2.
$$e^{2-i} = e^2 e^{-i} = e^2 (\cos 1 - i \sin 1)$$
.

- 3. $e^{3i\pi} = \cos 3\pi + i \sin 3\pi = -1$.
- 10. The characteristic equation is $r^2 + 4r + 5 = 0$, with roots $r = -2 \pm i$. Hence the general solution is $y = c_1 e^{-2t} \cos t + c_2 e^{-2t} \sin t$.
- 20. The characteristic equation is $r^2+1=0$, with roots $r=\pm i$. Hence the general solution is $y=c_1\cos t+c_2\sin t$. Its derivative is $y'=-c_1\sin t+c_2\cos t$. Based on the first condition, $y(\pi/3)=2$, we require that $c_1+\sqrt{3}\,c_2=4$. In order to satisfy the condition $y'(\pi/3)=-2$, we find that $-\sqrt{3}\,c_1+c_2=-4$. Solving these for the constants, $c_1=1+\sqrt{3}$ and $c_2=\sqrt{3}-1$. Hence the specific solution is a steady oscillation, given by $y(t)=(1+\sqrt{3})\cos t+(\sqrt{3}-1)\sin t$.

Math 204 HW#44

3.3.5.
$$2^{2-i} = e^{(2-i)\ln 2} = e^{2\ln 2} e^{-i\ln 2}$$

$$= e^{2\ln 2} \left(\cos(\ln 2) - i\sin(\ln 2)\right).$$

$$= 4\cos(\ln 2) - 4i\sin(\ln 2)$$

$$= 3.0770 - 2.558i$$

3.3.7.
$$y''-4y'+5y=0$$
.
 $r^2-4r+5=0$, $r_{1,2}=\frac{4+\sqrt{-4}}{2}=2\mp i$.
 $\Delta=16-20=-4$

3.3.11.
$$y'' + 6y' + 10y = 0$$
.
 $12 + 6r + 10 = 0$ > $r_{112} = -\frac{6 + \sqrt{-11}}{2} = -3 + i$
 $12 + 6r + 10 = 0$ > $r_{112} = -\frac{6 + \sqrt{-11}}{2} = -3 + i$
 $13 + 36 - 40 = -4$
 $13 + 36 - 40 = -4$
 $13 + 36 - 40 = -4$
 $13 + 36 - 40 = -4$
 $13 + 36 - 40 = -4$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3 + 60$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 - 40 = -3$
 $13 + 36 -$

3.3.14.
$$9y'' + 3y' - 2y = 0$$
.
 $y''' + \frac{1}{3}y' - \frac{2}{9}y = 0$
 $c^2 + \frac{1}{3}r - \frac{2}{9} = 0$
 $(r + \frac{1}{3})(r - \frac{1}{3}) = 0 \Rightarrow r_1 = \frac{1}{3}, r_2 = \frac{1}{3}$
 $\Rightarrow y(+) = c_1 e^{t/3} + c_2 e^{-\frac{1}{3}t}$

3.3. 18.
$$y'' + 4y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$
 $f^2 + 4x + 5y = 0$
 $A = 16 - 20$
 $= -4$

$$y(1) = c_1 e^{-2t} \cos t + c_2 e^{-2t} \sin t$$

$$y'(1) = -2c_1 e^{-2t} \cos t - c_1 e^{-2t} \sin t - 2c_2 e^{-2t} \sin t + \cos t c_2 e^{-2t}$$

$$y(0) = 1 = c_1 \cdot 1 \cdot 1 + c_2 \cdot 1 \cdot 0 = c_1 \implies c_1 = 1$$

$$y'(0) = 0 = -2c_1 + c_2 \implies c_2 = 2$$

$$y(1) = e^{-2t} \cos t + 2e^{-2t} \sin t$$

$$y(2) = c_1 + c_2 + c_2 \implies c_2 = 2$$

$$y(1) = e^{-2t} \cos t + 2e^{-2t} \sin t$$

$$y(2) = c_1 + c_2 + c_2 + c_3 + c_4 +$$

3.3.23.

b)
$$|\mu(t)| = 10 = 2e^{t/6} \cos |\sqrt{23}t| - \frac{2}{2\sqrt{3}} e^{t/6} \sin |\sqrt{\frac{123}{6}}t|$$

 $\rightarrow 4 = 10.7798$

3.3.25. y"+2y'+6y=0, y(0)=2, y'(0)=270.

a)
$$+2+2+6=0$$
 $\Gamma_{1,2}=-2+\sqrt{-20}=-1+\sqrt{5}$
 $\Delta=4-2u=-20$ $-t=-1=0$

>> y(t) = c1e+cos/5t)+c2e+sin/5t)

y'(t) = - c1 e + cos(sst) - c1 ve e + six (st) - c2 e + six (sst) + c2 ve e six (sst) + c2 ve e + six (sst) +

=> y (+) = 2et cos/ft + (x+2)et mi/ft.

c) y=0, t=?

0=2et cosift+ (x+1) et sinvit. => 2 +(x+1)/45)ton vit=0

ten(vii)=-215

t= {TT-orctor(215/2+2)}/vs