Lineær regression og korrelation

Christian Damsgaard Jørgensen

Institut for Matematik og Datalogi Syddansk Universitet, Odense

Uge 49

Introduktion

Vi vil analysere forholdet mellem to kvantitative variable, X og Y.

Hvad er lineær regressions- og korrelationsanalyse?

Teknikker baseret på tilpasning af en ret linje til data.

Data

Består af observationspar (X, Y).

To eksempler på data:

- 1. Amfetamin og fortæring af mad
- 2. Arsen i ris

Eksempel 1: Amfetamin og fortæring af mad

```
# Indlæs data i R
data <- read.table("amphetamine.txt", header = TRUE)
# Se på de første seks observationer
head(data)</pre>
```

Output:

	${\tt FoodConsumption}$	Dose
1	112.6	0
2	102.1	0
3	90.2	0
4	81.5	0
5	105.6	0
6	93.0	0

Eksempel 1: Amfetamin og fortæring af mad

Figur 1: Scatterplot af fortæring af mad mod amfetamindosis.

Eksempel 2: Arsen i ris

```
# Indlæs data i R
data <- read.table("rice.txt", header = TRUE)
# Se på de første seks observationer
head(data)</pre>
```

Output:

```
StrawSi RiceAs
1 8.35 186.21
2 11.77 115.52
3 14.32 87.93
4 18.71 217.24
5 19.68 213.79
6 21.17 150.00
```

Eksempel 2: Arsen i ris

Figur 2: Scatterplot af arsenkonc. i ris mod siliciumkonc. i strå.

Korrelationskoefficienten

Antag nu, at vi har en stikprøve bestående af n observationspar, hvor hvert par repræsenterer målingerne af to variable, X og Y.

Styrken af den lineære sammenhæng

Hvis et scatterplot af Y versus X viser en generel lineær tendens, så vil det være oplagt at beskrive styrken af den lineære sammenhæng.

Korrelationskoefficienten

$$r = \frac{1}{n-1} \sum_{i=1}^{n} \left(\frac{x - \overline{x}}{s_x} \right) \left(\frac{y - \overline{y}}{s_y} \right)$$

hvor

$$s_x = \sqrt{\frac{\sum_{i=1}^n (x - \overline{x})^2}{n-1}}$$
 og $s_y = \sqrt{\frac{\sum_{i=1}^n (y - \overline{y})^2}{n-1}}$

Ved indsættelse af udtrykkene for s_x og s_v kan dette omskrives til

$$r = \frac{\sum_{i=1}^{n} (x - \overline{x})(y - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x - \overline{x})^{2} \sum_{i=1}^{n} (y - \overline{y})^{2}}}$$

Korrelationskoefficienten


```
# Indlæs data i R
data <- read.table("snakes.txt", header = TRUE)
# Se på de første seks observationer
head(data)</pre>
```

Output:

	Weight	Length
1	136	60
2	198	69
3	194	66
4	140	64
5	93	54
6	172	67

Figur 3: Kropslængde og vægt for ni slanger

Figur 3: Kropslængde og vægt for ni slanger med regressionslinje.

	X	Y	$Z_X = \frac{x - \overline{x}}{s_x}$	$z_y = \frac{y-y}{s_y}$	$Z_X Z_y$
	60	136	-0,65	-0,45	0,29
	69	198	1,29	1,30	1,68
	66	194	0,65	$1,19\dots$	0,77
	64	140	0,22	-0,34	-0,07
	54	93	$-1,94\dots$	$-1,67\dots$	3,24
	67	172	0,86	0,57	0,49
	59	116	$-0,86\dots$	1,02	0,88
	65	174	0,43	0,62	0,27
	63	145	0,00	$-0,20\dots$	0,00
sum	567	1368	0,00	0,00	7,55
gns.	63,00	152,00	0,00	0,00	
std.afv.	4,64	35,34	1,00	1,00	

Tabel 1: Standardiseret vægt, længde og deres produkter.

Korrelationskoefficienten (stikprøvekorrelationen) er omkring 0,94:

$$r=\frac{1}{9-1}\cdot 7{,}55\approx 0{,}94$$

Korrelation og årsagssammenhæng

Korrelation medfører ikke årsagssammenhæng (kausalitet):

En observeret sammenhæng mellem to variable indikerer ikke nødvendigvis en årsagssammenhæng (kausalitet) mellem dem.

Kilde: xkcd.com/552

Se eksempler:

http://www.tylervigen.com/spurious-correlations

Linjens ligning

Ligningen for en ret linje kan skrives som

$$Y = b_0 + b_1 X$$

hvor b_0 er skæringen med y-aksen og b_1 er linjens hældning.

Hældningen b_1 er ændringsraten for Y med hensyn til X.

Den tilpassede regressionslinje for Y på X skrives

$$\widehat{y}=b_0+b_1x$$

da linjen kun giver estimerede eller prædikterede værdier.

$$b_1 = r \left(\frac{s_y}{s_x} \right)$$
 og $b_0 = \overline{y} - b_1 \overline{x}$

Residualer

For hver observation x_i er der en prædikteret Y-værdi

$$\widehat{y}_i = b_0 + b_1 x_i$$

Et residual e_i er forbundet med hvert observeret par (x_i, y_i) :

$$e_i = y_i - \widehat{y}_i$$

Den residuale kvadratsum

$$SS(resid) = \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i=1}^{n} e_i^2$$

Mindste kvadrater-kriteriet

Den bedste rette linje minimerer den residuale kvadratsum.

Eksempel 2: Arsen i ris

Obs. #	X	У	ŷ	$y-\widehat{y}$	$(y-\widehat{y})^2$
1	8,3	186,2	176,2	10,0	99,50
2	11,8	115,5	167,6	$-52,1\dots$	2716,00
3	14,3	87,9	161,2	$-73,3\dots$	5373,93
4	18,7	217,2	150,2	67,0	4492,74
5	19,7	213,8	147,8	66,0	4356,67
:	:	:	÷	:	÷
28	41,1	132,8	94,0	38,8	1503,19
29	45,2	96,6	83,6	12,9	167,11
30	44,9	84,5	84,5	0,0	0,00
31	45,7	51,7	82,5	-30,8	948,51
32	51,8	58,6	67,1	$-8,5\dots$	71,69
Sum				0,0	41727,11

Tabel 2: Beregning af SS(resid).

Den residuale standardafvigelse

Hvor langt over eller under regressionslinjen ligger punkterne typisk?

$$s_e = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} e_i^2}{n-2}} = \sqrt{\frac{\mathsf{SS}(\mathsf{resid})}{n-2}}$$

En slags mål for vertikal afstand fra datapunkter til regressionslinje.

- Udledt fra residual kvadratsum
- Lettere at fortolke end residual kvadratsum

Beregning for eksempel 2 (arsen i ris) ved brug af tabel 2:

$$s_e = \sqrt{\frac{41727,11}{32-2}} = \sqrt{1390,90} = 37,30 \text{ µg/kg}$$

Prædiktioner afviger med omkring 37,30 µg/kg i gennemsnit.

Figur 4: Vægt versus længde med residualerne og et linjesegment (rødt), som betegner størrelsen af den residuale standardafvigelse.

Tilnærmet sammenhæng

Korrelationskoefficienten opfylder denne tilnærmede sammenhæng:

$$r^2 pprox rac{s_y^2 - s_e^2}{s_y^2} = 1 - rac{s_e^2}{s_y^2}$$

Litteratur

Dalgaard.
Introductory Statistics with R (2. udgave).
Springer-Verlag New York, 2008.

Denne præsentation er baseret på eksempler fra Samuels et al.