Introduction to Audio Content Analysis

Module 7.1: Human Perception of Pitch

alexander lerch

corresponding textbook section

Section 7.1

lecture content

- pitch as perceptual phenomenon
- non-linear relation of frequency and pitch
- frequency content of a simple pitched sound
- dimensions of pitch perception

learning objectives

- describe basic properties of models for pitch
- explain the two dimensions of pitch perception

corresponding textbook section

Section 7.1

lecture content

- pitch as perceptual phenomenon
- non-linear relation of frequency and pitch
- frequency content of a simple pitched sound
- dimensions of pitch perception

■ learning objectives

- describe basic properties of models for pitch
- explain the two dimensions of pitch perception

- pitch & pitch-based properties belong to the most important parameters describing music
 - melody
 - harmony
 - tonality
 - tuning & intonation

■ related ACA tasks

- fundamental frequency detection
- key detection
- chord detection
- tuning frequency & temperament estimation

- pitch & pitch-based properties belong to the most important parameters describing music
 - melody
 - harmony
 - tonality
 - tuning & intonation

■ related ACA tasks

- fundamental frequency detection
- kev detection
- chord detection
- tuning frequency & temperament estimation

definition (American Standards Association)

pitch is that attribute of auditory sensation in terms of which sounds may be ordered on a musical scale¹

- temporal variations in pitch give rise to a sense of melody
- closely related to frequency, but subjective
- ⇒ assigning a pitch value to a sound means **specifying the frequency of a pure tone having the same subjective pitch** as the sound

ASA, "Acoustical Terminology," American Standards Association (ASA), Standard, 1960.

definition (American Standards Association)

pitch is that attribute of auditory sensation in terms of which sounds may be ordered on a musical scale¹

- temporal variations in pitch give rise to a sense of melody
- closely related to frequency, but subjective
- ⇒ assigning a pitch value to a sound means **specifying the frequency of a pure tone having the same subjective pitch** as the sound

¹ASA, "Acoustical Terminology," American Standards Association (ASA), Standard, 1960.

definition (American Standards Association)

pitch is that attribute of auditory sensation in terms of which sounds may be ordered on a musical scale¹

- temporal variations in pitch give rise to a sense of melody
- closely related to frequency, but subjective
- ⇒ assigning a pitch value to a sound means specifying the frequency of a pure tone having the same subjective pitch as the sound

¹ASA, "Acoustical Terminology," American Standards Association (ASA), Standard, 1960.

- dominant fundamental frequency $(f_0, 2f_0, 3f_0, ...)$
- higher fundamental frequency ⇒ higher pitch (mono-dimensional)

non-linear pitch frequency relation:

- \blacksquare perceptual pitch distance \neq frequency distance
- ⇒ models for psycho-acoustic/physiological data
 - Mel scale (equal pitch distance)
 - Bark scale (critical band width)
 - physiological frequency location (basilar membrane)

perception

Fant:
$$\mathfrak{m}_{F}(f) = 1000 \cdot \log_2 \left(1 + \frac{f}{1000 \text{ Hz}}\right)$$

O'Shaughnessy:
$$\mathfrak{m}_{S}(f) = 2595 \cdot \log_{10} \left(1 + \frac{f}{700 \, \text{Hz}}\right)$$

$$\mathfrak{m}_{\mathrm{S}}(f) = 1127 \cdot \log \left(1 + \frac{f}{700\,\mathrm{Hz}}\right)$$

perception

Fant:
$$\mathfrak{m}_{F}(f) = 1000 \cdot \log_2 \left(1 + \frac{f}{1000 \text{ Hz}}\right)$$

O'Shaughnessy:
$$\mathfrak{m}_{S}(f) = 2595 \cdot \log_{10} \left(1 + \frac{f}{700 \, \text{Hz}}\right)$$

$$\mathfrak{m}_{\mathrm{S}}(f) = 1127 \cdot \log \left(1 + \frac{f}{700\,\mathrm{Hz}}\right)$$

pitch perception frequency & pitch

Georgia Center for Music Tech Tech College of Design

Schröder: $\mathfrak{z}_{S}(f) = 7 \cdot \operatorname{arcsinh}\left(\frac{f}{650 \, \text{Hz}}\right)$

Terhardt: $\mathfrak{z}_{\mathrm{T}}(f) = 13.3 \cdot \arctan\left(0.75 \cdot \frac{f}{1000 \, \mathrm{Hz}}\right)$

Zwicker: $\mathfrak{z}_{Z}(f) = 13 \cdot \operatorname{atan}\left(0.76 \cdot \frac{f}{1000 \, \mathrm{Hz}}\right) + 3.5 \cdot \operatorname{atan}\left(\frac{f}{7500 \, \mathrm{Hz}}\right)$

pitch perception frequency & pitch

Georgia | Center for Music Tech 🛚 Technology

perception 0000

ERB:
$$\mathfrak{e}(f) = 9.26 \log \left(1 + \frac{f}{228.7}\right)$$

Cochlear Map:
$$\mathfrak{x}(f) = \frac{1}{2.1} \log_{10} \left(\frac{f}{165.4} + 1 \right)$$

pitch perception pitch dimensions

2 dimensions of musical pitch

- **tone height**: monotonic relationship to frequency (increasing frequency ⇒ increasing pitch)
- tone chroma: two tones separated by octave sound similar (same pitch class)

2 dimensions of musical pitch

- **tone height**: monotonic relationship to frequency (increasing frequency ⇒ increasing pitch)
- tone chroma: two tones separated by octave sound similar (same pitch class)

■ pitch

- subjective phenomenon
- non-linear monotonic relationship to frequency (tone height increases with fundamental frequency)
- pitch grouping based on powers of two: tone chroma perception

