Algebraic Geometry 1

PROBLEM SET 11

Keywords: Bézout, regularity and smoothness

Problem 1

Consider the conic $C = V_+(x_0x_1 - x_2^2) \subseteq \mathbb{P}^2$ and the lines $L_1 = V_+(x_2)$, $L_2 = V_+(x_0 - x_2)$. Compute the intersection of C with L_i , i = 1, 2 (with multiplicities).

Problem 2

An irreducible curve of degree d in \mathbb{P}^n is contained in a linear subspace of dimension at most d.

Problem 3

A dimension 0 Noetherian local ring is regular if and only if it is a field. A dimension 1 Noetherian local ring is regular if and only if it is a PID.

Problem 4

The corank of the Jacobian matrix does not depend on the presentation. Let $R = k[x_1, \ldots, x_n]/(f_1, \ldots, f_r)$ and $\underline{a} \in k^n$ such that $f_i(\underline{a}) = 0$ for all $i = 1, \ldots, r$. Show that the corank of $Jac(F)(\underline{a})$ is unaffected by:

- 1. adding to (f_1, \ldots, f_r) another polynomial from the ideal they generate;
- 2. adding to the generators of R a new variable x_{n+1} , and to the ideal a new relation of the form $x_{n+1} g(x_1, \ldots, x_n)$.

Problem 5

Projective Jacobian criterion.

- 1. Let $f \in k[x_0, \dots, x_d]$ be a homogeneous polynomial of degree d. Then $\sum_{i=0}^n x_i \frac{\partial f}{\partial x_i} = d \cdot f$.
- 2. Let $\underline{a} \in X \subseteq \mathbb{P}^n(k)$, with $I(X) = \langle f_1, \dots, f_r \rangle$. Prove that X is smooth at \underline{a} if and only if the rank of the $r \times (n+1)$ matrix $\operatorname{Jac}(F)(\underline{a}) = \left(\frac{\partial f_i}{\partial x_j}(\underline{a})\right)$ is at least $n \dim_a X$ (note that the matrix is only well-defined up to scalar, which does not affect the rank).
- 3. Let $X \subseteq \mathbb{P}^3(k)$ be the twisted cubic $V_+(x_0x_2-x_1^3,x_0x_3-x_1x_2,x_1x_3-x_2^2)$. Use the previous point to show that X is smooth.