Deep Learning

project

Adam Żychowski a.zychowski@mini.pw.edu.pl

Faculty of Mathematics and Information Science, Warsaw University of Technology

2021

Overview

- 1. Assessment
- 2. Project I multilayer perceptron
- 3. Project II convolutional neural networks
- 4. Project III recurrent neural networks
- 5. Project IV generative adversarial networks

Overview

- 4 projects
- for each project: max 25 points, 4 weeks
- groups of 2 people
- first week of delay: -5 points; second week of delay: additional -10 points (-15 points in total); exceeding 2 weeks of delay results in 0 points for the project
- grades: $[0;50] \to 2$, $[51;60] \to 3$, $[61;70] \to 3.5$, $[71;80] \to 4$, $[81;90] \to 4.5$, $[91;100] \to 5$,

Timetable

1.	23.02	Introduction		
2.	02.03	Tutorial hours		
3.	09.03	Initial presentation of the first part		
4.	16.03	Project I (first part) deadline		
5.	23.03	Project I (second part) deadline		
6.	30.03	Tutorial hours		
7.	13.04	Initial presentation of the second project		
8.	20.04	Project II deadline		
9.	27.04	Tutorial hours		
10.	11.05	Initial presentation of the third project		
11.	18.05	Project III deadline		
12.	25.05	Tutorial hours		
13.	01.06	Tutorial hours		
14.	08.06	Initial presentation of the fourth project		
15.	15.06	Project IV deadline		

Topic: Multilayer perceptron (MLP) employing backpropagation algorithm

Dataset for the first part of the project will be provided during the first class.

Dataset for the second part: MNIST

https://www.kaggle.com/c/digit-recognizer

- low-level implementation is required; you can use only some basic packages like NumPy, pandas, etc.
- MLP parameters are:
 - number of hidden layers and number of neurons in hidden layers
 - activation function
 - bias presence
 - batch size
 - number of iterations
 - learning rate
 - momentum
 - problem type: classification or regression
- during the project presentation, you will be asked to train and test your network on new (unseen before) datasets
- take care of reproducibility by initializing a random number generator with a constant seed

- elements to analyze:
 - how does activation function affect the model's accuracy? Experiment with sigmoid and two other activation functions. The activation function in an output layer should be chosen accordingly to the problem;
 - how does the number of hidden layers and number of neurons in hidden layers impact the model's accuracy? Analyze different architectures;
 - how does the loss function affect the model's accuracy? Consider two different loss functions for both classification and regression.
- the application should plot training and test error
- visualization of a training set and classification/regression result (as a background)

Assessment: source code, report

Project I - multilayer perceptron - classification

А	Α	В	С	D
1	x,y,cls			
2	-0.0029254	1551045596	6,0.722530	109807849,1
3	0.5045706	18271828,-	0.78926135	1339519,2
4	0.8941317	38692522,-	0.72043252	4569333,1
5	0.2202069	81524825,0	.124078022	278176,2
6	0.2678153	29600126,0	.925336269	9196123,1
7	-0.2734072	21199289,0	.479693677	276373,1
8	-0.2873464	173895013,	-0.9727351	19983554,2
9	0.4677183	73052776,0	.81061793	724075,1
10	ก ออวากวล	77622122	n 101/13/17/	2640704 1

Project I - multilayer perceptron - regression

A	Α	В
1	х,у	
2	-5,-1253	
3	-4.99,-124	7.368296
4	-4.98,-124	1.753168
5	-4.97,-123	6.154592
6	-4.96,-123	0.572544
7	-4.95,-122	5.007
8	-4.94,-121	9.457936
9	-4.93,-121	3.925328
10	-4.92,-120	8.409152
11	-4.91,-120	2.909384
12	-4.9,-1197	.426
13	-4.89,-119	1.958976
14	-4.88,-118	6.508288
15	-4.87118	1.073912

 The second part of the project consists in fitting the implemented model to the deep learning Hello world dataset - MNIST

Assessment: source code, extended report (or supplement to the report)

Useful resources:

- https://www.deeplearningbook.org
- http://neuralnetworksanddeeplearning.com/
- https://www.coursera.org/specializations/deep-learning
- https://drive.google.com/drive/folders/0B5DSlxnH–fzR1hxd3VYOUhua2c

Topic: Image classification with convolutional neural networks

Dataset: CIFAR-10

https://www.kaggle.com/c/cifar-10/

- you can utilize code from external sources (books, articles, blogs) provided that:
 - reference is cited in the report
 - some modifications to the original solution are applied
- violation of the above or any other kind of plagiarism result in a failing grade
- application of pre-trained models (AlexNet, VGG, etc.) is permitted (and even recommended as a part of the experiment)
- full discretion in terms of packages use
- crucial elements taken into account while assessment:
 - report quality
 - achieved accuracy registered on Kaggle
 - the originality of the solution

- take care of reproducibility by initializing a random number generator with a constant seed.
- to obtain statistically significant results, each experiment should be repeated multiple times.

Assessment: source code, report, presentation

Useful resources:

- Google Colab or GPU to speed up training
- ensembling (soft voting or majority/hard voting)
- data augmentation
- https://benchmarks.ai/cifar-10
- https://www.robots.ox.ac.uk/ vgg/practicals/cnn/index.html
- https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
- https://medium.com/kaggle-blog/profiling-top-kagglers-bestfitting-currently-1-in-the-world-58cc0e187b

Project III - recurrent neural networks

Topic: Speech commands classification with recurrent neural networks

Dataset: Speech Commands Dataset

https://www.kaggle.com/c/tensorflow-speech-recognition-challenge/data

Project III - recurrent neural networks

- test and compare different network architectures (at least one of them should be Long short-term memory (LSTM))
- investigate influence of parameters change on the obtained results
- present confusion matrix (with appropriate discussion)
- in case of accuracy or efficiency problem a subset of classes can be selected and tested (e.g. only "yes" and "no" commands)
- please pay special attention on "silence" and "unknown" classes test different approaches (e.g. separate network for their recognition)

Assessment: source code, report

Project III - recurrent neural networks

Useful resources:

- https://www.kaggle.com/davids1992/speech-representation-and-data-exploration
- https://towardsdatascience.com/recognizing-speech-commands-using-recurrent-neural-networks-with-attention-c2b2ba17c837
- https://www.coursera.org/lecture/nlp-sequence-models/recurrent-neural-network-model-ftkzt
- https://pathmind.com/wiki/lstm

Topic: Image generation with generative adversarial networks

Dataset: 10% sample of the LSUN Bedrooms Dataset https://www.kaggle.com/jhoward/lsun_bedroom

Your only need the data from the *sample* directory (\sim 4.7GB in total).

- test and compare different network architectures (at least one of them should converge to generate satisfactory images)
- potential architectures (can use different ones): vanilla GAN with CNNs, DC-GAN, Wasserstein GAN, WGAN-GP, SN-GAN, StyleGAN1, StyleGAN2 (with or without data augmentations)
- calculate the Fréchet Inception Distance (FID) for your generated images and compare it to results from literature
- assess your results qualitatively
- investigate the influence of hyperparameters on obtained results

- discuss sets of hyperparameters which help in overcoming training collapse and mode collapse
- select two of your generated images together with their latent vectors; interpolate linearly between the two latent vectors to generate 8 additional latent vectors; use these 8 vectors to generate images from your model; present the 10 generated images (8 newly generated and 2 generated previously) and discuss the importance of the results
- discuss any additional findings

Assessment: source code, report

Useful resources:

- Original GAN paper: https://arxiv.org/pdf/1406.2661.pdf
- DC-GAN paper: https://arxiv.org/pdf/1511.06434.pdf
- StyleGAN2 with data augmentations: https://arxiv.org/pdf/2006.06676.pdf
- FastAl on GANs (skip to relevant part): https://course18.fast.ai/lessons/lesson12.html
- Machine Learning Mastery (general overview):
 https://machinelearningmastery.com/what-are-generative-adversarial-networks-gans/
- DeepLearning.AI (for those interested; ability to access content for free): https://deeplearning.ai/program/generative-adversarial-networks-gans-specialization/