COMP2022 Models of Computation

Introduction to Predicate Logic

Sasha Rubin

October 24, 2024

Motivation for predicate logic

Can we formalise this argument is propositional logic?

- Romeo is a man.
- All men are mortal.
- So, Romeo is mortal.

Motivation for predicate logic

Can we formalise this argument is propositional logic?

- Romeo is a man.
- All men are mortal.
- So, Romeo is mortal.

Propositional Logic doesn't have a way to talk about:

- 1. individuals/objects (Romeo),
- that certain objects have properties (e.g., being a man, being mortal),
- 3. or that a property holds for all individuals/objects (all mean are mortal)

Predicate logic in a nutshell

Predicate-logic (aka First-order logic) is for modeling

- 1. objects (like numbers)
- 2. properties of objects ('x is even')
- 3. relations between objects (like 'x is greater than y').

It generalises Propositional Logic. The main new ingredients are:1

- 1. domain: collection of objects,
- 2. predicates: properties of objects and relations between objects.
- 3. variables: vary over objects in the domain.
- 4. quantifiers: allow one to reason about multiple objects.

 $^{^{\}mathbf{1}}\textsc{Often}$ predicate logic also explicitly includes functions like $f(x)=x^{2},$ but we will not focus on these.

Domains

When we reason about objects, we have in mind a certain domain of discourse.

- 1. In programming, the domain may be the integers, or strings, or both, etc.
- 2. In the world, the domain includes people, animals, etc.

Definition

A domain is a non-empty set \mathbb{D} . It's elements are sometimes called objects.

- The set \mathbb{Z} of integers is a domain. e.g., it contains -3.
- The set $\mathbb H$ of humans is a domain. e.g., it contains someone called Romeo.
- The set $\mathbb S$ of binary strings is a domain. e.g., it contains "011"

Variables x, y, z, \ldots vary over elements of the domain.

Predicates

In propositional logic we write propositions:

- 'Romeo is happy'
- 'Romeo loves Juliet'

In predicate logic we use predicates:

- happy(Romeo)
- loves(Romeo, Juliet).

With variables we can also write atomic formulas:

- happy(x)
- -loves(x,y)
- loves(Romeo, y)

Using connectives, we can now write some simple formulas:

- loves(Romeo, Juliet) \rightarrow happy(Juliet)
- loves(Romeo, x) \rightarrow happy(x)

Predicates

Ok, but what is a predicate actually?

Definition

A predicate (of arity k) over domain \mathbb{D} is a subset of \mathbb{D}^k .

- happy $\subseteq \mathbb{H}$ is a unary predicate (k=1).
- loves $\subseteq \mathbb{H} \times \mathbb{H}$ is a binary predicate (k=2).

We also allow infix notation:

$$x$$
 loves y

We also allow functional notation:

$$\texttt{loves}: \mathbb{H} \times \mathbb{H} \rightarrow \{\texttt{true}, \texttt{false}\}$$

Predicates

- Arguments in atomic formulas are variables and objects.

 If we fix the values of the variables, then predicates become propositions! And so are either true or false.

- We cannot compose predicates...

e.g.

is not a formula and has no meaning.

There are two types of quantifiers.

1. The existential quantifier, written ∃, read "exists"

$$\exists xF$$

is true if **there** is an element d of the domain so that F true when d replaces x in F.

2. The universal quantifier, written ∀, read "for all"

$$\forall xF$$

is true if for every element d of the domain, the formula F is true when d replaces x in F.

Domain \mathbb{Z} of integers Predicates even(x), odd(x)

Which of the following formulas are true?

- 1. $\exists x \, \text{even}(x)$
- 2. $\exists x (even(x) \land odd(x))$
- 3. $(\exists x \, \mathtt{even}(x)) \land (\exists x \, \mathtt{odd}(x))$

Domain \mathbb{Z} of integers Predicates even(x), odd(x)

Which of the following formulas are true?

- 1. $\forall x \operatorname{even}(x)$
- 2. $\forall x (even(x) \lor odd(x))$
- 3. $(\forall x \operatorname{even}(x)) \vee (\forall x \operatorname{odd}(x))$

A quantified formula

 $\exists xF$

has two parts:

- 1. The variable being quantified x
- 2. The formula being quantified F.

We can nest quantifiers...

 $\exists x \exists y F$

and even mix them...

 $\exists x \forall y F$

Domain \mathbb{H} of humans Predicate loves(x, y)

 $\forall x \, \mathtt{loves}(x, x)$

 $\forall x \forall y \, \mathtt{loves}(x,y)$

 $\exists x \forall y \, \mathtt{loves}(x,y)$

 $\forall x \exists y \, \mathtt{loves}(x,y)$

 $\exists x \exists y \, \mathtt{loves}(x,y)$

Every human loves themself

Everyone loves everyone

Someone loves everyone

Everyone loves someone

Someone loves someone

Translating to and from logic

Think of logic as a programming language that is based in mathematics.

- Programming languages (datalog, answer set programming)
- Database query languages (SQL)
- Hoare logic for verifying correctness of programs

We will learn how to write formulas to say what we mean.

There are some common forms:

- 1. "All As are Bs" translates as $\forall x (A(x) \rightarrow B(x))$
- 2. "Some As are Bs" translates as $\exists x (A(x) \land B(x))$
- 3. "No As are Bs" translates as $\forall x (A(x) \rightarrow \neg B(x))$
- 4. "Some As are not Bs" translates as $\exists x (A(x) \land \neg B(x))$

Usually:

- \land goes with \exists
- ightarrow goes with orall

Domain \mathbb{Z}

Predicates even, odd and greater

Translate the statement "Every even integer is greater than some odd integer" into predicate logic.

- This is of the form "All As are Bs"
- -A(x) for "x is an even integer"
- B(x) for "x is greater than some odd integer"

$$\forall x (\mathtt{even}(x) \to \exists y (\mathtt{odd}(y) \land \mathtt{greater}(x,y))$$

Translate the statement "Some even integer is equal to 0" into predicate logic.

- 1. $\exists x (\mathtt{even}(x) \land \mathtt{equal}(x, 0))$
- 2. $\exists x (\mathtt{even}(x) \to \mathtt{equal}(x,0))$

Translate the statement "Every even integer is equal to 0" into predicate logic.

- 1. $\forall x (\mathtt{even}(x) \land \mathtt{equal}(x, 0))$
- 2. $\forall x (\mathtt{even}(x) \to \mathtt{equal}(x,0))$

The order of quantifiers only matters when mixing existential and universal quantifiers.

- $\forall x \forall y P(x,y)$ means the same thing as $\forall y \forall x P(x,y)$
- $\exists x \exists y P(x,y)$ means the same thing as $\exists y \exists x P(x,y)$
- $\exists y \forall x P(x,y)$ means there is a single y such that for all x we have that P(x,y) is true.
- $\forall x \exists y P(x,y)$ means for every x there is a y (that can be different for different choices of x) such that P(x,y) is true.

Translate the following into logic in the domain of integers: "Every integer is greater than some integer"

- 1. $\forall x \exists y \, \mathtt{greater}(x, y)$
- 2. $\exists y \forall x \operatorname{greater}(x, y)$

The formula $\forall x \neg P(x)$ is false when...?

- 1. P(x) is true for every x.
- 2. $\neg P(x)$ is true for every x.
- 3. P(x) is true for some x.
- 4. $\neg P(x)$ is true for some x.

Which of the following is the negation of the formula

$$\forall x \exists y P(x,y)$$

- 1. $\forall x \exists y \neg P(x, y)$
- 2. $\forall x \forall y \neg P(x, y)$
- 3. $\exists x \forall y \neg P(x,y)$
- 4. $\exists x \exists y \neg P(x,y)$
- 5. None of the above

Are there rules for manipulating formulas of predicate logic?

Equivalences involving quantifiers

For all formulas F, G:

(Q. Negation)
$$\neg \forall xF \equiv \exists x \neg F$$
$$\neg \exists xF \equiv \forall x \neg F$$
(Q. Unification)
$$(\forall xF \land \forall xG) \equiv \forall x(F \land G)$$
$$(\exists xF \lor \exists xG) \equiv \exists x(F \lor G)$$
(Q. Transposition)
$$\forall x \forall yF \equiv \forall y \forall xF$$
$$\exists x\exists yF \equiv \exists y\exists xF$$
(Q. Extraction) if $x \not\in \text{Free}(G)$:
$$(\forall xF \land G) \equiv \forall x(F \land G)$$
$$(\forall xF \lor G) \equiv \exists x(F \land G)$$
$$(\exists xF \land G) \equiv \exists x(F \land G)$$
$$(\exists xF \lor G) \equiv \exists x(F \land G)$$

Bound/Free variables

An occurrence of the variable x in the formula F is bound if x occurs within a subformula of F of the form $\exists xG$ or $\forall xG$. Otherwise it is a free occurrence.

- This is similar to local variables and global variables in programming.
- A variable may have both free and bound occurrences in a formula ${\cal F}.$
- Intuitively, to get a proposition from a formula we need to instantiate all the free variables.
- A formula without free variables is called a sentence.

Self-test

Which variable occurrences are bound in the following formula?

$$\forall x (P(x,y) \rightarrow \exists y Q(x,y,z))$$

- 1. The x in P
- 2. The *x* in *Q*
- 3. The y in P
- 4. The y in Q
- 5. The z in Q

To give the precise syntax and semantics of predicate logic, we need to separate the vocabulary from the domain/structure.

- first-order structure
- vocabulary

A first-order structure (aka structure) consists of a domain \mathbb{D} , predicates on \mathbb{D} , and constants from \mathbb{D} .

```
e.g., (\mathbb{Z}, plus, 0)
e.g., (\mathbb{S}, plus, 0)
```

We will use superscripts to distinguish predicates.

e.g., $\operatorname{plus}^{\mathbb{Z}}$ is addition on integers

e.g., $\mathtt{plus}^{\mathbb{S}}$ is concatenation on $\mathsf{strings}^2$

²Similarly, $0^{\mathbb{Z}}$ is the integer 0, while $0^{\mathbb{S}}$ is the empty-string.

We distinguish between plus as a symbol, and as a relation on a specific domain.

A vocabulary (aka signature) is a collection of symbols, *i.e.*, predicate symbols and constant symbols (that are used as names for the predicates and constants in structures).

e.g., the vocabulary of both the structures $(\mathbb{Z}, plus, 0)$ and $(\mathbb{S}, plus, 0)$ have a single predicate plus and a single constant 0.

Syntax of predicate logic

Fix a vocabulary.

Definition

A term is a variable x, y, z, \ldots or a constant symbol c, d, e, \ldots ³ An atomic formula has the form $P(t_1, ..., t_k)$ where P is a k-ary predicate symbol and $t_1, ..., t_k$ are terms.

A formula is defined by the following recursive process:

- 1. Every atomic formula is a formula.
- 2. If F is a formula then $\neg F$ is a formula.
- 3. If F,G are formulas then $(F \wedge G)$ and $(F \vee G)$ are formulas.⁴
- 4. If F is a formula and x a variable then $\exists xF$ and $\forall xF$ are formulas.

³If we had included function symbols, then terms would also include things like f(g(x)) and $x^2 + 1$.

⁴We can also use other propositional connectives, e.g., \rightarrow , \leftrightarrow .

Example

- Vocabulary
 - Binary predicate symbol greater_or_equal
 - Constant symbols 0, 1
- Domain \mathbb{Z}
- Terms: x, y, z, 0, 1
- Atomic formulas
 - greater_or_equal(x, y)
 - greater_or_equal(x,0)
 - greater_or_equal(x,x)
- Formulas:

```
\forall x (\texttt{greater\_or\_equal}(x, 0) \lor \texttt{greater\_or\_equal}(x, y))
```

What about semantics of predicate logic?

- The truth value of a formula obviously depends on the structure it is interpreted over.
- But it also depends on the values of the variables.

An assignment maps variables to objects (elements of the domain)

- Typically denote assignments by the letter α
- So if F is a formula and α an assignment then $\alpha(F)$ is either true or false

Example

- Domain Z
- Assignment $\alpha(x) = 3, \alpha(y) = 2$
- Which of the following formulas become true in this case?
 - 1. greater_or_equal(x, y) (aka $x \ge y$)
 - 2. greater_or_equal(y, y) (aka $y \ge y$)
 - 3. greater_or_equal(y,x) (aka $y \ge x$)

Example

- Domain \mathbb{Z}
- Formula $\forall x (x \geq y)$
- Assignment $\alpha(y) = 0$ (and we don't care what the value of α on x is, since x is bound).

The formula is false under the assignment. Why?

– Informally, the statement $\forall x(x \geq y)$ is true under α is the same as saying

"for every integer d, the formula $x \ge y$ is true under the assignment which agrees with α (on y) but maps x to d"

- And this statement is false, since we can take d = -3.
- On the next slide we will formalise this and give a recursive definition of semantics.

Semantics

Fix a vocabulary and a structure with domain \mathbb{D} .

Definition

The truth-value of a formula F under assignment α is defined recursively:

- 1. Predicates:
 - 1.1 Unary predicate P is true under α if $\alpha(x) \in P$.
 - 1.2 Binary predicate Q is true under α if $(\alpha(x), \alpha(y)) \in Q$.
- 2. The truth-value of the Boolean connectives are as usual.
- 3. $\forall xF$ is true under α if for every $d \in \mathbb{D}$, F is true under $\alpha[x := d]$.
- 4. $\exists x F$ is true under α if there is some $d \in \mathbb{D}$ such that F is true under $\alpha[x := d]$.

Here $\alpha[x:=d]$ is the assignment that is identical to α except that it maps x to d. This is like replacing x by d.

Note the recursion in this definition.

To see if $\forall xF$ is true under α we must see if the simpler formula F is true under a bunch of assignments, i.e., $\alpha[x:=d]$ for every $d\in\mathbb{D}$.

Semantics

- Domain \mathbb{Z}
- Formula $\forall x (x \geq y)$
- Assignment $\alpha(y)=0$ (and we don't care what the value of α on x is, since x is bound).

Let's apply the definition to show that the formula is false under the assignment.

- We want to know if $\forall x (x \geq y)$ is true under α .
- Same as $x \geq y$ being true under $\alpha[x := d]$, for every integer d.
- Same as $\alpha[x := d](x) \ge \alpha[x := d](y)$ for every integer d.
- Same as $d \ge 0$ for every integer d.
- This is false about the integers, e.g., take d = -3.
- Conclude that $\forall x (x \geq y)$ is false under α .

Validity

Fix a vocabulary.

A formula F is valid if it evaluates to true for every structure and assignment.

Examples

- $\forall x (P(x) \lor \neg P(x))$ is valid.
- $\forall x \exists y \, Q(y,x)$ is not valid since it is not true statement about the natural numbers with Q(y,x) meaning y < x.

Validity

Does the following argument make logical sense?

1. All tall people are happy

$$\forall x (T(x) \to H(x))$$

2. There is someone who is happy.

$$\exists x H(x)$$

3. So, there is someone who is tall.

$$\exists x T(x)$$

We can show that

$$(\forall x (T(x) \to H(x)) \land \exists x. H(x)) \to \exists x. T(x)$$

is not valid by finding a counterexample, i.e., domain and predicates that make it false.

	T(x)	H(x)
Alan	0	1
Bob	0	0

Validity

How do we show that a formula of predicate logic is valid?

- For propositional logic we could use truth-tables or deduction.
- For predicate logic, we can use a proof-system like Natural Deduction. This allows us to prove all (and only) the validities.

Good to know

Is there an algorithm that decides if a given predicate logic sentence is valid?

- The language

```
\{\langle F \rangle : F \text{ is a valid predicate-logic formula}\}
```

is Turing-recognisable (since we have a sound and complete proof system!) but not Turing-decidable.

 Intuitively, this means that no algorithm can decide logical truth.

Good to know

Predicate logic can also include functions⁵

$$f: \mathbb{D}^k \to \mathbb{D}$$

For instance, in the domain of integers

$$\mathtt{plus}: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$$

$$\mathtt{square}: \mathbb{Z} o \mathbb{Z}$$

These can be written using infix notation.

Functions allow us to write terms that are more complex than simply variables and elements of the domain, e.g., $x^2 + 3$.

Terms can then be arguments in predicates, e.g., even $(x^2 + 3)$.

⁵We don't use them in this course.

More?

To learn more about predicate logic I recommend the following introductory texts:

- Artificial Intelligence: A modern approach, Russell and Norvig, Chapter 8
- 2. Logic for Computer Scientists, Schöning, Chapter 2