MATH 644

Chapter 2

SECTION 2.1: POLYNOMIALS

Contents

What This Class Is About?	2
Definition	2
Linear Polynomials	3
Monomials	4
Monomials Translated	5
Local Behavior Explaination of WAD	6
EXPLAINATION OF WALL	8

Created by: Pierre-Olivier Parisé Spring 2023

WHAT THIS CLASS IS ABOUT?

We will do calculus with functions

$$f:\Omega\subseteq\mathbb{C}\to\mathbb{C}$$
.

- The image of f is $f(\Omega) := \{ w = f(z) : z \in \Omega \}.$
- Since $f(z) \in \mathbb{C}$, for $z \in \Omega$, there are two functions

$$u:\Omega\subseteq\mathbb{C}\to\mathbb{R}\quad\text{ and }\quad v:\Omega\subseteq\mathbb{C}\to\mathbb{R}$$

such that

$$f(z) = u(z) + iv(z).$$

• Sometimes, we use $u = \operatorname{Re} f$ and $v = \operatorname{Im} f$.

The best well-behaved complex-valued functions are polynomials:

$$p(z) = a_0 + a_1 z + \ldots + a_n z^n,$$

where

- $a_0, a_1, \ldots, a_n \in \mathbb{C}$;
- $z \in \mathbb{C}$, so that $\Omega = \mathbb{C}$;
- $a_n \neq 0$, so that deg p := n.

THEOREM 1. A polynomial p(z) is a continuous function.

Note:

- A function $f: \Omega \to \mathbb{C}$ is continuous at z_0 if for any $\varepsilon > 0$, there is a $\delta > 0$ such that if $|z z_0| < \delta$, then $|f(z) f(z_0)| < \varepsilon$.
- A function $f:\Omega\to\mathbb{C}$ is continuous on Ω if it is continuous at every $z_0\in\Omega$.

LINEAR POLYNOMIALS

When the degree of p(z) is 1:

$$p(z) = az + b$$
, $a, b \in \mathbb{C}$ and $a \neq 0$.

Some elementary observations:

• a = 1.

• b = 0.

Consequences: Rewrite as followed:

$$p(z) = a(z + b/a).$$

- translates first by b/a.
- dilates and rotate by |a| and $\arg a$ respectively.

Monomials

A monomial is

$$p(z) = z^n, \quad n \ge 1.$$

We see that

- $|p(z)| = |z|^n$;
- $\arg p(z) = n \arg z \pmod{2\pi}$.

COROLLARY 2. Each pie slice

$$S_k := \left\{ z : \left| \arg z - \frac{2\pi k}{n} \right| < \pi/n \right\} \quad (k = 0, 1, 2, \dots, n - 1)$$

is mapped to

$$\{z : |z| < r^n\} \setminus (-r^n, 0)$$

by a monomial $z \mapsto z^n \ (n \ge 1)$.

Proof.

Monomials Translated

We consider

$$p(z) = b(z - z_0)^n$$

where

- $z_0 \in \mathbb{C}$ is fixed;
- $b \in \mathbb{C}$;
- $n \ge 1$.

$\underline{\text{Picture}}$

Characteristic:

- •
- •
- .

LOCAL BEHAVIOR

We first prove the following.

THEOREM 3. Any polynomial $p(z) = \sum_{j=0}^{n} a_j z^j$ with $n \ge 1$ can be rewritten as followed:

$$p(z) = \sum_{k=1}^{n} b_k (z - z_0)^k + p(z_0)$$

for $b_1, b_2, \ldots, b_n \in \mathbb{C}$ and $z_0 \in \mathbb{C}$.

Proof.

COROLLARY 4. If k is the smallest index of all index j such that $b_j \neq 0$ and letting $\zeta := z - z_0$ with $z_0 \in \mathbb{C}$ fixed, then for small ζ , there is a constant C such that

$$\left| p(z_0 + \zeta) - \left(p(z_0) + b_k \zeta^k \right) \right| \le C|\zeta|^{k+1}.$$

Proof.

Picture of Walking a Dog (WAD)

Explaination of WAD

COROLLARY 5. We have

$$p(z_0 + \zeta) = p(z_0) + b_k(z - z_0)^k + o((z - z_0)^k), \quad z \to z_0.$$