DS 4400

Machine Learning and Data Mining I Spring 2022

Alina Oprea
Associate Professor
Khoury College of Computer Science
Northeastern University

Outline

- Regularization
 - A geometric understanding
- Classification
 - K Nearest Neighbors (kNN)
- Cross validation
 - K-fold cross validation
 - Leave one out cross validation
- Linear classifiers

Announcements

- Thank you for survey feedback!
 - Continue providing feedback if you haven't yet via Google Form posted on Piazza.
 - Clear request for more whiteboarding.
 - Request for examples, demos to understand the equations.
 - Will likely reduce supplemental lectures as a result.
- Homework 2 is posted

Ridge regression

Linear regression objective function

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2 + \frac{\lambda}{2} \sum_{j=1}^{d} \theta_j^2$$
model fit to data regularization

- $-\lambda$ is the regularization parameter ($\lambda \geq 0$)
- No regularization on θ_0 !
 - If $\lambda = 0$, we train linear regression
 - If λ is large, the coefficients will shrink close to 0

Lasso Regression

$$J(\theta) = \sum_{i=1}^{N} (h_{\theta}(x_i) - y_i)^2 + \lambda \sum_{j=1}^{d} |\theta_j|$$
Squared
Residuals

Regularization

- L1 norm for regularization
- Results in sparse coefficients
- Issue: gradients cannot be computed around 0
- Method of sub-gradient optimization

Alternative Formulations

Ridge

- L2 Regularization
- $-\min_{\theta} \sum_{i=1}^{N} [h_{\theta}(x_i) y_i]^2 \text{ subject to } \sum_{j=1}^{d} |\theta_j|^2 \le \epsilon$

Lasso

- L1 regularization

$$-\min_{\theta} \sum_{i=1}^{N} [h_{\theta}(x_i) - y_i]^2$$
 subject to $\sum_{j=1}^{d} |\theta_j| \le \epsilon$

Lasso vs Ridge

- Ridge shrinks all coefficients
- Lasso sets some coefficients at 0 (sparse solution)
 - Perform feature selection

Ridge vs Lasso

 Both methods can be applied to any loss function (regression or classification)

Ridge Lasso

Ridge vs Lasso

- Both methods can be applied to any loss function (regression or classification)
- In both methods, value of regularization parameter λ needs to be adjusted
- Both reduce model complexity

Ridge

- + Differentiable objective
- Gradient descent converges to global optimum
- Shrinks all coefficients

Lasso

- Gradient descent needs to be adapted
- + Results in sparse model
- Can be used for feature selection in large dimensions

Classification

Binary or discrete

Suppose we are given a training set of N observations

$$\{x_1, \dots, x_N\}$$
 and $\{y_1, \dots, y_N\}, x_i \in \mathbb{R}^d, y_i \in \{0, 1\}$

Classification problem is to estimate f(x) from this data such that

$$f(x_i) = y_i$$

K Nearest Neighbour (K-NN) Classifier

Algorithm

- For each test point, x, to be classified, find the K nearest samples in the training data
- Classify the point, x, according to the majority vote of their class labels

e.g. K = 3

 applicable to multi-class case

kNN

- Algorithm (to classify point x)
 - Find k nearest points to x (according to distance metric)
 - Perform majority voting to predict class of x
- Properties
 - Does not learn any model in training!
 - Instance learner (needs all data at testing time)

K-Nearest-Neighbours for Multi-class Classification

Vote among multiple classes

How to choose k (hyper-parameter)?

K = 3

Training data

1.2 1.2 0.8 0.6 0.4 0.2 0.2 0.2 0.3 0.5 0.5 1.5 0.5 0.5 0.5 1.5

Testing data

error = 0.0760

error = 0.1340

How to choose k (hyper-parameter)?

K = 7

error = 0.1320

error = 0.1110

How to choose k (hyper-parameter)?

Bias-Variance Tradeoff for kNN

Bias-Variance Tradeoff for kNN

How Overfitting Affects Prediction

- How to pick hyper-parameters without access to testing data?
- Goal: Reduce overfitting and variance

Important: Do not use testing data for hyper-parameter selection even if it is available

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

As K increases:

- Classification boundary becomes smoother
- Training error can increase

Choose (learn) K by cross-validation

- Split training data into training and validation
- Hold out validation data and measure error on this

1. k-fold CV

- Split training data into k partitions (folds) of equal size
- Pick the optimal value of hyper-parameter according to error metric averaged over all folds

2. Leave-one-out CV (LOOCV)

- k=n (validation set only one point)
- Pros: Less bias
- Cons: More expensive to implement, higher variance
- Used for small training sets

Recommendation: perform k-fold CV with k=5 or k=10

Cross-Validation Takeaways

- General method to estimate performance of ML model at testing and select hyper-parameters
 - Improves model generalization
 - Avoids overfitting to training data
- Techniques for CV: k-fold CV and LOOCV
- Compare to regularization

Cross-Validation Takeaways

- General method to estimate performance of ML model at testing and select hyper-parameters
 - Improves model generalization
 - Avoids overfitting to training data
- Techniques for CV: k-fold CV and LOOCV
- Compare to regularization
 - Regularization works when training with GD
 - Cross-validation can be used for hyper-parameter selection
 - The two methods can be combined

Linear classifiers

- A hyperplane partitions space into 2 half-spaces
 - Defined by the normal vector $\; oldsymbol{ heta} \in \mathbb{R}^{\; \mathsf{d+1}}$
 - heta is orthogonal to any vector lying on the hyperplane

Consider classification with +1, -1 labels ...

Linear Classifiers

Linear classifiers: represent decision boundary by hyperplane

$$h_{\theta}(x) = f(\theta^T x)$$
 linear classifier

- If $\theta^T x > 0$ classify "Class 1"
- If $\theta^T x < 0$ classify "Class 0"

All the points x on the hyperplane satisfy: $\theta^T x = 0$

Linear vs Non-Linear Classifiers

Classification Based on Probability

• Instead of just predicting the class, give the probability of the instance being in that class

Consider binary classifier with classes 0 and 1

Advantages: interpretability and confidence of output

Classification Based on Probability

- Instead of just predicting the class, give the probability of the instance being in that class
 - Learn P(Y|X)
- Consider binary classifier with classes 0 and 1
 - -P(Y = 1|X) + P(Y = 0|X) = 1
 - Sufficient to learn P(Y = 1|X)
- Advantages: interpretability and confidence of output

Logistic Regression

Setup

- Training data: $\{x_i, y_i\}$, for i = 1, ..., N
- − Labels: $y_i \in \{0,1\}$

Goals

- Learn P(Y = 1 | X = x)

Highlights

- Probabilistic output
- At the basis of more complex models (e.g., neural networks)
- Supports regularization (Ridge, Lasso)
- Can be trained with Gradient Descent

Interpretation of Model Output

$$h_{\theta}(x)$$
 = estimated $P(Y = 1|X; \theta)$

Example: Cancer diagnosis from tumor size

$$\boldsymbol{x} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{tumorSize} \end{bmatrix}$$
 $h_{\boldsymbol{\theta}}(\boldsymbol{x}) = 0.7$

→ Tell patient that 70% chance of tumor being malignant

Note that:
$$P(Y = 0|X; \theta) + P(Y = 1|X; \theta) = 1$$

Therefore,
$$P(Y = 0|X; \theta) = 1 - P(Y = 1|X; \theta)$$

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\theta}(x)$ should give $P(Y = 1|X; \theta)$
 - Want $0 \le h_{\theta}(x) \le 1$

Logistic Regression

- Takes a probabilistic approach to learning discriminative functions (i.e., a classifier)
- $h_{\theta}(x)$ should give $P(Y = 1|X; \theta)$
 - Want $0 \le h_{\boldsymbol{\theta}}(\boldsymbol{x}) \le 1$
- Logistic regression model:

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = g\left(\boldsymbol{\theta}^{\intercal} \boldsymbol{x}\right)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \boldsymbol{x}}}$$

Logistic Regression Predictions

• Predict Y = 1 if:

LR is a Linear Classifier!

• Predict Y = 1 if:

$$-P[Y = 1 | X = x; \theta] > P[Y = 0 | X = x; \theta]$$

$$-P[Y = 1 | X = x; \theta] > \frac{1}{2}$$

$$\frac{1}{1 + e^{-\theta^T x}} > \frac{1}{2}$$

Equivalent to:

$$\bullet e^{\theta_0 + \sum_{j=1}^d \theta_j x_j} > 1$$

$$\bullet \ \theta_0 + \sum_{j=1}^d \theta_j x_j > 0$$

Logistic Regression is a linear classifier!

Logistic Regression

$$h_{m{ heta}}(x) = g\left(m{ heta}^{\mathsf{T}}x
ight)$$
 $g(z)$ g

- Assume a threshold and...
 - Predict Y = 1 if $h_{\theta}(x) \ge 0.5$
 - Predict Y = 0 if $h_{\theta}(x) < 0.5$

Logistic Regression is a linear classifier!

How to Pick Loss Function?

Maximum Likelihood Estimation (MLE)

Given training data $X = \{x_1, ..., x_N\}$ with labels $Y = \{y_1, ..., y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

Maximum Likelihood Estimation (MLE)

Given training data $X = \{x_1, ..., x_N\}$ with labels $Y = \{y_1, ..., y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

$$Max_{\theta} L(\theta) = P[Y|X;\theta]$$

Assumption: training points are independent

$$L(\theta) = \prod_{i=1}^{N} P[Y = y_i | X = x_i; \theta]$$

General probabilistic method for classifier training

Log Likelihood

 Max likelihood is equivalent to maximizing log of likelihood

Log Likelihood

 Max likelihood is equivalent to maximizing log of likelihood

$$L(\theta) = \prod_{i=1}^{N} P[Y = y_i | X = x_i; \theta]$$

$$\log L(\theta) = \sum_{i=1}^{N} \log P[Y = y_i | X = x_i; \theta]$$

• They both have the same maximum θ_{MLE}

Maximum Likelihood Estimation (MLE)

Given training data $X = \{x_1, ..., x_N\}$ with labels $Y = \{y_1, ..., y_N\}$

What is the likelihood of training data for parameter θ ?

Define likelihood function

$$Max_{\theta} L(\theta) = P[Y|X;\theta]$$

Assumption: training labels are conditionally independent

$$L(\theta) = \prod_{i=1}^{N} P[Y = y_i | X = x_i; \theta]$$

General probabilistic method for parameter estimation

MLE for Logistic Regression

$$P(Y = y_i | X = x_i; \theta) = h_{\theta}(x_i)^{y_i} (1 - h_{\theta}(x_i))^{1 - y_i}$$

How to Train Logistic Regression

Cross-Entropy Loss Objective

$$J(\theta) = -\sum_{i=1}^{N} [y_i \log h_{\theta}(x_i) + (1 - y_i) \log (1 - h_{\theta}(x_i))]$$

Intuition

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

Intuition

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

If
$$y = 1$$

- Cost = 0 if prediction is correct
- As $h_{\theta}(x) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties
 - e.g., predict $h_{m{ heta}}(m{x})=0$, but y = 1

Intuition

$$cost (h_{\theta}(\mathbf{x}), y) = \begin{cases} -\log(h_{\theta}(\mathbf{x})) & \text{if } y = 1\\ -\log(1 - h_{\theta}(\mathbf{x})) & \text{if } y = 0 \end{cases}$$

If y = 0

- Cost = 0 if prediction is correct
- As $(1 h_{\theta}(x)) \to 0$, $\cos t \to \infty$
- Captures intuition that larger mistakes should get larger penalties

Logistic Regression Lab Example

Review

- K nearest neighbors is the first example of classifier
 - Instance learner
- Cross-validation should be performed to
 - Improve generalization and avoid over-fitting
 - Choose hyper parameters (k in kNN)
- Logistic regression is a linear classifier that predicts class probability
 - Cross-entropy objective derived with MLE
 - MLE: probabilistic method of maximum likelihood