- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r}=\mathbf{r_0}+\mathbf{a}t$ в виде $[\mathbf{r},\mathbf{a}]=\mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[\mathbf{a_1}, \mathbf{a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

4 октября 2018 г.

Алесь Бінкевіч

4 октября 2018 г. Алесь Бінкевіч

Задания к воркшопу по аналитической геометрии

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку М перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку М перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r}, \mathbf{n}) = D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[\mathbf{a_1}, \mathbf{a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[{f r},{f a_1}]={f b_1}$ и $[{f r},{f a_2}]={f b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r},\mathbf{n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (а) Прямой $\mathbf{r}=\mathbf{r_0}+\mathbf{a}t$ в виде $[\mathbf{r},\mathbf{a}]=\mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[{f r},{f a_1}]={f b_1}$ и $[{f r},{f a_2}]={f b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[{\bf a_1}, {\bf a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r},\mathbf{n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r}, \mathbf{n}) = D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[{\bf a_1}, {\bf a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

4 октября 2018 г. Клюкин Михаил

4 октября 2018 г. Клюкин Михаил

Задания к воркшопу по аналитической геометрии

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r},\mathbf{n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

4 октября 2018 г. Клюкин Михаил

Дополнительные индивидуальные задания

1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.

- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (а) Прямой $\mathbf{r}=\mathbf{r_0}+\mathbf{a}t$ в виде $[\mathbf{r},\mathbf{a}]=\mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[\mathbf{a_1}, \mathbf{a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r}=\mathbf{r_0}+\mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r},\mathbf{n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[\mathbf{a_1}, \mathbf{a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

4 октября 2018 г. Кузь Глеб

Задания к воркшопу по аналитической геометрии

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r},\mathbf{n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

4 октября 2018 г. Кузь Глеб

Дополнительные индивидуальные задания

1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.

- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r},\mathbf{n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r}, \mathbf{n}) = D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b}$)
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $(\mathbf{r}, \mathbf{n}) = D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[a_1, a_2] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0(\mathbf{r_0})$ до прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$

- 1. Запишите уравнение:
 - (a) Прямой $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ в виде $[\mathbf{r}, \mathbf{a}] = \mathbf{b}$ (выразите \mathbf{b} через известные $\mathbf{r_0}$ и \mathbf{a})
 - (b) Плоскости ${\bf r}={\bf r_0}+{\bf a}u+{\bf b}v$ в виде $({\bf r},{\bf n})=D$ (выразите D и ${\bf n}$ через известные ${\bf r_0}$ и ${\bf a}$ и ${\bf b})$
- 2. Запишите уравнение прямой пересечения плоскостей $(\mathbf{r}, \mathbf{n_1}) = D_1$ и $(\mathbf{r}, \mathbf{n_2}) = D_2$.
- 3. Даны скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$. Выберите верные утверждения:

a)
$$[a_1, a_2] = 0$$

b)
$$[{\bf a_1}, {\bf a_2}] \neq 0$$

c)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) = 0$$

d)
$$(\mathbf{r_2} - \mathbf{r_1}, \mathbf{a_1}, \mathbf{a_2}) \neq 0$$

- 4. Найдите расстояние
 - (а) между двумя скрещивающимися прямыми $[\mathbf{r},\mathbf{a_1}]=\mathbf{b_1}$ и $[\mathbf{r},\mathbf{a_2}]=\mathbf{b_2}$
 - (b) от точки $M_0({f r_0})$ до прямой ${f r}={f r_0}+{f a}t$
 - (c) от точки $M_0(\mathbf{r_0})$ до плоскости $(\mathbf{r},\mathbf{n})=D$

- 1. В правом ОНБ на векторах $\mathbf{a}(0, -2, 2), \mathbf{b}(-2, -2, 3), \mathbf{c}(-4, 3, 1)$ построен тетраэдр. Найдите объем тетраэдра и его высоту, проведенную к основанию (за основание считайте треугольник, построенный на векторах \mathbf{a} и \mathbf{b}).
- 2. Точка M определяется радиус-вектором ${\bf r_0}$. Запишите уравнение:
 - (a) прямой, проходящей через точку M перпендикулярно плоскости $({\bf r},{\bf n})=D$
 - (b) плоскости, проходящей через точку M перпендикулярно прямой $[{f r},{f a}]={f b}$
- 3. Найдите необходимое и достаточное условие, при котором плоскости $(\mathbf{r},\mathbf{n_1})=D_1$ и $(\mathbf{r},\mathbf{n_2})=D_2$:
 - (а) пересекаются
 - (b) параллельны, но не совпадают
 - (с) совпадают
- 4. Найдите необходимое и достаточное условие, при котором плоскость $(\mathbf{r}, \mathbf{n}) = D$ и прямая $\mathbf{r} = \mathbf{r}_0 + \mathbf{a}t$:
 - (а) имеют единственную общую точку
 - (b) не имеют общих точек
 - (с) имеют бесконечное число общих точек
- 5. Составить уравнение прямой, пересекающей прямую $\mathbf{r} = \mathbf{r_1} + \mathbf{a}t$ под прямым углом и проходящей через точку $M_0(\mathbf{r_0})$, не лежащую на данной прямой (перпендикуляра, опущенного из точки на прямую).
- 6. Найти расстояние между параллельными прямыми $[\mathbf{r}, \mathbf{a}] = \mathbf{b_1}$ и $[\mathbf{r}, \mathbf{a}] = \mathbf{b_2}$.
- 7. Найти уравнение прямой, пересекающей скрещивающиеся прямые $\mathbf{r} = \mathbf{r_1} + \mathbf{a_1}t$ и $\mathbf{r} = \mathbf{r_2} + \mathbf{a_2}t$ под прямым углом (общий перпендикуляр).

- 1. Даны прямая $\mathbf{r} = \mathbf{r_0} + \mathbf{a}t$ и плоскость $(\mathbf{r}, \mathbf{n}) = D$, не параллельные между собой. Точка M лежит на прямой и удалена от плоскости на расстояние ρ . Найти радиус-вектор точки M.
- 2. Найдите радиус-вектор точки пересечения прямой $[{\bf r},{\bf a}]={\bf b}$ и плоскости $({\bf r},{\bf n})=D,$ если $({\bf a},{\bf n})\neq 0$
- 3. Найдите расстояние от точки $M_0(\mathbf{r_0})$ до прямой $[\mathbf{r},\mathbf{a}]=\mathbf{b}$
- 4. Найдите расстояние между параллельными плоскостями $(\mathbf{r},\mathbf{n})=D_1$ и $(\mathbf{r},\mathbf{n})=D_2.$