\mathcal{VLSM}

What is VLSM?

Variable Length Subnet Mask , VLSM is simply subnetting a subnet. VLSM can be thought of as sub-subnetting.

We use VLSM to optimize IP addresses distribution

Why should we use it?

Assume we have 4 group of users with: 1, 8, 16, 4 with normal subnets how many unused IP will we have?

Assume 5 groups: 2, 3, 4, 17, 40!!

How to imagine it!

Remember from last lab that subnets blocks are of fixed size (thanks to the power of 2!!) see this:

For class C:

- 1 bit for subnetting 7 bits for hosts : block size of 128
- 2 bit for subnetting 6 bits for hosts : block size of 64
- **3** bit for subnetting **5** bits for hosts : block size of **32**
- 4 bit for subnetting 4 bits for hosts: block size of 16
- **5** bit for subnetting **3** bits for hosts : block size of **8**
- 6 bit for subnetting 2 bits for hosts: block size of 4

Since we have we have 256 host, we can divide Them to 2 subnets of 128, 128 assume we take One of them and divide it to 2 subnets of size 64, 64 and so on !!

Subnet	Mask	Subnets	Hosts	Block
/26	192	4	62	64
/27	224	8	30	32
/28	240	16	14	16
/29	248	32	6	8
/30	252	64	2	4

Examples (Net-IP: 192.168.10.0)

1: Convert to blocks

2: check if sum is less than 256 (for class C)

3: recommended : start with the bigger one

For report:

Main network 192.168.10.0

Main network 192.168.10.0 >>> ;-)

