6. Significato geometrico dell'integrale definito

Calcolo di aree

Sia f(x) continua in [a; b].

1) Se $f(x) \ge 0$ in [a; b] si ha :

$$Area(T) = \int_{a}^{b} f(x)dx$$

Fig. 1

2) Se $f(x) \le 0$ in [a; b] si ha :

$$Area(T) = -\int_a^b f(x)dx$$

Fig. 2

3) Se f(x) non ha segno costante in [a; b] si ha: $Area(T) = \int_{-\infty}^{c} f(x) dx - \int_{-\infty}^{b} f(x) dx$

$$Area(T) = \int_{a}^{c} f(x)dx - \int_{c}^{b} f(x)dx$$
cioè

$$Area(T) = \int_{a}^{b} |f(x)| dx$$

Fig. 3

4) Se f(x) e g(x) sono continue in [a; b] e $f(x) \ge g(x) \quad \forall x \in [a; b]$ allora

$$Area(T) = \int_{a}^{b} [f(x) - g(x)]dx$$

Fig. 4

5) Se x = f(y) e x = g(y) sono continue e $f(y) \ge g(y)$ in [c;d], allora :

$$Area(T) = \int_{c}^{d} [f(y) - g(y)]dy$$

Fig. 5

Esercizi

(gli esercizi con asterisco sono avviati)

- *1) Calcolare l'area del dominio piano T delimitato dalla curva $y = log(x^2 + x)$, dall'asse x e dalle rette x = 1 e x = 2.
- *2) Calcolare l'area della regione di piano delimitata dal grafico della funzione $f(x) = \frac{3|x|}{(x+2)^2}$, dall'asse x e dalle rette x = -1 e x = 1.
- *3) Calcolare l'area della regione finita D di piano delimitata dal grafico della funzione

$$f(x) = \begin{cases} -x^2 + 2 & x \le 1\\ e^{-x+1} & x > 1 \end{cases}$$

dall'asse x e dalle rette x = 0 e x = 2.

- *4) Calcolare l'area della regione finita di piano delimitata dal grafico della funzione $f(x) = x \cdot sin(\pi x)$ e dall'asse x per $x \in [0; 2]$.
- *5) Dopo aver tracciato il grafico della funzione $f(x) = x\sqrt{1-x^2}$, calcolare l'area della regione finita di piano delimitata da tale grafico e dall'asse x.
- *6) Tracciare i grafici delle funzioni $f(x) = |x+1|^3$ e $g(x) = -x^2 2x + 1$ e poi calcolare l'area della regione finita di piano D delimitata da tali grafici.

- *7) Calcolare l'area della regione finita di piano T delimitata dal grafico della funzione $f(x) = \frac{1+x}{\sqrt{2+x}}$, dall'asse x con $-1 \le x \le 1$.
- *8) Calcolare l'area della regione finita di piano delimitata dai grafici delle funzioni

$$f(x) = x^2(4-x^2)$$
 e $g(x) = \frac{|x|-2}{|x|+1}$.

- *9) Calcolare l'area della regione finita di piano delimitata dalla parabola $2y=x^2~$ e dalla curva $y=\frac{1}{1+x^2}$.
- *10) Calcolare l'area della regione finita di piano delimitata dalla curva $y = \frac{e^x + e^{-x}}{2}$, dalla retta ad essa tangente nel punto di ascissa 1 e dall'asse y.

Soluzioni

*1. S. 3log3-2; (studiamo il segno della funzione : $log(x^2+x)\geq 0$ per $x^2+x\geq 1$ le cui soluzioni sono : $x\leq -\frac{\sqrt{5}+1}{2}$ V $x\geq \frac{\sqrt{5}-1}{2}$, poiché nell'intervallo [1;2] la funzione è positiva (vedi la figura) si ha $Area(T)=\int_1^2 log(x^2+x)dx$;

*2. S. $3log \frac{3}{4} + 2$; (si ha $\frac{3|x|}{(x+2)^2} \ge 0 \quad \forall x \ne -2$ e poiché |x| = x per $x \ge 0$ e |x| = -x per x < 0

si ha:
$$Area(T) = \int_{-1}^{1} \frac{3|x|}{(x+2)^2} dx = \int_{-1}^{0} \frac{-3x}{(x+2)^2} dx + \int_{0}^{1} \frac{3x}{(x+2)^2} dx = \cdots$$
;

*3. S.
$$\frac{5}{3} + \frac{e-1}{e}$$
; (area = $\int_0^1 (-x^2 + 2) dx + \int_1^2 e^{-x+1} dx$..., vedi grafico);

*4. S. $\frac{4}{\pi}$; (poiché nell'intervallo [0;2] risulta $sin(\pi x) \geq 0$ per $0 \leq x \leq 1$ e $sin(\pi x) \leq 0$ per $1 \leq x \leq 2$, l'area si calcola dividendo l'intervallo [0;2]:

area =
$$\int_0^1 x \cdot \sin(\pi x) \ dx - \int_1^2 x \cdot \sin(\pi x) \ dx = \cdots$$
, l'integrale $\int x \sin(\pi x) \ dx$ si calcola per parti:

$$\int x \sin(\pi x) dx = -\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi} \int \cos(\pi x) dx = -\frac{x}{\pi} \cos(\pi x) + \frac{1}{\pi^2} \sin(\pi x) + c \quad);$$

*5. S. $\frac{2}{3}$; (la funzione è dispari ed è ≥ 0 per $0 \leq x \leq 1$ (vedi figura) pertanto si ha $Area(T) = 2 \int_0^1 x \sqrt{1-x^2} dx$);

*6. S. $\frac{17}{6}$; (tracciato il grafico (vedi figura), si osserva che il dominio è simmetrico rispetto alla retta x=-1, pertanto

$$Area(D) = 2 \int_{-1}^{0} (-x^2 - 2x + 1 - (x+1)^3) dx$$
 ...);

L. Mereu – A. Nanni

Integrali definiti

*7. S. $\frac{4}{3}$; (in figura è riportato il grafico della funzione f e la regione T:

per il calcolo dell'integrale porre $\sqrt{2+x}=t$) ;

*8. S. $\frac{68}{15} + 6log3$; (in figura il grafico delle funzioni e del dominio :

osservare che entrambe le funzioni sono pari , pertanto si ha :

$$Area(T) = 2 \int_0^2 [f(x) - g(x)] dx = 2 \int_0^2 \left[x^2 (4 - x^2) - \frac{x - 2}{x + 1} \right] dx = \cdots);$$

*9. S. $\frac{3\pi-2}{6}$; (entrambe le funzioni sono pari);

*10. S. $\frac{e^{2}-5}{4e}$; (per il calcolo della retta tangente : $y(1)=\frac{e+e^{-1}}{2}=\frac{e^{2}+1}{2e}$, $y'(x)=\frac{e^{x}-e^{-x}}{2}$, $y'(1)=\frac{e^{2}-1}{2e}$, pertanto retta tangente : $y=\frac{(e^{2}-1)}{2e}x+\frac{1}{e}$...);