Possible option for modeling juvenile salmon emigrants based on escapement and trapping data

Mark Scheuerell

17 June 2021

Definitions

Here are some definitions for model variables and parameters. They ignore location for now.

- S_y : number of observed female spawners in brood year y (data)
- N_y : number of true female spawners in brood year y (unknown state)
- f_y : product of fecundity and egg-juvenile survival in year y (unknown parameter)
- J_y : total number of juveniles produced from brood year y (unknown state)
- $E_{d,k,y}$: number of true emigrants on day d in season k and year y (unknown state)
- $C_{d,k,y}$: number of juvenile emigrants caught in a trap on day d in season k and year y (data)
- $p_{k,y}$: capture probability of juvenile emigrants in season k and year y (unknown parameter)

Data models

$$\log(S_y) \sim \text{Normal}(\log(N_y), \sigma_S)$$
 (1)

$$C_{d,k,y} \sim \text{Binomial}(E_{d,k,y}, p_{k,y})$$
 (2)

$$p_{k,y} = \left(\frac{recaps}{releases}\right)_{k,y} \tag{3}$$

State models

$$J_y \sim \text{Poisson}(\lambda_y)$$
 (4)

$$\lambda_y = f_y N_y \tag{5}$$

$$J_y \sim \text{NegBin}(r, p)$$
 (6)

$$r = \frac{(f_y N_y)^2}{\sigma^2 - f_y N_y} \tag{7}$$

$$p = \frac{r}{r + f_y N_y} \tag{8}$$

$$\log(E_{k,y}) \sim \text{Normal}(\log(g(J_{k,y})), \sigma_J)$$
 (9)

$$E_{k,y} = \sum_{k=0}^{d} E_{d,k,y} \tag{10}$$

$$E_{k,y} = \sum_{k=0}^{d} E_{d,k,y}$$

$$J_{k,y} = \begin{cases} J_{k,y}, & \text{if } k = 1\\ J_{k-1,y} - E_{k-1,y}, & \text{if } k > 1 \end{cases}$$
(10)

where $g(J_y)$ is a (potentially) nonlinear function mapping the density of juveniles onto the number of emigrants.