

Ù&@^œ^¦ÊÁQ}&È		H€»Á/ã¦oÁ, Đị ÁÙ^ã; {ã&ÁÖ^•ã;}
PÔX	Ùœ), 忦åÁÚXT ∄, ãÁÜæ&\∄, *ÁÛ^• ৫^{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMini ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 1 Module Tilt = 30°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	16.49 psf	(ASCE 7-10, Eq. 7.4-1)
I _s =	1.00	
$C_s =$	0.73	

0.90

1.20

2.3 Wind Loads

Design Wind Speed, V =	140 mph	Exposure Category = C
Heiaht ≤	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1) 30.77 psf

Pressure Coefficients

Cf+ TOP	=	1.15	Provided pressure coefficients are the result of wind tunnel
Cf+ BOTTOM	=	1.15 (<i>Pressure</i>) 1.85	testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP	=	-2.3 -1.1 (Suction)	located in test report # 1127/0611-1e. Negative forces are
Cf- BOTTOM	=	-1.1 (Suction)	applied away from the surface.

2.4 Seismic Loads - N/A

$S_S =$	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S _{ds} of 1.0 was used to
T ₀ =	0.00	$C_d = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations: 1.2D + 1.6S + 0.5W

> 1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S R $0.56D + 1.3E^{R}$ 1.54D + 1.25E + 0.2S $^{\circ}$

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6\mathsf{D} + 0.6\mathsf{W}^{\ M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E O 1.1785D + 0.65625E + 0.75S $^{\circ}$ $0.362D + 0.875E^{\circ}$

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	<u>Location</u>	<u>Diagonal Struts</u>	<u>Location</u>	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M16	Bottom	M7	Inner	N15 Inner
		M11	Outer	N23 Outer
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location	Bracing	<u>g</u>	
M4	Outer	M15	5	
M8	Inner	M16A	A	
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

Purlin Type =	<u>ProfiPlus</u>	
Aluminum Type =	6105-T5	
$F_{ty} =$	35	ksi
$L_b =$	<u>54</u>	in
$\Phi F_{ty STRONG-AXIS} =$	29.52	ksi
$\Phi F_{ty WEAK-AXIS} =$	28.47	ksi
S _y =	0.51	in ³
$S_x =$	0.37	in ³
E =	10100	ksi
I _y =	0.60	in ⁴
I _x =	0.29	in ⁴
A =	0.90	in ²
g =	1.08	lbs/ft
$M_y =$	0.444	k-ft
$M_z =$	0.041	k-ft
$M_{y \text{ allowable}} =$	1.256	k-ft
M _{z allowable} =	0.871	k-ft
Utilization =	<u>40%</u>	

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M8 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M8 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M8 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

4.6 Cross Brace Design

In order to resist weak side loading, aluminum cross bracing kits are provided. The cross bracing is attached at one end of a rear aluminum strut diagonally down to the bottom end of an adjacent strut. Single M10 bolts are provided at each of the cross bracing. Section units are in (mm).

Brace Type =	1.5x0.25 6061-T6	
Aluminum Type = F_{ty} =		ksi
Φ =	0.90	
$S_y =$	0.02	in ³
E =	10100	ksi
$I_y =$	33.25	in ⁴
A =	0.38	in ²
g =	0.45	lbs/ft
$M_y =$	0.002	k-ft
$P_n =$	0.095	k
$M_{y \text{ allowable}} =$	0.046	k-ft
P _{n allowable} =	11.813	k
Utilization =	<u>5%</u>	

A cross brace kit is required every 38 bays and is to be installed in centermost bays.

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	Front	Rear	
Tensile Load =	38.39	<u>1708.01</u> k	
Compressive Load =	<u>1047.57</u>	<u>1154.93</u> k	
Lateral Load =	<u>1.70</u>	<u>1031.85</u> k	
Moment (Weak Axis) =	0.00	0.00 k	

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 24568.8 in-lbs Resisting Force Required = 818.96 lbs A minimum 60in long x 20in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 1364.93 lbs to resist overturning. Minimum Width = <u>20 in</u> in Weight Provided = Sliding 238.02 lbs Force = Use a 60in long x 20in wide x 18in tall Friction = 0.4 Weight Required = 595.05 lbs ballast foundation to resist sliding. Resisting Weight = 1812.50 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 238.02 lbs Cohesion = 130 psf Use a 60in long x 20in wide x 18in tall 8.33 ft² Area = ballast foundation. Cohesion is OK. Resisting = 906.25 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs 200 psf/ft Lateral Bearing Pressure = Required Depth = 0.00 ft Shear key is not required. f'c = 2500 psi Length = 8 in

Bearing Pressure

 $\frac{\text{Ballast Width}}{20 \text{ in}} = \frac{21 \text{ in}}{20 \text{ sol}} = \frac{22 \text{ in}}{20 \text{ sol}} = \frac{23 \text{ in}}{200 \text{ sol}}$ $P_{\text{ftg}} = (145 \text{ pcf})(5 \text{ ft})(1.5 \text{ ft})(1.67 \text{ ft}) = \frac{1813 \text{ lbs}}{2000 \text{ lbs}} = \frac{1994 \text{ lbs}}{2000 \text{ lbs}} = \frac{2000 \text{ lbs}}{2000 \text{ lbs}} = \frac{1900 \text{$

ASD LC	1.0D + 1.0S				1.0D + 0.75L + 0.45W + 0.75S			iS	0.6D + 0.6W							
Width	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in	20 in	21 in	22 in	23 in
FA	361 lbs	361 lbs	361 lbs	361 lbs	372 lbs	372 lbs	372 lbs	372 lbs	517 lbs	517 lbs	517 lbs	517 lbs	-15 lbs	-15 lbs	-15 lbs	-15 lbs
FB	246 lbs	246 lbs	246 lbs	246 lbs	486 lbs	486 lbs	486 lbs	486 lbs	526 lbs	526 lbs	526 lbs	526 lbs	-787 lbs	-787 lbs	-787 lbs	-787 lbs
F _V	36 lbs	36 lbs	36 lbs	36 lbs	428 lbs	428 lbs	428 lbs	428 lbs	345 lbs	345 lbs	345 lbs	345 lbs	-476 lbs	-476 lbs	-476 lbs	-476 lbs
P _{total}	2419 lbs	2510 lbs	2601 lbs	2691 lbs	2671 lbs	2762 lbs	2852 lbs	2943 lbs	2855 lbs	2946 lbs	3036 lbs	3127 lbs	286 lbs	340 lbs	394 lbs	449 lbs
M	280 lbs-ft	280 lbs-ft	280 lbs-ft	280 lbs-ft	461 lbs-ft	461 lbs-ft	461 lbs-ft	461 lbs-ft	532 lbs-ft	532 lbs-ft	532 lbs-ft	532 lbs-ft	662 lbs-ft	662 lbs-ft	662 lbs-ft	662 lbs-ft
е	0.12 ft	0.11 ft	0.11 ft	0.10 ft	0.17 ft	0.17 ft	0.16 ft	0.16 ft	0.19 ft	0.18 ft	0.18 ft	0.17 ft	2.32 ft	1.95 ft	1.68 ft	1.48 ft
L/6	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft	0.83 ft
f _{min}	250.0 psf	248.5 psf	247.1 psf	245.8 psf	254.2 psf	252.4 psf	250.8 psf	249.4 psf	266.0 psf	263.7 psf	261.6 psf	259.7 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	330.6 psf	325.2 psf	320.3 psf	315.9 psf	386.9 psf	378.8 psf	371.5 psf	364.8 psf	419.2 psf	409.6 psf	400.9 psf	392.9 psf	627.1 psf	234.4 psf	174.7 psf	152.4 psf

Maximum Bearing Pressure = 627 psf Allowable Bearing Pressure = 1500 psf Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

Overturning Check

 $M_0 = 147.9 \text{ ft-lbs}$

Resisting Force Required = 177.52 lbs S.F. = 1.67 Weight Required = 295.87 lbs

Minimum Width = 20 in in Weight Provided = 1812.50 lbs

A minimum 60in long x 20in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785	D+0.65625E	+ 0.75S	0.362D + 0.875E				
Width		20 in			20 in			20 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	57 lbs	140 lbs	54 lbs	180 lbs	504 lbs	177 lbs	17 lbs	41 lbs	16 lbs		
F _V	0 lbs	0 lbs	0 lbs	1 lbs	0 lbs	0 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	2301 lbs	2384 lbs	2298 lbs	2316 lbs	2640 lbs	2313 lbs	673 lbs	697 lbs	672 lbs		
М	0 lbs-ft	0 lbs-ft	0 lbs-ft	2 lbs-ft	1 lbs-ft	1 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.28 ft	1.67 ft	1.67 ft	1.66 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft	1.67 ft		
f _{min}	276.0 sqft	286.0 sqft	275.7 sqft	277.0 sqft	316.5 sqft	277.3 sqft	80.7 sqft	83.6 sqft	80.6 sqft		
f _{max}	276.3 psf 286.2 psf 275.8		275.8 psf	278.9 psf	317.1 psf	277.8 psf	80.8 psf	83.7 psf	80.7 psf		

Maximum Bearing Pressure = 317 psf Allowable Bearing Pressure = 1500 psf

Use a 60in long x 20in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 60in long x 20in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6. DESIGN OF JOINTS AND CONNECTIONS

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of a Schletter, Inc. Klicktop connector. The reliability of calculations is uncertain due to limited standards, therefore the strength of the fasteners has been evaluated by load testing.

6.2 Bolted Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Cross bracing is attached to rear struts to provide lateral stability. Single M8 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut		Rear Strut	
Maximum Axial Load =	0.806 k	Maximum Axial Load =	1.092 k
M8 Bolt Capacity =	5.692 k	M8 Bolt Capacity =	5.692 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>14%</u>	Utilization =	<u>19%</u>
Diagonal Strut		Bracing	
Maximum Axial Load =	0.595 k	Maximum Axial Load =	0.095 k
M8 Bolt Shear Capacity =	5.692 k	M10 Bolt Capacity =	8.894 k
Strut Bearing Capacity =	7.952 k	Strut Bearing Capacity =	7.952 k
Utilization =	<u>10%</u>	Utilization =	<u>1%</u>
<i>b</i> ~			

Bolt and bearing capacities are accounting for double shear (ASCE 8-02, Eq. 5.3.4-1). Struts under compression are shown to demonstrate the load transfer from the girder. Single M8 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & 32.32 \text{ in} \\ \text{Allowable Story Drift for All Other} & 0.020 h_{\text{sx}} \\ \text{Structures, } \Delta = \{ & 0.646 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.009 \text{ in} \\ \hline \frac{N\!/\!A}{} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **ProfiPlus**

Strong Axis:

3.4.14

$$L_b = 54.00 \text{ in}$$

$$J = 0.255$$

$$140.613$$

$$\left(Bc - \frac{\theta_y}{\theta_b} Fcy\right)$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_{L} = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.5 \text{ ksi}$$

3.4.16

$$b/t = 7.4$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^{\frac{1}{2}}$$

$$S1 = S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

Weak Axis:

3.4.14

4.14
$$L_{b} = 54.00 \text{ in}$$

$$J = 0.255$$

$$146.018$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.4$$

3.4.16

$$b/t = 23.9$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.5 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

SCHLETTER

3.4.18

$$h/t = 23.9$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 30$$

$$Cc = 30$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

S2 =
$$77.3$$

 $\varphi F_L = 1.3 \varphi y F_C y$
 $\varphi F_L = 43.2 \text{ ksi}$
 $\varphi F_L \text{St} = 29.5 \text{ ksi}$

$$\phi F_L St = 29.5 \text{ ksi}$$

$$lx = 250988 \text{ mm}^4$$

$$0.603 \text{ in}^4$$

$$y = 30 \text{ mm}$$

$$Sx = 0.511 \text{ in}^3$$

$$M_{max} St = 1.256 \text{ k-ft}$$

3.4.18

$$h/t = 7.4$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 20$$

$$Cc = 20$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 28.5 \text{ ksi}$$

$$\psi = 120291 \text{ mm}^4$$

$$0.289 \text{ in}^4$$

$$x = 20 \text{ mm}$$

$$Sy = 0.367 \text{ in}^3$$

$$M_{max}Wk = 0.871 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 7.4$$

S1 = 12.21

$$\phi F_L = \phi y F c y$$
 $\phi F_L = 33.3 \text{ ksi}$

$$b/t = 23.9$$

 $S1 = 12.21$
 $S2 = 32.70$
 $\phi F_L = \phi c[Bp-1.6Dp^*b/t]$
 $\phi F_L = 28.5 \text{ ksi}$

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\begin{array}{lll} \phi F_{L} = & 28.47 \text{ ksi} \\ A = & 578.06 \text{ mm}^2 \\ & 0.90 \text{ in}^2 \\ P_{max} = & 25.51 \text{ kips} \end{array}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = Flex Profi

Strong Axis:

3.4.11

$$\begin{array}{ll} L_b = & 33.78 \text{ in} \\ ry = & 1.374 \\ Cb = & 1.25 \\ & 21.9891 \end{array}$$

$$S1 = \frac{1.2(Bc - \frac{\theta_y}{\theta_b}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_c$$

$$S2 = 79.2$$

$$\phi F_L = \phi b [Bc-Dc^*Lb/(1.2^*ry^*\sqrt{(Cb)})]$$

3.4.15

N/A for Strong Direction

 $\phi F_L = 29.7 \text{ ksi}$

Weak Axis:

3.4.11

$$L_{b} = 33.78 \text{ in}$$

$$ry = 1.374$$

$$Cb = 1.25$$

$$24.5845$$

$$S1 = \frac{1.2(Bc - \frac{\theta_{y}}{\theta_{b}}Fcy)}{Dc}$$

$$S1 = 1.37733$$

$$S2 = 1.2C_{c}$$

$$S2 = 79.2$$

$$\phi F_{L} = \phi b[Bc-Dc^{*}Lb/(1.2^{*}ry^{*}\sqrt{(Cb)})]$$

$$\phi F_{1} = 29.7 \text{ ksi}$$

3.4.15

b/t = 24.46

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{5.1Dp}$$

$$S1 = 3.8$$

$$S2 = \frac{k_1 Bp}{5.1Dp}$$

$$S2 = 14.7$$

$$F_{UT} = (\phi bk2^* \sqrt{(BpE)})/(5.1b/t)$$

$$F_{LIT} = 9.4 \text{ ksi}$$

3.4.16

$$b/t = 4.29$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16

N/A for Strong Direction

 $\phi F_L = 33.3 \text{ ksi}$

3.4.16

N/A for Weak Direction

$$b/t = 24.46$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$F_{ST} = \phi b [Bp-1.6Dp*b/t]$$

$$F_{ST} = 28.2 \text{ ksi}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

3.4.16.1

N/A for Weak Direction

3.4.16.2

N/A for Strong Direction

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.2

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 9.37 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 13.5 \text{ ksi} \end{array}$$

3.4.18

h/t = 24.46

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 34.4$$

$$m = 0.70$$

$$C_0 = 34.23$$

$$Cc = 37.77$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 72.1$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 29.7 \text{ ksi}$$

$$L = 364470 \text{ mm}^4$$

$$0.876 \text{ in}^4$$

$$V = 37.77 \text{ mm}$$

0.589 in³

1.455 k-ft

3.4.18

$$h/t = 4.29$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 29$$

$$Cc = 29$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L Wk = 13.5 \text{ ksi}$$

$$\psi = 217168 \text{ mm}^4$$

$$0.522 \text{ in}^4$$

$$X = 29 \text{ mm}$$

Sy=

 $M_{max}Wk =$

0.457 in³

0.513 k-ft

Compression

 $M_{max}St =$

Sx=

$$\lambda = 0.46067$$

$$r = 1.374 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\phi cc = 0.90326$$

$$\phi F_L = \phi cc(Bc-Dc^*\lambda)$$

$$\phi F_L = 30.1251 \text{ ksi}$$

3.4.8

$$\begin{array}{lll} b/t = & 24.46 \\ S1 = & 3.83 \\ S2 = & 10.30 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))/(5.1b/t)} \\ \phi F_L = & 10.4 \text{ ksi} \end{array}$$

3.4.9

b/t = 4.29
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 24.46
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi c [Bp-1.6Dp*b/t]$

3.4.9.1

 $\phi F_L =$

$$\begin{array}{lll} b/t = & 24.46 \\ t = & 2.6 \\ ds = & 6.05 \\ rs = & 3.49 \\ S = & 21.70 \\ \rho st = & 0.22 \\ F_{UT} = & 10.43 \\ F_{ST} = & 28.24 \\ \phi F_L = Fut + (Fst - Fut)\rho st < Fst \\ \phi F_L = & 14.3 \text{ ksi} \end{array}$$

0.0

28.2 ksi

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \theta_b rey}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 14.29 \text{ ksi}$$

$$A = 576.21 \text{ mm}^2$$

$$0.89 \text{ in}^2$$

$$P_{max} = 12.76 \text{ kips}$$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_{b} = 18.00 \text{ in}$$

$$J = 0.16$$

$$47.2194$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}} Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_1 = 33.3 \text{ ksi}$$

3.4.16.1

4.16.1 Not Used

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_1 = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

7.75

3.4.18

h/t =

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 31.2 \text{ ksi}$$

$$k = 39958.2 \text{ mm}^4$$

$$y = 0.096 \text{ in}^4$$

 $y = 15 \text{ mm}$
 $Sx = 0.163 \text{ in}^3$
 $M_{max}St = 0.423 \text{ k-ft}$

Weak Axis:

3.4.14

$$\begin{array}{ll} \mathsf{L_b} = & 18.00 \text{ in} \\ \mathsf{J} = & 0.16 \\ & 47.2194 \\ S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2 \\ \mathsf{S1} = & 0.51461 \\ S2 = \left(\frac{C_c}{1.6}\right)^2 \\ \mathsf{S2} = & 1701.56 \\ \varphi \mathsf{F_L} = & \varphi \mathsf{b}[\mathsf{Bc-1.6Dc} * \sqrt{(\mathsf{LbSc})/(\mathsf{Cb} * \sqrt{(\mathsf{lyJ})/2})}] \\ \varphi \mathsf{F_L} = & 31.2 \end{array}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

h/t =

$$\begin{array}{rcl} m = & 0.65 \\ C_0 = & 15 \\ S2 = & 15 \\ S2 = & 77.3 \\ \phi F_L = & 1.3 \phi F c y \\ \phi F_L = & 43.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \phi F_L W k = & 31.2 \text{ ksi} \\ \psi = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max}W k = & 0.423 \text{ k-ft} \\ \end{array}$$

7.75

mDbr

 $S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{1.3Fcy}$

SCHLETTER

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 0.77182 \\ r = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.83792 \\ & \phi F_L = \phi cc(Bc-Dc^*\lambda) \end{array}$$

 $\phi F_L = 24.5226 \text{ ksi}$

3.4.9

b/t = 7.75
S1 = 12.21 (See 3.4.16 above for formula)
S2 = 32.70 (See 3.4.16 above for formula)

$$\phi F_L = \phi y F c y$$

 $\phi F_L = 33.3 \text{ ksi}$
b/t = 7.75
S1 = 12.21
S2 = 32.70
 $\phi F_L = \phi y F c y$
 $\phi F_L = 33.3 \text{ ksi}$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{1}{\theta_b}Fcy}{Dt}\right)$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 24.52 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 12.31 \text{ kips}$$

0.0

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 46.38 \text{ in}$$
 $J = 0.16$
 121.663
 $\left(Bc - \frac{\theta_y}{2}Fcy\right)^{\frac{1}{2}}$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 29.8 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 <u>Not Use</u>

 $\phi F_L = 33.3 \text{ ksi}$

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

7.75

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{aligned} \phi F_L St &= & 29.8 \text{ ksi} \\ lx &= & 39958.2 \text{ mm}^4 \\ & & 0.096 \text{ in}^4 \\ y &= & 15 \text{ mm} \\ Sx &= & 0.163 \text{ in}^3 \end{aligned}$$

$$M_{max}St = 0.404 \text{ k-ft}$$

Weak Axis:

3.4.14

$$L_{b} = 46.38 \text{ in}$$

$$J = 0.16$$

$$121.663$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 29.8$$

3.4.16

b/t = 7.75

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

$$\varphi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

$$\begin{array}{cccc} \phi F_L W k = & 33.3 \text{ ksi} \\ Iy = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ & x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

SCHLETTER

Compression

3.4.7

$$\lambda = 1.98863$$

 $r = 0.437$ in
 $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$
 $S1^* = 0.33515$
 $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$

$$S2^* = 1.23671$$

$$\phi cc = 0.85841$$

$$\phi F_L = (\phi cc Fcy)/(\lambda^2)$$

$$\phi F_L = 7.59722 \text{ ksi}$$

3.4.9

$$b/t = 7.75$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

$$Rb/t = 0.0$$

$$\left(Bt - \frac{\theta_y}{\theta_t}Fcy\right)$$

$$S1 = \begin{pmatrix} Dt \\ S1 = 6.87 \end{pmatrix}$$

$$S2 = 0.87$$

 $S2 = 131.3$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.60 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 3.81 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 30x30x3

Strong Axis:

3.4.14

$$L_b = 39.29 \text{ in}$$
 $J = 0.16$
 103.073

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.5146$$

$$(C_c)^2$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S = 80190.1600^{**} / (1.600) (Ch*) / (h.1)/2$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))]}$$

$$\phi F_L = 30.1 \text{ ksi}$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi y Fcy$$

3.4.16.1 Not Used Rb/t = 0.0

 $\phi F_1 = 33.3 \text{ ksi}$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y F_C y$$

$$\varphi F_L = 38.9 \text{ ksi}$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

h/t = 7.75

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\varphi F_L = 1.3\varphi y Fcy$$

$$\varphi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 30.1 \text{ ksi}$$
 $1x = 39958.2 \text{ mm}^4$
 0.096 in^4
 0.096 in^4

0.408 k-ft

Weak Axis:

3.4.14

$$L_{b} = 39.29 \text{ in}$$

$$J = 0.16$$

$$103.073$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 30.1$$

3.4.16

$$b/t = 7.75$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 7.75$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 15$$

$$Cc = 15$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 39958.2 \text{ mm}^4 \\ & 0.096 \text{ in}^4 \\ x = & 15 \text{ mm} \\ Sy = & 0.163 \text{ in}^3 \\ M_{max} W k = & 0.450 \text{ k-ft} \end{array}$$

 $M_{max}St =$

SCHLETTER

Compression

$\begin{array}{lll} \textbf{3.4.7} \\ \lambda = & 1.68476 \\ \textbf{r} = & 0.437 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ \textbf{S1}^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ \textbf{S2}^* = & 1.23671 \\ & \phi cc = & 0.81587 \\ & \phi \textbf{F}_L = & (\phi cc \textbf{F} cy)/(\lambda^2) \\ & \phi \textbf{F}_L = & 10.0603 \text{ ksi} \end{array}$

3.4.9

$$\begin{array}{lll} b/t = & 7.75 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi F_C \\ \phi F_L = & 33.3 \text{ ksi} \\ \\ b/t = & 7.75 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi F_C \\ \phi F_L = & 33.3 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 10.06 \text{ ksi}$$

$$A = 323.87 \text{ mm}^2$$

$$0.50 \text{ in}^2$$

$$P_{max} = 5.05 \text{ kips}$$

0.0

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me.	.Surface(
1	Dead Load, Max	DĽ	•	-1				2	,	,
2	Dead Load, Min	DL		-1				2		
3	Snow Load	SL						2		
4	Wind Load - Pressure	WL						2		
5	Wind Load - Suction	WL						2		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-45.999	-45.999	0	0
2	M16	Υ	-45.999	-45.999	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-98.692	-98.692	0	0
2	M16	V	-158.766	-158,766	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F] End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	197.385	197.385	0	0
2	M16	V	94.402	94.402	0	0

Load Combinations

	Description	S	P	S	B	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
13	LATERAL - ASD 1.238D + 0.875E	Yes	Υ		1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65.	.Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	217.196	2	275.976	2	0	10	0	15	0	1	0	1
2		min	-259.414	3	-410.47	3	134	3	0	3	0	1	0	1
3	N7	max	.002	3	295.208	1	026	10	0	15	0	1	0	1
4		min	13	2	3.536	12	633	1	001	1	0	1	0	1
5	N15	max	0	15	805.821	1	.22	9	0	1	0	1	0	1
6		min	-1.307	2	-29.53	3	616	3	0	3	0	1	0	1
7	N16	max	725.737	2	888.406	2	0	2	0	9	0	1	0	1
8		min	-793.732	3	-1313.854	3	-75.448	3	0	3	0	1	0	1
9	N23	max	.002	3	295.252	1	1.125	1	.002	1	0	1	0	1
10		min	13	2	3.922	12	.026	10	0	10	0	1	0	1
11	N24	max	217.196	2	278.574	2	76.07	3	0	1	0	1	0	1
12		min	-259.856	3	-409.334	3	0	10	0	3	0	1	0	1
13	Totals:	max	1158.561	2	2664.71	2	0	2	·				·	
14		min	-1313.042	3	-2154.67	3	0	9						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
1	M2	1	max	210.341	1	.655	4	.171	1	0	10	0	15	0	1
2			min	-352.696	3	.154	15	065	3	0	1	0	1	0	1
3		2	max	210.466	1	.604	4	.171	1	0	10	0	15	0	15
4			min	-352.602	3	.142	15	065	3	0	1	0	1	0	4
5		3	max	210.592	1	.553	4	.171	1	0	10	0	15	0	15
6			min	-352.507	3	.13	15	065	3	0	1	0	3	0	4
7		4	max	210.718	1	.502	4	.171	1	0	10	0	9	0	15
8			min	-352.413	3	.118	15	065	3	0	1	0	3	0	4
9		5	max	210.844	1	.451	4	.171	1	0	10	0	9	0	15
10			min	-352.319	3	.106	15	065	3	0	1	0	3	0	4
11		6	max	210.97	1	.4	4	.171	1	0	10	0	1	0	15
12			min	-352.224	3	.094	15	065	3	0	1	0	3	0	4
13		7	max	211.096	1	.349	4	.171	1	0	10	0	1	0	15
14			min	-352.13	3	.082	15	065	3	0	1	0	3	0	4
15		8	max	211.222	1	.297	4	.171	1	0	10	0	1	0	15
16			min	-352.035	3	.07	15	065	3	0	1	0	3	0	4
17		9	max	211.348	1	.246	4	.171	1	0	10	0	1	0	15
18			min	-351.941	3	.058	15	065	3	0	1	0	3	0	4
19		10	max	211.473	1	.195	4	.171	1	0	10	0	1	0	15
20			min	-351.847	3	.046	15	065	3	0	1	0	3	0	4
21		11	max	211.599	1	.144	4	.171	1	0	10	0	1	0	15
22			min	-351.752	3	.034	15	065	3	0	1	0	3	0	4
23		12	max		1	.102	2	.171	1	0	10	0	1	0	15
24			min	-351.658	3	.014	12	065	3	0	1	0	3	0	4
25		13	max	211.851	1	.062	2	.171	1	0	10	0	1	0	15
26			min	-351.563	3	012	3	065	3	0	1	0	3	0	4
27		14	max		1	.022	2	.171	1	0	10	0	1	0	15
28			min	-351.469	3	042	3	065	3	0	1	0	3	0	4
29		15	max		1	014	15	.171	1	0	10	0	1	0	15
30			min	-351.375	3	072	3	065	3	0	1	0	3	0	4
31		16	max		1	026	15	.171	1	0	10	0	1	0	15
32			min	-351.28	3	112	4	065	3	0	1	0	3	0	4
33		17	max		1	038	15	.171	1	0	10	Ö	1	0	15
34			min	-351.186	3	163	4	065	3	0	1	0	3	0	4
35		18	max		1	05	15	.171	1	0	10	0	1	0	15
36			min	-351.091	3	214	4	065	3	0	1	0	3	0	4
37		19		212.606	1	062	15	.171	1	0	10	0	1	0	15
01			mux	212.000		.002	10				10				_ 10

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

38		Member	Sec		Axial[lb]				z Shear[lb]		Torque[k-ft]	L LC	y-y Mome		z-z Mome	LC_
40				min								-				_
42		<u>M3</u>	1													
A22														_		_
44			2													
44												-				
46			3													
46	-			min	-171.092			15	197	1	0		0	10	0	3
AF	45		4	max	174.352	2		4		10	0	15	0	1	0	15
AB	46			min	-171.144	3	.289	15	197	1	0	1	0	10	0	4
49	47		5	max	174.283	2	1.051	4	008	10	0	15	0		0	15
50	48			min	-171.196	3	.247	15	197	1	0	1	0	10	0	4
ST	49		6	max	174.214	2	.874	4	008	10	0	15	0	1	0	15
Secondary Seco	50			min	-171.248	3	.206	15	197	1	0	1	0	10	0	4
S3	51		7	max	174.144	2	.698	4	008	10	0	15	0	1	0	15
S3	52			min	-171.3	3	.164	15	197	1	0	1	0	10	0	4
54			8		174.075	2		4		10	0	15	0	1	0	15
556						3		15		1	0	1	0	10	001	
Second Color			9										0			15
57														10	001	
58			10							10						
11			10											-		
60			11									15				_
61																
62			12					_						_		_
63			12													
65			13									•				_
65			10													
66			1/													_
67 15 max 173.59 2 168 15 008 10 0 15 0 1 0 15 68 min -171.716 3 717 4 197 1 0 1 0 10 0 4 69 16 max 173.52 2 21 15 008 10 0 15 0 9 0 15 70 min -171.7168 3 894 4 197 1 0 1 0 2 0 4 197 1 0 1 0 2 0 4 197 1 0 1 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1<			14													
68			15													_
69 16 max 173.52 2 21 15 008 10 0 15 0 9 0 15 70 min -171.768 3 894 4 197 1 0 1 0 2 0 4 71 17 max 173.451 2 252 15 008 10 0 15 0 15 0 15 72 min -171.819 3 -1.071 4 197 1 0 1 0 4 73 18 max 173.382 2 293 15 008 10 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 1 0 1 0 1 0 1 0 1			13													
TO			16									-				_
71 17 max 173.451 2 -2.52 15 008 10 0 15 0 15 0 15 72 min -171.819 3 -1.071 4 197 1 0 1 0 4 73 18 max 173.382 2 293 15 008 10 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 4 75 19 max 173.312 2 335 15 008 10 0 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			10													
72 min -171.819 3 -1.071 4 197 1 0 1 0 4 73 18 max 173.382 2 293 15 008 10 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 15 0 1 0 4 75 19 max 173.312 2 -335 15 -0.08 10 0 15 0 1			17			_										_
73 18 max 173.382 2 293 15 008 10 0 15 0 15 0 15 74 min -171.871 3 -1.248 4 197 1 0 1 0 4 75 19 max 173.312 2 335 15 008 10 0 15 0 1 0 4 76 min -171.923 3 -1.424 4 197 1 0 <td< td=""><td></td><td></td><td>17</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			17													
74 min -171.871 3 -1.248 4 197 1 0 1 0 4 75 19 max 173.312 2 335 15 008 10 0 15 0 1 76 min -171.923 3 -1.424 4 197 1 0 1 0 1 77 M4 1 max 294.043 1 0 1 -0.27 15 0 1 0 3 0 1 79 2 max 294.108 1 0 1 -0.666 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 <			4.0									•		_		_
75 19 max 173.312 2 335 15 008 10 0 15 0 15 0 1 76 min -171.923 3 -1.424 4 197 1 0			18													
76 min -171.923 3 -1.424 4 197 1 0 1 0 1 77 M4 1 max 294.043 1 0 1 -0.027 15 0 1 0 3 0 1 78 min 2.953 12 0 1 -666 1 0 1 0 2 0 1 79 2 max 294.108 1 0 1 -0.27 15 0 1 0 15 0 1 80 min 2.986 12 0 1 -666 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1			10									_		_		
77 M4 1 max 294.043 1 0 1 027 15 0 1 0 3 0 1 78 min 2.953 12 0 1 666 1 0 1 0 2 0 1 79 2 max 294.108 1 0 1 027 15 0 1 0 1 0 1 80 min 2.986 12 0 1 666 1 0 1 0 1 0 1 81 3 max 294.173 1 0 1 027 15 0 1 0 1 0 1 82 min 3.018 12 0 1 027 15 0 1 0 1 0 1 84 min 3.051 12 0 1 027 15			19													
78 min 2.953 12 0 1 666 1 0 1 0 2 0 1 79 2 max 294.108 1 0 1 027 15 0 1 0 15 0 1 80 min 2.986 12 0 1 666 1 0 1																
79 2 max 294.108 1 0 1 027 15 0 1 0 15 0 1 80 min 2.986 12 0 1 666 1 0 1		<u>M4</u>	1		294.043											
80 min 2.986 12 0 1 666 1 0 1 0 1 81 3 max 294.173 1 0 1 027 15 0 1 0 1 82 min 3.018 12 0 1 666 1 0 1 0 1 83 4 max 294.237 1 0 1 027 15 0 1 0 1 84 min 3.051 12 0 1 666 1 0 1 0 1 85 5 max 294.302 1 0 1 027 15 0 1 0 1 86 min 3.083 12 0 1 666 1 0 1 0 1 87 6 max 294.367 1 0 1 027																_
81 3 max 294.173 1 0 1 027 15 0 1 0			2													_
82 min 3.018 12 0 1 666 1 0 1 0 1 0 1 83 4 max 294.237 1 0 1 027 15 0 1 0 15 0 1 84 min 3.051 12 0 1 666 1 0 1 0 1 0 1 85 5 max 294.302 1 0 1 027 15 0 1 0 1 86 min 3.083 12 0 1 666 1 0 1 0 1 87 6 max 294.367 1 0 1 027 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0								-				_		_		
83 4 max 294.237 1 0 1 027 15 0 1 0 15 0 1 84 min 3.051 12 0 1 666 1 0 1 0 1 0 1 85 5 max 294.302 1 0 1 027 15 0 1 0 15 0 1 86 min 3.083 12 0 1 666 1 0 1			3													_
84 min 3.051 12 0 1 666 1 0 1 0 1 0 1 85 5 max 294.302 1 0 1 027 15 0 1 0 1 0 1 86 min 3.083 12 0 1 666 1 0 1 0 1 87 6 max 294.367 1 0 1 027 15 0 1 0 1 88 min 3.115 12 0 1 666 1 0 1 0 1 89 7 max 294.431 1 0 1 027 15 0 1 0 1 90 min 3.148 12 0 1 666 1 0 1 0 1 91 8 max 294.496 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td>•</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							_	•		-						
85 5 max 294.302 1 0 1 027 15 0 1 0 15 0 1 86 min 3.083 12 0 1 666 1 0 1 0 1 87 6 max 294.367 1 0 1 027 15 0 1 0 1 88 min 3.115 12 0 1 666 1 0 1 0 1 89 7 max 294.431 1 0 1 027 15 0 1 0 1 90 min 3.148 12 0 1 666 1 0 1 0 1 91 8 max 294.496 1 0 1 027 15 0 1 0 1 92 min 3.18 12 0 <td></td> <td></td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td>			4					_								_
86 min 3.083 12 0 1 666 1 0 1 0 1 0 1 87 6 max 294.367 1 0 1 027 15 0 1 0 15 0 1 88 min 3.115 12 0 1 666 1 0 1 0 1 89 7 max 294.431 1 0 1 027 15 0 1 0 1 90 min 3.148 12 0 1 666 1 0 1 0 1 91 8 max 294.496 1 0 1 027 15 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0				min												
87 6 max 294.367 1 0 1027 15 0 1 0 15 0 1 88 min 3.115 12 0 1666 1 0 1 0 15 0 1 89 7 max 294.431 1 0 1027 15 0 1 0 15 0 1 90 min 3.148 12 0 1666 1 0 1 0 1 0 1 91 8 max 294.496 1 0 1027 15 0 1 0 15 0 1 92 min 3.18 12 0 1666 1 0 1 0 15 0 1 93 9 max 294.561 1 0 1027 15 0 1 0 15 0 1			5													
88 min 3.115 12 0 1 666 1 0 1 0 1 0 1 89 7 max 294.431 1 0 1 027 15 0 1 0 1 0 1 90 min 3.148 12 0 1 666 1 0 1 0 1 91 8 max 294.496 1 0 1 027 15 0 1 0 1 0 1 92 min 3.18 12 0 1 666 1 0 1 0 1 0 1 93 9 max 294.561 1 0 1 027 15 0 1 0 15 0 1				min		12	-	•								-
89 7 max 294.431 1 0 1 027 15 0 1 0 15 0 1 90 min 3.148 12 0 1 666 1 0 1 0 1 0 1 91 8 max 294.496 1 0 1 027 15 0 1 0 15 0 1 92 min 3.18 12 0 1 666 1 0 1 0 1 0 1 93 9 max 294.561 1 0 1 027 15 0 1 0 15 0 1			6					_				_				<u> </u>
90 min 3.148 12 0 1 666 1 0 1 0 1 0 1 91 8 max 294.496 1 0 1 027 15 0 1 0 15 0 1 92 min 3.18 12 0 1 666 1 0 1 0 1 93 9 max 294.561 1 0 1 027 15 0 1 0 15 0 1				min		12	_	1				1	0		0	1
91 8 max 294.496 1 0 1 027 15 0 1 0 15 0 1 92 min 3.18 12 0 1 666 1 0 1 0 1 0 1 93 9 max 294.561 1 0 1 027 15 0 1 0 15 0 1			7	max	294.431		0	1	027	15	0	1	0	15	0	1
92 min 3.18 12 0 1 666 1 0 1 0 1 93 9 max 294.561 1 0 1 027 15 0 1 0 1	90			min	3.148	12	0	1	666	1	0	1	0	_	0	1
93 9 max 294.561 1 0 1027 15 0 1 0 15 0 1	91		8	max	294.496	1	0	1	027	15	0	1	0	15	0	1
93 9 max 294.561 1 0 1027 15 0 1 0 15 0 1	92			min	3.18	12	0	1	666	1		1	0	1	0	1
94 min 3.212 12 0 1666 1 0 1 0 1			9			1	0	1		15	0	1	0	15	0	1
	94			min	3.212	12	0	1	666	1	0	1	0	1	0	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

05	Member	Sec 10		Axial[lb]							LC	y-y Mome			LC 1
95 96		10	max	294.626 3.245	12	0	1	027 666	<u>15</u> 1	0	1	0	<u>15</u>	0	1
97		11	max	294.69	1	0	1	027	15	0	1	0	15	0	1
98			min	3.277	12	0	1	666	1	0	1	0	1	0	1
99		12	max	294.755	1	0	1	027	15	0	1	0	15	0	1
100		12	min	3.309	12	0	1	666	1	0	1	0	1	0	1
101		13	max	294.82	1	0	1	027	15	0	1	0	15	0	1
102		13	min	3.342	12	0	1	666	1	0	1	0	1	0	1
103		14		294.884	1	0	1	027	15	0	1	0	15	0	1
		14	max		12		1		1	0	1	0	1	0	1
104		15	min	3.374 294.949	1	0	1	666 027	15	0	1	0	15	0	1
106		10	max	3.406	12	0	1	666	1	0	1	0	1	0	1
		16		295.014	1		1	027	15		1	0	15	0	1
107 108		16	max	3.439	12	0	1	666	1	0	1	0	1	0	1
		17	min				•			_			_		
109		17	max	295.078	12	0	1	027	<u>15</u> 1	0	1	0	1 <u>5</u>	0	1
110		4.0	min	3.471		0	•	666	•	0	_	0	_	0	
111		18	max	295.143	12	0	1	027	<u>15</u>	0	1	0	15	0	1
112		40	min	3.503		0	1	666	1_	0	1_	001	1_	0	1
113		19	max	295.208	1	0	1	027	<u>15</u>	0	1_	0	15	0	1
114	NAC	4	min	3.536	12	0	1	666	1_	0	1_	001	1	0	1
115	M6	1	max	663.302	1	.656	4	.037	9	0	3	0	3	0	1
116			min	-1092.007	3	.154	15	237	3	0	2	0	2	0	1_
117		2	max	663.428	1	.605	4	.037	9	0	3	0	3	0	15
118			min	-1091.913	3	.142	15	237	3	0	2	0	2	0	4
119		3	max	663.554	1	.554	4	.037	9	0	3	0	3	0	15
120			min	-1091.818	3	.13	15	237	3	0	2	0	2	0	4
121		4	max	663.68	1_	.503	4	.037	9	0	3	0	3	0	15
122			min	-1091.724	3	.118	15	237	3	0	2	0	2	0	4
123		5	max		1_	.451	4	.037	9	0	3	0	3	0	15
124			min	-1091.63	3	.106	15	237	3	0	2	0	2	0	4
125		6	max	663.932	1	.407	2	.037	9	0	3	0	9	0	15
126			min	-1091.535	3	.088	12	237	3	0	2	0	2	0	4
127		7	max	664.057	1_	.367	2	.037	9	0	3	0	9	0	15
128			min	-1091.441	3	.068	12	237	3	0	2	0	3	0	4
129		8	max	664.183	1_	.327	2	.037	9	0	3	0	9	00	15
130			min	-1091.346	3	.048	12	237	3	0	2	0	3	0	4
131		9	max	664.309	1_	.287	2	.037	9	0	3	0	9	00	15
132			min	-1091.252	3	.028	12	237	3	0	2	0	3	0	4
133		10	max	664.435	1	.247	2	.037	9	0	3	0	9	0	12
134			min	-1091.158	3	.001	3	237	3	0	2	0	3	0	2
135		11		664.561	1	.207	2	.037	9	0	3	0	9	0	12
136			min	-1091.063	3	029	3	237	3	0	2	0	3	0	2
137		12	max		1	.168	2	.037	9	0	3	0	9	0	12
138			min	-1090.969	3	059	3	237	3	0	2	0	3	0	2
139		13	max		1	.128	2	.037	9	0	3	0	9	0	12
140			min		3	088	3	237	3	0	2	0	3	0	2
141		14		664.939	1	.088	2	.037	9	0	3	0	9	0	12
142				-1090.78	3	118	3	237	3	0	2	0	3	0	2
143		15	max	665.064	1	.048	2	.037	9	0	3	0	9	0	12
144			min	-1090.686	3	148	3	237	3	0	2	0	3	0	2
145		16	max	665.19	1	.008	2	.037	9	0	3	0	9	0	12
146			min	-1090.591	3	178	3	237	3	0	2	0	3	0	2
147		17	max	665.316	1	032	2	.037	9	0	3	0	9	0	12
148				-1090.497	3	208	3	237	3	0	2	0	3	0	2
149		18	max	665.442	1	05	15	.037	9	0	3	0	9	0	3
150			min	-1090.402	3	238	3	237	3	0	2	0	3	0	2
151		19		665.568	1	062	15	.037	9	0	3	0	9	0	3

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]		Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
152			min	-1090.308	3	268	3	237	3	0	2	0	3	0	2
153	M7	1	max	595.055	2	1.761	4	.031	3	0	1	0	1	0	2
154			min	-499.921	3	.414	15	01	1	0	3	0	3	0	3
155		2	max	594.986	2	1.584	4	.031	3	0	1	0	1	0	2
156			min	-499.973	3	.372	15	01	1	0	3	0	3	0	3
157		3	max	594.917	2	1.407	4	.031	3	0	1	0	1	0	2
158			min	-500.025	3	.331	15	01	1	0	3	0	3	0	3
159		4	max	594.847	2	1.23	4	.031	3	0	1	0	1	0	2
160			min	-500.077	3	.289	15	01	1	0	3	0	3	0	3
161		5	max	594.778	2	1.054	4	.031	3	0	1	0	1	0	15
162			min	-500.129	3	.248	15	01	1	0	3	0	3	0	3
163		6	max	594.709	2	.877	4	.031	3	0	1	0	1	0	15
164			min	-500.181	3	.206	15	01	1	0	3	0	3	0	4
165		7	max	594.639	2	.7	4	.031	3	0	1	0	1	0	15
166			min	-500.233	3	.165	15	01	1	0	3	0	3	0	4
167		8	max	594.57	2	.523	4	.031	3	0	1	0	1	0	15
168			min	-500.285	3	.123	15	01	1	0	3	0	3	001	4
169		9	max	594.501	2	.349	2	.031	3	0	1	0	1	0	15
170			min	-500.337	3	.077	12	01	1	0	3	0	3	001	4
171		10	max	594.431	2	.212	2	.031	3	0	1	0	1	0	15
172		10	min	-500.389	3	.003	3	01	1	0	3	0	3	001	4
173		11	max		2	.074	2	.031	3	0	1	0	1	0	15
174			min	-500.441	3	101	3	01	1	0	3	0	3	001	4
175		12	max	594.293	2	043	15	.031	3	0	1	0	1	0	15
176		1-	min	-500.493	3	204	3	01	1	0	3	0	3	001	4
177		13	max	594.223	2	085	15	.031	3	0	1	0	1	0	15
178		10	min	-500.545	3	361	4	01	1	0	3	0	3	001	4
179		14	max	594.154	2	126	15	.031	3	0	1	0	1	0	15
180		17	min	-500.597	3	538	4	01	1	0	3	0	3	001	4
181		15	max	594.085	2	168	15	.031	3	0	1	0	1	0	15
182		15	min	-500.649	3	715	4	01	1	0	3	0	3	0	4
183		16	max		2	21	15	.031	3	0	1	0	1	0	15
184		10	min	-500.701	3	892	4	01	1	0	3	0	3	0	4
185		17	max	593.946	2	251	15	.031	3	0	1	0	1	0	15
186		1 '	min	-500.753	3	-1.068	4	01	1	0	3	0	3	0	4
187		18	max	593.877	2	293	15	.031	3	0	1	0	1	0	15
188		10	min	-500.805	3	-1.245	4	01	1	0	3	0	3	0	4
189		19	max	593.807	2	334	15	.031	3	0	1	0	1	0	1
190		13	min	-500.857	3	-1.422	4	01	1	0	3	0	3	0	1
191	M8	1	max	804.656	_ <u></u>	0	1	.253	1	0	1	0	2	0	1
192	IVIO			-30.404		0	1	613	3	0	1	0	3	0	1
193		2		804.721	1	0	1	.253	1	0	1	0	1	0	1
194			min	-30.355	3	0	1	613	3	0	1	0	3	0	1
195		3		804.786	_ <u></u>	0	1	.253	1	0	1	0	1	0	1
196		-	min	-30.307	3	0	1	613	3	0	1	0	3	0	1
197		4	max		_ <u>3_</u> 1	0	1	.253	1	0	1	0	1	0	1
198		-	min	-30.258	3	0	1	613	3	0	1	0	3	0	1
199		5					1	.253	1		1		1	_	_
200		- O	max	-30.21	<u>1</u> 3	0	1	613	3	0	1	0	3	0	1
		G	min	804.98	<u>ာ</u> 1	0	1	.253	1	0	1	0	<u>ა</u> 1	0	1
201 202		6	max	-30.161	3	0	1	613	3	0	1	0	3	0	1
		7	min			-	1				1				•
203				805.045	1	0	1	.253	3	0		0	1	0	1
204		0	min	-30.113	3	0	1	613		0	1	0	3	0	1
205		8		805.109	1	0	_	.253	1	0	1	0	1	0	1
206		_	min	-30.064	3	0	1	613	3	0	1	0	3	0	1
207		9	max		1	0	_	.253	1	0		0	1	0	1
208			min	-30.016	3	0	1	613	3	0	1	0	3	0	1

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>. LC</u>
209		10	max	805.239	1	0	1	.253	1	0	1	0	1	0	1
210			min	-29.967	3	0	1	613	3	0	1	0	3	0	1
211		11	max	805.304	1	0	1	.253	1	0	1	0	1	0	1
212			min	-29.918	3	0	1	613	3	0	1	0	3	0	1
213		12	max	805.368	1	0	1	.253	1	0	1	0	1	0	1
214			min	-29.87	3	0	1	613	3	0	1	0	3	0	1
215		13	max	805.433	1	0	1	.253	1	0	1	0	1	0	1
216			min	-29.821	3	0	1	613	3	0	1	0	3	0	1
217		14	max	805.498	1	0	1	.253	1	0	1	0	1	0	1
218			min	-29.773	3	0	1	613	3	0	1	0	3	0	1
219		15	max	805.562	1	0	1	.253	1	0	1	0	1	0	1
220			min	-29.724	3	0	1	613	3	0	1	0	3	0	1
221		16	max		1	0	1	.253	1	0	1	0	1	0	1
222			min	-29.676	3	0	1	613	3	0	1	0	3	0	1
223		17	max	805.692	1	0	1	.253	1	0	1	0	1	0	1
224			min	-29.627	3	0	1	613	3	0	1	0	3	0	1
225		18	max		1	0	1	.253	1	0	1	0	1	0	1
226			min	-29.579	3	0	1	613	3	0	1	0	3	0	1
227		19	max		1	0	1	.253	1	0	1	0	1	0	1
228			min	-29.53	3	0	1	613	3	0	1	0	3	0	1
229	M10	1	max	212.214	1	.655	4	004	15	0	1	0	1	0	1
230			min	-296.745	3	.154	15	114	1	0	3	0	3	0	1
231		2	max	212.34	1	.604	4	004	15	0	1	0	1	0	15
232			min	-296.651	3	.142	15	114	1	0	3	0	3	0	4
233		3	max	212.466	1	.553	4	004	15	0	1	0	1	0	15
234			min	-296.557	3	.13	15	114	1	0	3	0	3	0	4
235		4	max		1	.502	4	004	15	0	1	0	1	0	15
236		7	min	-296.462	3	.118	15	114	1	0	3	0	3	0	4
237		5	max	212.718	1	.451	4	004	15	0	1	0	1	0	15
238		J	min	-296.368	3	.106	15	114	1	0	3	0	3	0	4
239		6	max	212.844	1	.4	4	004	15	0	1	0	1	0	15
240		-	min	-296.273	3	.094	15	114	1	0	3	0	3	0	4
241		7	max	212.97	1	.349	4	004	15	0	1	0	1	0	15
242			min	-296.179	3	.082	15	114	1	0	3	0	3	0	4
243		8	max	213.096	1	.297	4	004	15	0	1	0	9	0	15
244		0	min	-296.085	3	.07	15	114	1	0	3	0	3	0	4
245		9			1	.246	4	004	15	0	1	0	9	0	15
246		9	max min	-295.99	3	.058	15	114	1	0	3	0	3	0	4
247		10			1	.195	4	004	15		1	T	15		15
248		10	max min	-295.896	3	.046	15	114	1	0	3	0	3	0	4
249		11		213.473		.144	4	004	15	0	1	0	15	0	15
250					3	.034	15		1	0	3	0	3	0	4
		12						114	15						15
251		12		213.599	1	.102	2	004		0	1	0	15	0	
252		40		-295.707	3	.022	15	114	1	0	3	0	3	0	4
253		13	max		1	.062	2	004	15	0	1	0	15	0	15
254		4.4	min	-295.613	3	.005	12	114	1	0	3	0	3	0	4
255		14		213.851	1	.022	2	004	15	0	1	0	15	0	15
256		4.5	min		3	023	3	114	1	0	3	0	3	0	4
257		15		213.977	1	014	15	004	15	0	1	0	15	0	15
258		4.0	min	-295.424	3	061	4	114	1	0	3	0	3	0	4
259		16			1	026	15	004	15	0	1	0	15	0	15
260			min	-295.329	3	112	4	114	1	0	3	0	3	0	4
261		17	max		1	038	15	004	15	0	1	0	15	0	15
262					3	163	4	114	1	0	3	0	3	0	4
263		18	max		1	05	15	004	15	0	1	0	15	0	15
264			min	-295.141	3	214	4	114	1	0	3	0	3	0	4
265		19	max	214.48	1	062	15	004	15	0	1	0	15	0	15

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>. LC</u>
266			min	-295.046	3	265	4	114	1	0	3	0	1	0	4
267	M11	1	max	174.1	2	1.759	4	.21	1	0	3	0	3	0	4
268			min	-171.72	3	.414	15	046	3	0	10	0	1	0	15
269		2	max	174.031	2	1.582	4	.21	1	0	3	0	3	0	2
270			min	-171.772	3	.372	15	046	3	0	10	0	1	0	3
271		3	max	173.961	2	1.405	4	.21	1	0	3	0	3	0	2
272			min	-171.824	3	.33	15	046	3	0	10	0	1	0	3
273		4	max	173.892	2	1.228	4	.21	1	0	3	0	3	0	15
274			min	-171.876	3	.289	15	046	3	0	10	0	1	0	3
275		5	max	173.823	2	1.051	4	.21	1	0	3	0	3	0	15
276			min	-171.928	3	.247	15	046	3	0	10	0	1	0	4
277		6	max	173.753	2	.874	4	.21	1	0	3	0	3	0	15
278			min	-171.98	3	.206	15	046	3	0	10	0	1	0	4
279		7	max	173.684	2	.698	4	.21	1	0	3	0	3	0	15
280			min	-172.032	3	.164	15	046	3	0	10	0	1	0	4
281		8	max	173.615	2	.521	4	.21	1	0	3	0	3	0	15
282			min	-172.084	3	.123	15	046	3	0	10	0	1	001	4
283		9	max		2	.344	4	.21	1	0	3	0	3	0	15
284			min	-172.136	3	.081	15	046	3	0	10	0	1	001	4
285		10	max	173.476	2	.167	4	.21	1	0	3	0	3	0	15
286			min	-172.188	3	.039	15	046	3	0	10	0	1	001	4
287		11	max		2	.017	2	.21	1	0	3	0	3	0	15
288			min	-172.24	3	048	3	046	3	0	10	0	1	001	4
289		12	max		2	044	15	.21	1	0	3	0	3	0	15
290			min	-172.292	3	187	4	046	3	0	10	0	1	001	4
291		13	max	173.268	2	085	15	.21	1	0	3	0	3	0	15
292			min	-172.344	3	363	4	046	3	0	10	0	1	001	4
293		14	max	173.199	2	127	15	.21	1	0	3	0	3	0	15
294			min	-172.396	3	54	4	046	3	0	10	0	1	001	4
295		15	max	173.129	2	168	15	.21	1	0	3	0	3	0	15
296		10	min	-172.448	3	717	4	046	3	0	10	0	1	0	4
297		16	max	173.06	2	21	15	.21	1	0	3	0	3	0	15
298		10	min	-172.5	3	894	4	046	3	0	10	0	10	0	4
299		17	max	172.991	2	252	15	.21	1	0	3	0	3	0	15
300		11	min	-172.552	3	-1.071	4	046	3	0	10	0	10	0	4
301		18	max	172.921	2	293	15	.21	1	0	3	0	3	0	15
302		10	min	-172.604	3	-1.248	4	046	3	0	10	0	10	0	4
303		19	max	172.852	2	335	15	.21	1	0	3	0	3	0	1
304		13	min	-172.656	3	-1.424	4	046	3	0	10	0	10	0	1
305	M12	1	max	294.087	1	0	1	1.183	1	0	1	0	2	0	1
306	IVIIZ			3.34	12	0	1	.027	10	0	1	0	3	0	1
307		2	max		1	0	1	1.183	1	0	1	0	1	0	1
308			min	3.372	12	0	1	.027	10	0	1	0	15	0	1
309		3	max		1	0	1	1.183	1	0	1	0	1	0	1
310			min	3.405	12	0	1	.027	10	0	1	0	15	0	1
311		4	max		1	0	1	1.183	1	0	1	0	1	0	1
312		-	min	3.437	12	0	1	.027	10	0	1	0	15	0	1
313		5			1	0	1	1.183	1	0	1	0	1	0	1
		3	max				1		10		1		10		1
314		6	min	3.469	12	0	1	.027	1	0	1	0	1	0	
315		6	max	294.411 3.502	1 12	0	1	1.183 .027	10	0	1	<u>0</u> 	10	0	1
316		7	min												-
317		7	max		1	0	1	1.183	1	0	1	0	1	0	1
318		_	min	3.534	12	0	1_4	.027	10	0	1	0	10	0	1
319		8	max	294.54	1	0	1	1.183	1	0	1	0	1	0	1
320		_	min	3.566	12	0	1	.027	10	0	1 1	0	10	0	1
321		9	max		1	0	1	1.183	1	0	1	0	1	0	1
322			min	3.599	12	0	1	.027	10	0	1	0	10	0	1

Model Name

Schletter, Inc. HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

000	Member	Sec		Axial[lb]						Torque[k-ft]	LC			_	
323		10	max	294.669	12	0	1	1.183	10	0	1	0	10	0	1
324 325		11	min	3.631 294.734	1	0	1	.027 1.183	1	0	1	.001	1	0	1
326			max	3.664	12	0	1	.027	10	0	1	0	10	0	1
327		12	min	294.799	1		1	1.183		_	1	.001			1
328		12	max min	3.696	12	0	1	.027	10	0	1	0	10	0	1
		12					1		1	_	1		1	_	1
329		13	max	294.863	12	0	1	1.183 .027	10	0	1	.001	10	0	1
330		4.4	min	3.728		-	1				1				1
331		14	max	294.928	1	0	1	1.183	1	0	1	.001	1	0	1
332		15	min	3.761	12	0	1	.027	<u>10</u>	0	1	0	10	0	1
333		15	max	294.993	1	0		1.183	_	0		.001		0	1
334		4.0	min	3.793	12	0	1_	.027	10	0	1_	0	10	0	1
335		16	max	295.058	12	0	1	1.183	1	0	1	.002	1	0	1
336		47	min	3.825		0		.027	10	0		0	10	0	
337		17	max	295.122	12	0	1	1.183	10	0	1	.002	10	0	1
338		4.0	min	3.858		0		.027		0	_	0		0	-
339		18	max	295.187	12	0	1	1.183	1	0	1_	.002	1	0	1
340		40	min	3.89		0	1_	.027	10	0	1_	0	10	0	1
341		19	max	295.252	1	0	1_	1.183	1	0	1_	.002	1	0	1
342	N 4 4	4	min	3.922	12	0	1	.027	10	0	1_	0	10	0	1
343	<u>M1</u>	1	max	87.423	1	332.148	3	932	10	0	2	.049	1	0	2
344			min	3.586	15	-222.248	2	-25.129	1	0	3	.002	10	0	3
345		2	max	87.563	1	331.966	3	932	10	0	2	.044	1	.048	2
346			min	3.628	15	-222.49	2	-25.129	1	0	3	.002	10	072	3
347		3	max	86.573	3	4.696	9	926	10	0	12	.038	1	.096	2
348		_	min	-13.986	10	-23.775	2	-25.045	1	0	1_	.001	10	143	3
349		4	max	86.677	3	4.494	9	926	10	0	12	.033	1	.101	2
350		_	min	-13.87	10	-24.016	2	-25.045	1	0	1_	.001	10	14	3
351		5	max	86.782	3	4.293	9	926	10	0	12	.027	1	.106	2
352			min	-13.754	10	-24.258	2	-25.045	1	0	1_	0	10	137	3
353		6	max	86.887	3	4.091	9	926	10	0	12	.022	1	.112	2
354		_	min	-13.637	10	-24.5	2	-25.045	1	0	1_	0	10	135	3
355		7	max	86.992	3	3.89	9	926	10	0	12	.016	1	.117	2
356			min	-13.521	10	-24.742	2	-25.045	1	0	1_	0	10	132	3
357		8	max	87.096	3	3.688	9	926	10	0	12	.011	1	.122	2
358			min	-13.405	10	-24.984	2	-25.045	1	0	1	0	10	129	3
359		9	max	87.201	3	3.486	9	926	10	0	12	.006	1	.128	2
360		40	min	-13.288	10	-25.226	2	-25.045	1	0	1	0	10	126	3
361		10	max	87.306	3	3.285	9	926	10	0	12	.002	3	.133	2
362		4.4	min	-13.172	10	-25.467	2	-25.045	1	0	1	0	10	123	3
363		11	max		3	3.083	9	926	10	0	12	0	3	.139	2
364		40	min	-13.056	10	-25.709	2	-25.045	1	0	1	005	1	12	3
365		12	max	87.515 -12.939	3	2.882	9	926	10	0	<u>12</u>	0	12	.145	2
366		40			10	-25.951	2	-25.045	1	0	•	011	1	117	3
367		13	max	87.62	3	2.68	9	926 -25.045	10	0	<u>12</u> 1	0	10	.15	3
368		1.1	min	-12.823	10	-26.193	2		10	0		016	_	114	_
369		14	max	87.725	3	2.479	9	926	<u>10</u> 1	0	<u>12</u> 1	022	10	.156	3
370		4.5	min	-12.707	10	-26.435	2	-25.045						11	
371		15	max	87.829 -12.59	3	2.277	9	926	<u>10</u> 1	0	<u>12</u>	001	10	.162	2
372		16	min		10	-26.676	2	-25.045	_	0	•	027	_	107	3
373		16	max	87.501 5.744	2	117.665	2	933	10	0	1	001	10	.166	2
374		47	min	-5.744	3	-159.127	3	-25.217	1	0	12	033	10	103	3
375		17	max	87.64	2	117.424	2	933	10	0	1	001	10	.141	2
376		40	min	-5.64	3	-159.308	3	-25.217	1	0	12	038	1	068	3
377		18	max	-3.627	15	325.48	2	959	10	0	3	002	10	.071	2
378		40	min	-87.555	1	-156.813	3	-25.916	1	0	2	044	1	034	3
379		19	max	-3.585	15	325.238	2	959	10	0	3	002	10	0	2

: Schletter, Inc. : HCV

Job Number : Model Name : Standard

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
380			min	-87.415	1	-156.994	3	-25.916	1	0	2	049	1	0	3
381	M5	1	max	207.549	1	1073.569	3	0	2	0	1	.009	3	0	3
382			min	2.436	12	-712.459	2	-68.246	3	0	3	0	10	0	2
383		2	max	207.689	1	1073.388	3	0	2	0	1	0	9	.154	2
384			min	2.505	12	-712.701	2	-68.246	3	0	3	005	3	232	3
385		3	max	250.132	3	5.066	9	7.502	3	0	3	0	1	.306	2
386			min	-48.795	2	-82.786	2	273	9	0	1	02	3	46	3
387		4	max	250.237	3	4.864	9	7.502	3	0	3	0	1	.324	2
388			min	-48.655	2	-83.027	2	273	9	0	1	018	3	45	3
389		5	max	250.342	3	4.663	9	7.502	3	0	3	0	1	.342	2
390			min	-48.516	2	-83.269	2	273	9	0	1	016	3	439	3
391		6	max	250.446	3	4.461	9	7.502	3	0	3	0	1	.36	2
392			min	-48.376	2	-83.511	2	273	9	0	1	015	3	428	3
393		7	max	250.551	3	4.26	9	7.502	3	0	3	0	1	.378	2
394			min	-48.236	2	-83.753	2	273	9	0	1	013	3	418	3
395		8	max	250.656	3	4.058	9	7.502	3	0	3	0	1	.397	2
396			min	-48.097	2	-83.995	2	273	9	0	1	011	3	407	3
397		9	max	250.76	3	3.857	9	7.502	3	0	3	0	1	.415	2
398			min	-47.957	2	-84.237	2	273	9	0	1	01	3	396	3
399		10	max	250.865	3	3.655	9	7.502	3	0	3	0	2	.433	2
400		10	min	-47.818	2	-84.478	2	273	9	0	1	008	3	386	3
401		11	max	250.97	3	3.454	9	7.502	3	0	3	<u>.000</u>	2	.451	2
402			min	-47.678	2	-84.72	2	273	9	0	1	007	3	375	3
403		12	max	251.075	3	3.252	9	7.502	3	0	3	007	2	<u>373 </u>	2
404		12	min	-47.538	2	-84.962	2	273	9	0	1	005	3	364	3
405		13		251.179	3	3.051	9	7.502	3	0	3	005 0	2	<u>364</u> .488	2
		13	max			-85.204	2				1				
406		1.1	min	-47.399	3			273 7.502	9	0	_	003 0	3	353 353	3
407		14	max	251.284		2.849	9	7.502	3	0	3		2	.507	2
408		4.5	min	-47.259	2	-85.446	2	273	9	0		002	3	342	3
409		15	max	251.389	3	2.647	9	7.502	3	0	3	0	2	.525	2
410		4.0	min	-47.12	2	-85.687	2	273	9	0		0	9	331	3
411		16	max	279.531	2	413.107	2	7.475	3	0	3	.001	3	.54	2
412		47	min	-22.897	3	-469.732	3	288	1	0	2	0	9	317	3
413		17	max	279.671	2	412.866	2	7.475	3	0	3	.003	3	.45	2
414		4.0	min	-22.793	3	-469.913	3	288	1	0	2	0	9	21 <u>5</u>	3
415		18	max	-5.317	12	1044.81	2	6.864	3	0	3	004	3	.226	2
416			min	-207.706	1_	-496.567	3	064	1	0	1	0	9	107	3
417		19	max	-5.247	12	1044.568	2	6.864	3	0	3	.006	3	0	3
418			min	-207.566	1	-496.748	3	064	1	0	1	0	1	0	2
419	<u>M9</u>	1_	max	87.215	1_	332.078	3	72.872	3	0	3	002	10	0	2
420			min	3.574		-222.248		.932	10		2	049	1	0	3
421		2	max		1_	331.897	3	72.872	3	0	3	001	12	.048	2
422			min	3.616	15	-222.49	2	.932	10	0	2	043	1	072	3
423		3	max		3	4.679	9	24.605	1	0	1	.014	3	.096	2
424			min	-13.605	10	-23.746	2	-2.195	3	0	10	037	1	143	3
425		4	max	86.346	3	4.478	9	24.605	1	0	1	.013	3	.101	2
426			min	-13.488	10	-23.987	2	-2.195	3	0	10	032	1	14	3
427		5	max	86.451	3	4.276	9	24.605	1	0	1	.013	3	.106	2
428			min	-13.372	10	-24.229	2	-2.195	3	0	10	027	1	137	3
429		6	max	86.555	3	4.075	တ	24.605	1	0	1	.012	3	.112	2
430			min	-13.256	10	-24.471	2	-2.195	3	0	10	021	1	134	3
431		7	max	86.66	3	3.873	9	24.605	1	0	1	.012	3	.117	2
432		Ė	min	-13.139	10	-24.713	2	-2.195	3	0	10	016	1	132	3
433		8	max		3	3.672	9	24.605	1	0	1	.011	3	.122	2
434			min	-13.023	10	-24.955	2	-2.195	3	0	10	011	1	129	3
435		9	max	86.87	3	3.47	9	24.605	1	0	1	.011	3	.128	2
436			min	-12.906	10	-25.197	2	-2.195	3	0	10	005	1	126	3
430			1111111	12.900	10	-20.181		-2.130	J	U	IU	005		120	」 J

Model Name

Schletter, Inc. HCV

:

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
437		10	max	86.974	3	3.269	9	24.605	1	0	1	.01	3	.133	2
438			min	-12.79	10	-25.438	2	-2.195	3	0	10	0	1	123	3
439		11	max	87.079	3	3.067	9	24.605	1	0	1	.01	3	.139	2
440			min	-12.674	10	-25.68	2	-2.195	3	0	10	0	10	12	3
441		12	max	87.184	3	2.866	9	24.605	1	0	1	.011	1	.144	2
442			min	-12.557	10	-25.922	2	-2.195	3	0	10	0	10	117	3
443		13	max	87.288	3	2.664	9	24.605	1	0	1	.016	1	.15	2
444			min	-12.441	10	-26.164	2	-2.195	3	0	10	0	10	114	3
445		14	max	87.393	3	2.463	9	24.605	1	0	1	.021	1	.156	2
446			min	-12.325	10	-26.406	2	-2.195	3	0	10	0	10	111	3
447		15	max	87.498	3	2.261	9	24.605	1	0	1	.027	1	.162	2
448			min	-12.208	10	-26.648	2	-2.195	3	0	10	.001	10	107	3
449		16	max	87.706	2	117.31	2	24.789	1	0	15	.032	1	.166	2
450			min	-6.469	3	-159.644	3	-2.236	3	0	3	.001	10	103	3
451		17	max	87.846	2	117.068	2	24.789	1	0	15	.038	1	.141	2
452			min	-6.365	3	-159.825	3	-2.236	3	Ö	3	.001	10	068	3
453		18	max	-3.615	15	325.48	2	25.984	1	0	2	.043	1	.071	2
454		10	min	-87.346	1	-156.804	3	-1.774	3	0	3	.002	10	034	3
455		19	max	-3.573	15	325.238	2	25.984	1	0	2	.049	1	0	2
456		13	min	-87.207	1	-156.985	3	-1.774	3	0	3	.002	10	0	3
457	M13	1	max	72.867	3	222.149	2	-3.574	15	0	2	.049	1	0	2
458	IVITO		min	.932	10	-332.115	3	-87.209	1	0	3	.002	10	0	3
459		2		72.867	3	157.936	2	-2.719	15	0	2	.013	3	.142	3
460		 	max min	.932	10	-235.576	3	-65.977	1	0	3	002	10	095	2
		2			3	93.724					2				
461		3	max	72.867			3	-1.864	1 <u>5</u>	0		.009	<u>3</u>	.236	2
462		1	min	.932	10	-139.038		-44.744	-	0	3	017		158	
463		4	max	72.867	3	29.512	2	873	10	0	2	.006	3	.281	3
464		-	min	.932	10	-42.5	3	-23.511	1	0	3	034	1_	189	2
465		5	max	72.867	3	54.039	3	1.614	2	0	2	.003	3	.278	3
466			min	.932	10	-34.7	2	-4.518	3	0	3	041	1_	187	2
467		6	max	72.867	3	150.577	3	18.954	1	0	2	.001	3	.227	3
468		<u> </u>	min	.932	10	-98.912	2	-3.274	3	0	3	036	1	154	2
469		7	max	72.867	3	247.115	3	40.187	1	0	2	0	3	.127	3
470			min	.932	10	-163.124	2	-2.031	3	0	3	022	1_	089	2
471		8	max	72.867	3	343.654	3	61.42	1	0	2	.005	2	.01	1
472			min	.932	10	-227.336	2	787	3	0	3	0	3	02	3
473		9	max	72.867	3	440.192	3	82.652	1	0	2	.04	1	.139	2
474			min	.932	10	-291.549	2	.457	3	0	3	0	3	216	3
475		10	max	72.867	3	536.73	3	103.885	1_	0	2	.086	_1_	.301	2
476			min	.932	10	-355.761	2	1.421	12	0	3	01	3	46	3
477		11	max		1_	291.549	2	.228	3	0	3	.039	_1_	.139	2
478			min	.932	10	-440.192	3	-82.444	1	0	2	01	3	216	3
479		12	max	25.182	1	227.336	2	1.472	3	0	3	.005	2	.01	1
480			min	.932	10	-343.654	3	-61.212	1	0	2	009	3	02	3
481		13	max	25.182	1	163.124	2	2.716	3	0	3	0	10	.127	3
482			min	.932	10	-247.115	3	-39.979	1	0	2	022	1	089	2
483		14	max	25.182	1	98.912	2	3.959	3	0	3	001	15	.227	3
484			min	.932	10	-150.577	3	-18.746	1	0	2	036	1	154	2
485		15	max	25.182	1	34.7	2	5.203	3	0	3	002	15	.278	3
486			min	.932	10	-54.039	3	-1.614	2	0	2	041	1	187	2
487		16	max	25.182	1	42.5	3	23.719	1	0	3	0	12	.281	3
488			min	.932	10	-29.512	2	.873	10	0	2	034	1	189	2
489		17	max	25.182	1	139.038	3	44.952	1	0	3	.002	3	.236	3
490			min	.932	10	-93.724	2	1.877	15	0	2	017	1	158	2
491		18	max	25.182	1	235.576	3	66.185	1	0	3	.011	1	.142	3
492		'	min	.932	10	-157.936	2	2.732	15	0	2	002	10	095	2
493		19			1	332.115	3	87.417	1	0	3	.049	1	0	2
_TUU		10	πιαλ	20.102		002.110		U1.711				.∪⊤∂			

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

496		Member	Sec		Axial[lb]	LC	y Shear[lb]			LC	Torque[k-ft]		y-y Mome	, LC	z-z Mome	_LC_
496	494			min			-222.149	2	3.586	15		2		10	0	3
498	495	M16	1	max	1.777	3	325.363	2	-3.573	15	0	3	.049	1	0	
498	496			min	-25.93	1	-157.011	3	-87.213	1	0	2	.002	10	0	3
Section Sect	497		2	max	1.777	3	231.114	2	-2.719	15	0	3	.011	1	.067	3
500	498			min	-25.93	1	-111.964	3	-65.98	1	0	2	002	10	139	2
Soli	499		3	max		3	136.864	2	-1.864	15	0	3	0	3	.112	3
SOI	500				-25.93	1	-66.917	3	-44.748	1	0	2	017	1	231	2
502			4	max	1.777	3		2	886	10	0	3	001	15	.134	3
503	502				-25.93	1		3		1	0	2	034	1	276	2
504			5	max		3		3		2	0	3		15		3
506						1										
Solid			6			3								15		
508																
Solid			7			3								10		_
Sop										_			-			
Si10			8			3								2		
S11										_						
Sit Min -25,93 1 -428,63 2 1,487 12 0 2 -,005 3 -,093 3 -,093 3 -,093 3 -,093 3 -,093 3 -,093 3 -,093 3 -,093 3 -,093 3 -,093 -,093 3 -,09			9													
513						_										
514			10													
515			10											-		
516			11			_						_				
517																
518 min -25.864 1 -158.317 3 -61.207 1 0 3 -001 3 -002 3 520 min -25.864 1 -113.27 3 -39.975 1 0 3 -022 1 -128 2 521 14 max -959 10 145.883 2 .75 3 0 2 -001 12 111 3 522 min -25.864 1 -68.223 3 -18.742 1 0 3 -036 1 -224 2 523 15 max -959 10 516.34 2 2.706 9 0 2 0 12 134 3 524 min -25.864 1 -23.176 3 -1.588 2 0 3 -04 1 -274 2 525 16 max -959 10 66.917			12											_		
519 13 max -959 10 240.132 2 -443 12 0 2 0 10 .066 3 520 min -25.864 1 -113.27 3 -39.975 1 0 3 -0.22 1 -128 2 521 14 max -959 10 145.883 2 .75 3 0 2 .001 12 .111 3 522 min -25.864 1 -68.223 3 -18.742 1 0 3 -036 1 -224 2 522 min -25.864 1 -23.176 3 -1.588 2 0 3 -04 1 -274 2 525 16 max -959 10 21.871 3 23.723 1 0 2 0 3 -134 1 -276 2 52 528 1 16.691 3 44.956			12													
S20			12											_		
S21			13													
S22			1.1											_		
523			14													
S24			4.5			_										
525			15													
526 min -25.864 1 -42.615 2 .886 10 0 3 034 1 276 2 527 17 max 959 10 66.917 3 44.956 1 0 2 .002 3 .112 3 528 min -25.864 1 -136.864 2 1.876 15 0 3 017 1 231 2 529 18 max 959 10 111.964 3 66.818 1 0 2 .011 1 .067 3 530 min -25.864 1 -231.114 2 2.731 15 0 3 .002 10 -139 2 531 19 max 959 10 157.011 3 87.422 1 0 2 .049 1 0 2 .049 1 0 3 .002 1			10									_				
527 17 max 959 10 66.917 3 44.956 1 0 2 .002 3 .112 3 528 min -25.864 1 -136.864 2 1.876 15 0 3 017 1 -231 2 529 18 max 959 10 111.964 3 66.189 1 0 2 .011 1 .067 3 530 min -25.864 1 -231.114 2 2.731 15 0 3 002 10 -139 2 531 19 max 959 10 157.011 3 87.422 1 0 2 .049 1 0 2 532 min -93.603 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0			16													
528 min -25.864 1 -136.864 2 1.876 15 0 3 017 1 231 2 529 18 max 959 10 111.964 3 66.189 1 0 2 .011 1 .067 3 530 min -25.864 1 -231.114 2 2.731 15 0 3 002 10 -139 2 531 19 max 959 10 157.011 3 87.422 1 0 2 .049 1 0 2 532 min -25.864 1 -325.363 2 3.585 15 0 3 .002 10 0 3 533 M15 1 max 0 1 .933 3 .108 3 0 1 0 1 534 min -93.603 3 0 1 0<			4.7											_		_
529 18 max 959 10 111.964 3 66.189 1 0 2 .011 1 .067 3 530 min -25.864 1 -231.114 2 2.731 15 0 3 002 10 139 2 531 19 max 959 10 157.011 3 87.422 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 2 .049 1 0 3 .0 1 0 1 0 1 0 <td></td> <td></td> <td>17</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>			17							_						
530 min -25.864 1 -231.114 2 2.731 15 0 3 002 10 139 2 531 19 max 959 10 157.011 3 87.422 1 0 2 .049 1 0 2 532 min -25.864 1 -325.363 2 3.585 15 0 3 .002 10 0 3 533 M15 1 max 0 1 .933 3 .108 3 0 1			4.0											-		
531 19 max 959 10 157.011 3 87.422 1 0 2 .049 1 0 2 532 min -25.864 1 -325.363 2 3.585 15 0 3 .002 10 0 3 533 M15 1 max 0 1 .933 3 .108 3 0 1 0 <td></td> <td></td> <td>18</td> <td></td> <td>-</td> <td></td> <td></td>			18											-		
532 min -25.864 1 -325.363 2 3.585 15 0 3 .002 10 0 3 533 M15 1 max 0 1 .933 3 .108 3 0 1																
533 M15 1 max 0 1 .933 3 .108 3 0 1 <			19													
534 min -93.603 3 0 1 0 1 0 3 0 1 0 1 535 2 max 0 1 .829 3 .108 3 0 1																
535 2 max 0 1 .829 3 .108 3 0 1 0 1 0 1 536 min -93.674 3 0 1 0 1 0 3 0	533	<u>M15</u>	1	max												
536 min -93.674 3 0 1 0 1 0 3 0 3 0 3 537 3 max 0 1 .726 3 .108 3 0 1																-
537 3 max 0 1 .726 3 .108 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 <td< td=""><td></td><td></td><td>2</td><td></td><td></td><td></td><td>.829</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			2				.829									
538 min -93.744 3 0 1 0 1 0 3 0 3 0 3 539 4 max 0 1 .622 3 .108 3 0 1				min	-93.674						0	3	0			3
539 4 max 0 1 .622 3 .108 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 <td< td=""><td></td><td></td><td>3</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			3													
540 min -93.815 3 0 1 0 1 0 3 0 3 0 3 541 5 max 0 1 .518 3 .108 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1									_	_						
541 5 max 0 1 .518 3 .108 3 0 1 0 1 0 1 542 min -93.885 3 0 1 0 1 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 1			4	max			.622	3	.108	3	0	_	0		0	
542 min -93.885 3 0 1 0 1 0 3 0 3 0 3 543 6 max 0 1 .415 3 .108 3 0 1 0 1 544 min -93.956 3 0 1 0 1 0 3 0 3 001 3 545 7 max 0 1 .311 3 .108 3 0 1 0 3 0 1 546 min -94.026 3 0 1 0 1 0 3 0 1 001 3 547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 001 3 548 min -94.097 3 0 1 0 3 0 1 </td <td>540</td> <td></td> <td></td> <td>min</td> <td>-93.815</td> <td>3</td> <td>0</td> <td></td> <td>0</td> <td></td> <td>0</td> <td>3</td> <td>0</td> <td>3</td> <td>0</td> <td>3</td>	540			min	-93.815	3	0		0		0	3	0	3	0	3
543 6 max 0 1 .415 3 .108 3 0 1 0 1 0 1 544 min -93.956 3 0 1 0 1 0 3 0 3 001 3 545 7 max 0 1 .311 3 .108 3 0 1 0 3 0 1 546 min -94.026 3 0 1 0 3 0 1 001 3 547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 548 min -94.097 3 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 </td <td></td> <td></td> <td>5</td> <td>max</td> <td></td> <td>1_</td> <td>.518</td> <td>3</td> <td>.108</td> <td>3</td> <td>0</td> <td>1</td> <td>0</td> <td></td> <td>0</td> <td></td>			5	max		1_	.518	3	.108	3	0	1	0		0	
544 min -93.956 3 0 1 0 1 0 3 0 3 001 3 545 7 max 0 1 .311 3 .108 3 0 1 0 3 0 1 546 min -94.026 3 0 1 0 3 0 1 001 3 547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 548 min -94.097 3 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1	542			min	-93.885	3	0	1	0	1	0	3	0	3	0	3
544 min -93.956 3 0 1 0 1 0 3 0 3 001 3 545 7 max 0 1 .311 3 .108 3 0 1 0 3 0 1 546 min -94.026 3 0 1 0 3 0 1 001 3 547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 548 min -94.097 3 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1			6	max		1	.415	3	.108	3	0	_	0			_
545 7 max 0 1 .311 3 .108 3 0 1 0 3 0 1 546 min -94.026 3 0 1 0 3 0 1 001 3 547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 548 min -94.097 3 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1						3		1		1	0	3	0	3	001	3
546 min -94.026 3 0 1 0 1 0 3 0 1 001 3 547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 548 min -94.097 3 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1			7			1	.311	3	.108	3	0	1	0	3	0	1
547 8 max 0 1 .207 3 .108 3 0 1 0 3 0 1 548 min -94.097 3 0 1 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1					-94.026	3					0	3	0		001	3
548 min -94.097 3 0 1 0 1 0 3 0 1 001 3 549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1			8		_	1	.207	3	.108	3	0		0	3	0	
549 9 max 0 1 .104 3 .108 3 0 1 0 3 0 1					-94.097	3						3			001	3
			9			_	.104	3	.108	3				3		
	550			min	-94.167	3	0		0		0	3	0		001	3

Model Name

: Schletter, Inc. : HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC			Torque[k-ft]	<u>LC</u>	y-y Mome	LC	z-z Mome	LC
551		10	max	0	1	0	1	.108	3	0	1	0	3	0	1
552			min	-94.238	3	0	1	0	1	0	3	0	1	001	3
553		11	max	0	1	0	1	.108	3	0	1_	0	3	0	1
554			min	-94.308	3	104	3	0	1	0	3	0	1	001	3
555		12	max	0	1	0	1	.108	3	0	1	0	3	0	1
556		4.0	min	-94.379	3	207	3	0	1	0	3	0	1	001	3
557		13	max	0	1	0	1	.108	3	0	1	0	3	0	1
558		4.4	min	-94.449	3	311	3	0	1	0	3	0	1	001	3
559		14	max	0	1	0	1	.108	3	0	1	0	3	0	1
560		4.5	min	-94.52	3	415	3	0	1	0	3	0	1	001	3
561		15	max	0	1	0	1	.108	3	0	1	0	3	0	1
562		4.0	min	-94.59	3	518	3	0	1	0	3	0	1	0	3
563		16	max	0	1	0	1	.108	3	0	1	0	3	0	1
564		17	min	-94.661	3	622	1	100		0	3	0		0	3
565 566		17	max	0 -94.731	3	726	3	.108	3	0	3	0	3	0	3
567		18	min	-94.731 0	1	/20 0	1	.108	3	0	1	0	3	0	1
568		10	max min	-94.802	3	829	3	0	1	0	3	0	1	0	3
569		19	max	-94.602 0	1	0	1	.108	3	0	1	0	3	0	1
570		19	min	-94.872	3	933	3	.100	1	0	3	0	1	0	1
571	M16A	1	max	0	2	1.597	4	.034	1	0	3	0	3	0	1
572	WITOA		min	-93.563	3	0	2	044	3	0	1	0	1	0	1
573		2	max	0	2	1.419	4	.034	1	0	3	0	3	0	2
574			min	-93.493	3	0	2	044	3	0	1	0	1	0	4
575		3	max	0	2	1.242	4	.034	1	0	3	0	3	0	2
576			min	-93.422	3	0	2	044	3	0	1	0	1	0	4
577		4	max	0	2	1.064	4	.034	1	0	3	0	3	0	2
578			min	-93.352	3	0	2	044	3	0	1	0	1	001	4
579		5	max	0	2	.887	4	.034	1	0	3	0	3	0	2
580			min	-93.281	3	0	2	044	3	0	1	0	1	002	4
581		6	max	0	2	.71	4	.034	1	0	3	0	3	0	2
582			min	-93.211	3	0	2	044	3	0	1	0	1	002	4
583		7	max	0	2	.532	4	.034	1	0	3	0	3	0	2
584			min	-93.14	3	0	2	044	3	0	1	0	1	002	4
585		8	max	0	2	.355	4	.034	1	0	3	0	3	0	2
586			min	-93.07	3	0	2	044	3	0	1	0	1	002	4
587		9	max	0	2	.177	4	.034	1	0	3	0	3	0	2
588			min	-92.999	3	0	2	044	3	0	1	0	1_	002	4
589		10	max	0	2	0	1	.034	1	0	3	0	3	0	2
590			min	-92.929	3	0	1	044	3	0	1	0	1	002	4
591		11	max		2	0	2	.034	1	0	3	0	3	0	2
592		40	min	-92.858	3	177	4	044	3	0	1	0	1	002	4
593		12		0	2	0	2	.034	1	0	3	0	3	0	2
594		40	min	-92.788	3	355	4	044	3	0	1	0	1_	002	4
595		13		.095	13	0	2	.034	1	0	3	0	1	0	2
596		4.4	min	-92.717	3	532	4	044	3	0		0	4	002	4
597		14	max		13	71	2	.034	1	0	3	0	1	0	2
598		4.5	min	-92.647	3	71	4	044	3	0	1	0	3	002	4
599		15	max	.289	13 3	0	2	.034 044	3	0	3	0	3	0	2
600		16	min max	<u>-92.576</u> .386	13	887 0	2	.034	1	0	3	0	<u>3</u> 1	002 0	2
602		10		-92.506	3	-1.064	4	044	3	0	1	0	3	001	4
603		17	min	.483	13	0	2	.034	1	0	3	0	<u>3</u> 1	001 0	2
604		17	max min	-92.435	3	-1.242	4	044	3	0	1	0	3	0	4
605		18	max	<u>-92.435</u> .58	13	0	2	.034	1	0	3	0	<u>ა</u> 1	0	2
606		10	min	-92.365	3	-1.419	4	044	3	0	1	0	3	0	4
607		10	max	.677	13	0	2	.034	1	0	3	0	1	0	1
007		ן וט	шах	.011	IJ	U		.034		U	⊥ J	U			

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:_

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
608			min	-92.294	3	-1.597	4	044	3	0	1	0	3	0	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M2	1	max	.002	1	.009	2	.004	1	-1.44e-5	10	NC	3	NC	2
2			min	003	3	009	3	002	3	-3.99e-4	1	4338.682	2	8860.739	1
3		2	max	.002	1	.008	2	.004	1	-1.372e-5	10	NC	3	NC	2
4			min	003	3	009	3	002	3	-3.814e-4	1	4739.406	2	9536.247	1
5		3	max	.002	1	.008	2	.004	1	-1.304e-5	10	NC	1	NC	1
6			min	003	3	008	3	002	3	-3.637e-4	1	5216.833	2	NC	1
7		4	max	.002	1	.007	2	.003	1	-1.236e-5	10	NC	1	NC	1
8			min	003	3	008	3	001	3	-3.461e-4	1	5789.68	2	NC	1
9		5	max	.002	1	.006	2	.003	1	-1.168e-5	10	NC	1	NC	1
10			min	003	3	008	3	001	3	-3.285e-4	1	6482.961	2	NC	1
11		6	max	.001	1	.005	2	.003	1	-1.1e-5	10	NC	1	NC	1
12			min	002	3	007	3	001	3	-3.109e-4	1	7330.659	2	NC	1
13		7	max	.001	1	.005	2	.003	1	-1.032e-5	10	NC	1	NC	1
14			min	002	3	007	3	0	3	-2.933e-4	1	8379.835	2	NC	1
15		8	max	.001	1	.004	2	.002	1	-9.645e-6	10	NC	1	NC	1
16			min	002	3	006	3	0	3	-2.757e-4	1	9697.136	2	NC	1
17		9	max	.001	1	.003	2	.002	1	-8.966e-6	10	NC	1	NC	1
18			min	002	3	006	3	0	3	-2.581e-4	1	NC	1	NC	1
19		10	max	.001	1	.003	2	.002	1	-8.286e-6	10	NC	1	NC	1
20			min	002	3	006	3	0	3	-2.404e-4	1	NC	1	NC	1
21		11	max	0	1	.002	2	.001	1	-7.607e-6	10	NC	1	NC	1
22			min	002	3	005	3	0	3	-2.228e-4	1	NC	1	NC	1
23		12	max	0	1	.002	2	.001	1	-6.928e-6	10	NC	1	NC	1
24			min	001	3	004	3	0	3	-2.052e-4	1	NC	1	NC	1
25		13	max	0	1	.001	2	0	1	-6.248e-6	10	NC	1	NC	1
26			min	001	3	004	3	0	3	-1.876e-4	1	NC	1	NC	1
27		14	max	0	1	.001	2	0	1	-5.569e-6	10	NC	1	NC	1
28			min	0	3	003	3	0	3	-1.7e-4	1	NC	1	NC	1
29		15	max	0	1	0	2	0	1	-4.89e-6	10	NC	1	NC	1
30			min	0	3	003	3	0	3	-1.524e-4	1	NC	1	NC	1
31		16	max	0	1	0	2	0	1	-4.21e-6	10	NC	1	NC	1
32			min	0	3	002	3	0	3	-1.348e-4	1	NC	1	NC	1
33		17	max	0	1	0	2	0	1	-3.531e-6	10	NC	1_	NC	1
34			min	0	3	001	3	0	3	-1.172e-4	1	NC	1	NC	1
35		18	max	0	1	0	2	0	1	-2.851e-6	10	NC	_1_	NC	1
36			min	0	3	0	3	0	3	-9.954e-5	1	NC	1	NC	1
37		19	max	0	1	0	1	0	1	-2.172e-6	10	NC	_1_	NC	1
38			min	0	1	0	1	0	1	-8.193e-5	1_	NC	1	NC	1
39	M3	1_	max	0	1	0	1	0	1	3.869e-5	<u>1</u>	NC	<u>1</u>	NC	1
40			min	0	1	0	1	0	1	1.03e-6	10	NC	1_	NC	1
41		2	max	0	3	0	2	0	10	4.915e-5	1_	NC	1_	NC	1
42			min	0	2	0	3	0	1	1.525e-6	10	NC	1	NC	1
43		3	max	0	3	0	2	0	10		<u>1</u>	NC	<u>1</u>	NC	1
44			min	0	2	002	3	0	1	2.02e-6	10	NC	1_	NC	1
45		4	max	0	3	0	2	0	3	7.006e-5	_1_	NC	1	NC	1
46			min	0	2	003	3	0	1	2.515e-6	10	NC	1	NC	1
47		5	max	0	3	0	2	0	3	8.052e-5	_1_	NC	_1_	NC	1
48			min	0	2	003	3	0	1	3.01e-6	10	NC	1	NC	1
49		6	max	0	3	0	2	0	3	9.097e-5	_1_	NC	_1_	NC	1
50			min	0	2	004	3	0	1	3.505e-6	10	NC	1	NC	1
51		7	max	0	3	0	2	0	3	1.014e-4	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC		LC	(n) L/z Ratio	LC
52			min	0	2	005	3	0	9	4.e-6	10	NC	1	NC	1
53		8	max	0	3	0	2	0	3	1.119e-4	1_	NC	_1_	NC	1
54			min	0	2	006	3	0	9	4.496e-6	10	NC	1_	NC	1
55		9	max	0	3	.001	2	0	3	1.223e-4	_1_	NC	_1_	NC	1
<u>56</u>		4.0	min	0	2	006	3	0	9	4.991e-6	10	NC	1_	NC	1
57		10	max	0	3	.002	2	0	11	1.328e-4	1	NC	1	NC	1
58		44	min	0	2	007	3	0	15	5.486e-6	10	NC NC	1_	NC	1
59		11	max	.001	3	.002	2	0	1	1.433e-4	1	NC NC	1	NC NC	1
60		40	min	001	2	007	3	0	15		10	NC NC	1_	NC NC	1
61 62		12	max	.001	3	.003	3	<u>0</u> 	15	1.537e-4	1_	NC NC	<u>1</u> 1	NC NC	1
63		13	min	001 .001	3	007 .003	2	.001	1	6.456e-6 1.642e-4	<u>15</u> 1	NC NC	1	NC NC	1
64		13	max	001	2	003 008	3	0	15	6.884e-6	15	NC NC	1	NC NC	1
65		14	min	.001	3	008 .004	2	.001	1	1.746e-4	1	NC NC	1	NC NC	1
66		14	max min	001	2	008	3	0	15	7.311e-6	15	NC NC	1	NC NC	1
67		15	max	.002	3	.005	2	.002	1	1.851e-4	1	NC	1	NC	1
68		10	min	002	2	008	3	0	15	7.739e-6		9475.919	2	NC	1
69		16	max	.002	3	.006	2	.002	1	1.955e-4	1	NC	1	NC	1
70		10	min	002	2	008	3	0	15			7984.906	2	NC	1
71		17	max	.002	3	.007	2	.002	1	2.06e-4	1	NC	1	NC	1
72		<u> </u>	min	002	2	008	3	0	15	8.594e-6		6841.071	2	NC	1
73		18	max	.002	3	.008	2	.003	1	2.164e-4	1	NC	1	NC	1
74			min	002	2	008	3	0	15	9.021e-6		5952.335	2	NC	1
75		19	max	.002	3	.009	2	.003	1	2.269e-4	1	NC	3	NC	1
76			min	002	2	008	3	0	15	9.448e-6	15	5254.883	2	NC	1
77	M4	1	max	.001	1	.01	2	0	15		10	NC	1	NC	2
78			min	0	12	009	3	002	1	-3.116e-4	1	NC	1	9003.771	1
79		2	max	.001	1	.01	2	0	15	-1.089e-5	10	NC	1	NC	2
80			min	0	12	009	3	002	1	-3.116e-4	1	NC	1	9822.156	1
81		3	max	.001	1	.009	2	0	15	-1.089e-5	10	NC	1_	NC	1
82			min	0	12	008	3	002	1	-3.116e-4	1_	NC	1	NC	1
83		4	max	.001	1	.009	2	0	15		10	NC	_1_	NC	1
84			min	0	12	008	3	002	1	-3.116e-4	1_	NC	1_	NC	1
85		5	max	.001	1	.008	2	0		-1.089e-5	10	NC	_1_	NC	1
86			min	0	12	007	3	001	1	-3.116e-4	_1_	NC	_1_	NC	1
87		6	max	.001	1	.008	2	0	15		<u>10</u>	NC	_1_	NC	1
88		_	min	0	12	007	3	001	1	-3.116e-4	_1_	NC	1_	NC	1
89		7	max	0	1	.007	2	0	15			NC	1	NC	1
90			min	0	12	006	3	001	1_	-3.116e-4	1_	NC	_1_	NC	1
91		8	max	0	1	.006	2	0	15	-1.089e-5		NC NC	1_	NC NC	1
92			min	0	12	006	3	0		-3.116e-4		NC NC	1	NC NC	1
93		9	max	0	1	.006	2	0		-1.089e-5		NC NC	1	NC	1
94		10	min	0	12	005	2	0	1 1 1 5	-3.116e-4	1	NC NC	<u>1</u> 1	NC NC	1
95		10	max	<u> </u>	12	.005	3	0 0	1	-1.089e-5		NC NC	1	NC NC	1
96		11	min	0	1	005 .005	2	0		-3.116e-4 -1.089e-5	<u>1</u> 10	NC NC	1	NC NC	1
98			max min	0	12	004	3	0	1	-3.116e-4	1	NC	1	NC	1
99		12	max	0	1	.004	2	0				NC	1	NC	1
100		12	min	0	12	004	3	0	1	-3.116e-4	1	NC	1	NC	1
101		13	max	0	1	.003	2	0			•	NC	1	NC	1
101		13	min	0	12	003	3	0	1	-3.116e-4	1	NC NC	1	NC NC	1
103		14	max	0	1	.003	2	0		-1.089e-5	•	NC	1	NC	1
104		1,7	min	0	12	003	3	0	1	-3.116e-4	1	NC	1	NC	1
105		15	max	0	1	.002	2	0		-1.089e-5		NC	1	NC	1
106		'	min	0	12	002	3	0	1	-3.116e-4	1	NC	1	NC	1
107		16	max	0	1	.002	2	0		-1.089e-5	•	NC	1	NC	1
108		T.,	min	0	12	002	3	0	1	-3.116e-4	1	NC	1	NC	1
			117011			1002				J11 100 T		.,,	_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r			LC		LC
109		17	max	0	1	.001	2	0	15	-1.089e-5	10	NC	1_	NC	1
110			min	0	12	001	3	0	1	-3.116e-4	1_	NC	1_	NC	1
111		18	max	0	1	0	2	0	15	-1.089e-5	10	NC	_1_	NC	1
112			min	0	12	0	3	0	1	-3.116e-4	1_	NC	1_	NC	1
113		19	max	0	1	0	1	0	1	-1.089e-5	10	NC	1_	NC	1
114			min	0	1	0	1	0	1	-3.116e-4	1_	NC	1_	NC	1
115	M6	1	max	.006	1	.03	2	.001	1	4.384e-4	3	NC	3	NC	1
116			min	011	3	028	3	006	3	-8.019e-8	2	1309.377	2	6938.294	3
117		2	max	.006	1	.028	2	.001	1	4.249e-4	3	NC	3	NC	1
118			min	01	3	026	3	005	3	-3.452e-7	11	1401.762	2	7365.676	3
119		3	max	.006	1	.026	2	.001	1	4.113e-4	3	NC	3	NC	1
120			min	009	3	025	3	005	3	-2.194e-6	1	1507.717	2	7873.49	3
121		4	max	.005	1	.024	2	.001	1	3.978e-4	3	NC	3	NC	1
122			min	009	3	024	3	005	3	-4.442e-6	1	1629.965	2	8478.875	3
123		5	max	.005	1	.022	2	.001	1	3.842e-4	3	NC	3	NC	1
124			min	008	3	022	3	004	3	-6.69e-6	1	1772.015	2	9204.58	3
125		6	max	.005	1	.02	2	0	1	3.707e-4	3	NC	3	NC	1
126			min	008	3	021	3	004	3	-8.937e-6	1	1938.462	2	NC	1
127		7	max	.004	1	.018	2	0	1	3.571e-4	3	NC	3	NC	1
128			min	007	3	019	3	004	3	-1.119e-5	1	2135.438	2	NC	1
129		8	max	.004	1	.017	2	0	1	3.436e-4	3	NC	3	NC	1
130			min	006	3	018	3	003	3	-1.343e-5	1	2371.312	2	NC	1
131		9	max	.004	1	.015	2	0	1	3.3e-4	3	NC	3	NC	1
132			min	006	3	016	3	003	3	-1.568e-5	1	2657.799	2	NC	1
133		10	max	.003	1	.013	2	0	1	3.165e-4	3	NC	3	NC	1
134			min	005	3	014	3	002	3	-1.793e-5	1	3011.823	2	NC	1
135		11	max	.003	1	.011	2	0	1	3.029e-4	3	NC	3	NC	1
136			min	005	3	013	3	002	3	-2.018e-5	1	3458.764	2	NC	1
137		12	max	.003	1	.01	2	0	1	2.894e-4	3	NC	3	NC	1
138			min	004	3	011	3	002	3	-2.242e-5	1	4038.497	2	NC	1
139		13	max	.002	1	.008	2	0	1	2.758e-4	3	NC	3	NC	1
140			min	004	3	01	3	001	3	-2.467e-5	1	4817.462	2	NC	1
141		14	max	.002	1	.007	2	0	1	2.623e-4	3	NC	3	NC	1
142			min	003	3	008	3	001	3	-2.692e-5	1	5915.221	2	NC	1
143		15	max	.001	1	.005	2	0	1	2.487e-4	3	NC	1	NC	1
144		1.0	min	002	3	007	3	0	3	-2.917e-5	1	7570.842	2	NC	1
145		16	max	.001	1	.004	2	0	1	2.352e-4	3	NC	1	NC	1
146		1.0	min	002	3	005	3	0	3	-3.141e-5	1	NC	1	NC	1
147		17	max	0	1	.002	2	0	1	2.216e-4	3	NC	1	NC	1
148			min	001	3	003	3	0	3	-3.366e-5	1	NC	1	NC	1
149		18	max	0	1	.001	2	0	1	2.081e-4		NC	1	NC	1
150		1.0	min	0	3	002	3	0	3	-3.591e-5	1	NC	1	NC	1
151		19	max	0	1	0	1	0	1	1.945e-4	3	NC	1	NC	1
152		1.0	min	0	1	0	1	0	1	-3.816e-5	1	NC	1	NC	1
153	M7	1	max	0	1	0	1	0	1	1.79e-5	1	NC	1	NC	1
154	1017	<u> </u>	min	0	1	0	1	0	1	-9.128e-5	3	NC	1	NC	1
155		2	max	0	3	.001	2	0	3	1.582e-5	1	NC	1	NC	1
156			min	0	2	002	3	0	1	-6.835e-5	3	NC	1	NC	1
157		3	max	0	3	.003	2	0	3	1.374e-5	1	NC	1	NC	1
158		+ -	min	0	2	004	3	0	1	-4.542e-5	3	NC	1	NC	1
159		4	max	0	3	.004	2	.001	3	1.166e-5	1	NC	1	NC	1
160			min	001	2	004	3	0	1	-2.248e-5	3	NC	1	NC	1
161		5	max	.001	3	.005	2	.002	3	9.578e-6	1	NC	1	NC	1
162			min	001	2	008	3	0	1	0	2	8948.368	2	NC	1
163		6	max	.002	3	.006	2	.002	3	2.338e-5	3	NC	1	NC NC	1
164		0	min	002	2	009	3	<u>.002</u>	1	2.3366-3	2	7168.021	2	NC NC	1
165		7		.002	3	.008	2	.002	3	4.631e-5	3	NC	1	NC NC	1
100			max	.002	J	.000	 	.002	J	4.0316-5	J	INC		INC	<u></u>

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

Envelope Member Section Deflections (Continued)

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r					
166			min	002	2	011	3	0	1	-1.018e-7	13	5949.835	2	NC	1
167		8	max	.002	3	.009	2	.002	3	6.924e-5	3	NC	3	NC	1
168			min	003	2	013	3	0	1	-1.245e-6	9	5056.41	2	NC	1
169		9	max	.003	3	.011	2	.003	3	9.217e-5	3	NC	3	NC	1_
170			min	003	2	014	3	0	1	-3.153e-6	9	4369.467	2	NC	1
171		10	max	.003	3	.012	2	.003	3	1.151e-4	3	NC	3	NC	1
172			min	003	2	016	3	0	1	-5.062e-6	9	3823.436	2	NC	1
173		11	max	.003	3	.014	2	.003	3	1.38e-4	3	NC	3	NC	1
174			min	004	2	017	3	0	1	-6.97e-6	9	3378.917	2	NC	1
175		12	max	.003	3	.015	2	.003	3	1.61e-4	3	NC	3	NC	1
176			min	004	2	018	3	0	1	-8.878e-6	9	3010.672	2	NC	1
177		13	max	.004	3	.017	2	.003	3	1.839e-4	3	NC	3	NC	1
178			min	004	2	019	3	0	1	-1.079e-5	9	2701.65	2	NC	1
179		14	max	.004	3	.019	2	.003	3	2.068e-4	3	NC	3	NC	1
180			min	005	2	02	3	0	1	-1.269e-5	9	2439.813	2	NC	1
181		15	max	.004	3	.021	2	.003	3	2.298e-4	3	NC	3	NC	1
182			min	005	2	021	3	0	1	-1.46e-5	9	2216.339	2	NC	1
183		16	max	.005	3	.023	2	.003	3	2.527e-4	3	NC	3	NC	1
184			min	006	2	022	3	0	1	-1.651e-5	9	2024.567	2	NC	1
185		17	max	.005	3	.025	2	.003	3	2.756e-4	3	NC	3	NC	1
186			min	006	2	023	3	0	1	-1.842e-5	9	1859.339	2	NC	1
187		18	max	.005	3	.027	2	.003	3	2.986e-4	3	NC	3	NC	1
188			min	006	2	024	3	0	1	-2.033e-5	9	1716.588	2	NC	1
189		19	max	.006	3	.029	2	.003	3	3.215e-4	3	NC	3	NC	1
190		1.0	min	007	2	025	3	0	1	-2.224e-5	9	1593.061	2	NC	1
191	M8	1	max	.004	1	.034	2	0	1	-1.037e-7	10	NC	1	NC	1
192	1110		min	0	3	028	3	002	3	-2.414e-4	3	NC	1	9975.813	
193		2	max	.004	1	.032	2	0	1	-1.037e-7	10	NC	1	NC	1
194			min	0	3	026	3	002	3	-2.414e-4	3	NC	1	NC	1
195		3	max	.003	1	.031	2	0	1	-1.037e-7	10	NC	1	NC	1
196			min	0	3	025	3	002	3	-2.414e-4	3	NC	1	NC	1
197		4	max	.003	1	.029	2	0	1	-1.037e-7	10	NC	1	NC	1
198			min	0	3	023	3	001	3	-2.414e-4	3	NC	1	NC	1
199		5	max	.003	1	.027	2	0	1	-1.037e-7	10	NC	1	NC	1
200		T	min	0	3	022	3	001	3	-2.414e-4	3	NC	1	NC	1
201		6	max	.003	1	.025	2	0	1	-1.037e-7	10	NC	1	NC	1
202			min	0	3	02	3	001	3	-2.414e-4	3	NC	1	NC	1
203		7	max	.003	1	.023	2	0	1	-1.037e-7	10	NC	1	NC	1
204			min	.003	3	019	3	001	3	-2.414e-4	3	NC	1	NC	1
205		8	max	.002	1	.021	2	0	1	-1.037e-7	_	NC	1	NC	1
206		- 0	min	0	3	017	3	0		-2.414e-4		NC	1	NC	1
207		9	max	.002	1	.019	2	0	1	-1.037e-7		NC	1	NC	1
208		1 3	min	0	3	015	3	0	3	-2.414e-4	3	NC	1	NC	1
209		10	max	.002	1	.017	2	0	1	-1.037e-7		NC	1	NC	1
210		10	min	0	3	014	3	0	3	-2.414e-4		NC	1	NC	1
211		11		.002	1	.015	2	0	1	-2.414e-4 -1.037e-7	<u>3</u> 10	NC NC	1	NC	1
212			max		3										
		40	min	0		012	3	0	3	-2.414e-4	3	NC NC	1_	NC NC	1
213		12	max	.001	1	.013	2	0	1	-1.037e-7	10	NC NC	1	NC NC	1
214		40	min	0	3	011	3	0	3	-2.414e-4	3	NC NC	1_	NC NC	1
215		13	max	.001	1	.011	2	0	1	-1.037e-7	10	NC NC	1	NC NC	1
216		4.4	min	0	3	009	3	0	3	-2.414e-4	3	NC NC	1_	NC NC	1
217		14	max	.001	1	.01	2	0	1	-1.037e-7	<u>10</u>	NC	1	NC NC	1
218		1-	min	0	3	008	3	0	3	-2.414e-4	3	NC NC	1_	NC NC	1
219		15	max	0	1	.008	2	0	1	-1.037e-7	<u>10</u>	NC		NC NC	1
220		1.0	min	0	3	006	3	0	3	-2.414e-4	3_	NC	1	NC	1
221		16	max	0	1	.006	2	0	1	-1.037e-7	<u>10</u>	NC	1	NC NC	1
222			min	0	3	005	3	0	3	-2.414e-4	3	NC	1_	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC_
223		17	max	0	1	.004	2	0	1	-1.037e-7	10	NC	1	NC	1
224			min	0	3	003	3	0	3	-2.414e-4	3	NC	1	NC	1
225		18	max	0	1	.002	2	0	1	-1.037e-7	10	NC	1_	NC	1
226			min	0	3	002	3	0	3	-2.414e-4	3	NC	1	NC	1
227		19	max	0	1	0	1	0	1	-1.037e-7	10	NC	1	NC	1
228			min	0	1	0	1	0	1	-2.414e-4	3	NC	1	NC	1
229	M10	1	max	.002	1	.009	2	0	3	3.984e-4	1	NC	3	NC	1
230			min	003	3	009	3	002	1	-5.114e-4	3	4343.431	2	NC	1
231		2	max	.002	1	.008	2	0	3	3.783e-4	1	NC	3	NC	1
232			min	003	3	009	3	001	1	-4.94e-4	3	4744.745	2	NC	1
233		3	max	.002	1	.008	2	0	3	3.582e-4	1	NC	1	NC	1
234			min	003	3	008	3	001	1	-4.766e-4	3	5222.905	2	NC	1
235		4	max	.002	1	.007	2	0	3	3.382e-4	1	NC	1	NC	1
236			min	002	3	008	3	001	1	-4.592e-4	3	5796.672	2	NC	1
237		5	max	.002	1	.006	2	0	3	3.181e-4	1	NC	1	NC	1
238			min	002	3	008	3	001	1	-4.418e-4	3	6491.118	2	NC	1
239		6	max	.001	1	.005	2	0	3	2.981e-4	1	NC	1	NC	1
240			min	002	3	007	3	001	1	-4.244e-4	3	7340.31	2	NC	1
241		7	max	.001	1	.005	2	0	3	2.78e-4	1	NC	1	NC	1
242			min	002	3	007	3	001	1	-4.07e-4	3	8391.434	2	NC	1
243		8	max	.001	1	.004	2	0	3	2.58e-4	1	NC	1	NC	1
244			min	002	3	006	3	0	1	-3.896e-4	3	9711.318	2	NC	1
245		9	max	.001	1	.003	2	0	3	2.379e-4	1	NC	1	NC	1
246			min	002	3	006	3	0	1	-3.722e-4	3	NC	1	NC	1
247		10	max	.001	1	.003	2	0	3	2.178e-4	1	NC	1	NC	1
248		10	min	001	3	006	3	0	1	-3.548e-4	3	NC	1	NC	1
249		11	max	0	1	.002	2	0	3	1.978e-4	1	NC	1	NC	1
250			min	001	3	005	3	0	1	-3.375e-4	3	NC	1	NC	1
251		12	max	0	1	.002	2	0	3	1.777e-4	1	NC	1	NC	1
252		12	min	001	3	005	3	0	1	-3.201e-4	3	NC	1	NC	1
253		13	max	0	1	.001	2	0	3	1.577e-4	1	NC	1	NC	1
254		10	min	0	3	004	3	0	1	-3.027e-4	3	NC	1	NC	1
255		14	max	0	1	.001	2	0	3	1.376e-4	1	NC	1	NC	1
256		1.7	min	0	3	003	3	0	1	-2.853e-4	3	NC	1	NC	1
257		15	max	0	1	0	2	0	3	1.175e-4	1	NC	1	NC	1
258		10	min	0	3	003	3	0	1	-2.679e-4	3	NC	1	NC	1
259		16	max	0	1	0	2	0	3	9.749e-5	1	NC	1	NC	1
260		10	min	0	3	002	3	0	1	-2.505e-4	3	NC	1	NC	1
261		17	max	0	1	0	2	0	3	7.743e-5	1	NC	1	NC	1
262		11/	min	0	3	001	3	0	1	-2.331e-4	3	NC	1	NC	1
263		18	max	0	1	0	2	0	3	5.737e-5		NC	1	NC	1
264		10	min	0	3	0	3	0	1	-2.157e-4	3	NC	1	NC	1
265		19	max	0	1	0	1	0	1	3.732e-5	1	NC	1	NC	1
266		13	min	0	1	0	1	0	1	-1.983e-4	3	NC	1	NC	1
267	M11	1	max	0	1	0	1	0	1	9.359e-5	3	NC	1	NC	1
268	171 1		min	0	1	0	1	0	1	-1.788e-5	1	NC	1	NC	1
269		2	max	0	3	0	2	0	1	7.095e-5	3	NC	1	NC	1
270			min	0	2	0	3	0	3	-3.252e-5	1	NC	1	NC	1
271		3	max	0	3	0	2	0	1	4.831e-5	3	NC NC	1	NC NC	1
272		٦	min	0	2	002	3	0	3	-4.715e-5	1	NC NC	1	NC NC	1
273		4	max	0	3	<u>002</u> 0	2	0	2	2.567e-5	3	NC NC	1	NC NC	1
274		4	min	0	2	003	3	001	3	-6.178e-5	1	NC NC	1	NC NC	1
275		5	max	0	3	003 0	2	<u>001</u> 0	2	3.027e-6	3	NC NC	1	NC NC	1
276		J	min	0	2	003	3	002	3	-7.641e-5	1	NC NC	1	NC NC	1
277		6		0	3	003 0	2		10	-7.641e-5 -3.459e-6	10	NC NC	1	NC NC	1
278		6	max	0	2	004	3	0 002	3	-3.459e-6 -9.105e-5	1	NC NC	1	NC NC	1
279		7	min		3		2					NC NC	•	NC NC	
2/9		/	max	0	<u> </u> 3	0	<u> </u>	0	10	-3.9456-6	10	INC	_1_	INC	1

Model Name

Schletter, Inc.HCV

. : Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
280			min	0	2	005	3	002	3 -1.057e-4	1_	NC	1	NC	1
281		8	max	0	3	0	2	0	10 -4.43e-6	10	NC	1	NC	1
282			min	0	2	006	3	002	3 -1.203e-4	1	NC	1	NC	1
283		9	max	0	3	.001	2	0	10 -4.916e-6	10	NC	1	NC	1
284			min	0	2	006	3	002	3 -1.349e-4	1	NC	1	NC	1
285		10	max	0	3	.002	2	0	10 -5.402e-6	10	NC	1	NC	1
286		1	min	0	2	007	3	003	3 -1.496e-4	1	NC	1	NC	1
287		11	max	.001	3	.002	2	0	10 -5.887e-6	10	NC	1	NC	1
288		+ ' '	min	001	2	007	3	003	3 -1.642e-4	1	NC	1	NC	1
289		12	max	.001	3	.003	2	<u>.003</u>		10	NC	1	NC	1
290		12	min	001	2	007	3	003	3 -1.788e-4	1	NC NC	1	NC	1
		40								_				
291		13	max	.001	3	.003	2	0	10 -6.859e-6	<u>10</u>	NC NC	1	NC NC	1
292		+	min	001	2	008	3	003	3 -1.935e-4	1_	NC	1_	NC	1
293		14	max	.001	3	.004	2	0	10 -7.345e-6	10	NC	1_	NC	1
294			min	001	2	008	3	003	3 -2.081e-4	<u>1</u>	NC	1_	NC	1
295		15	max	.002	3	.005	2	0	10 -7.83e-6	10	NC	_1_	NC	1
296			min	002	2	008	3	003	1 -2.234e-4	3	9490.633	2	NC	1
297		16	max	.002	3	.006	2	0	10 -8.316e-6	10	NC	1	NC	1
298			min	002	2	008	3	003	1 -2.46e-4	3	7996.049	2	NC	1
299		17	max	.002	3	.007	2	0	10 -8.802e-6	10	NC	1	NC	1
300			min	002	2	008	3	004	1 -2.687e-4	3	6849.759	2	NC	1
301		18	max	.002	3	.008	2	0	10 -9.287e-6	10	NC	1	NC	1
302			min	002	2	008	3	004	1 -2.913e-4	3	5959.296	2	NC	1
303		19	max	.002	3	.009	2	0	10 -9.773e-6	10	NC	3	NC	1
304		13	min	002	2	008	3	004	1 -3.14e-4	3	5260.607	2	NC	1
305	M12	1	max	.002	1	.01	2	.004	1 3.357e-4	3	NC	1	NC	2
	IVIIZ	+-			12		3				NC	1		1
306		-	min	0		009		0		<u>10</u>		_	5115.809	
307		2	max	.001	1	.01	2	.003	1 3.357e-4	3	NC	1	NC FF70, 440	2
308		_	min	0	12	009	3	0	10 1.068e-5	10	NC	1_	5579.446	
309		3	max	.001	1	.009	2	.003	1 3.357e-4	3	NC	1	NC	2
310			min	0	12	008	3	0	10 1.068e-5	10	NC	1_	6131.316	1
311		4	max	.001	1	.009	2	.003	1 3.357e-4	3_	NC	_1_	NC	2
312			min	0	12	008	3	0	10 1.068e-5	10	NC	1_	6794.68	1
313		5	max	.001	1	.008	2	.003	1 3.357e-4	3	NC	_1_	NC	2
314			min	0	12	007	3	0	10 1.068e-5	10	NC	1_	7601.224	1
315		6	max	.001	1	.008	2	.002	1 3.357e-4	3	NC	1	NC	2
316			min	0	12	007	3	0	10 1.068e-5	10	NC	1	8595.021	1
317		7	max	0	1	.007	2	.002	1 3.357e-4	3	NC	1	NC	2
318			min	0	12	006	3	0	10 1.068e-5	10	NC	1	9838.851	1
319		8	max	0	1	.006	2	.002	1 3.357e-4	3	NC	1	NC	1
320		-	min	0	12	006	3	0	10 1.068e-5		NC	1	NC	1
321		9	max	0	1	.006	2	.001	1 3.357e-4	3	NC	1	NC	1
322			min	0	12	005	3	0	10 1.068e-5	10	NC	1	NC	1
		10			1						NC	1	NC	1
323		10	max	0		.005	2	.001	1 3.357e-4	3				
324		4.4	min	0	12	005	3	0	10 1.068e-5	10	NC	1_	NC NC	1
325		11	max	0	1	.005	2	0	1 3.357e-4	3	NC	1	NC	1
326			min	0	12	004	3	0	10 1.068e-5	10	NC	_1_	NC	1
327		12	max	0	1	.004	2	0	1 3.357e-4	3_	NC	_1_	NC	1
328			min	0	12	004	3	0	10 1.068e-5	10	NC	1	NC	1
329		13	max	0	1	.003	2	0	1 3.357e-4	3	NC	_1_	NC	1
330			min	0	12	003	3	0	10 1.068e-5	10	NC	1	NC	1
331		14	max	0	1	.003	2	0	1 3.357e-4	3	NC	1	NC	1
332			min	0	12	003	3	0	10 1.068e-5	10	NC	1	NC	1
333		15	max	0	1	.002	2	0	1 3.357e-4	3	NC	1	NC	1
334		1	min	0	12	002	3	0	10 1.068e-5	10	NC	1	NC	1
335		16	max	0	1	.002	2	0	1 3.357e-4	3	NC	1	NC	1
336		10	min	0	12	002	3	0	10 1.068e-5	10	NC	1	NC	1
550			111011	U	14	002	J	U	10 1.0006-3	10	INC		INC	

Model Name

Schletter, Inc.HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC .	y [in]	LC	z [in]	LC	x Rotate [r		(n) L/y Ratio	LC	(n) L/z Ratio	, LC
337		17	max	0	1	.001	2	0	1	3.357e-4	3	NC	1	NC	1
338			min	0	12	001	3	0	10	1.068e-5	10	NC	1	NC	1
339		18	max	0	1	0	2	0	1	3.357e-4	3	NC	1	NC	1
340			min	0	12	0	3	0	10	1.068e-5	10	NC	1	NC	1
341		19	max	0	1	0	1	0	1	3.357e-4	3	NC	1	NC	1
342			min	0	1	0	1	0	1	1.068e-5	10	NC	1	NC	1
343	M1	1	max	.008	3	.024	3	.003	3	7.052e-3	2	NC	1	NC	1
344			min	008	2	02	2	001	1	-1.015e-2	3	NC	1	NC	1
345		2	max	.008	3	.014	3	.003	3	3.468e-3	2	NC	4	NC	1
346			min	008	2	012	2	003	1	-5.008e-3	3	4865.011	3	NC	1
347		3		.008	3	.005	3	.002	3		3	NC	4	NC	1
		- 3	max							3.855e-5					
348		-	min	008	2	004	2	004	1	-2.243e-4	1_	2520.273	3	NC NC	1
349		4	max	.008	3	.003	2	.002	3	4.012e-5	3	NC 4700 070	_4_	NC NC	1
350			min	008	2	003	3	005	1	-1.905e-4	1_	1796.072	3	NC	1
351		5	max	.008	3	.01	2	.001	3	4.168e-5	3	NC	_4_	NC	1
352			min	008	2	009	3	005	1	-1.566e-4	1_	1450.807	3	NC	1
353		6	max	.008	3	.015	2	0	3	4.325e-5	3	NC	4	NC	1
354			min	008	2	014	3	005	1	-1.228e-4	1_	1257.687	2	NC	1
355		7	max	.008	3	.019	2	0	3	4.481e-5	3	NC	4	NC	1
356			min	008	2	018	3	004	1	-8.9e-5	1	1119.268	2	NC	1
357		8	max	.008	3	.022	2	0	3	4.637e-5	3	NC	4	NC	1
358			min	008	2	021	3	003	1	-5.518e-5	1	1032.181	2	NC	1
359		9	max	.008	3	.024	2	0	3	4.794e-5	3	NC	4	NC	1
360		Ť	min	008	2	022	3	002	1	-2.535e-5	9	980.204	2	NC	1
361		10	max	.008	3	.025	2	0	3	4.95e-5	3	NC	4	NC	1
362		10		008	2	023	3	001	1	-1.203e-6	9	955.571	2	NC	1
		11	min						•		_				
363		11	max	.008	3	.025	2	0	3	5.107e-5	3	NC OFF 407	4_	NC NC	1
364		10	min	008	2	022	3	0	9	1.618e-6	15	955.437	2	NC NC	1
365		12	max	.008	3	.023	2	.001	1	8.012e-5	1_	NC	4	NC NC	1
366		10	min	008	2	02	3	0	15	3.096e-6	15	980.827	2	NC	1
367		13	max	.008	3	.02	2	.002	1	1.139e-4	1_	NC	4	NC	1
368			min	008	2	017	3	0	15	4.575e-6	15	1037.222	2	NC	1
369		14	max	.008	3	.016	2	.003	1	1.478e-4	<u>1</u>	NC	4	NC	1
370			min	008	2	013	3	0	15	6.053e-6	15	1137.356	2	NC	1
371		15	max	.008	3	.01	2	.003	1	1.816e-4	1	NC	4	NC	1
372			min	008	2	009	3	0	15	7.532e-6	15	1309.271	2	NC	1
373		16	max	.008	3	.003	2	.003	1	2.055e-4	1	NC	4	NC	1
374			min	008	2	003	3	0	15	8.57e-6	15	1621.765	2	NC	1
375		17	max	.008	3	.004	3	.002	1	5.733e-5	3	NC	4	NC	1
376			min	008	2	006	2	0	15		9	2296.587	2	NC	1
377		18	max	.008	3	.012	3	0	1	5.053e-3	2	NC	4	NC	1
378		10	min	008	2	016	2	0	15	-2.56e-3	3	4450.423	2	NC	1
379		19		.008	3	.02	3	0	3	1.018e-2	2	NC	1	NC	1
		19	max		2	027	2	0	1	-5.227e-3		NC NC	1	NC NC	1
380	NAC.	4	min	008					-		3		•		
381	<u>M5</u>	1	max	.025	3	.076	3	.003	3	5.891e-6	3	NC NC	1	NC NC	1
382			min	028	2	066	2	002	1	0	<u>15</u>	NC	1_	NC NC	1
383		2	max	.025	3	.045	3	.005	3	1.226e-4	3_	NC 4500.050	4_	NC NC	1
384			min	028	2	038	2	001	1	-2.468e-5	1_	1533.258	3	NC	1
385		3	max	.025	3	.016	3	.006	3	2.371e-4	3_	NC	5_	NC	1
386			min	028	2	012	2	001	1	-4.895e-5	1	794.647	3	NC	1
387		4	max	.025	3	.011	2	.007	3	2.292e-4	3	NC	5	NC	1
388			min	028	2	009	3	001	1	-4.632e-5	1	566.919	3	NC	1
389		5	max	.025	3	.031	2	.007	3	2.214e-4	3	NC	5	NC	1
390			min	028	2	029	3	001	1	-4.39e-5	9	458.225	2	NC	1
391		6	max	.025	3	.048	2	.008	3	2.135e-4	3	NC	5	NC	1
392		Ĭ	min	028	2	045	3	001	1	-4.169e-5	9	388.724	2	9306.49	3
393		7	max	.025	3	.062	2	.008	3	2.057e-4	3	NC	5	NC	1
UUU			παλ	.020	J	.002		.000		2.001 C-4		110		110	

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
394			min	028	2	058	3	001	1	-3.949e-5	9	345.774	2	8835.295	
395		8	max	.025	3	.072	2	.008	3	1.979e-4	3	NC	5	NC	1
396			min	028	2	066	3	001	1	-3.729e-5	9	318.736	2	8723.941	3
397		9	max	.024	3	.079	2	.007	3	1.9e-4	3_	NC 200 F70	5_	NC	1
398		40	min	028	2	071	2	001	1	-3.509e-5	9	302.576	2	8903.027	3
399		10	max	.024	3	.082		.007	3	1.822e-4	3	NC 294.884	5	NC	1
400		11	min	028 .024	3	072 .081	2	001 .006	3	-3.288e-5 1.743e-4	<u>9</u> 3	NC	<u>2</u> 5	9363.246 NC	1
402			max	028	2	07	3	001	1	-3.068e-5	9	294.773	2	NC NC	1
403		12		.024	3	.075	2	.006	3	1.665e-4	3	NC	5	NC NC	1
404		12	max min	028	2	064	3	001	1	-2.848e-5	9	302.556	2	NC NC	1
405		13	max	.024	3	.066	2	.005	3	1.587e-4	3	NC	5	NC	1
406		13	min	028	2	055	3	0	1	-2.628e-5	9	319.921	2	NC	1
407		14	max	.024	3	.052	2	.004	3	1.508e-4	3	NC	5	NC	1
408		17	min	028	2	042	3	0	1	-2.407e-5	9	350.802	2	NC	1
409		15	max	.024	3	.033	2	.003	3	1.43e-4	3	NC	5	NC	1
410		10	min	028	2	027	3	0	1	-2.187e-5	9	403.869	2	NC	1
411		16	max	.024	3	.009	2	.003	3	1.306e-4	3	NC	5	NC	1
412			min	028	2	008	3	0	1	-2.125e-5	9	500.41	2	NC	1
413		17	max	.024	3	.014	3	.002	3	1.055e-5	3	NC	5	NC	1
414			min	028	2	02	2	0	1	-6.341e-5	1	709.278	2	NC	1
415		18	max	.024	3	.037	3	.001	3	3.706e-6	3	NC	4	NC	1
416			min	028	2	053	2	0	1	-3.248e-5	1	1375.15	2	NC	1
417		19	max	.024	3	.062	3	0	3	-3.224e-8	15	NC	1	NC	1
418			min	028	2	088	2	0	1	-1.003e-6	3	NC	1	NC	1
419	M9	1	max	.008	3	.024	3	.003	3	1.016e-2	3	NC	1_	NC	1
420			min	008	2	02	2	002	1	-7.052e-3	2	NC	1_	NC	1
421		2	max	.008	3	.014	3	.001	3	5.005e-3	3	NC	4	NC	1
422			min	008	2	012	2	0	9	-3.468e-3	2	4866.837	3	NC	1
423		3	max	.008	3	.005	3	.002	1	1.125e-4	_1_	NC	4_	NC	1
424			min	008	2	004	2	0	3	-5.643e-5	3	2521.234	3	NC	1
425		4	max	.008	3	.003	2	.002	1	8.331e-5	1_	NC	4	NC	1
426			min	008	2	003	3	001	3	-6.126e-5	3	1796.734	3	NC NC	1
427		5	max	.008	3	.01	2	.002	1	5.412e-5	1_	NC 4454 004	4_	NC NC	1
428			min	008	2	009	3	002	3	-6.608e-5	3	1451.294	3	NC NC	1
429		6	max	.008	3	.015	2	.002	1	2.493e-5	1	NC	4	NC	1
430		7	min	008	3	015	3	003	3	-7.091e-5	3	1258.026 NC	2	8789.948	
431		/	max	.008	2	.019	3	.002	3	1.275e-5	2	1119.582	2	NC 8018.196	1
432		8	min	008 .008	3	019 .022	2	004 0	1	-7.574e-5 3.396e-6	2	NC	4	NC	1
434		0	max min		2	021	3	004		-8.057e-5				7586.222	
435		9	max	.008	3	.024	2	004	2	-1.239e-6		NC	4	NC	1
436		3	min	008	2	023	3	005	3	-8.54e-5	3	980.5	2	7394.935	_
437		10	max	.008	3	.025	2	<u>005</u>	2	-2.376e-6	_	NC	4	NC	1
438		10	min	008	2	023	3	005	3	-9.184e-5	1	955.868	2	7401.799	3
439		11	max	.008	3	.025	2	<u>.000</u>	10	-3.513e-6	10	NC	4	NC	1
440			min	008	2	022	3	005	3	-1.21e-4	1	955.743	2	7598.881	3
441		12	max	.008	3	.023	2	0	10	-4.649e-6		NC	4	NC	1
442			min	008	2	02	3	004	3	-1.502e-4	1	981.149	2	8008.173	
443		13	max	.008	3	.02	2	<u>.00+</u>	10	-5.786e-6	10	NC	4	NC	1
444			min	008	2	018	3	004	3	-1.794e-4	1	1037.569	2	8689.516	
445		14	max	.008	3	.016	2	0	10		10	NC	4	NC	1
446			min	008	2	014	3	004	1	-2.086e-4	1	1137.743	2	9767.409	_
447		15	max	.008	3	.01	2	0	10	-8.059e-6	10	NC	4	NC	1
448			min	008	2	009	3	005	1	-2.378e-4	1	1309.719	2	NC	1
449		16	max	.008	3	.003	2	0	10		10	NC	4	NC	1
450			min	008	2	003	3	004	1	-2.601e-4	1	1622.314	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
451		17	max	.008	3	.004	3	0	10	6.967e-5	3	NC	4	NC	1
452			min	008	2	006	2	004	1	-1.193e-4	1_	2297.31	2	NC	1
453		18	max	.008	3	.012	3	0	10	2.625e-3	3_	NC	_4_	NC	1
454			min	008	2	016	2	003	1	-5.053e-3	2	4451.779	2	NC	1
455		19	max	.008	3	.02	3	0	3	5.225e-3	3	NC	1_	NC	1
456	1440		min	008	2	027	2	0	1	-1.018e-2	2	NC	1_	NC NC	1
457	M13	1	max	.002	1	.024	3	.008	3	3.72e-3	3	NC	1	NC NC	1
458			min	003	3	02	2	008	2	-3.261e-3	2	NC NC	1_	NC NC	1
459		2	max	.002	1	.083	3	.006	3	4.625e-3	3	NC	4	NC NC	1
460		2	min	003	3	061 .132	3	006	2	-4.068e-3	2	1832.453 NC	<u>3</u>	NC NC	2
461 462		3	max	.002	3			.013	1	5.531e-3	2	998.978		6132.838	
463		4	min	003 .002	1	<u>096</u> .165	3	005 .021	10	-4.875e-3 6.436e-3	3	NC	<u>3</u> 5	NC	2
464		4	max	003	3	119	2	005	10	-5.681e-3	2	766.571	3	4342.193	
465		5		.002	1	.178	3	.023	1	7.341e-3	3	NC	<u> </u>	NC	2
466			max	003	3	13	2	006	10	-6.488e-3	2	701.055	3	3968.445	
467		6	max	.002	1	.172	3	.019	1	8.246e-3	3	NC	5	NC	2
468			min	003	3	127	2	008	10	-7.294e-3	2	730.649	3	4560.177	1
469		7	max	.002	1	.15	3	.016	3	9.151e-3	3	NC	5	NC	2
470			min	003	3	113	2	013	2	-8.101e-3	2	858.571	3	7250.734	
471		8	max	.002	1	.119	3	.019	3	1.006e-2	3	NC	4	NC	1
472			min	003	3	094	2	02	2	-8.908e-3	2	1136.552	3	9495.324	2
473		9	max	.002	1	.09	3	.022	3	1.096e-2	3	NC	4	NC	1
474			min	003	3	075	2	025	2	-9.714e-3	2	1637.009	3	6331.985	2
475		10	max	.002	1	.076	3	.025	3	1.187e-2	3	NC	4	NC	4
476			min	003	3	066	2	028	2	-1.052e-2	2	2056.49	3	5514.799	2
477		11	max	.001	1	.09	3	.027	3	1.096e-2	3	NC	4	NC	1
478			min	003	3	075	2	025	2	-9.714e-3	2	1637.007	3	5762.991	3
479		12	max	.001	1	.119	3	.028	3	1.006e-2	3	NC	4	NC	1
480			min	003	3	094	2	02	2	-8.908e-3	2	1136.551	3	5586.61	3
481		13	max	.001	1	.15	3	.027	3	9.157e-3	3	NC	5_	NC	2
482			min	003	3	113	2	013	2	-8.101e-3	2	858.57	3	5823.58	3
483		14	max	.001	1	.172	3	.025	3	8.254e-3	3	NC	_5_	NC	2
484			min	003	3	127	2	008	10	-7.294e-3	2	730.649	3	4556.447	1
485		15	max	.001	1	.178	3	.023	1	7.35e-3	3	NC	5	NC	2
486		40	min	003	3	13	2	007	10	-6.488e-3	2	701.055	3_	3973.11	1
487		16	max	.001	1	.165	3	.02	1	6.447e-3	3	NC	5	NC 4055.00	2
488		47	min	003	3	<u>119</u>	2	005	10	-5.681e-3	2	766.571	3_	4355.32	1
489		17	max	.001	1	.132	3	.014	3	5.544e-3	3	NC 000.077	5	NC C405 007	2
490		10	min	003	3	096	3	005	10	-4.875e-3 4.641e-3	2	998.977	3	6165.837	1
491		18	max	.001	3	.083	2	.011				NC	4	NC NC	1
492 493		19	min max	003 .001	1	061 .024	3	006 .008	3	-4.068e-3 3.738e-3	3	1832.451 NC	<u>3</u>	NC NC	1
494		19	min	003	3	02	2	008	2	-3.262e-3	2	NC	1	NC	1
495	M16	1	max	<u>003</u> 0	1	.02	3	.008	3	4.131e-3	2	NC	1	NC	1
496	IVITO		min	0	3	027	2	008	2	-3.025e-3	3	NC	1	NC	1
497		2	max	0	1	.05	3	.011	3	5.159e-3	2	NC	4	NC	1
498			min	0	3	086	2	006	2	-3.734e-3	3	1825.988	2	NC	1
499		3	max	0	1	.076	3	.014	3	6.187e-3	2	NC	5	NC	2
500		ľ	min	0	3	136	2	005	10	-4.443e-3	3	993.381	2	6145.598	
501		4	max	0	1	.094	3	.02	1	7.215e-3	2	NC	5	NC	2
502			min	0	3	169	2	005	10	-5.152e-3	3	759.462	2	4351.329	
503		5	max	0	1	.103	3	.023	1	8.243e-3	2	NC	5	NC	2
504		Ť	min	0	3	184	2	006	10	-5.861e-3	3	690.415	2	3978.168	
505		6	max	0	1	.102	3	.023	3	9.271e-3	2	NC	5	NC	2
506		Ĭ	min	0	3	179	2	008	10	-6.57e-3	3	712.662	2	4575.58	1
507		7	max	0	1	.094	3	.025	3	1.03e-2	2	NC	5	NC	2
					• •						_		_		

Model Name

: Schletter, Inc. : HCV

: Standard PVMini Racking System

Dec 11, 2015

Checked By:__

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
508			min	0	3	158	2	013	2	-7.278e-3	3	824.094	2	6449.812	
509		8	max	0	1	.081	3	.025	3	1.133e-2	2	NC	4	NC	1
510			min	0	3	129	2	02	2	-7.987e-3	3	1061.036	2	6207.41	3
511		9	max	0	1	.068	3	.025	3	1.235e-2	2	NC	4_	NC	1
512		40	min	0	3	<u>101</u>	2	025	2	-8.696e-3	3	1461.07	2	6296.645	
513		10	max	0	1	.062	3	.024	3	1.338e-2	2	NC	4_	NC NC	4
514			min	0	3	088	2	028	2	-9.405e-3	3	1771.813	2	5539.192	2
515		11	max	0	1	.068	3	.023	3	1.235e-2	2	NC	4_	NC	1
516		40	min	0	3	101	2	025	2	-8.694e-3	3	1461.07	2	6362.824	
517		12	max	0	1	.081	3	.021	3	1.133e-2	2	NC	4_	NC	1
518		40	min	0	3	129	2	02	2	-7.984e-3	3	1061.036	2	8055.4	3
519		13	max	0	1	.094	3	.02	3	1.03e-2	2	NC	5	NC 7000 445	2
520			min	0	3	<u>158</u>	2	<u>013</u>	2	-7.273e-3	3	824.094	2	7288.115	
521		14	max	0	1	.102	3	.019	1	9.271e-3	2	NC	_5_	NC 1700 100	2
522			min	0	3	179	2	008	10	-6.562e-3	3	712.662	2_	4582.163	1
523		15	max	0	1	.103	3	.023	1	8.244e-3	2	NC	5	NC_	2
524		4.0	min	0	3	<u>184</u>	2	006	10	-5.852e-3	3	690.415	2	3990.71	1
525		16	max	0	1	.094	3	.02	1	7.216e-3	2	NC	5	NC NC	2
526			min	0	3	169	2	005	10	-5.141e-3	3	759.462	2	4373.012	1
527		17	max	0	1	.076	3	.013	1	6.188e-3	2	NC	_5_	NC	2
528		4.0	min	0	3	136	2	005	10	-4.43e-3	3	993.381	2	6192.006	
529		18	max	0	1	.05	3	.009	3	5.161e-3	2	NC	4_	NC	1
530		4.0	min	0	3	086	2	<u>006</u>	2	-3.719e-3	3	1825.988	2	NC	1
531		19	max	0	1	.02	3	.008	3	4.133e-3	2	NC	_1_	NC	1
532			min	0	3	027	2	008	2	-3.009e-3	3	NC	_1_	NC	1
533	M15	1	max	0	1	0	1	0	1	3.912e-4	3	NC	_1_	NC	1
534			min	0	1	0	1	0	1	-4.943e-5	2	NC	_1_	NC	1
535		2	max	0	3	0	15	0	1	8.152e-4	<u>3</u>	NC	1_	NC	1
536			min	0	2	004	4	0	3	-4.708e-4	2	NC	1_	NC	1
537		3	max	0	3	002	15	.003	1	1.239e-3	3	NC	_1_	NC	1
538			min	0	2	008	4	003	3	-8.922e-4	2	8800.218	4	NC	1
539		4	max	0	3	003	15	.006	1	1.663e-3	3	NC	3	NC	4
540			min	0	2	<u>011</u>	4	007	3	-1.314e-3	2	6037.463	4_	5571.118	
541		5	max	0	3	003	15	.009	2	2.087e-3	3	NC	_5_	NC	4
542			min	0	2	014	4	011	3	-1.735e-3	2	4711.094	<u>4</u>	3668.846	
543		6	max	0	3	<u>004</u>	15	.014	2	2.512e-3	3	NC	5_	NC NC	4
544		_	min	001	2	017	4	<u>017</u>	3	-2.156e-3	2	3964.884	4_	2677.612	3
545		7	max	0	3	005	15	.018	2	2.936e-3	3	NC	15	NC	4
546			min	001	2	019	4	022	3	-2.578e-3	2	3516.136	4_	2096.734	
547		8	max	0	3	005	15	.022	2	3.36e-3	3	NC 0040,004	<u>15</u>	NC	4
548			min	001	2	021	4	027		-2.999e-3				1731.032	
549		9	max	0	3	005	15	.026	2	3.784e-3	3	NC	<u>15</u>	NC 101	4
550		40	min	002	2	022	4	031	3	-3.42e-3	2	3101.859	4_	1491.49	3
551		10	max	0	3	005	15	.028	2	4.208e-3	3	NC	15	NC 1000 000	4
552		4.4	min	002	2	022	4	035	3	-3.842e-3	2	3056	4_	1333.329	
553		11	max	0	3	005	15	.03	2	4.632e-3	3	NC	15	NC 1000 001	4
554		10	min	002	2	022	4	037	3	-4.263e-3	2	3101.859	4_	1233.021	3
555		12	max	.001	3	<u>005</u>	15	.03	2	5.056e-3	3	NC	<u>15</u>	NC NC	5
556		4.0	min	002	2	021	4	038	3	-4.685e-3	2	3246.821	4_	1178.911	3
557		13	max	.001	3	005	15	.029	2	5.48e-3	3_	NC 2546 426	<u>15</u>	NC	5
558		4.4	min	002	2	019	4	037	3	-5.106e-3	2	3516.136	4_	1167.671	3
559		14	max	.001	3	004	15	.027	1	5.904e-3	3	NC	5	NC	4
560		4-	min	003	2	017	4	034	3	-5.527e-3	2	3964.884	4_	1204.47	3
561		15	max	.001	3	003	15	.022	1	6.328e-3	3	NC 4744 004	_5_	NC 1000 007	4
562		4.0	min	003	2	<u>015</u>	4	028	3	-5.949e-3	2	4711.094	4_	1308.087	3
563		16	max	.001	3	003	15	.016	1	6.752e-3	3_	NC	3_	NC 4500 400	4
564			min	003	2	012	4	018	3	-6.37e-3	2	6037.463	4	1529.429	3

Model Name

Schletter, Inc.

HCV

Standard PVMini Racking System

Dec 11, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
565		17	max	.001	3	0	2	.006	1	7.176e-3	3	NC	1	NC	4
566			min	003	2	008	4	006	3	-6.791e-3	2	8800.218	4	2028.146	3
567		18	max	.002	3	.003	2	.01	3	7.6e-3	3	NC	1	NC	4
568			min	004	2	005	4	012	2	-7.213e-3	2	NC	1	3611.781	3
569		19	max	.002	3	.006	2	.03	3	8.025e-3	3	NC	1_	NC	1
570			min	004	2	001	9	03	2	-7.634e-3	2	NC	1	NC	1
571	M16A	1	max	0	10	.001	2	.009	3	2.298e-3	3	NC	1_	NC	1
572			min	002	3	001	3	009	2	-2.293e-3	2	NC	1	NC	1
573		2	max	0	10	0	15	.002	3	2.211e-3	3	NC	_1_	NC	1_
574			min	002	3	004	4	004	2	-2.19e-3	2	NC	1	NC	1
575		3	max	0	10	002	15	.004	1	2.123e-3	3	NC	_1_	NC	4
576			min	001	3	008	4	003	3	-2.086e-3	2	8800.218	4	5753.566	3
577		4	max	0	10	003	15	.007	1	2.036e-3	3	NC	3	NC	4
578			min	001	3	011	4	008	3	-1.983e-3	2	6037.463	4	4381.621	3
579		5	max	0	10	003	15	.01	1	1.948e-3	3	NC	5	NC	4
580			min	001	3	01 <u>5</u>	4	01	3	-1.88e-3	2	4711.094	4	3789.744	3
581		6	max	0	10	004	15	.011	1	1.861e-3	3	NC	5	NC	4
582			min	001	3	017	4	012	3	-1.777e-3	2	3964.884	4	3534.872	3
583		7	max	0	10	005	15	.012	1	1.773e-3	3	NC	15	NC	4
584			min	001	3	019	4	013	3	-1.673e-3	2	3516.136	4	3478.73	3
585		8	max	0	10	005	15	.011	1	1.685e-3	3	NC	15	NC	4
586			min	001	3	021	4	013	3	-1.57e-3	2	3246.821	4	3574.94	3
587		9	max	0	10	005	15	.011	1	1.598e-3	3	NC	15	NC	4
588			min	0	3	022	4	012	3	-1.467e-3	2	3101.859	4	3819.047	3
589		10	max	0	10	005	15	.01	1	1.51e-3	3	NC	15	NC	4
590			min	0	3	022	4	011	3	-1.364e-3	2	3056	4	4237.632	3
591		11	max	0	10	005	15	.009	1	1.423e-3	3	NC	15	NC	4
592			min	0	3	022	4	01	3	-1.26e-3	2	3101.859	4	4895.013	3
593		12	max	0	10	005	15	.007	1	1.335e-3	3	NC	15	NC	4
594			min	0	3	021	4	008	3	-1.157e-3	2	3246.821	4	5919.615	3
595		13	max	0	10	004	15	.005	1	1.248e-3	3_	NC	15	NC	2
596			min	0	3	019	4	006	3	-1.054e-3	2	3516.136	4	7572.3	3
597		14	max	0	10	004	15	.004	1	1.16e-3	3	NC	_5_	NC	1
598			min	0	3	017	4	004	3	-9.505e-4	2	3964.884	4	NC	1
599		15	max	00	10	003	15	.002	1	1.073e-3	3	NC	_5_	NC	1
600			min	0	3	014	4	002	3	-8.472e-4	2	4711.094	4	NC	1
601		16	max	0	10	003	15	.001	9	9.85e-4	3	NC	3_	NC	1
602			min	0	3	011	4	0	3	-7.44e-4	2	6037.463	4	NC	1
603		17	max	0	10	002	15	0	4	8.975e-4	3	NC	_1_	NC	1
604			min	0	3	008	4	0	2	-6.407e-4	2	8800.218	4	NC	1
605		18	max	0	10	0	15	0	3	8.099e-4	3	NC	_1_	NC	1
606			min	0	3	004	4	0	2	-5.374e-4	2	NC	1	NC	1
607		19	max	0	1	0	1	0	1	7.224e-4	3	NC	_1_	NC	1
608			min	0	1	0	1	0	1	-4.342e-4	2	NC	1	NC	1

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

<Figure 1>

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	405.0	6.0	101.0	101.2	
Sum	405.0	6.0	101.0	101.2	_

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 405

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{vy} (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N _b (lb)			
17.0	1.00	2500	5.333	10469			
$\phi N_{cb} = \phi (A_N)$	$_{Nc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,n}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec. I	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
253.92	256.00	0.995	1.00	1.000	10469	0.65	6717

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 K_{sat}

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

f_{short-term}

 $\tau_{k,cr}$ (psi)

1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
τ _{k,cr} (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a))		
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	<i>N</i> _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

 $\tau_{k,cr}$ (psi)

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

le (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)	
4.00	0.50	1.00	2500	8.00	8488	
$\phi V_{cby} = \phi (A_V$	$_{/c}/A_{Vco})\Psi_{ed,V}\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)		
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ
238.44	288.00	0.897	1.000	1.000	8488	0.70

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

I _e (in)	d _a (in)	λ	f'_c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	$_{Vc}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,v}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
188.88	278.72	0.903	1.000	1.000	8282	0.70	3549

Shear parallel to edge in x-direction:

I _e (in)	da (in)	λ	f'_c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.00	8488		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) Yed, v	$\mathcal{V}_{c,V} \mathcal{V}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$arPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
238.44	288.00	1.000	1.000	1.000	8488	0.70	9838

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

- 2/ - (-0	,	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)(2)$	$A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V _{bx} (lb)	ϕ	ϕV_{cby} (lb)	
188.88	278.72	1.000	1.000	1.000	8282	0.70	7858	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{\mathit{CP}} = \phi \min |k_{\mathit{CP}} N_{\mathit{a}} \; ; \; k_{\mathit{CP}} N_{\mathit{Cb}}| = \phi \min |k_{\mathit{CP}} (A_{\mathit{Na}} / A_{\mathit{NaO}}) \, \Psi_{\mathit{ed},\mathit{Na}} \, \Psi_{\mathit{P},\mathit{Na}} N_{\mathit{aO}} \; ; \; k_{\mathit{CP}} (A_{\mathit{Nc}} / A_{\mathit{NcO}}) \, \Psi_{\mathit{ed},\mathit{N}} \, \Psi_{\mathit{CP},\mathit{N}} N_{\mathit{b}}| \; (\text{Eq. D-30a})$

Kcp	A_{Na} (in ²)	A _{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\Psi_{ m extsf{p},Na}$	N _{a0} (lb)	N _a (lb)		
2.0	109.66	109.66	1.000	1.000	9755	9755		
A _{Nc} (in ²)	A _{Nco} (in²)	$\Psi_{\sf ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	N _{cb} (lb)	ϕ	ϕV_{cp} (lb)
253.92	256.00	0.995	1.000	1.000	10469	10334	0.70	13657

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	405	6071	0.07	Pass
Concrete breakout	405	6717	0.06	Pass
Adhesive	405	5365	0.08	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	101	3156	0.03	Pass (Governs)
T Concrete breakout y+	101	4411	0.02	Pass
T Concrete breakout x+	6	3549	0.00	Pass
Concrete breakout y+	6	9838	0.00	Pass
Concrete breakout x+	101	7858	0.01	Pass
Concrete breakout, combined	-	-	0.02	Pass
Pryout	101	13657	0.01	Pass
Interaction check Nua	$/\phi N_n$ $V_{ua}/\phi V_n$	Combined Rati	o Permissible	Status
Sec. D.7.1 0.0	8 0.00	7.5 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Fastening description:

Base Material

State: Cracked

 $\Psi_{c,V}$: 1.0

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

Compressive strength, f'c (psi): 2500

Reinforcement provided at corners: No

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable

Do not evaluate concrete breakout in tension: No

Do not evaluate concrete breakout in shear: No

Location:

Project description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes h_{min} (inch): 8.50 c_{ac} (inch): 9.67 C_{min} (inch): 1.75 S_{min} (inch): 3.00

Load and Geometry

<Figure 1>

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Hole condition: Dry concrete Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 9.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	732.5	499.5	0.0	499.5	
2	732.5	499.5	0.0	499.5	
Sum	1465.0	999.0	0.0	999.0	

Maximum concrete compression strain (%): 0.00

Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 1465 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00

Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00

Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}} \text{ (Eq. D-7)}$

Kc	λ	ř _c (psi)	n _{ef} (in)	N_b (ID)
17.0	1.00	2500	5.333	10469
$\phi N_{cbg} = \phi (A_{Nc}/A_{Nco}) \Psi_{ec,N} \Psi_{ed,N} \Psi_{c,N} \Psi_{cp,N} N_b$ (Sec. D.4.1 & Eq. D-5)				

A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
314.72	256.00	1.000	0.865	1.00	1.000	10469	0.65	7233

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

τ _{k,cr} (psi)	f _{short-term}	K _{sat}	τ _{k,cr} (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / $A_{Na0})$ $\Psi_{ed,Na}$ Ψ_{g}	,Na $\Psi_{ec,Na}\Psi_{p,Na}N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$arPsi_{ m extsf{p},Na}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
177.03	109.66	0.952	1.021	1.000	1.000	9755	0.55	8418

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

$V_{bx} = 7(I_e/a$	$(a)^{0.2}\sqrt{d_a}\lambda\sqrt{f'_c}C_{a1}^{1.5}$	⁵ (Eq. D-24)					
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	12.00	15593		
$\phi V_{cbx} = \phi (A_1)$	$_{/c}$ / A_{Vco}) $\Psi_{ed,V}$ $\Psi_{c,}$	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
288.00	648.00	0.833	1.000	1.000	15593	0.70	4043

Shear parallel to edge in x-direction:

•	-							
$V_{by} = 7(I_e/a$	$(J_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.2}$	⁵ (Eq. D-24)						
I _e (in)	d _a (in)	λ	f_c' (psi)	c _{a1} (in)	V_{by} (lb)			
4.00	0.50	1.00	2500	8.00	8488			
$\phi V_{cbgx} = \phi (2$	$2)(A_{Vc}/A_{Vco})\Psi_{ec}$	v $\Psi_{ed, V} \Psi_{c, V} \Psi_{h, V}$	V _{by} (Sec. D.4.1, [D.6.2.1(c) & Eq.	D-22)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec,V}$	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\mathscr{\Psi}_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbgx} (lb)
284.04	288.00	1.000	1.000	1.000	1.000	8488	0.70	11720

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{\textit{cpg}} = \phi \min k_{\textit{cp}} N_{\textit{ag}} \; ; \; k_{\textit{cp}} N_{\textit{cbg}} = \phi \min k_{\textit{cp}} (A_{\textit{Na}} / A_{\textit{Na0}}) \; \Psi_{\textit{ed},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; \Psi_{\textit{ec},\textit{Na}} \; N_{\textit{a0}} \; ; \; k_{\textit{cp}} (A_{\textit{Nc}} / A_{\textit{Nco}}) \; \Psi_{\textit{ed},\textit{N}} \; \Psi_{\textit{cp},\textit{N}} N_{\textit{b}} \; (\text{Eq. D-30b})$								
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$\varPsi_{g,Na}$	$\Psi_{ec,Na}$	$\Psi_{ m p,Na}$	N _{a0} (lb)	Na (lb)
2.0	177.03	109.66	0.952	1.021	1.000	1.000	9755	15305
Anc (in²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$arPsi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
314.72	256.00	1.000	0.865	1.000	1.000	10469	11128	0.70

φV_{cpg} (lb) 15580

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, N _{ua} (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	733	6071	0.12	Pass
Concrete breakout	1465	7233	0.20	Pass (Governs)
Adhesive	1465	8418	0.17	Pass
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	500	3156	0.16	Pass
T Concrete breakout x+	999	4043	0.25	Pass (Governs)
Concrete breakout y-	999	11720	0.09	Pass (Governs)
Pryout	999	15580	0.06	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rati	o Permissible	Status

Company:	Schletter, Inc.	Date:	12/10/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMini - Worst Case		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.20 0.25 45.0 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.