Chapter 2

System of Linear Equations: Geometry

Where are we?

In Chapter 1 we learned to solve any system of linear equations in any number of variables. The answer is row reduction, which gives an algebraic solution. In Chapter 2 we put some geometry behind the algebra. It is the geometry that gives us intuition and deeper meaning. There are three main points:

Sec 2.3: Ax = b is consistent $\Leftrightarrow b$ is in the span of the columns of A.

Sec 2.4: The solutions to Ax = b are parallel to the solutions to Ax = 0.

Sec 2.9: The dim's of $\{b: Ax=b \text{ is consistent}\}$ and $\{\text{solutions to } Ax=b\}$ add up to the number of columns of A.

Section 2.1

Vectors

Outline

- Think of points in \mathbb{R}^n as vectors.
- Learn how to add vectors and multiply them by a scalar
- Understand the geometry of adding vectors and multiplying them by a scalar
- Understand linear combinations algebraically and geometrically

Vectors

A vector is a matrix with one row or one column. We can think of a vector with \boldsymbol{n} rows as:

- ullet a point in \mathbb{R}^n
- an arrow in \mathbb{R}^n

To go from an arrow to a point in \mathbb{R}^n , we subtract the tip of the arrow from the starting point. Note that there are many arrows representing the same vector.

Adding vectors / parallelogram rule Person

Scaling vectors Demo

A scalar is just a real number. We use this term to indicate that we are scaling a vector by this number.

Linear Combinations

A linear combination of the vectors v_1, \ldots, v_k is any vector

$$c_1v_1 + c_2v_2 + \dots + c_kv_k$$

where c_1, \ldots, c_k are real numbers.

Let
$$v = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 and $w = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

What are some linear combinations of v and w?

Poll

Is there a vector in \mathbb{R}^2 that is not a linear combination of v and w?

- yes
- no

Linear Combinations

What are some linear combinations of (1,1)?

What are some linear combinations of (1,1) and (2,2)?

What are some linear combinations of (0,0)?

Summary of Section 2.1

- A vector is a point/arrow in \mathbb{R}^n
- We can add/scale vectors algebraically & geometrically (parallelogram rule)
- A linear combination of vectors v_1, \ldots, v_k is a vector

$$c_1v_1 + \cdots + c_kv_k$$

where c_1, \ldots, c_k are real numbers.

Typical exam questions

True/False: For any collection of vectors v_1, \ldots, v_k in \mathbb{R}^n , the zero vector in \mathbb{R}^n is a linear combination of v_1, \ldots, v_k .

True/False: The vector (1,1) can be written as a linear combination of (2,2) and (-2,-2) in infinitely many ways.

Suppose that v is a vector in \mathbb{R}^n , and consider the set of all linear combinations of v. What geometric shape is this?