

Метод сравнения многомерных траекторий на примере кольцевых гонок

Студент: Степанов Александр Олегович

Группа: ИУ7-83Б

Научный руководитель: Бабарыкин Денис Сергеевич

Актуальность

Области применения сравнения многомерных (долгота, широта, данные с акселерометра и гироскопа) траекторий:

- поиск ошибок при езде на пустом треке в сравнении с профессионалом
- обучение правильному прохождению трассы
- повышение профессиональных навыков гонщиков

Цель и задачи

Цель:

Разработать метод сравнения многомерных траекторий на кольцевых трассах.

Задачи:

- проанализировать подходы к сравнению набора точек в многомерном пространстве
- разработать метод сравнения траекторий в многомерном пространстве
- реализовать разработанный метод
- визуализировать результат работы метода
- исследовать метод на применимость

Постановка задачи

Входные и выходные данные

- ▶ Вход эталонная траектория (показательный проезд профессионала) и сравниваемая траектория, состоящие из:
 - Показания долготы и широты
 - Показания акселерометра во всех трех осях
 - Показания гироскопа во всех трех осях
- Выход результат сравнения в виде:
 - Разделенной сравниваемой траектории на промежутки со схожей тенденцией отставания
 - Различий всех параметров с эталонной траекторией в каждой точке сравниваемой траектории

Существующие аналоги

Система	Стоимость	Получаемая информация	Открытость решения
kartchrono.com	Бесплатно	Только время кругов и секторов	Проприетарное
MyChron5	Высокая, зависит от размеров парка	GPS, температура, давление, положение, скорость	Проприетарное
Alfano 6	Высокая, зависит от размеров парка	GPS, время прохождения, зоны ускорения и замедления, анализ коробки передач, мощности двигателя, камера	Проприетарное

Предложенный метод

Выбор алгоритма фильтрации

Метод	Скорость работы	Отставание от исходных значений
Метод средних значений	Высокая	Есть
Фильтр низких частот	Высокая	Есть
Модифицированный фильтр низких частот	Высокая	Отсутствует только на пиковых значениях
Фильтр Калмана	Высокая	Отсутствует

Фильтр Калмана

Вектор
$$\hat{x} = [x, y]^T$$

х – долгота

у – широта

Матрица перехода
$$F = \begin{bmatrix} 1 & \Delta t \\ 0 & 1 \end{bmatrix}$$

Матрица
$$H = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Работа фильтра на реальных данных (черное – исходные данные, зеленые – отфильтрованные)

Преобразование эталонной траектории в непрерывную

Интерполяция сплайнами

Аппроксимация

Расчет отставания

$$speed(i) = \frac{progress(i)}{t_{i+1} - t_i}$$

progress(i) =
$$\frac{\sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2}}{\text{length}}$$

Существующие методы разделения временных рядов по тенденции

Метод	Особенности	
Алгоритмы на основе скользящих окон	Должен тщательно подбираться размер окна	
Скрытые марковские модели	При отсутствии марковского процесса метод не работает	
Обнаружение точки изменения (Метод поиска сокращенного точного линейного времени)	Является точным, дает быстрые и последовательные результаты	
Обнаружение точки изменения (Метод поиска динамического программирования)	Требует значительных вычислительных затрат	

Обнаружение точки изменения (Метод поиска сокращенного точного линейного времени)

Ввод:

- Набор данных (y_1, y_2, \dots, y_n) , где $y_i \in R$
- Мера соответствия C(.), которая зависит от данных
- Константа штрафа β , которая не зависит от данных
- Константа K, удовлетворяющая $C(y_{(t+1):s}) + C(y_{(s+1):T}) + K \le C(y_{(t+1):T})$, при t < s < T
 - 1. n = длина y, $F(0) = -\beta$, cp(0) = NULL, $R_1 = \{0\}$
 - 2. Цикл для $\tau * = 1, \ldots, n$

2.1.
$$F(\tau *) = \min_{\tau \in R_{\tau *}} [F(\tau) + C(y_{(\tau+1):\tau *}) + \beta]$$

2.2.
$$\tau^1 = \arg\{\min_{\tau \in R_{\tau*}} [F(\tau) + C(y_{(\tau+1):\tau*}) + \beta]\}$$

2.3.
$$cp(\tau^*) = [cp(\tau^1), \tau^1]$$

2.4.
$$R_{\tau*+1} = \{ \tau \in R_{\tau*} \cup \{\tau*\} : F(\tau) + C(y_{(\tau+1):\tau*}) + K \le F(\tau*) \}$$

Вывод: Точки изменения записаны в cp(n)

UML диаграмма компонентов реализованного ПО

Оценка применимости метода

Тип отставания :		Экспертная оценка	
IMI	отставания і	Положительная	Отрицательная
Оценка метода	Положительная	TP	FP
	Отрицательная	FN	TN

Точность
$$p=rac{TP}{TP+FP}$$
 $F_1=2rac{p\cdot r}{p+r}$ Полнота $r=rac{TP}{TP+FN}$

Размеченная траектория

Сравнение алгоритмов непрерывности

Значение F1 меры

Заключение

Таким образом, были выполнены следующий задачи:

- проанализированы подходы к сравнению набора точек в многомерном пространстве
- > разработан метод сравнения траекторий в многомерном пространстве
- реализован разработанный метод
- > визуализирован результат работы метода
- исследована применимость метода

Дальнейшее развитие

- Математический расчет идеальной траектории
- > Улучшение визуализации (демонстрация в разных изменениях)
- > Получение обратной связи от пилотов
- Работа в режиме реального времени