动态规划求解 DELS 问题

U201715825 管实-江诗毅

2019年4月17日

目录

1	从前	往后的动态规划	2					
	1.1	更改定义	2					
	1.2	验证 $O(n^2)$ 时间复杂度	2					
	1.3	验证 O(n) 时间复杂度	3					
	1.4	误差分析	4					
2	实现思路							
	2.1	计算 m 期生产满足到第 n-1 期的成本	5					
	2.2	计算最低成本	6					
	2.3	计算最优路线	7					
	2.4	检查一个路线是否是最优路线	8					
	2.5	受任务 3 启发,给出时间复杂度为 O(n) 的算法	8					
	2.6	分析两种算法的区别	10					
3	测试		10					
	3.1	测试主程序	10					
4	结论		12					

摘要

首先给出了动态规划的一般形式,建立时间复杂度为 $O(n^2)$ 一般算法,然后由任务 3 启发,实现了时间复杂度为 O(n) 的特殊动态规划算法。

之后,使用算例拟合算法的时间复杂度,验证它们分别符合 $O(n^2)$,以及 O(n)。

然后给出了算法实现的思路。并对比了两种算法的区别。 然后给出了验证算法正确性的测试用例。 最后总结收获。

关键词: 动态规划

1 从前往后的动态规划

1.1 更改定义

为了方便计算,修改了从后往前的动态规划形式,将其改为了从千万后的形式,这与原问题是等价的。

project1 中的其他参数定义不变,只修改 g() 的定义,将动态规划形式改为

$$g(n) = \min_{m} \{g(m) + l(m, n+1) : 1 \le m < n \le N\}, n = 1, 2, \dots N$$

这与 project1 中的表达式表意相同, 但是方便了问题的分析。

1.2 验证 $O(n^2)$ 时间复杂度

根据时间复杂度为 $O(n^2)$ 的算法,后面会解释原因。绘制出时间随规模变化的曲线。(图 1, 图 2)

稀疏点拟合的参数分别为 $a=0.0000\cdot 10^{-4}$ $b=-0.0058\cdot 10^{-4}$ $c=0.1412\cdot 10^{-4}$

密集点拟合的参数分别为 $a=0.0000\cdot 10^{-4}$ $b=-0.0065\cdot 10^{-4}$ $c=0.1921\cdot 10^{-4}$

图 1: 稀疏点拟合

图 2: 密集点拟合

1.3 验证 O(n) 时间复杂度

根据时间复杂度为 O(n) 的算法,后面会解释原因,绘制出时间随规模变化的曲线。(图 3, 图 4)

稀疏点拟合的参数分别为 $k = 0.1223 \cdot 10^{-4}$ 密集点拟合的参数分别为 $k = 0.6295 \cdot 10^{-4}$

图 3: 稀疏点拟合

图 4: 密集点拟合

1.4 误差分析

使用上图中任一结果,分析其均方误差。MSE=0.00023数据来源如下图 5(每一项的误差值)。可知拟合的结果较好,所以不拒绝两个算法复杂度分别为 $O(n^2), O(n)$.

1 至 8 列										
0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001			
9 至 16 列										
0.0001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002			
17 至 24 列										
0.0002	0.0002	0.0002	0.0003	0.0003	0.0003	0.0003	0.0003			
25 至 32 列										
0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0004	0.0004			
33 至 40 列										
0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0005			
41 至 48 列										
0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005	0.0005			
49 至 56 列										
0.0005	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006	0.0006			
57 至 64 列										
0.0006	0.0006	0.0006	0.0007	0.0007	0.0007	0.0007	0.0007			

图 5:

2 实现思路

将该问题分解成各个小问题,逐一解决,模块化代码,最后给出结论。

2.1 计算 m 期生产满足到第 n-1 期的成本

确定子程序输入输出,具体代码见 mToNCost.m 附件

%

%输入:

% d(vector): 各阶段的需求

% k(vector): 各阶段的固定成本

% c(vector): 各阶段的单位边际成本

% h(vector): 各阶段的持有库存的边际成本

% m(number): 开始的阶段

% n(number): 结束的后一阶段

%

%输出:

% cost (number): 第m期生产满足第m到n-1期的所有需求带来的成本

第一种实现方式

% 计算加期生产的成本

$$cost = k(m) + c(m) * sum(d(m:n-1));$$

% 累计从m 到 n-1期的 所有 holding cost

$$for i = m to n-2$$

$$cost += h(i) .* sum(d(i+1:n-1));$$

第二种实现方式

给出 $c_{m,i}$ 表达式

$$c_{m,i} = c_m + h_m + \dots + h_{i-1}$$

第三种实现方式

更改 $l_{m,n}$ 表达式

$$l(m,n) = k_m + c_{m,N+1}d_{1,n+1}$$

经过验证,可知它不符合问题的描述,且计算出的成本会增大很多。

2.2 计算最低成本

功能描述

%算法时间复杂度为O(n^2),n为维度

%输入:

% d(vector): 各阶段的需求

% k(vector): 各阶段的固定成本

% c(vector): 各阶段的单位边际成本

% h(vector): 各阶段的持有库存的边际成本

%

%输出:

% result(number): 最小成本

% road(vector): 达到最小成本的方案 (0代表不生产,1代表生产)

%

%example(d,k,c,h都为n维向量):

 $% \quad [optResult, road] = dySolution(d,k,c,h)$

思路,matlab 代码见 dySolution.m 附件。

步骤:

- 基本的输入向量验证, 例如验证维度是否符合要求。
- 预分配内存,提高效率:一维数组 r 表示从第 1 期到第 n 期的最小成本,该问题是动态规划的子问题。一维数组 s 表示 r(n) 对应最优子方案中最后一次生产的时期是在第 s(n) 阶段。
- 迭代求解子问题, 例如现在是第 i 次循环, 依次遍历 s(i)= 1 to i, 计 算值, 记录下最优路线方案, 以及最有成本。
- 重复步骤 3, 直到 r(n) 被算出, 停止迭代。

2.3 计算最优路线

根据 2.2 小节给出的 s(n) 的定义,可以迭代出每个子问题对应的最优决策方案。

思路, matlab 代码将 dyRoad.m 附件步骤:

- 路径的递归定义: 1 —> ... —> s(s(n) 1) —> s(n) —> N
- 从 s(n) 开始,表示最后生产的阶段。
- 继续计算 s(s(n)-1), 表示倒数第二次的生产阶段。
- 重复下去,直到回到 s(i) 1 < 0。

2.4 检查一个路线是否是最优路线

由于对于每组 d,k,c,h 都有可能有多个最优解,故给出了核查给定 road 是否是最优方案的方法。

思路, matlab 代码见 checkOptRoad.m 附件

%checkOptRoad - 判断给定路径是否是动态规划的最优解%

%输入:

% d(vector): 各阶段的需求

% k(vector): 各阶段的固定成本

% c(vector): 各阶段的单位边际成本

% h(vector): 各阶段的持有库存的边际成本

% road(vector):路线

%

%输出:

% result(boolean):逻辑1或者逻辑0

% 根据路线给出成本

 sum_cost

% 比较最优成本与 sum_cost

return sum_cost = dySolution(d,k,c,h)

2.5 受任务 3 启发,给出时间复杂度为 O(n) 的算法

根据任务三,如果已经得到了第 n 期之后的最优生产期分别为 $n = s_o < s_1 < s_2 < \cdots < s_m \le N$,那么在计算第 n-1 期之后的最优生产计划时, s_0, s_1 可能会更新,但是 s_2 及以后的计划期不会改变。

由于我是采用从前往后的算法,故我得出与之对称的猜想。如果已经得到了第 m 期之前的最优生产期分别为 $n=s_0 < s_1 < s_2 < \cdots < s_n \leq m$,那么在计算第 m+1 期之后的最优生产计划时, s_m, s_{m-1} 可能会更新,但是 s_{n-2} 及之前的计划期不会改变。也就是说最多会改变最近两期的决策。

算例验证如下图所示,可以看出最多只有最近两期的决策会发生改变。

图 6: 稀疏点拟合

图 7: 密集点拟合

3 测试 10

实现思路

步骤:

• 先计算出第一期,以及第一期到第二期的最优决策值。

- 从第三期开始迭代,每次只用分四种情况计算最优值。1. 最近的两期都不生产。2. 最近的二期生产,最近的一期不生产。3. 最近的一期不生产,最近的一期不生产,最近的二期生产。4. 最近的两期都生产。
- 比较上面四个结果,得出最优值以及方案。

可以得出结论,在该特殊动态规划中,在计算更大一级的问题时,比其小两级的子问题的最优路线不会发生改变,这样就不用重复计算比较选择那个子问题。相当于所有阶段只计算了一次,算法的复杂度变为 O(n).

2.6 分析两种算法的区别

对于第一种算法,在每次子问题的迭代过程中,都要计算 i-1 种方案进行对比,但是在第二种算法中,只需要对比 4 种方案,这样算法的时间复杂度大大下降了。

在内存消耗上,都使用了两个一维数组存储问题的最优解以及最优解 对应的最后一阶段期,所以两者无较大差异。

总的来说,在问题规模较小时,两种算法都较可行,但是当问题规模较大时,第二种 O(n) 的算法明显有优势。

3 测试

遵循 TDD(测试驱动开发) 原则,先给出代码的测试用例,然后实现算法。

3.1 测试主程序

主程序分别见 dySolution.m $(O(n^2)$ 时间复杂度) OnDySolution.m(O(n) 时间复杂度)

3 测试 11

```
测试用例
                  结果
                                         要求
                                       结果为2
 dySolution(1,1,1,1)
                  通过
OnDySolution(1,1,1,1)
                  通过
                                       结果为2
                       d,k 保持不变, c 或者 h 增加一个常数, 最优方案不变
 dySolution(d,k,c,h)
                  通过
OnDySolution(d,k,c,h)
                  通过
                       d,k 保持不变, c 或者 h 增加一个常数, 最优方案不变
 dySolution(d,k,c,h)
                             k=0,c,h 保持不变, d 不影响最优决策
                  通过
                             k=0,c,h 保持不变, d 不影响最优决策
OnDySolution(d,k,c,h)
                  通过
```

测试主程序的伪代码 (任务 1 给出的测试方法):

测试主程序的伪代码 (任务 2 给出的测试方法):

```
% 测试 k = 0时,最优决策与d无关。
d = randi(10,100,10);
k = zeros(1,10);
c = randi(10,1,10);
```

4 结论 12

```
h = randi(10,1,10);

[opt,plan] = dySolution(d(1,:),k,c,h);

for i = 1:100

% 检验最优决策方案是否发生改变。

checkOptRoad(d(i,:),k,c,h,plan)
```

4 结论

逐步剖析问题,分解问题,实现各个子程序。然后优化代码,优化原来 $O(n^2)$ 的算法,得出最优解法。