Firewalls

Outline

- Firewall Design Principles
 - Firewall Characteristics
 - Types of Firewalls
 - Firewall Configurations
- Trusted Systems
 - Data Access Control
 - The Concept of Trusted systems
 - Trojan Horse Defense

Firewalls

 Effective means of protection a local system or network of systems from network-based security threats while affording access to the outside world via WAN's or the Internet

Firewall Design Principles

- Information systems undergo a steady evolution (from small LAN's to Internet connectivity)
- Strong security features for all workstations and servers not established

Firewall Design Principles

- The firewall is inserted between the premises network and the Internet
- Aims:
 - Establish a controlled link
 - Protect the premises network from Internet-based attacks
 - Provide a single choke point

- Design goals:
 - All traffic from inside to outside must pass through the firewall (physically blocking all access to the local network except via the firewall)
 - Only authorized traffic (defined by the local security police) will be allowed to pass

- Design goals:
 - The firewall itself is immune to penetration (use of trusted system with a secure operating system)

- Four general techniques:
- Service control
 - Determines the types of Internet services that can be accessed, inbound or outbound
- Direction control
 - Determines the direction in which particular service requests are allowed to flow

- User control
 - Controls access to a service according to which user is attempting to access it
- Behavior control
 - Controls how particular services are used (e.g. filter e-mail)

- Three common types of Firewalls:
 - Packet-filtering routers
 - Application-level gateways
 - Circuit-level gateways
 - (Bastion host)

Packet-filtering Router

- Packet-filtering Router
 - Applies a set of rules to each incoming IP packet and then forwards or discards the packet
 - Filter packets going in both directions
 - The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP header
 - Two default policies (discard or forward)

- Advantages:
 - Simplicity
 - Transparency to users
 - High speed
- Disadvantages:
 - Difficulty of setting up packet filter rules
 - Lack of Authentication

- Possible attacks and appropriate countermeasures
 - IP address spoofing
 - Source routing attacks
 - Tiny fragment attacks

Application-level Gateway

- Application-level Gateway
 - Also called proxy server
 - Acts as a relay of application-level traffic

- Advantages:
 - Higher security than packet filters
 - · Only need to scrutinize a few allowable applications
 - Easy to log and audit all incoming traffic
- Disadvantages:
 - Additional processing overhead on each connection (gateway as splice point)

Circuit-level Gateway

- Circuit-level Gateway
 - Stand-alone system or
 - Specialized function performed by an Applicationlevel Gateway
 - Sets up two TCP connections
 - The gateway typically relays TCP segments from one connection to the other without examining the contents

- Circuit-level Gateway
 - The security function consists of determining which connections will be allowed
 - Typically use is a situation in which the system administrator trusts the internal users
 - An example is the SOCKS package

- Bastion Host
 - A system identified by the firewall administrator as a critical strong point in the network's security
 - The bastion host serves as a platform for an application-level or circuit-level gateway

- In addition to the use of simple configuration of a single system (single packet filtering router or single gateway), more complex configurations are possible
- Three common configurations

 Screened host firewall system (single-homed bastion host)

- Screened host firewall, single-homed bastion configuration
- Firewall consists of two systems:
 - A packet-filtering router
 - A bastion host

- Configuration for the packet-filtering router:
 - Only packets from and to the bastion host are allowed to pass through the router
- The bastion host performs authentication and proxy functions

- Greater security than single configurations because of two reasons:
 - This configuration implements both packet-level and application-level filtering (allowing for flexibility in defining security policy)
 - An intruder must generally penetrate two separate systems

 This configuration also affords flexibility in providing direct Internet access (public information server, e.g. Web server)

 Screened host firewall system (dual-homed bastion host)

- Screened host firewall, dual-homed bastion configuration
 - The packet-filtering router is not completely compromised
 - Traffic between the Internet and other hosts on the private network has to flow through the bastion host

Screened-subnet firewall system

- Screened subnet firewall configuration
 - Most secure configuration of the three
 - Two packet-filtering routers are used
 - Creation of an isolated sub-network

- Advantages:
 - Three levels of defense to thwart intruders
 - The outside router advertises only the existence of the screened subnet to the Internet (internal network is invisible to the Internet)

• Advantages:

 The inside router advertises only the existence of the screened subnet to the internal network (the systems on the inside network cannot construct direct routes to the Internet)

Trusted Systems

 One way to enhance the ability of a system to defend against intruders and malicious programs is to implement trusted system technology

Data Access Control

- Through the user access control procedure (log on), a user can be identified to the system
- Associated with each user, there can be a profile that specifies permissible operations and file accesses
- The operation system can enforce rules based on the user profile

Data Access Control

- General models of access control:
 - Access matrix
 - Access control list
 - Capability list

Access Matrix

	Program1	•••	SegmentA	SegmentB
Process1	Read		Read	
	Execute		Write	
Process2				Read
•				
•				
•				

- Access Matrix: Basic elements of the model
 - Subject: An entity capable of accessing objects, the concept of subject equates with that of process
 - Object: Anything to which access is controlled (e.g. files, programs)
 - Access right: The way in which an object is accessed by a subject (e.g. read, write, execute)

 Access Control List: Decomposition of the matrix by columns

Access Control List for Program1:

Process1 (Read, Execute)

Access Control List for SegmentA:

Process1 (Read, Write)

Access Control List for SegmentB:

Process2 (Read)

- Access Control List
 - An access control list lists users and their permitted access right
 - The list may contain a default or public entry

 Capability list: Decomposition of the matrix by rows

Capability List for Process1:

Program1 (Read, Execute)

SegmentA (Read, Write)

Capability List for Process2:

SegmentB (Read)

- Capability list
 - A capability ticket specifies authorized objects and operations for a user
 - Each user have a number of tickets

- Trusted Systems
 - Protection of data and resources on the basis of levels of security (e.g. military)
 - Users can be granted clearances to access certain categories of data

- Multilevel security
 - Definition of multiple categories or levels of data
- A multilevel secure system must enforce:
 - No read up: A subject can only read an object of less or equal security level (Simple Security Property)
 - No write down: A subject can only write into an object of greater or equal security level (*-Property)

 Reference Monitor Concept: Multilevel security for a data processing system

- Reference Monitor
 - Controlling element in the hardware and operating system of a computer that regulates the access of subjects to objects on basis of security parameters
 - The monitor has access to a file (security kernel database)
 - The monitor enforces the security rules (no read up, no write down)

- Properties of the Reference Monitor
 - Complete mediation: Security rules are enforced on every access
 - Isolation: The reference monitor and database are protected from unauthorized modification
 - Verifiability: The reference monitor's correctness must be provable (mathematically)

 A system that can provide such verifications (properties) is referred to as a trusted system

Trojan Horse Defense

 Secure, trusted operating systems are one way to secure against Trojan Horse attacks

Trojan Horse Defense

Trojan Horse Defense

Recommended Reading

- Chapman, D., and Zwicky, E. Building Internet Firewalls. O'Reilly, 1995
- Cheswick, W., and Bellovin, S. Firewalls and Internet Security: Repelling the Wily Hacker. Addison-Wesley, 2000
- Gasser, M. Building a Secure Computer System. Reinhold, 1988
- Pfleeger, C. Security in Computing. Prentice Hall, 1997