Code Coverage and Continuous Integration

Presented at

Better Scientific Software tutorial

ECP 2nd Annual Meeting, Knoxville, Tennessee

Jared O'Neal

Argonne National Laboratory

License, citation and acknowledgements

License and Citation

- This work is licensed under a <u>Creative Commons Attribution 4.0 International License</u> (CC BY 4.0).
- Requested citation: Jared O'Neal, Code Coverage and Continuous Integration, tutorial in Exascale Computing Project 2nd Annual Meeting, Knoxville, Tennessee, 2018. DOI: TBA.

Acknowledgements

- Alicia Klinvex
- This work was supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research (ASCR), and by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.
- This work was performed in part at the Argonne National Laboratory, which is managed by UChicago Argonne, LLC for the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.

Code Coverage

How do we determine what other tests are needed?

Code coverage tools

- Expose parts of the code that aren't being tested
- gcov
 - standard utility with the GNU compiler collection suite
 - compile with --coverage
 - counts the number of times each statement is executed
- Icov
 - a graphical front-end for gcov
 - o available at http://ltp.sourceforge.net/coverage/lcov.php
- Hosted servers (e.g. coveralls, codecov)
 - graphical visualization of results
 - push results to server through continuous integration server

Code coverage output

Overall Analysis

Detailed Analysis

Online tutorial - https://github.com/jrdoneal/infrastructure
Other example - https://github.com/jrdoneal/infrastructure

Code coverage is popular

- gcov also works for C and Fortran
- Other tools exist for other languages
 - JCov for Java
 - Coverage.py for python
 - Devel::Cover for perl
 - profile for MATLAB
 - o etc.

Continuous integration

The Short & Sweet of Continuous Integration

A master branch that always works

- Develop workflow policies
 - Commit and merge often
 - o Test on push & pull requests?
- Code changes trigger automated builds/tests on target environments

Continuous integration (CI)

- Has existed for some time and interest is growing
 - ECP working with Travis CI to adapt for HPC machines
 - Dedicated Breakout Session

Thursday, February 8, 2018

10:30 AM-12:00 PM Breakout Sessions Track 1

B-HI-9 | Ballroom B | Continuous Integration Testing for ECP: An Essential Software Development Tool

- Setup, maintenance, and monitoring required
- Prerequisites
 - A reasonably automated build system
 - An automated test system with significant test coverage & useful feedback
 - Ability to bundle subset of tests
 - Builds/tests must finish in reasonable about of time

Cloud-based Cl

- Linked to VCS hosts
 - GitHub & Travis CI
 - GitLab CI
 - BitBucket Pipelines
- Automated builds/tests triggered via pushes and pull requests
- Builds/tests can be run on cloud systems
- Test results are reported on the pull request page
- Can trigger code coverage analysis & documentation build
- Run tests on different environments

View of toy repository

https://github.com/jrdoneal/infrastructure

Repository Root

Sample .travis.yml

Status of Personal codebase

Results of CI Actions

Putting it all together

Toy CI Workflow

Other resources

Software testing levels and definitions: http://www.tutorialspoint.com/software_testing/software_testing_levels.htm

Working Effectively with Legacy Code, Michael Feathers. The legacy software change algorithm described in this book is very straight-forward and powerful for anyone working on a code that has insufficient testing.

Code Complete, Steve McConnell. Includes testing advice.

Organization dedicated to software testing: https://www.associationforsoftwaretesting.org/

Software Carpentry: http://katyhuff.github.io/python-testing/

Tutorial from Udacity: https://www.udacity.com/course/software-testing--cs258

Papers on testing:

http://www.sciencedirect.com/science/article/pii/S0950584914001232 https://www.researchgate.net/publication/264697060_Ongoing_verification_of_a_multiphysics_community_code_FLASH

Resources for Trilinos testing:

Trilinos testing policy: https://github.com/trilinos/Trilinos/wiki/Trilinos-Testing-Policy Trilinos test harness: https://github.com/trilinos/Trilinos/wiki/Policies--%7C-Testing

Agenda

Time	Торіс	Speaker
1:30pm-2:15pm	Why effective software practices are essential for CSE projects	Anshu Dubey, ANL
2:15pm-2:45pm	Better (small) scientific software teams	Michael A. Heroux, SNL
2:45pm-3:00pm	Improving Reproducibility Through Better Software Practices	Michael A. Heroux, SNL
3:00pm-3:30pm	Break	
3:30pm-4:15pm	Testing HPC Scientific Software: Introduction	Jared O'Neal, ANL
4:15pm-4:45pm	Verification, and Evaluating Project Testing Needs	Anshu Dubey, ANL
4:45am-5:00pm	Code Coverage and CI	Jared O'Neal, ANL

