Representation Group

Alexandre Charland

 $March\ 11,\ 2025$

Chapter 1

YoungTableau

Definition 1 (Young Tableau). Un Young Tableau est une fonction des cellules d'un Young Diagram de taille n et retourne un naturel de 0 à n-1 Lemma 2 (injYu). Un YoungTableau est injectif sur les entrés qui sont dans le YoungDiagram Proof. Par définition d'un YoungTableau Lemma 3 (bijYu). Un YoungTableau est une bijection entre les case de son YoungDiagram et les naturels de 0 à n-1 Proof. Comme il est injectif et le domaine et codomaine sont fini et ont la même cardinalité. La fonction doit être bijective **Definition 4** (Pu). P_{μ} est un sous groupe de S_n , défini de la façon suivante: Un élément de P_{μ} permute les entré du YoungDiagram si ils sont sur la même rangé. Proof. Il y a trois choses à vérifier. Le sous-groupe est fermé sous la composition de fonction Preuve: Soit $\alpha, \beta \in P_{\mu}$, mq $\alpha \circ \beta(Y_{\mu}(i)) = Y_{\mu}(j) \to i.y = j.y$ Comme Y_{μ} est une bijection, $\exists k \in \mu$ to $Y_{\mu}(k) = \beta(Y_{\mu}(j))$ Comme $\beta \in P_{\mu}$ on a que k.y = j.y De plus on a que $\alpha(Y_{\mu}(k)) = \alpha \circ \beta(Y_{\mu}(i)) = Y_{\mu}(j)$ On peut déduire que i.y = k.y = j.yL'élement neutre est élément de P_{μ} La preuve découle de l'injectivité de Y_u L'inverse est élément de P_{μ} Soit $\alpha \in P_{\mu}$, mq $\alpha^{-1} \in P_{\mu}$ Comme alpha est une bijection, on a que $\alpha^{-1}(Y_{\mu}(i)) = Y_{\mu}(j) \Leftrightarrow Y_{\mu}(i) = \alpha(Y_{\mu}(j))$ **Definition 5** (PuCard). Le nombre d'élément de P_{μ} est fini. *Proof.* Comme P_{μ} est un sous-groupe d'un groupe fini, il a un nombre fini d'élément. **Definition 6** (Qu). Q_{μ} est un sous groupe de S_n , défini de la façon suivante: Un élément de Q_{μ} permute les entré du Young Diagram si ils sont sur la même colonne.

Proof. La même preuve que Pu

Definition 7 (QuCard). Le nombre d'élément de Q_{μ} est fini.

Proof. Comme Q_{μ} est un sous-groupe d'un groupe fini, il a un nombre fini d'élément.

Lemma 8 (sectPuQu). Pour un même YoungTableau, l'intersection de P_{μ} et Q_{μ} est 1

Proof. Il faut mq $P_{\mu} \cap Q_{\mu} \subseteq 1$

Soit $\alpha \in P_{\mu} \cap Q_{\mu}$ et $\mathbf{i} \in \mu$ Comme Y_{μ} est bijectif, $\exists \ \mathbf{j} \in \mu$, $\alpha(Y_{\mu}(i)) = Y_{\mu}(j)$

 $\begin{array}{l} \alpha \in P_{\mu} \cap \overset{\mu}{Q}_{\mu} \text{ donc i.x = j.x et i.y = j.y} \\ \text{Donc i=j} \rightarrow \alpha(Y_{\mu}(i)) = Y_{\mu}(i) \end{array}$

Donc alpha est la fonction id.

Definition 9 (PuQu). $P_{\mu}Q_{\mu} := \{g : [0, n-1] \to [0, n-1] | \exists p \in P_{\mu} \land \exists q \in Q_{\mu}, g = pq \}$

Lemma 10 (qWellDefined). Soit $g:[0,n-1] \rightarrow [0,n-1]$ une fonction bijective et Y_{μ} un Young Tableau.

$$\begin{array}{l} Si \ \forall i,j,k,l \in \mu, i \neq j, \\ g(Y_{\mu}(i)) = Y_{\mu}(k), \\ g(Y_{\mu}(j)) = Y_{\mu}(l) \ \ alors \ i.x \neq j.x \lor k.y \neq l.y. \\ q: [0,n-1] \rightarrow [0,n-1], \ q(Y_{\mu}(i)) = Y_{\mu}(i.x,Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i).y) \ \ est \ bien \ d\'efini \end{array}$$

Proof. Il suffit de montré que $(i.x, Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i).y) \in \mu$.

TODO Figure it out

Lemma 11 (No2FromSameColToSameRow). Soit $g:[0,n-1] \rightarrow [0,n-1]$ une fonction bijective et Y_{μ} un Young Tableau.

 $Si\ \forall i,j,k,l\in\mu,i\neq j, g(Y_{\mu}(i))=Y_{\mu}(k), g(Y_{\mu}(j))=Y_{\mu}(l)\ alors\ i.x\neq j.x\ \lor\ k.y\neq l.y.$ Alors $g \in P_{\mu}Q_{\mu}$

 $\begin{array}{l} \textit{Proof. Posons} \ q(Y_{\mu}(i)) := Y_{\mu}(i.x, (Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).y). \\ \text{Par le lemme qWellDefined, nous avons que q est bien définit.} \end{array}$

Montrons que $q \in Q_{\mu}$

Si q n'est pas injectif alors $\exists k, l \in \mu$ tq $k \neq l, q(Y_{\mu}(k)) = q(Y_{\mu}(l))$.

 $\begin{array}{l} \text{Donc } Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(k)).x,k.y) = Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(l)).x,l.y).\\ \text{Comme } Y_{\mu}^{-1}\circ g\circ Y_{\mu} \text{ est bijectif, } \exists !i,j\in \mu \text{ tq } i\neq j,Y_{\mu}^{-1}\circ gY_{\mu}(k)=i,Y_{\mu}^{-1}\circ gY_{\mu}(l)=j.\\ \text{Donc } \exists i,j,k,l\in \mu,i\neq j,g(Y_{\mu}(i))=Y_{\mu}(k),g(Y_{\mu}(j))=Y_{\mu}(l) \text{ et } i.x=j.x\wedge k.y=l.y. \end{array}$

Contradiction d'hypothèse.

Donc q est injectif. De plus comme le domaine et codomaine sont finis et de même taille, on a que q est une bijection. Ainsi $q \in Q_{\mu}$.

Posons $p(Y_{\mu}(i)) := Y_{\mu}((Y_{\mu}^{-1} \circ g \circ q^{-1} \circ Y_{\mu}(i)).x, i.y).$ On remarque $p \circ q = g$. Soit $i \in \mu$. $\exists j \in \mu$ tq $g(Y_{\mu}(i)) = Y_{\mu}(j)$.

Donc $Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i) = j$

$$p \circ q(Y_{\mu}(i)) = p(Y_{\mu}(i.x, (Y_{\mu}^{-1} \circ g \circ Y_{\mu}(i)).y)) = p(Y_{\mu}(i.x, j.y))$$

$$Y_{\mu}((Y_{\mu}^{-1}\circ g\circ q^{-1}\circ Y_{\mu}(i.x,j.y)).x,j.y)=Y_{\mu}((Y_{\mu}^{-1}\circ g\circ Y_{\mu}(i)).x,j.y)$$

$$Y_{\mu}(j.x,j.y) = Y_{\mu}(j)$$

Donc p est bien définit, et $g \in P_{\mu}Q_{\mu}$

Chapter 2

SpechtModules

Definition 12 (YoungProjectors). Un Young projector est défini par un YoungDiagram μ

$$a_{\mu} := \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g$$

$$b_{\mu} := \frac{1}{|Q_{\mu}|} \sum_{g \in Q_{+}} (-1)^{g} g$$

Où $(-1)^g$ est le signe de g

Definition 13 (Young Symmetriser). Un Young symmetriser est défini par un Young Diagram μ $c_{\mu} := a_{\mu}b_{\mu}$

Definition 14 (SpechtModules). Soit μ un YoungDiagram.

$$V_{\mu} := \mathbb{C}[S_n]c_{\mu}$$

 V_{μ} est appelé un Specht modules. Il est un sous-espace de $\mathbb{C}[S_n].$

Lemma 15 (Linear Transformation). $\exists l_{\mu}\ une\ fonction\ linéaire\ tq$ $\forall x \in \mathbb{C}[S_n], \ a_{\mu}xb_{\mu} = l_{\mu}(x)c_{\mu}$

Proof. Soit $\mathbf{x} \in \mathbb{C}[S_n]$.

x est de la forme $\sum_{g \in S_n} a_g g$. Examinons se qu'il se passe pour différent g. Si $g \in P_\mu Q_\mu$, alors $\exists p \in P_\mu$ et $q \in Q_\mu$ tq g=pq

$$a_{\mu}gb_{\mu} = \frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} g \ pq \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^{h}$$
$$\frac{1}{|Q_{\mu}|} \sum_{g \in P_{\mu}} g \ pq \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^{h}$$

$$\frac{1}{|P_{\mu}|} \sum_{g \in P_{\mu}} gp = \frac{1}{|P_{\mu}|} \sum_{g' \in P_{\mu}} g'$$

On peut faire le changement de variable en posant g' = gp et en utilisant le fait que $\phi(g) = gp$ est un isomorphisme de groupe. Ainsi les deux sommes sont équivalantes à un réordenement près.

$$\frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h qh = \frac{1}{|Q_{\mu}|} \sum_{h \in Q_{\mu}} (-1)^h qh = (-1)^{q^{-1}} \frac{1}{|Q_{\mu}|} \sum_{h' \in Q_{\mu}} (-1)^{h'} h'$$

$$a_\mu g b_\mu = (-1)^q c_\mu$$

Il ne reste plus à montrer que si g $\notin P_\mu Q_\mu$ alors $l_\mu(g)$ =0, car g ne peut pas être exprimer par c_μ Donc il faut mq $a_\mu g b_\mu$ =0 ou de façon équivalente $a_\mu g b_\mu = -a_\mu g b_\mu$ Il suffit de trouver $t \in P_\mu$ tq $g^{-1}tg \in Q_\mu$ et $(-1)^t = -1$, car

$$a_{\mu}gb_{\mu}=a_{\mu}tgb_{\mu}=a_{\mu}(gg^{-1})tgb_{\mu}=a_{\mu}g(g^{-1}tg)b_{\mu}=(-1)^{g^{-1}tg}a_{\mu}gb_{\mu}=-a_{\mu}gb_{\mu}$$

Plusieurs changements de variables ont été effectuer pour "faire apparaître et disparaître" des éléments. $(-1)^{g^{-1}tg}=(-1)^{g^{-1}}\cdot(-1)^t\cdot(-1)^g=(-1)^g\cdot(-1)^t\cdot(-1)^g=-1$

Par la contraposé du lemme No2FromSameColToSameRow, on a que

 $\exists i,j,k,l \in \mu \text{ tq } i \neq j, g(Y_{\mu}(i)) = Y_{\mu}(k), g(Y_{\mu}(j)) = Y_{\mu}(l), i.x = j.x \text{ et } k.y = l.y.$ Posons t : [0,n-1] \rightarrow [0,n-1]

$$t(n) = \begin{cases} Y_{\mu}(k) & \text{si } n = Y_{\mu}(l) \\ Y_{\mu}(l) & \text{si } n = Y_{\mu}(k) \\ n & \text{sinon} \end{cases}$$

Par construction, $t \in P_{\mu}$ et $(-1)^t = -1$. Il suffit de montré que $g^{-1}tg \in Q_{\mu}$

$$g^{-1}\circ t\circ g(Y_{\mu}(i))=g^{-1}\circ t(Y_{\mu}(k))=g^{-1}(Y_{\mu}(l))=Y_{\mu}(j)$$

$$g^{-1}\circ t\circ g(Y_{\mu}(j))=g^{-1}\circ t(Y_{\mu}(l))=g^{-1}(Y_{\mu}(k))=Y_{\mu}(i)$$

On remarque que si $m \in \mu \setminus \{i,j\}, g(Y_\mu(m)) \notin \{Y_\mu(k), Y_\mu(l)\}$. Donc $t(g(Y_\mu(m)))$ se comporte comme la fonction identité. Ainsi $g^{-1}tg \in Q_\mu$.

Definition 16 (IneqYoung Diagram). Soit μ et λ deux Young Diagram de même cardinalité. On dit que $\mu > \lambda$ si $\exists i \in \mathbb{N}$ tq $\mu_i > \lambda_i$ et $\forall j \in \mathbb{N}_{< i}, \, \mu_j = \lambda_j$.