

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Mrshmas .

Dated

19 September 2003

Patents Form 1/77

Pate Act 1977

Request for grant of a patent

(See the notes on the back of this form. You can also get an explanatory leaflet from the Patent Office to help you fill in this '...m')

1. You reference

PPD 70127/GB/P

2. Patent application number (The Patent Office will fill in this part)

26 NOV 2002

0227551.9

3. Full name, address and postcode of the or of SYNGENTA Limited

each applicant (underline all surnames)

European Regional Centre

Priestley Road

Surrey Research Park, Guildford, Surrey, GU2 7YH, United Kingdom

Patents ADP number (if you know it)

-6254007002

1009400658.

If the applicant is a corporate body, give the country/state of its incorporation

UNITED KINGDOM

4. Title of the invention

FUNGICIDES

5. Name of your agent (if you bave one)

"Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Malcolm John HOUGHTON
Intellectual Property Department
Syngenta Limited
Jealott's Hill International Research Centre
PO Box 3538
Bracknell, Berkshire, RG42 6YA

UNITED KINGDOM

Patents ADP number (if you know tt)

6. If you are declaring priority from one or more earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (If you know it) the or each application number

Country

Priority application number (if you know it)

Date of filing
(day / month / year)

\$177760001

7. If this application is divided or otherwise derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing
(day / montb / year)

8. Is a statement of inventorship and of right to grant of a patent required in support of this request? (Answer Yes' 1f:

- a) any applicant named in part 3 is not an inventor, or
- b) there is an inventor who is not named as an applicant, or

c) any named applicant is a corporate body.See note (d))

YES (b)

- Patents Form 1/77

9. Enter the number of sheets for any of the following items you are filing with this form. " Do not count copies of the same document ...

Continuation sheets of this form

Description -

Claim(s)

00 Abstract

00 Drawing(s)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents

Statement of inventorship and right to grant of a patent (Patents Form 7/77)

Request for preliminary examination and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

> Any other documents (please specify)

I/We request the grant of a patent on the basis of this application. Syngenta Limited Date 26/11/02

Authorised Signatory

Signature

12. Name and daytime telephone number of person to contact in the United Kingdom

Joanna Carmen CHANDLER = 01344 414365

Warning

11.

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to probibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction has been revoked.

Notes :

- a) If you need help to fill in this form or you have any questions, please contact the Patent Office on 08459 500505.
- b) Write your answers in capital letters using black ink or you may type them.
- c) If there is not enough space for all the relevant details on any part of this form, please continue on a separate sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be attached to this form.
- d) If you have answered 'Yes' Patents Form 7/77 will need to be filed.
- Once you have filled in the form you must remember to sign and date it.
- For details of the fee and ways to pay please contact the Patent Office.

10

15

20

25

FUNGICIDES

This invention relates to novel N-alkynyl-2-(substituted phenoxy)alkylamides, to processes for preparing them, to compositions containing them and to methods of using them to combat fungi, especially fungal infections of plants.

Certain N-alkynyl-2-(substituted phenoxy)alkylamides are described in US 4,116,677 and US 4,070,486 as being useful as herbicides or miticides. Others are described in US 4,168,319 as being useful as mildewicides.

The present invention is concerned with the provision of particular N-alkynyl-2-(substituted phenoxy)alkylamides for use as plant fungicides.

Thus according to the present invention there is provided a compound of the general formula (1):

$$X \longrightarrow O \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_5$$

$$(1)$$

wherein X, Y and Z are independently H, halogen, C_{1-4} alkyl (e.g. methyl), halo(C_{1-4})-alkyl (e.g. trifluoromethyl), C_{2-4} alkenyl, halo(C_{2-4})alkenyl, C_{2-4} alkynyl, halo(C_{2-4})-alkynyl, C_{1-4} alkoxy (e.g. methoxy), halo(C_{1-4})alkoxy (e.g. trifluoromethoxy), $-S(O)_n$ -(C_{1-4})alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro (e.g. methylthio, trifluoromethylsulphonyl), $-OSO_2(C_{1-4})$ alkyl where the alkyl group is optionally substituted with fluoro (e.g. trifluoromethylsulphoyloxy), cyano, nitro, C_{1-4} alkoxycarbonyl, -CONR'R'', -COR' or -NR'COR'' where R' and R'' are independently H or C_{1-4} alkyl (e.g. $-NHCOCH_3$), provided that at least one of X and Z is other than H; R_1 is C_{1-4} alkyl, C_{2-4} alkenyl or C_{2-4} alkynyl in which the alkyl, alkenyl and alkynyl groups are optionally substituted on their terminal carbon atom with one, two or three halogen atoms (e.g. 2,2,2-trifluoroethyl), with a cyano group (e.g. cyanomethyl), with a C_{1-4} alkylcarbonyl group (e.g. acetylmethyl), with a C_{1-4} alkoxycarbonyl group (e.g. methoxycarbonylmethyl and methoxycarbonylethyl) or with a hydroxy group (e.g. hydroxymethyl); R_2 is H, C_{1-4} alkyl, C_{1-4} alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with C_{1-4} alkoxy; R_3 and R_4 are

10

20

25

30

independently H, C₁₋₃ alkyl, C₂₋₃ alkenyl or C₂₋₃ alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or R₃ and R₄ join with the carbon atom to which they are attached to form a 3 or 4 membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C₁₋₄ alkyl; and R₅ is C₁₋₄ alkyl or C₃₋₆ cycloalkyl in which the alkyl and cycloalkyl groups are substituted with hydroxy, C₁₋₆ alkoxy, C₁₋₆ alkylthio, $tri(C_{1-4})$ alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, in which the optionally substituted phenyl and thienyl rings of phenoxy, thienyloxy, benzyloxy and thienylmethoxy are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₂₋₄ alkenyloxy, C2-4 alkynyloxy, halo(C1-4)alkyl, halo(C1-4)alkoxy, C1-4 alkylthio, halo(C1-4) alkylthio, hydroxy(C_{1-4}) alkyl, C_{1-4} alkoxy(C_{1-4}) alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl(C_{1-4}) alkyl, C_{3-6} cycloalkyl, C_{3-6} cycloalkyl 4) alkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR"R", -NHCOR", -NHCONR"R", -CONR"R", -SO₂R", -OSO₂R", -COR", -CR"=NR" or -N=CR"R", in which R" and R" are independently hydrogen, C14 alkyl, halo(C₁₋₄)alkyl, C₁₋₄ alkoxy, halo(C₁₋₄)alkoxy, C₁₋₄ alkylthio, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl(C_{1-4})alkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally. substituted with halogen, C_{1-4} alkyl or C_{1-4} alkoxy.

The compounds of the invention contain at least one asymmetric carbon atom (and at least two when R₃ and R₄ are different) and may exist as enantiomers (or as pairs of diastereoisomers) or as mixtures of such. However, these mixtures may be separated into individual isomers or isomer pairs, and this invention embraces such isomers and mixtures thereof in all proportions. It is to be expected that for any given compound, one isomer may be more fungicidally active than another.

Except where otherwise stated, alkyl groups and alkyl moieties of alkoxy, alkylthio, etc., suitably contain from 1 to 4 carbon atoms in the form of straight or branched chains. Examples are methyl, ethyl, n-and iso-propyl and n-, sec-, iso- and tertbutyl. Where alkyl moieties contain 5 or 6 carbon atoms, examples are n-pentyl and nhexyl.

Alkenyl and alkynyl moieties also suitable contain from 2 to 4 carbon atoms in the form of straight or branched chains. Examples are allyl, ethynyl and propargyl.

P70127

5

10

1111

20

25

30

Halo includes fluoro, chloro, bromo and iodo. Most commonly it is fluoro, chloro or bromo and usually fluoro or chloro.

The substituents X, Y and Z on the phenyl ring of formula (1) may provide a 3-, 3, 5- or 3, 4, 5- substituted phenyl ring. Typically X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H.

Typically, R₁ is methyl, ethyl, n-propyl, 2,2,2-trifluoromethyl, cyanomethyl, acetylmethyl, methoxycarbonylmethyl, methoxycarbonylethyl, hydroxymethyl, hydroxyethyl. Ethyl is a preferred value of R₁.

Typically R_2 is H and at least one, but preferably both of R_3 and R_4 are methyl. When one of R_3 and R_4 is H, the other may be methyl, ethyl or n- or iso-propyl. When one of R₃ and R₄ is methyl, the other may be H or ethyl but is preferably also methyl. R₂ 15 3 also includes C₁₋₄ alkoxymethyl and benzyloxymethyl in which the phenyl ring of the activity benzyl group optionally carries an alkoxy substituent, e.g. a methoxy substituent. Such and the savalues of R₂ provide compounds of formula (1) that are believed to be pro-pesticidal disc . · compounds. .

Typically R₅ is hydroxymethyl, methoxymethyl, 1-methoxyethyl or tert-butyldimethylsilyloxymethyl.

Thus in one particular aspect, the invention provides a compound of the general formula (1) wherein X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H; R_1 is methyl, ethyl, n-propyl, 2,2,2-trifluoromethyl, cyanomethyl, acetylmethyl, methoxycarbonylmethyl, methoxycarbonylethyl, hydroxymethyl or hydroxyethyl; R2 is H; R3 and R₄ are both methyl; and R₅ is hydroxymethyl, methoxymethyl, methoxyethyl or tertbutyldimethylsilyloxymethyl. Preferably R₁ is ethyl. Preferably R₅ is hydroxymethyl or methoxymethyl.

Compounds that form part of the invention are illustrated in Tables 1 to 40 below.

The compounds in Table 1 are of the general formula (1) where R_1 is ethyl, R_2 is H, R_3 and R_4 are both methyl, R_5 is hydroxymethyl and X, Y and Z have the values given in the table.

Table 1

Compound No	X	Y	Z
1	Cl	H	CN
2 +	Cl	Cl	Cl
3	CH ₃	CH₃	CH₃
4	Cl	H	Cl
5	Cl	CH ₃	Cl
6	Br	H	Br
7	Br	CH ₃	Br
8	CH₃	H	CH ₃
9	CH ₃	Cl	CH₃
10 19 19	CH₃	Br	CH ₃
11	CH ₃	CH ₃ S '	CH ₃
12'4 8!	CH₃O	H	CH₃O
13	CH₃O	Cl	CH₃O
14	CH₃O	Br	CH₃O
15	CH₃O	CH ₃ S	CH₃O
16	CH₃O	H	CN
17	CH₃O	H	Cl
.18	CH ₃	H	C ₂ H ₅
19	Cl	H .	H
20	Br	Н	H
21	CF ₃	H	H

Table 2

5

10

Table 2 consists of 21 compounds of the general formula (1), where R_1 is methyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 2 is the same as compound 1 of Table 1 except that in compound 1 of Table 2 R_1 is methyl instead of ethyl. Similarly,

compounds 2 to 21 of Table 2 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 2 R₁ is methyl instead of ethyl. : Table 3

Table 3 consists of 21 compounds of the general formula (1), where R_1 is n-propyl, R_2 is hydrogen, R_3 and R_4 are both methyl, and R_5 is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 3 is the same as compound 1 of Table 1 except that in compound 1 of Table 3 R_1 is n-propyl instead of ethyl. Similarly, compounds 2 to 21 of Table 3 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 3 R_1 is n-propyl instead of ethyl.

Table 4 10

Table 4 consists of 21 compounds of the general formula (1), where R₁ is 2,2,2-trifluoromethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 4 is the same as compound 1 of Table 1 except that in compound 1 of Table 4 R₁ is 2,2,2-trifluoromethyl instead of 15 ij ethyl. Similarly, compounds 2 to 21 of Table 4 are the same as compounds 2 to 21 of it. Table 1, respectively, except that in the compounds of Table 4 R₁ is 2,2,2-trifluoromethyl instead of ethyl. g. 38A2

Table 5

Page.

Table 5 consists of 21 compounds of the general formula (1), where R_1 is cyanomethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is hydroxymethyl and X, Y and Z have the 20 values listed in Table 1. Thus compound 1 of Table 5 is the same as compound 1 of . . Table 1 except that in compound 1 of Table 5 R₁ is cyanomethyl instead of ethyl. Similarly, compounds 2 to 21 of Table 5 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 4 R₁ is cyanomethyl instead of ethyl.

25 Table 6

30

Table 6 consists of 21 compounds of the general formula (1), where R₁ is acetylmethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 6 is the same as compound 1 of Table 1 except that in compound 1 of Table 6 R₁ is acetylmethyl instead of ethyl. Similarly, compounds 2 to 21 of Table 6 are the same as compounds 2 to 21 of Table 1,

respectively, except that in the compounds of Table 4 R₁ is acetylmethyl instead of ethyl.

Table 7 consists of 21 compounds of the general formula (1), where R₁ is methoxy-carbonylmethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 7 is the same as compound 1 of Table 1 except that in compound 1 of Table 7 R₁ is methoxycarbonylmethyl instead of ethyl. Similarly, compounds 2 to 21 of Table 7 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 7 R₁ is methoxycarbonylmethyl instead of ethyl.

Table 8

5

Table 8 consists of 21 compounds of the general formula (1), where R₁ is methoxy-carbonylethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 8 is the same as compound 1 of Table 1 except that in compound 1 of Table 8 R₁ is methoxycarbonylethyl instead of ethyl. Similarly, compounds 2 to 21 of Table 8 are the same as compounds 2 to

15 cm 21 of Table 1, respectively, except that in the compounds of Table 8 R_1 is methoxycarbonylethyl instead of ethyl.

. . h. . .

Table 9 ...

Table 9 consists of 21 compounds of the general formula (1), where R_1 is hydroxymethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 9 is the same as compound 1 of Table 1 except that in compound 1 of Table 9 R_1 is hydroxymethyl instead of ethyl. Similarly, compounds 2 to 21 of Table 9 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 9 R_1 is hydroxymethyl instead of ethyl.

25 <u>Table 10</u>

20

30

Table 10 consists of 21 compounds of the general formula (1), where R_1 is hydroxyethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is hydroxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 10 is the same as compound 1 of Table 1 except that in compound 1 of Table 10 R_1 is hydroxyethyl instead of ethyl. Similarly, compounds 2 to 21 of Table 10 are the same as compounds 2 to 21 of Table 1,

Similarly, compounds 2 to 21 of Table 10 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 10 R_1 is hydroxyethyl instead of ethyl.

Table 11 consists of 21 compounds of the general formula (1), where R_1 is ethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 11 is the same as compound 1 of

Table 1 except that in compound 1 of Table 11 R₅ is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 11 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 11 R₅ is methoxymethyl instead of hydroxymethyl.

Table 12

Table 12 consists of 21 compounds of the general formula (1), where R₁ is methyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is methoxymethyl and X, Y and Z have the values listed in Table 1 for compounds 1 to 21. Thus compound 1 of Table 12 is the same as compound 1 of Table 2 except that in compound 1 of Table 12 R₅ is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 12 are the same as compounds 2 to 21 of Table 2, respectively, except that in the compounds of Table 12 R₅ and is methoxymethyl instead of hydroxymethyl.

Table 13

Table 13 consists of 21 compounds of the general formula (1), where R_1 is n-propyl, R_2 is hydrogen, R_3 and R_4 are both methyl, and R_5 is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 13 is the same as compound 1 of Table 3 except that in compound 1 of Table 13 R_5 is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 13 are the same as compounds 2 to 21 of Table 3, respectively, except that in the compounds of Table 13 R_1 is methoxymethyl instead of hydroxymethyl.

25 Table 14

20

30

Table 14 consists of 21 compounds of the general formula (1), where R₁ 2,2,2-trifluoromethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 14 is the same as compound 1 of Table 4 except that in compound 1 of Table 14 R₅ is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 14 are the same as compounds 2 to 21 of Table 4, respectively, except that in the compounds of Table 14 R₅ is methoxymethyl instead of hydroxymethyl.

Table 15 consists of 21 compounds of the general formula (1), where R_1 is cyanomethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 15 is the same as compound 1 of Table 5 except that in compound 1 of Table 15 R_5 is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 15 are the same as compounds 2 to 21 of Table 5, respectively, except that in the compounds of Table 15 R_5 is methoxymethyl instead of hydroxymethyl.

Table 16

5

10

:15

20

30

Table 16 consists of 21 compounds of the general formula (1), where R_1 is acetylmethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 16 is the same as compound 1 of Table 6 except that in compound 1 of Table 16 R_5 is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 16 are the same as compounds 2 to 21 of Table 6, respectively, except that in the compounds of Table 16 R_5 is methoxymethyl instead of hydroxymethyl.

Table 17

Table 17 consists of 21 compounds of the general formula (1), where R₁ is methoxy-carbonylmethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 17 is the same as compound 1 of Table 7 except that in compound 1 of Table 17 R₅ is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 17 are the same as compounds 2 to 21 of Table 7, respectively, except that in the compounds of Table 17 R₅ is methoxymethyl instead of hydroxymethyl.

į i.

25 Table 18

Table 18 consists of 21 compounds of the general formula (1), where R₁ is methoxycarbonylethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 18 is the same as compound 1 of Table 8 except that in compound 1 of Table 18 R₅ is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 18 are the same as compounds 2 to 21 of Table 8, respectively, except that in the compounds of Table 18 R₅ is methoxymethyl instead of hydroxymethyl.

Table 19 consists of 21 compounds of the general formula (1), where R_1 is hydroxymethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 19 is the same as compound 1 of Table 9 except that in compound 1 of Table 19 R_5 is methoxymethyl instead of methyl. Similarly, compounds 2 to 21 of Table 19 are the same as compounds 2 to 21 of Table 9, respectively, except that in the compounds of Table 19 R_5 is methoxymethyl instead of hydroxymethyl.

9

Table 20

5

Table 20 consists of 21 compounds of the general formula (1), where R₁ is hydroxyethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is methoxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 20 is the same as compound 1 of Table 10 except that in compound 1 of Table 20 R₅ is methoxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 20 are the same as compounds 2 to 21 of Table 10, respectively, except that in the compounds of Table 20 R₁ is methoxymethyl instead of hydroxymethyl.

Table 21

11.

Table 21 consists of 21 compounds of the general formula (1), where R₁ is ethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 21 is the same as compound 1 of Table 1 except that in compound 1 of Table 21 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 21 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 21 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

12::

25 Table 22

20

30

Table 22 consists of 21 compounds of the general formula (1), where R_1 is methyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1 for compounds 1 to 21. Thus compound 1 of Table 22 is the same as compound 1 of Table 2 except that in compound 1 of Table 22 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 22 are the same as compounds 2 to 21 of Table 2, respectively, except that in the compounds of Table 22 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

5

10

₹ · · ÷ 15

:::

20

30

Table 23 consists of 21 compounds of the general formula (1), where R_1 is n-propyl, R_2 is hydrogen, R_3 and R_4 are both methyl, and R_5 is tert-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 23 is the same as compound 1 of Table 3 except that in compound 1 of Table 23 R_5 is tert-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 23 are the same as compounds 2 to 21 of Table 3, respectively, except that in the compounds of Table 23 R_1 is tert-butyldimethylsilyloxymethyl instead of hydroxymethyl.

Table 24

Table 24 consists of 21 compounds of the general formula (1), where R₁ 2,2,2-trifluoromethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 24 is the same as compound 1 of Table 4 except that in compound 1 of Table 24 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 24 are the same as compounds 2 to 21 of Table 4, respectively, except that in the compounds of Table 24 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Table 25

Table 25 consists of 21 compounds of the general formula (1), where R_1 is cyanomethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 25 is the same as compound 1 of Table 5 except that in compound 1 of Table 25 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 25 are the same as compounds 2 to 21 of Table 5, respectively, except that in the compounds of Table 25 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

25 <u>Table 26</u>

Table 26 consists of 21 compounds of the general formula (1), where R_1 is acetylmethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 26 is the same as compound 1 of Table 6 except that in compound 1 of Table 26 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 26 are the same as compounds 2 to 21 of Table 6, respectively, except that in the compounds of Table 26 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

Table 27 consists of 21 compounds of the general formula (1), where R_1 is methoxy-carbonylmethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 27 is the same as compound 1 of Table 7 except that in compound 1 of Table 27 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 27 are the same as compounds 2 to 21 of Table 7, respectively, except that in the compounds of Table 27 R_5 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

10 Table 28

Table 28 consists of 21 compounds of the general formula (1), where R₁ is methoxy-carbonylethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 28 is the same as compound 1 of Table 8 except that in compound 1 of Table 28 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 28 are the same as compounds 2 to 21 of Table 8, respectively, except that in the compounds of Table 28 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

Table 29

Table 29 consists of 21 compounds of the general formula (1), where R₁ is hydroxymethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is tert-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 29 is the same as compound 1 of Table 9 except that in compound 1 of Table 29 R₅ is tert-butyldimethylsilyloxymethyl instead of methyl. Similarly, compounds 2 to 21 of Table 29 are the same as compounds 2 to 21 of Table 9, respectively, except that in the compounds of Table 29 R₅ is tert-butyldimethylsilyloxymethyl instead of hydroxymethyl.

Table 30

30

Table 30 consists of 21 compounds of the general formula (1), where R₁ is hydroxyethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is *tert*-butyldimethylsilyloxymethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 30 is the same as compound 1 of Table 10 except that in compound 1 of Table 30 R₅ is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 30 are

the same as compounds 2 to 21 of Table 10, respectively, except that in the compounds of Table 30 R_1 is *tert*-butyldimethylsilyloxymethyl instead of hydroxymethyl.

Table 31

Table 31 consists of 21 compounds of the general formula (1), where R_1 is ethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 31 is the same as compound 1 of Table 1 except that in compound 1 of Table 31 R_5 is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 31 are the same as compounds 2 to 21 of Table 1, respectively, except that in the compounds of Table 31 R_5 is 1-methoxyethyl instead of hydroxymethyl.

Table 32

10

Table 32 consists of 21 compounds of the general formula (1), where R₁ is methyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is 1-methoxyethyl and X, Y and Z have the values listed in Table 1 for compounds 1 to 21. Thus compound 1 of Table 32 is the same as compound 1 of Table 2 except that in compound 1 of Table 32 R₅ is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 32 are the same as compounds 2 to 21 of Table 2, respectively, except that in the compounds of Table 32 R₅ is 1-methoxyethyl instead of hydroxymethyl.

Table 33

Table 33 consists of 21 compounds of the general formula (1), where R₁ is n-propyl, R₂ is hydrogen, R₃ and R₄ are both methyl, and R₅ is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 33 is the same as compound 1 of Table 3 except that in compound 1 of Table 33 R₅ is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 33 are the same as compounds 2 to 21 of Table 3, respectively, except that in the compounds of Table 33 R₁ is 1-methoxyethyl instead of hydroxymethyl.

Table 34

30

Table 34 consists of 21 compounds of the general formula (1), where R_1 2,2,2-trifluoromethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 34 is the same as compound 1 of Table 4 except that in compound 1 of Table 34 R_5 is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 34 are the same as compounds 2

to 21 of Table 4, respectively, except that in the compounds of Table 34 R_5 is 1-methoxy-ethyl instead of hydroxymethyl.

Table 35

Table 35 consists of 21 compounds of the general formula (1), where R₁ is cyanomethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 35 is the same as compound 1 of Table 5 except that in compound 1 of Table 35 R₅ is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 35 are the same as compounds 2 to 21 of Table 5, respectively, except that in the compounds of Table 35 R₅ is 1-methoxyethyl instead of hydroxymethyl.

Table 36

10

Table 36 consists of 21 compounds of the general formula (1), where R₁ is acetylmethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 36 is the same as compound 1 of Table 6 except that in compound 1 of Table 36 R₅ is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 36 are the same as compounds 2 to 21 of Table 6, respectively, except that in the compounds of Table 36 R₅ is 1-methoxyethyl instead of hydroxymethyl.

Table 37

Table 37 consists of 21 compounds of the general formula (1), where R₁ is methoxy-carbonylmethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 37 is the same as compound 1 of Table 7 except that in compound 1 of Table 37 R₅ is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 37 are the same as compounds 2 to 21 of Table 7, respectively, except that in the compounds of Table 37 R₅ is 1-methoxyethyl instead of hydroxymethyl.

Table 38

30

Table 38 consists of 21 compounds of the general formula (1), where R_1 is methoxycarbonylethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 38 is the same as compound 1 of Table 8 except that in compound 1 of Table 38 R_5 is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 38 are the same as

compounds 2 to 21 of Table 8, respectively, except that in the compounds of Table 38 R₅ is 1-methoxyethyl instead of hydroxymethyl.

Table 39

Table 139 consists of 21 compounds of the general formula (1), where R_1 is hydroxymethyl, R_2 is hydrogen, R_3 and R_4 are both methyl, R_5 is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 39 is the same as compound 1 of Table 9 except that in compound 1 of Table 39 R_5 is 1-methoxyethyl instead of methyl. Similarly, compounds 2 to 21 of Table 39 are the same as compounds 2 to 21 of Table 9, respectively, except that in the compounds of Table 39 R_5 is 1-methoxyethyl instead of hydroxymethyl.

Table 40

10

20

25

30

Table 40 consists of 21 compounds of the general formula (1), where R₁ is hydroxyethyl, R₂ is hydrogen, R₃ and R₄ are both methyl, R₅ is 1-methoxyethyl and X, Y and Z have the values listed in Table 1. Thus compound 1 of Table 40 is the same as compound 1 of Table 10 except that in compound 1 of Table 40 R₅ is 1-methoxyethyl instead of hydroxymethyl. Similarly, compounds 2 to 21 of Table 40 are the same as compounds 2 to 21 of Table 10, respectively, except that in the compounds of Table 40 R₅ is1-methoxyethyl instead of hydroxymethyl.

The compounds of formula (1) may be prepared as outlined in Schemes 1 to 7 below in which X, Y, Z, R₁, R₂, R₃, R₄ and R₅ have the meanings given above, R₆ and R₇ are independently H or C₁₋₄ alkyl, L is a leaving group such as a halide, for example iodide, an alkyl or aryl sulphonyloxy group, for example methylsulphonyloxy and tosyloxy or a triflate, Hal is halogen, R_a is hydrogen or C₁₋₃ alkyl, R_b is hydrogen or C₁₋₃ alkyl, provided that the total number of carbon atoms in R_a and R_b do not exceed three, R_c is C₁₋₆ alkyl, optionally substituted benzyl or optionally substituted thienylmethyl and R_d has the meaning ascribed to it in the text.

As shown in Scheme 1, the compounds of general formula (1) may be prepared by reacting a phenol of the general formula (2) with a compound of the general formula (3) in the presence of a base in a suitable solvent. Typical solvents include N,N-dimethyl-formamide and N-methylpyrrolidin-2-one. Suitable bases include potassium carbonate, sodium hydride or diisopropylethylamine. Phenols of the general formula (2) are either commercially available or are known in the literature or may be prepared from known compounds by standard procedures.

Scheme1

As shown in Scheme 2, compounds of general formula (3) may be prepared by reacting an amine of the general formula (5) with an acid halide of the general formula (4), or the corresponding acid anhydride, in the presence of a suitable inorganic or organic base, such as potassium carbonate, sodium hydride or diisopropylethylamine, in a solvent such as dichloromethane or tetrahydrofuran.

Scheme 2

5

10

15

20

Hal + H
$$R_3$$
 base R_1 R_1 R_2 R_3 R_4 R_5 R_5 R_5 R_5 R_5 R_5 R_5 R_5

.39

As shown in Scheme 3, amines of the general formula (5), wherein R^2 is H, correspond to amines of the general formula (9) and may be prepared by alkylation of a silyl-protected aminoalkyne of the general formula (7) using a suitable base, such as n-butyl lithium, followed by reaction with a suitable alkylating reagent R_5L , such as an alkyl iodide, for example, methyl iodide, to form an alkylated compound of the general formula (8). In a similar procedure, a silyl-protected aminoalkyne of the general formula (7) may be reacted with a carbonyl derivative R_aCOR_b , for example formaldehyde, using a suitable base, such as n-butyl lithium, to provide an aminoalkyne (8) containing a hydroxyalkyl moiety. The silyl protecting group may then be removed from a compound of the general formula (8) with, for example, an aqueous acid to form an aminoalkyne of the general formula (9). Aminoalkynes of the general formula (9) may be further derivatised, for instance when R^5 is a hydroxyalkyl group, for example, by reacting a compound of the general formula (9) with a silylating agent, for example t-butyldimethyl-silyl chloride, to give a derivative silylated on oxygen of the general formula (9a). In addition, a compound of the general formula (9) may be treated with a base, such as

sodium hydride or potassium *bis*(trimethylsilyl)amide followed by a compound R_cL to give a compound of the general formula (9b). In an alternative sequence, a compound of general formula (8) may be treated with a base, such as sodium or potassium *bis*(trimethylsilyl)amide, followed by a compound R_cL, where L represents a halogen or sulphonate ester such as OSO₂Me, or OSO₂-4-tolyl, for example ethyl iodide, to give, after removal of the silyl protecting group, compounds of general formula (9b).

16

Scheme 3

5

10

Silyl-protected aminoalkynes of the general formula (7) may be obtained by reacting amines of general formula (6) with 1,2-bis-(chlorodimethylsilyl)ethane in the presence of a suitable base, such as a tertiary organic amine base, for example, triethylamine.

Amines of the general formula (6) are either commercially available or may be prepared by standard literature methods (see, for example, EP-A-0834498).

Alternatively, as shown in Scheme 4, compounds of the general formula (1) may be prepared by condensing a compound of the general formula (11), wherein R_d is H with an amine of the general formula (5) using suitable activating reagents such as 1-hydroxy-benzotriazole and N-(3-dimethylaminopropyl)-N-ethyl-carbodiimide hydrochloride.

Where R_2 is other than hydrogen, the R_2 group may be introduced into an aminoalkyne of the general formula (9) by known techniques to form an amine of the general formula (5).

Scheme 4

7

10

Compounds of the general formula (12) may be prepared by the hydrolysis of the corresponding esters of general formula (11), wherein R_d is C_{1-4} alkyl, using known techniques. The esters of the general formula (11), wherein R_d is C_{1-4} alkyl and also acids

10

20

25

of the general formula (11), wherein R_d is H, may be prepared by reacting a compound of the general formula (2) with an ester or acid of the general formula (10a) in the presence of a suitable base, such as potassium carbonate or sodium hydride, in a suitable solvent, such as N,N-dimethylformamide. The esters or acids of the general formula (10a) are either commercially available or may be prepared by standard literature methods from commercially available materials.

Alternatively, as shown in Scheme 4, compounds of the general formula (11) may be prepared under Mitsunobu conditions by reacting a compound of the general formula (2) with a compound of the general formula (10b), wherein R_d is C₁₋₄ alkyl, using a phosphine, such as triphenyl phosphine, and an azoester, such as diethyl azodicarboxylate.

Similarly, compounds of the general formula (1) may be prepared by reacting a compound of general formula (10d) with a compound of the general formula (2) under Mitsunobu conditions using a phosphine, such as triphenyl phosphine, and an azoester, such as diethyl azodicarboxylate. Compounds of general formula (10d) may be prepared from a compound of general formula (10c) and an amine of general formula (5) using suitable activating reagents such as 1-hydroxybenzotriazole and N-(3-dimethylamino-propyl)-N'-ethyl-carbodiimide hydrochloride. Compounds (10b) and (10c) are either known compounds or may be made from known compounds.

In another method, the compounds of the general formula (1) may be prepared by reacting an acid halide of the general formula (13) with an amine of the general formula (5) in a suitable solvent, such as dichloromethane, in the presence of a tertiary amine, such as triethylamine, and an activating agent, such as 4-dimethylaminopyridine.

As shown in Scheme 5, an acid halide of the general formula (13) may be prepared by chlorinating a compound of the general formula (12) with a suitable chlorinating agent, such as oxalyl chloride, in a suitable solvent, such as dichloromethane, and in the presence of, for example, N,N-dimethylformamide. The compounds of the general formula (12) correspond to the compounds of general formula (11), wherein R_d is H.

Scheme 5

5

10

15

20

19

As shown in Scheme 6, compounds of the general formula (1), where R_1 is a C_{3-6} alkenyl group, may be prepared from compounds of the general formula (14). Compounds of the general formula (14) are treated with a strong base, such as lithium bis(trimethylsilyl)amide, at between -78°C and room temperature but preferably at -78°C, and then reacted with a trialkylsilyl chloride, such as trimethylsilyl chloride or trialkylsilyl triflate R₃SiOSO₂CF₃, and allowed to warm to ambient temperature. The resultant acids of the general formula (15) obtained after hydrolysis can be condensed at the with amines of the general formula (5) to give the compounds of the general formula in the \cdot (16), using suitable activating reagents such as 1-hydroxybenzotriazole and N-(3-di- \cdot). methylaminopropyl)-N'-ethyl- carbodiimide hydrochloride.

Scheme 6

. 15

Compounds of the general formula (1), wherein R_1 is a C_{1-4} alkyl group, C_{3-4} alkenyl group or C₃₋₄ alkynyl group, may be prepared as shown in Scheme 7. Phenoxyacetic acids of the general formula (17) are treated with at least two equivalents of a strong base such as lithium diisopropylamide, in a suitable solvent such tetrahydrofuran, at a temperature of between -78°C and 0°C, but preferably at -78°C, followed by a compound R₁L, where L is a leaving group such as a halide, mesylate or triflate, and then allowed to warm up to ambient temperature to give, after acidification, phenoxyalkyl carboxylic acids of the general formula (18). Phenoxyalkyl carboxylic acids of the

general formula (18) can be condensed with the amines of the general formula (5) to give the compounds of the general formula (1), using suitable activating reagents such as 1-hydroxybenzotriazole and N-(3-dimethylaminopropyl)-N-ethyl- carbodiimide hydrochloride.

5 Scheme 7

10

15

20

25

Other compounds of the invention may be prepared by transforming the substituents in the compounds of general formula (1) using known procedures e.g. by the alkylation of compounds of formula (1), wherein R₂ is H or R₅ is H.

The compounds of formula (1) are active fungicides and may be used to control one or more of the following pathogens: Pyricularia oryzae (Magnaporthe grisea) on rice and wheat and other Pyricularia spp. on other hosts; Puccinia triticina (or recondita); Puccinia striiformis and other rusts on wheat, Puccinia hordei, Puccinia striiformis and other rusts on barley, and rusts on other hosts (for example turf, rye, coffee, pears, apples, peanuts, sugar beet, vegetables and ornamental plants); Erysiphe cichoracearum on cucurbits (for example melon); Blumeria (or Erysiphe) graminis (powdery mildew) on barley, wheat, rye and turf and other powdery mildews on various hosts, such as Sphaerotheca macularis on hops, Sphaerotheca fusca (Sphaerotheca fuliginea) on cucurbits (for example cucumber), Leveillula taurica on tomatoes, aubergine and green pepper, Podosphaera leucotricha on apples and Uncinula necator on vines; Cochliobolus spp., Helminthosporium spp., Drechslera spp. (Pyrenophora spp.), Rhynchosporium spp., Mycosphaerella graminicola (Septoria tritici) and Phaeosphaeria nodorum (Stagonospora nodorum or Septoria nodorum), Pseudocercosporella herpotrichoides and Gaeumannomyces graminis on cereals (for example wheat, barley, rye), turf and other hosts; Cercospora arachidicola and Cercosporidium personatum on peanuts and other Cercospora spp. on other hosts, for example sugar beet, bananas, soya beans and rice; Botrytis cinerea (grey mould) on tomatoes, strawberries, vegetables, vines and other hosts and other Botrytis spp. on other hosts; Alternaria spp. on vegetables (for example

20

25

30

carrots), oil-seed rape, apples, tomatoes, potatoes, cereals (for example wheat) and other hosts; Venturia spp. (including Venturia inaequalis (scab)) on apples, pears, stone fruit, tree nuts and other hosts; Cladosporium spp. on a range of hosts including cereals (for example wheat) and tomatoes; *Monilinia* spp. on stone fruit, tree nuts and other hosts; Didymella spp. on tomatoes, turf, wheat, cucurbits and other hosts; Phoma spp. on oil-seed rape, turf, rice, potatoes, wheat and other hosts; Aspergillus spp. and Aureobasidium spp. on wheat, lumber and other hosts; Ascochyta spp. on peas, wheat, barley and other hosts; Stemphylium spp. (Pleospora spp.) on apples, pears, onions and other hosts; summer diseases (for example bitter rot (Glomerella cingulata), black rot or frogeye leaf spot (Botryosphaeria obtusa), Brooks fruit spot (Mycosphaerella pomi), Cedar apple rust (Gymnosporangium juniperi-virginianae), sooty blotch (Gloeodes pomigena), flyspeck (Schizothyrium pomi) and white rot (Botryosphaeria dothidea)) on apples and pears; Plasmopara viticola on vines; other downy mildews, such as Bremia lactucae on lettuce, Peronospora spp. on soybeans, tobacco, onions and other hosts, 15 Pseudoperonospora humuli on hops and Pseudoperonospora cubensis on cucurbits; Pythium spp. (including Pythium ultimum) on turf and other hosts; Phytophthora infestans on potatoes and tomatoes and other Phytophthora spp. on vegetables, strawberries, avocado, pepper, ornamentals, tobacco, cocoa and other hosts; Thanatephorus cucumeris on rice and turf and other Rhizoctonia spp. on various hosts such as wheat and barley, peanuts, vegetables, cotton and turf; Sclerotinia spp. on turf, peanuts, potatoes, oil-seed rape and other hosts; Sclerotium spp. on turf, peanuts and other hosts; Gibberella fujikuroi on rice; Colletotrichum spp. on a range of hosts including turf, coffee and vegetables; Laetisaria fuciformis on turf; Mycosphaerella spp. on bananas, peanuts, citrus, pecans, papaya and other hosts; Diaporthe spp. on citrus, soybean, melon, pears, lupin and other hosts; Elsinoe spp. on citrus, vines, olives, pecans, roses and other hosts; Verticillium spp. on a range of hosts including hops, potatoes and tomatoes; Pyrenopeziza spp. on oil-seed rape and other hosts; Oncobasidium theobromae on cocoa causing vascular streak dieback; Fusarium spp., Typhula spp., Microdochium nivale, Ustilago spp., Urocystis spp., Tilletia spp. and Claviceps purpurea on a variety of hosts but particularly wheat, barley, turf and maize; Ramularia spp. on sugar beet, barley and other hosts; post-harvest diseases particularly of fruit (for example Penicillium digitatum, Penicillium italicum and Trichoderma viride on oranges, Colletotrichum musae and Gloeosporium musarum on bananas and Botrytis cinerea on grapes); other pathogens on

5

10

20

25

30

vines, notably Eutypa lata, Guignardia bidwellii, Phellinus igniarus, Phomopsis viticola, Pseudopeziza tracheiphila and Stereum hirsutum; other pathogens on trees (for example Lophodermium seditiosum) or lumber, notably Cephaloascus fragrans, Ceratocystis spp., Ophiostoma piceae, Penicillium spp., Trichoderma pseudokoningii, Trichoderma viride, Trichoderma harzianum, Aspergillus niger, Leptographium lindbergi and Aureobasidium pullulans; and fungal vectors of viral diseases (for example Polymyxa graminis on cereals as the vector of barley yellow mosaic virus (BYMV) and Polymyxa betae on sugar beet as the vector of rhizomania).

The compounds of formula (I) show particularly good activity against the Oomycete class of pathogens such as *Phytophthora infestans*, *Plasmopara* species, e.g. *Plasmopara viticola* and *Pythium* species e.g. *Pythium ultimum*.

A compound of formula (1) may move acropetally, basipetally or locally in plant tissue to be active against one or more fungi. Moreover, a compound of formula (1) may be volatile enough to be active in the vapour phase against one or more fungi on the plant.

The invention therefore provides a method of combating or controlling phytopathogenic fungi which comprises applying a fungicidally effective amount of a compound of formula (1), or a composition containing a compound of formula (1), to a plant, to a seed of a plant, to the locus of the plant or seed or to soil or any other plant growth medium, e.g. nutrient solution.

The term "plant" as used herein includes seedlings, bushes and trees.

Furthermore, the fungicidal method of the invention includes protectant, curative, systemic, eradicant and antisporulant treatments.

The compounds of formula (1) are preferably used for agricultural, horticultural and turfgrass purposes in the form of a composition.

In order to apply a compound of formula (1) to a plant, to a seed of a plant, to the locus of the plant or seed or to soil or any other growth medium, a compound of formula (1) is usually formulated into a composition which includes, in addition to the compound of formula (1), a suitable inert diluent or carrier and, optionally, a surface active agent (SFA). SFAs are chemicals which are able to modify the properties of an interface (for example, liquid/solid, liquid/air or liquid/liquid interfaces) by lowering the interfacial tension and thereby leading to changes in other properties (for example dispersion, emulsification and wetting). It is preferred that all compositions (both solid and liquid formulations) comprise, by weight, 0.0001 to 95%, more preferably 1 to 85%, for

15

20

25

30

example 5 to 60%, of a compound of formula (1). The composition is generally used for the control of fungi such that a compound of formula (1) is applied at a rate of from 0.1g to 10kg per hectare, preferably from 1g to 6kg per hectare, more preferably from 1g to 1kg per hectare.

When used in a seed dressing, a compound of formula (1) is used at a rate of 9.0001g to 10g (for example 0.001g or 0.05g), preferably 0.005g to 10g, more preferably 0.005g to 4g, per kilogram of seed.

In another aspect the present invention provides a fungicidal composition comprising a fungicidally effective amount of a compound of formula (1) and a suitable carrier or diluent therefor.

In a still further aspect the invention provides a method of combating and controlling fungi at a locus, which comprises treating the fungi, or the locus of the fungi with a fungicidally effective amount of a composition comprising a compound of formula (1).

The compositions can be chosen from a number of formulation types, including dustable powders (DP), soluble powders (SP), water soluble granules (SG), water dispersible granules (WG), wettable powders (WP), granules (GR) (slow or fast release), soluble concentrates (SL), oil miscible liquids (OL), ultra low volume liquids (UL), emulsifiable concentrates (EC), dispersible concentrates (DC), emulsions (both oil in water (EW) and water in oil (EO)), micro-emulsions (ME), suspension concentrates (SC), aerosols, fogging/smoke formulations, capsule suspensions (CS) and seed treatment formulations. The formulation type chosen in any instance will depend upon the particular purpose envisaged and the physical, chemical and biological properties of the compound of formula (1).

Dustable powders (DP) may be prepared by mixing a compound of formula (1) with one or more solid diluents (for example natural clays, kaolin, pyrophyllite, bentonite, alumina, montmorillonite, kieselguhr, chalk, diatomaceous earths, calcium phosphates, calcium and magnesium carbonates, sulphur, lime, flours, talc and other organic and inorganic solid carriers) and mechanically grinding the mixture to a fine powder.

Soluble powders (SP) may be prepared by mixing a compound of formula (1) with one or more water-soluble inorganic salts (such as sodium bicarbonate, sodium carbonate or magnesium sulphate) or one or more water-soluble organic solids (such as a

P70127 24

5

10

. ... 15

1.42 3

20

25

30

polysaccharide) and, optionally, one or more wetting agents, one or more dispersing agents or a mixture of said agents to improve water dispersibility/solubility. The mixture is then ground to a fine powder. Similar compositions may also be granulated to form water soluble granules (SG).

Wettable powders (WP) may be prepared by mixing a compound of formula (1) with one or more solid diluents or carriers, one or more wetting agents and, preferably, one or more dispersing agents and, optionally, one or more suspending agents to facilitate the dispersion in liquids. The mixture is then ground to a fine powder. Similar compositions may also be granulated to form water dispersible granules (WG).

Granules (GR) may be formed either by granulating a mixture of a compound of formula (1) and one or more powdered solid diluents or carriers, or from pre-formed blank granules by absorbing a compound of formula (1) (or a solution thereof, in a suitable agent) in a porous granular material (such as pumice, attapulgite clays, fuller's earth, kieselguhr, diatomaceous earths or ground corn cobs) or by adsorbing a compound of formula (1) (or a solution thereof, in a suitable agent) on to a hard core material (such as sands, silicates, mineral carbonates, sulphates or phosphates) and drying if necessary. Agents which are commonly used to aid absorption or adsorption include solvents (such as aliphatic and aromatic petroleum solvents, alcohols, ethers, ketones and esters) and sticking agents (such as polyvinyl acetates, polyvinyl alcohols, dextrins, sugars and vegetable oils). One or more other additives may also be included in granules (for example an emulsifying agent, wetting agent or dispersing agent).

Dispersible Concentrates (DC) may be prepared by dissolving a compound of formula (1) in water or an organic solvent, such as a ketone, alcohol or glycol ether. These solutions may contain a surface active agent (for example to improve water dilution or prevent crystallisation in a spray tank).

Emulsifiable concentrates (EC) or oil-in-water emulsions (EW) may be prepared by dissolving a compound of formula (1) in an organic solvent (optionally containing one or more wetting agents, one or more emulsifying agents or a mixture of said agents). Suitable organic solvents for use in ECs include aromatic hydrocarbons (such as alkylbenzenes or alkylnaphthalenes, exemplified by SOLVESSO 100, SOLVESSO 150 and SOLVESSO 200; SOLVESSO is a Registered Trade Mark), ketones (such as cyclohexanone or methylcyclohexanone), alcohols (such as benzyl alcohol, furfuryl alcohol or butanol), N-alkylpyrrolidones (such as N-methylpyrrolidone or N-

10

15

20

25

30

octylpyrrolidone), dimethyl amides of fatty acids (such as C₈-C₁₀ fatty acid dimethylamide) and chlorinated hydrocarbons. An EC product may spontaneously emulsify on addition to water, to produce an emulsion with sufficient stability to allow spray application through appropriate equipment. Preparation of an EW involves obtaining a compound of formula (1) either as a liquid (if it is not a liquid at room temperature, it may be melted at a reasonable temperature, typically below 70°C) or in solution (by dissolving it in an appropriate solvent) and then emulsifying the resultant liquid or solution into water containing one or more SFAs, under high shear, to produce an emulsion. Suitable solvents for use in EWs include vegetable oils, chlorinated hydrocarbons (such as chlorobenzenes), aromatic solvents (such as alkylbenzenes or alkylnaphthalenes) and other appropriate organic solvents which have a low solubility in water.

Microemulsions (ME) may be prepared by mixing water with a blend of one or more solvents with one or more SFAs, to produce spontaneously a thermodynamically stable isotropic liquid formulation. A compound of formula (1) is present initially ineither the water or the solvent/SFA blend. Suitable solvents for use in MEs include those hereinbefore described for use in in ECs or in EWs. An ME may be either an oil-in-water or a water-in-oil system (which system is present may be determined by conductivity measurements) and may be suitable for mixing water-soluble and oil-soluble pesticides in the same formulation. An ME is suitable for dilution into water, either remaining as a microemulsion or forming a conventional oil-in-water emulsion.

Suspension concentrates (SC) may comprise aqueous or non-aqueous suspensions of finely divided insoluble solid particles of a compound of formula (1). SCs may be prepared by ball or bead milling the solid compound of formula (1) in a suitable medium, optionally with one or more dispersing agents, to produce a fine particle suspension of the compound. One or more wetting agents may be included in the composition and a suspending agent may be included to reduce the rate at which the particles settle. Alternatively, a compound of formula (1) may be dry milled and added to water, containing agents hereinbefore described, to produce the desired end product.

Aerosol formulations comprise a compound of formula (1) and a suitable propellant (for example n-butane). A compound of formula (1) may also be dissolved or dispersed in a suitable medium (for example water or a water miscible liquid, such as n-

10

113 15

æ

25

30

propanol) to provide compositions for use in non-pressurised, hand-actuated spray pumps.

A compound of formula (1) may be mixed in the dry state with a pyrotechnic mixture to form a composition suitable for generating, in an enclosed space, a smoke containing the compound.

Capsule suspensions (CS) may be prepared in a manner similar to the preparation of EW formulations but with an additional polymerisation stage such that an aqueous dispersion of oil droplets is obtained, in which each oil droplet is encapsulated by a polymeric shell and contains a compound of formula (1) and, optionally, a carrier or diluent therefor. The polymeric shell may be produced by either an interfacial polycondensation reaction or by a coacervation procedure. The compositions may provide for controlled release of the compound of formula (1) and they may be used for seed treatment. A compound of formula (1) may also be formulated in a biodegradable polymeric matrix to provide a slow, controlled release of the compound.

A composition may include one or more additives to improve the biological performance of the composition (for example by improving wetting, retention or distribution on surfaces; resistance to rain on treated surfaces; or uptake or mobility of a compound of formula (1)). Such additives include surface active agents, spray additives based on oils, for example certain mineral oils or natural plant oils (such as soy bean and rape seed oil), and blends of these with other bio-enhancing adjuvants (ingredients which may aid or modify the action of a compound of formula (1)).

A compound of formula (1) may also be formulated for use as a seed treatment, for example as a powder composition, including a powder for dry seed treatment (DS), a water soluble powder (SS) or a water dispersible powder for slurry treatment (WS), or as a liquid composition, including a flowable concentrate (FS), a solution (LS) or a capsule suspension (CS). The preparations of DS, SS, WS, FS and LS compositions are very similar to those of, respectively, DP, SP, WP, SC and DC compositions described above. Compositions for treating seed may include an agent for assisting the adhesion of the composition to the seed (for example a mineral oil or a film-forming barrier).

Wetting agents, dispersing agents and emulsifying agents may be SFAs of the cationic, anionic, amphoteric or non-ionic type.

Suitable SFAs of the cationic type include quaternary ammonium compounds (for example cetyltrimethyl ammonium bromide), imidazolines and amine salts.

P70127 27

5

10

20

25

30

Suitable anionic SFAs include alkali metals salts of fatty acids, salts of aliphatic monoesters of sulphuric acid (for example sodium lauryl sulphate), salts of sulphonated aromatic compounds (for example sodium dodecylbenzenesulphonate, calcium dodecylbenzenesulphonate, butylnaphthalene sulphonate and mixtures of sodium diisopropyl- and tri-isopropyl-naphthalene sulphonates), ether sulphates, alcohol ether sulphates (for example sodium laureth-3-sulphate), ether carboxylates (for example sodium laureth-3-carboxylate), phosphate esters (products from the reaction between one or more fatty alcohols and phosphoric acid (predominately mono-esters) or phosphorus pentoxide (predominately di-esters), for example the reaction between lauryl alcohol and tetraphosphoric acid; additionally these products may be ethoxylated), sulphosuccinamates, paraffin or olefine sulphonates, taurates and lignosulphonates.

Suitable SFAs of the amphoteric type include betaines, propionates and glycinates.

Suitable SFAs of the non-ionic type include condensation products of alkylene was 15 oxides, such as ethylene oxide, propylene oxide, butylene oxide or mixtures thereof; with * fatty alcohols (such as oleyl alcohol or cetyl alcohol) or with alkylphenols (such as a second ... octylphenol, nonylphenol or octylcresol); partial esters derived from long chain fatty acids or hexitol anhydrides; condensation products of said partial esters with ethylene oxide; block polymers (comprising ethylene oxide and propylene oxide); alkanolamides; simple esters (for example fatty acid polyethylene glycol esters); amine oxides (for example lauryl dimethyl amine oxide); and lecithins.

> Suitable suspending agents include hydrophilic colloids (such as polysaccharides, polyvinylpyrrolidone or sodium carboxymethylcellulose) and swelling clays (such as bentonite or attapulgite).

> A compound of formula (1) may be applied by any of the known means of applying fungicidal compounds. For example, it may be applied, formulated or unformulated, to any part of the plant, including the foliage, stems, branches or roots, to the seed before it is planted or to other media in which plants are growing or are to be planted (such as soil surrounding the roots, the soil generally, paddy water or hydroponic culture systems), directly or it may be sprayed on, dusted on, applied by dipping, applied as a cream or paste formulation, applied as a vapour or applied through distribution or incorporation of a composition (such as a granular composition or a composition packed in a water-soluble bag) in soil or an aqueous environment.

10

20

25

30

A compound of formula (1) may also be injected into plants or sprayed onto vegetation using electrodynamic spraying techniques or other low volume methods, or applied by land or aerial irrigation systems.

Compositions for use as aqueous preparations (aqueous solutions or dispersions) are generally supplied in the form of a concentrate containing a high proportion of the active ingredient, the concentrate being added to water before use. These concentrates, which may include DCs, SCs, ECs, EWs, MEs SGs, SPs, WPs, WGs and CSs, are often required to withstand storage for prolonged periods and, after such storage, to be capable of addition to water to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment. Such aqueous preparations may contain varying amounts of a compound of formula (1) (for example 0.0001 to 10%, by weight) depending upon the purpose for which they are to be used.

A compound of formula (1) may be used in mixtures with fertilisers (for example nitrogen-, potassium- or phosphorus-containing fertilisers). Suitable formulation types include granules of fertiliser. The mixtures suitably contain up to 25% by weight of the compound of formula (1).

- J# 3

и.

The invention therefore also provides a fertiliser composition comprising a fertiliser and a compound of formula (1).

The compositions of this invention may contain other compounds having biological activity, for example micronutrients or compounds having similar or complementary fungicidal activity or which possess plant growth regulating, herbicidal, insecticidal, nematicidal or acaricidal activity.

By including another fungicide, the resulting composition may have a broader spectrum of activity or a greater level of intrinsic activity than the compound of formula (1) alone. Further the other fungicide may have a synergistic effect on the fungicidal activity of the compound of formula (1).

The compound of formula (1) may be the sole active ingredient of the composition or it may be admixed with one or more additional active ingredients such as a pesticide, fungicide, synergist, herbicide or plant growth regulator where appropriate. An additional active ingredient may: provide a composition having a broader spectrum of activity or increased persistence at a locus; synergise the activity or complement the activity (for example by increasing the speed of effect or overcoming repellency) of the

10

20

25

30

compound of formula (1); or help to overcome or prevent the development of resistance to individual components. The particular additional active ingredient will depend upon the intended utility of the composition.

Examples of fungicidal compounds which may be included in the composition of the invention are AC 382042 (N-(1-cyano-1,2-dimethylpropyl)-2-(2,4-dichlorophenoxy) propionamide), acibenzolar-S-methyl, alanycarb, aldimorph, anilazine, azaconazole, azafenidin, azoxystrobin, benalaxyl, benomyl, benthiavalicarb, biloxazol, bitertanol, blasticidin S, boscalid (new name for nicobifen), bromuconazole, bupirimate, captafol, captan, carbendazim, carbendazim chlorhydrate, carboxin, carpropamid, carvone, CGA 41396, CGA 41397, chinomethionate, chlorbenzthiazone, chlorothalonil, chlorozolinate, clozylacon, copper containing compounds such as copper oxychloride, copper oxyquinolate, copper sulphate, copper tallate, and Bordeaux mixture, cyamidazosulfamid, cyazofamid (IKF-916), cyflufenamid, cymoxanil, cyproconazole, cyprodinil, debacarb, di-2-pyridyl disulphide 1,1'-dioxide, dichlofluanid, diclocymet, diclomezine, dicloran; 15 w diethofencarb, difenoconazole, difenzoquat, diflumetorim, O,O-di-iso-propyl-S-benzyl thiophosphate, dimefluazole, dimetconazole, dimethirimol, dimethomorph, dimoxystrobin, diniconazole, dinocap, dithianon, dodecyl dimethyl ammonium chloride, dodemorph, dodine, doguadine, edifenphos, epoxiconazole, ethaboxam, ethirimol, ethyl (Z)-N-benzyl-N([methyl(methyl-thioethylideneaminooxycarbonyl)amino]thio)-βalaninate, etridiazole, famoxadone, fenamidone, fenarimol, fenbuconazole, fenfuram, fenhexamid, fenoxanil (AC 382042), fenpiclonil, fenpropidin, fenpropimorph, fentin acetate, fentin hydroxide, ferbam, ferimzone, fluazinam, fludioxonil, flumetover, flumorph, fluoroimide, fluoxastrobin, fluquinconazole, flusilazole, flusulfamide, flutolanil, flutriafol, folpet, fosetyl-aluminium, fuberidazole, furalaxyl, furametpyr, guazatine, hexaconazole, hydroxyisoxazole, hymexazole, imazalil, imibenconazole, iminoctadine, iminoctadine triacetate, ipconazole, iprobenfos, iprodione, iprovalicarb, isopropanyl butyl carbamate, isoprothiolane, kasugamycin, kresoxim-methyl, LY186054, LY211795, LY 248908, mancozeb, maneb, mefenoxam, mepanipyrim, mepronil, metalaxyl, metalaxyl M, metconazole, metiram, metiram-zinc, metominostrobin, metrafenone, MON65500 (N-allyl-4,5-dimethyl-2-trimethylsilylthiophene-3carboxamide), myclobutanil, NTN0301, neoasozin, nickel dimethyldithiocarbamate, nitrothale-isopropyl, nuarimol, ofurace, organomercury compounds, orysastrobin, oxadixyl, oxasulfuron, oxolinic acid, oxpoconazole, oxycarboxin, pefurazoate,

P70127 30

10

15

20

25

penconazole, pencycuron, phenazin oxide, phosphorus acids, phthalide, picoxystrobin, polyoxin D, polyram, probenazole, prochloraz, procymidone, propamocarb, propamocarb hydrochloride, propiconazole, propineb, propionic acid, proquinazid, prothioconazole, pyraclostrobin, pyrazophos, pyrifenox, pyrimethanil, pyroquilon, pyroxyfur, pyrrolnitrin, quaternary ammonium compounds, quinomethionate, quinoxyfen, quintozene, silthiofam (MON 65500), S-imazalil, simeconazole, sipconazole, sodium pentachlorophenate, spiroxamine, streptomycin, sulphur, tebuconazole, tecloftalam, tecnazene, tetraconazole, thiabendazole, thifluzamide, 2-(thiocyanomethylthio)benzothiazole, thiophanate-methyl, thiram, tiadinil, timibenconazole, tolclofos-methyl, tolylfluanid, triadimefon, triadimenol, triazbutil, triazoxide, tricyclazole, tridemorph, trifloxystrobin, triflumizole, triforine, triticonazole, validamycin A, vapam, vinclozolin, XRD-563, zineb, ziram, zoxamide and compounds of the formulae:

The compounds of formula (1) may be mixed with soil, peat or other rooting media for the protection of plants against seed-borne, soil-borne or foliar fungal diseases.

Some mixtures may comprise active ingredients which have significantly different physical, chemical or biological properties such that they do not easily lend themselves to the same conventional formulation type. In these circumstances other formulation types may be prepared. For example, where one active ingredient is a water insoluble solid and the other a water insoluble liquid, it may nevertheless be possible to disperse each active ingredient in the same continuous aqueous phase by dispersing the solid active ingredient as a suspension (using a preparation analogous to that of an SC) but dispersing the liquid active ingredient as an emulsion (using a preparation analogous to that of an EW). The resultant composition is a suspoemulsion (SE) formulation.

The invention is illustrated by the following Examples in which the following abbreviations are used:

ml = millilitres DMSO = dimethylsulphoxide

g = grammes NMR = nuclear magnetic resonance

ppm = parts per million HPLC = high performance liquid

P70127

 $M^+ = mass ion$

chromatography

s = singlet

q = quartet

d = doublet

m = multiplet

br s = broad singlet

ppm = parts per million

t = triplet

10

15

20

25

EXAMPLE 1

This Example illustrates the preparation of 2-(3,5-dichlorophenoxy)-N-(1-tert-butyl-dimethylsilyloxy-4-methylpent-2-yn-4-yl) butyramide (Compound No. 4 in Table 21)

Stage 1: Preparation of 4-amino-1-hydroxy-4-methylpent-2-yne hydrochloride

Step 1

1-(1,1-Dimethyl-2-propynyl)-2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane (prepared as described below; 22.6g) in dry tetrahydrofuran (250ml) was cooled to -50°C under an atmosphere of nitrogen with stirring and a solution of *n*-butyl lithium (44ml, 2.5M solution in hexanes) was added dropwise over 10 minutes. The mixture was stirred for 0.5 hour, allowed to warm to -20°C and formaldehyde gas bubbled through the mixture until no starting material remained, as determined by glc analysis. On completion of the reaction, the mixture was treated with water, the ether phase separated, the aqueous phase extracted with ethyl acetate (twice) and the organic extracts combined and washed with water (three times). The combined organic extract was dried over magnesium sulphate and evaporated under reduced pressure to give the required product (24.96g) as a pale yellow liquid.

¹H NMR (CDCl₃) δ : 0.00(12H, s); 0.46(4H, s); 1.32(6H, s); 4.10(2H, s).

The 1-(1,1-Dimethyl-2-propynyl)-2,2,5,5-tetramethyl-1-aza-2,5-

Amino-3-methylbutyne (commercially available as 90% aqueous solution; 16.6g) was dissolved in dichloromethane (150ml), dried over sodium sulphate and filtered to give a solution containing 14.9g of amine. To the stirred solution of amine under an atmosphere of nitrogen at ambient temperature was added dry triethylamine (48.4ml). 1,2-Bis-(chlorodimethylsilyl)ethane (38.98g) in dichloromethane (100ml) was then added dropwise, maintaining the reaction temperature at 15°C by cooling. The mixture was stirred for 3 hours, the colourless solid, which had formed during the reaction, was

P70127

filtered from solution and the filtrate was evaporated under reduced pressure to give a paste. The paste was extracted into hexane and refiltered. The filtrate was evaporated under reduced pressure and the oil obtained was distilled to give 1-(1,1-dimethyl-2-propynyl)-2,2,5,5-tetramethyl-1-aza-2,5-disilacyclopentane, 21.5g, b.p. 41°C at 0.06 mm Hg pressure.

32

¹H NMR (CDCl₃) δ: 0.16(12H, s); 0.60(4H,s); 1.48(6H, s); 2.24(1H, s). Step 2

The product from Stage 1, Step 1 (24.96g) was treated with dilute aqueous hydrochloric acid (300ml) and stirred at ambient temperature for 0.5 hour. The mixture was washed with diethyl ether (twice), the aqueous phase was evaporated under reduced pressure, distilled with toluene (twice) to remove residual water and the residual solid obtained was triturated with hexane to give 4-amino-1-hydroxy-4-methylpent-2-yne hydrochloride (13.1g) as a cream coloured solid.

¹H NMR (CDCl₃) δ: 1.48(6H, s); 4.06(2H, s); 5.32(1H, s); 8.64(3H, s).

Stage 2: Preparation of 4-amino-1-tert.-butyldimethylsilyloxy-4-methylpent-2-yne

4-Amino-1-hydroxy-4-methylpent-2-yne hydrochloride (4.40g) was dissolved in dry N,N-dimethylformamide (100ml) and triethylamine (4.44ml) was added. The suspension was stirred at ambient temperature for 10 minutes then imidazole (4.93g) was added followed by tert-butyldimethylsilyl chloride(5.24g) in dry N,N-dimethylformamide (40ml). The mixture was stirred at ambient temperature for 18 hours and diluted with water. The aqueous mixture was extracted with diethyl ether (three times), the organic extracts combined, washed with water (twice), dried over magnesium sulphate and evaporated under reduced pressure to give the required product (6.88g) as a yellow liquid. ¹H NMR (CDCl₃) δ: 0.04(6H, s); 0.84(9H, s); 1.30(6H, s); 4.22(2H, s).

25 Stage 3

5

10

[:]15

20

30

2-(3,5-dichlorophenoxy)-butyric acid (prepared as described in US 4116677; 2.61g), 4-amino-1-tert.-butyldimethylsilyloxy-4-methylpent-2-yne (2.27g) and 4-dimethylaminopyridine (0.010g) in dry dichloromethane (50ml) were stirred together and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (2.11g) was added. The mixture was stirred at ambient temperature for 2.5 hours, stored for 18 hours, diluted with dichloromethane, washed with saturated aqueous sodium hydrogen carbonate (twice) then with water (twice). The organic phase was dried over magnesium sulphate

10

15.

20

25

30

and evaporated under reduced pressure to give a yellow oil. The oil was fractionated by chromatography (silica; hexane/ethyl acetate, 1:1 by volume) to give the required product (3.50g) as a colourless oil.

¹H NMR (CDCl₃) δ: 0.10(6H, s); 0.90(9H, s); 0.98-1.02(3H, t); 1.62-1.64(6H, d); 1.90-1.98(2H, m); 4.32(2H, s); 4.36-4.40(1H, t); 6.30(1H, s); 6.82(2H, s); 7.02(1H, s).

EXAMPLE 2

This Example illustrates the preparation of 2-(3,5-dichlorophenoxy)-N-(1-hydroxy-methyl-4-methylpent-2-yn-4-yl) butyramide (Compound No. 4 in Table1)

2-(3,5-Dichlorophenoxy)-N-(1-tert-butyldimethylsilyloxy-4-methylpent-2-yn-4-yl)butyramide (prepared as described in Example 1; 3.35g) in tetrahydrofuran (60ml) was stirred at 3-5°C and a solution of tetra n-butylammonium fluoride (14.6ml of 1M solution in tetrahydrofuran) was added dropwise over 5 minutes. On completion of the addition, the mixture was stirred for 0.5 hour at 0°C, 2 hours at ambient temperature and stored for 18 hours. The solvent was evaporated under reduced pressure and the residue partitioned between ethyl acetate and aqueous ammonium chloride. The organic phase was separated, washed with aqueous ammonium chloride, brine, dried over magnesium sulphate and evaporated under reduced pressure to give a colourless solid that was fractionated by chromatography (silica; hexane/ethyl acetate, 2:1 by volume) to give the required product as a colourless solid (2.01g) mp 104-106°C.

¹H NMR (CDCl₃) δ: 1.00-1.04(3H, t); 1.60-1.62(6H, d); 1.92-2.00(2H, m); 2.02-2.06(1H, t); 4.28-4.30(2H, d); 4.38-4.42(1H, t); 6.30(1H, s); 6.86(2H, s); 7.04(1H, s).

EXAMPLE 3

This Example describes the preparation of 2-(3,5-dichlorophenoxy)-N-(1-methoxy-4-methylpent-2-yn-4-yl) butyramide (Compound No. 4 in Table 11)

2-(3,5-Dichlorophenoxy)-*N*-(1-hydroxymethyl-4-methylpent-2-yn-4-yl)butyr-amide (prepared as described in Example 2; 1.54g) in dry *N*,*N*-dimethylformamide (20ml) was added dropwise over 5 minutes to a suspension of sodium hydride (0.28g, 80% dispersion in mineral oil) in dry *N*,*N*-dimethylformamide (2ml) under an atmosphere of nitrogen at ambient temperature. The mixture was stirred for 2 hours and methyl iodide (0.71g) in dry *N*,*N*-dimethylformamide (5ml) was added over 1 minute at ambient temperature. The mixture was stirred for 2 hours and stored at ambient temperature for 18

10

. 1 35

25

30

hours. Water was added and the mixture extracted with ethyl acetate (three times). The extracts were combined, washed with water (twice), dried over magnesium sulphate and evaporated under reduced pressure to give a gum that was fractionated by chromatography (silica; hexane/ethyl acetate, 4:1 by volume) to give the required product .0.44g) as a colourless solid, mp 103-104°C.

¹H NMR (CDCl₃) δ: 0.98-1.04(3H, t); 1.64(6H, s); 1.92-2.00(2H, q); 3.36(3H, s); 4.12(2H, s); 4.38-4.42(1H, t); 6.30(1H, s); 6.84(2H, s); 7.04(1H, s).

EXAMPLE 4

This Example illustrates the fungicidal properties of compounds of formula (1).

The compounds were tested in a leaf disk assay, with methods described below. The test compounds were dissolved in DMSO and diluted into water to 200 ppm. In the case of the test on *Pythium ultimum*, they were dissolved in DMSO and diluted into water to 20 ppm.

Erysiphe graminis f.sp. hordei (barley powdery mildew): Barley leaf segments were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a 🔞 compound was assessed four days after inoculation as preventive fungicidal activity. Erysiphe graminis f.sp. tritici (wheat powdery mildew): Wheat leaf segments were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry:completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed four days after inoculation as preventive fungicidal activity. Puccinia recondita f.sp. tritici (wheat brown rust): Wheat leaf segments were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed nine days after inoculation as preventive fungicidal activity. Septoria nodorum (wheat glume blotch): Wheat leaf segments were placed on agar in a

Septoria nodorum (wheat glume blotch): Wheat leaf segments were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed four days after inoculation as preventive fungicidal activity.

10

20

25

30

Pyrenophora teres (barley net blotch): Barley leaf segments were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed four days after inoculation as preventive fungicidal activity.

Pyricularia oryzae (rice blast): Rice leaf segments were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed four days after inoculation as preventive fungicidal activity.

Botrytis cinerea (grey mould): Bean leaf disks were placed on agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed four days after inoculation as preventive fungicidal activity.

Phytophthora infestans (late blight of potato on tomato): Tomato leaf disks were placed on water agar in a 24-well plate and sprayed with a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed four days after inoculation as preventive fungicidal activity. Plasmopara viticola (downy mildew of grapevine): Grapevine leaf disks were placed on agar in a 24-well plate and sprayed a solution of the test compound. After allowing to dry completely, for between 12 and 24 hours, the leaf disks were inoculated with a spore suspension of the fungus. After appropriate incubation the activity of a compound was assessed seven days after inoculation as preventive fungicidal activity.

Pythium ultimum (Damping off): Mycelial fragments of the fungus, prepared from a fresh liquid culture, were mixed into potato dextrose broth. A solution of the test compound in dimethyl sulphoxide was diluted with water to 20ppm then placed into a 96-well microtiter plate and the nutrient broth containing the fungal spores was added. The test plate was incubated at 24°C and the inhibition of growth was determined photometrically after 48 hours.

The following Compounds [Compound No (Table)] gave at least 70% control of the following fungal infections at 200ppm:

Phytophthora infestans: 4(1), 4(11).

Plasmopara viticola: 4(1), 4(11).

Erysiphe graminis f.sp. hordei: 4(1), 4(11), 4(21).

Erysiphe graminis f.sp tritici: 4(11).

5 The following Compounds gave at least 70% control of the following fungal infection at 20ppm:

Pythium ultimum: 4(1), 4(11).

CLAIMS

10

15

20

25

1. A compound of the general formula (1):

$$X \longrightarrow O \longrightarrow R_1 \longrightarrow R_2 \longrightarrow R_5$$
 (1)

wherein X, Y and Z are independently H, halogen, C₁₋₄ alkyl, halo(C₁₋₄)alkyl, C₂₋₄ alkenyl, halo (C_{2-4}) alkenyl, C_{2-4} alkynyl, halo (C_{2-4}) alkynyl, C_{1-4} alkoxy, halo (C_{1-4}) alkoxy, $-S(O)_n(C_{1-4})$ alkyl where n is 0, 1 or 2 and the alkyl group is optionally substituted with fluoro, -OSO₂(C₁₋₄)alkyl where the alkyl group is optionally substituted with fluoro, cyano, nitro, C1-4 alkoxycarbonyl, -CONR'R", -COR' or -NR'COR" where R' and R" are independently H or C₁₋₄ alkyl, provided that at least one of X and Z is other than H; R₁ is C₁₋₄ alkyl, C₂₋₄ alkenyl or C₂₋₄ alkynyl in which the alkyl, alkenyl and alkynyl groups are optionally substituted on their terminal carbon atom with one, two or three halogen atoms, with a cyano group, with a C₁₋₄ alkylcarbonyl group, with a C₁₋₄ alkoxycarbonyl group or with a hydroxy group; R₂ is H, C₁₋₄ alkyl, C₁₋₄ alkoxymethyl or benzyloxymethyl in which the phenyl ring of the benzyl moiety is optionally substituted with C₁₋₄ alkoxy; R₃ and R₄ are independently H, C₁₋₃ alkyl, C₂₋₃ alkenyl or C₂₋₃ alkynyl provided that both are not H and that when both are other than H their combined total of carbon atoms does not exceed 4, or R3 and R4 join with the carbon atom to which they are attached to form a 3 or 4 membered carbocyclic ring optionally containing one O, S or N atom and optionally substituted with halo or C₁₋₄ alkyl; and R₅ is C₁₋₄ alkyl or C₃₋₆ cycloalkyl in which the alkyl and cycloalkyl groups are substituted with hydroxy, C_{1-6} alkoxy, C_{1-6} alkylthio, $tri(C_{1-4})$ alkylsilyloxy, optionally substituted phenoxy, optionally substituted thienyloxy, optionally substituted benzyloxy or optionally substituted thienylmethoxy, in which the optionally substituted phenyl and thienyl rings of phenoxy, thienyloxy, benzyloxy and thienylmethoxy are optionally substituted with one, two or three substituents selected from halo, hydroxy, mercapto, C₁₋₄ alkyl, C₂₋₄ alkenyl, C₂₋₄ alkynyl, C₁₋₄ alkoxy, C₂₋₄ alkenyloxy, C₂₋₄ alkynyloxy, halo(C₁₋₄)alkyl, halo(C₁₋₄)alkoxy, C₁₋₄

5

15

alkylthio, halo(C₁₋₄)alkylthio, hydroxy(C₁₋₄)alkyl, C₁₋₄alkoxy(C₁₋₄)alkyl, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl(C₁₋₄)alkyl, phenoxy, benzyloxy, benzoyloxy, cyano, isocyano, thiocyanato, isothiocyanato, nitro, -NR"R", -NHCOR", -NHCONR"R", -CONR"R", -SO₂R", -OSO₂R", -COR", -CR"=NR" or -N=CR"R", in which R" and R" are independently hydrogen, C₁₋₄ alkyl, halo-(C₁₋₄)alkyl, C₁₋₄ alkoxy, halo(C₁₋₄)alkoxy, C₁₋₄ alkylthio, C₃₋₆ cycloalkyl, C₃₋₆ cycloalkyl, phenyl or benzyl, the phenyl and benzyl groups being optionally substituted with halogen, C₁₋₄ alkyl or C₁₋₄ alkoxy.

- 2. A compound according to claim 1 wherein X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H.
 - A compound according to claim 1 or 2 wherein R₁ is methyl, ethyl, n-propyl, 2,2,2-trifluoromethyl, cyanomethyl, acetylmethyl, methoxycarbonylmethyl, methoxycarbonylethyl, hydroxymethyl, hydroxyethyl.
- 20 4. A compound according to claim 1 or 2 wherein R_1 is ethyl.
 - 5. A compound according to any one of the preceding claims wherein R_2 is H.
- 6. A compound according to any one of the preceding claims wherein both R_3 and R_4 are methyl.
 - 7. A compound according to any one of the preceding claims wherein R₅ is hydroxymethyl, methoxymethyl, 1-methoxyethyl or *tert*-butyldimethylsilyloxymethyl.

8. A compound according to claim 1 wherein X, Y and Z are all chloro or methyl, or X and Z are both chloro or bromo and Y is H or methyl, or X and Z are both methyl or methoxy and Y is H, chloro, bromo or alkylthio, or X is methoxy, Y is

30

15

H and Z is cyano or chloro, or X is methyl, Y is H and Z is ethyl, or X is chloro, bromo or trifluoromethyl and both Y and Z are H; R_1 is methyl, ethyl, n-propyl, 2,2,2-trifluoromethyl, cyanomethyl, acetylmethyl, methoxycarbonylmethyl, methoxycarbonylethyl, hydroxymethyl or hydroxyethyl; R_2 is H; R_3 and R_4 are both methyl; and R_5 is hydroxymethyl, methoxymethyl, 1-methoxyethyl or *tert*-butyldimethylsilyloxymethyl.

- 9. A process for preparing a compound according to claim 1 as herein described.
- 10 10. A fungicidal composition comprising a fungicidally effective amount of a compound of formula (1) and a suitable carrier or diluent therefor.
 - 11. A method of combating or controlling phytopathogenic fungi which comprises applying a fungicidally effective amount of a compound of formula (1) as defined in claim 1 or a composition according to claim 10 to a plant, to a seed of a plant, to the locus of the plant or seed or to soil or any other plant growth medium.

GB0304832