

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

THE AMERICAN MATHEMATICAL MONTHLY.

Entered at the Post-office at Springfield, Missouri, as second-class matter.

Vol. VIII.

MARCH, 1901.

No. 3.

ON THE PRODUCT OF TWO COMMUTATIVE OPERATORS.

By DR. G. A. MILLER, Cornell University, Ithaca, New York.

The aim of this note is to give a very elementary explanation of the order of the product of two commutative operators. Such an explanation seems the more desirable on account of the fact that an error in regard to this matter occurs in one of the best known works on the theory of groups.* We shall first consider the cases when the orders of the two operators (s_1, s_2) are powers of the same prime number (p), the order of s_1 being p^a and that of s_2 being p^β $(\alpha > \beta)$.

From the equation $(s_1s_2)^n = s_1^n s_2^n$ and the fact that $s_1^n s_2^n = 1$ only when $s_1^n = s_2^{-n}$, it follows that s_1s_2 is of the same order as s_1 whenever $\alpha > \beta$. When $\alpha = \beta$ several cases present themselves: (1) The groups generated by s_1 and s_2 have only identity in common. In this case it follows from the given equations that s_1s_2 is of the same order as s_1 , viz., of order p^{α} . (2) s_1 is a power of s_2 ; e. $g. s_1 = s_2^{\gamma}$. In this case the order of s_1s_2 may be any power of p from p^0 to p^{α} when p > 2, and p^0 to $p^{\alpha-1}$ when p = 2. These orders may be obtained by assigning the following values to γ :

$$p^{\alpha}-1$$
, $p^{\alpha-1}-1$, $p^{\alpha-2}-1$, ..., $p-1$, 1.

In general, let $s_1p^{a_1}$ be the first power of s_1 which is also a power of s_2 , so that $s_1p^{a_1}=s_2kp^{a_1}$ (α_1 does not equal α , and k being prime to p and less than p^{a-a_1}). It follows from the first sentence of the preceding paragraph that the

^{*}Burnside, Theory of Groups of a Finite Order, 1897, page 16.

order of $s_1 s_2$ cannot be less than p^{a_1} nor greater than p^a . If we assign to k the following values:

$$p^{a-a_1}-1$$
, $p^{a-a_1-1}-1$, $p^{a-a_1-2}-1$, ..., $p-1$, 1 (α_1 does not equal α),

we observe that $s_1 s_2$ may have for its order any power of p from p^{a_1} to p^a when p is odd (or when p=2 and $\alpha=\alpha_1$), and from p^{a_1} to p^{a-1} when p=2 and $\alpha>\alpha_1$.

These results are expressed by the following

THEOREM. It is possible to find two commutative operators (s_1, s_2) of the same order (p^a) such that $s_1p^{a_1}=s_2kp^{a_1}$ ($\alpha \le \alpha$) and s_1s_2 is of order p^δ , where δ can have any value from α_1 to α when p>2 (or when p=2 and $\alpha=\alpha_1$), and from α_1 to $\alpha-1$ when p=2 and $\alpha>\alpha_1$.

When the orders of s_1 and s_2 are not powers of the same prime they may be represented by $2^{a_0}p_1^{a_1}p_2^{a_2}...$ and $2^{\beta_0}p_1^{\beta_1}p_2^{\beta_2}...$ respectively; $p_1, p_2, ...$ being odd prime numbers, and the exponents being positive integers including 0. We may think of s_1 and s_2 as the products of operators of orders $2^{a_0}, p_1^{a_1}, p_2^{a_2}, ...$ and of orders $2^{\beta_0}, p_1^{\beta_1}, p_2^{\beta_2}, ...$ respectively. s_1s_2 is then the product of all of these operators. Combining the pairs which are powers of the same prime, s_1s_2 may be represented as the product of operators of orders $2^{\gamma_0}, p_1^{\gamma_1}, p_2^{\gamma_2}, ...$ ($p_x^{\gamma_x}$ being the product of the given operators of orders $p_x^{a_x}$ and $p_x^{\beta_x}$). Since the groups generated by these operators have only identity in common s_1s_2 is of order $2^{\gamma_0}p_1^{\gamma_1}p_2^{\gamma_2}...$ We have now reduced this case to one of the earlier ones.

It was observed in the second paragraph that γ_x is equal to the larger of the two numbers α_x and β_x whenever these are different, and that γ_x may be 0 whenever $\alpha_x = \beta_x$. Hence the minimum order (m) of s_1s_2 is the product of the highest of the primes which divide one and only one of their orders.* The maximum order (M) of s_1s_2 is clearly the lowest common multiple of their orders. From the given theorem it follows that s_1 and s_2 can be so selected that the order of s_1s_2 is any factor of M which is not less than m.

HYDRAULIC SOLUTION OF AN ALGEBRAIC EQUATION OF THE nth DEGREE.

By DR. ARNOLD EMCH, University of Colorado.

In the January (1901) number of this Monthly I have established two methods of extracting the nth root of any positive real number. In conclusion, I proposed to apply the first (hydrostatic) method to the solution of an equation of the form

$$a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n = 0 \ldots (1).$$

^{*}Mr. Fite first called my attention to this minimum value.