GRETL UND HANSL

Statistik und Ökonometrie anwenden mit freier Software

Artur Tarassow¹

¹Fachbereich Wirtschaft Technische Hochschule

Brandenburg an der Havel, 17.01.2024

Outline

- Zweck und allgemeiner Charakter
- Ökonometriesoftware
- Einige Hintergrundinformationen zu Gretl
- 4 Datensätze und Matrizen
- 5 Datentypen
- 6 Skriptsprache Hansl
- Modelle und Methoden
- 8 Dateiformate
- 9 Mit dem Datensatz arbeiten
- Erste Schritte
- 11 Plotting

Zweck und allgemeiner Charakter

Hauptzwecke der Ökonometrie und Statistik:1

- Testen von Theorien
- Prognostik
- Politikevaluation

Anwendung ökonomischer und statistischer Theorien auf Basis sozio-ökonomischer Daten.

Aber auch Entwicklung statistischer Theorien.

¹Der folgende Inhalt basiert auf früheren Folien von von Allin Cottrell (Wake Forest University) and Riccardo "Jack"Lucchetti (Università Politecnica delle Marche).

Doppelter Status der Ökonometrie

Die Ökonometrie ist nicht ein "Teilgebiet"der Wirtschaftswissenschaften im gleichen Sinne wie z. B. Arbeitsökonomie oder Gesundheitsökonomie.

Vielmehr ein Set von *Werkzeugen*, die in fast allen Teilgebieten eingesetzt werden (außer in der reinen Theorie) – plus ein Fachgebiet, das ebenso viel mathematische Statistik wie Wirtschaftswissenschaften ist.

Jedoch ist ein Ökonometriker auch kein Statistiker: ein Ökonometriker ist ein Wirtschaftswissenschaftler mit einem überdurchschnittlichen Verständnis von Statistik.

Ökonometrie-Codierung

- Pioniere der 1960er Jahre verwendeten hauptsächlich Fortran (einige große Namen verwenden dies noch)
- In der frühen PC-Ära gab es Kommandozeilenprogramme, die vorgefertigte Routinen anboten
- Gauss (1984, MS-DOS), Matlab (ebenfalls 1984), Ox (gegen 1997)
- 1990er bis heute: Entwicklung von Kommandozeilenprogrammen: Hinzufügen von GUIs und auch Elemente matrixorientierter Sprachen (Stata, 1985; Eviews, 1994)
- Jüngste Tendenz: Pakete, die auf matrixorientierten Sprachen aufbauen (Dynare)
- Auch: Weg von domänen-spezifischen Sprachen hin zu allgemeinen Sprachen (Python, Julia)

Numerische Verfahren in der Ökonometrie

- Weit verbreitete Verwendung von Matrizen (hauptsächlich reell, nur selten komplex)
- Klassische Optimierungstechniken für stetige Funktionen
- Zufallszahlengenerator (RNG) (zunehmend beliebt, insbesondere für bayesianische Verfahren)
- Einige Konzepte aus der Ingenieurliteratur: Spektren, Filterung, Signalextraktion.

Traditionell ist die Dimensionalität von Problemen relativ klein: Ein paar KB RAM reichen oft aus, um Daten zu speichern. Dies ändert sich heutzutage mit 'Big Data'-Problemen rapid.

Der 'Markt' bzw. Anwendungen für ökonometrische Software

- Bachelor- und Masterstudiengänge (eine große Branche)
- Professionelle angewandte Arbeit
 - 1 akademische Nutzung (hauptsächlich Universitäten)
 - geschäftliche Nutzung (traditionell große Finanzinstitute, aber heutzutage auch große Einzelhändler wie Amazon/ Google)
 - Politik (Zentralbanken, andere Regierungs-/supranationale Institutionen)
- 3 Entwicklung neuer Schätzer/ Werkzeuge

Derzeit von proprietärer Software dominiert – wie z.B. Stata und Eviews (für 1 und 2), plus Matlab und Python (für 2.3 und 3).

Aber auch Verbreitung von R und Gretl, und geringe Verwendung von lower-level Programmiersprachen für Verwendung 3.

Sehr wenige Menschen benutzen kompilierte Sprachen (C, Fortran usw.); selbst nicht für rechenintensive Aufgaben.

Einige Hintergrundinformationen zu Gretl I

- Akronym für: Gnu Regression, Econometrics und Time-series Library
- URL: http://gretl.sourceforge.net/
- Besteht aus
 - 1 einer großen Shared Library (lib-gretl)
 - einem gemeinsamen Kommandozeilenprogramm (gretlcli)
 - 3 und einem GUI-Client (gretl)
- Verwendung zuverlässiger open-source Pakete, z.B. (multithreaded) LAPACK/BLAS, fftw, GTK, gnuplot, etc.

Einige Hintergrundinformationen zu Gretl II

- Erste Version wurde im Januar 2000 veröffentlicht
- Wird seitdem aktiv weiterentwickelt → Open-Source und kostenlos.
- In C geschrieben und für Windows, OS X und Linux verfügbar.
- Benutzeroberfläche ist in 16 Sprachen verfügbar.
- Gretl ist in einem *Benutzerhandbuch* von über 467 Seiten und einem *Kommandoreferenz* von über 267 Seiten dokumentiert

Einige Hintergrundinformationen zu Gretl III

- Gretl verfügt über eine voll ausgestattete grafische Benutzeroberfläche (GUI).
- Ausführung von Befehlen und Funktionen via Hansl-Skripting oder durch die GUI gesteuert.

Alleinstellungsmerkmal

- Gretl bietet eine hoch entwickelte matrix-orientierte Sprache ähnlich zu Matlab und Gauss
- UND eine hoch entwickelte Sprache, die auf Ökonometrie/ Statistik abgestimmt ist.

Datensätze

Ein Datensatz ist im Wesentlichen die Vereinigung der Matrizen **y** (T x k) und **X** (T x m) mit zusätzlichen Metadaten.

- Drei Datentypen sind relevant: (i) Querschnitt, (ii) Zeitreihe und (iii) Panel.
- Betrachten Sie einen Datensatz als eine große Matrix. Um eine Regression zu verstehen, muss man wissen:
 - Worauf beziehen sich die Spalten und Zeilen?
 - Repräsentation der Reihen als Zeitperioden: (i) Beginn und Ende der Stichprobe, (ii) Frequenz, mit der Daten erfasst wurden?
- In ökonometrischer Software ist der Datensatz typischerweise nicht als solche eine Matrix, sondern eine reichhaltigere Struktur und umfasst Metadaten.

Datensätze

- Dualität in Hansl: die Verfügbarkeit des Datensatzes als einer spezifischen Datenstruktur neben Computerdarstellungen des Standardmathematischen Typs.
 - Datensatz (plus Serien, Listen von Serien)
 - Bundle (als Träger-Objekt für weitere Datentypen; eine Art dictionary)

2. Dualität

- Matrizen, Skalare, Zeichenfolgen, Arrays, Bündel, Funktionen (schwieriger aber flexibler) versus
- Datensätze, Serien, Befehle (einfach)

Abschwächung der Dualität durch Zugriffselemente, die nach Befehlen verwendet werden können.

Skalare oder Matrizen

Kommando

print a b

matrix
$$m = \{ 1, 2, 3; \\ 4, 5, 6 \}$$

$$matrix n = seq(1, 10, 2)$$

print m n

Output

$$a = 1.5000000$$

$$b = -2.0000000$$

Serien und Listen

print L -o --range=1:2

Kommando Output # Erstelle Datensatz n=3 V х nulldata 3 0.373209 -1.846103# Zufalls-Variablen -0.338461 1.076625 series y = normal() 1.053826 -1.874034series x = normal()У X print y x -o 0.373209 -1.846103list L = y x-0.338461 1.076625

Strings

Kommando

```
set verbose off
string s = "Hello world!"
print s
```

```
string a = "Hier ist"
string b = " Gretl!"
string c = a ~ b
```

print c

Output

Hello world! Hier ist Gretl!

Arrays – Strings

Kommando

```
set verbose off
strings S = array(2)
S[1] = "Hello"
S[2] = "world!"
print s
```

```
S += "Hier print S
```

Output

```
Hello world!
Array of strings, length 3
[1] "Hello"
[2] "world!"
[3] "Hier ist Hier ist "
```

Array of strings, length 2 [1] "world!"

[2] "Hier ist Hier ist "

Arrays – Matrizen

Kommando

$$M[2] = seq(1, 10, 2)$$

print M

print M[1]
print M[2]

Output

Array of matrices, length 2

17/61

[1] 2 x 3 [2] 1 x 5

1 2 3

4 5 6

1 3 5 7 9

Bundle

Kommando

print B.b

```
set verbose off
bundle B = _(a = "Hello, world!",
 b = -1.5.
 c = \{ 1, 2, 3; 4, 5, 6 \},\
 d = defarray("A", "B", "C"))
print B
print B.a
print B["d"]
B.b = 33
```

Output

```
bundle B:
b = -1.5
c (matrix: 2 x 3)
a = "Hello, world!"
d = array of strings, length 3
Hello, world!
Array of strings, length 3
[1] "A"
[2] "B"
[3] "C"
33
```

Hansl - Hansl's A Neat Scripting Language

- Der Werdegang der Gretl-Entwicklung ist der proprietärer Software ähnlich (DOS-Kommandozeilenprogramm → Cross-Plattform → GUI hinzufügen → Matlab-ähnliche Matrixfunktionalität hinzufügen → Erweitertes Scripting hinzufügen → Parallelisierung)
- 'Gefühl' der Skriptsprache hat Ähnlichkeiten zur Bash Shell (UNIX).
- C-Back-End (natürlich mit ein wenig Hilfe von Freunden: netlib, BLAS, lapack, FFTW und anderen)
- Übergang zur Entwicklung von Gretl über Hansl (Funktionspakete mit optionaler GUI-Integration)
- Einige 'Legacy'-Formulierungen und Inkonsistenzen, aber Hansl ist sauber und einfach zu lernen

Hansl - Befehle

Hansl umfasst mehr 204 Befehle:²

- Tests (Hypothese)
- Statistik und Wahrscheinlichkeitsrechnung
- Datensatz (Manipulation, Sortierung, usw.)
- Schätzung (OLS, MLE, GMM, Einzelgleichung und Systeme usw.)
- Graphen (Streudiagramme, Boxplots, Zeitreihen, usw.)
- Programmierung (Steuerungsfluss und Fehlersuche)
- Transformationen
- String-Operationen
- Prognostik

20/61

²https://gretl.sourceforge.net/gretl-help/cmdref.html

Hansl - Funktionen

Hansl umfasst etwa 250 Funktionen:3

- mathematische
- statistische
- Strings
- Daten-Tools
- Programmierung
- numerische Methoden

- Matrix-Manipulation
- Zeitreihen
- Transformationen
- Komplexe Zahlen
- Wahrscheinlichkeitsrechnung
- Lineare Algebra
- Kalenderfunktionen
- nicht-parametrische Modelle

21/61

³https://gretl.sourceforge.net/gretl-help/funcref.html

Modelle

Implementiert sind eine Vielzahl von Modellen und Methoden

- Zeitreihenmethoden
 - ARIMA, univariate GARCH-Typ, (S)VARs und VECMs, Einheitswurzelund Gleichgewichtstests, Kalman-Filter, MIDAS, Echtzeit-Datensätze
- Begrenzt abhängige Variablen
 - logit, probit, tobit, Stichprobenselektion, Intervallregulierung, Modelle für Zähler- und Dauerdaten usw.
- Panelldatenschätzer, einschließlich Instrumentvariablen, Probit- und GMM-basierter dynamischer Panelmodelle
- Maschinelles Lernen: Ridge, LASSO, Elastic-Net, SVM, Random Forests (via R)

3rd-party Pakete von Nutzern

Derzeit werden über 100 nutzergeschriebene Pakete bereitgestellt.

Siehe hier:

https://gretl.sourceforge.net/cgi-bin/gretldata.cgi?opt= SHOW_FUNCS

Installieren und Laden von 3rd-party Paketen

```
set verbose off
# Installiere Paket vom Server
pkg install PairPlot
# Lade Paket in den Speicher
include PairPlot.gfn
# Zeige die Hilfe
help PairPlot
```

Beispiel-Skripte sind in jedem Gretl-Paket enthalten.

Unterstützte Datenformate

Unterstützte Formate, um Daten zu laden umfassen:

- Eigene XML-Datendatei (*.gdt und *.gdtb)
- Komma-separierte Textdatei (txt, csv)
- Excel-Arbeitsblätter
- Gnumeric und OpenDocument-Arbeitsblätter
- Stata-Dateien (.dta)
- SPSS-Dateien (.sav)
- Eviews-Arbeitsdateien
- JMulTi-Datendateien
- Eigene Binärdatenbanken im eigenen Format (ermöglicht gemischte Datenfrequenzen und Serienlängen)
- RATS 4-Datenbanken und PC-Give-Datenbanken
- Beinhaltet eine Beispieldatenbank für die US-Wirtschaft. Weitere Informationen finden Sie auf der Gretl-Datenseite.

Kommunikation mit anderen Programmen

Gretl kann mit anderen Softwarepaketen interagieren.

Datensätze und Matrizen einfach senden und empfangen.

Andere Programme über Gretls foreign-language-Block aufrufen.

Liste der unterstützten Software:

- R (noch mehr Unterstützung)
- Ox
- Octave
- Stata
- Python
- Julia

Gretl und R Beispiel

```
function list RStructTS(series myseries)
  smpl ok(myseries) --restrict
  sx = argname(myseries)
  foreign language=R --send-data --quiet
    @sx <- gretldata[, "myseries"]</pre>
    strmod <- StructTS(@sx)</pre>
    compon <- as.ts(tsSmooth(strmod))</pre>
    gretl.export(compon)
  end foreign
  append @dotdir/compon.csv
  rename level @sx level
  rename slope @sx_slope
  rename sea @sx seas
  list ret = @sx_level @sx_slope @sx_seas
 return ret
end function
# ----- main -----
open bjg.gdt
list X = RStructTS(lg)
```

Materialien zu Gretl I

- Material-on-Gretl https://github.com/gretl-project/material-on-gretl
- Wiki 1 https://github.com/gretl-project/material-on-gretl/wiki
- Wiki 2 https://gretlwiki.econ.univpm.it/index.php/Main_Page
- Gretl Command Reference https://gretl.sourceforge.net/gretl-help/cmdref.html
- Gretl User's Guide: http://sourceforge.net/projects/gretl/files/manual/

Tarassow GRETI LIND HANSI 28/61

Materialien zu Gretl II

- gretl-users E-Mail-Liste: Die meisten gut überlegten Fragen werden relativ schnell beantwortet und ausführlich beantwortet. https://gretlml.univpm.it/postorius/lists/gretl-users. gretlml.univpm.it/
- Lehrbuch Using gretl for Principles of Econometrics (5. Auflage) http://www.learneconometrics.com/gretl/
- Gretl Cheat-sheet https://github.com/gretl-project/gretl_cheatsheet
- Beispielskripts: Das Gretl-Paket enthält eine Vielzahl von Beispieloder Übungsskripts (unter dem Menüpunkt /Datei/Skriptdateien/Übungsdatei).
- Funktionspakete: Ambitionierte Beispiele für Hansl-Codierung (über den Gretl-Menüpunkt /Werkzeuge/Funktionspakete/Auf Server).)

Mit dem Datensatz arbeiten

Serien erzeugen

print y y_sq log_y exp_y x z --byobs

```
set verbose off
                                                       y_sq
                                                                 log_y
                                            4 353309
                                                     18 95130
                                                                 1 470936
                                           4.267813 18.21423
                                                                 1.451102
# Erstelle Datensatz n=3
                                            4.985425
                                                      24.85446
                                                                 1.606519
nulldata 3
                                            z
# Normalverteilte Zufallsvariable
                                            3.353309
# mean = 4, std-dev = 0.5
                                           2.267813
                                            1.985425
series v = normal(4. 0.5)
series y_sq = y^2
series log_y = log(y)
series exp_y = exp(y)
series x = \{1, 2, 3\}'
series z = y - x
```

exp_y

77 7353

71.3654

146.2658

Dummyvariablen erzeugen

```
open "./data/abdata.csv" --quiet --preserve
# Dummyvariablen erzeugen
series DUM = (YEAR == 1977 || YEAR == 1980)
print YEAR DUM -o --range=1:10
```

gretl version 2024a-git Current session: 2024-01-16 13:35

? print YEAR DUM -o --range=1:10

	YEAR	DUM
1	1976	0
2	1977	1
3	1978	0
4	1979	0
5	1980	1
6	1981	0
7	1982	0
8	1983	0
9	1984	0
10	1976	0

Metadaten für Serien hinzufügen

```
nulldata 3
series y = normal()
# Beschreibung für Serie hinzufügen
setinfo y --description="Some random number"
# Anstelle von 'y' soll 'Cool variable'
# bei Plots erscheinen
setinfo y --graph-name="Cool variable"
boxplot y --output=display
```

Werte ersetzen

```
set verbose off
                                                 weird values
# Neuen Datensatz mit 4 Beobachtungen
# erstellen
                                                          10
                                                          20
nulldata 5 --preserve
# Generiere Serie mit komischen Werten
                                                 weird values
series weird_values = {5, 6, 10, 20, NA}'
print weird_values --byobs
                                                          10
# Let's replace values
                                                          20
help replace
matrix find = \{5, 6, 10, 20, NA\}
matrix replace_by = \{0, 1, 2, 3, -1\}
series y = replace(weird_values, find, replace_by)
print weird_values y --byobs
```

Tarassow Gretl und Hansl 34/61

String-Werte in Series einfügen

```
set verbose off
                                                              у
nulldata 20
series y = randgen(i, 1, 3)
setinfo v --description="3 different categories"
print y --byobs --range=1:5
                                                            У
# Create strings for categories 1, 2 and 3
                                                      1 Medium income
                                                         High income
strings series_labels = defarray("Low income",\
                                                      3 Medium income
  "Medium income", "High income")
                                                         Low income
# Attache strings to categorical series
                                                        High income
help stringify
stringify(y, series_labels)
print v --bvobs --range=1:5
```

Einlesen eines Datensatzes und Werte zeigen

clear		IND	YEAR	n	W	k
set verbose off			1976			
	2	7	1977	1.617604	2.576543	-0.5286502
# Arbeitsordner definieren	3	7	1978	1.722767	2.509746	-0.4591824
	4	7	1979	1.612433	2.552526	-0.3899363
string DIR = " <path>"</path>	5	7	1980	1.550749	2.624951	-0.4827242
set workdir "@DIR"	6	7	1981	1.409278	2.659539	-0.6780615
	7	7	1982	1.152469	2.699218	-0.8606196
" " " " " " " " " " " " " " " " " " " "	8	7	1983	1.077048	2.623102	-0.9364935
# Relative Pfadangabe zum	9		1984			
# Ordner "data"	10		1976			

Zeige die ersten 10 Zeilen
einiger Serien
list Y = IND YEAR n w k
print Y --byobs --range=1:10

open "./data/abdata.csv"

Datensatz um 'markers' (Beobachtungslabels) erweitern

```
nulldata 4
                                                            у
series y = \{1, 2, 3, 4\}
                                                Artur
series x = normal()
                                                Fritzi
                                                Katharina
strings S = defarray("Artur", "Fritzi",
                                                 0lga
                                                            4
  "Katharina", "Olga")
markers --from-array=S
print y x -o
# Berühre die Datenunkte
# und die Labels erscheinen
gnuplot v x --output=display
```

Tarassow Gretl und Hansl 37/61

х

-0.6772452

0.4454971

0.4316438

0.1343885

Deskriptive Statistiken

```
list Y = TND YEAR n w k
                                                     Mean
                                                              Median
                                                                        S.D.
                                                                                 Min
                                                                                         Max
                                             TND
                                                     5.123
                                                              5.000
                                                                        2.678
                                                                                1.000
                                                                                        9.000
                                             YEAR
                                                      1980
                                                                1980
                                                                        2.583
                                                                                 1976
                                                                                         1984
summary Y --simple
                                                              0.8272
                                                                     1.342
                                                                               -2.263
                                                                                        4.687
                                                     1.056
                                                     3.143
                                                            3.178
                                                                       0.2630
                                                                                2.082
                                                                                        3.812
                                             k
                                                    -0 4416
                                                              -0 6578
                                                                        1 514
                                                                                -4 431
                                                                                        3.852
                                             YEAR = 1976 (n = 80):
# Statistiken je Jahr
# wobei die Jahre
                                                                 Median
                                                                          S.D.
                                                                                    Min
                                                          Mean
                                                                                              Max
# eingeschränkt werden
                                                         1.239
                                                                 1.033 1.382
                                                                                  -1.444
                                                                                             4.588
                                             n
                                                         3.237
                                                                 3.266
                                                                        0.2683
                                                                                  2.178
                                                                                             3.812
list Y = n w k
                                                       -0.2912 -0.5390 1.518
                                                                                  -2.966
                                                                                             3.531
smpl YEAR >= 1976 \setminus
                                             YEAR = 1977 (n = 138):
  && YEAR <= 1977 --restrict
                                                               Median
                                                                        S.D.
                                                                                Min
                                                                                       Max
                                                         Mean
                                                         1 160
                                                                0 9683
                                                                        1.340 -1.952
                                                                                       4 597
summary Y --bv=YEAR --simple
                                                         3.129
                                                                 3.169
                                                                       0.2714
                                                                               2.123
                                                                                       3.730
                                                       -0.3876 -0.6218
                                                                       1.472 -3.393
                                                                                       3.477
```

Aggregation

```
# Aggregiere die folgenden Variablen
                                                        TND
                                                                 count
                                                                 41 00
                                                        1 00
                                                                            1 27
                                                                                      3 11
list Y = n w
                                                        2.00
                                                                  32.00
                                                                            1 23
                                                                                      3.50
                                                        3.00
                                                                 34.00
                                                                            0.72
                                                                                      3.25
                                                                 76.00
                                                                            1.44
                                                                                      3.32
                                                        4.00
# Gruppiere nach der Variable IND
list groupby = IND
# Berechne den Mittelwert für 'Y' für jede
# Ausprägung von 'groupby'
matrix mean values = aggregate(Y, groupby, "mean")
```

GRETI LIND HANSI Tarassow 39/61

Optionale Formatierung des Outputs printf "\n%12.2f\n", mean_values

Wegschreiben der Textausgabe

```
# Berechne den Mittelwert für 'Y' für jede
# Ausprägung von 'groupby'
matrix mean_values = aggregate(Y, groupby, "mean")
# Textausgabe als txt-Datei speichern
string filename = "./output/aggregation_mean_output.txt"

outfile "@filename
printf "\n%12.2f\n", mean_values
end outfile
```

Matrix als csv speichern und öffnen der csv

```
# Berechne den Mittelwert für 'Y' für jede
# Ausprägung von 'groupby'
matrix mean_values = aggregate(Y, groupby, "mean")
# Speichern der Matrix als csv
string filename = "./output/aggregation_als_matrix.csv"
store "@filename" --matrix=mean_values
# Matrix-csv als Datensatz einlesen für
# weitere Bearbeitung
open "@filename" --preserve
```

Sample restringieren

```
open abdata --quiet
                                                            TND
                                                                     count
                                                                                   n
                                                                                             W
                                                            1 00
                                                                      41 00
                                                                                 1 27
                                                                                            3 11
                                                            2.00
                                                                      32.00
                                                                                 1 23
                                                                                            3.50
list Y = TND YEAR n w
                                                            3.00
                                                                      34.00
                                                                                 0.72
                                                                                            3.25
                                                                      76 00
                                                                                 1 44
                                                            4 00
                                                                                            3.32
# Statistiken für alle Beobachtungen
summary Y --simple
```

- # Statistiken für Jahre zw. 1976 1978
 smpl YEAR >= 1976 && YEAR <= 1978 --restrict
 summary Y --simple</pre>
- # Wiederherstellen des vollen Datensatzes summary Y --simple

KQ Regression

- # Store coefficients
 matrix coeff = \$coeff
- # Store standard errors
 matrix stderr = \$stderr
- # Store residuals
 series uhat = \$uhat
- # Store fitted values
 series yhat = \$yhat
- # Store R^2
 scalar r2 = \$rsq

Model 9: OLS, using observations 1-1260 (n = 1031) Missing or incomplete observations dropped: 229 Dependent variable: ys

coefficient	sta. error	t-ratio	p-value		
const	4.60388	0.0351033	131.2	0.0000	**1
n	0.00626942	0.00217539	2.882	0.0040	**
W	0.00875566	0.0110959	0.7891	0.4302	

	0.00075	300 0	.0110333	0.703	0.4502	
Mean depender	nt var	4.63801	5 S.D.	dependent v	var 0.09396	1
Sum squared	resid	9.01580	0 S.E.	of regressi	ion 0.09365	0
R-squared		0.00855	1 Adju	sted R-squar	red 0.00662	2
F(2, 1028)		4.43312	5 P-va	lue(F)	0.01210	5
Log-likeliho	od	980.186	6 Akai	ke criterior	n -1954.37	3
Schwarz crite	erion	-1939.55	8 Hann	an-Ouinn	-1948.75	1

Spezifikationstests

last model estimated

Normality test
modtest --normality --quiet

White's test on homoscedasticity
modtest --white
scalar teststat_white = \$test
scalar pvalue_white = \$pvalue

RESET test on functional form
reset --squares-only

```
Test for null hypothesis of normal distribution:
Chi-square(2) = 82.810 with p-value 0.00000
```

White's test for heteroskedasticity
Test statistic: TR^2 = 29.920521,
with p-value = P(Chi-square(5) > 29.920521) = 0.000015

RESET test for specification (squares only)
Null hypothesis: specification is adequate
Test statistic: F = 12.054076,
with p-value = P(F(1,1027) > 12.0541) = 0.000538

Testen von Restriktionen

restrict # --bootstrap b[const] = 4

b[w] = 0.1
end restrict

```
# Restriktionen
                                                 Test on Model 13:
                                                 Null hypothesis: the regression parameter is zero for n
ols vs const n w
                                                 Test statistic: F(1. 1028) = 8.30579, p-value 0.00403412
                                                 Test on Model 13:
# t-Test: H0: beta(n) = 0.
                                                 Null hypothesis: the regression parameters are
# H1: beta(n) != 0
                                                 zero for the variables
help omit
                                                 n, w
                                                 Test statistic: F(2, 1028) = 4.43312, p-value 0.0121052
omit n --test-only
# F-Test: H0: beta(n) = beta(w) 0.
                                                 Restriction set
                                                 1: b[const] = 4
# H1: beta(n) != 0 und/ oder
                                                 2: b[w] = 0.1
# beta (w) != 0
list drop = n w
                                                 Test statistic: F(2, 1028) = 3675.38, with p-value = 0
omit drop --test-only
# More flexible: the restrict-block
help restrict
```

Zusammenfassung Regressionsergebnisse eines Modells

Speicher Regressionsergebnisse als RTF- (Word) oder tex-Datei.

```
open "./data/abdata.csv" --quiet --preserve
ols ys const n w --simple
tabprint --output="./output/regression_output.rtf"
```

Alternativ für tex-Dateien auch der Befehl egnprint.

Zusammenfassung Regressionsergebnisse mehrer Modelle

Speicher Regressionsergebnisse mehrer Modelle als RTF- (Word) oder tex-Datei.

```
open abdata.gdt --quiet --preserve
modeltab free
m1 <- ols ys const --quiet
modeltab add
m2 <- ols ys const n --quiet
modeltab add
m3 <- ols ys const n w --quiet
modeltab add
modeltab show
modeltab show
modeltab --output="./output/regression table.rtf"
```

Daten plotten

Plotting

- Gnuplot als Plotting-Engine (sehr leistungsfähig) (http://www.gnuplot.info/)
- Es gibt für die grundlegenden Plots bereits native Unterstützung in Gretl
- Hier einige Beispiel

Scatterplot

set verbose off
open mroz87.gdt
gnuplot WE log(FAMINC) \
 --output=display

Abbildung: Scatterplot mit Gretl

Scatterplot mit markers

open mrw.gdtquiet		school
gnuplot gdp60 schooloutput=display Recht-klick in den Plot und dann Äll data labelsäuswählen.	Algeria Angola Benin Botswana Burkina	4.5 1.8 1.8 2.9 0.4

Scatterplot mit Dummyausprägungen

```
set verbose off

open mroz87.gdt

gnuplot WE log(FAMINC) CIT --dummy \
    --output="scatterplot_factorized.png" \
    { set title "Some cool title" font ',15';\
    set linetype 1 lc rgb 'orange' ps 1;\
    set linetype 2 lc rgb 'blue' ps 0.5;\
    set xtics font ',15';\
    set grid;}
```


Abbildung: Scatterplot mit separaten Punkten je Ausprägung der Dummy-Variable CIT

Scatterplot-Matrix

```
set verbose off
open mroz87.gdt
list Y = WHRS WW HHRS
scatters WE ; Y \
   --output=display
```

```
WHRS
    000 0 0
000
       HHRS
```

Abbildung: Scatterplot mit WE auf der x-Achse aber verschiedenen Variablen auf der y-Achse

Boxplot

set verbose off open mroz87.gdt

boxplot FAMINC --output=display

Abbildung: Boxplot

Boxplot je Dummyausprägungen

```
set verbose off

open mroz87.gdt

boxplot FAMINC WE --factorized \
    --output="boxplot_factorized.png" \
    { set grid; set title "Foo" font ',15';\
    set xlabel "Ausbildungsjahre" font ',14';}
```


Abbildung: Boxplot je Ausbildungsjahr

Kern-Dichte Plot

set verbose off

open mroz87.gdt
kdplot FAMINC --output=display

Abbildung: Kerndichteschätzung

Histogramm

```
set verbose off
open mroz87.gdt
```

freq FAMINC --gamma --plot=display

Abbildung: Histogramm mit Gamma-Verteilung

Korrelationsmatrix

```
set verbose off
open mroz87.gdt
list L = 1..5
corr L --triangle --plot=display
```


Abbildung: Korrelationsmatrix

Gridplot

```
set verbose off
open data4-10

strings MyPlots

gpbuild MyPlots
    gnuplot ENROLL CATHOL
    gnuplot ENROLL INCOME
    gnuplot ENROLL COLLEGE
    boxplot INCOME REGION --factorized
end gpbuild
```

gridplot MyPlots --output=display

Abbildung: Korrelationsmatrix

Heatmap

```
open grunfeld.gdt --guiet
# Install and load the package
pkg install heatmap
include heatmap.gfn
# help heatmap
# Restict sample to the first 4
# panel units
smpl $unit < 5 --restrict</pre>
# Add information to the plot
bundle Options = \
  _(title = "Matrix A with contour lines",
  quiet = TRUE. xlabel = "Time dimension".
  ylabel = "Company")
scalar T = pd
scalar N = $nobs / $pd
matrix m = value
```


Abbildung: Heatmap

Pair-Plots

```
pkg install PairPlot
include PairPlot.gfn
#help PairPlot
open abdata --quiet
list y = n k
series factor = IND
bundle opts = _(transparency_level = 175,
  centroid = "median",
  tics = FALSE.
  pointsize = 1.5,
  centroid_pointsize = 3,
  centroid_linewidth = 3,
  height = 600,
  width = 600)
```

PairPlot(y, factor, opts)

Abbildung: Kombinationen an Scatterplots mit Faktoren