

United International University School of Science and Engineerin

School of Science and Engineering
Final Examination Trimester: Summer-2023
Course Title: Calculus and Linear Algebra
Course Code: MATH 2183 Marks: 40 Time: 2 Hour

Answer all the questions.

1.	a) Solve the following system by Gauss-Jordan elimination method				
1.	x - y - z + 2p = 2				
	2x + y - 2z + p = 0				
	-x+2y-z-4p=-1				
	b) State (do not solve) how many solutions does the following set of equations have?				
	x + y = 1 $3x + 3y = -5$ c) Solve the homogeneous system of linear equations $3x - 2y - z + 3w = 0$				
	3x - 2y - z + 3w = 0 x - y + 2z - 2w = 0				
	x y + 2z = 0	[2]			
2.	a) Given that,				
	x-2y+z=1	[5]			
	x - 3y - z = 0				
	2x + y - 2z = 2 <i>i.</i> Write the above system of linear equations in the form $AX = B$, where A, X and B are				
	<i>i.</i> Write the above system of linear equations in the form $AX = B$, where A, X and B are matrices.				
	<i>ii.</i> Find the inverse of A and hence solve the above system of linear equations.				
	b) Find eigenvalues and eigenvectors of the Matrix $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 0 & 6 \end{bmatrix}$. Also sketch the eigenspace in				
	xy –coordinates.	[5]			
		[5]			
3.	a) r1 1 1 0	[5]			
	$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 3 & 0 \end{bmatrix}$ p. [4, 2, 4, 2]	[S]			
	Given $A = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 3 & 0 \\ 2 & 1 & 1 & 2 \\ 3 & 0 & 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & 1 & 3 \end{bmatrix}$				
	i. Find $det(A)$ and $det(B)$ ii. Evaluate AB and BA . iii. Find $3A - 3$. iv. Find x , Such that $tr(A) = x^2 + 3$				
	iv . This λ , such that ii $(\Lambda) = \lambda + 3$				
	b) Solve $(3x^2y + 2x)dx + (x^3 + 2y)dy = 0$	[5]			
4.	a) Solve the following second order ordinary differential equations	[5]			
	i) $\frac{d^2y}{dx^2} + 16\frac{dy}{dx} + 64y = 0; y(0) = 1, \ y'(0) = 0.$				
	ii) $y'' + y' + 16y = 0$				
		[5]			
	b) Solve $y'' + y' + y = 2e^x - \cos 2x - \ln 5 + e^{2x} \sin x$.				