Detection of Topological Materials using Machine Learning

Chaithanya Krishna Moorthy

Indian Institute of Technology Madras

11-05-2021

Outline

- Introduction
- 2 Dataset
- ML Model
 - Evaluation methods
 - Classification Model
 - Gradient Boosted Trees
 - Representation of Crystals
 - Model Analysis
 - Limitations of the GBT model
- 4 Discussions and Conclusions
- 5 Further Research Directions
- 6 Links for Database and Tools

Introduction

- Topological Quantum Chemistry (TQC) applied on Density Functional Theory (DFT) calculations has compiled a large catalogue of Topological Matrials.
- Machine Learning methods can offer faster topological classification of these materials and offer hints to identify which quantities decide the Topology of a material.

Objective

To build an ML model to predict the DFT-computed topology of a given material with an accuracy of about 90%

Dataset

- 70020 impurity free, crystalline materials were selected from the Inorganic Crystal Structure Database (ICSD) on which first-principle calculations as implemented in Vienna Ab-Initio Simulation Package - DFT and TQC were carried out.
- Topological Categories into which the above materials were grouped:
 - Trivial Topology (49.5% of total materials)
 - Topological Insulators (TI): NLC (6.5%) and SEBR (7%) ¹
 - Topological Semi-metals (TSM): ESM(10%) and ESFD(27%)

 $^{^1\}mbox{NLC}\colon\mbox{Not a Linear Combination of Electronic Band Representaions; SEBR: Split EBR$

¹ESM: Enforced Semi-metals; ESFD: Enforced Semi-metals with Fermi Degeneracy

Dataset

- Each material is described by its stoichiometric formula, a space group (SG), a unit cell, and the positions of the atoms therein.
- Two materials exhibiting the same stoichiometry and SG also have the same topological classification and hence were put into the same equivalence classes, and a representative was taken
- Thus, the size of the dataset was reduced to 35009 effectively.
- The complexity of the materials ranged as:
 Number of atoms per primitive unit cell 1 to 60 215/230 different Space Groups
 92 different chemical elements

Frequency of TI's

Figure 1: Conditional probability that a material is a Topological insulator, given that it contains the paricular element from the periodic table

- Elements forming Ionic compounds rarely form TI
- Alternating pattern in rare-earth elements due to even/odd f-electrons affecting the formation of fully filled f-electron bands

Quality of Model

For binary classification:

- Accuracy: Fraction of data points classified correctly. Not a good in cases where the number of data points for each class is imbalanced. Compared against baseline accuracy (49.5% in this case).
- Precision: Fraction of positive predictions that are correct
- Recall: Fraction of positive class classified correctly.
- F1-score: Balance between precision and recall harmonic mean of precision and probability.

Precision and Recall depend on the threshold chosen for probabilities. In this paper, F1-score for each class was chosen as a measure of the quality of the model as it is a single-valued score for each class and is fairly independent of the threshold.

ML model - Gradient Boosted Trees (GBT)

- GBT uses an ensemble of weak learners (decision trees) to build a strong model (classifier here).
- Weak trees with small number of nodes are added iteratively to correct misclassifications of the previous trees.
- The performance of the model saturated at about 150 trees.
- The algorithm is trained to minimize the loss function.
- Hyperparameters Maximal Tree Depth, Learning rate, Column subsampling by tree, Minimal Child Weight, L^2 regularization λ and Column subsampling by node are chosen by searching for the set that provides maximum efficiency on the cross-validation (k fold stratified Cross-validation method) data set.
- About 10% of the dataset was used as test set. Rest was used for training.
- Other ML models tested which gave lower efficiency are : random forests, k-nearest neighbour classifiers, SVM

Figure 2: Example of GBT

Each node (containing a binary question) of a decision tree divides the space into to halves. Questions which lead to the maximum separation are chosen.

Representation of Crystals for ML

- Single-atom statistics are used to map crystals to real vectors, usable in the ML model
- For each constituent atom chemical and physical single atom properties are concatenated in a single vector \mathbf{X}_i . For representing the entire crystal, the mean and variance of the vectors were carried out for the unit cell.
- The relevant single-atom statistics are mean number of s, p, d and f shell valence electrons and mean and standard deviations of the atom's row and column number in the periodic table.
- In addition to single-atom statistics, global properties of Space Group(SG) and number of electron per unit cell (N_e) were chosen.
- These quantities were deemed relevant after extensive testing and elimination from a list of quantities.
- Nearest-neighbour features such as positions of atoms in the unit cell with respect to each other were discovered to be irrelevant.

Analysis of the GBT model

Model	Descriptor	d	Acc. (%)	F ₁ Triv. (%)	F ₁ TI (%)	F ₁ TSM (%)
Full model (FM)	SG, N_e , $spdf+$, number of atoms from each periodic table row, and column	49	89.7(5)	94.0(3)	70(1)	92.0(5)
FM + Non-SOC	Features used by FM and topological classification of material obtained by DFT without SOC	50	92.0(3)	96.5(2)	77(1)	93.3(4)
Baseline model	SG, N_e , and baseline descriptor (number of atoms from each element in the stoichiometric formula)	94	86.0(5)	92.5(5)	67(1)	91.0(5)
spdf + model	SG, N_e , and $spdf$ + features	10	87.7(5)	93.0(5)	69(1)	92.0(5)
FM + nearest neighbor	Features used by FM and nearest-neighbor difference features [42], defined in Sec. II C	184	89.0(5)	94.0(3)	69(3)	92.0(5)
FM without SG	N _e , spdf+, number of atoms from each periodic table row, and column	48	84.0(5)	91.5(3)	57(2)	86(1)

Figure 3: Performance of GBT models measured by F1-score and accuracy

Simple Decision Tree

Figure 4: Simplified decision tree using spdf+ model in table 3.

Observations

- SG's importance is seen by the drop in performance on its removal from the model.
- Inclusion of nearest-neighbour properties decreases the performance.
- TI's have a lower score which can be attributed to the less number of samples available in the dataset and difficulty in inferring the nature just using the features used in the model.
- A large number of d or f-electrons help turn a compound into a TI.
- ullet TSM's are mostly determined by N_e and SG.

Limitations

Size of available data

Figure 5: Variation of the average F1-score with the size of dataset used for training - increases logarithmically

The materials have a large variety of SG's and chemical elements - number of samples which are similar to a given material is very less, which makes it harder to infer patterns.

Limitations

② DFT calculations used to determine topological labels can be unreliable

This is checked by building a model that uses *high-confidence materials* - with reliable DFT calculations.

Total Accuracy (%) F1 ESFD	F1 triv.	F1 NLC	F1 SEBR	F1 ES
87.0 95.5	94.0	66	59	73

Table 1: Performance in classifying topological subclasses using the full data set for training

Total Accuracy (%)	F1 triv.	F1 NLC	F1 SEBR	F1 ES
F1 ESFD				
92.0	96.0	72	68	79
99.0				

Table 2: Performance in classifying topological subclasses using the high-confidence data set for training

Limitations

- Specific types of materials on which model performance is poor: error rate of the model depends on the symmetry properties of the material - the model performs poorly on cubic point groups and the hexagonal point group D_{6h}. These point groups contain the greatest number of distinct symmetry operations and are complicated.
- Open performance on materials containing halogens and alkali metals since they form less TI's.
- Energetics can influence the topology (of SEBR's for eg), but has not been included in the model.

Discussions

- Using a simple GBT based algorithm, classification of listed Topological materials could be achieved without expensive calculations.
- The use of the ML model and analyzing the decision trees has determined the properties that are responsible for topological phenomenon - it is mostly determined by course-grained chemical composition and crystal symmetry and does not depend much on positions of atoms in the lattice. Materials with large number of d and f shell electrons or containing heavy metals with strong SOC are likely to be TI's

Further research directions

- Including global properties like crystal symmetry.
- Using more sophesticated ML models such as crystal graph convolutional networks (CGNN's)
- Preprocess data using physical understanding for better performance of the model.
- Using empty lattice approximation which allows estimation of topological features from lattice constants.

Database and Tools

- Database: B. Wieder, L. Elcoro, B. A. Bernevig, N. Regnault, and M. G. Vergniory, A Complete Catalogue of All Topological Materials (unpublished)
- https://topologicalquantumchemistry.org/
- Link to the online tool built: https: //www.topologicalquantumchemistry.com/mltqc/

