	734 7	35 73	6 737	738	739	740 7	41 74	2 743	744
A	A	$\mathbf{C} \mid \mathbf{B}$	C	D	C	A]	D I	A	D	C	B	D I	A	C	C	B	BC	A	C