Formulação Matemática do Controle Ótimo

Prof. Ana Isabel Castillo

May 17, 2025

Universidade do Controle Ótimo

Sumário

- 1. Formulação de Problemas de Controle Ótimo
- 2. Exemplo Prático 1: Fundo de Investimento
- 3. Exemplo Prático 2: Alocação de Recursos
- 4. Visualização
- 5. Aplicação Financeira
- 6. Exercício Resolvido
- 7. Conclusão

Formulação de Problemas de

Controle Ótimo

Estrutura do Problema

Definição

Um problema de controle ótimo é definido por:

$$\min_{u(t)} J = \int_0^T L(x(t), u(t), t) dt + \Phi(x(T)),$$

sujeito a:

$$\dot{x}(t) = f(x(t), u(t), t), \quad x(0) = x_0, \quad u(t) \in U,$$

onde x(t) é o estado, u(t) é o controle, L é o custo instantâneo, Φ é o custo final, e U é o conjunto de controles admissíveis.

Objetivo

Encontrar $u^*(t)$ que minimiza J respeitando as restrições.

Exemplo Prático 1: Fundo de

Investimento

Controle de um Fundo de Investimento

Um fundo de investimento tem dinâmica:

$$\dot{x} = rx + u$$
, $x(0) = 1$,

onde x(t) é o valor do fundo, r=0.05 é a taxa de juros, u(t) é a injeção de capital. Minimize:

$$J = \int_0^1 \left(\frac{1}{2}u^2 - x\right) dt.$$

Formulação

- Estado: x(t). - Controle: u(t). - Restrição: $\dot{x}=0.05x+u$. - Custo: J penaliza u^2 (esforço) e maximiza x.

Exemplo Prático 2: Alocação de

Recursos

Otimização de Recursos Financeiros

Uma empresa aloca recursos entre dois projetos:

$$\dot{x}_1 = u$$
, $\dot{x}_2 = 1 - u$, $x_1(0) = x_2(0) = 0$,

onde x_1, x_2 são os lucros dos projetos, $u(t) \in [0, 1]$ é a fração alocada ao projeto 1. Maximize:

$$J = x_1(1) + x_2(1).$$

Formulação

- Estados: $x_1(t), x_2(t)$. - Controle: $u(t) \in [0, 1]$. - Restrição: soma dos lucros é fixa. - Custo: maximizar o lucro total.

Visualização

Visualização: Trajetória de Controle

Interpretação

A curva azul mostra o crescimento do fundo $x(t) = e^{0.05t}$ (sem controle). A linha vermelha é um controle constante u(t) = 0.5.

Aplicação Financeira

Portfólio com Restrições de Risco

Um portfólio é modelado por:

$$\dot{x} = (r + \sigma u)x, \quad x(0) = 1,$$

com função custo:

$$J=-\mathbb{E}[x(T)]+\frac{1}{2}\int_0^T u^2\,dt,$$

onde r = 0.03, $\sigma = 0.2$, u(t) é a fração investida em ativos arriscados.

Formulação

- Estado: x(t) (valor do portfólio). Controle: u(t) (alocação de risco).
- Restrição: dinâmica estocástica. Custo: balancear retorno esperado e esforço de controle.

Exercício Resolvido

Exercício

Formule o problema de controle ótimo:

$$\dot{x} = -x + u, \quad x(0) = 1,$$

com:

$$J = \int_0^1 (x^2 + u^2) dt, \quad u(t) \in [-1, 1].$$

Solução

- **Éstado:** x(t). - **Controle:** $u(t) \in [-1,1]$. - **Dinâmica:** $\dot{x} = -x + u$. - **Custo:** $J = \int_0^1 (x^2 + u^2) \, dt$. - **Restrições:** Controle limitado $u(t) \in [-1,1]$, condição inicial x(0) = 1. O problema está bem formulado para solução via hamiltoniano ou programação dinâmica.

Conclusão

Resumo

- A formulação matemática define estados, controles, custos e restrições.
- Exemplos financeiros mostram a aplicação prática em investimentos.
- Restrições moldam a complexidade do problema.

Próximos Passos

Explorar programação dinâmica e o princípio de Bellman no Capítulo 3.