Math 542 HW7

Hongtao Zhang

1 Factorization of Cyclotomic Polynomials

Let l be a prime and let $\Phi_l(x) = \frac{x^l-1}{x-1} = x^{l-1} + x^{l-2} \dots + x + 1 \in \mathbb{Z}[x]$ be the l^{th} cyclotomic polynomial, which is irreduciable in $\mathbb{Z}[x]$. This exercise determines the factorization of $\Phi_{l(x)}$ modulo p for any prime p. Let ζ denote any fixed primitive l^{th} root of unity.

1.1

Show that $p = l \Rightarrow \Phi_l(x) = (x-1)^{l-1} \in \mathbb{F}_{l[x]}$

Solution 1.1.1

$$(x-1)^{l-1} = \sum_{i=0}^{l-1} {l-1 \choose i} x^i (-1)^{l-1-i}$$

Consider each binomial coefficient $\binom{l-1}{i}$ modulo l. Since l is prime, $(l-1)! \equiv -1 \mod n$.

$$\binom{l-1}{i} = \frac{(l-1)!}{(l-1-i)!i!}$$

$$\Leftrightarrow \binom{l-1}{i} (l-1-i)!i! \equiv (l-1)! \equiv -1 \bmod l \quad \text{(Wilson Theorem)}$$

$$\Leftrightarrow \binom{l-1}{i} \equiv -\frac{1}{(l-1-i)!i!} \bmod l$$

1.2

Suppose $p \neq l$ and let f denote the order of $p \mod l$, i.e. f is the smallest power of p with $p^f \equiv 1 \mod l$. Use the fact that $\mathbb{F}_{p^n}^{\times}$ is a cyclic group to show that n = f is the smallest power p^n of p with $\zeta \in \mathbb{F}_{p^n}$. Conclude that the minimal polynomial of ζ over \mathbb{F}_p has degree f.

Solution 1.2.1

Since $\mathbb{F}_{p^n}^{\times}$ is a cyclic group, and ζ is a l-th primitive root of unity, for ζ to be in \mathbb{F}_p^n , we must have some element that has order l. Therefore n=f is the smallest power of p^n of p with $\zeta \in \mathbb{F}_p^n$ by construction.

Solution 1.2.2

Because we have the minimum extension of ζ to be in \mathbb{F}_p^n , which is a degree n extension, the minimal polynomial of ζ over \mathbb{F}_p has degree n=f.

1.3

Show that $\mathbb{F}_p(\zeta) = \mathbb{F}_p(\zeta^a)$ for any integer a not divisible by l. [Hint:]

Solution 1.3.1

One direction, it suffices to check that ζ^a can be generated by ζ , which is obvious.

The other direction suffices to check that ζ can be generated by ζ^a , which follows from the hint that $\zeta = (\zeta^a)^b$ where b is the multiplicative inverse of $a \mod l$.

Conclude using (Section 1.2) that, in $\mathbb{F}_p[x]$, $\Phi_l(x)$ is the product of $\frac{l-1}{f}$ distinct irreducible polynomials of degree f.

Solution 1.3.2

Since all primitive roots of unity have f-degree minimal polynomial, and all other roots of unity are generated by primitive roots of unity, we have that $\Phi_{l(x)}$ is the product of $\frac{l-1}{f}$ distinct irreducible polynomials of degree f.

1.4

In particular, prove that, viewed in $\mathbb{F}_p[x]$, $\Phi_7(x) = x^6 + x^5 + ... + x + 1$ is $(x-1)^6$ for p = 7, a product of distint linear factor for $p \equiv 1 \bmod 7$, a product of 3 irreducible quadratics for $p \equiv 6 \bmod 7$, a product of 2 irreducible cubics for $p \equiv 2, 4 \bmod 7$, and is irreducible for $p \equiv 3, 5 \bmod 7$.

Solution 1.4.1

2

2.1

Let φ denote the Frobenius map $x\mapsto x^p$ on the finite field \mathbb{F}_p^n as in the previous exercise. Determine the rational canonical form over \mathbb{F}_p for φ considered as an \mathbb{F}_p -linear transformation of the n-dimensional \mathbb{F}_p -vector space \mathbb{F}_p^n .

Solution 2.1.1

2.2

Let φ denote the Frobenius map $x\mapsto x^p$ on the finite field \mathbb{F}_p^n as in the previous exercise. Determine the Jordan canonical form (over a field containing all the eigenvalues) for φ considered as an \mathbb{F}_p -linear transformation of the n-dimensional \mathbb{F}_p -vector space \mathbb{F}_p^n .

3 Wedderburn's Theorem on Finite Division Rings

The exercise outline a proof of Wedderburn's Theorem that a finite division ring D is a field.

3.1

Let Z denote the center of D. Prove that Z is a field containing \mathbb{F}_p for some prime p. If $Z = \mathbb{F}_q$ prove that D has order q^n for some integer n.

Solution 3.1.1

Because we know that the center of D is finite and commutative, and thus is a finite field. Further, we know that any finite field containing some \mathbb{F}_p for some prime p.

We can view D as additive group, and thus Z is the center of D so the order of D divides

We can view D as additive group, and thus Z is the center of D, so the order of D divides the order of Z.

3.2

The nonzero elements D^{\times} of D form a multiplicative group. For any $x \in D^{\times}$ shows that the elements of D which commute with x form a division ring which contains Z. Show that this division ring is of order q^m for some integer m and that m < n if x is not an element of Z.

Solution 3.2.1

Since Z is the center, so all elements of D^{\times} commutex with Z and thus form a division ring contains Z.

3.3

Show that the class equation for the group D^{\times} is

$$q^n - 1 = (q-1) + \sum_{i=1}^r \frac{q^n - 1}{|C_D^\times(x_i)|}$$

where x_i are representatives of the distinct conjugacy classes in D^{\times} not contained in the center of D^{\times} . Conclude that for each i, $|C_D^{\times}(x_i)| = q^{m_i} - 1$ for some $m_i < n$.

3

3.4

Prove that since $\frac{q^n-1}{q_i^m=1}=|D^\times:C_D^\times(x_i)|$ is an integer then m_i divides n. Conclude that $\Phi_n(x)$ divides $\frac{x^n-1}{x^{m_i-1}}$ and hence that the integer $\Phi_n(q)$ divides $\frac{q^n-1}{q^{m_i-1}}$ for i=1,2,...,r.

3.5

Prove that $\Phi_n(q)=\prod_{\zeta \text{ primitive}}(q-\zeta)$ divides q-1. Prove that $|q-\zeta|>q-1$ (complex absolute value) for any root of unity $\zeta \neq 1$. [note that 1 is the closest point on the unit circle in $\mathbb C$ to the point q on the real line]

Conclude that $n = 1 \Leftrightarrow D = Z$.

4 Dirichlet's Theorem

4.1

Given any monic polynomial $P(x) \in \mathbb{Z}[x]$ of degree at least one show that there are infinitely many distinct prime divisors of the integers

$$P(1), P(2), P(3), \ldots, P(n), \ldots$$

[Suppose $p_1, p_2, ..., p_k$ are the only primes dividing the values P(n), n = 1, 2, ... Let N be an integer with $P(N) = a \neq 0$. Show that $Q(x) = a^{-1}P(N+a p_1p_2...p_k x)$ is an element of $\mathbb{Z}[x]$ and that $Q(n) \equiv 1 \pmod{p_1p_2...p_k}$ for n = 1, 2, ... Conclude that there is some integer M such that Q(M) has a prime factor different from $p_1, p_2, ..., p_k$ and hence that $P(N+ap_1p_2...p_k M)$ has a prime factor different from $p_1, p_2, ..., p_k$.

Suppose $p_1, p_2, ..., p_k$ are the only primes the dividing values P(n).

Consider a integer N such that $P(N)=a\neq 0$. Consider the polynomial $Q(x)=a^{-1}P(N+ap_1p_2...p_kx).$

Lemma 4.1.1

$$Q(x) \in \mathbb{Z}[x]$$

Proof: Since P is a polynomial, we can write $P=b_1x^n+b_2x^{n-1}+...b_{n+1}$. Then consider $P(N+ap_1p_2...p_kx)$, by binomial theorem we have each terms being writeen as some product of N and $ap_1p_2...p_kx$. Any term involving the second part is certainly divisible by a, and the grouping of term that only contains N is equal to P(N), and by assumption, is divisible by a since P(N)=a. Therefore $Q(x)\in\mathbb{Z}[x]$.

Lemma 4.1.2

$$Q(n) = 1$$

Proof: We can show the following by a similar construction as above:

$$Q(n) = \frac{P(N + nap_1p_2...p_k)}{a} \equiv \frac{P(N)}{a} \equiv 1 \pmod{p_1p_2...p_k}$$

4.2

Let p be an odd prime not dividing m and let $\Phi_m(x)$ be the m^{th} cyclotomic polynomial. Suppose $a \in \mathbb{Z}$ satisfies $\Phi_m(a) \equiv 0 \pmod{p}$. Prove that a is relatively prime to p and that the order of a in $(\mathbb{Z}/p\mathbb{Z})^{\times}$ is precisely m. [Since

$$x^{m} - 1 = \prod_{d \mid m} \Phi_{d}(x) = \Phi_{m}(x) \prod_{\substack{d \mid m \\ d < m}} \Phi_{d}(x)$$

we see first that $a^m - 1 \equiv 0 \pmod{p}$ i.e., $a^m \equiv 1 \pmod{p}$. If the order of $a \mod p$ were less than m, then $a^d \equiv 1 \pmod{p}$ for some d dividing m, so then $\Phi_d(a) \equiv 0 \pmod{p}$ for some d < m. But then $x^m - 1$ would have a as a multiple root mod p, a contradiction.]

4.3

Let $a \in \mathbb{Z}$. Show that if p is an odd prime dividingg $\Phi_m(a)$ then either p divides m or $p \equiv 1 \mod m$.

4.4

Prove there are infinitely many primes p with $p \equiv 1 \mod m$.