Bookmark

Show all steps: (

A Book of Abstract Algebra (2nd Edition)

Chapter 28, Problem 4EE

Problem Let N be the null space of h, and the range space of h. Let {a₁,, a₂} be a basis of N. Extend it to a basis {a₁,, aₙ, aₙ} of U. Prove part: Every vector b∈ is a linear combination of h(aₙ+1),, h(aₙ). Step-by-step solution Step 1 of 5 It is already known that U and V are vector spaces and so they satisfies all conditions for vecto space. Comment Step 2 of 5 Range space of h is subspace of V is set of all elements of V which are map of vectors of U. Comment Step 3 of 5 Or given subspace is		
Extend it to a basis {a ₁ ,, a _n ,, a _n } of <i>U</i> . Prove part: Every vector b is a linear combination of <i>h</i> (a _{n+1}),, <i>h</i> (a _n). Step-by-step solution Step 1 of 5 It is already known that <i>U</i> and <i>V</i> are vector spaces and so they satisfies all conditions for vecto space. Comment Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment		Problem
Extend it to a basis {a ₁ ,, a _n ,, a _n } of <i>U</i> . Prove part: Every vector b is a linear combination of <i>h</i> (a _{r+1}),, <i>h</i> (a _n). Step-by-step solution Step 1 of 5 It is already known that <i>U</i> and <i>V</i> are vector spaces and so they satisfies all conditions for vecto space. Comment Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment	Let N be the	e null space of h , and \mathfrak{g} the range space of h . Let $\{\mathbf{a}_1,, \mathbf{a}_r\}$ be a basis of N .
Step-by-step solution Step 1 of 5 It is already known that <i>U</i> and <i>V</i> are vector spaces and so they satisfies all conditions for vecto space. Comment Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment		
Step 1 of 5 It is already known that <i>U</i> and <i>V</i> are vector spaces and so they satisfies all conditions for vecto space. Comment Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment	Prove part:	
Step 1 of 5 It is already known that <i>U</i> and <i>V</i> are vector spaces and so they satisfies all conditions for vector space. Comment Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment Step 3 of 5	Every vector	$\mathbf{b} \in \mathscr{M}$ is a linear combination of $h(\mathbf{a}_{r+1}),, h(\mathbf{a}_n)$.
It is already known that <i>U</i> and <i>V</i> are vector spaces and so they satisfies all conditions for vector space. Comment Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment Step 3 of 5		Step-by-step solution
Comment Step 2 of 5 Range space of h is subspace of V is set of all elements of V which are map of vectors of U. Comment Step 3 of 5		Step 1 of 5
Step 2 of 5 Range space of <i>h</i> is subspace of <i>V</i> is set of all elements of <i>V</i> which are map of vectors of <i>U</i> . Comment Step 3 of 5		known that $\it U$ and $\it V$ are vector spaces and so they satisfies all conditions for vecto
Range space of h is subspace of V is set of all elements of V which are map of vectors of U. Comment Step 3 of 5	Comment	
Comment Step 3 of 5		Step 2 of 5
Step 3 of 5	Range space	e of h is subspace of V is set of all elements of V which are map of vectors of U .
	Comment	
Or given aubanaga ia		Step 3 of 5
	Or airea and	

Comment

Step 4 of 5

Thus any element in range is a map of some vector in *U*

Comment

Step 5 of 5

For any element r in range of h, we can find a element u in U such that

$$h(\mathbf{u}) = \mathbf{r}$$

Since U is a vector space, every element in U can be expressed as linear combination of basis of U. So,

$$\mathbf{u} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + ... t_r \mathbf{a}_r + ... + t_n \mathbf{a}_n$$

Taking linear transformation

$$h(\mathbf{u}) = h(t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots t_r \mathbf{a}_r + \dots + t_n \mathbf{a}_n)$$

$$\Rightarrow h(\mathbf{u}) = t_1 h(\mathbf{a}_1) + t_2 h(\mathbf{a}_2) + \dots + t_r h(\mathbf{a}_r) + \dots + t_n h(\mathbf{a}_n) \qquad \dots (1)$$

Since $(\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_r)$ is null basis of h,

$$h(\mathbf{a}_r) = \mathbf{0} \forall r \in (0, 1, ..., r)$$

Therefore (1) can be rewritten as,

$$h(\mathbf{u}) = t_{r+1}h(\mathbf{a}_{r+1}) + ... + t_nh(\mathbf{a}_n)$$

Hence every vector **b** in range can be written as linear combination of $h(\mathbf{a}_{r+1}),...,h(\mathbf{a}_n)$

Comment