NYCU-ECE DCS-2024

HW04

Design: Motion Estimation

資料準備

1. 從 TA 目錄資料夾解壓縮:

% tar -xvf ~dcsTA01/HW04.tar

- 2. 解壓縮資料夾 hw04 包含以下:
 - a. 00_TESTBED/
 - b. 01 RTL/
 - c. 02_SYN/
 - d. 03_GATE/

Block Diagram

設計描述

本次作業可以自己調整clock period, 詳情請看Specification。

移動估測(motion estimation)是一種動態影像壓縮的技術。以下圖為例,可以看到pass貓貓往右上移動了一小段距離,而背景幾乎沒有變化,這時我們只需要紀錄其相對位置的移動向量,就可以利用前一張畫面來重建當前畫面。

至於如何計算移動向量?本次作業採用的是全域搜尋區塊比對演算法,並利用絕對誤差和(Sum of Absolute Differences, SAD)從Search area找到與Current block最相似的區塊。

絕對誤差和(Sum of Absolute Differences, SAD)的計算公式如下:

$$SAD(u, v) = \sum_{i=0}^{N-1} \sum_{j=0}^{N-1} |a(i, j) - b(i + u, j + v)|$$

這邊我們直接以實例來說明如何找到移動向量:

1. 本次作業的Search area是8*8的二維矩陣,數值範圍0~255。假設如下:

204	208	90	136	237	247	159	219
97	235	245	231	57	226	98	117
77	188	90	241	166	60	249	64
135	71	238	3	17	130	70	92
136	49	103	12	206	83	22	93
46	88	230	32	137	182	44	133
174	4	221	119	178	108	165	27
19	20	17	150	142	58	191	81

2. 本次作業的Current block是4*4的二維矩陣,數值範圍0~255。假設如下:

221	85	103	87
81	181	158	243
68	36	46	179
121	30	127	106

3. 利用SAD做全域搜尋(此動作與convolution中的stride=1動作相同,但運 算方式為SAD)後,可以得到5*5的二維矩陣如下:

907	1531	1552	1497	1336
1263	1460	1034	1141	1328
1513	1209	1478	1482	1176
1383	1424	1129	1356	1311
1246	1184	1404	1295	976

- 4. 左上角的907為最小值,代表與之最接近的區塊,輸出向量(-2, 2)。
- 5. 各種情況應輸出的向量值如下表:

(-2, 2)	(-1, 2)	(0, 2)	(1, 2)	(2, 2)
(-2, 1)	(-1, 1)	(0, 1)	(1, 1)	(2, 1)
(-2, 0)	(-1, 0)	(0, 0)	(1, 0)	(2, 0)
(-2, -1)	(-1, -1)	(0, -1)	(1, -1)	(2, -1)
(-2, -2)	(-1, -2)	(0, -2)	(1, -2)	(2, -2)

6. 範例中的pass貓貓被切成16個block,以上述方法找到16個移動向量再加上前一張圖片後就可以用以估計當前的圖片。(本次作業僅會給予一組search area和current block計算移動向量)

Pattern:

本次Pattern僅會提供十組測資。Demo測資會是1000筆。均不會存在SAD 有複數個最小值的情形。

Inputs

Signal name	Number of bit	Description
clk	1-bit	Clock
rst_n	1-bit	Asynchronous reset
area_valid	1-bit	為1時代表in_data給search area資料,連續
		給64cycles
block_valid	1-bit	為1時代表in_data給current block資料,連續
		給16個cycles
in_data	8-bit	連續給80個cycles,先給block再給area,數
		值範圍: 0~255

Outputs

Signal name	Number of bit	Description
out_valid	1 bits	必須在area_valid變0後300 cycles內拉起,並持
		續2 cycles
out_vector	3 bits	第一個cycle輸出x向量,第二個cycle輸出y向
		量,是signed,數值範圍: -2~2

Specifications

- 1. Top module name: **ME**(File name : **ME.sv**)
- 2. 請用 Systemverilog 完成你的作業。
- 3. 在非同步負準位reset後,所有的output訊號必須全部歸零。
- 4. In_valid(包含area_valid和block_valid)和out_valid不可重疊。
- 5. Out_valid要連續輸出兩個cycle,不能多不能少,且輸出答案要正確。
- 6. 所有output訊號要在輸出結束後全部歸零。
- 7. 下一筆測資會在out_valid拉下後一到三個cycle內給予。
- 8. 測資的輸入方式為raster scan order。
- 9. 02_SYN result 不行有 error 且不能有任何 latch也不能有timing violation。
- 10. 03_GATE不能有任何 timing violation。
- 11. 03_GATE的Latency要與01_RTL相同。
- 12. Input delay = 0.5 * clock period. Output delay = 0.5 * clock period \circ
- 13. Clock period 最大10.0ns,以 0.1ns 為單位,例如5.1ns,不要有5.17ns。要更改clock period 要修改兩個地方再去跑02,一個是PATTERN.sv第1行,另一個是syn.tcl 第26 行,如下圖所示:

HW04/00_TESTBED/PATTERN.sv 第1行的10.0

- 1 `define CYCLE_TIME 10.0
- 2 module PATTERN(
- 3 // Input signals

HW04/02_SYN/syn.tcl 第26行的10.0

```
24  set DESIGN "ME"
25  #set MAX_Delay 10
26  set clk_period 10.0
27  set IN_DLY [expr 0.5*$clk_period]
28  set OUT_DLY [expr 0.5*$clk_period]
```

14. 若有reset矩陣的需求可使用for loop。

Example waveform

Input

先輸入16個cycle的block data再輸入64個cycle的area data。

Output

out_valid拉起時先輸出x向量再輸出y向量,out_valid拉下時out_vector歸零。

上傳檔案

1. 請將HW04/01_RTL裡的ME.sv依以下命名規則重新命名後上傳至E3。 命名規則:ME_{clock cycle time}_dcsxxx.sv,xxx為工作站帳號號碼,clock cycle time請取到小數第一位。

例如:某同學的工作站帳號為dcs230, clock cycle time為6ns, 他的檔名應為ME_6.0_dcs230.sv。命名錯誤扣5分

- 2. report_dcsxx.pdf, xx is your server account. 上傳至 E3。
- 3.1 demo請在 5/2 23:59:59 之前上傳
- 4.2 demo請在 5/9 23:59:59 之前上傳
- 5. Report請在 5/9 23:59:59 之前上傳

Grading policy

- 1. Pass the RTL& Synthesis simulation. (60%)
- 2. Performance = Area \times Total cycles \times Clock period (30%)
- 3. Report (10%)

Template folders and reference commands:

- 1. 01_RTL/ (RTL simulation) \rightarrow **./01_run**
- 2. $02_SYN/(synthesis) \rightarrow ./01_run_dc$
- 3. $03_{GATE}/(GATE \text{ simulation}) \rightarrow ./01_{run}$

報告請簡單且重點撰寫,不超過兩頁A4,並包括以下內容

- 1. 描述你的設計方法,包含但不限於如何加速(減少critical path)或降低面積。
- 2. 基於以上,畫出你的架構圖(Block diagram)
- 3. 心得報告,不侷限於此次作業,對於作業或上課內容都可以寫下。