ESERCIZIO 1 (tratto dal tema d'esame del 9/9/05)

Ad un trasformatore monofase di potenza nominale $A_n = 70~kVA$ e rapporto di trasformazione $K = V_{1n} / V_{20} = 500~V / 10000~V$, $f_n = 50Hz$ a è connesso un carico che assorbe a $V_2 = 8000~V$, $I_2 = 5A$ a cos $\phi_2 = 0.8$. La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: $P_{cc\%} = 5\%$, $\cos \varphi_{cc} = 0.5$

Prova a vuoto: $P_{o\%} = 0.4\%$, $\cos \varphi_o = 0.2$

Si determinino:

1) Tensione di alimentazione V_1 e la corrente I_1 del trasformatore e il $\cos \phi 1$

[Si procede utilizzando il metodo di Boucherot partendo dal carico e risalendo fino lato primario. La potenza attiva e reattiva assorbite dal carico sono pari a P2=V2*I2*cos\phi2= 32 kW e Q2=P2*tan\phi2=24 kVar. I parametri serie si calcolano a partire dai risultati della prova in corto circuito: Pcc=(pcc%/100)*An=3.5 kW, da cui si ricava $Rc=Pcc/I2n^2=71.429$ Ω , dove I2n=An/V20=7 A, $Xc=Rc*tan\phi c=123.72$ Ω . Chiamando sezione B la sezione che comprende l'impedenza serie Rc-Xc, si ottiene $Pb=P2+Rc*I2^2=33.79 \text{ kW e } Qb=Q2+XcI2^2=27.09 \text{ kVar. La}$ tensione Vb è pari a Vb= $(\sqrt{(Pb^2+Qb^2)})/I2=8.66$ kV. Chiamando k il rapporto di trasformazione (V1n/V20)= 0.05, si ha che la tensione Vb riportata al primario del trasformatore è pari a Vb'=Vb*k=433.07 V. E' or a necessario ricavare i parametri derivati: Po=(Po%/100)*An=280 W, $Qo = Po*tan \phi 0 = 1.372 \text{ kVar, da cui si ricava } Xo = V1n^2/Qo = 182.254 \Omega \text{ e } Ro = V1n^2/Po = 892.85 \Omega.$ Chiamando A la sezione primaria del trasformatore si ottiene Pa=Pb+Vb²/Ro= 34 kW e $Ia = (\sqrt{(Pa^2 + Qa^2)})/Vb' = 101.87$ $Qa=Qb+Vb^{2}/Xo=$ kVar Va=Vb', $cos \phi a = Pa/(Vb'*Ia) = 0.771$

ESERCIZIO 2(tratto dal tema d'esame del 8/2/05)

Un trasformatore monofase di potenza nominale $A_n=240~kVA$ e rapporto di trasformazione $K=V_{1n}$ / $V_{20}=2000~V$ / 5000~V, $f_n=50$ Hz è connesso un carico sul secondario che assorbe una corrente pari alla nominale e ha una tensione $V_2=3000~V$ a cos $\phi_2=0.8$ in ritardo (carico ohmico-induttivo). La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: $v_{cc\%} = 3 \%$, $p_{cc\%} = 1.8 \%$

Prova a vuoto: $I_{o\%} = 1\%$, $\cos \varphi_o = 0.2$

Si determinino la tensione primaria V_1 , la corrente I_1 assorbita e il cos ϕ_1 .

[Si procede utilizzando il metodo di Boucherot partendo dal carico e risalendo fino lato primario. La potenza attiva e reattiva assorbite dal carico sono pari a $P2=V2*I2n*cos\phi2=11.52~kW$ e $Q2=P2*tan\phi2=86.4~kVar$, dove I2n=An/V20=48~A. Poiche' il trasformatore lavora a corrente nominale non è necessario calcolare i parametri serie ma è sufficiente calcolare la potenza attiva e reattiva di corto circuito. Dai risultati della prova in corto circuito: Pcc=(pcc%/100)*An=4.32~kW, $Qcc=Pcc*tan\phic=5.76~kVar$, dove per calcolare $tan\phic$ si procede nel seguente modo: si calcola $Vc2=(vc\%/100)*V20=150~V~e~cos\phic=Pcc/(Vc*I2n)=0.6$. Chiamando sezione B la sezione che comprende l'impedenza serie Rc-Xc, si ottiene Pb=P2+Pc=119.5~kW~e~Qb=Q2+Qc=92.16~kVar. La tensione Vb è pari a $Vb=(\sqrt{Pb^2+Qb^2})/I2n~e~la~tensione~Vb~riportata~al~primario~e~pari~a~Vb'=Vb*k=1.258~kV$. E' ora necessario ricavare i parametri derivati: Io=(Io%/100)*I1n=1.2~A~dove~I1n=An/V1n=120~A, $Po=V1n*Io*cos\phi0=480W~e~Qo=Po*tan\phi0=2.352~kVar$, da cui si ricava $Xo=V1n^2/Qo=1.701~k\Omega~e~Ro=V1n^2/Po=8.33~k\Omega$. Chiamando A la sezione primaria del

trasformatore si ottiene $Pa=Pb+Vb'^2/Ro=119.7~kW~e~Qa=Qb+Vb'^2/Xo=93.09~kVar~Va=Vb',~Ia=(\sqrt{(Pa^2+Qa^2))/Vb'}=120.572~A~e~cos\phi a=Pa/(Vb'*Ia)=0.789]$

ESERCIZIO 3

Un trasformatore monofase di potenza nominale $A_n = 80$ kVA e rapporto di trasformazione $K = V_{1n} / V_{20} = 2000$ V / 500 V, $f_n = 50$ Hz alimentato a tensione e a frequenza nominali assorbe $I_1 = 10$ A a cos $\phi_1 = 0.5$ in ritardo. La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: $v_{cc\%} = 10 \%$, $\cos \varphi_{cc} = 0.6$

Prova a vuoto: $I_{o\%} = 10\%$, $\cos \varphi_o = 0.2$

Si determinino la tensione V_2 , la corrente I_2 e il cos φ_2 del carico.

[La potenza assorbita A1=V1*I1=20kVA, $P1=A1*cos(\phi 1)=10~kW$, $Q1=A1*sin(\phi 1)=17.32~kVAR$. Dalla prova a vuoto si ricava Io=(Io%/100)*I1n=4~A, dove I1n=An/V1n=40~A, da cui si ricava $Po=V1n*Io*cos(\phi 1)=1.6~kW~e~Qo=V1n*Io*sin(\phi 1)=8~kVAR$. La potenza attiva e reattiva a valle del ramo derivato (Ro-Xo) è pari a PA=P1-Po=8.4~kW, QA=Q1-Qo=9.48~kVAR, AA=12.67~kVA. Al secondario si avra una tensione pari a V20 (visto che il primario e' alimentato a tensione nominale), di conseguenza I2=AA/V20=25.34~A. Dalla prova in cto cto si ricava: Vc=(vc%/100)*V2050~V, $Pc=Vc*I2n*cos(\phi cc)~e~Qc=Vc*I2n*sin(\phi cc)$, dove I2n=An/V20=160~A. Si ricava $Rc=Pc/(I2n^2)=0.1875~\Omega$. $Xc=Qc/(I2n^2)=0.25~\Omega$. Lato carico si trova $Pcarico=PA-(Rc*I2^2)=8279.6W$, $Qcarico=QA-(Xc*I2^2)=9319.5~VAR$. Si ricava quindi $cos\phi carico=cos(atan~(Qcarico/Pcarico))=0.66$, $Vcarico=(Pcarico^2+Qcarico^2)/I2=491.9~V~e~Icarico=I2.]$

ESERCIZIO 4

Un trasformatore monofase di potenza nominale $A_n=240~kVA$ e rapporto di trasformazione $K=V_{1n}$ / $V_{20}=2000~V$ / 5000~V, $f_n=50Hz$ è connesso un carico sul secondario che assorbe una corrente pari alla nominale e ha una tensione $V_2=3000~V$ a cos $\phi_2=0.5$ in ritardo (carico ohmico-induttivo). La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: $v_{cc\%} = 3 \%$, $p_{cc\%} = 1.8$

Prova a vuoto: $I_{o\%} = 1\%$, $\cos \varphi_o = 0.2$

Si determinino la tensione primaria V_1 , la corrente I_1 assorbita e il cos ϕ_1 .

La potenza assorbita dal carico e' pari a $P1=V2*I2n*cos(\phi 2)=72$ kW, $Q1=P2*tan(\phi 2)=124.7$ kVAR, dove I2n=An/V2n=48 A. Dalla prova a vuoto si ricava Io=(Io%/100)*I1n=1.2 A, dove I1n=An/V1n=120 A, da cui si ricava $P0=V1n*I0*cos(\phi 0)=480$ W e $Q0=V1n*I0*sin(\phi 0)=2.352$ kVAR. La resistenza Ro è quindi pari a $R0=V1n^2/P0=8.33$ k Ω e la reattanza Xo è data da $X0=V1n^2/Q0=1.7$ k Ω . La potenza assorbita dall'impedenza serie è pari a Pc=(pc%/100)*An=4.32 kW e $Qc=Pc*tan(\phi c)=,5.76$ kVAR, dove Vc1=(vcc%/100)*V1n=60 V e $cos(\phi c)=Pc/(Vc1*I1n)=0.6$. LA potenza attiva e reattiva a valle del ramo derivato sono apri a PAA=P2+Pc=76.32 kW e QAA=Q2+Qc=130.5 kVAR. La tensione VAA e' pari a $VAA=\sqrt{(PAA^2+QAA^2)/11n=1.26}$ kV. Lato rete si trova $Prete=PA+(VAA^2/Ro)=76.51$ kW, $Qcarico=QA+(VAA^2/X0)=131.4$ kVAR. Si ricava quindi $cos\phi$ rete=atan (Qrete/Prete)=0.503, Irete=120.72 A e Vrete=VAA.