My knitr demo

Michael Ash

November 16, 2021

You can test if **knitr** works with this minimal demo. OK, let's get started with some boring random numbers:

```
set.seed(1121)
(x=rnorm(20))

## [1] 0.1449583 0.4383221 0.1531912 1.0849426 1.9995449
## [6] -0.8118832 0.1602680 0.5858923 0.3600880 -0.0253084
## [11] 0.1508809 0.1100824 1.3596812 -0.3269946 -0.7163819
## [16] 1.8097690 0.5084011 -0.5274603 0.1327188 -0.1559430

(xbar <- mean(x)); (xvar <- var(x))

## [1] 0.3217385
## [1] 0.5714534</pre>
```

The first element X_1 of x is 0.1449583. Rounded to two decimal places, the mean is 0.32 and the variance is 0.57.

Here are the annotated results of a couple of coin tosses (at this point we hand random-number generation back to the system:

```
set.seed(Sys.time())
```

The coin comes up heads.

Here is the result of another coin toss. The coin comes up tails instead.

A boring plot in ggplot can be see in Figure 1.

Summary statistics are in Table 1.

```
stargazer(cars, title="Summary statistics", label="tab:summary")
```

And the regression results are in Table 2

```
stargazer(model1, model2, model3, title="Regression results", label="tab:regression")
```


Table 1: Summary statistics

Statistic	N	Mean	St. Dev.	Min	Pctl(25)	Pctl(75)	Max
$_{ m speed}$	50	15.400	5.288	4	12	19	25
dist	50	42.980	25.769	2	26	56	120

Table 2: Regression results

	Dependent variable: dist					
	(1)	(2)	(3)			
speed	3.932***	0.913	6.801			
-	(0.416)	(2.034)	(6.801)			
$I(\mathrm{speed} \hat{\ } 2)$		0.100	-0.350			
,		(0.066)	(0.500)			
$I(\mathrm{speed} \hat{\;\;} 3)$			0.010			
,			(0.011)			
Constant	-17.579**	2.470	-19.505			
	(6.758)	(14.817)	(28.405)			
Observations 50		50	50			
\mathbb{R}^2	0.651	0.667	0.673			
Adjusted R^2 0.644		0.653	0.652			
Residual Std. Error	$15.380~({ m df}=48)$	$15.176~({ m df}=47)$	$15.205 \; (\mathrm{df} = 46)$			
F Statistic	89.567*** (df = 1; 48)	$47.141^{***} (df = 2; 47)$	$31.584^{***} (df = 3; 46)$			

Note:

*p<0.1; **p<0.05; ***p<0.01

Table 3: Regression results with new names

	(1)	(2)	(3)			
speed	3.932***	0.913	6.801			
	(0.416)	(2.034)	(6.801)			
Speed-squared		0.100	-0.350			
		(0.066)	(0.500)			
Speed-cubed			0.010			
•			(0.011)			
Constant	-17.579**	2.470	-19.505			
	(6.758)	(14.817)	(28.405)			
Observations	50	50	50			
\mathbb{R}^2	0.651	0.667	0.673			
Adjusted R^2 0.644		0.653	0.652			
Residual Std. Error $15.380 \text{ (df} = 48)$		$15.176 \; (\mathrm{df} = 47)$	$15.205 \; (\mathrm{df} = 46)$			
F Statistic	$89.567^{***} (df = 1; 48)$	$47.141^{***} (df = 2; 47)$	$31.584^{***} (df = 3; 46)$			

Note:

*p<0.1; **p<0.05; ***p<0.01

Do the chunks work? You should be able to compile the LATEX document.