Name: Mohan R

Roll no: 611219106303

Date: 24/09/2022

- 1. Download the dataset from the source here.

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
```

- 2. Load the dataset

```
df = pd.read_csv("Churn_Modelling.csv")
df.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	Hargrave	619	France	Fema l e	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	Mitchell	850	Spain	Fema l e	43	2	125510.82	1	1	1	79084.10	0

df.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
9995	9996	15606229	Obijiaku	771	France	Ma l e	39	5	0.00	2	1
9996	9997	15569892	Johnstone	516	France	Ma l e	35	10	57369.61	1	1
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	0
9998	9999	15682355	Sabbatini	772	Germany	Ma l e	42	3	75075.31	2	1
9999	10000	15628319	Walker	792	France	Fema l e	28	4	130142.79	1	1

- 3 a). Univariate analysis

geo = df['Geography'].value_counts()
geo.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7ff692753f50>

sns.countplot(df['Gender'])

 $/usr/local/lib/python 3.7/dist-packages/seaborn/_decorators.py: 43: \ Future Warning: \ Pass \ the following \ variable \ as \ a \ keyword \ begin{picture}(1,0) \put(0,0) \put($ FutureWarning

<matplotlib.axes._subplots.AxesSubplot at 0x7ff6921ec490>

sns.distplot(df['Age'],hist=False)

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function warnings.warn(msg, FutureWarning)

<matplotlib.axes._subplots.AxesSubplot at 0x7ff6921879d0>

plt.figure(figsize=(10,8))

sns.countplot(df['Tenure'])

 $/usr/local/lib/python 3.7/dist-packages/seaborn/_decorators.py: 43: \ Future Warning: Pass the following variable as a keyword of the$

FutureWarning <matplotlib.axes._subplots.AxesSubplot at 0x7ff692216f90>

product = df['NumOfProducts'].value_counts()
product.plot(kind="pie",figsize=(10,8))

<matplotlib.axes._subplots.AxesSubplot at 0x7ff69210f490>

<matplotlib.axes._subplots.AxesSubplot at 0x7ff691ff8610>

plt.figure(figsize=(8,5))
sns.countplot(df['IsActiveMember'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword FutureWarning
matplotlib.axes._subplots.AxesSubplot at 0x7ff692027d10>

 $\verb|sns.distplot(df['EstimatedSalary'], hist=False)|\\$

/usr/local/lib/python3.7/dist-packages/seaborn/distributions.py:2619: FutureWarning: `distplot` is a deprecated function warnings.warn(msg, FutureWarning)
<matplotlib.axes._subplots.AxesSubplot at 0x7ff691f990d0>

plt.figure(figsize=(8,5))
sns.countplot(df['Exited'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword FutureWarning <matplotlib.axes._subplots.AxesSubplot at 0x7ff691f18b50>

- 3 b). Bivariate analysis

 $\verb|sns.violinplot(x='Geography',y='Balance',data=df)|\\$

sns.violinplot(x='Geography',y='EstimatedSalary',data=df)

 $\verb|sns.violinplot(x='Gender',y='Balance',data=df)|\\$

sns.barplot(x='Exited',y='CreditScore',hue='Gender',data=df)

sns.barplot(x='Exited',y='CreditScore',hue='Geography',data=df)

 $\verb|sns.barplot(x='IsActiveMember',y='EstimatedSalary',hue='Gender',data=df)|$

→ 3 c). Multivariate analysis

```
gp1 = df.groupby('Gender')['Geography'].value_counts()
gp1.plot(kind='pie',figsize=(10,8))
print(gp1)
```

Gender	Geograph	y				
Female	e France	226	2261			
	Germany	119	93			
	Spain	108	39			
Male	France	2753				
	Spain	138	38			
	Germany	131	L6			
Name:	Geography,	dtype:	int64			


```
gp2 = df.groupby('Gender')['Age'].mean()
print(gp2)
```

Gender

Female 39.238389 Male 38.658237 Name: Age, dtype: float64

gp3 = df.groupby(['Gender','Geography'])['Tenure'].mean() print(gp3)

Gender Geography Female France Germany 4.950022 4.965633 5.000000 Spain France Germany 5.049401 5.050152 5.057637 Spain 5.057633 Name: Tenure, dtype: float64

gp4 = df.groupby(['Gender','HasCrCard','IsActiveMember'])['EstimatedSalary'].mean()
gp4.plot(kind="line",figsize=(10,8)) print(gp4)

Name: EstimatedSalary, dtype: float64

gp5 = df.groupby(['Gender','IsActiveMember'])['Exited'].value_counts()
gp5.plot(kind='bar',figsize=(10,8))
print(gp5)

Gender	IsActiveMember	Exited	
Female	0	0	1534
		1	725
	1	0	1870
		1	414
Male	0	0	2013
		1	577
	1	0	2546
		1	321

 $\label{eq:gp6} $$gp6 = df.groupby(`Exited')[`Balance',`EstimatedSalary'].mean()$$print(gp6)$

Balance EstimatedSalary
Exited 72745.296779 99738.391772
1 91108.539337 101465.677531

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:1: FutureWarning: Indexing with multiple keys (implicitly converted to a tuple of keys) will be deprecated, use a lis """Entry point for launching an IPython kernel.

4. Descriptive statistics

df.describe().T

	count	mean	std	min	25%	50%	75%	max
RowNumber	10000.0	5.000500e+03	2886.895680	1.00	2500.75	5.000500e+03	7.500250e+03	10000.00
Customerid	10000.0	1.569094e+07	71936.186123	15565701.00	15628528,25	1.569074e+07	1.575323e+07	15815690.00
CreditScore	10000.0	6,505288e+02	96.653299	350.00	584.00	6.520000e+02	7.180000e+02	850.00
Age	10000.0	3.892180e+01	10.487806	18.00	32.00	3.700000e+01	4.400000e+01	92.00
Tenure	10000.0	5.012800e+00	2.892174	0.00	3.00	5.000000e+00	7.000000e+00	10.00
Balance	10000.0	7.648589e+04	62397.405202	0.00	0.00	9.719854e+04	1.276442e+05	250898.09
NumOfProducts	10000.0	1.530200e+00	0.581654	1.00	1.00	1.000000e+00	2.000000e+00	4.00
HasCrCard	10000.0	7.055000e-01	0.455840	0.00	0.00	1.000000e+00	1.000000e+00	1.00
IsActiveMember	10000.0	5.151000e-01	0.499797	0.00	0.00	1.000000e+00	1.000000e+00	1.00
EstimatedSalary	10000.0	1.000902e+05	57510.492818	11.58	51002.11	1.001939e+05	1.493882e+05	199992.48
Exited	10000.0	2.037000e-01	0.402769	0.00	0.00	0.000000e+00	0.000000e+00	1.00

5. Handling the missing values

df.isnull().sum()

There is no missing value in the dataset

- 6. Finding outliers

```
def replace_outliers(df, field_name):
    Q1 = np.percentile(df[field_name],25,interpolation='midpoint')
    Q3 = np.percentile(df[field_name],75,interpolation='midpoint')
    IQR = Q3-Q1
    maxi = Q3+1.5*IQR
    mini = Q1-1.5*1QR
    df[field_name]=df[field_name].mask(df[field_name]>maxi,maxi)
    df[field_name]=df[field_name].mask(df[field_name]<mini,mini)

plt.title("Before removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()
plt.title("After removing outliers")
sns.boxplot(df['CreditScore'])
plt.show()</pre>
```

 $/usr/local/lib/python 3.7/dist-packages/seaborn/_decorators.py: 43: \ Future Warning: Pass the following variable as a keyword Future Warning$

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword FutureWarning


```
plt.title("Before removing outliers")
sns.boxplot(df['Age'])
plt.show()
plt.title("After removing outliers")
replace_outliers(df, 'Age')
sns.boxplot(df['Age'])
plt.show()
```

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword FutureWarning

sns.boxplot(df['Balance'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword FutureWarning
matplotlib.axes._subplots.AxesSubplot at 0x7ff68ec91890>

sns.boxplot(df['EstimatedSalary'])

/usr/local/lib/python3.7/dist-packages/seaborn/_decorators.py:43: FutureWarning: Pass the following variable as a keyword FutureWarning

0 25000 50000 75000 100000 125000 150000 175000 200000 EstimatedSalary

Outliers from Age and Credit Score columns are removed

▼ 7. Check for categorical column and perform encoding.

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()

df['Gender'] = le.fit_transform(df['Gender'])
df['Geography'] = le.fit_transform(df['Geography'])
```

df.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsA
0	1	15634602	Hargrave	619.0	0	0	42.0	2	0.00	1	1	
1	2	15647311	Hill	608.0	2	0	41.0	1	83807.86	1	0	
2	3	15619304	Onio	502.0	0	0	42.0	8	159660.80	3	1	
3	4	15701354	Boni	699.0	0	0	39.0	1	0.00	2	0	
4	5	15737888	Mitchell	850.0	2	0	43.0	2	125510.82	1	1	

Only two columns(Gender and Geography) is label encoded

Removing unwanted columns and checking for feature importance

```
df = df.drop(['RowNumber','CustomerId','Surname'],axis=1)
```

df.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exi
0	619.0	0	0	42.0	2	0.00	1	1	1	101348.88	
1	608.0	2	0	41.0	1	83807.86	1	0	1	112542.58	
2	502.0	0	0	42.0	8	159660.80	3	1	0	113931.57	
3	699.0	0	0	39.0	1	0.00	2	0	0	93826.63	
4	850.0	2	0	43.0	2	125510.82	1	1	1	79084.10	

plt.figure(figsize=(20,10))
df_lt = df.corr(method = "pearson")

df_lt1 = df_lt.where(np.tril(np.ones(df_lt.shape)).astype(np.bool))
sns.heatmap(df_lt1,annot=True,cmap="coolwarm")

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: DeprecationWarning: `np.bool` is a deprecated alias for t Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
This is separate from the ipykernel package so we can avoid doing imports until https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
This is separate from the ipykernel package so we can avoid doing imports until https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
This is separate from the ipykernel package so we can avoid doing imports until https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
This is separate from the ipykernel package so we can avoid doing imports until https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations

- 1. The Removed columns are nothing to do with model building.
- 2. Feature importance also checked using pearson correlation.

- 8. Data Splitting

- 9. Scaling the independent values

```
from sklearn.preprocessing import StandardScaler
se = StandardScaler()

data['CreditScore'] = se.fit_transform(pd.DataFrame(data['CreditScore']))
data['Age'] = se.fit_transform(pd.DataFrame(data['Age']))
data['Balance'] = se.fit_transform(pd.DataFrame(data['Balance']))
data['EstimatedSalary'] = se.fit_transform(pd.DataFrame(data['EstimatedSalary']))
```

data.head()

	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
	-0.326878	0	0	0.342615	2	-1.225848	1	1	1	0.021886
	-0.440804	2	0	0.240011	1	0.117350	1	0	1	0.216534
:	-1.538636	0	0	0.342615	8	1.333053	3	1	0	0.240687
;	0.501675	0	0	0.034803	1	-1.225848	2	0	0	-0.108918
	2.065569	2	0	0.445219	2	0.785728	1	1	1	-0.365276

→ 10. Train test split

Colab paid products - Cancel contracts here

• ×