UNIVERSITY OF BRISTOL

School of Mathematics

SOLUTIONS - Algebraic Geometry MATHM0036 (Paper code MATHMATHM0036

May/June 2024 2 hour(s) 30 minutes

This paper contains two sections: Section A and Section B. Each section should be answered in a separate booklet.

All FOUR answers will be used for assessment.

Calculators of an approved type (permissible for A-Level examinations) are permitted.

Candidates may bring ONE hand-written sheet of A4 notes, written double sided into the examination. Candidates must insert this sheet into their answer booklet(s) for collection at the end of the examination.

- Q1. Assume that V is an affine algebraic variety, and $U, U_1, U_2 \subseteq V$ are two open subsets.
 - (a) (15 marks) (Standard Workbook practicing definition) State the definition of the set of regular functions $\mathcal{O}_V(U)$, and prove that $\mathcal{O}_V(U)$ is a \mathbb{C} -algebra.
- Solution. The easiest way is to prove that $\mathcal{O}_V(U)$ includes \mathbb{C} as a subring. Obviously, $\mathbb{C} \subseteq \mathcal{O}_V(U)$. We show that $\mathcal{O}_V(U)$ has a ring structure. Recall that function $f:U \longrightarrow \mathbb{C}$, is called regular at a point $p \in V$, if there is an open neighbourhood $U' \subseteq U$, and polynomials $g, h \in \mathbb{C}[x_1, \dots, x_n]$, such that $h(p) \neq 0$, for any $p \in U'$, and $f_{|U'}(p) = \frac{g(p)}{h(p)}$. We say that f is regular on U if it is regular at every point of U. Therefore, it suffices to show that if f, k are regular at $p \in U$ then f + k and fk are also regular at $p \in U$, this is also clear: assume that $U'andV' \subseteq U$ and $f_{|U'}(p) = \frac{g(p)}{h(p)}$ and $k_{|V'}(p) = \frac{g'(p)}{h'(p)}$ then on the open $U' \cap V'$, $f + k = \frac{gh' + hg'}{gg'}$ and $fg = \frac{gg'}{hh'}$.
 - (b) (10 marks) (Workbook practicing definition) Assume further that $f_1 \in \mathcal{O}_V(U_1), f_2 \in \mathcal{O}_V(U_2)$, with $f_{1|_{U_1 \cap U_2}} = f_{2|_{U_1 \cap U_2}}$. Prove that there exists a regular function $f \in \mathcal{O}_V(U_1 \cup U_2)$ such that

$$f_{|U_1} = f_1, \quad f_{|U_2} = f_2.$$

- Solution. This question means that the regular functions can be glued. Define the well-defined function f on $U_1 \cup U_2$ as given. It is clear that for i = 1, 2, on U_i $f = f_i$ is regular, since for any point $p \in U_1 \cup U_2$ so $f(p) = f_1(p)$ or $f(p) = f_2(p)$ which are regular by assumption.
- Q2. (a) (15 marks)(Standard Unseen) Let $U = \mathbb{A}^2 \setminus \{0\}$ and $X = \mathbb{A}^2$. Compute $\mathcal{O}_X(U)$, and show that U is not an affine algebraic variety.
- Solution. We assert that $\mathcal{O}_{A^2}(A^2 \setminus \{0\}) = K[x_1, x_2]$, implying $\mathcal{O}_X(U) = \mathcal{O}_X(X)$; thus, every regular function on U extends to X. This is, in fact, rephrasing a result in complex analysis: the Removable Singularity Theorem, which ensures every holomorphic function on $\mathbb{C}^2 \setminus 0$ extends holomorphically to \mathbb{C}^2 . To demonstrate our assertion, consider $\phi \in \mathcal{O}_X(U)$. Notably, ϕ is regular on the two distinguished open subsets $D(x_1) = (\mathbb{A}^1 \setminus 0) \times \mathbb{A}^1$ and $D(x_2) = \mathbb{A}^1 \times (\mathbb{A}^1 \setminus 0)$. By Proposition 3.8, $\phi = f \cdot x_1^m$ on $D(x_1)$ and $\phi = g \cdot x_2^n$ on $D(x_2)$ for some $f, g \in K[x_1, x_2]$ and $m, n \in \mathbb{N}$, with $x_1 | f$ and $x_2 | g$. Both representations of ϕ on $D(x_1) \cap D(x_2)$ yield $fx_2^n = gx_1^m$. As the zero locus $\mathbb{V}(fx_2^n gx_1^m)$ is closed, $fx_2^n = gx_1^m$ holds on $D(x_1) \cap D(x_2) = \mathbb{A}^2$. In other words, $fx_2^n = gx_1^m$ in the polynomial ring $\mathbb{C}[A^2] = K[x_1, x_2]$. However, the varieties, \mathbb{A}^2 and $A^2 \setminus \{0\}$ are not homeomorphic and hence not isomorphic, although their coordinate rings coincide. This implies that U is not an affine algebraic variety.
 - (b) (10 marks)(Standard Unseen) Prove that $\mathbb{V}(y) \subseteq \mathbb{A}^2$ and $\mathbb{V}(y x^2) \subseteq \mathbb{A}^2$ are isomorphic, but their corresponding projective closures in \mathbb{P}^2 are not.
- Solution. The map $\mathbb{V}(y-x^2)\subseteq\mathbb{A}^2\longrightarrow\mathbb{V}(y)=\mathbb{A}^1\times\{0\},(x,y)\mapsto x$ is an isomorphism with the inverse given by $t\mapsto(t,t^2)$. The projective closure of $\mathbb{V}(y),\overline{V(y)}$ in \mathbb{P}^2 is given by the $\{[x:0:z]\in\mathbb{P}^2\}$ while the projective closure of $\mathbb{V}(y-x^2)$ is given by

$$\overline{\mathbb{V}(y-x^2)} = \{ [x:y:z] \in \mathbb{P}^2 : yz - x^2 \}.$$

On the chart U_x where x = 1, $\overline{\mathbb{V}(y - x^2)} \cap U_x$ is given by yz = 1. This set, however, is isomorphic to $\mathbb{A}^1 \setminus \{0\} \subseteq \mathbb{A}^1$ and cannot be isomorphic to \mathbb{A}^1 itself, since isomorphisms are homemorphisms too.

Q3. (a) (10 marks) (Workbook - Unseen) Consider the family of algebraic varieties, with parameter $t \in \mathbb{C}$, given by

$$V_t := \mathbb{V}(x^2 + y^2 - t) \subseteq \mathbb{A}^2.$$

Sketch the variety of V_0 , V_1 , and V_2 in \mathbb{R}^2 . Determine which one of these three varieties is smooth. Briefly justify your answers.

- Solution. Let $f_t = x^2 + y^2 t$. $\nabla f_0 = \nabla f_1 = \nabla f_2 = (2x, 2y)$. Note that the kernel of ∇f_i is always one dimensional except at (0,0). However, (0,0) is in V_0 but not in V_1 nor V_2 . Therefore, V_0 is not smooth, but V_1 and V_2 are.
 - (b) (15 marks) (Standard Seen) Let $V \subseteq \mathbb{A}^n$ and $W \subseteq \mathbb{A}^m$ be two closed affine algebraic varieties, and

$$\varphi:V\longrightarrow W$$

a morphism. Prove that the pullback $\varphi^* : \mathbb{C}[W] \longrightarrow \mathbb{C}[V]$ is surjective if and only if φ defines an isomorphism between V and some algebraic subvariety of W.

Solution.

" \Longrightarrow ". We claim that $Z:=\mathbb{V}(\ker(\varphi^*))$ is a closed affine algebraic subvariety of W isomorphic to V. Note that $\ker(\varphi^*)=\{g\in\mathbb{C}[W]:g\circ\varphi\in\mathbb{I}(V)\}=\{g\in\mathbb{C}[W]:g\circ\varphi(x)=0,\text{ for all }x\in V\}$ which includes $\mathbb{I}(W)$. Since φ^* is a homomorphism of \mathbb{C} -algebras $\ker(\varphi^*)$ is an ideal, and

$$\mathbb{C}[W]/\ker(\varphi^*) \simeq \mathbb{C}[Z] \simeq \mathbb{C}[V] \implies Z \simeq W.$$

" \Leftarrow " Assume that φ induces an isomorphism $V \simeq \varphi(V)$. Note that isomorphism are closed maps, so $\varphi(V)$ is a closed affine algebraic variety. Therefore, φ^* is a \mathbb{C} -algebra isomorphism between $\mathbb{C}[\varphi(V)] \subseteq \mathbb{C}[W]$ and $\mathbb{C}[V]$.

Q4. Let Σ be the fan consisting of

- σ_1 cone spanned by $\{(-1, -1), (0, 1)\};$
- σ_2 cone spanned by $\{(0,1),(1,0)\};$
- τ cone spanned by $\{(1,1)\}.$
- (a) (6 marks)(Standard Workbook) Determine whether or not the toric variety X_{Σ} has the following properties. Briefly justify your answer.
 - (i) smooth;
 - (ii) complete.

Solution.

- (i) Yes, since the $\sigma_1 \cap \mathbb{Z}^2$ and $\sigma_2 \cap \mathbb{Z}^2$ both span \mathbb{Z}^2 .
- (ii) No, since $|\Sigma| \subseteq \mathbb{R}^2$.
- (b) (9 marks)(Standard Workbook) Describe the coordinate rings of X_{σ_1} , X_{σ_2} , and X_{τ} .

Solution. We have
$$\sigma_1^{\vee} = \operatorname{cone}(\{(-1,1),(-1,0)\})$$
. $\sigma_2^{\vee} = \operatorname{cone}(\{(1,0),(0,1)\})$, $\tau^{\vee} = \operatorname{cone}(\{(0,1),(-1,0),(1,0)\})$. Therefore $\mathbb{C}[X_{\sigma_2}] = \mathbb{C}[x,y]$, $\mathbb{C}[X_{\sigma_1}] = \mathbb{C}[x^{-1}y,x^{-1}]$, $\mathbb{C}[X_{\tau}] = \mathbb{C}[y,x,x^{-1}] = \mathbb{C}[yx^{-1},x,x^{-1}]$.

- (c) (i) (5 marks)(Standard Workbook) Explain why we have the inclusions $\mathbb{C}[X_{\sigma_1}] \subseteq \mathbb{C}[X_{\tau}], \mathbb{C}[X_{\sigma_2}] \subseteq \mathbb{C}[X_{\tau}];$
 - (ii) (5 marks)(Standard Workbook) Describe the gluing of X_{σ_1} and X_{σ_2} along X_{τ} .

Solution. Therefore, the equalities $\mathbb{C}[X_{\sigma_1}]_x = \mathbb{C}[X_{\tau}] = \mathbb{C}[X_{\sigma_2}]_{x^{-1}}$. These equalities give rise to the inclusions $X_{\tau} \subseteq X_{\sigma_1}$ and $X_{\tau} \subseteq X_{\sigma_2}$. We also have the isomorphisms of \mathbb{C} -algebras

$$\Phi: \mathbb{C}[X_{\sigma_1}] \supseteq \mathbb{C}[X_{\tau}] \longrightarrow \mathbb{C}[X_{\tau}] \subseteq \mathbb{C}[X_{\sigma_2}]$$
$$x^{-1} \longmapsto x$$
$$x^{-1}y \longmapsto y.$$

The map Φ provides the information for gluing the coordinate rings, as well as the corresponding varieties $X_{\tau} \subseteq X_{\sigma_1}$ and $X_{\tau} \subseteq X_{\sigma_2}$.