BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-110352

(43)Date of publication of application: 11.04.2003

(51)Int.CI.

H01Q 19/06 B64G 3/00 H01Q 3/14 H010 15/02

(21)Application number : 2001-300240

(71)Applicant: SUMITOMO ELECTRIC IND LTD

(22)Date of filing:

28.09.2001

(72)Inventor: IMAI KATSUYUKI

SHIBANO YOSHIZO KURODA MASATOSHI KISHIMOTO TETSUO

(54) ELECTROMAGNETIC LENS ANTENNA APPARATUS, AND POINTING MAP FOR THE SAME APPARATUS

(57)Abstract:

PROBLEM TO BE SOLVED: To provide an electromagnetic lens antenna apparatus, whereby the alignments of a plurality of antenna elements with a plurality of stationary satellites can be adjusted in a simple manner.

SOLUTION: In the structure of the electromagnetic lens antenna apparatus, a support arm 4 for striding a semispherical Luneberg lens 2 provided on a reflection plate 1 is provided. Then, to a circular-arc-form element holding portion 4a of the support arm 4, which is in parallel with the spherical surface of the lens 2 and is accompanied by angle adjusters 5 for adjusting the elevation angle of the support arm 4, antenna elements 3 are attached previously by using attaching means 6 at the spaces corresponding to the spaces of stationary satellites. Thereafter, the support arm 4 is rotated to the predetermined angular position to perform alignments of the plurality of antenna elements in batch.

LEGAL STATUS

[Date of request for examination]

07.11.2002

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-110352 (P2003-110352A)

(43)公開日 平成15年4月11日(2003.4.11)

(51) Int.Cl. ⁷	識別記号	FI	テーマコード(参考)
H01Q 19/06		H 0 1 Q 19/06	5 J O 2 O
B 6 4 G 3/00		B 6 4 G 3/00	5 J O 2 1
H01Q 3/14		H01Q 3/14	
15/02		15/02	
		審査請求 有 請求項(の数10 OL (全 9 頁)
(21)出願番号	特顏2001-300240(P2001-300240)	(71)出願人 000002130	
		住友電気工業株式	大会社
(22) 出顏日	平成13年9月28日(2001.9.28)	大阪府大阪市中央	央区北浜四丁目 5 番33号
		(72)発明者 今井 克之	
		大阪市此花区岛區	量一丁目1番3号 住友電
		気工業株式会社力	卜阪製作所内
		(72)発明者 芝野 俄三	
			野町ときわ台3丁目5番の
		2	
		(74)代理人 100074206	
		弁理士 鎌田 ブ	て二 (外2名)
			最終頁に続く

(54) 【発明の名称】 電波レンズアンテナ装置及び同装置用ポインティングマップ

(57) 【要約】

【課題】 複数の静止衛星に対する複数個のアンテナ素 子の位置合わせ調整を簡単に行える電波レンズアンテナ 装置を提供する。

【解決手段】 反射板1上に半球状ルーネベルグレンズ2を設けたアンテナ装置にレンズ2を跨ぐ支持アーム4を設け、仰角調整用の角度調節器5を伴わせたその支持アーム4のレンズ2の球面に沿う円弧状素子保持部4aに、静止衛星の間隔に対応した間隔でアンテナ素子3を取付け手段6を用いて予め取付け、その後、支持アーム4を所定の角度位置に回転させて複数のアンテナ素子の位置合わせを一括して行える構造にした。

【特許請求の範囲】

【請求項1】 電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子と、そのアンテナ素子を定位置に保持する保持具とをすし、前記アンテナ素子が複数の通信相手に対応させて複数設けられている電波レンズアンテナ装置。

【請求項2】 電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子と、レンズを跨ぐアーチ型の支持アームとを有し、前記アンテナ素子が複数設けられ、前記支持アームのレンズの球面に沿う円弧状素子保持部に、静止衛星の間隔に対応した間隔でアンテナ素子を取付ける手段が設けられ、さらに、レンズ中心を通る軸を支点にして支持アームを任意位置に回転させる仰角調整機が設けられている電波レンズアンテナ装置。

【請求項3】 各アンテナ素子と支持アームとの間に、さらに、アンテナ素子の方位角と偏波調整用回転角の微調整機構を設けた請求項2記載の電波レンズアンテナ装置。

【請求項4】 支持アームを複数有し、同一軸を支点に して回転可能なその複数の支持アームに複数のアンテナ 素子を分配して取付けた請求項2又は3記載の電波レン ズアンテナ装置。

【請求項5】 支持アームを、両端が非円弧であり、その非円弧部間にレンズの球面との距離をほぼ一定に保った円弧状素子保持部が存在する形の変形アームにした請求項2~4のいずれかに記載の電波レンズアンテナ装置。

【請求項6】 半球状ルーネベルグレンズに被せるカバーを有し、そのカバーの表面に、アンテナ素子の位置合わせの指標となす下記等緯度線及び等経度差線と、レンズに対するカバー取付けの基準方位を示すポインティングマークを描いて成る電波レンズアンテナ装置用ポインティングマップ。

(記) アンテナ設置点の経度を ϕ 、緯度を θ 、静止衛星の経度を ϕ s、経度差 $\Delta \phi = \phi - \phi$ s として、

等経度差線は、 $\Delta \phi$ を一定に保ちながら θ を変化させて得られる半球面上の軌跡、

等緯度線は、 θ を一定に保ちながら Δ ϕ を変化させて得られる半球面上の軌跡。

【請求項7】 半球状ルーネベルグレンズの表面又はそのレンズの表面に貼り着けるフィルムに、アンテナ素子の位置合わせの指標となす下記等緯度線及び等経度差線を画いて成る電波レンズアンテナ装置用ポインティングマップ。

(記) アンテナ設置点の経度を ϕ 、緯度を θ 、静止衛星の経度を ϕ s、経度差 Δ ϕ = ϕ - ϕ s として、

等経度差線は、 Δ ϕ を一定に保ちながら θ を変化させて

得られる半球面上の軌跡、

等緯度線は、 θ を一定に保ちながら Δ ϕ を変化させて得られる半球面上の軌跡。

【請求項8】 請求項1乃至5のいずれかの電波レンズアンテナ装置と、請求項6又は7のポインティングマップを組合わせた電波レンズアンテナ装置。

【請求項9】 電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子と、その素子の支持具とを備える電波レンズアンテナ装置と、請求項6又は7記載のポインティングマップを組合わせた電波レンズアンテナ装置。

【請求項10】 電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子とを備える電波レンズアンテナ装置と、半球状のレドームを前記カバーとして用いた請求項6記載のポインティングマップを組合わせ、さらに、前記レドームの表面に取付け可能な秦子フォルダを含め、その秦子フォルダにアンテナ秦子を取付け、静止衛星に対するアンテナ秦子の位置合わせをフォルダ内での取付け点の選択によって行うようにした請求項9に記載の電波レンズアンテナ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、複数の通信相手、例えば複数の静止衛星から電波を受信したり、各静止衛星に向けて電波を送信したりするのに用いるルーネベルグレンズを使用した電波レンズアンテナ装置と、その装置の電波送受信用アンテナ素子の位置合わせを正確化、簡易化するポインティングマップ(位置合わせの指標となす図)に関する。

[0002]

【従来の技術】電波レンズのひとつとして知られるルーネベルグレンズは、球を基本形とする誘電体製のレンズであり、各部の比誘電率 ϵ r が、下式(1)に略従うものになっている。

[0003]

 $εr = 2 - (r/a)^2$ 式(1)

但し a:球の半径

r:球中心からの距離

このルーネベルグレンズを用いたアンテナ装置は、電波 の焦点を半球上の任意の位置に定めてどの方向からの電 波も捕捉でき、また、任意方向に電波を送り出すことが できる。

【0004】かかるルーネベルグレンズアンテナ装置の中に、半球状のレンズを反射板と組合わせて球状レンズと等価な機能を持たせたものがある。その装置の概要を図8に示す。図中1は反射板、2は半球状ルーネベルグレンズ、3はアンテナ素子(一次放射器)である。

【0005】この構造のアンテナ装置について、周回衛星の追尾機能を付与して周回衛星との間で電波の送受信を行うものが既に考え出されている。

【0006】しかし、それはあくまでも周回衛星に対応させたアンテナ装置にすぎない。

[0007]

【発明が解決しようとする課題】例えば、日本には衛星 放送用として複数の静止衛星が存在する。その静止衛星 からの電波の受信にはパラボナアンテナが使用されてい るが、パラボナアンテナや前述の衛星追尾式電波レンズ アンテナ装置では、ひとつの衛星又は同一地点にある衛 星にしか対応できない。

【00008】また、パラボナアンテナは、電波を捕捉できる範囲が狭く、捕捉可能区域から外れた衛星に対しては、アンテナ数を増やして対応せざるを得ない。

【0009】そこで、この発明は、複数の静止衛星に対して独立的に送信又は受信が行える電波レンズアンテナ装置を提供することを目的としている。

【0010】また、その電波レンズアンテナ装置は、衛星数に対応した複数のアンテナ素子を備えたものになるが、複数のアンテナ素子を所望の衛星からの電波の焦点部にそれぞれ確実に位置合わせするのは決して容易でない。そこで、この問題の解決策も併せて提供する。

【0011】従来のパラボラアンテナの場合、電波の送受信方向を衛星の存在する方向に合わせる手法として、アンテナ設置点における球面座標系を考え、アンテナ設置点における衛星の方位角(アジマス角) ϕ 、及び仰角(エレベーション角) θ の直交する2変数を用いて方向を定める(図9参照)。

【0012】このときの方位角、仰角はアンテナの設置される地域(厳密には地点)によって大きく異なるため、例えば、BS、CS放送用のパラボラアンテナ等については、等方位角線、等仰角線が引かれた専用の地図を目安にして祖調を行い、その後、テレビ画面上に表示される受信感度数値を見ながら微調整を行って最適の方向を探す方法が採られている。

【0013】しかしながら、この方法による方向調整は、不慣れな人にとっては難しく、作業に手間取る。ルーネベルグレンズを用いたアンテナ装置は、アンテナそのものではなく、アンテナ素子の位置を調整することになるが、複数の静止衛星に対し、独立的送受信を可能ならしめようとするもの(マルチビーム対応型)は、複数のアンテナ素子を備えるので、煩雑な作業を繰り返す必要があり、調整に長い時間を要する。

【0014】我が国(日本)には、現在、東経110°~162°の範囲に複数の静止衛星が存在する。このうち、ひとつのアンテナ素子で対応できるのは東経110°の位置にある3衛星だけであり、その他の衛星は少しずつ方位がずれた位置にあるため、全数の衛星を対象とする場合には現状では少なくとも10個、半数の衛星を

対象とする場合にも4~6個のアンテナ素子を備える必要があり、調整が相当煩わしいものになる。

【0015】この発明は、複数のアンテナ素子の各衛星に対する位置合わせを、確実かつ容易に行えるようにする案も併せて提供する。

[0016]

【課題を解決するための手段】上記の課題を解決するため、この発明においては、下記(1)~(5)の電波レンズアンテナ装置と、下記(6)、(7)のポインティングマップと、そのマップを採用した下記(8)~(10)の電波レンズアンテナ装置を提供する。

- (1)電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子と、そのアンテナ素子を定位置に保持する保持具とを有し、前記アンテナ素子が複数の通信相手に対応させて複数設けられている電波レンズアンテナ装置。
- (2)電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子と、レンズを跨ぐアーチ型の支持アームとを有し、前記アンテナ素子が複数設けられ、前記支持アームのレンズの球面に沿う円弧状素子保持部に、静止衛星の間隔に対応した間隔でアンテナ素子を取付ける手段が設けられ、さらに、レンズ中心を通る軸を支点にして支持アームを任意位置に回転させる仰角調整機が設けられている電波レンズアンテナ装置。
- (3)上記(4)の装置の各アンテナ素子と支持アーム との間に、さらに、アンテナ素子の方位角と偏波調整用 回転角の微調整機構を設けた電波レンズアンテナ装置。
- (4)上記(2)の装置に設ける支持アームを複数とし、同一軸を支点にして回転可能なその複数の支持アームに複数のアンテナ素子を分配して取付けた電波レンズアンテナ装置。この装置や下記(5)の装置にも方位角、偏波調整用回転角の微調整機構を備えさせることができる。
- (5)上記(2)又は(4)の装置の支持アームを、両端が非円弧であり、その非円弧部間にレンズの球面との距離をほぼ一定に保った円弧状素子保持部が存在する形の変形アームにした電波レンズアンテナ装置。
- (6) 半球状ルーネベルグレンズに被せるカバーを有し、そのカバーの表面に、アンテナ素子の位置合わせの指標となす下記等緯度線及び等経度差線と、レンズに対するカバー取付けの基準方位を示すポインティングマークを描いて成る電波レンズアンテナ装置用ポインティングマップ。
- (記) アンテナ設置点の経度を ϕ 、緯度を θ 、静止衛星の経度を ϕ s、経度差 Δ ϕ = ϕ - ϕ s として、等経度差線は、 Δ ϕ を一定に保ちながら θ を変化させて得られる半球面上の軌跡、等緯度線は、 θ を一定に保ちながら Δ

φを変化させて得られる半球面上の軌跡。

(6) 半球状ルーネベルグレンズの表面又はそのレンズの表面に貼り着けるフィルムに、アンテナ素子の位置合わせの指標となす下配等緯度線及び等経度差線を画いて成る電波レンズアンテナ装置用ポインティングマップ。

(配) アンテナ設置点の経度を ϕ 、緯度を θ 、静止衛星の経度を ϕ s、経度差 $\Delta \phi = \phi - \phi$ s として、等経度差線は、 $\Delta \phi$ を一定に保ちながら θ を変化させて得られる半球面上の軌跡、等緯度線は、 θ を一定に保ちながら $\Delta \phi$ を変化させて得られる半球面上の軌跡。

(8)上記(1)~(5)のいずれかの電波レンズアンテナ装置と、(6)又は(7)のポインティングマップを組合わせた電波レンズアンテナ装置。

(9) 電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状ルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子と、その素子の支持具とを備える電波レンズアンテナ装置と、上記(6)又は(7)のポインティングマップを組合わせた電波レンズアンテナ装置。

(10)電波の反射板と、球の2分断面を反射面に添わせて反射板上に設ける半球状のルーネベルグレンズと、電波の送信、受信もしくは送受信を行うアンテナ素子とを備える電波レンズアンテナ装置と、半球状のレドームを前記カバーとして用いた上記(6)のポインティングマップを組合わせ、さらに、前記レドームの表面に取付け可能な素子フォルダを含め、その素子フォルダにアンテナ素子を取付け、静止衛星に対するアンテナ素子の位置合わせをフォルダ内での取付け点の選択によって行うようにした電波レンズアンテナ装置。

[0017]

【作用】この発明のアンテナ装置は、反射板を例えば水平配置にして使用する場合、反射板よりも上方からの電波にしか対応できないが、赤道を含む面内に存在する複数の静止衛星に対し、捕捉対象衛星数と同数のアンテナ素子を単一の装置でそれぞれの静止衛星に対し、独立的に受信又は送信することができる。これが、本アンテナ装置の大きな利点である。

【0018】また、上記(2)~(5)のアンテナ装置は、素子取付け手段を利用してアンテナ素子を静止衛星の間隔に対応した間隔で支持アームの素子保持部に先ず取付ける。

【0019】次に、アンテナ設置点の緯度、経度をもとに予め作成した表やマップより仰角を決定し、その角度になるところに支持アームを回転させてその位置をロックする。

【0020】その後、アンテナ装置を指定された方向に向けて据え付ける。これにより、各アンテナ素子の方位合わせが一括してなされ、各素子が衛星と対応した間隔で対応した位置に置かれる。

【0021】以上で、対象衛星の総てが概ね捕捉できる

位置にアンテナ素子が位置決めされる。

【0022】衛星からの電波の焦点は、支持アームの円弧の素子保持部に概ね沿っているので、アンテナ素子は、電波の焦点近傍にほぼ揃う。ここで、概ねと述べたのは、赤道上に観測点がある場合のみ円弧の素子保持部の円弧との間にずれが生じるからである。この緯度の変化による素子の焦点からのずれは、あまり大きいものではなく、無視できる。例えば、直径が40cm程度のレンズアンテナ(市販のBS、CS放送用パラボラアンテナは直径45cm程度)を使用する場合、電波ビームの半値幅は4度程度であり、1度程度のずれは、十分に使用に耐え得る範囲内である。勿論、そのずれは無い方がよく、各アンテナ素子毎に仰角及び方向角の微調整機構を設ければ、そのずれの補正が行える。

【0023】また、アンテナ設置点から見た衛星の方位 角や仰角はアンテナの設置点によって変化するが、方位 角と偏波調整用回転角の微調整機構を備えていれば(上 記(3)の装置)、設置点の違いによる角度変化にも対 応できる。

【0024】 素子の取付け間隔を各地域での衛星間隔に合わせた地域別アームを用意し、それを使うことでも誤差を小さくすることができる。

【0025】このように、この発明のアンテナ装置は、 複数の衛星に対応した複数のアンテナ素子の位置合わせ を一括して行え、調整の容易化、確実化、迅速化が図れる。

【0026】なお、素子間間隔が狭くなると、素子の相 互干渉の問題が生じる。支持アームを複数設けた上記

(4)の装置は、各支持アームに素子を分けて取付ける ことで同一アーム上の素子間隔を広げることができ、相 互干渉による取付け規制を緩和できる。

【0027】また、静止衛星は、例えば、日本においては、東経110度~162度の限られた範囲にある。従って、支持アームは、コンパクト化のために両端をストレートにして両端間の距離を縮めたもの、或いは側面視で両端を屈曲させて素子保持部をアンテナ素子の位置決め点に沿わせ易くしたものを用いても差し支えない。これ等のアームを半円のアームと区別するために変形アームと云う。

【0028】次に、上記(6)、(7)のポインティングマップがあると、アンテナ素子の設置点をマップによって確認できる。また、確認した位置にマークをつけることもでき、そこに素子を位置決めすればよいので、ほぼ確実な位置合わせが容易に行え、各素子の位置合わせを個別に行うアンテナ装置についても調整が簡単にな

[0029]

【発明の実施の形態】以下、この発明のアンテナ装置及びポインティングマップの実施形態を図1乃至図7に基

づいて説明する。

【0030】図1~図3の電波レンズアンテナ装置は、 反射板1上に半球状のルーネベルグレンズ2を固定し、 さらに、複数のアンテナ素子3を反射板1上に設けた支 持アーム4に取付けて構成される。

【0031】ルーネベルグレンズ2は、誘電体で形成されており、全体を多層構造にする等して各部の比誘電率を前述の式(1)で求まる値に近似させている。

【0032】アンテナ索子3は、アンテナのみであってもよいし、低雑音増幅器や周波数変換部、発振器等で構成された回路基板とセットになったものでもよい。

【0033】支持アーム4は、レンズ2を跨ぐ、アーチ型アームであり、レンズ2の円弧面に沿った素子保持部4aを有し、さらに、回転支点となる支軸4bを両端に有する。この両端の支軸4bを角度調節器5に回転可能に取付けている。なお、図の装置は、支軸4bがレンズ中心を通る軸線上にあるが、素子の位置決め精度を高めるためにアームの回転中心をレンズ中心を通る軸線上から意図的にずらすこともある。

【0034】角度調節器5は、角度目盛5aを付したブラケット5bで支軸4bを支えるものを示した。この調整器5は、支持アーム4を回転の各位置に固定するロック機構(図示せず)を有する。そのロック機構は、ブラケットに支軸4bと同心の円弧の長孔を設け、そこに支軸4bに取付けたねじを通し、蝶ナットで締付けるものなどでよい。

【0035】支持アーム4の素子保持部4dには、素子取付け手段6が設けられている。その素子取付け手段6は、支持アーム4にホルダのセット位置を指定する凹部、凸部、マークなどを設けて指定された位置に嵌め込み嵌合式のホルダやスライド式ホルダを位置決めし、そのホルダにアンテナ素子3を取付ける構造のものなどが考えられ、この素子取付け手段6を利用してアンテナ素子間の間隔を衛星の間隔に対応したものとなす。

【0036】素子取付け手段6によるアンテナ素子3の取付け間隔は、以下のようにした定める。例えば、日本の場合、主に利用されている静止衛星は、東経110度、124度、128度、132度、136度、144度、150度、154度、158度、162度の各地点にある。このうち、例えば、東経124度と128度の衛星を捕捉する場合、2つの衛星の経度差は4度であるが、日本国内のアンテナ設置点から見れば、衛星間隔はおよそ4、4度となるので、この場合には、素子保持部4a上に4、4度(必要ならば+補正角)の間隔でアンテナ素子3を取付けられるようにしておく。

【0037】また、既に述べたように、支持アーム4の回転による緯度の変化によって電波の焦点が素子保持部と同心の円弧上からずれ、アンテナの設置点によって衛星を臨む方位にもずれが出るので、アンテナ素子3と支持アーム4との間に方位角と偏波調整用回転角の微調整

機構を設けておくのが望ましい。或いは、各地域での平均的な衛星間隔に合致した間隔でアンテナ素子を位置決めして取付けられる構造にした地域別支持アームを用意して、そのアームを使い分けるようにしてもよい。ここで云う地域別支持アームには、アームの一部を交換可能となし、その一部のみを交換してアンテナ素子を地域毎の最適点に位置決めするものも含まれる。

【0038】以下に、図1の電波レンズアンテナ装置の 設置方法を記す。

- 1) 反射板1に装置設置時の方位合わせ用のマーク(例えば真南方向を示すSや南半球で使用するものは真北を示すNなど)を付ける。このマークは、予め付しておいてもよいが、そのマークとアンテナ素子の取付点は互いの位置関係が定まっている必要がある。
- 2) 所望の衛星の数だけアンテナ素子を用意し、アーム 上の該当個所に取り付ける。
- 3) アンテナ設置点の緯度、経度をもとに、表、乃至はマップより仰角を決定し、その角度にアームを合わせる。
- 4) 真南マークが南に向くようにアンテナを設置する。 【0039】この状態で、総ての衛星が概ね捕捉出来ている。
- 5) 各衛星からの電波を受信しながらアンテナ素子の回 転角を調整して、受信レベルが最大になるように設定す る。更に、アンテナ素子の位置を微調整(方位、仰角) して、受信レベルが最大になるように設定固定する。総 ての衛星アンテナ素子についてこの操作を行う。

【0040】こうすることで複数の衛星を一括して容易に捕捉でき、アンテナ素子の位置合わせを容易化することができる。

【0041】図2は、第2実施形態である。先に述べた4.4度の衛星間隔はかなり狭く、同一支持アームにその間隔でアンテナ素子を取付ける場合には、小型のアンテナ素子が必要になる。要求に応えられる小型化が実現できなければ、隣り合うアンテナ素子の相互干渉が起こり、一方の衛星の捕捉を断念せざるを得ない。図2の装置は、同一軸上に回転支点をもつ支持アーム4を2個設けている。このようにアームを複数設けて各支持アーム4にアンテナ素子3を分けて取付ければ隣り合うアンテナ素子間の間隔を広げることが可能であり、これによって上記の不具合を解消できる。

【0042】図3は、変形支持アームの使用例を示している。支持アームの素子保持部4aをレンズ2と同心の円弧形状にするのは、電波の焦点距離を一定させるためである。素子保持部4aから外れた領域は焦点距離には何ら影響を及ぼさず、従って、支持アーム4の両端部は図3のような形状にしてもよい。図3の形にするとアームの両端間の距離が縮み、コンパクト化が図れる。また、図3(a)に鎖線で示すように、アーム4の両端を側面視で屈曲させてもよく、この形は素子保持部4aを

アンテナ素子の位置決め点に理想的に沿わせるのに有効である。

【0043】次に、ポインティングマップの実施形態を 図4に示す。

【0044】図4に示すような等緯度、及び等経度差の 軌跡を描いた図をこの発明ではポインティングマップと 言う。

【0045】例えばアンテナ設置点の経度を ϕ 、緯度を θ 、衛星の経度を ϕ s、また経度差 $\Delta = \phi - \phi$ sとすると、等経度差線は、 $\Delta \phi$ を一定に保ちながら θ を変化させて得られる半球面上の軌跡、等緯度線は、 θ を一定に保ちながら $\Delta \phi$ を変化させて得られる半球面上の軌跡、を描いたものである。

【0046】このポインティングマップ7を、例えばレドーム8に描き、それを半球レンズに被せ、アンテナ設置点の緯度、及びアンテナ設置点の経度と、所望の衛星の存在する経度との差から、衛星捕捉位置を決定する。

【0047】図4のポインティングマップを使ったときの具体的なアンテナ素子設置方法を図5に基づいて説明する。

- 1) 反射板 1 上にレンズアンテナ 2 を設置し、レドーム 8 を被せる。
- レドームにはポインティングマップ7のほかにポインティングマーク9を描いておく。
- 3) レドーム8はポインティングマーク9が後述する方位マーク10と合う向きにする。
- 4) 反射板1には真南方向を示す方位マーク (ここでは S) 10を付す (南半球に設置する場合は真北方向を示
- すマークNを付す)。
- 5) 必要ならS(N)を基準として、対象衛星の経度に 応じて衛星方位をマークしておいてもよい。
- 6) その状態で当該衛星用アンテナ累子3 (一次放射
- 器)をポインティングマップ?上のアンテナ設置点に合せて仮止めする。
- 7) 必要とする総ての衛星のアンテナ素子3について、 同様の操作を行う。
- 8) ポインティングマーク9が方位マーク10に合っていることを確認し、反射板1を動かして、方位マーク10が南(北)を向くように設置する。
- 9) 各衛星からの電波を受信しながらアンテナ素子の回転角を調整して、受信レベルが最大になるように設定する。更に、アンテナ素子の位置を微調整して、受信レベルが最大になるように設定固定する。総ての衛星アンテナ素子についてこの操作を行う。

【0048】このポインティングマップを用いると、衛星の捕捉を確実かつ容易に行え、アンテナ素子の位置合わせを簡単化できる。

【0049】また、ポインティングマップをレドーム等の表面に描くことにより、方位調整用の特別な用具が不要となり、経済面等でも有利になる。

【0050】なお、ここでは、レドーム8上にポインティングマップ7を描き、レドーム本来のアンテナカバーとしての機能を持ったものについて説明したが、アンテナ素子を位置合わせする際のみの一次的な治具であっても良い。その場合、アンテナ設置後そのポインティングマップカバーを取り除ける構造が必要であるので、例えば、マップの描かれている側のみを残した、1/4球のカバーにマップを描いたものが望ましい。

【0051】またレドームが不要なレンズであれば、レンズの表面にマップを印刷してもよく、また、マップが印刷されたシール等をレンズに貼りつけて使用することもできる。

【0052】また、図5には、一つのアンテナ素子3に対し、一つのアンテナ支持ボール12が示されているが、図1~図3の如きアーム方式を用いても良い。また、図6に示すように、支持ポール12と、複数のアンテナ素子3を支える小アーム13を組合わせた支持具を採用してもよい。この場合、アームの形状が、マップの軌跡と完全には一致しない場合があるので、個々のアンテナ素子は方位角と仰角の微調整機構を設けるのがよく、その方が、ポインティングマップの本来の利点である確実設置の目的に合致する。

【0053】さらに、図7に示す如く、ポインティングマップ7を網羅するサイズ、または当該アンテナ素子の存在範囲のみを含むぐらいのサイズの、レドーム8の表面に取り付け可能な又はレドームと一体に形成された素子フォルダ14を含め、個々のアンテナ素子3をフォルダ14内の任意の位置(マップにマークした位置と対応する位置)に固定する表面取付け型のレンズアンテナ装置であってもよい。フォルダ14は、素子や素子取付具の差込み穴等を微小ピッチで多数設けておくと、任意位置の穴を選択して素子や素子取付具を所望位置に取付けることができる。この場合、素子取付具を用いるとそれに方位角と回転角の微調整機構を設けることができる。

【0054】なお、この発明の上記(1)のアンテナ装置は、アンテナ素子を個々に保持するもの、数個をまとめて保持するもののどちらでもよい。

[0055]

【発明の効果】以上述べたように、この発明の電波レンズアンテナ装置は、複数のアンテナ素子を備えているので、複数の静止衛生に対して独立的に送受信を行え、アンテナ数を増やす必要がない。また、回転式支持アームを有するものはその支持アームに複数のアンテナ素子を衛星間隔に対応した間隔で取付け、その後、支持アームを必要角度回転させるので、複数のアンテナ素子の各静止衛星に対する位置合わせが一括して行え、調整作業が非常に簡単になる。

【0056】また、この発明のポインティングマップ及びそれを用いたアンテナ装置は、アンテナ素子の位置決め点(衛星捕捉点)を目視確認して素子の位置合わせを

行うことができ、衛星を確実に容易に捕捉できる。また、方位調整用の特別な用具を必要とせず、経済面でも 有利になる。

【図面の簡単な説明】

【図1】(a)この発明の電波レンズアンテナは装置の 実施形態の側面図

(b) 同上の装置の平面図

【図2】(a)電波レンズアンテナ装置の他の実施形態の側面図

(b) 同上の装置の平面図

【図3】(a)電波レンズアンテナ装置の更に他の実施 形態の側面図

(b) 同上の装置の平面図

【図4】(a)ポインティングマップの実施形態の平面 図

(b) 同上のマップの側面図

【図5】(a)図4のマップの使用例を示す平面図

(b) 同じく側面図

【図 6】ポインティングマップの使用の他の例を示す斜 視図

【図7】ポインティングマップの使用の更に他の例を示

す斜視図

【図8】半球状ルーネベルグアンテナ装置の概念図

【図9】アンテナ設置点から見た衛星の方位角、仰角の 説明図

【符号の説明】

1 反射板

2 ルーネベルグレンズ

3 アンテナ素子

4 支持アーム

4 a 素子保持部

4 b 支軸

5 角度調節器

6 累子取付け手段

7 ポインティングマップ

8 レドーム

9 ポインティングマーク

10 方位マーク

11 衛星方位マーク

12 アンテナ支持ポール

13 小アーム

14 泰子フォルダ

【図2】

(a)

[図8]

S #F.G.

[図9]

フロントページの続き

(72) 発明者 黒田 昌利

大阪市此花区島屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

(72) 発明者 岸本 哲夫

大阪市此花区島屋一丁目1番3号 住友電

気工業株式会社大阪製作所内

Fターム(参考) 5J020 AA02 AA03 BA06 BB09 BC06

CA01 CA02 DA08

5J021 AA03 AA06 AB07 BA01 BA03

DA03 DA05 DA06 GA02 HA07

JA03 JA07