Algorithms and Data Structures

Matrix Decomposition QR Decomposition

Learning goals

- QR decomposition
- Gram-Schmidt Pprocess

QR DECOMPOSITION

Given $\mathbf{A} \in \mathbb{R}^{n \times n}$. We decompose \mathbf{A} into the product of an orthogonal matrix $\mathbf{Q} \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $\mathbf{R} \in \mathbb{R}^{n \times n}$

$$\mathbf{A} = \mathbf{Q}\mathbf{R}$$
 with $\mathbf{Q}^{\top}\mathbf{Q} = \mathbf{I}$,

The columns of the matrix $\mathbf{Q} = (\mathbf{q}_1, \dots, \mathbf{q}_n)$ form an orthonormal basis for the column space of the matrix \mathbf{A} and

$$m{R} = egin{pmatrix} \langle m{q_1}, m{a_1}
angle & \langle m{q_1}, m{a_2}
angle & \langle m{q_1}, m{a_3}
angle & \cdots \ 0 & \langle m{q_2}, m{a_2}
angle & \langle m{q_2}, m{a_3}
angle & \cdots \ 0 & 0 & \langle m{q_3}, m{a_3}
angle & \cdots \ dots & dots & dots & dots & dots \end{pmatrix}$$

The orthonormal basis for **A** is calculated by the Gram-Schmidt process.

GRAM-SCHMIDT PROCESS

The process takes a finite, linearly independent set of vectors and generates an orthogonal set of vectors that form an orthonormal basis. (*)

Procedure: Projection: $\operatorname{proj}_{q} a = \frac{\langle q, a \rangle}{\langle q, q \rangle} q$.

$$egin{aligned} oldsymbol{u}_1 &= oldsymbol{a}_1 \ oldsymbol{u}_2 &= oldsymbol{a}_2 - \operatorname{proj}_{oldsymbol{u}_1} oldsymbol{a}_2 \ &\vdots & \vdots \ oldsymbol{\vdots} &= \vdots \ oldsymbol{u}_k &= oldsymbol{a}_k - \sum_{i=1}^{k-1} \operatorname{proj}_{oldsymbol{u}_i} oldsymbol{a}_k \ oldsymbol{q}_k &= rac{oldsymbol{u}_1}{\|oldsymbol{u}_k\|} \end{aligned}$$

The vectors constructed in this way actually form an orthonormal basis of the column space of **A** (can be shown).

^(*) If the vector \mathbf{a}_i is not independent of $\mathbf{a}_1, ..., \mathbf{a}_{i-1}$, then $\mathbf{u}_i = \mathbf{0}$.

GRAM-SCHMIDT PROCESS / 2

A can now be represented by the calculated orthonormal basis:

$$egin{aligned} oldsymbol{a}_1 &= oldsymbol{q}_1 \langle oldsymbol{q}_1, oldsymbol{a}_1
angle \\ oldsymbol{a}_2 &= oldsymbol{q}_1 \langle oldsymbol{q}_1, oldsymbol{a}_2
angle + oldsymbol{q}_2 \langle oldsymbol{q}_2, oldsymbol{a}_2
angle \\ &draversigned &drave{a}_k &= \sum_{j=1}^k oldsymbol{q}_j \langle oldsymbol{q}_j, oldsymbol{a}_k
angle \end{aligned}$$

Or in matrix notation:

$$m{QR} = (m{q}_1 \langle m{q}_1, m{a}_1
angle, m{q}_1 \langle m{q}_1, m{a}_2
angle + m{q}_2 \langle m{q}_2, m{a}_2
angle, \cdots) = m{A}$$

Given: Three independent vectors a_1 , a_2 , a_3

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- **1** a₁ serves as the first vector of the orthogonal basis (u_1).
- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
- 3 a₃ is projected onto u_1 and u_2 , to obtain u_3 .
- (4) u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a_1 , a_2 , a_3

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- 1 a_1 serves as the first vector of the orthogonal basis (u_1) .
- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
- 3 a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- (4) u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a_1 , a_2 , a_3 **Aim:** Vectors of an orthonormal basis a_1 , a_2 , a_3

- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2
- 3 a₃ is projected onto u_1 and u_2 , to obtain u_3 .
- u_1 , u_2 and u_3 are normalized.

https://commons.wikimedia.org/wiki/File:Gram-Schmidt_orthonormalization_process.gif

Given: Three independent vectors a_1 , a_2 , a_3

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- 1 a_1 serves as the first vector of the orthogonal basis (u_1)
- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2
- 3 is projected onto u_1 and u_2 , to obtain u_3 .
- u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a₁, a₂, a₃

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- a_1 serves as the first vector of the orthogonal basis (u_1) .
- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
- 3 a₃ is projected onto u_1 and u_2 , to obtain u_3 .
- u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a_1 , a_2 , a_3

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- \bigcirc a₁ serves as the first vector of the orthogonal basis (u_1) .
- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2 .
- 3 is projected onto u_1 and u_2 , to obtain u_3 .
- u_1 , u_2 and u_3 are normalized.

Given: Three independent vectors a_1 , a_2 , a_3

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- \bigcirc a₁ serves as the first vector of the orthogonal basis (u_1) .
- 2 a_2 is projected onto u_1 ; projection is substracted from a_2 to obtain u_2
- a_3 is projected onto u_1 and u_2 , to obtain u_3 .
- \mathbf{q} \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{u}_3 are normalized.

Given: Three independent vectors a1, a2, a3

Aim: Vectors of an orthonormal basis q_1 , q_2 , q_3

- u_1 , u_2 and u_3 are normalized.

$$||q_1|| = ||q_2|| = ||q_3|| = 1$$

Algorithms and Data Structures - 11 / 19

QR DECOMPOSITION: EXAMPLE

Calculation of $\mathbf{A} = \mathbf{Q}\mathbf{R}$ with \mathbf{A} given by

$$\mathbf{A} = \begin{pmatrix} 0 & -20 & -14 \\ 3 & 27 & -4 \\ 4 & 11 & -2 \end{pmatrix}$$

k = 1:

$$u_1 = a_1 = \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

$$q_1 = \frac{u_1}{\|u_1\|} = \frac{u_1}{\sqrt{0+9+16}} = \frac{1}{5} \begin{pmatrix} 0\\3\\4 \end{pmatrix}$$

$$r_{11} = \langle q_1, a_1 \rangle = \frac{1}{5} (0^2 + 3^2 + 4^2) = 5$$

$$r_{12} = \langle \boldsymbol{q}_1, \boldsymbol{a}_2 \rangle = \frac{1}{5} (0 \cdot (-20) + 3 \cdot 27 + 4 \cdot 11) = 25$$

$$r_{13} = \langle \boldsymbol{q}_1, \boldsymbol{a}_3 \rangle = \frac{1}{5} (0 \cdot (-14) + 3 \cdot (-4) + 4 \cdot (-2)) = -4$$

QR DECOMPOSITION: EXAMPLE / 2

$$k = 2$$
:

$$u_{2} = a_{2} - \frac{\langle u_{1}, a_{2} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1}$$

$$= a_{2} - \frac{125}{25} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix}$$

$$= \begin{pmatrix} -20 \\ 12 \\ -9 \end{pmatrix}$$

$$q_{2} = \frac{u_{2}}{\|u_{2}\|} = \frac{u_{2}}{\sqrt{400 + 144 + 81}} = \frac{1}{25} \begin{pmatrix} -20 \\ 12 \\ -9 \end{pmatrix}$$

$$r_{22} = \langle q_{2}, a_{2} \rangle = \frac{1}{25} ((-20) \cdot (-20) + 12 \cdot 27 + (-9) \cdot 11) = 25$$

$$r_{23} = \langle q_{2}, a_{3} \rangle = \frac{1}{25} ((-20) \cdot (-14) + 12 \cdot (-4) + (-9) \cdot (-2)) = 10$$

QR DECOMPOSITION: EXAMPLE / 3

$$k = 3$$
:

$$u_{3} = a_{3} - \frac{\langle u_{1}, a_{3} \rangle}{\langle u_{1}, u_{1} \rangle} u_{1} - \frac{\langle u_{2}, a_{3} \rangle}{\langle u_{2}, u_{2} \rangle} u_{2}$$

$$= a_{3} - \frac{-20}{25} \begin{pmatrix} 0 \\ 3 \\ 4 \end{pmatrix} - \frac{250}{625} \begin{pmatrix} -20 \\ 12 \\ -9 \end{pmatrix}$$

$$= \begin{pmatrix} -6 \\ -6.4 \\ 4.8 \end{pmatrix}$$

$$q_{3} = \frac{u_{3}}{\|u_{3}\|} = \frac{1}{25} \begin{pmatrix} -15 \\ -16 \\ 12 \end{pmatrix}$$

$$r_{33} = \langle q_{3}, a_{3} \rangle = \frac{1}{25} ((-15) \cdot (-14) + (-16) \cdot (-4) + 12 \cdot (-2)) = 10$$

QR DECOMPOSITION: EXAMPLE / 4

This results in

$$\mathbf{Q} = \frac{1}{25} \begin{pmatrix} 0 & -20 & -15 \\ 15 & 12 & -16 \\ 20 & -9 & 12 \end{pmatrix} \quad \text{and} \quad \mathbf{R} = \begin{pmatrix} 5 & 25 & -4 \\ 0 & 25 & 10 \\ 0 & 0 & 10 \end{pmatrix}.$$

HOUSEHOLDER AND GIVENS MATRIX

Problem in practice:

Q often not really orthogonal when using the above algorithm due to numerical reasons.

Two other methods for QR decomposition

Householder matrix:

For vector \mathbf{u} , matrix $\mathbf{U} = \mathbf{I} - d\mathbf{u}\mathbf{u}^{\top}$ is orthogonal, if $d = 2/\mathbf{u}^{\top}\mathbf{u}$.

Choose
$$\mathbf{u} = \mathbf{x} + s\mathbf{e}_1$$
 with $s = \mathbf{x}^{\top}\mathbf{x} \Rightarrow \mathbf{U}\mathbf{x} = -s\mathbf{e}_1$.

Successive elimination of column elements yields QR decomposition.

Givens matrix:

Similar to Householder, but orthogonal transformations that eliminate an element of a column vector each, and change a second vector.

For details see Carl D. Meyer Matrix Analysis and Applied Linear Algebra.

PROPERTIES OF QR DECOMPOSITION

- Splitting a matrix into an orthogonal matrix Q and R
- Gram-Schmidt process is numerically unstable, but can be extended and numerically stabilized
- Existence: Decomposition exists for each $n \times n$ matrix and can be extended to general $m \times n$, $m \ne n$ matrices
- Runtime behavior: Numerical stable solution of Householder transformation or Givens rotation comes along with higher effort:
 - Decomposition of $n \times n$ matrix using Householder transformation: $\approx \frac{2}{3}n^3$ multiplications
 - Forward and back substitution: n^2

COMPARISON OF METHODS

Procedure	Α	# Multiplications	Stability
LU	regular	$\approx \frac{1}{3}n^3$	yes, by pivoting
Cholesky	p.d.	$\approx \frac{1}{6}n^3$	yes
QR (Gram Schmidt)	-	$\approx 2n^3$	no
QR (Householder)	-	$pprox rac{2}{3}n^3$	yes

QR DECOMPOSITION FOR $M \times N$ MATRICES

General $m \times n, m \ge n$ matrices can be decomposed as well when using QR decomposition.

$$\mathbf{A} = \mathbf{Q}\mathbf{R} = \mathbf{Q} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{Q}_1 & \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{R}_1 \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_1 \mathbf{R}_1$$

 $\mathbf{Q}_1 \in \mathbb{R}^{m \times n}$, $\mathbf{Q}_2 \in \mathbb{R}^{m \times (m-n)}$ with orthogonal columns, and $\mathbf{R} \in \mathbb{R}^{n \times n}$ upper triangular matrix.

 $\mathbf{Q}_1 \times \mathbf{R}_1$ is known as a **reduced** QR decomposition.

