Конспект лекций курса «Анализ на многообразиях» А.В. Пенского

Авторы: Хоружий Кирилл

От: 22 ноября 2020 г.

Содержание

1	Іекция № 1	2
	.1 Векторы как дифференцирование функций	. 2
	.2 Дифференцирование как вектор	. 2
	.3 Замена координат	. 3
	.4 Коммутатор	. 3
2	Іекция № 2	3
	.1 Обратный образ	. 3
	.2 Тензор	. 4
3	Іекция № 3	4
	.1 Дифференциальная форма	. 4
	.2 Билинейные формы	
	.3 Полилинейные формы	. 5
	.4 Внешний дифференциал	. 6
4	Іекция № 4	6
	.1 Обращение с обратным образом (?)	. 6
	.2 Кривые	
	.3 Явно заданные поверхности	
	.4 Неявно заданные поверхности	
	.5 Гладкие функции и пути на поверхности	. 8
	.6 Векторы на поверхности	. 9
	.7 Замена локальных координат	. 9
5	Іекция № 5	10
	.1 Производная по направлению	. 10
	.2 Двойственность	
8	Іекция № 8	11
	.1 Деривационные формулы Гаусса-Вейнгартена	. 12
	.2 Вторая квадратичная форма	
	.3 Ковариантная производная и связность	13
	.4 Оператор Вейнгартена (Shape operator)	
	.5 Другой вариант тех же формул	. 14
10	Iекция № 10	14
	0.1 Определение параллельного поля	. 14
	0.2 Определение параллельного переноса	
	0.3 Другой сюжет	
	0.4 Геодезические	
11	Iекция № 11	17
_	1.1 Уравнение Гаусса-Бине	

1 Лекция № 1

1.1 Векторы как дифференцирование функций

Что такое вектор? С одной стороны можем посмотреть на производную функции по направлению

$$\partial_X f(A) = \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \left(f(A + \varepsilon X) - f(A) \right). \tag{1.1}$$

Что очень просто выглядит в декартовых координатах

$$\partial_X f(A) = \lim_{\varepsilon \to 0} \dots = \frac{d}{d\varepsilon} f\left(A^1 + \varepsilon X^1, \dots, A^n + \varepsilon XN\right) \Big|_{\varepsilon = 0} = \frac{\partial f}{\partial x^1} \left(A^1, \dots, A^n\right) X^1 + \dots + \frac{\partial f}{\partial x^n} \left(A^1, \dots, A^n\right).$$

Таким образом

$$\partial_X f(A) = X^i \frac{\partial f}{\partial x^i}(A). \tag{1.2}$$

Таким образом построили отображение

$$X \mapsto \partial_X|_A$$
.

Выпишем несколько свойств такого оператора

$$\partial_X (f+g)(A) = \partial_X f(A) + \partial_X g(A)$$
$$\partial_X (fg)(A) = (\partial_X f(A))g(A) + f(A)(\partial_X g(A)).$$

Что соответсвует правилу Лейбница.

1.2 Дифференцирование как вектор

Теперь зайдём с другой стороны. Рассмотрим $C^{\infty}(\mathbb{R}^n)$. Рассмотрим отображение D

$$D \colon C^{\infty}(U) \to \mathbb{R},$$

удоволетворяющее свойствам

$$D(f+g) = Df + Dg$$

$$D(fg) = (Df) \cdot g(A) + f(A) \cdot (Dg).$$

Что и назовём дифференцированием в точке A.

Легко показать, что D(const) = 0, $D\lambda f = \lambda Df$ и $f(A) = g(A) = 0 \Rightarrow D(fg) = 0$. Вспомним теперь формулу Тейлора в координатах u^1, \dots, u^n .

$$f(u^{1}, \dots, u^{n}) = f(A^{1}, \dots, A^{n}) + \frac{\partial f}{\partial u^{i}}(A^{1}, \dots, A^{n}) \cdot (u^{i} - A^{i}) + h_{ij}(u^{1}, \dots, u^{n})(u^{i} - A^{i}) \cdot (u^{j} - A^{j}).$$

Тогда

$$D(f) = 0 + \underbrace{D(u^i - A^i)}_{X^i} \frac{\partial f}{\partial u^i}(A^1, \dots, A^n).$$

Таким образом

$$Df = X^{i} \frac{\partial f}{\partial u^{i}} \left(A^{1}, \dots, A^{n} \right). \tag{1.3}$$

Итого

- 1. В ДСК $X \mapsto \partial_X \big|_A$.
- 2. В ДСК D имеет вид $\partial_X\big|_A$ для некоторого X.
- 3. Получили взаимно-однозначное соответствие векторы дифференцирование.
- 4. Определим векторы, как дифференцирование. Это определение инвариантно.

$$X = X^{i} \frac{\partial}{\partial u^{i}},\tag{1.4}$$

где (X^1, \dots, X^n) – координаты вектора в координатах (u^1, \dots, u^n) .

1.3 Замена координат

Допустим выбрали некоторые $(u^1, ..., u^n)$ и $(v^1, ..., v^n)$. Тогда

$$D = X^i \frac{\partial}{\partial u^i} = Y^j \frac{\partial}{\partial v^j}.$$

По правилу дифференцирования сложной функции

$$\frac{\partial f}{\partial u^i} = \frac{\partial v^j}{\partial u^i} \frac{\partial f}{\partial v^j}, \quad \Rightarrow \quad X^i \frac{\partial}{\partial u^i} = \underbrace{X^i \frac{\partial v^j}{\partial u^i}}_{Y^i} \frac{\partial}{\partial v^j}.$$

Получили формулу изменения координат вектора при смене системы¹ координат

$$Y^{j} = \frac{\partial v^{j}}{\partial u^{i}} X^{i} \quad \Leftrightarrow \quad Y = JX. \tag{1.5}$$

1.4 Коммутатор

Для матриц известен коммутатор вида

$$[A, B] = AB - BA.$$

Аналогично для дифференцирования

$$\left[\partial_{X},\partial_{Y}\right]f = \partial_{X}\partial_{Y}f - \partial_{Y}\partial_{X}f = X^{i}\frac{\partial}{\partial u^{i}}\left(Y^{j}\frac{\partial f}{\partial u^{j}}\right) - Y^{j}\frac{\partial}{\partial u^{j}}\left(X^{i}\frac{\partial f}{\partial u^{i}}\right) = X^{i}\frac{\partial Y^{j}}{\partial u^{i}}\frac{\partial f}{\partial u^{i}} - Y^{j}\frac{\partial X^{i}}{\partial u^{j}}\frac{\partial f}{\partial u^{j}}$$

Таким образом

$$[\partial_X, \partial_Y] f = \left[X^i \frac{\partial Y^j}{\partial u^i} - Y^i \frac{\partial x^j}{\partial u^i} \right] \frac{\partial f}{\partial u^i}. \tag{1.6}$$

Это, как ни странно, дифференциальный оператор первого порядка. Это значит что есть такое векторное поле [X,Y], что

$$\partial_{[X,Y]} = [\partial_X, \partial_Y] f.$$

Таким образом [X,Y] существует и равен

$$[X,Y] = X^{i} \frac{\partial Y^{j}}{\partial u^{i}} - Y^{i} \frac{\partial x^{j}}{\partial u^{i}}.$$
(1.7)

2 Лекция № 2

2.1 Обратный образ

Пусть

$$X^n \xrightarrow{F} X^k \xrightarrow{\varphi} \mathbb{R}$$

Или можем рассмотреть отображение

$$X^n \xrightarrow{F^*\varphi} \mathbb{R}$$
, где $F^*\varphi \stackrel{\text{def}}{=} \varphi \circ F$,

что и является обратным образом.

Пусть теперь $P \in X^n$ отображается в $F(P) \in X^k$. Пусть $W(P) \in X^n$, постороим $d_pF(W)$ – вектор $F(P) \in X^k$. Пусть $\varphi \in C^\infty(X^k)$, тогда

$$\underbrace{d_P F(W)}_{\text{BEKTOD}} \varphi \stackrel{\text{def}}{=} W(F^* \varphi). \tag{2.1}$$

Def 2.1. $d_P F - \partial u \phi \phi e p e h u u a \pi F$ в точке P.

Пусть $\varphi \circ \Psi = \varphi(v^1,\dots,v^k)$ в координатах $v^1,\dots,v^k.$ Тогда

$$F^*\varphi=\varphi(F) \qquad \Rightarrow \qquad F^*\varphi(u^1,\dots,u^k)=\underbrace{\varphi(v^1(u^1,\dots,u^n),\dots,v^k(u^1,\dots,u^n))}_{F^*\varphi\text{ B Koodduhatax }u^1,\dots,u^n}=\varphi\circ F\circ \Phi,$$

 $^{^{1}}$ «В Царство небесное войдут только те кто думают про вектор, как про дифференцирование, потому что там нет координат.»

где Φ – координатное отображение. Теперь вектор W

$$W = W^1 \frac{\partial}{\partial u^1} + \ldots + W^n \frac{\partial}{\partial u^n} = W^i \frac{\partial}{\partial u^i}.$$

Соответсвенно, по определению

$$d_P F(W) \varphi \stackrel{\text{def}}{=} W F^* \varphi, \tag{2.2}$$

расписывая, получим

$$WF^*\varphi=W^i\frac{\partial}{\partial u^i}\varphi(v^1(u^1,\ldots,u^n),\ldots)=W^i\frac{\partial\varphi}{\partial v^j}\frac{\partial v^j}{\partial u^i}=\underbrace{\frac{\partial v^j}{\partial u^i}W^i\frac{\partial}{\partial v^j}}_{d_pF(W)}\varphi.$$

А это кто? А вот матрица Якоби F, записанного в координатах v^1,\dots,v^k

$$\begin{bmatrix} d_P F(W)^1 \\ \vdots \\ d_P F(W)^k \end{bmatrix} = \begin{pmatrix} \frac{\partial v^j}{\partial u^i} \end{pmatrix} \begin{pmatrix} W^1 \\ \vdots \\ W^n \end{pmatrix}$$
 (2.3)

Тогда выясняется, что $d_P F$ – линейное отображение. Действительно,

$$d_P F(W_1 + W_2) \varphi = (W_1 + W_2) F^* \varphi = W_1 D^* \varphi + W_2 F^* \varphi = (d_P F(W_1) + d_P F(W_2)) \varphi.$$

2.2 Тензор

Есть пространство V с векторами и двойственное V^* с ковекторами, пространство линейных функций. Тогда e_1, \dots, e_n – базис в V, e^1, \dots, e^n – двойственный базис в V^* , т.е. $e^i e_j = \delta^i_j$.

Для начала скажем, что W – вектор и он же линейная функция на ковекторах.

$$W(\xi) = \xi(W) = \langle W, \xi \rangle,$$

что называется спариванием вектора и ковектора.

Пусть есть некоторая B(W,Y) – билинейная функция от двух векторов. А теперь посмотрим на линейный оператор $A\colon V\to V$, билинейную функцию от вектора и ковектора.

$$A(W,\xi) = \langle A(W), \xi \rangle$$

Обобщим до понятия тензора:

$$T: \underbrace{V^* \otimes ... \otimes V^*}_{p} \otimes \underbrace{V \otimes ... \otimes V}_{q} \to \mathbb{R},$$

где T полилинейная функция от p ковекторов и q векторов, тензор типа p,q. Они образуют линейное пространство

$$T \in \underbrace{V \otimes \ldots \otimes V}_{p} \otimes \underbrace{V^{*} \otimes \ldots \otimes V^{*}}_{q} = \mathbb{T}_{q}^{p}(V).$$

3 Лекция № 3

3.1 Дифференциальная форма

В линейной алгебре есть ковекторы, а вот в дифференциальной геометрии ковекторные поля суть дифференциальные 1-формы.

Def 3.1. Дифференциальная 1-форма – это ковекторное поле.

Def 3.2. Дифференциал функции f от векторного поля X это $df(X) \stackrel{\text{def}}{=} Xf$.

Что это нам даёт? Ну, во-первых, пусть x^1, \dots, x^n – некоторые координаты.

$$X = X^i \frac{\partial}{\partial x^i}.$$

Тогда

$$df(X) = Xf = X^{i} \frac{\partial f}{\partial x^{i}}.$$

Ho, заметим, что $\frac{\partial}{\partial x^1},\dots,\frac{\partial}{\partial x^n}$ – базис в каждой точке. Рассмотрим теперь $f=x^i$ и $X=\frac{\partial}{\partial x^j}$, тогда

$$dx^{i} \left(\frac{\partial}{\partial x^{j}} \right) = \frac{\partial x^{i}}{\partial x^{j}} = \delta^{i}_{j}. \tag{3.1}$$

Из этого следует, что dx^1,\dots,dx^n – двойственный к $\frac{\partial}{\partial x^1},\dots,\frac{\partial}{\partial x^n}$ базис в V^* . Тогда в этом базисе $df=\omega_i\,dx^i.$

Заметим, что

$$\underbrace{\omega_i \, dx^i}_{df} \left(\frac{\partial}{\partial x^j} \right) = \omega_i \delta^i_j = \omega_j, \quad \Rightarrow \quad \omega_j = df \left(\frac{\partial}{\partial x^j} \right) = \frac{\partial f}{\partial x^j}.$$

Тогда

$$df = \frac{\partial f}{\partial x^i} dx^i. {3.2}$$

Получается ковектор df расписывается по базису dx^i двойственного пространства с координатами $\partial f/\partial x^i$. А для общей 1-формы

$$\omega = \omega_i dx^i$$
,

где $\omega^1, \dots, \omega^n$ – координаты ω в локальной системе координат.

Def 3.3. ω гладкая, если $\forall X$, где X – гладкое поле, верно, что $\omega(X)$ – гладкая функция.

Lem 3.4. $\omega = \omega_i dx^i -$ гладкая $\Leftrightarrow \omega_i -$ гладкая форма $\forall i$.

3.2 Билинейные формы

Пространство билинейных форм на $V-V^*\otimes V^*=S^2V^*\oplus \Lambda^2V^*$. Что ж, в V^* базис $\boldsymbol{e}^1,\dots,\boldsymbol{e}^n$, в S^2V^* базис

$$e^i \cdot e^j(X,Y) = \frac{1}{2} \left(X^i Y^j + X^j Y^i \right),$$

а скалярное произведение

$$g = g_{ij}dx^i \cdot dx^j.$$

В кососимметрических же $\Lambda^2 V^*$ базис

$$e^{i} \wedge e^{j}(X,Y) = X^{i}Y^{j} - X^{j}Y^{i}, \quad 1 \leqslant i \leqslant j \leqslant n. \tag{3.3}$$

В таком случае, если есть некоторая кососимметрическая ω , то

$$\omega = \sum_{i < j} \omega_{ij} \, dx^i \wedge dx^j.$$

Def 3.5. Поле кососимметрических билинейных форм – дифференциальные 2-формы.

Возьмём два поля и засунем в 2-форму, получим функцию.

3.3 Полилинейные формы

Пусть V — векторное пространство, $\Lambda^k V^k$ — векторное пространство кососимметрических полилинейных функций от k векторов.

$$\omega(X_1,\ldots,X_k)\in\mathbb{R}.$$

Введём некоторое внешнее умножение

$$\wedge: \Lambda^k V^* \times \Lambda^l V^* \to \Lambda^{k+l} V^*$$

Пусть $\sigma \in \Lambda^k V^*, \, \tau \in \Lambda^l V^*, \,$ тогда

$$\sigma \wedge \tau \left(X_{1}, \dots, X_{k+l} \right) = \frac{1}{k! l!} \sum_{\pi \in S_{k+l}} \operatorname{sign}(\pi) \ \sigma \left(X_{\pi(1)}, \dots, X_{\pi(k)} \right) \ \tau \left(X_{\pi(k+1)}, \dots, X_{\pi(k+l)} \right).$$

Если в V базис $e_1,\ldots,e_k,$ то в $\Lambda^k V$ в качестве базиса можно взять

$$e^{i_1} \wedge ... \wedge e^{i_k}, \quad i_1 < ... < i_k.$$

Def 3.6. Дифференциальная k-форма – поле полилинейных кососимметрических форм от k векторов, при

$$\omega = \sum_{i_1 < \dots < i_k} \omega_{i_1, \dots, i_k} e^{i_1} \wedge \dots \wedge e^{i_k}, \tag{3.4}$$

где $\omega_{i_1,\ldots,i_k}=\omega\left(oldsymbol{e}_{i_1},\ldots,oldsymbol{e}_{i_k}
ight)$ – гладкие функции.

3.4 Внешний дифференциал

Обозначим $\Omega^k(U)$ – пространство дифференциальных k-форм на некоторой $U \in \mathbb{A}^n$. Также будем говорить, что $X^{\infty}(U) = \Omega^0(u)$ – 0-формы. У нас уже есть такое отображение

$$\Omega^0(U) \xrightarrow{d} \Omega^1(U) \xrightarrow{?} \dots$$

Ну и введём тогда операцию внешнего дифференцирования

$$d: \Omega^k(U) \to \Omega^{k+1}(U). \tag{3.5}$$

Введём её аксиоматически²

- 1) $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$;
- 2) $d(\sigma \wedge \tau) = (d\sigma) \wedge \tau + (-1)^{|\sigma|} \sigma \wedge (d\tau);$
- 3) $d^2 = 0$, r.e. $d(d\omega) = 0$;
- 4) $f \in \Omega^0(U) = C^\infty(U) \Rightarrow df(X) = Xf$.

Thr 3.7. Внешний дифференциал d существует и единственнен.

 \triangle .

І. Пусть существует внешний дифференциал. Тогда получим, что

$$d\omega = d\left(\sum_{i_1 < \dots < i_k} \omega_{i_1, \dots, i_k} dx^{i_1} \wedge \dots \wedge dx^{i_k}\right) = \sum_{i_1 < \dots < i_k} \frac{\partial \omega_{i_1, \dots, i_k}}{\partial x^i} dx^i \wedge dx^{i_1} \wedge \dots \wedge dx^{i_k}.$$
(3.6)

Собственно, подобный ответ является единственным.

II. Докажем теперь существование. Пусть x^1, \dots, x^n – координаты, тогда определим d, как (3.6). Легко показать, что такое определение удоволетворяет всем свойствам.

4 Лекция № 4

4.1 Обращение с обратным образом (?)

На данный момент у нас есть отображения для $U\in\mathbb{R}^n$ и $V\in\mathbb{R}^k$, считая $U\stackrel{F}{\longrightarrow}V$ $U\stackrel{F^*}{\longrightarrow}V\stackrel{\varphi}{\longrightarrow}\mathbb{R}$

$$C^{\infty}(U) \stackrel{F^*}{\leftarrow} C^{\infty}(V) \qquad \qquad U \stackrel{F}{\rightarrow} V \stackrel{\varphi}{\rightarrow} \mathbb{R}$$

$$T_P U \stackrel{d_P F}{\rightarrow} T_{F(P)} V \qquad \qquad U \stackrel{F^* \varphi}{\rightarrow} \mathbb{R}, \quad \text{где} \qquad F^* \varphi \stackrel{\text{def}}{=} \varphi \circ F,$$

$$d_P F \underbrace{X}_{\in T_P U} \underset{\in C^{\infty}(V)}{\varphi} = X \underbrace{F^* \varphi}_{\in C^{\infty}(U)}. \qquad (4.1)$$

С формами ситуация схожая с функциями, то есть

$$C^{\infty}(V) = \Gamma^0(V)$$
.

получается

$$\Omega^k(U) \stackrel{F^*}{\longleftarrow} \Omega^k(V),$$
 $T_U U \stackrel{d_P F}{\longrightarrow} T_{F(P)}(V).$

Теперь пусть X_1, \dots, X_k – векторное поле на U, тогда

$$(F^*\omega)(X_1,\ldots,X_k) = \omega\left(dF(X_1),\ldots,dF(X_k)\right).$$

 $^{^2}$ Формы образуют градуированную алгебру. Это такой эмпирический факт: в градуированной алгебре дифференциал должен быть с таким знаком и счастье будет.

Собственно, факт:

$$dF^*\omega = F^* d\omega. \tag{4.2}$$

И ещё факт

$$F^*(\sigma \wedge \tau) = F^*\sigma \wedge F^*\tau. \tag{4.3}$$

4.2 Кривые

Кривые должны быть гладкими, но этого недостаточно. Поэтому требуем и регулярность:

$$\forall x, y \colon F(x, y) = 0 \qquad \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\right) \neq (0, 0),$$
 (4.4)

а в параметрическом задание

$$\forall t \in (a, b) \quad \dot{\mathbf{r}}(t) = (\dot{x}(t), \dot{y}(t)) \neq (0, 0).$$
 (4.5)

Пусть F(x,y) = 0 – регулярная гладкая неявно заданная кривая. Тогда в окрестности любой своей точки её можно задать как регулярную гладкую параметрическую кривую. В самом деле,

$$F(x_0, y_0) = 0, \quad \left(\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}\Big|_{(x_0, y_0)} \neq 0\right), \quad \Rightarrow \quad \exists \varphi \in U(x_0, y_0) \colon F(x, y) \Leftrightarrow x = \varphi(y).$$

А вот пусть теперь есть гладкая регулярная параметризованная регулярная кривая (x,y)(t): $(\dot{x},\dot{y}) \neq 0$. Пусть $\dot{x} \neq 0$, тогда по тереме об обратной функции t = t(x).

4.3 Явно заданные поверхности

Регулярная (не особая) гладкая k-мерная поверхность в n-мерном аффинном пространстве, заданная параметрически.

Формально,

$$r\colon D\in\mathbb{R}^k o\mathbb{R}^n,$$
 при чем
$$\begin{cases} 1) \text{ гладкость:} & m{r}\equiv[x^1(u^1,\dots,u^k),\dots,x^n(u^1,\dots,u^k)] \\ 2) \text{ регуярность:} & \mathrm{rg}(\partial x^i/\partial u^j)=k. \end{cases}$$

где подразумевается $r \in C^{\infty}(D, \mathbb{R}^n)$. Регулярность же, по сути, это утверждение о том что в J существует невырожденный минор $k \times k$.

Пусть это $(\partial x^i/\partial u^j)$, где $i,j=1,\ldots,k$. Тогда, по теореме об обратной функции, в окрестности этой точки $u^1=u^1(x^1,\ldots,x^k)$

$$\dots$$
$$u^k = u^k (x^1, \dots, x^k).$$

Тогда, это просто график отображения

$$x^{k+1} = x^{k+1}(u^{1}(x^{1}, \dots, x^{k}), \dots, u^{k}(x_{1}, \dots, x^{k}))$$
...
$$x^{n} = x^{n}(u^{1}(x^{1}, \dots, x^{k}), \dots, u^{k}(x_{1}, \dots, x^{k}))$$

такого, что

$$\mathbb{R}^k \to \mathbb{R}^{n-k}$$

Так, например, для сферы, можно выразить $z = \sqrt{1 - x^2 - y^2}$.

4.4 Неявно заданные поверхности

Гладкая регулярная k-мерная поверхность в n-мерном афинном пространстве, заданная неявно. Тогда есть n-k уравнений

$$\begin{cases} F^1(x^1,\dots,x^n)=0\\ & \dots & \Leftrightarrow & \pmb{F}\colon\mathbb{R}^n\to\mathbb{R}^{n-k}, \quad \pmb{F}=0.\\ F^{n-k}(x^1,\dots,x^n)=0 \end{cases}$$

Аналогично мы требуем гладкость: $F^i \in C^{\infty}(\mathbb{R}^n)$, и регулярность в тех точках, где $\mathbf{F} = 0$. Условие регулярности в таком случае

$$\operatorname{rg}\left(\frac{\partial F^{i}}{\partial x^{j}}\right) = n - k. \tag{4.6}$$

Lem 4.1. Гладкая регулярная неявно заданная поверхность, может рассматриваться, как параметрическая.

 \triangle .

I. Пусть в точке P

$$\operatorname{rg}\left(\frac{\partial F^i}{\partial x^j}\right) = n - k.$$

- II. Тогда можем считать, что есть невырожденный минор $\operatorname{rg}\left(\frac{\partial F^i}{\partial x^j}\right)(P)$, где $i=1,\ldots,n-k$ и $j=k+1,\ldots,n$.
- III. По теореме о неявной функции

$$\begin{cases} x^{k+1} = x^{k+1}(x^1, \dots, x^k) \\ \dots & - & \text{гладкие.} \\ x^n = x^n(x^1, \dots, x^k) \end{cases}$$

IV. Тогда понятно, как утроен параметрический вид:

$$x^{1} = u^{1}$$

$$\dots$$

$$x^{k} = u^{k}$$

$$x^{k+1} = x^{k+1}(u^{1}, \dots, u^{k})$$

$$\dots$$

$$x^{n} = x^{n}(u^{1}, \dots, u^{k})$$

$$\Rightarrow J = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \\ & * & \end{pmatrix}, \quad \operatorname{rg} J = k.$$

Def 4.2. Назовем $x^1, ..., x^n$ координатами объемлющего пространства, а $u^1, ..., u^k$ локальными координатами.

4.5 Гладкие функции и пути на поверхности

Функции

Def 4.3. Пусть есть гладкая функция $F(x^1,...,x^n)$ – гладкая в окрестности Σ , тогда $F|_{\Sigma}$ – гладкая на поверхности Σ .

Def 4.4. Пусть $f(u^1,\dots,u^k)$ – гладкая, тогда f – гладкая функция на Σ .

Докажем равносильность двух следующих определений.

 \triangle . \Rightarrow Пусть $F(x^1, ..., x^n)$ – гладкая, тогда и $F(x^1(u^1, ..., u^k), ..., x^n(u^1, ..., u^k))$ – гладкая. \Leftarrow Пусть есть $f(u^1, ..., u^k)$ – гладкая, тогда и $f(u^1(x^1, ..., x^k), ..., u^k(x^1, ..., x^k))$ – тоже гладкая.

Пути

Def 4.5. Путь $r(u^1(t), ..., u^k(t))$ гладкий, если u^i – гладкие.

Def 4.6. Если $x^1(t), \dots, x^n(t)$ – гладкие, такие что $[x^1(t), \dots, x^n(t)] \in \Sigma$, то и путь r гладкий.

Эти определения равносильны. Получается, что пути можно описывать как в глобальных, так и в локальных координатах. Далее ограничимся рассмотрением путей в локальных координатах, ничего при этом не потеряв.

4.6 Векторы на поверхности

Точка A имеет локальные координаты u_0^1, \dots, u_0^k , то есть $A = r(u_0^1, \dots, u_0^k)$.

Если мы посмотрим на путь точки A, то увидим (считая, что в t=0 r=A).

$$\boldsymbol{r}(t) = \boldsymbol{r}(u^1, \dots, u^k)(t) \quad \Rightarrow \quad \frac{dr}{dt} = r_{u^i}(u^1(t), \dots, u^k(t)) \cdot \dot{u}^i(t).$$

где подразумевается, что

$$r_{u^i} = \frac{\partial \pmb{r}}{\partial u^i} = \left(\frac{\partial x^1}{\partial u^i}, \dots, \frac{\partial x^n}{\partial u^i}\right).$$

При t=0, увидим

$$\frac{dr}{dt}\bigg|_{t=0} = \underbrace{r_{u^i}(u_0^1, \dots, u_0^k)}_{\text{REKTODIAL}} \underbrace{\dot{u}^i(0)}_{\text{YMCIBA}},$$

где векторы зависят только от точки A, а числа зависят от конкретной кривой. Получается, что есть некоторые пространство, порожденное этими векторами.

Def 4.7. Назовём касательным пространством к Σ в точке A

$$T_A \Sigma = \operatorname{span} (r_{u^1}(A), \dots, r_{u^k}(A)).$$

Пусть есть некоторый вектор V

$$V = \alpha^i r_{u^i}(A).$$

Он может быть получен кривой $u^i=u^1_0+\alpha^1 t$. Получается, что $T_A\Sigma$ состоит в точности из векторов скорости кривых в точке A.

Lem 4.8. Размерность dim $T_A \Sigma = k$.

△. Действительно, по условию регулярности

$$\operatorname{rg}(r_{u^i}) = \operatorname{rg}\left(\frac{\partial x^i}{\partial u^j}\right) \stackrel{\operatorname{reg}}{=} k.$$

В этом и состоит геометрический смысл условия регулярности

4.7 Замена локальных координат

 ${\bf C}$ одной стороны понятно, что множество всех кривых на поверхности D инвариантно. ${\bf C}$ другой стороны интересно посмотреть, что же происходит ${\bf c}$ векторами.

$$\begin{cases} v^1 = v^1(x^1(u^1,\dots,u^k),\dots,x^k(u^1,\dots,u^k))\\ \dots & - \quad \text{диффеоморфизм.} \\ v^k = v^k(x^1(u^1,\dots,u^k),\dots,x^k(u^1,\dots,u^k)) \end{cases}$$

Действительно, Якобиан композиции равен произведению Якобианов, получается композия двух невырожденных преобразований будет невырождена.

$$r_{u^i} = \frac{\partial r}{\partial v^j} \frac{\partial v^j}{\partial u^i} = \underbrace{\frac{\partial v^j}{\partial u^i}}_{I} r_{v^i},$$

получается, что матрица перехода от базиса r_{v^j} к r_{u^i} – матрица Якоби J замены координат.

$$\forall V \in T_A \Sigma \quad V = V^i r_{v^i} = \underbrace{V^i \frac{\partial r^j}{\partial u^i}}_{\widetilde{V}_j} r_{v^j}.$$

Тогда

$$V = \widetilde{V}^j r_{v^j} \quad \Rightarrow \quad \widetilde{V}^j = \frac{\partial v^j}{\partial u^i} V^i.$$
 (4.7)

Оказывается, что если

$$\begin{pmatrix} \widetilde{V}^1 \\ \dots \\ \widetilde{V}^k \end{pmatrix} = \begin{pmatrix} \frac{\partial v^j}{\partial u^i} \end{pmatrix}_{(A)} \begin{pmatrix} V^1 \\ \dots \\ V^k \end{pmatrix}.$$

5 Лекция № 5

5.1 Производная по направлению

Раньше определили

$$\partial_V f(A) = \lim_{\varepsilon \to 0} \frac{f(A + \varepsilon V) - f(A)}{\varepsilon},$$

но сложность в том, что $A + \varepsilon V \notin \Sigma$. Но гладкую функцию с поверхности может всегда продлить в некоторую окрестность поверхности. Это продолжение F не единственно.

Def 5.1. Определим

$$\partial_V f(A) \stackrel{\text{def}}{=} \partial_V F(A),$$

при чём def инвариантно к выбору F.

 \triangle .

I. Мы дифференцируем только вдоль касательных векторов к Σ , следовательно существует кривая γ на Σ такая, что

- 1) $\forall t \ \gamma(t) \in \Sigma$
- 2) $\gamma(0) = A$
- 3) $\ddot{\gamma}(0) = V$.

II. Тогда

$$\underbrace{\frac{d}{dt}f(\gamma(t))\bigg|_{t=0}}_{t=0} = \frac{d}{dt}F(\gamma(t))\bigg|_{t=0} = \frac{\partial F}{\partial x^i}(x^1,\dots,x^n)\dot{x}^i(t)\bigg|_{t=0} = \frac{\partial F}{\partial x^i}(A)V^i = \underbrace{\partial_V F(A)}_{**},$$

считая $\gamma(t) = [x^1(t), ..., x^n(t)].$

- III. Но, т.к. * не зависит от выбора F, то и ** не зависит от выбора F. Тогда $\partial_V f(A)$ определена корректно.
- IV. К слову, ** не зависит от выбора пути, тогда и * не зависит от выбора пути.

Получается мы можем определить понятие дифференцирования гладкой функции на поверхности в точке.

Def 5.2. Для $f \colon \Sigma \to \mathbb{R}$ достаточно быть определенной в некоторой окрестности точки A. Скажем, что D –

дифференцирование на Σ в точкеA, если

1)
$$Df \in \mathbb{R}$$

2)
$$D(f + q) = Df + Dq$$

3)
$$D(fg) = (Df) \cdot g(A) + f(A) \cdot (Dg)$$
.

Пусть u^1, \dots, u^k – локальные координаты в окрестности точки A.

Lem 5.3. Для $\forall D \; \exists V^1, \dots, V^K \; maкой, \; что$

$$Df = \frac{\partial f}{\partial u^i}(A)V^i.$$

Пусть есть некоторый касательный вектор $W \in T_A \Sigma$

$$W = W^i r_{u^i}(A).$$

Тогда можно рассматривать путь $\gamma(t)$ в локальных координатах такой, что $\gamma(0) = A$, $\dot{\gamma}(0) = W$, то есть для $A = (u_0^1, \dots, u_0^k)$ и $\gamma(t) = [u^1(t), \dots, u^k(t)]$ верно, что

$$u^i(0) = u_0^i, \quad \dot{u}^i(0) = W^i.$$

Тогда

$$\partial_W f(A) = \frac{d}{dt} f(\gamma(t)) \Big|_{t=0} = \frac{\partial f}{\partial u^i}(A) W^i.$$

Получается, что **каждый** касательный вектор W даёт дифференцирование $\partial_W|_A$, и **каждое** дифференцирование в A получается из касательного вектора. Поэтому будем писать просто

$$W = \partial_W = W^i \frac{\partial}{\partial u^i}.$$
 (5.1)

5.2 Двойственность

Раз есть касательные векторы, то есть и кососимметрические полилинейные функии на них. Так приходим к следующей двойственной структуре:

- $\cdot T_P \Sigma$ касательное пространство к Σ в P,
- $T_P^*\Sigma \stackrel{\text{def}}{=} (T_P\Sigma)^*$ кокасательное пространство к Σ в P.

Получаются векторное поле $X: X(P) \in T_P\Sigma$, и ковекторное поле $\xi: \xi(P) \in T_P^*\Sigma$.

Если $u^1, ..., u^k$ – локальные координаты на Σ , то

$$\frac{\partial}{\partial u^i} = r_{u^i}$$
 — базис в $T_P \Sigma$.

Соответственно,

$$du^1,\dots,du^k$$
 — базис в $T_P^*\Sigma$.

А вот

$$du^{i_1} \wedge ... \wedge du^{i_q} -$$
 базис в $\Lambda^q T_P^* \Sigma$,

где $\Lambda^q T_P^* \Sigma$ – пространство q-форм.

8 Лекция № 8

Мы знаем, что такое $\partial_X f$ – определенная на аффинном протсранстве, поверхности и многообразии. Рассмотрим

$$\partial_X Y(A) = \lim_{\varepsilon \to 0} \frac{Y(A + \varepsilon X) - Y(A)}{\varepsilon},$$

что работает в аффинном пространстве или для касательных x на поверхностях в аффинном пространстве (для касательного X).

Например, когда

$$Y = (Y^1, \dots, Y^n)^{\mathrm{T}}, \quad (\partial_X Y)^i = \partial_X Y^i = X^i \frac{\partial Y^i}{\partial x^i}.$$

Con 8.1. Если X, Y – векторные поля в аффинном пространстве, то

$$[X,Y] = \partial_X Y - \partial_Y X.$$

△. Т.к.

$$[X,Y]^i = X^i \frac{\partial Y^i}{\partial x^i} - Y^i \frac{\partial X^i}{\partial x^i}.$$

Lem 8.2. Если X, Y – касательные векторные поля на $\Sigma \subset \mathbb{R}^n$, то [X, Y] – тоже касательное векторное поле.

Размерность $\dim T_A \Sigma = \dim \Sigma = k$, нормальное пространство $N_A \Sigma = (T_A \Sigma)^{\perp}$, тогда $\dim N_A \Sigma = n-k$. Пусть есть вектор V, тогда $V = P(V) + (\operatorname{id} - P)(V)$, где P – ортогональный проектор на касательное пространство $T_A \Sigma$

$$P_A \colon \mathbb{R}^n \mapsto \mathbb{R}^n, \tag{8.1}$$

который гладко зависит от точки A, т.к. r_{u^1}, \dots, r_{u^k} гладко зависят от A, но этот базис можем привести к ОНБ, гладкими преобразованиями.

Lem 8.3. P – гладкое поле операторов.

8.1 Деривационные формулы Гаусса-Вейнгартена

Y – касательное векторное поле, ξ – нормальное векторное поле, X – касательный вектор (в точке A).

$$\partial_X Y = \underbrace{P(\partial_X Y)}_{\nabla_X Y} + \underbrace{(\mathrm{id} - P)(\partial_X Y)}_{B(X,Y)} \tag{8.2}$$

$$\partial_X \xi = \underbrace{P(\delta_X \xi)}_{-W_{\xi}(X)} + \underbrace{(\mathrm{id} - P)(\partial_X \xi)}_{\nabla_X^{N \Sigma} \xi}$$
(8.3)

Def 8.4. Далее $\Gamma(T\Sigma)$ – множество касательных векторных полей на Σ , а $\Gamma(N\Sigma)$ – множество нормальных векторным полей (на Σ).

8.2 Вторая квадратичная форма

Def 8.5. Вторая квадратичная форма $B(X,Y) = (\mathrm{id} - P)(\partial_X Y)$.

В частности, её свойства:

- I) $B: T_A\Sigma \times \Gamma(T\Sigma) \mapsto N_A\Sigma;$
- II) при $X \in \Gamma(T\Sigma)$ $B: \Gamma(T\Sigma) \times \Gamma(T\Sigma) \mapsto \Gamma(N\Sigma)$;
- III) B линейна по X;
- IV) $X, Y \in \Gamma(T\Sigma)$ \Rightarrow B(X, Y) = B(Y, X);
- V) B(X,Y)(A) зависит только от X(A) и Y(A).;
- VI) $B: T_A\Sigma \times T_A\Sigma \mapsto N_A\Sigma$.;
- VII) B(X,Y) линейна по Y.

 \triangle_{IV} .

$$B(X,Y) - B(Y,X) = (\mathrm{id} - P) (\partial_X Y - \partial_Y) = (\mathrm{id} - P) \underbrace{([X,Y])}_{\text{касат. поле}} = 0$$

Lem 8.6. B – симметрическая билинейная форма со значениями в нормальном векторном пространстве.

Пусть e_1, \dots, e_k – базис в касательных векторных полях. Т.е. это такие векторные поля, что в любой точке A векторы $e_1(A), \dots, e_k(A)$ – базис в $T_A\Sigma$. Аналогично пусть $\eta_1, \dots, \eta_{n-k}$ – базис в нормальных векторных полях.

$$\begin{split} X &= X^i e_i, & i &= 1, \dots, k \\ Y &= Y^j e_j & j &= 1, \dots, k \\ B(X,Y) &= B(X^i e_i, Y^j e_j) = X^i Y^j \underbrace{B(e_i, e_j)}_{\text{H. B. поле}} = X^i Y^j b^\nu_{ij} \eta_\nu, & \nu &= 1, \dots, n-k \end{split}$$

где b_{ij}^k – локальные коэффициенты B.

8.3 Ковариантная производная и связность

Def 8.7. Связностью в касательном расслоении к поверхности назовём ∇ . Ковариантной производной Y вдоль X в касательном расслоении к поверхности назовём

$$\nabla_X Y = P(\partial_X Y). \tag{8.4}$$

Что оно деает? Во-первых

$$\nabla \colon T_A \Sigma \times \Gamma(T\Sigma) \mapsto T_A \Sigma$$
,

или, если X – касательное поле, то

$$\nabla \colon \Gamma(T\Sigma) \times \Gamma(T\Sigma) \mapsto \Gamma(T\Sigma).$$

Во-вторых $\nabla_X Y$ линейна X, т.е.

$$\nabla_{X_1 + X_2} Y = \nabla_{X_1} Y + \nabla_{X_2} Y,$$

$$\nabla_{fX} Y = f \nabla_X Y$$

A ещё линейная по Y

$$\nabla_X(Y_1 + Y_2) = \nabla_X Y_1 + \nabla_X Y_2.$$

Также верно тождество Лейбница.

$$\nabla_X(fY) = \partial_X fY + f\partial_X Y. \tag{8.5}$$

Действительно,

$$\nabla_X(fY) = P(\partial_X(fY)) = P(\partial_X fY + f\partial_X Y).$$

Также верна симметричность

$$\nabla_X Y - \nabla_Y X = [X, Y]. \tag{8.6}$$

В силу того, что

$$\nabla_X Y - \nabla_Y X = P([X, Y]) = [X, Y].$$

И последнее,

$$\partial_X (Y, Z) = (\partial_X Y, Z) + (Y, \partial_X Z).$$

Хорошо.

В координатах
$$X = X^i e_i$$
, $YY^j e_j$, где $i, j = 1, \dots, k$.
$$\nabla_X Y = \nabla_{X^i e_i} (Y^j e_j) = X^i \nabla_{e_i} (Y^j e_j) = X^i \left(\left(\partial_{e_i} Y^j \right) e_j + Y^j \overleftarrow{\nabla_{e_i} e_j} \right) = X^i \left(\partial_{e_i} Y^l + Y^j \Gamma^l_{ij} \right) e_l$$

$$\Leftrightarrow \boxed{ \left(\nabla_X Y \right)^l = X^i \left(\partial_{e_i} Y^l + Y^j \Gamma^l_{ij} \right) }$$

Если мы выберем базис (голономный базис), который состоит из

$$e_1 = \frac{\partial}{\partial u^1}, \dots, e_k = \frac{\partial}{\partial u^k},$$

то

$$\left(\nabla_X Y\right)^l = X^i \left(\frac{\partial Y^l}{\partial u^i} + Y^j \Gamma^l_{ij}\right).$$

Def 8.8. Γ^l_{ij} – символ Кристофеля, коэффициенты разложения ковариантной производной координатных векторов ∂_i по базису $\nabla_{\partial_j}\partial_i = \Gamma^k_{ij}\partial_k$.

Def 8.9. Назовем $\nabla^{N\Sigma}$ связностью в нормальном расслоении к поверхности, а

$$\nabla_X^{N\Sigma} \xi \equiv \nabla_X \xi = (\mathrm{id} - P) (\partial_X \xi), \qquad (8.7)$$

 $\kappa o вариантной производной \xi$ вдоль X в нормальном расслоении.

Как это работает?

$$\nabla^{N\Sigma} \colon T_A \Sigma \times \Gamma(N\Sigma) \mapsto N_A \Sigma;$$
$$\nabla^{N\Sigma} \colon \Gamma(N\Sigma) \times \Gamma(N\Sigma) \mapsto \Gamma(N\Sigma).$$

Аналогично раннему, это производная линейная по первому и второму аргументу, работает тождество Лейбница, согласовано с метрикой – всё хорошо. Но оно не симметрично!

В координатах $X=X^ie_i$ с $i=1,\ldots,k$ и $\xi=\xi^\nu\eta_\nu$ с $\nu=1,\ldots,n-k$. Тогда

$$\nabla_X^{N\Sigma} = X^i \left(\left(\partial_{e_i \xi^{\nu}} \right) \eta_{\nu} + \xi^{\nu} \overbrace{\nabla_{e_i}^{N\Sigma} \eta_{\nu}}^{K_{i\nu}^{\mu} \eta_{\mu}} \right) \qquad \Rightarrow \qquad \left[\nabla_X^{N\Sigma} = X^i \left(\partial_{e_i} \xi^{\mu} + \xi^{\nu} K_{i\nu}^{\mu} \right) \eta_{\mu} \right].$$

Def 8.10. $K^{\mu}_{i\nu}$ – локальные коэффициенты связности в нормальном расслоении.

8.4 Оператор Вейнгартена (Shape operator)

Def 8.11. Оператор Вейнгартена – $W_{\xi}(X) = -P(\partial_X \xi)$.

Что он делает?

$$W: \Gamma(N\Sigma) \times T_A\Sigma \to T_A\Sigma.$$

В частности

$$(W_{\varepsilon}(X), Y) = (B(X, Y), \xi).$$

K слову, $W_X\xi(A)$ зависит только от $\xi(A)$ и X(A), т.е.

$$W: N_A\Sigma \times T_A\Sigma \mapsto T_A\Sigma$$
,

но если зафиксировать ξ , то

$$W_{\xi}: T_A\Sigma \mapsto T_A\Sigma.$$

Можно это всё расписать в координатах.

$$W_{\xi}(X) = X^i \xi^{\nu} \omega_{\nu i}^j e_i$$
.

Подставив в $(W_{\xi}(X), Y) = (B(X,Y), \xi)$, считая $X = e_i, \xi = \eta_{\nu}, Y = e_j$.

$$\omega_{\nu i}^{l}\underbrace{(e_{l}, e_{j})}_{g_{l j}} = b_{i j}^{\mu}\underbrace{(\eta_{\mu}, \eta_{\nu})}_{g_{\mu \nu}}, \quad \Rightarrow \quad \boxed{\omega_{\nu i}^{l} g_{l j} = b_{i j}^{\mu} g_{\mu \nu} \ \Rightarrow \ \omega_{\nu i}^{m} = b_{i j}^{\mu} g_{\mu \nu} g^{j m}}.$$

где g_{lj} – матричный элемент матрицы $I_A = (,) \big|_{T_A\Sigma}$, то есть матрицы первой квадратичной формы, метрики касательного расслоения. А вот $g_{\mu\nu}$ – элемент матрицы $(,) \big|_{N_A\Sigma}$, метрики в нормальном расслоении.

8.5 Другой вариант тех же формул

Пусть $x=e_i,\ Y=e_j, \xi=\eta_{\nu}.$ Тогда

$$\partial_{e_i} e_j = \Gamma^l_{ij} e_l + b^{\nu}_{ij} \eta_{\nu}$$
$$\partial_{e_i} \eta_{\nu} = -b^{\mu}_{ij} g_{\mu\nu} g^{jm} e_m + K^{\mu}_{i\nu} \eta_{\mu}.$$

Плоская кривая в нормальном параметре

10 Лекция № 10

Параллельный перенос на поверхностях – штука непростая. Хотелось бы двигаться в сторону внутренней геометрии и уходить от объемлющего пространства. Есть некоторая наивная идея. Давай возьмём вектор X в точках A и B. Спроецируем X на пространство с помощью $P_B(X)$. Тогда в $\Sigma^k \subset \mathbb{R}^n$ увидим, что длины не сохраняются.

Другой вариант, посмотрим на $\gamma(t) \in \Sigma$ и $Y(t) \in T_{\gamma(t)}\Sigma$. Рассмотрим Y(t) в $\gamma(t)$ и $Y(t), Y(t+\varepsilon)$ в $\gamma(t=\varepsilon)$.

10.1 Определение параллельного поля

 ${f Def~10.1.}$ Поле Y(t) параллельно вдоль кривой $\gamma(t),$ если

$$P_{\gamma(t+\varepsilon)}Y(t) = Y(t+\varepsilon) + o(\varepsilon),$$

при $\varepsilon \to 0$.

Пусть $Y(t) \parallel \gamma(t)$.

$$P_{\gamma(t+\varepsilon)}Y(t+\varepsilon) - P_{\gamma(t+\varepsilon)}Y(t) = o(\varepsilon), \qquad \Rightarrow \qquad \underbrace{P_{\gamma(t+\varepsilon)}}_{P_{\gamma(t)}+\varepsilon Q + o(\varepsilon)}\underbrace{(Y(t+\varepsilon) - Y(t))}_{\varepsilon \frac{dY}{dt}(t) + o(\varepsilon)} = o(\varepsilon),$$

раскрыв скобки, приходим к

$$\varepsilon P_{\gamma(t)}\left(\frac{dY}{dt}\right) = o(\varepsilon), \quad \Rightarrow \quad P_{\gamma(t)}\left(\frac{dY}{dt}\right) = o(1), \quad \Rightarrow \quad \boxed{P_{\gamma(t)}\left(\frac{dY}{dt}\right) = 0.}$$
(10.1)

при $\varepsilon \to 0$. Вспомнив, что

$$\frac{df(\gamma(t))}{dt} = \partial_{\dot{\gamma}} f,\tag{10.2}$$

приходим к

$$P_{\gamma(t)}(\partial_{\dot{\gamma}}Y) = 0 \quad \Rightarrow \quad \boxed{\nabla_{\dot{\gamma}}Y = 0},$$
 (10.3)

так мы пришли к уравнению параллельного переноса.

Пусть u^1, \dots, u^k – локальные координаты, $\gamma(t) = \left(u^1(t), \dots, u^k(t)\right)$ – кривая, $\dot{\gamma}(t) = \left(\dot{u}^1(t), \dots, \dot{u}^k(t)\right)$ – направляющий вектор кривой. Вспомним, что

$$\nabla_X Y = X^i \left(\frac{\partial Y^l}{\partial u^i} + Y^j \Gamma^l_{ij} \right) \frac{\partial}{\partial u^l},$$

и подставив $X = \dot{\gamma}, \ X^i = \dot{u}^i(t)$

$$\nabla_{\dot{\gamma}}Y = 0 \quad \Rightarrow \quad \dot{u}^i(t)\frac{\partial Y^l}{\partial u^i} + \dot{u}^i(t)Y^j\Gamma^l_{ij} = 0, \quad l = 1, \dots, k$$

Посмотрим чуть подробнее на

$$\frac{\partial Y^l}{\partial u^i}\dot{u}^i(t) = \frac{\partial Y^l}{\partial u^i}\frac{du^i}{dt} = \frac{dY^l}{dt},$$

таким образом

$$\dot{Y}^{l} + \Gamma_{ij}^{l} \left(u^{1}(t), \dots, u^{k}(t) \right) \dot{u}^{i}(t) Y^{j}(t) = 0 \quad \Leftrightarrow \quad \dot{Y}^{l} + \Gamma_{ij}^{l} \dot{u}^{i} Y^{j} = 0.$$
(10.4)

Что у нас тут известно? Известны $u^1(t),\ldots,u^k(t)$ – наша кривая γ , известны $\Gamma^l_{ij}(u^1(t),\ldots,u^k(t))$. Неизвестными остаются $Y^1(t),\ldots,Y^k(t)$. Получается система **линейных** дифференциальных уравнений І-го порядка на $Y^1(t),\ldots,Y^k(t)$. Возникает задача Коши:

$$\begin{cases} \dot{Y}^l + \Gamma^l_{ij} \dot{u}^i Y^j = 0, & l = 1, \dots, k \\ Y^l(t_0) = Y^l_0, & l = 1, \dots, k \end{cases} \Leftrightarrow \begin{cases} \nabla_{\dot{\gamma}} Y = 0 \\ Y(t_0) = Y_0 \end{cases}$$

$$(10.5)$$

Thr 10.2. Пусть Σ – поверхность, $\gamma(t)$ – кривая на Σ , $Y_0 \in T_{\gamma(t_0)}\Sigma$. Тогда на всей γ существует и единственно параллельное вдоль γ векторное поле Y(t), такое что $Y(t_0) = Y_0$.

10.2 Определение параллельного переноса

Def 10.3. Результат параллельного переноса касательного в точке A вектора Y_0 в точку B вдоль кривой $\gamma(t)$, такой что $\gamma(t_0) = A$, $\gamma(t_1) = B$, – это вектор $Y(t_1)$ единственного параллельного вдоль $\gamma(t)$ векторного поля Y(t), такого что $Y(t_0) = Y_0$.

$$Y(t_1) = \prod_{A \stackrel{\gamma}{\mapsto} B} Y_0$$

Lem 10.4. При параллельном переносе сохраняются длины и углы.

 \triangle . Пусть Y, Z – параллельны вдоль γ . Посмотрим на $\langle Y, Z \rangle(t)$

$$\frac{d}{dt}\langle Y(t), Z(t)\rangle = \partial_{\dot{\gamma}}\langle Y, Z\rangle = \langle \nabla_{\dot{\gamma}} \cdot Y, Z\rangle + \langle Y, \nabla_{\dot{\gamma}} \cdot Z\rangle = 0,$$

в силу того, что Y, Z – параллельные поля.

В частности, (для петли) $A = \gamma(t_0) = \gamma(t_1)$ верно, что для $\Pi_{A \xrightarrow{\gamma} A} \colon T_A \Sigma \mapsto T_A \Sigma$ параллельный перенос – ортогональный линейный оператор. В частности, если поверхность ориентируемая, то всё хорошо.

10.3 Другой сюжет

Из линейности

$$Y(t) = \Pi(t)Y_0(t)$$
 \Rightarrow $Y^l(t) = \Pi_m^l(t)Y_0^m.$

Подставляя в

$$\begin{cases} \dot{Y}^l + \Gamma^l_{ij} \dot{u}^i Y^j = 0, & l = 1, \dots, k \\ Y^l(t_0) = Y^l_0, & l = 1, \dots, k \end{cases}$$

приходим к

$$\begin{cases} \dot{\Pi}_m^l Y_0^m + \Gamma_{ij}^l \dot{u}^i \Pi_m^j Y_o^m = 0 \\ \Pi_m^l(t_0) Y_o^m = Y_0^l \end{cases} \quad \Rightarrow \quad \begin{cases} \dot{\Pi}_m^l + \Gamma_{ij}^l \dot{u}^i \Pi_m^j = 0 \\ \Pi_m^l(t_0) = \delta_m^l \end{cases}$$

Так мы пришли к задаче Коши на матрицу оператора параллельного переноса.

Просто решая диффур такого вида придём к

$$\begin{cases} \dot{y}(t) + a(t)y(t) = 0 \\ y(t_0) = y_0 \end{cases} \Rightarrow y(t) = y_0 \exp\left(-\int_{t_0}^t a(t) dt\right). \tag{10.6}$$

Одно трагическое но – матрицы не коммутируют. Вот если бы коммутировали, то

$$\Pi(t) = \exp\left(-\int_{t_0}^t \Gamma(\dot{\gamma}) dt\right),\,$$

где

$$\Gamma_{ij}^l \dot{u}^i \stackrel{?}{=} \Gamma_j^l (\dot{\gamma}). \tag{10.7}$$

Вообще решение этой штуки пишется через *мультипликативный интеграл*. Но, в ОНБ, т.к. матрицы из SO(2) коммутируют, более того кососимметрические матрицы 2×2 тоже коммутируют. Мораль: в ОНБ касательных векторных полей на двумерной поверхности верно, что

$$\Pi(t) = \exp\left(-\int_{t_0}^t \Gamma(\dot{\gamma}) dt\right). \tag{10.8}$$

В лекции №9 выяснили, что

$$d\Gamma_2^1 = K \underbrace{e^1 \wedge e^2}_{dS}.$$

Применим это к петле на двумерие, где Г кососимметрична

$$\Pi(t_1) = \exp\left[-\int_{t_0}^{t_1} \begin{pmatrix} 0 & \Gamma_2^1(\dot{\gamma}) \\ -\Gamma_2^1(\dot{\gamma}) & 0 \end{pmatrix} dt\right] = \exp\left(\begin{matrix} 0 & -\int_{t_0}^{t_1} \Gamma_2^1(\dot{\gamma}) \\ +\int_{t_0}^{t_1} \Gamma_2^1(\dot{\gamma}) & 0 \end{matrix}\right).$$

Посмотрим теперь на $\Gamma_2^1 = P du + Q dv$, с учётом формулы Грина

$$\oint_{\gamma} P \, du + Q \, dv = \iint_{\Omega} \left(\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} \right) \, du \wedge \, dv \qquad \Rightarrow \qquad d(P \, du + Q \, dv) = \left(\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} \right)$$

получим, по (10.9)

$$\int_{t_0}^{t_1} \Gamma_2^1(\dot{\gamma}) dt = \iint_{\Omega} d\Gamma_2^1 = \iint_{\Omega} K dS \quad \Rightarrow \quad \Pi(t_1) = \exp \begin{pmatrix} 0 & \iint_{\Omega} K dS \\ -\iint_{\Omega} K dS & 0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix},$$

где $\alpha = \iint_{\Omega} K \, dS$. Утверждение, которое легко проверить, но не будем

$$\exp\begin{pmatrix} 0 & \alpha \\ \alpha & 0 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}. \tag{10.9}$$

Thr 10.5. При параллельном переносе вдоль границы области Ω на двумерной поверхности вектор поворачивается на угол $\alpha = \iint_{\Omega} K \, dS$.

10.4 Геодезические

Нормальная кривизна $k_n=|(\mathrm{id}-\mathrm{P})(\ddot{\gamma})|=|B(\dot{\gamma},\dot{\gamma})|$, где $\dot{=}d/ds,\,s$ – натуральный параметр. Геодезическая кривизна $k_g=|\mathrm{P}(\ddot{\gamma})|=|\nabla_{\dot{\gamma}}\dot{\gamma}|$. По теореме пифагора $k=\sqrt{k_n^2+k_g^2}$, принимая во внимание, что $k_n\equiv k_n(\dot{\gamma}),$ то среди всех кривых с заданной касательной прямой, наименьшую имеет такая, у которой геодезическая кривизна $k_g=0$.

$$k_q = 0 \iff \|\nabla_{\dot{\gamma}}\| = 0 \iff \nabla_{\dot{\gamma}} = 0.$$

 $^{^{3}}$ Это одно из описаний таких кривых, как решения некоторой экстремальной задачи.

Def 10.6. Уравнение геодезической

$$\nabla_{\dot{\gamma}}\dot{\gamma} = 0, \tag{10.10}$$

а кривая, которая удовлетворяет этому уравнению называется геодезической.

Lem 10.7. Если $k_n = 0$, то кривая – решение уравнения геодезических при натуральной параметризации.

Заметим, что $\nabla_{\dot{\gamma}}\dot{\gamma}=0$, это уравнение напоминает уравнение параллельного переноса, в частности $\nabla_{\dot{\gamma}}\dot{\gamma}=0$ \Rightarrow $\dot{\gamma}$ параллельно вдоль γ \Rightarrow $\|\dot{\gamma}\|=\mathrm{const.}$

Def 10.8. Если s — натуральный параметр, то t = as + b, где a, b константы, называется натуральный аффинный параметр.

Lem 10.9. Пусть $\gamma(t)$ – решение уравнения геодезических $\nabla_{\gamma'_t} \gamma'_t = 0$. Тогда t – натуральный аффинный параметр.

 \triangle . Если $\nabla_{\gamma_t'}\gamma_t'=0$, то $\|\gamma_t'\|=\|d\gamma/dt\|=c$, тогда пусть t=s/c

$$\frac{d\gamma}{ds} = \frac{d\gamma}{dt}\frac{dt}{ds} = \frac{1}{c}\frac{d\gamma}{dt} \quad \Rightarrow \quad \left\|\frac{d\gamma}{ds}\right\| = \left\|\frac{1}{c}\frac{d\gamma}{dt}\right\| = \frac{c}{c} = 1,$$

таким образом t = s/c – аффинный натуральный параметр.

Lem 10.10. Пусть $\gamma(t)$ – решение уравнения геодезических $\nabla_{\dot{\gamma}}\dot{\gamma}=0$. Тогда геодезическая кривизна этой кривой $k_q=0$.

Таким образом геодезические – это в точности кривые с $k_g = 0$ в различных аффинных натуральных параметризациях.

Теперь вспомним, что $\nabla_{\dot{\gamma}}Y = 0 \Leftrightarrow \dot{Y}^l + \Gamma^l_{ij}\dot{u}^iY^j = 0$. Посмотрим теперь на $\nabla_{\gamma'_t}\gamma'_t = 0$, то есть подставим вместо $Y = \dot{\gamma} \Rightarrow Y^l = \dot{u}^l \Rightarrow \dot{Y}^l = \ddot{u}^l$:

$$\ddot{u}^l + \Gamma^l_{ij} \dot{u}^i \dot{u}^j = 0, \quad l = 1, \dots, k$$
 (10.11)

это уравнения геодезических в координатах, система **нелинейных** ОДУ II-го порядка на неизвестные (неизвестна кривая) $u^1(t), \dots, u^k(t)$. Точнее

$$\ddot{\ddot{u}}^l(t) + \underbrace{\Gamma^l_{ij}(u^1(t),\dots,u^k(t))}_{\text{нелинейная вещь}} \dot{u}^i(t)\dot{u}^j(t) = 0, \qquad l = 1,\dots,k$$

11 Лекция № 11

11.1 Уравнение Гаусса-Бине