[6] Generation and enumeration of combinatorial objects (subsets, k-element subsets, permutations), Gray codes

- [**Definice**] Předpokládejme, že S je konečná množina. Ohodnocení (*ranking function*) bude bijekce *rank*: $S \rightarrow \{0,...,|S|-1\}$ a *unrank* bude funkce k ní inverzní.
- [Definice] S funkcí rank definovanou na S bude funkce successor splňovat následující podmínku: successor(s) = t ⇔ rank(t) = rank(s) + 1
- lze použít pro generování náhodných objektů z S s garancí stejné pravděpodobnosti 1/|S|
 nebo pro ukládání kombinatorických objektů v počítači (namísto ukládání složité kombinatorické struktury)

Podmnožiny (subsets)

- [**Definice**] Předpokládejme, že n je přirozené číslo a S = {1,...,n}. Nechť se množina M skládá z 2^n podmnožin S. Máme-li podmnožinu T množiny S, definujme charakteristický vector T jako jednodimenzionální binární pole $\chi(T) = [x_{n-1}, x_{n-2},...,x_0]$, kde

$$x_i = \begin{cases} 1 & \text{if } (n-i) \in T \\ 0 & \text{if } (n-i) \notin T \end{cases}$$

- příklad lexikografického uspořádání na podmnožinách S = {1,2,3}:

T	$\chi(T) = [x_2, x_1, x_0]$	rank(T)
Ø	[0,0,0]	0
{3}	[0,0,1]	1
{2}	[0,1,0]	2
{2,3}	[0,1,1]	3
{1}	[1,0,0]	4
{1,3}	[1,0,1]	5
{1,2}	[1,1,0]	6
{1,2,3}	[1,1,1]	7

- výpočet ranku podmnožiny lexikografického uspořádání:
 - 1) **Function** SUBSETLEXRANK(size n; set T): rank
 - 2) r = 0:
 - 3) **for** i = 1 **to** n **do** {
 - 4) **if** $i \in T$ **then** $r = r + 2^{n-i}$;
 - 5) }
 - 6) return r;

```
    Function SUBSETLEXUNRANK( size n; rank r): set
    T = Ø;
    for i = n downto 1 do {
    if r mod 2 = 1 then T = T ∪ {i};
    r = r div 2;
    }
    return T;
```

Grayův kód

- [**Definice**] Zrcadlový binární kód (reflected bc), také Grayův kód, je binární číselný systém kde se dvě po sobě jdoucí hodnoty liší jen v jednom bitu.
- Gⁿ je Grayův kód pro 2ⁿ binárních n-tic, zapsaný jako seznam 2ⁿ vektorů G_iⁿ následovně:

$$G^n = [G_0^n, G_1^n, ..., G_{2^n-1}^n]$$

- kódy G^n jsou definovány rekurzivně: $G^1 = [0,1]$

$$G^n {=} [0G_0^{n-1}, 0G_1^{n-1}, \dots, 0G_{2^{n-1}-1}^{n-1}, 1G_{2^{n-1}-1}^{n-1}, \dots, 1G_1^{n-1}, 1G_0^{n-1}]$$

111

- příklad:

$$G^3$$
=[000, 001, 011, 010, 110, 111, 101, 100]

G_r^3	r	binary representation of r
000	0	000
001	1	001
011	2	010
010	3	011
110	4	100
111	5	101
101	6	110

lemma 1

Suppose

- $0 \le r \le 2^n 1$
- \Box $B = b_{n-1}$, ..., b_0 is a binary code of r
- \Box $G = g_{n-1}, ..., g_0$ is a Gray code of r

Then for every $j \in \{0,1, ..., n-1\}$

100

$$g_i = (b_i + b_{i+1}) \bmod 2$$

proof

By induction on n.

• Note We may suppose $b_n = g_n = 0$.

Example:

$$\mathbf{0}_0 = \mathbf{0}_0 + \mathbf{0}_1$$

 $\mathbf{1}_1 = \mathbf{1}_1 + \mathbf{0}_2$
 $\mathbf{0}_2 = \mathbf{1}_2 + \mathbf{1}_3$
 $\mathbf{0}_3 = \mathbf{1}_3 + \mathbf{1}_4$
 $\mathbf{1}_4 = \mathbf{1}_4 + \mathbf{0}_5$

lemma 2

Suppose

- $0 \le r \le 2^n 1$
- \Box $B = b_{n-1}$, ..., b_0 is a binary code of r
- \Box $G = g_{n-1}, ..., g_0$ is a Gray code of r

Then for every $j \in \{0,1, ..., n-1\}$

$$b_j = (g_j + b_{j+1}) \bmod 2$$

proof

$$g_j = (b_j + b_{j+1}) \mod 2 \Rightarrow g_j \equiv (b_j + b_{j+1}) \pmod 2 \Rightarrow$$
 $b_j \equiv (g_j + b_{j+1}) \pmod 2 \Rightarrow$
 $b_j \equiv (g_j + b_{j+1}) \pmod 2 \Rightarrow$

Note We may suppose $b_n = g_n = 0$.

lemma 3

Suppose

- $0 \le r \le 2^n 1$
- \Box $B = b_{n-1}$, ..., b_0 is a binary code of r
- \Box $G = g_{n-1}, \dots, g_0$ is a Gray code of r

Example:

Then for every $j \in \{0,1, ..., n-1\}$

$$b_j = \left(\sum_{i=j}^{n-1} g_i\right) \bmod 2$$

$$0_0 = 0_0 + 1_1 + 0_2 + 0_3 + 1_4$$

 $0_1 = 1_1 + 0_2 + 0_3 + 1_4$
 $1_2 = 0_2 + 0_3 + 1_4$
 $1_3 = 0_3 + 1_4$

Example:

10010

 $0_0 = 0_0 + 0_1$

 $0_1 = 1_1 + 1_2$

 $1_2 = 0_2 + 1_3$

$$1_3 = 0_3 + 1_4$$

$$\left(\sum_{l=j}^{n-1} g_l\right) \mod 2 = \left(\sum_{l=j}^{n-1} (b_l + b_{l+1})\right) \mod 2 = \left(b_j + b_n + 2\sum_{l=j+1}^{n-1} b_l\right) \mod 2 = (b_j + b_n) \mod 2 = b_j$$

By lemma 1.

Algoritmy

converting to and from minimal change ordering (Gray code)

- 1) **Function** BINARYTOGRAY(binary code rank *B*): gray code rank
- 2) **return** B **xor** (B >> 1);
- **Function** GRAYTOBINARY(gray code rank G): binary code rank
- B=0; 2)
- n = (number of bits in G) 1;3)
- for i=0 to n do { 4)
- B = B << 1;
- B = B or (1 and ((B >> 1) xor (G >> n)));6)
- G = G << 1; 7)
- 8) }
- return B; 9)

computing the subset rank over minimal change ordering

```
• Set: \{1,2,...,n\}, using relation b_j = (g_j + b_{j+1}) \mod 2.
```

```
    1) Function GRAYCODERANK(size n; subset T): rank
    2) r = 0;
    3) b = 0;
    4) for i = n - 1 downto 0 do {
    5) if n - i ∈ T then b = 1 - b;
    6) if b = 1 then r = r + 2<sup>i</sup>;
    7) }
    8) return r;
```

computing the subset unrank over minimal change ordering

```
    Function GRAYCODEUNRANK( size n; rank r): set
    T = Ø;
    c = 0;
    for i = n - 1 downto 0 do {
    b = r div 2<sup>i</sup>;
    if b ≠ c then T = T ∪ {n - i};
    c = b;
    r = r - b·2<sup>i</sup>;
    return T;
```

k-prvkové podmnožiny

- Předpokládejme, že n je přirozené číslo a S = {1,...,n}.
- $\binom{S}{k}$ se skládá ze všech k-prvkových podmnožin S.
- k-prvkovou podmnožinu T \subseteq S lze vyjádřit jako setříděné jednodimenzionální pole:

$$\vec{T} = [t_1, t_2, \dots, t_k]$$
 where $t_1 < t_2 < \dots < t_k$.

příklad lexikografického uspořádání nad k-prvkovou podmnožinou:

T	$ec{T}$	rank(T)
{1,2,3}	[1,2,3]	0
{1,2,4}	[1,2,4]	1
{1,2,5}	[1,2,5]	2
{1,3,4}	[1,3,4]	3
{1,3,5}	[1,3,5]	4
{1,4,5}	[1,4,5]	5
{2,3,4}	[2,3,4]	6
{2,3,5}	[2,3,5]	7
{2,4,5}	[2,4,5]	8
{3,4,5}	[3,4,5]	9

Algoritmy

computing the k-element subset successor with lexicographic ordering

```
Function KSUBSETLEXSUCCESOR(k-element subset as array T; number n, k): k-element subset as array;
U = T;
i = k;
while (i≥1) and (T[i] = n - k + i) do i = i - 1;
if (i = 0) then
return "undefined";
else {
for j = i to k do U[j] = T[i] + 1 + j - i;
return U;
}
```

computing the k-element subset rank with lexicographic ordering

```
1) Function KSUBSETLEXRANK(k-element subset as array T;
2) number n, k): rank;
3) r = 0;
4) T[0] = 0;
5) for i = 1 to k do {
6) if (T[i-1]+1 \le T[i]-1) then {
7) for j = T[i-1]+1 to T[i]-1 do r = r + \binom{n-j}{k-i};
8) }
9) }
10) return r;
```

computing the k-element subset unrank with lexicographic ordering

```
1) Function KSUBSETLEXUNRANK(rank r;
2) number n, k): k-element subset as array;
3) x = 1;
4) for i = 1 to k do {
5) while \binom{n-x}{k-i} \le r do {
6) r = r - \binom{n-x}{k-i};
7) x = x + 1;
8) }
9) T[i] = x;
10) x = x + 1;
11) }
```

Permutace

- Permutace je bijekce z množiny na sebe samu.
- Jedna z možných reprezentací permutace π : $\{1,...,n\} \rightarrow \{1,...,n\}$ je ukládání jejich hodnot do jednodimensionálního pole:

index	1	2	 n
value	$\pi[1]$	$\pi[2]$	 $\pi[n]$

Algoritmy

computing the permutation rank over lexicographical ordering

```
    Function PERMLEXRANK( size n; permutation π): rank
    r = 0;
    ρ = π;
    for j = 1 to n do {
    r = r + (ρ[j] - 1)·(n - j)!;
    for i = j + 1 to n do if ρ[i] > ρ[j] then ρ[i] = ρ[i] - 1;
    }
    return r;
```

computing the permutation unrank over lexicographical ordering

```
    Function PERMLEXUNRANK( size n; rank r): permutation
    π[n] = 1;
    for j = 1 to n - 1 do {
    d = r mod (j+1)! / j!;
    r = r - d · j!;
    π[n-j] = d + 1;
    for i = n - j + 1 to n do if π[i] > d then π[i] = π[i] + 1;
    feturn π;
```

Zdroj: https://cw.fel.cvut.cz/wiki/ media/courses/b4m33pal/pal06.pdf