UC Berkeley Department of Electrical Engineering and Computer Sciences

EE126: PROBABILITY AND RANDOM PROCESSES

Problem Set 8 Spring 2017

Issued: Thursday, March 23, 2017 Due: 8:00AM, Thursday, April 6, 2017

Problem 1. Midterm 2.

Problem 2. The random variable X is exponentially distributed with mean 1. Given X, the random variable Y is exponentially distributed with rate X (with mean 1/X).

- (a) Find MLE[X|Y];
- (b) Find MAP[X|Y].

Problem 3. The stochastic block model (SBM) is a random graph G(n, p, q) consisting of two communities of size $\frac{n}{2}$ each such that the probability an edge exists between two nodes of the same community is p and the probability an edge exists between two nodes in different communities is q, where p > q. The goal of the problem is to exactly determine the two communities given only the graph. Show that the MAP-decision rule is equivalent to finding the min-bisection of the graph (ie the split of G into two groups of size $\frac{n}{2}$ that has the minimum edge weight across the partition).

Figure 1: An example of a graph before and after recovery

Problem 4. You are testing a digital link that corresponds to a BSC with some error probability $\epsilon \in [0, 0.5)$.

- (a) Assume you observe the input and the output of the link. How do you find the MLE of ϵ ?
- (b) You are told that the inputs are i.i.d. bits that are equal to 1 with probability 0.6 and to 0 with probability 0.4. You observe n outputs. How do you calculate the MLE of ϵ .
- (c) The situation is as in the previous case, but you are told that ϵ has pdf 4-8x on [0,0.5). How do you calculate the MAP of ϵ given n outputs.

Problem 5. You are trying to detect whether voltage V_1 or voltage V_2 was sent over a channel with independent Gaussian noise $Z \sim N(V_3, \sigma^2)$. Assume that both voltages are equally likely to be sent.

- (a) Derive the MAP detector for this channel.
- (b) Using the Gaussian Q-function, determine the average error probability for the MAP detector.
- (c) Suppose that the average transmit energy is $\frac{V_1^2 + V_2^2}{2}$ and that the average transmit energy is constrained such that it cannot be more than E. What voltage levels V_1, V_2 should you choose to meet this energy constraint but still minimize the average error probability?