Algorithmische Graphentheorie

Julian Schubert

26. Mai 2021

Inhaltsverzeichnis

1	Wichtige Begriffe	2
2	Eulerkreise 2.1 Eulerkreis finden	2 2
3	Hamiltonkreise	3
4	Handlungsreisen (TSP)	3
5	Lineare Programmierung	3
6	Flussalgorithmen 6.1 Flussvergrößernde Wege	4 4 5
7	Matchings	5
8	Alternierende und augmentierende Wege	7
9	Wurzelspannbäume	8

1 Wichtige Begriffe

Definition 1

Ein gerichteter Graph G ist **schwach** zusammenhängend wenn der darunterliegende ungerichtete Graph zusammenhängend ist

Ein gerichteter Graph G ist **stark** zusammenhängend wenn es für jedes Knotenpaar (u, v) einen gerichteten Weg von u nach v gibt

Definition 2: bipartiter Graph

Ein Graph G wird as bipartit bezeichnet, wenn sich seine Knoten in zwei disjunkte Teilmengen A und B aufteilen lassen. Zwischen Den Knoten innerhalb dieser Teilmengen dürfen also keine Kanten existieren.

2 Eulerkreise

Definition 3: Eulerkreis

Sei G ein (un-)gerichteter Grpah.

Ein Eulerkreis (-weg) in G ist ein Kreis (Weg), der jede **Kante** genau einmal durchläuft.

Ein Graph heißt eulersch, falls er einen Eulerkreis enthält

Ein Graph der nur einen Eulerweg aber keinen Eulerkreis enthält, ist nicht eulersch!

Eigenschaft 1: Satz von Euler

Sei G ein ungerichteter und zsh. Graph.

Dann gilt: G eulersch \Leftrightarrow alle Knoten haben geraden Grad

Bei gerichteten Graphen: indeg(v) = outdeg(v)

2.1 Eulerkreis finden

Man kann in ${\cal O}(E)$ testen on G
 eulersch ist (Knotengrade zählen)

Eulerkreis finden:

Verwalte in jedem Knoten v eien zeiger $\operatorname{curr}[v],$ der auf den ersten unbenutzten Nachbarn w zeigt

3 Hamiltonkreise

Definition 4: Hamiltonkreis NP-schwer

Sei G ein (un-)gerichteter Graph. Ein Hamiltonkreis (-weg) in G ist ein Kreis (Weg), der jeden **Knoten** genau einmal durchläuft.

Eigenschaft 2: Satz von Bondy und Chvátal

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$

Seien u und v nicht-adjazente Knoen von G mit $\deg(u) + \deg(v) \geq n := |V| + |V|$

|V|. Dann gilt:

G hamiltons \Leftrightarrow G + uv hamiltonsch

Eigenschaft 3: Satz von Dirac

Sei G = (V, E) ein ungerichteter Graph mit $|V| \ge 3$. Falls jeder Knoten von G Grad > |V| / 2 hat, so ist G hamiltonsch

TODO: Beweisen

4 Handlungsreisen (TSP)

Lösbar mit Algorithmmus von Bellman & Held-Karp

5 Lineare Programmierung

Definition 5: Knotenüberdeckung

Gegeben: Graph G = (V, E)

Gesucht: Knotenüberdeckung, d.h. $V' \subseteq V$, so dass jede Kante minde-

stens einen Endpunkt in V' hat.

Ziel: |V'| minimal

Definition 6: Clique

Gegeben: ungerichteter, ungewichteter Graph G = (V, E)

Gesucht: Clique in G

d.h. $V' \subseteq V$, so dass der von V' induzierte Graph G[V'] vollständig ist

(also jeder Knoten eine Verbindung zu jedem anderen Knoten hat) Mit anderen Worten: $V' \subseteq V$, so dass für alle $\{u',v'\} \in \binom{V'}{2}$ gilt $u'v' \in E$

Definition 7: Fluss

Sei G = (V, E) ein gerichteter Graph mit $s, t \in V$. Eine funktion $f : E \to \mathbb{R}_{\geq 0}$ heißt s-t-Fluss (Fluss), wenn für jeden Knoten $v \in V \setminus \{s, t\}$ gilt:

$$\sum_{u \in V \mid uv \in E} f(uv) - \sum_{w \in Vvw \in E} f(vw) = 0$$

Zufluss zum knoten V = Abfluss vom Knoten v, also der Nettozufluss muss gleich Null sein.

Definition 8

Sei G = (V, E) ein gerichteter Graph mit $s, t \in V$.

Seien durch $c:E\to\mathbb{R}_{\geq 0}$ Kantenkapazitäten gegeben. Ein Fluss f ist zulässig, wenn für jede Kante $e\in E$ gilt:

$$0 \le f(e) \le c(e)$$

Der Wert |f| eines Flusses f ist der Nettozufluss zum Knoten t.

6 Flussalgorithmen

Definition 9: Kapazität eines Schnittes

G Graph mit Kap. c: $E \to \mathbb{R}_{>0}$, (S, T) s-t-Schnitt. Dann ist c(S) := c(Raus(S)) die Kapazität von (S, T)

6.1 Flussvergrößernde Wege

- 1. Residualgraph G' bilden:
 - Hinrichtung: Benutzte Kapazität in G
 - Rückrichtung: Übrige Kapazität der Kante

Definition 10

Eins s-t-Weg W in \mathbf{G}_f heißt flussvergrößernder Weg für f. Die Residualkapatziät von W ist

$$\triangle_W := \min_{e \in W} c_f(e)$$

Ein zulässiger s-t-Fluss in G ist maximal \Leftrightarrow es gibt keinen Flussvergrößenderen Weg in \mathcal{G}_f

Definition 11: Max-Flow-Min-Cut-Theorem

Sei f ein zulässiger s-t-Fluss in einem gerichteten Graphen G mit Kapazitäten $c:E\to\mathbb{R}_{\geq 0}$

Dann sind folgende Bedingugnen äquivalent:

- 1. f ist ein maximaler Fluss in G
- 2. G_f enthält keine augmentierenden Wege
- 3. Es gibt einen s-t-Schnitt (S, T) mit |f| = c(S)

Kurz

 $\max_{\text{f zul\"{assiger s-t-Fluss}}} |f| = \min_{\text{(S, T) s-t-Schnitt}} c(S)$

6.2 Algorithmen

Definition 12: FordFulkerson / EdmonsKarp

Suche s-t-weg in G_f und füge das dann den Kanten hinzu. Änderung von EdmonsKarp: Muss der Kürzeste s-t-Weg sein

Edmons Karp führt $\mathrm{O}(\mathrm{VE})$ Flussvergrößerungen durch Edmons Karp läuft in $\mathrm{O}(\mathrm{VE}^2)$

7 Matchings

Definition 13: Matchings

Sei G = (V, E) ein ungerichteter Graph

 $M\subseteq E$ ist eine **Paarung** (engl. matching), wenn je zwei Kanten in M
 keinen gleichen Endpunkt haben

Falls für jede Kante $e \in M$ gilt, dass $M \cup \{e\}$ keine Paarung ist, so ist M nicht erweiterbar (engl. maximal)

Falls für alle Parrungen M' in G gilt, dass $|M'| \leq |M|$, so ist M eine **größte Paarung** (engl. maximum)

Falls jeder Knoten in G durch M gepaart ist, so ist M eine **perfekte Paarung** (engl. perfect matching)

Definition 14: Ganzzahligkeitssatz

Sind alle Kapazitäten ganzzahlig, d.h. $c: E \to \mathbb{N}$, so existiert ein maximaler Fluss, der ganzzahlig ist.

Eigenschaft 4: Satz von Menger

Sei G=(V,E) ein gerichteter Graph und $s,t\in V$. Dann ist die maximale Anzahl kantendisjunkter s-t-Wege gleich der minimalen Kardinalität eines s-t-Schnittes

Kardinalität eines s-t-Schnittes: Anzahl an Kanten die von S nach T Laufen.

⇒ minimale Kardinalität eines s-t-Schnitts = maximale Anzahl an kantendisjunkter s-t-Wege (die Kapazität aller möglichen s-t-Schnitte ist genau so groß wie die Anzahl an möglichen s-t-Wegen)

Eigenschaft 5: Auch von Menger

Sei G=(V,E) ein gerichteter Graph, $s,t\in V,st\notin E$. Dann ist die maximale Anzahl **knotendisjunkter** s-t-Wege gleich der Kardinalität einer kleinsten Knotenmenge, die s und t trennt.

Definition 15: Nachbarschaft

Nachbarschaft von $v \in V$ ist

$$N(v) := \{ u \in V | uv \in E \}$$

Nachbarschaft von $V' \subseteq V$ ist

$$N(V') := \bigcup_{v' \in V'} N(v')$$

Definition 16: Heiratssatz (bewiesen von Philip Hall)

Es existiert ein perfektes Matching \Leftrightarrow Für jedes $D'\subseteq D$ gilt: $|D'|\leq |N(D')|$

Eigenschaft 6

Sei G=(V,E) ein bipartiter Graph Dann lässt sich eine größte Parrung in G in $O(VE^2)$ Zeit bestimmen

In G' können wir |V| s-t-wege in je O(E) zeit berechnen

8 Alternierende und augmentierende Wege

Definition 17: Augmentierender Weg

Ein Weg ist **augmentierend**, wenn die Kanten immer Abwechselnd im Matching und nicht im Matching liegen. Starten und Enden mit einer Kante die nicht im Matching liegt.

Alternierend: Wechselt zwischen im Matching und nicht im Matching

Definition 18: Satz von Berge

Sei G = (V, E) Grpah, $M \subseteq E$ Matching in G. M ist ein größtes Matching in G \Leftrightarrow es gibt keinen M-

M ist ein größtes Matching in $G \Leftrightarrow es$ gibt keinen M-augmentierenden Weg.

Eigenschaft 7

In einem bipartiten Graphen G=(V,E) lässt sich in O(VE) ein größtes Matching bestimmen

Ansatz: Knoten S erstelen mit Kante zu allen Knoten im einen Teil, dann BFS |V|/2 mal ausführen (oder bis kein freier Knoten in B mehr gefunden wird).

Definition 19: Christofides Alfogrithmus

- Ermittle einen minimalen Spannbaum B für G
- Sei U die Menge der Knoten ungeraden Grades in B
- Ermittle kostenminimales perfektes Matching M für G[U]
 - G[u] ist der von U induzierte Graph
 - $-(U, \{vw \in E(g) : v \in U, w \in U\})$
- \bullet Berechne im eulerschen Grpahen $B\cup M$ erst Eulertour und dann Rundtour T wie beim Tree-Doubling
- \Rightarrow liefert eine 3/2-Approximation für Δ -TSP

Definition 20: Kostenminimales perfektes Matching

Gegeben: vollständiger Graph G=(V,E), mit Kantenkosten $c:E\to\mathbb{R}_{\geq 0}$ Gesucht: Perfektes Matching M mit minimalen Kosten $c(M)=\sum_{e\in M}c(e)$ \Rightarrow kann in $\mathrm{O}(V^3)$ berechnet werden (ist aber ziemlich kompliziert :(

9 Wurzelspannbäume

Definition 21: Wurzelbaum

Ein gerichteter Graph T=(V,E) mit Knoten $s\in V$ heißt s-**Wurzelbaum**, wenn

- T azyklisch
- indeg(s) = 0
- indeg(v) = 1 für jeden Knoten $v \in V \setminus \{s\}$

Definition 22: Wurzelspannbaum

Sei G=(V,E) ein gerichteter (Multi-) Graph mit Knoten $s\in V$. Ein Teilgraph T von G mit Knotenmenge V heißt s-**Wurzelspannbaum** von G, wenn T ein s-Wurzelbaum ist.

Eigenschaft 8

Sei G ein gerichteter (Multi-) Graph mit Knoten s G besitzt einen s-Wurzelspannbaum \Leftrightarrow jeder Knoten $v \in V$ ist von s in G erreichbar.

DFS(s) liefert s-Wurzelspannbaum (falls es einen gibt)

Eigenschaft 9

Sei K Kreis in F und \tilde{T} s-Wurzellspannbaum von G/K. Dann gibt es einen s-Wurzelspannbaum T von G mit

$$c'(T) \le c'(\tilde{T})$$

 $\mathrm{G}/\mathrm{K} \colon \mathrm{K}$ sie Teilmenge von G. Alle Knoten in K
 werden durch einen einzigen Ersetzt.

Algorithmus zur berechnung von s-Wurzelspannbäumen:

- \bullet Berechne modifizierte Kantenkosten c'
- Bestimme Teilgraph F
- Falls F azyklisch, gib F zurück
- Ansonsten ermittle Kreis K in F
- Kontrahiere G zu G / K
- Wende Algo rekursiv auf (G/K, c') and
 - -s-Wurzelspannbaum für \tilde{T} für G/K
- \bullet Expandiere \tilde{T} zu s-Wurzelspannbaum T von G
- Gibt T zurück