第九次习题课 知识点

1.设 A 为 n 阶矩阵, λ 是一个数,如果存在非零向量 v,使得 $Av = \lambda v$,则称 λ 为 A 的一个特征值,v 称为与特征值 λ 对应的特征向量。

2.设 A 为 n 阶矩阵, $\lambda E - A$ 为 A 的特征矩阵,称 $|\lambda E - A|$ 为 A 的特征多项式。 $|\lambda E - A|$ 称为 A 的特征方程。该方程的跟为特征根。

3.n 阶矩阵 A 是奇异矩阵的充分必要条件是 A 有一个特征值为 0.

4.设 λ_0 是A的一个特征值,则

- $(1)\lambda^n$ 是 A^n 的一个特征值。
- $(2)\forall k \in \mathbb{R}, k \lambda_0$ 是 kE A 的一个特征值。

设 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, 定义 $f(A) = a_n A^n + a_{n-1} A^{n-1} + \dots + a_1 A + a_0 E, f(\lambda_0)$ 是 f(A) 的一个特征值。

- (3) 设 A 可逆,则 $\frac{1}{\lambda_0}$ 是 A^{-1} 的一个特征值。因为 $A^* = |A|A^{-1}$,所以 $\frac{|A|}{\lambda_0}$ 是 A^* 的一个特征值。
- 5.特征值的性质
- (1)n 阶矩阵与它的转置矩阵 A^T 有相同的特征值。
- (2) 相似矩阵: 设 A, B 为 n 阶矩阵,如果存在可逆矩阵 P,使得 $P^{-1}AP = B$,则称 A 与 B 相似。相似矩阵具有相同的秩、行列式、特征多项式和特征值,相似矩阵的逆矩阵、伴随矩阵也相似。
- (3) 设 n 阶矩阵 A 的全部特征值为 $\lambda_1, \dots, \lambda_n$ (其中可能有重根、复根)

$$\sum_{i=1}^{n} \lambda_i = \sum_{i=1}^{n} a_{ii} = traceA \qquad \prod_{i=1}^{n} \lambda_i = |A|$$

6.特征向量的性质

- (1) n 阶矩阵 A 互不相同的特征值对应的特征向量 v_1, v_2, \dots, v_m 线性无关。
- (2)n 阶矩阵 A 对应于相同特征值的特征向量的非零线性组合依然是特征向量。
- (3) 对应于不同特征值的线性无关的特征向量组仍然是线性无关的。

7.相似对角化: 设 A,B 为 n 阶矩阵,如果存在可逆矩阵 P,使得 $P^{-1}AP = \Lambda = \begin{vmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{vmatrix}$,则称

A 可以相似对角化。

- 8.n 阶矩阵 A = n 阶对角矩阵 Λ 相似的充要条件是 $A \neq n$ 个线性无关的特征向量。
- n 阶矩阵 A 有 n 个互不相同的特征值 $\lambda_1, \dots, \lambda_n$,则 A 与对角阵 Λ 相似。
- n 阶矩阵 A 互不相同的特征值对应的对应的特征向量 v_1, v_2, \cdots, v_m 线性无关。
- 9.方程 $(\lambda_i E A)x = 0$ 的基础解系向量的个数称为 λ_i 的几何重数(等于自由变量的个数,等于 $n r(\lambda_i E A)$)。 λ_i 作为特征方程的特征根的重数称为 λ_i 的代数重数。

10.n 阶矩阵 A 与对角矩阵相似的充分必要条件是对于每一个 n_i 重特征根 λ_i ,矩阵 $\lambda_i E - A$ 的秩是 $n - n_i$ 。即 λ_i 的代数重数等于几何重数。