Notes sur le problème de retour au point L2

Olivier Cots

27 février 2018

On s'intéresse au problème suivant : rejoindre le point L_2 depuis une configuration donnée par la commande propagate2Hill.m en maximisant la masse finale. La commande propagate2Hill.m retourne la configuration initiale dont la position se trouve à une certaine distance (donnée comme paramètre) du barycentre Terre-Lune (noté EMB). On considère la masse initiale libre, le temps final libre et on introduit dans la dynamique la variation de la masse. L'état du système est x = (q, m) avec (q_1, q_2, q_3) , (q_4, q_5, q_6) et m les positions, vitesses et masse du spacecraft. Les coordonnées sont données dans le repère tournant et la dynamique est celle des 3 corps (Terre-Lune-Spacecraft) perturbés par le Soleil.

$$\begin{cases} \min J(m_0, t_f, u(\cdot)) = -m(t_f) \\ \dot{x}(t) = F_0(q(t)) + \frac{T_{\text{max}}}{m(t)} \sum_{i=1}^3 u_i(t) \, F_i(q(t)) + (-\beta T_{\text{max}} | u(t) |) \, \frac{\partial}{\partial m}, \quad |u(t)| \le 1, \quad t \in [0, t_f], \\ x(0) = (q_0, m_0), \\ q(t_f) = q_f = (x_{L_2}, 0, 0, 0, 0, 0), \end{cases}$$

où $\beta=(I_{sp}\,g_0)^{-1}$ avec I_{sp} l'impulsion spécifique et g_0 la gravité à la surface de la Terre. On note :

$$r_{1} = \sqrt{(q_{1} + \mu)^{2} + q_{2}^{2} + q_{3}^{2}},$$

$$r_{2} = \sqrt{(q_{1} - 1 + \mu)^{2} + q_{2}^{2} + q_{3}^{2}},$$

$$\theta_{S} = \theta_{S,0} + \omega_{S} t,$$

$$r_{S} = \sqrt{(q_{1} - \rho_{S} \cos(\theta_{S}))^{2} + (q_{2} - \rho_{S} \sin(\theta_{S}))^{2} + q_{3}^{2}},$$

$$\mu = \frac{\mu_{M}}{\mu_{M} + \mu_{E}}, \quad \mu' = \frac{\mu_{S}}{\mu_{M} + \mu_{E}},$$

où $\rho_S(\cos\theta_{S,0},\sin\theta_{S,0},0)$ est la position du Soleil dans le repère tournant à l'instant initial $t=0,\,\omega_S$ est la vitesse de rotation du Soleil et $\mu_M,\,\mu_E$ et μ_S sont les constantes gravitationnelles respectivement de la Lune, la Terre et le Soleil. Les champs de vecteurs sont alors donnés par :

$$\begin{split} F_0(q) = & q_3 \frac{\partial}{\partial q_1} + q_4 \frac{\partial}{\partial q_2} + q_5 \frac{\partial}{\partial q_3} + \\ & \left(2q_5 + q_1 - (1-\mu) \frac{q_1 + \mu}{r_1^3} - \mu \frac{q_1 - 1 + \mu}{r_2^3} - \mu' \frac{q_1 - \rho_S \cos\theta_S}{r_S^3} - \mu' \frac{\cos\theta_S}{\rho_S^2} \right) \frac{\partial}{\partial q_4} + \\ & \left(-2q_4 + q_2 - (1-\mu) \frac{q_2}{r_1^3} - \mu \frac{q_2}{r_2^3} - \mu' \frac{q_2 - \rho_S \sin\theta_S}{r_S^3} - \mu' \frac{\sin\theta_S}{\rho_S^2} \right) \frac{\partial}{\partial q_5} + \\ & \left(-(1-\mu) \frac{q_3}{r_1^3} - \mu \frac{q_3}{r_2^3} - \mu' \frac{q_3}{r_S^3} \right) \frac{\partial}{\partial q_6}, \end{split}$$

Paramètres			
x_{L_2}		1.155681950839609	LD
$T_{\rm max}$	50 N	$50 \times 10^{-3} \times \alpha^2 / 384400 = 18366.18111740180$	$kg LD UT^{-2}$
I_{sp}	375 s	$375/\alpha = 0.0009979646294757921$	UT
g_0	9.80665 m s^{-2}	$9.80665 \times 10^{-3} \times \alpha^2/384400 = 3602.214201099366$	$ m LD~UT^{-2}$
μ		0.012150529811497	
μ'		328900.5726315398	
ρ_S		389.1724003642039	LD
ω_S		-0.921184149932464	$\rm rad~UT^{-1}$

Table 1 – 1 LD = 384400 km et 1 UT = $2.361 \times 10^6/2\pi$ s = α s. Le paramètre $\theta_{S,0}$ est donné par la fonction Helio2CR3BP.m.

 et

$$F_i = \frac{\partial}{\partial q_{3+i}}, \quad i = 1:3,$$

et les valeurs des paramètres sont données par la table 1. On pourra s'intéresser au problème plus simple suivant :

$$\begin{cases} \min J(t_f, u(\cdot)) = \int_0^{t_f} |u(t)| \, \mathrm{d}t \\ \\ \dot{q}(t) = F_0(q(t)) + \frac{T_{\max}}{m_0} \sum_{i=1}^3 u_i(t) \, F_i(q(t)), \quad |u(t)| \le 1, \quad t \in [0, t_f], \\ \\ q(0) = q_0, \\ q(t_f) = q_f = (x_{L_2}, 0, 0, 0, 0, 0), \end{cases}$$

où la masse initiale m_0 est fixée et on considère la masse constante.