

Características da propagação de ondas milimétricas sem fio 5G

Transformação da atenuação da chuva aplicando diferentes modelos de previsão

Alunos:

João Morais nº83916 Francisco Rabaça nº97236 David Brito nº97260

Motivação e contexto do estudo

- Planeamentos de redes sem fios de links de onda milimétrica
 - O Desempenho dos modelos de previsão de taxa de chuva e atenuação da chuva.

- Objetivo
 - Investigar modelos de previsão de atenuação de chuva.
 - Encontrar métodos de previsão para atenuação da chuva

Explicação do problema

- Atualmente, à poucas medições de desvanecimento pela chuva em links de curto alcance.
- Grandes quantidades de precipitação podem causar a interrupção de links de comprimento de onda de milímetros.
- O que leva a estudar e desenvolver métodos para gerar "medições hipotéticas"

- Existem assim dois tipos de modelos:
 - Baseados na taxa de chuva que é excedida em 0,01% de um ano médio (R_{0,01});
 - Baseados na distribuição de probabilidade de taxa de chuva total

Apresentação do estado da arte

- Modelos de previsão da atenuação da chuva
 - O Previsão de atenuação de chuva sem distribuição total da taxa de chuva;
 - Modelos de previsão de atenuação de chuva com base na distribuição total da taxa de chuva;
 - UK model;
 - O Brazil Method:
 - Comparação dos Métodos;
- Transformação da Ligação
 - Transformação da ligação baseada no modelo ITU-R P.530-15;
 - Transformação da ligação baseada no UK model e no Brazil Method;

Apresentação do estado da arte

Resultados

- Taxas de chuva calculadas com base nos modelos de previsão investigados;
- Distribuição de intensidade de chuva calculada com base nos modelos de previsão investigados;
- Distribuições transformadas de atenuação de chuva com base nos modelos de predição investigados;
- Comparação dos CCDFs de atenuação de chuva transformada e os CCDFs teóricos ITU -R P.530-15 em estatísticas de longo prazo;

Modelos de previsão da atenuação da chuva

Este modelo é baseado na equação do cálculo da atenuação devido à chuva:

$$A^{[dB]} = \int_0^d K \cdot R^{\alpha}(l) dl$$

- Onde k e a são coeficientes empíricos dependentes da frequência e polarização.
- O R(I) é o valor da intensidade pontual da chuva em mm/h ao longo do caminho na distância I.
- O d é o comprimento do caminho do link.
- A taxa de chuva e a atenuação podem variar significativamente ao longo de caminhos mais longos.
- O mais importante ao modelar a atenuação da chuva é descrever a distribuição da taxa de chuva no espaço e no tempo estatisticamente.

Previsão de atenuação de chuva sem distribuição total da taxa de chuva

O ITU fornece a seguinte fórmula empírica, com base na taxa de chuva para 0.01% de um ano médio $(R_{0.01})$.

$$A_{0.01}^{[dB]} = \mathbf{K} \cdot R_{0.01}^{\alpha} \cdot d_{eff} = K \cdot R_{0.01}^{\alpha} \cdot d \cdot \mathbf{r}$$

 A variação da intensidade da chuva ao longo do trajeto do link é levada em consideração pelo fator de distância r.

$$r = \frac{1}{0.477d^{0.633} \cdot R_{0.01}^{0.073*\alpha} \cdot f^{0.123} - 10.579(1 - e^{-0.024d})}$$

 Para calcular a atenuação excedida em outras percentagens de tempo entre 1% e 0,001%, usamos uma fórmula de extrapolação.

$$A_p = C_1 \cdot p^{-(C_2 + C_3 \log_{10} p)} \cdot A_{0.01}$$

Modelos de previsão de atenuação de chuva com base na distribuição total da taxa de chuva

- Métodos dependem da distribuição total da taxa de chuva.
- O Havendo uma relação entre $R(p) = R_p$ e $A(p) = A_p$ respetivamente, não apenas entre $A_{0.01}$ e $R_{0.01}$.
- Deste modo estudamos dois modelos:
 - UK model;
 - O Brazil Method;
- O modelo do Uk model pode ser descrito de acordo com a seguinte equação :

$$A_p^{[dB]} = K \cdot R_p^{\alpha} \frac{1}{0.874 \cdot 0.0255 \cdot (R_p^{0.54} - 1.7) \cdot d^{0.7}}$$

Abordagem seguida pelo autores Brazil Method

- Modelo semi-empirico;
- Considera a totalidade da distribuição da taxa de precipitação para a previsão e introduz o conceito de uma taxa efetiva de chuva;
- Este método prevê que a atenuação excedeu numa percentagem do tempo e esta previsão é dada pela equação

$$A_P^{[dB]} = k \cdot [1.763 \cdot R_P^{0.753 + 0.197/d}]^{\alpha} \cdot \frac{d}{1 + \frac{d}{119 \cdot R_P^{-0.244}}}$$

Abordagem seguida pelo autores Comparação dos modelos

 Para a análise qualitativa dos modelos procederam à comparação das propriedades dos modelos de previsão da atenuação da chuva

Modelo	Considerar a totalidade da distribuição da taxa de precipitação	Aplica fator de ajuste de caminho	Aplica fator de ajuste da taxa de precipitação
ITU-R P.530-15	Não	Sim	Não
UK model	Sim	Sim	Não
Brazil method	Sim	Sim	Sim

Abordagem seguida pelo autores

Transformação de Ligações

Abordagem seguida pelo autores Transformação de Ligações baseadas no modelo ITU-R P.530-15

 O calculo da atenuação a avaliar para ligações hipotéticas deve ser avaliada através de dados medidos;

Calculo da atenuação

$$r = \frac{1}{0.477 d^{0.633} \cdot R_{0.01}^{0.073*\alpha} \cdot f^{0.123} - 10.579(1 - e^{-0.024 d})}$$

$$A_{0.01}^{[dB]} = k \cdot R_{0.01}^{\alpha} \cdot d_{eff} = k \cdot R_{0.01}^{\alpha} \cdot d \cdot r$$

Previsão de atenuação

$$R = \left[\frac{A_m}{k_m \cdot d_m \cdot r_m}\right] \left(\frac{1}{\alpha_m}\right)$$

$$A_{h} = k_{h} \cdot \left[\frac{A_{m}}{k_{m} \cdot d_{m} \cdot r_{m}} \right]^{\left(\frac{\alpha_{h}}{\alpha_{m}}\right)} \cdot d_{h} \cdot r_{h}$$

O Descreve a relação teórica entre a intensidade da chuva e a atenuação da chuva para qualquer probabilidade P entre 1% e 0,001%.

Abordagem seguida pelo autores Transformação de Ligações baseadas no UK e no Brazil method

 A avaliação da ligação hipotética é feita da mesma forma que é feita a avaliação de uma ligação real;

$$A_P^{[dB]} = k \cdot R_P^{\alpha} \cdot \frac{d}{0.874 + 0.0255 \cdot (R_P^{0.54} - 1.7) \cdot d^{0.7}}$$

$$A_P^{[dB]} = k \cdot [1.763 \cdot R_P^{0.753 + 0.197/d}]^{\alpha} \cdot \frac{d}{1 + \frac{d}{119 \cdot R_P^{-0.244}}}$$
Brazil method

Resultados obtidos Taxas de chuva calculadas com base nos modelos de previsão investigados

Relação entre intensidade de chuva e atenuação de acordo com o modelo ITU-R P.530-15

Relação entre intensidade de chuva e atenuação de acordo com o *UK model* Relação entre intensidade de chuva e atenuação segundo o *Brazil Method*

Distribuições calculadas da intensidade da chuva com base nos Modelos de previsão investigados

- Em probabilidades altas, os resultados são similares para os 3 modelos estudados;
- Em probabilidades baixas, os modelos diferem significativamente;
- Não há informação fiável da intensidade da chuva, logo não é possível verificar as distribuições intermedias.

Distribuição da atenuação transformada da chuva baseado nos modelos de previsão estudados

- Frequência de 38GHz;
- Distancia de 1.5 Km;
- Polarização Horizontal.

Modelo ITU-R P.530-15

- Distância de 200 m;
 O ajuste do fator r não descreve a heterogeneidade da intensidade da chuva apenas ao longo do caminho;
- É também considerada a distribuição das células da chuva;
- \circ r = 2.5.

UK model

CCDF of the attenuation on the transformed link

- Resultados realistas;
- Resultados muito parecidos com os obtidos pela fórmula de extrapolação vista anteriormente.

Brazil Method

CCDF of the attenuation on the transformed link

- Valores de atenuação muito elevados;
- Modelo válido até aos 700-800m (dependendo da frequência aplicada).

Comparação entre o modelo real e o modelo ITU-R teórico para estatísticas a longo prazo

- Todas as curvas são calculadas de acordo com as recomendações da ITU-R;
- Localização geográfica tem um efeito grande nas estatísticas da taxa de chuva

Conclusões

- Foi feito o estudo dos modelos mais comummente aplicados a atenuação devido a chuva.
- Modelo que considera uma relação entre a atenuação da chuva e a sua intensidade tem uma melhor performance que um que se baseie apenas na distribuição da taxa de chuva;
- ITU-R P.530-15 é o modelo que melhor resultados apresenta e assim aplicável ao caso em estudo.