ALGO QCM

- 1. Un graphe peut être?
 - (a) Orienté
 - (b) Non oriente
 - (c) A moitié orienté
 - (d) Désorienté
- 2. Dans un graphe orienté, le sommet x est adjacent au sommet y si?
 - (a) Il existe un arc (x,y)
 - (b) Il existe un arc (y,x)
 - (c) Il existe un chemin (x,..,y)
 - (d) Il existe un chemin (y,..,x)
- 3. Dans un graphe orienté, un sommet de degré zéro est appelé?
 - (a) sommet unique
 - (b) sommet isolé
 - (c) sommet nul
 - (d) sommet perdu
- 4. Un graphe orienté G défini par le triplet G=<S,A,C> est?
 - (a) etiqueté
 - (b) valué
 - (c) valorisé
 - (d) numéroté
- 5. Dans un graphe orienté, on dit que l'arc $U = y \rightarrow x$ est?
 - (a) incident à x vers l'extérieur
 - (b) accident à x vers l'extérieur
 - (c) incident à x vers l'intérieur
 - (d) accident à x vers l'intérieur
- 6. Dans un graphe orienté, le nombre d'arcs ayant le sommet x pour extrémité terminale est appelé?
 - (a) le demi-degré extérieur de x
 - (b) le degré de x
 - (c) le demi-degré intérieur de x

- 7. Dans un graphe orienté, s'il existe un arc $U = y \rightarrow x$ pour tout couple de sommet $\{x,y\}$ le graphe est?
 - ((a))complet
 - (b) partiel
 - (c) parfait
- 8. Deux arcs d'un graphe orienté sont dits adjacents si?
 - (a) il existe deux arcs les joignant
 - (b) le graphe est complet
 - (c) Ils ont au moins une extrémité commune
- 9. L'ordre d'un graphe orienté est?
 - (a) Le nombre d'arcs du graphe
 - (b) Le nombre de sommets du graphe
 - (c) Le coût du graphe
 - (d) La liste triée des arcs du graphe
- 10. Dans un graphe orienté valué G=<S,A,C>, les coûts sont portés par?
 - (a) les arcs
 - (b) les sommets

QCM N°4

lundi 21 octobre 2019

Question 11

Parmi ces séries, lesquelles sont des séries entières?

a. $\sum \ln(n+1)2^n$

d. rien de ce qui précède

N=2n-0 $\sum_{n=0}^{N} x^n done (a_n)$ $\begin{cases} a_n=2^{n/2} & \text{s.i. th pair} \\ a_n=0 & \text{s.i. on} \end{cases}$

Question 12

Soit une série entière de rayon de convergence R. Alors

- a.) R peut être égal à +∞
- (b.) Pour tout $x \in \mathbb{R}$ tel que |x| < R, la série converge absolument
 - c. Pour tout $x \in \mathbb{R}$ tel que |x| > R, la série converge absolument
- d.) Pour tout $x \in \mathbb{R}$ tel que |x| > R, la série diverge
 - e. rien de ce qui précède

Question 13

Soit la série entière $\sum \frac{x^n}{n!}$. Alors son rayon de convergence vaut

a.
$$R = 2$$

b.
$$R = 0$$

$$a_n = \frac{1}{n!}$$
 $\lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to +\infty} \frac{n!}{(n+1)!} = \lim_{n \to +\infty} \frac{1}{n+1} = 0$

$$(c.)R = +\infty$$

d.
$$R=1$$

e. rien de ce qui précède

Question 14

Soit la série entière $\sum x^n$. Alors son rayon de convergence vaut

a.
$$R = 2$$

b.
$$R = 0$$

c.
$$R = +\infty$$

$$d.$$
 $R=1$

$$a_n = 1$$
 $\frac{a_{n+1}}{a_n} = 1$

Question 15

Question 15
Soient $\sum a_n x^n$ une série entière de rayon de convergence R non nul et $f: \left\{ \begin{array}{ccc}]-R, R[& \longrightarrow & \mathbb{R} \\ x & \longmapsto & \sum_{n=0}^{+\infty} a_n x^n \end{array} \right.$ Alors

- (a.) f est continue sur]-R, R[
- b) f est dérivable sur]-R, R[et, pour tout $x \in]-R$, R[, $f'(x) = \sum_{n=1}^{+\infty} na_n x^{n-1}$

C. pour tout
$$x \in]-R$$
, $R[$, $\int_0^x f(t)dt = \sum_{n=0}^{+\infty} \frac{a_n}{n+1} x^{n+1}$

d. rien de ce qui précède

Question 16

Soit X une variable aléatoire à valeurs dans $\{0,\ldots,n\}$. Alors

a.
$$E(X) = G_X(1)$$

$$(b.)G_X(1)=1$$

(b.)
$$G_X(1) = 1$$

(c.) $E(X) = G'_X(1)$

d.
$$E(X) = G_{Y}''(1)$$

e. rien de ce qui précède

Question 17

Soit X une variable aléatoire à valeurs dans $\{0,\ldots,n\}$. Alors sa fonction génératrice vaut, pour tout $t\in\mathbb{R}$:

(a.)
$$G_X(t) = E(t^X)$$

b.
$$G_X(t) = \sum_{k=0}^n P(X=k)$$

c. $G_X(t) = E(X^t)$

c.
$$G_X(t) = E(X^t)$$

e. rien de ce qui précède

Question 18

Soit X une variable aléatoire entière dont la fonction génératrice est $G_X(t) = a(2t+1)^2$. Alors

$$a = \frac{1}{9}$$

b.
$$a = \frac{1}{3}$$

c.
$$a = 1$$

e. rien de ce qui précède

Question 19

Soit (u_n) une suite réelle strictement positive telle que pour tout $n \in \mathbb{N}$, $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} \frac{1}{4}$. Alors

b. ∑un diverge

c. on ne peut rien dire sur la nature de $\sum u_n$

D'Alembert

Question 20

Au voisinage de 0, on a

a.
$$\frac{1}{1+x} = 1 + x + x^2 + x^3 + o(x^3)$$

$$\boxed{\text{c.)}} \frac{1}{1-x} = 1 + x + x^2 + x^3 + o(x^3)$$

d.
$$\frac{1}{1-x} = 1 - x + x^2 - x^3 + o(x^3)$$

e. rien de ce qui précède

QCM 4 Azar Chap13 (Adjecclause exs2, 3, 7)

Choose all possible pronouns that can be used to complete these sentences (21-23)

- 21. I paid the plumber ___ repaired my shower.
- a. which
- b. who
- c. that
- (d.) B and C.
- 22. Where is the newspaper __ has the article about online theft?
- a. who
- (b.) that
- c. it
- d. B and C.
- 23. Did you hear about the singer ___ won the Nobel Prize for literature?
- (a.) that
- b. which
- c. he
- d. whom

In 24 and 25, the two sentences have been combined for you, with the second sentence as an adjective clause. Which is the correct combination? (Punctuation is taken into account.)

- 24. I saw the boy. He forgot to buy the grammar book.
- a. I saw the boy which forgot to buy the grammar book.
- (b.) I saw the boy that forgot to buy the grammar book.
- c. I saw the boy, he forgot to buy the grammar book.
- d. I saw the boy who, forgot to buy the grammar book.
- 25. The student is angry. She missed her math test.
- a. The student who missed her math test is angry.
- b. The student that missed her math test is angry.
- c. The student which missed her math test is angry.
- (d.) A and B.

Choose the answer that includes all possible completions for each sentence below.

- 26. Tell me about the writers ____ you read when you were in college.
- a. that
- b. who
- c. whom
- d. no change
- e.) All of the above.

27. Dld	John ask to see the video my dad made when he was a boy?
a. whob. whi	
c. tha	
	o change
(e.) B, C	
0,0	alla D.
28. Th	e people I miss the most when I travel are my friends.
a. the	у
b. whi	ch
(c.) wh	om
d. No	ne of the above.
29. Th	e building George Soros wanted to buy was no longer available.
a. wh	at
b. tha	
_	o change
(d.) B a	nd C.
2	
	e economists supported Hillary Clinton in 2016 are quite well known
a. tha	
b. wh	
-	no change
d) Aa	
e. A,	B and C.

(b) 2001	
c) 2002	
d) 2003	
32) In this same film, Daniel Craig plays the character of	
a) the lover	
b) the "bad guy"	
c) the ally	
d) the father	
33) Which of these terms is an intruder?	
a) Lara Croft	
(b) Spirou	
c) Zelda	
d) Mario Bross	
34) The first game with a female protagonist, "Tomb Raider", appeared in :	
(9) x 938	
b) 1995	
c) 1985	
d) 1996	
35) In this same movie, the main role is played by	
a) Mimi Mathy	
b) Angelina Sojolie	
c) Angelina Veryjolie	
d) Angelina Jolie	
36) The video gaming industry is quite commonly described	

31) The film "Lara Croft: Tomb raider" was realized in

a) 2000

- b). as transgender field.
- c) as egalitarian field.
- d) as matriarcal field.
- 37) In the latest version, Alicia Vikander plays the role of
 - a) the mother of heroine.
 - b) a fanatical geek.
 - c) the wicked witch.
 - (d) ara Croft.
- 38) In the latest version, Lara Croft desperately
 - a seeks her father.
 - b) wants to get rid of his father.
 - c) killed her father.
 - d) does not know her father.
- 39) In the video game, Lara Croft
 - a) represents the sublimated female ideal.
 - b) is quite plausible.
 - c) reflects a certain reality.
 - drefers to a masculine stereotype.
- 40) The world of video games
 - a) still always "macho".
 - b) have a strong cultural impact about democracy.
 - c) is largely dominated by women's characters.
 - d) gradually incorporates gender equality.

O.C.M nº4 de Physique

Note : les valeurs 'q' et 'Q' sont considérées positives.

41 - En considérant une charge q au point O et une charge Q au point M, comment s'exprime l'énergie potentielle électrique $E_{pe}(M)$ au point M?

(a)
$$E_{pe}(M) = k \cdot \frac{q \cdot Q}{QM}$$

a)
$$E_{pe}(M) = k \cdot \frac{q \cdot Q}{OM}$$

b) $E_{pe}(M) = k \cdot \frac{q \cdot Q}{OM^2} \overrightarrow{u_r}$, où $\overrightarrow{u_r}$ est le vecteur unitaire orienté de O vers M.
c) $E_{pe}(M) = k \cdot \frac{q}{OM^2}$

c)
$$E_{pe}(M) = k \cdot \frac{q}{oM^2}$$

42 - L'opposé du gradient du potentiel électrique en un point M est :

- a) Un scalaire
- b) Une valeur absolue
- (C) Un vecteur

43- En coordonnées polaires (r, θ) , quel élément infinitésimal \overline{dl} de longueur n'existe pas ?

a)
$$\overrightarrow{dl} = rd\theta.\overrightarrow{u_{\theta}}$$

(b)
$$d\vec{l} = d\theta . \vec{u_{\theta}}$$
 c) $d\vec{l} = dr . \vec{u_{r}}$

c)
$$\overrightarrow{dl} = dr. \overrightarrow{u_r}$$

44- L'élément infinitésimal de volume dV en cylindrique s'écrit :

(a)
$$dV = r, d\theta, dr, dz$$

(a)
$$dV = r. d\theta. dr. dz$$

b) $dV = dx. dy. dz$

c)
$$dV = dr. d\theta. dz$$

45- On montre qu'un élément infinitésimal situé en P d'un fil de charge linéique λ crée un champ électrique en un point M extérieur au fil $dE_x(x) = \frac{k \cdot \lambda}{x} \cos(\alpha) d\alpha$ où α est tel qu'indiqué ci-dessous.

Le champ électrique créé par un fil infini vaut :

a)
$$E(x) = \frac{k\lambda}{x}$$

$$(b)E(x) = \frac{2k\lambda}{x}$$

c)
$$E(x) = 2\sin(\alpha) \frac{k\lambda}{x}$$

a) $E(x) = \frac{k\lambda}{x}$
b) $E(x) = \frac{2k\lambda}{x}$
c) $E(x) = 2\sin(\alpha)\frac{k\lambda}{x}$ $\int dE_{3}(x) = \left[\frac{k\lambda}{x} \cdot \sin(\alpha)\right]^{\frac{1}{2}} = \frac{k\lambda}{x} - \left(-\frac{k\lambda}{x}\right)$

46 – Comment s'exprime l'élément de charge dQ en fonction de la charge linéique λ et de l'élément infinitésimal de longueur dl?

a)
$$dQ = \frac{\lambda}{dl}$$

b) $dQ = \lambda dl$
c) $dQ = -\lambda dl$

47- Une distribution de charges sphérique crée au point M un potentiel électrique V(r, θ). On peut donc affirmer que le vecteur champ électrique s'écrira :

a)
$$\vec{E} \begin{pmatrix} E_r \\ 0 \\ E_{\varphi} \end{pmatrix}$$
 b) $\vec{E} \begin{pmatrix} 0 \\ E_{\theta} \\ E_{\varphi} \end{pmatrix}$

48 – Le dipôle électrique suivant est considéré. Le point O est situé au milieu de AB.

Le potentiel électrique au point A est :

a)
$$V(A) = k \frac{Q}{a}$$
 b) $V(A) = k \frac{Q}{2a}$ c) $V(A) = -k \frac{Q}{2a}$

49 - La situation de la question 48 est considérée. Le champ électrique créé par B au point A est :

- a) colinéaire à (AB), orienté de A vers B
- (b) colinéaire à (AB), orienté de B vers A
- c) perpendiculaire à (AB), orienté vers les y > 0
- d) perpendiculaire à (AB), orienté vers les y < 0

50 - Une distribution de charges crée en un point M situé à une distance r de O, un potentiel d'expression : $V(r) = \frac{q}{4\pi\epsilon_0} \cdot \frac{1}{r} e^{-\frac{r}{a_0}}$; Où a_0 , q et ϵ_0 sont des constantes positives.

Rappel de l'expression du gradient en polaire : $\overrightarrow{grad} f(r, \theta) = \frac{\partial f}{\partial r} \overrightarrow{u_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{u_\theta}$ Quelle est l'expression du champ électrique $\overline{E(M)}$ au point M?

7. (a)
$$\overline{E(M)} = \frac{q}{4\pi\varepsilon_0} \cdot (\frac{1}{r^2} + \frac{1}{a_0 r}) e^{\frac{r}{a_0}} \cdot \overline{u_r}$$

b) $\overline{E(M)} = \frac{q}{4\pi\varepsilon_0} \cdot (\frac{1}{r^3} + \frac{1}{a_0 r^2}) e^{-r} \cdot \overline{u_r}$
c) $\overline{E(M)} = \frac{1}{4\pi\varepsilon_0} \cdot (\frac{a_0}{r^2} + \frac{1}{a_0 r}) e^{-\frac{r}{a_0}} \cdot \overline{u_r}$

point M?

$$= -\frac{q}{4\pi\epsilon_0} \cdot (-\frac{1}{r^2} - \frac{1 \cdot *}{*a_0}) \cdot e^{-\frac{r}{a_0}} \cdot u_r$$

$$= \frac{q}{4\pi\epsilon_0} \cdot (\frac{1}{r^2} + \frac{1}{a_0}) \cdot e^{-\frac{r}{a_0}} \cdot u_r$$

$$= \frac{q}{4\pi\epsilon_0} \cdot (\frac{1}{r^2} + \frac{1}{a_0}) \cdot e^{-\frac{r}{a_0}} \cdot u_r$$

QCM Electronique - InfoS3

Pensez à bien lire les questions ET les réponses proposées (attention à la numérotation des réponses)

Q1. Le dopage permet d'augmenter la résistivité du semi-conducteur

a- VRAI

b- FAUX

Q2. Par quoi remplace-t-on la diode bloquée si on utilise le modèle à seuil (générateur de tension idéal)?

Soit le circuit ci-contre. (Q3&4)

Q3. Choisir l'affirmation correcte si $E_1=1\,V$, $R_1=50\Omega$, et $R_2=100\Omega$ et que la diode est modélisée par son modèle à seuil (source de tension idéale) avec $V_0=0.6V$:

- b- La diode est passante et le courant qui la traverse vaut 100mA
- c- La diode est passante et le courant qui la traverse vaut 5A.
- d- La diode est passante et le courant qui la traverse vaut 200 mA.

Q4. Choisir l'affirmation correcte si $E_1=10V$, $R_1=100\Omega$, et $R_2=100\Omega$ et que la diode est considérée comme idéale :

- a- La diode est bloquée et la tension à ses bornes est égale à 5V.
- b- La diode est passante et le courant qui la traverse vaut 50mA
- (c) La diode est passante et le courant qui la traverse est égal à 100mA.
- d- La diode est passante et le courant qui la traverse vaut 5A.

$$I_0 = I_2 - I_1 = \frac{E_1 - V_0}{R_2} - \frac{V_0}{R_1}$$

$$= \frac{10}{100} A_- 100 \text{ mA} \qquad 13$$

Soit le circuit ci-contre, dans lequel on considère la diode idéale (interrupteur)

- Que vaut la tension aux bornes de R si e=E=10V, $R=100\Omega$.
 - a- 0 V

b- 1 kV

E>O =D D passante =D VD = OV =D U = E-V0 = E= 10

- On prend maintenant $e(t) = E_0\sqrt{2}$, $\sin(\omega, t)$. Choisir l'affirmation correcte :
 - a- La diode est bloquée et la tension à ses bornes est égale à $\frac{E_0 \cdot \sqrt{2}}{R}V$.
 - (b-) Si e(t) < 0, alors la diode est bloquée.
 - c- Si e(t) < 0, alors la diode est passante.
 - d- Si e(t) > 0, alors la diode est bloquée.
- L'équation de la caractéristique de la diode s'écrit : $I_D = I_S(e^{\frac{\gamma_D}{mV_T}}-1)$ où I_D représente le courant qui traverse la diode et V_D , la tension à ses bornes, courant et tension étant fléchés selon la convention récepteur. I_S correspond au courant inverse. C'est un courant :
 - a- Très grand (plusieurs dizaine d'ampères)
- faible (quelques ampères)

Soit le circuit ci-contre :

- Q8. Comment sont les diodes si $V_A = V_B = 0V$?
 - a- Bloquées
 - **Passantes**
- Comment sont les diodes si $V_A = V_B = 5V$? Q9.
 - a- Passantes
 - b-) Bloquées

- Q10. Quelle type de porte logique réalise ce montage ?
 - a- OU
- c- NON ET
- d- NON OU

Si VA= 5V

- Si VA=OV -> V, = OV

QCM 4 Architecture des ordinateurs

Lundi 21 octobre 2019

Pour toutes les questions, une ou plusieurs réponses sont possibles.

- Soit l'instruction suivante : MOVE.W (A0)+,D0
 - A. A0 ne change pas.
 - B. A0 est incrémenté de 4.
 - C) A0 est incrémenté de 2.
 - D. A0 est incrémenté de 1.
- 12. Soit l'instruction suivante : MOVE.W \$50, DO. Que représente la valeur \$50 ?
 - (A.) Une adresse sur 32 bits.
 - B. Une donnée immédiate sur 32 bits.
 - C. Une donnée immédiate sur 8 bits.
 - D. Une adresse sur 16 bits.
- 13. Quelle(s) instruction(s) peut-on utiliser pour appeler un sous-programme?
 - A. JMP
 - B. GSR
 - (C.) BSR
 - D. BRA
- 14. Après l'exécution d'une instruction RTS, le pointeur de pile est :
 - A. Décrémenté de deux.
 - B. Décrémenté de quatre.
 - C. Incrémenté de deux.
 - (D.) Incrémenté de quatre.
- 15. Les étapes pour dépiler une donnée sont :
 - (A.) Lire la donnée dans (A7) puis incrémenter A7.
 - B. Écrire la donnée dans (A7) puis décrémenter A7.
 - C. Incrémenter A7 puis lire la donnée dans (A7).
 - D. Décrémenter A7 puis écrire la donnée dans (A7).

16. Soient les deux instructions suivantes :

CMP(. L)D1, D2 BLO NEXT

DE < DA non signé

Branchement à NEXT si : DA - D2-

A. D1 = FF0000FF et D2 = FF0000FFB. D1 = \$00FFFF00 et D2 = \$FF0000FF

17. Soient les deux instructions suivantes :

CMP(. L) D1, D2

BLT NEXT

Branchement à NEXT si :

A. D1 = FF0000FF et D2 = FF0000FF

(B.) D1 = \$00FFFF00 et D2 = \$FF0000FF

18. Soient les deux instructions suivantes : CMP(.W)D1,D2

BLE' NEXT

Branchement à NEXT si :

(A) D1 = \$FF0000FF et D2 = \$FF0000FF

D1 = \$00FFFF00 et D2 = \$FF0000FF

19. Soient les deux instructions suivantes :

CMP.B D1,D2 BLE NEXT

Branchement à NEXT si :

(A.) D1 = FF0000FF et D2 = FF0000FF

B.) D1 = \$00FFFF00 et D2 = \$FF0000FF

20. Soient les deux instructions suivantes :

CMP(B)D1,D2 BNE NEXT

Branchement à NEXT si :

A. $D1 = FF0000 \widehat{FF} \text{ et } D2 = FF0000 \widehat{FF}$

(B) D1 = \$00FFFF00 et D2 = \$FF0000FF

(C) D1 = \$FF0000FF et D2 = \$00FFFF00 $\mathcal{D} \subset \mathcal{D}_{\Lambda}$ D. D1 = \$00FFFF00 et D2 = \$00FFFF00 $D_1 - D_2$

D2 < D1 signé

C. D1 = FF0000FF et D2 = 00FFFF00 - D1 < D,

D. D1 = \$00FFFF00 et D2 = \$00FFFF00

D2 & D1 signe

(C) D1 = \$EF0000FF et D2 = \$000FFF00

(D.) D1 = \$00FFFF00 et D2 = \$00FFFF00

D26 D1 signé

C. D1 = \$FF0000FF et D2 = \$00FFFF00'D.) D1 = \$00FFFF00 et D2 = \$00FFFF00

D2 != D1

(C.) D1 = \$FF0000FF et D2 = \$00FFFF00

D. D1 = \$00FFFF00 et D2 = \$00FFFF00

pcode	Sizo	K Quic	v vei	er	en	ce	V1	8		p://ww						on.		© 2004-2007 By: Chuck Kelly
-	BWL	s.d	XNZVC				Addre	SS 5"	source,	d=destina	tion, e	-oithe	r. I=di:	placeme	nt T	-	Opuration	Description
008		Dy.Ox	*U*U*	\rightarrow	-	(An)	(An)-	·(An)	(I.An)	(iJn.lin)	dbs,iY	Bball	(UPC)	(CP-L-)(n)	HU		A 4 2 5	
		-(Ay),-(Ax)	-0.0*	8	٠						-	*					$0 \star 0 \times 0 \times 0 \times 0 \times 0$	Add BCD source and extend bit to
00 4	BWL	- (AY),-(AX)	*****	٠	٠			ŧ				,		-	1:			destination, BCD result
		On,d	*****	6	5	\$	5	2	5	3	5	5	2	3	2		+ On → On	Add binary (ADDI or ADDO is used when
DDA 4				6	9,	ď	9	d	d	d	d	d		-	1:		1 ÷ d → d	source is #n. Prevent ADDO with #n.L)
ODI	Mr	S,An		5	0	2	8	S	5	3	3	3	\$	8	1		• An → An	(J. at bebnetxe-ngiz W.) exerbba bbA
	BWL	#n,d	*****	d	•	d	9	d	d	d	d	d			1		n • d-→ d	Add Immediate to destination
	BWL		*****	d	d	d	d	d	d	d	d	d		-	S		n + d → d	Add quick immediate (#n rango: 1 to 8)
DDX	RMF	Oy,Dx	*****	2	-				-	-				-	-		y → Dx + X → Dx	Add source and extend bit to destination
ux a	2	-(Ay),-(Ax)		-	•			e		-					1-	1-1	$Ay) + -(Ax) + X \rightarrow -(Ax)$	
ND a	BWL		-**00	8	-	2	2	5	5	2	2	2	2	\$	18		ANO On → On	Logical AND source to destination
WOL I	Piller	Dn,d		9		d	d	d	d	d	d	d			1.	100	n AND d → d	(ANO) is used when source is #n)
, IOK		#n,d	00	d	-	d	ď	6	d	d	4	d			5	#	u VNO q → q	Logical AND immediate to destination
MDI,	В	#n.CCR	BORKE		•			1.							3	14	n AND CCR → CCR	Logical AND Immediate to CCR
MDI 1	W	#n,SR	BENNS	-	-	-									5	#	n AND SR → SR	Logical AND immediate to SR (Privileged)
ISL	BAIL	0x,0y	*****	9	-					-	1.		1.	1 .	1.	-	£ 40	Arithmetic shift Dy by Dx bits left/right
ISR	5,000	#n.Dy		d	-	٠.	1 .			-				1 -	8			Arithmetic shift Dy #n bits L/R (#n:1 to
	W	4			-	4	1	1	d	d	d	1					F t	Arithmetic shift ds I bit left/right (W only
Bcc	BM ₃	address2							1	-	-	1	1 -	1 -	1-	if	cc true then	Branch conditionally (cc table on back)
																	ddress → PC	(8 or 16-bit ± offset to address)
BCHG	DI		*	6		6	d	1	4	1	4	d	١.	† -	1.		$O1(bit number of d) \rightarrow Z$	Set Z with state of specified bit in & then
		#n,d		qı		1			d	1 4	d	d			2		OT(bit n of d) -> bit n of d	Invert the bit in d
BCLR	BL	Dn.d	+	8	1.	d	-	-	1 0	d	d	d	+-	+ -	+:	100	OT(bit number of d) \rightarrow Z	Set Z with state of specified bit in d then
	1	#n,d		191		1			١	9	ď	9	١.		١.	13.0	→ bit number of d	clear the bit in d
BRA	84,	address'		1.	1.	1.	-	-	+:	+ -	-	1.	+	·	1.		ddress → PC	Branch plways (8 or 16-bit z plfset to add
BSET	BL		+	e	+-	-	-		10	1 8	1	9	+:	+:	-		OT(bit n of d) \rightarrow Z	Set Z with state of specified bit in d then
	1.	#n.d		d	1.	1 4		1 2		8	d	9	1:	:	1:		on(actroro)→ t → bitnofd	set the bit in d
BSR	BW3			+-	+.	+	_	_	_	-	-		-	-	-		$C \rightarrow -(SP)$: address $\rightarrow PC$	Branch to subroutine (8 or 16-bit ± allset
B1\$1	BI	1	+	_	_	- 0	_		-	d	_	-		- d	-			Set Z with state of specified bit in d
		#n.d		d		. .	8 11 8		10.00	0 2000	d	d		9	1:		OT(bit Dn of d) \rightarrow Z OT(bit #n of d) \rightarrow Z	Leave the bit in d unchanged
CHK	W	z,On	-+000		-	.	-	_	_		-	_	_	-	5	-	On < O or On>s then TRAP	Compare Do with D and upper bound [s]
CLR	BW		-0100	-	-	_		1 6	_		2	d			- 5		→ q	Clear destination to zero
CMP*	BW		-+++	-	-	_	_	-	_		3	5	_	-			et CCR with On - s	Compare On to source
CMPA "	W				-	-		_	5 3	_	_	-	-				et CCR with An - s	Compare An to source
CMPI 4	BW		-***	- 0	-	_	_	_	1 6		- d	3	_	_	_		et CCR with d - #n	Compare destination to #n
CMPM					-	_					-	1:	_		1.		et CCR with (Ax) - (Ay)	Compare (Ax) to (Ay); Increment Ax and A
DBcc	W			-	-	+	_	_		-		+	-	_	+		cc lolse then { On-1 -> On	Test condition, decrement and branch
0000	"	Dit,Budi E.					-			1000			1.	1 -	- 1		if On ⇔ -I then addr → PC)	(IB-bit ± offset to address)
DIVS	Y/	s,On	-+++	0 6	2	-	2	5	5 5	2	s	1	1	8	1 5	_	32bit On / ±1Gbit s → ±Dn	On= (16-bit remainder, 18-bit quatient)
DIYU	VI		_+++	,	-	-	_	_	8 1		5	_	_	_	1		32bit Do / 16bit s → On	On= (16-bit remainder, 16-bit quotient)
EDR *		L Dn.d	-++0	-	-	_	-		d		1	1	_	_			On XOR d → d	Logical exclusive OR Dn to destination
EDRI T		L #n.d	-**0	-	d	_	_	_	4	_	1	_	1	_	1		Yn XOR d → d	Logical exclusive DR #n to destination
	_		ZHGE	-	-	_	_	-	_	-	-	_	+	_	-	-	¥n XOR CCR → CCR	Logical exclusive OR #n to CCR
EDRI L	B	#n,CCR	hwar	_	-	-	_		-	+:	+:	-	-	_			#n XOR SR → SR	Logical exclusive OR #n to SR (Privileged
EDRI "	$\overline{}$			-	+	_	-	_	_	+ :	+:	-	+		-1		register ←→ register	Exchange registers (32-bit only)
EXG		L Rx,Ry	-**0	_	d	-	-	_	_	+	+:	_	+	_	+		On B On W On W On L	
EXI		L Dn		-	0	-		_	_	+:	+:	-		_	+		$PC \rightarrow -(SSP): SR \rightarrow -(SSP)$	Generate Illegal Instruction exception
ILLEG/	11	-		1	+		_	-	_	1 4	1	_	8 6	_	+	+	Td → PC	
JWb	1	d		1	+	_	d	_	_		d	_	0 0	_	_		PC → ·(SP): ↑d → PC	Jump to effective address of destination
JSR		d		-		-	-	-	-		_	-			-			push PC, jump to subroutine at address of
LEA		L s.An		-	•	_	5	_	_	2 2	2		2 2	_	-		Ts → An	Load effective address of s to An
LINK		An,#n		-		•	-		•	. .	1		٠ ٠		1		$An \rightarrow -(SP)$; $SP \rightarrow An$;	Create local workspace on stack
					4	_	_	_		-	-	_		_	-	\neg	SP • #n → SP	(negative n to allocate space)
LSL	BY	YL Dx.Oy	***0		2	•		•			1.				- 1	:	i ⇒ •9	Logical shift Dy, Ox bits left/right
LSR		#n,Dy			q		:	:	:	: 1 :	1:		: '			2		Logical shift Dy. #n bits L/R (#n: 1 to 8)
1000	Y				٠		d	_	_	d d		-	d	-	-	:		Lugical shift of l bit left/right (.W only)
MOYE	BY	YL s.d	-**0		9	5	0	9		8 8	_	_	_	2 2	$\overline{}$		s → d	Move date from source to destination
MOYE	_	s.CCR	MOUN		5	-	2	2	2	2 2	S		\$	5 5	_		s → CCR	Move source to Condition Code Register
		I s.SR	DEED	121	5		3			8 8				2 2	\rightarrow		¶2 ← z	Move source to Status Register (Privilege
MUAR				_	11	-	9	d	d	d d	10		9				b ← N2	Move Status Register to destination
MOVE		V SR.d		-1	91	-	0		•	-		_	_		_			- 1
MOVE		L USP,An		_	-	d	-	•	•		_	-	_	- -			USP → An An → USP	Move User Stock Pointer to An (Privilege Move An to User Stock Pointer (Privilege

pcode	Sizo	Oper		CCR		Effe	ctly	o A	ddras	S=2	urce.	d=dastina	lion, e	eithe	r. i=dis	placemen	ı	Γ	Operation	Description
	BWL	5,	d X	NZV	C Un	An	(A	(n	(An)+	-(An)	(I,An)	(Malla)	ebs.W	absl	a.PC)	(I.PC.Rn)	#n	T		
DAEY	WL	s,An	-		- 5	В	1	8	3	5	8	5	3	2	5		s	-	→ An	Move source to An (HOVE s.An use MOYEA)
DYEM	WL	Rn-Rr	ı.d -				1	4		d	d	d	d	d	-	-	1.		legisters → d	Move specified registers to/fram memory
		s.Rn-	Rn		-	-	1	2	8			2	3		3	2	1-		-> Registers	(.W source is sign-extended to .L for Rn)
PARE	WL	On.(L	(n) -		- 3						d	-	-	·		·	1.		n → (i,An)(i+2,An)(i+4,A.	Move On to/Irom alternate memory bytes
		(inn)			d	1.					2			-		١.	١.		I.An) -> Dn(i+2,An)(1+4,A.	(Access only even arodd addresses)
DA£O,	ι	#n,Dr		0	0 4	1.					-				1	-	5		¥n → On	Move sign extended 8-bit #n to On
ULS	W	s.0n	-	**0	0 6	١.	1	3	5	2	5	\$	s	5	5	S	2	-	±16bit s ° ±16bit On → ±On	Multiply signed 10-bit: result signed 32-bit
ULU	W	z.0n	-	-4+0		-	_	5	s	5	5	5	2	2	5	5	3	_	l6bit s * l6bit On → On	Multiply unsig'd 16-bit; result; unsig'd 32-bit
BCD	8	d	1	•0•0)* d	1.		d	d	d	d	d	d	1	-		1.		D - do - X → d	Negate 8CO with aXtend, BCO result
EG	34/8	d	-			-	_	d	d	d	d	d	-	-	-	-	+:		0-9-4-4	Negate destination (2's complement)
EGX	BWL		-	* * * *			-	d	d	d	d		d	d			-		D·q·X → q	Regale destination with extend
Do	-	-	-			-	-			-	-	d	d	d			_			No operation occurs
OT	BIVL	d		-4+(_	+	4	1	+	1:		1 :				_		None	Logical NOT destination (I's complement)
R	-	s.0n		-++		-	+	_	-	ď	d	9	9	9				-	HOT(4) → q	
	OHL	On.d			1,		-	2	2	2	3	2	2	2		S	5	,	s OR Dn → On	Logical DR
RI 4	BWL	#10,0		-++	_	-	-	q	d	d	d	q	d	d	_		_	•	On OR d → d	(DRI is used when source is #n)
RI	8	-		ERD		d		d	q	ď	d	d	d	\ d		-			#n OR d → d	Logical OR #n to destination
IRI 1	-	#n.(-		•			7			1 -				2	#n OR CCR → CCR	Logical DR #n to CCR
	W	#n.	SK	580		•	-	٠	1 -		1 -		1 -	1.				s	#n DR SR → SR	Logical UR #n to SR (Privileged)
EA	1	. 3				-	-	8			S	2	5	1		8			↑s → -(SP)	Push effective address of a onto stack
RESEI	_					•	-				1.		1.	_		_	1		Assert RESET Line	Issue o hardware RESET (Privileged)
SOL	BM	Dxl	Dy	-**	0+	8	-		١.		٦.		١.			١.	\neg			Rotate Dy. Ox bits left/right (without X)
SOR	00000	#n	Dy	1	- 1	8				. ,	١.		١.			١.	- 1	s	C+1 (Rotate Dy. #n bits left/right (#n: 1 to 8)
	W	d				-	-	9	1	1 6	1	d		G 100	d .					Rotate d 1-bit left/right (.Yl only)
ROXL	811	l Ox	Dy	***	*0*	9	-		_		_		-	_			-	•	C - X-	Rotate Dy, Ox bits VR, X used then update
roxr	1		.Dy	1	- 1	d	-	١,			5	[4-——4	Rotate Dy. #n bits left/right (#n: 1 to 8)
	V/	9		1			-	1	1	d		4 4	- 1	- 1					X-41-C	Rotate destination I-bit left/right (.W only)
RIE	T			672	230	-	1.	+	_		-	-	_	_	_		\dashv	-	(SP)+ → SR; (SP)+ → PC	Return from exception (Privileged)
RTR				627	254		+-	+-		_	-		-		_		\dashv			
RIS	1	+				-	-	+			_	. -	-	-	_		$\overline{}$	-		Return from subrouting
SBCD	B	n.	x0.9	+0	1*U*	2	-	+	-	-	_		_	-	-	. —	_	-		Subtract BCD source and extend bit from
			Ay)(Ax)	100		1:	1	1	:				35	:				-	$-(Ax)_0 - (Ay)_0 - X \rightarrow -(Ax)$	
Scc	В	d		_		6	_	_	d		d		+	1	:	_	_	١.	If co is true then is \rightarrow d	If co true then d.B = 11111111
occ.	0	10				10	1		a	0	١٥	، ا ه	1	0	d				else O's → d	
STOP	-	-		-	1600	-	+	+	-	-	-	_	-	-	-	_	_	1		else d.B = 000000000
-	-		n	1000	* * * *	4-	-	_	•	-	-	_	-	·		_	•		#n → SR; S10P	Move #n to SR, stop processor (Privilege
SNB 4	R		,Dn	1.0		1 6	1	8	5	2	5		s	2	8	ACC 10	\$	1	On-s→On	Subtract binary (SUBI or SUBO used when
0.10			ln,d	_		1		11	d	d	d		d	d	d		•	_	- d - On → d	source is #n. Prevent SUBQ with #n.L)
SUBA			An					8	3	S	3		2	3	S		2		$s \wedge h - s \rightarrow hn$	Subtract address (.W sign-extended to .L.
SNBI		WL A		_ ~		_	-		d	d	d		d	d	ď		•		s d · #n → d	Subtract immediate from destination
SUBC		WL 4			***	13	d	d	d	d	d	d	d	d	6	-			s d - #n → d	Subtract quick immediate (#n range: 1 to
SUD	1	WL			***		е				-	-			-		٠		$- Qx - Qy - X \rightarrow Qx$	Subtract source and extend bit from
			-(Ay),-(A				-	-	•	•	9	•		•	•		•	1	$- -(Ax)(Ay) - X \rightarrow -(Ax)$	
YWS.)		Dn		••0		d		•	•	-			•	•	•	٠	1	 bits(31:16) ← → bits(15:0) 	
ZAT		3	d	-	••0	0	d		4	d	d	d	d	d	d		•		- test d→CCR; 1 →bit7 of	
TRAF			#n	-		-					-		-	•	-	-	•		z PC→-(22P);-CR→-(23P)	
																			(vector table entry) → F	C (#n range: 0 to IS)
TRA	γ		-	1		-	-	-	-	-		•		•	•				- If Y then TRAP #7	If overflow, execute an Overflow TRAP
121		BWL	d	٦.	-++0	0	4		d	d	d	d	d	d	d				- test d → CCR	N and I set to reflect destination
UNI			Ån	1		-	Ħ	d	÷						-	-			· An → SP: (SP)+ → An	Remove local workspace from stack
DIE		BWL	s.d	- 13	KNZV	c	Ila		(An)	(An)+	-(An)	(IAn) (i	An.lln)	absy	sbs.L	(IPC) (C	PC.R	in)	#o	

CC	dition Tests (+ 0 Condition	Test	CC	Candition	Test
I	true	1	YC	overflow clear	IY
F	lalse	0	YS	overflow set	Y
1114	higher than	KC + D	PL	plus	IH
r2°	lower or same	C+2	M	minus	N
HS", CC"	higher or some	1C	GE	greater or equal	I(H & Y)
ra.cs.		C	LI	less than	(H & H)
NE	not equal	12	GT	greater than	1((N + V) + Z
ED	equal	12	LE	less or equal	(N @ Y) + Z

Revised by Peter Csaszar, Lawrence Tech University - 2004-2006

An Address register (16/32-bit, n=0-7) On Data register (8/16/32-bit, n=0-7)

Rn any data or address register

Source, d Destination Either source or destination

#n Immediate data, 1 Displacement BCD Binary Coded Decimal

Effective address Long only: all others are byte only 2 Assembler calculates offset

SSP Supervisor Stack Pointer (32-bit)

USP Usur Stack Pointer (32-bit) SP Active Stack Pointer (same as A7)

PC Program Counter (24-bit)

SR Status Register (IG-bit)

CCR Condition Code Register (lower 8-bits of SR) H negative, Z zero. Y overflow, C carry, X extend

* set according to operation's result = set directly - not affected. D cleared, 1 set, U undafined

Branch eites: .B or .S -128 to +127 bytos, .W or .L -32768 to +32767 bytes Assembler automatically uses A. 1, O or M form II possible. Use #n.L to prevent Quick optimization

Distributed under the GNU general public use license.

3

