# **Exploiting Query Reformulations for Web Search Result Diversification**

Rodrygo L. T. Santos

Department of Computer Science
University of Glasgow, UK

Craig Macdonald

Department of Computer Science
University of Glasgow, UK

**Iadh Ounis** 

Department of Computer Science
University of Glasgow, UK

Presented By
Wasi Uddin Ahmad
Md Masudur Rahman

13th April, 2016



#### Motivation

- Java
  - 'java programming language'
  - 'java' an island of Indonesia
  - 'java coffee'
- What if an ambiguous query is submitted to the search engine?
  - Completely ignore any sort of ambiguity
  - Infer the most plausible meaning underlying the query
  - Explicitly ask the user for feedback on the correct meaning underlying the query
  - Diversify the retrieved results of the query



# Diversifying Search Result

- Given an initial ranking R for a query q, find a re-ranking S that has the maximum coverage and the minimum redundancy with respect to the different aspects underlying q
- How to diversify search results?
  - Compare the retrieved documents for a given query to one another
  - Select the documents most relevant to the query while being the most dissimilar to the documents already selected
  - Assumption similar documents will cover similar aspects underlying the query and should be demoted in order to achieve diversified ranking



#### Related Work

- Implicit approaches
  - Similar documents will cover similar aspects and should hence be demoted
- Explicit approaches
  - Directly models the query aspects
  - Maximize the coverage of the selected documents with respect to these aspects



# Implicit Approaches

- Carbonell and Goldstein [MMR] selects document based on the combination of a similarity and a dissimilarity score
  - Content based similarity function
- Zhai and Lafferty used language modeling framework
- Chen and Karger proposed a probabilistic approach
- Wang and Zhu employed correlation between documents as a measure of similarity

## **Explicit Approaches**

- Agarwal et al. [IA Select] used a taxonomy for both queries and documents
  - Two documents are similar if they are classified into one or more common categories covered by the query
- Carterette and Chandar proposed a probabilistic model
  - To maximize the coverage of a document ranking with respect to query aspects
- Radlinski and Dumais [Q-Filter] proposed to filter the document ranking
  - To have a more even distribution of documents satisfying each query aspect



# Contribution of the paper

- Follows the explicit approach
- Novel probabilistic framework for search result diversification
  - models the information need of an ambiguous query as a set of sub-queries
- Analysis of the effectiveness of the sub-queries
  - Derived from two types of query reformulation provided by three major WSE
- Thorough evaluation of the several components of the proposed framework



#### Main Framework

#### $\mathbf{xQuAD}(q, R, \tau, \lambda)$

- $_1$   $S \leftarrow \emptyset$
- <sup>2</sup> while  $|S| < \tau$  do
- $d^* \leftarrow \underset{d \in R \setminus S}{\operatorname{arg} \max_{d \in R \setminus S}} (1 \lambda) P(d|q) + \lambda P(d, \bar{S}|q)$   $R \leftarrow R \setminus \{d^*\}$
- $S \leftarrow S \cup \{d^*\}$
- 6 end while
- 7 return S

Algorithm 1: The xQuAD framework.

Transfero Printerio Presero Preservo De

#### xQuAD Framework

Document query relevance

$$(1-\lambda) \boxed{\mathrm{P}(d|q)} + \lambda \boxed{\mathrm{P}(d,\bar{S}|q)} \xrightarrow{\text{Maximum coverage Minimum redundancy}}$$

- R = initial ranking produced for query, q
- S = new ranking by iteratively selecting highest scored documents from R
- P(d|q) = likelihood of document d being observed given q
- $P(d, \overline{S}|q)$  = likelihood of observing this document but not the document already in S



#### xQuAD Framework

$$P(d, \bar{S}|q) = \sum_{q_i \in Q} P(q_i|q) P(d, \bar{S}|q_i),$$

•  $P(q_i|q)$  = measure of the relative importance of the sub-query  $q_i$ 

$$P(d, \bar{S}|q_i) = P(d|q_i) P(\bar{S}|q_i),$$

- $P(d|q_i)$  = measure of the coverage of document d with respect to the subquery  $q_i$
- $P(\bar{S}|q_i)$  = measure of novelty; the probability of  $q_i$  not being satisfied by any of the documents already selected in S



#### xQuAD Framework

$$P(\bar{S}|q_i) = P(\overline{d_1, \dots, d_{n-1}}|q_i)$$
$$= \prod_{d_j \in S} (1 - P(d_j|q_i)).$$

- Assumption
  - Relevance of a document in S to a given sub-query  $q_i$  is independent of the relevance of other documents in S to the same sub-query
- Final Equation becomes,

$$(1 - \lambda) P(d|q) + \lambda \sum_{q_i \in Q} \left[ P(q_i|q) P(d|q_i) \prod_{d_j \in S} (1 - P(d_j|q_i)) \right].$$

### Components Estimation

- Document relevance, Coverage and Novelty
  - Any probabilistic approach can be used, e.g., language modeling
  - Document ranking for the initial query [baseline ranking]
  - Ranking produced for the sub-queries [sub-rankings]
- Sub-Query Generation
  - Traditional query expansion techniques in order to generate 'expanded sub-queries'
  - Using search query log, possible search queries can be generated
  - Using related sub-queries and suggested sub-queries



## Components Estimation

- Sub-Query Importance,  $P(q_i|q)$ 
  - Baseline estimation all sub-queries are equally important  $P_u(q_i|q) = \frac{1}{|Q|}$ ,
  - Relative importance of each sub-query based on how well it is covered by a given collection

$$P_w(q_i|q) = \frac{n_w(q_i)}{\sum_{q_j \in Q} n_w(q_j)},$$

CRCS based sub-query importance estimation

$$i_c(q_i|q) = \frac{n_c(q_i)}{\max_{q_i \in Q} n_c(q_i)} \frac{1}{\hat{n}_c(q_i)} \sum_{d \mid P(d|q_i) > 0} \tau - j(d, q),$$

$$P_c(q_i|q) = \frac{i_c(q_i|q)}{\sum_{q_j \in Q} i_c(q_j|q)}.$$



# Experimental Setup

- Collection and Topics
  - A subset of TREC ClueWeb09 dataset was used
  - 50 topics were used where each topic includes 3 to 8 sub-topics
- Evaluation Metrics
  - α-NDCG and IA-P (intent-aware precision)
  - Three different rank cutoffs: 5, 10, and 100
- Retrieval Baselines
  - BM25, DPH and LM (language modeling)
- Training Procedures
  - In order to train  $\lambda$ , 5-fold cross validation over the 50 topics was performed



# **Experimental Evaluation**

|            | α-NDCG |       |       | IA-P  |       |       |  |
|------------|--------|-------|-------|-------|-------|-------|--|
|            | @5     | @10   | @100  | @5    | @10   | @100  |  |
| BM25       | 0.159  | 0.186 | 0.288 | 0.075 | 0.071 | 0.059 |  |
| +MMR       | 0.120  | 0.150 | 0.224 | 0.056 | 0.058 | 0.039 |  |
| +Q-Filter  | 0.159  | 0.186 | 0.286 | 0.075 | 0.071 | 0.057 |  |
| +IA-Select | 0.110  | 0.119 | 0.180 | 0.043 | 0.037 | 0.023 |  |
| $+xQuAD_u$ | 0.208  | 0.227 | 0.324 | 0.080 | 0.075 | 0.056 |  |
| DPH        | 0.198  | 0.212 | 0.304 | 0.109 | 0.106 | 0.062 |  |
| +MMR       | 0.195  | 0.211 | 0.303 | 0.105 | 0.103 | 0.062 |  |
| +Q-Filter  | 0.198  | 0.212 | 0.303 | 0.109 | 0.106 | 0.060 |  |
| +IA-Select | 0.148  | 0.157 | 0.203 | 0.077 | 0.071 | 0.023 |  |
| $+xQuAD_u$ | 0.208  | 0.243 | 0.334 | 0.097 | 0.096 | 0.061 |  |
| LM         | 0.082  | 0.096 | 0.180 | 0.041 | 0.040 | 0.032 |  |
| +MMR       | 0.083  | 0.096 | 0.183 | 0.041 | 0.039 | 0.032 |  |
| +Q-Filter  | 0.078  | 0.095 | 0.179 | 0.040 | 0.040 | 0.031 |  |
| +IA-Select | 0.081  | 0.086 | 0.127 | 0.037 | 0.027 | 0.014 |  |
| $+xQuAD_u$ | 0.085  | 0.104 | 0.198 | 0.045 | 0.042 | 0.034 |  |

Table 2: Diversification performance using the official TREC 2009 Web track diversity sub-topics.

# **Experimental Evaluation**

|            |              | related sub-queries |       |       |       |                | suggested sub-queries |       |       |       |       |       |       |
|------------|--------------|---------------------|-------|-------|-------|----------------|-----------------------|-------|-------|-------|-------|-------|-------|
|            |              | $\alpha$ -NDCG      |       | IA-P  |       | $\alpha$ -NDCG |                       |       | IA-P  |       |       |       |       |
|            | WSE          | @5                  | @10   | @100  | @5    | @10            | @100                  | @5    | @10   | @100  | @5    | @10   | @100  |
| BM25       |              | 0.159               | 0.186 | 0.288 | 0.075 | 0.071          | 0.059                 | 0.159 | 0.186 | 0.288 | 0.075 | 0.071 | 0.059 |
| $+xQuAD_u$ | A            | 0.154               | 0.184 | 0.282 | 0.070 | 0.072          | 0.057                 | 0.171 | 0.186 | 0.291 | 0.082 | 0.071 | 0.053 |
| $+xQuAD_u$ | В            | 0.154               | 0.182 | 0.279 | 0.073 | 0.076          | 0.054                 | 0.129 | 0.158 | 0.261 | 0.065 | 0.067 | 0.052 |
| $+xQuAD_u$ | $\mathbf{C}$ | 0.161               | 0.182 | 0.285 | 0.076 | 0.076          | 0.057                 | 0.163 | 0.184 | 0.287 | 0.084 | 0.069 | 0.053 |
| DPH        |              | 0.198               | 0.212 | 0.304 | 0.109 | 0.106          | 0.062                 | 0.198 | 0.212 | 0.304 | 0.109 | 0.106 | 0.062 |
| $+xQuAD_u$ | A            | 0.164               | 0.189 | 0.288 | 0.086 | 0.083          | 0.056                 | 0.215 | 0.222 | 0.313 | 0.108 | 0.088 | 0.055 |
| $+xQuAD_u$ | В            | 0.186               | 0.205 | 0.295 | 0.090 | 0.082          | 0.057                 | 0.162 | 0.189 | 0.281 | 0.088 | 0.085 | 0.055 |
| $+xQuAD_u$ | $\mathbf{C}$ | 0.206               | 0.209 | 0.307 | 0.108 | 0.090          | 0.062                 | 0.201 | 0.236 | 0.320 | 0.093 | 0.092 | 0.059 |
| LM         |              | 0.082               | 0.096 | 0.180 | 0.041 | 0.040          | 0.032                 | 0.082 | 0.096 | 0.180 | 0.041 | 0.040 | 0.032 |
| $+xQuAD_u$ | A            | 0.088               | 0.103 | 0.192 | 0.038 | 0.038          | 0.032                 | 0.101 | 0.123 | 0.204 | 0.043 | 0.046 | 0.032 |
| $+xQuAD_u$ | В            | 0.081               | 0.105 | 0.188 | 0.040 | 0.045          | 0.033                 | 0.093 | 0.118 | 0.197 | 0.041 | 0.043 | 0.033 |
| $+xQuAD_u$ | С            | 0.082               | 0.100 | 0.183 | 0.037 | 0.039          | 0.032                 | 0.101 | 0.127 | 0.205 | 0.046 | 0.047 | 0.034 |

Table 3: Diversification performance using related and suggested sub-queries from different WSEs.

# **Experimental Evaluation**

|            | (     | α-NDCC | r<br>z | IA-P  |       |       |  |
|------------|-------|--------|--------|-------|-------|-------|--|
|            | @5    | @10    | @100   | @5    | @10   | @100  |  |
| BM25       | 0.159 | 0.186  | 0.288  | 0.075 | 0.071 | 0.059 |  |
| $+xQuAD_u$ | 0.208 | 0.227  | 0.324  | 0.080 | 0.075 | 0.056 |  |
| $+xQuAD_c$ | 0.176 | 0.206  | 0.296  | 0.066 | 0.066 | 0.048 |  |
| $+xQuAD_w$ | 0.184 | 0.201  | 0.297  | 0.077 | 0.067 | 0.053 |  |
| DPH        | 0.198 | 0.212  | 0.304  | 0.109 | 0.106 | 0.062 |  |
| $+xQuAD_u$ | 0.208 | 0.243  | 0.334  | 0.097 | 0.096 | 0.061 |  |
| $+xQuAD_c$ | 0.169 | 0.204  | 0.299  | 0.073 | 0.073 | 0.053 |  |
| $+xQuAD_w$ | 0.203 | 0.226  | 0.316  | 0.101 | 0.088 | 0.060 |  |
| LM         | 0.082 | 0.096  | 0.180  | 0.041 | 0.040 | 0.032 |  |
| $+xQuAD_u$ | 0.085 | 0.104  | 0.198  | 0.045 | 0.042 | 0.034 |  |
| $+xQuAD_c$ | 0.110 | 0.146  | 0.234  | 0.044 | 0.047 | 0.041 |  |
| $+xQuAD_w$ | 0.078 | 0.095  | 0.187  | 0.039 | 0.039 | 0.033 |  |

Table 4: Diversification performance using different sub-query importance estimators.

#### Conclusion and Future Works

- A novel probabilistic framework for search result diversification
- Thoroughly experimented the effectiveness of the framework
- Future works
  - More effective sub-query generation
  - More sophisticated document retrieval techniques might improve relevance, coverage and novelty components



