Final-Part A

四機三甲 3A511021 朱庭宏

The forward kinematic equations of the robot are as follows:

$$\begin{cases} P_x = a_3 C_1 C_2 C_3 - a_3 C_1 S_2 S_3 + a_2 C_1 C_2 \\ P_y = a_3 S_1 C_2 C_3 - a_3 S_1 S_2 S_3 + a_2 S_1 C_2 \\ P_z = a_3 S_2 C_3 + a_3 C_2 S_3 + a_2 S_2 + d_1 \end{cases}$$

The inverse kinematic equations of the robot are as follows:

$$\theta_1 = \tan^{-1}(p_y/p_y)$$

$$\theta_3 = \cos^{-1} \left[\frac{P_x^2 + P_y^2 + (P_z - d_1)^2 - (a_2^2 + a_3^2)}{2a_2 a_3} \right]$$

$$\theta_2 = Sin^{-1} \left(\frac{(P_z - d_1)}{\sqrt{m_1^2 + m_2^2}} \right) - \tan^{-1} \left(\frac{m_2}{m_1} \right)$$

```
1.
A=[101 \ 21 \ 220]; B=[21 \ -61 \ 150]; C=[150,30,200];
X = [A; B];
R1=[];
n=size(X,1);
for i=1:n-1
   y=linspace3d(X(i,:),X(i+1,:),21);
   if (i~=1)
       y=y(2:end,:);
   end
   R1 = [R1; y];
end
R1=[R1 zeros(size(R1,1),3)];
x=R1(:,1); y=R1(:,2); z=R1(:,3);
[theta1, theta2, theta3] = inv3arm(x, y, z);
R1(:,4) = theta1; R1(:,5) = theta2(:,1); R1(:,6) = theta3;
%fprintf('R=\n');
%disp(R1);
```

```
plot3(x,y,z);
hold on;
Y=[B;C];
R2=[];
n=size(Y,1);
for i=1:n-1
   y=linspace3d(Y(i,:),Y(i+1,:),21);
   if (i~=1)
       y=y(2:end,:);
   end
   R2 = [R2; y];
end
R2=[R2 zeros(size(R2,1),3)];
x=R2(:,1); y=R2(:,2); z=R2(:,3);
[theta1, theta2, theta3] = inv3arm(x, y, z);
R2(:,4) = theta1; R2(:,5) = theta2(:,21); R2(:,6) = theta3;
%fprintf('R2=\n');
%disp(R2);
plot3(x,y,z);
R=[];
R=[R1;R2];
fprintf('R=\n');
disp(R);
xlswrite('testdata.xlsx',R);
```


R=					
101.0000	21.0000	220.0000	11.7456	-85.1596	67.5021
97.0000	16.9000	216.5000	9.8833	-88.2314	74.2015
93.0000	12.8000	213.0000	7.8366	-90.7673	80.3595
89.0000	8.7000	209.5000	5.5831	-92.8895	86.0848
85.0000	4.6000	206.0000	3.0977	-94.6777	91.4498
81.0000	0.5000	202.5000	0.3537	-96.1868	96.5043
77.0000	-3.6000	199.0000	-2.6768	-97.4566	101.2827
73.0000	-7.7000	195.5000	-6.0213	-98.5180	105.8081
69.0000	-11.8000	192.0000	-9.7045	-99.3963	110.0951
65.0000	-15.9000	188.5000	-13.7455 -	100.1145	114.1507
61.0000	-20.0000	185.0000	-18.1527 -	100.6952	117.9754
57.0000	-24.1000	181.5000	-22.9190 -	101.1622	121.5634
53.0000	-28.2000	178.0000	-28.0163 -	101.5427	124.9028
49.0000	-32.3000	174.5000	-33.3922 -	101.8681	127.9757
45.0000	-36.4000	171.0000	-38.9690 -	102.1753	130.7578
41.0000	-40.5000	167.5000	-44.6485 -	102.5069	133.2195
37.0000	-44.6000	164.0000	-50.3210 -	102.9102	135.3263
33.0000	-48.7000	160.5000	-55.8777 -	103.4354	137.0413
29.0000	-52.8000	157.0000	-61.2225 -	104.1314	138.3280
25.0000	-56.9000	153.5000	-66.2809 -	105.0409	139.1545

21.0000	-61.0000	150.0000	-71.0033 -	106.1947	139.4982	
21.0000	-61.0000	150.0000	-71.0033	-98.0927	139.4982	
27.4500	-56.4500	152.5000	-64.0677	-97.3577	139.3101	
33.9000	-51.9000	155.0000	-56.8483	-96.9355	138.3817	
40.3500	-47.3500	157.5000	-49.5635	-96.7903	136.7521	
46.8000	-42.8000	160.0000	-42.4438	-96.8663	134.4815	
53.2500	-38.2500	162.5000	-35.6901	-97.0971	131.6390	
59.7000	-33.7000	165.0000	-29.4443	-97.4150	128.2917	
66.1500	-29.1500	167.5000	-23.7814	-97.7563	124.4974	
72.6000	-24.6000	170.0000	-18.7186	-98.0643	120.3011	
79.0500	-20.0500	172.5000	-14.2322	-98.2891	115.7340	
85.5000	-15.5000	175.0000	-10.2754	-98.3865	110.8129	
91.9500	-10.9500	177.5000	-6.7912	-98.3156	105.5401	
98.4000	-6.4000	180.0000	-3.7213	-98.0350	99.9031	
104.8500	-1.8500	182.5000	-1.0108	-97.4988	93.8719	
111.3000	2.7000	185.0000	1.3897	-96.6503	87.3945	
117.7500	7.2500	187.5000	3.5233	-95.4123	80.3883	
124.2000	11.8000	190.0000	5.4273	-93.6697	72.7220	
130.6500	16.3500	192.5000	7.1331	-91.2355	64.1783	
137.1000	20.9000	195.0000	8.6676	-87.7700	54.3619	
143.5500	25.4500	197.5000	10.0535	-82.5428	42.4148	
150.0000	30.0000	200.0000	11.3099	-73.2598	25.5213	

```
2.
A=[101 \ 21 \ 220]; B=[21 \ -61 \ 150];
[theta1i, theta2i, theta3i]=inv3arm(A(1),A(2),A(3));
thetai=[theta1i,theta2i,theta3i];
[theta1f, theta2f, theta3f]=inv3arm(B(1),B(2),B(3));
thetaf=[theta1f,theta2f,theta3f];
ti=0; tf=2; tb=0.5;
w=(thetaf-thetai)/(tf-tb);
t=ti:0.1:tf;
for i=1:length(t)
   if (t(i) >= 0 & t(i) <= tb)
       thetaA(i,:)=thetai+0.5*w/tb*t(i)^2;
       velA(i,:)=w*t(i)/tb;
       accA(i,:)=w/tb;
   elseif (t(i)>tb & t(i)<=tf-tb)</pre>
       thetaA(i,:)=thetai+0.5*w*tb+w*(t(i)-tb);
      velA(i,:)=w;
      accA(i,:)=0;
   else
      thetaA(i,:)=thetaf-0.5*w*(tf-t(i))^2;
       velA(i,:)=w/tb*(tf-t(i));
      accA(i,:) = -w/tb;
   end
end
Px=[]; Py=[]; Pz=[];
for i=1:size(thetaA,1)
   [x,y,z] = for 3arm(thetaA(i,1), thetaA(i,2), thetaA(i,3));
   Px=[Px; x]; Py=[Py; y]; Pz=[Pz; z];
end
subplot(3,3,1),plot(t,thetaA); title('theta A-B');
legend('theta1','theta2','theta3');
subplot(3,3,4),plot(t,velA); title('velocity A-B');
legend('theta1','theta2','theta3');
subplot(3,3,7),plot(t,accA); title('acceleration A-B');
```

```
legend('theta1','theta2','theta3');
subplot (3,3,3), plot 3(Px,Py,Pz); title ('A-B');
B=[21 -61 150]; C=[150 30 200];
[theta1i, theta2i, theta3i]=inv3arm(B(1),B(2),B(3));
thetai=[theta1i,theta2i,theta3i];
[theta1f,theta2f,theta3f]=inv3arm(C(1),C(2),C(3));
thetaf=[theta1f,theta2f,theta3f];
ti=0; tf=2; tb=0.5;
w=(thetaf-thetai)/(tf-tb);
t=ti:0.1:tf;
for i=1:length(t)
   if (t(i) >= 0 & t(i) <= tb)
       thetaB(i,:)=thetai+0.5*w/tb*t(i)^2;
      velB(i,:)=w*t(i)/tb;
      accB(i,:)=w/tb;
   elseif (t(i)>tb & t(i)<=tf-tb)
       thetaB(i,:)=thetai+0.5*w*tb+w*(t(i)-tb);
      velB(i,:)=w;
      accB(i,:)=0;
   else
       thetaB(i,:)=thetaf-0.5*w*(tf-t(i))^2;
      velB(i,:)=w/tb*(tf-t(i));
      accB(i,:) = -w/tb;
   end
end
Px=[]; Py=[]; Pz=[];
for i=1:size(thetaB,1)
   [x,y,z] = for 3arm(thetaB(i,1), thetaB(i,2), thetaB(i,3));
   Px=[Px; x]; Py=[Py; y]; Pz=[Pz; z];
end
subplot(3,3,2),plot(t,thetaB); title('theta B-C');
legend('theta1','theta2','theta3');
subplot(3,3,5),plot(t,velB); title('velocity B-C');
```

```
legend('theta1','theta2','theta3');
subplot(3,3,8),plot(t,accB); title('acceleration B-C');
legend('theta1','theta2','theta3');
subplot(3,3,6),plot3(Px,Py,Pz); title('B-C');

fprintf('thetaA=\n');
disp(thetaA);
fprintf('thetaB=\n');
disp(thetaB);
```


B-C

thetaA=

11.7456	-85.1596	67.5021
11.1940	-84.4552	67.9821
9.5390	-82.3421	69.4220
6.7807	-78.8202	71.8219
2.9191	-73.8897	75.1817
-2.0459	-67.5503	79.5015
-7.5625	-60.5066	84.3012
-13.0791	-53.4630	89.1009
-18.5957	-46.4193	93.9007
-24.1123	-39.3756	98.7004
-29.6289	-32.3319	103.5002
-35.1455	-25.2882	108.2999
-40.6621	-18.2445	113.0996
-46.1787	-11.2008	117.8994
-51.6953	-4.1572	122.6991
-57.2118	2.8865	127.4989
-66.5901	14.8608	135.6584
-68.5209	17.3261	137.3383
-69.9000	19.0870	138.5383
-70.7275	20.1436	139.2582
-71.0033	20.4957	139.4982

thetaB=

Ctab-		
-71.0033	20.4957	139.4982
-70.4546	19.8707	138.7384
-68.8083	17.9956	136.4588
-66.0645	14.8704	132.6596
-62.2233	10.4952	127.3407
-57.2845	4.8698	120.5020
-51.7969	-1.3805	112.9036
-46.3094	-7.6309	105.3051
-40.8218	-13.8813	97.7067
-35.3343	-20.1317	90.1082
-29.8467	-26.3820	82.5097
-24.3592	-32.6324	74.9113
-18.8716	-38.8828	67.3128
-13.3841	-45.1331	59.7144

-7.8965	-51.3835	52.1159	
-2.4089	-57.6339	44.5174	
6.9199	-68.2595	31.6000	
8.8405	-70.4471	28.9406	
10.2124	-72.0097	27.0410	
11.0356	-72.9473	25.9012	
11.3099	-73.2598	25.5213	
>> disp(velA)			
0	0) (0
-11.0332	14.0874	9.5995	
-22.0664	28.1747	19.1990	
-33.0996	42.2621	28.7984	
-44.1328	56.3495	38.3979	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-55.1660	70.4369	47.9974	
-44.1328	56.3495	38.3979	
-33.0996	42.2621	28.7984	
-22.0664	28.1747	19.1990	
-11.0332	14.0874	9.5995	
0	0		0
>> disp(velB)			
0	0	(0
10.9751	-12.5007	-15.1969	
21.9502	-25.0015	-30.3938	
32.9253	-37.5022	-45.5908	
43.9004	-50.0030	-60.7877	

54.8755 -62.5037 -75.9846

54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
54.8755	-62.5037	-75.9846	
43.9004	-50.0030	-60.7877	
32.9253	-37.5022	-45.5908	
21.9502	-25.0015	-30.3938	
10.9751	-12.5007	-15.1969	
0	C)	0

>> disp(accA)

-110.3320	140.8737	95.9948
-110.3320	140.8737	95.9948
-110.3320 140.873		95.9948
-110.3320	140.8737	95.9948
-110.3320	140.8737	95.9948
-110.3320	140.8737	95.9948
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

110.3320 -140.8737 -95.9948

110.3320 -140.8737 -95.9948

110.3320 -140.8737 -95.9948

110.3320 -140.8737 -95.9948

110.3320 -140.8737 -95.9948

>> disp(accB)

109.7510 -125.0074 -151.9692

109.7510 -125.0074 -151.9692

109.7510 -125.0074 -151.9692

109.7510 -125.0074 -151.9692

109.7510 -125.0074 -151.9692

109.7510 -125.0074 -151.9692

0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0
0	0	0

-109.7510 125.0074 151.9692

-109.7510 125.0074 151.9692

-109.7510 125.0074 151.9692

-109.7510 125.0074 151.9692

-109.7510 125.0074 151.9692