

Biomedical Informatics and Systems Modeling Graduate Research Expo

Reza Sameni, PhD

Associate Professor, IEEE Senior Member

Department of Biomedical Informatics

Emory University School of Medicine, Atlanta, GA, USA

Email: <u>rsameni@dbmi.emory.edu</u>

Lab webpage: www.sameni.info

Background & Experience

Major: Biomedical signal processing

Interests: Theories, models, algorithms and devices for vital sign monitoring and analysis

My career:

- Associate Professor of Biomedical Engineering, Shiraz University, 2008-2018
- Invited Researcher, Grenoble Images Speech Signal and Control Lab (GIPSA-lab), 2018-2020
- Associate Professor of Emory University Department of Biomedical Informatics, Since July 2020

Further information: www.sameni.info

My Active Projects

- 1. Adult and fetal cardiography
- 2. Low-cost portable vital sign monitors
- 3. Blind and semi-blind source separation algorithms
- 4. Multimodal data fusion
- 5. Mathematical modeling of the pandemic propagation

My Active Projects

- 1. Adult and fetal cardiography
- 2. Low-cost portable vital sign monitors
- 3. Blind and semi-blind source separation algorithms
- 4. Multimodal data fusion
- 5. Mathematical modeling of the pandemic propagation

Noninvasive Fetal Electrocardiography

Noninvasive fetal cardiography

Objective: Noninvasive extraction of fetal electric, acoustic, or magnetic cardiac activities from a set of sensors (electrodes, antenas, stethoscopes) placed on the maternal abdomen

Noninvasive fetal cardiography

Challenges:

- Weakness of the fetal cardiac signals and low conductivity layers
- Strong interferences and noise
- Fetal movements
- Multiple pregnancies (twins, triplets, ...)

Noninvasive fetal cardiography

Current Research:

- Advanced semi-blind source separation algorithms for fetal ECG/PCG extraction
- Fetal motion and position tracking
- Robust tracking of abnormal and extreme fetal heart rate variations (accelerations/decelerations)

Multimodal Data Fusion

Multimodal Data Fusion

- Multimodality: When a concept is observed/monitored through different modalities (measurement systems).
- Each modality covers certain aspects of the concept, at some level of abstraction
- Different modalities may partially overlap with and complement one another

- **Objective:** Multimodality is used to obtain more knowledge of the concept of interest and to extract its parameters more precisely, using the modality overlaps, diversities, synergies and innovations.
- Challenges: Noise, mismatch/inconsistency, alignment, lags, missing segments, etc.

Example: Multichannel and Multimodal Cardiac Monitoring

Concept: The heart (as an electrophysiological organ)

Parameters of interest: Heart rate, QT-intervals, ST-segment, T/R ratios, S₁ and S₂ heart sounds and murmurs

Modalities: ECG, PCG, Doppler, MCG, Cardiovascular magnetic resonance imaging (CMR), etc.

Methodological Challenges in Multimodal Analysis

Issues of interest: Modality alignment, overlap (redundancies, innovations), recovery (missing segments), fusion

Example: Multichannel ECG and heart rate time series

Misaligned/missing segments/noisy

Required Background and Skills in our Lab

Courses: Stochastic process, Digital signal processing, Biomedical signal processing, Linear algebra, Optimization, Machine Learning

Programming Languages: Matlab, C++, Python

Bonus Skills: Electronics and PCB design, Hardware Description Languages (Verilog or VHDL)

Thank you!

My lab webpage: www.sameni.info

Email: rsameni@dbmi.emory.edu

Robust Fetal Heart Rate Tracking

MHR-FHR crossings

Steep FHR variations

Theoretical Challenges in Multimodal Analysis

Fact: The information capacity of noisy channels/modalities are bounded

Challenge: Selection vs fusion between modalities; when and how?

Stereotypical example: Consider various noisy linear observations from a common source:

$$x_1 = A \cdot s + n_1$$
, $x_2 = B \cdot s + n_2$, $x_3 = C \cdot s + n_3$, ...

Question: For the "optimal" estimation of **s**, which is best:

- 1) Select between the observations?
- 2) Fuse all observations as $[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]$?
- 3) Use subsets: \mathbf{x}_1 , \mathbf{x}_2 , \mathbf{x}_3 , $[\mathbf{x}_1, \mathbf{x}_2]$, $[\mathbf{x}_2, \mathbf{x}_3]$, etc.

Answer: From the estimation and information theoretical viewpoints (Cramér–Rao Lower Bound & Mutual Information), the answer is not trivial, even for the simplest linear data model and Gaussian noise

Where I come from...

And more recently....

