Ćwiczenie 4b. Aproksymacja średniokwadratowa wielomianami trygonometrycznymi.

Treść zadania

Dla funkcji $f(x) = e^{-k \cdot \sin(m \cdot x)} + k \cdot \sin(m \cdot x) - 1$, $gdzie k = 4, m = 1, x \in [-4\pi, 3\pi]$, wyznaczyć jej wartości w n dyskretnych punktach. Następnie w oparciu o te punkty wyznaczyć przybliżenie funkcji wykorzystując aproksymację średniokwadratową wielomianami trygonometrycznymi. Wykonać eksperymenty numeryczne dla różnej liczby punktów dyskretyzacji oraz układów funkcji bazowych zawierających różną liczbę funkcji. Oszacować błędy przybliżenia. Graficznie zilustrować interesujące przypadki.

1. Informacje techniczne

Zadanie zostało wykonane w języku Python3 na komputerze z systemem Windows 11, procesorem Intel i7-11800H, 2x8GB pamięci RAM o szybkości 3200MHz. Biblioteki z których korzystałem w zadaniu:

- import matplotlib.pyplot as plt
- import numpy as np
- import pandas as pd
- import math

2. Aproksymowana funkcja:

$$F(x) = e^{-k \cdot \sin(m \cdot x)} + k \cdot \sin(m \cdot x) - 1$$

gdzie
$$k = 4, m = 1, x \in [-4\pi, 3\pi]$$

3. Wstęp

Aproksymacja jest ogólniejsza niż interpolacja i pozwala na przybliżanie lub zastępowanie funkcji za pomocą innej funkcji.

3.1. Aproksymacja średniokwadratowa wielomianami trygonometrycznymi

Oznaczmy przez f(x) funkcję aproksymującą. Mamy dane punkty $(x_i, y_i = F(x_i))$, i = 0,1,...,N-1, (gdzie F(x) to nasz aproksymowana funkcja), czyli N węzłów oraz układ funkcji bazowych $\varphi_i(x)$, j = 0,1,...,k. Szukamy wielomianu uogólnionego postaci:

$$f(x) = \sum_{j=0}^{k} a_j \varphi_j(x)$$
 (3.1.1)

Gdy dokonujemy aproksymacji funkcji okresowej często lepsze, dokładniejsze rezultaty uzyskamy z pomocą rodziny wielomianów trygonometrycznych. Naszym ciągiem funkcji bazowych będzie:

$$\varphi_i(x) = 1, \sin(x), \cos(x), \sin(2x), \cos(2x), \dots, \sin(mx), \cos(mx)$$
(3.1.2)

Naszą funkcję F(x) będziemy opisywali za pomocą szeregu Fouriera. Skorzystamy z następujących wzorów:

$$f(x) = \frac{1}{2} * a_0 + \sum_{j=1}^{m} \left(a_j * \cos(j * x) + b_j * \sin(j * x) \right)$$
(3.1.3)

gdzie:

$$a_j = \frac{2}{N} * \sum_{i=0}^{N-1} f(x_i) * cos(j * x'_i)$$
(3.1.4)

$$b_{j} = \frac{2}{N} * \sum_{i=0}^{N-1} f(x_{i}) * sin(j * x'_{i})$$
(3.1.5)

 x'_i – objaśnienie poniżej

Zakładamy, że F(x) jest ciągła i okresowa o okresie równym 2π oraz spełnia warunki Dirichleta. Aproksymowana funkcja jest określona na przedziale $[-4\pi, 3\pi]$, zatem będziemy musieli przeskalować ten przedział na $[-\pi, \pi]$. W tym celu przeskalujemy węzły aproksymacyjne wykorzystując wzór:

$$x'_{i} = \frac{x_{i} - a}{b - a} * (d - c) + c$$
(3.1.6)

Gdzie [a,b] – przedział początkowy, [c,d] – przedział przeskalowany, x_i – węzeł aproksymacji przed przeskalowaniem, x'_i – węzeł aproksymacji po przeskalowaniu.

Z (3.1.2) widzimy, że dla wielomianu trygonometrycznego stopnia m mamy 2m+1 funkcji bazowych.

Aby problem aproksymacji był dobrze uwarunkowany w przypadku wielomianów trygonometrycznych należy przyjąć następujące ograniczenie:

$$m \le \left| \frac{N-1}{2} \right| \tag{3.1.7}$$

gdzie symbol [n] oznacza największą liczbę całkowitą mniejszą lub równą n. To ograniczenie zapewni nam, że liczba funkcji bazowych równa 2m+1 nie będzie przekraczała liczby węzłów aproksymacyjnych.

W naszej analizie będziemy jednak również sprawdzać, co dzieje się dla m większych od tego ograniczenia.

3.4. Obliczanie błędów

Niech K = 1000 oznacza liczbę równomiernie rozłożonych w przedziale punktów $x_1, x_1, ..., x_K$, dla których obliczamy błędy aproksymacji.

Błąd bezwzględny:

$$\max_{\mathbf{x} \in \{\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_K\}} |F(\mathbf{x}) - f(\mathbf{x})|$$

Błąd średniokwadratowy:

$$\frac{1}{K} \sum_{x \in \{x_1, x_2, \dots, x_K\}} \left(F(x) - \mathbf{f}(x) \right)^2$$

4. Opracowanie

Przypomnijmy jeszcze raz wzór interpolowanej funkcji:

$$F(x) = e^{-k \cdot \sin(m \cdot x)} + k \cdot \sin(m \cdot x) - 1$$

gdzie
$$k = 4, m = 1, x \in [-4\pi, 3\pi]$$

4.1. Wykres funkcji F(x)

Wykres funkcji F(x)

Wykres 4.1.1

Uwaga 1: N w dalszym ciągu oznacza liczbę węzłów, a m stopień wielomianu.

4.2. Analiza aproksymacji ze względu na stopień wielomianu trygonometrycznego m.

 $\bullet \quad N = 10$

	Błąd bezwzględny	Błąd średniokwadratowy
m=3	50.2330	251.6132
m=4	37.0141	211.1870
m=9	60.0082	445.5468
m=10	57.3644	436.6978

Tabela 4.2.1 Wartości błędów aproksymacji dla 10 węzłów

Widzimy, że dla m nie spełniającego ograniczenia (3.1.7) otrzymujemy gorsze wyniki, więc nie ma sensu wykonywać aproksymacji dla stopnia wielomianu niespełniającego warunku (3.1.7).

$\bullet \quad N = 20$

Błąd bezwzględny Błąd średniokwadratowy

m=3	33.3901	143.4580
m=4	25.3567	97.1268
m=5	29.9077	94.4257
m=6	28.6236	92.6790
m=7	16.8823	29.9357

Tabela 4.2.2 Wartości błędów aproksymacji dla 20 węzłów

Widzimy, że zwiększając stopień wielomianu, rośnie dokładność przybliżenia.

$\bullet \quad N = 50$

	Błąd bezwzględny	Błąd średniokwadratowy
m=12	5.5273	3.8203
m=13	4.9213	3.6309
m=14	2.5720	0.7506
m=18	1.4875	0.1669
m=19	1.4404	0.1582
m=20	1.3845	0.1564

Tabela 4.2.3 Wartości błędów aproksymacji dla 50 węzłów

Dla 50 węzłów otrzymujemy już całkiem dobre przybliżenie aproksymowanej funkcji. Możemy zaobserwować, że dalej dla większego stopnia wielomianu uzyskujemy coraz lepsze przybliżenie, jednak od m=18 otrzymywane błędy są bardzo do siebie zbliżone i następuje jedynie nieznaczna poprawa.

• N = 200

m=18	0.7480	0.0587
m=19	0.7003	0.0500
m=20	0.6393	0.0481
m=30	0.2549	0.0072
m=40	0.2483	0.0072
m=50	0.2481	0.0072

Dla 200 węzłów widzimy ponownie, że od m = 18 otrzymywane błędy są do siebie zbliżone, a dokładność poprawia się coraz wolniej.

4.3. Analiza aproksymacji ze względu na liczbę węzłów N

N = 8

W przypadku 8 węzłów, niezależnie od m, dostajemy funkcję stale równą 0, ponieważ wszystkie węzły są miejscami zerowymi aproksymowanej funkcji.

• N = 10,20, m = 3,4

Błąd bezwzględny Błąd średniokwadratowy

	N=10	N=20	N=10	N=20
m=3	50.2330	33.3901	251.6132	143.4580
m=4	37.0141	25.3567	211.1870	97.1268

Tabela 4.3.1 Wartości błędów aproksymacji dla 10 i 20 węzłów

Widzimy, że dla większej liczby węzłów, przy tym samym m, dostajemy funkcje dokładniejsze aproksymujące. Otrzymywane błędy dla N=20 są znacząco mniejsze niż dla N=10.

•
$$N = 30,40 \quad m = 3,4$$

Błąd bezwzględny Błąd średniokwadratowy

	N=30	N=40	N=30	N=40
m=3	32.0023	31.8363	142.9161	142.8482
m=4	26.1351	25.9228	96.3427	96.2361

Tabela 4.3.2 Wartości błędów aproksymacji dla 30 i 40 węzłów

Porównując wyniki dla 20 węzłów z tabeli 4.3.1 z wynikami dla tabeli 4.3.2 możemy zobaczyć, że zwiększanie liczby węzłów powoduje poprawianie dokładności tylko do pewnego momentu. Później otrzymywane wyniki są do siebie bardzo zbliżone.

5. Tabele z błędami

5.1. Tabela z błędami średniokwadratowymi

Liczba węzłów

m	10	15	25	35	45	55	65	75	100
3	251.61320	153.434731	142.87980	142.87455	142.82950	142.80629	142.79298	142.78466	142.77373
4	211.18704 5	115.939145	96.285272	96.272294	96.210639	96.179289	96.161270	96.149970	96.135055
5		112.467543	91.199578	91.191288	91.127980	91.095946	91.077567	91.066056	91.050895
7		100.974931	26.455339	26.356101	26.274556	26.231927	26.207420	26.192051	26.171775
12			7.071905	3.938703	3.847045	3.800507	3.773802	3.757046	3.734923
15				0.841904	0.711874	0.664740	0.637737	0.620796	0.598429
18					0.194331	0.146715	0.119659	0.102686	0.080276
20					0.186657	0.136198	0.109139	0.092165	0.069755
23						0.098474	0.071395	0.054418	0.032004
25						0.095565	0.068470	0.051492	0.029078
30							0.068232	0.051252	0.028837

Tabela 5.1.1 Wartości błędów średniokwadratowych dla aproksymacji średniokwadratowej trygonometrycznej

5.2. Tabela z błędami bezwzględnymi

Liczba węzłów

m	10	15	25	35	45	55	65	75	100
3	50.232991	26.570313	31.896160	31.894764	31.785803	31.712562	31.661752	31.624461	31.563826
4	37.014080	21.972542	26.029188	26.009281	25.855078	25.757290	25.689579	25.639913	25.559191
5		19.923433	25.600250	25.619016	25.469445	25.370187	25.301316	25.250777	25.168611
7		17.791682	12.190979	12.744966	12.532506	12.379883	12.274015	12.196339	12.070073
12			5.349836	5.793331	5.624778	5.445241	5.319327	5.227033	5.077117
15				3.059785	2.734080	2.533441	2.398961	2.300502	2.140619
18					1.613471	1.394257	1.257074	1.156542	0.993128
20					1.566788	1.287320	1.150394	1.049353	0.885291
23						1.015187	0.883416	0.782169	0.617406
25						0.939023	0.794959	0.693302	0.528213
30						31.712562	0.769298	0.668285	0.502829

Tabela 5.2.1 Wartości błędów bezwzględnych dla aproksymacji średniokwadratowej trygonometrycznej

W tabelach 5.1.1, 5.2.1 na zielono zaznaczone zostały wyniki uzyskane dla stopnia wielomianu równego 18. Możemy zobaczyć, że zgodnie z wcześniejszymi obserwacjami, dla większego stopnia otrzymujemy już zbliżoną dokładność. Dodatkowo z powyższych tabel również możemy zaobserwować, że zwiększanie liczby węzłów dla danego stopnia wielomianu, zmniejsza błędy tylko do pewnego momentu i dodatkowo poprawa dokładności jest mniejsza niż jeżeli zmieniamy stopień wielomianu.

6. Podsumowanie i wnioski

- Wykorzystując aproksymację średniokwadratową wielomianami trygonometrycznymi należy w odpowiedni sposób dobierać liczbę węzłów oraz stopień wielomianu. Nie powinniśmy przekraczać ograniczenia $m \leq \left\lfloor \frac{N-1}{2} \right\rfloor$, ponieważ dostajemy wtedy złe wyniki.
- Większe wartości m (przy zachowaniu powyższego ograniczenia) powodują, że otrzymywana funkcja aproksymująca z większą dokładnością przybliża wyjściową funkcję.

- Dokładność aproksymacji wzrasta wraz z zwiększaniem się liczby węzłów tylko do pewnego momentu, zależnego od wartości m. Później otrzymywane błędy są do siebie bardzo zbliżone.
- Dla ustalonego stopnia wielomianu aproksymującego, zwiększanie liczby węzłów tylko nieznacznie poprawia dokładność aproksymacji.
- Jeżeli spełniamy ograniczenie $m \leq \left\lfloor \frac{N-1}{2} \right\rfloor$, to dla m większych od 18 zaczynamy dostawać bardzo zbliżone błędy, zwiększanie stopnia wielomianu trygonometrycznego coraz mniej zwiększa dokładność aproksymacji.