$11a_{335} (K11a_{335})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{37} + u^{36} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 37 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{37} + u^{36} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{5} - 2u^{3} - u \\ u^{5} - 3u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{14} - 7u^{12} + 16u^{10} - 11u^{8} - 2u^{6} - 2u^{2} + 1 \\ u^{14} - 8u^{12} + 23u^{10} - 28u^{8} + 14u^{6} - 6u^{4} + 3u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{6} + 3u^{4} - 2u^{2} + 1 \\ -u^{8} + 4u^{6} - 4u^{4} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{36} + 19u^{34} + \dots - 5u^{2} + 1 \\ -u^{36} + 20u^{34} + \dots + 46u^{6} - 13u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{15} + 8u^{13} - 24u^{11} + 34u^{9} - 26u^{7} + 14u^{5} - 4u^{3} + 2u \\ -u^{17} + 9u^{15} - 31u^{13} + 50u^{11} - 37u^{9} + 12u^{7} - 4u^{5} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{15} + 8u^{13} - 24u^{11} + 34u^{9} - 26u^{7} + 14u^{5} - 4u^{3} + 2u \\ -u^{17} + 9u^{15} - 31u^{13} + 50u^{11} - 37u^{9} + 12u^{7} - 4u^{5} + u \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes = $-4u^{34} + 76u^{32} - 640u^{30} + 4u^{29} + 3140u^{28} - 64u^{27} - 9936u^{26} + 444u^{25} + 21272u^{24} - 1744u^{23} - 31696u^{22} + 4260u^{21} + 33924u^{20} - 6752u^{19} - 27600u^{18} + 7232u^{17} + 18308u^{16} - 5760u^{15} - 9996u^{14} + 3932u^{13} + 4396u^{12} - 2240u^{11} - 1720u^{10} + 976u^9 + 536u^8 - 448u^7 - 124u^6 + 140u^5 + 24u^4 - 36u^3 + 20u - 14$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$u^{37} + u^{36} + \dots - u - 1$
c_3, c_6	$u^{37} - 7u^{36} + \dots + u - 7$
c_4, c_5, c_{10}	$u^{37} + u^{36} + \dots - 3u - 1$
c_9, c_{11}	$u^{37} - u^{36} + \dots - 3u - 2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7 c_8	$y^{37} - 41y^{36} + \dots + 11y - 1$
c_{3}, c_{6}	$y^{37} + 19y^{36} + \dots + 239y - 49$
c_4, c_5, c_{10}	$y^{37} + 31y^{36} + \dots + 11y - 1$
c_9,c_{11}	$y^{37} - 21y^{36} + \dots + 41y - 4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.602666 + 0.566356I	3.41113 - 9.03749I	-9.15046 + 8.29355I
u = 0.602666 - 0.566356I	3.41113 + 9.03749I	-9.15046 - 8.29355I
u = -0.801510 + 0.100864I	-0.75596 + 3.77593I	-14.9240 - 4.3419I
u = -0.801510 - 0.100864I	-0.75596 - 3.77593I	-14.9240 + 4.3419I
u = -0.601221 + 0.535743I	-1.30987 + 5.10979I	-14.0141 - 6.9625I
u = -0.601221 - 0.535743I	-1.30987 - 5.10979I	-14.0141 + 6.9625I
u = 0.798272	-4.65627	-19.8710
u = -0.487866 + 0.583035I	7.89022 + 1.99397I	-4.51029 - 3.60908I
u = -0.487866 - 0.583035I	7.89022 - 1.99397I	-4.51029 + 3.60908I
u = 0.593447 + 0.468250I	1.51106 - 1.30299I	-11.08606 + 3.41779I
u = 0.593447 - 0.468250I	1.51106 + 1.30299I	-11.08606 - 3.41779I
u = 0.349527 + 0.599396I	4.15088 + 5.05582I	-6.99986 - 2.20493I
u = 0.349527 - 0.599396I	4.15088 - 5.05582I	-6.99986 + 2.20493I
u = 0.475022 + 0.478306I	1.72361 - 1.67469I	-8.06184 + 5.20256I
u = 0.475022 - 0.478306I	1.72361 + 1.67469I	-8.06184 - 5.20256I
u = -0.330514 + 0.550465I	-0.53120 - 1.35599I	-11.83231 + 0.62165I
u = -0.330514 - 0.550465I	-0.53120 + 1.35599I	-11.83231 - 0.62165I
u = -1.43981 + 0.10188I	-1.46648 - 2.68282I	-10.45967 + 0.I
u = -1.43981 - 0.10188I	-1.46648 + 2.68282I	-10.45967 + 0.I
u = 0.202017 + 0.475850I	2.54473 - 1.90283I	-7.07864 + 3.49708I
u = 0.202017 - 0.475850I	2.54473 + 1.90283I	-7.07864 - 3.49708I
u = 1.48943 + 0.07957I	-6.30817 - 0.50143I	-15.7929 + 0.I
u = 1.48943 - 0.07957I	-6.30817 + 0.50143I	-15.7929 + 0.I
u = 1.51213 + 0.16185I	1.30989 - 4.63234I	0
u = 1.51213 - 0.16185I	1.30989 + 4.63234I	0
u = -1.52555 + 0.12217I	-4.95014 + 3.74741I	0
u = -1.52555 - 0.12217I	-4.95014 - 3.74741I	0
u = -1.56321 + 0.13997I	-5.73875 + 3.53679I	0
u = -1.56321 - 0.13997I	-5.73875 - 3.53679I	0
u = 1.56555 + 0.15892I	-8.57063 - 7.64850I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.56555 - 0.15892I	-8.57063 + 7.64850I	0
u = -1.56495 + 0.17025I	-3.83357 + 11.73380I	0
u = -1.56495 - 0.17025I	-3.83357 - 11.73380I	0
u = -1.60055	-12.7836	0
u = 1.60063 + 0.01829I	-8.89081 - 4.15452I	0
u = 1.60063 - 0.01829I	-8.89081 + 4.15452I	0
u = -0.349317	-0.504726	-19.7380

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$u^{37} + u^{36} + \dots - u - 1$
c_3, c_6	$u^{37} - 7u^{36} + \dots + u - 7$
c_4, c_5, c_{10}	$u^{37} + u^{36} + \dots - 3u - 1$
c_9,c_{11}	$u^{37} - u^{36} + \dots - 3u - 2$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7 c_8	$y^{37} - 41y^{36} + \dots + 11y - 1$
c_3, c_6	$y^{37} + 19y^{36} + \dots + 239y - 49$
c_4, c_5, c_{10}	$y^{37} + 31y^{36} + \dots + 11y - 1$
c_{9}, c_{11}	$y^{37} - 21y^{36} + \dots + 41y - 4$