N74-10780

LOW-THRUST SOLAR ELECTRIC PROPULSION NAVIGATION SIMULATION PROGRAM

BY H. HAGAR, JR. T. J. ELLER

AMRL 1056

AUGUST 1973

APPLIED MECHANICS RESEARCH LABORATORY
THE UNIVERSITY OF TEXAS AT AUSTIN AUSTIN, TEXAS

LOW-THRUST SOLAR ELECTRIC PROPULSION NAVIGATION SIMULATION PROGRAM

H. Hagar, Jr. T. J. Eller

The University of Texas at Austin Austin, Texas

AMRL 1056 August 1973

This work was performed for the Jet Propulsion Laboratory, Galifornia Institute of Technology, sponsored by the National Aeronautics and Space Administration under Gentral NASZ-100.

Applied Mechanics Research Laboratory
The University of Texas at Austin
Austin, Texas

This report was prepared under

Contract No. JPL 953147

for the

Jet Propulsion Laboratory

by the

Applied Mechanics Research Laboratory
The University of Texas at Austin
Austin, Texas

under the direction of

Byron D. Tapley
Chairman and Professor

TABLE OF CONTENTS

	Page
List of Figures	iii
List of Tables	iv
General	1
Mathematical Models	, 2
Trajectory Simulation	2
Error Compensation	3
Earth Ephemeris	12
Tracking Station Motion	12
Filter Equations	13
Program Description	.15
Languages	15
Control Cards	16
Input-Output	16
Variables	20
Subroutines	20
Tables	23
Flow Charts	43

LIST OF FIGURES

Figure	<u>Title</u>	Page
1	Reference Frames	4
.2a	Acceleration Error Components	5
2Ъ	Pointing Angles Simulation	. 6
3	Acceleration Errors in x-z Plane	7
ц	Earth Ephemeris and Tracking Station Geometry	13
5a	Normal Deck Set-Up	17
5b	Alternate Deck Set-Up	17
6	Sample Printer Output	19
. 7	Main Program LOGO	43
8	Subroutine OUTPUT	45
्स	Subroutine PATH	47.
T0	Subpoutine UPDATE	49
11	Subroutine MOTION	52
12	Subroutine ACCEL	54 -
. 13	Subroutine AMATRIX	55
14	Subroutine HMATRIX	56
15	Subroutine OBSERV	57

LIST OF TABLES

Table	<u>Title</u>	Page
la	Selection Matrix for Vector Function, S	23
1b .	State Error and State Noise Covariance Logic	24
2a	NAMELIST/INPUTS/	25
2Ъ	NAMELIST/APCOV/	27
3	On-Line Feature Keyboard Inputs	18
ц	COMMON/PARAMS/	28
5	COMMON/PLOTS	3,0
6	COMMON/SUBOPT/	30 -
7	COMMON/STEST/	31
8	COMMON/UPIT/	31
9	COMMON/AUXL/	31
10	COMMON/AXMOD/	32
11	COMMON/TAE/	32
. 12	COMMON/FILT/	32
13	COMMON/SW/	33
1.4	COMMON/RNDM/	. 33
15	Internal Variables	33

LOW-THRUST SOLAR ELECTRIC PROPULSION NAVIGATION SIMULATION PROGRAM*

by

H. Hagar, Jr., and T. J. Eller

General

Program LOGO is an interplanetary low-thrust, solar electric propulsion mission simulation program suitable for basic navigation feasibility studies. It employs simple, two-body dynamics to simulate the heliocentric phase (no n-body perturbations). Provisions are made to simulate uncertainties in the thrust program in a realistic manner, and to assess the effects of these uncertainties on various navigation strategies. One key feature is the ability to configure the dynamic model equations in a number of different ways to account for the thrusting uncertainties. Several navigation data types may be simulated: Earth-based radar range and range-rate, and on-board celestial observations involving the sun, Earth, and a specified navigation star. Although gravitational perturbations of the Earth acting on the spacecraft are not considered, rotational dynamics of the Earth are modeled to account for the significant effects of tracking station motion.

Several types of information output are available. These include detailed numerical information print output, and both printer plot and digital plot features. Further, a limited on-line display capability is available for teletype and CRT terminal facilities.

[&]quot;This research was supported by the Jet Propulsion Laboratory under Contract No. 953147.

MATHEMATICAL MODELS

Trajectory Simulation

The motion of the solar electric propulsion (SEP) spacecraft is assumed to be governed by the gravitational attraction of the sun (which is assumed to be perfectly known), and the thrust acceleration of the solar electric propulsion system. Further, random errors in the thrust program are assumed to influence the spacecraft motion. If only the central force attraction of the sun is included, the equations of motion for the SEP spacecraft are

$$\dot{r} = v$$
 , $\dot{v} = -\frac{\mu}{|r|^3} r + T$ (1)

where, as shown in Figure 1, r is a 3-vector of heliocentric position components, X, Y, Z; v is a 3-vector of heliocentric velocity components \dot{X} , \dot{Y} , \dot{Z} ; |r| is the magnitude of r; and μ is the gravitational parameter of the sun. T is the heliocentric thrust acceleration vector composed of the design thrust acceleration, T*, as well as thrust acceleration errors from a number of sources (beam voltage and current, grid warpage, deadband control errors, etc.). The heliocentric components of T, $[T_X \ \vdots \ T_Y \ \vdots \ T_Z]$, may be expressed in a vehicle centred frame as $[T_X \ \vdots \ T_Y \ \vdots \ T_Z]$, where the two vectors are related by

$$T = \begin{bmatrix} T_{X} \\ T_{Y} \\ T_{Z} \end{bmatrix} = \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} T_{X} \\ T_{Y} \\ T_{Z} \end{bmatrix} = R \begin{bmatrix} T_{X} \\ T_{Y} \\ T_{Z} \end{bmatrix}$$
(2)

where ψ is the heliocentric orientation angle (see Figure 1).

Random errors are assumed to occur in both the magnitude of the nominal thrust acceleration, a*, as well as in the thrust vector pointing angles, γ and θ (see Figure 1). Thus, the true thrust acceleration vector, T, differs

from the nominal thrust acceleration vector, T, in both magnitude and orientation. The true thrust acceleration, expressed in the vehicle centered reference frame (x, y, z) is (see Figure 1)

$$\begin{bmatrix} T_{x} \\ T_{y} \\ T_{z} \end{bmatrix} = a \begin{bmatrix} \sin \gamma & \cos \theta \\ \cos \gamma \\ \sin \gamma & \sin \theta \end{bmatrix} , \qquad (3)$$

where $a = a^{*} + \delta a$. The acceleration error magnitude is simulated by $\delta a =$ $\delta a_{\Omega} \sin \omega t + u_{\overline{a}}$ where δa_{Ω} and ω are constants and where the random variable, u_a , has the statistics $E\{u_a\}$ = 0, $E\{u_a^2\}$ = σ_a^2 . For the design mission, T* is assumed to be of constant magnitude along the vehicle centered y-axis and the nominal values of the pointing angles, γ and θ , are assumed to be related as shown in Figure 2.a. The radius of the circle is the maximum deviation, $\sin \gamma \approx \gamma$, of the thrust vector from the nominal position; it represents deadband pointing errors. The quantity $d = s(t-t_h)$ is the distance of the tip of the thrust vector from the point where it last touched the boundary, Y. The rate, s, is simulated as a constant plus an additive noise component; t is the current mission time, and $\mathbf{t}_{\mathbf{b}}$ is the time at which the boundary was last encountered. The angle, ϕ , is sampled from a uniform distribution U(-.0708, .866). In addition, purely random components are added to s, γ , and θ . With these assumptions, Eqs. (1) can be integrated to obtain the simulated true trajectory. (Figure 3 shows the trace of the tip of the thrust acceleration vector as projected onto the local x-z plane.)

Models for Error Compensation

In the subsequent discussion, it is assumed that the thrust acceleration can be separated into modeled and error components, i.e., T = T* + m(t) where m(t) is a 3-vector of thrust acceleration error components. The errors, m(t),

Figure 1. Reference Frames

Figure 2.a. x - z Acceleration Error Components

Figure 2.b. Pointing Angles Simulation

Figure 3. Acceleration Errors in x-z Plane $(10^{-4} \text{ m/sec}^2)$

are approximated by $\varepsilon(t)$ where $\varepsilon(t)$ satisfies one of several possible first-order or second-order differential equations. The values of $\varepsilon(t)$ and any unspecified parameters in the differential equations which describe $\varepsilon(t)$ are estimated simultaneously with the position and velocity components. Six models are available for use as approximations for m(t). See Tables 1a and 1b.

Model 0. In this model an arbitrary state noise covariance matrix, Q, is added to the differential equation governing the state error covariance. The Q-matrix compensates for the process noise and is used to maintain a positive definite error covariance matrix. The differential equations for the state vector, $\mathbf{x}^T = [\mathbf{r}^T \ \mathbf{v}^T]$, are

$$\dot{r} = v$$
 , $\dot{v} = -\frac{\mu}{|r|^3} r + T^* + u$ (4)

where u is a random 3-vector with the <u>a priori</u> statistics $E\{u\} = 0$, and $E[u(t)u^T(\tau)] = q(t)\delta(t-\tau)$. This model corresponds to a value of MODOP = 0 or MODOP = 1. (MODOP = 1 not fully implemented, do <u>not</u> use). See Table 1b for the form of state noise covariance logic.

Model 1. The thrust acceleration error components are approximated by a first-order Gauss-Markov process. The differential equations for the state vector, $\mathbf{X}^T = [\mathbf{r}^T \ \mathbf{v}^T \ \mathbf{\epsilon}^T \ \mathbf{\eta}^T \ \mathbf{\alpha}^T \ \mathbf{\beta}^T]$, are

$$\dot{\hat{\mathbf{r}}} = \mathbf{v} , \quad \dot{\mathbf{v}} = -\frac{\mu}{|\mathbf{r}|^3} \mathbf{r} + S(\varepsilon)$$

$$\dot{\hat{\mathbf{c}}} = -\begin{bmatrix} \mathbf{\eta}^T \\ \mathbf{\alpha}^T \\ \mathbf{\alpha}^T \end{bmatrix} \varepsilon + \mathbf{u}_{\varepsilon} , \quad \dot{\mathbf{\eta}} = \mathbf{u}_{\eta} , \quad \dot{\alpha} = \mathbf{u}_{\alpha} , \quad \dot{\beta} = \mathbf{u}_{\beta}$$
(5)

where $\textbf{u}_{\epsilon},~\textbf{u}_{\eta},~\textbf{u}_{\alpha},$ and \textbf{u}_{β} are random processes with the following a priori statistics

$$\mathbb{E}\{\mathbf{u}_{\ell}\} = 0 \quad , \quad \mathbb{E}\{\mathbf{u}_{\ell}(\mathsf{t})\mathbf{u}_{\ell}^{\mathrm{T}}(\mathsf{\tau})\} = \mathbf{q}_{\ell}(\mathsf{t})\delta(\mathsf{t}-\mathsf{\tau}) \quad , \quad \ell \in \{\varepsilon, \eta, \alpha, \beta\}$$

(In the program, selection of this model corresponds to a value of the parameter, MODOF = 11.) The function, $S(\varepsilon)$, is defined in Table la.

Model 2. This model also employs a first-order Gauss-Markov process to approximate the thrust acceleration error components. The form is slightly different, employing fewer variables (and hence, has less flexibility), to yield the differential equations for the state vector, $\mathbf{X}^T = [\mathbf{r}^T \ \mathbf{v}^T \ \mathbf{\epsilon}^T \ \boldsymbol{\alpha}^T]$:

$$\dot{\mathbf{r}} = \mathbf{v} , \quad \dot{\mathbf{v}} = -\frac{\mu}{|\mathbf{r}|^3} \mathbf{r} + \mathbf{S}(\varepsilon)$$

$$\dot{\varepsilon} = -[\alpha] \varepsilon + \mathbf{u}_{\varepsilon} , \quad \dot{\alpha} = \mathbf{u}_{\alpha}$$
(6)

where \mathbf{u}_{ε} and \mathbf{u}_{α} are random with

$$E\{u_{\varrho}\} = 0$$
 , $E\{u_{\varrho}(t)u_{\varrho}^{T}(\tau)\} = q_{\varrho}(t)\delta(t-\tau)$, $\ell\epsilon\{\epsilon,\alpha\}$.

(This model corresponds to a value of MODOP = 21.) Again, $S(\epsilon)$ is defined in Table 1a. The matrix $\lceil \alpha \rceil$, is diagonal and its elements are those of the vector, α . This model is basically the same as Model 3, except that the appropriate state error covariance terms must be set to zero.

Model 3. The thrust acceleration error components are approximated by two first-order Gauss-Markov processes. The differential equations for the state vector, $\mathbf{x}^T = [\mathbf{r}^T \quad \mathbf{v}^T \quad \boldsymbol{\epsilon}^T \quad \boldsymbol{\eta}^T \quad \boldsymbol{\alpha}^T \quad \boldsymbol{\beta}^T]$, are

$$\dot{\mathbf{r}} = \mathbf{v}$$
, $\dot{\mathbf{v}} = -\frac{\mu}{|\mathbf{r}|^3} \mathbf{r} + S(\varepsilon, \eta)$

$$\dot{\varepsilon} = -\left[\alpha\right] \varepsilon + u_{\varepsilon}, \quad \dot{\alpha} = u_{\alpha}$$

$$\dot{\eta} = -\left[\beta\right] \eta + u_{\eta}, \quad \dot{\beta} = u_{\beta}$$
(7)

where \mathbf{u}_{ε} , \mathbf{u}_{η} , \mathbf{u}_{α} , \mathbf{u}_{β} are purely random with

$$E\{u_{\ell}\} = 0$$
 , $E\{u_{\ell}(t)u_{\ell}^{T}(\tau)\} = q_{\ell}\delta(t-\tau)$, $\ell \in \{\varepsilon, \eta, \alpha, \beta\}$

(This model corresponds to MODOP = 21.) The vector function, $S(\varepsilon,\eta)$, is defined in Table 1a. The matrices, $\lceil \alpha \rceil$ and $\lceil \beta \rceil$, are diagonal matrices whose diagonal elements form the components of the vectors, α and β .

Model 4. The thrust acceleration error components are approximated by a second-order Gauss-Markov process. The differential equations for the state vector, $\mathbf{X}^T = [\mathbf{r}^T \ \mathbf{v}^T \ \mathbf{\epsilon}^T \ \mathbf{n}^T \ \mathbf{\alpha}^T \ \mathbf{\beta}^T]$, are

$$\dot{\mathbf{r}} = \mathbf{v} \quad , \quad \dot{\mathbf{v}} = -\frac{\mu}{|\mathbf{r}|^3} \mathbf{r} + S(\eta)$$

$$\dot{\varepsilon} = -\left[\alpha\right] \varepsilon - \left[\beta\right] \eta + u_{\varepsilon} \tag{8}$$

$$\dot{\eta} = \varepsilon$$
 , $\dot{\alpha} = u_{\alpha}$, $\dot{\beta} = u_{\beta}$

where $\textbf{u}_{\epsilon},~\textbf{u}_{\alpha},~\text{and}~\textbf{u}_{\beta}$ are purely random processes which satisfy the a priori statistics

$$E\{u_{\ell}\} = 0 \quad , \quad E\{u_{\ell}(t)u_{\ell}^{T}(\tau)\} = q_{\ell}(t)\delta(t-\tau) \quad , \quad \ell\epsilon\{\epsilon,\alpha,\beta\}$$

(This model corresponds to MODOP = 12.) The vector, $S(\eta)$, is defined in Table la. $\lceil \alpha \rceil$ and $\lceil \beta \rceil$ are diagonal matrices whose diagonal elements form the components of α and β .

Model 5. The thrust acceleration error is approximated by a slightly different form for the two first-order Gauss-Markov process. The differential equations for the state vector $\mathbf{X}^T = [\mathbf{r}^T \ \mathbf{v}^T \ \mathbf{e}^T \ \mathbf{\eta}^T \ \mathbf{\alpha}^T \ \mathbf{\beta}^T]$ are

$$\dot{\mathbf{r}} = \mathbf{v} , \quad \dot{\mathbf{v}} = -\frac{\mu}{|\mathbf{r}|^3} \mathbf{r} + S(\varepsilon, \eta)$$

$$\dot{\varepsilon} = -\begin{bmatrix} \alpha_1^2 & 0 & 0 \\ 0 & \alpha_2^2 & 0 \\ 0 & 0 & \alpha_2^3 \end{bmatrix} \varepsilon + \mathbf{u}_{\varepsilon} , \quad \dot{\alpha} = \mathbf{u}_{\alpha}$$

$$\dot{\eta} = -\begin{bmatrix} \beta_1^2 & 0 & 0 \\ 0 & \beta_2^2 & 0 \\ 0 & 0 & \beta_2^3 \end{bmatrix} \eta + \mathbf{u}_{\eta} ; \quad \dot{\beta} = \mathbf{u}_{\beta}$$
(9)

where $u_{\varepsilon}^{\dot{}},~u_{\eta}^{\dot{}},~u_{\alpha}^{\dot{}},~u_{\beta}^{\dot{}}$ are purely random with

$$E\{u_{\ell}\} = 0$$
 , $E\{u_{\ell}(t)u_{\ell}^{T}(\tau)\} = q_{\ell}(t)\delta(t-\tau)$, $\ell\epsilon\{\epsilon,\eta,\alpha,\beta\}$

(This model corresponds to MODOP = 22.) S(ϵ) is defined in Table 1a. The elements of α_i and β_i are the elements of the vectors, α and β .

The Vector Function, S

In all models, the function, S, may be defined in one of three ways, depending upon the value of the program parameter, KSW. (See also Figure 1.)

Table la is a cross-reference matrix showing the form of S for various values of MODOP and KSW. (KSW is also called KAX in the program.)

Observations

Observations for the orbit determination process consist of range, ρ ; range-rage, $\dot{\rho}$; and three celestial angles, λ_i , defined below.

 λ_1 = sun-vehicle-planet angle

 λ_2 = star-vehicle-planet angle

 λ_3 = sun-vehicle-star angle

The true and nominal state vectors are used to compute the true and nominal observation values. Further, the true observations are corrupted by adding white noise to the deterministically computed values. The random components are obtained by sampling from known Gaussian distributions. If each observation, specified generically as Ω , is made at discrete times, t_i , the observation-state relationship can be expressed as

$$\Omega_{i} = G_{\Omega}(X_{i}, t_{i}) + v_{i}$$
 (10)

The observation error, $v_{\Omega_{\hat{\mathbf{i}}}}$, is assumed to have the a priori statistics $\mathrm{E}\{v_{\Omega_{\hat{\mathbf{i}}}}\}=0$, $\mathrm{E}\{v_{\Omega_{\hat{\mathbf{i}}}},v_{\Omega_{\hat{\mathbf{j}}}}\}=R_{\Omega_{\hat{\mathbf{i}}}},$ where $\delta_{\hat{\mathbf{i}}}$ is the Kronecker delta.

Earth Ephemeris

The Earth's orbit is assumed to be circular, an assumption not unreasonable in light of other model dynamics employed. The position and velocity of the Earth is determined from the following equations:

$$\psi = \text{mod} (\omega_E^{\dagger}, 2\pi)$$

$$X_E = C \cos \psi$$

$$Y_E = C \sin \psi$$

$$V = C \omega_E$$

$$\dot{X}_E = -V \sin \psi$$

$$\dot{Y}_C = V \cos \psi$$
(11)

where C is the mean Larth-Sun distance (see Figure 4.).

Tracking Station Motion

Figure 4 shows the coordinate frames and variables used in defining motion of (up to three) tracking stations, due to the Earth's rotation. The Earth is assumed to rotate at a constant rate; no precession or nutation is accounted for. From the figure, the tracking station position and velocity in heliocentric coordinates are seen to be:

$$\begin{bmatrix} X_{S} \\ Y_{S} \\ \vdots \\ Z_{S} \end{bmatrix} = \begin{bmatrix} X_{E} \\ Y_{S} \\ \vdots \\ Z_{S} \end{bmatrix} + \begin{bmatrix} X_{E} \\ Y_{E} \\ 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varepsilon & -\sin \varepsilon \\ 0 & \sin \varepsilon & \cos \varepsilon \end{bmatrix} \begin{bmatrix} D_{i} & \cos (\phi + \phi_{oi}) \\ D_{i} & \sin (\phi + \phi_{oi}) \\ \vdots \\ Z_{S} \end{bmatrix} + \begin{bmatrix} X_{E} \\ Y_{E} \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} \dot{X}_{S} \\ \dot{Y}_{S} \\ \vdots \\ \dot{Z}_{S} \end{bmatrix} = \begin{bmatrix} \dot{X}_{E} \\ \dot{Y}_{E} \\ \vdots \\ D_{i} & \cos \phi_{i} & (\Omega \cos \varepsilon + \omega) + Z_{S} & \Omega \sin \varepsilon \\ D_{i} & \cos \phi_{i} & (\Omega + \omega \cos \varepsilon) \\ D_{i} & \cos \phi_{i} & \omega \sin \varepsilon \end{bmatrix}$$

where ω is the Earth spin rate, Ω is the orbital angular rate of Earth, and ϕ = $\omega t + \phi$, and where the subscript, i, represents the ith station.

For the geographic rectangular station coordinates x_s , y_s , z_s , D_s is $x_s^2 + y_s^2$ for the i^{th} station; Ψ_{D_i} is the right ascension of the i^{th} station at the initial time. The obliquity of the ecliptic is ε ; in the program $\sin \varepsilon = .3979$... and $\cos \varepsilon = .9174$... are coded directly

Figure 4. Earth Ephemeris and Tracking Station Geometry
Filter Equations

The differential equations described by any of the above models may be written in the following vector form to obtain the equations of state:

$$\dot{X} = F(X,t)$$
 , $X(t_0) = X_0$ (13)

The extended form of the Kalman-Bucy filter is used to obtain the state estimate. That is, given a previous estimate, x_{k-1} , and the associated state error covariance matrix, P_{k-1} , the estimate and error covariance at time, t_k , are obtained from the

following equations:

$$\bar{X}_{k} = \hat{X}_{k-1} + \int_{t_{k-1}}^{t_{k}} F(\bar{X}(\tau), \tau) d\tau$$

$$\bar{P}_{k} = P_{k-1} + \int_{t_{k-1}}^{t_{k}} \dot{\bar{P}}(\tau) d\tau$$

$$\dot{\bar{P}} = A(t)\bar{P} + \bar{P}A^{T}(t) + Q(t)$$

$$K_{k} = \bar{P}_{k}H_{k}^{T}[H_{k}\bar{P}_{k}H_{k}^{T} + R_{\Omega k}]^{-1}$$

$$\hat{X}_{k} = \bar{X}_{k} + K_{k}[\Omega_{k} - G_{\Omega}(\bar{X}_{k}, t_{k})]$$

$$P_{k} = [I - K_{k}H_{k}]\bar{P}_{k}$$
,

where A(t) = $\partial F(\bar{x},t)/\partial x$ and $H_k = \partial G_{\Omega}(\bar{x}_k, t_k)/\partial x$, and $Q' \in \{q, q_{\varepsilon}, q_{\eta}, q_{\alpha}, q_{\beta}\}$, the appropriate non-zero submatrices of the state noise covariance, Q.

Program Description

Main Frogram - LOGO

The main program provides the controlling logic for driving the overall program. All problem input and batch mode control parameters are input here. Initialization of program options, and associated logic flags and parameter values are set. Plot option logic is set and the plot subroutine is called (on problem termination). Program results are saved on a separately specified output file for later use as inputs for continuation of problem at hand.

Language	
FORTRAN IV	
List of Subroutines used	
OUTPUT	
PATH	
UPDATE	
MOTION	
FORTRAN IV	These are explained in this report
AMATRIX	
HMATRIX OBSERV	
GAUSS	
MINIPLT	plotting routine for UT plotting system
(RANF)	UT2 system library; generates uniform random sequence
MSAB	matrix multiplication C = AB
COMPASS MSABT	matrix multiplication $C = AB^{T}$
MSATB	matrix multiplication $C = A^{T}B$

available for error messages from the above 3 routines

15

Control Cards:

READPF <number> NAV RMS

REWIND NAV RMS

RUN TX I=NAV

COPYBF RMS LGO

SETCORE ZERO

LGO

Computing System

CDC 6600, UT-2 Operating System

Inputs

Input parameter values are entered under both formatted and NAMELIST input (READ) statements. They are explained in Table 2.

Outputs

All input parameters are printed immediately after being read. Upon completion of problem computations, selected variables are plotted (position, velocity, etc.) depending upon the plot option selected. Also, all input parameter values are saved on output file TAPEL, and can be subsequently used, if desired, as the input source for a later continuation run. This sequence occurs at the end of each run; in order to use TAPEL as a new input file, it must be saved as a permanent file, or punched **on** cards.

Units

Any set of engineering units may be employed. All computation and output are done in the selected set with one exception. The choice of Earth radii and days as units of distance and time results in computation and print output in these units; however, plotting is in kilometers and seconds.

Input File Setup

Basic problem input data is entered via the NAMELIST INPUTS whose elements are listed in Table 2. Since the data is via NAMELIST, any unspecified parameters

are automatically assigned values of zero if the SETCORE zero control card has been used. Figure 5a shows a sample data deck setup for the case where the a priori state error covariance matrix is diagonal. Figure 5b shows the setup for non-zero elements in the a priori error covariance. Note, in this case, the addition of NAMELIST APCOV, with elements made up of the array, P. Further, the array, STERCOV in NAMELIST INPUTS, must be zero in order to read in APCOV. (See Table 3.)

Figure 5a. Normal Deck Setup

Figure 5b. Alternate Deck Setup

On-Line Feature

The on-line feature of the program is primarily that of presenting a running display on an assigned CRT terminal. Selection of the on-line feature is done by assigning a negative value to the parameter, PB, in NAMELIST INPUTS. Each time the output routine is entered, a colon, :, is displayed indicating readiness to receive a keyboard input. The keyboard input is one of the digits, 0 through 7; their meaning is shown in Table 3.

K/B	Input	Definition
	0	Return and continue problem computations
	1	Print state deviation
	2	Print state vector
	3	Print thrust acceleration (local frame)
	4	Print error covariance trace and RSS
	5	Print observation error and H-matrix
	6	Discontinue CRT display after next 0 entered
	7.	Revise problem termination time to the current time plus one integration step

Table 3. On-Line Feature Keyboard Inputs

Print Output

Printed output data consists of true (simulated) and nominal (estimated) state vector and state vector deviation, Earth state vector, error covariance state noise covariance, filter gain, observations, observation error, and the observation matrix, 3 (observation)/3 (state). A sample block of print is shown in Figure 6.

Figure 6. Sample Printer Output

Flow Diagram

Figure 7 is a functional flow diagram of the main program logic.

Variables

Tables 2a and 2b define the NAMELIST INPUTS and APCOV parameters. Tables 4 through 14 define the labeled common blocks (there is no blank COMMON). Table 15 defines those internal variables not contained in Tables 2 through 14. These internal variables are in alphabetical order.

Subroutine OUTPUT

This subroutine provides the logic for controlling print output as well as the on-line CRT display logic. Data to be output is communicated to the routine via labeled COMMON. Figure 8 is a functional flow diagram of the subroutine. Subroutine PATH

Subroutine PATH performs the numerical integration of the equations of motion, and stores the data points for plotting. Two orders of integrators are available: Fourth-order Runge-Kutta-Gill, and second-order Runge-Kutta. The type of integrator is specified by the "hard-coded" value of the parameter, IGO.

IGO = 2, Second-Order Runge-Kutta

$$\bar{y}_{i+1} = y_i + f(y_i, t_i)h$$

$$y_{i+1} = y_i + [f(\bar{y}_{i+1}, t_{i+1}) - f(y_i, t_i)] \frac{h}{2}$$

IGO = 4, Fourth-Order Runge-Kutta-Gill

$$c_1 = 1 - \sqrt{2}/5$$
 $c_5 = -(2 + 3/\sqrt{2})$
 $c_2 = -2 + 3\sqrt{2}$ $c_6 = 2 + \sqrt{2}$
 $c_3 = 2 - \sqrt{2}$ $c_7 = 1/6$
 $c_4 = 1 + 1/\sqrt{2}$ $c_8 = -1/3$

$$\begin{cases}
g_{1} = f(y_{i}, t_{i}) \\
\bar{y} = y_{i} + g_{1} \frac{h}{2}
\end{cases}$$

$$\begin{cases}
g_{2} = f(\bar{y}, t_{i+\frac{1}{2}}) \\
\bar{y} = \bar{y} + c_{1}(g_{2} - g_{1})h \\
g_{1} = c_{2}g_{1} + c_{3}g_{2}
\end{cases}$$

$$\begin{cases}
g_{2} = f(\bar{y}, t_{i+\frac{1}{2}}) \\
\bar{y} = \bar{y} + c_{4}(g_{2} - g_{1})h \\
g_{1} = c_{5}g_{1} + c_{6}g_{2}
\end{cases}$$

$$\begin{cases}
g_{2} = f(\bar{y}, t_{i+1}) \\
g_{1} = c_{5}g_{1} + c_{6}g_{2}
\end{cases}$$

$$\begin{cases}
g_{2} = f(\bar{y}, t_{i+1}) \\
g_{1} = c_{5}g_{1} + c_{6}g_{2}
\end{cases}$$

Figure 9 is a flow diagram of the numerical integration logic flow.

Subroutine UPDATE

Subroutine UPDATE computes the Earth ephemeris data and tracking station motion, provides the logic controlling computation of the observations and observation partial derivatives, and computes the filtered state estimate. Figure 10 shows a general logic flow for this routine.

Subroutine MOTION

In addition to calling subroutine ACCEL, which computes the dynamic accelerations, the model compensation differential equations are evaluated. Further, the error covariance matrix differential equation is evaluated. Figure 11 is a flow diagram of the corresponding logic. See also Table 1.

Subroutine ACCEL

The true (simulated) and nominal accelerations (gravitational and thrusting) are computed according as the parameter, JP, equals 1 or 2, respectively. This

includes both the gravitational and the thrust accelerations. For the nominal acceleration, the coordinate system used depends upon the value of the parameter, KSW.

- KSW = 1 , Heliocentric rectangular coordinates
 - 2 , Local rectangular coordinates
 - 3 , Local angular coordinates

Figure 12 is a flow chart of the subroutine.

Subroutine AMATRIX

The partial derivatives of the state differential equations are computed. The forms of the derivatives depend on the coordinate system (KSW = 1, 2, or 3), and on the type of equations used to model the nominal thrust acceleration errors (MODOP = 11, 12, 21, 22). Figure 13 is a flow diagram for the subroutine.

Subroutine HMATRIX

The partial derivatives of the observations are computed and provided to subroutine UPDATE for use in the filter equations. Figure 14 is the flow diagram. Subroutine OBSERV

The observations (range, range-rate, sun-planet angle, star-planet angle, and/or sun-star angle) are computed. Both the true and nominal observation values are determined. Figure 15 is the flow diagram.

Subroutine GAUSS

This routine provides random samples from a standardized normal (Gaussian) distribution.

Subroutine MINIPLT

(See Department of Aerospace Engineering library documentation.)

S	. 1.	2	3
11	T* + ε	T * + Rε	$T^* + R[a^* + \epsilon_1] \begin{bmatrix} \sin \epsilon_2 \cos \epsilon_3 \\ \cos \epsilon_2 \\ \sin \epsilon_2 \sin \epsilon_3 \end{bmatrix}$
21	Τ* + ε + η	Τ* + R[ε + η]	T* + $\begin{bmatrix} \sin (\epsilon_2 + \eta_2) \cos (\epsilon_3 + \eta_3) \\ \cos (\epsilon_2 + \eta_2) \end{bmatrix}$ $\sin (\epsilon_2 + \eta_2) \sin (\epsilon_3 + \eta_e)$
12	T* + η	T* + Rŋ	$T^* + R[a^* + \epsilon_1] \begin{bmatrix} \sin \epsilon_2 \cos \epsilon_3 \\ \cos \epsilon_2 \\ \sin \epsilon_2 \sin \epsilon_3 \end{bmatrix}$
22	Τ* + ε + η	T* + R[ε + η]	T* + $\begin{bmatrix} \sin (\varepsilon_2 + \eta_2) \cos (\varepsilon_3 + \eta_3) \\ \cos (\varepsilon_2 + \eta_2) \\ \sin (\varepsilon_2 + \eta_2) \end{bmatrix}$ $\sin (\varepsilon_2 + \eta_2) \sin (\varepsilon_3 + \eta_3)$

Table la. Selection Matrix for Vector Function, S

MODOP	MODEL	with IQ = 0	Noise Mapping Matrix					
0	0	$\dot{\bar{P}} = A\bar{P} + \bar{P}A^{T} + \bar{P}Q\bar{P}^{T}$	I R					
1	0	$\dot{\bar{P}} = A\bar{P} + \bar{P}A^T + Q$						
11	1.		[cos ψ -sin ψ 0]					
12	4	$\bar{P} = A\bar{P} + \bar{P}A^T + \Gamma Q \Gamma^T$	$R = \sin \psi \cos \psi 0$					
21	2 or 3							
22	5		0 0 1					

Table 1b. State Error and State Noise Covariance Logic

Code	Dim	Type	Text	Description						
WEARTH	1	·R	$\omega_{ m E}$	Orbital angular velocity of the Earth						
AU .	1	R	С	1 Astronomical Unit (a.u.)						
FROBE	18	R	X	Initial value of state vector to be estimated						
				(1) - (6): Position and Velocity, X Y Z \dot{X} \dot{Y} \dot{Z}						
				$(7) - (24): \epsilon_1 \epsilon_2 \epsilon_3 \eta_1 \eta_2 \eta_3 \alpha_1 \alpha_2 \alpha_3 \beta_1 \beta_2 \beta_3$						
PROBER	6	R		Initial state vector errors in position and velocity						
GSUN	1.	R	μ .	Gravitational parameter of the sun						
TSTART	1:	R		Initial time						
TSTOP	1.	R	•	Final (problem termination) time						
TRANGE	1	R		Range observation interval						
TRNGRT	1	R		Range rate observation interval						
TSNPLT	1	R		Sun-planet angle observation interval						
TSTRPLT	1	R		Star-planet angle observation interval						
TSNSTR	. 1	R		Sun-star angle observation interval						
THRSTAX	1 .	R	a*	Nominal value of thrust acceleration						
THRETER	f†	R .		(1): Frequency (cycles/sec) of sinusoidal acceleration error variation						
				(2): Percent of nominal thrust acceleration magnitude to be used as magnitude error						
		-		(3): Standard deviation for random component of thrust acceleration error magnitude						
				(4): Standard deviation (radians) for random component of thrust acceleration pointing error						
ACCELER	6	R		Not used						
PLATFER	6	R	-	Not used						
STERCOV	18	R	Р	Initial values of diagonal elements of error covariance						
STNSCOV	18	R	Q	Constant values of diagonal elements of state noise covariance						
MODOP	1	Ι		Model option selection parameter						

	Γ	! !	1	
Code	Dim	Туре	Text	Description
				MODOP = 0, 1 - Model 0 MODOP = 21 - Model 3
				MODOP = 11 - Model 1 MODOP = 12 - Model 4.
MSIMOP	1	I		Not used
OBSCOV	5	R	$^{R}_{\Omega_{\mathbf{i}}}$	Nominal observation error covariance (elements 1-5 correspond to the elements for TRANGE, TRNGRT, TSNPLT, TSTRPLT, TSNSTR, respectively)
TOBSCOV	5	Ř		True observation error covariance (elements correspond to those above (OBSCOV))
STAR	3	R		Unit vector pointing to navigation star
DTINT.	1	R	h	Integration step size
IPRNT	5	R		Print frequency for each observation type
UNMÓD	12	R		Initial values of model compensation parameters
IPLOTYP	1	I		Plot type flag: Values may be any number of digits from 1 to 7, in any order. Thus, 127 or 271, etc. results in plots on printer paper, teletype, or CRT, and microfilm.
				Codes are: 1 = line printer; 2 = teletype; 3 = 12" paper, ball point pen; 4 = 12" paper ink pen; 5 = 30" paper ball point pen; 6 = 30" paper ink pen; 7 = 35 mm film
TOBS		R		Initial times for each observation type
TUP	1	R		Flag for controlling initial observation processing TUP < 0 Process first observation(s) at initial time prior to integrating first step TUP > 0 Integrate first step then process observation
MAXIT	1.	T		Not used
E .	6	R		E(1) contains age-weighting parameter, $1 \le S < \infty$, if desired. E(2)-E(6) not used.
KAX	1	I		Flag controlling coordinate system for compensating models:
				<pre>KSW = 1 Heliocentric rectangular coordinate (X Y Z) KSW = 2 Local rectangular coordinates,(x y z) KSW = 3 Local angular coordinates (φ γ 0)</pre>
	1	. · ·	1	4

Code	Dim	Туре	Text	Description						
ΙÒ				Not used						
KAGE ¹	1	I		Flag controlling age-weighting suboptimal filter KAGE < 0, use suboptimal age-weighting (not used)						
PB	1	R		On-line control parameter PB < 0, employ on-line display						
JPLOT	1	·I		Not used						
AUX	6	R		Auxiliary acceleration error simulation parameters						
				(1) = s (rate of motion of tip of accel. vector) (2) = $\bar{\gamma}$ (max value of γ specifying boundary) (3) = $\bar{\theta}$ (initial value of θ ; updated at each $\bar{\gamma}$ contact) (4) = ϕ (initial value of ϕ , direction of accel. (5) = σ_{θ} (standard deviation of the noise in θ) (6) = σ_{s} (standard deviation of the noise in s)						
BETA	5	R		Not used						
DZT	18	R		Not used						
ZS .	3	R	ZS	Z-component (geographic rectangular coordinates) of tracking station						
D .	3	R	Di	$\sqrt{x_{\text{si}}^2 + y_{\text{si}}^2}$						
W	. 4	R	w _E , oi	<pre>w(1) = Rotational angular velocity of Earth; w(2)-w(4) = Initial angular displacements of tracking</pre>						

Table 2a. (Cont'd.)

Code	Dim	Type	Text	Description
P ·	18,18	R	P	Complete 18 x 18 a priori state error covariance matrix (3 2 4 elements). If this NAMELIST is used NAMELIST/INPUTS/ must precede /APCOV/; the array STERCOV must be zero, otherwise /APCOV/ will not be read

Description	State vectors and error covariance/ (1)-(6): True position and velocity (7)-(24): Nominal position and velocity, and compensating model parameters (25)-(195): Upper triangular elements of error covariance matrix: DV(K) = P(II,JJ) where I = MINO(II,JJ), J = MAXO(II,JJ), and K = (18-1)*(I-1) + (I*(I+1))/2 + J - I + 24	True position and velocity	Nominal (estimated) state vector	Estimated state vector deviation	Initial time	Problem termination time	Problem current time	Angular orbit velocity of Earth	One astronomical unit (a. u.)	Gravitational parameter of the sun	Model selection option parameter	MODOP = 0, 1 - Model 0 MODOP = 21 - Model 3 MODOP = 11 - Model 1 MODOP = 12 - Model 4 MODOP = 21 - Model 2 MODOP = 22 - Model 5	Not used	Observation intervals (Also, see TRUOBS, internal variables)
References	LOGO, OUTPUT, PATH, UPDATE, MOTION, ACCEL,								.					
Text			×						· 0	.				
Type	ρ,	ሺ	. tx	PK.	Ċ.	ĸ	ρ.	ĸ	<u>.</u> ;	ρ.,	H .		H	ଝ
. Dim	200	9	18	18	ч	H	. - 	r1	H		Н		I	ഗ
Code	ΛO	ZZ	. [7	DZ	TSTART	TEND	E → '	WEARTH	AU	GSUÑ	MODOP .		(H)	PTOBS .

Description	Print frequency control	Nominal observation error covariance	True observation error covariance	Unit vector in direction of navigation star	Not used	Nominal thrust acceleration value	Thrust acceleration error simulation variables	State error covariance	State noise covariance (diagonal)	State vector (position and velocity) of Earth	True observations	Nominal (calculated)oobservations	True and nominal thrust accelerations	Integrator step size	Observation matrix, $\partial G/\partial \chi$	State partial derivatives matrix, $\partial F/\partial \chi$	Initial observation times
Peferences																	
Text		R S	$R_{\Omega_{1}}$			∵ d		д	Oʻ		Ω.	G(X)			H	А	
Type	 - -	o ' ,	ρ; ·	K	<u></u>	صر	껖	æ	以	С.	<u>α</u>	М.	pc,	р <u>с</u>	ρζi	ρĽ	ĸ
) ; ()	10	10	10	(1)	. , CZ 	erd	z t	81.8	ļœ r∃	· · · ·	10	ю	ω.	r=1.	ω ιο :	(요 (건 (건	· 10
Code	XX	OBSCOV	TOBSCOV	STAR	ACE	THRSTAX	THRSTER	Д,	STNSCOV	XE	OBS	CALOBS	CT	DTINT	НН	A	TOBS

Description	Dependent parameters for plotting: (1-350,1): Position error norm (351-700,1): Velocity error norm (351-700,2): Velocity error norm (351-700,2): Velocity error secel. errors (1-350,1) - (1-350,3): True thrust accel. errors (351-700,1) - (351-700,3): Nom. thrust accel. errors (1-350), (351-700): T - TSTART (mission time) Number of points for plotting Plot increment or frequency
References	LOGO, OUTPUT, PATH
. Text	
Туре	12 R I
Dim	703,6 1
Code	> × ₩ ⊔

Table 5. COMMON/PLOTS/

		* 				
Description	Not used	E(1) is the suboptimal filter parameter for ageweighting; E(2)-E(6) not used	Initial values of diagonal elements of error covariance	Flag for determining suboptimal or optimal filter mode (< 0, optimal filter)		
References	LOGO, OUTPUT					
Text						
Туре	В	~	, K	⊢		
Dim	18	ω .	1.8	r-4		
Code	WLE	ГП .	STERCO	KSOZ		

Table 6. COMMON/SUBOPT/

				•						31
Description	Flag for adaptive (Q) estimation. Mot Used State noise covariance matrix (square); used only for diagonal terms. IQ should be set to zero.	STEST/	Description	Flag for determining initial observation logic	Not used	UPIT/	Description	Parameters used in thrust acceleration error simula-tion	Z-axis coordinate of station location(s) $\sqrt{x^2_{s_1} + y^2_{s_1}}$	W(1) = Angular rotational velocity of Earth; W(2)-W(4) = Initial angular displacements of stations
?eferences	LOGC, OUTPUT UPDATE, MOTION	Table 7. COMMON/STEST	References	LOGO, PATH, UPDATE		Table 8. COMMON/UPIT,	References	LOGO, UPDATE ACCEL		
Text	. 0'		Text				Text		s, D	ωE, φο.
φ. ()	ta p		Туре	ρ′,	н м		Type	n,	04 p4	Сť
£ï •rd 1⊃	(N) (H) (H) (H) (H)		Dim	П	. J. 87		Dim	. ω	ო ო	` ±
Code	ÒI.		Code	TUP	MAXIT		Code	AUX	Z ZS	Μ

Table 9. COMMON/AUXL/

Description	Flag determining coordinate system for thrust acceleration error estimation (See CX1, CX3, SX2, SX3 in Internal Variables)	COHMOIT/AXMOD/	Description	(1)-(3): True thrust acceleration errors (4)-(6): Estimated thrust acceleration errors	COMMON/TAE/	Description	Kalman gain	Working parameter - (HPH $^{ m T}$ + R)-1	Working parameter	Working parameter	Working array, see T, Internal Variables
References	LOGO, UPDATE, MOTION, ACCEL, AMATRIX	Table 10. COMWO	References	OUTPUT, PATH, MOTION, ACCEL	Table 11. COMM	References	OUTPUT, UPDATE				
Text			Text			Text	· ×		HPHT	THH	·
Type	н а		Type	K.		Type	ex.	<u>κ</u>	۲.	K	ĸ
El ()	rel at		mic	Q		шīС.	8 -	H	· ·I		18,18
Code	KSW, KAX TX		Code	ETA	•	Code	WK	WL	HPHT	HHT	TZ

Table 12. COMMON/FILT/

		,												
Description	Not used Flag specifying numerical integrator (2nd order or 4th order)	COMMON/SW/	Description	Array of normally distributed random numbers	Array of uniformly distributed random numbers	COMMON/RNDM/	Description	Range Vector	Dot product of range vector and negative vehicle position vector	Magnitude of true acceleration errors	True thrust acceleration vector	True thrust acceleration magnitude	Nominal thrust acceleration magnitude	True thrust acceleration magnitude
Peferences	PATH, MGTION, ACCEL	Table 13. COM	References	PATH, MOTION	ACCEL	Table 14. COMM	References	OBSERV	OBSERV	OUTPUT	ACCEL	OUTPUT	OUTPUT	ACCEL
Text			Text				Text			ба		rd	# d	rđ.
Type			Type	ρ <u>ζ</u>	K.		Type	δ .	ρ.,	ρ.,	tk!	Ľ,	ρ.,	o c
Dim			Dim	ō	ၟၯ		Dim	, m	П	Ä		r-1	н .	
Code	ISW		Code	GRNDM	URNDM		Code	A	AB	ADEV	AT	AXT	AXN	ÁО

Table 15. Internal Variables

bescription	Working parameter: $- \mu / \mathbf{r} ^3$	Regative of vehicle position vector	Working parameter: $3\mu/ r ^5$	Coefficients in numerical integration equations	Cosine of sun-planet angle	Cosine of star-planet or star-sun angles	Dummy argument for function statement	Cosine of obliquity of the ecliptic	Cosine of angle between true acceleration vector and local (vehicle) y-axis	Hollerith character (colon, :) for on-line display	Cosine of angle between line of sight to spacecraft and horizon	Cosine of angle, ϕ , used in simulating true thrust acceleration	Cosine of heliocentric orientation angle	Cosine of $\omega_{\mathrm{E}}^{\mathrm{t}}$ + ϕ_{oi} (for station position)	Cosine of approximation to γ for KSW = 3	Cosine of approximation to θ for KSW = 3	Working array for AMATRIX operations	Distance of tip of acceleration vector (simulated) from last boundary contact
References	AMATRIZ	OBSERV	AMATRIX	PATH	HMATRIX	HMATRIX	MOTION	UPDATE	ACCEL	OUTPUT	UPDATE	ACCEL	UPDATE	UPDATE	ACCEL	ACCEL	ACCEL	ACCEL
Text				ڻ٦				3 SOO	√ 203 .			\$ SOO	φ SOO	COS(¢;+¢oi)	$\cos(\epsilon_2 \text{ or } \eta_2)$	COS(ε ₃ or η ₃)		ט
Type	വ	ρá	ρ;	PK.	pr,	· ~	ĸ	۲.	<u>ب</u> د	P4 (к	K	<u>~</u>	Υ.	₩.	PK.	PK.	er.
Din		m	 Н.	∞		H	М	H	·H .	Н	-	H		Н	г	н	m	П
Code	, Д	М	υ ·	O	CA	CB	CE	EE C	90	CL	COB	CP	CPHI ·	· CPHI	CXZ	CX3	CXN	O.

Description	Distance of station from Earth's axis multiplied by cosine of ω_E^+ + ϕ_{oi}	Observation interval	Minimum observation interval	Station distance from Earth's axis times $\cos(\phi_1^{+\phi}, 0)$	Saved value of last observation interval	Range and range rate vectors	Range and range rate vectors	n vehicle position vector a	position vector; or vehicle position vector according as observation is star-planet/ sun-planet, or sunstar-angle respectively	Observation deviation	Dot product of unit vector ot navigation star and range vector	Tolerance	Magnitude of estimated acceleration error	Working arrays for numerical integration	Angle between simulated thrust acceleration vector and local (vehicle) y-axis	Step size for numerical integrations	Row of H-matrix, and working array	Half of step size	
References	UPDATE	PATH	T0G0	UPDATE	UPDATE	OBSERV	HMATRIX	HMATRIX		UPDATE	OBSERV	PATH	OUTPUT	PATH	ACCEL	PATH	UPDATE	PATH	
e xt	D, cos(¢, +¢oi)			D _i sin(¢;+¢ _{oi})											>	د د		h/2	
	ο4	. n4	n1 	ρí	p.;	μ,	αí	ρζ	. :	البرا	ρζ	ĸ	K.	, K	p <u>d</u>	ρ¥	ρ:	<u>K</u>	
Ei O	1	ਜ•	\leftarrow	러		ဖ	ယ	ω		တ	Н	H	Н	200	Н	r-1	П	н	,
ှ ခစ္စလ	DCF .	DELT	E AC	(1.1 (7)	DSC	×a	DXE	DXI		DY	III.	() (), (),	(A)	11, 12		111	(€)∷		

Table 15. (Cont'd.)

Description	Do-loop and array indices	Do-loop index	Logic flag	Input (K/B) test parameter for on-line feature	Problem/run title/identification	Working parameters for plotting	Print control parameter in integration routine	Dummy index for function statement	Do-loop and array indices	Parameter for controlling print information	Do-loop index and dummy function argument	Flag determining computation of true or nominal thrust acceleration	Dummy argument for function statement	Array indices	OUTPUT argument, array index, function statement, OBSERV argument	Array for plot identification parameters	Array index	Parameter which flags singularity
References	All but GAUSS	UPDATE	GAUSS	OUTPUT	L0G0	L0G0	PATH	MOTION	LOGO, MOTION AMATRIX	OUTPUT, UPDATE	UPDATE, MOTION	MOTION	MOTION	OUTPUT	OUTPUT, UPDATE MOTION, OBSERV	LOGO	MOTION	HMATRIX
Text					e esta de la consequencia della consequencia de la consequencia de la consequencia de la		• Per la company de la company								÷			
Туре	Н	H	⊢ '.	H-1	A	H.	H	 	Н	·	Н	Н	H		 	А	Н	·
Dim	i i	H	· H		24	н /	H		. rel .	Н	ř i	н		·		7		-1
0 0 \$	н	+I 1I	(1) -4; -1	0 ज	() 4 	SET ELEMENT	I NEGI	XI	ر. ا	JAAD	JJ	_に に	, K	31, 32	Ж	- 14 - 14	iğ.	K OHE CK

Description	Array index	Counter	Number of graphs to be generated	Print frequency counter	HMATRIX argument identifying observation type	Array indices identifying estimated accelerations	Array index	Print frequency counters	Array indices	Array indices	Array index	Number of tracking stations	Array index; lower limit of do-loop index	Upper limit of do-loop index	Array indices	Observation error	Observation type	True state deviation	Error in state deviation estimate	Parameter for sampling normal distribution
References	MOTION	MOTION	LOGO	PATH	HMATRIX	ACCEL	UPDATE	UPDATE	UPDATE, LOGO	PATH	LOGO	UPDATE	UPDATE, PATH	PATH	UPDATE	OUTPUT	OUTPUT	OUTPUT	OUTPUT	GAUSS
Text			·· · -							. *				· .		·		÷.		
Type	Ţ	Н	Н	H	Н	н	H.	. H	H	-	Н	+	H	H	H	Ľ.	· K	CC.	œ	PK.
Dim	H	~ - 1	~	~	н	٦ .	-	ഹ്	r-I	Н	· -	——.	<u></u> -	. .	Н	∶⊣	.ഹ	<u>ن</u>	9	٦
Code	KETA]X	ND.	KNT	КОР	K1, K2	, , , , , , , , , , , , , , , , , , ,	LPRNT	æ	M1, M2	174	ITS	Ħ	212	M6, M18	OBSER	OBSTYP	OUT 1	OUT 2	D.

Description	Vector of true or nominal accelerations	rray containing all the derivatives.	P(1) -P(6): X Y Z X Y Z Y Z Y Z For simulated trajectory $F(7)$ -P(24): X Y Z X Y Z Y Z $\dot{\hat{\mathbf{t}}}$ $\hat{\mathbf{$	ta: ct: the	<pre>PX(II,JJ) = DV(K(MINO(II,JJ),MAXO(II,JJ)) + 24) PX(II,JJ) looks like an array, and essentially corresponds to the elements of the error covariance matrix. DV is an array explained under COMMON/PARAMS/. MINO and MAXO are FORTRAN library functions. The state ment function, K, matches an element p₁, of the full</pre>	error covariance matrix, to the appropriate position in the upper triangular matrix as it would be stored in a singly dimensioned array.	K(IX,JX) = (18-IX)*(IX-1) + (IX*(IX-1))/2 + JX - IX Thus, P ₅₉ = P ₉₅ (due to symmetry) and occupies location 66 (always choose IX ≤ JX as indicated in the PX func- tion above).	Working array for use in filter equations	Heliocentric orientation angle	Working parameter, $1/\sqrt{X^2+Y^2}$	π/2	Nominal acceleration values
References	ACCEL	MOTION						UPDATE	UPDATE	MOTION	ACCEL	MOIIOM
1.3 8 X T				· · · · · · · · · · · · · · · · · · ·					.· .: >			
Φ [2]	n;	14	er vitte die televisie des verstelligen van de vers					岭	ρζ - Σα	الأ	۲۲,	<u>ب</u>
1 : - 1 : - 1 :	1	О О О						co	; i	e I		
Coâê	P(6)	<u>Д</u> , .						ρ. Ω.	円 江 ひ	⊢1 Ω.,	(N 1-1 (N	. β.

Description	Angle, computed from mission start, representing thrust acceleration, time correlation error: PSIT = PSI (f) = AMOD $(2\pi\cdot f\cdot \Delta t, 2\pi)$	True (simulated) acceleration values	Parameter used for testing for zero covariance	Working parameters	Magnitude of position vector; in GAUSS R is a sample from a normalized uniform distribution	Working parameter: $1/ r $, $1/ r ^3$, etc.	Range	Square of range	Magnitude of vector from geocenter to station	Sample of uniform distribution, 0 to 1	Magnitude of r over range	Working parameters	Magnitude of r times range	Square of magnitude of r	Root sum square of covariance matrix	Working parameters: $1/ r ^2$, $1/ r ^3$, $1/ r ^5$	Age-weighting parameter for suboptimal filtering	Unit vector toward navigation star	
Zeferences	X0110X	XOTION .	0001	AMATRIX	ACCEL, AMATRIX OBSERV, GAUSS	ACCEL	HMATRIX, OBSERV	HMATRIX	UPDATE	UPDATE	HAATRIX	AMATRIX	HMATRIX	HMATRIX	OUTPUT	AMATRIX	UPDATE	OBSERV	
Text		· · · · · · · · · · · · · · · · · · ·											٠.					-	7
Type	К	<u>K</u>	<u>ب</u>	K	pc.	ĸ	د	24	æ	, K	r.	<u>ب</u>	pz.	PK.	~	pr.	ĸ	ĸ	7
Ei Ei	ਜ -	ω· 		· ~			н	Н	н	· - ~			г -		.H		Н	ო	
\$\frac{1}{2}\text{O} \text{O}	[-1 -1 -1 -1 -1 -1	[Ω,	(A)	PX2, 5Y2	ሰ ረ	R.R.	RHO	RHOSQ	RMAG	100 100 100 100 100 100 100 100 100 100	RORHO	RP, AP2	RRHO	RSQ	R S S	72, 33,	w.	·	

Description	Sin of sun-planet angle	Sin of star-planet or star-sun angles	Sin of obliquity of ecliptic	Irigonometric function of thrust pointing angles	Trigonometric function of thrust pointing angles	lo value for thrust acceleration error magnitude random component	Magnitude of range vector	Sine of angle ¢ for simulating true thrust acceleration error	Sine of heliocentric position angle	Square root of true observation error variance	Sine of approximation to γ for KSW = 3	Sine of approximation to θ for KSW = 3	Parameter used in obtaining random Gaussian sample	Working array containing AP (for forming P)	Estimation thrust acceleration a* + $(\epsilon_1 \text{ and/or } \eta_1)$	Working parameters		Test parameter equal to final time - current time	Angle used in orienting thrust vector	
References	HEATRIX	HMATRIX	UPDATE	ACCEL	ACCEL	1060	UPDATE	ACCEL	UPDATE.	UPDATE	ACCEL	ACCEL	GAUSS	MOTION	ACCEL	MOTION		РАТН	ACCEL	
1791			·	S S S S S S S S S S S S S S S S S S S	sin Y cos 3			o uis	y uis		sin(e ₁ or n ₂)	sin(e3 or n ₃)							Φ.	
Туре	,7. ₄	tz.;	ρ.;	ద.	잱.	ρ:	Ω.;	· K	tr;	p4	P4	, tx;	ĸ	ъ	pc,	ሲ		ድሩ -	rk .	
Dim		. <u>.</u>		н	٦	н	H	Н	н	· H	М	Ä	Н	18,18	П	Н			д.	1
Code	SÆ.	(v)	(/) [J.J.	SGCT	SGST	SIGA	SHAG	SP	SPHI	SQRTOBS	SX2	SX3	[[1	¥.	TAT1,	TAT3	TDIE	THETA	

۰		7	
L	L	- 1	

Table 15. (Cont'd.)

Jescription	Current time - start time	Subtraces (3 elements each) of 18 $ imes$ 18 covariance	True (simulated) observations (1)=Range, (2)=Range-rate, (3)=Sun-planet, (4)= star-planet angle, (5)=Sun-star angle	Working parameter used in determining obs. time	Working parameter: time thrust vector last encountered its boundary	<pre>lext observation time (=t current + observ. interval)</pre>	2π	2π	Working parameter	Earth's orbital speed	Earth's angular orbital velocity times cos E	Earth's angular orbital velocity times sin ε	Random sample from Gaussian distribution	Dummy array containing all zeros	Heliocentric station location and velocity	Earth state vector or zero vector depending upon whether or not celestial obs. involves Earth	Earth state vector or zero vector depending upon whether or not celestial obs. involves Earth	Nominal (estimated) state vector
zerences serences	110	[-1 1 1 1 1	[6] [1] [2] [7] [6] [6] [7]	10 10 10 10	11 16 10 00 41	C	ACODE	MOTIOH, UPDATE	GAUSS	UPDATE	UPDATE	UPDATE	GAUSS	UPDATE	HIATRIK	OBSERV	HMATRIX	AMATRIX
Text		٠.	Ω,					· ·							·			
Type	tr.	A.	οζ	ρζ,	Ж	. ਨੂਟ	CK.	α .	ъ.	껁	ድ	к	Ŀκ	΄κ;	œ	&	ድ	сt
1.) 1.1	, . · · · · · · · · · · · · · · · · · ·	ω.	io.	·		, ,-1	Н	<i>(</i> -1	П		П		·	ω	ω,	ιO .	ω	18
Code	Tik	ρ.; [-]	SEONEL	TSAVE	TSV	TSTOF	TWIPI	TWOPI	Т2	>	WCE	WSE	×	XDUM	XE	IX	NIX	XX

Description	Random sample from Gaussian distribution	Heliocentric station location and velocity	State vector (position and velocity)	Vehicle state vector (position and velocity)	Working parameter	Observations	Working parameter (angle) used in determining simulated thrust acceleration
References	UPDATE	UPDATE, OBSERV	ACCEL	OBSERV	AMATRIX	OBSERV	ACCEL
Text						C.	
Type	ĐΪ		124	eri,	<u>ж</u>	Ľ	<u>к</u>
E C	red	'ω	(6)	ŧΩ	r-1	io	r-1 .
epoo	XMOISE	×S S	XT.	ΛX	XX	λ	ZETA

Figure 7. Main Program - LOGO

Figure 7. (Cont'd.)

Figure 8. Subroutine OUTPUT

Figure 8. (Cont'd.)

Figure 9. Subroutine PATH

Figure 9. (Cont'd.)

Figure 10. Subroutine UPDATE

Figure 10. (Cont'd.)

Figure 10. (Cont'd.)

Figure 11. Subroutine MOTION

Figure 11. (Cont'd.)

Figure 12. Subroutine ACCEL

Figure 13. Subroutine AMATRIX

Figure 14. Subroutine HMATRIX

figure 15. Subroutine OBSERV

ACKNOWLEDGMENTS

The authors thank Mrs. Linda Garrett for the extensive time and effort she spent in preparing the manuscript for this documentation.