Ejercicios del tema y su valor:

1-regla trapecio (1p), 2-Simpson 1/3 (2p), 3-Simpson 3/8 (2p), 4-recursiva trapecio (3p), 5-recursiva Simpson 1/3 (3p), 6-Romberg (4p)

Entrega: un ejercicio obligatorio: el nº 1, un ejercicio optativo: a elegir entre los restantes

Integración numérica.

El objetivo es aproximar la integral definida de una función f(x) en un intervalo [a,b] a partir del conocimiento de un número finito, n, de pares x_i , $f(x_i)$

$$\int_{a}^{b} f(x)dx \approx a_{1}f(x_{1}) + a_{2}f(x_{2}) + \dots + a_{n}f(x_{n})$$
(1)

a la ecuación (1) se le llama fórmula de **integración numérica** o de **cuadratura**, a los valores x_i se le llaman **nodos de integración** o **nodos de cuadratura** y los valores a_i se denominan **pesos** de la fórmula.

La deducción de las fórmulas de cuadratura pueden hacerse utilizando un polinomio interpolador $P_n(x)$. Cuando usamos este polinomio para aproximar la función f(x) en [a,b], y luego aproximamos la integral de f(x) por la integral de $P_n(x)$, la fórmula resultante se llama **fórmula de cuadratura de Newton-Cotes**. Si el primer nodo es $x_1 = a$ y el último es $x_n = b$, entonces se dice que la fórmula de Newton-Cotes es **cerrada**.

1. Como aproximar la integral de una función de la que se conoce su forma analítica.

Supondremos que los N nodos x_k que utilicemos son equidistantes $(x_k = x_1 + (k-1)h, k = 1, 2, \dots n)$ y sea $f_k = f(x_k), k = 1, 2, \dots N$.

• regla del trapecio

La regla del trapecio aproxima la función f(x) por un polinomio interpolador lineal P(x) que pasa por los nodos x_1 y x_2

$$P(x) = f_1 \frac{x - x_2}{x_1 - x_2} + f_2 \frac{x - x_1}{x_2 - x_1}$$
 (2)

de forma que la integral en el intervalo [a,b]

$$\int_{a}^{b} f(x)dx \approx \int_{x_{1}}^{x_{2}} P(x)dx = \frac{h}{2} (f_{1} + f_{2})$$
(3)

con $x_1 = a$, $x_2 = b$ y $h = x_2 - x_1$.

Para aproximar la integral de forma más precisa, podemos dividir el intervalo [a,b] en n subintervalos $[x_k, x_{k+1}]$ de anchura común h=(b-a)/n y aplicar la regla del trapecio a cada subintervalo (**regla compuesta del trapecio**)

Fig. 1

$$\int_{a}^{b} f(x)dx = \int_{a}^{x_{2}} f(x)dx + \int_{x_{2}}^{x_{3}} f(x)dx + \dots + \int_{x_{n}}^{b} f(x)dx
\approx \sum_{k=1}^{n} \int_{x_{k}}^{x_{k+1}} P_{k}(x)dx
= \frac{h}{2} (f_{a} + f_{b}) + h \sum_{k=2}^{n} f_{k}$$
(4)

con $f_1 = f_a$, $f_{n+1} = f_b$, $f_k = f(x_k)$, $x_k = a + (k-1)h$.

Fig. 2

El número adecuado de subintervalos que deberemos utilizar dependerá de la precisión deseada.

EJERCICIO 1:

Implementar un programa que realice la integral de una función f(x) en un intervalo [a,b], utilizando la regla del trapecio.

Aplicarlo al caso: $f(x) = x^3 - 3x^2 - x + 3$, a=0 y b=1.35

RESULTADO:

Regla del trapecio

Precisión: 1.000000e-05

La integral entre a= 0.000000 y b= 1.350000 es: 1.508750586

• regla de Simpson 1/3

En este caso, la función f(x) se aproxima por un polinomio P(x) de segundo grado, que debe ser determinado en tres nodos consecutivos x_1 , x_2 y x_3

$$P(x) = f_1 \frac{(x - x_2)(x - x_3)}{(x_1 - x_2)(x_1 - x_3)} + f_2 \frac{(x - x_1)(x - x_3)}{(x_2 - x_1)(x_2 - x_3)} + f_3 \frac{(x - x_1)(x - x_2)}{(x_3 - x_1)(x_3 - x_2)}$$
(5)

La integral en el intervalo [a,b] se calcula por la expresión

$$\int_{a}^{b} f(x)dx \approx \int_{x_{1}}^{x_{3}} P(x)dx = \frac{h}{3} (f_{1} + 4f_{2} + f_{3})$$
 (6)

Fig. 3

Supongamos que dividimos [a,b] en 2n subintervalos $[x_k, x_{k+1}]$ de la misma anchura h=(b-a)/(2n) mediante una partición de nodos equidistantes $x_k = a + (k-1)h$, para $k = 1, 2, \dots, 2n + 1$. La **regla compuesta de Simpson 1/3** se puede expresar por

$$\int_{a}^{b} f(x)dx = \int_{a}^{x_{3}} f(x)dx + \int_{x_{3}}^{x_{5}} f(x)dx + \dots + \int_{x_{2n-1}}^{b} f(x)dx$$

$$\approx \frac{h}{3} (f_{a} + f_{b}) + \frac{2h}{3} \sum_{k=1}^{n-1} f_{2k+1} + \frac{4h}{3} \sum_{k=1}^{n} f_{2k}$$
(7)

EJERCICIO 2:

Implementar un programa que realice la integral de una función f(x) en un intervalo [a,b], utilizando la regla de Simpson 1/3.

Aplicarlo al caso: $f(x) = x^3 - 3x^2 - x + 3$, a=0 y b=1.35

RESULTADO:

Regla de Simpson 1/3

Precisión: 1.000000e-05

La integral entre a= 0.000000 y b= 1.350000 es: 1.508751562

■ regla de Simpson 3/8

Se utiliza un polinomio P(x) de tercer grado para aproximar a la función f(x), determinado en cuatro nodos consecutivos x_1 , x_2 , x_3 y x_4

$$P(x) = f_1 \frac{(x - x_2)(x - x_3)(x - x_4)}{(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)} + f_2 \frac{(x - x_1)(x - x_3)(x - x_4)}{(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)} + f_3 \frac{(x - x_1)(x - x_2)(x - x_4)}{(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)} + f_4 \frac{(x - x_1)(x - x_2)(x - x_3)}{(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)}$$
(8)

La integral en el intervalo [a,b] se calcula por la expresión

$$\int_{a}^{b} f(x)dx \approx \int_{x_{1}}^{x_{4}} P(x)dx = \frac{3h}{8} \left(f_{1} + 3f_{2} + 3f_{3} + f_{4} \right) \tag{9}$$

Fig. 4

Para aplicar la **regla compuesta de Simpson 3/8** dividimos el intervalo [a,b] en 3n subintervalos $[x_k, x_{k+1}]$ de la misma anchura h=(b-a)/(3n) mediante una partición de nodos equidistantes $x_k=a+(k-1)h$, para $k=1,2,\cdots,3n+1$. se puede expresar por

$$\int_{a}^{b} f(x)dx = \int_{a}^{x_{4}} f(x)dx + \int_{x_{4}}^{x_{7}} f(x)dx + \dots + \int_{x_{3n21}}^{b} f(x)dx
\approx \frac{3h}{8} (f_{a} + f_{b}) + \frac{6h}{8} \sum_{k=1}^{n-1} f_{3k+1} + \frac{9h}{8} \sum_{k=1}^{n} (f_{3k-1} + f_{3k})$$
(10)

EJERCICIO 3:

Implementar un programa que realice la integral de una función f(x) en un intervalo [a,b], utilizando la regla de Simpson 3/8.

Aplicarlo al caso: $f(x) = x^3 - 3x^2 - x + 3$, a=0 y b=1.35

RESULTADO:

Regla de Simpson 3/8

Precisión: 1.000000e-05

La integral entre a= 0.000000 y b= 1.350000 es: 1.508751562

reglas recursivas

Consisten en el proceso secuencial de tomar un intervalo, luego dos, luego cuatro, luego ocho y así hasta que alcancemos la precisión deseada.

• regla recursiva del trapecio

Para integrar la función f(x) en el intervalo [a,b], comenzamos evaluando el primer término de la serie, T(1), por

$$T(1) = \frac{b-a}{2}(f_a + f_b) \tag{11}$$

que se corresponde con con la regla del trapecio con incremento h=b-a.

Para las sucesivas aproximaciones, $\{T(j)\}$ con $j=2,3,\ldots$, se divide el intervalo [a,b] en $2^{j-1}=2$ n subintervalos del mismo tamaño $h=(b-a)/2^{j-1}$, estando la fórmula recursiva dada por

$$T(j) = \frac{T(j-1)}{2} + h \sum_{k=1}^{n} f_{2k-1}$$
 (12)

siendo $f_{2k-1} = f(x_{2k-1})$ y $x_{2k-1} = a + (2k-1)h$.

La serie $\{T(j)\}$ converge al valor de la integral, de forma que el último valor de j será aquel que nos proporcione la solución con la precisión deseada.

EJERCICIO 4:

Implementar un programa que realice la integral de una función f(x) en un intervalo [a,b], utilizando la regla recursiva del trapecio.

Aplicarlo al caso: $f(x) = (x^2 + x + 1)\cos(x)$, a=0 y b= $\pi/2$

RESULTADO:

Regla recursiva del trapecio

Precisión: 1.000000e-08

La integral entre a= 0.000000 y b= 1.570796 es: 2.038197425911

• regla recursiva de Simpson 1/3

Sea $\{T(j)\}$ la sucesión de aproximaciones obtenidas con la regla recursiva del trapecio. Construimos la sucesión $\{S(j)\}$, con $j=2,3,\ldots$, definida por

$$S(j) = \frac{4T(j) - T(j-1)}{3} \tag{13}$$

La serie $\{S(j)\}$ converge al valor de la integral, de forma que el último valor de j será aquel que nos proporcione la solución con la precisión deseada.

EJERCICIO 5:

Implementar un programa que realice la integral de una función f(x) en un intervalo [a,b], utilizando la regla recursiva de Simpson 1/3.

Aplicarlo al caso: $f(x) = (x^2 + x + 1)\cos(x)$, a=0 y b= $\pi/2$

RESULTADO:

Regla recursiva de Simpson 1/3

Precisión: 1.000000e-08

La integral entre a= 0.000000 y b= 1.570796 es: 2.038197427324

• regla de integración de Romberg

A partir de las aproximaciones obtenidas con la regla recursiva del trapecio, $\{T(j)\}$, vamos a construir la matriz R de Rombreg de sucesivas mejoras de la siguiente forma:

La primera columna de R es la serie del trapecio

$$R(j,1) = T(j)$$
 $j = 1, 2, ..., N$ (14)

las siguientes columnas se obtienen por la siguiente regla recursiva

$$R(j,k) = \frac{4^{k-1}R(j,k-1) - R(j-1,k-1)}{4^{k-1} - 1} \qquad j \ge k$$
 (15)

el valor de la integral vendrá dada por R(N,N), de forma que determinaremos el N a utilizar de acuerdo con la precisión que se desee obtener.

EJEMPLO 1:

Utilizar el método de integración de Romberg para calcular las sucesivas aproximaciones a la integral definida $\int_0^{\pi/2} (x^2 + x + 1) \cos(x) dx^1$.

En la tabla siguiente se muestran las distintas mejoras obtenidas hasta j=5.

	R(j,1)	R(j,2)	R(j,3)	R(j,4)	R(j,5)
	regla	regla de	tercera	cuarta	quinta
j	del trapecio	Simpson	mejora	mejora	mejora
1	0.78539816339				
2	1.72681265675	2.04061748787			
3	1.96053416656	2.03844133649	2.03829625974		
4	2.01879394807	2.03821387524	2.03819871116	2.03819716277	
5	2.03334734180	2.03819847304	2.03819744623	2.03819742615	2.03819742718

EJERCICIO 6:

Implementar un programa que realice la integral de una función f(x) en un intervalo [a,b], utilizando la regla de Romberg.

Aplicarlo al caso: $f(x) = (x^2 + x + 1)\cos(x)$, a=0 y b= $\pi/2$

RESULTADO:

Regla recursiva de Romberg

Precisión: 1.000000e-08

La integral entre a= 0.000000 y b= 1.570796 es: 2.038197427067

¹ la solución analítica es : $-2 + \frac{\pi}{2} + \frac{\pi^2}{4} = 2.038197427067...$