

Figura 2.R.1 (a) La relación entre el gradiente de una función y el plano tangente a la gráfica [Ejercicio 23(a)]. (b) Ejemplo específico del plano tangente para el Ejercicio 23(b).

- **25.** ¿En qué dirección es igual a cero la derivada direccional de $f(x,y)=(x^2-y^2)/(x^2+y^2)$ en (1, 1)?
- **26.** Hallar la derivada direccional de la función dada en el punto dado y en la dirección del vector dado.
 - (a) $f(x, y, z) = e^x \cos(yz)$, $p_0 = (0, 0, 0)$, $\mathbf{v} = (2, 1, -2)$
 - (b) f(x,y,z) = xy+yz+zx, $p_0 = (1,1,2)$, $\mathbf{v} = (10,-1,2)$
- **27.** Hallar el plano tangente y la recta normal al hiperboloide $x^2 + y^2 z^2 = 18$ en (3, 5, -4).
- **28.** Sea (x(t), y(t)) una trayectoria en el plano, $0 \le t \le 1$ y sea f(x, y) una función de clase C^1 de dos variables. Suponer que $(dx/dt)f_x + (dy/dt)f_y \le 0$. Demostrar que $f(x(1), y(1)) \le f(x(0), y(0))$.
- **29.** Un insecto se encuentra en un entorno tóxico. El nivel de toxicidad está dado por $T(x,y) = 2x^2 4y^2$. El insecto se encuentra en (-1,2). ¿En qué dirección debería moverse para reducir la toxicidad lo más rápidamente posible?
- **30.** Determinar la dirección en la que la función $w = x^2 + xy$ crece más rápidamente en el punto (-1,1). ¿Cuál es la magnitud de ∇w en este punto? Interpretar geométricamente esta magnitud.

- **31.** Sea f una función escalar definida en un conjunto abierto S en \mathbb{R}^n . Decimos que f es **homogénea de grado** p sobre S si $f(\lambda \mathbf{x}) = \lambda^p f(\mathbf{x})$ para todo real λ y para todo \mathbf{x} en S para los que $\lambda \mathbf{x} \in S$.
 - (a) Si una función así es diferenciable en \mathbf{x} , demostrar que $\mathbf{x} \cdot \nabla f(\mathbf{x}) = pf(\mathbf{x})$. Esto se conoce como **teorema de Euler** para funciones homogéneas. [SUGERENCIA: para \mathbf{x} fijo, definir $g(\lambda) = f(\lambda \mathbf{x})$ y calcular g'(1).]
 - (b) Hallar p y comprobar el teorema de Euler para la función $f(x, y, z) = x 2y \sqrt{xz}$, en la región en la que xz > 0.
- **32.** Si z = [f(x y)]/y (donde f es diferenciable e $y \neq 0$), demostrar que se cumple la identidad $z + y(\partial z/\partial x) + y(\partial z/\partial y) = 0$.
- **33.** Sea z = f((x+y)/(x-y)) donde f es una función de clase C^1 , demostrar que

$$x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y} = 0.$$

- **34.** Sea f una función con derivadas parciales $\partial f(\mathbf{x})/\partial x_i$, donde $i=1,2,\ldots,n$, en cada punto \mathbf{x} de un conjunto abierto U de \mathbb{R}^n . Si f tiene un máximo local o un mínimo local en el punto \mathbf{x}_0 de U, demostrar que $\partial f(\mathbf{x}_0)/\partial x_i = 0$ para cada i.
- **35.** Considérense las funciones definidas en \mathbb{R}^2 por las siguientes fórmulas: