Eyedrone

TEAM

Asma

Albert

Antonio

Ali

Move a **drone** using **your eyes**

The end-to-end system

1. Data acquisition, preprocessing and detection

- Get raw data from sensors
- Process in real time
- When a change is detected, send a chunk of data as input to the neural network

2. Classification using Al

- Get movement of the eye as output

3. Drone controller

- Send movement to Drone
- Drone executes the movement

Microservices approach:

parts are interchangeable. Example: instead of using eye movements, we could use brain "thoughts", just by changing the first part

Ganglion Board + Sensors + Open BCI GUI

Recording datasets

- Usage of Ganglion Board (4-channel EEG) + golden cup sensors.
- Recordings made with OpenBCI GUI

Recording example right eye movement

Ganglion Board + Brainflow + Timeflux

Raw data acquisition directly from board for real -time detection

Unfortunately, there are some parts missing:

What is missing? Real Time processing.

- Get chunks of data in real time when an event happens (not only the event) and pass this as an input to the Neural Net. Making this work in real-time was not an easy work.
- Pass the output of the neural net to the Drone API in real time.
- Investigate REST vs Websockets to connect with the drone.

Dataset

Dataset creation

Using OpenBCI Ganglion Board (4-channels)

Tests done:

25x Center --> Up --> Center movement

25x Center --> Down --> Center movements

25x Center --> Left --> Center movements

50x Center --> Right --> Center movements

1x Long Blinking Test

Main problems...

We wanted to:

- -Have multiple sources of data
- -From each have multiple recordings
- -Do data augmentation

Lack of data

Learning

Data Augmentation

Machine Learning

Deep Learning

Data Augmentation

Concept:

- Choose randomly P% of time points;
- Stretch them with [Min-Max]s

Helps:

- Less biased model;
- Generated Noise;

Machine Learning: SVM

Feature Vector:

- Mean, Max, Min, Var;
- 5 classes

Result:

43% accuracy

Deep Learning: **EEGNet**

EEGNet: A Compact Convolutional Neural Network for EEG-based Brain-Computer Interfaces

Vernon J. Lawhern1, Amelia J. Solon, Nicholas R. Waytowich, Stephen M. Gordon, Chou P. Hung, and Brent J. Lance

- Fully supervised
- Few data
- Compact architecture
- Engineering

Deep Learning: **EEGNet**

Training and Engineering:

- Number of channels 4
- Frequency 100Hz

Result:

• 50,1% accuracy

THE DRONE

- Communications
- DroneApp connected with the Drone API
- Real time show
- Flask app for simple navigation controller
- Router port forwarding to be able to work remotely

Drone

Progress

Dataset creation: Coll ect EEG signal with 4 golden cup sensors

Done

Signal/data pre processing: Data cleaning, noise

Done

03 04 05

02

Signal sending:

in real-time from a Board to PC and/or Cloud (Amazon Web Services) **Classification:**

Data augmentaion **Done**

svm Done

Deep learning On-going

API