Planche 1.

Exercice 1. Étudier la suite de fonctions (f_n) définie par

$$f_n(x) = n^{\alpha} x (1 - x)^n$$

sur [0,1] avec un paramètre $\alpha \in \mathbb{R}$.

Exercice 2. Soit $f_n:[a,b]\to (E,||.||)$ des fonctions k-lipschitziennes avec $k\geq 0$. On suppose que f_n converge simplement vers f. Montrer que f est k-lipschitzienne et qu'il y a convergence uniforme sur [a,b].

Planche 2.

Exercice 1. Soit (f_n) une suite de fonctions de [a,b] qui converge uniformément vers $f:[a,b] \to \mathbb{R}$ continue. Soit (x_n) une suite de [a,b] qui converge vers x. Montrer que $f_n(x_n) \to f(x)$ lorsque $n \to +\infty$.

Exercice 2. Soit P_n une suite de fonctions polynomiales réelles qui converge uniformément sur \mathbb{R} vers f. Montrer que f est polynomiale.

Planche 3.

Exercice 1. Étudier la convergence sur [0,1] de la suite de fonctions (f_n) définie par

$$f_n(x) = e^{-nx} - (1-x)^n$$

Exercice 2. Soit $f_n:[0,1]\to\mathbb{R}$ une suite de fonctions décroissantes et continues telles que f_n converge simplement vers 0. Montrer qu'il y a convergence uniforme.