Conjugate Direction minimization

Lectures for PHD course on Numerical Optimization

Enrico Bertolazzi

DII – Università di Trento

Enrico Bertolazzi — Conjugate Direction minimization

Notes			

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Generic minimization algorithm

In the following we study the convergence rate of the Generic minimization algorithm applied to a quadratic function ${\bf q}(x)$ with exact line search. The function

$$q(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + c$$

can be viewed as a n-dimensional generalization of the 1-dimensional parabolic model.

Generic minimization algorithm

Given an initial guess x_0 , let k=0;

while not converged do

Find a descent direction p_k at x_k ;

Compute a step size α_k using a line-search along p_k .

Set $x_{k+1} = x_k + \alpha_k p_k$ and increase k by 1.

end while

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Assumption (Symmetry)

The matrix A is assumed to be symmetric, in fact,

$$A = A^{Symm} + A^{Skew}$$

where

$$m{A}^{Symm} = rac{1}{2} m{A} + m{A}^T m{M}, \qquad m{A}^{Symm} = (m{A}^{Symm})^T$$

$$m{A}^{Skew} = rac{1}{2} m{A} - m{A}^T m{M}, \qquad m{A}^{Skew} = -(m{A}^{Skew})^T$$

moreover

$$\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{A}^{Symm} \boldsymbol{x} + \boldsymbol{x}^T \boldsymbol{A}^{Skew} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{A}^{Symm} \boldsymbol{x}$$

so that only the symmetric part of A contribute to q(x).

Enrico Bertolazzi — Conjugate Direction minimization

Notes			

Assumption (SPD)

The matrix ${\bf A}$ is assumed to be symmetric and positive definite, in fact,

$$abla \mathsf{q}(oldsymbol{x})^T = rac{1}{2}ig(oldsymbol{A} + oldsymbol{A}^Tig)oldsymbol{x} - oldsymbol{b} = oldsymbol{A}oldsymbol{x} - oldsymbol{b}$$

and

Notes

$$abla^2 \mathsf{q}(oldsymbol{x}) = rac{1}{2}ig(oldsymbol{A} + oldsymbol{A}^Tig) = oldsymbol{A}$$

From the sufficient condition for a minimum we have that $abla \mathsf{q}(x_\star)^T = \mathbf{0}$, i.e.

$$Ax_{\star} = b$$

and $abla^2 \mathtt{q}(oldsymbol{x}_\star) = oldsymbol{A}$ is SPD.

Enrico Bertolazzi — Conjugate Direction minimization

5/10/

In the following we study the convergence rate of the Steepest Descent and Conjugate Gradient methods applied to

$$q(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + c$$

where A is an SPD matrix.

This assumption simplify the analysis but it is also useful in the non linear case. In fact, by expanding a generic function f(x) near its minimum x_{\star} we have

$$\begin{split} \mathsf{f}(\boldsymbol{x}) &= \mathsf{f}(\boldsymbol{x}_{\star}) + \nabla \mathsf{f}(\boldsymbol{x}_{\star})(\boldsymbol{x} - \boldsymbol{x}_{\star}) \\ &+ \frac{1}{2}(\boldsymbol{x} - \boldsymbol{x}_{\star})^{T} \nabla^{2} \mathsf{f}(\boldsymbol{x}_{\star})(\boldsymbol{x} - \boldsymbol{x}_{\star}) + \mathcal{O}(\|\boldsymbol{x} - \boldsymbol{x}_{\star}\|^{3}) \end{split}$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

By setting

$$\begin{split} & A = \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}), \\ & \boldsymbol{b} = \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{x}_{\star} - \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \\ & c = \mathsf{f}(\boldsymbol{x}_{\star}) - \nabla \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{x}_{\star} + \frac{1}{2} \boldsymbol{x}_{\star}^T \nabla^2 \mathsf{f}(\boldsymbol{x}_{\star}) \boldsymbol{x}_{\star} \end{split}$$

we have

$$f(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}^T \boldsymbol{x} + c + \mathcal{O}(\|\boldsymbol{x} - \boldsymbol{x}_\star\|^3)$$

So that we expect that when an iterate x_k is near x_\star then we can neglect $\mathcal{O}(\|x-x_\star\|^3)$ and the asymptotic behavior is the same of the quadratic problem.

Enrico Bertolazzi — Conjugate Direction minimization

we can rewrite the quadratic problem in many different way as follows

$$q(\boldsymbol{x}) = \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_{\star})^{T} \boldsymbol{A} (\boldsymbol{x} - \boldsymbol{x}_{\star}) + c'$$
$$= \frac{1}{2} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b})^{T} \boldsymbol{A}^{-1} (\boldsymbol{A} \boldsymbol{x} - \boldsymbol{b}) + c'$$

where

$$c' = c + \frac{1}{2} \boldsymbol{x}_{\star}^{T} \boldsymbol{A} \boldsymbol{x}_{\star}$$

■ This last forms are useful in the study of the steepest descent method.

Notes		

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

9/107

1	N I	 L
	IΝ	$\Gamma \triangle Q$
	ΙV	

Steepest descent for quadratic functions (1/3)

The steepest descent minimization algorithm

Given an initial guess x_0 , let k = 0;

while not converged do

Choose as descent direction $p_k = -\nabla q(x_k)^T = b - Ax_k$; Compute a step size α_k using a line-search along p_k .

Set $x_{k+1} = x_k + \alpha_k p_k$ and increase k by 1.

end while

Definition (Residual)

The expressions

$$oldsymbol{r}(oldsymbol{x}) \ = oldsymbol{b} - oldsymbol{A}oldsymbol{x}, \qquad oldsymbol{r}_k \ = oldsymbol{b} - oldsymbol{A}oldsymbol{x}_k$$

are called the residual. We obviously have ${m r}({m x}) = -
abla {m q}({m x})^T$ and ${m r}({m x}_\star) = {m 0}.$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Steepest descent for quadratic functions (2/3)

Lemma

The solution of the minimization problem:

$$\alpha_k = \underset{\alpha \geq 0}{\operatorname{arg \, min}} \ \mathsf{q}(\boldsymbol{x}_k - \alpha \boldsymbol{r}_k) \qquad is \qquad \alpha_k = -\frac{\boldsymbol{r}_k^T \boldsymbol{r}_k}{\boldsymbol{r}_k^T A \boldsymbol{r}_k}.$$

Proof: Because $p(\alpha) = q(x_k - \alpha r_k)$ the minimum is a stationary point:

$$\frac{\mathrm{d}p(\alpha)}{\mathrm{d}\alpha} = \frac{\mathrm{d}q(\boldsymbol{x}_k - \alpha \boldsymbol{r}_k)}{\mathrm{d}\alpha} = -\nabla q(\boldsymbol{x}_k - \alpha \boldsymbol{r}_k)\boldsymbol{r}_k$$
$$= \boldsymbol{r}(\boldsymbol{x}_k - \alpha \boldsymbol{r}_k)^T \boldsymbol{r}_k = (\boldsymbol{b} - \boldsymbol{A}(\boldsymbol{x}_k - \alpha \boldsymbol{r}_k))^T \boldsymbol{r}_k$$
$$= (\boldsymbol{r}_k + \alpha \boldsymbol{A} \boldsymbol{r}_k)^T \boldsymbol{r}_k = 0$$

and solving for α the result follows.

←□ → ←□ → ← ≧ → ← ≧ →

Enrico Bertolazzi — Conjugate Direction minimization

Notes			

Steepest descent for quadratic functions (3/3)

The steepest descent minimization algorithm

Given an initial guess x_0 , let k=0; while not converged do

Compute $r_k = b - Ax_k$;

Compute the step size $\alpha_k = \frac{{m r}_k^T {m r}_k}{{m r}_k^T {m A} {m r}_k}$;

Set $x_{k+1} = x_k + \alpha_k r_k$ and increase k by 1.

end while

Or more compactly

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + rac{oldsymbol{r}_k^Toldsymbol{r}_k}{oldsymbol{r}_k^Toldsymbol{A}oldsymbol{r}_k}oldsymbol{r}_k$$

10/107

Notes		

The steepest descent reduction step

The next lemma bound the reduction of $q(x_{k+1})$ by the value of $q(x_k)$:

Lemma

Consider the steepest descent for quadratic function, than we have the following estimate

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}}^{2} = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^{2} \left(1 - \frac{(\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k})^{2}}{(\boldsymbol{r}_{k}^{T} \boldsymbol{A}^{-1} \boldsymbol{r}_{k})(\boldsymbol{r}_{k}^{T} \boldsymbol{A} \boldsymbol{r}_{k})}\right)$$

where

$$\left\|x
ight\|_{A} = \sqrt{x^{T}Ax}$$

is the energy norm induced by the SPD matrix A.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

The steepest descent reduction step

Proof: (Proof. (1/3)) We want bound $q(x_{k+1})$ by $q(x_k)$:

$$\begin{aligned} \mathsf{q}(\boldsymbol{x}_{k+1}) &= \mathsf{q}\left(\boldsymbol{x}_k + \alpha_k \boldsymbol{r}_k\right) \\ &= \frac{1}{2}\left(\boldsymbol{A}\boldsymbol{x}_k + \alpha_k \boldsymbol{A}\boldsymbol{r}_k - \boldsymbol{b}\right)^T \boldsymbol{A}^{-1}\left(\boldsymbol{A}\boldsymbol{x}_k + \alpha_k \boldsymbol{A}\boldsymbol{r}_k - \boldsymbol{b}\right) + c' \\ &= \frac{1}{2}\left(\alpha_k \boldsymbol{A}\boldsymbol{r}_k - \boldsymbol{r}_k\right)^T \boldsymbol{A}^{-1}\left(\alpha_k \boldsymbol{A}\boldsymbol{r}_k - \boldsymbol{r}_k\right) + c' \\ &= \frac{1}{2}\boldsymbol{r}_k^T \boldsymbol{A}^{-1}\boldsymbol{r}_k + \frac{1}{2}\alpha_k^2 \boldsymbol{r}_k^T \boldsymbol{A}\boldsymbol{r}_k - \alpha_k \boldsymbol{r}_k^T \boldsymbol{r}_k + c' \\ &= \mathsf{q}(\boldsymbol{x}_k) + \frac{1}{2}\alpha_k \left(\alpha_k \boldsymbol{r}_k^T \boldsymbol{A}\boldsymbol{r}_k - 2\boldsymbol{r}_k^T \boldsymbol{r}_k\right) \end{aligned}$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes

The steepest descent reduction step

(3/4)

Proof:(Proof.

(2/3)) Substituting
$$\alpha_k = \frac{{m r}_k^T {m r}_k}{{m r}_k^T {m A} {m r}_k}$$
 we obtain

$$\mathsf{q}(\boldsymbol{x}_{k+1}) = \mathsf{q}(\boldsymbol{x}_k) - \frac{1}{2} \frac{(\boldsymbol{r}_k^T \boldsymbol{r}_k)^2}{\boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k}$$

this shows that the steepest descent method reduce at each step the objective function $\mathbf{q}(x)$.

Using the expression $\mathbf{q}(\boldsymbol{x}) = \frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^T \boldsymbol{A}^{-1} \boldsymbol{r}(\boldsymbol{x}) + c'$ we can write:

$$\frac{1}{2} \boldsymbol{r}_{k+1}^T \boldsymbol{A}^{-1} \boldsymbol{r}_{k+1} = \frac{1}{2} \boldsymbol{r}_k^T \boldsymbol{A}^{-1} \boldsymbol{r}_k - \frac{1}{2} \frac{(\boldsymbol{r}_k^T \boldsymbol{r}_k)^2}{\boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k}$$

15/107

Notes		

Proof: (Proof.

(3/3)) or better

$$r_{k+1}^T A^{-1} r_{k+1} = r_k^T A^{-1} r_k \left(1 - \frac{(r_k^T r_k)^2}{(r_k^T A^{-1} r_k)(r_k^T A r_k)} \right)$$

noticing that $m{r}_k = m{b} - m{A}m{x}_k = m{A}m{x}_\star - m{A}m{x}_k = m{A}(m{x}_\star - m{x}_k)$ we have

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}}^{2} = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^{2} \left(1 - \frac{(\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k})^{2}}{(\boldsymbol{r}_{k}^{T} \boldsymbol{A}^{-1} \boldsymbol{r}_{k})(\boldsymbol{r}_{k}^{T} \boldsymbol{A} \boldsymbol{r}_{k})}\right)$$

where

$$\|x\|_A = \sqrt{x^T A x}$$

is the energy norm induced by the SPD matrix A.

) Q (

Notes	

The estimate of the convergence rate for the steepest descent method is linked to the estimate of the term

$$\frac{(\boldsymbol{r}_k^T\boldsymbol{r}_k)^2}{(\boldsymbol{r}_k^T\boldsymbol{A}^{-1}\boldsymbol{r}_k)(\boldsymbol{r}_k^T\boldsymbol{A}\boldsymbol{r}_k)}$$

in particular we can prove

Lemma (Kantorovich)

Let $A \in \mathbb{R}^{n imes n}$ an SPD matrix then the following inequality is valid

$$1 \le \frac{(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x})(\boldsymbol{x}^T \boldsymbol{A}^{-1} \boldsymbol{x})}{(\boldsymbol{x}^T \boldsymbol{x})^2} \le \frac{(M+m)^2}{4 M m}$$

for all $x \neq 0$. Where $m = \lambda_1$ is the smallest eigenvalue of A and $M = \lambda_n$ is the biggest eigenvalue of A.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Proof: (Proof. (1/5)) STEP 1: problem reformulation. First of all notice that

$$\frac{(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}) (\boldsymbol{x}^T \boldsymbol{A}^{-1} \boldsymbol{x})}{(\boldsymbol{x}^T \boldsymbol{x})^2} = \frac{(\boldsymbol{y}^T \boldsymbol{A} \boldsymbol{y}) (\boldsymbol{y}^T \boldsymbol{A}^{-1} \boldsymbol{y})}{(\boldsymbol{y}^T \boldsymbol{y})^2}$$

for all $y = \alpha x$ with $\alpha \neq 0$. Choosing $\alpha = ||x||^{-1}$ have:

$$\min_{\|oldsymbol{z}\|=1}(oldsymbol{z}^Toldsymbol{A}oldsymbol{z})(oldsymbol{z}^Toldsymbol{A}^{-1}oldsymbol{z}) \leq$$

$$\frac{(\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x})(\boldsymbol{x}^T \boldsymbol{A}^{-1} \boldsymbol{x})}{(\boldsymbol{x}^T \boldsymbol{x})^2} \\ \leq \max_{\|\boldsymbol{z}\|=1} (\boldsymbol{z}^T \boldsymbol{A} \boldsymbol{z})(\boldsymbol{z}^T \boldsymbol{A}^{-1} \boldsymbol{z})$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Proof: (Proof. (2/5)) STEP 2: eigenvector expansions. Matrix $A \in \mathbb{R}^{n \times n}$ is an SPD matrix so that there exists u_1, u_2, \ldots, u_n a complete orthonormal eigenvectors set with $0 < \lambda_1 \le \lambda_2 \le \cdots \le \lambda_n$ corresponding eigenvalues. Let be $x \in \mathbb{R}^n$ then

$$x = \sum_{k=1}^{n} \alpha_k u_k, \quad x^T x = \sum_{k=1}^{n} \alpha_k^2$$

so that $(\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x})(\boldsymbol{x}^T\boldsymbol{A}^{-1}\boldsymbol{x}) = h(\alpha_1,\dots,\alpha_n)$ where

$$h(\alpha_1, \dots, \alpha_n) = \left(\sum_{k=1}^n \alpha_k^2 \lambda_k\right) \left(\sum_{k=1}^n \alpha_k^2 \lambda_k^{-1}\right)$$

then the lemma can be reformulated:

- Find maxima and minima of $h(\alpha_1, \dots, \alpha_n)$
- subject to $\sum_{k=1}^{n} \alpha_k^2 = 1$.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Proof: (Proof. (3/5)) STEP 3: problem reduction. By using Lagrange multiplier maxima and minima are the stationary points of:

$$g(\alpha_1, \dots, \alpha_n, \mu) = h(\alpha_1, \dots, \alpha_n) + \mu \left(\sum_{k=1}^n \alpha_k^2 - 1\right)$$

setting $A=\sum_{k=1}^n \alpha_k^2 \lambda_k$ and $B=\sum_{k=1}^n \alpha_k^2 \lambda_k^{-1}$ we have

$$\frac{\partial g(\alpha_1, \dots, \alpha_n, \mu)}{\partial \alpha_k} = 2\alpha_k (\lambda_k B + \lambda_k^{-1} A + \mu) = 0$$

so that

- 1 Or $\alpha_k = 0$;
- Or λ_k is a root of the quadratic polynomial $\lambda^2 B + \lambda \mu + A$. in any case there are at most 2 coefficients α 's not zero.

1the argument should be improved in the case of multiple eigenvalues

999

Enrico Bertolazzi — Conjugate Direction minimization

20/10/

Notes		

Proof: (Proof. (4/5)) STEP 4: problem reformulation. say α_i and α_j are the only non zero coefficients, then $\alpha_i^2 + \alpha_j^2 = 1$ and we can write

$$h(\alpha_1, \dots, \alpha_n) = (\alpha_i^2 \lambda_i + \alpha_j^2 \lambda_j) (\alpha_i^2 \lambda_i^{-1} + \alpha_j^2 \lambda_j^{-1})$$

$$= \alpha_i^4 + \alpha_j^4 + \alpha_i^2 \alpha_j^2 \left(\frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i}\right)$$

$$= \alpha_i^2 (1 - \alpha_j^2) + \alpha_j^2 (1 - \alpha_i^2) + \alpha_i^2 \alpha_j^2 \left(\frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i}\right)$$

$$= 1 + \alpha_i^2 \alpha_j^2 \left(\frac{\lambda_i}{\lambda_j} + \frac{\lambda_j}{\lambda_i} - 2\right)$$

$$= 1 + \alpha_i^2 (1 - \alpha_i^2) \frac{(\lambda_i - \lambda_j)^2}{\lambda_i \lambda_j}$$

21/107

Notes		

Proof:(Proof. notice that

(5/5)) STEP 5: bounding maxima and minima.

$$0 \le \beta(1-\beta) \le \frac{1}{4}, \quad \forall \beta \in [0,1]$$

$$1 \le 1 + \alpha_i^2 (1 - \alpha_i^2) \frac{(\lambda_i - \lambda_j)^2}{\lambda_i \lambda_j} \le 1 + \frac{(\lambda_i - \lambda_j)^2}{4\lambda_i \lambda_j} = \frac{(\lambda_i + \lambda_j)^2}{4\lambda_i \lambda_j}$$

to bound $(\lambda_i+\lambda_j)^2/(4\lambda_i\lambda_j)$ consider the function $f(x)=(1+x)^2/x$ which is increasing for $x\geq 1$ so that we have

$$\frac{(\lambda_i + \lambda_j)^2}{4\lambda_i \lambda_j} \le \frac{(M+m)^2}{4 M m}$$

and finally

Enrico Bertolazzi — Conjugate Direction minimization

$$1 \le h(\alpha_1, \dots, \alpha_n) \le \frac{(M+m)^2}{4 M m}$$

22/107

Notes

-			
-			
-			
-			
-			

Convergence rate of Steepest Descent

The Kantorovich inequality permits to prove:

Theorem (Convergence rate of Steepest Descent)

Let $A \in \mathbb{R}^{n \times n}$ an SPD matrix then the steepest descent method:

$$oldsymbol{x}_{k+1} = oldsymbol{x}_k + rac{oldsymbol{r}_k^Toldsymbol{r}_k}{oldsymbol{r}_k^Toldsymbol{A}oldsymbol{r}_k}oldsymbol{r}_k$$

converge to the solution $x_\star = A^{-1}b$ with at least linear q-rate in the norm $\|\cdot\|_A$. Moreover we have the error estimate

$$\left\|oldsymbol{x}_{k+1} - oldsymbol{x}_{\star}
ight\|_{oldsymbol{A}} \leq rac{\kappa-1}{\kappa+1} \left\|oldsymbol{x}_{k} - oldsymbol{x}_{\star}
ight\|_{oldsymbol{A}}$$

 $\kappa = M/m$ is the condition number where $m = \lambda_1$ is the smallest eigenvalue of A and $M = \lambda_n$ is the biggest eigenvalue of A.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Proof: Remember from slide $N^{\circ}16$

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}}^{2} = \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}^{2} \left(1 - \frac{(\boldsymbol{r}_{k}^{T} \boldsymbol{r}_{k})^{2}}{(\boldsymbol{r}_{k}^{T} \boldsymbol{A}^{-1} \boldsymbol{r}_{k})(\boldsymbol{r}_{k}^{T} \boldsymbol{A} \boldsymbol{r}_{k})}\right)$$

from Kantorovich inequality

$$1 - \frac{(\boldsymbol{r}_k^T \boldsymbol{r}_k)^2}{(\boldsymbol{r}_k^T \boldsymbol{A}^{-1} \boldsymbol{r}_k)(\boldsymbol{r}_k^T \boldsymbol{A} \boldsymbol{r}_k)} \le 1 - \frac{4 M m}{(M+m)^2} = \frac{(M-m)^2}{(M+m)^2}$$

so that

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k+1}\|_{\boldsymbol{A}} \leq \frac{M-m}{M+m} \|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}}$$

24/107

INOTES		

Remark (One step convergence)

The steepest descent method can converge in one iteration if $\kappa = 1$ or when $\mathbf{r}_0 = \mathbf{u}_k$ where \mathbf{u}_k is an eigenvector of \mathbf{A} .

- In the first case ($\kappa = 1$) we have $\mathbf{A} = \beta \mathbf{I}$ for some $\beta > 0$ so it is not interesting.
- 2 In the second case we have

$$\frac{(\boldsymbol{u}_k^T\boldsymbol{u}_k)^2}{(\boldsymbol{u}_k^T\boldsymbol{A}^{-1}\boldsymbol{u}_k)(\boldsymbol{u}_k^T\boldsymbol{A}\boldsymbol{u}_k)} = \frac{(\boldsymbol{u}_k^T\boldsymbol{u}_k)^2}{\lambda_k^{-1}(\boldsymbol{u}_k^T\boldsymbol{u}_k)\lambda_k(\boldsymbol{u}_k^T\boldsymbol{u}_k)} = 1$$

in both cases we have $r_1=0$ i.e. we have found the solution.

Enrico Bertolazzi — Conjugate Direction minimization

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

26/107

Notes		

Conjugate direction method

Definition (Conjugate vector)

Given two vectors p and q in \mathbb{R}^n are conjugate respect to A if they are orthogonal respect the scalar product induced by A; i.e.,

$$\boldsymbol{p}^T \boldsymbol{A} \boldsymbol{q} = \sum_{i,j=1}^n A_{ij} p_i q_j = 0.$$

Clearly, n vectors $p_1, p_2, \dots p_n \in \mathbb{R}^n$ that are pair wise conjugated respect to A form a base of \mathbb{R}^n .

27/107

Notes		

Problem (Linear system)

Find the minimum of $q(x) = \frac{1}{2}x^TAx - b^Tx + c$ is equivalent to solve the first order necessary condition, i.e.

Find
$$x_{\star} \in \mathbb{R}^n$$
 such that: $Ax_{\star} = b$.

Observation

Consider $x_0\in\mathbb{R}^n$ and decompose the error $e_0=x_\star-x_0$ by the conjugate vectors p_1 , $p_2,\ldots,p_n\in\mathbb{R}^n$:

$$e_0 = x_\star - x_0 = \sigma_1 p_1 + \sigma_2 p_2 + \cdots + \sigma_n p_n.$$

Evaluating the coefficients σ_1 , σ_2 , ..., $\sigma_n \in \mathbb{R}$ is equivalent to solve the problem $Ax_* = b$, because knowing e_0 we have

$$x_{\star} = x_0 + e_0.$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes

Observation

Using conjugacy the coefficients $\sigma_1,\sigma_2,\ldots,\sigma_n\in\mathbb{R}$ can be computed as

$$\sigma_i = rac{oldsymbol{p}_i^T oldsymbol{A} oldsymbol{e}_0}{oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_i}, \qquad for \ i=1,2,\ldots,n.$$

In fact, for all $1 \le i \le n$, we have

$$egin{aligned} oldsymbol{p}_i^T oldsymbol{A} oldsymbol{e}_0 &= oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_1 + \sigma_2 oldsymbol{p}_2 + \ldots + \sigma_n oldsymbol{p}_n \end{pmatrix}, \ &= \sigma_1 oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_1 + \sigma_2 oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_2 + \ldots + \sigma_n oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_n, \ &= \sigma_i oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_i, \end{aligned}$$

because $\mathbf{p}_i^T \mathbf{A} \mathbf{p}_j = 0$ for $i \neq j$.

Enrico Bertolazzi — Conjugate Direction minimization

29/107

Notes

The conjugate direction method evaluate the coefficients σ_1 , $\sigma_2, \ldots, \sigma_n \in \mathbb{R}$ recursively in n steps, solving for $k \geq 0$ the minimization problem:

Conjugate direction method

Given
$$x_0$$
; $k \leftarrow 0$; repeat $k \leftarrow k+1$; Find $x_k \in x_0 + \mathcal{V}_k$ such that: $x_k = \mathop{\arg\min}_{x \in x_0 + \mathcal{V}_k} \|x_\star - x\|_A$ until $k = n$

where V_k is the subspace of \mathbb{R}^n generated by the first k conjugate direction; i.e.,

$$\mathcal{V}_k = \mathsf{SPAN}ig\{m{p}_1,m{p}_2,\ldots,m{p}_kig\}.$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes ______

Step: $\boldsymbol{x}_0 \to \boldsymbol{x}_1$

At the first step we consider the subspace $x_0+\operatorname{SPAN}\{p_1\}$ which consists in vectors of the form

$$\boldsymbol{x}(\alpha) = \boldsymbol{x}_0 + \alpha \boldsymbol{p}_1 \qquad \alpha \in \mathbb{R}$$

The minimization problem becomes:

Minimization step $oldsymbol{x}_0 ightarrow oldsymbol{x}_1$

Find $x_1 = x_0 + \alpha_1 p_1$ (i.e., find α_1 !) such that:

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{1}\|_{\boldsymbol{A}} = \min_{\alpha \in \mathbb{R}} \|\boldsymbol{x}_{\star} - (\boldsymbol{x}_{0} + \alpha \boldsymbol{p}_{1})\|_{\boldsymbol{A}},$$

31/107

Notes		

Solving first step method 1

The minimization problem is the minimum respect to α of the quadratic:

$$\Phi(\alpha) = \|\boldsymbol{x}_{\star} - (\boldsymbol{x}_{0} + \alpha \boldsymbol{p}_{1})\|_{\boldsymbol{A}}^{2},$$

$$= (\boldsymbol{x}_{\star} - (\boldsymbol{x}_{0} + \alpha \boldsymbol{p}_{1}))^{T} \boldsymbol{A} (\boldsymbol{x}_{\star} - (\boldsymbol{x}_{0} + \alpha \boldsymbol{p}_{1})),$$

$$= (\boldsymbol{e}_{0} - \alpha \boldsymbol{p}_{1})^{T} \boldsymbol{A} (\boldsymbol{e}_{0} - \alpha \boldsymbol{p}_{1}),$$

$$= \boldsymbol{e}_{0}^{T} \boldsymbol{A} \boldsymbol{e}_{0} - 2\alpha \boldsymbol{p}_{1}^{T} \boldsymbol{A} \boldsymbol{e}_{0} + \alpha^{2} \boldsymbol{p}_{1}^{T} \boldsymbol{A} \boldsymbol{p}_{1}.$$

minimum is found by imposing:

$$\frac{\mathrm{d}\Phi(\alpha)}{\mathrm{d}\alpha} = -2\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{e}_0 + 2\alpha \boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{p}_1 = 0 \quad \Rightarrow \quad \alpha_1 = \frac{\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{e}_0}{\boldsymbol{p}_1^T \boldsymbol{A} \boldsymbol{p}_1}$$

Enrico Bertolazzi — Conjugate Direction minimization

00/107

Notes ______

Solving first step method 2

Remember the error expansion:

$$x_{\star} - x_0 = \sigma_1 p_1 + \sigma_2 p_2 + \cdots + \sigma_n p_n.$$

Let $x(\alpha) = x_0 + \alpha p_1$, the difference $x_\star - x(\alpha)$ becomes:

$$x_{\star} - x(\alpha) = (\sigma_1 - \alpha)p_1 + \sigma_2 p_2 + \ldots + \sigma_n p_n$$

due to conjugacy the error $\| oldsymbol{x}_{\star} - oldsymbol{x}(lpha) \|_{A}$ becomes

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha)\|_{\boldsymbol{A}}^{2}$$

$$= \left((\sigma_{1} - \alpha)\boldsymbol{p}_{1} + \sum_{i=2}^{n} \sigma_{i}\boldsymbol{p}_{i} \right)^{T} \boldsymbol{A} \left((\sigma_{1} - \alpha)\boldsymbol{p}_{1} + \sum_{j=2}^{n} \sigma_{j}\boldsymbol{p}_{i} \right)$$

$$= (\sigma_{1} - \alpha)^{2} \boldsymbol{p}_{1}^{T} \boldsymbol{A} \boldsymbol{p}_{1} + \sum_{j=2}^{n} \sigma_{j}^{2} \boldsymbol{p}_{j}^{T} \boldsymbol{A} \boldsymbol{p}_{j}$$

Enrico Bertolazzi — Conjugate Direction minimization

200

33/10

Notes

Solving first step method 2

Because

$$\|x_{\star} - x(\alpha)\|_{A}^{2} = (\sigma_{1} - \alpha)^{2} \|p_{1}\|_{A}^{2} + \sum_{i=2}^{n} \sigma_{2}^{2} \|p_{i}\|_{A}^{2},$$

we have that

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha_1)\|_{\boldsymbol{A}}^2 = \sum_{i=2}^n \sigma_i^2 \|\boldsymbol{p}_i\|_{\boldsymbol{A}}^2 \le \|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha)\|_{\boldsymbol{A}}^2 \qquad \text{for all } \alpha \ne \sigma_1$$

so that minimum is found by imposing $\alpha_1 = \sigma_1$:

$$lpha_1 = rac{oldsymbol{p}_1^T oldsymbol{A} oldsymbol{e}_0}{oldsymbol{p}_1^T oldsymbol{A} oldsymbol{p}_1}$$

This argument can be generalized for all k>1 (see next slides).

Enrico Bertolazzi — Conjugate Direction minimization

0.4/107

Notes

Step, $oldsymbol{x}_{k-1} ightarrow oldsymbol{x}_k$

For the step from k-1 to k we consider the subspace of \mathbb{R}^n

$$\mathcal{V}_k = exttt{SPAN}ig\{oldsymbol{p}_1,oldsymbol{p}_2,\dots,oldsymbol{p}_kig\}$$

which contains vectors of the form:

$$x(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}) = x_0 + \alpha^{(1)} p_1 + \alpha^{(2)} p_2 + \dots + \alpha^{(k)} p_k$$

The minimization problem becomes:

Minimization step $oldsymbol{x}_{k-1} ightarrow oldsymbol{x}_k$

Find $x_k = x_0 + \alpha_1 p_1 + \alpha_2 p_2 + \ldots + \alpha_k p_k$ (i.e. $\alpha_1, \alpha_2, \ldots, \alpha_k$) such that:

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} = \min_{\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)} \in \mathbb{R}} \|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)})\|_{\boldsymbol{A}}$$

Enrico Bertolazzi — Conjugate Direction minimization

INOTES		

Solving kth Step: $\boldsymbol{x}_{k-1} \rightarrow \boldsymbol{x}_k$

Remember the error expansion:

$$x_{\star} - x_0 = \sigma_1 p_1 + \sigma_2 p_2 + \cdots + \sigma_n p_n.$$

Consider a vector of the form

$$x(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)}) = x_0 + \alpha^{(1)} p_1 + \alpha^{(2)} p_2 + \dots + \alpha^{(k)} p_k$$

the error $x_\star - x(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)})$ can be written as

$$egin{aligned} oldsymbol{x}_{\star} - oldsymbol{x}(lpha^{(1)}, lpha^{(2)}, \ldots, lpha^{(k)}) &= oldsymbol{x}_{\star} - oldsymbol{x}_0 - \sum_{i=1}^k lpha^{(i)} oldsymbol{p}_i, \ &= \sum_{i=1}^k \left(\sigma_i - lpha^{(i)}
ight) oldsymbol{p}_i + \sum_{i=k+1}^n \sigma_i oldsymbol{p}_i. \end{aligned}$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes

Solving kth Step: $\boldsymbol{x}_{k-1} \rightarrow \boldsymbol{x}_k$

using conjugacy of p_i we obtain the norm of the error:

$$\left\|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha^{(1)}, \alpha^{(2)}, \dots, \alpha^{(k)})\right\|_{\boldsymbol{A}}^{2}$$

$$= \sum_{i=1}^{k} \left(\sigma_{i} - \alpha^{(i)}\right)^{2} \left\|\boldsymbol{p}_{i}\right\|_{\boldsymbol{A}}^{2} + \sum_{i=k+1}^{n} \sigma_{i}^{2} \left\|\boldsymbol{p}_{i}\right\|_{\boldsymbol{A}}^{2}.$$

So that minimum is found by imposing $\alpha_i = \sigma_i$: for i = 1, 2, ..., k.

$$\alpha_i = \frac{\boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{e}_0}{\boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_i} \qquad i = 1, 2, \dots, k$$

$$i=1,2,\ldots,k$$

Notes		

Successive one dimensional minimization

(1/3)

lacksquare notice that $\alpha_i=\sigma_i$ and that

$$x_k = x_0 + \alpha_1 p_1 + \dots + \alpha_k p_k$$

= $x_{k-1} + \alpha_k p_k$

- so that x_{k-1} contains k-1 coefficients α_i for the minimization.
- lacktriangle if we consider the one dimensional minimization on the subspace $x_{k-1}+ ext{SPAN}\{m{p}_k\}$ we find again $x_k!$

38/10

Notes		

Successive one dimensional minimization

(2/3)

Consider a vector of the form

$$\boldsymbol{x}(\alpha) = \boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_k$$

remember that $x_{k-1} = x_0 + \alpha_1 p_1 + \cdots + \alpha_{k-1} p_{k-1}$ so that the error $x_{\star} - x(\alpha)$ can be written as

$$egin{aligned} oldsymbol{x}_{\star} - oldsymbol{x}(lpha) &= oldsymbol{x}_{\star} - oldsymbol{x}_{0} - \sum_{i=1}^{k-1} lpha_{i} oldsymbol{p}_{i} + lpha oldsymbol{p}_{i} + lpha oldsymbol{p}_{k} + \sum_{i=k+1}^{n} \sigma_{i} oldsymbol{p}_{i}. \end{aligned}$$

due to the equality $\sigma_i = \alpha_i$ the blue part of the expression is 0.

Enrico Bertolazzi — Conjugate Direction minimization

Notes			

Successive one dimensional minimization

(3/3)

Using conjugacy of p_i we obtain the norm of the error:

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}(\alpha)\|_{\boldsymbol{A}}^2 = \left(\boldsymbol{\sigma}_{\boldsymbol{k}} - \alpha\right)^2 \|\boldsymbol{p}_{\boldsymbol{k}}\|_{\boldsymbol{A}}^2 + \sum_{i=k+1}^n \sigma_i^2 \|\boldsymbol{p}_i\|_{\boldsymbol{A}}^2.$$

So that minimum is found by imposing $\alpha = \sigma_k$:

$$lpha_k = rac{oldsymbol{p}_k^T oldsymbol{A} oldsymbol{e}_0}{oldsymbol{p}_k^T oldsymbol{A} oldsymbol{p}_k}$$

Remark

This observation permit to perform the minimization on the k-dimensional space $x_0 + \mathcal{V}_k$ as successive one dimensional minimizations along the conjugate directions p_k !.

Enrico Bertolazzi — Conjugate Direction minimization

Votes		

Problem (one dimensional successive minimization)

Find $x_k = x_{k-1} + \alpha_k p_k$ such that:

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} = \min_{\alpha \in \mathbb{R}} \|\boldsymbol{x}_{\star} - (\boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_{k})\|_{\boldsymbol{A}},$$

The solution is the minimum respect to α of the quadratic:

$$\Phi(\alpha) = (\boldsymbol{x}_{\star} - (\boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_{k}))^{T} \boldsymbol{A} (\boldsymbol{x}_{\star} - (\boldsymbol{x}_{k-1} + \alpha \boldsymbol{p}_{k})),$$

$$= (\boldsymbol{e}_{k-1} - \alpha \boldsymbol{p}_{k})^{T} \boldsymbol{A} (\boldsymbol{e}_{k-1} - \alpha \boldsymbol{p}_{k}),$$

$$= \boldsymbol{e}_{k-1}^{T} \boldsymbol{A} \boldsymbol{e}_{k-1} - 2\alpha \boldsymbol{p}_{k}^{T} \boldsymbol{A} \boldsymbol{e}_{k-1} + \alpha^{2} \boldsymbol{p}_{k}^{T} \boldsymbol{A} \boldsymbol{p}_{k}.$$

minimum is found by imposing:

$$\frac{\mathrm{d}\Phi(\alpha)}{\mathrm{d}\alpha} = -2\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} + 2\alpha \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k = 0 \quad \Rightarrow \quad \boldsymbol{\alpha}_k = \frac{\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1}}{\boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k}$$

Enrico Bertolazzi — Conjugate Direction minimization

Ν	ot	es
	_	

■ In the case of minimization on the subspace $x_0 + \mathcal{V}_k$ we have:

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_0 / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k$$

In the case of one dimensional minimization on the subspace $x_{k-1} + \text{SPAN}\{p_k\}$ we have:

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k$$

lacktriangle Apparently they are different results, however by using the conjugacy of the vectors $m{p}_i$ we have

$$egin{aligned} oldsymbol{p}_k^T oldsymbol{A} oldsymbol{e}_{k-1} &= oldsymbol{p}_k^T oldsymbol{A} (oldsymbol{x}_\star - oldsymbol{x}_{k-1}) \ &= oldsymbol{p}_k^T oldsymbol{A} oldsymbol{e}_{k} - lpha_1 oldsymbol{p}_1 + \cdots + lpha_{k-1} oldsymbol{p}_{k-1}) \ &= oldsymbol{p}_k^T oldsymbol{A} oldsymbol{e}_0 - lpha_1 oldsymbol{p}_k^T oldsymbol{A} oldsymbol{p}_1 - \cdots - lpha_{k-1} oldsymbol{p}_k^T oldsymbol{A} oldsymbol{p}_{k-1} \ &= oldsymbol{p}_k^T oldsymbol{A} oldsymbol{e}_0 \end{aligned}$$

Enrico Bertolazzi — Conjugate Direction minimization

40.43.07

Notes			

- The one step minimization in the space $x_0 + \mathcal{V}_n$ and the successive minimization in the space $x_{k-1} + \text{SPAN}\{p_k\}$, $k = 1, 2, \ldots, n$ are equivalent if p_i s are conjugate.
- The successive minimization is useful when p_i s are not known in advance but must be computed as the minimization process proceeds.
- The evaluation of α_k is apparently not computable because e_i is not known. However noticing

$$Ae_k = A(x_\star - x_k) = b - Ax_k = r_k$$

we can write

$$\alpha_k = \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{e}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k = \boldsymbol{p}_k^T \boldsymbol{r}_{k-1} / \boldsymbol{p}_k^T \boldsymbol{A} \boldsymbol{p}_k =$$

Finally for the residual is valid the recurrence

$$r_k = b - Ax_k = b - A(x_{k-1} + \alpha_k p_k) = r_{k-1} - \alpha_k Ap_k.$$

Enrico Bertolazzi — Conjugate Direction minimization

Ν	ot	es
	_	

Conjugate direction minimization

Algorithm (Conjugate direction minimization)

$$k \leftarrow 0$$
; $m{x}_0$ assigned; $m{r}_0 \leftarrow m{b} - m{A} m{x}_0$; while not converged do $k \leftarrow k+1$; $lpha_k \leftarrow m{rac{r_{k-1}^T m{p}_k^T}{p_k m{A} m{p}_k}}$; $m{x}_k \leftarrow m{x}_{k-1} + lpha_k m{p}_k$; $m{r}_k \leftarrow m{r}_{k-1} - lpha_k m{A} m{p}_k$; end while

Observation (Computazional cost)

The conjugate direction minimization requires at each step one matrix-vector product for the evaluation of α_k and two update **AXPY** for x_k and r_k .

Notes	

Monotonic behavior of the error

Remark (Monotonic behavior of the error)

The energy norm of the error $\|e_k\|_A$ is monotonically decreasing in k. In fact:

$$e_k = x_{\star} - x_k = \alpha_{k+1} p_{k+1} + \ldots + \alpha_n p_n,$$

and by conjugacy

$$\left\lVert oldsymbol{e}_{k}
ight
Vert_{oldsymbol{A}}^{2} = \left\lVert oldsymbol{x}_{\star} - oldsymbol{x}_{k}
ight
Vert_{oldsymbol{A}}^{2} = \sigma_{k+1}^{2} \left\lVert oldsymbol{p}_{k+1}
ight
Vert_{oldsymbol{A}}^{2} + \ldots + \sigma_{n}^{2} \left\lVert oldsymbol{p}_{n}
ight
Vert_{oldsymbol{A}}^{2}.$$

Finally from this relation we have $e_n = 0$.

45/107

Notes		

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

46/107

Notes		

Conjugate Gradient method

The Conjugate Gradient method combine the Conjugate Direction method with an orthogonalization process (like Gram-Schmidt) applied to the residual to construct the conjugate directions.

In fact, because \boldsymbol{A} define a scalar product in the next slide we prove:

- each residue is orthogonal to the previous conjugate directions, and consequently linearly independent from the previous conjugate directions.
- if the residual is not null is can be used to construct a new conjugate direction.

47/107

Orthogonality of the residue r_k respect \mathcal{V}_k

■ The residue r_k is orthogonal to p_1 , p_2 , . . . , p_k . In fact, from the error expansion

$$\boldsymbol{e}_k = \alpha_{k+1} \boldsymbol{p}_{k+1} + \alpha_{k+2} \boldsymbol{p}_{k+2} + \dots + \alpha_n \boldsymbol{p}_n$$

because ${m r}_k = {m A}{m e}_k$, for $i=1,2,\ldots,k$ we have

$$egin{aligned} oldsymbol{p}_i^T oldsymbol{r}_k &= oldsymbol{p}_i^T oldsymbol{A} oldsymbol{e}_k \ &= oldsymbol{p}_i^T oldsymbol{A} \sum_{j=k+1}^n lpha_j oldsymbol{p}_j = \sum_{j=k+1}^n lpha_j oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_j \ &= 0 \end{aligned}$$

48/107

Notes		

Building new conjugate direction

- The conjugate direction method build one new direction at each step.
- If $r_k
 eq \mathbf{0}$ it can be used to build the new direction p_{k+1} by a Gram-Schmidt orthogonalization process

$$p_{k+1} = r_k + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \ldots + \beta_k^{(k+1)} p_k,$$

where the k coefficients $\beta_1^{(k+1)}$, $\beta_2^{(k+1)}$, \ldots , $\beta_k^{(k+1)}$ must satisfy:

$$p_i^T A p_{k+1} = 0,$$
 for $i = 1, 2, ..., k$.

49/107

Notes		

Building new conjugate direction

(repeating from previous slide)

$$p_{k+1} = r_k + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \dots + \beta_k^{(k+1)} p_k,$$

expanding the expression:

$$0 = \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_{k+1},$$

$$= \boldsymbol{p}_i^T \boldsymbol{A} (\boldsymbol{r}_k + \beta_1^{(k+1)} \boldsymbol{p}_1 + \beta_2^{(k+1)} \boldsymbol{p}_2 + \dots + \beta_k^{(k+1)} \boldsymbol{p}_k),$$

$$= \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{r}_k + \beta_i^{(k+1)} \boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_i,$$

$$\Rightarrow \beta_i^{(k+1)} = -\frac{\boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{r}_k}{\boldsymbol{p}_i^T \boldsymbol{A} \boldsymbol{p}_i} \qquad i = 1, 2, \dots, k$$

50/10

Notes		

The choice of the residual $r_k \neq 0$ for the construction of the new conjugate direction p_{k+1} has three important consequences:

- 1 simplification of the expression for α_k ;
- Orthogonality of the residual r_k from the previous residue r_0 , r_1 , \ldots , r_{k-1} ;
- 3 three point formula and simplification of the coefficients $\beta_i^{(k+1)}$.

this facts will be examined in the next slides.

51/107

Notes		

Simplification of the expression for α_k

Writing the expression for $oldsymbol{p}_k$ from the orthogonalization process

$$p_k = r_{k-1} + \beta_1^{(k+1)} p_1 + \beta_2^{(k+1)} p_2 + \ldots + \beta_{k-1}^{(k+1)} p_{k-1},$$

using orthogonality of r_{k-1} and the vectors p_1 , p_2 , . . . , p_{k-1} , (see slide N.48) we have

$$egin{aligned} m{r}_{k-1}^Tm{p}_k &= m{r}_{k-1}^Tig(m{r}_{k-1} + eta_1^{(k+1)}m{p}_1 + eta_3^{(k+1)}m{p}_2 + \ldots + eta_{k-1}^{(k+1)}m{p}_{k-1}ig), \ &= m{r}_{k-1}^Tm{r}_{k-1}. \end{aligned}$$

recalling the definition of α_k it follows:

$$lpha_k = rac{oldsymbol{e}_{k-1}^T oldsymbol{A} oldsymbol{p}_k}{oldsymbol{p}_k^T oldsymbol{A} oldsymbol{p}_k} = \left[egin{array}{c} oldsymbol{r}_{k-1}^T oldsymbol{p}_k \\ oldsymbol{p}_k^T oldsymbol{A} oldsymbol{p}_k \end{array}
ight]$$

52/107

Notes		

Orthogonally of the residue r_k from r_0 , r_1 ,

$$\ldots, r_{k-1}$$

From the definition of p_{i+1} it follows:

$$egin{aligned} oldsymbol{p}_{i+1} &= oldsymbol{r}_i + eta_1^{(i+1)} oldsymbol{p}_1 + eta_2^{(i+1)} oldsymbol{p}_2 + \ldots + eta_i^{(i+1)} oldsymbol{p}_i, \ &\Rightarrow & oldsymbol{r}_i \in \mathsf{SPAN}\{oldsymbol{p}_1, oldsymbol{p}_2, \ldots, oldsymbol{p}_i, oldsymbol{p}_{i+1}\} = \mathcal{V}_{i+1} \end{aligned} \qquad egin{aligned} \mathsf{obvious} \end{aligned}$$

using orthogonality of r_k and the vectors p_1 , p_2 , . . . , p_k , (see slide N.48) for i < k we have

$$egin{aligned} oldsymbol{r}_k^T oldsymbol{r}_i &= oldsymbol{r}_k^T oldsymbol{p}_{i+1} - \sum_{j=1}^i eta_j^{(i+1)} oldsymbol{p}_j \end{pmatrix}, \ &= oldsymbol{r}_k^T oldsymbol{p}_{i+1} - \sum_{j=1}^i eta_j^{(i+1)} oldsymbol{r}_k^T oldsymbol{p}_j = 0. \end{aligned}$$

53/107

Enrico Bertolazzi — Conjugate Direction minimization

Three point formula and simplification of

 $\beta_i^{(k+1)}$

From the relation $\mathbf{r}_k^T \mathbf{r}_i = \mathbf{r}_k^T (\mathbf{r}_{i-1} - \alpha_i \mathbf{A} \mathbf{p}_i)$ we deduce

$$m{r}_k^T m{A} m{p}_i = rac{m{r}_k^T m{r}_{i-1} - m{r}_k^T m{r}_i}{lpha_i} = egin{cases} -m{r}_k^T m{r}_k / lpha_k & ext{if } i = k; \ 0 & ext{if } i < k; \end{cases}$$

remembering that $\alpha_k = m{r}_{k-1}^T m{r}_{k-1} \ / \ m{p}_k^T m{A} m{p}_k$ we obtain

$$eta_i^{(k+1)} = -rac{oldsymbol{r}_k^T oldsymbol{A} oldsymbol{p}_i}{oldsymbol{p}_i^T oldsymbol{A} oldsymbol{p}_i} = \left\{ egin{array}{c} rac{oldsymbol{r}_k^T oldsymbol{r}_k}{oldsymbol{r}_{k-1}^T oldsymbol{r}_{k-1}} & i = k; \\ 0 & i < k; \end{array}
ight.$$

i.e. there is only one non zero coefficient $\beta_k^{(k+1)}$, so we write $\beta_k=\beta_k^{(k+1)}$ and obtain the three point formula:

$$\boldsymbol{p}_{k+1} = \boldsymbol{r}_k + \beta_k \boldsymbol{p}_k$$

Enrico Bertolazzi — Conjugate Direction minimization

200

Conjugate gradient algorithm

initial step:

$$k \leftarrow 0$$
; x_0 assigned; $r_0 \leftarrow b - Ax_0$; $p_1 \leftarrow r_0$; while $||r_k|| > \epsilon$ do $k \leftarrow k+1$; Conjugate direction method $\alpha_k \leftarrow \frac{r_{k-1}^T r_{k-1}}{p_k^T A p_k}$; $x_k \leftarrow x_{k-1} + \alpha_k p_k$; $r_k \leftarrow r_{k-1} - \alpha_k A p_k$; Residual orthogonalization $\beta_k \leftarrow \frac{r_k^T r_k}{r_{k-1}^T r_{k-1}}$; $p_{k+1} \leftarrow r_k + \beta_k p_k$;

Enrico Bertolazzi — Conjugate Direction minimization

end while

55/10

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

56/107

Notes		

Lemma

The residuals and cojugate directions for the Conjugate Gradient iterative scheme of slide 55 can be written as

$$\mathbf{r}_k = P_k(\mathbf{A})\mathbf{r}_0 \qquad k = 0, 1, \dots, n$$

$$k=0,1,\ldots,r$$

$$\boldsymbol{p}_k = Q_{k-1}(\boldsymbol{A})\boldsymbol{r}_0 \qquad k = 1, 2, \dots, n$$

$$k = 1, 2, \dots, r$$

where $P_k(x)$ and $Q_k(x)$ are k-degree polynomial such that $P_k(0) = 1$ for all k.

Proof: (Proof.

(1/2)) The proof is by induction.

Base k = 0: $p_1 = r_0$

$$p_1 = r_0$$

so that
$$P_0(x) = 1$$
 and $Q_0(x) = 1$.

Enrico Bertolazzi — Conjugate Direction minimization

Proof: (Proof. (2/2)) Let the expansion valid for k-1. Consider the recursion for the residual:

$$\mathbf{r}_{k} = \mathbf{r}_{k-1} - \alpha_{k} \mathbf{A} \mathbf{p}_{k}$$

$$= P_{k-1}(\mathbf{A}) \mathbf{r}_{0} + \alpha_{k} \mathbf{A} Q_{k-1}(\mathbf{A}) \mathbf{r}_{0}$$

$$= (P_{k-1}(\mathbf{A}) + \alpha_{k} \mathbf{A} Q_{k-1}(\mathbf{A})) \mathbf{r}_{0}$$

then $P_k(x) = P_{k-1}(x) + \alpha_k x Q_{k-1}(x)$ and $P_k(0) = P_{k-1}(0) = 1$. Consider the recursion for the conjugate direction

$$\mathbf{p}_{k+1} = P_k(\mathbf{A})\mathbf{r}_0 + \beta_k Q_{k-1}(\mathbf{A})\mathbf{r}_0$$
$$= (P_k(\mathbf{A}) + \beta_k Q_{k-1}(\mathbf{A}))\mathbf{r}_0$$

then $Q_k(x) = P_k(x) + \beta_k Q_{k-1}(x)$.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Corollary

$$e_k = P_k(\mathbf{A})e_0.$$

Proof:

$$egin{aligned} oldsymbol{e}_k &= oldsymbol{x}_\star - oldsymbol{x}_k &= oldsymbol{A}^{-1} oldsymbol{r}_k \ &= oldsymbol{A}^{-1} P_k(oldsymbol{A}) oldsymbol{r}_0 \ &= P_k(oldsymbol{A}) oldsymbol{A}^{-1} oldsymbol{r}_0 \ &= P_k(oldsymbol{A}) oldsymbol{(x_\star - x_0)} \ &= P_k(oldsymbol{A}) oldsymbol{e}_0. \end{aligned}$$

50/107

Notes			

Lemma

For the Conjugate Gradient iterative scheme of slide n.55 we have:

$$\mathcal{V}_k = \{ p(\mathbf{A})e_0 \mid p \in \mathbb{P}^k, \, p(0) = 0 \}$$

Proof: Using expansion of slide n.57 and $r_0 = Ae_0$ we have:

$$\begin{split} \mathcal{V}_k &= \operatorname{SPAN} \big\{ \boldsymbol{p}_1, \boldsymbol{p}_2, \dots \boldsymbol{p}_k \big\} \\ &= \left\{ \sum_{i=0}^{k-1} \beta_i Q_i(\boldsymbol{A}) \boldsymbol{r}_0 \, \middle| \, (\beta_0, \dots, \beta_{k-1}) \in \mathbb{R}^{k-1} \right\} \\ &= \left\{ q(\boldsymbol{A}) \boldsymbol{A} \boldsymbol{e}_0 \, \middle| \, p \in \mathbb{P}^{k-1} \right\} = \left\{ p(\boldsymbol{A}) \boldsymbol{e}_0 \, \middle| \, p \in \mathbb{P}^k, \, p(0) = 0 \right\} \end{split}$$

40/107

Notes		

By using the equality

$$\mathcal{V}_k = \{ p(\mathbf{A}) e_0 | p \in \mathbb{P}^k, p(0) = 0 \}$$

The optimality of CG step can be written as

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} \leq \|\boldsymbol{x}_{\star} - \boldsymbol{x}\|_{\boldsymbol{A}}, \qquad \forall \boldsymbol{x} \in \boldsymbol{x}_{0} + \mathcal{V}_{k}$$

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} \leq \|\boldsymbol{x}_{\star} - (\boldsymbol{x}_{0} + p(\boldsymbol{A})\boldsymbol{e}_{0})\|_{\boldsymbol{A}}, \qquad \forall p \in \mathbb{P}^{k}, \ p(0) = 0$$

$$\|\boldsymbol{x}_{\star} - \boldsymbol{x}_{k}\|_{\boldsymbol{A}} \leq \|P(\boldsymbol{A})\boldsymbol{e}_{0}\|_{\boldsymbol{A}}, \qquad \forall P \in \mathbb{P}^{k}, \ P(0) = 1$$

And using the results of slide 60 and 59 we can write

$$e_k = P_k(\mathbf{A})e_0,$$

$$\|e_k\|_{\mathbf{A}} = \|P_k(\mathbf{A})e_0\|_{\mathbf{A}} \le \|P(\mathbf{A})e_0\|_{\mathbf{A}} \qquad \forall P \in \mathbb{P}^k, P(0) = 1$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

From previous equations we have the characterization of CG error

$$\|e_k\|_{A} = \inf_{P \in \mathbb{P}^k, P(0)=1} \|P(A)e_0\|_{A}$$

Thus, an estimate of the form

$$\|\boldsymbol{e}_k\|_{\boldsymbol{A}} \leq C_k \|\boldsymbol{e}_0\|_{\boldsymbol{A}}$$

can be obtained by using estimate on the polynomial of the form

$$\left\{ P \in \mathbb{P}^k, \, P(0) = 1 \right\}$$

62/107

Notes		

Convergence rate calculation

Lemma

Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ an SPD matrix, and $p \in \mathbb{P}^k$ a polynomial, then

$$\left\|p(\boldsymbol{A})\boldsymbol{x}\right\|_{\boldsymbol{A}} \leq \left\|p(\boldsymbol{A})\right\|_2 \left\|\boldsymbol{x}\right\|_{\boldsymbol{A}}$$

Proof: (Proof. (1/2)) The matrix A is SPD so that we can write

$$\boldsymbol{A} = \boldsymbol{U}^T \boldsymbol{\Lambda} \boldsymbol{U}, \qquad \boldsymbol{\Lambda} = \text{DIAG}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$$

where U is an orthogonal matrix (i.e. $U^TU=I$) and $\Lambda \geq 0$ is diagonal. We can define the SPD matrix $A^{1/2}$ as follows

$$\boldsymbol{A}^{1/2} = \boldsymbol{U}^T \boldsymbol{\Lambda}^{1/2} \boldsymbol{U}, \qquad \boldsymbol{\Lambda}^{1/2} = \text{DIAG}\{\lambda_1^{1/2}, \lambda_2^{1/2}, \dots, \lambda_n^{1/2}\}$$

and obviously $A^{1/2}A^{1/2} = A$.

63/107

Enrico Bertolazzi — Conjugate Direction minimization

Proof: (Proof.

(2/2)) Notice that

$$\|m{x}\|_{m{A}}^2 = m{x}^Tm{A}m{x} = m{x}^Tm{A}^{1/2}m{A}^{1/2}m{x} = \left\|m{A}^{1/2}m{x}
ight\|_2^2$$

so that

$$\begin{aligned} \|p(\boldsymbol{A})\boldsymbol{x}\|_{\boldsymbol{A}} &= \left\|\boldsymbol{A}^{1/2}p(\boldsymbol{A})\boldsymbol{x}\right\|_{2} \\ &= \left\|p(\boldsymbol{A})\boldsymbol{A}^{1/2}\boldsymbol{x}\right\|_{2} \\ &\leq \|p(\boldsymbol{A})\|_{2} \left\|\boldsymbol{A}^{1/2}\boldsymbol{x}\right\|_{2} \\ &= \|p(\boldsymbol{A})\|_{2} \left\|\boldsymbol{x}\right\|_{\boldsymbol{A}} \end{aligned}$$

Enrico Bertolazzi — Conjugate Direction minimization

/ 4/207

Notes		

Lemma

Let $A \in \mathbb{R}^{n \times n}$ an SPD matrix, and $p \in \mathbb{P}^k$ a polynomial, then

$$\left\|p(\boldsymbol{A})\right\|_2 = \max_{\boldsymbol{\lambda} \in \sigma(\boldsymbol{A})} |p(\boldsymbol{\lambda})|$$

Proof: The matrix $p(\boldsymbol{A})$ is symmetric, and for a generic symmetric matrix \boldsymbol{B} we have

$$\left\| \boldsymbol{B} \right\|_2 = \max_{\lambda \in \sigma(\boldsymbol{B})} |\lambda|$$

observing that if λ is an eigenvalue of A then $p(\lambda)$ is an eigenvalue of p(A) the thesis easily follows.

45/107

Notes		

Starting the error estimate

$$\|e_k\|_{A} \le \inf_{P \in \mathbb{P}^k, P(0)=1} \|P(A)e_0\|_{A}$$

Combining the last two lemma we easily obtain the estimate

$$\|\boldsymbol{e}_{k}\|_{\boldsymbol{A}} \leq \inf_{P \in \mathbb{P}^{k}, P(0)=1} \left[\max_{\lambda \in \sigma(\boldsymbol{A})} |P(\lambda)| \right] \|\boldsymbol{e}_{0}\|_{\boldsymbol{A}}$$

■ The convergence rate is estimated by bounding the constant

$$\inf_{P \in \mathbb{P}^k, P(0)=1} \left[\max_{\lambda \in \sigma(A)} |P(\lambda)| \right]$$

66/10

Notes		

Finite termination of Conjugate Gradient

Theorem (Finite termination of Conjugate Gradient)

Let $A \in \mathbb{R}^{n \times n}$ an SPD matrix, the the Conjugate Gradient applied to the linear system Ax = b terminate finding the exact solution in at most n-step.

Proof: From the estimate

$$\|e_k\|_{\mathbf{A}} \leq \inf_{P \in \mathbb{P}^k, P(0)=1} \left[\max_{\lambda \in \sigma(\mathbf{A})} |P(\lambda)| \right] \|e_0\|_{\mathbf{A}}$$

choosing

$$P(x) = \prod_{\lambda \in \sigma(\mathbf{A})} (x - \lambda) / \prod_{\lambda \in \sigma(\mathbf{A})} (0 - \lambda)$$

we have $\max_{\lambda \in \sigma(A)} |P(\lambda)| = 0$ and $\|e_n\|_A = 0$.

₹ 999

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Convergence rate of Conjugate Gradient

The constant

$$\inf_{P \in \mathbb{P}^k, P(0)=1} \left[\max_{\lambda \in \sigma(\mathbf{A})} |P(\lambda)| \right]$$

is not easy to evaluate,

2 The following bound, is useful

$$\max_{\lambda \in \sigma(\boldsymbol{A})} |P(\lambda)| \leq \max_{\lambda \in [\lambda_1, \lambda_n]} |P(\lambda)|$$

3 in particular the final estimate will be obtained by

$$\inf_{P \in \mathbb{P}^k, P(0)=1} \left[\max_{\lambda \in \sigma(\mathbf{A})} |P(\lambda)| \right] \le \max_{\lambda \in [\lambda_1, \lambda_n]} |\bar{P}_k(\lambda)|$$

where $\bar{P}_k(x)$ is an opportune k-degree polynomial for which $\bar{P}_k(0)=1$ and it is easy to evaluate $\max_{\lambda\in[\lambda_1,\lambda_n]}\left|\bar{P}_k(\lambda)\right|$.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

The Chebyshev Polynomials of the First Kind are the right polynomial for this estimate. This polynomial have the following definition in the interval [-1,1]:

$$T_k(x) = \cos(k\arccos(x))$$

2 Another equivalent definition valid in the interval $(-\infty,\infty)$ is the following

$$T_k(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^k + \left(x - \sqrt{x^2 - 1} \right)^k \right]$$

In spite of these definition, $T_k(x)$ is effectively a polynomial.

69/107

Notes		

Some example of Chebyshev Polynomials.

m total

Enrico Bertolazzi — Conjugate Direction minimization

70/107

It is easy to show that $T_k(x)$ is a polynomial by the use of

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\cos(\alpha + \beta) + \cos(\alpha - \beta) = 2\cos\alpha\cos\beta$$

let $\theta = \arccos(x)$:

- 1 $T_0(x) = \cos(0\,\theta) = 1;$
- 2 $T_1(x) = \cos(1\theta) = x$;
- 3 $T_2(x) = \cos(2\theta) = \cos(\theta)^2 \sin(\theta)^2 = 2\cos(\theta)^2 1 = 2x^2 1;$
- 4 $T_{k+1}(x) + T_{k-1}(x) = \cos((k+1)\theta) + \cos((k-1)\theta)$ = $2\cos(k\theta)\cos(\theta) = 2xT_k(x)$
- 2 In general we have the following recurrence:
 - $T_0(x) = 1;$
 - $T_1(x) = x;$
 - 3 $T_{k+1}(x) = 2 x T_k(x) T_{k-1}(x)$.

71/107

Enrico Bertolazzi — Conjugate Direction minimization

- Solving the recurrence:
 - $T_0(x) = 1;$
 - $T_1(x) = x;$
 - 3 $T_{k+1}(x) = 2 x T_k(x) T_{k-1}(x)$.
- We obtain the explicit form of the Chebyshev Polynomials

$$T_k(x) = \frac{1}{2} \left[\left(x + \sqrt{x^2 - 1} \right)^k + \left(x - \sqrt{x^2 - 1} \right)^k \right]$$

■ The translated and scaled polynomial is useful in the study of the conjugate gradient method:

$$T_k(x; a, b) = T_k\left(\frac{a+b-2x}{b-a}\right)$$

where we have $|T_k(x; a, b)| \le 1$ for all $x \in [a, b]$.

72/107

Notes		

Enrico Bertolazzi — Conjugate Direction minimization

Convergence rate of Conjugate Gradient method

Theorem (Convergence rate of Conjugate Gradient method)

Let $A \in \mathbb{R}^{n \times n}$ an SPD matrix then the Conjugate Gradient method converge to the solution $x_\star = A^{-1}b$ with at least linear r-rate in the norm $\|\cdot\|_A$. Moreover we have the error estimate

$$\|e_k\|_A \lesssim 2\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k \|e_0\|_A$$

 $\kappa = M/m$ is the condition number where $m = \lambda_1$ is the smallest eigenvalue of A and $M = \lambda_n$ is the biggest eigenvalue of A.

The expression $a_k \lesssim b_k$ means that for all $\epsilon > 0$ there exists $k_0 > 0$ such that:

$$a_k \le (1 - \epsilon)b_k, \quad \forall k > k_0$$

73/107

Notes

Proof: From the estimate

$$\|\boldsymbol{e}_{k}\|_{\boldsymbol{A}} \leq \max_{\lambda \in [m,M]} |P(\lambda)| \|\boldsymbol{e}_{0}\|_{\boldsymbol{A}}, \qquad P \in \mathbb{P}^{k}, P(0) = 1$$

choosing $P(x) = T_k(x; m, M)/T_k(0; m, M)$ from the fact that $|T_k(x; m, M)| \le 1$ for $x \in [m, M]$ we have

$$\|e_k\|_{A} \le T_k(0; m, M)^{-1} \|e_0\|_{A} = T_k \left(\frac{M+m}{M-m}\right)^{-1} \|e_0\|_{A}$$

observe that $\frac{M+m}{M-m}=\frac{\kappa+1}{\kappa-1}$ and

$$T_k \left(\frac{\kappa+1}{\kappa-1}\right)^{-1} = 2\left[\left(\frac{\sqrt{\kappa}+1}{\sqrt{\kappa}-1}\right)^k + \left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k\right]^{-1}$$

finally notice that $\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^k \to 0$ as $k \to \infty$.

Enrico Bertolazzi — Conjugate Direction minimization

Ν	ot	es
IΝ	\bigcirc 1	C_{0}

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

75/107

Notes		

Preconditioning

Problem (Preconditioned linear system)

Given $A, P \in \mathbb{R}^{n \times n}$, with A an SPD matrix and P non singular matrix and $b \in \mathbb{R}^n$.

Find
$$x_{\star} \in \mathbb{R}^n$$
 such that: $P^{-T}Ax_{\star} = P^{-T}b$.

A good choice for P should be such that $M = P^T P \approx A$, where \approx denotes that M is an approximation of A in some sense to precise later.

Notice that:

P non singular imply:

$$P^{-T}(b-Ax)=0 \iff b-Ax=0;$$

lacksquare A SPD imply $\widetilde{A} = P^{-T}AP^{-1}$ is also SPD (obvious proof).

76/107

Notes		

Now we reformulate the preconditioned system:

Problem (Preconditioned linear system)

Given $A, P \in \mathbb{R}^{n \times n}$, with A an SPD matrix and P non singular matrix and $b \in \mathbb{R}^n$ the preconditioned problem is the following:

Find
$$\widetilde{x_{\star}} \in \mathbb{R}^n$$
 such that: $\widetilde{A}\widetilde{x_{\star}} = \widetilde{b}$

where

$$\widetilde{A} = P^{-T}AP^{-1}$$
 $\widetilde{b} = P^{-T}b$

notice that if x_{\star} is the solution of the linear system Ax = b then $\widetilde{x_{\star}} = Px_{\star}$ is the solution of the linear system $\widetilde{A}x = \widetilde{b}$.

77/107

Notes		

PCG: preliminary version

initial step:

$$\begin{array}{l} k \leftarrow 0; \ x_0 \ \text{assigned}; \\ \widetilde{x}_0 \leftarrow Px_0; \ \widetilde{r}_0 \leftarrow \widetilde{b} - \widetilde{A}\widetilde{x}_0; \ \widetilde{p}_1 \leftarrow \widetilde{r}_0; \\ \text{while} \ \|\widetilde{r}_k\| > \epsilon \ \text{do} \\ k \leftarrow k+1; \\ \text{Conjugate direction method} \\ \widetilde{\alpha}_k \leftarrow \frac{\widetilde{r}_{k-1}^T\widetilde{r}_{k-1}}{\widetilde{p}_k^T\widetilde{A}\widetilde{p}_k}; \\ \widetilde{x}_k \leftarrow \widetilde{x}_{k-1} + \widetilde{\alpha}_k\widetilde{p}_k; \\ \widetilde{r}_k \leftarrow \widetilde{r}_{k-1} - \widetilde{\alpha}_k\widetilde{A}\widetilde{p}_k; \\ \text{Residual orthogonalization} \\ \widetilde{\beta}_k \leftarrow \frac{\widetilde{r}_k^T\widetilde{r}_k}{\widetilde{r}_{k-1}^T\widetilde{r}_{k-1}}; \\ \widetilde{p}_{k+1} \leftarrow \widetilde{r}_k + \widetilde{\beta}_k\widetilde{p}_k; \\ \text{end while} \\ \text{final step} \end{array}$$

Enrico Bertolazzi — Conjugate Direction minimization

 $oldsymbol{P}^{-1}\widetilde{oldsymbol{x}}_{k};$

78/107

Notes

Conjugate gradient algorithm applied to $\widetilde{A}\widetilde{x}=\widetilde{b}$ require the evaluation of thing like:

$$\widetilde{A}\widetilde{p}_k = P^{-T}AP^{-1}\widetilde{p}_k.$$

this can be done without evaluate directly the matrix \widetilde{A} , by the following operations:

- $lacksquare{1}$ solve $m{P}m{s}_k'=\widetilde{m{p}}_k$ for $m{s}_k'=m{P}^{-1}\widetilde{m{p}}_k$;
- 2 evaluate $s_k^{\prime\prime}=As_k^{\prime}$;
- 3 solve $oldsymbol{P}^T s_k^{\prime\prime\prime} = s_k^{\prime\prime}$ for $s_k^{\prime\prime\prime} = oldsymbol{P}^{-T} s^{\prime\prime}$.

Step 1 and 3 require the solution of two auxiliary linear system. This is not a big problem if P and P^T are triangular matrices (see e.g. incomplete Cholesky).

79/107

Notes		

However... we can reformulate the algorithm using only the matrices A and P!

Definition

For all $k \geq 1$, we introduce the vector $q_k = P^{-1}\widetilde{p}$.

Observation

If the vectors \widetilde{p}_1 , \widetilde{p}_2 , ..., \widetilde{p}_k for all $1 \leq k \leq n$ are \widetilde{A} -conjugate, then the corresponding vectors q_1 , q_2 , ..., q_k are A-conjugate. In fact:

$$\boldsymbol{q}_{j}^{T} \boldsymbol{A} \boldsymbol{q}_{i} = \underbrace{\widetilde{\boldsymbol{p}}_{j}^{T} \boldsymbol{P}^{-T}}_{=\boldsymbol{q}_{i}^{T}} \boldsymbol{A} \underbrace{\boldsymbol{P}^{-1} \widetilde{\boldsymbol{p}}_{i}}_{=\boldsymbol{q}_{j}^{T}} = \widetilde{\boldsymbol{p}}_{j}^{T} \underbrace{\widetilde{\boldsymbol{A}}}_{=\boldsymbol{P}^{-T} \boldsymbol{A} \boldsymbol{P}^{-1}} (\widetilde{\boldsymbol{p}}_{i}) = 0, \quad if \ i \neq j,$$

that is a consequence of \widetilde{A} -conjugation of vectors \widetilde{p}_i .

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Definition

For all $k \ge 1$, we introduce the vectors

$$\boldsymbol{x}_k = \boldsymbol{x}_{k-1} + \widetilde{\alpha}_k \boldsymbol{q}_k.$$

Observation

If we assume, by construction, $\widetilde{x}_0 = Px_0$, then we have

$$\widetilde{\boldsymbol{x}}_k = \boldsymbol{P} \boldsymbol{x}_k, \quad \text{for all } k \text{ with } 1 \leq k \leq n.$$

In fact, if $\widetilde{x}_{k-1} = Px_{k-1}$ (inductive hypothesis), then

$$egin{aligned} \widetilde{m{x}}_k &= \widetilde{m{x}}_{k-1} + \widetilde{lpha}_k \widetilde{m{p}}_k & ext{(preconditioned CG)} \ &= m{P}m{x}_{k-1} + \widetilde{lpha}_k m{P}m{q}_k & ext{(inductive Hyp. defs of } m{q}_k) \ &= m{P}\left(m{x}_{k-1} + \widetilde{lpha}_k m{q}_k
ight) & ext{(obvious)} \end{aligned}$$

(defs. of x_k)

Enrico Bertolazzi — Conjugate Direction minimization

 $= Px_k$

Observation

Because $\widetilde{x}_k = Px_k$ for all $k \geq 0$, we have the recurrence between the corresponding residue $\widetilde{r}_k = \widetilde{b} - \widetilde{A}\widetilde{x}$ and $r_k = b - Ax_k$:

$$\widetilde{\boldsymbol{r}}_k = \boldsymbol{P}^{-T} \boldsymbol{r}_k.$$

In fact,

$$egin{aligned} \widetilde{m{r}}_k &= \widetilde{m{b}} - \widetilde{m{A}}\widetilde{m{x}}_k, & ext{(defs. of } \widetilde{m{r}}_k) \ &= m{P}^{-T}m{b} - m{P}^{-T}m{A}m{P}^{-1}m{P}m{x}_k, & ext{(defs. of } \widetilde{m{b}}, \widetilde{m{A}}, \widetilde{m{x}}_k) \ &= m{P}^{-T}\left(m{b} - m{A}m{x}_k
ight), & ext{(obvious)} \ &= m{P}^{-T}m{r}_k. & ext{(defs. of } m{r}_k) \end{aligned}$$

4) d (4

90	\cap
02/	10

Notes		

Definition

For all k, with $1 \le k \le n$, the vector \mathbf{z}_k is the solution of the linear system

$$Mz_k = r_k$$
.

where $M = P^T P$. Formally,

$$z_k = M^{-1}r_k = P^{-1}P^{-T}r_k.$$

Using the vectors $\{z_k\}$,

- we can express $\widetilde{\alpha}_k$ and $\widetilde{\beta}_k$ in terms of A, the residual r_k , and conjugate direction q_k ;
- lacktriangle we can build a recurrence relation for the A-conjugate directions q_k .

83/107

Notes		

Observation

$$egin{aligned} \widetilde{lpha}_k &= rac{\widetilde{m{r}}_{k-1}^T \widetilde{m{r}}_{k-1}}{\widetilde{m{p}}_k^T \widetilde{m{A}} \widetilde{m{p}}_k} = rac{m{r}_{k-1} m{P}^{-1} m{P}^{-1} m{r}_{k-1}}{m{q}_k^T m{P}^T m{P}^{-1} m{A} m{P}^{-1} m{P} m{q}_k} = rac{m{r}_{k-1} m{M}^{-1} m{r}_{k-1}}{m{q}_k m{A} m{q}_k}, \ &= \boxed{rac{m{r}_{k-1} m{z}_{k-1}}{m{q}_k m{A} m{q}_k}}. \end{aligned}$$

Observation

$$egin{aligned} \widetilde{eta}_k &= rac{\widetilde{oldsymbol{r}}_k^T \widetilde{oldsymbol{r}}_k}{\widetilde{oldsymbol{r}}_{k-1}^T \widetilde{oldsymbol{r}}_{k-1}} = rac{oldsymbol{r}_k^T oldsymbol{P}^{-1} oldsymbol{P}^{-1} oldsymbol{r}_k}{oldsymbol{r}_{k-1}^T oldsymbol{P}^{-1} oldsymbol{P}^{-1} oldsymbol{P}^{-1} oldsymbol{r}_{k-1}} = rac{oldsymbol{r}_k^T oldsymbol{M}^{-1} oldsymbol{r}_k}{oldsymbol{r}_{k-1}^T oldsymbol{z}_{k-1}}, \ &= \boxed{rac{oldsymbol{r}_k^T oldsymbol{z}_k}{oldsymbol{r}_{k-1}^T oldsymbol{z}_{k-1}}. \end{aligned}}$$

Enrico Bertolazzi — Conjugate Direction minimization

84/107

Notes

Observation

Using the vector $oldsymbol{z}_k = oldsymbol{M}^{-1} oldsymbol{r}_k$, the following recurrence is true

$$\boldsymbol{q}_{k+1} = \boldsymbol{z}_k + \widetilde{\beta}_k \boldsymbol{q}_k$$

In fact:

$$egin{aligned} \widetilde{p}_{k+1} &= \widetilde{r}_k + \widetilde{eta}_k \widetilde{p}_k & ext{(preconditioned CG)} \ P^{-1} \widetilde{p}_{k+1} &= P^{-1} \widetilde{r}_k + \widetilde{eta}_k P^{-1} \widetilde{p}_k & ext{(left mult } P^{-1}) \ P^{-1} \widetilde{p}_{k+1} &= P^{-1} P^{-T} r_k + \widetilde{eta}_k P^{-1} \widetilde{p}_k & ext{(} r_{k+1} &= P^{-T} r_{k+1}) \ P^{-1} \widetilde{p}_{k+1} &= M^{-1} r_k + \widetilde{eta}_k P^{-1} \widetilde{p}_k & ext{(} M^{-1} &= P^{-1} P^{-T}) \ q_{k+1} &= z_k + \widetilde{eta}_k q_k & ext{(} q_k &= P^{-1} \widetilde{p}_k) \end{aligned}$$

Enrico Bertolazzi — Conjugate Direction minimization

Ν	0	te	S
---	---	----	---

PCG: final version

initial step:

$$k\leftarrow 0$$
; x_0 assigned; $r_0\leftarrow b-Ax_0$; $q_1\leftarrow r_0$; while $\|z_k\|>\epsilon$ do $k\leftarrow k+1$; Conjugate direction method $\widetilde{\alpha}_k\leftarrow rac{r_{k-1}^Tz_{k-1}}{q_k^T\widetilde{A}q_k}$; $x_k\leftarrow x_{k-1}+\widetilde{\alpha}_kq_k$; $r_k\leftarrow r_{k-1}-\widetilde{\alpha}_kAq_k$; Preconditioning $z_k=M^{-1}r_k$; Residual orthogonalization

Residual orthogonalization
$$\widetilde{eta}_k \leftarrow rac{m{r}_k^Tm{z}_k}{m{r}_{k-1}^Tm{z}_{k-1}};$$
 $m{q}_{k+1} \leftarrow m{z}_k + \widetilde{eta}_km{q}_k;$ end while

Notes		

Outline

- 1 The Steepest Descent iterative scheme
- 2 Conjugate direction method
- 3 Conjugate Gradient method
- 4 Conjugate Gradient convergence rate
- 5 Preconditioning the Conjugate Gradient method
- 6 Nonlinear Conjugate Gradient extension

87/107

Notes		

Nonlinear Conjugate Gradient extension

- The conjugate gradient algorithm can be extended for nonlinear minimization.
- 2 Fletcher and Reeves extend CG for the minimization of a general non linear function f(x) as follows:
 - 11 Substitute the evaluation of α_k by an line search
 - 2 Substitute the residual r_k with the gradient $\nabla f(x_k)$
- We also translate the index for the search direction p_k to be more consistent with the gradients. The resulting algorithm is in the next slide

88/107

Notes		

Fletcher and Reeves Nonlinear Conjugate Gradient

initial step:

```
k \leftarrow 0; x_0 \text{ assigned}; \\ f_0 \leftarrow \mathsf{f}(x_0); g_0 \leftarrow \nabla \mathsf{f}(x_0)^T; \\ p_0 \leftarrow -g_0; \\ \textbf{while} \ \|g_k\| > \epsilon \ \textbf{do} \\ k \leftarrow k+1; \\ \textbf{Conjugate direction method} \\ \textbf{Compute} \ \alpha_k \text{ by line-search}; \\ x_k \leftarrow x_{k-1} + \alpha_k p_{k-1}; \\ g_k \leftarrow \nabla \mathsf{f}(x_k)^T; \\ \textbf{Residual orthogonalization} \\ \beta_k^{FR} \leftarrow \frac{g_k^T g_k}{g_{k-1}^T g_{k-1}}; \\ p_k \leftarrow -g_k + \beta_k^{FR} p_{k-1}; \\ \textbf{end while} \\ \end{cases}
```


Enrico Bertolazzi — Conjugate Direction minimization

- 11 To ensure convergence and apply Zoutendijk global convergence theorem we need to ensure that p_k is a descent direction.
- \mathbf{p}_0 is a descent direction by construction, for \mathbf{p}_k we have

$$\|m{g}_{k}^{T}m{p}_{k} = -\|m{g}_{k}\|^{2} + eta_{k}^{FR}m{g}_{k}^{T}m{p}_{k-1}$$

if the line-search is exact than $g_k^T p_{k-1} = 0$ because p_{k-1} is the direction of the line-search. So by induction p_k is a descent direction.

- 3 Exact line-search is expensive, however if we use inexact line-search with strong Wolfe conditions
 - sufficient decrease: $f(x_k + \alpha_k p_k) \leq f(x_k) + c_1 \alpha_k \nabla f(x_k) p_k$;
 - 2 curvature condition: $|\nabla f(x_k + \alpha_k p_k)p_k| \leq c_2 |\nabla f(x_k)p_k|$.

with $0 < c_1 < c_2 < 1/2$ then we can prove that p_k is a descent direction.

90/10

Notes		

The previous consideration permits to say that Fletcher and Reeves nonlinear conjugate gradient method with strong Wolfe line-search is globally convergent²

To prove globally convergence we need the following lemma:

Lemma (descent direction bound)

Suppose we apply Fletcher and Reeves nonlinear conjugate gradient method to f(x) with strong Wolfe line-search with $0 < c_2 < 1/2$. The the method generates descent direction \boldsymbol{p}_k that satisfy the following inequality

$$-\frac{1}{1-c_2} \le \frac{\boldsymbol{g}_k^T \boldsymbol{p}_k}{\|\boldsymbol{q}_k\|^2} \le -\frac{1-2c_2}{1-c_2}, \qquad k = 0, 1, 2, \dots$$

 2 globally here means that Zoutendijk like theorem apply $_4$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$ $_{\bigcirc}$

990

N	0+0	,
1.		

Proof: (Proof. (1/3)) The proof is by induction. First notice that the function

$$t(\xi) = \frac{2\xi - 1}{1 - \xi}$$

is monotonically increasing on the interval [0,1/2] and that t(0)=-1 and t(1/2)=0. Hence, because of $c_2\in(0,1/2)$ we have:

$$-1 < \frac{2c_2 - 1}{1 - c_2} < 0. \tag{*}$$

base of induction k=0: For k=0 we have $p_0=-g_0$ so that $g_0^T p_0/\|g_0\|^2=-1$. From (\star) the lemma inequality is trivially satisfied.

92/107

Notes		

Proof: (Proof. (2/3)) Using update direction formula's of the algorithm:

$$eta_k^{FR} = rac{oldsymbol{g}_k^T oldsymbol{g}_k}{oldsymbol{g}_{k-1}^T oldsymbol{g}_{k-1}} \qquad oldsymbol{p}_k = -oldsymbol{g}_k + eta_k^{FR} oldsymbol{p}_{k-1}$$

we can write

$$\frac{\boldsymbol{g}_{k}^{T} \boldsymbol{p}_{k}}{\|\boldsymbol{g}_{k}\|^{2}} = -1 + \beta_{k}^{FR} \frac{\boldsymbol{g}_{k}^{T} \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k}\|^{2}} = -1 + \frac{\boldsymbol{g}_{k}^{T} \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^{2}}$$

and by using second strong Wolfe condition:

$$-1 + c_2 \frac{\boldsymbol{g}_{k-1}^T \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^2} \le \frac{\boldsymbol{g}_k^T \boldsymbol{p}_k}{\|\boldsymbol{g}_k\|^2} \le -1 - c_2 \frac{\boldsymbol{g}_{k-1}^T \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^2}$$

93/107

Notes		

Proof: (Proof.

(3/3)) by induction we have

$$\frac{1}{1 - c_2} \ge -\frac{\boldsymbol{g}_{k-1}^T \boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^2} > 0$$

so that

$$\frac{\boldsymbol{g}_{k}^{T} \boldsymbol{p}_{k}}{\left\|\boldsymbol{g}_{k}\right\|^{2}} \leq -1 - c_{2} \frac{\boldsymbol{g}_{k-1}^{T} \boldsymbol{p}_{k-1}}{\left\|\boldsymbol{g}_{k-1}\right\|^{2}} \leq -1 + c_{2} \frac{1}{1 - c_{2}} = \frac{2c_{2} - 1}{1 - c_{2}}$$

and

$$\frac{\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k}}{\|\boldsymbol{g}_{k}\|^{2}} \ge -1 + c_{2}\frac{\boldsymbol{g}_{k-1}^{T}\boldsymbol{p}_{k-1}}{\|\boldsymbol{g}_{k-1}\|^{2}} \ge -1 - c_{2}\frac{1}{1 - c_{2}} = -\frac{1}{1 - c_{2}}$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

1 The inequality of the the previous lemma can be written as:

$$\frac{1}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} \ge -\frac{\boldsymbol{g}_k^T \boldsymbol{p}_k}{\|\boldsymbol{g}_k\| \|\boldsymbol{p}_k\|} \ge \frac{1 - 2c_2}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} > 0$$

Remembering the Zoutendijk theorem we have

$$\sum_{k=1}^{\infty}(\cos\theta_k)^2\left\|\boldsymbol{g}_k\right\|^2<\infty,\quad\text{where}\quad\cos\theta_k=-\frac{\boldsymbol{g}_k^T\boldsymbol{p}_k}{\left\|\boldsymbol{g}_k\right\|\left\|\boldsymbol{p}_k\right\|}$$

- 3 so that if $\|g_k\|/\|p_k\|$ is bounded from below we have that $\cos \theta_k \ge \delta$ for all k and then from Zoutendijk theorem the scheme converge.
- Unfortunately this bound cant be proved so that Zoutendijk theorem cant be applied directly. However it is possible to prove a weaker results, i.e. that $\lim\inf_{k\to\infty}\|g_k\|=0!$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Convergence of Fletcher and Reeves method

Assumption (Regularity assumption)

We assume $f \in C^1(\mathbb{R}^n)$ with Lipschitz continuous gradient, i.e. there exists $\gamma>0$ such that

$$\|\nabla f(\boldsymbol{x})^T - \nabla f(\boldsymbol{y})^T\| \le \gamma \|\boldsymbol{x} - \boldsymbol{y}\|, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$$

96/107

Notes		

Theorem (Convergence of Fletcher and Reeves method)

Suppose the method of Fletcher and Reeves is implemented with strong Wolfe line-search with $0 < c_1 < c_2 < 1/2$. If f(x) and x_0 satisfy the previous regularity assumptions, then

$$\liminf_{k\to\infty} \|\boldsymbol{g}_k\| = 0$$

Proof: (Proof.

(1/4)) From previous Lemma we have

$$\cos \theta_k \ge \frac{1}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} \qquad k = 1, 2, \dots$$

substituting in Zoutendijk condition we have $\sum_{k=1}^{\infty} \frac{\left\| oldsymbol{g}_k
ight\|^4}{\left\| oldsymbol{p}_k
ight\|^2} < \infty.$

The proof is by contradiction. in fact if theorem is not true than the series diverge. Next we want to bound $||p_k||$.

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Proof: (Proof. (bounding $\|p_k\|$) condition and previous Lemma

(2/4)) Using second Wolfe

$$\left| \boldsymbol{g}_{k}^{T} \boldsymbol{p}_{k-1} \right| \leq -c_{2} \boldsymbol{g}_{k}^{T} \boldsymbol{p}_{k-1} \leq \frac{c_{2}}{1-c_{2}} \left\| \boldsymbol{g}_{k-1} \right\|^{2}$$

using $oldsymbol{p}_k = -oldsymbol{g}_k + eta_k^{FR} oldsymbol{p}_{k-1}$ we have

$$\|\boldsymbol{p}_{k}\|^{2} \leq \|\boldsymbol{g}_{k}\|^{2} + 2\beta_{k}^{FR} |\boldsymbol{g}_{k}^{T}\boldsymbol{p}_{k-1}| + (\beta_{k}^{FR})^{2} \|\boldsymbol{p}_{k-1}\|^{2}$$

$$\leq \|\boldsymbol{g}_{k}\|^{2} + \frac{2c_{2}}{1 - c_{2}} \beta_{k}^{FR} \|\boldsymbol{g}_{k-1}\|^{2} + (\beta_{k}^{FR})^{2} \|\boldsymbol{p}_{k-1}\|^{2}$$

recall that $eta_k^{FR} = \left\|oldsymbol{g}_k
ight\|^2 / \left\|oldsymbol{g}_{k-1}
ight\|^2$ then

$$\|\boldsymbol{p}_{k}\|^{2} \leq \frac{1+c_{2}}{1-c_{2}} \|\boldsymbol{g}_{k}\|^{2} + (\beta_{k}^{FR})^{2} \|\boldsymbol{p}_{k-1}\|^{2}$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes			

Proof:(Proof. (bounding $||p_k||$) (3/4)) setting $c_3 = \frac{1+c_2}{1-c_2}$ and using repeatedly the last inequality we obtain:

$$\begin{aligned} \|\boldsymbol{p}_{k}\|^{2} &\leq c_{3} \|\boldsymbol{g}_{k}\|^{2} + (\beta_{k}^{FR})^{2} (c_{3} \|\boldsymbol{g}_{k-1}\|^{2} + (\beta_{k-1}^{FR})^{2} \|\boldsymbol{p}_{k-2}\|^{2}) \\ &= c_{3} \|\boldsymbol{g}_{k}\|^{4} (\|\boldsymbol{g}_{k}\|^{-2} + \|\boldsymbol{g}_{k-1}\|^{-2}) + \frac{\|\boldsymbol{g}_{k}\|^{4}}{\|\boldsymbol{g}_{k-2}\|^{4}} \|\boldsymbol{p}_{k-2}\|^{2} \\ &\leq c_{3} \|\boldsymbol{g}_{k}\|^{4} (\|\boldsymbol{g}_{k}\|^{-2} + \|\boldsymbol{g}_{k-1}\|^{-2} + \|\boldsymbol{g}_{k-2}\|^{-2}) \\ &+ \frac{\|\boldsymbol{g}_{k}\|^{4}}{\|\boldsymbol{g}_{k-3}\|^{4}} \|\boldsymbol{p}_{k-3}\|^{2} \\ &\leq c_{3} \|\boldsymbol{g}_{k}\|^{4} \sum_{j=1}^{k} \|\boldsymbol{g}_{j}\|^{-2} \end{aligned}$$

Enrico Bertolazzi — Conjugate Direction minimization

Notes		

Proof:(Proof. (4/4)) Suppose now by contradiction there exists $\delta>0$ such that $\|{\bf g}_k\|\geq \delta^3$ by using the regularity assumptions we have

$$\|\boldsymbol{p}_{k}\|^{2} \leq c_{3} \|\boldsymbol{g}_{k}\|^{4} \sum_{j=1}^{k} \|\boldsymbol{g}_{j}\|^{-2} \leq c_{3} \|\boldsymbol{g}_{k}\|^{4} \delta^{-2} k$$

Substituting in Zoutendijk condition we have

$$\infty > \sum_{k=1}^{\infty} \frac{\|g_k\|^4}{\|p_k\|^2} \ge \frac{\delta^2}{c_4} \sum_{k=1}^{\infty} \frac{1}{k} = \infty$$

this contradict assumption.

³the correct assumption is that there exists k_0 such that $||g_k|| \ge \delta$ for $k \ge k_0$ but this complicate a little bit the following inequality without introducing new idea.

Enrico Bertolazzi — Conjugate Direction minimization

INOTES		

Weakness of Fletcher and Reeves method

- Suppose that p_k is a bad search direction, i.e. $\cos \theta_k \approx 0$.
- From the descent direction bound Lemma (see slide 91) we have

$$\frac{1}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} \ge \cos \theta_k \ge \frac{1 - 2c_2}{1 - c_2} \frac{\|\boldsymbol{g}_k\|}{\|\boldsymbol{p}_k\|} > 0$$

- lacksquare so that to have $\cos \theta_k pprox 0$ we needs $\|m{p}_k\| \gg \|m{g}_k\|$.
- since p_k is a bad direction near orthogonal to g_k it is likely that the step is small and $x_{k+1} \approx x_k$. If so we have also $g_{k+1} \approx g_k$ and $\beta_{k+1}^{FR} \approx 1$.
- lacksquare but remember that $m{p}_{k+1} \leftarrow -m{g}_{k+1} + eta_{k+1}^{FR} m{p}_k$, so that $m{p}_{k+1} pprox m{p}_k$.
- This means that a long sequence of unproductive iterates will follows.

101/107

Notes

Polack and Ribiére Nonlinear Conjugate Gradient

- 1 The previous problem can be elided if we restart anew when the iterate stagnate.
- 2 Restarting is obtained by simply set $\beta_k^{FR}=0$.
- 3 A more elegant solution can be obtained with a new definition of β_k due to Polack and Ribiére is the following:

$$eta_k^{PR} = rac{m{g}_k^T (m{g}_k - m{g}_{k-1})}{m{g}_{k-1}^T m{g}_{k-1}}$$

This definition of β_k^{PR} is identical of β_k^{FR} in the case of quadratic function because $\boldsymbol{g}_k^T\boldsymbol{g}_{k-1}=0$. The definition differs in non linear case and in particular when there is stagnation i.e. $\boldsymbol{g}_k \approx \boldsymbol{g}_{k-1}$ we have $\beta_k^{PR} \approx 0$, i.e. we have an automatic restart.

Enrico Bertolazzi — Conjugate Direction minimization

103/10.

Notes Services Servic

Polack and Ribiére Nonlinear Conjugate Gradient

initial step:

```
k \leftarrow 0; x_0 \text{ assigned}; \\ f_0 \leftarrow \mathsf{f}(x_0); g_0 \leftarrow \nabla \mathsf{f}(x_0)^T; \\ p_0 \leftarrow -g_0; \\ \textbf{while} \ \|g_k\| > \epsilon \ \textbf{do} \\ k \leftarrow k+1; \\ \textbf{Conjugate direction method} \\ \textbf{Compute} \ \alpha_k \text{ by line-search}; \\ x_k \leftarrow x_{k-1} + \alpha_k p_{k-1}; \\ g_k \leftarrow \nabla \mathsf{f}(x_k)^T; \\ \textbf{Residual orthogonalization} \\ \beta_k^{PR} \leftarrow \frac{g_k^T(g_k - g_{k-1})}{g_{k-1}^T g_{k-1}}; \\ p_k \leftarrow -g_k + \beta_k^{PR} p_{k-1}; \\ \textbf{end while} \\ \end{cases}
```


Enrico Bertolazzi — Conjugate Direction minimization

103/10

Notes ______

Weakness of Polack and Ribiére method (1/2)

- Although the modification is minimal, for the Polack and Ribiére method with strong Wolfe line-search it can happen that p_k is not a descent direction.
- If p_k is not a descent direction we can restart i.e. set $\beta_k^{PR}=0$ or modify β_k^{PR} as follows

$$\beta_k^{PR+} = \max\{\beta_k^{PR}, 0\}$$

this new coefficient with a modified Wolfe line-search ensure that p_k is a descent direction.

104/107

Notes		

Weakness of Polack and Ribiére method (2/2)

- Polack and Ribiére choice on the average perform better than Fletcher and Reeves but there is not convergence results!
- Although there is not convergence results there is a negative results due to Powell:

Theorem

Consider the Polack and Ribiére method with exact line-search. There exists a twice continuously differentiable function $f: \mathbb{R}^3 \mapsto \mathbb{R}$ and a starting point x_0 such that the sequence of gradients $\{ \|g_k\| \}$ is bounded away from zero.

■ However is spite of this results Polack and Ribiére is the first choice among conjugate direction methods.

105/107

Notes		

Other choices

There are many other modification of the coefficient β_k that collapse to the same coefficient in the case o quadratic function. One important choice is the Hestenes and Stiefel choice

$$\beta_k^{HS} = \frac{g_k^T (g_k - g_{k-1})}{(g_k^T - g_{k-1}^T) p_{k-1}}$$

■ For this choice there is similar convergence results of Fletcher and Reeves and similar performance.

106/107

References

Enrico Bertolazzi — Conjugate Direction minimization

- J. E. Dennis, Jr. and Robert B. Schnabel
 Numerical Methods for Unconstrained Optimization and
 Nonlinear Equations
 SIAM, Classics in Applied Mathematics, 16, 1996.
- Jorge Nocedal, and Stephen J. Wright Numerical optimization Springer, 2006
- J. Stoer and R. Bulirsch Introduction to numerical analysis Springer-Verlag, Texts in Applied Mathematics, **12**, 2002.

107/107

Notes ______