Biogeography

Introduction to Evolution and Scientific Inquiry Dr. Stephanie J. Spielman; spielman@rowan.edu

Biogeography

 Biogeography is the study of the geographic distribution of species and the processes which give rise to these distributions

• E.g., this is..not right.

Alfred Russell Wallace: "Father" of biogeography

Wallace's Line

Observed distinct fauna (animal) distributions on different sides of this line.

The earliest "biogeographic border"

A few biogeographical patterns

Biodiversity hotspots in the tropics

Islands tend to have fewer species

How do species get to live where they do?

- **Vicariance**: Changes in *geography* drive changes in species distributions
 - The Earth moves you
- Dispersal: A species extends its geographic range into a new area where it did not previously live
 - You move somewhere else

- One of two things will happen when a species ends up in a new geographic region.
 - It adapts to the new environment and survives
 - It fails to adapt to the new environment and goes extinct
 - Hence, we see many adaptations!

Convergent evolution in similar habitats is a signal of <u>adaptation</u>

Convergence often signals adaptation

Hawaiian Drosophila species relationships match order of island origin

 Means that *vicariance* is a major determinant of species distributions

Speciation, vicariance, and phylogenies

Lines indicate new geographic barriers, and letters (x,y,z) represent species

Geologic changes over time by continental drift

Figure 1

Paleoreconstructions of the breakup of Pangea, and Madagascar's subsequent geographic isolation. Redrawn from (Scotese 2000).

A case study: Ratite Bird Biogeography

Ratites are *flightless birds*.

How do they have this geographical distribution?

One hypothesis: distribution by vicariance

If vicariance, the phylogeny would EXACTLY MATCH the geography changes

(Use DNA to make trees)

The phylogeny made from DNA is very different - so dispersal contributed to speciation

Fossil data reveals a Northern hemisphere

(Laurasia) origin

200 million years ago