Лабораторная работа №4

Дисциплина: Архитектура компьютера

Малюга Валерия Васильевна

Содержание

Цель работы	5
Задание	6
Теоретическое введение	7
Основные принципы работы компьютера	7
Ассемблер и язык ассемблера	8
Процесс создания и обработки программы на языке ассемблера	8
Выполнение лабораторной работы	9
Создание программы Hello world!	9
Работа с транслятором NASM	9
Работа с расширенным синтаксисом командной строки NASM	10
Работа с компоновщиком LD	10
Запуск исполняемого файла	11
Выполнение заданий для самостоятельной работы	11
Выводы	14

Список таблиц

Список иллюстраций

1	Создание программы Hello world	9
2	Компиляция программы hello	10
3	Компиляция текста программы	10
4	Передача объектного файла на обработку компоновщику	10
5	Запуск программы Hello world	11
6	Изменение программы lab4.asm	12
7	Трансляция в объектный файл и его компоновка. Запуск исполняемого	
	файла	12
8	Копирование файлов в локальный репозиторий и отправка на Github	13

Цель работы

Цель данной лабораторной работы - освоить процедуры компиляции и сборки программ, написанных

Задание

- 1. Создание программы Hello world!
- 2. Работа с транслятором NASM
- 3. Работа с расширенным синтаксисом командной строки NASM
- 4. Работа с компоновщиком LD
- 5. Запуск исполняемого файла
- 6. Выполнение заданий для самостоятельной работы.

Теоретическое введение

Основные принципы работы компьютера

Основными функциональными элементами любой электронно-вычислительной машины (ЭВМ) яв Основной задачей процессора является обработка информации, а также организация координации

- **арифметико-логическое устройство $(A\Pi Y)^{**}$ выполняет логические и арифметические дейст
- **устройство управления $(yy)^{**}$ обеспечивает управление и контроль всех устройств компьют
- **регистры** сверхбыстрая оперативная память небольшого объёма, входящая в состав процес Для того, чтобы писать программы на ассемблере, необходимо знать, какие регистры процессора с Доступ к регистрам осуществляется не по адресам, как к основной памяти, а по именам. Каждый р Другим важным узлом ЭВМ является **оперативное запоминающее устройство (ОЗУ)**. ОЗУ э

В состав ЭВМ также входят **периферийные устройства**, которые можно разделить на:

- ***устройства внешней памяти***, которые предназначены для долговременного хранения болы
- ***устройства ввода-вывода***, которые обеспечивают взаимодействие ЦП с внешней средой.

В основе вычислительного процесса ЭВМ лежит **принцип программного управления**. Это озна Набор машинных команд определяется устройством конкретного процессора. В коде машинной ком При выполнении каждой команды процессор выполняет определённую последовательность станда

- 1. формирование адреса в памяти очередной команды;
- 2. считывание кода команды из памяти и её дешифрация;
- 3. выполнение команды;
- 4. переход к следующей команде.

Ассемблер и язык ассемблера

Язык ассемблера (assembly language, сокращённо asm) — машинноориентированный язык низкого уровня. Можно считать, что он больше любых других языков приб
Процессор понимает не команды ассемблера, а последовательности из нулей и единиц — **машинн
NASM — это открытый проект ассемблера, версии которого доступны под различные операционны
синтаксис и поддерживаются инструкции х86-64.

Типичный формат записи команд NASM имеет вид:

[метка:] мнемокод [операнд {, операнд}] [; комментарий]

3десь **мнемокод** — непосредственно мнемоника инструкции процессору, которая является

обязательной частью команды. Операндами могут быть числа, данные, адреса регистров или адреса оперативной памяти. Метка — это идентификатор, с которым ассемблер ассоциирует некоторое число, чаще всего адрес в памяти. Т.о. метка перед командой связана с адресом данной команды. Программа на языке ассемблера также может содержать директивы — инструкции, не переводящиеся непосредственно в машинные команды, а управляющие работой транслятора. Например, директивы используются для определения данных (констант и переменных) и обычно пишутся большими буквами.

Процесс создания и обработки программы на языке ассемблера

В процессе создания ассемблерной программы можно выделить четыре шага:

- **Набор текста** программы в текстовом редакторе и сохранение её в отдельном файле. Каждый с
- **Трансляция ** преобразование с помощью транслятора, например nasm, текста программы в м
- **Компоновка или линковка** этап обработки объектного кода компоновщиком (ld), который пр
- **Запуск программы**. Конечной целью является работоспособный исполняемый файл. Ошибки в

Выполнение лабораторной работы

Создание программы Hello world!

Создаю каталог для работы с программами на языке ассемблера NASM. Перешла в созданный катал

```
vvmalyuga@dk8n56 ~ $ mkdir -p ~/work/arch-pc/lab04
vvmalyuga@dk8n56 ~ $ cd ~/work/arch-pc/lab04
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ touch hello.asm
 /vmalyuga@dk8n56 ~/work/arch-pc/lab04 $ gedit hello.asm
                                                     *hello.asm
 Открыть ▼
                                                   ~/work/arch-pc/lab04
 1; hello.asm
 2 SECTION .data
          hello: DB 'Hello world!',10
          helloLen: EQU $-hello
7 SECTION .text
          GLOBAL _start
10 _start:
11
          mov eax,4
12
          mov ebx,1
13
          mov ecx, hello
14
          mov edx,helloLen
          int 80h
16
17
          mov eax,1
18
          mov ebx.0
19
          int 80h
```

Рис. 1: Создание программы Hello world

Работа с транслятором NASM

Для компиляции программы "Hello world" написала в терминале команду nasm - f elf hello.asm. Впоследствии проверила выполнение этой команды с помощью ls. Действительно, тра

```
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ nasm -f elf hello.asm
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ ls
hello.asm hello.o
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $
```

Рис. 2: Компиляция программы hello

Работа с расширенным синтаксисом командной строки

NASM

Ввела команду, которая скомпилировала файл hello.asm в файл obj.o, при этом в файл были включег g), также с помощью ключа -l был создан файл листинга list.lst. Далее проверила с помощью утилите @fig:003]).

Рис. 3: Компиляция текста программы

Работа с компоновщиком LD

Передала объектный файл на обработку компоновщику, чтобы получить исполняемую программу. Е m elf_i386 obj.o -o main. Исполняемый файл будет иметь имя main, т.к. после ключа - o было задано значение main. Объектный файл, из которого собран этот исполняемый файл, имеет и @fig:004]).

```
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ ld -m elf_i386 hello.o -o hello
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ ld -m elf_i386 obj.o -o main
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ ls
hello hello.asm hello.o list.lst main obj.o
```

Рис. 4: Передача объектного файла на обработку компоновщику

Запуск исполняемого файла

Запустила созданный исполняемый файл, набрав в терминале команду (рис. [-@fig:005]).

```
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $ ./hello
Hello world!
vvmalyuga@dk8n56 ~/work/arch-pc/lab04 $
```

Рис. 5: Запуск программы Hello world

Выполнение заданий для самостоятельной работы

- 1. В каталоге ~/work/arch-pc/lab04 с помощью команды ср создала копию файла hello.asm с именем lab4.asm (рис. [-@fig:006]).
- 2. С помощью текстового редактора gedit внесла изменения в текст программы в файле lab4.asm так, чтобы вместо Hello world! на экран выводилась строка с моими фамилией и именем (рис. [-@fig:006]).

Рис. 6: Изменение программы lab4.asm

3. Оттранслировала полученный текст программы lab4.asm в объектный файл. Выполнила компоновку объектного файла и запустила получившийся исполняемый файл (рис. [-@fig:007]).

```
vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ nasm -f elf lab4.asm

vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ ls

hello hello.asm hello.o lab4.asm lab4.o list.lst main obj.o

vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ ld -m elf_i386 lab4.o -o lab4

vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ ls

hello hello.asm hello.o lab4 lab4.asm lab4.o list.lst main obj.o

vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ ./lab4

Maлюга Валерия

vvmalyuga@dk8n56 -/work/arch-pc/lab04 $
```

Рис. 7: Трансляция в объектный файл и его компоновка. Запуск исполняемого файла

4. Скопировала файлы hello.asm и lab4.asm в локальный репозиторий в каталог $^{\sim}$ /work/study/2023-2024/"Архитектура компьютера"/arch-pc/labs/lab04/. Загрузила файлы на Github (рис. [-@fig:008]).

```
vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ cp hello.asm -/work/study/2023-2024/"Apxитектура компьютера"/arch-pc/labs/lab04/hello.asm
vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ cp lab4.asm -/work/study/2023-2024/"Apxитектура компьютера"/arch-pc/labs/lab04/lab4.asm
vvmalyuga@dk8n56 -/work/arch-pc/lab04 $ cd -/work/study/2023-2024/"Apxитектура компьютера"/arch-pc/labs/lab04/
vvmalyuga@dk8n56 -/work/study/2023-2024/Apxитектура компьютера/arch-pc/labs/lab04 $ ls
hello.asm lab4.asm presentation report
vvmalyuga@dk8n56 -/work/study/2023-2024/Apxитектура компьютера/arch-pc/labs/lab04 $ git add .
vvmalyuga@dk8n56 -/work/study/2023-2024/Apxитектура компьютера/arch-pc/labs/lab04 $ git commit -am 'feat(main)
: add files lab-4'
[master 6e0d07a] feat(main): add files lab-4
2 files changed, 38 insertions(+)
create mode 100644 labs/lab04/hello.asm
create mode 100644 labs/lab04/lab4.asm
vvmalyuga@dk8n56 -/work/study/2023-2024/Apxитектура компьютера/arch-pc/labs/lab04 $ git push
Перечисление объектов: 9, готово.
Подсчет объектов: 100% (9/9), готово.
Подсчет объектов: 100% (9/9), готово.
Подсчет объектов: 100% (6/6), 796 байтов | 796.00 Киб/с, готово.
Всего 6 (изменений 2), повторно использовано пакетов 0
remote: Resolving deltas: 100% (2/2), completed with 2 local objects.
To github.com:vvmalyuga/study_2023-2024_arpxитектура компьютера/arch-pc/labs/lab04 $

1 o github.com:vvmalyuga/study_2023-2024_arpxитектура компьютера/arch-pc/labs/lab04 $

1 o github.com:vvmalyuga/study_2023-2024_arpxитектура компьютера/arch-pc/labs/lab04 $

1 o github.com:vvmalyuga/study_2023-2024_arpxuтектура компьютера/arch-pc/labs/la
```

Рис. 8: Копирование файлов в локальный репозиторий и отправка на Github

Выводы

При выполнении данной лабораторной работы я освоила процедуры компиляции и сборки программ, написанных на ассемблере NASM.