

Project: Exploring Weather Trends

By: Toufik Kannab

Date: 09/15/2017

1. What tools did you use for each step? (Python, SQL, Excel, etc)

- a. I used two SQL queries to extract my data from the database:
 - i. Global Data:

```
SELECT *
FROM global_data
```

ii. Local Data: (for San Jose, CA)

```
SELECT year, city, avg_temp
FROM city_data
WHERE city = 'San Jose'
```

- b. I exported the data to CSV files using
- c. I used MS Excel to convert the CSV file to XSLX file, calculate the moving average and create the charts.

<u>▶</u> Download CSV the link

2. How did you calculate the moving average?

I tried 7, 10, 20-year moving averages to see which average is better to smooth out data. To calculate the moving average in MS Excel, I used the AVERAGE function (the same approach as in the lesson) as shown below:

Figure 1: 7-year Moving Average

Δ	Α	В	С	D	E
1	year	city	Loc_avg_temp	Loc_7Mov_avg	Loc_10Mov_avg L
2	1849	San Jose	14.12		
3	1850	San Jose	13.8		
4	1851	San Jose	14.39		
5	1852	San Jose	13.81		
6	1853	San Jose	14.4		
7	1854	San Jose	13.98		
8	1855	San Jose	14.2	14.10	
9	1856	San Jose	14.1	14.10	
10	1857	San Jose	14.78	14.24	
11	1858	San Jose	14.19	14.21	=AVERAGE(C2:C11)
12	1859	San Jose	13.71	14.19	AVERAGE(number1, [nun
13	1860	San Jose	13.81	14.11	14.14
14	1861	San Jose	14.88	14.24	14.19

Figure 2: 10-year Moving Average

Figure 3: 20-year Moving Average

3. What were your key considerations when deciding how to visualize the trends?

The key consideration was to determine the timeframe for data visualization; Looking at the local temperature data for San Jose, the data covers the period between **1849** to **2013**, where in the global temperature data covers the period between **1750** and **2015**. Therefore, the analysis was performed for the range between **1849** to **2013**. To make sure local and global temperature data is mapped correctly, I used VLOOKUP to retrieve the global temperature data worksheet into the local data worksheet.

Another consideration was to adjust the starting point for each chart as follows:

- 7-year moving average starting point: 1855 (1849 + 7) See figure 6
- 10-year moving average starting point: 1858 (1849 + 10) See figure 5
- 20-year moving average starting point: 1868 (1849 + 20) See figure 4

To help assess the data variance and frequency of change between global and local temperature levels, I calculated the following:

- The Global & Local annual change percentage:

- The Local/Global temp. average difference:

1	Α	В	G	L	
1	year 👻	Loc_avg_temp 🔻	Glo_avg_temp 🔻	Difference 🔻	
2	1849	14.12	7.98	=B2-G2	
3	1850	13.8	7.9	5.90	
4	1851	14.39	8.18	6.21	
5	1852	13.81	8.1	5.71	
6	1853	14.4	8.04	6.36	
7	1254	13 98	R 21	5 77	

Also, I used Pivot table to calculate the Max, Min, Average, Standard Deviation, High/Low (%) change as follows:

All the calculations above were summarized in table 1 and table 2 below

Observations:

- The San Jose is hotter than the global temperature (please refer to Min, Max and Avg. columns in the table below)
- The local (San Jose) and global temperature levels are both increasing.
- The global moving average experiences less fluctuations than the local moving average in San Jose.
- The global temperature levels have a smaller variance than the local temperature changes.
- To determine the slope, we used the Linear TREND function for the local and global temperature data, we got the following the following equations:
 - o Local temperature: y = 0.0049x + 14.041
 - O Global temperature: y = 0.0033x + 7.8644

By comparing the two slopes (Slope1 = 0.0049) & (Slope2 = 0.0033), we note the local trend is increasing more rapidly than the global trend.

- The highest difference between local and global temperature is 7.20 °. This was recorded in year 1864; where the lowest difference between local and global temperature is 4.84 °. this was recorded in year 1998 (see figure 7)

	Min	Max	Avg.	SD	highest Inc. (%)	Lowest Dec. (%)	Avg. Change
San Jose	13.22 ^c	16.23 ^c	14.5 °	0.505	9.907 %	- 8.698 %	0.152 %
Global	7.56°	9.73 ^c	8.55 ^c	0.460	7.275%	- 7.475 %	0.146 %

Table 1: Global Vs. Local (Summary 1)

Highest Difference	Lowest Difference
7.20 °	4.86 ^c

Table 2: Highest & Lowest Average Difference

Figure 4: 20-year Moving Average Comparison

Figure 5: 10-year Moving Average Comparison

Figure 6: 7-year Moving Average Comparison

Figure 7: Temp. Average Comparison & Max/Min Difference