Printed :	Page	1	of	2
-----------	------	---	----	---

Paper Id: 100516

	 	 			 _	 	
Roll No:							
	 			 	 	 _	

B TECH

(SEM V) THEORY EXAMINATION 2019-20 GEOTECHNICAL ENGINEERING

Time: 3 Hours

Total Marks: 70

Notes:

Attempt all Sections.

• Assume any missing data.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

Sub Code: RCE501

a.	Explain index properties of soil.	
b.	What are the basic structural units of clay minerals?	
c.	List the factors affecting permeability of soils.	
d.	Define critical gradient.	
e.	Differentiate between compression index and expansion index	
f.	What are different types of slope failure?	
g.	Describe various types of pile foundation.	

SECTION

2. Attempt any three of the following:

 $7 \times 3 = 21$

Duoyo that dury unit visight of sail
Prove that dry unit weight of soil
$\gamma_d = \frac{(1 - n_a)G\gamma_w}{1 + a}$
$\gamma_d = \frac{1+e}{1+e}$
Evaloin flow note Describe its anomarties and its annihilations
Explain flow nets Describe its properties and its applications.
A normally consolidated clay layer of 10m thickness has a unit weight of 20 kN/m ²
and specific gravity of 2.72. The liquid limit of the clay is 58%. A structure
constructed on the clay increases the overburder pressure by 10%. Estimate the
consolidation settlement.
Describe the unconfined compression test? What is its advantage over a triaxial
teat?
Using Terzaghi's theory, determine the ultimate bearing capacity of a strip footing
1.5 m wide resting on a saturated clay ($c_u = 30 \text{ kN/m}^2$, $\phi_u = 0$ and $\gamma_{sat} = 20 \text{kN/m}^3$),
at a depth of 2 m below ground level. The water table is also at a depth of 2m from
the ground level. If the water table rises by 1 m, calculate the percentage reduction
in the ultimate bearing capacity.

SECTION C

3. Attempt any one part of the following:

 $7 \times 1 = 7$

- (a) Saturated clay has a water content of 39.3% and a mass specific gravity of 1.84. Determine the void ratio and the specific gravity of soil solids.
 (b) The liquid limit of clay is 64% and its plastic limit is 34%. Its natural water is 48%. What is the liquidity index of the soil? How do you classify the soil as per the IS
 - What is the liquidity index of the soil? How do you classify the so classification?

	ted Page									т				: RC								
Pap	er Id:	100516	Roll No:							<u></u>	<u></u>			L								
4.	Attem	pt any <i>one</i> part	of the fo	llowing:								7 :	x 1 =	= 7								
	(a)	(a) A granular soil deposit is 7 m deep over an impermeable lay table is 4 m below the ground surface. The deposit has a zoil 1.2 m with a saturation of 50%. plot the variation of total stress and effective stress with the depth of deposit, e = 0.6 and G													ne of capillary rise of ss, pore water pressure							
	(b)	A soil sample head permeability or pipe.	ility test.	The head	l fell f	rom 5	1 00	mm	to 3	300	mm	in l mete	500 er of	sec.	The							
5.	Attempt any one part of the following:											7 3	1 =	- 7								
	(a)	Describe standard proctor test and the modified proctor te									st.											
	(b)	A saturated consolidation, 1.5 x 10 ⁻³ m ² /coefficient of	when dra kN. Dete	ained on le ermine the	both si e coefi	des. I	ts co	effi	cier	it of	vol	ume	cha	nge i	m _v is							
6.	Attempt any one part of the following:											$7 \times 1 = 7$										
	(a)																					
	(b)	b) How a slope is analyzed using Swedish circle method? Derive a factor of safety.								an	an expression for the											
7.	Attem	pt any <i>one</i> part	of the fo	llowing:	0	170000						7 3	1 =	7 ,								
	(a)	(ii) Gro	safe bear	rms ring cape earing cap oil pressu	pacity									, i jak								
	(b)	A group of 9 used are 30 cm of clay with efficiency neg	oiles, 10 i diameter unconfin	m long is r with cen ed comp	used tre to o	entre stre	spaength	cing	of	0.9	'n, tŀ	e su	bsoi	l con	sists							