Spark

CSCE 678

Problems of MapReduce

- "MapReduce largely simplified big-data analysis on large, unrealistic clusters" – by Matei Zahari
- Users want more complex, multi-stage applications (e.g., iterative ML, graph processing)
- More interactive, real-time jobs than batched jobs

Filesystem-Based Framework

HDFS:

simplified fault tolerance, but too slow due to replication and disk I/O.

Solution: In-Memory Data Sharing

10-100x faster than network/disk

Solution: In-Memory Data Sharing

How to achieve Fault tolerance: What if DRAM crashes?

Resilient Distributed Dataset (RDD)

- Immutable collection of objects
- Statically typed
- Distributed across clusters

(This is Scala code)

```
linesRDD = spark.textFile("hdfs://log.txt")
errorsRDD = linesRDD.filter(_.startsWith("ERROR"))
msgsRDD = errorsRDD.map(_.split('\t')(2))
```

msgsRDD.saveAsTextFile("hdfs://msgs.txt Kick off computation (lazy evaluation)

Spark Programming Interface

- Scala language: lambda-like language on Java
- Run interactively on Scala interpreter
- Interface for specifying dataflow between RDDs:
 - Transformations (filter, map, reduce, etc)
 - Actions (count, persist, save, etc)
 - User-custom controls for partitioning

PySpark

```
linesRDD = sc.textFile("hdfs://log.txt")
errorsRDD = linesRDD.filter(lambda x: x.startsWith("ERROR"))
msgsRDD = errorsRDD.map(lambda x: x.split('\t')(2))
msgsRDD.saveAsTextFile("hdfs://msgs.txt")
```

Fault Tolerance

RDDs track <u>lineage</u> to rebuild lost data

```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```


Fault Tolerance

RDDs track <u>lineage</u> to rebuild lost data

```
file.map(lambda rec: (rec.type, 1))
    .reduceByKey(lambda x, y: x + y)
    .filter(lambda (type, count): count > 10)
```


Partitioning

RDDs know their partitioning functions

```
file.map(lambda rec: (rec.type, 1))
       .reduceByKey(lambda x, y: x + y)
       .filter(lambda (type, count): count > 10)
                                   Hash-partitioned
                                                        Same
                          reduce
                                          filter
           map
Input file
```

- 1. Start each page with rank = 1
- 2. For iteration = 1, ..., N, update rank(page) =

$$\sum_{i \in \text{Neighbors}} \operatorname{rank}_i / |\operatorname{Neighbors}_i|$$

- 1. Start each page with rank = 1
- 2. For iteration = 1, ..., N, update rank(page) =

$$\sum\nolimits_{i\,\in\, \text{Neighbors}} \text{rank}_i/\left|\text{Neighbors}_i\right|$$

- 1. Start each page with rank = 1
- 2. For iteration = 1, ..., N, update rank(page) =

- 1. Start each page with rank = 1
- 2. For iteration = 1, ..., N, update rank(page) =

Rank=0

- 1. Start each page with rank = 1
- 2. For iteration = 1, ..., N, update rank(page) =

```
\sum_{i \in \text{Neighbors}} \operatorname{rank}_i / |\operatorname{Neighbors}_i|
```

(This is Scala code)

- Repeatedly join links & ranks
- Co-partition them (e.g., hash on url) to avoid shuffling
- Specify partitioner:

Spark Operations

Transformations (define a new RDD):

```
cartesian
                     flatMap
     map
    filter
                      union
                                              pipe
                                            coalesce
    sample
                      join
  groupByKey
                  intersection
                                          mapPartition
  reduceByKey
                                     mapPartitionWithIndex
                     cogroup
                                          repartition
  sortByKey
                     cross
aggregateByByte
                    distinct
                              repartitionAndSortWithinPartitions
```

Actions (return a result to the driver program)

reduce	takeSample	saveAsTextFile
collect	takeOrdered	saveAsSequenceFile
count	countByKey	saveAsObjectFile
first	foreach	_

How General is Spark?

- RDDs can express many parallel algorithms
- Dataflow models: Hadoop, SQL, Dryad, ...
- Specialized models: graph processing, machine learning, iterative MapReduce (HaLoop), ...

Spark Stack

Spark SQL

- Relational DBMS on Spark
- Using RDDs to define and partition database states
- Optimized with DBMS techniques
 - Caching
 - Query optimizers

 Spark SQL uses <u>DataFrame</u> to express structured dataset with a fixed schema

(This is PySpark)

```
cities = spark.read.csv('cities', header=True, inferschema=True)
cities.show()
| city |population| area|
|Vancouver| 2463431|2878.52|
cities.printSchema()
root
 |-- city: string (nullable = true)
 |-- population: integer (nullable = true)
 |-- area: double (nullable = true)
```

(This is PySpark)

Limitations

- DataFrame API provides many built-in functions
 - Math: abs(), cos(), avg(), ceil(), ...
 - Data processing: asc(), base64(), ...
 - Aggregation: array(), array_contains(), ...
 - String: concat(), substring(), ...
- You can't directly use Scala/Python functions because they are not DataFrame API
- What to do? Write User Define Functions (UDFs)

User-Defined Function (UDF)

User-Defined Function (UDF)

UDFs are much slower than DataFrame API

	Time
Spark DataFrame API	10 s
Python UDF	437 s

Query Optimization

- RDBMS usually has a query optimizer to find a more ideal version of a query
 - Example: $(X + 1) + (Y + 2) \rightarrow X + Y + 3$
- Spark SQL: Catalyst optimizer
 - Transforming a query into equivalent logics
 - Selecting the ideal physical plan based on cost model

References

- Spark class hosted by Stanford ICME: http://stanford.edu/~rezab/sparkclass/
- RDD Talk in NSDI (by Zaharia):
 https://www.usenix.org/sites/default/files/confere
 nce/protected-files/nsdi zaharia.pdf