Einführung in die Komplexe Analysis Blatt 1

Jendrik Stelzner

13. April 2014

Aufgabe 1 (Real und Imaginärteile)

Es ist

$$\frac{i+1}{i-1} = \frac{i+1}{i(1+i)} = \frac{1}{i} = -i,$$

und

$$\frac{3+4i}{2-i} = \frac{(3+4i)(2+i)}{(2-i)(2+i)} = \frac{2+11i}{5} = \frac{2}{5} + \frac{11}{5}i.$$

Da $i^2=-1$ (also insbesondere $i^4=1$) ist für alle $n\in\mathbb{Z}$

$$i^n = i^{(n \bmod 4)} \begin{cases} 1 & \text{falls } n \equiv 0 \mod 4, \\ i & \text{falls } n \equiv 1 \mod 4, \\ -1 & \text{falls } n \equiv 2 \mod 4, \\ -i & \text{falls } n \equiv 3 \mod 4. \end{cases}$$

Schließlich ist

$$\left(\frac{1-i\sqrt{5}}{3}\right)^n = \Re\left(\left(\frac{1-i\sqrt{5}}{3}\right)^n\right) + i\Im\left(\left(\frac{1-i\sqrt{5}}{3}\right)^n\right)$$

und

$$\begin{split} \sum_{k=1}^{7} \left(\frac{1+i}{\sqrt{2}}\right)^k &= \sum_{k=1}^{7} e^{ik\pi/4} = \sum_{k=1}^{3} e^{ik\pi/4} + \sum_{k=4}^{7} e^{ik\pi/4} \\ &= \sum_{k=1}^{3} e^{ik\pi/4} + \sum_{k=0}^{3} e^{ik\pi/4+i\pi} \\ &= -1 + \sum_{k=1}^{3} e^{ik\pi/4} + \sum_{k=1}^{3} -e^{ik\pi/4} \end{split}$$

Die entsprechenden Real- und Imaginärteile ergeben sich durch direktes Ablesen.

Aufgabe 2 (Betrag und Argument)

Es ist

$$|1+3i| = \sqrt{1+3^2} = \sqrt{10}$$
 und $\arg(1+3i) = \arctan 3$.

Wegen der 2π -Periodizität der Funktion $\mathbb{R} \to \mathbb{C}, t \mapsto e^{it}$ ist

$$z_1 = (1+i)^9 - (1-i)^9 = \left(\sqrt{2}e^{i\pi/4}\right)^9 - \left(\sqrt{2}e^{-i\pi/4}\right)^9$$
$$= 2^{9/2}(e^{i\pi/4} - e^{i\pi/4}) = 16((1+i) - (1-i))$$
$$= 32i,$$

also

$$|z_1| = 32$$
 und $\arg z_1 = \frac{\pi}{2}$.

Da $i^2 = -1$ und $i^4 = 1$ ist $z_2 = i^{2014} = -1$, also

$$|z_2| = 1$$
 und $\arg z_2 = \pi$.

Für $a \in \mathbb{R}$ und $z_3 = \frac{1+ia}{1-ia}$ ist

$$|z_3| = \frac{|1+ia|}{|1-ia|} = \frac{|1+ia|}{|1+ia|} = 1,$$

und da

$$arg(1+ia) = arctan a$$
 und $arg(1-ia) = arctan -a = -arctan a$.

ist

$$\arg z_3 = \arg(1+ia) - \arg(1-ia) = 2\arctan a.$$

Für alle $n \in \mathbb{Z}$ und

$$z_n = (i-1)^n = \left(\sqrt{2}e^{i3\pi/4}\right)^n = 2^{n/2}e^{in3\pi/4}$$

ist $|z_n|=2^{n/2}$ und $n\frac{3}{4}\pi$ ein Argument von z_n .

Aufgabe 3 (Bestimmte Teilmengen)

1.

Da $\Im(z)=0 \Leftrightarrow z\in\mathbb{R}$ für alle $z\in\mathbb{C}$, und für alle $t\in\mathbb{R},z\in\mathbb{C}$

$$\frac{z-3}{1+i} = t \Leftrightarrow z = 3 + t(1+i)$$

ist

$$A_0 = \left\{ z \in \mathbb{C} : \Im\left(\frac{z-3}{1+i}\right) = 0 \right\} = \left\{ z \in \mathbb{C} : \frac{z-3}{1+i} \in \mathbb{R} \right\}$$
$$= \left\{ 3 + t(1+i) : t \in \mathbb{R} \right\}.$$

Es handelt sich bei A_0 also um eine Gerade.

Analog ergibt sich nun auch, dass

$$A_{+} = \left\{ z \in \mathbb{C} : \Im\left(\frac{z-3}{1+i}\right) > 0 \right\}$$

= $\left\{ 3 + t(1+i) + y(i-1) : t \in \mathbb{R}, y \in \mathbb{R}^{+} \right\}$

und

$$A_{-} = \left\{ z \in \mathbb{C} : \Im\left(\frac{z-3}{1+i}\right) > 0 \right\}$$

= $\left\{ 3 + t(1+i) + y(i-1) : t \in \mathbb{R}, y \in \mathbb{R}^{-} \right\}.$

Es ist also A_+ der Teil der komplexen Ebene, der über A_0 liegt, und A_- der Teil der komplexen Ebene, der unter A_0 liegt. Zusammengefasst ergibt sich die folgende Skizze.

2.

Es ist $B = \emptyset$, denn für alle $z \in B$ ist

$$i = 3z\bar{z} + iz - i\bar{z} + 2 = 3|z|^2 - 2\Im(z) + 2 \in \mathbb{R}.$$

Die zeichnerische Darstellung der leeren Menge lassen wir dem geneigten Leser als kreative Übung.

3.

Es ist

$$C = \left\{ z \in \mathbb{C} \left| \left| z - \frac{1}{\sqrt{2}} \right|^2 \left| z + \frac{1}{\sqrt{2}} \right|^2 = \frac{1}{4} \right. \right\} = \left\{ z \in \mathbb{C} \left| \left| z^2 - \frac{1}{2} \right| = \frac{1}{2} \right. \right\}.$$

Es ist also C das Urbild des Kreises mit Radius 1/2 um den Mittelpunkt 1/2 unter der Abbildung $z\mapsto z^2$.

Um dieses Urbild zu skizzieren betrachten wir daher zunächst das Urbild eines einzelnen Punktes $z=re^{i\varphi},\,r\geq 0$, welcher im oberen Qudranten der komplexen Ebene liegt (d.h. $\Im(z),\Re(z)\geq 0$). Da dieses gerade aus den beiden Punkten $\sqrt{r}e^{i\varphi/2}$ und $-\sqrt{r}e^{i\varphi/2}$ besteht, ergibt sich für den gesamten Kreis das Urbild wie in der Abbildung.

Abbildung 1: Der Kreis (links) und sein Urbild (rechts).

(Man beachte etwa, dass die imaginäre Achse als Tangente des Kreises der Winkelhalbierende, bzw. deren konjugiertes, als Tangente von C entspricht.)

Aufgabe 4 (Kleine Stereograpische Projektion)

Wir bemerken zunächst, dass der Ausdruck $(i\lambda+1)/(i\lambda-1)$ für alle $\lambda\in\mathbb{R}$ wohldefiniert ist, da stets $i\lambda-1\neq 0$. Für alle $\lambda\in\mathbb{R}$ ist auch $i\lambda+1\neq i\lambda-1$ (da $1\neq -1$) und daher $(i\lambda+1)/(i\lambda-1)\neq 1$. Schließlich ist für alle $\lambda\in\mathbb{R}$

$$\left|\frac{i\lambda+1}{i\lambda-1}\right| = \frac{|i\lambda+1|}{|i\lambda-1|} = \frac{\sqrt{\lambda^2+1}}{\sqrt{\lambda^2+1}} = 1.$$

Die Abbildung

$$\psi: \mathbb{R} \to S^1 \setminus \{1\}, \lambda \mapsto \frac{i\lambda + 1}{i\lambda - 1}$$

ist also wohldefiniert.

Da jedes $z\in S^1\setminus\{1\}$ eine eindeutige Darstellung als $z=e^{i\varphi}$ mit $\varphi\in(0,2\pi)$ hat, genügt es zum Nachweis der Bijektivität von ψ zu zeigen, dass es für alle $\varphi\in(0,2\pi)$ genau ein $\lambda\in\mathbb{R}$ gibt, so dass φ ein Argument von $\psi(\lambda)$ ist.

Hierfür bemerken wir für $\lambda \in \mathbb{R}$, dass arctan λ ein Argument von $i\lambda + 1$ ist und $-\pi - \arctan \lambda$ ein Argument von $i\lambda - 1$.

Für alle $\lambda \in \mathbb{R}$ ist daher

$$\arctan \lambda - (-\pi - \arctan \lambda) = \pi + 2 \arctan \lambda$$

ein Argument von $\psi(\lambda)$. Da arctan : $\mathbb{R} \to (-\pi/2, \pi/2)$ bijektiv ist zeigt dies nach der obigen Überlegung die Bijektivität von ψ .

Aufgabe 5 (Verschärfte Dreiecksungleichung)

Seien $z,w\in\mathbb{C}$ zunächst beliebig aber fest, wobe
iz=x+iy und w=u+iv mit $x,y,u,v\in\mathbb{R}.$ Wir zeigen zunächst, das
s $|z+w|\leq |z|+|w|.$ Da $|z+w|,|z|+|w|\geq 0$ ist

$$|z+w| \le |z| + |w|$$

$$\Leftrightarrow |z+w|^2 \le (|z| + |w|)^2$$

$$\Leftrightarrow (x+u)^2 + (y+v)^2 \le (x^2 + y^2) + 2|zw| + (u^2 + v^2)$$

$$\Leftrightarrow xu + yv \le |zw|.$$
(1)

Ist $xu+yv<0\leq |zw|$ so zeigt dies die Ungleichung. Ist hingegen $xu+yv\geq 0$ so ergibt sich durch weiteres Umformen, dass

$$xu + yv \le |zw|$$

$$\Leftrightarrow (xu + yv)^2 \le |zw|^2 = |z|^2|w|^2 = (x^2 + y^2)(u^2 + v^2)$$

$$\Leftrightarrow 2xuyv \le x^2v^2 + y^2u^2$$

$$\Leftrightarrow 0 \le (xv - yu)^2,$$
(2)

was offenbar gilt. Dies zeigt die gewünschte Ungleichung. (Der aufmerksame Leser merkt natürlich, dass bereits (1) aufgrund der Cauchy-Schwarz-Ungleichung erfüllt ist.)

Wir behaupten nun, dass die Gleichheit |z+w|=|z|+|w| für $z,w\in\mathbb{C}$ genau dann gilt, wenn z=0 oder w=0 oder es ein $\lambda>0$ gibt mit $w=\lambda z$. Dass die Gleichheit in diesen Fällen gilt ist klar (im letzten der drei Fälle gilt

$$|z+w| = |(1+\lambda)z| = (1+\lambda)|z| = |z| + \lambda|z| = |z| + |\lambda z| = |z| + |w|).$$

Ist hingegen |z+w|=|z|+|w|, so ergibt sich, indem man die obige Herleitung mit Gleichheit statt der Abschätzung \leq wiederholt, aus der (2) entsprechenden Gleichung, dass

$$0 = (xv - yu)^2 \Rightarrow 0 = xv - yu = \det\begin{pmatrix} x & u \\ y & v \end{pmatrix}.$$

Dies zeigt, dass $(x,y),(v,u)\in\mathbb{R}^2$ linear abhängig sind, es also ein $\lambda\in\mathbb{R}$ gibt mit $(u,v)=\lambda(x,y)$. Aus der (1) entsprechenden Gleichung ergibt sich weiter, dass

$$0 \le |zw| = xu + yv = \begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \lambda \begin{pmatrix} x \\ y \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \lambda \left\| \begin{pmatrix} x \\ y \end{pmatrix} \right\|^2,$$

also im Falle $(x,y),(u,v)\neq 0$ (und damit insbesondere $\|(x,y)\|^2>0$), dass $\lambda>0$ sein muss.

Die umgekehrte Dreiecksungleichung ergibt sich daraus, dass nach der bereits gezeigten Ungleichung für alle $z,w\in\mathbb{C}$

$$|z| = |w + z - w| \le |w| + |z - w| \Rightarrow |z| - |w| \le |z - w| \text{ und}$$

$$|w| = |z + w - z| \le |z| + |w - z| \Rightarrow |w| - |z| \le |w - z| = |z - w|,$$

also

$$||z| - |w|| = \max\{|z| - |w|, |w| - |z|\} < |z - w|.$$

Die auf dem Aufgabenblatt angegebene Form ergibt sich nun für alle $z,w\in\mathbb{C}$ durch

$$||z| - |w|| = ||z| - |-w|| \le |z - (-w)| = |z + w|.$$

Wir behaupten, dass die Gleichheit ||z|-|w||=|z+w| genau dann gilt, wenn z=0 oder w=0 oder $w=-\lambda z$ für ein $\lambda>0$. Ist z=0 oder w=0 so ist die Gleichheit offenbar erfüllt, und ist $w=-\lambda z$ für ein $\lambda>0$, so ist

$$\begin{split} |z+w| &= |(1-\lambda)z| = |1-\lambda||z| = \begin{cases} (1-\lambda)|z| & \text{falls } \lambda \leq 1 \\ (\lambda-1)|z| & \text{falls } \lambda > 1 \end{cases} \\ &= \begin{cases} |z|-|w| & \text{falls } \lambda \leq 1 \\ |w|-|z| & \text{falls } \lambda > 1 \end{cases} = \max\{|z|-|w|,|w|-|z|\} \\ &= ||z|-|w||. \end{split}$$

Man bemerke hierfür, dass $|z|\geq \lambda|z|=|w|$ für $\lambda\leq 1$ und $|z|\leq \lambda|z|=|w|$ für $\lambda>1$

Ist andererseits ||z|-|w||=|z+w| mit $z,w\neq 0$, so können wir o.B.d.A. davon ausgehen, dass $|z|\geq |w|$ und erhalten so, dass

$$|z| - |w| = |z + w| \Rightarrow |z| = |z + w| + |w| = |z + w| + |-w|.$$

Es ist nach der obigen Diskussion für Bedingungen von Gleichheit bei der normalen Dreiecksungleichung also z+w=0 (also w=-z) oder -w=0 (was wir wegen $w\neq 0$ ausschließen können) oder $z+w=-\lambda w$ und damit $w=-\frac{1}{1+\lambda}z$ für ein $\lambda>0$.