

PATENT ABSTRACTS OF JAPAN

(11)Publication number : 09-140378
(43)Date of publication of application : 03.06.1997

(51)Int.CI. C12N 9/04
C12Q 1/32
C12Q 1/54
//(C12N 9/04
C12R 1:01)

(21)Application number : 07-304331 (71)Applicant : TOYOBO CO LTD

(22)Date of filing : 22.11.1995 (72)Inventor : ADACHI KAZUO
MATSUSHITA KAZUNOBU
HATTORI SHIZUO
MASUDA YOSHIO
KAWAMURA YOSHIHISA

(54) PQQ-DEPENDANT GLUCOSE DEHYDROGENASE COMPOSITION AND REAGENT COMPOSITION FOR MEASURING GLUCOSE

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject stable composition used for glucose-measuring reagent composition, etc., useful for clinical examination, etc., by adding calcium ion, calcium salt, etc., and an amino acid such as glutamic acid, glutamine or lysine.

SOLUTION: A calcium ion or calcium salt such as calcium chloride, calcium acetate or calcium citrate and an amono acid such as glutamic acid, glutamine or lysine are added to a PQQ-dependant glucose dehydrogenase aqueous solution derived from *Acinetobacter calcoaceticus*, etc., and further, serum albumin is added thereto to provide the objective PQQ-dependant glucose dehydrogenase composition capable of stabilizing PQQ-dependant glucose dehydrogenase, useful as a clinical examination and used for a reagent composition, etc., for measuring glucose in specimen such as serum or urine.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

This Page Blank (uspto)

Copyright (C); 1998,2000 Japan Patent Office

This Page Blank (uspto)

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平9-140378

(43)公開日 平成9年(1997)6月3日

(51)Int.Cl.*	識別記号	序内整理番号	F I	技術表示箇所
C 12 N 9/04			C 12 N 9/04	D
C 12 Q 1/32		7823-4B	C 12 Q 1/32	
1/54		7823-4B	1/54	
// (C 12 N 9/04				
C 12 R 1:01)				

審査請求 未請求 請求項の数 8 O L (全 6 頁)

(21)出願番号 特願平7-304331

(22)出願日 平成7年(1995)11月22日

(71)出願人 000003160
東洋紡績株式会社
大阪府大阪市北区堂島浜2丁目2番8号

(72)発明者 足立 収生
山口市芝崎町2番2-204

(72)発明者 松下 一信
山口市吉敷2645-27

(72)発明者 服部 静夫
福井県敦賀市東洋町10番24号 東洋紡績株
式会社敦賀バイオ研究所内

(72)発明者 増田 美穂
福井県敦賀市東洋町10番24号 東洋紡績株
式会社敦賀バイオ研究所内

最終頁に続く

(54)【発明の名称】 PQQ依存性グルコースデヒドロゲナーゼ組成物およびグルコース測定用試薬組成物

(57)【要約】

【目的】 PQQ依存性グルコースデヒドロゲナーゼを安
定化させる。

【構成】 (1)カルシウムイオンまたはカルシウム塩、
および(2)グルタミン酸、グルタミンおよびリジンか
らなる群から選択されたアミノ酸を含有するPQQ依存
性グルコースデヒドロゲナーゼ組成物ならびに、さらに
電子受容体および緩衝液を含有するグルコース測定用試
薬組成物。

【特許請求の範囲】

【請求項1】 (1) カルシウムイオンまたはカルシウム塩、および(2) グルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸を含有するPQQ依存性グルコースデヒドロゲナーゼ組成物。

【請求項2】 カルシウム塩が、塩化カルシウムまたは酢酸カルシウムもしくはクエン酸カルシウムである請求項1記載のPQQ依存性グルコースデヒドロゲナーゼ組成物。

【請求項3】 PQQ依存性グルコースデヒドロゲナーゼが、アセトバクター・カルコアセティカス由来のPQQ依存性グルコースデヒドロゲナーゼである請求項1記載のPQQ依存性グルコースデヒドロゲナーゼ組成物。

【請求項4】 さらに血清アルブミンを含有する請求項1記載のPQQ依存性グルコースデヒドロゲナーゼ組成物。

【請求項5】 PQQ依存性グルコースデヒドロゲナーゼ、カルシウムイオンまたはカルシウム塩およびグルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸、さらに電子受容体および緩衝液を含有するグルコース測定用試薬組成物。

【請求項6】 カルシウム塩が、塩化カルシウムまたは酢酸カルシウムもしくはクエン酸カルシウムである請求項5記載のグルコース測定用試薬組成物。

【請求項7】 PQQ依存性グルコースデヒドロゲナーゼが、アセトバクター・カルコアセティカス由来のPQQ依存性グルコースデヒドロゲナーゼである請求項5記載のグルコース測定用試薬組成物。

【請求項8】 さらに血清アルブミンを含有する請求項5記載のグルコース測定用試薬組成物。

【発明の詳細な説明】

【0001】

【産業上の利用分野】 本発明は安定化されたPQQ依存性グルコースデヒドロゲナーゼ組成物および該組成物を使用するグルコース測定用試薬組成物に関するものである。

【0002】

【従来の技術】 血清、尿などの検体中のグルコース測定法としては、従来から化学法と酵素法が存在するが、一般的に特異性、安全性の面で酵素法が優れているとされている。酵素法としては、グルコースオキシダーゼ・ペルオキシダーゼ系、ヘキソキナーゼ・グルコース-6-リン酸デヒドロゲナーゼ系が主に使用されているが、両測定系とも、複数の酵素を用いるため簡便な反応系ではない。更に前者（グルコースオキシダーゼ・ペルオキシダーゼ系）は、過酸化水素が共存物質の影響を受けやすく、溶存酸素が律速のときには使用するのが困難になる。後者（ヘキソキナーゼ・グルコース-6-リン酸デヒドロゲナーゼ系）では補酵素としてNAD⁺が必要であり、更に平衡反応が含まれているため、微量のグルコ

ースを測定しにくい欠点が存在する。

【0003】 補酵素として、PQQを必要とするPQQ依存性グルコースデヒドロゲナーゼをグルコース測定系に使用することは、上記他の酵素を使用する問題点を解決する一つの方法である。特にグルコースを電気センサーを使用して測定することを考えた場合、グルコースオキシダーゼを用いる系では、酸素濃度の影響を受けるが、PQQ依存性グルコースデヒドロゲナーゼでは影響を受けない利点を有する。何故なら、該酵素は下記の反応を触媒し、グルコースより得た電子を電子受容体に受け渡す反応を触媒する酵素であるから。

【0005】 ここで、電子受容体としては、フェリシアニド、電子キャリアと2, 6-ジクロロフェノールインドフェノールの組み合わせ、電子キャリアとテトラソリウム塩の組み合わせなどが挙げられる。

【0006】 本発明に使用するPQQ依存性グルコースデヒドロゲナーゼとは、補酵素として、PQQを必要とする酵素であり、例えばアシネットバクター・カルコアセティカス (*Acinetobacter calcoaceticus*) NCI B 11 517、アシネットバクター・カルコアセティカス (*Acinetobacter calcoaceticus*) IFO 12552、IFO 3006などから生産される。

【0007】 該酵素を利用するグルコースの定量は、たとえば *Methods in Enzymology*, Vol. 89 (1982) p20 (Academic Press, Inc) などに記載されている。検体中のグルコースに電子受容体の存在下にPQQ依存性グルコースデヒドロゲナーゼを作動させ、生成する還元型電子受容体を測定する方法である。

【0008】

【発明が解決しようとする課題】 このようなPQQ依存性グルコースデヒドロゲナーゼの有する問題点は、グルコースオキシダーゼやヘキソキナーゼと比較すると、その安定性にあり、精製した酵素標品を臨床検査薬に添加しても、酵素の失活が著しく、試薬の劣化が激しいため保存が困難であると同時に測定値への影響も大きく実用上問題となっていた。また該酵素の安定化剤としては、PQQを添加することが効果があるとされている (*Arch. Biochem. Biophys.*, 218, 623-625 (1982)) が、PQQは非常に高価であり、産業上、その添加は難しい。

【0009】

【課題を解決するための手段】 本発明者等はPQQ依存性グルコースデヒドロゲナーゼの安定化剤について、種々鋭意検討したところ、カルシウムイオンと特定のアミノ酸を併用すると安定化効果が高いことを見いだし、本発明に達した。

【0010】 すなわち、本発明はカルシウムイオンまたはカルシウム塩、およびグルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸を含有する

PQQ依存性グルコースデヒドログナーゼ組成物である。

【0011】また本発明は、PQQ依存性グルコースデヒドログナーゼ、カルシウムイオンまたはカルシウム塩およびグルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸、さらに電子受容体および緩衝液を含有するグルコース測定用試薬組成物である。

【0012】

【発明の実施態様】本発明において、PQQ依存性グルコースデヒドログナーゼとは、補酵素として、PQQを必要とする酵素であり、例えばアシネットバクター・カルコアセティカス (*Acinetobacter calcoaceticus*) NCIB 11517、アシネットバクター・カルコアセティカス (*Acinetobacter calcoaceticus*) IFO 12552、IFO 13006などから生産される。

【0013】この酵素の1つとして、理化学的性質が、例えば分子量：約55,000（ゲルfiltration）、Km値： 7.9×10^{-2} M(D-グルコース)、至適pH：pH 6～7、至適温度：37°C、pH安定性：pH 6～7、熱安定性：30°C以下であるものが例示される。

【0014】本発明では、上記酵素に(1)カルシウムイオンまたはカルシウム塩、および(2)グルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸を含有させる。本発明の酵素組成物は、これらの安定化剤を含有するものであれば、水性組成物、凍結乾燥物を問わない。

【0015】カルシウムイオンの供給形態としては、塩化カルシウム、酢酸カルシウム、クエン酸カルシウム等の無機酸または有機酸のカルシウム塩を挙げることができる。また、水性組成物において、カルシウムイオンの含有量は、 $1 \times 10^{-4} \sim 1 \times 10^{-2}$ Mであることが好ましい。

【0016】グルタミン酸、グルタミンおよびリジンからなる群から選択されるアミノ酸は、1種または2種以上であってもよい。前記の水性組成物において、グルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸の含有量は、0.01～0.2重量%であることが好ましい。また前記の水性組成物に血清アルブミンを添加する場合、その含有量は0.05～0.5重量%であることが好ましい。

【0017】本発明ではカルシウムイオンまたはカルシウム塩のみを含有させた場合、安定性にわずかな効果が見られるが、上記アミノ酸を含有させることにより、グルコースデヒドログナーゼの安定性が2倍以上に上昇する。

【0018】緩衝剤としては、通常のものが使用され、通常、組成物のpHを5～10とするものが好ましい。具体的にはトリス塩酸、ホウ酸、グッド緩衝液が用いられるが、カルシウムと不溶性の塩を形成しない緩衝液はすべて使用できる。

【0019】前記の水性組成物には、必要により他の成分、例えば界面活性剤、安定化剤、賦形剤などを添加しても良い。

【0020】水性組成物を調製する場合、緩衝液への各安定剤の添加順序は、特に制限されない。本発明の凍結乾燥物は、通常の方法に従い、前記水性組成物を凍結乾燥して得る。

【0021】なお、PQQ依存性グルコースデヒドログナーゼ活性の測定は、次の方法に従った。50mM PIPES緩衝液、pH 6.5 25.5ml、3.0mM PMS 2.0ml、6.6mM NTB 1.0mlおよび1M グルコースを含む6.3% Triton X-100 0.9mlを混合する。この混合液を37°Cで5分間インキュベートした後、酵素液を0.1ml 添加し、混和後、水を対照に37°Cに制御された分光光度計で570nmの吸光度変化を4～5分間記録し、その初期直線部分から1分間当たりの吸光度変化を求める。1分間に1マイクロモルのグルコースを酸化する酵素量を1単位(U)とする。

【0022】本発明のグルコース測定用試薬とは、PQQ依存性グルコースデヒドログナーゼとカルシウムまたはカルシウム塩およびグルタミン酸、グルタミンおよびリジンからなる群から選択されたアミノ酸、さらに電子受容体としては、フェリシアニド、電子キャリアと2,6-ジクロロフェノールインドフェノールの組み合わせ、電子キャリアとテトラソリウム塩の組み合わせなどが挙げられる。また、緩衝液としては、通常のものが使用され、通常、組成物のpHを5～10とするものが好ましい。具体的にはトリス塩酸、ホウ酸、グッド緩衝液が用いられるが、カルシウムと不溶性の塩を形成しない緩衝液はすべて使用できる。

【0023】本発明のグルコース測定用試薬を用いて、検体中のグルコースを測定する方法としては、検体を本発明のグルコース測定用試薬と接触させ、生成した還元型電子受容体を比色法、電気センサー等で検出する方法などがある。

【0024】

【実施例】以下、実施例を挙げて本発明を具体的に示す。

実施例1

下記成分を水道水6Lに溶解し、pHを7.0に調整した後、オートクレーブで121°C、20分間滅菌して、培地を得た。

グルコース 60g

ポリベプトン 180g

酵母エキス 30g

NaCl 60g

上記培地の入った10Lジャーファーメンターに、アシネットバクター・カルコアセティカス (*Acinetobacter ca*

Icoaceticus) NCIB 11517 (National Collection of Industrial Bacteria, Abaddeen Scotland) を接種し、30℃で20時間通気攪拌培養後、遠心分離して菌体を取得した。得られた菌体をダイノミルにより破碎し、P E I 处理、硫安分画、フェニルセファロースクロマトグラフィーおよびDEAE-セファロースクロマトグラフィーにより精製し、600UのPQQ-グルコースデヒドロゲナーゼを得た。

【0025】得られた酵素を下記化合物を含む50mM トリス塩酸緩衝液、pH 7.5 中に保存して、30℃、4日間保存し、その残存活性を調べた。得られた結果を表1に示す。

【0026】

【表1】

添加物	濃度	残存活性
なし	-	5. 9%
CaCl ₂	1 mM	19. 4%
MgSO ₄	1 mM	2. 5%
MgSO ₄	10 mM	2. 5%
CaCl ₂	1 mM	42. 4%
リジン	0. 05%	
CaCl ₂	1 mM	57. 8%
グルタミン	0. 05%	
CaCl ₂	1 mM	45. 8%
グルタミン酸	0. 05%	
CaCl ₂	1 mM	1. 2%
グリシン	0. 05%	
CaCl ₂	1 mM	18. 6%
アルギニン	0. 05%	
CaCl ₂	1 mM	21. 2%
ヒスチジン	0. 05%	
CaCl ₂	1 mM	0. 5%
アスパラギン	0. 05%	
CaCl ₂	1 mM	21. 3%
アスパラギン酸	0. 05%	
MgCl ₂	10 mM	2. 2%
リジン	0. 05%	
MgCl ₂	10 mM	23. 2%
グルタミン	0. 05%	
MgCl ₂	10 mM	0. 2%
グルタミン酸	0. 05%	

【0027】1mM CaCl₂ の存在下、リジン、グルタミンまたはグルタミン酸の添加により、本発明の安定性が著しく向上した。しかしながら、MgCl₂ の共存下では、これらのアミノ酸の安定化効果は小さかった。

【0028】実施例2

実施例1で得た酵素組成物を下記添加物を含む50mM トリス塩酸緩衝液、pH 7.5 中で30℃、4日間保存し、残存活性を測定した。実施例1で効果があったアミノ酸を組み合わせて添加すると、それぞれ単独で使用するより、更に安定化効果があった。特に1mM CaCl₂ 共存下、グルタミン酸、グルタミンまたはリジンを組み合わせて使用すると、高価なPQQの使用で得られる安定化効果とほぼ同等な効果が得られることが判明した。その結果を表2に示す。

【0029】

【表2】

7

8

添加物	濃度	残存活性
CaCl ₂	1 mM	84.8%
グルタミン	0.05%	
グルタミン酸	0.05%	
CaCl ₂	1 mM	95.4%
グルタミン	0.05%	
グルタミン酸	0.05%	
リジン	0.05%	
CaCl ₂	1 mM	98.2%
PQQ	0.05%	

【0030】実施例3

PQQ依存性グルコースデヒドロゲナーゼを(1) 50 mM PIPES緩衝液、pH 7.5 (2) 10 mM CaCl₂ および0.2% BSAを含む50 mM PIPES緩衝液、pH 7.5、(3) 10 mM CaCl₂、0.05%グルタミン、0.05%グルタミン酸、0.05%リジン、0.2%およびBSAを含む50 mM PIPES緩衝液中、pH 7.5で保存して、その熱安定性を比較した。その結果は図1に示す通りであり、(3)の条件、すなわちCaCl₂共存下、グルタミン、グルタミン酸、リジンにBSAを組み合わせた緩衝液中で、PQQ依存性グルコースデヒドロゲナーゼは最も安定であった。

【0031】実施例4

実施例1のPQQグルコースデヒドロゲナーゼ5 U/mg、1-メトキシ-5-フェナゾリウムメチルサルフェート29.5 mM、MTT 0.6 mM、NaN₃ 0.2

mM、10 mM CaCl₂、0.05%グルタミン、0.05%グルタミン酸、0.05%リジン、0.2% BSA、50 mM PIPES緩衝液、pH 7.5を混合して、グルコース測定用試薬組成物とした。該試薬組成物を使用して、血清中のグルコースを測定した。その結果は、図2に示す通りである。グルコース濃度の従つて、吸光度が直線的に上昇した。

【0032】

【発明の効果】本発明ではより安価で、安定性に優れたPQQグルコースデヒドロゲナーゼ組成物を得ることができる。また、この組成物を使用して、グルコース測定を溶存酸素の制約を受けずに、正確に測定することができる。

【図面の簡単な説明】

【図1】PQQ依存性グルコースデヒドロゲナーゼの熱安定性を示すグラフである。

【図2】グルコースの検量線を示すグラフである。

【図1】

【図2】

フロントページの続き

(12) 発明者 川村 良久

福井県敦賀市東洋町10番24号 東洋紡績株
式会社敦賀バイオ研究所内