ACACES 2018 Summer School

GPU Architectures: Basic to Advanced Concepts

Adwait Jog, Assistant Professor

College of William & Mary (http://adwaitjog.github.io/)

Course Outline

- Lectures 1 and 2: Basics Concepts
 - Basics of GPU Programming
 - Basics of GPU Architecture
- Lecture 3: GPU Performance Bottlenecks
 - Memory Bottlenecks
 - Compute Bottlenecks
 - Possible Software and Hardware Solutions
- Lecture 4: GPU Security Concerns
 - Timing channels
 - Possible Software and Hardware Solutions

Key GPU Performance Concerns

Memory Concerns: Data transfers between SMs and global memory are costly.

Compute Concerns: Threads that do not take the same *control* path lead to serialization in the GPU compute pipeline.

lime

Reducing Off-Chip Access

- Re-writing software to use "shared memory" and avoid un-coalesced global accesses is difficult for the GPU programmer.
- □ Recent GPUs introduce hardware-managed caches (L1/L2), but large number of threads lead to thrashing.
- □ General purpose code, now being ported to GPUs, has branches and irregular accesses. Not always possible to fix them in the code.

We need intelligent hardware solutions!

I) Alleviating the Memory Bottlenecks

 Memory concerns: Thousands of threads running on SMs need data from DRAM, however, DRAM bandwidth is limited. Increasing it is very costly

- Q1. How can we use caches effectively to reduce the bandwidth demand?
- Q2. Can we effectively data compression and reduce the data consumption?
- Q3. How can we effectively/fairly allocate memory bandwidth across concurrent streams/apps?

Quantifying Memory Bottlenecks

Percentage of total execution cycles wasted waiting for the data to come back from memory.

Strategies

- Cache-Aware Warp Scheduling Techniques
 - Effective caching → Less Pressure on Memory

- Employing Assist Warps for Helping Data Compression
 - Bandwidth Preserved
- Bandwidth Allocation Strategies for Multi-Application execution on GPUs
 - Better System Throughput and Fairness

Application-Architecture Co-Design

- Architecture: GPUs typically employ smaller caches compared to CPUs
- Scheduler: Many warps concurrently access the small caches in a *round-robin* manner leading to thrashing.

Cache Aware Scheduling

Philosophy: "One work at a time"

- Working
 - Select a "group" (work) of warps
 - Always prioritizes it over other groups
 - Group switch is not round-robin

- Benefits:
 - Preserve locality
 - Fewer Cache Misses

Improve L1 Cache Hit Rates

Fewer warp groups access the cache concurrently → Less cache contention

Reduction in L1 Miss Rates

- 25% improvement in IPC across 19 applications
- Limited benefits for cache insensitive applications
- Software Support (e.g., specify data-structures that should be "uncacheable")

Other Sophisticated Mechanisms

- Rogers et al., Cache Conscious Wavefront Scheduling, MICRO'12
- Kayiran et al., Neither more Nor Less: Optimizing Thread-level Parallelism for GPGPUs, PACT'13
- Chen et al., Adaptive cache management for energy-efficient GPU computing, MICRO'14
- Lee et al., CAWS: criticality-aware warp scheduling for GPGPU workloads

Strategies

- Cache-Aware Warp Scheduling Techniques
 - Effective caching → Less Pressure on Memory

- Employing Assist Warps for Helping Data Compression
 - Bandwidth Preserved
- Bandwidth Allocation Strategies for Multi-Application execution on GPUs
 - Better System Throughput and Fairness

Challenges in GPU Efficiency

The memory bandwidth bottleneck leads to idle cores

Thread limits lead to an underutilized register file

Motivation: Unutilized On-chip Memory

- 24% of the register file is unallocated on average
- Similar trends for on-chip scratchpad memory

Motivation: Idle Pipelines

Motivation: Summary

Heterogeneous application requirements lead to:

- □ Bottlenecks in execution
- □ldle resources

Our Goal

■ Use idle resources to do something useful: accelerate bottlenecks using helper threads

 A flexible framework to enable helper threading in GPUs: Core-Assisted Bottleneck Acceleration (CABA)

Helper threads in GPUs

- Large body of work in CPUs ...
 - [Chappell+ ISCA '99, MICRO '02], [Yang+ USC TR '98], [Dubois+ CF '04], [Zilles+ ISCA '01], [Collins+ ISCA '01, MICRO '01], [Aamodt+ HPCA '04], [Lu+ MICRO '05], [Luk+ ISCA '01], [Moshovos+ ICS '01], [Kamruzzaman+ ASPLOS '11], etc.
- □ However, there are new challenges with GPUs...

How do you efficiently
manage and use helper threads
in a throughput-oriented architecture?

Managing Helper Threads in GPUs

Where do we add helper threads?

Approach #1: Software-only

Helper threads

- ✓ No hardware changes
- x Coarse grained
- x Synchronization is difficult
- Not aware of runtime program behavior

Where Do We Add Helper Threads?

Other functionality

In the paper:

- More details on the hardware structures
- Data communication and synchronization
- Enforcing priorities

CABA: Applications

- Data compression
- Memoization
- Prefetching
- Encyrption ...

A Case for CABA: Data Compression

Data compression can help alleviate the memory bandwidth bottleneck - transmits data in a more condensed form

 CABA employs idle compute pipelines to perform compression

Data Compression with CABA

- Use assist warps to:
 - Compress cache blocks before writing to memory
 - Decompress cache blocks before placing into the cache
- □ CABA flexibly enables various compression algorithms
- □ Example: BDI Compression [Pekhimenko+ PACT '12]
 - Parallelizable across SIMT width
 - Low latency
- Others: FPC [Alameldeen+ TR '04], C-Pack [Chen+ VLSI '10]

Walkthrough of Decompression

Walkthrough of Compression

Effect on Performance

- CABA provides a 41.7% performance improvement
- CABA achieves performance close to that of designs with no overhead for compression

Effect on Bandwidth Consumption

Data compression with CABA alleviates the memory bandwidth bottleneck

Conclusion

- Observation: Imbalances in execution leave GPU resources underutilized
- Goal: Employ underutilized GPU resources to do something useful – accelerate bottlenecks using helper threads
- Challenge: How do you efficiently manage and use helper threads in a throughput-oriented architecture?
- Solution: CABA (Core-Assisted Bottleneck Acceleration, ISCA'15)
 - A new framework to enable helper threading in GPUs
 - Enables flexible data compression to alleviate the memory bandwidth bottleneck
 - A wide set of use cases (e.g., prefetching, memoization)

Strategies

- Cache-Aware Warp Scheduling Techniques
 - Effective caching → Less Pressure on Memory

- Employing Assist Warps for Helping Data Compression
 - Bandwidth Preserved
- Bandwidth Allocation Strategies for Multi-Application execution on GPUs
 - Better System Throughput and Fairness

Discrete GPU Cards --- Scaling Trends

2008

2010

2012

2014

2016

2018

GTX 275
(Tesla)
240
CUDA
Cores
(127
GB/sec)

GTX 480
(Fermi)
448
CUDA
Cores
(139
GB/sec)

GTX 680 (Kepler) 1536 CUDA Cores (192 GB/sec) GTX 980
(Maxwell)
2048
CUDA
Cores
(224
GB/sec)

GP 100 (Pascal) 3584 CUDA Cores (720 GB/sec) GV 100 (Volta) 5120 CUDA Cores (900 GB/sec)

Multi-Application Execution

- Not all applications have enough parallelism
 - GPU resources can be under-utilized
- Multiple CPUs send requests to GPUs
- Multiple players concurrently play games on the cloud

System Throughput (Jobs/sec)

System Throughput (Jobs/sec) **GUPS GAUSS** 1.6 Weighted Speedup 0.8 0.6 0.4 0.2 GAUSS+GUPS: Only 2% improvement in

System throughput, over running alone

Memory Bandwidth Allocation

GUPS (Heavy Application) hurts other light applications

Fairness

What is the best way to allocate bandwidth to different applications?

- Fairness problems in the system
 - Unequal performance impact

1. Infrastructure Development

Many existing CUDA applications do not employ "CUDAStreams" to enable multi-programmed execution

Developed GPU concurrent application framework to enable multi-programming in GPUs

Available at https://github.com/adwaitjog/mafia

2. Application Performance Modeling

Performance CL

Attained Bandwidth (BW)

Misses Per Instruction (MPI)

is less than 10% averaged across 22 applications

Bandwidth Sharing Mechanisms

- Metric: Weighted Speedup (WS) = Sum of Slowdowns
- WS = $\frac{P_1}{P_1^{alone}}$ + $\frac{P_2}{P_2^{alone}}$, where P α
- In order to have higher WS at $t = t_B$ compared to at $t = t_A$, where at $t_B > t_A$, we give an additional \mathcal{E} bandwidth to the first application by taking it from the other.

$$\frac{P_{1}^{B}}{P_{1}^{alone}} + \frac{P_{2}^{B}}{P_{2}^{alone}} > \frac{P_{1}^{A}}{P_{1}^{alone}} + \frac{P_{2}^{A}}{P_{2}^{alone}}$$

$$\frac{\frac{BW_1 + \varepsilon}{MPI_1}}{\frac{BW_1^{alone}}{MPI_1}} + \frac{\frac{BW_2 - \varepsilon}{MPI_2}}{\frac{BW_2^{alone}}{MPI_2}} > \frac{\frac{BW_1}{MPI_1}}{\frac{BW_1^{alone}}{MPI_1}} + \frac{\frac{BW_2}{MPI_2}}{\frac{BW_2^{alone}}{MPI_2}}$$

- Prioritize the application with the *least BW (alone)* to optimize for weighted speedup
- In the paper, we show that prioritizing the application with the least attained bandwidth can improve weighted speedup

Results

Misses Per Instruction (MPI) Metric is not a good proxy for GPU performance

Attained Bandwidth (BW) and Misses Per Instruction (MPI) metrics can drive memory scheduling decisions for better throughput and fairness.

□ 10% improvement in weighted speedup and fairness over 25 representative 2-app workloads

More results: Scalability; Application to Core Mapping Mechanisms.

Conclusions

Data Movement and Bandwidth are Major Bottlenecks.

- □ Three issues we discussed today:
 - High cache miss-rates → warp scheduling!
 - Bandwidth is critical → data compression!
 - Sub-optimal memory bandwidth allocation -> memory scheduling!

- Other avenues and directions?
 - Processing Near/In Memory (PIM)
 - Value Prediction and Approximations

Other Sophisticated Mechanisms

- Wang et al., Efficient and Fair Multiprogramming in GPUs via Effective Bandwidth Management, HPCA'18
- Park et al., Dynamic Resource Management for Efficient Utilization of Multitasking GPUs, ASPLOS'17
- Xu et al., Warped-Slicer: Efficient Intra-SM Slicing through Dynamic Resource Partitioning for GPU Multiprogramming, ISCA'16

Key GPU Performance Concerns

Memory Concerns: Data transfers between SMs and global memory are costly.

Compute Concerns: Threads that do not take the same *control* path lead to serialization in the GPU compute pipeline.

lime

Compute Concerns

- Challenge: How to handle branch operations when different threads in a warp follow a different path through program?
- Solution: Serialize different paths.

Control Divergence

- Control divergence occurs when threads in a warp take different control flow paths by making different control decisions
 - Some take the then-path and others take the else-path of an if-statement
 - Some threads take different number of loop iterations than others
- The execution of threads taking different paths are serialized in current GPUs
 - The control paths taken by the threads in a warp are traversed one at a time until there is no more.
 - During the execution of each path, all threads taking that path will be executed in parallel
 - The number of different paths can be large when considering nested control flow statements

Control Divergence Examples

- Divergence can arise when branch or loop condition is a function of thread indices
- Example kernel statement with divergence:
 - if (threadIdx.x > 2) { }
 - This creates two different control paths for threads in a block
 - Decision granularity < warp size; threads 0, 1 and 2 follow different path than the rest of the threads in the first warp
- Example without divergence:
 - If (blockIdx.x > 2) { }
 - Decision granularity is a multiple of blocks size; all threads in any given warp follow the same path

SIMT Hardware Stack

Potential for significant loss of throughput when control flow diverged!

Performance vs. Warp Size

Convergent Applications

Warp-Size Insensitive Applications

Divergent Applications

Dynamic Warp Formation(Fung MICRO'07)

(Fung MICRO'07)

More References

- Intel [MICRO 2011]: Thread Frontiers early reconvergence for unstructured control flow.
- □ UT-Austin/NVIDIA [MICRO 2011]: Large Warps similar to TBC except decouple size of thread stack from thread block size.
- NVIDIA [ISCA 2012]: Simultaneous branch and warp interweaving. Enable SIMD to execute two paths at once.
- Intel [ISCA 2013]: Intra-warp compaction extends Xeon Phi uarch to enable compaction.
- NVIDIA: Temporal SIMT [described briefly in IEEE Micro article and in more detail in CGO 2013 paper]
- NVIDIA [ISCA 2015]: Variable Warp-Size Architecture merge small warps (4 threads) into "gangs".