dog I saw at the airport

COMP1511 Week 2!

H13A: 1pm – 4pm

Tutors: Me + Vivian Zheng

My GitHub:

https://github.com/william-o-s/unsw_comp1511_tutoring

The Agenda

Calculating Values (5 mins)

Sample Arithmetic (10 mins)

Diagramming (20 mins)

Coding Exercise (20 mins)

In groups, recall the operators for your category...

...did you get them all?

Oh, and what's the difference between these two?

Recall the variable types we've seen so far...

double

int

char

...and recall the values of certain expressions...

...so let's practice with some possible calculations

$$7 / 2 = ?$$

$$(3.0 / 2) + 1 = ?$$

$$'a' + 5 = ?$$

$$'F' - 'A' + 'a' = ?$$

Let's practice diagramming our thought processes!

https://app.diagrams.net/

Let's try making a flowchart for determining leap years...

Rules of leap years:

- 1. Years divisible by 4 are leap years (e.g. 1904)
- 2. Except, years divisible by 100 are **NOT** leap years (e.g. 1900)
- 3. Except, years divisible by 400 are ALWAYS leap years (e.g. 2000)

...this is how I would do it.

Try approaching problems with a methodology to start...

...then in pairs, attempt this programming exercise

In pairs, attempt the programming exercise

Problem:

- 1. Scan in two integers **a** and **b**
- 2. If the first integer is less than the second, print out a short error message **using a procedure**
- 3. If the second integer is 0, print out a different short error message
- 4. If the first integer is larger than the second, prints
 - a / b and (a * 1.0) / (b * 1.0)