3. (10 marks) Error probability of a code

Consider the binary code $C = \{c_1 = 0000, c_2 = 1010, c_3 = 0111\}$. Suppose we are using IMLD and a BSC with symbol error probability p. Assume also that all codewords are sent with equal probability.

(a) For $c \in C$, let L(c) denote the set of all binary 4-tuples which are closer to c than any other codeword. Determine $L(c_1)$, $L(c_2)$ and $L(c_3)$.

We know there are $2^4 = 16$ possible binary 4-tuples, so we will use a table to determine which are in $L(c_i)$, $\forall i \in \{1,2,3\}$ where X are the ties (in that case, IMLD cannot accurately correct the error).

x_i	$d(c_1,x_i)$	$d(c_2, x_i)$	$d(c_3, x_i)$	$\min d(c_i, x_i)$
0000	0	2	3	c_1
0001	1	3	2	c_1
0010	1	1	2	X
0011	2	2	1	c_3
0100	1	3	2	c_1
0101	2	4	1	c_3
0110	2	2	1	c_3
0111	3	3	0	c_3
1000	1	1	4	X
1001	2	2	3	X
1010	2	0	3	c_2
1011	3	1	2	c_2
1100	2	2	3	X
1101	3	3	2	c_3
1110	3	1	2	c_2
1111	4	2	1	c_3

Thus,

 $L(c_1) = \{0000, 0001, 0100\}$

 $L(c_2) = \{1010, 1011, 1110\}$

 $L(c_3) = \{0011, 0101, 0110, 0111, 1101, 1111\}$

(b) For each i, $1 \le i \le 3$, let w_i denote the probability that IMLD makes an incorrect decision or rejects the received word, given that c_i was transmitted. Determine w_1 , w_2 and w_3 .

For w_1 , we know there are 3 codewords that can be corrected out of 16. Similarly, for w_2 , there are 3 codewords that can be corrected out of 16. Lastly, for w_3 , there are 6 codewords that can be corrected out of 16. Thus, we get $w_1 = w_2 = p/13$ and $w_3 = p/10$ chance that IMLD makes an incorrect decision or rejects the received word, given that c_i was transmitted.

(c) The error probability of an [n,M]-code C is defined to be $P_C = \frac{1}{M} \sum_{i=1}^M w_i$. Determine P_C for the code C of this example when p=0.1.

$$P_C = \frac{1}{M} \sum_{i=1}^{M} w_i$$

$$= \frac{1}{3} \left(\frac{0.1}{13} + \frac{0.1}{13} + \frac{0.1}{10} \right)$$

$$\approx 0.008461$$

(d) Suppose now that the codewords are not sent with equal probability. Then we define the error probability of C to be $P_C = \sum_{i=1}^M w_i P(c_i)$. Suppose that $P(c_1) = 0.7$, $P(c_2) = 0.2$, and $P(c_3) = 0.1$.

Determine P_C for the code C of this example when p=0.1.

$$P_C = \frac{1}{M} \sum_{i=1}^{M} w_i P(c_i)$$

$$= \frac{1}{3} \left(\frac{0.1}{13} (0.7) + \frac{0.1}{13} (0.2) + \frac{0.1}{10} (0.1) \right)$$

$$\approx 0.002641$$