

NTNU - Norges teknisk-naturvitenskapelige universitet Institutt for bioteknologi og matvitenskap

BACHELOROPPGAVE 2020

20 studiepoeng

Bruk av maskinsyn for deteksjon av ulike fiskearter

(ev. bilde/illustrasjon)

utført av

Hans Alan Whitburn Haugen

Dette arbeidet er gjennomført som ledd i bachelorutdanningen i matteknologi ved Institutt for bioteknologi og matvitenskap, NTNU. Bruk av rapportens innhold skjer på eget ansvar.

Innhold

0.1	Innled	ning – bakgrunn for oppgaven
0.2		
	0.2.1	Introduksjon til kunstig intelligens
	0.2.2	Maskinsyn med OpenCV
	0.2.3	Video med undervannskamera fra merdene
	0.2.4	Analysere video
	0.2.5	Deep Learning med OpenCV
	0.2.6	PyTorch
	0.2.7	Segmentere ut fisk
	0.2.8	Object Detection med OpenCV
	0.2.9	Object Tracking med OpenCV
	0.2.10	Klassifisere hver fisk etter art
	0.2.11	Registrere antall individer av hver art fortløpende 3
0.3	Prakti	sk gjennomføring
	0.3.1	Programvareutvikling med maskinlæring implementert i
		C++
	0.3.2	Videostrøm fra merdene
0.4	Result	ater
0.5	Diskusjon	
0.6	Konklusjon	
0.7	Referanseliste	

- 0.1 Innledning bakgrunn for oppgaven
- 0.2 Teori
- 0.2.1 Introduksjon til kunstig intelligens
- 0.2.2 Maskinsyn med OpenCV
- 0.2.3 Video med undervannskamera fra merdene
- 0.2.4 Analysere video
- 0.2.5 Deep Learning med OpenCV
- 0.2.6 PyTorch
- 0.2.7 Segmentere ut fisk
- 0.2.8 Object Detection med OpenCV
- 0.2.9 Object Tracking med OpenCV
- 0.2.10 Klassifisere hver fisk etter art
- 0.2.11 Registrere antall individer av hver art fortløpende
- 0.3 Praktisk gjennomføring
- 0.3.1 Programvareutvikling med maskinlæring implementert i C++
- 0.3.2 Videostrøm fra merdene
- 0.4 Resultater
- 0.5 Diskusjon
- 0.6 Konklusjon
- 0.7 Referanseliste