RO203 - Towers & Pegs

LE SAUX Loup - GERMAIN Antoine

2 Mai 2023

Sommaire

- Le jeu Towers
 - Introduction
 - Mise sous forme PLNE
 - Génération des instances
 - Résultats
 - Bilan de la résolution
- 2 Le jeu Pegs

Le jeu Towers

Règles

- Pas de doublons sur une ligne;
- Pas de doublons sur une colonne;
- Chaque indice autour du bord compte le nombre de tours visibles lorsque l'on regarde la grille dans cette direction.

Figure 1 – Modélisation du problème

Variables et objectif

Variables

$$x_{i,j,k} := \begin{cases} 1 & \text{si la tour de hauteur } k \text{ est dans la case } (i,j) \\ 0 & \text{sinon} \end{cases}$$

$$yu_{i,j} := \begin{cases} 1 & \text{si la tour contenue dans la case } (i,j) \text{ est visible depuis Up} \\ 0 & \text{sinon} \end{cases}$$

 \Longrightarrow idem $yl_{i,j}, yr_{i,j}, yd_{i,j}$.

Fonction objectif

$$\max \sum_{k=1}^{n} x_{1,1,k}.$$

Contraintes de base

Sur une colonne les tours sont toutes de hauteurs différentes :

$$\forall (i,k) \in \{1,\ldots,n\}^2 \quad \sum_{j=1}^n x_{i,j,k} = 1.$$

Sur une ligne les tours sont toutes de hauteurs différentes :

$$\forall (k,j) \in \{1,\ldots,n\}^2 \quad \sum_{i=1}^n x_{i,j,k} = 1.$$

Chaque case doit contenir une tour :

$$\forall (i,j) \in \{1,\ldots,n\}^2 \quad \sum_{k=1}^n x_{i,j,k} = 1.$$

Contraintes de visibilité

• Nombre de tours visibles depuis Up :

$$\forall j \in \{1, \dots, n\} \quad \sum_{i=1}^{n} y u_{i,j} = \mathsf{Up}[j].$$

$$\forall (i,j,k) \in [1,n]^3 \quad yu_{i,j} \le 1 - \frac{1}{n} \sum_{k'=k+1}^n \sum_{i'=1}^{i-1} x_{i',j,k'} + (1 - x_{i,j,k})$$

$$\forall (i,j,k) \in [1,n]^3 \quad yu_{i,j} \ge 1 - \sum_{i=1}^n \sum_{j=1}^{i-1} x_{i',j,k'} - n(1-x_{i,j,k})$$

 \implies idem $yl_{i,j}, yr_{i,j}, yd_{i,j}$.

Génération des instances

		2	2	2	3	1			
							-		
3		3	2	4	1	5	- 1	1	
2		2	5	1	4	3	-	3	
1		5	1	3	2	4	-	2	
2		4	3	2	5	1	-	2	
3		1	4	5	3	2	-	3	
3 2 1 2 3									

- Étape 1 : Générer des grilles complètes admissibles avec la fonction generateGrid et l'outil is_valuable.
- Étape 2 : Générer les vecteurs Up, Down, Left, Right associés avec generateVectors.

Résultats

Figure 2 – Graphique du nombre d'instances résolues, par ordre croissant de difficulté, en fonction du temps de résolution pour 40 instances admissibles générées (10 pour chaque taille de grille $n \in \{5,6,7,8\}$)

Bilan Towers

Complexité : résolution d'une grille

• Complexité temporelle : Non polynomiale

Points clés :

- Un cplex valide
- Génération, affichage et résolution complets
- Idée d'heuristique?

Sommaire

- Le jeu Towers
- 2 Le jeu Pegs
 - Introduction
 - Mise sous forme PLNE
 - Heuristique
 - Génération des instances
 - Résultats
 - Bilan de la résolution

Le jeu Pegs

Règles

- Minimiser le nombre de pions sur la grille;
- A chaque étape, un pion peut être éliminé en sautant par-dessus un autre.

Figure 3 – Illustration du plateau en croix

Modélisation

Définition : grille G

Une grille G est l'état 0 de la partie.

- $G[i,j] = 0 : \mathsf{case} \ \mathsf{vide}$
- G[i, j] = 1 : pion
- G[i,j] = 2 : hors-jeu

Aspect temporel d'une partie

Une partie dure n étapes avec n le nombre initial de pions

Figure 4 - Modélisation

Variables et objectif

Variables à l'état t du jeu

$$x_{i,j,t} := \begin{cases} 1 & \text{si un pion est présent dans la case } (i,j) \text{ à l'étape } t \\ 0 & \text{si la case } (i,j) \text{ ne contient pas de pion à l'étape } t \end{cases}$$

$$d:1=\texttt{"Nord"},2=\texttt{"Sud"},3=\texttt{"Ouest"},4=\texttt{"Est"}$$

$$y_{i,j,t,d} := \begin{cases} 1 & \text{si le pion en } (i,j) \text{ admet un déplacement possible vers } d \\ 0 & \text{sinon} \end{cases}$$

Fonction objectif

L'objectif est de minimiser le nombre de pions sur la grille à l'étape n:

$$\min \sum_{i=1}^{m} \sum_{i=1}^{m} x_{i,j,n}.$$
 (1)

Contraintes capacité de mouvement

• Pas de pion dans une case, pas de capacité de mouvement :

$$\forall (i, j, t, d) \in \{1, \dots, m\}^2 \times \{1, \dots, n-1\} \times \{1, \dots, 4\} \ y_{i, j, t, d} \le x_{i, j, t}.$$

• Capacité de mouvement vers le nord :

$$\forall (i, j, t) \in \{2, \dots, m\} \times \{1, \dots, m\} \times \{1, \dots, n-1\} \quad y_{i, j, t, 1} \le x_{i-1, j, t}$$
$$\forall (i, j, t) \in \{3, \dots, m\} \times \{1, \dots, m\} \times \{1, \dots, n-1\} \quad y_{i, j, t, 1} \le 1 - x_{i-2, j, t}.$$

 \implies idem d = 2, 3, 4.

Contraintes disparition d'un pion entre chaque étape

• $\forall (i, j, t) \in [3, m-2]^2 \times [1, n-1]$

$$x_{i,j,t} - x_{i,j,t+1} = \sum_{d=1}^{4} y_{i,j,t,d} + y_{i+1,j,t,1} - y_{i+2,j,t,1} + y_{i-1,j,t,2} - y_{i-2,j,t,2} + y_{i,j+1,t,3} - y_{i,j+2,t,3} + y_{i,j-1,t,4} - y_{i,j-2,t,4}.$$
(2)

 $\bullet \ \forall t \in [\![1,n]\!]$

$$\sum_{i=1}^{m} \sum_{i=1}^{m} \sum_{d=1}^{4} y_{i,j,t,d} \le 1.$$

- ⇒ Problème du saut impossible en dehors de la grille
- \implies Pour y répondre on considère des grilles de taille m = size(G, 1) + 4.

Contraintes sur les bords

 Les cases en dehors de la grille contiennent toujours des pions qui ne peuvent se mouvoir

$$\forall (i,j) \in \mathcal{C} \ \forall t \in [1,n] \ x_{i,j,t} = 1 ,$$

$$\forall (i,j) \in \mathcal{C} \quad \forall t \in [1,n] \quad \forall d \in [1,4] \quad y_{i,j,t,d} = 0 \quad .$$

Contraintes début de partie

Soit $(i,j) \in [\![3,m-2]\!]^2$ (i.e. à l'intérieur de la grille)

•
$$G[i-2, j-2] = 0 \Longrightarrow x_{i,j,1} = 0;$$

•
$$G[i-2, j-2] = 1 \Longrightarrow x_{i,j,1} = 1;$$

$$\bullet$$
 $G[i-2,j-2]=2\Longrightarrow$

$$\begin{cases} \forall t \in \llbracket 1, n \rrbracket & \forall d \in \llbracket 1, 4 \rrbracket & y_{i,j,t,d} = 0 \\ \forall t \in \llbracket 1, n \rrbracket & x_{i,j,t} = 1 \end{cases}$$

Heuristique : présentation de la méthode

- 4 méthodes heuristiques construitent sur un même schéma :
 - Générer à chaque étape la liste des coups admissibles de la forme [i,j,d] avec $d \in \{\text{``Nord''},\text{``Sud''},\text{``Est''},\text{``Ouest''}\}$ avec la fonction $\texttt{List_of_possible_move}$
 - 2 Effectuer le choix du coup admissible selon l'heuristique
 - Jouer ce coup

Heuristique 1 : Méthode de l'agglomération

Algorithme 1: index_maximizing_agglomeration

Entrée : Une grille G, une liste de coups admissibles L

 $\textbf{Sortie} \; : \quad \text{argmax} \; \left\{ \text{somme des \'el\'ements de } M(\texttt{Move}(G,L[i])) \right\}$

 $i{\in}\{1,\!\ldots\!,\!\operatorname{length}(L)\}$

Heuristique 2 : Méthode de l'agglomération pénalisée

Algorithme 2: index_maximizing_agglomeration_wp

Entrée : Une grille G, une liste de coups admissibles L

 $\textbf{Sortie} \ : \ \ \text{argmax} \ \left\{ \text{somme des \'el\'ements de } M(\texttt{Move}(G,L[i])) \right\}$

 $i{\in}\{1,\!\ldots\!,\!\operatorname{length}(L)\}$

Heuristique 3 : Méthode *closer to center*

Illustration de la méthode

Génération des instances

Figure 5 – Divers plateaux de jeux (d'après WIKIPÉDIA)

Génération des instances

Figure 6 – Exemple de fichier de stockage d'une instance

```
| 2 2 1 1 1 2 2 |
| 2 2 1 1 1 2 2 |
| 1 1 1 1 1 1 1 1 |
| 1 1 1 0 1 1 1 |
| 1 1 1 1 1 1 1 |
| 2 2 1 1 1 2 2 |
| 2 2 1 1 1 2 2 |
```

- Étape 1 : Choisir un format de grille (taille et type de grille).
- Étape 2 : Créer une matrice de 0, 1 et 2 en conséquence.

Résultats

Figure 7 – Pourcentage de pions restants sur la plateau à la dernière étape en fonction des méthodes, et moyenne

Bilan Pegs

Complexité : résolution d'une grille

• Complexité temporelle : Non polynomiale

Points clés :

- Génération et affichage similaires voire plus simples
- cplex et heuristique invalides
- Génération de grille aléatoire très complexe

Bilan du projet

Points clés :

- cplex : contraintes et complexité
- Génération (aléatoire) et affichage
- Heuristiques
- Julia et JuMP