Oxidation in ⁵⁷Fe Compounds Using Mossbauer Spectroscopy

Bhaskar Mookerji Charles Herder

8.14 Experimental Physics II MIT Department of Physics

12 May 2008

Two big problems with γ -ray spectroscopy:

- Doppler broadening from thermal motion of atoms
- Recoil of emitting atom displaces emission line from absorption line

Mossbauer emission: Line broadening and recoil characterized by emission in crystal lattice.

Outline

- Introduction
 - Mossbauer Spectroscopy
 - Isomer Effects and Nuclear Magnetic Spectrum
- 2 Experimental
 - Mossbauer and Michelson Interferometer
 - Michelson Interferometer Velocity Calibration
- Results and Error Analysis
 - Zeeman Spectrum of ⁵⁷Fe
 - Zeeman Spectra of ⁵⁷Fe, Fe₂O₃, and Fe₃O₄
 - Hyperfine Properties of Iron Absorbers
 - Error and Systematic broadening effects

• Recoil energy R from a γ -ray given by

$$R = E_{\gamma}^2 / 2mc^2 \tag{1}$$

ullet Momentum transfer but not energy transfer o confinement to lattice.

Fraction undergoing recoilless emission:

$$P(N_{i} \to N_{f}, L_{i} \to L_{f}) \propto |\langle f| H_{\text{int}} |i\rangle|^{2}$$

$$= |\langle L_{f}| e^{i\mathbf{k}\cdot\mathbf{r}} |L_{i}\rangle \langle N\rangle|^{2}, \quad (2)$$

For a harmonic oscillator model ($R \ll \hbar \omega$):

$$f = |\langle L_f | e^{i\mathbf{k}\cdot\mathbf{r}} | L_i \rangle|^2 = e^{-R/\hbar\omega_E}$$
(3)

Probability of recoilless emission from a solid lattice:

$$P(E) = \frac{\Gamma/2\pi}{(E - E_0)^2 + \frac{1}{4}\Gamma^2}$$
 (4)

• With moving source, γ -ray doppler shifted:

$$\frac{\Delta E}{E} = \frac{v}{c} = \beta,\tag{5}$$

allowing us to sweep through resonance absorptions.

Energy level shift between source and absorber:

Velocity to restore resonance,

$$\delta = \Delta E_{A} - \Delta E_{S} \propto \left(\langle R_{e}^{2} \rangle - \langle R_{g}^{2} \rangle \right) \left(|\psi_{s}(0)|_{A}^{2} - |\psi_{s}(0)|_{S}^{2} \right)$$
(6)

- Using $E_n = -g_n \mu_N IH + \frac{1}{2}\epsilon + \delta_n$: Zeeman/quadrapole splitting, polarization, isomer shift, and magnetic moments.
- Peak height ratios 3 : β : 1 : 1 : β : 3: β = 4 sin² θ / (1 + cos² θ)

Parameters: Temperature, absorber composition and thickness, source distance.

Velocity and counts related by $v_i = \frac{C_i \lambda}{2NT}$

Zeeman Splitting of ⁵⁷Fe

Sample Fit and Residuals for Fe₂O₃

- Fe₂⁺³O₃ and Fe₂⁺³Fe⁺²O₄ (tetrahedral and octahedral)
- Fe₃O₄: composite spectrum of two oxidation states.

Table: Properties of iron Mossbauer absorbers.

	Fe ₂ O ₃		Fe ₃ O ₄ (tetrahedral)		Fe ₃ O ₄ (octahedral)	
	Measured	Published	Measured	Published	Measured	Published
$g_0'[\text{mm/s}]$	6.17 ± 0.02	6.11 ± 0.05	6.26 ± 0.08	5.90 ± 0.2	5.81 ± 0.09	5.3 ± 0.2
$g_1^7 [\text{mm/s}]$	3.37 ± 0.04	3.45 ± 0.03	3.20 ± 0.10	3.35 ± 0.15	3.02 ± 0.07	3.1 ± 0.1
μ_1/μ_0 [mm/s]	1.64 ± 0.02	1.69 ± 0.02	1.53 ± 0.04	1.7 ± 0.1	1.56 ± 0.03	1.75 ± 0.09
$\delta [\text{mm/s}]$	0.38 ± 0.05	0.47 ± 0.03	0.36 ± 0.09	0.45 ± 0.1	0.58 ± 0.10	0.7 ± 0.1
$\epsilon [\text{mm/s}]$	0.124 ± 0.003	0.12 ± 0.03	0.16 ± 0.05	0.0 ± 0.1	0.03 ± 0.01	0.0 ± 0.1
H[T]	53.5 ± 0.6	51.5	52.4 ± 0.5	50 ± 2	47.0 ± 0.6	45 ± 2
θ [°]	_	_	_	_	_	_

- Values determined through least-squares method.
- Polarization angle averages: 3 : β : 1, where $\beta = \frac{4 \sin^2 \theta}{1 + \cos^2 \theta}$.

- Statistical counting error
- Michelson interferometer velocity calibration
- Finite velocity resolution of apparatus
- Finite source and absorber thickness
 - Gaussian line broadening
 - Saturation of line intensity
- Oxidation sample contamination

Summary

- Magnetism vs. Temperature: Curie temperature for ferromagnetic iron compounds?
- Sulfate samples missing/damaged (Replacements?).
- Sample impurity: Aside from magnetite Fe_3O_4 , all are with $1-2\sigma$ of accepted values.