STT 861 Compendium

Kenyon Cavender

September 29, 2019

Definitions

<u>Def</u> A **random experiment** is an action which will result in one of the many possible outcomes.

Def A **sample space** is the collection of all possible outcomes of a random experiment. We shall denote by **S**.

 $\underline{\mathbf{Def}}$ An **Event** is a subset of sample space \mathbf{S} for which we can define probability.

<u>Def</u> Suppose A and B are two sets. $A \subset B$ (A is a **subset** of B) if $x \in A$ implies $x \in B$. If $A \subset B$ and $B \subset A$ then A = B.

<u>Def</u> A set is called an empty set (or **null set**) if it contains no elements.

Notation: $\{\emptyset\}$

Convention: $\emptyset \subset A$, for any set A

Corrolary: $\forall A, \emptyset \subset A \subset \mathbf{S}$

<u>Def</u> Complement A^c is the set such that $x \in A^c \Rightarrow x \notin A$.

In other words, $A^c = \{x : x \notin A\}$

Notation: A^c or A' or \overline{A}

Def Intersection A, B are two events.

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

<u>Def</u> Union A, B are two events.

$$A \cup B = \{x : x \in A \text{ or } x \in B \text{ or both}\}\$$

Def A and B are **disjoint** if $A \cap B = \emptyset$

Properties of set theory

Commutative

$$A \cup B = B \cup A$$
 and $A \cap B = B \cap A$

Associative

$$(A \cup B) \cup C = A \cup (B \cup C) =: A \cup B \cup C$$

$$(A \cap B) \cap C = A \cap (B \cap C) =: A \cap B \cap C$$

Distributive

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$$

De Morgan's Law

$$(A \cup B)^c = A^c \cap B^c$$

$$(A \cap B)^c = A^c \cup B^c$$

$\underline{\mathrm{Def}}$ Set Difference

$$A \setminus B = \{x : x \in A, \text{ but } x \notin B\}$$

Def Symmetric Difference

$$A \triangle B = \{x : x \in A \setminus B, \text{ or } x \in B \setminus A\}$$

<u>Def</u> A set A is **finite** if there exists a 1-1 fn $A \mapsto \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$

<u>Def</u> A set A is **finite** if there exists a 1-1 fn $A \mapsto \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$

Def A set A is **countably infinite** if there exists a one-to-one function from $A \mapsto \mathbb{N}$.

Def A set is called **coutable** if it is either finite or countably infinite.

Def \mathscr{A} is a collection of subsets of $S[\neq \emptyset]$ satisfying:

- i) $\mathbf{S} \in \mathscr{A}$
- ii) if $A \subset \mathcal{A}$, then $A^c \in \mathcal{A}$
- iii) if $A_1, A_2, ... \in \mathscr{A}$ then $\bigcup_{i=1}^{\infty} A_i \in \mathscr{A}$

We call \mathscr{A} a σ - algebra (or σ - field)

Any domain should be a σ - field

Def (S, \mathcal{A}, P) is a (probability) measure space

<u>Def</u> Given sample space $\mathbf{S}(\neq \emptyset)$, and the measurable space $(\mathbf{S}, \mathscr{A})$

A function $P: \mathscr{A} \mapsto \mathbb{R}$ is called probability if it satisfies:

- a. P(A) > 0 for any $A \in mathscr A$
- b. P(S) = 1
- c. if A_1, A_2 ... are disjoint sets from \mathscr{A} , then $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$

<u>Def</u> A collection of sets $\{E_1, E_2, ...\}$ is called a **partition** of event A if:

- i) $E_i \cap E_j = \emptyset$, $\forall i \neq j \ (pairwise \ disjoint)$
- ii) $\bigcup_{i=1}^{\infty} E_i = A \ (exhaustive)$

Def A sequence of events $\{A_1, A_2...\}$ is **increasing to event** A if:

$$A_1 \subset A_2 \subset \dots$$

and $A = \bigcup_{n=1}^{\infty} A_n$

Notation: $A_n \uparrow A$

<u>Def</u> Similarly, $B_n \downarrow B$ if $B_1 \supset B_2 \supset ...$ and $B = \bigcap_{n=1}^{\infty} B_n$

Def Counting Methods

	WOR	$\mathbf{W}\mathbf{R}$
Ordered	$\frac{n!}{(n-r)!}$	n^r
Unordered	$\frac{n!}{r!(n-r)!} = \binom{n}{r}$	$\binom{n+r-1}{r}$

<u>Def</u> Conditional Probability - if two events A, B with P(B) >= 0, then the conditional probability of A|B is

$$\overline{P(A|B)} = \frac{P(A \cap B)}{P(B)}$$

If
$$P(B) = 0$$
, $P(A|B)$ is undefined

$$P(A \cap B) = P(A)P(A|B) = P(B)P(B|A)$$

<u>Def</u> Multiplication Rule - If $E_1, E_2, ... E_n$ are events,

$$P(E_1 \cap E_2 \cap ... \cap E_n) = P(E_1)P(E_2|E_1)P(E_3|E_1 \cap E_2)... P(E_n|E_1 \cap ... \cap E_{n-1})$$

Def Bayes' Rule

If $E_1, E_2...E_n$ is partition of S then

$$P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^{n} P(E_j)P(A|E_j)}$$

<u>Def</u> Two events A, B are **Independent** if $P(A \cap B) = P(A)P(B)$

This is equivalent to P(A|B) = P(A) and P(B) = P(B|A)

<u>Def</u> A collection of events $A_1, A_2, ..., A_n$ are **mutually independent** if for any subcollection $A_{i1}, ..., A_{ik}$, we have:

$$P(\cap_{j=1}^{k} A_{i_j} = \prod_{j=1}^{k} P(A_{i_j})$$

Results

a.
$$(A^c)^c = A$$

b.
$$\mathbf{S}^c = \emptyset$$

c.
$$\emptyset^c = \mathbf{S}$$

d. if
$$A \subset B$$
, then $B^c \subset A^c$

Remark Proving Distributive Property:

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

Proof. Prove left direction:

$$x \in (A \cup B) \cap C \Rightarrow x \in A \cup B \text{ and } x \in C$$

$$\Rightarrow (x \in A \text{ or } x \in B) \text{ and } x \in C$$

$$\Rightarrow$$
 $(x \in A \text{ and } x \in C) \text{ or } (x \in A \text{ and } x \in C) \text{ or both}$

$$\Rightarrow x \in A \cap C \text{ or } x \in B \cap C \text{ or both}$$

$$\Rightarrow x \in (A \cap C) \cup (B \cap C)$$

Right direction is reverse of above.

a.
$$A \cap B \subset A$$
 and $A \cap B \subset B$

b.
$$A \cap A = A$$

c. if
$$A \subset B$$
 then $A \cap B = A$

d.
$$A \subset A \cup B$$
 and $B \subset A \cup B$

e.
$$A \cup A = A$$

f. if
$$A \subset B$$
 then $A \cup B = B$

g.
$$A \cup A^c = \mathbf{S}$$
 and $A \cap A^c = \emptyset$

h. if
$$A \subset C$$
 and $B \subset C$ then $A \cap B \subset A \cup B \subset C$

i. \emptyset is disjoint to all events

j. if
$$a \cap B = \emptyset$$
 then $A \subset B^c$ and $B \subset A^c$

k. if
$$A \subset B$$
, then $B^c \subset A^c$

1.
$$A \setminus B = A \cap B^c$$
 and $B \setminus A = A^c \cap B$

m.
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$

Remark Consider $\mathbf{S} = \{H, T\}$ and $\mathscr{P}(\mathbf{S}) = \{\emptyset, \{H\}, \{T\}, \mathbf{S}\}$

If **S** is countable, we can take $\mathscr{P}(\mathbf{S})$ as the domain for probability function P.

However, if **S** is uncountable, then **S** is too large, and it is not possible to define a function for $\mathscr{P}(\mathbf{S})$

Remark Desired Properties of P(.)

a.
$$P(\emptyset) = 0$$

b. If A and B are disjoint then
$$P(A \cup B) = P(A) + P(B)$$

c.
$$P(A^c) = 1 - P(A)$$

d. If
$$A \subset B$$
 then $P(A) \leq P(B)$

e.
$$P(A) \le 1$$

Remark Partition $\{E_1, ..., E_n\}$ is a finite partition

Remark For S, $\{A, A^c\}$ is a partition

Remark If $E_n : n \ge 1$ is a partition of A, then $P(A) = \sum_{i=1}^{\infty} P(E_i)$

a. Suppose A and B are two events. Then $\{A \cap B, A^c \cap B\}$ is a partition of B. Also, $P(A^c \cap B) = P(B) - P(A \cap B)$ **Proof.** $(A \cap B) \cap (A^c \cap B) = (A \cap A^c) \cap (B \cap B) = 0$ (pairwise disjoint)

 $(A \cap B) \cup (A^c \cap B) = (A \cup A^c) \cap B = B \ (exhaustive)$

- b. A and B are two events. $P(A \cup B) = P(A) + P(B) P(A \cap B)$ (This is the generalized version of b))
- c. if $\{C_1,C_2,...\}$ is a partition of **S**, then $P(A) = \sum_{i=1}^{\infty} P(A \cap C_i)$
- d. Boole's Inequality

 $P(\bigcup_{i=1}^{\infty} A_i) \le \sum_{i=1}^{\infty} P(A_i)$

e. Bonferroni's Inequality $P(\cap_{i=1}^{\infty} A_i) \ge 1 - \sum_{i=1}^{\infty} P(A_i^c)$

Remark Proving Bonferroni from Boole:

$$P(\bigcup_{i=1}^{\infty} A_i^c) \le \sum_{i=1}^{\infty} P(A_i^c)$$

$$P(\bigcup_{i=1}^{\infty} A_i^c) \leq \sum_{i=1}^{\infty} P(A_i^c)$$

$$1 - P(\bigcup_{i=1}^{\infty} A_i^c) \geq 1 - \sum_{i=1}^{\infty} P(A_i^c)$$

$$= P[(\bigcup_{i=1}^{\infty} A_i^c)^c] \geq \dots$$

$$=P[(\bigcup_{i=1}^{\infty} A_i^c)^c] \geq \dots$$

$$= P[\bigcap_{i=1}^{\infty} (A_i^c)^c] \ge \dots$$

$$= P[\bigcap_{i=1}^{\infty} (A_i^c)^c] \ge \dots = P(\bigcap_{i=1}^{\infty} A_i) \ge 1 - \sum_{i=1}^{\infty} P(A_i^c)$$

- a. If $A_n \uparrow A$, then $P(A) = \lim_{n \to \infty} P(A_n)$
- b. If $B_n \downarrow B$ then $P(B) = \lim_{n \to \infty} P(B_n)$

Remark Suppose for some set A, P(A) = 1 Does this imply A = S?

Does P(B) = 0 imply $B \neq \emptyset$?

Does $P(A \cap B) = 0$ imply A, B are disjoint?

Not necessarily for all above!

a.
$$P(A^c|B) = 1 - P(A|B)$$

- b. If $A \subseteq B$ the $P(A|B) = \frac{P(A)}{P(B)}$ and P(B|A) = 1
- c. If $E_1, E_2...E_n$ is partition of S then $P(E_i|A) = \frac{P(E_i)P(A|E_i)}{\sum_{j=1}^n P(E_j)P(A|E_j)}$

Remark If A, B are disjoint, then A, B are independent if either P(A) = 0, P(B) = 0 or both.

Remark If A and B are independent events, then the following pairs are also independent:

- a. A and B^c
- b. A^c and B
- c. A^c and B^c