Given M+1 sensors let $\boldsymbol{x} \in R^d$ denote unknown coordinates of the source, y_i - energy reading from the i^{th} sensor, \boldsymbol{r}_i its coordinates, g_i - sensor gain factor, μ_i - mean of the square of the background noise, $i=1,\ldots,M$. Let \boldsymbol{r}_0 be a reference sensor. Referring to the eq. (17), ref [1] the energy ratio of the i^{th} and 0 sensor are:

(1)
$$k_i = \left(\frac{\frac{y_i - \mu_i}{g_i}}{\frac{y_0 - \mu_0}{q_0}}\right)^{-1/2} = \frac{\|\boldsymbol{x} - \boldsymbol{r}_i\|}{\|\boldsymbol{x} - \boldsymbol{r}_0\|}$$

The center c_i and the radius ρ_i of the hyper-sphere associated with the sensor i and sensor 0 (for the case 0 < k < 1) are given by:

(2)
$$c_i = \frac{r_i - k_i^2 \cdot r_0}{1 - k_i^2}, \rho_i = \frac{k_i ||r_i - r_0||}{1 - k_i^2}$$

Eq.(18) ref [1] can be written as:

(3)
$$\|\boldsymbol{x} - \boldsymbol{c}_i\|^2 = \rho_i^2 \Leftrightarrow \|\boldsymbol{x}\|^2 - 2\boldsymbol{c}_i^T \boldsymbol{x} = \rho_i^2 - \|\boldsymbol{c}_i\|^2$$

or

$$\|\boldsymbol{x}\|^2 + \boldsymbol{a}_i^T \boldsymbol{x} = b_i$$

where

(5)
$$a_i = -2c_i, b_i = \rho_i^2 - ||c_i||^2$$

Therefore the unknown location of the source can be found via minimization of the criterion:

(6)
$$\min \sum_{i=1}^{M} (\|\boldsymbol{x}\|^2 + \boldsymbol{a}_i^T \boldsymbol{x} - b_i)^2$$

The problem above can be re-formulated as a constrained LS problem (with $y = [x^T \ \|x\|^2]^T$)

(7)
$$\min \|\mathbf{A}\mathbf{y} - \mathbf{b}\|^{2}$$
subject to:
$$\mathbf{y}^{T}\mathbf{C}\mathbf{y} + 2\mathbf{f}^{T}\mathbf{y} = 0$$

$$y_{d+1} \ge 0$$

(8)
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{1}^{T} & 1 \\ \vdots & \vdots \\ \mathbf{a}_{M}^{T} & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} \rho_{1}^{2} - \|\mathbf{c}_{1}\|^{2} \\ \vdots \\ \rho_{M}^{2} - \|\mathbf{c}_{M}\|^{2} \end{pmatrix}$$

(9)
$$C = \begin{pmatrix} I_{d \times d} & \mathbf{0}_{d \times 1} \\ \mathbf{0}_{1 \times d} & 0 \end{pmatrix}, \mathbf{f} = \begin{pmatrix} \mathbf{0} \\ -0.5 \end{pmatrix}$$

In ref [1] a separate case was considered that if $k_j = 1$, for some $1 \le j \le M$, then the solution of (17) in ref [1] forms a hyperplane between sensors r_j and r_0 . In this case formulation (7) is still valid with some changes to how matrix A is formed:

(10)
$$\mathbf{A} = \begin{pmatrix} \mathbf{a}_{1}^{T} & 1 \\ \vdots & \vdots \\ \mathbf{a}_{j}^{T} & 0 \\ \vdots & \vdots \\ \mathbf{a}_{M}^{T} & 1 \end{pmatrix}.$$

References

X. Sheng and Y.-H. Hu, "ML Multiple-Source Localization Using Acoustic Energy Measurements with Wireless Sensor Networks," *IEEE Trans. on Signal Process.*, vol. 53, pp. No.1, pp. 44-53, Jan. 2005.