Федеральное государственное бюджетное образовательное учреждение
высшего образования

"Уфимский государственный авиационный технический университет"

Кафедра Высокопроизводительных вычислительных технологий и систем

Дисциплина: Математическое моделирование

Отчет по лабораторной работе № 2

на тему: «Компьютерное моделирование динамики трех тел»

Группа ПМ-453	Фамилия И.О.	Подпись	Дата	Оценка
Студент	Шамаев И.Р.			
Принял	Лукащук В.О.			

Цель работы: получить навык численного расчета траекторий движения небесных тел под действием гравитационных сил.

Задание на лабораторную работу

Задача I. Рассматривается динамика трех разновеликих небесных тел: звезды, планеты и ее спутника. В качестве примера рассматривается Солнечная система. Масса Солнца $M_1 = 2 \cdot 10^{30} {\rm kr}$.

Параметры второго тела				Параметры третьего тела			
M_2 ,	R_2 ,	R ₁₂ ,	V ₂ ,	M_3 ,	R_3 ,	R ₂₃ ,	V ₃ ,
КГ	KM	млн. км	IXIVI/ C	КГ	KM	тыс. км	IXIVI/ C
1.9 ·10 ²⁷	71500	780	13	1.1 ·10 ²³	2400	1883	8.2

- 1) Составить уравнения движения второго и третьего тела в системе отсчета, связанной с первым (самым массивным) телом. Предполагается, что движение всех тел происходит в одной плоскости.
- 2) Написать программу численного интегрирования составленных уравнений движения и построить траектории движения тел. В качестве начальных условий принять следующие: все тела находятся на одной прямой, вектора скоростей движения второго и третьего тела сонаправлены. Расстояния между первым и вторым, а также вторым и третьим телами приведены в таблице выше. Там же указаны значения начальных скоростей второго и третьего тела. Параметры задачи представлены в нижеследующей таблице.

Задача II. На круговой орбите второго тела высотой H находится космический корабль. В тот момент, когда корабль, второе тело и третье тело находятся на одной прямой, включаются двигатели космического корабля, которые работают в течение времени T, выводя корабль на новую орбиту. Вектор тяги двигателя в любой момент времени направлен по касательной к траектории движения. Определить стартовую массу корабля из условия, что на поверхность третьего тела необходимо доставить полезный груз массой M_0 . Масса корабля складывается из массы топлива, полностью выгорающего за время T, массы конструкции (0.1 стартовой массы) и массы полезной нагрузки M_0 . В конце активного участка траектории (через время T) происходит

отделение полезного груза, который движется далее только под действием гравитационных сил. Скорость полезного груза при посадке не ограничена.

			Хар	рактеристики топлива		
H, KM	Т, с	М₀, кг	Горючее	Окислитель	Скорость истечения, м/с	
500	3250	50	Керосин	Азотная кислота (98%)	3070	

Практическая часть

Задача 1

По условию движения всех тел происходят в одной плоскости. Поместим первое тело (Солнце) в начало координат. Определим функции координат от времени $x_2(t)$ и $y_2(t)$ для второго тела (планеты) и $x_3(t)$ и $y_3(t)$ для третьего тела (спутника) относительно первого тела. На второе тело со стороны первого действует сила $F_{21} = G \frac{M_1 M_2}{r_{12}^2}$, а со стороны третьего — сила $F_{23} = G \frac{M_2 M_3}{r_{23}^2}$. На третье тело со стороны первого действует сила $F_{31} = G \frac{M_1 M_3}{r_{13}^2}$, а со стороны второго $F_{32} = -F_{23}$ (согласно третьему закону Ньютона). Получим уравнения движения второго и третьего тела относительно первого:

где
$$r_{12} = \sqrt{x_2^2 + y_2^2}, r_{13} = \sqrt{x_3^2 + y_3^2}, r_{23} = \sqrt{(x_3 - x_2)^2 + (y_3 - y_2)^2}$$

$$a_{x_2} = \frac{d^2 x_2}{dt^2}, a_{y_2} = \frac{d^2 y_2}{dt^2}, a_{x_3} = \frac{d^2 x_3}{dt^2}, a_{y_3} = \frac{d^2 y_3}{dt^2},$$

$$F_{21} = G \frac{M_1 M_2}{r_{12}^2}, F_{31} = G \frac{M_1 M_3}{r_{13}^2}, F_{23} = -F_{32} = G \frac{M_2 M_3}{r_{23}^2}.$$

Система (1.1) является системой четырех дифференциальных уравнений второго порядка. Преобразуем ее в систему из восьми дифференциальных уравнений первого порядка, учитывая, что

$$a_{x_2} = \frac{dv_{x_2}}{dt}, a_{y_2} = \frac{dv_{y_2}}{dt}, a_{x_3} = \frac{dv_{x_3}}{dt}, a_{y_3} = \frac{dv_{y_3}}{dt};$$

$$v_{x_2} = \frac{dx_2}{dt}, v_{y_2} = \frac{dy_2}{dt}, v_{x_3} = \frac{dx_3}{dt}, v_{y_3} = \frac{dy_3}{dt}.$$

Получим

$$v_{x_{2}} = \frac{dx_{2}}{dt},$$

$$v_{y_{2}} = \frac{dy_{2}}{dt},$$

$$v_{x_{3}} = \frac{dy_{3}}{dt},$$

$$v_{y_{3}} = \frac{dy_{3}}{dt},$$

$$M_{2} \frac{dv_{x_{2}}}{dt} = -F_{21} \frac{x_{2}}{r_{12}} + F_{23} \frac{x_{3} - x_{2}}{r_{23}},$$

$$M_{2} \frac{dv_{y_{2}}}{dt} = -F_{21} \frac{y_{2}}{r_{12}} + F_{23} \frac{y_{3} - y_{2}}{r_{23}},$$

$$M_{3} \frac{dv_{x_{3}}}{dt} = -F_{31} \frac{x_{3}}{r_{13}} + F_{32} \frac{x_{3} - x_{2}}{r_{23}},$$

$$M_{3} \frac{dv_{y_{3}}}{dt} = -F_{31} \frac{y_{3}}{r_{13}} + F_{32} \frac{y_{3} - y_{2}}{r_{23}},$$

Решение системы

Изначально все тела находятся на одной прямой. Без ограничения общности примем, что в начальный момент времени все тела находятся на оси Ох. Тогда начальные условия для системы (1.2) будут иметь вид

$$\begin{aligned} x_{2}|_{t=0} &= R \, 1 + R \, 12 + R \, 2, \\ y_{2}|_{t=0} &= 0, \\ x_{3}|_{t=0} &= R \, 1 + R \, 12 + 2 * R \, 2 + R \, 23 + R \, 3, \\ y_{3}|_{t=0} &= 0, \\ v_{x_{2}}|_{t=0} &= 0, \\ v_{y_{2}}|_{t=0} &= V_{2}, \\ v_{y_{3}}|_{t=0} &= 0, \\ v_{y_{3}}|_{t=0} &= V_{2} + V_{3}. \end{aligned}$$

$$(1.3)$$

Для решения задачи (1.2)-(1.3) был использован программный пакет Maple (код представлен в Приложении A) с применением метода Рунге-Кутта-

Фельберга 4-5-ого порядка. На Рисунке 1 представлены траектории движения планеты и спутника относительно Солнца за 4000 часов. Видно, что траектория движения планеты является эллиптической, а спутник вращается вокруг планеты.

Рисунок 1. Траектория движения спутника вокруг движущейся планеты

Задача 2

Для описания движения космического корабля воспользуемся уравнением Мещерского в классическом виде:

$$m\frac{d\vec{v}}{dt} = -\vec{u}\frac{dm}{dt} + \sum \vec{F}$$
,(2.1)

где \vec{v} — скорость ракеты, \vec{u} — скорость истечения продуктов сгорания в пустоте.

Возьмем $\lambda = \frac{m_\kappa}{M_{oбщas}} = 0,0001$, где m_κ — масса конструкции ракеты, а $M_{oбщas} = m_\kappa + m_m + M_0$ — общая масса ракеты, m_m — масса топлива, M_0 — масса полезной нагрузки. Тогда масса ракеты вычисляется по формуле:

$$m(t) = \begin{cases} \frac{M_0 + m_m}{1 - \lambda} - \frac{m_m}{T} t, t < T, (2.2) \\ M_0, t \ge T. \end{cases}$$

Получим систему обыкновенных дифференциальных уравнений

$$\begin{cases}
m(t) \frac{d v_{x}(t)}{dt} = -u \frac{v_{x}(t)}{v(t)} \frac{d m(t)}{dt} - F_{c} \frac{x(t)}{r_{c}(t)} - \mathcal{L} - F_{\omega} \frac{\left(x(t) - x_{\omega}(t)\right)}{r_{\omega}(t)} - F_{\varepsilon} \frac{\left(x(t) - x_{\varepsilon}(t)\right)}{r_{\varepsilon}(t)}, \\
m(t) \frac{d v_{y}(t)}{dt} = -u \frac{v_{y}(t)}{v(t)} \frac{d m(t)}{dt} - F_{c} \frac{y(t)}{r_{c}(t)} - \mathcal{L} - F_{\omega} \frac{\left(y(t) - y_{\omega}(t)\right)}{r_{\omega}(t)} - F_{\varepsilon} \frac{\left(y(t) - y_{\varepsilon}(t)\right)}{r_{\varepsilon}(t)},
\end{cases} (2.3)$$

где
$$r_c = \sqrt{(x(t))^2 + (y(t))^2}$$
, $r_D = \sqrt{(x(t) - x_D(t))^2 + (y(t) - y_D(t))^2}$, $r_D = \sqrt{(x(t) - x_D(t))^2 + (y(t) - y_D(t))^2}$,

$$F_{c} = G \frac{m(t) M_{c}}{r_{c}^{2}}, F_{\omega} = G \frac{m(t) M_{\omega}}{r_{\omega}^{2}}, F_{z} = G \frac{m(t) M_{z}}{r_{z}^{2}},$$

x(t), y(t) — координаты ракеты.

Решение системы

Начальные условия для системы (2.3) будут иметь вид

$$\begin{cases} x|_{t=0} = R_{12} + R_1 - h, \\ y|_{t=0} = 0, \\ v_x|_{t=0} = 0, \\ v_y|_{t=0} = V_3 + V_{1\kappa}, \end{cases} (2.4)$$

где
$$V_{{\scriptscriptstyle 1\kappa}} = \sqrt{\frac{G\,M_{{\scriptscriptstyle 2}}}{R_{{\scriptscriptstyle 2}} + H}} -$$
 первая космическая скорость.

Для решения задачи (2.3)-(2.4) был использован программный пакет Maple (код представлен в Приложении Б) с применением метода Рунге-Кутта-Фельберга 4-5-ого порядка. На Рис. 2 представлены траектории движения спутника и ракеты до момента попадания полезного груза на спутник. По результатам расчетов было получено, что необходимое количество топлива для доставки полезного груза на спутник составляет 16.1345*10³ кг. Расстояние между ракетой и спутником равно 2628.4636 км, а радиус спутника – 2634 км. Время полета составляет 4.8415 земных дней.

Рисунок 2. Траектория движения ракеты к спутнику Были получены следующие результаты:

Первая космическая скорость = $1.510344332\ 10^5$ Вторая космическая скорость = $2.135949438\ 10^5$ Максимальная скорость = $1.98770095661362\ 10^5$ Масса топлива = $16134.5000\ \kappa 2$

Рисунок 3. Результаты вычислений

Заключение

В ходе данной лабораторной работы были построены траектории движения планеты, спутника и ракеты, которая запускалась с планеты. Отношение массы конструкции к общей массе ракеты было взято равное 0,0001. Было получено, что в момент выпуска всего топлива скорость ракеты была больше первой, но меньше второй космической. Траектория движения ракеты — эллиптическая. Минимальное расстояние составило 2628.464 км, которое было достигнуто за 4.841 земных дней. Таким образом, полезный груз был успешно доставлен.

Приложение А. Листинг решения задачи 1 в математическом пакете

Maple

```
> MI := 2 \cdot 10^{30} : M2 := 1.9 \cdot 10^{27} : M3 := 1.5 \cdot 10^{23} :
  \rightarrow R1 := 695508 : R2 := 71500 : R3 := 2634 :
  > R12 := 78 \cdot 10^7 : R23 := 107 \cdot 10^4 :
  V2 := 13.3600 : V3 := 10.0.3600 :
  G := 6.67 \cdot 10^{-20} \cdot 3600^2:
 > r12 := (t) \rightarrow ((x2(t))^2 + (y2(t))^2)^{\frac{1}{2}}:

r13 := (t) \rightarrow ((x3(t))^2 + (y3(t))^2)^{\frac{1}{2}}:
> F21 := (t) \rightarrow \frac{G \cdot MI \cdot M2}{(r12(t))^2}:

F31 := (t) \rightarrow \frac{G \cdot MI \cdot M3}{(r13(t))^2}:

F23 := (t) \rightarrow \frac{G \cdot M2 \cdot M3}{(r23(t))^2}:

F32 := (t) \rightarrow -F23(t):

> sys := \left\{ M2 \cdot \frac{d}{dt} vx2(t) = -\frac{F21(t) \cdot x2(t)}{r12(t)} + \frac{F23(t) \cdot (x3(t) - x2(t))}{r23(t)} \right\},

M2 \cdot \frac{d}{dt} vy2(t) = -\frac{F21(t) \cdot y2(t)}{r12(t)} + \frac{F23(t) \cdot (y3(t) - y2(t))}{r23(t)},

M3 \cdot \frac{d}{dt} vx3(t) = -\frac{F31(t) \cdot x3(t)}{r13(t)} + \frac{F32(t) \cdot (x3(t) - x2(t))}{r23(t)},

M3 \cdot \frac{d}{dt} vy3(t) = -\frac{F31(t) \cdot y3(t)}{r13(t)} + \frac{F32(t) \cdot (y3(t) - y2(t))}{r23(t)},
         \frac{\mathrm{d}}{\mathrm{d}t}x2(t) = vx2(t),
          \frac{\mathrm{d}}{\mathrm{d}t}y3(t) = vy3(t),
           x2(0) = R1 + R12 + R2,
          y2(0) = 0,
          x3(0) = R1 + R12 + 2 \cdot R2 + R23 + R3,
           y3(0) = 0,
           vx2(0)=0,
           vy2(0) = V2,
           vx3(0) = 0,
           vy3(0) = V2 + V3:
```

Приложение Б. Листинг решения задачи 2 в математическом пакете Maple

```
> т_р := 50 : #полезная масса ракеты
   lam := 0.0001 #Отношение массы конструкции к общей массе ракеты
                                                                                     lam := 0.0001
   > T := \frac{3250}{3600} : #время работы двигателя
  u := \frac{3070 \cdot 3600}{1000}:
 V2k := \sqrt{\frac{2 \cdot G \cdot M2}{R2 + H}} :
  > m_fuel := 16.1345 \cdot 10^3;#масса топлива
M0 := \frac{(m_p + m_fuel)}{1 - lam}:#масса ракеты
                                                                         m fuel := 16134.5000
  > x_pl := eval(x2(t), slv) :

x_pl := eval(x2(t), slv) :
       y_pl := eval(y2(t), slv):
       x\_sat := eval(x3(t), slv):
        y_sat := eval(y3(t), slv):
   > m := (t) \rightarrow piecewise \left( t < T, M0 - \frac{m\_fuel \cdot t}{T}, t \ge T, m\_p \right):
    v := (t) \to \sqrt{(vx(t))^{2} + (vy(t))^{2}} :
r := (t) \to \sqrt{(x(t))^{2} + (y(t))^{2}} :
r_{p}l := (t) \to \sqrt{(x(t) - x_{p}l(t))^{2} + (y(t) - y_{p}l(t))^{2}} :
r_{s}at := (t) \to \sqrt{(x(t) - x_{s}at(t))^{2} + (y(t) - y_{s}at(t))^{2}} :
F_{p}l := (t) \to \frac{G \cdot m(t) \cdot M2}{(r_{p}l(t))^{2}} :
F_{s}at := (t) \to \frac{G \cdot m(t) \cdot M3}{(r_{s}at(t))^{2}} :
F := (t) \to \frac{G \cdot m(t) \cdot M1}{(r(t))^{2}} :
  > v := (t) \to \sqrt{(vx(t))^2 + (vy(t))^2}:
 | (r(t))^{2} | > sys2 := \left\{ m(t) \cdot \frac{d}{dt} vx(t) = -\frac{u \cdot vx(t)}{v(t)} \cdot \frac{d}{dt} m(t) - \frac{F(t) \cdot x(t)}{r(t)} - \frac{F_{-}pl(t) \cdot (x(t) - x_{-}pl(t))}{r_{-}pl(t)} - \frac{F_{-}sat(t) \cdot (x(t) - x_{-}sat(t))}{r_{-}sat(t)}, m(t) \cdot \frac{d}{dt} vy(t) = -\frac{u \cdot vy(t)}{v(t)} \cdot \frac{d}{dt} m(t) - \frac{F(t) \cdot y(t)}{r(t)} - \frac{F_{-}pl(t) \cdot (y(t) - y_{-}pl(t))}{r_{-}pl(t)} - \frac{F_{-}sat(t) \cdot (y(t) - y_{-}sat(t))}{r_{-}sat(t)}, \frac{d}{dt} x(t) = vx(t), \frac{d}{dt} y(t) = vy(t), x(0) = RI + RI2 - H, y(0) = 0, vx(0) = 0, vy(0) = VIk + V2 \right\} : 
  > slv2 := dsolve(sys2, \{x(t), y(t), vx(t), vy(t)\}, mumeric, method = rkf45, maxfun
                    = 1500000, output = listprocedure):
```

```
> x := eval(x(t), slv2):
   y := eval(y(t), slv2):
   vx := eval(vx(t), slv2):
   vy := eval(vy(t), slv2):
   tend := 116.1948:
   min\_lenght := \sqrt{(x(tend) - x\_sat(tend))^2 + (y(tend) - y\_sat(tend))^2}:
   print(Paccmoяние между ракетой т центром спутника = min length (км));
   print(Paduyc\ cnymникa = R3\ (км));
  print\bigg(Bpeмя полета = \frac{tend}{24} \ (\partial нeй)\bigg);
  print(Первая космическая скорость = V1k);
  print(Вторая космическая скорость = V2k);
  print(Maкcumaльная скорость = sqrt((vx(T))^2 + (vv(T))^2));
   print(Macca monливa = m_fuel(\kappa z));
   with(plots):
   planet := odeplot(slv, [x2(t), y2(t)], t = 0 ..tend, color = blue, legend
       = "Траектория планеты", frames = 20):
   satellite := odeplot(slv, [x3(t), y3(t)], t = 0 ..tend, color = green, legend
       = "Траектория спутника", frames = 20):
   spaceship := odeplot(slv2, [x(t), y(t)], t = 0 ..tend, color = red, legend
       = "Траектория ракеты", firames = 20):
   display(planet, satellite, spaceship);
```