Claims 1-21 (cancelled).

22. (new): A method for the antimicrobial treatment of a surface, which comprises contacting said surface with an antimicrobially effective amount of a 2,4-bis(alkylamino)pyrimidine of formula

(1).
$$R_{5} \bigvee_{\substack{N \\ R_{6}}} \bigvee_{\substack{N \\ R_{3}}} R_{4}$$

wherein

 R_1 is C_1 - C_{12} alkyl or C_6 - C_{10} aryl;

R₂ is hydrogen or C₁-C₁₂alkyl; or R₁ and R₂ together form a radical of formula

R' and R" are each independently of the other hydrogen, C₁-C₆alkyl or C₁-C₆alkoxy;

 R_3 and R_5 are each independently of the other hydrogen or C_1 - C_8 alkyl;

 R_4 is C_1 - C_{20} alkyl, unsubstituted phenyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_1 - C_6 alkyl, di- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, mono- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH or -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH2;

 R_6 is C_1 - C_{20} alkyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_1 - C_6 alkyl, di- C_1 - C_6 alkylamino- C_1 - C_6 alkyl, -(CH_2)₂-(O-(CH_2)₂)₁₋₄-OH or -(CH_2)₂-(O-(CH_2)₂)₁₋₄-NH₂; or R_3 and R_4 and/or R_5 and R_6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

23. (new): A method according to claim 22, wherein

 R_1 is C_1 - C_8 alkyl or phenyl.

24. (new): A method according to claim 22, wherein

R₂ is hydrogen or C₃-C₈alkyl.

25. (new): A method according to claim 22, wherein

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl.

26. (new): A method according to claim 22, wherein

 R_4 is C_1 - C_{12} alkyl, unsubstituted phenyl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_1 -

 $R_6 \text{ is } C_1-C_{12}\text{alkyl}, \ C_6-C_{10}\text{aryl}, \ C_6-C_{10}\text{aryl}-C_1-C_6\text{alkyl}, \ \text{hydroxy}-C_2-C_6\text{alkyl}, \ \text{di-}C_1-C_4\text{alkylamino-}C_1-C_4\text{alkyl}, \ \text{mono-}C_1-C_4\text{alkylamino-}C_1-C_4\text{alkyl}, \ -(CH_2)_2-(O-(CH_2)_2)_{1,2}-OH \ \text{or } -(CH_2)_2-(O-(CH_2)_2)_{1,2}-NH_2.$

27. (new): A method according to claim 22, wherein

 R_1 is C_1 - C_8 alkyl or phenyl;

R₂ is hydrogen or hexyl; and

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

 R_6 is C_1 - C_{12} alkyl, C_6 - C_{10} aryl, C_6 - C_{10} aryl- C_1 - C_6 alkyl, hydroxy- C_2 - C_6 alkyl, di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, mono- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-OH or -(CH_2)₂-(O-(CH_2)₂)_{1,2}- NH_2 ; or R_3 and R_4 and/or R_5 and R_6 together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

28. (new): A method according to claim 22, relating to compounds of formula

wherein

R' is hydrogen, C_1 - C_3 alkyl or C_1 - C_3 alkoxy;

R" is C₁-C₃alkyl or C₁-C₃alkoxy;

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl; and

 R_4 and R_6 are each independently of the other C_1 - C_{12} alkyl, phenyl- C_1 - C_3 alkyl, hydroxy- C_1 - C_6 -alkyl, di- C_1 - C_6 alkylamino- C_1 - C_1 -

R₃ and R₄ and/or R₅ and R₆ together form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

29. (new): A method according to claim 22, wherein

is C₁-C₄alkyl or phenyl; R₁

R₂ is hydrogen or hexyl; or R₁ and R₂ together form a radical of formula (1a) as defined in claim 22, wherein

R' is hydrogen, C₁-C₃alkyl or C₁-C₃alkoxy, and

R" is C₁-C₃alkyl or C₁-C₃alkoxy;

R₃ and R₅ are each independently of the other hydrogen or C₁-C₈alkyl;

R₄ is C₁-C₁₂alkyl, unsubstituted phenyl, C₆-C₁₀aryl-C₁-C₆alkyl, hydroxy-C₂-C₆alkyl,

di- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, mono- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, -(CH_2)₂-(O-(CH_2)₂)_{1,2}-OH or $-(CH_2)_2-(O-(CH_2)_2)_{1,2}-NH_2$; and

 R_6 is C_1-C_{12} alkyl, C_6-C_{10} aryl, C_6-C_{10} aryl- C_1-C_6 alkyl, hydroxy- C_2-C_6 alkyl, di- C_1-C_4 alkylamino- C_1-C_4 alkyl, mono- C_1 - C_4 alkylamino- C_1 - C_4 alkyl, - $(CH_2)_2$ - $(O-(CH_2)_2)_{1,2}$ -OH or - $(CH_2)_2$ - $(O-(CH_2)_2)_{1,2}$ -NH₂; or R₃ and R₄ together, and R₅ and R₆ together, form a pyrrolidine, piperidine, hexamethyleneimine or morpholine ring.

30. (new): A method according to claim 22, wherein R_3 and R_5 , and R_4 and R_6 , have the same meanings.

31. (new): A method according to claim 22, wherein the 2,4-bis(alkylamino)pyrimidine is of the formula

-4-

32. A process for the preparation of a compound of formula (1) according to claim 22, which comprises reacting a dichloropyrimidine compound of formula (1b), wherein R_1 and R_2 are as defined in claim 22, with a primary or secondary amine, wherein R_3 , R_4 , R_5 and R_6 are as defined above in claim 22, in a suitable solvent and an auxiliary base or using an excess of amine to form a compound of formula (1) according to the following Scheme:

or

a process for the preparation of a compound of formula (1), which comprises condensing a guanidine compound with a suitable β -keto ester using an auxiliary base in the presence of a solvent and then reacting with phosphorus oxychloride, and then with a primary or secondary amine (R_4R_5NH) according to Scheme (II):

$$R_3R_4N$$
 NH_2 NH_2

wherein R_1 and R_2 , R_3 , R_4 , R_5 and R_6 are as defined above in claim 22.

- 33. (new): A method according to claim 22, wherein the surface comprises textile fibre materials.
- 34. (new): A method according to claim 22, wherein the treatment with a compound of formula (1) results in preservation.
- 35. (new): A method according to claim 22, wherein a compound of formula (1) is incorporated into washing and cleaning formulations.
- 36. (new): A method according to claim 22 wherein a compound of formula (1) imparts antimicrobial properties to, and preserves, plastics, paper, nonwovens, wood or leather.
- 37. (new): A method according to claim 22, wherein a compound of formula (1) imparts antimicrobial properties to, and preserves, technical products selected from printing ink thickeners consisting of starch or of cellulose derivatives, surface-coating compositions and paints.
- 38. (new): A method according to claim 22, wherein a compound of formula (1) functions as a biocide in technical processes.
- 39. (new): A method according to claim 22, wherein a compound of formula (1) is incorporated into a skin-care preparation or mouth-care preparation.

- 40. A personal care preparation containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1) according to claim 22 and a cosmetically tolerable adjuvant.
- 41. An oral composition containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1) according to claim 22 and an orally tolerable adjuvant.
- 42. A skin-care preparation containing from 0.01 to 15 % by weight, based on the total weight of the composition, of a compound of formula (1) according to claim 22 and adjuvants tolerated by the skin.