Wasserstein distance between Lévy measures with applications to Bayesian nonparametrics

Hugo Lavenant

Bocconi University

2022 ISBA world meeting, Montreal (Canada), June 28 2022

Joint work with:

Marta Catalano

Antonio Lijoi

Igor Prünster

Joint work with:

Marta Catalano

Antonio Lijoi

Igor Prünster

Disclaimer

I am not a (Bayesian) statistican.

My background: mathematical analysis, optimal transport.

Quantifying dependence

Quantifying dependence

Bayesian inference allows for borrowing of information

Quantifying dependence

Bayesian inference allows for borrowing of information

Goal: quantifying the amount of **dependence** between groups already present in the **prior**

Snapshot of the final result

Our contribution: an index of dependence quantifying dependence in the prior

Different parametrized models of prior

Snapshot of the final result

Our contribution: an index of dependence quantifying dependence in the prior

Allow for comparision between different priors

1 - Context, general strategy

2 - Building the index with optimal transport

2 - Building the index with optimal transport

Bayesian Non Parametrics

 $ilde{p}$ random probability measure on $\mathbb X$

$$X_1, X_2, \ldots, X_n | \tilde{p} \stackrel{\text{i.i.d.}}{\sim} \tilde{p}$$

(justified by exchangeability)

Bayesian Non Parametrics

 $ilde{p}$ random probability measure on $\mathbb X$

$$X_1, X_2, \ldots, X_n | \tilde{p} \stackrel{\text{i.i.d.}}{\sim} \tilde{p}$$

(justified by exchangeability)

Specific setting: Completely Random Vectors

$$\begin{split} \tilde{\boldsymbol{\mu}} &= (\tilde{\mu}_1, \tilde{\mu}_2, \dots, \tilde{\mu}_d) \text{ Completely Random Vector} \\ & X_{1,1}, X_{1,2}, \dots, X_{1,n_1} | \, \tilde{\boldsymbol{\mu}} \overset{\text{i.i.d.}}{\sim} \, \frac{\tilde{\mu}_1}{\tilde{\mu}_1(\mathbb{X})} \\ & X_{2,1}, X_{2,2}, \dots, X_{2,n_2} | \, \tilde{\boldsymbol{\mu}} \overset{\text{i.i.d.}}{\sim} \, \frac{\tilde{\mu}_2}{\tilde{\mu}_2(\mathbb{X})} \\ & \vdots \\ & X_{d,1}, X_{d,2}, \dots, X_{d,n_d} | \, \tilde{\boldsymbol{\mu}} \overset{\text{i.i.d.}}{\sim} \, \frac{\tilde{\mu}_d}{\tilde{\mu}_d(\mathbb{X})} \end{split}$$

Definition (CRV). For all $A_1, \ldots, A_n \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\boldsymbol{\mu}}(A_1), \ldots, \tilde{\boldsymbol{\mu}}(A_n)$ are independent random vectors in \mathbb{R}^d_+ .

Specific setting: Completely Random Vectors

$$ilde{m{\mu}} = (ilde{\mu}_1, ilde{\mu}_2, \dots, ilde{\mu}_d)$$
 Completely Random Vector $X_{1,1}, X_{1,2}, \dots, X_{1,n_1} | ilde{m{\mu}} \overset{\text{i.i.d.}}{\sim} \frac{ ilde{\mu}_1}{ ilde{\mu}_1(\mathbb{X})}$

Contains all dependence in the prior

$$X_{2,1},X_{2,2},\ldots,X_{2,n_2}|\, ilde{oldsymbol{\mu}}\stackrel{ ext{i.i.d.}}{\sim} rac{ ilde{\mu}_2}{ ilde{\mu}_2(\mathbb{X})}$$

$$X_{d,1}, X_{d,2}, \dots, X_{d,n_d} | \tilde{\boldsymbol{\mu}} \overset{\text{i.i.d.}}{\sim} \frac{\mu_d}{\tilde{\mu}_d(\mathbb{X})}$$

Definition (CRV). For all $A_1, \ldots, A_n \subseteq \mathbb{X}$ disjoints, the vectors $\tilde{\boldsymbol{\mu}}(A_1),\ldots,\tilde{\boldsymbol{\mu}}(A_n)$ are independent random vectors in \mathbb{R}^d_+ .

For $A \subseteq \mathbb{X}$, the random variables $\tilde{\mu}_1(A), \ldots, \tilde{\mu}_d(A)$ may be dependent.

Assumptions of **homogeneity** and no fixed atoms:

$$ilde{oldsymbol{\mu}} = \sum_{i=1}^{\infty} ilde{\mathbf{J}}_i \delta_{Y_i}$$

where $(Y_i)_i \in \mathbb{X}$ (atoms) follow base measure P_0 ; and $(\tilde{\mathbf{J}}_i)_i$ (jumps) independent from $(Y_i)_i$ follow Poisson point cloud on \mathbb{R}^d_+ with intensity measure ν (Lévy measure).

Assumptions of **homogeneity** and no fixed atoms:

$$\tilde{\boldsymbol{\mu}} = \sum_{i=1}^{\infty} \tilde{\mathbf{J}}_i \delta_{Y_i}$$

where $(Y_i)_i \in \mathbb{X}$ (atoms) follow base measure P_0 ; and $(\tilde{\mathbf{J}}_i)_i$ (jumps) independent from $(Y_i)_i$ follow Poisson point cloud on \mathbb{R}^d_+ with intensity measure ν (Lévy measure).

Assumptions of **homogeneity** and no fixed atoms:

$$\tilde{\boldsymbol{\mu}} = \sum_{i=1}^{\infty} \tilde{\mathbf{J}}_i \delta_{Y_i}$$

where $(Y_i)_i \in \mathbb{X}$ (atoms) follow base measure P_0 ; and $(\tilde{\mathbf{J}}_i)_i$ (jumps) independent from $(Y_i)_i$ follow Poisson point cloud on \mathbb{R}^d_+ with intensity measure ν (Lévy measure).

Assumpt

where (Y (jumps) i on \mathbb{R}^d_+ wi

Goal: distinguish between these two cases.

 $u(C) \propto ext{observing a jump of }$ $ext{size} \in C_1 ext{ for } ilde{\mu}_1 ext{ and } \in C_2 ext{ for }$ $ilde{\mu}_2$ $C = C_1 imes C_2$

A general method to construct an index

Ingredients:

- \tilde{Z} random object, \tilde{Z}^{co} "most dependent".
- \mathcal{D} "discrepancy" between laws of random objects.

A general method to construct an index

Ingredients:

- $ilde{Z}$ random object, $ilde{Z}^{\mathrm{co}}$ "most dependent".
- \mathcal{D} "discrepancy" between laws of random objects.

To check: $\mathcal{D}(\tilde{Z}^{\mathrm{co}}, \tilde{Z})$ is maximized when $\tilde{Z} = \tilde{Z}^{\perp}$ the most independent structure.

A general method to construct an index

Ingredients:

- $ilde{Z}$ random object, $ilde{Z}^{\mathrm{co}}$ "most dependent".
- \mathcal{D} "discrepancy" between laws of random objects.

To check: $\mathcal{D}(\tilde{Z}^{\text{co}}, \tilde{Z})$ is maximized when $\tilde{Z} = \tilde{Z}^{\perp}$ the most independent structure.

Then define:

$$\mathcal{I}(\tilde{Z}) = 1 - \frac{\mathcal{D}(\tilde{Z}^{co}, \tilde{Z})}{\mathcal{D}(\tilde{Z}^{co}, \tilde{Z}^{\perp})}.$$

It belongs to [0, 1] and satisfies:

$$\mathcal{I}(\tilde{Z}^{\perp}) = 0, \qquad \mathcal{I}(\tilde{Z}^{co}) = 1.$$

1 - Context, general strategy

2 - Building the index with optimal transport

Law of a Completly Random Vector $ilde{oldsymbol{\mu}}$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

$$\mathcal{W}(\nu^1, \nu^2)^2 = \min_{(X,Y)} \left\{ \mathbb{E} \left[\|X - Y\|^2 \right] \; : \; X \sim \nu^1 \; \text{and} \; Y \sim \nu^2 \right\}$$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

$$\mathcal{W}(\nu^1,\nu^2)^2 = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X-Y\|^2 \right] \ : \ X \sim \nu^1 \text{ and } Y \sim \nu^2 \right\}$$

$$= \min_{\gamma} \left\{ \iint \|x - y\|^2 d\gamma(x, y) : \pi_1 \# \gamma = \nu^1 \text{ and } \pi_2 \# \gamma = \nu^2 \right\}$$

(Classical) optimal transport

Definition. If ν^1, ν^2 probability distributions, the Wasserstein distance is

$$\mathcal{W}(\nu^1,\nu^2)^2 = \min_{(X,Y)} \left\{ \mathbb{E}\left[\|X-Y\|^2 \right] \ : \ X \sim \nu^1 \text{ and } Y \sim \nu^2 \right\}$$

$$= \min_{\gamma} \left\{ \iint \|x - y\|^2 d\gamma(x, y) : \pi_1 \# \gamma = \nu^1 \text{ and } \pi_2 \# \gamma = \nu^2 \right\}$$

$$\leq \int ||x||^2 d\nu^1(x) + \int ||y||^2 d\nu^2(y)$$

Observation. Naively, makes sense if ν^1, ν^2 have infinite mass but **finite** second moment.

Extended Wasserstein distance

Definition. If ν^1, ν^2 positive measures on $\mathbb{R}^d_+ \setminus \{0\}$ with **finite second moments**, the Wasserstein distance is

$$\mathcal{W}_*(\nu^1,\nu^2)^2 = \min_{\gamma} \left\{ \iint \|x-y\|^2 \mathrm{d}\gamma(x,y) \ : \ \pi_1 \# \gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^1 \\ \text{and} \ \pi_2 \# \gamma|_{\mathbb{R}^d_+ \setminus \{0\}} = \nu^2 \right\}$$
 with γ measure on $\mathbb{R}^{2d}_+ \setminus \{(0,0)\}$.

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

Extended Wasserstein distance

Definition. If ν^1, ν^2 positive measures on $\mathbb{R}^d_+ \setminus \{0\}$ with **finite second moments**, the Wasserstein distance is

$$\mathcal{W}_*(\nu^1,\nu^2)^2 = \min_{\gamma} \left\{ \iint \|x-y\|^2 \mathrm{d}\gamma(x,y) \ : \ \pi_1 \# \gamma|_{\mathbb{R}^d_+ \backslash \{0\}} = \nu^1 \\ \text{ and } \ \pi_2 \# \gamma|_{\mathbb{R}^d_+ \backslash \{0\}} = \nu^2 \right\}$$
 with γ measure on $\mathbb{R}^{2d}_+ \backslash \{(0,0)\}$.

Mass on $\mathbb{R}^d_{+,*} \times \{0\}$ and $\{0\} \times \mathbb{R}^d_{+,*}$: mass "destroyed" or "created" from the sink/reservoir (0,0).

In progress: extending this idea to couple also the law of atoms for inhomogeneous CRV

Figalli and Gigli (2010). A new transportation distance between non-negative measures, with applications to gradients flows with Dirichlet boundary conditions.

First result. $W_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

Space of Lévy measure over \mathbb{R}^d_+ having same marginals

First result. $\mathcal{W}_*(\nu^{\text{co}}, \nu)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $\mathcal{W}_*(\nu^{\text{co}}, \nu)$ is maximized exactly for $\nu = \nu^{\perp}$.

Space of Lévy measure over \mathbb{R}^d_+ having same marginals

First result. $W_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $\mathcal{W}_*(\nu^{\text{co}}, \nu)$ is maximized exactly for $\nu = \nu^{\perp}$.

Define:

$$\mathcal{I}(\nu) = 1 - \frac{\mathcal{W}_*(\nu^{\text{co}}, \nu)^2}{\mathcal{W}_*(\nu^{\text{co}}, \nu^{\perp})^2}.$$

It belongs to [0,1] and satisfies:

$$\mathcal{I}(\nu^{\perp}) = 0, \qquad \mathcal{I}(\nu^{\text{co}}) = 1.$$

Space of Lévy measure over \mathbb{R}^d_+ having same marginals

First result. $W_*(\nu^{co}, \nu)$ can be computed with 1d integrals of tail functions.

Second result. If ν^{co} has infinite mass, $\mathcal{W}_*(\nu^{\text{co}}, \nu)$ is maximized exactly for $\nu = \nu^{\perp}$.

Define:

$$\mathcal{I}(\nu) = 1 - \frac{\mathcal{W}_*(\nu^{\text{co}}, \nu)^2}{\mathcal{W}_*(\nu^{\text{co}}, \nu^{\perp})^2}.$$

Space of Lévy measure over \mathbb{R}^d_+ having same marginals

It belongs to [0,1] and satisfies:

$$\mathcal{I}(\nu^{\perp}) = 0, \qquad \mathcal{I}(\nu^{\text{co}}) = 1.$$

Consequence. We have an index of dependence for homogeneous infinitely active completely random vectors without fixed atoms, with equal marginals and finite second moments.

Examples

Additive model

Parameter $z \in [0, 1]$,

$$\nu = (1 - z)\nu^{\perp} + z\nu^{\text{co}}$$

$$\mathcal{I}(z) \geq z$$
 [= Covariance if $d = 2$]

Examples

Additive model

Parameter $z \in [0, 1]$,

$$\nu = (1 - z)\nu^{\perp} + z\nu^{\text{co}}$$

$$\mathcal{I}(z) \geq z$$
 [= Covariance if $d = 2$]

Compound random measures

Parameter ϕ measures dependence

$$\nu(s_1, \dots, s_d) = \int_0^{+\infty} h^{\phi} \left(\frac{s_1}{u}, \dots, \frac{s_d}{u}\right) d\nu_*^{\phi}(u)$$

for well chosen h^{ϕ}, ν_*^{ϕ} .

Examples

Additive model

Parameter $z \in [0,1]$,

Griffin and Leisen (2017)

$$\nu = (1 - z)\nu^{\perp} + z\nu^{\text{co}}$$

Compound random measures

Parameter ϕ measures dependence

$$\nu(s_1, \dots, s_d) = \int_0^{+\infty} h^{\phi} \left(\frac{s_1}{u}, \dots, \frac{s_d}{u}\right) d\nu_*^{\phi}(u)$$

12/13

d=2

d = 3d = 4

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: convergence of posterior, distance of a prior/posterior to a reference one, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Conclusion

What is done:

- Wasserstein distance between Lévy measures.
- Index of dependence between Completely Random Vectors.

What's next?:

- Study dependence in the posterior.
- Use this distance for other purposes: convergence of posterior, distance of a prior/posterior to a reference one, etc.

For this, need to extend the distance to couple both atoms and jumps, to Cox processes.

Thank you for your attention