Tecnologia em Análise e Desenvolvimento de Sistemas - TADS

Redes de Computadores

Prof. Luciano Vargas Gonçalves

E-mail: luciano.goncalves@riogrande.ifrs.edu.br

Aula 4 e 5 – Nível Físico (1) Enlace (2)

Sumário

Redes de Computadores

- Modelos de Referência Padrões
 - RM-OSI
 - TCP/IP

Camada 1 – Física / Interface de Rede

Modelos RM-OSI e TCP/IP

- Camada Física (1):
 - A camada física provê os meios mecânicos, elétricos, funcionais e os procedimentos necessários para ativar, manter e desativar conexões físicas que são usadas para transmitir bits entre entidades de enlace. As entidades da camada física são interconectadas através de um meio físico.
 - Enlace Interliga dois pontos (dois equipamentos).
 - Quem desenvolve o Hardware de rede deve se preocupar com estes padrões da camada física, operadoras de telecomunicações, etc.

- Funções do camada Física (o que ele faz):
 - Ativação e desativação de um enlace físico,
 - Codificação e decodificação do canal (Binário ↔ Impulsos),
 - Multiplexação/Demultiplexação de canais lógicos em um meio físico,
 - Controle e sincronização da transmissão e recepção de dados(bits),
 - Supervisão, manutenção e controle da qualidade de enlace físicos,
 - Transmissão da informação (bits).

- Principal função Nível Físico é a transmissão de Sinal:
 - Transmissão de Sinal:
 - É a Propagação de ondas por meio de um *meio físico* que pode ter suas características alteradas no tempo.
 - Função é levar a informação(sinal) entre dois pontos adjacentes(Ligados).

- Codificação do Sinal
 - Binário para Analógico e vice-versa

Tipos de Meios de Transmissão – Nível

Meios de Transmissão de Sinal

- Meios guiados
 - Cabos de Par Trançado
 - Cabos Coaxiais
 - Fibras Ópticas
- Sem fio
 - Ondas de rádio
 - Micro-ondas
 - Infravermelho
 - Luz

Tipos de Meios de Transmissão - Guiado

Par trançado

- Consiste de 2 fios de cobre encapados enrolados de forma helicoidal.
 - Bastante utilizados no sistema telefônico
- Par Trançado para Redes de Computadores
 - UTP Unshielded Twisted Pair
 - Cabo não blindado
 - STP Shielded Twisted Pair
 - Cabo blindado, usado em ambientes sujeitos a interferências eletromagnéticas constantes (ex.: plantas industriais).

Cabo UTP

Par trançado

UTP – Unshielded Twisted Pair (Cabo não blindado)

STP – Shielded Twisted Pair (Cabo blindado)

STP (par trançado blindado)

Par trançado

- Limitações físicas Recomendações:
 - Cabos com no máximo 100m
 - Topologia em Estrela é a mais usada.

Cabo UTP

Categorias de cabos UTP

Cabos

Comerciais

Categoria	Norma	Largura de Banda	Cabo	Utilização
Cat3	TIA ISO/IEC NBR CENELEC	16 MHz	UTP e F/UTP	Telefonia Ethernet
Cat4	Não Reconhecido	20 MHz	UTP/STP	Token Ring
Cat5	Não Reconhecido	100 MHz	UTP	Fast-Ethernet
Cat5e	TIA ISO/IEC NBR CENELEC	125 MHz	UTP e F/UTP	Fast-Ethernet Gigabit-Ethernet
Cat6	TIA ISO/IEC NBR CENELEC	250 MHz	UTP e F/UTP	Gigabit-Ethernet
Cat6A	TIA ISO/IEC	500 MHz	UTP e F/UTP	10 Gbps
Cat7	ISO/IEC NBR	600 MHz	S/FTP e F/FTP	40 Gbps
Cat7A	Em Desenvolvimento	1 GHz	S/FTP e F/FTP	100 Gbps
(*) A Classe F (equivalente ao Cat7) não é reconhecida pela ANSI/TIA.				

http://labcisco.blogspot.com.br/2013/04/categorias-de-cabos-de-par-trancado.html

Conectores!!

Conector RJ 45 Macho

Conector RJ 45 Fêmea

Conectorização de RJ45 Cat6

Padrão T568 A

• Padrão montagem de Cabos!! T568 A

- Da esquerda para a direita, com o conector RJ 45 com a trava voltada para baixo.
 - BRANCO/VERDE
 - VERDE
 - BRANCO/LARANJA
 - AZUL
 - BRANCO/AZUL
 - LARANJA
 - BRANCO/MARROM
 - MARROM

Cabo Paralelo (Comum)

Aplicação:

- Ligação direta de equipamentos diferentes;
 - Terminal / Nó Central(Hub / Switch)
 - Pontas iguais (Pino a pino)

Cabo Paralelo (Comum)

- Aplicação:
 - Ligação direta de equipamentos diferentes;
 - Terminal / Nó Central(Hub / Switch)

Padrão T568 B

Padrão montagem de Cabos!! T568 B

- Da esquerda para a direita, com o conector RJ 45 com a trava voltada para baixo.
 - BRANCO/LARANJA
 - LARANJA
 - BRANCO/VERDE
 - AZUL
 - BRANCO/AZUL
 - VERDE
 - BRANCO/MARROM
 - MARROM

Cabo Crossover (Cruzado)

- Aplicação:
 - Ligação direta de equipamentos iguais;
 - Terminal / Terminal

Padrões diferentes

Cabo Crossover (Cruzado)

- Aplicação:
 - Ligação direta de equipamentos iguais;
 - Terminal (PC) / Terminal (PC)

Cabos

- TX Transmissor
- RX Receptor

Equipamentos diferentes

Paralelo / Diretos

Equipamentos diferentes Equipamentos preparados

Cruzado / Crossover

Equipamentos iguais Equipamentos não preparados

Aplicação Cabos

Cabo Crossover

Aplicação Cabos

Cabos Crossorver

(Equipamentos semelhantes – linha pontilhada)

PC/PC;

HUB / Switch;

PC / Roteador

Tipos de Meios de Transmissão

Cabo Coaxial

- Apresentam boa imunidade a ruídos (pois apresenta uma blindagem) e boa largura de banda (os cabos modernos podem chegar a até 1 GHz)
- Atualmente bastante utilizado na rede de TV a cabo e em redes metropolitanas (MANs)

Tipos de Meios de Transmissão

Fibras Ópticas

- As fibras contém um núcleo de material ótico flexível que transmite luz.
- Por usarem luz as fibras ópticas são imunes a ruído eletromagnético (como um raio e de motores elétricos, por exemplo)
- Podem atingir altas taxas de transmissão de dados (até 50 Gbps)
- São utilizadas atualmente em troncos de alta velocidade de redes de computadores e no sistema telefônico.
- Existem tecnologias, inclusive, que permitem utilizá-las em redes locais

Tipos de Meios de Transmissão

Fibras Ópticas

Componentes físicos

- Placa de Rede NIC(Network Interface Card)
 - É um tipo de placa que é conectada diretamente com a placa-mãe do computador

- Repetidores (Hubs)
 - Características:
 - As estações se conectam a um hub
 - Opera como nó central através de cabos par trançado (UTP)

Hubs são passivos(sem poder processamento);

- A bridge
 - É um dispositivo que permite interligar dois segmentos de rede diferentes.

Ex: Par Trançado e Coaxial

Comutadores (Switches)

- O uso de comutadores (switches) possibilita a criação de domínios de colisão, evitando que o sinal seja propagado indiscriminadamente para todas as portas.
- O switch faz uso de uma tabela contento os números físicos de todas as estações conectadas, e através da análise dos quadros, endereço de destino e de origem, estabelece uma ligação.
 - Ativo de rede (tem poder de processamento)
 - Atua como nó central na topologia em estrela (Comunicação Ponto a Ponto)
 - Usado em Redes Locais (LAN)

Switch 8. 16 ou 24 portas

Switch 48 a 96 portas

Router

- Interliga diferentes Redes
 - Interna e externa
 - Duas redes internas
- Traça caminhos para os pacotes recebidos
- Opera nas três primeiras camadas do RM-OSI

Aula 5

Camada 1 - Interface de Rede TCP/IP

Camada 2 – Enlace RM-OSI

Modelos - Equivalência

- Modelos RM-OSI (Camada 2 Enlace)
- Modelo TCP/IP (Camada 1 Interface Rede)

Modelo O.S.I.

Camada 2 - Interface de Rede

Característica da Camada de Enlace

Camada 2 - Enlace

Camada Enlace:

- Objetivo da camada:
 - Fornecer uma comunicação eficiente e confiável entre dois pontos adjacentes (ponto a ponto link lógico).
- É função da camada de enlace de dados (datalink layer):
 - Ativar e Desativar o link de comunicação,
 - Detectar erros que ocorram na camada física e recuperar em caso de anomalias,
 - Segmentação e delimitação dos quadros a serem transmitidos,
 - Controlar o fluxo de transmissão,
 - Sequenciamento das unidades (Frames).

Camada 2 - Enlace

Camada – Enlace

- Enlace é link entre dois equipamentos
- Tarefa dessa camada controle entre os enlace

Padrão ETHERNET (IEEE 802)

Padrão IEEE 802

- Padronização da Camada de Enlace em redes locais foi promovida através da recomendação IEEE 802:
 - Objetivo tornar viável o uso da estrutura do Modelo de Referência RM-OSI em redes locais.
 - A camada enlace foi dividida em duas subcamadas.
 - A subcamada de Controle Lógico de Enlace (LLC Logical Link Control)
 - A subcamada de Controle de Acesso ao Meio (MAC Medium Access Control)

Padrão ETHERNET (IEEE 802)

- Camada Enlace (2):
 - Dividida em duas SubCamadas
 - LLC Logical Link Control
 - MAC Media Access Control
 - Padrão IEEE 802

SubCamada MAC:

- Subcamada MAC é responsável pela disciplina do meio físico.
- Define:
 - Quem pode acessar um canal comunicação (autorização)?
 - Quando (momento)?
 - Por quanto tempo (duração)?

Controle da Subcamada MAC depende do Meio físico:

Controle da Subcamada MAC depende do Meio físico:

Dependente do meio físico?

Controle da Subcamada MAC depende do Meio físico:

OSI IEEE 802

Diferentes topologias de redes, diferentes padrões de controle.

- CSMA Protocolo Ethernet (IEEE 802.3)
 - O protocolo de acesso ao meio físico na rede ETHERNET
 - CSMA (Carrier Sense Multiple Access).
 - CS (Carrier Sense): Capacidade de identificar se está ocorrendo transmissão;
 - MA (Multiple Access): Capacidade de múltiplos nós concorrerem pelo utilização da mídia;
 - O protocolo permite que todas as estações possuam o mesmo direito de transmitir,
 - Possui um aproveitamento de aproximadamente 98%, da banda passante.

O CSMA é o método responsável por disciplinar o meio físico compartilhado em uma rede do tipo IEEE 802.3 ou Ethernet.

Topologia de Barramento

A característica principal em um meio físico compartilhado (acesso múltiplo) é a difusão (broadcast).

- CSMA Detecção de portadora em redes de acesso múltiplo.
 - É o mecanismo usado para coordenar a transmissão numa rede Ethernet.
 - O padrão Ethernet não tem uma central capaz de coordenar os acessos de cada computador ao meio físico.
 - Ao invés disso, cada computador participa de um esquema chamado CSMA para ter o acesso no meio.
 - A ideia é simples:
 - Antes de transmitir, cada computador verifica se já existe algum sinal no cabo (meio), se houver, significa que o meio está em uso e portanto este deve aguardar.

- CSMA Detecção de portadora em redes de acesso múltiplo.
 - A técnica CSMA apenas detecta se o meio já está em uso, e evita que se interrompa uma comunicação em andamento por outro computador

 CSMA - Detecção de portadora em redes de acesso múltiplo.

O que ocorre se dois computadores decidem transmitir ao

mesmo instante?

Colisão

Sobreposição do sinal.

 Uma colisão é detectada quando o nível de voltagem excede o valor máximo permitido no canal.

Dois sinais sendo transmitidos ao mesmo tempo se somam, causando o aumento de nível de voltagem no meio transmissão.

- O protocolo CSMA especifica também uma técnica para detectar colisões - (collision detection - CD).
 - Colisões são na verdade interferências que ocorrem quando dois computadores estão transmitindo ao mesmo tempo.
 - A técnica CSMA/CD também permite recuperar a transmissão de dados, após colisão.

- O protocolo CSMA especifica também uma técnica para detectar colisões - (collision detection - CD)
 - A técnica CSMA/CD também permite recuperar a transmissão de dados, após colisão.
 - A estação transmissora envia um sinal de reforço de colisão (JAM),
 - Aguarda um tempo aleatório para retransmitir,
 - Se curto, alta probabilidade de novas colisões
 - Se muito logo, desperdício do canal

Sorteio de novos tempos, nova tentativa de envio

Subcamada MAC (Endereço MAC)

Endereço MAC

- É um endereço físico associado à interface de comunicação, que conecta um dispositivo à rede.
- O MAC é um endereço "único", não havendo duas portas com a mesma numeração, é usado para controle de acesso em redes de computadores.
- Sua identificação é gravada em hardware, isto é, na memória ROM da placa de rede de equipamentos como *Desktops*, notebooks, roteadores, *Smartphones, tablets*, impressoras de rede, etc.

Características do endereço MAC

Endereçamento MAC

Características

- Endereço de 6 octetos (bytes) 48 bits
- 24 bits indicam o fabricante
 (OUI Organizationally Unique Indentifier)
- 24 bits indicam o número da interface de rede definidos pelo fabricante
- Representação Hexadecimal
- Ex.: 00-60-2F-03-A7-5C

Endereço MAC

Gravado no Hardware – Etiqueta externa

Endereço MAC (HW)

```
enp1s0
         Link encap:Ethernet Endereco de HW 1c:1b:0d:43:28:dd
         UP BROADCAST MULTICAST MTU: 1500 Métrica: 1
          pacotes RX:0 erros:0 descartados:0 excesso:0 quadro:0
          Pacotes TX:0 erros:0 descartados:0 excesso:0 portadora:0
          colisões:0 txqueuelen:1000
          RX bytes:0 (0.0 B) TX bytes:0 (0.0 B)
         Link encap:Loopback Local
lo
         inet end.: 127.0.0.1 Masc:255.0.0.0
         endereço inet6: ::1/128 Escopo:Máquina
         UP LOOPBACK RUNNING MTU:65536 Métrica:1
          pacotes RX:1304 erros:0 descartados:0 excesso:0 quadro:0
         Pacotes TX:1304 erros:0 descartados:0 excesso:0 portadora:0
          colisões:0 txqueuelen:1
         RX bytes:160739 (160.7 KB) TX bytes:160739 (160.7 KB)
wlp2s0
         Link encap:Ethernet Endereço de HW 60:e3:27:5e:87:19
          inet end.: 192.168.0.19 Bcast:192.168.0.255 Masc:255.255.25.0
          endereco inet6: 2804:14d:4083:13d5:8a8b:d6a6:9ebc:f117/64 Escopo:Global
          endereço inet6: 2804:14d:4083:13d5:f91f:d293:bb3f:b1ee/64 Escopo:Global
          endereco inet6: fe80::79e0:d62:9098:bf63/64 Escopo:Link
          endereco inet6: 2804:14d:4083:1209::2/128 Escopo:Global
          UP BROADCAST RUNNING MULTICAST MTU: 1500 Métrica: 1
          pacotes RX:16796 erros:0 descartados:0 excesso:0 quadro:0
          Pacotes TX:12638 erros:0 descartados:0 excesso:0 portadora:0
          colisões:0 txqueuelen:1000
          RX bytes:18133028 (18.1 MB) TX bytes:6387847 (6.3 MB)
```

Subcamada MAC (Endereço MAC)

- No quadro enviado a rede, a camada MAC irá incluir o endereço MAC de origem e de destino
- A placa de rede cujo MAC é o receptor receberá o pacote e as outras permanecerão inativas

Frame Ethernet

- Possui endereço de Origem (Source Address)
- Possui endereço de Destino (Destination Address)

- Payload Espaço útil para dados Frame Ethernet
 - Mínimo de 46bytes
 - Máximo de 1500bytes

- Cyclic Redundancy Check (CRC).
 - Este campo de 4 bytes contém o valor de verificação de redundância cíclica (CRC).
 - O CRC é criado pelo dispositivo transmissor e recalculado pelo dispositivo receptor para verificar por danos aos dados que podem ter ocorrido ao frame na transmissão.

Subcamada MAC (Endereço MAC)

Recebimento do FRAME (Destinatário):

- Para receber uma transmissão, a estação fica verificando o meio físico para detectar o sinal de um quadro. Após, ela verifica se o quadro está com o CRC(Cyclic Redundancy Check -Checksum) certo.
- Verifica o endereço de destino (MAC). Se o endereço de destino for o seu, ou o endereço de broadcast ou multicast, a estação RECEBE e Repassa o quadro para a próxima camada.
- Em caso do CRC não estar correto ou o endereço de destino não coincidir com o da estação, o quadro é descartado.

- Repetidores (Hubs) Características:
 - Um sinal válido recebido em qualquer porta do hub é repetido em todas as outras portas;
 - Se dois ou mais envios ocorrem, um sinal de colisão é transmitido a todas as portas;
 - Não avalia endereços MAC
 - Não implementa a Camada de Enlace

Comutadores (Switches)

- Para diminuir o número de colisões a solução é a Ethernet comutada (Switched Ethernet).
- O uso de comutadores (switches) possibilita a criação de domínios de colisão, evitando que o sinal seja propagado indiscriminadamente para todas as portas.
- O switch faz uso de uma tabela contento os números físicos de todas as estações conectadas (MAC), e através da análise dos quadros, endereço de destino e de origem, estabelece uma ligação.

Representação lógica

- A bridge (Ponte)
 - Uma bridge "aprende" que endereços MAC se encontram de um lado e do outro;
 - Um quadro recebido de um segmento é retransmitido no outro se:
 - (1) se destinar a um endereço MAC que a *bridge* sabe estar do outro lado,
 - (2) se destinar a um endereço MAC de difusão (*broadcast* ou *multicast*)
 - (3) se destinar a um endereço MAC ainda desconhecido.

Representação lógica

Comutadores (Switches)

- Em modo full-duplex, o CSMA/CD torna-se desnecessário!
- Para cada estação, o meio para envio é dedicado (sem risco de colisão, portanto).
- Assim, não é mais necessário ouvir a portadora, ou detectar colisões ...

SUBCAMADA LLC

A SubCamada LLC

- A subcamada LLC (Logical Link Control Controle Lógico de Enlace), tem a funções:
 - De estabelecer a comunicação com a camada de Rede,
 - Responsável pelo controle de Fluxo,
 - Responsável pelo controle de erros.

SUBCAMADA LLC

A SubCamada LLC

- Controle de Erros (Error Control)
 - Principal missão garantir a integridade dos quadros, sem erros,
 - Garantir a ordenação destes quadros.
 - Esta função é necessária porque o meio físico está sujeito a distúrbios, tais como:
 - ruídos, que afetam uma transmissão digital.
 - falhas em equipamentos, placas de rede, hubs, conectores, que causam erros.

SUBCAMADA LLC – Controle de Erros

Checksum(Soma de verificação) CRC:

- Objetivo: detectar "erros" (ex.: bits trocados) num segmento transmitido.
- Transmissor:
 - Trata o conteúdo do segmentos como seqüências de números inteiros de 16 bits
 - Checksum: adição (soma em complemento de um) do conteúdo do segmento
 - Transmissor coloca o valor do *checksum* no campo *checksum* do Frame
- Receptor:
 - Computa o checksum do segmento recebido
 - Verifica se o checksum calculado é igual ao valor do campo checksum recebido.
 - NÃO erro detectado Frame Descartado
 - SIM sem erro. Mas talvez haja erros apesar disso.

SUBCAMADA LLC

- Problemas no Checksum(CRC)
 - Estratégias de recuperação:
 - Detectar, Descartar e Solicitar novo Frame
 - Estratégia utilizada
 - Detectar e Corrigir os Erros do Frame original
 - Utilizam bits de redundância
 - Bits adicionais para o controle da informação
 - Alto custo computacional

SUBCAMADA LLC – Controle de Fluxo

Controle de fluxo (Flow Control)

- O controle de fluxo é responsável em limitar o número máximo de quadros a serem enviados entre as estações, sem haver esgotamento do receptor (flooding), e maximizar a capacidade de transferência (throughput) da transmissão.
 - Transmissor rápido e receptor lento;
- Estratégia de solução
 - O emissor deve esperar para transmitir, até que o receptor mande um quadro de controle dando permissão, para mais envio de frames;

Protocolo CSMA/CD e CSMA/CA

- Link para Vídeos:
 - https://www.youtube.com/watch?v=iKn0GzF5-IU
 - Vídeo ilustrado dos protocolos CSMA/CA e CSMA/CD

Simulador de Redes

Packet Tracer

- Software da Cisco para Estudo:
- Destinado a área de Redes
- Alunos curso de Redes

• Permite criar, gerenciar e testar redes simples e

complexas

- Podemos analisar:
 - Os componentes de rede:
 - Parte física(Hardware)
 - Lógica (Software)
 - Arquitetura de Rede
 - LAN, MAN, WAN
 - Configuração lógica das redes
 - Simulação de operações
 - Ping, telnet, DNS, DHCP, HTTP e etc

Interface

Equipamentos disponíveis Ambiente de simulação

Interface

PROF.

Packet Tracer 8 - Testes

Todo terminal tem um de comando prompt testar para configurações, semelhante ao CMD do windows. **Exemplo:** Comando ping IP ipconfig netstat

PROF. LUCIANO VARGAS GONÇALVES

Packet Tracer 8 - Cabos

Dicas:

- Para adicionar componentes basta clicar no componente e clicar na área de trabalho;
- Para adicionar vários componentes do mesmo tipo, basta pressionar e manter CTRL até clicar no componente, após solte o CTRL e clique na tela várias vezes.
- Utilize os cabos apropriados:
 - Par-trançado
 - Entre terminais e equipamento
 - Crossover
 - Entre dois terminais
 - Entre dois equipamentos de rede
 - Cabo universal

Packet Tracer 8 - Conectividade

- Dicas:
 - Luzes dos Link
 - Verdes está pronto para uso a rede;
 - Laranja em configuração
 - Vermelha erro de configuração

Packet Tracer 8 – Terminal rede

Packet Tracer 8 – Terminal rede

Packet Tracer 8 - Terminal rede

Packet Tracer 8 - Download

Links:

Link para Download Packet Tracer

https://www.netacad.com/group/offerings/packet-tracer/

Link para uma vídeo aula Packet Tracer

http://www.youtube.com/watch?v=pv8SWKDtHso

PROF. LUCIANO VARGAS GONÇALVES

Exercício

- Crie uma rede (LAN) com as seguintes especificações;
 - Equipamentos:
 - 3 terminais
 - 1 Hubs
 - Utilize os cabos par trançado para conectar os equipamentos
 - Configure os terminais com os endereços IP Classe C:
 - IP: 192.168.10.1 até 192.168.10.254
 - Mascará(subnet mask): 255.255.255.0
 - Salve o projeto com o nome Simulacao1Hub.pkt

Exercício

- Crie uma rede (LAN) com as seguintes especificações;
 - Equipamentos:
 - 3 terminais
 - 1 Switch
 - Utilize os cabos par trançado para conectar os equipamentos
 - Configure os terminais com os endereços IP Classe C:
 - IP: 192.168.10.1 até 192.168.10.254
 - Mascará(subnet mask): 255.255.255.0
 - Salve o projeto com o nome Simulacao1Hub.pkt

Exercício

Troque os Hubs por Switchs e mantenha o restante;

- Equipamentos:
- 8 terminais
- 1 servidor
- 1 Switchs
- 1 Impressora
- Utilize os cabos par trançado ou crossover para conectar os equipamentos
- Configure os terminais com os endereços IP Classe:
- IP: 192.168.10.1 até 192.168.10.254
- Mascará(subnet mask): 255.255.255.0
- Salve o projeto com o nome Simulacao2Switch.pkt

Dúvidas??

