GRADIENT DESCENT

 $x_{t+1} = x_t - \gamma \nabla f(x_t)$ EQUIVALENT $f(x_t) - f(x^*) \leq \nabla f(x_t)^T (x_t - x^*) \rightarrow f(x)$ is ABOVE TANCENT AT x^*

-) S CONVEX, DIFFERENTIABLE, B-LIPSCHITZ $||\chi_0 - \lambda^*|| \le R$, $\gamma = \frac{R}{BU_T}$ (STEP) $\frac{1}{r}\sum_{j}f(x_{+})$ - $\frac{1}{r}(x^{+})\leq\frac{RB}{\sqrt{E}}$

Min $f(x_{+}) - f(x^{*}) < \varepsilon$ IF $T = \frac{R^2 B^2}{C^2}$

 $\rightarrow f$ convex, differentiable, L-shooty, $\gamma = \frac{1}{7}$

$$\frac{4}{2L} \| \nabla f(x_t) \|^2 \le f(x_t) - f(x_{t+4})$$

PUT $\varepsilon \to f(x_T) - f(x^*) \leq \frac{LR^2}{2T}$

f(x_)-f(x*) ≥ E, T> R2L

f differentiable, L snooth, $\mu > 0$ STRONGLY CONVEX $\gamma = \frac{1}{L}$

 $\|X_{t+2} - X^*\|^2 \le (1 - \frac{1}{1}) \cdot \|X_t - X^*\|^2, t \ge 0$

f(xt)-f(x*)= [1-12)TR2, T>0

 $|f(x_T) - f(x^*) \le \varepsilon$, $T \ge \frac{L}{\mu} \ln \left(\frac{R^2 L}{2\varepsilon} \right)$

SUBGRADIENT DESCENT (CONVEXITY)

→ B-LIPSCUITZ (SAME AS)

 $\rightarrow \mu > 0$ STRONGLY $T_{t} = \frac{2}{\mu(t+1)}$. t > 025(4) $f\left(\frac{2}{T(T+1)}\sum_{t=1}^{T} t x_{t}\right) - f(x^{*}) \leq \gamma_{t} \beta^{2} \quad \left(\beta = \max_{t=1}^{N} \|g_{t}\|^{2}\right)$

ACCELERATES $y_{t+2} = x_t - \frac{1}{r} \nabla f(x_t)$ GRADIENT $\geq_{t+4} = \geq_{\epsilon} - \frac{t+4}{2} \nabla f(x_{\epsilon})$ DESCENT: L-SMOOTH) $X_{t+1} = \frac{t+1}{t+3} Y_{t+1} + \frac{2}{t+3} Z_{t+1}$ CONVEX: $f(y) \geq f(x) + \nabla f(x)^T (y-x)$ $(\nabla f(y) - \nabla f(x))^{T}(y-x) \geq 0$ $\nabla^2 f(x) \ge 0$

L-STOOTU: I CONVEX DIFFERENTIABLE $\int_{-\frac{1}{2}}^{2} \frac{TANGENT}{4} \left(\forall x, y \right) \quad \int_{-\frac{1}{2}}^{2} \left| \left(y \right) + \nabla \left(y \right) \right|^{2} \left(y - x \right) + \frac{1}{2} \left\| x - y \right\|^{2}$ HAS AT MOST QUADRATIC GROWTH BETWEEN TANGENT AND IFF Of 15 L-LIPSCUITZ $||\nabla f(x) - \nabla f(y)|| \leq L \cdot ||x - y||$

J CONVEX, DIFFERENTIABLE STRONG CONVEXITY $(\forall x, y) \quad f(y) \ge f(x) + \nabla f(x)^{\mathsf{T}} (y-x) + \frac{\mu}{2} ||x-y||^2$ ABOVE THE QUADRATIC

L-LIPSCHITZ AND STRONGCY FUNCTION CONVEX ON THE PLANE, ONLY IN A BOUNDED REGION

 $\partial f(x) = C_{NV} \left\{ \left(\lim_{n \to \infty} \nabla f(x_n) \middle| \lim_{n \to \infty} X_n = x \right\} \right\}$

PROJECTED GRADIENT DESCENT (CONSTRAINES)

 $X_{t+4} = \prod_{x} (y_{t+4}) = \operatorname{argmin} ||x - y_{t+4}||$ PROSECTION XEX

 $(x-\Pi_{x}(y))$, $(y-\Pi_{x}(y)) \leq 0$ (NEXT ITER.)

IN AN INPROVENENT

 $\|x-\Pi_{x}(y)\|^{2} + \|y+\Pi_{x}(y)\|^{2} \le \|x-y\|^{2}$

IT'S ENOUGH FOR THE FUNCTION TO

MUST BE

DIFFER

→ F DIFFERENT, B-LIPSCUITZ (SAME AS) IN THE REGION OF INTEREST

→ SMOOTU (CONVEX DIFFERENTIABLE) | Y = 1 L-SMOOTU

 $\frac{1}{2L} \| \nabla f(x_t) \|^2 - \frac{\zeta}{2} \| \mathcal{I}_{t+2} - \mathcal{X}_{t-1} \|^2 f(x_t) - f(x_{t+1}), \ t \ge 0$

 $f(x_T) - f(x^*) \leq \frac{LR^2}{2T}$, T>0 \rightarrow SUBGRADIENT

-L-SMOOTU AND A-STRONGET CONVEX

X* UNIQUE MINIMIZER

; || x+++-x*||2 = (1- /2) ||x+ -x*||2, t≥0

 $f(x_{\tau}) - f(x^{*}) \leq \|\nabla f(x^{*}) \cdot (1 - \lambda_{\tau}^{2})^{\frac{T}{2}} \|x_{s} - x^{*}\| + \frac{L}{2} (1 - \lambda_{\tau}^{2})^{\|x_{s} - x^{*}\|^{2}}$ FOR T>0

LOWER BOUNDS

LOWER DOUNDS

NESTEROY: T < d - 1, $\exists f$ st. B - LiP. IN $|R^d$ with (SUB) GRADIENT WAVING ERROR $f(x_T) - f(x^n) \ge \frac{RB}{2(4 + \sqrt{T} + 1)}$ USING $\partial f(x)$

NETIFICUSKI, : T < 1/2 (d-1),] & L-SMOOTH, FIRST ORDER "NETHOD WAS $f(x_T) - f(x^*) \ge \frac{3 \|x_0 - x^*\|^2}{32 T^2}$

STO CHASTIC GRADIENT DESCENT

9t UNBIASED ESTIMATOR FOR $\nabla f(\mathbf{x}_t)$ $f(x_t) - f(x^*) \le g_t^\top (x_t - x^*)$ IN EXPECTATION

→TAME STRONG CONVEXITY (S.CONVEXITY WITH BOUNDED GRADIENTS)

$$\delta_{t} = \frac{2}{\mu(t+1)}, \quad B^{2} = \max_{t=1}^{\infty} E(\|g_{t}\|^{2})$$

$$= \frac{1}{\mu(t+1)} \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) \le y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) \le y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) \le y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

$$= \sum_{t=1}^{\infty} t \cdot x_{t} - f(x^{*}) = y_{t} B^{2}$$

> MINIBATCH (REDUCES -> VNEW = VOLD)

$$\widetilde{g}_{t} = \lim_{j=1}^{\infty} \widetilde{g}_{t}^{j}, \ g_{t}^{j} = \nabla f_{ij}(x_{t})$$

$$\zeta_{NAS} A STALLER VARIANCE$$

$$x_{t+1} = x_t - \gamma \widehat{g}_t$$