

US012386030B2

(12) United States Patent Ali et al.

(54) METHOD AND SYSTEM FOR ANTENNA ARRAY CALIBRATION FOR CROSS-COUPLING AND GAIN/PHASE VARIATIONS IN RADAR SYSTEMS

(71) Applicant: UHNDER, INC., Austin, TX (US)

(72) Inventors: Murtaza Ali, Cedar Park, TX (US); Ali Erdem Ertan, Austin, TX (US); Kevin

B. Foltinek, Austin, TX (US)

(73) Assignee: Robert Bosch GMBH, Gerlingen (DE)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 18/630,364

(22) Filed: Apr. 9, 2024

(65) Prior Publication Data

US 2024/0272276 A1 Aug. 15, 2024

Related U.S. Application Data

(63) Continuation of application No. 17/147,914, filed on Jan. 13, 2021, now Pat. No. 11,953,615.

(Continued)

(51) Int. Cl.

G01S 7/35 (2006.01)

G01S 7/02 (2006.01)

(Continued)

(Continued)

(58) Field of Classification Search

CPC G01S 7/352; G01S 7/023; G01S 7/4004; G01S 13/34; G01S 13/584; G01S 13/588; (Continued) (10) Patent No.: US 12,386,030 B2

(45) **Date of Patent:** *Aug. 12, 2025

(56) References Cited

U.S. PATENT DOCUMENTS

1,882,128 A 10/1932 Fearing 3,374,478 A 3/1968 Blau (Continued)

FOREIGN PATENT DOCUMENTS

EP 0509843 10/1992 EP 1826586 8/2007 (Continued)

OTHER PUBLICATIONS

Chambers et al., "An article entitled Real-Time Vehicle Mounted Multistatic Ground Penetrating Radar Imaging System for Buried Object Detection," Lawrence Livermore National Laboratory Reports (LLNL-TR-615452), Feb. 4, 2013; Retrieved from the Internet from https://e-reports-ext.llnl.gov/pdf/711892.pdf.

(Continued)

Primary Examiner — William Kelleher

Assistant Examiner — Ismaaeel A. Siddiquee

(74) Attorney, Agent, or Firm — Gardner, Linn, Burkhart

& Ondersma LLP

(57) ABSTRACT

A radar system with on-system calibration includes capabilities for radar detection and correction for system impairments to improve detection performance. The radar system is equipped with pluralities of transmit antennas and pluralities of receive antennas. The radar system uses a series of calibration measurements of a known object to estimate the system impairments. A correction is then applied to the beamforming weights to mitigate the effect of these impairments on radar detection. The estimation and correction requires no external measurement equipment and can be computed on the radar system itself.

26 Claims, 10 Drawing Sheets

13/34 (2013.01);

US 12,386,030 B2 Page 2

	Related U.S.	Application Data	5,657,023 A		Lewis et al.
(60)	Provisional application	n No. 62/960,220, filed on Jan.	5,682,605 A 5,691,724 A	10/1997 11/1997	Salter Aker et al.
	13, 2020.		5,712,640 A 5,724,041 A	1/1998	Andou Inoue et al.
(51)	Int. Cl.		5,847,661 A	12/1998	
(31)	G01S 7/28	(2006.01)	5,861,834 A	1/1999	
	G01S 7/32	(2006.01)	5,892,477 A 5,917,430 A	6/1999	Wehling Greneker, III et al.
	G01S 7/40	(2006.01)	5,920,278 A	7/1999	Tyler et al.
	G01S 13/34	(2006.01)	5,920,285 A 5,931,893 A	7/1999 8/1999	Benjamin Dent et al.
	G01S 13/36 G01S 13/42	(2006.01) (2006.01)	5,959,571 A	9/1999	Aoyagi et al.
	G01S 13/58	(2006.01)	5,970,400 A 6,048,315 A	10/1999 4/2000	Dwyer Chiao et al.
	G01S 13/87	(2006.01)	6,067,314 A	5/2000	Azuma
	G01S 13/931	(2020.01)	6,069,581 A 6,121,872 A	5/2000 9/2000	Bell et al. Weishaupt
(50)	H01Q 3/26	(2006.01)	6,121,918 A	9/2000	Tullsson
(52)	U.S. Cl. CPC <i>G01S 1</i>	2/504 (2012 01). COIS 12/500	6,151,366 A 6,163,252 A	11/2000	Yip Nishiwaki
		3/584 (2013.01); G01S 13/588 G01S 13/931 (2013.01); H01Q	6,184,829 B1	2/2001	Stilp
		(2013.01); G01S 7/28 (2013.01); G01S	6,191,726 B1 6,208,248 B1	2/2001 3/2001	Tullsson
		; G01S 7/356 (2021.05); G01S	6,288,672 B1		Asano et al.
		; G01S 13/42 (2013.01); G01S	6,307,622 B1	10/2001	
		8 (2013.01); G01S 2013/93271); G01S 2013/93272 (2020.01)	6,335,700 B1 6,347,264 B2		Ashihara Nicosia et al.
(58)	Field of Classification		6,396,436 B1	5/2002	Lissel et al.
(30)		G01S 7/28; G01S 7/32; G01S	6,400,308 B1 6,411,250 B1		Bell et al. Oswald et al.
		01S 13/36; G01S 13/42; G01S	6,417,796 B1	7/2002	Bowlds
		/878; G01S 2013/93271; G01S	6,424,289 B2 6,529,931 B1		Fukae et al. Besz et al.
	2013/932	272; G01S 7/032; G01S 7/028;	6,547,733 B2	4/2003	Hwang et al.
	See application file for	H01Q 3/267 or complete search history.	6,583,753 B1 6,614,387 B1	6/2003 9/2003	Reed Deadman
	see application me is	or complete search mistory.	6,624,784 B1	9/2003	Yamaguchi
(56)	Referen	ices Cited	6,674,908 B1 6,683,560 B2		Aronov Bauhahn
	U.S. PATENT	DOCUMENTS	6,693,582 B2	2/2004	Steinlechner et al.
	2.725.200 4 5/1072	D	6,714,956 B1 6,747,595 B2		Liu et al. Hirabe
	3,735,398 A 5/1973 3,750,169 A 7/1973	Strenglein	6,768,391 B1	7/2004	Dent et al.
	3,766,554 A 10/1973	Tresselt	6,865,218 B1 6,867,732 B1	3/2005	Sourour Chen et al.
		Sirven Foote	6,888,491 B2	5/2005	Richter
	4,078,234 A 3/1978	Fishbein et al.	6,975,246 B1 7,066,886 B2	12/2005 6/2006	Song et al.
	4,176,351 A 11/1979 4,308,536 A 12/1981	De Vita et al. Sims, Jr. et al.	7,119,739 B1	10/2006	Struckman
	4,566,010 A 1/1986	Collins	7,130,663 B2 7,202,776 B2	10/2006 4/2007	Guo Breed
	4,612,547 A 9/1986 4,882,668 A 11/1989	Itoh Schmid et al.	7,289,058 B2	10/2007	Shima
	4,910,464 A 3/1990	Trett et al.	7,299,251 B2 7,338,450 B2	3/2008	Skidmore et al. Kristofferson et al.
		Feintuch Bächtiger	7,395,084 B2	7/2008	Anttila
	5,012,254 A 4/1991	Thompson	7,460,055 B2 7,474,258 B1	12/2008	Nishijima et al. Arikan et al.
		Chang May et al.	7,545,310 B2	6/2009	Matsuoka
		Aulenbacher G01S 7/4004	7,545,321 B2 7,564,400 B2		Kawasaki Fukuda
	5 170 221 A 9/1002	342/192 Aulenbacher et al.	7,567,204 B2	7/2009	Sakamoto
	- , ,	Urkowitz	7,609,198 B2 7,642,952 B2	1/2009	Chang Fukuda
		Hutson	7,663,533 B2		Toennesen
	5,218,619 A 6/1993 5,272,663 A 12/1993	Jones et al.	7,667,637 B2 7,728,762 B2		Pedersen et al. Sakamoto
	5,280,288 A 1/1994		7,791,528 B2		Klotzbuecher
		Asbury et al. Frazier et al.	7,847,731 B2		Wiesbeck et al.
	5,345,470 A 9/1994	Alexander	7,855,677 B2 7,859,450 B2		Negoro et al. Shirakawa et al.
		Barrick et al. Urkowitz	8,019,352 B2	9/2011	Rappaport et al.
	5,379,322 A 1/1995	Kosaka et al.	8,044,845 B2 8,049,663 B2		Saunders Frank et al.
		Gilmour et al. Kaiser	8,049,003 B2 8,059,026 B1	11/2011	
	5,508,706 A 4/1996	Tsou et al.	8,102,306 B2	1/2012	
		Woll et al. Hayashikura et al.	8,115,672 B2 8,154,436 B2		Nouvel et al. Szajnowski
		Ehsani-Nategh et al.	8,169,359 B2		Aoyagi

US 12,386,030 B2 Page 3

(56)		Referen	ces Cited	11,054,516 11,086,010			Wu et al. Davis et al.
	U.S.	PATENT	DOCUMENTS	11,105,890	B2	8/2021	Behrens et al.
	0.010.510.50	#/2012		11,175,377 11,194,016			Bordes et al. Eshraghi et al.
	8,212,713 B2 8,330,650 B2		Aiga et al. Goldman	11,262,448		3/2022	Davis et al.
	8,390,507 B2	3/2013	Wintermantel	11,271,328			Liu et al.
	8,471,760 B2	6/2013		11,340,331 11,454,697			Maher et al. Maher et al.
	8,532,159 B2 8,547,988 B2		Kagawa et al. Hadani et al.	11,474,225			Dent et al.
	8,686,894 B2		Fukuda et al.	11,582,305	B2		Davis et al.
	8,694,306 B1		Short et al.	11,681,017 11,726,172			Behrens et al. Maher et al.
	8,768,248 B2 8,994,581 B1	7/2014 3/2015		11,740,323			Davis et al.
	9,020,011 B1		Hiebert et al.	11,846,696	B2		Rao et al.
	9,063,225 B2		Lee et al.	2001/0002919 2002/0004692			Sourour et al. Nicosia et al.
	9,121,943 B2 9,182,479 B2		Stirlin-Gallacher et al. Chen et al.	2002/0004092			Woodington et al.
	9,194,946 B1	11/2015		2002/0063653	A1	5/2002	Oey et al.
	9,239,378 B2		Kishigami et al.	2002/0075178			Woodington et al.
	9,239,379 B2 9,274,217 B2		Burgio et al. Chang et al.	2002/0118522 2002/0130811			Ho et al. Voigtlaender
	9,282,945 B2		Smith et al.	2002/0147534		10/2002	Delcheccolo et al.
	9,335,402 B2	5/2016	Maeno et al.	2002/0155811			Prismantas
	9,400,328 B2 9,541,639 B2		Hsiao et al.	2003/0001772 2003/0011519			Woodington et al. Breglia et al.
	9,568,600 B2	2/2017	Searcy et al. Alland	2003/0058166	Al	3/2003	
	9,575,160 B1	2/2017	Davis et al.	2003/0073463			Shapira
	9,599,702 B1		Bordes et al.	2003/0080713 2003/0102997			Kirmuss Levin et al.
	9,618,616 B2 9,689,967 B1	6/2017	Kishigami et al. Stark et al.	2003/0164791			Shinoda et al.
	9,709,674 B2	7/2017	Moriuchi et al.	2003/0228890		12/2003	
	9,720,073 B1		Davis et al.	2003/0235244 2004/0012516			Pessoa et al. Schiffmann
	9,726,756 B2 9,720,080 B1	8/2017 9/2017	Rodenbeck	2004/0015529			Tanrkulu et al.
	9,753,121 B1	9/2017		2004/0066323			Richter
	9,753,132 B1		Bordes et al.	2004/0070532 2004/0107030			Ishii et al. Nishira et al.
	9,772,397 B1 9,791,551 B1		Bordes et al. Eshraghi et al.	2004/0130486			Akopian
	9,791,564 B1		Harris et al.	2004/0138802			Kuragaki et al.
	9,806,914 B1		Bordes et al.	2004/0215373 2004/0229590			Won et al. Kubo et al.
	9,829,567 B1 9,846,228 B2		Davis et al. Davis et al.	2005/0001757			Shinoda et al.
	9,869,762 B1		Alland et al.	2005/0008065			Schilling
	9,945,935 B2		Eshraghi et al.	2005/0069162 2005/0090274		3/2005 4/2005	Haykın Miyashita
	9,954,955 B2 9,971,020 B1		Davis et al. Maher et al.	2005/0100106		5/2005	
	9,989,627 B2		Eshraghi et al.	2005/0156780			Bonthron et al.
	9,989,638 B2		Harris et al.	2005/0201457 2005/0225476			Allred et al. Hoetzel et al.
	10,073,171 B2 10,090,585 B2		Bordes et al. Dinc et al.	2005/0273480			Pugh et al.
	10,092,192 B2		Lashkari et al.	2006/0012511			Dooi et al.
	10,142,133 B2		Bordes et al.	2006/0036353 2006/0050707		2/2006 3/2006	Wintermantel
	10,145,954 B2 10,191,142 B2		Davis et al. Eshraghi et al.	2006/0093078			Lewis et al.
	10,197,671 B2	2/2019	Alland et al.	2006/0109170			Voigtlaender et al.
	10,215,853 B2		Stark et al.	2006/0109931 2006/0114324		5/2006 6/2006	Asaı Farmer et al.
	10,261,179 B2 10,305,611 B1		Davis et al. Rimini et al.	2006/0140249		6/2006	
	10,324,165 B2		Bordes et al.	2006/0181448			Natsume et al.
	10,371,797 B1		Prados et al.	2006/0220943 2006/0244653			Schlick et al. Szajnowski
	10,386,470 B2 10,536,529 B2		Zivkovic Davis et al.	2006/0262007			Bonthron
	10,551,482 B2		Eshraghi et al.	2006/0262009			Watanabe
	10,573,959 B2		Alland et al.	2007/0018884 2007/0018886			Adams Watanabe et al.
	10,594,916 B2 10,605,894 B2	3/2020 3/2020	Davis et al.	2007/0040729			Ohnishi
]	0,659,078 B2	5/2020	Nayyar et al.	2007/0096885			Cheng et al.
	10,670,695 B2		Maher et al.	2007/0109175 2007/0115869		5/2007 5/2007	Fukuda Lakkis
	10,690,780 B1* 10,775,478 B2		Zarubica G01S 19/32 Davis et al.	2007/0113809			Kelly, Jr. et al.
]	10,782,389 B2	9/2020	Rao et al.	2007/0132633	A1	6/2007	Uchino
	10,805,933 B2		Stephens et al.	2007/0152870			Woodington et al.
	10,812,985 B2 10,852,408 B2		Mody et al. Aslett et al.	2007/0152871 2007/0152872		7/2007 7/2007	Puglia Woodington
	10,866,306 B2		Maher et al.	2007/0164896			Suzuki et al.
]	10,908,272 B2	2/2021	Rao et al.	2007/0171122	A1		Nakano
	10,935,633 B2		Maher et al.	2007/0182619			Honda et al.
	10,976,431 B2	4/2021	Harris et al.	2007/0182623	ΑI	8/2007	zeng

US 12,386,030 B2 Page 4

(56) F	References	s Cited	2012/0235857	Al	9/2012	Kim et al.
,	ATENT IV	OCLIMENTS	2012/0249356 2012/0257643		10/2012	Shope Wu et al.
U.S. PA	ALENI DO	OCUMENTS	2012/0283987			Busking et al.
2007/0188373 A1	8/2007 Shi	irakawa et al.	2012/0314799			In De Betou et al.
	8/2007 Ok		2012/0319900 2013/0016761			Johansson et al. Nentwig
	9/2007 The 1/2007 Me		2013/0021196		1/2013	Himmelstoss
	.2/2007 Scl		2013/0027240			Chowdhury
2008/0012710 A1	1/2008 Sac		2013/0057436			Krasner et al.
	4/2008 Ka		2013/0069818 2013/0102254		3/2013 4/2013	Shirakawa et al.
	4/2008 Bo 4/2008 Na		2013/0113647			Sentelle et al.
2008/0106458 A1	5/2008 Ho	onda et al.	2013/0113652			Smits et al.
		igtlaender et al.	2013/0113653 2013/0129253		5/2013	Kishigami et al. Moate G01S 13/90
	7/2008 Mi 8/2008 Mc		2013/0129233		5,2015	382/278
	9/2008 Na		2013/0135140			Kishigami
	.0/2008 Scl		2013/0169468 2013/0169485		7/2013 7/2013	Johnson et al.
	1/2008 Yo: 1/2009 Ne		2013/0176154			Bonaccio et al.
	1/2009 Ma		2013/0194127	A1	8/2013	Ishihara et al.
	1/2009 Ful		2013/0214961			Lee et al. Kanamoto
	1/2009 Co 1/2009 Ari		2013/0229301 2013/0244710			Nguyen et al.
	2/2009 Ma		2013/0249730	A1	9/2013	Adcook
	2/2009 Ha		2013/0314271			Braswell et al.
	3/2009 Wu 3/2009 Inc		2013/0321196 2014/0022108			Binzer et al. Alberth, Jr. et al.
	3/2009 Ful		2014/0028491		1/2014	Ferguson
2009/0079617 A1	3/2009 Shi	irakawa et al.	2014/0035774		2/2014	
	4/2009 Ori		2014/0049423 2014/0070985			De Jong et al. Vacanti
	4/2009 Be: 5/2009 Shi		2014/0085128			Kishigami et al.
2009/0212998 A1	8/2009 Sza	ajnowski	2014/0097987			Worl et al.
	9/2009 Gu		2014/0111367 2014/0111372		4/2014 4/2014	Kishigami et al.
	9/2009 Sal .0/2009 Nix		2014/0111372			Wang et al.
	0/2009 Shi		2014/0159948	A1	6/2014	Ishimori et al.
	1/2009 Ak		2014/0168004 2014/0218240			Chen et al. Kpodzo et al.
	.2/2009 Fal 1/2010 Lyi		2014/0218240			Schulz et al.
	1/2010 Ya		2014/0253345	A1	9/2014	Breed
		oodington et al.	2014/0253364 2014/0285373			Lee et al. Kuwahara et al.
	2/2010 Mc	orris cHenry et al.	2014/0316261			Lux et al.
	5/2010 Mc		2014/0327566	A1	11/2014	Burgio et al.
	5/2010 Sal		2014/0327570 2014/0340254		11/2014	
	6/2010 Kii 7/2010 Ke		2014/0340254		11/2014 11/2014	Mobasher et al.
	8/2010 Zei		2014/0350815	A1	11/2014	Kambe
	8/2010 Ka		2015/0002329 2015/0002357			Murad et al. Sanford et al.
	.0/2010 Ho [1/2010 An	olzheimer et al.	2015/0035662			Bowers et al.
	1/2010 Wi		2015/0061922	A1	3/2015	Kishigami
	1/2011 Go		2015/0103745 2015/0153445		4/2015 6/2015	Negus et al.
	2/2011 Kra 3/2011 Wi		2015/0160335			Lynch et al.
	8/2011 Lai		2015/0198709	A1	7/2015	Inoue
	8/2011 Nic		2015/0204966 2015/0204971			Kishigami Yoshimura et al.
	9/2011 Ha 0/2011 Pox		2015/0204971			Kuehnle et al.
		nith, Jr. et al.	2015/0226838		8/2015	Hayakawa
	11/2011 Soi		2015/0226848		8/2015	
	l1/2011 Lyı ⊧2/2011 De	rnam e Mersseman	2015/0234045 2015/0247924			Rosenblum Kishigami
	2/2011 De 12/2011 Sza		2015/0255867	A1	9/2015	Inoue
	2/2011 Ha		2015/0280893			Choi et al.
	12/2011 Mi 1/2012 Wi		2015/0301172 2015/0323660			Ossowska Hampikian
	3/2012 W1		2015/0331090			Jeong et al.
2012/0050093 A1	3/2012 He	eilmann et al.	2015/0333847			Bharadia et al.
	5/2012 Sm		2015/0346323		12/2015	Kollmer Kishigami et al.
	5/2012 Ng 5/2012 Ma	guyen et al. acDonald et al.	2015/0369912 2015/0373167			Murashov et al.
	6/2012 Ka		2016/0003935			Stainvas Olshansky et al.
	7/2012 Ch		2016/0003938		1/2016	Gazit et al.
	8/2012 Yu. 8/2012 Lal	kmatsu et al.	2016/0003939 2016/0018511			Stainvas Olshansky et al. Nayyar et al.
2012/0193349 A1	o,∠v1∠ Lal	.A.I.S	2010/0010311	AI	1/2010	rvayyar et ai.

(56) I	Referenc	ces Cited		0187245 A1 0219685 A1	6/2019 7/2019	Guarin Aristizabal et al. Shan
U.S. Pa	ATENT	DOCUMENTS	2019/	0235050 A1	8/2019	Maligeorgos et al.
2016/0025844 A1	1/2016	Mckitterick et al.		0293755 A1 0324134 A1	9/2019 10/2019	Cattle
2016/0033623 A1	2/2016			0377077 A1 0379386 A1	12/2019 12/2019	Kitayama et al. Chi
2016/0033631 A1 2016/0033632 A1		Searcy et al. Searcy et al.		0383929 A1		Melzer et al.
2016/0041260 A1	2/2016	Cao et al.		0003884 A1 0011983 A1	1/2020	Arkind et al. Kageme et al.
2016/0054441 A1 2016/0061935 A1		Kuo et al. McCloskey et al.		0011365 A1*	1/2020	Braun H01Q 3/267
2016/0084941 A1	3/2016	Arage		0033445 A1* 0036487 A1	1/2020 1/2020	Raphaeli H01Q 1/38
2016/0084943 A1 2016/0091595 A1	3/2016 3/2016			0064455 A1	2/2020	Schroder et al.
2016/0103206 A1	4/2016	Pavao-Moreira et al.		0107249 A1		Stauffer et al.
2016/0124075 A1 2016/0124086 A1		Vogt et al. Jansen et al.		0142049 A1 0158861 A1		Solodky et al. Cattle et al.
2016/0131742 A1	5/2016	Schoor		0191939 A1		Wu et al. Maher et al.
2016/0131752 A1 2016/0139254 A1		Jansen et al. Wittenberg		0292666 A1 0313719 A1		Blanchard et al.
2016/0146931 A1	5/2016	Rao et al.		0363499 A1		Mayer et al. Stettiner
2016/0154103 A1 2016/0157828 A1		Moriuchi Sumi et al.		0393536 A1 0181300 A1		Choi et al.
2016/0178732 A1	6/2016	Oka et al.		0190904 A1		Bourdoux et al.
2016/0213258 A1 2016/0223643 A1		Lashkari et al. Li et al.		0190905 A1 0364634 A1	11/2021	Roger et al. Davis et al.
2016/0223644 A1	8/2016	Soga		0389414 A1		Behrens et al.
2016/0238694 A1 2016/0245909 A1		Kishigami Aslett et al.		0291335 A1 0350020 A1	9/2022 11/2022	Maher et al. Davis et al.
2016/0291130 A1 1	10/2016	Ginsburg et al.	2022/	0365169 A1	11/2022	Lefevre et al.
2016/0349365 A1 1 2017/0010361 A1	12/2016 1/2017			FOREIG	N PATE	NT DOCUMENTS
2017/0023661 A1	1/2017	Richert		TORLIN	JI 1711L	TO DOCUMENTS
2017/0023663 A1 2017/0045608 A1		Subburaj et al. Mclean et al.	EP EP		5480 4217	11/2011
2017/0074980 A1	3/2017	Adib	EP EP		4217 4299	4/2013 6/2015
2017/0090015 A1 2017/0117946 A1*		Breen et al. Lee G01S 3/72	EP EP		1808	7/2015 7/2018
2017/0117950 A1		Strong	EP EP		9038 2446	7/2018 9/2018
2017/0153315 A1 2017/0153316 A1		Katayama Wintermantel	EP EP		2956	3/2019
2017/0176583 A1		Gulden et al.	EP EP		3622 9264	5/2019 1/2020
2017/0212213 A1 2017/0219689 A1		Kishigami Hung et al.	FR GB		1086	1/1998
2017/0213083 A1 2017/0223712 A1		Stephens et al.	JР		9029 5307	2/2016 12/2004
2017/0234968 A1 2017/0254879 A1		Roger et al. Tokieda, I et al.	JP VD	201024		10/2010
2017/0293027 A1 1	10/2017	Stark et al.	KR KR	10101 10208		1/2011 12/2020
		Eshraghi et al. Eshraghi et al.	WO WO	WO200802		2/2008
2017/0309997 A1 1	10/2017	Alland et al.	WO	WO2010/02 WO201211		2/2010 8/2012
		Davis G01S 13/931 Bordes et al.	WO	WO201314		10/2013
2018/0003799 A1		Yang et al.	WO WO	WO201517 WO201518		11/2015 12/2015
2018/0019755 A1 2018/0175907 A1	1/2018 1/2018	Josefsberg et al.	WO	WO201601		1/2016
2018/0031674 A1		Bordes et al.	WO WO	WO201603 WO201718		3/2016 2/2017
2018/0031675 A1 2018/0095161 A1		Eshraghi et al. Kellum et al.	WO WO	WO201705 WO201717		4/2017 10/2017
2018/0095163 A1	4/2018	Lovberg et al.	wo	WO201717 WO201718		11/2017
2018/0113191 A1 2018/0115371 A1		Villeval et al. Trotta et al.	WO	WO2020/25	9916	12/2020
2018/0128913 A1	5/2018	Bialer		OT	TIED DIT	DI ICATIONS
2018/0149730 A1 2018/0149736 A1	5/2018	Li et al. Alland et al.				BLICATIONS
2018/0231655 A1	8/2018	Stark et al.				of a coded sequence ground pen-
2018/0271776 A1 2018/0294564 A1* 1		Kazakevitch Kim H01Q 3/2652	etrating 2015.	radar," In: D	iss. Univei	rsity of British Columbia, Dec. 3,
2018/0294908 A1 1	10/2018	Abdelmonem		al., "Linear ex	tractors for	extracting randomness from noisy
		Eshraghi et al. Kildal et al.		," In: Informa ional Symposi		y Proceedings (ISIT), 2011 IEEE
2018/0372837 A1 1	12/2018	Bily et al.	V. Giai	nnini et al., "A	A 79 GHz	Phase-Modulated 4 Ghz-Bw Cw
2018/0374346 A1 1 2019/0013566 A1*	1/2018	Fowe Merrell H01Q 1/1257	Radar T	Transmitter in 2	28 nm CM	OS,"in IEEE Journal of Solid-State
2019/0056476 A1	2/2019	Lin				25-2937, Dec. 2014. (Year: 2014). rocessing for mm Wave MIMO
2019/0064364 A1		Boysel et al. Al-Stouhi et al.	Radar,"	University of	Gavle, Fa	culty of Engineering and Sustain-
2019/0072641 A1 2019/0146059 A1		Zanati et al.				Retrieved from the Internet from /get/diva2:826028/FULLTEXT01.
2019/0178983 A1	6/2019	Lin et al.	pdf.	-		

(56) References Cited

OTHER PUBLICATIONS

Levanan Nadav et al., "Non-coherent pulse compression—aperiodic and periodic waveforms", IET Radar, Sonar & Navagation, The Institution of Engineering and Technology, Jan. 1, 2016, pp. 216-224, vol. 10, Iss. 1, UK.

Akihiro Kajiwara, "Stepped-FM Pulse Radar for Vehicular Collision Avoidance", Electronics and Communications in Japan, Part 1, Mar. 1998, pp. 234-239, vol. 82, No. 6 1999.

A. Bourdoux, U. Ahamd, D. Guermandi, S. Brebels, A. Dewilde, W. Van Thillo, PMCW "Waveform and MIMO Technique for a 79 GHz CMOS Automotive Radar", 2016 IEEE Radar Conference (RadarConf), 2016, pp. 1-5, doi: 10.1109/RADAR.2016.7485114. (Year: 2016). V. Jain, F. Tzeng, L. Zhou and p. Heydari, "A single-Chip Dual-Band 22-29-GHz/77-81-GHz BicMOS Transceiver for Automotive Radars," in IEEE Journal of Solid-State Circuits, vol. 44, No. 12, pp. 3469-3485, Dec. 2009, doi: 10.1109/JSSC.2009.2032583. (Year: 2009).

A. Medra et al., "An 80 GHz Low-Noise Amplifier Resilient to the TX Spillover in Phase-Modulated Continuous-Wave Radars," in IEEE Journal of Solid-State Circuits, vol. 51, No. 5, pp. 1141-1153, May 2016, doi: 10.1109/JSSC.2016.2520962. (Year: 2016).

B. P. Ginsburg et al., "A multimode 76-to-81Ghz automotive radar transceiver with autonomous monitoring," 2018 IEEE International Solid—State Circuits Conference—(ISSCC), 2018, pp. 158-160, doi: 10.1109/ISSCC.2018.8310232 (Year: 2018).

Y. Ma, C. Miao, Y. Zhao, and W. Wu, "An MIMO Radar System Based on the Sparse-Array and Its Frequency Migration Calibration Method", in MDPI Journal of Sensors, vol. 19, issue No. 16, Published Aug. 2019, doi: 10.3390/s19163580 (Year: 2019).

RadarRangeEquation2011.pdf from http://www.ece.uah.edu/courses/material/EE619-2011/RadarRangeEquation(2)2011.pdf (Year: 2011). What are S-Parameters Everything RF.pdf from https://www.everythingrf.com/community/what-are-s-parameters (Year 2018).

^{*} cited by examiner

COLL

Aug. 12, 2025

FIG. 1B

FIG. 1C

When nodal point for axis of rotation does not match the radar array center

200 Calibration System - Radar On Platform 22

FIG. 5

Cross Coupling

MG. 9: Gain Corection

FIG. 10: Cross-Coupling Correction

METHOD AND SYSTEM FOR ANTENNA ARRAY CALIBRATION FOR CROSS-COUPLING AND GAIN/PHASE VARIATIONS IN RADAR SYSTEMS

CROSS REFERENCE TO RELATED APPLICATION

The present application claims priority to and is a continuation of U.S. patent application Ser. No. 17/147,914, ¹⁰ filed Jan. 13, 2021, which claims the benefits of U.S. provisional application, Ser. No. 62/960,220, filed Jan. 13, 2020, which are hereby incorporated by reference herein in their entireties.

The present invention is directed to radar systems, and ¹⁵ more particularly to radar systems for vehicles and robotics.

BACKGROUND OF THE INVENTION

The use of radar to determine location, range, and velocity 20 of objects in an environment is important in a number of applications including automotive radar, industrial processes, robotic sensing, gesture detection, and positioning. A radar system typically transmits radio signals and listens for the reflection of the radio signals from objects in the 25 environment. By comparing the transmitted radio signals with the received radio signals, a radar system can determine the distance to an object, and the velocity of the object. Using multiple transmitters and/or receivers, or a movable transmitter or receiver, the location (angle) of an object can 30 also be determined. Therefore, radar systems require accurate operation to maintain their optimal performance.

SUMMARY OF THE INVENTION

Embodiments of the present invention provide for a radar calibration system that calibrates for radar system impairments using a series of radar data measurements. Such impairments include coupling effects, per channel gain and phase variations, and direction dependent gain and phase 40 variations. This calibration system operates under a variety of environments, with a variety of external information, and with a variety of objective functions to modify the measurement collection as well as the calibration processing to optimize the system with respect to a given objective 45 function.

In an aspect of the present invention, a radar system for a robot or vehicle that calibrates for system impairments includes a radar system with at least one transmitter and at least one receiver. The transmitter and receiver are connected to at least one antenna. The transmitter is configured to transmit radio signals. The receiver is configured to receive a radio signal that includes the transmitted radio signal transmitter by the transmitter and reflected from objects in the environment. The receiver is also configured 55 to receive radio signals transmitted by other radar systems.

In an aspect of the present invention, the radar system comprises one of: a single transmitter and a plurality of receivers; a plurality of transmitters and a single receiver; and a plurality of transmitters and a plurality of receivers. 60

In a further aspect of the present invention, the transmitters and receivers may be connected to multiple antennas through a switch.

In another aspect of the present invention, the radar system includes a calibration module that is configured to 65 rotate its direction in both azimuth and elevation. In the presence of at least one reflecting object, the calibration

2

module collects reflected signals from the at least one reflecting object at desired angles of interest in the azimuth and elevation space. This rotation may occur in either a continuous manner or a discrete "stop-and-go" manner. The radar system's center point of the antenna array does not need to align with the center point of rotation, and the radar system corrects for phase distortion and angle-of-arrival error due to this misalignment. This misalignment is referred to as nodal displacement. The calibration module then processes these measurements into a correction matrix, which calibrates for radar system impairments. These may include phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross coupling. The anglesof-arrival of the collected reflected signals may be either estimated by the radar system or determined through prior knowledge of the object(s) location(s) relative to the radar

In another aspect of the present invention, the radar system may modify its measurement collection and calibration processing to optimize different objective functions. These modifications include the speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signal(s). These modifications also include parameters in the processing that control the computation of the correction matrix and affect the processing speed and correction accuracy.

In another aspect of the present invention, a method for calibrating a radar system for system impairments includes at least one transmitter transmitting radio signals. At least one receiver is receiving radio signals that include radio signals transmitted by the transmitter and reflected from objects in an environment. The at least one transmitter and the at least one receiver are coupled to an antenna array. A platform rotating the at least one receiver and the at least one transmitter in both azimuth and elevation. An array center of the antenna array is not aligned with the platform's rotational center. The method includes collecting, with a calibration module, in the in the presence of at least one object, reflected signals from the at least one object at desired angles of interest in azimuth and elevation, calculating a misalignment between the array center of the antenna array and the rotation center of the platform. The method also includes correcting, with the at least one receiver, for phase distortion and angle-of-arrival error due to the calculated misalignment. The misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement. The array center of the antenna array is a nodal point.

These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a diagram of a radar system where a nodal point for an axis of rotation does not match a radar array center of the radar system in accordance with the present invention;

FIG. 1B is a perspective view of a radar calibration system orientated towards a target in accordance with the present invention;

FIG. 1C is another view of the radar calibration system and target of FIG. 1B;

FIG. 2 is a diagram of a radar calibration system installed on a maneuverable platform in accordance with the present invention:

FIG. 3A and FIG. 3B are block diagrams of radar systems that use the calibration system in accordance with the 5 present invention;

FIG. 4 is a block diagram illustrating a radar with a plurality of receivers and a plurality of transmitters (MIMO radar) that uses the calibration system in accordance with the present invention;

FIG. 5 is a visualization of an exemplary antenna array, an exemplary received plane wave, and exemplary coupling effects in accordance with the present invention;

FIG. **6** is a diagram of exemplary sweep patterns executed during an exemplary measurement procedure in accordance 15 with the present invention;

FIG. 7 is a flow chart describing the high-level processes of the calibration procedure, in accordance with the present invention:

FIG. **8** is a flow chart describing the process of estimating ²⁰ direction dependent and per channel phase correction, in accordance with the present invention;

FIG. 9 is a flow chart describing the process of estimating direction dependent and per channel gain correction, in accordance with the present invention; and

FIG. 10 is a flow chart describing the process of estimating cross-coupling correction, in accordance with the present invention;

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring to the drawings and the illustrative embodiments depicted therein, wherein numbered elements in the following written description correspond to like-numbered 35 elements in the figures, a calibration system provides for a calibration of a radar system. The radar system includes a calibration module that includes a platform for rotating receivers and transmitters of the radar system in both azimuth and elevation. An array center of the antenna array 40 is not aligned with the platform's rotational center. The calibration module collects, in the presence of at least one object, reflected signals from the at least one object at desired angles of interest in azimuth and elevation. The calibration module calculates a misalignment between the 45 array center of the antenna array and the rotation center of the platform. The at least one receiver corrects for phase distortion and angle-of-arrival error due to the calculated misalignment. The misalignment between the array center of the antenna and the rotation center of the platform is a nodal 50 displacement. The array center of the antenna array is a nodal point.

An exemplary radar system operates by transmitting one or more signals from one or more transmitters and then listening for reflections of those signals from objects in the 55 environment by one or more receivers. By comparing the transmitted signals and the received signals, estimates of the range, velocity, and angle (azimuth and/or elevation) of the objects can be estimated.

There are several different types of signals that transmitters in radar systems employ. A radar system may transmit a pulsed signal or a continuous signal. In a pulsed radar system, the signal is transmitted for a short time and then no signal is transmitted. This is repeated over and over. When the signal is not being transmitted, the receiver listens for 65 echoes or reflections from objects in the environment. Often a single antenna is used for both the transmitter and receiver 4

and the radar transmits on the antenna and then listens to the received signal on the same antenna. This process is then repeated. In a continuous wave radar system, the signal is continuously transmitted. There may be an antenna for transmitting and a separate antenna for receiving.

Another classification of radar systems is the modulation of signal being transmitted. A first type of continuous wave radar signal is known as a frequency modulated continuous wave (FMCW) radar signal. In an FMCW radar system, the transmitted signal is a sinusoidal signal with a varying frequency. By measuring a time difference between when a certain frequency was transmitted and when the received signal contained that frequency, the range to an object can be determined. By measuring several different time differences between a transmitted signal and a received signal, velocity information can be obtained.

A second type of continuous wave signal used in radar systems is known as a phase modulated continuous wave (PMCW) radar signal. In a PMCW radar system, the transmitted signal from a single transmitter is a sinusoidal signal in which the phase of the sinusoidal signal varies. Typically, the phase during a given time period (called a chip period or chip duration) is one of a finite number of possible phases. A spreading code consisting of a sequence of chips, (e.g., +1, $+1, -1, +1, -1 \dots$) is mapped (e.g., $+1 \rightarrow 0, -1 \rightarrow \square$) into a sequence of phases (e.g., $0, 0, \square, 0, \square \dots$) that is used to modulate a carrier to generate the radio frequency (RF) signal. The spreading code could be a periodic sequence or could be a pseudo-random sequence with a very large period so it appears to be a nearly random sequence. The spreading code could be a binary code (e.g., +1 or -1). The resulting signal has a bandwidth that is proportional to the rate at which the phases change, called the chip rate R_c, which is the inverse of the chip duration, $T_c=1/R_c$. By comparing the return signal to the transmitted signal, the receiver can determine the range and the velocity of reflected objects.

In some radar systems, the signal (e.g. a PMCW signal) is transmitted over a short time period (e.g. 1 microsecond) and then turned off for a similar time period. The receiver is only turned on during the time period where the transmitter is turned off. In this approach, reflections of the transmitted signal from very close targets will not be completely available because the receiver is not active during a large fraction of the time when the reflected signals are being received. This is called pulse mode.

Digital frequency modulated continuous wave (FMCW) and phase modulated continuous wave (PMCW) are techniques in which a carrier signal is frequency or phase modulated, respectively, with digital codes using, for example, GMSK. Digital FMCW radar lends itself to be constructed in a MIMO variant in which multiple transmitters transmitting multiple codes are received by multiple receivers that decode all codes.

The advantage of the MIMO digital FMCW radar is that the angular resolution is that of a virtual antenna array having an equivalent number of elements equal to the product of the number of transmitters and the number of receivers. Digital FMCW MIMO radar techniques are described in U.S. Pat. Nos. 9,989,627; 9,945,935; 9,846, 228; and 9,791,551, which are all hereby incorporated by reference herein in their entireties.

The radar sensing system of the present invention may utilize aspects of the radar systems described in U.S. Pat. Nos. 10,261,179; 9,971,020; 9,954,955; 9,945,935; 9,869, 762; 9,846,228; 9,806,914; 9,791,564; 9,791,551; 9,772, 397; 9,753,121; 9,689,967; 9,599,702; 9,575,160, and/or 9,689,967, and/or U.S. Publication Nos. US-2017-0309997;

and/or U.S. patent application Ser. No. 16/674,543, filed Nov. 5, 2019, Ser. No. 16/259,474, filed Jan. 28, 2019, Ser. No. 16/220,121, filed Dec. 14, 2018, Ser. No. 15/496,038, filed Apr. 25, 2017, Ser. No. 15/689,273, filed Aug. 29, 2017, Ser. No. 15/893,021, filed Feb. 9, 2018, and/or Ser. No. 515/892,865, filed Feb. 9, 2018, and/or U.S. provisional application, Ser. No. 62/816,941, filed Mar. 12, 2019, which are all hereby incorporated by reference herein in their entireties.

Antenna Calibration:

Determining a correct angle calibration matrix to counter the impact of effective cross-coupling between virtual receivers in large-scale MIMO systems has been challenging. The problem is especially acute when the system is large or cannot be conveniently placed on the rotating measurement system. In some cases, a nodal point cannot be maintained or cannot even be accurately determined. Such cases occur in radars mounted on robots, drones or other devices, or in cases when angle calibration is desired in situ with the whole system assembled. An exemplary method is 20 disclosed that efficiently and correctly determines channel-to-channel variations and cross-coupling coefficients from angle sweep data in the presence of an unknown nodal point of the system. An exemplary algorithm also produces the diagonal calibration values as a by-product.

Typical angle calibration methods require collection of channel response data for a number of angles, which is also called as angle sweep data. The data is collected in an anechoic chamber with a single target in far-field and radar mounted on a gimbal that can be rotated between the angles 30 of interest (up-to ±90 degrees), which allows collecting the target virtual channel response in those angles. A typical data collection system is shown in FIG. 1A. This represents the case where the nodal point for the axis of rotation is the same as the center of the radar antenna system. The radar may 35 have planar antenna array (2-D) instead of a linear antenna array (1-D). The radar will then need to rotate in two axes maintaining the nodal point of rotation in both axes at the center of the planar antenna array. The antenna array can be a virtual array created through the use multi-input multi- 40 output (MIMO) technology.

FIGS. 1B and 1C illustrate an exemplary calibration system for a radar system. As discussed herein, the calibration system and radar system is first installed in a temporary installation. While in the temporary installation, the calibra- 45 tion system records calibration measurements. The calibration system is capable of recording a series of calibration measurements. Henceforth, an exemplary "measured channel response" refers to the data from these calibration measurements. As illustrated in FIGS. 1B and 1C, a radar 50 101 is mounted on top of an adjustable gimbal mount platform (hereinafter a "platform") 120. The platform 120 is configured to rotate in one or both of azimuth (x-axis) and elevation (y-axis). The radar 101 is configured to transmit a signal to a reflecting object 103. FIGS. 1B and 1C illustrate 55 a signal traversal path 104 extending from an array center 112 of an antenna array 110 to the reflecting object 103, while an expected path 105 is illustrated from the platform's rotation center 122 to the reflecting object 103. The deviance in angle between the signal traversal path 104 and the 60 expected path 105 causes a phase shift between the expected signal 105 and the actual reflected signal 104, as well as an error in the angle of arrival. This deviance is referred to as nodal displacement, and the phase shift is modeled as a direction dependent phase variation. Nodal displacement 65 occurs for multiple of reasons. First, the height of the radar 101 on the platform 120 may not exactly match the plane of

6

the nodal point of rotation. Second, the nodal point may not exactly match the virtual center of the antenna array. The radar 101 may also have multiple antenna configurations with different virtual centers, and physical relocation of the radar system 101 may not be feasible. Last, there can be an error in estimating the correct nodal point.

FIG. 2 illustrates an exemplary radar/calibration system 201 which records calibration measurements while the radar/calibration system 201 is installed in a final platform or rotatable gimbal (the "platform") 220. As illustrated in FIG. 2, the radar/calibration system 201 is mounted in the platform 220. A reflecting object 203 is positioned in front of the radar/calibration system 201. FIG. 2 illustrates a signal traversal path 204 extending from an array center 212 of an antenna array 210 of the radar 201 to a reflecting object 203. An expected path 205 is also illustrated extending from the rotation axis 222 of the platform 220 to the reflecting object 203. Rotation is achieved by the mechanics of the platform 220 itself. As in the previous paragraph, a direction dependent phase variation occurs due to nodal displacement when the rotation axis 222 of the platform 220 does not match the array center 212 of the antenna array 210.

FIG. 3A illustrates an exemplary radar using the calibration method and calibration system described in the current invention with at least one antenna 302 that is time-shared between at least one transmitter 306 and at least one receiver 308 via at least one duplexer 304. Output from the receiver(s) 308 is received by a control and processing module 310 that processes the output from the receiver(s) 308 to produce display data for the display 312. The control and processing module 310 is also operable to produce a radar data output that is provided to other control and processing units. The control and processing module 310 is also operable to control the transmitter(s) 306 and the receiver(s) 308.

FIG. 3B illustrates an alternative exemplary radar using the calibration method and system described in the current invention with separate sets of transmitter and receiver antennas. As illustrated in FIG. 3B, at least one antenna 302A for the at least one transmitter 306 and at least at least one antenna 302B for the at least one receiver 308.

FIG. 4 illustrates an exemplary MIMO (Multi-Input Multi-Output) radar 400 that is configured to use the calibration method and system described herein. With MIMO radar systems 400, each transmitter signal is rendered distinguishable from every other transmitter signal by using appropriate differences in the modulation, for example, different digital code sequences. Each receiver 408 correlates with each transmitter signal, producing a number of correlated outputs equal to the product of the number of receivers 408 with the number of transmitters 406 (virtual receivers=RX_N*TX_N). The outputs are deemed to have been produced by a number of virtual receivers, which can exceed the number of physical receivers 408.

FIG. 4 illustrates a radar system 400 with a plurality of antennas 402 connected to a plurality of receivers 408, and a plurality of antennas 404 connected to a plurality of transmitters 406. The radar system 400 of FIG. 4 is also a radar-on-chip system 400 where the plurality of receivers 408 and the plurality of transmitters 406, along with any processing to produce radar data output and any interface (like Ethernet, CAN-FD, Flex Ray etc.), are integrated on a single semiconductor IC (Integrated Circuit). Using multiple antennas allows the radar system 400 to determine the angle of objects/targets in the environment. Depending on the geometry of the antenna system 402, 404, different angles (e.g., with respect to the horizontal or vertical) can be determined. The radar system 400 may be connected to a

8 which estimates and corrects for the cross-coupling effects remaining in the gain- and phase-corrected data.

network via an Ethernet connection or other types of network connections 414. The radar system 400 may also include memory 410, 412 to store software used for processing the received radio signals to determine range, velocity, and location of objects/targets in the environment. Memory may also be used to store information about objects/targets in the environment.

The radar data is described by the following exemplary mathematical model. Denoting az and el as the azimuth and elevation angles (in radians) to the target, define the u-v space as:

In practice, antenna elements have a directional gain and phase response. This response varies with respect to azimuth and elevation. The combination of transmitter and receiver 10 antenna responses can be modeled as a new virtual antenna response. This response causes a gain and phase variation from the ideal signals at the virtual receivers. This effect can be divided into a per channel gain, per channel phase, direction dependent gain, and direction dependent phase.

 $u = \sin(az) \, \cos(el)$ $v = \sin(el)$

In practice, leakage exists between antenna elements due to coupling effects. This coupling occurs between both the signals at the TX antenna elements and the RX antenna elements. This causes a deviation in both the signals that are transmitted by the transmitters 406 of the radar system 400 20 and the signals that are received by the receivers 408 of the radar system 400. The combined effect of coupling at both the transmitter and the receiver is modeled as coupling between virtual receivers. FIG. 5 illustrates the coupling in a virtual array. FIG. 5 illustrates a virtual antenna element 25 array 501, a propagation front 502 of a far-field signal, and the path 503 of the signals to the virtual receivers. The signals at each virtual antenna element will couple. This coupling causes a gain and phase variation from the ideal signal at the virtual receivers. This impairment is henceforth 30 referred to as mutual coupling.

Assuming a planar antenna array where the k^{th} (out of N_{vrx}) virtual antenna is located at $(0, dy_k, dz_k)$ in rectangular coordinates, the ideal receive data in the absence of any cross-coupling and no gain/phase variation is given by:

In the preferred embodiment, the measured channel response is collected using a PMCW radar. Alternative embodiments may include other radar types.

$$y_{ideal}(k, u, v) = e^{-j\frac{2\pi}{\lambda}(dy_k u + dz_k v)}$$

Using the radar calibration systems described either in 35 FIG. 1 or 2, one method of collecting the calibration measurements is a stop and go sweep. In this method, the radar system is rotated to the exact desired azimuth and elevation angles, where it stops before collecting the radar data. This method provides increased accuracy.

This ideal response of the $N_{\nu\nu x}$ virtual antennas corresponding to a far-field target in the u and v (or equivalently in az and el) space is expressed in vector form as:

A second method of collecting the calibration measurements is a continuous sweep. In this second method, the radar system rotates in a continuous fashion and collects radar data while rotating. This method provides increased speed. However, it sacrifices accuracy due to angular smearing of the target response. There is no doppler impact since the rotation causes the effective target movement to be tangential to the radar. FIG. 6 illustrates exemplary sweep patterns. FIG. 6 illustrates azimuth sweeps 601 and elevation sweeps 602. The quantity, speed, and angular range of the 50 sweeps is variable and chosen dependent on the array design. All sweeps contain a stationary measurement at boresight of the radar.

$$\overrightarrow{y}_{ideal}(u, v) = [y_{ideal}(0, u, v), y_{ideal}(1, u, v), \dots, y_{ideal}(N_{vrx} - 1, u, v)]^T$$

FIG. 7 illustrates the steps to an exemplary radar system calibration procedure. In step 701, an exemplary measurement collection process is carried out. In step 702, an exemplary phase correction process is carried out, which estimates and corrects for the per channel phase variation and direction dependent phase variation in the collected data. In step 703, an exemplary gain correction process is carried out, which estimates and corrects for the per channel gain variation and direction dependent gain variation in the phase-corrected data. In step 704, an exemplary ideal response refinement process is carried out, which uses the gain- and phase-corrected data to improve the angle-of-arrival estimation for the collected radar data. In step 705, an exemplary cross-coupling calibration process is carried out,

In the presence of cross-coupling, the received signal vector is $\overrightarrow{x} = \overrightarrow{A} \overrightarrow{y}_{ideal}$, where $A = \{a_{m \cdot k}\}$, $0 \le m \cdot k \le N_{vrx} - 1$ is a matrix that captures both coupling and per channel gain and phase variation. With this impairment, the received data becomes:

$$x(k, u, v) = \sum_{m=0}^{N_{vyx}-1} \alpha_{m,k} e^{-j\frac{2\pi}{\lambda} \left(dy_m u + dz_m v \right)}$$

The vector representation of the channel response $\overrightarrow{x}(u, v)$ is then:

$$\vec{x}(u, v) = [x(0, u, v), x(1, u, v), \dots, x(N_{v/x} - 1, u, v)]^T$$

The data model described above applies to a far-field target. The embodiments of the method and calibration system discussed herein equally applies to a near-field target as well with a corresponding modification of the signal vectors defined above. The data model can be updated for non-nodal displacement for the radar in the data collection setup as follows:

$$x_{meas}(k, u, v) = \gamma(u, v) \sum_{m=0}^{N_{vxx}-1} \alpha_{m,k} e^{-j\frac{2\pi}{\lambda} \left(dy_m(u - \delta u(u, v)) + d\varepsilon_m(v - \delta v(u, v)) \right)}$$

Here, $\gamma(u,\,v)$ is due to the angle dependent phase correction (e.g., as a result of nodal displacement). $\delta u(u,\,v)$ and $\delta v(u,\,v)$ represent the angle dependent (hence the notation that these parameters are dependent on the

60

angle of incidence as well) mismatch between the expected direction and the actual sampled direction.

The vector representation $\overrightarrow{x}_{meas}$ (u, v) is:

$$\vec{x}_{meas}(u, v) = [x_{meas}(0, u, v), x_{meas}(1, u, v), \dots, x_{meas}(N_{vrx} - 1, u, v)]^T$$

$$\vec{x}_{meas}(u, v) = \gamma(u, v) \vec{A}_{ideal} (u - \delta u(u, v), v - \delta v(u, v))$$

FIG. 8 illustrates an exemplary calibration procedure for direction dependent phase variation and per channel phase variation. In step 801, the estimates of the direction depen- 15 dent phase variation and per channel phase variation are initialized to zero. Then, in step 802, a correction term is computed as the normalized complex conjugate of the measured channel response at boresight of the radar system. Then an iterative procedure begins. In step 803, the direction dependent phase variation is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response. In step 804, the channel response is corrected again with this phase. Next in step 805, the per channel phase variation is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response, now across all directions. In step 806, the channel response is corrected again with this phase. This iterative procedure is 30 repeated for a fixed number of iterations or until convergence.

This phase calibration procedure can be described mathematically using the previous exemplary signal model. The initial coupling matrix in step 802 is set to zeros, except for the diagonal elements which are initially set to

$$\alpha_{k,k}^{brs} = \frac{x_{meas}^*(k, 0, 0)}{|x_{meas}(k, 0, 0)|}$$

since \vec{x}_{meas} (k, 0,0) is the channel measured at boresight on the k^{th} virtual element. Accordingly with step **801** and step **802**, we now initialize the following terms: direction dependent phase term: $\angle \tilde{\gamma}^0$ (u, v)=0, per channel phase term: $\angle \tilde{a}_{k,k}^0$ =0, and the array response corrected for the direction dependent and per channel phase terms \tilde{x}^0 (k, u, v)= $a_{k,k}^{brs}x_{meas}$ (k, u, v). Then the iterative procedure begins. The superscript it is the iteration index. The direction-dependent least squares solution, $\angle \tilde{\gamma}^t$ (u, v), in step **803** is obtained by minimizing the cost function below:

$$C_{1,phase}(u,v) = \sum\nolimits_{k=0}^{N_{vrx}-1} \left| y_{ideal}(k,u,v) e^{-j \mathcal{L} \hat{y}^{it}(u,v)} - \tilde{x}^{it-1}(k,u,v) \right|^2$$

The radar data is then updated in step 804 as

$$\tilde{x}^{it}(k,\,u,\,v)=\tilde{x}^{it-1}(k,\,u,\,v)e^{j \angle \tilde{y}^{it}(u,v)}$$

The per channel least squared solution, $\angle \tilde{a}_{k,k}^{\ \ it}$, in step **805** is obtained by minimizing the cost function below

$$C_{2,phase}(k) = \sum_{u,v} \left| y_{ideal}(k, u, v) e^{-jL\bar{\alpha}_{k,k}^{il}} - \bar{x}^{il}(k, u, v) \right|^2$$

The radar data is then updated in step 806 as

$$\tilde{x}^{it}(k, u, v) = \tilde{x}^{it}(k, u, v)e^{jL\tilde{\alpha}_{k,k}^{it}}$$

This procedure loops for a finite number of iterations. Let the number of iterations be L. At the end of iterations, we obtain the following information: updated virtual array response (corrected for phase which corrects for nodal displacement as well as phase response per angle) $\tilde{x}(k, u, v)=\tilde{x}^L(k, u, v)$, estimate of direction dependent phase correction

$$\angle \tilde{\gamma}(u, v) = \sum_{i=1}^{L} \angle \tilde{\gamma}^{it}(u, v),$$

and estimate of per channel phase variation

$$\angle \tilde{\alpha}_{k,k} = \sum_{i=1}^{L} \angle \tilde{\alpha}_{k,k}^{it}$$
.

FIG. 9 illustrates an exemplary calibration procedure for direction dependent gain variation and per channel gain variation. First in step 901, the estimates of the direction dependent gain and per channel gain are initialized to unity. The corrected channel response after the phase correction is now used. Then an iterative procedure begins. In step 902. the direction dependent gain is estimated using least-squares to minimize the difference between the corrected channel response and the ideal channel response. Note that the ideal channel response is unity across all virtual receivers. In step 903, the channel response is corrected with this gain. Next in step 904, the per channel gain is estimated using leastsquares to minimize the difference between the corrected channel response and the ideal channel response, now across all directions. In step 905, the channel response is corrected again with this gain. This iterative procedure is repeated for a fixed number of iterations or until convergence.

This gain calibration procedure can be described mathematically using the previous exemplary signal model. Accordingly, with step **901**, the following terms are initialized: direction dependent amplitude term: $|\tilde{\gamma}^0(u, v)|=1$, per channel amplitude term: $|\tilde{a}_{k,k}|^0=1$, and the array response as corrected at the output of the previous phase calibration stage $\tilde{x}^0(k, u, v)=\tilde{x}(k, u, v)$. Then the iterative procedure begins. The direction-dependent least-squares solution, $|\tilde{\gamma}^{it}(u, v)|$, in step **902**, is obtained by minimizing the cost function below:

$$C_{1,gain}(u,v) = \sum\nolimits_{k=0}^{N_{vrx}-1} ||y_{ideal}(k,u,v)||\hat{\gamma}^{it}(u,v)| - \left|\hat{x}^{it-1}(k,u,v)\right||^2$$

The radar data is then updated in step 903 as:

$$\tilde{x}^{it}(k,\,u,\,v) = \tilde{x}^{it-1}(k,\,u,\,v) \Big| \tilde{\gamma}^{it}(u,\,v) \Big|$$

30

The per channel least-squares solution, $|\tilde{\mathbf{a}}_{k,k}|^{it}$, in step **904** is obtained by minimizing the cost function below

$$C_{2,gain}(k) = \sum_{u,v} \left| y_{ideal}(k, u, v) \middle| \tilde{\alpha}_{k,k}^{it} \middle| - \tilde{x}^{it}(k, u, v) \middle|^2$$

The radar data is then updated in step 905 as:

$$\tilde{x}^{it}(k, u, v) = \tilde{x}^{it}(k, u, v) |\tilde{\alpha}_{k,k}^{it}|$$

This procedure loops for a finite number of iterations. Let the number of iterations be L. At the end of iterations, we obtain the following information: updated virtual array response (corrected for direction dependent phase which corrects for nodal displacement as well as amplitude/phase response per angle) $\tilde{x}(k, u, v) = \tilde{x}^L(k, u, v)$, an estimate of direction dependent amplitude correction,

$$|\tilde{\gamma}(u,\,v)|=\Pi_{it=1}^L\left|\tilde{\gamma}^{it}(u,\,v)\right|,$$

and an estimate of per channel amplitude variation

$$|\alpha_{k,k}| = \prod_{i=1}^{L} |\alpha_{k,k}^{it}|.$$

The total per channel gain and phase correction terms are combined into a matrix, which is referred to as the diagonal antenna correction matrix. Using the exemplary mathematical model, this diagonal antenna correction matrix is defined as:

$$\tilde{A}_d^{-1} = \text{diag}\{|\tilde{\alpha}_{k,k}|e^{jL\tilde{\alpha}_{k,k}}\},\$$

$$0 \le k \le N_{yx} - 1$$

In an embodiment of the method and calibration system discussed herein, the ideal channel response can be refined 45 to correct for setup error and nodal displacement error after the diagonal antenna correction. The MUSIC algorithm is used, which exploits knowledge of the number of objects to provide a super-resolution estimate of the actual object directions in each measurement. These directions are then 50 used to recompute the ideal channel response. This refined ideal channel response is used during the cross-coupling calibration process.

FIG. 10 illustrates the calibration procedure for cross-coupling. First in step 1001, a cross coupling estimate matrix 55 is initialized to zeros. Then in step 1002, a virtual channel is selected. In step 1003, a list of retired cross channels is initialized to empty. Then in step 1004, the measured response of the selected virtual channel is projected onto the ideal response for all cross channels. In step 1005, the cross 60 channel that corresponds to the maximum of the projection and is not yet retired is selected. The value of this projection is also recorded. In step 1006, the contribution of the selected cross channel is removed from the measured response of the selected virtual channel. In step 1007, if the 65 contribution is greater than a given threshold, the cross-coupling matrix element corresponding to the selected vir-

12

tual channel and the selected cross channel is set to the recorded projection value in step 1008. Then in step 1009, the selected cross channel is retired. The process repeats at the projection in step 1004. If the contribution was not greater than a given threshold in step 1007, then the process repeats at the virtual channel selection in step 1002 with the next virtual channel. This iterates until the process has completed for all virtual channels, as shown by step 1010. In step 1011, the cross-coupling matrix is then normalized by multiplying by the square root of the number of virtual antennas divided by the L2 norm squared of the diagonal elements of the cross-coupling matrix. The cross-coupling correction matrix is then estimated using the inverse of this cross-coupling matrix.

This cross-coupling calibration procedure can be described mathematically using the previous exemplary signal model. First in step **1001**, the cross-coupling matrix $\tilde{A}_c = 0_{N_{vr} = N_{vr}}$. is initialized. Then the iterative procedure begins for each virtual channel. In step **1002**, the index of the current virtual channel is denoted as k. In step **1003**, initialize the list of retired cross channels $S = \{ \}$ is initialized. The projection of the k virtual channel response onto the ideal response for all cross channels in step **1004** is given by:

$$\beta_{k,m} = \sum\nolimits_{u,v} \tilde{x}(k,u,v) y_{ideal}(m,u,v),$$

$$0 \leq m \leq N_{vrx} - 1$$

Then in step **1005**, the channel, m_{max} , with the largest of $\beta_{k,m}$ is found as:

$$m_{max} = \underset{m \notin S}{\operatorname{argmax}} |\beta_{k,m}|$$

If this is the first iteration, $|\beta_{k,m_{mex}}|$ is recorded as the largest coupling value, β_{max} . In this implementation of the algorithm, these values are used in the thresholding function in step **1007**. Then in step **1006**, the contribution to the measured channel response is removed from the selected cross-channel from above as:

$$\tilde{x}(k,\,u,\,v) = \tilde{x}(k,\,u,\,v) - y_{ideal}(m_{max},\,u,\,v)\beta_{k,m_{max}}$$

In step 1007, if the ratio between $|\beta_{k,m_{max}}|$ and β_{max} exceeds a certain threshold, Th_{cpl} , m_{max} is added to S in step 1009, and $\tilde{A}_c(k, m_{max})$ is set to $\beta_{k,m_{max}}$ in step 1008, and then the process goes to the projection in step 1004. If the threshold test in step 1007 fails, the search for the k^{th} virtual channel is ended when the next virtual channel is repeated at step 1002. Once the iterations are completed over all the virtual channels as indicated by step 1010, the estimated cross-coupling matrix is normalized in step 1011 as follows:

$$\tilde{A}_{c} = \frac{\sqrt{N}}{\left\| \operatorname{diag}(\tilde{A}_{c}) \right\|_{2}^{2}} \tilde{A}_{c}$$

A final correction matrix is computed through matrix multiplication of the cross-coupling correction matrix and the diagonal antenna correction matrix. Using the previous

exemplary signal model, this correction matrix is defined mathematically as $\tilde{C} = A_c^{-1} \tilde{A}_d^{-1}$. This final correction matrix is implemented into the radar processing. The vector of data received at the virtual receivers is multiplied by this correction matrix before being multiplied by a steering matrix to 5 achieve the calibrated beamformed output. The steering matrix is a stack of steering vectors, whose elements correspond to the desired complex beamforming weights. In the preferred embodiment, these vectors are the complex conjugate of the ideal channel response for the antenna array at 10 a desired set of directions.

Thus, the exemplary embodiments discussed herein provide for the calibration of a radar system that corrects or adjusts for a misalignment between an array center of an antenna array of the radar system and a rotation center of the 15 radar system via a platform of a calibration module that rotates the radar system in both azimuth and elevation. The calibration module calculates a misalignment between the array center of the antenna array and the rotation center of the radar system. At least one receiver of the radar system 20 corrects for phase distortion and angle-of-arrival error due to the calculated misalignment. The misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement.

Changes and modifications in the specifically described 25 embodiments can be carried out without departing from the principles of the present invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

The invention claimed is:

- 1. A radar system comprising:
- a transmitter communicatively coupled to a transmitter antenna array, wherein the transmitter is configured to transmit radio signals via the transmitter antenna array; 35
- a receiver communicatively coupled to a receiver antenna array, wherein the receiver is configured to receive radio signals via the receiver antenna array that include radio signals transmitted by the transmitter and reflected from objects in an environment;
- a calibration module comprising a platform configured to rotate the transmitter antenna array and the receiver antenna array in azimuth and/or elevation, wherein respective array centers of the transmitter antenna array and/or the receiver antenna array are not aligned with 45 the platform's rotation center;
- wherein the calibration module is configured to access receiver data from the receiver for each of a plurality of azimuth and/or elevation angles as the platform is rotated, wherein the calibration module is operable to 50 calculate a misalignment value from the receiver data to define a misalignment between the array center of the receiver antenna array and the rotation center of the platform, and wherein the receiver is operable to perform antenna calibrations that includes accounting for 55 the misalignment based upon the calculated misalignment value.
- 2. The radar system of claim 1, wherein the platform is configured to rotate in discrete steps, and wherein the calibration module is operable to collect receiver data from 60 the receiver at each discrete step.
- 3. The radar system of claim 2, wherein the calibration module is configured to rotate the platform to discrete angles before collecting receiver data.
- **4**. The radar system of claim **2**, wherein the platform is 65 configured to rotate discretely for azimuth sweeps and/or elevation sweeps.

14

- 5. The radar system of claim 1, wherein the platform is configured to rotate in a continuous sweep of angles, and wherein the calibration module is operable to collect receiver data while the platform is rotating.
- **6**. The radar system of claim **5**, wherein the platform is configured to rotate continuously for azimuth sweeps and/or elevation sweeps.
- 7. The radar system of claim 1, wherein the receiver is operable to perform the antenna calibrations to account for phase distortion and angle-of-arrival error.
- 8. The radar system of claim 1 further comprising a plurality of transmitters and a plurality of receivers, wherein each transmitter of the plurality of transmitters is communicatively coupled to the transmitter antenna array, and wherein each receiver of the plurality of receivers is communicatively coupled to the receiver antenna array.
- 9. The radar system of claim 8, wherein the calibration module is configured to access receiver data from each receiver of the plurality of receivers for each of a plurality of azimuth and/or elevation angles as the platform is rotated, and wherein the calibration module is configured to calculate a respective misalignment value for each receiver of the plurality of receivers.
- 10. The radar system of claim 9, wherein each receiver of the plurality of receivers is operable to perform antenna calibrations to account for the respective phase distortion and angle-of-arrival errors that includes accounting for the misalignment based upon the calculated misalignment values of each respective receiver of the plurality of receivers.
- 11. The radar system of claim 10, wherein the misalignment between the array center of the receiver antenna array and the rotation center of the platform is a nodal displacement, and wherein the array center of the receiver antenna array is a nodal point.
- 12. The radar system of claim 11, wherein the calibration module is operable to process phase distortion and angle-of-arrival error measurements into a correction matrix to calibrate for transmitter and/or receiver impairments which include at least one of phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross-coupling.
- 13. The radar system of claim 12, wherein the calibration module is operable to modify its measurement, collection, and calibration processing to optimize different objective functions including at least one of speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signals, and wherein these modifications also include parameters in the processing that controls the computation of the correction matrix and affect the processing speed and correction accuracy.
- 14. The radar system of claim 8 further comprising an antenna switch, wherein the transmitter antenna array and the receiver antenna array each comprise multiple antennas, and wherein each transmitter of the plurality of transmitters and each receiver of the plurality of receivers are coupled to the corresponding multiple transmitter antennas and multiple receiver antennas, respectively, via the antenna switch.
 - 15. A radar system comprising:
 - a plurality of transmitters, each communicatively coupled to a transmitter antenna array, wherein each transmitter of the plurality of transmitters is configured to transmit radio signals via the transmitter antenna array;
 - a plurality of receivers, each communicatively coupled to a receiver antenna array, wherein each receiver of the

plurality of receivers is configured to receive radio signals via the receiver antenna array that include radio signals transmitted by the transmitters and reflected from objects in an environment;

a calibration module comprising a platform configured to rotate the transmitter antenna array and the receiver antenna array in azimuth and/or elevation, wherein respective array centers of the transmitter antenna array and the receiver antenna array are not aligned with the platform's rotation center;

wherein the calibration module is configured to access receiver data from each receiver of the plurality of receivers for each of a plurality of azimuth and/or elevation angles as the platform is rotated, wherein the calibration module is operable to calculate a respective misalignment value for each receiver of the plurality of receivers from the receiver data to define a misalignment between the array center of the receiver antenna array and the rotation center of the platform.

16. The radar system of claim 15, wherein each receiver of the plurality of receivers is operable to perform antenna calibrations to account for respective phase distortion and angle-of-arrival errors that includes accounting for the misalignment based upon the calculated misalignment values of each respective receiver of the plurality of receivers.

17. The radar system of claim 16, wherein the misalignment between the array center of the receiver antenna array and the rotation center of the platform is a nodal displacement, and wherein the array center of the receiver antenna array is a nodal point.

18. The radar system of claim 17, wherein the calibration module is operable to process phase distortion and angle-of-arrival error measurements into a correction matrix to calibrate for transmitter and/or receiver impairments which include at least one of phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross-coupling.

19. The radar system of claim 18, wherein the calibration module is operable to modify its measurement, collection, and calibration processing to optimize different objective functions including at least one of speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signals, and wherein these modifications also include parameters in the processing that controls the computation of the correction matrix and affect the processing speed and correction accuracy.

20. A method for calibrating a radar system for system impairments, wherein the method comprises:

transmitting, with a transmitter, radio signals;

receiving, with a receiver, radio signals that include radio signals transmitted by the transmitter and reflected from objects in an environment;

16

wherein the transmitter and the receiver are coupled to an antenna array:

rotating, with a platform, the antenna array in both azimuth and elevation, and wherein an array center of the antenna array is not aligned with the platform's rotational center:

in the presence of at least one object, collecting from the receiver data defined by received radio signals reflected from the at least one object at selected azimuth and/or elevation angles, and calculating a misalignment value for a misalignment between the array center of the antenna array and the rotation center of the platform, and

correcting, with the receiver, antenna calibration errors that accounts for the misalignment based upon the misalignment value, wherein the misalignment between the array center of the antenna and the rotation center of the platform is a nodal displacement, and wherein the array center of the antenna array is a nodal point.

21. The method of claim 20, wherein correcting for antenna calibration errors accounts for phase distortions and angle-of-arrival errors.

22. The method of claim 21 further comprising processing phase distortion and angle-of-arrival error measurements into a correction matrix to calibrate for transmitter and/or receiver impairments, which include at least one of phase error due to nodal displacement, per channel phase variation, direction dependent phase variation, per channel amplitude variation, direction dependent amplitude variation, and channel response cross-coupling.

23. The method of claim 22 further comprising solving phase error and amplitude variations via an iterative least squares optimization solution.

24. The method of claim 21 further comprising estimating, with the receiver, angles-of-arrival of the collected reflected signals or determining angles-of-arrival of the collected reflected signals based upon prior knowledge of the at least one object's location relative to the receiver.

25. The method of claim 21 further comprising modifying measurement, collection, and calibration processing to optimize different objective functions including at least one of speed and manner of rotation, quantity of measurements collected, and the selection of antenna(s) and channel(s) transmitting and receiving the signals, and wherein these modifications also include parameters in the processing that controls the computation of the correction matrix and affect the processing speed and correction accuracy.

26. The method of claim 20, wherein the platform is rotated in either a continuous manner or in discrete steps, wherein, when rotating in discrete steps, the platform is rotated to discrete angles before collecting receiver data, and wherein, when rotating continuously, the platform is rotated in a continuous sweep of angles while collecting receiver data.

* * * * *