Informationssysteme und Datenanalyse

Tutorium: Data Warehousing

Tutoren

Fachgebiet Datenbanksysteme und Informationsmanagement
Technische Universität Berlin

http://www.dima.tu-berlin.de/

Überblick

- Heute:
 - □ OLAP vs. OLTP
 - Data Warehouse
 - Multidimensionale Modellierung

OLAP vs. OLTP (I)

- Datenbankanfragen können grob in zwei Gruppen eingeordnet werden: OLTP und OLAP.
- OLTP ("Online Transactional Processing"):
 - Anfragen zur operativen Verwaltung von Daten.
 - Hohes Volumen an kurzen, transaktionalen Anfragen, die (in der Regel) nur wenige Datensätze berühren.
 - Anfragen verändern einzelne Einträge in der Datenbank.
 - Fokus auf schnelle Transaktionen & Datenintegrität.
 - Typische Anwendungen: Kontenverwaltung, Bestellabwicklung, Rechnungssystem, Finanztransaktionen, ...
- OLAP ("Online Analytical Processing"):
 - Anfragen zur Analyse von Daten.
 - Niedriges Volumen an teuren Anfragen, die die gesamte (oder zumindest große Teile) der Datenbank berühren.
 - Anfragen verändern die Datenbank nicht.
 - Fokus auf effizienten Lesezugriff & schnelle analytische Anfragen.
 - Typische Anwendungen: Budgetverwaltung, Reporting, Verkaufsanalyse, Marketingstrategien, ...

OLAP vs. OLTP (II)

	OLTP	OLAP
Typische Operationen	Insert, Update, Delete, Select	Select, Bulk-Inserts
Transaktionen	viele, kurze	Lange Lesetransaktionen
Typische Anfragen	Einfache Anfragen, Primärschlüsselzugriff, Schnelle Abfolgen von Selects/inserts/updates/deletes	Komplexe Anfragen: Aggregate, Gruppierung, Subselects, etc. Bereichsanfragen über mehrere Attribute
Daten pro Operation	Wenige Tupel	Mega-/ Gigabyte
Datenmenge in DB	Gigabyte	Terabyte
Eigenschaften der Daten	Rohdaten, häufige Änderungen	Abgeleitete Daten, historisch & stabil
Erwartete Antwortzeiten	Echtzeit bis wenige Sek.	Minuten
Modellierung	Anwendungsorientiert	Themenorientiert
Typische Benutzer	Sachbearbeiter, Kunde	Management

Aufgabe 1: OLAP vs. OLTP

- Klassifizieren sie die folgenden Anwendungen in OLAP und OLTP:
 - Kassenverwaltung im Supermarkt.
 - Auswirkung von Werbekampagnen auf Verkaufszahlen bestimmen.
 - Ticketwebseite für Konzerte.

- □ Überwachung des Flugraums (Fluglotsen).
- "Wird oft zusammen gekauft" (Amazon).
- Identifizieren der wichtigsten Kunden.

Aufgabe 1: Lösung

- Klassifizieren sie die folgenden Anwendungen in OLAP und OLTP:
 - Kassenverwaltung im Supermarkt.
 - OLTP: Verkäufe sind Transaktionen.
 - Auswirkung von Werbekampagnen auf Verkaufszahlen bestimmen.
 - OLAP: Vergleich von Verkaufsdaten vor & nach der Kampagne.
 - Ticketwebseite f
 ür Konzerte.
 - OLTP: Ticketverkäufe sind Transaktionen.
 - Überwachung des Flugraums (Fluglotsen).
 - OLTP: Viele transaktionale Updates (Flugzeugpositionen).
 - "Wird oft zusammen gekauft" (Amazon).
 - OLAP: Untersuchung von Verkaufsdaten.
 - Identifizieren der wichtigsten Kunden.
 - OLAP: Untersuchung von Verkaufsdaten.

Data Warehouse

- Ein Data Warehouse ist eine zentrale Datenbank in der Daten aus verschiedenen Quellen einheitlich zusammengefasst und für analytische Anfragen bereitgestellt werden.
 - Quellen sind typischerweise OLTP Systeme.
 - Daten werden in regelmäßigen Abständen aus den Quellen extrahiert und dem Data Warehouse hinzugefügt (ETL).
 - Analysten können (lesend!) auf die Datenbasis im Data Warehouse zugreifen um Fragen zu beantworten.

Der OLAP-Würfel

- Die typische Darstellung von Daten in einem Data Warehouse ist der "OLAP-Würfel" (OLAP cube).
 - Einzelne Datenpunkte sind Elemente eines mehrdimensionalen Würfels.
 - Dimensionen sind häufig hierarchisch unterteilt.
- Beispiel: Data Warehouse für Verkaufsdaten.
 - Dimensionen: Verkaufsdatum, Region und Produkt.
 - Zellen enthalten Verkaufspreise eines bestimmten Produktes das zu einem bestimmten Zeitpunkt in einer bestimmten Region verkauft wurde.
 - Beachte: Logische Repräsentation, die meisten Zellen sind leer!

Mehrdimensionale Modellierung

- Der OLAP Würfel ist lediglich eine logische Repräsentation der Daten in einem Data Warehouse.
 - In der Datenbank: Darstellung durch Relationen.
- Das Sternschema ("Star Schema") ermöglichte die Modellierung von OLAP Würfeln mittels relationaler Tabellen:
 - Jede Zelle im OLAP Würfel entspricht einem Eintrag in einer zentralen Faktentabelle.
 - Informationen über Dimensionen sind in Dimensionstabellen referenziert
 - Diese sind sternförmig um die Faktentabelle angeordnet, und per PK-FK mit dieser verknüpft.

Aufgabe 2: Mehrdimensionale Modellierung

- Modellieren Sie den OLAP Würfel von Folie 8 (Verkaufsdaten nach Produkt, Region, Zeit) als Sternschema.
 - Erstellen Sie ein ER Schema, achten Sie auf korrekt gesetzte Primär- und Fremdschlüssel.
- Beachten Sie die folgenden Informationen über die Dimensionen:
 - Jedes Produkt hat einen Namen und gehört einer Produktkategorie an.
 - Jede Region hat einen Namen, ist einem Land zugeordnet und hat einen zuständigen Manager.
 - □ Zeit wird unterteilt in Jahre, Quartale, Wochen, Tage & Stunden.

Aufgabe 2: Lösung

Hinweis: Zeit kann auch als Timestamp modelliert werden. In diesem Fall müssen Funktionen verwendet um die benötigten hierarischen Informationen (Woche/Quartal/Jahr/...) zu erhalten.

Operationen auf dem OLAP Würfel

- Analytische Anfragen auf einem OLAP Würfel sind häufig gruppierte Aggregationen nach den Dimensionen:
 - Gesamtverkäufe nach Quartalen und Abteilungen.
 - □ Wie oft wurde Produkt X in den verschiedenen Regionen verkauft?
 - Was ist das am häufigsten gekaufte Produkt in Deutschland?
- Logisch werden diese Anfragen auf dem OLAP-Würfel durch Operationen dargestellt, die die Form des Würfels verändern.

http://images.tecchannel.de/images/tecchannel/bdb/366351/890.jpg

OLAP Operationen: Slice.

- Schneidet eine Scheibe aus dem Würfel heraus.
 - Erlaubt eine gezielte Analyse für einzelne Werte.

Beispielanfragen:

- Untersuchung der Verkaufszahlen für das 2. Quartal 2004.
- □ Wie oft wurde Produkt X in den verschiedene Regionen verkauft?

https://upload.wikimedia.org/wikipedia/commons/f/ff/OLAP_slicing.png

OLAP Operationen: Dice.

- Erzeugen eines kleineren Würfels, der einen Teilbereich enthält.
 - "Generalisierte" Form der Slice Operation.

Beispielanfragen:

- Untersuchung der Verkaufszahlen für alle Quartale des Jahres 2004.
- Wie oft wurden die Produkte der Kategorie "Accessoires" in den verschiedene Regionen verkauft?

https://de.wikipedia.org/wiki/OLAP-W%C3%BCrfel#/media/File:OLAP_dicing.png

OLAP Operationen: Drill-Up / Drill-Down.

- Verfeinern des Würfels, indem Dimensionen in ihrer Hierarchie genauer dargestellt werden.
 - Erlaubt es allgemeine Aggregate genauer zu untersuchen.

Beispielanfragen:

- Wie oft wurden die verschiedenen Unterprodukte der Kategorie "Accessoires" verkauft?
- In welchem der Länder Europas haben wir den größten Umsatz?

https://de.wikipedia.org/wiki/OLAP-W%C3%BCrfel#/media/File:OLAP_drill_up%26down.png

Aufgabe 3: OLAP Operationen.

Geben Sie – für das Schema aus Aufgabe 2 – Beispielanfragen in SQL für die folgenden Operationen an:

Slice:

 Wie oft wurde das Produkt "Samsung Galaxy 6" in den verschiedenen Regionen und Quartalen verkauft.

Dice:

– Was war der durchschnittliche Umsatz für Produkte der Kategorie "Elektronik" in den deutschen Regionen im letzten Jahr?

□ Drill-Down:

- Wie hat sich der Gesamtumsatz für das Produkt "Samsung Galaxy
 6" im letzten Quartal entwickelt, heruntergebrochen nach:
 - » ... Tagen.
 - » ... Wochen.
 - » ... Monaten.

Aufgabe 3: Lösung

Wie oft wurde das Produkt "Samsung Galaxy 6" in den verschiedenen Regionen und Quartalen verkauft.

```
SELECT COUNT(*), R.Name, Z.Quartal
FROM Verkauf V
   JOIN Region R ON (V.RegionID = R.RegionID)
   JOIN Zeit Z ON (V.ZeitID = Z.ZeitID)
   JOIN Produkt P ON (V.ProduktID = P.ProduktID)
WHERE P.Name="Samsung Galaxy 6"
GROUP BY R.Name, Z.Quartal
```

Was war der durchschnittliche Umsatz für Produkte der Kategorie "Elektronik" in den deutschen Regionen im letzten Jahr?

```
SELECT AVG(V.Betrag), R.Name
FROM Verkauf V
   JOIN Region R ON (V.RegionID = R.RegionID)
   JOIN Zeit Z ON (V.ZeitID = Z.ZeitID)
   JOIN Produkt P ON (V.ProduktID = P.ProduktID)
WHERE P.Produktkategorie="Elektronik"
        AND R.Land="Deutschland"
        AND Z.Jahr=2014
GROUP BY R.Name
```


Aufgabe 3: Lösung

Wie hat sich der Gesamtumsatz für das Produkt "Samsung Galaxy 6" im letzten Quartal entwickelt, heruntergebrochen nach [Tag/Woche/Monat]:

```
□ SELECT SUM(V.Betrag), Z.Tag
  FROM Verkauf V
    JOIN Zeit Z ON (V.ZeitID = Z.ZeitID)
    JOIN Produkt P ON (V.ProduktID = P.ProduktID)
  WHERE P.Name = "Samsung Galaxy 6"
        AND Z.Jahr=2015 AND Z.Quartal=2
  GROUP BY Z.Tag
□ SELECT SUM(V.Betrag), Z.Woche
  FROM Verkauf V
    JOIN Zeit Z ON (V.ZeitID = Z.ZeitID)
    JOIN Produkt P ON (V.ProduktID = P.ProduktID)
  WHERE P.Name = "Samsung Galaxy 6"
        AND Z.Jahr=2015 AND Z.Quartal=2
  GROUP BY Z.Woche
□ SELECT SUM(V.Betrag), Z.Monat
  FROM Verkauf V
    JOIN Zeit Z ON (V.ZeitID = Z.ZeitID)
    JOIN Produkt P ON (V.ProduktID = P.ProduktID)
  WHERE P.Name = "Samsung Galaxy 6"
        AND Z.Jahr=2015 AND Z.Quartal=2
  GROUP BY Z.Monat
```