STA221

Neil Montgomery

Last edited: 2017-03-22 15:05

regression with more than one input variable

The Universal Statistical Model:

 $\mathsf{Output} = \mathsf{Input} + \mathsf{Noise}$

regression with more than one input variable

The Universal Statistical Model:

$$Output = Input + Noise$$

Most datasets have more than one or two columns.

regression with more than one input variable

The Universal Statistical Model:

$$Output = Input + Noise$$

Most datasets have more than one or two columns.

The most important stastical model (in my opinion) is the linear regression model with more than one "x" variable. For example, with 3 input variables:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \varepsilon$$

interpretation of the variables

We treat y as random. The inputs are not random. They can be whatever you like, even functions of one another, with one technical limitation*.

interpretation of the variables

We treat y as random. The inputs are not random. They can be whatever you like, even functions of one another, with one technical limitation*.

So, for example, the following is a valid multiple regression model:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

This kind of "polynomial" model is good for fitting some types of non-linear relationships between y and a single x.

interpretation of the variables

We treat y as random. The inputs are not random. They can be whatever you like, even functions of one another, with one technical limitation*.

So, for example, the following is a valid multiple regression model:

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

This kind of "polynomial" model is good for fitting some types of non-linear relationships between y and a single x.

*A variable cannot be a linear function of other variables in the model.

what is being accomplished in multiple regression?

R comes with some sample datasets. One is called trees and has variables Girth, Height, and Volume. Here's a peek at the data:

```
## # A tibble: 31 \times 3
##
    Girth Height Volume
##
    <dbl> <dbl> <dbl>
               10.3
## 1 8.3
             70
            65 10.3
## 2 8.6
## 3 8.8
            63 10.2
     10.5 72 16.4
## 4
## 5
     10.7
            81 18.8
## # ... with 26 more rows
```

what is being accomplished in multiple regression?

Volume versus height and girth

multiple regression fits a surface to the points

Volume versus height and girth

▶ Familiar issues with similar answers

- ► Familiar issues with similar answers
 - ▶ Parameter testing and estimation

- ▶ Familiar issues with similar answers
 - Parameter testing and estimation
 - ▶ Mean response and prediction

- ▶ Familiar issues with similar answers
 - ▶ Parameter testing and estimation
 - Mean response and prediction
 - Model assumptions

- ▶ Familiar issues with similar answers
 - Parameter testing and estimation
 - Mean response and prediction
 - Model assumptions
- ► New issues:

- ▶ Familiar issues with similar answers
 - Parameter testing and estimation
 - Mean response and prediction
 - ► Model assumptions
- ► New issues:
 - ▶ Parameter interpretation

- ► Familiar issues with similar answers
 - Parameter testing and estimation
 - ▶ Mean response and prediction
 - ► Model assumptions
- ► New issues:
 - ▶ Parameter interpretation
 - Hard to visualize what is really happening

- ▶ Familiar issues with similar answers
 - Parameter testing and estimation
 - Mean response and prediction
 - Model assumptions
- ► New issues:
 - Parameter interpretation
 - Hard to visualize what is really happening
 - Actual formulae too unwieldly to even present

- ▶ Familiar issues with similar answers
 - Parameter testing and estimation
 - Mean response and prediction
 - ► Model assumptions
- ► New issues:
 - Parameter interpretation
 - ▶ Hard to visualize what is really happening
 - Actual formulae too unwieldly to even present
 - ▶ Model selection: which variables?

- ▶ Familiar issues with similar answers
 - Parameter testing and estimation
 - Mean response and prediction
 - Model assumptions
- New issues:
 - Parameter interpretation
 - ▶ Hard to visualize what is really happening
 - Actual formulae too unwieldly to even present
 - ► Model selection: which variables?
 - "Multicollinearity" (highly correlated inputs)

The multiple regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma)$$

has many parameters.

The multiple regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma)$$

has many parameters.

 σ is the variation in the distribution of the noise. It is not a function of any of the x - iust like before it is a constant.

The multiple regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma)$$

has many parameters.

 σ is the variation in the distribution of the noise. It is not a function of any of the x - just like before it is a constant.

 β_0 is the "intercept"—mainly important to make sure the fitted surface actually goes through the points.

The multiple regression model:

$$y = \beta_0 + \beta_1 x_1 + \dots \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma)$$

has many parameters.

 σ is the variation in the distribution of the noise. It is not a function of any of the x - just like before it is a constant.

 β_0 is the "intercept"—mainly important to make sure the fitted surface actually goes through the points.

The β_i from $i \in \{1, ..., k\}$ are the slope parameters, and have a different interpretation than before.

 β_i is:

▶ the change in *y*

 β_i is:

- ▶ the change in *y*
- ightharpoonup when x_i increases by 1 unit

 β_i is:

- ▶ the change in *y*
- \blacktriangleright when x_i increases by 1 unit
- ▶ given [values of] all the other input variables in the model.

 β_i is:

- ▶ the change in *y*
- \blacktriangleright when x_i increases by 1 unit
- ▶ given [values of] all the other input variables in the model.

 β_i is:

- ▶ the change in *y*
- \triangleright when x_i increases by 1 unit
- given [values of] all the other input variables in the model.

That bold, italic statement should echo in your mind any time you think of anything to do with β_i .

We might want to model y = Volume (the amount of wood) as a linear model of the input variables $x_1 = Girth$ and $x_2 = Height$, as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

We might want to model y = Volume (the amount of wood) as a linear model of the input variables $x_1 = Girth$ and $x_2 = Height$, as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

The computer does all the estimation of the parameters.

We might want to model y = Volume (the amount of wood) as a linear model of the input variables $x_1 = Girth$ and $x_2 = Height$, as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

The computer does all the estimation of the parameters.

We'll call the fitted model:

$$y = b_0 + b_1 x_1 + b_2 x_2$$

We might want to model y = Volume (the amount of wood) as a linear model of the input variables $x_1 = Girth$ and $x_2 = Height$, as follows:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

The computer does all the estimation of the parameters.

We'll call the fitted model:

$$y = b_0 + b_1 x_1 + b_2 x_2$$

The computer uses the method of "least squares", like before. A full treatment of the analysis requires matrix algebra.

fitted values | residuals

Here's the first row of the trees data:

Girtii	пеідпі	Volume
8.3	70	10.3

We could call these values y_1, x_{11} , and x_{21}

fitted values | residuals

Here's the first row of the trees data:

Girth	Height	Volume
8.3	70	10.3

We could call these values y_1, x_{11} , and x_{21}

The fitted value for y_1 is just:

$$\hat{y}_1 = b_0 + b_1 x_{11} + b_2 x_{21}$$

fitted values | residuals

Here's the first row of the trees data:

Girth	Height	Volume
8.3	70	10.3

We could call these values y_1, x_{11} , and x_{21}

The fitted value for y_1 is just:

$$\hat{y}_1 = b_0 + b_1 x_{11} + b_2 x_{21}$$

The residual corresponding to this fitted value is just:

$$y_1 - \hat{y}_1$$

fitted values | residuals

Here's the first row of the trees data:

Girth	Height	Volume
8.3	70	10.3

We could call these values y_1, x_{11} , and x_{21}

The fitted value for y_1 is just:

$$\hat{y}_1 = b_0 + b_1 x_{11} + b_2 x_{21}$$

The residual corresponding to this fitted value is just:

$$y_1 - \hat{y}_1$$

For a dataset with n rows (the sample size), there is a fitted value and residual for each row.

trees data fitted model

Here's what R produces:

```
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57.9877 8.6382 -6.713 2.75e-07
## Girth
              4.7082 0.2643 17.816 < 2e-16
## Height 0.3393 0.1302 2.607 0.0145
##
## Residual standard error: 3.882 on 28 degrees of freedom
## Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
## F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```

individual slope parameter hypothesis testing

The usual hypothesis test for a single parameter:

$$H_0: \beta_i = 0$$

 $H_a: \beta_i \neq 0$

individual slope parameter hypothesis testing

The usual hypothesis test for a single parameter:

$$H_0: \beta_i = 0$$

 $H_a: \beta_i \neq 0$

If H_0 is true, it means the *i*th variable (x_i) is not significantly related to y

individual slope parameter hypothesis testing

The usual hypothesis test for a single parameter:

$$H_0: \beta_i = 0$$

 $H_a: \beta_i \neq 0$

If H_0 is true, it means the *i*th variable (x_i) is not significantly related to y given all the other x's in the model

the overall hypothesis test

"Is there any linear relationship between y and the input variables?"

the overall hypothesis test

"Is there any linear relationship between y and the input variables?"

Null hypothesis can be expressed as:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$

the overall hypothesis test

"Is there any linear relationship between y and the input variables?" Null hypothesis can be expressed as:

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_k = 0$$

It is also possible to test any subset of these parameters, such as:

$$H_0: \beta_1 = \beta_2 = 0$$

although at the moment it's not clear why this might be a good idea.

This works the same as with simple regression, in which we used \sqrt{MSE} where:

$$MSE = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{n-2}$$

This works the same as with simple regression, in which we used \sqrt{MSE} where:

$$MSE = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{n-2}$$

n-2 was the sample size minus the number of parameters (two: β_0 and β_1) being estimated.

This works the same as with simple regression, in which we used \sqrt{MSE} where:

$$MSE = \frac{\sum_{j=1}^{n} (y_j - \hat{y}_j)^2}{n-2}$$

n-2 was the sample size minus the number of parameters (two: β_0 and β_1) being estimated.

There was only one input variable, so another way to think of this was "sample size minus the number of input variables, then minus 1."

In multiple regression, nothing changes. Use \sqrt{MSE} , where:

$$MSE = rac{\sum\limits_{j=1}^{n}{(y_j - \hat{y}_j)^2}}{n - (k+1)}$$

hypothesis testing for β_i

The computer produces the estimate b_i , which has these properties:

$$E(b_i) = \beta_i$$

 $Var(b_i) = \sigma \cdot c_i$

hypothesis testing for β_i

The computer produces the estimate b_i , which has these properties:

$$E(b_i) = \beta_i$$
$$Var(b_i) = \sigma \cdot c_i$$

 c_i is a number that reflects the relationships between x_i and the other inputs (to be revisited).

hypothesis testing for β_i

The computer produces the estimate b_i , which has these properties:

$$E(b_i) = \beta_i$$

 $Var(b_i) = \sigma \cdot c_i$

 c_i is a number that reflects the relationships between x_i and the other inputs (to be revisited).

Just like before, we get:

$$\frac{b_i - \beta_i}{\sqrt{MSE}\sqrt{c_i}} \sim t_{n-k+1}$$

hypothesis testing for β_i in the trees example

```
##
## Coefficients:
##
             Estimate Std. Error t value Pr(>|t|)
## (Intercept) -57.9877 8.6382 -6.713 2.75e-07
## Girth 4.7082 0.2643 17.816 < 2e-16
               0.3393 0.1302 2.607 0.0145
## Height
##
## Residual standard error: 3.882 on 28 degrees of freedom
## Multiple R-squared: 0.948, Adjusted R-squared: 0.9442
## F-statistic: 255 on 2 and 28 DF, p-value: < 2.2e-16
```