Analysis 2A

Luc Veldhuis

1 Maart 2016

Machtreeks

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 op $(x_0 - R, x_0 + R)$
Dan is f oneindig vaak differentieerbaar op $(x_0 - R, x_0 + R)$ en

$$a_n = \frac{f^{(n)}(x_0)}{n!}$$

Bewijs

f is differentieerbaar op $(x_0 - R, x_0 + R)$ dus

$$f'(x) = \sum_{n=1}^{\infty} na_n(x - x_0)^{n-1}$$
 want we kunnen $f(x)$ termsgewijs differentiëren op het convergentie interval.

De machtreeks $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ heeft convergentiestraal R. Dus

$$f'(x)$$
 is ook differentieerbaar op $(x_0 - R, x_0 + R)$ en

$$f''(x) = (f')'(x) = \sum_{n=2}^{\infty} n(n-1)a_n(x-x_0)^{n-2}$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n (x - x_0)^{n-k}$$

Bewijs (vervolg)

Voor $x = x_0$ krijgen we:

$$f'(x) = 1a_1 = a_1$$

$$f''(x) = 2(2-1)a_2 = 2a_2$$

$$f^{(k)}(x) = \frac{k!}{(k-k)!}a_k = k!a_k$$
Dus $a_k = \frac{f^{(k)}(x)}{k!}$

In andere woorden, $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ is de 'Taylor reeks van f(x) rond het punt x_0 '

Taylor reeksen

De N-de partiële som van de Taylor-reeks is:

$$\sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

de N-de graads Taylor polynoom van f in x_0

Vraag

Neem aan dat de functie f oneindig vaak differentieerbaar is in een klein open interval rondom x_0 , dan kunnen we ('formeel') de Taylor-reeks van f rondom x_0 opschrijven, maar convergeert deze ook daadwerkelijk naar f?

Antwoord

De Taylor-reeks convergeert naar f dan en slechts dan als:

$$\lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \sum_{k=n+1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = 0$$

waarbij $R_n(x) = f(x) - P_n(x)$, waarin $P_n(x)$ de Taylor-reeks van de orde n van f.

Voorbeeld

$$f(x) = e^x \text{ en } f^{(k)}(x) = e^x \ \forall k \in \mathbb{N}$$

 $x_0 = 0 \text{ geeft } f^{(k)}(x_0) = f^{(k)}(0) = e^0 = 1$
De Taylor-reeks van $f(x) = e^x$ rondom 0:

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} (x-0)^k = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Converveert $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ naar e^x ? Test of $\lim_{n\to\infty} R_n(x) = 0$.

Schrijf in 'La grange vorm':

$$R_n(x) = f(x) - P_n(x) = \frac{f^{(n+1)}(G)}{(n+1)!}x^{n+1}$$

Met $G \in (0,x)$

Analysis 2A

Voorbeeld (vervolg)

$$\lim_{n \to \infty} R_n(x) = \lim_{n \to \infty} \frac{e^G}{(n+1)!} x^{n+1} = e^G \lim_{n \to \infty} \frac{x^{n+1}}{(n+1)!} = 0$$

Voor alle $x \in \mathbb{R}$

Dus de Taylor-reeks $\sum\limits_{k=0}^{\infty} rac{x^k}{k!}$ convergeert naar $e^x \ \forall x \in \mathbb{R}$, dus

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$
 geldt voor alle $x \in \mathbb{R}$

Toepassingen

Als je de integraal wilt weten van een functie, bijvoorbeeld $\int e^{-x^2} dx$, dan kun je de Taylor-reeks representatie gebruiken:

$$\int e^{-2x} = \int \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{k!} = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)k!}$$