# THE SECRETS OF AIRBNB INSIGHTS

# **AGENDA**

Objective

Data life cycle

Analysis methods

Recommendations

# Appendix:

- Data sources
- Data methodology
- Data model assumptions

# **OBJECTIVE**



To Conduct a thorough analysis of New York Airbnb Dataset.



Ask effective questions that can lead to data insights



process, analyze and share findings by data visualization and statistical techniques

## DATA LIFE CYCLE

In the first phase the data captured and loaded into various environment.

Once data is cleaned, EDA is done and new features are created.

Then Meaningful insights are derived using various analytical methods.

# 1. Importing libraries and reading the data

| 2 | import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns |                                                           |         |             |                     |               |          |           |                    |       |                |
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------|-------------|---------------------|---------------|----------|-----------|--------------------|-------|----------------|
| 1 | <pre>inp0 = pd.read_csv('AB_NYC_2019.csv') inp0.head(5)</pre>                                |                                                           |         |             |                     |               |          |           |                    |       |                |
|   | id                                                                                           | name                                                      | host_id | host_name   | neighbourhood_group | neighbourhood | latitude | longitude | room_type          | price | minimum_nights |
| 0 | 2539                                                                                         | Clean & quiet<br>apt home by the<br>park                  | 2787    | John        | Brooklyn            | Kensington    | 40.64749 | -73.97237 | Private<br>room    | 149   | 1              |
| 1 | 2595                                                                                         | Skylit Midtown<br>Castle                                  | 2845    | Jennifer    | Manhattan           | Midtown       | 40.75362 | -73.98377 | Entire<br>home/apt | 225   | 1              |
| 2 | 3647                                                                                         | THE VILLAGE<br>OF<br>HARLEMNEW<br>YORK!                   | 4632    | Elisabeth   | Manhattan           | Harlem        | 40.80902 | -73.94190 | Private<br>room    | 150   | 3              |
| 3 | 3831                                                                                         | Cozy Entire<br>Floor of<br>Brownstone                     | 4869    | LisaRoxanne | Brooklyn            | Clinton Hill  | 40.68514 | -73.95976 | Entire<br>home/apt | 89    |                |
| 4 | 5022                                                                                         | Entire Apt:<br>Spacious<br>Studio/Loft by<br>central park | 7192    | Laura       | Manhattan           | East Harlem   | 40.79851 | -73.94399 | Entire<br>home/apt | 80    | 1              |

# 2. Creating features

#### 2.1 categorizing the "availability\_365" column into 5 categories

```
def availability_365_categories_function(row):
       Categorizes the "minimum_nights" column into 5 categories
       if row <= 1:
       return 'very Low'
       elif row <= 100:
       return 'Low'
      elif row <= 200 :
10
       return 'Medium'
11
       elif (row <= 300):
12
        return 'High'
13
       else:
14
           return 'very High'
```

#### 2.2 categorizing the "minimum\_nights" column into 5 categories

```
def minimum_night_categories_function(row):
    """

Categorizes the "minimum_nights" column into 5 categories

if row <= 1:
    return 'very Low'

elif row <= 3:
    return 'Low'

elif row <= 5:
    return 'Medium'

elif (row <= 7):
    return 'High'

else:
    return 'very High'</pre>
```

#### 2.3 categorizing the "number\_of\_reviews" column into 5 categories

```
def number_of_reviews_categories_function(row):
    """

    Categorizes the "number_of_reviews" column into 5 categories
    if row <= 1:
        return 'very Low'
    elif row <= 5:
        return 'Low'
    elif row <= 10:
        return 'Medium'
elif (row <= 30):
        return 'High'
else:
    return 'very High'</pre>
```

Note: By categorizing, we are able to better understand relationships and connections between things and better communicate our findings.

# 3. Fixing columns

Fix: reviews\_per\_month is of object Dtype. datetime64 is a better Dtype for this column.

```
1 inp0.last review = pd.to datetime(inp0.last review)
 2 inp0.last review
        2018-10-19
        2019-05-21
               NaT
        2019-05-07
        2018-11-19
48890
               NaT
48891
               NaT
48892
               NaT
48893
               NaT
48894
               NaT
Name: last_review, Length: 48895, dtype: datetime64[ns]
 1 inp0.columns
Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
       'neighbourhood', 'latitude', 'longitude', 'room_type', 'price',
       'minimum_nights', 'number_of_reviews', 'last_review',
       'reviews per month', 'calculated host listings count',
       'availability 365', 'availability 365 categories',
       'minimum night categories', 'number of reviews categories',
       'price_categories'],
      dtype='object')
  There are no more Dtypes to be fixed and data does not contain inconsistencies such as shifted columns, which is need to align correctly. The columns
  necessery for the futher analysis are also derived.
```

# 4. Data types

#### 4.1 Categorical

```
1 inp0.columns
Index(['id', 'name', 'host_id', 'host_name', 'neighbourhood_group',
       'neighbourhood', 'latitude', 'longitude', 'room type', 'price',
       'minimum_nights', 'number_of_reviews', 'last_review',
       'reviews_per_month', 'calculated_host_listings_count',
       'availability_365', 'availability_365_categories',
       'minimum night categories', 'number of reviews categories',
       'price_categories'],
      dtype='object')
 1 # Categorical nominal
 categorical_columns = inp0.columns[[0,1,3,4,5,8,16,17,18,19]]
 3 categorical columns
Index(['id', 'name', 'host name', 'neighbourhood group', 'neighbourhood',
       'room type', 'availability 365 categories', 'minimum night categories',
       'number of reviews categories', 'price categories'],
      dtype='object')
4.2 Numerical
```

|      | price          | minimum_nights | number_of_reviews | reviews_per_month | calculated_host_listings_count | availability_365 |
|------|----------------|----------------|-------------------|-------------------|--------------------------------|------------------|
| coun | t 48895.000000 | 48895.000000   | 48895.000000      | 38843.000000      | 48895.000000                   | 48895.000000     |
| mea  | 152.720687     | 7.029962       | 23.274466         | 1.373221          | 7.143982                       | 112.781327       |
| st   | 240.154170     | 20.510550      | 44.550582         | 1.680442          | 32.952519                      | 131.622289       |
| mi   | 0.000000       | 1.000000       | 0.000000          | 0.010000          | 1.000000                       | 0.000000         |
| 25%  | 69.000000      | 1.000000       | 1.000000          | 0.190000          | 1.000000                       | 0.000000         |
| 50%  | 106.000000     | 3.000000       | 5.000000          | 0.720000          | 1.000000                       | 45.000000        |
| 75%  | 175.000000     | 5.000000       | 24.000000         | 2.020000          | 2.000000                       | 227.000000       |
| ma   | x 10000.000000 | 1250.000000    | 629.000000        | 58.500000         | 327.000000                     | 365.000000       |

#### 4.3 Coordinates and date

1 coordinates = inp0.columns[[5,6,12]]
2 inp0[coordinates]

|       | neighbourhood      | latitude | last_review |
|-------|--------------------|----------|-------------|
| 0     | Kensington         | 40.64749 | 2018-10-19  |
| 1     | Midtown            | 40.75362 | 2019-05-21  |
| 2     | Harlem             | 40.80902 | NaT         |
| 3     | Clinton Hill       | 40.68514 | 2019-05-07  |
| 4     | East Harlem        | 40.79851 | 2018-11-19  |
|       |                    |          |             |
| 48890 | Bedford-Stuyvesant | 40.67853 | NaT         |
| 48891 | Bushwick           | 40.70184 | NaT         |
| 48892 | Harlem             | 40.81475 | NaT         |
| 48893 | Hell's Kitchen     | 40.75751 | NaT         |
| 48894 | Hell's Kitchen     | 40.76404 | NaT         |
|       |                    |          |             |

48895 rows x 3 columns

# 5. Missing values

```
1 # Percentage of missing values
 2 round((inp0.isnull().sum()/len(inp0))*100,2)
id
                                  0.00
                                  0.03
name
host id
                                  0.00
host name
                                  0.04
neighbourhood group
                                  0.00
neighbourhood
                                  0.00
latitude
                                  0.00
longitude
                                  0.00
room_type
                                  0.00
price
                                  0.00
minimum_nights
                                  0.00
number of reviews
                                  0.00
last review
                                 20.56
reviews per month
                                 20.56
calculated host listings count
                                  0.00
availability 365
                                  0.00
availability 365 categories
                                  0.00
minimum night categories
                                  0.00
number of reviews categories
                                  0.00
price categories
                                  0.00
dtype: float64
```

- Two columns (last\_review , reviews\_per\_month) has around 20.56% missing values. name and host\_name has 0.3% and 0.4 % missing values
- We need to see if the values are, MCAR: It stands for Missing completely at random.

The reason behind the missing value is not dependent on any other features or if it is MNAR: It stands for Missing not at random. There is a specific reason behind the missing value.

- There is no dropping or imputation of columns as we are just analyzing the dataset and not making a model. Also most of the features are important for our analysis.

# 5.1 Missing value analysis



'Shared room' has the highest missing value percentage (27 %) for 'last\_review' feature while to other room types has only about 20 %.



- The pricing is higher when 'last\_review' feature is missing .
- reviews are less likely to be given for shared rooms
- When the prices are high reviews are less likely to be given
- The above analysis seems to show that the missing values here are not MCAR (missing completely at random)

# 6. Analysis



#### 6.3 host\_name 1 inp0.host\_name.value\_counts() Michael 417 David 403 Sonder (NYC) 327 John 294 Alex 279 Rhonycs Brandy-Courtney Shanthony Aurore And Jamila Ilgar & Aysel Name: host name, Length: 11452, dtype: int64



## THE PROBLEMS WITH SHARED ROOMS

- Shared rooms only account for 2 % of the total types of rooms.
- They are less likely to be reviewed.
- Median rates for shared rooms are significantly lower.



## EVERY HOST MATTER



• The top 60 hosts only make up 20% of the total host count!

## MOST CONTRIBUTING NEIGHBORHOODS



#### Neighborhood group percentages

| Manhattan     | 44.301053 |  |  |  |
|---------------|-----------|--|--|--|
| Brooklyn      | 41.116679 |  |  |  |
| Queens        | 11.588097 |  |  |  |
| Bronx         | 2.231312  |  |  |  |
| Staten Island | 0.762859  |  |  |  |

- 81 % of the listing are Manhattan and Brooklyn neighborhood group
- Staten Island has the lowest contribution.

## MINIMUM NIGHT CATEGORIES



#### Minimum night category percentages

| Low       | 40.280192 |
|-----------|-----------|
| very Low  | 26.014930 |
| very High | 14.997444 |
| Medium    | 12.960425 |
| High      | 5.747009  |

• Low category in minimum night feature contributes 40 %

## EFFECT OF MINIMUM NIGHT ON REVIEWS



Customers are more likely to leave reviews for lower number of minimum nights.

# 7. Bivariate and Multivariate Analysis

#### 7.1 Finding the correalations 1 inp0[numerical\_columns].corr() price minimum\_nights number\_of\_reviews reviews\_per\_month calculated\_host\_listings\_count availability\_365 price 1.000000 0.042799 -0.047954 -0.030608 0.057472 0.081829 1.000000 -0.080116 -0.121702 0.127960 0.144303 minimum\_nights 0.042799 number of reviews -0.047954 -0.080116 1.000000 0.549868 -0.072376 0.172028 reviews\_per\_month -0.030608 -0.121702 0.549868 1.000000 -0.009421 0.185791 calculated\_host\_listings\_count 0.057472 0.127960 -0.072376 -0.009421 1.000000 0.225701 availability\_365 0.081829 0.144303 0.172028 0.185791 0.225701 1.000000 plt.figure(figsize=(10,8)) 2 sns.heatmap(data = inp0[numerical\_columns].corr()) price minimum\_nights number\_of\_reviews reviews\_per\_month calculated\_host\_listings\_count

availability\_365

## **CONCLUSION**

 $\longrightarrow$ 

- Strong significant insights are derived based on various attributes in the dataset.
- Ample amount and variety of visuals have can used in the presentations for the stake-holders.
  - Data collection team should collect data about review scores so that it can strengthen the later analysis.
- A clustering machine learning model to identify groups of similar objects in datasets with two or more variable quantities can be made.

# APPENDIX - DATA SOURCES

The columns in the dataset are self-explanatory. You can refer to the diagram given below to get a better idea of what each column signifies.

| Column                         | Description                                          |
|--------------------------------|------------------------------------------------------|
| id                             | listing ID                                           |
| name                           | name of the listing                                  |
| host_id                        | host ID                                              |
| host_name                      | name of the host                                     |
| neighbourhood_group            | location                                             |
| neighbourhood                  | area                                                 |
| latitude                       | latitude coordinates                                 |
| longitude                      | longitude coordinates                                |
| room_type                      | listing space type                                   |
| price                          |                                                      |
| minimum_nights                 | amount of nights minimum                             |
| number_of_reviews              | number of reviews                                    |
| last_review                    | latest review                                        |
| reviews_per_month              | number of reviews per month                          |
| calculated_host_listings_count | amount of listing per host                           |
| availability_365               | number of days when listing is available for booking |

## APPENDIX –DATA METHODOLOGY

- Conducted a thorough analysis of NewYork Airbnbs Dataset.
- Cleaned the data set using python.
- Derived the necessary features.
- Used group aggregation, pivot table and other statistical methods.
- Created charts and visualizations using Tableau.

## APPENDIX - DATA ASSUMPTIONS

```
Categorical Variables:
    - room_type
    - neighbourhood_group
    - neighbourhood
Continous Variables(Numerical):
    - Price
    - minimum_nights
    - number_of_reviews
    - reviews_per_month
    - calculated_host_listings_count
    - availability_365
- Continous Variables could be binned in to groups too
Location Varibles:
    - latitude
    - longitude
Time Varibale:

    last_review
```