Scientific Python Developer Test

git repo: https://github.com/yusha-g/Structural-Engineering-Calculations

Table Of Content

1. Files

2.Errors

- 2.1.Test Outputs
- 2.2.Omision of Exponent
- 2.3.Input Categorization in Moment Capacity Calculator

3. Testing

1. Files

The assignment utilizes 3 files.

GLOBAL_VAR.py

- Some variables are required across modules.
- These common variables are stored in GLOBAL_VAR.py
- All values must be initialised (GLOBAL_VAR.set_variables()) before proceeding with beam verification.
- NOTE: value of M is given in kN m, the input must be given in N m (x 1000)

beam_verifier.py

INPUT: None

OUTPUT: utilityRationForFlexture

- Since all required values are initialised in GLOBAL_VAR, no parameters need to be passed.
- It calculates the following values for moment capacity calculator:
 - o a_fromTop, a_fromBott
 - o a_max_fromTop, a_max_fromBott,
 - o dFromTop, dFromBott
 - o alpha1

moment_capacity.py

INPUT:

- The following values are imported from beam_verifier:
 - o a_fromTop, a_fromBott
 - o a_max_fromTop, a_max_fromBott,
 - o dFromTop, dFromBott
 - o alpha1

- The following values are inputted globally:
 - o fy, f'c
 - o As_bott_prov, As_top_prov
 - o bw
 - o covTop, covBott

OUTPUT: M_cap

• After calculations, it return the **M_cap** value to beam_verifier.py

2. Discrepancies in SMath Files

2.1 Test Outputs

- In developer_test.sm we are given the following values:
 - fy = 500
 - $f_c = 40$
 - As_top_prov = 1000
- However, in moment_capacity.sm, we are given a different set of test values:
 - fy = 675
 - f_c = 45
 - $As_{top_prov} = 525$
- Upon calculation, the following values are attained:

	developer_test	moment_capacity
a_max_fromBott / a_max_fromTop	138.6	113.3647
a_fromTop	134.0196	160.8235
a_fromBott	49.0196	30.8824
beta1	0.77	0.73
M_design	1 x 10^5	1 x 10^5
М_сар	1.5032 x 10^8	1.1813 x 10^8
utilityRatioForFlexture	0.6652 x 10^-3	0.8465 x 10^-3

So, the given test output for utilityRatioForFlexture is valid for the set of inputs in moment_capacity.sm

2.2 Omission of Exponent in utilityRatioForFlexture

- As mentioned above, the value of test output value is coming to 0.8465 x 10^-3
- However, only 0.8465 is mentioned in the document.

2.3 Input Categorization in Moment Capacity Calculator

- in moment_capacity.sm variables are categorized into 2:
 - Local inputs
 - Imported Inputs (from developer test)

- Among this, dFromTop and dFromBott are categorized as local inputs even though they are calculated in developer_test.
- It would be more fitting if dFromTop and dFromBott were classified as Imported Inputs.
- The code is written assuming the same. moment_capacity imports the variables from developer_test

3. Testing

- pytest test_developer.py
- Two tests are provided with the above mentioned set of values