Block Storage 시작하기

이 안내서를 사용하여 K-ECP Block Storage(이하. BS) 서비스를 시작 하십시오. BS의 서비스 신청 서를 작성하고 연결하는 방법을 안내합니다.

BS는 데이터를 일정한 크기의 덩어리(Block)로 나누어 저장하는 방식입니다. Block는 파일보다는 작은 단위로서 조각으로 나누어 저장됩니다.

관련 안내서

- Project 만들기
- [Virtual Server 시작하기](./Virtual Server_started.md)

목차

개요

전제 조건

1단계: Block Storage 서비스 신청

2단계: Block Storage 파티셔닝

3단계: Block Storage 마운트

4단계:Block Storage 자동마운트

다음 단계

개요

K-ECP CT 서비스를 사용하기 위해서는 아래와 같은 프로세스로 진행되며, KDN의 직원일 경우 User Console에서 소속 부서장의 결재가 필요합니다.

• KDN 직원이 사용할 경우

• 일반 사용자

K-ECP CT는 User Console를 통해 신청한 후 최종 승인 시 가상서버 형태로 제공 되며, 아래 개념 도와 같이 SSL-VPN 또는 전용선(Direct Connect 서비스 사용시)을 이용하여 접속하실 수 있습니다.

CT 접속 후 CLI 명령어인 oc 를 통해 Container Project를 위한 다음과 같은 다양한 작업을 수행할 수 있습니다.

- 프로젝트 소스 코드로 직접 작업
- K-ECP Container Platform 작업 스크립팅
- 애플리케이션 빌드, 배포 및 관리

전제 조건

- 시작하기 전에 K-ECP User Console에 회원가입이 되어 있어야 합니다.
- 사전에 BS를 신청할 Virtual Machine Server가 생성되어 있어야 합니다.
- ☑ Tip: KDN 직원의 경우 KDN 내부망에서 KDN 전용 User Console로도 접속이 가능합니다.

1단계: Block Storage 서비스 신청

- 1. K-ECP User Console에서 [서비스 신청] 자원 > 스토리지 신청 > SAN 블록디스크 신청 의 돋보 기 아이콘 Q 클릭
- 2. 서비스 신청서 내역 작성
 - ↑ **안내**: CT는 VM Server 형태로 제공되며, 프로젝트 당 1개를 초과할 수 없습니다.
 - 프로젝트명: BS가 포함되어야 될 기 생성완료된 프로젝트 선택
 - 가상서버: BS가 할당될 가상서버 선택
 - 디스크명: 해당 BS를 식별 가능할 디스크명 작성
 - 디스크 크기: (최소 10GB) BS 디스크 크기 설정
- 3. 신청 버튼을 클릭 하여 BS 서비스 신청

2단계: Block Storage 파티셔닝

- 1. BS 서비스 신청 승인이 완료 된 경우 K-ECP User Console에서 서비스 현황 > 스토리지 로 이 동하여 해당 프로젝트의 상세 돋보기 아이콘 🔾 클릭
- 2. 신청한 디스크명을 확인후 연결상태 : 미연결(연결하기) 를 클릭하여 연결됨 으로 변경
- 3. SSL VPN 연결 후 SSH 접속 툴 또는 커맨드을 통해 BS를 신청한 VM서버로 접속

Windows에서 SSH로 접속하는 Command

ssh -p [SSH Port] kecpuser@[VM IP Address]

sudo -i

4. 새로 추가된 블록디스크 확인(할당되지 않은 디스크 확인)

fdisk -1

• 미등록 블록디스크 확인(Disk /dev/vdb)

Disk /dev/vda: 53.7 GB, 53687091200 bytes, 104857600 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x000ac76e

Device Boot Start End Blocks Id System /dev/vda1 * 2048 104857566 52427759+ 83 Linux

Disk /dev/vdb: 10.7 GB, 10737418240 bytes, 20971520 sectors

Units = sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes
I/O size (minimum/optimal): 512 bytes / 512 bytes

Disk label type: dos

Disk identifier: 0x6d594ce7

5. 명령어 실행을 통한 파티셔닝 실행

fdisk /dev/vdb

Welcome to fdisk (util-linux 2.23.2).

Changes will remain in memory only, until you decide to write them. Be careful before using the write command.

6. 새로운 파티션 추가

Command (m for help): n

7. primary(default p) 선택(주파티션으로 사용)

```
Partition type:
   p primary (0 primary, 0 extended, 4 free)
   e extended
Select (default p): p
```

8. 파티션 번호 선택

```
Partition number (1-4, default 1): 1
```

9. First sector, Last sector default선택을 위해 엔터키로 진행

```
First sector (2048-20971519, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-20971519, default 20971519):
Using default value 20971519
Partition 1 of type Linux and of size 10 GiB is set
```

10. 파티션 설정 저장

```
Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.

Syncing disks.
```

3단계: Block Storage 마운트

1. 파티셔닝된 디스크를 xfs 파일시스템으로 포맷

```
lsblk -f
```

• 파티션 생성을 통해 vdb디스크의 1번 논리파티션 생성여부 확인

NAME FSTYPE LABEL UUID MOUNTPOINT

sr0 iso9660 config-2 2023-01-26-13-36-01-00

vda

Lvda1 xfs 7c4f398a-9ad7-46a3-8a6a-e5d481122726 /

vdb

└vdb1 xfs 30922aeb-c12f-421f-9ee4-827020fa4d1f

vdb

2. vdb디스크의 1번 논리파티션을 xfs 파일시스템으로 포맷

mkfs.xfs /dev/vdb1

• 파일시스템 포맷

meta-data=/dev/vdb1 isize=512 agcount=4, agsize=655296 blks

sectsz=512 attr=2, projid32bit=1 crc=1 finobt=0, sparse=0

data = bsize=4096 blocks=2621184, imaxpct=25

= sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0 ftype=1
log =internal log bsize=4096 blocks=2560, version=2

= sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

3. 디스크를 마운트할 디렉토리 생성

mkdir data

4. 디렉토리에 디스크 마운트

mount /dev/vdb1 /data

5. 마운트 확인

df -h

• /dev/vdb1 10G 정상적 마운트 확인

```
Filesystem
              Size Used Avail Use% Mounted on
devtmpfs
              1.9G
                      0 1.9G 0% /dev
                      0 1.9G 0% /dev/shm
tmpfs
              1.9G
tmpfs
              1.9G
                    17M 1.9G 1% /run
                     0 1.9G 0% /sys/fs/cgroup
tmpfs
              1.9G
/dev/vda1
               50G 2.5G 48G 5% /
tmpfs
              379M
                   0 379M 0% /run/user/901
/dev/vdb1
                    33M 10G 1% /data
               10G
```

4단계: Block Storage 자동 마운트

♡ 안내: 자동 마운트를 설정하지 않으면, 부팅할 때마다 디스크를 마운트 해야하기 때문에 자동마운트 설정을 실행합니다.

1. UUID 확인

lsblk -f

• vdb1의 UUID: 2db448d5-fd8d-4ad9-8049-6fd93eefe9b9

2. vi 편집기로 /etc/fstab 파일 수정

vi /etc/fstab

• 자동 마운트 내용 추가(UUID = ...)

안내: vi 편집기 실행 후 "i" 키를 눌러 편집을 실행할 수 있습니다. 이후 "ESC", ":wq" 입력을 통해 편집 내용을 저장할 수 있습니다.

```
#
# /etc/fstab
# Created by anaconda on Tue Feb 22 08:04:29 2022
#
# Accessible filesystems, by reference, are maintained under '/dev/disk'
# See man pages fstab(5), findfs(8), mount(8) and/or blkid(8) for more info
#
UUID= 2db448d5-fd8d-4ad9-8049-6fd93eefe9b9 / xfs defaults
0 0
```

- 3. 자동 마운트 설정내역 테스트
- /data umount

umount /data

• umount 확인

df -h

```
Filesystem
              Size Used Avail Use% Mounted on
devtmpfs
                      0 1.9G 0% /dev
              1.9G
                      0 1.9G 0% /dev/shm
tmpfs
              1.9G
tmpfs
                   17M 1.9G 1% /run
              1.9G
tmpfs
              1.9G
                      0 1.9G 0% /sys/fs/cgroup
/dev/vda1
               50G 2.5G
                        48G
                                5% /
                      0 379M 0% /run/user/901
tmpfs
              379M
```

• 전체 마운트 명령

mount -a

• 자동 마운트 확인

df -h

```
Filesystem
              Size Used Avail Use% Mounted on
devtmpfs
              1.9G
                      0 1.9G 0% /dev
                      0 1.9G 0% /dev/shm
tmpfs
              1.9G
tmpfs
              1.9G
                    17M 1.9G 1% /run
tmpfs
                    0 1.9G 0% /sys/fs/cgroup
              1.9G
/dev/vda1
               50G 2.5G
                        48G 5% /
tmpfs
              379M
                   0 379M 0% /run/user/901
/dev/vdb1
                        10G 1% /data
               10G
                    33M
```

다음 단계

• Container Terminal 활용하기를 통해서 cT 서비스를 활용할 수 있습니다.(향후 제공 예정)