Ćwiczenie 4 Panel dotykowy

Bibliografia

- [1] Karta katalogowa mikrokontrolera LM4F232H5QD http://www.ti.com/lit/ds/symlink/tm4c123gh6pge.pdf
- [2] Instrukcja obsługi płyty EasyMxPROv7
 http://www.mikroe.com/downloads/get/1812/easymx_pro_v7_stellaris_manual_v102.pdf
- [3] Strona wiki Texas Instruments dotycząca płyty EasyMxPROv7 http://processors.wiki.ti.com/index.php/EasyMxPRO
- [4] Instrukcja obsługi ROM LM4F232H5QD http://www.ti.com/lit/ug/spmu270a/spmu270a.pdf
- [5] Instrukcja obsługi biblioteki TivaWare Graphics Library http://www.ti.com/lit/ug/spmu300a/spmu300a.pdf

Wymagania:

- Znajomość środowiska CodeComposerStudio, umiejętność utworzenia projektu, zarządzania, uruchomienia, ustawienia opcji linkera oraz assemblera
- Znajomość podstawowych funkcji z klasy GPIO
- Ogólna wiedza dotycząca biblioteki TivaWare Graphics Library baza teoretyczna

Wprowadzenie, ustawienie płyty EasyMX Pro v.7

Generalnie, panel dotykowy to panel szklany, którego powierzchnia jest pokryta dwoma warstwami rezystywnego materiału. Dotykając panelu zwiększamy ciśnienie w danym punkcie, które jest mierzone przez dedykowany kontroler, i na tej podstawie może zostać ustalona lokalizacja naciśnięcia panelu. W przypadku płyty EasyMX Pro v7 mamy do czynienia z panelem sterowanym za pomocą czterech linii: READ-X, READ-Y, DRIVEA oraz DRIVEB. Wbudowany kontroler pozwala na pomiar siły nacisku w dowolnym punkcie, reprezentując współrzędne naciśniętego punktu w postaci wartości napięcia analogowego. Wartość ta z kolei może być bezpośrednio przetworzona do czystych współrzędnych X oraz Y na wyświetlaczu.

Aby umożliwić korzystanie z panelu dotykowego, należy zezwolić na podłączenie do mikroprocesora czterech wymienionych wyżej sygnałów za pomocą przestawienia odpowiednich przełączników w grupie SW14. I tak, przełącznik SW14.5 łączy sygnał READ-X z wejściem analogowym PB4, SW14.6 łączy sygnał READ-Y z wejściem analogowym PB5, SW14.7 łączy sygnał DRIVEA z wejściem cyfrowym PE0, oraz SW14.8 łączy sygnał DRIVEB z wejściem cyfrowym PE1.

Schemat połączenia panelu do mikroprocesora przedstawiony został na poniższym rysunku:

Rysunek 1. Schemat podłączenia panelu dotykowego do mikrokontrolera

Technologia i rodzaje paneli dotykowych

Panele dotykowe są powszechnie wykorzystywane w wielu dziedzinach życia, poczynając od smart fonów, tabletów, poprzez nawigacje samochodowe, na biletomatach, bankomatach czy kserokopiarkach kończąc. W zależności od zastosowania dany panel dotykowy jest wykonany w odpowiadającej temu zastosowaniu technologii. Wyróżnić tutaj możemy:

panele rezystywne (opornościowe, rezystancyjne)
 w tym przypadku ekran LCD jest przykryty dwoma przezroczystymi elektrodami (wykonanymi z tlenku indowo-cynowego (indium-tin-oxide, ITO)), przedzielonymi pustą przestrzenią z odpowiednimi elementami dystansowymi i izolatorami. Na samym wierzchu natomiast umieszczona jest elastyczna warstwa wykonana np. z polietylenu (PET). W wyniku dotknięcia panelu wierzchnia warstwa ugina się zezwalając na zmianę napięcia w punkcie dotknięcia, mierzoną za pomocą elementów na brzegach wyświetlacza. Zmiana ciśnienia (nacisku palcem czy stylusem) na napięcie, a następnie na współrzędne pozwala na wyznaczenie punktu dotyku panelu.

Rysunek 2. Ilustracja działania panelu rezystywnego

• panele pojemnościowe

W odróżnieniu od panelu rezystancyjnych, w panelach pojemnościo-powierzchniowych mierzona jest zmiana pojemności powstała wskutek dotknięcia palcem. Panele te nie rozpoznają przez to dotknięcia palcem, gdy założona jest rękawiczka, czy tez na typowe proste stylusy.

panele pojemnościowo-powierzchniowe
Przykładowym rozwiązaniem jest umieszczenie czterech elektrod w narożnikach wyświetlacza generujących jednolite napięcie powierzchniowe, w wyniku dotknięcia panelu obliczane są zmiany wytwarzanego napięcia w narożnikach ekranu.

Rysunek 3. Ilustracja działania panelu pojemnościowo powierzchniowego

 panele pojemnościowo-projekcyjne
 W tym przypadku panel jest wyposażony w gęstą siatkę elektrod pozwalających na precyzyjne określenia miejsca dotyku, a także na wykrywanie wielu punktów dotyku. Jednym z rozwiązań jest stosowanie siatek z tlenku indowo-cynowego (indium-tin-oxide, ITO).

Rysunek 4. Ilustracja działania panelu pojemnościowo projekcyjnego

 panele wykorzystujące efekt akustycznej fali powierzchniowej
 W tym rozwiązaniu w narożnikach panelu umieszczone są przetworniki piezoelektryczne generujące akustyczną falę powierzchniową (Surface Accoustic Wave, SAW). W wyniku dotknięcia ekranu następuje zniekształcenie i tłumienie fali, mierzone przez odpowiednie detektory.

Rysunek 5. Ilustracja działania panelu wykorzystującego akustyczną falę powierzchniową

- Panele wykorzystujące podczerwień (Infrared optical imaging)
- Panele wykorzystujące indukcję magnetyczną

Kontroler panelu dotykowego w płytce EasyMX Pro v7

W przypadku płyty EasyMX PRO v7 zastosowany został panel rezystywny sterowany czterema liniami. Zasada działania takiego panelu została przestawiona na rysunkach 14 i 15.

Każda warstwa rezystancyjna jest podłączona do sterownika z dwóch przeciwległych stron, przykładowo górna warstwa jest podłączona stronami lewą i prawą, zaś dolna - górną i dolną. Sterownik cyklicznie, z dużą częstotliwością, dostarcza wiele razy na sekundę napięcie do odpowiednich elementów obu warstw umożliwiając przez to odczyt położenia. Bazując na Rysunku 6 można zauważyć, że w pierwszym etapie napięcie +5V jest dostarczone górnej warstwy panelu, a w szczególności do jego lewej części, pozostawiając prawą część połączoną z masą (np. 0V). W wyniku dotknięcia panelu powstaje dzielnik rezystancyjny, pozwalający na odczyt położenia X na podstawie zmierzonego napięcia (rysunek 6) na warstwie dolnej. W drugiej fazie role warstw role warstw zostaję zamienione, napięcie zostaje przyłożone do górnej części panelu w warstwie dolnej, natomiast odczyt położenia Y następuje na podstawie pomiaru napięcia w warstwie górnej.

Analizując schemat z rysunku 1 i 6 można zauważyć, że panel dotykowy wyświetlacza komunikuje się poprzez cztery linie: XL oraz XR, a także YU oraz YD, podłączone odpowiednio do linii READ-X, RIGHT, TOP, READ-Y. Oczywiście, XL i XR oznaczają odpowiednio stronę lewą i prawą (left, right), zaś YU i YD - górę i dół (up, down) wyświetlacza.

Rysunek 6. Ilustracja pomiaru położenia na panelu dotykowym

Rysunek 7. Obrazowy schemat obwodów w momencie pomiaru położenia

Program 1

W celu zapoznania się z podstawowymi zasadami działania panelu dotykowego należy zaimportować do przestrzeni roboczej program *TouchScreen_pure.zip*. Program ten jest przygotowany do uruchomienia na płytce ewaluacyjnej, w zależności jednak od ustawień systemowych może okazać się konieczne wskazanie (poprawienie) ścieżek, wskazujących na położenie poszczególnych bibliotek. Program wyświetla współrzędne punktu dotkniętego przez użytkownika.

UWAGA: Aby skorzystać z funkcjonalności panelu dotykowego należy jednoczenie wykorzystać moduł ADC a także przerwania. Zarówno moduł ADC, jak i system przerwań, będą omawiane szczegółowo w następnych ćwiczeniach. Celem tego ćwiczenia jest skupienie się na działaniu panelu dotykowego.

Spośród wielu plików wchodzących w skład projektu *TouchScreen_pure* należy zwrócić uwagę na następujące:

- main.c plik, w którym znajduje się główny program
- startup_ccs.c plik służący do obsługi przerwań
- drivers/ili9341_240x320x262K.c znany już plik z funkcjami pozwalającymi na korzystanie z wyświetlacza
- drivers/touch.c plik zawierający podstawowe funkcje służące do obsługi panelu dotykowego

Analizując kod źródłowy w pliku main.c można zauważyć trzy linie istotne z punktu widzenia działania wyświetlacza:

```
TouchScreenInit();
TouchScreenCalibrate(&sContext);
TouchScreenCallbackSet(TouchCallback);
```

Pierwsza komenda inicjalizuje panel dotykowy (definicja w pliku *touch.c*). Druga komenda uruchamia procedurę kalibracji wyświetlacza. Trzecia zaś uaktywnia przerwanie, tzn. w momencie wykrycia przerwania pochodzącego od panelu dotykowego uruchamiana jest funkcja *TouchCallback*, zdefiniowana w pliku *main.c*. Warto zwrócić uwagę, że w rzeczywistości przerwanie wywoływane jest przez układ ADC, który zmierzył wartość napięcia i fakt ten sygnalizuje wystawieniem przerwania.

Zadanie 1

Napisać program, będzie wskazywał współrzędne ostatnio naciśniętego na wyświetlaczu punktu dokładnie w tym punkcie (tzn. jak naciśniemy wyświetlacz w lewym dolnym rogu to informacja o miejscu dotknięcia powinna pojawić się też w lewym dolnym rogu).

Zadanie 2

Należy przeanalizować, co dokładnie jest wykonywane w funkcjach *TouchScreenInit* oraz *TouchScreenCalibrate*. W szczególności należy sprawdzić, jaki jest cel stosowania i znaczenie zmiennych *g_floTouchCalibrationA*, *g_floTouchCalibrationB*, *g_floTouchCalibrationC* oraz *g_floTouchCalibrationD*. Należy zmodyfikować program w taki sposób, aby można było pominąć wywołane funkcji służącej do kalibracji (funkcja TouchScreenCalibrate nie ma być wywoływana; w ogóle w funkcji *main* nie powinno być nic związane z kalibracją wyświetlacza, to zadanie dla sterowników). Proszę pominąć kalibrację w kolejnych zadaniach.

UWAGA:

Cele kalibracji mogą być wielorakie. W naszym przypadku kalibracja ma na celu ustalenie sposobu konwersji napięcia pobranego z panelu dotykowego na pozycję na wyświetlaczu (np. nr piksela). Wyświetlacz jest bowiem niezależnym modułem względem panelu dotykowego - zdarzenie przechwycone przez panel dotykowe musi być następnie przetworzone i odpowiednio użyte w wyświetlaczu LCD.

W celu kalibracji wywołana jest funkcja:

```
void TouchScreenCalibrate(tContext *psContext)
```

Wartość napięcia pobrana z dzielnika napięcia (Rys. 6 oraz 7) zostaje przetworzona w układzie ADC i zapisywana w tablicy M

```
M[i][X] = g_i16TouchX;
M[i][Y] = g_i16TouchY;
```

Jednocześnie w tablicy E sa przechowane indeksy pikseli, "na których" znajduje się środek wyświetlanego krzyżyka. Wartości zapisane w tablicy M mogą uzyskiwać wartości nawet do 2000. W celu przetworzenia uzyskanych z ADC wartości na odpowiadające im położenie na wyświetlaczu utworzona jest zmienna:

```
g_floTouchCalibrationA = ((E[1][X]-E[0][X])) / (M[1][X]-M[0][X]);
```

której jednostka ilustruje relację szerokości ekranu do uzyskanego napięcia z panelu dotykowego np. [piksel]/[Volt]. Jest to więć jakby współczynnik skalujący. Po obliczeniu wartości tej zmiennej ustalana jest jeszcze wartość stałego przesunięcia.

```
g_floTouchCalibrationB = E[0][X] - (M[0][X] * g_floTouchCalibrationA);
```

Operacja jest powtarzana dla drugiego wymiaru.

```
g floTouchCalibrationC = ((E[1][Y]-E[0][Y])) / (M[1][Y]-M[0][Y]);
g_floTouchCalibrationD = E[0][Y] - (M[0][Y] * g_floTouchCalibrationC);
```

Obliczone wartości zmiennych g_floTouchCalibration są później wykorzystywane podczas obliczania wartości piksela odpowiadającego dotkniętemu miejscu na panelu dotykowym:

Zadanie 3

Należy zmodyfikować program w taki sposób, aby wyświetlał współrzędne położenia:

- a) względem środku ekranu
- b) podawał je w centymetrach (calach) względem lewego górnego narożnika.

Zadanie 4

Napisać program będący rozszerzeniem programu "MENU" z zadania 4. Do poprzedniego programu należy dodać możliwość wyboru dowolnego pola za pomocą panelu dotykowego.

UWAGA:

Należy zwrócić uwagę, że każdorazowo w przypadku dotknięcia panelu dotykowego wywoływane są dwa, kolejno po sobie następujące przerwania odpowiadające dwóm sytuacjom: a) dotknięcia i b) puszczenia panelu. Informacja na temat bieżącej sytuacji wywołującej przerwanie jest określona za pomocą wiadomości zdefiniowanych w pliku nagłówkowym widget.h. W pliku tym można odnaleźć następujące definicje:

- #define WIDGET_MSG_PTR_DOWN x00000002 wiadomość generowana w przypadku dotknięcia panelu
- #define WIDGET_MSG_PTR_UP x00000004 wiadomość generowana w przypadku puszczenia panelu

W dostarczonym przykładzie do przerwania przekazywana jest każdorazowo informacja na temat sytuacji wywołującej przerwanie. Przykładowe wykorzystanie tej informacji może być następujące:

if (ulMessage == WIDGET_MSG_PTR_DOWN)

Zadanie 5

Napisać program, w którym użytkownik będzie mógł rysować palcem po wyświetlaczu. Proponowana funkcjonalność - kilka opcji do wyboru, choć można wszystko: wybór koloru rysowania, wybór grubości linii, opcja gumki, wybór kształtu rysika/pędzla. Dodatkowo, zmiana kolorów i grubości może odbywać

się liniowo (np. z krokiem co 1), albo użytkownik ma do wyboru kilka ustalonych wartości. Wybór może odbywać się z użyciem albo przycisków (np. Port A), albo za pomocą ekranu dotykowego.

Zadanie 6

Napisać program rozpoznający dwa (lub w wersji rozszerzonej cztery) dowolne gesty, np. przesunięcie palcem z dołu do góry w kierunku ukośnym w prawo, przesunięcie palcem z góry do dołu w kierunku ukośnym w prawo. W zależności od rozpoznanego gestu powinien się na wyświetlaczy pojawić odpowiedni napis.

Zadanie 7

Napisać program, w którym użytkownik będzie mógł palcem przesuwać po ekranie uprzednio narysowany obiekt (np. prostokąt).