## FORMULAE AND TABLES for EXAMINATIONS of THE FACULTY OF ACTUARIES and THE INSTITUTE OF ACTUARIES

### This Edition 2002

## © The Faculty of Actuaries and The Institute of Actuaries

No part of this publication may be reproduced in any material form, whether by publication, translation, storage in a retrieval system or transmission by electronic, mechanical, photocopying, recording or other means, without the prior permission of the owners of the copyright.

### Acknowledgments:

The Faculty of Actuaries and The Institute of Actuaries would like to thank the following people who have helped in the preparation of this material:

D Hopkins M Z Khorasanee W F Scott

The Faculty of Actuaries and The Institute of Actuaries is licensed by FTSE International ("FTSE") to publish the FTSE 100 indices. All information is provided for information purposes only. Every effort is made to ensure that all information given in this publication is accurate, but no responsibility or liability can be accepted by FTSE for any errors or omissions or for any loss arising from use of this publication. All copyright and database rights in the FTSE 100 indices belong to FTSE or its licensors. Redistribution of the data comprising the FTSE 100 indices is not permitted.

The Faculty of Actuaries and The Institute of Actuaries gratefully acknowledge the permission of CRC Press to reproduce the diagram on page 20 adapted from the publication "CRC Standard Probability and Statistics Tables and Formulae" edited by Stephen Kokoska.

The Faculty of Actuaries and The Institute of Actuaries acknowledge the permission to reproduce English Life Tables No. 15 (Males and Females). Crown Copyright material is reproduced with the permission of the Controller of HMSO and the Queen's printer for Scotland.

The Faculty of Actuaries and The Institute of Actuaries gratefully acknowledge the permission of Lindley & Scott New Cambridge Statistical Tables, 2nd Edition, 1995, Tables 4, 5, 7, 8, 9, 12, 12a, 12b, 12c and 12d — Cambridge University Press.

ISBN 0 901066 57 5

## **PREFACE**

This new edition of the Formulae and Tables represents a considerable overhaul of its predecessor "green book" first published in 1980.

The contents have been updated to reflect more fully the evolving syllabus requirements of the profession, and also in the case of the Tables to reflect more contemporary experience and methods. Correspondingly, there has been some modest removal of material which has either become redundant with syllabus changes or obviated by the availability of pocket calculators.

As in the predecessor book, it is important to note that these tables have been produced for the sole use of examination candidates. The profession does not express any opinion whatsoever as to the circumstances in which any of the tables may be suitable for other uses.

## **FORMULAE**

This section is intended to help candidates with formulae that may be hard to remember. Derivations of these formulae may still be required under the relevant syllabuses.

| Contents                  | Page |
|---------------------------|------|
| Mathematical Methods      | 2    |
| Statistical Distributions | 6    |
| Statistical Methods       | 22   |
| Compound Interest         | 31   |
| Survival Models           | 32   |
| Annuities and Assurances  | 36   |
| Stochastic Processes      | 38   |
| Time Series               | 40   |
| Economic Models           | 43   |
| Financial Derivatives     | 45   |

*Note.* In these tables,  $\log$  denotes  $\log$  arithms to base e.

## 1 MATHEMATICAL METHODS

## 1.1 SERIES

## **Exponential function**

$$\exp(x) = e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

## **Natural log function**

$$\log(1+x) = \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots \quad (-1 < x \le 1)$$

## **Binomial expansion**

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + b^n$$

where n is a positive integer

$$(1+x)^p = 1 + px + \frac{p(p-1)}{2!}x^2 + \frac{p(p-1)(p-2)}{3!}x^3 + \cdots$$

$$(-1 < x < 1)$$

## 1.2 CALCULUS

Taylor series (one variable)

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \cdots$$

Taylor series (two variables)

$$f(x+h,y+k) = f(x,y) + h f'_x(x,y) + k f'_y(x,y)$$
  
+ 
$$\frac{1}{2!} \left( h^2 f''_{xx}(x,y) + 2hk f''_{xy}(x,y) + k^2 f''_{yy}(x,y) \right) + \cdots$$

Integration by parts

$$\int_{a}^{b} u \frac{dv}{dx} dx = \left[ uv \right]_{a}^{b} - \int_{a}^{b} v \frac{du}{dx} dx$$

**Double integrals (changing the order of integration)** 

$$\int_{a}^{b} \left( \int_{a}^{x} f(x, y) dy \right) dx = \int_{a}^{b} \left( \int_{y}^{b} f(x, y) dx \right) dy \text{ or}$$

$$\int_{a}^{b} dx \int_{a}^{x} dy f(x, y) = \int_{a}^{b} dy \int_{y}^{b} dx f(x, y)$$

The domain of integration here is the set of values (x, y) for which  $a \le y \le x \le b$ .

## Differentiating an integral

$$\frac{d}{dy} \int_{a(y)}^{b(y)} f(x,y)dx = b'(y)f[b(y),y] - a'(y)f[a(y),y]$$
$$+ \int_{a(y)}^{b(y)} \frac{\partial}{\partial y} f(x,y)dx$$

## 1.3 SOLVING EQUATIONS

## Newton-Raphson method

If x is a sufficiently good approximation to a root of the equation f(x) = 0 then (provided convergence occurs) a better approximation is

$$x^* = x - \frac{f(x)}{f'(x)}.$$

## **Integrating factors**

The integrating factor for solving the differential equation dy + p(x) = Q(x) is:

$$\frac{dy}{dx} + P(x)y = Q(x)$$
 is:

$$\exp\Bigl(\int P(x)dx\Bigr)$$

## Second-order difference equations

The general solution of the difference equation  $ax_{n+2} + bx_{n+1} + cx_n = 0$  is:

if 
$$b^2 - 4ac > 0$$
:  $x_n = A\lambda_1^n + B\lambda_2^n$  (distinct real roots,  $\lambda_1 \neq \lambda_2$ )

if 
$$b^2 - 4ac = 0$$
:  $x_n = (A + Bn)\lambda^n$  (equal real roots,  $\lambda_1 = \lambda_2 = \lambda$ )

if 
$$b^2 - 4ac < 0$$
:  $x_n = r^n (A\cos n\theta + B\sin n\theta)$   
(complex roots,  $\lambda_1 = \overline{\lambda}_2 = re^{i\theta}$ )

where  $\lambda_1$  and  $\lambda_2$  are the roots of the quadratic equation  $a\lambda^2 + b\lambda + c = 0$ .

## 1.4 GAMMA FUNCTION

**Definition** 

$$\Gamma(x) = \int_{0}^{\infty} t^{x-1} e^{-t} dt$$
,  $x > 0$ 

## **Properties**

$$\Gamma(x) = (x-1)\Gamma(x-1)$$

$$\Gamma(n) = (n-1)!, n = 1, 2, 3, ...$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

## 1.5 BAYES' FORMULA

Let  $A_1, A_2, ..., A_n$  be a collection of mutually exclusive and exhaustive events with  $P(A_i) \neq 0$ , i = 1, 2, ..., n.

For any event *B* such that  $P(B) \neq 0$ :

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{j=1}^{n} P(B|A_j)P(A_j)}, i = 1, 2, ..., n.$$

## 2 STATISTICAL DISTRIBUTIONS

## Notation

PF = Probability function, p(x)

PDF = Probability density function, f(x)

DF = Distribution function, F(x)

PGF = Probability generating function, G(s)

MGF = Moment generating function, M(t)

*Note.* Where formulae have been omitted below, this indicates that (a) there is no simple formula or (b) the function does not have a finite value or (c) the function equals zero.

## 2.1 DISCRETE DISTRIBUTIONS

## **Binomial distribution**

Parameters:  $n, p \ (n = \text{positive integer}, 0$ 

PF: 
$$p(x) = \binom{n}{x} p^x q^{n-x}, x = 0,1,2,...,n$$

DF: The distribution function is tabulated in the statistical

tables section.

PGF: 
$$G(s) = (q + ps)^n$$

MGF: 
$$M(t) = (q + pe^t)^n$$

Moments: 
$$E(X) = np$$
,  $var(X) = npq$ 

of skewness: 
$$\frac{q-p}{\sqrt{npq}}$$

## **Bernoulli distribution**

The Bernoulli distribution is the same as the binomial distribution with parameter n = 1.

## **Poisson distribution**

Parameter:  $\mu (\mu > 0)$ 

PF: 
$$p(x) = \frac{e^{-\mu}\mu^x}{x!}, x = 0,1,2,...$$

DF: The distribution function is tabulated in the statistical tables section.

PGF: 
$$G(s) = e^{\mu(s-1)}$$

MGF: 
$$M(t) = e^{\mu(e^t - 1)}$$

Moments: 
$$E(X) = \mu$$
,  $var(X) = \mu$ 

of skewness: 
$$\frac{1}{\sqrt{\mu}}$$

## Negative binomial distribution – Type 1

Parameters: k, p (k = positive integer, 0 with <math>q = 1 - p)

PF: 
$$p(x) = {x-1 \choose k-1} p^k q^{x-k}, x = k, k+1, k+2,...$$

PGF: 
$$G(s) = \left(\frac{ps}{1 - qs}\right)^k$$

MGF: 
$$M(t) = \left(\frac{pe^t}{1 - qe^t}\right)^k$$

Moments: 
$$E(X) = \frac{k}{p}$$
,  $var(X) = \frac{kq}{p^2}$ 

of skewness: 
$$\frac{2-p}{\sqrt{kq}}$$

## Negative binomial distribution - Type 2

Parameters: 
$$k$$
,  $p$  ( $k > 0$ ,  $0 with  $q = 1 - p$ )$ 

PF: 
$$p(x) = \frac{\Gamma(k+x)}{\Gamma(x+1)\Gamma(k)} p^k q^x, x = 0,1,2,...$$

PGF: 
$$G(s) = \left(\frac{p}{1-qs}\right)^k$$

MGF: 
$$M(t) = \left(\frac{p}{1 - qe^t}\right)^k$$

Moments: 
$$E(X) = \frac{kq}{p}$$
,  $var(X) = \frac{kq}{p^2}$ 

of skewness: 
$$\frac{2-p}{\sqrt{kq}}$$

## **Geometric distribution**

The geometric distribution is the same as the negative binomial distribution with parameter k = 1.

## **Uniform distribution (discrete)**

Parameters: a, b, h (a < b, h > 0, b - a is a multiple of h)

PF: 
$$p(x) = \frac{h}{b-a+h}, x = a, a+h, a+2h,...,b-h,b$$

PGF: 
$$G(s) = \frac{h}{b-a+h} \left( \frac{s^{b+h} - s^a}{s^h - 1} \right)$$

MGF: 
$$M(t) = \frac{h}{b-a+h} \left( \frac{e^{(b+h)t} - e^{at}}{e^{ht} - 1} \right)$$

Moments: 
$$E(X) = \frac{1}{2}(a+b)$$
,  $var(X) = \frac{1}{12}(b-a)(b-a+2h)$ 

## 2.2 CONTINUOUS DISTRIBUTIONS

Standard normal distribution – N(0,1)

Parameters: none

PDF: 
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}x^2}, -\infty < x < \infty$$

DF: The distribution function is tabulated in the statistical tables section.

MGF: 
$$M(t) = e^{\frac{1}{2}t^2}$$

Moments: 
$$E(X) = 0$$
,  $var(X) = 1$ 

$$E(X^r) = \frac{1}{2^{r/2}} \frac{\Gamma(1+r)}{\Gamma(1+\frac{r}{2})}, r = 2,4,6,...$$

## Normal (Gaussian) distribution – $N(\mu, \sigma^2)$

Parameters:  $\mu$ ,  $\sigma^2$  ( $\sigma > 0$ )

PDF: 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right\}, -\infty < x < \infty$$

MGF: 
$$M(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$$

Moments: 
$$E(X) = \mu$$
,  $var(X) = \sigma^2$ 

## **Exponential distribution**

Parameter:  $\lambda (\lambda > 0)$ 

PDF: 
$$f(x) = \lambda e^{-\lambda x}, x > 0$$

DF: 
$$F(x) = 1 - e^{-\lambda x}$$

MGF: 
$$M(t) = \left(1 - \frac{t}{\lambda}\right)^{-1}, \ t < \lambda$$

Moments: 
$$E(X) = \frac{1}{\lambda}$$
,  $var(X) = \frac{1}{\lambda^2}$ 

$$E(X^r) = \frac{\Gamma(1+r)}{\lambda^r}, r = 1, 2, 3, ...$$

Coefficient

of skewness: 2

## Gamma distribution

Parameters:  $\alpha$ ,  $\lambda$  ( $\alpha > 0$ ,  $\lambda > 0$ )

PDF: 
$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \ x > 0$$

DF: When  $2\alpha$  is an integer, probabilities for the gamma distribution can be found using the relationship:

$$2\lambda X\sim \chi^2_{2\alpha}$$

MGF: 
$$M(t) = \left(1 - \frac{t}{\lambda}\right)^{-\alpha}, t < \lambda$$

Moments: 
$$E(X) = \frac{\alpha}{\lambda}$$
,  $var(X) = \frac{\alpha}{\lambda^2}$ 

$$E(X^r) = \frac{\Gamma(\alpha + r)}{\Gamma(\alpha)\lambda^r}, r = 1, 2, 3, \dots$$

Coefficient

of skewness:  $\frac{2}{\sqrt{\alpha}}$ 

## Chi-square distribution – $\chi_{\nu}^2$

The chi-square distribution with  $\nu$  degrees of freedom is the same as the gamma distribution with parameters  $\alpha = \frac{\nu}{2}$  and  $\lambda = \frac{1}{2}$ .

The distribution function for the chi-square distribution is tabulated in the statistical tables section.

## Uniform distribution (continuous) – U(a, b)

Parameters: a,b (a < b)

PDF: 
$$f(x) = \frac{1}{b-a}, \ a < x < b$$

DF: 
$$F(x) = \frac{x - a}{b - a}$$

MGF: 
$$M(t) = \frac{1}{(b-a)} \frac{1}{t} (e^{bt} - e^{at})$$

Moments: 
$$E(X) = \frac{1}{2}(a+b)$$
,  $var(X) = \frac{1}{12}(b-a)^2$ 

$$E(X^r) = \frac{1}{(b-a)} \frac{1}{r+1} (b^{r+1} - a^{r+1}), r = 1, 2, 3, ...$$

## **Beta distribution**

Parameters:  $\alpha$ ,  $\beta$  ( $\alpha > 0$ ,  $\beta > 0$ )

PDF: 
$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \ 0 < x < 1$$

Moments: 
$$E(X) = \frac{\alpha}{\alpha + \beta}$$
,  $var(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$ 

$$E(X^r) = \frac{\Gamma(\alpha+\beta)\Gamma(\alpha+r)}{\Gamma(\alpha)\Gamma(\alpha+\beta+r)}, r = 1, 2, 3, \dots$$

of skewness: 
$$\frac{2(\beta - \alpha)}{(\alpha + \beta + 2)} \sqrt{\frac{\alpha + \beta + 1}{\alpha \beta}}$$

## Lognormal distribution

Parameters:  $\mu$ ,  $\sigma^2$  ( $\sigma > 0$ )

PDF: 
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \frac{1}{x} \exp\left\{-\frac{1}{2} \left(\frac{\log x - \mu}{\sigma}\right)^2\right\}, \ x > 0$$

Moments: 
$$E(X) = e^{\mu + \frac{1}{2}\sigma^2}$$
,  $var(X) = e^{2\mu + \sigma^2} \left( e^{\sigma^2} - 1 \right)$ 

$$E(X^r) = e^{r\mu + \frac{1}{2}r^2\sigma^2}, r = 1, 2, 3, ...$$

Coefficient

of skewness: 
$$\left(e^{\sigma^2} + 2\right)\sqrt{e^{\sigma^2} - 1}$$

## Pareto distribution (two parameter version)

Parameters:  $\alpha$ ,  $\lambda$  ( $\alpha > 0$ ,  $\lambda > 0$ )

PDF: 
$$f(x) = \frac{\alpha \lambda^{\alpha}}{(\lambda + x)^{\alpha + 1}}, \ x > 0$$

DF: 
$$F(x) = 1 - \left(\frac{\lambda}{\lambda + x}\right)^{\alpha}$$

Moments: 
$$E(X) = \frac{\lambda}{\alpha - 1} (\alpha > 1), \text{ } var(X) = \frac{\alpha \lambda^2}{(\alpha - 1)^2 (\alpha - 2)} (\alpha > 2)$$

$$E(X^r) = \frac{\Gamma(\alpha - r)\Gamma(1 + r)}{\Gamma(\alpha)} \lambda^r, \ r = 1, 2, 3, ..., \ r < \alpha$$

of skewness: 
$$\frac{2(\alpha+1)}{(\alpha-3)}\sqrt{\frac{\alpha-2}{\alpha}}$$
  $(\alpha > 3)$ 

## Pareto distribution (three parameter version)

Parameters:  $\alpha$ ,  $\lambda$ , k ( $\alpha > 0$ ,  $\lambda > 0$ , k > 0)

PDF: 
$$f(x) = \frac{\Gamma(\alpha+k)\lambda^{\alpha}x^{k-1}}{\Gamma(\alpha)\Gamma(k)(\lambda+x)^{\alpha+k}}, \ x > 0$$

Moments: 
$$E(X) = \frac{k\lambda}{\alpha - 1} (\alpha > 1)$$
,  $var(X) = \frac{k(k + \alpha - 1)\lambda^2}{(\alpha - 1)^2(\alpha - 2)} (\alpha > 2)$ 

$$E(X^r) = \frac{\Gamma(\alpha - r)\Gamma(k + r)}{\Gamma(\alpha)\Gamma(k)} \lambda^r, \ r = 1, 2, 3, \dots, \ r < \alpha$$

## Weibull distribution

Parameters: c,  $\gamma$  (c > 0,  $\gamma > 0$ )

PDF: 
$$f(x) = c \gamma x^{\gamma - 1} e^{-cx^{\gamma}}, x > 0$$

DF: 
$$F(x) = 1 - e^{-cx^{\gamma}}$$

Moments: 
$$E(X^r) = \Gamma\left(1 + \frac{r}{\gamma}\right) \frac{1}{c^{r/\gamma}}, r = 1, 2, 3, \dots$$

## **Burr distribution**

Parameters:  $\alpha$ ,  $\lambda$ ,  $\gamma$  ( $\alpha > 0$ ,  $\lambda > 0$ ,  $\gamma > 0$ )

PDF: 
$$f(x) = \frac{\alpha \gamma \lambda^{\alpha} x^{\gamma - 1}}{(\lambda + x^{\gamma})^{\alpha + 1}}, \ x > 0$$

DF: 
$$F(x) = 1 - \left(\frac{\lambda}{\lambda + x^{\gamma}}\right)^{\alpha}$$

Moments: 
$$E(X^r) = \Gamma\left(\alpha - \frac{r}{\gamma}\right) \Gamma\left(1 + \frac{r}{\gamma}\right) \frac{\lambda^{r/\gamma}}{\Gamma(\alpha)}, r = 1, 2, 3, ..., r < \alpha\gamma$$

## 2.3 COMPOUND DISTRIBUTIONS

## Conditional expectation and variance

$$E(Y) = E[E(Y \mid X)]$$

$$\operatorname{var}(Y) = \operatorname{var}[E(Y \mid X)] + E[\operatorname{var}(Y \mid X)]$$

## Moments of a compound distribution

If  $X_1, X_2,...$  are IID random variables with MGF  $M_X(t)$  and N is an independent nonnegative integer-valued random variable, then  $S = X_1 + \cdots + X_N$  (with S = 0 when N = 0) has the following properties:

Mean: 
$$E(S) = E(N)E(X)$$

*Variance*: 
$$var(S) = E(N) var(X) + var(N)[E(X)]^2$$

MGF: 
$$M_S(t) = M_N[\log M_X(t)]$$

## **Compound Poisson distribution**

*Mean*:  $\lambda m_1$ 

*Variance*:  $\lambda m_2$ 

Third central moment:  $\lambda m_3$ 

where  $\lambda = E(N)$  and  $m_r = E(X^r)$ 

## Recursive formulae for integer-valued distributions

(a,b,0) class of distributions

Let 
$$g_r = P(S = r)$$
,  $r = 0,1,2,...$  and  $f_j = P(X = j)$ ,  $j = 1,2,3,...$ 

If 
$$p_r = P(N = r)$$
, where  $p_r = \left(a + \frac{b}{r}\right)p_{r-1}$ ,  $r = 1, 2, 3, \dots$ , then

$$g_0 = p_0$$
 and  $g_r = \sum_{j=1}^r \left( a + \frac{bj}{r} \right) f_j g_{r-j}$ ,  $r = 1, 2, 3, ...$ 

## Compound Poisson distribution

If N has a Poisson distribution with mean  $\lambda$ , then a = 0 and  $b = \lambda$ , and

$$g_0 = e^{-\lambda}$$
 and  $g_r = \frac{\lambda}{r} \sum_{j=1}^r j f_j g_{r-j}, r = 1, 2, 3, ...$ 

## 2.4 TRUNCATED MOMENTS

## **Normal distribution**

If f(x) is the PDF of the  $N(\mu, \sigma^2)$  distribution, then

$$\int_{L}^{U} x f(x) dx = \mu [\Phi(U') - \Phi(L')] - \sigma [\phi(U') - \phi(L')]$$

where 
$$L' = \frac{L - \mu}{\sigma}$$
 and  $U' = \frac{U - \mu}{\sigma}$ .

## Lognormal distribution

If f(x) is the PDF of the lognormal distribution with parameters  $\mu$  and  $\sigma^2$ , then

$$\int_{L}^{U} x^{k} f(x) dx = e^{k\mu + \frac{1}{2}k^{2}\sigma^{2}} [\Phi(U_{k}) - \Phi(L_{k})]$$

where 
$$L_k = \frac{\log L - \mu}{\sigma} - k\sigma$$
 and  $U_k = \frac{\log U - \mu}{\sigma} - k\sigma$ .

# RELATIONSHIPS BETWEEN STATISTICAL DISTRIBUTIONS



# **EXPLANATION OF THE DISTRIBUTION DIAGRAM**

The distribution diagram shows the main interrelationships between the distributions in the statistics section. The relationships shown are of four

## Special cases

For example, the arrow marked "n = 1" connecting the binomial distribution to the Bernoulli distribution means: In the special case where n = 1, the binomial distribution is equivalent to a Bernoulli distribution.

## Transformations

For example, the arrow marked " $e^X$ " connecting the normal distribution to the lognormal distribution means: If X has a normal distribution, the function  $e^X$  will have a lognormal distribution. Note that the parameters of the transformed distributions may differ from those of the basic distributions shown.

## Sums, products and minimum values

The sum of a fixed number of independent random variables, each having a binomial distribution with the same value for the parameter For example, the arrow marked " $\sum X_i$  (same p)" connecting the binomial distribution to itself means: p, also has a binomial distribution. Similarly, "IX<sub>i</sub>" and "min X<sub>i</sub>" denote the product and the minimum of a fixed set of independent random variables. Where a sum or product includes " $a_i$ " or " $b_i$ ", these denote arbitrary constants.

## Limiting cases (indicated by dotted lines)

For large values of n, the binomial distribution with parameters n and p will approximate to the Poisson distribution with parameter  $\mu$ , For example, the arrow marked " $\mu = np$ ,  $n \to \infty$ " connecting the binomial distribution to the Poisson distribution means: where  $\mu = np$ 

## 3 STATISTICAL METHODS

## 3.1 SAMPLE MEAN AND VARIANCE

The random sample  $(x_1, x_2, ..., x_n)$  has the following sample moments:

Sample mean: 
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample variance: 
$$s^2 = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_i^2 - n\overline{x}^2 \right\}$$

## 3.2 PARAMETRIC INFERENCE (NORMAL MODEL)

## One sample

For a single sample of size n under the normal model  $X \sim N(\mu, \sigma^2)$ :

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$
 and  $\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$ 

## Two samples

For two independent samples of sizes m and n under the normal models  $X \sim N(\mu_X, \sigma_X^2)$  and  $Y \sim N(\mu_Y, \sigma_Y^2)$ :

$$\frac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2} \sim F_{m-1,n-1}$$

Under the additional assumption that  $\sigma_X^2 = \sigma_Y^2$ :

$$\frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{m} + \frac{1}{n}}} \sim t_{m+n-2}$$

where  $S_p^2 = \frac{1}{m+n-2} \left\{ (m-1)S_X^2 + (n-1)S_Y^2 \right\}$  is the pooled sample variance.

## 3.3 MAXIMUM LIKELIHOOD ESTIMATORS

## **Asymptotic distribution**

If  $\hat{\theta}$  is the maximum likelihood estimator of a parameter  $\theta$  based on a sample  $\underline{X}$ , then  $\hat{\theta}$  is asymptotically normally distributed with mean  $\theta$  and variance equal to the Cramér-Rao lower bound

$$CRLB(\theta) = -1 / E \left[ \frac{\partial^2}{\partial \theta^2} \log L(\theta, \underline{X}) \right]$$

## Likelihood ratio test

$$-2(\ell_p - \ell_{p+q}) = -2\log\left(\frac{\max_{H_0} L}{\max_{H_0 \cup H_1} L}\right) \sim \chi_q^2 \text{ approximately (under } H_0)$$

where  $\ell_p = \max_{H_0} \log L$  is the maximum log-likelihood for the model under  $H_0$  (in which there are p free parameters)

and  $\ell_{p+q} = \max_{H_0 \cup H_1} \log L$  is the maximum log-likelihood for the model under  $H_0 \cup H_1$  (in which there are p+q free parameters).

## 3.4 LINEAR REGRESSION MODEL WITH NORMAL ERRORS

## Model

$$Y_i \sim N(\alpha + \beta x_i, \sigma^2), i = 1, 2, ..., n$$

## Intermediate calculations

$$s_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

$$s_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n\overline{y}^2$$

$$s_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y}$$

## Parameter estimates

$$\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x}$$
,  $\hat{\beta} = \frac{s_{xy}}{s_{xx}}$ 

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n-2} \left( s_{yy} - \frac{s_{xy}^2}{s_{xx}} \right)$$

## Distribution of $\hat{\beta}$

$$\frac{\hat{\beta} - \beta}{\sqrt{\hat{\sigma}^2/s_{rr}}} \sim t_{n-2}$$

## Variance of predicted mean response

$$\operatorname{var}(\hat{\alpha} + \hat{\beta}x_0) = \left\{ \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{s_{xx}} \right\} \sigma^2$$

An additional  $\sigma^2$  must be added to obtain the variance of the predicted <u>individual</u> response.

## Testing the correlation coefficient

$$r = \frac{s_{xy}}{\sqrt{s_{xx}s_{yy}}}$$

If 
$$\rho = 0$$
, then  $\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} \sim t_{n-2}$ .

## Fisher Z transformation

$$z_r \sim N\left(z_\rho, \frac{1}{n-3}\right)$$
 approximately

where 
$$z_r = \tanh^{-1} r = \frac{1}{2} \log \left( \frac{1+r}{1-r} \right)$$
 and  $z_\rho = \tanh^{-1} \rho = \frac{1}{2} \log \left( \frac{1+\rho}{1-\rho} \right)$ .

## Sum of squares relationship

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2$$

## 3.5 ANALYSIS OF VARIANCE

## Single factor normal model

$$Y_{ij} \sim N(\mu + \tau_i, \sigma^2), i = 1, 2, ..., k, j = 1, 2, ..., n_i$$

where 
$$n = \sum_{i=1}^{k} n_i$$
, with  $\sum_{i=1}^{k} n_i \tau_i = 0$ 

## **Intermediate calculations (sums of squares)**

Total: 
$$SS_T = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{...})^2 = \sum_{i=1}^k \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{...}^2}{n}$$

Between treatments: 
$$SS_B = \sum_{i=1}^k n_i (\overline{y}_{i\bullet} - \overline{y}_{\bullet\bullet})^2 = \sum_{i=1}^k \frac{y_{i\bullet}^2}{n_i} - \frac{y_{\bullet\bullet}^2}{n}$$

Residual: 
$$SS_R = SS_T - SS_R$$

## Variance estimate

$$\hat{\sigma}^2 = \frac{SS_R}{n-k}$$

## Statistical test

Under the appropriate null hypothesis:

$$\frac{SS_B}{k-1} / \frac{SS_R}{n-k} \sim F_{k-1,n-k}$$

## 3.6 GENERALISED LINEAR MODELS

## **Exponential family**

For a random variable Y from the exponential family, with natural parameter  $\theta$  and scale parameter  $\phi$ :

Probability (density) function: 
$$f_Y(y; \theta, \phi) = \exp\left[\frac{y\theta - b(\theta)}{a(\phi)} + c(y, \phi)\right]$$

*Mean*: 
$$E(Y) = b'(\theta)$$

*Variance*: 
$$var(Y) = a(\phi)b''(\theta)$$

## **Canonical link functions**

Binomial: 
$$g(\mu) = \log \frac{\mu}{1-\mu}$$

*Poisson*: 
$$g(\mu) = \log \mu$$

*Normal*: 
$$g(\mu) = \mu$$

Gamma: 
$$g(\mu) = \frac{1}{\mu}$$

## 3.7 BAYESIAN METHODS

## Relationship between posterior and prior distributions

 $Posterior \sim Prior \times Likelihood$ 

The posterior distribution  $f(\theta | \underline{x})$  for the parameter  $\theta$  is related to the prior distribution  $f(\theta)$  via the likelihood function  $f(x | \theta)$ :

$$f(\theta \mid \underline{x}) \propto f(\theta) \times f(\underline{x} \mid \theta)$$

## Normal / normal model

If  $\underline{x}$  is a random sample of size n from a  $N(\mu, \sigma^2)$  distribution, where  $\sigma^2$  is known, and the prior distribution for the parameter  $\mu$  is  $N(\mu_0, \sigma_0^2)$ , then the posterior distribution for  $\mu$  is:

$$\mu \mid x \sim N(\mu_*, \sigma_*^2)$$

where 
$$\mu_* = \left(\frac{n\overline{x}}{\sigma^2} + \frac{\mu_0}{\sigma_0^2}\right) / \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)$$
 and  $\sigma_*^2 = 1 / \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)$ 

## 3.8 EMPIRICAL BAYES CREDIBILITY – MODEL 1

## **Data requirements**

$${X_{ij}, i = 1, 2, ..., N, j = 1, 2, ..., n}$$

 $X_{ij}$  represents the aggregate claims in the jth year from the ith risk.

## Intermediate calculations

$$\bar{X}_i = \frac{1}{n} \sum_{j=1}^{n} X_{ij} , \ \ \bar{X} = \frac{1}{N} \sum_{i=1}^{N} \bar{X}_i$$

## Parameter estimation

Quantity Estimator

$$E[m(\theta)]$$
  $\overline{X}$ 

$$E[s^{2}(\theta)] \qquad \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{1}{n-1} \sum_{j=1}^{n} (X_{ij} - \bar{X}_{i})^{2} \right\}$$

$$\operatorname{var}[m(\theta)] \qquad \frac{1}{N-1} \sum_{i=1}^{N} (\overline{X}_i - \overline{X})^2 - \frac{1}{Nn} \sum_{i=1}^{N} \left\{ \frac{1}{n-1} \sum_{j=1}^{n} (X_{ij} - \overline{X}_i)^2 \right\}$$

## **Credibility factor**

$$Z = \frac{n}{n + \frac{E[s^{2}(\theta)]}{\text{var}[m(\theta)]}}$$

## 3.9 EMPIRICAL BAYES CREDIBILITY – MODEL 2

## **Data requirements**

$$\{Y_{ij}, i=1,2,\ldots,N, j=1,2,\ldots,n\}, \{P_{ij}, i=1,2,\ldots,N, j=1,2,\ldots,n\}$$

 $Y_{ij}$  represents the aggregate claims in the j th year from the i th risk;  $P_{ii}$  is the corresponding risk volume.

## Intermediate calculations

$$\overline{P}_i = \sum_{j=1}^n P_{ij}, \ \overline{P} = \sum_{i=1}^N \overline{P}_i, \ P^* = \frac{1}{Nn-1} \sum_{i=1}^N \overline{P}_i \left( 1 - \frac{\overline{P}_i}{\overline{P}} \right)$$

$$X_{ij} = \frac{Y_{ij}}{P_{ij}}, \ \overline{X}_i = \sum_{i=1}^n \frac{P_{ij}X_{ij}}{\overline{P}_i}, \ \overline{X} = \sum_{i=1}^N \sum_{j=1}^n \frac{P_{ij}X_{ij}}{\overline{P}}$$

## Parameter estimation

Quantity Estimator

$$E[m(\theta)]$$
  $\bar{X}$ 

$$E[s^{2}(\theta)] \qquad \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{1}{n-1} \sum_{j=1}^{n} P_{ij} (X_{ij} - \bar{X}_{i})^{2} \right\}$$

$$\operatorname{var}[m(\theta)] \qquad \frac{1}{P^*} \left( \frac{1}{Nn-1} \sum_{i=1}^{N} \sum_{j=1}^{n} P_{ij} (X_{ij} - \overline{X})^2 - \frac{1}{N} \sum_{i=1}^{N} \left\{ \frac{1}{n-1} \sum_{j=1}^{n} P_{ij} (X_{ij} - \overline{X}_i)^2 \right\} \right)$$

## Credibility factor

$$Z_{i} = \frac{\sum_{j=1}^{n} P_{ij}}{\sum_{j=1}^{n} P_{ij} + \frac{E[s^{2}(\theta)]}{\text{var}[m(\theta)]}}$$

## 4 COMPOUND INTEREST

Increasing/decreasing annuity functions

$$(Ia)_{\overrightarrow{n}} = \frac{\ddot{a}_{\overrightarrow{n}} - nv^n}{i}, (Da)_{\overrightarrow{n}} = \frac{n - a_{\overrightarrow{n}}}{i}$$

**Accumulation factor for variable interest rates** 

$$A(t_1, t_2) = \exp\left(\int_{t_1}^{t_2} \delta(t)dt\right)$$

## 5 SURVIVAL MODELS

## 5.1 MORTALITY "LAWS"

## Survival probabilities

$$_{t}p_{x} = \exp\left(-\int_{0}^{t} \mu_{x+s} ds\right)$$

## Gompertz' Law

$$\mu_x = Bc^x$$
,  $_t p_x = g^{c^x(c^t - 1)}$  where  $g = e^{-B/\log c}$ 

## Makeham's Law

$$\mu_x = A + Bc^x$$
,  $_t p_x = s^t g^{c^x (c^t - 1)}$  where  $s = e^{-A}$ 

## Gompertz-Makeham formula

The Gompertz-Makeham graduation formula, denoted by GM(r,s), states that

$$\mu_r = poly_1(t) + \exp[poly_2(t)]$$

where t is a linear function of x and  $poly_1(t)$  and  $poly_2(t)$  are polynomials of degree r and s respectively.

### 5.2 EMPIRICAL ESTIMATION

Greenwood's formula for the variance of the Kaplan-Meier estimator

$$\operatorname{var}[\tilde{F}(t)] = \left[1 - \hat{F}(t)\right]^2 \sum_{t_j \le t} \frac{d_j}{n_j(n_j - d_j)}$$

Variance of the Nelson-Aalen estimate of the integrated hazard

$$\operatorname{var}[\tilde{\Lambda}_t] = \sum_{t_j \le t} \frac{d_j(n_j - d_j)}{n_j^3}$$

### 5.3 MORTALITY ASSUMPTIONS

**Balducci** assumption

$$_{1-t}q_{x+t} = (1-t)q_x$$
 (x is an integer,  $0 \le t \le 1$ )

## 5.4 GENERAL MARKOV MODEL

Kolmogorov forward differential equation

$$\frac{\partial}{\partial t} p_x^{gh} = \sum_{i \neq h} \left( p_x^{gj} \mu_{x+t}^{jh} - p_x^{gh} \mu_{x+t}^{hj} \right)$$

#### 5.5 GRADUATION TESTS

### Grouping of signs test

If there are  $n_1$  positive signs and  $n_2$  negative signs and G denotes the observed number of positive runs, then:

$$P(G=t) = \frac{\binom{n_1-1}{t-1}\binom{n_2+1}{t}}{\binom{n_1+n_2}{n_1}} \text{ and, approximately,}$$

$$G \sim N \left( \frac{n_1(n_2+1)}{n_1+n_2}, \frac{(n_1n_2)^2}{(n_1+n_2)^3} \right)$$

Critical values for the grouping of signs test are tabulated in the statistical tables section for small values of  $n_1$  and  $n_2$ . For larger values of  $n_1$  and  $n_2$  the normal approximation can be used.

#### Serial correlation test

$$r_{j} \approx \frac{\frac{1}{m-j} \sum_{i=1}^{m-j} (z_{i} - \overline{z})(z_{i+j} - \overline{z})}{\frac{1}{m} \sum_{i=1}^{m} (z_{i} - \overline{z})^{2}} \quad \text{where } \overline{z} = \frac{1}{m} \sum_{i=1}^{m} z_{i}$$

$$r_i \times \sqrt{m} \sim N(0,1)$$
 approximately.

### Variance adjustment factor

$$r_{x} = \frac{\sum_{i} i^{2} \pi_{i}}{\sum_{i} i \pi_{i}}$$

where  $\pi_i$  is the proportion of lives at age x who have exactly i policies.

## 5.6 MULTIPLE DECREMENT TABLES

For a multiple decrement table with three decrements  $\alpha$ ,  $\beta$  and  $\gamma$ , each uniform over the year of age (x, x+1) in its single decrement table, then

$$(aq)_x^{\alpha} = q_x^{\alpha} \left[ 1 - \frac{1}{2} (q_x^{\beta} + q_x^{\gamma}) + \frac{1}{3} q_x^{\beta} q_x^{\gamma} \right]$$

### 5.7 POPULATION PROJECTION MODELS

## Logistic model

$$\frac{1}{P(t)} \frac{dP(t)}{dt} = \rho - kP(t) \text{ has general solution } P(t) = \frac{\rho}{C\rho e^{-\rho t} + k}$$

where C is a constant.

## 6 ANNUITIES AND ASSURANCES

#### 6.1 APPROXIMATIONS FOR NON ANNUAL ANNUITIES

$$\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x} - \frac{m-1}{2m}$$

$$\ddot{a}_{x:n}^{(m)} \approx \ddot{a}_{x:n} - \frac{m-1}{2m} \left( 1 - \frac{D_{x+n}}{D_x} \right)$$

### 6.2 MOMENTS OF ANNUITIES AND ASSURANCES

Let  $K_x$  and  $T_x$  denote the curtate and complete future lifetimes (respectively) of a life aged exactly x.

#### Whole life assurances

$$E[v^{K_x+1}] = A_x$$
,  $var[v^{K_x+1}] = {}^2A_x - (A_x)^2$ 

$$E[v^{T_x}] = \overline{A}_x$$
,  $var[v^{T_x}] = {}^2\overline{A}_x - (\overline{A}_x)^2$ 

Similar relationships hold for endowment assurances (with status  $\cdots_{x:n}$ ), pure endowments (with status  $\frac{1}{x:n}$ ), term assurances (with status  $\frac{1}{x:n}$ ) and deferred whole life assurances (with status  $\frac{1}{x:n}$ )

### Whole life annuities

$$E[\ddot{a}_{\overline{K_x+1}|}] = \ddot{a}_x, \text{ var}[\ddot{a}_{\overline{K_x+1}|}] = \frac{^2A_x - (A_x)^2}{d^2}$$

$$E[\overline{a}_{\overline{T_x}}] = \overline{a}_x$$
,  $var[\overline{a}_{\overline{T_x}}] = \frac{{}^2\overline{A_x} - (\overline{A_x})^2}{\delta^2}$ 

Similar relationships hold for temporary annuities (with status  $\cdots_{r:\overline{n}}$ ).

### 6.3 PREMIUMS AND RESERVES

Premium conversion relationship between annuities and assurances

$$A_x = 1 - d\ddot{a}_x$$
,  $\overline{A}_x = 1 - \delta \overline{a}_x$ 

Similar relationships hold for endowment assurance policies (with status  $\cdots_{v[n]}$ ).

### Net premium reserve

$$_{t}V_{x}=1-rac{\ddot{a}_{x+t}}{\ddot{a}_{x}}\,,\ _{t}\overline{V}_{x}=1-rac{\overline{a}_{x+t}}{\overline{a}_{x}}$$

Similar formulae hold for endowment assurance policies (with statuses  $\cdots_{x:\overline{n}}$  and  $\cdots_{x+t:\overline{n-t}}$ ).

## 6.4 THIELE'S DIFFERENTIAL EQUATION

#### Whole life assurance

$$\frac{\partial}{\partial t} {}_{t} \overline{V}_{x} = \delta_{t} \overline{V}_{x} + \overline{P}_{x} - (1 - {}_{t} \overline{V}_{x}) \mu_{x+t}$$

Similar formulae hold for other types of policies.

### Multiple state model

$$\frac{\partial}{\partial t} {}_t V_x^j = \delta_t V_x^j + b_{x+t}^j - \sum_{k \neq i} \mu_{x+t}^{jk} \left( b_{x+t}^{jk} + {}_t V_x^k - {}_t V_x^j \right)$$

## 7 STOCHASTIC PROCESSES

### 7.1 MARKOV "JUMP" PROCESSES

### Kolmogorov differential equations

Forward equation: 
$$\frac{\partial}{\partial t} p_{ij}(s,t) = \sum_{k \in S} p_{ik}(s,t) \sigma_{kj}(t)$$

Backward equation: 
$$\frac{\partial}{\partial s} p_{ij}(s,t) = -\sum_{k \in S} \sigma_{ik}(s) p_{kj}(s,t)$$

where  $\sigma_{ij}(t)$  is the transition rate from state i to state j ( $j \neq i$ ) at time t, and  $\sigma_{ii} = -\sum_{j \neq i} \sigma_{ij}$ .

## Expected time to reach a subsequent state k

$$m_i = \frac{1}{\lambda_i} + \sum_{j \neq i, j \neq k} \frac{\sigma_{ij}}{\lambda_i} m_j$$
, where  $\lambda_i = \sum_{j \neq i} \sigma_{ij}$ 

### 7.2 BROWNIAN MOTION AND RELATED PROCESSES

### Martingales for standard Brownian motion

If  $\{B_t, t \ge 0\}$  is a standard Brownian motion, then the following processes are martingales:

$$B_t$$
,  $B_t^2 - t$  and  $\exp(\lambda B_t - \frac{1}{2}\lambda^2 t)$ 

#### Distribution of the maximum value

$$P\left[\max_{0 \le s \le t} (B_s + \mu s) > y\right] = \Phi\left(\frac{-y + \mu t}{\sqrt{t}}\right) + e^{2\mu y} \Phi\left(\frac{-y - \mu t}{\sqrt{t}}\right), \quad y > 0$$

### Hitting times

If  $\tau_y = \min_{s \ge 0} \{s : B_s + \mu s = y\}$  where  $\mu > 0$  and y < 0, then

$$E[e^{-\lambda \tau_y}] = e^{y(\mu + \sqrt{\mu^2 + 2\lambda})}, \quad \lambda > 0$$

## **Ornstein-Uhlenbeck process**

$$dX_t = -\gamma X_t dt + \sigma dB_t$$
,  $\gamma > 0$ 

#### 7.3 MONTE CARLO METHODS

#### **Box-Muller formulae**

If  $U_1$  and  $U_2$  are independent random variables from the U(0,1) distribution then

$$Z_1 = \sqrt{-2\log U_1}\cos(2\pi U_2)$$
 and  $Z_2 = \sqrt{-2\log U_1}\sin(2\pi U_2)$ 

are independent standard normal variables.

### Polar method

If  $V_1$  and  $V_2$  are independent random variables from the U(-1,1) distribution and  $S = V_1^2 + V_2^2$  then, conditional on  $0 < S \le 1$ ,

$$Z_1 = V_1 \sqrt{\frac{-2\log S}{S}}$$
 and  $Z_2 = V_2 \sqrt{\frac{-2\log S}{S}}$ 

are independent standard normal variables.

Pseudorandom values from the U(0,1) distribution and the N(0,1) distribution are included in the statistical tables section.

## **8** TIME SERIES

#### 8.1 TIME SERIES – TIME DOMAIN

## Sample autocovariance and autocorrelation function

Autocovariance: 
$$\hat{\gamma}_k = \frac{1}{n} \sum_{t=k+1}^n (x_t - \hat{\mu})(x_{t-k} - \hat{\mu})$$
, where  $\hat{\mu} = \frac{1}{n} \sum_{t=1}^n x_t$ 

Autocorrelation: 
$$\hat{\rho}_k = \frac{\hat{\gamma}_k}{\hat{\gamma}_0}$$

## Autocorrelation function for ARMA(1,1)

For the process  $X_t = \alpha X_{t-1} + e_t + \beta e_{t-1}$ :

$$\rho_k = \frac{(1+\alpha\beta)(\alpha+\beta)}{(1+\beta^2+2\alpha\beta)}\alpha^{k-1}, \quad k=1,2,3,...$$

## Partial autocorrelation function

$$\phi_1 = \rho_1, \quad \phi_2 = \frac{\rho_2 - \rho_1^2}{1 - \rho_1^2}$$

$$\phi_k = \frac{\det P_k^*}{\det P_k}, \ k = 2, 3, ...,$$

where 
$$P_k = \begin{pmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{k-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{k-2} \\ \rho_2 & \rho_1 & 1 & \cdots & \rho_{k-3} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \rho_{k-1} & \rho_{k-2} & \rho_{k-3} & \cdots & 1 \end{pmatrix}$$

and  $P_k^*$  equals  $P_k$ , but with the last column replaced with  $(\rho_1, \rho_2, \rho_3, ..., \rho_k)^T$ .

### Partial autocorrelation function for MA(1)

For the process  $X_t = \mu + e_t + \beta e_{t-1}$ :

$$\phi_k = (-1)^{k+1} \frac{(1-\beta^2)\beta^k}{1-\beta^{2(k+1)}}, \quad k = 1, 2, 3, \dots$$

### 8.2 TIME SERIES – FREQUENCY DOMAIN

#### **Spectral density function**

$$f(\omega) = \frac{1}{2\pi} \sum_{k=-\infty}^{\infty} e^{-ik\omega} \gamma_k , -\pi < \omega < \pi$$

### **Inversion formula**

$$\gamma_k = \int_{-\pi}^{\pi} e^{ik\omega} f(\omega) d\omega$$

## Spectral density function for ARMA(p,q)

The spectral density function of the process  $\phi(B)(X_t - \mu) = \theta(B)e_t$ , where  $var(e_t) = \sigma^2$ , is

$$f(\omega) = \frac{\sigma^2}{2\pi} \frac{\theta(e^{i\omega})\theta(e^{-i\omega})}{\phi(e^{i\omega})\phi(e^{-i\omega})}$$

### Linear filters

For the linear filter  $Y_t = \sum_{k=-\infty}^{\infty} a_k X_{t-k}$ :

$$f_Y(\omega) = |A(\omega)|^2 f_X(\omega),$$

where  $A(\omega) = \sum_{k=-\infty}^{\infty} e^{-ik\omega} a_k$  is the transfer function for the filter.

## 8.3 TIME SERIES – BOX-JENKINS METHODOLOGY

Ljung and Box "portmanteau" test of the residuals for an ARMA(p,q) model

$$n(n+2)\sum_{k=1}^{m} \frac{r_k^2}{n-k} \sim \chi_{m-(p+q)}^2$$

where  $r_k$  (k = 1, 2, ..., m) is the estimated value of the k th autocorrelation coefficient of the residuals and n is the number of data values used in the ARMA(p,q) series.

## **Turning point test**

In a sequence of n independent random variables the number of turning points T is such that:

$$E(T) = \frac{2}{3}(n-2)$$
 and  $var(T) = \frac{16n-29}{90}$ 

## 9 ECONOMIC MODELS

## 9.1 UTILITY THEORY

## **Utility functions**

Exponential: 
$$U(w) = -e^{-aw}$$
,  $a > 0$ 

*Logarithmic:* 
$$U(w) = \log w$$

*Power:* 
$$U(w) = \gamma^{-1}(w^{\gamma} - 1), \quad \gamma \le 1, \quad \gamma \ne 0$$

*Ouadratic:* 
$$U(w) = w + dw^2, d < 0$$

### Measures of risk aversion

Absolute risk aversion: 
$$A(w) = -\frac{U''(w)}{U'(w)}$$

Relative risk aversion: 
$$R(w) = w A(w)$$

## 9.2 CAPITAL ASSET PRICING MODEL (CAPM)

## Security market line

$$E_i - r = \beta_i (E_M - r)$$
 where  $\beta_i = \frac{\text{cov}(R_i, R_M)}{\text{var}(R_M)}$ 

## Capital market line (for efficient portfolios)

$$E_P - r = (E_M - r) \frac{\sigma_P}{\sigma_M}$$

#### 9.3 INTEREST RATE MODELS

## Spot rates and forward rates for zero-coupon bonds

Let  $P(\tau)$  be the price at time 0 of a zero-coupon bond that pays 1 unit at time  $\tau$ .

Let  $s(\tau)$  be the spot rate for the period  $(0,\tau)$ .

Let  $f(\tau)$  be the instantaneous forward rate at time 0 for time  $\tau$ .

Spot rate

$$P(\tau) = e^{-\tau s(\tau)}$$
 or  $s(\tau) = -\frac{1}{\tau} \log P(\tau)$ 

Instantaneous forward rate

$$P(\tau) = \exp\left(-\int_0^{\tau} f(s)ds\right) \text{ or } f(\tau) = -\frac{d}{d\tau}\log P(\tau)$$

#### Vasicek model

Instantaneous forward rate

$$f(\tau) = e^{-\alpha \tau} R + (1 - e^{-\alpha \tau}) L + \frac{\beta}{\alpha} e^{-\alpha \tau} (1 - e^{-\alpha \tau})$$

Price of a zero-coupon bond

$$P(\tau) = \exp\left[-D(\tau)R - (\tau - D(\tau))L - \frac{\beta}{2}D(\tau)^2\right]$$

where 
$$D(\tau) = \frac{1 - e^{-\alpha \tau}}{\alpha}$$

## 10 FINANCIAL DERIVATIVES

Note. In this section, q denotes the (continuously-payable) dividend rate.

## 10.1 PRICE OF A FORWARD OR FUTURES CONTRACT

For an asset with fixed income of present value I:

$$F = (S_0 - I)e^{rT}$$

For an asset with dividends:

$$F = S_0 e^{(r-q)T}$$

## 10.2 BINOMIAL PRICING ("TREE") MODEL

## Risk-neutral probabilities

Up-step probability = 
$$\frac{e^{r\Delta t} - d}{u - d}$$
,

where 
$$u \approx e^{\sigma\sqrt{\Delta t} + q\Delta t}$$

and 
$$d \approx e^{-\sigma\sqrt{\Delta t} + q\Delta t}$$
.

### 10.3 STOCHASTIC DIFFERENTIAL EQUATIONS

## **Generalised Wiener process**

$$dx = adt + bdz$$

where a and b are constant and dz is the increment for a Wiener process (standard Brownian motion).

### Ito process

$$dx = a(x,t)dt + b(x,t)dz$$

Ito's lemma for a function G(x, t)

$$dG = \left(a\frac{\partial G}{\partial x} + \frac{1}{2}b^2\frac{\partial^2 G}{\partial x^2} + \frac{\partial G}{\partial t}\right)dt + b\frac{\partial G}{\partial x}dz$$

## Models for the short rate $r_t$

*Ho-Lee:* 
$$dr = \theta(t)dt + \sigma dz$$

*Hull-White*: 
$$dr = [\theta(t) - ar]dt + \sigma dz$$

*Vasicek:* 
$$dr = a(b-r)dt + \sigma dz$$

Cox-Ingersoll-Ross: 
$$dr = a(b-r)dt + \sigma \sqrt{r}dz$$

### 10.4 BLACK-SCHOLES FORMULAE FOR EUROPEAN OPTIONS

Geometric Brownian motion model for a stock price  $S_t$ 

$$dS_t = S_t(\mu dt + \sigma dz)$$

Black-Scholes partial differential equation

$$\frac{\partial f}{\partial t} + (r - q)S_t \frac{\partial f}{\partial S_t} + \frac{1}{2}\sigma^2 S_t^2 \frac{\partial^2 f}{\partial S_t^2} = rf$$

## Garman-Kohlhagen formulae for the price of call and put options

Call: 
$$c_t = S_t e^{-q(T-t)} \Phi(d_1) - K e^{-r(T-t)} \Phi(d_2)$$

Put: 
$$p_t = Ke^{-r(T-t)}\Phi(-d_2) - S_te^{-q(T-t)}\Phi(-d_1)$$

where 
$$d_1 = \frac{\log(S_t/K) + (r - q + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$

and 
$$d_2 = \frac{\log(S_t/K) + (r - q - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}} = d_1 - \sigma\sqrt{T - t}$$

## 10.5 PUT-CALL PARITY RELATIONSHIP

$$c_t + Ke^{-r(T-t)} = p_t + S_t e^{-q(T-t)}$$

## **COMPOUND INTEREST TABLES**

| 1/2 0/0                                                                                                | n                          | $(1+i)^n$                                                | $v^n$                                                    | $S_{\overline{n }}$                                      | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n} }$                                        | $(Da)_{\overline{n }}$                                        | n                          |
|--------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------|
| i 0.005 000<br>i <sup>(2)</sup> 0.004 994<br>i <sup>(4)</sup> 0.004 991<br>i <sup>(12)</sup> 0.004 989 | 1<br>2<br>3<br>4<br>5      | 1.005 00<br>1.010 03<br>1.015 08<br>1.020 15<br>1.025 25 | 0.995 02<br>0.990 07<br>0.985 15<br>0.980 25<br>0.975 37 | 1.000 0<br>2.005 0<br>3.015 0<br>4.030 1<br>5.050 3      | 0.995 0<br>1.985 1<br>2.970 2<br>3.950 5<br>4.925 9      | 0.995 0<br>2.975 2<br>5.930 6<br>9.851 6<br>14.728 5          | 0.995 0<br>2.980 1<br>5.950 4<br>9.900 9<br>14.826 7          | 1<br>2<br>3<br>4<br>5      |
| $\delta$ 0.004 988 $(1+i)^{1/2}$ 1.002 497                                                             | 6<br>7<br>8<br>9<br>10     | 1.030 38<br>1.035 53<br>1.040 71<br>1.045 91<br>1.051 14 | 0.970 52<br>0.965 69<br>0.960 89<br>0.956 10<br>0.951 35 | 6.075 5<br>7.105 9<br>8.141 4<br>9.182 1<br>10.228 0     | 5.896 4<br>6.862 1<br>7.823 0<br>8.779 1<br>9.730 4      | 20.551 6<br>27.311 4<br>34.998 5<br>43.603 4<br>53.116 9      | 20.723 1<br>27.585 2<br>35.408 2<br>44.187 2<br>53.917 6      | 6<br>7<br>8<br>9           |
| $(1+i)^{1/4} = 1.001 248$ $(1+i)^{1/12} = 1.000 416$ $v = 0.995 025$                                   | 11                         | 1.056 40                                                 | 0.946 61                                                 | 11.279 2                                                 | 10.677 0                                                 | 63.529 7                                                      | 64.594 7                                                      | 11                         |
|                                                                                                        | 12                         | 1.061 68                                                 | 0.941 91                                                 | 12.335 6                                                 | 11.618 9                                                 | 74.832 5                                                      | 76.213 6                                                      | 12                         |
|                                                                                                        | 13                         | 1.066 99                                                 | 0.937 22                                                 | 13.397 2                                                 | 12.556 2                                                 | 87.016 4                                                      | 88.769 7                                                      | 13                         |
|                                                                                                        | 14                         | 1.072 32                                                 | 0.932 56                                                 | 14.464 2                                                 | 13.488 7                                                 | 100.072 2                                                     | 102.258 4                                                     | 14                         |
|                                                                                                        | 15                         | 1.077 68                                                 | 0.927 92                                                 | 15.536 5                                                 | 14.416 6                                                 | 113.990 9                                                     | 116.675 1                                                     | 15                         |
| $v^{1/2}$ 0.997 509<br>$v^{1/4}$ 0.998 754<br>$v^{1/12}$ 0.999 584                                     | 16<br>17<br>18<br>19<br>20 | 1.083 07<br>1.088 49<br>1.093 93<br>1.099 40<br>1.104 90 | 0.923 30<br>0.918 71<br>0.914 14<br>0.909 59<br>0.905 06 | 16.614 2<br>17.697 3<br>18.785 8<br>19.879 7<br>20.979 1 | 15.339 9<br>16.258 6<br>17.172 8<br>18.082 4<br>18.987 4 | 128.763 7<br>144.381 7<br>160.836 2<br>178.118 4<br>196.219 6 | 132.015 0<br>148.273 6<br>165.446 4<br>183.528 8<br>202.516 2 | 16<br>17<br>18<br>19<br>20 |
|                                                                                                        | 21                         | 1.110 42                                                 | 0.900 56                                                 | 22.084 0                                                 | 19.888 0                                                 | 215.131 4                                                     | 222.404 1                                                     | 21                         |
|                                                                                                        | 22                         | 1.115 97                                                 | 0.896 08                                                 | 23.194 4                                                 | 20.784 1                                                 | 234.845 1                                                     | 243.188 2                                                     | 22                         |
|                                                                                                        | 23                         | 1.121 55                                                 | 0.891 62                                                 | 24.310 4                                                 | 21.675 7                                                 | 255.352 4                                                     | 264.863 9                                                     | 23                         |
|                                                                                                        | 24                         | 1.127 16                                                 | 0.887 19                                                 | 25.432 0                                                 | 22.562 9                                                 | 276.644 9                                                     | 287.426 8                                                     | 24                         |
|                                                                                                        | 25                         | 1.132 80                                                 | 0.882 77                                                 | 26.559 1                                                 | 23.445 6                                                 | 298.714 2                                                     | 310.872 4                                                     | 25                         |
| $i/i^{(2)}$ 1.001 248<br>$i/i^{(4)}$ 1.001 873<br>$i/i^{(12)}$ 1.002 290<br>$i/\delta$ 1.002 498       | 26<br>27<br>28<br>29<br>30 | 1.138 46<br>1.144 15<br>1.149 87<br>1.155 62<br>1.161 40 | 0.878 38<br>0.874 01<br>0.869 66<br>0.865 33<br>0.861 03 | 27.691 9<br>28.830 4<br>29.974 5<br>31.124 4<br>32.280 0 | 24.324 0<br>25.198 0<br>26.067 7<br>26.933 0<br>27.794 1 | 321.552 1<br>345.150 3<br>369.500 9<br>394.595 6<br>420.426 5 | 335.196 4<br>360.394 4<br>386.462 1<br>413.395 2<br>441.189 2 | 26<br>27<br>28<br>29<br>30 |
| $i/\delta$ 1.002 498<br>$i/d^{(2)}$ 1.003 748<br>$i/d^{(4)}$ 1.003 123<br>$i/d^{(12)}$ 1.002 706       | 31<br>32<br>33<br>34<br>35 | 1.167 21<br>1.173 04<br>1.178 91<br>1.184 80<br>1.190 73 | 0.856 75<br>0.852 48<br>0.848 24<br>0.844 02<br>0.839 82 | 33.441 4<br>34.608 6<br>35.781 7<br>36.960 6<br>38.145 4 | 28.650 8<br>29.503 3<br>30.351 5<br>31.195 5<br>32.035 4 | 446.985 6<br>474.265 1<br>502.257 1<br>530.953 8<br>560.347 6 | 469.840 0<br>499.343 3<br>529.694 8<br>560.890 4<br>592.925 7 | 31<br>32<br>33<br>34<br>35 |
|                                                                                                        | 36                         | 1.196 68                                                 | 0.835 64                                                 | 39.336 1                                                 | 32.871 0                                                 | 590.430 8                                                     | 625.796 8                                                     | 36                         |
|                                                                                                        | 37                         | 1.202 66                                                 | 0.831 49                                                 | 40.532 8                                                 | 33.702 5                                                 | 621.195 9                                                     | 659.499 3                                                     | 37                         |
|                                                                                                        | 38                         | 1.208 68                                                 | 0.827 35                                                 | 41.735 4                                                 | 34.529 9                                                 | 652.635 2                                                     | 694.029 1                                                     | 38                         |
|                                                                                                        | 39                         | 1.214 72                                                 | 0.823 23                                                 | 42.944 1                                                 | 35.353 1                                                 | 684.741 4                                                     | 729.382 2                                                     | 39                         |
|                                                                                                        | 40                         | 1.220 79                                                 | 0.819 14                                                 | 44.158 8                                                 | 36.172 2                                                 | 717.506 9                                                     | 765.554 4                                                     | 40                         |
|                                                                                                        | 41                         | 1.226 90                                                 | 0.815 06                                                 | 45.379 6                                                 | 36.987 3                                                 | 750.924 5                                                     | 802.541 7                                                     | 41                         |
|                                                                                                        | 42                         | 1.233 03                                                 | 0.811 01                                                 | 46.606 5                                                 | 37.798 3                                                 | 784.986 9                                                     | 840.340 0                                                     | 42                         |
|                                                                                                        | 43                         | 1.239 20                                                 | 0.806 97                                                 | 47.839 6                                                 | 38.605 3                                                 | 819.686 7                                                     | 878.945 3                                                     | 43                         |
|                                                                                                        | 44                         | 1.245 39                                                 | 0.802 96                                                 | 49.078 8                                                 | 39.408 2                                                 | 855.016 9                                                     | 918.353 5                                                     | 44                         |
|                                                                                                        | 45                         | 1.251 62                                                 | 0.798 96                                                 | 50.324 2                                                 | 40.207 2                                                 | 890.970 3                                                     | 958.560 7                                                     | 45                         |
|                                                                                                        | 46                         | 1.257 88                                                 | 0.794 99                                                 | 51.575 8                                                 | 41.002 2                                                 | 927.539 8                                                     | 999.562 9                                                     | 46                         |
|                                                                                                        | 47                         | 1.264 17                                                 | 0.791 03                                                 | 52.833 7                                                 | 41.793 2                                                 | 964.718 4                                                     | 1 041.356 1                                                   | 47                         |
|                                                                                                        | 48                         | 1.270 49                                                 | 0.787 10                                                 | 54.097 8                                                 | 42.580 3                                                 | 1 002.499 1                                                   | 1 083.936 4                                                   | 48                         |
|                                                                                                        | 49                         | 1.276 84                                                 | 0.783 18                                                 | 55.368 3                                                 | 43.363 5                                                 | 1 040.875 1                                                   | 1 127.299 9                                                   | 49                         |
|                                                                                                        | 50                         | 1.283 23                                                 | 0.779 29                                                 | 56.645 2                                                 | 44.142 8                                                 | 1 079.839 4                                                   | 1 171.442 7                                                   | 50                         |
|                                                                                                        | 60                         | 1.348 85                                                 | 0.741 37                                                 | 69.770 0                                                 | 51.725 6                                                 | 1 500.371 4                                                   | 1 654.887 8                                                   | 60                         |
|                                                                                                        | 70                         | 1.417 83                                                 | 0.705 30                                                 | 83.566 1                                                 | 58.939 4                                                 | 1 972.582 2                                                   | 2 212.116 5                                                   | 70                         |
|                                                                                                        | 80                         | 1.490 34                                                 | 0.670 99                                                 | 98.067 7                                                 | 65.802 3                                                 | 2 490.447 8                                                   | 2 839.538 9                                                   | 80                         |
|                                                                                                        | 90                         | 1.566 55                                                 | 0.638 34                                                 | 113.310 9                                                | 72.331 3                                                 | 3 048.408 2                                                   | 3 533.740 1                                                   | 90                         |
|                                                                                                        | 100                        | 1.646 67                                                 | 0.607 29                                                 | 129.333 7                                                | 78.542 6                                                 | 3 641.336 1                                                   | 4 291.471 0                                                   | 100                        |

| n                           | $(1+i)^n$                                                | $v^n$                                                    | $S_{\overline{n}}$                                           | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n} }$                                                  | $(Da)_{\overline{n} }$                                                  | n                           |                                                                                 | 1%                                               |
|-----------------------------|----------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5       | 1.010 00<br>1.020 10<br>1.030 30<br>1.040 60<br>1.051 01 | 0.990 10<br>0.980 30<br>0.970 59<br>0.960 98<br>0.951 47 | 1.000 0<br>2.010 0<br>3.030 1<br>4.060 4<br>5.101 0          | 0.990 1<br>1.970 4<br>2.941 0<br>3.902 0<br>4.853 4      | 0.990 1<br>2.950 7<br>5.862 5<br>9.706 4<br>14.463 7                    | 0.990 1<br>2.960 5<br>5.901 5<br>9.803 4<br>14.656 9                    | 1<br>2<br>3<br>4<br>5       | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup>                  | 0.010 000<br>0.009 975<br>0.009 963<br>0.009 954 |
| 6<br>7<br>8<br>9<br>10      | 1.061 52<br>1.072 14<br>1.082 86<br>1.093 69<br>1.104 62 | 0.942 05<br>0.932 72<br>0.923 48<br>0.914 34<br>0.905 29 | 6.152 0<br>7.213 5<br>8.285 7<br>9.368 5<br>10.462 2         | 5.795 5<br>6.728 2<br>7.651 7<br>8.566 0<br>9.471 3      | 20.116 0<br>26.645 0<br>34.032 9<br>42.261 9<br>51.314 8                | 20.452 4<br>27.180 5<br>34.832 2<br>43.398 2<br>52.869 5                | 6<br>7<br>8<br>9<br>10      | $\delta = (1+i)^{1/2}$                                                          | 0.009 950<br>1.004 988                           |
| 11<br>12<br>13<br>14<br>15  | 1.115 67<br>1.126 83<br>1.138 09<br>1.149 47<br>1.160 97 | 0.896 32<br>0.887 45<br>0.878 66<br>0.869 96<br>0.861 35 | 11.566 8<br>12.682 5<br>13.809 3<br>14.947 4<br>16.096 9     | 10.367 6<br>11.255 1<br>12.133 7<br>13.003 7<br>13.865 1 | 61.174 4<br>71.823 8<br>83.246 4<br>95.425 8<br>108.346 1               | 63.237 2<br>74.492 3<br>86.626 0<br>99.629 7<br>113.494 7               | 11<br>12<br>13<br>14<br>15  | $(1+i)^{1/4}  (1+i)^{1/12}  v  v'''''''''''''''''''''''''''''''$                | 1.002 491<br>1.000 830<br>0.990 099              |
| 16<br>17<br>18<br>19<br>20  | 1.172 58<br>1.184 30<br>1.196 15<br>1.208 11<br>1.220 19 | 0.852 82<br>0.844 38<br>0.836 02<br>0.827 74<br>0.819 54 | 17.257 9<br>18.430 4<br>19.614 7<br>20.810 9<br>22.019 0     | 14.717 9<br>15.562 3<br>16.398 3<br>17.226 0<br>18.045 6 | 121.991 2<br>136.345 6<br>151.394 0<br>167.121 0<br>183.511 9           | 128.212 6<br>143.774 9<br>160.173 1<br>177.399 2<br>195.444 7           | 16<br>17<br>18<br>19<br>20  | $v^{1/2}$ $v^{1/4}$ $v^{1/12}$                                                  | 0.995 037<br>0.997 516<br>0.999 171<br>0.009 901 |
| 21<br>22<br>23<br>24<br>25  | 1.232 39<br>1.244 72<br>1.257 16<br>1.269 73<br>1.282 43 | 0.811 43<br>0.803 40<br>0.795 44<br>0.787 57<br>0.779 77 | 23.239 2<br>24.471 6<br>25.716 3<br>26.973 5<br>28.243 2     | 18.857 0<br>19.660 4<br>20.455 8<br>21.243 4<br>22.023 2 | 200.551 9<br>218.226 7<br>236.521 8<br>255.423 4<br>274.917 6           | 214.301 7<br>233.962 1<br>254.417 9<br>275.661 3<br>297.684 4           | 21<br>22<br>23<br>24<br>25  | $   \begin{array}{c}     d^{(2)} \\     d^{(4)} \\     d^{(12)}   \end{array} $ | 0.009 926<br>0.009 938<br>0.009 946              |
| 26<br>27<br>28<br>29<br>30  | 1.295 26<br>1.308 21<br>1.321 29<br>1.334 50<br>1.347 85 | 0.772 05<br>0.764 40<br>0.756 84<br>0.749 34<br>0.741 92 | 29.525 6<br>30.820 9<br>32.129 1<br>33.450 4<br>34.784 9     | 22.795 2<br>23.559 6<br>24.316 4<br>25.065 8<br>25.807 7 | 294.990 9<br>315.629 8<br>336.821 2<br>358.552 1<br>380.809 8           | 320.479 6<br>344.039 2<br>368.355 7<br>393.421 5<br>419.229 2           | 26<br>27<br>28<br>29<br>30  | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                                            | 1.002 494<br>1.003 742<br>1.004 575              |
| 31<br>32<br>33<br>34<br>35  | 1.361 33<br>1.374 94<br>1.388 69<br>1.402 58<br>1.416 60 | 0.734 58<br>0.727 30<br>0.720 10<br>0.712 97<br>0.705 91 | 36.132 7<br>37.494 1<br>38.869 0<br>40.257 7<br>41.660 3     | 26.542 3<br>27.269 6<br>27.989 7<br>28.702 7<br>29.408 6 | 403.581 7<br>426.855 4<br>450.618 8<br>474.859 9<br>499.566 9           | 445.771 5<br>473.041 1<br>501.030 7<br>529.733 4<br>559.142 0           | 31<br>32<br>33<br>34<br>35  | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                                 | 1.004 992<br>1.007 494<br>1.006 242<br>1.005 408 |
| 36<br>37<br>38<br>39<br>40  | 1.430 77<br>1.445 08<br>1.459 53<br>1.474 12<br>1.488 86 | 0.698 92<br>0.692 00<br>0.685 15<br>0.678 37<br>0.671 65 | 43.076 9<br>44.507 6<br>45.952 7<br>47.412 3<br>48.886 4     | 30.107 5<br>30.799 5<br>31.484 7<br>32.163 0<br>32.834 7 | 524.728 2<br>550.332 4<br>576.368 2<br>602.824 6<br>629.690 7           | 589.249 5<br>620.049 0<br>651.533 7<br>683.696 7<br>716.531 4           | 36<br>37<br>38<br>39<br>40  |                                                                                 |                                                  |
| 41<br>42<br>43<br>44<br>45  | 1.503 75<br>1.518 79<br>1.533 98<br>1.549 32<br>1.564 81 | 0.665 00<br>0.658 42<br>0.651 90<br>0.645 45<br>0.639 05 | 50.375 2<br>51.879 0<br>53.397 8<br>54.931 8<br>56.481 1     | 33.499 7<br>34.158 1<br>34.810 0<br>35.455 5<br>36.094 5 | 656.955 9<br>684.609 5<br>712.641 2<br>741.040 8<br>769.798 2           | 750.031 1<br>784.189 2<br>818.999 2<br>854.454 6<br>890.549 2           | 41<br>42<br>43<br>44<br>45  |                                                                                 |                                                  |
| 46<br>47<br>48<br>49<br>50  | 1.580 46<br>1.596 26<br>1.612 23<br>1.628 35<br>1.644 63 | 0.632 73<br>0.626 46<br>0.620 26<br>0.614 12<br>0.608 04 | 58.045 9<br>59.626 3<br>61.222 6<br>62.834 8<br>64.463 2     | 36.727 2<br>37.353 7<br>37.974 0<br>38.588 1<br>39.196 1 | 798.903 7<br>828.347 5<br>858.120 0<br>888.211 8<br>918.613 7           | 927.276 4<br>964.630 1<br>1 002.604 1<br>1 041.192 1<br>1 080.388 2     | 46<br>47<br>48<br>49<br>50  |                                                                                 |                                                  |
| 60<br>70<br>80<br>90<br>100 | 1.816 70<br>2.006 76<br>2.216 72<br>2.448 63<br>2.704 81 | 0.550 45<br>0.498 31<br>0.451 12<br>0.408 39<br>0.369 71 | 81.669 7<br>100.676 3<br>121.671 5<br>144.863 3<br>170.481 4 | 44.955 0<br>50.168 5<br>54.888 2<br>59.160 9<br>63.028 9 | 1 237.761 2<br>1 578.816 0<br>1 934.765 3<br>2 299.728 4<br>2 668.804 6 | 1 504.496 2<br>1 983.148 6<br>2 511.179 4<br>3 083.911 9<br>3 697.112 1 | 60<br>70<br>80<br>90<br>100 |                                                                                 |                                                  |

| 11/2%                                                                                                  | n                          | $(1+i)^n$                                                | $v^n$                                                    | $S_{\overline{n}}$                                       | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n} }$                                        | $(Da)_{\overline{n }}$                                        | n                          |
|--------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------|
| i 0.015 000<br>i <sup>(2)</sup> 0.014 944<br>i <sup>(4)</sup> 0.014 916<br>i <sup>(12)</sup> 0.014 898 | 1<br>2<br>3<br>4<br>5      | 1.015 00<br>1.030 23<br>1.045 68<br>1.061 36<br>1.077 28 | 0.985 22<br>0.970 66<br>0.956 32<br>0.942 18<br>0.928 26 | 1.000 0<br>2.015 0<br>3.045 2<br>4.090 9<br>5.152 3      | 0.985 2<br>1.955 9<br>2.912 2<br>3.854 4<br>4.782 6      | 0.985 2<br>2.926 5<br>5.795 5<br>9.564 2<br>14.205 5          | 0.985 2<br>2.941 1<br>5.853 3<br>9.707 7<br>14.490 3          | 1<br>2<br>3<br>4<br>5      |
| $\delta \qquad 0.014 889$ $(1+i)^{1/2}  1.007 472$                                                     | 6                          | 1.093 44                                                 | 0.914 54                                                 | 6.229 6                                                  | 5.697 2                                                  | 19.692 8                                                      | 20.187 5                                                      | 6                          |
|                                                                                                        | 7                          | 1.109 84                                                 | 0.901 03                                                 | 7.323 0                                                  | 6.598 2                                                  | 26.000 0                                                      | 26.785 7                                                      | 7                          |
|                                                                                                        | 8                          | 1.126 49                                                 | 0.887 71                                                 | 8.432 8                                                  | 7.485 9                                                  | 33.101 7                                                      | 34.271 7                                                      | 8                          |
|                                                                                                        | 9                          | 1.143 39                                                 | 0.874 59                                                 | 9.559 3                                                  | 8.360 5                                                  | 40.973 0                                                      | 42.632 2                                                      | 9                          |
|                                                                                                        | 10                         | 1.160 54                                                 | 0.861 67                                                 | 10.702 7                                                 | 9.222 2                                                  | 49.589 7                                                      | 51.854 4                                                      | 10                         |
| $(1+i)^{1/4} = 1.003729$ $(1+i)^{1/12} = 1.001241$ $v = 0.985222$                                      | 11                         | 1.177 95                                                 | 0.848 93                                                 | 11.863 3                                                 | 10.071 1                                                 | 58.927 9                                                      | 61.925 5                                                      | 11                         |
|                                                                                                        | 12                         | 1.195 62                                                 | 0.836 39                                                 | 13.041 2                                                 | 10.907 5                                                 | 68.964 6                                                      | 72.833 0                                                      | 12                         |
|                                                                                                        | 13                         | 1.213 55                                                 | 0.824 03                                                 | 14.236 8                                                 | 11.731 5                                                 | 79.676 9                                                      | 84.564 5                                                      | 13                         |
|                                                                                                        | 14                         | 1.231 76                                                 | 0.811 85                                                 | 15.450 4                                                 | 12.543 4                                                 | 91.042 8                                                      | 97.107 9                                                      | 14                         |
|                                                                                                        | 15                         | 1.250 23                                                 | 0.799 85                                                 | 16.682 1                                                 | 13.343 2                                                 | 103.040 6                                                     | 110.451 1                                                     | 15                         |
| $v^{1/2}$ 0.992 583<br>$v^{1/4}$ 0.996 285<br>$v^{1/12}$ 0.998 760<br>d 0.014 778                      | 16<br>17<br>18<br>19<br>20 | 1.268 99<br>1.288 02<br>1.307 34<br>1.326 95<br>1.346 86 | 0.788 03<br>0.776 39<br>0.764 91<br>0.753 61<br>0.742 47 | 17.932 4<br>19.201 4<br>20.489 4<br>21.796 7<br>23.123 7 | 14.131 3<br>14.907 6<br>15.672 6<br>16.426 2<br>17.168 6 | 115.649 1<br>128.847 6<br>142.616 0<br>156.934 6<br>171.784 0 | 124.582 4<br>139.490 0<br>155.162 6<br>171.588 8<br>188.757 4 | 16<br>17<br>18<br>19<br>20 |
| $d^{(2)} = 0.014 833$ $d^{(4)} = 0.014 861$ $d^{(12)} = 0.014 879$                                     | 21                         | 1.367 06                                                 | 0.731 50                                                 | 24.470 5                                                 | 17.900 1                                                 | 187.145 5                                                     | 206.657 6                                                     | 21                         |
|                                                                                                        | 22                         | 1.387 56                                                 | 0.720 69                                                 | 25.837 6                                                 | 18.620 8                                                 | 203.000 6                                                     | 225.278 4                                                     | 22                         |
|                                                                                                        | 23                         | 1.408 38                                                 | 0.710 04                                                 | 27.225 1                                                 | 19.330 9                                                 | 219.331 4                                                     | 244.609 2                                                     | 23                         |
|                                                                                                        | 24                         | 1.429 50                                                 | 0.699 54                                                 | 28.633 5                                                 | 20.030 4                                                 | 236.120 5                                                     | 264.639 6                                                     | 24                         |
|                                                                                                        | 25                         | 1.450 95                                                 | 0.689 21                                                 | 30.063 0                                                 | 20.719 6                                                 | 253.350 6                                                     | 285.359 3                                                     | 25                         |
| i/i <sup>(2)</sup> 1.003 736<br>i/i <sup>(4)</sup> 1.005 608<br>i/i <sup>(12)</sup> 1.006 857          | 26<br>27<br>28<br>29<br>30 | 1.472 71<br>1.494 80<br>1.517 22<br>1.539 98<br>1.563 08 | 0.679 02<br>0.668 99<br>0.659 10<br>0.649 36<br>0.639 76 | 31.514 0<br>32.986 7<br>34.481 5<br>35.998 7<br>37.538 7 | 21.398 6<br>22.067 6<br>22.726 7<br>23.376 1<br>24.015 8 | 271.005 2<br>289.067 8<br>307.522 6<br>326.354 0<br>345.546 8 | 306.757 9<br>328.825 5<br>351.552 2<br>374.928 3<br>398.944 1 | 26<br>27<br>28<br>29<br>30 |
| $i/\delta$ 1.007 481<br>$i/d^{(2)}$ 1.011 236<br>$i/d^{(4)}$ 1.009 358<br>$i/d^{(12)}$ 1.008 107       | 31<br>32<br>33<br>34<br>35 | 1.586 53<br>1.610 32<br>1.634 48<br>1.659 00<br>1.683 88 | 0.630 31<br>0.620 99<br>0.611 82<br>0.602 77<br>0.593 87 | 39.101 8<br>40.688 3<br>42.298 6<br>43.933 1<br>45.592 1 | 24.646 1<br>25.267 1<br>25.879 0<br>26.481 7<br>27.075 6 | 365.086 4<br>384.958 2<br>405.148 1<br>425.642 4<br>446.427 7 | 423.590 3<br>448.857 4<br>474.736 4<br>501.218 1<br>528.293 7 | 31<br>32<br>33<br>34<br>35 |
|                                                                                                        | 36                         | 1.709 14                                                 | 0.585 09                                                 | 47.276 0                                                 | 27.660 7                                                 | 467.490 9                                                     | 555.954 4                                                     | 36                         |
|                                                                                                        | 37                         | 1.734 78                                                 | 0.576 44                                                 | 48.985 1                                                 | 28.237 1                                                 | 488.819 3                                                     | 584.191 5                                                     | 37                         |
|                                                                                                        | 38                         | 1.760 80                                                 | 0.567 92                                                 | 50.719 9                                                 | 28.805 1                                                 | 510.400 5                                                     | 612.996 6                                                     | 38                         |
|                                                                                                        | 39                         | 1.787 21                                                 | 0.559 53                                                 | 52.480 7                                                 | 29.364 6                                                 | 532.222 2                                                     | 642.361 1                                                     | 39                         |
|                                                                                                        | 40                         | 1.814 02                                                 | 0.551 26                                                 | 54.267 9                                                 | 29.915 8                                                 | 554.272 7                                                     | 672.277 0                                                     | 40                         |
|                                                                                                        | 41                         | 1.841 23                                                 | 0.543 12                                                 | 56.081 9                                                 | 30.459 0                                                 | 576.540 4                                                     | 702.735 9                                                     | 41                         |
|                                                                                                        | 42                         | 1.868 85                                                 | 0.535 09                                                 | 57.923 1                                                 | 30.994 1                                                 | 599.014 2                                                     | 733.730 0                                                     | 42                         |
|                                                                                                        | 43                         | 1.896 88                                                 | 0.527 18                                                 | 59.792 0                                                 | 31.521 2                                                 | 621.683 0                                                     | 765.251 2                                                     | 43                         |
|                                                                                                        | 44                         | 1.925 33                                                 | 0.519 39                                                 | 61.688 9                                                 | 32.040 6                                                 | 644.536 1                                                     | 797.291 9                                                     | 44                         |
|                                                                                                        | 45                         | 1.954 21                                                 | 0.511 71                                                 | 63.614 2                                                 | 32.552 3                                                 | 667.563 3                                                     | 829.844 2                                                     | 45                         |
|                                                                                                        | 46                         | 1.983 53                                                 | 0.504 15                                                 | 65.568 4                                                 | 33.056 5                                                 | 690.754 3                                                     | 862.900 7                                                     | 46                         |
|                                                                                                        | 47                         | 2.013 28                                                 | 0.496 70                                                 | 67.551 9                                                 | 33.553 2                                                 | 714.099 3                                                     | 896.453 9                                                     | 47                         |
|                                                                                                        | 48                         | 2.043 48                                                 | 0.489 36                                                 | 69.565 2                                                 | 34.042 6                                                 | 737.588 7                                                     | 930.496 4                                                     | 48                         |
|                                                                                                        | 49                         | 2.074 13                                                 | 0.482 13                                                 | 71.608 7                                                 | 34.524 7                                                 | 761.213 1                                                     | 965.021 1                                                     | 49                         |
|                                                                                                        | 50                         | 2.105 24                                                 | 0.475 00                                                 | 73.682 8                                                 | 34.999 7                                                 | 784.963 3                                                     | 1 000.020 8                                                   | 50                         |
|                                                                                                        | 60                         | 2.443 22                                                 | 0.409 30                                                 | 96.214 7                                                 | 39.380 3                                                 | 1 027.547 7                                                   | 1 374.648 7                                                   | 60                         |
|                                                                                                        | 70                         | 2.835 46                                                 | 0.352 68                                                 | 122.363 8                                                | 43.154 9                                                 | 1 274.320 7                                                   | 1 789.675 2                                                   | 70                         |
|                                                                                                        | 80                         | 3.290 66                                                 | 0.303 89                                                 | 152.710 9                                                | 46.407 3                                                 | 1 519.481 4                                                   | 2 239.511 8                                                   | 80                         |
|                                                                                                        | 90                         | 3.818 95                                                 | 0.261 85                                                 | 187.929 9                                                | 49.209 9                                                 | 1 758.753 7                                                   | 2 719.343 0                                                   | 90                         |
|                                                                                                        | 100                        | 4.432 05                                                 | 0.225 63                                                 | 228.803 0                                                | 51.624 7                                                 | 1 989.075 3                                                   | 3 225.019 8                                                   | 100                        |

| n                           | $(1+i)^n$                                                | $v^n$                                                    | $S_{\overline{n }}$                                           | $a_{\overline{n }}$                                      | $(Ia)_{\overline{n} }$                                                | $(Da)_{\overline{n} }$                                                  | n                           |                                                                                 | 2%                                               |
|-----------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5       | 1.020 00<br>1.040 40<br>1.061 21<br>1.082 43<br>1.104 08 | 0.980 39<br>0.961 17<br>0.942 32<br>0.923 85<br>0.905 73 | 1.000 0<br>2.020 0<br>3.060 4<br>4.121 6<br>5.204 0           | 0.980 4<br>1.941 6<br>2.883 9<br>3.807 7<br>4.713 5      | 0.980 4<br>2.902 7<br>5.729 7<br>9.425 1<br>13.953 7                  | 0.980 4<br>2.922 0<br>5.805 8<br>9.613 6<br>14.327 0                    | 1<br>2<br>3<br>4<br>5       | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup>                  | 0.020 000<br>0.019 901<br>0.019 852<br>0.019 819 |
| 6<br>7<br>8<br>9<br>10      | 1.126 16<br>1.148 69<br>1.171 66<br>1.195 09<br>1.218 99 | 0.887 97<br>0.870 56<br>0.853 49<br>0.836 76<br>0.820 35 | 6.308 1<br>7.434 3<br>8.583 0<br>9.754 6<br>10.949 7          | 5.601 4<br>6.472 0<br>7.325 5<br>8.162 2<br>8.982 6      | 19.281 6<br>25.375 5<br>32.203 4<br>39.734 2<br>47.937 7              | 19.928 5<br>26.400 4<br>33.725 9<br>41.888 2<br>50.870 7                | 6<br>7<br>8<br>9<br>10      | $\delta = (1+i)^{1/2}$                                                          | 0.019 803<br>1.009 950                           |
| 11<br>12<br>13<br>14<br>15  | 1.243 37<br>1.268 24<br>1.293 61<br>1.319 48<br>1.345 87 | 0.804 26<br>0.788 49<br>0.773 03<br>0.757 88<br>0.743 01 | 12.168 7<br>13.412 1<br>14.680 3<br>15.973 9<br>17.293 4      | 9.786 8<br>10.575 3<br>11.348 4<br>12.106 2<br>12.849 3  | 56.784 6<br>66.246 5<br>76.295 9<br>86.906 2<br>98.051 4              | 60.657 6<br>71.232 9<br>82.581 3<br>94.687 6<br>107.536 8               | 11<br>12<br>13<br>14<br>15  | $(1+i)^{1/4}  (1+i)^{1/12}  v  v'''''''''''''''''''''''''''''''$                | 1.004 963<br>1.001 652<br>0.980 392              |
| 16<br>17<br>18<br>19<br>20  | 1.372 79<br>1.400 24<br>1.428 25<br>1.456 81<br>1.485 95 | 0.728 45<br>0.714 16<br>0.700 16<br>0.686 43<br>0.672 97 | 18.639 3<br>20.012 1<br>21.412 3<br>22.840 6<br>24.297 4      | 13.577 7<br>14.291 9<br>14.992 0<br>15.678 5<br>16.351 4 | 109.706 5<br>121.847 3<br>134.450 2<br>147.492 3<br>160.951 8         | 121.114 5<br>135.406 4<br>150.398 4<br>166.076 9<br>182.428 3           | 16<br>17<br>18<br>19<br>20  | $v^{1/2}$ $v^{1/4}$ $v^{1/12}$                                                  | 0.990 148<br>0.995 062<br>0.998 351<br>0.019 608 |
| 21<br>22<br>23<br>24<br>25  | 1.515 67<br>1.545 98<br>1.576 90<br>1.608 44<br>1.640 61 | 0.659 78<br>0.646 84<br>0.634 16<br>0.621 72<br>0.609 53 | 25.783 3<br>27.299 0<br>28.845 0<br>30.421 9<br>32.030 3      | 17.011 2<br>17.658 0<br>18.292 2<br>18.913 9<br>19.523 5 | 174.807 1<br>189.037 5<br>203.623 1<br>218.544 4<br>233.782 7         | 199.439 5<br>217.097 6<br>235.389 8<br>254.303 7<br>273.827 2           | 21<br>22<br>23<br>24<br>25  | $   \begin{array}{c}     d^{(2)} \\     d^{(4)} \\     d^{(12)}   \end{array} $ | 0.019 705<br>0.019 754<br>0.019 786              |
| 26<br>27<br>28<br>29<br>30  | 1.673 42<br>1.706 89<br>1.741 02<br>1.775 84<br>1.811 36 | 0.597 58<br>0.585 86<br>0.574 37<br>0.563 11<br>0.552 07 | 33.670 9<br>35.344 3<br>37.051 2<br>38.792 2<br>40.568 1      | 20.121 0<br>20.706 9<br>21.281 3<br>21.844 4<br>22.396 5 | 249.319 8<br>265.138 0<br>281.220 5<br>297.550 8<br>314.112 9         | 293.948 2<br>314.655 1<br>335.936 4<br>357.780 8<br>380.177 2           | 26<br>27<br>28<br>29<br>30  | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                                            | 1.004 975<br>1.007 469<br>1.009 134              |
| 31<br>32<br>33<br>34<br>35  | 1.847 59<br>1.884 54<br>1.922 23<br>1.960 68<br>1.999 89 | 0.541 25<br>0.530 63<br>0.520 23<br>0.510 03<br>0.500 03 | 42.379 4<br>44.227 0<br>46.111 6<br>48.033 8<br>49.994 5      | 22.937 7<br>23.468 3<br>23.988 6<br>24.498 6<br>24.998 6 | 330.891 5<br>347.871 8<br>365.039 3<br>382.380 3<br>399.881 3         | 403.114 9<br>426.583 3<br>450.571 8<br>475.070 4<br>500.069 0           | 31<br>32<br>33<br>34<br>35  | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                                 | 1.009 967<br>1.014 975<br>1.012 469<br>1.010 801 |
| 36<br>37<br>38<br>39<br>40  | 2.039 89<br>2.080 69<br>2.122 30<br>2.164 74<br>2.208 04 | 0.490 22<br>0.480 61<br>0.471 19<br>0.461 95<br>0.452 89 | 51.994 4<br>54.034 3<br>56.114 9<br>58.237 2<br>60.402 0      | 25.488 8<br>25.969 5<br>26.440 6<br>26.902 6<br>27.355 5 | 417.529 3<br>435.311 9<br>453.217 0<br>471.233 0<br>489.348 6         | 525.557 9<br>551.527 3<br>577.968 0<br>604.870 6<br>632.226 0           | 36<br>37<br>38<br>39<br>40  |                                                                                 |                                                  |
| 41<br>42<br>43<br>44<br>45  | 2.252 20<br>2.297 24<br>2.343 19<br>2.390 05<br>2.437 85 | 0.444 01<br>0.435 30<br>0.426 77<br>0.418 40<br>0.410 20 | 62.610 0<br>64.862 2<br>67.159 5<br>69.502 7<br>71.892 7      | 27.799 5<br>28.234 8<br>28.661 6<br>29.080 0<br>29.490 2 | 507.553 0<br>525.835 8<br>544.186 9<br>562.596 5<br>581.055 3         | 660.025 5<br>688.260 3<br>716.921 9<br>746.001 8<br>775.492 0           | 41<br>42<br>43<br>44<br>45  |                                                                                 |                                                  |
| 46<br>47<br>48<br>49<br>50  | 2.486 61<br>2.536 34<br>2.587 07<br>2.638 81<br>2.691 59 | 0.402 15<br>0.394 27<br>0.386 54<br>0.378 96<br>0.371 53 | 74.330 6<br>76.817 2<br>79.353 5<br>81.940 6<br>84.579 4      | 29.892 3<br>30.286 6<br>30.673 1<br>31.052 1<br>31.423 6 | 599.554 4<br>618.085 0<br>636.638 8<br>655.207 8<br>673.784 2         | 805.384 3<br>835.670 9<br>866.344 0<br>897.396 1<br>928.819 7           | 46<br>47<br>48<br>49<br>50  |                                                                                 |                                                  |
| 60<br>70<br>80<br>90<br>100 | 3.281 03<br>3.999 56<br>4.875 44<br>5.943 13<br>7.244 65 | 0.304 78<br>0.250 03<br>0.205 11<br>0.168 26<br>0.138 03 | 114.051 5<br>149.977 9<br>193.772 0<br>247.156 7<br>312.232 3 | 34.760 9<br>37.498 6<br>39.744 5<br>41.586 9<br>43.098 4 | 858.458 4<br>1 037.332 9<br>1 206.531 3<br>1 363.757 0<br>1 507.851 1 | 1 261.955 7<br>1 625.069 0<br>2 012.774 3<br>2 420.653 5<br>2 845.082 4 | 60<br>70<br>80<br>90<br>100 |                                                                                 |                                                  |

| 2½%                                                                                                    | n                          | $(1+i)^n$                                                | $v^n$                                                    | $S_{\overline{n}}$                                       | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n}}$                                         | $(Da)_{\overrightarrow{n }}$                                  | n                          |
|--------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------|
| i 0.025 000<br>i <sup>(2)</sup> 0.024 846<br>i <sup>(4)</sup> 0.024 769<br>i <sup>(12)</sup> 0.024 718 | 1<br>2<br>3<br>4<br>5      | 1.025 00<br>1.050 63<br>1.076 89<br>1.103 81<br>1.131 41 | 0.975 61<br>0.951 81<br>0.928 60<br>0.905 95<br>0.883 85 | 1.000 0<br>2.025 0<br>3.075 6<br>4.152 5<br>5.256 3      | 0.975 6<br>1.927 4<br>2.856 0<br>3.762 0<br>4.645 8      | 0.975 6<br>2.879 2<br>5.665 0<br>9.288 8<br>13.708 1          | 0.975 6<br>2.903 0<br>5.759 1<br>9.521 0<br>14.166 9          | 1<br>2<br>3<br>4<br>5      |
| $\delta$ 0.024 693 $(1+i)^{1/2}$ 1.012 423                                                             | 6                          | 1.159 69                                                 | 0.862 30                                                 | 6.387 7                                                  | 5.508 1                                                  | 18.881 9                                                      | 19.675 0                                                      | 6                          |
|                                                                                                        | 7                          | 1.188 69                                                 | 0.841 27                                                 | 7.547 4                                                  | 6.349 4                                                  | 24.770 7                                                      | 26.024 4                                                      | 7                          |
|                                                                                                        | 8                          | 1.218 40                                                 | 0.820 75                                                 | 8.736 1                                                  | 7.170 1                                                  | 31.336 7                                                      | 33.194 5                                                      | 8                          |
|                                                                                                        | 9                          | 1.248 86                                                 | 0.800 73                                                 | 9.954 5                                                  | 7.970 9                                                  | 38.543 3                                                      | 41.165 4                                                      | 9                          |
|                                                                                                        | 10                         | 1.280 08                                                 | 0.781 20                                                 | 11.203 4                                                 | 8.752 1                                                  | 46.355 3                                                      | 49.917 4                                                      | 10                         |
| $(1+i)^{1/4} = 1.006 192$ $(1+i)^{1/12} = 1.002 060$ $v = 0.975 610$                                   | 11                         | 1.312 09                                                 | 0.762 14                                                 | 12.483 5                                                 | 9.514 2                                                  | 54.738 9                                                      | 59.431 7                                                      | 11                         |
|                                                                                                        | 12                         | 1.344 89                                                 | 0.743 56                                                 | 13.795 6                                                 | 10.257 8                                                 | 63.661 5                                                      | 69.689 4                                                      | 12                         |
|                                                                                                        | 13                         | 1.378 51                                                 | 0.725 42                                                 | 15.140 4                                                 | 10.983 2                                                 | 73.092 0                                                      | 80.672 6                                                      | 13                         |
|                                                                                                        | 14                         | 1.412 97                                                 | 0.707 73                                                 | 16.519 0                                                 | 11.690 9                                                 | 83.000 2                                                      | 92.363 5                                                      | 14                         |
|                                                                                                        | 15                         | 1.448 30                                                 | 0.690 47                                                 | 17.931 9                                                 | 12.381 4                                                 | 93.357 2                                                      | 104.744 9                                                     | 15                         |
| $v^{1/2}$ 0.987 730<br>$v^{1/4}$ 0.993 846<br>$v^{1/12}$ 0.997 944<br>d 0.024 390                      | 16<br>17<br>18<br>19<br>20 | 1.484 51<br>1.521 62<br>1.559 66<br>1.598 65<br>1.638 62 | 0.673 62<br>0.657 20<br>0.641 17<br>0.625 53<br>0.610 27 | 19.380 2<br>20.864 7<br>22.386 3<br>23.946 0<br>25.544 7 | 13.055 0<br>13.712 2<br>14.353 4<br>14.978 9<br>15.589 2 | 104.135 2<br>115.307 5<br>126.848 5<br>138.733 5<br>150.938 9 | 117.799 9<br>131.512 1<br>145.865 5<br>160.844 3<br>176.433 5 | 16<br>17<br>18<br>19<br>20 |
| $d^{(2)} = 0.024 541$ $d^{(4)} = 0.024 617$ $d^{(12)} = 0.024 667$                                     | 21                         | 1.679 58                                                 | 0.595 39                                                 | 27.183 3                                                 | 16.184 5                                                 | 163.442 0                                                     | 192.618 1                                                     | 21                         |
|                                                                                                        | 22                         | 1.721 57                                                 | 0.580 86                                                 | 28.862 9                                                 | 16.765 4                                                 | 176.221 0                                                     | 209.383 5                                                     | 22                         |
|                                                                                                        | 23                         | 1.764 61                                                 | 0.566 70                                                 | 30.584 4                                                 | 17.332 1                                                 | 189.255 1                                                     | 226.715 6                                                     | 23                         |
|                                                                                                        | 24                         | 1.808 73                                                 | 0.552 88                                                 | 32.349 0                                                 | 17.885 0                                                 | 202.524 1                                                     | 244.600 6                                                     | 24                         |
|                                                                                                        | 25                         | 1.853 94                                                 | 0.539 39                                                 | 34.157 8                                                 | 18.424 4                                                 | 216.008 8                                                     | 263.024 9                                                     | 25                         |
| $i/i^{(2)}$ 1.006 211<br>$i/i^{(4)}$ 1.009 327<br>$i/i^{(12)}$ 1.011 407                               | 26<br>27<br>28<br>29<br>30 | 1.900 29<br>1.947 80<br>1.996 50<br>2.046 41<br>2.097 57 | 0.526 23<br>0.513 40<br>0.500 88<br>0.488 66<br>0.476 74 | 36.011 7<br>37.912 0<br>39.859 8<br>41.856 3<br>43.902 7 | 18.950 6<br>19.464 0<br>19.964 9<br>20.453 5<br>20.930 3 | 229.690 9<br>243.552 7<br>257.577 3<br>271.748 5<br>286.050 8 | 281.975 6<br>301.439 6<br>321.404 5<br>341.858 0<br>362.788 3 | 26<br>27<br>28<br>29<br>30 |
| $i/\delta$ 1.012 449<br>$i/d^{(2)}$ 1.018 711<br>$i/d^{(4)}$ 1.015 577<br>$i/d^{(12)}$ 1.013 491       | 31<br>32<br>33<br>34<br>35 | 2.150 01<br>2.203 76<br>2.258 85<br>2.315 32<br>2.373 21 | 0.465 11<br>0.453 77<br>0.442 70<br>0.431 91<br>0.421 37 | 46.000 3<br>48.150 3<br>50.354 0<br>52.612 9<br>54.928 2 | 21.395 4<br>21.849 2<br>22.291 9<br>22.723 8<br>23.145 2 | 300.469 3<br>314.990 0<br>329.599 2<br>344.284 0<br>359.032 0 | 384.183 7<br>406.032 9<br>428.324 8<br>451.048 5<br>474.193 7 | 31<br>32<br>33<br>34<br>35 |
| 1015 (7)                                                                                               | 36                         | 2.432 54                                                 | 0.411 09                                                 | 57.301 4                                                 | 23.556 3                                                 | 373.831 3                                                     | 497.750 0                                                     | 36                         |
|                                                                                                        | 37                         | 2.493 35                                                 | 0.401 07                                                 | 59.733 9                                                 | 23.957 3                                                 | 388.670 8                                                     | 521.707 3                                                     | 37                         |
|                                                                                                        | 38                         | 2.555 68                                                 | 0.391 28                                                 | 62.227 3                                                 | 24.348 6                                                 | 403.539 6                                                     | 546.055 9                                                     | 38                         |
|                                                                                                        | 39                         | 2.619 57                                                 | 0.381 74                                                 | 64.783 0                                                 | 24.730 3                                                 | 418.427 6                                                     | 570.786 2                                                     | 39                         |
|                                                                                                        | 40                         | 2.685 06                                                 | 0.372 43                                                 | 67.402 6                                                 | 25.102 8                                                 | 433.324 8                                                     | 595.889 0                                                     | 40                         |
|                                                                                                        | 41                         | 2.752 19                                                 | 0.363 35                                                 | 70.087 6                                                 | 25.466 1                                                 | 448.222 0                                                     | 621.355 1                                                     | 41                         |
|                                                                                                        | 42                         | 2.821 00                                                 | 0.354 48                                                 | 72.839 8                                                 | 25.820 6                                                 | 463.110 4                                                     | 647.175 7                                                     | 42                         |
|                                                                                                        | 43                         | 2.891 52                                                 | 0.345 84                                                 | 75.660 8                                                 | 26.166 4                                                 | 477.981 4                                                     | 673.342 2                                                     | 43                         |
|                                                                                                        | 44                         | 2.963 81                                                 | 0.337 40                                                 | 78.552 3                                                 | 26.503 8                                                 | 492.827 2                                                     | 699.846 0                                                     | 44                         |
|                                                                                                        | 45                         | 3.037 90                                                 | 0.329 17                                                 | 81.516 1                                                 | 26.833 0                                                 | 507.640 1                                                     | 726.679 0                                                     | 45                         |
|                                                                                                        | 46                         | 3.113 85                                                 | 0.321 15                                                 | 84.554 0                                                 | 27.154 2                                                 | 522.412 8                                                     | 753.833 2                                                     | 46                         |
|                                                                                                        | 47                         | 3.191 70                                                 | 0.313 31                                                 | 87.667 9                                                 | 27.467 5                                                 | 537.138 5                                                     | 781.300 7                                                     | 47                         |
|                                                                                                        | 48                         | 3.271 49                                                 | 0.305 67                                                 | 90.859 6                                                 | 27.773 2                                                 | 551.810 7                                                     | 809.073 9                                                     | 48                         |
|                                                                                                        | 49                         | 3.353 28                                                 | 0.298 22                                                 | 94.131 1                                                 | 28.071 4                                                 | 566.423 3                                                     | 837.145 2                                                     | 49                         |
|                                                                                                        | 50                         | 3.437 11                                                 | 0.290 94                                                 | 97.484 3                                                 | 28.362 3                                                 | 580.970 4                                                     | 865.507 5                                                     | 50                         |
|                                                                                                        | 60                         | 4.399 79                                                 | 0.227 28                                                 | 135.991 6                                                | 30.908 7                                                 | 721.774 3                                                     | 1 163.653 7                                                   | 60                         |
|                                                                                                        | 70                         | 5.632 10                                                 | 0.177 55                                                 | 185.284 1                                                | 32.897 9                                                 | 851.662 1                                                     | 1 484.085 7                                                   | 70                         |
|                                                                                                        | 80                         | 7.209 57                                                 | 0.138 70                                                 | 248.382 7                                                | 34.451 8                                                 | 968.669 9                                                     | 1 821.927 3                                                   | 80                         |
|                                                                                                        | 90                         | 9.228 86                                                 | 0.108 36                                                 | 329.154 3                                                | 35.665 8                                                 | 1 072.215 7                                                   | 2 173.369 3                                                   | 90                         |
|                                                                                                        | 100                        | 11.813 72                                                | 0.084 65                                                 | 432.548 7                                                | 36.614 1                                                 | 1 162.588 8                                                   | 2 535.435 8                                                   | 100                        |

| n                           | $(1+i)^n$                                                   | $v^n$                                                    | $S_{\overline{n}}$                                            | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n} }$                                        | $(Da)_{\overline{n} }$                                                  | n                           |                                                                                                      | 3%                                               |
|-----------------------------|-------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5       | 1.030 00<br>1.060 90<br>1.092 73<br>1.125 51<br>1.159 27    | 0.970 87<br>0.942 60<br>0.915 14<br>0.888 49<br>0.862 61 | 1.000 0<br>2.030 0<br>3.090 9<br>4.183 6<br>5.309 1           | 0.970 9<br>1.913 5<br>2.828 6<br>3.717 1<br>4.579 7      | 0.970 9<br>2.856 1<br>5.601 5<br>9.155 4<br>13.468 5          | 0.970 9<br>2.884 3<br>5.713 0<br>9.430 1<br>14.009 8                    | 1<br>2<br>3<br>4<br>5       | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup>                                       | 0.030 000<br>0.029 778<br>0.029 668<br>0.029 595 |
| 6<br>7<br>8<br>9<br>10      | 1.194 05<br>1.229 87<br>1.266 77<br>1.304 77<br>1.343 92    | 0.837 48<br>0.813 09<br>0.789 41<br>0.766 42<br>0.744 09 | 6.468 4<br>7.662 5<br>8.892 3<br>10.159 1<br>11.463 9         | 5.417 2<br>6.230 3<br>7.019 7<br>7.786 1<br>8.530 2      | 18.493 4<br>24.185 0<br>30.500 3<br>37.398 1<br>44.839 0      | 19.427 0<br>25.657 2<br>32.676 9<br>40.463 0<br>48.993 2                | 6<br>7<br>8<br>9<br>10      | $\delta = (1+i)^{1/2}$                                                                               | 0.029 559<br>1.014 889                           |
| 11<br>12<br>13<br>14<br>15  | 1.384 23<br>1.425 76<br>1.468 53<br>1.512 59<br>1.557 97    | 0.722 42<br>0.701 38<br>0.680 95<br>0.661 12<br>0.641 86 | 12.807 8<br>14.192 0<br>15.617 8<br>17.086 3<br>18.598 9      | 9.252 6<br>9.954 0<br>10.635 0<br>11.296 1<br>11.937 9   | 52.785 6<br>61.202 2<br>70.054 6<br>79.310 2<br>88.938 1      | 58.245 9<br>68.199 9<br>78.834 8<br>90.130 9<br>102.068 8               | 11<br>12<br>13<br>14<br>15  | $(1+i)^{1/4}  (1+i)^{1/12}  v$                                                                       | 1.007 417<br>1.002 466<br>0.970 874              |
| 16<br>17<br>18<br>19<br>20  | 1.604 71<br>1.652 85<br>1.702 43<br>1.753 51<br>1.806 11    | 0.623 17<br>0.605 02<br>0.587 39<br>0.570 29<br>0.553 68 | 20.156 9<br>21.761 6<br>23.414 4<br>25.116 9<br>26.870 4      | 12.561 1<br>13.166 1<br>13.753 5<br>14.323 8<br>14.877 5 | 98.908 8<br>109.194 1<br>119.767 2<br>130.602 6<br>141.676 1  | 114.629 9<br>127.796 1<br>141.549 6<br>155.873 4<br>170.750 8           | 16<br>17<br>18<br>19<br>20  | v <sup>1/2</sup> v <sup>1/4</sup> v <sup>1/12</sup>                                                  | 0.985 329<br>0.992 638<br>0.997 540              |
| 21<br>22<br>23<br>24<br>25  | 1.860 29<br>1.916 10<br>1.973 59<br>2.032 79<br>2.093 78    | 0.537 55<br>0.521 89<br>0.506 69<br>0.491 93<br>0.477 61 | 28.676 5<br>30.536 8<br>32.452 9<br>34.426 5<br>36.459 3      | 15.415 0<br>15.936 9<br>16.443 6<br>16.935 5<br>17.413 1 | 152.964 7<br>164.446 3<br>176.100 2<br>187.906 6<br>199.846 8 | 186.165 9<br>202.102 8<br>218.546 4<br>235.481 9<br>252.895 1           | 21<br>22<br>23<br>24<br>25  | $     \begin{array}{c}       d \\       d^{(2)} \\       d^{(4)} \\       d^{(12)}     \end{array} $ | 0.029 126<br>0.029 341<br>0.029 450<br>0.029 522 |
| 26<br>27<br>28<br>29<br>30  | 2.156 59<br>2.221 29<br>2.287 93<br>2.356 57<br>2.427 26    | 0.463 69<br>0.450 19<br>0.437 08<br>0.424 35<br>0.411 99 | 38.553 0<br>40.709 6<br>42.930 9<br>45.218 9<br>47.575 4      | 17.876 8<br>18.327 0<br>18.764 1<br>19.188 5<br>19.600 4 | 211.902 8<br>224.057 9<br>236.296 1<br>248.602 1<br>260.961 7 | 270.771 9<br>289.099 0<br>307.863 1<br>327.051 5<br>346.652 0           | 26<br>27<br>28<br>29<br>30  | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                                                                 | 1.007 445<br>1.011 181<br>1.013 677              |
| 31<br>32<br>33<br>34<br>35  | 2.500 08<br>2.575 08<br>2.652 34<br>2.731 91<br>2.813 86    | 0.399 99<br>0.388 34<br>0.377 03<br>0.366 04<br>0.355 38 | 50.002 7<br>52.502 8<br>55.077 8<br>57.730 2<br>60.462 1      | 20.000 4<br>20.388 8<br>20.765 8<br>21.131 8<br>21.487 2 | 273.361 3<br>285.788 1<br>298.230 0<br>310.675 5<br>323.113 9 | 366.652 4<br>387.041 1<br>407.806 9<br>428.938 8<br>450.426 0           | 31<br>32<br>33<br>34<br>35  | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                                                      | 1.014 926<br>1.022 445<br>1.018 681<br>1.016 177 |
| 36<br>37<br>38<br>39<br>40  | 2.898 28<br>2.985 23<br>3.074 78<br>3.167 03<br>3.262 04    | 0.345 03<br>0.334 98<br>0.325 23<br>0.315 75<br>0.306 56 | 63.275 9<br>66.174 2<br>69.159 4<br>72.234 2<br>75.401 3      | 21.832 3<br>22.167 2<br>22.492 5<br>22.808 2<br>23.114 8 | 335.535 1<br>347.929 5<br>360.288 1<br>372.602 4<br>384.864 7 | 472.258 3<br>494.425 5<br>516.917 9<br>539.726 2<br>562.840 9           | 36<br>37<br>38<br>39<br>40  | <i>17 tt</i>                                                                                         | 1.010 177                                        |
| 41<br>42<br>43<br>44<br>45  | 3.359 90<br>3.460 70<br>3.564 52<br>3.671 45<br>3.781 60    | 0.297 63<br>0.288 96<br>0.280 54<br>0.272 37<br>0.264 44 | 78.663 3<br>82.023 2<br>85.483 9<br>89.048 4<br>92.719 9      | 23.412 4<br>23.701 4<br>23.981 9<br>24.254 3<br>24.518 7 | 397.067 5<br>409.203 8<br>421.267 1<br>433.251 5<br>445.151 2 | 586.253 3<br>609.954 7<br>633.936 6<br>658.190 9<br>682.709 6           | 41<br>42<br>43<br>44<br>45  |                                                                                                      |                                                  |
| 46<br>47<br>48<br>49<br>50  | 3.895 04<br>4.011 90<br>4.132 25<br>4.256 22<br>4.383 91    | 0.256 74<br>0.249 26<br>0.242 00<br>0.234 95<br>0.228 11 | 96.501 5<br>100.396 5<br>104.408 4<br>108.540 6<br>112.796 9  | 24.775 4<br>25.024 7<br>25.266 7<br>25.501 7<br>25.729 8 | 456.961 1<br>468.676 2<br>480.292 2<br>491.804 7<br>503.210 1 | 707.485 0<br>732.509 7<br>757.776 4<br>783.278 1<br>809.007 9           | 46<br>47<br>48<br>49<br>50  |                                                                                                      |                                                  |
| 60<br>70<br>80<br>90<br>100 | 5.891 60<br>7.917 82<br>10.640 89<br>14.300 47<br>19.218 63 | 0.169 73<br>0.126 30<br>0.093 98<br>0.069 93<br>0.052 03 | 163.053 4<br>230.594 1<br>321.363 0<br>443.348 9<br>607.287 7 | 27.675 6<br>29.123 4<br>30.200 8<br>31.002 4<br>31.598 9 | 610.728 2<br>705.210 3<br>786.287 3<br>854.632 6<br>911.453 0 | 1 077.481 2<br>1 362.552 6<br>1 659.974 6<br>1 966.586 4<br>2 280.036 5 | 60<br>70<br>80<br>90<br>100 |                                                                                                      |                                                  |

| 4%              | r                                                       | $(1+i)^n$                           | $v^n$                                                    | $S_{\overrightarrow{n} }$                                       | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n }}$                                        | $(Da)_{\overline{n }}$                                                | n                           |
|-----------------|---------------------------------------------------------|-------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|
| (4)             | 040 000<br>039 608<br>2<br>3                            | 1.081 60                            | 0.961 54<br>0.924 56<br>0.889 00                         | 1.000 0<br>2.040 0<br>3.121 6                                   | 0.961 5<br>1.886 1<br>2.775 1                            | 0.961 5<br>2.810 7<br>5.477 6                                 | 0.961 5<br>2.847 6<br>5.622 7                                         | 1<br>2<br>3                 |
|                 | )39 414 4<br>)39 285 5                                  | 1.169 86                            | 0.854 80<br>0.821 93                                     | 4.246 5<br>5.416 3                                              | 3.629 9<br>4.451 8                                       | 8.896 9<br>13.006 5                                           | 9.252 6<br>13.704 4                                                   | 4 5                         |
| δ 0.0           | $\begin{array}{c c}  & 6 \\  7 \\  8 \end{array}$       | 1.315 93                            | 0.790 31<br>0.759 92<br>0.730 69                         | 6.633 0<br>7.898 3<br>9.214 2                                   | 5.242 1<br>6.002 1<br>6.732 7                            | 17.748 4<br>23.067 8<br>28.913 3                              | 18.946 6<br>24.948 6<br>31.681 4                                      | 6<br>7<br>8                 |
| ` ′             | 019 804   9                                             | 1.423 31                            | 0.702 59<br>0.675 56                                     | 10.582 8<br>12.006 1                                            | 7.435 3<br>8.110 9                                       | 35.236 6<br>41.992 2                                          | 39.116 7<br>47.227 6                                                  | 9<br>10                     |
| 1 1,112         | 009 853<br>003 274 11                                   |                                     | 0.649 58                                                 | 13.486 4                                                        | 8.760 5                                                  | 49.137 6                                                      | 55.988 1                                                              | 11                          |
|                 | 13                                                      | 1.665 07<br>1.731 68                | 0.624 60<br>0.600 57<br>0.577 48                         | 15.025 8<br>16.626 8<br>18.291 9                                | 9.385 1<br>9.985 6<br>10.563 1                           | 56.632 8<br>64.440 3<br>72.524 9                              | 65.373 2<br>75.358 8<br>85.921 9                                      | 12<br>13<br>14              |
| $v^{1/2}$ 0.9   | 080 581                                                 |                                     | 0.555 26                                                 | 20.023 6                                                        | 11.118 4                                                 | 80.853 9                                                      | 97.040 3                                                              | 15                          |
|                 | 990 243   16<br>17<br>18                                | 1.947 90<br>2.025 82                | 0.533 91<br>0.513 37<br>0.493 63                         | 21.824 5<br>23.697 5<br>25.645 4                                | 11.652 3<br>12.165 7<br>12.659 3                         | 89.396 4<br>98.123 8<br>107.009 1                             | 108.692 6<br>120.858 3<br>133.517 6                                   | 16<br>17<br>18              |
|                 | $\begin{array}{c c}  & 19 \\  20 \\  & 20  \end{array}$ |                                     | 0.474 64<br>0.456 39                                     | 27.671 2<br>29.778 1                                            | 13.133 9<br>13.590 3                                     | 116.027 3<br>125.155 0                                        | 146.651 5<br>160.241 8                                                | 19<br>20                    |
|                 | 038 839 21<br>039 029 22                                |                                     | 0.438 83<br>0.421 96                                     | 31.969 2<br>34.248 0                                            | 14.029 2<br>14.451 1                                     | 134.370 5<br>143.653 5                                        | 174.271 0<br>188.722 1                                                | 21<br>22                    |
|                 | 039 029 23<br>039 157 24<br>25                          | 2.464 72<br>2.563 30                | 0.405 73<br>0.390 12<br>0.375 12                         | 36.617 9<br>39.082 6<br>41.645 9                                | 14.856 8<br>15.247 0<br>15.622 1                         | 152.985 2<br>162.348 2<br>171.726 1                           | 203.579 0<br>218.825 9<br>234.448 0                                   | 23<br>24<br>25              |
|                 | 009 902<br>014 877 26<br>27                             |                                     | 0.360 69<br>0.346 82                                     | 44.311 7<br>47.084 2                                            | 15.982 8<br>16.329 6                                     | 181.104 0<br>190.468 0                                        | 250.430 8<br>266.760 4                                                | 26<br>27                    |
|                 | 018 204 29                                              | 2.998 70<br>3.118 65                | 0.346 82<br>0.333 48<br>0.320 65<br>0.308 32             | 49.967 6<br>52.966 3<br>56.084 9                                | 16.663 1<br>16.983 7<br>17.292 0                         | 190.468 0<br>199.805 4<br>209.104 3<br>218.353 9              | 283.423 4<br>300.407 1<br>317.699 2                                   | 28<br>29<br>30              |
|                 | 019 869<br>31<br>32                                     | 3.373 13                            | 0.296 46<br>0.285 06                                     | 59.328 3<br>62.701 5                                            | 17.588 5<br>17.873 6                                     | 227.544 1<br>236.666 0                                        | 335.287 7<br>353.161 2                                                | 31<br>32                    |
| $i/d^{(4)}$ 1.0 | 029 902 33<br>024 877 34<br>021 527 35                  | 3.794 32                            | 0.274 09<br>0.263 55<br>0.253 42                         | 66.209 5<br>69.857 9<br>73.652 2                                | 18.147 6<br>18.411 2<br>18.664 6                         | 245.711 1<br>254.671 9<br>263.541 4                           | 371.308 9<br>389.720 1<br>408.384 7                                   | 33<br>34<br>35              |
| 1/4             | 36<br>37                                                | 4.268 09                            | 0.243 67<br>0.234 30                                     | 77.598 3<br>81.702 2                                            | 18.908 3<br>19.142 6                                     | 272.313 5<br>280.982 5                                        | 427.293 0<br>446.435 5                                                | 36<br>37                    |
|                 | 38<br>39<br>40                                          | 4.616 37                            | 0.225 29<br>0.216 62<br>0.208 29                         | 85.970 3<br>90.409 1<br>95.025 5                                | 19.367 9<br>19.584 5<br>19.792 8                         | 289.543 3<br>297.991 5<br>306.323 1                           | 465.803 4<br>485.387 9<br>505.180 7                                   | 38<br>39<br>40              |
|                 | 41<br>42<br>43<br>44<br>45                              | 5.192 78<br>5.400 50<br>5.616 52    | 0.200 28<br>0.192 57<br>0.185 17<br>0.178 05<br>0.171 20 | 99.826 5<br>104.819 6<br>110.012 4<br>115.412 9<br>121.029 4    | 19.993 1<br>20.185 6<br>20.370 8<br>20.548 8<br>20.720 0 | 314.534 5<br>322.622 6<br>330.584 9<br>338.418 9<br>346.122 8 | 525.173 7<br>545.359 3<br>565.730 1<br>586.279 0<br>606.999 0         | 41<br>42<br>43<br>44<br>45  |
|                 | 46<br>47<br>48<br>49<br>50                              | 6.317 82<br>6.570 53<br>6.833 35    | 0.164 61<br>0.158 28<br>0.152 19<br>0.146 34<br>0.140 71 | 126.870 6<br>132.945 4<br>139.263 2<br>145.833 7<br>152.667 1   | 20.884 7<br>21.042 9<br>21.195 1<br>21.341 5<br>21.482 2 | 353.695 1<br>361.134 3<br>368.439 7<br>375.610 4<br>382.646 0 | 627.883 7<br>648.926 6<br>670.121 7<br>691.463 2<br>712.945 4         | 46<br>47<br>48<br>49<br>50  |
|                 | 60<br>70<br>80<br>90<br>100                             | 15.571 62<br>23.049 80<br>34.119 33 | 0.095 06<br>0.064 22<br>0.043 38<br>0.029 31<br>0.019 80 | 237.990 7<br>364.290 5<br>551.245 0<br>827.983 3<br>1 237.623 7 | 22.623 5<br>23.394 5<br>23.915 4<br>24.267 3<br>24.505 0 | 445.620 1<br>495.873 4<br>535.031 5<br>565.004 2<br>587.629 9 | 934.412 8<br>1 165.137 1<br>1 402.115 2<br>1 643.318 1<br>1 887.375 0 | 60<br>70<br>80<br>90<br>100 |

| n                           | $(1+i)^n$                                                      | $v^n$                                                    | $S_{\overline{n}}$                                                | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n} }$                                        | $(Da)_{\overline{n} }$                                                | n                           |                                                                                                       | 5%                                               |
|-----------------------------|----------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5       | 1.050 00<br>1.102 50<br>1.157 63<br>1.215 51<br>1.276 28       | 0.952 38<br>0.907 03<br>0.863 84<br>0.822 70<br>0.783 53 | 1.000 0<br>2.050 0<br>3.152 5<br>4.310 1<br>5.525 6               | 0.952 4<br>1.859 4<br>2.723 2<br>3.546 0<br>4.329 5      | 0.952 4<br>2.766 4<br>5.358 0<br>8.648 8<br>12.566 4          | 0.952 4<br>2.811 8<br>5.535 0<br>9.081 0<br>13.410 5                  | 1<br>2<br>3<br>4<br>5       | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup>                                        | 0.050 000<br>0.049 390<br>0.049 089<br>0.048 889 |
| 6<br>7<br>8<br>9<br>10      | 1.340 10<br>1.407 10<br>1.477 46<br>1.551 33<br>1.628 89       | 0.746 22<br>0.710 68<br>0.676 84<br>0.644 61<br>0.613 91 | 6.801 9<br>8.142 0<br>9.549 1<br>11.026 6<br>12.577 9             | 5.075 7<br>5.786 4<br>6.463 2<br>7.107 8<br>7.721 7      | 17.043 7<br>22.018 5<br>27.433 2<br>33.234 7<br>39.373 8      | 18.486 2<br>24.272 5<br>30.735 7<br>37.843 6<br>45.565 3              | 6<br>7<br>8<br>9            | $\delta = (1+i)^{1/2}$                                                                                | 0.048 790<br>1.024 695                           |
| 11<br>12<br>13<br>14<br>15  | 1.710 34<br>1.795 86<br>1.885 65<br>1.979 93<br>2.078 93       | 0.584 68<br>0.556 84<br>0.530 32<br>0.505 07<br>0.481 02 | 14.206 8<br>15.917 1<br>17.713 0<br>19.598 6<br>21.578 6          | 8.306 4<br>8.863 3<br>9.393 6<br>9.898 6<br>10.379 7     | 45.805 3<br>52.487 3<br>59.381 5<br>66.452 4<br>73.667 7      | 53.871 7<br>62.735 0<br>72.128 5<br>82.027 2<br>92.406 8              | 11<br>12<br>13<br>14<br>15  | $(1+i)^{1/4}  (1+i)^{1/12}  v$                                                                        | 1.012 272<br>1.004 074<br>0.952 381              |
| 16<br>17<br>18<br>19<br>20  | 2.182 87<br>2.292 02<br>2.406 62<br>2.526 95<br>2.653 30       | 0.458 11<br>0.436 30<br>0.415 52<br>0.395 73<br>0.376 89 | 23.657 5<br>25.840 4<br>28.132 4<br>30.539 0<br>33.066 0          | 10.837 8<br>11.274 1<br>11.689 6<br>12.085 3<br>12.462 2 | 80.997 5<br>88.414 5<br>95.893 9<br>103.412 8<br>110.950 6    | 103.244 6<br>114.518 7<br>126.208 3<br>138.293 6<br>150.755 8         | 16<br>17<br>18<br>19<br>20  | $v^{1/2}$ $v^{1/4}$ $v^{1/12}$                                                                        | 0.975 900<br>0.987 877<br>0.995 942<br>0.047 619 |
| 21<br>22<br>23<br>24<br>25  | 2.785 96<br>2.925 26<br>3.071 52<br>3.225 10<br>3.386 35       | 0.358 94<br>0.341 85<br>0.325 57<br>0.310 07<br>0.295 30 | 35.719 3<br>38.505 2<br>41.430 5<br>44.502 0<br>47.727 1          | 12.821 2<br>13.163 0<br>13.488 6<br>13.798 6<br>14.093 9 | 118.488 4<br>126.009 1<br>133.497 3<br>140.938 9<br>148.321 5 | 163.576 9<br>176.739 9<br>190.228 5<br>204.027 2<br>218.121 1         | 21<br>22<br>23<br>24<br>25  | $     \begin{vmatrix}       a \\       d^{(2)} \\       d^{(4)} \\       d^{(12)}     \end{vmatrix} $ | 0.048 200<br>0.048 494<br>0.048 691              |
| 26<br>27<br>28<br>29<br>30  | 3.555 67<br>3.733 46<br>3.920 13<br>4.116 14<br>4.321 94       | 0.281 24<br>0.267 85<br>0.255 09<br>0.242 95<br>0.231 38 | 51.113 5<br>54.669 1<br>58.402 6<br>62.322 7<br>66.438 8          | 14.375 2<br>14.643 0<br>14.898 1<br>15.141 1<br>15.372 5 | 155.633 7<br>162.865 6<br>170.008 2<br>177.053 7<br>183.995 0 | 232.496 3<br>247.139 3<br>262.037 5<br>277.178 5<br>292.551 0         | 26<br>27<br>28<br>29<br>30  | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                                                                  | 1.012 348<br>1.018 559<br>1.022 715              |
| 31<br>32<br>33<br>34<br>35  | 4.538 04<br>4.764 94<br>5.003 19<br>5.253 35<br>5.516 02       | 0.220 36<br>0.209 87<br>0.199 87<br>0.190 35<br>0.181 29 | 70.760 8<br>75.298 8<br>80.063 8<br>85.067 0<br>90.320 3          | 15.592 8<br>15.802 7<br>16.002 5<br>16.192 9<br>16.374 2 | 190.826 1<br>197.541 9<br>204.137 7<br>210.609 7<br>216.954 9 | 308.143 8<br>323.946 5<br>339.949 0<br>356.141 9<br>372.516 1         | 31<br>32<br>33<br>34<br>35  | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                                                       | 1.024 797<br>1.037 348<br>1.031 059<br>1.026 881 |
| 36<br>37<br>38<br>39<br>40  | 5.791 82<br>6.081 41<br>6.385 48<br>6.704 75<br>7.039 99       | 0.172 66<br>0.164 44<br>0.156 61<br>0.149 15<br>0.142 05 | 95.836 3<br>101.628 1<br>107.709 5<br>114.095 0<br>120.799 8      | 16.546 9<br>16.711 3<br>16.867 9<br>17.017 0<br>17.159 1 | 223.170 5<br>229.254 7<br>235.205 7<br>241.022 4<br>246.704 3 | 389.063 0<br>405.774 3<br>422.642 1<br>439.659 2<br>456.818 3         | 36<br>37<br>38<br>39<br>40  | 174                                                                                                   | 1.020 001                                        |
| 41<br>42<br>43<br>44<br>45  | 7.391 99<br>7.761 59<br>8.149 67<br>8.557 15<br>8.985 01       | 0.135 28<br>0.128 84<br>0.122 70<br>0.116 86<br>0.111 30 | 127.839 8<br>135.231 8<br>142.993 3<br>151.143 0<br>159.700 2     | 17.294 4<br>17.423 2<br>17.545 9<br>17.662 8<br>17.774 1 | 252.250 8<br>257.662 1<br>262.938 4<br>268.080 3<br>273.088 6 | 474.112 6<br>491.535 8<br>509.081 8<br>526.744 5<br>544.518 6         | 41<br>42<br>43<br>44<br>45  |                                                                                                       |                                                  |
| 46<br>47<br>48<br>49<br>50  | 9.434 26<br>9.905 97<br>10.401 27<br>10.921 33<br>11.467 40    | 0.106 00<br>0.100 95<br>0.096 14<br>0.091 56<br>0.087 20 | 168.685 2<br>178.119 4<br>188.025 4<br>198.426 7<br>209.348 0     | 17.880 1<br>17.981 0<br>18.077 2<br>18.168 7<br>18.255 9 | 277.964 5<br>282.709 1<br>287.323 9<br>291.810 5<br>296.170 7 | 562.398 7<br>580.379 7<br>598.456 8<br>616.625 6<br>634.881 5         | 46<br>47<br>48<br>49<br>50  |                                                                                                       |                                                  |
| 60<br>70<br>80<br>90<br>100 | 18.679 19<br>30.426 43<br>49.561 44<br>80.730 37<br>131.501 26 | 0.053 54<br>0.032 87<br>0.020 18<br>0.012 39<br>0.007 60 | 353.583 7<br>588.528 5<br>971.228 8<br>1 594.607 3<br>2 610.025 2 | 18.929 3<br>19.342 7<br>19.596 5<br>19.752 3<br>19.847 9 | 333.272 5<br>360.183 6<br>379.242 5<br>392.501 1<br>401.597 1 | 821.414 2<br>1 013.146 5<br>1 208.070 8<br>1 404.954 8<br>1 603.041 8 | 60<br>70<br>80<br>90<br>100 |                                                                                                       |                                                  |

| 6%                |                        | n        | $(1+i)^n$               | $v^n$                | $S_{\overline{n}}$       | $a_{\overline{n}}$   | $(Ia)_{\overline{n}}$  | $(Da)_{\overline{n}}$    | n        |
|-------------------|------------------------|----------|-------------------------|----------------------|--------------------------|----------------------|------------------------|--------------------------|----------|
|                   |                        | 1        |                         |                      |                          |                      |                        |                          |          |
| i                 | 0.060 000              | 1        | 1.060 00<br>1.123 60    | 0.943 40<br>0.890 00 | 1.000 0<br>2.060 0       | 0.943 4<br>1.833 4   | 0.943 4<br>2.723 4     | 0.943 4<br>2.776 8       | 1        |
| i <sup>(2)</sup>  | 0.059 126              | 2 3      | 1.123 60                | 0.839 62             | 3.183 6                  | 2.673 0              | 5.242 2                | 5.449 8                  | 2        |
| i <sup>(4)</sup>  | 0.058 695              | 4        | 1.262 48                | 0.792 09             | 4.374 6                  | 3.465 1              | 8.410 6                | 8.914 9                  | 3<br>4   |
| i <sup>(12)</sup> | 0.058 411              | 5        | 1.338 23                | 0.747 26             | 5.637 1                  | 4.212 4              | 12.146 9               | 13.127 3                 | 5        |
|                   |                        | 6        | 1.418 52                | 0.704 96             | 6.975 3                  | 4.9173               | 16.3767                | 18.044 6                 | 6        |
| δ                 | 0.058 269              | 7        | 1.503 63                | 0.665 06             | 8.393 8                  | 5.582 4              | 21.032 1               | 23.627 0                 | 7        |
| 1/2               |                        | 8<br>9   | 1.593 85<br>1.689 48    | 0.627 41<br>0.591 90 | 9.897 5<br>11.491 3      | 6.209 8<br>6.801 7   | 26.051 4<br>31.378 5   | 29.836 8<br>36.638 5     | 8        |
| $(1+i)^{1/2}$     |                        | 10       | 1.790 85                | 0.558 39             | 13.180 8                 | 7.360 1              | 36.962 4               | 43.998 5                 | 10       |
| $(1+i)^{1/4}$     | 1.014 674              | ,,       | 1 000 20                |                      | 14.071.6                 |                      | 40.757.1               | 51.005.4                 | 1.1      |
| $(1+i)^{1/1}$     | <sup>2</sup> 1.004 868 | 11<br>12 | 1.898 30<br>2.012 20    | 0.526 79<br>0.496 97 | 14.971 6<br>16.869 9     | 7.886 9<br>8.383 8   | 42.757 1<br>48.720 7   | 51.885 4<br>60.269 3     | 11<br>12 |
| ( , , ,           |                        | 13       | 2.132 93                | 0.468 84             | 18.882 1                 | 8.852 7              | 54.815 6               | 69.122 0                 | 13       |
| v                 | 0.943 396              | 14       | 2.260 90                | 0.442 30             | 21.015 1                 | 9.295 0              | 61.007 8               | 78.416 9                 | 14       |
| v <sup>1/2</sup>  | 0.971 286              | 15       | 2.396 56                | 0.417 27             | 23.276 0                 | 9.712 2              | 67.266 8               | 88.129 2                 | 15       |
| v <sup>1/4</sup>  |                        | 16       | 2.540 35                | 0.393 65             | 25.672 5                 | 10.105 9             | 73.565 1               | 98.235 1                 | 16       |
| 1 '               | 0.985 538              | 17       | 2.692 77                | 0.371 36             | 28.212 9                 | 10.477 3             | 79.878 3               | 108.712 3                | 17       |
| v <sup>1/12</sup> | 0.995 156              | 18       | 2.854 34                | 0.350 34             | 30.905 7                 | 10.827 6             | 86.184 5               | 119.539 9                | 18       |
| ١.                | 0.056.604              | 19<br>20 | 3.025 60<br>3.207 14    | 0.330 51<br>0.311 80 | 33.760 0<br>36.785 6     | 11.158 1<br>11.469 9 | 92.464 3<br>98.700 4   | 130.698 1<br>142.168 0   | 19<br>20 |
| d                 | 0.056 604              |          |                         | 0.511 00             |                          | 11.10) )             | 70.700 1               | 1 12.100 0               | 20       |
| $d^{(2)}$         | 0.057 428              | 21       | 3.399 56                | 0.294 16             | 39.992 7                 | 11.764 1             | 104.877 6              | 153.932 1                | 21       |
| $d^{(4)}$         | 0.057 847              | 22<br>23 | 3.603 54<br>3.819 75    | 0.277 51<br>0.261 80 | 43.392 3<br>46.995 8     | 12.041 6<br>12.303 4 | 110.982 7<br>117.004 1 | 165.973 6<br>178.277 0   | 22<br>23 |
| $d^{(12)}$        | 0.058 128              | 24       | 4.048 93                | 0.246 98             | 50.815 6                 | 12.550 4             | 122.931 6              | 190.827 4                | 24       |
|                   |                        | 25       | 4.291 87                | 0.233 00             | 54.864 5                 | 12.783 4             | 128.756 5              | 203.610 7                | 25       |
| $i/i^{(2)}$       | 1.014 782              | 26       | 4.549 38                | 0.210.01             | 50.156.4                 | 12 002 2             | 124 471 6              | 216 612 0                | 26       |
| $i/i^{(4)}$       | 1.022 227              | 27       | 4.822 35                | 0.219 81<br>0.207 37 | 59.156 4<br>63.705 8     | 13.003 2<br>13.210 5 | 134.471 6<br>140.070 5 | 216.613 9<br>229.824 4   | 26<br>27 |
| $i/i^{(12)}$      | 1.027 211              | 28       | 5.111 69                | 0.195 63             | 68.528 1                 | 13.406 2             | 145.548 2              | 243.230 6                | 28       |
| 1/1               | 1.02/211               | 29       | 5.418 39                | 0.184 56             | 73.639 8                 | 13.590 7             | 150.900 3              | 256.821 3                | 29       |
| $i/\delta$        | 1.029 709              | 30       | 5.743 49                | 0.174 11             | 79.058 2                 | 13.764 8             | 156.123 6              | 270.586 1                | 30       |
| 1,,0              | 1.02) /0)              | 31       | 6.088 10                | 0.164 25             | 84.801 7                 | 13.929 1             | 161.215 5              | 284.515 2                | 31       |
| $i/d^{(2)}$       | 1.044 782              | 32       | 6.453 39                | 0.154 96             | 90.889 8                 | 14.084 0             | 166.174 2              | 298.599 3                | 32       |
| $i/d^{(4)}$       |                        | 33<br>34 | 6.840 59<br>7.251 03    | 0.146 19<br>0.137 91 | 97.343 2<br>104.183 8    | 14.230 2<br>14.368 1 | 170.998 3<br>175.687 3 | 312.829 5<br>327.197 6   | 33<br>34 |
| 1                 | 1.037 227              | 35       | 7.686 09                | 0.137 71             | 111.434 8                | 14.498 2             | 180.241 0              | 341.695 9                | 35       |
| $i/d^{(12)}$      | 1.032 211              |          | 0.147.05                | 0 100 74             | 110 120 0                | 14 (21 0             | 104 (50 (              | 256 216 0                | 26       |
|                   |                        | 36<br>37 | 8.147 25<br>8.636 09    | 0.122 74<br>0.115 79 | 119.120 9<br>127.268 1   | 14.621 0<br>14.736 8 | 184.659 6<br>188.944 0 | 356.316 9<br>371.053 7   | 36<br>37 |
|                   |                        | 38       | 9.154 25                | 0.109 24             | 135.904 2                | 14.846 0             | 193.095 1              | 385.899 7                | 38       |
|                   |                        | 39       | 9.703 51                | 0.103 06             | 145.058 5                | 14.949 1             | 197.114 2              | 400.848 8                | 39       |
|                   |                        | 40       | 10.285 72               | 0.097 22             | 154.762 0                | 15.046 3             | 201.003 1              | 415.895 1                | 40       |
|                   |                        | 41       | 10.902 86               | 0.091 72             | 165.047 7                | 15.138 0             | 204.763 6              | 431.033 1                | 41       |
|                   |                        | 42       | 11.557 03<br>12.250 45  | 0.086 53             | 175.950 5<br>187.507 6   | 15.224 5<br>15.306 2 | 208.397 8              | 446.257 6                | 42       |
|                   |                        | 43<br>44 | 12.250 45 12.985 48     | 0.081 63<br>0.077 01 | 187.507 6                | 15.306 2             | 211.907 8<br>215.296 2 | 461.563 8<br>476.947 0   | 43<br>44 |
|                   |                        | 45       | 13.764 61               | 0.072 65             | 212.743 5                | 15.455 8             | 218.565 5              | 492.402 8                | 45       |
|                   |                        | 46       | 14.590 49               | 0.068 54             | 226.508 1                | 15.524 4             | 221.718 2              | 507.927 2                | 46       |
|                   |                        | 47       | 15.465 92               | 0.064 66             | 241.098 6                | 15.589 0             | 224.757 2              | 523.516 2                | 47       |
|                   |                        | 48       | 16.393 87               | 0.061 00             | 256.564 5                | 15.650 0             | 227.685 1              | 539.166 2                | 48       |
|                   |                        | 49<br>50 | 17.377 50<br>18.420 15  | 0.057 55<br>0.054 29 | 272.958 4<br>290.335 9   | 15.707 6<br>15.761 9 | 230.504 8<br>233.219 2 | 554.873 8<br>570.635 7   | 49<br>50 |
|                   |                        |          |                         |                      |                          |                      |                        |                          |          |
|                   |                        | 60       | 32.987 69               | 0.030 31             | 533.128 2                | 16.161 4             | 255.204 2              | 730.642 9                | 60       |
|                   |                        | 70<br>80 | 59.075 93<br>105.795 99 | 0.016 93<br>0.009 45 | 967.932 2<br>1 746.599 9 | 16.384 5<br>16.509 1 | 269.711 7<br>279.058 4 | 893.590 9<br>1 058.181 2 | 70<br>80 |
|                   |                        | 90       | 189.464 51              | 0.005 28             | 3 141.075 2              | 16.578 7             | 284.973 3              | 1 223.688 3              | 90       |
|                   |                        | 100      | 339.302 08              | 0.002 95             | 5 638.368 1              | 16.617 5             | 288.664 6              | 1 389.707 6              | 100      |

| n                           | $(1+i)^n$                                                         | $v^n$                                                    | $S_{\overline{n} }$                                                    | $a_{\overline{n} }$                                      | $(Ia)_{\overline{n }}$                                        | $(Da)_{\overline{n} }$                                            | n                           |                                                                                                      | 7%                                               |
|-----------------------------|-------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5       | 1.070 00<br>1.144 90<br>1.225 04<br>1.310 80<br>1.402 55          | 0.934 58<br>0.873 44<br>0.816 30<br>0.762 90<br>0.712 99 | 1.000 0<br>2.070 0<br>3.214 9<br>4.439 9<br>5.750 7                    | 0.934 6<br>1.808 0<br>2.624 3<br>3.387 2<br>4.100 2      | 0.934 6<br>2.681 5<br>5.130 4<br>8.181 9<br>11.746 9          | 0.934 6<br>2.742 6<br>5.366 9<br>8.754 1<br>12.854 3              | 1<br>2<br>3<br>4<br>5       | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup>                                       | 0.070 000<br>0.068 816<br>0.068 234<br>0.067 850 |
| 6<br>7<br>8<br>9<br>10      | 1.500 73<br>1.605 78<br>1.718 19<br>1.838 46<br>1.967 15          | 0.666 34<br>0.622 75<br>0.582 01<br>0.543 93<br>0.508 35 | 7.153 3<br>8.654 0<br>10.259 8<br>11.978 0<br>13.816 4                 | 4.766 5<br>5.389 3<br>5.971 3<br>6.515 2<br>7.023 6      | 15.744 9<br>20.104 2<br>24.760 2<br>29.655 6<br>34.739 1      | 17.620 9<br>23.010 2<br>28.981 4<br>35.496 7<br>42.520 3          | 6<br>7<br>8<br>9            | $\delta = (1+i)^{1/2}$                                                                               | 0.067 659<br>1.034 408                           |
| 11<br>12<br>13<br>14<br>15  | 2.104 85<br>2.252 19<br>2.409 85<br>2.578 53<br>2.759 03          | 0.475 09<br>0.444 01<br>0.414 96<br>0.387 82<br>0.362 45 | 15.783 6<br>17.888 5<br>20.140 6<br>22.550 5<br>25.129 0               | 7.498 7<br>7.942 7<br>8.357 7<br>8.745 5<br>9.107 9      | 39.965 2<br>45.293 3<br>50.687 8<br>56.117 3<br>61.554 0      | 50.018 9<br>57.961 6<br>66.319 3<br>75.064 7<br>84.172 7          | 11<br>12<br>13<br>14<br>15  |                                                                                                      | 1.017 059<br>1.005 654<br>0.934 579              |
| 16<br>17<br>18<br>19<br>20  | 2.952 16<br>3.158 82<br>3.379 93<br>3.616 53<br>3.869 68          | 0.338 73<br>0.316 57<br>0.295 86<br>0.276 51<br>0.258 42 | 27.888 1<br>30.840 2<br>33.999 0<br>37.379 0<br>40.995 5               | 9.446 6<br>9.763 2<br>10.059 1<br>10.335 6<br>10.594 0   | 66.973 7<br>72.355 5<br>77.681 0<br>82.934 7<br>88.103 1      | 93.619 3<br>103.382 5<br>113.441 6<br>123.777 2<br>134.371 2      | 16<br>17<br>18<br>19<br>20  | v <sup>1/2</sup> v <sup>1/4</sup> v <sup>1/12</sup>                                                  | 0.966 736<br>0.983 228<br>0.994 378              |
| 21<br>22<br>23<br>24<br>25  | 4.140 56<br>4.430 40<br>4.740 53<br>5.072 37<br>5.427 43          | 0.241 51<br>0.225 71<br>0.210 95<br>0.197 15<br>0.184 25 | 44.865 2<br>49.005 7<br>53.436 1<br>58.176 7<br>63.249 0               | 10.835 5<br>11.061 2<br>11.272 2<br>11.469 3<br>11.653 6 | 93.174 8<br>98.140 5<br>102.992 3<br>107.723 8<br>112.330 1   | 145.206 8<br>156.268 0<br>167.540 2<br>179.009 5<br>190.663 1     | 21<br>22<br>23<br>24<br>25  | $     \begin{array}{c}       d \\       d^{(2)} \\       d^{(4)} \\       d^{(12)}     \end{array} $ | 0.065 421<br>0.066 527<br>0.067 090<br>0.067 468 |
| 26<br>27<br>28<br>29<br>30  | 5.807 35<br>6.213 87<br>6.648 84<br>7.114 26<br>7.612 26          | 0.172 20<br>0.160 93<br>0.150 40<br>0.140 56<br>0.131 37 | 68.676 5<br>74.483 8<br>80.697 7<br>87.346 5<br>94.460 8               | 11.825 8<br>11.986 7<br>12.137 1<br>12.277 7<br>12.409 0 | 116.807 1<br>121.152 3<br>125.363 5<br>129.439 9<br>133.380 9 | 202.488 9<br>214.475 6<br>226.612 7<br>238.890 4<br>251.299 4     | 26<br>27<br>28<br>29<br>30  | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                                                                 | 1.017 204<br>1.025 880<br>1.031 691              |
| 31<br>32<br>33<br>34<br>35  | 8.145 11<br>8.715 27<br>9.325 34<br>9.978 11<br>10.676 58         | 0.122 77<br>0.114 74<br>0.107 23<br>0.100 22<br>0.093 66 | 102.073 0<br>110.218 2<br>118.933 4<br>128.258 8<br>138.236 9          | 12.531 8<br>12.646 6<br>12.753 8<br>12.854 0<br>12.947 7 | 137.186 8<br>140.858 5<br>144.397 3<br>147.804 7<br>151.082 9 | 263.831 2<br>276.477 8<br>289.231 6<br>302.085 6<br>315.033 3     | 31<br>32<br>33<br>34<br>35  | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                                                      | 1.034 605<br>1.052 204<br>1.043 380<br>1.037 525 |
| 36<br>37<br>38<br>39<br>40  | 11.423 94<br>12.223 62<br>13.079 27<br>13.994 82<br>14.974 46     | 0.087 54<br>0.081 81<br>0.076 46<br>0.071 46<br>0.066 78 | 148.913 5<br>160.337 4<br>172.561 0<br>185.640 3<br>199.635 1          | 13.035 2<br>13.117 0<br>13.193 5<br>13.264 9<br>13.331 7 | 154.234 2<br>157.261 2<br>160.166 5<br>162.953 3<br>165.624 5 | 328.068 5<br>341.185 5<br>354.379 0<br>367.643 9<br>380.975 6     | 36<br>37<br>38<br>39<br>40  | t/u                                                                                                  | 1.037 323                                        |
| 41<br>42<br>43<br>44<br>45  | 16.022 67<br>17.144 26<br>18.344 35<br>19.628 46<br>21.002 45     | 0.062 41<br>0.058 33<br>0.054 51<br>0.050 95<br>0.047 61 | 214.609 6<br>230.632 2<br>247.776 5<br>266.120 9<br>285.749 3          | 13.394 1<br>13.452 4<br>13.507 0<br>13.557 9<br>13.605 5 | 168.183 3<br>170.633 1<br>172.977 2<br>175.218 8<br>177.361 4 | 394.369 7<br>407.822 2<br>421.329 1<br>434.887 0<br>448.492 5     | 41<br>42<br>43<br>44<br>45  |                                                                                                      |                                                  |
| 46<br>47<br>48<br>49<br>50  | 22.472 62<br>24.045 71<br>25.728 91<br>27.529 93<br>29.457 03     | 0.044 50<br>0.041 59<br>0.038 87<br>0.036 32<br>0.033 95 | 306.751 8<br>329.224 4<br>353.270 1<br>378.999 0<br>406.528 9          | 13.650 0<br>13.691 6<br>13.730 5<br>13.766 8<br>13.800 7 | 179.408 4<br>181.363 0<br>183.228 6<br>185.008 5<br>186.705 9 | 462.142 6<br>475.834 2<br>489.564 7<br>503.331 4<br>517.132 2     | 46<br>47<br>48<br>49<br>50  |                                                                                                      |                                                  |
| 60<br>70<br>80<br>90<br>100 | 57.946 43<br>113.989 39<br>224.234 39<br>441.102 98<br>867.716 33 | 0.017 26<br>0.008 77<br>0.004 46<br>0.002 27<br>0.001 15 | 813.520 4<br>1 614.134 2<br>3 189.062 7<br>6 287.185 4<br>12 381.661 8 | 14.039 2<br>14.160 4<br>14.222 0<br>14.253 3<br>14.269 3 | 199.806 9<br>207.678 9<br>212.296 8<br>214.957 5<br>216.469 3 | 656.583 1<br>797.708 7<br>939.685 6<br>1 082.095 3<br>1 224.725 0 | 60<br>70<br>80<br>90<br>100 |                                                                                                      |                                                  |

| 8%                                                                                                     | n                          | $(1+i)^n$                                                     | $v^n$                                                    | $S_{\overline{n}}$                                            | $a_{\overline{n}}$                                       | $(Ia)_{\overline{n}}$                                         | $(Da)_{\overline{n} }$                                        | n                          |
|--------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------|
| i 0.080 000<br>i <sup>(2)</sup> 0.078 461<br>i <sup>(4)</sup> 0.077 706<br>i <sup>(12)</sup> 0.077 208 | 1<br>2<br>3<br>4<br>5      | 1.080 00<br>1.166 40<br>1.259 71<br>1.360 49<br>1.469 33      | 0.925 93<br>0.857 34<br>0.793 83<br>0.735 03<br>0.680 58 | 1.000 0<br>2.080 0<br>3.246 4<br>4.506 1<br>5.866 6           | 0.925 9<br>1.783 3<br>2.577 1<br>3.312 1<br>3.992 7      | 0.925 9<br>2.640 6<br>5.022 1<br>7.962 2<br>11.365 1          | 0.925 9<br>2.709 2<br>5.286 3<br>8.598 4<br>12.591 1          | 1<br>2<br>3<br>4<br>5      |
| $\delta \qquad 0.076961$ $(1+i)^{1/2}  1.039230$                                                       | 6                          | 1.586 87                                                      | 0.630 17                                                 | 7.335 9                                                       | 4.622 9                                                  | 15.146 2                                                      | 17.214 0                                                      | 6                          |
|                                                                                                        | 7                          | 1.713 82                                                      | 0.583 49                                                 | 8.922 8                                                       | 5.206 4                                                  | 19.230 6                                                      | 22.420 4                                                      | 7                          |
|                                                                                                        | 8                          | 1.850 93                                                      | 0.540 27                                                 | 10.636 6                                                      | 5.746 6                                                  | 23.552 7                                                      | 28.167 0                                                      | 8                          |
|                                                                                                        | 9                          | 1.999 00                                                      | 0.500 25                                                 | 12.487 6                                                      | 6.246 9                                                  | 28.055 0                                                      | 34.413 9                                                      | 9                          |
|                                                                                                        | 10                         | 2.158 92                                                      | 0.463 19                                                 | 14.486 6                                                      | 6.710 1                                                  | 32.686 9                                                      | 41.124 0                                                      | 10                         |
| $(1+i)^{1/4} 1.019 427$ $(1+i)^{1/12} 1.006 434$ $v 0.925 926$                                         | 11                         | 2.331 64                                                      | 0.428 88                                                 | 16.645 5                                                      | 7.139 0                                                  | 37.404 6                                                      | 48.262 9                                                      | 11                         |
|                                                                                                        | 12                         | 2.518 17                                                      | 0.397 11                                                 | 18.977 1                                                      | 7.536 1                                                  | 42.170 0                                                      | 55.799 0                                                      | 12                         |
|                                                                                                        | 13                         | 2.719 62                                                      | 0.367 70                                                 | 21.495 3                                                      | 7.903 8                                                  | 46.950 1                                                      | 63.702 8                                                      | 13                         |
|                                                                                                        | 14                         | 2.937 19                                                      | 0.340 46                                                 | 24.214 9                                                      | 8.244 2                                                  | 51.716 5                                                      | 71.947 0                                                      | 14                         |
|                                                                                                        | 15                         | 3.172 17                                                      | 0.315 24                                                 | 27.152 1                                                      | 8.559 5                                                  | 56.445 1                                                      | 80.506 5                                                      | 15                         |
| $v^{1/2}$ 0.962 250<br>$v^{1/4}$ 0.980 944<br>$v^{1/12}$ 0.993 607<br>d 0.074 074                      | 16<br>17<br>18<br>19<br>20 | 3.425 94<br>3.700 02<br>3.996 02<br>4.315 70<br>4.660 96      | 0.291 89<br>0.270 27<br>0.250 25<br>0.231 71<br>0.214 55 | 30.324 3<br>33.750 2<br>37.450 2<br>41.446 3<br>45.762 0      | 8.851 4<br>9.121 6<br>9.371 9<br>9.603 6<br>9.818 1      | 61.115 4<br>65.710 0<br>70.214 4<br>74.617 0<br>78.907 9      | 89.357 9<br>98.479 5<br>107.851 4<br>117.455 0<br>127.273 2   | 16<br>17<br>18<br>19<br>20 |
| $d^{(2)} = 0.075  499$ $d^{(4)} = 0.076  225$ $d^{(12)} = 0.076  715$                                  | 21                         | 5.033 83                                                      | 0.198 66                                                 | 50.422 9                                                      | 10.016 8                                                 | 83.079 7                                                      | 137.290 0                                                     | 21                         |
|                                                                                                        | 22                         | 5.436 54                                                      | 0.183 94                                                 | 55.456 8                                                      | 10.200 7                                                 | 87.126 4                                                      | 147.490 7                                                     | 22                         |
|                                                                                                        | 23                         | 5.871 46                                                      | 0.170 32                                                 | 60.893 3                                                      | 10.371 1                                                 | 91.043 7                                                      | 157.861 8                                                     | 23                         |
|                                                                                                        | 24                         | 6.341 18                                                      | 0.157 70                                                 | 66.764 8                                                      | 10.528 8                                                 | 94.828 4                                                      | 168.390 5                                                     | 24                         |
|                                                                                                        | 25                         | 6.848 48                                                      | 0.146 02                                                 | 73.105 9                                                      | 10.674 8                                                 | 98.478 9                                                      | 179.065 3                                                     | 25                         |
| $i/i^{(2)}$ 1.019 615<br>$i/i^{(4)}$ 1.029 519<br>$i/i^{(12)}$ 1.036 157                               | 26<br>27<br>28<br>29<br>30 | 7.396 35<br>7.988 06<br>8.627 11<br>9.317 27<br>10.062 66     | 0.135 20<br>0.125 19<br>0.115 91<br>0.107 33<br>0.099 38 | 79.954 4<br>87.350 8<br>95.338 8<br>103.965 9<br>113.283 2    | 10.810 0<br>10.935 2<br>11.051 1<br>11.158 4<br>11.257 8 | 101.994 1<br>105.374 2<br>108.619 8<br>111.732 3<br>114.713 6 | 189.875 3<br>200.810 4<br>211.861 5<br>223.019 9<br>234.277 7 | 26<br>27<br>28<br>29<br>30 |
| $i/\delta$ 1.039 487<br>$i/d^{(2)}$ 1.059 615<br>$i/d^{(4)}$ 1.049 519<br>$i/d^{(12)}$ 1.042 824       | 31<br>32<br>33<br>34<br>35 | 10.867 67<br>11.737 08<br>12.676 05<br>13.690 13<br>14.785 34 | 0.092 02<br>0.085 20<br>0.078 89<br>0.073 05<br>0.067 63 | 123.345 9<br>134.213 5<br>145.950 6<br>158.626 7<br>172.316 8 | 11.349 8<br>11.435 0<br>11.513 9<br>11.586 9<br>11.654 6 | 117.566 1<br>120.292 5<br>122.895 8<br>125.379 3<br>127.746 6 | 245.627 5<br>257.062 5<br>268.576 4<br>280.163 3<br>291.817 9 | 31<br>32<br>33<br>34<br>35 |
|                                                                                                        | 36                         | 15.968 17                                                     | 0.062 62                                                 | 187.102 1                                                     | 11.717 2                                                 | 130.001 0                                                     | 303.535 1                                                     | 36                         |
|                                                                                                        | 37                         | 17.245 63                                                     | 0.057 99                                                 | 203.070 3                                                     | 11.775 2                                                 | 132.146 5                                                     | 315.310 3                                                     | 37                         |
|                                                                                                        | 38                         | 18.625 28                                                     | 0.053 69                                                 | 220.315 9                                                     | 11.828 9                                                 | 134.186 8                                                     | 327.139 1                                                     | 38                         |
|                                                                                                        | 39                         | 20.115 30                                                     | 0.049 71                                                 | 238.941 2                                                     | 11.878 6                                                 | 136.125 6                                                     | 339.017 7                                                     | 39                         |
|                                                                                                        | 40                         | 21.724 52                                                     | 0.046 03                                                 | 259.056 5                                                     | 11.924 6                                                 | 137.966 8                                                     | 350.942 3                                                     | 40                         |
|                                                                                                        | 41                         | 23.462 48                                                     | 0.042 62                                                 | 280.781 0                                                     | 11.967 2                                                 | 139.714 3                                                     | 362.909 6                                                     | 41                         |
|                                                                                                        | 42                         | 25.339 48                                                     | 0.039 46                                                 | 304.243 5                                                     | 12.006 7                                                 | 141.371 8                                                     | 374.916 3                                                     | 42                         |
|                                                                                                        | 43                         | 27.366 64                                                     | 0.036 54                                                 | 329.583 0                                                     | 12.043 2                                                 | 142.943 0                                                     | 386.959 5                                                     | 43                         |
|                                                                                                        | 44                         | 29.555 97                                                     | 0.033 83                                                 | 356.949 6                                                     | 12.077 1                                                 | 144.431 7                                                     | 399.036 6                                                     | 44                         |
|                                                                                                        | 45                         | 31.920 45                                                     | 0.031 33                                                 | 386.505 6                                                     | 12.108 4                                                 | 145.841 5                                                     | 411.145 0                                                     | 45                         |
|                                                                                                        | 46                         | 34.474 09                                                     | 0.029 01                                                 | 418.426 1                                                     | 12.137 4                                                 | 147.175 8                                                     | 423.282 4                                                     | 46                         |
|                                                                                                        | 47                         | 37.232 01                                                     | 0.026 86                                                 | 452.900 2                                                     | 12.164 3                                                 | 148.438 2                                                     | 435.446 7                                                     | 47                         |
|                                                                                                        | 48                         | 40.210 57                                                     | 0.024 87                                                 | 490.132 2                                                     | 12.189 1                                                 | 149.631 9                                                     | 447.635 8                                                     | 48                         |
|                                                                                                        | 49                         | 43.427 42                                                     | 0.023 03                                                 | 530.342 7                                                     | 12.212 2                                                 | 150.760 2                                                     | 459.848 0                                                     | 49                         |
|                                                                                                        | 50                         | 46.901 61                                                     | 0.021 32                                                 | 573.770 2                                                     | 12.233 5                                                 | 151.826 3                                                     | 472.081 4                                                     | 50                         |
|                                                                                                        | 60                         | 101.257 06                                                    | 0.009 88                                                 | 1 253.213 3                                                   | 12.376 6                                                 | 159.676 6                                                     | 595.293 1                                                     | 60                         |
|                                                                                                        | 70                         | 218.606 41                                                    | 0.004 57                                                 | 2 720.080 1                                                   | 12.442 8                                                 | 163.975 4                                                     | 719.464 8                                                     | 70                         |
|                                                                                                        | 80                         | 471.954 83                                                    | 0.002 12                                                 | 5 886.935 4                                                   | 12.473 5                                                 | 166.273 6                                                     | 844.081 1                                                     | 80                         |
|                                                                                                        | 90                         | 1 018.915 09                                                  | 0.000 98                                                 | 12 723.938 6                                                  | 12.487 7                                                 | 167.480 3                                                     | 968.903 3                                                     | 90                         |
|                                                                                                        | 100                        | 2 199.761 26                                                  | 0.000 45                                                 | 27 484.515 7                                                  | 12.494 3                                                 | 168.105 0                                                     | 1 093.821 0                                                   | 100                        |

| n                           | $(1+i)^n$                                                              | $v^n$                                                    | $S_{\overline{n} }$                                                        | $a_{\overline{n}}$                                       | $(Ia)_{\overline{n}}$                                         | $(Da)_{\overline{n }}$                                        | n                           |                                                                | 9%                                               |
|-----------------------------|------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|-----------------------------|----------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5       | 1.090 00<br>1.188 10<br>1.295 03<br>1.411 58<br>1.538 62               | 0.917 43<br>0.841 68<br>0.772 18<br>0.708 43<br>0.649 93 | 1.000 0<br>2.090 0<br>3.278 1<br>4.573 1<br>5.984 7                        | 0.917 4<br>1.759 1<br>2.531 3<br>3.239 7<br>3.889 7      | 0.917 4<br>2.600 8<br>4.917 3<br>7.751 0<br>11.000 7          | 0.917 4<br>2.676 5<br>5.207 8<br>8.447 6<br>12.337 2          | 1<br>2<br>3<br>4<br>5       | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup> | 0.090 000<br>0.088 061<br>0.087 113<br>0.086 488 |
| 6<br>7<br>8<br>9<br>10      | 1.677 10<br>1.828 04<br>1.992 56<br>2.171 89<br>2.367 36               | 0.596 27<br>0.547 03<br>0.501 87<br>0.460 43<br>0.422 41 | 7.523 3<br>9.200 4<br>11.028 5<br>13.021 0<br>15.192 9                     | 4.485 9<br>5.033 0<br>5.534 8<br>5.995 2<br>6.417 7      | 14.578 3<br>18.407 5<br>22.422 5<br>26.566 3<br>30.790 4      | 16.823 1<br>21.856 1<br>27.390 9<br>33.386 1<br>39.803 8      | 6<br>7<br>8<br>9<br>10      | $\delta = (1+i)^{1/2}$                                         | 0.086 178<br>1.044 031                           |
| 11<br>12<br>13<br>14<br>15  | 2.580 43<br>2.812 66<br>3.065 80<br>3.341 73<br>3.642 48               | 0.387 53<br>0.355 53<br>0.326 18<br>0.299 25<br>0.274 54 | 17.560 3<br>20.140 7<br>22.953 4<br>26.019 2<br>29.360 9                   | 6.805 2<br>7.160 7<br>7.486 9<br>7.786 2<br>8.060 7      | 35.053 3<br>39.319 7<br>43.560 0<br>47.749 5<br>51.867 6      | 46.609 0<br>53.769 7<br>61.256 6<br>69.042 8<br>77.103 5      | 11<br>12<br>13<br>14<br>15  | $(1+i)^{1/4}  (1+i)^{1/12}  v  1/2$                            | 0.917 431                                        |
| 16<br>17<br>18<br>19<br>20  | 3.970 31<br>4.327 63<br>4.717 12<br>5.141 66<br>5.604 41               | 0.251 87<br>0.231 07<br>0.211 99<br>0.194 49<br>0.178 43 | 33.003 4<br>36.973 7<br>41.301 3<br>46.018 5<br>51.160 1                   | 8.312 6<br>8.543 6<br>8.755 6<br>8.950 1<br>9.128 5      | 55.897 5<br>59.825 7<br>63.641 6<br>67.336 9<br>70.905 5      | 85.416 0<br>93.959 7<br>102.715 3<br>111.665 4<br>120.793 9   | 16<br>17<br>18<br>19<br>20  | $v^{1/2}$ $v^{1/4}$ $v^{1/12}$ $d$                             | 0.957 826<br>0.978 686<br>0.992 844<br>0.082 569 |
| 21<br>22<br>23<br>24<br>25  | 6.108 81<br>6.658 60<br>7.257 87<br>7.911 08<br>8.623 08               | 0.163 70<br>0.150 18<br>0.137 78<br>0.126 40<br>0.115 97 | 56.764 5<br>62.873 3<br>69.531 9<br>76.789 8<br>84.700 9                   | 9.292 2<br>9.442 4<br>9.580 2<br>9.706 6<br>9.822 6      | 74.343 2<br>77.647 2<br>80.816 2<br>83.849 9<br>86.749 1      | 130.086 2<br>139.528 6<br>149.108 8<br>158.815 4<br>168.638 0 | 21<br>22<br>23<br>24<br>25  | $d^{(2)}$ $d^{(4)}$ $d^{(12)}$                                 | 0.084 347<br>0.085 256<br>0.085 869              |
| 26<br>27<br>28<br>29<br>30  | 9.399 16<br>10.245 08<br>11.167 14<br>12.172 18<br>13.267 68           | 0.106 39<br>0.097 61<br>0.089 55<br>0.082 15<br>0.075 37 | 93.324 0<br>102.723 1<br>112.968 2<br>124.135 4<br>136.307 5               | 9.929 0<br>10.026 6<br>10.116 1<br>10.198 3<br>10.273 7  | 89.515 3<br>92.150 7<br>94.658 0<br>97.040 5<br>99.301 7      | 178.567 0<br>188.593 6<br>198.709 7<br>208.908 0<br>219.181 6 | 26<br>27<br>28<br>29<br>30  | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                           | 1.022 015<br>1.033 144<br>1.040 608              |
| 31<br>32<br>33<br>34<br>35  | 14.461 77<br>15.763 33<br>17.182 03<br>18.728 41<br>20.413 97          | 0.069 15<br>0.063 44<br>0.058 20<br>0.053 39<br>0.048 99 | 149.575 2<br>164.037 0<br>179.800 3<br>196.982 3<br>215.710 8              | 10.342 8<br>10.406 2<br>10.464 4<br>10.517 8<br>10.566 8 | 101.445 2<br>103.475 3<br>105.395 9<br>107.211 3<br>108.925 8 | 229.524 4<br>239.930 7<br>250.395 1<br>260.912 9<br>271.479 8 | 31<br>32<br>33<br>34<br>35  | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                | 1.044 354<br>1.067 015<br>1.055 644<br>1.048 108 |
| 36<br>37<br>38<br>39<br>40  | 22.251 23<br>24.253 84<br>26.436 68<br>28.815 98<br>31.409 42          | 0.044 94<br>0.041 23<br>0.037 83<br>0.034 70<br>0.031 84 | 236.124 7<br>258.375 9<br>282.629 8<br>309.066 5<br>337.882 4              | 10.611 8<br>10.653 0<br>10.690 8<br>10.725 5<br>10.757 4 | 110.543 7<br>112.069 2<br>113.506 6<br>114.860 0<br>116.133 5 | 282.091 5<br>292.744 5<br>303.435 3<br>314.160 9<br>324.918 2 | 36<br>37<br>38<br>39<br>40  | 77 0                                                           | 1010100                                          |
| 41<br>42<br>43<br>44<br>45  | 34.236 27<br>37.317 53<br>40.676 11<br>44.336 96<br>48.327 29          | 0.029 21<br>0.026 80<br>0.024 58<br>0.022 55<br>0.020 69 | 369.291 9<br>403.528 1<br>440.845 7<br>481.521 8<br>525.858 7              | 10.786 6<br>10.813 4<br>10.838 0<br>10.860 5<br>10.881 2 | 117.331 1<br>118.456 6<br>119.513 7<br>120.506 1<br>121.437 3 | 335.704 8<br>346.518 2<br>357.356 1<br>368.216 6<br>379.097 8 | 41<br>42<br>43<br>44<br>45  |                                                                |                                                  |
| 46<br>47<br>48<br>49<br>50  | 52.676 74<br>57.417 65<br>62.585 24<br>68.217 91<br>74.357 52          | 0.018 98<br>0.017 42<br>0.015 98<br>0.014 66<br>0.013 45 | 574.186 0<br>626.862 8<br>684.280 4<br>746.865 6<br>815.083 6              | 10.900 2<br>10.917 6<br>10.933 6<br>10.948 2<br>10.961 7 | 122.310 5<br>123.129 1<br>123.896 0<br>124.614 3<br>125.286 7 | 389.998 0<br>400.915 6<br>411.849 2<br>422.797 4<br>433.759 1 | 46<br>47<br>48<br>49<br>50  |                                                                |                                                  |
| 60<br>70<br>80<br>90<br>100 | 176.031 29<br>416.730 09<br>986.551 67<br>2 335.526 58<br>5 529.040 79 | 0.005 68<br>0.002 40<br>0.001 01<br>0.000 43<br>0.000 18 | 1 944.792 1<br>4 619.223 2<br>10 950.574 1<br>25 939.184 2<br>61 422.675 5 | 11.048 0<br>11.084 4<br>11.099 8<br>11.106 4<br>11.109 1 | 130.016 2<br>132.378 6<br>133.530 5<br>134.082 1<br>134.342 6 | 543.911 2<br>654.617 2<br>765.557 2<br>876.596 1<br>987.676 6 | 60<br>70<br>80<br>90<br>100 |                                                                |                                                  |

| 10%                                                                                                    | n                          | $(1+i)^n$                                                     | $v^n$                                                    | $S_{\overline{n} }$                                           | $a_{\overline{n} }$                                 | $(Ia)_{\overline{n }}$                                   | $(Da)_{\overline{n}}$                                         | n                          |
|--------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------|
| i 0.100 000<br>i <sup>(2)</sup> 0.097 618<br>i <sup>(4)</sup> 0.096 455<br>i <sup>(12)</sup> 0.095 690 | 1<br>2<br>3<br>4<br>5      | 1.100 00<br>1.210 00<br>1.331 00<br>1.464 10<br>1.610 51      | 0.909 09<br>0.826 45<br>0.751 31<br>0.683 01<br>0.620 92 | 1.000 0<br>2.100 0<br>3.310 0<br>4.641 0<br>6.105 1           | 0.909 1<br>1.735 5<br>2.486 9<br>3.169 9<br>3.790 8 | 0.909 1<br>2.562 0<br>4.815 9<br>7.548 0<br>10.652 6     | 0.909 1<br>2.644 6<br>5.131 5<br>8.301 3<br>12.092 1          | 1<br>2<br>3<br>4<br>5      |
| $\delta \qquad 0.095310$ $(1+i)^{1/2}  1.048809$                                                       | 6                          | 1.771 56                                                      | 0.564 47                                                 | 7.715 6                                                       | 4.355 3                                             | 14.039 4                                                 | 16.447 4                                                      | 6                          |
|                                                                                                        | 7                          | 1.948 72                                                      | 0.513 16                                                 | 9.487 2                                                       | 4.868 4                                             | 17.631 5                                                 | 21.315 8                                                      | 7                          |
|                                                                                                        | 8                          | 2.143 59                                                      | 0.466 51                                                 | 11.435 9                                                      | 5.334 9                                             | 21.363 6                                                 | 26.650 7                                                      | 8                          |
|                                                                                                        | 9                          | 2.357 95                                                      | 0.424 10                                                 | 13.579 5                                                      | 5.759 0                                             | 25.180 5                                                 | 32.409 8                                                      | 9                          |
| $ (1+i)^{1/4} = 1.024 \cdot 114 $ $ (1+i)^{1/12} = 1.007 \cdot 974 $                                   | 10                         | 2.593 74                                                      | 0.385 54                                                 | 15.937 4                                                      | 6.144 6                                             | 29.035 9                                                 | 38.554 3                                                      | 10                         |
|                                                                                                        | 11                         | 2.853 12                                                      | 0.350 49                                                 | 18.531 2                                                      | 6.495 1                                             | 32.891 3                                                 | 45.049 4                                                      | 11                         |
|                                                                                                        | 12                         | 3.138 43                                                      | 0.318 63                                                 | 21.384 3                                                      | 6.813 7                                             | 36.714 9                                                 | 51.863 1                                                      | 12                         |
|                                                                                                        | 13                         | 3.452 27                                                      | 0.289 66                                                 | 24.522 7                                                      | 7.103 4                                             | 40.480 5                                                 | 58.966 4                                                      | 13                         |
| $v = 0.909 091$ $v^{1/2} = 0.953 463$                                                                  | 14<br>15<br>16             | 3.797 50<br>4.177 25<br>4.594 97                              | 0.263 33<br>0.239 39<br>0.217 63                         | 27.975 0<br>31.772 5<br>35.949 7                              | 7.366 7<br>7.606 1<br>7.823 7                       | 44.167 2<br>47.758 1<br>51.240 1                         | 66.333 1<br>73.939 2<br>81.762 9                              | 14<br>15                   |
| $v^{1/4}$ 0.976 454 $v^{1/12}$ 0.992 089 $d$ 0.090 909                                                 | 17                         | 5.054 47                                                      | 0.197 84                                                 | 40.544 7                                                      | 8.021 6                                             | 54.603 5                                                 | 89.784 5                                                      | 17                         |
|                                                                                                        | 18                         | 5.559 92                                                      | 0.179 86                                                 | 45.599 2                                                      | 8.201 4                                             | 57.841 0                                                 | 97.985 9                                                      | 18                         |
|                                                                                                        | 19                         | 6.115 91                                                      | 0.163 51                                                 | 51.159 1                                                      | 8.364 9                                             | 60.947 6                                                 | 106.350 8                                                     | 19                         |
|                                                                                                        | 20                         | 6.727 50                                                      | 0.148 64                                                 | 57.275 0                                                      | 8.513 6                                             | 63.920 5                                                 | 114.864 4                                                     | 20                         |
| $d^{(2)} = 0.093\ 075$ $d^{(4)} = 0.094\ 184$ $d^{(12)} = 0.094\ 933$                                  | 21                         | 7.400 25                                                      | 0.135 13                                                 | 64.002 5                                                      | 8.648 7                                             | 66.758 2                                                 | 123.513 1                                                     | 21                         |
|                                                                                                        | 22                         | 8.140 27                                                      | 0.122 85                                                 | 71.402 7                                                      | 8.771 5                                             | 69.460 8                                                 | 132.284 6                                                     | 22                         |
|                                                                                                        | 23                         | 8.954 30                                                      | 0.111 68                                                 | 79.543 0                                                      | 8.883 2                                             | 72.029 4                                                 | 141.167 8                                                     | 23                         |
|                                                                                                        | 24                         | 9.849 73                                                      | 0.101 53                                                 | 88.497 3                                                      | 8.984 7                                             | 74.466 0                                                 | 150.152 6                                                     | 24                         |
|                                                                                                        | 25                         | 10.834 71                                                     | 0.092 30                                                 | 98.347 1                                                      | 9.077 0                                             | 76.773 4                                                 | 159.229 6                                                     | 25                         |
| $i/i^{(2)}$ 1.024 404<br>$i/i^{(4)}$ 1.036 756<br>$i/i^{(12)}$ 1.045 045                               | 26<br>27<br>28<br>29<br>30 | 11.918 18<br>13.109 99<br>14.420 99<br>15.863 09<br>17.449 40 | 0.083 91<br>0.076 28<br>0.069 34<br>0.063 04<br>0.057 31 | 109.181 8<br>121.099 9<br>134.209 9<br>148.630 9<br>164.494 0 | 9.160 9<br>9.237 2<br>9.306 6<br>9.369 6<br>9.426 9 | 78.955 0<br>81.014 5<br>82.956 1<br>84.784 2<br>86.503 5 | 168.390 5<br>177.627 8<br>186.934 3<br>196.303 9<br>205.730 9 | 26<br>27<br>28<br>29<br>30 |
| $i/\delta$ 1.049 206<br>$i/d^{(2)}$ 1.074 404<br>$i/d^{(4)}$ 1.061 756<br>$i/d^{(12)}$ 1.053 378       | 31<br>32<br>33<br>34<br>35 | 19.194 34<br>21.113 78<br>23.225 15<br>25.547 67<br>28.102 44 | 0.052 10<br>0.047 36<br>0.043 06<br>0.039 14<br>0.035 58 | 181.943 4<br>201.137 8<br>222.251 5<br>245.476 7<br>271.024 4 | 9.479 0<br>9.526 4<br>9.569 4<br>9.608 6<br>9.644 2 | 88.118 6<br>89.634 2<br>91.055 0<br>92.385 9<br>93.631 3 | 215.209 9<br>224.736 2<br>234.305 7<br>243.914 3<br>253.558 4 | 31<br>32<br>33<br>34<br>35 |
| 174 1.033 376                                                                                          | 36                         | 30.912 68                                                     | 0.032 35                                                 | 299.126 8                                                     | 9.676 5                                             | 94.795 9                                                 | 263.234 9                                                     | 36                         |
|                                                                                                        | 37                         | 34.003 95                                                     | 0.029 41                                                 | 330.039 5                                                     | 9.705 9                                             | 95.884 0                                                 | 272.940 8                                                     | 37                         |
|                                                                                                        | 38                         | 37.404 34                                                     | 0.026 73                                                 | 364.043 4                                                     | 9.732 7                                             | 96.899 9                                                 | 282.673 5                                                     | 38                         |
|                                                                                                        | 39                         | 41.144 78                                                     | 0.024 30                                                 | 401.447 8                                                     | 9.757 0                                             | 97.847 8                                                 | 292.430 4                                                     | 39                         |
|                                                                                                        | 40                         | 45.259 26                                                     | 0.022 09                                                 | 442.592 6                                                     | 9.779 1                                             | 98.731 6                                                 | 302.209 5                                                     | 40                         |
|                                                                                                        | 41                         | 49.785 18                                                     | 0.020 09                                                 | 487.851 8                                                     | 9.799 1                                             | 99.555 1                                                 | 312.008 6                                                     | 41                         |
|                                                                                                        | 42                         | 54.763 70                                                     | 0.018 26                                                 | 537.637 0                                                     | 9.817 4                                             | 100.322 1                                                | 321.826 0                                                     | 42                         |
|                                                                                                        | 43                         | 60.240 07                                                     | 0.016 60                                                 | 592.400 7                                                     | 9.834 0                                             | 101.035 9                                                | 331.660 0                                                     | 43                         |
|                                                                                                        | 44                         | 66.264 08                                                     | 0.015 09                                                 | 652.640 8                                                     | 9.849 1                                             | 101.699 9                                                | 341.509 1                                                     | 44                         |
|                                                                                                        | 45                         | 72.890 48                                                     | 0.013 72                                                 | 718.904 8                                                     | 9.862 8                                             | 102.317 2                                                | 351.371 9                                                     | 45                         |
|                                                                                                        | 46                         | 80.179 53                                                     | 0.012 47                                                 | 791.795 3                                                     | 9.875 3                                             | 102.891 0                                                | 361.247 2                                                     | 46                         |
|                                                                                                        | 47                         | 88.197 49                                                     | 0.011 34                                                 | 871.974 9                                                     | 9.886 6                                             | 103.423 8                                                | 371.133 8                                                     | 47                         |
|                                                                                                        | 48                         | 97.017 23                                                     | 0.010 31                                                 | 960.172 3                                                     | 9.896 9                                             | 103.918 6                                                | 381.030 7                                                     | 48                         |
|                                                                                                        | 49                         | 106.718 96                                                    | 0.009 37                                                 | 1 057.189 6                                                   | 9.906 3                                             | 104.377 8                                                | 390.937 0                                                     | 49                         |
|                                                                                                        | 50                         | 117.390 85                                                    | 0.008 52                                                 | 1 163.908 5                                                   | 9.914 8                                             | 104.803 7                                                | 400.851 9                                                     | 50                         |
|                                                                                                        | 60                         | 304.481 64                                                    | 0.003 28                                                 | 3 034.816 4                                                   | 9.967 2                                             | 107.668 2                                                | 500.328 4                                                     | 60                         |
|                                                                                                        | 70                         | 789.746 96                                                    | 0.001 27                                                 | 7 887.469 6                                                   | 9.987 3                                             | 108.974 4                                                | 600.126 6                                                     | 70                         |
|                                                                                                        | 80                         | 2 048.400 21                                                  | 0.000 49                                                 | 20 474.002 1                                                  | 9.995 1                                             | 109.555 8                                                | 700.048 8                                                     | 80                         |
|                                                                                                        | 90                         | 5 313.022 61                                                  | 0.000 19                                                 | 53 120.226 1                                                  | 9.998 1                                             | 109.809 9                                                | 800.018 8                                                     | 90                         |
|                                                                                                        | 100                        | 13 780.612 34                                                 | 0.000 07                                                 | 137 796.123 4                                                 | 9.999 3                                             | 109.919 5                                                | 900.007 3                                                     | 100                        |

| n        | $(1+i)^n$                    | $v^n$                | $S_{\overline{n }}$                     | $a_{\overline{n} }$ | $(Ia)_{\overline{n}}$ | $(Da)_{\overline{n} }$ | n        |                   | 12%       |
|----------|------------------------------|----------------------|-----------------------------------------|---------------------|-----------------------|------------------------|----------|-------------------|-----------|
| 1        | 1.120 00                     | 0.892 86             | 1.000 0                                 | 0.892 9             | 0.892 9               | 0.892 9                | 1        | i                 | 0.120 000 |
| 2        | 1.254 40                     | 0.797 19             | 2.120 0                                 | 1.690 1             | 2.487 2               | 2.582 9                | 2        | i <sup>(2)</sup>  | 0.116 601 |
| 3        | 1.404 93                     | 0.711 78             | 3.374 4                                 | 2.401 8             | 4.622 6               | 4.984 7                | 3        | i <sup>(4)</sup>  | 0.114 949 |
| 4 5      | 1.573 52<br>1.762 34         | 0.635 52<br>0.567 43 | 4.779 3<br>6.352 8                      | 3.037 3<br>3.604 8  | 7.164 7<br>10.001 8   | 8.022 1<br>11.626 9    | 5        | i(12)             |           |
| 3        | 1.702 34                     | 0.307 43             | 0.332 8                                 | 3.004 6             | 10.001 6              | 11.020 )               | 3        | i <sup>(12)</sup> | 0.113 866 |
| 6<br>7   | 1.973 82                     | 0.506 63             | 8.115 2                                 | 4.1114              | 13.041 6              | 15.738 3               | 6        |                   |           |
|          | 2.210 68                     | 0.452 35             | 10.089 0                                | 4.563 8             | 16.208 0              | 20.302 0               | 7        | δ                 | 0.113 329 |
| 8        | 2.475 96<br>2.773 08         | 0.403 88<br>0.360 61 | 12.299 7<br>14.775 7                    | 4.967 6<br>5.328 2  | 19.439 1<br>22.684 6  | 25.269 7<br>30.597 9   | 8        | 1/2               |           |
| 10       | 3.105 85                     | 0.300 01             | 17.548 7                                | 5.650 2             | 25.904 3              | 36.248 1               | 10       | $(1+i)^{1/2}$     | 1.058 301 |
|          |                              | ****                 | -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                     |                       |                        |          | $(1+i)^{1/4}$     | 1.028 737 |
| 11       | 3.478 55                     | 0.287 48             | 20.654 6                                | 5.937 7             | 29.066 5              | 42.185 8               | 11       |                   | 1.009 489 |
| 12<br>13 | 3.895 98<br>4.363 49         | 0.256 68<br>0.229 17 | 24.133 1<br>28.029 1                    | 6.194 4<br>6.423 5  | 32.146 7<br>35.125 9  | 48.380 2<br>54.803 8   | 12<br>13 | (1+i)             | 1.009 489 |
| 14       | 4.887 11                     | 0.229 17             | 32.392 6                                | 6.628 2             | 37.990 6              | 61.431 9               | 14       |                   | 0.002.057 |
| 15       | 5.473 57                     | 0.182 70             | 37.279 7                                | 6.810 9             | 40.731 0              | 68.242 8               | 15       | V 1/2             | 0.892 857 |
| 16       | ( 120 20                     | 0.162.12             | 10.752.2                                | 6.074.0             | 42 241 0              | 75.016.0               | 1.0      | v <sup>1/2</sup>  | 0.944 911 |
| 16<br>17 | 6.130 39<br>6.866 04         | 0.163 12<br>0.145 64 | 42.753 3<br>48.883 7                    | 6.974 0<br>7.119 6  | 43.341 0<br>45.816 9  | 75.216 8<br>82.336 4   | 16<br>17 | $v^{1/4}$         | 0.972 065 |
| 18       | 7.689 97                     | 0.143 04             | 55.749 7                                | 7.119 0             | 48.157 6              | 89.586 1               | 18       | v <sup>1/12</sup> | 0.990 600 |
| 19       | 8.612 76                     | 0.116 11             | 63.439 7                                | 7.365 8             | 50.363 7              | 96.951 9               | 19       |                   |           |
| 20       | 9.646 29                     | 0.103 67             | 72.052 4                                | 7.469 4             | 52.437 0              | 104.421 3              | 20       | d                 | 0.107 143 |
| 21       | 10.803 85                    | 0.092 56             | 81.698 7                                | 7.562 0             | 54.380 8              | 111.983 3              | 21       | $d^{(2)}$         | 0.110 178 |
| 22       | 12.100 31                    | 0.092 50             | 92.502 6                                | 7.644 6             | 56.198 9              | 119.628 0              | 22       | $d^{(4)}$         |           |
| 23       | 13.552 35                    | 0.073 79             | 104.602 9                               | 7.718 4             | 57.896 0              | 127.346 4              | 23       |                   | 0.111 738 |
| 24       | 15.178 63                    | 0.065 88             | 118.155 2                               | 7.784 3             | 59.477 2              | 135.130 7              | 24       | $d^{(12)}$        | 0.112 795 |
| 25       | 17.000 06                    | 0.058 82             | 133.333 9                               | 7.843 1             | 60.947 8              | 142.973 8              | 25       |                   |           |
| 26       | 19.040 07                    | 0.052 52             | 150.333 9                               | 7.895 7             | 62.313 3              | 150.869 5              | 26       | $i/i^{(2)}$       | 1.029 150 |
| 27       | 21.324 88                    | 0.046 89             | 169.374 0                               | 7.942 6             | 63.579 4              | 158.812 1              | 27       | $i/i^{(4)}$       | 1.043 938 |
| 28       | 23.883 87                    | 0.041 87             | 190.698 9                               | 7.9844              | 64.751 8              | 166.796 5              | 28       | $i/i^{(12)}$      | 1.053 875 |
| 29<br>30 | 26.749 93<br>29.959 92       | 0.037 38<br>0.033 38 | 214.582 8<br>241.332 7                  | 8.021 8<br>8.055 2  | 65.835 9<br>66.837 2  | 174.818 3<br>182.873 5 | 29<br>30 |                   | 1.003 070 |
| 30       | 29.939 92                    | 0.033 38             | 241.332 /                               | 8.033 2             | 00.837 2              | 102.073 3              | 30       | i/δ               | 1.058 867 |
| 31       | 33.555 11                    | 0.029 80             | 271.292 6                               | 8.085 0             | 67.761 1              | 190.958 5              | 31       |                   |           |
| 32       | 37.581 73                    | 0.026 61             | 304.847 7                               | 8.1116              | 68.612 6              | 199.070 0              | 32       | $i/d^{(2)}$       | 1.089 150 |
| 33<br>34 | 42.091 53<br>47.142 52       | 0.023 76<br>0.021 21 | 342.429 4<br>384.521 0                  | 8.135 4<br>8.156 6  | 69.396 6<br>70.117 8  | 207.205 4<br>215.362 0 | 33<br>34 | $i/d^{(4)}$       | 1.073 938 |
| 35       | 52.799 62                    | 0.021 21             | 431.663 5                               | 8.175 5             | 70.780 7              | 223.537 5              | 35       |                   |           |
|          |                              |                      |                                         |                     |                       |                        |          | $i/d^{(12)}$      | 1.063 875 |
| 36       | 59.135 57                    | 0.016 91             | 484.463 1                               | 8.192 4             | 71.389 4              | 231.729 9              | 36       |                   |           |
| 37<br>38 | 66.231 84<br>74.179 66       | 0.015 10<br>0.013 48 | 543.598 7<br>609.830 5                  | 8.207 5<br>8.221 0  | 71.948 1<br>72.460 4  | 239.937 4<br>248.158 4 | 37<br>38 |                   |           |
| 39       | 83.081 22                    | 0.013 48             | 684.010 2                               | 8.233 0             | 72.929 8              | 256.391 4              | 39       |                   |           |
| 40       | 93.050 97                    | 0.010 75             | 767.091 4                               | 8.243 8             | 73.359 6              | 264.635 2              | 40       |                   |           |
| 41       | 104 217 00                   | 0.009 60             | 060 142 4                               | 0.252.4             | 72.752.1              | 272 000 (              | 41       |                   |           |
| 41       | 104.217 09<br>116.723 14     | 0.009 60             | 860.142 4<br>964.359 5                  | 8.253 4<br>8.261 9  | 73.753 1<br>74.112 9  | 272.888 6<br>281.150 5 | 41<br>42 |                   |           |
| 43       | 130.729 91                   | 0.007 65             | 1 081.082 6                             | 8.269 6             | 74.441 8              | 289.420 1              | 43       |                   |           |
| 44       | 146.417 50                   | 0.006 83             | 1 211.812 5                             | 8.2764              | 74.742 3              | 297.696 5              | 44       |                   |           |
| 45       | 163.987 60                   | 0.006 10             | 1 358.230 0                             | 8.282 5             | 75.016 7              | 305.979 0              | 45       |                   |           |
| 46       | 183.666 12                   | 0.005 44             | 1 522.217 6                             | 8.288 0             | 75.267 2              | 314.267 0              | 46       |                   |           |
| 47       | 205.706 05                   | 0.00486              | 1 705.883 8                             | 8.2928              | 75.495 7              | 322.559 8              | 47       |                   |           |
| 48       | 230.390 78                   | 0.004 34             | 1 911.589 8                             | 8.297 2             | 75.704 0              | 330.857 0              | 48       |                   |           |
| 49<br>50 | 258.037 67<br>289.002 19     | 0.003 88<br>0.003 46 | 2 141.980 6<br>2 400.018 2              | 8.301 0<br>8.304 5  | 75.893 9<br>76.066 9  | 339.158 0<br>347.462 5 | 49<br>50 |                   |           |
| 50       |                              | J.UUJ 70             | 2 700.010 2                             | 5.504 5             | 70.000 9              | JT1.TU2 J              | 50       |                   |           |
| 60       | 897.596 93                   | 0.001 11             | 7 471.641 1                             | 8.324 0             | 77.134 1              | 430.632 9              | 60       |                   |           |
| 70<br>80 | 2 787.799 83<br>8 658.483 10 | 0.000 36<br>0.000 12 | 23 223.331 9<br>72 145.692 5            | 8.330 3<br>8.332 4  | 77.540 6<br>77.691 8  | 513.913 8<br>597.230 2 | 70<br>80 |                   |           |
| 90       | 26 891.934 22                | 0.000 12             | 224 091.118 5                           | 8.332 4             | 77.747 0              | 680.558 1              | 90       |                   |           |
| 100      | 83 522.265 73                | 0.000 04             | 696 010.547 7                           | 8.333 2             | 77.766 9              | 763.889 7              |          |                   |           |
|          |                              |                      |                                         |                     |                       |                        |          |                   |           |

| 15%               |           | n        | $(1+i)^n$                | $v^n$                | $S_{\overline{n}}$         | $a_{\overline{n} }$ | $(Ia)_{\overline{n} }$ | $(Da)_{\overline{n}}$  | n        |
|-------------------|-----------|----------|--------------------------|----------------------|----------------------------|---------------------|------------------------|------------------------|----------|
| i                 | 0.150 000 | 1        | 1.150 00                 | 0.869 57             | 1.000 0                    | 0.869 6             | 0.869 6                | 0.869 6                | 1        |
| i <sup>(2)</sup>  | 0.144 761 | 2        | 1.322 50                 | 0.756 14             | 2.150 0                    | 1.625 7             | 2.381 9                | 2.495 3                | 2        |
| i <sup>(4)</sup>  | 0.142 232 | 3        | 1.520 88<br>1.749 01     | 0.657 52<br>0.571 75 | 3.472 5<br>4.993 4         | 2.283 2<br>2.855 0  | 4.354 4<br>6.641 4     | 4.778 5<br>7.633 5     | 3        |
| i <sup>(12)</sup> | 0.140 579 | 5        | 2.011 36                 | 0.497 18             | 6.742 4                    | 3.352 2             | 9.127 3                | 10.985 6               | 5        |
| '                 | 0.110 077 | 6        | 2.313 06                 | 0.432 33             | 8.753 7                    | 3.784 5             | 11.721 3               | 14.770 1               | 6        |
| δ                 | 0.139 762 | 6<br>7   | 2.660 02                 | 0.432 33             | 11.066 8                   | 4.160 4             | 14.352 8               | 18.930 5               | 7        |
|                   |           | 8        | 3.059 02                 | 0.326 90             | 13.726 8                   | 4.487 3             | 16.968 0               | 23.417 9               | 8        |
| $(1+i)^{1/2}$     | 1.072 381 | 9<br>10  | 3.517 88<br>4.045 56     | 0.284 26<br>0.247 18 | 16.785 8<br>20.303 7       | 4.771 6<br>5.018 8  | 19.526 4<br>21.998 2   | 28.189 4<br>33.208 2   | 9<br>10  |
| $(1+i)^{1/4}$     | 1.035 558 | 10       | 4.043 30                 | 0.247 10             | 20.303 7                   | 3.010 0             | 21.776 2               | 33.200 2               | 10       |
| $(1+i)^{1/12}$    | 1.011 715 | 11       | 4.652 39                 | 0.214 94             | 24.349 3                   | 5.233 7             | 24.362 6               | 38.441 9               | 11       |
| (1+i)             | 1.011 /13 | 12<br>13 | 5.350 25<br>6.152 79     | 0.186 91<br>0.162 53 | 29.001 7<br>34.351 9       | 5.420 6<br>5.583 1  | 26.605 5<br>28.718 4   | 43.862 5<br>49.445 7   | 12<br>13 |
| v                 | 0.869 565 | 14       | 7.075 71                 | 0.102 33             | 40.504 7                   | 5.724 5             | 30.697 0               | 55.170 2               | 14       |
| v <sup>1/2</sup>  |           | 15       | 8.137 06                 | 0.122 89             | 47.580 4                   | 5.847 4             | 32.540 4               | 61.017 5               | 15       |
| v'                | 0.932 505 | 16       | 9.357 62                 | 0.106 86             | 55.717 5                   | 5.954 2             | 34.250 2               | 66.971 8               | 16       |
| 1                 | 0.965 663 | 17       | 10.761 26                | 0.092 93             | 65.075 1                   | 6.047 2             | 35.830 0               | 73.018 9               | 17       |
| v <sup>1/12</sup> | 0.988 421 | 18       | 12.375 45                | 0.080 81             | 75.836 4                   | 6.128 0             | 37.284 5               | 79.146 9               | 18       |
| ١.                |           | 19<br>20 | 14.231 77<br>16.366 54   | 0.070 27<br>0.061 10 | 88.211 8<br>102.443 6      | 6.198 2<br>6.259 3  | 38.619 5<br>39.841 5   | 85.345 1<br>91.604 5   | 19<br>20 |
| d                 | 0.130 435 | 20       | 10.500 51                | 0.001 10             | 102.113 0                  | 0.2373              | 37.0113                | 71.0013                | 20       |
| d <sup>(2)</sup>  | 0.134 990 | 21       | 18.821 52                | 0.053 13             | 118.810 1                  | 6.312 5             | 40.957 2               | 97.916 9               | 21       |
| $d^{(4)}$         | 0.137 348 | 22<br>23 | 21.644 75<br>24.891 46   | 0.046 20<br>0.040 17 | 137.631 6<br>159.276 4     | 6.358 7<br>6.398 8  | 41.973 7<br>42.897 7   | 104.275 6<br>110.674 4 | 22<br>23 |
| d <sup>(12)</sup> | 0.138 951 | 24       | 28.625 18                | 0.034 93             | 184.167 8                  | 6.433 8             | 43.736 1               | 117.108 2              | 24       |
|                   |           | 25       | 32.918 95                | 0.030 38             | 212.793 0                  | 6.464 1             | 44.495 5               | 123.572 3              | 25       |
| $i/i^{(2)}$       | 1.036 190 | 26       | 37.856 80                | 0.026 42             | 245.712 0                  | 6.490 6             | 45.182 3               | 130.062 9              | 26       |
| $i/i^{(4)}$       | 1.054 613 | 27       | 43.535 31                | 0.022 97             | 283.568 8                  | 6.513 5             | 45.802 5               | 136.576 4              | 27       |
| $i/i^{(12)}$      | 1.067 016 | 28<br>29 | 50.065 61                | 0.019 97<br>0.017 37 | 327.104 1<br>377.169 7     | 6.533 5<br>6.550 9  | 46.361 8<br>46.865 5   | 143.109 9<br>149.660 8 | 28<br>29 |
|                   |           | 30       | 57.575 45<br>66.211 77   | 0.01/3/              | 434.745 1                  | 6.566 0             | 46.865 5 47.318 6      | 149.660 8              | 30       |
| i/8               | 1.073 254 |          |                          |                      |                            |                     |                        |                        |          |
|                   |           | 31<br>32 | 76.143 54<br>87.565 07   | 0.013 13<br>0.011 42 | 500.956 9<br>577.100 5     | 6.579 1<br>6.590 5  | 47.725 7<br>48.091 1   | 162.805 9<br>169.396 4 | 31<br>32 |
| $i/d^{(2)}$       | 1.111 190 | 33       | 100.699 83               | 0.011 42             | 664.665 5                  | 6.600 5             | 48.418 8               | 175.996 9              | 33       |
| $i/d^{(4)}$       | 1.092 113 | 34       | 115.804 80               | 0.008 64             | 765.365 4                  | 6.609 1             | 48.712 4               | 182.606 0              | 34       |
| $i/d^{(12)}$      | 1.079 516 | 35       | 133.175 52               | 0.007 51             | 881.170 2                  | 6.616 6             | 48.975 2               | 189.222 6              | 35       |
|                   |           | 36       | 153.151 85               | 0.006 53             | 1 014.345 7                | 6.623 1             | 49.210 3               | 195.845 8              | 36       |
|                   |           | 37<br>38 | 176.124 63<br>202.543 32 | 0.005 68<br>0.004 94 | 1 167.497 5<br>1 343.622 2 | 6.628 8<br>6.633 8  | 49.420 4<br>49.608 0   | 202.474 6<br>209.108 3 | 37<br>38 |
|                   |           | 38<br>39 | 232.924 82               | 0.004 94 0.004 29    | 1 546.165 5                | 6.638 0             | 49.008 0               | 215.746 4              | 38<br>39 |
|                   |           | 40       | 267.863 55               | 0.003 73             | 1 779.090 3                | 6.641 8             | 49.924 8               | 222.388 1              | 40       |
|                   |           | 41       | 308.043 08               | 0.003 25             | 2 046.953 9                | 6.645 0             | 50.057 9               | 229.033 2              | 41       |
|                   |           | 42       | 354.249 54               | 0.003 23             | 2 354.996 9                | 6.647 8             | 50.176 4               | 235.681 0              | 42       |
|                   |           | 43       | 407.386 97               | 0.002 45             | 2 709.246 5                | 6.650 3             | 50.282 0               | 242.331 3              | 43       |
|                   |           | 44<br>45 | 468.495 02<br>538.769 27 | 0.002 13<br>0.001 86 | 3 116.633 4<br>3 585.128 5 | 6.652 4<br>6.654 3  | 50.375 9<br>50.459 4   | 248.983 8<br>255.638 0 | 44<br>45 |
|                   |           |          |                          |                      |                            |                     |                        |                        |          |
|                   |           | 46       | 619.584 66               | 0.001 61             | 4 123.897 7                | 6.655 9<br>6.657 3  | 50.533 7<br>50.599 6   | 262.294 0<br>268.951 3 | 46<br>47 |
|                   |           | 47<br>48 | 712.522 36<br>819.400 71 | 0.001 40<br>0.001 22 | 4 743.482 4<br>5 456.004 7 | 6.658 5             | 50.599 6               | 268.951 3 275.609 8    | 47       |
|                   |           | 49       | 942.310 82               | 0.001 06             | 6 275.405 5                | 6.659 6             | 50.710 2               | 282.269 4              | 49       |
|                   |           | 50       | 1 083.657 44             | 0.000 92             | 7 217.716 3                | 6.660 5             | 50.756 3               | 288.929 9              | 50       |

| n                          | $(1+i)^n$                                                                    | $v^n$                                                    | $S_{\overline{n }}$                                                          | $a_{\overline{n}}$                                  | $(Ia)_{\overline{n }}$                                   | $(Da)_{\overline{n }}$                                        | n                          |                                                                                                      | 20%                                              |
|----------------------------|------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| 1<br>2<br>3<br>4<br>5      | 1.200 00<br>1.440 00<br>1.728 00<br>2.073 60<br>2.488 32                     | 0.833 33<br>0.694 44<br>0.578 70<br>0.482 25<br>0.401 88 | 1.000 0<br>2.200 0<br>3.640 0<br>5.368 0<br>7.441 6                          | 0.833 3<br>1.527 8<br>2.106 5<br>2.588 7<br>2.990 6 | 0.833 3<br>2.222 2<br>3.958 3<br>5.887 3<br>7.896 7      | 0.833 3<br>2.361 1<br>4.467 6<br>7.056 3<br>10.046 9          | 1<br>2<br>3<br>4<br>5      | i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup>                                       | 0.200 000<br>0.190 890<br>0.186 541<br>0.183 714 |
| 6<br>7<br>8<br>9<br>10     | 2.985 98<br>3.583 18<br>4.299 82<br>5.159 78<br>6.191 74                     | 0.334 90<br>0.279 08<br>0.232 57<br>0.193 81<br>0.161 51 | 9.929 9<br>12.915 9<br>16.499 1<br>20.798 9<br>25.958 7                      | 3.325 5<br>3.604 6<br>3.837 2<br>4.031 0<br>4.192 5 | 9.906 1<br>11.859 7<br>13.720 2<br>15.464 5<br>17.079 6  | 13.372 4<br>16.977 0<br>20.814 2<br>24.845 2<br>29.037 6      | 6<br>7<br>8<br>9<br>10     | $\delta = (1+i)^{1/2}$                                                                               | 0.182 322<br>1.095 445                           |
| 11<br>12<br>13<br>14<br>15 | 7.430 08<br>8.916 10<br>10.699 32<br>12.839 18<br>15.407 02                  | 0.134 59<br>0.112 16<br>0.093 46<br>0.077 89<br>0.064 91 | 32.150 4<br>39.580 5<br>48.496 6<br>59.195 9<br>72.035 1                     | 4.327 1<br>4.439 2<br>4.532 7<br>4.610 6<br>4.675 5 | 18.560 0<br>19.905 9<br>21.120 9<br>22.211 3<br>23.184 9 | 33.364 7<br>37.803 9<br>42.336 6<br>46.947 2<br>51.622 6      | 11<br>12<br>13<br>14<br>15 | $(1+i)^{1/4} (1+i)^{1/12}$ $v$                                                                       | 1.046 635<br>1.015 309<br>0.833 333              |
| 16<br>17<br>18<br>19<br>20 | 18.488 43<br>22.186 11<br>26.623 33<br>31.948 00<br>38.337 60                | 0.054 09<br>0.045 07<br>0.037 56<br>0.031 30<br>0.026 08 | 87.442 1<br>105.930 6<br>128.116 7<br>154.740 0<br>186.688 0                 | 4.729 6<br>4.774 6<br>4.812 2<br>4.843 5<br>4.869 6 | 24.050 3<br>24.816 6<br>25.492 7<br>26.087 4<br>26.609 1 | 56.352 2<br>61.126 8<br>65.939 0<br>70.782 5<br>75.652 1      | 16<br>17<br>18<br>19<br>20 | $v^{1/2}$ $v^{1/4}$ $v^{1/12}$                                                                       | 0.912 871<br>0.955 443<br>0.984 921<br>0.166 667 |
| 21<br>22<br>23<br>24<br>25 | 46.005 12<br>55.206 14<br>66.247 37<br>79.496 85<br>95.396 22                | 0.021 74<br>0.018 11<br>0.015 09<br>0.012 58<br>0.010 48 | 225.025 6<br>271.030 7<br>326.236 9<br>392.484 2<br>471.981 1                | 4.891 3<br>4.909 4<br>4.924 5<br>4.937 1<br>4.947 6 | 27.065 5<br>27.464 1<br>27.811 2<br>28.113 1<br>28.375 2 | 80.543 4<br>85.452 8<br>90.377 4<br>95.314 5<br>100.262 1     | 21<br>22<br>23<br>24<br>25 | $     \begin{array}{c}       d \\       d^{(2)} \\       d^{(4)} \\       d^{(12)}     \end{array} $ | 0.174 258<br>0.178 229<br>0.180 943              |
| 26<br>27<br>28<br>29<br>30 | 114.475 46<br>137.370 55<br>164.844 66<br>197.813 59<br>237.376 31           | 0.008 74<br>0.007 28<br>0.006 07<br>0.005 06<br>0.004 21 | 567.377 3<br>681.852 8<br>819.223 3<br>984.068 0<br>1 181.881 6              | 4.956 3<br>4.963 6<br>4.969 7<br>4.974 7<br>4.978 9 | 28.602 3<br>28.798 9<br>28.968 7<br>29.115 3<br>29.241 7 | 105.218 4<br>110.182 0<br>115.151 7<br>120.126 4<br>125.105 3 | 26<br>27<br>28<br>29<br>30 | $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                                                                 | 1.047 723<br>1.072 153<br>1.088 651              |
| 31<br>32<br>33<br>34<br>35 | 284.851 58<br>341.821 89<br>410.186 27<br>492.223 52<br>590.668 23           | 0.003 51<br>0.002 93<br>0.002 44<br>0.002 03<br>0.001 69 | 1 419.257 9<br>1 704.109 5<br>2 045.931 4<br>2 456.117 6<br>2 948.341 1      | 4.982 4<br>4.985 4<br>4.987 8<br>4.989 8<br>4.991 5 | 29.350 5<br>29.444 2<br>29.524 6<br>29.593 7<br>29.652 9 | 130.087 8<br>135.073 1<br>140.060 9<br>145.050 8<br>150.042 3 | 31<br>32<br>33<br>34<br>35 | $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                                                      | 1.096 963<br>1.147 723<br>1.122 153<br>1.105 317 |
| 36<br>37<br>38<br>39<br>40 | 708.801 87<br>850.562 25<br>1 020.674 70<br>1 224.809 64<br>1 469.771 57     | 0.001 41<br>0.001 18<br>0.000 98<br>0.000 82<br>0.000 68 | 3 539.009 4<br>4 247.811 2<br>5 098.373 5<br>6 119.048 2<br>7 343.857 8      | 4.992 9<br>4.994 1<br>4.995 1<br>4.995 9<br>4.996 6 | 29.703 7<br>29.747 2<br>29.784 5<br>29.816 3<br>29.843 5 | 155.035 3<br>160.029 4<br>165.024 5<br>170.020 4<br>175.017 0 | 36<br>37<br>38<br>39<br>40 |                                                                                                      |                                                  |
| 41<br>42<br>43<br>44<br>45 | 1 763.725 88<br>2 116.471 06<br>2 539.765 27<br>3 047.718 32<br>3 657.261 99 | 0.000 57<br>0.000 47<br>0.000 39<br>0.000 33<br>0.000 27 | 8 813.629 4<br>10 577.355 3<br>12 693.826 3<br>15 233.591 6<br>18 281.309 9  | 4.997 2<br>4.997 6<br>4.998 0<br>4.998 4<br>4.998 6 | 29.866 8<br>29.886 6<br>29.903 5<br>29.918 0<br>29.930 3 | 180.014 2<br>185.011 8<br>190.009 8<br>195.008 2<br>200.006 8 | 41<br>42<br>43<br>44<br>45 |                                                                                                      |                                                  |
| 46<br>47<br>48<br>49<br>50 | 4 388.714 39<br>5 266.457 26<br>6 319.748 72<br>7 583.698 46<br>9 100.438 15 | 0.000 23<br>0.000 19<br>0.000 16<br>0.000 13<br>0.000 11 | 21 938.571 9<br>26 327.286 3<br>31 593.743 6<br>37 913.492 3<br>45 497.190 8 | 4.998 9<br>4.999 1<br>4.999 2<br>4.999 3<br>4.999 5 | 29.940 8<br>29.949 7<br>29.957 3<br>29.963 7<br>29.969 2 | 205.005 7<br>210.004 7<br>215.004 0<br>220.003 3<br>225.002 7 | 46<br>47<br>48<br>49<br>50 |                                                                                                      |                                                  |

| 25%                                                            |                                                  | n                          | $(1+i)^n$                                                                         | $v^n$                                                    | $S_{\overline{n} }$                                                               | $a_{\overline{n} }$                                 | $(Ia)_{\overline{n} }$                                   | $(Da)_{\overline{n}}$                                         | n                          |
|----------------------------------------------------------------|--------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------|----------------------------|
| i<br>i <sup>(2)</sup><br>i <sup>(4)</sup><br>i <sup>(12)</sup> | 0.250 000<br>0.236 068<br>0.229 485<br>0.225 231 | 1<br>2<br>3<br>4<br>5      | 1.250 00<br>1.562 50<br>1.953 13<br>2.441 41<br>3.051 76                          | 0.800 00<br>0.640 00<br>0.512 00<br>0.409 60<br>0.327 68 | 1.000 0<br>2.250 0<br>3.812 5<br>5.765 6<br>8.207 0                               | 0.800 0<br>1.440 0<br>1.952 0<br>2.361 6<br>2.689 3 | 0.800 0<br>2.080 0<br>3.616 0<br>5.254 4<br>6.892 8      | 0.800 0<br>2.240 0<br>4.192 0<br>6.553 6<br>9.242 9           | 1<br>2<br>3<br>4<br>5      |
| $\delta$ $(1+i)^{1/2}$                                         | 0.223 144                                        | 6<br>7<br>8<br>9<br>10     | 3.814 70<br>4.768 37<br>5.960 46<br>7.450 58<br>9.313 23                          | 0.262 14<br>0.209 72<br>0.167 77<br>0.134 22<br>0.107 37 | 11.258 8<br>15.073 5<br>19.841 9<br>25.802 3<br>33.252 9                          | 2.951 4<br>3.161 1<br>3.328 9<br>3.463 1<br>3.570 5 | 8.465 7<br>9.933 7<br>11.275 8<br>12.483 8<br>13.557 5   | 12.194 3<br>15.355 4<br>18.684 4<br>22.147 5<br>25.718 0      | 6<br>7<br>8<br>9<br>10     |
| $(1+i)^{1/4}  (1+i)^{1/12}  v  v^{1/2}$                        | 1.057 371<br>1.018 769<br>0.800 000              | 11<br>12<br>13<br>14<br>15 | 11.641 53<br>14.551 92<br>18.189 89<br>22.737 37<br>28.421 71                     | 0.085 90<br>0.068 72<br>0.054 98<br>0.043 98<br>0.035 18 | 42.566 1<br>54.207 7<br>68.759 6<br>86.949 5<br>109.686 8                         | 3.656 4<br>3.725 1<br>3.780 1<br>3.824 1<br>3.859 3 | 14.502 4<br>15.327 1<br>16.041 8<br>16.657 5<br>17.185 3 | 29.374 4<br>33.099 5<br>36.879 6<br>40.703 7<br>44.562 9      | 11<br>12<br>13<br>14<br>15 |
| $v^{1/2}$ $v^{1/4}$ $v^{1/12}$                                 | 0.894 427<br>0.945 742<br>0.981 577<br>0.200 000 | 16<br>17<br>18<br>19<br>20 | 35.527 14<br>44.408 92<br>55.511 15<br>69.388 94<br>86.736 17                     | 0.028 15<br>0.022 52<br>0.018 01<br>0.014 41<br>0.011 53 | 138.108 5<br>173.635 7<br>218.044 6<br>273.555 8<br>342.944 7                     | 3.887 4<br>3.909 9<br>3.927 9<br>3.942 4<br>3.953 9 | 17.635 6<br>18.018 4<br>18.342 7<br>18.616 5<br>18.847 1 | 48.450 4<br>52.360 3<br>56.288 2<br>60.230 6<br>64.184 5      | 16<br>17<br>18<br>19<br>20 |
| $d^{(2)} \\ d^{(4)} \\ d^{(12)}$                               | 0.211 146<br>0.217 034<br>0.221 082              | 21<br>22<br>23<br>24<br>25 | 108.420 22<br>135.525 27<br>169.406 59<br>211.758 24<br>264.697 80                | 0.009 22<br>0.007 38<br>0.005 90<br>0.004 72<br>0.003 78 | 429.680 9<br>538.101 1<br>673.626 4<br>843.032 9<br>1 054.791 2                   | 3.963 1<br>3.970 5<br>3.976 4<br>3.981 1<br>3.984 9 | 19.040 8<br>19.203 1<br>19.338 9<br>19.452 2<br>19.546 7 | 68.147 6<br>72.118 1<br>76.094 4<br>80.075 6<br>84.060 4      | 21<br>22<br>23<br>24<br>25 |
| $i/i^{(2)}$ $i/i^{(4)}$ $i/i^{(12)}$                           | 1.059 017<br>1.089 396<br>1.109 971              | 26<br>27<br>28<br>29<br>30 | 330.872 25<br>413.590 31<br>516.987 88<br>646.234 85<br>807.793 57                | 0.003 02<br>0.002 42<br>0.001 93<br>0.001 55<br>0.001 24 | 1 319.489 0<br>1 650.361 2<br>2 063.951 5<br>2 580.939 4<br>3 227.174 3           | 3.987 9<br>3.990 3<br>3.992 3<br>3.993 8<br>3.995 0 | 19.625 2<br>19.690 5<br>19.744 7<br>19.789 6<br>19.826 7 | 88.048 4<br>92.038 7<br>96.030 9<br>100.024 8<br>104.019 8    | 26<br>27<br>28<br>29<br>30 |
| $i/\delta$ $i/d^{(2)}$ $i/d^{(4)}$ $i/d^{(12)}$                | 1.120 355<br>1.184 017<br>1.151 896<br>1.130 804 | 31<br>32<br>33<br>34<br>35 | 1 009.741 96<br>1 262.177 45<br>1 577.721 81<br>1 972.152 26<br>2 465.190 33      | 0.000 99<br>0.000 79<br>0.000 63<br>0.000 51<br>0.000 41 | 4 034.967 8<br>5 044.709 8<br>6 306.887 2<br>7 884.609 1<br>9 856.761 3           | 3.996 0<br>3.996 8<br>3.997 5<br>3.998 0<br>3.998 4 | 19.857 4<br>19.882 7<br>19.903 7<br>19.920 9<br>19.935 1 | 108.015 8<br>112.012 7<br>116.010 1<br>120.008 1<br>124.006 5 | 31<br>32<br>33<br>34<br>35 |
|                                                                |                                                  | 36<br>37<br>38<br>39<br>40 | 3 081.487 91<br>3 851.859 89<br>4 814.824 86<br>6 018.531 08<br>7 523.163 85      | 0.000 32<br>0.000 26<br>0.000 21<br>0.000 17<br>0.000 13 | 12 321.951 6<br>15 403.439 6<br>19 255.299 4<br>24 070.124 3<br>30 088.655 4      | 3.998 7<br>3.999 0<br>3.999 2<br>3.999 3<br>3.999 5 | 19.946 8<br>19.956 4<br>19.964 3<br>19.970 8<br>19.976 1 | 128.005 2<br>132.004 2<br>136.003 3<br>140.002 7<br>144.002 1 | 36<br>37<br>38<br>39<br>40 |
|                                                                |                                                  | 41<br>42<br>43<br>44<br>45 | 9 403.954 81<br>11 754.943 51<br>14 693.679 39<br>18 367.099 23<br>22 958.874 04  | 0.000 11<br>0.000 09<br>0.000 07<br>0.000 05<br>0.000 04 | 37 611.819 2<br>47 015.774 0<br>58 770.717 5<br>73 464.396 9<br>91 831.496 2      | 3.999 6<br>3.999 7<br>3.999 7<br>3.999 8<br>3.999 8 | 19.980 4<br>19.984 0<br>19.986 9<br>19.989 3<br>19.991 3 | 148.001 7<br>152.001 4<br>156.001 1<br>160.000 9<br>164.000 7 | 41<br>42<br>43<br>44<br>45 |
|                                                                |                                                  | 46<br>47<br>48<br>49<br>50 | 28 698.592 55<br>35 873.240 69<br>44 841.550 86<br>56 051.938 57<br>70 064.923 22 | 0.000 03<br>0.000 03<br>0.000 02<br>0.000 02<br>0.000 01 | 114 790.370 2<br>143 488.962 7<br>179 362.203 4<br>224 203.754 3<br>280 255.692 9 | 3.999 9<br>3.999 9<br>3.999 9<br>3.999 9<br>3.999 9 | 19.992 9<br>19.994 2<br>19.995 3<br>19.996 1<br>19.996 9 | 168.000 6<br>172.000 4<br>176.000 4<br>180.000 3<br>184.000 2 | 46<br>47<br>48<br>49<br>50 |

## POPULATION MORTALITY TABLE

## **ELT15 (Males) and ELT15 (Females)**

This table is based on the mortality of the population of England and Wales during the years 1990, 1991, and 1992. Full details are given in *English Life Tables No. 15* published by The Stationery Office.

Note that no  $\mu_0$  values have been included because of the difficulty of calculating reasonable estimates from observed data.

# ELT15 (Males)

| x                          | $l_x$                                           | $d_x$                       | $q_x$                                                    | $\mu_x$                                                  | $\overset{\circ}{e}_{x}$                       | x                          |
|----------------------------|-------------------------------------------------|-----------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------|
| 0<br>1<br>2<br>3<br>4      | 100 000<br>99 186<br>99 124<br>99 086<br>99 056 | 814<br>62<br>38<br>30<br>24 | 0.008 14<br>0.000 62<br>0.000 38<br>0.000 30<br>0.000 24 | 0.000 80<br>0.000 43<br>0.000 33<br>0.000 27             | 73.413<br>73.019<br>72.064<br>71.091<br>70.113 | 0<br>1<br>2<br>3<br>4      |
| 5                          | 99 032                                          | 22                          | 0.000 22                                                 | 0.000 23                                                 | 69.130                                         | 5                          |
| 6                          | 99 010                                          | 20                          | 0.000 20                                                 | 0.000 21                                                 | 68.145                                         | 6                          |
| 7                          | 98 990                                          | 18                          | 0.000 19                                                 | 0.000 19                                                 | 67.158                                         | 7                          |
| 8                          | 98 972                                          | 19                          | 0.000 18                                                 | 0.000 18                                                 | 66.171                                         | 8                          |
| 9                          | 98 953                                          | 18                          | 0.000 18                                                 | 0.000 18                                                 | 65.183                                         | 9                          |
| 10                         | 98 935                                          | 18                          | 0.000 18                                                 | 0.000 18                                                 | 64.195                                         | 10                         |
| 11                         | 98 917                                          | 18                          | 0.000 18                                                 | 0.000 18                                                 | 63.206                                         | 11                         |
| 12                         | 98 899                                          | 19                          | 0.000 19                                                 | 0.000 19                                                 | 62.218                                         | 12                         |
| 13                         | 98 880                                          | 23                          | 0.000 23                                                 | 0.000 21                                                 | 61.230                                         | 13                         |
| 14                         | 98 857                                          | 29                          | 0.000 29                                                 | 0.000 26                                                 | 60.244                                         | 14                         |
| 15                         | 98 828                                          | 39                          | 0.000 40                                                 | 0.000 34                                                 | 59.261                                         | 15                         |
| 16                         | 98 789                                          | 52                          | 0.000 52                                                 | 0.000 45                                                 | 58.285                                         | 16                         |
| 17                         | 98 737                                          | 74                          | 0.000 75                                                 | 0.000 64                                                 | 57.315                                         | 17                         |
| 18                         | 98 663                                          | 86                          | 0.000 87                                                 | 0.000 83                                                 | 56.358                                         | 18                         |
| 19                         | 98 577                                          | 81                          | 0.000 83                                                 | 0.000 85                                                 | 55.406                                         | 19                         |
| 20<br>21<br>22<br>23<br>24 | 98 496<br>98 413<br>98 328<br>98 241<br>98 154  | 83<br>85<br>87<br>87        | 0.000 84<br>0.000 86<br>0.000 89<br>0.000 89<br>0.000 88 | 0.000 83<br>0.000 85<br>0.000 88<br>0.000 89<br>0.000 89 | 54.452<br>53.497<br>52.543<br>51.589<br>50.635 | 20<br>21<br>22<br>23<br>24 |
| 25                         | 98 067                                          | 84                          | 0.000 86                                                 | 0.000 87                                                 | 49.679                                         | 25                         |
| 26                         | 97 983                                          | 83                          | 0.000 85                                                 | 0.000 85                                                 | 48.721                                         | 26                         |
| 27                         | 97 900                                          | 83                          | 0.000 85                                                 | 0.000 84                                                 | 47.762                                         | 27                         |
| 28                         | 97 817                                          | 85                          | 0.000 87                                                 | 0.000 86                                                 | 46.802                                         | 28                         |
| 29                         | 97 732                                          | 87                          | 0.000 90                                                 | 0.000 88                                                 | 45.842                                         | 29                         |
| 30                         | 97 645                                          | 89                          | 0.000 91                                                 | 0.000 90                                                 | 44.883                                         | 30                         |
| 31                         | 97 556                                          | 91                          | 0.000 94                                                 | 0.000 92                                                 | 43.923                                         | 31                         |
| 32                         | 97 465                                          | 95                          | 0.000 97                                                 | 0.000 96                                                 | 42.964                                         | 32                         |
| 33                         | 97 370                                          | 97                          | 0.000 99                                                 | 0.000 98                                                 | 42.005                                         | 33                         |
| 34                         | 97 273                                          | 103                         | 0.001 06                                                 | 0.001 02                                                 | 41.046                                         | 34                         |
| 35                         | 97 170                                          | 113                         | 0.001 16                                                 | 0.001 11                                                 | 40.090                                         | 35                         |
| 36                         | 97 057                                          | 124                         | 0.001 27                                                 | 0.001 22                                                 | 39.136                                         | 36                         |
| 37                         | 96 933                                          | 133                         | 0.001 38                                                 | 0.001 33                                                 | 38.185                                         | 37                         |
| 38                         | 96 800                                          | 145                         | 0.001 49                                                 | 0.001 44                                                 | 37.237                                         | 38                         |
| 39                         | 96 655                                          | 155                         | 0.001 60                                                 | 0.001 55                                                 | 36.292                                         | 39                         |
| 40                         | 96 500                                          | 166                         | 0.001 72                                                 | 0.001 66                                                 | 35.349                                         | 40                         |
| 41                         | 96 334                                          | 179                         | 0.001 86                                                 | 0.001 79                                                 | 34.409                                         | 41                         |
| 42                         | 96 155                                          | 194                         | 0.002 01                                                 | 0.001 93                                                 | 33.473                                         | 42                         |
| 43                         | 95 961                                          | 210                         | 0.002 19                                                 | 0.002 10                                                 | 32.539                                         | 43                         |
| 44                         | 95 751                                          | 230                         | 0.002 40                                                 | 0.002 29                                                 | 31.609                                         | 44                         |
| 45                         | 95 521                                          | 255                         | 0.002 66                                                 | 0.002 53                                                 | 30.684                                         | 45                         |
| 46                         | 95 266                                          | 283                         | 0.002 97                                                 | 0.002 81                                                 | 29.765                                         | 46                         |
| 47                         | 94 983                                          | 315                         | 0.003 32                                                 | 0.003 14                                                 | 28.852                                         | 47                         |
| 48                         | 94 668                                          | 352                         | 0.003 71                                                 | 0.003 52                                                 | 27.947                                         | 48                         |
| 49                         | 94 316                                          | 391                         | 0.004 15                                                 | 0.003 93                                                 | 27.049                                         | 49                         |
| 50                         | 93 925                                          | 436                         | 0.004 64                                                 | 0.004 40                                                 | 26.159                                         | 50                         |
| 51                         | 93 489                                          | 485                         | 0.005 19                                                 | 0.004 92                                                 | 25.279                                         | 51                         |
| 52                         | 93 004                                          | 537                         | 0.005 77                                                 | 0.005 49                                                 | 24.408                                         | 52                         |
| 53                         | 92 467                                          | 594                         | 0.006 42                                                 | 0.006 10                                                 | 23.547                                         | 53                         |
| 54                         | 91 873                                          | 656                         | 0.007 14                                                 | 0.006 79                                                 | 22.696                                         | 54                         |

# ELT15 (Males)

| x                               | $l_x$             | $d_x$                 | $q_x$                                                    | $\mu_x$                                                  | $\overset{\circ}{e}_x$                    | x                               |
|---------------------------------|-------------------|-----------------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|---------------------------------|
| 55                              | 91 217            | 727                   | 0.007 97                                                 | 0.007 57                                                 | 21.856                                    | 55                              |
| 56                              | 90 490            | 806                   | 0.008 90                                                 | 0.008 45                                                 | 21.027                                    | 56                              |
| 57                              | 89 684            | 892                   | 0.009 95                                                 | 0.009 45                                                 | 20.211                                    | 57                              |
| 58                              | 88 792            | 987                   | 0.011 12                                                 | 0.010 57                                                 | 19.409                                    | 58                              |
| 59                              | 87 805            | 1 091                 | 0.012 43                                                 | 0.011 82                                                 | 18.622                                    | 59                              |
| 60                              | 86 714            | 1 207                 | 0.013 92                                                 | 0.013 23                                                 | 17.850                                    | 60                              |
| 61                              | 85 507            | 1 334                 | 0.015 60                                                 | 0.014 83                                                 | 17.095                                    | 61                              |
| 62                              | 84 173            | 1 472                 | 0.017 49                                                 | 0.016 64                                                 | 16.357                                    | 62                              |
| 63                              | 82 701            | 1 625                 | 0.019 65                                                 | 0.018 70                                                 | 15.640                                    | 63                              |
| 64                              | 81 076            | 1 783                 | 0.021 99                                                 | 0.021 01                                                 | 14.943                                    | 64                              |
| 65                              | 79 293            | 1 940                 | 0.024 47                                                 | 0.023 48                                                 | 14.267                                    | 65                              |
| 66                              | 77 353            | 2 097                 | 0.027 11                                                 | 0.026 10                                                 | 13.612                                    | 66                              |
| 67                              | 75 256            | 2 255                 | 0.029 97                                                 | 0.028 93                                                 | 12.978                                    | 67                              |
| 68                              | 73 001            | 2 403                 | 0.032 92                                                 | 0.031 92                                                 | 12.363                                    | 68                              |
| 69                              | 70 598            | 2 543                 | 0.036 02                                                 | 0.035 05                                                 | 11.767                                    | 69                              |
| 70                              | 68 055            | 2 674                 | 0.039 30                                                 | 0.038 33                                                 | 11.187                                    | 70                              |
| 71                              | 65 381            | 2 819                 | 0.043 11                                                 | 0.041 98                                                 | 10.624                                    | 71                              |
| 72                              | 62 562            | 2 969                 | 0.047 45                                                 | 0.046 26                                                 | 10.080                                    | 72                              |
| 73                              | 59 593            | 3 109                 | 0.052 17                                                 | 0.051 05                                                 | 9.557                                     | 73                              |
| 74                              | 56 484            | 3 218                 | 0.056 97                                                 | 0.056 09                                                 | 9.056                                     | 74                              |
| 75                              | 53 266            | 3 301                 | 0.061 97                                                 | 0.061 23                                                 | 8.572                                     | 75                              |
| 76                              | 49 965            | 3 386                 | 0.067 77                                                 | 0.066 94                                                 | 8.106                                     | 76                              |
| 77                              | 46 579            | 3 455                 | 0.074 18                                                 | 0.073 52                                                 | 7.658                                     | 77                              |
| 78                              | 43 124            | 3 494                 | 0.081 01                                                 | 0.080 68                                                 | 7.232                                     | 78                              |
| 79                              | 39 630            | 3 502                 | 0.088 38                                                 | 0.088 40                                                 | 6.825                                     | 79                              |
| 80                              | 36 128            | 3 474                 | 0.096 16                                                 | 0.096 75                                                 | 6.438                                     | 80                              |
| 81                              | 32 654            | 3 400                 | 0.104 11                                                 | 0.105 44                                                 | 6.070                                     | 81                              |
| 82                              | 29 254            | 3 300                 | 0.112 79                                                 | 0.114 64                                                 | 5.718                                     | 82                              |
| 83                              | 25 954            | 3 175                 | 0.122 35                                                 | 0.124 91                                                 | 5.382                                     | 83                              |
| 84                              | 22 779            | 3 023                 | 0.132 70                                                 | 0.136 27                                                 | 5.063                                     | 84                              |
| 85                              | 19 756            | 2 839                 | 0.143 72                                                 | 0.148 57                                                 | 4.762                                     | 85                              |
| 86                              | 16 917            | 2 637                 | 0.155 85                                                 | 0.162 08                                                 | 4.478                                     | 86                              |
| 87                              | 14 280            | 2 406                 | 0.168 48                                                 | 0.176 89                                                 | 4.213                                     | 87                              |
| 88                              | 11 874            | 2 144                 | 0.180 61                                                 | 0.191 90                                                 | 3.968                                     | 88                              |
| 89                              | 9 730             | 1 873                 | 0.192 46                                                 | 0.206 47                                                 | 3.734                                     | 89                              |
| 90                              | 7 857             | 1 608                 | 0.204 65                                                 | 0.221 14                                                 | 3.508                                     | 90                              |
| 91                              | 6 249             | 1 369                 | 0.219 11                                                 | 0.237 54                                                 | 3.285                                     | 91                              |
| 92                              | 4 880             | 1 154                 | 0.236 55                                                 | 0.257 93                                                 | 3.071                                     | 92                              |
| 93                              | 3 726             | 953                   | 0.255 75                                                 | 0.282 26                                                 | 2.872                                     | 93                              |
| 94                              | 2 773             | 762                   | 0.274 83                                                 | 0.308 37                                                 | 2.693                                     | 94                              |
| 95                              | 2 011             | 590                   | 0.293 11                                                 | 0.334 24                                                 | 2.531                                     | 95                              |
| 96                              | 1 421             | 442                   | 0.311 04                                                 | 0.359 74                                                 | 2.383                                     | 96                              |
| 97                              | 979               | 322                   | 0.329 19                                                 | 0.385 79                                                 | 2.244                                     | 97                              |
| 98                              | 657               | 229                   | 0.347 83                                                 | 0.413 13                                                 | 2.114                                     | 98                              |
| 99                              | 428               | 157                   | 0.367 12                                                 | 0.442 16                                                 | 1.991                                     | 99                              |
| 100                             | 271               | 105                   | 0.387 05                                                 | 0.473 12                                                 | 1.874                                     | 100                             |
| 101                             | 166               | 68                    | 0.407 60                                                 | 0.506 09                                                 | 1.764                                     | 101                             |
| 102                             | 98                | 42                    | 0.428 70                                                 | 0.541 17                                                 | 1.660                                     | 102                             |
| 103                             | 56                | 25                    | 0.450 30                                                 | 0.578 32                                                 | 1.562                                     | 103                             |
| 104                             | 31                | 15                    | 0.474 28                                                 | 0.619 01                                                 | 1.468                                     | 104                             |
| 105<br>106<br>107<br>108<br>109 | 16<br>8<br>4<br>2 | 8<br>4<br>2<br>1<br>1 | 0.496 34<br>0.518 41<br>0.540 41<br>0.562 25<br>0.583 85 | 0.664 18<br>0.706 30<br>0.751 11<br>0.797 41<br>0.844 99 | 1.384<br>1.306<br>1.234<br>1.166<br>1.104 | 105<br>106<br>107<br>108<br>109 |

# **ELT15 (Females)**

| x                     | $l_x$                                           | $d_x$                       | $q_x$                                                    | $\mu_x$                                      | $\overset{\circ}{e}_x$                         | x                     |
|-----------------------|-------------------------------------------------|-----------------------------|----------------------------------------------------------|----------------------------------------------|------------------------------------------------|-----------------------|
| 0<br>1<br>2<br>3<br>4 | 100 000<br>99 368<br>99 313<br>99 283<br>99 261 | 632<br>55<br>30<br>22<br>18 | 0.006 32<br>0.000 55<br>0.000 30<br>0.000 22<br>0.000 18 | 0.000 73<br>0.000 35<br>0.000 25<br>0.000 20 | 78.956<br>78.462<br>77.505<br>76.528<br>75.545 | 0<br>1<br>2<br>3<br>4 |
| 5                     | 99 243                                          | 15                          | 0.000 16                                                 | 0.000 17                                     | 74.559                                         | 5                     |
| 6                     | 99 228                                          | 15                          | 0.000 15                                                 | 0.000 15                                     | 73.570                                         | 6                     |
| 7                     | 99 213                                          | 14                          | 0.000 14                                                 | 0.000 14                                     | 72.581                                         | 7                     |
| 8                     | 99 199                                          | 14                          | 0.000 14                                                 | 0.000 14                                     | 71.591                                         | 8                     |
| 9                     | 99 185                                          | 13                          | 0.000 13                                                 | 0.000 14                                     | 70.601                                         | 9                     |
| 10                    | 99 172                                          | 13                          | 0.000 13                                                 | 0.000 13                                     | 69.610                                         | 10                    |
| 11                    | 99 159                                          | 14                          | 0.000 14                                                 | 0.000 14                                     | 68.620                                         | 11                    |
| 12                    | 99 145                                          | 14                          | 0.000 14                                                 | 0.000 14                                     | 67.629                                         | 12                    |
| 13                    | 99 131                                          | 15                          | 0.000 15                                                 | 0.000 14                                     | 66.638                                         | 13                    |
| 14                    | 99 116                                          | 18                          | 0.000 18                                                 | 0.000 17                                     | 65.649                                         | 14                    |
| 15                    | 99 098                                          | 21                          | 0.000 22                                                 | 0.000 20                                     | 64.660                                         | 15                    |
| 16                    | 99 077                                          | 26                          | 0.000 26                                                 | 0.000 24                                     | 63.674                                         | 16                    |
| 17                    | 99 051                                          | 31                          | 0.000 31                                                 | 0.000 29                                     | 62.691                                         | 17                    |
| 18                    | 99 020                                          | 31                          | 0.000 31                                                 | 0.000 31                                     | 61.710                                         | 18                    |
| 19                    | 98 989                                          | 32                          | 0.000 32                                                 | 0.000 32                                     | 60.729                                         | 19                    |
| 20                    | 98 957                                          | 31                          | 0.000 31                                                 | 0.000 32                                     | 59.748                                         | 20                    |
| 21                    | 98 926                                          | 32                          | 0.000 32                                                 | 0.000 32                                     | 58.767                                         | 21                    |
| 22                    | 98 894                                          | 32                          | 0.000 33                                                 | 0.000 32                                     | 57.786                                         | 22                    |
| 23                    | 98 862                                          | 33                          | 0.000 33                                                 | 0.000 33                                     | 56.805                                         | 23                    |
| 24                    | 98 829                                          | 33                          | 0.000 33                                                 | 0.000 33                                     | 55.823                                         | 24                    |
| 25                    | 98 797                                          | 34                          | 0.000 34                                                 | 0.000 33                                     | 54.842                                         | 25                    |
| 26                    | 98 763                                          | 34                          | 0.000 35                                                 | 0.000 34                                     | 53.860                                         | 26                    |
| 27                    | 98 729                                          | 35                          | 0.000 36                                                 | 0.000 35                                     | 52.878                                         | 27                    |
| 28                    | 98 694                                          | 38                          | 0.000 38                                                 | 0.000 37                                     | 51.897                                         | 28                    |
| 29                    | 98 656                                          | 39                          | 0.000 40                                                 | 0.000 39                                     | 50.917                                         | 29                    |
| 30                    | 98 617                                          | 43                          | 0.000 43                                                 | 0.000 42                                     | 49.937                                         | 30                    |
| 31                    | 98 574                                          | 46                          | 0.000 47                                                 | 0.000 45                                     | 48.958                                         | 31                    |
| 32                    | 98 528                                          | 51                          | 0.000 52                                                 | 0.000 50                                     | 47.981                                         | 32                    |
| 33                    | 98 477                                          | 57                          | 0.000 57                                                 | 0.000 54                                     | 47.006                                         | 33                    |
| 34                    | 98 420                                          | 61                          | 0.000 63                                                 | 0.000 60                                     | 46.032                                         | 34                    |
| 35                    | 98 359                                          | 68                          | 0.000 69                                                 | 0.000 66                                     | 45.061                                         | 35                    |
| 36                    | 98 291                                          | 74                          | 0.000 75                                                 | 0.000 72                                     | 44.092                                         | 36                    |
| 37                    | 98 217                                          | 81                          | 0.000 82                                                 | 0.000 79                                     | 43.124                                         | 37                    |
| 38                    | 98 136                                          | 88                          | 0.000 90                                                 | 0.000 86                                     | 42.160                                         | 38                    |
| 39                    | 98 048                                          | 96                          | 0.000 98                                                 | 0.000 94                                     | 41.197                                         | 39                    |
| 40                    | 97 952                                          | 105                         | 0.001 07                                                 | 0.001 02                                     | 40.237                                         | 40                    |
| 41                    | 97 847                                          | 114                         | 0.001 17                                                 | 0.001 12                                     | 39.279                                         | 41                    |
| 42                    | 97 733                                          | 126                         | 0.001 29                                                 | 0.001 23                                     | 38.325                                         | 42                    |
| 43                    | 97 607                                          | 138                         | 0.001 42                                                 | 0.001 35                                     | 37.374                                         | 43                    |
| 44                    | 97 469                                          | 154                         | 0.001 58                                                 | 0.001 49                                     | 36.426                                         | 44                    |
| 45                    | 97 315                                          | 173                         | 0.001 77                                                 | 0.001 67                                     | 35.483                                         | 45                    |
| 46                    | 97 142                                          | 192                         | 0.001 98                                                 | 0.001 87                                     | 34.545                                         | 46                    |
| 47                    | 96 950                                          | 212                         | 0.002 19                                                 | 0.002 08                                     | 33.612                                         | 47                    |
| 48                    | 96 738                                          | 234                         | 0.002 41                                                 | 0.002 30                                     | 32.685                                         | 48                    |
| 49                    | 96 504                                          | 257                         | 0.002 66                                                 | 0.002 53                                     | 31.763                                         | 49                    |
| 50                    | 96 247                                          | 283                         | 0.002 94                                                 | 0.002 80                                     | 30.846                                         | 50                    |
| 51                    | 95 964                                          | 312                         | 0.003 26                                                 | 0.003 10                                     | 29.936                                         | 51                    |
| 52                    | 95 652                                          | 342                         | 0.003 57                                                 | 0.003 42                                     | 29.032                                         | 52                    |
| 53                    | 95 310                                          | 372                         | 0.003 90                                                 | 0.003 74                                     | 28.134                                         | 53                    |
| 54                    | 94 938                                          | 406                         | 0.004 28                                                 | 0.004 08                                     | 27.242                                         | 54                    |

# **ELT15 (Females)**

| x   | $l_x$  | $d_x$ | $q_x$    | $\mu_x$  | $\overset{\circ}{e}_x$ | x   |
|-----|--------|-------|----------|----------|------------------------|-----|
| 55  | 94 532 | 450   | 0.004 75 | 0.004 51 | 26.357                 | 55  |
| 56  | 94 082 | 499   | 0.005 31 | 0.005 03 | 25.481                 | 56  |
| 57  | 93 583 | 554   | 0.005 92 | 0.005 62 | 24.614                 | 57  |
| 58  | 93 029 | 614   | 0.006 60 | 0.006 26 | 23.757                 | 58  |
| 59  | 92 415 | 683   | 0.007 39 | 0.007 00 | 22.912                 | 59  |
| 60  | 91 732 | 761   | 0.008 30 | 0.007 86 | 22.079                 | 60  |
| 61  | 90 971 | 839   | 0.009 22 | 0.008 80 | 21.259                 | 61  |
| 62  | 90 132 | 915   | 0.010 15 | 0.009 72 | 20.452                 | 62  |
| 63  | 89 217 | 1007  | 0.011 29 | 0.010 74 | 19.657                 | 63  |
| 64  | 88 210 | 1117  | 0.012 66 | 0.012 03 | 18.875                 | 64  |
| 65  | 87 093 | 1218  | 0.013 99 | 0.013 42 | 18.111                 | 65  |
| 66  | 85 875 | 1308  | 0.015 23 | 0.014 70 | 17.361                 | 66  |
| 67  | 84 567 | 1417  | 0.016 76 | 0.016 09 | 16.621                 | 67  |
| 68  | 83 150 | 1533  | 0.018 44 | 0.017 74 | 15.896                 | 68  |
| 69  | 81 617 | 1647  | 0.020 17 | 0.019 49 | 15.185                 | 69  |
| 70  | 79 970 | 1751  | 0.021 90 | 0.021 23 | 14.487                 | 70  |
| 71  | 78 219 | 1876  | 0.023 99 | 0.023 11 | 13.800                 | 71  |
| 72  | 76 343 | 2056  | 0.026 93 | 0.025 69 | 13.127                 | 72  |
| 73  | 74 287 | 2239  | 0.030 14 | 0.028 97 | 12.476                 | 73  |
| 74  | 72 048 | 2366  | 0.032 84 | 0.032 03 | 11.848                 | 74  |
| 75  | 69 682 | 2487  | 0.035 69 | 0.034 80 | 11.234                 | 75  |
| 76  | 67 195 | 2634  | 0.039 19 | 0.038 03 | 10.631                 | 76  |
| 77  | 64 561 | 2812  | 0.043 56 | 0.042 14 | 10.044                 | 77  |
| 78  | 61 749 | 2984  | 0.048 33 | 0.046 94 | 9.478                  | 78  |
| 79  | 58 765 | 3158  | 0.053 73 | 0.052 28 | 8.934                  | 79  |
| 80  | 55 607 | 3314  | 0.059 61 | 0.058 27 | 8.413                  | 80  |
| 81  | 52 293 | 3435  | 0.065 68 | 0.064 64 | 7.914                  | 81  |
| 82  | 48 858 | 3526  | 0.072 16 | 0.071 31 | 7.435                  | 82  |
| 83  | 45 332 | 3596  | 0.079 33 | 0.078 61 | 6.974                  | 83  |
| 84  | 41 736 | 3655  | 0.087 57 | 0.086 91 | 6.532                  | 84  |
| 85  | 38 081 | 3706  | 0.097 31 | 0.096 74 | 6.111                  | 85  |
| 86  | 34 375 | 3724  | 0.108 33 | 0.108 41 | 5.715                  | 86  |
| 87  | 30 651 | 3634  | 0.118 59 | 0.120 52 | 5.349                  | 87  |
| 88  | 27 017 | 3475  | 0.128 60 | 0.131 74 | 5.002                  | 88  |
| 89  | 23 542 | 3330  | 0.141 46 | 0.144 62 | 4.667                  | 89  |
| 90  | 20 212 | 3143  | 0.155 50 | 0.160 53 | 4.354                  | 90  |
| 91  | 17 069 | 2903  | 0.170 06 | 0.177 51 | 4.065                  | 91  |
| 92  | 14 166 | 2631  | 0.185 73 | 0.195 73 | 3.797                  | 92  |
| 93  | 11 535 | 2321  | 0.201 26 | 0.214 98 | 3.551                  | 93  |
| 94  | 9 214  | 2008  | 0.217 90 | 0.234 90 | 3.322                  | 94  |
| 95  | 7 206  | 1702  | 0.236 19 | 0.257 32 | 3.112                  | 95  |
| 96  | 5 504  | 1395  | 0.253 44 | 0.281 14 | 2.925                  | 96  |
| 97  | 4 109  | 1102  | 0.268 20 | 0.302 67 | 2.754                  | 97  |
| 98  | 3 007  | 853   | 0.283 52 | 0.322 41 | 2.588                  | 98  |
| 99  | 2 154  | 653   | 0.303 31 | 0.346 28 | 2.422                  | 99  |
| 100 | 1 501  | 488   | 0.324 89 | 0.376 71 | 2.269                  | 100 |
| 101 | 1 013  | 350   | 0.345 62 | 0.408 87 | 2.133                  | 101 |
| 102 | 663    | 240   | 0.361 86 | 0.437 69 | 2.011                  | 102 |
| 103 | 423    | 161   | 0.379 92 | 0.462 73 | 1.887                  | 103 |
| 104 | 262    | 105   | 0.400 45 | 0.493 00 | 1.758                  | 104 |
| 105 | 157    | 68    | 0.436 18 | 0.537 29 | 1.621                  | 105 |
| 106 | 89     | 41    | 0.459 94 | 0.599 08 | 1.518                  | 106 |
| 107 | 48     | 23    | 0.483 89 | 0.637 85 | 1.425                  | 107 |
| 108 | 25     | 13    | 0.507 91 | 0.683 88 | 1.338                  | 108 |
| 109 | 12     | 6     | 0.531 90 | 0.731 91 | 1.257                  | 109 |
| 110 | 6      | 3     | 0.555 74 | 0.781 81 | 1.183                  | 110 |
| 111 | 3      | 2     | 0.579 32 | 0.833 37 | 1.114                  | 111 |
| 112 | 1      | 1     | 0.602 55 | 0.886 29 | 1.050                  | 112 |

### **ASSURED LIVES MORTALITY TABLE**

#### **AM92**

#### **AM92**

This table is based on the mortality of assured male lives in the UK during the years 1991, 1992, 1993, and 1994. Full details are given in *C.M.I.R.* **17**.

Due to potential rounding errors at high ages, the commutation functions  $(D_x, N_x, S_x, C_x, M_x \text{ and } R_x)$  are tabulated here to age 110 only.

| x              | $l_{[x]}$                                 | $l_{[x-1]+1}$              | $l_x$                                      | x              |
|----------------|-------------------------------------------|----------------------------|--------------------------------------------|----------------|
| 17<br>18<br>19 | 9 997.809 1<br>9 991.890 4<br>9 986.035 1 | 9 993.540 0<br>9 987.633 8 | 10 000.000 0<br>9 994.000 0<br>9 988.063 6 | 17<br>18<br>19 |
| 20             | 9 980.243 2                               | 9 981.791 1                | 9 982.200 6                                | 20             |
| 21             | 9 974.504 6                               | 9 976.001 6                | 9 976.390 9                                | 21             |
| 22             | 9 968.839 1                               | 9 970.265 4                | 9 970.634 6                                | 22             |
| 23             | 9 963.196 7                               | 9 964.582 4                | 9 964.931 3                                | 23             |
| 24             | 9 957.577 5                               | 9 958.922 5                | 9 959.261 3                                | 24             |
| 25             | 9 951.991 3                               | 9 953.285 8                | 9 953.614 4                                | 25             |
| 26             | 9 946.398 2                               | 9 947.662 2                | 9 947.980 7                                | 26             |
| 27             | 9 940.798 4                               | 9 942.021 8                | 9 942.340 2                                | 27             |
| 28             | 9 935.181 8                               | 9 936.354 9                | 9 936.673 0                                | 28             |
| 29             | 9 929.508 8                               | 9 930.661 3                | 9 930.969 4                                | 29             |
| 30             | 9 923.749 7                               | 9 924.891 6                | 9 925 209 4                                | 30             |
| 31             | 9 917.914 5                               | 9 919.026 0                | 9 919 353 5                                | 31             |
| 32             | 9 911.953 8                               | 9 913.054 7                | 9 913 382 1                                | 32             |
| 33             | 9 905.828 2                               | 9 906.928 5                | 9 907 265 5                                | 33             |
| 34             | 9 899.498 4                               | 9 900.607 8                | 9 900 964 5                                | 34             |
| 35             | 9 892.915 1                               | 9 894.053 6                | 9 894.429 9                                | 35             |
| 36             | 9 886.039 5                               | 9 887.206 9                | 9 887.612 6                                | 36             |
| 37             | 9 878.812 8                               | 9 880.028 8                | 9 880.454 0                                | 37             |
| 38             | 9 871.166 5                               | 9 872.450 8                | 9 872.895 4                                | 38             |
| 39             | 9 863.022 7                               | 9 864.404 7                | 9 864.868 8                                | 39             |
| 40             | 9 854.303 6                               | 9 855.793 1                | 9 856.286 3                                | 40             |
| 41             | 9 844.902 5                               | 9 846.538 4                | 9 847.051 0                                | 41             |
| 42             | 9 834.703 0                               | 9 836.524 5                | 9 837.066 1                                | 42             |
| 43             | 9 823.599 4                               | 9 825.635 4                | 9 826.206 0                                | 43             |
| 44             | 9 811.447 3                               | 9 813.746 3                | 9 814.335 9                                | 44             |
| 45             | 9 798.083 7                               | 9 800.693 9                | 9 801 312 3                                | 45             |
| 46             | 9 783.337 1                               | 9 786.316 2                | 9 786 953 4                                | 46             |
| 47             | 9 766.998 3                               | 9 770.423 1                | 9 771 078 9                                | 47             |
| 48             | 9 748.860 3                               | 9 752.787 4                | 9 753 471 4                                | 48             |
| 49             | 9 728.649 9                               | 9 733.193 8                | 9 733 886 5                                | 49             |
| 50             | 9 706.097 7                               | 9 711.352 4                | 9 712.072 8                                | 50             |
| 51             | 9 680.899 0                               | 9 686.966 9                | 9 687.714 9                                | 51             |
| 52             | 9 652.696 5                               | 9 659.707 5                | 9 660.502 1                                | 52             |
| 53             | 9 621.100 6                               | 9 629.211 5                | 9 630.052 2                                | 53             |
| 54             | 9 585.691 6                               | 9 595.056 3                | 9 595.971 5                                | 54             |
| 55             | 9 545.992 9                               | 9 556.800 3                | 9 557.817 9                                | 55             |
| 56             | 9 501.483 9                               | 9 513.937 5                | 9 515.104 0                                | 56             |
| 57             | 9 451.593 8                               | 9 465.929 3                | 9 467.290 6                                | 57             |
| 58             | 9 395.697 1                               | 9 412.171 2                | 9 413.800 4                                | 58             |
| 59             | 9 333.128 4                               | 9 352.016 5                | 9 354.004 0                                | 59             |
| 60             | 9 263.142 2                               | 9 284.764 1                | 9 287.216 4                                | 60             |
| 61             | 9 184.968 7                               | 9 209.656 8                | 9 212.714 3                                | 61             |
| 62             | 9 097.740 5                               | 9 125.881 8                | 9 129.717 0                                | 62             |
| 63             | 9 000.588 4                               | 9 032.564 2                | 9 037.397 3                                | 63             |
| 64             | 8 892.574 1                               | 8 928.817 7                | 8 934.877 1                                | 64             |

| x                               | $l_{[x]}$                                                               | $l_{[x-1]+1}$                                                           | $l_x$                                                                   | x                               |
|---------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------|
| 65<br>66<br>67<br>68<br>69      | 8 772.735 9<br>8 640.048 1<br>8 493.518 7<br>8 332.139 6<br>8 154.931 8 | 8 813.688 1<br>8 686.201 6<br>8 545.353 2<br>8 390.161 1<br>8 219.639 0 | 8 821.261 2<br>8 695.619 9<br>8 557.011 8<br>8 404.491 6<br>8 237.132 9 | 65<br>66<br>67<br>68<br>69      |
| 70<br>71<br>72<br>73<br>74      | 7 960.977 6<br>7 749.465 9<br>7 519.702 7<br>7 271.146 1<br>7 003.521 6 | 8 032.860 6<br>7 828.968 6<br>7 607.240 0<br>7 367.082 8<br>7 108.105 2 | 8 054.054 4<br>7 854.450 8<br>7 637.620 8<br>7 403.008 4<br>7 150.240 1 | 70<br>71<br>72<br>73<br>74      |
| 75<br>76<br>77<br>78<br>79      | 6 716.823 1<br>6 411.345 9<br>6 087.808 4<br>5 747.362 4<br>5 391.640 0 | 6 830.184 4<br>6 533.500 8<br>6 218.575 9<br>5 886.362 8<br>5 538.279 1 | 6 879.167 3<br>6 589.925 8<br>6 282.980 3<br>5 959.168 0<br>5 619.757 7 | 75<br>76<br>77<br>78<br>79      |
| 80<br>81<br>82<br>83<br>84      | 5 022.793 1<br>4 643.512 9<br>4 257.005 6<br>3 866.988 4<br>3 477.592 9 | 5 176.222 4<br>4 802.629 0<br>4 420.452 5<br>4 033.146 7<br>3 644.632 7 | 5 266.460 4<br>4 901.478 9<br>4 527.496 0<br>4 147.670 8<br>3 765.599 8 | 80<br>81<br>82<br>83<br>84      |
| 85<br>86<br>87<br>88<br>89      | 3 093.286 3<br>2 718.712 8<br>2 358.529 9<br>2 017.229 8<br>1 698.908 9 | 3 259.186 2<br>2 881.346 7<br>2 515.731 0<br>2 166.880 5<br>1 839.045 8 | 3 385.247 9<br>3 010.839 5<br>2 646.741 6<br>2 297.297 6<br>1 966.649 9 | 85<br>86<br>87<br>88<br>89      |
| 90<br>91<br>92<br>93<br>94      | 1 407.055 0                                                             | 1 535.980 1<br>1 260.735 4                                              | 1 658.554 5<br>1 376.190 6<br>1 121.988 9<br>897.502 5<br>703.324 2     | 90<br>91<br>92<br>93<br>94      |
| 95<br>96<br>97<br>98<br>99      |                                                                         |                                                                         | 539.064 3<br>403.402 3<br>294.206 1<br>208.706 0<br>143.712 0           | 95<br>96<br>97<br>98<br>99      |
| 100<br>101<br>102<br>103<br>104 |                                                                         |                                                                         | 95.847 6<br>61.773 3<br>38.379 6<br>22.928 4<br>13.135 9                | 100<br>101<br>102<br>103<br>104 |
| 105<br>106<br>107<br>108<br>109 |                                                                         |                                                                         | 7.196 8<br>3.759 6<br>1.866 9<br>0.878 4<br>0.390 3                     | 105<br>106<br>107<br>108<br>109 |
| 110<br>111<br>112<br>113<br>114 |                                                                         |                                                                         | 0.163 2<br>0.064 0<br>0.023 4<br>0.008 0<br>0.002 5                     | 110<br>111<br>112<br>113<br>114 |
| 115<br>116<br>117<br>118<br>119 |                                                                         |                                                                         | 0.000 7<br>0.000 2<br>0.000 0<br>0.000 0<br>0.000 0                     | 115<br>116<br>117<br>118<br>119 |
| 120                             |                                                                         |                                                                         | 0.000 0                                                                 | 120                             |

| x              | $d_{[x]}$                     | $d_{[x-1]+1}$      | $d_x$                         | x              |
|----------------|-------------------------------|--------------------|-------------------------------|----------------|
| 17<br>18<br>19 | 4.269 1<br>4.256 5<br>4.244 1 | 5.476 5<br>5.433 3 | 6.000 0<br>5.936 4<br>5.863 0 | 17<br>18<br>19 |
| 20             | 4.241 6                       | 5.400 1            | 5.809 6                       | 20             |
| 21             | 4.239 2                       | 5.367 1            | 5.756 4                       | 21             |
| 22             | 4.256 7                       | 5.334 1            | 5.703 2                       | 22             |
| 23             | 4.274 2                       | 5.321 1            | 5.670 0                       | 23             |
| 24             | 4.291 7                       | 5.308 1            | 5.646 9                       | 24             |
| 25             | 4.329 1                       | 5.305 1            | 5.633 7                       | 25             |
| 26             | 4.376 4                       | 5.322 0            | 5.640 5                       | 26             |
| 27             | 4.443 5                       | 5.348 8            | 5.667 1                       | 27             |
| 28             | 4.520 5                       | 5.385 5            | 5.703 7                       | 28             |
| 29             | 4.617 2                       | 5.451 9            | 5.760 0                       | 29             |
| 30             | 4.723 7                       | 5.538 1            | 5.855 9                       | 30             |
| 31             | 4.859 8                       | 5.643 9            | 5.971 5                       | 31             |
| 32             | 5.025 4                       | 5.789 2            | 6.116 6                       | 32             |
| 33             | 5.220 4                       | 5.964 0            | 6.301 0                       | 33             |
| 34             | 5.444 7                       | 6.178 0            | 6.534 6                       | 34             |
| 35             | 5.708 2                       | 6.441 0            | 6.817 3                       | 35             |
| 36             | 6.010 7                       | 6.753 0            | 7.158 6                       | 36             |
| 37             | 6.362 0                       | 7.133 4            | 7.558 5                       | 37             |
| 38             | 6.761 7                       | 7.582 0            | 8.026 7                       | 38             |
| 39             | 7.229 6                       | 8.118 4            | 8.582 4                       | 39             |
| 40             | 7.765 2                       | 8.742 1            | 9.235 3                       | 40             |
| 41             | 8.378 0                       | 9.472 4            | 9.984 9                       | 41             |
| 42             | 9.067 6                       | 10.318 5           | 10.860 1                      | 42             |
| 43             | 9.853 1                       | 11.299 5           | 11.870 1                      | 43             |
| 44             | 10.753 3                      | 12.434 0           | 13.023 6                      | 44             |
| 45             | 11.767 5                      | 13.740 6           | 14.358 9                      | 45             |
| 46             | 12.914 0                      | 15.237 3           | 15.874 4                      | 46             |
| 47             | 14.211 0                      | 16.951 7           | 17.607 5                      | 47             |
| 48             | 15.666 4                      | 18.900 9           | 19.585 0                      | 48             |
| 49             | 17.297 5                      | 21.121 0           | 21.813 6                      | 49             |
| 50             | 19.130 7                      | 23.637 4           | 24.357 9                      | 50             |
| 51             | 21.191 5                      | 26.464 8           | 27.212 8                      | 51             |
| 52             | 23.485 0                      | 29.655 3           | 30.449 9                      | 52             |
| 53             | 26.044 3                      | 33.240 0           | 34.080 8                      | 53             |
| 54             | 28.891 3                      | 37.238 4           | 38.153 6                      | 54             |
| 55             | 32.055 4                      | 41.696 3           | 42.713 9                      | 55             |
| 56             | 35.554 6                      | 46.646 8           | 47.813 4                      | 56             |
| 57             | 39.422 6                      | 52.128 9           | 53.490 2                      | 57             |
| 58             | 43.680 6                      | 58.167 2           | 59.796 5                      | 58             |
| 59             | 48.364 3                      | 64.800 1           | 66.787 6                      | 59             |
| 60             | 53.485 4                      | 72.049 8           | 74.502 0                      | 60             |
| 61             | 59.086 9                      | 79.939 8           | 82.997 3                      | 61             |
| 62             | 65.176 2                      | 88.484 6           | 92.319 7                      | 62             |
| 63             | 71.770 7                      | 97.687 2           | 102.520 2                     | 63             |
| 64             | 78.886 0                      | 107.556 5          | 113.615 9                     | 64             |

| x                               | $d_{[x]}$                                                     | $d_{[x-1]+1}$                                                 | $d_x$                                                         | x                               |
|---------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|
| 65<br>66<br>67<br>68<br>69      | 86.534 3<br>94.694 9<br>103.357 6<br>112.500 5<br>122.071 2   | 118.068 2<br>129.189 9<br>140.861 6<br>153.028 1<br>165.584 6 | 125.641 2<br>138.608 2<br>152.520 2<br>167.358 6<br>183.078 5 | 65<br>66<br>67<br>68<br>69      |
| 70<br>71<br>72<br>73<br>74      | 132.008 9<br>142.225 9<br>152.619 9<br>163.040 9<br>173.337 2 | 178.409 8<br>191.347 8<br>204.231 6<br>216.842 7<br>228.937 9 | 199.603 6<br>216.830 0<br>234.612 4<br>252.768 3<br>271.072 8 | 70<br>71<br>72<br>73<br>74      |
| 75<br>76<br>77<br>78<br>79      | 183.322 3<br>192.769 9<br>201.445 6<br>209.083 3<br>215.417 6 | 240.258 6<br>250.520 6<br>259.407 9<br>266.605 1<br>271.818 7 | 289.241 5<br>306.945 6<br>323.812 2<br>339.410 4<br>353.297 3 | 75<br>76<br>77<br>78<br>79      |
| 80<br>81<br>82<br>83<br>84      | 220.164 1<br>223.060 4<br>223.858 9<br>222.355 7<br>218.406 7 | 274.743 5<br>275.133 0<br>272.781 7<br>267.546 8<br>259.384 9 | 364.981 5<br>373.982 8<br>379.825 2<br>382.071 0<br>380.351 9 | 80<br>81<br>82<br>83<br>84      |
| 85<br>86<br>87<br>88<br>89      | 211.939 6<br>202.981 8<br>191.649 4<br>178.183 9<br>162.928 8 | 248.346 7<br>234.605 0<br>218.433 4<br>200.230 6<br>180.491 3 | 374.408 4<br>364.097 8<br>349.444 0<br>330.647 8<br>308.095 4 | 85<br>86<br>87<br>88<br>89      |
| 90<br>91<br>92<br>93<br>94      | 146.319 7                                                     | 159.789 5<br>138.746 4                                        | 282.363 9<br>254.201 7<br>224.486 4<br>194.178 3<br>164.260 0 | 90<br>91<br>92<br>93<br>94      |
| 95<br>96<br>97<br>98<br>99      |                                                               |                                                               | 135.662 0<br>109.196 2<br>85.500 1<br>64.994 0<br>47.864 4    | 95<br>96<br>97<br>98<br>99      |
| 100<br>101<br>102<br>103<br>104 |                                                               |                                                               | 34.074 3<br>23.393 7<br>15.451 2<br>9.792 5<br>5.939 1        | 100<br>101<br>102<br>103<br>104 |
| 105<br>106<br>107<br>108<br>109 |                                                               |                                                               | 3.437 3<br>1.892 7<br>.988 5<br>.488 1<br>.227 1              | 105<br>106<br>107<br>108<br>109 |
| 110<br>111<br>112<br>113<br>114 |                                                               |                                                               | .099 2<br>.040 5<br>.015 4<br>.005 5<br>.001 8                | 110<br>111<br>112<br>113<br>114 |
| 115<br>116<br>117<br>118<br>119 |                                                               |                                                               | .000 5<br>.000 1<br>.000 0<br>.000 0<br>.000 0                | 115<br>116<br>117<br>118<br>119 |
| 120                             |                                                               |                                                               | .000 0                                                        | 120                             |

| x              | $q_{[x]}$                        | $q_{[x-1]+1}$        | $q_{_X}$                         | x              |
|----------------|----------------------------------|----------------------|----------------------------------|----------------|
| 17<br>18<br>19 | .000 427<br>.000 426<br>.000 425 | .000 548<br>.000 544 | .000 600<br>.000 594<br>.000 587 | 17<br>18<br>19 |
| 20             | .000 425                         | .000 541             | .000 582                         | 20             |
| 21             | .000 425                         | .000 538             | .000 577                         | 21             |
| 22             | .000 427                         | .000 535             | .000 572                         | 22             |
| 23             | .000 429                         | .000 534             | .000 569                         | 23             |
| 24             | .000 431                         | .000 533             | .000 567                         | 24             |
| 25             | .000 435                         | .000 533             | .000 566                         | 25             |
| 26             | .000 440                         | .000 535             | .000 567                         | 26             |
| 27             | .000 447                         | .000 538             | .000 570                         | 27             |
| 28             | .000 455                         | .000 542             | .000 574                         | 28             |
| 29             | .000 465                         | .000 549             | .000 580                         | 29             |
| 30             | .000 476                         | .000 558             | .000 590                         | 30             |
| 31             | .000 490                         | .000 569             | .000 602                         | 31             |
| 32             | .000 507                         | .000 584             | .000 617                         | 32             |
| 33             | .000 527                         | .000 602             | .000 636                         | 33             |
| 34             | .000 550                         | .000 624             | .000 660                         | 34             |
| 35             | .000 577                         | .000 651             | .000 689                         | 35             |
| 36             | .000 608                         | .000 683             | .000 724                         | 36             |
| 37             | .000 644                         | .000 722             | .000 765                         | 37             |
| 38             | .000 685                         | .000 768             | .000 813                         | 38             |
| 39             | .000 733                         | .000 823             | .000 870                         | 39             |
| 40             | .000 788                         | .000 887             | .000 937                         | 40             |
| 41             | .000 851                         | .000 962             | .001 014                         | 41             |
| 42             | .000 922                         | .001 049             | .001 104                         | 42             |
| 43             | .001 003                         | .001 150             | .001 208                         | 43             |
| 44             | .001 096                         | .001 267             | .001 327                         | 44             |
| 45             | .001 201                         | .001 402             | .001 465                         | 45             |
| 46             | .001 320                         | .001 557             | .001 622                         | 46             |
| 47             | .001 455                         | .001 735             | .001 802                         | 47             |
| 48             | .001 607                         | .001 938             | .002 008                         | 48             |
| 49             | .001 778                         | .002 170             | .002 241                         | 49             |
| 50             | .001 971                         | .002 434             | .002 508                         | 50             |
| 51             | .002 189                         | .002 732             | .002 809                         | 51             |
| 52             | .002 433                         | .003 070             | .003 152                         | 52             |
| 53             | .002 707                         | .003 452             | .003 539                         | 53             |
| 54             | .003 014                         | .003 881             | .003 976                         | 54             |
| 55             | .003 358                         | .004 363             | .004 469                         | 55             |
| 56             | .003 742                         | .004 903             | .005 025                         | 56             |
| 57             | .004 171                         | .005 507             | .005 650                         | 57             |
| 58             | .004 649                         | .006 180             | .006 352                         | 58             |
| 59             | .005 182                         | .006 929             | .007 140                         | 59             |
| 60             | .005 774                         | .007 760             | .008 022                         | 60             |
| 61             | .006 433                         | .008 680             | .009 009                         | 61             |
| 62             | .007 164                         | .009 696             | .010 112                         | 62             |
| 63             | .007 974                         | .010 815             | .011 344                         | 63             |
| 64             | .008 871                         | .012 046             | .012 716                         | 64             |

| x                               | $q_{[x]}$                                                | $q_{[x-1]+1}$                                            | $q_x$                                                    | x                               |
|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|
| 65<br>66<br>67<br>68<br>69      | .009 864<br>.010 960<br>.012 169<br>.013 502<br>.014 969 | .013 396<br>.014 873<br>.016 484<br>.018 239<br>.020 145 | .014 243<br>.015 940<br>.017 824<br>.019 913<br>.022 226 | 65<br>66<br>67<br>68<br>69      |
| 70<br>71<br>72<br>73<br>74      | .016 582<br>.018 353<br>.020 296<br>.022 423<br>.024 750 | .022 210<br>.024 441<br>.026 847<br>.029 434<br>.032 208 | .024 783<br>.027 606<br>.030 718<br>.034 144<br>.037 911 | 70<br>71<br>72<br>73<br>74      |
| 75<br>76<br>77<br>78<br>79      | .027 293<br>.030 067<br>.033 090<br>.036 379<br>.039 954 | .035 176<br>.038 344<br>.041 715<br>.045 292<br>.049 080 | .042 046<br>.046 578<br>.051 538<br>.056 956<br>.062 867 | 75<br>76<br>77<br>78<br>79      |
| 80<br>81<br>82<br>83<br>84      | .043 833<br>.048 037<br>.052 586<br>.057 501<br>.062 804 | .053 078<br>.057 288<br>.061 709<br>.066 337<br>.071 169 | .069 303<br>.076 300<br>.083 893<br>.092 117<br>.101 007 | 80<br>81<br>82<br>83<br>84      |
| 85<br>86<br>87<br>88<br>89      | .068 516<br>.074 661<br>.081 258<br>.088 331<br>.095 902 | .076 199<br>.081 422<br>.086 827<br>.092 405<br>.098 144 | .110 600<br>.120 929<br>.132 028<br>.143 929<br>.156 660 | 85<br>86<br>87<br>88<br>89      |
| 90<br>91<br>92<br>93<br>94      | .103 990                                                 | .104 031<br>.110 052                                     | .170 247<br>.184 714<br>.200 079<br>.216 354<br>.233 548 | 90<br>91<br>92<br>93<br>94      |
| 95<br>96<br>97<br>98<br>99      |                                                          |                                                          | .251 662<br>.270 688<br>.290 613<br>.311 414<br>.333 058 | 95<br>96<br>97<br>98<br>99      |
| 100<br>101<br>102<br>103<br>104 |                                                          |                                                          | .355 505<br>.378 702<br>.402 588<br>.427 090<br>.452 127 | 100<br>101<br>102<br>103<br>104 |
| 105<br>106<br>107<br>108<br>109 |                                                          |                                                          | .477 608<br>.503 432<br>.529 493<br>.555 674<br>.581 857 | 105<br>106<br>107<br>108<br>109 |
| 110<br>111<br>112<br>113<br>114 |                                                          |                                                          | .607 918<br>.633 731<br>.659 171<br>.684 114<br>.708 442 | 110<br>111<br>112<br>113<br>114 |
| 115<br>116<br>117<br>118<br>119 |                                                          |                                                          | .732 042<br>.754 809<br>.776 648<br>.797 477<br>.817 225 | 115<br>116<br>117<br>118<br>119 |
| 120                             |                                                          |                                                          | 1.000 000                                                | 120                             |

| x              | $\mu_{[x]}$                         | $\mu_{[x-1]+1}$        | $\mu_x$                             | x              |
|----------------|-------------------------------------|------------------------|-------------------------------------|----------------|
| 17<br>18<br>19 | 0.000 367<br>0.000 367<br>0.000 367 | 0.000 488<br>0.000 485 | 0.000 603<br>0.000 597<br>0.000 591 | 17<br>18<br>19 |
| 20             | 0.000 369                           | 0.000 483              | 0.000 585                           | 20             |
| 21             | 0.000 370                           | 0.000 482              | 0.000 580                           | 21             |
| 22             | 0.000 374                           | 0.000 480              | 0.000 574                           | 22             |
| 23             | 0.000 377                           | 0.000 481              | 0.000 570                           | 23             |
| 24             | 0.000 380                           | 0.000 481              | 0.000 568                           | 24             |
| 25             | 0.000 385                           | 0.000 482              | 0.000 566                           | 25             |
| 26             | 0.000 391                           | 0.000 485              | 0.000 566                           | 26             |
| 27             | 0.000 400                           | 0.000 489              | 0.000 568                           | 27             |
| 28             | 0.000 408                           | 0.000 495              | 0.000 572                           | 28             |
| 29             | 0.000 419                           | 0.000 502              | 0.000 577                           | 29             |
| 30             | 0.000 430                           | 0.000 512              | 0.000 585                           | 30             |
| 31             | 0.000 443                           | 0.000 523              | 0.000 596                           | 31             |
| 32             | 0.000 460                           | 0.000 537              | 0.000 609                           | 32             |
| 33             | 0.000 479                           | 0.000 555              | 0.000 626                           | 33             |
| 34             | 0.000 500                           | 0.000 576              | 0.000 647                           | 34             |
| 35             | 0.000 524                           | 0.000 601              | 0.000 674                           | 35             |
| 36             | 0.000 551                           | 0.000 630              | 0.000 706                           | 36             |
| 37             | 0.000 582                           | 0.000 665              | 0.000 744                           | 37             |
| 38             | 0.000 616                           | 0.000 706              | 0.000 788                           | 38             |
| 39             | 0.000 656                           | 0.000 754              | 0.000 840                           | 39             |
| 40             | 0.000 701                           | 0.000 810              | 0.000 902                           | 40             |
| 41             | 0.000 752                           | 0.000 875              | 0.000 974                           | 41             |
| 42             | 0.000 808                           | 0.000 950              | 0.001 057                           | 42             |
| 43             | 0.000 871                           | 0.001 037              | 0.001 154                           | 43             |
| 44             | 0.000 943                           | 0.001 136              | 0.001 265                           | 44             |
| 45             | 0.001 023                           | 0.001 250              | 0.001 394                           | 45             |
| 46             | 0.001 113                           | 0.001 380              | 0.001 541                           | 46             |
| 47             | 0.001 214                           | 0.001 529              | 0.001 709                           | 47             |
| 48             | 0.001 326                           | 0.001 698              | 0.001 902                           | 48             |
| 49             | 0.001 451                           | 0.001 890              | 0.002 122                           | 49             |
| 50             | 0.001 592                           | 0.002 108              | 0.002 372                           | 50             |
| 51             | 0.001 750                           | 0.002 354              | 0.002 656                           | 51             |
| 52             | 0.001 925                           | 0.002 633              | 0.002 978                           | 52             |
| 53             | 0.002 122                           | 0.002 947              | 0.003 343                           | 53             |
| 54             | 0.002 342                           | 0.003 300              | 0.003 756                           | 54             |
| 55             | 0.002 588                           | 0.003 696              | 0.004 221                           | 55             |
| 56             | 0.002 862                           | 0.004 139              | 0.004 747                           | 56             |
| 57             | 0.003 170                           | 0.004 636              | 0.005 340                           | 57             |
| 58             | 0.003 513                           | 0.005 189              | 0.006 005                           | 58             |
| 59             | 0.003 898                           | 0.005 806              | 0.006 754                           | 59             |
| 60             | 0.004 327                           | 0.006 493              | 0.007 593                           | 60             |
| 61             | 0.004 809                           | 0.007 254              | 0.008 533                           | 61             |
| 62             | 0.005 348                           | 0.008 099              | 0.009 586                           | 62             |
| 63             | 0.005 949                           | 0.009 032              | 0.010 763                           | 63             |
| 64             | 0.006 623                           | 0.010 063              | 0.012 078                           | 64             |

| x                               | $\mu_{[x]}$                                                   | $\mu_{[\mathit{x}-1]+1}$                                      | $\mu_x$                                                       | x                               |
|---------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|
| 65<br>66<br>67<br>68<br>69      | 0.007 377<br>0.008 220<br>0.009 162<br>0.010 216<br>0.011 393 | 0.011 199<br>0.012 449<br>0.013 821<br>0.015 326<br>0.016 972 | 0.013 544<br>0.015 176<br>0.016 993<br>0.019 012<br>0.021 255 | 65<br>66<br>67<br>68<br>69      |
| 70<br>71<br>72<br>73<br>74      | 0.012 709<br>0.014 178<br>0.015 819<br>0.017 648<br>0.019 687 | 0.018 771<br>0.020 733<br>0.022 869<br>0.025 190<br>0.027 708 | 0.023 741<br>0.026 496<br>0.029 543<br>0.032 912<br>0.036 631 | 70<br>71<br>72<br>73<br>74      |
| 75<br>76<br>77<br>78<br>79      | 0.021 959<br>0.024 487<br>0.027 300<br>0.030 423<br>0.033 892 | 0.030 436<br>0.033 385<br>0.036 569<br>0.040 000<br>0.043 691 | 0.040 732<br>0.045 251<br>0.050 223<br>0.055 689<br>0.061 689 | 75<br>76<br>77<br>78<br>79      |
| 80<br>81<br>82<br>83<br>84      | 0.037 737<br>0.041 996<br>0.046 709<br>0.051 916<br>0.057 665 | 0.047 656<br>0.051 909<br>0.056 462<br>0.061 329<br>0.066 524 | 0.068 271<br>0.075 481<br>0.083 372<br>0.091 999<br>0.101 417 | 80<br>81<br>82<br>83<br>84      |
| 85<br>86<br>87<br>88<br>89      | 0.064 000<br>0.070 978<br>0.078 646<br>0.087 067<br>0.096 302 | 0.072 061<br>0.077 952<br>0.084 213<br>0.090 853<br>0.097 889 | 0.111 691<br>0.122 884<br>0.135 066<br>0.148 309<br>0.162 691 | 85<br>86<br>87<br>88<br>89      |
| 90<br>91<br>92<br>93<br>94      | 0.106 409                                                     | 0.105 333<br>0.113 198                                        | 0.178 289<br>0.195 190<br>0.213 482<br>0.233 257<br>0.254 610 | 90<br>91<br>92<br>93<br>94      |
| 95<br>96<br>97<br>98<br>99      |                                                               |                                                               | 0.277 645<br>0.302 462<br>0.329 170<br>0.357 882<br>0.388 711 | 95<br>96<br>97<br>98<br>99      |
| 100<br>101<br>102<br>103<br>104 |                                                               |                                                               | 0.421 777<br>0.457 202<br>0.495 111<br>0.535 631<br>0.578 890 | 100<br>101<br>102<br>103<br>104 |
| 105<br>106<br>107<br>108<br>109 |                                                               |                                                               | 0.625 023<br>0.674 162<br>0.726 443<br>0.782 002<br>0.840 973 | 105<br>106<br>107<br>108<br>109 |
| 110<br>111<br>112<br>113<br>114 |                                                               |                                                               | 0.903 494<br>0.969 700<br>1.039 723<br>1.113 695<br>1.191 744 | 110<br>111<br>112<br>113<br>114 |
| 115<br>116<br>117<br>118<br>119 |                                                               |                                                               | 1.274 000<br>1.360 581<br>1.451 603<br>1.547 178<br>1.647 417 | 115<br>116<br>117<br>118<br>119 |
| 120                             |                                                               |                                                               | 2.000 000                                                     | 120                             |

| x              | $e_{[x]}$                  | $e_{[x-1]+1}$    | $e_x$                      | x              |
|----------------|----------------------------|------------------|----------------------------|----------------|
| 17<br>18<br>19 | 61.353<br>60.389<br>59.424 | 60.379<br>59.414 | 61.339<br>60.376<br>59.412 | 17<br>18<br>19 |
| 20             | 58.458                     | 58.449           | 58.447                     | 20             |
| 21             | 57.492                     | 57.483           | 57.481                     | 21             |
| 22             | 56.524                     | 56.516           | 56.514                     | 22             |
| 23             | 55.556                     | 55.548           | 55.546                     | 23             |
| 24             | 54.587                     | 54.580           | 54.578                     | 24             |
| 25             | 53.618                     | 53.611           | 53.609                     | 25             |
| 26             | 52.648                     | 52.641           | 52.639                     | 26             |
| 27             | 51.677                     | 51.671           | 51.669                     | 27             |
| 28             | 50.706                     | 50.700           | 50.699                     | 28             |
| 29             | 49.735                     | 49.729           | 49.728                     | 29             |
| 30             | 48.764                     | 48.758           | 48.757                     | 30             |
| 31             | 47.792                     | 47.787           | 47.785                     | 31             |
| 32             | 46.821                     | 46.816           | 46.814                     | 32             |
| 33             | 45.850                     | 45.845           | 45.843                     | 33             |
| 34             | 44.879                     | 44.874           | 44.872                     | 34             |
| 35             | 43.909                     | 43.904           | 43.902                     | 35             |
| 36             | 42.939                     | 42.934           | 42.932                     | 36             |
| 37             | 41.970                     | 41.965           | 41.963                     | 37             |
| 38             | 41.003                     | 40.997           | 40.995                     | 38             |
| 39             | 40.036                     | 40.031           | 40.029                     | 39             |
| 40             | 39.071                     | 39.066           | 39.064                     | 40             |
| 41             | 38.108                     | 38.102           | 38.100                     | 41             |
| 42             | 37.148                     | 37.141           | 37.139                     | 42             |
| 43             | 36.189                     | 36.182           | 36.180                     | 43             |
| 44             | 35.234                     | 35.226           | 35.224                     | 44             |
| 45             | 34.282                     | 34.273           | 34.271                     | 45             |
| 46             | 33.333                     | 33.323           | 33.321                     | 46             |
| 47             | 32.388                     | 32.377           | 32.375                     | 47             |
| 48             | 31.448                     | 31.436           | 31.433                     | 48             |
| 49             | 30.513                     | 30.499           | 30.497                     | 49             |
| 50             | 29.583                     | 29.567           | 29.565                     | 50             |
| 51             | 28.660                     | 28.642           | 28.639                     | 51             |
| 52             | 27.742                     | 27.722           | 27.720                     | 52             |
| 53             | 26.833                     | 26.810           | 26.808                     | 53             |
| 54             | 25.931                     | 25.905           | 25.903                     | 54             |
| 55             | 25.037                     | 25.009           | 25.006                     | 55             |
| 56             | 24.153                     | 24.122           | 24.119                     | 56             |
| 57             | 23.279                     | 23.244           | 23.240                     | 57             |
| 58             | 22.415                     | 22.376           | 22.373                     | 58             |
| 59             | 21.563                     | 21.520           | 21.516                     | 59             |
| 60             | 20.724                     | 20.676           | 20.670                     | 60             |
| 61             | 19.897                     | 19.844           | 19.837                     | 61             |
| 62             | 19.084                     | 19.026           | 19.018                     | 62             |
| 63             | 18.286                     | 18.222           | 18.212                     | 63             |
| 64             | 17.503                     | 17.433           | 17.421                     | 64             |

| x                               | $e_{[x]}$                                      | $e_{[x-1]+1}$                                  | $e_x$                                          | x                               |
|---------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|
| 65<br>66<br>67<br>68<br>69      | 16.736<br>15.987<br>15.255<br>14.541<br>13.847 | 16.660<br>15.903<br>15.164<br>14.443<br>13.740 | 16.645<br>15.886<br>15.143<br>14.418<br>13.711 | 65<br>66<br>67<br>68<br>69      |
| 70<br>71<br>72<br>73<br>74      | 13.172<br>12.517<br>11.883<br>11.270<br>10.679 | 13.057<br>12.394<br>11.751<br>11.129<br>10.529 | 13.023<br>12.354<br>11.704<br>11.075<br>10.467 | 70<br>71<br>72<br>73<br>74      |
| 75<br>76<br>77<br>78<br>79      | 10.110<br>9.562<br>9.037<br>8.534<br>8.053     | 9.950<br>9.393<br>8.859<br>8.346<br>7.856      | 9.879<br>9.313<br>8.768<br>8.244<br>7.742      | 75<br>76<br>77<br>78<br>79      |
| 80<br>81<br>82<br>83<br>84      | 7.594<br>7.157<br>6.741<br>6.347<br>5.974      | 7.388<br>6.942<br>6.518<br>6.116<br>5.734      | 7.261<br>6.802<br>6.364<br>5.947<br>5.550      | 80<br>81<br>82<br>83<br>84      |
| 85<br>86<br>87<br>88<br>89      | 5.620<br>5.287<br>4.972<br>4.676<br>4.397      | 5.374<br>5.034<br>4.713<br>4.412<br>4.129      | 5.174<br>4.817<br>4.480<br>4.161<br>3.861      | 85<br>86<br>87<br>88<br>89      |
| 90<br>91<br>92<br>93<br>94      | 4.136                                          | 3.864<br>3.616                                 | 3.578<br>3.312<br>3.063<br>2.829<br>2.610      | 90<br>91<br>92<br>93<br>94      |
| 95<br>96<br>97<br>98<br>99      |                                                |                                                | 2.405<br>2.214<br>2.035<br>1.869<br>1.715      | 95<br>96<br>97<br>98<br>99      |
| 100<br>101<br>102<br>103<br>104 |                                                |                                                | 1.571<br>1.437<br>1.314<br>1.199<br>1.093      | 100<br>101<br>102<br>103<br>104 |
| 105<br>106<br>107<br>108<br>109 |                                                |                                                | 0.994<br>0.904<br>0.820<br>0.743<br>0.672      | 105<br>106<br>107<br>108<br>109 |
| 110<br>111<br>112<br>113<br>114 |                                                |                                                | 0.606<br>0.546<br>0.491<br>0.440<br>0.394      | 110<br>111<br>112<br>113<br>114 |
| 115<br>116<br>117<br>118<br>119 |                                                |                                                | 0.352<br>0.313<br>0.277<br>0.240<br>0.183      | 115<br>116<br>117<br>118<br>119 |
| 120                             |                                                |                                                | 0.000                                          | 120                             |

| 4% |
|----|
|----|

| x              | $D_{[x]}$                        | $D_{[x-1]+1}$        | $D_x$                            | x              |
|----------------|----------------------------------|----------------------|----------------------------------|----------------|
| 17<br>18<br>19 | 5 132.61<br>4 932.28<br>4 739.80 | 4 933.09<br>4 740.55 | 5 133.73<br>4 933.32<br>4 740.76 | 17<br>18<br>19 |
| 20             | 4 554.85                         | 4 555.56             | 4 555.75                         | 20             |
| 21             | 4 377.15                         | 4 377.80             | 4 377.98                         | 21             |
| 22             | 4 206.41                         | 4 207.01             | 4 207.16                         | 22             |
| 23             | 4 042.33                         | 4 042.89             | 4 043.04                         | 23             |
| 24             | 3 884.66                         | 3 885.19             | 3 885.32                         | 24             |
| 25             | 3 733.16                         | 3 733.64             | 3 733.77                         | 25             |
| 26             | 3 587.56                         | 3 588.01             | 3 588.13                         | 26             |
| 27             | 3 447.63                         | 3 448.06             | 3 448.17                         | 27             |
| 28             | 3 313.16                         | 3 313.55             | 3 313.66                         | 28             |
| 29             | 3 183.91                         | 3 184.28             | 3 184.38                         | 29             |
| 30             | 3 059.68                         | 3 060.03             | 3 060.13                         | 30             |
| 31             | 2 940.27                         | 2 940.60             | 2 940.69                         | 31             |
| 32             | 2 825.48                         | 2 825.79             | 2 825.89                         | 32             |
| 33             | 2 715.13                         | 2 715.43             | 2 715.52                         | 33             |
| 34             | 2 609.03                         | 2 609.33             | 2 609.42                         | 34             |
| 35             | 2 507.02                         | 2 507.31             | 2 507.40                         | 35             |
| 36             | 2 408.92                         | 2 409.20             | 2 409.30                         | 36             |
| 37             | 2 314.57                         | 2 314.86             | 2 314.96                         | 37             |
| 38             | 2 223.83                         | 2 224.12             | 2 224.22                         | 38             |
| 39             | 2 136.53                         | 2 136.83             | 2 136.93                         | 39             |
| 40             | 2 052.54                         | 2 052.85             | 2 052.96                         | 40             |
| 41             | 1 971.72                         | 1 972.04             | 1 972.15                         | 41             |
| 42             | 1 893.92                         | 1 894.27             | 1 894.37                         | 42             |
| 43             | 1 819.02                         | 1 819.40             | 1 819.50                         | 43             |
| 44             | 1 746.89                         | 1 747.30             | 1 747.41                         | 44             |
| 45             | 1 677.42                         | 1 677.86             | 1 677.97                         | 45             |
| 46             | 1 610.47                         | 1 610.96             | 1 611.07                         | 46             |
| 47             | 1 545.95                         | 1 546.49             | 1 546.59                         | 47             |
| 48             | 1 483.73                         | 1 484.32             | 1 484.43                         | 48             |
| 49             | 1 423.70                         | 1 424.37             | 1 424.47                         | 49             |
| 50             | 1 365.77                         | 1 366.51             | 1 366.61                         | 50             |
| 51             | 1 309.83                         | 1 310.65             | 1 310.75                         | 51             |
| 52             | 1 255.78                         | 1 256.70             | 1 256.80                         | 52             |
| 53             | 1 203.53                         | 1 204.55             | 1 204.65                         | 53             |
| 54             | 1 152.98                         | 1 154.11             | 1 154.22                         | 54             |
| 55             | 1 104.05                         | 1 105.30             | 1 105.41                         | 55             |
| 56             | 1 056.63                         | 1 058.02             | 1 058.15                         | 56             |
| 57             | 1 010.66                         | 1 012.19             | 1 012.34                         | 57             |
| 58             | 966.04                           | 967.73               | 967.90                           | 58             |
| 59             | 922.70                           | 924.57               | 924.76                           | 59             |
| 60             | 880.56                           | 882.61               | 882.85                           | 60             |
| 61             | 839.55                           | 841.80               | 842.08                           | 61             |
| 62             | 799.59                           | 802.06               | 802.40                           | 62             |
| 63             | 760.62                           | 763.33               | 763.74                           | 63             |
| 64             | 722.59                           | 725.54               | 726.03                           | 64             |

| x        | $D_{[x]}$        | $D_{[x-1]+1}$    | $D_{x}$          | x        | 4% |
|----------|------------------|------------------|------------------|----------|----|
| 65       | 685.44           | 688.64           | 689.23           | 65       |    |
| 66       | 649.11           | 652.57           | 653.28           | 66       |    |
| 67       | 613.56           | 617.30           | 618.14           | 67       |    |
| 68       | 578.75           | 582.78           | 583.77           | 68       |    |
| 69       | 544.65           | 548.97           | 550.14           | 69       |    |
| 70       | 511.25           | 515.87           | 517.23           | 70       |    |
| 71       | 478.53           | 483.43           | 485.01           | 71       |    |
| 72       | 446.48           | 451.68           | 453.48           | 72       |    |
| 73<br>74 | 415.12<br>384.46 | 420.59<br>390.20 | 422.64<br>392.51 | 73<br>74 |    |
| 75       | 354.54           | 360.52           | 363.11           | 75       |    |
| 76       | 325.40           | 331.60           | 334.46           | 76       |    |
| 77       | 297.09           | 303.48           | 306.62           | 77       |    |
| 78       | 269.69           | 276.21           | 279.63           | 78       |    |
| 79       | 243.27           | 249.89           | 253.56           | 79       |    |
| 80       | 217.91           | 224.57           | 228.48           | 80       |    |
| 81       | 193.71           | 200.35           | 204.47           | 81       |    |
| 82       | 170.75           | 177.31           | 181.60           | 82       |    |
| 83       | 149.14           | 155.55           | 159.97           | 83       |    |
| 84       | 128.97           | 135.16           | 139.65           | 84       |    |
| 85       | 110.30           | 116.22           | 120.71           | 85       |    |
| 86       | 93.22            | 98.79            | 103.23           | 86       |    |
| 87       | 77.76            | 82.94            | 87.26            | 87       |    |
| 88<br>89 | 63.95<br>51.78   | 68.69<br>56.06   | 72.83<br>59.95   | 88<br>89 |    |
|          |                  |                  |                  |          |    |
| 90       | 41.24            | 45.02            | 48.61            | 90       |    |
| 91       |                  | 35.53            | 38.78            | 91       |    |
| 92<br>93 |                  |                  | 30.40<br>23.38   | 92<br>93 |    |
| 94       |                  |                  | 17.62            | 94       |    |
| 95       |                  |                  | 12.99            | 95       |    |
| 96       |                  |                  | 9.34             | 96       |    |
| 97       |                  |                  | 6.55             | 97       |    |
| 98       |                  |                  | 4.47             | 98       |    |
| 99       |                  |                  | 2.96             | 99       |    |
| 100      |                  |                  | 1.90             | 100      |    |
| 101      |                  |                  | 1.18             | 101      |    |
| 102      |                  |                  | .70              | 102      |    |
| 103      |                  |                  | .40              | 103      |    |
| 104      |                  |                  | .22              | 104      |    |
| 105      |                  |                  | .12              | 105      |    |
| 106      |                  |                  | .06              | 106      |    |
| 107      |                  |                  | .03              | 107      |    |
| 108      |                  |                  | .01              | 108      |    |
| 109      |                  |                  | .01              | 109      |    |
| 110      |                  |                  | .00              | 110      |    |

|    |                |                                        | AMI92                    |                                        |                |
|----|----------------|----------------------------------------|--------------------------|----------------------------------------|----------------|
| 4% | x              | $N_{[x]}$                              | $N_{[x-1]+1}$            | $N_x$                                  | x              |
|    | 17<br>18<br>19 | 119 958.58<br>114 824.96<br>109 891.73 | 114 825.98<br>109 892.68 | 119 959.94<br>114 826.20<br>109 892.88 | 17<br>18<br>19 |
|    | 20             | 105 151.06                             | 105 151.94               | 105 152.13                             | 20             |
|    | 21             | 100 595.40                             | 100 596.21               | 100 596.38                             | 21             |
|    | 22             | 96 217.50                              | 96 218.25                | 96 218.40                              | 22             |
|    | 23             | 92 010.40                              | 92 011.10                | 92 011.24                              | 23             |
|    | 24             | 87 967.43                              | 87 968.07                | 87 968.21                              | 24             |
|    | 25             | 84 082.16                              | 84 082.76                | 84 082.88                              | 25             |
|    | 26             | 80 348.43                              | 80 349.00                | 80 349.12                              | 26             |
|    | 27             | 76 760.35                              | 76 760.88                | 76 760.99                              | 27             |
|    | 28             | 73 312.22                              | 73 312.71                | 73 312.82                              | 28             |
|    | 29             | 69 998.60                              | 69 999.06                | 69 999.16                              | 29             |
|    | 30             | 66 814.23                              | 66 814.68                | 66 814.78                              | 30             |
|    | 31             | 63 754.13                              | 63 754.56                | 63 754.65                              | 31             |
|    | 32             | 60 813.46                              | 60 813.87                | 60 813.96                              | 32             |
|    | 33             | 57 987.58                              | 57 987.98                | 57 988.07                              | 33             |
|    | 34             | 55 272.07                              | 55 272.45                | 55 272.55                              | 34             |
|    | 35             | 52 662.65                              | 52 663.03                | 52 663.13                              | 35             |
|    | 36             | 50 155.24                              | 50 155.63                | 50 155.73                              | 36             |
|    | 37             | 47 745.94                              | 47 746.33                | 47 746.43                              | 37             |
|    | 38             | 45 430.98                              | 45 431.37                | 45 431.47                              | 38             |
|    | 39             | 43 206.74                              | 43 207.15                | 43 207.25                              | 39             |
|    | 40             | 41 069.80                              | 41 070.21                | 41 070.31                              | 40             |
|    | 41             | 39 016.82                              | 39 017.25                | 39 017.36                              | 41             |
|    | 42             | 37 044.65                              | 37 045.10                | 37 045.21                              | 42             |
|    | 43             | 35 150.25                              | 35 150.73                | 35 150.84                              | 43             |
|    | 44             | 33 330.72                              | 33 331.23                | 33 331.34                              | 44             |
|    | 45             | 31 583.27                              | 31 583.82                | 31 583.93                              | 45             |
|    | 46             | 29 905.26                              | 29 905.86                | 29 905.96                              | 46             |
|    | 47             | 28 294.14                              | 28 294.79                | 28 294.89                              | 47             |
|    | 48             | 26 747.50                              | 26 748.20                | 26 748.30                              | 48             |
|    | 49             | 25 263.01                              | 25 263.77                | 25 263.87                              | 49             |
|    | 50             | 23 838.46                              | 23 839.30                | 23 839.41                              | 50             |
|    | 51             | 22 471.77                              | 22 472.69                | 22 472.79                              | 51             |
|    | 52             | 21 160.92                              | 21 161.94                | 21 162.04                              | 52             |
|    | 53             | 19 904.01                              | 19 905.14                | 19 905.24                              | 53             |
|    | 54             | 18 699.23                              | 18 700.48                | 18 700.59                              | 54             |
|    | 55             | 17 544.87                              | 17 546.25                | 17 546.37                              | 55             |
|    | 56             | 16 439.29                              | 16 440.82                | 16 440.95                              | 56             |
|    | 57             | 15 380.96                              | 15 382.66                | 15 382.81                              | 57             |
|    | 58             | 14 368.41                              | 14 370.30                | 14 370.47                              | 58             |
|    | 59             | 13 400.27                              | 13 402.37                | 13 402.57                              | 59             |
|    | 60             | 12 475.24                              | 12 477.57                | 12 477.80                              | 60             |
|    | 61             | 11 592.08                              | 11 594.68                | 11 594.96                              | 61             |
|    | 62             | 10 749.66                              | 10 752.54                | 10 752.88                              | 62             |
|    | 63             | 9 946.87                               | 9 950.07                 | 9 950.48                               | 63             |
|    | 64             | 9 182.71                               | 9 186.25                 | 9 186.74                               | 64             |
|    |                |                                        |                          |                                        |                |

| x                               | $N_{[x]}$                                                | $N_{[x-1]+1}$                                            | $N_x$                                                    | x                               | 4% |
|---------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|----|
| 65<br>66<br>67<br>68<br>69      | 8 456.21<br>7 766.46<br>7 112.62<br>6 493.86<br>5 909.43 | 8 460.12<br>7 770.77<br>7 117.36<br>6 499.06<br>5 915.12 | 8 460.71<br>7 771.48<br>7 118.20<br>6 500.06<br>5 916.29 | 65<br>66<br>67<br>68<br>69      |    |
| 70<br>71<br>72<br>73<br>74      | 5 358.59<br>4 840.63<br>4 354.86<br>3 900.59<br>3 477.14 | 5 364.78<br>4 847.34<br>4 362.10<br>3 908.38<br>3 485.47 | 5 366.14<br>4 848.92<br>4 363.91<br>3 910.43<br>3 487.78 | 70<br>71<br>72<br>73<br>74      |    |
| 75<br>76<br>77<br>78<br>79      | 3 083.84<br>2 719.96<br>2 384.76<br>2 077.47<br>1 797.25 | 3 092.69<br>2 729.30<br>2 394.56<br>2 087.67<br>1 807.78 | 3 095.27<br>2 732.16<br>2 397.70<br>2 091.08<br>1 811.45 | 75<br>76<br>77<br>78<br>79      |    |
| 80<br>81<br>82<br>83<br>84      | 1 543.20<br>1 314.35<br>1 109.67<br>928.03<br>768.19     | 1 553.98<br>1 325.29<br>1 120.65<br>938.92<br>778.88     | 1 557.89<br>1 329.41<br>1 124.94<br>943.34<br>783.37     | 80<br>81<br>82<br>83<br>84      |    |
| 85<br>86<br>87<br>88<br>89      | 628.87<br>508.67<br>406.14<br>319.75<br>247.93           | 639.22<br>518.57<br>415.45<br>328.38<br>255.80           | 643.72<br>523.01<br>419.77<br>332.51<br>259.69           | 85<br>86<br>87<br>88<br>89      |    |
| 90<br>91<br>92<br>93<br>94      | 189.12                                                   | 196.15<br>147.88                                         | 199.74<br>151.13<br>112.35<br>81.95<br>58.56             | 90<br>91<br>92<br>93<br>94      |    |
| 95<br>96<br>97<br>98<br>99      |                                                          |                                                          | 40.94<br>27.95<br>18.61<br>12.06<br>7.59                 | 95<br>96<br>97<br>98<br>99      |    |
| 100<br>101<br>102<br>103<br>104 |                                                          |                                                          | 4.63<br>2.73<br>1.55<br>.85<br>.45                       | 100<br>101<br>102<br>103<br>104 |    |
| 105<br>106<br>107<br>108<br>109 |                                                          |                                                          | .23<br>.11<br>.05<br>.02<br>.01                          | 105<br>106<br>107<br>108<br>109 |    |
| 110                             |                                                          |                                                          | .00                                                      | 110                             |    |

| <b>4%</b> |  |
|-----------|--|
|-----------|--|

| x              | $S_{[x]}$                                    | $S_{[x-1]+1}$                | $S_x$                                        | x              |
|----------------|----------------------------------------------|------------------------------|----------------------------------------------|----------------|
| 17<br>18<br>19 | 2 398 085.62<br>2 278 125.81<br>2 163 299.72 | 2 278 127.03<br>2 163 300.85 | 2 398 087.20<br>2 278 127.26<br>2 163 301.06 | 17<br>18<br>19 |
| 20             | 2 053 406.94                                 | 2 053 407.99                 | 2 053 408.17                                 | 20             |
| 21             | 1 948 254.91                                 | 1 948 255.88                 | 1 948 256.05                                 | 21             |
| 22             | 1 847 658.63                                 | 1 847 659.51                 | 1 847 659.67                                 | 22             |
| 23             | 1 751 440.30                                 | 1 751 441.12                 | 1 751 441.27                                 | 23             |
| 24             | 1 659 429.12                                 | 1 659 429.89                 | 1 659 430.03                                 | 24             |
| 25             | 1 571 460.98                                 | 1 571 461.70                 | 1 571 461.82                                 | 25             |
| 26             | 1 487 378.14                                 | 1 487 378.82                 | 1 487 378.94                                 | 26             |
| 27             | 1 407 029.07                                 | 1 407 029.71                 | 1 407 029.82                                 | 27             |
| 28             | 1 330 268.14                                 | 1 330 268.73                 | 1 330 268.83                                 | 28             |
| 29             | 1 256 955.35                                 | 1 256 955.92                 | 1 256 956.02                                 | 29             |
| 30             | 1 186 956.21                                 | 1 186 956.76                 | 1 186 956.85                                 | 30             |
| 31             | 1 120 141.46                                 | 1 120 141.98                 | 1 120 142.07                                 | 31             |
| 32             | 1 056 386.83                                 | 1 056 387.32                 | 1 056 387.42                                 | 32             |
| 33             | 995 572.87                                   | 995 573.36                   | 995 573.46                                   | 33             |
| 34             | 937 584.81                                   | 937 585.29                   | 937 585.38                                   | 34             |
| 35             | 882 312.25                                   | 882 312.74                   | 882 312.84                                   | 35             |
| 36             | 829 649.12                                   | 829 649.61                   | 829 649.71                                   | 36             |
| 37             | 779 493.40                                   | 779 493.88                   | 779 493.98                                   | 37             |
| 38             | 731 746.96                                   | 731 747.45                   | 731 747.56                                   | 38             |
| 39             | 686 315.48                                   | 686 315.99                   | 686 316.09                                   | 39             |
| 40             | 643 108.22                                   | 643 108.74                   | 643 108.84                                   | 40             |
| 41             | 602 037.89                                   | 602 038.43                   | 602 038.53                                   | 41             |
| 42             | 563 020.51                                   | 563 021.07                   | 563 021.17                                   | 42             |
| 43             | 525 975.27                                   | 525 975.86                   | 525 975.96                                   | 43             |
| 44             | 490 824.40                                   | 490 825.02                   | 490 825.13                                   | 44             |
| 45             | 457 493.03                                   | 457 493.69                   | 457 493.79                                   | 45             |
| 46             | 425 909.06                                   | 425 909.76                   | 425 909.86                                   | 46             |
| 47             | 396 003.05                                   | 396 003.80                   | 396 003.90                                   | 47             |
| 48             | 367 708.11                                   | 367 708.91                   | 367 709.01                                   | 48             |
| 49             | 340 959.74                                   | 340 960.61                   | 340 960.71                                   | 49             |
| 50             | 315 695.79                                   | 315 696.73                   | 315 696.84                                   | 50             |
| 51             | 291 856.30                                   | 291 857.33                   | 291 857.43                                   | 51             |
| 52             | 269 383.41                                   | 269 384.53                   | 269 384.64                                   | 52             |
| 53             | 248 221.26                                   | 248 222.49                   | 248 222.60                                   | 53             |
| 54             | 228 315.88                                   | 228 317.24                   | 228 317.35                                   | 54             |
| 55             | 209 615.14                                   | 209 616.65                   | 209 616.77                                   | 55             |
| 56             | 192 068.59                                   | 192 070.27                   | 192 070.40                                   | 56             |
| 57             | 175 627.43                                   | 175 629.30                   | 175 629.44                                   | 57             |
| 58             | 160 244.38                                   | 160 246.47                   | 160 246.64                                   | 58             |
| 59             | 145 873.64                                   | 145 875.97                   | 145 876.17                                   | 59             |
| 60             | 132 470.75                                   | 132 473.37                   | 132 473.60                                   | 60             |
| 61             | 119 992.59                                   | 119 995.52                   | 119 995.80                                   | 61             |
| 62             | 108 397.21                                   | 108 400.50                   | 108 400.84                                   | 62             |
| 63             | 97 643.87                                    | 97 647.55                    | 97 647.96                                    | 63             |
| 64             | 87 692.86                                    | 87 696.99                    | 87 697.49                                    | 64             |

| x                               | $S_{[x]}$                                                     | $S_{[x-1]+1}$                                                 | $S_x$                                                         | x                               | 4% |
|---------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|---------------------------------|----|
| 65<br>66<br>67<br>68<br>69      | 78 505.54<br>70 044.17<br>62 271.97<br>55 152.99<br>48 652.08 | 78 510.15<br>70 049.32<br>62 277.71<br>55 159.35<br>48 659.12 | 78 510.74<br>70 050.03<br>62 278.55<br>55 160.35<br>48 660.29 | 65<br>66<br>67<br>68<br>69      |    |
| 70<br>71<br>72<br>73<br>74      | 42 734.88<br>37 367.77<br>32 517.84<br>28 152.89<br>24 241.39 | 42 742.64<br>37 376.29<br>32 527.14<br>28 162.99<br>24 252.30 | 42 744.01<br>37 377.86<br>32 528.95<br>28 165.04<br>24 254.61 | 70<br>71<br>72<br>73<br>74      |    |
| 75<br>76<br>77<br>78<br>79      | 20 752.53<br>17 656.21<br>14 923.03<br>12 524.40<br>10 432.48 | 20 764.24<br>17 668.69<br>14 936.25<br>12 538.27<br>10 446.93 | 20 766.83<br>17 671.56<br>14 939.39<br>12 541.69<br>10 450.60 | 75<br>76<br>77<br>78<br>79      |    |
| 80<br>81<br>82<br>83<br>84      | 8 620.33<br>7 061.91<br>5 732.17<br>4 607.11<br>3 663.90      | 8 635.24<br>7 077.14<br>5 747.56<br>4 622.49<br>3 679.09      | 8 639.15<br>7 081.26<br>5 751.85<br>4 626.91<br>3 683.57      | 80<br>81<br>82<br>83<br>84      |    |
| 85<br>86<br>87<br>88<br>89      | 2 880.92<br>2 237.83<br>1 715.71<br>1 297.05<br>965.85        | 2 895.71<br>2 252.05<br>1 729.16<br>1 309.57<br>977.30        | 2 900.21<br>2 256.49<br>1 733.48<br>1 313.71<br>981.19        | 85<br>86<br>87<br>88<br>89      |    |
| 90<br>91<br>92<br>93<br>94      | 707.63                                                        | 717.91<br>518.51                                              | 721.51<br>521.76<br>370.63<br>258.28<br>176.34                | 90<br>91<br>92<br>93<br>94      |    |
| 95<br>96<br>97<br>98<br>99      |                                                               |                                                               | 117.78<br>76.84<br>48.88<br>30.28<br>18.22                    | 95<br>96<br>97<br>98<br>99      |    |
| 100<br>101<br>102<br>103<br>104 |                                                               |                                                               | 10.63<br>6.00<br>3.27<br>1.72<br>.87                          | 100<br>101<br>102<br>103<br>104 |    |
| 105<br>106<br>107<br>108<br>109 |                                                               |                                                               | .42<br>.19<br>.09<br>.04                                      | 105<br>106<br>107<br>108<br>109 |    |
| 110                             |                                                               |                                                               | .01                                                           | 110                             |    |

|                            |                                                                                                                                                  | ANIT                                                                                                                                                                                                                         |                                                                                                                                                                                                                      |                                                                                                                                                                      |    |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| x                          | $C_x$ x                                                                                                                                          | $C_{[x-1]+1}$                                                                                                                                                                                                                | $C_{[x]}$                                                                                                                                                                                                            | x                                                                                                                                                                    | 4% |
| 17<br>18<br>19             | 2.82 18                                                                                                                                          | 2.60<br>2.48                                                                                                                                                                                                                 | 2.11<br>2.02<br>1.94                                                                                                                                                                                                 | 17<br>18<br>19                                                                                                                                                       |    |
| 20<br>21<br>22<br>23<br>24 | 2.43 21<br>2.31 22<br>2.21 23                                                                                                                    | 2.37<br>2.26<br>2.16<br>2.08<br>1.99                                                                                                                                                                                         | 1.86<br>1.79<br>1.73<br>1.67<br>1.61                                                                                                                                                                                 | 20<br>21<br>22<br>23<br>24                                                                                                                                           |    |
| 25<br>26<br>27<br>28<br>29 | 1.96 26<br>1.89 27<br>1.83 28                                                                                                                    | 1.91<br>1.85<br>1.78<br>1.73<br>1.68                                                                                                                                                                                         | 1.56<br>1.52<br>1.48<br>1.45<br>1.42                                                                                                                                                                                 | 25<br>26<br>27<br>28<br>29                                                                                                                                           |    |
| 30<br>31<br>32<br>33<br>34 | 1.70 31<br>1.68 32<br>1.66 33                                                                                                                    | 1.64<br>1.61<br>1.59<br>1.57<br>1.57                                                                                                                                                                                         | 1.40<br>1.39<br>1.38<br>1.38<br>1.38                                                                                                                                                                                 | 30<br>31<br>32<br>33<br>34                                                                                                                                           |    |
| 35<br>36<br>37<br>38<br>39 | 1.68 36<br>1.70 37<br>1.74 38                                                                                                                    | 1.57<br>1.58<br>1.61<br>1.64<br>1.69                                                                                                                                                                                         | 1.39<br>1.41<br>1.43<br>1.46<br>1.51                                                                                                                                                                                 | 35<br>36<br>37<br>38<br>39                                                                                                                                           |    |
| 40<br>41<br>42<br>43<br>44 | 1.92 41<br>2.01 42<br>2.11 43                                                                                                                    | 1.75<br>1.82<br>1.91<br>2.01<br>2.13                                                                                                                                                                                         | 1.56<br>1.61<br>1.68<br>1.75<br>1.84                                                                                                                                                                                 | 40<br>41<br>42<br>43<br>44                                                                                                                                           |    |
| 45<br>46<br>47<br>48<br>49 | 2.51 46<br>2.68 47<br>2.87 48                                                                                                                    | 2.26<br>2.41<br>2.58<br>2.77<br>2.97                                                                                                                                                                                         | 1.94<br>2.04<br>2.16<br>2.29<br>2.43                                                                                                                                                                                 | 45<br>46<br>47<br>48<br>49                                                                                                                                           |    |
| 50<br>51<br>52<br>53<br>54 | 3.54 51<br>3.81 52<br>4.10 53                                                                                                                    | 3.20<br>3.44<br>3.71<br>4.00<br>4.31                                                                                                                                                                                         | 2.59<br>2.76<br>2.94<br>3.13<br>3.34                                                                                                                                                                                 | 50<br>51<br>52<br>53<br>54                                                                                                                                           |    |
| 55<br>56<br>57<br>58<br>59 | 5.11 56<br>5.50 57<br>5.91 58                                                                                                                    | 4.64<br>4.99<br>5.36<br>5.75<br>6.16                                                                                                                                                                                         | 3.56<br>3.80<br>4.05<br>4.32<br>4.60                                                                                                                                                                                 | 55<br>56<br>57<br>58<br>59                                                                                                                                           |    |
| 60<br>61<br>62<br>63<br>64 | 7.29 61<br>7.80 62<br>8.33 63                                                                                                                    | 6.59<br>7.03<br>7.48<br>7.94<br>8.40                                                                                                                                                                                         | 4.89<br>5.19<br>5.51<br>5.83<br>6.16                                                                                                                                                                                 | 60<br>61<br>62<br>63<br>64                                                                                                                                           |    |
|                            | 1.68 1.70 1.79 1.85 1.92 2.01 2.11 2.13 2.23 2.36 2.51 2.68 2.87 3.07 3.30 3.54 3.54 3.54 4.10 4.41 4.75 5.11 5.50 5.91 6.35 6.81 7.29 7.80 8.33 | 1.58<br>1.61<br>1.64<br>1.69<br>1.75<br>1.82<br>1.91<br>2.01<br>2.13<br>2.26<br>2.41<br>2.58<br>2.77<br>2.97<br>3.20<br>3.44<br>3.71<br>4.00<br>4.31<br>4.64<br>4.99<br>5.36<br>5.75<br>6.16<br>6.59<br>7.03<br>7.48<br>7.94 | 1.41<br>1.43<br>1.46<br>1.51<br>1.56<br>1.61<br>1.68<br>1.75<br>1.84<br>1.94<br>2.04<br>2.16<br>2.29<br>2.43<br>2.59<br>2.76<br>2.94<br>3.13<br>3.34<br>3.56<br>3.80<br>4.05<br>4.32<br>4.60<br>4.89<br>5.19<br>5.83 | 36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60<br>61<br>62<br>63 |    |

| x                               | $C_{[x]}$                            | $C_{[x-1]+1}$                             | $C_x$                                     | x                               | 4% |
|---------------------------------|--------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------------|----|
| 65<br>66<br>67<br>68<br>69      | 6.50<br>6.84<br>7.18<br>7.51<br>7.84 | 8.87<br>9.33<br>9.78<br>10.22<br>10.63    | 9.44<br>10.01<br>10.59<br>11.18<br>11.76  | 65<br>66<br>67<br>68<br>69      |    |
| 70<br>71<br>72<br>73<br>74      | 8.15<br>8.44<br>8.71<br>8.95<br>9.15 | 11.02<br>11.36<br>11.66<br>11.90<br>12.08 | 12.33<br>12.87<br>13.39<br>13.88<br>14.31 | 70<br>71<br>72<br>73<br>74      |    |
| 75<br>76<br>77<br>78<br>79      | 9.30<br>9.41<br>9.45<br>9.43<br>9.35 | 12.19<br>12.23<br>12.17<br>12.03<br>11.79 | 14.68<br>14.98<br>15.19<br>15.31<br>15.33 | 75<br>76<br>77<br>78<br>79      |    |
| 80<br>81<br>82<br>83<br>84      | 9.18<br>8.95<br>8.63<br>8.25<br>7.79 | 11.46<br>11.04<br>10.52<br>9.92<br>9.25   | 15.23<br>15.00<br>14.65<br>14.17<br>13.56 | 80<br>81<br>82<br>83<br>84      |    |
| 85<br>86<br>87<br>88<br>89      | 7.27<br>6.69<br>6.08<br>5.43<br>4.78 | 8.52<br>7.73<br>6.92<br>6.10<br>5.29      | 12.84<br>12.00<br>11.08<br>10.08<br>9.03  | 85<br>86<br>87<br>88<br>89      |    |
| 90<br>91<br>92<br>93<br>94      | 4.12                                 | 4.50<br>3.76                              | 7.96<br>6.89<br>5.85<br>4.86<br>3.96      | 90<br>91<br>92<br>93<br>94      |    |
| 95<br>96<br>97<br>98<br>99      |                                      |                                           | 3.14<br>2.43<br>1.83<br>1.34<br>.95       | 95<br>96<br>97<br>98<br>99      |    |
| 100<br>101<br>102<br>103<br>104 |                                      |                                           | .65<br>.43<br>.27<br>.17                  | 100<br>101<br>102<br>103<br>104 |    |
| 105<br>106<br>107<br>108<br>109 |                                      |                                           | .05<br>.03<br>.01<br>.01                  | 105<br>106<br>107<br>108<br>109 |    |
| 110                             |                                      |                                           | .00                                       | 110                             |    |

|           |          | Alvijz           |                  |                  |          |  |  |
|-----------|----------|------------------|------------------|------------------|----------|--|--|
| <b>4%</b> | x        | $M_{[x]}$        | $M_{[x-1]+1}$    | $M_x$            | x        |  |  |
|           | 17       | 518.82           |                  | 519.89           | 17       |  |  |
|           | 18       | 515.93           | 516.71           | 516.93           | 18       |  |  |
|           | 19       | 513.19           | 513.91           | 514.11           | 19       |  |  |
|           | 20       | 510.58           | 511.25           | 511.43           | 20       |  |  |
|           | 21       | 508.09           | 508.72           | 508.88           | 21       |  |  |
|           | 22       | 505.73           | 506.31           | 506.46           | 22       |  |  |
|           | 23       | 503.47           | 504.01           | 504.14           | 23       |  |  |
|           | 24       | 501.30           | 501.80           | 501.93           | 24       |  |  |
|           | 25       | 499.23           | 499.69           | 499.81           | 25       |  |  |
|           | 26       | 497.23           | 497.67           | 497.78           | 26       |  |  |
|           | 27       | 495.31           | 495.72           | 495.82           | 27       |  |  |
|           | 28<br>29 | 493.46<br>491.66 | 493.83<br>492.01 | 493.93<br>492.10 | 28<br>29 |  |  |
|           |          |                  |                  |                  |          |  |  |
|           | 30       | 489.90           | 490.23           | 490.33           | 30       |  |  |
|           | 31       | 488.19           | 488.50           | 488.59           | 31       |  |  |
|           | 32       | 486.50           | 486.80           | 486.89           | 32       |  |  |
|           | 33<br>34 | 484.84<br>483.18 | 485.12<br>483.46 | 485.21<br>483.55 | 33<br>34 |  |  |
|           |          |                  |                  |                  |          |  |  |
|           | 35       | 481.53           | 481.80           | 481.90           | 35       |  |  |
|           | 36       | 479.87           | 480.14           | 480.24           | 36       |  |  |
|           | 37       | 478.19           | 478.46           | 478.56           | 37       |  |  |
|           | 38<br>39 | 476.48<br>474.74 | 476.76<br>475.02 | 476.86<br>475.12 | 38<br>39 |  |  |
|           | 37       | 7/7./7           | 473.02           | 473.12           | 37       |  |  |
|           | 40       | 472.94           | 473.23           | 473.33           | 40       |  |  |
|           | 41       | 471.07           | 471.38           | 471.48           | 41       |  |  |
|           | 42<br>43 | 469.12<br>467.09 | 469.46<br>467.44 | 469.56<br>467.55 | 42<br>43 |  |  |
|           | 44       | 464.94           | 465.33           | 465.43           | 44       |  |  |
|           |          |                  |                  |                  |          |  |  |
|           | 45       | 462.68           | 463.10           | 463.20           | 45       |  |  |
|           | 46<br>47 | 460.27<br>457.71 | 460.74<br>458.23 | 460.84<br>458.33 | 46<br>47 |  |  |
|           | 48       | 454.98           | 455.55           | 455.65           | 48       |  |  |
|           | 49       | 452.05           | 452.68           | 452.78           | 49       |  |  |
|           |          |                  | 440.61           | 440.54           |          |  |  |
|           | 50       | 448.91           | 449.61           | 449.71           | 50       |  |  |
|           | 51<br>52 | 445.53<br>441.90 | 446.32<br>442.78 | 446.42<br>442.88 | 51<br>52 |  |  |
|           | 53       | 437.99           | 438.96           | 439.07           | 53       |  |  |
|           | 54       | 433.78           | 434.86           | 434.97           | 54       |  |  |
|           | 55       | 429.24           | 430.44           | 430.55           | 55       |  |  |
|           | 56       | 424.35           | 425.68           | 425.80           | 56       |  |  |
|           | 57       | 419.08           | 420.55           | 420.69           | 57       |  |  |
|           | 58       | 413.41           | 415.03           | 415.19           | 58       |  |  |
|           | 59       | 407.30           | 409.09           | 409.28           | 59       |  |  |
|           | 60       | 400.74           | 402.71           | 402.93           | 60       |  |  |
|           | 61       | 393.70           | 395.85           | 396.12           | 61       |  |  |
|           | 62       | 386.14           | 388.50           | 388.83           | 62       |  |  |
|           | 63       | 378.05           | 380.63           | 381.02           | 63       |  |  |
|           | 64       | 369.41           | 372.22           | 372.69           | 64       |  |  |

| x                               | $M_{[x]}$                                      | $M_{[x-1]+1}$                                  | $M_{x}$                                        | x                               | 4% |
|---------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|---------------------------------|----|
| 65<br>66<br>67<br>68<br>69      | 360.20<br>350.40<br>339.99<br>328.98<br>317.37 | 363.25<br>353.70<br>343.56<br>332.81<br>321.47 | 363.82<br>354.38<br>344.37<br>333.77<br>322.59 | 65<br>66<br>67<br>68<br>69      |    |
| 70<br>71<br>72<br>73<br>74      | 305.15<br>292.35<br>278.98<br>265.09<br>250.72 | 309.53<br>297.00<br>283.90<br>270.27<br>256.14 | 310.84<br>298.51<br>285.64<br>272.24<br>258.37 | 70<br>71<br>72<br>73<br>74      |    |
| 75<br>76<br>77<br>78<br>79      | 235.93<br>220.78<br>205.37<br>189.79<br>174.14 | 241.57<br>226.63<br>211.38<br>195.92<br>180.36 | 244.06<br>229.38<br>214.40<br>199.20<br>183.89 | 75<br>76<br>77<br>78<br>79      |    |
| 80<br>81<br>82<br>83<br>84      | 158.56<br>143.16<br>128.07<br>113.45<br>99.42  | 164.80<br>149.37<br>134.21<br>119.44<br>105.20 | 168.56<br>153.34<br>138.34<br>123.69<br>109.52 | 80<br>81<br>82<br>83<br>84      |    |
| 85<br>86<br>87<br>88<br>89      | 86.12<br>73.65<br>62.14<br>51.65<br>42.25      | 91.63<br>78.85<br>66.96<br>56.06<br>46.22      | 95.96<br>83.12<br>71.11<br>60.04<br>49.96      | 85<br>86<br>87<br>88<br>89      |    |
| 90<br>91<br>92<br>93<br>94      | 33.97                                          | 37.47<br>29.84                                 | 40.93<br>32.97<br>26.08<br>20.23<br>15.37      | 90<br>91<br>92<br>93<br>94      |    |
| 95<br>96<br>97<br>98<br>99      |                                                |                                                | 11.41<br>8.27<br>5.84<br>4.01<br>2.67          | 95<br>96<br>97<br>98<br>99      |    |
| 100<br>101<br>102<br>103<br>104 |                                                |                                                | 1.72<br>1.07<br>.64<br>.37<br>.21              | 100<br>101<br>102<br>103<br>104 |    |
| 105<br>106<br>107<br>108<br>109 |                                                |                                                | .11<br>.05<br>.03<br>.01                       | 105<br>106<br>107<br>108<br>109 |    |
| 110                             |                                                |                                                | .00                                            | 110                             |    |

|           |                |                                     | 11111/2                |                                     |                |
|-----------|----------------|-------------------------------------|------------------------|-------------------------------------|----------------|
| <b>4%</b> | x              | $R_{[x]}$                           | $R_{[x-1]+1}$          | $R_{x}$                             | x              |
|           | 17<br>18<br>19 | 27 724.52<br>27 204.73<br>26 687.90 | 27 205.71<br>26 688.80 | 27 725.81<br>27 205.92<br>26 689.00 | 17<br>18<br>19 |
|           | 20             | 26 173.87                           | 26 174.71              | 26 174.89                           | 20             |
|           | 21             | 25 662.51                           | 25 663.29              | 25 663.45                           | 21             |
|           | 22             | 25 153.71                           | 25 154.42              | 25 154.57                           | 22             |
|           | 23             | 24 647.32                           | 24 647.98              | 24 648.11                           | 23             |
|           | 24             | 24 143.23                           | 24 143.85              | 24 143.97                           | 24             |
|           | 25             | 23 641.35                           | 23 641.93              | 23 642.04                           | 25             |
|           | 26             | 23 141.58                           | 23 142.12              | 23 142.23                           | 26             |
|           | 27             | 22 643.84                           | 22 644.35              | 22 644.45                           | 27             |
|           | 28             | 22 148.06                           | 22 148.53              | 22 148.63                           | 28             |
|           | 29             | 21 654.16                           | 21 654.60              | 21 654.70                           | 29             |
|           | 30             | 21 162.07                           | 21 162.50              | 21 162.60                           | 30             |
|           | 31             | 20 671.77                           | 20 672.17              | 20 672.27                           | 31             |
|           | 32             | 20 183.20                           | 20 183.59              | 20 183.68                           | 32             |
|           | 33             | 19 696.32                           | 19 696.70              | 19 696.79                           | 33             |
|           | 34             | 19 211.11                           | 19 211.48              | 19 211.57                           | 34             |
|           | 35             | 18 727.56                           | 18 727.93              | 18 728.02                           | 35             |
|           | 36             | 18 245.66                           | 18 246.03              | 18 246.12                           | 36             |
|           | 37             | 17 765.43                           | 17 765.79              | 17 765.89                           | 37             |
|           | 38             | 17 286.86                           | 17 287.23              | 17 287.33                           | 38             |
|           | 39             | 16 809.99                           | 16 810.38              | 16 810.47                           | 39             |
|           | 40             | 16 334.87                           | 16 335.26              | 16 335.36                           | 40             |
|           | 41             | 15 861.52                           | 15 861.93              | 15 862.03                           | 41             |
|           | 42             | 15 390.01                           | 15 390.45              | 15 390.55                           | 42             |
|           | 43             | 14 920.43                           | 14 920.89              | 14 920.99                           | 43             |
|           | 44             | 14 452.85                           | 14 453.35              | 14 453.45                           | 44             |
|           | 45             | 13 987.39                           | 13 987.91              | 13 988.01                           | 45             |
|           | 46             | 13 524.14                           | 13 524.71              | 13 524.81                           | 46             |
|           | 47             | 13 063.26                           | 13 063.87              | 13 063.97                           | 47             |
|           | 48             | 12 604.88                           | 12 605.55              | 12 605.65                           | 48             |
|           | 49             | 12 149.17                           | 12 149.90              | 12 150.00                           | 49             |
|           | 50             | 11 696.32                           | 11 697.12              | 11 697.22                           | 50             |
|           | 51             | 11 246.53                           | 11 247.41              | 11 247.51                           | 51             |
|           | 52             | 10 800.02                           | 10 800.99              | 10 801.09                           | 52             |
|           | 53             | 10 357.04                           | 10 358.12              | 10 358.22                           | 53             |
|           | 54             | 9 917.85                            | 9 919.05               | 9 919.15                            | 54             |
|           | 55             | 9 482.75                            | 9 484.07               | 9 484.19                            | 55             |
|           | 56             | 9 052.04                            | 9 053.51               | 9 053.63                            | 56             |
|           | 57             | 8 626.06                            | 8 627.69               | 8 627.83                            | 57             |
|           | 58             | 8 205.17                            | 8 206.98               | 8 207.14                            | 58             |
|           | 59             | 7 789.75                            | 7 791.76               | 7 791.95                            | 59             |
|           | 60             | 7 380.21                            | 7 382.44               | 7 382.67                            | 60             |
|           | 61             | 6 976.98                            | 6 979.47               | 6 979.73                            | 61             |
|           | 62             | 6 580.53                            | 6 583.29               | 6 583.61                            | 62             |
|           | 63             | 6 191.34                            | 6 194.39               | 6 194.79                            | 63             |
|           | 64             | 5 809.91                            | 5 813.29               | 5 813.76                            | 64             |
|           |                |                                     |                        |                                     |                |

| x                 | $R_{[x]}$ | $R_{[x-1]+1}$    | $R_{\chi}$              | x                 | 4% |
|-------------------|-----------|------------------|-------------------------|-------------------|----|
| 65                | 5 436.77  | 5 440.50         | 5 441.07                | 65                |    |
| 66                | 5 072.46  | 5 076.57         | 5 077.25                | 66                |    |
| 67                | 4 717.54  | 4 722.06         | 4 722.87                | 67                |    |
| 68                | 4 372.60  | 4 377.55         | 4 378.51                | 68                |    |
| 69                | 4 038.20  | 4 043.61         | 4 044.74                | 69                |    |
| 70                | 3 714.94  | 3 720.83         | 3 722.14                | 70                |    |
| 71                | 3 403.41  | 3 409.79         | 3 411.31                | 71                |    |
| 72                | 3 104.17  | 3 111.06         | 3 112.79                | 72                |    |
| 73                | 2 817.78  | 2 825.19         | 2 827.16                | 73                |    |
| 74                | 2 544.78  | 2 552.69         | 2 554.91                | 74                |    |
| 75                | 2 285.66  | 2 294.06         | 2 296.55                | 75                |    |
| 76                | 2 040.87  | 2 049.74         | 2 052.49                | 76                |    |
| 77                | 1 810.80  | 1 820.09         | 1 823.11                | 77                |    |
| 78                | 1 595.76  | 1 605.43         | 1 608.71                | 78                |    |
| 79                | 1 396.00  | 1 405.97         | 1 409.51                | 79                |    |
| 80                | 1 211.64  | 1 221.85         | 1 225.62                | 80                |    |
| 81                | 1 042.74  | 1 053.09         | 1 057.05                | 81                |    |
| 82                | 889.21    | 899.59           | 903.72                  | 82                |    |
| 83                | 750.83    | 761.13           | 765.38                  | 83                |    |
| 84                | 627.27    | 637.38           | 641.69                  | 84                |    |
| 85                | 518.06    | 527.85           | 532.17                  | 85                |    |
| 86                | 422.60    | 431.95           | 436.22                  | 86                |    |
| 87                | 340.15    | 348.95           | 353.10                  | 87                |    |
| 88                | 269.86    | 278.01           | 281.99                  | 88                |    |
| 89                | 210.79    | 218.21           | 221.95                  | 89                |    |
| 90<br>91          | 161.90    | 168.54<br>127.94 | 171.99<br>131.06        | 90<br>91          |    |
| 92<br>93<br>94    |           |                  | 98.09<br>72.01<br>51.78 | 92<br>93<br>94    |    |
| 95<br>96          |           |                  | 36.41<br>25.00          | 95<br>96          |    |
| 97<br>98<br>99    |           |                  | 16.73<br>10.89<br>6.89  | 97<br>98<br>99    |    |
| 100<br>101        |           |                  | 4.22<br>2.50            | 100<br>101        |    |
| 102<br>103<br>104 |           |                  | 1.43<br>.79<br>.41      | 102<br>103<br>104 |    |
| 105<br>106        |           |                  | .21<br>.10              | 105<br>106        |    |
| 107<br>108<br>109 |           |                  | .05<br>.02<br>.01       | 107<br>108<br>109 |    |
| 110               |           |                  | .00                     | 110               |    |

| 4 | 0/          |
|---|-------------|
| 4 | <b>υ</b> /^ |
| 7 | / U         |

| x  | $\ddot{a}_{[x]}$ | $A_{[x]}$ | $^{2}A_{[x]}$ | $\ddot{a}_x$ | $A_{\chi}$ | $^{2}A_{x}$ | x  |
|----|------------------|-----------|---------------|--------------|------------|-------------|----|
| 17 | 23.372           | 0.101 08  | 0.016 96      | 23.367       | 0.101 27   | 0.017 16    | 17 |
| 18 | 23.280           | 0.104 60  | 0.017 78      | 23.276       | 0.104 78   | 0.017 97    | 18 |
| 19 | 23.185           | 0.108 27  | 0.018 67      | 23.180       | 0.108 44   | 0.018 85    | 19 |
| 20 | 23.086           | 0.112 10  | 0.019 64      | 23.081       | 0.112 26   | 0.019 82    | 20 |
| 21 | 22.982           | 0.116 08  | 0.020 70      | 22.978       | 0.116 24   | 0.020 86    | 21 |
| 22 | 22.874           | 0.120 23  | 0.021 84      | 22.870       | 0.120 38   | 0.022 00    | 22 |
| 23 | 22.762           | 0.124 55  | 0.023 08      | 22.758       | 0.124 69   | 0.023 24    | 23 |
| 24 | 22.645           | 0.129 05  | 0.024 43      | 22.641       | 0.129 19   | 0.024 58    | 24 |
| 25 | 22.523           | 0.133 73  | 0.025 89      | 22.520       | 0.133 86   | 0.026 03    | 25 |
| 26 | 22.396           | 0.138 60  | 0.027 47      | 22.393       | 0.138 73   | 0.027 61    | 26 |
| 27 | 22.265           | 0.143 67  | 0.029 17      | 22.261       | 0.143 79   | 0.029 31    | 27 |
| 28 | 22.128           | 0.148 94  | 0.031 02      | 22.124       | 0.149 06   | 0.031 15    | 28 |
| 29 | 21.985           | 0.154 42  | 0.033 01      | 21.982       | 0.154 54   | 0.033 14    | 29 |
| 30 | 21.837           | 0.160 11  | 0.035 15      | 21.834       | 0.160 23   | 0.035 28    | 30 |
| 31 | 21.683           | 0.166 03  | 0.037 47      | 21.680       | 0.166 15   | 0.037 59    | 31 |
| 32 | 21.523           | 0.172 18  | 0.039 96      | 21.520       | 0.172 30   | 0.040 08    | 32 |
| 33 | 21.357           | 0.178 57  | 0.042 64      | 21.354       | 0.178 68   | 0.042 76    | 33 |
| 34 | 21.185           | 0.185 20  | 0.045 52      | 21.182       | 0.185 31   | 0.045 65    | 34 |
| 35 | 21.006           | 0.192 07  | 0.048 61      | 21.003       | 0.192 19   | 0.048 74    | 35 |
| 36 | 20.821           | 0.199 21  | 0.051 93      | 20.818       | 0.199 33   | 0.052 07    | 36 |
| 37 | 20.628           | 0.206 60  | 0.055 49      | 20.625       | 0.206 72   | 0.055 63    | 37 |
| 38 | 20.429           | 0.214 26  | 0.059 30      | 20.426       | 0.214 39   | 0.059 45    | 38 |
| 39 | 20.223           | 0.222 20  | 0.063 38      | 20.219       | 0.222 34   | 0.063 54    | 39 |
| 40 | 20.009           | 0.230 41  | 0.067 75      | 20.005       | 0.230 56   | 0.067 92    | 40 |
| 41 | 19.788           | 0.238 91  | 0.072 41      | 19.784       | 0.239 07   | 0.072 59    | 41 |
| 42 | 19.560           | 0.247 70  | 0.077 38      | 19.555       | 0.247 87   | 0.077 58    | 42 |
| 43 | 19.324           | 0.256 78  | 0.082 67      | 19.319       | 0.256 96   | 0.082 89    | 43 |
| 44 | 19.080           | 0.266 15  | 0.088 32      | 19.075       | 0.266 36   | 0.088 56    | 44 |
| 45 | 18.829           | 0.275 83  | 0.094 31      | 18.823       | 0.276 05   | 0.094 58    | 45 |
| 46 | 18.569           | 0.285 80  | 0.100 68      | 18.563       | 0.286 05   | 0.100 98    | 46 |
| 47 | 18.302           | 0.296 07  | 0.107 44      | 18.295       | 0.296 35   | 0.107 78    | 47 |
| 48 | 18.027           | 0.306 64  | 0.114 60      | 18.019       | 0.306 95   | 0.114 98    | 48 |
| 49 | 17.745           | 0.317 52  | 0.122 17      | 17.736       | 0.317 86   | 0.122 60    | 49 |
| 50 | 17.454           | 0.328 68  | 0.130 17      | 17.444       | 0.329 07   | 0.130 65    | 50 |
| 51 | 17.156           | 0.340 14  | 0.138 61      | 17.145       | 0.340 58   | 0.139 15    | 51 |
| 52 | 16.851           | 0.351 89  | 0.147 49      | 16.838       | 0.352 38   | 0.148 11    | 52 |
| 53 | 16.538           | 0.363 92  | 0.156 84      | 16.524       | 0.364 48   | 0.157 55    | 53 |
| 54 | 16.218           | 0.376 23  | 0.166 65      | 16.202       | 0.376 85   | 0.167 45    | 54 |
| 55 | 15.891           | 0.388 79  | 0.176 93      | 15.873       | 0.389 50   | 0.177 85    | 55 |
| 56 | 15.558           | 0.401 61  | 0.187 69      | 15.537       | 0.402 40   | 0.188 74    | 56 |
| 57 | 15.219           | 0.414 66  | 0.198 93      | 15.195       | 0.415 56   | 0.200 12    | 57 |
| 58 | 14.874           | 0.427 94  | 0.210 64      | 14.847       | 0.428 96   | 0.212 00    | 58 |
| 59 | 14.523           | 0.441 43  | 0.222 82      | 14.493       | 0.442 58   | 0.224 37    | 59 |
| 60 | 14.167           | 0.455 10  | 0.235 47      | 14.134       | 0.456 40   | 0.237 23    | 60 |
| 61 | 13.808           | 0.468 94  | 0.248 57      | 13.769       | 0.470 41   | 0.250 58    | 61 |
| 62 | 13.444           | 0.482 92  | 0.262 11      | 13.401       | 0.484 58   | 0.264 40    | 62 |
| 63 | 13.077           | 0.497 03  | 0.276 08      | 13.029       | 0.498 90   | 0.278 68    | 63 |
| 64 | 12.708           | 0.511 23  | 0.290 46      | 12.653       | 0.513 33   | 0.293 40    | 64 |

Note.  ${}^{2}A_{[x]} = A_{[x]}$  at 8.16% and  ${}^{2}A_{x} = A_{x}$  at 8.16%.

**AM92** 

|                                 | ANIZ                                           |                                                          |                                                          |                                                |                                                          |                                                          |                                 |
|---------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|
|                                 |                                                |                                                          |                                                          |                                                |                                                          |                                                          | 4%                              |
| x                               | $\ddot{a}_{[x]}$                               | $A_{[x]}$                                                | $^{2}A_{[x]}$                                            | $\ddot{a}_x$                                   | $A_{x}$                                                  | $^{2}A_{x}$                                              | x                               |
| 65<br>66<br>67<br>68<br>69      | 12.337<br>11.965<br>11.592<br>11.221<br>10.850 | 0.525 50<br>0.539 81<br>0.554 14<br>0.568 44<br>0.582 70 | 0.305 22<br>0.320 33<br>0.335 78<br>0.351 51<br>0.367 51 | 12.276<br>11.896<br>11.515<br>11.135<br>10.754 | 0.527 86<br>0.542 46<br>0.557 10<br>0.571 75<br>0.586 38 | 0.308 55<br>0.324 10<br>0.340 03<br>0.356 30<br>0.372 89 | 65<br>66<br>67<br>68<br>69      |
| 70<br>71<br>72<br>73<br>74      | 10.481<br>10.116<br>9.754<br>9.396<br>9.044    | 0.596 87<br>0.610 93<br>0.624 85<br>0.638 60<br>0.652 14 | 0.383 72<br>0.400 12<br>0.416 65<br>0.433 27<br>0.449 93 | 10.375<br>9.998<br>9.623<br>9.252<br>8.886     | 0.600 97<br>0.615 48<br>0.629 88<br>0.644 14<br>0.658 24 | 0.389 75<br>0.406 86<br>0.424 16<br>0.441 62<br>0.459 19 | 70<br>71<br>72<br>73<br>74      |
| 75<br>76<br>77<br>78<br>79      | 8.698<br>8.359<br>8.027<br>7.703<br>7.388      | 0.665 45<br>0.678 51<br>0.691 27<br>0.703 73<br>0.715 85 | 0.466 59<br>0.483 20<br>0.499 71<br>0.516 09<br>0.532 27 | 8.524<br>8.169<br>7.820<br>7.478<br>7.144      | 0.672 14<br>0.685 81<br>0.699 24<br>0.712 38<br>0.725 23 | 0.476 83<br>0.494 48<br>0.512 10<br>0.529 65<br>0.547 07 | 75<br>76<br>77<br>78<br>79      |
| 80<br>81<br>82<br>83<br>84      | 7.082<br>6.785<br>6.499<br>6.222<br>5.957      | 0.727 62<br>0.739 03<br>0.750 05<br>0.760 68<br>0.770 90 | 0.548 22<br>0.563 90<br>0.579 27<br>0.594 30<br>0.608 95 | 6.818<br>6.502<br>6.194<br>5.897<br>5.610      | 0.737 75<br>0.749 93<br>0.761 75<br>0.773 19<br>0.784 25 | 0.564 32<br>0.581 36<br>0.598 14<br>0.614 61<br>0.630 75 | 80<br>81<br>82<br>83<br>84      |
| 85<br>86<br>87<br>88<br>89      | 5.701<br>5.457<br>5.223<br>5.000<br>4.788      | 0.780 72<br>0.790 12<br>0.799 11<br>0.807 69<br>0.815 85 | 0.623 20<br>0.637 01<br>0.650 38<br>0.663 29<br>0.675 73 | 5.333<br>5.066<br>4.811<br>4.566<br>4.332      | 0.794 90<br>0.805 14<br>0.814 98<br>0.824 39<br>0.833 38 | 0.646 52<br>0.661 88<br>0.676 80<br>0.691 27<br>0.705 25 | 85<br>86<br>87<br>88<br>89      |
| 90<br>91<br>92<br>93<br>94      | 4.586                                          | 0.823 62                                                 | 0.687 68                                                 | 4.109<br>3.897<br>3.695<br>3.504<br>3.323      | 0.841 96<br>0.850 12<br>0.857 87<br>0.865 22<br>0.872 18 | 0.718 74<br>0.731 72<br>0.744 17<br>0.756 09<br>0.767 48 | 90<br>91<br>92<br>93<br>94      |
| 95<br>96<br>97<br>98<br>99      |                                                |                                                          |                                                          | 3.153<br>2.992<br>2.840<br>2.698<br>2.564      | 0.878 75<br>0.884 94<br>0.890 77<br>0.896 25<br>0.901 39 | 0.778 34<br>0.788 67<br>0.798 47<br>0.807 76<br>0.816 54 | 95<br>96<br>97<br>98<br>99      |
| 100<br>101<br>102<br>103<br>104 |                                                |                                                          |                                                          | 2.439<br>2.321<br>2.212<br>2.110<br>2.015      | 0.906 21<br>0.910 71<br>0.914 92<br>0.918 85<br>0.922 51 | 0.824 83<br>0.832 63<br>0.839 97<br>0.846 86<br>0.853 31 | 100<br>101<br>102<br>103<br>104 |
| 105<br>106<br>107<br>108<br>109 |                                                |                                                          |                                                          | 1.926<br>1.844<br>1.768<br>1.697<br>1.632      | 0.925 91<br>0.929 07<br>0.932 01<br>0.934 72<br>0.937 24 | 0.859 34<br>0.864 98<br>0.870 23<br>0.875 12<br>0.879 66 | 105<br>106<br>107<br>108<br>109 |
| 110<br>111<br>112<br>113<br>114 |                                                |                                                          |                                                          | 1.571<br>1.516<br>1.464<br>1.417<br>1.374      | 0.939 56<br>0.941 70<br>0.943 67<br>0.945 49<br>0.947 15 | 0.883 87<br>0.887 77<br>0.891 37<br>0.894 69<br>0.897 75 | 110<br>111<br>112<br>113<br>114 |
| 115<br>116<br>117<br>118<br>119 |                                                |                                                          |                                                          | 1.334<br>1.298<br>1.264<br>1.229<br>1.176      | 0.948 68<br>0.950 08<br>0.951 39<br>0.952 73<br>0.954 78 | 0.900 56<br>0.903 15<br>0.905 57<br>0.908 04<br>0.911 81 | 115<br>116<br>117<br>118<br>119 |
| 120                             |                                                |                                                          |                                                          | 1.000                                          | 0.961 54                                                 | 0.924 56                                                 | 120                             |

Note.  ${}^{2}A_{[x]} = A_{[x]}$  at 8.16% and  ${}^{2}A_{x} = A_{x}$  at 8.16%.

|           |                            |                                                     |                                                          | ANITZ |                                                     |                                                          |                            |
|-----------|----------------------------|-----------------------------------------------------|----------------------------------------------------------|-------|-----------------------------------------------------|----------------------------------------------------------|----------------------------|
| <b>4%</b> | x                          | $(I\ddot{a})_{[x]}$                                 | $(IA)_{[x]}$                                             |       | $(I\ddot{a})_x$                                     | $(IA)_{\chi}$                                            | x                          |
|           | 17<br>18<br>19             | 467.226<br>461.881<br>456.412                       | 5.401 64<br>5.515 65<br>5.630 60                         |       | 467.124<br>461.784<br>456.320                       | 5.400 71<br>5.514 73<br>5.629 69                         | 17<br>18<br>19             |
|           | 20<br>21<br>22<br>23<br>24 | 450.817<br>445.097<br>439.249<br>433.275<br>427.174 | 5.746 37<br>5.862 84<br>5.979 86<br>6.097 30<br>6.215 01 |       | 450.729<br>445.013<br>439.170<br>433.200<br>427.102 | 5.745 47<br>5.861 95<br>5.978 99<br>6.096 44<br>6.214 15 | 20<br>21<br>22<br>23<br>24 |
|           | 25<br>26<br>27<br>28<br>29 | 420.947<br>414.593<br>408.114<br>401.510<br>394.783 | 6.332 80<br>6.450 51<br>6.567 94<br>6.684 88<br>6.801 12 |       | 420.878<br>414.528<br>408.051<br>401.450<br>394.726 | 6.331 95<br>6.449 67<br>6.567 10<br>6.684 05<br>6.800 29 | 25<br>26<br>27<br>28<br>29 |
|           | 30<br>31<br>32<br>33<br>34 | 387.935<br>380.966<br>373.879<br>366.676<br>359.361 | 6.916 44<br>7.030 57<br>7.143 28<br>7.254 28<br>7.363 31 |       | 387.878<br>380.911<br>373.825<br>366.623<br>359.308 | 6.915 59<br>7.029 72<br>7.142 42<br>7.253 40<br>7.362 39 | 30<br>31<br>32<br>33<br>34 |
|           | 35<br>36<br>37<br>38<br>39 | 351.937<br>344.407<br>336.776<br>329.048<br>321.228 | 7.470 05<br>7.574 21<br>7.675 46<br>7.773 46<br>7.867 88 |       | 351.883<br>344.353<br>336.720<br>328.991<br>321.169 | 7.469 09<br>7.573 20<br>7.674 38<br>7.772 31<br>7.866 63 | 35<br>36<br>37<br>38<br>39 |
|           | 40<br>41<br>42<br>43<br>44 | 313.323<br>305.337<br>297.278<br>289.153<br>280.970 | 7.958 35<br>8.044 52<br>8.126 02<br>8.202 46<br>8.273 47 |       | 313.260<br>305.271<br>297.207<br>289.077<br>280.888 | 7.956 99<br>8.043 03<br>8.124 35<br>8.200 60<br>8.271 37 | 40<br>41<br>42<br>43<br>44 |
|           | 45<br>46<br>47<br>48<br>49 | 272.737<br>264.462<br>256.156<br>247.828<br>239.488 | 8.338 65<br>8.397 62<br>8.450 01<br>8.495 42<br>8.533 51 |       | 272.647<br>264.365<br>256.049<br>247.711<br>239.360 | 8.336 28<br>8.394 93<br>8.446 95<br>8.491 93<br>8.529 50 | 45<br>46<br>47<br>48<br>49 |
|           | 50<br>51<br>52<br>53<br>54 | 231.149<br>222.820<br>214.514<br>206.244<br>198.022 | 8.563 90<br>8.586 24<br>8.600 22<br>8.605 54<br>8.601 90 |       | 231.007<br>222.664<br>214.342<br>206.053<br>197.811 | 8.559 29<br>8.580 95<br>8.594 12<br>8.598 51<br>8.593 81 | 50<br>51<br>52<br>53<br>54 |
|           | 55<br>56<br>57<br>58<br>59 | 189.861<br>181.774<br>173.775<br>165.878<br>158.094 | 8.589 08<br>8.566 87<br>8.535 08<br>8.493 60<br>8.442 34 |       | 189.627<br>181.516<br>173.489<br>165.561<br>157.744 | 8.579 76<br>8.556 11<br>8.522 68<br>8.479 31<br>8.425 88 | 55<br>56<br>57<br>58<br>59 |
|           | 60<br>61<br>62<br>63<br>64 | 150.440<br>142.926<br>135.566<br>128.373<br>121.359 | 8.381 28<br>8.310 44<br>8.229 90<br>8.139 81<br>8.040 36 |       | 150.053<br>142.499<br>135.096<br>127.856<br>120.790 | 8.362 34<br>8.288 67<br>8.204 91<br>8.111 17<br>8.007 60 | 60<br>61<br>62<br>63<br>64 |
|           |                            |                                                     |                                                          |       |                                                     |                                                          |                            |

| x                               | $(I\ddot{a})_{[x]}$                               | $(IA)_{[x]}$                                             | $(I\ddot{a})_x$                                   | $(IA)_x$                                                 | x                               | 4% |
|---------------------------------|---------------------------------------------------|----------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|---------------------------------|----|
| 65<br>66<br>67<br>68<br>69      | 114.533<br>107.909<br>101.494<br>95.297<br>89.327 | 7.931 82<br>7.814 53<br>7.688 86<br>7.555 27<br>7.414 26 | 113.911<br>107.228<br>100.751<br>94.489<br>88.450 | 7.894 42<br>7.771 92<br>7.640 43<br>7.500 35<br>7.352 15 | 65<br>66<br>67<br>68<br>69      |    |
| 70<br>71<br>72<br>73<br>74      | 83.589<br>78.089<br>72.832<br>67.819<br>63.053    | 7.266 40<br>7.112 29<br>6.952 57<br>6.787 95<br>6.619 14 | 82.641<br>77.067<br>71.732<br>66.640<br>61.793    | 7.196 35<br>7.033 51<br>6.864 24<br>6.689 22<br>6.509 13 | 70<br>71<br>72<br>73<br>74      |    |
| 75<br>76<br>77<br>78<br>79      | 58.534<br>54.260<br>50.230<br>46.440<br>42.885    | 6.446 87<br>6.271 92<br>6.095 04<br>5.916 97<br>5.738 48 | 57.192<br>52.836<br>48.723<br>44.851<br>41.215    | 6.324 70<br>6.136 69<br>5.945 86<br>5.752 98<br>5.558 83 | 75<br>76<br>77<br>78<br>79      |    |
| 80<br>81<br>82<br>83<br>84      | 39.559<br>36.457<br>33.570<br>30.890<br>28.410    | 5.560 29<br>5.383 08<br>5.207 53<br>5.034 26<br>4.863 82 | 37.811<br>34.633<br>31.673<br>28.924<br>26.378    | 5.364 17<br>5.169 76<br>4.976 31<br>4.784 53<br>4.595 08 | 80<br>81<br>82<br>83<br>84      |    |
| 85<br>86<br>87<br>88<br>89      | 26.118<br>24.007<br>22.065<br>20.283<br>18.651    | 4.696 75<br>4.533 50<br>4.374 48<br>4.220 03<br>4.070 43 | 24.025<br>21.858<br>19.866<br>18.039<br>16.368    | 4.408 56<br>4.225 55<br>4.046 57<br>3.872 08<br>3.702 50 | 85<br>86<br>87<br>88<br>89      |    |
| 90<br>91<br>92<br>93<br>94      | 17.159                                            | 3.925 89                                                 | 14.843<br>13.453<br>12.191<br>11.045<br>10.007    | 3.538 17<br>3.379 39<br>3.226 40<br>3.079 39<br>2.938 48 | 90<br>91<br>92<br>93<br>94      |    |
| 95<br>96<br>97<br>98<br>99      |                                                   |                                                          | 9.070<br>8.223<br>7.460<br>6.774<br>6.156         | 2.803 78<br>2.675 30<br>2.553 06<br>2.437 01<br>2.327 08 | 95<br>96<br>97<br>98<br>99      |    |
| 100<br>101<br>102<br>103<br>104 |                                                   |                                                          | 5.602<br>5.104<br>4.659<br>4.259<br>3.902         | 2.223 16<br>2.125 12<br>2.032 81<br>1.946 07<br>1.864 71 | 100<br>101<br>102<br>103<br>104 |    |
| 105<br>106<br>107<br>108<br>109 |                                                   |                                                          | 3.582<br>3.295<br>3.039<br>2.811<br>2.606         | 1.788 53<br>1.717 34<br>1.650 92<br>1.589 07<br>1.531 58 | 105<br>106<br>107<br>108<br>109 |    |
| 110<br>111<br>112<br>113<br>114 |                                                   |                                                          | 2.424<br>2.261<br>2.115<br>1.985<br>1.869         | 1.478 23<br>1.428 82<br>1.383 15<br>1.341 02<br>1.302 22 | 110<br>111<br>112<br>113<br>114 |    |
| 115<br>116<br>117<br>118<br>119 |                                                   |                                                          | 1.765<br>1.672<br>1.584<br>1.492<br>1.351         | 1.266 54<br>1.233 70<br>1.202 99<br>1.171 57<br>1.123 76 | 115<br>116<br>117<br>118<br>119 |    |
| 120                             |                                                   |                                                          | 1.000                                             | 0.961 54                                                 | 120                             |    |

| <b>4%</b> | x  | $\ddot{a}_{[x]:\overline{n} }$ | $A_{[x]:n}$ | n = 60 - x | $\ddot{a}_{x:n}$ | $A_{x:n}$ | x  |
|-----------|----|--------------------------------|-------------|------------|------------------|-----------|----|
|           | 17 | 20.941                         | 0.194 59    | 43         | 20.936           | 0.194 75  | 17 |
|           | 18 | 20.750                         | 0.201 90    | 42         | 20.746           | 0.202 06  | 18 |
|           | 19 | 20.552                         | 0.209 53    | 41         | 20.548           | 0.209 68  | 19 |
|           | 1) | 20.332                         | 0.207 55    | 71         | 20.540           | 0.207 00  | 1) |
|           | 20 | 20.346                         | 0.217 46    | 40         | 20.342           | 0.217 60  | 20 |
|           | 21 | 20.131                         | 0.225 72    | 39         | 20.128           | 0.225 86  | 21 |
|           | 22 | 19.908                         | 0.234 32    | 38         | 19.904           | 0.234 45  | 22 |
|           | 23 | 19.675                         | 0.243 27    | 37         | 19.672           | 0.243 40  | 23 |
|           | 24 | 19.433                         | 0.252 59    | 36         | 19.430           | 0.252 71  | 24 |
|           |    |                                |             |            |                  |           |    |
|           | 25 | 19.181                         | 0.262 28    | 35         | 19.178           | 0.262 40  | 25 |
|           | 26 | 18.918                         | 0.272 37    | 34         | 18.916           | 0.272 48  | 26 |
|           | 27 | 18.645                         | 0.282 87    | 33         | 18.643           | 0.282 97  | 27 |
|           | 28 | 18.361                         | 0.293 79    | 32         | 18.359           | 0.293 89  | 28 |
|           | 29 | 18.066                         | 0.305 15    | 31         | 18.064           | 0.305 25  | 29 |
|           | 30 | 17.759                         | 0.316 97    | 30         | 17.756           | 0.317 06  | 30 |
|           | 31 | 17.439                         | 0.329 26    | 29         | 17.437           | 0.329 35  | 31 |
|           | 32 | 17.107                         | 0.342 04    | 28         | 17.105           | 0.342 12  | 32 |
|           | 33 |                                | 0.355 33    | 27         |                  |           | 33 |
|           |    | 16.762                         |             |            | 16.759           | 0.355 41  |    |
|           | 34 | 16.402                         | 0.369 14    | 26         | 16.400           | 0.369 23  | 34 |
|           | 35 | 16.029                         | 0.383 50    | 25         | 16.027           | 0.383 59  | 35 |
|           | 36 | 15.641                         | 0.398 43    | 24         | 15.639           | 0.398 52  | 36 |
|           | 37 | 15.237                         | 0.413 95    | 23         | 15.235           | 0.414 03  | 37 |
|           | 38 | 14.818                         | 0.430 07    | 22         | 14.816           | 0.430 16  | 38 |
|           | 39 | 14.383                         | 0.446 82    | 21         | 14.380           | 0.446 92  | 39 |
|           | 40 | 13.930                         | 0.464 23    | 20         | 13.927           | 0.464 33  | 40 |
|           |    |                                | 0.482 31    | 20<br>19   |                  |           |    |
|           | 41 | 13.460                         |             |            | 13.457           | 0.482 42  | 41 |
|           | 42 | 12.971                         | 0.501 10    | 18         | 12.969           | 0.501 21  | 42 |
|           | 43 | 12.464                         | 0.520 61    | 17         | 12.461           | 0.520 73  | 43 |
|           | 44 | 11.937                         | 0.540 88    | 16         | 11.934           | 0.541 00  | 44 |
|           | 45 | 11.390                         | 0.561 93    | 15         | 11.386           | 0.562 06  | 45 |
|           | 46 | 10.821                         | 0.583 80    | 14         | 10.818           | 0.583 93  | 46 |
|           | 47 | 10.231                         | 0.606 51    | 13         | 10.227           | 0.606 65  | 47 |
|           | 48 | 9.617                          | 0.630 10    | 12         | 9.613            | 0.630 25  | 48 |
|           | 49 | 8.980                          | 0.654 61    | 11         | 8.976            | 0.654 77  | 49 |
|           | 50 | 0.210                          | 0.600.07    | 10         | 0.214            | 0.600.24  | 50 |
|           | 50 | 8.318                          | 0.680 07    | 10         | 8.314            | 0.680 24  | 50 |
|           | 51 | 7.630                          | 0.706 54    | 9          | 7.625            | 0.706 72  | 51 |
|           | 52 | 6.914                          | 0.734 06    | 8          | 6.910            | 0.734 24  | 52 |
|           | 53 | 6.170                          | 0.762 68    | 7          | 6.166            | 0.762 86  | 53 |
|           | 54 | 5.396                          | 0.792 46    | 6          | 5.391            | 0.792 64  | 54 |
|           | 55 | 4.590                          | 0.823 48    | 5          | 4.585            | 0.823 65  | 55 |
|           | 56 | 3.749                          | 0.855 80    | 4          | 3.745            | 0.855 95  | 56 |
|           | 57 | 2.873                          | 0.889 52    | 3          | 2.870            | 0.889 63  | 57 |
|           | 58 | 1.957                          | 0.924 73    | 3 2        | 1.955            | 0.924 79  | 58 |
|           | 59 | 1.000                          | 0.961 54    | 1          | 1.000            | 0.961 54  | 59 |
|           | 5) | 1.000                          | 0.701 34    | 1          | 1.000            | 0.701 54  | 59 |

| x                          | $\ddot{a}_{[x]}$                             | $A_{[x]:n}$                                              | n = 65 - x           | $\ddot{a}_{x:n}$                             | $A_{x:n}$                                                | x                          | 4% |
|----------------------------|----------------------------------------------|----------------------------------------------------------|----------------------|----------------------------------------------|----------------------------------------------------------|----------------------------|----|
| 17                         | 21.723                                       | 0.164 48                                                 | 48                   | 21.719                                       | 0.164 66                                                 | 17                         |    |
| 18                         | 21.565                                       | 0.170 58                                                 | 47                   | 21.561                                       | 0.170 74                                                 | 18                         |    |
| 19                         | 21.400                                       | 0.176 93                                                 | 46                   | 21.396                                       | 0.177 09                                                 | 19                         |    |
| 20                         | 21.228                                       | 0.183 54                                                 | 45                   | 21.224                                       | 0.183 69                                                 | 20                         |    |
| 21                         | 21.049                                       | 0.190 42                                                 | 44                   | 21.045                                       | 0.190 57                                                 | 21                         |    |
| 22                         | 20.863                                       | 0.197 59                                                 | 43                   | 20.859                                       | 0.197 73                                                 | 22                         |    |
| 23                         | 20.669                                       | 0.205 05                                                 | 42                   | 20.665                                       | 0.205 18                                                 | 23                         |    |
| 24                         | 20.467                                       | 0.212 81                                                 | 41                   | 20.464                                       | 0.212 94                                                 | 24                         |    |
| 25                         | 20.257                                       | 0.220 90                                                 | 40                   | 20.254                                       | 0.221 02                                                 | 25                         |    |
| 26                         | 20.038                                       | 0.229 31                                                 | 39                   | 20.035                                       | 0.229 42                                                 | 26                         |    |
| 27                         | 19.811                                       | 0.238 05                                                 | 38                   | 19.808                                       | 0.238 17                                                 | 27                         |    |
| 28                         | 19.574                                       | 0.247 16                                                 | 37                   | 19.571                                       | 0.247 26                                                 | 28                         |    |
| 29                         | 19.328                                       | 0.256 62                                                 | 36                   | 19.325                                       | 0.256 73                                                 | 29                         |    |
| 30                         | 19.072                                       | 0.266 47                                                 | 35                   | 19.069                                       | 0.266 57                                                 | 30                         |    |
| 31                         | 18.806                                       | 0.276 71                                                 | 34                   | 18.803                                       | 0.276 81                                                 | 31                         |    |
| 32                         | 18.529                                       | 0.287 35                                                 | 33                   | 18.526                                       | 0.287 45                                                 | 32                         |    |
| 33                         | 18.241                                       | 0.298 42                                                 | 32                   | 18.239                                       | 0.298 52                                                 | 33                         |    |
| 34                         | 17.942                                       | 0.309 92                                                 | 31                   | 17.940                                       | 0.310 02                                                 | 34                         |    |
| 35                         | 17.631                                       | 0.321 87                                                 | 30                   | 17.629                                       | 0.321 97                                                 | 35                         |    |
| 36                         | 17.308                                       | 0.334 29                                                 | 29                   | 17.306                                       | 0.334 39                                                 | 36                         |    |
| 37                         | 16.973                                       | 0.347 19                                                 | 28                   | 16.970                                       | 0.347 29                                                 | 37                         |    |
| 38                         | 16.625                                       | 0.360 59                                                 | 27                   | 16.622                                       | 0.360 70                                                 | 38                         |    |
| 39                         | 16.263                                       | 0.374 51                                                 | 26                   | 16.260                                       | 0.374 62                                                 | 39                         |    |
| 40                         | 15.887                                       | 0.388 96                                                 | 25                   | 15.884                                       | 0.389 07                                                 | 40                         |    |
| 41                         | 15.497                                       | 0.403 95                                                 | 24                   | 15.494                                       | 0.404 07                                                 | 41                         |    |
| 42                         | 15.092                                       | 0.419 52                                                 | 23                   | 15.089                                       | 0.419 65                                                 | 42                         |    |
| 43                         | 14.672                                       | 0.435 67                                                 | 22                   | 14.669                                       | 0.435 81                                                 | 43                         |    |
| 44                         | 14.237                                       | 0.452 43                                                 | 21                   | 14.233                                       | 0.452 58                                                 | 44                         |    |
| 45                         | 13.785                                       | 0.469 82                                                 | 20                   | 13.780                                       | 0.469 98                                                 | 45                         |    |
| 46                         | 13.316                                       | 0.487 86                                                 | 19                   | 13.311                                       | 0.488 03                                                 | 46                         |    |
| 47                         | 12.829                                       | 0.506 56                                                 | 18                   | 12.824                                       | 0.506 75                                                 | 47                         |    |
| 48                         | 12.325                                       | 0.525 96                                                 | 17                   | 12.320                                       | 0.526 17                                                 | 48                         |    |
| 49                         | 11.802                                       | 0.546 08                                                 | 16                   | 11.796                                       | 0.546 30                                                 | 49                         |    |
| 50<br>51<br>52<br>53<br>54 | 11.259<br>10.697<br>10.113<br>9.508<br>8.880 | 0.566 95<br>0.588 58<br>0.611 02<br>0.634 30<br>0.658 46 | 15<br>14<br>13<br>12 | 11.253<br>10.690<br>10.106<br>9.500<br>8.872 | 0.567 19<br>0.588 84<br>0.611 30<br>0.634 60<br>0.658 78 | 50<br>51<br>52<br>53<br>54 |    |
| 55                         | 8.228                                        | 0.683 54                                                 | 10                   | 8.219                                        | 0.683 88                                                 | 55                         |    |
| 56                         | 7.551                                        | 0.709 58                                                 | 9                    | 7.542                                        | 0.709 93                                                 | 56                         |    |
| 57                         | 6.847                                        | 0.736 64                                                 | 8                    | 6.838                                        | 0.737 01                                                 | 57                         |    |
| 58                         | 6.115                                        | 0.764 79                                                 | 7                    | 6.106                                        | 0.765 16                                                 | 58                         |    |
| 59                         | 5.353                                        | 0.794 10                                                 | 6                    | 5.344                                        | 0.794 46                                                 | 59                         |    |
| 60                         | 4.559                                        | 0.824 65                                                 | 5                    | 4.550                                        | 0.824 99                                                 | 60                         |    |
| 61                         | 3.730                                        | 0.856 54                                                 | 4                    | 3.722                                        | 0.856 85                                                 | 61                         |    |
| 62                         | 2.863                                        | 0.889 90                                                 | 3                    | 2.857                                        | 0.890 13                                                 | 62                         |    |
| 63                         | 1.954                                        | 0.924 85                                                 | 2                    | 1.951                                        | 0.924 98                                                 | 63                         |    |
| 64                         | 1.000                                        | 0.961 54                                                 | 1                    | 1.000                                        | 0.961 54                                                 | 64                         |    |

| ~ | 0 | / |
|---|---|---|
| v | 7 | 0 |

| x  | $\ddot{a}_{[x]}$ | $A_{[x]}$ | $^{2}A_{[x]}$ | $\ddot{a}_x$ | $A_{x}$  | $^{2}A_{x}$ | x  |
|----|------------------|-----------|---------------|--------------|----------|-------------|----|
| 17 | 16.977           | 0.039 02  | 0.006 11      | 16.974       | 0.039 21 | 0.006 30    | 17 |
| 18 | 16.946           | 0.040 80  | 0.006 30      | 16.943       | 0.040 99 | 0.006 48    | 18 |
| 19 | 16.912           | 0.042 70  | 0.006 52      | 16.909       | 0.042 88 | 0.006 69    | 19 |
| 20 | 16.877           | 0.044 72  | 0.006 77      | 16.874       | 0.044 89 | 0.006 93    | 20 |
| 21 | 16.839           | 0.046 86  | 0.007 05      | 16.836       | 0.047 03 | 0.007 21    | 21 |
| 22 | 16.798           | 0.049 14  | 0.007 38      | 16.796       | 0.049 30 | 0.007 53    | 22 |
| 23 | 16.756           | 0.051 57  | 0.007 75      | 16.753       | 0.051 72 | 0.007 90    | 23 |
| 24 | 16.710           | 0.054 14  | 0.008 16      | 16.708       | 0.054 28 | 0.008 31    | 24 |
| 25 | 16.662           | 0.056 86  | 0.008 63      | 16.660       | 0.057 01 | 0.008 77    | 25 |
| 26 | 16.611           | 0.059 76  | 0.009 16      | 16.609       | 0.059 90 | 0.009 30    | 26 |
| 27 | 16.557           | 0.062 82  | 0.009 75      | 16.554       | 0.062 96 | 0.009 88    | 27 |
| 28 | 16.499           | 0.066 07  | 0.010 41      | 16.497       | 0.066 20 | 0.010 54    | 28 |
| 29 | 16.439           | 0.069 51  | 0.011 15      | 16.436       | 0.069 64 | 0.011 28    | 29 |
| 30 | 16.374           | 0.073 16  | 0.011 97      | 16.372       | 0.073 28 | 0.012 10    | 30 |
| 31 | 16.306           | 0.077 01  | 0.012 89      | 16.304       | 0.077 14 | 0.013 01    | 31 |
| 32 | 16.234           | 0.081 09  | 0.013 90      | 16.232       | 0.081 21 | 0.014 03    | 32 |
| 33 | 16.158           | 0.085 40  | 0.015 03      | 16.156       | 0.085 52 | 0.015 15    | 33 |
| 34 | 16.078           | 0.089 95  | 0.016 27      | 16.075       | 0.090 07 | 0.016 40    | 34 |
| 35 | 15.993           | 0.094 75  | 0.017 65      | 15.990       | 0.094 88 | 0.017 78    | 35 |
| 36 | 15.903           | 0.099 82  | 0.019 16      | 15.901       | 0.099 95 | 0.019 30    | 36 |
| 37 | 15.809           | 0.105 16  | 0.020 84      | 15.806       | 0.105 30 | 0.020 98    | 37 |
| 38 | 15.709           | 0.110 79  | 0.022 67      | 15.707       | 0.110 94 | 0.022 82    | 38 |
| 39 | 15.605           | 0.116 72  | 0.024 69      | 15.602       | 0.116 88 | 0.024 85    | 39 |
| 40 | 15.494           | 0.122 96  | 0.026 90      | 15.491       | 0.123 13 | 0.027 07    | 40 |
| 41 | 15.378           | 0.129 52  | 0.029 33      | 15.375       | 0.129 70 | 0.029 51    | 41 |
| 42 | 15.257           | 0.136 41  | 0.031 98      | 15.253       | 0.136 60 | 0.032 18    | 42 |
| 43 | 15.129           | 0.143 65  | 0.034 87      | 15.125       | 0.143 85 | 0.035 09    | 43 |
| 44 | 14.995           | 0.151 23  | 0.038 02      | 14.991       | 0.151 46 | 0.038 26    | 44 |
| 45 | 14.855           | 0.159 18  | 0.041 45      | 14.850       | 0.159 43 | 0.041 72    | 45 |
| 46 | 14.708           | 0.167 50  | 0.045 17      | 14.703       | 0.167 78 | 0.045 48    | 46 |
| 47 | 14.554           | 0.176 19  | 0.049 21      | 14.548       | 0.176 51 | 0.049 56    | 47 |
| 48 | 14.393           | 0.185 28  | 0.053 59      | 14.387       | 0.185 63 | 0.053 98    | 48 |
| 49 | 14.226           | 0.194 76  | 0.058 32      | 14.219       | 0.195 16 | 0.058 76    | 49 |
| 50 | 14.051           | 0.204 63  | 0.063 42      | 14.044       | 0.205 08 | 0.063 92    | 50 |
| 51 | 13.870           | 0.214 91  | 0.068 92      | 13.861       | 0.215 42 | 0.069 49    | 51 |
| 52 | 13.681           | 0.225 60  | 0.074 83      | 13.671       | 0.226 17 | 0.075 48    | 52 |
| 53 | 13.485           | 0.236 69  | 0.081 18      | 13.474       | 0.237 34 | 0.081 92    | 53 |
| 54 | 13.282           | 0.248 18  | 0.087 97      | 13.269       | 0.248 92 | 0.088 82    | 54 |
| 55 | 13.072           | 0.260 08  | 0.095 24      | 13.057       | 0.260 92 | 0.096 21    | 55 |
| 56 | 12.855           | 0.272 37  | 0.102 98      | 12.838       | 0.273 33 | 0.104 09    | 56 |
| 57 | 12.631           | 0.285 06  | 0.111 23      | 12.612       | 0.286 14 | 0.112 50    | 57 |
| 58 | 12.400           | 0.298 12  | 0.119 98      | 12.378       | 0.299 35 | 0.121 44    | 58 |
| 59 | 12.163           | 0.311 55  | 0.129 26      | 12.138       | 0.312 94 | 0.130 93    | 59 |
| 60 | 11.919           | 0.325 33  | 0.139 07      | 11.891       | 0.326 92 | 0.140 98    | 60 |
| 61 | 11.670           | 0.339 45  | 0.149 41      | 11.638       | 0.341 25 | 0.151 60    | 61 |
| 62 | 11.415           | 0.353 88  | 0.160 29      | 11.379       | 0.355 92 | 0.162 80    | 62 |
| 63 | 11.155           | 0.368 61  | 0.171 71      | 11.114       | 0.370 91 | 0.174 57    | 63 |
| 64 | 10.890           | 0.383 60  | 0.183 66      | 10.844       | 0.386 20 | 0.186 92    | 64 |

*Note.*  ${}^{2}A_{[x]} = A_{[x]}$  at 12.36% and  ${}^{2}A_{x} = A_{x}$  at 12.36%.

**AM92** 

| AWIZ                            |                                              |                                                          |                                                          |                                              |                                                          |                                                          |                                 |  |  |  |  |
|---------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|---------------------------------|--|--|--|--|
|                                 |                                              |                                                          |                                                          |                                              |                                                          |                                                          | <b>6%</b>                       |  |  |  |  |
| x                               | $\ddot{a}_{[x]}$                             | $A_{[x]}$                                                | $^{2}A_{[x]}$                                            | $\ddot{a}_x$                                 | $A_{x}$                                                  | $^{2}A_{x}$                                              | x                               |  |  |  |  |
| 65<br>66<br>67<br>68<br>69      | 10.621<br>10.348<br>10.072<br>9.794<br>9.513 | 0.398 83<br>0.414 27<br>0.429 88<br>0.445 64<br>0.461 50 | 0.196 14<br>0.209 13<br>0.222 62<br>0.236 58<br>0.251 00 | 10.569<br>10.289<br>10.006<br>9.720<br>9.431 | 0.401 77<br>0.417 58<br>0.433 61<br>0.449 82<br>0.466 17 | 0.199 85<br>0.213 35<br>0.227 40<br>0.242 00<br>0.257 12 | 65<br>66<br>67<br>68<br>69      |  |  |  |  |
| 70<br>71<br>72<br>73<br>74      | 9.232<br>8.950<br>8.669<br>8.388<br>8.109    | 0.477 43<br>0.493 38<br>0.509 33<br>0.525 21<br>0.541 01 | 0.265 83<br>0.281 06<br>0.296 64<br>0.312 54<br>0.328 70 | 9.140<br>8.848<br>8.555<br>8.262<br>7.969    | 0.482 65<br>0.499 19<br>0.515 78<br>0.532 36<br>0.548 90 | 0.272 74<br>0.288 82<br>0.305 34<br>0.322 26<br>0.339 55 | 70<br>71<br>72<br>73<br>74      |  |  |  |  |
| 75<br>76<br>77<br>78<br>79      | 7.832<br>7.559<br>7.289<br>7.024<br>6.763    | 0.556 67<br>0.572 15<br>0.587 42<br>0.602 44<br>0.617 17 | 0.345 09<br>0.361 64<br>0.378 33<br>0.395 08<br>0.411 86 | 7.679<br>7.390<br>7.105<br>6.822<br>6.544    | 0.565 35<br>0.581 69<br>0.597 86<br>0.613 83<br>0.629 56 | 0.357 14<br>0.375 01<br>0.393 09<br>0.411 33<br>0.429 69 | 75<br>76<br>77<br>78<br>79      |  |  |  |  |
| 80<br>81<br>82<br>83<br>84      | 6.509<br>6.260<br>6.018<br>5.783<br>5.556    | 0.631 59<br>0.645 66<br>0.659 35<br>0.672 65<br>0.685 53 | 0.428 60<br>0.445 25<br>0.461 77<br>0.478 11<br>0.494 22 | 6.271<br>6.004<br>5.742<br>5.487<br>5.239    | 0.645 01<br>0.660 16<br>0.674 97<br>0.689 42<br>0.703 46 | 0.448 11<br>0.466 52<br>0.484 88<br>0.503 13<br>0.521 21 | 80<br>81<br>82<br>83<br>84      |  |  |  |  |
| 85<br>86<br>87<br>88<br>89      | 5.336<br>5.124<br>4.920<br>4.724<br>4.537    | 0.697 97<br>0.709 97<br>0.721 50<br>0.732 58<br>0.743 18 | 0.510 05<br>0.525 57<br>0.540 75<br>0.555 55<br>0.569 94 | 4.998<br>4.765<br>4.540<br>4.323<br>4.114    | 0.717 10<br>0.730 29<br>0.743 04<br>0.755 31<br>0.767 11 | 0.539 07<br>0.556 67<br>0.573 96<br>0.590 88<br>0.607 41 | 85<br>86<br>87<br>88<br>89      |  |  |  |  |
| 90<br>91<br>92<br>93<br>94      | 4.358                                        | 0.753 32                                                 | 0.583 90                                                 | 3.914<br>3.723<br>3.541<br>3.367<br>3.201    | 0.778 43<br>0.789 25<br>0.799 59<br>0.809 44<br>0.818 80 | 0.623 50<br>0.639 13<br>0.654 26<br>0.668 88<br>0.682 96 | 90<br>91<br>92<br>93<br>94      |  |  |  |  |
| 95<br>96<br>97<br>98<br>99      |                                              |                                                          |                                                          | 3.044<br>2.896<br>2.755<br>2.622<br>2.498    | 0.827 69<br>0.836 10<br>0.844 06<br>0.851 56<br>0.858 63 | 0.696 49<br>0.709 46<br>0.721 87<br>0.733 70<br>0.744 96 | 95<br>96<br>97<br>98<br>99      |  |  |  |  |
| 100<br>101<br>102<br>103<br>104 |                                              |                                                          |                                                          | 2.380<br>2.270<br>2.167<br>2.070<br>1.980    | 0.865 27<br>0.871 51<br>0.877 36<br>0.882 83<br>0.887 94 | 0.755 65<br>0.765 79<br>0.775 37<br>0.784 42<br>0.792 93 | 100<br>101<br>102<br>103<br>104 |  |  |  |  |
| 105<br>106<br>107<br>108<br>109 |                                              |                                                          |                                                          | 1.895<br>1.817<br>1.744<br>1.676<br>1.614    | 0.892 71<br>0.897 15<br>0.901 28<br>0.905 11<br>0.908 66 | 0.800 94<br>0.808 45<br>0.815 48<br>0.822 05<br>0.828 17 | 105<br>106<br>107<br>108<br>109 |  |  |  |  |
| 110<br>111<br>112<br>113<br>114 |                                              |                                                          |                                                          | 1.556<br>1.502<br>1.452<br>1.407<br>1.365    | 0.911 95<br>0.914 99<br>0.917 79<br>0.920 37<br>0.922 75 | 0.833 87<br>0.839 17<br>0.844 08<br>0.848 61<br>0.852 80 | 110<br>111<br>112<br>113<br>114 |  |  |  |  |
| 115<br>116<br>117<br>118<br>119 |                                              |                                                          |                                                          | 1.326<br>1.291<br>1.258<br>1.224<br>1.172    | 0.924 92<br>0.926 93<br>0.928 80<br>0.930 72<br>0.933 64 | 0.856 66<br>0.860 22<br>0.863 55<br>0.866 94<br>0.872 10 | 115<br>116<br>117<br>118<br>119 |  |  |  |  |
| 120                             |                                              |                                                          |                                                          | 1.000                                        | 0.943 40                                                 | 0.890 00                                                 | 120                             |  |  |  |  |

*Note.*  ${}^{2}A_{[x]} = A_{[x]}$  at 12.36% and  ${}^{2}A_{x} = A_{x}$  at 12.36%.

|           |                            |                                                     |                                                          | 11111/2 |                                                     |                                                          |                            |
|-----------|----------------------------|-----------------------------------------------------|----------------------------------------------------------|---------|-----------------------------------------------------|----------------------------------------------------------|----------------------------|
| <b>6%</b> | x                          | $(I\ddot{a})_{[x]}$                                 | $(IA)_{[x]}$                                             |         | $(I\ddot{a})_x$                                     | $(IA)_x$                                                 | x                          |
|           | 17<br>18<br>19             | 268.142<br>266.392<br>264.567                       | 1.799 55<br>1.867 08<br>1.936 81                         |         | 268.083<br>266.336<br>264.514                       | 1.799 40<br>1.866 92<br>1.936 64                         | 17<br>18<br>19             |
|           | 20<br>21<br>22<br>23<br>24 | 262.666<br>260.687<br>258.626<br>256.482<br>254.253 | 2.008 74<br>2.082 89<br>2.159 25<br>2.237 82<br>2.318 58 |         | 262.615<br>260.638<br>258.579<br>256.437<br>254.210 | 2.008 56<br>2.082 70<br>2.159 06<br>2.237 62<br>2.318 37 | 20<br>21<br>22<br>23<br>24 |
|           | 25<br>26<br>27<br>28<br>29 | 251.936<br>249.531<br>247.034<br>244.444<br>241.759 | 2.401 51<br>2.486 57<br>2.573 73<br>2.662 93<br>2.754 10 |         | 251.896<br>249.491<br>246.996<br>244.407<br>241.724 | 2.401 29<br>2.486 35<br>2.573 50<br>2.662 70<br>2.753 86 | 25<br>26<br>27<br>28<br>29 |
|           | 30<br>31<br>32<br>33<br>34 | 238.978<br>236.099<br>233.120<br>230.041<br>226.861 | 2.847 18<br>2.942 06<br>3.038 64<br>3.136 81<br>3.236 43 |         | 238.943<br>236.065<br>233.087<br>230.008<br>226.827 | 2.846 92<br>2.941 80<br>3.038 37<br>3.136 53<br>3.236 13 | 30<br>31<br>32<br>33<br>34 |
|           | 35<br>36<br>37<br>38<br>39 | 223.579<br>220.194<br>216.706<br>213.116<br>209.424 | 3.337 35<br>3.439 40<br>3.542 39<br>3.646 13<br>3.750 37 |         | 223.545<br>220.159<br>216.671<br>213.079<br>209.385 | 3.337 02<br>3.439 04<br>3.542 00<br>3.645 69<br>3.749 89 | 35<br>36<br>37<br>38<br>39 |
|           | 40<br>41<br>42<br>43<br>44 | 205.630<br>201.736<br>197.744<br>193.654<br>189.471 | 3.854 89<br>3.959 42<br>4.063 68<br>4.167 36<br>4.270 14 |         | 205.589<br>201.692<br>197.696<br>193.603<br>189.416 | 3.854 35<br>3.958 80<br>4.062 97<br>4.166 55<br>4.269 22 | 40<br>41<br>42<br>43<br>44 |
|           | 45<br>46<br>47<br>48<br>49 | 185.197<br>180.834<br>176.388<br>171.863<br>167.264 | 4.371 70<br>4.471 66<br>4.569 65<br>4.665 29<br>4.758 18 |         | 185.136<br>180.768<br>176.315<br>171.783<br>167.175 | 4.370 62<br>4.470 41<br>4.568 20<br>4.663 59<br>4.756 18 | 45<br>46<br>47<br>48<br>49 |
|           | 50<br>51<br>52<br>53<br>54 | 162.597<br>157.867<br>153.082<br>148.249<br>143.376 | 4.847 89<br>4.934 00<br>5.016 09<br>5.093 72<br>5.166 47 |         | 162.497<br>157.757<br>152.959<br>148.113<br>143.224 | 4.845 55<br>4.931 26<br>5.012 87<br>5.089 94<br>5.162 03 | 50<br>51<br>52<br>53<br>54 |
|           | 55<br>56<br>57<br>58<br>59 | 138.472<br>133.545<br>128.605<br>123.662<br>118.726 | 5.233 89<br>5.295 58<br>5.351 13<br>5.400 16<br>5.442 29 |         | 138.302<br>133.356<br>128.394<br>123.427<br>118.464 | 5.228 68<br>5.289 47<br>5.343 97<br>5.391 76<br>5.432 47 | 55<br>56<br>57<br>58<br>59 |
|           | 60<br>61<br>62<br>63<br>64 | 113.808<br>108.918<br>104.067<br>99.267<br>94.528   | 5.477 20<br>5.504 57<br>5.524 16<br>5.535 74<br>5.539 13 |         | 113.516<br>108.594<br>103.707<br>98.868<br>94.087   | 5.465 72<br>5.491 18<br>5.508 56<br>5.517 59<br>5.518 08 | 60<br>61<br>62<br>63<br>64 |
|           |                            |                                                     |                                                          |         |                                                     |                                                          |                            |

### **AM92**

| x                               | $(I\ddot{a})_{[x]}$                            | $(IA)_{[x]}$                                             | $(I\ddot{a})_{\rm r}$                          | $(IA)_{r}$                                               | x                               | 6% |
|---------------------------------|------------------------------------------------|----------------------------------------------------------|------------------------------------------------|----------------------------------------------------------|---------------------------------|----|
| 65<br>66<br>67<br>68<br>69      | 89.861<br>85.277<br>80.785<br>76.397<br>72.121 | 5.534 21<br>5.520 93<br>5.499 28<br>5.469 31<br>5.431 14 | 89.374<br>84.740<br>80.196<br>75.752<br>71.416 | 5.509 85<br>5.492 80<br>5.466 88<br>5.432 09<br>5.388 51 | 65<br>66<br>67<br>68<br>69      |    |
| 70<br>71<br>72<br>73<br>74      | 67.965<br>63.939<br>60.048<br>56.300<br>52.700 | 5.384 97<br>5.331 01<br>5.269 59<br>5.201 07<br>5.125 86 | 67.198<br>63.105<br>59.146<br>55.326<br>51.652 | 5.336 28<br>5.275 60<br>5.206 73<br>5.129 99<br>5.045 77 | 70<br>71<br>72<br>73<br>74      |    |
| 75<br>76<br>77<br>78<br>79      | 49.251<br>45.958<br>42.822<br>39.846<br>37.028 | 5.044 44<br>4.957 31<br>4.865 04<br>4.768 19<br>4.667 37 | 48.128<br>44.758<br>41.545<br>38.491<br>35.596 | 4.954 52<br>4.856 72<br>4.752 91<br>4.643 69<br>4.529 64 | 75<br>76<br>77<br>78<br>79      |    |
| 80<br>81<br>82<br>83<br>84      | 34.369<br>31.866<br>29.517<br>27.320<br>25.268 | 4.563 20<br>4.456 30<br>4.347 29<br>4.236 78<br>4.125 36 | 32.860<br>30.283<br>27.861<br>25.594<br>23.475 | 4.411 42<br>4.289 68<br>4.165 09<br>4.038 31<br>3.910 00 | 80<br>81<br>82<br>83<br>84      |    |
| 85<br>86<br>87<br>88<br>89      | 23.359<br>21.586<br>19.944<br>18.426<br>17.026 | 4.013 61<br>3.902 05<br>3.791 19<br>3.681 49<br>3.573 36 | 21.503<br>19.671<br>17.974<br>16.406<br>14.962 | 3.780 82<br>3.651 39<br>3.522 31<br>3.394 16<br>3.267 46 | 85<br>86<br>87<br>88<br>89      |    |
| 90<br>91<br>92<br>93<br>94      | 15.738                                         | 3.467 16                                                 | 13.634<br>12.417<br>11.303<br>10.287<br>9.361  | 3.142 70<br>3.020 33<br>2.900 75<br>2.784 31<br>2.671 32 | 90<br>91<br>92<br>93<br>94      |    |
| 95<br>96<br>97<br>98<br>99      |                                                |                                                          | 8.518<br>7.754<br>7.061<br>6.435<br>5.869      | 2.562 02<br>2.456 63<br>2.355 32<br>2.258 21<br>2.165 37 | 95<br>96<br>97<br>98<br>99      |    |
| 100<br>101<br>102<br>103<br>104 |                                                |                                                          | 5.358<br>4.898<br>4.483<br>4.111<br>3.776      | 2.076 86<br>1.992 70<br>1.912 86<br>1.837 31<br>1.765 98 | 100<br>101<br>102<br>103<br>104 |    |
| 105<br>106<br>107<br>108<br>109 |                                                |                                                          | 3.475<br>3.205<br>2.963<br>2.746<br>2.551      | 1.698 78<br>1.635 63<br>1.576 39<br>1.520 96<br>1.469 20 | 105<br>106<br>107<br>108<br>109 |    |
| 110<br>111<br>112<br>113<br>114 |                                                |                                                          | 2.377<br>2.221<br>2.081<br>1.956<br>1.845      | 1.420 96<br>1.376 11<br>1.334 50<br>1.295 98<br>1.260 40 | 110<br>111<br>112<br>113<br>114 |    |
| 115<br>116<br>117<br>118<br>119 |                                                |                                                          | 1.744<br>1.654<br>1.570<br>1.481<br>1.345      | 1.227 60<br>1.197 34<br>1.169 04<br>1.140 18<br>1.096 31 | 115<br>116<br>117<br>118<br>119 |    |
| 120                             |                                                |                                                          | 1.000                                          | 0.943 40                                                 | 120                             |    |

6%

| x  | $\ddot{a}_{[x]:\overline{n} }$ | $A_{[x]:\overline{n} }$ | n = 60 - x | $\ddot{a}_{x:n}$ | $A_{x:\overline{n} }$ | x  |
|----|--------------------------------|-------------------------|------------|------------------|-----------------------|----|
| 17 | 16.076                         | 0.090 05                | 43         | 16.072           | 0.090 24              | 17 |
| 18 | 15.990                         | 0.094 93                | 42         | 15.986           | 0.095 11              | 18 |
| 19 | 15.898                         | 0.100 11                | 41         | 15.895           | 0.100 28              | 19 |
| 20 | 15.801                         | 0.105 61                | 40         | 15.798           | 0.105 77              | 20 |
| 21 | 15.698                         | 0.111 45                | 39         | 15.695           | 0.111 60              | 21 |
| 22 | 15.588                         | 0.117 64                | 38         | 15.586           | 0.117 79              | 22 |
| 23 | 15.472                         | 0.124 22                | 37         | 15.470           | 0.124 36              | 23 |
| 24 | 15.349                         | 0.131 19                | 36         | 15.347           | 0.131 33              | 24 |
| 25 | 15.218                         | 0.138 59                | 35         | 15.216           | 0.138 72              | 25 |
| 26 | 15.080                         | 0.146 43                | 34         | 15.078           | 0.146 56              | 26 |
| 27 | 14.933                         | 0.154 75                | 33         | 14.931           | 0.154 87              | 27 |
| 28 | 14.777                         | 0.163 57                | 32         | 14.775           | 0.163 69              | 28 |
| 29 | 14.612                         | 0.172 92                | 31         | 14.610           | 0.173 03              | 29 |
| 30 | 14.437                         | 0.182 83                | 30         | 14.435           | 0.182 94              | 30 |
| 31 | 14.251                         | 0.193 33                | 29         | 14.249           | 0.193 44              | 31 |
| 32 | 14.054                         | 0.204 46                | 28         | 14.053           | 0.204 57              | 32 |
| 33 | 13.846                         | 0.216 26                | 27         | 13.844           | 0.216 36              | 33 |
| 34 | 13.625                         | 0.228 75                | 26         | 13.624           | 0.228 85              | 34 |
| 35 | 13.392                         | 0.241 98                | 25         | 13.390           | 0.242 08              | 35 |
| 36 | 13.144                         | 0.255 99                | 24         | 13.142           | 0.256 09              | 36 |
| 37 | 12.882                         | 0.270 82                | 23         | 12.880           | 0.270 93              | 37 |
| 38 | 12.605                         | 0.286 53                | 22         | 12.603           | 0.286 64              | 38 |
| 39 | 12.311                         | 0.303 16                | 21         | 12.309           | 0.303 27              | 39 |
| 40 | 12.000                         | 0.320 76                | 20         | 11.998           | 0.320 88              | 40 |
| 41 | 11.671                         | 0.339 38                | 19         | 11.669           | 0.339 51              | 41 |
| 42 | 11.323                         | 0.359 10                | 18         | 11.320           | 0.359 23              | 42 |
| 43 | 10.954                         | 0.379 96                | 17         | 10.952           | 0.380 10              | 43 |
| 44 | 10.564                         | 0.402 03                | 16         | 10.561           | 0.402 19              | 44 |
| 45 | 10.151                         | 0.425 39                | 15         | 10.149           | 0.425 56              | 45 |
| 46 | 9.715                          | 0.450 11                | 14         | 9.712            | 0.450 28              | 46 |
| 47 | 9.253                          | 0.476 26                | 13         | 9.249            | 0.476 45              | 47 |
| 48 | 8.764                          | 0.503 94                | 12         | 8.760            | 0.504 15              | 48 |
| 49 | 8.246                          | 0.533 24                | 11         | 8.242            | 0.533 46              | 49 |
| 50 | 7.698                          | 0.564 26                | 10         | 7.694            | 0.564 49              | 50 |
| 51 | 7.118                          | 0.597 11                | 9          | 7.114            | 0.597 35              | 51 |
| 52 | 6.503                          | 0.631 91                | 8          | 6.499            | 0.632 16              | 52 |
| 53 | 5.851                          | 0.668 79                | 7          | 5.847            | 0.669 04              | 53 |
| 54 | 5.160                          | 0.707 91                | 6          | 5.156            | 0.708 15              | 54 |
| 55 | 4.427                          | 0.749 41                | 5          | 4.423            | 0.749 65              | 55 |
| 56 | 3.648                          | 0.793 50                | 4          | 3.645            | 0.793 70              | 56 |
| 57 | 2.820                          | 0.840 36                | 3          | 2.817            | 0.840 52              | 57 |
| 58 | 1.939                          | 0.890 24                | 2          | 1.937            | 0.890 34              | 58 |
| 59 | 1.000                          | 0.943 40                | 1          | 1.000            | 0.943 40              | 59 |

| <b>6%</b> |
|-----------|
|-----------|

|    |                     |                         |            |                  |           | 0 / |
|----|---------------------|-------------------------|------------|------------------|-----------|-----|
| x  | $\ddot{a}_{[x]:n }$ | $A_{[x]:\overline{n} }$ | n = 65 - x | $\ddot{a}_{x:n}$ | $A_{x:n}$ | x   |
| 17 | 16.409              | 0.071 21                | 48         | 16.405           | 0.071 40  | 17  |
| 18 | 16.343              | 0.074 95                | 47         | 16.339           | 0.075 13  | 18  |
| 19 | 16.272              | 0.078 92                | 46         | 16.269           | 0.079 09  | 19  |
| 20 | 16.198              | 0.083 13                | 45         | 16.195           | 0.083 30  | 20  |
| 21 | 16.119              | 0.087 61                | 44         | 16.116           | 0.087 77  | 21  |
| 22 | 16.035              | 0.092 36                | 43         | 16.032           | 0.092 51  | 22  |
| 23 | 15.946              | 0.097 40                | 42         | 15.943           | 0.097 54  | 23  |
| 24 | 15.852              | 0.102 74                | 41         | 15.849           | 0.102 88  | 24  |
| 25 | 15.751              | 0.108 42                | 40         | 15.749           | 0.108 55  | 25  |
| 26 | 15.645              | 0.114 43                | 39         | 15.643           | 0.114 56  | 26  |
| 27 | 15.532              | 0.120 81                | 38         | 15.530           | 0.120 94  | 27  |
| 28 | 15.413              | 0.127 58                | 37         | 15.411           | 0.127 70  | 28  |
| 29 | 15.286              | 0.134 75                | 36         | 15.284           | 0.134 86  | 29  |
| 30 | 15.152              | 0.142 34                | 35         | 15.150           | 0.142 46  | 30  |
| 31 | 15.010              | 0.150 39                | 34         | 15.008           | 0.150 50  | 31  |
| 32 | 14.859              | 0.158 92                | 33         | 14.857           | 0.159 03  | 32  |
| 33 | 14.700              | 0.167 95                | 32         | 14.698           | 0.168 06  | 33  |
| 34 | 14.531              | 0.177 51                | 31         | 14.529           | 0.177 62  | 34  |
| 35 | 14.352              | 0.187 63                | 30         | 14.350           | 0.187 74  | 35  |
| 36 | 14.163              | 0.198 33                | 29         | 14.161           | 0.198 45  | 36  |
| 37 | 13.963              | 0.209 67                | 28         | 13.960           | 0.209 79  | 37  |
| 38 | 13.751              | 0.221 65                | 27         | 13.749           | 0.221 78  | 38  |
| 39 | 13.527              | 0.234 33                | 26         | 13.525           | 0.234 46  | 39  |
| 40 | 13.290              | 0.247 74                | 25         | 13.288           | 0.247 87  | 40  |
| 41 | 13.040              | 0.261 91                | 24         | 13.037           | 0.262 06  | 41  |
| 42 | 12.775              | 0.276 89                | 23         | 12.772           | 0.277 05  | 42  |
| 43 | 12.495              | 0.292 72                | 22         | 12.492           | 0.292 89  | 43  |
| 44 | 12.200              | 0.309 44                | 21         | 12.197           | 0.309 63  | 44  |
| 45 | 11.888              | 0.327 11                | 20         | 11.884           | 0.327 31  | 45  |
| 46 | 11.558              | 0.345 78                | 19         | 11.554           | 0.345 99  | 46  |
| 47 | 11.210              | 0.365 49                | 18         | 11.206           | 0.365 72  | 47  |
| 48 | 10.842              | 0.386 30                | 17         | 10.837           | 0.386 56  | 48  |
| 49 | 10.454              | 0.408 28                | 16         | 10.449           | 0.408 57  | 49  |
| 50 | 10.044              | 0.431 50                | 15         | 10.038           | 0.431 81  | 50  |
| 51 | 9.610               | 0.456 02                | 14         | 9.604            | 0.456 35  | 51  |
| 52 | 9.153               | 0.481 91                | 13         | 9.146            | 0.482 28  | 52  |
| 53 | 8.669               | 0.509 27                | 12         | 8.662            | 0.509 67  | 53  |
| 54 | 8.159               | 0.538 19                | 11         | 8.151            | 0.538 62  | 54  |
| 55 | 7.618               | 0.568 77                | 10         | 7.610            | 0.569 22  | 55  |
| 56 | 7.047               | 0.601 12                | 9          | 7.038            | 0.601 60  | 56  |
| 57 | 6.442               | 0.635 36                | 8          | 6.433            | 0.635 86  | 57  |
| 58 | 5.801               | 0.671 65                | 7          | 5.792            | 0.672 16  | 58  |
| 59 | 5.121               | 0.710 15                | 6          | 5.112            | 0.710 66  | 59  |
| 60 | 4.398               | 0.751 04                | 5          | 4.390            | 0.751 52  | 60  |
| 61 | 3.630               | 0.794 54                | 4          | 3.622            | 0.794 97  | 61  |
| 62 | 2.811               | 0.840 90                | 3          | 2.805            | 0.841 23  | 62  |
| 63 | 1.936               | 0.890 42                | 2          | 1.933            | 0.890 60  | 63  |
| 64 | 1.000               | 0.943 40                | 1          | 1.000            | 0.943 40  | 64  |

### PENSIONER MORTALITY TABLES

### PMA92 and PFA92 (Base tables) and PMA92C20 and PFA92C20 (Projected tables)

The Base tables are based on the mortality of pensioners insured by UK life offices during the years 1991, 1992, 1993, and 1994. Mortality is measured by amounts of annuities held.

The projected tables are projected to the calendar year 2020.

Full details are given in *C.M.I.R.* **16** and **17**.

PMA92 PFA92

### PROJECTION FORMULAE

The projected mortality rate applicable in a particular calendar year is calculated using the formula:

$$q_x^{Year}$$
 (projected) =  $q_x^{Base} \times RF(x,t)$  where  $t = Year - 1992$ 

The reduction factor is calculated as:  $RF(x,t) = \alpha + (1-\alpha)(1-f)^{t/20}$ 

The parameters used are:

| Age range          | α                                          | f                                                                            |
|--------------------|--------------------------------------------|------------------------------------------------------------------------------|
| x < 60             | 0.13                                       | 0.55                                                                         |
| $60 \le x \le 110$ | $1 - 0.87 \left(\frac{110 - x}{50}\right)$ | $0.55 \left(\frac{110 - x}{50}\right) + 0.29 \left(\frac{x - 60}{50}\right)$ |
| x > 110            | 1                                          | 0.29                                                                         |

### PMA92Base

| x   | $q_x$     |
|-----|-----------|
| 50  | 0.001 315 |
| 51  | 0.001 519 |
| 52  | 0.001 761 |
| 53  | 0.002 045 |
| 54  | 0.002 379 |
| 55  | 0.002 771 |
| 56  | 0.003 228 |
| 57  | 0.003 759 |
| 58  | 0.004 376 |
| 59  | 0.005 090 |
| 60  | 0.005 914 |
| 61  | 0.006 861 |
| 62  | 0.007 947 |
| 63  | 0.009 189 |
| 64  | 0.010 604 |
| 65  | 0.012 211 |
| 66  | 0.014 032 |
| 67  | 0.016 088 |
| 68  | 0.018 402 |
| 69  | 0.020 998 |
| 70  | 0.023 901 |
| 71  | 0.027 137 |
| 72  | 0.030 732 |
| 73  | 0.034 713 |
| 74  | 0.039 105 |
| 75  | 0.043 935 |
| 76  | 0.049 227 |
| 77  | 0.055 006 |
| 78  | 0.061 292 |
| 79  | 0.068 106 |
| 80  | 0.075 464 |
| 81  | 0.083 379 |
| 82  | 0.091 862 |
| 83  | 0.100 917 |
| 84  | 0.110 544 |
| 85  | 0.120 739 |
| 86  | 0.131 492 |
| 87  | 0.142 786 |
| 88  | 0.154 599 |
| 89  | 0.166 903 |
| 90  | 0.179 664 |
| 91  | 0.192 841 |
| 92  | 0.206 389 |
| 93  | 0.220 257 |
| 94  | 0.234 389 |
| 95  | 0.248 727 |
| 96  | 0.263 206 |
| 97  | 0.277 762 |
| 98  | 0.292 327 |
| 99  | 0.306 832 |
| 100 | 0.321 209 |
| 101 | 0.335 389 |
| 102 | 0.349 305 |
| 103 | 0.362 893 |
| 104 | 0.376 091 |
| 105 | 0.388 838 |

### PFA92base

| x   | $q_x$     |
|-----|-----------|
| 50  | 0.001 271 |
| 51  | 0.001 456 |
| 52  | 0.001 670 |
| 53  | 0.001 917 |
| 54  | 0.002 200 |
| 55  | 0.002 524 |
| 56  | 0.002 894 |
| 57  | 0.003 317 |
| 58  | 0.003 799 |
| 59  | 0.004 345 |
| 60  | 0.004 965 |
| 61  | 0.005 667 |
| 62  | 0.006 458 |
| 63  | 0.007 350 |
| 64  | 0.008 352 |
| 65  | 0.009 476 |
| 66  | 0.010 734 |
| 67  | 0.012 138 |
| 68  | 0.013 703 |
| 69  | 0.015 442 |
| 70  | 0.017 371 |
| 71  | 0.019 505 |
| 72  | 0.021 861 |
| 73  | 0.024 455 |
| 74  | 0.027 306 |
| 75  | 0.030 432 |
| 76  | 0.033 849 |
| 77  | 0.037 577 |
| 78  | 0.041 632 |
| 79  | 0.046 035 |
| 80  | 0.050 800 |
| 81  | 0.055 946 |
| 82  | 0.061 488 |
| 83  | 0.067 441 |
| 84  | 0.073 817 |
| 85  | 0.080 629 |
| 86  | 0.087 885 |
| 87  | 0.095 594 |
| 88  | 0.103 761 |
| 89  | 0.112 386 |
| 90  | 0.121 470 |
| 91  | 0.131 009 |
| 92  | 0.140 996 |
| 93  | 0.151 420 |
| 94  | 0.162 267 |
| 95  | 0.173 519 |
| 96  | 0.185 155 |
| 97  | 0.197 150 |
| 98  | 0.209 477 |
| 99  | 0.222 103 |
| 100 | 0.234 995 |
| 101 | 0.248 115 |
| 102 | 0.261 424 |
| 103 | 0.274 879 |
| 104 | 0.288 437 |
| 105 | 0.302 054 |

### **PMA92C20**

| x   | $l_x$     | $d_x$   | $q_x$     | $\mu_x$   | $\overset{\circ}{e}_x$ | x   |
|-----|-----------|---------|-----------|-----------|------------------------|-----|
| 50  | 9 941.923 | 5.418   | 0.000 545 | 0.000 507 | 34.10                  | 50  |
| 51  | 9 936.504 | 6.260   | 0.000 630 | 0.000 585 | 33.12                  | 51  |
| 52  | 9 930.244 | 7.249   | 0.000 730 | 0.000 677 | 32.14                  | 52  |
| 53  | 9 922.995 | 8.415   | 0.000 848 | 0.000 786 | 31.17                  | 53  |
| 54  | 9 914.580 | 9.776   | 0.000 986 | 0.000 914 | 30.19                  | 54  |
| 55  | 9 904.805 | 11.371  | 0.001 148 | 0.001 063 | 29.22                  | 55  |
| 56  | 9 893.434 | 13.237  | 0.001 338 | 0.001 239 | 28.25                  | 56  |
| 57  | 9 880.196 | 15.393  | 0.001 558 | 0.001 444 | 27.29                  | 57  |
| 58  | 9 864.803 | 17.895  | 0.001 814 | 0.001 681 | 26.33                  | 58  |
| 59  | 9 846.908 | 20.777  | 0.002 110 | 0.001 957 | 25.38                  | 59  |
| 60  | 9 826.131 | 24.084  | 0.002 451 | 0.002 266 | 24.43                  | 60  |
| 61  | 9 802.048 | 28.965  | 0.002 955 | 0.002 685 | 23.49                  | 61  |
| 62  | 9 773.083 | 34.694  | 0.003 550 | 0.003 241 | 22.56                  | 62  |
| 63  | 9 738.388 | 41.398  | 0.004 251 | 0.003 889 | 21.64                  | 63  |
| 64  | 9 696.990 | 49.193  | 0.005 073 | 0.004 651 | 20.73                  | 64  |
| 65  | 9 647.797 | 58.195  | 0.006 032 | 0.005 543 | 19.83                  | 65  |
| 66  | 9 589.602 | 68.537  | 0.007 147 | 0.006 583 | 18.95                  | 66  |
| 67  | 9 521.065 | 80.348  | 0.008 439 | 0.007 792 | 18.08                  | 67  |
| 68  | 9 440.717 | 93.746  | 0.009 930 | 0.009 191 | 17.23                  | 68  |
| 69  | 9 346.970 | 108.836 | 0.011 644 | 0.010 806 | 16.40                  | 69  |
| 70  | 9 238.134 | 125.685 | 0.013 605 | 0.012 661 | 15.59                  | 70  |
| 71  | 9 112.449 | 144.350 | 0.015 841 | 0.014 783 | 14.79                  | 71  |
| 72  | 8 968.099 | 164.834 | 0.018 380 | 0.017 204 | 14.02                  | 72  |
| 73  | 8 803.265 | 187.096 | 0.021 253 | 0.019 956 | 13.28                  | 73  |
| 74  | 8 616.170 | 211.010 | 0.024 490 | 0.023 072 | 12.55                  | 74  |
| 75  | 8 405.160 | 236.362 | 0.028 121 | 0.026 587 | 11.86                  | 75  |
| 76  | 8 168.798 | 262.864 | 0.032 179 | 0.030 537 | 11.18                  | 76  |
| 77  | 7 905.934 | 290.116 | 0.036 696 | 0.034 962 | 10.54                  | 77  |
| 78  | 7 615.818 | 317.595 | 0.041 702 | 0.039 899 | 9.92                   | 78  |
| 79  | 7 298.223 | 344.688 | 0.047 229 | 0.045 390 | 9.33                   | 79  |
| 80  | 6 953.536 | 370.644 | 0.053 303 | 0.051 473 | 8.77                   | 80  |
| 81  | 6 582.891 | 394.658 | 0.059 952 | 0.058 188 | 8.23                   | 81  |
| 82  | 6 188.234 | 415.856 | 0.067 201 | 0.065 576 | 7.73                   | 82  |
| 83  | 5 772.378 | 433.321 | 0.075 068 | 0.073 676 | 7.25                   | 83  |
| 84  | 5 339.057 | 446.180 | 0.083 569 | 0.082 522 | 6.80                   | 84  |
| 85  | 4 892.878 | 453.648 | 0.092 716 | 0.092 149 | 6.37                   | 85  |
| 86  | 4 439.230 | 455.092 | 0.102 516 | 0.102 590 | 5.97                   | 86  |
| 87  | 3 984.138 | 450.084 | 0.112 969 | 0.113 873 | 5.59                   | 87  |
| 88  | 3 534.054 | 438.463 | 0.124 068 | 0.126 023 | 5.24                   | 88  |
| 89  | 3 095.591 | 420.387 | 0.135 802 | 0.139 060 | 4.91                   | 89  |
| 90  | 2 675.203 | 396.334 | 0.148 151 | 0.152 998 | 4.61                   | 90  |
| 91  | 2 278.869 | 367.099 | 0.161 088 | 0.167 846 | 4.32                   | 91  |
| 92  | 1 911.771 | 333.759 | 0.174 581 | 0.183 606 | 4.06                   | 92  |
| 93  | 1 578.012 | 297.596 | 0.188 589 | 0.200 273 | 3.81                   | 93  |
| 94  | 1 280.416 | 260.008 | 0.203 065 | 0.217 836 | 3.59                   | 94  |
| 95  | 1 020.409 | 222.405 | 0.217 957 | 0.236 273 | 3.38                   | 95  |
| 96  | 798.003   | 186.098 | 0.233 205 | 0.255 556 | 3.18                   | 96  |
| 97  | 611.905   | 152.209 | 0.248 746 | 0.275 647 | 3.00                   | 97  |
| 98  | 459.696   | 121.595 | 0.264 511 | 0.296 499 | 2.84                   | 98  |
| 99  | 338.101   | 94.813  | 0.280 429 | 0.318 054 | 2.68                   | 99  |
| 100 | 243.288   | 72.117  | 0.296 425 | 0.340 247 | 2.54                   | 100 |
| 101 | 171.171   | 53.478  | 0.312 423 | 0.363 002 | 2.41                   | 101 |
| 102 | 117.693   | 38.644  | 0.328 344 | 0.386 232 | 2.29                   | 102 |
| 103 | 79.050    | 27.202  | 0.344 113 | 0.409 842 | 2.18                   | 103 |
| 104 | 51.848    | 18.647  | 0.359 653 | 0.433 729 | 2.08                   | 104 |
| 105 | 33.200    | 12.446  | 0.374 887 | 0.457 778 | 1.99                   | 105 |

### **PFA92C20**

| x   | $l_x$     | $d_x$   | $q_x$     | $\mu_x$   | $\overset{\circ}{e}_x$ | x   |
|-----|-----------|---------|-----------|-----------|------------------------|-----|
| 50  | 9 952.697 | 5.245   | 0.000 527 | 0.000 492 | 37.08                  | 50  |
| 51  | 9 947.452 | 5.998   | 0.000 603 | 0.000 563 | 36.10                  | 51  |
| 52  | 9 941.454 | 6.879   | 0.000 692 | 0.000 645 | 35.12                  | 52  |
| 53  | 9 934.574 | 7.898   | 0.000 795 | 0.000 741 | 34.15                  | 53  |
| 54  | 9 926.676 | 9.053   | 0.000 912 | 0.000 851 | 33.17                  | 54  |
| 55  | 9 917.623 | 10.374  | 0.001 046 | 0.000 976 | 32.20                  | 55  |
| 56  | 9 907.249 | 11.879  | 0.001 199 | 0.001 120 | 31.24                  | 56  |
| 57  | 9 895.370 | 13.606  | 0.001 375 | 0.001 284 | 30.27                  | 57  |
| 58  | 9 881.764 | 15.564  | 0.001 575 | 0.001 472 | 29.31                  | 58  |
| 59  | 9 866.200 | 17.769  | 0.001 801 | 0.001 685 | 28.36                  | 59  |
| 60  | 9 848.431 | 20.268  | 0.002 058 | 0.001 918 | 27.41                  | 60  |
| 61  | 9 828.163 | 23.991  | 0.002 441 | 0.002 236 | 26.46                  | 61  |
| 62  | 9 804.173 | 28.285  | 0.002 885 | 0.002 655 | 25.53                  | 62  |
| 63  | 9 775.888 | 33.248  | 0.003 401 | 0.003 135 | 24.60                  | 63  |
| 64  | 9 742.640 | 38.932  | 0.003 996 | 0.003 691 | 23.68                  | 64  |
| 65  | 9 703.708 | 45.423  | 0.004 681 | 0.004 332 | 22.78                  | 65  |
| 66  | 9 658.285 | 52.802  | 0.005 467 | 0.005 069 | 21.88                  | 66  |
| 67  | 9 605.483 | 61.158  | 0.006 367 | 0.005 914 | 21.00                  | 67  |
| 68  | 9 544.325 | 70.580  | 0.007 395 | 0.006 882 | 20.13                  | 68  |
| 69  | 9 473.745 | 81.124  | 0.008 563 | 0.007 986 | 19.28                  | 69  |
| 70  | 9 392.621 | 92.874  | 0.009 888 | 0.009 240 | 18.44                  | 70  |
| 71  | 9 299.747 | 105.887 | 0.011 386 | 0.010 663 | 17.62                  | 71  |
| 72  | 9 193.860 | 120.210 | 0.013 075 | 0.012 272 | 16.81                  | 72  |
| 73  | 9 073.650 | 135.860 | 0.014 973 | 0.014 086 | 16.03                  | 73  |
| 74  | 8 937.791 | 152.836 | 0.017 100 | 0.016 126 | 15.27                  | 74  |
| 75  | 8 784.955 | 171.113 | 0.019 478 | 0.018 414 | 14.52                  | 75  |
| 76  | 8 613.841 | 190.598 | 0.022 127 | 0.020 974 | 13.80                  | 76  |
| 77  | 8 423.243 | 211.162 | 0.025 069 | 0.023 829 | 13.10                  | 77  |
| 78  | 8 212.080 | 232.615 | 0.028 326 | 0.027 004 | 12.42                  | 78  |
| 79  | 7 979.465 | 254.729 | 0.031 923 | 0.030 527 | 11.77                  | 79  |
| 80  | 7 724.737 | 277.179 | 0.035 882 | 0.034 425 | 11.14                  | 80  |
| 81  | 7 447.558 | 299.593 | 0.040 227 | 0.038 728 | 10.54                  | 81  |
| 82  | 7 147.965 | 321.523 | 0.044 981 | 0.043 464 | 9.96                   | 82  |
| 83  | 6 826.442 | 342.455 | 0.050 166 | 0.048 664 | 9.41                   | 83  |
| 84  | 6 483.987 | 361.832 | 0.055 804 | 0.054 357 | 8.88                   | 84  |
| 85  | 6 122.154 | 379.053 | 0.061 915 | 0.060 576 | 8.37                   | 85  |
| 86  | 5 743.101 | 393.506 | 0.068 518 | 0.067 349 | 7.89                   | 86  |
| 87  | 5 349.595 | 404.595 | 0.075 631 | 0.074 708 | 7.43                   | 87  |
| 88  | 4 945.000 | 411.770 | 0.083 270 | 0.082 686 | 7.00                   | 88  |
| 89  | 4 533.230 | 414.537 | 0.091 444 | 0.091 308 | 6.59                   | 89  |
| 90  | 4 118.693 | 412.545 | 0.100 164 | 0.100 604 | 6.20                   | 90  |
| 91  | 3 706.149 | 405.590 | 0.109 437 | 0.110 601 | 5.84                   | 91  |
| 92  | 3 300.559 | 393.644 | 0.119 266 | 0.121 325 | 5.49                   | 92  |
| 93  | 2 906.914 | 376.882 | 0.129 650 | 0.132 801 | 5.17                   | 93  |
| 94  | 2 530.033 | 355.677 | 0.140 582 | 0.145 048 | 4.87                   | 94  |
| 95  | 2 174.356 | 330.617 | 0.152 053 | 0.158 084 | 4.58                   | 95  |
| 96  | 1 843.738 | 302.467 | 0.164 051 | 0.171 926 | 4.32                   | 96  |
| 97  | 1 541.271 | 272.119 | 0.176 555 | 0.186 586 | 4.07                   | 97  |
| 98  | 1 269.152 | 240.562 | 0.189 545 | 0.202 071 | 3.84                   | 98  |
| 99  | 1 028.591 | 208.795 | 0.202 991 | 0.218 386 | 3.62                   | 99  |
| 100 | 819.796   | 177.783 | 0.216 863 | 0.235 531 | 3.41                   | 100 |
| 101 | 642.013   | 148.385 | 0.231 125 | 0.253 502 | 3.22                   | 101 |
| 102 | 493.627   | 121.303 | 0.245 737 | 0.272 288 | 3.05                   | 102 |
| 103 | 372.325   | 97.048  | 0.260 654 | 0.291 872 | 2.89                   | 103 |
| 104 | 275.277   | 75.930  | 0.275 830 | 0.312 234 | 2.73                   | 104 |
| 105 | 199.347   | 58.053  | 0.291 217 | 0.333 348 | 2.59                   | 105 |

| PMA92C20 |   |              |             |   | PFA92C20     |   |  |
|----------|---|--------------|-------------|---|--------------|---|--|
| 4%       | x | $\ddot{a}_x$ | $^{2}A_{x}$ | x | $\ddot{a}_x$ | 2 |  |

| <b>4%</b> | x   | $\ddot{a}_x$ | $^{2}A_{x}$ | x   | $\ddot{a}_x$ | $^{2}A_{x}$ |
|-----------|-----|--------------|-------------|-----|--------------|-------------|
|           | 50  | 18.843       | 0.088 02    | 50  | 19.539       | 0.074 21    |
|           | 51  | 18.567       | 0.094 71    | 51  | 19.291       | 0.079 78    |
|           | 52  | 18.281       | 0.101 87    | 52  | 19.034       | 0.085 74    |
|           | 53  | 17.985       | 0.109 54    | 53  | 18.768       | 0.092 11    |
|           | 54  | 17.680       | 0.117 73    | 54  | 18.494       | 0.098 91    |
|           | 55  | 17.364       | 0.126 47    | 55  | 18.210       | 0.106 16    |
|           | 56  | 17.038       | 0.135 80    | 56  | 17.917       | 0.113 90    |
|           | 57  | 16.702       | 0.145 74    | 57  | 17.615       | 0.122 14    |
|           | 58  | 16.356       | 0.156 32    | 58  | 17.303       | 0.130 91    |
|           | 59  | 15.999       | 0.167 56    | 59  | 16.982       | 0.140 24    |
|           | 60  | 15.632       | 0.179 50    | 60  | 16.652       | 0.150 15    |
|           | 61  | 15.254       | 0.192 17    | 61  | 16.311       | 0.160 68    |
|           | 62  | 14.868       | 0.205 50    | 62  | 15.963       | 0.171 77    |
|           | 63  | 14.475       | 0.219 50    | 63  | 15.606       | 0.183 43    |
|           | 64  | 14.073       | 0.234 16    | 64  | 15.242       | 0.195 66    |
|           | 65  | 13.666       | 0.249 46    | 65  | 14.871       | 0.208 47    |
|           | 66  | 13.252       | 0.265 38    | 66  | 14.494       | 0.221 83    |
|           | 67  | 12.834       | 0.281 90    | 67  | 14.111       | 0.235 76    |
|           | 68  | 12.412       | 0.298 99    | 68  | 13.723       | 0.250 22    |
|           | 69  | 11.988       | 0.316 60    | 69  | 13.330       | 0.265 21    |
|           | 70  | 11.562       | 0.334 69    | 70  | 12.934       | 0.280 69    |
|           | 71  | 11.136       | 0.353 20    | 71  | 12.535       | 0.296 64    |
|           | 72  | 10.711       | 0.372 08    | 72  | 12.135       | 0.313 02    |
|           | 73  | 10.288       | 0.391 25    | 73  | 11.734       | 0.329 80    |
|           | 74  | 9.870        | 0.410 65    | 74  | 11.333       | 0.346 93    |
|           | 75  | 9.456        | 0.430 21    | 75  | 10.933       | 0.364 37    |
|           | 76  | 9.049        | 0.449 84    | 76  | 10.536       | 0.382 07    |
|           | 77  | 8.649        | 0.469 47    | 77  | 10.142       | 0.399 97    |
|           | 78  | 8.258        | 0.489 03    | 78  | 9.752        | 0.418 02    |
|           | 79  | 7.877        | 0.508 44    | 79  | 9.367        | 0.436 16    |
|           | 80  | 7.506        | 0.527 62    | 80  | 8.989        | 0.454 33    |
|           | 81  | 7.148        | 0.546 50    | 81  | 8.618        | 0.472 47    |
|           | 82  | 6.801        | 0.565 01    | 82  | 8.254        | 0.490 53    |
|           | 83  | 6.468        | 0.583 10    | 83  | 7.900        | 0.508 45    |
|           | 84  | 6.148        | 0.600 71    | 84  | 7.555        | 0.526 16    |
|           | 85  | 5.842        | 0.617 79    | 85  | 7.220        | 0.543 63    |
|           | 86  | 5.551        | 0.634 29    | 86  | 6.896        | 0.560 80    |
|           | 87  | 5.273        | 0.650 19    | 87  | 6.582        | 0.577 62    |
|           | 88  | 5.010        | 0.665 45    | 88  | 6.281        | 0.594 05    |
|           | 89  | 4.762        | 0.680 06    | 89  | 5.991        | 0.610 06    |
|           | 90  | 4.527        | 0.693 99    | 90  | 5.713        | 0.625 60    |
|           | 91  | 4.306        | 0.707 25    | 91  | 5.447        | 0.640 66    |
|           | 92  | 4.098        | 0.719 83    | 92  | 5.193        | 0.655 20    |
|           | 93  | 3.903        | 0.731 74    | 93  | 4.951        | 0.669 21    |
|           | 94  | 3.721        | 0.742 97    | 94  | 4.722        | 0.682 68    |
|           | 95  | 3.551        | 0.753 56    | 95  | 4.504        | 0.695 59    |
|           | 96  | 3.393        | 0.763 50    | 96  | 4.297        | 0.707 94    |
|           | 97  | 3.245        | 0.772 82    | 97  | 4.102        | 0.719 73    |
|           | 98  | 3.109        | 0.781 55    | 98  | 3.918        | 0.730 97    |
|           | 99  | 2.982        | 0.789 69    | 99  | 3.744        | 0.741 64    |
|           | 100 | 2.864        | 0.797 28    | 100 | 3.581        | 0.751 77    |
|           | 101 | 2.755        | 0.804 34    | 101 | 3.428        | 0.761 36    |
|           | 102 | 2.655        | 0.810 89    | 102 | 3.284        | 0.770 43    |
|           | 103 | 2.562        | 0.816 96    | 103 | 3.149        | 0.778 99    |
|           | 104 | 2.477        | 0.822 57    | 104 | 3.023        | 0.787 05    |
|           | 105 | 2.399        | 0.827 74    | 105 | 2.905        | 0.794 63    |

*Note.*  ${}^{2}A_{x} = A_{x}$  at 8.16%.

# PMA92C20 and PFA92C20

 $\ddot{a}_{xy}$  for male (x) and female (y) Age difference d = (y - x)

| y<br>y                                                                               | 50<br>52<br>53<br>54                           | 55<br>57<br>58<br>59<br>59                     | 60<br>61<br>63<br>64                           | 65<br>67<br>68<br>69                           | 70<br>75<br>80<br>85<br>90<br>95<br>100                      |
|--------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|--------------------------------------------------------------|
| +20                                                                                  | 12.638<br>12.232<br>11.823<br>11.413<br>11.004 | 10.595<br>10.189<br>9.786<br>9.387<br>8.993    | 8.605<br>8.224<br>7.851<br>7.487<br>7.133      | 6.790<br>6.457<br>6.137<br>5.829<br>5.533      | 5.250<br>4.027<br>3.108<br>2.449<br>1.998<br>1.708           |
| +10                                                                                  | 15.801<br>15.433<br>15.057<br>14.672<br>14.279 | 13.880<br>13.473<br>13.061<br>12.644<br>12.222 | 11.796<br>11.368<br>10.939<br>10.511<br>10.085 | 9.662<br>9.243<br>8.830<br>8.423<br>8.025      | 7.636<br>5.860<br>4.422<br>3.340<br>2.571<br>2.049<br>1.708  |
| +                                                                                    | 16.909<br>16.572<br>16.225<br>15.867<br>15.499 | 15.121<br>14.733<br>14.337<br>13.932<br>13.520 | 13.101<br>12.675<br>12.245<br>11.812<br>11.376 | 10.940<br>10.504<br>10.070<br>9.639<br>9.213   | 8.792<br>6.822<br>5.161<br>3.870<br>2.933<br>1.861           |
| <del>+</del><br>4                                                                    | 17.090<br>16.758<br>16.416<br>16.064<br>15.701 | 15.328<br>14.945<br>14.553<br>14.151<br>13.742 | 13.325<br>12.901<br>12.472<br>12.039<br>11.604 | 11.167<br>10.729<br>10.293<br>9.859<br>9.429   | 9.005<br>7.005<br>5.306<br>3.977<br>3.008<br>2.339<br>1.895  |
| +3                                                                                   | 17.258<br>16.931<br>16.594<br>16.246<br>15.888 | 15.521<br>15.143<br>14.755<br>14.357<br>13.950 | 13.536<br>13.114<br>12.686<br>12.255<br>11.819 | 11.382<br>10.944<br>10.506<br>10.070<br>9.637  | 9.209<br>7.182<br>5.449<br>4.084<br>3.084<br>2.391<br>1.930  |
| +2                                                                                   | 17.413<br>17.091<br>16.758<br>16.415<br>16.062 | 15.699<br>15.326<br>14.942<br>14.549<br>14.145 | 13.734<br>13.314<br>12.888<br>12.458<br>12.023 | 11.586<br>11.147<br>10.708<br>10.270<br>9.835  | 9.404<br>7.355<br>5.588<br>4.189<br>3.160<br>2.444<br>1.965  |
| +                                                                                    | 17.556<br>17.238<br>16.910<br>16.572<br>16.223 | 15.864<br>15.495<br>15.116<br>14.727<br>14.327 | 13.918<br>13.501<br>13.078<br>12.648           | 11.778<br>11.339<br>10.900<br>10.460<br>10.023 | 9.590<br>7.520<br>5.725<br>4.294<br>3.235<br>2.496<br>2.001  |
| 0                                                                                    | 17.688<br>17.374<br>17.050<br>16.716<br>16.371 | 16.016<br>15.651<br>15.276<br>14.891<br>14.495 | 14.090<br>13.675<br>13.254<br>12.826<br>12.394 | 11.958<br>11.520<br>11.080<br>10.640<br>10.201 | 9.766<br>7.679<br>5.857<br>4.396<br>3.310<br>2.549<br>2.038  |
| ī                                                                                    | 17.808<br>17.498<br>17.178<br>16.848<br>16.507 | 16.156<br>15.795<br>15.423<br>15.041<br>14.650 | 14.248<br>13.837<br>13.418<br>12.992<br>12.561 | 12.126<br>11.688<br>11.248<br>10.808<br>10.369 | 9.932<br>7.831<br>5.985<br>4.496<br>3.384<br>2.602<br>2.075  |
| -2                                                                                   | 17.918<br>17.612<br>17.295<br>16.968<br>16.631 | 16.284<br>15.926<br>15.558<br>15.180<br>14.791 | 14.393<br>13.985<br>13.569<br>13.145<br>12.716 | 12.282<br>11.845<br>11.406<br>10.966<br>10.526 | 10.088<br>7.975<br>6.107<br>4.593<br>3.456<br>2.654<br>2.112 |
| $\epsilon_{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | 18.019<br>17.715<br>17.402<br>17.078<br>16.744 | 16.400<br>16.046<br>15.681<br>15.306<br>14.921 | 14.526<br>14.121<br>13.708<br>13.287<br>12.859 | 12.427<br>11.991<br>11.552<br>11.112<br>10.672 | 10.233<br>8.110<br>6.224<br>4.687<br>3.528<br>2.706<br>2.149 |
| 4                                                                                    | 18.110<br>17.809<br>17.499<br>17.178<br>16.847 | 16.506<br>16.155<br>15.793<br>15.421<br>15.039 | 14.646<br>14.244<br>13.834<br>13.416<br>12.991 | 12.560<br>12.125<br>11.687<br>11.247<br>10.807 | 10.368<br>8.238<br>6.336<br>4.777<br>3.597<br>2.757<br>2.186 |
| 4                                                                                    | 18.192<br>17.894<br>17.586<br>17.269<br>16.941 | 16.602<br>16.253<br>15.894<br>15.525<br>15.146 | 14.756<br>14.356<br>13.949<br>13.533<br>13.111 | 12.682<br>12.248<br>11.811<br>11.372<br>10.933 | 10.494<br>8.357<br>6.441<br>4.864<br>2.808<br>2.223          |
| -10                                                                                  | 18.493<br>18.206<br>17.908<br>17.601           | 16.955<br>16.617<br>16.269<br>15.910<br>15.541 | 15.161<br>14.772<br>14.374<br>13.968<br>13.555 | 13.136<br>12.711<br>12.282<br>11.849<br>11.414 | 10.978<br>8.833<br>6.876<br>5.235<br>3.963<br>2.400          |
| d -20                                                                                | 18.746<br>18.467<br>18.179<br>17.881<br>17.573 | 17.255<br>16.926<br>16.587<br>16.238<br>15.879 | 15.509<br>15.129<br>14.740<br>14.343<br>13.939 | 13.529<br>13.112<br>12.692<br>12.267<br>11.840 | 11.412<br>9.295<br>7.335<br>5.660<br>4.339<br>3.361<br>2.670 |
| ×                                                                                    | 52<br>53<br>54                                 | 55<br>57<br>58<br>59                           | 60<br>62<br>63<br>64                           | 65<br>67<br>68<br>69                           | 70<br>75<br>80<br>85<br>90<br>95                             |

### INTERNATIONAL ACTUARIAL NOTATION

Reproduced from *Bulletin of the Permanent Committee of the International Congress of Actuaries*, **46**, 207 (1949), *Journal of the Institute of Actuaries*, **75**, 121 (1949) and *Transactions of the Faculty of Actuaries*, **19**, 89 (1949–50).

International Actuarial Notation The existing international actuarial notation was founded on the "Key to the Notation" given in the *Institute of Actuaries Text Book, Part II, Life Contingencies* by George King (1887), and was adopted by the Second International Actuarial Congress, London, 1898 (*Transactions*, pp. 618–640) with minor revisions approved by the Third International Congress, Paris, 1900 (*Transactions*, pp. 622–651). Further revisions were discussed during 1937–1939, and were introduced by the Institute and the Faculty in 1949 (*J.I.A.*, **75**, 121 and *T.F.A.*, **19**, 89). These revisions were finally adopted internationally at the Fourteenth International Actuarial Congress, Madrid, 1954 (*Bulletin of the Permanent Committee of the International Congress of Actuaries* (1949), **46**, pp. 207–217).

The general principles on which the system is based are as follows:

To each fundamental symbolic letter are attached signs and letters each having its own signification.

The lower space to the left is reserved for signs indicating the conditions relative to the duration of the operations and to their position with regard to time.

The lower space to the right is reserved for signs indicating the conditions relative to ages and the order of succession of the events.

The upper space to the right is reserved for signs indicating the periodicity of events.

The upper space to the left is free, and in it can be placed signs corresponding to other notions.

In what follows these two conventions are used:

A letter enclosed in brackets, thus (x), denotes "a person aged x".

A letter or number enclosed in a right angle, thus  $\overline{n}$  or  $\overline{15}$ , denotes a term-certain of years.

### 1 FUNDAMENTAL SYMBOLIC LETTERS

### 1.1 INTEREST

i = the effective rate of interest, namely, the total interest earned on 1 in a year on the assumption that the actual interest (if receivable otherwise than yearly) is invested forthwith as it becomes due on the same terms as the original principal.

 $v = (1+i)^{-1}$  = the present value of 1 due one year hence.

d = 1 - v = the discount on 1 due one year hence.

 $\delta = \log_e(1+i) = -\log_e(1-d)$  = the force of interest or the force of discount.

### 1.2 MORTALITY TABLES

```
l = number living.
```

d = number dying.

p = probability of living.

q =probability of dying.

 $\mu$  = force of mortality.

m = central death rate.

a = present value of an annuity.

s = amount of an annuity.

e = expectation of life.

A = present value of an assurance.

E = present value of an endowment.

P = premium per annum.  $\ \ \ \ \ P$  generally refers to net premiums,  $\pi$  to

 $\pi$  = premium per annum.  $\int$  special premiums.

V = policy value.

W = paid-up policy.

The methods of using the foregoing principal letters and their precise meaning when added to by suffixes, etc., follow.

### 1.3 INTEREST

 $i^{(m)} = m\{(1+i)^{1/m} - 1\} =$ the nominal rate of interest, convertible m times a year.

 $a_{\overline{n}|} = v + v^2 + ... + v^n$  = the value of an annuity-certain of 1 per annum for *n* years, the payments being made at the end of each year.

 $\ddot{a}_{n|} = 1 + v + v^2 + ... + v^{n-1} =$ the value of a similar annuity, the payments being made at the beginning of each year.

 $s_{\overline{n}} = 1 + (1+i) + (1+i)^2 + ... + (1+i)^{n-1}$  = the amount of an annuity-certain of 1 per annum for *n* years, the payments being made at the end of each year.

 $\ddot{s}_{\overline{n}|} = (1+i) + (1+i)^2 + ... + (1+i)^n =$ the amount of a similar annuity, the payments being made at the beginning of each year.

The diaeresis or trema (") above the letters a and s is used as a symbol of acceleration of payments.

### 1.4 MORTALITY TABLES

The ages of the lives involved are denoted by letters placed as suffixes in the lower space to the right. Thus:

 $l_x$  = the number of persons who attain age x according to the mortality table

 $d_x = l_x - l_{x+1}$  = the number of persons who die between ages x and x + 1 according to the mortality table.

 $p_x$  = the probability that (x) will live 1 year.

 $q_x$  = the probability that (x) will die within 1 year.

$$\mu_x = -\frac{1}{l_x} \frac{dl_x}{dx}$$
 = the force of mortality at age x.

 $m_x$  = the central death-rate for the year of age x to x + 1=  $d_x / \int_0^1 l_{x+t} dt$ .

 $e_x$  = the curtate "expectation of life" (or average after-lifetime) of (x).

In the following it is always to be understood (unless otherwise expressed) that the annual payment of an annuity is 1, that the sum assured in any case is 1, and that the symbols indicate the present values:

 $a_x$  = an annuity, first payment at the end of a year, to continue during the life of (x).

 $\ddot{a}_x = 1 + a_x =$ an "annuity-due" to continue during the life of (x), the first payment to be made at once.

 $A_x$  = an assurance payable at the end of the year of death of (x).

*Note.*  $e_x = a_x$  at rate of interest i = 0.

A letter or number at the lower left corner of the principal symbol denotes the number of years involved in the probability or benefit in question. Thus:

 $_{n}p_{x}$  = the probability that (x) will live n years.  $_{n}q_{x}$  = the probability that (x) will die within n years.

*Note.* When n = 1 it is customary to omit it (as shown above) provided no ambiguity is introduced.

 $_{n}E_{x} = v_{n}^{n}p_{x}$  = the value of an endowment on (x) payable at the end of n years if (x) be then alive.

If the letter or number comes before a perpendicular bar it shows that a period of deferment is meant. Thus:

 $_{n|}q_{x}$  = the probability that (x) will die in a year, deferred n years; that is, that he will die in the (n + 1)th year.

 $_{n|}$   $a_x$  = an annuity on (x) deferred n years; that is, that the first payment is to be made at the end of (n + 1) years.

 $a_{n|t}a_x$  = an intercepted, or deferred, temporary annuity on (x) deferred n years and, after that, to run for t years.

A letter or number in brackets at the upper right corner of the principal symbol shows the number of intervals into which the year is to be divided. Thus:

 $a_x^{(m)}$  = an annuity of (x) payable by m instalments of 1/m each throughout the year, the first payment being one of 1/m at the end of the first 1/mth of a year.

 $\ddot{a}_x^{(m)} = a$  similar annuity but the first payment of 1/m is to be made at once, so that  $\ddot{a}_x^{(m)} = 1/m + a_x^{(m)}$ .

 $A_x^{(m)}$  = an assurance payable at the end of that fraction 1/m of a year in which (x) dies.

If  $m \to \infty$  then instead of writing  $(\infty)$  a bar is placed over the principal symbol. Thus:

 $\overline{a}$  = a continuous or momently annuity.

 $\overline{A}$  = an assurance payable at the moment of death.

A small circle placed over the principal symbol shows that the benefit is to be complete. Thus:

 $\overset{\circ}{a}$  = a complete annuity.

 $\stackrel{\circ}{e}$  = the complete expectation of life.

*Note.* Some consider that  $\overline{e}$  would be as appropriate as  $\stackrel{\circ}{e}$ . As  $e_x = a_x$  at rate of interest i = 0, so also the complete expectation of life  $= \overline{a}_x$  at rate of interest i = 0.

When more than one life is involved the following rules are observed:

If there are two or more letters or numbers in a suffix without any distinguishing mark, joint lives are intended. Thus:

$$l_{xy} = l_x \times l_y$$
,  $d_{xy} = l_{xy} - l_{x+1:y+1}$ .

*Note.* When, for the sake of distinctness, it is desired to separate letters or numbers in a suffix, a colon is placed between them. A colon is used instead of a point or comma to avoid confusion with decimals when numbers are involved.

 $a_{xyz}$  = an annuity, first payment at the end of a year, to continue during the joint lives of (x), (y) and (z).

 $A_{xyz}$  = an assurance payable at the end of the year of the failure of the joint lives (x), (y) and (z).

In place of a life a term-certain may be involved. Thus:

 $a_{x:\overline{n}|}$  = an annuity to continue during the joint duration of the life of (x) and a term of n years certain; that is, a temporary annuity for n years on the life of (x).

 $A_{x:n}$  = an assurance payable at the end of the year of death of (x) if he dies within n years, or at the end of n years if (x) be then alive; that is, an endowment assurance for n years.

If a perpendicular bar separates the letters in the suffix, then the status after the bar is to follow the status before the bar. Thus:

 $a_{y|x}$  = a reversionary annuity, that is, an annuity on the life of (x) after the death of (y).

 $A_{z|xy}$  = an assurance payable on the failure of the joint lives (x) and (y) provided both these lives survive (z).

If a horizontal bar appears above the suffix then survivors of the lives, and not joint lives, are intended. The number of survivors can be denoted by a letter or number over the right end of the bar. If that letter, say r, is not distinguished by any mark, then the meaning is at least r survivors; but if it is enclosed in square brackets, [r], then the meaning is  $exactly\ r$  survivors. If no letter or number appears over the bar, then unity is supposed and the meaning is  $exactly\ r$  survivor. Thus:

 $a_{\overline{xyz}}$  = an annuity payable so long as at least one of the three lives (x), (y) and (z) is alive.

 $a\frac{2}{xyz}$  = an annuity payable so long as at least two of the three lives (x), (y) and (z) are alive.

 $p\frac{[2]}{xyz}$  = probability that exactly two of the three lives (x), (y) and (z) will survive a year.

 $_{n}q_{\overline{xy}}$  = probability that the survivor of the two lives (x) and (y) will die within n years =  $_{n}q_{x} \times _{n}q_{y}$ .

 $_{n}A_{\overline{xy}}$  = an assurance payable at the end of the year of death of the survivor of the lives (x) and (y) provided the death occurs within n years.

When numerals are placed above or below the letters of the suffix, they designate the order in which the lives are to fail. The numeral placed *over* the suffix points out the life whose failure will finally determine the event; and the numerals placed *under* the suffix indicate the order in which the other lives involved are to fail. Thus:

 $A_{xy}^1$  = an assurance payable at the end of the year of death of (x) if he dies first of the two lives (x) and (y).

 $A_{xyz}^2$  = an assurance payable at the end of the year of death of (x) if he dies second of the three lives (x), (y) and (z).

 $A_{xyz}^2$  = an assurance payable at the end of the year of death of (x) if he dies second of the three lives, (y) having died first.

 $A_{xy:z}$  = an assurance payable at the end of the year of death of the survivor of (x) and (y) if he dies before (z).

 $A_{x:n}^1$  = an assurance payable at the end of the year of death of (x) if he dies within a term of n years.

$$\begin{vmatrix}
a_{\overline{yz}|x} \\
\text{or} \\
a_{\overline{yz}|x}^2
\end{vmatrix} = \text{an annuity to } (x) \text{ after the failure of the survivor of } (y) \text{ and } (z), \\
\text{provided } (z) \text{ fails before } (y).$$

*Note.* Sometimes to make quite clear that a joint-life status is involved a symbol is placed above the lives included. Thus  $A \frac{1}{xy:n} = a$  joint-life temporary assurance on (x) and (y).

In the case of reversionary annuities, distinction has sometimes to be made between those where the times of year at which payments are to take place are determined at the outset and those where the times depend on the failure of the preceding status. Thus:

 $a_{y|x}$  = annuity to (x), first payment at the end of the year of death of (y) or, on the average, about 6 months after his death.

 $\hat{a}_{y|x}$  = annuity to (x), first payment 1 year after the death of (y).

 $\hat{a}_{y|x}$  = complete annuity to (x), first payment 1 year after the death of (y).

### 2 ANNUAL PREMIUMS

The symbol *P* with the appropriate suffix or suffixes is used in simple cases, where no misunderstanding can occur, to denote the annual premium for a benefit. Thus:

 $P_x$  = the annual premium for an assurance payable at the end of the year of death of (x).

 $P_{x:n}$  = the annual premium for an endowment assurance on (x) payable after n years or at the end of the year of death of (x) if he dies within n years.

 $P_{xy}^1$  = the annual premium for a contingent assurance payable at the end of the year of death of (x) if he dies before (y).

In all cases it is optional to use the symbol P in conjunction with the principal symbol denoting the benefit. Thus instead of  $P_{x:n|}$  we may write  $P(A_{x:n|})$ . In the more complicated cases it is necessary to use the two symbols in this way. Suffixes, etc., showing the conditions of the benefit are to be attached to the principal letter, and those showing the condition of payment of the premium are to be attached to the subsidiary symbol P. Thus:

 $_{n}P(\overline{A}_{x})$  = the annual premium payable for n years only for an assurance payable at the moment of death of (x).

 $P_{xy}(A_x)$  = the annual premium payable during the joint lives of (x) and (y) for an assurance payable at the end of the year of death of (x).

 $_{n}P(_{n}|a_{x})$  = the annual premium payable for n years only for an annuity on (x) deferred n years.

 $_{t}P^{(m)}(A_{x:n})$  = the annual premium payable for t years only, by m instalments throughout the year, for an endowment assurance for n years on (x) (see below as to  $P^{(m)}$ ).

- *Notes.* (1) As a general rule the symbol *P* could be used without the principal symbol in the case of assurances where the sum assured is payable at the end of the year of death, but if it is payable at other times, or if the benefit is an annuity, then the principal symbol should be used.
- (2)  $P_x^{(m)}$ . A point which was not brought out when the international system was adopted is that there are two kinds of premiums payable m times a year, namely those which cease on payment of the instalment immediately preceding death and those which continue to be payable to the end of the year of death. To distinguish the latter, the m is sometimes enclosed in square brackets, thus  $P^{[m]}$ .

### 3 POLICY VALUES AND PAID-UP POLICIES

 $_tV_x$  = the value of an ordinary whole-life assurance on (x) which has been t years in force, the premium then just due being unpaid.

 $_{t}W_{x}$  = the paid-up policy the present value of which is  $_{t}V_{x}$ .

The symbols V and W may, in simple cases, be used alone, but in the more complicated cases it is necessary to insert the full symbol for the benefit thus:

$$_{t}V^{(m)}(\overline{A}_{x.\overline{n}|})$$
 (corresponding to  $P^{(m)}(\overline{A}_{x.\overline{n}|})$ ),  $_{t}V(_{n}|a_{x})$ .

*Note.* As a general rule V or W can be used as the main symbol if the sum assured is payable at the end of the year of death and the premium is payable periodically throughout the duration of the assurance. If the premium is payable for a limited number of years, say n, the policy value after t years could be written  ${}_tV[{}_nP(A)]$ , or, if desired,  ${}_t^nV(A)$ .

In investigations where modified premiums and policy values are in question such modification may be denoted by adding accents to the symbols. Thus, when a premium other than the net premium (a valuation premium) is used in a valuation it may be denoted by P' and the corresponding policy value by V'. Similarly, the office (or commercial) premium may be denoted by P'' and the corresponding paid-up policy by W''.

### 4 COMPOUND SYMBOLS

$$(Ia)$$
 = an annuity  $(IA)$  = an assurance commencing at 1 and increasing 1 per annum.

If the whole benefit is to be temporary the symbol of limitation is placed outside the brackets. Thus:

$$(Ia)_{\vec{x}\cdot\vec{n}}$$
 = a temporary increasing annuity.

$$(IA)_{r,n}^{1}$$
 = a temporary increasing assurance.

If only the increase is to be temporary but the benefit is to continue thereafter, then the symbol of limitation is placed immediately after the symbol *I*. Thus:

$$(I_{\overrightarrow{n}}|a)_x$$
 = a whole-life annuity  $I_{\overrightarrow{n}}|A)_x$  = a whole-life assurance stationary.

If the benefit is a decreasing one, the corresponding symbol is *D*. From the nature of the case this decrease must have a limit, as otherwise negative values might be implied. Thus:

 $(D_{\overrightarrow{n}|}A)_{x:\overrightarrow{n}|}^1$  = a temporary assurance commencing at n and decreasing by 1 in each successive year.

If the benefit is a varying one the corresponding symbol is v. Thus:

(va) = a varying annuity.

### 5 COMMUTATION COLUMNS

### 5.1 SINGLE LIVES

$$\begin{split} &D_x = v^x l_x, \\ &N_x = D_x + D_{x+1} + D_{x+2} + \text{etc.}, \\ &S_x = N_x + N_{x+1} + N_{x+2} + \text{etc.}, \\ &C_x = v^{x+1} d_x, \\ &M_x = C_x + C_{x+1} + C_{x+2} + \text{etc.}, \\ &R_x = M_x + M_{x+1} + M_{x+2} + \text{etc.} \end{split}$$

When it is desired to construct the assurance columns so as to give directly assurances payable at the moment of death, the symbols are distinguished by a bar placed over them. Thus:

$$\begin{split} \overline{C}_x &= v^{x+1/2} d_x \text{ which is an approximation to } \int_0^1 v^{x+t} \mu_{x+t} l_{x+t} dt. \\ \overline{M}_x &= \overline{C}_x + \overline{C}_{x+1} + \overline{C}_{x+2} + \text{etc.} \\ \overline{R}_x &= \overline{M}_x + \overline{M}_{x+1} + \overline{M}_{x+2} + \text{etc.} \end{split}$$

### 5.2 **JOINT LIVES**

$$\begin{split} &D_{xy} = v^{1/2}(x+y) l_{xy}, \\ &N_{xy} = D_{xy} + D_{x+1:y+1} + D_{x+2:y+2} + \text{etc.} \\ &C_{xy} = v^{1/2}(x+y) + 1 d_{xy}, \\ &M_{xy} = C_{xy} + C_{x+1:y+1} + C_{x+2:y+2} + \text{etc.} \\ &C_{xy}^1 = v^{1/2}(x+y) + 1 d_x l_{y+1/2}, \\ &M_{xy}^1 = C_{xy}^1 + C_{x+1:y+1}^1 + C_{x+2:y+2}^1 + \text{etc.} \end{split}$$

### 6 SELECTION

If the suffix to a symbol which denotes the age is enclosed in a square bracket it indicates the age at which the life was selected. To this may be added, outside the bracket, the number of years which have elapsed since selection, so that the total suffix denotes the present age. Thus:

 $l_{[x]+t}$  = the number in the select life table who were selected at age x and have attained age x + t.

$$d_{[x]+t} = l_{[x]+t} - l_{[x]+t+1}$$
.

 $a_{[x]}$  = value of an annuity on a life now aged x and now select.

 $a_{[x-n]+n}$  = value of an annuity on a life now aged x and select n years ago at age x - n.

$$N_{[x]} = D_{[x]} + D_{[x]+1} + D_{[x]+2} + \dots$$

$$\ddot{a}_{[x]} = N_{[x]} \div D_{[x]} = 1 + a_{[x]}$$

and similarly for other functions.

When Dr Sprague presented his statement [in 1900] he mentioned that an objection had been raised that the notation in some cases offers the choice of two symbols for the same benefit. For instance, a temporary annuity may be denoted either by  ${}_{n}a_{x}$  or by  $a_{x:\overline{n}|}$ . This is,

he says, a necessary consequence of the principles underlying the system, and neither of the alternative forms could have been suppressed without injury to the symmetry of the system.

# SICKNESS TABLE (MANCHESTER UNITY METHODOLOGY)

### S(MU)

This table was produced using the methodology underlying that of the Manchester Unity Sickness Experience 1893–97. The underlying rates of sickness have, however, been updated to reflect more modern experience, and have been combined with the mortality of English Life Tables No. 15 (Males).

S(MU)

**S(MU)**Central rates of sickness (weeks per annum)

| Duration of sickness in weeks |         |         |         |         |         |         |     |
|-------------------------------|---------|---------|---------|---------|---------|---------|-----|
| Age                           | 0–13    | 13–26   | 26–52   | 52-104  | ≥104    | All     | Age |
| 16                            | 0.315 0 | 0.004 8 | 0.001 2 | 0.000 0 | 0.000 0 | 0.321 0 | 16  |
| 17                            | 0.332 3 | 0.008 0 | 0.004 4 | 0.002 0 | 0.000 0 | 0.346 7 | 17  |
| 18                            | 0.348 2 | 0.008 8 | 0.005 0 | 0.003 9 | 0.001 1 | 0.367 0 | 18  |
| 19                            | 0.357 6 | 0.009 7 | 0.005 6 | 0.004 4 | 0.003 0 | 0.380 3 | 19  |
| 20                            | 0.366 5 | 0.010 6 | 0.006 3 | 0.005 1 | 0.004 8 | 0.393 3 | 20  |
| 21                            | 0.374 9 | 0.011 6 | 0.007 0 | 0.005 8 | 0.006 8 | 0.406 1 | 21  |
| 22                            | 0.383 0 | 0.012 7 | 0.007 8 | 0.006 6 | 0.008 9 | 0.419 0 | 22  |
| 23                            | 0.390 5 | 0.013 9 | 0.008 7 | 0.007 4 | 0.011 3 | 0.431 8 | 23  |
| 24                            | 0.397 7 | 0.015 1 | 0.009 7 | 0.008 4 | 0.014 0 | 0.444 9 | 24  |
| 25                            | 0.402 6 | 0.016 4 | 0.010 8 | 0.009 5 | 0.017 0 | 0.456 3 | 25  |
| 26                            | 0.410 9 | 0.017 8 | 0.011 9 | 0.010 7 | 0.020 3 | 0.471 6 | 26  |
| 27                            | 0.417 1 | 0.019 3 | 0.013 2 | 0.012 0 | 0.024 1 | 0.485 7 | 27  |
| 28                            | 0.423 0 | 0.020 9 | 0.014 6 | 0.013 5 | 0.028 4 | 0.500 4 | 28  |
| 29                            | 0.428 7 | 0.022 5 | 0.016 1 | 0.015 1 | 0.033 2 | 0.515 6 | 29  |
| 30                            | 0.434 4 | 0.024 3 | 0.017 7 | 0.016 9 | 0.038 6 | 0.531 9 | 30  |
| 31                            | 0.439 8 | 0.026 2 | 0.019 5 | 0.018 9 | 0.044 8 | 0.549 2 | 31  |
| 32                            | 0.445 4 | 0.028 3 | 0.021 5 | 0.021 1 | 0.051 8 | 0.568 1 | 32  |
| 33                            | 0.451 0 | 0.030 4 | 0.023 6 | 0.023 6 | 0.059 6 | 0.588 2 | 33  |
| 34                            | 0.456 7 | 0.032 8 | 0.025 9 | 0.026 3 | 0.068 6 | 0.610 3 | 34  |
| 35                            | 0.462 6 | 0.035 3 | 0.028 4 | 0.029 3 | 0.078 7 | 0.634 3 | 35  |
| 36                            | 0.468 8 | 0.037 9 | 0.031 2 | 0.032 7 | 0.090 1 | 0.660 7 | 36  |
| 37                            | 0.475 2 | 0.040 8 | 0.034 2 | 0.036 4 | 0.103 1 | 0.689 7 | 37  |
| 38                            | 0.482 2 | 0.043 9 | 0.037 6 | 0.040 5 | 0.117 9 | 0.722 1 | 38  |
| 39                            | 0.489 8 | 0.047 3 | 0.041 2 | 0.045 2 | 0.134 6 | 0.758 1 | 39  |
| 40                            | 0.497 9 | 0.050 9 | 0.045 3 | 0.050 3 | 0.153 6 | 0.798 0 | 40  |
| 41                            | 0.506 7 | 0.054 8 | 0.049 7 | 0.056 1 | 0.175 2 | 0.842 5 | 41  |
| 42                            | 0.516 3 | 0.059 1 | 0.054 6 | 0.062 5 | 0.199 7 | 0.892 2 | 42  |
| 43                            | 0.526 9 | 0.063 8 | 0.060 1 | 0.069 7 | 0.227 7 | 0.948 2 | 43  |
| 44                            | 0.538 6 | 0.068 9 | 0.066 1 | 0.077 8 | 0.259 5 | 1.010 9 | 44  |
| 45                            | 0.551 4 | 0.074 5 | 0.072 9 | 0.086 9 | 0.295 9 | 1.081 6 | 45  |
| 46                            | 0.565 6 | 0.080 6 | 0.080 4 | 0.097 2 | 0.337 4 | 1.161 2 | 46  |
| 47                            | 0.581 2 | 0.087 4 | 0.088 8 | 0.108 8 | 0.385 0 | 1.251 2 | 47  |
| 48                            | 0.598 6 | 0.094 8 | 0.098 2 | 0.122 0 | 0.439 5 | 1.353 1 | 48  |
| 49                            | 0.617 8 | 0.103 1 | 0.108 8 | 0.137 0 | 0.502 0 | 1.468 7 | 49  |
| 50                            | 0.639 0 | 0.112 3 | 0.120 7 | 0.154 0 | 0.574 0 | 1.600 0 | 50  |
| 51                            | 0.662 6 | 0.122 5 | 0.134 1 | 0.173 4 | 0.656 9 | 1.749 5 | 51  |
| 52                            | 0.688 8 | 0.133 9 | 0.149 3 | 0.195 6 | 0.752 7 | 1.920 3 | 52  |
| 53                            | 0.717 8 | 0.146 6 | 0.166 6 | 0.221 0 | 0.863 6 | 2.115 6 | 53  |
| 54                            | 0.749 9 | 0.160 9 | 0.186 2 | 0.250 3 | 0.992 1 | 2.339 4 | 54  |
| 55                            | 0.785 6 | 0.176 9 | 0.208 5 | 0.283 9 | 1.141 6 | 2.596 5 | 55  |
| 56                            | 0.825 1 | 0.194 9 | 0.234 0 | 0.322 8 | 1.315 8 | 2.892 6 | 56  |
| 57                            | 0.869 1 | 0.215 3 | 0.263 2 | 0.367 7 | 1.519 3 | 3.234 6 | 57  |
| 58                            | 0.917 7 | 0.238 2 | 0.296 7 | 0.419 9 | 1.757 8 | 3.630 3 | 58  |
| 59                            | 0.971 7 | 0.264 2 | 0.335 1 | 0.480 4 | 2.037 8 | 4.089 2 | 59  |
| 60                            | 1.031 1 | 0.293 5 | 0.379 3 | 0.550 8 | 2.367 7 | 4.622 4 | 60  |
| 61                            | 1.096 8 | 0.326 8 | 0.430 0 | 0.632 8 | 2.757 4 | 5.243 8 | 61  |
| 62                            | 1.169 0 | 0.364 3 | 0.488 4 | 0.728 5 | 3.218 9 | 5.969 1 | 62  |
| 63                            | 1.247 8 | 0.406 7 | 0.555 5 | 0.840 0 | 3.767 0 | 6.817 0 | 63  |
| 64                            | 1.333 5 | 0.454 3 | 0.632 5 | 0.970 0 | 4.419 8 | 7.810 1 | 64  |

S(MU)

Present value of a sickness benefit payable at the rate of 1 per week during sickness of the following durations.

All benefits cease at the earlier of death or attainment of age 65.

| Duration of sickness in weeks |        |       |       |        |        |        | 4%  |  |
|-------------------------------|--------|-------|-------|--------|--------|--------|-----|--|
| Age                           | 0–13   | 13–26 | 26–52 | 52-104 | ≥104   | All    | Age |  |
| 16                            | 10.236 | 1.113 | 1.171 | 1.515  | 5.786  | 19.821 | 16  |  |
| 17                            | 10.329 | 1.153 | 1.217 | 1.576  | 6.021  | 20.297 | 17  |  |
| 18                            | 10.412 | 1.192 | 1.262 | 1.639  | 6.266  | 20.771 | 18  |  |
| 19                            | 10.482 | 1.232 | 1.309 | 1.702  | 6.522  | 21.246 | 19  |  |
| 20                            | 10.546 | 1.272 | 1.357 | 1.767  | 6.785  | 21.726 | 20  |  |
| 21                            | 10.603 | 1.313 | 1.406 | 1.834  | 7.057  | 22.213 | 21  |  |
| 22                            | 10.654 | 1.355 | 1.456 | 1.903  | 7.339  | 22.707 | 22  |  |
| 23                            | 10.699 | 1.398 | 1.508 | 1.974  | 7.630  | 23.209 | 23  |  |
| 24                            | 10.739 | 1.441 | 1.560 | 2.047  | 7.931  | 23.718 | 24  |  |
| 25                            | 10.772 | 1.484 | 1.614 | 2.122  | 8.241  | 24.235 | 25  |  |
| 26                            | 10.802 | 1.528 | 1.669 | 2.199  | 8.561  | 24.760 | 26  |  |
| 27                            | 10.825 | 1.573 | 1.725 | 2.278  | 8.890  | 25.291 | 27  |  |
| 28                            | 10.842 | 1.617 | 1.783 | 2.359  | 9.229  | 25.830 | 28  |  |
| 29                            | 10.853 | 1.662 | 1.841 | 2.442  | 9.578  | 26.376 | 29  |  |
| 30                            | 10.860 | 1.707 | 1.899 | 2.527  | 9.936  | 26.929 | 30  |  |
| 31                            | 10.862 | 1.752 | 1.959 | 2.613  | 10.303 | 27.489 | 31  |  |
| 32                            | 10.858 | 1.797 | 2.020 | 2.701  | 10.680 | 28.055 | 32  |  |
| 33                            | 10.849 | 1.842 | 2.080 | 2.790  | 11.065 | 28.626 | 33  |  |
| 34                            | 10.834 | 1.887 | 2.142 | 2.880  | 11.458 | 29.201 | 34  |  |
| 35                            | 10.813 | 1.931 | 2.203 | 2.972  | 11.859 | 29.778 | 35  |  |
| 36                            | 10.787 | 1.974 | 2.265 | 3.064  | 12.267 | 30.358 | 36  |  |
| 37                            | 10.754 | 2.017 | 2.327 | 3.158  | 12.682 | 30.939 | 37  |  |
| 38                            | 10.715 | 2.059 | 2.388 | 3.251  | 13.103 | 31.517 | 38  |  |
| 39                            | 10.668 | 2.100 | 2.449 | 3.345  | 13.527 | 32.089 | 39  |  |
| 40                            | 10.613 | 2.139 | 2.509 | 3.438  | 13.953 | 32.653 | 40  |  |
| 41                            | 10.548 | 2.176 | 2.568 | 3.531  | 14.380 | 33.203 | 41  |  |
| 42                            | 10.473 | 2.212 | 2.625 | 3.622  | 14.804 | 33.735 | 42  |  |
| 43                            | 10.387 | 2.245 | 2.680 | 3.710  | 15.223 | 34.245 | 43  |  |
| 44                            | 10.288 | 2.274 | 2.732 | 3.796  | 15.634 | 34.725 | 44  |  |
| 45                            | 10.176 | 2.301 | 2.780 | 3.878  | 16.034 | 35.169 | 45  |  |
| 46                            | 10.048 | 2.323 | 2.825 | 3.955  | 16.418 | 35.569 | 46  |  |
| 47                            | 9.904  | 2.341 | 2.864 | 4.026  | 16.781 | 35.916 | 47  |  |
| 48                            | 9.740  | 2.353 | 2.898 | 4.090  | 17.117 | 36.199 | 48  |  |
| 49                            | 9.556  | 2.360 | 2.925 | 4.145  | 17.419 | 36.405 | 49  |  |
| 50                            | 9.348  | 2.359 | 2.944 | 4.189  | 17.678 | 36.517 | 50  |  |
| 51                            | 9.114  | 2.350 | 2.952 | 4.219  | 17.884 | 36.520 | 51  |  |
| 52                            | 8.851  | 2.331 | 2.949 | 4.233  | 18.025 | 36.390 | 52  |  |
| 53                            | 8.554  | 2.302 | 2.932 | 4.228  | 18.085 | 36.101 | 53  |  |
| 54                            | 8.219  | 2.259 | 2.899 | 4.200  | 18.046 | 35.624 | 54  |  |
| 55                            | 7.842  | 2.202 | 2.846 | 4.143  | 17.888 | 34.921 | 55  |  |
| 56                            | 7.417  | 2.127 | 2.770 | 4.053  | 17.584 | 33.951 | 56  |  |
| 57                            | 6.938  | 2.033 | 2.667 | 3.922  | 17.104 | 32.663 | 57  |  |
| 58                            | 6.397  | 1.915 | 2.532 | 3.743  | 16.409 | 30.995 | 58  |  |
| 59                            | 5.786  | 1.769 | 2.358 | 3.506  | 15.455 | 28.875 | 59  |  |
| 60                            | 5.096  | 1.592 | 2.140 | 3.199  | 14.184 | 26.211 | 60  |  |
| 61                            | 4.316  | 1.378 | 1.867 | 2.808  | 12.528 | 22.897 | 61  |  |
| 62                            | 3.433  | 1.120 | 1.531 | 2.316  | 10.401 | 18.800 | 62  |  |
| 63                            | 2.431  | 0.810 | 1.118 | 1.702  | 7.698  | 13.759 | 63  |  |
| 64                            | 1.293  | 0.441 | 0.613 | 0.941  | 4.286  | 7.574  | 64  |  |

# Annuity values, allowing for mortality only, on the basis of ELT15 (Males)

| 4% | x                          | $\overline{a}_{x:\overline{65-x}}$             |
|----|----------------------------|------------------------------------------------|
|    | 16<br>17<br>18<br>19       | 21.231<br>21.072<br>20.911<br>20.746           |
|    | 20<br>21<br>22<br>23<br>24 | 20.573<br>20.394<br>20.208<br>20.015<br>19.813 |
|    | 25<br>26<br>27<br>28<br>29 | 19.604<br>19.385<br>19.157<br>18.920<br>18.674 |
|    | 30<br>31<br>32<br>33<br>34 | 18.418<br>18.152<br>17.875<br>17.588<br>17.289 |
|    | 35<br>36<br>37<br>38<br>39 | 16.979<br>16.658<br>16.326<br>15.982<br>15.626 |
|    | 40<br>41<br>42<br>43<br>44 | 15.256<br>14.873<br>14.476<br>14.064<br>13.638 |
|    | 45<br>46<br>47<br>48<br>49 | 13.197<br>12.740<br>12.268<br>11.779<br>11.274 |
|    | 50<br>51<br>52<br>53<br>54 | 10.752<br>10.212<br>9.653<br>9.075<br>8.475    |
|    | 55<br>56<br>57<br>58<br>59 | 7.854<br>7.210<br>6.541<br>5.846<br>5.123      |
|    | 60<br>61<br>62<br>63<br>64 | 4.368<br>3.580<br>2.754<br>1.886<br>0.970      |

## SICKNESS TABLE (INCEPTION RATE / DISABILITY ANNUITY METHODOLOGY)

### S(ID)

This table was produced using an inception rate/disability annuity method based on results presented in *C.M.I.R.* **12**. The following are tabulated:

- claim inception rates
- present values of current claim sickness annuities
- present values of annuities payable during sickness for lives currently healthy

The annuities cease at the earliest of:

death; attainment of age 65; recovery from sickness. S(ID)

S(ID) Claim inception rates,  $(ia)_{x,d}$ , for the given ages x and deferred periods d years.

(These rates are central, and (when d = 0) allow for the possibility of falling sick more than once during the year of age from x to x + 1. It was assumed in the construction of this table that all lives are healthy at exact age 30.)

|                            | Deferred period in years, d                                   |                                                  |                                     |  |  |
|----------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------|--|--|
| Age, $x$                   | 0                                                             | 1                                                | 2                                   |  |  |
| 30<br>31<br>32<br>33<br>34 | 0.322 744<br>0.318 254<br>0.313 615<br>0.308 879<br>0.304 097 | 0.000 521<br>0.000 578<br>0.000 641<br>0.000 709 | 0.000 294<br>0.000 330<br>0.000 371 |  |  |
| 35                         | 0.299 317                                                     | 0.000 785                                        | 0.000 416                           |  |  |
| 36                         | 0.294 583                                                     | 0.000 869                                        | 0.000 467                           |  |  |
| 37                         | 0.289 937                                                     | 0.000 961                                        | 0.000 524                           |  |  |
| 38                         | 0.285 418                                                     | 0.001 063                                        | 0.000 588                           |  |  |
| 39                         | 0.281 061                                                     | 0.001 176                                        | 0.000 659                           |  |  |
| 40                         | 0.276 901                                                     | 0.001 301                                        | 0.000 739                           |  |  |
| 41                         | 0.272 968                                                     | 0.001 440                                        | 0.000 829                           |  |  |
| 42                         | 0.269 290                                                     | 0.001 594                                        | 0.000 930                           |  |  |
| 43                         | 0.265 896                                                     | 0.001 767                                        | 0.001 044                           |  |  |
| 44                         | 0.262 810                                                     | 0.001 959                                        | 0.001 172                           |  |  |
| 45                         | 0.260 057                                                     | 0.002 175                                        | 0.001 317                           |  |  |
| 46                         | 0.257 659                                                     | 0.002 416                                        | 0.001 482                           |  |  |
| 47                         | 0.255 639                                                     | 0.002 688                                        | 0.001 669                           |  |  |
| 48                         | 0.254 018                                                     | 0.002 994                                        | 0.001 882                           |  |  |
| 49                         | 0.252 816                                                     | 0.003 340                                        | 0.002 125                           |  |  |
| 50                         | 0.252 056                                                     | 0.003 732                                        | 0.002 403                           |  |  |
| 51                         | 0.251 758                                                     | 0.004 177                                        | 0.002 721                           |  |  |
| 52                         | 0.251 943                                                     | 0.004 682                                        | 0.003 086                           |  |  |
| 53                         | 0.252 630                                                     | 0.005 259                                        | 0.003 507                           |  |  |
| 54                         | 0.253 841                                                     | 0.005 918                                        | 0.003 992                           |  |  |
| 55                         | 0.255 594                                                     | 0.006 674                                        | 0.004 554                           |  |  |
| 56                         | 0.257 906                                                     | 0.007 541                                        | 0.005 205                           |  |  |
| 57                         | 0.260 793                                                     | 0.008 539                                        | 0.005 962                           |  |  |
| 58                         | 0.264 262                                                     | 0.009 690                                        | 0.006 843                           |  |  |
| 59                         | 0.268 316                                                     | 0.011 018                                        | 0.007 873                           |  |  |
| 60                         | 0.272 945                                                     | 0.012 554                                        | 0.009 076                           |  |  |
| 61                         | 0.278 123                                                     | 0.014 332                                        | 0.010 487                           |  |  |
| 62                         | 0.283 800                                                     | 0.016 390                                        | 0.012 141                           |  |  |
| 63                         | 0.289 890                                                     | 0.018 772                                        | 0.014 083                           |  |  |
| 64                         | 0.296 263                                                     | 0.021 524                                        | 0.016 362                           |  |  |

### S(ID)

Present values of sickness benefit payable continuously at the rate of 1 per annum during sickness of the specified duration.

All benefits cease at the earlier of death or attainment of age 65.

6%

### CURRENT STATUS = SICK

### CURRENT STATUS = HEALTHY

The table below gives the present value,  $\overline{a}_{x,z}^{\overline{SS}}$ , of a "current claim" sickness annuity for a sick life now aged x with current duration of sickness z years. (The annuity does not allow for the possibility of future new episodes of sickness.)

The table below gives the present value,  $\overline{a}_x^{HS(d/\text{all})}$ , of sickness benefit payable during sickness of duration at least d years for a life aged x who is currently healthy. (The value allows for the possibility of more than one episode of sickness.)

| Current duration of sickness, z years |         |         |         | Deferred period, d years |           |           |            |
|---------------------------------------|---------|---------|---------|--------------------------|-----------|-----------|------------|
|                                       | 0       | 1       | 2       |                          | 0         | 1         | 2          |
| Age, $x$                              |         |         |         | Age, $x$                 |           |           |            |
| 30                                    | 0.033 3 | 3.570 2 | 5.418 0 | 30                       | 0.330 580 | 0.142 025 | 0.111 543  |
| 31                                    | 0.035 0 | 3.660 4 | 5.505 1 | 31                       | 0.339 378 | 0.148 808 | 0.116 826  |
| 32                                    | 0.036 8 | 3.751 9 | 5.591 5 | 32                       | 0.348 311 | 0.155 754 | 0.122 226  |
| 33                                    | 0.038 8 | 3.844 3 | 5.676 9 | 33                       | 0.357 354 | 0.162 837 | 0.127 714  |
| 34                                    | 0.041 0 | 3.937 5 | 5.761 0 | 34                       | 0.366 480 | 0.170 038 | 0.133 274  |
| 35                                    | 0.043 5 | 4.031 1 | 5.843 2 | 35                       | 0.375 647 | 0.177 324 | 0.138 875  |
| 36                                    | 0.046 2 | 4.124 6 | 5.923 0 | 36                       | 0.384 822 | 0.184 665 | 0.144 486  |
| 37                                    | 0.049 2 | 4.2178  | 5.999 7 | 37                       | 0.393 952 | 0.192 016 | 0.150 067  |
| 38                                    | 0.052 5 | 4.309 9 | 6.072 8 | 38                       | 0.402 981 | 0.199 327 | 0.155 573  |
| 39                                    | 0.056 2 | 4.400 6 | 6.141 3 | 39                       | 0.411 815 | 0.206 529 | 0.160 944  |
| 40                                    | 0.060 3 | 4.488 9 | 6.204 4 | 40                       | 0.420 352 | 0.213 550 | 0.166 111  |
| 41                                    | 0.064 9 | 4.574 3 | 6.261 2 | 41                       | 0.428 479 | 0.220 304 | 0.171 001  |
| 42                                    | 0.069 9 | 4.655 7 | 6.310 6 | 42                       | 0.436 077 | 0.226 698 | 0.175 528  |
| 43                                    | 0.075 4 | 4.732 1 | 6.351 2 | 43                       | 0.443 010 | 0.232 611 | 0.179 594  |
| 44                                    | 0.081 5 | 4.802 3 | 6.381 9 | 44                       | 0.449 125 | 0.237 925 | 0.183 090  |
| 45                                    | 0.088 3 | 4.865 1 | 6.401 1 | 45                       | 0.454 221 | 0.242 488 | 0.185 885  |
| 46                                    | 0.095 7 | 4.918 9 | 6.407 1 | 46                       | 0.458 091 | 0.246 146 | 0.187 843  |
| 47                                    | 0.103 8 | 4.961 9 | 6.398 1 | 47                       | 0.460 523 | 0.248 719 | 0.188 814  |
| 48                                    | 0.112 6 | 4.992 3 | 6.372 1 | 48                       | 0.461 260 | 0.250 010 | 0.188 628  |
| 49                                    | 0.122 1 | 5.008 0 | 6.326 9 | 49                       | 0.460 010 | 0.249 788 | 0.187 096  |
| 50                                    | 0.132 4 | 5.006 4 | 6.259 9 | 50                       | 0.456 447 | 0.247 810 | 0.184 025  |
| 51                                    | 0.143 3 | 4.984 9 | 6.168 6 | 51                       | 0.450 241 | 0.243 825 | 0.179 219  |
| 52                                    | 0.154 9 | 4.940 5 | 6.049 8 | 52                       | 0.440 992 | 0.237 558 | 0.172 462  |
| 53                                    | 0.167 0 | 4.869 7 | 5.900 4 | 53                       | 0.428 296 | 0.228 736 | 0.163 569  |
| 54                                    | 0.179 3 | 4.768 8 | 5.716 9 | 54                       | 0.411 745 | 0.217 100 | 0.152 372  |
|                                       |         |         |         |                          |           |           |            |
| 55                                    | 0.191 7 | 4.633 7 | 5.495 2 | 55                       | 0.390 935 | 0.202 426 | 0.138 768  |
| 56                                    | 0.203 5 | 4.459 6 | 5.231 2 | 56                       | 0.365 518 | 0.184 575 | 0.122 748  |
| 57                                    | 0.214 4 | 4.241 4 | 4.920 2 | 57                       | 0.335 193 | 0.163 508 | 0.104 447  |
| 58                                    | 0.223 4 | 3.973 3 | 4.557 1 | 58                       | 0.299 804 | 0.139 390 | 0.084 219  |
| 59                                    | 0.229 5 | 3.649 0 | 4.136 3 | 59                       | 0.259 410 | 0.112 669 | 0.062 755  |
| 60                                    | 0.231 2 | 3.261 4 | 3.651 8 | 60                       | 0.214 401 | 0.084 217 | 0.041 213  |
| 61                                    | 0.226 7 | 2.802 9 | 3.097 0 | 61                       | 0.165 680 | 0.055 536 | 0.021 441  |
| 62                                    | 0.213 4 | 2.264 3 | 2.464 8 | 62                       | 0.114 894 | 0.029 046 | 0.006 275  |
| 63                                    | 0.187 5 | 1.633 6 | 1.746 9 | 63                       | 0.064 864 | 0.008 533 | 0.000 000  |
| 64                                    | 0.142 9 | 0.892 5 | 0.931 5 | 64                       | 0.020 334 | 0.000 000 | 0.000 0000 |
|                                       |         |         |         |                          |           |           |            |

# Annuity values, allowing for mortality only, on the basis of ELT15 (Males)

| 6%                         | x           | $\overline{a}_{x:\overline{65-x}}$             |
|----------------------------|-------------|------------------------------------------------|
| 1<br>1                     | 6<br>7<br>8 | 15.881<br>15.813<br>15.744                     |
| 1<br>2<br>2                |             | 15.673<br>15.597<br>15.517                     |
| 2<br>2<br>2<br>2           | 2 3         | 15.432<br>15.342<br>15.247                     |
| 2<br>2<br>2<br>2<br>2      | 6<br>7      | 15.146<br>15.038<br>14.924<br>14.803           |
| 2<br>3<br>3                | 0           | 14.674<br>14.538<br>14.394                     |
| 3<br>3<br>3                | 2 3         | 14.242<br>14.081<br>13.911                     |
| 3<br>3<br>3<br>3<br>3<br>3 | 6<br>7<br>8 | 13.731<br>13.541<br>13.342<br>13.131<br>12.909 |
| 4<br>4<br>4<br>4           | 0<br>1<br>2 | 12.675<br>12.428<br>12.168<br>11.893           |
| 4                          | 4           | 11.604<br>11.299                               |
| 4<br>4<br>4<br>4           | .7<br>.8    | 10.978<br>10.640<br>10.284<br>9.910            |
| 5<br>5<br>5<br>5<br>5<br>5 | 1 2 3       | 9.516<br>9.102<br>8.666<br>8.207<br>7.722      |
| 5<br>5<br>5<br>5<br>5      | 6<br>7<br>8 | 7.211<br>6.671<br>6.101<br>5.496<br>4.856      |
| 6<br>6<br>6<br>6<br>6      | 1<br>2<br>3 | 4.176<br>3.452<br>2.679<br>1.851<br>0.961      |

# EXAMPLE PENSION SCHEME TABLE PEN

Pension Scheme

**PEN**Service table and relative salary scale

| Age x                      | $l_x$                                                                                                 | $W_{\chi}$                                | $d_x$                      | $i_x$                           | $r_x$                             | $S_X^*$                                   | $s_x = (1.02)^x s_x^*$                         | $z_x$                                          | $Z_{X+^{1}\!/_{2}}$                            | Age x                      |
|----------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------|---------------------------------|-----------------------------------|-------------------------------------------|------------------------------------------------|------------------------------------------------|------------------------------------------------|----------------------------|
| 16<br>17<br>18<br>19       | 100 000<br>89 950<br>80 910<br>72 778                                                                 | 10 000<br>8 995<br>8 091<br>7 278         | 50<br>45<br>41<br>36       |                                 |                                   | 1.000<br>1.177<br>1.349<br>1.513          | 1.373<br>1.648<br>1.927<br>2.204               |                                                |                                                | 16<br>17<br>18<br>19       |
| 20<br>21<br>22<br>23<br>24 | 65 464<br>58 885<br>52 973<br>47 656<br>42 874                                                        | 6 546<br>5 888<br>5 296<br>4 763<br>4 070 | 33<br>24<br>21<br>19<br>17 |                                 |                                   | 1.672<br>1.823<br>1.970<br>2.108<br>2.241 | 2.485<br>2.763<br>3.045<br>3.324<br>3.605      |                                                |                                                | 20<br>21<br>22<br>23<br>24 |
| 25<br>26<br>27<br>28<br>29 | 38 787<br>35 284<br>32 279<br>29 692<br>27 462                                                        | 3 487<br>2 994<br>2 577<br>2 221<br>1 916 | 16<br>11<br>10<br>9<br>8   |                                 |                                   | 2.366<br>2.483<br>2.595<br>2.707<br>2.810 | 3.882<br>4.155<br>4.429<br>4.713<br>4.991      |                                                |                                                | 25<br>26<br>27<br>28<br>29 |
| 30<br>31<br>32<br>33<br>34 | 25 538<br>23 841<br>22 347<br>21 035<br>19 881                                                        | 1 679<br>1 472<br>1 290<br>1 131<br>989   | 8<br>10<br>9<br>8<br>8     | 10<br>12<br>13<br>15<br>18      |                                   | 2.914<br>3.004<br>3.095<br>3.181<br>3.259 | 5.278<br>5.551<br>5.832<br>6.115<br>6.389      | 4.711<br>4.994<br>5.273<br>5.554<br>5.833      | 4.852<br>5.133<br>5.413<br>5.693<br>5.972      | 30<br>31<br>32<br>33<br>34 |
| 35<br>36<br>37<br>38<br>39 | 18 866<br>17 973<br>17 190<br>16 506<br>15 911                                                        | 863<br>751<br>650<br>558<br>474           | 9<br>11<br>12<br>12<br>13  | 21<br>21<br>22<br>25<br>27      |                                   | 3.328<br>3.392<br>3.448<br>3.491<br>3.522 | 6.655<br>6.920<br>7.175<br>7.410<br>7.623      | 6.112<br>6.386<br>6.655<br>6.916<br>7.168      | 6.249<br>6.520<br>6.786<br>7.042<br>7.285      | 35<br>36<br>37<br>38<br>39 |
| 40<br>41<br>42<br>43<br>44 | 15 397<br>14 939<br>14 536<br>14 181<br>13 870                                                        | 413<br>356<br>303<br>254<br>207           | 14<br>13<br>14<br>16<br>17 | 31<br>34<br>38<br>41<br>44      |                                   | 3.539<br>3.543<br>3.539<br>3.522<br>3.504 | 7.814<br>7.980<br>8.129<br>8.252<br>8.375      | 7.403<br>7.616<br>7.806<br>7.974<br>8.120      | 7.509<br>7.711<br>7.890<br>8.047<br>8.186      | 40<br>41<br>42<br>43<br>44 |
| 45<br>46<br>47<br>48<br>49 | 13 602<br>13 375<br>13 185<br>13 029<br>12 889                                                        | 162<br>120<br>79<br>52<br>26              | 18<br>19<br>22<br>26<br>28 | 47<br>51<br>55<br>62<br>72      |                                   | 3.487<br>3.470<br>3.457<br>3.440<br>3.422 | 8.501<br>8.628<br>8.768<br>8.899<br>9.031      | 8.252<br>8.376<br>8.502<br>8.632<br>8.765      | 8.314<br>8.439<br>8.567<br>8.699<br>8.832      | 45<br>46<br>47<br>48<br>49 |
| 50<br>51<br>52<br>53<br>54 | 12 763<br>12 649<br>12 520<br>12 373<br>12 205                                                        |                                           | 32<br>35<br>39<br>43<br>47 | 82<br>94<br>108<br>125<br>145   |                                   | 3.405<br>3.392<br>3.375<br>3.358<br>3.345 | 9.165<br>9.313<br>9.451<br>9.591<br>9.745      | 8.899<br>9.032<br>9.170<br>9.310<br>9.452      | 8.965<br>9.101<br>9.240<br>9.381<br>9.524      | 50<br>51<br>52<br>53<br>54 |
| 55<br>56<br>57<br>58<br>59 | 12 013<br>11 794<br>11 546<br>11 268<br>10 957                                                        |                                           | 51<br>55<br>58<br>63<br>67 | 168<br>193<br>220<br>248<br>278 |                                   | 3.328<br>3.310<br>3.297<br>3.280<br>3.267 | 9.889<br>10.034<br>10.195<br>10.344<br>10.510  | 9.596<br>9.742<br>9.889<br>10.039<br>10.191    | 9.669<br>9.815<br>9.964<br>10.115<br>10.270    | 55<br>56<br>57<br>58<br>59 |
| 60<br>61<br>62<br>63<br>64 | 10 612<br>6 548<br>5 763<br>5 038<br>4 371                                                            |                                           | 73<br>50<br>49<br>48<br>47 | 310<br>219<br>223<br>224<br>225 | 3 681<br>516<br>453<br>395<br>342 | 3.250<br>3.233<br>3.220<br>3.203<br>3.190 | 10.663<br>10.819<br>10.991<br>11.151<br>11.328 | 10.350<br>10.506<br>10.664<br>10.824<br>10.987 | 10.428<br>10.585<br>10.744<br>10.906<br>11.072 | 60<br>61<br>62<br>63<br>64 |
| 65                         | 3 757                                                                                                 |                                           |                            |                                 | 3 757                             |                                           |                                                | 11.157                                         |                                                | 65                         |
| $z_x = \frac{1}{2}$        | $z_x = \frac{1}{3}(s_{x-3} + s_{x-2} + s_{x-1})$ and $z_{x+\frac{1}{2}} = \frac{1}{2}(z_x + z_{x+1})$ |                                           |                            |                                 |                                   |                                           |                                                |                                                |                                                |                            |

**PEN**Contribution functions

| Age x | $D_x =$   | $\overline{D}_{x} =$       | $\overline{N}_x =$       | ${}^s\overline{D}_x =$ | ${}^s\overline{N}_x =$       | $^{s}D_{x} =$ | Age x |
|-------|-----------|----------------------------|--------------------------|------------------------|------------------------------|---------------|-------|
|       | $v^x l_x$ | $^{1}/_{2}(D_{x}+D_{x+1})$ | $\Sigma  \overline{D}_x$ | $s_x \overline{D}_x$   | $\Sigma^{s}\overline{D}_{x}$ | $s_x D_x$     |       |
| 16    | 53 391    | 49 784                     | 413 287                  | 68 343                 | 1 513 322                    | 73 294        | 16    |
| 17    | 46 178    | 43 059                     | 363 503                  | 70 948                 | 1 444 979                    | 76 087        | 17    |
| 18    | 39 939    | 37 241                     | 320 444                  | 71 761                 | 1 374 031                    | 76 959        | 18    |
| 19    | 34 544    | 32 210                     | 283 203                  | 70 993                 | 1 302 270                    | 76 136        | 19    |
| 20    | 29 877    | 27 859                     | 250 992                  | 69 232                 | 1 231 277                    | 74 248        | 20    |
| 21    | 25 841    | 24 096                     | 223 134                  | 66 590                 | 1 162 045                    | 71 410        | 21    |
| 22    | 22 352    | 20 844                     | 199 037                  | 63 476                 | 1 095 455                    | 68 070        | 22    |
| 23    | 19 335    | 18 031                     | 178 193                  | 59 929                 | 1 031 979                    | 64 265        | 23    |
| 24    | 16 726    | 15 638                     | 160 163                  | 56 376                 | 972 050                      | 60 299        | 24    |
| 25    | 14 550    | 13 638                     | 144 525                  | 52 947                 | 915 673                      | 56 486        | 25    |
| 26    | 12 727    | 11 961                     | 130 887                  | 49 693                 | 862 726                      | 52 875        | 26    |
| 27    | 11 195    | 10 548                     | 118 926                  | 46 719                 | 813 033                      | 49 583        | 27    |
| 28    | 9 902     | 9 354                      | 108 378                  | 44 082                 | 766 314                      | 46 664        | 28    |
| 29    | 8 806     | 8 340                      | 99 024                   | 41 622                 | 722 232                      | 43 947        | 29    |
| 30    | 7 874     | 7 471                      | 90 684                   | 39 431                 | 680 611                      | 41 558        | 30    |
| 31    | 7 068     | 6 719                      | 83 213                   | 37 296                 | 641 180                      | 39 232        | 31    |
| 32    | 6 370     | 6 068                      | 76 494                   | 35 390                 | 603 884                      | 37 153        | 32    |
| 33    | 5 766     | 5 503                      | 70 427                   | 33 647                 | 568 494                      | 35 255        | 33    |
| 34    | 5 240     | 5 010                      | 64 924                   | 32 011                 | 534 848                      | 33 477        | 34    |
| 35    | 4 781     | 4 580                      | 59 914                   | 30 480                 | 502 836                      | 31 816        | 35    |
| 36    | 4 379     | 4 204                      | 55 333                   | 29 087                 | 472 356                      | 30 305        | 36    |
| 37    | 4 028     | 3 873                      | 51 130                   | 27 788                 | 443 269                      | 28 897        | 37    |
| 38    | 3 719     | 3 583                      | 47 257                   | 26 546                 | 415 480                      | 27 554        | 38    |
| 39    | 3 447     | 3 327                      | 43 674                   | 25 361                 | 388 934                      | 26 275        | 39    |
| 40    | 3 207     | 3 099                      | 40 347                   | 24 219                 | 363 573                      | 25 059        | 40    |
| 41    | 2 992     | 2 896                      | 37 248                   | 23 106                 | 339 354                      | 23 875        | 41    |
| 42    | 2 799     | 2 713                      | 34 352                   | 22 052                 | 316 248                      | 22 757        | 42    |
| 43    | 2 626     | 2 548                      | 31 640                   | 21 023                 | 294 196                      | 21 668        | 43    |
| 44    | 2 470     | 2 399                      | 29 092                   | 20 093                 | 273 173                      | 20 683        | 44    |
| 45    | 2 329     | 2 265                      | 26 693                   | 19 256                 | 253 080                      | 19 796        | 45    |
| 46    | 2 202     | 2 144                      | 24 428                   | 18 502                 | 233 824                      | 18 997        | 46    |
| 47    | 2 087     | 2 035                      | 22 283                   | 17 842                 | 215 322                      | 18 298        | 47    |
| 48    | 1 983     | 1 935                      | 20 248                   | 17 215                 | 197 480                      | 17 645        | 48    |
| 49    | 1 886     | 1 841                      | 18 314                   | 16 627                 | 180 265                      | 17 034        | 49    |
| 50    | 1 796     | 1 754                      | 16 473                   | 16 073                 | 163 638                      | 16 460        | 50    |
| 51    | 1 711     | 1 670                      | 14 719                   | 15 554                 | 147 565                      | 15 939        | 51    |
| 52    | 1 629     | 1 588                      | 13 049                   | 15 011                 | 132 011                      | 15 394        | 52    |
| 53    | 1 548     | 1 508                      | 11 461                   | 14 462                 | 117 000                      | 14 845        | 53    |
| 54    | 1 468     | 1 429                      | 9 953                    | 13 923                 | 102 538                      | 14 306        | 54    |
| 55    | 1 389     | 1 350                      | 8 524                    | 13 354                 | 88 615                       | 13 739        | 55    |
| 56    | 1 312     | 1 273                      | 7 174                    | 12 775                 | 75 261                       | 13 161        | 56    |
| 57    | 1 235     | 1 197                      | 5 901                    | 12 199                 | 62 486                       | 12 587        | 57    |
| 58    | 1 159     | 1 121                      | 4 704                    | 11 595                 | 50 287                       | 11 984        | 58    |
| 59    | 1 083     | 1 046                      | 3 583                    | 10 993                 | 38 692                       | 11 385        | 59    |
| 60    | 1 009     | 804                        | 2 537                    | 8 570                  | 27 699                       | 10 757        | 60    |
| 61    | 599       | 553                        | 1 733                    | 5 978                  | 19 129                       | 6 475         | 61    |
| 62    | 507       | 466                        | 1 181                    | 5 123                  | 13 152                       | 5 567         | 62    |
| 63    | 426       | 390                        | 715                      | 4 354                  | 8 028                        | 4 748         | 63    |
| 64    | 355       | 324                        | 324                      | 3 674                  | 3 674                        | 4 023         | 64    |
| 65    | 294       |                            |                          |                        |                              |               | 65    |

**PEN**Ill health retirement functions

| Age x                      | $\overline{a}^i_{x+\frac{1}{2}}$               | $C_x^i =$              | $M_x^i =$                       | $\overline{R}_{x}^{i} =$                          | $C_x^{ia} =$                    | $M_x^{ia} =$                                       | $\overline{R}_{x}^{ia} =$                            | Age x                      |
|----------------------------|------------------------------------------------|------------------------|---------------------------------|---------------------------------------------------|---------------------------------|----------------------------------------------------|------------------------------------------------------|----------------------------|
|                            |                                                | $v^{x+\frac{1}{2}}i_x$ | $\sum C_x^i$                    | $\Sigma \left( M_x^i - \frac{1}{2} C_x^i \right)$ | $C_x^i \overline{a}_{x+1/2}^i$  | $\sum C_x^{ia}$                                    | $\Sigma \left(M_x^{ia} - \frac{1}{2}C_x^{ia}\right)$ |                            |
| 16<br>17<br>18<br>19       |                                                |                        | 414<br>414<br>414<br>414        | 15 416<br>15 002<br>14 588<br>14 173              |                                 | 7 023<br>7 023<br>7 023<br>7 023<br>7 023          | 252 924<br>245 901<br>238 878<br>231 855             | 16<br>17<br>18<br>19       |
| 20<br>21<br>22<br>23<br>24 |                                                |                        | 414<br>414<br>414<br>414<br>414 | 13 759<br>13 345<br>12 930<br>12 516<br>12 102    |                                 | 7 023<br>7 023<br>7 023<br>7 023<br>7 023<br>7 023 | 224 831<br>217 808<br>210 785<br>203 762<br>196 739  | 20<br>21<br>22<br>23<br>24 |
| 25<br>26<br>27<br>28<br>29 |                                                |                        | 414<br>414<br>414<br>414<br>414 | 11 688<br>11 273<br>10 859<br>10 445<br>10 030    |                                 | 7 023<br>7 023<br>7 023<br>7 023<br>7 023<br>7 023 | 189 715<br>182 692<br>175 669<br>168 646<br>161 622  | 25<br>26<br>27<br>28<br>29 |
| 30                         | 21.852                                         | 3                      | 414                             | 9 616                                             | 66                              | 7 023                                              | 154 599                                              | 30                         |
| 31                         | 21.720                                         | 3                      | 411                             | 9 203                                             | 76                              | 6 957                                              | 147 609                                              | 31                         |
| 32                         | 21.583                                         | 4                      | 408                             | 8 794                                             | 78                              | 6 881                                              | 140 690                                              | 32                         |
| 33                         | 21.441                                         | 4                      | 404                             | 8 388                                             | 86                              | 6 803                                              | 133 848                                              | 33                         |
| 34                         | 21.294                                         | 5                      | 400                             | 7 986                                             | 99                              | 6 717                                              | 127 088                                              | 34                         |
| 35                         | 21.142                                         | 5                      | 395                             | 7 588                                             | 110                             | 6 617                                              | 120 421                                              | 35                         |
| 36                         | 20.985                                         | 5                      | 390                             | 7 195                                             | 105                             | 6 507                                              | 113 859                                              | 36                         |
| 37                         | 20.822                                         | 5                      | 385                             | 6 807                                             | 105                             | 6 402                                              | 107 404                                              | 37                         |
| 38                         | 20.654                                         | 6                      | 380                             | 6 425                                             | 114                             | 6 297                                              | 101 055                                              | 38                         |
| 39                         | 20.481                                         | 6                      | 375                             | 6 047                                             | 117                             | 6 183                                              | 94 815                                               | 39                         |
| 40                         | 20.302                                         | 6                      | 369                             | 5 676                                             | 129                             | 6 065                                              | 88 691                                               | 40                         |
| 41                         | 20.118                                         | 7                      | 363                             | 5 310                                             | 134                             | 5 937                                              | 82 691                                               | 41                         |
| 42                         | 19.929                                         | 7                      | 356                             | 4 951                                             | 143                             | 5 802                                              | 76 821                                               | 42                         |
| 43                         | 19.734                                         | 7                      | 349                             | 4 598                                             | 147                             | 5 659                                              | 71 091                                               | 43                         |
| 44                         | 19.534                                         | 8                      | 341                             | 4 253                                             | 150                             | 5 512                                              | 65 505                                               | 44                         |
| 45<br>46<br>47<br>48<br>49 | 19.330<br>19.120<br>18.906<br>18.669<br>18.407 | 8<br>8<br>9<br>9       | 334<br>326<br>317<br>309<br>300 | 3 916<br>3 586<br>3 265<br>2 951<br>2 647         | 153<br>157<br>161<br>173<br>190 | 5 362<br>5 210<br>5 052<br>4 891<br>4 718          | 60 068<br>54 782<br>49 651<br>44 679<br>39 875       | 45<br>46<br>47<br>48<br>49 |
| 50                         | 18.135                                         | 11                     | 289                             | 2 353                                             | 205                             | 4 528                                              | 35 251                                               | 50                         |
| 51                         | 17.853                                         | 12                     | 278                             | 2 069                                             | 223                             | 4 323                                              | 30 826                                               | 51                         |
| 52                         | 17.561                                         | 14                     | 266                             | 1 797                                             | 242                             | 4 100                                              | 26 615                                               | 52                         |
| 53                         | 17.259                                         | 15                     | 252                             | 1 538                                             | 265                             | 3 858                                              | 22 635                                               | 53                         |
| 54                         | 16.948                                         | 17                     | 236                             | 1 294                                             | 290                             | 3 594                                              | 18 909                                               | 54                         |
| 55                         | 16.625                                         | 19                     | 219                             | 1 066                                             | 317                             | 3 304                                              | 15 461                                               | 55                         |
| 56                         | 16.292                                         | 21                     | 200                             | 856                                               | 343                             | 2 987                                              | 12 315                                               | 56                         |
| 57                         | 15.949                                         | 23                     | 179                             | 667                                               | 368                             | 2 644                                              | 9 500                                                | 57                         |
| 58                         | 15.594                                         | 25                     | 156                             | 499                                               | 390                             | 2 276                                              | 7 040                                                | 58                         |
| 59                         | 15.229                                         | 27                     | 131                             | 355                                               | 410                             | 1 886                                              | 4 958                                                | 59                         |
| 60                         | 14.855                                         | 29                     | 104                             | 238                                               | 429                             | 1 476                                              | 3 277                                                | 60                         |
| 61                         | 14.472                                         | 20                     | 75                              | 148                                               | 284                             | 1 047                                              | 2 016                                                | 61                         |
| 62                         | 14.081                                         | 19                     | 56                              | 82                                                | 271                             | 763                                                | 1 111                                                | 62                         |
| 63                         | 13.682                                         | 19                     | 36                              | 36                                                | 254                             | 492                                                | 484                                                  | 63                         |
| 64                         | 13.277                                         | 18                     | 18                              | 9                                                 | 238                             | 238                                                | 119                                                  | 64                         |

**PEN**Ill health retirement functions

| Age x                      | ${}^{s}\overline{M}_{x}^{ia} =$                | ${}^{s}\overline{R}_{x}^{ia} =$                               | $^{z}C_{x}^{ia}=$                         | ${}^{z}M_{x}^{ia} =$                           | ${}^{z}\overline{R}_{x}^{ia}=$                                | Age x                      |
|----------------------------|------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|------------------------------------------------|---------------------------------------------------------------|----------------------------|
|                            | $s_x(M_x^{ia}-\frac{1}{2}C_x^{ia})$            | $\sum {}^s \overline{M}_x^{ia}$                               | $z_{x+\frac{1}{2}}C_{x}^{ia}$             | $\Sigma^z C_x^{ia}$                            | $\sum \left( {}^zM_x^{ia} - \frac{1}{2} {}^zC_x^{ia} \right)$ |                            |
| 16<br>17<br>18<br>19       | 9 641<br>11 572<br>13 533<br>15 480            | 1 533 946<br>1 524 304<br>1 512 732<br>1 499 199              |                                           | 64 061<br>64 061<br>64 061<br>64 061           | 2 399 660<br>2 335 599<br>2 271 539<br>2 207 478              | 16<br>17<br>18<br>19       |
| 20<br>21<br>22<br>23<br>24 | 17 454<br>19 409<br>21 388<br>23 343<br>25 320 | 1 483 720<br>1 466 266<br>1 446 858<br>1 425 470<br>1 402 126 |                                           | 64 061<br>64 061<br>64 061<br>64 061<br>64 061 |                                                               | 20<br>21<br>22<br>23<br>24 |
| 25<br>26<br>27<br>28<br>29 | 27 266                                         | 1 376 807<br>1 349 541<br>1 320 361<br>1 289 255<br>1 256 156 |                                           | 64 061<br>64 061<br>64 061<br>64 061<br>64 061 | 1 823 114<br>1 759 054<br>1 694 993<br>1 630 932<br>1 566 872 | 25<br>26<br>27<br>28<br>29 |
| 30<br>31<br>32<br>33<br>34 | 36 894<br>38 407<br>39 906<br>41 334<br>42 596 |                                                               |                                           |                                                | 1 502 811<br>1 438 911<br>1 375 365<br>1 312 226<br>1 249 546 | 30<br>31<br>32<br>33<br>34 |
| 35<br>36<br>37<br>38<br>39 | 43 671<br>44 664<br>45 554<br>46 234<br>46 683 |                                                               |                                           |                                                | 1 187 407<br>1 125 909<br>1 065 099<br>1 004 989<br>945 638   | 35<br>36<br>37<br>38<br>39 |
| 40<br>41<br>42<br>43<br>44 | 46 889<br>46 836<br>46 587<br>46 092<br>45 540 |                                                               | 965<br>1 036<br>1 128<br>1 182<br>1 228   |                                                | 887 117<br>829 506<br>772 895<br>717 367<br>662 994           | 40<br>41<br>42<br>43<br>44 |
| 45<br>46<br>47<br>48<br>49 | 44 936<br>44 271<br>43 590<br>42 754<br>41 752 | 563 219<br>518 283<br>474 013<br>430 422<br>387 668           | 1 268<br>1 328<br>1 383<br>1 503<br>1 680 | 52 554<br>51 286<br>49 957<br>48 575<br>47 072 | 609 826<br>557 906<br>507 285<br>458 019<br>410 195           | 45<br>46<br>47<br>48<br>49 |
| 50<br>51<br>52<br>53<br>54 | 40 560<br>39 222<br>37 608<br>35 735<br>33 607 | 345 917<br>305 356<br>266 134<br>228 526<br>192 792           | 1 840<br>2 026<br>2 236<br>2 482<br>2 760 | 45 392<br>43 553<br>41 527<br>39 291<br>36 809 | 363 963<br>319 490<br>276 951<br>236 542<br>198 492           | 50<br>51<br>52<br>53<br>54 |
| 55<br>56<br>57<br>58<br>59 | 31 104<br>28 252<br>25 081<br>21 530<br>17 668 |                                                               | 3 063<br>3 366<br>3 666<br>3 944<br>4 215 | 20 011                                         | 163 063<br>130 546<br>101 243<br>75 455<br>53 473             | 55<br>56<br>57<br>58<br>59 |
| 60<br>61<br>62<br>63<br>64 | 13 449<br>9 787<br>6 895<br>4 070<br>1 348     | 35 550<br>22 100<br>12 313<br>5 418<br>1 348                  | 4 476<br>3 007<br>2 907<br>2 770<br>2 635 | 15 795<br>11 319<br>8 313<br>5 405<br>2 635    | 35 570<br>22 013<br>12 197<br>5 338<br>1 318                  | 60<br>61<br>62<br>63<br>64 |

# **PEN**Age retirement functions

| Age x                      | $\overline{a}_{x+\frac{1}{2}}^{r}$             | $C_x^r =$                   | $M_x^r =$                              | $\overline{R}_{x}^{r} =$                       | $C_x^{ra} =$                           | $M_x^{ra} =$                                   | $\overline{R}_{x}^{ra} =$                            | Age x                      |
|----------------------------|------------------------------------------------|-----------------------------|----------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------------------|------------------------------------------------------|----------------------------|
|                            | $(\overline{a}_{65}^r$                         | $v^{x+\frac{1}{2}}r_x$      | $\sum C_x^r$                           | $\sum \left(M_x^r - \frac{1}{2}C_x^r\right)$   | $C_x^r \overline{a}_{x+\frac{1}{2}}^r$ | $\sum C_x^{ra}$                                | $\Sigma \left(M_x^{ra} - \frac{1}{2}C_x^{ra}\right)$ |                            |
|                            | at 65)                                         | $(v^{65}r_{65}$             |                                        |                                                | $(v^{65}r^{65}\overline{a}_{65}^{r}$   |                                                |                                                      |                            |
|                            |                                                | at 65)                      |                                        |                                                | at 65)                                 |                                                |                                                      |                            |
| 16<br>17<br>18<br>19       |                                                |                             | 782<br>782<br>782<br>782               | 36 449<br>35 667<br>34 885<br>34 103           |                                        | 11 915<br>11 915<br>11 915<br>11 915           | 553 630<br>541 715<br>529 800<br>517 885             | 16<br>17<br>18<br>19       |
| 20<br>21<br>22<br>23<br>24 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 33 321<br>32 539<br>31 757<br>30 975<br>30 193 |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 505 970<br>494 055<br>482 140<br>470 225<br>458 310  | 20<br>21<br>22<br>23<br>24 |
| 25<br>26<br>27<br>28<br>29 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 29 411<br>28 629<br>27 847<br>27 065<br>26 284 |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 446 395<br>434 479<br>422 564<br>410 649<br>398 734  | 25<br>26<br>27<br>28<br>29 |
| 30<br>31<br>32<br>33<br>34 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 25 502<br>24 720<br>23 938<br>23 156<br>22 374 |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 386 819<br>374 904<br>362 989<br>351 074<br>339 159  | 30<br>31<br>32<br>33<br>34 |
| 35<br>36<br>37<br>38<br>39 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 21 592<br>20 810<br>20 028<br>19 246<br>18 464 |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 327 244<br>315 328<br>303 413<br>291 498<br>279 583  | 35<br>36<br>37<br>38<br>39 |
| 40<br>41<br>42<br>43<br>44 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 17 682<br>16 900<br>16 118<br>15 336<br>14 554 |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 267 668<br>255 753<br>243 838<br>231 923<br>220 008  | 40<br>41<br>42<br>43<br>44 |
| 45<br>46<br>47<br>48<br>49 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 13 773<br>12 991<br>12 209<br>11 427<br>10 645 |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 208 093<br>196 177<br>184 262<br>172 347<br>160 432  | 45<br>46<br>47<br>48<br>49 |
| 50<br>51<br>52<br>53<br>54 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 9 863<br>9 081<br>8 299<br>7 517<br>6 735      |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 148 517<br>136 602<br>124 687<br>112 772<br>100 857  | 50<br>51<br>52<br>53<br>54 |
| 55<br>56<br>57<br>58<br>59 |                                                |                             | 782<br>782<br>782<br>782<br>782<br>782 | 5 953<br>5 171<br>4 389<br>3 607<br>2 825      |                                        | 11 915<br>11 915<br>11 915<br>11 915<br>11 915 | 88 942<br>77 027<br>65 111<br>53 196<br>41 281       | 55<br>56<br>57<br>58<br>59 |
| 60<br>61<br>62<br>63<br>64 | 16.292<br>15.949<br>15.594<br>15.229<br>14.855 | 343<br>46<br>39<br>33<br>27 | 782<br>439<br>393<br>354<br>321        | 2 043<br>1 433<br>1 017<br>644<br>307          | 5 590<br>738<br>609<br>498<br>405      | 11 915<br>6 325<br>5 587<br>4 979<br>4 480     | 29 366<br>20 246<br>14 290<br>9 007<br>4 278         | 60<br>61<br>62<br>63<br>64 |
| 65                         | 13.883                                         | 294                         | 294                                    |                                                | 4 075                                  | 4 075                                          |                                                      | 65                         |

**PEN**Age retirement functions

| Age x | ${}^s\overline{M}_x^{ra} =$         | ${}^{s}\overline{R}_{x}^{ra} =$    | $^{z}C_{x}^{ra}=$                    | $^{z}M_{x}^{ra}=$       | ${}^{z}\overline{R}_{x}^{ra} =$                               | Age x |
|-------|-------------------------------------|------------------------------------|--------------------------------------|-------------------------|---------------------------------------------------------------|-------|
|       | $s_x(M_x^{ra}-\frac{1}{2}C_x^{ra})$ | $\sum {}^{s}\overline{M}_{x}^{ra}$ | $z_{x+1/2}C_x^{ra}$                  | $\sum {}^{z}C_{x}^{ra}$ | $\sum \left( {}^zM_x^{ra} - \frac{1}{2} {}^zC_x^{ra} \right)$ |       |
|       |                                     |                                    | $(z_{65}C_{65}^{ra} \text{ at } 65)$ |                         |                                                               |       |
| 16    | 16 357                              | 3 801 411                          |                                      | 128 026                 | 5 956 885                                                     | 16    |
| 17    | 19 632                              | 3 785 055                          |                                      | 128 026                 | 5 828 859                                                     | 17    |
| 18    | 22 959                              | 3 765 422                          |                                      | 128 026                 | 5 700 833                                                     | 18    |
| 19    | 26 262                              | 3 742 463                          |                                      | 128 026                 | 5 572 807                                                     | 19    |
| 20    | 29 610                              | 3 716 201                          |                                      | 128 026                 | 5 444 781                                                     | 20    |
| 21    | 32 927                              | 3 686 591                          |                                      | 128 026                 | 5 316 755                                                     | 21    |
| 22    | 36 285                              | 3 653 664                          |                                      | 128 026                 | 5 188 729                                                     | 22    |
| 23    | 39 602                              | 3 617 379                          |                                      | 128 026                 | 5 060 703                                                     | 23    |
| 24    | 42 955                              | 3 577 776                          |                                      | 128 026                 | 4 932 677                                                     | 24    |
| 25    | 46 258                              | 3 534 821                          |                                      | 128 026                 | 4 804 651                                                     | 25    |
| 26    | 49 504                              | 3 488 563                          |                                      | 128 026                 | 4 676 625                                                     | 26    |
| 27    | 52 773                              | 3 439 059                          |                                      | 128 026                 | 4 548 599                                                     | 27    |
| 28    | 56 153                              | 3 386 286                          |                                      | 128 026                 | 4 420 573                                                     | 28    |
| 29    | 59 465                              | 3 330 133                          |                                      | 128 026                 | 4 292 547                                                     | 29    |
| 30    | 62 887                              | 3 270 668                          |                                      | 128 026                 | 4 164 521                                                     | 30    |
| 31    | 66 137                              | 3 207 781                          |                                      | 128 026                 | 4 036 495                                                     | 31    |
| 32    | 69 493                              | 3 141 643                          |                                      | 128 026                 | 3 908 469                                                     | 32    |
| 33    | 72 857                              | 3 072 151                          |                                      | 128 026                 | 3 780 443                                                     | 33    |
| 34    | 76 127                              | 2 999 294                          |                                      | 128 026                 | 3 652 417                                                     | 34    |
| 35    | 79 293                              | 2 923 167                          |                                      | 128 026                 | 3 524 390                                                     | 35    |
| 36    | 82 450                              | 2 843 874                          |                                      | 128 026                 | 3 396 364                                                     | 36    |
| 37    | 85 488                              | 2 761 424                          |                                      | 128 026                 | 3 268 338                                                     | 37    |
| 38    | 88 288                              | 2 675 936                          |                                      | 128 026                 | 3 140 312                                                     | 38    |
| 39    | 90 832                              | 2 587 648                          |                                      | 128 026                 | 3 012 286                                                     | 39    |
| 40    | 93 102                              | 2 496 816                          |                                      | 128 026                 | 2 884 260                                                     | 40    |
| 41    | 95 080                              | 2 403 714                          |                                      | 128 026                 | 2 756 234                                                     | 41    |
| 42    | 96 863                              | 2 308 634                          |                                      | 128 026                 | 2 628 208                                                     | 42    |
| 43    | 98 319                              | 2 211 771                          |                                      | 128 026                 | 2 500 182                                                     | 43    |
| 44    | 99 795                              | 2 113 452                          |                                      | 128 026                 | 2 372 156                                                     | 44    |
| 45    | 101 290                             | 2 013 657                          |                                      | 128 026                 | 2 244 130                                                     | 45    |
| 46    | 102 805                             | 1 912 367                          |                                      | 128 026                 | 2 116 104                                                     | 46    |
| 47    | 104 470                             | 1 809 562                          |                                      | 128 026                 | 1 988 078                                                     | 47    |
| 48    | 106 028                             | 1 705 092                          |                                      | 128 026                 | 1 860 052                                                     | 48    |
| 49    | 107 607                             | 1 599 064                          |                                      | 128 026                 | 1 732 026                                                     | 49    |
| 50    | 109 206                             | 1 491 457                          |                                      | 128 026                 | 1 604 000                                                     | 50    |
| 51    | 110 967                             | 1 382 252                          |                                      | 128 026                 | 1 475 974                                                     | 51    |
| 52    | 112 611                             | 1 271 285                          |                                      | 128 026                 | 1 347 948                                                     | 52    |
| 53    | 114 276                             | 1 158 674                          |                                      | 128 026                 | 1 219 921                                                     | 53    |
| 54    | 116 113                             | 1 044 398                          |                                      | 128 026                 | 1 091 895                                                     | 54    |
| 55    | 117 825                             | 928 285                            |                                      | 128 026                 | 963 869                                                       | 55    |
| 56    | 119 559                             | 810 460                            |                                      | 128 026                 | 835 843                                                       | 56    |
| 57    | 121 473                             | 690 902                            |                                      | 128 026                 | 707 817                                                       | 57    |
| 58    | 123 255                             | 569 428                            |                                      | 128 026                 | 579 791                                                       | 58    |
| 59    | 125 224                             | 446 173                            |                                      | 128 026                 | 451 765                                                       | 59    |
| 60    | 97 250                              | 320 949                            | 58 293                               | 128 026                 | 323 739                                                       | 60    |
| 61    | 64 439                              | 223 699                            | 7 807                                | 69 733                  | 224 859                                                       | 61    |
| 62    | 58 066                              | 159 260                            | 6 541                                | 61 926                  | 159 030                                                       | 62    |
| 63    | 52 736                              | 101 194                            | 5 436                                | 55 385                  | 100 374                                                       | 63    |
| 64    | 48 458                              | 48 458                             | 4 482                                | 49 949                  | 47 708                                                        | 64    |
| 65    |                                     |                                    | 45 467                               | 45 467                  |                                                               | 65    |

**PEN 4%** Functions for return of contributions, accumulated with interest at 2% p.a., on death

| Age x | ${}^{j}C_{x}^{d} =$                         | $^{j}M_{x}^{d} =$ | ${}^{j}\overline{R}_{x}^{d}=$                                         | $^{sj}\overline{R}_{x}^{d}=% \overline{R}_{x}^{d}$                                                | Age x |
|-------|---------------------------------------------|-------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|
|       | $v^{x+\frac{1}{2}}(1+j)^{x+\frac{1}{2}}d_x$ | $\sum^{j} C_x^d$  | $\Sigma \left( \frac{{}^{j}R_{x}^{d}}{(1+j)^{x+\frac{j}{2}}} \right)$ | $\sum s_{x} \left( \frac{{}^{j}M_{x}^{d} - {}^{1}\!/_{2} {}^{j}C_{x}^{d}}{(1+j)^{x+1/2}} \right)$ |       |
| 16    | 36                                          | 601               | 7 617                                                                 | 39 369                                                                                            | 16    |
| 17    | 32                                          | 565               | 7 196                                                                 | 38 791                                                                                            | 17    |
| 18    | 29                                          | 533               | 6 808                                                                 | 38 152                                                                                            | 18    |
| 19    | 25                                          | 504               | 6 449                                                                 | 37 459                                                                                            | 19    |
| 20    | 22                                          | 480               | 6 114                                                                 | 36 722                                                                                            | 20    |
| 21    | 16                                          | 457               | 5 802                                                                 | 35 946                                                                                            | 21    |
| 22    | 14                                          | 442               | 5 508                                                                 | 35 134                                                                                            | 22    |
| 23    | 12                                          | 428               | 5 230                                                                 | 34 286                                                                                            | 23    |
| 24    | 11                                          | 416               | 4 965                                                                 | 33 405                                                                                            | 24    |
| 25    | 10                                          | 406               | 4 712                                                                 | 32 494                                                                                            | 25    |
| 26    | 7                                           | 396               | 4 470                                                                 | 31 555                                                                                            | 26    |
| 27    | 6                                           | 389               | 4 238                                                                 | 30 590                                                                                            | 27    |
| 28    | 5                                           | 383               | 4 014                                                                 | 29 598                                                                                            | 28    |
| 29    | 5                                           | 378               | 3 797                                                                 | 28 577                                                                                            | 29    |
| 30    | 4                                           | 374               | 3 588                                                                 | 27 531                                                                                            | 30    |
| 31    | 5                                           | 369               | 3 385                                                                 | 26 460                                                                                            | 31    |
| 32    | 5                                           | 364               | 3 188                                                                 | 25 369                                                                                            | 32    |
| 33    | 4                                           | 359               | 2 998                                                                 | 24 262                                                                                            | 33    |
| 34    | 4                                           | 355               | 2 815                                                                 | 23 138                                                                                            | 34    |
| 35    | 5                                           | 351               | 2 636                                                                 | 22 000                                                                                            | 35    |
| 36    | 5                                           | 346               | 2 464                                                                 | 20 852                                                                                            | 36    |
| 37    | 6                                           | 341               | 2 297                                                                 | 19 698                                                                                            | 37    |
| 38    | 6                                           | 335               | 2 136                                                                 | 18 544                                                                                            | 38    |
| 39    | 6                                           | 329               | 1 981                                                                 | 17 396                                                                                            | 39    |
| 40    | 6                                           | 323               | 1 832                                                                 | 16 258                                                                                            | 40    |
| 41    | 6                                           | 317               | 1 689                                                                 | 15 136                                                                                            | 41    |
| 42    | 6                                           | 311               | 1 551                                                                 | 14 035                                                                                            | 42    |
| 43    | 7                                           | 305               | 1 418                                                                 | 12 956                                                                                            | 43    |
| 44    | 7                                           | 298               | 1 290                                                                 | 11 904                                                                                            | 44    |
| 45    | 7                                           | 291               | 1 168                                                                 | 10 882                                                                                            | 45    |
| 46    | 8                                           | 283               | 1 052                                                                 | 9 891                                                                                             | 46    |
| 47    | 9                                           | 276               | 940                                                                   | 8 930                                                                                             | 47    |
| 48    | 10                                          | 267               | 834                                                                   | 8 001                                                                                             | 48    |
| 49    | 11                                          | 257               | 734                                                                   | 7 109                                                                                             | 49    |
| 50    | 12                                          | 246               | 640                                                                   | 6 256                                                                                             | 50    |
| 51    | 13                                          | 234               | 551                                                                   | 5 446                                                                                             | 51    |
| 52    | 14                                          | 221               | 469                                                                   | 4 681                                                                                             | 52    |
| 53    | 15                                          | 207               | 394                                                                   | 3 965                                                                                             | 53    |
| 54    | 16                                          | 192               | 324                                                                   | 3 302                                                                                             | 54    |
| 55    | 17                                          | 176               | 262                                                                   | 2 693                                                                                             | 55    |
| 56    | 18                                          | 158               | 206                                                                   | 2 142                                                                                             | 56    |
| 57    | 19                                          | 140               | 157                                                                   | 1 653                                                                                             | 57    |
| 58    | 20                                          | 121               | 116                                                                   | 1 227                                                                                             | 58    |
| 59    | 21                                          | 101               | 81                                                                    | 867                                                                                               | 59    |
| 60    | 23                                          | 80                | 53                                                                    | 575                                                                                               | 60    |
| 61    | 15                                          | 57                | 32                                                                    | 355                                                                                               | 61    |
| 62    | 15                                          | 42                | 18                                                                    | 197                                                                                               | 62    |
| 63    | 14                                          | 27                | 8                                                                     | 86                                                                                                | 63    |
| 64    | 13                                          | 13                | 2                                                                     | 21                                                                                                | 64    |

PEN
Functions for return of contributions, accumulated with interest at 2% p.a., on withdrawal

| Age $x$ | ${}^{j}C_{x}^{w} =$                         | $^{j}M_{x}^{w}=$        | ${}^{j}\overline{R}_{x}^{w} =$                                                                | $^{sj}\overline{R}_{x}^{w}=$                                                                      | Age x |
|---------|---------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------|
|         | $v^{x+\frac{1}{2}}(1+j)^{x+\frac{1}{2}}w_x$ | $\sum_{i}^{j}C_{x}^{w}$ | $\Sigma \left( \frac{{}^{j}M_{x}^{w} - {}^{1}\!/_{2} {}^{j}C_{x}^{w}}{(1+j)^{x+1/2}} \right)$ | $\sum s_{x} \left( \frac{{}^{j}M_{x}^{w} - {}^{1}\!/_{2} {}^{j}C_{x}^{w}}{(1+j)^{x+1/2}} \right)$ |       |
| 16      | 7 259                                       | 55 286                  | 230 458                                                                                       | 622 984                                                                                           | 16    |
| 17      | 6 404                                       | 48 027                  | 193 200                                                                                       | 571 836                                                                                           | 17    |
| 18      | 5 649                                       | 41 624                  | 161 503                                                                                       | 519 609                                                                                           | 18    |
| 19      | 4 984                                       | 35 974                  | 134 605                                                                                       | 467 779                                                                                           | 19    |
| 20      | 4 396                                       | 30 991                  | 111 848                                                                                       | 417 622                                                                                           | 20    |
| 21      | 3 878                                       | 26 594                  | 92 662                                                                                        | 369 943                                                                                           | 21    |
| 22      | 3 421                                       | 22 716                  | 76 556                                                                                        | 325 433                                                                                           | 22    |
| 23      | 3 018                                       | 19 294                  | 63 103                                                                                        | 284 465                                                                                           | 23    |
| 24      | 2 529                                       | 16 277                  | 51 935                                                                                        | 247 347                                                                                           | 24    |
| 25      | 2 125                                       | 13 747                  | 42 694                                                                                        | 214 031                                                                                           | 25    |
| 26      | 1 790                                       | 11 622                  | 35 038                                                                                        | 184 310                                                                                           | 26    |
| 27      | 1 511                                       | 9 832                   | 28 691                                                                                        | 157 939                                                                                           | 27    |
| 28      | 1 277                                       | 8 322                   | 23 425                                                                                        | 134 617                                                                                           | 28    |
| 29      | 1 080                                       | 7 045                   | 19 056                                                                                        | 114 025                                                                                           | 29    |
| 30      | 929                                         | 5 964                   | 15 429                                                                                        | 95 926                                                                                            | 30    |
| 31      | 798                                         | 5 036                   | 12 423                                                                                        | 80 058                                                                                            | 31    |
| 32      | 686                                         | 4 237                   | 9 938                                                                                         | 66 267                                                                                            | 32    |
| 33      | 590                                         | 3 551                   | 7 892                                                                                         | 54 334                                                                                            | 33    |
| 34      | 506                                         | 2 961                   | 6 215                                                                                         | 44 080                                                                                            | 34    |
| 35      | 433                                         | 2 454                   | 4 848                                                                                         | 35 344                                                                                            | 35    |
| 36      | 370                                         | 2 021                   | 3 740                                                                                         | 27 971                                                                                            | 36    |
| 37      | 314                                         | 1 652                   | 2 849                                                                                         | 21 802                                                                                            | 37    |
| 38      | 264                                         | 1 338                   | 2 137                                                                                         | 16 699                                                                                            | 38    |
| 39      | 220                                         | 1 074                   | 1 575                                                                                         | 12 531                                                                                            | 39    |
| 40      | 188                                         | 853                     | 1 134                                                                                         | 9 171                                                                                             | 40    |
| 41      | 159                                         | 665                     | 794                                                                                           | 6 510                                                                                             | 41    |
| 42      | 133                                         | 506                     | 536                                                                                           | 4 454                                                                                             | 42    |
| 43      | 109                                         | 374                     | 346                                                                                           | 2 913                                                                                             | 43    |
| 44      | 87                                          | 264                     | 212                                                                                           | 1 800                                                                                             | 44    |
| 45      | 67                                          | 177                     | 120                                                                                           | 1 034                                                                                             | 45    |
| 46      | 49                                          | 110                     | 62                                                                                            | 538                                                                                               | 46    |
| 47      | 31                                          | 62                      | 27                                                                                            | 242                                                                                               | 47    |
| 48      | 20                                          | 30                      | 10                                                                                            | 85                                                                                                | 48    |
| 49      | 10                                          | 10                      | 2                                                                                             | 17                                                                                                | 49    |

### SAMPLE TIME SERIES

| Contents         | Page |
|------------------|------|
| RPI              | 152  |
| NAEI             | 153  |
| FTSE 100         | 154  |
| Death Counts     | 155  |
| Bank Base Rates  | 156  |
| National Lottery | 157  |

This section shows the data values and related summary statistics for various observed time series. These could be used in discussions of time series modelling focusing on the following concepts:

- stationarity
- differencing
- seasonality
- autocorrelation
- choice of model
- ARIMA models
- parameter estimation
- residual analysis
- forecasting

The left-hand side of each table shows an extract of the data values for the time series.

The right-hand side of each table shows summary statistics based on the full range of values for the series over the stated period.

Time Series

### Time Series – RPI

This dataset shows the monthly Retail Prices Index for the 10-year period from January 1992 to December 2001. These figures represent the prices of a representative "basket" of goods purchased in the UK.

|        |     | Data va | lues         |                |          | Summary statistics |             |                |  |  |
|--------|-----|---------|--------------|----------------|----------|--------------------|-------------|----------------|--|--|
| Month  | t   | $Q_t$   | $\nabla Q_t$ | $\nabla^2 Q_t$ |          | $Q_t$              | $ abla Q_t$ | $\nabla^2 Q_t$ |  |  |
| Jan-92 | 0   | 135.6   |              |                | n        | 120                | 119         | 118            |  |  |
| Feb-92 | 1   | 136.3   | 0.7          |                | mean     | 155.4              | 0.3         | 0.0            |  |  |
| Mar-92 | 2   | 136.7   | 0.4          | -0.3           | s.d.     | 11.9               | 0.6         | 0.8            |  |  |
| Apr-92 | 3   | 138.8   | 2.1          | 1.7            | min      | 135.6              | -1.3        | -1.6           |  |  |
| May-92 | 4   | 139.3   | 0.5          | -1.6           | max      | 174.6              | 2.1         | 2.2            |  |  |
| Jun-92 | 5   | 139.3   | 0.0          | -0.5           |          |                    |             |                |  |  |
| Jul-92 | 6   | 138.8   | -0.5         | -0.5           | $r_1$    | 0.977              | 0.083       | -0.404         |  |  |
| Aug-92 | 7   | 138.9   | 0.1          | 0.6            | $r_2$    | 0.954              | -0.101      | -0.006         |  |  |
| Sep-92 | 8   | 139.4   | 0.5          | 0.4            | $r_3$    | 0.930              | -0.285      | -0.218         |  |  |
| Oct-92 | 9   | 139.9   | 0.5          | 0.0            | $r_4$    | 0.908              | -0.047      | 0.114          |  |  |
|        |     |         |              |                | $r_5$    | 0.887              | -0.012      | -0.128         |  |  |
| Mar-01 | 110 | 172.2   | 0.2          | -0.7           | $r_6$    | 0.866              | 0.240       | 0.315          |  |  |
| Apr-01 | 111 | 173.1   | 0.9          | 0.7            | $r_{12}$ | 0.729              | 0.637       | 0.671          |  |  |
| May-01 | 112 | 174.2   | 1.1          | 0.2            |          |                    |             |                |  |  |
| Jun-01 | 113 | 174.4   | 0.2          | -0.9           | $\phi_1$ | 0.977              | 0.083       | -0.404         |  |  |
| Jul-01 | 114 | 173.3   | -1.1         | -1.3           | $\phi_2$ | -0.019             | -0.109      | -0.201         |  |  |
| Aug-01 | 115 | 174.0   | 0.7          | 1.8            | $\phi_3$ | -0.028             | -0.272      | -0.376         |  |  |
| Sep-01 | 116 | 174.6   | 0.6          | -0.1           | $\phi_4$ | 0.037              | -0.017      | -0.235         |  |  |
| Oct-01 | 117 | 174.3   | -0.3         | -0.9           | $\phi_5$ | 0.003              | -0.066      | -0.391         |  |  |
| Nov-01 | 118 | 173.6   | -0.7         | -0.4           | $\phi_6$ | -0.011             | 0.179       | -0.028         |  |  |
| Dec-01 | 119 | 173.4   | -0.2         | 0.5            |          |                    |             |                |  |  |



**Time Series – NAEI** 

This dataset shows the monthly UK National Average Earnings Index for the 10-year period from January 1992 to December 2001. These figures are NOT seasonally adjusted.

|        |     | Data  | values       |                |          | Summa  | ry statistics |                |
|--------|-----|-------|--------------|----------------|----------|--------|---------------|----------------|
| Month  | t   | $E_t$ | $\nabla E_t$ | $\nabla^2 E_t$ |          | $E_t$  | $\nabla E_t$  | $\nabla^2 E_t$ |
| Jan-92 | 0   | 88.5  |              |                | n        | 120    | 119           | 118            |
| Feb-92 | 1   | 89.8  | 1.3          |                | mean     | 108.0  | 0.4           | 0.0            |
| Mar-92 | 2   | 91.1  | 1.3          | 0.0            | s.d.     | 12.9   | 2.2           | 3.4            |
| Apr-92 | 3   | 89.5  | -1.6         | -2.9           | min      | 88.5   | -6.8          | -10.8          |
| May-92 | 4   | 90.1  | 0.6          | 2.2            | max      | 134.8  | 7.3           | 7.8            |
| Jun-92 | 5   | 91.1  | 1.0          | 0.4            |          |        |               |                |
| Jul-92 | 6   | 91.6  | 0.5          | -0.5           | $r_1$    | 0.959  | -0.245        | -0.511         |
| Aug-92 | 7   | 90.9  | -0.7         | -1.2           | $r_2$    | 0.932  | -0.197        | -0.163         |
| Sep-92 | 8   | 90.7  | -0.2         | 0.5            | $r_3$    | 0.912  | 0.252         | 0.358          |
| Oct-92 | 9   | 91.5  | 0.8          | 1.0            | $r_4$    | 0.883  | -0.170        | -0.212         |
|        |     |       |              |                | $r_5$    | 0.859  | -0.065        | 0.056          |
| Mar-01 | 110 | 134.8 | 0.9          | -4.3           | $r_6$    | 0.835  | -0.103        | -0.042         |
| Apr-01 | 111 | 128.4 | -6.4         | -7.3           | $r_{12}$ | 0.706  | 0.823         | 0.801          |
| May-01 | 112 | 127.7 | -0.7         | 5.7            |          |        |               |                |
| Jun-01 | 113 | 129.3 | 1.6          | 2.3            | $\phi_1$ | 0.959  | -0.245        | -0.511         |
| Jul-01 | 114 | 128.9 | -0.4         | -2.0           | $\phi_2$ | 0.160  | -0.274        | -0.573         |
| Aug-01 | 115 | 127.8 | -1.1         | -0.7           | $\phi_3$ | 0.103  | 0.141         | -0.131         |
| Sep-01 | 116 | 127.6 | -0.2         | 0.9            | $\phi_4$ | -0.084 | -0.131        | -0.153         |
| Oct-01 | 117 | 128.1 | 0.5          | 0.7            | $\phi_5$ | 0.015  | -0.065        | 0.050          |
| Nov-01 | 118 | 128.6 | 0.5          | 0.0            | $\phi_6$ | -0.008 | -0.276        | -0.140         |
| Dec-01 | 119 | 134.1 | 5.5          | 5.0            |          |        |               |                |



### Time Series – FTSE 100

This dataset shows the monthly FTSE 100 index for the 10-year period from January 1992 to December 2001. The index is based on the average closing prices of the top 100 UK shares on the last day of each month.

|        |     | Data    | values       |                |          | Summai  | ry statistics |                |
|--------|-----|---------|--------------|----------------|----------|---------|---------------|----------------|
| Month  | t   | $S_t$   | $\nabla S_t$ | $\nabla^2 S_t$ |          | $S_t$   | $\nabla S_t$  | $\nabla^2 S_t$ |
| Jan-92 | 0   | 2 571.2 |              |                | n        | 120     | 119           | 118            |
| Feb-92 | 1   | 2 562.1 | -9.1         |                | mean     | 4 447.4 | 22.2          | 0.2            |
| Mar-92 | 2   | 2 440.1 | -122.0       | -112.9         | s.d.     | 1 394.3 | 192.3         | 277.4          |
| Apr-92 | 3   | 2 654.1 | 214.0        | 336.0          | min      | 2 312.6 | -661.7        | -994.7         |
| May-92 | 4   | 2 707.6 | 53.5         | -160.5         | max      | 6 930.2 | 426.7         | 625.8          |
| Jun-92 | 5   | 2 521.2 | -186.4       | -239.9         |          |         |               |                |
| Jul-92 | 6   | 2 399.6 | -121.6       | 64.8           | $r_1$    | 0.982   | -0.031        | -0.474         |
| Aug-92 | 7   | 2312.6  | -87.0        | 34.6           | $r_2$    | 0.963   | -0.085        | -0.043         |
| Sep-92 | 8   | 2 553.0 | 240.4        | 327.4          | $r_3$    | 0.946   | -0.049        | -0.052         |
| Oct-92 | 9   | 2 658.3 | 105.3        | -135.1         | $r_4$    | 0.932   | 0.094         | 0.127          |
|        |     |         |              |                | $r_5$    | 0.914   | -0.028        | -0.030         |
| Mar-01 | 110 | 5 633.7 | -284.2       | 95.4           | $r_6$    | 0.895   | -0.087        | -0.020         |
| Apr-01 | 111 | 5 966.9 | 333.2        | 617.4          | $r_{12}$ | 0.768   | 0.026         | -0.010         |
| May-01 | 112 | 5 796.1 | -170.8       | -504.0         |          |         |               |                |
| Jun-01 | 113 | 5 642.5 | -153.6       | 17.2           | $\phi_1$ | 0.982   | -0.031        | -0.474         |
| Jul-01 | 114 | 5 529.1 | -113.4       | 40.2           | $\phi_2$ | -0.001  | -0.087        | -0.345         |
| Aug-01 | 115 | 5 345.0 | -184.1       | -70.7          | $\phi_3$ | 0.016   | -0.055        | -0.356         |
| Sep-01 | 116 | 4 903.4 | -441.6       | -257.5         | $\phi_4$ | 0.070   | 0.084         | -0.178         |
| Oct-01 | 117 | 5 039.7 | 136.3        | 577.9          | $\phi_5$ | -0.090  | -0.031        | -0.113         |
| Nov-01 | 118 | 5 203.6 | 163.9        | 27.6           | $\phi_6$ | -0.059  | -0.078        | -0.083         |
| Dec-01 | 119 | 5 217.4 | 13.8         | -150.1         |          |         |               |                |



### FTSE

Copyright © FTSE International Limited 2002. All rights reserved. "FTSETM" and "Footsie®" are trade marks of the London Stock Exchange Plc and The Financial Times Limited and are used by FTSE International Limited under licence.

### **Time Series – Death Counts**

This dataset shows the annual number of deaths recorded in England & Wales for the 39-year period from 1961 to 1999.

|      |    | Da         | ta values        |                     |          | Summary statistics |                 |                     |  |  |
|------|----|------------|------------------|---------------------|----------|--------------------|-----------------|---------------------|--|--|
| Year | t  | $\Theta_t$ | $ abla \Theta_t$ | $\nabla^2 \Theta_t$ |          | $\Theta_t$         | $ abla\Theta_t$ | $\nabla^2 \Theta_t$ |  |  |
| 1961 | 0  | 551 752    |                  |                     | n        | 39                 | 38              | 37                  |  |  |
| 1962 | 1  | 557 636    | 5 884            |                     | mean     | 570 980            | 115             | -129                |  |  |
| 1963 | 2  | 572 868    | 15 232           | 9 348               | s.d.     | 14 695             | 15 067          | 26 798              |  |  |
| 1964 | 3  | 534 737    | -38 131          | -53 363             | min      | 534 737            | -38 131         | -53 363             |  |  |
| 1965 | 4  | 549 379    | 14 642           | 52 773              | max      | 598 516            | 34 238          | 55 346              |  |  |
| 1966 | 5  | 563 624    | 14 245           | -397                |          |                    |                 |                     |  |  |
| 1967 | 6  | 542 516    | $-21\ 108$       | -35 353             | $r_1$    | 0.452              | -0.541          | -0.668              |  |  |
| 1968 | 7  | 576 754    | 34 238           | 55 346              | $r_2$    | 0.470              | -0.033          | 0.100               |  |  |
| 1969 | 8  | 579 378    | 2 624            | -31 614             | $r_3$    | 0.558              | 0.204           | 0.113               |  |  |
| 1970 | 9  | 575 194    | -4 184           | -6808               | $r_4$    | 0.356              | 0.059           | 0.061               |  |  |
|      |    |            |                  |                     | $r_5$    | 0.145              | -0.278          | -0.249              |  |  |
| 1990 | 29 | 564 846    | $-12\ 026$       | -17490              | $r_6$    | 0.222              | 0.181           | 0.143               |  |  |
| 1991 | 30 | 570 044    | 5 198            | 17 224              |          |                    |                 |                     |  |  |
| 1992 | 31 | 558 313    | -11731           | -16929              | $\phi_1$ | 0.452              | -0.541          | -0.668              |  |  |
| 1993 | 32 | 578 799    | 20 486           | 32 217              | $\phi_2$ | 0.334              | -0.460          | -0.624              |  |  |
| 1994 | 33 | 553 194    | -25 605          | -46 091             | $\phi_3$ | 0.375              | -0.127          | -0.578              |  |  |
| 1995 | 34 | 569 683    | 16 489           | 42 094              | $\phi_4$ | -0.026             | 0.264           | -0.163              |  |  |
| 1996 | 35 | 560 135    | -9 548           | -26037              | $\phi_5$ | -0.353             | 0.000           | -0.082              |  |  |
| 1997 | 36 | 555 281    | -4 854           | 4 694               | $\phi_6$ | -0.089             | -0.064          | -0.327              |  |  |
| 1998 | 37 | 555 015    | -266             | 4 588               |          |                    |                 |                     |  |  |
| 1999 | 38 | 556 118    | 1 103            | 1 369               |          |                    |                 |                     |  |  |



### **Time Series – Bank Base Rates**

This dataset shows the daily Bank Base Rate for the 10-year period from 1 January 1992 to 31 December 2001. These figures act as a benchmark for interest rates in the UK.

|           |       | Data val | ues          |                | Summary statistics |        |              |                |  |
|-----------|-------|----------|--------------|----------------|--------------------|--------|--------------|----------------|--|
| Date      | t     | $K_t$    | $\nabla K_t$ | $\nabla^2 K_t$ |                    | $K_t$  | $\nabla K_t$ | $\nabla^2 K_t$ |  |
| 01-Jan-92 | 0     | 10.50    |              |                | n                  | 3 653  | 3 652        | 3 651          |  |
| 02-Jan-92 | 1     | 10.50    | 0.00         |                | mean               | 6.39   | 0.00         | 0.00           |  |
| 03-Jan-92 | 2     | 10.50    | 0.00         | 0.00           | s.d.               | 1.33   | 0.07         | 0.09           |  |
| 04-Jan-92 | 3     | 10.50    | 0.00         | 0.00           | min                | 4.00   | -2.00        | -2.00          |  |
| 05-Jan-92 | 4     | 10.50    | 0.00         | 0.00           | max                | 12.00  | 2.00         | 2.00           |  |
| 06-Jan-92 | 5     | 10.50    | 0.00         | 0.00           |                    |        |              |                |  |
| 07-Jan-92 | 6     | 10.50    | 0.00         | 0.00           | $r_1$              | 0.997  | -0.001       | -0.374         |  |
| 08-Jan-92 | 7     | 10.50    | 0.00         | 0.00           | $r_2$              | 0.994  | -0.253       | -0.252         |  |
| 09-Jan-92 | 8     | 10.50    | 0.00         | 0.00           | $r_3$              | 0.992  | -0.001       | 0.063          |  |
| 10-Jan-92 | 9     | 10.50    | 0.00         | 0.00           | $r_4$              | 0.989  | 0.125        | 0.126          |  |
|           |       |          |              |                | $r_5$              | 0.987  | -0.001       | 0.000          |  |
| 22-Dec-01 | 3 643 | 4.00     | 0.00         | 0.00           | $r_6$              | 0.984  | -0.127       | -0.126         |  |
| 23-Dec-01 | 3 644 | 4.00     | 0.00         | 0.00           | r <sub>365</sub>   | -0.064 | -0.004       | 0.006          |  |
| 24-Dec-01 | 3 645 | 4.00     | 0.00         | 0.00           |                    |        |              |                |  |
| 25-Dec-01 | 3 646 | 4.00     | 0.00         | 0.00           | $\phi_1$           | 0.997  | -0.001       | -0.374         |  |
| 26-Dec-01 | 3 647 | 4.00     | 0.00         | 0.00           | $\phi_2$           | -0.002 | -0.253       | -0.456         |  |
| 27-Dec-01 | 3 648 | 4.00     | 0.00         | 0.00           | $\phi_3$           | 0.103  | -0.001       | -0.359         |  |
| 28-Dec-01 | 3 649 | 4.00     | 0.00         | 0.00           | $\phi_4$           | -0.001 | 0.066        | -0.215         |  |
| 29-Dec-01 | 3 650 | 4.00     | 0.00         | 0.00           | $\phi_5$           | -0.043 | -0.001       | -0.107         |  |
| 30-Dec-01 | 3 651 | 4.00     | 0.00         | 0.00           | $\phi_6$           | -0.001 | -0.086       | -0.174         |  |
| 31-Dec-01 | 3 652 | 4.00     | 0.00         | 0.00           |                    |        |              |                |  |



### Time Series – National Lottery

This dataset shows the bonus ball number drawn in the UK National Lottery\* (Saturdays only) up to 29 December 2001.

|           |     | Data    | a values     |                |          | Summa  | Summary statistics |                |  |
|-----------|-----|---------|--------------|----------------|----------|--------|--------------------|----------------|--|
| Date      | t   | $L_{t}$ | $\nabla L_t$ | $\nabla^2 L_t$ |          | $L_t$  | $\nabla L_t$       | $\nabla^2 L_t$ |  |
| 19-Nov-94 | 0   | 10      |              |                | n        | 370    | 369                | 368            |  |
| 26-Nov-94 | 1   | 37      | 27.0         |                | mean     | 25.87  | 0.08               | 0.02           |  |
| 03-Dec-94 | 2   | 31      | -6.0         | -33.0          | s.d.     | 14.40  | 19.32              | 33.10          |  |
| 10-Dec-94 | 3   | 28      | -3.0         | 3.0            | min      | 1.00   | -46.00             | -90.00         |  |
| 17-Dec-94 | 4   | 30      | 2.0          | 5.0            | max      | 49.00  | 46.00              | 87.00          |  |
| 24-Dec-94 | 5   | 6       | -24.0        | -26.0          |          |        |                    |                |  |
| 31-Dec-94 | 6   | 16      | 10.0         | 34.0           | $r_1$    | 0.100  | -0.471             | -0.648         |  |
| 07-Jan-95 | 7   | 46      | 30.0         | 20.0           | $r_2$    | 0.056  | -0.027             | 0.139          |  |
| 14-Jan-95 | 8   | 48      | 2.0          | -28.0          | $r_3$    | 0.059  | 0.005              | 0.003          |  |
| 21-Jan-95 | 9   | 4       | -44.0        | -46.0          | $r_4$    | 0.054  | 0.030              | 0.036          |  |
|           |     |         |              |                | $r_5$    | -0.005 | -0.042             | -0.031         |  |
| 27-Oct-01 | 360 | 33      | 19.0         | 11.0           | $r_6$    | 0.003  | -0.038             | -0.049         |  |
| 03-Nov-01 | 361 | 17      | -16.0        | -35.0          | $r_{52}$ | 0.010  | 0.048              | 0.052          |  |
| 10-Nov-01 | 362 | 39      | 22.0         | 38.0           |          |        |                    |                |  |
| 17-Nov-01 | 363 | 1       | -38.0        | -60.0          | $\phi_1$ | 0.100  | -0.471             | -0.648         |  |
| 24-Nov-01 | 364 | 28      | 27.0         | 65.0           | $\phi_2$ | 0.047  | -0.320             | -0.484         |  |
| 01-Dec-01 | 365 | 11      | -17.0        | -44.0          | $\phi_3$ | 0.049  | -0.233             | -0.400         |  |
| 08-Dec-01 | 366 | 9       | -2.0         | 15.0           | $\phi_4$ | 0.041  | -0.135             | -0.266         |  |
| 15-Dec-01 | 367 | 16      | 7.0          | 9.0            | $\phi_5$ | -0.019 | -0.139             | -0.165         |  |
| 22-Dec-01 | 368 | 8       | -8.0         | -15.0          | $\phi_6$ | -0.002 | -0.192             | -0.251         |  |
| 29-Dec-01 | 369 | 41      | 33.0         | 41.0           |          |        |                    |                |  |



<sup>\*</sup> *Note.* The UK National Lottery draws seven balls (without replacement) from 49 balls numbered from 1 to 49. The bonus ball is the seventh ball drawn.

### STATISTICAL TABLES

| Contents                                            | Page |
|-----------------------------------------------------|------|
| Standard Normal probabilities                       | 160  |
| Standard Normal percentage points                   | 162  |
| t percentage points                                 | 163  |
| $\chi^2$ probabilities                              | 164  |
| $\chi^2$ percentage points                          | 168  |
| F percentage points                                 | 170  |
| Poisson probabilities                               | 175  |
| Binomial probabilities                              | 186  |
| Critical values for the grouping of signs test      | 189  |
| Pseudorandom values from $U(0.1)$ and from $N(0.1)$ | 190  |

### **Probabilities for the Standard Normal distribution**

The distribution function is denoted by  $\Phi(x)$ , and the probability density function is denoted by  $\phi(x)$ .

$$\Phi(x) = \int_{-\infty}^{x} \phi(t)dt = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-1/2t^2} dt$$

| x    | $\Phi(x)$ |
|------|-----------|------|-----------|------|-----------|------|-----------|------|-----------|
| 0.00 | 0.50000   | 0.40 | 0.65542   | 0.80 | 0.78814   | 1.20 | 0.88493   | 1.60 | 0.94520   |
| 0.01 | 0.50399   | 0.41 | 0.65910   | 0.81 | 0.79103   | 1.21 | 0.88686   | 1.61 | 0.94630   |
| 0.02 | 0.50798   | 0.42 | 0.66276   | 0.82 | 0.79389   | 1.22 | 0.88877   | 1.62 | 0.94738   |
| 0.03 | 0.51197   | 0.43 | 0.66640   | 0.83 | 0.79673   | 1.23 | 0.89065   | 1.63 | 0.94845   |
| 0.04 | 0.51595   | 0.44 | 0.67003   | 0.84 | 0.79955   | 1.24 | 0.89251   | 1.64 | 0.94950   |
| 0.05 | 0.51994   | 0.45 | 0.67364   | 0.85 | 0.80234   | 1.25 | 0.89435   | 1.65 | 0.95053   |
| 0.06 | 0.52392   | 0.46 | 0.67724   | 0.86 | 0.80511   | 1.26 | 0.89617   | 1.66 | 0.95154   |
| 0.07 | 0.52790   | 0.47 | 0.68082   | 0.87 | 0.80785   | 1.27 | 0.89796   | 1.67 | 0.95254   |
| 0.08 | 0.53188   | 0.48 | 0.68439   | 0.88 | 0.81057   | 1.28 | 0.89973   | 1.68 | 0.95352   |
| 0.09 | 0.53586   | 0.49 | 0.68793   | 0.89 | 0.81327   | 1.29 | 0.90147   | 1.69 | 0.95449   |
| 0.10 | 0.53983   | 0.50 | 0.69146   | 0.90 | 0.81594   | 1.30 | 0.90320   | 1.70 | 0.95543   |
| 0.11 | 0.54380   | 0.51 | 0.69497   | 0.91 | 0.81859   | 1.31 | 0.90490   | 1.71 | 0.95637   |
| 0.12 | 0.54776   | 0.52 | 0.69847   | 0.92 | 0.82121   | 1.32 | 0.90658   | 1.72 | 0.95728   |
| 0.13 | 0.55172   | 0.53 | 0.70194   | 0.93 | 0.82381   | 1.33 | 0.90824   | 1.73 | 0.95818   |
| 0.14 | 0.55567   | 0.54 | 0.70540   | 0.94 | 0.82639   | 1.34 | 0.90988   | 1.74 | 0.95907   |
| 0.15 | 0.55962   | 0.55 | 0.70884   | 0.95 | 0.82894   | 1.35 | 0.91149   | 1.75 | 0.95994   |
| 0.16 | 0.56356   | 0.56 | 0.71226   | 0.96 | 0.83147   | 1.36 | 0.91309   | 1.76 | 0.96080   |
| 0.17 | 0.56749   | 0.57 | 0.71566   | 0.97 | 0.83398   | 1.37 | 0.91466   | 1.77 | 0.96164   |
| 0.18 | 0.57142   | 0.58 | 0.71904   | 0.98 | 0.83646   | 1.38 | 0.91621   | 1.78 | 0.96246   |
| 0.19 | 0.57535   | 0.59 | 0.72240   | 0.99 | 0.83891   | 1.39 | 0.91774   | 1.79 | 0.96327   |
| 0.20 | 0.57926   | 0.60 | 0.72575   | 1.00 | 0.84134   | 1.40 | 0.91924   | 1.80 | 0.96407   |
| 0.21 | 0.58317   | 0.61 | 0.72907   | 1.01 | 0.84375   | 1.41 | 0.92073   | 1.81 | 0.96485   |
| 0.22 | 0.58706   | 0.62 | 0.73237   | 1.02 | 0.84614   | 1.42 | 0.92220   | 1.82 | 0.96562   |
| 0.23 | 0.59095   | 0.63 | 0.73565   | 1.03 | 0.84849   | 1.43 | 0.92364   | 1.83 | 0.96638   |
| 0.24 | 0.59483   | 0.64 | 0.73891   | 1.04 | 0.85083   | 1.44 | 0.92507   | 1.84 | 0.96712   |
| 0.25 | 0.59871   | 0.65 | 0.74215   | 1.05 | 0.85314   | 1.45 | 0.92647   | 1.85 | 0.96784   |
| 0.26 | 0.60257   | 0.66 | 0.74537   | 1.06 | 0.85543   | 1.46 | 0.92785   | 1.86 | 0.96856   |
| 0.27 | 0.60642   | 0.67 | 0.74857   | 1.07 | 0.85769   | 1.47 | 0.92922   | 1.87 | 0.96926   |
| 0.28 | 0.61026   | 0.68 | 0.75175   | 1.08 | 0.85993   | 1.48 | 0.93056   | 1.88 | 0.96995   |
| 0.29 | 0.61409   | 0.69 | 0.75490   | 1.09 | 0.86214   | 1.49 | 0.93189   | 1.89 | 0.97062   |
| 0.30 | 0.61791   | 0.70 | 0.75804   | 1.10 | 0.86433   | 1.50 | 0.93319   | 1.90 | 0.97128   |
| 0.31 | 0.62172   | 0.71 | 0.76115   | 1.11 | 0.86650   | 1.51 | 0.93448   | 1.91 | 0.97193   |
| 0.32 | 0.62552   | 0.72 | 0.76424   | 1.12 | 0.86864   | 1.52 | 0.93574   | 1.92 | 0.97257   |
| 0.33 | 0.62930   | 0.73 | 0.76730   | 1.13 | 0.87076   | 1.53 | 0.93699   | 1.93 | 0.97320   |
| 0.34 | 0.63307   | 0.74 | 0.77035   | 1.14 | 0.87286   | 1.54 | 0.93822   | 1.94 | 0.97381   |
| 0.35 | 0.63683   | 0.75 | 0.77337   | 1.15 | 0.87493   | 1.55 | 0.93943   | 1.95 | 0.97441   |
| 0.36 | 0.64058   | 0.76 | 0.77637   | 1.16 | 0.87698   | 1.56 | 0.94062   | 1.96 | 0.97500   |
| 0.37 | 0.64431   | 0.77 | 0.77935   | 1.17 | 0.87900   | 1.57 | 0.94179   | 1.97 | 0.97558   |
| 0.38 | 0.64803   | 0.78 | 0.78230   | 1.18 | 0.88100   | 1.58 | 0.94295   | 1.98 | 0.97615   |
| 0.39 | 0.65173   | 0.79 | 0.78524   | 1.19 | 0.88298   | 1.59 | 0.94408   | 1.99 | 0.97670   |

**0.40** 0.65542 **0.80** 0.78814 **1.20** 0.88493 **1.60** 0.94520 **2.00** 0.97725

### **Probabilities for the Standard Normal distribution**

| x                                    | $\Phi(x)$                                           |
|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|--------------------------------------|-----------------------------------------------------|
| 2.00<br>2.01<br>2.02<br>2.03<br>2.04 | 0.97725<br>0.97778<br>0.97831<br>0.97882<br>0.97932 | 2.40<br>2.41<br>2.42<br>2.43<br>2.44 | 0.99180<br>0.99202<br>0.99224<br>0.99245<br>0.99266 | 2.80<br>2.81<br>2.82<br>2.83<br>2.84 | 0.99744<br>0.99752<br>0.99760<br>0.99767<br>0.99774 | 3.20<br>3.21<br>3.22<br>3.23<br>3.24 | 0.99931<br>0.99934<br>0.99936<br>0.99938<br>0.99940 | 3.60<br>3.61<br>3.62<br>3.63<br>3.64 | 0.99984<br>0.99985<br>0.99985<br>0.99986<br>0.99986 | 4.00<br>4.01<br>4.02<br>4.03<br>4.04 | 0.99997<br>0.99997<br>0.99997<br>0.99997<br>0.99997 |
| 2.05<br>2.06<br>2.07<br>2.08<br>2.09 | 0.97982<br>0.98030<br>0.98077<br>0.98124<br>0.98169 | 2.45<br>2.46<br>2.47<br>2.48<br>2.49 | 0.99286<br>0.99305<br>0.99324<br>0.99343<br>0.99361 | 2.85<br>2.86<br>2.87<br>2.88<br>2.89 | 0.99781<br>0.99788<br>0.99795<br>0.99801<br>0.99807 | 3.25<br>3.26<br>3.27<br>3.28<br>3.29 | 0.99942<br>0.99944<br>0.99946<br>0.99948<br>0.99950 | 3.65<br>3.66<br>3.67<br>3.68<br>3.69 | 0.99987<br>0.99987<br>0.99988<br>0.99988<br>0.99989 | 4.05<br>4.06<br>4.07<br>4.08<br>4.09 | 0.99997<br>0.99998<br>0.99998<br>0.99998<br>0.99998 |
| 2.10<br>2.11<br>2.12<br>2.13<br>2.14 | 0.98214<br>0.98257<br>0.98300<br>0.98341<br>0.98382 | 2.50<br>2.51<br>2.52<br>2.53<br>2.54 | 0.99379<br>0.99396<br>0.99413<br>0.99430<br>0.99446 | 2.90<br>2.91<br>2.92<br>2.93<br>2.94 | 0.99813<br>0.99819<br>0.99825<br>0.99831<br>0.99836 | 3.30<br>3.31<br>3.32<br>3.33<br>3.34 | 0.99952<br>0.99953<br>0.99955<br>0.99957<br>0.99958 | 3.70<br>3.71<br>3.72<br>3.73<br>3.74 | 0.99989<br>0.99990<br>0.99990<br>0.99990<br>0.99991 | 4.10<br>4.11<br>4.12<br>4.13<br>4.14 | 0.99998<br>0.99998<br>0.99998<br>0.99998<br>0.99998 |
| 2.15<br>2.16<br>2.17<br>2.18<br>2.19 | 0.98422<br>0.98461<br>0.98500<br>0.98537<br>0.98574 | 2.55<br>2.56<br>2.57<br>2.58<br>2.59 | 0.99461<br>0.99477<br>0.99492<br>0.99506<br>0.99520 | 2.95<br>2.96<br>2.97<br>2.98<br>2.99 | 0.99841<br>0.99846<br>0.99851<br>0.99856<br>0.99861 | 3.35<br>3.36<br>3.37<br>3.38<br>3.39 | 0.99960<br>0.99961<br>0.99962<br>0.99964<br>0.99965 | 3.75<br>3.76<br>3.77<br>3.78<br>3.79 | 0.99991<br>0.99992<br>0.99992<br>0.99992<br>0.99992 | 4.15<br>4.16<br>4.17<br>4.18<br>4.19 | 0.99998<br>0.99998<br>0.99998<br>0.99999<br>0.99999 |
| 2.20<br>2.21<br>2.22<br>2.23<br>2.24 | 0.98610<br>0.98645<br>0.98679<br>0.98713<br>0.98745 | 2.60<br>2.61<br>2.62<br>2.63<br>2.64 | 0.99534<br>0.99547<br>0.99560<br>0.99573<br>0.99585 | 3.00<br>3.01<br>3.02<br>3.03<br>3.04 | 0.99865<br>0.99869<br>0.99874<br>0.99878<br>0.99882 | 3.40<br>3.41<br>3.42<br>3.43<br>3.44 | 0.99966<br>0.99968<br>0.99969<br>0.99970<br>0.99971 | 3.80<br>3.81<br>3.82<br>3.83<br>3.84 | 0.99993<br>0.99993<br>0.99993<br>0.99994<br>0.99994 | 4.20<br>4.21<br>4.22<br>4.23<br>4.24 | 0.99999<br>0.99999<br>0.99999<br>0.99999            |
| 2.25<br>2.26<br>2.27<br>2.28<br>2.29 | 0.98778<br>0.98809<br>0.98840<br>0.98870<br>0.98899 | 2.65<br>2.66<br>2.67<br>2.68<br>2.69 | 0.99598<br>0.99609<br>0.99621<br>0.99632<br>0.99643 | 3.05<br>3.06<br>3.07<br>3.08<br>3.09 | 0.99886<br>0.99889<br>0.99893<br>0.99896<br>0.99900 | 3.45<br>3.46<br>3.47<br>3.48<br>3.49 | 0.99972<br>0.99973<br>0.99974<br>0.99975<br>0.99976 | 3.85<br>3.86<br>3.87<br>3.88<br>3.89 | 0.99994<br>0.99994<br>0.99995<br>0.99995<br>0.99995 | 4.25<br>4.26<br>4.27<br>4.28<br>4.29 | 0.99999<br>0.99999<br>0.99999<br>0.99999            |
| 2.30<br>2.31<br>2.32<br>2.33<br>2.34 | 0.98928<br>0.98956<br>0.98983<br>0.99010<br>0.99036 | 2.70<br>2.71<br>2.72<br>2.73<br>2.74 | 0.99653<br>0.99664<br>0.99674<br>0.99683<br>0.99693 | 3.10<br>3.11<br>3.12<br>3.13<br>3.14 | 0.99903<br>0.99906<br>0.99910<br>0.99913<br>0.99916 | 3.50<br>3.51<br>3.52<br>3.53<br>3.54 | 0.99977<br>0.99978<br>0.99978<br>0.99979<br>0.99980 | 3.90<br>3.91<br>3.92<br>3.93<br>3.94 | 0.99995<br>0.99995<br>0.99996<br>0.99996<br>0.99996 | 4.30<br>4.31<br>4.32<br>4.33<br>4.34 | 0.99999<br>0.99999<br>0.99999<br>0.99999            |
| 2.35<br>2.36<br>2.37<br>2.38<br>2.39 | 0.99061<br>0.99086<br>0.99111<br>0.99134<br>0.99158 | 2.75<br>2.76<br>2.77<br>2.78<br>2.79 | 0.99702<br>0.99711<br>0.99720<br>0.99728<br>0.99736 | 3.15<br>3.16<br>3.17<br>3.18<br>3.19 | 0.99918<br>0.99921<br>0.99924<br>0.99926<br>0.99929 | 3.55<br>3.56<br>3.57<br>3.58<br>3.59 | 0.99981<br>0.99981<br>0.99982<br>0.99983<br>0.99983 | 3.95<br>3.96<br>3.97<br>3.98<br>3.99 | 0.99996<br>0.99996<br>0.99996<br>0.99997<br>0.99997 | 4.35<br>4.36<br>4.37<br>4.38<br>4.39 | 0.99999<br>0.99999<br>0.99999<br>0.99999            |
| 2.40                                 | 0.99180                                             | 2.80                                 | 0.99744                                             | 3.20                                 | 0.99931                                             | 3.60                                 | 0.99984                                             | 4.00                                 | 0.99997                                             | 4.40                                 | 0.99999                                             |

### Percentage Points for the Standard Normal distribution

The table gives percentage points x defined by the equation

$$P = \frac{1}{\sqrt{2\pi}} \int_{x}^{\infty} e^{-\frac{1}{2}t^2} dt$$



| P          | x                | P            | x                | P            | x                | P            | x                | P            | x                | P                | x                |
|------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|--------------|------------------|------------------|------------------|
| 50%        | 0.0000           | 5.0%         | 1.6449           | 3.0%         | 1.8808           | 2.0%         | 2.0537           | 1.0%         | 2.3263           | 0.10%            | 3.0902           |
| 45%<br>40% | 0.1257<br>0.2533 | 4.8%<br>4.6% | 1.6646<br>1.6849 | 2.9%<br>2.8% | 1.8957<br>1.9110 | 1.9%<br>1.8% | 2.0749<br>2.0969 | 0.9%<br>0.8% | 2.3656<br>2.4089 | 0.09%<br>0.08%   | 3.1214<br>3.1559 |
| 35%<br>30% | 0.3853           | 4.4%<br>4.2% | 1.7060<br>1.7279 | 2.7%<br>2.6% | 1.9268<br>1.9431 | 1.7%<br>1.6% | 2.1201 2.1444    | 0.7%<br>0.6% | 2.4573<br>2.5121 | 0.07%<br>0.06%   | 3.1947<br>3.2389 |
| 25%        | 0.6745           | 4.0%         | 1.7507           | 2.5%         | 1.9600           | 1.5%         | 2.1701           | 0.5%         | 2.5758           | 0.05%            | 3.2905           |
| 20%        | 0.8416           | 3.8%         | 1.7744           | 2.4%         | 1.9774           | 1.4%         | 2.1973           | 0.4%         | 2.6521           | 0.01%            | 3.7190           |
| 15%<br>10% | 1.0364<br>1.2816 | 3.6%<br>3.4% | 1.7991<br>1.8250 | 2.3%<br>2.2% | 1.9954<br>2.0141 | 1.3%<br>1.2% | 2.2262<br>2.2571 | 0.3%<br>0.2% | 2.7478<br>2.8782 | 0.005%<br>0.001% | 3.8906<br>4.2649 |
| 5%         | 1.6449           | 3.2%         | 1.8522           | 2.1%         | 2.0335           | 1.1%         | 2.2904           | 0.1%         | 3.0902           | 0.0005%          | 4.4172           |

### Percentage Points for the t distribution

This table gives percentage points x defined by the equation

$$P = \frac{1}{\sqrt{\nu \pi}} \frac{\Gamma(\frac{1}{2}\nu + \frac{1}{2})}{\Gamma(\frac{1}{2}\nu)} \int_{x}^{\infty} \frac{dt}{(1 + t^{2}/\nu)^{\frac{1}{2}(\nu + 1)}}$$



The limiting distribution of t as v tends to infinity is the standard normal distribution. When v is large, interpolation in v should be harmonic.

| <b>P</b> = | 40%    | 30%    | 25%    | 20%    | 15%   | 10%   | 5%    | 2.5%  | 1%    | 0.5%  | 0.1%  | 0.05% |
|------------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| v          |        |        |        |        |       |       |       |       |       |       |       |       |
| 1          | 0.3249 | 0.7265 | 1.000  | 1.376  | 1.963 | 3.078 | 6.314 | 12.71 | 31.82 | 63.66 | 318.3 | 636.6 |
| 2          | 0.2887 | 0.6172 | 0.8165 | 1.061  | 1.386 | 1.886 | 2.920 | 4.303 | 6.965 | 9.925 | 22.33 | 31.60 |
| 3          | 0.2767 | 0.5844 | 0.7649 | 0.9785 | 1.250 | 1.638 | 2.353 | 3.182 | 4.541 | 5.841 | 10.21 | 12.92 |
| 4          | 0.2707 | 0.5686 | 0.7407 | 0.9410 | 1.190 | 1.533 | 2.132 | 2.776 | 3.747 | 4.604 | 7.173 | 8.610 |
| 5          | 0.2672 | 0.5594 | 0.7267 | 0.9195 | 1.156 | 1.476 | 2.015 | 2.571 | 3.365 | 4.032 | 5.894 | 6.869 |
| 6          | 0.2648 | 0.5534 | 0.7176 | 0.9057 | 1.134 | 1.440 | 1.943 | 2.447 | 3.143 | 3.707 | 5.208 | 5.959 |
| 7          | 0.2632 | 0.5491 | 0.7111 | 0.8960 | 1.119 | 1.415 | 1.895 | 2.365 | 2.998 | 3.499 | 4.785 | 5.408 |
| 8          | 0.2619 | 0.5459 | 0.7064 | 0.8889 | 1.108 | 1.397 | 1.860 | 2.306 | 2.896 | 3.355 | 4.501 | 5.041 |
| 9          | 0.2610 | 0.5435 | 0.7027 | 0.8834 | 1.100 | 1.383 | 1.833 | 2.262 | 2.821 | 3.250 | 4.297 | 4.781 |
| 10         | 0.2602 | 0.5415 | 0.6998 | 0.8791 | 1.093 | 1.372 | 1.812 | 2.228 | 2.764 | 3.169 | 4.144 | 4.587 |
| 11         | 0.2596 | 0.5399 | 0.6974 | 0.8755 | 1.088 | 1.363 | 1.796 | 2.201 | 2.718 | 3.106 | 4.025 | 4.437 |
| 12         | 0.2590 | 0.5386 | 0.6955 | 0.8726 | 1.083 | 1.356 | 1.782 | 2.179 | 2.681 | 3.055 | 3.930 | 4.318 |
| 13         | 0.2586 | 0.5375 | 0.6938 | 0.8702 | 1.079 | 1.350 | 1.771 | 2.160 | 2.650 | 3.012 | 3.852 | 4.221 |
| 14         | 0.2582 | 0.5366 | 0.6924 | 0.8681 | 1.076 | 1.345 | 1.761 | 2.145 | 2.624 | 2.977 | 3.787 | 4.140 |
| 15         | 0.2579 | 0.5357 | 0.6912 | 0.8662 | 1.074 | 1.341 | 1.753 | 2.131 | 2.602 | 2.947 | 3.733 | 4.073 |
| 16         | 0.2576 | 0.5350 | 0.6901 | 0.8647 | 1.071 | 1.337 | 1.746 | 2.120 | 2.583 | 2.921 | 3.686 | 4.015 |
| 17         | 0.2573 | 0.5344 | 0.6892 | 0.8633 | 1.069 | 1.333 | 1.740 | 2.110 | 2.567 | 2.898 | 3.646 | 3.965 |
| 18         | 0.2571 | 0.5338 | 0.6884 | 0.8620 | 1.067 | 1.330 | 1.734 | 2.101 | 2.552 | 2.878 | 3.610 | 3.922 |
| 19         | 0.2569 | 0.5333 | 0.6876 | 0.8610 | 1.066 | 1.328 | 1.729 | 2.093 | 2.539 | 2.861 | 3.579 | 3.883 |
| 20         | 0.2567 | 0.5329 | 0.6870 | 0.8600 | 1.064 | 1.325 | 1.725 | 2.086 | 2.528 | 2.845 | 3.552 | 3.850 |
| 21         | 0.2566 | 0.5325 | 0.6864 | 0.8591 | 1.063 | 1.323 | 1.721 | 2.080 | 2.518 | 2.831 | 3.527 | 3.819 |
| 22         | 0.2564 | 0.5321 | 0.6858 | 0.8583 | 1.061 | 1.321 | 1.717 | 2.074 | 2.508 | 2.819 | 3.505 | 3.792 |
| 23         | 0.2563 | 0.5317 | 0.6853 | 0.8575 | 1.060 | 1.319 | 1.714 | 2.069 | 2.500 | 2.807 | 3.485 | 3.768 |
| 24         | 0.2562 | 0.5314 | 0.6848 | 0.8569 | 1.059 | 1.318 | 1.711 | 2.064 | 2.492 | 2.797 | 3.467 | 3.745 |
| 25         | 0.2561 | 0.5312 | 0.6844 | 0.8562 | 1.058 | 1.316 | 1.708 | 2.060 | 2.485 | 2.787 | 3.450 | 3.725 |
| 26         | 0.2560 | 0.5309 | 0.6840 | 0.8557 | 1.058 | 1.315 | 1.706 | 2.056 | 2.479 | 2.779 | 3.435 | 3.707 |
| 27         | 0.2559 | 0.5306 | 0.6837 | 0.8551 | 1.057 | 1.314 | 1.703 | 2.052 | 2.473 | 2.771 | 3.421 | 3.689 |
| 28         | 0.2558 | 0.5304 | 0.6834 | 0.8546 | 1.056 | 1.313 | 1.701 | 2.048 | 2.467 | 2.763 | 3.408 | 3.674 |
| 29         | 0.2557 | 0.5302 | 0.6830 | 0.8542 | 1.055 | 1.311 | 1.699 | 2.045 | 2.462 | 2.756 | 3.396 | 3.660 |
| 30         | 0.2556 | 0.5300 | 0.6828 | 0.8538 | 1.055 | 1.310 | 1.697 | 2.042 | 2.457 | 2.750 | 3.385 | 3.646 |
| 32         | 0.2555 | 0.5297 | 0.6822 | 0.8530 | 1.054 | 1.309 | 1.694 | 2.037 | 2.449 | 2.738 | 3.365 | 3.622 |
| 34         | 0.2553 | 0.5294 | 0.6818 | 0.8523 | 1.052 | 1.307 | 1.691 | 2.032 | 2.441 | 2.728 | 3.348 | 3.601 |
| 36         | 0.2552 | 0.5291 | 0.6814 | 0.8517 | 1.052 | 1.306 | 1.688 | 2.028 | 2.434 | 2.719 | 3.333 | 3.582 |
| 38         | 0.2551 | 0.5288 | 0.6810 | 0.8512 | 1.051 | 1.304 | 1.686 | 2.024 | 2.429 | 2.712 | 3.319 | 3.566 |
| 40         | 0.2550 | 0.5286 | 0.6807 | 0.8507 | 1.050 | 1.303 | 1.684 | 2.021 | 2.423 | 2.704 | 3.307 | 3.551 |
| 50         | 0.2547 | 0.5278 | 0.6794 | 0.8489 | 1.047 | 1.299 | 1.676 | 2.009 | 2.403 | 2.678 | 3.261 | 3.496 |
| 60         | 0.2545 | 0.5272 | 0.6786 | 0.8477 | 1.045 | 1.296 | 1.671 | 2.000 | 2.390 | 2.660 | 3.232 | 3.460 |
| 120        | 0.2539 | 0.5258 | 0.6765 | 0.8446 | 1.041 | 1.289 | 1.658 | 1.980 | 2.358 | 2.617 | 3.160 | 3.373 |
| œ          | 0.2533 | 0.5244 | 0.6745 | 0.8416 | 1.036 | 1.282 | 1.645 | 1.960 | 2.326 | 2.576 | 3.090 | 3.291 |

## Probabilities for the $\chi^2 \mbox{distribution}$

The function tabulated is:

$$F_{\nu}(x) = \frac{1}{2^{1/2\nu} \Gamma(1/2\nu)} \int_{0}^{x} t^{1/2\nu - 1} e^{-1/2t} dt$$



(The above shape applies for  $v \ge 3$  only. When v < 3 the mode is at the origin.)

| <i>v</i> = | 1      |     | 1      |     | 2      |      | 2      |     | 3      |      | 3      |
|------------|--------|-----|--------|-----|--------|------|--------|-----|--------|------|--------|
| x          |        | x   |        | x   |        | x    |        | x   |        | x    |        |
| 0.0        | 0.0000 | 4.0 | 0.9545 | 0.0 | 0.0000 | 4.0  | 0.8647 | 0.0 | 0.0000 | 4.0  | 0.7385 |
| 0.1        | 0.2482 | 4.1 | 0.9571 | 0.1 | 0.0488 | 4.1  | 0.8713 | 0.1 | 0.0082 | 4.2  | 0.7593 |
| 0.2        | 0.3453 | 4.2 | 0.9596 | 0.2 | 0.0952 | 4.2  | 0.8775 | 0.2 | 0.0224 | 4.4  | 0.7786 |
| 0.3        | 0.4161 | 4.3 | 0.9619 | 0.3 | 0.1393 | 4.3  | 0.8835 | 0.3 | 0.0400 | 4.6  | 0.7965 |
| 0.4        | 0.4729 | 4.4 | 0.9641 | 0.4 | 0.1813 | 4.4  | 0.8892 | 0.4 | 0.0598 | 4.8  | 0.8130 |
| 0.5        | 0.5205 | 4.5 | 0.9661 | 0.5 | 0.2212 | 4.5  | 0.8946 | 0.5 | 0.0811 | 5.0  | 0.8282 |
| 0.6        | 0.5614 | 4.6 | 0.9680 | 0.6 | 0.2592 | 4.6  | 0.8997 | 0.6 | 0.1036 | 5.2  | 0.8423 |
| 0.7        | 0.5972 | 4.7 | 0.9698 | 0.7 | 0.2953 | 4.7  | 0.9046 | 0.7 | 0.1268 | 5.4  | 0.8553 |
| 0.8        | 0.6289 | 4.8 | 0.9715 | 0.8 | 0.3297 | 4.8  | 0.9093 | 0.8 | 0.1505 | 5.6  | 0.8672 |
| 0.9        | 0.6572 | 4.9 | 0.9731 | 0.9 | 0.3624 | 4.9  | 0.9137 | 0.9 | 0.1746 | 5.8  | 0.8782 |
| 1.0        | 0.6827 | 5.0 | 0.9747 | 1.0 | 0.3935 | 5.0  | 0.9179 | 1.0 | 0.1987 | 6.0  | 0.8884 |
| 1.1        | 0.7057 | 5.1 | 0.9761 | 1.1 | 0.4231 | 5.1  | 0.9219 | 1.1 | 0.2229 | 6.2  | 0.8977 |
| 1.2        | 0.7267 | 5.2 | 0.9774 | 1.2 | 0.4512 | 5.2  | 0.9257 | 1.2 | 0.2470 | 6.4  | 0.9063 |
| 1.3        | 0.7458 | 5.3 | 0.9787 | 1.3 | 0.4780 | 5.3  | 0.9293 | 1.3 | 0.2709 | 6.6  | 0.9142 |
| 1.4        | 0.7633 | 5.4 | 0.9799 | 1.4 | 0.5034 | 5.4  | 0.9328 | 1.4 | 0.2945 | 6.8  | 0.9214 |
| 1.5        | 0.7793 | 5.5 | 0.9810 | 1.5 | 0.5276 | 5.5  | 0.9361 | 1.5 | 0.3177 | 7.0  | 0.9281 |
| 1.6        | 0.7941 | 5.6 | 0.9820 | 1.6 | 0.5507 | 5.6  | 0.9392 | 1.6 | 0.3406 | 7.2  | 0.9342 |
| 1.7        | 0.8077 | 5.7 | 0.9830 | 1.7 | 0.5726 | 5.7  | 0.9422 | 1.7 | 0.3631 | 7.4  | 0.9398 |
| 1.8        | 0.8203 | 5.8 | 0.9840 | 1.8 | 0.5934 | 5.8  | 0.9450 | 1.8 | 0.3851 | 7.6  | 0.9450 |
| 1.9        | 0.8319 | 5.9 | 0.9849 | 1.9 | 0.6133 | 5.9  | 0.9477 | 1.9 | 0.4066 | 7.8  | 0.9497 |
| 2.0        | 0.8427 | 6.0 | 0.9857 | 2.0 | 0.6321 | 6.0  | 0.9502 | 2.0 | 0.4276 | 8.0  | 0.9540 |
| 2.1        | 0.8527 | 6.1 | 0.9865 | 2.1 | 0.6501 | 6.2  | 0.9550 | 2.1 | 0.4481 | 8.2  | 0.9579 |
| 2.2        | 0.8620 | 6.2 | 0.9872 | 2.2 | 0.6671 | 6.4  | 0.9592 | 2.2 | 0.4681 | 8.4  | 0.9616 |
| 2.3        | 0.8706 | 6.3 | 0.9879 | 2.3 | 0.6834 | 6.6  | 0.9631 | 2.3 | 0.4875 | 8.6  | 0.9649 |
| 2.4        | 0.8787 | 6.4 | 0.9886 | 2.4 | 0.6988 | 6.8  | 0.9666 | 2.4 | 0.5064 | 8.8  | 0.9679 |
| 2.5        | 0.8862 | 6.5 | 0.9892 | 2.5 | 0.7135 | 7.0  | 0.9698 | 2.5 | 0.5247 | 9.0  | 0.9707 |
| 2.6        | 0.8931 | 6.6 | 0.9898 | 2.6 | 0.7275 | 7.2  | 0.9727 | 2.6 | 0.5425 | 9.2  | 0.9733 |
| 2.7        | 0.8997 | 6.7 | 0.9904 | 2.7 | 0.7408 | 7.4  | 0.9753 | 2.7 | 0.5598 | 9.4  | 0.9756 |
| 2.8        | 0.9057 | 6.8 | 0.9909 | 2.8 | 0.7534 | 7.6  | 0.9776 | 2.8 | 0.5765 | 9.6  | 0.9777 |
| 2.9        | 0.9114 | 6.9 | 0.9914 | 2.9 | 0.7654 | 7.8  | 0.9798 | 2.9 | 0.5927 | 9.8  | 0.9797 |
| 3.0        | 0.9167 | 7.0 | 0.9918 | 3.0 | 0.7769 | 8.0  | 0.9817 | 3.0 | 0.6084 | 10.0 | 0.9814 |
| 3.1        | 0.9217 | 7.1 | 0.9923 | 3.1 | 0.7878 | 8.2  | 0.9834 | 3.1 | 0.6235 | 10.2 | 0.9831 |
| 3.2        | 0.9264 | 7.2 | 0.9927 | 3.2 | 0.7981 | 8.4  | 0.9850 | 3.2 | 0.6382 | 10.4 | 0.9845 |
| 3.3        | 0.9307 | 7.3 | 0.9931 | 3.3 | 0.8080 | 8.6  | 0.9864 | 3.3 | 0.6524 | 10.6 | 0.9859 |
| 3.4        | 0.9348 | 7.4 | 0.9935 | 3.4 | 0.8173 | 8.8  | 0.9877 | 3.4 | 0.6660 | 10.8 | 0.9871 |
| 3.5        | 0.9386 | 7.5 | 0.9938 | 3.5 | 0.8262 | 9.0  | 0.9889 | 3.5 | 0.6792 | 11.0 | 0.9883 |
| 3.6        | 0.9422 | 7.6 | 0.9942 | 3.6 | 0.8347 | 9.2  | 0.9899 | 3.6 | 0.6920 | 11.2 | 0.9893 |
| 3.7        | 0.9456 | 7.7 | 0.9945 | 3.7 | 0.8428 | 9.4  | 0.9909 | 3.7 | 0.7043 | 11.4 | 0.9903 |
| 3.8        | 0.9487 | 7.8 | 0.9948 | 3.8 | 0.8504 | 9.6  | 0.9918 | 3.8 | 0.7161 | 11.6 | 0.9911 |
| 3.9        | 0.9517 | 7.9 | 0.9951 | 3.9 | 0.8577 | 9.8  | 0.9926 | 3.9 | 0.7275 | 11.8 | 0.9919 |
| 4.0        | 0.9545 | 8.0 | 0.9953 | 4.0 | 0.8647 | 10.0 | 0.9933 | 4.0 | 0.7385 | 12.0 | 0.9926 |

# Probabilities for the $\chi^2$ distribution

| <i>v</i> = | 4      | 5      | 6      | 7      | 8      | 9      | 10     | 11     | 12     | 13     | 14     |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| x          | 0.0265 | 0.0070 | 0.0022 | 0.0006 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 0.5        | 0.0265 | 0.0079 | 0.0022 | 0.0006 | 0.0001 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
| 1.0        | 0.0902 | 0.0374 | 0.0144 | 0.0052 | 0.0018 | 0.0006 | 0.0002 | 0.0001 | 0.0000 | 0.0000 | 0.0000 |
| 1.5        | 0.1734 | 0.0869 | 0.0405 | 0.0177 | 0.0073 | 0.0029 | 0.0011 | 0.0004 | 0.0001 | 0.0000 | 0.0000 |
| 2.0        | 0.2642 | 0.1509 | 0.0803 | 0.0402 | 0.0190 | 0.0085 | 0.0037 | 0.0015 | 0.0006 | 0.0002 | 0.0001 |
| 2.5        | 0.3554 | 0.2235 | 0.1315 | 0.0729 | 0.0383 | 0.0191 | 0.0091 | 0.0042 | 0.0018 | 0.0008 | 0.0003 |
| 3.0        | 0.4422 | 0.3000 | 0.1912 | 0.1150 | 0.0656 | 0.0357 | 0.0186 | 0.0093 | 0.0045 | 0.0021 | 0.0009 |
| 3.5        | 0.5221 | 0.3766 | 0.2560 | 0.1648 | 0.1008 | 0.0589 | 0.0329 | 0.0177 | 0.0091 | 0.0046 | 0.0022 |
| 4.0        | 0.5940 | 0.4506 | 0.3233 | 0.2202 | 0.1429 | 0.0886 | 0.0527 | 0.0301 | 0.0166 | 0.0088 | 0.0045 |
| 4.5        | 0.6575 | 0.5201 | 0.3907 | 0.2793 | 0.1906 | 0.1245 | 0.0780 | 0.0471 | 0.0274 | 0.0154 | 0.0084 |
| 5.0        | 0.7127 | 0.5841 | 0.4562 | 0.3400 | 0.2424 | 0.1657 | 0.1088 | 0.0688 | 0.0420 | 0.0248 | 0.0142 |
| 5.5        | 0.7603 | 0.6421 | 0.5185 | 0.4008 | 0.2970 | 0.2113 | 0.1446 | 0.0954 | 0.0608 | 0.0375 | 0.0224 |
| 6.0        | 0.8009 | 0.6938 | 0.5768 | 0.4603 | 0.3528 | 0.2601 | 0.1847 | 0.1266 | 0.0839 | 0.0538 | 0.0335 |
| 6.5        | 0.8352 | 0.7394 | 0.6304 | 0.5173 | 0.4086 | 0.3110 | 0.2283 | 0.1620 | 0.1112 | 0.0739 | 0.0477 |
| 7.0        | 0.8641 | 0.7794 | 0.6792 | 0.5711 | 0.4634 | 0.3629 | 0.2746 | 0.2009 | 0.1424 | 0.0978 | 0.0653 |
| 7.5        | 0.8883 | 0.8140 | 0.7229 | 0.6213 | 0.5162 | 0.4148 | 0.3225 | 0.2427 | 0.1771 | 0.1254 | 0.0863 |
| 8.0        | 0.9084 | 0.8438 | 0.7619 | 0.6674 | 0.5665 | 0.4659 | 0.3712 | 0.2867 | 0.2149 | 0.1564 | 0.1107 |
| 8.5        | 0.9251 | 0.8693 | 0.7963 | 0.7094 | 0.6138 | 0.5154 | 0.4199 | 0.3321 | 0.2551 | 0.1904 | 0.1383 |
| 9.0        | 0.9389 | 0.8909 | 0.8264 | 0.7473 | 0.6577 | 0.5627 | 0.4679 | 0.3781 | 0.2971 | 0.2271 | 0.1689 |
| 9.5        | 0.9503 | 0.9093 | 0.8527 | 0.7813 | 0.6981 | 0.6075 | 0.5146 | 0.4242 | 0.3403 | 0.2658 | 0.2022 |
| 10.0       | 0.9596 | 0.9248 | 0.8753 | 0.8114 | 0.7350 | 0.6495 | 0.5595 | 0.4696 | 0.3840 | 0.3061 | 0.2378 |
| 10.5       | 0.9672 | 0.9378 | 0.8949 | 0.8380 | 0.7683 | 0.6885 | 0.6022 | 0.5140 | 0.4278 | 0.3474 | 0.2752 |
| 11.0       | 0.9734 | 0.9486 | 0.9116 | 0.8614 | 0.7983 | 0.7243 | 0.6425 | 0.5567 | 0.4711 | 0.3892 | 0.3140 |
| 11.5       | 0.9785 | 0.9577 | 0.9259 | 0.8818 | 0.8251 | 0.7570 | 0.6801 | 0.5976 | 0.5134 | 0.4310 | 0.3536 |
| 12.0       | 0.9826 | 0.9652 | 0.9380 | 0.8994 | 0.8488 | 0.7867 | 0.7149 | 0.6364 | 0.5543 | 0.4724 | 0.3937 |
| 12.5       | 0.9860 | 0.9715 | 0.9483 | 0.9147 | 0.8697 | 0.8134 | 0.7470 | 0.6727 | 0.5936 | 0.5129 | 0.4338 |
| 13.0       | 0.9887 | 0.9766 | 0.9570 | 0.9279 | 0.8882 | 0.8374 | 0.7763 | 0.7067 | 0.6310 | 0.5522 | 0.4735 |
| 13.5       | 0.9909 | 0.9809 | 0.9643 | 0.9392 | 0.9042 | 0.8587 | 0.8030 | 0.7381 | 0.6662 | 0.5900 | 0.5124 |
| 14.0       | 0.9927 | 0.9844 | 0.9704 | 0.9488 | 0.9182 | 0.8777 | 0.8270 | 0.7670 | 0.6993 | 0.6262 | 0.5503 |
| 14.5       | 0.9941 | 0.9873 | 0.9755 | 0.9570 | 0.9304 | 0.8944 | 0.8486 | 0.7935 | .7301  | 0.6604 | 0.5868 |
| 15.0       | 0.9953 | 0.9896 | 0.9797 | 0.9640 | 0.9409 | 0.9091 | 0.8679 | 0.8175 | 0.7586 | 0.6926 | 0.6218 |
| 15.5       | 0.9962 | 0.9916 | 0.9833 | 0.9699 | 0.9499 | 0.9219 | 0.8851 | 0.8393 | 0.7848 | 0.7228 | 0.6551 |
| 16.0       | 0.9970 | 0.9932 | 0.9862 | 0.9749 | 0.9576 | 0.9331 | 0.9004 | 0.8589 | 0.8088 | 0.7509 | 0.6866 |
| 16.5       | 0.9976 | 0.9944 | 0.9887 | 0.9791 | 0.9642 | 0.9429 | 0.9138 | 0.8764 | 0.8306 | 0.7768 | 0.7162 |
| 17.0       | 0.9981 | 0.9955 | 0.9907 | 0.9826 | 0.9699 | 0.9513 | 0.9256 | 0.8921 | 0.8504 | 0.8007 | 0.7438 |
| 17.5       | 0.9985 | 0.9964 | 0.9924 | 0.9856 | 0.9747 | 0.9586 | 0.9360 | 0.9061 | 0.8683 | 0.8226 | 0.7695 |
| 18.0       | 0.9988 | 0.9971 | 0.9938 | 0.9880 | 0.9788 | 0.9648 | 0.9450 | 0.9184 | 0.8843 | 0.8425 | 0.7932 |
| 18.5       | 0.9990 | 0.9976 | 0.9949 | 0.9901 | 0.9822 | 0.9702 | 0.9529 | 0.9293 | 0.8987 | 0.8606 | 0.8151 |
| 19.0       | 0.9992 | 0.9981 | 0.9958 | 0.9918 | 0.9851 | 0.9748 | 0.9597 | 0.9389 | 0.9115 | 0.8769 | 0.8351 |
| 19.5       | 0.9994 | 0.9984 | 0.9966 | 0.9932 | 0.9876 | 0.9787 | 0.9656 | 0.9473 | 0.9228 | 0.8916 | 0.8533 |
| 20         | 0.9995 | 0.9988 | 0.9972 | 0.9944 | 0.9897 | 0.9821 | 0.9707 | 0.9547 | 0.9329 | 0.9048 | 0.8699 |
| 21         | 0.9997 | 0.9992 | 0.9982 | 0.9962 | 0.9929 | 0.9873 | 0.9789 | 0.9666 | 0.9496 | 0.9271 | 0.8984 |
| 22         | 0.9998 | 0.9995 | 0.9988 | 0.9975 | 0.9951 | 0.9911 | 0.9849 | 0.9756 | 0.9625 | 0.9446 | 0.9214 |
| 23         | 0.9999 | 0.9997 | 0.9992 | 0.9983 | 0.9966 | 0.9938 | 0.9893 | 0.9823 | 0.9723 | 0.9583 | 0.9397 |
| 24         | 0.9999 | 0.9998 | 0.9995 | 0.9989 | 0.9977 | 0.9957 | 0.9924 | 0.9873 | 0.9797 | 0.9689 | 0.9542 |
| 25         | 0.9999 | 0.9999 | 0.9997 | 0.9992 | 0.9984 | 0.9970 | 0.9947 | 0.9909 | 0.9852 | 0.9769 | 0.9654 |
| 26         | 1.0000 | 0.9999 | 0.9998 | 0.9995 | 0.9989 | 0.9980 | 0.9963 | 0.9935 | 0.9893 | 0.9830 | 0.9741 |
| 27         | 1.0000 | 0.9999 | 0.9999 | 0.9997 | 0.9993 | 0.9986 | 0.9974 | 0.9954 | 0.9923 | 0.9876 | 0.9807 |
| 28         | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9995 | 0.9990 | 0.9982 | 0.9968 | 0.9945 | 0.9910 | 0.9858 |
| 29         | 1.0000 | 1.0000 | 0.9999 | 0.9999 | 0.9997 | 0.9994 | 0.9988 | 0.9977 | 0.9961 | 0.9935 | 0.9895 |
| 30         | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 0.9998 | 0.9996 | 0.9991 | 0.9984 | 0.9972 | 0.9953 | 0.9924 |

# Probabilities for the $\chi^2 \mbox{distribution}$

| <i>v</i> = | 15                 | 16                 | 17                                              | 18                 | 19                 | 20                 | 21                 | 22                 | 23                 | 24                 | 25                 |
|------------|--------------------|--------------------|-------------------------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| x          |                    |                    |                                                 |                    |                    |                    |                    |                    |                    |                    |                    |
| 3<br>4     | $0.0004 \\ 0.0023$ | $0.0002 \\ 0.0011$ | $\begin{array}{c} 0.0001 \\ 0.0005 \end{array}$ | $0.0000 \\ 0.0002$ | $0.0000 \\ 0.0001$ | $0.0000 \\ 0.0000$ | $0.0000 \\ 0.0000$ | $0.0000 \\ 0.0000$ | $0.0000 \\ 0.0000$ | $0.0000 \\ 0.0000$ | $0.0000 \\ 0.0000$ |
| 5          | 0.0079             | 0.0042             | 0.0022                                          | 0.0011             | 0.0006             | 0.0003             | 0.0001             | 0.0001             | 0.0000             | 0.0000             | 0.0000             |
| 6          | 0.0203             | 0.0119             | 0.0068                                          | 0.0038             | 0.0021             | 0.0011             | 0.0006             | 0.0003             | 0.0001             | 0.0001             | 0.0000             |
| 7          | 0.0424             | 0.0267             | 0.0165                                          | 0.0099             | 0.0058             | 0.0033             | 0.0019             | 0.0010             | 0.0005             | 0.0003             | 0.0001             |
| 8          | 0.0762             | 0.0511             | 0.0335                                          | 0.0214             | 0.0133             | 0.0081             | 0.0049             | 0.0028             | 0.0016             | 0.0009             | 0.0005             |
| 9          | 0.1225             | 0.0866             | 0.0597                                          | 0.0403             | 0.0265             | 0.0171             | 0.0108             | 0.0067             | 0.0040             | 0.0024             | 0.0014             |
| 10         | 0.1803             | 0.1334             | 0.0964                                          | 0.0681             | 0.0471             | 0.0318             | 0.0211             | 0.0137             | 0.0087             | 0.0055             | 0.0033             |
| 11         | 0.2474             | 0.1905             | 0.1434                                          | 0.1056             | 0.0762             | 0.0538             | 0.0372             | 0.0253             | 0.0168             | 0.0110             | 0.0071             |
| 12         | 0.3210             | 0.2560             | 0.1999                                          | 0.1528             | 0.1144             | 0.0839             | 0.0604             | 0.0426             | 0.0295             | 0.0201             | 0.0134             |
| 13         | 0.3977             | 0.3272             | 0.2638                                          | 0.2084             | 0.1614             | 0.1226             | 0.0914             | 0.0668             | 0.0480             | 0.0339             | 0.0235             |
| 14         | 0.4745             | 0.4013             | 0.3329                                          | 0.2709             | 0.2163             | 0.1695             | 0.1304             | 0.0985             | 0.0731             | 0.0533             | 0.0383             |
| 15         | 0.5486             | 0.4754             | 0.4045                                          | 0.3380             | 0.2774             | 0.2236             | 0.1770             | 0.1378             | 0.1054             | 0.0792             | 0.0586             |
| 16         | 0.6179             | 0.5470             | 0.4762                                          | 0.4075             | 0.3427             | 0.2834             | 0.2303             | 0.1841             | 0.1447             | 0.1119             | 0.0852             |
| 17         | 0.6811             | 0.6144             | 0.5456                                          | 0.4769             | 0.4101             | 0.3470             | 0.2889             | 0.2366             | 0.1907             | 0.1513             | 0.1182             |
| 18         | 0.7373             | 0.6761             | 0.6112                                          | 0.5443             | 0.4776             | 0.4126             | 0.3510             | 0.2940             | 0.2425             | 0.1970             | 0.1576             |
| 19         | 0.7863             | 0.7313             | 0.6715                                          | 0.6082             | 0.5432             | 0.4782             | 0.4149             | 0.3547             | 0.2988             | 0.2480             | 0.2029             |
| 20         | 0.8281             | 0.7798             | 0.7258                                          | 0.6672             | 0.6054             | 0.5421             | 0.4787             | 0.4170             | 0.3581             | 0.3032             | 0.2532             |
| 21         | 0.8632             | 0.8215             | 0.7737                                          | 0.7206             | 0.6632             | 0.6029             | 0.5411             | 0.4793             | 0.4189             | 0.3613             | 0.3074             |
| 22         | 0.8922             | 0.8568             | 0.8153                                          | 0.7680             | 0.7157             | 0.6595             | 0.6005             | 0.5401             | 0.4797             | 0.4207             | 0.3643             |
| 23         | 0.9159             | 0.8863             | 0.8507                                          | 0.8094             | 0.7627             | 0.7112             | 0.6560             | 0.5983             | 0.5392             | 0.4802             | 0.4224             |
| 24         | 0.9349             | 0.9105             | 0.8806                                          | 0.8450             | 0.8038             | 0.7576             | 0.7069             | 0.6528             | 0.5962             | 0.5384             | 0.4806             |
| 25         | 0.9501             | 0.9302             | 0.9053                                          | 0.8751             | 0.8395             | 0.7986             | 0.7528             | 0.7029             | 0.6497             | 0.5942             | 0.5376             |
| 26         | 0.9620             | 0.9460             | 0.9255                                          | 0.9002             | 0.8698             | 0.8342             | 0.7936             | 0.7483             | 0.6991             | 0.6468             | 0.5924             |
| 27         | 0.9713             | 0.9585             | 0.9419                                          | 0.9210             | 0.8953             | 0.8647             | 0.8291             | 0.7888             | 0.7440             | 0.6955             | 0.6441             |
| 28         | 0.9784             | 0.9684             | 0.9551                                          | 0.9379             | 0.9166             | 0.8906             | 0.8598             | 0.8243             | 0.7842             | 0.7400             | 0.6921             |
| 29         | 0.9839             | 0.9761             | 0.9655                                          | 0.9516             | 0.9340             | 0.9122             | 0.8860             | 0.8551             | 0.8197             | 0.7799             | 0.7361             |
| 30         | 0.9881             | 0.9820             | 0.9737                                          | 0.9626             | 0.9482             | 0.9301             | 0.9080             | 0.8815             | 0.8506             | 0.8152             | 0.7757             |
| 31         | 0.9912             | 0.9865             | 0.9800                                          | 0.9712             | 0.9596             | 0.9448             | 0.9263             | 0.9039             | 0.8772             | 0.8462             | 0.8110             |
| 32         | 0.9936             | 0.9900             | 0.9850                                          | 0.9780             | 0.9687             | 0.9567             | 0.9414             | 0.9226             | 0.8999             | 0.8730             | 0.8420             |
| 33         | 0.9953             | 0.9926             | 0.9887                                          | 0.9833             | 0.9760             | 0.9663             | 0.9538             | 0.9381             | 0.9189             | 0.8959             | 0.8689             |
| 34         | 0.9966             | 0.9946             | 0.9916                                          | 0.9874             | 0.9816             | 0.9739             | 0.9638             | 0.9509             | 0.9348             | 0.9153             | 0.8921             |
| 35         | 0.9975             | 0.9960             | 0.9938                                          | 0.9905             | 0.9860             | 0.9799             | 0.9718             | 0.9613             | 0.9480             | 0.9316             | 0.9118             |
| 36         | 0.9982             | 0.9971             | 0.9954                                          | 0.9929             | 0.9894             | 0.9846             | 0.9781             | 0.9696             | 0.9587             | 0.9451             | 0.9284             |
| 37         | 0.9987             | 0.9979             | 0.9966                                          | 0.9948             | 0.9921             | 0.9883             | 0.9832             | 0.9763             | 0.9675             | 0.9562             | 0.9423             |
| 38         | 0.9991             | 0.9985             | 0.9975                                          | 0.9961             | 0.9941             | 0.9911             | 0.9871             | 0.9817             | 0.9745             | 0.9653             | 0.9537             |
| 39         | 0.9994             | 0.9989             | 0.9982                                          | 0.9972             | 0.9956             | 0.9933             | 0.9902             | 0.9859             | 0.9802             | 0.9727             | 0.9632             |
| 40         | 0.9995             | 0.9992             | 0.9987                                          | 0.9979             | 0.9967             | 0.9950             | 0.9926             | 0.9892             | 0.9846             | 0.9786             | 0.9708             |
| 41         | 0.9997             | 0.9994             | 0.9991                                          | 0.9985             | 0.9976             | 0.9963             | 0.9944             | 0.9918             | 0.9882             | 0.9833             | 0.9770             |
| 42         | 0.9998             | 0.9996             | 0.9993                                          | 0.9989             | 0.9982             | 0.9972             | 0.9958             | 0.9937             | 0.9909             | 0.9871             | 0.9820             |
| 43         | 0.9998             | 0.9997             | 0.9995                                          | 0.9992             | 0.9987             | 0.9980             | 0.9969             | 0.9953             | 0.9931             | 0.9901             | 0.9860             |
| 44         | 0.9999             | 0.9998             | 0.9997                                          | 0.9994             | 0.9991             | 0.9985             | 0.9977             | 0.9965             | 0.9947             | 0.9924             | 0.9892             |
| 45         | 0.9999             | 0.9999             | 0.9998                                          | 0.9996             | 0.9993             | 0.9989             | 0.9983             | 0.9973             | 0.9960             | 0.9942             | 0.9916             |
| 46         | 0.9999             | 0.9999             | 0.9998                                          | 0.9997             | 0.9995             | 0.9992             | 0.9987             | 0.9980             | 0.9970             | 0.9956             | 0.9936             |
| 47         | 1.0000             | 0.9999             | 0.9999                                          | 0.9998             | 0.9996             | 0.9994             | 0.9991             | 0.9985             | 0.9978             | 0.9967             | 0.9951             |
| 48         | 1.0000             | 1.0000             | 0.9999                                          | 0.9998             | 0.9997             | 0.9996             | 0.9993             | 0.9989             | 0.9983             | 0.9975             | 0.9963             |
| 49         | 1.0000             | 1.0000             | 0.9999                                          | 0.9999             | 0.9998             | 0.9997             | 0.9995             | 0.9992             | 0.9988             | 0.9981             | 0.9972             |
| 50         | 1.0000             | 1.0000             | 1.0000                                          | 0.9999             | 0.9999             | 0.9998             | 0.9996             | 0.9994             | 0.9991             | 0.9986             | 0.9979             |

## Percentage Points for the $\chi^2 \, \text{distribution}$

This table gives percentage points x defined by the equation

$$P = \frac{1}{2^{\frac{1}{2}v}\Gamma(\frac{1}{2}v)} \int_{x}^{\infty} t^{\frac{1}{2}v-1} e^{-\frac{1}{2}t} dt$$



(The above shape applies only for  $v \ge 3$ . When v < 3, the mode is at the origin.)

| <b>P</b> = | 99.95%    | 99.9%     | 99.5%     | 99%       | 97.5%     | 95%      | 90%     | 80%     | 70%    | 60%    |
|------------|-----------|-----------|-----------|-----------|-----------|----------|---------|---------|--------|--------|
| v<br>1     | 3.927E-07 | 1 571E-06 | 3 927E-05 | 1 571E-04 | 9.821E-04 | 0.003932 | 0.01579 | 0.06418 | 0.1485 | 0.2750 |
| 2          | 0.001000  | 0.002001  | 0.01003   | 0.02010   | 0.05064   | 0.1026   | 0.2107  | 0.4463  | 0.7133 | 1.022  |
| 3          | 0.01528   | 0.02430   | 0.07172   | 0.1148    | 0.2158    | 0.3518   | 0.5844  | 1.005   | 1.424  | 1.869  |
| 4          | 0.06392   | 0.09080   | 0.2070    | 0.2971    | 0.4844    | 0.7107   | 1.064   | 1.649   | 2.195  | 2.753  |
| 5          | 0.1581    | 0.2102    | 0.4118    | 0.5543    | 0.8312    | 1.145    | 1.610   | 2.343   | 3.000  | 3.656  |
| 6          | 0.2994    | 0.3810    | 0.6757    | 0.8721    | 1.237     | 1.635    | 2.204   | 3.070   | 3.828  | 4.570  |
| 7          | 0.4849    | 0.5985    | 0.9893    | 1.239     | 1.690     | 2.167    | 2.833   | 3.822   | 4.671  | 5.493  |
| 8          | 0.7104    | 0.8571    | 1.344     | 1.647     | 2.180     | 2.733    | 3.490   | 4.594   | 5.527  | 6.423  |
| 9          | 0.9718    | 1.152     | 1.735     | 2.088     | 2.700     | 3.325    | 4.168   | 5.380   | 6.393  | 7.357  |
| 10         | 1.265     | 1.479     | 2.156     | 2.558     | 3.247     | 3.940    | 4.865   | 6.179   | 7.267  | 8.295  |
| 11         | 1.587     | 1.834     | 2.603     | 3.053     | 3.816     | 4.575    | 5.578   | 6.989   | 8.148  | 9.237  |
| 12         | 1.935     | 2.214     | 3.074     | 3.571     | 4.404     | 5.226    | 6.304   | 7.807   | 9.034  | 10.18  |
| 13         | 2.305     | 2.617     | 3.565     | 4.107     | 5.009     | 5.892    | 7.041   | 8.634   | 9.926  | 11.13  |
| 14         | 2.697     | 3.041     | 4.075     | 4.660     | 5.629     | 6.571    | 7.790   | 9.467   | 10.82  | 12.08  |
| 15         | 3.107     | 3.483     | 4.601     | 5.229     | 6.262     | 7.261    | 8.547   | 10.31   | 11.72  | 13.03  |
| 16         | 3.536     | 3.942     | 5.142     | 5.812     | 6.908     | 7.962    | 9.312   | 11.15   | 12.62  | 13.98  |
| 17         | 3.980     | 4.416     | 5.697     | 6.408     | 7.564     | 8.672    | 10.09   | 12.00   | 13.53  | 14.94  |
| 18         | 4.439     | 4.905     | 6.265     | 7.015     | 8.231     | 9.390    | 10.86   | 12.86   | 14.44  | 15.89  |
| 19         | 4.913     | 5.407     | 6.844     | 7.633     | 8.907     | 10.12    | 11.65   | 13.72   | 15.35  | 16.85  |
| 20         | 5.398     | 5.921     | 7.434     | 8.260     | 9.591     | 10.85    | 12.44   | 14.58   | 16.27  | 17.81  |
| 21         | 5.895     | 6.447     | 8.034     | 8.897     | 10.28     | 11.59    | 13.24   | 15.44   | 17.18  | 18.77  |
| 22         | 6.404     | 6.983     | 8.643     | 9.542     | 10.98     | 12.34    | 14.04   | 16.31   | 18.10  | 19.73  |
| 23         | 6.924     | 7.529     | 9.260     | 10.20     | 11.69     | 13.09    | 14.85   | 17.19   | 19.02  | 20.69  |
| 24         | 7.453     | 8.085     | 9.886     | 10.86     | 12.40     | 13.85    | 15.66   | 18.06   | 19.94  | 21.65  |
| 25         | 7.991     | 8.649     | 10.52     | 11.52     | 13.12     | 14.61    | 16.47   | 18.94   | 20.87  | 22.62  |
| 26         | 8.537     | 9.222     | 11.16     | 12.20     | 13.84     | 15.38    | 17.29   | 19.82   | 21.79  | 23.58  |
| 27         | 9.093     | 9.803     | 11.81     | 12.88     | 14.57     | 16.15    | 18.11   | 20.70   | 22.72  | 24.54  |
| 28         | 9.656     | 10.39     | 12.46     | 13.56     | 15.31     | 16.93    | 18.94   | 21.59   | 23.65  | 25.51  |
| 29         | 10.23     | 10.99     | 13.12     | 14.26     | 16.05     | 17.71    | 19.77   | 22.48   | 24.58  | 26.48  |
| 30         | 10.80     | 11.59     | 13.79     | 14.95     | 16.79     | 18.49    | 20.60   | 23.36   | 25.51  | 27.44  |
| 32         | 11.98     | 12.81     | 15.13     | 16.36     | 18.29     | 20.07    | 22.27   | 25.15   | 27.37  | 29.38  |
| 34         | 13.18     | 14.06     | 16.50     | 17.79     | 19.81     | 21.66    | 23.95   | 26.94   | 29.24  | 31.31  |
| 36         | 14.40     | 15.32     | 17.89     | 19.23     | 21.34     | 23.27    | 25.64   | 28.73   | 31.12  | 33.25  |
| 38         | 15.64     | 16.61     | 19.29     | 20.69     | 22.88     | 24.88    | 27.34   | 30.54   | 32.99  | 35.19  |
| 40         | 16.91     | 17.92     | 20.71     | 22.16     | 24.43     | 26.51    | 29.05   | 32.34   | 34.87  | 37.13  |
| 50         | 23.46     | 24.67     | 27.99     | 29.71     | 32.36     | 34.76    | 37.69   | 41.45   | 44.31  | 46.86  |
| 60         | 30.34     | 31.74     | 35.53     | 37.48     | 40.48     | 43.19    | 46.46   | 50.64   | 53.81  | 56.62  |
| 70         | 37.47     | 39.04     | 43.28     | 45.44     | 48.76     | 51.74    | 55.33   | 59.90   | 63.35  | 66.40  |
| 80         | 44.79     | 46.52     | 51.17     | 53.54     | 57.15     | 60.39    | 64.28   | 69.21   | 72.92  | 76.19  |
| 90         | 52.28     | 54.16     | 59.20     | 61.75     | 65.65     | 69.13    | 73.29   | 78.56   | 82.51  | 85.99  |
| 100        | 59.89     | 61.92     | 67.33     | 70.06     | 74.22     | 77.93    | 82.36   | 87.95   | 92.13  | 95.81  |

# Percentage Points for the $\chi^2$ distribution

| <b>P</b> =            | 50%                               | 40%                               | 30%                              | 20%                              | 10%                              | 5%                               | 2.5%                             | 1%                               | 0.5%                             | 0.1%                             | 0.05%                            |
|-----------------------|-----------------------------------|-----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| v<br>1<br>2<br>3<br>4 | 0.4549<br>1.386<br>2.366<br>3.357 | 0.7083<br>1.833<br>2.946<br>4.045 | 1.074<br>2.408<br>3.665<br>4.878 | 1.642<br>3.219<br>4.642<br>5.989 | 2.706<br>4.605<br>6.251<br>7.779 | 3.841<br>5.991<br>7.815<br>9.488 | 5.024<br>7.378<br>9.348<br>11.14 | 6.635<br>9.210<br>11.34<br>13.28 | 7.879<br>10.60<br>12.84<br>14.86 | 10.83<br>13.82<br>16.27<br>18.47 | 12.12<br>15.20<br>17.73<br>20.00 |
| 5                     | 4.351                             | 5.132                             | 6.064                            | 7.289                            | 9.236                            | 11.07                            | 12.83                            | 15.09                            | 16.75                            | 20.51                            | 22.11                            |
| 6                     | 5.348                             | 6.211                             | 7.231                            | 8.558                            | 10.64                            | 12.59                            | 14.45                            | 16.81                            | 18.55                            | 22.46                            | 24.10                            |
| 7                     | 6.346                             | 7.283                             | 8.383                            | 9.803                            | 12.02                            | 14.07                            | 16.01                            | 18.48                            | 20.28                            | 24.32                            | 26.02                            |
| 8                     | 7.344                             | 8.351                             | 9.524                            | 11.03                            | 13.36                            | 15.51                            | 17.53                            | 20.09                            | 21.95                            | 26.12                            | 27.87                            |
| 9                     | 8.343                             | 9.414                             | 10.66                            | 12.24                            | 14.68                            | 16.92                            | 19.02                            | 21.67                            | 23.59                            | 27.88                            | 29.67                            |
| 10                    | 9.342                             | 10.47                             | 11.78                            | 13.44                            | 15.99                            | 18.31                            | 20.48                            | 23.21                            | 25.19                            | 29.59                            | 31.42                            |
| 11                    | 10.34                             | 11.53                             | 12.90                            | 14.63                            | 17.28                            | 19.68                            | 21.92                            | 24.73                            | 26.76                            | 31.26                            | 33.14                            |
| 12                    | 11.34                             | 12.58                             | 14.01                            | 15.81                            | 18.55                            | 21.03                            | 23.34                            | 26.22                            | 28.30                            | 32.91                            | 34.82                            |
| 13                    | 12.34                             | 13.64                             | 15.12                            | 16.98                            | 19.81                            | 22.36                            | 24.74                            | 27.69                            | 29.82                            | 34.53                            | 36.48                            |
| 14                    | 13.34                             | 14.69                             | 16.22                            | 18.15                            | 21.06                            | 23.68                            | 26.12                            | 29.14                            | 31.32                            | 36.12                            | 38.11                            |
| 15                    | 14.34                             | 15.73                             | 17.32                            | 19.31                            | 22.31                            | 25.00                            | 27.49                            | 30.58                            | 32.80                            | 37.70                            | 39.72                            |
| 16                    | 15.34                             | 16.78                             | 18.42                            | 20.47                            | 23.54                            | 26.30                            | 28.85                            | 32.00                            | 34.27                            | 39.25                            | 41.31                            |
| 17                    | 16.34                             | 17.82                             | 19.51                            | 21.61                            | 24.77                            | 27.59                            | 30.19                            | 33.41                            | 35.72                            | 40.79                            | 42.88                            |
| 18                    | 17.34                             | 18.87                             | 20.60                            | 22.76                            | 25.99                            | 28.87                            | 31.53                            | 34.81                            | 37.16                            | 42.31                            | 44.43                            |
| 19                    | 18.34                             | 19.91                             | 21.69                            | 23.90                            | 27.20                            | 30.14                            | 32.85                            | 36.19                            | 38.58                            | 43.82                            | 45.97                            |
| 20                    | 19.34                             | 20.95                             | 22.77                            | 25.04                            | 28.41                            | 31.41                            | 34.17                            | 37.57                            | 40.00                            | 45.31                            | 47.50                            |
| 21                    | 20.34                             | 21.99                             | 23.86                            | 26.17                            | 29.62                            | 32.67                            | 35.48                            | 38.93                            | 41.40                            | 46.80                            | 49.01                            |
| 22                    | 21.34                             | 23.03                             | 24.94                            | 27.30                            | 30.81                            | 33.92                            | 36.78                            | 40.29                            | 42.80                            | 48.27                            | 50.51                            |
| 23                    | 22.34                             | 24.07                             | 26.02                            | 28.43                            | 32.01                            | 35.17                            | 38.08                            | 41.64                            | 44.18                            | 49.73                            | 52.00                            |
| 24                    | 23.34                             | 25.11                             | 27.10                            | 29.55                            | 33.20                            | 36.42                            | 39.36                            | 42.98                            | 45.56                            | 51.18                            | 53.48                            |
| 25                    | 24.34                             | 26.14                             | 28.17                            | 30.68                            | 34.38                            | 37.65                            | 40.65                            | 44.31                            | 46.93                            | 52.62                            | 54.95                            |
| 26                    | 25.34                             | 27.18                             | 29.25                            | 31.79                            | 35.56                            | 38.89                            | 41.92                            | 45.64                            | 48.29                            | 54.05                            | 56.41                            |
| 27                    | 26.34                             | 28.21                             | 30.32                            | 32.91                            | 36.74                            | 40.11                            | 43.19                            | 46.96                            | 49.65                            | 55.48                            | 57.86                            |
| 28                    | 27.34                             | 29.25                             | 31.39                            | 34.03                            | 37.92                            | 41.34                            | 44.46                            | 48.28                            | 50.99                            | 56.89                            | 59.30                            |
| 29                    | 28.34                             | 30.28                             | 32.46                            | 35.14                            | 39.09                            | 42.56                            | 45.72                            | 49.59                            | 52.34                            | 58.30                            | 60.73                            |
| 30                    | 29.34                             | 31.32                             | 33.53                            | 36.25                            | 40.26                            | 43.77                            | 46.98                            | 50.89                            | 53.67                            | 59.70                            | 62.16                            |
| 32                    | 31.34                             | 33.38                             | 35.66                            | 38.47                            | 42.58                            | 46.19                            | 49.48                            | 53.49                            | 56.33                            | 62.49                            | 64.99                            |
| 34                    | 33.34                             | 35.44                             | 37.80                            | 40.68                            | 44.90                            | 48.60                            | 51.97                            | 56.06                            | 58.96                            | 65.25                            | 67.80                            |
| 36                    | 35.34                             | 37.50                             | 39.92                            | 42.88                            | 47.21                            | 51.00                            | 54.44                            | 58.62                            | 61.58                            | 67.98                            | 70.59                            |
| 38                    | 37.34                             | 39.56                             | 42.05                            | 45.08                            | 49.51                            | 53.38                            | 56.90                            | 61.16                            | 64.18                            | 70.70                            | 73.35                            |
| 40                    | 39.34                             | 41.62                             | 44.16                            | 47.27                            | 51.81                            | 55.76                            | 59.34                            | 63.69                            | 66.77                            | 73.40                            | 76.10                            |
| 50                    | 49.33                             | 51.89                             | 54.72                            | 58.16                            | 63.17                            | 67.50                            | 71.42                            | 76.15                            | 79.49                            | 86.66                            | 89.56                            |
| 60                    | 59.33                             | 62.13                             | 65.23                            | 68.97                            | 74.40                            | 79.08                            | 83.30                            | 88.38                            | 91.95                            | 99.61                            | 102.7                            |
| 70                    | 69.33                             | 72.36                             | 75.69                            | 79.71                            | 85.53                            | 90.53                            | 95.02                            | 100.4                            | 104.2                            | 112.3                            | 115.6                            |
| 80                    | 79.33                             | 82.57                             | 86.12                            | 90.41                            | 96.58                            | 101.9                            | 106.6                            | 112.3                            | 116.3                            | 124.8                            | 128.3                            |
| 90                    | 89.33                             | 92.76                             | 96.52                            | 101.1                            | 107.6                            | 113.1                            | 118.1                            | 124.1                            | 128.3                            | 137.2                            | 140.8                            |
| 100                   | 99.33                             | 102.9                             | 106.9                            | 111.7                            | 118.5                            | 124.3                            | 129.6                            | 135.8                            | 140.2                            | 149.4                            | 153.2                            |

### Percentage Points for the F distribution

The function tabulated is x defined for the specified percentage points P by the equation



(The above shape applies only for  $v_1 \ge 3$ . When  $v_1 < 3$ , the mode is at the origin.)

### 10% Points for the F distribution

| $v_1 =$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 12    | 24    | œ     |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $v_2$   |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1       | 39.86 | 49.50 | 53.59 | 55.83 | 57.24 | 58.20 | 58.91 | 59.44 | 59.86 | 60.19 | 60.71 | 62.00 | 63.33 |
| 2       | 8.526 | 9.000 | 9.162 | 9.243 | 9.293 | 9.326 | 9.349 | 9.367 | 9.381 | 9.392 | 9.408 | 9.450 | 9.491 |
| 3       | 5.538 | 5.462 | 5.391 | 5.343 | 5.309 | 5.285 | 5.266 | 5.252 | 5.240 | 5.230 | 5.216 | 5.176 | 5.134 |
| 4       | 4.545 | 4.325 | 4.191 | 4.107 | 4.051 | 4.010 | 3.979 | 3.955 | 3.936 | 3.920 | 3.896 | 3.831 | 3.761 |
| 5       | 4.060 | 3.780 | 3.619 | 3.520 | 3.453 | 3.405 | 3.368 | 3.339 | 3.316 | 3.297 | 3.268 | 3.191 | 3.105 |
| 6       | 3.776 | 3.463 | 3.289 | 3.181 | 3.108 | 3.055 | 3.014 | 2.983 | 2.958 | 2.937 | 2.905 | 2.818 | 2.722 |
| 7       | 3.589 | 3.257 | 3.074 | 2.961 | 2.883 | 2.827 | 2.785 | 2.752 | 2.725 | 2.703 | 2.668 | 2.575 | 2.471 |
| 8       | 3.458 | 3.113 | 2.924 | 2.806 | 2.726 | 2.668 | 2.624 | 2.589 | 2.561 | 2.538 | 2.502 | 2.404 | 2.293 |
| 9       | 3.360 | 3.006 | 2.813 | 2.693 | 2.611 | 2.551 | 2.505 | 2.469 | 2.440 | 2.416 | 2.379 | 2.277 | 2.159 |
| 10      | 3.285 | 2.924 | 2.728 | 2.605 | 2.522 | 2.461 | 2.414 | 2.377 | 2.347 | 2.323 | 2.284 | 2.178 | 2.055 |
| 11      | 3.225 | 2.860 | 2.660 | 2.536 | 2.451 | 2.389 | 2.342 | 2.304 | 2.274 | 2.248 | 2.209 | 2.100 | 1.972 |
| 12      | 3.177 | 2.807 | 2.606 | 2.480 | 2.394 | 2.331 | 2.283 | 2.245 | 2.214 | 2.188 | 2.147 | 2.036 | 1.904 |
| 13      | 3.136 | 2.763 | 2.560 | 2.434 | 2.347 | 2.283 | 2.234 | 2.195 | 2.164 | 2.138 | 2.097 | 1.983 | 1.846 |
| 14      | 3.102 | 2.726 | 2.522 | 2.395 | 2.307 | 2.243 | 2.193 | 2.154 | 2.122 | 2.095 | 2.054 | 1.938 | 1.797 |
| 15      | 3.073 | 2.695 | 2.490 | 2.361 | 2.273 | 2.208 | 2.158 | 2.119 | 2.086 | 2.059 | 2.017 | 1.899 | 1.755 |
| 16      | 3.048 | 2.668 | 2.462 | 2.333 | 2.244 | 2.178 | 2.128 | 2.088 | 2.055 | 2.028 | 1.985 | 1.866 | 1.718 |
| 17      | 3.026 | 2.645 | 2.437 | 2.308 | 2.218 | 2.152 | 2.102 | 2.061 | 2.028 | 2.001 | 1.958 | 1.836 | 1.686 |
| 18      | 3.007 | 2.624 | 2.416 | 2.286 | 2.196 | 2.130 | 2.079 | 2.038 | 2.005 | 1.977 | 1.933 | 1.810 | 1.657 |
| 19      | 2.990 | 2.606 | 2.397 | 2.266 | 2.176 | 2.109 | 2.058 | 2.017 | 1.984 | 1.956 | 1.912 | 1.787 | 1.631 |
| 20      | 2.975 | 2.589 | 2.380 | 2.249 | 2.158 | 2.091 | 2.040 | 1.999 | 1.965 | 1.937 | 1.892 | 1.767 | 1.607 |
| 21      | 2.961 | 2.575 | 2.365 | 2.233 | 2.142 | 2.075 | 2.023 | 1.982 | 1.948 | 1.920 | 1.875 | 1.748 | 1.586 |
| 22      | 2.949 | 2.561 | 2.351 | 2.219 | 2.128 | 2.060 | 2.008 | 1.967 | 1.933 | 1.904 | 1.859 | 1.731 | 1.567 |
| 23      | 2.937 | 2.549 | 2.339 | 2.207 | 2.115 | 2.047 | 1.995 | 1.953 | 1.919 | 1.890 | 1.845 | 1.716 | 1.549 |
| 24      | 2.927 | 2.538 | 2.327 | 2.195 | 2.103 | 2.035 | 1.983 | 1.941 | 1.906 | 1.877 | 1.832 | 1.702 | 1.533 |
| 25      | 2.918 | 2.528 | 2.317 | 2.184 | 2.092 | 2.024 | 1.971 | 1.929 | 1.895 | 1.866 | 1.820 | 1.689 | 1.518 |
| 26      | 2.909 | 2.519 | 2.307 | 2.174 | 2.082 | 2.014 | 1.961 | 1.919 | 1.884 | 1.855 | 1.809 | 1.677 | 1.504 |
| 27      | 2.901 | 2.511 | 2.299 | 2.165 | 2.073 | 2.005 | 1.952 | 1.909 | 1.874 | 1.845 | 1.799 | 1.666 | 1.491 |
| 28      | 2.894 | 2.503 | 2.291 | 2.157 | 2.064 | 1.996 | 1.943 | 1.900 | 1.865 | 1.836 | 1.790 | 1.656 | 1.478 |
| 29      | 2.887 | 2.495 | 2.283 | 2.149 | 2.057 | 1.988 | 1.935 | 1.892 | 1.857 | 1.827 | 1.781 | 1.647 | 1.467 |
| 30      | 2.881 | 2.489 | 2.276 | 2.142 | 2.049 | 1.980 | 1.927 | 1.884 | 1.849 | 1.819 | 1.773 | 1.638 | 1.456 |
| 32      | 2.869 | 2.477 | 2.263 | 2.129 | 2.036 | 1.967 | 1.913 | 1.870 | 1.835 | 1.805 | 1.758 | 1.622 | 1.437 |
| 34      | 2.859 | 2.466 | 2.252 | 2.118 | 2.024 | 1.955 | 1.901 | 1.858 | 1.822 | 1.793 | 1.745 | 1.608 | 1.420 |
| 36      | 2.850 | 2.456 | 2.243 | 2.108 | 2.014 | 1.945 | 1.891 | 1.847 | 1.811 | 1.781 | 1.734 | 1.595 | 1.404 |
| 38      | 2.842 | 2.448 | 2.234 | 2.099 | 2.005 | 1.935 | 1.881 | 1.838 | 1.802 | 1.772 | 1.724 | 1.584 | 1.390 |
| 40      | 2.835 | 2.440 | 2.226 | 2.091 | 1.997 | 1.927 | 1.873 | 1.829 | 1.793 | 1.763 | 1.715 | 1.574 | 1.377 |
| 60      | 2.791 | 2.393 | 2.177 | 2.041 | 1.946 | 1.875 | 1.819 | 1.775 | 1.738 | 1.707 | 1.657 | 1.511 | 1.292 |
| 120     | 2.748 | 2.347 | 2.130 | 1.992 | 1.896 | 1.824 | 1.767 | 1.722 | 1.684 | 1.652 | 1.601 | 1.447 | 1.193 |
| ∞       | 2.706 | 2.303 | 2.084 | 1.945 | 1.847 | 1.774 | 1.717 | 1.670 | 1.632 | 1.599 | 1.546 | 1.383 | 1.000 |

### 5% Points for the F distribution

| $v_1 =$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 12    | 24    | œ     |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $v_2$   |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1       | 161.4 | 199.5 | 215.7 | 224.6 | 230.2 | 234.0 | 236.8 | 238.9 | 240.5 | 241.9 | 243.9 | 249.1 | 254.3 |
| 2       | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.41 | 19.45 | 19.50 |
| 3       | 10.13 | 9.552 | 9.277 | 9.117 | 9.013 | 8.941 | 8.887 | 8.845 | 8.812 | 8.785 | 8.745 | 8.638 | 8.527 |
| 4       | 7.709 | 6.944 | 6.591 | 6.388 | 6.256 | 6.163 | 6.094 | 6.041 | 5.999 | 5.964 | 5.912 | 5.774 | 5.628 |
| 5       | 6.608 | 5.786 | 5.409 | 5.192 | 5.050 | 4.950 | 4.876 | 4.818 | 4.772 | 4.735 | 4.678 | 4.527 | 4.365 |
| 6       | 5.987 | 5.143 | 4.757 | 4.534 | 4.387 | 4.284 | 4.207 | 4.147 | 4.099 | 4.060 | 4.000 | 3.841 | 3.669 |
| 7       | 5.591 | 4.737 | 4.347 | 4.120 | 3.972 | 3.866 | 3.787 | 3.726 | 3.677 | 3.637 | 3.575 | 3.410 | 3.230 |
| 8       | 5.318 | 4.459 | 4.066 | 3.838 | 3.688 | 3.581 | 3.500 | 3.438 | 3.388 | 3.347 | 3.284 | 3.115 | 2.928 |
| 9       | 5.117 | 4.256 | 3.863 | 3.633 | 3.482 | 3.374 | 3.293 | 3.230 | 3.179 | 3.137 | 3.073 | 2.900 | 2.707 |
| 10      | 4.965 | 4.103 | 3.708 | 3.478 | 3.326 | 3.217 | 3.135 | 3.072 | 3.020 | 2.978 | 2.913 | 2.737 | 2.538 |
| 11      | 4.844 | 3.982 | 3.587 | 3.357 | 3.204 | 3.095 | 3.012 | 2.948 | 2.896 | 2.854 | 2.788 | 2.609 | 2.405 |
| 12      | 4.747 | 3.885 | 3.490 | 3.259 | 3.106 | 2.996 | 2.913 | 2.849 | 2.796 | 2.753 | 2.687 | 2.505 | 2.296 |
| 13      | 4.667 | 3.806 | 3.411 | 3.179 | 3.025 | 2.915 | 2.832 | 2.767 | 2.714 | 2.671 | 2.604 | 2.420 | 2.206 |
| 14      | 4.600 | 3.739 | 3.344 | 3.112 | 2.958 | 2.848 | 2.764 | 2.699 | 2.646 | 2.602 | 2.534 | 2.349 | 2.131 |
| 15      | 4.543 | 3.682 | 3.287 | 3.056 | 2.901 | 2.790 | 2.707 | 2.641 | 2.588 | 2.544 | 2.475 | 2.288 | 2.066 |
| 16      | 4.494 | 3.634 | 3.239 | 3.007 | 2.852 | 2.741 | 2.657 | 2.591 | 2.538 | 2.494 | 2.425 | 2.235 | 2.010 |
| 17      | 4.451 | 3.592 | 3.197 | 2.965 | 2.810 | 2.699 | 2.614 | 2.548 | 2.494 | 2.450 | 2.381 | 2.190 | 1.960 |
| 18      | 4.414 | 3.555 | 3.160 | 2.928 | 2.773 | 2.661 | 2.577 | 2.510 | 2.456 | 2.412 | 2.342 | 2.150 | 1.917 |
| 19      | 4.381 | 3.522 | 3.127 | 2.895 | 2.740 | 2.628 | 2.544 | 2.477 | 2.423 | 2.378 | 2.308 | 2.114 | 1.878 |
| 20      | 4.351 | 3.493 | 3.098 | 2.866 | 2.711 | 2.599 | 2.514 | 2.447 | 2.393 | 2.348 | 2.278 | 2.082 | 1.843 |
| 21      | 4.325 | 3.467 | 3.072 | 2.840 | 2.685 | 2.573 | 2.488 | 2.420 | 2.366 | 2.321 | 2.250 | 2.054 | 1.812 |
| 22      | 4.301 | 3.443 | 3.049 | 2.817 | 2.661 | 2.549 | 2.464 | 2.397 | 2.342 | 2.297 | 2.226 | 2.028 | 1.783 |
| 23      | 4.279 | 3.422 | 3.028 | 2.796 | 2.640 | 2.528 | 2.442 | 2.375 | 2.320 | 2.275 | 2.204 | 2.005 | 1.757 |
| 24      | 4.260 | 3.403 | 3.009 | 2.776 | 2.621 | 2.508 | 2.423 | 2.355 | 2.300 | 2.255 | 2.183 | 1.984 | 1.733 |
| 25      | 4.242 | 3.385 | 2.991 | 2.759 | 2.603 | 2.490 | 2.405 | 2.337 | 2.282 | 2.236 | 2.165 | 1.964 | 1.711 |
| 26      | 4.225 | 3.369 | 2.975 | 2.743 | 2.587 | 2.474 | 2.388 | 2.321 | 2.265 | 2.220 | 2.148 | 1.946 | 1.691 |
| 27      | 4.210 | 3.354 | 2.960 | 2.728 | 2.572 | 2.459 | 2.373 | 2.305 | 2.250 | 2.204 | 2.132 | 1.930 | 1.672 |
| 28      | 4.196 | 3.340 | 2.947 | 2.714 | 2.558 | 2.445 | 2.359 | 2.291 | 2.236 | 2.190 | 2.118 | 1.915 | 1.654 |
| 29      | 4.183 | 3.328 | 2.934 | 2.701 | 2.545 | 2.432 | 2.346 | 2.278 | 2.223 | 2.177 | 2.104 | 1.901 | 1.638 |
| 30      | 4.171 | 3.316 | 2.922 | 2.690 | 2.534 | 2.421 | 2.334 | 2.266 | 2.211 | 2.165 | 2.092 | 1.887 | 1.622 |
| 32      | 4.149 | 3.295 | 2.901 | 2.668 | 2.512 | 2.399 | 2.313 | 2.244 | 2.189 | 2.142 | 2.070 | 1.864 | 1.594 |
| 34      | 4.130 | 3.276 | 2.883 | 2.650 | 2.494 | 2.380 | 2.294 | 2.225 | 2.170 | 2.123 | 2.050 | 1.843 | 1.569 |
| 36      | 4.113 | 3.259 | 2.866 | 2.634 | 2.477 | 2.364 | 2.277 | 2.209 | 2.153 | 2.106 | 2.033 | 1.824 | 1.547 |
| 38      | 4.098 | 3.245 | 2.852 | 2.619 | 2.463 | 2.349 | 2.262 | 2.194 | 2.138 | 2.091 | 2.017 | 1.808 | 1.527 |
| 40      | 4.085 | 3.232 | 2.839 | 2.606 | 2.449 | 2.336 | 2.249 | 2.180 | 2.124 | 2.077 | 2.003 | 1.793 | 1.509 |
| 60      | 4.001 | 3.150 | 2.758 | 2.525 | 2.368 | 2.254 | 2.167 | 2.097 | 2.040 | 1.993 | 1.917 | 1.700 | 1.389 |
| 120     | 3.920 | 3.072 | 2.680 | 2.447 | 2.290 | 2.175 | 2.087 | 2.016 | 1.959 | 1.910 | 1.834 | 1.608 | 1.254 |
| ∞       | 3.841 | 2.996 | 2.605 | 2.372 | 2.214 | 2.099 | 2.010 | 1.938 | 1.880 | 1.831 | 1.752 | 1.517 | 1.000 |

### $2\frac{1}{2}$ % Points for the F distribution

| $v_1 =$ | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 12    | 24    | œ     |
|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $v_2$   |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1       | 647.8 | 799.5 | 864.2 | 899.6 | 921.8 | 937.1 | 948.2 | 956.6 | 963.3 | 968.6 | 976.7 | 997.3 | 1018  |
| 2       | 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 | 39.37 | 39.39 | 39.40 | 39.41 | 39.46 | 39.50 |
| 3       | 17.44 | 16.04 | 15.44 | 15.10 | 14.88 | 14.73 | 14.62 | 14.54 | 14.47 | 14.42 | 14.34 | 14.12 | 13.90 |
| 4       | 12.22 | 10.65 | 9.979 | 9.605 | 9.364 | 9.197 | 9.074 | 8.980 | 8.905 | 8.844 | 8.751 | 8.511 | 8.257 |
| 5       | 10.01 | 8.434 | 7.764 | 7.388 | 7.146 | 6.978 | 6.853 | 6.757 | 6.681 | 6.619 | 6.525 | 6.278 | 6.015 |
| 6       | 8.813 | 7.260 | 6.599 | 6.227 | 5.988 | 5.820 | 5.695 | 5.600 | 5.523 | 5.461 | 5.366 | 5.117 | 4.849 |
| 7       | 8.073 | 6.542 | 5.890 | 5.523 | 5.285 | 5.119 | 4.995 | 4.899 | 4.823 | 4.761 | 4.666 | 4.415 | 4.142 |
| 8       | 7.571 | 6.059 | 5.416 | 5.053 | 4.817 | 4.652 | 4.529 | 4.433 | 4.357 | 4.295 | 4.200 | 3.947 | 3.670 |
| 9       | 7.209 | 5.715 | 5.078 | 4.718 | 4.484 | 4.320 | 4.197 | 4.102 | 4.026 | 3.964 | 3.868 | 3.614 | 3.333 |
| 10      | 6.937 | 5.456 | 4.826 | 4.468 | 4.236 | 4.072 | 3.950 | 3.855 | 3.779 | 3.717 | 3.621 | 3.365 | 3.080 |
| 11      | 6.724 | 5.256 | 4.630 | 4.275 | 4.044 | 3.881 | 3.759 | 3.664 | 3.588 | 3.526 | 3.430 | 3.173 | 2.883 |
| 12      | 6.554 | 5.096 | 4.474 | 4.121 | 3.891 | 3.728 | 3.607 | 3.512 | 3.436 | 3.374 | 3.277 | 3.019 | 2.725 |
| 13      | 6.414 | 4.965 | 4.347 | 3.996 | 3.767 | 3.604 | 3.483 | 3.388 | 3.312 | 3.250 | 3.153 | 2.893 | 2.596 |
| 14      | 6.298 | 4.857 | 4.242 | 3.892 | 3.663 | 3.501 | 3.380 | 3.285 | 3.209 | 3.147 | 3.050 | 2.789 | 2.487 |
| 15      | 6.200 | 4.765 | 4.153 | 3.804 | 3.576 | 3.415 | 3.293 | 3.199 | 3.123 | 3.060 | 2.963 | 2.701 | 2.395 |
| 16      | 6.115 | 4.687 | 4.077 | 3.729 | 3.502 | 3.341 | 3.219 | 3.125 | 3.049 | 2.986 | 2.889 | 2.625 | 2.316 |
| 17      | 6.042 | 4.619 | 4.011 | 3.665 | 3.438 | 3.277 | 3.156 | 3.061 | 2.985 | 2.922 | 2.825 | 2.560 | 2.248 |
| 18      | 5.978 | 4.560 | 3.954 | 3.608 | 3.382 | 3.221 | 3.100 | 3.005 | 2.929 | 2.866 | 2.769 | 2.503 | 2.187 |
| 19      | 5.922 | 4.508 | 3.903 | 3.559 | 3.333 | 3.172 | 3.051 | 2.956 | 2.880 | 2.817 | 2.720 | 2.452 | 2.133 |
| 20      | 5.871 | 4.461 | 3.859 | 3.515 | 3.289 | 3.128 | 3.007 | 2.913 | 2.837 | 2.774 | 2.676 | 2.408 | 2.085 |
| 21      | 5.827 | 4.420 | 3.819 | 3.475 | 3.250 | 3.090 | 2.969 | 2.874 | 2.798 | 2.735 | 2.637 | 2.368 | 2.042 |
| 22      | 5.786 | 4.383 | 3.783 | 3.440 | 3.215 | 3.055 | 2.934 | 2.839 | 2.763 | 2.700 | 2.602 | 2.332 | 2.003 |
| 23      | 5.750 | 4.349 | 3.750 | 3.408 | 3.183 | 3.023 | 2.902 | 2.808 | 2.731 | 2.668 | 2.570 | 2.299 | 1.968 |
| 24      | 5.717 | 4.319 | 3.721 | 3.379 | 3.155 | 2.995 | 2.874 | 2.779 | 2.703 | 2.640 | 2.541 | 2.269 | 1.935 |
| 25      | 5.686 | 4.291 | 3.694 | 3.353 | 3.129 | 2.969 | 2.848 | 2.753 | 2.677 | 2.613 | 2.515 | 2.242 | 1.906 |
| 26      | 5.659 | 4.265 | 3.670 | 3.329 | 3.105 | 2.945 | 2.824 | 2.729 | 2.653 | 2.590 | 2.491 | 2.217 | 1.878 |
| 27      | 5.633 | 4.242 | 3.647 | 3.307 | 3.083 | 2.923 | 2.802 | 2.707 | 2.631 | 2.568 | 2.469 | 2.195 | 1.853 |
| 28      | 5.610 | 4.221 | 3.626 | 3.286 | 3.063 | 2.903 | 2.782 | 2.687 | 2.611 | 2.547 | 2.448 | 2.174 | 1.829 |
| 29      | 5.588 | 4.201 | 3.607 | 3.267 | 3.044 | 2.884 | 2.763 | 2.669 | 2.592 | 2.529 | 2.430 | 2.154 | 1.807 |
| 30      | 5.568 | 4.182 | 3.589 | 3.250 | 3.026 | 2.867 | 2.746 | 2.651 | 2.575 | 2.511 | 2.412 | 2.136 | 1.787 |
| 32      | 5.531 | 4.149 | 3.557 | 3.218 | 2.995 | 2.836 | 2.715 | 2.620 | 2.543 | 2.480 | 2.381 | 2.103 | 1.750 |
| 34      | 5.499 | 4.120 | 3.529 | 3.191 | 2.968 | 2.808 | 2.688 | 2.593 | 2.516 | 2.453 | 2.353 | 2.075 | 1.717 |
| 36      | 5.471 | 4.094 | 3.505 | 3.167 | 2.944 | 2.785 | 2.664 | 2.569 | 2.492 | 2.429 | 2.329 | 2.049 | 1.687 |
| 38      | 5.446 | 4.071 | 3.483 | 3.145 | 2.923 | 2.763 | 2.643 | 2.548 | 2.471 | 2.407 | 2.307 | 2.027 | 1.661 |
| 40      | 5.424 | 4.051 | 3.463 | 3.126 | 2.904 | 2.744 | 2.624 | 2.529 | 2.452 | 2.388 | 2.288 | 2.007 | 1.637 |
| 60      | 5.286 | 3.925 | 3.343 | 3.008 | 2.786 | 2.627 | 2.507 | 2.412 | 2.334 | 2.270 | 2.169 | 1.882 | 1.482 |
| 120     | 5.152 | 3.805 | 3.227 | 2.894 | 2.674 | 2.515 | 2.395 | 2.299 | 2.222 | 2.157 | 2.055 | 1.760 | 1.311 |
| ∞       | 5.024 | 3.689 | 3.116 | 2.786 | 2.567 | 2.408 | 2.288 | 2.192 | 2.114 | 2.048 | 1.945 | 1.640 | 1.000 |

### 1% Points for the F distribution

| <i>v</i> <sub>1</sub> = | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 12    | 24    | œ     |
|-------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $v_2$                   |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 1                       | 4052  | 4999  | 5403  | 5625  | 5764  | 5859  | 5928  | 5981  | 6022  | 6056  | 6107  | 6234  | 6366  |
| 2                       | 98.50 | 99.00 | 99.17 | 99.25 | 99.30 | 99.33 | 99.36 | 99.38 | 99.39 | 99.40 | 99.42 | 99.46 | 99.50 |
| 3                       | 34.12 | 30.82 | 29.46 | 28.71 | 28.24 | 27.91 | 27.67 | 27.49 | 27.35 | 27.23 | 27.05 | 26.60 | 26.13 |
| 4                       | 21.20 | 18.00 | 16.69 | 15.98 | 15.52 | 15.21 | 14.98 | 14.80 | 14.66 | 14.55 | 14.37 | 13.93 | 13.46 |
| 5                       | 16.26 | 13.27 | 12.06 | 11.39 | 10.97 | 10.67 | 10.46 | 10.29 | 10.16 | 10.05 | 9.888 | 9.466 | 9.021 |
| 6                       | 13.75 | 10.92 | 9.780 | 9.148 | 8.746 | 8.466 | 8.260 | 8.102 | 7.976 | 7.874 | 7.718 | 7.313 | 6.880 |
| 7                       | 12.25 | 9.547 | 8.451 | 7.847 | 7.460 | 7.191 | 6.993 | 6.840 | 6.719 | 6.620 | 6.469 | 6.074 | 5.650 |
| 8                       | 11.26 | 8.649 | 7.591 | 7.006 | 6.632 | 6.371 | 6.178 | 6.029 | 5.911 | 5.814 | 5.667 | 5.279 | 4.859 |
| 9                       | 10.56 | 8.022 | 6.992 | 6.422 | 6.057 | 5.802 | 5.613 | 5.467 | 5.351 | 5.257 | 5.111 | 4.729 | 4.311 |
| 10                      | 10.04 | 7.559 | 6.552 | 5.994 | 5.636 | 5.386 | 5.200 | 5.057 | 4.942 | 4.849 | 4.706 | 4.327 | 3.909 |
| 11                      | 9.646 | 7.206 | 6.217 | 5.668 | 5.316 | 5.069 | 4.886 | 4.744 | 4.632 | 4.539 | 4.397 | 4.021 | 3.603 |
| 12                      | 9.330 | 6.927 | 5.953 | 5.412 | 5.064 | 4.821 | 4.640 | 4.499 | 4.388 | 4.296 | 4.155 | 3.780 | 3.361 |
| 13                      | 9.074 | 6.701 | 5.739 | 5.205 | 4.862 | 4.620 | 4.441 | 4.302 | 4.191 | 4.100 | 3.960 | 3.587 | 3.165 |
| 14                      | 8.862 | 6.515 | 5.564 | 5.035 | 4.695 | 4.456 | 4.278 | 4.140 | 4.030 | 3.939 | 3.800 | 3.427 | 3.004 |
| 15                      | 8.683 | 6.359 | 5.417 | 4.893 | 4.556 | 4.318 | 4.142 | 4.004 | 3.895 | 3.805 | 3.666 | 3.294 | 2.869 |
| 16                      | 8.531 | 6.226 | 5.292 | 4.773 | 4.437 | 4.202 | 4.026 | 3.890 | 3.780 | 3.691 | 3.553 | 3.181 | 2.753 |
| 17                      | 8.400 | 6.112 | 5.185 | 4.669 | 4.336 | 4.101 | 3.927 | 3.791 | 3.682 | 3.593 | 3.455 | 3.083 | 2.653 |
| 18                      | 8.285 | 6.013 | 5.092 | 4.579 | 4.248 | 4.015 | 3.841 | 3.705 | 3.597 | 3.508 | 3.371 | 2.999 | 2.566 |
| 19                      | 8.185 | 5.926 | 5.010 | 4.500 | 4.171 | 3.939 | 3.765 | 3.631 | 3.523 | 3.434 | 3.297 | 2.925 | 2.489 |
| 20                      | 8.096 | 5.849 | 4.938 | 4.431 | 4.103 | 3.871 | 3.699 | 3.564 | 3.457 | 3.368 | 3.231 | 2.859 | 2.421 |
| 21                      | 8.017 | 5.780 | 4.874 | 4.369 | 4.042 | 3.812 | 3.640 | 3.506 | 3.398 | 3.310 | 3.173 | 2.801 | 2.360 |
| 22                      | 7.945 | 5.719 | 4.817 | 4.313 | 3.988 | 3.758 | 3.587 | 3.453 | 3.346 | 3.258 | 3.121 | 2.749 | 2.306 |
| 23                      | 7.881 | 5.664 | 4.765 | 4.264 | 3.939 | 3.710 | 3.539 | 3.406 | 3.299 | 3.211 | 3.074 | 2.702 | 2.256 |
| 24                      | 7.823 | 5.614 | 4.718 | 4.218 | 3.895 | 3.667 | 3.496 | 3.363 | 3.256 | 3.168 | 3.032 | 2.659 | 2.211 |
| 25                      | 7.770 | 5.568 | 4.675 | 4.177 | 3.855 | 3.627 | 3.457 | 3.324 | 3.217 | 3.129 | 2.993 | 2.620 | 2.170 |
| 26                      | 7.721 | 5.526 | 4.637 | 4.140 | 3.818 | 3.591 | 3.421 | 3.288 | 3.182 | 3.094 | 2.958 | 2.585 | 2.132 |
| 27                      | 7.677 | 5.488 | 4.601 | 4.106 | 3.785 | 3.558 | 3.388 | 3.256 | 3.149 | 3.062 | 2.926 | 2.552 | 2.097 |
| 28                      | 7.636 | 5.453 | 4.568 | 4.074 | 3.754 | 3.528 | 3.358 | 3.226 | 3.120 | 3.032 | 2.896 | 2.522 | 2.064 |
| 29                      | 7.598 | 5.420 | 4.538 | 4.045 | 3.725 | 3.499 | 3.330 | 3.198 | 3.092 | 3.005 | 2.868 | 2.495 | 2.034 |
| 30                      | 7.562 | 5.390 | 4.510 | 4.018 | 3.699 | 3.473 | 3.305 | 3.173 | 3.067 | 2.979 | 2.843 | 2.469 | 2.006 |
| 32                      | 7.499 | 5.336 | 4.459 | 3.969 | 3.652 | 3.427 | 3.258 | 3.127 | 3.021 | 2.934 | 2.798 | 2.423 | 1.956 |
| 34                      | 7.444 | 5.289 | 4.416 | 3.927 | 3.611 | 3.386 | 3.218 | 3.087 | 2.981 | 2.894 | 2.758 | 2.383 | 1.911 |
| 36                      | 7.396 | 5.248 | 4.377 | 3.890 | 3.574 | 3.351 | 3.183 | 3.052 | 2.946 | 2.859 | 2.723 | 2.347 | 1.872 |
| 38                      | 7.353 | 5.211 | 4.343 | 3.858 | 3.542 | 3.319 | 3.152 | 3.021 | 2.915 | 2.828 | 2.692 | 2.316 | 1.837 |
| 40                      | 7.314 | 5.178 | 4.313 | 3.828 | 3.514 | 3.291 | 3.124 | 2.993 | 2.888 | 2.801 | 2.665 | 2.288 | 1.805 |
| 60                      | 7.077 | 4.977 | 4.126 | 3.649 | 3.339 | 3.119 | 2.953 | 2.823 | 2.718 | 2.632 | 2.496 | 2.115 | 1.601 |
| 120                     | 6.851 | 4.787 | 3.949 | 3.480 | 3.174 | 2.956 | 2.792 | 2.663 | 2.559 | 2.472 | 2.336 | 1.950 | 1.381 |
| ∞                       | 6.635 | 4.605 | 3.782 | 3.319 | 3.017 | 2.802 | 2.639 | 2.511 | 2.407 | 2.321 | 2.185 | 1.791 | 1.000 |

# Probabilities for the Poisson distribution



# Probabilities for the Poisson distribution

|                                                            | <i>x</i> = | μ<br>2.80<br>3.00<br>3.10<br>3.20                   | 3.30<br>3.40<br>3.50<br>3.60<br>3.70                | 3.80<br>3.90<br>4.00<br>4.10                                                       | 4.30<br>4.40<br>4.50<br>4.70                                                       | 4.80<br>4.90<br>5.00<br>5.10<br>5.20                |
|------------------------------------------------------------|------------|-----------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------|
|                                                            | 13         | 1.00000<br>1.00000<br>1.00000<br>1.00000<br>0.99999 | 0.99999<br>0.99999<br>0.99997<br>799997             | 0.99996<br>0.99994<br>0.99992<br>0.99990<br>0.99987                                | 0.99984<br>0.99980<br>0.99975<br>0.99969<br>0.99961                                | 0.99953<br>0.99942<br>0.99930<br>0.99916<br>0.99899 |
|                                                            | 12         | 0.99999<br>0.99999<br>0.99998<br>0.99998            | 0.99996<br>0.99994<br>0.99992<br>0.99990<br>0.99987 | 0.99983<br>0.99973<br>0.99966<br>0.99966                                           | 0.99947<br>0.99934<br>0.99919<br>0.99902<br>0.99882                                | 0.99858<br>0.99830<br>0.99798<br>0.99761<br>0.99719 |
|                                                            | 11         | 0.99996<br>0.99995<br>0.99993<br>0.99990            | 0.99983<br>0.99978<br>0.99971<br>0.99963<br>0.99953 | 0.99941<br>0.99926<br>0.99908<br>0.99887<br>0.99863                                | 0.99833<br>0.99799<br>0.99760<br>0.99714<br>0.99661                                | 0.99601<br>0.99532<br>0.99455<br>0.99367<br>0.99269 |
|                                                            | 10         | 0.99984<br>0.99978<br>0.99971<br>0.99962<br>0.99950 | 0.99936<br>0.99919<br>0.99898<br>0.99873<br>0.99843 | 0.99807<br>0.99765<br>0.99716<br>0.99659<br>0.99593                                | 0.99518<br>0.99431<br>0.99333<br>0.99222<br>0.99098                                | 0.98958<br>0.98803<br>0.98630<br>0.98440<br>0.98230 |
|                                                            | 6          | 0.99934<br>0.99914<br>0.99890<br>0.99860<br>0.99824 | 0.99781<br>0.99729<br>0.99669<br>0.99598<br>0.99515 | 0.99420<br>0.99311<br>0.99187<br>0.99046<br>0.98887                                | 0.98709<br>0.98511<br>0.98291<br>0.98047<br>0.97779                                | 0.97486<br>0.97166<br>0.96817<br>0.96440<br>0.96033 |
| بار <u>۔</u>                                               | œ          | 0.99757<br>0.99694<br>0.99620<br>0.99532<br>0.99429 | 0.99309<br>0.99171<br>0.99013<br>0.98833<br>0.98630 | 0.98402<br>0.98147<br>0.97864<br>0.97551<br>0.97207                                | 0.96830<br>0.96420<br>0.95974<br>0.95493<br>0.94974                                | 0.94418<br>0.93824<br>0.93191<br>0.92518<br>0.91806 |
| $P(X \le x) = \sum_{t=0}^{\infty} \frac{e^{-t^2 \mu}}{t!}$ | 7          | 0.99187<br>0.99012<br>0.98810<br>0.98579<br>0.98317 | 0.98022<br>0.97693<br>0.97326<br>0.96921<br>0.96476 | 0.95989<br>0.95460<br>0.94887<br>0.94269<br>0.93606                                | 0.92897<br>0.92142<br>0.91341<br>0.90495<br>0.89603                                | 0.88667<br>0.87686<br>0.86663<br>0.85598<br>0.84492 |
| $P(X \le x)$                                               | 9          | 0.97559<br>0.97128<br>0.96649<br>0.96120<br>0.9538  | 0.94903<br>0.94215<br>0.93471<br>0.92673<br>0.91819 | 0.90911<br>0.89948<br>0.88933<br>0.87865<br>0.86746                                | 0.85579<br>0.84365<br>0.83105<br>0.81803<br>0.80461                                | 0.79080<br>0.77665<br>0.76218<br>0.74742<br>0.73239 |
|                                                            | w          | 0.93489<br>0.92583<br>0.91608<br>0.90567<br>0.89459 | 0.88288<br>0.87054<br>0.85761<br>0.84412<br>0.83009 | 0.81556<br>0.80056<br>0.78513<br>0.76931<br>0.75314                                | 0.73666<br>0.71991<br>0.70293<br>0.68576<br>0.68844                                | 0.65101<br>0.63350<br>0.61596<br>0.59842<br>0.58091 |
|                                                            | 4          | 0.84768<br>0.83178<br>0.81526<br>0.79819<br>0.78061 | 0.76259<br>0.74418<br>0.72544<br>0.70644<br>0.68722 | 0.66784<br>0.64837<br>0.62884<br>0.60931<br>0.58983                                | 0.57044<br>0.55118<br>0.53210<br>0.51323<br>0.49461                                | 0.47626<br>0.45821<br>0.44049<br>0.42313<br>0.40613 |
|                                                            | ဗ          | 0.69194<br>0.66962<br>0.64723<br>0.62484<br>0.60252 | 0.58034<br>0.55836<br>0.53663<br>0.51522<br>0.49415 | 0.47348<br>0.45325<br>0.43347<br>0.41418<br>0.39540                                | 0.37715<br>0.35945<br>0.34230<br>0.32571<br>0.30968                                | 0.29423<br>0.27934<br>0.26503<br>0.25127<br>0.23807 |
|                                                            | 7          | 0.46945<br>0.44596<br>0.42319<br>0.40116<br>0.37990 | 0.35943<br>0.33974<br>0.32085<br>0.30275<br>0.28543 | 0.26890<br>0.25313<br>0.23810<br>0.22381<br>0.21024                                | 0.19735<br>0.18514<br>0.17358<br>0.16264<br>0.15230                                | 0.14254<br>0.13333<br>0.12465<br>0.11648<br>0.10879 |
|                                                            | 1          | 0.23108<br>0.21459<br>0.19915<br>0.18470<br>0.17120 | 0.15860<br>0.14684<br>0.13589<br>0.12569<br>0.11620 | $\begin{array}{c} 0.10738 \\ 0.09919 \\ 0.09158 \\ 0.08452 \\ 0.07798 \end{array}$ | 0.07191<br>0.06630<br>0.06110<br>0.05629<br>0.05184                                | 0.04773<br>0.04393<br>0.04043<br>0.03719<br>0.03420 |
|                                                            | •          | 0.06081<br>0.05502<br>0.04979<br>0.04505<br>0.04076 | 0.03688<br>0.03337<br>0.03020<br>0.02732<br>0.02472 | $\begin{array}{c} 0.02237 \\ 0.02024 \\ 0.01832 \\ 0.01657 \\ 0.01500 \end{array}$ | $\begin{array}{c} 0.01357 \\ 0.01228 \\ 0.01111 \\ 0.01005 \\ 0.00910 \end{array}$ | 0.00823<br>0.00745<br>0.00674<br>0.00610<br>0.00552 |
|                                                            | = <i>x</i> | д<br>2.80<br>3.00<br>3.10<br>3.20                   | 3.30<br>3.40<br>3.50<br>3.60<br>3.70                | 3.80<br>3.90<br>4.00<br>4.10                                                       | 4.30<br>4.40<br>4.50<br>4.70                                                       | 4.80<br>4.90<br>5.00<br>5.10<br>5.20                |

x=
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 =
 
$$\frac{1}{10}$$

 p.00
 0.00012
 0.00023
 0.00146
 0.01470
 0.01470
 0.11580
 0.13580
 0.45587
 0.67897
 0.77810
 0.87873
 0.9180
 0.928
 0.0000
 0.00010
 0.00024
 0.00146
 0.01446
 0.01440
 0.11580
 0.28540
 0.25183
 0.5483
 0.73873
 0.74873
 0.74873
 0.8893
 0.74873
 0.6789
 0.8849
 0.1080
 0.2483
 0.8849
 0.1080
 0.0080
 0.0044
 0.8849
 0.1080
 0.24233
 0.6789
 0.48843
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849
 0.8849

8.6.3.6

5.30 5.30 7.25 7.50 7.50

7.75 8.00 8.25 8.50 8.75

x=
 14
 15
 16
 
$$X \le x^4$$
 $x^4$ 
 $x^4$ <

н 18.00 18.50 19.50 20.00 20.50 21.00 21.50 22.00 22.50

# Probabilities for the Binomial distribution

The function tabulated is  $P(X \le x) = \sum_{t=1}^{x} {n \choose t} p^{t} q^{n-t}$ .

|                                                                                         | 0.99 | 0.0001               | 0.0000<br>0.0003<br>0.0297                                | $\begin{array}{c} 0.0000 \\ 0.0000 \\ 0.0006 \\ 0.0394 \end{array}$ | 0.0000<br>0.0000<br>0.0000<br>0.0010<br>0.0490                                | $\begin{array}{c} 0.0000\\ 0.0000\\ 0.0000\\ 0.0000\\ 0.0015\\ 0.0585 \end{array}$               | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0020           |
|-----------------------------------------------------------------------------------------|------|----------------------|-----------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                                                                         | 0.95 | 0.0025               | 0.0001<br>0.0073<br>0.1426                                | $\begin{array}{c} 0.0000 \\ 0.0005 \\ 0.0140 \\ 0.1855 \end{array}$ | 0.0000<br>0.0000<br>0.0012<br>0.0226<br>0.2262                                | 0.0000<br>0.0000<br>0.0022<br>0.0328<br>0.2649                                                   | 0.0000<br>0.0000<br>0.0000<br>0.0002<br>0.0038<br>0.0444           |
|                                                                                         | 6.0  | 0.0100               | $\begin{array}{c} 0.0010 \\ 0.0280 \\ 0.2710 \end{array}$ | 0.0001<br>0.0037<br>0.0523<br>0.3439                                | $\begin{array}{c} 0.0000 \\ 0.0005 \\ 0.0086 \\ 0.0815 \\ 0.4095 \end{array}$ | 0.0000<br>0.0001<br>0.0159<br>0.1143<br>0.4686                                                   | 0.0000<br>0.0000<br>0.0002<br>0.0027<br>0.0257<br>0.1497<br>0.5217 |
|                                                                                         | 8.0  | 0.0400               | $\begin{array}{c} 0.0080 \\ 0.1040 \\ 0.4880 \end{array}$ | $\begin{array}{c} 0.0016 \\ 0.0272 \\ 0.1808 \\ 0.5904 \end{array}$ | 0.0003<br>0.0067<br>0.0579<br>0.2627<br>0.6723                                | 0.0001<br>0.0016<br>0.0170<br>0.0989<br>0.3446<br>0.7379                                         | 0.0000<br>0.0004<br>0.0333<br>0.1480<br>0.4233                     |
|                                                                                         | 0.75 | 0.0625               | $\begin{array}{c} 0.0156 \\ 0.1563 \\ 0.5781 \end{array}$ | 0.0039<br>0.0508<br>0.2617<br>0.6836                                | 0.0010<br>0.0156<br>0.1035<br>0.3672<br>0.7627                                | 0.0002<br>0.0046<br>0.0376<br>0.1694<br>0.4661<br>0.8220                                         | 0.0001<br>0.0013<br>0.0129<br>0.0706<br>0.2436<br>0.5551<br>0.8665 |
| <i>p.d.</i>                                                                             | 0.7  | 0.0900               | $\begin{array}{c} 0.0270 \\ 0.2160 \\ 0.6570 \end{array}$ | 0.0081<br>0.0837<br>0.3483<br>0.7599                                | $\begin{array}{c} 0.0024 \\ 0.0308 \\ 0.1631 \\ 0.4718 \\ 0.8319 \end{array}$ | 0.0007<br>0.0109<br>0.0705<br>0.2557<br>0.5798<br>0.8824                                         | 0.0002<br>0.0038<br>0.0288<br>0.1260<br>0.3529<br>0.6706           |
| I he function tabulated is $P(X \le x) = \sum_{t=0}^{\infty} {t \choose t} p^t q^{t}$ . | 9.0  | 0.1600 0.6400        | $\begin{array}{c} 0.0640 \\ 0.3520 \\ 0.7840 \end{array}$ | 0.0256<br>0.1792<br>0.5248<br>0.8704                                | 0.0102<br>0.0870<br>0.3174<br>0.6630<br>0.9222                                | 0.0041<br>0.0410<br>0.1792<br>0.4557<br>0.7667<br>0.9533                                         | 0.0016<br>0.0188<br>0.0963<br>0.2898<br>0.5801<br>0.8414           |
| $(x \leq X)$                                                                            | 0.5  | 0.2500<br>0.7500     | $\begin{array}{c} 0.1250 \\ 0.5000 \\ 0.8750 \end{array}$ | 0.0625<br>0.3125<br>0.6875<br>0.9375                                | $\begin{array}{c} 0.0313 \\ 0.1875 \\ 0.5000 \\ 0.8125 \\ 0.9688 \end{array}$ | 0.0156<br>0.1094<br>0.3438<br>0.6563<br>0.8906<br>0.9844                                         | 0.0078<br>0.0625<br>0.2266<br>0.5000<br>0.7734<br>0.9375           |
| ted 1s P(                                                                               | 0.4  | 0.3600               | $\begin{array}{c} 0.2160 \\ 0.6480 \\ 0.9360 \end{array}$ | 0.1296<br>0.4752<br>0.8208<br>0.9744                                | 0.0778<br>0.3370<br>0.6826<br>0.9130<br>0.9898                                | 0.0467<br>0.2333<br>0.5443<br>0.8208<br>0.9590<br>0.9959                                         | 0.0280<br>0.1586<br>0.4199<br>0.7102<br>0.9037<br>0.9812           |
| n tabulai                                                                               | 0.3  | 0.4900               | 0.3430<br>0.7840<br>0.9730                                | 0.2401<br>0.6517<br>0.9163<br>0.9919                                | 0.1681<br>0.5282<br>0.8369<br>0.9692<br>0.9976                                | 0.1176<br>0.4202<br>0.7443<br>0.9295<br>0.9891<br>0.9993                                         | 0.0824<br>0.3294<br>0.6471<br>0.8740<br>0.9912<br>0.9962           |
| e functio                                                                               | 0.25 | 0.5625<br>0.9375     | $\begin{array}{c} 0.4219 \\ 0.8438 \\ 0.9844 \end{array}$ | 0.3164<br>0.7383<br>0.9492<br>0.9961                                | 0.2373<br>0.6328<br>0.8965<br>0.9844<br>0.9990                                | 0.1780<br>0.5339<br>0.8306<br>0.9624<br>0.9954<br>0.9998                                         | 0.1335<br>0.4449<br>0.7564<br>0.9294<br>0.9987<br>0.9987           |
| I be                                                                                    | 0.2  | 0.6400               | $\begin{array}{c} 0.5120 \\ 0.8960 \\ 0.9920 \end{array}$ | $\begin{array}{c} 0.4096 \\ 0.8192 \\ 0.9728 \\ 0.9984 \end{array}$ | 0.3277<br>0.7373<br>0.9421<br>0.9933<br>0.9997                                | 0.2621<br>0.6554<br>0.9011<br>0.9830<br>0.9984<br>0.9999                                         | 0.2097<br>0.5767<br>0.8520<br>0.9667<br>0.9953<br>0.9996           |
|                                                                                         | 0.1  | 0.8100               | 0.7290<br>0.9720<br>0.9990                                | 0.6561<br>0.9477<br>0.9963<br>0.9999                                | 0.5905<br>0.9185<br>0.9914<br>0.9995<br>1.0000                                | 0.5314<br>0.8857<br>0.9842<br>0.9987<br>0.9999<br>1.0000                                         | 0.4783<br>0.8503<br>0.9743<br>0.9973<br>0.9998<br>1.0000           |
|                                                                                         | 0.05 | 0.9025<br>0.9975     | $0.8574 \\ 0.9928 \\ 0.9999$                              | $\begin{array}{c} 0.8145 \\ 0.9860 \\ 0.9995 \\ 1.0000 \end{array}$ | 0.7738<br>0.9774<br>0.9988<br>1.0000<br>1.0000                                | 0.7351<br>0.9672<br>0.9978<br>0.9999<br>1.0000                                                   | 0.6983<br>0.9556<br>0.9962<br>0.9998<br>1.0000<br>1.0000           |
|                                                                                         | 0.01 | 0.9801               | 0.9703<br>0.9997<br>1.0000                                | 0.9606<br>0.9994<br>1.0000<br>1.0000                                | 0.9510<br>0.9990<br>1.0000<br>1.0000                                          | 0.9415<br>0.9985<br>1.0000<br>1.0000<br>1.0000                                                   | 0.9321<br>0.9980<br>1.0000<br>1.0000<br>1.0000<br>1.0000           |
|                                                                                         | =d   | <b>n x</b> 2 2 0 1 2 | 3 0<br>3 2 1<br>2 2                                       | 4444<br>0128                                                        | 5 5 5 0 0 5 4 4 3 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                           | 6<br>6<br>6<br>7<br>8<br>6<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | 0128432                                                            |
|                                                                                         |      |                      |                                                           |                                                                     |                                                                               |                                                                                                  |                                                                    |

# Probabilities for the Binomial distribution

The function tabulated is  $P(X \le x) = \sum_{t=0}^{x} {n \choose t} p^t q^{n-t}$ .

|                   | 0.99 |   | 0.0000 | 0.0000 | 0.0000   | 0.0000 | 0.0000 | 0.0001 | 0.0027 | 0000   | 0.000  | 0.0000     | 0.000      | 0.0000     | 0.0000 | 0.0000 | 0.0001 | 0.0034 | 0.0865 | 0.0000 | 0.0000 | 0.0000  | 0.0000  | 0.0000 | 0.0000 | 0.0000 | 0.0001 | 0.0043 | 0.0956  |
|-------------------|------|---|--------|--------|----------|--------|--------|--------|--------|--------|--------|------------|------------|------------|--------|--------|--------|--------|--------|--------|--------|---------|---------|--------|--------|--------|--------|--------|---------|
|                   | 0.95 |   | 0.0000 | 0.0000 | 0.0000   | 0.0000 | 0.0004 | 0.0038 | 0.3366 | 0000   | 00000  | 0.000      | 0.000      | 0.000      | 0.0000 | 9000.0 | 0.0084 | 0.0712 | 0.3698 | 0.0000 | 0.000  | 0.0000  | 0.0000  | 0.0000 | 0.0001 | 0.0010 | 0.0115 | 0.0861 | 0.4013  |
|                   | 6.0  |   | 0.0000 | 0.0000 | 0.0000   | 0.0004 | 0.0050 | 0.0301 | 0.5695 | 0000   | 0.000  | 0.000      | 0.000      | 0.0001     | 0.000  | 0.0083 | 0.0530 | 0.2252 | 0.6126 | 0.0000 | 0.0000 | 0.000.0 | 0.000.0 | 0.0001 | 0.0016 | 0.0128 | 0.0702 | 0.2639 | 0.6513  |
|                   | 8.0  |   | 0.0000 | 0.0001 | 0.0012   | 0.0104 | 0.0563 | 0.2031 | 0.8322 | 0000   | 0.000  | 0.0000     | 0.0003     | 0.0031     | 0.0196 | 0.0856 | 0.2618 | 0.5638 | 0.8658 | 0.0000 | 0.0000 | 0.0001  | 0.000   | 0.0064 | 0.0328 | 0.1209 | 0.3222 | 0.6242 | 0.8926  |
|                   | 0.75 |   | 0.0000 | 0.0004 | 0.0042   | 0.02/3 | 0.1138 | 0.5213 | 0.8999 | 0000   | 0.000  | 0.0001     | 0.0013     | 0.0100     | 0.0489 | 0.1657 | 0.3993 | 0.6997 | 0.9249 | 0.0000 | 0.000  | 0.0004  | 0.0035  | 0.0197 | 0.0781 | 0.2241 | 0.4744 | 0.7560 | 0.9437  |
|                   | 0.7  |   | 0.0001 | 0.0013 | 0.0113   | 0.0580 | 0.1941 | 0.4402 | 0.9424 | 0000   | 0.000  | 0.0004     | 0.0043     | 0.0253     | 0.0988 | 0.2703 | 0.5372 | 0.8040 | 0.9596 | 0.0000 | 0.0001 | 0.0016  | 0.0106  | 0.0473 | 0.1503 | 0.3504 | 0.6172 | 0.8507 | 0.9718  |
| $t=0 \setminus t$ | 9.0  |   | 0.0007 | 0.0085 | 0.0498   | 0.1/5/ | 0.4059 | 0.0040 | 0.9832 | 0000   | 0.0003 | 0.0038     | 0.0230     | 0.0994     | 0.2666 | 0.5174 | 0.7682 | 0.9295 | 0.9899 | 0.0001 | 0.0017 | 0.0123  | 0.0548  | 0.1662 | 0.3669 | 0.6177 | 0.8327 | 0.9536 | 0.9940  |
|                   | 0.5  |   | 0.0039 | 0.0352 | 0.1445   | 0.5055 | 0.656/ | 0.0333 | 0.9961 | 0000   | 0.0020 | 0.0193     | 0.0898     | 0.2539     | 0.5000 | 0.7461 | 0.9102 | 0.9805 | 0.9980 | 0.0010 | 0.0107 | 0.0547  | 0.1719  | 0.3770 | 0.6230 | 0.8281 | 0.9453 | 0.9893 | 0.666.0 |
|                   | 6.4  |   | 0.0168 | 0.1064 | 0.5154   | 0.5941 | 0.8263 | 0.9302 | 0.9993 | 0.0101 | 0.0101 | 0.0/0.0    | 0.2318     | 0.4826     | 0.7334 | 9006.0 | 0.9750 | 0.9962 | 0.9997 | 0.0060 | 0.0464 | 0.1673  | 0.3823  | 0.6331 | 0.8338 | 0.9452 | 0.9877 | 0.9983 | 0.9999  |
|                   | 0.3  |   | 0.0576 | 0.2333 | 0.5518   | 0.8059 | 0.9420 | 0.9007 | 0.9999 | 7070   | 1010   | 0.1900     | 0.4628     | 0.7297     | 0.9012 | 0.9747 | 0.9957 | 9666.0 | 1.0000 | 0.0282 | 0.1493 | 0.3828  | 0.6496  | 0.8497 | 0.9527 | 0.9894 | 0.9984 | 0.9999 | 1.0000  |
|                   | 0.25 |   | 0.1001 | 0.56/1 | 0.0 / 85 | 0.8862 | 0.9727 | 0.9930 | 1.0000 | 12200  | 0.07   | 0.3003     | 0.0007     | 0.8343     | 0.9511 | 0.9900 | 0.9987 | 0.9999 | 1.0000 | 0.0563 | 0.2440 | 0.5256  | 0.7759  | 0.9219 | 0.9803 | 0.9965 | 0.9996 | 1.0000 | 1.0000  |
|                   | 0.2  |   | 0.1678 | 0.5053 | 0.7969   | 0.945/ | 0.9896 | 0.9900 | 1.0000 | 0 1343 | 0.1342 | 0.4302     | 0.7382     | 0.9144     | 0.9804 | 6966.0 | 0.9997 | 1.0000 | 1.0000 | 0.1074 | 0.3758 | 0.6778  | 0.8791  | 0.9672 | 0.9936 | 0.9991 | 0.9999 | 1.0000 | 1.0000  |
|                   | 0.1  |   | 0.4305 | 0.8131 | 0.9619   | 0.9950 | 0.9996 | 1.0000 | 1.0000 | 10000  | 0.30/4 | 0.7/48     | 0.94/0     | 0.9917     | 0.9991 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 0.3487 | 0.7361 | 0.9298  | 0.9872  | 0.9984 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000  |
|                   | 0.05 |   | 0.6634 | 0.9428 | 0.9942   | 0.9996 | 1.0000 | 1.0000 | 1.0000 | 0000   | 20200  | 0.9288     | 0.9916     | 0.9994     | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.5987 | 0.9139 | 0.9885  | 0.666.0 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  |
|                   | 0.01 |   | 0.9227 | 0.9973 | 0.9999   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0125 | 0.9133 | 0.9900     | 1,0000     | 1.0000     | 0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9044 | 0.9957 | 0.9999  | 1.0000  | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000  |
|                   | =d   | x | 0      | - c    | 71       |        | 4 4    | o 4    | 0      | -      | > -    |            | 70         | · ·        | 4      | 2      | 9      | _      | ∞      | 0      | _      | 7       | 3       | 4      | 2      | 9      | 7      | ∞      | 6       |
|                   |      | Z | ∞ ∘    | N G    | ĸ) C     | ĸ c    | κ o    | U C    | U 000  | -      | nc     | <i>y</i> c | <i>)</i> ( | <i>ر</i> د | ٠ م    | 2      | 5      | 5      | 5      | 10     | 2      | 2       | 2       | 2      | 10     | 1      | 1      | 2      | 2       |

# Probabilities for the Binomial distribution

The function tabulated is  $P(X \le x) = \sum_{i=1}^{x} {n \choose i} p^{i} q^{n-i}$ .

|                                                                            | 0.99 |     | 0.0000             | 0.0000 | 0.0000 | 0.0000 | 00000  | 0.0000 | 0.0062 | 0.1136 | 0.0000 | 0.000  | 0.0000 | 0.0000 | 0.0000 | 0000   | 0.0000 | 0.0000 | 0.0000 | 00000  | 0.0000 | 0.0000 | 0.0000   | 0.0000 | 0.0010 | 0.1821 |  |
|----------------------------------------------------------------------------|------|-----|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|----------|--------|--------|--------|--|
|                                                                            | 0.95 |     | 0.0000             | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0022 | 0.118  | 0.4596 | 0.0000 | 0.000  | 0.0000 | 0.0000 | 0.0000 | 0000   | 0.0000 | 0.000  | 0.0000 | 0.000  | 0.0000 | 0.0003 | 0.0026   | 0.0159 | 0.0755 | 0.6415 |  |
|                                                                            | 6.0  |     | 0.0000             | 0.0000 | 0.0000 | 0.0001 | 0.0003 | 0.0256 | 0.3410 | 0.7176 | 0.0000 | 0.000  | 0.0000 | 0.0000 | 0.0000 | 0000   | 0.0000 | 0.0000 | 0.0000 | 0.000  | 0.0024 | 0.0113 | 0.0432   | 0.1330 | 0.3231 | 0.8784 |  |
|                                                                            | 8.0  |     | 0.0000             | 0.0000 | 0.0006 | 0.0039 | 0.0194 | 0.2054 | 0.7251 | 0.9313 | 0.0000 | 0.000  | 0.0000 | 0.0000 | 0.0000 | 0000   | 0.0001 | 0.0006 | 0.0026 | 0.0100 | 0.0867 | 0.1958 | 0.3704   | 0.5886 | 0.7939 | 0.9885 |  |
|                                                                            | 0.75 |     | 0.0000             | 0.0000 | 0.0028 | 0.0143 | 0.0544 | 0.3512 | 0.8416 | 0.9683 | 0.0000 | 0.000  | 0.0000 | 0.0000 | 0.0000 | 0.000  | 0.0000 | 0.0039 | 0.0139 | 0.0403 | 0.2142 | 0.3828 | 0.5852   | 0.7748 | 0.9087 | 0.9968 |  |
| $b_i q_{i-1}$                                                              | 0.7  |     | 0.0000             | 0.0002 | 0.0095 | 0.0386 | 0.1178 | 0.5075 | 0.9150 | 0.9862 | 0.0000 | 0.000  | 0.0000 | 0.0000 | 0.0000 | 0.0003 | 0.0051 | 0.0171 | 0.0480 | 0.2277 | 0.3920 | 0.5836 | 0.7625   | 0.8929 | 0.9645 | 0.9992 |  |
| $=\sum_{t=0}^{\infty} \left(\frac{t}{t}\right)$                            | 9.0  |     | 0.0000             | 0.0028 | 0.0573 | 0.1582 | 0.5548 | 0.7747 | 0.9804 | 0.9978 | 0.0000 | 0.000  | 0.0000 | 0.0003 | 0.0016 | 0.0065 | 0.0565 | 0.1275 | 0.2447 | 0.5841 | 0.7500 | 0.8744 | 0.9490   | 0.9840 | 0.9964 | 1.0000 |  |
| :(X ≥ X)                                                                   | 0.5  |     | 0.0002<br>0.0032   | 0.0193 | 0.1938 | 0.3872 | 0.6128 | 0.9270 | 0.9968 | 0.9998 | 0.0000 | 0.000  | 0.0013 | 0.0059 | 0.0207 | 0.05// | 0.2517 | 0.4119 | 0.5881 | 0.7463 | 0.9423 | 0.9793 | 0.9941   | 0.9987 | 0.9998 | 1.0000 |  |
| ted is <i>P</i> (                                                          | 9.4  |     | $0.0022 \\ 0.0196$ | 0.0834 | 0.4382 | 0.6652 | 0.8418 | 0.9847 | 0.9997 | 1.0000 | 0.0000 | 0.0003 | 0.0160 | 0.0510 | 0.1256 | 0.2500 | 0.5956 | 0.7553 | 0.8725 | 0 9790 | 0.9935 | 0.9984 | 0.9997   | 1.0000 | 1.0000 | 1.0000 |  |
| n tabula                                                                   | 0.3  |     | 0.0138 $0.0850$    | 0.2528 | 0.7237 | 0.8822 | 0.9614 | 0.9983 | 1.0000 | 1.0000 | 0.0008 | 0.0076 | 0.1071 | 0.2375 | 0.4164 | 0.6080 | 0.8867 | 0.9520 | 0.9829 | 0.9947 | 0.9997 | 1.0000 | 1.0000   | 1.0000 | 1.0000 | 1.0000 |  |
| The function tabulated is $P(X \le x) = \sum_{t=0}^{\infty} {t \choose t}$ | 0.25 |     | 0.0317 $0.1584$    | 0.3907 | 0.8424 | 0.9456 | 0.985/ | 0.9996 | 1.0000 | 1.0000 | 0.0032 | 0.0245 | 0.2252 | 0.4148 | 0.6172 | 0.7858 | 0.9591 | 0.9861 | 0.9961 | 0 9998 | 1.0000 | 1.0000 | 1.0000   | 1.0000 | 1.0000 | 1.0000 |  |
| The                                                                        | 0.2  |     | 0.0687 0.2749      | 0.5583 | 0.9274 | 0.9806 | 0.9961 | 0.9999 | 1.0000 | 1.0000 | 0.0115 | 0.061  | 0.4114 | 0.6296 | 0.8042 | 0.9133 | 0.66.0 | 0.9974 | 0.9994 | 1 0000 | 1.0000 | 1.0000 | 1.0000   | 1.0000 | 1.0000 | 1.0000 |  |
|                                                                            | 0.1  |     | $0.2824 \\ 0.6590$ | 0.8891 | 0.9957 | 0.9995 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.1216 | 0.6769 | 0.8670 | 0.9568 | 0.9887 | 0/66.0 | 0.9999 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000   | 1.0000 | 1.0000 | 1.0000 |  |
|                                                                            | 0.05 |     | $0.5404 \\ 0.8816$ | 0.9804 | 0.9998 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.3585 | 0.7558 | 0.9841 | 0.9974 | 0.9997 | 0000   | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000   | 1.0000 | 1.0000 | 1.0000 |  |
|                                                                            | 0.01 |     | 0.8864 0.9938      | 0.9998 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.8179 | 0.9951 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000   | 1.0000 | 1.0000 | 1.0000 |  |
|                                                                            | =d   | x ı | 1 0                |        |        |        |        |        |        | _      |        |        |        |        |        |        |        |        |        |        |        |        |          |        |        | 0 19   |  |
|                                                                            |      | `   | 12                 |        | : =1   |        | 12     |        |        | -1     | 20     | 70     | เฉ     | 7      | ă ?    | 72     | เฉ     | 7      | Ōδ     | 4 C    | าฐ     | 7      | <u>۾</u> | Ñ,     | Ńζ     | 121    |  |

Critical values for the Grouping of Signs test

|       |          |        |           | $n_1$                |                                              |                                        |     |
|-------|----------|--------|-----------|----------------------|----------------------------------------------|----------------------------------------|-----|
|       |          | 7 to 4 | w 0 1 8 9 | 12<br>12<br>13<br>13 | 15<br>16<br>17<br>18<br>19                   | 20<br>22<br>23<br>24<br>24             | 25  |
|       | -        |        |           |                      |                                              |                                        |     |
|       | 2        |        |           |                      |                                              |                                        | 1   |
|       | 4        |        |           | 7                    | 00000                                        | 22222                                  | 2 2 |
|       | 'n       | -      |           | 44444                | 44444                                        | 4444                                   | 33  |
|       | 9        | -      | 7         | 00000                | 00000                                        | $\omega\omega\omega\omega\omega\omega$ | 33  |
|       | 7        | -      |           | 44446                | $\omega\omega\omega\omega\omega\omega$       | $\omega\omega\omega\omega\omega\omega$ | 4   |
|       | <b>∞</b> | -      | 000       | 770000               | $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ | 44444                                  | 4   |
|       | 6        |        | -0000     | 0,0,0,0,0            | w w 4 4 4                                    | 44444                                  | 4   |
|       | 10       |        | -0000     | mmmmm                | 44444                                        | 444vv                                  | 5   |
|       | Ξ        |        | -4446     | www44                | 44444                                        | ννννν                                  | 5   |
| $n_2$ | 12       |        | 3222      | ww444                | 4 4 4 v v                                    | ννννν                                  | 9   |
|       | 13       |        | 83355     | ww444                | 4 ~ ~ ~ ~ ~                                  | 00222                                  | 9   |
|       | 4        |        | 00000     | w 4 4 4 4            | ννννν                                        | 0000                                   | 9   |
|       | 15       |        | 00000     | w444w                | 00000                                        | 9999                                   | 7   |
|       | 16       |        | 00000     | 4444v                | 00000                                        | 99977                                  | 7   |
|       | 17       |        | 00000     | 444vv                | 0000                                         | 9977                                   | 7   |
|       | 18       |        | 33335     | 444vv                | 9999                                         | 7777                                   | 7   |
|       | 19       |        | 00004     | 4 4 v v v            | 0000                                         | LLLL                                   | ∞   |
|       | 70       |        | 00mm4     | 44 v v v             | 7666                                         | r-r-88                                 | ∞   |
|       | 21       |        | 00mm4     | 44 v v v             | 9977                                         | <b>∠ ∠</b> ∞ ∞ ∞                       | ∞   |
|       | 22       |        | 00004     | 40000                | 99111                                        | $\sim \infty \infty \infty$            | ∞   |
|       | 23       | 7      | 0,0,0,0,4 | 40000                | 77766                                        | $\sim \infty \infty \infty \infty$     | 6   |
|       | 22       | 7      | 0 8 8 4 4 | 4 5 5 9 9            | 9                                            | ××××0                                  | 6   |
|       | 25       | 1 2    | 0.6644    | 4 5 5 9              | 87770                                        | 88800                                  | 6   |
|       |          |        |           |                      |                                              |                                        |     |

The table shows the greatest integer x for which  $\sum_{t=1}^{x} \binom{n_1-1}{t-1} \binom{n_2+1}{t} / \binom{n_1+n_2}{n_1} < 0.05.$ 

#### Pseudorandom values from U(0,1)

| 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.587 | 0.155 | 0.999 | 0.122 | 0.659 | 0.975 | 0.059 | 0.567 | 0.651 | 0.686 |
| 0.030 | 0.447 | 0.048 | 0.201 | 0.931 | 0.071 | 0.033 | 0.388 | 0.849 | 0.033 |
| 0.048 | 0.224 | 0.359 | 0.463 | 0.710 | 0.861 | 0.972 | 0.543 | 0.550 | 0.248 |
| 0.593 | 0.478 | 0.929 | 0.301 | 0.688 | 0.750 | 0.211 | 0.911 | 0.479 | 0.046 |
| 0.165 | 0.113 | 0.695 | 0.513 | 0.711 | 0.402 | 0.121 | 0.843 | 0.951 | 0.229 |
| 0.788 | 0.493 | 0.329 | 0.160 | 0.708 | 0.309 | 0.878 | 0.650 | 0.279 | 0.617 |
| 0.714 | 0.980 | 0.946 | 0.530 | 0.973 | 0.440 | 0.728 | 0.652 | 0.303 | 0.398 |
| 0.265 | 0.320 | 0.065 | 0.573 | 0.708 | 0.682 | 0.014 | 0.128 | 0.113 | 0.938 |
| 0.712 | 0.524 | 0.747 | 0.136 | 0.004 | 0.165 | 0.070 | 0.431 | 0.201 | 0.965 |
| 0.630 | 0.933 | 0.863 | 0.802 | 0.642 | 0.625 | 0.244 | 0.961 | 0.458 | 0.127 |
| 0.569 | 0.813 | 0.341 | 0.055 | 0.483 | 0.756 | 0.186 | 0.273 | 0.443 | 0.618 |
| 0.766 | 0.449 | 0.026 | 0.276 | 0.977 | 0.410 | 0.102 | 0.695 | 0.487 | 0.640 |
| 0.638 | 0.335 | 0.466 | 0.808 | 0.907 | 0.162 | 0.355 | 0.333 | 0.529 | 0.390 |
| 0.984 | 0.575 | 0.300 | 0.836 | 0.276 | 0.638 | 0.674 | 0.625 | 0.885 | 0.451 |
| 0.721 | 0.857 | 0.303 | 0.076 | 0.124 | 0.688 | 0.455 | 0.536 | 0.842 | 0.533 |
| 0.028 | 0.271 | 0.245 | 0.290 | 0.534 | 0.924 | 0.093 | 0.724 | 0.651 | 0.422 |
| 0.726 | 0.399 | 0.474 | 0.221 | 0.898 | 0.838 | 0.723 | 0.139 | 0.219 | 0.711 |
| 0.218 | 0.240 | 0.036 | 0.206 | 0.582 | 0.203 | 0.676 | 0.371 | 0.791 | 0.069 |
| 0.792 | 0.704 | 0.959 | 0.615 | 0.440 | 0.311 | 0.994 | 0.785 | 0.041 | 0.737 |
| 0.656 | 0.285 | 0.886 | 0.954 | 0.846 | 0.595 | 0.215 | 0.484 | 0.158 | 0.435 |

#### Pseudorandom values from N(0,1)

| 1      | 2      | 3      | 4      | 5      | 6      | 7      | 8      | 9      | 10     |
|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| -0.603 | 0.825  | 1.166  | 1.880  | 1.261  | 2.542  | 0.312  | 0.611  | 0.286  | 0.223  |
| 1.469  | 0.282  | -1.250 | -1.176 | -0.064 | 0.860  | -1.505 | -0.828 | -0.965 | -0.166 |
| -2.199 | 0.169  | 0.278  | 0.580  | -0.875 | 0.373  | -0.132 | -0.153 | -1.322 | 2.340  |
| 1.863  | -1.302 | 0.260  | -1.023 | 0.114  | -0.904 | 0.500  | -0.255 | 0.283  | 0.291  |
| 0.076  | 0.373  | -0.448 | 0.998  | 0.149  | 1.987  | -0.405 | 0.324  | 0.112  | -1.367 |
| -0.667 | -0.589 | 0.080  | 1.007  | 1.548  | 1.204  | 1.886  | -0.080 | 0.341  | -0.808 |
| 0.495  | -1.693 | 0.647  | 0.172  | 1.143  | -1.519 | -2.557 | 1.351  | -0.466 | 0.494  |
| -0.161 | 0.990  | -1.348 | 2.047  | 0.167  | 0.599  | -0.530 | 1.244  | 0.278  | 0.627  |
| 1.105  | 0.851  | -1.012 | 0.891  | 0.256  | 0.297  | 1.267  | -0.053 | -1.776 | 1.392  |
| 0.800  | -0.867 | 0.229  | -0.534 | -0.602 | 1.685  | -1.210 | -0.986 | 0.979  | 0.810  |
| -0.738 | 0.765  | -2.068 | -0.660 | 2.704  | 0.161  | 0.790  | -0.284 | -1.041 | -0.852 |
| -0.489 | -0.250 | -0.917 | -2.549 | -1.879 | 0.156  | -1.451 | -0.158 | -2.252 | -0.309 |
| 0.170  | -1.623 | 0.442  | -0.253 | -0.786 | -0.468 | 0.435  | 1.544  | -1.014 | -1.187 |
| -1.301 | -0.901 | 0.810  | -0.244 | 0.524  | -0.622 | -0.785 | -0.949 | -0.923 | 0.510  |
| 0.059  | -1.489 | 0.235  | -0.230 | 1.262  | 0.751  | -0.377 | 0.631  | 0.520  | 1.508  |
| 0.599  | 0.196  | -1.785 | -0.899 | -1.347 | -0.227 | 1.027  | 0.704  | 1.943  | -0.902 |
| 0.329  | -1.008 | 0.834  | 1.079  | -0.101 | -0.322 | -0.315 | -0.254 | -0.711 | -0.285 |
| -0.229 | 0.446  | 0.086  | 0.024  | 0.555  | -0.360 | 0.111  | 0.589  | -0.325 | -0.056 |
| -0.987 | -0.214 | 0.925  | -0.656 | 1.991  | 1.030  | -0.961 | -0.078 | 1.023  | -0.070 |
| 0.805  | -0.359 | -1.179 | 0.324  | -0.208 | -0.632 | 1.170  | -0.432 | 0.716  | -1.801 |