September 6

Welcome to MA721. The course starts w/ a brief excursion into the world of topological manifolds.

A topl manifold is, voughly, a topl space (herceforth just called "space") which looks like R", locally.

this is not a place where we can speak of derivatives, like in calculus, but its a step along the way.

Nort week, we will introduce the concept of a smooth sheether which will allow us to generalize all of those familiar ideas in colubs/anely 5.7.

First, hure is a rapid review of topology.	
A topl space is a set X equipped w/ a collection of open subsets s.t. i) \$\infty\$, X are open.	
2) Uux open of {ux} open. 3) Mu; open of {ux} open. i=1	2
· A function $f: X \rightarrow Y$ is continuous if $f^{-1}(u)$ is open for all open $u \in Y$.	
. A homeomorphism is a de subset YCX	

The subspace topology on a subset YCX
of a space I s.t. U C T open (=)

I U CX open s.t. U = U n Y.

Here one some forther ident from topology will use this week. (By "space" we will mean a topological space.)

We say a space 14 75:

Housdorff: if \forall $z \neq y \in M$ there one opens U, $V \subset M$ 5.t.

 $x \in U$, $y \in V$, $U \cap V = \emptyset$.

2) Seard countable: if I a countable topologral basis for M.

3) Locally Eucliden: if $\forall x \in M \ni G$ a ubd U of x s.t. $U \stackrel{\sim}{=} \hat{U}$.

me amophic

where is	7	an open subset û c R
for some	Λ.	be regire that n
		be the same for all xEM.

Dfn: A topological nanifold is a space Satisfying (D-3) above.

Perhaps the most important property is 3), let's unpach it. We say a coordinate chart at x E M is a pair

 $(U, \varphi: U \longrightarrow \mathbb{R}^n)$

where

. U \ni x is an open subset, containing the point x. • $\varphi: U \longrightarrow \mathbb{R}^n$ is a cts map s.t. $\varphi: U \xrightarrow{\cong} \varphi(u)$ is a homeomorphism. Thus (3) is equivalent to the existence of workingte dusts at every $x \in M$.

A coordrate durt grus local coordrates

{ xi? n white xi: U -> Pr on:

 $\varphi(p) = (x(p), ..., x(p)) \in \mathbb{R}^n$

Ex: R', and any open subset of R' 15 a top anifold.

 $\mathcal{E}_{\mathbf{X}}: \mathbf{S}^{n} = \left\{ \mathbf{x} \in \mathbb{R}^{n+1} \middle| \mathbf{1} \mathbf{x} \mathbf{1} = 1 \right\}$ is a

top monifold. Being a subspace of Rⁿ⁺¹ it is automatically Howsdorff and 2nd etble. We now construct coordinate drarts. Let

 $U^{\pm} = \left\{ \left(x' - x'' \right) \middle| x'' + 1 \right\}.$

and define the charts

$$\varphi^{\pm}: u^{\pm} \wedge S^{*} \longrightarrow \mathbb{R}^{*}$$

$$(x', x')$$
 \longrightarrow (x', x') .

* Check that the is a hamonorphism outo its image.

More examples.

Prop: If M, N are tope manifolds, then so is MxN.

Pf: Sps (P,q) E H x N, and let

q: U — R^m

7: V — P

be oorsonte durs fu M, N.

Thur $\varphi \times \psi : u \times v \longrightarrow \mathbb{R}^{n+m}$

is a coordinate door for $(p,q) \in M \times M$.

We want spend any were time in the will world of top? marifolds, and we now turn to Smooth shutres.

In colculus, we typically study functions

f: u -> R.

We say f is smooth if all partial derivatives orification R Yi,k.

exist and one ontroos

Given a top manifold H what does it mean for a fr f: M -> R

to be smooth? (Think about what set)

of preparties smoothness)

what should have Attempt: We know the admits a const by workinate duts. If $p \in H$, let $(U\ni p, \Phi)$ he a dust composition 404

is of the form we studied in columbs.

So, our Ifn of "smooth" would be to say that $f \circ \phi'$ is smooth for one coordinate duck (u, ϕ) .

Problem: Why is this independent of the chosen chart?

In general it is not! So we need some refinant of a covering by duts...

Let's give a precise definition. Spr M is a top? monifold and let

 $(U, \phi), (V, \psi)$ $U \cap V \neq \phi$

be don'ts. The transition map is the composition:

son $(U, \phi), (V, +)$ on homes no rphism snwoth diffeavoir prom. w/ smoothness rest confirme We will