Sheet 1 Solutions

Toni Abi Aoun, So Murata

Exercise 1

Suppose the inequality does not hold. Then for each n, there is v_n such that

$$||v_n||_{L^p(\Omega)} > n||Dv_n||_{L^p(\Omega)}.$$

We can normalize v_n , we obtain a sequence $(u_k)_{k\in\mathbb{N}}$ in K such that

$$||Du_k||_{L^p(\Omega)} < \frac{1}{n}.$$

This procedure is justified since K is a cone.

As $(u_k)_{k\in\mathbb{N}}$ is bounded, there is a subsequence $(u_{k_j})_{j\in\mathbb{N}}$ converging to some u in $L^p(\Omega)$.

$$\begin{split} & \int_{U} \frac{\partial u_{n_{k}}}{\partial x_{i}} \varphi dx = - \int_{U} u_{n_{k}} \frac{\partial \varphi}{\partial x_{i}} dx, \\ & \left| \int_{U} \frac{\partial u_{n_{k}}}{\partial x_{i}} \varphi dx \right| < \frac{A}{n_{k}}, \end{split}$$

for some constant A and a test function φ since U is bounded. By Fatou's lemma, we have that for each φ

$$\int_{U} u \frac{\partial \varphi}{\partial x_{i}} dx = 0.$$

Therefore, 0 is a weak derivative of u thus u is convergent in $W^{1,p}(U)$. Since K is closed we have $u \in K$. But Du = 0 implies that u = 0. This is a contradiction. Thus the inequality holds.

Problem 1.2

Let $\Omega \subset \mathbb{R}^n$ be open with smooth boundary.

(i) Let $f \in L^2(\Omega)$ and show that the problem

$$\begin{cases} -\Delta w = f & \text{in } \Omega, \\ w = 0 & \text{on } \partial \Omega \end{cases}$$

has a unique weak solution $u \in H_0^1(\Omega)$ and that this solution satisfies for some constant C > 0

$$\|\nabla u\|_{L^2} \leqslant C\|f\|_{L^2}.$$

Proof. To derive the weak formulation of this problem, consider $\varphi \in C_c^{\infty}(\Omega)$

$$\int_{\Omega} (-\Delta w) \varphi dx = \int_{\Omega} \nabla w \cdot \nabla \varphi dx = \int_{\Omega} f \varphi dx.$$

So the weak formulation of this problem is to find $u \in H_0^1(\Omega)$ such that

$$\int_{\Omega} \nabla u \cdot \nabla \varphi dx = \int_{\Omega} f \varphi dx \quad \forall \varphi \in C_c^{\infty}(\Omega).$$

To this end consider the bilinear form $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ given by

$$B(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx \quad \forall u, v \in H_0^1(\Omega),$$

and the linear functional $f^*: H^1_0(\Omega) \to \mathbb{R}$ given by

$$\langle f^*, v \rangle = \int_{\Omega} fv dx \quad \forall v \in H_0^1(\Omega).$$

B is clearly bilinear and $\forall u, v \in H_0^1(\Omega)$, we have

$$|B(u,v)| = \left| \int_{\Omega} \nabla u \cdot \nabla v dx \right| \le \|\nabla u\|_{L^{2}} \|\nabla v\|_{L^{2}} = \|u\|_{H_{0}^{1}} \|v\|_{H_{0}^{1}}, \tag{1}$$

$$|B(u,u)| = \int_{\Omega} |\nabla u|^2 dx = ||u||_{H_0^1}^2.$$
 (2)

This proves that B is bounded and coercive.

Similarly, for all $v \in H_0^1(\Omega)$, we have

$$|\langle f^*, v \rangle| = \left| \int_{\Omega} fv dx \right| \le ||f||_{L^2} ||v||_{L^2} \le C_{Poi} ||f||_{L^2} ||v||_{H_0^1},$$

where C_{Poi} is the constant coming from Poincare's inequality, this proves that f^* is a continuous linear functional on $H_0^1(\Omega)$.

Since $H_0^1(\Omega)$ is a Hilbert space, we can apply Lax-Milgram's theorem to conclude that there exists a unique $u \in H_0^1(\Omega)$ such that

$$B(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx = \langle f^*,v \rangle \quad \forall v \in H^1_0(\Omega).$$

This weak solution further satisfies

$$\|\nabla u\|_{L^{2}}^{2} = \int_{\Omega} |\nabla u|^{2} dx = \int_{\Omega} f u dx \leqslant \|f\|_{L^{2}} \|u\|_{L^{2}} \leqslant C_{Poi} \|f\|_{L^{2}} \|\nabla u\|_{L^{2}},$$

which in turns yields

$$\|\nabla u\|_{L^2} \leqslant C_{Poi} \|f\|_{L^2}.$$

(ii) Let $f: \mathbb{R} \to \mathbb{R}$ be Lipschitz continuous. Show that

$$\begin{cases}
-\Delta u = f(u) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega
\end{cases}$$

has a unique weak solution $u \in H_0^1(\Omega)$ provided that the Lipschitz constant of f is sufficiently small.

Proof. Since f is Lipschtiz, for all $x \in \mathbb{R}$ we have

$$|f(x)| \le |f(0)| + \operatorname{Lip}(f)|x|.$$

From this we deduce that for all $v \in L^2(\Omega)$, we have $f \circ v \in L^2(\Omega)$ since Ω is bounded (therefore of finite measure, so constant function are square integrable).

Now using question (i), we can define the map $T: L^2(\Omega) \to L^2(\Omega)$, where for any $v \in L^2(\Omega)$, we have T(v) is the unique weak solution in $H_0^1(\Omega)$ to the problem

$$\begin{cases}
-\Delta u = f(v) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$

Given $v, w \in L^2(\Omega)$, we have that T(v) - T(w) is the unique weak solution in $H_0^1(\Omega)$ to the problem

$$\begin{cases}
-\Delta u = f(v) - f(w) & \text{in } \Omega, \\
u = 0 & \text{on } \partial\Omega.
\end{cases}$$

Using the estimate of question (i), we get

$$\|\nabla T(v) - \nabla T(w)\|_{L^2} \leqslant C_{Poi} \|f(v) - f(w)\|_{L^2} \leqslant C_{Poi} \operatorname{Lip}(f) \|v - w\|_{L^2}.$$

Using Poincare's inequality we thus get

$$||T(v) - T(w)||_{L^2} \leqslant C_{Poi} ||\nabla T(v) - \nabla T(w)||_{L^2} \leqslant C_{Poi}^2 \operatorname{Lip}(f) ||v - w||_{L^2}.$$

 $L^2(\Omega)$ is a Hilbert space thus a complete metric space. If $C_{Poi}^2 \operatorname{Lip}(f) < 1$, we can apply Banach's fixed point theorem, to deduce that there is a unique fixed point $u \in L^2(\Omega)$. Since $T(v) \in H_0^1(\Omega)$ for all $v \in L^2(\Omega)$, we get that $u = T(u) \in H_0^1(\Omega)$.

Problem 1.3

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary.

Recall the following version of the maximum/minimum principle: let $b, c \in C^0(\overline{\Omega}), c \ge 0$ and assume that $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ satisfies

$$-\Delta u + b \cdot \nabla u + cu \ge 0 \text{ in } \Omega.$$

Then

$$\min_{\overline{\Omega}} u \geqslant -\max_{\partial\Omega} u_{-}.$$

(i) Show that the unique solution of

$$\begin{cases} \Delta u = u^3 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

in $C^2(\Omega) \cap C^0(\overline{\Omega})$ is $u \equiv 0$.

Proof. Set b=0 and $c=u^2 \geqslant 0$, then $b,c \in C^0(\overline{\Omega})$ and we have

$$-\Delta u + u^3 = -\Delta u + b \cdot \nabla u + cu = 0 \text{ in } \Omega.$$

Using the maximum/minimum principle, we get that

$$\min_{\overline{\Omega}} u \geqslant -\max_{\partial\Omega} u_{-} = 0.$$

By applying the same reasoning to -u, we deduce that

$$\max_{\overline{\Omega}} u = -\min_{\overline{\Omega}} (-u) \leqslant -\max_{\partial \Omega} (-u)_{-} = \min_{\partial \Omega} -u_{+} = 0.$$

Combining these two inequalities gives that $u \equiv 0$.

(ii) Show that the problem

$$\begin{cases} \Delta u = u^2 & \text{in } \Omega, \\ u \geqslant 0 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

has a unique solution in $C^2(\Omega) \cap C^0(\overline{\Omega})$. Is the same true if the constraint $u \ge 0$ is dropped?

Proof. Set b=0 and $c=u\geqslant 0$, then $b,c\in C^0(\overline{\Omega})$ and we have

$$-\Delta(-u) + u(-u) = -\Delta(-u) + b \cdot \nabla(-u) + c(-u) = 0 \text{ in } \Omega.$$

Using the maximum/minimum principle, we get that

$$\min_{\overline{\Omega}}(-u) \geqslant -\max_{\partial\Omega}(-u)_{-},$$

which is equivalent to

$$\max_{\overline{\Omega}} u \leqslant \max_{\partial \Omega} u_+ = 0.$$

Combined with the constraint $u \ge 0$ in Ω , we get that the only solution in $C^2(\Omega) \cap C^0(\overline{\Omega})$ to the problem is $u \equiv 0$.

If the constraint $u \ge 0$ is dropped, we get the equation

$$\begin{cases} \Delta u = u^2 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

This problem does not always have a unique solution. Consider the case n = 1, then the equation reduces to

$$\begin{cases} u'' = u^2 & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

First consider the Cauchy problem with initial value

$$\begin{cases} u''(x) = u^2(x) & x \geqslant 0, \\ u(0) = 0, \ u'(0) = -1. \end{cases}$$

By the Cauchy-Lipschitz theorem, there is a maximal solution u which is C^2 on some open interval $I \subset \mathbb{R}$ containing 0.

Since $u''(x) = u^2(x) \ge 0$ for all $x \in I$, the solution u is convex. We know that u(0) = 0 and u'(0) = -1. This implies that u is decreasing on some interval $(0, \delta)$ for some $\delta > 0$. We claim that

there exists $x_0 > 0$ such that $u(x_0) = 0$. Suppose this were not the case, then since u is convex, it is necessarily non increasing on $I \cap (0, \infty)$ (if this were not the case, since u' is non decreasing, we would have u'(x) > 0 for some x > 0, which in turn would imply $\lim_{x \to \sup I} u(x) = +\infty$). Now there are two possibilities, either $\lim_{x \to \sup I} u(x) = -\infty$ or $\lim_{x \to \sup I} u(x) = l$ for some l < 0. In either case, using $u'' = u^2$ in I, this implies that $u''(x) > \epsilon$ for all $x \in I$ large enough and for some $\epsilon > 0$. But this would imply that $\lim_{x \to \sup I} u'(x) = +\infty$ which contradicts the fact that u is non increasing.

This proves that there exists $x_0 > 0$ such that $u(x_0) = 0$. By taking $\Omega = (0, x_0)$, the above u is a non zero solution to

$$\begin{cases} u''(x) = u^2(x) & x \in (0, x_0), \\ u(x) = 0 & x \in \{0, x_0\}. \end{cases}$$

Exercise 4

(i)

Suppose if we have a weak solution, by integration by parts, we get

$$\begin{split} \int_{U} fv &= -\int_{\Omega} \Delta u v dx, \\ &= \int_{\Omega} \nabla u \cdot \nabla v dx - \int_{\partial \Omega} \frac{\partial u}{\partial \nu} v dx, \\ &= \int_{\Omega} \nabla u \cdot \nabla v dx - \int_{\partial \Omega} \beta u v dx. \end{split}$$

for any $v \in H^1(\Omega)$. We define a bilinear form $B(u,v): H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ such that

$$B(u,v) = \int_{\Omega} \nabla u \cdot \nabla v dx - \int_{\partial \Omega} \beta u v dx.$$

By trace theorem, we have

$$|B(u,v)| \le ||Du||_{L^{2}(\Omega)} ||Dv||_{L^{2}(\Omega)} + |\beta| ||u||_{L^{2}(\partial\Omega)} ||v||_{L^{2}(\partial\Omega)},$$

$$\le ||Du||_{L^{2}(\Omega)} ||Dv||_{L^{2}(\Omega)} + |\beta| C^{2} ||u||_{H^{1}(\Omega)} ||v||_{H^{1}(\Omega)},$$

for some C > 0. By the definition, we have

$$||u||_{H^1(\Omega)}^2 = ||Du||_{L^2(\Omega)}^2 + ||u||_{L^2(\Omega)}^2.$$

Thus we conclude

$$|B(u,v)| \le (|\beta|C^2+1)||u||_{H^1(\Omega)}||v||_{H^1(\Omega)}$$

, and this satisfies the first condition for Lax-Milgram theorem.

In the case $\beta \leq 0$, we will prove that B satisfies the second condition as well. In order to do so, we will derive a contradiction by assuming it does not satisfy the condition. If that is the case the it is equivalent to say that for any $n \in \mathbb{N}$, there is $u_n \in H^1(\Omega)$ such that

$$B(u_n, u_n) < \frac{1}{n} ||u_n||_{H^1(\Omega)}^2.$$

We can normalize u_n and conclude that

$$B(u_n, u_n) < \frac{1}{n}.$$

Since $\partial\Omega$ is a unit circle around the center, it is Lipschitz. As the sequence is bounded, it contains a subsequence $(u_{n_k})_{k\in\mathbb{N}}$ that converges to u in $L^2(\Omega)$ thus weak derivative $(Du_{n_k})_{k\in\mathbb{N}}$ converges weakly.

Now we derive a contradiction by

$$B(u_{n_k}, u_{n_k}) = ||Du_{n_k}||_{L^2(\Omega)}^2 - \beta \int_{\partial \Omega} (Tu_{n_k})^2 \to 0.$$

This implies

$$||Du||_{L^2(\Omega)}^2 = 0$$

Therefore, u is a constant. On the other hands, we have that

$$u|_{\partial\Omega}=0.$$

This is a contradiction as $||u||_{H^1(\Omega)} = 1$. We conclude that B satisfies the conditions for Lax-Milgram theorem, therefore has a unique solution.

(ii)

Let (r, θ) be the polar coordinate, then we have

$$\Delta u = \frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}.$$

Suppose u is in the form $u(r,\theta) = R(r)A(\theta)$. Then we have

$$\Delta u = (R''(r) + \frac{1}{r}R'(r))A(\theta) + R(r)\frac{1}{r^2}A''(\theta) = 0.$$

Therefore, transforming the equation, we derive,

$$\frac{r^2R''(r) + rR'(r)}{R(r)} = -\frac{A''(\theta)}{A(\theta)}.$$

Each side has a different variable. Thus this is equal to a constant λ . First obviously

$$A(\theta) = a_1 e^{\sqrt{\lambda}} + a_2 e^{-\sqrt{\lambda}}.$$

for some constants, a_1, a_2 . And for R,

$$r^2R''(r) + rR'(r) = \lambda R(r)$$

By substituting $R(r) = r^{\alpha}$, we obtain

$$\alpha(\alpha - 1) + \alpha = \lambda.$$

Thus $\lambda = \alpha^2$.

First assumer $\lambda \geq 0$ then

$$R(r) = r^{\sqrt{\lambda}}, A(\theta) = a_1 \cos(\sqrt{\lambda}\theta) + a_2 \sin(\sqrt{\lambda}\theta).$$

For the boundary condition, we have r=1 and

$$\frac{\partial u}{\partial r} = \frac{\partial u}{\partial x} \cos \theta + \frac{\partial u}{\partial y} \sin \theta.$$

Substituting this to the condition we get,

$$R'(1)A(\theta) = \beta R(1)A(\theta).$$

Where
$$R(1) = 1, R'(1) = \sqrt{\lambda}$$
. Thus for $\beta > 0$,

$$R(r)A(\theta) = r^{\beta}(a_1\cos(\beta\theta) + a_2\sin\beta\theta).$$