CHAPITRE IX: CONIQUES

www.ecoles-rdc.net

- 1. L'équation du second degré $3y^2 + kxy + x^2 5x + 3 = 0$ contenant un paramètre variable représente une courbe pour chaque valeur de $k \in \mathbb{R}$. Le lieu du centre est :
 - 1. une droite
- 3. une parabole

5. une hyperbole

- 2. un cercle
- 4. une ellipse circulaire
- 2. La parabole d'équation $y^2 = 2$ px a un foyer de coordonnées (P/2; 0), une directrice d'équation x = -P/2 et une corde de coefficient angulaire (m ≠ ∞). La perpendiculaire menée du foyer sur cette corde rencontre le diamètre conjugué à cette corde :
 - 1. sur la directrice

4. ne rencontre pas la distance finie

2. au foyer

- 5. en un point quelconque
- 3. sur la tangente au sommet
- 3. Le distance de foyer (C; 0) de l'hyperbole qui, rapportée à ses axes, a pour équation $x^2/a^2 - y^2/b^2 = 1$ à ses asymptotes vaut :
- 2. c 3. b 4. b/2 5. la solution n'est pas reprise B(0;12)

Figure relative aux questions 4; 5 et 6.

- 4. Trouver l'équation et les coordonnées des foyers de l'ellipse dessinée
 - 1. $x^2/169 + y^2/144 1 = 0$; $(\pm 1; 0)$ 4. $x^2/169 + y^2/144 1 = 0$; $(\pm 1; 0)$
 - 2. $x^2/169 + y^2/144 1 = 0$; $(\pm 5; 0)$ 5. $x^2/169 + y^2/144 1 = 0$; $(0; \pm 5)$
 - 3. $x^2/169 + y^2/144-1=0$; (0; ± 1)