

OFFER ZEN

About Helge

Applied Mathematics

Data Scientist

OfferZen's mission

The master plan

In this talk

What is the marketing attribution problem?

In this talk

What is the marketing attribution problem?

Models and methods

In this talk

What is the marketing attribution problem?

- Models and methods
- Practical lessons learned

What is the marketing channel attribution problem?

Who Gets The Credit??

This is the original link

https://brandvee.com/blog/18-easy-ways-to-find-high-quality-content-to-share/?utm_source=facebook&utm_medium=18toolsarticle&utm_campaign=contentpromotion

These are the UTM parameters

Models and methods

Models and methods

Models and methods

Models and methods

"all models are wrong, but some are useful"

George Box 1919 -2013

Models

Markov Chain Attribution

Markov Chain Attribution

Models

Game Theory Attribution

Game Theory Attribution

Game Theory Attribution

Shapley Values

$$\phi_i(v) = \sum_{S \subseteq N \setminus \{i\}} rac{|S|! \; (n-|S|-1)!}{n!} (v(S \cup \{i\}) - v(S))$$

Markov Chain Attribution

In [1]:

```
library(ChannelAttribution)
library(reshape)
library(ggplot2)
```

Toy data

In [2]:

```
df1 <- data.frame(sequence = c('c1 > c2 > c3', 'c1', 'c2 > c3'), conv = c(1, 0, 0), no_conv = c(0, 1, 1)) df1
```

sequence	conv	no_conv
c1 > c2 > c3	1	0
c1	0	1
c2 > c3	0	1

Define the model

In [3]:

Get the results

In [4]:

```
df_result_1 <- model1$result
df_result_1</pre>
```

channel_name	total_conversions
c1	0.2002886
c2	0.3998557
c3	0.3998557

Removel effects

In [5]:

removel_effects = model1\$removal_effects
removel_effects

channel_name	removal_effects
c1	0.5009023
c2	1.0000000
c3	1.0000000

In [6]:

1. Probability of conversion

0.667 * 0.5 * 1 * 0.5 + 0.333 * 1 * 0.5

0.33325

In [7]:

2. Probability of conversion

0.333 * 1 * 0.5

0.1665

In [8]:

Removal effect

1 - 0.167/0.333

0.498498498498498

In [9]:

removel_effects = removel_effects\$removal_effects
data.frame(removel_effects/sum(removel_effects))

removel_effects.sum.removel_effects. 0.2002886 0.3998557 0.3998557

Game Theory Attribution

In [10]:

library('GameTheoryAllocation')

Loading required package: e1071 Loading required package: lpSolveAPI

Coalitions

In [11]:

```
df_B1 = data.frame(coalitions(3)$Binary)
names(df_B1) <- c('c1', 'c2', 'c3')
df_B1</pre>
```

с1	c2	сЗ
0	0	0
1	0	0
0	1	0
0	0	1
1	1	0
1	0	1
0	1	1
1	1	1

In [12]:

```
2**3
```

8

Characteristic function

In [13]:

```
characteristic_function <- c(0,7,4,6,7,15,9,19)
```

In [14]:

```
df_B1$conversions <- characteristic_function
df_B1</pre>
```

с1	c2	сЗ	conversions
0	0	0	0
1	0	0	7
0	1	0	4
0	0	1	6
1	1	0	7
1	0	1	15
0	1	1	9
1	1	1	19

In [15]:

shapley_values <- Shapley_value(characteristic_function, game="profit")</pre>

[1] "Shapley Value"

In [16]:

#shapley_values = data.frame(shapley_values)

data.frame("channel_name" = c('c1', 'c2', 'c3'), "shapley_values" = c(shapley_values))

channel_name	shapley_values
c1	7.666667
c2	3.166667
c3	8.166667

Marginal values

$$c3-c1-c2 -> 6 + 9 + 4$$

In [17]:

factorial(3)

6

Shapley values

In [18]:

7.6666666666667

In [19]:

3.1666666666667

In [20]:

8.16666666666667

In [21]:

shapley_values

1	2	3
7.666667	3.166667	8.166667

In [22]:

shapley_values/sum(shapley_values)

1	2	3
0.4035088	0.1666667	0.4298246

Practical lessons learned

 Marketing attribution is an important and hard problem

Practical lessons learned

- Marketing attribution is an important and challenging problem.
- No best model or method (might not matter too much)

Practical lessons learned

- Marketing attribution is an important and challenging problem.
- No best model or method (might not matter too much)
- Good data quality + simple model -> often sufficient

Conclusion

"The career where two

heads are better than

one."

Questions?