Technische Grundlagen der angewandten Informatik

RedLab - Python

J. Keppler

Konstanz, 12. Juni 2017

Zusammenfassung (Abstract)

Thema: RedLab - Python

Autoren: J. Keppler jkeppler@htwg-konstanz.de

Python ist eine universelle, üblicherweise interpretierte Programmiersprache. Sie unterstützt mehrere Programmierparadigmen, z.B. die objektorientierte, die aspektorientierte und die funk-

tionale Programmierung. Wie viele dynamische Sprachen wird Python oft als Skriptsprache genutzt.

RedLab-Python ist eine Programmbibliothek, welche einen Wrapper für die API von ME RedLab® zur

Verfügung stellt (nur spezielle Funktionen). Basis der API ist die Universal Library™von MC MEASUREMNT COMPUTING. Die Python Programmbibliothek *redlab* wurde unter Windows®7 mit Visual Studio® für Python 3.5 (64 Bit) entwickelt. Eingesetzt wird die Bibliothek in den Laborversuchen von SSS mit der DAQ-USB-Box RedLab 1208LS.

Python gilt als einfach zu erlernende Sprache, da sie über eine klare und übersichtliche Syntax verfügt. Ferner besitzt sie umfangreiche Programmbibliotheken.

Inhaltsverzeichnis

1	Einle	inleitung			
	1.1	Installa	tion	1	
2	Funl	ktionsre	ferenzen	2	
	2.1	Analog	I/O Funktionen	2	
		2.1.1	cbAIn() Funktion	2	
		2.1.2	cbAInScan() Funktion	3	
		2.1.3	cbAOut() Funktion	4	
		2.1.4	cbVIn() Funktion	5	
		2.1.5	cbVInScan() Funktion	6	
		2.1.6	cbVOut() Funktion	7	
		2.1.7	cbInScanRate() Funktion	7	
Aı	nhang			9	
	A.1	A/D-Ei	ngabe und D/A-Ausgabe	9	
	A.2	Auszug	Datenblatt ME-1208LS (Spezifikationen)	10	

1

Einleitung

1.1 Installation

RedLab-Python ist eine Wrapper-Klasse für die *Universal Library* von Measurement Computing. Die API stellt entsprechende Funktionen für den Zugriff auf die DAQ-USB-Box RedLab 1208LS zur Verfügung.

Das **RedLab-Python** - Modul wurde unter Windows 7 für Python 3.5 mit 64 Bit compiliert. Dazu wurde Visual Studio 2013 verwendet.

Die Installation wird in folgenden Schritten durchgeführt:

- 1. Das Treiberpacket von Meilhaus für die RedLab-Baureihe wird zunächst auf dem Computer installiert.
- 2. Das Microsoft Visual C++ 2013 Redistributable Package (x64) [vcredist_x64.exe] wird zunächst auf dem Computer ausgeführt.
- 3. Die Datei redlab.pyd wird in das Unterverzeichnis <python directory>\DLLs kopiert.

2

Funktionsreferenzen

2.1 Analog I/O Funktionen

2.1.1 cbAIn() Funktion

Der angegebene A/D - Eingangskanal auf der spezifizierten Karte wird ausgelesen und der vorzeichenlose Wert im 16-Bit Format zurückgegeben. Wenn die spezifizierte A/D - Karte einen programmierbaren Verstärker besitzt, wird zunächst die Verstärkung eingestellt und der A/D - Wert entsprechend konvertiert.

Funktionsprototyp

Python

cbAIn(int BoardNum, int Channel, int Rang) -> Long

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

Channel

A/D Kanalnummer. Die größte Kanalnummer hängt vom Type der A/D-Karte welche benutzt wird ab. Bei Karten mit ßingel-endedünd "differentiellËingängen zusätzlich von der Konfiguration.

Rang

A/D Spannungsbereichscode. Für den Bereich –10Vbis+10V ist dieser 1.

Rückgabewert

Long

Der gelesene Wert des A/D Kanals. Entsprechend der Auflösung des Kanals.

2.1.2 cbAInScan() Funktion

Liest einen Bereich von A/D-Eingangskanälen auf der spezifizierten Karte. Die Funktion liest eine angegebene Anzahl von A/D-Werten von diesen Kanälen . Wenn die spezifizierte A/D-Karte einen programmierbaren Verstärker besitzt, wird zunächst die Verstärkung eingestellt und der A/D-Wert entsprechend konvertiert.

Funktionsprototyp

Python

cbAInScan(int BoardNum, int LowChan, int HighChan, long Count, long Rate, int Rang) -> List[Long]

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

LowChan

Die kleiner A/D Kanalnummer, untere Grenze des Bereichs welcher gelesen werden soll.

HighChan

Die größere A/D Kanalnummer, obere Grenze des Bereichs welche gelesen werden soll.

Count

Die Anzahl der zu lesenden A/D-Werte. Dies entspricht der Gesamtzahl der A/D-Werte. Werden mehrere Kanäle gelesen gelesen, berechnet sich die Anzahl pro Kanal wie folg *Count/(HighChan-LowChan+1)*.

Rate

Die Rate für die Datenerfassung, in Samples pro Sekunde pro Kanal.

Rang

A/D Spannungsbereichscode. Für den Bereich –10Vbis+10V ist dieser 1.

Rückgabewert

Long

Der gelesene Wert des A/D Kanals. Entsprechend der Auflösung des Kanals.

2.1.3 cbAOut() Funktion

Diese Funktion setzt den Wert für die D/A-Ausgabe.

Funktionsprototyp

Python

cbAOutn(int BoardNum, int Channel, int Rang, unsigned DataValue) -> None]

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

Channel

D/A-Kanalnummer. Die Kanalnummer sind von der Karte abhängig.

Rang

D/A Spannungsbereichscode. Wenn die spezifizierte D/A-Karte keinen programmierten Verstärker besitzt, wird dieser Wert ignoriert. Für den Bereich 0 - 5 V ist dieser **101**.

DataValue

Wert welcher am D/A-Kanal gesetzt werden soll. Dieser muss im Bereich 0-n liegen, wobei $n = 2^{Auflsung} - 1$ der entsprechende Auflösung ist.

Rückgabewert

None

2.1.4 cbVIn() Funktion

Der angegebene A/D - Eingangskanal auf der spezifizierten Karte wird ausgelesen und der Spannungswert zurückgegeben.

Funktionsprototyp

Python

cbAIn(int BoardNum, int Channel, int Rang) -> Long

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

Channel

A/D Kanalnummer. Die größte Kanalnummer hängt vom Type der A/D-Karte welche benutzt wird ab. Bei Karten mit ßingel-endedünd "differentiellËingängen zusätzlich von der Konfiguration.

Rang

A/D Spannungsbereichscode. Für den Bereich –10V bis + 10V ist dieser 1.

Rückgabewert

float

Der gelesene Spannungswert des A/D Kanals.

2.1.5 cbVInScan() Funktion

Liest einen Bereich von A/D-Eingangskanälen auf der spezifizierten Karte. Die Funktion liest eine angegebene Anzahl von Spannungswerten von diesen Kanälen .

Funktionsprototyp

Python

cbAInScan(int BoardNum, int LowChan, int HighChan, long Count, long Rate, int Rang) -> List[Long]

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

LowChan

Die kleiner A/D Kanalnummer, untere Grenze des Bereichs welcher gelesen werden soll.

HighChan

Die größere A/D Kanalnummer, obere Grenze des Bereichs welche gelesen werden soll.

Count

Die Anzahl der zu lesenden A/D-Werte. Dies entspricht der Gesamtzahl der A/D-Werte. Werden mehrere Kanäle gelesen gelesen, berechnet sich die Anzahl pro Kanal wie folg *Count/(HighChan-LowChan+1)*.

Rate

Die Rate für die Datenerfassung, in Samples pro Sekunde pro Kanal.

Rang

A/D Spannungsbereichscode. Wenn die spezifizierte A/D-Karte keinen programmierten Verstärker besitzt, wird dieser Wert ignoriert. Für den Bereich -10Vbis + 10V ist dieser **1**.

Rückgabewert

Long

Der gelesene Wert des A/D Kanals. Entsprechend der Auflösung des Kanals.

2.1.6 cbVOut() Funktion

Diese Funktion setzt den Spannungswert für die D/A-Ausgabe.

Funktionsprototyp

Python

cbVOut(int BoardNum, int Channel, int Rang, float DataValue) -> None]

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

Channel

D/A-Kanalnummer. Die Kanalnummer sind von der Karte abhängig.

Rang

D/A Spannungsbereichscode. Für den Bereich 0 - 5 V ist dieser 101.

DataValue

Spannungswert welcher am D/A-Kanal gesetzt werden soll.

Rückgabewert

None

2.1.7 cbInScanRate() Funktion

Liefert die tatsächliche Sampling Rate.

Funktionsprototyp

Python

cbInScanRate(int BoardNum, int LowChan, int HighChan, long Rate) -> Float

Argumente

BoardNum

Die Nummer der Karte, welche verwendet werden soll.BoardNum liegt im Bereich von 0 und 99. Die Nummerierung der Karten erfolgt durch das programm InstaCal.

LowChan

Die kleiner A/D Kanalnummer, untere Grenze des Bereichs welcher gelesen werden soll.

HighChan

Die größere A/D Kanalnummer, obere Grenze des Bereichs welche gelesen werden soll.

Rate

Die Rate für die Datenerfassung, in Samples pro Sekunde pro Kanal.

Rückgabewert

Float

Die tatsächliche Sampling Rate.

Anhang

A.1 A/D-Eingabe und D/A-Ausgabe

Listing 3.1: A/D input and D/A output

A.2 Auszug Datenblatt ME-1208LS (Spezifikationen)

Spezifikationen

Sofern nicht anders vermerkt, gelten alle Angaben für 25 °C.

Analogeingabe

Parameter	Bedingungen	Spezifikationen
A/D-Wandlertyp		A/D-Wandler vom Typ der sukzessiven Approximation
Eingangsspannungsbereich für lineare Operation, single-ended	CHx nach GND	±10 V max.
Eingangs-Common-Mode- Spannungsbereich für lineare Operation, differentieller Modus	CHx nach GND	-10 V min., +20 V max.
Maximal zulässige Eingangs- Absolutspannung	CHx nach GND	±40 V max.
Stromaufnahme (Hinweis 1)	Vin = +10 V	70 μA typ.
	Vin = 0 V	-12 μA typ.
	Vin = -10 V	-94 μA typ.
Anzahl der Kanäle		8 single-ended / 4 differentielle, per Software auswählbar
Eingangsbereiche, single-ended		±10 V, G=2
Eingangsbereiche, differentiell		±20 V, G=1
		±10 V, G=2
		±5 V, G=4
		±4 V, G=5
		±2,5 V, G=8
		±2,0 V, G=10
		±1,25 V, G=16
		±1,0 V, G=20
		per Software wählbar
Durchsatz	per Software gesteuert	50 S/s
	kontinuierliche Erfassung	1,2 kS/s
	blockweise Erfassung ins 4k Werte-FIFO	8 kS/s
Kanalliste	bis zu 8 Elemente	Kanal, Bereich und Verstärkung per Software konfigurierbar
Auflösung (Hinweis 2)	differentiell	12 Bit, keine fehlenden Codes
	single-ended	11 Bit
CAL-Genauigkeit	CAL = 2,5 V	±0,05 % typ., ±0,25 % max.
Integraler Linearitätsfehler		±1 LSB typ.
Differentieller Linearitätsfehler		±0,5 LSB typ.
Wiederholgenauigkeit		±1 LSB typ.
CAL Strom	Quelle	max. 5 mA
	Senke	20 μA min., 200 nA typ.
Triggerquelle	per Software wählbar	extern digital: TRIG_IN

Hinweis 1: Der Eingangsstrom ist von der an die Analogkanäle angelegten Spannung abhängig. Bei einer gegebenen Eingangsspannung Vin ist der Eingangssperrstrom näherungsweise (8,181*Vin-12) μA. Hinweis 2: Der Wandler AD7870 gibt im single-ended Modus nur 11 Bits (Codes 0-2047) zurück.

Tabelle 4-1 Genauigkeit, differentieller Modus

Bereich	Genauigkeit (LSB)
±20 V	5,1
±10 V	6,1
±5 V	8,1
±4 V	9,1
±2,5 V	12,1
±2 V	14,1
±1,25 V	20,1
±1 V	24,1

Tabelle 4-2 Genauigkeit, single-ended Modus

Bereich	Genauigkeit (LSB)
±10 V	4,0

Tabelle 4-3 Genauigkeitskomponenten – differentieller Modus - alle Werte sind (±)

Bereich	% der Anzeige	Verstärkungs-fehler bei Vollausschlag (mV)	Offset (mV)	Genauigkeit bei Vollausschlag (mV)
±20 V	0,2	40	9,766	49,766
±10 V	0,2	20	9,766	29,766
±5 V	0,2	10	9,766	19,766
±4 V	0,2	8	9,766	17,766
±2,5 V	0,2	5	9,766	14,766
±2 V	0,2	4	9,766	13,766
±1,25 V	0,2	2,5	9,766	12,266
±1 V	0,2	2	9,766	11,766

Tabelle 4-4 Genauigkeitskomponenten – single-ended Modus - alle Werte sind (±)

Bereich	% der Anzeige	Verstärkungs-fehler bei Vollausschlag (mV)	Offset (mV)	Genauigkeit bei Vollausschlag (mV)
±10 V	0,2	20	19,531	39,531

Analogausgang

Parameter	Bedingungen	Spezifikationen
D/A-Wandlertyp		PWM
Auflösung		10 Bit, 1 in 1024
Maximaler Ausgangsspannungsbereich		0 bis 5 V
Anzahl der Kanäle		2 Spannungsausgänge
Durchsatz	per Software	100 S/s Einkanal-Betrieb
	gesteuert	50 S/s Zweikanal-Betrieb
Einschalt- und Rücksetzspannung		initialisiert zum Code 000h
Maximale Spannung (Hinweis 3)	ohne Last	Vs
	1 mA Last	0,99*Vs
	5 mA Last	0,98*Vs
Ausgangsstrom	pro D/A OUT	30 mA
Anstiegszeit		0,14 V/mS typ.

Hinweis 3: Vs ist die +5 V Spannung vom USB-Bus. Die maximale Analogausgangsspannung entspricht Vs ohne Last, ist systemabhängig und kann auch weniger als 5 V betragen.

Digitaleingang/-ausgang

Digitaltyp	82C55
Anzahl der Eingänge/Ausgänge	16 (Port A0 bis A7, Port B0 bis B7
Konfiguration	2 Ports zu je 8 Bit
Pull-up/Pull-down-Konfiguration	Alle Anschlüsse sind über einen 47-kOhm-Widerstand mit Vs verbunden (Standard). Pull-down Verbindung gegen Masse ist möglich. Über einen 0-Ohm-Widerstand wählbar.
Eingangsspannung HIGH	2,0 V min., 5,5 V absolut max.
Eingangsspannung LOW	0,8 V max., -0,5 V absolut min.
Ausgangsspannung HIGH (IOH = -2,5 mA)	3,0 V min.
Ausgangsspannung LOW (IOL = 2,5 mA)	0,4 V max.

Externer Trigger

Parameter	Bedingungen	Spezifikationen
Triggerquelle (Hinweis 4)	extern digital	TRIG_IN
Trigger-Modus	per Software wählbar	pegelabhängig: benutzerkonfigurierbar für HIGH- oder LOW-TTL-Eingangspegel
Triggerverzögerung	blockweise	25 μs min., 50 μs max.
Triggerimpulsbreite	Block	40 μs min.
Eingangsspannung für HIGH		3,0 V min., 15,0 V absolut max.
Eingangsspannung für LOW		0,8 V max.
Eingangssperrstrom		± 1,0 μΑ

Hinweis 4: TRIG_IN ist durch einen 1,5-kΩ-Serienwiderstand geschützt.

Zähler

Zählertyp	Ereigniszähler
Anzahl der Kanäle	1
Eingangstyp	TTL, triggert auf steigende Flanke
Eingangsquelle	Schraubklemme CTR
Auflösung	32 Bit
Schmitt-Trigger-Hysterese	20 mV bis 100 mV
Eingangssperrstrom	$\pm 1 \mu\text{A}$
Max. Eingangsfrequenz	1 MHz
Impulsbreite für HIGH	500 ns min.
Impulsbreite für LOW	500 ns min.
Eingangsspannung für LOW	0 V min., 1,0 V max.
Eingangsspannung für HIGH	4,0 V min., 15,0 V max.

Nichtflüchtiger Speicher

Speichergröße	8192 Byte			
Speicherkonfiguration	Adressbereich	Zugriff	Beschreibung	
	0x0000 - 0x17FF	lesen/schreiben	A/D-Daten (4K Abtastdaten)	
	0x1800 - 0x1EFF	lesen/schreiben	Benutzerdatenbereich	
	0x1F00 - 0x1FEF	lesen/schreiben	Kalibrierdaten	
	0x1FF0 – 0x1FFF	lesen/schreiben	Systemdaten	

Stromversorgung

Parameter	Bedingungen	Spezifikationen	
Stromaufnahme (Hinweis 5)		20 mA	
Verfügbare +5V USB-	mit eigenversorgtem Hub	4,5 V min., 5,25 V max.	
Spannungsversorgung (Hinweis 6)	mit über den Bus versorgtem Hub	4,1 V min., 5,25 V max.	
Ausgangsstrom (Hinweis 7)	mit eigenversorgtem Hub	450 mA min., 500 mA max.	
	mit über den Bus versorgtem Hub	50 mA min., 100 mA max.	

- Hinweis 5: Hierbei handelt es sich um den gesamten vom RedLab 1208LS benötigten Strom einschließlich bis zu 5 mA für die Zustands-LED.
- Hinweis 6: Eigenversorgt bezieht sich auf USB-Verteiler und Hosts mit einer Stromversorgung. Über den Bus versorgt bezieht sich auf USB-Hub und Hosts ohne eigene Stromversorgung.
- Hinweis 7: Dies bezieht sich auf den Gesamtstrom, der vom USB +5 V, den Analog- und Digitalausgängen zur Verfügung gestellt werden kann.

Allgemeines

Parameter	Bedingungen	Spezifikationen
Taktfrequenzfehler des USB-	25 °C	±30 ppm max.
Controller	0 bis 70 °C	±50 ppm max.
	-40 bis 85 °C	±100 ppm max.
Gerätetyp		USB 1.1 (niedrige
		Datenübertragungsrate)
Geräte-Kompatibilität		USB 1.1, USB 2.0

Umgebungsbedingungen

Betriebstemperaturbereich	-0 bis 70 °C
Lagertemperaturbereich	-40 bis 85 °C
Feuchtigkeit	0 bis 90 % nicht kondensierend

Mechanisches

Abmessungen	79 mm (L) x 82 mm (T) x 25 mm (H)	
Länge des USB-Kabels	max. 3 Meter	
Länge der Benutzerverbindung	max. 3 Meter	

Hauptanschluss und Anschlussverdrahtung

Anschlusstyp	Schraubklemmen
Leitungsquerschnitt	AWG 16 bis 30

4 Kanäle, differentieller Modus

Anschluss	Signal-bezeichnung	Anschluss	Signal-bezeichnung
1	CH0 IN HI	21	Port A0
2	CH0 IN LO	22	Port A1
3	GND	23	Port A2
4	CH1 IN HI	24	Port A3
5	CH1 IN LO	25	Port A4
6	GND	26	Port A5
7	CH2 IN HI	27	Port A6
8	CH2 IN LO	28	Port A7
9	GND	29	GND
10	CH3 IN HI	30	PC+5V
11	CH3 IN LO	31	GND
12	GND	32	Port B0
13	D/A OUT 0	33	Port B1
14	D/A OUT 1	34	Port B2
15	GND	35	Port B3
16	CAL	36	Port B4
17	GND	37	Port B5
18	TRIG_IN	38	Port B6
19	GND	39	Port B7
20	CTR	40	GND

8 Kanäle, single-ended Modus

Anschluss	Signal-bezeichnung	Anschluss	Signal-bezeichnung
1	CH0 IN	21	Port A0
2	CH1 IN	22	Port A1
3	GND	23	Port A2
4	CH2 IN	24	Port A3
5	CH3 IN	25	Port A4
6	GND	26	Port A5
7	CH4 IN	27	Port A6
8	CH5 IN	28	Port A7
9	GND	29	GND
10	CH6 IN	30	PC+5V
11	CH7 IN	31	GND
12	GND	32	Port B0
13	D/A OUT 0	33	Port B1
14	D/A OUT 1	34	Port B2
15	GND	35	Port B3
16	CAL	36	Port B4
17	GND	37	Port B5
18	TRIG_IN	38	Port B6
19	GND	39	Port B7
20	CTR	40	GND