# SEL0610 – Laboratório de Circuitos Eletrônicos ${\bf 2^o~Semestre~de~2023}$

| Nome – Aluno 1: Carlos Henrique Hannas de Carvalho | Num. USP: 11965988 |
|----------------------------------------------------|--------------------|
| Nome – Aluno 2: Pedro Antonio Bruno Grando         | Num. USP: 12547166 |

# Circuitos Retificadores e Regulador de Tensão com Diodo Zener – Prática 2

# PARTE 1

Montou-se um circuito eletrônico, com um diodo 1N4007, como sugere a figura 1 abaixo:



Figura 1: Circuito eletrônico com diodo 1N4007.

em que o resistor possui valor nominal de  $1k\Omega$ .  $V_f$  e  $V_c$  são as ponteiras 1 e 2, respectivamente, do osciloscópio. Adotou-se uma onda senoidal alternada, com amplitude  $10V_{pp}$  ( $+5V_p/-5V_p$ ), e frequência de 1kHz.

#### ITEM A)

A imagem 2 mostra o resultado do osciloscópio com as tensões de saída do gerador de sinais e sobre o resistor.



Figura 2: Tensões de saída do gerador de sinais e sobre o resistor, visto do osciloscópio.

O circuito mostra o princípio de retificação (fluxo de corrente em apenas um sentido), no qual, para um sinal de entrada alternado, a polarização do diodo varia entre direta e reversamente.

Para polarização reversa, o diodo não conduz. Logo, não haverá corrente passando pelo resistor e dessa forma a medição de tensão é nula; para o caso de polarização direta, o diodo apenas retira, idealmente, 0,7V da tensão repassada.

#### ITEM B)

A figura 3 mostra o resultado do osciloscópio, do circuito da imagem 1, com o valor médio do sinal sobre o resistor (tensão retificada).



Figura 3: Valor médio do sinal sobre o resistor, visto do osciloscópio.

Os cálculos teóricos prevêem um valor médio de  $V_{CC}=0.318V_m$ , o que para um sinal de entrada de  $5V_{pp}$ , resultaria em 1.59V. Na prática, o valor medido, 1.1879V, diferiu pouco do esperado - os cálculos teóricos são feitos com componentes ideais, e sem a incerteza dos instrumentos de bancada.

O valor observado pelo osciloscópio mostra o principal motivo pelo qual não se utiliza os retificadores de meia onda, pois existe uma perda considerável de potência média.

#### ITEM C)

O menor valor no pico de tensão retificada é devido à queda de tensão existente no diodo quando diretamente polarizado. Por conduzir, o diodo apresenta uma queda de tensão que varia entre 0.4V e 0.7V, o que fica visível na figura 2 - note que, apesar do valor pico a pico ser 4.7V, existe algum ruído no eixo negativo ao final de cada ciclo, e que, na prática, a tensão  $V_{pp}$  deve se aproximar de 4.4V.

Já o atraso existente no cruzamento com o zero é devido ao fato de que o diodo necessita ter um potencial mínimo para que comece a conduzir, conhecido como tensão de joelho. Assim, até que o sinal de entrada atinja esse valor, que varia entre 0.4V e 0.7V, o diodo não conduz, o que pode ser melhor visualizado na figura 3.

#### PARTE 2

Montou-se o circuito da figura 4, contendo um diodo 1N4007 e um capacitor C:



Figura 4: Circuito eletrônico com capacitor C e diodo 1N4007.

em que o resistor possui valor nominal de  $1k\Omega$ .  $V_f$  e  $V_c$  são as ponteiras 1 e 2, respectivamente, do osciloscópio. Adotou-se uma onda senoidal alternada, com amplitude  $10V_{pico-a-pico}$  ( $+5V_p/-5V_p$ ), e frequência de 1kHz.

#### ITEM A)

Considerou-se um capacitor  $C = 10\mu F$ . A imagem 5 mostra o resultado do osciloscópio, do circuito da figura 4, com a tensão de saída do gerador de sinais, tensão sobre o resistor e tensão sobre o capacitor.



Figura 5: Tensões de saída do gerador de sinais e sobre o resistor e tensão sobre o capacitor, visto do osciloscópio.

Antes de analisar o resultado da retificação, é válido apontar que o sinal de saída, como no caso da retificação sem filtro capacitivo, possui um pico de tensão  $V_{pp} - V_d$ , em que  $V_d$  é a tensão no diodo. Isso permite compreender melhor o resultado exposto na figura 5, uma vez que o sinal de saída, na verdade estaria posicionado sobre o sinal de entrada, e o offset é simplesmente para melhor visualização dos sinais.

Feita essa consideração, olhando agora para o sinal de saída, é visível que o filtro capacitivo reduz as oscilações no sinal retificado, por ser um elemento de circuito com memória, de forma que se mantém um valor médio maior, e consequentemente uma maior potência média. Na prática, existe um maior "aproveitamento" do potencial de alimentação.

#### ITEM B)

A figura 6 mostra o resultado do osciloscópio, do circuito da imagem 4, com o valor médio da tensão sobre o resistor (tensão retificada). Utilizou-se  $C=10\mu F$ .



Figura 6: Valor médio do sinal sobre o resistor, visto do osciloscópio.

O valor computado pelo osciloscópio é de 3.1668V, mais que o dobro do valor médio encontrado no caso sem a adoção do capacitor, de 1.1879V, mostrando como o filtro capacitivo aumenta a eficiência do circuito.

# ITEM C)

Na teoria, o valor de ondulação, ou de ripple, é dado pela equação:

$$V_r = \frac{V_p}{f \times C \times R} \tag{.1}$$

onde  $V_p$  é a tensão de pico do sinal de saída, f é a frequência deste, e C e R são, respectivamente, a capacitância e resistência no circuito.

Substituindo os valores de cada variável na equação, tem-se um  $V_r = 430mV$  teórico, enquanto o valor prático encontrado foi de  $V_r = 280mV$ . A essa discrepância atribui-se dois fatores principais: o primeiro é que possivelmente, dada a forma como funciona o gerador de sinais, criou-se uma competição entre o capacitor e a fonte, o que fica claro na distorção do sinal de entrada, assim, provavelmente o circuito não estava mais sendo alimentado com os  $5V_{pp}$ ; em segundo lugar, existe um grau de incerteza associado aos componentes utilizados e aos instrumentos de medida, que provavelmente contribuíram para essa divergência entre os resultados.

# ITEM D)

Considerou-se um capacitor  $C = 100 \mu F$ . A imagem 7 mostra o resultado do osciloscópio, do circuito da figura 4, com a tensão de saída do gerador de sinais e a tensão sobre o capacitor.



Figura 7: Tensões de saída do gerador de sinais e sobre o capacitor C, visto do osciloscópio.

A adoção de um capacitor de maior capacitância contribui positivamente ao reduzir a tensão de ripple, isso porque quanto maior a capacitância, maior a carga armazenada no capacitor, e reflexo disso é a saída mais suave, próxima de um sinal DC. Por outro lado, utilizar um capacitor maior implica em um maior tempo de carga, o que pode afetar o desempenho do circuito logo que ligado, além de fazê-lo ter eficiência reduzida para baixas tensões de entrada. Vale lembrar que a relação corrente vs. tensão se mantém a mesma, uma vez que é regulada pelo resistor.

#### PARTE 3

Estuda-se o comportamento do diodo zener (1N4733), variando-se a fonte de tensão, através do seguinte circuito eletrônico:



Figura 8: Circuito eletrônico com diodo zener.

em que o resisto possui valor nominal de, aproximadamente,  $R=469\Omega$ .  $V_f$  e  $V_c$  são as ponteiras 1 e 2, respectivamente, do osciloscópio.

#### ITEM A)

O valor médio da tensão sobre o diodo zener  $(V_z)$ , medido com o osciloscópio, para uma determinada tensão de entrada  $(V_{fonte})$  é mostrado na seguinte tabela:

| $V_{fonte}[V]$ | $V_z[V]$ |
|----------------|----------|
| 1,0            | 0,950    |
| $^{2,5}$       | 2,462    |
| 4,0            | 3,897    |
| 5,0            | 4,548    |
| 5,5            | 4,710    |
| 6,5            | 4,872    |
| 8,0            | 4,972    |
| 10,0           | 5,028    |
| 12,0           | 5,062    |

**Tabela 1:** Tabela de tensão  $V_{fonte}$  vs tensão  $V_z$ .

#### ITEM B)

Tomando a tabela 1 como referência, pôde-se traçar a curva de tensão  $V_{fonte}$  vs tensão  $V_z$ . O gráfico é apresentado na seguinte imagem:



Figura 9: Gráfico da tensão  $V_{fonte}$  vs tensão  $V_z$ .

O diodo zener possui a propriedade de que, quando se ultrapassa a tensão Zener, de 5.1V nesse caso, o diodo passa a conduzir, por conta dos efeitos Zener e de avalanche. A partir da tensão Zener, o diodo apresenta um aumento exponencial de corrente, mas mantendo uma tensão quase constante, o que torna esse componente extremamente útil em aplicações que envolvem regulação de tensão.

No experimento desenvolvido, obteve-se um resultado condizente com essa teoria. Utilizando de um diodo Zener de 5.1V, notou-se que a tensão manteve-se quase constante em torno de 5V após ultrapassada a tensão Zener, valor extremamente satisfatório.

#### CONCLUSÕES

Nessa prática, foi possível estudar efeitos práticos da aplicação de diodos em circuitos, conhecendo a utilização mais clássica, que é a retificação. Nos experimentos, foi possível visualizar os aspectos conhecidos da teoria, bem como entender dificuldades associadas aos equipamentos e componentes utilizados. Além disso, também pode-se estudar o diodo Zener, cujas características únicas, como regulagem de tensão, o tornam um poderoso componente para projeto.

Assim sendo, considera-se que essa prática foi um sucesso e é justo mencionar que a dupla ficou interessada

em reunir toda a teoria dessa prática na intenção de fazer um retificador de onda completa, com uma ponte de diodos, filtro capacitivo e a adição de um diodo zener, obtendo o circuito completo clássico de livros texto.