

SEQUENCE LISTING

<110> Schimmel, Paul
Wakasugi, Keisuke

<120> Human Aminoacyl-tRNA Synthetase Polypeptides Useful For
The Regulation of Angiogenesis

<130> 00-221

<140>
<141>

<160> 58

<170> PatentIn Ver. 2.0

<210> 1
<211> 5174
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (3428)..(5035)

<220>
<223> Description of Artificial Sequence: human
full-length TyrRS in pET20B

<400> 1
tggcgaatgg gacgcgcct gtagcggcg attaagcgcg gcgggtgtgg tggttacg 60
cagcgtgacc gctacacttg ccagcgcct agcgcccgct ccttcgcctt tcttcccttc 120
ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttagg gtgatggttc 240
acgttagtggg ccatcgccct gatagacggt tttcgccct ttgacgttgg agtccacg 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggcttattc 360
tttgattta taaggattt tgccgatttc ggcctattgg taaaaaatg agctgattta 420
acaaaaat aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctattt gttattttc taaatacatt caaatatgta 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtttcaa catttccgtg tcgccttat tccctttt gcggcatttt gccttcctgt 660
tttgctcac ccagaaacgc tggtaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cgtaagatc cttgagagtt ttcgcggcga 780
agaacgtttt ccaatgtga gcactttaa agttctgcta tgtggcgccg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttgg 900
ttagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960

cagtgctgcc ataaccatga gtgataaacac tgcggccaac ttacttctga caacgatcg 1020
aggaccgaag gagctaaccg ctttttgc caacatgggg gatcatgtaa ctgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgc 1260
ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat tttaattta aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
caaaatccct taacgtgagt tttcggttcca ctgagcgtca gaccccgtag aaaagatcaa 1620
aggatcttct tgagatcctt ttttctgctc cgtaatctgc tgcttgaaaaaacc 1680
accgctacca gcgggtggttt gtttgcggga tcaagagcta ccaactctt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaa tactgtcctt ctatgttagc cgtagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacataccctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtctg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag gcgcagcggc cgggctgaac ggggggttcg tgcacacagc ccagcttgaa 1980
gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgaaaaa gcgccacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttat agtccctgtcg ggttgc 2160
cctctgactt gagcgtcgat ttttgtatg ctgcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcggccttt tacgggtcct ggctttgc tggccttttgc tccacatgtt 2280
ctttcctgctc ttatccccgtt attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgccagccgaa cgaccgagcg cagcgagtca gtgagcggagg aagcggaaaga 2400
gcgcctgatg cggatatttc tccttacgca tctgtcggt atttcacacc gcatatatgg 2460
tgcaactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcggccc gacacccgccc aacacccgct gacgcgc 2580
gacgggcttgc tctgctcccg gcatccgctt acagacaagc tgtgaccgac tccgggagct 2640
gcatgtgtca gaggtttca cggtcatcac cggaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcg 2760
ttagttctc cagaagcgtt aatgtctggc ttctgataaa gcggggccatg ttaagggcgg 2820

Pro Leu Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu 160 165 170	
gag tat tta aaa gta gat gcc caa ttt gga ggc att gat cag aga aag Glu Tyr Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys 175 180 185 190	3997
att ttc acc ttt gca gag aag tac ctc cct gca ctt ggc tat tca aaa Ile Phe Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys 195 200 205	4045
cgg gtc cat ctg atg aat cct atg gtt cca gga tta aca ggc agc aaa Arg Val His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys 210 215 220	4093
atg agc tct tca gaa gag gag tcc aag att gat ctc ctt gat cgg aag Met Ser Ser Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys 225 230 235	4141
gag gat gtg aag aaa aaa ctg aag aag gcc ttc tgt gag cca gga aat Glu Asp Val Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn 240 245 250	4189
gtg gag aac aat ggg gtt ctg tcc ttc atc aag cat gtc ctt ttt ccc Val Glu Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro 255 260 265 270	4237
ctt aag tcc gag ttt gtg atc cta cga gat gag aaa tgg ggt gga aac Leu Lys Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn 275 280 285	4285
aaa acc tac aca gct tac gtg gac ctg gaa aag gac ttt gct gct gag Lys Thr Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu 290 295 300	4333
gtt gta cat cct gga gac ctg aag aat tct gtt gaa gtc gca ctg aac Val Val His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn 305 310 315	4381
aag ttg ctg gat cca atc cgg gaa aag ttt aat acc cct gcc ctg aaa Lys Leu Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys 320 325 330	4429
aaa ctg gcc agc gct gcc tac cca gat ccc tca aag cag aag cca atg Lys Leu Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met 335 340 345 350	4477
gcc aaa ggc cct gcc aag aat tca gaa cca gag gag gtc atc cca tcc Ala Lys Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Pro Ser 355 360 365	4525
cgg ctg gat atc cgt gtg ggg aaa atc atc act gtg gag aag cac cca Arg Leu Asp Ile Arg Val Gly Lys Ile Ile Thr Val Glu Lys His Pro 370 375 380	4573
gat gca gac agc ctg tat gta gag aag att gac gtg ggg gaa gct gaa Asp Ala Asp Ser Leu Tyr Val Glu Lys Ile Asp Val Gly Glu Ala Glu 385 390 395	4621
cca cgg act gtg gtg agc ggc ctg gta cag ttc gtg ccc aag gag gaa Pro Arg Thr Val Val Ser Gly Leu Val Gln Phe Val Pro Lys Glu Glu 400 405 410	4669

ctg cag gac agg ctg gta gtg gtg ctg tgc aac ctg aaa ccc cag aag Leu Gln Asp Arg Leu Val Val Val Leu Cys Asn Leu Lys Pro Gln Lys 415 420 425 430	4717
atg aga gga gtc gag tcc caa ggc atg ctt ctg tgt gct tct ata gaa Met Arg Gly Val Glu Ser Gln Gly Met Leu Leu Cys Ala Ser Ile Glu 435 440 445	4765
ggg ata aac cgc cag gtt gaa cct ctg gac cct ccg gca ggc tct gct Gly Ile Asn Arg Gln Val Glu Pro Leu Asp Pro Ala Gly Ser Ala 450 455 460	4813
cct ggt gag cac gtg ttt gtg aag ggc tat gaa aag ggc caa cca gat Pro Gly Glu His Val Phe Val Lys Gly Tyr Glu Lys Gly Gln Pro Asp 465 470 475	4861
gag gag ctc aag ccc aag aag aaa gtc ttc gag aag ttg cag gct gac Glu Glu Leu Lys Pro Lys Lys Val Phe Glu Lys Leu Gln Ala Asp 480 485 490	4909
ttc aaa att tct gag gag tgc atc gca cag tgg aag caa acc aac ttc Phe Lys Ile Ser Glu Glu Cys Ile Ala Gln Trp Lys Gln Thr Asn Phe 495 500 505 510	4957
atg acc aag ctg ggc tcc att tcc tgt aaa tcg ctg aaa ggg ggg aac Met Thr Lys Leu Gly Ser Ile Ser Cys Lys Ser Leu Lys Gly Gly Asn 515 520 525	5005
att agc ctc gag cac cac cac cac tgagatccgg ctgctaaca Ile Ser Leu Glu His His His His His 530 535	5055
agccccgaaag gaagctgagt tggctgctgc caccgctgag caataactag cataaccct 5115	
tggggcctct aaacgggtct tgaggggtt tttgctgaaa ggaggaacta tatccggat 5174	

<210> 2
<211> 536
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: human
full-length TyrRS in pET20B

Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile Thr Arg 1 5 10 15	
Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile Leu Lys 20 25 30	
Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly Lys Pro 35 40 45	
His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe Leu Lys 50 55 60	

Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala Tyr Leu
 65 70 75 80

Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Arg Val Ser Tyr
 85 90 95

Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val Pro Leu
 100 105 110

Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser Lys Glu
 115 120 125

Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln His Asp
 130 135 140

Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His Pro Leu
 145 150 155 160

Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu Glu Tyr
 165 170 175

Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys Ile Phe
 180 185 190

Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys Arg Val
 195 200 205

His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys Met Ser
 210 215 220

Ser Ser Glu Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys Glu Asp
 225 230 235 240

Val Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn Val Glu
 245 250 255

Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro Leu Lys
 260 265 270

Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn Lys Thr
 275 280 285

Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu Val Val
 290 295 300

His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn Lys Leu
 305 310 315 320

Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys Lys Leu
 325 330 335

Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met Ala Lys
 340 345 350

Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Pro Ser Arg Leu
 355 360 365

Asp Ile Arg Val Gly Lys Ile Ile Thr Val Glu Lys His Pro Asp Ala
 370 375 380

Asp Ser Leu Tyr Val Glu Lys Ile Asp Val Gly Glu Ala Glu Pro Arg
 385 390 395 400

Thr Val Val Ser Gly Leu Val Gln Phe Val Pro Lys Glu Glu Leu Gln
 405 410 415

Asp Arg Leu Val Val Leu Cys Asn Leu Lys Pro Gln Lys Met Arg
 420 425 430

Gly Val Glu Ser Gln Gly Met Leu Leu Cys Ala Ser Ile Glu Gly Ile
 435 440 445

Asn Arg Gln Val Glu Pro Leu Asp Pro Pro Ala Gly Ser Ala Pro Gly
 450 455 460

Glu His Val Phe Val Lys Gly Tyr Glu Lys Gly Gln Pro Asp Glu Glu
 465 470 475 480

Leu Lys Pro Lys Lys Val Phe Glu Lys Leu Gln Ala Asp Phe Lys
 485 490 495

Ile Ser Glu Glu Cys Ile Ala Gln Trp Lys Gln Thr Asn Phe Met Thr
 500 505 510

Lys Leu Gly Ser Ile Ser Cys Lys Ser Leu Lys Gly Gly Asn Ile Ser
 515 520 525

Leu Glu His His His His His
 530 535

<210> 3

<211> 4682

<212> DNA

<213> Artificial Sequence

<220>

<221> CDS

<222> (3428)..(4543)

<220>

<223> Description of Artificial Sequence: human mini
 TyrRS in pET20B

<400> 3

tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggtaacg 60

cagcgtgacc gctacacttg ccagcgcctt agcgcgcgt ccttcgcctt tcttcccttc 120

ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tccctttagg 180

gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttagg gtgatggttc 240

acgtagtggg ccatcgccct gatagacggt tttcgccct ttgacgttgg agtccacgtt 300

ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggcttattc 360

ttttgattt taagggattt tgccgatttc ggcttattgg ttaaaaaatg agctgattt 420

acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480

tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgtt 540

tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600

gagtattcaa cattccgtg tcgccttat tccctttt gcggcatttt gccttcgt 660
tttgctcac ccagaaaacgc tggtaaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cggttaagatc cttgagagtt ttcgccccga 780
agaacgtttt ccaatgatga gcaactttaa agttctgcta tgtggcgccg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900
ttagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataaac ac tgccggcaac ttacttctga caacgatcg 1020
aggaccgaag gagctaaccg ct ttttgca caacatgggg gatcatgtaa ctcgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttccg gctggctgg tattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cgttatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat tttaattta aaaggatcta ggtgaagatc ct ttttgata atctcatgac 1560
caaaatccct taacgtgagt ttgcgttcca ctgagcgtca gaccccttag aaaaagatcaa 1620
aggatcttct tgagatcctt ttttctgcg cgtaatctgc tgcttgaaa caaaaaaacc 1680
accgctacca gcggtggg ttttgcggta ctaagagcta ccaactctt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaa tactgtcctt ctatgttagc ctagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtctg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag ggcgcggcgt cgggctgaac ggggggttcg tgcacacagc ccagcttgg 1980
gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa ggcgcacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggttaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatcttgc agtcctgtcg ggtttcgcca 2160
cctctgactt gagcgtcgat ttttgtatg ctcgtcagg gggcggagcc tatggaaaaa 2220
cgccagcaac gggcccttt tacgggtcctt ggcccttgc tggccctttg ctcacatgtt 2280
ctttcctgcg ttatccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcagccgaa cgaccgagcg cagcgtgca gtgagcggagg aagcggaaaga 2400
gcgcctgtatg cggtatccc tccttaacgca tctgtgcggat atttcacacc gcatatatgg 2460

tgcaactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgcct 2580
 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640
 gcatgtgtca gaggtttca ccgtcatcac cgaaacgcgc gaggcagctg cgtaaagct 2700
 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760
 tagtttctc cagaagcggtt aatgtctggc ttctgataaa gcgggcctatg ttaagggcgg 2820
 tttttcctg tttggtaact gatgcctccg tgtaaggggg atttctgttc atggggtaa 2880
 tgataccat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940
 ggtaactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
 aaatcactca gggtaatgc cagcgcttcg ttaatacaga tgttaggtt ccacaggta 3060
 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgcg 3120
 tttccagact ttacgaaaca cggaaaccga agaccattca tggtgttgct caggtcgacg 3180
 acgtttgca gcagcagtcg cttcacgttc gctcgctat cggtgattca ttctgctaac 3240
 cagtaaggca accccgcccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
 cccgtggcca ggacccaacg ctgcccgaga tctcgatccc gcgaaattaa tacgactcac 3360
 tatagggaga ccacaacgggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3420
 tatacat atg ggg gac gct ccc agc cct gaa gag aaa ctg cac ctt atc 3469
 Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile
 1 5 10

 acc cgg aac ctg cag gag gtt ctg ggg gaa gag aag ctg aag gag ata 3517
 Thr Arg Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile
 15 20 25 30

 ctg aag gag cgg gaa ctt aaa att tac tgg gga acg gca acc acg ggc 3565
 Leu Lys Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly
 35 40 45

 aaa cca cat gtg gct tac ttt gtg ccc atg tca aag att gca gac ttc 3613
 Lys Pro His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe
 50 55 60

 tta aag gca ggg tgt gag gta aca att ctg ttt gcg gac ctc cac gca 3661
 Leu Lys Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala
 65 70 75

 tac ctg gat aac atg aaa gcc cca tgg gaa ctt cta gaa ctc cga gtc 3709
 Tyr Leu Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Arg Val
 80 85 90

 agt tac tat gag aat gtg atc aaa gca atg ctg gag agc att ggt gtg 3757
 Ser Tyr Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val
 95 100 105 110

ccc ttg gag aag ctc aag ttc atc aaa ggc act gat tac cag ctc agc Pro Leu Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser 115 120 125	3805
aaa gag tac aca cta gat gtg tac aga ctc tcc tcc gtg gtc aca cag Lys Glu Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln 130 135 140	3853
cac gat tcc aag aag gct gga gct gag gtg gta aag cag gtg gag cac His Asp Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His 145 150 155	3901
cct ttg ctg agt ggc ctc tta tac ccc gga ctg cag gct ttg gat gaa Pro Leu Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu 160 165 170	3949
gag tat tta aaa gta gat gcc caa ttt gga ggc att gat cag aga aag Glu Tyr Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys 175 180 185 190	3997
att ttc acc ttt gca gag aag tac ctc cct gca ctt ggc tat tca aaa Ile Phe Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys 195 200 205	4045
cgg gtc cat ctg atg aat cct atg gtt cca gga tta aca ggc agc aaa Arg Val His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys 210 215 220	4093
atg agc tct tca gaa gag gag tcc aag att gat ctc ctt gat cgg aag Met Ser Ser Ser Glu Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys 225 230 235	4141
gag gat gtg aag aaa aaa ctg aag aag gcc ttc tgt gag cca gga aat Glu Asp Val Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn 240 245 250	4189
gtg gag aac aat ggg gtt ctg tcc ttc atc aag cat gtc ctt ttt ccc Val Glu Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro 255 260 265 270	4237
ctt aag tcc gag ttt gtg atc cta cga gat gag aaa tgg ggt gga aac Leu Lys Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn 275 280 285	4285
aaa acc tac aca gct tac gtg gac ctg gaa aag gac ttt gct gct gag Lys Thr Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu 290 295 300	4333
gtt gta cat cct gga gac ctg aag aat tct gtt gaa gtc gca ctg aac Val Val His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn 305 310 315	4381
aag ttg ctg gat cca atc cgg gaa aag ttt aat acc cct gcc ctg aaa Lys Leu Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys 320 325 330	4429
aaa ctg gcc agc gct gcc tac cca gat ccc tca aag cag aag cca atg Lys Leu Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met 335 340 345 350	4477

gcc aaa ggc cct gcc aag aat tca gaa cca gag gag gtc atc ctc gag 4525
 Ala Lys Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Leu Glu
 355 360 365

cac cac cac cac cac tgagatccgg ctgctaacaa agccccaaag 4573
 His His His His His
 370

gaagctgagt tggctgctgc caccgctgag caataactag cataaccctt tggggcctct 4633
 aaacgggtct tgaggggttt tttgctgaaa ggaggaacta tatccggat 4682

<210> 4
 <211> 372
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: human mini
 TyrRS in pET20B

<400> 4
 Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile Thr Arg
 1 5 10 15

Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile Leu Lys
 20 25 30

Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly Lys Pro
 35 40 45

His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe Leu Lys
 50 55 60

Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala Tyr Leu
 65 70 75 80

Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Arg Val Ser Tyr
 85 90 95

Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val Pro Leu
 100 105 110

Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser Lys Glu
 115 120 125

Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln His Asp
 130 135 140

Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His Pro Leu
 145 150 155 160

Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu Glu Tyr
 165 170 175

Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys Ile Phe
 180 185 190

Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys Arg Val
 195 200 205

His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys Met Ser
 210 215 220
 Ser Ser Glu Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys Glu Asp
 225 230 235 240
 Val Lys Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn Val Glu
 245 250 255
 Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro Leu Lys
 260 265 270
 Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn Lys Thr
 275 280 285
 Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu Val Val
 290 295 300
 His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn Lys Leu
 305 310 315 320
 Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys Lys Leu
 325 330 335
 Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met Ala Lys
 340 345 350
 Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Leu Glu His His
 355 360 365
 His His His His
 370

<210> 5
 <211> 4100
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> CDS
 <222> (3428)..(3961)

<220>
 <223> Description of Artificial Sequence: human TyrRS
 carboxyl-terminal domain in pET20B

<400> 5
 tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
 cagcgtgacc gctacacttg ccagcgcctt agcgcccgct ctttcgctt tcttcccttc 120
 ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tccctttagg 180
 gttccgattt agtgctttac ggcacctcga ccccaaaaaaa cttgattagg gtgatggttc 240
 acgttagtggg ccatcgccct gatagacggt ttttcgcctt ttgacgttgg agtccacgtt 300
 cttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
 ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420

acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcgaa cccctatttg tttatTTTC taaatacatt caaatatgt 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttccgtg tcgccttat tccctttt gcggcatttt gccttcgt 660
tttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cgtaagatc cttgagagtt ttgcggccga 780
agaacgttt ccaatgatga gcactttaa agttctgcta tgtggcgccg tattatccc 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900
tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataaac ac tgcggccaac ttacttctga caacgatcg 1020
aggaccgaag gagctaaccg ctttttgca caacatgggg gatcatgtaa ctcgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cgttacatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat ttttaattta aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
caaaatccct taacgtgagt ttgcgttcca ctgagcgtca gacccgtag aaaagatcaa 1620
aggatcttct tgagatcctt ttttctgct cgtaatctgc tgcttgcaaa caaaaaacc 1680
accgctacca gcggtggttt gtttgcggta tcaagagcta ccaactctt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaa tactgtcctt ctatgttagc ctagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920
acccgataag ggcgcggcggtt cgggctgaac ggggggttcg tgcacacagc ccagcttgaa 1980
gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa gogccacgct 2040
tccccgaagg agaaaggcgg acaggtatcc ggttaagcggc agggtcggaa caggagagcg 2100
cacgagggag ctccagggg gaaacgcctg gtatctttat agtcctgtcg ggttcggcca 2160
cctctgactt gaggcgtcgat ttttgtatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcggcctttt tacggttcctt ggccctttgc tggccttttgc ctcacatgtt 2280

ctttcctgctt atatccctgtt attctgtggta taaccgtatt accgcctttg agtgagctga 2340
 taccgctcgc cgccagccaa cgaccgagcg cagcgagtca gtgagcgagg aagcggaaga 2400
 ggcgcctgatcg cggtatccc tccttacgca tctgtgcgtt atttcacacc gcataatatgg 2460
 tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
 cgctacgtga ctgggtcatg gctgcgc(cc) gacacccgcc aacaccgct gacgcgc(cc) 2580
 gacgggcttgc tctgtcccg gcatccgctt acagacaagc tgtgaccgctc tccgggagct 2640
 gcatgtgtca gaggtttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcg 2760
 tgagtttctc cagaacgcgtt aatgtctggc ttctgataaa gcgggcatg ttaaggcgg 2820
 tttttcctg tttggtaact gatgcctccg tgtaaggggg atttctgttc atggggtaa 2880
 tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgccc 2940
 ggtaactggta acgttgtgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
 aaatcactca gggtaatgc cagcgcttcg ttaatacaga tgttaggtt ccacaggta 3060
 gccagcagca tcctgcgtatc cagatccgga acataatggt gcagggcgct gactccgcg 3120
 tttccagact ttacgaaaca cggaaaccga agaccattca tgggttgct caggtcgca 3180
 acgttttgcg cagcagtcg cttcacgttc gctcgctat cggtgattca ttctgctaac 3240
 cagtaaggca accccgcccag cctagccggg tcctcaacga caggagcacg atcatgcgc 3300
 cccgtggcca ggacccaacg ctgcccggaa tctcgatccc gcgaaattaa tacgactcac 3360
 tatagggaga ccacaacggt ttccctctag aaataattt gtttaacttt aagaaggaga 3420
 tatacat atg cca gag gag gtc atc cca tcc cgg ctg gat atc cgt gtg 3469
 Met Pro Glu Glu Val Ile Pro Ser Arg Leu Asp Ile Arg Val
 1 5 10

ggg aaa atc atc act gtg gag aag cac cca gat gca gac agc ctg tat 3517
 Gly Lys Ile Ile Thr Val Glu Lys His Pro Asp Ala Asp Ser Leu Tyr
 15 20 25 30

gta gag aag att gac gtg ggg gaa gct gaa cca cgg act gtg gtg agc 3565
 Val Glu Lys Ile Asp Val Gly Glu Ala Glu Pro Arg Thr Val Val Ser
 35 40 45

ggc ctg gta cag ttc gtg ccc aag gag gaa ctg cag gac agg ctg gta 3613
 Gly Leu Val Gln Phe Val Pro Lys Glu Glu Leu Gln Asp Arg Leu Val
 50 55 60

gtg gtg ctg tgc aac ctg aaa ccc cag aag atg aga gga gtc gag tcc 3661
 Val Val Leu Cys Asn Leu Lys Pro Gln Lys Met Arg Gly Val Glu Ser
 65 70 75

caa ggc atg ctt ctg tgc ttt gct tct ata gaa ggg ata aac cgc cag gtt 3709
 Gln Gly Met Leu Leu Cys Ala Ser Ile Glu Gly Ile Asn Arg Gln Val
 80 85 90

gaa cct ctg gac cct ccg gca ggc tct gct cct ggt gag cac gtg ttt 3757
 Glu Pro Leu Asp Pro Pro Ala Gly Ser Ala Pro Gly Glu His Val Phe
 95 100 105 110

gtg aag ggc tat gaa aag ggc caa cca gat gag gag ctc aag ccc aag 3805
 Val Lys Gly Tyr Glu Lys Gly Gln Pro Asp Glu Glu Leu Lys Pro Lys
 115 120 125

aag aaa gtc ttc gag aag ttg cag gct gac ttc aaa att tct gag gag 3853
 Lys Lys Val Phe Glu Lys Leu Gln Ala Asp Phe Lys Ile Ser Glu Glu
 130 135 140

tgc atc gca cag tgg aag caa acc aac ttc atg acc aag ctg ggc tcc 3901
 Cys Ile Ala Gln Trp Lys Gln Thr Asn Phe Met Thr Lys Leu Gly Ser
 145 150 155

att tcc tgt aaa tcg ctg aaa ggg ggg aac att agc ctc gag cac cac 3949
 Ile Ser Cys Lys Ser Leu Lys Gly Gly Asn Ile Ser Leu Glu His His
 160 165 170

cac cac cac cac tgagatccgg ctgctaaca agcccgaaag gaagctgagt 4001
 His His His His
 175

tggctgctgc caccgctgag caataactag cataaccctt tggggcctct aaacgggtct 4061
 tgaggggttt tttgctaaaa ggaggaacta tatccggat 4100

<210> 6
 <211> 178
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: human TyrRS
 carboxyl-terminal domain in pET20B

<400> 6
 Met Pro Glu Glu Val Ile Pro Ser Arg Leu Asp Ile Arg Val Gly Lys
 1 5 10 15

Ile Ile Thr Val Glu Lys His Pro Asp Ala Asp Ser Leu Tyr Val Glu
 20 25 30

Lys Ile Asp Val Gly Glu Ala Glu Pro Arg Thr Val Val Ser Gly Leu
 35 40 45

Val Gln Phe Val Pro Lys Glu Glu Leu Gln Asp Arg Leu Val Val Val
 50 55 60

Leu Cys Asn Leu Lys Pro Gln Lys Met Arg Gly Val Glu Ser Gln Gly
 65 70 75 80

Met Leu Leu Cys Ala Ser Ile Glu Gly Ile Asn Arg Gln Val Glu Pro
 85 90 95

Leu Asp Pro Pro Ala Gly Ser Ala Pro Gly Glu His Val Phe Val Lys
 100 105 110

Gly Tyr Glu Lys Gly Gln Pro Asp Glu Glu Leu Lys Pro Lys Lys Lys
 115 120 125

Val Phe Glu Lys Leu Gln Ala Asp Phe Lys Ile Ser Glu Glu Cys Ile
 130 135 140

Ala Gln Trp Lys Gln Thr Asn Phe Met Thr Lys Leu Gly Ser Ile Ser
 145 150 155 160

Cys Lys Ser Leu Lys Gly Gly Asn Ile Ser Leu Glu His His His His
 165 170 175

His His

<210> 7
<211> 4682
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (3428)..(4543)

<220>
<223> Description of Artificial Sequence: human mini
TyrRS mutant in pET20B

<400> 7
tggcgaatgg gacgcgcct gttagcgccgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgccct agcgccccgt ctttcgcctt tcttcccttc 120
ctttctcgcc acgttcgccg gctttcccccgt tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttagg gtgatggttc 240
acgttagtggg ccatcgccct gatagacggt tttcgccct ttgacgttgg agtccacgtt 300
cttaataatgt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgt 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattaaaaaa ggaagagtat 600
gagtattcaa cattccgtg tcgccttat tccctttttt gcggcatttt gccttcctgt 660
ttttgctcac ccagaaacgc tggtaaaatg aaaagatgct gaagatcgt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cggttaagatc cttgagagtt ttcgccccga 780
agaacgtttt ccaatgttgc gactttaa agttctgttca tgtggcgccg tattatcccc 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttgg 900
ttagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataaacac tgccggcaac ttacttctga caacgatcgg 1020

aggaccgaag gagctaaccg ctttttgca caacatgggg gatcatgtaa ctgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgcac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat ttttaattta aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
caaaatccct taacgtgagt tttcggttcca ctgagcgtca gaccccgtag aaaagatcaa 1620
aggatcttct tgagatcctt ttttctgctcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680
accgctacca gcggtggttt gtttgcggta tcaagagcta ccaactctt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaaa tactgtcctt ctatgttagc cgtatgtttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacacgc ccagcttgaa 1980
gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa gcgcacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcgaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttat agtccctgtcg ggtttcgcca 2160
cctctgactt gagcgtcgat ttttgtatg ctcgtcaggg gggcggagcc tatggaaaaaa 2220
cgccagcaac gcggccttt tacggttcct ggcctttgc tggccttttg ctcacatgtt 2280
cttcctgctg ttatccccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcaagccgaa cgaccgagcg cagcgagtca gtgagcggagg aagcggaaaga 2400
gcgcctgatg cggtatatttc tccttacgca tctgtgcggc atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcggccc gacacccgcc aacacccgct gacgcggccct 2580
gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgctc tccgggagct 2640
gcatgtgtca gaggtttca cctgtcatcac cggaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760
tgagttctc cagaagcggtt aatgtctggc ttctgataaa gcggggccatg ttaagggcgg 2820
tttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880

tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgcc 2940
 ggtaactgga acgttgtgag gtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
 aatcactca gggtaatgc cagcgcttcg ttaatacaga ttaggtgtt ccacaggta 3060
 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgct 3120
 ttccagact ttacgaaaca cgaaaccga agaccattca tttgttgct caggtcgac 3180
 acgtttgca gcagcagtcg ctacacgttc gtcgcgtat cgtgattca ttctgcta 3240
 cagtaaggca accccgcccag cctagccggg tcctcaacga caggagcacg atcatgcgc 3300
 cccgtggcca ggacccaacg ctgcccggaa tctcgatccc gcgaaattaa tacgactcac 3360
 tatagggaga ccacaacggt ttccctctag aaataattt gtttaacttt aagaaggaga 3420
 tatacat atg ggg gac gct ccc agc cct gaa gag aaa ctg cac ctt atc 3469
 Met Gly Asp Ala Pro Ser Pro Glu Glu Lys Leu His Leu Ile
 1 5 10 1

 acc cgg aac ctg cag gag gtt ctg ggg gaa gag aag ctg aag gag ata 3517
 Thr Arg Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile
 15 20 25 30

 ctg aag gag cgg gaa ctt aaa att tac tgg gga acg gca acc acg ggc 3565
 Leu Lys Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly
 35 40 45

 aaa cca cat gtg gct tac ttt gtg ccc atg tca aag att gca gac ttc 3613
 Lys Pro His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe
 50 55 60

 tta aag gca ggg tgt gag gta aca att ctg ttt gcg gac ctc cac gca 3661
 Leu Lys Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala
 65 70 75

 tac ctg gat aac atg aaa gcc cca tgg gaa ctt cta gaa ctg cag gtc 3709
 Tyr Leu Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Gln Val
 80 85 90

 agt tac tat gag aat gtg atc aaa gca atg ctg gag agc att ggt gtg 3757
 Ser Tyr Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val
 95 100 105 110

 ccc ttg gag aag ctc aag ttc atc aaa ggc act gat tac cag ctc agc 3805
 Pro Leu Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser
 115 120 125

 aaa gag tac aca cta gat gtg tac aga ctc tcc tcc gtg gtc aca cag 3853
 Lys Glu Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln
 130 135 140

 cac gat tcc aag aag gct gga gct gag gtg gta aag cag gtg gag cac 3901
 His Asp Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His
 145 150 155

 cct ttg ctg agt ggc ctc tta tac ccc gga ctg cag gct ttg gat gaa 3949
 Pro Leu Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu
 160 165 170

gag tat tta aaa gta gat gcc caa ttt gga ggc att gat cag aga aag Glu Tyr Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys 175 180 185 190	3997
att ttc acc ttt gca gag aag tac ctc cct gca ctt ggc tat tca aaa Ile Phe Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys 195 200 205	4045
cgg gtc cat ctg atg aat cct atg gtt cca gga tta aca ggc agc aaa Arg Val His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys 210 215 220	4093
atg agc tct tca gaa gag gag tcc aag att gat ctc ctt gat cgg aag Met Ser Ser Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys 225 230 235	4141
gag gat gtg aag aaa aaa ctg aag aag gcc ttc tgt gag cca gga aat Glu Asp Val Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn 240 245 250	4189
gtg gag aac aat ggg gtt ctg tcc ttc atc aag cat gtc ctt ttt ccc Val Glu Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro 255 260 265 270	4237
ctt aag tcc gag ttt gtg atc cta cga gat gag aaa tgg ggt gga aac Leu Lys Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn 275 280 285	4285
aaa acc tac aca gct tac gtg gac ctg gaa aag gac ttt gct gct gag Lys Thr Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu 290 295 300	4333
gtt gta cat cct gga gac ctg aag aat tct gtt gaa gtc gca ctg aac Val Val His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn 305 310 315	4381
aag ttg ctg gat cca atc cgg gaa aag ttt aat acc cct gcc ctg aaa Lys Leu Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys 320 325 330	4429
aaa ctg gcc agc gct gcc tac cca gat ccc tca aag cag aag cca atg Lys Leu Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met 335 340 345 350	4477
gcc aaa ggc cct gcc aag aat tca gaa cca gag gag gtc atc ctc gag Ala Lys Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Leu Glu 355 360 365	4525
cac cac cac cac cac tgagatccgg ctgctaaca agcccgaaag His His His His His 370	4573
gaagctgagt tggctgctgc caccgctgag caataactag cataaccctt tggggcctct 4633	
aaacgggtct tgagggttt tttgctaaaa ggaggaacta tatccggat	4682

<210> 8
<211> 372
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: human mini
TyrRS mutant in pET20B

<400> 8															
Met	Gly	Asp	Ala	Pro	Ser	Pro	Glu	Glu	Lys	Leu	His	Leu	Ile	Thr	Arg
1				5					10				15		
Asn Leu Gln Glu Val Leu Gly Glu Glu Lys Leu Lys Glu Ile Leu Lys															
	20				25					30					
Glu Arg Glu Leu Lys Ile Tyr Trp Gly Thr Ala Thr Thr Gly Lys Pro															
	35				40					45					
His Val Ala Tyr Phe Val Pro Met Ser Lys Ile Ala Asp Phe Leu Lys															
	50				55				60						
Ala Gly Cys Glu Val Thr Ile Leu Phe Ala Asp Leu His Ala Tyr Leu															
	65				70				75			80			
Asp Asn Met Lys Ala Pro Trp Glu Leu Leu Glu Leu Gln Val Ser Tyr															
	85				90				95						
Tyr Glu Asn Val Ile Lys Ala Met Leu Glu Ser Ile Gly Val Pro Leu															
	100				105				110						
Glu Lys Leu Lys Phe Ile Lys Gly Thr Asp Tyr Gln Leu Ser Lys Glu															
	115				120				125						
Tyr Thr Leu Asp Val Tyr Arg Leu Ser Ser Val Val Thr Gln His Asp															
	130				135				140						
Ser Lys Lys Ala Gly Ala Glu Val Val Lys Gln Val Glu His Pro Leu															
	145				150				155			160			
Leu Ser Gly Leu Leu Tyr Pro Gly Leu Gln Ala Leu Asp Glu Glu Tyr															
	165				170				175						
Leu Lys Val Asp Ala Gln Phe Gly Gly Ile Asp Gln Arg Lys Ile Phe															
	180				185				190						
Thr Phe Ala Glu Lys Tyr Leu Pro Ala Leu Gly Tyr Ser Lys Arg Val															
	195				200				205						
His Leu Met Asn Pro Met Val Pro Gly Leu Thr Gly Ser Lys Met Ser															
	210				215				220						
Ser Ser Glu Glu Glu Ser Lys Ile Asp Leu Leu Asp Arg Lys Glu Asp															
	225				230				235			240			
Val Lys Lys Lys Leu Lys Lys Ala Phe Cys Glu Pro Gly Asn Val Glu															
	245				250				255						
Asn Asn Gly Val Leu Ser Phe Ile Lys His Val Leu Phe Pro Leu Lys															
	260				265				270						

Ser Glu Phe Val Ile Leu Arg Asp Glu Lys Trp Gly Gly Asn Lys Thr
 275 280 285

Tyr Thr Ala Tyr Val Asp Leu Glu Lys Asp Phe Ala Ala Glu Val Val
 290 295 300

His Pro Gly Asp Leu Lys Asn Ser Val Glu Val Ala Leu Asn Lys Leu
 305 310 315 320

Leu Asp Pro Ile Arg Glu Lys Phe Asn Thr Pro Ala Leu Lys Lys Leu
 325 330 335

Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys Gln Lys Pro Met Ala Lys
 340 345 350

Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu Val Ile Leu Glu His His
 355 360 365

His His His His
 370

<210> 9
<211> 5018
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (3428)..(4879)

<220>
<223> Description of Artificial Sequence: human
 full-length TrpRS in pET20B

<400> 9
tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgcctt agcgcgcgt ccttcgcctt tcttcccttc 120
ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tcccttttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttagg gtgatggttc 240
acgttagtggg ccatacgccct gatagacggt ttttcgcctt ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacattt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttccgtg tcggcccttat tccctttttt gcggcatttt gccttcctgt 660
ttttgctcac ccagaaacgc tggtaaaagt aaaagatgct gaagatcgt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cggttaagatc cttgagatc ttcggcccg 780

agaacgtttt ccaatgatga gcactttaa agttctgcta tgtggcgccg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900
ttagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataaac ac tgcggccaac ttacttctga caacgatcg 1020
aggaccgaag gagctaaccg ct ttttgca caacatgggg gatcatgtaa ctcgccttga 1080
tcg tgggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgcctc 1260
gccccttccg gctggctgg tattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat ttttaattta aaaggatcta ggtgaagatc ct ttttgata atctcatgac 1560
caaaatccct taacgtgagt tttcgccca ctgagcgtca gaccccttag aaaaagatcaa 1620
aggatcttct tgagatcctt ttttctgct cgtaatctgc tgcttgaaa caaaaaaacc 1680
accgctacca gcggtggg tttgcccga tcaagagcta ccaactctt ttccgaaggt 1740
aactggcttc agcagagcgc agataccaa tactgtcctt ctatgttagc ctagttagg 1800
ccaccacttc aagaactctg tagcaccgccc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag ggcgacgctt cgggctgaac ggggggttcg tgcacacagc ccagcttgg 1980
gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa gcccacgct 2040
tcccgaaggg agaaaggccg acaggtatcc ggtaaagcggc agggtcgaa caggagagcg 2100
cacgagggag ctccagggg gaaacgcctg gtatctt atgcctgtcg ggttgcgcca 2160
cctctgactt gagcgtcgat tttgtgatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gccccttt tacggttcct ggcctttgc tggccttttgc ctcacatgtt 2280
cttccctgct ttatccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgccagccgaa cgaccgagcg cagcgtca gtgagcggagg aagcggaaaga 2400
gcgcctgatg cggatatttc tccttacgca tctgtcggt atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gtcgcggcc gacacccgct gacgcgcct 2580
gacgggcttgc tctgctcccg gcatccgctt acagacaagc tgtgaccgctc tccgggagct 2640

atg aat cag gtt ctt gat gcc tat gaa aat aag aag cca ttt tat ctg Met Asn Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu 145 150 155	3901
tac acg ggc cgg ggc ccc tct tct gaa gca atg cat gta ggt cac ctc Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His Leu 160 165 170	3949
att cca ttt att ttc aca aag tgg ctc cag gat gta ttt aac gtg ccc Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro 175 180 185 190	3997
ttg gtc atc cag atg acg gat gac gag aag tat ctg tgg aag gac ctg Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu 195 200 205	4045
acc ctg gac cag gcc tat ggc gat gct gtt gag aat gcc aag gac atc Thr Leu Asp Gln Ala Tyr Asp Ala Val Glu Asn Ala Lys Asp Ile 210 215 220	4093
atc gcc tgt ggc ttt gac atc aac aag act ttc ata ttc tct gac ctg Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu 225 230 235	4141
gac tac atg ggg atg agc tca ggt ttc tac aaa aat gtg gtg aag att Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile 240 245 250	4189
caa aag cat gtt acc ttc aac caa gtg aaa ggc att ttc ggc ttc act Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr 255 260 265 270	4237
gac agc gac tgc att ggg aag atc agt ttt cct gcc atc cag gct gct Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala 275 280 285	4285
ccc tcc ttc agc aac tca ttc cca cag atc ttc cga gac agg acg gat Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp 290 295 300	4333
atc cag tgc ctt atc cca tgt gcc att gac cag gat cct tac ttt aga Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg 305 310 315	4381
atg aca agg gac gtc gcc ccc agg atc ggc tat cct aaa cca gcc ctg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu 320 325 330	4429
ttg cac tcc acc ttc cca gcc ctg cag ggc gcc cag acc aaa atg Leu His Ser Thr Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met 335 340 345 350	4477
agt gcc agc gac cca aac tcc tcc atc ttc ctc acc gac acg gcc aag Ser Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys 355 360 365	4525
cag atc aaa acc aag gtc aat aag cat gcg ttt tct gga ggg aga gac Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp 370 375 380	4573

acc atc gag gag cac agg cag ttt ggg ggc aac tgt gat gtg gac gtc	4621
Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val	
385 390 395	
tct ttc atg tac ctg acc ttc ctc gag gac gac aag ctc gag	4669
Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Lys Leu Glu	
400 405 410	
cag atc agg aag gat tac acc agc gga gcc atg ctc acc ggt gag ctc	4717
Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu	
415 420 425 430	
aag aag gca ctc ata gag gtt ctg cag ccc ttg atc gca gag cac cag	4765
Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln	
435 440 445	
gcc cg ^g cgc aag gag gtc acg gat gag ata gtg aaa gag ttc atg act	4813
Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr	
450 455 460	
ccc cg ^g aag ctg tcc ttc gac ttt cag aag ctt gc ^g gcc gca ctc gag	4861
Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Leu Glu	
465 470 475	
cac cac cac cac cac tgagatccgg ctgctaacaa agccccaaag	4909
His His His His His	
480	
gaagctgagt tggctgctgc caccgctgag caataactag cataaccctt tggggcctct	4969
aaacgggtct tgaggggttt ttgctgaaa ggaggaacta tatccggat	5018

<210> 10
<211> 484
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: human
full-length TrpRS in pET20B

<400> 10	
Met Pro Asn Ser Glu Pro Ala Ser Leu Leu Glu Leu Phe Asn Ser Ile	
1 5 10 15	
Ala Thr Gln Gly Glu Leu Val Arg Ser Leu Lys Ala Gly Asn Ala Ser	
20 25 30	
Lys Asp Glu Ile Asp Ser Ala Val Lys Met Leu Val Ser Leu Lys Met	
35 40 45	
Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro	
50 55 60	
Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu Ala	
65 70 75 80	
Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys	
85 90 95	

Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile
 100 105 110
 Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg Pro
 115 120 125
 His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met Asn
 130 135 140
 Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr
 145 150 155 160
 Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His Leu Ile Pro
 165 170 175
 Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro Leu Val
 180 185 190
 Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu
 195 200 205
 Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp Ile Ile Ala
 210 215 220
 Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp Tyr
 225 230 235 240
 Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln Lys
 245 250 255
 His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr Asp Ser
 260 265 270
 Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser
 275 280 285
 Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln
 290 295 300
 Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met Thr
 305 310 315 320
 Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu His
 325 330 335
 Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met Ser Ala
 340 345 350
 Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile
 355 360 365
 Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile
 370 375 380
 Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe
 385 390 395 400
 Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln Ile
 405 410 415
 Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys
 420 425 430

Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg
 435 440 445

Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg
 450 455 460

Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala Leu Glu His His
 465 470 475 480

His His His His

<210> 11
<211> 4877
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (3428)..(4738)

<220>
<223> Description of Artificial Sequence: human mini
TrpRS in pET20B

<400> 11
tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60
cagcgtgacc gctacacttg ccagcgcctt agcgcgcgt ccttcgcctt tcttcccttc 120
ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacacctga ccccaaaaaa cttgatttagg gtgatggttc 240
acgtagtggg ccacgcgcctt gatagacggt ttttcgcctt ttgacgttgg agtccacgtt 300
cttaaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggcttatttc 360
ttttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacattt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgt 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttcgtg tcgccttat tcccttttt gcggcatttt gccttcgtt 660
ttttgctcac ccagaaacgc tggtaaaagt aaaaagatgtt gaagatcgt tggtgcacg 720
agtgggttac atcgaactgg atctcaacag cggttaagatc cttgagatgtt ttgcggccg 780
agaacgtttt ccaatgtga gcactttaa agttctgcta tgtggcgcgg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttgg 900
tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgcgtgcc ataaccatga gtgataaacac tgccggcaac ttacttctga caacgatcgg 1020

aggaccgaag gagctaaccg ctttttgca caacatgggg gatcatgtaa ctgccttga 1080
 tcgttggaa ccggagctga atgaagccat accaaacgcac gagcgtgaca ccacgatgcc 1140
 tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
 ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
 ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
 cggtatcatt gcagcactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
 gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
 actgattaag cattggtaac tgtcagacca agttactca tatatacttt agattgattt 1500
 aaaacttcat ttttaattta aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
 caaaatccct taacgtgagt tttcggttcca ctgagcgtca gacccgtag aaaagatcaa 1620
 aggatcttct tgagatcctt ttttctgctcg cgtaatctgc tgcttgcaaa caaaaaaacc 1680
 accgctacca gcgggggtt gtttgcggta tcaagagcta ccaactctt ttccgaaggt 1740
 aactggcttc agcagagcgc agataccaaa tactgtcctt ctatgttagc cgtagttagg 1800
 ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
 agtggctgct gccagtggcg ataagtctgt tcttaccggg ttggactcaa gacgatagtt 1920
 accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgaa 1980
 gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa gcgcacgct 2040
 tcccgaaggg agaaaggcgg acaggtatcc ggttaagcggc agggtcggaa caggagagcg 2100
 cacgagggag cttccagggg gaaacgcctg gtatctttat agtcctgtcg ggttgccca 2160
 cctctgactt gagcgtcgat ttttgtatg ctcgtcaggg gggcggagcc tatggaaaaaa 2220
 cgccagcaac gcggccttt tacggttcct ggcctttgc tggccttttgc ctcacatgtt 2280
 ctttcctgctg ttatccccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
 taccgctcgc cgccagccgaa cgaccgagcg cagcgagtca gtgagcggagg aagcggaaaga 2400
 qcgccctgatg cggtatatttc tccttacgca tctgtgcggat atttcacacc gcatatatgg 2460
 tgcactctca gtacaatctg ctctgtatgcc gcatagttaa gccagtatac actccgctat 2520
 cgctacgtga ctgggtcatg gctgcgcggc gacacccgccc aacacccgct gacgcgcct 2580
 gacgggcttgc tctgctcccg gcatccgctt acagacaagc tgtgaccgctc tccgggagct 2640
 gcatgtgtca gaggtttca cctgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcg 2760
 tgagttctc cagaagcgtt aatgtctggc ttctgtataaa gcggggccatg ttaagggcgg 2820
 tttttcctg tttggtcact gatgcctccg tgtaaggggg atttctgttc atgggggtaa 2880

tgataccgat gaaacgagag aggatgctca cgatacgggt tactgatgat gaacatgcc 2940
 ggttactgga acgttgcgag ggtaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
 aaatcactca gggtaatgc cagcgcttcg ttaatacaga tgttaggtgtt ccacaggta 3060
 gccagcagca tcctgcgatg cagatccgga acataatggt gcagggcgct gacttccgct 3120
 tttccagact ttacgaaaca cgaaaaaccga agaccattca tgggttgct caggtcgac 3180
 acgtttgca gcagcagtcg ctgcacgttc gctcgctat cggtgattca ttctgctaac 3240
 cagtaaggca accccgcccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
 cccgtggcca ggacccaacg ctgcccggaa tctcgatccc gcgaaattaa tacgactcac 3360
 tatagggaga ccacaacggt ttccctctag aaataattt gtttaacttt aagaaggaga 3420
 tatacat atg agc tac aaa gct gcc gcg ggg gag gat tac aag gct gac 3469
 Met Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp
 1 5 10

tgt cct cca ggg aac cca gca cct acc agt aat cat ggc cca gat gcc 3517
 Cys Pro Pro Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala
 15 20 25 30

aca gaa gct gaa gag gat ttt gtg gac cca tgg aca gta cag aca agc 3565
 Thr Glu Ala Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser
 35 40 45

agt gca aaa ggc ata gac tac gat aag ctc att gtt cgg ttt gga agt 3613
 Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser
 50 55 60

agt aaa att gac aaa gag cta ata aac cga ata gag aga gcc acc ggc 3661
 Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly
 65 70 75

caa aga cca cac cac ttc ctg cgc aga ggc atc ttc ttc tca cac aga 3709
 Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg
 80 85 90

gat atg aat cag gtt ctt gat gcc tat gaa aat aag aag cca ttt tat 3757
 Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr
 95 100 105 110

ctg tac acg ggc cgg ggc ccc tct tct gaa gca atg cat gta ggt cac 3805
 Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His
 115 120 125

ctc att cca ttt att ttc aca aag tgg ctc cag gat gta ttt aac gtg 3853
 Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val
 130 135 140

ccc ttg gtc atc cag atg acg gat gac gag aag tat ctg tgg aag gac 3901
 Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp
 145 150 155

ctg acc ctg gac cag gcc tat ggc gat gct gtt gag aat gcc aag gac 3949
 Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp
 160 165 170

atc atc gcc tgt ggc ttt gac atc aac aag act ttc ata ttc tct gac Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp 175 180 185 190	3997
ctg gac tac atg ggg atg agc tca ggt ttc tac aaa aat gtg gtg aag Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys 195 200 205	4045
att caa aag cat gtt acc ttc aac caa gtg aaa ggc att ttc ggc ttc Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe 210 215 220	4093
act gac agc gac tgc att ggg aag atc agt ttt cct gcc atc cag gct Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala 225 230 235	4141
gct ccc tcc ttc agc aac tca ttc cca cag atc ttc cga gac agg acg Ala Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr 240 245 250	4189
gat atc cag tgc ctt atc cca tgt gcc att gac cag gat cct tac ttt Asp Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe 255 260 265 270	4237
aga atg aca agg gac gtc gcc ccc agg atc ggc tat cct aaa cca gcc Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala 275 280 285	4285
ctg ttg cac tcc acc ttc ttc cca gcc ctg cag ggc gcc cag acc aaa Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys 290 295 300	4333
atg agt gcc agc gac cca aac tcc tcc atc ttc ctc acc gac acg gcc Met Ser Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala 305 310 315	4381
aag cag atc aaa acc aag gtc aat aag cat gcg ttt tct gga ggg aga Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg 320 325 330	4429
gac acc atc gag gag cac agg cag ttt ggg ggc aac tgt gat gtg gac Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp 335 340 345 350	4477
gtg tct ttc atg tac ctg acc ttc ttc ctc gag gac gac gac aag ctc Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu 355 360 365	4525
gag cag atc agg aag gat tac acc agc gga gcc atg ctc acc ggt gag Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu 370 375 380	4573
ctc aag aag gca ctc ata gag gtt ctg cag ccc ttg atc gca gag cac Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His 385 390 395	4621
cag gcc cggt cgc aag gag gtc acg gat gag ata gtg aaa gag ttc atg Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met 400 405 410	4669

act ccc ccg aag ctg tcc ttc gac ttt cag aag ctt gcg gcc gca ctc 4717
 Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala Leu
 415 420 425 430

gag cac cac cac cac cac tgagatccgg ctgctaacaa agcccgaaag 4768
 Glu His His His His His
 435

gaagctgagt tggctgctgc caccgctgag caataactag cataaccctt tggggcctct 4828
 aaacgggtct tgaggggttt tttgctgaaa ggaggaacta tatccggat 4877

<210> 12
 <211> 437
 <212> PRT
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: human mini
 TrpRS in pET20B

<400> 12
 Met Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro
 1 5 10 15

Pro Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu
 20 25 30

Ala Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala
 35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys
 50 55 60

Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
 65 70 75 80

Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met
 85 90 95

Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr
 100 105 110

Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly His Leu Ile
 115 120 125

Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro Leu
 130 135 140

Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr
 145 150 155 160

Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp Ile Ile
 165 170 175

Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp
 180 185 190

Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln
 195 200 205

Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr Asp
 210 215 220
 Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro
 225 230 235 240
 Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile
 245 250 255
 Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met
 260 265 270
 Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu
 275 280 285
 His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met Ser
 290 295 300
 Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln
 305 310 315 320
 Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr
 325 330 335
 Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser
 340 345 350
 Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln
 355 360 365
 Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys
 370 375 380
 Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala
 385 390 395 400
 Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro
 405 410 415
 Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala Leu Glu His
 420 425 430
 His His His His His
 435

<210> 13
 <211> 4811
 <212> DNA
 <213> Artificial Sequence

<220>
 <221> CDS
 <222> (3428)..(4672)

<220>
 <223> Description of Artificial Sequence: human
 supermini TrpRS in pET20B

<400> 13
 tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggttacgcg 60

cagcgtgacc gctacacttg ccagcgccct agcggccgct cctttcgctt tcttcccttc 120
ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgaaaaa tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgattagg gtgatggttc 240
acgttagtggg ccatcgccct gatagacggt ttttcgccc ttgacgttgg agtccacgtt 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggtctattc 360
tttgattta taagggattt tgccgatttc ggcctattgg ttaaaaaatg agctgattta 420
acaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatttg tttattttc taaatacatt caaatatgta 540
tccgctcatg agacaataac cctgataaaat gcttcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttccgtg tcgcccattt tccctttt gcggcattt gccttcctgt 660
tttgctcac ccagaaacgc tggtgaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cgtaagatc cttgagagtt ttgcggccgaa 780
agaacgtttt ccaatgatga gcactttaa agttctgcta tgtggcgcgg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttggt 900
tgagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataacac tgccgccaac ttacttctga caacgatcg 1020
aggaccgaag gagctaaccg ctttttgca caacatgggg gatcatgtaa ctgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200
ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgcctc 1260
ggcccttccg gctggctggt ttattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcaactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat ttttaattta aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
caaaatccct taacgtgagt ttgcgttcca ctgagcgtca gaccccttag aaaaagatcaa 1620
aggatcttct tgagatcctt ttttctgctc cgtaatctgc tgcttgaaa caaaaaaacc 1680
accgctacca gcggtggttt gtttgcggta tcaagagcta ccaactctt ttccgaagg 1740
aactggcttc agcagagcgc agataccaaa tactgtcctt ctagttagc ctagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920

accggataag ggcgacgcgt cgggctgaac ggggggttcg tgcacacacgc ccagcttgg 1980
 gcgaacgacc tacaccgaac tgagataacct acagcgtgag ctatgagaaa gcccacgct 2040
 tcccgaaagg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100
 cacgagggag cttccagggg gaaacgcctg gtatcttat agtcctgtcg ggttcggca 2160
 cctctgactt gagcgtcgat ttttgtatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
 cgccagcaac gcggccttt tacggttcct ggcctttgc tggcctttg ctcacatgtt 2280
 cttcctgcg ttatcccctg attctgtgga taaccgtatt accgccttg agtgagctga 2340
 taccgctcgc cgccggaa cgaccgagcg cagcagtca gtgagcggg aagcggaga 2400
 ggcctgatg cggatatttc tccttacgca tctgtcggt atttcacacc gcatatatgg 2460
 tgcactctca gtacaatctg ctctgtatgcc gcatagttaa gccagtatac actccgctat 2520
 cgctacgtga ctgggtcatg gctgcgcccc gacacccgcc aacacccgct gacgcgcct 2580
 gacgggcttg tctgctcccg gcatccgctt acagacaagc tgtgaccgtc tccggagct 2640
 gcatgtgtca gaggtttca ccgtcatcac cgaaacgcgc gaggcagctg cggtaaagct 2700
 catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctcgt 2760
 tgagttctc cagaacggtt aatgtctggc ttctgataaa gcgggcatg ttaagggcg 2820
 tttttccctg tttggtaact gatgcctccg tgtaaggggg atttctgttc atggggtaa 2880
 tgataccgt gaaacgagag aggatgctca cgatacgggt tactgtatgat gaacatgccc 2940
 gtttactgga acgttgtgag ggtaaacaac tggcggtatg gatgcggcg gaccagagaa 3000
 aaatcactca gggtaatgc cagcgttccg ttaatacaga tgttaggttt ccacaggta 3060
 gccagcagca tcctgcgtt cagatccgga acataatggt gcagggcgct gacttccgcg 3120
 tttccagact ttacgaaaca cggaaaccga agaccattca ttttgttgc caggtcgac 3180
 acgttttgcg cagcgtcg ctgcgttgc gtcgttatcg cggtaatgc ttctgcta 3240
 cagtaaggca accccgcccag cctagccggg tcctcaacga caggagcacg atcatgcgc 3300
 cccgtggcca ggaccaacg ctgcccggaa tctcgatccc gcaaattaa tacgactcac 3360
 tatagggaga ccacaacggt ttccctctag aaataatttt gtttaacttt aagaaggaga 3420
 tatacat atg agt aat cat ggc cca gat gcc aca gaa gct gaa gag gat 3469
 Met Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp
 1 5 10
 ttt gtg gac cca tgg aca gta cag aca agc agt gca aaa ggc ata gac 3517
 Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly Ile Asp
 15 20 25 30
 tac gat aag ctc att gtt cgg ttt gga agt agt aaa att gac aaa gag 3565
 Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile Asp Lys Glu
 35 40 45

cta ata aac cga ata gag aga gcc acc ggc caa aga cca cac cac ttc Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg Pro His His Phe	3613
50 55 60	
ctg cgc aga ggc atc ttc ttc tca cac aga gat atg aat cag gtt ctt Leu Arg Arg Gly Ile Phe Phe Ser His Arg Asp Met Asn Gln Val Leu	3661
65 70 75	
gat gcc tat gaa aat aag aag cca ttt tat ctg tac acg ggc cggtt Asp Ala Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr Gly Arg Gly	3709
80 85 90	
ccc tct tct gaa gca atg cat gta ggt cac ctc att cca ttt att ttc Pro Ser Ser Glu Ala Met His Val Gly His Leu Ile Pro Phe Ile Phe	3757
95 100 105 110	
aca aag tgg ctc cag gat gta ttt aac gtg ccc ttg gtc atc cag atg Thr Lys Trp Leu Gln Asp Val Phe Asn Val Pro Leu Val Ile Gln Met	3805
115 120 125	
acg gat gac gag aag tat ctg tgg aag gac ctg acc ctg gac cag gcc Thr Asp Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu Asp Gln Ala	3853
130 135 140	
tat ggc gat gct gtt gag aat gcc aag gac atc atc gcc tgt ggc ttt Tyr Gly Asp Ala Val Glu Asn Ala Lys Asp Ile Ile Ala Cys Gly Phe	3901
145 150 155	
gac atc aac aag act ttc ata ttc tct gac ctg gac tac atg ggg atg Asp Ile Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp Tyr Met Gly Met	3949
160 165 170	
agc tca ggt ttc tac aaa aat gtg gtg aag att caa aag cat gtt acc Ser Ser Gly Phe Tyr Lys Asn Val Val Lys Ile Gln Lys His Val Thr	3997
175 180 185 190	
ttc aac caa gtg aaa ggc att ttc ggc ttc act gac agc gac tgc att Phe Asn Gln Val Lys Gly Ile Phe Gly Phe Thr Asp Ser Asp Cys Ile	4045
195 200 205	
ggg aag atc agt ttt cct gcc atc cag gct gct ccc tcc ttc agc aac Gly Lys Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser Phe Ser Asn	4093
210 215 220	
tca ttc cca cag atc ttc cga gac agg acg gat atc cag tgc ctt atc Ser Phe Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln Cys Leu Ile	4141
225 230 235	
cca tgt gcc att gac cag gat cct tac ttt aga atg aca agg gac gtc Pro Cys Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met Thr Arg Asp Val	4189
240 245 250	
gcc ccc agg atc ggc tat cct aaa cca gcc ctg ttg cac tcc acc ttc Ala Pro Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu His Ser Thr Phe	4237
255 260 265 270	
ttc cca gcc ctg cag ggc gcc cag acc aaa atg agt ggc agc gac cca Phe Pro Ala Leu Gln Gly Ala Gln Thr Lys Met Ser Ala Ser Asp Pro	4285
275 280 285	

aac tcc tcc atc ttc ctc acc gac acg gcc aag cag atc aaa acc aag Asn Ser Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile Lys Thr Lys 290 295 300	4333
gtc aat aag cat gcg ttt tct gga ggg aga gac acc atc gag gag cac Val Asn Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile Glu Glu His 305 310 315	4381
agg cag ttt ggg ggc aac tgt gat gtg gac gtg tct ttc atg tac ctg Arg Gln Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe Met Tyr Leu 320 325 330	4429
acc ttc ttc ctc gag gac gac aag ctc gag cag atc agg aag gat Thr Phe Phe Leu Glu Asp Asp Lys Leu Glu Gln Ile Arg Lys Asp 335 340 345 350	4477
tac acc agc gga gcc atg ctc acc ggt gag ctc aag aag gca ctc ata Tyr Thr Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys Ala Leu Ile 355 360 365	4525
gag gtt ctg cag ccc ttg atc gca gag cac cag gcc cg ^g cgc aag gag Glu Val Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg Arg Lys Glu 370 375 380	4573
gtc acg gat gag ata gtg aaa gag ttc atg act ccc cg ^g aag ctg tcc Val Thr Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg Lys Leu Ser 385 390 395	4621
ttc gac ttt cag aag ctt gcg gcc gca ctc gag cac cac cac cac Phe Asp Phe Gln Lys Leu Ala Ala Ala Leu Glu His His His His His 400 405 410	4669
cac tgagatccgg ctgctaacaa agcccgaaag gaagctgagt tggctgctgc His 415	4722
caccgctgag caataactag cataaccctt tggggctct aaacgggtct tgagggttt tttgctgaaa ggaggaacta tatccggat	4782 4811

<210> 14
<211> 415
<212> PRT
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: human
supermini TrpRS in pET20B

<400> 14 Met Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp Phe Val 1 5 10 15
Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly Ile Asp Tyr Asp 20 25 30
Lys Leu Ile Val Arg Phe Gly Ser Ser Lys Ile Asp Lys Glu Leu Ile 35 40 45
Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg Pro His His Phe Leu Arg 50 55 60

Arg Gly Ile Phe Phe Ser His Arg Asp Met Asn Gln Val Leu Asp Ala
 65 70 75 80

Tyr Glu Asn Lys Lys Pro Phe Tyr Leu Tyr Thr Gly Arg Gly Pro Ser
 85 90 95

Ser Glu Ala Met His Val Gly His Leu Ile Pro Phe Ile Phe Thr Lys
 100 105 110

Trp Leu Gln Asp Val Phe Asn Val Pro Leu Val Ile Gln Met Thr Asp
 115 120 125

Asp Glu Lys Tyr Leu Trp Lys Asp Leu Thr Leu Asp Gln Ala Tyr Gly
 130 135 140

Asp Ala Val Glu Asn Ala Lys Asp Ile Ile Ala Cys Gly Phe Asp Ile
 145 150 155 160

Asn Lys Thr Phe Ile Phe Ser Asp Leu Asp Tyr Met Gly Met Ser Ser
 165 170 175

Gly Phe Tyr Lys Asn Val Val Lys Ile Gln Lys His Val Thr Phe Asn
 180 185 190

Gln Val Lys Gly Ile Phe Gly Phe Thr Asp Ser Asp Cys Ile Gly Lys
 195 200 205

Ile Ser Phe Pro Ala Ile Gln Ala Ala Pro Ser Phe Ser Asn Ser Phe
 210 215 220

Pro Gln Ile Phe Arg Asp Arg Thr Asp Ile Gln Cys Leu Ile Pro Cys
 225 230 235 240

Ala Ile Asp Gln Asp Pro Tyr Phe Arg Met Thr Arg Asp Val Ala Pro
 245 250 255

Arg Ile Gly Tyr Pro Lys Pro Ala Leu Leu His Ser Thr Phe Phe Pro
 260 265 270

Ala Leu Gln Gly Ala Gln Thr Lys Met Ser Ala Ser Asp Pro Asn Ser
 275 280 285

Ser Ile Phe Leu Thr Asp Thr Ala Lys Gln Ile Lys Thr Lys Val Asn
 290 295 300

Lys His Ala Phe Ser Gly Gly Arg Asp Thr Ile Glu Glu His Arg Gln
 305 310 315 320

Phe Gly Gly Asn Cys Asp Val Asp Val Ser Phe Met Tyr Leu Thr Phe
 325 330 335

Phe Leu Glu Asp Asp Asp Lys Leu Glu Gln Ile Arg Lys Asp Tyr Thr
 340 345 350

Ser Gly Ala Met Leu Thr Gly Glu Leu Lys Lys Ala Leu Ile Glu Val
 355 360 365

Leu Gln Pro Leu Ile Ala Glu His Gln Ala Arg Arg Lys Glu Val Thr
 370 375 380

Asp Glu Ile Val Lys Glu Phe Met Thr Pro Arg Lys Leu Ser Phe Asp
 385 390 395 400

Phe Gln Lys Leu Ala Ala Ala Leu Glu His His His His His His
 405 410 415

<210> 15
<211> 4742
<212> DNA
<213> Artificial Sequence

<220>
<221> CDS
<222> (3428)..(4603)

<220>
<223> Description of Artificial Sequence: human minor
Trp-RS fragment in pET20B

<400> 15
tggcgaatgg gacgcgcctt gtagcggcgc attaagcgcg gcgggtgtgg tggttacg 60
cagcgtgacc gctacacttg ccagcgcctt agcgcgcgt ccttcgctt tcttccttc 120
ctttctcgcc acgttcgccc gctttccccg tcaagctcta aatcgggggc tccctttagg 180
gttccgattt agtgctttac ggcacctcga ccccaaaaaa cttgatttagg gtgatgg 240
acgttagtggg ccatcgcctt gatagacggt ttttcgcctt ttgacgttgg agtccacg 300
ctttaatagt ggactcttgt tccaaactgg aacaacactc aaccctatct cggcttattc 360
ttttgattta taagggattt tgccgatttc ggcctattgg taaaaaaaaatg agctgattta 420
acaaaaaattt aacgcgaatt ttaacaaaat attaacgttt acaatttcag gtggcacttt 480
tcggggaaat gtgcgcggaa cccctatgg tttatgg taaatacatt caaatatgt 540
tccgctcatg agacaataac cctgataaaat gctcaataa tattgaaaaa ggaagagtat 600
gagtattcaa catttcgtg tcgccttat tccctttttt gggcattttt gccttcgt 660
ttttgctcac ccagaaacgc tggtaaaagt aaaagatgct gaagatcagt tgggtgcacg 720
agtgggttac atcgaactgg atctcaacag cgtaagatc cttgagagtt ttcgccccga 780
agaacgtttt ccaatgatga gcactttaa agttctgcta tgtggcgcgg tattatcccg 840
tattgacgcc gggcaagagc aactcggtcg ccgcatacac tattctcaga atgacttgg 900
ttagtactca ccagtcacag aaaagcatct tacggatggc atgacagtaa gagaattatg 960
cagtgctgcc ataaccatga gtgataaacac tgccggcaac ttacttctga caacgatcgg 1020
aggaccgaag gagctaaccg ctttttgca caacatgggg gatcatgtaa ctgccttga 1080
tcgttggaa ccggagctga atgaagccat accaaacgac gagcgtgaca ccacgatgcc 1140
tgcagcaatg gcaacaacgt tgcgcaaact attaactggc gaactactta ctctagcttc 1200

ccggcaacaa ttaatagact ggatggaggc ggataaagtt gcaggaccac ttctgcgctc 1260
ggcccttccg gctggctgg tattgctga taaatctgga gccggtgagc gtgggtctcg 1320
cggtatcatt gcagcaactgg ggccagatgg taagccctcc cgtatcgtag ttatctacac 1380
gacggggagt caggcaacta tggatgaacg aaatagacag atcgctgaga taggtgcctc 1440
actgattaag cattggtaac tgtcagacca agtttactca tatatacttt agattgattt 1500
aaaacttcat tttaattta aaaggatcta ggtgaagatc cttttgata atctcatgac 1560
caaaatccct taacgtgagt tttcggttcca ctgagcgtca gaccccgtag aaaagatcaa 1620
aggatcttct tgagatcctt ttttctgctg cgtaatctgc tgcttgcaaa caaaaaaacc 1680
accgctacca gcggtggtt gtttgcggta tcaagagcta ccaactctt ttccgaagg 1740
aactggcttc agcagagcgc agataccaaa tactgtcctt ctatgttagc ctagttagg 1800
ccaccacttc aagaactctg tagcaccgcc tacatacctc gctctgctaa tcctgttacc 1860
agtggctgct gccagtggcg ataagtcgtg tcttaccggg ttggactcaa gacgatagtt 1920
accggataag gcgcagcggt cgggctgaac ggggggttcg tgcacacagc ccagcttgaa 1980
gcgaacgacc tacaccgaac tgagataacct acagcgttag ctatgagaaa gcgcacgct 2040
tcccgaaggg agaaaggcgg acaggtatcc ggtaagcggc agggtcggaa caggagagcg 2100
cacgagggag cttccagggg gaaacgcctg gtatctttat agtccctgtcg gtttcgcca 2160
cctctgact gagcgtcgat ttttgtatg ctcgtcaggg gggcggagcc tatggaaaaa 2220
cgccagcaac gcggccttt tacggttcct ggcctttgc tggcctttg ctcacatgtt 2280
cttcctgctt ttatccccctg attctgtgga taaccgtatt accgcctttg agtgagctga 2340
taccgctcgc cgcaagccaa cgaccgagcg cagcgtacta gtgagcggagg aagcggaaaga 2400
gcgcctgatg cggattttc tccttacgca tctgtcggtt atttcacacc gcatatatgg 2460
tgcactctca gtacaatctg ctctgtatgcc gcatagttaa gccagtatac actccgctat 2520
cgctacgtga ctgggtcatg gctgcgcggc gacacccgccc aacacccgct gacgcgcct 2580
gacgggcttg tctgtcccg gcatccgctt acagacaagc tgtgaccgtc tccgggagct 2640
gcatgtgtca gaggtttca cggcatcact cggaaacgcgc gaggcagctg cggtaaagct 2700
catcagcgtg gtcgtgaagc gattcacaga tgtctgcctg ttcatccgcg tccagctgt 2760
tgagtttctc cagaagcggtt aatgtctggc ttctgataaa gcggggccatg ttaagggcgg 2820
tttttcctg tttggctact gatgcctccg tggtaagggg atttctgttc atgggggtaa 2880
tgataccgt gaaacgagag aggtatgcata cgatacggt tactgtatgt gaacatgccc 2940
ggttactgga acgttgttag ggttaaacaac tggcggtatg gatgcggcgg gaccagagaa 3000
aaatcactca gggtaatgc cagcgcttcg ttaatacaga tgttaggtt ccacaggta 3060

gccagcagca tcctgcgatg cagatccgga acataatggc gcagggcgct gacttccgct 3120
 tttccagact ttacgaaaca cgaaaaaccga agaccattca tggtgttgc caggtcgcag 3180
 acgtttgca gcagcagtcg cttcacgttc gctcgctat cggtgattca ttctgctaac 3240
 cagtaaggca accccgccag cctagccggg tcctcaacga caggagcacg atcatgcgca 3300
 cccgtggcca ggacccaacg ctgcccggaga tctcgatccc gcgaaattaa tacgactcac 3360
 tatagggaga ccacaacggt ttccctcttag aaataattt gtttaacttt aagaaggaga 3420
 tatacat atg agt gca aaa ggc ata gac tac gat aag ctc att gtt cgg 3469
 Met Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg
 1 5 10

 ttt gga agt agt aaa att gac aaa gag cta ata aac cga ata gag aga 3517
 Phe Gly Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg
 15 20 25 30

 gcc acc ggc caa aga cca cac cac ttc ctg cgc aga ggc atc ttc ttc 3565
 Ala Thr Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe
 35 40 45

 tca cac aga gat atg aat cag gtt ctt gat gcc tat gaa aat aag aag 3613
 Ser His Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys
 50 55 60

 cca ttt tat ctg tac acg ggc cgg ggc ccc tct tct gaa gca atg cat 3661
 Pro Phe Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His
 65 70 75

 gta ggt cac ctc att cca ttt att ttc aca aag tgg ctc cag gat gta 3709
 Val Gly His Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val
 80 85 90

 ttt aac gtg ccc ttg gtc atc cag atg acg gat gac gag aag tat ctg 3757
 Phe Asn Val Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu
 95 100 105 110

 tgg aag gac ctg acc ctg gac cag gcc tat ggc gat gct gtt gag aat 3805
 Trp Lys Asp Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn
 115 120 125

 gcc aag gac atc atc gcc tgt ggc ttt gac atc aac aag act ttc ata 3853
 Ala Lys Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile
 130 135 140

 ttc tct gac ctg gac tac atg ggg atg agc tca ggt ttc tac aaa aat 3901
 Phe Ser Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn
 145 150 155

 gtg gtg aag att caa aag cat gtt acc ttc aac caa gtg aaa ggc att 3949
 Val Val Lys Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile
 160 165 170

 ttc ggc ttc act gac agc gac tgc att ggg aag atc agt ttt cct gcc 3997
 Phe Gly Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala
 175 180 185 190

atc cag gct gct ccc tcc ttc agc aac tca ttc cca cag atc ttc cga Ile Gln Ala Ala Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg 195 200 205	4045
gac agg acg gat atc cag tgc ctt atc cca tgt gcc att gac cag gat Asp Arg Thr Asp Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp 210 215 220	4093
cct tac ttt aga atg aca agg gac gtc gcc ccc agg atc ggc tat cct Pro Tyr Phe Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro 225 230 235	4141
aaa cca gcc ctg ttg cac tcc acc ttc cca gcc ctg cag ggc gcc Lys Pro Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala 240 245 250	4189
cag acc aaa atg agt gcc agc gac cca aac tcc tcc atc ttc ctc acc Gln Thr Lys Met Ser Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr 255 260 265 270	4237
gac acg gcc aag cag atc aaa acc aag gtc aat aag cat gcg ttt tct Asp Thr Ala Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser 275 280 285	4285
gga ggg aga gac acc atc gag gag cac agg cag ttt ggg ggc aac tgt Gly Gly Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys 290 295 300	4333
gat gtg gac gtg tct ttc atg tac ctg acc ttc ttc ctc gag gac gac Asp Val Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp 305 310 315	4381
gac aag ctc gag cag atc agg aag gat tac acc agc gga gcc atg ctc Asp Lys Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu 320 325 330	4429
acc ggt gag ctc aag aag gca ctc ata gag gtt ctg cag ccc ttg atc Thr Gly Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile 335 340 345 350	4477
gca gag cac cag gcc cgg cgc aag gag gtc acg gat gag ata gtg aaa Ala Glu His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys 355 360 365	4525
gag ttc atg act ccc cgg aag ctg tcc gac ttt cag aag ctt gcg Glu Phe Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala 370 375 380	4573
gcc gca ctc gag cac cac cac cac tgagatccgg ctgctaacaa Ala Ala Leu Glu His His His His His His 385 390	4623
agccccgaaag gaagctgagt tggctgctgc caccgctgag caataactag cataaccct 4683	
tggggcctct aaacgggtct tgagggttt tttgctgaaa ggaggaacta tatccggat 4742	

<210> 16
<211> 392
<212> PRT
<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: human minor
TrpRS fragment in pET20B

<400> 16

Met Ser Ala Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly
1 5 10 15

Ser Ser Lys Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr
20 25 30

Gly Gln Arg Pro His His Phe Leu Arg Arg Gly Ile Phe Phe Ser His
35 40 45

Arg Asp Met Asn Gln Val Leu Asp Ala Tyr Glu Asn Lys Lys Pro Phe
50 55 60

Tyr Leu Tyr Thr Gly Arg Gly Pro Ser Ser Glu Ala Met His Val Gly
65 70 75 80

His Leu Ile Pro Phe Ile Phe Thr Lys Trp Leu Gln Asp Val Phe Asn
85 90 95

Val Pro Leu Val Ile Gln Met Thr Asp Asp Glu Lys Tyr Leu Trp Lys
100 105 110

Asp Leu Thr Leu Asp Gln Ala Tyr Gly Asp Ala Val Glu Asn Ala Lys
115 120 125

Asp Ile Ile Ala Cys Gly Phe Asp Ile Asn Lys Thr Phe Ile Phe Ser
130 135 140

Asp Leu Asp Tyr Met Gly Met Ser Ser Gly Phe Tyr Lys Asn Val Val
145 150 155 160

Lys Ile Gln Lys His Val Thr Phe Asn Gln Val Lys Gly Ile Phe Gly
165 170 175

Phe Thr Asp Ser Asp Cys Ile Gly Lys Ile Ser Phe Pro Ala Ile Gln
180 185 190

Ala Ala Pro Ser Phe Ser Asn Ser Phe Pro Gln Ile Phe Arg Asp Arg
195 200 205

Thr Asp Ile Gln Cys Leu Ile Pro Cys Ala Ile Asp Gln Asp Pro Tyr
210 215 220

Phe Arg Met Thr Arg Asp Val Ala Pro Arg Ile Gly Tyr Pro Lys Pro
225 230 235 240

Ala Leu Leu His Ser Thr Phe Phe Pro Ala Leu Gln Gly Ala Gln Thr
245 250 255

Lys Met Ser Ala Ser Asp Pro Asn Ser Ser Ile Phe Leu Thr Asp Thr
260 265 270

Ala Lys Gln Ile Lys Thr Lys Val Asn Lys His Ala Phe Ser Gly Gly
275 280 285

Arg Asp Thr Ile Glu Glu His Arg Gln Phe Gly Gly Asn Cys Asp Val
290 295 300

Asp Val Ser Phe Met Tyr Leu Thr Phe Phe Leu Glu Asp Asp Asp Lys
305 310 315 320

Leu Glu Gln Ile Arg Lys Asp Tyr Thr Ser Gly Ala Met Leu Thr Gly
325 330 335

Glu Leu Lys Lys Ala Leu Ile Glu Val Leu Gln Pro Leu Ile Ala Glu
340 345 350

His Gln Ala Arg Arg Lys Glu Val Thr Asp Glu Ile Val Lys Glu Phe
355 360 365

Met Thr Pro Arg Lys Leu Ser Phe Asp Phe Gln Lys Leu Ala Ala Ala
370 375 380

Leu Glu His His His His His
385 390

<210> 17
<211> 6
<212> PRT
<213> Homo sapiens

<400> 17
Glu Leu Arg Val Ser Tyr
1 5

<210> 18
<211> 6
<212> PRT
<213> Escherichia coli

<400> 18
Glu Thr Val Gln Glu Trp
1 5

<210> 19
<211> 9
<212> PRT
<213> Homo sapiens

<400> 19
Ser Ala Lys Glu Leu Arg Cys Gln Cys
1 5

<210> 20
<211> 11
<212> PRT
<213> Homo sapiens

<400> 20
Ala Ser Val Ala Thr Glu Leu Arg Cys Gln Cys
1 5 10

<210> 21
<211> 7
<212> PRT
<213> Homo sapiens

<400> 21
Ala Glu Leu Arg Cys Gln Cys
1 5

<210> 22
<211> 58
<212> PRT
<213> Homo sapiens

<400> 22
Gly Asp Glu Lys Lys Ala Lys Glu Lys Ile Glu Lys Lys Gly Glu Lys
1 5 10 15
Lys Glu Lys Lys Gln Gln Ser Ile Ala Gly Ser Ala Asp Ser Lys Pro
20 25 30
Ile Asp Val Ser Arg Leu Asp Leu Arg Ile Gly Cys Ile Ile Thr Ala
35 40 45
Arg Lys His Pro Asp Ala Asp Ser Leu Tyr
50 55

<210> 23
<211> 58
<212> PRT
<213> Homo sapiens

<400> 23
Pro Ala Leu Lys Lys Leu Ala Ser Ala Ala Tyr Pro Asp Pro Ser Lys
1 5 10 15
Gln Lys Pro Met Ala Lys Gly Pro Ala Lys Asn Ser Glu Pro Glu Glu
20 25 30
Val Ile Pro Ser Arg Leu Asp Ile Arg Val Gly Lys Ile Ile Thr Val
35 40 45
Glu Lys His Pro Asp Ala Asp Ser Leu Tyr
50 55

<210> 24
<211> 7
<212> PRT
<213> Homo sapiens

<400> 24
Arg Val Gly Lys Ile Ile Thr
1 5

<210> 25
<211> 7
<212> PRT
<213> Homo sapiens

<400> 25
Arg Ile Gly Cys Ile Ile Thr
1 5

<210> 26
<211> 7
<212> PRT
<213> Homo sapiens

<400> 26
Arg Ile Gly Arg Ile Ile Thr
1 5

<210> 27
<211> 7
<212> PRT
<213> Caenorhabditis elegans

<400> 27
Arg Val Gly Arg Ile Ile Lys
1 5

<210> 28
<211> 7
<212> PRT
<213> Saccharomyces cerevisiae

<400> 28
Arg Val Gly Phe Ile Gln Lys
1 5

<210> 29
<211> 7
<212> PRT
<213> Bos taurus

<400> 29
Arg Val Gly Lys Val Ile Ser
1 5

<210> 30
<211> 7
<212> PRT
<213> Mus musculus

<400> 30

Arg Ile Gly Cys Ile Val Thr
1 5

<210> 31
<211> 7
<212> PRT
<213> Mesocricetus auratus

<400> 31
Arg Ile Gly Arg Ile Val Thr
1 5

<210> 32
<211> 7
<212> PRT
<213> Ovis aries

<400> 32
Arg Ile Gly Cys Ile Ile Thr
1 5

<210> 33
<211> 7
<212> PRT
<213> Calcarea sp.

<400> 33
Arg Ile Gly Arg Ile Thr Ser
1 5

<210> 34
<211> 7
<212> PRT
<213> A. aeolicus

<400> 34
Arg Val Ala Lys Val Leu Ser
1 5

<210> 35
<211> 7
<212> PRT
<213> Escherichia coli

<400> 35
Arg Val Gly Lys Ile Val Glu
1 5

<210> 36
<211> 7
<212> PRT
<213> Escherichia coli

<400> 36
Arg Val Ala Leu Ile Glu Asn
1 5

<210> 37
<211> 7
<212> PRT
<213> Haemophilus influenzae

<400> 37
Arg Val Ala Lys Val Leu Lys
1 5

<210> 38
<211> 7
<212> PRT
<213> Bacillus subtilis

<400> 38
Arg Val Ala Glu Val Ile Glu
1 5

<210> 39
<211> 7
<212> PRT
<213> B. stearothermophilus

<400> 39
Arg Val Ala Glu Val Val Gln
1 5

<210> 40
<211> 7
<212> PRT
<213> Thermus thermophilus

<400> 40
Arg Val Ala Glu Val Leu Ala
1 5

<210> 41
<211> 6
<212> PRT
<213> Escherichia coli

<400> 41
Val Gly Glu Val Val Glu
1 5

<210> 42
<211> 6
<212> PRT
<213> Bacillus subtilis

<400> 42
Ile Gly His Val Leu Glu
1 5

<210> 43
<211> 6
<212> PRT
<213> Synechococcus sp.

<400> 43
Val Gly Arg Val Leu Glu
1 5

<210> 44
<211> 6
<212> PRT
<213> Thermus thermophilus

<400> 44
Phe Ala Arg Val Leu Glu
1 5

<210> 45
<211> 85
<212> PRT
<213> Homo sapiens

<400> 45
Met Ser Tyr Lys Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro
1 5 10 15

Pro Gly Asn Pro Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu
20 25 30

Ala Glu Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala
35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys
50 55 60

Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
65 70 75 80

Pro His His Phe Leu
85

<210> 46
<211> 85
<212> PRT
<213> Bos taurus

<400> 46
Thr Ser Tyr Lys Ala Ala Thr Gly Glu Asp Tyr Lys Val Asp Cys Pro
1 5 10 15

Pro Gly Asp Pro Ala Pro Glu Ser Gly Glu Gly Leu Asp Ala Thr Glu
20 25 30

Ala Asp Glu Asp Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala
35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Arg Phe Gly Ser Ser Lys
50 55 60

Ile Asp Lys Glu Leu Val Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
 65 70 75 80

Pro His Arg Phe Leu
 85

<210> 47
<211> 85
<212> PRT
<213> Mus musculus

<400> 47
Met Ser Tyr Lys Ala Ala Met Gly Glu Tyr Lys Ala Gly Cys Pro
 1 5 10 15

Pro Gly Asn Pro Thr Ala Gly Arg Asn Cys Asp Ser Asp Ala Thr Lys
 20 25 30

Ala Ser Glu Asp Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala
 35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Gln Pro Gly Ser Ser Lys
 50 55 60

Ile Asp Lys Glu Leu Ile Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
 65 70 75 80

Pro His Arg Phe Leu
 85

<210> 48
<211> 85
<212> PRT
<213> Oryctolagus cuniculus

<400> 48
Thr Ser Tyr Lys Glu Ala Met Gly Glu Asp Tyr Lys Ala Asp Cys Pro
 1 5 10 15

Pro Gly Asn Ser Thr Pro Asp Ser His Gly Pro Asp Glu Ala Val Asp
 20 25 30

Asp Lys Glu Asp Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala
 35 40 45

Lys Gly Ile Asp Tyr Asp Lys Leu Ile Val Gln Phe Gly Ser Ser Lys
 50 55 60

Ile Asp Lys Glu Leu Val Asn Arg Ile Glu Arg Ala Thr Gly Gln Arg
 65 70 75 80

Pro His Arg Phe Leu
 85

<210> 49
 <211> 86
 <212> PRT
 <213> Homo sapiens

<400> 49
 Ile Ser Tyr Gln Gly Arg Ile Pro Tyr Pro Arg Pro Gly Thr Cys Pro
 1 5 10 15
 Gly Gly Ala Phe Thr Pro Asn Met Arg Thr Thr Lys Glu Phe Pro Asp
 20 25 30
 Asp Val Val Thr Phe Ile Arg Asn His Pro Leu Met Tyr Asn Ser Ile
 35 40 45
 Tyr Pro Ile His Lys Arg Pro Leu Ile Val Arg Ile Gly Thr Asp Tyr
 50 55 60
 Lys Tyr Thr Lys Ile Ala Val Asp Arg Val Asn Ala Ala Asp Gly Arg
 65 70 75 80
 Tyr His Val Leu Phe Leu
 85

<210> 50
 <211> 86
 <212> PRT
 <213> Mus musculus

<400> 50
 Ile Ser Tyr Gln Gly Arg Ile Pro Tyr Pro Arg Pro Gly Thr Cys Pro
 1 5 10 15
 Gly Gly Ala Phe Thr Pro Asn Met Arg Thr Thr Lys Asp Phe Pro Asp
 20 25 30
 Asp Val Val Thr Phe Ile Arg Asn His Pro Leu Met Tyr Asn Ser Ile
 35 40 45
 Ser Pro Ile His Arg Arg Pro Leu Ile Val Arg Ile Gly Thr Asp Tyr
 50 55 60
 Lys Tyr Thr Lys Ile Ala Val Asp Arg Val Asn Ala Ala Asp Gly Arg
 65 70 75 80
 Tyr His Val Leu Phe Leu
 85

<210> 51
 <211> 46
 <212> PRT
 <213> Homo sapiens

<400> 51
 Ala Ala Ala Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro Gly Asn Pro
 1 5 10 15
 Ala Pro Thr Ser Asn His Gly Pro Asp Ala Thr Glu Ala Glu Glu Asp
 20 25 30

Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly
35 40 45

<210> 52
<211> 46
<212> PRT
<213> Bos taurus

<400> 52
Ala Ala Thr Gly Glu Asp Tyr Lys Val Asp Cys Pro Pro Gly Asp Pro
1 5 10 15

Ala Pro Glu Ser Gly Glu Gly Leu Asp Ala Thr Glu Ala Asp Glu Asp
20 25 30

Phe Val Asp Pro Trp Thr Val Gln Thr Ser Ser Ala Lys Gly
35 40 45

<210> 53
<211> 46
<212> PRT
<213> Mus musculus

<400> 53
Ala Ala Met Gly Glu Glu Tyr Lys Ala Gly Cys Pro Pro Gly Asn Pro
1 5 10 15

Thr Ala Gly Arg Asn Cys Asp Ser Asp Ala Thr Lys Ala Ser Glu Asp
20 25 30

Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala Lys Gly
35 40 45

<210> 54
<211> 46
<212> PRT
<213> Oryctolagus cuniculus

<400> 54
Glu Ala Met Gly Glu Asp Tyr Lys Ala Asp Cys Pro Pro Gly Asn Ser
1 5 10 15

Thr Pro Asp Ser His Gly Pro Asp Glu Ala Val Asp Asp Lys Glu Asp
20 25 30

Phe Val Asp Pro Trp Thr Val Arg Thr Ser Ser Ala Lys Gly
35 40 45

<210> 55
<211> 41
<212> PRT
<213> Mus musculus

<400> 55
Ala Phe Ala Gly Glu Asp Phe Lys Val Asp Ile Pro Glu Thr His Gly
1 5 10 15

Gly Glu Gly Thr Glu Asp Glu Ile Asp Asp Glu Tyr Glu Gly Asp Trp
20 25 30

Ser Asn Ser Ser Ser Thr Ser Gly
35 40

<210> 56

<211> 5

<212> PRT

<213> Homo sapiens

<400> 56

Met Gly Asp Ala Pro
1 5

<210> 57

<211> 5

<212> PRT

<213> Homo sapiens

<400> 57

Ser Asn His Gly Pro
1 5

<210> 58

<211> 5

<212> PRT

<213> Homo sapiens

<400> 58

Ser Ala Lys Gly Ile
1 5

1

1