Journal Club

Tue Herlau

Technical University of Denmark

herlau@stanford.edu

Fixing the stimulus-as-fixed-effect fallacy in task fMRI

[version 2; referees: 1 approved, 2 approved with reservations]

Jacob Westfall^{1*}, Thomas E. Nichols ¹ ², Tal Yarkoni^{1*}

¹Department of Psychology, University of Texas, Austin, USA

²Department of Statistics & WMG, University of Warwick, Coventry, UK

Fixing the stimulus-as-fixed-effect fallacy in task fMRI [version 2; referees: 1 approved, 2 approved with reservations]

Jacob Westfall^{1*}, Thomas E. Nichols ¹ ², Tal Yarkoni^{1*}

How 'recycling' stimuli may lead to statistical problems

¹Department of Psychology, University of Texas, Austin, USA

²Department of Statistics & WMG, University of Warwick, Coventry, UK

Fixing the stimulus-as-fixed-effect fallacy in task fMRI [version 2; referees: 1 approved, 2 approved with reservations]

Jacob Westfall^{1*}, Thomas E. Nichols ¹ ², Tal Yarkoni^{1*}

- How 'recycling' stimuli may lead to statistical problems
- ▶ That these problems are to be taken serious

¹Department of Psychology, University of Texas, Austin, USA

²Department of Statistics & WMG, University of Warwick, Coventry, UK

Fixing the stimulus-as-fixed-effect fallacy in task fMRI [version 2; referees: 1 approved, 2 approved with reservations]

Jacob Westfall^{1*}. Thomas E. Nichols ¹⁰ ². Tal Yarkoni^{1*}

- How 'recycling' stimuli may lead to statistical problems
- ▶ That these problems are to be taken serious
- ▶ A statistical model (RSM) that accounts for of these problems

¹Department of Psychology, University of Texas, Austin, USA

²Department of Statistics & WMG, University of Warwick, Coventry, UK

▶ Do people in Mountain View or Palo Alto throw longest?

- ▶ Do people in Mountain View or Palo Alto throw longest?
- Method 1: Get 300 people from MV and 300 from PA. Let them throw balls and do hypothesis testing on the n = 600 throws $(H_0 : A = B)$

- ▶ Do people in Mountain View or Palo Alto throw longest?
- Method 1: Get 300 people from MV and 300 from PA. Let them throw balls and do hypothesis testing on the n = 600 throws $(H_0 : A = B)$
- Method 2: Get 3 people from MV (Jack, Julia, Pete) and 3 from PA (Mary, Sue, Bob). Let them throw balls 100 times each and do hypothesis testing on the n = 600 throws (H₀: A = B)

▶ Method 1: People in MV and PA have different throwing range

- ▶ Method 1: People in MV and PA have different throwing range
- ▶ Method 2: (Jack, Julie, Pete) has different throwing range than (Marie, Sue, Bob).

- ▶ Method 1: People in MV and PA have different throwing range
- ► Method 2: (Jack, Julie, Pete) has different throwing range than (Marie, Sue, Bob).
- Normally we are interested in the first form of conclusion

- ▶ Method 1: People in MV and PA have different throwing range
- ► Method 2: (Jack, Julie, Pete) has different throwing range than (Marie, Sue, Bob).
- Normally we are interested in the first form of conclusion
- Second conclusion always true(!)

- ▶ Method 1: People in MV and PA have different throwing range
- ▶ Method 2: (Jack, Julie, Pete) has different throwing range than (Marie, Sue, Bob).
- ▶ Normally we are interested in the first form of conclusion
- Second conclusion always true(!)
- ▶ Important not to examine method 2 and conclude as method 1

▶ Do voxel 117 respond differently to angry vs. fearful faces?

- ▶ Do voxel 117 respond differently to angry vs. fearful faces?
- Method 1: Get 300 images of angry faces and 300 fearful faces. Show faces ONCE to available S subjects. Do statistics on 600S exposures

- ▶ Do voxel 117 respond differently to angry vs. fearful faces?
- ▶ Method 1: Get 300 images of angry faces and 300 fearful faces. Show faces ONCE to available *S* subjects. Do statistics on 600*S* exposures
- ▶ Method 1: Get 3 images of angry faces and 3 of fearful faces. Show each face 100 times to available *S* subjects. Do statistics on 600*S* exposures

- ▶ Do voxel 117 respond differently to angry vs. fearful faces?
- ▶ Method 1: Get 300 images of angry faces and 300 fearful faces. Show faces ONCE to available S subjects. Do statistics on 600S exposures
- ▶ Method 1: Get 3 images of angry faces and 3 of fearful faces. Show each face 100 times to available *S* subjects. Do statistics on 600*S* exposures
- \triangleright Rejecting H_0 (same response) lead us to conclude:

- ▶ Do voxel 117 respond differently to angry vs. fearful faces?
- ▶ Method 1: Get 300 images of angry faces and 300 fearful faces. Show faces ONCE to available S subjects. Do statistics on 600S exposures
- ▶ Method 1: Get 3 images of angry faces and 3 of fearful faces. Show each face 100 times to available *S* subjects. Do statistics on 600*S* exposures
- \triangleright Rejecting H_0 (same response) lead us to conclude:
- ► Case 1: Voxel 117 show differentiated activity to angry / fearful faces

- ▶ Do voxel 117 respond differently to angry vs. fearful faces?
- ▶ Method 1: Get 300 images of angry faces and 300 fearful faces. Show faces ONCE to available *S* subjects. Do statistics on 600*S* exposures
- ▶ Method 1: Get 3 images of angry faces and 3 of fearful faces. Show each face 100 times to available *S* subjects. Do statistics on 600*S* exposures
- \triangleright Rejecting H_0 (same response) lead us to conclude:
- ► Case 1: Voxel 117 show differentiated activity to angry / fearful faces
- Case 2: Voxel 117 show differential activity to (angry.png1, angry.png2, angry.png3) vs. (fear.png1, fear.png2, fear.png3)

- ▶ Do voxel 117 respond differently to angry vs. fearful faces?
- ▶ Method 1: Get 300 images of angry faces and 300 fearful faces. Show faces ONCE to available S subjects. Do statistics on 600S exposures
- ▶ Method 1: Get 3 images of angry faces and 3 of fearful faces. Show each face 100 times to available *S* subjects. Do statistics on 600*S* exposures
- \triangleright Rejecting H_0 (same response) lead us to conclude:
- ► Case 1: Voxel 117 show differentiated activity to angry / fearful faces
- Case 2: Voxel 117 show differential activity to (angry.png1, angry.png2, angry.png3) vs. (fear.png1, fear.png2, fear.png3)
- ► As for throwing, under mild assumptions Case 2 will be trivially true, but it is not interesting

▶ Is this a real problem?

- ▶ Is this a real problem?
- A: Yes

We ultimately found that 63/100 of the experiments (...) published test statistics for these experiments [that] are likely inflated (...)

▶ Is the effect significant?

- ► Is the effect significant?
- ► Artificial data analyzed with SPM (false positive rate of test)

					_	
		alpha = .05	alpha = .01	alpha = .005	alpha = .001	EDN
16	16	0.344	0.190	0.148	0.082	1 TR
	32	0.274	0.150	0.106	0.046	
	64	0.208	0.104	0.080	0.030	
32	16	0.478	0.316	0.270	0.200	
	32	0.438	0.322	0.262	0.170	
	64	0.290	0.186	0.148	0.080	
64	16	0.642	0.548	0.514	0.410	
	32	0.568	0.442	0.400	0.310	Bad news bears!
	64	0.452	0.298	0.254	0.184	
1	1				ノ	
Su		Numb ects	er of di	fferent	stimuli	

- ► Is the effect significant?
- ▶ HPC amygdala response to shapes, anger and fear faces

▶ Don't recycle stimuli

- ► Don't recycle stimuli
- ► Frame generalizations narrowly (i.e. "the set of stimuli considered from image database X") rather than the entire class the stimuli represents (i.e. "sad and angry faces").

- Don't recycle stimuli
- ► Frame generalizations narrowly (i.e. "the set of stimuli considered from image database X") rather than the entire class the stimuli represents (i.e. "sad and angry faces").
- ► Extend GLM to get around this problem

Basic GLM:
$$\mu_{it} = \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit}$$

 Y_{it} is observed BOLD for subject i at time t, k is experimental condition (i.e. angry, fearful) and X_{kit} is the (canonical) response for stimuli k obtained as

$$X_{kit} = \sum_{j \text{ image in condition } k} x_{ij}$$

Basic GLM:
$$\mu_{it} = \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit}$$

 Y_{it} is observed BOLD for subject i at time t, k is experimental condition (i.e. angry, fearful) and X_{kit} is the (canonical) response for stimuli k obtained as

$$X_{kit} = \sum_{j \text{ image in condition } k} x_{ijt}$$

▶ Why do we need the subject-specific p_{ki} values?

Basic GLM:
$$\mu_{it} = \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit}$$

 Y_{it} is observed BOLD for subject i at time t, k is experimental condition (i.e. angry, fearful) and X_{kit} is the (canonical) response for stimuli k obtained as

$$X_{kit} = \sum_{j \text{ image in condition } k} x_{ijt}$$

- ▶ Why do we need the subject-specific p_{ki} values?
- ▶ Ensures outliers $(p_{k,37} \gg 0)$ not affect estimate of β_k thereby inducing false positives

Basic GLM:
$$\mu_{it} = \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit}$$

 Y_{it} is observed BOLD for subject i at time t, k is experimental condition (i.e. angry, fearful) and X_{kit} is the (canonical) response for stimuli k obtained as

$$X_{kit} = \sum_{j \text{ image in condition } k} x_{ijt}$$

- ▶ Why do we need the subject-specific p_{ki} values?
- ▶ Ensures outliers $(p_{k,37} \gg 0)$ not affect estimate of β_k thereby inducing false positives
- Bayesian perspective: Model subject-specific effects if they are (plausibly) present

▶ If we assume stimuli *j* (as presented to subject *i*) has a stimuli-specific effect (i.e. an extra-angry face, extra-hard math problem, etc.)

▶ If we assume stimuli *j* (as presented to subject *i*) has a stimuli-specific effect (i.e. an extra-angry face, extra-hard math problem, etc.)

Proposed GLM:
$$\mu_{it} = \beta_0 + \sum_{k=1}^K (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^J s_j x_{ijt}$$

▶ If we assume stimuli *j* (as presented to subject *i*) has a stimuli-specific effect (i.e. an extra-angry face, extra-hard math problem, etc.)

Proposed GLM:
$$\mu_{it} = \beta_0 + \sum_{k=1}^K (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^J s_j x_{ijt}$$

▶ If this feature *is* present in data, and our model *does not* capture it, the model will more often find spurious results (false positives, bad estimates, etc.)

▶ Full model specification: $Y_{it} \sim \mathcal{N}(\mu_{it}, \sigma_Y)$ where

$$\begin{split} \mu_{it} &= \alpha_1 Y_{i,t-1} + \alpha_2 Y_{i,t-2} + \beta_0 + \sum_{k=1}^K (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^J s_j x_{ijt} \\ \beta_k &\sim \mathcal{N}(0, 10^6), \quad p_{ki} \sim \mathcal{N}(0, \sigma_k), \quad s_j \sim \mathcal{N}(0, \sigma_s) \\ \sigma_k, \sigma_s, \sigma_Y &\sim \text{Cauchy}^+(10), \quad \alpha_1, \alpha_2 \sim \text{Cauchy}(0, 1) \end{split}$$

▶ Full model specification: $Y_{it} \sim \mathcal{N}(\mu_{it}, \sigma_Y)$ where

$$\begin{split} \mu_{it} &= \alpha_1 Y_{i,t-1} + \alpha_2 Y_{i,t-2} + \beta_0 + \sum_{k=1}^K (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^J s_j x_{ijt} \\ \beta_k &\sim \mathcal{N}(0, 10^6), \quad p_{ki} \sim \mathcal{N}(0, \sigma_k), \quad s_j \sim \mathcal{N}(0, \sigma_s) \\ \sigma_k, \sigma_s, \sigma_Y &\sim \operatorname{Cauchy}^+(10), \quad \alpha_1, \alpha_2 \sim \operatorname{Cauchy}(0, 1) \end{split}$$

"This model cannot be fit using standard mixed modeling statistical packages, such as Ime4 in R or SAS PROC MIXED (...) For the models in this paper, we used the PyMC3 Python package, which is built on the Theano deep learning package and implements the state-of-the-art No U-Turn MCMC Sampler" ▶ If we generate $z \sim \mathcal{G}(\alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2})$, $x \sim \mathcal{N}(0, \sigma^{-2} = z)$ then:

$$x \sim \text{Cauchy}(0, \sigma)$$

▶ If we generate $z \sim \mathcal{G}(\alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2})$, $x \sim \mathcal{N}(0, \sigma^{-2} = z)$ then:

$$x \sim \text{Cauchy}(0, \sigma)$$

► Therefore, we can replace all the Cauchy distributions with Cauchy(x; 0, σ) = $\int \mathcal{N}(x; 0, \sigma^{-2} = z) \mathcal{G}(z; \alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2}) dz$

If we generate $z \sim \mathcal{G}(\alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2})$, $x \sim \mathcal{N}(0, \sigma^{-2} = z)$ then: $x \sim \text{Cauchy}(0, \sigma)$

► Therefore, we can replace all the Cauchy distributions with Cauchy(
$$x$$
; 0, σ) = $\int \mathcal{N}(x; 0, \sigma^{-2} = z) \mathcal{G}(z; \alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2}) dz$

► For our model

$$\mu_{it} = \alpha_1 Y_{i,t-1} + \alpha_2 Y_{i,t-2} + \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^{J} s_j x_{ijt}$$

we collect all parameters $\boldsymbol{\theta} = \begin{bmatrix} \alpha_1 & \alpha_2 & \beta_0 & \beta_k & \cdots \end{bmatrix}^T$

If we generate $z \sim \mathcal{G}(\alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2})$, $x \sim \mathcal{N}(0, \sigma^{-2} = z)$ then: $x \sim \text{Cauchy}(0, \sigma)$

► Therefore, we can replace all the Cauchy distributions with Cauchy(
$$x$$
; 0, σ) = $\int \mathcal{N}(x; 0, \sigma^{-2} = z) \mathcal{G}(z; \alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2}) dz$

► For our model

$$\mu_{it} = \alpha_1 Y_{i,t-1} + \alpha_2 Y_{i,t-2} + \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^{J} s_j x_{ijt}$$

we collect all parameters $\boldsymbol{\theta} = \begin{bmatrix} \alpha_1 & \alpha_2 & \beta_0 & \beta_k & \cdots \end{bmatrix}^T$

ightharpoonup (i) the prior distribution of heta is a multivariate normal

If we generate $z \sim \mathcal{G}(\alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2})$, $x \sim \mathcal{N}(0, \sigma^{-2} = z)$ then: $x \sim \text{Cauchy}(0, \sigma)$

- ► Therefore, we can replace all the Cauchy distributions with Cauchy(x; 0, σ) = $\int \mathcal{N}(x; 0, \sigma^{-2} = z) \mathcal{G}(z; \alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2}) dz$
- For our model

$$\mu_{it} = \alpha_1 Y_{i,t-1} + \alpha_2 Y_{i,t-2} + \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^{J} s_j x_{ijt}$$

we collect all parameters $\boldsymbol{\theta} = \begin{bmatrix} \alpha_1 & \alpha_2 & \beta_0 & \beta_k & \cdots \end{bmatrix}^T$

- ightharpoonup (i) the prior distribution of heta is a multivariate normal
- \blacktriangleright (ii) θ enters linearly in the likelihood

▶ If we generate $z \sim \mathcal{G}(\alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2})$, $x \sim \mathcal{N}(0, \sigma^{-2} = z)$ then:

$$x \sim \text{Cauchy}(0, \sigma)$$

- ► Therefore, we can replace all the Cauchy distributions with Cauchy(x; 0, σ) = $\int \mathcal{N}(x; 0, \sigma^{-2} = z) \mathcal{G}(z; \alpha = \frac{1}{2}, \beta = \frac{\sigma^2}{2}) dz$
- For our model

$$\mu_{it} = \alpha_1 Y_{i,t-1} + \alpha_2 Y_{i,t-2} + \beta_0 + \sum_{k=1}^{K} (\beta_k + p_{ki}) X_{kit} + \sum_{j=1}^{J} s_j x_{ijt}$$

we collect all parameters $\boldsymbol{\theta} = \begin{bmatrix} \alpha_1 & \alpha_2 & \beta_0 & \beta_k & \cdots \end{bmatrix}^T$

- ightharpoonup (i) the prior distribution of heta is a multivariate normal
- \blacktriangleright (ii) θ enters linearly in the likelihood
- \triangleright (iii) conditional on θ , all other parameters become independent

▶ We can easily derive the marginal of θ . Let's for simplicity just focus on the marginal of s_j . It can be found by noting $\mu_{it} = \{\text{other terms}\} + \sum_{i=1}^{J} s_j x_{ijt}$ or:

$$\mu = \{ \mathsf{other terms} \} + \sum_{i=1}^N oldsymbol{e}_i oldsymbol{s}^T oldsymbol{x}_{i,\cdot,\cdot}$$

• We can easily derive the marginal of θ . Let's for simplicity just focus on the marginal of s_j . It can be found by noting $\mu_{it} = \{\text{other terms}\} + \sum_{j=1}^{J} s_j x_{ijt}$ or:

$$\mu = \{ \mathsf{other terms} \} + \sum_{i=1}^N oldsymbol{e}_i oldsymbol{s}^T oldsymbol{x}_{i,\cdot,\cdot}$$

▶ This means that

$$\begin{aligned} \operatorname{vec}(\boldsymbol{\mu}) &= \operatorname{vec}(\sum_{i=1}^{N} \boldsymbol{e}_{i} \boldsymbol{s}^{T} \boldsymbol{x}_{i,\cdot,\cdot}) = \sum_{i=1}^{N} \operatorname{vec}(\boldsymbol{e}_{i} \boldsymbol{s}^{T} \boldsymbol{x}_{i,\cdot,\cdot}) \\ &= \sum_{i} (\boldsymbol{x}_{i,\cdot,\cdot} \otimes \boldsymbol{e}_{i}) \operatorname{vec}(\boldsymbol{s}^{T}) = \left[\sum_{i} (\boldsymbol{x}_{i,\cdot,\cdot} \otimes \boldsymbol{e}_{i}) \right] \boldsymbol{s} \end{aligned}$$

▶ We can easily derive the marginal of θ . Let's for simplicity just focus on the marginal of s_j . It can be found by noting $\mu_{it} = \{\text{other terms}\} + \sum_{i=1}^{J} s_j x_{ijt} \text{ or:}$

$$\mu = \{ \mathsf{other terms} \} + \sum_{i=1}^N oldsymbol{e}_i oldsymbol{s}^T oldsymbol{x}_{i,\cdot,\cdot}$$

▶ This means that

$$egin{aligned} \operatorname{vec}(oldsymbol{\mu}) &= \operatorname{vec}(\sum_{i=1}^N oldsymbol{e}_i oldsymbol{s}^T oldsymbol{x}_{i,\cdot,\cdot}) = \sum_{i=1}^N \operatorname{vec}(oldsymbol{e}_i oldsymbol{s}^T oldsymbol{x}_{i,\cdot,\cdot}) \ &= \sum_i (oldsymbol{x}_{i,\cdot,\cdot} \otimes oldsymbol{e}_i) \operatorname{vec}(oldsymbol{s}^T) = \left[\sum_i (oldsymbol{x}_{i,\cdot,\cdot} \otimes oldsymbol{e}_i) \right] oldsymbol{s} \end{aligned}$$

Therefore

$$\operatorname{vec}(\boldsymbol{\mu}) = \boldsymbol{\hat{X}}\boldsymbol{\theta} \Rightarrow \operatorname{vec}(\boldsymbol{Y} - \boldsymbol{\mu}) \sim \mathcal{N}(\operatorname{vec}(\boldsymbol{Y}) - \boldsymbol{\hat{X}}\boldsymbol{\theta}, \sigma_{\boldsymbol{Y}})$$

From which the posterior of $oldsymbol{ heta}$ as a multivariate normal trivially follows

$$p(\cdots, \sigma_Y, \cdots) = \{\text{Other stuff}\} \times \prod_{i,t} \mathcal{N}(Y_{it}|\mu_{it}, \sigma_Y) \mathcal{N}(\sigma_Y; 0, \tau)$$

$$p(\cdots,\sigma_Y,\cdots) = \{\text{Other stuff}\} \times \prod_{i,t} \mathcal{N}(Y_{it}|\mu_{it},\sigma_Y) \mathcal{N}(\sigma_Y;0,\tau)$$

▶ Writing out this expression we see σ_Y enters as:

$$p(\cdots,\sigma_Y,\cdots)\propto\sigma_Y^q e^{-a\sigma_Y^2-\frac{b}{\sigma_Y^2}}$$

$$p(\cdots, \sigma_Y, \cdots) = \{\text{Other stuff}\} \times \prod_{i,t} \mathcal{N}(Y_{it}|\mu_{it}, \sigma_Y) \mathcal{N}(\sigma_Y; 0, \tau)$$

▶ Writing out this expression we see σ_Y enters as:

$$p(\cdots,\sigma_Y,\cdots)\propto\sigma_Y^q e^{-a\sigma_Y^2-\frac{b}{\sigma_Y^2}}$$

(Generalized Inverse Gaussian (GiG) distribution)

► MCMC sampling procedure:

$$p(\cdots, \sigma_Y, \cdots) = \{\text{Other stuff}\} \times \prod_{i,t} \mathcal{N}(Y_{it}|\mu_{it}, \sigma_Y) \mathcal{N}(\sigma_Y; 0, \tau)$$

▶ Writing out this expression we see σ_Y enters as:

$$p(\cdots,\sigma_Y,\cdots)\propto\sigma_Y^q e^{-a\sigma_Y^2-\frac{b}{\sigma_Y^2}}$$

- ► MCMC sampling procedure:
 - ightharpoonup Sample heta from a single, multivariate normal distribution

$$p(\cdots, \sigma_Y, \cdots) = \{\text{Other stuff}\} \times \prod_{i,t} \mathcal{N}(Y_{it}|\mu_{it}, \sigma_Y) \mathcal{N}(\sigma_Y; 0, \tau)$$

▶ Writing out this expression we see σ_Y enters as:

$$p(\cdots,\sigma_Y,\cdots)\propto\sigma_Y^q e^{-a\sigma_Y^2-\frac{b}{\sigma_Y^2}}$$

- MCMC sampling procedure:
 - ightharpoonup Sample heta from a single, multivariate normal distribution
 - ▶ Sample variances $(\sigma_Y, \sigma_s, \sigma_k)$ from GiG distributions

$$p(\cdots, \sigma_Y, \cdots) = \{\text{Other stuff}\} \times \prod_{i,t} \mathcal{N}(Y_{it}|\mu_{it}, \sigma_Y) \mathcal{N}(\sigma_Y; 0, \tau)$$

▶ Writing out this expression we see σ_Y enters as:

$$p(\cdots,\sigma_Y,\cdots)\propto\sigma_Y^q e^{-a\sigma_Y^2-\frac{b}{\sigma_Y^2}}$$

- MCMC sampling procedure:
 - ightharpoonup Sample heta from a single, multivariate normal distribution
 - ▶ Sample variances $(\sigma_Y, \sigma_s, \sigma_k)$ from GiG distributions
 - Sample the latent parameters $(z_Y, z_s, z_k, ...)$ from their marginals (Gamma)

▶ When designing experiments, don't recycle stimuli

- ▶ When designing experiments, don't recycle stimuli
- ▶ If stimuli from the same class *cannot* be assumed to induce similar response, use a model which captures this feature to avoid many false positives

- ▶ When designing experiments, don't recycle stimuli
- If stimuli from the same class cannot be assumed to induce similar response, use a model which captures this feature to avoid many false positives
- Get code from citron.stanford.edu at: /mnt/mapricot/musk2/home/herlau/shared/bayes_rsm/