Correction de l'exercice 1

1. Construction de D:

On a $\overrightarrow{DC} = \overrightarrow{AB}$, donc ABCD est un parallélogramme.

- 2. Construction de E (Voir la figure ci-dessus) :
- 3. On a $\overrightarrow{ED} = \overrightarrow{AC}$, donc ACDE est un parallélogramme.

De plus, $(AB) \perp (AC)$ et $(AB) \parallel (DC)$.

Or, dans le parallélogramme ACDE, on a $(DC) \parallel (EA)$.

Ainsi, (EA) est perpendiculaire à (AC).

Le parallélogramme ACDE ayant un angle droit, c'est donc un rectangle.

Correction de l'exercice 2

Correction de l'exercice 3

Correction de l'exercice 4

Correction de l'exercice 5

1. Montrons que :
$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{AB} + \overrightarrow{AC}$$
 et $\overrightarrow{AF} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$.

$$\overrightarrow{AE} = \frac{3}{2}\overrightarrow{CB} + \frac{5}{2}\overrightarrow{AC}$$

$$= \frac{3}{2}(\overrightarrow{CA} + \overrightarrow{AB}) + \frac{5}{2}\overrightarrow{AC}$$

$$= \frac{3}{2}(-\overrightarrow{AC} + \overrightarrow{AB}) + \frac{5}{2}\overrightarrow{AC}$$

$$= -\frac{3}{2}\overrightarrow{AC} + \frac{3}{2}\overrightarrow{AB} + \frac{5}{2}\overrightarrow{AC}$$

$$= \frac{3}{2}\overrightarrow{AB} + \left(-\frac{3}{2} + \frac{5}{2}\right)\overrightarrow{AC}$$

$$= \frac{3}{2}\overrightarrow{AB} + \overrightarrow{AC}$$

$$\overrightarrow{AF} = \overrightarrow{AC} + \overrightarrow{CF}$$

$$= \overrightarrow{AC} + \left(\frac{1}{2}\overrightarrow{AB} - 2\overrightarrow{AC}\right)$$

$$= \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB} - 2\overrightarrow{AC}$$

$$= \frac{1}{2}\overrightarrow{AB} + (-\overrightarrow{AC})$$

$$= \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$$

2. Construction des points E et F

3. Montrons que B est le milieu de [EF].

$$\overrightarrow{BE} + \overrightarrow{BF} = \overrightarrow{BA} + \overrightarrow{AE} + \overrightarrow{BA} + \overrightarrow{AF}$$

$$= -2\overrightarrow{AB} + \frac{3}{2}\overrightarrow{AB} + \overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB} - \overrightarrow{AC}$$

$$= -2\overrightarrow{AB} + 2\overrightarrow{AB} + \overrightarrow{AC} - \overrightarrow{AC}$$

$$= \overrightarrow{0}$$

Donc B est le milieu de [EF].

Correction de l'exercice 6

On considère trois points non alignés E, F et G.

1. Construction de K:

2. Montrons que $\overrightarrow{GK}=2\overrightarrow{EF}$.

On a:
$$\overrightarrow{GK} = \overrightarrow{GE} + \overrightarrow{EK} = -\overrightarrow{EG} + (\overrightarrow{EG} + 2\overrightarrow{EF}) = 2\overrightarrow{EF}.$$

3. On peut conclure que les vecteurs \overrightarrow{GK} et \overrightarrow{EF} sont colinéaires.

Correction de l'exercice 7

Soit ABC un triangle.

1. Construction des points E et F :

2. Calculons \overrightarrow{EC} et \overrightarrow{FB} .

$$\overrightarrow{EC} = \overrightarrow{EA} + \overrightarrow{AC} = -\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC},$$

$$\overrightarrow{FB} = \overrightarrow{FA} + \overrightarrow{AB} = -3\overrightarrow{AC} + \overrightarrow{AB}.$$

On remarque que :

$$\overrightarrow{FB} = -3\left(-\frac{1}{3}\overrightarrow{AB} + \overrightarrow{AC}\right) = -3\overrightarrow{EC}.$$

Donc les vecteurs \overrightarrow{EC} et \overrightarrow{FB} sont colinéaires.