Mário Sérgio Oliveira de Queiroz Pedro Martins

Paradigmas de Programação da linguagem LUA

Brasil 25 de Novembro de 2013

Mário Sérgio Oliveira de Queiroz Pedro Martins

Paradigmas de Programação da linguagem LUA

Projeto para a disciplina Projeto Integrador VI - Paradigmas de Linguagem de Programação, do Centro Universitário Instituto de Educação Superior de Brasília, DF.

IESB - Centro Universitário Instituto de Ensino Superior de Brasília Ciência da Computação

Orientador: João Paulo Ataíde Martins

Brasil 25 de Novembro de 2013

Este trabalho é dedicado às crianças adultas que, quando pequenas, sonharam em se tornar cientistas.

Lista de ilustrações

Figura 1 -	Programa Gráfico Mestre
Figura 2 –	Trecho de código da linguagem SOL
Figura 3 -	Verificação de escopo em Lua

Sumário

1	Intr	odução	5
	1.1	Motivação	5
	1.2	Objetivos	5
		1.2.1 Geral	5
		1.2.2 Específicos	5
2	Hist	tórico	7
3	Asp	ectos léxicos e sintáticos de Lua	9
	3.1	Convenções Léxicas	9
	3.2	Sintaxe de Lua	11
4	Sen	ıântica das Variáveis	13
	4.1	Variáveis	13
	4.2	Vinculação	13
	4.3	Verificação de Tipos	14
	4.4	Escopo	14
5	Tip	os de Dados em Lua	16
6	Ехр	ressões	17
	6.1	Operadores Aritméticos	17
	6.2	Operadores Relacionais	18
	6.3	Operadores Lógicos	18
	6.4	Concatenação	18
	6.5	O Operador de Comprimento	18
	6.6	Precedência	18
	6.7	Construtores de Tabelas	18
	6.8	Chamadas de Função	18
	6.9	Definições de Funções	18
7	Sen	tenças de Atribuição	19
8	Esti	ruturas de Controle	20
9	Orie	entação à Tabelas	21
10	Con	nclusão	22

Referências																				2	3
i verer eneras																					

1 Introdução

Este trabalho acadêmico se refere ao desenvolvimento de um estudo e pesquisa, relativo aos paradigmas e conceitos da linguagem de programação Lua. Desta forma, serão atingidos temas como implementação de sintaxe e semântica da linguagem.

1.1 Motivação

Conforme a proposta de projeto para o semestre, no que se refere ao estudo dos paradigmas de uma linguagem de programação, a escolha do grupo pela linguagem LUA, teve vários estímulos, como o fato da linguagem ter surgido em uma universidade brasileira, além de possuir uma ampla aplicação no ambiente de jogos e na indústria de TV digital.

Em virtude do que foi mencionado, existiram muitas influências para a escolha de LUA para esse projeto, existia o interesse em outras linguagens como Python, más devido as outras escolhas, optamos por LUA, que inclusive temos algumas experiências de trabalho.

1.2 Objetivos

1.2.1 Geral

Este trabalho tem como objetivo aplicar os conhecimentos obtidos na disciplina de paradigmas de linguagem de programação à linguagem LUA. Aprofundar e colocar em prática os conceitos aprendidos em sala de aula, documentando e exemplificando o funcionamento da linguagem LUA.

1.2.2 Específicos

Com base no objetivo geral derivam-se os seguintes objetivos específicos.

- Embasar historicamente a linguagem.
- Explicar o funcionamento da sintaxe e semântica.
- Demonstrar os paradigmas envolvidos na linguagem.
- Explicar e exemplificar o funcionamento de variáveis. Incluindo os tipos, sua vinculação, verificação de tipo e escopo.

- Apresentar as vantagens, desvantagens e as áreas a qual LUA melhor se aplica.
- Criar códigos para exemplificar os conceitos apresentados.

2 Histórico

A linguagem Lua foi totalmente projetada, e implementada no Brasil, por Roberto Ierusalimschy, Luiz Henrique de Figueiredo e Waldemar Celes, que eram membros do Computer Graphics Technology Group na PUC-Rio, a Pontifícia Universidade Católica do Rio de Janeiro. Lua nasceu e cresceu no Tecgraf, Grupo de Tecnologia em Computação Gráfica da PUC-Rio. Atualmente, Lua é desenvolvida no laboratório Lablua. Tanto o Tecgraf quanto Lablua são laboratórios do Departamento de Informática da PUC-Rio.

O estímulo inicial para a construção da linguagem veio de um projeto entre a PETROBRAS e a PUC-RIO, a fim de produzir um programa de interfaces gráficas para várias aplicações.

Figura 1 – Programa Gráfico Mestre

Logo surgiu o primeiro protótipo, DEL - Linguagem para Especificação de Diálogos, que trabalhava com lista de parâmetros e tipos e valores padrões. Com o passar do tempo após pesquisas e mudanças no projeto surgiu a linguagem 'SOL' - Simple Object Language, sendo que era uma linguagem para descrição de objetos, inspirada no bibTex.

```
type @track {x:number, y:number=23, z}

type @line {t:@track=@track{x=8}, z:number*}

-- create an object 't1', of type 'track'
t1 = @track{y=9, x=10, z="hi!"}

1 = @line{t=@track{x=t1.y, y=t1.x}, z=[2,3,4]}
```

Figura 2 – Trecho de código da linguagem SOL

No entanto, tanto DEL como SOL tinha várias limitações como, pouco recurso

para construção de diálogos, pouca abstração de dados e incompleta se comparadas às linguagens contemporâneas a elas. Então Roberto Ierusalimschy (PGM), Luiz Henrique de Figueiredo (DEL) e Waldemar Celes (PGM) se juntaram para achar uma solução comum a seus problemas. As propostas de solução era formular uma nova linguagem de configuração genérica, que fosse facilmente acoplável, portável, simples e uma sintaxe fácil. Para o resultado desse projeto foi dado o nome LUA, como um contráste da antiga SOL.

As linguagens que mais se aproximam das características de Lua são o Icon, por sua concepção, e Python, por sua facilidade de utilização. Em um artigo publicado no Dr. Dobb's Journal, os criadores de Lua também afirmam que Lisp e Scheme foram de grande influência na decisão de desenvolver a tabela como a principal estrutura de dados de Lua. Lua tem sido usada em várias aplicações, tanto comerciais como não-comerciais.

Versões de Lua antes da versão 5.0 foram liberadas sob uma licença similar à licença BSD. A partir da versão 5.0, Lua foi licenciada sob a licença MIT.

Hoje a linguagem é uma das mais utilizadas do mundo estando entre as vinte mais utilizadas.

3 Aspectos léxicos e sintáticos de Lua

Esta capítulo descreve os principais aspectos léxicos, sintáticos e semânticos da linguagem Lua. sendo assim, serão descritas quais itens léxicos são válidos, como eles são combinados, e qual o significado da sua combinação.

O estudo de linguagens de programação pode ser orientado à verificação dos aspectos semânticos e sintáticos de uma linguagem. Pois a sintaxe é a forma das expressões e instruções, ou seja, como é feita a construção das mesmas. Não obstante, a semântica é o sforam ignificado das expressões e instruções.

3.1 Convenções Léxicas

Em Lua, os nomes podem ser qualquer cadeia de letras, dígitos, e sublinhados que não começam com um dígito, assim como em outras linguagens tradicionais, como C/C++. Os identificadores são usados para nomear variáveis e campos de tabelas.

Lua é uma linguagem que diferencia letras minúsculas de maiúsculas, por exemplo, and é uma palavra reservada, mas And e AND são dois nomes válidos diferentes. Como convenção, nomes que começam com um sublinhado seguido por letras maiúsculas são reservados para variáveis globais internas usadas por Lua.

As seguintes cadeias denotam outros itens léxicos: + - * == = <= >= < > = () [];:,

As cadeias de caracteres literais podem ser delimitadas através do uso de aspas simples ou aspas duplas, e podem conter as seguintes seqüências de escape no estilo de C: 'contra-barra + a' (campainha), 'contra-barra + b' (backspace), 'contra-barra + f' (alimentação de formulário), 'contra-barra + n' (quebra de linha), 'contra-barra + r' (retorno de carro), 'contra-barra + t' (tabulação horizontal), 'contra-barra + v' (tabulação vertical), 'contra-barra + contra-barra' (barra invertida), 'contra-barra + aspas duplas' (citação [aspa dupla]) e 'contra-barra + aspas simples'. Além disso, uma barra invertida seguida por uma quebra de linha real resulta em uma quebra de linha na cadeia de caracteres. Um caractere em uma cadeia de caracteres também pode ser especificado pelo seu valor numérico usando a seqüência de escape contra-barra + ddd, onde ddd é uma seqüência de até três dígitos decimais. (Note que se um caractere numérico representado como um seqüência de escape for seguido por um dígito, a seqüência de escape deve possuir exatamente três dígitos.) Cadeias de caracteres em Lua podem conter qualquer valor de 8 bits, incluindo zeros dentro delas, os quais podem ser especificados como 'contra-barra + 0'.

Cadeias literais longas podem ser definidas usando um formato longo delimitado por colchetes. Definimos uma abertura de colchete longo de nível n como um abre colchete seguido por n sinais de igual seguido por outro abre colchete. Dessa forma, uma abertura de colchete longo de nível 0 é escrita como [[, uma abertura de colchete longo de nível 1 é escrita como [=[e assim por diante. Um fechamento de colchete longo é definido de maneira similar. Uma cadeia de caracteres longa começa com uma abertura de colchete longo de qualquer nível e termina no primeiro fechamento de colchete longo do mesmo nível. Literais expressos desta forma podem se estender por várias linhas, não interpretam nenhuma seqüência de escape e ignoram colchetes longos de qualquer outro nível. Estes literais podem conter qualquer coisa, exceto um fechamento de colchete longo de nível igual ao da abertura.

As seguintes palavras-chave são reservadas e não podem ser utilizadas como nomes:

- and
- break
- do
- else
- elseif
- end
- false
- for
- function
- if
- in
- local
- nil
- not
- or
- repeat
- return

- then
- true
- until
- while

3.2 Sintaxe de Lua

Aqui está a sintaxe completa de Lua na notação BNF estendida. (Ela não descreve as precedências dos operadores.)

```
trecho ::= {comando [`;']} [ultimocomando [`;']]
bloco ::= trecho
comando ::= listavar `=' listaexp |
          chamadadefuncao |
          do bloco end |
          while exp do bloco end |
          repeat bloco until exp
         if exp then bloco {elseif exp then bloco} [else bloco] end |
for Nome `=' exp `,' exp [`,' exp] do bloco end |
for listadenomes in listaexp do bloco end |
          function nomedafuncao corpodafuncao |
          local function Nome corpodafuncao |
          local listadenomes [`=' listaexp]
ultimocomando ::= return [listaexp] | break
nomedafuncao ::= Nome {`.´ Nome} [`:´ Nome]
listavar ::= var {`, ' var}
var ::= Nome | expprefixo `[' exp `]' | expprefixo `.' Nome
listadenomes ::= Nome {`, ' Nome}
listaexp ::= {exp `,'} exp
exp ::= nil | false | true | Numero | Cadeia | `...' | funcao |
          expprefixo | construtortabela | exp opbin exp | opunaria exp
expprefixo ::= var | chamadadefuncao | `(´ exp `)´
chamadadefuncao ::= expprefixo args | expprefixo `:´ Nome args
```

```
args ::= `(´[listaexp]`)´ | construtortabela | Cadeia
funcao ::= function corpodafuncao
corpodafuncao ::= `(´[listapar]`)´ bloco end
listapar ::= listadenomes [`,´`...´] | `...´
construtortabela ::= `{´[listadecampos]`}´
listadecampos ::= campo {separadordecampos campo} [separadordecampos]
campo ::= `[´ exp `]´ `=´ exp | Nome `=´ exp | exp
separadordecampos ::= `,´ | `;´
opbin ::= `+´ | `-´ | `*´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,´ | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `,` | `
```

4 Semântica das Variáveis

Este capítulo apresenta as questões fundamentais das variáveis. Como tipo, endereço e valores. Além da abordagem de vinculação e de escopo.

4.1 Variáveis

Uma variável em uma linguagem é a abstração do conteúdo de células de memória do computador. Variáveis podem se caracterizadas de acordo com os seguintes aspectos: nome, endereço, valor, tipo, tempo de vida e escopo.

Em Lua existem três tipos de variáveis, sendo elas as seguites: variáveis globais, variáveis locais e variáveis de tabelas. Sendo que, a diferença entre variáveis locais e globais é o uso da palavra reservada 'local' antes do nome da variável. Já as variáveis de tabela são os nomes dados aos índices das tabelas, tendo em vista que toda a estrutura de dados linguagem é orientada à tabelas.

4.2 Vinculação

O termo vinculação é uma associação ou uma referência, como, por exemplo, entre uma atributo e uma entidade e entre uma operação e um símbolo. O momento em que ocorre a vinculação é denominado como tempo de vinculação. Isso porquê, as vinculações podem ocorrer no tempo de projeto da linguagem, no tempo de implementação, no tempo de compilação, no tempo de ligação, no tempo de carregamento ou no tempo de execução. Um bom exemplo disso é que o operador '+' é vinculado no tempo de projeto da linguagem.

Lua é uma linguagem dinamicamente tipada. Isto significa que variáveis não possuem tipos, porém somente valores possuem tipos. Não existem definições de tipos na linguagem, pois todos os valores carregam o seu próprio tipo de dados. Logo Lua utilizaça um método de decleração implícita de variáveis.

A linguagem trabalha com vinculação dinâmica de tipos, logo o tipo não é especificado por uma instrução de declaração, como em C ou em JAVA. Em vez disso, a variável é vinculada a um tipo quando lhe é atribuida um valor em uma instrução de atribuição.

Este modelo apresenta muitas diferenças com relação aos tipos estaticamente vinculados. A principal vantagem de vinculação dinâmica de variáveis a tipos é que ele tráz muita flexibilidade para a programação.

4.3 Verificação de Tipos

A verificação de tipos é um módulo que assegura que os operandos de um operador sejam de tipos compatíveis.

Em Lua devido a vinculação dinâmica de tipos, permite somente a verificação dinâmica de tipos. No entanto há uma desvantagem, pois é melhor detectar erros durante a compilação do que na execução porque, quanto mais cedo feita a correção melhor, normalmente terá menos custo.

Sendo assim, a verificação de tipos em Lua é feita em tempo de execução pelo interpretador Lua.

4.4 Escopo

O escopo de uma variável em uma linguagem é a faixa de instruções na qual a variável é visível. Uma variável é visível em uma instrução se puder ser referenciada nessa instrução, ou seja se uma instrução conseguer ter acesso a essa variável no bloco ou setor em que se encontra.

Tendo em vista que existem dois tipos de escopo, sendo eles o escopo estático e o escopo dinâmico, Lua trabalha na modelagem de escopo léxico, logo baseia-se na sequência de chamadas de subprogramas. Dessa forma, o escopo pode ser determidado em tempo de execução.

Assume-se que toda variável é uma variável global a menos que ela seja explicitamente declarada como uma variável local. Variáveis locais possuem escopo léxico, por isso podem ser livremente acessadas por funções definidas dentro do seu escopo ou bloco.

Um bloco é uma lista de comandos; sintaticamente, um bloco é a mesma coisa que um trecho. Sendo que, o bloco pode ser explicitamente delimitado para produzir um único comando:

-comando ::= do bloco end

Blocos explícitos são úteis para controlar o escopo de declarações de variáveis, além de também usados às vezes para adicionar um comando return ou break no meio de outro bloco.

O escopo das variáveis começa no primeiro comando depois da sua declaração e vai até o fim do bloco mais interno que inclui a declaração. Considere o seguinte exemplo:

```
x = 10
                        -- variável global
                       -- bloco novo
-- novo 'x', com valor 10
do
 local x = x
  print(x)
  x = x+1
                       -- outro bloco
    local x = x+1
                       -- outro 'x'
    print(x)
                        --> 12
 print(x)
end
print(x)
                        --> 10 (o x global)
```

Figura 3 – Verificação de escopo em Lua

Note que, em uma declaração como local x=x, o novo x sendo declarado não está no escopo ainda e portanto o segundo x se refere a uma variável externa.

Por causa das regras de escopo léxico, variáveis locais podem ser livremente acessadas por funções definidas dentro do seu escopo. Uma variável local usada por uma função mais interna é chamada de upvalue ou variável local externa, dentro da função mais interna.

5 Tipos de Dados em Lua

Os tipos de dados de uma linguagem de programação, são um dos fatores de maior importância para determinar a facilidade com que os programas podem executar problemas do mundo real. Pois para algumas aplicações certos tipos de dados conseguem mapear bem um tipo de problema. Portanto é imprescindível que uma linguagem suporte vários tipos de dados e estruturas.

Existem oito tipos de dados básicos em Lua, são eles, nil, boolean, number, string, function, userdata, thread e table. Nil é o tipo do valor nulo, cuja propriedade principal é ser diferente de qualquer outro valor, ele geralmente representa a ausência de um valor útil. Boolean é o tipo dos valores false e true. Tanto nil como false tornam uma condição falsa, sendo que, qualquer outro valor torna a condição verdadeira. Number representa números reais (ponto flutuante de precisão dupla). O tipo string representa cadeias de caracteres.

O tipo userdata permite que dados C arbitrários possam ser armazenados em variáveis Lua. Este tipo corresponde a um bloco de memória e não tem operações prédefinidas em Lua. O tipo thread representa fluxos de execução independentes e é usado para implementar co-rotinas. Não se pode confundir o tipo thread de Lua com os processos leves do sistema operacional, pois Lua dá suporte a co-rotinas em todos os sistemas.

O tipo table implementa arrays associativos, isto é, arrays que podem ser indexados não apenas por números, mas por qualquer valor (exceto nil). Tabelas podem ser heterogêneas, ou seja, elas podem conter valores de todos os tipos (exceto nil). Tabelas são o único mecanismo de estruturação de dados em Lua, todavia, elas podem ser usadas para representar arrays comuns, tabelas de símbolos, conjuntos, registros, grafos, árvores, etc.

6 Expressões

Uma expressão em linguagens de programação é uma combinação de valores, variáveis, operadores e chamadas de funções que são interpretadas de acordo com as ordens de precedência e de associatividade particulares a uma determinada linguagem, que calcula e, em seguida, retorna um valor.

As expressões básicas em Lua, já vistas na sintaxe da linguagem são as seguintes:

```
• exp ::= expprefixo
```

- exp ::= nil | false | true
- exp ::= Numero
- exp ::= Cadeia
- exp ::= funcao
- exp ::= construtortabela
- exp ::= ...
- exp ::= exp opbin exp
- exp ::= opunaria exp
- expprefixo ::= var | chamadadefuncao | (exp)

Em virtude do que foi apresentado abordaremos agora algumas operações importantes que encontramos nas expressões.

6.1 Operadores Aritméticos

A linguagem Lua fornece os principais elementos de aritméticos binários como a adição (+), subtração (-), multiplicação (*), divisão (/), módulo (%) e exponenciação (Î), além do aperador unário de negação (-). Se os operandos são números ou cadeias de caracteres que podem ser convertidas para números, então todas as operações possuem o seu significado usual.

6.2 Operadores Relacionais

Um operador relacional compara os valores de dois operandos, sendo que o valor da expressão relacional é booleano. Os operadores relacionais em Lua são:

- ==
- \bullet $\tilde{=}$
- <
- >
- <=
- >=

Estes operadores sempre possuem como resultado true ou false.

A igualdade (==) primeiro compara o tipo dos operandos envolvidos na comparação. Logo, se os tipos são diferentes, então o resultado é **false**. Caso contrário, os valores dos operandos são comparados. Números e cadeias de caracteres são comparados de maneira usual. Objetos (valores do tipo table, userdata, thread e function) são comparados por referência, porque dois objetos são considerados iguais somente se eles são o mesmo objeto. Sendo assim, todas as vezes que um novo objeto é criado este novo objeto é diferente de qualquer outro objeto que existia anteriormente.

- 6.3 Operadores Lógicos
- 6.4 Concatenação
- 6.5 O Operador de Comprimento
- 6.6 Precedência
- 6.7 Construtores de Tabelas
- 6.8 Chamadas de Função
- 6.9 Definições de Funções

7 Sentenças de Atribuição

8 Estruturas de Controle

9 Orientação à Tabelas

10 Conclusão

 $({\rm SEBESTA},\,2003)\,\,({\rm IERUSALIMSCHY},\,2006)$

Referências

IERUSALIMSCHY, L. H. d. F. R. $Manual\ Lua.$ 2006. Disponível em: http://www.lua.org/manual/5.1/pt/. Citado na página 22.

SEBESTA, R. W. Conceitos de Linguagens de Programação. 5ª. ed. Porto Alegre: Bookman, 2003. Citado na página 22.