

Jianchang Lai ^{a,*}, Fuchun Guo ^{b,*}, Willy Susilo ^b, Peng Jiang ^c, Guomin Yang ^d, Xinyi Huang ^e

*School of Cyber Science and Engineering, Southeast University, Nanjing, China
*Institute of Cyberscurity and Cyptology, School of Computing and Information Technology, University of Wolfungung, Aus
*School of Computer Science and Technology, Beigin Institute of Technology, Deliyer, China
*School of Computer Science and Information Systems, Singapore White Information Computer School of Computer Science and Information Systems, Singapore
*The Hong Song University of Science and Technology Concaptibles, Clampian, Campathon, China
*The Hong Song University of Science and Technology Concaptibles, Clampian, China
*The Hong Song University of Science and Technology Concaptibles, Clampian, China
*The Hong Song University of Science and Technology Concaptibles, Clampian, China
*The Hong Song University of Science and Technology Concaptibles, Clampian, China
*The Hong Song University of Science and Technology Concaptibles, Clampian, China
*The Hong Song University of Science and Technology Concaptibles, Clampian, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong Song University of Science and Technology Concaptibles, China
*The Hong S

CCA security is desirable when designing encryption schemes because it captures active attackers. One efficient approach for achieving CCA security is to use generic conversions. We first design a CPA secure scheme, and then transform in into a CCA secure scheme using the frujuski-Diamnoto technique (CRYPTO '99) in the random oracle model or the Caneti-Ralei-Valtz rechnique (TBOCKYPT' Val) in the standom food if the CPA secure scheme

01 研究背景

属性基加密 (ABE)

01 研究背景

选择明文攻击

Chosen Plaintext Attack

敌手能够访问加密预言 机(即加密服务),可以自由选择任意明文并获取对应的密 文, 但无法直接获取密钥或解 密其他密文。 目标是利用这些信息推断

密钥或破坏加密方案的不可区 分性

03 核心算法

- Setup (系统初始化)
 ・ 輸入:安全参数入,通用同性集/デ、整数n。
- 機作: 进行而方案 Π 約 $Setup(\lambda, \mathcal{P} \cup W)$ 生成主密钥p(mpk, msk), 选择给希函数
- $H:\{0,1\}^* \to \{0,1\}^*$ (安全运输中视为随机预言机), 最终那点 $=(mpk,n,H),\; msk$ 沿用覆方策结果, 建过引入虚乳阀性無 $W,\;$ 扩展属性空间, 为抵御主动改击奠定基础。

- ・ 密放送のは、・ を行政の対象においません。 ・ 計算 $H(CT_1,S,t)=c_1c_2\cdots c_4$ 、定文:無以限性地 $I_C=B_{c_1,1}\cup B_{c_2,2}\cup\cdots\cup B_{c_n,k}$ 。 ・ 計算策略为 $(S_{c_1}t_t)=(S\cup I_C,t)$ 、適用日 $c_Cp(mpk,r,S_{c_1}t_t)$ 生成 CT_2 、
- 输出密文 $CT_c = (CT_1, CT_2)$ 。通过给希动态关取虚拟属性、隐藏真实策略、报源密文整改。

- Decrypt (解密) $\circ \ \ \textbf{输入} \colon mpk, \ \boxtimes \Sigma CT_c, \ \ 丽性集A \ (|A\cap S| \geq t) \ .$
- 生成扩展策略 (S_r,t_r) (同加密逻辑)。
- 运行Verify(mpk, CT_c, S_c, t_c)。若输出非1、返回 \bot (拒绝无效密文) 。
- 调用原方案Decrypt $(mpk,CT_c,(S_c,t_c),sk_A')$ 解密,返回結果。利用可拾近性确保密文金法性。

4.1. Generic Construction I: from Verifiability

03 核心算法

- 輸入:安全参数λ、通用属性集/デ、整数n。

- 。 选择给希朗数 $H:\{0,1\}^* o \{0,1\}^*$ (在縣机預言机模型中,H由机战者控制)。
- 最终输出 $mpk=(mpk,n,H),\ msk$ 治用原方常结果。通过引入虚拟属性集W,扩展系统属性空间,为抵制主动攻击构建基础抵制。

2. KeyGen (私钥生成)

- 輸入: 主密钥时(mpk, msk)、属性集 $A \subset \mathscr{P}_*$
- 損**作**: $\label{eq:def:def:nonlinear} \quad \circ \quad \text{利用可委托性,} \ \ \ \, \text{将属性集扩限为} A_c = A \cup W_{\bullet}$
- 调用银方盒的KeyGen (mpk,msk,A_t) 生成战场 sk_{A_t} 、返回 $sk_A'=sk_{A_t}$ 。通过扩展模性集,结合可要托性,确保私钥生成员稀密银方案又满足新安全便受票求。

4.2. Generic Construction II: from Delegatability

- 。 输入: mpk、消息M、属性集S、阈值t $(1 \le t \le |S|)$ 。
- 步骤:
- 随机选取r、调用原方案的Enc_M(mpk, r, M)生成CT₁。
- 。 计算 $H(CT_1,S,t)=c_1c_2\cdots c_n$,定义虚拟属性集 $I_C=B_{c_1,1}\cup B_{c_2,2}\cup\cdots\cup B_{c_n,n}$ 。
- 。 扩展策略为 $(S_c, t_c) = (S \cup I_C, t + |I_C|)$ 、利用Enc $p(mpk, r, S_c, t_c)$ 生成 CT_2 。
- 。 输出密文 $CT_c = (CT_1, CT_2)$ 。通过哈希动态关联虚拟属性,隐蔽真实策略,同时利用策略扩展增强抗 攻击能力。

- 输入: mpk、密文 CT_c 、属性集A $(|A\cap S|\geq t)$ 。
- 步骤:
- … o 生成扩展策略 $(S_e, t_e) = (S \cup I_C, t + |I_C|)_*$
- 利用可要托性,运行Delegate(mpk,msk,sk',,A∪W∪Ic)生成要托粘钥skA,w∪L。
- 。 调用原方素的Decrypt $(mpk,CT_c,(S_c,t_c),sk_{A,W\cup I_C})$ 解密,返回结果,通过可委托性生成符合扩展 **策略的私钥,确保解密流程在新安全模型下的有效性。**

03 核心算法

03 核心算法

攻击方式	虚拟属性作用	Verifiability / Delegatability 作用
攻击者伪造密文	没有虚拟属性 → 解密失败	1
攻击者做密钥查询	1	Delegatability: 模拟器派生 子密钥
攻击者做解密查询	验证虚拟属性,防伪伪密文	Verifiability: 用模拟密钥解 出正确结果

03 核心算法

两种算法流程看似接近,核心差别在于:

·Construction I: 强调解密结果一致性 ·Construction II: 强调密钥授权与派生

	Construction I	Construction II
场景	多人用钥匙开同信	老板授权助理开信
关键验证	内容+水印必须一致	授权派生钥匙+水印检验
防伪方式	防伪水印验证	防伪水印验证
核心价值	保证多钥匙解密一致	保证授权密钥安全解密

	Construction I	Construction II
依赖性质	Verifiability	Delegatability
解密前操作	解密→验证虚拟属性	解密→验证虚拟属性
安全性证明	多密钥解密结果一致,便于模拟 解密	派生密钥解密, 便于模拟密钥查询
难点控制	模拟解密一致性	模拟密钥派生一致性
	解密前操作 安全性证明	依赖性质 解密前操作 安全性证明 安全性证明 经产量的操密结果一致,便于模拟

Construction I: 像是多钥匙多数官,一致才算真值 Construction II: 像是老板授权助理开信,确保助理开的信仰老板开的一样,而且防伤水印检验过关