- This homework is due on Tuesday, January 10, 2023.
- Hand in your completed handwritten homework to me during our Tuesday lecture.
- There is a 50% penalty per day for late submission.
- Copied homework will be awarded 0 marks.

Problem 1.

Determine the Q output waveform if the inputs shown in Figure 1 are applied to a gated S-R latch (shown in Figure 2) that is initially RESET.

Figure 1. Input waveforms.

Figure 2. A gated S-R latch.

Problem 2.

Determine the Q output waveform if the inputs shown in Figure 3 are applied to a gated D latch (shown in Figure 4), which is initially RESET.

Figure 3. Input waveforms.

Figure 4. A gated D latch.

Problem 3.

Determine the Q and Q' output waveforms for the positive edge-triggered S-R flip-flop in Figure 6 for the S, R, and CLK inputs in Figure 5. Assume that the flip-flop is initially RESET.

Figure 5. Input waveforms.

INPUTS			OUTPUTS			
3	R	CLK	Q	Q	COMMENTS	
0	0	X	Q_0	\overline{Q}_0	No change	
0	1	Î	0	1	RESET	s
1	0	1	1	0	SET	
1	1	1	?	?	Invalid	

Figure 6: Truth table (left) and logic symbol (right) for a positive edgetriggered S-R flip-flop.

Problem 4.

Determine the Q output waveform for the positive edge-triggered D flip-flop in Figure 8 for the D and CLK inputs in Figure 7. Assume that the flip-flop starts out RESET.

Figure 7. Input waveforms.

Figure 8. Truth table (left) and logic symbols (right) for a positive edge-triggered D flip-flop.

Problem 5.

The waveforms in Figure 9 are applied to the J, K, and CLK inputs of the negative edge-triggered J-K flip-flop shown in Figure 10. Determine the Q output, assuming that the flip-flop is initially RESET.

Figure 9. Input waveforms.

INPUTS		CIV	OUTPUTS		COMMENTS	
,	K	CLK	Q	Q	COMMENTS	
0	0	1	Q_0	\overline{Q}_0	No change	,
0	1	1	0	1	RESET	
1	0	1	1	0	SET	CLK — c> C
1	1	1	$\overline{\mathcal{Q}}_0$	Q_0	Toggle	K
= clock tra	nsition HIGH	to LOW				
= output l	level prior to d	clock transition				

Figure 10. Truth table (left) and logic symbol (right) for a negative edge-triggered J-K flip-flop.

Problem 6.

The waveforms in Figure 11 are applied to the J, K, and CLK inputs of the positive edge-triggered J-K flip-flop shown in Figure 12. Determine the Q output, starting in RESET state.

Figure 11. Input waveforms.

Figure 12. Truth table (left) and logic symbol (right) for a positive edge-triggered J-K flip-flop.

Problem 7.

The J, K, CLK, PRE, and CLR waveforms in Figure 13 are applied to the negative edge-triggered J-K flip-flop in Figure 14. Determine the Q output waveform.

Figure 13. Input waveforms.

Figure 14. Logic circuit (left) and logic symbol (right) for a negative edge-triggered J-K flip-flop with active-LOW PRESET and CLEAR inputs.

Problem 8.

For the positive edge-triggered J-K flip-flop with active-LOW PRESET and CLEAR inputs and J-K inputs tied to a HIGH input (Figure 16), determine the Q output for the inputs shown in the timing diagram in Figure 15 if Q is initially LOW.

Figure 15. Input waveforms.

Figure 16. Logic circuit (left) and logic symbol (right) for a positive edge-triggered J-K flip-flop with active-LOW PRESET and CLEAR inputs and J-K inputs tied to a HIGH input.