

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^3 + 2u + 1 \rangle$$

 $I_2^u = \langle u^4 - u^3 + 2u^2 - 2u + 1 \rangle$

* 2 irreducible components of $\dim_{\mathbb{C}}=0,$ with total 7 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^3 + 2u + 1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} u^2 + 1 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ -u - 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1 \\ -u - 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -u^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ -u^2 \end{pmatrix}$$

- (ii) Obstruction class =-1
- (iii) Cusp Shapes = $-4u^2 + 4u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7	$u^3 + 2u + 1$
c_2	$u^3 + 3u^2 + 5u + 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7	$y^3 + 4y^2 + 4y - 1$
c_2	$y^3 + y^2 + 13y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.22670 + 1.46771I	9.44074 - 5.13794I	-0.68207 + 3.20902I
u = 0.22670 - 1.46771I	9.44074 + 5.13794I	-0.68207 - 3.20902I
u = -0.453398	-0.787199	-12.6360

II.
$$I_2^u = \langle u^4 - u^3 + 2u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u^{3} + u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ u^{3} + 2u - 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{3} + 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{3} + u^{2} - 3u + 3 \\ -u^{3} + u^{2} - u + 2 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -2u^{3} + u^{2} - 3u + 3 \\ -u^{3} + u^{2} - u + 2 \end{pmatrix}$$

- (ii) Obstruction class =-1
- (iii) Cusp Shapes = $4u^3 + 4u 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7	$u^4 - u^3 + 2u^2 - 2u + 1$
c_2	$(u^2 - u + 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7	$y^4 + 3y^3 + 2y^2 + 1$
c_2	$(y^2+y+1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.621744 + 0.440597I	3.28987 - 2.02988I	-4.00000 + 3.46410I
u = 0.621744 - 0.440597I	3.28987 + 2.02988I	-4.00000 - 3.46410I
u = -0.121744 + 1.306620I	3.28987 + 2.02988I	-4.00000 - 3.46410I
u = -0.121744 - 1.306620I	3.28987 - 2.02988I	-4.00000 + 3.46410I

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7	$(u^3 + 2u + 1)(u^4 - u^3 + 2u^2 - 2u + 1)$
c_2	$(u^2 - u + 1)^2(u^3 + 3u^2 + 5u + 2)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7	$(y^3 + 4y^2 + 4y - 1)(y^4 + 3y^3 + 2y^2 + 1)$
c_2	$(y^2 + y + 1)^2(y^3 + y^2 + 13y - 4)$