SISTEMA DIGITALAK DISEINATZEKO OINARRIAK

ALJEBRA BOOLEARRA

1. Gaia

- Aljebra Boolearra: axiomak, teoremak eta oinarrizko eragiketak.
- Funtzio logikoak.

Adierazpena.

Minimizazioa.

Zehaztu gabeko gaiak.

Zergatik beharrezkoa?

- Zirkuitu logikoen oinarrizko teoria matematikoa.
- Zirkuituen seinaleen balio-aldaketek aljebra boolearraren axiomak eta teoremak jarraitzen dituzte.
- Erreferentziak:

1854, G. Boole matematikaria 1938, C.E. Shannon ingeniaria

Aljebra Boolearraren osagaiak

- osagai-multzoa, B
- bi eragiketa: + edo *or*; · edo *and*
- axiomak

Axiomak

A1 axioma

 $\forall a, b \in B \rightarrow a + b \in B$

 $\forall a, b \in B \rightarrow a \cdot b \in B$

A2 axioma

 $\exists 0 \in B / \forall a \in B \rightarrow a + 0 = a$

 $\exists 1 \in B / \forall a \in B \rightarrow a \cdot 1 = a$

Axiomak

A3 axioma

$$\forall a, b \in B \rightarrow a + b = b + a$$

$$\forall a, b \in B \rightarrow a \cdot b = b \cdot a$$

A4 axioma

$$\forall a,b,c \in B \rightarrow a \cdot (b+c) = (a \cdot b) + (a \cdot c)$$

$$\forall a,b,c \in B \rightarrow a+(b\cdot c)=(a+b)\cdot(a+c)$$

Axiomak

A5 axioma

 $\forall a \in B \exists \bar{a} \in B / a + \bar{a} = 1$

 $\forall a \in B \ \exists \ \bar{a} \in B \ /a \cdot \bar{a} = 0$

A6 axioma

 $\exists a,b \in B \mid a \neq b$

Teoremak

T1 teorema

$$\forall a \in B \rightarrow a + a = a$$

$$\forall a \in B \rightarrow a \cdot a = a$$

T2 teorema

$$\forall a \in B \rightarrow a+1=1$$

$$\forall a \in B \rightarrow a \cdot 0 = 0$$

Teoremak

T3 teorema

$$\forall a, b \in B \rightarrow a + (a \cdot b) = a$$

$$\forall a, b \in B \rightarrow a \cdot (a+b) = a$$

T4 teorema

$$\forall a \in B \rightarrow \bar{a} = a$$

Teoremak

T5 teorema

$$\forall a,b,c \in B \rightarrow (a+b)+c=a+(b+c)$$

 $\forall a,b,c \in B \rightarrow (a\cdot b)\cdot c=a\cdot (b\cdot c)$

T6 teorema

$$\forall a,b \in B \rightarrow \overline{a+b} = \overline{a} \cdot \overline{b}$$

 $\forall a,b \in B \rightarrow \overline{a \cdot b} = \overline{a} + \overline{b}$

Teoremak

T7 teorema

$$\forall a, b \in B \rightarrow a + \overline{a} \cdot b = a + b$$

$$\forall a, b \in B \rightarrow a \cdot (\overline{a} + b) = a \cdot b$$

Dualtasun-printzipioa

Berdintza orok bere duala dauka. Duala lortzeko:

eragiketak trukatu konstanteak trukatu

Kommutazio-aljebra

 $B = \{0,1\}$ denean

Eragiketa logikoak: definizioa

Batuketa log. edo or (+) Biderketa log. edo and (·)

а	b	a or b
0	0	0
0	1	1
1	0	1
1	1	1

а	b	a and b
0	0	0
0	1	0
1	0	0
1	1	1

Aljebra boolearraren axiomak betetzen dituzte. Ondorioz, baita teoremak ere.

Oinarrizko eragiketa logikoak

Ezeztapena edo not ()

a	not a				
0	1				
1	0				

Osagarria ere deitzen zaio. A5 axiomatik ondorioztatzen da.

Funtzio bat, aplikazio bat da: $\{0,1\}^n \longrightarrow \{0,1\}$

n: aldagai kopurua

Aldagai bakarreko funtzioak:

a	f_1	f_2	f_3	f_4
0	0	0	1	1
1	0	1	0	1

Funtzio logikoak

Bi aldagaiko funtzioak:

a	b	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

Funtzio logikoak

{not, and, or} funtzioek osatzen dute sistema osoa deitzen dena.

Adibidea: xor funtzioa haien bitartez

Funtzio logikoen adierazpena

Bi modu:

- egia-taula
- adierazpen aljebraikoa

Nola lortu batetik bestea?

Funtzio logikoen adierazpena

- egia-taula lortzea: erraza. Eragiketak pixkanaka egin definizioetatik abiatuta.
- adierazpen aljebraikoa: ez da hain sinplea bidea ikustea.

Funtzio logikoen adierazpena

Definizioak:

- minterm-a
- maxterm-a

Funtzio logikoen adierazpena

Minterm-ak eta maxterm-ak:

c	b	a	mintermak m _i	maxtermak Mi
0	0	0	m ₀ : $\overline{\mathbf{c}} \cdot \overline{\mathbf{b}} \cdot \overline{\mathbf{a}}$	M_0 : $c + b + a$
0	0	1	m_1 : $\overline{\mathbf{c}} \cdot \overline{\mathbf{b}} \cdot \mathbf{a}$	M_1 : $c + b + \overline{a}$
0	1	0	m2: c ⋅ b ⋅ a	M ₂ : $c + \bar{b} + a$
0	1	1	m3: c ⋅ b ⋅ a	M ₃ : $c + \overline{b} + \overline{a}$
1	0	0	m4: c ⋅ b ⋅ a	M4: $\overline{c} + b + a$
1	0	1	m5: c ⋅ b ⋅ a	M_5 : $\overline{c} + b + \overline{a}$
1	1	0	m ₆ : c ⋅ b ⋅ a	M_6 : $\overline{c} + \overline{b} + a$
1	1	1	m7: c ⋅ b ⋅ a	M_7 : $\overline{c} + \overline{b} + \overline{a}$

Funtzio logikoen adierazpena

Adierazpen kanonikoak:

- 1 balioa duten *minterm*-en batuketa
- 0 balioa duten *maxterm*-en biderketa

Baliokideak dira biak.

Adierazpenaren minimizazioa

Adierazpen minimoa lortzeko bi bide:

- Axiomak eta teoremak aplikatu
- Karnaugh-en mapak erabili

Minimizazioa: Axiomak + teoremak

Adibidea (1.1. (3) ariketa, 35 orr.):

$$h = a(b+c(b+a))$$

Minimizazioa: K-mapak

- Metodo grafikoa
- Gogoratzeko erraza

Minimizazioa: K-mapak

Egia-taula grafikoki adierazi

Gelaxka bakoitzari *minterm* bat dagokio

ba

b

Minimizazioa: K-mapak

- 1 balioa duten "alboko" gelaxkak elkartu (2, 4, 8, 16ko taldetan)
- Elkartze bakoitzeko, termino bat: aldatzen ez diren aldagaiek osaturiko terminoa
- Funtzioaren adierazpen minimoa: aurreko urratsean lortutako termino guztien batura

Zehaztu gabeko gaiak

- Funtzioaren balioa erabat definitu gabea duten aldagai-konbinazioak.
- Bi arrazoi posible:
 - Konbinazio hori ez da sekula gertatuko
 - Ez du axolarik zer balioa duen funtzioak konbinazio horretan (bi balioak "onartzen" dira).

Zehaztu gabeko gaiak

Adierazteko: X edo – ikurrak.

$$f=\Sigma(1,7,9,11)+d(3,5,12)$$

Sinplifikatzeko erabili