introduzione a Bitcoin

e alle criptovalute digitali

P.Bertoni

28 aprile 2014

Tabella Contenuti

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

specifiche sul protocollo

problema

implementare una valuta economica

- affidabile
- informatica
- decentralizzata
- distribuita

specifiche sulle transazioni

problema

trasmettere transazioni di valuta tra enti

- pubbliche
- anonime ⇒ tra indirizzi, non utenti
- autenticate
- non ripudiabili
- irreversibili

registrate in una sorta di storico globale

idea astratta di transazione ${\mathfrak T}$

- atto tra N mittenti e M destinatari
- utenti incoraggiati a usare un indirizzo unico ∀ ∑
- \sim assegno "in data t, $\{x\}_1^N$ ha versato tot a $\{y\}_1^M$ che ora ne è proprietario"

gestione del resto

- $y' \in \{y\}$ destinatari, controllato da chi emette \mathfrak{T}
- deframmentare: nuova \(\mathbf{T} \) con molteplici mittenti

specifiche sull'affidabilità: proof of work

problema

progettare algoritmo di mining per convalida T

- trattabile da decidere
- intrattabile da risolvere
- dipendente da lista transazioni in attesa

motivazione a partecipare

- onestà ricompensata
- complessità lavoro onesto ≡ complessità disonesto
- $Pr[successo disonestà] \rightarrow 0$

Differenze con valute tradizionali

ontologia

esplicita: unità fisiche implicita: in funzione di $\mathfrak T$

fiducia nell'accettazione di moneta

difficoltà di contraffazione

possibilità di furto o smarrimento

gettone fisico

chiave privata di firma digitale

fiducia nel protocollo di supporto ente nazionale o sovranazionale

modello formale di sicurezza

i primordi: eCash [Chaum]

sistema di firma digitale a conoscenza zero

Scenario (e.g. voto digitale)

- sia m plaintext, A autore e F firmatario, $A \neq F$
- firma classica: S(m, K^A_{PR})
- firma *cieca*: $S^B(f(m), K_{PR}^F)$
- F non può calcolare m data f(m)

Algoritmo

- A estrae nonce x
- 2 A invia $\overline{m} = f(m, x)$ messaggio *cieco* a F
- chiunque conosca K_{PB}^F calcola $\overline{m}^S = E(\overline{s}, K_{PB}^F)$

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

ullet curve definite su un certo \mathbb{F}_q da

$$y^2 = x^3 + ax + b$$

• non singolari, *i.e.* $4a^3 + 27b^2 \neq 0$

Theorem (Hasse)

sia \mathbb{F}_q il campo di Galois di ordine q sia $\mathscr{E}_q=\mathscr{E}_{(a,b)}(\mathbb{F}_q)$ una sua curva ellittica

⇒ ordine GF governa difficoltà

legge di gruppo: definizione

 $(\mathscr{E}_{(a,b)}(\mathbb{F}_q),\,+)$ definisce un gruppo abeliano

$$R = P + Q \triangleq (x_R, -y_R)$$

$$x_P \neq x_Q$$
:
$$\begin{cases} y_R \triangleq y_P + s(x_R - y_P) \\ x_R \triangleq s^2 - x_P - x_Q \end{cases} s = \frac{y_P - y_Q}{x_P - x_Q}$$

$$x_P = x_Q : \left\{ egin{array}{ll} y_P = -y_Q : & R = O \ \\ y_P = y_Q
eq 0 : & \left\{ egin{array}{ll} y_R \triangleq y_P + s(x_R - y_P) \\ x_R \triangleq s^2 - 2x_P & s = rac{3x_P^2 + a}{2y_P} \end{array}
ight.$$

$$R = P \times n \triangleq P + P + ... + P$$
 $n \in \mathbb{Z}$ volte

legge di gruppo: casistica

problema matematico

trovare un segreto $d \in [1, n-1]$, dati

•
$$\mathscr{E} = \mathscr{E}_{(a,b)}(\mathbb{F}_q)$$

•
$$G \in \mathscr{E}$$
: $\langle G \rangle = \mathscr{E}$

•
$$n = o(G)$$
: $G \times n = O = P_{\infty}$, n primo

$$\bullet$$
 $P \in \mathscr{E}$

$$\bullet$$
 $Q = P \times d$

Funzioni di Hash One Way

- $h: \mathbb{Z} \to \mathbb{Z}_n$ non injettiva
- resistenza a
 - preimmagine \rightarrow ricerca *bruta* è $O(2^n)$
 - collisioni deboli \rightarrow " " "
 - collisioni forti \rightarrow birthday: ricerca bruta è $O(2^{n/2}) \ll O(2^n)$
- usate soprattutto per
 - autenticazione
 - integrità
- spesso firmato il digest h(m) anzichè m

Alberi di Merkle

usati in protezione integrità transazioni

- ullet foglia $\leftrightarrow \mathfrak{T}$
- $\bullet \neg foglia \leftrightarrow hash dei due figli$
- ullet decidere se una foglia \in
 - lista: O(N)
 - albero: $O(\log_2 N) \ll O(N)$
- Bitcoin: $hash(n) = SHA_{256}(SHA_{256}(\mathcal{L}_n|\mathcal{R}_n))$

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Transazione T

struttura dati

- \mathfrak{T}^{ID} = hash(\mathfrak{T})
- timestamp t
 - $\forall i$ indirizzo di input \mathfrak{I}_{i}^{in}
 - somma trasferita Bin
 - chiave $K_{i,in}^{PB}$
 - indice $p: \mathfrak{I}_{i}^{in} = [\mathfrak{I}_{p}^{out}]_{\mathfrak{T}_{-1}}$
 - $\mathfrak{T}_{-1}^{D} = \operatorname{hash}(\mathfrak{T}_{-1})$
 - firma $\mathfrak{T}^{S_i} = E(\tilde{\mathfrak{T}}_i, K_{i,in}^{PR})$

- $\forall j$ indirizzo di output \mathfrak{I}_i^{out}
- somma ricevuta B_i^{out}
- hash $(K_{j,out}^{PB})$

Transazione T

collegamento tra transazioni

Header

- hash di $\mathfrak{B}_{i-1}^{\mathfrak{H}}$
- MerkleTree di $\{\mathfrak{T}\}_{\mathfrak{B}}$
- timestamp t
- target z
- nonce x
- titolare della coinbase C
- durante mining di B, campi continuamente modificati
- B descrive la propria proof of work

Payload

lista transazioni {\mathfrak{T}}_\mathfrak{g}

Transazioni → Blocchi

generazione nuova transazione

- broadcastata tramite protocollo flooding
- ogni miner può includerla nel suo pool
- inizialmente inserita in un pool come invalida
- dopo risoluzione del
 ② corrente è rimossa da ogni pool

Blocchi → Blockchain

generazione catena di blocchi

- ullet hash dei blocchi precedenti \sim puntatori di una lista
- a ritroso si giunge al
 ³ di genesi

Motivazione all'utilizzo

fees \mathfrak{F} sulle transazioni

∀ transazione ∑

•
$$\mathfrak{F}_{\mathfrak{T}} = \sum_{i}^{N} \ddot{\mathbf{B}}_{i}^{in} - \sum_{i}^{M} \ddot{\mathbf{B}}_{i}^{out} \geq 0$$

- spetta a miners che risolvono $\mathfrak{B}\ni\mathfrak{T}$

incentivi per

- velocizzare validazione T
- mining costante nonostante decrescita coinbase rewards

Motivazione all'utilizzo

transazioni Coinbase &

- ∀3, ∃! €
- inputs: 0
- ullet outputs: ricompensa a miners risolutori di ${\mathfrak B}$
 - coinbase
 - 50 B iniziali
 - dimezzata ogni 210K blocchi risolti
 - nulla dopo 6.93M blocchi
 - $\{\mathfrak{F}\}\in\mathfrak{B}$
- inflazione
 - dettata solo da mining
 - limitata

$$\sum_{i=0}^{6.93M-1} \frac{50}{2^{\lfloor i/2_{10K} \rfloor}} = 21M \, \beta$$

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

ECDSA

inizializzazione

Alice: scelta dei parametri pubblici

2
$$(a, b)$$
: $4a^3 + 27b^2 \neq 0$

$$0 n = o(G)$$

Alice: generazione coppia chiavi

$$\bullet \ \, K^{PR} \triangleq \mathbf{d}_A \leftarrow \mathrm{rand} \in [1, \, n-1]$$

Bob: verifica validità di Q_A ricevuta

$$\mathbf{O}$$
 $Q_A \neq O$

$$Q_A \in \mathscr{E}$$

$$Q_A \times n = O$$

ECDSA

firma digitale

Alice: firma del messaggio m

- $\bullet \leftarrow \operatorname{hash}(m)$
- $k \leftarrow \text{rand} \in [1, n] \subset \mathbb{N}$

- **5** if r = 0 goto 2
- **o** if s = 0 goto 2
- \bullet return (r, s)

ECDSA

verifica firma

Bob: verifica firma (r, s) di m

- $(r, s) \in [1, n-1] \times [1, n-1]$
- $e \leftarrow \operatorname{hash}(m)$

SHA-256

Secure Hash Algoritm 256 bit

- 256/2 = 128 bit di sicurezza collisioni non ancora trovate
- $len(m) < 2^{64}$, len(n) = 256

- padding
 - a) $len(m|0...) \equiv 448 \mod 512$
 - b) 64 bit di len(m)
- ② *N* blocchi da 512 bit: $B^{(1)}, ... B^{(N)}$
- 3

$$H^{(i)} \triangleq H^{(i-1)} + C_{B^{(i)}}(H^{(i-1)})$$

ritorna d = H^(N)

Figura: funzione di compressione C

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- 2 Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

Firma digitale

- ullet $|K_{ECC}|=$ 256 bit $\simeq |K_{RSA}|=$ 3072 bit
- $q \simeq 10^{77}$, $n \simeq 10^{69}$, $\mathscr{E}: y^2 = x^3 + 0x + 7$
- meet in the middle [Shank]: $\Omega(\sqrt{q})$
- nonce k è confidenziale: $d = r^{-1}(ks e)$
- replay attack: nonce deve tale
 - a) $r_1 = r_2 = r$
 - b) $s_1 \equiv k^{-1}(e_1 + dr) \mod n$, $s_2 \equiv k^{-1}(e_2 + dr) \mod n$
 - c) $k(s_1 s_2) \equiv (e_1 e_2) \mod n$
 - d) $m_1 \neq m_2 \Rightarrow (s_1 s_2) \neq 0 \Rightarrow k \equiv (s_1 s_2)^{-1}(e_1 e_2) \mod n$

metodo Hashcash

- facile verificare che il messaggio è soluzione di problema difficile
- brute force unica tecnica risolutiva
- Problema: dati $h: \mathbb{Z} \to \mathbb{Z}_n, m, z \le n$, trovare nonce x:

$$d = \operatorname{hash}^{\operatorname{PoW}}(m|x) < T_z = 2^{n-z+1}$$

i.e. digest ha z zeri non significativi (parametro target)

$$\Pr[d < T_z | Z = z] = \frac{1}{2^z} \Rightarrow O(2^z)$$

- ullet problema risolto \Leftrightarrow blocco ${\mathfrak B}$ risolto \Leftrightarrow $\{{\mathfrak T}\}_{{\mathfrak B}}$ convalidate
- Bitcoin: $hash^{PoW}(\mathfrak{B}) = SHA_{256}(SHA_{256}([Header]_{\mathfrak{B}}))$

exempli gratia: z = 15

$$\label{eq:hash} \begin{split} & \text{hash("helloworld"|001)} = 9002381300129484192947128 \\ & \vdots & \vdots \\ & \text{hash("helloworld"|034)} = 0000834716283947104512438 \\ & \vdots & \vdots \\ & \text{hash("helloworld"|415)} = 0000000000000000000083201 \end{split}$$

n.b. gambler's fallacy

$$\forall t_1, t_2 \ \Pr(Z = z, T = t_1) = \Pr(Z = z, T = t_2)$$

adattamento target

target z_i ricalcolato ogni 2016 blocchi risolti \sim 2 settimane

- $\bullet \quad \Delta_i^t \leftarrow t_i t_{i-1}$
- - z ∝ ∆^t ⇒ soluzioni veloci abbassano target
 i.e. generazione problemi più difficili, vv.
 - blocco risolto mediamente ogni 10 minuti

sicurezza di SHA256

in teoria...

• preimage attack: $O(2^{256})$

• birthday attack: $O(2^{256/2})$

...in pratica

Metodo	Attacco	Iterazioni	Complessità
deterministico	collisione	24	2 ^{28.5}
meet in the middle	preimmagine	42	2 ^{248.4}
differenziale	pseudo collisione	46	2 ¹⁷⁸
biclique	preimmagine	45	2 ^{255.5}

prevenzione double spending

spendere due volte la stessa ${\mathfrak T}$

- modifica $\mathfrak{I}^{out} \Rightarrow \mathfrak{T}$ stessa $\Rightarrow \mathfrak{B}$ di appartenenza ricalcolo nonce x
- ${\mathfrak D}$ modifica ${\mathfrak B}$ \Rightarrow modifica ${\it N}$ blocchi successivi ricalcolo ${\it N}$ nonces \Rightarrow risolvere ${\it N}$ problemi esponenziali

forking

- policy: aggiungere sempre a ramo più lungo
- in una web of trust sopravviverà il ramo corretto

Web of trust

dato un pool di miners ${\mathfrak M}$ con capacità di calcolo ${\mathscr E}_{{\mathfrak M}}$ $[{
m GH/s}]$

$$\Pr[\mathfrak{M} \text{ risolva blocco}] \propto \frac{\mathscr{C}_{\mathfrak{M}}}{\mathscr{C}_{\Omega}}$$

- \Rightarrow condizione necessaria Bitcoin: $\mathscr{C}_{fair} \geq 50\% \, \mathscr{C}_{\Omega}$
- se $\exists \ \mathfrak{M}_{unfair}$ pool disonesto *t.c.* $\mathscr{C}_{\mathfrak{M}_{unfair}} \geq 50\% \ \mathscr{C}_{\Omega}$
 - \Rightarrow catena più lunga comanda \Rightarrow crollo fiducia \Rightarrow crollo valore

- no motivazione diretta di lucro
- ma problema irrisolvibile perchè sistematico

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

forgiatura

unica possibilità: rubarli a qualcuno

- problema di forgiare dal nulla non ha senso
- conoscere K_{PR} ⇒ rompere ECDSA

se quantum computers implementati

- rottura ECDSA può diventare facile
- collisione SHA₂₅₆ resta difficile
 - indirizzi $\Im = SHA_{256}(SHA_{256}(K_{PB}))$
 - ottenere K_{PB} dal solo \Im è difficile
 - ma se è nota sistema rotto

caso di studio: MtGoX [2014]

prima del crollo

web service di exchange

- scambio valute fiat con 🗒
- 2013: Blockchain fork in rami con regole diverse
 - ⇒ MtGox sospende transazioni

malleabilità

- $\mathfrak{T}^{ID} \triangleq h(\mathfrak{T}), \quad \mathfrak{T}^{S} \in \mathfrak{T} \Rightarrow \mathfrak{T}^{ID}$ dipende dalla sua firma
- codice MtGox accetta firme malformate
- problema ∈ implementazione, ∉ protocollo B
- ∃ altri exchanges più rigorosi ⇒ immunità

caso di studio: MtGoX [2014]

il crollo: attacco delle transazioni mutanti

frode di Eve ai danni di MtGox

- M invia ∑ a E come prelievo
- E ritocca T^S prima della sua conferma
- \bullet ora $\exists \tilde{\mathfrak{T}} \equiv \mathfrak{T}$, ma $h(\tilde{\mathfrak{T}}) \neq h(\mathfrak{T}) \Rightarrow \tilde{\mathfrak{T}}^{ID} \neq \mathfrak{T}^{ID}$
- $oldsymbol{\mathfrak{T}}$ diffusa da E, confermata prima di $oldsymbol{\mathfrak{T}}$
- 5 non confermata perchè T invalido
- E fa complain a M per ∑ non ricevuta
- M controlla il suo storico: 5 non è stata accettata
- M costretto a inviare rimborso T

DDoS

- grande sovraccarico, persino se c'è immunità
- latenza nelle risposte ⇒ incertezza ⇒ speculazione

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

caso di studio: Reid [2011]

rete transazioni ${\mathscr T}$

caso di studio: Reid [2011] rete utenti imperfetta $\tilde{\mathscr{U}}$

caso di studio: Reid [2011]

rete utenti \mathcal{U} , rete ancella \mathscr{A}

caso di studio: Reid [2011]

integrazione con informazioni esterne

- dimensione $\propto |\{K_{PB}\}|$ utente = # transazioni
- colore ∝ ₿ scambiati

contenuto

- Introduzione
 - Definizione di una criptovaluta
 - Elementi teorici
- Protocollo
 - Strutture dati
 - Primitive criptografiche
 - Modello formale di sicurezza
- Attacchi tipici
 - Forgiatura
 - Anonimità
 - Double spending

tipologia transazione

- lenta, e.g. acquisto ticket eventi sicurezza offerta dal mining
- veloce, e.g. pagamento in negozio
 ∃ possibilità di double spending
 - tempi scambio $[s] \ll$ tempi validazione [min]
 - Bitcoin segue tecnica struzzo
 - problema non grave ma aperto

ipotesi

hosts

- A peer disonesto
- H complici di A
- V vendor onesto

transazioni

- \(\mathbf{I}_V\): acquisto regolare

ipotesi

- A conosce indirizzo IP di V
- \mathscr{C}_A trascurabile
- $\bullet \ \mathfrak{I}_{V}^{in} = \mathfrak{I}_{A}^{in} \in A$
- $V \ni \mathfrak{I}_{V}^{out} \neq \mathfrak{I}_{A}^{out} \in A$
- implementazioni plain vanilla

idea di massima

- T_V, T_A inviate contemporaneamente
 ⇒ incluse nello stesso pool
- se $\mathfrak{I}^{in}_{\mathfrak{T}} = \mathfrak{I}^{in}_{\mathfrak{T}'}$ \Rightarrow non ammesse nello stesso pool
- inclusa solo la prima ∑ ad arrivare
 - \$\mathbf{T}_A\$ da validare rapidamente
 - ullet ${\mathfrak T}_V$ sarà smentita dalla rete

1^a condizione: connessione diretta tra A e V

V riceve prima \mathfrak{T}_V di \mathfrak{T}_A oppure V includerebbe prima \mathfrak{T}_A nel suo pool

- client accetta sempre nuove connessioni < 125 max
- A comunica con H
 - senza latenza
 - privatamente
- H non comunica con V
- A invia

 - ②
 ∑
 A
 a
 H

2ª condizione: diffusione manipolata

 \mathfrak{T}_A confermata in *blockchain* prima di \mathfrak{T}_V oppure \mathfrak{T}_A non più validabile

- ogni peer include $\mathfrak{T}_A \dot{\vee} \mathfrak{T}_V$ in proprio pool
 - $\mathfrak{T}_A, \mathfrak{T}_V$ broadcastate in due partizioni
 - termine quando $\mathfrak{T}_A \dot{\vee} \mathfrak{T}_V$ confermata
- ullet $\left| \Pr \left[au_{\!\!\!A} < au_{\!\!\!\!V}
 ight] \propto au_{\!\!\!\!A} / \eta_{\!\!\!\!V}
 ight|$ migliora se
 - invio di \mathfrak{T}_A precede invio di \mathfrak{T}_V
 - H aiutano A diffondendo \mathfrak{T}_A e filtrando \mathfrak{T}_V

probabilità di successo

 $\Pr[\text{successo in tempo } \delta t] \sim \text{Bernoulli}(\eta_A, p)$

- $\eta_A = \#$ peers coinvolti
- $p = \Pr[\text{peer generi } \mathfrak{B} \text{ in } \delta t]$

Figura: Pr[successo |
$$\delta t = 10s$$
, $\eta = 6 \cdot 10^4$]