Redes Neurais Convolucionais

Thaís Ratis

Diego Alexandre

Práticas Tecnológicas, 26.10.2023

Índice

- 1. Machine Learning x Deep Learning
- 2. Visão e Visão Computacional
- 3. Classificação de Imagem
- 4. Redes Neurais Convolucionais
- 5. Redes Neurais Convolucionais em dados categóricos
- 6. Detecção
- 7. Segmentação

Machine Learning X Deep Learning

01

Machine Learning x Deep Learning

02

Visão

- Gato
- Branco e cinza
- Dormindo

 Visão computacional é o campo da ciência que estuda como os computadores podem enxergar e entender o conteúdo de imagens e vídeos

Isto inclui adquirir, processar e analisar imagens ou vídeos

 Problemas ligados à visão computacional muitas vezes são resolvidos facilmente por pessoas, mas não pelas máquinas

Uma imagem é representada como uma matriz

0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0,6	0,8	0	0	0	0	0	0
0	0	0	0	0	0	0,7	1	0	0	0	0	0	0
0	0	0	0	0	0	0,7	1	0	0	0	0	0	0
0	0	0	0	0	0	0,5	1	0,4	0	0	0	0	0
0	0	0	0	0	0	0	1	0,4	0	0	0	0	0
0	0	0	0	0	0	0	1	0,4	0	0	0	0	0
0	0	0	0	0	0	0	1	0,7	0	0	0	0	0
0	0	0	0	0	0	0	1	1	0	0	0	0	0
0	0	0	0	0	0	0	0,9	1	0,1	0	0	0	0
0	0	0	0	0	0	0	0,3	1	0,1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0

Imagens rgb

Imagem A x L x 3 Imagens A \times L \times C C: no. de canais, ou profundidade An Indra company

Treinamos uma rede neural com várias imagens de cachorros e gatos

Para que possamos classificar novas entradas

Como passar uma imagem para uma rede neural?

 A rede recebe entradas numéricas, ela não recebe uma matriz

Podemos passar cada valor da matriz como uma entrada

Uma limitação dessa abordagem é que perdemos a noção espacial da imagem

X ₁	X ₂	X ₃	X ₄	
X ₅	X ₆	X ₇	X ₈	Próximos
X ₉	X 10	x ₁₁	X 12	
X 13	X_14	X ₁₅	X 16	

Distantes X 16

Outra limitação é que o número de entradas e pesos será muito grande

Uma imagem colorida 1000x1000 tem 3 milhões de valores

 \circ (A x L x 3)

 Se a primeira camada intermediária possuir 10 neurônios, teremos 30 milhões de pesos só na primeira camada!

Classificação de imagens - Visão Computacional

- → Uma operação linear para reconhecer padrões
- → Operação do filtro/kernel sobre a imagem/sinal
- → Disposição espacial dos dados se transforma em informação

Podemos processar previamente as imagens e depois passar para rede neural:

- → Detectar arestas
- → Detectar cantos
- → Detectar regiões

Detecção de arestas

Detecção de arestas

Imagem

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

Convolução

Filtro

Operação com filtros

O mesmo filtro é "aplicado" sobre o campo receptivo (CR) que desliza sobre a imagem

A cada iteração, são somados os produtos dos pares (sum(CR x filtro)) gerando um novo valor para a matriz resultante

Detecção de arestas

Campo receptivo Convolução **Imagem** -1 * -1 -1 **Filtro**

3x1

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

1	0	-1
1	0	-1
1	0	-1

3x1 + 1x1

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0 + 7x0$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0 + 7x0 + 1x-1$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0 + 7x0 + 1x-1 + 8x-1$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0 + 7x0 + 1x-1 + 8x-1 + 2x-1$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$3x1 + 1x1 + 2x1 + 0x0 + 5x0 + 7x0 + 1x-1 + 8x-1 + 2x-1 = -5$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

$$0x1 + 5x1 + 7x1 + 1x0 + 8x0 + 2x0 + 2x-1 + 9x-1 + 5x-1 = -4$$

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-5	-4	

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

-5	-4	0	8
-10	-2	2	3
0	-2	-4	-7
-3	-2	-3	-16

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

$$10x1 + 10x1 + 10x1 + 10x0 + 10x0 + 10x0 + 10x-1 + 10x-1 + 10x-1 = 0$$

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

$$10x1 + 10x1 + 10x1 + 10x0 + 10x0 + 10x0 + 10x0 + 10x0 + 10x0 = 30$$

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Detecção de arestas

Filtros diferentes detectam características diferentes:

Arestas verticais

1	0	-1
1	0	-1
1	0	-1

Arestas horizontais

1	1	1
0	0	0
-1	-1	-1

Redes Neurais

Convolucionais

04

$$\begin{split} \mathsf{D}_{(0,0)} &= (\mathsf{S}_{(0,0)}^* \mathsf{W}_{(0,0)}) + (\mathsf{S}_{(1,0)}^* \mathsf{W}_{(1,0)}) + (\mathsf{S}_{(2,0)}^* \mathsf{W}_{(2,0)}) + \\ & (\mathsf{S}_{(0,1)}^* \mathsf{W}_{(0,1)}) + (\mathsf{S}_{(1,1)}^* \mathsf{W}_{(1,1)}) + (\mathsf{S}_{(2,1)}^* \mathsf{W}_{(2,1)}) + \\ & (\mathsf{S}_{(0,2)}^* \mathsf{W}_{(0,2)}) + (\mathsf{S}_{(1,2)}^* \mathsf{W}_{(1,2)}) + (\mathsf{S}_{(2,2)}^* \mathsf{W}_{(2,2)}) \end{split}$$

7	2	3	3	8
4	5	3	8	4
3	3	2	8	4
2	8	7	2	7
5	4	4	5	4

7x1+4x1+3x1+ 2x0+5x0+3x0+ 3x-1+3x-1+2x-1 = 6

Tamanho Final =
$$(Img - W) + 1$$
 (5 - 3) + 1 = 3

Padding

Padding = 1; Imagem $(32 \times 32) \rightarrow (33 \times 33)$

0	0	0	0	
0	22	0		
0	32x32		0	
0	0 0		0	
33x33				

Tamanho Final = (Img - W + 2*P) + 1

Tamanho Final = (32 - 3 + 2*1) + 1 = 32

Stride

Stride = 1; Filtro 3x3

7 x 7 Input Volume

*

5 x 5 Output Volume

Tamanho Final = [(Img - W + 2*P) / S] + 1

Tamanho Final = [(7 - 3 + 2*0) / 1] + 1 = 5

Stride

Stride = 2; Filtro 3x3

7 x 7 Input Volume

*

3 x 3 Output Volume

Tamanho Final = [(Img - W + 2*P) / S] + 1

Tamanho Final = [(7 - 3 + 2*0) / 2] + 1 = 3

Podemos tentar criar filtros manualmente escolhendo valores

Quais filtros criar?

o Como saber se os valores escolhidos são bons? Não sabemos previamente!

3	0	1	2	7	4
1	5	8	9	3	1
2	7	2	5	1	3
0	1	3	1	7	8
4	2	1	6	2	8
2	4	5	2	3	9

*

Vamos tratar os valores dos filtros como pesos que serão aprendidos pela rede neural através do backpropagation

mınsaıt

An Indra company

Tamanho Final 3D: Imagem_(x,y,c) o N*Filtros_(x',y',c) = Saída_(x",y",N)

Importante: x" e y" são calculados como se fosse 2D: (P=0; S=1)

TF =
$$[(Img - W + 2P) / S] + 1$$
 \longrightarrow $[(6 - 3 + 0) / 1] + 1 = 4$

Tamanho Final 3D: $Img_{(6, 6, 3)}$ o $1*W_{(3, 3, 3)} = Saida_{(4, 4, 1)}$

Tamanho Final 3D: Imagem_(x,y,c) o N*Filtros_(x',y',c) = Saída_(x'',y'',N)

x" e y" são definidos pelo mesmo cálculo anterior cujo resultado foi 4

Tamanho Final 3D: $Img_{(6, 6, 3)}$ o $2*W_{(3, 3, 3)} = Saida_{(4, 4, 2)}$

 Temos todas as peças para entender e construir uma rede neural convolucional

Iniciaremos com uma camada

Uma rede convolucional com duas camadas:

No final, usamos uma camada totalmente conectada:

Pooling

 A operação de pooling é usada para aumentar a velocidade e diminuir a quantidade de memória usada.

Ela também realça características encontradas pelos filtros.

Max Pooling

Stride = 2 Filtro 2x2 Tamanho Final = Img / S

3	2	3	3
1	8	4	3
5	1	1	2
6	2	3	1

4 x 4

TF 2D: [(34 - 3 + 0) / 1] + 1 = 32

TF 3D: $Img_{(34,34,3)}$ o $5*W_{(3,3,3)} = Saida_{(32,32,5)}$

70

Nas Redes Neurais Convolucionais é muito comum usarmos o padrão:

Convolução → pooling → convolução → pooling → ...

→ convolução → pooling → camada totalmente conectada

As Redes Neurais Convolucionais, ao longo de suas camadas, vão aprendendo a detectar padrões cada vez mais complexos.

É possível visualizar esses padrões através da criação de imagens artificialmente para maximizar uma das saídas de uma determinada camada.

Global Max Pooling

4 x 4

Global Max Pooling

Conv 1 x 1

Projeção do mapa de atributos

Conv 1 x 1

Redução do mapa de atributos

Conv 1 x 1

Aumento do mapa de atributos

ImageNet

Dataset

- 1 milhão de amostras de treino
- 50 mil validação
- 100 mil teste
- 1000 classes

ImageNet

Base de Dados:

- 1 milhão de amostras de treino
- 50 mil validação
- 100 mil teste
- 1000 classes

ImageNet

LeNet

mınsaıt

AlexNet

Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts at the bottom. The GPUs communicate only at certain layers. The network's input is 150,528-dimensional, and the number of neurons in the network's remaining layers is given by 253,440–186,624–64,896–64,896–43,264–4096–4096–1000.

ResNet

ResNet

Redes neurais convolucionais em dados categóricos

$$4x3 + 1x7 + 3x5 = 34$$

Matriz 1D	4	1	3	8	4	0	3	8	0	7	7	7	1	2
Filtro	3	7	5											
Saída		34												

$$1x3 + 3x7 + 8x5 = 64$$

Matriz 1D	4	1	3	8	4	0	3	8	0	7	7	7	1	2
Filtro		3	7	5										
Saída		34	?											
Matriz 1D	4	1	3	8	4	0	3	8	0	7	7	7	1	2
Filtro		3	7	5										
Saída		34	64											

Tamanho Final = [(Matriz - W + 2*P) / S] + 1 (Mesma fórmula da 2D) Tamanho Final = [(6 - 3 + 2*0) / 1] + 1 = 4Cálculos:

1º Elemento: 1x2 + 3x0 + 3x1 = 52º Elemento: 3x2 + 3x0 + 0x1 = 63º Elemento: 3x2 + 0x0 + 1x1 = 74º Elemento: 0x2 + 1x0 + 2x1 = 2

Max Pooling 1D

Stride = 2

Filtro 2x1

Tamanho Final = Matriz / S

Tamanho Final = 6/2 = 3

mınsaıt

Detecção

Detecção

Detecção

- Arquiteturas de detecção iniciam com uma arquitetura de classificação, conhecida a arquitetura escolhida(pode ser qualquer uma das estudadas anteriormente para classificação) é dada o nome de backbone.
- A construção é bem parecida com uma arquitetura de classificação o que muda é a saída.
- Treina-se uma rede para encontrar certos objetos em uma imagem ou video.
- A saída da rede é tanto os bounding boxes quanto a classificação.
- O desempenho da rede é avaliado através de IoU, MaP, Precision e Recall.

IoU

Interseção sobre união ou índice de jaccard.

Calculado usando a bounding box predita e a bound

$$=\frac{|A\cap B|}{|A|+|B|-|A\cap B|}.$$

IoU

TP, FP, FN

TP: True Positive(Verdadeiro Positivo) em detecção para ser um verdadeiro positivo:

- A confiança tem que ser maior que o threshold definido.
- O loU tem que ser maior que o threshold definido.
- A Classe tem que estar correta

FP: False Positive(Falso Positivo) em detecção para ser um falso positivo:

• O loU tem que ser igual a 0 ou a classe errada tem que ter sido predita errada

FN: False Negative(Falso Negativo) em detecção para ser um falso negativo:

- A Classe tem que estar certa
- O lou tem que estar abaixo do threshold definido

- Precisão media(Average Precision) para cada classe.
- Calculada usando interpolação de 11 pontos da curva do precision e recall, variando o recall de 0 a 1,
 com incrementos de 0.1.
- Para cada recall é utilizado o maior valor de precisão que tenha um recall maior ou igual ao recall sendo avaliado.

Considerando essa tabela vamos calcular a interpolação de 11 pontos.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	71%	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	X	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Para o recall 0 o maior valor de precisão para um recall maior ou igual a 0 é 1, portanto nesse primeiro ponto o valor será 1.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	7196	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	X	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Para o recall 0.1 o maior valor de precisão para um recall maior ou igual a 0.1 é 0.6666, portanto segundo nesse ponto o valor será 0.6666.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	71%	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	×	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Até o momento temos que a AP é

$$1 \div 11(1 + 0.6666)$$

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	7196	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	Н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	X	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	1496	0	1	7	17	0.2916	0.4666

Para o recall 0.2 o maior valor de precisão para um recall maior ou igual a 0.2 é 0.4285, portanto segundo nesse ponto o valor será 0.4285.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Y	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	7196	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	Е	54%	1	0	5	8	0.3846	0.3333
Image 7	×	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Para o recall 0.3 o maior valor de precisão para um recall maior ou igual a 0.3 é 0.4285, portanto segundo nesse ponto o valor será 0.4285.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	М	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	71%	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	X	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Para o recall 0.4 o maior valor de precisão para um recall maior ou igual a 0.4 é 0.4285, portanto segundo nesse ponto o valor será 0.4285.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	7196	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	Е	54%	1	0	5	8	0.3846	0.3333
Image 7	×	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Já para os valores a partir de recall a partir de 0.5 não existem valores de precisão portanto a precisão é 0.

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Y	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	71%	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	Е	54%	1	0	5	8	0.3846	0.3333
Image 7	×	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

Legenda:

Valores considerados

Valores escolhido

AP

Assim nossa equação final é:

$$1 \div 11(1 +$$

0.6666 + 3 *

0.4285 + 6 * 0

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Y	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	М	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	7196	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	Н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	X	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	s	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	1496	0	1	7	17	0.2916	0.4666

Legenda:

AP

Cujo resultado é: 0.2685

Images	Detections	Confidences	TP	FP	Acc TP	Acc FP	Precision	Recall
Image 5	R	95%	1	0	1	0	1	0.0666
Image 7	Υ	95%	0	1	1	1	0.5	0.0666
Image 3	J	91%	1	0	2	1	0.6666	0.1333
Image 1	Α	88%	0	1	2	2	0.5	0.1333
Image 6	U	84%	0	1	2	3	0.4	0.1333
Image 1	С	80%	0	1	2	4	0.3333	0.1333
Image 4	M	78%	0	1	2	5	0.2857	0.1333
Image 2	F	74%	0	1	2	6	0.25	0.1333
Image 2	D	7196	0	1	2	7	0.2222	0.1333
Image 1	В	70%	1	0	3	7	0.3	0.2
Image 3	н	67%	0	1	3	8	0.2727	0.2
Image 5	Р	62%	1	0	4	8	0.3333	0.2666
Image 2	E	54%	1	0	5	8	0.3846	0.3333
Image 7	×	48%	1	0	6	8	0.4285	0.4
Image 4	N	45%	0	1	6	9	0.4	0.4
Image 6	Т	45%	0	1	6	10	0.375	0.4
Image 3	K	44%	0	1	6	11	0.3529	0.4
Image 5	Q	44%	0	1	6	12	0.3333	0.4
Image 6	V	43%	0	1	6	13	0.3157	0.4
Image 3	1	38%	0	1	6	14	0.3	0.4
Image 4	L	35%	0	1	6	15	0.2857	0.4
Image 5	S	23%	0	1	6	16	0.2727	0.4
Image 3	G	18%	1	0	7	16	0.3043	0.4666
Image 4	0	14%	0	1	7	17	0.2916	0.4666

MaP

Média do average precision considerando a average precision de cada classe

Detecção

Alguns dos datasets usados como benchmark para detecção são o COCO e o Pascal Voc

Faster RCNN

Detecção em dois estágios: primeiro são propostas as bounding boxes, depois são classificadas as imagens.

Usa uma VGG como backbone

YOLO (You Only Look Once)

Detecção em um estágio só. Em uma só passada é gerada tanto as coordenadas das bounding boxes como a classe da bounding boxes. Usa uma DarkNet como backbone

RetinaNet

Detecção em um estágio só. Em uma só passada é gerada tanto as coordenadas das bounding boxes como a classe da bounding boxes.

Usa uma ResNet como backbone, usa uma FPN no topo da ResNet e a saída é jogada em duas subredes que calculam paralelamente a posição das bounding boxes e o label.

Segmentação

Segmentação

mınsaıt

Segmentação

- o Consiste em marcar todos os pixels das classes de interesse em uma imagem.
- Assim como arquiteturas de detecção, em segmentação também temos uma arquitetura de classificação(backbone) dentro da arquitetura.
- No entanto, como arquiteturas de segmentação retornam um objeto do mesmo tamanho do input e convoluções(sem padding) e pooling diminuem o tamanho do objeto duas operações novas são introduzidas: upsampling e upconv.

Upsampling

Funciona apenas executando operações no mapa original, podendo ser desde preencher com zeros a bilinear. Abaixo temos um exemplo de upsampling aplicando nearest neighbor que é apenas substituir o valor pelo valor mais próximo.

mınsaıt

Upconv ou deconvolution ou transpose convolution. Consiste em mover o filtro pelo mapa de saída como se fosse uma convolução e o mapa de entrada dá o peso para o filtro. Além disso soma-se as posições do filtro em que há intersecção.

Upconv ou deconvolution ou transpose convolution. Consiste em mover o filtro pelo mapa de saída como se fosse uma convolução e o mapa de entrada dá o peso para o filtro. Além disso soma-se as posições do filtro em que há intersecção.

Para ajudar na compreensão do exemplo a seguir, vamos relembrar as posições de uma matriz 4 x 4

a11	a12	a13	a14
a21	a22	a23	a24
a31	a32	a33	a34
a41	a42	a43	a44

Explicando a imagem da página anterior:

- Na primeira posição o filtro é multiplicado por 2. E os valores resultantes são exibidos no quadrado de cima e da esquerda da etapa 1.
- Na segunda posição o filtro é multiplicado por 1. E os valores resultantes são exibidos no quadrado de cima e da direita da etapa 1. Notem que há uma intersecção da segunda posição com a primeira posição do filtro. Essa intersecção ocorre nas colunas 2 e 3 portanto os valores serão somados.
- Na terceira posição o filtro é multiplicado por 4. E os valores resultantes são exibidos no quadrado de baixo de da esquerda da etapa 1. Notem que há intersecção tanto com a posição 1 quanto com a posição 2.
 Assim os valores da intersecção são somados.
- Na quarta posição o filtro é multiplicado por 4. E os valores resultantes são exibidos no quadrado de baixo de da esquerda da etapa 1. Notem que há intersecção com as posições 1, 2 e 3. Assim os valores da intersecção são somados.

Continuando a explicação:

Na etapa é mostrado o resultado final das operações

 Também é mostrado como foi calculado o valor de cada elemento, isto é, o valor das somas das intersecções para cada elemento.

Métricas e Datasets

Para segmentação semântica usamos apenas IoU em caso de uma classe e mIoU(media dos IoU) quando temos múltiplas classes.

Alguns datasets usados como benchmark para segmentação são Pascal VOC, CityScapes e Ade20k

Unet

FPN

minsoit An Indra company

DeepLab

Atrous Convolution

mınsaıt

Atrous Spatial Pyramid Pooling(ASPP)

Referências

- Iris Recognition with Off-the-Shelf CNN Features: A Deep Learning Perspective Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/The-evolution-of-the-winning-entries-on-the-ImageNet-Large-Scale-Visual-Recognition_fig1_321896881 [accessed 23 Oct, 2023]
- Application of Deep Learning in Dentistry and Implantology Scientific Figure on ResearchGate. Available from:
 https://www.researchgate.net/figure/Algorithms-that-won-the-ImageNet-Large-Scale-Visual-Recognition-Challenge-ILSVRC-in_fig2_346091812 [accessed 23 Oct, 2023]
- ImageNet classification with deep convolutional neural networks (acm.org)
- [1512.03385v1] Deep Residual Learning for Image Recognition (arxiv.org)

- LeNet-5-A Classic CNN Architecture DataScienceCentral.com
- Exploring Object Detection Applications and Benefits DeepLobe
- [1708.02002] Focal Loss for Dense Object Detection (arxiv.org)
- Mean Average Precision (mAP) Using the COCO Evaluator PylmageSearch
- http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf
- https://kharshit.github.io/blog/2019/02/15/autoencoder-downsampling-and-upsampling
- [1505.04597] U-Net: Convolutional Networks for Biomedical Image Segmentation (arxiv.org)

Referências

- [1612.03144] Feature Pyramid Networks for Object Detection (arxiv.org)
- [1706.05587v3] Rethinking Atrous Convolution for Semantic Image Segmentation (arxiv.org)
- [1606.00915] DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs (arxiv.org)
- [1802.02611] Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation (arxiv.org)

Redes Neurais Convolucionais

Thaís Ratis

Diego Alexandre

Práticas Tecnológicas, 26.10.2023

