TEORIA KATEGORII

SERIA 4: KATEGORIE KARTEZJAŃSKO-DOMKNIĘTE

Problem 1. Niech \mathbb{C} będzie kategorią CCC. Pokazać, że $\tilde{f} = f^A \circ \eta$, gdzie dla $f: Z \times A \to B$ strzałka $\tilde{f}: Z \to B^A$ oznaca transpozycję, $f^A: (Z \times A)^A \to B^A$ oraz $\eta: Z \to (Z \times A)^A$ są zdefiniowane jak na wykładzie.

Problem 2. Pokazać, że w dowolnej kategorii, która jest CCC zachodzi:

- $(A \times B)^C \cong A^C \times B^C$, $(A^B)^C \cong A^{B \times C}$.

Problem 3. Czy kategoria Mon jest CCC?

Problem 4. Pokazać, że kategoria ωCPO jest CCC, natomiast kategoria ωCPO $_{\perp}$ nie jest CCC.

Problem 5. Pokazać, że kategoria wszystkich małych kategorii i funktorów Cat jest CCC, gdzie $C^{D} = Fun(C, D).$

Problem 6. Udowodnić (dokończając dowód z Wykładu 10), że dla każdego $f: X \times A \to Y \times A$ i $g: Y \times A \rightarrow Z \times A$ zachodzi

$$\widetilde{g \circ f} = (\varepsilon_{Z \times A})^A \circ (\widetilde{g} \times \mathrm{id}_A)^A \circ \widetilde{f}$$

Problem 7. Niech State_A będzie złożeniem funktorów $(-) \times A$ i $(-)^A$ (czyli State_A $(X) = (X \times A)^A$ oraz $\mathsf{State}_A(X \xrightarrow{f} Y) = (f \times \mathsf{id}_A) \circ \varepsilon_{X \times A}$. Dla dwóch strzałek $f : X \to \mathsf{State}_A Y$ i $g : Y \to \mathsf{State}_A Z$ definiujemy:

$$(0.1) g \cdot f = \mu_Z \circ \mathsf{State}_A(g) \circ f,$$

gdzie μ_X : State_AState_A $X \to \text{State}_A X$; $\mu_X = (\varepsilon_{X \times A})^A$. Pokazać, że tak zdefiniowane działanie jest łączne oraz, że $\eta_Y \cdot f = f \cdot \eta_X = f$ dla $\eta_X : X \to \mathsf{State}_A X$ zdefiniowanego przez $\eta_X = id_{X \times A}$ (Podpowiedź: skorzystać z poprzedniego zadania).

²² grudnia 2020

 $^{^1\}mathrm{Poset}~(P,\leqslant)$ nazywamy ωCPO jeśli każdy przeliczalny łańcuch $x_1\leqslant x_2\leqslant\dots$ ma supremum. Przekształcenie $f:P \to Q$, które zachowuje porządek między dwoma posetami (P,\leqslant) i (Q,\leqslant) , które dodatkowo są ωCPO nazywamy ciąglym, jeśli zachowuje suprema przeliczalnych łańchuchów, tj. $f(\bigvee_{i\in\mathbb{N}}x_i)=\bigvee_i f(x_i)$ dla każdego $x_1\leqslant x_2\leqslant\ldots$ Posety, które spełniają własność ωCPO wraz z ciągłymi przekształceniami jako morfizmami tworzą kategorię oznaczaną przez ω CPO.

Poset (P, \leq) , który jest ωCPO nazywamy punktowym, jeśli istnieje w nim element najmniejszy $\bot \in P$. Punktowe ωCPO tworzą kategorię w której strzałkami są wszystkie ciągłe przekształcenia dodatkowo zachowujące element najmniejszy, tj. $h(\perp) = \perp$. Tę kategorię oznaczamy przez $\omega \mathsf{CPO}_{\perp}$.