

Predicting League of Legends Outcomes

Using Classification Models

By Amelia Lui

TABLE OF CONTENTS

WHAT IS LEAGUE?

How does the game work? What are esports?

RESULTS

Visualizations, Model evaluation

INTRODUCTION

Motivation and Objective

CONCLUSIONS

Application, Future Work

METHODOLOGY

Data, Tools, the works!

APPENDIX

More info, charts, visualizations

What is League of Legends? Esports?

- Two Teams (Red/Blue)
- Five Players per Team
- Goal: Destroy the other team's Nexus Crystal!
- Other features: killing dragons to gain buffs, collecting coins for items

A very popular game to play, watch, analyze, and/or to bet on

ESports

Introduction

Motivation: Help fans and pro-gamers gain insight into what features of gameplay most affect game results, especially initial 10 minutes of gameplay

Goal: Single out the most telling features of gameplay

Methodology

Data: a dataset from Kaggle.

Tools: Numpy, Pandas, Matplotlib, Seaborn, Sklearn

Model: kNN, logistic regression, random forests

Model Evaluation:

- 80/20 training set and testing set
- Accuracy, precision, confusion matrix, ROC AUC

Results: kNN

Model: kNN

Test set accuracy: 0.6837044534412956 Train set accuracy: 0.7707199797545236 accuracy score: 0.6837044534412956 precision score: 0.7010309278350515

Results: Logistic Regression

Model: LogReg

Test set accuracy: 0.7211538461538461 Train set accuracy: 0.7368088067822346 accuracy score: 0.7211538461538461 precision score: 0.736734693877551

Results: Logistic Regression

Results: Random Forests

Model: Random Forests

Test set accuracy: 0.7176113360323887

Train set accuracy: 1.0

accuracy score: 0.7176113360323887 precision score: 0.7362978283350569

Results: Random Forests

Conclusions

Features of Note: Coins and Experience

Application

Future Work: more models, using the game API to retrieve more features

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon** and infographics & images by **Freepik**

+Artwork by League of Legends (Riot Games)

Appendix

EDA-Scatterplot

(not quite helpful)

Logistic Regression

With dropped features

that had low coefficients

Model: LogRegDropped

Test set accuracy: 0.7211538461538461 Train set accuracy: 0.736429204099709 accuracy score: 0.7211538461538461 precision score: 0.7362525458248472

Would there be a big difference if blue and red were flipped?

Model: kNN (flipped)

Test set accuracy: 0.6837044534412956 Train set accuracy: 0.7707199797545236 accuracy score: 0.6837044534412956 precision score: 0.6669980119284294

Model: LogReg (flipped)

Test set accuracy: 0.7211538461538461 Train set accuracy: 0.7368088067822346 accuracy score: 0.7211538461538461 precision score: 0.7058232931726908

Model: Random Forests (flipped)

Test set accuracy: 0.715080971659919

Train set accuracy: 1.0

accuracy score: 0.715080971659919 precision score: 0.7002012072434608

