



**Centre de Calcul** de l'Institut National de Physique Nucléaire et de Physique des Particules



# Study and optimization of PSF processing for the ZTF experiment

Supervised by GADRAT Sébastien and RIGAULT Mickaël

#### **Overview**



#### Introduction

- Cosmology and the Zwicky Transient Facility
- Measurement and image calibration pipeline
- My internship work

#### Optimization of the PSF computation

- Models
- IT infrastructures
- Optimizers and data processing

#### Results

- Gaussian model
- Moffat model
- Conclusions and perspectives







## Introduction

#### Cosmology





Study of Type Ia Supernovae (SNeIa) in order to understand the acceleration of the expansion of the universe

SNela are standard candles (fixed luminosity L)

$$F = L / 4 \pi d^2$$

### The Zwicky Transient Facility

#### **The detector:**

- Palomar Mountain, California (USA), inaugurated in March 2018
- Collaboration: US National Science Foundation
   & universities and institutes of Europe and Asia
- Scan the Milky Way plane twice a night and scan the entire northern sky in 3 night
- Composed by 16 CCD (Charge-Coupled Devices),
   i.e. 64 quadrants

#### **The CCD:**

- Sensors that detect the photons
- Photons excite electrons in the CCD pixels, conversion in electrical charge, then in digital signal (ADU process)
- Raw image acquisition
- Calibration of raw images to obtain scientific images





July 1<sup>st</sup>, 2024 VOISIN Sybille

5

CCIN2P3

## Measuring photometric luminosity





July 1<sup>st</sup>, 2024 VOISIN Sybille

## Image calibration pipeline





## Image calibration pipeline





## My internship work





#### For CC:

- GPU reservation (thanks Calcul !!)
- Using Jupyter notebook via ssh tunneling
- Managing job problems in slurm

#### For IP2I:

- Meetings every Monday:
  - At 1:30 pm with IP2I's ZTF team
     → weekly review of everyone's work
  - At 4pm with the ZTF France team and some international collaborators
     → weekly review of calibration work
- Pull request in github for ztfimg







## Optimization of the PSF computation

## **Point Spread Function**

- UNIVERSITÉ CLERMONT Auvergne
- Models the spread of light intensity from a point source over an image
- Uses a mathematical function (ideal case: a Dirac peak)
- Point source actually spread over several pixels:
  - Atmospheric effects
  - Defects in the optical instrument
  - Mirror curvature



#### **Models**



#### Gaussian distribution: First approach

$$f(x) = A \exp\left[-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right] \quad \text{with} \quad A = \frac{1}{\sqrt{2\pi \det(\Sigma)}}$$

#### Moffat distribution: better point spread model

$$f(x, y, \alpha, \gamma) = A \left[ 1 + \left( \frac{(x - x_0)^2 + (y - y_0)^2}{\gamma^2} \right) \right]^{-\alpha} \quad \text{with} \quad A = \frac{\alpha - 1}{\pi \gamma^2}$$

Moffat + pixel grid: next step







#### On CPU:

• scipy.optimize.minimize

Iterative method to construct an approximation of the Hessian matrix

#### On GPU:

optax.adam

Gradient based optimization algorithm

• Truncated Newton Conjugate Gradient (TN-CG)

Second order optimization algorithm (takes advantages of the function's curvature)

#### **GPU Software framework**

## UNIVERSITÉ CLERMONT Auvergne

#### **Requirements:**

- Easy-to-use language to implement in existing official code
- Ability to switch between CPU and GPU depending on machine availability

#### JAX framework:

Advantages:

- NumPy-like and SciPy-like
- Uses Autograd (for automatic gradient computation) as TensorFlow and XLA (for optimization and acceleration of computation) as Pytorch

Disadvantages:

- Currently in full development (version 0.4.30, last release in June 2024)
- Lot of changes from one version to the next: older versions not documented

#### **Available frameworks:**

- TensorFlow (developed by Google Brain in 2015)
- PyTorch (developed by Facebook AI Research in 2017)
- JAX (developed by Google Research in 2018)



## **Data processing**

## UNIVERSITÉ CCINZP3

#### **Working environment:**

- Python environment on top of the official ZTF environment
- GPU used: NVIDIA V100, 5120 cores, CUDA 12.2
- JAX version used: 0.4.26 (released in April 2024)



#### **Data processing:**

- Creation of stamp for each isolated stars (20arcsec)
- Stars within 15 pixels from the edge are ignored
- 14 < magnitude < 18</li>
  - → At the end: 473 stars are left (15174 stars at the beginning)







## Results

#### **Gaussian model**









**VOISIN Sybille** 

#### **Moffat model**

July 1st, 2024









#### Loss functions with Gaussian model





Quantitative measure of the difference between model and real data

- Adam: execution time = 21.7s 500 iterations 0.00434s by iteration
- TN-CG: execution time = 5.39s 50 iterations 0.10789s by iteration

#### **Loss functions**



#### **Gaussian model**



#### **Moffat model**



## **Execution speed**



#### **Gaussian model**



#### **Moffat model**









## **Conclusions**

#### **Conclusions**



- The aim of my internship was to find a way of optimizing the PSF code for the ZTF environment
- Started by testing my code on CPU then parallelized on GPU
- Obtain a factor of 20 in execution time between CPU and GPU for 100 stars and a factor 10 with the official code
- JAX is an adapted framework because it is a NumPy-like code and can run on both CPU and GPU
- Pipeline flexible: use Autograd to automatically compute gradient

## **Perspectives**



#### For the next month:

- Calculate errors
- Add another parameter in the Moffat fit: the pixelgrid
- CPU tests only run on a single core, GPU tests run on various cores
  - → Possibility to parallelize on CPU with Dask on Python

#### On longer term:

- Implement my code in the official ZTF software
- Add a back-end mechanism (JAX, Dask...) to use the most appropriate processing unit GPU or CPU, depending on their availability on the computing infrastructure.







## Thank you for your attention



#### **Image calibration pipeline:**

- Bias adjustment: residuals electrons propagating through pixels and create background noise (temperature effect)
- Overscan: to check how many electrons are beyond the CCD (add of 30 pixels to pixelgrid)
- Brighter-fatter effect: distortion of light source image (too many photons)
- Saturation effect: too many electrons resulting a saturation threshold, making ADU conversion difficult
  - → Master-bias (average of 20 sequences)
- Flat correction: each pixel reacts differently to photon stimulation (we want to homogenize)
  flat screen in front of the telescope sending the same light source to each pixel
  - → Master-flat (average of 20 sequences)
- Applying master-bias to master-flat
  - → Scientific images



```
guess = [mu, A, b, alpha, gamma]
adam_params, adam_loss = fit_adam(get_logprob, guess, learning_rate=1e-3, tol=1e-5, niter=15000)
```

```
guess = [mu, A, b, alpha, gamma]
tncg_params, tncg_loss = fit_tncg(get_logprob, guess, tol=1e-5, niter=50, lmbda=10000)
```

July 1st, 2024 VOISIN Sybille



#### Gauss results:

| Parameters | Optimized Value (CPU) | Error (CPU) | Optimized Value (GPU: Adam) | Optimized Value (GPU: TN-CG) |
|------------|-----------------------|-------------|-----------------------------|------------------------------|
| $x_0$      | 0.47144               | 0.65313     | 0.018556                    | 0.016890                     |
| $y_0$      | 0.24933               | 0.34438     | 0.254136                    | 0.247583                     |
| A          | 0.08768               | 0.05297     | 0.082898                    | 0.079343                     |
| $\sigma_x$ | 0.99996               | 0.00953     | 0.914114                    | 0.879041                     |
| $\sigma_y$ | 0.99996               | 0.00948     | 0.916828                    | 0.882730                     |
| b          | 0.00319               | 0.00084     | 0.082898                    | 0.003217                     |
| $\chi^2$   | 7.44529e-05           |             | 0.14382                     | 0.10835                      |

#### **Moffat results:**

| Parameters | Optimized Value (CPU) | Error (CPU) | Optimized Value (GPU: Adam) | Optimized Value (GPU: TN-CG) |
|------------|-----------------------|-------------|-----------------------------|------------------------------|
| $x_0$      | 0.48614               | 0.6460      | 0.104471                    | 0.019067                     |
| $y_0$      | 0.27890               | 0.3563      | 0.284396                    | 0.248053                     |
| A          | 0.12203               | 0.0376      | 0.020781                    | 0.019664                     |
| $\gamma$   | 0.99994               | 0.0100      | 0.792515                    | 0.843164                     |
| $\alpha$   | 1.00007               | 0.0100      | 1.130729                    | 1.154012                     |
| b          | 0.00280               | 0.0010      | 0.003004                    | 0.002990                     |
| $\chi^2$   | 9.85163e-05           |             | 0.13909                     | 0.15470                      |





10

| nom image  | ztf_20200924278681_000682_zg<br>_c01_o_q1_sciimg |            |  |
|------------|--------------------------------------------------|------------|--|
| nb étoiles | 460                                              |            |  |
|            |                                                  |            |  |
|            | Adam                                             | TN-CG      |  |
| x0         | 0.12629162                                       | 0.09369928 |  |
| y0         | 0.43376857                                       | 0.4277979  |  |
| Α          | 0.00785667                                       | 0.00745553 |  |
| b          | 0.0031505                                        | 0.00313988 |  |
| alpha      | 1.0094517                                        | 1.0113003  |  |
| gamma      | 0.9382649                                        | 0.99301493 |  |

15 50 25 50 25 50 15 29 July 1st, 2024 **VOISIN Sybille** 



 $Loss\ function\ (Moffat)\ for\ image: \\ /sps/ztf/data/sci/2020/0924//278681/ztf\_20200924278681\_000682\_zg\_c01\_o\_q1\_sciimg. \\ fits \\ Number\ of\ stars: \ 460$ 







| nom image  | ztf_20200924352269_000650_zr_<br>c06_o_q2_sciimg |              |  |
|------------|--------------------------------------------------|--------------|--|
| nb étoiles | 621                                              |              |  |
|            |                                                  |              |  |
|            | Adam                                             | TN-CG        |  |
| x0         | 0.4938947                                        | 0.49124393   |  |
| y0         | 0.16804591                                       | 0.16347715   |  |
| Α          | 0.06216742                                       | 0.06046747   |  |
| b          | 0.00257102097                                    | 0.0025619671 |  |
| alpha      | 1.2365761                                        | 1.2395555    |  |
| gamma      | 0.70385176                                       | 0.72072935   |  |



 $Loss\ function\ (Moffat)\ for\ image: /sps/ztf/data/sci/2020/0924/352269/ztf\_20200924352269\_000650\_zr\_c06\_o\_q2\_sciimg. fits \\ Number\ of\ stars:\ 621$ 







| nom image  | ztf_20200924431759_000655_zr_c<br>01_o_q1_sciimg |              |  |
|------------|--------------------------------------------------|--------------|--|
| nb étoiles | 564                                              |              |  |
|            |                                                  |              |  |
|            | Adam                                             | TN-CG        |  |
| x0         | 0.22969975                                       | 0.20846307   |  |
| y0         | 0.29616097                                       | 0.26958174   |  |
| Α          | 0.01337975                                       | 0.01288554   |  |
| b          | 0.0031771937                                     | 0.0031795751 |  |
| alpha      | 1.1669621                                        | 1.1680447    |  |
| gamma      | 0.79485947                                       | 0.81516325   |  |



 $Loss\ function\ (Moffat)\ for\ image: /sps/ztf/data/sci/2020/0924/431759/ztf\_20200924431759\_000655\_zr\_c01\_o\_q1\_sciimg. fits \\ Number\ of\ stars:\ 564$ 







| nom image  | ztf_20200924431759_000655_zr_c09<br>_o_q1_sciimg |              |  |
|------------|--------------------------------------------------|--------------|--|
| nb étoiles | 519                                              |              |  |
|            |                                                  |              |  |
|            | Adam                                             | TN-CG        |  |
| х0         | 0.02285722                                       | 0.00914894   |  |
| y0         | 0.366593                                         | 0.12798809   |  |
| Α          | 0.11840525                                       | 0.09759934   |  |
| b          | 0.00141473499                                    | 0.0013828198 |  |
| alpha      | 1.201352                                         | 1.1819942    |  |
| gamma      | 0.74436057                                       | 0.8125839    |  |



 $Loss\ function\ (Moffat)\ for\ image: /sps/ztf/data/sci/2020/0924/431759/ztf\_20200924431759\_000655\_zr\_c09\_o\_q1\_sciimg. fits \\ Number\ of\ stars: 519$ 







| nom image  | ztf_20200924509537_000700_zg_c<br>03_o_q2_sciimg |              |  |
|------------|--------------------------------------------------|--------------|--|
| nb étoiles | 495                                              |              |  |
|            |                                                  |              |  |
|            | Adam                                             | TN-CG        |  |
| x0         | 0.440675706                                      | 0.43172577   |  |
| y0         | 0.340761214                                      | 0.331206828  |  |
| Α          | 0.01203259                                       | 0.01149715   |  |
| b          | 0.00303439749                                    | 0.0030257988 |  |
| alpha      | 1.0430462                                        | 1.0504944    |  |
| gamma      | 0.9227575                                        | 0.9704189    |  |



Loss function (Moffat) for image :  $\sps/ztf/data/sci/2020/0924/509537/ztf\_20200924509537\_000700\_zg\_c03\_o\_q2\_sciimg.fits$  Number of stars: 495

