MATH 3424 Tutorial

October 16, 2020

1 Review

Chapter 1 Sec 4.2 F test.

2 Exercises

1. Using the following data set

x_1	x_2	y_1	x_1	x_2	y_1
2	-2	2	1	-1	2
0	1	3	1	3	5
2	3	7	3	3	11
1	4	6	0	5	6
1	6	9	1	8	11

with summary statistics:

Overall

$$n = 10, \sum_{i=1}^{10} x_{i1} = 12, \sum_{i=1}^{10} x_{i2} = 30, \sum_{i=1}^{10} y_{i} = 62,$$

$$\sum_{i=1}^{10} x_{i1}^{2} = 22, \sum_{i=1}^{10} x_{i1}x_{i2} = 31, \sum_{i=1}^{10} x_{i2}^{2} = 174, \sum_{i=1}^{10} x_{i1}y_{i} = 84,$$

$$\sum_{i=1}^{10} x_{i2}y_{i} = 262, \sum_{i=1}^{10} y_{i}^{2} = 486,$$

$$S_{x_{1}x_{1}} = 7.6000, S_{x_{1}x_{2}} = -5.0000, S_{x_{2}x_{2}} = 84.0000, S_{x_{1}y} = 9.6,$$

$$S_{x_{2}y} = 76.0000, S_{yy} = 101.6000.$$

and

$$\left(\begin{array}{ccc} 7.6000 & & -5.0000 \\ -5.0000 & & 84.0000 \end{array} \right)^{-1} = \left(\begin{array}{ccc} 0.136942 & & 0.008151 \\ 0.008151 & & 0.012390 \end{array} \right),$$

When $\beta_0, \, \beta_1$ and β_2 are all unknown, to fit the following model

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + e_i, \qquad e_i \sim_{iid} N(0, \sigma^2)$$

Note that estimations of **centered model** are $\hat{\beta}'_0 = 6.20000$, $\hat{\beta}'_1 = 1.93414$, $\hat{\beta}'_2 = 1.01989$ Give **all** your answers in 4 decimal points.

(a)	Find the Regression Sum of Squ	ares, Residual Su	um of Squares,	Total Sum of	Squares and
	the unbiased estimate of the unk	nown parameter	σ^2		

(b) Fill the ANOVA table for H_0 : $\beta_1 = \beta_2 = 0$ at significance level $\alpha = 0.05$. Write down your conclusion clearly.

Source	Sum of Squares	D.F.	Mean Squares	F value
Regression				
Residual				-
Total			-	-

(c) Test the hypothesis $H_0: \beta_1=1.5\ vs\ H_1: \beta_1>1.5$ at the significant level of $\alpha=0.05$

- (e) Test the hull hypothesis $H_0: \beta_1 = \beta_2 \ vs \ H_\alpha: \beta_1 \neq \beta_2$ at the significant level of $\alpha = 0.05$.
 - i. t-test. Write down the test statistic, the critical value and your conclusion clearly.

ii. F test for testing $H_0: \mathcal{C}\!\beta = \mathcal{J}$. Write down the test statistic, the critical value and your conclusion clearly.

iii. F test in terms of "Increase in Regression Sum of Squares". Write down the test statistic, the critical value and your conclusion clearly.