1	Assumentation Engagement on What are a second of the state of	2
1.	Asymmetric Encryption: Why can a message encrypted with the	2
	Public Key only be decrypted with the receiver's appropriate Private	
	Key?	
	1. Not true, the message can also be decrypted with the Public	
	Key.	
	1. 2. A so called "one way function with back door" is applied	
	for the encryption.	
	2. The Public Key contains a special function which is used to	
	encrypt the message and which can only be reversed by the	
	appropriate Private Key.	
	•	
	3. 4. The encrypted message contains the function for	
2	decryption which identifies the Private Key.	4
2.	In which way does the Combined Encryption combine symmetric and	4
	asymmetric encryption?	
	1. First, the message is encrypted with symmetric encryption	
	and afterwards it is encrypted asymmetrically together	
	with the key.	
	2. The secret key is symmetrically transmitted, the message	
	itself asymmetrically.	
	3. First, the message is encrypted with asymmetric	
	encryption and afterwards it is encrypted symmetrically	
	together with the key.	
	itself symmetrically.	2
3.	Which is the largest disadvantage of the symmetric Encryption?	2
	1. More complex and therefore more time-consuming	
	calculations.	
	2. Problem of the secure transmission of the Secret Key.	
	3. Less secure encryption function.	
	4. Isn't used any more.	
4.	Which is the principle of the encryption using a key?	3
	1. The key indicates which function is used for encryption.	
	Thereby it is more difficult to decrypt a intercepted	
	message as the function is unknown.	
	2. The key contains the secret function for encryption	
	including parameters. Only a password can activate the	
	key.	
	3. All functions are public, only the key is secret. It contains	
	1 / 2	
	the parameters used for the encryption resp. decryption.	
	4. The key prevents the user of having to reinstall the	
	software at each change in technology or in the functions for	
	encryption.	
5.	A substitution cipher substitutes one symbol with	2
	1. Keys	
	2. Others	
	3. Multi Parties	
	4. Single Party	
L	I .	

6.	An asymmetric-key (or public-key) cipher uses	2
	1. 1 Key	
	2. 2 Key3. 3 Key	
	4. 4 Key	
	1. 1 1809	
7.	A straight permutation cipher or a straight P-box has the same	3
	number of inputs as	
	1. cipher	
	2. Frames	
	3. Outputs	
	4. Bits	
0		
8.	We use Cryptography term to transforming messages to make them secure and immune to	3
	secure and minimie to	
	1. Change	
	2. Idle	
	3. Attacks	
	4. Defend	
9.	The man-in-the-middle attack can endanger the security of the	1
7.	Diffie-Hellman method if two parties are not	
	•	
	1. Authenticated	
	2. Joined	
	3. Submit	
	4. Separate	
10.	The cryptography algorithms (ciphers) are divided into	1
	1. two groups	
	2. four groups	
	3. one single group4. None	
	i. Itolic	
11.	The shift cipheris sometimes referred to as the	1
	1. Caesar cipher	
	2. Julia cipher3. plain cipher	
	4. All of them	
	Thi of them	

12.	One commonly used public-key cryptography method is the	3
	algorithm.	
	1. RSS	
	2. RAS	
	3. RSA	
	4. RAA	
13.	A(n) algorithm transforms cipher text to plaintext.	2
	1. encryption	
	2. decryption	
	3. either (a) or (b)	
	4. neither (a) nor (b)	
14.	The method provides a one-time session key for two	1
	parties.	
	1. Diffie-Hellman	
	2. RSA	
	3. DES	
	4. AES	
15.	A(n) is a keyless substitution cipher with N inputs and M	1
	outputs that uses a formula to define the relationship between the	
	input stream and the output stream.	
	1. S-box	
	2. P-box	
	3. T-box	
	4. none of the above	
16.	A cipher replaces one character with another character.	1
	1. substitution	
	2. transposition	
	3. either (a) or (b)	
	4. neither (a) nor (b)	
17		2
17.	The cipher reorders the plaintext characters to create a	2
	ciphertext.	
	1 anhatitution	
	1. substitution	
	2. transposition	
	3. either (a) or (b)	
	4. neither (a) nor (b)	
-		
1		1

18.	is a round cipher based on the Rijndael algorithm that uses a 128-bit block of data.	4
	a 120-bit block of data.	
	1. AEE	
	2. AED	
	3. AER	
	4. AES	
19.	The attack can endanger the security of the Diffie-	1
	Hellman method if two parties are not authenticated to each other.	
	1. man-in-the-middle	
	2. ciphertext attack	
	3. plaintext attack4. none of the above	
	i. Hole of the above	
20.	A combination of an encryption algorithm and a decryption	1
	algorithm is called a	
	1. cipher	
	2. secret	
	3. key	
	4. none of the above	
21.	AES has different configurations.	3
	The has afficient configurations.	
	1. two	
	2. three	
	2. three3. four	
	2. three	
22.	2. three3. four4. five	1
	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government.	1
	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key	1
	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key	1
	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b)	1
	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key	1
	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b)	2
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b) DES uses a key generator to generate sixteen round keys.	
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b)	
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b) DES uses a key generator to generate sixteen round keys. A) 32-bit	
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b) DES uses a key generator to generate sixteen round keys.	
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b) DES uses a key generator to generate sixteen round keys. A) 32-bit	
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b) DES uses a key generator to generate sixteen round keys. A) 32-bit B) 48-bit C) 54-bit	
22.	2. three 3. four 4. five DES is a(n) method adopted by the U.S. government. 1. symmetric-key 2. asymmetric-key 3. either (a) or (b) 4. neither (a) nor (b) DES uses a key generator to generate sixteen round keys. A) 32-bit B) 48-bit	

24.	The Caesar cipher is acipher that has a key of 3.	3
	1. transposition	
	2. additive	
	3. shift	
	4. none of the above	
25.	ECB and CBC are ciphers.	1
	1. block	
	2. stream	
	3. field	
	4. none of the above	
	in home of the decove	
26.	A(n)is a keyless transposition cipher with N inputs and M	2
	outputs that uses a table to define the relationship between the input	
	stream and the output stream.	
	1. S-box	
	2. P-box	
	3. T-box	
	4. none of the above	
27.	DES was designed to increase the size of the DES key.	2
	1. Double	
	2. Triple	
	3. Quadruple	
	4. none of the above	
20		
28.	DES has an initial and final permutation block and	3
	rounds.	
	1. 14	
	2. 15	
	3. 16	
	4. none of the above	
29.	The DES function has components.	3
29.	The DES function has components.	3
	A) 2	
	B) 3	
	C) 4	
	D) 5	

30.	In a(n) cipher, the same key is used by both the sender and receiver.	1
	 symmetric-key asymmetric-key either (a) or (b) neither (a) nor (b) 	
31.	The cipher is the simplest monoalphabetic cipher. It uses modular arithmetic with a modulus of 26.	3
	 transposition additive shift none of the above 	
32.	In a(n), the key is called the secret key.	1
	 symmetric-key asymmetric-key either (a) or (b) neither (a) nor (b) 	
33.	RSA stands for:	1
	 Rivest Shamirand Adleman Rock Shane and Amozen Rivest Shane and Amozen Rock Shamir and Adleman 	
34.	The S-Box is used to provide confusion, as it is dependent on the unknown key. 1. True 2. False	1
35.	In the DES algorithm, although the key size is 64 bits only 48bits are used for the encryption procedure, the rest are parity bits. 1. True 2. False	2
36.	In the DES algorithm the round key is bit and the Round Input is bits. 1. 48, 32 2. 64,32 3. 56, 24 4. 32, 32	1

27	In the DEC also without the Description of 2011/2 1111	1
37.	In the DES algorithm the Round Input is 32 bits, which is expanded	1
	to 48 bits via	
	1. Scaling of the existing bits	
	2. Duplication of the existing bits	
	3. Addition of zeros	
	4. Addition of ones	_
38.	The Initial Permutation table/matrix is of size	3
	1. 16×8	
	2. 12×8	
	3. 8×8	
	4. 4×8	
39.	In the DES algorithm the 64 bit key input is shortened to 56 bits by	2
	ignoring every 4th bit.	
	1. True	
	2. False	
40.	AES uses a bit block size and a key size of	4
	bits.	
	1. 128; 128 or 256	
	2. 64; 128 or 192	
	3. 256; 128, 192, or 256	
	4. 128; 128, 192, or 256	
41.	SHA-1 produces a hash value of	2
	1. 256 bits	
	2. 160 bits	
	3. 180 bits	
	4. 128 bits	
42.	The big-endian format is one in which	4
'2.	1. the least significant byte is stored in the low-address byte position	•
	2. the least significant byte is stored in the low-address byte position	
	position	
	3. the most significant byte is stored in the high-address byte	
	position	
	4. the most significant byte is stored in the low-address byte	
	position	
43.	Caesar Cipher is an example of	2
43.		<u> </u>
	1 Poly-alphabetic Cipher	
	2 Mono-alphabetic Cipher	
	3 Multi-alphabetic Cipher	
	4 Bi-alphabetic Cipher	
		ì

44.	DES using 56 bits	3
	228 using 50 ons	
	1. Cannot be broken in given time using presently available	
	computers.	
	2. Can be broken only if algorithm is known using even slow	
	computers.	
	3.Can be broken by presently available high speed computers.	
	4. It is impossible to break.	
45.	Triple DES	1
	11.p. 2 = 2	
	1. Cannot be broken in given time using presently available	
	computers.	
	2. Can be broken only if algorithm is known using even slow	
	computers.	
	2 Can be broken by presently evoilable high aread computers	
	3.Can be broken by presently available high speed computers.	
	4. It is impossible to break.	
46.	The Acronym DES stands for	2
	1.Digital Evaluation System.	
	2.Digital Encryption System.	
	2.5: :(15	
	3.Digital Encryption Standard.	
	4.Double Encryption System.	
47.	The Acronym AES stands for	1
.,.	The Heronym 1228 Stands for	
	1.Advanced Encryption Standard	
	2.Advanced Encryption System.	
	3.Advanced Evaluation System.	
	4. Advanced Evaluation Standard	
48.	Triple DES	2
10.		_
	1. Is a Symmetric Key Encryption method.	
	2.Gurantees Excellent Security	
	3.Is implementable as hardware VLSI chip.	
	4 Is a muhlia leave an anymtic a acceth a d	
	4.Is a public key encryption method	