Stepwise calculation for case 1:

Input 1:

INPUT 1a				INPUT 1b			
Sex	Weight	Height	Age	Phy. Act. Temparature Altit			
Male	70kg	173cm	25	90mint/day	27° c	98m	

Table 6: INPUT 1: Case 1 patient data for calculation of required calorie

Section 3.1.1 (Basic Calorie)

Sex	x Basal Metabolic Rate (BMR)			
Male	66+(13.7×Weight)+(5×Height)-(6.8×Age)			
Female	655+(9.6×Weight)+(1.8×Height)-(4.7×Age)			

Table 1: Harris-Benedict Equations

With the help of Table 1 and Input 1a calculate Basic Calorie

Section 3.1.2 (Extra Calorie)

1) Physical Activity (weight taking 0.8)
$$f_1(x) = \frac{1}{1 + e^{-0.05(x - 80)}}, x \approx [1, 150]$$

2) Temperature (weight taking 0.1)
$$f_2(x) = \frac{1}{1 + e^{0.2(x-22)}}, x \approx [1, 50]$$

3) Altitude (weight taking 0.1)
$$f_3(x) = \frac{1}{1 + e^{0.0015(x - 3000)}}, x \approx [-2.2, 8611]$$

So,
$$F_W(f_1, f_2, f_3) = [0.8, 0.1, 0.1].[f_1(90), f_2(27), f_3(98)]$$

=0.5261

For scaling between 1.2 to 1.5 taken

$$y = 0.3*F_W + 1.2$$
$$= 0.3*0.5261+1.2$$
$$= 1.3578$$

Total daily required Calorie=

Basic Calorie*Extra Calorie=

1720*1.3578=

2335.5

For a diabetic patient, we take daily need carb=55%, prot= 23%, Fat= 27%, Fiber= 26gm/1800cal

So, 1st calculate daily required nutrients in calorie:

Carb	Total daily required Calorie*55%	2335.5*55%	1284.5
Prot	Total daily required Calorie*23%	2335.5*23%	525.5
Fat	Total daily required Calorie*27%	2335.5*27%	642.3
Fiber	Total daily required Calorie*(26/1800) gm	2335.5*(26/1800) gm	33.73

Since, 1gm Carb=4 cal, 1gm Prot=4 cal, 1gm Fat=9 cal

So, daily required nutrients in gram:

Nutrients	daily required nutrients in calorie:		daily required nutrients in gram:
Carb	1284.5	1284.5/4	321.13
Prot.	525.5	525.5/4	131.37
Fat	642.3	642.3/9	71.36
Fiber	33.7	33.73	33.73

INPUT 2: Case 1 patient

February, 14, 2018

Item	Item Quantity		Carb	Prot	Fat	Fiber
Breakfast						
Tea	1cup	250ml	11.5	4.2	4.4	0
Ankurit Chana	1/2 katori	50gm	6.7	2.1	0.7	1.9
Mung	1/4 cup	51gm	28.9	12.2	0.7	8.5
Puri	3pcs	75gm	32.7	6.0	8.0	4.9
	Lunch					
Tawa Roti	Tawa Roti 4pcs		69.4	12.1	1.7	10.7
Rice	1katorie	100gm	25.6	2.5	0.3	0.4
Cabbage Subzi	1katorie	100gm	4.7	1.9	4.2	2.8
Boondi Raita	1katorie	150gm	8.1	3.9	7.9	0.8
Evening Snack						
Boiled Egg 2pcs Banana Shake 1glass		100gm	1.9	12.3	12.3	0
		250ml	29.3	6.5	5.5	1.3

INPUT 2:

Table 7: INPUT 2: Case 1 patient intake food list upto before Dinner and corresponding nutrients

So, Intake Nutrients in gram for this day	218.80	63.7	45.7	31.3
(Sum of respective column)				

So, need nutrients for Dinner on that day in grams:

Nutrients	daily required nutrients in gram- Intake Nutrients in gram	need nutrients for Dinner in gram
Carb	321.13-218.80	102.33
Prot.	131.37-63.7	67.67
Fat	71.36-45.7	25.66
Fiber	33.73-31.3	2.43

So, needed nutrients for dinner in [0,1] scale: Carb= 102.33/321.13=0.3187

Prot=67.67/131.37=0.5151

Fat=25.66/71.36=0.3596

Fiber=2.43/33.73=0.0722

So, our knowledge set (X) will be [0.3187, 0.5151, 0.3596, 0.0722]

$\label{eq:Calculation} \textbf{Calculation for Utility Matrix}(\textbf{U}) \textbf{:}$

	Item	Carbohydra	tes Protein	Fat Fiber	7	
Roti		17.4	3.0	0.4 2.7	U ₁	
	Rice	25.6	2.5	0.3 0.4	U ₂	
	Mixed Veg	5.3	1.8	3.0 2.1	U ₃	
INPUT 3		7.1	4.9	4.0 2.8	U4	
	Chicken Curry	5.6	19.2	3.8 2.4	U₅	
	Arhar Dal	21.6	7.4	2.0 3.8	U ₆	
	Green Salad Hot Milk	3.2	1.4	2.1 1.5	U ₇	
	11	8	10.2 0] U ₈		
	Table 8: INPUT 3: Case 1 pe	atient Dinner Ch	oice and respectiv	e utility matrix	(U)	
				-		
11						
$\mu_{\scriptscriptstyle \lambda}$	ر_		Utility.	Matrix(U)		
		Fuzzy Util	ity Associated			
x	V $\tilde{U_1}$ $\tilde{U_2}$ $\tilde{U_3}$	\tilde{l}_3 \tilde{U}_4	Ũ ₅	$\tilde{U_6}$	Ũ ₇	$\tilde{U_8}$
	arb. 0.32 _{17.4} 0.32 _{25.6} 0.32	25.3 0.327.5		0.3221.6	0.323.2	0.3211.0
	rot. 0.52 _{3.0} 0.52 _{2.5} 0.52			0.52 _{7.4}	0.521.4	0.528.0
0.0700	at 0.36 _{0.4} 0.36 _{0.3} 0.36			0.362.0	0.362.1	0.36 _{10.2}
0.0722 Fi	ber 0.07 _{2.7} 0.07 _{0.4} 0.07	$7_{2.1} \mid 0.07_{2.8}$	8 0.07 _{2.4}	0.07 _{3.8}	0.07 _{1.5}	$0.07_{0.0}$
1		Maximizing	Fuzzy Set			
	$U_1^{Max} \mid U_2^{Max} \mid U_3^{Max}$	U ₄ ^{Max}	U_5^{Max}	U_6^{Max}	U_7^{Max}	U ₈ ^{Max}
Carb.	1.0 _{17.4} 1.0 _{25.6} 1.0 _{5.3}	1.07.1	0.29 _{5.6}	1.021.6	1.03.2	1.011.0
Prot./	0.17 _{3.0} 0.10 _{2.5} 0.34 _{1.8}	0.694,9	1.019.2	0.347.4	$0.44_{1.4}$	0.738.0
Fat/ /	0.02 _{0.4} 0.01 _{0.3} 0.57 _{3.0}	0.564.0	0.20 _{3.8}	0.092.0	0.662.1	- 0.93 _{10.2}
Fiber/	0.16 _{2.7} 0.02 _{0.4} 0.40 _{2.1}	0.39 _{2.8}	0.122.4	0.18 _{3.8}	0.47 _{1.5}	0.0 _{0.0}
				II. (2)		
$U_1(1)$, \	$U_{8}(3)$)_	
$Max(U_1)$	N	linimum of		Max(U	(8)	
		.07 and 0.16				
$U_1(2)$, /			
$\overline{Max(U_1)}$					num of	
1/1000 (0 1)				→ 0.52 a	and 1.0	
	/ Fu	zzy Optimal	Utility			
U_1^{optin}		U ₄ ^{optimal}	$U_5^{optimal}$	U ₆ optimal	$U_7^{optimal}$	U ₈ optimal
Carb. 0.32 ₁₇		0.32 _{7.1}	0.29 _{5.6}	$0.32_{21.6}$	$0.32_{3.2}$	$0.32_{11.0}$
Prot. 0.17 ₃		0.52 _{4.9}	$0.52_{19.2}$	0.34 _{7.4}	$0.44_{1.4}$	$0.52_{8.0}$
Fat 0.02 ₀	$_{.4}$ $0.01_{0.3}$ $0.36_{3.0}$	0.36 _{4.0}	0.20 _{3.8}	$0.09_{2.0}$	$0.36_{2.1}$	$0.36_{10.2}$
Fiber 0.07 ₂		0.07 _{2.8}	0.07 _{2.4}	0.07 _{3.8}	$0.07_{1.5}$	$0.00_{0.0}$
Σ 0.58 _{Re}		1.27 _{Soya.B.S}	1.08 _{Chicken.C.}	0.82 _{A.Dal}	$1.19_{G.Salad}$	$1.20_{H.Milk}$
	. [
	Column wise sum					

If elements of sum result are >1, then normalize the sum elements to obtain A^{optimal}.

	Fuzzy Optimal Alternative							
Aoptimal	$A^{optimal}$, 0.45_{Roti} 0.35_{Rice} $0.86_{M.Veg}$ $1.00_{Soya.B.S}$ $0.85_{Chicken.C.}$ $0.65_{A.Dal}$ $0.93_{G.Salad}$ $0.94_{H.I}$							$0.94_{H.Milk}$
	$\frac{U_1^{optin}}{Max}$	$\frac{(1)}{(1)} = \frac{0.58}{0.58}$	= 0.45		$\frac{U_1^{optimal}(5)}{Max(\Sigma)}$	$\frac{0}{1.27} = \frac{0.58}{1.27} = 0.43$	5	