Lec 8/23

Tuesday, August 23, 2016 9:02 AM

Syllabus Zbigniew (Zig) Fiedorowicz MW504: 292-0724

Menturs: Michael Crawford, Nik Handerson mentaring sessions: wed 6-8? Sun 3-5?

Grades: HW 30%. 2 Mid 20% each Final 30%

Week 1: § 1 of spivak
2: § 2
3: § 3-4
4: § 5-6
5(sept 19-23): modterm, § 7
L: § 9, 27

Schedule (tentative)

§ : What are the real numbers IR

G.99... = 1.00...

7: 89,10

Newton, Leibniz: does R contain infiniteginals

infinitesimal: numerer so greater than in Yn EZ+

. No, It does not contain such numbers

(roporties of real numbers (axioms) (modern approach)

9 Field axioms: addition, multiplication, subtraction, division

3 order axioms: ordering, positive, negative prationers

| Completion axiom: distinguishes between Q and R

Field axioms:

PI - associativity of addition:
$$\forall a,b,c \in \mathbb{R}$$
, $\alpha + (b+c) = (a+b) + (D)$

P2 - additive identity: $\exists 0 \in \mathbb{R}$ st. $\forall a \in \mathbb{R}$, $a + 0 = 0 + a = a$

P3 - additive inverses: $\forall a \in \mathbb{R}$, $\exists (-a) \in \mathbb{R}$ st. $a + (-a) = (-a) + a = 0$

P4 - commutativity of addition: $\forall a,b \in \mathbb{R}$ a + $b = b + a$

P5 - associativity of multiplication: $\forall a,b,c \in \mathbb{R}$, $a(bc) = (ab) c$

P6 - multiplicative identity: $\exists 1 \in \mathbb{R}$ st $\forall a \in \mathbb{R}$ a: $1 = 1 \cdot a = a$ ($1 \neq 0$)

P7 - multiplicative inverse: $\forall a \in \mathbb{R} \setminus \{0\}$, $\exists a^{-1}$ st. $aa^{-1} = a^{-1}a = 1$

P8 - Commutativity of multiplication. $\forall a,b \in \mathbb{R}$, ab = baP9 - distributive property: $\forall a,b,c \in \mathbb{R}$, a(b+c) = ab + ac

Pehuitians: a-b = a+ (-b)

a/b = abi

Proposition: O.a = O YaelR	Just ification
Proof: a(1+0) = a1	65
a.1+a.0 = a.1	P9
$\alpha + \alpha \cdot 0 = \alpha$	P 6
$(-\alpha)+(\alpha+\alpha\cdot0)=(-\alpha)+\alpha$	P 3
$((-\alpha) + \alpha) + \alpha \cdot 0 = (\alpha + \alpha)$	PZ
0 + 6.0 = 0	43
a.u = 0	42
0·a = 0	48

mistake in Spivak: page 7

Assignment: find the mistake in the proof that a-b=b-a => b=a

Work:
$$a-b = b-a$$

 $(a-b)+b = (b-a)+b = b+(b-a)$ Py
 $a+(b+b)=(b+b)+(-a)$ Pl, P3

a + 0 = (b+b) + (-a) $a + 0 = (b+b) + (-a) + a$	P3
$\alpha + \alpha = (b+b) + ((-\alpha) + \alpha)$	PI
a + a = b + b	P3, P2
1.02 1.0 = 1.6 + 1.6	P6
$\alpha(1+1) = b \cdot (1+1)$	pq
maybe $0 \longrightarrow 0.(+).(+)^{-1} = b.(+).(+)^{-1}$ that not apparent. $0.1 = b.1$	P7
that not apparent. a.1 = 6.1	r 7
1	PG
Where we need where ordering.	