ARITHMETIC Chapter 19

Números racionales

Al sumar estos números
$$\frac{3}{100}$$
, $\frac{25}{10.000}$, $\frac{748}{10}$, etc.

Un ingeniero y matemático holandés llamado Simón Stevin inventó en el S. XVI un método para hacer cálculos con fracciones decimales sin usar el denominador. Por ejemplo, escribía

$\frac{3}{100}$	como	3
$\frac{25}{10.000}$	como	2 5
$\frac{748}{10}$	como	7 4 8

Al sumar estos números, obtenja
$$+$$
 $\frac{3}{2}$ $\frac{4}{5}$ $+$ 7 $\frac{1}{4}$ $\frac{1}{8}$ $=$ 7 $\frac{1}{4}$ $\frac{2}{8}$ $\frac{3}{5}$ $\frac{4}{5}$

Aunque su método no llegó a usarse mucho, su idea fue tomada por un gran matemático escocés, Napier, quien desarrolló, a partir de la proposición de Stevin, otra manera de escribir las fracciones decimales.

RACIONALES

$$\mathbb{Q} = \left\{ \frac{a}{b} / a \in \mathbb{Z} \land b \in \mathbb{Z} - \{0\} \right\}$$

Ejm.
$$\frac{12}{5}$$
; $\frac{-9}{13}$; $\frac{8}{-5}$; $\frac{1}{4}$; $\frac{18}{6}$

Números enteros

DENSIDAD DE LOS NÚMEROS RACIONALES

Dados los números racionales m y n con m < n, siempre existe un número racional p, tal que

$$m$$

NÚMEROS FRACCIONARIOS

Son los números racionales no enteros.

$$\frac{9}{25}$$
; $\frac{7}{-3}$; $\frac{15}{10}$

FRACCIONES

Son aquellos números fraccionarios cuyos términos son positivos.

$$F = \left\{ \frac{a}{b} / (a, b) \in \mathbb{Z} \times (\mathbb{Z} - \{0\}) \right\}$$

Ejm

$$\frac{12}{5}$$
; $\frac{9}{13}$; $\frac{8}{5}$; $\frac{1}{4}$

$$F = \frac{a}{b} \Rightarrow \text{Numerador}:$$

$$\text{Denominador}$$

: **b**

CLASIFICACIÓN DE LAS FRACCIONES

POR LA COMPARACIÓN DE SU VALOR RESPECTO A LA UNIDAD

1. Propia

Ejm
$$\frac{15}{25}; \frac{9}{13}; \frac{19}{30}$$

$$f = \frac{a}{b} < 1 \to a < b$$

2. Impropia Ejm $\frac{18}{12}$; $\frac{11}{3}$; $\frac{5}{2}$

$$f = \frac{a}{b} > 1 \to a > b$$

$$f > 1$$

BPOR SU DENOMINANDOR

1. Decimal

Ejm
$$\frac{7}{10^2}; \frac{23}{10}; \frac{45}{10^3}$$

$$\Rightarrow \qquad f = \frac{a}{b} \to b = 10^n$$

 $\forall n \in \mathbb{Z}^+$

2. Ordinaria

$$\Rightarrow \qquad f = \frac{a}{b} \to b \neq 10^n$$

 $\forall n \in \mathbb{Z}^+$

তিয়

HELICO | THEORY

PROPIEDADES

1. Sea $n \in \mathbb{Z}^+$

$$f_1 = \frac{a}{b} < 1 \land f_2 = \frac{a+n}{b+n} < 1 \rightarrow f_1 < f_2$$

$$f_1 = \frac{a}{b} > 1 \land f_2 = \frac{a+n}{b+n} > 1 \rightarrow f_1 > f_2$$

2. Sean las fracciones irreductibles

Si:
$$\frac{a}{b} + \frac{c}{d} = k$$
; $(k \in \mathbb{Z}) \rightarrow b = d$

$$MCD\left(\frac{a}{m}; \frac{b}{n}; \frac{c}{p}\right)$$

$$= \frac{MCD(a; b; c)}{MCM(m; n; p)}$$

$$MCM\left(\frac{a}{m}; \frac{b}{n}; \frac{c}{p}\right)$$

$$= \frac{MCM(a; b; c)}{MCD(m; n; p)}$$

1. ¿Cuántos valores toma a si la fracción $\frac{a}{30}$ es propia e

irreductible?
RESOLUCIÓN

f. propia:
$$a < 30 \implies a: 1; 2; 3; ...; 29$$

f. irreductible:
$$a y 30 \text{ son (PESI)} \implies 30 = 2^3 \times 3 \times 5$$

 $a \neq 2; 3 \land 5$

: Cantidad de valores que toma 32

2. Halle una fracción equivalente a $\frac{112}{364}$ sabiendo que el MCM de sus términos es 624. Dé como respuesta el

numerador.

RESOLUCIÓN

$$\frac{112}{364} = \frac{4k}{13k} \longrightarrow MCM(4k; 13k) = 624$$

$$52k = 624$$

$$k = 12$$

El numerador es:

$$4k = 4(12) = 48$$

$\frac{N}{3a5a}$ es equivalente a 3. Halle el valor de N sabiendo que

RESOLUCIÓN

$$\frac{N}{3a5a} = \frac{13k}{17k}$$

$$\frac{3a5a}{3a5a} = 17$$

$$3050 + \overline{a0a} = 17$$

$$3050 + 101a = 17$$

$$(17 + 7) + (17 - 1)a = 17$$

$$17 + 7 - a = 17$$

$$a = 7$$

Reemplazando a

$$\overline{3a5a} = 17k$$

$$3757 = 17k$$

$$k = 221$$

$$N = 13k = 13(221) = 2873$$

4. Halle una fracción equivalente a $\frac{4}{7}$, tal que si la suma de cuadrados de sus términos es 1625. Dé como respuesta el denominador.

$$\frac{4}{7} = \frac{4k}{7k}$$

$$(4k)^{2} + (7k)^{2} = 1625$$
$$65k^{2} = 1625$$
$$k^{2} = 25$$
$$k = 5$$

El denominador es:

$$7k = 7(5) = 35$$

5. Si la suma de dos fracciones irreductibles resulta 5 y la suma de sus numeradores es 40, ¿cuál es la suma de sus

denominadores?

RESOLUCIÓN

sean las fracciones irreductibles; d

Del dato tenemos: b d

Reemplazando:

$$\frac{a}{b} + \frac{c}{b} = 5$$
 $\Rightarrow \frac{a+c}{b} = 5$

dato: a + c = 40

Piden:

6. Mi sueldo asciende a S/2400 y gasté los $\frac{2}{5}$; luego se me perdieron los $\frac{3}{8}$ del resto y finalmente en una apuesta logro ganar $\frac{2}{3}$ de lo que me quedaba. ¿Cuánto dinero me queda ahora?

RESOLUCIÓN

Sea " \mathbf{x} " la cantidad inicial

Del dato tenemo s:

Variación	QUEDA
$\frac{2}{5}$	$\frac{3}{5}x$
$\frac{3}{8}$	$\frac{5}{8}\left(\frac{3}{5}x\right)$
$\frac{2}{3}$	$\frac{5}{3} \left[\frac{5}{8} \left(\frac{3}{5} x \right) \right]$

Donde

$$\frac{5}{3}x\frac{5}{8}x\frac{3}{5}xx = qued$$

$$\frac{5}{8}x\frac{300}{2400}$$
Pide : queda = 1500
n:

7. En la vitivinícola Tabernero ubicada en el valle de Chincha se realizó la siguiente prueba:

De un recipiente lleno de vino se retiró la sexta parte y se reemplazó por agua; luego se retiró las 2/3 partes de la mezcla y se volvió a reemplazar con agua. ¿Cuál será la relación de agua y vino que queda en dicho

recipiente? RESOLUCIÓN

Del dato

tenemos:	
RETIRA	QUEDA DE VINO PURO
1	5
1	J 17
<u>-</u>	$\frac{1}{6}V$
б	0
0	1 /
2	$\frac{1}{3}\left(\frac{5}{6}V\right)$
_	<u> </u>
$\overline{3}$	3 \ 6 /
3	

Sea "V" la cantidad de vino inicial

Donde:

queda =
$$\frac{1}{3} \times \frac{5}{6} \times V = \frac{5}{18} \times V$$
 vino cantida = $V - \frac{5}{18} V = \frac{13}{18} V$

Piden relación de agua y vino

$$\frac{(13/18) V}{(5/18) V} : \frac{13}{5}$$
 13 a 5

8. La mitad de la gaseosa que me queda en la botella es igual a la tercera parte de lo que ya me tomé. Si tomo la cuarta parte de lo que me queda, ¿qué fracción de toda la gaseosa me habré tomado?

RESOLUCIÓN

Donde: Total =
$$\begin{bmatrix} q + t \end{bmatrix}$$

Del dato

teriemos:
$$\frac{1}{3} x^t$$
 $\frac{q}{t} = \frac{2 \cdot k}{3 \cdot k}$

$$\frac{q}{t} = \frac{2 \cdot k}{3 \cdot k}$$

sigue tomand =
$$\frac{1}{4}$$
 (2.k) = $\frac{k}{2}$

Pider x .Total = tomado

$$x$$
 (5.k) = 3.k + $\frac{k}{2}$

$$x$$
 (5.k) = $\frac{7.k}{2}$

$$x = \frac{7}{10}$$