2019 Probability and Statistic Examination Solution

1. a. i) The maximum likelihood estimation for Poisson(λ) is

$$L(\lambda) = \prod_{i=1}^n p(x_i) = rac{e^{-\lambda n} \lambda^{\sum_{i=1}^n x_i}}{\prod_{i=1}^n (x_i!)} \ l(\lambda) = \log e^{-\lambda n} \lambda^{\sum_{i=1}^n x_i} - \log \prod_{i=1}^n (x_i!) \ = -\lambda n + \sum_{i=1}^n x_i \log \lambda - (\sum_{i=1}^n \log (x_i!)) \ l'(\lambda) = -n + rac{\sum_{i=1}^n x_i}{\lambda} \ l'(\lambda) = 0 \Rightarrow n = rac{\sum_{i=1}^n x_i}{\lambda} \ \lambda = rac{\sum_{i=1}^n x_i}{n}$$

ii) The maximum likelihood estimate for Uniform(α , β) is

$$L(lpha,eta) = \prod_{i=1}^n p(x_i) = (rac{1}{eta-lpha})^n \ l(lpha,eta) = n\lograc{1}{eta-lpha} = -n\log{(eta-lpha)} \ rac{d}{dlpha}l(lpha,eta) = rac{n}{eta-lpha} \ rac{d}{deta}l(lpha,eta) = -rac{n}{eta-lpha}$$

We can see that the derivative with respect to both α and β are monotonically increasing or descreasing, thus we can obtain the maximum value of $l(\alpha,\beta)$ by letting $\alpha=\max(x_1,\ldots x_n)$ and $\beta=\min(x_1,\ldots ,x_n)$.

b. We construct a confidence interval as follows. Since we do not know the population variance, we will calculate the bias-corrected variance first

$$\mu = rac{29.9 + 35.1 + 10 + 55.1 + 25.1 + 33.9 + 42.3 + 31.9 + 60.5}{9} = 35.98$$
 $s = \sqrt{rac{1}{n-1}(\sum_i x_i^2 - rac{1}{n}(\sum_i x_i)^2) = rac{1}{8}(13508.4 - rac{104846.44}{9})} = \sqrt{232.35} = 15.24$

then we need can find the confidence interval as follows

$$[\mu - t_{8,0.995} \frac{s}{\sqrt{n}}, \mu + t_{8,0.995} \frac{s}{\sqrt{n}}] \Rightarrow [35.98 - 3.36 \cdot \frac{15.24}{3}, 35.98 + 3.36 \cdot \frac{15.24}{3}] \Rightarrow [18.91, 53.05]$$

If we draw a large number of samples, 99% of them will have mean value that lies under this interval.

c. To test if type A and type B batteries perform equally well, we will have the following null and alternative hypothesis.

$$H_0: \mu_A - \mu_B = 0$$
 $H_1: \mu_A - \mu_B \neq 0$

We now calculate the test statistics as follows

$$T = rac{(ar{A} - ar{B}) - (\mu_A - \mu_B)}{S_{n_a + n_b - 2} \sqrt{1/n_a + 1/n_b}}$$

For null hypothesis, this becomes

$$S_{n_a+n_b-2} = \sqrt{rac{11-1}{11+11-2} \cdot 900 + rac{11-1}{11+11-2} \cdot 700} = \sqrt{800} = 28.28$$
 $t = rac{300-270}{28.28\sqrt{1/11+1/11}} = 2.49$

From t-distribution with 5% significance level and degree of freedom 20, we can acquire the rejection region as

$$(-\infty, -2.09) \cup (2.09, \infty)$$

The test statistic t falls under this range and hence we reject the null hypothesis and we are 95% confident that type A and type B are NOT performing equally well.

d. If there are no correlation between political affliation and opinion on ULEZ, then the expected number of people look like this

	favour	indifferenet	opposeed	total
Labour	114	84.36	86.64	285
Conservative	86	63.64	65.36	215
Total	200	148	152	500

We then perform a χ^2 -independence test

$$\chi^{2} = \frac{(137 - 114)^{2}}{114} + \frac{(63 - 86)^{2}}{86} + \frac{(82 - 84.36)^{2}}{84.36} + \frac{(66 - 63.64)^{2}}{63.64} + \frac{(66 - 86.64)^{2}}{86.64} + \frac{(86 - 65.36)^{2}}{65.36} = 22.38$$

2. a. i) Since all games aree mutually independent, we can calculate the mean of draws in all divisions as follow

$$\mu = 380 \cdot 0.2 + 552 \cdot (0.25 + 0.3 + 0.35) = 572.8$$

Since the number of draws follows a binomial distribution, we can calculate the standard deviation as follow

$$\sigma = \sqrt{380 \cdot 0.2 \cdot 0.8 + 552 \cdot 0.25 \cdot 0.75 + 552 \cdot 0.3 \cdot 0.7 + 552 \cdot 0.35 \cdot 0.65} = 20.14$$

b. i) The characteristic function of a continuous random variable is

$$\phi_X(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{itx} f_X(x) dx$$

According to this definition, the characteristic function of a Bernoulli random variable would be

$$\phi_{\mathrm{Bernoulli}}(t) = E(e^{itB}) = e^{it\cdot 0}(1-p) + e^{it\cdot 1}p = 1-p+pe^{it}$$

ii) The proof is as follow

$$\phi_{S_n}(t)=E(e^{itS_n})=E(\prod_n e^{itX_n})=\prod_n E(e^{itX_n})=\prod_n \phi_{X_n}(t)$$

iii) According to the definition of mean on random variable, we can obtain the mean of $ilde{B}$ as follows

$$\mu = p\sqrt{\frac{1-p}{p}} + (1-p)(-\sqrt{\frac{p}{1-p}})$$

$$= \sqrt{p^2 \cdot \frac{1-p}{p}} - \sqrt{(1-p)^2 \cdot \frac{p}{1-p}}$$

$$= \sqrt{p(1-p)} - \sqrt{(1-p)p}$$

$$= 0$$

According to the definition of variance on random variables, we can obtain the variance of $ilde{B}$ as follows

$$\sigma^2 = E(X^2) - E(X)^2$$

$$= (\frac{1-p}{p} \cdot p + \frac{p}{1-p} \cdot (1-p)) - 0$$

$$= (1-p+p) - 0$$

$$= 1$$

iv) The characteristic function of $ilde{B}$ is

$$\phi_B(t) = E(e^{itB}) = e^{it\cdot\sqrt{rac{1-p}{p}}}p + e^{-it\cdot\sqrt{rac{p}{1-p}}}(1-p)$$

The characteristic function of $S=\sum_{i=1}^n rac{ ilde{B_i}}{\sqrt{n}}$ is

$$\phi_S(t) = E(e^{it\sum_{i=1}^n \frac{\tilde{B}}{\sqrt{n}}}) = E(\prod_{i=1}^n e^{it\frac{\tilde{B}}{\sqrt{n}}}) = \prod_{i=1}^n E(e^{it\frac{\tilde{B}}{\sqrt{n}}}) = \prod_{i=1}^n \phi_B(\frac{t}{\sqrt{n}}) = (\phi_B(\frac{t}{\sqrt{n}}))^n$$

v) According to Central Limit Theorem, $Z=\lim_{n\to\infty} rac{S-n\mu}{\sqrt{n\sigma^2}}\sim N(0,1).$ From iii) we know that $\mu=0$ and $\sigma^2=1$ in this equation, hence it becomes

$$Z = \lim_{n o \infty} rac{S}{\sqrt{n}} \sim N(0,1)$$

which means that as $n\to\infty$, the distribution of S will approach to a normal distribution with its characteristic function being the normal distribution characteristic function as well, which is $e^{-\frac{t^2}{2}}$.

c. i) From the nature of exponential distribution, the mean is calculated as $\mu=\frac{1}{\lambda}$. The probability of professor being m minutes late is

$$P(m) = P(Z < -1)(1 - F_X(m)) + P(X > -1)(1 - F_Y(m))$$

= 0.159 \cdot (1 - 1 + e^{-0.1 \cdot m}) + 0.841 \cdot (1 - 1 + e^{-0.05 \cdot m})
= 0.159e^{-0.1m} + 0.841e^{-0.05m}

ii) The probability that the professor will arrive at Victoria before 07:30 is

$$P(Z<-7)=1.28 imes 10^{-12}$$