1. .

- F1, . . . , Fn \models G \sim ((F1^F2^...Fn) => G) (regula de deductie)
- F1, ..., Fn \models G \Leftrightarrow (F1 \land ... \land Fn \land \neg G) (ipoteza)

Notam cu M= F1^F2^...Fn

Din tabelul de mai jos se poate observa ca pentru a avea $M \land \neg G$ nesatisfiabil ar trebui sa ignoram cazul in care M=1 si G=0. Iar in acest caz propozitia M=>G este valida, deci M|=G este o consecinta logica .

M	G	notG	M=>G	M^notG
0	0	1	1	0
0	1	0	1	0
1	0	1	0	1
1	1	0	1	0

2. .

F	G	F⇔G	F~G
1	1	1	1
1	0	0	0
0	1	0	0
0	0	1	1

3. .

Q	R	Ρ	notP	QvR	Q => notP	R^P	not(R^P)
1	1	1	0	1	0	1	0
1	1	0	1	1	1	0	1
1	0	1	0	1	0	0	1
1	0	0	1	1	1	0	1
0	1	1	0	1	1	1	0
0	1	0	1	1	1	0	1
0	0	1	0	0	1	0	1
0	0	0	1	0	1	0	1

4. (a) functia prim

Α -	В	C -	M
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1,

$M=(notA^B^notC)\ V\ (notA\ ^B^C)\ V\ (A^notB^C)\ V(A^B^C)$

b)

patrat perfect

4				
Α	В	C	M	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	0	
1	1	0	0	
1	1	1	0	

M=(notA^notB^C)V(A^notB^notC)

c)

Par

Α		В	С	M
	0	0	0	1
	0	0	1	0
	0	1	0	1
	0	1	1	0
	1	0	0	1
	1	0	1	0
	1	1	0	1
	1	1	1	0

M=notC

Pentru ca in reprezentarea in binar toate cifrele sunt puteri ale lui 2. A=2^2, b=2^1, c=2^0.

Se observa ca suma celor 3 numere da un numar impar doar daca C este 1,deci numarul nostru reprezentat in binar este impar doar daca C=1

5.

