

Examination Session:
May/June

2019

Exam Code: ENGI4121-WE01

Title:

MEng Engineering (Part III)

Communications Systems Paper 1
WeChat: CStutorcs

Time Allowed:	Assignment Project Exam Help
Additional Material provide	mail: tutorcs@163.com
Materials Permitted:	Q: ^N 749389476
Calculators Permitted:	Models Permitted: You are permitted to use only two models of calculator (Casio fx-83 GTPLUS or a COPPTX-85 GTPLUS).
Visiting Students may use	

Instructions to Candidates:	Answer ALL questions.			
	All relevant workings must be shown.			
		Revision:		

程序代写代做 CS编程辅导

Question 1

(a) Explain why a Pulse synchronization sigr Pulse Width Modula n (PPM) system requires the transmission of a le channel Pulse Amplitude Modulation (PAM) or does not.

[10%]

(b) Binary data are transmitted by using a pulse s(t) for 0 and a pulse 3s(t) for 1. Show that the optimum receiver for this case is a filter matched to s(t) with a detection threshold $2E_s$ as shown in Figure Q.1. Assume that 0 and 1 are equi-probable, determine the probability of error of this receiver as a function of East probability is the noise power of additive white Gaussian noise with zero mean as expressed in equation (1.1).

QQ: 749389476

[45%]

$$p(v) = \frac{1}{\sqrt{2\pi\sigma_v^2}} exp h(v) s: //tutorcs.com$$
 (1.1)

and the noise power $N=\sigma^2_v$

- (c) Five messages bandlimited to W, W, 2W, 4W, and 4W Hz, respectively are to be time-division multiplexed. Devise a commutator configuration such that each signal is periodically sampled at its own minimum transmission rate and the samples are properly interlaced. What is the minimum transmission bandwidth required for this Time Division Multiplexing (TDM) signal?
- (d) A baseband transmission system transmits the Manchester code where binary 1 is represented by +V for the first half of the bit duration and -V for the second half. Determine the correlation coefficient between the two baseband signals representing the one and the zero.
- (e) Give the output of a Phase Shift Keying (PSK) correlation detector if the stored replica has identical frequency as the incoming signal but has a phase offset equal to $\Delta\phi$. Comment on the result.

continued

程序代写代做 CS编程辅导

Question 2

- (a) A transmitter production of the carrier frequency.
 - (i) Express the the table and dBW.
 - (ii) Rewrite the fit is given in equation (2.1) (1) to express the fit is the loss in dB
 - (2) to give the d_1 and d_2 .
 - (iii) Find the rece at a free space distance of 10 m and 1 km from the transmit antenna. Assume unity gain for the receive antenna.

Free space propagation equation is given by CStutores

$$\frac{P_R}{P_T} = G_T G_R \left(\frac{c}{4\pi f a}\right)^2 \tag{2.1}$$

where P_T and P_R are the stanger and the transmit and receive antennas, respectively, f is frequency and d is distance. Email: tutorcs@163.com

[45%]

(b) Discuss the different nodes of radiowave propagation for the waves with frequency ranges in Table 1.

Frequency bands	frequency range		
Extremely Low Frequency (VLF)	CS COM 3 kHz		
Very Low Frequency (VLF)	3-30 kHz		
Low Frequency	30-300 kHz		
Medium Frequency	300 kHz-3 MHz		
High Frequency	3-30 MHz		
Very High Frequency (VHF)	30-300 MHz		
Ultra High Frequency (UHF)	300 MHz-3 GHz		
Super High Frequency (SHF)	3-30 GHz		
Extra High Frequency (EHF)	30-300 GHz		

Table 1

[25%]

- (c) Explain what is meant by handoff and discuss soft and hard handover used in cellular systems.

 [15%]
- (d) Discuss the causes of co-channel interference in cellular networks.

[15%]

Table of values of the error function and the complementary error function: erf(x) = $\frac{2}{\sqrt{\pi}}\int_0^x e^{-u^2} du$ erf $c(x) = \frac{2}{\sqrt{\pi}}\int_x^\infty e^{-u^2} du$

 $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-u^2} \ du$

Х	erf(:	感通恩	x	erf(x)	erfc(x)
0.00	0.00000		1.30	0.9340079	0.0659921
0.05	0.05637	Tutor CS	1.40	0.9522851	0.0477149
0.10	0.11246		1.50	0.9661051	0.0338949
0.15	0.1679960	0.8320040	1.60	0.9763484	0.0236516
0.20	0.2227026	0.7772974	CSTU 1.70	0.9837905	0.0162095
0.25	0.2763264	0.7236736	1.80 E	0.9890905	Exam Hel
0.30	0.3286268	0.6713732	1.90	0.9927904	0.0072096
0.35	0.37938 <mark>21</mark>	9636179 tu	torcs	S @ 51263	0.0046777
0.40	0.4283924	0.5716076	2.10	0.9970205	0.0029795
0.45	0.4754817	05245/82-9	894	0981372	0.0018628
0.50	0.5204999	0.4795001	2.30	0.9988568	0.0011432
0.55	0.5633234	ps./etu	orcs	• 6.99911 ₁₅	0.0006885
0,60	0.6038561	0.3961439	2.50	0.9995930	0.0004070
0.65	0.6420293	0.3579707	2.60	0.9997640	0.0002360
0.70	0.6778012	0.3221988	2.70	0.9998657	0.0001343
0.75	0.7111556	0.2888444	2.80	0.9999250	0.0000750
0.80	0.7421010	0.2578990	2.90	0.9999589	0.0000411
0.85	0.7706681	0.2293319	3.00	0.9999779	0.0000221
0.90	0.7969082	0.2030918	3.10	0.9999884	0.0000116
0.95	0.8208908	0.1791092	3.20	0.9999940	0.0000060
1.00	0.8427008	0.1572992	3.30	0.9999969	0.0000031
1.10	0.8802051	0.1197949	3.40	0.999985	0.0000015
1.20	0.9103140	0.0896860	3.50	0.9999993	0.000007