Formelsammlung Physik BMT 14a

Lukas Dörig, Michelle Meyer, Yan Poblete

$\mathop{\rm May}_{{\rm v}1.1} 13,\, 2018$

Contents

1	Krä	iftegelichgewicht, statisches Gleichgewicht	3
	1.1	Koordinaten	3
	1.2	Kräfte	3
	1.3	Drehmoment	4
	1.4	Flaschenzug und Hebelgesetz	5
	1.5	Hooksches Gesetz	5
2	Kin	ematik, Dynamik (Kraft)	6
	2.1	Kinematik	6
	2.2	Drehung	6
	2.3	Keplresche Gesetze	6
	2.4	Bremsweg	7
3	Arb	peit, Energie, Leistung	7
		Energieerhaltungssatz	7
4	Wä	rme	8
	4.1	Im Allgemeinen	8
	4.2	Änderung Wärme anhand der Temperatur	8
	4.3	Ausdehnung	9
	4.4	Wärmeleitfähigkeit	9
5	Hva	drostatik, Druck, Dichte	9
•	5.1	Im Allgemeinen	9
	5.2		10
6	Elel	ktrizität	10
_	6.1	Im Allgemeinen	
	6.2	~	11
	-	~	11

Intro: Geometrie

Trigonometrie

${\bf Generell}$

Variable	Beschreibung
H	Hypothenuse
GK	Gegenkathete
AK	Ankathete

Sinus

$$\sin \alpha = \frac{GK}{H} \quad \# \quad H = \frac{GK}{\sin \alpha} \quad \# \quad GK = \sin \alpha \times H$$
 (1)

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} \tag{2}$$

Cosinus

$$\cos \alpha = \frac{AK}{H} \quad \# \quad H = \frac{AK}{\cos \alpha} \quad \# \quad AK = \cos \alpha \times H$$
 (3)

$$a^{2} = b^{2} + c^{2} - 2bc \times \cos \alpha \quad \# \quad b^{2} = a^{2} + c^{2} - 2ac \times \cos \beta$$
 (4)

$$c^2 = a^2 + b^2 - 2ab \times \cos \gamma \tag{5}$$

Tangens

$$\tan \alpha = \frac{GK}{AK} \quad \# \quad AK = \frac{GK}{\tan \alpha} \quad \# \quad GK = \tan \alpha \times AK$$
 (6)

Wechsel- und Stufenwinkel

Wenn h | k. α und α ' sind Stufenwinkel, γ und γ ' sind Wechselwinkel.

1 Kräftegelichgewicht, statisches Gleichgewicht

1.1 Koordinaten

 $\begin{array}{ll} \text{Polarform} & (Betrag[F]|Winkel[\alpha]) \\ \text{Karthesische Form} & (F_x|F_y) \end{array}$

Polar zu Karthesisch

$$F_x = F \times \cos \alpha \quad \# \quad F_y = F \times \sin \alpha$$
 (7)

Karthesisch zu Polar

$$F = \sqrt{F_x^2 + F_y^2} \quad \# \quad \alpha = \arctan \frac{F_y}{F_x} + Sektor \tag{8}$$

Für den Sektor muss jeweils addiert werden:

Sektor	X Positiv?	Y Positiv?	Wert
1.	Ja	Ja	0°
2.	Nein	Ja	90°
3.	Nein	Nein	180°
4.	Ja	Nein	270°

Vektoren zusammenrechnen (Karthesisch)

$$\begin{array}{c|cccc} F_1 & F_1x & F_1y \\ F_2 & F_2x & F_2y \\ F_3 & F_3x & F_3y \\ \hline F_{res} & F_{res}x & F_{res}y \\ \end{array}$$

1.2 Kräfte

I | Alle Kräfte heben sich auf

II Alle Drehmomente heben sich auf

Im Allgemeinen

$$F = m \times a \quad \# \quad [N] = [kg] \times \left[\frac{m}{s^2}\right] = \left[\frac{kg \times m}{s^2}\right] \tag{9}$$

Gravitationskraft

$$F_{grav} = \frac{G \times m_1 \times m_2}{r^2} \tag{10}$$

${\bf Gewichtskraft}$

$$g = g_{Erde} = 9.81 \frac{m}{s^2} \quad \# \quad F_G = m \times g$$
 (11)

${\bf Hangabtriebskraft}$

$$F_H = F_G \times \sin \alpha \tag{12}$$

${\bf Normalkraft}$

$$F_N = F_G \times \cos \alpha \tag{13}$$

${\bf Reibungkraft}$

$$\mu = [Zahl, 0 - 1] \quad \# \quad F_R = \mu \times F_N \tag{14}$$

Federkraft

$$F_D = k \times x \quad \# \quad F_D = D \times \Delta s \quad \# \quad [N] = \left[\frac{N}{cm}\right] \times [cm]$$
 (15)

Fadenspannung

$$T = F_G + F$$
 (Bei hängender Masse) (16)

$$F = T - F_R$$
 (Bei Masse auf Schiefer Ebene) (17)

1.3 Drehmoment

Generell

Variable	Beschreibung	Einheit
M	Drehmoment	[Nm]
F_{\perp}	Kraft, die senkrecht auf die Drehachse wirkt	[N]
	$M = E \times I$	

$$M = F_{\perp} \times l \tag{18}$$

Statisch

$$F_{1\perp} \times l_1 = F_{2\perp} \times l_2 \tag{19}$$

In Bewegung

$$M_{Res} = M_{Uhrzeigersinn} - M_{Gegenuhrzeigersinn}$$
 (20)

Flaschenzug und Hebelgesetz

1.5 **Hooksches Gesetz**

Parallel

Diese Formeln basieren auf der Annahme, dass parallele Federn sich um dieselbe Distanz strecken.

$$F = F_1 + F_2 \tag{21}$$

$$P = P_1 + P_2$$

$$D \times s = D_1 \times s + D_2 \times s \qquad | \qquad \times \frac{1}{s}$$

$$D = D_1 + D_2$$

$$(21)$$

$$(22)$$

$$D = D_1 + D_2 \tag{23}$$

Seriell

$$F = F_1 = F_2 \quad \# \quad k = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2}} = \frac{k_1 \times k_2}{k_1 + k_2}$$
 (24)

2 Kinematik, Dynamik (Kraft)

2.1 Kinematik

Hinweis: $v\left[\frac{km}{h}\right] = 3.6 \times v\left[\frac{m}{s}\right]$

Variable	Formeln		
\overline{v}	$\frac{s}{t}$	$\frac{v_0+v}{2}$	
s	$\overline{v} \times t$	$\frac{v_0+v}{2} \times t$	$s_0 + v_0 \times t + \frac{1}{2}a \times t^2$
a	$\frac{v-v_0}{t}$		
v^2	$v_0^2 + 2as$		
v	$v_0 + at$		

2.2 Drehung

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
f	Drehfrequenz	Hz	$\left[\frac{1}{8}\right]$
${ m T}$	Umlaufzeit	[s]	
n	Anzahl Umdrehungen	[Zahl]	
b	Bogenlänge	[m]	
θ	Drehwinkel	[Radiant]	
ω	Winkelgeschwindigkeit	$\left[\frac{1}{s}\right]$	$\left[\frac{Radiant}{s}\right]$
a_z	Zentripetalbeschleunigung	$\left[\frac{m}{s^2}\right]$	
F_z	Zentripetalkraf (=Zentrifugalkraft)	[N]	

${\bf Formeln}$

Variable	Formeln		
f	$\frac{1}{T}$	$\frac{n}{\Delta t}$ $2\pi \times \alpha$	
θ	$\frac{b}{r}$	$\frac{2\pi \times \alpha}{360^{\circ}}$	$\omega \times t$
α	$\frac{360^{\circ} \times \theta}{2\pi}$		
ω	$\frac{\theta}{t}$	$\frac{v}{r}$	$2\pi \times f$
V	$\frac{b}{t}$	$\omega \times r$	
b	$v \times t$	$\omega \times rt$	$\theta \times r$
a_z	$\frac{v^2}{r}$	$\frac{(\omega \times r)^2}{r}$	$\omega^2 \times r$
$\overline{F_z}$	$a_z \times m$		

2.3 Keplresche Gesetze

 ${\bf I}\,$ Die Planeten beschreiben ellipsenförmige Bahnen, in deren einem Brennpunkt die Sonne steht.

II Der Radiusvektor \vec{r} überstreicht in gleichen Zeiten gleiche Flächen. $\Rightarrow \vec{L} = m \times \vec{r} \times \vec{v} = konstant$

III Die Quadrate der Umlaufszeiten zweier Planeten verhalten sich wie die Kuben der grossen Ellipsenhalbachsen:

$$\frac{T_1^2}{a_1^3} = \frac{T_2^2}{a_2^3} \tag{25}$$

2.4 Bremsweg

$$s_b = \frac{V_0^2}{2g\mu} = \frac{v^2 - v_0^2}{-2ab} \tag{26}$$

3 Arbeit, Energie, Leistung

3.1 Energieerhaltungssatz

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
W	Arbeit	[J]	[Nm]
\mathbf{E}	Energie (gespeicherte Arbeit)	[J]	[Nm]
P	Leistung	[W]	$\left[\frac{J}{s}\right] = \left[\frac{Nm}{s}\right]$

 \mathbf{Satz}

$$\begin{array}{lll} E_{tot1} & -E_{Verlust} & +E_{Zu} & = E_{tot2} \\ E_{kin1} + E_{pot1} + E_{D1} & -E_{R} & +E_{Zu} & = E_{kin2} + E_{pot2} + E_{D2} \end{array} \tag{27}$$

Kinetische Energie

$$E_{kin} = \frac{1}{2}mv^2 \tag{28}$$

Potentielle Energie

$$E_{pot} = mgh (29)$$

Federenergie Deformationsenergie

D: Federkonstante $\left[\frac{N}{cm}\right]$

$$E_D = \frac{1}{2}Ds^2 \tag{30}$$

Reibungsenergie

Horizontale:

$$E_R = F_R \times s = \mu \times mg \times s \tag{31}$$

Schiefe Ebene:

$$E_R = F_R \times s = \mu \times mg \times \cos \alpha \times s \tag{32}$$

4 Wärme

4.1 Im Allgemeinen

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
U	Innere Energie	[J]	
Q	Wärme	[J]	
c	spezifische Wärmekapazität	$\left[\frac{J}{kq\times K}\right]$	
L_f	spezifische Schmelz-/Erstarrungswärme	$\left[\frac{J}{kg}\right]$	
L_v	spezifische Verdampfungs-/Kondensationswärme	$\left[\frac{J}{kg}\right]$	
p	Druck	[Pa]	$Bar] = 10^5 [Pa], [\frac{N}{m^2}]$
ϑ	Temperatur in Celsius	$[^{\circ}C]$	
T	Temperatur in Kelvin	[K]	

STP (Standard Temperature Pressure)

$$p_0 = 1.0133 \quad \# \quad T_0 = 0^{\circ}C = 273.15K$$
 (33)

4.2 Änderung Wärme anhand der Temperatur

Wärmemenge

$$\Delta Q = m \times c \times \Delta T \tag{34}$$

Schmelzwärme

$$Q_f = L_f \times m \tag{35}$$

Verdampfungswärme

$$Q_v = L_v \times m \tag{36}$$

[???] TODO: Diagramm

Wärmeausgleich

$$\Delta Q_1 + Q_{v1} + Q_{f1} = \Delta Q_2 + Q_{v2} + Q_{f2} \tag{37}$$

Die untenstehende Formel gilt für $\vartheta_1 < \vartheta_2$. Die Formel rechnet keine Massenänderungen durch Verdampfung und keine Schmelzwärme ein.

$$c_1 \times m_1 \times (\vartheta_M - \vartheta_1) + Q_v = c_2 \times m_2 \times (\vartheta_2 - \vartheta_M)$$
 (38)

$$\vartheta_M = \frac{c_2 \times m_2 \times \vartheta_2 + c_1 \times m_1 \times \vartheta_1 - Q_v}{c_1 \times m_1 + c_2 \times m_2} \tag{39}$$

4.3 Ausdehnung

Bei Gas (Zustandsgleichung ideales Gas)

Achtung: Nur auf Gase anwenden. Bei Verwendung von STP $p_0...$ anstatt $p_2...$ verwenden.

$$\frac{p_1 \times V_1}{T_1} = \frac{p_2 \times V_2}{T_2} \tag{40}$$

Ausdehnung bei festen oder flüssigen Stoffen

$$\alpha, \beta, \gamma = \left[\frac{1}{K}\right]$$

$$\beta \approx 2 \times \alpha \quad \# \quad \gamma \approx 3 \times \alpha$$
 (41)

$$\Delta l = l_1 - l_0 = \alpha \times l_0 \times \Delta T \quad \# \quad l_1 = l_0 (1 + \alpha \times \Delta T) \tag{42}$$

$$\Delta A = A_1 - A_0 = \beta \times A_0 \times \Delta T \quad \# \quad A_1 = A_0 (1 + \beta \times \Delta T)$$
 (43)

$$\Delta V = V_1 - V_0 = \gamma \times V_0 \times \Delta T \quad \# \quad V_1 = V_0 (1 + \gamma \times \Delta T) \tag{44}$$

4.4 Wärmeleitfähigkeit

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
P_{Th}	Thermische Leistung	[W]	$\left[\frac{J}{s}\right]$
k	Wärmeleitfähigkeit	$\frac{W}{m \times K}$	
A	Querschnittfläche Leiter	m^2	
1	Länge Leiter	m	

Satz

$$P_{Th} = k \times A \times \frac{\vartheta - \vartheta_0}{l} \tag{45}$$

5 Hydrostatik, Druck, Dichte

5.1 Im Allgemeinen

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
$\overline{\rho}$	Dichte	$\left[\frac{kg}{m^3}\right]$	
p	Druck	[Pa]	$[Bar] = 10^5 [Pa], [\frac{N}{m^2}]$
$ ho_{Fl}$	Dichte Flüssigkeit	$\left[\frac{kg}{m^3}\right]$	
$ ho_K$	Dichte Körper	$\begin{bmatrix} \frac{kg}{m^3} \\ \begin{bmatrix} \frac{kg}{m^3} \end{bmatrix} \end{bmatrix}$	
V_E	Eingetauchtes Volumen	m^3	
V_K	Volumen Körper	m^3	

5.2 Hydrostatischer Druck

Hydrostatischer Druck

$$p = \rho_{Fl} \times g \times h \tag{46}$$

Auftriebskraft

$$F_A = \rho_{Fl} \times g \times V_E \tag{47}$$

Statisch schwimmender Körper

$$F_A = F_G \# \rho_{Fl} \times g \times V_E = \rho_K \times V_K \times g$$
 (48)

$$V_E = \frac{\rho_K \times V_K}{\rho_{Fl}} \quad \# \quad \rho_K = \frac{V_E \times \rho_{Fl}}{V_K} \tag{49}$$

6 Elektrizität

6.1 Im Allgemeinen

Variablendefinitionen

Variable	Beschreibung	Einheit	Weitere Einheiten
U	Spannung	[V]	
\mathbf{R}	Widerstand	$[\Omega]$	
I	Stromstärke	[A]	
G	Leitwert	[S]	$\left[\frac{1}{\Omega}\right]$
P	Leistung	[W]	$\left[rac{1}{\Omega} ight] \left[rac{J}{s} ight]$
\mathbf{W}	Arbeit	[J]	[Ws]
\mathbf{Q}	Ladung	[C]	
ho	Spezifischer Widerstand	$\left[\frac{\Omega mm^2}{m}\right]$	$[\Omega m]$

Ohm'sches Gesetz

$$U = R \times I \quad \# \quad R = \frac{U}{I} \quad \# \quad I = \frac{U}{R} \tag{50}$$

Leistung und Arbeit

$$P = U \times I = R \times I^2 = \frac{U^2}{R} \quad \# \quad W = U \times I \times t \tag{51}$$

$$1kWh = 3.6 \times 10^6 J \quad \# \quad 1J = \frac{1kWh}{3.6 \times 10^6} \tag{52}$$

6.2 Schaltungen

Seriell

$$R_{tot} = R_1 + \dots + R_n \quad \# \quad I = konstant \quad \# \quad U = U_1 + \dots + U_n$$
 (53)

Parallel

$$R_{tot} = (\frac{1}{R_1} + \dots + \frac{1}{R_n})^{-1} = \frac{R_1 \times \dots \times R_n}{R_1 + \dots + R_n} \quad \# \quad I = I_1 + \dots + I_n \quad \# \quad U = konstant$$
(54)

Beispiel zum errechnen von I_1 wenn $R_1,\,R_2,\,U$ und I gegeben sind.

$$U_1 = U_2 = U \tag{55}$$

$$R_1 \times I_1 = R_2 \times (I - I_1) \tag{56}$$

$$I_1 = \frac{R_2 \times I}{R_1 + R_2} \tag{57}$$

6.3 Spezifischer Widerstand

Die Einheit von ρ muss zu der Einheit von A passen: $\rho[\frac{\Omega mm^2}{m}] \Rightarrow A[mm^2]$, $\rho[\Omega m] \Rightarrow A[m^2]$.

$$R = \frac{\rho \times l}{A} \tag{58}$$