CLAIMS

1. Formula (I) compounds

in which

the various R₁, R₂, R₃ and R₄, which can be the same or different, are H, OH, OPO₃H₂ or OCH₂OPO₃H₂ and their disodium salt, OMe, OCH₂O, NO₂, F, Cl, Br;

-R₁-R₂- can also be together: -CR₈=CR₉-X-

Y is a group selected from

w: cis o trans

 R_5 and R_6 , which can be the same or different, are H or halogen; R_7 is H, OMe, SO_2Ph ;

Ar is a group selected from:

 R_8 , R_9 and R_{10} , which can be the same or different, are H, OH, OPO₃H₂ or OCH₂OPO₃H₂ and their disodium salt, OR₁₁, OCH₂O, NH₂, NHR₁₁, NO₂, alkyl (C₁-C₄), C₆H₅, C₅H₄N or halogen;

R₁₁ is C₁-C₄ alkyl or acyl, aminoacids residue;

X is O, S, N, NR_{12} ;

R₁₂ is H, CH₃, CH₂Ph;

Z is CH, N;

with the proviso that the formula (I) compound is not combretastatin A-1, combretastatin A-2, combretastatin A-4, and their disodium phosphates derivatives and with the exclusion of the following compounds:

- 2-phenyl-6-trans-styryl-benzo[b]furan;
- 2,3-diphenyl-6-trans-styryl-benzo[b]furan;
- 2-phenyl-6-(4-methoxy)-trans-styryl-benzo[b]furan;
- 2-phenyl-6-(3,4-dimethoxy)-trans-styryl-benzo[b]furan;
- 2-phenyl-6-(3,4,5-trimethoxy)-trans-styryl-benzo[b]furan;
- 2-phenyl-6-(3,4-methylenedioxy)-trans-styryl-benzo[b]furan;
- 2,3-diphenyl-6-(4-methoxy)-trans-styryl-benzo[b]furan;
- 2-phenyl-5-trans-styryl-benzo[b]thiophene;
- 2-phenyl-5-(4-methoxy)-trans-styryl-benzo[b]thiophene;
- 2-phenyl-5-(3,4-methylenedioxy)-trans-styryl-benzo[b]thiophene;
- 2-phenyl-6-trans-styryl-benzo[b]thiophene;
- 2-phenyl-6-(4-methoxy)-trans-styryl-benzo[b]thiophene;
- 2-phenyl-6-(4-chloro)-trans-styryl-benzo[b]thiophene;

Piceatannol;

- 1-(3-furanyl)-2-(3,4,5-trimethoxyphenyl)ethene;
- 1-(3-thiophenyl)-2-(3,4,5-trimethoxyphenyl)ethene;
- 1-(2-furanyl)-2-(3,4,5-trimethoxyphenyl) ethene;

and with the proviso that

- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not methoxy;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 2-chloro, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 - R_{10} is not hydrogen;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is

none of 4-chloro, 4-bromo, 4-nitro, 4-hydroxy, 4-acetyl, 4-ethoxy, 4-C₁-C₄ alkyl;

- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-nitro or 4-amino, R_{10} is none of 3-chloro, 3-methoxy, 3-methyl;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-nitro or 3-amino, R_{10} is none of 3-chloro, 3-methoxy, 3-methyl;
- when R_1 is hydrogen and R_2 R_4 are 2,3,4-trimethoxy, Y is a double bond, R_6 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 is hydrogen, R_9 is 3-methoxy, R_{10} is not 5-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 - R_{10} are not methoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,4-dimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-methoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,4-dimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 - R_{10} are not 3,5-dimethoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,4-dimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 - R_{10} is not hydrogen;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,5-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-methoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,5-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-acetyl;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is not pyridyl;

- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is 4-NHR₁₁, R_{11} is not the residue of serine;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not a 4-alkyloxy group having from 1 to 3 carbon atoms, or a 4-alkyl group having from 1 to 4 carbon atoms, or a halogen atom
- when R_1 is hydrogen and R_2 - R_3 are 3,4-methylenedioxy, R_4 is 5-methoxy, Y is cis double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 2,3,4-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is NHR₁₁, R_{11} is the residue of serine, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_3 are 3,4-methylenedioxy, R_4 is 4-methoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is NHR₁₁, R_{11} is the residue of the aminoacid cysteine, glycine, phenylalanine, serine, triptophan, tyrosine, valine, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_3 are 3,4-methylenedioxy, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is NO₂ or NH₂, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 - R_{10} is not hydrogen;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-fluoro;

- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methyl, R_{10} is not 3-fluoro or 3-hydroxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is 3-fluoro, R_9 is 4-methoxy, R_{10} is not 2- or 5-fluoro;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3- hydroxy or 3-amino;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-fluoro or 3-bromo;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-hydroxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-methyl, R_{10} is not 4-methyl;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-hydroxy;
- when R_1 R_2 are hydrogen and R_3 - R_4 are 3,5-dihydroxy, Y is *trans* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-hydroxy, R_{10} is not 5-hydroxy;
- when R_1 - R_3 are hydrogen, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 and R_{10} are 3,4-dimethyl, and R_4 is not 4-methoxy;
- when R_1 - R_2 are hydrogen, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 and R_{10} are 3,4-dimethyl, R_4 is 4-methoxy, R_3 is not 3- fluoro or 3-bromo or 3-nitro or 3-hydroxy;

- when R₁-R₂ are hydrogen, Y is a double bond, R₅ and R₆ are H, Ar is phenyl, R₈-R₁₀ are 3,4,5-triethoxy, R₄ is 4-methoxy, R₃ is not 3-fluoro or 3-chloro or 3-bromo or 3-hydroxy;

- when R_1 - R_2 are hydrogen, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 - R_9 are 4,5-dimethoxy, R_{10} is 3-hydroxy, R_3 is not 3-fluoro or 3-hydroxy;
- when R_1 - R_2 are hydrogen, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 - R_9 are 4,5-dimethoxy, R_{10} is 3-methoxy, R_3 is not 3-fluoro;
- when R_1 is hydrogen, R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is 2-naphthyl, at least one of R_8 R_{10} is not hydrogen;
- when R_1 and R_2 are hydrogen, R_3 is 3-hydroxy, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is 2-naphthyl, at least one of R_8 R_{10} is not hydrogen;
- when R_1 is hydrogen, R_2 - R_4 are 3,4,5-trimethoxy, Y is

Ar is indolyl, wherein at least one of R_8 - R_{10} is different from hydrogen; their enantiomers, diastereoisomers, the respective mixtures and their pharmaceutically acceptable salts.

- 2. Compound according to claim 1, selected from the group consisting of:
- 2-methoxy-5-[3-methoxy-5-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-4-isoxazolyl]-phenol;
- 2-methoxy-5-[3-methoxy-4-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-5-isoxazolyl]-phenol;
- 5-[3-benzenesulphonyl-4-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-4-isoxazolyl]-2-methoxy-phenol;

5-[3-benzenesulphonyl-5-(3,4,5-trimethoxy-phenyl)-4,5-dihdro-5isoxazolyl]-2-methoxy-phenol; 2-methoxy-5-[3-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-5-isoxazolyl]phenol; 2-methoxy-5-[5-(3,4,5-trimethoxy-phenyl)-4,5-dihydro-3-isoxazolyl]phenol; 2-methoxy-5-[5-(3,4,5-trimethoxy-phenyl)-3-isoxazole]-phenol; cis-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzo[b]thiophen-4-ol; trans-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzo[b]thio-phen-4-ol; cis-4-methoxy-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzo[b]thiophene; trans-4-methoxy-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzo[b]thiophene; cis-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzofuran-4-ol; trans-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzofuran-4-ol; cis-4-methoxy-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzofuran; trans-4-methoxy-6-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzofuran; cis-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzo[b]thiophen-7-ol; trans-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzo[b]thiophen-7-ol; cis-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzofuran-7-ol; trans-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-benzofuran-7-ol; cis-1-methoxy-3-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-naphthalene; methoxy-3-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-naphthalene; cis-7-methoxy-1-methyl-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-1H-indazole; trans-7-methoxy-1-methyl-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-1Hindazole: 2-nitro-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-thiophene; 2-nitro-5-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-furan; cis-3-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-naphthalen-1-ol; trans-3-[2-(3,4,5-trimethoxy-phenyl)-vinyl]-naphthalen-1-ol; disodium 6[(Z)-2-(3,4,5-trimethoxy-phenyl)ethenyl]-1-benzo-thiophen-4-ol 4-O-phosphate; 6[(Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]-1-benzo-furan-4-ol disodium 4-O-phosphate; 6-[(Z)-2-(7-methoxy-1,3-benzodioxol-5-yl)vinyl]-1-benzothiophene-4-ol;

6-[(E)-2-(7-methoxy-1,3-benzodioxol-5-yl)vinyl]-1-benzothiophene-4-ol;

6[(Z)-2-(3-methoxy-4,5-metilendioxy-phenil-1-yl)-vinyl]-1-benzofuran-4-ol;

6[(E)-2-(3-methoxy-4,5-metilendioxy-phenil-1-yl)-vinyl]-1-benzofuran-4-ol;

disodium 6[(Z)-2-(3,4,5-trimethoxy-phenyl)ethenyl]-1-benzo-thiophen-4-ol 4-O-methyloxyphosphate;

disodium 6[(Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]-1-benzo-furan-4-ol 4-O- methyloxyphosphate;

6-[(Z)-2-(7-methoxy-1,3-benzodioxol-5-yl)vinyl]-1-benzothiophene-4-ol;

 $6\hbox{-}[(E)\hbox{-}2\hbox{-}(7\hbox{-}methoxy\hbox{-}1,3\hbox{-}benzo dioxol\hbox{-}5\hbox{-}yl)vinyl]\hbox{-}1\hbox{-}benzo thiophene}\hbox{-}4\hbox{-}ol\ .$

6[(Z)-2-(3-methoxy-4,5-metilendioxy-phenil-1-yl)-vinyl]-1-benzofuran-4-ol;

6[(E)-2-(3-methoxy-4,5-methylenedioxy-phenil-1-yl)-vinyl]-1-benzofuran-4-ol;

disodium 6[(Z)-2-(3,4,5-trimethoxy-phenyl)ethenyl]-1-benzo-thiophen-4-ol 4-O-methyloxyphosphate;

disodium 6[(Z)-2-(3,4,5-trimethoxyphenyl)ethenyl]-1-benzo-furan-4-ol 4-O- methyloxyphosphate;

 $\hbox{6-[(Z)-2-(7-methoxy-1,3-benzodioxol-5-yl)vinyl]-1-benzothiophene-4-ol;}\\$

cis-2-Methoxy-5-[2-(4-methoxy-benzofuran-6-yl)-vinyl]-phenol;

cis-2-Methoxy-5-[2-(7-methoxy-benzo furan-5-yl)-vinyl]-phenol;

cis-2-Methoxy-5-[2-(4-methoxy-benzo[b]thiophen-6-yl)-vinyl]-phenol;

cis-6-[2-(3,5-dimethoxy-phenyl)-vinyl]-benzo[b] thiophen-4-ol;

cis-5-[2-(3,5-dimethoxy-phenyl)-vinyl]-benzofuran-7-ol;

cis-6-[2-(3,5-dimethoxy-phenyl)-vinyl]-benzofuran-4-ol;

their enantiomers, diastereoisomers, the respective mixtures and their pharmaceutically acceptable salts.

3. Use of formula (I) compounds

in which

the various R₁, R₂, R₃ and R₄, which can be the same or different, are H, OH, OPO₃H₂ or OCH₂OPO₃H₂ and their disodium salt, OMe, OCH₂O, NO₂, F, Cl, Br;

-R₁-R₂- can also be together: -CR₈=CR₉-X-Y is a group selected from

w : cis o trans

 R_5 and R_6 , which can be the same or different, are H or halogen; R_7 is H, OMe, SO_2Ph ;

Ar is a group selected from:

R₈, R₉ and R₁₀, which can be the same or different, are H, OH, OPO₃H₂ or OCH₂OPO₃H₂ and their disodium salt, OR₁₁, OCH₂O, NH₂, NHR₁₁, NO₂, alkyl (C₁-C₄), C₆H₅, C₅H₄N or halogen;

R₁₁ is C₁-C₄ alkyl or acyl, aminoacids residue;

X is O, S, N, NR₁₂;

R₁₂ is H, CH₃, CH₂Ph;

Z is CH, N;

with the proviso that the formula (I) compound is not combretastatin A-1, combretastatin A-2, combretastatin A-4, and their disodium phosphates derivatives and with the exclusion of the following compounds: Piceatannol;

- 1-(3-furanyl)-2-(3,4,5-trimethoxyphenyl)ethene;
- 1-(3-thiophenyl)-2-(3,4,5-trimethoxyphenyl)ethene;
- 1-(2-furanyl)-2-(3,4,5-trimethoxyphenyl)ethene; and with the proviso that

- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not methoxy;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 2-chloro, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 - R_{10} is not hydrogen;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is none of 4-chloro, 4-bromo, 4-nitro, 4-hydroxy, 4-acetyl, 4-ethoxy, 4- C_1 C_4 alkyl;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-nitro or 4-amino, R_{10} is none of 3-chloro, 3-methoxy, 3-methyl;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-nitro or 3-amino, R_{10} is none of 3-chloro, 3-methoxy, 3-methyl;
- when R_1 is hydrogen and R_2 R_4 are 2,3,4-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 is hydrogen, R_9 is 3-methoxy, R_{10} is not 5-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 - R_{10} are not methoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,4-dimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-methoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,4-dimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 - R_{10} are not 3,5-dimethoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,4-dimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 - R_{10} is not hydrogen;

- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,5-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-methoxy;
- when R_1 and R_2 are hydrogen and R_3 - R_4 are 3,5-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-acetyl;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is not pyridyl;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is 4-NHR₁₁, R_{11} is not the residue of serine;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not a 4-alkyloxy group having from 1 to 3 carbon atoms, or a 4-alkyl group having from 1 to 4 carbon atoms, or a halogen atom
- when R_1 is hydrogen and R_2 - R_3 are 3,4-methylenedioxy, R_4 is 5-methoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 2,3,4-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-amino, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is NHR₁₁, R_{11} is the residue of serine, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_3 are 3,4-methylenedioxy, R_4 is 4-methoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is NHR₁₁, R_{11} is the residue of the aminoacid cysteine, glycine, phenylalanine, serine, triptophan, tyrosine, valine, R_{10} is not 4-methoxy;
- when R_1 is hydrogen and R_2 - R_3 are 3,4-methylenedioxy, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is NO_2 or NH_2 , R_{10} is not 4-methoxy;

- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, at least one of R_8 - R_{10} is not hydrogen;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-fluoro;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methyl, R_{10} is not 3-fluoro or 3-hydroxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-methoxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is 3-fluoro, R_9 is 4-methoxy, R_{10} is not 2- or 5-fluoro;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-hydroxy or 3-amino;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-fluoro or 3-bromo;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 and R_9 are hydrogen, R_{10} is not 4-hydroxy;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-methyl, R_{10} is not 4-methyl;
- when R_1 is hydrogen and R_2 - R_4 are 3,4,5-trimethoxy, Y is *cis* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 4-methoxy, R_{10} is not 3-hydroxy;
- when R_1 R_2 are hydrogen and R_3 - R_4 are 3,5-dihydroxy, Y is *trans* double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 is 3-hydroxy, R_{10} is not 5-hydroxy;

- when R_1 - R_3 are hydrogen, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 and R_{10} are 3,4-dimethyl, and R_4 is not 4-methoxy;

- when R_1 - R_2 are hydrogen, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 is hydrogen, R_9 and R_{10} are 3,4-dimethyl, R_4 is 4-methoxy, R_3 is not 3- fluoro or 3-bromo or 3-nitro or 3-hydroxy;
- when R₁-R₂ are hydrogen, Y is a double bond, R₅ and R₆ are H, Ar is phenyl, R₈-R₁₀ are 3,4,5-triethoxy, R₄ is 4-methoxy, R₃ is not 3-fluoro or 3-chloro or 3-bromo or 3-hydroxy;
- when R_1 - R_2 are hydrogen, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 - R_9 are 4,5-dimethoxy, R_{10} is 3-hydroxy, R_3 is not 3-fluoro or 3-hydroxy;
- when R_1 - R_2 are hydrogen, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is phenyl, R_8 - R_9 are 4,5-dimethoxy, R_{10} is 3-methoxy, R_3 is not 3-fluoro;
- when R_1 is hydrogen, R_2 - R_4 are 3,4,5-trimethoxy, Y is a double bond, R_5 and R_6 are H, Ar is 2-naphthyl, at least one of R_8 R_{10} is not hydrogen;
- when R_1 and R_2 are hydrogen, R_3 is 3-hydroxy, R_4 is 4-methoxy, Y is a double bond, R_5 and R_6 are H, Ar is 2-naphthyl, at least one of R_8 R_{10} is not hydrogen;
- when R_1 is hydrogen, R_2 - R_4 are 3,4,5-trimethoxy, Y is

Ar is indolyl, wherein at least one of R_8 - R_{10} is different from hydrogen; their enantiomers, diastereoisomers, the respective mixtures and their pharmaceutically acceptable salts as medicaments.

4. Use according to claim 3 for the preparation of a medicament for the treatment of oncological-type diseases.

- 5. Use according to claim 3 for the preparation of a medicament for the treatment of cancers that respond to cytotoxic activity.
- 6. Use according to claim 5, in which said cancer is selected from the group consisting of sarcoma, carcinoma, carcinoid, bone cancer, neuroendocrine cancer, lymphoid leukaemia, myeloid leukaemia, monocytic leukaemia, megakaryocytic leukaemia, or Hodgkin's disease.
- 7. Use of compounds according to claim 1 for the preparation of a medicament for the treatment of diseases related to abnormal angiogenesis.
- 8. Use according to claim 7, in which said disease is selected from the group consisting of arthritic disease, tumours responding to antiangiogenic activity, metastatic spread, diabetic retinopathy, psoriasis, chronic inflammation, and atherosclerosis.
- 9. Use according to any one of claims 4 to 8, in which, in the treatment of tumours, said medicament is combined with at least one other antiblastic drug.
- 10. Use according to claim 9, in which said antiblastic drug is selected from the group consisting of alkylating agents; topoisomerase inhibitors; antitubulin agents; intercalating agents; antimetabolites; naturally occurring products such as Vinca alkaloids, epipodophyllotoxins, antibiotics, enzymes, taxanes and anticancer vaccines.
- 11. Pharmaceutical composition containing as the active ingredient a compound according to claims 1-2 or disclosed in claim 3 in a mixture with a pharmaceutically acceptable excipient or diluent.

12. Use of the compound with the formula

in which

X is oxygen or sulphur, as an intermediate product for the preparation of compounds according to claims 1-2.

13. Compound with the formula:

in which

X is oxygen or sulphur, R is methyl, or terbutyl-dimethylsilyl.

14. Compound with the formula

in which

X is oxygen or sulphur, R is methyl, or terbutyl-dimethylsilyl. R_1 is formyl.

15. Use of the compound with the formula

in which

X is oxygen or sulphur, as an intermediate product for the preparation of compounds according to claims 1-2.

16. Compound with the formula

in which

X is oxygen or sulphur.

17. Compound with the formula

in which

X is oxygen or sulphur.

18. Use of compounds according to claims 13-14 and 16-17 as intermediate products in the preparation of compounds according to claims 1-2.