UR3 CobotOps Automation Analysis

Deirdre Boland 28 Mar 2025

Introduction and Dataset

- Robotics/automation: Working with robotics and automation creates workflow efficiencies.
 - □ To get the most out of your robotic system and optimise planning, you must understand its operation and mitigate for issues.
- Dataset: UR3 CobotOps Dataset time-series data from the UR3 cobot
 - offers insights into operational parameters and faults.
 - Currents, speeds across joints (J0-J5), gripper/tool current, operation cycle count, protective stops, and grip losses
- Objective: Explore data and investigate feasibility of error prediction
- Pre-processing: All features continuous except cycle, grip lost and protective stop
 - Only continuous features had missing data filled missing data with data from previous row
 - Grip lost changed False to 0 and True to 1
 - Extracted timestamp, date and time data in correct format

- Dataset Reference: M. Tyrovolas, K. Aliev, D. Antonelli, and C. Stylios. "UR3 CobotOps," UCI Machine Learning Repository,
- 2024. https://doi.org/10.24432/C5J891
- Video reference: Robotics applications by Universal Robots - Easy Automation with Collaborative Robots [2020]
- Collaboration at all levels experience
 Universal Robots in 21 applications at
 Hanover Fair 2017

EDA: Current and speed

- Current and speed centralised on zero with negative and positive indicating or controlling cobot arm movement in different directions
- Each arm J0-J5 and the tool/gripper has it's own pattern
- Grip loss or protective stop faults happen less in negative range

*EDA:Exploratory data analysis

EDA: Cycles and faults over time

- Major stop in operations from approx 09:00 until 14:00
- Cycles out of sync of expected after this
- Could be planned or human intervention and re-planning due to robot issues
- Generated new features
 - New cycle such that cycles are continuous with timestamp
 - Likely errors that cycles were skipped/repeated
- Cycle timepoint sec
 - Compare cycle stages as cycles are varying durations

EDA: Cycle Summary – Temperature, duration, post cycle & error behaviour

- · Generated summary table for each cycle
 - 2 outlier data rows removed
- Break post cycle consistently approx 1sec
- Automation controlled unless human interference (deleted outlier)
- Expected might be a relationship of higher error counts and longer cycle duration linear relationship is only cycle datapoints count
 - Different activities each cycle?
 - or
 - Robot automatically devising next best move, making cycles length inconsistent is timing an issue for the cycles/process?
- Temperature increase over course of day with uptick at cycle 104 where long break occured
 - Protective stops most cycles at higher temps, later in the day

Streamlit (video): Updated 02Apr Data Summary Generator Application

 DevAcProj CobotOps/Cobot data summ app vid.mp4 at main · Ddbol/DevAcProj CobotOps

Streamlit (screenshots): Data Summary Generator Application

These are the cycles where grip loss(es	i) occured: These are the cycles where grip loss(es) occured:
* [0:"2"	· []
1: "5"	These are the cycles where protective stop(s) occured:
2 : "6"	1*
3 : "14"	8 : "I"
4 : "15"	1: "22" 2: "35"
5 : "36"	3 : "42"
6 : "39"	4 : "53"
7 : "40"	5 : "63"
8 : "63"	6 : " <mark>69"</mark>
9: "64"	7 : "78" 8 : "94"
18 : "65"	9: "85"
11 : "67"	10 : "86"
12 : "69"	11 : "98"
13 : "75"	12 : "182"
14 : "79"	13 : "107" 14 : "114"
	15 : "116"

	100,000	cyc original	grip_lost	protective_stop	cyc end	cyc,stati	duration	cle motors	hop_II	terp_II	temp_II	temp_II	amp_H	100	Ng teach	treak past cyc	duration sec	brok post c sec
0:-	1	1	. 0	1.0000	2022-16-26-08-18:00	2022-10-25-08-17-21	a few seconds	39	27,8750	29.4375	29,5000	32.2500	32,3750	32 1250	5.0000	a few seconds	39.2240	1.025
1	2	2	21	0.0000	2022-15-25-08:18:46	2022-10-26-08:19:01	aminute	46	26.0000	29.6250	29.6875	32,4375	32.6875	32,4375	21.0000	a few seconds	45.2240	100
2	3	3		0.0000	2022-18-29 08:19:12	2022-10-26-08-18-47	a few seconds	25	28.1250	29.6875	25,8125	32,6250	32.8750	32.6250	0.0000	a few seconds	25,1190	1.005
1	4	- 4		0.0000	2022-10-25 08:19:36	2022-10-26-08:19:13	a few seconds	24	28.1875	29.8125	25:3375	32.8125	33.0625	32,7500	0.0000	a few seconds	23.1200	1.006
ŧ.	5	5	2	0.0000	2022-10-25-08-20-03	2022-10-26-08-19-37	a fevi seconds	27	26.3125	29.9375	30.0625	32.9375	33.2500	32,8750	2.0000	a few seconds	26.1050	1.002
5	€	6	13	0.0000	2022-10-26-08:20:42	2022-10-25-08-20:04	a few seconds	39	28.4375	30.0625	30.2500	33.0625	33.3750	33.0625	13.0000	a few seconds	38.1990	1.006
Ē.	7	7	0	0.0000	2022-16-26-08-23:08	2022-10-26-08:20:43	a few seconds	25	28,5000	30.1875	30.3750	33.2500	33.5625	33.2500	0.0000	a few seconds	24,1460	1.006
Ŧ	8		0	0.0000	2022-10-26-08:21-32	2022-10-26-08-21-09	a few seconds	24	28.6250	30.2813	30.4375	33.3750	33.7500	33.3750	0.0000	a few seconds	23.1060	L005
E	9	- 5		0.0000	2022-10-25 08:21:56	2022-10-26-08:21:33	a few seconds	24	28.6875	30.3750	30.5625	33.5000	33.9063	33.5000	0.0000	a few seconds	23.1030	1.002
5	30	. 30		0.0000	2022-10-26-08-22-20	2022-10-26-08-21-57	a few seconds	. 24	26.8125	30.5000	30.9875	33.6250	34.0625	33.6250	0.0000	a fee seconds	23.1200	1.005
10	- 11	- 11	. 0	2,0000	2022-10-29-08:22:45	2022-10-26-08:22-21	a few seconds	25	28,9975	30.6250	35.8125	33.7500	34,2500	33,7500	0.0000	a few seconds	24.1330	1.003
П.	12	12	0	0.0000	2022-16-26-08:23:09	2022-10-26-08:22:46	a few seconds	24	29.0000	30,7500	30.8750	33,8750	34.4063	33.8750	0.0000	a few seconds	23.1540	L009
11	- 13	.13		0.0000	2022/10/26 08:23:33	2022-10-26-08-23-10	a few seconds	24	29.1250	30.8125	31,3000	34.0000	34.5625	34,0000	0.0000	a few seconds	23,0860	2.002
Π.		14	12	0.0000	2022-18-25-09:24:02	2022-10-26-09-29-35	a few seconds	28	29.1875	30.9375	31.1250	34.1250	34.7500	34,1250	12,0000	a few seconds	27,0750	1.009
14	15	15		0.0000	2022-10-25 08:24:25	2022-10-26 08:24:03	a few seconds	23	29.3525	31.0625	31,2500	34.1875	34.8125	34.2500	17.0000	a few seconds	22.1050	1.005
15	36		. 0	2,0000	2022-10-29-08:24:51	2022-10-26-08:24:26	a few seconds	25	29.3750	31.1250	31.3125	34.3125	34,9375	34.3750	0.0000	a few seconds	24,1210	1.014
益		17		0.0000	2022-10-26 08:25:15	2022-10-26-08-24-52	a few seconds	24	25,4375	31.2500	34,4375	34,3750	35,0625	34.5000	0.0000	a few seconds	23.1520	1.002
IT	18	. 15		0.0000	2022-10-26 08:25:40	2022-10-26-00;25-36	a few seconds	25	29.5625	31.3125	31 5000	34,5000	35.1875	34.6250	0.0000	a few seconds	24.0820	1.005
18	19	19		6.0000	2022-15-26-09-26-04	2023-10-2609-25141	a few seconds	34	29 6255	11 4105	31 6250	34 6563	35 3125	94 7188	0.0000	a few seconds	23 1380	100

Streamlit (screenshots): Updated 02Apr Data Summary Generator Application

Machine Learning (ML) modelling prep

- Timeseries Ideally predict next fault/error based on previous data of day. (80/20 trainin/testing dataset)
 - Used AutoML AutoGluon to check feasibility but returned no models – likely due to large chunks missing data
- Transform the dataset so can solve with traditional, tabular classification algorithms - Connect data from previous rows
 - Errors/faults Very imbalanced, mostly no errors/faults
- Errors/faults Count up how long since last error happened
- Current and speed look back at previous 10 rows and extract the number of largest magnitude (positive or negative)
- Removed timestamp covered by cycle and cycle timepoint
- Clipped cycle timepoint (secs) to remove several hour outlier
- AutoML AutoGluon suggested RandomForest and KNN, among others
- Ref: https://stackoverflow.com/questions/44744584/multiple-time-series-with-binary-grip lost enc-prediction

Histograms of features to be modelled

ML modelling - results

- Data scaled
- Random Forest and KNN trialled based on AutoGluon results
- Due to imbalanced data, high accuracy but not good at predicting the grip loss correctly
- Best Random Forest gave AUC of 0.67 (measures how well predicts both outcomes), accuracy 0.97 or 97%
- · Unsurprising that the count of how long since last error happened has high importance

ML modelling considerations

- Want to predict rest of days risk of errors/faults but need some information about what robot plans to do
 - Inconsistent cycle time which errors add to
 - hard to provide in advance for modelling
 - Discuss with team if can correlate robot programmed actions to this data better
 - Potentially better predictability if can generate expected robot actions and relate it back to the data the UR3 cobot is generating
- Dataset authors using Information Flow Based - Fuzzy Cognitive Maps (IF- FCMs) to help predict machine operations - may be better approach to investigate
 - modification of FCMs visual modelling approach. Image on right shows FCM of government control of tobacco. Part of modelling is to adjust weightings of interactions

References IF-FCMs and FCMs

- Tyrovolas, M., Stylios, C., Aliev, K., Antonelli, D. (2024). Leveraging Information Flow-Based Fuzzy Cognitive Maps for Interpretable Fault Diagnosis in Industrial Robotics. In: Camarinha-Matos, L.M., Ferrada, F. (eds) Technological Innovation for Human-Centric Systems, DoCEIS 2024, IFIP Advances in Information and Communication Technology, vol. 716. Springer. Cham. https://doi.org/10.1007/978-3-031-63851-0_6
- Tyrovolas, M., Liang, X.S. & Stylios, C. Information flow-based fuzzy cognitive maps with enhanced interpretability. Granul. Comput. 8, 2021-2038 (2023). https://doi.org/10.1007/s41066-023-00417-7 (Link to github marios-tyrovolas/Information-Flow-Based-Fuzzy-Cognitive-Maps-with-Enhanced-Interpretability: Information Flow-Based Fuzzy Cognitive Maps with Enhanced Interpretability)
- Mkhitaryan et al. BMC Public Health. (2023) How to use machine learning and fuzzy cognitive maps to test hypothetical scenarios in health behavior change interventions: a case study on fruit intake https://doi.org/10.1186/s12889-023-17367-z

Fig. 2 An excerpt of a more complex logic model of government control of tobacco [7]

Conclusions and Recommendations

- Extensive exploratory data analysis lead to greater understanding of UR3 Cobot behaviour
- This should help with process understanding, optimisation and planning
- Generation of application to view summary data from UR3 Cobot logs to support this - to be deployed on Docker
- More knowledge from team about desired outcome of cycles, impacts
 of inconsistent cycle times and what other data it would be useful to
 explore/make available to them
- IF-CMs may be a better approach to automation/robotics operations modelling compared to traditional machine learning methods

UR3 CobotOps Automation Analysis -DBoland

3/28/2025

Thank you! Q&A?