California Dreamin' or Nightmarin'?

Revealing the Hidden Factors Behind 1990's Housing Market

# **Conclusion on Model Performance**

|                            | Busines       | ss Recommenda  | tions        |                          |
|----------------------------|---------------|----------------|--------------|--------------------------|
| Profit Margin Es           | timation      |                | Review on    | Selected Model           |
|                            |               | Modeling       |              |                          |
|                            | Data Unders   | standing and F | Preparation  |                          |
| Description of the Dataset | Data Cleaning | EDA            | Data Manipul | ation Data Preprocessing |
|                            | Business P    | Problem Unde   | rstanding    |                          |
| Context                    | Probl         | lem Statement  |              | Goal                     |

## **Business Problem Understanding**

**Context:** The 1990 U.S. economic recession significantly affected housing prices, with national home prices rising by only 0.8% and California experiencing even slower growth.

Problem Statement: The 1990 recession slowed California's housing market, with price growth lagging behind the national average. This study identifies factors influencing housing prices in California, focusing on property attributes, buyer income, and location. Using multiple linear regression, we analyze the key determinants of housing price variations in 1990.

Goal: The aim of this study is to create a predictive model for housing prices in California in 1990.

#### What We Need?

We need to analyze the dataset to uncover patterns and relationships between property characteristics, median income, and geographic factors affecting housing prices. The next step is to build a regression model to predict housing prices, helping users understand these influencing factors and make informed pricing decisions.

## Data Understanding and Preparation - Description of the Dataset

Representing its position along the east-west axis on the Earth's surface

Indicating its position along the north-south axis

Age of housing structures

Total number of rooms in the property

longitude

latitude

Housing median age

total\_rooms

total\_bedrooms

Total number of bedrooms in the property

population

Total population residing in the neighborhood

households

Total number of households in the neighborhood

median\_income

Median income of households in the neighborhood

median house value

Median value of houses in the neighborhood

ocean\_proximity

Proximity of the property to the ocean

# Data Understanding and Preparation - Data Cleaning

1

#### **Check Data Types**

|   | data_features      | data_type | null | null_percentage | unique | unique_sample                                     | filled_count |
|---|--------------------|-----------|------|-----------------|--------|---------------------------------------------------|--------------|
| 0 | longitude          | float64   | 0    | 0.00            | 806    | [-124.07, -118.12, -119.33, -123.17, -116.24]     | 14448        |
| 1 | latitude           | float64   | 0    | 0.00            | 836    | [38.47, 38.41, 37.8, 39.34, 38.5]                 | 14448        |
| 2 | housing_median_age | float64   | 0    | 0.00            | 52     | [22.0, 36.0, 15.0, 49.0, 5.0]                     | 14448        |
| 3 | total_rooms        | float64   | 0    | 0.00            | 5227   | [2380.0, 2064.0, 13814.0, 2631.0, 860.0]          | 14448        |
| 4 | total_bedrooms     | float64   | 137  | 0.95            | 1748   | [545.0, 42.0, 1284.0, 2289.0, 3479.0]             | 14311        |
| 5 | population         | float64   | 0    | 0.00            | 3498   | [1556.0, 878.0, 3057.0, 887.0, 1756.0]            | 14448        |
| 6 | households         | float64   | 0    | 0.00            | 1649   | [181.0, 977.0, 1336.0, 2338.0, 1594.0]            | 14448        |
| 7 | median_income      | float64   | 0    | 0.00            | 9797   | [3.962, 1.6172, 6.6712, 3.0432, 2.3011]           | 14448        |
| 8 | ocean_proximity    | object    | 0    | 0.00            | 5      | [<1H OCEAN, NEAR OCEAN, INLAND, ISLAND, NEAR BAY] | 14448        |
| 9 | median_house_value | float64   | 0    | 0.00            | 3548   | [173700.0, 159000.0, 64300.0, 90700.0, 159400.0]  | 14448        |

2

### **Check Duplicate**

### Dunlicate rows:

Empty DataFrame

columns: [longitude, latitude, housing\_median\_age, total\_rooms, total\_bedrooms, population, households, median\_income, ocean\_proximity, median\_house\_value]

Index: []

#### Handling Missing Value



**139 Missing Value** (per 14448) **or 0.95**% of the total entries in the 'total\_bedrooms' column

### **KNN Imputer**

```
longitude 0
latitude 0
housing_median_age 0
total_rooms 0
total_bedrooms 0
population 0
households 0
median_income 0
median_house_value 0
ocean_proximity 0
dtype: int64
```

# Data Understanding and Preparation - Data Cleaning

4

### **Handling Outliers**





Interquartile Range (IQR)

Number of entries removed: 659 (per 14448) Percentage of entries removed: 4.56%

| # | Column                                     | Non-Null Count | Dtype   |
|---|--------------------------------------------|----------------|---------|
|   |                                            |                |         |
| 0 | longitude                                  | 13789 non-null | float64 |
| 1 | latitude                                   | 13789 non-null | float64 |
| 2 | housing_median_age                         | 13789 non-null | float64 |
|   | total_rooms                                | 13789 non-null | float64 |
| 4 | total_bedrooms                             | 13789 non-null | float64 |
|   | population                                 | 13789 non-null | float64 |
|   | households                                 | 13789 non-null | float64 |
| 7 | median_income                              | 13789 non-null | float64 |
| 8 | median_house_value                         | 13789 non-null | float64 |
| 9 | ocean_proximity                            | 13789 non-null | object  |
|   | es: float64(9), obje<br>ory usage: 1.2+ MB | ct(1)          |         |

Before After

#### **Price Category**



**Quartile Categories and Calculation** 

Total houses per price category:
price\_category
Cheap 3452
Moderate 3449
Very Expensive 3444
Expensive 3444
Name: count, dtype: int64

#### Correlation



#### **Key Insights:**

- Income and House Value: The correlation of 0.68 between median income and median house value suggests a strong relationship. Generally, customers seek homes within their budget, and higher income typically enables higher spending on more expensive properties.
- Household Size and Property Features: High correlations between households, population, total bedrooms, and total rooms indicate that larger households and populations are associated with more spacious homes. This trend suggests that customers with larger families or more significant household sizes might prefer properties with more rooms and amenities.

## Data Understanding and Preparation - EDA

#### Business Opportunity Based on Ocean Proximity



When considering the needs for family housing and the economic recession during that period, it turns out there were many affordable houses available, as indicated by the 'Cheap' or affordable category on the graph. While these houses are not near the ocean, which could be an additional value, this doesn't mean we should only focus on analyzing cheap houses.

During the recession, some investors were willing to enter the market for long-term investments, such as developing properties into vacation villas. It is evident that in the 'Very Expensive' category, most properties are near the ocean. This proximity to the ocean becomes a highly promising value, especially if investments were made in 1990. The trend of vacationing has seen significant growth in the 2020s, reinforcing the long-term value of such investments.

## Data Understanding and Preparation - EDA

#### Cost Opportunity Based on House Age



Despite the colors being highly overlapped, it is evident that 'Very Expensive' houses show a significant spike in frequency for homes older than 50 years. This observation is not a problem if we are considering long-term investment, as it relates closely to revenue substitution for business development.

On the other hand, for 'Cheap' houses, there are no major concerns. These houses tend to have a more varied range of ages and conditions. They can be older but well-maintained, or newer but less well-kept.

## Data Understanding and Preparation - EDA

#### **Business Opportunity Based on Room Types**



From the data, no unique patterns are evident as the average number of bedrooms is consistent across each price category, and the differences in the number of rooms are not significant. This might be due to inaccuracies in data collection or classification, such as distinguishing between specific types of rooms like dining rooms, kitchens, and others. This observation suggests that feature classification may need reevaluation.

Additionally, it would be more insightful to analyze the average house size and outdoor space for each price category. This could provide a clearer understanding of how these factors correlate with the different price categories and enhance the evaluation of property features.

# Data Understanding and Preparation - Data Manipulation

#### Add Column

Since our dataset values are aggregated by block (with multiple houses per block), we need to calculate room count, bedroom count, and population per house.

|    | data_features              | data_type | null | null_percentage | unique | unique_sample                                     | filled_count |
|----|----------------------------|-----------|------|-----------------|--------|---------------------------------------------------|--------------|
| 0  | longitude                  | float64   | 0    | 0.0             | 798    | [-119.23, -118.33, -124.19, -118.98, -121.69]     | 13789        |
| 1  | latitude                   | float64   | 0    | 0.0             | 831    | [33.0, 37.09, 36.75, 36.84, 37.95]                | 13789        |
| 2  | housing_median_age         | float64   | 0    | 0.0             | 52     | [40.0, 49.0, 48.0, 9.0, 23.0]                     | 13789        |
| 3  | total_rooms                | float64   | 0    | 0.0             | 4723   | [794.0, 2242.0, 408.0, 193.0, 195.0]              | 13789        |
| 4  | total_bedrooms             | float64   | 0    | 0.0             | 1465   | [683.0, 1073.0, 314.0, 1079.0, 416.0]             | 13789        |
| 5  | population                 | float64   | 0    | 0.0             | 3038   | [593.0, 1454.0, 1296.0, 2284.0, 3298.0]           | 13789        |
| 6  | households                 | float64   | 0    | 0.0             | 1279   | [31.0, 204.0, 1147.0, 386.0, 454.0]               | 13789        |
| 7  | median_income              | float64   | 0    | 0.0             | 9290   | [4.3472, 4.9676, 7.1273, 4.2153, 5.1041]          | 13789        |
| 8  | median_house_value         | float64   | 0    | 0.0             | 3502   | [68200.0, 141000.0, 52400.0, 279000.0, 51300.0]   | 13789        |
| 9  | ocean_proximity            | object    | 0    | 0.0             | 5      | [NEAR BAY, INLAND, ISLAND, <1H OCEAN, NEAR OCEAN] | 13789        |
| 10 | price_category             | object    | 0    | 0.0             | 4      | [Expensive, Very Expensive, Moderate, Cheap]      | 13789        |
| 11 | avg_bedrooms_per_household | float64   | 0    | 0.0             | 10255  | [1.0772727272727274, 1.084070796460177, 1.0094    | 13789        |
| 12 | avg_rooms_per_household    | float64   | 0    | 0.0             | 13146  | [5.283908045977012, 6.495180722891567, 4.91129    | 13789        |
| 13 | rooms_per_household        | float64   | 0    | 0.0             | 39     | [26.0, 13.0, 10.0, 7.0, 3.0]                      | 13789        |
| 14 | bedrooms_per_household     | float64   | 0    | 0.0             | 13     | [4.0, 10.0, 34.0, 15.0, 3.0]                      | 13789        |
| 15 | population_per_household   | float64   | 0    | 0.0             | 23     | [600.0, 64.0, 17.0, 6.0, 18.0]                    | 13789        |

One-Hot Encoding 'Ocean Proximity'

**One-hot encoding** is used for the variable 'ocean\_proximity' to convert categorical values into a numerical format suitable for machine learning algorithms. Since many algorithms require numerical input, one-hot encoding transforms each category into a binary column, indicating the presence or absence of each category. This allows the model to interpret categorical data without implying any ordinal relationship between categories, ensuring accurate analysis and predictions.

| Data | columns (total 19 columns):                     |                |         |
|------|-------------------------------------------------|----------------|---------|
| #    | Column                                          | Non-Null Count | Dtype   |
|      |                                                 |                |         |
| 0    | longitude                                       | 13789 non-null | float64 |
| 1    | latitude                                        | 13789 non-null | float64 |
| 2    | housing_median_age                              | 13789 non-null | float64 |
| 3    | total_rooms                                     | 13789 non-null | float64 |
| 4    | total_bedrooms                                  | 13789 non-null | float64 |
| 5    | population                                      | 13789 non-null | float64 |
| 6    | households                                      | 13789 non-null | float64 |
| 7    | median_income                                   | 13789 non-null | float64 |
| 8    | median_house_value                              | 13789 non-null | float64 |
| 9    | price_category                                  | 13789 non-null | object  |
| 10   | avg_bedrooms_per_household                      | 13789 non-null | float64 |
| 11   | avg_rooms_per_household                         | 13789 non-null | float64 |
| 12   | rooms_per_household                             | 13789 non-null | float64 |
| 13   | bedrooms_per_household                          | 13789 non-null | float64 |
| 14   | population_per_household                        | 13789 non-null | float64 |
| 15   | ocean_proximity_INLAND                          | 13789 non-null | float64 |
| 16   | ocean_proximity_ISLAND                          | 13789 non-null | float64 |
| 17   | ocean_proximity_NEAR BAY                        | 13789 non-null | float64 |
| 18   | ocean_proximity_NEAR OCEAN                      | 13789 non-null | float64 |
|      | es: float64(18), object(1)<br>ry usage: 2.0+ MB |                |         |

#### **Feature Selection**

**Backward regression,** or backward elimination, is a feature selection method used to improve model performance by systematically removing less significant variables.

Check for multicollinearity using VIF

|    | Feature                    | VIF        | Multicollinearity |
|----|----------------------------|------------|-------------------|
| 0  | longitude                  | 831.154830 | Yes               |
| 1  | latitude                   | 798.614459 | Yes               |
| 2  | housing_median_age         | 8.430218   | No                |
| 3  | rooms_per_household        | 41.584760  | Yes               |
| 4  | bedrooms_per_household     | 32.209470  | Yes               |
| 5  | population_per_household   | 1.333357   | No                |
| 6  | households                 | 4.811540   | No                |
| 7  | median_income              | 12.549057  | Yes               |
| 8  | ocean_proximity_INLAND     | 2.782084   | No                |
| 9  | ocean_proximity_ISLAND     | 1.000672   | No                |
| 10 | ocean_proximity_NEAR BAY   | 1.678039   | No                |
| 11 | ocean proximity NEAR OCEAN | 1.304819   | No                |

Variables with multicollinearity issues are often closely related, causing the model to struggle in isolating the contribution of each feature to the target variable.

#### **Solutions and Approaches**

 Removing Variables: Consider removing one of the highly correlated variables, such as removing rooms\_per\_household or bedrooms\_per\_household, to reduce multicollinearity.

#### **Next Steps**

 Feature Selection: Based on the above analysis, select the most relevant features and reduce features with high multicollinearity.

# Data Understanding and Preparation - Data Preprocessing

2

#### **Feature Selection**

|                   | Feature                    | VIF        | Multicollinearity |
|-------------------|----------------------------|------------|-------------------|
| 0                 | longitude                  | 831.154830 | Yes               |
| 1                 | latitude                   | 798.614459 | Yes               |
| B 2               | housing_median_age         | 8.430218   | No                |
| 3                 | rooms_per_household        | 41.584760  | Yes               |
| F 4               | bedrooms_per_household     | 32.209470  | Yes               |
| O 5               | population_per_household   | 1.333357   | No                |
| 6                 | households                 | 4.811540   | No                |
| $R = \frac{3}{7}$ | median_income              | 12.549057  | Yes               |
| E 8               | ocean_proximity_INLAND     | 2.782084   | No                |
| 9                 | ocean_proximity_ISLAND     | 1.000672   | No                |
| 10                | ocean_proximity_NEAR BAY   | 1.678039   | No                |
| 11                | ocean proximity NEAR OCEAN | 1.304819   | No                |

|   | Feature                    | VIF      | Multicollinearity |
|---|----------------------------|----------|-------------------|
| 0 | housing_median_age         | 4.425413 | No                |
| 1 | bedrooms_per_household     | 5.067358 | No                |
| 2 | median_income              | 4.438443 | No                |
| 3 | population_per_household   | 1.314179 | No                |
| 4 | households                 | 3.268195 | No                |
| 5 | ocean_proximity_INLAND     | 1.646151 | No                |
| 6 | ocean_proximity_ISLAND     | 1.000497 | No                |
| 7 | ocean_proximity_NEAR BAY   | 1.320911 | No                |
| 8 | ocean_proximity_NEAR OCEAN | 1.273579 | No                |

The VIF analysis indicates that there are no significant multicollinearity issues among the features, allowing for the continued development of the model.

### Model Selection & Cross Validation

|    | Model                        | Mean MSE     | Std MSE      | Mean RMSE     | Std RMSE    | Mean MAPE | Std MAPE | Mean R2   | Std R2   |
|----|------------------------------|--------------|--------------|---------------|-------------|-----------|----------|-----------|----------|
| 11 | Gradient Boosting            | 4.031740e+09 | 3.171170e+08 | 63447.379826  | 2483.920608 | 0.258546  | 0.006953 | 0.684748  | 0.016003 |
| 7  | Stacking - Linear Regression | 4.172266e+09 | 2.666318e+08 | 64560.441675  | 2053.130003 | 0.260214  | 0.007484 | 0.673631  | 0.011662 |
| 9  | Random Forest                | 4.292375e+09 | 3.427641e+08 | 65464.738663  | 2596.672629 | 0.271216  | 0.007494 | 0.664379  | 0.017366 |
| 0  | KNN                          | 4.441588e+09 | 2.611836e+08 | 66616.798544  | 1946.898081 | 0.263178  | 0.008691 | 0.652380  | 0.014250 |
| 4  | Voting Regressor             | 4.479980e+09 | 2.953263e+08 | 66896.742290  | 2192.319803 | 0.267866  | 0.008219 | 0.649531  | 0.014387 |
| 12 | XGBoost                      | 4.734209e+09 | 2.397790e+08 | 68783.614443  | 1738.718184 | 0.281251  | 0.007123 | 0.629464  | 0.011199 |
| 5  | Stacking - KNN               | 4.894675e+09 | 3.203323e+08 | 69924.620843  | 2285.217518 | 0.283884  | 0.006798 | 0.617125  | 0.014811 |
| 8  | Bagging Regressor            | 4.973491e+09 | 3.800228e+08 | 70471.004508  | 2707.100009 | 0.292990  | 0.003766 | 0.611201  | 0.017039 |
| 2  | Linear Regression            | 4.988316e+09 | 3.807265e+08 | 70575.966622  | 2710.844254 | 0.293190  | 0.004152 | 0.610050  | 0.016919 |
| 10 | AdaBoost                     | 6.231703e+09 | 5.010388e+08 | 78875.548439  | 3217.296767 | 0.430870  | 0.021155 | 0.512548  | 0.030374 |
| 1  | Decision Tree                | 7.949142e+09 | 4.954557e+08 | 89113.815245  | 2805.398621 | 0.344926  | 0.013833 | 0.377455  | 0.037135 |
| 6  | Stacking - DT                | 8.376965e+09 | 2.602173e+08 | 91514.663772  | 1425.183694 | 0.363956  | 0.004484 | 0.344111  | 0.005955 |
| 3  | Support Vector Regressor     | 1.340753e+10 | 6.507206e+08 | 115756.142944 | 2835.632460 | 0.518273  | 0.009043 | -0.049034 | 0.012033 |

## Modelling

#### Model Selection & Cross Validation

**Cross-Validation** provides a more reliable estimate of a model's performance compared to using a single train-test split.

```
Model Test RMSE Test MAPE Test R2
0 Gradient Boosting 65084.330297 0.256914 0.676900
1 Stacking - Linear Regression 82293.848227 0.270221 0.483443
```

Based on the evaluation results, Gradient Boosting is the best model with the lowest RMSE and MAPE, as well as the highest R2, indicating superior accuracy and explanatory power compared to Stacking - Linear Regression, which performs worse across all metrics. Other models like Random Forest and XGBoost also perform better than Stacking - Linear Regression, but still fall short compared to Gradient Boosting.

```
Results Before Hyperparameter Tuning:

Model Test RMSE Test MAPE Test R2

Gradient Boosting 64573.097024 0.256774 0.681956

Results After Hyperparameter Tuning:

Model Test RMSE Test MAPE Test R2

Gradient Boosting 64573.097024 0.256774 0.681956
```

The hyperparameter tuning for Gradient Boosting did not lead to significant improvements in test metrics. The test RMSE, MAPE, and R² values remained the same before and after tuning, indicating that the selected hyperparameters were already well-suited for this model or that further tuning may be needed to observe more notable changes.

# Conclusion on Model Performance - Profit Margin Estimation



### Conclusion on Model Performance - Review on Selected Model

The analysis identifies **Gradient Boosting as the most effective** model for predicting housing prices in California during 1990. It achieved the lowest RMSE and MAPE, and the highest R-squared value, demonstrating its superior accuracy compared to other models like Stacking - Linear Regression, Random Forest, and XGBoost. However, **hyperparameter tuning did not lead to significant improvements**, suggesting that the current hyperparameters are well-suited or further fine-tuning might be required.

#### **Model Limitations**

#### **Historical Data**

- Detail: Data is specific to 1990, potentially making findings less relevant to current market conditions.
- Impact: Insights may not fully reflect today's housing market.

#### **Limited Features**

- Detail: Excludes important details like specific room types and lot size.
- Impact: Model accuracy may be constrained by the lack of granular data.

#### **Economic Changes**

- Detail: Focuses on the 1990 recession, which may not apply to other economic conditions.
- Impact: Results might not be applicable to different economic scenarios.

#### **Data Quality**

- Detail: Potential data errors or missing values.
- **Impact:** Can affect the overall accuracy of the model.

#### **Hyperparameter Tuning**

- Detail: Did not significantly improve performance.
- **Impact:** Model's potential might be limited by current settings.

#### **External Factors**

- Detail: Excludes factors like interest rates or tax incentives.
- Impact: Model might not provide a complete picture of housing prices.

### Conclusion on Model Performance - Business Recommendations

**Feature Expansion:** Improve the dataset with detailed property features and lot size to enhance model accuracy and understanding of pricing factors.

**Target Market Analysis:** Focus on high-value properties in desirable locations like "Near Ocean" or "Island" for long-term investments. Tailor offerings to affluent buyers or those interested in vacation properties.

**Price Segmentation:** Use insights to better segment the market. Develop marketing strategies that highlight key property attributes in different price categories.

### References

### Influencing Factors of California Housing Prices in 1990: a Multiple Linear Regression Analysis

Yitan Hao<sup>1,\*,†</sup>, Luhan Zhuang<sup>2,\*,†</sup>, Zitao Ying<sup>3,\*,††</sup>, Juncheng Zhai<sup>4,\*,††</sup>

\* Corresponding author: 118010088@link.cuhk.edu.cn<sup>1</sup>, \*luhan.zhuang@mail.utoronto.ca<sup>2</sup>, \*3180103695@zju.edu.cn<sup>3</sup>, \*1902020040@mail.bnuz.edu.cn<sup>4</sup>

School of Data Science, The Chinese University of Hong Kong, Shenzhen, China<sup>1</sup>
Faculty of Arts and Science, University of Toronto, Toronto, Canada<sup>2</sup>
Electronic Engineering, Zhejiang University, Hangzhou, China<sup>3</sup>
School of Management, Beijing Normal University Zhuhai, Zhuhai, China<sup>4</sup>

†These two authors contributed equally.

††These two authors contributed equally.

#### Link



# THE CALIFORNIA ECONOMY: CRISIS IN THE HOUSING MARKET

MARCH 2008

| • | IN 2007, CALIFORNIA HOME PRICES SUFFERED THE FASTEST AND STEEPEST DECLINE IN 25 YEARS.              |
|---|-----------------------------------------------------------------------------------------------------|
|   | California home prices fell 6.6% between the fourth quarter of 2006 and the fourth quarter of 2007. |
|   | (Just two years ago, home prices rose 21% in California.) Nationally, home prices rose 0.8%, well   |
|   | ahead of California but the slowest national growth since 1990.                                     |

# Thank You!

Capstone Project #3 | Inggar Gumintang | JCDSOL - 014 - 2