NavayevaAD 29112024-141536

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 4563 М Γ ц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 3 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 1051 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 5 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 14710 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 3513 МГц до 3615 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра?

Варианты ОТВЕТА:

1) -82 дБм 2) -85 дБм 3) -88 дБм 4) -91 дБм 5) -94 дБм 6) -97 дБм 7) -100 дБм 8) -103 дБм 9) -106 дБм

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.55717 - 0.30047i, s_{31} = -0.3035 - 0.56278i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

1) -36 дБн 2) -38 дБн 3) -40 дБн 4) -42 дБн 5) -44 дБн 6) -46 дБн 7) -48 дБн 8) -50 дБн 9) 0 дБн

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 1. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r+mf_{\Pi q}|$ Какой комбинацией $\{n;m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 5? (Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 1 – Экран анализатора спектра

Варианты ОТВЕТА:

- $1) \ \{24;16\} \quad 2) \ \{10;-18\} \quad 3) \ \{17;33\} \quad 4) \ \{17;-120\} \quad 5) \ \{24;16\} \quad 6) \ \{24;-69\} \quad 7) \ \{10;-69\}$
- 8) {31; -52} 9) {17; -69}

На рисунке 2 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 2 – Двойной балансный смеситель

Частота гетеродина 174 МГц, частота ПЧ 34 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 208 MΓ_{II}
- 870 MΓ_{II}
- 3) 696 МГц
- 4) 556 MΓ_{II}.

Для полного подавления **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 29 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 148 МГц?

Варианты ОТВЕТА:

1) $12.7 \text{ m}\Phi$ 2) $36.5 \text{ m}\Phi$ 3) $24.6 \text{ m}\Phi$ 4) $18.8 \text{ m}\Phi$

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 4.8 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 26 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 8.9 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 3.)

Рисунок 3 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

1) 3.3 дБ 2) 3.9 дБ 3) 4.5 дБ 4) 5.1 дБ 5) 5.7 дБ 6) 6.3 дБ 7) 6.9 дБ 8) 7.5 дБ 9) 8.1 дБ