

TD - EDP

⊳ Exercice 1.

1.1. Soit u une fonction de classe C^4 sur un intervalle $[x - h_0, x + h_0]$, avec $h_0 > 0$. Montrer que $\forall h \in]0, h_0], \exists \xi \in]x - h, x + h[$ tel que

$$\frac{u(x+h) - 2u(x) + u(x-h)}{h^2} = u''(x) + \frac{h^2}{12}u^{(4)}(\xi)$$

En déduire l'ordre de consistance de l'approximation de u''(x).

 \triangleright **Exercice 2.** Soit un domaine 2D rectangulaire $\Omega = [0, L_1] \times [0, L_2]$, avec $(L_1, L_2) \in (\mathbb{R}_+^*)^2$. On s'intéresse à l'équation du Laplacien 2D sur ce domaine :

$$\begin{cases}
-\nu_1 \frac{\partial^2 u}{\partial x_1^2}(x) - \nu_2 \frac{\partial^2 u}{\partial x_2^2}(x) = c(x), & \forall x \in]0, L_1[\times]0, L_2[\\ u(x_1, 0) = u(x_1, L_2) = 0, & \forall x_1 \in]0, L_1[\\ u(0, x_2) = u(L_1, x_2) = 0, & \forall x_2 \in]0, L_2[\end{cases}$$
(1)

avec $\nu = (\nu_1, \nu_2) \in (\mathbb{R}_+^*)^2$ les coefficients de diffusivité dans les directions x_1 et x_2 , et c continue sur Ω .

- **2.1.** On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de Ω , de pas constants h_1 et h_2 dans chacune des deux directions. Soit $(x_{i,j})_{i=0:N_1+1,j=0:N_2+1}$ les points de discrétisation du maillage. On approximme les dérivées partielles secondes par un schéma centré d'ordre 2. Donner le schéma numérique correspondant.
- \triangleright Exercice 3. Soit $u:[0,1] \to \mathbb{R}$ solution du problème

$$\begin{cases}
-u''(x) + c(x)u(x) = f(x), & \forall x \in]0, 1[, \\ u(0) = \alpha, & u(1) = \beta,
\end{cases}$$
(2)

avec $(c, f) \in \mathcal{C}^0([0, 1], \mathbb{R}) \times \mathcal{C}^0([0, 1], \mathbb{R}), \text{ et } \forall x \in [0, 1], c(x) \ge 0.$

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de [0,1], de pas constant h. Soit $(x_i)_{i=0:N+1}$, avec $x_0=0$ et $x_{N+1}=1$, les points de discrétisation du maillage.

3.1. En utilisant un schéma centré d'ordre 2 pour la dérivée seconde de u, écrire le problème approché sous la forme d'un système linéaire

$$A_h u_h = b_h, (3)$$

avec $u_h = (u_i)_{i=1:N} \in \mathbb{R}^N$. Préciser u_0 et u_{N+1} satisfaisant les conditions aux limites du problème.

EDP

3.2. Montrer que la matrice A_h est symétrique définie positive. Que pouvez-vous conclure pour le système (3)?

3.3. On suppose $u \in \mathcal{C}^4([0,1],\mathbb{R})$. Soit $\xi_h(u) = A_h\Pi_h(u) - b_h$ l'erreur de consistance du schéma (3), avec $\Pi_h(u) = (u(x_i))_{i=1:N} \in \mathbb{R}^N$. Montrer que

$$\|\xi_h(u)\|_{\infty} \le \frac{h^2}{12} \sup_{u \in [0,1]} |u^{(4)}(y)|,$$

avec $\forall y \in \mathbb{R}^N, ||y||_{\infty} = \sup_{i \in \{1, \dots, N\}} |y_i|.$

En conclure quant à l'ordre de consistance du schéma (3) pour la norme infinie.

3.4. On suppose toujours $u \in \mathcal{C}^4([0,1],\mathbb{R})$. Montrer que

$$||u_h - \Pi_h(u)||_{\infty} \le \frac{h^2}{96} \sup_{y \in [0,1]} |u^{(4)}(y)|.$$

On admettra que $||A_h^{-1}||_{\infty} \leq \frac{1}{8}$.

En conclure quant à la convergence du schéma (3) pour la norme infinie.

ightharpoonup Exercice 4. Soit $u:[0,1] \to \mathbb{R}$ solution du problème

$$\begin{cases}
-u''(x) + c(x)u(x) = f(x), & \forall x \in]0, 1[, \\
u'(0) = \alpha, & u'(1) = \beta,
\end{cases}$$
(4)

avec $(c, f) \in \mathcal{C}^0([0, 1]) \times \mathcal{C}^0([0, 1])$, et c telle que $\exists c_0 > 0, \forall x \in [0, 1], c(x) \ge c_0$.

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de [0,1], de pas constant h. Soit $(x_i)_{i=0:N+1}$, avec $x_0=0$ et $x_{N+1}=1$, les points de discrétisation du maillage.

4.1. En utilisant un schéma centré d'ordre 2 pour la dérivée seconde de u, et des schémas décentrés d'ordre 1 pour sa dérivée première, écrire le problème approché sous la forme d'un système linéaire

$$A_h u_h = b_h, (5)$$

avec $u_h = (u_i)_{i=0:N+1} \in \mathbb{R}^{N+2}$.

Par la suite, on admet que le système admet une unique solution.

4.2. On suppose $u \in \mathcal{C}^4([0,1],\mathbb{R})$. Soit $\xi_h(u)$ l'erreur de consistance du schéma (5). Montrer que $\forall h_0 > 0, \exists C > 0$ tel que

$$\forall h \in]0, h_0], \quad \|\xi_h(u)\|_{\infty} \le Ch.$$

En conclure quant à l'ordre de consistence du schéma (5) pour la norme infinie.

4.3. Proposer une stratégie permettant d'obtenir un schéma d'ordre 2 pour la norme infinie.

EDP

 \triangleright Exercice 5. Soit $u:[0,1]\times[0,T]\to\mathbb{R}$ solution du problème

$$\begin{cases}
\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), & \forall (x,t) \in]0,1[\times]0,T[,\\ u(0,t) = u(1,t) = 0, & \forall t \in]0,T[,\\ u(x,0) = u_0(x), & \forall x \in]0,1[.\end{cases}
\end{cases} (6)$$

avec f continue sur $[0,1] \times [0,T]$.

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de $[0,1] \times [0,T]$, de pas d'espace h et de pas de temps Δt , tous les deux supposés constants. Soit $(x_i)_{i=0:N+1}$, avec $x_0 = 0$ et $x_{N+1} = 1$, et $(t_n)_{n=0:M+1}$, avec $t_0 = 0$ et $t_{M+1} = T$, les points de discrétisation du maillage.

On se propose d'étudier les propriétés de consistance et de stabilité du schéma "saute-mouton", pour la norme $\|.\|_h$ sur \mathbb{R}^N (espace). Celui-ci s'écrit :

$$\forall n \ge 1, \forall i = 1: N, \quad \frac{u_i^{n+1} - u_i^{n-1}}{2\Delta t} - \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} = f(x_i, t_n). \tag{7}$$

- **5.1.** On suppose que le vecteur $(u_i^1)_{i=1:N}$ a été obtenus avec un schéma consistant d'ordre 2 en temps et 2 en espace pour la norme $\|.\|_h$. Montrer que le schéma saute-mouton est consistant d'ordre 2 en temps et 2 en espace pour la norme $\|.\|_h$.
- **5.2.** Etude de stabilité du schéma pour la norme $\|.\|_h$.
 - a) Montrer que ce schéma s'écrit matriciellement :

$$\forall n = 1: M, \quad Z_h^{n+1} = M_h Z_h^n + 2\Delta t C^n \tag{8}$$

en précisant Z_h^n , M_h , C^n .

- b) Montrer que $\rho(M_h) > 1$. Conclure quant à la stabilité du schéma pour la norme $\|.\|_h$.
- \triangleright Exercice 6. Soit $u:[0,1]\times[0,T]\to\mathbb{R}$ solution du problème

$$\begin{cases} \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), & \forall (x,t) \in]0,1[\times]0,T[,\\ u(0,t) = u(1,t) = 0, & \forall t \in]0,T[,\\ u(x,0) = u_0(x), & \forall x \in]0,1[. \end{cases}$$

$$(9)$$

avec f continue sur $[0,1] \times [0,T]$.

On se propose d'étudier les propriétés de consistance et de stabilité du schéma "implicite", pour la norme infinie sur \mathbb{R}^N (espace). Celui-ci s'écrit :

$$\forall n \ge 1, \forall i = 1: N, \quad \frac{u_i^n - u_i^{n-1}}{\Delta t} - \frac{u_{i+1}^n - 2u_i^n + u_{i-1}^n}{h^2} = f(x_i, t_n). \tag{10}$$

TD - EDP

On souhaite approcher u par la méthode des différences finies. Pour cela, on considère une discrétisation régulière de $[0,1] \times [0,T]$, de pas d'espace h et de pas de temps Δt , tous les deux supposés constants. Soit $(x_i)_{i=0:N+1}$, avec $x_0=0$ et $x_{N+1}=1$, et $(t_n)_{n=0:M+1}$, avec $t_0=0$ et $t_{M+1}=T$, les points de discrétisation du maillage.

6.1. Ce schéma s'écrit matriciellement :

$$\forall n = 1 : M + 1, \quad B_h U_h^n = U_h^{n-1} + \Delta t F^n$$
 (11)

Rappeler ce que valent $U_h^n,\,B_h,\,F^n$ et $U_h^0.$ On notera $c=\frac{\Delta t}{h^2}.$

- **6.2.** Montrer que ce schéma est consistant d'ordre 1 en temps et 2 en espace pour la norme infinie.
- **6.3.** Etude de stabilité du schéma pour la norme infinie.
 - a) Soit $x \in \mathbb{R}^N$. Montrer que $\forall i = 1: N, [B_h x]_i \geq 0 \Rightarrow x_i \geq 0$. En déduire que $[B_h^{-1}]_{i,j} \geq 0$, $\forall i = 1: N, \forall j = 1: N$.
 - **b)** Montrer que $||B_h^{-1}||_{\infty} \leq 1$.
 - c) En déduire que le schéma est inconditionnellement stable pour la norme infinie.
- 6.4. Conclure quant à la convergence du schéma pour la norme infinie.