Introduction

Marie-Constance Corsi
Inria NERV team, Paris-Brain Institute, France
marie-constance.corsi@inria.fr

Graz 2024 Workshop
Designing Brain-Computer Interfaces, from theory to real-life scenarios
9 September 2024

Reproducible research in BCI built on a rich Python ecosystem to design FAIR benchmarks with the help of a community

M-C. Corsi 09/09/2024 Introduction 2 / 12

Why open source matters

Reproductibility issues

Freesurfer Popular software for extracting features from MRI

→ Software variation lead to different conclusions

ICA Popular matrix factorization problem

→ Different results with different machines

eigs/eigsh Popular solver for eigenvalues decomposition

→ Solvers can lead to different outcome

Neurophysiological analysis is complex, require advanced processing

⇒ Need for collective efforts to build open science

M-C. Corsi 09/09/2024 Introduction 3 / 12

Reproducible research in BCI built on a rich Python ecosystem to design FAIR benchmarks with the help of a community

M-C. Corsi 09/09/2024 Introduction 4 / 12

MNE

https://github.com/mne-tools/mne-python

History

- based on C code developed for 18 years by Matti Hämäläinen
- Python started in 2010 at MGH, Boston

In a nutshell

- 236 contributors, 100k LOC
- mature codebase, large dev team
- \sim 29 years of efforts (COCOMO)

⇒Mac / Linux / Windows

M-C. Corsi 09/09/2024 Introduction 5 / 12

Scikit-learn – accessible machine learning

http://scikit-learn.org

- Machine learning for all
 - ⇒No specific application domain
 - ⇒No requirements in machine learning
- High-quality Pythonic software library
 - ⇒Interfaces designed for users
- Community-driven development
 - ⇒BSD licensed, very diverse contributors

Easy as py:

```
from sklearn import svm
classifier = svm.SVC()
classifier.fit(X train, Y_train)
Y_test = classifier.predict(X_test)
```

M-C. Corsi 09/09/2024 Introduction 7 / 12

PyRiemann – Riemannian ML for All!

https://pyriemann.readthedocs.io

- Scikit-learn compatible
 - ⇒High-level interface
 - ⇒Wide machine learning models
- Multivariate time series
 - ⇒Biosignals: MEG, EEG, EMG
 - ⇒Radar, sensor networks, ...
- Batteries included
 - ⇒Preprocessing, transfer learning
 - ⇒Documentation, examples

Pattern 6

Mean covariance - hands

Mean covariance - feets

M-C. Corsi 09/09/2024 Introduction 9 / 12

Compare classifiers with metric='riemann'

Outline

Welcome and introduction

Part 1 - Tools to build your pipelines

- Benchmarking EEG pipelines in BCI with MOABB, by Pierre Guetschel
- Braindecode, Deep Learning for EEG Decoding, by Bruno Aristimunha
- Classification features extraction and selection using HappyFeat, by Arthur Desbois

Break

Part 2 - Tools to setup your experiment

- Timeflux presentation, by Pierre Clisson
- c-VEP: an introduction and live demo P. Clisson

Discussion panel and concluding remarks

M-C. Corsi 09/09/2024 Introduction 11 / 12

Useful links

Access to the materials, resources

 https://github.com/Inria-NERV/ Graz24-DesigningBCITools-Workshop

Links to the tools presented during the workshop

- MOABB: https://neurotechx.github.io/moabb/
- Braindecode: https://braindecode.org/stable/index.html
- HappyFeat: https://happyfeat.readthedocs.io/en/latest/
- Timeflux: https://timeflux.io/

M-C. Corsi 09/09/2024 Introduction 12 / 12