	Si $f \le 0$ alors $\left(C_f\right)$ est au-dessous d'axe des abscisses sur I . Si $f \ge 0$ alors $\left(C_f\right)$ est au-dessus d'axe des abscisses sur I				
	1) Etudier l'égalité de f et g dans les cas suivants :				
c i					
Evaluation	$ \bullet f(x) = \frac{x^2 - 1}{x + 1} \text{ et } g(x) = x - 1. $				
Eve	2) Soient f et g deux fonctions définies sur \mathbb{R} par $f(x) = x^2 - 2x + 1$ et $g(x) = -2x^2 + 4x + 1$				
	a- Comparer f et g pour tout x dans ces intervalles suivants $]-\infty;0]$; $]2;+\infty[$ et $[0;2]$				
	b- Déduire les positions relatives des courbes sur $]-\infty;0]$; $]2;+\infty[$ et $[0;2]$				
	5. Image d'un intervalle par une fonction				
	<u>Définition</u>				
	Soit f une fonction numérique définie sur un intervalle I $(I \subset D_f)$.				
ours	L'ensemble des éléments $f(x)$, tel que $x \in I$, s'appelle l'image de l'intervalle I par la fonction f et se note $f(I)$ telle que $f(I) = \{f(x) x \in I\}$.				
n c	<u>Technique</u>				
er d	Soit f une fonction numérique définie sur un intervalle I et soit $[a;b]$ un intervalle de I				
Résumer du cours	Si f est croissante sur $[a;b]$ alors $f([a;b]) = [f(a);f(b)]$.				
ᇫ	Si f est décroissante sur $[a;b]$ alors $f([a;b]) = [f(b);f(a)]$. Si f change la monotonie				
	$\operatorname{sur}[a;b]$ alors $f([a;b]) = [V_{\min};V_{\max}]$ où V_{\min} et V_{\max} sont respectivement la valeur				
	minimale et la valeur maximale de f sur I .				
	Soit f une fonction définie sur l'intervalle $I = [-3; 4]$ dont la courbe ci-dessous				
Evaluation	1) Dresser le tableau de variations de f sur I 2) Déterminer les extremums de la fonction f , puis le nombre de solutions de l'équation $f(x) = 1$				
$\overline{\mathbf{E}}$	3) Déterminer graphiquement : $f([-2;0])$, $f([-3;-2])$, $f([0;2[)])$ et $f([3;4])$.				
	6. Monotonie d'une fonction numérique				
	 a. <u>Définition</u> Soit f une fonction définie sur I et soient a et b deux nombres réels dans I 				
IIS	Si $a < b$ et $f(a) < f(b)$ alors on dit que la fonction f est strictement croissante sur I				
100 n	Si $a < b$ et $f(a) > f(b)$ alors on dit que la fonction f est strictement décroissante sur I.				
ner d	Si $a < b$ et $f(a) = f(b)$ alors on dit que la fonction f est constante sur I.				
Résumer du cours	b. <u>Monotonie et parité</u> <u>Propriété</u>				
	Soit f une fonction numérique et D_f son ensemble de définition symétrique par rapport à				
	0 et soit I un intervalle de \mathbb{R}^+ et J son symétrique par rapport à 0 Si f est paire :				

-	
,	
	4

Evaluation

2. La monotonie de la composée de deux fonctions

<u>Propriété</u>

Soit f une fonction numérique définie sur I et soit g une fonction numérique définie sur J telle que $(\forall x \in I)$; $f(x) \in J$.

- \bullet Si f et g ont même sens de variations alors la fonction gof est croissante sur I.
- ullet Si f et g ont des sens de variations contraires alors la fonction gof est décroissante sur I

1) Soient f et g deux fonctions telles que f(x) = x - 1 et $g(x) = \sqrt{x}$ Soit h une fonction numérique définie par h = gof

Etudier la monotonie de la fonction h sur

- 2) Soient u et w deux fonctions telles que v(x) = x 1 et $w(x) = 2x^2 + 3x 1$ Déterminer la fonction u telle que w = uov
- 3) On considère les fonctions suivantes $f(x) = x^2 2x 1$ et $g(x) = \frac{x-2}{x+2}$
 - a) Déterminer D_f et D_g
 - **b)** Déterminer D_{gof} puis calculer gof(x)
 - c) Dresser le tableau de variations de gof

III. Représentation graphique des fonction $x \mapsto \sqrt{x+a}$ et $x \mapsto ax^3$

<u>La représentation graphique de la fonction</u> $x \mapsto ax^3 (a \neq 0)$

On considère f une fonction numérique définie sur \mathbb{R} par $f(x) = ax^3$ $(a \neq 0)$ et (C_f) sa courbe dans le repère orthonormé $(O; \vec{i}; \vec{j})$.

Parité de la fonction f

On a $(\forall x \in \mathbb{R})$; $-x \in \mathbb{R}$ et $f(-x) = a(-x)^3 = -ax^3 = -f(x)$ Donc f est une fonction impaire.

*Variations de f

f est une fonction impaire, alors il suffit de l'étudier sur \mathbb{R}^+

Soient x et y dans \mathbb{R}^+ tels que x < y

 $x < y \Rightarrow x^3 < y^3 \Rightarrow ax^3 < ay^3 \Rightarrow f(x) < f(y)$ Donc f est croissante sur \mathbb{R}^+

f est une fonction impaire, alors f est croissante aussi sur \mathbb{R}^-

Par conséquent f est croissante sur $\mathbb R$

Tableau de variations				Représentation graphique
x	$-\infty$	0	+∞	2
f(x)				-2 -1 0 1 2 -1 -1 -2 -3

$\underline{Si} a < 0$

Soient
$$x$$
 et y dans \mathbb{R}^+ tels que $x < y$

$$x < y \Rightarrow x^3 < y^3 \Rightarrow ax^3 > ay^3 \Rightarrow f(x) > f(y)$$

Donc f est décroissante sur \mathbb{R}^+

f est une fonction impaire , alors f est décroissante aussi sur \mathbb{R}^- . Par conséquent f est décroissante sur \mathbb{R}

Tableau de variations	Représentation graphique
$x = -\infty$ 0 $+\infty$	1:5
f(x)	-1 -0.5 0 0.5 1 -0.5 -0.5

2. Représentation graphique de la fonction $x \mapsto \sqrt{x+a}$

On considère f une fonction numérique définie sur \mathbb{R} par $f(x) = \sqrt{x+a}$ et $\left(C_f\right)$ sa courbe dans le repère orthonormé $\left(O; \vec{i}; \vec{j}\right)$.

*Domaine de définition $D_f = [-a; +\infty]$

*Variations de f

Soient x et y dans D_f tels que x < y

$$x < y \Rightarrow x + a < y + a \Rightarrow \sqrt{x + a} < \sqrt{y + a} \Rightarrow f(x) < f(y)$$

Donc f est croissante sur $[-a; +\infty]$

Tableau de variations	Représentation graphique
x $-a$ $+\infty$	(C_f)
f(x)	$\begin{vmatrix} 1 & 0 & 1 & -a^2 & 3 & 4 & 5 & 6 & 7 \\ & & & & & & & & & & & & & & & & &$

On peut construire la courbe de la fonction $f: x \mapsto \sqrt{x+a}$ à partir de la courbe d'une fonction $x \mapsto \sqrt{x}$ en utilisant une translation de vecteur $-a\vec{i}$

Soient f et g deux fonctions définies par : $f(x) = 2x^3$ et $g(x) = \sqrt{x+3}$ et C_g et C_g respectivement les courbes de f et g dans un repère orthonormé $C_g(\vec{i};\vec{j})$

- 1) Vérifier que f(1) = g(1), puis interpréter le résultat graphiquement.
- **2)** Dresser le tableau de variations de f et g.
- **3)** a-Construire les courbes dans un repère orthonormé $(O; \vec{i}; \vec{j})$.
 - b-Résoudre graphiquement l'inéquation $f(x) \ge g(x)$.
 - c- Déterminer graphiquement $f([3;+\infty[)$
- **4)** a-Déterminer D_{fog} .

b-Étudier les variations de la fonction $f \circ g$ à partir des variations des fonctions f et g sur $[3;+\infty[$

c-Calculer fog(x) pour tout D_{fog}