環論 (13回目)の解答

問題 13-1

(1) N(1+i) = 2 は素数. よって 1+i は A の素元.

$$N(a+bi) | N(7) = 49.$$

よって N(a+bi) は 1,7,49 のいずれか、 N(a+bi)=1 のとき, $a+bi\in A^{\times}$ である. N(a+bi)=49 のとき, N(a+bi)=N(7) より $a+bi\sim 7$.また

$$a^2 + b^2 = N(a + bi) = 7$$

となる整数の組 (a,b) はないので, N(a+bi)=7 の場合は起きない. よって 7 は A の既約元であり, 素元でもある.

(3) 素元 π が π | α を満たすとする. このとき, $N(\pi)$ | $N(\alpha)$ である. $N(\pi) = \pi \bar{\pi}$ より π | $N(\pi)$. よって π | $N(\alpha) = 5 \times 17$. π は素元より π | π |

$$5 = (2+i)(2-i), 17 = (4+i)(4-i).$$
 (eq1)

 $N(2\pm i)=5$ および $N(4\pm i)=17$ より, $2\pm i$ と $4\pm i$ はそれぞれ A の素元. よって (eq1) は 5 と 17 の素元分解となる. よって $\pi\mid\alpha$ を満たす素元 π は $2\pm i$ と $4\pm i$ のいずれかと同伴である. 実際に

$$\alpha = (2 - i)(4 + i) \quad (eq2)$$

となり、これが α の素元分解である.

[**コメント**] (3) のように $N(\alpha)$ の値から α を割る素元の候補を絞り, その中から α を割るものを探すことで α の素元分解が得られる.

問題 13-2

 $N(\pi)$ の \mathbb{Z} での素因数分解を

$$\pi \cdot \bar{\pi} = N(\pi) = p_1 p_2 \cdots p_n$$

とする. π は素元より $\pi \mid p_k$ を満たす素数 p_k がある. よって

$$N(\pi) \mid N(p_k) = p_k^2.$$

 π は素元より $N(\pi) \neq 1$. よって $N(\pi)$ は p_k または p_k^2 である.

copyright ⓒ 大学数学の授業ノート