FISEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Molecular structure and sour gas surface chemistry of supported K₂O/WO₃/Al₂O₃ catalysts

Minghui Zhu^a, Bin Li^a, Jih-Mirn Jehng^a, Lohit Sharma^a, Julian Taborda^a, Lihua Zhang^b, Eric Stach^{b,c}, Israel E. Wachs^a, Zili Wu^{d,e}, Jonas Baltrusaitis^{a,*}

- a Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
- ^b Brookhaven National Laboratory, Center for Functional Nanomaterials, Upton, NY 11973, USA
- ^c Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- ^d Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- ^e Center for Nanophase Material Science, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

ARTICLE INFO

Keywords: $K_2O/WO_3/Al_2O_3$ Catalyst in situ CO_2 SO_2

ABSTRACT

Molecular structures of the unpromoted and K_2O -promoted supported WO_3/Al_2O_3 catalysts were studied with in situ Raman and UV-vis spectroscopy. In situ Raman spectra revealed that supported 20% WO_3/Al_2O_3 corresponds to near monolayer coverage of isolated and oligomeric surface WO_x species on Al_2O_3 . Above monolayer surface WO_x coverage (21% WO_3/Al_2O_3), crystalline WO_3 nanoparticles are also present. The addition of K_2O to the supported WO_3/Al_2O_3 catalyst increased the concentration of isolated surface WO_x species and did not form K_2WO_4 nanoparticles. The reducibility of the tungsten oxide structures depends on their structures (2D or 3D) and the K_2O promoter. Their interaction with acidic CO_2 and SO_2 gases was also investigated. Adsorption of CO_2 creates several surface carbonate species of varying acidity that were detected using a combination of in situ IR and mass spectroscopy. Adsorbed bicarbonate form on weakly basic surface sites on tungsten oxide monolayer WO_3/Al_2O_3 catalyst as well as in the presence of low 2.5% K_2O loading. At high 5% K_2O loading, the presence of the strong surface basic sites yields adsorbed carbonates. After SO_2 pretreatment, however, new strongly adsorbed sulfate appears on the surface that inhibits CO_2 adsorption.

1. Introduction

Abundant, yet difficult to utilize sour natural gas contains a large number of acidic components such as CO2 and H2S at quite high concentrations. Approximately 40% of the world's conventional natural gas reserves contain significant amounts of H2S and CO2 while about 30% contain < 15% CO2 and 1-15 % H2S [1]. These sour gas concentrations are treatable with conventional methods such as amine absorption/desorption [2-4], but the question remains whether this can be achieved economically. A major problem of conventional sour gas removal from natural gas remains utilization of the large amounts of environmentally non-friendly CO2 and H2S byproducts. Conventionally, the acidic CO2 is emitted into the atmosphere acting as a major greenhouse gas motivating the need for new catalytic methods of converting CO2 into hydrocarbons [5-7]. The H2S, however, is a sour gas with high toxicity that is oxidized via the Claus process to yield unreactive elemental sulfur that can be used for the manufacture of sulfuric acid or deposited in chemical landfills [8]. An alternative is to directly convert H2S and carbon oxides with the addition of H2 to form

the reactive CH₃SH intermediate that can be further converted to a mixture of paraffin and olefins to avoid the high conventional CH₄-CO₂-H₂S separation costs [9–16]. Early studies have revealed the catalytic activity of supported tungsten based catalysts for such reaction, as well as the promotional effect of K₂O [17–20]. For example, Barrault et al. have achieved high selectivity towards two major products of CO (49%) and CH₃SH (51%) from a mixture of CO₂, H₂S and H₂ by using a supported 10% K₂WO₄/ γ -Al₂O₃ catalyst [20].

As a widely used catalyst, supported WO_3/Al_2O_3 is active for a variety of reactions such as alkane metathesis [21,22], hydrogenation [23,24], dehydration [25,26], hydro-desulfurization [27,28] and hydrocarbon cracking [29,30]. Its molecular structure and surface chemistry have been extensively investigated in the literature, showing the existence of isolated, oligomeric and crystalized WO_x species depending on catalyst loadings [31–33]. Addition of K_2O has been found to play an important role as a promoter for the supported WO_3/Al_2O_3 catalyst and favors the production of methyl mercaptan from methanol and hydrogen sulfide [34]. Much less research, however, has been dedicated to elucidating the structure of the K_2O -promoted supported

E-mail address: job314@lehigh.edu (J. Baltrusaitis).

^{*} Corresponding author.

WO_x/Al₂O₃ catalyst.

In this work, we aim at elucidating the promotional effect of K_2O to WO_3/Al_2O_3 catalyst with an emphasis on its modification of surface chemistry, especially the interplay with two weakly adsorbed reactant molecules including H_2 and $CO_2.$ In addition, the performance of competitive CO_2 adsorption under sulfur containing acidic environment was evaluated with the aid of SO_2 pre-adsorption. The application of modern characterization techniques including STEM, in situ Raman, in situ UV–vis, in-situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS), H_2 temperature programmed reduction (TPR) and CO_2 temperature programmed desorption (TPD) has enabled the understanding of the surface chemistry for K_2O promoted WO_x/Al_2O_3 catalyst. Those fundamental insights will have the potential to guide the rational design of improved tungsten based catalysts for direct methyl mercaptan synthesis from sour natural gas.

2. Experimental

2.1. Catalyst preparation

Ternary K_2O promoted WO_3/Al_2O_3 catalysts $(K_2O/WO_3/Al_2O_3)$ were synthesized with incipient-wetness impregnation method using water soluble ammonium metatungstate $((NH_4)_6H_2W_{12}O_{40}\cdot xH_2O)$ and potassium hydroxide (KOH) as precursors [35,36]. The active catalyst support was Toyota γ -Al $_2O_3$ with surface area 170 m 2 /g. The synthesis involved two separate steps. In particular, tungsten oxide was initially impregnated into the γ -Al $_2O_3$ support and followed by impregnation of K_2O in the second step. Specific amount of ammonium metatungstate $((NH_4)_6H_2W_{12}O_{40}\cdot xH_2O)$ was placed into a ceramic crucible, dissolved in 1 ml of deionized water and 1 gram of γ -Al $_2O_3$ was added into the ceramic crucible and stirred for 30 min. The samples were dried under ambient conditions overnight, further dried at 120 °C for 16 h and finally calcined at 500 °C for 4 h.

2.2. Scanning transmission electron microscopy

The morphology of the catalyst particles was investigated using a dedicated Scanning Transmission Electron Microscope (STEM) (Hitachi 2700 C) operating at $200\,\mathrm{kV}$.

2.3. In situ UV-vis diffuse reflectance spectroscopy (DRS)

In situ UV–vis DR spectra of WO $_3$ /Al $_2$ O $_3$ and K $_2$ O/WO $_3$ /Al $_2$ O $_3$ catalysts were obtained using a Cary 5000 UV–vis NIR spectrometer. The samples were loaded into an *in situ* cell (Harrick, HVC-DR2) and dehydrated under the flow of 10% O $_2$ /He at 400 °C for 1 h. A magnesium oxide sample was used as the reflectance standard for collecting baseline in the 200–800 nm region.

2.4. In situ Raman spectroscopy

Raman spectra were collected using a LabRam-HR spectrometer (Horiba-Jobin Yvon) equipped with a confocal microscope, 2400/900 grooves/mm gratings and a notch filter. The 532-nm visible laser was focused on the samples using a confocal microscope equipped with a $50 \times long$ working distance objective (Olympus, BX-30- LWD). The scattered photons were directed and focused onto a single-stage monochromator and measured with a UV-sensitive LN₂-cooled CCD detector (Horiba, CCD-3000V). Catalyst samples were placed in an environmentally controlled high-temperature cell reactor (Harrick). Dehydrated spectra were collected after catalysts were dehydrated in the stream of $10\% O_2/Ar$ at $400\,^{\circ}C$ for $1\,h$.

2.5. H_2 -temperature programmed reduction (TPR) spectroscopy

The H₂-TPR experiments were carried out using an Altamira

Instruments (AMI-200) connected to a TCD detector. Approximately 30 mg of catalyst was loaded into a U-tube sample holder for analysis. The catalysts tested were first dehydrated under $10\%~O_2/Ar$ at $400~^{\circ}C$ for 1 h then cooled down to $100~^{\circ}C$. The H_2 -TPR experiments were then performed by ramping up the temperature under $10\%~H_2/Ar$ (30~ml/min) at a rate of $10~^{\circ}C/min$.

2.6. CO₂-temperature programmed desorption (TPD) spectroscopy

The $\rm CO_2$ -TPD experiments were performed using an Altamira Instruments system (AMI-200) with a TCD detector. Approximately 50 mg of catalyst was loaded into a U-tube sample holder for analysis. The catalysts tested were first dehydrated under 10% $\rm O_2/Ar$ at 400 °C for 1 h then cooled down to room temperature. The catalysts were then saturated under $\rm CO_2$ flow for 1 h and flushed with He for 30 min. After the He flush, the $\rm CO_2$ -TPD experiments were performed by ramping the temperature under He at a rate of 10 °C/min.

2.7. Surface chemistry and acidity

Catalyst surface acidity was examined using a combination of NH3 probe molecule and infrared spectroscopy. A Thermo Nicolet iS50 infrared spectrometer equipped with a Mercury-Cadmium-Tellurium (MCT) liquid nitrogen cooled detector was used with a Harrick Praying Mantis™ diffuse reflection accessory and ZnSe windows for determination of the acid sites. Catalysts were initially dehydrated by heating to 400 $^{\circ}\text{C}$ (heating rate of 10 $^{\circ}\text{C/min})$ and holding at 400 $^{\circ}\text{C}$ for 1 h under air flow (30 mL/min). The in situ IR spectra were collected under N₂ (30 ml/min) while cooling down at 400 °C, 300 °C, 200 °C and 120 °C. Subsequently, N2 was replaced with a flow of 1% NH3/N2 (30 mL/min; 30 min). Physisorbed NH₃ was removed by flowing N₂ (30 mL/min; 30 min). Spectra were then continuously recorded every minute during the temperature programming until 400 °C under 30 ml/ min N₂ flow. The spectra of dehydrated catalysts at specified temperatures were subtracted from the spectra containing contributions of the catalyst and adsorbed NH₃ surface species at the same temperature.

2.8. In situ diffuse reflectance infrared fourier transformed spectroscopy (DRIFTS)

DRIFTS experiments were performed using diffuse reflectance mode in a Thermo Nicolet Nexus 670 spectrometer. Quadrupole mass spectrometer (Omnistar GSD-301 $\rm O_2$, Pfeiffer Vacuum) was used to analyze the reaction products from the DRIFTS cell (Pike Technologies HC-900). Catalyst samples were first dehydrated under $5\%\rm O_2/He$ at $500\,^{\circ}\rm C$ for 1 h and then cooled down to room temperature. After that, $30\,\rm ml/min~\rm CO_2$ (2% $\rm CO_2/N_2$) was introduced for $30\,\rm min$, followed by a 20-min flush with He. The samples were then heated up to $500\,^{\circ}\rm C$ under He with a rate of $10\,^{\circ}\rm C/min$. The catalysts then were cooled down to room temperature again, pre-treated with $30\,\rm ml/min~\rm SO_2$ (210 ppm) for $30\,\rm min$ and flushed with He for $20\,\rm min$. The pretreated samples were further saturated with $\rm CO_2$ by flowing $30\,\rm ml/min~\rm 2\%~\rm CO_2/N_2$ for $30\,\rm min$ and flushed with He for $20\,\rm min$ and subsequently heated up under flowing He to $500\,^{\circ}\rm C$ with a rate of $10\,^{\circ}\rm C/min$.

3. Results and discussion

3.1. Surface structure

The detailed composition, K/W atomic ratio and BET surface areas of all prepared catalysts were shown in Table 1. The Eg values were also calculated and provided from the corresponding *in-situ* UV–vis spectra under dehydrated conditions (Fig. 1). Those values are within the range of oligomers of WO₆ (2.8 eV) and isolated WO₄ units (5.2 eV), indicating the coexistence of isolated and oligomeric species [37]. The smaller Eg value for 20% WO₃/Al₂O₃ than 21% WO₃/Al₂O₃ reflects the

 $\label{eq:table 1} \begin{tabular}{ll} \textbf{Table 1} \\ \textbf{Composition, K/W atomic ratio, BET surface area and } \textit{in situ UV-vis DRS Eg values for dehydrated supported WO_3/Al_2O_3 and $K_2O/WO_3/Al_2O_3$ catalysts.} \end{tabular}$

Sample	K/W atomic ratio	BET (m ² /g)	Eg (eV)
Al_2O_3	-	133	-
21% WO ₃ /Al ₂ O ₃	-	99	4.1
20% WO ₃ /Al ₂ O ₃	-	105	4.5
2.5% K ₂ O/19% WO ₃ /Al ₂ O ₃	0.65	113	4.5
5% K ₂ O/19.5% WO ₃ /Al ₂ O ₃	1.26	95	4.9

Fig. 1. In situ UV-vis spectra of dehydrated 20% WO₃/Al₂O₃, 21% WO₃/Al₂O₃, 2.5% $K_2O/19.5\%$ WO₃/Al₂O₃ and 5% $K_2O/19\%$ WO₃/Al₂O₃ catalysts.

presence of a greater amount of oligomeric tungsten oxide component in the latter catalyst. Adding small amount of potassium oxide (K/W = 0.65) has negligible effect on UV–vis Eg value as well as the relative populations of isolated and oligomeric surface WO_x species. The addition of more potassium oxide (K/W = 1.26), however, increases the UV–vis Eg value to 4.9 eV, reflecting an increase in the population of isolated surface WO_x species at the expense of the oligomeric surface WO_x species.

Catalyst surface information and the interaction between K and W species were further studied with in situ Raman. Crystalline WO3 exhibits strong and sharp Raman bands at 273, 719 and 809 cm⁻¹, while crystalline K₂WO₄ possesses strong and sharp Raman bands at 324 and 927 cm⁻¹, reflecting the presence of oligomeric WO₆ and isolated WO₄ sites in the WO₃ and K₂WO₄ crystals, respectively [37]. The Raman spectrum of supported 20% WO₃/Al₂O₃ exclusively exhibits a band at 1021 cm⁻¹ and is assigned to surface WO_x species on the Al₂O₃ support, which is also confirmed by STEM image (Figs. 2b, S1). The Raman band at 1021 cm⁻¹ corresponds to the stretching mode of isolated and oligomeric mono-oxo $O = WO_{4/5}$ surface species [32]. Supported 21% WO_3/Al_2O_3 catalyst contains the surface $O = WO_{4/5}$ species (1021 cm⁻¹) and crystalline WO₃ nanoparticles (NPs) with strong characteristic bands at 260, 327, 711 and 804 cm⁻¹. The much stronger intensity for crystalline nanoparticles is due to the higher Raman cross sections. The Raman spectra for the K-promoted 2.5% $K_2O/19.5\%$ WO_3/Al_2O_3 and 5% $K_2O/19\%$ WO_3/Al_2O_3 catalysts exhibit the W=O bands at 985 cm⁻¹ and 963 cm⁻¹ with the absence of crystalline K_2WO_4 bands [38]. The shift of the W = O Raman band from 1021 to 963–985 cm⁻¹ indicates that the potassium is interacting with the surface WO_x species and reflects lengthening of the W=O bond [33].

3.2. H₂-TPR

The interaction of the supported 20% WO_3/Al_2O_3, 21% WO_3/Al_2O_3, 2.5% $\rm K_2O/19.5\%$ WO_3/Al_2O_3 and 5% K_2O/19% WO_3/Al_2O_3 catalysts

Fig. 2. (a) Raman spectra of crystalline WO_3 and K_2WO_4 . (b) In situ Raman spectra of dehydrated 20% WO_3/Al_2O_3 , 21% WO_3/Al_2O_3 , 2.5% $K_2O/19.5$ % WO_3/Al_2O_3 and 5% $K_2O/19$ % WO_3/Al_2O_3 catalysts.

Fig. 3. H₂-TPR spectra of supported 20% WO₃/Al₂O₃, 21% WO₃/Al₂O₃, 2.5% K₂O/19.5% WO₃/Al₂O₃ and 5% K₂O/19% WO₃/Al₂O₃ catalysts.

with H_2 molecules was assessed with H_2 -TPR and the results are shown in Fig. 3. All four catalysts exhibited reduction peak at a temperature higher than 600 °C, corresponding to the reduction of surface tungsten oxide species. Such a high reduction temperature has also been previously confirmed both theoretically and experimentally [39,40]. The supported 21% WO₃/Al₂O₃ catalyst possesses an extra reduction peak at 578 °C that is assigned to the reduction of crystalline WO₃ NPs [41,42]. Addition of K_2 O to the catalyst shifted the reduction peak of surface tungsten species to lower temperature (Tp \sim 725 °C) and is probably due to enhanced H_2 adsorption or dissociation on K atoms.

3.3. CO₂-TPD

The desorption of CO_2 , SO_2 and H_2O from dehydrated catalysts, with and without SO_2 pretreatment, during temperature programming are shown in Fig. 4 (a–d). In the absence of SO_2 pretreatment, the supported 20% WO_3/Al_2O_3 and 21% WO_3/Al_2O_3 catalysts exhibit poor

Fig. 4. (a–d) Mass spec signal of CO_2 and SO_2 obtained during CO_2 -TPD of catalysts with and without SO_2 pretreatment. (a) 21% WO₃/Al₂O₃, (b) 20% WO₃/Al₂O₃. (c) 2.5% K₂O/19.5% WO₃/Al₂O₃, (d) 5% K₂O/19% WO₃/Al₂O₃. The solid lines represent the sample with SO_2 pretreatment and the dot lines represent the sample without SO_2 pretreatment.

Fig. 5. NH₃-IR spectra obtained from (a) 20% WO₃/Al₂O₃, (b) 5% $K_2O/19\%$ WO₃/Al₂O₃.

 CO_2 adsorption capacity with barely a trace of CO_2 desorption at $\sim 50\,^{\circ}\text{C}$ (see Fig. 4 (a and d)) because acidic CO_2 very weakly interacts with the acidic surface WO_x sites [43]. The absence of CO_2 adsorption capacity of these two supported $\text{WO}_3/\text{Al}_2\text{O}_3$ catalysts reflects the presence of a surface WO_x monolayer that covers the basic sites of the alumina support. The addition of potassium oxide enhances CO_2 adsorption as reflected by CO_2 desorption at $\sim 50\,^{\circ}\text{C}$ because of the interaction of acidic CO_2 with basic surface K_2O sites. The CO_2 adsorption capacity of the dehydrated catalysts follows the order 5% $\text{K}_2\text{O}/19\%$ $\text{WO}_3/\text{Al}_2\text{O}_3 > 2.5\%$ $\text{K}_2\text{O}/19.5\%$ $\text{WO}_3/\text{Al}_2\text{O}_3 > 20\%$ $\text{WO}_3/\text{Al}_2\text{O}_3 > 21\%$ $\text{WO}_3/\text{Al}_2\text{O}_3$.

The adsorption capacity of SO_2 on the catalysts is shown in Fig. 4 and is significantly greater than that of CO_2 because of the stronger acidity of SO_2 compared to CO_2 . Unlike the very weak CO_2 adsorption

on the K-free supported WO $_3$ /Al $_2$ O $_3$ catalysts, SO $_2$ modestly adsorbs on the K-free supported WO $_3$ /Al $_2$ O $_3$ catalysts. The adsorption capacity of SO $_2$ greatly increases, by $\sim 5 \times$, with K $_2$ O content because of the increased number of surface basic sites introduced by potassium oxide.

Although there is no $\rm H_2O$ desorption for the catalysts not pretreated with $\rm SO_2$, as expected for the dehydrated catalysts, all the supported $\rm WO_3/Al_2O_3$ catalysts exhibit $\rm H_2O$ desorption after $\rm SO_2$ pretreatment (Fig. S2). The amount of $\rm H_2O$ desorbed appears to decrease with potassium oxide promotion. The formation of $\rm H_2O$ after $\rm SO_2$ treatment suggests that $\rm SO_2$ is either reacting with alumina surface hydroxyls or making the catalyst hygroscopic and retains the trace moisture in the environmental cell.

The weak CO₂ adsorption capability was further decreased from the catalysts, especially the K-promoted catalysts, when SO₂ was pre-

Fig. 6. IR spectra of γ-Al₂O₃ obtained at different temperature after CO₂ adsorption.

adsorbed on the catalysts. The supported 2.5% $K_2O/19.5\%\ WO_3/Al_2O_3$ catalyst exhibited negligible CO_2 desorption indicating that acidic SO_2 coordinated to the basic surface K_2O sites and blocked coordinating of acidic CO_2 . The supported 5% $K_2O/19\%\ WO_3/Al_2O_3$ catalyst however, still possesses CO_2 adsorption capacity after SO_2 pretreatment reflecting the presence of residual basic surface sites ($\sim 50\%$,). The SO_2 pretreatment also appears to slightly weaken the CO_2 binding to the catalyst with Tp decreasing from ~ 75 to ~ 60 °C when the supported 5% $K_2O/19\%\ WO_3/Al_2O_3$ catalyst was exposed to SO_2 .

3.4. Surface acidity probed with NH₃ adsorption

The surface acidity of the dehydrated supported WO_x catalysts was probed with NH₃-DRIFTS and the temperature dependent spectrum are presented in Fig. 5. After NH₃ adsorption at 120 °C, the 20% WO₃/ Al₂O₃ catalyst (Fig. 5(a)) exhibits IR bands for both adsorbed NH₃ species (1615 and $1279 \,\mathrm{cm}^{-1}$) and $\mathrm{NH_4}^+$ species (1674 and 1432 cm⁻¹) [44,45]. The existence of two type of adsorbed ammonia species clearly demonstrates that surface of the 20% WO₃/Al₂O₃ catalyst possesses both Lewis (NH₃) and Brønsted (NH₄⁺) acidity. Upon increasing the temperature, the population of the adsorbed NH₃ species decrease slower than surface NH₄ * species that shows their greater stability on the surface. The NH₃-IR spectrum for the supported 5% K₂O/19% WO₃/Al₂O₃ catalyst is shown in Fig. 5(b) and the addition of potassium greatly modifies the surface acidity of supported WO_x catalyst. The lack of the predominant 1279 cm⁻¹ band for adsorbed NH₃ species and the 1432 cm⁻¹ band for adsorbed NH₄⁺ species suggest that K2O completely suppressed both Brønsted and Lewis acidity from the surface WO_x species or exposed Al₂O₃ sites. The weak IR band at 1646 cm⁻¹, which diminishes at higher temperature, may arise from adsorbed ammonia species on K sites. Similarly, a sole band at 1610 cm⁻¹ was observed for very low NH₃ coverages on Fe{111} precovered with 0.25 monolayer of K and was attributed to antisymmetric deformation mode of ammonia, δ_a [46]. This vibration was attributed specifically to the interaction between ammonia and potassium atoms.

3.5. In-situ DRIFTS using CO₂ and SO₂ as acidic probe molecules

Carbonate in its free ion form has a Raman active vibration of $1063\,\mathrm{cm}^{-1}$ due to the symmetric C–O stretching (v_1) , an IR active

Fig. 7. (a–d) TP-IR spectra of CO_2 adsorption without SO_2 pretreatment obtained at different temperature. (a) 21% WO_3/Al_2O_3 , (b) 20% WO_3/Al_2O_3 , (c) 5% $K_2O/19\%$ WO_3/Al_2O_3 catalysts and (d) 2.5% $K_2O/19.5\%$ WO_3/Al_2O_3 .

Fig. 8. (a–d) TP-IR spectra of CO_2 adsorption with SO_2 pretreatment obtained at different temperature. (a) 21% WO_3/Al_2O_3 , (b) 20% WO_3/Al_2O_3 , (c) 5% $K_2O/19\%$ WO_3/Al_2O_3 and (d) 2.5% $K_2O/19.5\%$ WO_3/Al_2O_3 .

Table 2 Summary of surface CO_2 and SO_2 adsorption products on $K_2O/WO_3/Al_2O_3$ catalysts.

Condition	Samples	Wavelength (cm ⁻¹)					
Without SO_2 pretreatment	21% WO ₃ /Al ₂ O ₃ Assignment 20% WO ₃ /Al ₂ O ₃ Assignment 5% K ₂ O/19% WO ₃ /Al ₂ O ₃ Assignment 2.5% K ₂ O/19.5% WO ₃ /Al ₂ O ₃ Assignment	1641 Bidentate-II 1678 Bidentate-II 1684 Bidentate-I 1639 Bicarbonate	Bicarbonate Polydentate-I 1659 Bicarbonate	Bicarbonate 1344 Monodentate			
With SO_2 pretreatment	21% WO ₃ /Al ₂ O ₃ Assignment 20% WO ₃ /Al ₂ O ₃ Assignment 5% K ₂ O/19% WO ₃ /Al ₂ O ₃ Assignment 2.5% K ₂ O/19.5% WO ₃ /Al ₂ O ₃ Assignment	1660 Bidentate-II 1672 Bidentate 1740 Bridged 1637 Bidentate-II	Bicarbonate Polydentate-I 1670 Bridged 1390 Al ₂ (SO ₄) ₃	Bicarbonate 1639 Bidentate-I 1371 Asymmetric O-S-O	1394 $Al_2(SO_4)_3$ 1325 Physisorbed SO_2	1313 Physisorbed SO_2	1246 Asymmetric O-C-O

vibration of 879 cm $^{-1}$ due to out-of-plane deformation (ν_2), and two Raman-IR active vibrations of 1415 and 680 cm $^{-1}$, due to CO asymmetric stretching (ν_3) and in-plane deformation (ν_4), respectively [47,48]. Changes in molecular symmetry from electrostatic, hydrogen and covalent binding induce important shifts as well as the doubly degenerate ν_3 and ν_4 split. The magnitude of this ν_3 shift is attributed to different binding modes of the carbonate species formed. The surface species and their thermal stability on supported γ -Al₂O₃ after CO₂ adsorption has previously been well investigated in the literature [35,47]. Four types of surface chemisorbed carbonate species were identified: a) monodentate, 2) bidentate (1730–1660 and 1270–1230 cm $^{-1}$), 3)

bridged surface carbonate (\sim 1900–1750 cm $^{-1}$ and 1180 cm $^{-1}$) and 4) bicarbonate (\sim 3610–3605, 1650–1639, 1490–1440 and 1236–1225 cm $^{-1}$). The temperature-dependent *in situ* IR spectra of γ -Al₂O₃ obtained after CO₂ adsorption are presented in Fig. 6. Adsorption of CO₂ on γ -Al₂O₃ exhibits three peaks (1659, 1441 and 1229 cm $^{-1}$) that are attributed to surface bicarbonate species [47]. These are weakly bound to the alumina surface and completely desorb at 250 °C.

The temperature programmed-IR spectra of CO_2 adsorbed 20 and 21% WO_3/Al_2O_3 catalysts are shown in Fig. 7a and b, respectively. The 21% WO_3/Al_2O_3 catalyst (Fig. 7a) possesses a characteristic band at 1641 shifts to $1622\,\mathrm{cm}^{-1}$, with increasing temperature and starts to

Fig. 9. Pictorial representation of the acid gas, CO_2 and SO_2 , interactions with WO_3/Al_2O_3 and $K_2O/WO_3/Al_2O_3$ catalyst surfaces.

desorb at 255 °C. The band position and desorbing temperatures (T_d) indicate the presence of bicarbonate species. Alternatively, this shift with temperature can be associated with transformation of adsorbed bicarbonate into more stable bidentate-II carbonate species. This is consistent with the release of gaseous H₂O observed in Fig. 4 where reactive surface hydroxyl recombine and desorb while adsorbed carbonate species are formed. The supported 20% WO₃/Al₂O₃ catalyst (Fig. 7b) contains an IR band at 1678 that shifts to 1630 cm⁻¹ at 225 °C. That band further transforms into a distinct high temperature-stable carbonate species at 325 °C. According to Figs. 2b and 3, both the supported 20 and 21% WO₃/Al₂O₃ catalysts possess a distinct WO_x surface structure. It can be suggested that when WO₃ nanoparticles are absent on the surface WOx monolayer the adsorbed CO2 forms an adsorbed carbonate species at 1581 cm⁻¹. Strong CO₂ interactions with WO₃ nanoparticles, however, are not observed. A detailed literature review based on well-defined organometallic CO2-containing molecular infrared vibrations revealed that formate species can form with recorded vibration at 1612 cm⁻¹ [47,49]. Other adsorbed CO₂ species on the W binding centers, such as $\mu_2\text{-}\eta^2,$ with asymmetric C–O stretch at $1541\,\text{cm}^{-1}$ or $\mu_2\text{-}\eta^3$ Class I at $1321\,\text{cm}^{-1}$ are less likely since they are not stable at elevated temperatures [50,51].

The intensities of adsorbed CO_2 species increase for K_2O promoted catalysts, which is consistent with the CO_2 -TPD findings. For the supported 5% $K_2O/19\%$ WO_3/Al_2O_3 catalyst, three IR bands are observed at 1684, 1659 and 1344 cm⁻¹ (Fig. 7c). The IR band at 1684 cm⁻¹ represents bidentate-I species that desorbed at 150 °C. The IR band at 1659 cm⁻¹ represented bicarbonate species that desorbed at ~ 125 °C. The IR band at 1344 cm⁻¹ disappears much faster than the higher wavenumber peaks and can be associated with monodentate species that desorbed at ~ 50 °C. The 2.5% $K_2O/19.5\%$ WO_3/Al_2O_3 catalyst only exhibit a characteristic IR band at 1639 cm⁻¹ (Fig. 7d) that starts to desorb at ~ 125 °C and is assigned to bicarbonate species.

The CO_2 temperature-programmed IR spectroscopy of the catalysts after the SO_2 pretreatment are presented in Fig. 8. Interestingly, the supported 20 and 21% WO_3/Al_2O_3 catalysts contain adsorbed species analogous to those shown in Fig. 7 after CO_2 adsorption with no obvious SO_2 species observed. This is due to the weak interactions between the SO_2 and WO_3/Al_2O_3 and different molar extinction coefficient for $CO_{2,ads}$ and $SO_{2,ads}$. On the γ -Al $_2O_3$ support, many surface species form depending on the termination of γ -Al $_2O_3$ and its degree of dehydration. In general, they range from weakly bound SO_2 coordinated to surface Al-OH, AlO or Al sites with vibrations at 1334, 1322, 1255–1189 cm $^{-1}$, respectively, while adsorbed sulfite, AlOSO $_2$, exhibits a band at 1135 cm $^{-1}$ [52,53]. The absence of these bands in Fig. 8a and b suggests limited availability of adsorption sites due to the near monolayer surface WO_x coverage.

For the supported 5% $K_2O/19\%$ WO_3/Al_2O_3 catalyst, the IR bands at 1740 and 1670 cm⁻¹ represent the bridged carbonate species, and the bands at 1639 cm⁻¹ are assigned to bidentate-I species which desorb at 150 °C. The band at 1394 cm⁻¹ is assigned to the formation of aluminum sulfate, $Al_2(SO_4)_3$ and the band at 1313 cm⁻¹ is assigned to the physisorbed SO_2 species [40,52,53]. The supported 2.5% $K_2O/19.5\%$ WO_3/Al_2O_3 catalyst exhibits an IR band at 1637 cm⁻¹ ($T_d=255$ °C) that is attributed to bidentate-II species. The IR band at 1390 cm⁻¹ is attributed to the formation of aluminum sulfate, $Al_2(SO_4)_3$ [54]. The characteristic band at 1371 cm⁻¹ represented the asymmetric stretching of the SO_2 vibration and the band at 1325 cm⁻¹ is attributed to physisorbed SO_2 species [47,54,55]. The peak assignment of DRIFT spectra obtained under two different conditions are summarized in Table 2.

4. Conclusions

This work elucidates the fundamental aspects of the molecular structures and surface chemistry of supported WO_3/Al_2O_3 based catalysts in acidic gas CO_2 and SO_2 environments. Based on the data presented in Figs. 7 and 8, the pictorial representation of the complex interplay between the catalyst active sites and the adsorbed species is summarized in Fig. 9.

Surface WO_x species dominate un-promoted and K₂O-promoted supported WO₃/Al₂O₃ catalysts. For dehydrated supported WO₃/Al₂O₃ catalysts with high tungsten oxide coverage, the surface contain both isolated and WOx sites. With increasing potassium oxide loading, the surface WO_x sites become more isolated. The isolated surface WO_x sites on Al₂O₃ are difficult to reduce while K₂O promotion improves reduction of surface WO_x sites at elevated temperatures. For the monolayer covered supported WO₃/Al₂O₃ catalysts, CO₂ adsorption results in weakly bound surface bicarbonate species and addition of K2O changed both the surface carbonate speciation and the CO₂ adsorption capacity. The adsorption of CO₂ on the supported WO₃/Al₂O₃ catalyst mostly results in surface bidentate species. On the K2O-promoted supported WO₃/Al₂O₃ catalyst, surface bidentate and monodentate species are mainly formed. After SO₂ pretreatment, the new sulfate stretching modes are observed over K2O-promoted catalyst, but carbonate stretching vibrations also exist showing a competitive adsorption. With SO₂ pretreatment, the capacity of CO₂ adsorption was suppressed while supported 5%K₂O/19% WO₃/Al₂O₃ catalyst showed the best resistance. As a result, the promotion of K2O for direct synthesis of methyl mercaptan from sour gas can be attributed to 1) enhanced H2 adsorption and/or dissociation, 2) increased CO2 adsorption and 3) improved resistance to strong acidic condition for CO2 adsorption.

Acknowledgements

This work is supported by the Center for Understanding and Control of Acid Gas-Induced Evolution of Materials for Energy (UNCAGE-ME), an Energy Frontier Research Center funded by U.S. Department of Energy, Office of Science, Basic Energy Sciences under grant DE-SC0012577. Part of the work including the DRIFTS and MS was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility. BNL Center for Functional Nanomaterials (CFN) is acknowledged for STEM studies. This research used Hitachi2700C STEM of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. Dr. Si Luo (Oak Ridge National Laboratory) is acknowledged for measuring BET surface areas.

Appendix A. Supplementary data

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.apcatb.2018.03.044.

References

- F. Lallemand, A. Rocher, N. Aimard, Sour gas production: moving from conventional to advanced environmentally Friendly schemes, SPE International Heavy Oil Conference & Exhibition, Beijing, China, 2006 p. SPE 103802–SPE 103802.
- [2] O.R. Rivas, J.M. Prausnitz, Sweetening of sour natural gases by mixed-solvent absorption: Solubilities of ethane, carbon dioxide, and hydrogen sulfide in mixtures of physical and chemical solvents, AIChE J. 25 (1979) 975–984, http://dx.doi.org/10.1002/aic.690250608.
- [3] T. Chakravarty, U.K. Phukan, R.H. Weiland, Reaction of acid gases with mixture of amines, Chem. Eng. Prog. 81 (1985) 32–36.
- [4] L. Kucka, I. Müller, E.Y. Kenig, A. Górak, On the modelling and simulation of sour gas absorption by aqueous amine solutions, Chem. Eng. Sci. 58 (2003) 3571–3578, http://dx.doi.org/10.1016/S0009-2509(03)00255-0.
- [5] W. Taifan, J. Baltrusaitis, Minireview: direct catalytic conversion of sour natural gas (CH4 + H2S + CO2) components to high value chemicals and fuels, Catal. Sci. Technol. 7 (2017) 2919–2929, http://dx.doi.org/10.1039/C7CY00272F.
- [6] W. Taifan, A.A. Arvidsson, E. Nelson, A. Hellman, J. Baltrusaitis, CH4 and H2S reforming to CH3SH and H2 catalyzed by metal-promoted Mo6S8 clusters: a first-principles micro-kinetic study, Catal. Sci. Technol. (2017), http://dx.doi.org/10.1039/C7CY00857K.
- [7] W. Taifan, J. Baltrusaitis, CH4 conversion to value added products: potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B Environ. 198 (2016) 525–547, http://dx.doi.org/10.1016/j.apcatb.2016.05.081.
- [8] P.D. Clark, N.I. Dowling, M. Huang, Conversion of CS2 and COS over alumina and titania under claus process conditions: reaction with H2O and SO2, Appl. Catal. B Environ. 31 (2001) 107–112, http://dx.doi.org/10.1016/S0926-3373(00)00272-1.
- [9] J. Baltrusaitis, E.V. Patterson, C. Hatch, Computational studies of CO2 activation via photochemical reactions with reduced sulfur compounds, J. Phys. Chem. A 116 (2012) 9331–9339, http://dx.doi.org/10.1021/jp3051092.
- [10] V. Hulea, E. Huguet, C. Cammarano, A. Lacarriere, R. Durand, C. Leroi, R. Cadours, B. Coq, Conversion of methyl mercaptan and methanol to hydrocarbons over solid acid catalysts - a comparative study, Appl. Catal. B Environ. 144 (2014) 547–553, http://dx.doi.org/10.1016/j.apcatb.2013.07.056.
- [11] C. Cammarano, E. Huguet, R. Cadours, C. Leroi, B. Coq, V. Hulea, Selective transformation of methyl and ethyl mercaptans mixture to hydrocarbons and H2S on solid acid catalysts, Appl. Catal. B Environ. 156–157 (2014) 128–133, http://dx.doi.org/10.1016/j.apcatb.2014.03.026.
- [12] E. Huguet, B. Coq, R. Durand, C. Leroi, R. Cadours, V. Hulea, A highly efficient process for transforming methyl mercaptan into hydrocarbons and H2S on solid acid catalysts, Appl. Catal. B Environ. 134–135 (2013) 344–348, http://dx.doi.org/ 10.1016/j.apcatb.2013.01.037.
- [13] C. Chang, A.J. Silvestri, C.D. Chang, A.J. Silvestri, The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts, J. Catal. 47 (1977) 249–259, http://dx.doi.org/10.1016/0021-9517(77)90172-5.
- [14] J. Baltrusaitis, T. Bučko, W. Michaels, M. Makkee, G. Mul, Catalytic methyl mercaptan coupling to ethylene in chabazite: DFT study of the first CC bond formation, Appl. Catal. B Environ. 187 (2016) 195–203, http://dx.doi.org/10.1016/j.apcatb. 2016.01.021.
- [15] N. Koivikko, T. Laitinen, S. Ojala, S. Pitkäaho, A. Kucherov, R.L. Keiski, Formaldehyde production from methanol and methyl mercaptan over titania and vanadia based catalysts, Appl. Catal. B Environ. 103 (2011) 72–78, http://dx.doi. org/10.1016/j.apcatb.2011.01.010.
- [16] S.A. Butter, A.T. Jurewicz, W.W. Kaeding, Conversion of alcohols, mercaptans, sulfides, halides and/or amines, US3894107 A, 1975.
- [17] A. Cordova, P. Blanchard, H. Salembier, C. Lancelot, G. Frémy, C. Lamonier, Direct synthesis of methyl mercaptan from H2/CO/H2S using tungsten based supported catalysts: Investigation of the active phase, Catal. Today 292 (2017) 143–153, http://dx.doi.org/10.1016/j.cattod.2016.10.032.

- [18] O.Y. Gutiérrez, C. Kaufmann, J.A. Lercher, Influence of potassium on the synthesis of methanethiol from carbonyl sulfide on sulfided Mo/Al2O3 catalyst, ChemCatChem 3 (2011) 1480–1490, http://dx.doi.org/10.1002/cctc.201100124.
- [19] A. Chen, Q. Wang, Q. Li, Y. Hao, W. Fang, Y. Yang, Direct synthesis of methanethiol from H2S-rich syngas over sulfided Mo-based catalysts, J. Mol. Catal. A Chem. 283 (2008) 69–76, http://dx.doi.org/10.1016/j.molcata.2007.12.014.
- [20] J. Barrault, M. Boulinguiez, C. Forquy, R. Maurel, Synthesis of methyl mercaptan from carbon oxides and H2S with tungsten—alumina catalysts, Appl. Catal. 33 (1987) 309–330, http://dx.doi.org/10.1016/S0166-9834(00)83064-X.
- [21] M. Taoufik, E. Le Roux, J. Thivolle-Cazat, C. Copéret, J.-M. Basset, B. Maunders, G.J. Sunley, Alumina supported tungsten hydrides, new efficient catalysts for alkane metathesis, Top. Catal. 40 (2006) 65–70, http://dx.doi.org/10.1007/s11244-006-0108-4.
- [22] S. Lwin, I.E. Wachs, Olefin metathesis by supported metal oxide catalysts, ACS Catal. 4 (2014) 2505–2520, http://dx.doi.org/10.1021/cs500528h.
- [23] R.D. Oades, S.R. Morris, R.B. Moyes, Alumina-supported tungsten catalysts for the hydrogenation of carbon monoxide, Catal. Today 10 (1991) 379–385, http://dx. doi.org/10.1016/0920-5861(91)80019-6.
- [24] M. Maccarrone, G. Torres, C. Lederhos, J. Badano, C. Vera, M. Quiroga, J. Yori, Kinetic study of the partial hydrogenation of 1-heptyne on tungsten oxide supported on alumina, J. Chem. Technol. Biotechnol. 87 (2012) 1521–1528, http://dx.doi. org/10.1002/jctb.3778.
- [25] M. Massa, A. Andersson, E. Finocchio, G. Busca, Gas-phase dehydration of glycerol to acrolein over Al2O3-, SiO2-, and TiO2-supported Nb- and W-oxide catalysts, J. Catal. 307 (2013) 170–184, http://dx.doi.org/10.1016/j.jcat.2013.07.022.
- [26] C.D. Baertsch, K.T. Komala, Y.-H. Chua, E. Iglesia, Genesis of Brønsted acid sites during dehydration of 2-butanol on tungsten oxide catalysts, J. Catal. 205 (2002) 44–57, http://dx.doi.org/10.1006/jcat.2001.3426.
- [27] T. Kabe, W.H. Qian, A. Funato, Y. Okoshi, A. Ishihara, Hydrodesulfurization and hydrogenation on alumina-supported tungsten and nickel-promoted tungsten catalysts, Phys. Chem. Chem. Phys. 1 (1999) 921–927, http://dx.doi.org/10.1039/ a807913g.
- [28] H. Wang, Z. Liu, Y. Wu, Z. Yao, W. Zhao, W. Duan, K. Guo, Preparation of highly dispersed W/Al2O3 hydrodesulfurization catalysts via a microwave hydrothermal method: Effect of oxalic acid, Arab. J. Chem. 9 (2016) 18–24, http://dx.doi.org/10. 1016/j.arabjc.2014.11.023.
- [29] R. Zhang, J. Jagiello, J.F. Hu, Z.-Q. Huang, J.A. Schwarz, A. Datye, Effect of WO3 loading on the surface acidity of WO3/Al2O3 composite oxides, Appl. Catal. A Gen. 84 (1992) 123–139, http://dx.doi.org/10.1016/0926-860X(92)80111-O.
- [30] I.E. Wachs, T. Kim, E.I. Ross, Catalysis science of the solid acidity of model supported tungsten oxide catalysts, Catal. Today 116 (2006) 162–168, http://dx.doi.org/10.1016/j.cattod.2006.02.085.
- [31] J.A. Horsley, I.E. Wachs, J.M. Brown, G.H. Via, F.D. Hardcastle, Structure of surface tungsten oxide species in the tungsten trioxide/alumina supported oxide system from x-ray absorption near-edge spectroscopy and Raman spectroscopy, J. Phys. Chem. 91 (1987) 4014–4020, http://dx.doi.org/10.1021/j100299a018.
- [32] D.S. Kim, M. Ostromecki, I.E. Wachs, Surface structures of supported tungsten oxide catalysts under dehydrated conditions, J. Mol. Catal. A Chem. 106 (1996) 93–102, http://dx.doi.org/10.1016/1381-1169(95)00186-7.
- [33] T. Kim, A. Burrows, C.J. Kiely, I.E. Wachs, Molecular/electronic structure-surface acidity relationships of model-supported tungsten oxide catalysts, J. Catal. 246 (2007) 370–381, http://dx.doi.org/10.1016/j.jcat.2006.12.018.
- [34] V.Y. Mashkin, V.M. Kudenkov, A.V. Mashkina, Kinetics of the catalytic reaction between methanol and hydrogen sulfide, Ind. Eng. Chem. Res. 34 (1995) 2964–2970, http://dx.doi.org/10.1021/ie00048a006.
- [35] C.J. Keturakis, F. Ni, M. Spicer, M.G. Beaver, H.S. Caram, I.E. Wachs, Monitoring solid oxide CO2 capture sorbents in action, ChemSusChem 7 (2014) 3459–3466, http://dx.doi.org/10.1002/cssc.201402474.
- [36] M.E. McBriarty, D.E. Ellis, Cation synergies affect ammonia adsorption over VOX and (V,W)OX dispersed on α -Al2O3 (0001) and α -Fe2O3 (0001), Surf. Sci. 651 (2016) 41–50, http://dx.doi.org/10.1016/j.susc.2016.03.015.
- [37] E.I. Ross-Medgaarden, I.E. Wachs, Structural determination of bulk and surface tungsten oxides with UV–vis diffuse reflectance spectroscopy and raman spectroscopy, J. Phys. Chem. C 111 (2007) 15089–15099, http://dx.doi.org/10.1021/ jp074219c.
- [38] M.M. Ostromecki, L.J. Burcham, I.E. Wachs, N. Ramani, J.G. Ekerdt, The influence of metal oxide additives on the molecular structures of surface tungsten oxide species on alumina: I. Ambient conditions, J. Mol. Catal. A Chem. 132 (1998) 43–57, http://dx.doi.org/10.1016/S1381-1169(97)00226-4.
- [39] M.E. McBriarty, G.P. Campbell, T.L. Drake, J.W. Elam, P.C. Stair, D.E. Ellis, M.J. Bedzyk, Atomic-scale view of VOX–WOX coreduction on the α-Al2O3 (0001) surface, J. Phys. Chem. C 119 (2015) 16179–16187, http://dx.doi.org/10.1021/ acs.jpcc.5b04802.
- [40] S. Soled, L.L. Murrell, I.E. Wachs, G.B. McVicker, L.G. Sherman, S. Chan, N.C. Dispenziere, R.T.K. Baker, Solid state chemistry of tungsten oxide supported on alumina, Solid State Chem. Catal. (1985) 165–182, http://dx.doi.org/10.1021/bk-1985-0279.ch010.
- [41] S.S. Enumula, V.R.B. Gurram, R.R. Chada, D.R. Burri, S.R.R. Kamaraju, Clean synthesis of alkyl levulinates from levulinic acid over one pot synthesized WO3-SBA-16 catalyst, J. Mol. Catal. A Chem. 426 (2017) 30–38, http://dx.doi.org/10. 1016/j.molcata.2016.10.032.
- [42] K.B. Ghoreishi, M.A. Yarmo, N.M. Nordin, M.W. Samsudin, Enhanced catalyst activity of WO3 using polypyrrole as support for acidic esterification of glycerol with acetic acid, J. Chem. 2013 (2013) 1–10, http://dx.doi.org/10.1155/2013/264832.
- [43] A. Ulgen, W.F. Hoelderich, Conversion of glycerol to acrolein in the presence of WO3/TiO2 catalysts, Appl. Catal. A Gen. 400 (2011) 34–38, http://dx.doi.org/10.

- 1016/j.apcata.2011.04.005.
- [44] A. Chakrabarti, M.E. Ford, D. Gregory, R. Hu, C.J. Keturakis, S. Lwin, Y. Tang, Z. Yang, M. Zhu, M.A. Bañares, I.E. Wachs, A decade + of operando spectroscopy studies, Catal. Today 283 (2017) 27–53, http://dx.doi.org/10.1016/j.cattod.2016. 12.012.
- [45] G. Ramis, G. Busca, C. Cristiani, L. Lietti, P. Forzatti, F. Bregani, Characterization of tungsta-titania catalysts, Langmuir 8 (1992) 1744–1749, http://dx.doi.org/10. 1021/la00043a010.
- [46] P. Iyngaran, D.C. Madden, D.A. King, S.J. Jenkins, Infrared spectroscopy of ammonia on iron: thermal stability and the influence of potassium, J. Phys. Chem. C 118 (2014) 12184–12194, http://dx.doi.org/10.1021/jp409718x.
- [47] G. Busca, V. Lorenzelli, Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces, Mater. Chem. 7 (1982) 89–126, http://dx.doi.org/10.1016/0390-6035(82)90059-1.
- [48] W. Taifan, J.-F. Boily, J. Baltrusaitis, Surface chemistry of carbon dioxide revisited, Surf. Sci. Rep. 71 (2016) 595–671, http://dx.doi.org/10.1016/j.surfrep.2016.09. 001
- [49] W.J. Schlientz, Y. Lavender, N. Welcman, R.B. King, J.K. Ruff, The chemistry of the dinuclear carbonyls anions VI. Anionic metal carbonyl carboxylates, J. Organomet. Chem. 33 (1971) 357–364, http://dx.doi.org/10.1016/S0022-328X(00)87419-7.

- [50] D.H. Gibson, J.O. Franco, J.M. Mehta, M.S. Mashuta, J.F. Richardson, Synthesis and characterization of CO2-bridged bimetallic compounds derived from a rhenium metallocarboxylate. Correlation of IR spectral data with coordination geometry and bonding type, Organometallics 14 (1995) 5068–5072, http://dx.doi.org/10.1021/ om00011a028.
- [51] D.H. Gibson, Carbon dioxide coordination chemistry: metal complexes and surfacebound species. What relationships? Coord. Chem. Rev. 185–186 (1999) 335–355, http://dx.doi.org/10.1016/S0010-8545(99)00021-1.
- [52] A. Datta, R.G. Cavell, R.W. Tower, Z.M. George, Claus catalysis. 1. Adsorption of sulfur dioxide on the alumina catalyst studied by FTIR and EPR spectroscopy, J. Phys. Chem. 89 (1985) 443–449, http://dx.doi.org/10.1021/j100249a014.
- [53] J.M.H. Lo, T. Ziegler, P.D. Clark, SO 2 adsorption and transformations on γ-Al 2 O 3 surfaces: a density functional theory study, J. Phys. Chem. C 114 (2010) 10444–10454, http://dx.doi.org/10.1021/jp910895g.
- [54] X.H. Lin, X.J. Yin, J.Y. Liu, S.F. Yau Li, Elucidation of structures of surface sulfate species on sulfated titania and mechanism of improved activity, Appl. Catal. B Environ. 203 (2017) 731–739, http://dx.doi.org/10.1016/j.apcatb.2016.10.068.
- [55] G. Paiaro, L. Pandolfo, The organometallic chemistry of carbon suboxide, Comments Inorg. Chem. 12 (1991) 213–235, http://dx.doi.org/10.1080/ 02603599108053475.