Universidade Federal de Pernambuco Departamento de Matemática - Geometria Analítica 1 Prof. Rodrigo Cavalcante

Quinta Lista de Exercícios Produto misto

- 1. Sejam A, B e C pontos não colineares. Exprima a distância entre um ponto D qualquer do espaço e o plano ABC em função de \overrightarrow{AB} , \overrightarrow{AC} e \overrightarrow{AD} .
- 2. Seja \mathcal{B} uma base ortonormal positiva. Nesta base temos $\overrightarrow{u} = (1, 1, 1)$, $\overrightarrow{v} = (a, 0, 2)$ e $\overrightarrow{w} = (b, 4, 1)$. Determine os valores de a e b de forma que o volume do tetraedo definido por \overrightarrow{u} , \overrightarrow{v} e \overrightarrow{w} seja 1 e a área da face definida por \overrightarrow{u} e \overrightarrow{v} seja $\sqrt{2}$.
- 3. Seja ABCD um tetraedro de volume 3. Determine o volume do prisma triângular obtido pela justaposição de três tetraedos de mesmo volume tais que, para o tetraedro $A_1B_1C_1D_1$ temos $\overrightarrow{A_1B_1} = 2\overrightarrow{AB}$, $\overrightarrow{A_1C_1} = \frac{1}{3}\overrightarrow{AC}$ e $\overrightarrow{A_1D_1} = 4\overrightarrow{AD}$.
- 4. Em relação a uma base ortonormal positiva, são dados os vetores

$$\vec{u} = (1, 2, -1)$$
 , $\vec{v} = (0, 3, -4)$
 $\vec{w} = (1, 0, \sqrt{3})$, $\vec{t} = (0, 0, 2)$

Calcule o volume do tetraedro \overrightarrow{ABCD} , sabendo que $\overrightarrow{AB} = \operatorname{Proj}_{\overrightarrow{v}}^{\overrightarrow{u}}$ que \overrightarrow{AC} é o vetor oposto do versor de \overrightarrow{w} e que $\overrightarrow{DC} = \operatorname{Proj}_{\overrightarrow{t}} \left(\overrightarrow{AB} \wedge \overrightarrow{AC} \right)$.

5. Considere a seguinte identidade vetorial

$$\stackrel{\rightarrow}{A} \wedge \left(\stackrel{\rightarrow}{B} \wedge \stackrel{\rightarrow}{C} \right) = \stackrel{\rightarrow}{B} (\stackrel{\rightarrow}{A} \cdot \stackrel{\rightarrow}{C}) + \stackrel{\rightarrow}{C} (\stackrel{\rightarrow}{A} \cdot \stackrel{\rightarrow}{B})$$

conhecida como regra do BAC - CAB. Use esta identidade para mostrar que

$$[\overrightarrow{u} \wedge \overrightarrow{v}, \overrightarrow{a} \wedge \overrightarrow{b}, \overrightarrow{x} \wedge \overrightarrow{y}] = \left| \begin{array}{cc} [\overrightarrow{u}, \overrightarrow{a}, \overrightarrow{b}] & [\overrightarrow{u}, \overrightarrow{x}, \overrightarrow{y}] \\ [\overrightarrow{v}, \overrightarrow{a}, \overrightarrow{b}] & [\overrightarrow{v}, \overrightarrow{x}, \overrightarrow{y}] \end{array} \right|$$