Section 8.6: The Integers Modulo n

Juan Patricio Carrizales Torres

July 4, 2022

We know that for any positive integer $n \in \mathbb{N}$, the relation R defined on \mathbb{Z} by a R b if $a \equiv b \pmod{n}$ is an equivalence relation that results in the distinct equivalence classes $[0], [1], \ldots, [n-1]$. Then, we can define some class that contains these equivalences classes, namely, $\mathbb{Z}_n = \{[0], [1], \ldots, [n-1]\}$, where \mathbb{Z}_n is known as **integers modulo n**. Although, some may refer to it as the set of **residue classes**. Furthermore, one can define some type of addition and multiplication on \mathbb{Z}_n as follows:

$$[a] + [b] = [a+b]$$
 $[a] \cdot [b] = [ab],$

for any [a], $[b] \in \mathbb{Z}_n$. Since the elements of \mathbb{Z}_n are equivalence classes (partitions of \mathbb{Z}), it follows that both $a+b \in [c]$ and $ab \in [d]$ for some [c], $[d] \in \mathbb{Z}_n$, which implies that [a+b] = [c] and [ab] = [d]. Hence, this addition and multiplication are operations in \mathbb{Z}_n , which means that both the sum and product of two equivalence classes are also equivalence classes. In fact, these operations are well-defined and so the sum and product of two equivalence classes do not depend on the representative integers. More precisely, if [a] = [b] and [c] = [d], then [a+c] = [b+d] and [ac] = [bd]. This operations have the familiar properties of addition and product on \mathbb{Z} , namely,

- (a) Commutative Property [a] + [b] = [b] + [a] and $[a] \cdot [b] = [b] \cdot [a]$ for all $a, b \in \mathbb{Z}$
- (b) Associative Property ([a] + [b]) + [c] = [a] + ([b] + [c]) and $([a] \cdot [b]) \cdot [c] = [a] \cdot ([b] \cdot [c])$ for all $a, b, c \in \mathbb{Z}$
- (c) Distributive Property $[a] \cdot ([b] + [c]) = [a] \cdot [b] + [a] \cdot [c]$ for all $a, b, c \in \mathbb{Z}$.