TO IPHOPPH M TEXHUKA 3KCHEPHMEHTA

Интерферометр Фабри — Перо миллиметрового и субмиллиметрового диапазонов

К ститье Ю. Л. Данилюк и др., стр. 149

НОЯБРЬ-ДЕКАБРЬ 1 9 7 0 ных изменений напряжения. На выходе катодного повторителя включен делитель $R_{{f 10}} \div R_{{f 19}}$, при помощи которого изменяется амплитуда пилообразного напряжения, а следовательно, и пределы девиации частоты.

Снимаемое с переключателя В2 напряжение через катодный повторитель (правая половина \mathcal{I}_2) поступает на усилитель. Катодный повторитель на правой половине \mathcal{J}_1 служит для передачи управляющего напряжения при автоматической подстройке частоты. Выход катодного повторителя через R_7 также подключен ко входу усилителя.

Усилитель \mathcal{I}_3 собран по балансной схеме. На левый триод подаются управляющие на-

пряжения, а на правый — компенсирующий сигнал. Этот сигнал образуется в результате сглаживания пилообразного напряжения фильтром R_{43} , C_3 , R_{44} , C_4 . Балансная схема усилителя устраняет изменение рабочей частоты л.о.в. за счет нестабильности частоты повторения пилообразного напряжения.

Регулирующий элемент схемы выполнен на ГУ-50 и 6Н6П, включенных по каскодной

схеме.

При амплитуде пилообразного напряжения ~150 в схема позволяет устанавливать полосы свипирования от 5 до 5000 Мец.

Получено 31. III. 1970

УДК 621.385.633

ФАЗОВАЯ АВТОПОДСТРОЙКА ЧАСТОТЫ Л.О.В. МИЛЛИМЕТРОВОГО и субмиллиметрового диапазонов

А; Ф; КРУПНОВ, Л; И. ГЕРШТЕЙН

Описана система ф.а.п. частоты л.о.в. в диапазоне длин волн от 4 до 0,8 мм п укавываются особенности схемы.

Существуют системы автоподстройки частоты (а.п.ч.), лампы обратной волны (л.о.в.) [1, 2] по резонатору Фабри—Перо [3, 4], спектральным линиям газов [4], кварцевому опорному сигналу [5]. Однако, насколько нам известно, отсутствуют сообщения о создании системы фазовой автоподстройки (ф.а.п.) л.о.в., обеспечивающей наивысшую стабильность частоты. Основная трудность создания ф.а.п. — получение достаточного быстродействия системы, включая цепь управления частотой л.о.в. В данной заметке сообщается о создании системы ф.а.п. л.о.в. в диапазоне длин волн от 4 до 0,8 мм и указываются особенности системы.

Система ф.а.п. построена по обычной блок-схеме (рисунок); остановимся лишь на особенностях схемы, обусловленных диапазоном и типом стабилизируемого генератора.

Для широкополосного управления частотой л.о.в. используется раздельная подача на л.о.в. сигналов управления по низкой и высокой частоте, позволяющая уменьшить емкость, шунтирующую выходной каскад

видеоусилителя. В применявшихся ранее схемах эта емкость определялась в основном емкостью незаземленной схемы питания л.о.в. относительно земли $C_{\mathtt{m}}$ и ограничивала полосу цепи управления величиной $\sim 10^5 \, ey$. В описываемой схеме частоты от 0 до ~ 30 su поступают на л.о.в. через $R_1 C_1$ -цепочку, а более высокие через R_2C_2 , причем $R_1C_1 = R_2C_2$. Полоса цени управления от входа катодного повторителя до катода л.о.в. $\sim 6 \cdot 10^6$ гу.

Налаживание системы ф.а.п. показало, что для стабильной работы весьма важно подавление амплитудной модуляции сигнала

перед фазовым детектором.

При подборе коэффициента передачи на высоких частотах и постоянной времени цепи пропорционально интегрирующего фильтра после фазового детектора, система ф.а.п. успешно стабилизировала л.о.в. 4-мм диапазона. В качестве опорного сигнала использовались гармоники (от 10-й до 18-й) генератора диапазона $4\div 8$ Ггу. Полоса захвата была $\sim\!0,5$ Mец, полоса удержания $\sim\!20$ $_{\it 6}$ по выходу у.п.т. (\sim 0,6 \tilde{r} е ψ), время непре-

1 — катодный повторитель, 2 — источник с.в.ч. мощности л.о.в. В режиме стабилизации $f_{\text{п.о.в.}} = n f_0 \pm f_{\text{к}}, \ 3$ — разветвитель мощности

рывной работы ~30 мин. Однако применение этой же системы для стабилизации л.о.в. диапазона $\lambda = 0.8$ мм (при опорном сигнале — 5-й гармонике 4-мм л.о.в.) из-за большой крутизны фазовой характеристики системы обеспечивало непрерывную работу системы лишь ~ 2 мин, так как система выбивалась из режима стабилизации случайными быстрыми отклонениями фазы.

Для увеличения быстродействия системы в цепь управления частотой л.о.в. был введен корректирующий сигнал, пропорциональный скорости изменения фазы, который получался на дополнительном частотном детекторе с полосой ~ 3 M s ψ , показанном пунктиром на схеме. Параметры фильтра частотного детектора $m=10^{-3},\ T=2,7\cdot 10^{-3}$ сек. Это увеличило время непрерывной работы спстемы ф.а.п. л.о.в. на $\lambda = 0.8$ мм примерно до 30 мин, а полосу захвата — до 3 Мгц.

Режим стабилизации контролировался по индикатору на выходе квадратурного фазового детектора, который в режиме стабилизации давал максимальные показания, знак которых зависел от выбора одного из двух зеркальных каналов приема опорного сигнала. При введении корректирующего сигнала с частотного детектора режим стабилизации мог быть получен только на одном из

зеркальных каналов, выбор которого определялся фазой подачи корректирующего напряжения.

Предварительное исследование спектра сигнала в режиме стабилизации в тракте усилителя промежуточной частоты показало отсутствие размытия спектра сигнала, большего, нежели полоса применявшегося анализатора (1 кгц).

JIIITEPATYPA

- 1. М. Б. Голант, Р. Л. Виленская, Е. А. Зюлина, З. Ф. Каплун, А. А. Негирев, В. А. Парилов, Т. В. Реброва, В. С. Савельев, ПТЭ, 1965, № 4, 136. З. С. Короткова, Л. А. Лункина, А. А. Негирев, О. П. Петрова, Т. Б. Реброва В. С. Савельев. ПТЭ. А. А. Негирев, О. П. Петрова, Т.Б. Реброва, В.С. Савельев, ПТЭ,
- 3. Ю. С. Бабкин, Р. А. Валитов, С. Ф. Дюбко, В. М. Кузьмичев, Б. И. Мака-ренко, А. В. Соколов, В. А. Свич, Л. И. Строганов, В. В. Шмидт, ПТЭ, 1968, № 1, 229.
- 4. Ю. А. Дрягин, А. Ф. Крупнов, Л. М. Кукин, В. А. Скворцов, ПТЭ, 1969, № 1, 95. 1969,
- 5. А. Ф. Крупнов, Л. И. Герштейн, ПТЭ, 1970, № 1, 159.

Научно-исследовательский радиофизический институт при Горьковском университете. Получено 2.VI.1970