Oplossingen Lineaire Algebra 2013 TODO October 4, 2013

Contents

1	Oefeningen	3
2	Opdrachten	14

1 Oefeningen

oef 1

Echelonvorm

a)

Do row reduction: $\begin{pmatrix} 3 & -6 & 9 \\ -2 & 7 & -2 \\ 0 & 1 & 5 \end{pmatrix}$

The following steps are done sequentially:

- 1. Add 2/3 x row 1 to row 2
- 2. Divide row 1 by 3:
- 3. Subtract 1/3 (row 2) from row 3:
- 4. Multiply row 3 by 3/11:
- 5. Subtract 4 (row 3) from row 2:
- 6. Subtract 3 (row 3) from row 1:
- 7. Divide row 2 by 3:

$$\begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

b)

Do row reduction: $\begin{pmatrix} 3 & -2 & -5 & 4 \\ -5 & 2 & 8 & -5 \\ -3 & 4 & 7 & -3 \\ 2 & -3 & -5 & 8 \end{pmatrix}$

The following steps are done sequentially:

- 1. Swap row 1 with row 2:
- 2. Add 3/5 (row 1) to row 2:
- 3. Multiply row 1 by -1:
- 4. Multiply row 2 by -5:
- 5. Add 3/5 (row 1) to row 3:
- 6. Multiply row 3 by 5:
- 7. Subtract 2/5 (row 1) from row 4:
- 8. Multiply row 4 by 5:
- 9. Swap row 2 with row 3:
- 10. Subtract 2/7 (row 2) from row 3:

- 11. Multiply row 3 by -7/5:
- 12. Add 11/14 (row 2) to row 4:
- 13. Multiply row 4 by 14/5:
- 14. Add 1/3 (row 3) to row 4:
- 15. Multiply row 4 by 3/259:
- 16. Subtract 7 (row 4) from row 3:
- 17. Subtract 5 (row 4) from row 1:
- 18. Divide row 3 by 3:
- 19. Subtract 11 (row 3) from row 2:
- 20. Add 8 (row 3) to row 1:
- 21. Divide row 2 by 14:
- 22. Add 2 (row 2) to row 1:
- 23. Divide row 1 by 5:

De matrix staat nu wel in gereduceerde echelon vorm, maar dat is ook een echelon vorm ;) :

$$\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

oef 2

oef 3

Echelonvorm

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \\ 3 & 4 & 5 & 1 & 2 \\ 4 & 5 & 1 & 2 & 3 \\ 5 & 1 & 2 & 3 & 4 \end{pmatrix}$$

$$R2 \longmapsto R2 - 2 \cdot R1$$

$$R3 \longmapsto R3 - 3 \cdot R1$$

$$R4 \longmapsto R4 - 4 \cdot R1$$

$$R5 \longmapsto R5 - 5 \cdot R1$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & -2 & -4 & -11 & -13 \\ 0 & -3 & -11 & -14 & -17 \\ 0 & -9 & -13 & -17 & -21 \end{pmatrix}$$

$$R3 \longmapsto R3 - 2 \cdot R2$$

$$R4 \longmapsto R4 - 2 \cdot R2$$

$$R5 \longmapsto R5 - 2 \cdot R2$$

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
0 & -1 & -2 & -3 & -9 \\
0 & 0 & 0 & -5 & 5 \\
0 & 0 & -5 & -5 & 10 \\
0 & 0 & 5 & 10 & 60
\end{pmatrix}$$

Wissel R3 en R4

$$R5 \longmapsto R5 + R4$$

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & -1 & -2 & -3 & -9 \\ 0 & 0 & -5 & -5 & 10 \\ 0 & 0 & 0 & -5 & 5 \\ 0 & 0 & 0 & 0 & 75 \end{pmatrix}$$

Rij-geredeuceerde vorm

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

oef 4

a)

Het oplossingsstelsel is bijna letterlijk af te lezen: Stel $t=\lambda$ dan is:

$$x = -4\lambda - 1$$
$$y = -2\lambda + 6$$
$$z = -3\lambda + 2$$

Hieruit volgt de oplossingsverzameling:

$$V = \{(-4\lambda - 1, -2\lambda + 6, -3\lambda + 2, \lambda) | \lambda \in \mathbb{R}\}\$$

b)

Dit triviaal direct te bepalen door de laatste rij:

$$V = \emptyset$$

oef 5

oef 6

a)

$$\begin{pmatrix} 1 & 2 & 4 & 6 \\ 3 & 8 & 14 & 16 \\ 2 & 6 & 11 & 12 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 2 \end{pmatrix}$$

Antwoord:

$$V = \{(4, -3, 2)\}$$

b)

$$\begin{pmatrix} 3 & 2 & 4 & 5 \\ 1 & 1 & -3 & 2 \\ 4 & 3 & 1 & 7 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 10 & 1 \\ 0 & 1 & -13 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(1 - 10t, 1 + 13t, t) | t \in \mathbb{R}\}\$$

c)

$$\begin{pmatrix} 1 & 2 & -3 & -1 \\ 3 & -1 & 2 & 7 \\ 5 & 3 & -4 & 2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & \frac{1}{7} & 0 \\ 0 & 1 & \frac{-11}{7} & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

d)

$$\begin{pmatrix} 1 & 1 & -2 & 1 & 2 & 1 \\ 2 & -1 & 2 & 2 & 6 & 2 \\ 3 & 2 & -4 & -3 & -9 & 3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(1, 2a, a, -3b, b) | a, b \in \mathbb{R}\}\$$

oef 7

 \mathbf{a}

$$\begin{pmatrix} 2 & -3 & 0 & 8 \\ 4 & -5 & 1 & 0 \\ 2 & 0 & 4 & 1 \end{pmatrix}$$

$$R2 \longmapsto R2 - 2 \cdot R1$$

$$\begin{pmatrix} 2 & -3 & 0 & 8 \\ 0 & 1 & 1 & -16 \\ 0 & 3 & 4 & -7 \end{pmatrix}$$

$$R1 \longmapsto R1/2$$

$$R3 \longmapsto R3 - 3 \cdot R2$$

$$\begin{pmatrix} 2 & -3 & 0 & 8 \\ 0 & 1 & 1 & -16 \\ 0 & 0 & 1 & 41 \end{pmatrix}$$
$$z = 41$$

$$y = -16 - 41 = -57$$
$$2x = -(-3 \cdot -57) + 8 = -164$$
$$x = -82$$

Antwoord:

$$V = \{(-82, -57, 41)\}$$

b)

$$\begin{pmatrix} 0 & 2 & -1 & 1 \\ 4 & -10 & 3 & 5 \\ 3 & -3 & 0 & 6 \end{pmatrix}$$

$$R1 \leftrightarrow R3$$

$$\begin{pmatrix}
3 & -3 & 0 & 6 \\
4 & -10 & 3 & 5 \\
0 & 2 & -1 & 1
\end{pmatrix}$$

$$R1 \longmapsto R1/3$$

$$\begin{pmatrix} 1 & -1 & 0 & 2 \\ 4 & -10 & 3 & 5 \\ 0 & 2 & -1 & 1 \end{pmatrix}$$

$$R2 \longmapsto R2 - 4 \cdot R1$$

$$\begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & -6 & 3 & -3 \\ 0 & 2 & -1 & 1 \end{pmatrix}$$

$$R2 \longmapsto R2 + 3 \cdot R3$$

$$\begin{pmatrix} 1 & -1 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 2 & -1 & 1 \end{pmatrix}$$

$$R2 \leftrightarrow R3$$

$$\begin{pmatrix}
1 & -1 & 0 & 2 \\
0 & 2 & -1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Antwoord:

$$V=\{(-\frac{\lambda+1}{2}+2,\frac{\lambda+1}{2},\lambda)|\lambda\in\mathbb{R}\}$$

oef 8

oef 9

$$\begin{pmatrix} 2 & 1 & 7 & b_1 \\ 6 & -2 & 11 & b_2 \\ 2 & -1 & 3 & b_3 \end{pmatrix}$$

$$R2 \longmapsto R2 - 3 \cdot R1$$

$$R3 \longmapsto R3 - R1$$

$$\begin{pmatrix} 2 & 1 & 7 & b_1 \\ 0 & -5 & -10 & b_2 - 3b_1 \\ 0 & -2 & -4 & b_3 - b_1 \end{pmatrix}$$

$$R2 \longmapsto -\frac{1}{5}R2$$

$$\begin{pmatrix} 2 & 1 & 7 & b_1 \\ 0 & 1 & 2 & -\frac{1}{5}(b_2 - 3b_1) \\ 0 & -2 & -4 & b_3 - b_1 \end{pmatrix}$$

$$R1 \longmapsto R1 - R2$$

$$R3 \longmapsto R3 + 2 \cdot R2$$

$$\begin{pmatrix} 2 & 0 & 5 & b_1 + \frac{1}{5}(b_2 - 3b_1) \\ 0 & 1 & 2 & -\frac{1}{5}(b_2 - 3b_1) \\ 0 & 0 & (b_3 - b_1) - \frac{2}{5}(b_2 - 3b_1) \end{pmatrix}$$

Antwoord:

Als $(b_3-b_1)-\frac{2}{5}(b_2-3b_1)=0$ dan heeft het stelsel oneindig veel oplossingen. Als $(b_3-b_1)-\frac{2}{5}(b_2-3b_1)\neq 0$ dan heeft het stelsel geen oplossingen $(V=\emptyset)$

oef 10

oef 11

oef 12

a)

Wissel R1 en R3, en daarna R2 en R1.

$$\begin{pmatrix} 1 & 1 & k & 1 \\ 1 & k & 1 & 1 \\ k & 1 & 1 & 1 \end{pmatrix}$$

$$R2 \longmapsto R2 - R1$$

$$R3 \longmapsto R3 - k \cdot R1$$

$$\begin{pmatrix} 1 & 1 & k & 1 \\ 0 & k - 1 & 1 - k & 0 \\ 0 & 1 - k & 1 - k^2 & 1 - k \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Geval 1: k = 1

Antwoord:

$$V = \{(1 - a - b, a, b) | a, b \in \mathbb{R}\}$$

Geval 2: $k \neq 1$

$$R2 \longmapsto \frac{1}{k-1}R2$$

$$R3 \longmapsto \frac{1}{1-k}R3$$

$$\begin{pmatrix} 1 & 1 & k & 1\\ 0 & 1 & -1 & 0\\ 0 & 1 & k+1 & 1 \end{pmatrix}$$

$$R1 \longmapsto R1 - R2$$

$$R3 \longmapsto R3 - R1$$

$$\begin{pmatrix} 1 & 0 & k+1 & 1\\ 0 & 1 & -1 & 0\\ 0 & 0 & k+2 & 1 \end{pmatrix}$$

Geval 2a: k = -2

$$\begin{pmatrix} 1 & 0 & -1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V=\emptyset$$

Geval 2b: $k \neq -2$

$$R3 \longmapsto \frac{1}{k+2}R3$$

$$\begin{pmatrix} 1 & 0 & k+1 & 1\\ 0 & 1 & -1 & 0\\ 0 & 0 & 1 & \frac{1}{k+2} \end{pmatrix}$$

$$R1 \longmapsto R1 - (k+1) \cdot R3$$

$$R2 \longmapsto R2 + R3$$

$$\begin{pmatrix} 1 & 0 & 0 & \frac{3}{k+2}\\ 0 & 1 & 0 & \frac{1}{k+2}\\ 0 & 0 & 1 & \frac{1}{k+2} \end{pmatrix}$$

Antwoord:

$$V = \{(\frac{3}{k+2}, \frac{1}{k+2}, \frac{1}{k+2})\}$$

Samenvatting:

Als k = 1 dan heeft het stelsel oneindig veel oplossingen:

$$V = \{(1 - a - b, a, b) | a, b \in \mathbb{R}\}$$

Als k = -2 dan heeft het stelsel geen oplossingen:

$$V = \emptyset$$

Anders heeft het stelsel precies n oplossing:

$$V = \{(\frac{3}{k+2}, \frac{1}{k+2}, \frac{1}{k+2})\}$$

b)

Wissel R1 en R2

$$\begin{pmatrix} 1 & k & k+1 \\ k & 1 & 2 \end{pmatrix}$$

$$R2 \longmapsto R2 - k \cdot R3$$

$$\begin{pmatrix} 1 & k & k+1 \\ 0 & 1-k^2 & -k^2-k+2 \end{pmatrix}$$

Geval 1: k = 1

$$\begin{pmatrix} 1 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Antwoord:

$$V = \{(2-t, t) | t \in \mathbb{R}\}$$

Geval 2: k = -1

$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

Geval 3: $k \neq 1 \land k \neq -1$

$$R2 \longmapsto \frac{1}{1-k^2} \cdot R2$$

$$\begin{pmatrix} 1 & k & k+1 \\ 0 & 1 & -\frac{k+2}{k+1} \end{pmatrix}$$

$$R1 \longmapsto R1 - k \cdot R2$$

$$\begin{pmatrix} 1 & 0 & \frac{2k^2 + 4k + 1}{k+1} \\ 0 & 1 & -\frac{k+2}{k+1} \end{pmatrix}$$

Antwoord:

$$V = \left\{ \left(\frac{2k^2+4k+1}{k+1}, -\frac{k+2}{k+1}\right) \right\}$$

Samenvatting:

Als k = 1 dan heeft het stelsel oneindig veel oplossingen:

$$V = \{(2-t, t) | t \in \mathbb{R}\}$$

Als k = -1 dan heeft het stelsel geen oplossingen:

$$V = \emptyset$$

Anders heeft het stelsel precies n oplossing:

$$V = \left\{ \left(\frac{2k^2 + 4k + 1}{k + 1}, -\frac{k + 2}{k + 1} \right) \right\}$$

c)

$$\begin{pmatrix} k & k+1 & 1 & 0 \\ k & 1 & k+1 & 0 \\ 2k & 1 & 1 & k+1 \end{pmatrix}$$

Geval 1: k = 0:

$$\begin{pmatrix} 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix}$$

$$R1 \longmapsto R1 - R2$$

$$R3 \longmapsto R3 - R2$$

$$\begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

Geval 2: $k \neq 0$:

$$R1 \longmapsto \frac{1}{k}R1$$

$$\begin{pmatrix} 1 & \frac{k+1}{k} & \frac{1}{k} & 0 \\ k & 1 & k+1 & 0 \\ 2k & 1 & 1 & k+1 \end{pmatrix}$$

$$R2 \longmapsto R2 - k \cdot R1$$

$$R3 \longmapsto R3 - 2k \cdot R1$$

$$\begin{pmatrix} 1 & \frac{k+1}{k} & \frac{1}{k} & 0 \\ 0 & -k & k & 0 \\ 0 & -2k-1 & -1 & k+1 \end{pmatrix}$$

$$R2 \longmapsto \frac{-1}{k}R2$$

$$\begin{pmatrix} 1 & \frac{k+1}{k} & \frac{1}{k} & 0\\ 0 & 1 & -1 & 0\\ 0 & -2k-1 & -1 & k+1 \end{pmatrix}$$

$$R1 \longmapsto R1 - \frac{k+1}{k} \cdot R2$$

$$R3 \longmapsto R3 + (2k+1) \cdot R2$$

$$\begin{pmatrix} 1 & 0 & \frac{k+2}{k} & 0\\ 0 & 1 & \frac{k+2}{k} & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & \frac{k+2}{k} & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & -2k-2 & k+1 \end{pmatrix}$$

Geval 2a k = -1:

$$\begin{pmatrix}
1 & 0 & \frac{1}{k} & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Antwoord:

$$V = \left\{ \left(\frac{t}{k}, t, t \right) | t \in \mathbb{R} \right\}$$

Geval 2b $k \neq -1$:

$$R3 \longmapsto \frac{1}{-2k-2}R3$$

$$\begin{pmatrix} 1 & 0 & \frac{k+2}{k} & 0\\ 0 & 1 & -1 & 0\\ 0 & 0 & 1 & -2 \end{pmatrix}$$

$$R1 \longmapsto R1 - \frac{k+2}{k} \cdot R3$$

$$R2 \longmapsto R2 + R3$$

$$\begin{pmatrix} 1 & 0 & 0 & 2\frac{k+2}{k}\\ 0 & 1 & 0 & -2\\ 0 & 0 & 1 & -2 \end{pmatrix}$$

Antwoord:

$$V = \left\{ \left(2\frac{k+2}{k}, -2, -2 \right) \right\}$$

Samenvatting:

Als k = 0 dan heeft het stelsel geen oplossingen:

$$V = \emptyset$$

Als k = -1 dan heeft het stelsel geen oplossingen:

$$V = \left\{ \left(\frac{t}{k}, t, t \right) | t \in \mathbb{R} \right\}$$

Anders heeft het stelsel precies n oplossing:

$$V = \left\{ \left(2\frac{k+2}{k}, -2, -2\right) \right\}$$

oef 13

oef 14

oef 15

Wissel R1 en R3

$$\begin{pmatrix} 1 & 1 & ab & 1 \\ a & 1 & b & 1 \\ 1 & a & b & 1 \end{pmatrix}$$

$$R2 \longmapsto R2 - a \cdot R1$$

$$R3 \longmapsto R3 - R1$$

$$\begin{pmatrix} 1 & 1 & ab & 1\\ 0 & 1-a & b-a^2b & 1-a\\ 0 & a-1 & b-ab & 0 \end{pmatrix}$$

Geval 1: a = 1

$$\begin{pmatrix}
1 & 1 & b & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Antwoord:

$$V = \{(1 - p - bq, p, q) | p, q \in \mathbb{R}\}$$

Geval 2: $a \neq -1$

$$R2 \longmapsto \frac{1}{1-a} \cdot R2$$

$$R3 \longmapsto \frac{1}{1-a} \cdot R3$$

$$\begin{pmatrix} 1 & 1 & ab & 1 \\ 0 & 1 & b(1+a) & 1 \\ 0 & -1 & b & 0 \end{pmatrix}$$

$$R1 \longmapsto R1 - R2$$

$$R3 \longmapsto R3 + R2$$

$$\begin{pmatrix} 1 & 0 & -b & 0 \\ 0 & 1 & b(1+a) & 1 \\ 0 & 0 & b(2+a) & 1 \end{pmatrix}$$

Geval 2a: $b = 0 \lor a = -2$

$$\begin{pmatrix} 1 & 0 & -b & 0 \\ 0 & 1 & b(1+a) & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Antwoord:

$$V = \emptyset$$

Geval 2b: $b \neq \land a \neq -2$

$$R3 \longmapsto \frac{1}{b(2+a)} \cdot R3$$

$$\begin{pmatrix} 1 & 0 & -b & 0 \\ 0 & 1 & b(1+a) & 1 \\ 0 & 0 & 1 & \frac{1}{b(2+a)} \end{pmatrix}$$

$$R1 \longmapsto R2 + b \cdot R3$$

$$R2 \longmapsto R2 - b(1+a) \cdot R3$$

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{b(2+a)-1}{b(2+a)} \\ 0 & 0 & 1 & \frac{1}{b(2+a)} \end{pmatrix}$$

Antwoord:

Als $b = 0 \lor a = -2$ dan heeft het stelsel oneindig veel oplossingen:

$$V = \{(1 - p - bq, p, q) | p, q \in \mathbb{R}\}$$

 $V = \left\{ \left(0, \frac{b(2+a) - 1}{b(2+a)}, \frac{1}{b(2+a)} \right) \right\}$

Als k = -1 dan heeft het stelsel geen oplossingen:

$$V = \emptyset$$

Anders heeft het stelsel precies n oplossing:

$$V = \left\{ \left(0, \frac{b(2+a) - 1}{b(2+a)}, \frac{1}{b(2+a)} \right) \right\}$$

2 Opdrachten

opdracht 1.2

Om op een matrix een ERO uit te voeren, berekenen we eigenlijk de vermenigvuldiging van de matrix met de corresponderende elementaire matrix. Dus: $M' = M \cdot E$. Om de ERO om te keren vermenigvuldigen we M' met een matrix E^{-1} zodat $M' \cdot E^{-1} = M \cdot I = M$. Om aan te tonen dat alle elementaire rijoperaties inverteerbaar zijn, tonen we het aan voor elk van de EROs. Elk van de EROs komt overeen met een elementaire matrix (zie p 36). We bewijzen dat deze inverteerbaar zijn door de de inverse te construeren.

$$R_i \to \lambda R_i$$

$$E = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

met de λ op rij i. De inverse hiervan is

$$E^{-1} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & \frac{1}{\lambda} & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}$$

 $R_i \leftrightarrow R_j$

$$E = \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

met de eerste 1, niet op de hoofddiagonaal, op rij i en de tweede op rij j. De inverse hiervan is $E^{-1}=E$

$$R_i \to R_i \lambda R_i$$

$$E = \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & \lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

met de λ op rij i, kolom j. De inverse hiervan is

$$E^{-1} = \begin{pmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & \cdots & -\lambda & \cdots & 0 \\ \vdots & \vdots & & \vdots & \ddots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots & & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 & \cdots & 0 & \cdots & 0 \end{pmatrix}$$

opdracht 1.23

opdracht 1.33