

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ПОГРЕШНОСТИ, ДОПУСКАЕМЫЕ ПРИ ИЗМЕРЕНИИ ЛИНЕИНЫХ РАЗМЕРОВ ДО 500 мм

FOCT 8.051—81 (CT CЭВ 303—76)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ПОГРЕШНОСТИ, ДОПУСКАЕМЫЕ ПРИ ИЗМЕРЕНИИ ЛИНЕЙНЫХ РАЗМЕРОВ ДО 500 мм

State system for ensuring the uniformity of measurements. Permissible errors of linear dimensions to 500 mm measurement

FOCT 8.051—81

[CT C9B 303-76]

Взамен ГОСТ 8.051—73

Постановлением Государственного комитета СССР по стандартам от 23 ноября 1981 г. № 5067 срок введения установлен

c 01.01.82

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает допускаемые погрешности измерения линейных размеров до 500 мм при приемочном контроле и правила определения приемочных границ с учетом этих погрешностей.

Настоящий стандарт не устанавливает допускаемые погрешности измерения размеров, которые установлены другими государственными стандартами, и размеров с неуказанными предельными отклонениями.

Стандарт полностью соответствует СТ СЭВ 303-76.

1. ЗНАЧЕНИЯ ДОПУСКАЕМЫХ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЙ

1.1. Допускаемые погрешности измерений (δ) в зависимости от допусков IT приведены в таблице.

Примечание. Допускаемые погрешности измерения для допусков по системе ОСТ приведены в обязательном приложении 1.

- 1.2. Погрешности измерения, устанавливаемые в настоящем стандарте, являются наибольшими допускаемыми погрешностями измерений, включающими в себя все составляющие, зависящие от измерительных средств, установочных мер, температурных деформаций, базирования и т. д.
- 1.3. Допускаемая погрешность измерения включает случайные и неучтенные систематические погрешности измерения.

Издание официальное

Перепечатка воспрещена

Переиздание. Сентябрь 1986 г.

	_		1			МКМ	Иля квалитетов	литетов						
Номинальные размеры, мк	89		ຄ		•		ຜ		9			7		
	I	•	II.	•	ш	9	TI	0	п	•	IT	•	11	•
До 3	1,2	0,4	2,0	8'0	3	1,0	4	1,4	9	1,8	10	3,0	14	3,0
Св. 3 до 6	1,5	9,0	2,5	1,0	4	1,4	ro	1,6	œ	2,0	12	3,0	18	4,0
* 6 * 10	1,5	9,0	2,5	1,0	4	1,4	9	2,0	6	2,0	15	4,0	22	5,0
* 10 * 18	. 2,0	8,0	3,0	1,2	ı	1,6	80	2,8	. 11	3,0	81	5,0	27	7,0
* 18 * 30	2,5	1,0	4,0	1,4	9	2,0	6	3,0	13	4,0	21	0'9	33	8,0
* 30 * 50	2,5	1,0	4,0	1,4	7	2,4	11	4,0	16	5,0	25	7,0	39	10,0
* 50 * 80	3,0	1,2	5,0	1,8	œ	2,8	13	4,0	19	5,0	30	0,6	46	12,0
* 80 * 120	4,0	1,6	0,0	2,0	10	3,0	15	5,0	22	0,0	35	10,0	54	12,0
» 120 » 180	5,0	2,0	8,0	2,8	12	4,0	18	0'9	25	7,0	40	12,0	63	16,0
» 180 » 250	7,0	2,8	10,0	4,0	14	5,0	20	0,7	53	8,0	46	12,0	72	18,0
* 250 * 315	8,0	3,0	12,0	4,0	16	5,0	23	8,0	32	0'01	52	14,0	80	20,0
* 315 * 400	0,6	3,0	13,0	5,0	18	0,9	22	0,6	36	10,0	22	16,0	68	24,0
* 400 * 500	10,0	4,0	15,0	5,0	20	0,9	27	0,6	40	12,0	. 63	18,0	26	26,0
	· · · · · · · · · · · · · · · · · · ·		,								,			

		. 0	200 240 380 380 500 500 1100 1200 1400
·	17	TI.	1000 1200 1500 1500 2500 4000 5200 6300
		•	120 200 2200 240 320 440 500 500 800
	16	TI	600 750 1100 1100 1200 1200 2200 3200 4000
		*	80 120 120 140 220 220 220 220 220 220 240 440 440
	15	TI.	400 480 580 700 1000 11200 11850 2300 2500
		. 0	50 80 120 140 140 180 240 240 320
тетов	14	IT.	250 300 360 430 520 520 620 740 1000 1150 1300 1550
Для квалитетов		∞	30 50 50 50 100 100 180 180 200
Для	13	П	140 180 220 270 330 330 330 460 540 630 810 890 970
		٥	20 30 30 50 50 50 10 10 10 10 10 10 10 10 10 10 10 10 10
	12	ΙΙ	100 120 150 150 150 150 150 150 150 150 150 15
		•	110 110 110 110 110 110 110 110 110 110
		L	60 110 130 110 130 120 120 250 250 250 250 250 250 250 250 250
	01	•0	8052480882944088
		E	250 250 250 250 250 250 250
		•	98002238006694
	6	11	25 30 36 43 43 52 62 74 74 87 100 115 130
	Номинальные		До 3 3 До 6 6 № 10 10 № 18 30 № 120 80 № 120 180 № 120 180 № 120 180 № 250 250 № 315 315 № 400
	Номи		B*****

Примечание. Допускается увеличивать допускаемую погрешность измерения, указанную в таблице, при умень-шении допуска на размер, учитывающего это увеличение, а также в случае разделения изделий на размерные группы для селективной сборки.

Случайная погрешность измерения не должна превышать 0,6 допускаемой погрешности измерения и принимается равной 2σ , где σ — значение среднего квадратического отклонения погрешности измерения.

1.4. При допусках, не соответствующих значениям, указанным в таблице, допускаемую погрешность выбирают по ближайшему меньшему значению допуска для соответствующего размера.

2. ПРИЕМОЧНЫЕ ГРАНИЦЫ С УЧЕТОМ ДОПУСКАЕМЫХ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ

2.1. Влияние погрешностей измерения на результат измерений (см. справочное приложение 2) должно быть учтено при установлении приемочных границ — значений размеров, по которым проводят приемочный контроль изделий (см. справочное приложение 3).

2.2. Приемочные границы устанавливают совпадающими с предельными размерами или смещенными относительно их введени-

ем производственного допуска (уменьшение допуска).

Применение первого способа предпочтительнее.

При введении производственного допуска значение смещения не должно превышать половины устанавливаемой настоящим стандартом допускаемой погрешности измерения у каждой прие-

мочной границы.

2.3. При арбитражной перепроверке принятых деталей погрешность измерения не должна превышать 30% погрешности, допускаемой при приемочном контроле. Среди принятых допускается наличие до 5% деталей от перепроверяемой партии с отклонениями, выходящими за приемочные границы на значение, не превышающее половину допускаемой погрешности измерения при приемке, для квалитетов со 2-го по 7-й; рядов пределом допускаемых погрешностей измерения с 1 до 6 (см. обязательное приложение 1); до 4% для квалитетов 8, 9 или для рядов 7 и 8; 3% — для квалитетов 10 и грубее или для ряда 9 и грубее.

ПРИЛОЖЕНИЕ 1 Обязательное

ПРЕДЕЛЫ ДОПУСКАЕМЫХ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ В МКМ ДЛЯ ДОПУСКОВ ПО СИСТЕМЕ ОСТ

			Ps	Ряды пределов допускаемых погрешностей измерения	целов дс	пускаем	тых поц	эешност	ей измер	Эения					-
		1			2	3			4	3			9		7
Номинальные размеры в мм									1						
		reu V	Mend	деи	мен	тем∇	менд	ден∆	мсио	пеи∇	менд	дек	N _{EM} 8	теи∇	менд
Св. 1 до	co .	1,2	0,4	2,0	L'0	ന.	1,0	4	1,4	9	1,8	10	က	14	3,5
* co	9.	1,5	6,0	2,5	0,8	4	1,4	ເດ	1,7	∞	2,5	13	41	18	4,5
* 9 *	10	1,5	0,5	2,5	8,0	4	1,4	9	2,0	6	2,5	16	ເລ	22	5,5
* 10 *	8	2,0	2'0	3,0	1,0	īŲ	1,7	° ∞	2,8	11	3,0	19	9	27	2,0
* 18 *	30	2,5	8,0	4,0	1,4	9	2,0	6	3,0	13	4,0	23	7	33	8,0
* 30 * E	20	2,5	8,0	4,0	1,4	1	2,4	11	4,0	15	4,5	27	∞	39	10,0
* 20 *	80	3,0	1,0	2,0	1,7	80	2,8 -	13	4,5	18	5,5	30	9	46	11,0
» 80 » 12	120	4,0	1,4	0'9	2,0	10	3,5	15	0,5	21	0,9	35	1	54	13,0
* 120 * 18	180	5,0	1,7	8,0	2,8	12	4,0	18	0'9	24	7,0	40	12	. 63	16,0
» 180 » 26	260	7,0	2,4	10,0	3,5	14	4,5	200	0,7	27	8,0	45	13	73	18,0
> 260 > 360	. 06	0,8	2,8	12,0	4,0	91	5,5	23	8,0	30	0,6	20	15	84	20,0
* 360 * 50	200	10,0	3,5	15,0	5,0	20	7,0	27	0,6	35	11,0	.09	80	92	25,0

a)
-3
×
0
27
*
8
4
-
\sim
\sim
\sim
\simeq
podo.
_
-
٠,
77

							Ряды 1	предел	IOB AO	пределов допускаемых		погрешностей измерения	я измет	ения					
							6	01			11	12	~	-	13	14	4		15
H e	Номинальн ме размеры в мм		B MM	Me m △	мено	Acn A	менб	Aem	Meno	Ach A	менд	д≈иД	Manô	ден∆	менд	деи∆	Nen Q	nen A	менд
3	1	М	3	20	Š	33	9	40	∞	09	12	120	25	250	50	400	80	009	120
*	Ç	*	9	25	9	40	00	48	10	80	15	160	30	300	09	480	100	750	150
*	9	*	10	30	7	20	10	28	12	100	20	200	40	360	70	280	100	006	200
*	10		18	32	00	09	12	70	15	120	25	240	20	430	80	700	150	1100	200
*	18	*	30	45	=======================================	70	14	84	15	140	30	280	09	520	100	840	150	1300	250
.*	30	^	20	20	12	85	15	100	20	170	30	340	09	620	120	1000	200	1600	300
*	20	*	80	90	15	100	20	120	25	200	40	400	80	740	150	1200	250	1900	400
*	80	A	120	70	17	115	20	140	30	230	40	460	06	870	170	1400	250	2200	400
A	120	*	180	80	20	135	25	160	30	260	50	530	100	1000	200	1600	300	2500	200
*	180	A	260	06	20	150	30	185	40	300	09	009	120	1150	200	1900	400	2900	009
*	260	*	360	100	25	170	35	215	40	340	. 02	089	140	1350	250	2200	400	3300	009
A	360	*	200	120	30	190	40	250	20	380	20	760	150	1550	300	2500	200	3800	200
				_	_	_													

Примечание. Допускается увеличивать допускаемую погрешность измерения, указанную в таблице, при умень-шении допуска на размер, учитывающего это увеличение, а также в случае разделения изделий на размерные группы для селективной сборки.

ПРИЛОЖЕНИЕ 2 Справочное

ВЛИЯНИЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ НА РЕЗУЛЬТАТЫ РАЗБРАКОВКИ ПРИ ПРИЕМОЧНОМ КОНТРОЛЕ

1. Влияние погрешности измерения при приемочном контроле оценивают

параметрами:

т — число деталей в процентах от общего числа измеренных, имеющих размеры, выходящие за предельные и принятые в числе годных (неправильно

п — число деталей в процентах от общего числа измеренных, имеющих размеры, не превышающие предельные и забракованные (неправильно забракован-

ные);

с — вероятностная величина выхода размера за предельные у неправильно принятых деталей.

2. Значения параметров т, п и с при распределении контролируемых раз-

меров по нормальному закону приведены на черт. 1-3.

3. На черт. 1-3 сплошные линии соответствуют распределению погрешности измерения по нормальному закону, а пунктирные — по закону равной вероятности.

При неизвестном законе распределения погрешности измерения для параметров т, п, и с рекомендуется принимать средние из значений, определенных

по сплошной и пунктирной линиям.

4. Параметры т и с на графиках определены с доверительной вероятностью 0,9973. Для определения т с другой доверительной вероятностью необходимо сместить начало координат по оси ординат.

5. На графиках черт. 1—3 значения $A_{\mbox{\scriptsize MeT}(\sigma)}$ в координатах определяют по

формуле

$$A_{\text{MeT}(\sigma)} = \frac{\sigma}{\text{IT}} \quad 100, \tag{1}$$

где о — среднее квадратическое отклонение погрешности измерения;

IT — допуск на контролируемый размер.

При определении параметров m, n и c рекомендуется принимать $A_{\text{мет}(\sigma)}$, равное 16 % для квалитетов 2—7, 12% — для квалитетов 8 и 9 и 10% — для квалитетов 10 и грубее.

6. Параметры т, п и с приведены на графиках в зависимости от значения

-, где $\sigma_{\text{тех}}$ -- среднее квадратическое отклонение погрешности изготовления. 7. Параметры m, n и c на черт. 1—3 даны при симметричном расположении

допуска относительно центра группирования контролируемых деталей.

8. Совместное влияние систематической и случайной погрешностей изготовления на параметры m и n определяют по графикам черт. 1—2, но вместо зна-IT отех принимается для одной границы

$$\frac{\text{IT} + 2a_{\text{T}}}{\sigma_{\text{тех}}}$$
 (2), для другой $\frac{\text{IT} - 2a_{\text{T}}}{\sigma_{\text{тех}}}$ (3)

где a_{τ} — систематическая погрешность изготовления.

При определении параметров m и n для каждой границы берут половину полученных значений.

9. Совместное влияние случайной и систематической погрешностей измерения (если последняя не исключается поправкой) на параметры m, n и c определяют по графику черт. 1—3 при использовании зависимостей:

$$m = \left[F_0 \left(\frac{\text{IT} + 2a_{\text{H}}}{2\sigma_{\text{rex}}} \right) - F_0 \left(\frac{\text{IT}}{2\sigma_{\text{rex}}} \right) \right] + \frac{m \left(\text{IT} + 2a_{\text{H}} \right)}{2} - \frac{n \left(\text{IT} + 2a_{\text{H}} \right)}{2} ; \qquad (4)$$

$$n = \left[F_0\left(\frac{\text{IT}}{2\sigma_{\text{Tex}}}\right) - F_0\left(\frac{\text{IT} + 2a_{\text{H}}}{2\sigma_{\text{Tex}}}\right)\right] + \frac{n_{(\text{IT} + 2a_{\text{H}})}}{2} - \frac{m_{(\text{IT} + 2a_{\text{H}})}}{2}; \qquad (5)$$

$$C = C_{(IT+2a_{H})} + a_{H}, \tag{6}$$

где $a_{\rm H}$ — систематическая погрешность измерения (со знаком плюс при расширении допуска и минус — при сужении); m (${\rm IT}+2a_{\rm H}$); r (${\rm IT}+2a_{\rm H}$) — параметры при допуске, измененном на значение систематической погрешности измерения; r — интегральная функция распределения погрешности изготовления.

Примечание. При определении совместного влияния систематической и случайной погрешностей измерения следует использовать значения $A_{\text{мет}(\sigma)}$, определяемые по формулам:

$$A_{\text{MeT}(\sigma)} = \frac{\sigma}{|\text{IT}+2|a|}, (7) \qquad A_{\text{MeT}(\sigma)} = \frac{\sigma}{|\text{IT}-2|a|}, (8)$$

где a — систематическая погрешность изготовления при использовании формул 2 и 3 или измерения при использовании формул (4), (6).

10. Возможные предельные значения параметров m, n и $\frac{c}{1T}$, соответствующие экстремальным значениям кривых на черт. 1—3, приведены в таблице.

A _{Mer(σ)}	m, %	n, %	TT IT
1,6	От 0,37 до 0,39	От 0,7 до 0,75	0.01
3	» 0,87 » 0,9	» 1,2 » 1,3	0,01 0,03 0,06
5		» 2,0 » 2,25	0,06
8	» 1,6 » 1,7 » 2,6 » 2,8	» 3,4 » 3,7	0,1
10	» 3,1 » 3,5	* 4,5 * 4,75	0,14
12	» 3,75 » 4,1	» 5,4 » 5,8	
16	» 5,0 » 5,4	» 7,8 » 8,25	0,17 0,25

Примечания:

- 1. Первые значения *m* и *n* соответствуют распределению погрешностей измерения по нормальному закону; вторые по закону равной вероятности.
- 2. Предельные значения параметров m, n и $\frac{c}{1T}$ учитывают влияние только случайной составляющей погрешности измерения.

ПРИЛОЖЕНИЕ 3

Справочное

ПРИЕМОЧНЫЕ ГРАНИЦЫ С УЧЕТОМ ПОГРЕШНОСТИ **N3MEPEHMS**

Настоящий стандарт предусматривает два способа установления приемочных границ.

1-й способ. Приемочные границы устанавливают совпадающими с предель-

ными размерами.

Пример. При проектировании вала диаметром 100 мм оценено, что отклонения его размеров для условий эксплуатации должны соответствовать h6 (100-0.022).

В соответствии с таблицей настоящего стандарта устанавливают, что для этого размера вала и допуска допускаемая погрешность измерения

0,006 мм.

В соответствии с таблицей справочного приложения 2 устанавливают, что для $A_{\text{мет}(\sigma)}$, равной 16%, и неизвестной точности технологического процесса m=5,2 и c=0,25 IT, т. е. среди годных деталей может оказаться до 5,2% неправильно принятых деталей с предельными отклонениями +0,0055 и -0,0275 мм. Если полученные данные не повлияют на эксплуатационные показатели вала, то на чертежах указывают первоначально выбранный квалитет. В противном случае выбирают более точный квалитет или другое поле допуска в этом ква-

2-й способ. Приемочные границы смещают внутрь относительно предельных

размеров.

При введении производственного допуска могут быть два варианта в зависимости от того, известна или неизвестна точность технологического процес-

Вариант 1. При назначении предельных размеров точность технологического процесса неизвестна. В соответствии с п. 2.2 настоящего стандарта предельные размеры изменяются на половину допускаемой погрешности измерения. Для примера, рассмотренного выше, диаметр $100 \, {}^{-0.003}_{-0.019}$.

Вариант 2. При назначении предельных размеров точность технологического процесса известна. В этом случае предельные размеры уменьшают на

значение параметра c (см. справочное приложение 2).

 $\frac{IT}{\sigma_{\text{rex}}} = 4$ (при изготов-Предположим, что для рассмотренного выше примера

лении имеется 4,5% брака по обеим границам). =16%. По черт. 3 справочного приложения 2 находим C=0,1; IT =mer(o) =0.0022 mm.

С учетом данных диаметр вала принимает $100 \stackrel{-0,002}{-0,020}$.

Редактор В. Н. Шалаева Технический редактор Э. В. Митяй Корректор М. М. Герасименко

Сдано в наб. 16.12.86 Подп. в печ. 13.01.87 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,62 уч.-изд. л. Тираж 16 000 Цена 3 коп.

Ордена «Знак Почета» Издательство стандартов, 123840, Москва, ГСП, Новопресненский пер., д. 3. Вильнюсская типография Издательства стандартов, ул. Миндауго, 12/14. Зак. 5569.