

## Nível 2: Vamos Manter as Informações?

Rodrigo de O. Alarcon - 202204482321

Vila Mariana Vamos Manter as Informações? – 2022.2 – 3º Semestre

Objetivo da Prática

#### 1º Procedimento - Criando o Banco de Dados

Inserir neste campo, <u>de forma organizada</u>, todos os códigos do roteiro do 1º Procedimento da Atividade Prática, os resultados da execução do código e a Análise e Conclusão:



```
use Loja;
go
-- Cria a tabela Usuario no banco Loja
CREATE TABLE Usuario (id_user int IDENTITY(1,1) PRIMARY KEY,
logon varchar(3) not null,
senha varchar(3) not null,
);
-- Inserindo dados na tabela de Usuário
INSERT INTO Usuario(logon, senha)
VALUES ('op2', 'op2')
select * from Usuario;
 ■ Resultados
■ Mensagens
     id_user
                 senha
           logon
    1
           op1
                 op1
```

2

op2

op2

```
-- Cria a tabela Produto no banco Loja
CREATE TABLE Produto (id_produto int IDENTITY(1,1) PRIMARY KEY,
nome varchar(255) not null,
quantidade integer not null,
preco_venda float
);
-- Inserindo dados na tabela de Produto
INSERT INTO Produto(nome, quantidade, preco_venda)
VALUES ('Limão', 152, 3.88)
DELETE FROM Produto WHERE nome='Maçã';
ALTER TABLE Produto
DROP COLUMN preco_venda;
ALTER TABLE Produto
ADD preco_venda float;
UPDATE Produto
SET preco_venda = 5.25
WHERE nome = 'Banana';
select * from Produto;
```

| ⊞ F | Resultados 🛭 | ¶ Mensao | gens       |             |
|-----|--------------|----------|------------|-------------|
|     | id_produto   | nome     | quantidade | preco_venda |
| 1   | 4            | Banana   | 100        | 5,75        |
| 2   | 5            | Laranja  | 500        | 2,25        |
| 3   | 6            | Manga    | 800        | 4,1         |
| 4   | 7            | Mexirica | 150        | 4,88        |
| 5   | 8            | Uva      | 250        | 9,25        |
| 6   | 9            | Ameixa   | 800        | 6,1         |
| 7   | 10           | Abacaxi  | 85         | 5,88        |
| 8   | 11           | Bacuri   | 250        | 15,25       |
| 9   | 12           | Gravi    | 100        | 25,1        |
| 10  | 13           | Melan    | 65         | 2,88        |
| 11  | 14           | Melao    | 77         | 8,25        |
| 12  | 16           | Limão    | 152        | 3,88        |

```
-- Cria a tabela Pessoa no banco Loja
CREATE TABLE Pessoa (id_pessoa int IDENTITY(1,1) PRIMARY KEY,
nome_pessoa varchar(255) not null,
logradouro varchar(255) null,
cidade varchar(255) null,
estado char(2) null,
telefone varchar(11),
email varchar(255)
);
GO
INSERT INTO Pessoa (nome_pessoa, logradouro, cidade, estado, telefone, email)
VALUES ('Wallace Tavares', 'Rua Ana Augusta', 'São Paulo', 'SP', '11991052555',
'w.tavares@gmail.com'),
  ('Ricardo Alarcon', 'Rua Dr Cristiano', 'São Paulo', 'SP', '11991054554',
'r.alarcon@gmail.com')
INSERT INTO Pessoa (nome_pessoa, logradouro, cidade, estado, telefone, email)
VALUES ('Tintas Carrão', 'Rua Roxa', 'São Paulo', 'SP', '1127814777',
'tintas@outlook.com'),
    ('Pneus Trindade', 'Rua Dom Pedro Silva', 'São Paulo', 'SP', '1127814777',
'p.trindade@gmail.com')
```

#### select \* from Pessoa;

|   | id_pessoa | nome_pessoa                   | logradouro          | cidade    | estado | telefone    | email                        |
|---|-----------|-------------------------------|---------------------|-----------|--------|-------------|------------------------------|
| 1 | 1         | Rodrigo Alarcon               | Rua Dom Pedro Silva | São Paulo | SP     | 11991051556 | oliveira.alarcon@outlook.con |
| 2 | 2         | Pietro Rdorigo Kiraly Alarcon | Rua Dom Pedro Silva | São Paulo | SP     | 11991051556 | pietro.alarcon@gmail.com     |
| 3 | 3         | Cynthia Vanessa               | Rua Dom Pedro Silva | São Paulo | SP     | 11991051556 | cynthia.kiraly@gmail.com     |
| 4 | 5         | Alarcon Designer              | Rua Terra Roxa      | São Paulo | SP     | 1127814777  | alaronDesigner@outlook.com   |
| 5 | 6         | PB Pinturas                   | Rua Dom Pedro Silva | São Paulo | SP     | 1127814777  | pb.pinturas@gmail.com        |
| 6 | 7         | Wallace Tavares               | Rua Ana Augusta     | São Paulo | SP     | 11991052555 | w.tavares@gmail.com          |
| 7 | 8         | Ricardo Alarcon               | Rua Dr Cristiano    | São Paulo | SP     | 11991054554 | r.alarcon@gmail.com          |
| 8 | 9         | Tintas Carrão                 | Rua Roxa            | São Paulo | SP     | 1127814777  | tintas@outlook.com           |
| 9 | 10        | Pneus Trindade                | Rua Dom Pedro Silva | São Paulo | SP     | 1127814777  | p.trindade@gmail.com         |

#### select \* from Pessoa\_Fisica;

| ■ R | esultados 🗐 Me   | nsagens   |                |                  |                |               |
|-----|------------------|-----------|----------------|------------------|----------------|---------------|
|     | id_pessoa_fisica | id_pessoa | tipo_documento | numero_documento | data_expedicao | data_validade |
| 1   | 1                | 1         | CPF            | 022094775-40     | 2003-05-23     | 1900-01-01    |
| 2   | 2                | 2         | CPF            | 022094775-40     | 2003-05-23     | 1900-01-01    |
| 3   | 3                | 3         | CPF            | 022055785-50     | 2013-05-23     | 1900-01-01    |
| 4   | 6                | 7         | CPF            | 155094775-40     | 2003-05-23     | 1900-01-01    |
| 5   | 7                | 8         | CPF            | 033055785-60     | 2013-05-23     | 1900-01-01    |

```
-- Cria a tabela Pessoa Jurídica no banco Loja
CREATE TABLE Pessoa_Juridica (
id_pessoa_juridica int IDENTITY(1,1) not null,
id_pessoa int not null,
tipo_documento varchar(20) not null,
numero_documento varchar(50) not null,
data_expedicao date not null,
data_validade date null,
CONSTRAINT PK_Pessoa_Juridica PRIMARY KEY (id_pessoa_juridica),
CONSTRAINT FK_Pessoa_Juridica FOREIGN KEY (id_pessoa)
REFERENCES Pessoa(id_pessoa)
);
GO
INSERT INTO Pessoa_Juridica (id_pessoa, tipo_documento, numero_documento,
data_expedicao, data_validade)
VALUES (9, 'CNPJ', '21263258000144', '2013/05/23', ''), (10, 'CNPJ', '25263558000199', '2013/05/23', '');
UPDATE Pessoa_Juridica
SET numero_documento = '48686801000999'
WHERE id_pessoa = 10;
```

#### select \* from Pessoa\_Juridica;

|   | id_pessoa_juridica | id_pessoa | tipo_documento | numero_documento | data_expedicao | data_validade |
|---|--------------------|-----------|----------------|------------------|----------------|---------------|
| 1 | 1                  | 5         | CNPJ           | 25686801000183   | 2013-05-23     | 1900-01-01    |
| 2 | 2                  | 6         | CNPJ           | 18263258000146   | 2013-05-23     | 1900-01-01    |
| 3 | 3                  | 9         | CNPJ           | 21263258000144   | 2013-05-23     | 1900-01-01    |
| 4 | 4                  | 10        | CNPJ           | 48686801000999   | 2013-05-23     | 1900-01-01    |

```
-- Movimentação de compra e venda
CREATE TABLE Movimentacao (
id_movimento int IDENTITY(1,1) not null,
id_usuario int not null,
id_pessoa int not null,
id_produto int not null,
quantidade integer not null,
tipo char(1),
valor_unitario float
CONSTRAINT PK_Movimentacao PRIMARY KEY (id_movimento),
CONSTRAINT FK_User FOREIGN KEY (id_usuario)
REFERENCES Usuario(id_user),
CONSTRAINT FK_People FOREIGN KEY (id_pessoa)
REFERENCES Pessoa(id_pessoa),
CONSTRAINT FK_Product FOREIGN KEY (id_produto)
REFERENCES Produto(id_produto)
);
GO
INSERT INTO Movimentacao(id_usuario, id_pessoa, id_produto, quantidade, tipo,
valor_unitario)
VALUES (1, 5, 16, 52, 'E', 5.90)
DELETE FROM Movimentacao WHERE id_pessoa=2;
UPDATE Movimentacao
SET id_pessoa = 5
WHERE id_movimento = 2;
select * from Movimentacao;
```

| ■ Resultados |   |  |            |           |            |            |      |                |
|--------------|---|--|------------|-----------|------------|------------|------|----------------|
|              |   |  | id_usuario | id_pessoa | id_produto | quantidade | tipo | valor_unitario |
| 1            | 1 |  | 1          | 1         | 4          | 20         | S    | 4,75           |
| 2            | 3 |  | 1          | 3         | 6          | 15         | S    | 4,1            |
| 3            | 4 |  | 1          | 6         | 5          | 20         | Е    | 4,75           |
| 4            | 6 |  | 2          | 5         | 5          | 150        | E    | 8,9            |
| 5            | 8 |  | 1          | 5         | 16         | 52         | Е    | 5,9            |

```
-- Efetuar as seguintes consultas sobre os dados inseridos:
-- Dados completos de pessoas físicas.
select * from Pessoa_Fisica;
-- Dados completos de pessoas juridica.
select * from Pessoa_Juridica;
-- Movimentações de entrada, com produto, fornecedor, quantidade, preço unitário
e valor total.
select p.nome_pessoa, m.id_produto, m.id_pessoa, m.quantidade, m.valor unitario,
(m.quantidade * m.valor_unitario) valor_total
from Movimentacao as m
Join Pessoa as p on (m.id_pessoa = p.id_pessoa)
where m.tipo = 'E';
 quantidade
     nome_pessoa
                  id_produto
                           id_pessoa
                                            valor_unitario
                                                       valor_total
      PB Pinturas
                  5
                           6
                                    20
                                             4,75
                                                       95
 2
                           5
                                    150
                                             8,9
                                                       1335
      Alarcon Designer
                  5
 3
      Alarcon Designer
                  16
                                    52
                                             5,9
                                                       306,8
```

-- Movimentações de entrada, com produto, cliente, quantidade, preço unitário e valor total.

select p.nome\_pessoa, m.id\_produto, m.id\_pessoa, m.quantidade, m.valor\_unitario,
(m.quantidade \* m.valor\_unitario) valor\_total
from Movimentacao as m
Join Pessoa as p on (m.id\_pessoa = p.id\_pessoa)
where m.tipo = 'S';



-- Movimentações somatória de quantidade por produto agrupado. select id\_produto, SUM(quantidade) Quantidade, SUM(quantidade \* valor\_unitario) QuantidadeValor from Movimentacao group by id\_produto;



```
-- Valor médio do produto por fornecedor
{\tt select\ id\_produto},\ {\tt SUM}({\tt quantidade}\ *\ {\tt valor\_unitario})\ /\ {\tt SUM}({\tt quantidade})\ {\tt as}
MediaCompra
from Movimentacao
where tipo = 'E'
group by id_produto;
 id_produto MediaCompra
     5
               8,41176470588235
 2
     16
               5,9
-- Valor médio do produto por cliente
select id_produto, SUM(quantidade * valor_unitario) / SUM(quantidade) as
MediaVenda
from Movimentacao as m
where tipo = 'S'
group by id_produto;
```



- a) Como são implementadas as diferentes cardinalidades, basicamente 1X1, 1XN ou NxN, em um banco de dados relacional?
  - Cardinalidade 1 x 1 significa que um relacionamento único de registros entre tabelas. Aqui podemos dizer que o relacionamento é obrigatório.
  - Cardinalidade 1 x N significa que para cada registro de uma tabela podem exister um ou vários registros na tabela relacionada.

Cardinalidade N x X significa que múltiplos registros se relacionam com múltiplos registros.

- b) Que tipo de relacionamento deve ser utilizado para representar o uso de herança em bancos de dados relacionais?
  - 1 x N -> Um para muitos
- c) Como o SQL Server Management Studio permite a melhoria da produtividade nas tarefas relacionadas ao gerenciamento do banco de dados?
  - A produtividade se dá com o atalho das teclas ctrl + espaço, botão direito do mouse para criar tabelas, seleções etc.

#### 2º Procedimento – Alimentando a Base

Inserir neste campo, <u>de forma organizada</u>, todos os códigos do roteiro do 2º Procedimento da Atividade Prática, os resultados da execução do código e a Análise e Conclusão:

#### a) Quais as diferenças no uso de sequence e identity?

Sequence é criado separadamente como uma função interna que calcula a sequência dos campos chaves. Já o identity é atribuído diretamente no código de criação da estrutura do Banco de Dados.

#### b) Qual a importância das chaves estrangerias para a consistência do banco?

Só pode-se cadastrar uma chave estrangeira se houver antes um cadastro da chave primária que faz referência a forenkey.

# c) Quais operadores do SQL pertencem à álgebra relacional e quais são definidos no cálculo relacional?

Álgebra Relacional -> Seleção, Projeção, Renomeação, União, Intersecção, Diferença,

Cálculo Relacional -> Tuplas, Quantificadores, Domínios

#### d) Como é feito o agrupamento em consultas, e qual requisito é obrigatório?

Pelo comando SUM e obrigatoriamente o Group By

Observe que os tópicos acima seguem exatamente o que está na Atividade Prática exigida.

### Conclusão

Podemos avaliar e mensurar a importância de se utilizar um SGBD para manter e manipular os dados que são parte essencial para qualquer sistema e ou aplicativo. Aprender a importância dos relacionamentos entre as tabelas com suas chaves primárias( primaryKey) e estrangeiras( forengkey ).