FYS1210

Robin A. T. Pedersen

January 23, 2016

Contents

Foro	rd	2
Uke	3	2
2.1	Elektrisitet	2
	2.1.1 Ladning	2
	2.1.2 Strøm	3
	2.1.3 Spenning	3
2.2	Leder, isolator, halvleder	3
2.3	Ohms lov	3
2.4	Serie- og parallellkobling	3
	2.4.1 Seriekobling	3
	2.4.2 Parallellkobling	3
2.5	Kirchhoff	4
	2.5.1 Kirchhoffs lov om strømmer	4
	2.5.2 Kirchhoffs lov om spenninger	4
	2.5.3 Spenningsdeler	4
2.6	Superposisjon	4
	2.6.1 Eksempel	4
Uke	4	8
$\mathbf{U}\mathbf{k}\mathbf{e}$	5	8
T T1	C.	0
Оке	0	8
Uke	7	8
$\mathbf{U}\mathbf{k}\mathbf{e}$	8	8
$\mathbf{U}\mathbf{k}\mathbf{e}$	9	8
$\mathbf{U}\mathbf{k}\mathbf{e}$	10	8
Uke	11	8
	Uke 2.1 2.2 2.3 2.4 2.5 Uke Uke Uke Uke Uke Uke Uke Uke	2.1.1 Ladning

11 Uke 12	8
12 Uke 13	8
13 Uke 14	8
14 Uke 15	8
15 Uke 16	8
16 Uke 17	8
17 Uke 18	8
18 Uke 19	8
19 Uke 20	8
20 Uke 21	8
21 Uke 22	8
22 Uke 23	8

1 Forord

Dette dokumentet er hovedsaklig skrevet for meg selv i et forsøk på å tvinge hjernen min til å behandle informasjonen inneholdt i pensum. Kanskje vil det bli noe andre kan bruke hvis de ikke gidder å lese hele læreboka, eller det kan brukes som oppsummering før eksamen?

Se etter feil og si ifra hvis du gidder.

2 Uke 3

Kap. 1, s.27-40 Kap. 4, s. 97-118 Kap. 5, s.131-141 Kap. 7, s.194-203

2.1 Elektrisitet

2.1.1 Ladning

TODO

2.1.2 Strøm

TODO

2.1.3 Spenning

TODO

2.2 Leder, isolator, halvleder

TODO: motstand, ledningsevne.

2.3 Ohms lov

TODO

2.4 Serie- og parallellkobling

2.4.1 Seriekobling

I denne kretsen er 3 motstander koblet sammen i serie. Den totale motstanden i en seriekobling er gitt ved:

$$R_{total} = R_1 + R_2 + \dots + R_n$$

2.4.2 Parallellkobling

Den totale motstanden i en parallellkobling gis via den *inverse* av totalen.

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$$

Tilfellet med kunn to motstander kan forenkles.

$$R_{total} = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Kirchhoff 2.5

2.5.1Kirchhoffs lov om strømmer

TODO

2.5.2Kirchhoffs lov om spenninger

TODO

2.5.3Spenningsdeler

Vi ser på tilfellet med to motstander seriekoblet til et batteri.

Hva er spenningen V_1 over motstanden R_1 ?

$$V_1 = \frac{R_1}{R_1 + R_2} \cdot V_{batteri}$$

Du kan tenke på det som dette:

Hvor stor del av kaka tar R_1 ? sin rettferdige andel: $\frac{R_1}{R_1+R_2}$ Hvor mye kake er det egentlig? $V_{batteri}$

2.6 Superposisjon

Superposisjonsprinsippet brukes til å finne verdier i kretser med mer enn én spenningskilde. For å finne spenningen rundt en komponent ser man på bidraget fra én spenningskilde om gangen. Når bidraget fra alle kildene er funnet, legger man det sammen for å få totalverdien.

2.6.1Eksempel

Krets med to spenningskilder
$$V_{S1}=15\,{\rm V},\qquad V_{S2}=3\,{\rm V},\qquad R_1=R_2=R_3=1\,{\rm k}\Omega$$

I denne kretsen er det to spenningskilder som begge bidrar til å skape spenning V_1 rundt motstanden R_1 .

Bidrag fra første spenningskilde

Vi later som den ene spenningskilden V_{S2} ikke eksisterer og regner ut bidraget fra V_{S1} .

Motstandene R_1 og R_3 danner en parallellkobling som vi kan betrakte som én motstand R_{EQ} .

Siden R_1 og R_3 er parallellkoblet får man R_{EQ} via den inverse.

$$\frac{1}{R_{EQ}} = \frac{1}{R_1} + \frac{1}{R_3}$$

Eller, siden det bare er to motstander, via forenklingen.

$$R_{EQ} = \frac{R_1 \cdot R_3}{R_1 + R_3} = \frac{1 \cdot 1}{1 + 1} = \frac{1}{2}$$

Spenningen over R_1 vil være den samme som over R_3 , fordi de er parallellkoblet. Det er den samme spenningen som over hele R_{EQ} .

Siden vi vil finne spenningen over R_1 holder det da å regne ut spenningen over R_{EQ} .

$$V_{EQ} = V_{1(S1)} = \frac{R_{EQ}}{R_{EQ} + R_2} \cdot V_{S1} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 15 = 5 \text{ V}$$

 $V_{1(S1)}$ er da den delen av spenningen V_1 forårsaket av V_{S1} .

Bidrag fra andre spenningskilde

Denne gangen later vi som V_{S1} ikke eksisterer.

Tegnet på en annen måte ser vi at R_1 og R_2 også danner en parallellkobling. Den kan vi betrakte som R_{FQ} og regne ut på samme måte.

Totalmotstanden til ${\cal R}_{FQ}$ gis på samme måte som ista.

$$R_{FQ} = \frac{R_1 \cdot R_2}{R_1 + R_2} = \frac{1}{2}$$

Spenningen over R_{FQ} er lik spenningen over R_1 som er lik spenningen over R_2 .

$$V_{FQ} = V_{1(S2) = \frac{R_{FQ}}{R_{FQ} + R_3} \cdot V_{S2}} = \frac{\frac{1}{2}}{\frac{1}{2} + 1} \cdot 3 = 1 \text{ V}$$

Total spenning!

Nå som vi har regnet ut begge bidragene $V_{1(S1)}$ og $V_{1(S2)}$ kan vi legge dem sammen og få den totale spenningen V_1 .

$$V_1 = V_{1(S1)} + V_{1(S2)} = 5 + 1 = 6 \text{ V}$$

- 3 Uke 4
- 4 Uke 5
- 5 Uke 6
- 6 Uke 7
- 7 Uke 8
- 8 Uke 9
- 9 Uke 10
- 10 Uke 11
- 11 Uke 12
- 12 Uke 13
- 13 Uke 14
- 14 Uke 15
- 15 Uke 16
- 16 Uke 17
- 17 Uke 18
- 18 Uke 19
- 19 Uke 20
- $20\quad \text{Uke }21$
- 21 Uke 22
- 22 Uke 23