# Economic Effects of Gaining a Qualification in Later-life

- PRELIMINARY -

FINN LATTIMORE\*
Reserve Bank of Australia

DANIEL STEINBERG

ANNA ZHU
RMIT University, IZA

# Gradient Institute Reading Group 24<sup>th</sup> August 2022

<sup>\*</sup>This work was performed while the author was working at the Gradient Institute. Views expressed in this paper are those of the author

### **Aims**

- What is the long-term impact of obtaining a new qualification (on total earnings and wages)?
- Who tends to benefit?

# Motivation: Gains in education for mature-age students

- Re-training and up-skilling
  - critical in light of automation and IT-skills-biased economy (Autor et al., 2008; Acemoglu and Autor, 2011)
  - facilitates career-change
- Expectation for re-training is across the whole income and age distribution
  - but existing literature focuses on younger ages (below age 25)
  - or on one type of setting such as in community colleges
- Total earnings versus wages

### Idea and Contributions

- Focus on mature-age learners (age 25 or above)
- Earnings (both total and hourly)
- Returns to gaining different types of degrees and across the income distribution
- Machine Learning (ML) techniques applied to detailed and nationally representative data

Benefit 1 Construct a comparable counterfactual group

Benefit 2 A-theoretical approach to finding heterogeneous treatment effects

# Why does ML Achieve those Benefits?

- Detect patterns in our (very) rich data e.g. important variables, functional forms and interactions
  - So what? Reduces mis-specification bias and can construct better counterfactuals
- Reduce information redundancy
  - So what? Reduces variance in estimators

# Preview of Findings

A ML-approach estimates a positive but smaller return to further education than traditional approaches



# Preview of Findings

Effect sizes depend on starting income and age



### DATA: HILDA

### Several benefits to using HILDA data

- covers a long time-span (of nearly 2 decades, starting in 2001 and we use the wave 19 release)
- longitudinal data that details the year in which an individual started and completed further education
- wide range of background information on survey respondents

# Sample

### Our analysis sample includes:

- everyone who was 25 or above in 2001
- respondents not currently studying in 2001
- those observed in both 2001 and 2019 (and available information for Treatment and Outcome variables) and completed study by 2017
- Number of people in final sample: 5,441

# Defining our Variables

- Treatment indicator: obtaining an additional qualification between 2002 to 2017 (binary variable; 1,398 treated)
- Outcome variables: Earnings (total and hourly) in 2019
- Covariates or features: defined in 2001. Selected using a LASSO procedure.

## Degree types by sex



# Degree completion by age (at 2001)



Notes: HILDA; sample size: 5,441 observations

# Estimation goal and challenges

Aim: to estimate the causal returns to a new qualification

- The missing data problem

| i | T | Y | Y(1)                                                               | Y(0) | Y(1) - Y(0) |
|---|---|---|--------------------------------------------------------------------|------|-------------|
| 1 | 0 | 0 |                                                                    | 0    | ?           |
| 2 | 1 | 1 | 1                                                                  |      | ?           |
| 3 | 1 | 0 | 0                                                                  |      | ?           |
| 4 | 0 | 0 |                                                                    | 0    | ?           |
| 5 | 0 | 1 | 8<br>8<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 1    | ?           |
| 6 | 1 | 1 | 1                                                                  |      | ?           |

Notes: Made-up table

$$E[(Y_1)-(Y_0)] = E(Y_1)-E(Y_0) \neq E(Y_1|T=1)-E(Y_0|T=0)$$
 (1)

# How can ML help fill in the missing information?

- Standard ML predicts Y; alternatively, here we are interested in the causal parameter
- But no counterfactuals (no Individual Treatment Effects (ITEs))
- ML models can heavily penalise some variables that are weakly predictive of Y but strongly predictive of Treatment e.g. by shrinking their parameters
- Balance reducing this type of bias and increasing variance from including unnecessary variables in the model
- Adapt ML to fill in the missing data

### T-learner

#### A potential solution



- Filling in the missing data blanks
  - two models: use 'treated' group to predict Y(1) and use 'control' group to predict Y(0)
  - for each person, we can plug their X's through the above two models to predict their outcomes when treated and when not treated
  - subtract difference of these two models to obtain estimated Individual Treatment Effects (ITEs)

### Model selection

- Model classes: LASSO, Ridge, Gradient Boosting Regression (GBR)
  - LASSO and RIDGE are closely related to least squares but penalise complexity
  - GBR is a tree-based model: well-placed to pick up non-linearities
  - Tuning parameters are determined through cross-validation
  - ► GBR details ► gbr2

### Model Selection



Table: Predictive Performance - Holdout Sample

| Model | Outcome<br>surface | Out-of-<br>Sample<br>R-squared | R-squared<br>SD |
|-------|--------------------|--------------------------------|-----------------|
| GBR   | Treated            | 0.22                           | 0.06            |
|       | Control            | 0.36                           | 0.07            |
| LASSO | Treated            | 0.15                           | 0.09            |
|       | Control            | 0.32                           | 0.05            |
| Ridge | Treated            | 0.16                           | 0.08            |
|       | Control            | 0.32                           | 0.04            |

Notes: 5 fold CV performed on 80% train sample. All statistics presented in this table are based on the 20% holdout sample. Ten outer folds are used.

### Inference

- Bootstrapping procedure
  - capture two sources of uncertainty: selecting the model and estimating the parameters
  - wider confidence intervals
- ► BS details ► explainer2

### Results: Returns to Further Education



Notes: HILDA; sample size: 5,441 observations

# GBR better Captures Non-linearities

25 - 46-year-old (in 2001) sample



Notes: HILDA; sample size: 3,065 observations

# Results: Wages

25 - 46-year-old (in 2001) sample



# Improving on the T-learner

**Doubly Robust** 

- Doubly Robust gives us two chances to get it right
- Previously, T-learner estimated the outcome of interest, given the treatment and the observable characteristics
- Here, we also estimate the probability of being treated, given the observable characteristics
- Combining above: robust to mis-specification of either model

# **Doubly Robust**

$$A\hat{T}E = \frac{1}{n} \sum_{i=1}^{n} \left[ \frac{T_i(Y_i - \hat{\mu}_1(X_i))}{\hat{\rho}(X_i)} + \hat{\mu}_1(X_i) \right] - \frac{1}{n} \sum_{i=1}^{n} \left[ \frac{(1 - T_i)(Y_i - \hat{\mu}_0(X_i))}{1 - \hat{\rho}(X_i)} + \hat{\mu}_0(X_i) \right]$$

#### - where:

- $-\hat{p}(X_i)$  is an estimation of the propensity score (using logistic regression)
- $\hat{\mu}_1(X_i)$  is an estimation of E[Y|X,T=1] (using any ML model)
- $-\hat{\mu_0}(X_i)$  is an estimation of E[Y|X,T=0] (using any ML model)

### Results

### Doubly Robust



- Is there a positive, long-run return to acquiring further education in later-life?  $\checkmark$
- which groups were most affected?

### Sub-group analysis

Effect sizes depend on starting income and age



# Sub-group analysis

Effect sizes depend on starting income and age



Note: Thresholds in parantheses

# Summary of Other Results

- Acquiring an additional qualification may increase earnings through a number of potential mechanisms such as through getting a job, and switching occupations or industries
- Largest earnings gains are associated with acquiring an undergraduate degree or above and for technical subject areas
- Little evidence of well-being or mental health benefits

### Conclusions

- Economic benefits to gaining an additional qualification in later-life
- An estimated gain of approximately \$80 per week in gross earnings, which represents roughly 7 percent of the Average Weekly Gross Earning for the average worker in Australia
- Largest earnings gains are associated with younger learners and those with lower starting incomes

# Appendix

### Results: Returns to Further Education

Levels and Logs



# Sensitivity Analysis

#### Defining features differently

We run sensitivity analysis on our approach

- Defining features differently: in year/s before study start
- Dealing with dynamic selection into further study
- Comparing the earnings of those who complete further study to the earnings of similar non-students who displayed the same paths (in earnings and other factors) as the student group before study began
  - Sample: 25 and above
  - Started studying in 2003 2017
  - In HILDA in two consecutive waves before study start
  - Could be in top-up sample or new joining household member (different from main analysis)
  - Started but did not complete are in the Control group
  - Control group are repeated: given a theoretical 'study-start' time stamp at every wave; standard errors adjusted

# Sensitivity Analysis

### Across all Methods



Notes: HILDA; sample size: 5,441 observations; 63,044 observations (Panel Dimension)

### Sensitivity Analysis

Important Trend Predictors



### GBR details

- In GBR, we sequentially fit small trees (i.e. you use the residuals from the previous tree to grow your next tree).
- Then we add a shrunken version of the new tree to the existing function and then update residuals and repeat
  - Number of trees (iterations)
  - Shrinkage pace of learning
  - Number of splits (depth of tree)

### Model Inference



◀ Back

# Higher-order degrees and technical subjects yield stronger effects



Notes: BB: 1,037; BA: 306; T: 681; NT: 662 Technical: STEM, Architecture, Ag and Env, Medicine, other health related studies and nursing, management and commerce and law. Non — technical: Education, Society and culture (includes economics!), Creative arts, and Food, hospitality and personal services

- Is there a positive, long-run return to acquiring further education in later-life?  $\checkmark$
- Does the degree type and subject area matter? √
- Who was affected?
- Did it change long run labour market attachment?
- Any effects on mental health and wellbeing?

# A larger workforce and a more mobile one



Notes: HILDA; ML model: LASSO

# Small to no effects on wellbeing





Notes: HILDA; sample size: 5,441 observations; ML model: LASSO

# Govt funding



Notes: DET, uCube