NTIN071 A&G: CVIČENÍ 3 – EKVIVALENTNÍ A MINIMÁLNÍ REPREZENTACE, TESTOVÁNÍ VLASTNOSTÍ, NEDETERMINISMUS, PODMNOŽINOVÁ KONSTRUKCE

Cíle výuky: Po absolvování student umí

- \bullet definovat dosažitelné stavy, ekvivalenci stavů, redukovaný automat, homomorfismus automatů, NFA, $\epsilon\textsc{-}NFA$
- aplikovat algoritmy pro dosažitelné stavy a ekvivalenci stavů k redukci DFA
- navrhovat efektivní algoritmy pro testování základních vlastností automatů
- \bullet aplikovat konstrukci podmnožin k převodu NFA nebo $\epsilon\textsc{-NFA}$ na DFA

Příklady na cvičení

Příklad 1 (Ekvivalentní a minimální reprezentace). Pro následující automaty:

- (a) Najděte a odstraňte nedosažitelné stavy.
- (b) Určete relaci ekvivalence (nerozlišitelnosti) stavů. (Navíc pro každou rozlišitelnou dvojici stavů najděte všechna nejkratší rozlišující slova.)
- (c) Zkonstruujte jejich redukty.

Příklad 2 (Testování vlastností). Mějme konečné automaty A, B. Navrhněte algoritmy, které rozhodnou, zda platí daná vlasnost. (Umíte odhadnout jejich časovou složitost?)

(a)
$$L(A) = \emptyset$$
, (b) $L(A) = L(B)$, (c) $L(A) \subseteq L(B)$, (d) $L(A)$ je konečný.

Aplikujte algoritmus na automaty A, B z předchozího problému.

Příklad 3 (Podmnožinová konstrukce). Pro daný nedeterministický automat s ϵ -přechody sestrojte ekvivalentní redukovaný DFA.

$$\begin{array}{c|cccc} & a & b & \epsilon \\ \hline \rightarrow A & \{E\} & \{B\} & \emptyset \\ B & \emptyset & \{C\} & \{D\} \\ \rightarrow C & \emptyset & \{D\} & \emptyset \\ *D & \emptyset & \emptyset & \emptyset \\ E & \{F\} & \emptyset & \{B,C\} \\ F & \{D\} & \emptyset & \emptyset \\ \end{array}$$

K procvičení a k zamyšlení

Příklad 4 (Redukce DFA). Zredukujte následující DFA:

\mathbf{C}	a	b
$\rightarrow 1$	2	3
2	2	4
* 3	3	5
4	2	7
* 5	6	3
* 6	6	6
7	7	4
8	2	3
9	9	4

Příklad 5 (Podmnožinová konstrukce). Zkonstruujte ekvivalentní redukovaný DFA.

	a	b	ϵ
*A	$\{A,C\}$	$\{B\}$	Ø
B	$ \begin{cases} A, C \\ B, D \end{cases} $	Ø	Ø
*C	$\{E\}$	$\{D\}$	Ø
D	$\{A\}$	$\{C, D\}$	Ø
$\to *E$	Ø	Ø	$\{A,C\}$

Příklad 6 (Homomorfismus automatů). Najděte DFA A, B takové, že:

- (a) Jsou oba redukované, a nejsou izomorfní.
- (b) A je homomorfní na B, ale nejsou izomorfní.
- (c) Jsou ekvivalentní, ale ne izomorfní.
- (d) Jsou oba homomorfní na, ale ne izomorfní sC, a zároveň A není homomorfní na B ani B na A.

$$C = (\{p,q\},\{0,1\},\{((p,0),q),((p,1),p),((q,0),p),((q,1),q)\},p,\{q\})$$

Příklad 7 (Regulární? Zredukuj). Uvažme jazyk L nad abecedou $\{a,b\}$ sestávající ze všech slov, která neobsahují trojici po sobě jdoucích stejných písmen. Rozhodněte, zda je L regulární. Pokud ano, najděte regulární DFA, který ho rozpoznává.

Příklad 8 (Podmnožinová konstrukce a redukt). Je výsledek podmnožinové konstrukce (kde generujeme jen dosažitelné stavy) nutně reukovaný automat? Dokažte, nebo vyvratte.