Probability

Exercice 1:

Let (Ω, \mathcal{T}, P) be a probability space.

Show that for all sequences $(A_n)_{n\in\mathbb{N}}$ of events we have $P(\bigcup_{n\in\mathbb{N}}A_n)\leq \sum_{n\in\mathbb{N}}P(A_n)$ where the right sum can diverge.

Exercice 2:

Let (Ω, \mathcal{T}, P) be a probability space.

- 1. Show that for all sequences $(A_n)_{n\in\mathbb{N}}$ of growing events by inclusion, the sequence of $P(A_n)$ converges and $\lim_{n\to\infty} P(A_n) = P(\cup_{n\in\mathbb{N}} A_n)$
- 2. Show for all decreasing sequences (by inclusion) $(A_n)_{n\in\mathbb{N}}$ of events, the sequence $P(A_n)$ converges and $\lim_{n\to\infty} P(A_n) = P(\cap_{n\in\mathbb{N}} A_n)$

Exercice 3:

Let $\{B_1, \ldots, B_n\}$ be a partition of Ω such that for all i, $P(B_i) > 0$. Show that for all events A we have $P(A) = \sum_{i=1}^{n} P(A \mid B_i) P(B_i)$. Keeping B_i 's disjoint but not a partition of Ω , what condition condition can we add for this to remain true?

Exercice 4:

An urn contains b black balls, w white balls and r red balls. We pick two balls, what is the probability of the event "the second ball drawn is black"?

Exercice 5:

We consider two six-sided dice, one is balanced, the other is rigged(loaded dice). We denote p_i the probability that the rigged die falls on the face i ($i \in \{1, 2, 3, 4, 5, 6\}$).

- 1. Describe the probability space.
- 2. (a) What is the probability of rolling a double?
 - (b) What is the probability that the sum of the dice is equal to 7?

Exercice 6:

Let $\{B_1, \ldots, B_n\}$ be a partition of Ω such that $P(B_i) > 0$ for all i. Then for every event A such that P(A) > 0 we have

$$P(B_i \mid A) = \frac{P(A \mid B_i)P(B_i)}{\sum_{j=1}^{n} P(A \mid B_j)P(B_j)}$$

Exercice 7:

"Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice?" -Parade magazine in 1990

Exercice 8:

We throw three balanced dice.

- 1. What is the most likely sum of the three dice?
- 2. What is the expected value of the sum?

Exercice 9:

How big a group of people needs to be in order for the probability of two of them having the same birth day is greater then half?

Exercice 10:

Let $s, n \in \mathbb{N}$, s < n and K_n the complete graph on n vertices. We randomly and independently color all the edges by either red or blue with the probability 1/2.

- 1. What is the probability for of a complete subgraph on s vertices to be monochromatic.
- 2. Show that for $n = \lfloor 2^{(s-1)/2} \rfloor$ the probability for K_n to have a monochromatic complete subgraph of size s is less then 1.
- 3. Conclude that the Ramsey number $R(s,s) > \lfloor 2^{(s-1)/2} \rfloor$.

Exercice 11:

Let $f: E \to F$, show that

- 1. $f^{-1}[F] = E$ and $f^{-1}[\emptyset] = \emptyset$.
- 2. $f^{-1}[F \setminus B] = E \setminus f^{-1}[B]$ for all $B \subseteq F$.
- 3. $f^{-1}[\cup_n B_n] = \cup_n f^{-1}[B_n]$ and $f^{-1}[\cap_n B_n] = \cap_n f^{-1}[B_n]$.

Exercice 12:

Let U and V two independent random variables on the same probability space with values in $\{-1,1\}$ and the same probability distribution defined by :

$$P(U = -1) = \frac{1}{3}$$
 and $P(U = 1) = \frac{2}{3}$

The X and Y the random variables defined by : X = U et Y = UV

- 1. What is the distribution of the random variable (X, Y)?
- 2. Are X and Y independent?
- 3. Are the variables X^2 and Y^2 independent?

Exercice 13:

Let X and Y be two independent random variables defined on the same probability space of the same geometric distribution $p(P(X = k) = p(1 - p)^k)$.

- 1. Calculate $P(Y \ge X)$, for $p = \frac{1}{2}$.
- 2. Calculate P(Y = X), for $p = \frac{1}{2}$.

We define the random variables U and V by

$$U = \max(X, Y)$$
 and $V = \min(X, Y)$

- 3. For all $u \leq v \in \mathbb{N}$ calculate $P(U \leq u, V \geq v)$.
- 4. Calculate the distribution of the random variable U.

Exercice 14:

Turán's theorem: Let G be any graph with n vertices, such that G is K_{t+1} -free. Then the number of edges in G is at most:

$$\left(1 - \frac{1}{t}\right) \frac{n^2}{2}$$

2

Denote by d(v) the degree of the vertex v.

1. Let < be a uniformly chosen total order on V. Define :

$$I = \{ v \in V \mid \{v, u\} \notin E \Rightarrow v < u \}$$

For $v \in V$, what is the probability that $v \in I$.

- 2. What is the expected value of |I|?
- 3. Denote by $\omega(G)$ the size of largest complete sub graph of G. Show that $\omega(G) \geq \sum_{v \in V} \frac{1}{n d(v)}$.
- 4. Recall, Cauchy–Schwarz inequality $(\sum a_i b_i)^2 \leq (\sum a_i^2)(\sum b_i^2)$. Show that:

$$n^2 \le \omega(G) \sum_{v \in V} (n - d(v))$$

and conclude the theorem.

Exercice 15:

We suppose that $P: \mathbb{N} \to [0,1]$ is a probability distribution. This equates to the having a sequence of positive numbers $(p_n)_{n\in\mathbb{N}}$ such that $\sum_n p_n = 1$, with $p_n = P(n)$.

- 1. Prove that there is no probability distribution on \mathbb{N} that makes the drawing of an integer equiprobable.
- 2. Suppose $p_n = \frac{1}{2^{n+1}}$.
 - (a) Demonstrate that we have a probability distribution on \mathbb{N} .
 - (b) Calculate the probability of the set of even numbers and the set of odd numbers.
- 3. Assume we have a probability distribution on \mathbb{N} satisfying the following properties:

$$\forall a \in \mathbb{N} \setminus \{0\}, P(a\mathbb{N}) = \frac{1}{a}.$$

Prove that if a and b are co-prime, the events "all multiples of a" and the event "all multiple of b" are independent.

Exercice 16:

Information is transmitted in a population. Each individual transmits the correct information with probability p, and the negation of the information with probability 1-p. Let p_n be the probability that the information is correct after n repetitions.

- 1. Calculate value p_n as a function of p and n.
- 2. Calculate $\lim_{n} p_n$.

Exercice 17:

A smoker has two boxes of matches with the same capacity in each of his two pockets. When he needs a match, he chooses equally one of his pockets and takes the match in the corresponding box. We denote by n the number of matches initially in each box.

- 1. Let r be a number between 0 and n. Denote by p_r the probability that when for the first time the smoker finds that one box is empty, the other contains exactly r matches. Calculate p_r .
- 2. For r between 0 and n, q_r is the probability that one box will be emptied, while the other contains exactly r matches. Calculate the probability q_r .
- 3. What is the probability q that the first empty box is not the first box that the smoker finds empty.

Exercice 18:

If M is a monoid and K, L two subsets of M, we denote by $L^{-1}K = \{x \in M \mid \exists y \in L, yx \in L\}$ K} and $KL^{-1} = \{x \in M \mid \exists y \in L, xy \in K\}.$

1. Let L a sub monoid of Σ^* . Show that L is a free monoid iff $L^{-1}L \cap LL^{-1} = L$.

Solution:

Suppose that L is free on the set B. Let $m \in L^{-1}L \cap LL^{-1}$. There exist p,q in L s.t. $mq, pm \in L$. Moreover since $(pm)q = p(mq) \in L$, we get that $m \in L$

Conversely, suppose that $L^{-1}L \cap LL^{-1} = L$. Let B be the minimal generating parts of L (The elements of L which are not a product of two distinct elements, which are not 1). Let $u_1 ldots u_m = v_1 ldots v_n$ with u_i and v_j in B. Assume for example that in Σ^* , $u_m = wv_n$, that $u_1 \dots u_{m-1}w = v_1 \dots v_{n-1}$, then $w \in L^{-1}L \cap LL^{-1} = L$. By the minimialty of elements in B of L, w = 1. we conclude by recurrence.

- 2. Let L be a sub-monoid of Σ^* . We define by recursion:
 - $M_0 = L$
 - $M_{n+1} = \langle M_n^{-1} M_n \cap M_n M_n^{-1} \rangle$

Demonstrate that this is a well defined increasing sequence and that $\cup_N M_n$ is the smallest free sub-monoid containing L.

Solution:

We note that for any $L, L \subset M^{-1}M \cap MM^{-1}$ $(\forall u \in M, 1u \in M \text{ and } u1 \in M)$ therefore $(M_n)_{n=0}^{\infty}$ is well defined increasing sequence of monoids. Hence $M=\cup_n M_n$ is a monoid.

We show that $M^{-1}M \cap MM^{-1} \subset M$: let $u \in \Sigma^*$ s.t. there exists v and w in M s.t. $vu \in M$ and $uv \in M$. $M = \bigcup_n M_n$, hence there exists an integer l and m s.t. $v \in M_l$ and $w \in M_m$. For $n = \max(l, m)$, v and w are in M_n , hence $u \in M_n^{-1}M_n \cap M_nM_n^{-1} \subset$ $M_{n+1} \subset M$. Therefore M is free.

Finally, if $N \subset P$ is an inclusion of sub-monoids, with P free, we have $N^{-1}N \cap NN^{-1} \subset$ $P^{-1}P \cap PP^{-1} = P$, so $\langle N^{-1}N \cap NN^{-1} \rangle \subset \langle P \rangle = P$, hence if P contains L, it contains all M_n and therefore M:M is the smallest free sub monoid containing L.