DL for Case Based Reasoning - Reproduction Berend Jansen, Tom Lotze, Stan Lochtenberg, Cees Kaandorp

FACT in AI, Group 4

January 31, 2020

Outline

- 1 Introduction
 - Transparency in AI
 - Prototype based reasoning
- 2 Methodology & Experiments
- 3 Results
 - Accuracy
 - Prototypes
- 4 Conclusion
- 6 Discussion

Transparency in black box models

- ▶ Decision making is inherently nontransparent in neural networks
- ▶ Visualizing model reasoning can give useful insights

(a) Husky classified as wolf

(b) Explanation

Figure 1: Raw data and explanation of model prediction [4]

Types of interpretability [2]

- ► Post hoc
 - ► LIME
 - ► SHAP
- ► Example-based
 - Counterfactual examples
 - ► Adversarial examples
 - ► Influential Instances
 - Prototypes

Prototype based reasoning

- Classification based on similarity to prototypes in latent space
- Visualize prototypes to explain model

Prototype

Typical representation of the data, showing general characteristics.

Figure 2: Prototype classification model [1]

Li et al. [1]: original paper

- ▶ 3 datasets:
 - ► MNIST handwritten digits
 - ► Car angles
 - ► Fashion MNIST

Deep Learning for Case-Based Reasoning through Prototypes: A Neural Network that Explains Its Predictions

Oscar Li*1, Hao Liu*3, Chaofan Chen1, Cynthia Rudin1,2

¹Department of Computer Science, Duke University, Durham, NC, USA 27708

²Department of Electrical and Computer Engineering, Duke University, Durham, NC, USA 27708

³Kuang Yaming Honors School, Nanjing University, Nanjing, China, 210000
runliang.li@duke.edu, 141242059@smail.nju.edu.cn, {cfchen, cynthia}@cs.duke.edu

Model: Cost function

$$L = \lambda_{class} * E + \lambda_{ae} * R + \lambda_1 * R1 + \lambda_2 * R2 \tag{1}$$

- ightharpoonup E: Cross Entropy loss
- \triangleright R: Reconstruction loss
- ▶ R1: Push prototypes to have meaningful decodings in pixel space
- ▶ R2: Cluster training examples around prototypes in latent space

Methodology

- ► Conversion of code base from TensorFlow to PyTorch
 - ▶ Prototype model (PM) and Linear Model (LM)
- ▶ 4 different datasets (all 60,000 images)
 - ► Standard MNIST digits
 - ► CIFAR-10
 - ▶ MNIST colored (natural) background¹
 - ► MNIST gray (natural) background
- ightharpoonup Grid search for optimal λ in colored & gray MNIST

Figure 3: Lena & Examples of colored MNIST dataset

Results: Accuracy on different datasets

Model on dataset	Accuracy	Nr. epochs
LM on MNIST color	0.956	40
LM on MNIST rgb2gray	0.980	20
Li et al. [1] on standard MNIST	0.995	1500
PM on standard MNIST	0.991	20
PM on MNIST color	0.947	20
PM on MNIST rgb2gray	0.977	25
PM on CIFAR-10	0.643	30

Table 1: Performance of the best model on different datasets. Accuracy is computed on hold-out test set. PM refers to the Prototype Model, LM refers to the Linear Model

Results: Prototype examples

Figure 4: Prototype examples per dataset

Lambda grid search

- ► Effect on accuracy marginal
- ► Effect on prototypes significant

Figure 5: Prototypes learned in grid search:

Left: $\lambda_{class} = 20$, $\lambda_{ae} = 10$, $\lambda_1 = 1$, $\lambda_2 = 10$;

Middle: $\lambda_{class} = 20$, $\lambda_{ae} = 10$, $\lambda_1 = 1$, $\lambda_2 = 20$;

Right: $\lambda_{class} = 20$, $\lambda_{ae} = 1$, $\lambda_1 = 10$, $\lambda_2 = 1$

Conclusion

- More complicated backgrounds can still produce meaningful prototypes
- ► Colored images lead to problems
- ▶ Little to no intra-class variation required for meaningful prototypes
- ▶ Badge: Results Replicated
 - ▶ "The main results of the paper have been obtained in a subsequent study by a person or team other than the authors, using, in part, artifacts provided by the authors" [3]

Discussion

- ► FACT Li et al. [1]
 - ▶ Discrepancies between code and original paper
 - ▶ Not for all datasets code available
- ▶ Limitations of our work
 - ► Color is (still) too complex for this architecture
 - ▶ Confidentiality: Prototypes contain information about training images.
 - Data removal requires retraining

References

- [1] Li, O., Liu, H., Chen, C., and Rudin, C. (2018). Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions. In *Thirty-Second AAAI Conference on Artificial Intelligence*.
- [2] Molnar, C. (2019). *Interpretable Machine Learning*. https://christophm.github.io/interpretable-ml-book/.
- [3] of Computing Machinery, A. (2018). Artifact review and badging.
- [4] Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). "why should i trust you?" explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pages 1135–1144.