A Primer on Quantum Computing

Asif Ali Khan

Fall Semester 2024

Department of Computer Systems Engineering

UET Peshawar, Pakistan

Dec 26, 2024

Recap: Key reliability metrics

- Retention time: Ability to store data without corruption
- Endurance: Number of read/write cycles before failure
- $lue{}$ Error rate: Frequency of error during read/write operation
- Power cycling: Stability under repeated on/off cycles
- Temperature stability: Resilience under varying thermal condition

Recap: CIM reliability

	Reliability issue/description	Effect on logic gates	Statistical behavior	Implementation in proposed framework
800 N _{activated} ± 2 Reference	Program variability (cycle-to-cycle C2C) and device-to-device (D2D)) 20,21]: t each programming (even with ame applied voltage/time), the esultant resistance state will be slightly) different	Variations in device resistance lead to voltage variations in resistive voltage divider	The read-out resistance state after programming follows a statistical distribution, where the programming sets the distribution mean. Mean is statistically distributed, following either a C2C distribution (1 device): or a D2D distribution (multiple devices)	In MC-runs: draw devices parameters (filament length etc.) out of statistical distributions. Evaluate device resistance after switching with JART-model, fit to distribution and end resistance states.
400 200 200	Vrite Failures [23,24]: t any fixed programming conditions, ot all devices will switch (both for ET and RESET)	Switching of memristive devices is not guaranteed for a certain (V,t) pulse. Devices have no fixed switching threshold.	Switching follows a stochastic process.	Obtain mean fitted switching probability function using MC-analysis with varied device parameters.
	lead Noise [25] (also known as ITN or program instability): hort-time current fluctuations imps) during device read-out over me, caused by resistance changes. iluctuations increase with resistance.	Variations in device resistance lead to voltage variations in resistive voltage divider (similar as Program variability)	At each device read, actual resistance values are varying over a statistical distribution. Mean is determined by programming. Distribution width increases with resistance.	Modeled as random walk with changes in oxygen vacancy concentration (only applied for Scouting)
region or of the state of the	letention/State Drift [26] ong-time changes of device esistance, effect is typically emperature accelerated	Device resistance drifts over time and may lead to increased number of failures	Effect can be deterministically described on level of distributions as shift and tilt of read resistance distribution	-
200 200	indurance Device resistance window typically ecreases with increasing number of rogram cycles, at the end devices no inger switch (stuck at 0 or 1)	Change of device resistance may cause voltage divider and output stage errors, while stuck-at devices may cause write failures	Effect is also deterministic on distribution level: drift of C2C distributions and eventually occurrence of write failures	-
3	Sudden bit flips Radiation-caused perturbation of CMOS based logic gates.	Logic error	Potentially Erratic	Not present in ReRAM devices (but may affect transistors)

Recap: Techniques to improve reliability

- Error correction codes (ECC)
 - Single error correction, double error detection codes (SECDED)
- Redundancy
 - Triple modular redundancy (TMR) or higher
- Wear levelling
 - □ A standard techniques to prevent premature wear in NVMs/Flash
- Circuit level techniques
 - Write verification for Flash and RRAM
 - Adaptive compression etc.

Using the laws of quantum mechanics to perform massively parallel computing using superposition, entanglement, decoherence.

- Using the laws of quantum mechanics to perform massively parallel computing using superposition, entanglement, decoherence.
- Quantum mechanics is the theory that describes the behavior of microscopic systems, such as photons, electrons, atoms, molecules, etc.

- Using the laws of quantum mechanics to perform massively parallel computing using superposition, entanglement, decoherence.
- Quantum mechanics is the theory that describes the behavior of microscopic systems, such as photons, electrons, atoms, molecules, etc.
- Nobody understands Quantum mechanics

- Using the laws of quantum mechanics to perform massively parallel computing using superposition, entanglement, decoherence.
- Quantum mechanics is the theory that describes the behavior of microscopic systems, such as photons, electrons, atoms, molecules, etc.
- Nobody understands Quantum mechanics

"No, you're not going to be able to understand it.... You see, my physics students don't understand it either. That is because I don't understand it. Nobody does. ... The theory of quantum electrodynamics describes Nature as absurd from the point of view of common sense. And it agrees fully with an experiment. So I hope that you can accept Nature as She is — absurd"

-- Richard Feynman

This is referred to as a control-control-Not (CCNOT) gate

Lets look at something more interesting now

- Lets look at something more interesting now
- How is the PETE box different than the boxes we have seen so far?

Quantum Measurment

■ Two different physical properties (black, white) of a system can be manipulated with extremely simple physics rules (NOT, CNOT, SWAP etc)

- Two different physical properties (black, white) of a system can be manipulated with extremely simple physics rules (NOT, CNOT, SWAP etc)
- There exists some experiments that exhibit fundamental randomness (PETE)

- Two different physical properties (black, white) of a system can be manipulated with extremely simple physics rules (NOT, CNOT, SWAP etc)
- There exists some experiments that exhibit fundamental randomness (PETE)
- □ The different physical states can sometimes be in superposition (the cloud state)

- Two different physical properties (black, white) of a system can be manipulated with extremely simple physics rules (NOT, CNOT, SWAP etc)
- There exists some experiments that exhibit fundamental randomness (PETE)
- □ The different physical states can sometimes be in superposition (the cloud state)
- The cloud state grows rapidly as we add more systems into it
- These fundamentally new concepts open up vast new territories of previously unthinkable problems to take on.

Entaglement

Thank you!

asif.ali@uetpeshawar.edu.pk