

数字电路与逻辑 课程设计说明书

学生	医姓名:	
学	号:	
院	(系):	电子信息与人工智能学院
专	业:	网络工程
指导	幹教师:	

2023 年 3 月 20 日

题目: 网线测试仪

陕 西 科 技 大 学 数字电路与逻辑 课程设计任务书

电智 学院
<u> 电智</u> 学院 网络工程 专业
返目:
果程设计从 <u>2022</u> 年 <u>7</u> 月 <u>1</u> 日起到 <u>2022</u> 年 <u>9</u> 月 <u>30</u> 日
、课程设计的内容和要求(包括原始数据、技术要求、工作要求等):
数字电路基础与逻辑设计课程为机电大类学生必修课程,本课程设计为
数字电路基础与逻辑设计课程的实践活动。通过本课程的实践操作,使得学生
论够更好的掌握所学的理论知识与实际的联系,能够更好的将理论应用到实
示当中来。
本实践课程的开设,由教研组内老师进行题目的设计,为各班级分配负责
老师,专业内学生自行分组,在一个班级内以两人为一组,共同完成设计任务。

设计一个网线测试其,对常规的网线的通断进行检测,大致要求:

- (1)、可以使用开关切换闪烁频率
- (2)、主副机独立

本组任务主要如下:

(3)、用 LED 灯泡的亮与灭进行指示

根据数字电路基础与逻辑设计课程当中所学到的知识进行综合应用,实 现这一需求,进行实物的设计、制作和调试并对相关的功能进行测试,确保满 足课题需求,完成报告的撰写,包含相关资料、设计思路以及相关的原理;最 后并对本次课程设计进行总结。

•	对课程设计成果的要求	(与托周士	分析从进作用书)
1		170.4697000000000000000000000000000000000000	*************************************
_	713 6K1 T 1 X 1 1 1 1 X 1 C L J X 1 X 1 X		

(1)	查阅收集资料
(2)	论证硬件设计的总体思路

(3)	对系统的每部分应做详细的说明	

(4)	打印设计原理图做出设计实	物

(5)	设计总结			

(6) 提供课程设计	实物	

3、课程设计工作进度计划:

时间	设计任务及要求					
7.17.20	总体设计					
7.218.10	硬件设计、实物焊接					
8.21-9.30	综合调试、编写课程设计报告、答辩并完稿					

一、 总设计要求

设计并制作一个网线测试仪,要求能够对市售的五类、超五类、六类网线的八路线路进行通断特性测试,具体要求如下:

测试仪必须包括主机和副机两个独立部分,

- (1)制作时钟源,不允许外接时钟,产生 2Hz 和 1Hz 的输出频率,要求可以用开关切换;
- (2) 主机部分由 9V 电池供电, 副机部分不得供电;
- (3) 主机和副机部分需同时对每一路的通断状态用 LED 进行指示;
- (4) 可采用纯电路方式实现,也可以采用单片机实现
- (5) 参考芯片: 三极管 9012, 9013, LM358, CD4017, 74HC 门电路, 电容电阻若干。

图 1 参考逻辑结构

二、 设计需求分析

- 1、要实现检测网线的通断性,需要使用可以直接看到的信号进行指示,如:采用八个小灯泡,分别代表每一条线的通断,这样便可以通过灯泡的闪烁、亮灭来直观的观测到网线当中每一条线的物理连接是否正常。
- 2、网线测试仪一定是要能够自动的、有规律的切换每一个灯泡的亮灭,这样可以更加直观的判断线路两头的对应关系,所以,应该使用一个可控的脉冲发生源来产生此时钟信号。
 - 3、通过其余逻辑电路实现每一个灯泡的顺次亮起以及循环往复的显示。
 - 4、需要使用逻辑电路控制信号源产生的脉冲的频率。
 - 5、观察已有的网线测试仪,如下图:

图 2 网线测试仪实物

- 6、可以从图中看到,该网线测试仪分为主副两个部分,其中,主副机都有八个小灯 泡且各有一个 RJ45 网口。
 - 7、使用时,打开主机部分,将需要检测的网线的两端插在主副机的网口上,主机部

分的灯泡会依次来回闪烁,这个时候观察副机部分灯泡亮起的顺序即可得出网线连接的情况。

- 8、该测试仪的主机部分有一个按钮,按下该按钮可以切换主机部分灯泡闪烁的速度, 副机部分灯泡的切换速度也随之改变。
 - 9、该测试仪的主副机可拆卸,且副机部分没有电源支持。
- 10、通过对现有产品的分析、结合课题要求,对网线测试仪的功能及使用方法有了大 致的认识,为课程设计指明了方向。

三、 确定设计工具和方法

- 1、根据功能的实现需求,将网线测试仪分为以下几个部分:
- (1)、信号发生部分:用于发生稳定的时钟信号
- (2)、信号选择部分:在信号源的两种周期的时钟当中进行选择和切换
- (3)、计数部分:进行二进制计数
- (4)、译码部分:将计数器数字转换为十进制数字
- (5)、输出部分:用 LED 指示当前测试的线路,并且将电压信号送到 RJ45 接口
- (6)、指示部分:将从 RJ45 接口收到的电压传递到 LED 组内,指示收到的线路
- 2、在上述确定了各个模块的功能的基础上,选择需要用到的元器件;
- 3、使用 multisim14 软件进行电路仿真,验证电路的可行性;
- 4、考虑到元件较多、线路复杂,使用嘉立创 EDA 绘制原理图、设计 PCB 线路板;
- 5、印刷 PCB 板,以节省焊接步骤,增加线路总体可靠性。

四、 各功能模块的设计及其原理

1、信号发生部分

信号发生部分主要用于产生两个不同频率的脉冲信号(1Hz 和 2Hz),显然,可以选择的有 LC 振荡电路、555 计时器电路以及晶振。若使用 LC 振荡电路,则会存在诸如误差过大、易受外界影响等缺点,若使用晶振,则需要更多的外部支持电路,综上,故使用一个相对稳定和简单的555 计时电路来完成信号发生的任务。

另外,若使用两个 555 计时电路来发生两个不同的脉冲,则显得其功能上有重复,电路略显繁琐。考虑到 1Hz 与 2Hz 呈 2 倍关系,所以只需要产生一个 2Hz 的脉冲信号即可,1Hz 的时钟信号由 2Hz 进行分频即可得到,而这一部分可以由信号选择部分来进行。

经过计算,使用相应的电阻和电容与 TLC555CP 芯片构成 2Hz 脉冲信号发生电路,其在 multisim 仿真软件里面如下:

图 3 信号发生部分仿真图

紫色线路为 Vcc,深黄色部分线路为 GND,品红色部分为输出的 2Hz 时钟信号。 当给定的电容,电阻的值如图所示的时候,带入 555 计时器的脉冲频率计算公式:

$$f = \frac{1}{T} = \frac{1}{\ln 2 (R_1 + 2R_2)C}$$

$$= \frac{1}{\ln 2 (44000 + 2 \times 50000) \times 5 \times 10^{-6}}$$

$$\approx 2.003 Hz$$

所以,当 555 芯片外围电路满足上述要求时,可以输出频率十分接近 2Hz 的时钟信号。 2、信号选择部分

信号选择部分主要有两个任务:即满足按钮切换时钟频率的功能和对信号发生部分的 2Hz 信号进行分频的功能。

进行信号分频,首先容易想到的是使用 T 触发器来进行,因为 T 触发器在每一次有效的脉冲边沿会改变一次自身的输出值,这样,当输入信号改变两个周期,T 触发器便完成了一个周期的动作,实现了对输入信号的分频处理。

而要进行信号的选择,这就需要数据选择器的加入,通过控制位高低电平的切换,将原有的 2Hz 和分频的 1Hz 送到计时器的脉冲引脚。而要实现按下按钮时切换控制位的高低电平, T 触发器是一个理想的解决方案。可以将弹起式开关的每一次按下和松开看作一个完整的脉冲,如下图:

图 4 弹起式开关及下拉电阻

弹起式开关的一侧接入高电平,另一侧通过下拉电阻接地,当按钮按下时,下拉电阻被接在高低电平之间,输出末端直接接入高电平。当按钮松开时,输出末端通过下拉电阻接入低电平信号。所以,在一次按压-松开的过程当中,实现了输出末端的信号的一次周期变化。倘若将其输入后端接入到 T 触发器,则可以实现按压一次按钮,T 触发器的输出进行一次切换;再将 T 触发器的输出送入到数据选择器的地址端,同时将 2Hz 和分频后的 1Hz

接入到数据选择器接入到数据选择器的输入端,则可以实现通过弹起式按钮的按动来进行时钟信号的选择。

所以信号选择部分的整体如下:

图 5 信号选择部分仿真图

紫色线路为 Vcc, 深黄色部分线路为 GND, 品红色部分为输出的 2Hz 时钟信号。

通过短接 741s112 双 jk 触发器的 J、K 端至高电平,实现了 T 触发器的功能。其中, T1 触发器实现分频,T2 触发器实现信号选择的功能。将原有的 2Hz 和分频出来的 1Hz 接 入到 741s151 的两个数据输入端,将 T2 触发器的输出接入到数据选择器的地址端,其余 位接地,便实现了通过弹起式按钮进行信号切换的功能。

3、计数部分

由于双绞线内部是八根铜芯线,故需要八颗 LED 灯泡来进行表示,所以,计数器因该是一个模 8 的计数器,这样,在每一次计数满 8 后随即开始下一次计数,实现了 8 颗指示 LED 的循环亮起。

可以通过对 10 进制计数器进行改接以实现模 8 计数的功能,使用异步清零法,状态转换图如下:

可以看到, 计数器一共经过了 9 种状态, 但是由于最后一种状态时马上被复位, 则可

图 6 改接八进制计数器状态转换图

以视作共八种状态。当复位信号产生时,一定是 1xxx 的状态,又因为计数器的异步清零端 是低电平有效的,所以,只需要将计数器的最高位进行取反,再将取反的结果接到计数器 的异步清零端即可实现八进制计数。

10 进制计数 IC 改接八进制计数器如下:

图 7 八进制计数器改接

紫色线路为 Vcc, 深黄色部分线路为 GND, CLK 所接红色线路为经过数据选择器选择后的时钟脉冲信号。

如图,将计数器 74LS160 的最高位 Qd 经过 74LS04 的取反后接入到 74LS160 的复位端,实现了模 8 计数的功能。

其实这部分显得有些过于复杂,可以直接放入74LS161(十六进制计数器)进行计数,只需要不管最高位即可,低三位即是一个八进制计数器,这样设计,可以起到简化电路、节省IC芯片(不用使用非门)。

4、译码部分

译码部分较为简单,即为一个三八译码器将计数器的二进制数据转换为 10 进制数据进行显示,只需要将计数器的三位输出接到三八译码器的输入端即可,仿真电路图如下:

图 8 译码器部分仿真图

紫色线路为 Vcc, 深黄色部分线路为 GND。

依次将三八译码器 74LS138 的使能端接好。

计数器的三位二进制数分别接到译码器的 A、B、C,则译码器的八个输出端会依次亮起并循环往复。

需要注意的是,三八译码器 74LS138 的输出端是低电平有效的,即同一时刻只有被译出来的那一端是低电平,而其余输出端都是高电平。

5、输出部分

输出部分主要将由译码器译出的十进制电平输送到待测网线。总体来说,输出部分较为简单,主要由 LED 灯泡、限流电阻和 RJ45 网口构成。

上面提到,译码器的输出是低电平有效,则需要将八个 LED 灯泡接在一起,让为低电平的一组灯泡可以亮起,所以需要将 LED 的一端共同接到 Vcc 上,另一端接在译码器输出

端,当译码器的某一个输出端为低电平时,该灯泡被点亮。

同时,考虑到 LED 的电流不能太大,否则会烧坏灯泡,则需要查阅手册,选择合适的限流电阻。在绘制 PCB 选择封装的时候,查阅到了嘉立创商城对应的封装的灯泡的典型工作电流为 3v@20mA,经过计算,选用 100r 的电阻作为限流电阻更为合适。

另外,考虑到指示部分需要使用发光二极管,故输出部分的 LED 也采用发光二极管, 以节省材料。

6、指示部分

这一部分即为副机部分,主要用作指示网线的通断性。

通过网线进入本侧 RJ45 网口的电平信号,存在高和低两种信号,由于 74LS138 译码器输出为低电平有效,输出的八组信号,总有一组是低电平,其余七组为高电平,这样,可以通过网线形成一个回路,把对应低电平的发光二极管点亮。若某一条线路出现了问题,则当该条线上面为低电平的时候,指示部分的发光二极管不会点亮。

由于任何一条线路都有可能承载高低电平,即电流都有可能从这条线流入或者流出,那么需要使用二极管来进行限制,防止短路的出现。

该部分 multisim 仿真图如下:

图 9 指示部分仿真电路

使用八个开关分别模拟每一路网线的通断。

如图,假设此时开关全部闭合,若此时第一条线承载低电平,则电流从其余各组经过时,欲流经发光二极管,由于二极管的单向导通性,电流无法流经发光二极管,只能从后方的二极管流过,经由各二极管的电压,汇总于一起,由于第一组存在低电平,故所有电流从这一节点,由发光二极管流回译码器,对于第一个发光二极管而言,有电流流过它,所以它便可以正常发光。若某一时刻,低电平所在的线路损坏,对于整个电路而言,没有低电平的存在,电流无法流经任意一个二极管,故不会发光,此时参考输出部分的发光二极管,就可以确定出出现问题的线路。

可以看到,整个副机部分(指示部分)均无与外界的连接线路,仅仅靠网线作为介质

进行信号的传输。

同时,我们仍然需要考虑到发光二极管的保护,需要加入适当的限流电阻,使得整个模块的发光二极管安全工作,最终,这个模块的原理图如下:

图 10 显示部分原理图(带网口)

如左图, RJ45 网口引出八条线, 分别接到每一组上, 限流电阻选用 100 Ω 大小。

RJ45 网口上, 9、10、11、12、13、14 引脚为该封装的焊接和接地引脚, 和指示部分电路无关。

五、 总原理图

1、Multisim 仿真图

图 11 仿真图全部

2、嘉立创原理图

图 12 立创 EDA 原理图

3、仿真图和实际原理图的区别

- (1)、信号发生源部分由于现实中不存在理想的电阻电容,均会有误差存在,故把 TLC555CP 的周围电路电阻用成可变电阻,并分为千欧姆、百欧姆和十欧姆的量级进行调节, 这样即使存在误差,也可以在示波器下通过调节各电阻的值来纠正误差,得到想要的频率;
 - (2)、原理图中,要考虑到每一个 IC 的引脚如何接,故连线更为复杂;
- (3)、实际中的元器件的封装可能会多出来一些引脚,这些引脚可能并无作用,但是 也应该进行焊接,如:外壳接地、固定等;
- (4)、需要考虑二极管的正向压降,如:对于指示部分,需要考虑到网线接口以及传输过程接触不良的损耗、二极管的正向压降,如果限流电阻取值过大,则会导致这一侧的发光二极管亮度太低。因此,为了减少需要购买的电阻的种类,这里可以选用正向压降更低的肖特基二极管,减小正向压降导致的发光二极管偏暗的情况。
- (5)、需要考虑电源和 IC 的电压范围,此处选用的 IC 芯片都是耐压 5v 左右,为了保证电压不会太高,故使用稳压管配合分流电阻来保证稳定电压的输出。

六、 设计和制作过程

1、由于电路整体规模较大、线路较为复杂,为了减小焊接开支、降低焊接时引入的影响,故使用嘉立创印刷免费 PCB 板进行焊接,设计、布线的 PCB 板如下:

(1)、PCB 板顶层

图 14 PCB 板顶层图

(2)、PCB 板底层

图 13 PCB 板底层部分

(3)、PCB 设计说明

覆铜:由于多处需要接地,为了接地更为方便以及线路板的美观,故对 PCB 双面进行 覆铜处理:

主副机部分并没有连接在一起,副机部分的覆铜仅仅是连接固定了 RJ45 网口的插座,没有和内部电气连接;

布线使用嘉立创 EDA 内的自动布线功能进行自动布线;

PCB 封装均采用立创商城内元件封装,多数元件均在立创商城购买,封装和实物均能对应上。

2、元件列表

	A B	C	D	E	F	G	H	I J	K	L	M
ı	D Name	Designator	Footprint	Quantity	Manufacturer Part	Manufacturer	Price	Pins 3DModel	Resistance	e Resistance	Resistance(Ohms
2	1 100Ω	R7,R8,R9,R10,R11,R12,R13,R14,R1 5,R16,R17,R18,R19,R20,R21,R22	R0201	16	WR02X1000FAL	Walsin Tech Corp	0.008	2 R0201_L0.6-W0.3-H0.3		100	
3	2 100nF	C1	C0805	1	CL21B104JBCNNNC	SAMSUNG	0.12	2 C0805_L2.0-W1.3-H1.3			
1	3 22uF	C2	C1206	1	EMK316BJ226ML-T	TAIYO YUDEN	0.29	2 C1206_L3.2-W1.6-H1.3			
5	4 LED-0805_G	LED1,LED2,LED3,LED4,LED5,LED6 LED7,LED8,LED9,LED10,LED11,LE D12,LED13,LED14,LED15,LED16		16	NCD0805G1	国星光电	0.109	2 LED0805_Green			
6	5 1kΩ	R1	R0603	1	PTFR0603D1K00P9	ResistorToday	0.284	2 R0603_L1.6-W0.8-H0.8		1K	
7	6 5kΩ	R2-1,R6	R0603	2	RTT035001FTP	RALEC	0.01	2 R0603_L1.6-W0.8-H0.8		5K	
8	7 2K	R2-2	R1206	1	RC1206FR-072KL	YAGEO	0.024	2 R1206_L3.2-W1.6-H0.6	2kΩ		
9	8 10K	R3	R0805	1	RT0805BRD0710KL	YAGEO	0.231	2 R0805_L2.0-W1.3-H0.6	10kΩ		
0	9 1kΩ	R3-S-H	RES-ADJ-SMD_VG039NCH	1	VG039NCHXTB102	HDK	0.52	3 RES-ADJ-SMD_3P-L3.8-W3.0-H1.2-P1.90		1K	1K
1	10 100Ω	R3-S-N	RES-ADJ-SMD_VG039NCH	1	VG039NCHXTB101	HDK	0.603	3 RES-ADJ-SMD_3P-L3.8-W3.0-H1.2-P1.90		100	10
2	11 5kΩ	R3-S-T1,R3-S-T2	RES-ADJ-SMD_3P-L3.8-W3.6-P1.90-BL	2	VG039NCHXTB502	Hokuriku Elec Industry	0.556	3 RES-ADJ-SMD_3P-L3.8-W3.0-H1.2-P1.90		5K	5K
3	12 X12ADAB1A3DY1027	RJ1,RJ2	RJ45-TH_XKB_X12ADAB1A3DY1027	2	X12ADAB1A3DY1027	XKB Connectivity(中国星坤)	3.12	14			
4	13 TS-1095S-A4B3-C2D1	SW1	SW-SMD_4P-L6.0-W6.0-P4.50-LS8.5	1	TS-1095S-A4B3-C2D1	Yuandi	0.22	4 SW-SMD_4P-L6.0-W6.0-P4.50-LS8.5			
5	14 TLC555CP	U1	DIP-8_L9.7-W6.4-P2.54-LS7.6-BL		TLC555CP	TI(德州仪器)	3.96	8 DIP-8_L9.8-W6.6-H3.5-LS7.62-P2.54			
16	15 SN74LS112N	U2	DIP-16_L19.8-W6.5-P2.54-LS7.6-BL	1	SN74LS112NOut of	n	4.84	16 DIP-16_L20.0-W6.4-H3.5-LS7.62-P2.54			
7	16 SN74LS151N	U3	PDIP-16_L19.3-W6.4-P2.54-LS7.9-BL	1	SN74LS151N	TI(德州仪器)	3.62	16 PDIP-16_L19.3-W6.4-P2.54-LS7.9-BL			
8	17 XD74LS160	U4	DIP-16_L19.8-W6.5-P2.54-LS7.6-BL	1	XD74LS160	XINLUDA(信路达)	2.47	16 DIP-16_L20.0-W6.4-H3.5-LS7.62-P2.54			
9	18 SN74LS138N	U6	DIP-16_L19.8-W6.5-P2.54-LS7.6-BL	1	SN74LS138N	Texas Instruments	3.53	16 DIP-16_L20.0-W6.4-H3.5-LS7.62-P2.54			
0	19 SN74LS04N	U5	PDIP-14_L19.7-W6.6-P2.54-LS8.3-BL	1	SN74LS04N	Texas Instruments	9.38	14 PDIP-14_L19.7-W6.6-H5.1-P2.54-LS8.3-B	L		
1	20 ZM4733A	ZD1	LL-41_L5.0-W2.5-LS5.0-RD	1	ZM4733A	SEMTECH	0.27	2 LL-41_BD2.5-L5.0			
2	21 CUS10S30.H3F	D1.D2.D3.D4.D5.D6.D7.D8	SOD-323 L1.8-W1.3-LS2.5-RD	8	CUS10S30.H3F	TOSHIBA	0.274	2 SOD-323 L1.7-W1.3-H1.1-LS2.5			

图 15 元件列表

3、焊接过程

由于在选择封装的时候用到了贴片元件,故此处同时需要焊接直插元件和贴片元件, 其中直插元件多为 IC 芯片,贴片元件多为电阻电容和二极管。

焊接直插元件时,使用电烙铁和焊锡丝进行,可以辅以助焊剂。

图 16 电烙铁焊接直插元件

焊接贴片元件时,使用中温锡浆和加热台进行,如下图:

图 18 用低温锡浆和镊子贴二极管

图 17 加热台融化锡浆进行焊接

最终焊接完成的实物图:

图 19 焊接完成实物图

由于贴片元件和直插元件均需要焊接,为了避免直插元件引脚太高把 PCB 板垫起导致 在加热台上焊接贴片元件时温度不足,故需要先进行贴片元件的焊接,接下来再使用烙铁 对直插元件进行焊接。

考虑到经济原因,购买的发热台为"能用"水平,温度可能达不到足够高,故焊锡浆不能选用高温锡浆,又由于低温锡浆存在强度低、易掉落的问题,故选用中温锡浆作为贴片元件的焊料。

焊接直插元件时,为了能减小失误,增大调试空间,故大多直插元件并没有直接焊接到 PCB 板上,而是将 IC 插座焊接到板上,再将 IC 芯片插接到插座上,这样可以方便拆卸和更换元件,出现问题后也便于更换。

七、 功能测试与调试

1、简单的调试

网线测试仪整体较为简单,无太多需要调试的地方,仅脉冲发生部分电路需要调试其时钟频率,使得其能稳定的发生 2Hz 的时钟脉冲。

调试过程较为简单,将示波器鳄鱼夹红色夹子夹在 TLC555CP 的第三引脚,将黑色鳄鱼夹夹在任何接地部分(可以是电源负极、RJ45 网口外壳,等),将示波器波形调到合适的大小,观察波形的周期,调节可变电阻,使得频率接近 2Hz 即可。

2、功能测试

测试功能主要是检测网线测试仪在检测网线通断时的表现。

首先,可以测试一条正常的直通线(两端水晶头都按照 T568-B 顺序压制),可以看到, 主机部分和副机部分的发光二极管按照同一顺序亮起,代表网线正常、测试仪工作正常。

再者,可以测量一条正常的交叉线(两端水晶头按照 T568-A 和 T568-B 分别压制),其对应关系如下:

			7C1H 1	~~~	M/1			
水晶头线序	1	2	3	4	5	6	7	8
T568-A	绿白	绿	橙白	蓝	蓝白	橙	棕白	棕
T568-B	橙白	橙	绿白	蓝	蓝白	绿	棕白	棕

表格 1 交叉线线序

所以,当交叉线的一头按顺序亮起时,另一头的顺序为: 3、6、1、4、5、2、7、8,可以通过这个顺序来判断交叉线是否正常。

最后,可以测试一条明知有损坏的网线,发现当该网线损坏的线芯对应的一路亮起时, 副机部分不会亮起,遂可以发现该线芯有损坏。

八、总结

- 1、设计具有特点的地方
- (1)、使用 PCB 线路板和贴片元件, 更加美观;
- (2)、使用 JK 触发器进行分频和选频,提高了电路的精简度;
- (3)、使用可变电阻调节时钟频率,消除了元件误差;
- (4)、指示部分使用大量二极管,即使只有两条线通着也可以进行测试和指示;
- (5)、选用低功耗的发光二极管,无需 IC 具有很大的驱动能力。
- 2、设计存在的有待改进的地方
- (1)、计数部分有冗余,可以使用 74LS161 集成十六进制计数器来代替 74LS160 和非门构成的八进制计数器;
- (2)、PCB 板设计存在不合理的地方,如电池电源线的焊盘应该过孔,而不是单面留一个焊盘,以增加焊接电源线的牢固性;
- (3)、部分拉电阻(上拉电阻、下拉电阻)以及稳压管的限流电阻的取值不是很合适, 电阻贴上线路板后发现发光二极管灯光暗弱,遂只能在焊盘上再挤在一起并联一个电阻以 降低阻值,使得电路工作正常。
- 3、在本次课程设计当中,我们尝试学习了许多新的知识,所谓"道虽迩,不行不至;事虽小,不为不成",只有在一次次的学习、尝试和探索之中才能发现,这看似简单的课程设计背后,却也有许多需要我们注意和掌握的细节和技巧。我们认为,课程设计的目的和意义在于梳理课程内容,通过课程设计,我们可以培养自己的动手能力、解决实际问题的能力以及系统思维能力等。总之,在本次课程设计中,我们收获了很多知识和技能,也感受到了学习的乐趣和挑战,在这里尤其要感谢深圳嘉立创科技集团股份有限责任公司,通过嘉立创的教程和文档,我们逐步的学习了原理图、封装、PCB设计、布线等知识,并且使用立创 EDA 进行绘板制图,用嘉立创提供的免费封装库和免费打板完成了 PCB 的设计和

生产。最后,我们希望在今后的学习中,能够继续了解学习数字电路等方面的知识,并将 其运用到实践中去。