LÖSUNGSVORSCHLÄGE ZU DEN ABGABEAUFGABEN, BLATT 6

Aufgabe 1.1: Klar ist $||x||_{\infty} \ge 0$, sowie $||x||_1 \ge 0$. Da $|x_j| \le ||x||_{\infty}$ and $|x_j| \le ||x||_1$, so sehen wir, dass $||x||_{\infty} = 0$ genau dann, wenn x = 0, und $||x||_1 = 0$ genau dann, wenn x = 0. Weiter ist

$$\|\lambda x\|_{\infty} = \max_{1 \le j \le n} |\lambda x_j| = \max_{1 \le j \le n} |\lambda| |x_j| = |\lambda| \max_{1 \le j \le n} |x_j| = |\lambda| \|x\|_{\infty},$$

sowie

$$\|\lambda x\|_1 = \sum_{j=1}^n |\lambda x_j| = \sum_{j=1}^n |\lambda| |x_j| = |\lambda| \sum_{j=1}^n |x_j| = |\lambda| \|x\|_1.$$

Da die Dreiecksungleichung bereits für den Betrag $|\cdot|$ in $\mathbb R$ gilt, so folgt außerdem

$$||x + y||_{\infty} = \max_{1 \le j \le n} |x_j + y_j| \le \max_{1 \le j \le n} |x_j| + |y_j|$$

$$\le \max_{1 \le j \le n} |x_j| + \max_{1 \le j \le n} |y_j| = ||x||_{\infty} + ||y||_{\infty},$$

und

$$||x+y||_1 = \sum_{j=1}^n |x_j + y_j| \le \sum_{j=1}^n |x_j| + |y_j|$$
$$= \sum_{j=1}^n |x_j| + \sum_{j=1}^n |y_j| = ||x||_1 + ||y||_1.$$

Aufgabe 1.1: Die offenen Einheitskugeln (d.h. ohne 'Rand') der Normen $\|\cdot\|_1$, $\|\cdot\|_{\infty}$ und (was nicht gefordert war) $\|\cdot\|_2$ für n=2 sehen wie folgt aus:

Aufgabe 2: Ist d'(x,y)=0, so ist d(x,y)=0, und damit x=y. Wenn x=y, dann d'(x,y)=0, da schon d(x,y)=0, weil d eine Metrik ist. Die Symmetry von d' folgt unmittelbar aus der Symmetry von d. Zur Dreiecksungleichung bemerke, dass die Funktion

$$f \colon [0, \infty) \mapsto \mathbb{R}, \ x \mapsto \frac{x}{1+x}$$

monoton steigend ist. Gilt also $d(x,y) \leq d(x,z) + d(z,y)$, so auch

$$d'(x,y) = f(d(x,y)) \le f(d(x,z) + d(z,y)).$$

Dabei ist

$$\begin{split} f(d(x,z)+d(z,y)) &= \frac{d(x,z)+d(z,y)}{1+d(x,z)+d(z,y)} \\ &= \frac{d(x,z)}{1+d(x,z)+d(z,y)} + \frac{d(z,y)}{1+d(x,z)+d(z,y)} \\ &\leq \frac{d(x,z)}{1+d(x,z)} + \frac{d(z,y)}{1+d(z,y)} \\ &= d'(x,y) + d'(z,y), \end{split}$$

und die Dreiecksungleichung für d' ist gezeigt.

Aufgabe 3.1: Hier nur die Ergebnisse: Wir haben $M = \{1 - \frac{1}{n} \mid n \in \mathbb{N}\}$ und damit $M^{\circ} = \emptyset$, $\overline{M} = M \cup \{1\}$ und $\partial M = \overline{M} \setminus M^{\circ} = \overline{M}$.

Aufgabe 3.2: Wieder nur die Ergebnisse: M is abgeschlossen, also $\overline{M} = M$. Weiter ist $M^{\circ} = M \setminus \{0\}$. Damit also $\partial M = \overline{M} \setminus M^{\circ} = \{0\}$.

Aufgabe 4.1: Ist $p \in M'$, so ist $p \in M_{\alpha}$ für ein α . Da M_{α} offen ist, so existiert ein r > 0, sodass $K_r(p) \subset M_{\alpha}$. Da $M_{\alpha} \subset M'$, so ist $K_r(p) \subset M'$ und damit M' offen.

Aufgabe 4.2: Ist $p \in M''$, so ist $p \in M_{\alpha}$ für alle (endlich vielen!) $\alpha \in A$. Da M_{α} offen ist, so existiert ein $r_{\alpha} > 0$ so dass

$$K_{r_{\alpha}}(p) \subset M_{\alpha}$$
.

Mit

$$r := \min_{\alpha \in A} r_{\alpha}$$

erhalten wir für all $\alpha \in A$

$$K_r(p) \subset M_{\alpha}$$

und somit

$$K_r(p) \subset M''$$
.

Aufgabe 4.3: Es gilt

$$(N')^c = \bigcap_{\alpha \in A} N_{\alpha}^c \text{ und } (N'')^c = \bigcup_{\alpha \in A} N_{\alpha}^c.$$

Nach Aufgabe 4.1 ist also N'' abgeschlossen, da alle N^c_{α} offen sind. Falls A endlich ist, so ist nach Aufgabe 4.2 die Menge N' abgeschlossen.