CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I E II) 1 OTTOBRE 2019

Svolgere i seguenti esercizi,

giustificando pienamente tutte le risposte.

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Enunciare i teoremi sull'esistenza di quoziente e resto nella divisione tra interi e nella divisione tra polinomi a coefficienti in un campo.

- (i) Quali e quanti sono i possibili resti di numeri interi nella divisione per -7?
- (ii) Quali e quanti sono i possibili resti di polinomi in $\mathbb{Z}_2[x]$ nella divisione per x^2 ?

Esercizio 2. Siano \mathbb{P} l'insieme dei numeri interi positivi primi, $U = \{p \in \mathbb{P} \mid 15 \text{ divide } p\}, K = \{p \in \mathbb{P} \mid 2 \neq p \Rightarrow p = 17\}, H = \{p \in \mathbb{P} \mid p > 170000000\}.$ Elencare gli elementi di U, di K e di $H \triangle H$.

Esercizio 3. Siano $A = \{n \in \mathbb{N} \mid n < 10\}, C = \mathcal{P}(A) \times \mathcal{P}(A) \in f : (X, Y) \in C \mapsto |X \cup Y| \in \mathbb{N}.$

- (i) Stabilire se f è iniettiva e se f è suriettiva. In particolare, determinare $|\vec{f}(C)|$.
- (ii) Determinare $|C/\mathcal{R}|$, dove \mathcal{R} è il nucleo di equivalenza di f.
- (iii) Descrivere esplicitamente $[\{1\},\{1\}]_{\mathfrak{p}}$, e dire quanti elementi ha.
- (iv) Esiste una ed una sola coppia $(X,Y) \in C$ tale che $|[(X,Y)]_{\Re}| = 1$. Spiegare perché, giustificando sia l'esistenza che l'unicità di tale coppia.

Siano poi σ e ρ le relazioni d'ordine definite in C ponendo, per ogni $X, Y, Z, T \in \mathcal{P}(A)$,

$$(X,Y) \sigma (Z,T) \iff ((X,Y) = (Z,T) \vee |X \cup Y| < |Z \cup T|)$$

 $(X,Y) \rho (Z,T) \iff ((X,Y) = (Z,T) \vee |X \cup Y| \text{ divide propriamente } |Z \cup T|).$

- (v) Determinare sia in (C, σ) che in (C, ρ) eventuali minimo, massimo, elementi minimali, elementi massimali.
- (vi) (C, σ) è un reticolo? (C, ρ) è un reticolo?
- (vii) Considerata la parte $T = \{(\{1\}, \{1\}), (\{1\}, \{2\}), (\{1\}, \{2,3\}), (\{1,2,3\}, \{4,5,6\})\}$ di C, disegnare i diagrammi di Hasse di (T, σ) e (T, ρ) . Questi due insiemi ordinati sono reticoli? Sono isomorfi tra loro?

Esercizio 4. Si considerino le due operazioni binarie \oplus e * in \mathbb{Z}_{128} definite ponendo, per ogni $a, b \in \mathbb{Z}_{128}$,

$$a \oplus b = a + b - \bar{3}$$
 e $a * b = \bar{3}a + \bar{3}b - ab - \bar{6}$.

(i) Sia $V:=\{a\in\mathbb{Z}_{128}\mid a*\overline{29}=\overline{61}\}.$ $V=\varnothing$? Se $V\neq\varnothing$, si trovi un elemento di V e si dica se |V|=1.

Dando per noto che $R = (\mathbb{Z}_{128}, \oplus, *)$ è un anello commutativo,

- (ii) si determini lo zero 0_R di R;
- (iii) si stabilisca se R è unitario determinandone, nel caso, l'unità 1_R (suggerimento: si parta dalla ricerca degli $a \in \mathbb{Z}_{128}$ tali che $a * \bar{0} = \bar{0}$);
- (iv) Dare la definizione di divisore dello zero in R. Dopo aver calcolato $\overline{1}*\overline{3}$ e $\overline{1}*\overline{67}$, si stabilisca se, in R, $\overline{1}$ è un divisore dello zero, se è cancellabile e se è invertibile.
- (v) Se la domanda ha senso, si decida se, in R, $\bar{7}$ è invertibile e se $\bar{8}$ è invertibile (**non** è richiesto il calcolo degli eventuali inversi).

Esercizio 5. Si determini l'insieme B dei numeri primi positivi p tali che il polinomio

$$f_p = x^4 + \bar{3}x^3 - \bar{3}x^2 + \bar{2} \in \mathbb{Z}_p[x]$$

abbia $\bar{2}$ come radice. Per ogni $p \in B$ si scriva poi f_p come prodotto di polinomi monici irriducibili in $\mathbb{Z}_p[x]$.