In class problem, Jan 14th, 2012 (ECE 322)

An NMOS transistor with $V_{TN}=1V$ has a drain current $i_D=0.8mA$ when $v_{GS}=3V$. Calculate the drain current when $v_{GS}=3V$ and $v_{DS}=1V$?

Solution:

$$V_{TN} = 1 \ V$$
, $V_{GS} = 3 \ V$, $V_{DS} = 4.5 \ V$
 $V_{DS} = 4.5 > V_{DS} (sat) = V_{GS} - V_{TN} = 3 - 1 = 2 \ V$

Transistor biased in the saturation region

$$I_D = K_n (V_{GS} - V_{TN})^2 \Rightarrow 0.8 = K_n (3-1)^2 \Rightarrow K_n = 0.2 \ mA/V^2$$

(b)
$$V_{GS} = 3 V$$
, $V_{DS} = 1 V$

Nonsaturation region:

$$I_D = (0.2)[2(3-1)(1)-(1)^2] \Rightarrow I_D = 0.6 \text{ mA}$$