

	Summary of I-V Relationships				
Re	gion	NMOS	PMOS		
No	nsaturation	v _{DS} <v<sub>DS(sat)</v<sub>	v _{SD} <v<sub>SD(sat)</v<sub>		
		$i_D = K_n [2(v_{GS} - V_{TN})v_{DS} - v_{DS}^2]$	$i_D = K_p [2(v_{SG} + V_{TP})v_{SD} - v_{SD}^2]$		
Sat	turation	v _{DS} >v _{DS} (sat)	v _{SD} >v _{SD} (sat)		
		$i_D = K_n [v_{GS} - V_{TN}]^2$	$i_D = K_p [v_{SG} + V_{TP}]^2$		
Tra	nsition Pt.	$v_{DS}(sat) = v_{GS} - V_{TN}$	$v_{SD}(sat) = v_{SG} + V_{TP}$		
Enl Mo	hancement de	V _{TN} > 0V	$V_{TP} < 0V$		
De Mo	pletion de	$V_{TN} < 0V$	$V_{TP} > 0V$		
N	Neamen Microelectronics, 4e Chapter 3-17 McGraw-Hill				

Subthreshold Condition

- Small current flows for voltages threshold voltage.
- This is a small effect for a single device and will be ignored.

Neamen Microelectronics, 4e Chapter 3-21 McGraw-Hill

Neamen Microelectronics, 4e Chapter 3-22 McGraw-Hill

Problem-Solving Technique: NMOSFET DC Analysis

- 1. Assume the transistor is in saturation.
 - a. $V_{GS} > V_{TN}$, $I_{D} > 0$, & $V_{DS} \ge V_{DS}(sat)$
- 2. Analyze circuit using saturation I-V relations.
- 3. Evaluate resulting bias condition of transistor.
 - a. If V_{GS} < V_{TN} , transistor is likely in cutoff
 - b. If $V_{DS} < V_{DS}(sat)$, transistor is likely in nonsaturation region
- 4. If initial assumption is proven incorrect, make new assumption and repeat Steps 2 and 3.

Neamen Microelectronics, 4e Chapter 3-23 McGraw-Hill

then: Vso	SAT: $I_D = kp \left(V_{SG} + V_{TP} \right)^2 = 0.2$ = 0.578 mA $= V_{DD} - I_D R_D = 5 - (0.578 \text{ m}) (7$ $0.665^V < V_{SD}(SAT) = V_{SG} + V_{TP} = 0.2$ BIASED IN SAT RESIDE	(sk) = 0.665 V
Neamen	Microelectronics, 4e McGraw-Hill	Chapter 3-29

