

CLOUD PENETRATION TESTING MODULE - 6

© All Rights Reserved CyberwarFare Labs

6. Cloud Basics & Penetration Testing

Cloud Basics

- Cloud computing refers to on-demand delivery and utilization of computing resources like servers, software, networking, databases etc.
- Companies have big data centers located at various regions of country which is offered as solutions to the clients
- ➤ It follows pay as you go model, which means running your infrastructure on their premise on rental basis

• Currently, cloud services are offered by leading vendors like:

Cloud Computing Types

Public Cloud

- Owned & managed by Cloud Service Providers (CSP)
- Client's access these infra from browser or CII.
- Ex: AWS, Azure, GCP

Private Cloud

- Owned & managed by Cloud Service Providers (CSP) or hosted on-premise
- Restricted access as it is hosted on a private network
- Ex: VMWare Cloud, OVH etc

© All Rights Reserved CyberwarFare Labs

Hybrid Cloud

- Combines both Public +
 Private Cloud
- Data & Applications are shared b/w each other.
 The cloud service provider might be present on different locations.
- Ex: AWS + Azure etc

Types of Cloud Services

Infrastructure as a Service (laaS)

- Infrastructure like servers,
 VM etc are managed by
 the providers & can be
 used on-demand
- Compute, storage, networking & virtualization etc are provided.
- As it is managed, there is no requirement of maintaining our infra.
- Ex: AWS

Platform as a Service (PaaS)

- Platform are provided by the providers to build, run & manage applications etc
- Storage, networking, tools,
 OS all are managed by the providers
- Ex: Azure

Software as a Service (SaaS)

- Provider take care of entire IT application stack
- From H/W to Application itself.
- Ex: Gmail

© All Rights Reserved CyberwarFare Labs

on-premises	laaS	PaaS	SaaS		
Application	Application	Application	Application		
Data	Data	Data	Data		
Application	Application	Application	Application		
Middleware	Middleware	Middleware	Middleware		
os	os	os	os		
Virtulization	Virtulization	Virtulization	Virtulization		
Server	Server	Server	Server		
Storage	Storage	Storage	Storage		
Networking	Networking	Networking	Networking		
Managed by your team					
Managed by a provider					

© All Rights Reserved CyberwarFare Labs

Ref : https://www.stackscale.com/blog/cloud-service-models/

➤ Cloud Computing Stacks

© All Rights Reserved CyberwarFare Labs

Cloud Firewall (security groups)

- They are hosted in cloud environment. They can protect on-premise as well as cloud resources
- Authorized users can connect to the cloud from anywhere and on any network
- The main use case is that it can be scaled to handle more traffic

Cloud Services

Compute Services

AWS: EC2, Lambda, EKS Azure: Virtual Machine, Azure Functions

Azure : Virtual Machine

GCP : Google Compute Engine, Google Cloud Functions Database Services

AWS: RDS

Azure : SQL Database

GCP: Cloud SQL

Storage Services

AWS:S3

Azure : Blob Storage

GCP: Cloud Storage **Networking Services**

AWS : Virtual Private Cloud (VPC)

Azure : Virtual Networks

GCP : Virtual Private Cloud (VPC) Security Services

AWS: Cloud Trail

Azure : Log Analytics

GCP: Event

Threat Detection

COMPUTE

➤ Amazon Elastic Compute Cloud (EC2)

- Web based computing
- Resources can be scaled as per requirement
- Resources are shared among customers but are isolated from each other

> Spawn a compute resource in AWS

DEMO 1: Spawning AWS EC2

DEMO 2: Accessing EC2 from:

Linux / Mac Machine
 Windows Machine

EC2 Security

Virtual Operating System

Firewall

Meta Data

Host Operating
System

Virtual Operating Systems

- Vulnerability in amazon machine image (AMI) template
- Example : OS specific vulnerability, Application focused vulns etc
- Installed unknown middleware agents in the Virtual Machines
- The installed middleware agents open a new attack surface unknown to the end customers / organizations

Middleware	Operating system	Open source
Open Management Infrastructure (OMI)	Linux	https://github.com/microsoft/omi
Microsoft Azure Guest Agent (WALinuxAgent)	Linux	https://github.com/Azure/WALi nuxAgent
Operations Management Suite (OMS)	Linux	https://github.com/microsoft/O MS-Agent-for-Linux
Dependency agent	Linux	No
Azure pipelines agent	Linux, Windows	https://github.com/microsoft/az ure-pipelines-agent
Azure RD Agent Service	Windows	No

Middleware	Operating system	Open source
Google Accounts Daemon	Linux	https://github.com/GoogleCloudPlatform/compute-image-packages/blob/master/packages/python-google-compute-engine/google-compute-engine/accounts/accounts daemon.py
Google OSConfig agent	Windows, Linux	https://github.com/GoogleCloud Platform/osconfig
Google guest agent	Windows, Linux	https://github.com/GoogleCloud Platform/guest-agent

Middleware	Operating system	Open source
AWS Systems Manager Agent (SSM Agent)	Windows, Linux, macOS	https://github.com/aws/amazon- ssm-agent
AWS PV Drivers	Windows	No
AWS ECS container agent	Windows, Linux	https://github.com/aws/amazon- ecs-agent
AWS EC2 Hibernation Initialization Agent	Linux	https://github.com/aws/amazon- ec2-hibinit-agent

➤ Metadata Service

- Data that provides information about other data
- It provides data that we can use to manage the running instance
- The Metadata can be retrieved locally from the following URL:

http://169.254.169.254/latest/meta-data

- ➤ The attacker with enough rights can retrieve the metadata & steal the instance identity
- > Enumeration about the instance, role attached to it etc can be done

STORAGE

> Spawn a Storage resource in AWS

DEMO 2: Creating AWS S3 Bucket

NETWORKING

Virtual Private Cloud

- It is a secure, isolated private cloud hosted within a public cloud
- VPC uses the following networking technologies for isolating computing resources from public cloud:
 - Subnets
 - VLAN
 - VPN

Network Access Control Lists (NACLs)

- ➤ They are firewall of the **VPC Subnets** and are applicable at the VPC subnet level.
- > NACL's are stateless, which means any rule applied to the incoming rule will not be applicable to the outgoing rule.
- ➤ It supports both allow as well as deny rule.

Inboun	Inbound					
Rule #	Туре	Protocol	Port range	Source	Allow/Deny	Comments
100	HTTP	TCP	80	0.0.0.0/0	ALLOW	Allows inbound HTTP traffic from any IPv4 address.

Outbound						
Rule #	Туре	Protocol	Port range	Destination	Allow/Deny	Comments
100	НТТР	TCP	80	0.0.0.0/0	ALLOW	Allows outbound IPv4 HTTP traffic from the subnet to the internet.

➤ Security Groups

■ Set of Firewall rules that control the traffic for the instance.

EXERCISES

Exercise 1: Setup a Web Server Rule in EC2 Security Group

Exercise 2 : Setup a Database Server Rule in EC2 Security Group

AWS SECURITY SERVICE

> CloudWatch

- It monitors AWS resources and applications in real time
- Alarms can be created during the analysis of the resource
- An AWS service like EC2 provides metrics into a repository and CloudWatch retrieve and create statistics based on those metrics
- There are AWS services that publish CloudWatch metrics. Listed <u>here</u>

Ref : https://docs.aws.amazon.com/AmazonC loudWatch/latest/monitoring/cloudwatc h_architecture.html

➤ CloudTrail

- It enables auditing, security monitoring by tracking user activity and API usage
- CloudWatch monitors performance, whereas CloudTrail monitors actions in the AWS environment

Ref:

https://www.whizlabs.com/wp-content/uploa ds/2016/12/AWS-Article2-1.jpg

> AWS Guard Duty

- Threat Detection service that continuously monitors for malicious activity and unauthorized behaviour in AWS services
- Targets Amazon S3, Workloads, AWS accounts and logs / events from Cloudtrail, VPC & DNS

Case Study 1: Threat Detection – Compromised EC2 Instance

https://scalesec.com/blog/threat-detection-with-aws-guardduty/

Case Study 2: Threat Detection – Compromised IAM Credentials

https://scalesec.com/blog/threat-detection-with-aws-guardduty/

> AWS WAF & Shield

- Web application firewall which monitors web requests forwarded to API Gateway, CloudFront & Load Balancer
- It limits the web traffic and stop various typical crime patterns
- AWS WAF works with : Access Control Lists (ACL), Rules & Rule Group
- One of the feature "AWS Managed Rules" provides protection against common vulnerabilities (apart from custom rule writing functionality)

IDENTITY AND ACCESS MANAGEMENT (IAM):

> IAM

- IAM enables the administrators to control "who" can perform "what" actions in AWS account
- Users / services are denied by-default to access the resources until they are provided with explicit permissions
- Permissions are generally assigned to each IAM entity. For Example :
 - Backend Developer -> Access to Amazon S3

> IAM Policies

- Permissions are assigned using Policies
- Policies can belong to identity based as well as resource based permissions
- It contains a statement (permissions in JSON) which details the following:

Yash (IAM User)
Can GET/PUT objects in S3
*
Till 31 st March 2024
From XYZ IP Range
After MFA

Permissions

Identity based permissions

Resource based permissions

IAM User

Can Read, Write, List

On Resource :

Prod-Folder

Prod Folder

IAM User 1 : Can Read, Write, List

IAM User 2 : Can Read, List

> IAM Roles

- When the root user do not need to share the security credentials, roles are used.
- Roles are permission policies that determine what an identity can or cannot perform
- It can be assumed by anyone who has permission to do as granted by administrator
- Permission are assigned to:
 - The Principal (Who will assuming the role)
 - The Role (Who can assume the role)
- Generally roles are preferred instead of long term credentials as credentials will not be shared
- Least privilege concept are applicable in scenarios

assumed

IAM User – Identity Based Permission

```
{ "statement" : [
    {
        "Effect" : "Allow",
        "Action" : "sts:AssumeRole",
        "Resource" : "arn:aws:iam:<Role_ID>:role/XYZ-Role"
}]
}
```

XYZ Role – Resource Based Permission

DEMO 3 : Creating IAM User with S3 Full Access

DEMO: Creating IAM User & Authenticate using CLI

Google Cloud Platform (GCP)

Google Compute Engine (GCE)

- > It is a part of Google's laaS (Infrastructure as a Service) service that provides virtual machines (VMs)
- ➤ Users can select machine type customize it and spawn it within seconds

DEMO: Google Compute Engine (GCE)

GCE Firewall Rules

- > Firewall rules are defined at the network level & only apply to network
- > Explicit ingress / egress rules with Deny / Allow rules can be defined
- > Firewall Network Tags can then be applied to the compute engine to apply the firewall

DEMO: GCE Firewall Rules

Google Storage

- ➤ Cloud Storage is a service for storing your objects in Google Cloud
- > Storage contains buckets where we can place objects like file etc.
- > Permissions are generally assigned to each IAM entity. For Example :

DEMO: GCP Storage

IAM

- ➤ IAM enables the administrators to control "who" can perform "what" actions in GCP account
- Users / services are denied by-default to access the resources until they are provided with explicit permissions

- GCP IAM Roles contains set of permissions that determine which operations can be used on a specific resource
- > GCP IAM Policies define which identities have what kind of access to an attached specified resource

DEMO: GCP IAM User

Microsoft Azure

Azure Virtual Machine

- ➤ They are image service instances that provide **on-demand** and **scalable** computing resources with usage-based pricing
- ➤ Access the spawned machine using SSH, RDP or Browser based

DEMO: Azure Virtual Machine

Network Security Group (NSG)

- ➤ NSG filters traffic in network level, implementing this will prevent traffic to & from the azure resources
- ➤ It is a Network Security Firewall

DEMO: Azure VM Network Security Groups

Azure Blob Storage

- > Azure Blob Storage is Microsoft's object storage solution for the cloud
- > Storage have containers, which store blobs

DEMO: Azure Blobs

Azure Active Directory

- > Azure Active Directory (Azure AD) is a cloud-based identity and access management service
- This service helps employees access external resources, such as Microsoft 365, the Azure portal, and thousands of other SaaS applications

DEMO: Azure Active Directory

Penetration Testing in Cloud Environment

© All Rights Reserved CyberwarFare Labs

➤ Scout Suite

https://github.com/nccgroup/ScoutSuite

EXERCISE

Exercise: Configure, Run & Create a report of Assessment using ScoutSuite

Module 6 : Capstone Project

- Thoroughly understand the case studies present in Page 39 & 40
- Create a VPC having 2 subnets which contains 2 EC2 instances. The condition is that one will be public & other private. Public instance must be accessible using IP (implement NACL & SGs) & public can communicate with public & vice-versa
- Explore, Understand & Configure ScoutSuite in VM environment

Thank You

For Professional Red Team / Blue Team / Purple Team,
Cloud Cyber Range labs / Courses / Trainings, please contact

info@cyberwarfare.live

To know more about our offerings, please visit:

https://cyberwarfare.live

© All Rights Reserved CyberwarFare Labs