Suites récurrentes linéaire d'ordre 2

Exercice 1 [02298] [correction]

Donner l'expression du terme général de la suite récurrente complexe $(u_n)_{n\geqslant 0}$ définie par : $u_0=0, u_1=1+4i$ et

$$\forall n \in \mathbb{N}, u_{n+2} = (3-2i)u_{n+1} - (5-5i)u_n$$

Exercice 2 [02299] [correction]

Donner l'expression du terme général des suites récurrentes réelles suivantes :

- a) $(u_n)_{n\geq 0}$ définie par $u_0=1, u_1=0$ et $\forall n\in \mathbb{N}, u_{n+2}=4u_{n+1}-4u_n$
- b) $(u_n)_{n\geq 0}$ définie par $u_0=1, u_1=-1$ et $\forall n\in\mathbb{N}, 2u_{n+2}=3u_{n+1}-u_n$
- c) $(u_n)_{n\geqslant 0}$ définie par $u_0=1, u_1=2$ et $\forall n\in\mathbb{N}, u_{n+2}=u_{n+1}-u_n$.

Exercice 3 [02300] [correction]

Soit $\theta \in]0, \pi[$. Déterminer le terme général de la suite réelle (u_n) définie par :

$$u_0 = u_1 = 1 \text{ et } \forall n \in \mathbb{N}, u_{n+2} - 2\cos\theta u_{n+1} + u_n = 0$$

Exercice 4 [02683] [correction]

Déterminer les fonctions $f: \mathbb{R}^{+\star} \to \mathbb{R}^{+\star}$ vérifiant

$$\forall x > 0, f(f(x)) = 6x - f(x)$$

Corrections

Exercice 1 : [énoncé]

 (u_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique $r^2 - (3-2i)r + (5-5i) = 0$.

On obtient

$$u_n = (2+i)^n - (1-3i)^n$$

Exercice 2 : [énoncé]

a)
$$u_n = 2^n (1-n)$$
 b) $u_n = -3 + 2^{2-n}$ c) $u_n = 2\cos\frac{(n-1)\pi}{3}$.

Exercice 3: [énoncé]

 (u_n) est une suite récurrente linéaire d'ordre 2 d'équation caractéristique

$$r^2 - 2\cos\theta r + 1 = 0$$

de solutions $r = e^{i\theta}$ et $r = e^{-i\theta}$.

Par suite, il existe $\alpha, \beta \in \mathbb{R}$ tels que

$$\forall n \in \mathbb{N}, u_n = \alpha \cos n\theta + \beta \sin n\theta$$

n=0 donne $\alpha=1$ et n=1 donne $\alpha\cos\theta+\beta\sin\theta=1$ donc

$$\beta = \frac{1 - \cos \theta}{\sin \theta} = \frac{2\sin^2 \theta/2}{\sin \theta} = \tan \frac{\theta}{2}$$

Finalement

$$\forall n \in \mathbb{N}, u_n = \cos n\theta + \tan \frac{\theta}{2} \sin n\theta = \frac{\cos((2n-1)\theta/2)}{\cos(\theta/2)}$$

Exercice 4: [énoncé]

Soit f une fonction solution.

Pour x > 0, on considère la suite (u_n) déterminée par

$$u_0 = x \text{ et } \forall n \in \mathbb{N}, u_{n+1} = f(u_n)$$

La suite (u_n) est formée de réels strictement positifs et satisfait la relation de récurrence linéaire

$$\forall n \in \mathbb{N}, u_{n+2} + u_{n+1} - 6u_n = 0$$

Les racines de l'équation caractéristique associée sont 2 et -3 de sorte qu'il existe $\lambda, \mu \in \mathbb{R}$ vérifiant

$$\forall n \in \mathbb{N}, u_n = \lambda 2^n + \mu(-3)^n$$

Puisque la suite (u_n) n'est formée que de réels strictement positifs, il est nécessaire que μ soit nul.

Après résolution cela donne f(x) = 2x.

Inversement, cette fonction est bien solution.