Relatório: Processo de Desenvolvimento de Modelo de Classificação de Texto

Patrick Canto de Carvalho

1

1. Introdução

Este relatório visa apresentar o processo de desenvolvimento de um modelo de aprendizado de máquina capaz de classificar textos de acordo com o nível de dificuldade. As categorias utilizadas são: ensino fundamental I e II, ensino médio e ensino superior.

2. Metodologia

2.1. Ferramentas

- Linguagem de programação Python;
- Biblioteca Scikit-Learn para criação dos modelos de aprendizagem de máquina;
- Jupyter notebooks para documentar processo de desenvolvimento;
- Framework Flask para criação da aplicação web;
- Biblioteca Spacy para análise de texto.

2.2. Separação e tratamento dos dados

A partir dos arquivos presentes no dataset, foi criado um único arquivo csv com os dados categorizados. Foram acrescentados a esses dados outras estatísticas obtidas a partir da biblioteca spacy que podem vir a ser úteis.

O conjunto de dados foi dividido entre treino e teste, sendo 80% para treino e 20% para teste. O conjunto de dados se encontra desbalanceado, sendo assim, foi usada a opção class_weights='balanced' nos modelos, quando aplicável.

Para codificação dos textos, foi utilizada a abordagem *bag of words*. Este método representa o texto como um vetor de frequências de palavras, considerando todo o vocabulário do corpus.

2.3. Experimentos e análise dos resultados

Foram selecionados para uma investigação inicial as seguintes técnincas de classificação discutidas por [Kowsari et al. 2019] e [Sen et al. 2020]:

- Random Forest Classifier (SVM);
- Stochastic Gradient Descent (SGD);
- Decision Tree Classifier;
- K Nearest Neighbors Classifier.

Para cada técnica, foram realizadas 30 execuções com sementes de randomização diferentes e foram computadas as métricas de acurácia, precisão, recall e f1-score, bem como as matrizes de confusão médias normalizadas. O resumo dos resultados é apresentado na 1 e o gráfico comparativo detalhado é apresentado na figura 1.

Figure 1. Comparativo entre os algoritmos Decision Tree, KNN, Random Forest e SGD segundo as métricas de acurácia, precisão, *recall* e *f1-score*

Algoritmo	Acurácia	Precisão	Recall	F1-score
Random Forest	0.857612	0.859203	0.829544	0.830805
SGD	0.937260	0.928300	0.926063	0.925859
Decision Tree	0.672676	0.633877	0.636016	0.633681
KNN	0.877244	0.864790	0.841041	0.850206

Table 1. Comparação entre os valores médios das métricas: acurácia, precisão, recall e f1-score para as técnicas estudadas.

Figure 2. Matriz de confusão para o algoritmo Random Forest.

Figure 3. Matriz de confusão para o algoritmo SGD.

E, para visualizar o comportamento dos algoritmos de forma mais detalhada, foram geradas as matrizes de confusão médias normalizadas para cada técnica, apresentadas nas figuras 2, 3, 4 e 5.

É possível perceber que, de acordo com essas métricas, o modelo que apresentou melhor desempenho foi o SGD. Sendo assim, para melhor visualizar as categorias que apresentaram maior dificuldade de classificação, é apresentada na figura 6 a matriz de confusão do SGD com a diagonal principal zerada. De acordo com o gráfico, o principal erro é classificar um texto do ensino fundamental II como sendo do ensino fundamental I. No entanto, nota-se que é uma tendência do geral modelo errar para categorias adjacentes.

Tendo sido identificada a melhor dentre as técnicas estudadas, foi selecionado desta técnica o melhor modelo produzido durante o experimento (acurácia média de 0.96) para que pudesse ser feito um refinamento em seus hiper-parâmetros utilizando a função GridSearchCV da biblioteca Scikit-Learn. No entanto, não foi notada melhoria. A matriz de confusão do melhor modelo treinado é mostrada na figura 7.

Este modelo foi salvo para ser usado na aplicação web, juntamente com os as classes auxiliares necessárias para codificar o texto. Foi criado também um gerador de inversões de frases. O sistema é acessível pelo navegador e as instruções para executar estão no arquivo readme.md. Mais detalhes sobre o processo de desenvolvimento podem ser encontrados no arquivo text-complexity.ipynb.

Figure 4. Matriz de confusão para o algoritmo Decision Tree.

Figure 5. Matriz de confusão para o algoritmo KNN.

Figure 6. Matriz de confusão para o algoritmo SGD com a diagonal principal zerada.

Figure 7. Matriz de confusão o melhor modelo treinado (SGD).

3. Gerador de inversões em frases

Foi criada a estrutura para a implementação do inversor de frases. Contudo, não foi possível implementá-lo por não ter tido tempo hábil para entender o funcionamento das bibliotecas disponíveis para este fim. De qualquer forma, é possível assumir que a classificação das frases geradas se manteria igual à da frase original, tendo em vista que a técnica de codificação utilizada considera apenas o vocabulário presente no texto.

4. Conclusão

A melhor técnica identificada foi a Stochastic Gradient Descent (SGD), obtendo o melhor desempenho em todas as métricas utilizadas. O melhor modelo obteve acurácia de aproximadamente 0.96. No entanto, este realiza classificações equivocadas, especialmente entre classes consideradas adjacentes. Devido à limitação no tempo, não foi possível implementar algumas etapas que poderiam tornar mais robusto o sistema desenvolvido. Sendo assim, podem ser listadas algumas melhorias a serem feitas futuramente:

- Considerar mais características do texto, tendo em vista que o método de codificação utilizado analisa apenas a frequência de palavras para caracterizar o texto, desconsiderando a estrutura sintática e semântica.
- É possível analisar de maneira mais aprofundada os textos do conjunto de dados fornecido, de modo a possibilitar um tratamento melhor dos dados antes do treinamento do modelo, incluindo a remoção de outliers.

References

- Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu, S., Barnes, L., and Brown, D. (2019). Text classification algorithms: A survey. *Information*, 10(4):150.
- Sen, P. C., Hajra, M., and Ghosh, M. (2020). Supervised classification algorithms in machine learning: A survey and review. In *Emerging Technology in Modelling and Graphics: Proceedings of IEM Graph 2018*, pages 99–111. Springer.