Sequence Listing

<110> Walter Reed Army Institute of Research
 Lanar, David E.
 Hillier, Collette J.
 Lyon, Jeffrey A.
 Angov, Evelina
 Kumar, Sanjai
 Rogers, William
 Barbosa, Arnoldo

<120> Expression, Purification, and Uses of a *Plasmodium* falciparum Liver Stage Antigen 1 Polypeptide

```
<130> 003/285/SAP
```

<140> 10/706,435

<141> 2003-11-12

<150> 60/425,719

<151> 2002-11-12

<160> 28

<170> Microsoft Word XP

<210> 1

<211> 17

<212> PRT

<213> P. falciparum LSA-1

-22N S

<223> LSA-1 major 17 amino acid repeat

<400> 1

Glu Gln Gln Ser Asp Leu Glu Gln Glu Arg 5 10 Leu Ala Lys Glu Lys Leu Gln

15

<210> 2

<211> 17

<212> PRT

<213> P. falciparum LSA-1

<220×

<223> LSA-1 minor 17 amino acid repeat

<400> 2

Glu Gln Gln Arg Asp Leu Glu Gln Glu Arg
5 10

Leu Ala Lys Glu Lys Leu Gln

15

```
<210> 3
<211> 1374
<212> DNA
<213> Artificial sequence
<220>
<223> LSA-NRC(H) Mut
<400> 3
atgggtacca acagcgaaaaa agacgaaatt atcaaaagca
                                              40
                                              80
atctccqctc cqqcaqctcc aacaqccqca accqcatcaa
                                             120
cgaggaaaag catgagaaga aacatgtgct gagccacaac
tcctacgaga agactaaaaa caacgaaaac aacaaattct
                                             160
ttgacaagga caaagagctg acgatgagca acgttaaaaa
                                             200
cgtatcccag accaacttta aatccctcct gcgcaacctc
                                             240
qqcqtttccq agaacatctt tctcaaagaa aacaaactga
                                             280
acaaqqaaqq caaactgatt gaacatatca tcaacgacga
                                             320
cgatgacaaa aaaaaataca ttaaaggcca ggatgaaaat
                                             360
                                             400
cgccaggaag acctcgaaga aaaagctgct gaacagcagt
                                             440
cqqacctqqa acaqqaqcqc ctcqctaaaq aaaagctcca
qqaqcqcctc gctaaaqaaa agctccagga gcaacagcgc
                                             480
qacctqqaac agcgcaaggc tgacacgaaa aaaaacctgg
                                             520
aacgcaaaaa ggaacacggc gacgttctgg ctgaggacct
                                             560
gtacggccgc ctggaaatcc cagctatcga actcccatcc
                                             600
gaaaacgaac gcggctacta catcccacac cagagcagcc
                                             640
tgccacaaga taatcgcggg aactcccgcg acagtaagga
                                             680
                                             720
aatcagcatc atcgaaaaaa ccaaccgcga aagcattacc
accaacgtgg aaggccgccg cgacatccac aaaggccacc
                                             760
800
agaagacaaa agcgctgata tccagaacca caccctggag
                                             840
accettgaaca ttagcgacgt gaacgacttc cagatcagca
                                             880
agtacgagga cgaaatctcc gctgaatacg atgactccct
                                             920
gatcqacgaa gaagaagacg acgaagatct ggatgaattc
                                             960
aaaccaattg tccagtacga taactttcag gacgaagaaa 1000
atatcggcat ttacaaagaa ctcgaagacc tcatcgagaa 1040
aaacgaaaac ctggacgacc tggacgaagg catcgaaaaa 1080
tcctccgaag aactgagcga agaaaaaatc aaaaaaggca 1120
agaaatacga aaaaaccaag gacaacaact tcaaaccaaa 1160
cqacaaatcc ctctacqacq aqcacattaa aaaatacaaa 1200
aacgacaagc aagtgaacaa ggaaaaggaa aaatttatca 1240
aatccctctt ccacatcttc gatggcgata acgaaattct 1280
gcaaattgta gacgaacggt tgagcgaaga catcactaaa 1320
tacttcatga agcttggggg ctccggttct ccacaccacc 1360
accaccacca ctqa
                                            1374
<210> 4
<211> 457
<212> PRT
<213> Artificial sequence
<220>
<223> LSA-NRC(H) Mut
<400> 4
```

Met	Gly	Thr	Asn	Ser 5	Glu	Lys	Asp	Glu	Ile 10
Ile	Lys	Ser	Asn	_	Arg	Ser	Gly	Ser	
Asn	Ser	Arg	Asn		Ile	Asn	Glu	Glu	Lys 30
His	Glu	Lys	Lys		Val	Leu	Ser	His	
Ser	Tyr	Glu	Lys		Lys	Asn	Asn	Glu	
Asn	Lys	Phe	Phe		Lys	Asp	Lys	Glu	
Thr	Met	Ser	Asn	Val 65	Lys	Asn	Val	Ser	
Thr	Asn	Phe	Lys	Ser 75	Leu	Leu	Arg	Asn	Leu 80
Gly	Val	Ser	Glu	Asn 85	Ile	Phe	Leu	Lys	Glu 90
Asn	Lys	Leu	Asn	Lys 95	Glu	Gly	Lys	Leu	Ile 100
Glu	His	Ile	Ile	Asn 105	Asp	Asp	Asp	Asp	Lys 110
Lys	Lys	Tyr	Ile	Lys 115	Gly	Gln	Asp	Glu	Asn 120
•	Gln		_	125					130
	Gln			135		Glu			140
	Ala	_		145					150
	Lys		-	155					Arg 160
-	Leu			165	-		-		170
-	Asn			175	_	_			180
_	Val			185	_		_	_	190
	Glu			195					200
	Asn			205	_	_			210
	Ser			215		_			220
	Ser			225	_				230
	Glu	_		235	_				240
	Asn			245					250
Lys	Gly	His	Leu	Glu 255	Glu	Lys	Lys	Asp	Gly 260

```
Ser Ile Lys Pro Glu Gln Lys Glu Asp Lys
                                     270
                265
Ser Ala Asp Ile Gln Asn His Thr Leu Glu
                                     280
                275
Thr Val Asn Ile Ser Asp Val Asn Asp Phe
                285
Gln Ile Ser Lys Tyr Glu Asp Glu Ile Ser
                295
Ala Glu Tyr Asp Asp Ser Leu Ile Asp Glu
                305
Glu Glu Asp Asp Glu Asp Leu Asp Glu Phe
                315
Lys Pro Ile Val Gln Tyr Asp Asn Phe Gln
                325
                                     330
Asp Glu Glu Asn Ile Gly Ile Tyr Lys Glu
                335
Leu Glu Asp Leu Ile Glu Lys Asn Glu Asn
                345
                                     350
Leu Asp Asp Leu Asp Glu Gly Ile Glu Lys
                355
                                     360
Ser Ser Glu Glu Leu Ser Glu Glu Lys Ile
                365
                                     370
Lys Lys Gly Lys Lys Tyr Glu Lys Thr Lys
                375
                                     380
Asp Asn Asn Phe Lys Pro Asn Asp Lys Ser
                385
                                     390
Leu Tyr Asp Glu His Ile Lys Lys Tyr Lys
                395
                                     400
Asn Asp Lys Gln Val Asn Lys Glu Lys Glu
                405
                                     410
Lys Phe Ile Lys Ser Leu Phe His Ile Phe
Asp Gly Asp Asn Glu Ile Leu Gln Ile Val
                425
                                     430
Asp Glu Arg Leu Ser Glu Asp Ile Thr Lys
                435
Tyr Phe Met Lys Leu Gly Gly Ser Gly Ser
                445
Pro His His His His His
                455
```

<210> 5

<211> 17

<212> PRT

<213> Artificial sequence

<220>

<223> LSA-1 Consensus sequence of 17 amino acid repeats
where Xaa at position 1 is either Glu or Gly; Xaa at
position 4 is Ser or Arg; Xaa at position 6 is Asp or Ser;
Xaa at position 9 is Glu or Asp; Xaa at position 11 is Leu
or Arg; Xaa at position 13 is Lys or Asn and Xaa at position
15 is Lys or Thr or Arg.

```
Xaa Gln Gln Xaa Asp Xaa Glu Gln Xaa Arg
Xaa Ala Xaa Glu Xaa Leu Gln
<210> 6
<211> 24
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 T1 epitope
<400> 6
Leu Thr Met Ser Asn Val Lys Asn Val Ser
Gln Thr Asn Phe Lys Ser Leu Leu Arg Asn
                 15
                                      20
Leu Gly Val Ser
<210> 7
<211> 17
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 LSA-Rep epitope
<400> 7
Glu Gln Gln Ser Asp Leu Glu Gln Glu Arg
Leu Ala Lys Glu Lys Leu Gln
<210> 8
<211> 17
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 J epitope
<400> 8
Glu Arg Leu Ala Lys Glu Lys Leu Gln Glu
Gln Gln Arg Asp Leu Glu Gln
                 15
<210> 9
<211> 20
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 NR epitope
<400> 9
```

Thr Lys Lys Asn Leu Glu Arg Lys Lys Glu His Gly Asp Val Leu Ala Glu Asp Leu Tyr 20 <210> 10 <211> 34 <212> PRT <213> P. falciparum LSA-1 <220> <223> P. falciparum LSA-1 LSA-Ter epitope <400> 10 Asn Ser Arg Asp Ser Lys Glu Ile Ser Ile Ile Glu Lys Thr Asn Arg Glu Ser Ile Thr 15 Thr Asn Val Glu Gly Arg Arg Asp Ile His Lys Gly His Leu <210> 11 <211> 9 <212> PRT <213> P. falciparum LSA-1 <220> <223> P. falciparum LSA-1 ls6 epitope <400> 11 Lys Pro Ile Val Gln Tyr Asp Asn Phe <210> 12 <211> 23 <212> PRT <213> P. falciparum LSA-1 <220> <223> P. falciparum LSA-1 T3 epitope <400> 12 Asn Glu Asn Leu Asp Asp Leu Asp Glu Gly Ile Glu Lys Ser Ser Glu Glu Leu Ser Glu 20 15 Glu Lys Ile <210> 13 <211> 7 <212> PRT <213> P. falciparum LSA-1 <220> <223> P. falciparum LSA-1 ls8 epitope

<400> 13

Lys Pro Asn Asp Lys Ser Leu

```
<210> 14
<211> 22
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 T5 epitope
<400> 14
Asp Asn Glu Ile Leu Gln Ile Val Asp Glu
Leu Ser Glu Asp Ile Thr Lys Tyr Phe Met
                 15
                                      20
Lys Leu
<210> 15
<211> 23
<212> PRT
<213> P. falciparum LSA-1
<223> P. falciparum LSA-1 T5-MutR epitope
<400> 15
Asp Asn Glu Ile Leu Gln Ile Val Asp Glu
                  5
Arg Leu Ser Glu Asp Ile Thr Lys Tyr Phe
                 15
Met Lys Leu
<210> 16
<211> 24
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 LSA1.1 epitope
<400> 16
Leu Thr Met Ser Asn Val Lys Asn Val Ser
Gln Thr Asn Phe Lys Ser Leu Leu Arg Asn
                 15
                                      20
Leu Gly Val Ser
<210> 17
<211> 20
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 LSA1.2 epitope
<400> 17
His Thr Leu Glu Thr Val Asn Ile Ser Asp
                                      10
Val Asn Asp Phe Gln Ile Ser Lys Tyr Glu
                 15
                                      20
```

```
<210> 18
<211> 18
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1.3 epitope
<400> 18
Asp Glu Asp Leu Asp Glu Phe Lys Pro Ile
Val Gln Tyr Asp Asn Phe Gln Asp
                 15
<210> 19
<211> 13
<212> PRT
<213> P. falciparum LSA-1
<223> P. falciparum LSA-1 LSA1.4 epitope
Ile Gly Ile Tyr Lys Glu Leu Glu Asp Leu
Ile Glu Lys
<210> 20
<211> 23
<212> PRT
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 LSA1.5 epitope
<400> 20
Asn Glu Asn Leu Asp Asp Leu Asp Glu Gly
Ile Glu Lys Ser Ser Glu Glu Leu Ser Glu
                 15
Glu Lys Ile
<210> 21
<211> 15
<212> PRT
<213> P. falciparum LSA-1
<223> P. falciparum LSA-1 LSA1.6 epitope
<400> 21
Ile Lys Lys Gly Lys Lys Tyr Glu Lys Thr
                                      10
Lys Asp Asn Asn Phe
<210> 22
<211> 22
<212> PRT
```

```
<213> P. falciparum LSA-1
<220>
<223> P. falciparum LSA-1 LSA1.1 epitope
<400> 22
Asp Asn Glu Ile Leu Gln Ile Val Asp Glu
Leu Ser Glu Asp Ile Thr Lys Tyr Phe Met
                 15
                                      20
Lys Leu
<210> 23
<211> 9
<212> PRT
<213> P. falciparum LSA-1
<223> P. falciparum LSA-1 Doolan 1671 epitope
<400> 23
Tyr Tyr Ile Pro His Gln Ser Ser Leu
                  5
<210> 24
<211> 34
<212> PRT
<213> P. falciparum LSA-1
<223> Amino acid sequence of LSA-NRC(H) repeat sequence
between N & C terminals
<400> 24
Glu Gln Gln Ser Asp Leu Glu Gln Glu Arg
Leu Ala Lys Glu Lys Leu Gln Glu Arg Leu
                 15
Ala Lys Glu Lys Leu Gln Glu Gln Gln Arg
                 25
Asp Leu Glu Gln
<210> 25
<211> 1371
<212> DNA
<213> Artificial sequence
<223> DNA sequence of the gene LSA-NRC(H)
<400> 25
                                               40
atgggtacca acagcgaaaa agacgaaatt atcaaaagca
atctccgctc cggcagctcc aacagccgca accgcatcaa
                                               80
cgaggaaaag catgagaaga aacatgtgct gagccacaac
                                              120
tectacgaga agactaaaaa caacgaaaac aacaaattet
                                              160
ttgacaagga caaagagctg acgatgagca acgttaaaaa
                                              200
cgtatcccag accaacttta aatccctcct gcgcaacctc
                                              240
ggcgtttccg agaacatctt tctcaaagaa aacaaactga
                                              280
acaaggaagg caaactgatt gaacatatca tcaacgacga
```

```
cgatgacaaa aaaaaataca ttaaaggcca ggatgaaaat
                                              360
                                              400
cgccaggaag acctcgaaga aaaagctgct gaacagcagt
cggacctgga acaggagcgc ctcgctaaag aaaagctcca
                                              440
                                              480
qqaqcqcctc qctaaaqaaa aqctccaqga gcaacagcgc
                                              520
gacctggaac agcgcaaggc tgacacgaaa aaaaacctgg
aacqcaaaaa qqaacacqqc qacqttctqq ctqaggacct
                                              560
gtacggccgc ctggaaatcc cagctatcga actcccatcc
                                              600
                                              640
gaaaacgaac gcggctacta catcccacac cagagcagcc
tgccacaaga taatcgcggg aactcccgcg acagtaagga
                                              680
aatcaqcatc atcgaaaaaa ccaaccgcga aagcattacc
                                              720
accaacgtgg aaggccgccg cgacatccac aaaggccacc
                                              760
tcqaaqaaaa gaaagacggc tccatcaaac cagaacagaa
                                              800
                                              840
agaagacaaa agcgctgata tccagaacca caccctggag
accqtqaaca ttaqcqacqt qaacqacttc caqatcaqca
                                              880
agtacgagga cgaaatctcc gctgaatacg atgactccct
                                              920
                                              960
gatcgacgaa gaagaagacg acgaagatct ggatgaattc
aaaccaattq tccaqtacqa taactttcaq qacqaaqaaa 1000
atatcggcat ttacaaagaa ctcgaagacc tcatcgagaa 1040
aaacgaaaac ctggacgacc tggacgaagg catcgaaaaa 1080
tcctccqaaq aactqaqcqa aqaaaaaatc aaaaaaqqca 1120
agaaatacga aaaaaccaag gacaacaact tcaaaccaaa 1160
cgacaaatcc ctctacgacg agcacattaa aaaatacaaa 1200
aacgacaagc aagtgaacaa ggaaaaggaa aaatttatca 1240
aatccctctt ccacatcttc gatggcgata acgaaattct 1280
gcaaattgta gacgaactga gcgaagacat cactaaatac 1320
ttcatgaagc ttgggggctc cggttctcca caccaccacc 1360
accaccactq a
                                             1371
<210> 26
<211> 456
<212> PRT
<213> Artificial sequence
<223> LSA-NRC(H) protein
<400> 26
Met Gly Thr Asn Ser Glu Lys Asp Glu Ile
Ile Lys Ser Asn Leu Arg Ser Gly Ser Ser
                                      20
Asn Ser Arg Asn Arg Ile Asn Glu Glu Lys
                                      30
                 25
His Glu Lys Lys His Val Leu Ser His Asn
                 35
Ser Tyr Glu Lys Thr Lys Asn Asn Glu Asn
                 45
Asn Lys Phe Phe Asp Lys Asp Lys Glu Leu
```

Thr Asn Phe Lys Ser Leu Leu Arg Asn Leu
75 80
Gly Val Ser Glu Asn Ile Phe Leu Lys Glu
85 90

Thr Met Ser Asn Val Lys Asn Val Ser Gln 65 70

7 ~~	Tira	Leu	7 02	Tara	C1,,	C137	Tara	Lou	Ile
ASN	гуѕ	Leu	ASII	ьуs 95	GIU	GIÀ	ьуѕ	ьеи	100
Glu	His	Ile	Ile	Asn 105	Asp	Asp	Asp	Asp	Lys 110
Lys	Lys	Tyr	Ile	Lys 115	Gly	Gln	Asp	Glu	Asn 120
Arg	Gln	Glu	Asp		Glu	Glu	Lys	Ala	Ala 130
Glu	Gln	Gln	Ser	Asp 135	Leu	Glu	Gln	Glu	Arg
Leu	Ala	Lys	Glu	Lys 145	Leu	Gln	Glu	Arg	Leu 150
Ala	Lys	Glu	Lys	Leu 155	Gln	Glu	Gln	Gln	Arg 160
Asp	Leu	Glu	Gln	Arg 165	Lys	Ala	Asp	Thr	Lys 170
Lys	Asn	Leu	Glu	Arg 175	Lys	Lys	Glu	His	Gly 180
Asp	Val	Leu	Ala	Glu 185	Asp	Leu	Tyr	Gly	Arg 190
Leu	Glu	Ile	Pro	Ala 195	Ile	Glu	Leu	Pro	Ser 200
Glu	Asn	Glu	Arg	Gly 205	Tyr	Tyr	Ile	Pro	His 210
Gln	Ser	Ser	Leu	Pro 215	Gln	Asp	Asn	Arg	Gly 220
Asn	Ser	Arg	Asp	Ser 225	Lys	Glu	Ile	Ser	Ile 230
Ile	Glu	Lys	Thr	Asn 235	Arg	Glu	Ser	Ile	Thr 240
Thr	Asn	Val	Glu	Gly 245	Arg	Arg	Asp	Ile	His 250
Lys	Gly	His	Leu	Glu 255	Glu	Lys	Lys	Asp	Gly 260
Ser	Ile	Lys	Pro	Glu 265	Gln	Lys	Glu	Asp	Lys 270
Ser	Ala	Asp	Ile		Asn	His	Thr	Leu	Glu 280
Thr	Val	Asn	Ile		Asp	Val	Asn	Asp	
Gln	Ile	Ser	Lys		Glu	Asp	Glu	Ile	
Ala	Glu	Tyr	Asp		Ser	Leu	Ile	Asp	
Glu	Glu	Asp	Asp		Asp	Leu	Asp	Glu	
Lys	Pro	Ile	Val		Tyr	Asp	Asn	Phe	
Asp	Glu	Glu	Asn		Gly	Ile	Tyr	Lys	
Leu	Glu	Asp	Leu		Glu	Lys	Asn	Glu	
Leu	Asp	Asp	Leu		Glu	Gly	Ile	Glu	

```
Ser Ser Glu Glu Leu Ser Glu Glu, Lys Ile
                365
                                     370
Lys Lys Gly Lys Lys Tyr Glu Lys Thr Lys
                375
                                     380
Asp Asn Asn Phe Lys Pro Asn Asp Lys Ser
                385
                                     390
Leu Tyr Asp Glu His Ile Lys Lys Tyr Lys
                395
Asn Asp Lys Gln Val Asn Lys Glu Lys Glu
                405
                                     410
Lys Phe Ile Lys Ser Leu Phe His Ile Phe
                415
Asp Gly Asp Asn Glu Ile Leu Gln Ile Val
                425
Asp Glu Leu Ser Glu Asp Ile Thr Lys Tyr
                435
Phe Met Lys Leu Gly Gly Ser Gly Ser Pro
                445
His His His His His
                455
<210> 27
<211> 9
<212> PRT
<213> Artificial sequence
<223> derived LSA-1 peptide PL910
<400> 27
Val Ser Gln Thr Asn Phe Lys Ser Leu
```

<210> 28

<211> 8

<212> PRT

<213> Artificial sequence

<220>

<223> derived LSA-1 peptide PL911

<400> 28

Ser Gln Thr Asn Phe Lys Ser Leu