2) Множество символов разбивается (сверху вниз) на два подмножества так, чтобы суммы вероятностей, входящих в них сообщений, оказались бы равными или минимально отличающимися друг от друга. Сообщениям первого подмножества приписываем «0», а сообщениям второго подмножества — «1» или наоборот.

3) С каждым, из образовавшихся подмножеств, повторяем пункт 2).

Рисунок 4.2. Кодовое дерево кода Фано.

Символ	Вероятность	Код
a_1	1/4	00
a_2	1/4	01
a_3	1/8	100
a_4	1/8	101
$a_{\scriptscriptstyle 5}$	1/16	1100
a_6	1/16	1101
a_7	1/16	1110
a_8	1/16	1111

Вывод. Метод кодирования Фано позволяет строить оптимальные префиксные коды в том случае, если вероятности символов источника раны $p(a_k) = 2^{-c}$ (для двоичных кодов), где с — положительное целое число.