Supplementary Material

Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.

Castrense Savojardo[†], Giulia Babbi[†], Samuele Bovo[†], Emidio Capriotti[†], Pier Luigi Martelli^{†,‡}, Rita Casadio^{†,§}

Supplementary Tables

Table S1. INPS-3D predictions for the *FXN* SAV dataset

SAV	Experimental ΔΔG	Predicted ΔΔG (INPS-3D)		
p.Asp104Gly	0.255	-0.776491		
p.Ala107Val	0.22	-0.1439655		
p.Ser202Phe	-0.685	0.4780699		
p.Ser181Phe	-2.035	-0.115336		
p.Phe109Leu	-2.645	-1.40127		
p.Ser161lle	-3.44	-0.697307		
p.Tyr123Ser	-4.48	-2.577015		
p.Trp173Cys	-9.5	-2.05509		

Table S3. Predictions of different methods for the CHEK2 SAV dataset

SAV	Pcase	SNPs&GO	Pd	Pp	INPS
p.Ala584Val	1.00	0.760	0.560	0.750	0.840
p.Ala94Thr	1.00	0.590	0.540	0.594	0.500
p.Asp154Gly	1.00	0.880	0.820	0.654	0.793
p.Asp540Asn	1.00	0.530	0.650	0.570	0.500
p.Ser67Tyr	1.00	0.650	0.640	0.750	0.840
p.Glu547Gln	0.00	0.530	0.560	0.500	0.500
p.Glu64Lys	0.00	0.680	0.760	0.500	0.500
p.Leu555Val	0.50	0.560	0.540	0.834	0.500
p.Pro85Leu	0.00	0.500	0.590	0.714	0.775
p.Arg562Leu	0.00	0.650	0.960	0.500	0.500
p.Arg95Gln	0.00	0.650	0.750	0.500	0.500
p.Ser548Pro	0.00	0.680	0.690	0.500	0.500
p.Val66Met	0.00	0.650	0.630	0.630	0.500
p.lle158Met	1.00	0.820	0.590	0.750	1.000
p.lle200Thr	1.00	0.740	0.770	1.000	1.000
p.lle203Arg	1.00	0.850	0.810	0.834	1.000
p.Arg160Gly	1.00	0.970	0.850	0.882	1.000
p.Arg180Gln	1.00	0.590	0.750	0.500	0.500
p.Arg191Gly	1.00	0.880	0.850	0.882	1.000
p.Arg223Cys	1.00	0.820	0.950	0.750	0.620
p.Asp481Tyr	1.00	0.760	0.910	0.630	0.500
p.Glu282Lys	1.00	0.760	0.760	0.500	0.500
p.Gly385Ser	1.00	0.850	0.820	0.500	0.673
p.lle264Val	1.00	0.820	0.500	0.500	0.519
p.Leu279Pro	0.82	0.910	0.960	0.702	1.000
p.Asn448Lys	1.00	0.850	0.750	0.630	0.500

[†] Biocomputing Group, Department of Pharmacy and Biotechnology, University of Bologna, Italy.

[§] Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Italian National Research Council (CNR), Bari, Italy.

[‡] Corresponding author

p.Pro527Leu	1.00	0.790	0.590	0.714	1.000	
p.Arg449His	1.00	0.710	0.800	0.702	0.500	
p.Thr519Met	1.00	0.760	0.600	0.500	0.804	
p.Glu420Gly	0.00	0.760	0.660	0.870	1.000	
p.lle491Ser	0.33	0.680	0.900	1.000	1.000	
p.lle491Val	0.00	0.740	0.500	0.500	0.708	
p.Arg389His	0.00	1.000	0.800	0.702	1.000	
p.Thr421lle	0.00	0.710	0.630	0.558	0.520	

Table S4. Predictions of different methods for the PCM1 SAV dataset

SAV	Functional	Pd	Pd	Pp	Pp	INPS	INPS
	effect	(numeric)	(class)	(numeric)	(class)	(numeric)	(class)
p.Gly6Asp	Р	0.82	Р	0.67	Р	-0.767	Н
p.Glu23Asp	В	0.35	В	0.43	Н	-0.618	Н
p.Thr77Ala	В	0.27	В	0.5	Н	-0.299	В
p.Met146Val	Н	0.46	Н	0.57	Н	-1.078	Р
p.Ala156Val	Н	0.45	Н	0.6	Р	0.494	В
p.Met200Thr	Н	0.41	Н	0.25	В	-1.666	Р
p.Met200lle	Н	0.45	Н	0.43	Н	-0.138	В
p.Asp214Gly	Р	0.66	Р	0.52	Н	-0.802	Н
p.Glu248Gln	Н	0.45	Н	0.25	В	-0.556	Н
p.Glu311Gln	Н	0.45	Н	0.25	В	-0.640	Н
p.Glu369Gly	Н	0.53	Н	0.7	Р	-1.134	Р
p.Pro390Ser	Н	0.48	Н	0.5	Н	-0.345	В
p.Leu472Val	Н	0.43	Н	0.67	Р	-0.381	В
p.Gly482Val	Р	0.82	Р	0.7	Р	-0.508	Н
p.Glu543Lys	Р	0.61	Р	0.33	В	-0.300	В
p.Asp574Gly	Р	0.66	Р	0.52	Н	-0.803	Н
p.Arg604Leu	Р	0.77	Р	0.4	В	0.056	В
p.Glu624Lys	Р	0.61	Р	0.33	В	-0.225	В
p.lle659Met	Н	0.47	Н	0.6	Р	-1.423	Р
p.Ser804Arg	Р	0.62	Р	0.43	Н	-0.020	В
p.Arg833Thr	Р	0.71	Р	0.67	Р	-0.976	Н
p.Cys876Arg	Р	0.76	Р	0.72	Р	-1.281	Р
p.Gly892Trp	Р	0.81	Р	0.5	Н	-0.780	Н
p.Glu917Gly	Н	0.53	Н	0.7	Р	-1.099	Р
p.Lys954Asn	Н	0.5	Н	0.57	Н	-0.755	Н
p.Asn1125Ser	Н	0.49	Н	0.63	Р	-0.296	В
p.Lys1275Glu	Н	0.48	Н	0.33	В	-0.594	Н
p.His1352Tyr	Н	0.58	Н	0.42	Н	-0.038	В
p.Cys1361Tyr	Р	0.83	Р	0.67	Р	0.486	В
p.Ala1490Gly	Н	0.47	Н	0.58	Н	-1.192	Р
p.Glu1535Lys	Р	0.61	Р	0.33	В	-0.467	В
p.Ala1553Gly	H	0.47	Н	0.58	H	-0.031	В
p.Gly1556Asp	P	0.82	Р	0.67	Р	-0.518	H
p.Lys1861Asn	H	0.5	H	0.57	H	-0.648	Н
p.Asn1875Lys	P	0.6	P	0.5	H	-0.271	В
p.Arg1907His	P	0.64	Р	0.56	H	0.052	В
p.Pro1913Leu	Н	0.47	Н	0.57	H	0.618	Н
p.Ala1979Ser	В	0.33	В	0.27	В	-0.760	H