

Урок № 1

Курс: «Разработка программного обеспечения на Java»

Тема: Введение в язык программирования "Java"

План

- 1. Вступление
 - 1. История и этапы развития языка "Java"
 - 2. Сравнительный анализ языка "Java" с другими языками программирования
 - 3. Что такое виртуальная машина?
 - 4. Что такое байт-код?
 - 5. Что такое Java
- 2. Алгоритм
 - 1. Понятие алгоритма
 - 2. Примеры использования алгоритмов в реальной жизни
 - 3. Типы алгоритмов. Линейный, разветвлённый, циклический

1. Вступление

1.1 История и этапы развития языка "Java"

Java - один из самых популярных языков программирования. По мнению Герберта Шилдта, основная причина успеха Java - его быстрое развитие от версии к версии и "способность" быстро подстраиваться под современные нужды программистов.

История создания. Начало

Всё началось в 1991 году, когда группа инженеров из компании Sun под руководством Патрика Нотона и Джеймса Гослинга занялась разработкой небольшого языка, который можно было бы использовать для программирования бытовых устройств, например, контроллеров для переключения каналов кабельного телевидения.

Поскольку такие устройства не потребляют много энергии и не имеют больших микросхем памяти, то язык должен был быть маленьким и генерировать очень компактные программы. Кроме того, поскольку разные производители имели разные архитектуры процессоров, было важно обеспечить "выполняемость" программ, написанных на данном языке на разных машинах. Проект получил кодовое название "Green".

Идея от Pascal

Стремясь изобрести небольшой, компактный и машинонезависимый код, разработчики возродили модель языка, использованную при реализации первых версий языка Pascal. Никлаус Вирт, создатель языка Pascal, в свое время разработал машинонезависимый язык, генерирующий промежуточный код для некоей гипотетической машины.

Этот язык стал коммерческим продуктом под названием UCSD Pascal. (Такие гипотетические машины часто называются виртуальными — например, виртуальная машина языка Java, или JVM.)

Промежуточный код можно выполнять на любой машине, имеющей соответствующий интерпретатор. Инженеры, работавшие над проектом "Green", также использовали виртуальную машину, что решило их основную проблему.

Идея от С++

Несмотря на модель языка Pascal, сотрудники Sun имели опыт работы с UNIX и знали, что такое "промышленная разработка", потому в основу синтаксиса Java они положили именно C++, а не Pascal. В частности, они сделали язык объектно-, а не процедурно-ориентированным.

Происхождения названия

Сначала Джеймс Гослинг решил назвать его "Oak" (рус. «Дуб»). Однако потом сотрудники компании Sun узнали, что слово Oak уже используется в качестве имени ранее созданного языка программирования, и в 1995 изменили название на Java.

Язык назван в честь марки кофе Java, которая, в свою очередь, получила наименование одноимённого острова (Ява), поэтому на официальной эмблеме языка изображена чашка с парящим кофе:

Существует и другая версия происхождения названия языка, связанная с аллюзией на кофе-машину как пример бытового устройства, для программирования которого изначально язык создавался.

Становление языка

Одним из главных факторов роста популярности Java в первых версиях (по мнению Г. Шилдта) был взрывообразный рост популярности сети Интернет - и, как следствие, появления потребности создания платформонезависимых приложений.

В 1993 разработчики Java (тогда ещё Oak) понимают, что Интернет, как и микроволновки (и кофемашины) требует кроссплатформенных решений. Именно Интернет обеспечит в дальнейшем успех Java в мире программистов и, как следствие, - пользователей.

Влияние на интернет

Java предлагает переложить ряд "обязанностей" с сервера на клиент с помощью использования апплетов, которые выполняются во внутренней среде Java и, таким образом, контролируется доступ к иным данным на машине клиента (в целях обеспечения безопасности).

Затем появляются сервлеты (сервлет является классом Java, реализация которого расширяет функциональные возможности сервера. Взаимодействует с клиентами посредством принципа запрос-ответ), таким образом, java становится еще более универсальным языком.

Мобильная разработка

Наступает эра распространения мобильных устройств. Разработчики языка и здесь идут в ногу с прогрессом и ещё до массовых продаж мобильных устройств с полноценной ОС, Java начинает распространятся по карманом пользователей -

позволяя играть в игры и выходить в интернет с помощью упрощённых браузеров. Эта тенденция только наращивает обороты с выходом смартфонов под операционной системой Android. Теперь большинство людей ежедневно пользуются миллионами приложений, написаных на java с использованием Android SDK.

1.2 Сравнительный анализ языка "Java" с другими языками программирования

Язык Java во многом похож на язык C или C++, но в действительности это только внешнее сходство. Когда вы впервые взглянете на Java-код, вы увидите, что базовый синтаксис похож на C или C++. Но на этом сходство и заканчивается. Язык Java ни в коем случае не является прямым потомком C или следующим поколением C++. Если вы сравните свойства этих языков, вы увидите, что у Java в действительности больше общего с динамическими языками высшей степени, такими как Smalltalk и Lisp. В действительности реализация Java настолько далека от реализации C++, насколько вы можете себе представить.

Если вы знакомы с современной панорамой языков, вы заметите, что популярный язык С# отсутствует в этом сравнении. С# в целом — это ответ Microsoft на Java, имеющий много преимуществ при поверхностном рассмотрении. При общем дизайне и подходе (например, использование виртуальной машины, байт-код, «песочница» и др.) платформы по существу не отличаются в показателях скорости или характеристиках безопасности. С# теоретически является таким же портативным, как Java, но сегодня он поддерживается на гораздо меньшем количестве платформ. Как и Java, С# много позаимствовал из синтаксиса С, но в действительности является близким родственником динамических языков. Многие разработчики Java считают, что понять С# достаточно легко, и наоборот. Большая часть времени, которое тратится при переходе с одного языка на другой, уходит на изучение стандартной библиотеки.

Поверхностное сходство языков, однако, ничего не стоит. Язык Java берет многое от синтаксиса языка С и С++, так что вы увидите краткие языковые конструкции, включая изобилие фигурных скобок и точек с запятой. Язык Java подписывается под философией С, заключающейся в том, что хороший язык должен быть компактным, другими словами, он должен быть достаточно легковесным и регулярным, так что программист сможет сразу запомнить все его возможности. Как и в случае с расширяемостью библиотек языка С, пакеты с классами языка Java могут добавляться в центральные компоненты языка для расширения его словаря.

Язык С успешен, поскольку предоставляет программную среду со значительным содержанием свойств, с высокой производительностью и приемлемой долей портативности. Язык Java также старается балансировать между функциональностью, скоростью и портативностью, но совсем другим образом. Язык С выдает функциональность за портативность, язык Java изначально выдавал скорость за портативность. Язык Java также решает проблемы безопасности, которые язык С не решает (хотя в современных системах многие из этих проблем сейчас решаются операционной системой и аппаратным обеспечением).

В самом начале, еще до динамической и адаптивной компиляции, язык Java был медленнее, чем статически компилируемые языки, и казалось, что он никогда не достигнет достойного уровня. Но, разработчики языка проделали большую работу, и сейчас производительность Java сравнима с С или С++ в эквивалентных задачах, и эта критика в общем сошла на нет. Движок видеоигры с открытым кодом Quake2, созданной ID Software, был переписан на Java. Если язык Java является достаточно быстрым для военной игры от первого лица, то он определенно достаточно быстр для бизнес-приложений.

1.3 Что такое виртуальная машина?

Виртуальная машина Java (JVM) — это часть платформы Java, которая даёт нам возможность разрабатывать и запускать приложения в различных операционных системах и на разных аппаратных платформах, то есть реализует кроссплатформенность.

Большинство языков программирования при компиляции образуют нативный для текущей платформы код, который, затем, непосредственно выполняется центральным процессором компьютера. Такой подход являлся наиболее очевидным и простым, он существовал со времен изобретения первых компиляторов. Всё бы хорошо, вот только взять и поделиться своей программой на C++ с другим пользователем, у которого другая операционная система, или другая аппаратная платформа, просто так не получится.

В Java эта проблема решена кардинальным образом. Вместо того, чтобы затачивать приложение под большое количество разных процессоров и ОС, разработчики платформы Java написали приложение, которое являлось виртуальным процессором и было промежуточным звеном между физическим процессором и исполняемым кодом. Байт-код Java выполняется именно виртуальной машиной Java. Java Virtual Machine предоставляет приложению на Java доступ к памяти, файловой системе и всем функциям операционной системы.

Благодаря политики открытого кода, существует несколько реализаций реализаций JVM. Самые популярные из существующих виртуальных машин Java:

HotSpot — основная Java-машина, которая входит в официальные Java Runtime Environment и JDK, на данный момент разрабатывается Oracle.

Apache Harmony — свободная реализация виртуальной машины Java от Apache, доступная под их же лицензией.

CACAO — виртуальная Java-машина, разработанная в Венском техническом университете.

Dalvik — регистровая реализация Java-машины, является основной частью платформы Android.

1.4 Что такое байт-код?

Байт-код Java — набор инструкций, исполняемых виртуальной машиной Java. Каждый код операции байт-кода — один байт.

У одного байта существует 256 возможных значений, поэтому всего 256 возможных кодов операций в байт-коде. Некоторые кода не используются и являются зарезервированы языком.

Для программирования на языке Java или других JVM-совместимых языках, знание особенностей байт-кода не обязательно. Однако, как следует из публикации в журнале IBM developerWorks, «понимание байт-кода и понимание механизмов его генерации компилятором Java помогает Java-программисту так же, как и знание языка ассемблера помогает программисту, пишущему на Си или С++».

1.6 Что такое Java?

2. Алгоритм

2.1 Понятие алгоритма

Алгоритм — набор инструкций, описывающих порядок действий, приводящих к однозначному решению поставленной задачи (за конечное число действий).

Запись алгоритма на формальном языке называется программой. Иногда само понятие алгоритма отождествляется с его записью, так что слова «алгоритм» и «программа» — почти синонимы. Небольшое различие заключается в том, что под алгоритмом, как правило, понимают основную идею его построения. Программа же всегда связана с записью алгоритма на конкретном формальном языке. Разницу между программой и алгоритмом еще можно пояснить следующим образом. Алгоритм — это метод, схема решения какой-то задачи. А программа — это конкретная реализация алгоритма, которая может быть скомпилирована и выполнена на компьютере. Алгоритм, в свою очередь, является реализацией идеи решения. Это можно проиллюстрировать следующей схемой:

Идея решения → Алгоритм → Программа

Стрелка означает переход к следующему этапу решения задачи с повышением уровня подробности описания метода решения.

Алгоритмы обладают свойством детерминированности (определённости): каждый шаг и переход от шага к шагу должны быть точно определены так, чтобы его мог выполнить любой другой человек или механическое устройство. Кроме детерминированности, алгоритмы также должны обладать свойством конечности и массовости:

Конечность - алгоритм всегда должен заканчиваться за конечное число шагов, но это число не ограничено сверху.

Массовость - алгоритм применяется к некоторому классу входных данных (чисел, пар чисел, набору букв и тому подобному).

2.2 Примеры использования алгоритмов в реальной жизни

Человек постоянно сталкивается с понятием алгоритм в различных сферах своей деятельности (кулинарные книги, инструкции по использованию различных приборов, правила решения математических задач и т.д.). Обычно, мы, выполняем привычные действия, не задумываясь, механически. Например, вы хорошо знаете, как открывать ключом дверь. Однако, чтобы научить этому

малыша, придется четко разъяснить и сами эти действия и порядок их выполнения:

- 1. Достать ключ из кармана.
- 2. Вставить ключ в замочную скважину.
- 3. Повернуть ключ два раза против часовой стрелки.
- 4. Вынуть ключ.

Если вы внимательно оглянитесь вокруг, то обнаружите множество алгоритмов, которые мы с вами постоянно выполняем. Мир алгоритмов очень разнообразен.

2.3 Типы алгоритмов. Линейный, разветвлённый, циклический

Несмотря на большое разнообразие алгоритмов (в зависимости от цели, начальных условий задачи, путей решения), удается выделить общие свойства алгоритмов и классифицировать их.

Пинейный алгоритм — набор команд, выполняемых последовательно во времени друг за другом.

Разветвляющийся алгоритм — алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько параллельных ветвей алгоритма.

Циклический алгоритм — алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными. К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов. Цикл программы — последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.