Amendments to the Claims

1	1. (currently amended) A method for processing radio frequency (RF) signals in a
2	multi-antenna system, comprising:
3	generating L_t input data streams in a transmitter, where L_t is an integer with t
4	transmit antennas, where t is an integer, and where L_t is an integer less than or
5	equal to t;
6	modulating the L_t input data streams to RF signals;
7	switching the RF signals to t RF branches, where t is an integer and $t \ge L_t$;
8	applying a phase-shift transformation to the RF branches by a
9	$t \times t$ matrix multiplication operator Φ_1 , whose output are t RF signals, and in which
10	entries of the matrix $\Phi_{\underline{l}}$ have constant modulus phase-only terms and the modulus
11	phase-only terms adapt to an estimate of an average channel state;
12	transmitting the t RF signals over a channel by the t transmit antennas;
13	receiving the transmitted signals by r antennas in a receiver with r receive
14	antennas, where r is an integer;
15	applying a phase-shift transformation to the r RF signals by a $r \times r$ matrix
16	multiplication operator Φ_2 to generate r streams;
17	selecting L_r branches signal streams from the r streams, where L_r is an
18	integer less than or equal to r;
19	demodulating the L_r signal streams; and
20	processing the demodulated L_r signal streams in baseband to recover output
21	data streams corresponding to the input data streams.

- 1 2. (original) The method of claim 1, in which each of the L_t input data stream has a
- 2 weight, and further comprising:
- 3 summing the L_r weighted data streams before the demodulating and
- 4 decoding.
- 3. (original) The method of claim 1, in which the L_t input data streams are
- 2 generated by a space-time block coder.
- 4. (original) The method of claim 1, in which the L_t input data streams are
- 2 generated by a space-time trellis coder.
- 1 5. (original) The method of claim 1, in which the input data streams are space-time
- 2 layered structures.
- 6. (original) The method of claim 1, in which $t = L_t$, and the matrix Φ_1 is an
- 2 identity matrix.
- 7. (original) The method of claim 1, in which $r = L_r$, and the matrix Φ_2 is an
- 2 identity matrix.
 - 8. (canceled)
- 9. (original) The method of claim 1, in which entries of the matrix Φ_2 have
- 2 constant modulus phase-only terms.

- 1 10. (original) The method of claim 1, in which entries of the matrices Φ_1 and Φ_2
- 2 have constant modulus phase-only terms.
- 1 11. (currently amended) The method of claim 8 claim 1, in which the phase-only
- 2 terms adapt to an estimate of an instantaneous channel state.
 - 12. (canceled)
- 1 13. (original) The method of claim 1, in which the matrix Φ_1 is a fast Fourier
- 2 transform matrix.
- 1 14. (original) The method of claim 1, in which the matrix Φ_2 is a fast Fourier
- 2 transform matrix.
- 1 15. (original) The method of claim 1, in which the matrices Φ_1 and Φ_2 are fast
- 2 Fourier transform matrices.