

Social Topic Distributions

Hakan Akyürek Mürüvvet Hasanbaşoğlu

June 2, 2020

Overview

- 1. Finalize pre-processing
- 2. Finalize fine-tuning GloVe Embeddings
- 3. Train GMM
- 4. Calculating Probability Distributions
- **5. Next Tasks -** for the next 2 weeks

1. Finalize pre-processing

Tokenization

```
O r''[a-zA-z0-9]+|\.|\?|\!"
```

- Lowercase
- Stop word removal
 - List taken from nltk.corpus
- Rare word removal (<=2)
- No lemmatization

	Tokens	Vocabulary
Processed	27M	220,518
Custom Processed	19M	88,119

"Here's something quite similar from Berkley:. http://newscenter.berkeley.edu/2014/12/09/organic-conventional-farming-yield-gap/"

"Here s something quite similar from Berkley . http newscenter . berkeley . edu 2014 12 09 organic conventional farming yield gap"

"here something quite similar berkley . http newscenter . berkeley . edu 2014 12 09 organic conventional farming yield gap"

2. Finalize fine-tuning GloVe Embeddings

- Common Crawl pre-trained word vectors
 - 42B tokens
 - 1.9M vocab
 - uncased
 - o 300d vectors
- Out-of-Vocabulary size: 7013 -> fine-tuned
- Size of word embeddings: 1,924,507

- Gaussian Mixture models from sklearn
 - → implements the expectation-maximization algorithm for fitting mixture-of-Gaussian models
- Bayesian Information Criterion (BIC)
 - → in order to select the number of clusters

Expectation Maximization:

1. Initialize random clusters by mean (μ) , covariance (Σ) and mixing probability (π)

$$\theta = \{\pi, \mu, \Sigma\}$$

2. For each data point, compute a probability of being generated by each cluster

$$p(\mathbf{X}, \mathbf{Z}|\theta^*)$$

3. Adjust the parameters in order to maximize the likelihood of the data - iteratively

GaussianMixture(covariance_type='diag', init_params='kmeans', max_iter=100, means_init=None, n_components=10, n_init=1, precisions_init=None, random_state=None, reg_covar=1e-06, tol=0.001, verbose=2, verbose_interval=1, warm_start=False, weights_init=None)

Covariance Types:

- Full: Each cluster has it's own covariance matrix
- Tied: All clusters share the same covariance matrix
- Diagonal: Each cluster has its own diagonal covariance matrix
- Spherical: Each cluster has a single variance
- Initializing cluster means are done by k-means algorithm before the EM algorithm.

- While training we used the vocabulary instead of the whole words.
 - It doesn't make sense to use duplicate data points while training a GMM
 - It makes easier for k-means to converge.
- We trained about 20 models in total and took the one with lowes Bayesian Information Criterion(BIC).
 - The best model we found has 70 clusters and the covariance type for that model is diagonal.

4. Calculating Probability Distributions

- We aren't able to get the likelihoods we want: $p(x|k_n)$.
- Instead we can directly get posterior probabilities: $P(k_n|x)$.

$$k^* = \underset{\theta_k}{\operatorname{arg \, max}} p(k|w_1', \cdots, w_N')$$

$$= \underset{\theta_k}{\operatorname{arg \, max}} p(w_1', \cdots, w_N'|k) p(k)$$

$$k^* = \underset{\theta_k}{\operatorname{arg \, max}} p(k) \prod_{i=1}^N p(w_i'|k)$$

5. Next Tasks

- Define datasets to perform experiments: answering users, random users
- Implement Jensen-Shannon distance computation
- Implement cluster labeling

References

- Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word representation." *Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP)*. 2014.
- Fine tune GloVe embeddings using Mittens
- roamanalytics/mittens: A fast implementation of GloVe, with optional retrofitting
- https://medium.com/analytics-vidhya/basics-of-using-pre-trained-glove-vectors-in-python-d38905f356db
- https://scikit-learn.org/stable/modules/mixture.html

Questions