Large-Scale and Multi-Structured Databases **Project Design** LondonSafeTravel**

Ricky Marinsalda Federico Frati Dario Pagani

Application Highlights

Our on-line service will allow its users to explore, search and visualize a geographical map of London and its public transport network.

- → Search for places such as addresses and *POIs*
- → View transit's timetables
- → Compute a travel route between two points
 - · On foot
 - · By car
 - By public transport
- → View and avoid disruptions on the network
 - · Vehicles' accidents
 - · Road works and other road closures

Dataset Description

Sources:

OpenStreetMap for the road network

Transport for London for the timetables and routes

Transport for London's TIMS API for disruptions

Description: A road and transit's network

Volume: circa 200MiB

Variety: CSVs files, JSONs files and OSM.PBFs files

Velocity/Variability: TIMS data are like a live feed, older data are moved into an archive for future analytics

Requirements and Entities handled by Document DB

Entities

- → POIs (transit stops, landmarks etc..)
- → All entities related to public transportation
- → Disruptions and their boundaries

Queries

- → List *POI*s in a given area [map view]
- → Routing between two public transport's stops [simplified]
- → Build a heatmap of a certain class of disruption
 - → for broken traffic lights, vehicles collisions, burst water pipes, etc..
- → Find the most common disruption in a given area

Requirements and Entities handled by Key-Value DB

COMPUTE ROUTE(

SOURCE: WGS84 coords,

DESTINATION: WGS84 coords):

IF <SOURCE, DESTINATION> IN CACHE:

INCREASE HITS

RESET TTL

RETURN CACHED ROUTE

ELSE

ROUTE ← COMPUTE_ROUTE(...)

CACHE ROUTE FOR N MINUTES

RETURN ROUTE

Journey

KEY: <SOURCE, DESTINATION>

VALUE: <ROUTE, HITS>

Another query: find the most common recent destinations

Requirements and Entities handled by Graph DB

Università di Pisa

Software Architecture Preliminary Idea

DBMSes

- > MongoDB for transit and TIMS' data
- > Neo4j for road network's data
- *Redis for routing paths' cache

Mockup

Technologies

One of the following: (yet to decide)

- Java & TomCat (web client)
- Python & Flask(web client)
- >Java Swing (Java client)

