Optimización FAMAF, UNC — 2024

Guía de Ejercicios N°0: Preliminares Matemáticos

- 1. Sea $A \in \mathbb{R}^{m \times n}$, con $m \ge n$ y rango(A) = n. Probar que $A^T A$ es simétrica y definida positiva.
- 2. Encontrar los autovectores y autovalores de las matrices $A = uv^T$ y $B = uu^T$, donde $u, v \in \mathbb{R}^n$.
- 3. Probar que los autovectores de una matriz, asociados a autovalores distintos, son linealmente independientes y que si la matriz es simétrica resultan ortogonales.
- 4. Probar que los autovalores de una matriz simétrica son positivos si y sólo si la matriz es definida positiva.
- 5. Probar que si λ es una autovalor de una matriz A no singular, entonces $1/\lambda$ es un autovalor de
- 6. Probar que $A \in \mathbb{R}^{n \times n}$ es singular si y sólo si 0 es un autovalor de A.
- 7. Para cada una de las siguientes sucesiones, probar que converge, determinar su límite, determinar la tasa de convergencia y la respectiva constante.
 - a) $x^k = 2^{-k}$:
 - b) $x^k = 1 + 5 \times 10^{-2k}$;
 - c) $x^k = 2^{-2^k}$:
 - d) $x^k = 3^{-k^2}$:
- 8. Escribir el desarrollo de Taylor de orden 2 alrededor del punto x=0, para las siguientes funciones:
 - a) cos(x);

b) $\ln(x+1)$:

- c) $\exp(x)$.
- 9. Calcular el desarrollo de Taylor de segundo orden para las funciones dadas en el punto indicado.
 - a) $f(x,y) = (x+y)^2$, en (a,b) = (0,0); b) $f(x,y) = e^{(x+y)}$, en (a,b) = (0,0).
- 10. Sea $f(x,y) = xe^y$. Calcular el polinomio de Taylor de orden 1 de f en el punto P = (1,0). Usar este polinomio para aproximar el valor f(0.98, 0.02). Estimar el error cometido.
- 11. Dados $f: \mathbb{R}^n \to \mathbb{R}$ y $x \in \mathbb{R}^n$, denotamos por $\nabla f(x)$ (gradiente de f) al vector columna con coordenadas $\frac{\partial f}{\partial x_i}(x)$ y por $\nabla^2 f(x)$ (Hessiana de f) a la matriz $n \times n$ con coordenadas $\frac{\partial^2 f}{\partial x_i \partial x_j}(x)$. Además, dada $F: \mathbb{R}^n \to \mathbb{R}^m$, denotamos por $J_F(x)$ (Jacobiana de f) a la matriz $m \times n$ con coordenadas dadas por $\frac{\partial F_i}{\partial x_i}$. Demostrar que:
 - a) si $f(x) = \frac{1}{2}x^T A x b^T x + c$ con $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^n, c \in \mathbb{R}$, entonces

$$\nabla f(x) = \frac{1}{2}(A + A^T)x - b$$
 y $\nabla^2 f(x) = \frac{1}{2}(A + A^T).$

b) si $f(x) = \frac{1}{2} ||Ax - b||^2$ con $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$, entonces

$$\nabla f(x) = A^T (Ax - b)$$
 y $\nabla^2 f(x) = A^T A$.

c) si $f(x) = \frac{1}{2} \|F(x)\|^2$ con $F: \mathbb{R}^n \to \mathbb{R}^m$ diferenciable, entonces

$$\nabla f(x) = J_F(x)^T F(x)$$
 y $\nabla^2 f(x) = J_F(x)^T J_F(x) + \sum_{j=1}^m F_j(x) \nabla^2 F_j(x)$.

d) si f(x) = g(F(x)) con $g: \mathbb{R}^m \to \mathbb{R}$ y $F: \mathbb{R}^n \to \mathbb{R}^m$ differenciables, entonces

$$\nabla f(x) = J_F(x)^T \nabla g(F(x)) \ \text{y} \ \nabla^2 f(x) = J_F(x)^T \nabla^2 g(F(x)) J_F(x) + \sum_{i=1}^m \frac{\partial g}{\partial y_i}(F(x)) \nabla^2 F_j(x).$$

- 12. Sean $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. Para $x \in \mathbb{R}^n$, se define q(x) = f(Ax + b) con $f : \mathbb{R}^m \to \mathbb{R}$. Calcular el gradiente y la Hessiana de la función q.
- 13. Dibujar las curvas de nivel de las siguientes cuadráticas:

a)
$$f(x,y) = x^2 - y^2 - x + y - 1$$
;

c)
$$f(x,y) = xy;$$

b)
$$f(x,y) = x^2 + y^2 + 2xy$$
;

d)
$$f(x,y) = x^2 + y^2 - xy$$
.

- 14. Analizar la geometría de las curvas de nivel de una función cuadrática $f(x) = \frac{1}{2}x^T Ax + b^T x + c$, donde $A \in \mathbb{R}^{2 \times 2}$ es simétrica, $b \in \mathbb{R}^2$, $c \in \mathbb{R}$, en los siguientes casos:
 - a) A > 0;
 - b) $A \ge 0$ y existe $x \in \mathbb{R}^2$ tal que Ax + b = 0;
 - c) $A \ge 0$ y no existe $x \in \mathbb{R}^2$ tal que Ax + b = 0;
 - d) A es indefinida y no singular.
- 15. Para los siguientes casos, escribir un algoritmo e implementarlo, realizando diferentes experimentos numéricos. Además, calcular el costo computacional en términos de la dimensión n de las matrices.
 - a) Dadas $A, B \in \mathbb{R}^{n \times n}$, calcular C = AB, de 6 formas distintas.
 - b) Resolver el sistema triangular Ax = b, donde A $\mathbb{R}^{n \times n}$ es una matrix triangular inferior (o superior).
 - c) Dada $A \in \mathbb{R}^{n \times n}$, simétrica y definida positiva, calcular la factorización de Cholesky.
 - d) Dada $A \in \mathbb{R}^{n \times n}$ simétrica y definida positiva, y $b \in \mathbb{R}^n$, resolver Ax = b, usando los items anteriores.
- 16. Sea $f: \mathbb{R} \to \mathbb{R}$ una función no lineal. Escribir un algoritmo que implemente los métodos de bisección y Newton para resolver la ecuación f(x) = 0. Implementar este algoritmo para la función $f(x) = \arctan(x)$.
 - a) Analizar numéricamente la convergencia de ambos métodos (ver cantidad de iteraciones y región de convergencia para distintas condiciones iniciales)
 - b) Considerar una manera de combinarlos para obtener una convergencia global eficiente.