ELECTRICAL EVENTS IN THE CARDIAC CYCLE

Dr Lesley Ulman
Department of Physiology

The heart has a specialised system for

- generating rhythmical impulses ⇒ rhythmical contraction (autorhythmic)
- conducting these impulses throughout the heart

OBJECTIVES OF THIS LECTURE

- Describe the path of action potentials through the conduction system of the heart
- Understand the ionic basis of the different phases of the pacemaker potential
- Describe the effects of the autonomic nervous system on pacemaker potentials
- Understand the ionic basis of the different phases of the ventricular action potential
- Describe the different waves of the electrocardiogram and how they relate to the events of the cardiac cycle

- impulses generated in the sinus node (sinoatrial node / SA node)
- flattened strip of specialised muscle in lateral wall of the upper RA
- discharges 70 times/min at rest
- SA nodal cells have fastest inherent rate of spontaneous depolarization and so set heart rate
- from SA node impulses spread through atria by interatrial pathways
- impulses also travel through internodal pathways to the atrioventricular node
- small bundle of specialised cardiac muscle cells at base of right atrium

- ±30msec from SA node to AV node, ±100msec delay in AV node itself AV nodal delay.
- Impulses then enter Bundle of His (atrioventricular bundle) – further delay of ±40msec, then divides into
- right and left bundle branches travel down septum, curve around tips of ventricles & travel back towards atria
- Purkinje fibres extend from bundle branches and spread into ventricular myocardium
- Purkinje fibres large elongated cylindrical cells, numerous mitochondria, few myofibrils, specialised for fast conduction
- then impulses are transmitted through ventricular muscle fibres

ION MOVEMENT ACROSS CELL MEMBRANES

 ion
 IC conc
 EC conc

 Na*
 15mM
 150mM

 K*
 150mM
 5mM

 Ca**
 low
 high

[Na⁺] outside cell much higher (150mM) than inside (15mM) so tendency is for Na⁺ to enter cell, increasing positivity inside cell.

[K $^+$] inside cell much higher (150mM) than outside (5mM) so tendency is for K $^+$ to leave cell, increasing negativity inside cell.

[Ca⁺⁺] outside cell higher than inside so tendency is for Ca⁺⁺ to enter cell, increasing positivity inside cell.

RATES OF CONDUCTION

SA node 0.05m/sec
Atrial muscle 1m/sec
AV node 0.05m/sec
Bundle of His 1m/sec
Purkinje fibres 4m/sec
Ventricular muscle 1m/sec

These various autorhythmic cells have different rates of discharge

SA node (fastest) 70-80 times/min
AV node 40-60 times/min
Bundle of His/purkinje fibres 20-40 times/min

An action potential recorded from a sinus nodal fibre Sinus nodal fiber Wheating potential in the seconds in the seconds in the seconds in the seconds in the second ind

A) Slow Depolarisation (unstable baseline)

membrane potential drifts up to -40mV because

i) progressive spontaneous reduction in membrane permeability of SA node cell to K⁺ i.e. closing of K⁺ channels - less K⁺ moves out of cell → ↑ internal potential. This is coupled with a constant inward Na⁺ current.

ii) small progressive ↑ in Ca** permeability - Ca** moves into cell → ↑ internal potential (opening of slow or T Ca** channels)

B) Depolarisation / Upstroke

sudden increase in internal potential

•opening of L (long lasting) Ca⁺⁺ channels → ↑↑ in Ca⁺⁺ permeability & large inward flow of Ca⁺⁺ → cell depolarisation

C) Repolarisation

internal potential drops because

- •reversal of Ca⁺⁺ permeability both Ca⁺⁺ channels close so no further Ca⁺⁺ moves into cell
- •K+ channels activated, K+ permeability increases, K+ leaves cell

EFFECTS OF ANS ON PACEMAKER POTENTIALS

- SA node receives direct input from ANS
- ↑ SNS activity → ↑ frequency of action potentials generated by
 - 1 slope of the spontaneous depolarisation
 - ↓ level of repolarisation

so threshold is reached more quickly.

 \uparrow frequency of APs $\rightarrow \uparrow$ in heart rate

- ↑ PSNS activity → ↓ frequency of action potentials generated by
 - ↓ slope of spontaneous depolarisation
 - causing a hyperpolarisation of the membrane potential

so ↑ time taken for threshold to be reached.

 \downarrow frequency of APs $\rightarrow \downarrow$ in heart rate

↑ in Na⁺ permeability is very transient and Na⁺ channels quickly close again

At start of plateau, K^+ permeability is high so K^+ leaves through open K^+ channels

Both these cause membrane potential to fall a little but membrane remains depolarised at a plateau of about 0mV for up to 300msec because

i) activation of slow Ca^{++} channels \rightarrow slow inward infusion of Ca^{++}

ii) concomitant ↓ in K⁺ permeability reducing outflow of positively charged K⁺

Both these prolong positivity inside cell

resting potential -80 to -90mV

depolarises to +30mV

duration 300msec

long plateau phase - unique for cardiac muscle – relatively long absolute refractory period

Resting State

•cardiac muscle cell much more permeable to K⁺ than Na⁺ so K⁺ leaks out keeping resting potential at -90mV.

Depolarisation / Fast Upstroke

- •fast Na⁺ channels open → rapid ↑ in Na⁺ permeability, Na⁺ flows rapidly into cell increasing membrane potential
- •↓ permeability to K⁺ stopping K⁺ moving out of cell contributes to membrane depolarisation

Repolarisation

Internal potential drops because

- i) inactivation of Ca⁺⁺ channels so less Ca⁺⁺ moves into cell
- ii) activation of K⁺ channels causing rapid outward movement of K⁺

Relative permeabilities of different ions

<u>In resting phase</u>: membrane more permeable to K⁺ than Na⁺ so more K⁺ is moving out than Na⁺ moving in so potential is negative

Fast upstroke: permeability to Na⁺ ↑ dramatically but permeability to K⁺ drops - potential ↑

Plateau phase: Na* permeability ↓, K* permeability continues to ↓ (reducing outflow of positive charges) and Ca** permeability ↑ (increasing inflow of Ca**)

Repolarisation: K⁺ permeability ↑ (K⁺ flows out) and Ca⁺⁺ permeability ↓ (Ca⁺⁺ stops flowing in) - potential ↓

P wave - atrial depolarisation

QRS complex - ventricular depolarisation

T wave - ventricular repolarisation

(atrial repolarisation not evident on ECG because it occurs at the same time as ventricular depolarisation)

Between waves - horizontal isoelectric line

Certain intervals and segments can provide information about heart function

