03_01_Synchronization

1. Background

- 1.1. Neccissity
- 1.2. Achievement
- 2. Happened-before Relation (Causality Relation)
 - 2.1. Happened-before Relation (Causality Relation)
 - 2.2. Concurrency Relation:
- 3. Logical Clocks
 - 3.1. Requirements

Consistent

Characterizes

3.2. Scalar Clocks (Lamport Clocks)

Problem

3.3. Vector Clocks

Vector Clocks

Prepare

Implementation Rules

Meaning

Characterize Analysis

3.4. Characterizing the HB relation

Theorem: (See Slides)

1. Background

1.1. Neccissity

Computers may need a notion of time

- for assigning timestamps to events
- for **comparing timestamps** to order events

1.2. Achievement

In asynchronous distributed systems, synchronization has to be achieved through message

2. Happened-before Relation (Causality Relation)

2.1. Happened-before Relation (Causality Relation)

The <u>happened-before relation</u> (or <u>causality relation</u> \longrightarrow) on E is the the smallest relation satisfying

03_01_Synchronization 1

- ullet local order: if a,b in E_i , and a occurs before b, then a \longrightarrow b
- **message exchange**: if a in E_i is the event of sending a message m and b in P_j is the event of receiving m, then a \longrightarrow b
- **transivity:** if $a \longrightarrow b$ and $b \longrightarrow c$, then $a \longrightarrow c$

2.2. Concurrency Relation:

if neither $a \longrightarrow b$ nor $b \longrightarrow a$ holds, then a and b are **concurrent** (notation: $\mathbf{a} || \mathbf{b})$

3. Logical Clocks

3.1. Requirements

Timestamps have to obey the HB relation

Consistent

A logical clock is a function C: E \longrightarrow S which is **consistent** with the HB relation:

if a b, then $C(a) \le C(b)$

if
$$a \to b$$
, then $C(a) < C(b)$

Characterizes

A logical clock **characterizes** the HB relation if:

$$C(a) < C(b)$$
 iff $a \rightarrow b$

3.2. Scalar Clocks (Lamport Clocks)

- Assume an **integer counter** C_i in process P_i
- Initialization of the C_i is irrelevant

Two implementation rules:

- 1. If a in E; and a is not a message-receive event, then
 - **P**_i first increments **C**_i (e.g., by 1)
 - and then sets C(a) to the new value of C_i

- If a is the event in P_i of sending message m and b is the event in P_i of receiving m, then
 - P_i sends C(a) along with m
 - P_i assigns C_i the value max(C_i+1,C(a)+1)
 - P_i sets C(b) to the new value of C_i

Problem

A scalar clock **cannot characterize** the HB relation:

- take a set of processes with **only internal events** (no messages)
- any pair of events in any two different processes are **concurrent**, but will in general not have equal clock values

3.3. Vector Clocks

Vector Clocks

• **Comparison** of two vectors v, w of length k:

$$\begin{array}{lll} v = w & \text{iff } v[i] = w[i], & i = 1, 2, \dots, k \\ v \leq w & \text{iff } v[i] \leq w[i], & i = 1, 2, \dots, k \\ v < w & \text{iff } v[i] \leq w[i], & i = 1, 2, \dots, k, \text{ and } v \neq w \\ v \geq w & \text{iff } v[i] \geq w[i], & i = 1, 2, \dots, k \\ v > w & \text{iff } v[i] \geq w[i], & i = 1, 2, \dots, k, \text{ and } v \neq w \end{array}$$

• Component-wise maximum

$$\max(v, w)[i] = \max(v[i], w[i])$$

03_01_Synchronization

• **Unit vector** in dimension i:

$$e_i = (0, 0, \dots, 0, 1, 0, \dots, 0)$$

Prepare

Assume a **vector of integers** V_i in process P_i

Initialization: $V_i = (0, 0, \dots, 0)$

Implementation Rules

- 1. If a in E_i and a is not a message-receive event, then
 - P_i first increments V_i[i] by 1 /* count local events */
 - and then sets V(a) to the new value of V;
- 2. If a is the event in P_i of sending message m and

b is **the event in P_j of receiving m**, then

/* next event in P_j */

- P_i sends V(a) along with m
- P_i assigns V_i the value max(V_i+e_i,V(a))
- P_j sets V(b) to the new value of V_i

Meaning

- ullet In $V_i[i]$, P_i simply numbers its local events
- The meaning of $V_i[j]$ with $i \neq j$ is: the number of the last event in P_j that P_i "knows about," either directly or indirectly
- Two events a and b are **concurrent** if there two indices i and j such that
 - \circ V(a)[i] > V(b)[i]
 - \circ V(a)[j] < V(b)[j]
 - \circ Above means timestamps of a and b are incomparable: at event a there is more "knowledge" about process P_i and at event b there is more "knowledge" about P_j

Characterize Analysis

- ullet if a o b, then V(a) < V(b)
- if V(a) < V(b):
 - $\circ \;\;$ suppose a occurs in P_i and b in P_j
 - \circ because $V(b)[i] \geq V(a)[i]$, at event b there is **at least the same amount of knowledge** about P_i as at event a
 - $\circ~$ this can only be caused by a chain of events from a to b, so a o b

3.4. Characterizing the HB relation

Theorem: (See Slides)

For a **k-dimensional vector clock** to characterize the HB relation in a system with n processes, we need $k \ge n$, that is, size of vector clock is at least equal to the number of processes

03_01_Synchronization 5