Chapter 8 - Proof by Induction

We will use Proof of Induction for 4 different types of proof:

1 Summation Proofs

"Show that $\sum_{i=1}^{n} i = \frac{1}{2} n(n+1)$ for all $n \in \mathbb{N}$."

2 Divisibility Proofs

"Prove that n^3-7n+9 is divisible by 3 for all $n\in\mathbb{Z}^+$."

3 Matrix Proofs

"Prove that $\begin{pmatrix} 1 & -1 \\ 0 & 3 \end{pmatrix}^n = \begin{pmatrix} 1 & 1-2^n \\ 0 & 2^n \end{pmatrix}$ for all $n \in \mathbb{Z}^+$."

4 Recurrence Relation Proofs

$$u_{n+2} = 5u_{n+1} - 6u_n \qquad n \geqslant 1$$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3^n - 2^n$$

Note: Recall that \mathbb{Z} is the set of all integers, and \mathbb{Z}^+ is the set of all positive integers. Thus $\mathbb{N} = \mathbb{Z}^+$ (where \mathbb{N} is the set of 'natural' numbers).

We can often use **proof by induction** whenever we want to show some property holds for all integers (usually positive) up to infinity.

Show that
$$\sum_{r=1}^n r = \frac{1}{2}n(n+1)$$
 for all $n \in \mathbb{N}$.

We could show it's true for certain examples:

$$LHS = 1 + 2 + 3 = 6$$

$$RHS = \frac{1}{2} \times 3 \times 4 = 6$$

But what is the problem with just trying some examples?

How Proof by Induction works...

Case number

n = 1

n = 2

n = 3

n = 4

.. n

n = k + 1

n = k + 2

Step 1: Base Case

Step 2: **Assumption**

Step 3: Inductive Case

Step 4: Conclusion

Type 1: Summation Proofs

Step 1: **Basis:** Prove the general statement is true for n = 1. Step 2: **Assumption:** Assume the general statement is true for n = k.

Step 3: **Inductive:** Show that the general statement is then true for n = k + 1. Step 4: **Conclusion:** The general statement is then true for all positive integers n.

Show that $\sum_{r=1}^{n} (2r-1) = n^2$ for all $n \in \mathbb{N}$.

More on the 'Conclusion Step'

"Since true for n=1 and if true for n=k, true for n=k+1, \therefore true for all n."

I lifted this straight from a mark scheme, hence use this exact wording! The mark scheme specifically says:

(For method mark)

Any 3 of these seen anywhere in the proof:

- "true for n = 1"
- "assume true for n = k"
- "true for n = k + 1"
- "true for all n/positive integers"

Prove by induction that for all positive integers
$$n$$
,
$$\sum_{r=1}^n r = \frac{1}{2} n(n+1)$$

Tip: Write out what you are aiming for

Prove by induction that for all positive integers n,

$$\sum_{r=1}^{n} r2^{r} = 2(1 + (n-1)2^{n})$$

Your Turn

8. (a) Prove by induction that, for any positive integer n,

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}.$$

(5)

Type 2a: Divisibility Proofs

Step 1: **Basis:** Prove the general statement is true for n=1. Step 2: **Assumption:** Assume the general statement is true for n=k.

Step 3: **Inductive:** Show that the general statement is then true for n = k + 1. Step 4: **Conclusion:** The general statement is then true for all positive integers n.

Prove by induction that $3^{2n} + 11$ is divisible by 4 for all positive integers n.

Tip: Use f(k+1) - f(k)

Prove by induction that n^3-7n+9 is divisible by 3 for all positive integers n.

Type 2b: Divisibility Proofs - with a 'twist'

Prove by induction that $8^n - 3^n$ is divisible by 5.

Prove by induction that for all positive integers n, $11^{n+1} + 12^{2n-1}$ is divisible by 133.

Type 3: Matrix Proofs

Prove by induction that $\begin{pmatrix} 1 & -1 \\ 0 & 2 \end{pmatrix}^n = \begin{pmatrix} 1 & 1-2^n \\ 0 & 2^n \end{pmatrix}$ for all $n \in \mathbb{Z}^+$.

Prove by induction that $\begin{pmatrix} -2 & 9 \\ -1 & 4 \end{pmatrix}^n = \begin{pmatrix} -3n+1 & 9n \\ -n & 3n+1 \end{pmatrix}$ for all $n \in \mathbb{Z}^+$.

Type 4a: Recurrence Relation Proofs - 1 assumption

Given that $u_{n+1}=3u_n+4$ and that $u_1=1$, prove by induction that $u_n=3^n-2$

Type 4b: Recurrence Relation Proofs - 2 assumptions

A sequence of numbers is defined by

$$u_1 = 1$$
 $u_2 = 5$
 $u_{n+2} = 5u_{n+1} - 6u_n$ $n \ge 1$

Prove by induction that, for $n \in \mathbb{Z}^+$

$$u_n = 3^n - 2^n$$

- **1** Given that $u_{n+1} = 5u_n + 4$, $u_1 = 4$, prove by induction that $u_n = 5^n 1$.
- **2** Given that $u_{n+1} = 2u_n + 5$, $u_1 = 3$, prove by induction that $u_n = 2^{n+2} 5$.
- **3** Given that $u_{n+1} = 5u_n 8$, $u_1 = 3$, prove by induction that $u_n = 5^{n-1} + 2$.
- Given that $u_{n+1} = 3u_n + 1$, $u_1 = 1$, prove by induction that $u_n = \frac{3^n 1}{2}$.
- **5** Given that $u_{n+2} = 5u_{n+1} 6u_n$, $u_1 = 1$, $u_2 = 5$ prove by induction that $u_n = 3^n 2^n$.
- **6** Given that $u_{n+2} = 6u_{n+1} 9u_n$, $u_1 = -1$, $u_2 = 0$, prove by induction that $u_n = (n-2)3^{n-1}$.
- **7** Given that $u_{n+2} = 7u_{n+1} 10u_n$, $u_1 = 1$, $u_2 = 8$, prove by induction that $u_n = 2(5^{n-1}) 2^{n-1}$.
- **8** Given that $u_{n+2} = 6u_{n+1} 9u_n$, $u_1 = 3$, $u_2 = 36$, prove by induction that $u_n = (3n 2)3^n$.

Exam Questions

6. (a) Prove by induction that, for all $n \in \mathbb{Z}^+$

$$f(n) = n^5 + 4n$$

is divisible by 5

(6)

(b) Show that f(-x) = -f(x) for all $x \in \mathbb{R}$

(1)

(c) Hence prove that f(n) is divisible by 5 for all $n \in \mathbb{Z}$

(2)

8. (i) Prove by induction that for $n \in \mathbb{Z}^+$

$$\begin{pmatrix} 5 & -8 \\ 2 & -3 \end{pmatrix}^n = \begin{pmatrix} 4n+1 & -8n \\ 2n & 1-4n \end{pmatrix} \tag{6}$$

(ii) Prove by induction that for $n \in \mathbb{Z}^+$

$$f(n) = 4^{n+1} + 5^{2n-1}$$

is divisible by 21

2. Prove by induction that for all positive integers n,

$$f(n) = 2^{3n+1} + 3(5^{2n+1})$$

is divisible by 17

6. Prove by induction, that for all positive integers n,

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{n} = \begin{pmatrix} 1 & n & \frac{1}{2}(n^{2} + 3n) \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$$

6. Prove by induction that for all positive integers n

$$f(n) = 3^{2n+4} - 2^{2n}$$

is divisible by 5