TEA013 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P02, 01 Nov 2024

()

P02, 01 Nov 2024 Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [20] Utilizando-se a desigualdade de Cauchy-Schwarz, é possível mostrar que

$$\int_{-\infty}^{+\infty} \frac{\sqrt{\mathrm{e}^{-|x|}}}{\sqrt{1+x^2}} \, \mathrm{d}x \le \alpha,$$

onde α é um número real positivo. Encontre α . Note que

$$\frac{\mathrm{d}\arctan(x)}{\mathrm{d}x} = \frac{1}{1+x^2}.$$

SOLUÇÃO DA QUESTÃO:

A desigualdade de Cauchy-Schwarz é

$$|\langle f, g \rangle| \le ||f|| ||g||$$

Admitindo-se que f e g sejam reais e integráveis de $-\infty$ a $+\infty$, a desigualdade de Cauchy-Schwarz fica

$$\left| \int_{-\infty}^{+\infty} f(x)g(x) \, \mathrm{d}x \right| \le \sqrt{\int_{-\infty}^{+\infty} [f(x)]^2 \, \mathrm{d}x} \, \sqrt{\int_{-\infty}^{+\infty} [g(x)]^2 \, \mathrm{d}x} \; .$$

Agora basta escolher

$$f(x) = \frac{1}{\sqrt{1+x^2}},$$
$$g(x) = \sqrt{e^{-|x|}}:$$

$$\int_{-\infty}^{+\infty} \frac{\sqrt{\mathrm{e}^{-|x|}}}{\sqrt{1+x^2}} \, \mathrm{d}x \le \sqrt{\int_{-\infty}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x} \sqrt{\int_{-\infty}^{+\infty} \mathrm{e}^{-|x|} \, \mathrm{d}x}$$

$$= \sqrt{4 \int_{0}^{+\infty} \frac{1}{1+x^2} \, \mathrm{d}x \int_{0}^{+\infty} \mathrm{e}^{-x} \, \mathrm{d}x}$$

$$= \sqrt{4 \times \frac{\pi}{2} \times 1}$$

$$= \sqrt{2\pi} \, \blacksquare$$

SOLUÇÃO DA QUESTÃO:

A resposta curta é: a série de Fourier de 1 é 1! A resposta um pouco mais longa é: a série de Fourier é

$$f(x) = 1 = \frac{A_0}{2} + \sum_{n=1}^{\infty} [A_n \cos nx + B_n \sin nx].$$

Compare: como 1 é par e os senos são ímpares, $B_n = 0, \forall n; A_0$ é necessariamente igual a 2, e todos os outros $A_n s$ são nulos:

$$A_n = \frac{1}{\pi} \int_{-\pi}^{+\pi} \cos nx \, \mathrm{d}x = 0, \forall n > 0.$$

Fim da questão

SOLUÇÃO DA QUESTÃO:

Seja $f_I(x)$ a extensão ímpar de f(x), definida por

$$f_I(x) = \begin{cases} f(x), & 0 < x \ge 2, \\ 0, & x = 0, \\ -f(-x), & -2 \le x < 0. \end{cases}$$

A série de Fourier de $f_I(x)$ contém apenas senos:

$$f_I(x) = \sum_{n=1}^{\infty} B_n \operatorname{sen} \frac{2\pi nx}{L}$$

onde L = 4, e

$$B_n = \frac{2}{L} \int_{-L/2}^{L/2} f_I(x) \operatorname{sen} \frac{2\pi nx}{L} dx$$
$$= \frac{1}{2} \int_{-2}^{2} f_I(x) \operatorname{sen} \frac{\pi nx}{2} dx$$
$$= \int_{0}^{2} f(x) \operatorname{sen} \frac{\pi nx}{2} dx.$$

Mas f(x) = 2 - x, e portanto

$$B_n = \int_0^2 (2 - x) \sin \frac{\pi nx}{2} dx = \frac{4}{\pi n}.$$

Portanto, a série de fourier da extensão ímpar de f(x) é

$$f_I(x) = \sum_{n=1}^{\infty} \frac{4}{\pi n} \operatorname{sen} \frac{\pi n x}{2} \blacksquare$$

4 [20]

a) Seja

$$f(x) = \begin{cases} 1, & |x| \le 1, \\ 0, & |x| > 1. \end{cases}$$

Calcule $\widehat{f}(k)$.

b) Usando o resultado de a) e escrevendo f(0) em função de $\widehat{f}(k)$, calcule

$$\int_0^\infty \frac{\operatorname{sen}(k)}{k} \, \mathrm{d}k.$$

SOLUÇÃO DA QUESTÃO:

O cálculo de $\widehat{f}(k)$ é quase imediato:

$$\widehat{f}(k) = \frac{1}{2\pi} \int_{-1}^{1} e^{-ikx} dx$$

$$= \frac{1}{2\pi i k} \left[-e^{-ikx} \right]_{x=-1}^{x=+1}$$

$$= \frac{1}{2\pi i k} \left[e^{ik} - e^{-ik} \right]$$

$$= \frac{1}{2\pi i k} [2i \operatorname{sen}(k)]$$

$$= \frac{\operatorname{sen}(k)}{\pi k}.$$

Prosseguindo,

$$f(x) = \int_{-\infty}^{\infty} \frac{\sin(k)}{\pi k} e^{ikx} dk$$

$$f(0) = \int_{-\infty}^{\infty} \frac{\sin(k)}{\pi k} dk$$

$$1 = \int_{-\infty}^{\infty} \frac{\sin(k)}{\pi k} dk$$

$$1 = 2 \int_{0}^{\infty} \frac{\sin(k)}{\pi k} dk \qquad \text{(pois o integrando \'e uma função par)}$$

$$\frac{\pi}{2} = \int_{0}^{\infty} \frac{\sin(k)}{k} dk \blacksquare$$

5 [20] Resolva parcialmente a equação da difusão-advecção

$$\frac{\partial C}{\partial t} + u \frac{\partial C}{\partial x} = a^2 \frac{\partial^2 C}{\partial x^2}$$

sujeita apenas à condição inicial de um lançamento instantâneo de massa M em uma seção transversal de área A:

$$C(x,0) = \frac{M}{A}\delta(x),$$

onde $\delta(x)$ é a distribuição Delta de Dirac:

a) [10] Calcule a transformada de Fourier da equação diferencial parcial,

$$\widehat{C}(k,t) \equiv \frac{1}{2\pi} \int_{-\infty}^{\infty} C(x,t) \exp(-\mathrm{i}kx) \, dx,$$

e obtenha uma equação diferencial ordinária de \widehat{C} em t.

b) [10] Faça a transformada de Fourier de C(x, 0), e obtenha $\widehat{C}(k, 0)$.

SOLUÇÃO DA QUESTÃO:

a) A transformada de Fourier da equação diferencial é

$$\begin{split} \frac{\mathrm{d}\widehat{C}}{\mathrm{d}t} + \mathrm{i}ku\widehat{C} &= -a^2k^2\widehat{C}\\ \frac{\mathrm{d}\widehat{C}}{\mathrm{d}t} + \left(\mathrm{i}ku + a^2k^2\right)\widehat{C} &= 0 \ \blacksquare \end{split}$$

Note que, de acordo com o enunciado, não era necessário fazer mais nada neste item.

b) A transformada de Fourier da condição inicial é

$$\widehat{C}(k,0) = \frac{1}{2\pi} \int_{x=-\infty}^{+\infty} \frac{M}{A} \delta(x) e^{-ikx} dx$$
$$= \frac{M}{2A\pi} \blacksquare$$