

在实际问题中,随机变量的分布和数字特征往往是不知道的,因此需要根据试验或观察得到的数据,来研究随机现象, 对其规律作出种种合理的估计和判断。

数理统计是从局部观测资料的统计特性,来推断随机现象整体统计特性的一门科学。

要了解整体的情况,最可靠的是用普查的方法,但实际上这往往是不必要、不可能或不允许的。

学习统计无须把过多时间化在计算上,可以 更有效地把时间用在基本概念、方法原理的正确 理解上.国内外著名的统计软件包: SAS, SPSS, MATLAB, STAT等,都可以让你快速、简便地进行 数据处理和分析.

数理统计学是一门应用性很强的学科. 它是关于 数据资料收集、整理、分析、推断,对所考察的问 题作出推断和预测,直至为采取一定的决策和行动 提供依据和建议的一门学科。

数理统计学 合理收集数据-试验设计、抽样调查等

整理分析数据-统计推断

# 基本概念

数理 统计学

参数的估计方法

假设检验

# 3.1 样本及其抽样分布

- ■总体、样本与统计量
- ■常用统计量的分布



# 样本与统计量

#### 一、总体与样本

1 **总体** —— 研究对象全体元素组成的集合 所研究的对象的某个(或某些)数量指标的全体,它是一个随机变量(或多维随机变量).记为*X*.

X的分布函数和数字特征称为总体的分布函数和数字特征.

个体——组成总体的每个基本单元。

2. 样本:来自总体的部分个体 $X_1, \cdots, X_n$  如果满足:

(1)代表性:  $X_i$ , i=1,...,n与总体同分布.

(2)独立性: X<sub>1</sub>,···, X<sub>n</sub>相 互独立;

则称 $X_1, \dots, X_n$ 为容量为n的简单随机样本,简称样本。而称 $X_1, \dots, X_n$ 的一次实现为样本观察值,记 $x_1, \dots, x_n$ 



#### 来自总体X的随机样本 $X_1, \dots, X_n$ 可记为

$$X_1,...,X_n \xrightarrow{i.i.d} X$$

#### 显然,样本联合分布函数或密度函数为

$$F^*(x_1, x_2, \dots, x_n) = \prod_{i=1}^n F(x_i)$$

$$f^*(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f(x_i)$$

#### 3.总体、样本、样本观察值的关系



样本空间 — 样本所有可能取值的集合.

# 二、统计量

定义:样本 $X_1$ , …,  $X_n$  的函数 $g(X_1$ , …,  $X_n$ ), 如果 $g(X_1, \dots, X_n)$ 不含未知参数,则称  $g(X_1, \dots, X_n)$ 是总体X的一个统计量,记作:U

$$X \sim N(\mu, \sigma^2)$$
,

例  $X \sim N(\mu, \sigma^2)$ ,  $\mu$  已知  $\sigma^2$  为未知参数,

$$(X_1, X_2, \dots, X_n)$$
 是一样本,

- (1)写出样本空间与样本的密度函数;
- (2)指出下列哪些是统计量?

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}, \quad S'^{2} = \sum_{i=1}^{n} (X_{i} - \mu)^{2} / \sigma^{2}$$

(3) 若样本观察值为1,2,3,则 $\bar{X}$  与 $S^2$ 

### 是多少?

**144** 
$$\Omega = \{(x_1, \dots, x_n) : x_i \in R, i = 1, \dots, n\}$$

$$f(x_1, \dots, x_n) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x_i - \mu)^2}$$

$$\overline{x} = 2,$$

$$s^2 = \frac{1}{2} \times \{(1 - 2)^2 + (2 - 2)^2 + (3 - 2)^2\} = 1$$

# 三、几个常用的统计量

1. 样本均值 
$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$$
,

2. 样本方差 
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

样本均方差 (标准差)  $S = \sqrt{S^2}$ ,

#### 3.样本/阶矩

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

$$M_{k} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{k}$$

### 性质 如果总体X的期望为 $\mu$ ,方差为 $\sigma^2$ ,则

(1)
$$E(\bar{X}) = E(X) = \mu$$
 (2) $D(\bar{X}) = \frac{D(X)}{n} = \frac{\sigma^2}{n}$ 

(3) 
$$E(S^2) = D(X) = \sigma^2$$

证明(1)、(2)的证明留给读者,下面证明性质(3)。

$$E(S^{2}) = E\left[\frac{1}{n-1}\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}\right]$$

$$= \frac{1}{n-1} E \sum_{i=1}^{n} (X_i - \bar{X})^2$$

$$= \frac{1}{n-1} E \sum_{i=1}^{n} (X_i^2 - 2\bar{X}X_i + \bar{X}^2) = \frac{1}{n-1} E \left[ \sum_{i=1}^{n} X_i^2 - 2\bar{X}\sum_{i=1}^{n} X_i + \sum_{i=1}^{n} \bar{X}^2 \right]$$

$$= \frac{1}{n-1} E \left[ \sum_{i=1}^{n} X_i^2 - 2\bar{X} \cdot n\bar{X} + n\bar{X}^2 \right]$$

$$= \frac{1}{n-1} \left| \sum_{i=1}^{n} EX_{i}^{2} - nE(\bar{X})^{2} \right|$$

$$= \frac{1}{n-1} \left[ \sum_{i=1}^{n} (\mu^{2} + \sigma^{2}) - n(\mu^{2} + \frac{1}{n}\sigma^{2}) \right] = \sigma^{2}$$

# 总结

一、总体与样本

二、统计量

三、几个常用的统计量

# 常用统计量的分布

# 确定统计量的分布 是数理统计的基本 问题之一

正态总体是最常见的总体,本节介绍的几个抽样分布均对正态总体而言.

# 常用统计量的分布

统计学上的三大分布:

 $\chi^2$ 分布、t分布和F分布。

### 一、正态分布

定理1.若  $X_1, X_2, \dots, X_n$  相互独立,

$$X_i \sim N(\mu_i, \sigma_i^2)$$
,则

$$\sum_{i=1}^{n} a_i X_i \sim N \left( \sum_{i=1}^{n} a_i \mu_i, \sum_{i=1}^{n} a_i^2 \sigma_i^2 \right)$$

# 特别地,若

$$X_1, X_2, \dots, X_n \sim N(\mu, \sigma^2)$$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\frac{\sqrt{n}\left(\overline{X}-\mu\right)}{\sigma} \sim N(0,1)$$

# 标准正态分布的 α 分位数

定义 若  $P(X > u_{\alpha}) = \alpha$  则称 $u_{\alpha}$ 为标准正

态分布的上 $\alpha$ 分位数.

若 
$$P(|X| > u_{\frac{\alpha}{2}}) = \alpha$$
 则称  $u_{\alpha/2}$  为标准

正态分布的双侧 $\alpha$ 分位数.

### 标准正态分布的 & 分位数图形



当关注的对象的概率分布不可知,意味着只知道数据,不知道其内在规律;另一方面,关注的对象是可以分解成多种因素的组合时,就引入了抽样分布。抽样分布是描述从多个随机变量中抽取数据并且加以组合后,形成的规律。基本的抽样分布有三个:x^2(卡方)分布、F分布、t分布。

二、 $\chi^2(n)$  分布(n为自由度)

定义设  $X_1, X_2, \dots, X_n$ 相互独立,

且都服从标准正态分布N(0,1),则

$$\sum_{i=1}^n X_i^2 \sim \chi^2(n)$$

卡方分布常用于假设检验和置信区间检验。

定理2  $X_1, \dots, X_n \sim N(\mu, \sigma^2)$ ,

(1)  $\overline{X}$ 与 $S^2$  相互独立;

(2) 
$$\chi^2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1);$$

例1:已知*U~χ²*(10) 求满足

$$P\{U > \lambda_1\} = 0.10, P\{U < \lambda_2\} = 0.75$$

的礼和礼。

查表得: ん, = 12.549

解: $\lambda_1$ 直接查表  $\chi_{0.1}^2(10)$  。

#### ☑ 卡方分布表.doc

◎ 1379 | ♡ 0 | 约5.97千字 | 约 4页 | 2020-02-06 发布于浙江 | ① 举报 | ② 版权申诉

#### x<sup>2</sup>分布临界值表(卡方分布)

| n′ | P     |       |       |       |       |       |        |        |        |        |        |        |        |
|----|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
|    | 0.995 | 0.99  | 0.975 | 0.95  | 0.9   | 0.75  | 0.5    | 0.25   | 0.1    | 0.05   | 0.025  | 0.01   | 0.005  |
| 1  | •••   | •••   |       |       | 0.02  | 0.1   | 0.45   | 1.32   | 2.71   | 3.84   | 5.02   | 6.63   | 7.88   |
| 2  | 0.01  | 0.02  | 0.02  | 0.1   | 0.21  | 0.58  | 1.39   | 2.77   | 4.61   | 5. 99  | 7.38   | 9. 21  | 10.6   |
| 3  | 0.07  | 0.11  | 0.22  | 0.35  | 0.58  | 1.21  | 2.37   | 4.11   | 6.25   | 7.81   | 9.35   | 11.34  | 12.84  |
| 4  | 0.21  | 0.3   | 0.48  | 0.71  | 1.06  | 1.92  | 3.36   | 5.39   | 7.78   | 9.49   | 11.14  | 13.28  | 14.86  |
| 5  | 0.41  | 0.55  | 0.83  | 1.15  | 1.61  | 2.67  | 4. 35  | 6.63   | 9.24   | 11.07  | 12.83  | 15.09  | 16.75  |
| 6  | 0.68  | 0.87  | 1.24  | 1.64  | 2.2   | 3.45  | 5, 35  | 7.84   | 10.64  | 12.59  | 14.45  | 16.81  | 18.55  |
| 7  | 0.99  | 1.24  | 1.69  | 2.17  | 2.83  | 4. 25 | 6.35   | 9.04   | 12.02  | 14.07  | 16.01  | 18.48  | 20. 28 |
| 8  | 1.34  | 1.65  | 2.18  | 2.73  | 3.4   | 5.07  | 7.34   | 10.22  | 13.36  | 15.51  | 17.53  | 20.09  | 21.96  |
| 9  | 1.73  | 2.09  | 2.7   | 3. 33 | 4.17  | 5.9   | 8.34   | 11.39  | 14.68  | 16. 92 | 19.02  | 21.67  | 23. 59 |
| 10 | 2.16  | 2.56  | 3. 25 | 3.94  | 4.87  | 6.74  | 9.34   | 12.55  | 15.99  | 18.31  | 20.48  | 23. 21 | 25. 19 |
| 11 | 2.6   | 3.05  | 3.82  | 4. 57 | 5.58  | 7.58  | 10.34  | 13.7   | 17.28  | 19.68  | 21.92  | 24.72  | 26. 76 |
| 12 | 3.07  | 3.57  | 4.4   | 5. 23 | 6.3   | 8.44  | 11.34  | 14.85  | 18.55  | 21.03  | 23.34  | 26. 22 | 28.3   |
| 13 | 3.57  | 4.11  | 5.01  | 5. 89 | 7.04  | 9.3   | 12.34  | 15.98  | 19.81  | 22. 36 | 24.74  | 27.69  | 29.82  |
| 14 | 4. 07 | 4.66  | 5. 63 | 6. 57 | 7. 79 | 10.17 | 13.34  | 17. 12 | 21.06  | 23.68  | 26. 12 | 29. 14 | 31. 32 |
| 15 | 4.6   | 5. 23 | 6. 27 | 7. 26 | 8.55  | 11.04 | 14.34  | 18. 25 | 22.31  | 25     | 27.49  | 30. 58 | 32.8   |
| 16 | 5. 14 | 5.81  | 6.91  | 7.96  | 9.31  | 11.91 | 15. 34 | 19.37  | 23. 54 | 26. 3  | 28.85  | 32     | 34. 27 |
| 17 | 5. 7  | 6.41  | 7.56  | 8.67  | 10.09 | 12.79 | 16.34  | 20. 49 | 24. 77 | 27. 59 | 30. 19 | 33. 41 | 35. 72 |
| 18 | 6.26  | 7.01  | 8. 23 | 9.39  | 10.86 | 13.68 | 17.34  | 21.6   | 25. 99 | 28. 87 | 31.53  | 34.81  | 37. 16 |
| 19 | 6.84  | 7.63  | 8.91  | 10.12 | 11.65 | 14.56 | 18.34  | 22.72  | 27.2   | 30. 14 | 32.85  | 36. 19 | 38. 58 |
| 20 | 7 43  | 8 26  | a 5a  | 10 85 | 12 44 | 15 45 | 19 34  | 53 83  | 98 41  | 31 41  | 34 17  | 37 57  | 40     |



#### 三、 t 分布 (Student 分布)

定义设  $X \sim N(0,1)$ ,  $Y \sim \chi^2(n)$ , X, Y相互独立,

$$T = \frac{X}{\sqrt{Y/n}}$$

则称T 服从自由度为n的T分布,记为 $T \sim t(n)$ .

简单说一下背景,"t",是Fisher为之取的名字。 Fisher最早将这一分布命名为"Student's distribution",并以"t"为之标记。Student,则 是William Sealy Gosset(戈塞特)的笔名。他当 年在爱尔兰都柏林的一家酒厂工作,设计了一 种后来被称为t检验的方法来评价酒的质量。因 为行业机密,酒厂不允许他的工作内容外泄, 所以当他后来将其发表到至今仍十分著名的一 本杂志《Biometrika》时,就署了student的笔名。 所以现在很多人知道student,知道t,却不知道 Gosset



# t 分布的图形(红色的是标准正态分布)

$$P(T > t_{\alpha}) = \alpha$$

$$-t_{\alpha} = t_{1-\alpha}$$

$$0.35$$

$$0.25$$

$$0.15$$

$$0.11$$

$$0.05$$

$$t_{\alpha}$$

$$P(T > 1.8125) = 0.05 \Rightarrow t_{0.05}(10) = 1.8125$$

$$P(T < -1.8125) = 0.05, P(T > -1.8125) = 0.95$$

$$\Rightarrow t_{0.95}(10) = -1.8125$$

# 三理3 $X_1, \dots, X_n \sim N(\mu, \sigma^2)$ ,则

$$T = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t(n-1)$$

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \sim N(0, 1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2} = \sum_{i=1}^n \left(\frac{X_i - \overline{X}}{\sigma}\right)^2 \sim \chi^2(n-1)$$

$$\frac{(n-1)S^2}{\sigma^2}$$
与 $\overline{X}$ 

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} / \frac{S}{\sigma} = \frac{\sqrt{n}(\bar{X} - \mu)}{S} \sim t(n-1)$$

# 四、F分布

定义 设  $X \sim \chi^2(n)$ ,  $Y \sim \chi^2(m)$ , X, Y相互独立,

则称 F 服从为第一自由度为n ,第二自由度为 m 的F 分布.



$$m = 10, n = 4$$
  
 $m = 10, n = 10$   
 $m = 10, n = 15$ 



$$m = 4, n = 10$$
  
 $m = 10, n = 10$   
 $m = 15, n = 10$ 

# 总结

- 一、正态分布
- 二、 $\chi^2(n)$  分布(n为自由度)
  - 三、 t 分布 (Student 分布)
  - 四、F分布