WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7 :

C07C 43/16, 41/08, 41/28, 41/42

A1

(11) Internationale Veröffentlichungsnummer:

WO 00/15590

(43) Internationales Veröffentlichungsdatum:

23. März 2000 (23.03.00)

(21) Internationales Aktenzeichen:

PCT/EP99/06446

(22) Internationales Anmeldedatum: 2. September 1999 (02.09.99)

(30) Prioritätsdaten:

198 41 552.4

11. September 1998 (11.09.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AK-TIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).

(72) Erfinder; und

- (75) Erfinder/Anmelder (nur für US): BECKER, Heike [DE/DE]; Von-Denis-Strasse 3, D-67117 Limburgerhof (DE). BREUER, Klaus [DE/DE]; Ziegeleistrasse 10, D-67122 Altrip (DE). DEMUTH, Dirk [DE/DE]; Friedrichring 14, D-68161 Mannheim (DE). HIBST, Hartmut [DE/DE]; Branichstrasse 23, D-69198 Schriesheim (DE). TELES, Joaquim, Henrique [PT/DE]; Ziegeleistrasse 25a, D-67122 Altrip (DE). PREISS, Thomas [DE/DE]; Waltharistrasse 5, D-67065 Ludwigshafen (DE).
- (74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).

(81) Bestimmungsstaaten: DE, JP, US.

Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

- (54) Title: METHOD FOR PRODUCING ENOL ETHERS
- (54) Bezeichnung: VERFAHREN ZUR HERSTELLUNG VON ENOLETHERN

$$R = (CHR)_m - C = C < R$$
 (1)

$$R - (CHR)_m - C - CH R$$
(III)

$$\sum_{R}^{R} c = c = c < \sum_{R}^{R} (V)$$

(57) Abstract

The invention relates to a method for producing enol ethers of formula (I), by reacting alcohols of formula (II): RIOH and/or acetals or ketals of formula (III), in which R1 is an aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic rest, which can carry other substituents which do not react with acetylenes or allenes, and the rests R independently of each other represent hydrogen or aliphatic, cycloaliphatic, araliphatic, aromatic or heterocyclic rests which can be joined such that they form a ring, and where m is 0 or 1, with acetylenes or allenes of formulas (IV) or (V) in the gaseous phase at elevated temperature in the presence of a heterogeneous catalyst containing zinc or cadmium together with silicon and oxygen, and by isolating the enol ethers of formula (I) by distillation.

(57) Zusammenfassung

Verfahren zur Herstellung von Enolethern der Formel (I), wobei durch Umsetzung von Alkoholen der Formel (II): R¹OH und/oder, Acetalen bzw. Ketalen der Formel (III), in denen R¹ einen aliphatischen, cycloaliphatischen, araliphatischen, aromatischen oder heterocyclischen Rest bedeutet, wobei diese Reste weitere Substituenten, die nicht mit Acetylenen oder Allenen reagieren, tragen können und die Reste R unabhängig voneinander für Wasserstoff, oder aliphatische, cycloaliphatische, araliphatische, aromatische oder heterocyclische Reste stehen, die unter Bildung eines Ringes miteinander verbunden sein können und m für 0 oder 1 steht, mit Acetylenen oder Allenen der Formeln (IV) bzw. (V), in der Gasphase bei erhöhter Temperatur in Gegenwart eines Zink oder Cadmium zusammen mit Silicium und Sauerstoff enthaltenden Heterogenkatalysators und Isolierung der Enolether der Formel (I) durch Destillation.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
ΑU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungam	ML	Mali	TT	Trinidad und Tobago
BJ	Benin	IE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten von
CA	Kanada .	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Јарап	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande	VN	Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	zw	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	KZ	Kasachstan	RO	Rumānien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dānemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 00/15590 PCT/EP99/06446

Beschreibung

Verfahren zur Herstellung von Enolethern

5

Die Erfindung betrifft ein Verfahren zur Herstellung von Enolethern durch Umsetzung von Alkinen oder Allenen mit Alkoholen und mit Acetalen bzw. Ketalen, die unter Alkoholabspaltung die Enolether zu bilden vermögen, wobei man mit einem Überschuß Alkohol arbeitet und diesen Überschuß und das Acetal bzw. Ketal zurückführt.

In den nicht vorveröffentlichten Deutschen Offenlegungsschriften DE-A 19726666, DE-A 19726667 und DE-A 19726668 sind Verfahren zur 15 Herstellung von Verbindungen der Formeln I bzw. II beschrieben

$$R - (CHR)_m - C = C \stackrel{R}{=} C$$

20

$$R \longrightarrow (CHR)_m \longrightarrow C \longrightarrow CH \longrightarrow R$$
 OR^1
 OR^1
 OR^1

25

in denen R¹ Wasserstoff oder einen aliphatischen, cycloaliphatischen, araliphatischen, aromatischen oder heterocyclischen Rest bedeutet, wobei diese Reste weitere Substituenten, die nicht 30 mit Acetylenen oder Allenen reagieren, tragen können und die Reste R unabhängig voneinander für Wasserstoff oder aliphatische, cycloaliphatische, araliphatische, aromatische oder heterocyclische Reste stehen, die unter Bildung eines Ringes miteinander verbunden sein können und m für 0 oder 1 steht, durch Addition von Verbindungen der Formel III

an Acetylene oder Allene der Formeln IV bzw. V

$$R-C \equiv C-R$$
 IV $R = C = C = C$

45 ·

40

wobei R^1 und R die oben angegebene Bedeutung haben. in der Gasphase bei erhöhter Temperatur in Gegenwart eines heterogenen Zink oder Cadmium zusammen mit Silicium und Sauerstoff enthaltenen Katalysators.

5

Gemäß einer Abwandlung dieses Verfahrens nach der ebenfalls nicht vorveröffentlichten DE-A 19726667 kann man auch die durch Umsetzung mit den Alkoholen als Nebenprodukte entstandenen Acetale bzw. Ketale der Formel II ihrerseits mit den Alkinen oder Allenen umsetzen, wobei sich aus einem Mol Alkin oder Allen und einem Mol Acetal bzw. Ketal 2 Mol Enolether bilden. Da die Reaktion in Gegenwart des gleichen Katalysators stattfindet, kann man das als Nebenprodukt entstandene Acetal bzw. Ketal in die Alkinbzw. Allenumsetzung zurückführen.

15

Diese Rückführungsmöglichkeit ist immer dann erwünscht, wenn keine getrennte Verwendung der Acetale bzw. Ketale der Formel II besteht.

- 20 Es hat sich nun ferner gezeigt, daß es erwünscht ist, aus Sicherheitsgründen die Reaktion so zu führen, daß ein praktisch vollständiger Umsatz des Alkins bzw. Allens stattfindet. Dies ist nur möglich, wenn man mit einem Überschuß des eingesetzten Alkohols arbeitet, wobei ein Mol Acetal bzw. Ketal im Feed einem zusätztichen Mol Alkohol entspricht und den nichtumgesetzten Alkohol
- 25 lichen Mol Alkohol entspricht und den nichtumgesetzten Alkohol und zweckmäßigerweise auch das entstandene Acetal bzw. Ketal zurückführt.

Diese Aufgabe wurde erfindungsgemäß mit einer Kombination von 30 Maßnahmen gelöst mit einem Verfahren zur Herstellung von Enolethern der Formel I

$$R - (CHR)_m - C = C \stackrel{R}{=} C$$

35

durch Umsetzung von Alkoholen der Formel II

40

Acetalen bzw. Ketalen der Formel III

$$R - (CHR)_{m} - C - CH R$$

$$R = R$$

$$R - (CHR)_{m} - C - CH R$$

$$R - C - CH R$$

$$R - CH R$$

mit Acetylenen oder Allenen der Formeln IV bzw. V

5
$$R-C \equiv C-R$$
 IV $R-C = C = C$

in der Gasphase bei erhöhter Temperatur in Gegenwart eines Zink oder Cadmium zusammen mit Silicium und Sauerstoff enthaltenden 10 Heterogenkatalysators und Isolierung der Enolether der Formel I durch Destillation, dadurch gekennzeichnet, daß man

- a) die Umsetzung mit einem molaren Verhältnis Alkohol + Acetal zu Alkin und/oder Allen gleich oder grösser 1 und so durchführt, dass der den Reaktor verlassende Strom enthaltend den Enolether der Formel I, überschüssigen Alkohol der Formel II und Acetal der Formel III praktisch frei von Acetylenen bzw. Allenen ist (Umsatz Alkin/Allen ≥90 %),
- 20 bl) den den Reaktor verlassenden Strom entweder unmittelbar einer Destillation unterwirft unter Auftrennung in ein aus Enolether I und Alkohol II bestehendes Azeotrop als Kopfprodukt (das gegebenenfalls auch nicht umgesetzte Reste Alkin/Allen enthält), Enolether als Zwischensieder und Acetal III als Sumpfprodukt und Rückführung des Kopfproduktes und des Sumpfproduktes in den Reaktor, mit der Maßgabe, daß man die Reaktionsbedingungen und die Molverhältnisse der Reaktoreinspeisung so wählt, daß das molare Verhältnis Enolether zu Alkohol im Reaktoraustrag größer ist als das Verhältnis Enolether zu ether zu Alkohol im Azeotrop, oder
- b2) falls der Enolether I und Alkohol II kein Azeotrop bilden, den den Reaktor verlassenden Strom unmittelbar einer Destillation unterwirft unter Auftrennung in ein aus Enolether I bestehendes Kopfprodukt und in ein aus Acetal III und Alkohol II bestehendes Sumpfprodukt und Rückführung des Sumpfproduktes in den Reaktor, und/oder
- c) den den Reaktor verlassenden Strom einer Umsetzung an einem geeigneten Katalysator, z.B. einem sauren Ionenaustauscher bei Temperaturen unterhalb 100°C unterwirft unter Umsetzung des überschüssigen Alkohols II mit dem Enolether I zum Acetal III und destillative Auftrennung des im wesentlichen von Alkohol I befreiten Reaktionsgemisches in das gewünschte Enoletherprodukt und Acetal III, das in den Reaktor zurückgeführt wird.

Die Umsetzung von Alkinen oder Allenen mit Alkoholen und/oder Acetalen bzw. Ketalen zu Enolethern und die dafür in Betracht kommenden Katalysatoren sind aus den genannten Offenlegungsschriften im einzelnen bekannt. Alle dort angegebenen Maßnahmen 5 sollen hier gleichermaßen gelten, so daß ausdrücklich auf diese Offenlegungsschriften Bezug genommen wird und sie als hier inkorporiert gelten sollen. Zusammenfassend wird jedoch nochmals das Reaktionsprinzip am Beispiel der Umsetzung von Acetylen mit Ethanol und die Art der verwendeten Katalysatoren hier dar-

A) Umsetzung von Acetylen mit Ethanol

HC
$$\equiv$$
 CH + EtOH \longrightarrow H₂C $=$ C $\stackrel{\text{OEt}}{}$

HC \equiv CH + 2 EtOH \longrightarrow H₃C $=$ CH $\stackrel{\text{OEt}}{}$

B) Umsetzung von Acetylen mit dem entstandenen Diethylacetal

25
$$HC \equiv CH + H_3C - CH \longrightarrow 2 H_2C = C$$
OEt
$$OEt$$
OEt

30 Da nun der Alkohol im Überschuß angewendet werden soll, stellt sich die Gesamtreaktion schematisch so dar:

40

Diese Reaktionsführung bietet jedoch in manchen Fällen das Problem, daß eine Auftrennung des Reaktionsprodukts in die Komponenten wegen der Bildung von Azeotropen mit den Vinylethern schwierig ist. Erfindungsgemäß wird dieses Problem auf einfache 45 Weise mit 2 äquivalenten Methoden A und B gelöst, wobei beide

45 welse mit 2 aquivalenten Methoden A und B gelöst, wobei beide Arbeitsweisen auch miteinander kombiniert werden können.

Methode A

wie in Fig. 1 schematisch dargestellt wird über die Leitung (1) Acetylen, über die Leitung (2) der Alkohol und über Leitung (6) 5 rückgeführtes Acetal in den Reaktor (R1) eingespeist, in dem die Gasphasen-Umsetzung an dem Zinkkatalysator stattfindet. Den Reaktor (R1) verläßt ein Reaktionsgemisch, das den Enolether, überschüssigen Alkohol, Acetal, Nebenprodukte und praktisch kein Acetylen mehr enthält. Dieses Reaktionsgemisch wird entweder in gasförmigem Zustand oder nach Kondensation über Leitung (3) in den zweiten Reaktor (R2) geleitet, wo über einem für die Acetalisierung geeigneten, z.B. sauren Katalysator eine Reaktion des Alkoholes mit dem Enolether unter Bildung des Acetals nach der für Acetylen und Ethanol exemplizierten Gleichung stattfindet:

20 Die Bedingungen im zweiten Reaktor (R2) werden so gewählt, daß am Ausgang des Reaktors das Acetalbildungsgleichgewicht weitgehend auf der Seite des Acetals vorliegt. Dies ist der Fall, wenn die Reaktion bei möglichst niedriger Temperatur, möglichst hohem Partialdruck der Reagenzien oder in kondensierter Phase statt25 findet. Zum Beispiel bei Raumtemperatur in flüssiger Phase liegt das Gleichgewicht fast vollständig auf der Seite des Acetals. Es verbleibt sehr wenig Alkohol im Gleichgewicht, da der Enolether im Überschuß vorliegt. Die Katalysatoren für diese Reaktion sind an sich bekannt und sind in weitesten Sinne saure Verbindungen
30 (z.B. SiO₂, Al₂O₃, saure Ionentauscher, homogen gelöste Brønstedoder Lewis-Säuren).

Das über die Leitung (4) den Reaktor (R2) verlassende Reaktionsgemisch besteht aus Enolether, Acetal und Nebenprodukten und ist 35 praktisch frei von Alkohol und Acetylen, so daß der Enolether leicht abgetrennt werden kann. Es wird über die Leitung (4) in die Destillation D geleitet, wo eine Aufarbeitung in das Enoletherprodukt (5), Nebenprodukte (7) und zurückzuführendes Acetal (6) erfolgt. Um die Stabilität der Produkte während der 40 Destillation zu gewährleisten, kann es zweckmäßig sein, nach dem Reaktor R2 noch eine Neutralisation nachzuschalten.

WO 00/15590 PCT/EP99/06446

Methode B

B1) Wie in Fig. 2 schematisch dargestellt wird über Leitung (1) Acetylen, über Leitung (2) der Alkohol, über Leitung (6) rückgeführtes Acetal und über Leitung (4) ein rückgeführter 5 Azeotrop aus Enolether und Alkohol in den Reaktor (R) eingespeist, in dem die Gasphasenumsetzung an dem Zinkkatalysatoren stattfindet. Das den Reaktor über die Leitung (3) verlassende Reaktionsgemisch besteht wie bei Methode A aus Enolether, Acetal, Alkohol und Nebenprodukten und ist praktisch 10 frei von Acetylen. Es wird in die Aufarbeitung (D) eingespeist, in der eine destillative Auftrennung stattfindet. Man erhält als Kopfprodukt (4) ein Azeotrop aus Enolether und Alkohol, das gewünschte, praktisch alkoholfreie Enoletherprodukt als Zwischensieder (5) das Acetal (6) und Nebenprodukte 15 (7) aus dem Sumpf. Das Azeotrop (4) und das Acetal (6) werden in den Reaktor (R) zurückgeführt.

B2) Falls der Enolether I und Alkohol II kein Azeotrop bilden,
20 kann man in vielen Fällen gemäß Fig. 3 den den Reaktor verlassenden Strom 3 unmittelbar einer Destillation in der Kolonne D unterwerfen unter Auftrennung in ein aus Enolether
bestehendes Kopfprodukt (5) und ein aus Acetal und Alkohol
bestehendes Sumpfprodukt (6), das in den Reaktor zusammen mit
Alkin/Allen (1) und Alkohol (2) eingeleitet wird.

Bei beiden Methoden wählt man das molare Verhältnis aus freiem Alkohol + Acetal zu Acetylen gleich oder größer 1, vorzugsweise 1:1 bis 5 zu 1 und insbesondere 1 zu 1 bis 2 zu 1, wobei im Falle 30 der Methode (B) als weitere Bedingung hinzukommt, daß das molare Verhältnis Enolether zu Alkohol im Reaktionsaustrag größer als das molare Verhältnis Enolether zu Alkohol im Azeotrop ist, vorzugsweise um das 1,01 bis 1000fache größer und insbesondere um das 2 bis 100fache größer ist.

35

Als Acetylene und Allene verwendet man vor allem die technisch leicht zugänglichen Acetylene und/oder Allene mit 2 bzw. 3 bis 8 C-Atomen, und insbesondere Acetylen, Methylacetylen oder Allen oder deren Gemische, z.B. wie sie aus einem C₃-Strom von einem 40 Steamcracker isoliert werden können.

Die erfindungsgemäße Verfahrensführung ist jedoch besonders für die Verwendung von reinem Acetylen von Vorteil.

Als Alkohole R¹OH kommen aliphatische, cycloaliphatische, araliphatische, aromatische oder heterocyclische Alkohole in Betracht. Im allgemeinen verwendet man jedoch niedermolekulare aliphatische Alkohole, insbesondere Alkanole oder Alkandiole 5 mit 1 bis 8, vorzugsweise 1 bis 6 C-Atomen. Im einzelnen sind Methanol, Ethanol, Propanol, Isopropanol, Butanol, Isobutanol, tert.-Butanol, Pentanol, Isopentanol, Ethylhexanol, Ethylenglykol, Propylenglykol-1,2 und -1,3, Butandiol-1,4 und Hexandiol-1,6 und insbesondere Methanol, Ethanol und Butanol zu nennen.

Die Umsetzung der Alkohole und Ketale bzw. Acetale mit den Acetylenen bzw. Allenen erfolgt in Gegenwart des heterogen vorliegenden Zink oder Cadmium und Silicium und Sauerstoff ent15 haltenden Katalysators in der Gasphase entweder über einem Festbett oder in einem Wirbelbett bei Temperaturen von 50 bis 400°C, vorzugsweise 100 bis 250°C und besonders bevorzugt 120 bis 200°C und Drücken von 0,1 bis 50 bar, insbesondere 0,8 bis 20 bar und besonders bevorzugt 0,9 bis 10 bar (alle Drücke bezogen auf die 20 Summe der Partialdrücke der Edukte).

Gegebenenfalls kann das Reaktionsgemisch aus Gründen der Betriebssicherheit und der besseren Wärmeabfuhr mit Inertgasen wie Stickstoff, Argon, niedermolekularen Alkanen oder Olefinen 25 verdünnt werden.

Als Zink oder Cadmium sowie Silicium und Sauerstoff enthaltende Katalysatoren kommen Cadmiumsilikate und bevorzugt Zinksilikate in betracht, z.B. Siikate ausgewählt aus der Gruppe bestehend aus 30 (a) röntgenamorphen Zinksilikat oder Cadmiumsilikat, hergestellt

- 30 (a) röntgenamorphen Zinksilikat oder Cadmiumsilikat, hergestellt durch Imprägnierung eines Kieselsäureträgers mit einem Zinkbzw. Cadmiumsalz,
- (b) kristallinem Zinksilikat mit im wesentlichen der Zusammensetzung und Struktur des Hemimorphits der Formel Zn₄Si₂O₇(OH)₂·H₂O, wobei das Zink in einem bis zu 25%igen Unter- oder Überschuß, bezogen auf die stöchiometrische Zusammensetzung vorliegen kann und/oder
- 40 (c) im wesentlichen röntgenamorphen Zinksilikat, hergestellt durch Ausfällen in wäßriger Lösung aus einer löslichen Silicium- und Zinkverbindung, der Formel V

 $Zn_aSi_cO_{a+2c-0,5e}(OH)_e \cdot f H_2O$ V,

45

in der e die Werte 0 bis zur Summe aus 2a+4c bedeutet, das Verhältnis a/c 1 bis 3,5 und f/a 0 bis 200 beträgt.

WO 00/15590 PCT/EP99/06446

(a) Röntgenamorphe Zinksilikat- oder Cadmiumsilikat-Katalysatoren werden z.B. durch Beladen von amorpher Kieselsäure mit einem Zinksalz bzw. Cadmiumsalz und Formierung des Katalysators durch eine thermische Behandlung erhalten.

5

Der SiO_2 -Träger ist zumindest überwiegend amorph, hat eine BET-Oberfläche zwischen 10 und 1500 m^2/g , besonders bevorzugt 100 bis 500 m^2/g , eine Wasseraufnahmekapazität von 0,1 bis 2 ml/g, besonders bevorzugt von 0,7 bis 1,3 ml/g und kann als Pulver oder als fertiger Formkörper eingesetzt werden. Der Träger kann auch vor der Imprägnierung kalziniert werden.

10 Bevorzugt wird der Träger aber nicht kalziniert.

Als Zink- bzw. Cadmiumverbindung verwendet man eine in einem 15 geeigneten Lösungsmittel lösliche Verbindung. Bevorzugt werden Zink(II)-Salze verwendet, die in Wasser oder wäßrigem Ammoniak oder Alkoholen, bevorzugt niederen Alkoholen, löslich sind und deren Zersetzungstemperatur unterhalb 400°C bis 500°C liegt.

20

Besonders bevorzugt wird für die Imprägnierung eine ammoniakalkalische Zink(II)acetat-Lösung verwendet. In manchen Fällen hat es sich als vorteilhaft erwiesen, die Beladung mit Zink in mehreren aufeinander folgenden Tränkschritten vorzunehmen.

25

Wenn der Träger als Pulver eingesetzt wird, kann der Katalysator durch Formgebung (z.B. durch Mischen, Kneten und Verstrangen oder Tablettieren) in die gewünschte Form gebracht werden.

30

Zur Erhöhung des Porenvolumens können bei der Formgebung auch Porenbildner zugesetzt werden (z.B. Superabsorber wie Lutexal® P (Firma BASF Ludwigshafen) oder Walocel® (Methylcellulose/Kunstharz-Kombination, Firma Wolff, Walsrode)).

35

Alternativ kann auch ein anderer Träger, z.B. Al_2O_3 , mit einer Siliciumoxid-Vorläuferverbindung (z.B. $Si(OR)_4$) und mit einem Zinksalz oder Cadmiumsalz imprägniert werden.

40 Die Zink- bzw. Cadmiumbeladung kann in weiten Grenzen variieren. Typische Werte für einen unkalzinierten Präkatalysator, der durch Tränkung eines SiO2-Trägers mit einem Zinksalz bzw. Cadmiumsalz präpariert wurde, liegen z.B. zwischen 1 und 60 Gew.-% Zn oder Cd bevorzugt zwischen 7 und 45 30 Gew.-%. Besonders bevorzugt werden Gehalte zwischen 10 und 25 Gew.-% (jeweils berechnet als ZnO oder CdO). Der Präkatalysator kann außerdem mit anderen Elementen dotiert werden,

5

10

15

bevorzugt mit Alkali-, Erdalkali- oder Übergangsmetallen. Ferner kann die katalytische wirksame Komponente mit bis zu 80, vorzugsweise bis zu 50 und insbesondere bis zu 20 Molprozent noch mit weiteren Metallen dotiert sein, ausgewählt aus der Gruppe (A) bestehend aus Beryllium, Magnesium, Calcium, Strontium, Barium, Mangan, Eisen, Kobalt, Nickel und Kupfer und der Gruppe (B), bestehend aus Titan, Zirkon, Hafnium, Germanium, Zinn und Blei, wobei die Elemente der Gruppe (A) teilweise Zink, bzw. Cadmium und die Elemente der Gruppe (B) teilweise Silicium ersetzen.

Der Präkatalysator kann dann bei einer Temperatur von maximal 600°C, insbesondere zwischen 80 und 300°C, an Luft oder unter Inertgas kalziniert werden. Besonders bevorzugt ist die Kalzinierung zwischen 120 und 250°C an Luft.

Nach der Herstellung des im allgemeinen katalytisch noch inaktiven Präkatalysators, durch Aufbringung einer Zink- oder Cadmium-Verbindung auf einen Siliciumoxid-Träger wird bevor-20 zugt eine Formierung durchgeführt, bei der sich vor allem auf der Oberfläche des Katalysators die eigentliche Aktivphase ausbildet. Diese Festkörperreaktion wird durch die Anwesenheit von Wasser, Alkoholen, bevorzugt niederen Alkoholen oder Carbonsäuren, bevorzugt niederen Carbonsäuren gefördert und 25 wird deshalb zweckmäßigerweise durch Erhitzen des Präkatalysators bei einer Temperatur zwischen 50 und 400°C in einer wasser- oder alkoholhaltigen Atmosphäre durchgeführt. Bevorzugt führt man die Reaktion zwischen 100 und 250°C in einem wasser- oder methanolhaltigen Gasgemisch aus. Besonders 30 bevorzugt ist die Durchführung der Reaktion zwischen 120 und 200°C mit einem methanolhaltigen Gasgemisch direkt in dem Reaktor, in dem später die Umsetzung mit dem Alkin oder Allen stattfinden soll. Wenn von einem Präkatalysator auf der Basis von Zinkacetat ausgegangen wird, kann man sehr leicht 35 bestimmen, wann die Festkörperreaktion beendet ist, da zu diesem Zeitpunkt fast kein Methylacetat im Abgas zu finden ist. In machen Fällen hat es sich als vorteilhaft erwiesen, den Präkatalysator zur Ausbildung der Aktivphase unter Reaktionsbedingungen mit einem Gemisch aus Methanol mit Alkin und/oder Allen und eventuell auch noch anderen Komponenten 40 (wie z.B. Kohlenwasserstoffe) zu beaufschlagen. Die Bildung der Aktivschicht wird durch das Ansteigen des Alkin- bzw. Allen-Umsatzes (nach ca. 5 bis 30 min, je nach Temperatur), durch das Ansteigen der Selektivität (nach 10 bis 300 min, 45 je nach Temperatur) und durch das Abklingen der Konzentration von Methylacetat im Abgas angezeigt. Ein stationärer Zustand (mit hohen Alkin- bzw. Allen-Umsätzen) und eine hohe

WO 00/15590 PCT/EP99/06446

Selektivität wird je nach Temperatur nach ca. 2 bis 20 Stunden erreicht.

Gleichermassen können die entsprechenden Quecksilbersilikate hergestellt werden, die jedoch technisch und ökologisch weniger geeignet sind.

- (b) Hemimorphit als Katalysator
- Hemimorphit ist ein Zinksilikat der Formel Zn₄Si₂O₇(OH)₂ · H₂O. Für die erfindungsgemäße Umsetzung sind jedoch nicht nur reiner Hemimorphit, sondern allgemein heterogene Katalysatoren geeignet, die zumindest überwiegend als Aktivkomponente Zinksilikat mit der Struktur des Hemimorphits der Formel Zn₄Si₂O₇(OH)_{2-2y}O_y · x H₂O enthalten, wobei x und y für die Werte O bis 1 stehen.

Die Herstellung von Hemimorphit ist aus der Literatur bekannt. Sie kann unter Normalbedingungen oder hydrothermalen 20 Bedingungen erfolgen. Bevorzugt wird Hemimorphit verwendet, wie es gemäß dem in DE-A 19726670 beschriebenen Verfahren erhalten wird.

(c) Röntgenamorpher Zinksilikat-Katalysator

Es wurde gefunden, daß man im wesentlichen unter gleichen Herstellungsbedingungen für Hemimorphit aber kürzerer Umsetzungszeit als Vorstufe zur Herstellung eines kristallinen Hemimorphits ein röntgenamorphes Produkt mit verbesserten katalytischen Eigenschaften erhält.

Dazu wird z.B. eine wäßrige Suspension eines Alkali- oder Erdalkalisilikats mit einer wäßrigen Lösung eines Zinksalzes bei

35

30

25

- a) Temperaturen von 20°C, bevorzugt 50°C bis zum Siedepunkt der sich ergebenden wäßrigen Suspension bei
- b) einem pH-Wert von 4 bis 9,5, bevorzugt bei einem pH-Wert in der Nähe des Neutralpunktes,
 - c) und solchen Mengenverhältnissen von Alkalisilikat und Zinksalz umgesetzt, daß die Bedingungen der Formel VI erfüllt werden und

WO 00/15590 PCT/EP99/06446

d) eine solche Verweilzeit eingehalten, daß noch nicht in erheblichem Maße Kristallisation des Zinksilikats eintritt.

Das so erhältliche im wesentlichen röntgenamorphe Zinksilikat enthält Zn²⁺⁻, Si⁴⁺ und O²⁻Ionen; darüber hinaus kann die Verbindung OH-Ionen und Hydratwasser enthalten. Das Zn/Si-Verhältnis beträgt 0,3 bis 5, bevorzugt 1 bis 2,7, besonders bevorzugt 2 bis 2,3 und ganz besonders bevorzugt 2.

Auch der erfindungsgemäß zu verwendende amorphe ZinksilikatFällungskatalysator kann mit bis zu 80, vorzugsweise bis zu 50
und insbesondere bis zu 20 Molprozent noch mit weiteren Metallen
dotiert sein ausgewählt aus der Gruppe (A) bestehend aus Beryl15 lium, Magnesium, Calcium, Strontium, Barium, Mangan, Eisen,
Kobalt, Nickel, Kupfer, Cadmium und Quecksilber und der Gruppe
(B), bestehend aus Titan, Zirkonium, Hafnium, Germanium, Zinn und
Blei, wobei die Elemente der Gruppe (A) teilweise Zink und die
Elemente der Gruppe (B) teilweise Silicium in der Hemimorphit20 Struktur ersetzen.

Beispiele

Beispiel 1

25

a) Herstellung von Ethylvinylether im Rohrreaktor

In einem Rohrreaktor (Länge: 6 m, Durchmesser: 6 mm) wurden an einem Zinksilikat-Katalysator (hergestellt durch 30 Tränkung von kugelförmigen (\varnothing 3-5 mm) SiO₂-Formkörpern mit ammoniakalischer Zinkacetatlösung - Zn-Gehalt, berechnet als ZnO: 20 Gew.-%) Acetylen, Ethanol und 1,1-Diethoxyethan mit einer Belastung von 0,5 kg·m⁻²·s⁻¹ bei einer Temperatur von 160°C und Normaldruck umgesetzt. Der Alkohol und das Acetal wurden vor dem Reaktor verdampft und mit dem Acetylen gas-35 förmig in den Reaktor geleitet. Das austretende Gasgemisch wurde mittels online-Gaschromatographie quantitativ analysiert und anschließend bei -10°C kondensiert. Die Einsatzmengen und Zusammensetzung des Produktgemisches sind in 40 Tabelle 1 zusammengefaßt. Die Selektivität zum Ethylvinylether betrug 98 % (bzgl. Ethanol + 1,1-Diethoxyethan).

Tabelle 1

	Reaktoreingang	Reaktorausgang	Umsatz %
Acetylen	0.532	0.023	96
Ethanol	0,449	0,069	85
Diethoxyethan	0,139	0,069	50
Ethylvinylether	-	0,509	

10

15

5

b1) Acetalisierung des Reaktoraustrages

100 ml der kondensierten Bestandteile des Reaktoraustrages aus Beispiel 1 (a) wurden mit 0,1 g p-Toluolsulfonsäure versetzt und 5 min bei Raumtemperatur gerührt. Dann wurde mit 1 g Kaliumcarbonat neutralisiert. Die Zusammensetzungen (gaschromatographisch ermittelt) vor und nach der Acetalisierung sind in Tabelle 2 dargestellt.

20 Tabelle 2

25		Vor der Acetalisierung (Mol%)	Nach der Acetalisierung (Mol%)	
	Ethanol	11,0	0,3	
	Diethoxyethan	10,6	24,5	
	Ethylvinylether	78,4	75,2	

30 b2) Acetalisierung mit saurem Ionenaustauscher

Der Reaktionsaustrag aus Beispiel 1(a) wurde durch einen auf 0°C gekühlten Rohrreaktor aus Glas (400 mm Länge, Durchmesser 28 mm) geleitet. Der Reaktor wurde wie folgt von unten nach oben befüllt: zuerst in einer Wärmetauschstrecke von ca. 8 cm Höhe mit Raschigringen aus Metall, darüber der saure Ionenaustauscher (Amberlyst ** 15, 8 cm), darauf ein basischer Ionenaustauscher (Amberlyst A21, 10 cm) und schließlich wieder eine Inertpackung (z.B. Glaskugeln), um die Säule auszufüllen. Durch den Reaktor wurden 10 ml/min (entspricht ca. 0,5 min Verweilzeit am sauren Ionenaustauscher) des Gemisches aus Beispiel 1a) geleitet. Die Zusammensetzung vor und nach dem Reaktor ist in Tabelle 3 angegeben:

Tabelle 3

	Vor der Acetalisierung (Mo1%)	Nach der . Acetalisierung (Mol%)
Ethanol	11,0	0,1
Diethoxyethan	10,6	25,0
Ethylvinylether	78,4	74,9

10

5

- c) Destillation des Acetalisierungsgemisches und Rückführung des Acetals in den Reaktor
- 500 ml des Reaktoraustrags gemäß (b1) wurden an einer Füllkörperkolonne destillativ getrennt. Man erhielt 320 g Ethylvinylether mit einer Reinheit von 99,9 %. Der Reaktorsumpf wurde in den Reaktor der Stufe 1) zurückgeführt.
- 500 g des Reaktoraustrages gemäß (b2) wurden an einer Füll20 körperkolonne (1,5 m Maschendrahtringe, 5 mm Durchmesser)
 destillativ getrennt. Man erhielt 320 g Ethylvinylether mit
 einer Reinheit von 99,9 %. Der Reaktorsumpf (etwa 170 g)
 wurde in den Reaktor der Stufe 1a) zurückgeführt.

25 Beispiel 2

Der Austrag aus Beispiel 1a) wurde in einer Kolonne (1,5 m, Maschendrahtringe, 5 mm Durchmesser) bei einem Rücklaufverhältnis von 2:1 getrennt. Aus 300 g wurden 222 g Ethylvinylether mit 30 einer Reinheit von >99,9 % erhalten (Sdp. 35°C). Der Rückstand enthielt Ethanol und Acetal im Verhältnis 49,5 zu 50,5 und wurde wieder in den Reaktor der Stufe 1a) zurückgeführt.

Beispiel 3

35

45

- a) Herstellung von Isobutylvinylether in der Gasphase
- In einem Rohrreaktor (Länge: 6 m, Durchmesser: 6 mm) wurden an einem Zinksilikat-Katalysator (hergestellt durch Tränkung von kugelförmigen (Ø 3-5 mm) SiO₂-Formkörpern mit ammoniakalischer Zinkacetatlösung, Zn-Gehalt, berechnet als ZnO: 20 Gew.-%) Acetylen, Isobutanol und 1,1-Di-iso-butoxyethan mit einer Belastung von 0,1 kg·m⁻²·s⁻¹ bei einer Temperatur von 160°C und Normaldruck umgesetzt.

Der Alkohol und das Acetal wurden vor dem Reaktor verdampft und mit dem Acetylen gasförmig in den Reaktor geleitet. Das austretende Gasgemisch wurde mittels online-Gaschromatographie quantitativ analysiert und anschließend bei -10°C kondensiert. Die Einsatzmenge und Zusammensetzung des Produktgemisches sind in Tabelle 6 zusammengefaßt. Die Selektivität zum Isobutylvinylether betrug 98 % (bzgl. i-Butanol + 1,1-Di-iso-butoxyethan).

10 Tabelle 6

5

		Reaktoreingang (mol/h)	Reaktorausgang (mol/h)	Umsatz (%)
4-	Acetylen	0,079	0,003	96
15	i-BuOH	0,079	0,013	84
	Di-i-butoxyethan	0,013	0,004	69
	i-butylvinylether	•	0,083	

20 b) Acetalisierung des Reaktoraustrages aus 3(a)

100 ml der kondensierten Bestandteile des Reaktoraustrages aus 3(a) wurden mit 0,1 g p-Toluolsulfonsäure versetzt und 5 min bei Raumtemperatur gerührt. Dann wurde mit 1 g Kalciumcarbonat neutralisiert. Die Zusammensetzungen (gaschromatographisch ermittelt) vor und nach der Acetalisierung sind in Tabelle 7 dargestellt.

Tabelle 7

_	_
7	n
	.,

35

45

25

	Vor der Acetalisierung (Mol%)	Nach der Acetalisierung (Mol%)
i-BuOH	83	0,1
Di-i-butoxyethan	13	17,8
i-Butylvinylether	4	82,1

c) Destillation des Acetalisierungsgemisches und Rückführung des
 40 Acetals in dem Reaktor

500 g des Reaktoraustrages gemäß Beispiel 3b wurden an einer Füllkörperkolonne (1,5 m, Maschendrahtringe, 5 mm Durchmesser) destillativ getrennt. Man erhielt 355 g Isobutylvinylether mit einer Reinheit von 99,9 %. Der Reaktorsumpf (138 g) wurde in den Reaktor der Stufe 3a) zurückgeführt.

Patentansprüche

Verfahren zur Herstellung von Enolethern der Formel I

$$R - (CHR)_m - C = C \stackrel{R}{=} C$$

10

45

durch Umsetzung von Alkoholen der Formel II

R¹OH II und/oder

15 Acetalen bzw. Ketalen der Formel III

$$R - (CHR)_{m} - C - CH R R$$

$$| C - CH R R$$

$$| CR^{1}$$

$$| CR^{1}$$

in denen R¹ einen aliphatischen, cycloaliphatischen, araliphatischen, aromatischen oder heterocyclischen Rest bedeutet, wobei diese Reste weitere Substituenten, die nicht mit Acetylenen oder Allenen reagieren, tragen können und die Reste R unabhängig voneinander für Wasserstoff, oder aliphatische, cycloaliphatische, araliphatische, aromatische oder heterocyclische Reste stehen, die unter Bildung eines Ringes miteinander verbunden sein können und m für 0 oder 1 steht,

mit Acetylenen und/oder Allenen der Formeln IV bzw. V

$$R-C \equiv C-R \qquad IV \qquad \qquad R \qquad C = C = C \stackrel{R}{\longrightarrow} V,$$

in der Gasphase bei erhöhter Temperatur in Gegenwart eines Zink oder Cadmium zusammen mit Silicium und Sauerstoff enthaltenden Heterogenkatalysators und Isolierung der Enolether der Formel I durch Destillation, dadurch gekennzeichnet, daß man

5

20

25

30

35

40

- a) die Umsetzung mit einem molaren Verhältnis Alkohol +
 Acetal zu Alkin und/oder Allen gleich oder größer 1 und
 so durchführt, daß der den Reaktor verlassende Strom
 enthaltend den Enolether der Formel I, überschüssigen
 Alkohol der Formel II und Acetal der Formel III praktisch
 frei von Acetylenen oder bzw. Allenen ist,
- den den Reaktor verlassenden Strom entweder unmittelbar einer Destillation unterwirft unter Auftrennung in ein aus Enolether I und Alkohol II bestehendes Azeotrop als Kopfprodukt (das gegebenenfalls auch nicht umgesetzte Reste Alkin/Allen enthält), Enolether als Zwischensieder und Acetal III als Sumpfprodukt und Rückführung des Kopfproduktes und des Sumpfproduktes in den Reaktor, mit der Maßgabe, daß man die Reaktionsbedingungen und die Molverhältnisse der Reaktoreinspeisung so wählt, daß das molare Verhältnis Enolether zu Alkohol im Reaktoraustrag größer ist als das Verhältnis Enolether zu Alkohol im Azeotrop, oder

b²) falls der Enolether I und Alkohol II kein Azeotrop bilden, den den Reaktor verlassenden Strom unmittelbar einer Destillation unterwirft unter Auftrennung in ein aus Enolether I bestehendes Kopfprodukt und in ein aus Acetal III und Alkohol II bestehendes Sumpfprodukt und Rückführung des Sumpfproduktes in den Reaktor, und/oder

- c) den den Reaktor verlassenden Strom einer Umsetzung an einem für die Acetalisierung geeigneten Katalysator bei Temperaturen unterhalb 100°C unterwirft unter Umsetzung des überschüssigen Alkohols II mit dem Enolether I zum Acetal III und destillative Auftrennung des im wesentlichen von Alkohol I befreiten Reaktionsgemisches in das Enoletherprodukt und Acetal III, das in den Reaktor zurückgeführt wird.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man als Alkin und/oder Allen Propin, Propadien oder deren Gemische verwendet.
- 3. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man als Alken Acetylen verwendet.
- Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß
 man als Alkohole R¹OH Alkanole oder Alkandiole mit 1 bis 8 C-Atomen verwendet.

WO 00/15590 PCT/EP99/06446

5. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß man Alkanole oder Alkandiole ausgewählt aus der Gruppe bestehend aus Methanol, Ethanol, Propanol, Butanol, Isobutanol, Ethylhexanol, Ethylenglykol, Propylenglykol-1,2, Propylenglykol-1,3 und 1,4-Butandiol verwendet.

INTERNATIONAL SEARCH REPORT

PCT/EP 99/06446

A CLASS	TEICATION OF OUR				T C I / E I	79/00440
IPC 7	CO7C43/16	C07C41/08	C07C41/28	C07C41/	/42	
	to International Patent Clas	sification (IPC) or to bott	h national classification	and IPC		
	SEARCHED					
Minimum d	ocumentation searched (c CO7C	lassification system follo	wed by classification sy	mbols)		
				_		
Documenta	ition searched other than m	inimum documentation (to the extent that such o	ocuments are incl	uded in the fields	searched
Electronic o	tata base consulted during	the international search	(name of data base an	d, where practical	l, search terms us	ed)
C. DOCUM	ENTS CONSIDERED TO E	BE RELEVANT				
Category 3	Citation of document, wit	h indication, where app	ropriate, of the relevant	passages	*	Relevant to claim No.
Α .	12 February	1990 (1990-(. 112, no. 7, 02-12)			1
	manufacture isopropenyl page 687; c	. 54986a, N: "A cataly of methyl ar ethers"	yst for the nd ethyl			
-	XP002080414 abstract & DD 267 62	9 A 				
			- /			
	·					
X Furth	er documents are listed in t	he continuation of box	с. Х	Patent family r	nembers are liste	d in annex.
° Special cate	egories of cited documents	:	#TP 1			
conside	nt defining the general state ared to be of particular relev	ance	Ģ	i prionty date and	DOING CONTICT WIT	temational filing date In the application but heory underlying the
"E" earlier do	ocument but published on o	or after the international	"X" do	cument of particul	lar relevance; the	claimed invention
Which is	nt which may throw doubts of cited to establish the public or other special reason (as	cation date of another	ii "Y" do	annot be consider tvolve an inventive cument of particul	red novel or canno e step when the d lar relevance: the	of be considered to ocument is taken alone
"O" documer other m	nt referring to an oral disclo eans	sure, use, exhibition or	d	armot be consider ocument is combi- nents, such combi	red to involve an it ned with one or m	noventive step when the nore other such docu-
ater tha	nt published prior to the inte an the priority date claimed		ır	the art. cument member o		
	ctual completion of the inte		D	ate of mailing of th	he international se	earch report
	December 1999			14/01/20	000	
Name and ma	alling address of the ISA European Patent Office, NL - 2280 HV Rijswijk		A	Ithorized officer		
	Tel. (+31-70) 340-2040 Fax: (+31-70) 340-3010	7. 13. 31 051 epo ∩l. 6		Wright,	M	

INTERNATIONAL SEARCH REPORT

Inter anal Application No
PCT/EP 99/06446

	ation) DOCUMENTS CONSIDERED TO BE RELEVANT	
Category 3	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	CHEMICAL ABSTRACTS, vol. 112, no. 7, 12 February 1990 (1990-02-12) Columbus, Ohio, US; abstract no. 54987b, O. N.TEMKIN: "A catalyst for the manufacture of methyl and ethyl isopropenyl ether" page 687; column 1; XP002080415 abstract & DD 265 289 A	1
Α	EP 0 776 879 A (BASF) 4 June 1997 (1997-06-04) claims	1
Α.	EP 0 299 286 A (BASF) 18 January 1989 (1989-01-18) claims	1
A	EP 0 217 089 A (DEGUSSA) 8 April 1987 (1987-04-08) claims	1
P,A	DE 197 26 667 A (BASF) 24 December 1998 (1998-12-24) cited in the application claims; examples	1
		· (3)
·		

INTERNATIONAL SEARCH REPORT

..formation on patent family members

PCT/EP 99/06446

Patent document cited in search repor	t	Publication date		Patent family member(s)	Publication date
DD 267629	Α	10-05-1989	CS	8507060 A	14-04-1989
DD 265289	Α	01-03-1989	CS BG	8507311 A 47722 A	16-08-1988 14-09-1988
EP 776879	A 	04-06-1997	DE CN JP US	19544450 A 1218791 A 9183746 A 5767325 A	05-06-1997 09-06-1999 15-07-1997 16-06-1998
EP 299286	A 	18-01-1989	DE US	3722891 A 4891451 A	19-01-1989 02-01-1990
EP 217089	A 	08-04-1987	DE AT BE BR JP US	3535128 A 42271 T 905507 A 8604568 A 62087247 A 5100852 A	02-04-1987 15-05-1989 30-03-1987 26-05-1987 21-04-1987 31-03-1992
DE 19726667	Α	24-12-1998	AU WO	8626098 A 9858894 A	04-01-1999 30-12-1998

INTERNATIONALER RECHERCHENBERICHT

Intel onales Aktenzeichen PCT/EP 99/06446

a. KLASSI IPK 7	FIZIERUNG DES ANMELDUNGSGEGENSTANDES C07C43/16 C07C41/08 C07C41/	28 C07C41/42
Nach der In	ternationalen Patentklassifikation (IPK) oder nach der nationalen Kla	ssifikation und der IPK
B. RECHE	RCHIERTE GEBIETE	
Recherchier IPK 7	ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymb C07C	ole)
Recherchier	te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s	oweit diese unter die recherchierten Gebiete fallen
Während de	r internationalen Recherche konsultierte elektronische Datenbank (I	Name der Datenbank und evtl. verwendete Suchbegriffe)
C. ALS WE	SENTLICH ANGESEHENE UNTERLAGEN	
Kategone*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angab	ne der in Betracht kommenden Teile Betr. Anspruch Nr.
A	CHEMICAL ABSTRACTS, vol. 112, no 12. Februar 1990 (1990-02-12) Columbus, Ohio, US; abstract no. 54986a, O. N. TEMKIN: "A catalyst for the manufacture of methyl and ethyl isopropenyl ethers" Seite 687; Spalte 1; XP002080414 Zusammenfassung & DD 267 629 A	
	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	X Siehe Anhang Patentfamilie
Besondere "A" Veröffen aber ni "E" älteres I Anmelc "L" Veröffen scheine andere soll ode ausgefi "O" Veröffen eine Be "P" Veröffen	Kategorien von angegebenen Veröffentlichungen: Ittlichung, die den allgemeinen Stand der Technik definiert, cht als besonders bedeutsam anzusehen ist Dokument, das jedoch erst am oder nach dem internationalen dedatum veröffentlicht worden ist tlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- an zu lassen, oder durch die das Veröffentlichungsdatum einer n im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie	 T* Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theone angegeben ist "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindur kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erfinderischer Tätigkeit beruhend betrachtet werden "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindur kann nicht als auf erfinderischer Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategone in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist
	bschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
15	5. Dezember 1999	14/01/2000
Name und P	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk Tel. (+31-70) 340–2040, Tx. 31 651 epo ni, Fax: (+31-70) 340–3016	Bevollmächtigter Bediensteter Wright, M

INTERNATIONALER RECHERCHENBERICHT

Inter onales Aktenzeichen
PCT/EP 99/06446

· /Fortage	PCT/E	EP 99/06446
ategorie ,	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	
	Teile	Betr. Anspruch Nr.
	CHEMICAL ABSTRACTS, vol. 112, no. 7, 12. Februar 1990 (1990-02-12) Columbus, Ohio, US; abstract no. 54987b, O. N.TEMKIN: "A catalyst for the manufacture of methyl and ethyl isopropenyl ether" Seite 687; Spalte 1; XP002080415 Zusammenfassung & DD 265 289 A	1
	EP 0 776 879 A (BASF) 4. Juni 1997 (1997-06-04) Ansprüche	1
	EP 0 299 286 A (BASF) 18. Januar 1989 (1989-01-18) Ansprüche	1
	EP 0 217 089 A (DEGUSSA) 8. April 1987 (1987-04-08) Ansprüche	1
, A	DE 197 26 667 A (BASF) 24. Dezember 1998 (1998-12-24) in der Anmeldung erwähnt Ansprüche; Beispiele	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichung \ldots , die zur selben Patentfamilie gehören

Inter maies Aktenzeichen
PCT/EP 99/06446

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DD 267629	Α	10-05-1989	CS	8507060 A	14-04-1989
DD 265289	A	01-03-1989	CS BG	8507311 A 47722 A	16-08-1988 14-09-1988
EP 776879	A	04-06-1997	DE CN JP US	19544450 A 1218791 A 9183746 A 5767325 A	05-06-1997 09-06-1999 15-07-1997 16-06-1998
EP 299286	A	18-01-1989	DE US	3722891 A 4891451 A	19-01-1989 02-01-1990
EP 217089	A	08-04-1987	DE AT BE BR JP US	3535128 A 42271 T 905507 A 8604568 A 62087247 A 5100852 A	02-04-1987 15-05-1989 30-03-1987 26-05-1987 21-04-1987 31-03-1992
DE 19726667	Α	24-12-1998	AU WO	8626098 A 9858894 A	04-01-1999 30-12-1998

THIS PAGE BLANK (USPTO)