Notes for Week 12/30/19 - 1/3/19

Alden Green

January 10, 2020

Suppose we observe independent samples $X = \{x_1, \ldots, x_n\}$ from a distribution P with density p supported on $\mathcal{X} = [0,1]^d$. For a given kernel $K_r(x,y) = \frac{1}{r^d}K(\|x-y\|)$, let $G_{n,r}$ denote the random neighborhood graph formed over the samples X. Let L = D - A be the corresponding combinatorial Laplacian. In this week's notes, we will show that as long as r is chosen to be sufficiently small, the eigenvalues of L we care about scale at an appropriate rate.

1 Random Geometric Graph

In the special case when $K(x) = 1(x \le r)$ and $G_{n,r}$ is a random geometric graph, we can use results from optimal transport theory to will prove the following Lemma.

Lemma 1. Let $\kappa = n^{2d/(4s+d)}$. Suppose p is uniformly bounded away from 0 and ∞ on its support,

$$0 < p_{\min} < p(x) < p_{\max} < \infty$$
, for all $x \in \mathcal{X}$.

Then there exists a constant c such that for any $r \leq n^{-4/((2+d)(4s+d))}$, the eigenvalue λ_{κ} is lower bounded,

$$\lambda_{\kappa} \ge c\kappa^{2/d} n r^{2+d} \tag{1}$$

with probability $1 - o(n^{-1})$ as $n \to \infty$.

Lemma 1 establishes that eigenvalues of the graph Laplacian, suitably normalized, scale comparably to the eigenvalues of the continuum Laplacian operator $\mathcal{D}f := \operatorname{div}(\nabla f)$. Along with an upper bound on the graph Sobolev semi-norm $R_{s,n}(f)$ (established in the 12.20.19 Notes), this allows us to argue that if f is a smooth function with large \mathcal{L}_2 norm, then the projection of a function f onto the eigenvectors v_1, \ldots, v_{κ} is still quite large (measured in empirical norm); or, equivalently, the bias induced by projection onto these eigenvectors is small.

2 Higher-order kernels.

When K is the uniform kernel, the aforementioned upper bound on the graph Sobolev semi-norm holds only when s = 1 or s = 2. For larger values of s, we require that K be a higher-order kernel, that is that K satisfy

$$\int K(x) dx = 1, \quad \int x^{\ell} K(x) dx = 0 \text{ for } \ell = 1, \dots, s - 1$$

It seems difficult to extend the techniques used to prove Lemma 1 to this setting. We will therefore use a different approach to prove the following Lemma.

Lemma 2. Let $\kappa = n^{2d/(4s+d)}$. Suppose p is uniformly bounded away from 0 and ∞ on its support,

$$0 < p_{\min} < p(x) < p_{\max} < \infty$$
, for all $x \in \mathcal{X}$.

Let K satisfy the following conditions:

TODO: Specify conditions.

Then there exists a constant c such that the eigenvalue λ_{κ} is lower bounded,

$$\lambda_{\kappa} \ge c\kappa^{2/d} n r^{2+d} \tag{2}$$

with probability $1 - o(n^{-1})$ as $n \to \infty$.

3 Proofs

3.1 Proof of Lemma 1

We prove Lemma 1 by comparing $G_{n,r}$ to the tensor product of a d-dimensional lattice and a complete graph. The latter is a highly structured graph with known eigenvalues, which as we will see are sufficiently lower bounded for our purposes.

Let $\tilde{r} = r/(3(\sqrt{d}+1))$, $M = (1/\tilde{r})^d$, $N = n\tilde{r}^d$. Assume without loss of generality that M and N are integers. Additionally, for $t = n^{1/d}$ and $m = M^{1/d}$ let

$$\overline{X} = \left\{ \frac{1}{t}(k_1, \dots, k_d) : k \in [t]^d \right\}, \quad \overline{Z} = \left\{ \frac{1}{m}(j_1, \dots, j_d) : j \in [m]^d \right\}.$$

For a given $\overline{z}_j \in \overline{Z}$, we write $Q(z_j) = m^{-1}[j_1 - 1, j_1] \times \cdots \times m^{-1}[j_d - 1, j_d]$ for the cube of side length 1/m with z_j at one corner.

Consider the graph $H = (\overline{X}, E_H)$, where $(\overline{x}_k, \overline{x}_\ell) \in E_H$ if

there exists
$$\overline{z}_i, \overline{z}_j \in \overline{Z}$$
 such that $\overline{x}_k \in Q(\overline{z}_i), \ \overline{x}_\ell \in Q(\overline{z}_j), \ \text{and} \ \|i - j\|_1 \le 1$.

On the one hand $H \cong \overline{G}_d^M \otimes K_N$ where \overline{G}_d^M is the *d*-dimensional lattice on M nodes, and K_N is the complete graph on N nodes. On the other hand, we now show that with high probability $G_{n,r} \succeq H$. If $(\overline{x}_k, \overline{x}_\ell) \in E_H$, then there exist $\overline{z}_i, \overline{z}_j$ such that

$$\|\overline{x}_k - \overline{x}_\ell\|_2 \le m^{-1} + \|\overline{x}_k - \overline{z}_i\|_2 + \|\overline{x}_\ell - \overline{z}_i\|_2 \le \widetilde{r}(1 + \sqrt{d}) = r/3.$$

By Theorem 1.1 of Garcia Trillos and Slepcev, with probability at least $1 - n^{-1}$ there exists a bijection $\pi : \overline{X} \to X$ such that

$$\max_{k \in [t]^d} |\overline{x}_k - \pi(\overline{x}_k)| \le c \left(\frac{\log n}{n}\right)^{1/d} \tag{3}$$

Assuming (3) holds, if $(\overline{x}_k, \overline{x}_\ell) \in E_H$, then for sufficiently large n

$$\|\pi(\overline{x}_k) - \pi(\overline{x}_\ell)\|_2 \le 2c \left(\frac{\log n}{n}\right)^{1/d} + \frac{r}{3} \le r,$$

implying that $(\pi(\overline{x}_k), \pi(\overline{x}_\ell)) \in E$. Therefore, $G_{n,r} \succeq \overline{G}_d^M \otimes K_N$ whenever (3) holds.

The eigenvalues of lattices and complete graphs are known to satisfy, respectively

$$\lambda_k(\overline{G}_d^M) \ge \frac{k^{2/d}}{M^{2/d}} \text{ for } k = 0, \dots, M - 1, \text{ and } \lambda_j(K_N) \ge N\mathbf{1}\{j > 0\} \text{ for } j = 0, \dots, N - 1.$$

and by standard facts regarding the eigenvalues of tensor product graphs (reference), we have that the spectrum $\Lambda(H)$ satisfies

$$\Lambda(H) = \left\{ N\lambda_k(\overline{G}_d^M) + M\lambda_j(K_N) : \text{for } k = 0, \dots, M - 1 \text{ and } j = 0, \dots, N - 1 \right\}$$

For all j = 1, ..., N - 1, we have that $M\lambda_j(K_N) = MN = n$. Therefore,

$$\lambda_{\kappa}(H) \ge \{n \wedge N\lambda_{\kappa}(\overline{G}_d^M)\}$$

$$\ge \{n \wedge n\widetilde{r}^d \frac{\kappa^{2/d}}{M^{2/d}}\}$$

$$\ge \{n \wedge (3\sqrt{d}+3)^{-(2+d)} nr^{d+2} \kappa^{2/d}\}$$

$$\ge (3\sqrt{d}+3)^{-(2+d)} nr^{d+2} \kappa^{2/d},$$

where the last inequality can be verified by a quick calculation in light of $\kappa = n^{2d/(4s+d)}$ and $r \leq n^{-4/((2+d)(4s+d))}$. Since we've already shown $\lambda_{\kappa}(G_{n,r}) \geq \lambda_{\kappa}(H)$ with probability $1 - o(n^{-1})$, this completes the proof of Lemma 1.

3.2 Proof of Lemma 1

Let $D_{\min} = \min_{i \in [n]} D_{ii}$ be the minimum degree of any sample $x \in X$ in the graph $G_{n,r}$. We have that

$$\lambda_{\kappa}(L) \ge D_{\min} - \lambda_{n-\kappa}(A)$$