A solutions manual for Set Theory by Thomas Jech

1. Axioms of Set Theory

Exercises

1.1. Verify (1.1) (a, b) = (c, d) if and only if a = c and b = d.

Proof. If a = c and b = d, then $(a, b) = \{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\} = (c, d)$. Assume that (a, b) = (c, d) and a = b. Then $\{\{c\}, \{c, d\}\} = \{\{a\}\}\}$; thus $\{c, d\} \in \{\{a\}\}\}$ and $\{c\} \in \{\{a\}\}\}$, so $\{c, d\} = \{a\} = \{c\}$. Hence c = d = a. Since it was assumed that a = b, a = c and b = d. Assume that (a, b) = (c, d) and $a \neq b$. Since $\{\{a\}, \{a, b\}\} = \{\{c\}, \{c, d\}\}\}$ and $\{a\} \neq \{a, b\}$, $\{c\} = \{a\}$ and $\{a, b\} = \{c, d\}$; thus c = a and d = b. \square

1.2. There is no set X such that $P(X) \subset X$.

Proof. Suppose $P(X) \subset X$, then we have a surjective function $f: X \to P(X)$. But the set $Y = \{x \in X : x \notin f(x)\}$ is not in the range of f. Suppose not. If $z \in X$ were such that f(z) = Y, then $z \in Y$ if and only if $z \notin Y$, a contradiction; hence f is not a surjective function. Therefore, there is no set X such that $P(X) \subset X$. \square

Let

$$\mathbb{N} = \bigcap \{X : X \text{ is inductive}\}.$$

 \mathbb{N} is the smallest inductive set. Let us use the following notation:

$$0 = \emptyset$$
, $1 = \{0\}$, $2 = \{0, 1\}$, $3 = \{0, 1, 2\}$,

If $n \in \mathbb{N}$, let $n+1 = n \cup \{n\}$. Let us define < (on \mathbb{N}) by n < m if and only if $n \in m$.

A set T is transitive if $x \in T$ implies $x \subset T$.

1.3. If X is inductive, then the set $\{x \in X : x \subset X\}$ is inductive. Hence \mathbb{N} is transitive, and for each $n, n = \{m \in \mathbb{N} : m < n\}$.

Proof. Let $Y = \{x \in X : x \subset X\}$. Since $\emptyset \subset X$, and $\emptyset \in X$, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, i.e., $\{y\} \subset X$, and $y \cup \{y\} \in X$, and since $y \subset X$, $y \cup \{y\} \subset X$; thus $y \cup \{y\} \in Y$. Therefore, we have that Y is inductive.

Let $Y_{\mathbb{N}} = \{x \in \mathbb{N} : x \subset \mathbb{N}\}$, then $Y_{\mathbb{N}} \subset \mathbb{N}$, and since $Y_{\mathbb{N}}$ is inductive, $\mathbb{N} \subset Y_{\mathbb{N}}$; thus $\mathbb{N} = Y_{\mathbb{N}}$, and so we have that $x \in \mathbb{N}$ implies $x \subset \mathbb{N}$. Therefore, \mathbb{N} is transitive.

It's obvious that $k \in n \cup \{n\}$ if and only if $k \in n$ or k = n. So it follows that for all $k, n \in \mathbb{N}, k < n + 1$ if and only if k < n or k = n. Now let P(x) be the property " $x = \{m \in \mathbb{N} : m < x\}$ ". P(0) holds, and assume that P(n) holds. $n + 1 = n \cup \{n\} = \{m \in \mathbb{N} : m < n\} \cup \{n\} = \{m \in \mathbb{N} : m < n \text{ or } m = n\} = \{m \in \mathbb{N} : m < n\}$

 $\{m \in \mathbb{N} : m < n+1\} = P(n+1)$ holds. Therefore, for each $n, n = \{m \in \mathbb{N} : m < n\}$. \square

1.4. If X is inductive, then the set $\{x \in X : x \text{ is transitive}\}$ is inductive. Hence every $n \in \mathbb{N}$ is transitive.

Proof. Let $Y = \{x \in X : x \text{ is transitive}\}$. Since $\emptyset \in X$, and \emptyset is transitive, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, and $y \cup \{y\} \in X$. Let $z \in y \cup \{y\}$, then either $z \in y$ or z = y; since y is transitive, in any case, $z \subset y \cup \{y\}$. Thus $y \cup \{y\}$ is transitive, and so $y \cup \{y\} \in Y$. Therefore, we have that Y is inductive.

Let $Y_{\mathbb{N}} = \{x \in \mathbb{N} : x \text{ is transitive}\}$, then $Y_{\mathbb{N}} \subset \mathbb{N}$, and since $Y_{\mathbb{N}}$ is inductive, $\mathbb{N} \subset Y_{\mathbb{N}}$; thus $\mathbb{N} = Y_{\mathbb{N}}$, and so we have that every $n \in \mathbb{N}$ is transitive. \square

1.5. If X is inductive, then the set $\{x \in X : x \text{ is transitive and } x \notin x\}$ is inductive. Hence $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$.

Proof. Let $Y = \{x \in X : x \text{ is transitive and } x \notin x\}$. Since $\emptyset \in X$, and \emptyset is transitive and $\emptyset \notin \emptyset$, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, and $y \cup \{y\} \in X$. We already have that $y \cup \{y\}$ is transitive. Suppose $y \cup \{y\} \in y \cup \{y\}$, then $y \cup \{y\} \in y$, i.e., $y \cup \{y\} \subset y$ or $y \cup \{y\} = y$; in any case, $\{y\} \subset y$, i.e., $y \in y$; a contradiction. Thus $y \cup \{y\} \notin y \cup \{y\}$, and so $y \cup \{y\} \in Y$. Therefore, we have that Y is inductive.

Let $Y_{\mathbb{N}} = \{x \in \mathbb{N} : x \text{ is transitive and } x \notin x\}$, then $Y_{\mathbb{N}} \subset \mathbb{N}$, and since $Y_{\mathbb{N}}$ is inductive, $\mathbb{N} \subset Y_{\mathbb{N}}$; thus $\mathbb{N} = Y_{\mathbb{N}}$, and so $n \notin n$. Suppose n+1=n, i.e., $n \cup \{n\} = n$, then $\{n\} \subset n$, i.e., $n \in n$; a contradiction. Therefore, $n \notin n$ and $n \neq n+1$ for each $n \in \mathbb{N}$. \square

1.6. If X is inductive, then $\{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \epsilon\text{-minimal element}\}$ is inductive (t is $\epsilon\text{-minimal}$ in z if there is no $s \in z$ such that $s \in t$).

Proof. Let $Y = \{x \in X : x \text{ is transitive and every nonempty } z \subset x \text{ has an } \epsilon\text{-minimal element}\}$. Since $\emptyset \in X$, and \emptyset is transitive and has no nonempty set, $\emptyset \in Y$. Now let $y \in Y$. Since $Y \subset X$, and X is inductive, $y \in X$, and $y \cup \{y\} \in X$. We already have that $y \cup \{y\}$ is transitive. Now suppose that there exists $a \in y$ such that $y \in a$, then $y \in a \in y$, and by transitivity of y, $y \in a \subset y$, i.e., $y \in y$, and then $\{y\} \subset y$ and $\{a,y\} \subset y$ do not have ϵ -minimal element $(...y \in y \in y..., ...y \in a \in y \in a...)$; a contradiction. It follows that y is ϵ -maximal in y; thus every nonempty $z \subset y \cup \{y\}$ has an ϵ -minimal element, and so $y \cup \{y\} \in Y$. Therefore, we have that Y is inductive. \square

1.7. Every nonempty $X \subset \mathbb{N}$ has an ϵ -minimal element. [Pick $n \in X$ and look at $X \cap n$.]

Proof. Since \mathbb{N} is the smallest inductive set, from **1.6**, we have that every $n \in \mathbb{N}$ has an ϵ -minimal element. Let $n \in X$. If $n \cap X = \emptyset$, then n is an ϵ -minimal element. Suppose not. There exists $m \in X \setminus n$ such that $m \in n$, but since $n = \{m \in \mathbb{N} : m < n\}$, a contradiction. If $n \cap X \neq \emptyset$, then $n \cap X \subset n$ has

an ϵ -minimal element, and it's an ϵ -minimal element of X; otherwise similarly to the previous, a contradiction. \square

1.8. If X is inductive then so is $\{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$. Hence each $n \neq 0$ is m+1 for some m.

Proof. Let $A = \{x \in X : x = \emptyset \text{ or } x = y \cup \{y\} \text{ for some } y\}$; let $a \neq \emptyset \in A$. Since $a = y \cup \{y\}$ for some y, so is $a \cup \{a\}$ for $y \cup \{y\}$; thus $a \cup \{a\} \in A$. Therefore, A is inductive, and each $n \neq 0$ is m + 1 for some m. \square

1.9 (Induction). Let A be a subset of \mathbb{N} such that $0 \in A$, and if $n \in A$ then $n+1 \in A$. Then $A = \mathbb{N}$.

Proof. By definition, A is a inductive subset of N. Therefore, $A = \mathbb{N}$. \square

A set X has n elements (where $n \in \mathbb{N}$) if there is a one-to-one mapping of n onto X. A set is *finite* if it has n elements for some $n \in \mathbb{N}$, and *infinite* if it is not finite.

A set S is T-finite if every nonempty $X \subset P(S)$ has a \subset -maximal element, i.e., $u \in X$ such that there is no $v \in X$ with $u \subset v$ and $u \neq v$. S is T-infinite if it is not T-finite. (T is for Tarski.)

1.10. Each $n \in \mathbb{N}$ is T-finite.

Proof. Let $A = \{n \in \mathbb{N} : n \text{ is T-finite}\}$. We show that $A = \mathbb{N}$ by induction. Since $P(\emptyset) = \{\emptyset\}$ has the only subset $\{\emptyset\}$, and it's T-finite, $\emptyset \in A$.

Let $n \in A$; let $X \subset P(n+1)$. For some $Y \subset P(n)$, X is either Y or $\{n\} \cup Y$. From **1.6** and by transitivity of n, n is a \subset -maximal element of $\{n\} \cup Y$; thus $n+1 \in A$. Therefore, $A = \mathbb{N}$

- **1.11.** \mathbb{N} is T-infinite; the set $\mathbb{N} \subset P(\mathbb{N})$ has no \subset -maximal element.
- **1.12.** Every finite set is T-finite.
- **1.13.** Every infinite set is T-infinite. [If S is infinite, consider $X = \{u \subset S : u \text{ is finite}\}.$]
- **1.14.** The Separation Axioms follow from the Replacement Schema. [Given ϕ , let $F = \{(x, x) : \phi(x)\}$. Then $\{x \in X : \phi(x)\} = F(X)$, for every X.]
- **1.15.** Instead of Union, Power Set, and Replacement Axioms consider the following weaker versions:
- $(1.8) \ \forall X \exists Y \ | \ JX \subset Y, \text{ i.e., } \forall X \exists Y \ (\forall x \in X) \ (\forall u \in x) \ u \in Y,$
- $(1.9) \ \forall X \exists Y P(X) \subset Y$, i.e., $\forall X \exists Y \forall u (u \subset X \rightarrow u \in Y)$,
- (1.10) If a class F is a function, then $\forall X \exists Y F(X) \subset Y$.

Then axioms 1.4, 1.5, and 1.7 can be proved from (1.8), (1.9), and (1.10), using the Separation Schema (1.3).