AQAlg: Advanced Quantum Algorithms

2022 - 2023

Exercises 7: Random walks and quantum walks

Lecturer: Simon Apers

Teaching assistant: Samuel Bouaziz-Ermann¹

Exercise 1. In this exercise we will prove that

$$MT(\epsilon) \le \frac{1}{\delta} \left(\frac{1}{2} \log(n) + \log\left(\frac{1}{\epsilon}\right) \right),$$

or equivalently

$$||P^t p_0 - \pi||_1 \le \epsilon$$

for any initial distribution p_0 if $t \ge \frac{1}{\delta} \left(\frac{1}{2} \log(n) + \log\left(\frac{1}{\epsilon}\right) \right)$.

• We first bound the 2-norm distance. Consider the spectral decomposition

$$P = \sum_{j \ge 1} \lambda_j v_j v_j^T,$$

with $v_1 = \frac{1}{\sqrt{n}} \sum_x e_x$ the uniform eigenvalue-1 eigenvector of P, and v_j for $1 \le j \le n$ the remaining eigenvectors with corresponding eigenvalues $-1 + \delta < \lambda_j < 1 - \delta$. Show that

$$||P^t p_0 - \pi||_2 \le \epsilon$$

if $t \ge \frac{1}{\delta} \log \frac{1}{\epsilon}$.

ullet From this bound we get a bound for the 1-norm distance. Use Cauchy-Schwarz² to show that

$$||P^t p_0 - \pi||_1 \le \sqrt{n} ||P^t p_0 - \pi||_2.$$

From this, deduce that

$$||P^t p_0 - \pi||_1 \le \epsilon$$

if
$$t \ge \frac{1}{\delta} \left(\frac{1}{2} \log(n) + \log\left(\frac{1}{\epsilon}\right) \right)$$
.

Conversely, one can (but we won't) prove that $MT(\epsilon) \in \Omega\left(\frac{1}{\delta}\log\left(\frac{1}{\epsilon}\right)\right)$, so that this bound is tight up to the $\log(n)$ -factor.

Exercise 2. Show that the quantum walk $W(P) = S \cdot C(P)$ is a product of a reflection around (i) the symmetric subspace span $\{|x,y\rangle + |y,x\rangle \mid (x,y) \in E\}$ and (ii) the star subspace span $\{|\psi_x\rangle \mid x \in V\}$.

Use Lemma 1 from the lecture notes to show that the invariant subspace of the quantum walk operator W(P) is spanned by

$$\{|\pi\rangle\} \cup \{|f\rangle \mid f \text{ a closed flow}\},\$$

where $|f\rangle = \sum_{(x,y)\in E} f(x,y) |x,y\rangle$ and f is a closed flow if f(x,y) = -f(y,x) and $\sum_y f(x,y) = 0$ for all $x,y\in V$.

Exercise 3. Show that the quantum walk spectral gap $\Delta = \arccos(\lambda_2)$ is quadratically larger than the random walk spectral gap: $\Delta \ge \sqrt{2\delta}$. Use that $\lambda_2 \le 1 - \delta$ and $\cos x \ge 1 - x^2/2$.

¹samuel.bouaziz-ermann@lip6.fr

²For any $v, w \in \mathbb{R}^n$ it holds that $\langle v, w \rangle \leq ||v||_2 ||w||_2$.

Exercise 4 (Extra). Here we prove that the hitting time

$$\mathrm{HT}(M) \in \widetilde{O}\left(\frac{1}{\delta}\frac{1}{\pi(M)}\right).$$

- Prove that $||p \pi||_1 \le \epsilon$ implies that $p(M) \ge \pi(M) \epsilon$.
- Let $\epsilon_M = \pi(M)/2$. Argue that after $\mathrm{MT}(\epsilon_M) \in \widetilde{O}(1/\delta)$ steps the probability of hitting an element in M is at least $\pi(M)/2$.
- Use this to prove the bound on the expected hitting time.