# Introduction of Deepfake Representation with Multilinear Regression paper

### **Dateset**

- Dataset: <u>FaceForensics</u> videos
- experiment on images manipulated by DeepFake technique.
- Each 30 sec. extract 1 frame, total 7 frames for each video using OpenCV
- Using pretrained dlib face detector for detecting outer facial landmarks
- Training videos: 720 \* 7(frames) = 5040 (images)
- Validation set: 140 videos
- Testing videos: 140 videos
- wd: Datasets/manipulated\_sequences/Deepfakes/raw/videos

# Support Vector Machine (SVM)

- Binary Classification
- Pros: effective in high dimensional spaces
- Cons: long training time for large datasets



The answer is simple: We use **Cross**Validation to determine how many misclassifications and observations to allow inside of the **Soft Margin** to get the best classification.

PC: StatQuest

### Algorithm 1 DeepFake Detection Algorithm Input: D<sub>real</sub>, D<sub>fake</sub> were centered by subtracting the mean of the real

training data,

- (1) Preprocessing and data tensor organization:  $[U_{real}, S_{real}, V_{real}] \Leftarrow svd(D_{real})$
- $[U_{fake}, S_{fake}, V_{fake}] \Leftarrow svd(D_{fake})$

$$oldsymbol{\mathcal{D}}(:,:,1) = [\mathbf{U}_{\mathrm{real}}\mathbf{S}_{\mathrm{real}}] \ oldsymbol{\mathcal{D}}(:,:,2) = [\mathbf{U}_{\mathrm{fake}}\mathbf{S}_{\mathrm{fake}}]$$

(2) Training data decomposition:

(2) Training data decomposition: 
$$\mathcal{T} \times_2 U_{\varepsilon} \times_2 U_{\varepsilon} \Leftarrow M$$
-mode SVD( $\mathcal{D}$ )

- dimensionality  $\mathbb{R}^{2\times 3}$ . Normalize the rows of  $U_c$  to have length
- (4) Computer the extended core

$$\mathcal{T} := \mathcal{D} \times_2 \mathbf{U}_{\epsilon}^{\mathrm{T}} \times_3 \mathbf{U}_{\epsilon}^{\dagger} \tag{16}$$

- (5) Centering: validation and test data is centered by subtracting the mean of the real training data. (6) Test data decomposition of a centered d<sub>test</sub>:
- $\mathbf{d}_{\text{test}} \simeq \mathcal{T} \times_2 \mathbf{r}_{\text{f}}^{\text{T}} \times_3 \mathbf{r}_{\text{c}}^{\text{T}} \Leftarrow \text{Multilinear Projection}(\mathcal{T}, \mathbf{d}_{\text{test}})$

$$\mathbf{d}_{\text{test}} \simeq \mathbf{7} \times_2 \mathbf{r}_{\text{f}} \times_3 \mathbf{r}_{\text{c}} \Leftarrow \text{Multilinear Projection}(\mathbf{7}, \mathbf{d}_{\text{test}})$$

(7) Finding linear SVM decision boundaries using validation set (8) classifying all  $\mathbf{d}_{test} \in \text{test set}$ 

## Feature & Result

- Evaluate the decision boundaries
- Frames in the range 2980-5000, the accuracy is around 82 %. Otherwise, could be considered noise
- The range 2980-5000 class is more separable linearly.

| $\mathbf{U}_c \in \mathbb{R}^{2 	imes 3}, \mathbf{U}_f \in \mathbb{R}^{5040 	imes R_f}$ |     |      |           |      |           |      | $R_f$     | TN/140 | TP/140 | ACC    |
|-----------------------------------------------------------------------------------------|-----|------|-----------|------|-----------|------|-----------|--------|--------|--------|
| 1                                                                                       | 721 | 1441 | 2161      | 2881 | 3601      | 4321 | 1-5040    | 98     | 101    | 0.7107 |
|                                                                                         |     |      |           |      |           |      | 1-720     | 107    | 93     | 0.7143 |
|                                                                                         |     |      | $\supset$ |      |           |      | 721-2160  | 100    | 90     | 0.6786 |
|                                                                                         |     |      |           |      | $\supset$ |      | 2161-3600 | 112    | 122    | 0.8000 |
|                                                                                         |     |      |           |      |           | - 3  | 3601-5040 | 113    | 98     | 0.7536 |
|                                                                                         |     |      |           |      |           |      | 4321-5040 | 111    | 89     | 0.7143 |
|                                                                                         |     |      |           |      |           |      | 2161-5040 | 117    | 112    | 0.8179 |
|                                                                                         |     |      |           |      |           |      | 2980-5000 | 118    | 112    | 0.8214 |
|                                                                                         |     |      |           |      |           |      | 2881-5040 | 117    | 103    | 0.7857 |