Задачи на зачет

1. На рисунке изображен график зависимости собственной концентрации носителей заряда от температуры широко используемого в микроэлектронике полупроводника. Оценив его ширину запрещенной зоны, определите материал полупроводника.

- **2.** Вычислить собственную концентрацию носителей заряда в германии при T=300 К. Эффективную массу дырок считать равной $0.36 \cdot m_0$, а электронов $-0.55 \cdot m_0$, где m_0 масса электрона в вакууме. Ширина запрещенной зоны при комнатной температуре в германии составляет 0.66 эВ. Изменится ли (и если изменится, то как) величина и тип проводимости чистого германия, если ввести в него примесь As (расстояние от уровня примеси до ближайшей разрешенной зоны 0.014 эВ)?
- **3.** Для невырожденного полупроводника, содержащего один тип однозарядных доноров, оценить изменение уровня Ферми при изменении температуры от T=0 K до T_{max} , при которой достигается экстремум уровня Ферми. $N_d=10^{15}$ см⁻³ и $m_n^* \approx m_0$.
- **4.** У кристаллов InSb диэлектрическая проницаемость $\varepsilon = 17$ и эффективная масса электронов $m^* = 0.015 \ m_0$. Исходя из водородоподобной планетарной модели атома примеси оценить радиус орбиты электрона, находящегося в InSb на примесном энергетическом уровне в основном состоянии, и энергию ионизации атома донорной примеси.
- **5.** Определить относительное изменение проводимости тонкого полупроводникового образца при стационарном освещении с интенсивностью $I=5\cdot10^{15}$ $1/c\cdot cm^2$. Коэффициент поглощения $\gamma=100$ см⁻¹; равновесная концентрация электронов составляет $n_0=10^{15}$ см⁻³; время жизни $\tau=2\cdot10^{-4}$ с; отношение подвижностей электронов и дырок $\mu_n/\mu_p\approx2$.
- **6.** При T=300 К удельное сопротивление образца собственного кремния составляет $2,3\cdot10^5$ Ом·см. Какова концентрация собственных носителей заряда? Если через образец пропустить ток, то какая его часть будет обусловлена электронами? Считать, что μ_n =1400 см²/B·c; μ_p =450 см²/B·c. Качественно объясните, будет ли постоянная Холла в данном образце отличаться от нуля.
- 7. В однородный полубесконечный электронный полупроводник на поверхности стационарно инжектируются дырки. В направлении вглубь образца приложено электрическое поле E=10 В/см. Определить, на каком расстоянии от поверхности

- образца концентрация неравновесных дырок уменьшится в 1,5 раза. Диффузионная длина дырок L_p =0,1 см.
- **8.** На примере n⁺/n⁻ контакта вывести соотношение Эйнштейна. Какими зарядами образовано встроенное электрическое поле в переходе? Качественно изобразить зонную диаграмму контакта в термодинамическом равновесии.
- 9. Определить толщину обедненной области резкого несимметричного германиевого перехода в равновесном случае и при подаче смещения +0.1 В, если концентрации легирующей примеси в p- и n-областях составляют $2 \cdot 10^{14}$ см⁻³ и $2 \cdot 10^{16}$ см⁻³, соответственно. Диэлектрическая проницаемость ϵ =16, концентрация носителей заряда в собственном полупроводнике n_i = $2 \cdot 10^{13}$ см⁻³.
- **10.**Изобразить и объяснить эквивалентную схему диода. Получить выражение для дифференциального сопротивления реального *p-n* перехода (с учетом сопротивления базы) в зависимости от внешнего напряжения.
- 11. Оценить величину плотности тока насыщения p-n перехода, если концентрации примесей в p и n областях составляют, соответственно, N_A = $2 \cdot 10^{14}$ см⁻³, N_D = $2 \cdot 10^{16}$ см⁻³. Подвижности дырок и электронов считать равными μ_p =1900 см²/Вс, μ_n =3200 см²/Вс. Времена жизни носителей заряда $\tau_p = \tau_n = 10^{-3}$ с. Концентрация носителей в собственном полупроводнике n_i = $2 \cdot 10^{13}$ см⁻³. Найти величину тока при внешнем напряжении V=+0,1 В; V=-0,5 В; V=-2 В. Площадь перехода составляет 1 мм².
- 12.Пусть имеются кремниевый и германиевый диоды одинаковой конструкции. Прямые BAX диодов изображены на рисунке. Установите соответствие номера диода и материала, из которого он изготовлен. У какого из диодов обратный ток будет больше и почему?

13.Оценить контактную разность потенциалов в германиевом p-n переходе. Удельное сопротивление p и n областей ρ =2 Ом·см. Найти высоту энергетического барьера при подаче напряжения V=+0,1 В и при V=-5 В. Нарисовать зонные диаграммы для всех случаев, соблюдая масштаб. Концентрация носителей в собственном полупроводнике n_i =2·10¹³ см⁻³. Изменится ли (и если изменится, то как) контактная разность потенциалов, если полупроводниковую структуру нагреть?

- **14.**Исходя из среднего времени свободного пробега ($\tau \approx 10^{-13}$ с), эффективной массы электронов ($m_n^* = 0.36 \cdot \mathrm{m_o}$) и ширины запрещенной зоны ($W_g = 0.66 \cdot \mathrm{pB}$) оценить напряженность поля, при которой возникает лавинный пробой в германии. Оценить напряжение пробоя в резко несимметричном германиевом p^+ -n переходе. Диэлектрическая проницаемость $\varepsilon = 16$. Концентрация доноров в n-области $N_D = 2 \cdot 10^{15} \, \mathrm{cm}^{-3}$.
- **15.**Найти контактную разность потенциалов в диоде Шоттки n-Ge/Au. Нарисовать зонную диаграмму контакта при термодинамическом равновесии. Удельное сопротивление полупроводника ρ =1 Ом·см. Работа выхода электронов из золота 4,7 эВ. Электронное сродство Ge 4 эВ, ширина запрещенной зоны W_g =0,66 эВ. Концентрация электронов в собственном германии составляет n_i =2·10¹³ см⁻³. Подвижность электронов считать равной μ_n =3500 см²/Вс. Определить толщину несмещенного перехода, если диэлектрическая проницаемость составляет ε =16.
- **16.**Имеется идеальная структура металл/диэлектрик/полупроводник n-типа. Разница энергий между уровнем Ферми и серединой запрещенной зоны в полупроводнике F- W_i = $-e\,\varphi_0$. Доказать, что при значении поверхностного потенциала ψ_s = $2\,\varphi_0$ вблизи границы полупроводника и диэлектрика будет содержаться слой инверсной проводимости. Нарисовать зонные диаграммы структуры при ψ_s =0 и при ψ_s = $2\,\varphi_0$.
- **17.**Нарисовать зонные диаграммы областей затвор-диэлектрик-полупроводник МДП-транзисторов со встроенным и индуцированным каналами *n*-типа в поперечном направлении. Объяснить разницу в морфологии приборных структур.
- **18.**Найти профиль напряженности электрического поля в базе дрейфового биполярного p-n-p транзистора при экспоненциальном распределении легирующей примеси в базе N_d = $N_0 \cdot e^{\alpha x}$, где x-координата вдоль базы (в направлении от эмиттера к коллектору). Убывающей или возрастающей должна быть зависимость концентрации примеси от координаты для получения положительного эффекта от наличия поля в базе (определить знак α)? Нарисовать зонную диаграмму в равновесном случае.
- **19.**Определить сдвиг длинноволновой границы рабочего диапазона германиевого фотодиода при его охлаждении от комнатной температуры (300 K) до температуры жидкого азота (78 K). Зависимость ширины запрещенной зоны от температуры для германия $W_g = 0.742$ $4.8 \cdot 10^{-4} \cdot T^2/(T+235)$ (эВ). Почему темновой ток германиевого фотодиода больше, чем кремниевого?
- **20.**Для барьера Шоттки вывести выражение для максимальной напряженности электрического поля в области пространственного заряда в приближении полного обеднения. Для структуры n-GaAs/Au рассчитать значение этой величины при внешнем напряжении V=0 B. Нарисовать зонную диаграмму. Концентрация легирующей примеси в полупроводнике N_d = 10^{16} см⁻³, контактная разность потенциалов V_κ =0,48 B.
- **21.**Получить выражение для крутизны полевого транзистора с управляющим p-n переходом.