CS 189 Introduction to Spring 2013 Machine Learning

Midterm

- You have 1 hour 20 minutes for the exam.
- The exam is closed book, closed notes except your one-page crib sheet.
- Please use non-programmable calculators only.
- Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. All short answer sections can be successfully answered in a few sentences AT MOST.
- For true/false questions, fill in the True/False bubble.
- For multiple-choice questions, fill in the bubbles for **ALL** CORRECT CHOICES (in some cases, there may be more than one). For a question with p points and k choices, every false positive wil incur a penalty of p/(k-1) points.

First name		
Last name		
SID		

For staff use only:

Q1.	True/False	/14
Q2.	Multiple Choice Questions	/21
Q3.	Short Answers	/15
	Total	/50

Q1. [14 pts] True/False

 (b) [1 pt] In kernelized SVMs, the kernel matrix K has to be positive definite.	(a)	[1 pt] In Support Vector Machines, we maximize $\frac{\ w\ ^2}{2}$ subject to the margin constraints. \bigcirc True \bigcirc False
 True	(b)	
 covariance matrix. True	(c)	
 (e) [1 pt] The RBF kernel (K(x_i, x_j) = exp(-γ x_i - x_j ²)) corresponds to an infinite dimensional mapping of the feature vectors. True	(d)	covariance matrix.
 (f) [1 pt] If (X,Y) are jointly Gaussian, then X and Y are also Gaussian distributed. True ○ False (g) [1 pt] A function f(x, y, z) is convex if the Hessian of f is positive semi-definite. True ○ False (h) [1 pt] In a least-squares linear regression problem, adding an L₂ regularization penalty cannot decrease the error of the solution w on the training data. True ○ False (i) [1 pt] In linear SVMs, the optimal weight vector w is a linear combination of training data points. True ○ False (j) [1 pt] In stochastic gradient descent, we take steps in the exact direction of the gradient vector. True ● False (k) [1 pt] In a two class problem when the class conditionals P(x y = 0) and P(x y = 1) are modelled as Gaussia with different covariance matrices, the posterior probabilities turn out to be logistic functions. True ● False (l) [1 pt] The perceptron training procedure is guaranteed to converge if the two classes are linearly separable. True ○ False (m) [1 pt] The maximum likelihood estimate for the variance of a univariate Gaussian is unbiased. True ● False (n) [1 pt] In linear regression, using an L₁ regularization penalty term results in sparser solutions than using L₂ regularization penalty term. 	(e)	[1 pt] The RBF kernel $(K(x_i, x_j) = exp(-\gamma x_i - x_j ^2))$ corresponds to an infinite dimensional mapping of the feature vectors.
 True ○ False (h) [1 pt] In a least-squares linear regression problem, adding an L₂ regularization penalty cannot decrease the error of the solution w on the training data. True ○ False (i) [1 pt] In linear SVMs, the optimal weight vector w is a linear combination of training data points. True ○ False (j) [1 pt] In stochastic gradient descent, we take steps in the exact direction of the gradient vector. ○ True ● False (k) [1 pt] In a two class problem when the class conditionals P(x y = 0) and P(x y = 1) are modelled as Gaussia with different covariance matrices, the posterior probabilities turn out to be logistic functions. ○ True ● False (l) [1 pt] The perceptron training procedure is guaranteed to converge if the two classes are linearly separable. ● True ○ False (m) [1 pt] The maximum likelihood estimate for the variance of a univariate Gaussian is unbiased. ○ True ● False (n) [1 pt] In linear regression, using an L₁ regularization penalty term results in sparser solutions than using L₂ regularization penalty term. 	(f)	[1 pt] If (X,Y) are jointly Gaussian, then X and Y are also Gaussian distributed.
error of the solution w on the training data. True ○ False (i) [1 pt] In linear SVMs, the optimal weight vector w is a linear combination of training data points. True ○ False (j) [1 pt] In stochastic gradient descent, we take steps in the exact direction of the gradient vector. True ● False (k) [1 pt] In a two class problem when the class conditionals P(x y = 0) and P(x y = 1) are modelled as Gaussia with different covariance matrices, the posterior probabilities turn out to be logistic functions. True ● False (l) [1 pt] The perceptron training procedure is guaranteed to converge if the two classes are linearly separable. True ○ False (m) [1 pt] The maximum likelihood estimate for the variance of a univariate Gaussian is unbiased. True ● False (n) [1 pt] In linear regression, using an L₁ regularization penalty term results in sparser solutions than using L₂ regularization penalty term.	(g)	
 True ○ False (j) [1 pt] In stochastic gradient descent, we take steps in the exact direction of the gradient vector. ○ True ● False (k) [1 pt] In a two class problem when the class conditionals P(x y = 0) and P(x y = 1) are modelled as Gaussia with different covariance matrices, the posterior probabilities turn out to be logistic functions. ○ True ● False (l) [1 pt] The perceptron training procedure is guaranteed to converge if the two classes are linearly separable. ● True ○ False (m) [1 pt] The maximum likelihood estimate for the variance of a univariate Gaussian is unbiased. ○ True ● False (n) [1 pt] In linear regression, using an L₁ regularization penalty term results in sparser solutions than using L₂ regularization penalty term. 	(h)	error of the solution w on the training data.
 ○ True	(i)	
with different covariance matrices, the posterior probabilities turn out to be logistic functions. ○ True False (I) [1 pt] The perceptron training procedure is guaranteed to converge if the two classes are linearly separable. • True False (m) [1 pt] The maximum likelihood estimate for the variance of a univariate Gaussian is unbiased. ○ True False (n) [1 pt] In linear regression, using an L₁ regularization penalty term results in sparser solutions than using L₂ regularization penalty term.	(j)	
 True	(k)	with different covariance matrices, the posterior probabilities turn out to be logistic functions.
 ○ True	(1)	
L_2 regularization penalty term.	(m)	
	(n)	L_2 regularization penalty term.

Q2. [21 pts] Multiple Choice Questions

(a)	[2 pts] If $X \sim \mathcal{N}(\mu, \sigma^2)$ and	Y = aX + b, then the va	riance of Y is:	
	$\bigcirc a\sigma^2 + b$	$\bigcirc a^2\sigma^2 + b$	$\bigcirc a\sigma^2$	\bullet $a^2\sigma^2$
(b)	[2 pts] In soft margin SVMs	, the slack variables ξ_i de	fined in the constraints a	$g_i(w^Tx_i + b) \ge 1 - \xi_i$ have to be
	○ < 0	$\bigcirc \leq 0$	$\bigcirc > 0$	$\bullet \geq 0$
(c)	[4 pts] Which of the following Gaussian? ($\Sigma = UDU^T$ is the	g transformations when a he spectral decomposition	applied on $X \sim \mathcal{N}(\mu, \Sigma)$ to of $\Sigma)$	cransforms it into an axis aligned
	$ U^{-1}(X-\mu) $	● (<i>UD</i>) ⁻	$-1(X-\mu)$	$\bigcirc UD(X-\mu)$
	$ (UD^{1/2})^{-1}(X-\mu) $	$\bigcirc U(X -$	(μ)	$\bigcirc \ \Sigma^{-1}(X-\mu)$
(d)	[2 pts] Consider the sigmoid	function $f(x) = 1/(1 + \epsilon)$	e^{-x}). The derivative $f'(x)$	e) is
	$\bigcirc f(x) \ln f(x) + (1 -$	$f(x))\ln(1-f(x))$?))
	$\bigcirc f(x)\ln(1-f(x))$		$\bigcirc f(x)(1+f(x))$	·))
(e)	[2 pts] In regression, using a	an L_2 regularizer is equive	alent to using a	prior.
	\bigcirc Laplace, $2\beta \exp(- x)$	c /eta)	Exponential,	$\beta \exp(-x/\beta)$, for $x > 0$
			O Gaussian wit	th diagonal covariance
	• Gaussian with $\Sigma =$	$cI, c \in R$	$(\Sigma \neq cI, c \in R)$	
(f)	[2 pts] Consider a two class	classification problem wit	th the loss matrix given a	as $\begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$. Note that λ_{ij} is the ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to:
(f)	[2 pts] Consider a two class	classification problem wit	th the loss matrix given a	as $\begin{pmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{pmatrix}$. Note that λ_{ij} is the ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to: $\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$
(g)	[2 pts] Consider a two class loss for classifying an instan $\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$	classification problem wit ce from class j as class i . $\frac{\lambda_{11} - \lambda_{21}}{\lambda_{22} - \lambda_{12}}$ that the control of the con	The the loss matrix given a At the decision bound $\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$ dinear regression $L(w) =$	ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to:
(g)	[2 pts] Consider a two class loss for classifying an instan $\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$ [2 pts] Consider the L_2 regularized regularization of the L_2 re	classification problem wit ce from class j as class i . $\frac{\lambda_{11} - \lambda_{21}}{\lambda_{22} - \lambda_{12}}$ that the control of the con	The the loss matrix given a At the decision bound $\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$ dinear regression $L(w) =$	ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to: $\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$
(g)	[2 pts] Consider a two class loss for classifying an instan $\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$ [2 pts] Consider the L_2 regularization parameters of the regularization parameters.	classification problem wit ce from class j as class i . $\frac{\lambda_{11} - \lambda_{21}}{\lambda_{22} - \lambda_{12}}$ clarized loss function for the Hessian matrix $2\lambda X^T X$	The the loss matrix given at the decision bound at $\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$ dinear regression $L(w) = \nabla_w^2 L(w)$ is $X^T X + 2\lambda I$	ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to: $\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$ $\frac{1}{2} \ Y - Xw\ ^2 + \lambda \ w\ ^2$, where λ
(g)	[2 pts] Consider a two class loss for classifying an instan $\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$ [2 pts] Consider the L_2 regularization parameter $\bigcirc X^T X$	classification problem wit ce from class j as class i . $\frac{\lambda_{11} - \lambda_{21}}{\lambda_{22} - \lambda_{12}}$ clarized loss function for the Hessian matrix $2\lambda X^T X$	The the loss matrix given at the decision bound at $\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$ dinear regression $L(w) = \nabla_w^2 L(w)$ is $X^T X + 2\lambda I$	ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to: $\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$ $\frac{1}{2} \ Y - Xw\ ^2 + \lambda \ w\ ^2$, where λ
(g) (h)	[2 pts] Consider a two class loss for classifying an instan $\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$ [2 pts] Consider the L_2 regularization parametric X^TX [2 pts] The geometric marginal X^TX	classification problem with the center of t	The the loss matrix given at the decision boundary $\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$ dinear regression $L(w) = \nabla_w^2 L(w)$ is $ X^T X + 2\lambda I $ ort Vector Machine is	ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to: $\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$ $\frac{1}{2} Y - Xw ^2 + \lambda w ^2, \text{ where } \lambda$ $\bigcirc (X^T X)^{-1}$
(g) (h)	[2 pts] Consider a two class loss for classifying an instan $\bigcirc \frac{\lambda_{11} - \lambda_{22}}{\lambda_{21} - \lambda_{12}}$ [2 pts] Consider the L_2 regularization parametric of X^TX [2 pts] The geometric marginal $\bigcirc \frac{\ w\ ^2}{2}$	classification problem with the center of t	The the loss matrix given at the decision boundary $\bigcirc \frac{\lambda_{11} + \lambda_{22}}{\lambda_{21} + \lambda_{12}}$ dinear regression $L(w) = \nabla_w^2 L(w)$ is $ X^T X + 2\lambda I $ ort Vector Machine is	ry, the ratio $\frac{P(\omega_2 x)}{P(\omega_1 x)}$ is equal to: $\bigcirc \frac{\lambda_{11} - \lambda_{12}}{\lambda_{22} - \lambda_{21}}$ $\frac{1}{2} Y - Xw ^2 + \lambda w ^2, \text{ where } \lambda$ $\bigcirc (X^T X)^{-1}$ $\bigcirc \frac{2}{ w ^2}$ $(x)), \qquad \mathbf{max}(f_1(x), f_2(x))$

Q3. [15 pts] Short Answers

(a) [4 pts] For a hard margin SVM, give an expression to calculate b given the solutions for w and the Lagrange multipliers $\{\alpha_i\}_{i=1}^N$.

Using the KKT conditions $\alpha_i(y_i(w^Tx_i+b)-1)=0$, we know that for support vectors, $\alpha_i \geq 0$. Thus for some $\alpha_i \geq 0$, $y_i(w^Tx_i+b)=1$ and thus

$$b = y_i - w^T x_i$$

For numerical stability, we can take an average over all the support vectors.

$$b = \sum_{x_i \in S_v} \frac{y_i - w^T x_i}{|S_v|}$$

- (b) Consider a Bernoulli random variable X with parameter p (P(X = 1) = p). We observe the following samples of X: (1, 1, 0, 1).
 - (i) [2 pts] Give an expression for the likelihood as a function of p.

$$L(p) = p^3(1-p)$$

(ii) [2 pts] Give an expression for the derivative of the negative log likelihood.

$$\frac{dNLL(p)}{dp} = \frac{1}{1-p} - \frac{3}{p}$$

(iii) [1 pt] What is the maximum likelihood estimate of p?

$$p = \frac{3}{4}$$

(c) [6 pts] Consider the weighted least squares problem in which you are given a dataset $\{\tilde{x}_i, y_i, w_i\}_{i=1}^N$, where w_i is an importance weight attached to the i^{th} data point. The loss is defined as $L(\beta) = \sum_{i=1}^N w_i (y_i - \beta^T x_i)^2$. Give an expression to calculate the coefficients $\tilde{\beta}$ in closed form.

Hint: You might need to use a matrix W such that $diag(W) = [w_1 w_2 \dots w_N]^T$

Define
$$Y = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix}$$
 and $X = \begin{bmatrix} x_1^T \\ x_2^T \\ \vdots \\ x_N^T \end{bmatrix}$.

Then $L(\beta) = (Y - X\beta)^T W (Y - X\beta)$. Setting $\frac{dL(\beta)}{d\beta} = 0$, we get

$$\tilde{\beta} = (X^T W X)^{-1} X^T W Y$$

SCRATCH PAPER

SCRATCH PAPER