Снижение размерности пространства в задачах декодирования сигналов

Исаченко Роман Владимирович

Диссертация на соискание ученой степени кандидата физико-математических наук

05.13.17 - Теоретические основы информатики

Научный руководитель: д.ф.-м.н. В. В. Стрижов

Москва, 2021 г.

Снижение размерности пространства в задачах декодирования сигналов

Исследуется проблема выбора модели для случая исследования скрытых зависимостей как в исходном, так и в целевом пространстве.

Проблема

Целевая переменная – вектор, компоненты которого являются зависимыми. Пространства исходных и целевых сигналов обладают существенно избыточной размерностью.

Требуется

Требуется построить модель, адекватно описывающую исходное и целевое пространства при наблюдаемой мультикорреляции в обоих пространствах высокой размерности.

Метод решения

Предлагается снизить размерность с помощью проецирования исходных и целевых сигналов в скрытое пространство. Предлагаются линейные и нелинейные методы согласования моделей в пространствах высокой размерности.

Снижение размерности пространства в задачах декодирования сигналов - 2

Исследуется задача построения прогностической модели для гетерогенных сигналов.

Задача

Предложить методы декодирования сигналов, учитывающие зависимости как в исходном, так и в целевом пространстве сигналов.

Сложность

Признаковое описание исходного сигнала является избыточным. Методы снижения размерности пространства, не учитывающие зависимости в целевом пространстве, являются не адекватными.

Метод решения

Предлагаются методы выбора моделей декодирования с использованием согласованного пространства низкой размерности.

Снижение размерности пространства в задачах декодирования сигналов - 3

Цель

Исследовать зависимости в пространствах объектов и ответов и построить устойчивую модель декодирования временных рядов в случае коррелированного описания объекта исследования.

Проблема

Целевая переменная – вектор, компоненты которого являются зависимыми. Требуется построить модель, адекватно описывающую как пространство объектов так и пространство ответов при наблюдаемой мультикорреляции в обоих пространствах высокой размерности.

Решение

Для учёта зависимостей в пространствах объектов и ответов предлагается снизить размерность, используя скрытое пространство. Предлагаются линейные и нейросетевые методы согласования связанных моделей в пространствах высокой размерности.

Восстановление зависимости в исходном и целевом

пространствах

Прогностическая модель декодирования

Согласование зависимостей в скрытом пространстве

Задача декодирования сигналов

$$\mathbf{Y} = \mathbf{F}(\mathbf{X}, \mathbf{\Theta}) + \mathbf{E_y} = \mathbf{X} \cdot \mathbf{\Theta}^\mathsf{T} + \mathbf{E_y}$$
 – модель с параметрами $\mathbf{\Theta} \in \mathbb{R}^{r imes n}$.

Функция потерь модели декодирования

$$\mathcal{L}(f, \mathbf{X}, \mathbf{Y}) = \left\| \mathbf{Y} - \mathbf{X} \cdot \mathbf{O}^{\mathsf{T}} \right\|_{2}^{2} \to \min_{\mathbf{\Theta}}; \quad \mathbf{\Theta}^{\mathsf{T}} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{Y}.$$

Для устранения сильной линейной зависимости столбцов матрицы ${\bf X}$ предлагается использовать методы снижения размерности пространства.

Метод проекции в скрытое пространство

$$\mathbf{X} = \mathbf{T} \cdot \mathbf{P}^{\mathsf{T}} + \mathbf{E}_{\mathsf{x}} = \sum_{k=1}^{\ell} \mathbf{t}_{k} \cdot \mathbf{p}_{k}^{\mathsf{T}} + \mathbf{E}_{\mathsf{x}},$$

$$\mathbf{Y} = \mathbf{U} \cdot \mathbf{Q}^{\mathsf{T}} + \mathbf{E}_{\mathsf{y}} = \sum_{k=1}^{\ell} \mathbf{u}_{k} \cdot \mathbf{q}_{k}^{\mathsf{T}} + \mathbf{E}_{\mathsf{y}}.$$

$$\hat{\mathbf{Y}} = f(\mathbf{X}, \mathbf{\Theta}) = \mathbf{X}\mathbf{\Theta}; \quad \mathbf{U} \approx \mathbf{T}\mathbf{B}, \quad \mathbf{B} = \operatorname{diag}(\beta_k), \quad \beta_k = \mathbf{u}_k^\mathsf{T} \mathbf{t}_k / (\mathbf{t}_k^\mathsf{T} \mathbf{t}_k).$$

Метод проекции в скрытое пространство

Утверждение (Исаченко, 2017)

Вычисленные вектора \mathbf{t}_k и \mathbf{u}_k с помощью итеративной процедуры обновления:

$$\begin{split} \mathbf{t}_k &:= \frac{\mathbf{X}_k \mathbf{w}_k}{\|\mathbf{w}_k\|}; \quad \mathbf{w}_k := \mathbf{X}_k^\mathsf{T} \mathbf{u}_{k-1} / (\mathbf{u}_{k-1}^\mathsf{T} \mathbf{u}_{k-1}); \\ \mathbf{u}_k &:= \frac{\mathbf{Y}_k \mathbf{c}_k}{\|\mathbf{c}_k\|}; \quad \mathbf{c}_k := \mathbf{Y}_k^\mathsf{T} \mathbf{t}_k / (\mathbf{t}_k^\mathsf{T} \mathbf{t}_k). \end{split}$$

обладают максимальной ковариацией.

Теорема (Исаченко, 2017)

Оптимальные параметры для линейной модели проекции в скрытое пространство имеют вид

$$oldsymbol{\Theta} = \mathbf{W}(\mathbf{P}^\mathsf{T}\mathbf{W})^{-1}\mathbf{B}\mathbf{Q}^\mathsf{T}, \quad \mathbf{T} = \mathbf{X}\mathbf{W}^*, \quad \mathsf{где} \ \mathbf{W}^* = \mathbf{W}(\mathbf{P}^\mathsf{T}\mathbf{W})^{-1}.$$
 $\mathbf{Y} = \mathbf{U}\mathbf{Q}^\mathsf{T} + \mathbf{E}_\mathbf{y} pprox \mathbf{T}\mathbf{B}\mathbf{Q}^\mathsf{T} + \mathbf{E}_\mathbf{y} = \mathbf{X}\mathbf{W}^*\mathbf{B}\mathbf{Q}^\mathsf{T} + \mathbf{E} = \mathbf{X}\mathbf{\Theta} + \mathbf{E}_\mathbf{y}.$

Модель декодирования сигналов

Пусть $f_1(\mathbf{x}_1, \mathbf{\Theta}_1)$, $f_2(\mathbf{x}_2, \mathbf{\Theta}_2)$ – линейные регрессионные модели декодирования сигналов.

Утверждение (Исаченко, 2021)

Пусть модель декодирования является аддитивной суперпозицией линейных моделей:

$$\mathbf{y} = \mathbf{f}_1(\mathbf{x}_1, \mathbf{\Theta}_1) + \mathbf{f}_2(\mathbf{x}_2, \mathbf{\Theta}_2) + \boldsymbol{\varepsilon}_{\mathbf{y}} = \mathbf{\Theta}_1 \mathbf{x}_1 + \mathbf{\Theta}_2 \mathbf{x}_2 + \boldsymbol{\varepsilon}_{\mathbf{y}}.$$

Тогда оптимальные параметры имеют вид

$$\begin{split} \boldsymbol{\Theta}_1 &= (\boldsymbol{X}_1^\mathsf{T} \boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_2} \boldsymbol{\mathsf{X}}_1)^{-1} \boldsymbol{\mathsf{X}}_1^\mathsf{T} \boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_2} \boldsymbol{\mathsf{Y}}, \\ \boldsymbol{\Theta}_2 &= (\boldsymbol{\mathsf{X}}_2^\mathsf{T} \boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_1} \boldsymbol{\mathsf{X}}_2)^{-1} \boldsymbol{\mathsf{X}}_2^\mathsf{T} \boldsymbol{\mathsf{M}}_{\boldsymbol{\mathsf{X}}_1} \boldsymbol{\mathsf{Y}}, \end{split}$$

где
$$\mathbf{M}_{\mathbf{X}_1} = \mathbf{I} - \mathbf{X}_1 (\mathbf{X}_1^\mathsf{T} \mathbf{X}_1)^{-1} \mathbf{X}_1^\mathsf{T}$$
, $\mathbf{M}_{\mathbf{X}_2} = \mathbf{I} - \mathbf{X}_2 (\mathbf{X}_2^\mathsf{T} \mathbf{X}_2)^{-1} \mathbf{X}_2^\mathsf{T}$.

Теорема (Исаченко, 2021)

Если $span(\mathbf{X}_1) \neq span(\mathbf{X}_2)$, то ошибка аддитивной суперпозиции линейных моделей декодирования не превышает ошибки отдельной модели:

$$\mathcal{L}_{dep}(\boldsymbol{\Theta}_1^*, \boldsymbol{\Theta}_2^*, \mathbf{X}_1, \mathbf{X}_2, \mathbf{Y}) \leq \mathcal{L}(f_i, \mathbf{X}_i, \mathbf{Y}), \quad i = 1, 2.$$

Пример проекции в скрытое пространство

Исходные переменные $\mathbf{x}_i \sim \mathcal{N}(0, \mathbf{\Sigma})$. Целевые переменные \mathbf{y}_i линейно зависят от pc_2 и не зависят от pc_1 .

Учёт взаимной корреляции между проекциями матриц ${\bf X}$ и ${\bf Y}$ отклоняет вектора ${\bf w}_k$ и ${\bf c}_k$ от направления главных компонент.

Скрытое пространство в задаче декодирования

Особенностью задачи является избыточность размерности пространств описания переменных ${\bf x}$ и ${\bf y}$. Требуется найти многообразия низкой размерности:

$$\begin{split} \mathbb{X} \subset \mathbb{R}^n & \xrightarrow{\quad \mathbf{f} \quad} \mathbb{Y} \subset \mathbb{R}^r \\ \phi_e & \bigwedge \phi_d & \psi_d & \psi_d \\ \mathbb{T} \subset \mathbb{R}^\ell & \xrightarrow{\quad \mathbf{h} \quad} \mathbb{U} \subset \mathbb{R}^s \end{split}$$

 $\mathbb{T}\subset\mathbb{R}^\ell$ и $\mathbb{U}\subset\mathbb{R}^s$ скрытые пространства для $\mathbb{X}\in\mathbb{R}^n$ ($\ell\leq n$) и $\mathbb{Y}\in\mathbb{R}^r(s\leq r)$, если существуют функции кодирования $\phi_e:\mathbb{X}\to\mathbb{T}$, $\psi_e:\mathbb{Y}\to\mathbb{U}$ и декодирования $\phi_d:\mathbb{T}\to\mathbb{X}$, $\psi_d:\mathbb{U}\to\mathbb{Y}$:

для любого
$$\mathbf{x} \in \mathbb{X}$$
 существует $\mathbf{t} \in \mathbb{T}$: $\phi_d(\phi_e(\mathbf{x})) = \phi_d(\mathbf{t}) = \mathbf{x}$; для любого $\mathbf{y} \in \mathbb{Y}$ существует $\mathbf{u} \in \mathbb{U}$: $\psi_d(\psi_e(\mathbf{y})) = \psi_d(\mathbf{u}) = \mathbf{y}$.

Скрытые пространства $\mathbb T$ и $\mathbb U$ являются *согласованными*, если существует функция согласования $\mathbf h:\mathbb T\to\mathbb U$:

$$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \psi_d \Big(\mathbf{h} \big(\phi_e(\mathbf{x}) \big) \Big).$$

Нелинейные методы согласования скрытого пространства

Функции кодирования и декодирования являются глубокими нейросетями вида:

$$\mathbf{T} = \phi_{e}(\mathbf{X}) = \mathbf{W}_{x}^{L} \sigma(\dots \sigma(\mathbf{W}_{x}^{2} \sigma(\mathbf{X} \mathbf{W}_{x}^{1})) \dots) \qquad \qquad \mathbb{X} \subset \mathbb{R}^{n} \longrightarrow \mathbb{Y} \subset \mathbb{R}^{r}$$

$$\mathbf{U} = \psi_{e}(\mathbf{Y}) = \mathbf{W}_{y}^{L} \sigma(\dots \sigma(\mathbf{W}_{y}^{2} \sigma(\mathbf{Y} \mathbf{W}_{y}^{1})) \dots) \qquad \qquad \phi_{e} \downarrow \qquad \phi_{d} \downarrow \qquad \psi_{d} \downarrow \qquad \psi_{d} \downarrow \qquad \psi_{d} \downarrow \qquad \psi_{e} \downarrow \qquad \psi_{e$$

Согласование проекций

Для нахождения оптимальной модели декодирования предложен метод согласования нелинейных проекций

$$g(\mathbf{T}, \mathbf{U})
ightarrow \max_{\mathbf{W}}, \quad \mathbf{W} = \{\mathbf{W}_x^i, \mathbf{W}_y^i, \mathbf{W}_t^i, \mathbf{W}_u^i\}_{i=1}^L.$$

Требуется

Найти бинарный вектор $\mathbf{a} = \{0,1\}^n$, компоненты – индикаторы выбранных признаков.

Функция ошибки отбора признаков

$$\mathbf{a} = \underset{\mathbf{a}' \in \{0,1\}^n}{\text{arg min }} S(\mathbf{a}', \mathbf{X}, \mathbf{Y}).$$

Релаксация

Замена дикретной области определения $\{0,1\}^n$ на непрерывную релаксацию $[0,1]^n$:

$$\mathbf{z} = \underset{\mathbf{z}' \in [0,1]^n}{\min} S(\mathbf{z}', \mathbf{X}, \mathbf{Y}), \quad a_j = [z_j > \tau].$$

Получив а, решаем задачу регрессии:

$$\mathcal{L}(\boldsymbol{\Theta}_{a}, \boldsymbol{X}_{a}, \boldsymbol{Y}) = \left\| \boldsymbol{Y} - \boldsymbol{X}_{a} \boldsymbol{\Theta}_{a}^{\mathsf{T}} \right\|_{2}^{2}
ightarrow \min_{\boldsymbol{\Theta}_{a}},$$

где индекс **a** обозначает подматрицу с номерами столбцов, для которых $a_i=1$.

Выбор признаков с помощью квадратичного

программирования

 $\mathbf{X}=[\chi_1,\ldots,\chi_n]\in\mathbb{R}^{m imes n}$ – матрица объектов; $\mathbf{Y}=[
u_1,\ldots,
u_r]\in\mathbb{R}^{m imes r}$ – матрица ответов

$$\|oldsymbol{
u} - oldsymbol{\mathsf{X}}oldsymbol{ heta}\|_2^2
ightarrow \min_{oldsymbol{ heta} \in \mathbb{R}^n}.$$

Задача квадратичного программирования

$$S(\mathbf{z}, \mathbf{X}, \boldsymbol{\nu}) = (1 - \alpha) \cdot \underbrace{\mathbf{z}^{\mathsf{T}} \mathbf{Q} \mathbf{z}}_{\mathsf{Sim}(\mathbf{X})} - \alpha \cdot \underbrace{\mathbf{b}^{\mathsf{T}} \mathbf{z}}_{\mathsf{Rel}(\mathbf{X}, \boldsymbol{\nu})} \to \min_{\substack{\mathbf{z} \geq \mathbf{0}_n \\ \mathbf{1}_n^{\mathsf{T}} \mathbf{z} = 1}}.$$

 $\mathbf{z} \in [0,1]^n$ – значимость признаков;

$$\mathbf{Q} = ig[ig| \mathsf{corr}(\chi_i,\chi_j)ig]_{i,j=1}^n \in \mathbb{R}^{n imes n}$$
 – матрица парных взаимодействий признаков;

 $\mathbf{b} = ig[|\mathsf{corr}(m{\chi}_i, m{
u})|ig]_{i=1}^n \in \mathbb{R}^n$ – вектор релевантностей признаков к целевой переменной.

Утверждение (Исаченко, 2018)

Пусть матрица парных взаимодействий признаков $\hat{\mathbf{Q}}$ получена полуопределенной релаксацией исходной матрицы \mathbf{Q} :

$$\hat{\mathbf{Q}} = \mathbf{Q} - \lambda_{\min}(\mathbf{Q})\mathbf{I}.$$

Тогда задача выбора признаков с помощью квадратичного программирования имеет единственный глобальный минимум.

Агрегирование релевантностей по целевым векторам (RelAgg)

$$\mathbf{b} = \left[|\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu})| \right]_{i=1}^n \to \mathbf{b} = \left[\sum_{k=1}^r |\mathsf{corr}(\boldsymbol{\chi}_i, \boldsymbol{\nu}_k)| \right]_{i=1}^n.$$

Недостаток: нет учёта зависимостей в целевом пространстве матрицы Y.

Симметричный учёт значимостей (SymImp)

Штрафуем коррелированные целевые вектора с помощью $Sim(\mathbf{Y})$:

$$S(\mathbf{z},\mathbf{X},\mathbf{Y}) = \alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X},\mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{z}_{\mathbf{y}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{y}} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Sim}(\mathbf{Y})} \rightarrow \min_{\substack{\mathbf{z}_{\mathbf{x}} \geq \mathbf{0}_n, \mathbf{1}_n^{\mathsf{T}} \mathbf{z}_{\mathbf{x}} = 1 \\ \mathbf{z}_{\mathbf{y}} \geq \mathbf{0}_r, \mathbf{1}_r^{\mathsf{T}} \mathbf{z}_{\mathbf{y}} = 1}},$$

$$\mathbf{Q}_{x} = \left[\left| \mathsf{corr}(\boldsymbol{\chi}_{i}, \boldsymbol{\chi}_{j}) \right| \right]_{i,j=1}^{n}, \ \mathbf{Q}_{y} = \left[\left| \mathsf{corr}(\boldsymbol{\nu}_{i}, \boldsymbol{\nu}_{j}) \right| \right]_{i,j=1}^{r}, \ \mathbf{B} = \left[\left| \mathsf{corr}(\boldsymbol{\chi}_{i}, \boldsymbol{\nu}_{j}) \right| \right]_{i=1,\dots,n}^{i=1,\dots,n},$$

$$\alpha_{1} + \alpha_{2} + \alpha_{3} = 1, \quad \alpha_{i} > 0.$$

SymImp штрафует коррелированные целевые вектора, которые в меньшей мере объясняются признаками.

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_{\mathbf{x}} \geq \mathbf{0}_n \\ \mathbf{1}_n^{\mathsf{T}} \mathbf{z}_{\mathbf{x}} = 1}}; \quad \alpha_3 \cdot \underbrace{\mathbf{z}_{\mathbf{y}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{y}} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Sim}(\mathbf{Y})} + \alpha_2 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{\mathbf{y}}}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} \to \min_{\substack{\mathbf{z}_{\mathbf{y}} \geq \mathbf{0}_r \\ \mathbf{1}_r^{\mathsf{T}} \mathbf{z}_{\mathbf{y}} = 1}}.$$

Минимаксный подход (MinMax / MaxMin)

$$S(\mathbf{z},\mathbf{X},\mathbf{Y}) = \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1}} \max_{\substack{\mathbf{r}_y \geq \mathbf{0}_r \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_y = 1}} \left(\text{or} \max_{\substack{\mathbf{z}_y \geq \mathbf{0}_n \\ \mathbf{r}_y^\mathsf{T} \mathbf{z}_y = 1}} \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{r}_y^\mathsf{T} \mathbf{z}_x = 1}} \right) \left[\alpha_1 \cdot \underbrace{\mathbf{z}_x^\mathsf{T} \mathbf{Q}_x \mathbf{z}_x}_{\mathrm{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\mathbf{z}_x^\mathsf{T} \mathbf{B} \mathbf{z}_y}_{\mathrm{Rel}(\mathbf{X},\mathbf{Y})} - \alpha_3 \cdot \underbrace{\mathbf{z}_y^\mathsf{T} \mathbf{Q}_y \mathbf{z}_y}_{\mathrm{Sim}(\mathbf{Y})} \right].$$

Теорема (Исаченко, 2018)

Для положительно определенных матриц \mathbf{Q}_x и \mathbf{Q}_y minmax и тахтіп задачи достигают одинакового значения функционала $S(\mathbf{z},\mathbf{X},\mathbf{Y})$

Теорема (Исаченко, 2018)

Минимаксная задача эквивалентна задаче квадратичного программирования $c \ n+r+1$ переменными.

Для получения выпуклой задачи применяется полуопределенная рекласация сдвига спектра.

Максимизация релевантностей (MaxRel)

$$S(\mathbf{z}, \mathbf{X}, \mathbf{Y}) = \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1 \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_y = 1}} \max_{\substack{\mathbf{z}_y \geq \mathbf{0}_r \\ \mathbf{1}_n^\mathsf{T} \mathbf{z}_x = 1 \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_y = 1}} \left(\text{or} \max_{\substack{\mathbf{z}_y \geq \mathbf{0}_r \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_x = 1 \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_x = 1}} \min_{\substack{\mathbf{z}_x \geq \mathbf{0}_n \\ \mathbf{1}_r^\mathsf{T} \mathbf{z}_x = 1}} \left((1 - \alpha) \cdot \mathbf{z}_x^\mathsf{T} \mathbf{Q}_x \mathbf{z}_x - \alpha \cdot \mathbf{z}_x^\mathsf{T} \mathbf{B} \mathbf{z}_y \right].$$

Теорема (Исаченко, 2018)

Для положительно определенной матрицы \mathbf{Q}_{x} minmax и тахтіп задачи достигают одинакового значения функционала $S(\mathbf{z},\mathbf{X},\mathbf{Y})$.

Асимметричный учёт значимостей (AsymImp)

$$\alpha_1 \cdot \underbrace{\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{Q}_{\mathbf{x}} \mathbf{z}_{\mathbf{x}}}_{\mathsf{Sim}(\mathbf{X})} - \alpha_2 \cdot \underbrace{\left(\mathbf{z}_{\mathbf{x}}^{\mathsf{T}} \mathbf{B} \mathbf{z}_{y} - \mathbf{b}^{\mathsf{T}} \mathbf{z}_{y}\right)}_{\mathsf{Rel}(\mathbf{X}, \mathbf{Y})} + \alpha_3 \cdot \underbrace{\mathbf{z}_{y}^{\mathsf{T}} \mathbf{Q}_{y} \mathbf{z}_{y}}_{\mathsf{Sim}(\mathbf{Y})} \rightarrow \min_{\substack{\mathbf{z}_{x} \geq \mathbf{0}_{r}, \ \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{x} = 1 \\ \mathbf{z}_{y} \geq \mathbf{0}_{r}, \ \mathbf{1}_{r}^{\mathsf{T}} \mathbf{z}_{y} = 1}}.$$

При $b_j = \max_{i=1,\dots,n} [\mathbf{B}]_{i,j}$ коэффициенты при \mathbf{z}_y в $\mathsf{Rel}(\mathbf{X},\mathbf{Y})$ неотрицательны.

Обобщение предложенных методов выбора признаков Теорема (Исаченко, 2018)

В одномерном случае r=1 предлагаемые методы выбора признаков SymImp, MinMax, MaxMin, MaxRel, AsymImp совпадают с исходной задачей минимизации функции ошибок $S(\mathbf{z}, \mathbf{Q}, \mathbf{b})$.

Алгоритм	Критерий	Функция ошибки $S(z,X,Y)$		
RelAgg	$min \big[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \big]$	$\min_{\mathbf{z}_{x}} \left[(1 - \alpha) \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha \cdot \mathbf{z}_{x}^{T} \mathbf{B} 1_{r} \right]$		
SymImp	$\begin{aligned} \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \\ + Sim(\mathbf{Y}) \right] \end{aligned}$	$\min_{\mathbf{z}_{x}, \mathbf{z}_{y}} \left[\alpha_{1} \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \cdot \mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} + \alpha_{3} \cdot \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right]$		
MinMax	$\begin{aligned} & \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[Rel(\mathbf{X}, \mathbf{Y}) + Sim(\mathbf{Y}) \right] \end{aligned}$	$ \min_{\mathbf{z}_{x}} \max_{\mathbf{z}_{y}} \left[\alpha_{1} \cdot \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \cdot \mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} - \alpha_{3} \cdot \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right] $		
MaxRel	$\begin{aligned} & \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[Rel(\mathbf{X}, \mathbf{Y}) \right] \end{aligned}$	$\min_{\mathbf{z}_{_{\boldsymbol{X}}}} \max_{\mathbf{z}_{_{\boldsymbol{y}}}} \left[(1-\alpha) \cdot \mathbf{z}_{_{\boldsymbol{X}}}^{T} \mathbf{Q}_{_{\boldsymbol{X}}} \mathbf{z}_{_{\boldsymbol{X}}} - \alpha \cdot \mathbf{z}_{_{\boldsymbol{X}}}^{T} \mathbf{B} \mathbf{z}_{_{\boldsymbol{y}}} \right]$		
AsymImp	$\begin{aligned} & \min \left[Sim(\mathbf{X}) - Rel(\mathbf{X}, \mathbf{Y}) \right] \\ & \max \left[Rel(\mathbf{X}, \mathbf{Y}) + Sim(\mathbf{Y}) \right] \end{aligned}$	$\left \min_{\mathbf{z}_{x}, \mathbf{z}_{y}} \left[\alpha_{1} \mathbf{z}_{x}^{T} \mathbf{Q}_{x} \mathbf{z}_{x} - \alpha_{2} \left(\mathbf{z}_{x}^{T} \mathbf{B} \mathbf{z}_{y} - \mathbf{b}^{T} \mathbf{z}_{y} \right) + \alpha_{3} \mathbf{z}_{y}^{T} \mathbf{Q}_{y} \mathbf{z}_{y} \right] \right $		

Внешние критерии качества решения задачи

декодирования

Нормированное RMSE

Качество прогнозирования:

$$\mathsf{sRMSE}(\boldsymbol{Y},\widehat{\boldsymbol{Y}}_a) = \sqrt{\frac{\mathsf{MSE}(\boldsymbol{Y},\widehat{\boldsymbol{Y}}_a)}{\mathsf{MSE}(\boldsymbol{Y},\overline{\boldsymbol{Y}})}} = \frac{\|\boldsymbol{Y}-\widehat{\boldsymbol{Y}}_a\|_2}{\|\boldsymbol{Y}-\overline{\boldsymbol{Y}}\|_2}, \quad \text{где} \quad \widehat{\boldsymbol{Y}}_a = \boldsymbol{X}_a\boldsymbol{\Theta}_a^{\mathsf{T}}.$$

 $\overline{\mathbf{Y}}$ — константный прогноз.

Мультикорреляция

Среднее значение коэффициента множественной корреляции:

$$R^2 = \frac{1}{r} \operatorname{tr} \left(\mathbf{C}^\mathsf{T} \mathbf{R}^{-1} \mathbf{C} \right); \quad \mathbf{C} = [\operatorname{corr}(\chi_i, \nu_j)]_{\substack{i=1,\dots,n \ j=1,\dots,r}}^{i=1,\dots,n}, \, \mathbf{R} = [\operatorname{corr}(\chi_i, \chi_j)]_{\substack{i,j=1 \ j=1,\dots,r}}^{n}.$$

Байесовский информационный критерий

Компромисс между качеством предсказания и числом выбранных признаков $\|\mathbf{a}\|_0$:

$$\mathsf{BIC} = m \ln \left(\mathsf{MSE}(\mathbf{Y}, \widehat{\mathbf{Y}}_{\mathbf{a}}) \right) + \|\mathbf{a}\|_0 \cdot \log m.$$

Задача декодирования сигналов электрокортикограммы

Заданы:

 $\mathbf{X} \in \mathbb{R}^{m \times (32 \cdot 27)}$ — сигналы ECoG,

 $\mathbf{Y} \in \mathbb{R}^{m imes 3k}$ — траектория движения руки, где

$$\mathbf{Y} = \begin{pmatrix} x_1 & y_1 & z_1 & \dots & x_k & y_k & z_k \\ x_2 & y_2 & z_2 & \dots & x_{k+1} & y_{k+1} & z_{k+1} \\ \dots & \dots & \dots & \dots \\ x_m & y_m & z_m & \dots & x_{m+k} & y_{m+k} & z_{m+k} \end{pmatrix}.$$

Столбцы матрицы ${f Y}$ сильно скоррелированы по временной оси.

http://neurotycho.org

Матрица корреляций **Y**

Анализ предложенных методов выбора признаков

Предложены методы выбора модели, имеющей меньшую ошибкой по отношению к базовому алгоритму.

Устойчивость методов выбора признаков

Постановка эксперимента

создать бутстреп-выборки

$$(\mathsf{X},\mathsf{Y}) o ig\{ (\mathsf{X}_1,\mathsf{Y}_1),\ldots, (\mathsf{X}_s,\mathsf{Y}_s) ig\};$$

решить задачу выбора признаков

$$\left\{ (\boldsymbol{X}_{1},\boldsymbol{Y}_{1}),\ldots,(\boldsymbol{X}_{s},\boldsymbol{Y}_{s})\right\} \rightarrow \{\boldsymbol{z}_{1},\ldots,\boldsymbol{z}_{s}\};$$

вычислить статистики

$$\{\mathbf{z}_1,\dots,\mathbf{z}_s\} o \{\mathrm{sRMSE}, \|\mathbf{a}\|_0, \mathsf{Спирмен}\
ho,\ell_2\ \mathsf{расстояниe}\}.$$

	sRMSE	$\ \mathbf{a}\ _0$	Спирмен $ ho$	ℓ_2 расстояние
RelAgg	0.965 ± 0.002	26.8 ± 3.8	0.915 ± 0.016	0.145 ± 0.018
SymImp	0.961 ± 0.001	224.4 ± 9.0	0.910 ± 0.017	0.025 ± 0.002
MinMax	0.961 ± 0.002	101.0 ± 2.1	0.932 ± 0.009	0.059 ± 0.004
MaxRel	0.958 ± 0.003	41.2 ± 5.2	0.862 ± 0.027	0.178 ± 0.010
AsymImp	0.955 ± 0.001	85.8 ± 10.2	0.926 ± 0.011	0.078 ± 0.007

Сравнение метода проекции в скрытое пространство с методами выбора признаков

- ▶ Предлагаемые методы выбора признаков достигают меньшей ошибки по сравнению с базовыми алгоритмами Lasso и Elastic.
- ▶ PLS показывает сравнимое качество с QPFS.
- Комбинация двух алгоритмов показывает наилучший результат.

Результаты, выносимые на защиту

- 1. Исследована проблема снижения размерности сигналов в пространствах высокой размерности. Предложены методы декодирования сигналов с анализом структуры пространства.
- 2. Доказаны теоремы об оптимальности предлагаемых методов декодирования сигналов. Предлагаемые методы позволяют осуществлять выбор согласованных моделей в случае избыточной размерности описания данных.
- 3. Предложены методы выбора признаков, учитывающие зависимости как в исходном, так и в целевом пространстве. Предложенные алгоритмы доставляют устойчивые и адекватные решения в коррелированных пространствах высокой размерности.
- 4. Предложены нелинейные методы согласования скрытых пространств для данных со сложноорганизованной целевой переменной.
- 5. Предложен ряд моделей для прогнозирования гетерогенных наборов сигналов для задачи построения нейрокомпьютерных интерфейсов.

Список работ автора по теме диссертации Публикации ВАК

- Isachenko R., Strijov V. Quadratic Programming Feature Selection for Multicorrelated Signal Decoding with Partial Least Squares Expert Systems with Applications, 2021, на рецензировании.
- 2. Исаченко Р.В., Яушев Ф.Р., Стрижов В.В. Модели согласования скрытого пространства в задаче прогнозирования // Системы и средства информатики, 31(1), 2021.
- Isachenko R., Vladimirova M., Strijov V. Dimensionality Reduction for Time Series Decoding and Forecasting Problems. DEStech Transactions on Computer Science and Engineering, optim, 2018.
- Isachenko R., Strijov V. Quadratic programming optimization for Newton method. Lobachevskii Journal of Mathematics, 39(9), 2018.
- Isachenko R. et al. Feature Generation for Physical Activity Classification. Artificial Intellegence and Decision Making, 3, 2018.
- Исаченко Р.В., Стрижов В. В. Метрическое обучение в задачах мультиклассовой классификации временных рядов Информатика и её применения, 10(2), 2016.

Выступления с докладом

- 1. Intelligent Data Processing Conference, 2020, Снижение размерности в задаче декодирования временных рядов.
- Intelligent Data Processing Conference, 2018, Dimensionality reduction for multicorrelated signal decoding with projections to latent space.
- 3. Математические методы распознавания образов, 2017. Локальные модели для классификации объектов сложной структуры.
- 4. Intelligent Data Processing Conference, 2016. Multimodel forecasting multiscale time series in internet of things.
- 5. Ломоносов, 2016. Метрическое обучение в задачах мультиклассовой классификации временных рядов.