General Physics I Homework Chapter 10

Jonathan Henrique Maia de Moraes (ID: 1620855)

04/??/2016

Homework: Chapter 10

Problem (1)

A good baseball pitcher can throw a baseball toward home plate at $95 \ mi/h$ with a spin of $1300 \ rev/min$. How many revolutions does the baseball make on its way to home plate? For simplicity, assume that the $60 \ ft$ path is a straight line.

R:

$$v = 95 \ mi/h \times \left(\frac{5280 \ ft}{1 \ mi}\right) \times \left(\frac{1 \ h}{3600 \ s}\right)$$

$$= 139.\overline{3} \ ft/s$$

$$\omega = 1300 \ rev/min \times \left(\frac{1 \ min}{60 \ s}\right)$$

$$= 21.\overline{6} \ rev/s$$

$$t = \frac{x}{v} = \frac{60 \ ft}{139.\overline{3} \ ft/s}$$

$$= 0.431 \ s$$

$$n_{rev} = (21.\overline{6} \ rev/s)(0.431 \ s) = 9.33 \ rev$$
(1)

Problem (2)

A disk, initially rotating at $145 \ rad/s$, is slowed down with a constant angular acceleration of magnitude $3.40 \ rad/s^2$.

Question (a)

How much time does the disk take to stop?

R:

$$\omega = \omega_0 + \alpha t$$

$$t = \frac{\omega - \omega_0}{\alpha}$$

$$= \frac{0 - 145 \ rad/s}{-3.40 \ rad/s^2}$$

$$= 42.647 \ s \tag{2}$$

Question (b)

Through what angle (rad) does the disk rotate during that time? R:

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

$$\theta = 0 + (145 \ rad/s)(42.647 \ s) + \frac{1}{2} \left(-3.4 \ rad/s^2 \right) (42.647 \ s)^2$$

$$\theta = (6183.815 \ rad) - (3091.903 \ rad)$$

$$\theta = 3091.912 \ rad$$
(3)

Problem (3)

An astronaut is being tested in a centrifuge. The centrifuge has a radius of 25 ft and, in starting, rotates according to $\theta = 0.22t^2$, where t is in seconds and θ is in radians. When $t = 3.6 \ s$,

Question (a)

What is the magnitude of the astronaut's angular velocity?

R:

$$\omega = \frac{d\theta}{dt} = (0.44 \ rad/s^2) t$$
= (0.44 \ rad/s^2) (3.6 \ s)
= 1.584 \ rad/s (4)

Question (b)

What is the magnitude of the astronaut's linear velocity? **R:**

$$v = r\omega$$

= $(25 \ ft)(1.584 \ rad/s)$
= $39.6 \ ft/s$ (5)

Question (c)

What is the magnitude of the astronaut's tangential acceleration? ${\bf R}$:

$$\alpha = \frac{d\omega}{dt} = 0.44 \ rad/s^2$$

$$a_t = r\alpha$$

$$= (25 \ ft) \left(0.44 \ rad/s^2\right)$$

$$= 11 \ ft/s^2$$
(6)

Question (d)

What is the magnitude of the astronaut's centripetal acceleration? R:

$$a_c = r\omega^2$$
= $(25 \ ft)(1.584 \ rad/s)^2$
= $(25 \ ft)(2.509 \ rad^2/s^2)$
= $62.725 \ ft/s^2$ (7)

Problem (4)

Calculate the rotational inertia of a wheel that has a kinetic energy of 21 kJ when rotating at 590 rev/min.

R:

$$x$$
 (8)

Problem (5)

The body in fig. 1 is pivoted at O. Three forces act on it in the directions shown: $F_A = 9.3 \ N$ at point A, 7.5 m from O; $F_B = 11.0 \ N$ at point B, 5.4 m from O; and $F_C = 8.8 \ N$ at point C, 4.4 m from O. Taking the clockwise direction to be negative, what is the net torque about O?

Figure 1: Illustration of Problem 5

R:

$$x$$
 (9)

Problem (6)

During the launch from a board, a diver's angular speed about her center of mass changes from zero to $4.9 \ rad/s$ in $220 \ ms$. Her rotational inertia about

HOMEWORK: CHAPTER 10

 \mathbf{V}

her center of mass is $9.2 sl \times fr^2$. During the launch,

Question (a)

What is the magnitude of her average angular acceleration? **R:**

$$x$$
 (10)

Question (b)

What is the magnitude of the average external torque on her from the board? R:

$$x$$
 (11)

Problem (7)

A 1.5 sl wheel, essentially a thin hoop with radius 2.4 ft, is rotating at 420 rev/min. It must be brought to a stop in 12 s.

Question (a)

How much work must be done to stop it?

R: Assuming $\Delta p = 0$

$$x$$
 (12)

Question (b)

What is the required average power?

 \mathbf{R} :

$$x$$
 (13)

Problem (8)

An automobile crankshaft transfers energy from the engine to the axle at the rate of 48~kW when rotating at a speed of 2700~rev/min. What torque does the crankshaft deliver?

R:

$$x$$
 (14)