

درس رقم

B = (3, 6)

 $A = (1, \frac{1}{2})$

درس : الاشتقاق

[تذكير:

B(3,6) و A(1,2) المار من (AB) و النعتبر المستقيم

$$m = \frac{y_B - y_A}{x_B - x_A} = \frac{6 - 2}{3 - 1} = 2$$
 المعامل الموجه هو

$$\vec{u} \begin{pmatrix} 1 \\ m \end{pmatrix} = \vec{u} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 متجهة موجهة هي •

 $egin{aligned} \left(AB
ight): y = \ mig(x - x_A ig) + y_A \ \end{aligned}$ معادلة ديكارتية ل $ig(AB ig): y = \ mig(x - x_B ig) + y_B \ \end{aligned}$ وكذلك $ig(AB ig): y = \ mig(x - x_B ig) + y_B \ \end{aligned}$

22 السرعة المتوسطة:

- عندما تكون المسافة d التي يقطعها جسم متحرك معبر عنها بدلالة الزمن d . d(t) = f(t) : لدينا : المسافة d التي قطعها هذا الجسم في اللحظة d هي : d
 - السرعة المتوسطة:

 $V_{m} \begin{bmatrix} t_{1}, t_{2} \end{bmatrix} = \frac{\Delta_{d}}{\Delta_{t}} = \frac{d(t_{2}) - d(t_{1})}{t_{2} - t_{1}} = \frac{f(t_{2}) - f(t_{1})}{t_{2} - t_{1}} \quad \text{a. } t_{2} \text{ a. } t_{2} \text{ i. } t_{1} \text{ a. } t_{2} \text{ i. } t_{2} \text{ a. } t_{1} \text{ a. } t_{2} \text{ i. } t_{2} \text{ a. } t_{1} \text{ i. } t_{2} \text{ a. } t_{1} \text{ a. } t_{2} \text{ i. } t_{2} \text{ a. } t_{1} \text{ a. } t_{1} \text{ a. } t_{2} \text{ a. } t_{1} \text{ a. } t_{2} \text{ a. } t_{1} \text{ a. } t_{1} \text{ a. } t_{2} \text{ a. } t_{1} \text{ a. } t_{1} \text{ a. } t_{2} \text{ a. } t_{2} \text{ a. } t_{1} \text{ a. } t_{2} \text{ a. } t_{1} \text{ a. } t_{2} \text{ a. } t_{2} \text{ a. } t_{1} \text{ a. } t_{2} \text{$

، مثال:

نفترض أن المسافة التي يقطعها جسم متحرك معبر عنها بدلالة الزمن t هي معطاة بالدالة $d(t)=f(t)=10t^2$ حيث t معبر عنها ب t و t بالساعة) .

 $oldsymbol{t}_1=2oldsymbol{t}_1=1oldsymbol{t}$ و $oldsymbol{t}_1=2oldsymbol{t}_1$ و

$$V_{\mathrm{m}}[t_{1},t_{2}] = V_{\mathrm{m}}[1,2] = \frac{\Delta_{\mathrm{d}}}{\Delta_{\mathrm{d}}} = \frac{\mathrm{d}(2) - \mathrm{d}(1)}{2 - 1} = \frac{\mathrm{f}(2) - \mathrm{f}(1)}{2 - 1} = \frac{40 - 10}{1} = 30 \text{ km/h}$$
 دينا :

ملحوظة:

الفزيائيون:

• يعبر عن تغيرات ب △.

 $\Delta y = y_2 - y_1 : y_2 = f\left(x_2\right)$ و $y_1 = f\left(x_1\right)$ و بين الأفصولين $\Delta x = x_2 - x_1 : y_2 = x_2$ ب ب عبيرات بين الأفصولين بين الأفصولين و بين الأفصولين بين الأفصولين و بين و بين الأفصولين و بين و بين

• يعبر عن تغيرات جد صغيرة ب

 Δx مثال : نعتبر $\Delta x = h$ بدلا من $\Delta x = h$ بدلا من في هذه الحالة نكتب في بدلا من في مثال : نعتبر

🔏 تمهيد:

<u>أ</u> التمهيد الأول:

- قطع عداء مسافة 5 كلم في ظرف 10 دقائق ماذا يمثل المقدار 4 km/h بالنسبة لهذا العداء ؟
 - 30 دقیقة كانت كافیة لملء صهریج حجمه $3 \, \mathrm{m}^3$. ماذا یمثل المقدار $\ell \, / \, \mathrm{min}$.
 - قطعت سيارة مسافة سافة 200 km في ظرف ساعتين . ماذا يمثل المقدار 100 km/h ؟
 - m/s ماذا يمثل المقدار m/s عن مسافة m/s ماذا يمثل المقدار m/s عن مسافة m/s . ماذا يمثل المقدار m/s عن مسافة m/s .

درس : الاشتقاق درس رق

- بعد مرور 10 ثواني من انطلاق السباق كانت سرعة العداء $10 \, \mathrm{km} / \mathrm{h}$. ماذا يمثل المقدار $10 \, \mathrm{km} / \mathrm{h}$ بالنسبة للعداء؟
 - . 80 ℓ / min : بعد مرور $_{
 m S}$ من بدء ملء الصهريج كان صبيب الماء هو . $_{
 m S}$
 - أثناء اصطدام سيارة بشجرة كانت السرعة السرعة 120 km/h. ماذا يمثل المقدار 120 km/h بالنسبة للسيارة ؟
 - السرعة البدئية لانطلاق رصاصة صيد كانت 600 m/s . ماذا يمثل المقدار 600 m/s بالنسبة للرصاصة ؟
 - أثناء إصابة الإوزة بالرصاصة كانت السرعة 300 m/s . ماذا يمثل المقدار 300 m/s بالنسبة للرصاصة ؟

النقطة التي أفصولها X_0 نقول باختصار النقطة $A\left(X_0,f\left(X_0\right)\right)$ أو أيضا النقطة التي أفصولها X_0 نقول باختصار النقطة X_0 النقطة التي أفصولها X_0

 X_0 اشتقاق دالة في نقطة X_0

1. نشاط:

سيارة سباق تصل سرعتها 4 360 km فلال 5 10 نفترض أن التسارع (l'accélération) ثابتة ؛ وهذا يطبق على السانق دافعة

أفقية تساوي وزنه ؛ حيث حركة سيارته متغيرة بانتظام ومحددة بالدالة

الزمنية
$$\mathbf{d}_{t}=\mathbf{f}\left(\mathbf{t}\right)=5$$
؛ (حيث t هي المدة الزمنية بالثانية

المسافة التي قطعتها السيارة بالمتر بعد مرور $d_t = f(t)$.

الهدف هو حساب سرعة المتسابق بعد 3 S.

1. ماهى المسافة التي قطعتها سيارة المتسابق بعد s 10 ؟

2. مثل مبيانيا ،d بدلالة .2

.3

- أ- أعط الصيغة التي تعطي $V_{\rm m} \left[3,3+h \right]$ السرعة المتوسطة لسيارة المتسابق بين اللحظتين 3 و h+3:
- . (en m/s) بـ أحسب السرعة المتوسطة من أجل \mathbf{h} في الجدول التالي

0,0001	0,001	0,01	0,1	1	h
•••••	•••••	••••••	••••••	•••••	$V_m(3,3+h)$

- $V_{
 m m}$ من خلال الجدول ماهي القيمة التي يأخذها $V_{
 m m}$ عندما $V_{
 m m}$ عندما ومن يا خلال الجدول ماهي القيمة التي يأخذها المرموز
 - 5. ماذا تمثل هذه الكمية في الفيزياء ؟
- $_{
 m X}$ أ- بصفة عامة نأخذ $_{
 m X}$ بدلا من 3 ؛ أعط الكتابة لهذه الكمية .ب- نضع : $_{
 m X}$ اكتب النهاية السابقة باستعمال المتغير $_{
 m X}$

2 مفردات:

العدد
$$t=3$$
 العدد $\lim_{h\to 0} \frac{f(3+h)-f(3)}{h}=\ell$ يسمى السرعة اللحظية للجسم في اللحظة ويسمى العدد الع

$$\lim_{h\to 0} \frac{f(3+h)-f(3)}{h} = f'(3)$$
 نكتب . $\ell = \frac{df}{dx}(3)$ أو أيضا . $\ell = f'(3)$ أو أيضا . $\ell = f'(3)$

$$(\lim_{x\to 3} \frac{f(x)-f(3)}{x-3} = f'(3)$$
 (أو أيضا

3. بصفة عامة

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية درس رقم درس رقم

درس : الاشتقاق

. ناخذ
$$X_0$$
 بدل X_0 ناخذ X_0 ناخذ X_0 ناخذ X_0 ناخذ X_0 ناخد کورنا و ن

$$\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h} = \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0) : \text{ فضع } h\to 0 \text{ فضع } X\to X_0$$
 نضع $X=X_0+h$

إذا كانت النهاية منتهية نقول إن : الدالة f قابلة للاشتقاق في X_0

أعط تعريف: للدالة f قابلة للاشتقاق في النقطة X .

🚣 تعریف:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell$$
 : فول إن الدالة f قابلة للاشتقاق في النقطة f إذا وجد عدد حقيقي f حيث f قابلة للاشتقاق في النقطة

بسمى العدد المشتق ل f في X_0 و نرمز له ب ℓ

.
$$\lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \ell = f'(x_0) \text{ أو أيضًا } \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \ell = f'(x_0)$$
نكتب

(بشرط أن تكون النهاية منتهية)
$$\mathbf{V}(\mathbf{t}_1) = \lim_{\mathbf{h} \to 0} \frac{\mathbf{d}(\mathbf{t}_1 + \mathbf{h}) - \mathbf{d}(\mathbf{t}_1)}{(\mathbf{t}_1 + \mathbf{h}) - \mathbf{t}_1} = \mathbf{f}'(\mathbf{t}_1)$$
 السرعة اللحظية في اللحظة \mathbf{t}_1 هي \mathbf{t}_1 هي $\mathbf{V}(\mathbf{t}_1)$

. $\mathbf{V}(\mathbf{t}_1) = \mathbf{d}'(\mathbf{t}_1) = \mathbf{f}'(\mathbf{t}_1)$: أو أيضا : العدد المشتق في \mathbf{t}_1 للدالة \mathbf{t}_1 للدالة أو أيضا

نفترض أن المسافة التي يقطعها جسم متحرك معبر عنها بدلالة الزمن t هي $d(t) = f(t) = 10t^2$ حيث d(t) = t معبر عنها ب h (بالساعة) .

نحسب السرعة اللحظية للجسم المتحرك في t. = 1h.

الطريقة 1:

لدينا:

$$\lim_{h \to 0} V_{m} \left[t_{1}, t_{1} + h \right] = \lim_{h \to 0} V_{m} \left[1, 1 + h \right] = \lim_{h \to 0} \frac{d \left(1 + h \right) - d \left(1 \right)}{\left(1 + h \right) - 1} = \lim_{h \to 0} \frac{f \left(1 + h \right) - f \left(1 \right)}{h}$$

$$= \lim_{h \to 0} \frac{10(1+h)^2 - 10}{h} = \lim_{h \to 0} \frac{10h^2 + 20h}{h} = \lim_{h \to 0} 10h + 20 = 20$$

 $.V(t_1) = 20$ km هي $t_1 = 1h$ خلاصة : السرعة اللحظية في اللحظة

$$t_1 = 1h$$
 ومنه السرعة اللحظية في اللحظة $t_1 = 1h$ هي الدينا

$$\mathbf{V}(\mathbf{t}_1) = \mathbf{d}'(\mathbf{t}_1) = \mathbf{f}'(\mathbf{t}_1) = (10\mathbf{t}^2)'_{(t=1)} = (20\mathbf{t})_{(t=1)} = 20 \times 1 = 20$$

<u>B</u>. التأويل الهندسي للعدد المشتق مماس لمنحنى دالة في نقطة:

$$A_0$$
 أي M , A من المنحنى A قابلة للاشتقاق في النقطة M , A أي A و A A و A

/-(T)

 $f(x)=2x^2$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس: الاشتقاق درس رق

- . (AM) و متجهة موجهة ل (AM) .
- \mathbf{x} عندما \mathbf{x} تؤول إلى \mathbf{x} ما هو الوضع الذي يأخذه المستقيم ($\mathbf{A}\mathbf{M}$) وحدد معامله الموجه.
 - (T) أعط المعادلة المختزلة للمماس (T) ثم استنتج المعادلة الديكارتية للمماس (T).

2. خاصية:

 $(C_{\hat{i}}; ec{i}; ec{j})$ منحنی f في معلم لنقطة X_0 و $(C_{\hat{i}})$ منحنی النقطة $(C_{\hat{i}}; ec{i})$.

- (\mathbf{x}_0 المماس لمنحنى الدالة \mathbf{f} في النقطة $\mathbf{f}(\mathbf{x}_0)$ هو المعامل الموجه للمستقيم $\mathbf{f}(\mathbf{x}_0)$ المماس لمنحنى الدالة \mathbf{f} في النقطة $\mathbf{f}(\mathbf{x}_0)$ هو المعامل الموجه للمستقيم $\mathbf{f}(\mathbf{x}_0)$
 - (T): $y = (x x_0) f'(x_0) + f(x_0)$ هي $A \begin{pmatrix} x_0 \\ f(x_0) \end{pmatrix}$ هي (C_f) معادلة المماس ل

3. مثال:

 $f\left(x
ight)=2x^{2}$ مع $X_{0}=1$ أوجد معادلة المماس $\left(C_{f}
ight)$ ل $\left(C_{f}
ight)$ في النقطة

 $(T): y = (x-1) \times 4 + 2$ المعادلة هي (T): y = (x-1)f'(1) + f(1) اي

 $\ddot{\mathbf{u}}(\mathbf{1,4})=\mathbf{1}\ddot{\mathbf{i}}+4\ddot{\mathbf{j}}$: إذن المعامل الموجه هو $\mathbf{m}=4$ و متجهة موجهة له هي

f(1) = 2 مع A(1,f(1)) انظلاقا من

- $\overrightarrow{BC} = 4\overrightarrow{j}$ عيث: $\overrightarrow{AB} = 1\overrightarrow{i}$ عيث: $\overrightarrow{AB} = 1\overrightarrow{i}$
 - $oldsymbol{AC}$ ومنه المستقيم $oldsymbol{AC}$ هو المماس $oldsymbol{T}$ ل $oldsymbol{C_f}$ في
- ا لرسم المماس يكفي إن نرسم قطعة منتصفها $oldsymbol{\Lambda}$ و في كل طرف نضع سهم . $\underline{oldsymbol{C}}$. تقريب دالة قابلة للاشتقاق في نقطة بدالة تآلفية . (أو التقريب الرقمي interprétation numérique)

📘 ملحوظة:

Aig(a,fig(aig) بجوار النقطة f(x) بجوار النقطة g(x)=mx+p تقريب تآلفي لدالة f(x) بجوار النقطة g(x)=mx+p المنحنى g(x)=mx+p المنحنى g(x)=mx+p المنحنى في هذه النقطة يتقاربان جدا.

. (C_f) للمنحنى الدالة (C_f) منحنى الدالة (C_f) منحنى الدالة (C_f) من المماس بنقطة والنقطة النقطة المالة المالة المالة المنحنى الدالة المالة المال

درس: الاشتقاق درس رق

. f نلاحظ: في النقطة Aig(a,fig(aig) منحنى الدالة f يقترب من المماس

• عندما x تقترب من a. (أي نضع x=a+h مع x=a+h) و في هذه الحالة فإن النقطة x تقترب من النقطة x ومنه الأرتوبين x عندما x تقترب من النقطة x ومنه الأرتوبين x ل x ومنه الأرتوبين x في x ومنه القيمة ومنه x ومنه القيمة ومنه x وفي هذه الحالة فإن النقطة x ومنه القيمة ومنه x ومنه القيمة ومنه x ومنه الأرتوبين

2 تعریف :

لتكن f دالة قابلة للاشتقاق في a من I .

- الدالة a:u:x o f(a)+(x-a) تسمى الدالة u:x o f(a)+(x-a)) تسمى الدالة التآلفية المماسة و الدالة a:u:x o f(a)
 - عندما x تقترب جدا من a العدد a العدد f(x)+(x-a)f'(a) هو تقریب تآلفی ل a بجوار a و نكتب :

$$f(x) \approx f(a) + (x-a)f'(a)$$

(x-a=h) مع $f\left(a+h\right)pprox$ ه و تقريب تآلفي ل $f\left(a+h\right)$ بجوار الصفر و نكتب و نكتب $f\left(a+h\right)$ هو تقريب تآلفي ل $f\left(a+h\right)$

.3 أمثلة :

أ- مثال 1:

a=1 و $f(x)=x^2$ مع f(1+h) و $f(x)=x^2$

 $f(1+h) \approx hf'(1) + f(1) \approx 2h+1$ هو $f(1+h) \approx hf'(1) + f(1) = 2$ دالة قابلة للاشتقاق في النقطة 1 مع $f(1+h) = f(1+h) = (1+h)^2 \approx 2h+1$ خلاصة : $f(1+h) = (1+h)^2 \approx 2h+1$

- ، تطبيق للنتيجة:
- $f(1+0,001) \approx 1,002$: ومنه $f(1,001) = f(1+0,001) \approx 2 \times 0,001 + 1$ h = 0,001 خذ
 - $1,002 \approx 1,002001$: نتحقق: $f(1,001) = (1,001)^2 = 1,002001$: نتحقق: -
 - -1 تقنیة حساب : $(1+h)^2$ مع h قریبا جدا من نحسب الم

ب- مثال 2:

ا مجد تقريب تآلفي للعدد $\sqrt{9,002}$.

$$\sqrt{9,002} = f(9+0,002)$$
 : فضع $f(x) = \sqrt{x}$ و $a = 9$ و $f(x) = \sqrt{x}$

1. نحسب العدد المشتق ل f في 9.

$$\lim_{h\to 0} \frac{f(9+h)-f(9)}{h} = \lim_{x\to 9} \frac{f(x)-f(9)}{x-9} = \lim_{x\to 9} \frac{\sqrt{x}-3}{x-9} = \lim_{x\to 9} \frac{\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}+3\right)} = \lim_{x\to 9} \frac{\cancel{1}}{\left(\sqrt{x}+3\right)} = \frac{1}{6} \in \mathbb{R}$$

 $f'(9) = \frac{1}{6}$ و العدد المشتق في 9 هو $f'(9) = \frac{1}{6}$ و العدد المشتق في 9 هو العدد الع

 $\sqrt{9,002}$ نجد تقريب تآلفي للعدد $\sqrt{9,002}$.

$$f(9+0,002) \approx \sqrt{9}+0,002 \times \frac{1}{6}$$
 ومنه: $f(9+0,002) \approx f(9)+0,002 \times f'(9)$ ومنه:

 $f(9+0,002) \approx 3,000333333333333$!

 $3 imes 10^{-8}$ نلاحظ: 3,000333333 pprox 3,000333333 أم الآلة الحاسبة تعطي لنا : 3,000333333 $\sim 3,0003333333$ إذن الدقة ل

درس: الاشتقاق درس رهٔ

4. ملحوظة

- . $f(1+h)=(1+h)^2\approx 1+2h$: لدينا a=1 و $f(x)=x^2$: بالنسبة للدالة
- . $f(1+h)=(1+h)^3\approx 1+3h$: لدينا a=1 و $f(x)=x^3$: بالنسبة للدالة
 - . $f(1+h) = \sqrt{1+h} \approx 1 + \frac{h}{2}$ لدينا a = 1 و $f(x) = \sqrt{x}$: بالنسبة للدالة
 - . $f(1+h) = \frac{1}{1+h} \approx 1-h$ د a = 1 و a = 1 و $f(x) = \frac{1}{x}$: بالنسبة للدالة .

III. الاشتقاق على اليمين – الاشتقاق على اليسار.

<u>.A</u> العدد المشتق على اليمين – على اليسار:

1. نشاط:

.
$$\lim_{x \to 1^-} \frac{f(x) - f(1)}{x - 1}$$
 ; $\lim_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$: أحسب ما يلي $\int_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$. أحسب ما يلي $\int_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$. أحسب ما يلي $\int_{x \to 1^+} \frac{f(x) - f(1)}{x - 1}$.

1 مفردات:

 $f'_{d}(1)=2$ فابلة للاشتقاق على يمين 1 و العدد المشتق على اليمين هو:

نقول إن f قابلة للاشتقاق على يسار f و العدد المشتق على اليسار هو: $f'_{g}(1)=6$. ومنه f غير قابلة للاشتقاق في f

- $\mathbf{1}$ أعط تعريف للاشتقاق على اليمين ثم على اليسار في النقطة \mathbf{X}_0
- 2) أعط الخاصية التي تربط الاشتقاق و الاشتقاق على اليمين و على الاشتقاق اليسار.

2. تعریف:

- - . X_0 العدد f_d ' (X_0) يسمى العدد المشتق على اليمين في f_d ' (X_0) . I دالة عددية معرفة على f على يسار f

 $\lim_{x \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h} = \ell_g = f_d'(x_0)$ حيث: ℓ_g حيث: χ_0 يسمى العدد المشتق على اليسار في χ_0 العدد χ_0 يسمى العدد المشتق على اليسار في χ_0

x_0 خاصية: التأويل الهندسي لنصفي المماس في عند x_0

. X_0 دالة عددية معرفة على مجال مفتوح Iيحتوي على f

. $f_d'(x_0) = f_g'(x_0)$ و X_0 و يكافئ f قابلة للاشتقاق على يمين و يسار و X_0 و لنقطة X_0 دالة قابلة للاشتقاق في النقطة X_0

- \mathbf{x}_0 لتأويل الهندسي لنصفي المماس في \mathbf{x}_0 :
- __ معادلة نصف مماس على اليمين _ على اليسار:

در س رقم

درس : الاشتقاق

.
$$f'_{g}(-2) = -2$$
 و $f'_{d}(-2) = 3$: لاینا $\begin{cases} f(x) = (x+3)^{3} + 2 & ; x \ge -2 \\ f(x) = -(x+3)^{2} + 4 & ; x < -2 \end{cases}$

معادلتي نصفي المماس:

.
$$x \ge X_0$$
 على اليمين: $(T_d): y = (x - x_0)f_d'(x_0) + f(x_0)$ مع

$$X \le X_0$$
 على اليسار: $y = (x - x_0) f_g'(x_0) + f(x_0)$ مع

2. تمرین:

$$\mathbf{x}_0 = \mathbf{3}$$
 في \mathbf{f} . أدرس اشتقاق \mathbf{f} في $\mathbf{f}(\mathbf{x}) = |\mathbf{x} - \mathbf{3}|$

$$f(x) = \sqrt{(x+1)(+2)}$$
 نصف مماس الموازي لمحور الأراتيب: 3

$$. \ \lim_{x \to \left(x_{0}\right)^{+}} = \frac{f\left(x\right) - f\left(x^{\,\prime}\right)}{x - x^{\,\prime}} = \infty \quad \text{e} \quad \lim_{x \to \left(x_{0}\right)^{+}} f\left(x\right) = f\left(x_{0}\right) \\ \stackrel{!}{=} \quad \text{e} \quad \text{e} \quad \frac{1}{x} = \frac{1}{x} \left(x_{0}\right) + \frac{1}{x}$$

 $m{1}$ فهذه الحالة $m{C}_{
m f}$ له نصف مماس عمودي (أو موازي لمحور الأراتيب) على يمين النقطة $m{M}m{X}_0,m{f}m{X}_0$. مثال $m{M}$

.
$$\lim_{x \to (x_0)^-} = \frac{f(x) - f(x')}{x - x'} = \infty$$
 و $\lim_{x \to (x_0)^-} f(x) = f(x_0)$ علی یسار $\lim_{x \to (x_0)^-} f(x) = \lim_{x \to (x_0)^-} f($

 $x \to -1^-$ مثال $\mathbf{M}ig(x_0, fig(x_0ig)ig)$ له نصف مماس عمودي (أو موازي لمحور الأراتيب) على يسار النقطة \mathbf{C}_f له نصف مماس عمودي (أو موازي لمحور الأراتيب) على يسار النقطة

4. نقطة مزواة:

الحالة التي يكون فيها نصفي مماس لنفس النقطة $A(x_0,f(x_0))$ ليس لهما نفس الحامل (ليس لهما نفس المعامل الموجه) في هذه الحالة النقطة $A(x_0,f(x_0))$ تسمى نقطة مزواة .

. (point anguleux) هي نقطة مزواة $A\left(-2,3\right)$ مثال 1 : المثال السابق النقطة

مثال 2: النقطة $\mathbf{A}(2,0)$ هي نقطة مزواة :

<u>IV</u> الاشتقاق على مجال:

. $\left[a,b\right[$ على شكل $\left]a,b\right[$ مجال على شكل $\left[a,b\right]$

درس: الاشتقاق درس رق

تعریف:

. I من X_0 نقول إن دالة عددية f قابلة للاشتقاق على $I=\left[a;b\right]$ على المنافئ أن $I=\left[a;b\right]$ من

. a نقول إن دالة عددية f قابلة للاشتقاق على a يكافئ a قابلة للاشتقاق على اa قابلة للاشتقاق على يمين a .

V. الدالة المشتقة لدالة عددية f:

1. تعریف:

f دالة عددية قابلة للاشتقاق على مجال I.

g=f' الدالة g التي تربط كل عنصر x من g بالعدد g تسمى الدالة المشتقة ل g و نرمز لها ب

g=f ونرمز لها ب' $g:I o\mathbb{R}$ تسمى الدالة المشتقة ل $g:I\to\mathbb{R}$ ونرمز لها ب' $g:I\to\mathbb{R}$ المعرفة ب $g:I\to\mathbb{R}$ ونرمز لها ب

2. نشاط:

 $\mathbf{p}_{\mathbf{f}}(\mathbf{x}) = \mathbf{c} \; \mathbf{g}(\mathbf{c} \in \mathbb{R}) :$ حيث $\mathbf{D}_{\mathbf{f}} = \mathbf{R}$ حدد الدالة المشتقة ' \mathbf{f} ل \mathbf{f} على

3. خاصية:

f دالة عددية قابلة للاشتقاق على مجال I و ' f الدالة المشتقة ل f على I .

- . f'(x)=(c)'=0 هي $I=\mathbb{R}$ هي $I=\mathbb{R}$ و دالتها المشتقة على $I=\mathbb{R}$ هي أ. f(x)=c و الدالة الثابتة والدالة الثابتة المشتقة على الدالة الثابتة المشتقاق على الدالة الثابتة المشتقاق على الدالة الثابتة والدالة الثابتة الدالة الدالة الدالة الثابتة الدالة الدالة
- الدالة التطبيق المطابق على $I=\mathbb{R}$ هي $f(x)=x:\mathbb{R}$ قابلة للاشتقاق على $I=\mathbb{R}$ و دالتها المشتقة على $I=\mathbb{R}$ هي I=1
 - $\mathbf{f}'(\mathbf{x}) = \mathbf{f}'(\mathbf{x})' = \mathbf{2}\mathbf{x}$ هي $\mathbf{I} = \mathbb{R}$ هي $\mathbf{I} = \mathbb{R}$ و دالتها المشتقة على $\mathbf{I} = \mathbf{I}$ هي $\mathbf{I} = \mathbf{I}$
 - $\mathbf{f'(x)} = \mathbf{f'(x)} = \mathbf{f'(x)} = \mathbf{a}$ هي $\mathbf{I} = \mathbb{R}$ هي $\mathbf{I} = \mathbb{R}$ هي $\mathbf{I} = \mathbf{x}$ الدالة المكعب : $\mathbf{f'(x)} = \mathbf{f'(x)} = \mathbf{a}$
- . $f'(x) = (x^n)' = nx^{n-1}$ هي $I = \mathbb{R}$ هي $I = \mathbb{R}$ و دائتها المشتقة على $I = \mathbb{R}$ هي $f(x) = x^n : n$
- $\mathbf{f}'(\mathbf{x}) = \left(rac{1}{\mathbf{x}}
 ight)' = -rac{1}{\mathbf{x}^2}$ هي $\mathbf{I} = \mathbb{R} \setminus \left\{0\right\}$ هي $\mathbf{I} = \mathbb{R} \setminus \left\{0\right\}$ قابلة للاشتقاق على $\mathbf{I} = \mathbb{R} \setminus \left\{0\right\}$ و دالتها المشتقة على $\mathbf{I} = \mathbb{R} \setminus \left\{0\right\}$ هي الدالة المقلوب:
 - الدالة الجذر المربع : $f(x)=\sqrt{x}$ قابلة للاشتقاق على $f(x)=\sqrt{x}$ و دالتها المشتقة على $f(x)=\sqrt{x}$ هي

$$f'(x) = (\sqrt{x})' = \frac{1}{2\sqrt{x}}$$

. f الدالة المشتقة الثانية – المشتقات المتتالية (أو المتتابعة) لدالة $\underline{ extbf{VI}}$

1. نشاط:

? \mathbb{R} هل f قابلة للاشتقاق على \mathbb{R} ثم أعط دالتها المشتقة ' f ؛ g هل g بدورها قابلة للاشتقاق على \mathbb{R} ?

2. مفردات:

- . $(f'(x))' = f''(x) = f^{(2)}(x)$: نرمز لها ب نرمز المشتقة ل f' تسمى المشتقة الثانية ل f' نرمز الها ب المشتقة الثانية ل f'
- $(\mathbf{f}^{(2)})' = \mathbf{f}^{(3)}$ بدورها قابلة للاشتقاق على \mathbf{f} فدالتها المشتقة $(\mathbf{f}^{(2)})'(x)$ تسمى المشتقة الثالثة ل \mathbf{f} ونرمز لها ب $\mathbf{f}^{(3)}$ =

درس: الاشتقاق درس را

3 بصفة عامة:

المشتقة من الرتبة n للدالة f (أي $f^{(n)}(x)$) هي المشتقة ل $f^{(n-1)}(x)$ (أي المشتقة من الرتبة n ونرمز لها ب:

$$\mathbf{f}^{(n)}(\mathbf{x}) = (\mathbf{f}^{(n-1)})'(\mathbf{x})$$

 $f(x) = \frac{1}{x^2} - f(x) = x^5 - 1$ جيث: أحسب $f^{(3)}(x)$ جيث $f^{(3)}(x)$

<u>VII</u>. العمليات على الدوال المشتقة:

أ. نشاط:

نتكن g f دالتين قابلتين للاشتقاق في X₀

- \mathbf{X}_0 هل الدالة $\mathbf{f}+\mathbf{g}$ قابلة للاشتقاق في (1
- $(fg)^{'}(x) = f'(x)g(x) + f(x)g'(x)$ الدالة $f \times g$ قابلة للاشتقاق على مجال I و دالتها المشتقة تحقق ما يلي : f^n شم $f^a = f \times f \times f$ ثم $f^a = f \times f \times f$
 - . I الدالة $g(x) \neq 0$ قابلة للاشتقاق على مجال الحيث: $g(x) = -\frac{g'(x)}{g^2(x)}$ على مجال 3 (3)

استنتج أن الدالة $rac{\mathbf{f}}{\mathbf{g}}$ قابلة للاشتقاق على مجال \mathbf{I} ثم استنتج كتابة للدالة المشتقة ل $rac{\mathbf{f}}{\mathbf{g}}$.

4) أعط الخاصيات.

2. خاصیات:

لتكن f و g دالتين قابلتين للاشتقاق على مجال I.

(f+g)'(x)=f'(x)+g'(x) و I و الدالة f+g قابلة للاشتقاق على مجال

(fg)'(x) = f'(x)g(x) + f(x)g'(x) و الدالة $f \times g$ قابلة للاشتقاق على مجال ا و $f \times g$

I الدالة $g(x) \neq 0$ قابلة للاشتقاق على مجال I و $g^2(x) = -\frac{g'(x)}{g^2(x)}$ على مجال I

 $g(x) \neq 0$ الدالة $\left(\frac{f}{g}\right)'(x) = \frac{f'(x)g(x)-f(x)g'(x)}{g^2(x)}$ على مجال $g(x) \neq 0$ مع شرط $g(x) \neq 0$ على مجال $g(x) \neq 0$

$$f(x) = 3x^2 + 5x + 7$$
 (6; $f(x) = 5x + 7$ (4; $f(x) = 5x$ (3; $f(x) = x$ (2; $f(x) = 7$ (1) مثال: أحسب $f(x) = 3x^2 + 5x + 7$

: $f(ax+b) - f^n(x) - g(x) = \sqrt{f(x)}$ اشتقاق الدوال : الحدودية – الجذرية – الجذرية . \underline{VIII}

🚣 اشتقاق الدوال الحدودية - الدوال الجذرية:

1 خاصیات:

- $\mathbf{n}\in\mathbb{N}^*$ و $(\mathbf{a}\mathbf{x}^{\mathrm{n}})'=\mathbf{n}\mathbf{a}\mathbf{x}^{\mathrm{n}-1}$ مع $\mathbf{D}_{\mathrm{f}}=\mathbb{R}$ و $\mathbf{n}\in\mathbb{N}^*$
 - $\mathbf{D}_{\!\scriptscriptstyle f}$ كل دالة جذرية قابلة للاشتقاق على مجموعة تعريفها

درس: الاشتقاق درس را

 $f^n(x)$ اشتقاق الدالة (B

1 خاصية:

f قابلة للاشتقاق على مجال I.

$$(\mathbf{f}^{\mathrm{n}})'(\mathbf{x}) = \mathbf{n}\mathbf{f}^{\mathrm{n-1}}(\mathbf{x})\mathbf{f}'(\mathbf{x})$$
 الدالة $(\mathbf{n} \in \mathbb{N}^*)$ قابلة للاشتقاق على \mathbf{I} و لدينا

 $\left(f^{p}\right)'(x)=pf^{p-1}\left(x\right)f'(x)$ لكل $f(x)\neq0$ قابلة للاشتقاق على I و لدينا $f(x)\neq0$ الدالة $f(x)\neq0$

$$g'(x)$$
 نحسب. $g(x) = (-2x^4 + 5x^2 + x - 3)^7$

$$g'(x) = \left[(-2x^4 + x - 3)^7 \right]' = 7(-2x^4 + x - 3)^6 (-2x^4 + x - 3)' = 7(-2x^4 + x - 3)^6 (-8x^3 + 1)' = 7(-2x^4 + x - 3)^6 (-8x^4 + x - 3)' = 7(-2x^4 + x - 3)^6 (-8x^4 + x - 3)' = 7(-2x^4 + x - 3$$

f(ax+b): اشتقاق الدوال التي على شكل \underline{C}

خاصیة:

 $ax+b\in I$ على مجال $ax+b\in I$ على مجال $ax+b\in I$ قابلة للاشتقاق على مجال $ax+b\in I$ على مجال $ax+b\in I$

$$\forall x \in J \; ; g'(x) = [f(ax+b)]' = af'(ax+b)$$
 الدالة $g: x \mapsto g(x) = f(ax+b)$ الدالة ا

$$g(x) = \sin(5x+3)$$
 مثال: نضع $g(x) = \sin(x)$ اُحسب: $g(x) = \cos(x)$

$$\sqrt{f(x)}$$
: اشتقاق الدوال التي على شكل الدوال

1. خاصية:

f دالة موجبة قطعا و قابلة للاشتقاق على مجال I .

.
$$\forall x \in I: \left(\sqrt{f(x)}\right)' = \frac{f'(x)}{2 \times \sqrt{f(x)}}$$
 الدالة $g(x) = \sqrt{f(x)}$ قابلة للاشتقاق على مجال $g(x) = \sqrt{f(x)}$

$$\left(g(x)\right)' = \left(\sqrt{x^6 + 5x^2 + 1}\right)' = \frac{\left(x^6 + 5x^2 + 1\right)'}{2 \times \sqrt{x^6 + 5x^2 + 1}} = \frac{(6x^5 + 10x)}{2 \times \sqrt{x^6 + 5x^2 + 1}}$$
 لدينا . $g(x) = \sqrt{x^6 + 5x^2 + 1}$. $g(x) = \sqrt{x^6 + 5x^2 + 1}$

IX. اشتقاق الدوال المثلثية:

 $f(x) = \cos(x)$ نشاط: نعتبر الدالة .

$$\mathbb{R}$$
بين أن f قابلة للاشتقاق في X_0 من X_0 بين أن $g(x) = \sin(x)$ قابلة للاشتقاق في X_0 من X_0

. عط الخاصيات $g(x)=\tan(x)$ بين أن $g(x)=\tan(x)$ قابلة للاشتقاق في x_0 حيث x_0 حيث $g(x)=\tan(x)$

1 خاصية

$$f'(x) = (\cos(x))' = -\sin(x)$$
 و . \mathbb{R} و فابلة للشنقاق على f(x) = $\cos(x)$

. f '(x)=(
$$\sin(x)$$
)'= $\cos(x)$ و الدالة $f(x)=\sin(x)$ قابلة للاشتقاق على $\mathbb R$

$$\mathbf{f'}(\mathbf{x}) = (an(\mathbf{x}))' = 1 + an^2(\mathbf{x})$$
 و $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + \mathbf{k}\pi \; ; \; \mathbf{k} \in \mathbb{Z} \right\}$ قابلة للاشتقاق على $\mathbf{f}(\mathbf{x}) = an(\mathbf{x})$ قابلة للاشتقاق على الدالة $\mathbf{f}(\mathbf{x}) = \mathbf{tan}(\mathbf{x})$

. نتائج

$$(\tan(ax+b))' = a(1+\tan^2(ax+b))$$
 $(\sin(ax+b))' = a\cos(ax+b)$ $(\cos(ax+b))' = -a\sin(ax+b)$

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية درس : الاشتقاق درس رقم

درس : الاشتقاق

 $f(x) = 3\sin(9x+3) - 4\cos^3(8x-1) + 3\tan^6(7x+3)$: مثال : احسب f' مع

X. جدول الدوال المشتقة للدوال الاعتيادية:

\mathbf{f}' مجموعة تعريف $\mathbf{D}_{\mathbf{f}'}$	الدالة المشتقة ' f	$_{ m f}$ مجموعة تعريف $_{ m f}$	الدالة f
$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$	f'(x) = 0	$\mathbf{D_f} = \mathbb{R}$	f(x)=a
$\mathbf{D}_{\mathbf{f}^+} = \mathbb{R}$	f'(x)=1	$\mathbf{D_f} = \mathbb{R}$	f(x) = x
$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}$	$\mathbf{D}_{\mathbf{f}'} = \mathbb{R} \qquad \qquad \mathbf{f}'(\mathbf{x}) = \mathbf{n}\mathbf{x}^{\mathbf{n}-1}$		$\mathbf{n} \in \mathbb{N}^* \setminus \{1\} : \mathbf{f}(\mathbf{x}) = \mathbf{x}^n$
$\mathbf{D}_{\mathbf{f}^+} = \mathbb{R}^*$	$f'(x) = nx^{n-1}$	$\mathbf{D_f} = \mathbb{R}$	$\mathbf{n} \in \mathbb{Z}^* \setminus \{1\} : \mathbf{f}(\mathbf{x}) = \mathbf{x}^{\mathbf{n}}$
$\mathbf{D}_{\mathbf{f}^{+}} = \left]0, +\infty\right[$	$f'(x) = \frac{1}{2\sqrt{x}}$	$D_f = [0, +\infty[$	$f(x) = \sqrt{x}$
$\mathbf{D}_{\mathbf{f'}} = \mathbb{R}^*$	$f'(x) = -\frac{1}{x^2}$	$\mathbf{D_f} = \mathbb{R}^*$	$f(x) = \frac{1}{x}$
$\mathbf{D}_{\mathbf{f}^{+}} = \mathbb{R}$	$f'(x) = \cos x$	$\mathbf{D_f} = \mathbb{R}$	$f(x) = \sin x$
$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$	$f'(x) = -\sin x$	$\mathbf{D_f} = \mathbb{R}$	$f(x) = \cos x$
$x \neq \frac{\pi}{2} + k\pi$	$f'(x) = 1 + \tan^2 x$	$x \neq \frac{\pi}{2} + k\pi; k \in \mathbb{Z}$	$f(x) = \tan x$
$x \in D_{g} / g(x) > 0$	$f'(x) = \frac{g'(x)}{2 \times \sqrt{g(x)}}$	$x \in D_{g} / g(x) \ge 0$	$f(x) = \sqrt{g(x)}$
$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$	$f'(x) = a\cos(ax+b)$	$\mathbf{D_f} = \mathbb{R}$	$f(x) = \sin(ax + b)$
$\mathbf{D}_{\mathbf{f}'} = \mathbb{R}$	$f'(x) = -a \sin(ax + b)$	$\mathbf{D_f} = \mathbb{R}$	$f(x) = \cos(ax + b)$
$ax + b \neq \frac{\pi}{2} + k\pi$	$f'(x) = a \left[1 + \tan^2(ax + b)\right]$	$ax + b \neq \frac{\pi}{2} + k\pi$	$f(x) = \tan(ax + b)$
$\mathbb{R}\setminus\left\{\frac{-\mathbf{d}}{\mathbf{c}}\right\};\mathbf{c}\neq0$	$f'(x) = \frac{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}{(cx+d)^2}$	$\mathbb{R}\setminus\left\{\frac{-\mathbf{d}}{\mathbf{c}}\right\};\mathbf{c}\neq0$	$f(x) = \frac{ax + b}{cx + d}$

قواعد الاشتقاق:

$\left(\frac{1}{g}\right)' = -\frac{g'}{g^2}$	المقلوب	(f+g)'=f'+g'	الجمع
$\left(\frac{\mathbf{f}}{\mathbf{g}}\right)' = \frac{\mathbf{f}'\mathbf{g} - \mathbf{f}\mathbf{g}'}{\mathbf{g}^2}$	الخارج	$(\alpha f)' = \alpha f'$ $(fg)' = f'g + fg'$	الجداء رقم 1 الجداء رقم 2
$\left(\sqrt{f}\right)' = \frac{f'}{2\sqrt{f}}$	الجذر المريع	$(f^{n})' = n \times f' \times f^{n-1}$ $(f(ax+b))' = af'(ax+b)$	القوى نوع آخر

درس رقم

 (C_f)

 $f(x) = x^2$

درس : الاشتقاق

X. المشتقة الأولى و تطبيقاتها:

ملحوظة:

 (C_f, \vec{i}, \vec{j}) منحناها في (a, a, a) معلم متعامد ممنظم منظم (C_f). (a, \vec{i}, \vec{j}) منحناها في (a, a, a)

A. رتابة دالة عددية وإشارة 'f:

آ. نشاط:

 $f(x) = x^2$ الرسم الآتي يمثل منحنى الدالة

- f f ' لدينا f f تزايدية على f g اعط f f ثم إشارة f f .
- f ' أعط f ' أعط f ثم إشارة f على f ما هي رتابة f على أ
 - 3) أعط الخاصية ؟ ثم الخاصية العكسية.

f دالة قابلة للاشتقاق على مجال I

- إذا كانت f تزايدية على I فإن $\forall x \in I : f'(x) \ge 0$.
- . $\forall x \in I : f'(x) \le 0$ فإن I = I تناقصية على ا
- . $\forall x \in I : f'(x) = 0$ فإن I فابتة على I

<u>3.</u> برهان :

نعتبر الحالة 1: f دالة قابلة للاشتقاق على مجال I و f تزايدية على I.

$$\mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \geq \mathbf{0} \text{ (i.i. } \mathbf{f} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x}_0)}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{x}_0} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{g}(\mathbf{x})} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{g}(\mathbf{x})} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{x})}{\mathbf{x} - \mathbf{g}(\mathbf{x})} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{g}(\mathbf{x})}{\mathbf{x} - \mathbf{g}(\mathbf{x})} \text{ (i.i. } \mathbf{g}(\mathbf{x}) = \frac{\mathbf{f}(\mathbf{x}) - \mathbf{g}(\mathbf{x})}{\mathbf{x} - \mathbf$$

بمأن f دالة قابلة للاشتقاق على مجال I و X_0 من I إذن f قابلة للاشتقاق في X_0 و بالتالي g(x) لها نهاية منتهية في X_0 و منه

. (خاصیات النهایات و الترتیب).
$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0) \ge 0$$

 $orall \mathbf{x}_0 \in \mathbf{I} : \mathbf{f}'ig(\mathbf{x}_0ig) \geq \mathbf{0}$ و بمأن ذلك لكل \mathbf{X}_0 من \mathbf{I} فإن

. $\forall x \in I : f'(x) \ge 0$ خلاصة

نعتبر الحالة 2: f دالة قابلة للاشتقاق على مجال I و f تناقصية على I.
 بنفس الطريقة نبين على صحة ذلك .

4 خاصية: (تقبل)

f قابلة للاشتقاق على مجال I .

- إذا كانت ' f موجبة قطعا على أ (يمكن للدالة ' f أن تنعدم في نقط منعزلة من I وهذا لا يؤثر على رتابة f) فإن f تزايدية قطعا على I
 - إذا كانت ' f سالبة قطعا على I (يمكن للدالة ' f أن تنعدم في نقط منعزلة من I) فإن f تناقصية قطعا على I.
 - ا إذا كانت ' f منعدمة على I (على ال بكامله) فإن f ثابتة على I.

<u>.5</u> مثال :

. $f(x) = (2x+4)^2$ مع \mathbb{R} مع وأدرس تغيرات أدرس

$$f'(x) = [(2x+4)^2]'$$
 : الدينا : $f'(x) = 2(2x+4)'(2x+4) = 2 \times 2(2x+4) = 8x+16$

f'

f(a)=3

الأستاذ: بنموسى محمد ثانوية: عمر بن عبد العزيز المستوى: 1 علوم رياضية

درس رقم درس : الاشتقاق

f(-2)=0

$f'(x) \ge 0 \Leftrightarrow 8x + 16 \ge 0$	لدين	:f'	2) إشارة
---	------	-----	----------

 \Leftrightarrow x \geq -2

 $[-\infty,-2]$ و سالب على $[-2,+\infty]$ و أبن f : $[-2,+\infty]$

3) جدول تغیرات f:

B. مطارف دالة عددية قابلة للاشتقاق.

1. نشاط:

المنحنى الآتى يمثل دالة قابلة للاشتقاق

على مجال مفتوح a .I عنصر من I.

a) هل f تقبل مطراف في a ؟

2) أعط قيمة ل (a) . f

3) أعط الخاصية.

f دالة قابلة للاشتقاق على مجال مفتوح a . I عنصر من f

(a)=0 فإن a قابلة للاشتقاق في النقطة a و تقبل مطراف في النقطة a فإن a

3. ملحوظة:

f (a)=0 إذا كان f (a) فهذا لا يعنى بالضرورة أن f مطراف للدالة f

<u>4.</u> مثال:

$$f'(0) = 0$$
: ومنه $f'(x) = 6x^2$: لدينا $f(x) = 2x^3$

ولكن f(0) ليس مطراف ل f.

<u>5.</u> خاصية:

I دالة قابلة للاشتقاق على مجال مفتوح a . I عنصر من fأِذَا كَانَت f تنعدم في النقطة a و f تتغير إشارتها بجوار a فإن f مطراف ل f .

$y''+\omega^2y=0$ معادلة تفاضلية على شكل. XII

في هذه الفقرة نرمز لدالة f ب y و f ب v و "f ب "v و " m ب

الكتابة التالية: $\mathbf{E}:5$ + \mathbf{y}' - \mathbf{y}' - \mathbf{y}' الأعداد $\mathbf{E}:5$ تسمى معادلة تفاضلية من الدرجة 2 (أو من الرتبة 2). الأعداد 5 و 3– و 7 و 2 تسمى معاملات ثابتة للمعادلة التفاضلية (E) بمأن الطرف الثاني للمعادلة منعدم نقول أن المعادلة بدون طرف ثاني .

مثال: y + 4y = 0 + 1 هي معادلة تفاضلية من الدرجة الثانية بدون طرف ثاني معاملاتها ثابتة وهي 2 و 4.

3. تعریف:

الثانية ω من \mathbb{R} دالة و \mathbf{v} مشتقتها الثانية ω

المعادلة $\omega^2 y + \omega^2 y + \omega^2 y$ ذات المجهول ω تسمى معادلة تفاضلية من الرتبة الثانية بدون طرف ثانى. كل دالة ω قابلة للاشتقاق مرتين على . $y''+\omega^2y=0$ و تحقق المتساوية $\mathbf{x}\in\mathbb{R}$: $\mathbf{f}''(\mathbf{x})+\omega^2$ و تحقق المتساوية $\mathbf{y}=\mathbf{0}$

درس : الاشتقاق

y''+9y=0 هى معادلة تفاضلية.

5. خاصية:

 $y: x \mapsto \alpha \cos \omega x + \beta \sin \omega x$ الحل العام للمعادلة التفاضلية $y'' + \omega^2 y = 0$ هو مجموعة الدوال المعرفة كما يلى \mathbb{R} و eta من \mathbb{R} .

6. ملحوظة:

حل المعادلة التفاضلية $y''+\omega^2y=0$ يعنى تحديد الحل العام لهذه المعادلة.

7 مثال:

نحل المعادلة التفاضلية y''+9y=0 لدينا $\omega=3$ أو $\omega=3$ ومنه الحل العام لهذه المعادلة التفاضلية هو مجموعة الدوال التي على \mathbb{R} من β و α من $y(x) = \alpha \cos 3x + \beta \sin 3x$:

8. حالة خاصة:

 \mathbb{R} و من \mathbf{y} و نون \mathbf{y} و من \mathbf{y} و من \mathbf{y} و من \mathbf{y} و من \mathbf{y} و المن \mathbf{y} و المن \mathbf{y}

 $f\left(rac{\pi}{g}
ight)=1$ و $f\left(0
ight)=1$ و $f\left(0
ight)=1$ مثال: نحدد الدالة $f\left(0
ight)=1$ و $f\left(0
ight)=1$ و $g\left(0
ight)=1$

 $y(x) = \alpha \cos 4x + \beta \sin 4x$: الحل العام للمعادلة التفاضلية (E) هو على شكل

لدينا:

$$f(0) = 1$$

$$f\left(\frac{\pi}{8}\right) = 1$$

$$\Leftrightarrow \begin{cases} \alpha \cos(4 \times 0) + \beta \sin(4 \times 0) = 1 \\ \alpha \cos(4 \times \frac{\pi}{8}) + \beta \sin(4 \times \frac{\pi}{8}) = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} \alpha = 1 \\ \beta = 1 \end{cases}$$

 $f(x) = y(x) = \cos 4x + \sin 4x$: خلاصة : الحل العام هو الدوال التي على شكل

OPTIMISATION (تحديد أفضل الاختيارات أو أحسن الأجوبة ممكنة لوضعيات معطاة) .

Optimiser : du latin optimum qui signifie le meilleur

- هي: تسمح لنا للحصول على أحسن الاختيار أو أفضل النتائج الممكنة عن طريق عمل ملائم لوضعية معطاة .
 - في الرياضيات: Opitimiser une situation

يتطلب لتحليل و لإدراج هذه الوضعية على شكل دالة ثم تحديد المطارف التي تعطى أفضل و أحسن الاختيارات للإجابة عن السؤال.

هناك كثير من المسائل من الحياة العامة تدفعنا لتحديد القيم القصوية أو القيم الدنيوية مرتبطة بكمية متغيرة . حيث هذه القيم تمثل الأفضل أو الأحسن للوضعية المطروحة أو المسألة المطروحة نسمى هذه القيم: القيم الأحسن « valeurs Optimales ». تحديد هذه القيم يمثل تمرين أو مسألة « optimisation »

B(2,0) الشكل التالي يمثل شلجم رأسه S(0,1) ويمر من النقطة A(2,5) ثم نعتبر النقطة

