```
<110> Jung, Sung Youb
     Kim, Jin Sun
      Park, Young Jin
      Choi, Ki-Doo
      Kwon, Se Chang
      Lee, Gwan Sun
<120> METHOD FOR THE MASS PRODUCTION OF IMMUNOGLOBULIN CONSTANT REGION
<130> 430156.404USPC
<140> US 10/535,312
<141> 2004~11-13
<150> PCT/KR2004/002943
<151> 2004-11-13
<150> KR10-2003-0080299
<151> 2003-11-13
<160> 49
<170> KopatentIn 1.71
<210>
<211>
         37
<212>
         DNA
<213> Artificial Sequence
<220>
<223>
        primer
<400>
                                                                          37
cccaagettg cctccaccaa gggcccatcg gtcttcc
<210>
         2
<211>
         33
<212>
         DNA
<213> Artificial Sequence
<220>
<223>
         primer
<400>
         2
                                                                          33
gggggatcct catttacccg gagacaggga gag
<210>
         3
<211>
         35
<212>
         DNA
<213>
        Artificial Sequence
```

<220>						
<223>	primer					
<400>	3 g acatccagtt	gacccagtct	ccatc			35
	, y addicodayce	gassagese				33
<210> <211>	4 36					
<212> <213>	DNA Artificial So	equence				
<220>		-				
<223>	primer					
<400>	4					
gggggatco	t caacactctc	ccctgttgaa	gctctt			36
<210>	5					
<211> <212> <213>	990 DNA					
<400>	Homo sapiens					
	a agggcccatc	ggtcttcccc	ctggcaccct	cctccaagag	cacctctggg	60
ggcacagcg	g ccctgggctg	cctggtcaag	gactacttcc	ccgaaccggt	gacggtgtcg	120
tggaactca	g gcgccctgac	cagcggcgtg	cacaccttcc	cggctgtcct	acagtcctca	180
ggactctac	t ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacccagacc	240
tacatetge	a acgtgaatca	caagcccagc	aacaccaagg	tggacaagaa	agttgagccc	300
aaatcttgt	g acaaaactca	cacatgccca	ccgtgcccag	cacctgaact	cctgggggga	360
ccgtcagtc	t tcctcttccc	cccaaaaccc	aaggacaccc	tcatgatctc	ccggacccct	420
gaggtcaca	t gcgtggtggt	ggacgtgagc	cacgaagacc	ctgaggtcaa	gttcaactgg	480
tacgtggac	g gcgtggaggt	gcataatgcc	aagacaaagc	cgcgggagga	gcagtacaac	540
agcacgtac	c gtgtggtcag	cgtcctcacc	gtcctgcacc	aggactggct	gaatggcaag	600
,	t gcaaggtctc					660
	g ggcagccccg					720
ctgaccaag	a accadatcad	cctgacctgc	ctggtcaaag	gcttctatcc	cagcgacatc	780

gccgtggag	t gggagagcaa	tgggcagccg	gagaacaact	acaagaccac	gcctcccgtg	840
ctggactcc	g acggctcctt	cttcctctac	agcaagctca	ccgtggacaa	gagcaggtgg	900
cagcagggg	a acgtcttctc	atgctccgtg	atgcatgagg	ctctgcacaa	ccactacacg	960
cagaagagc	c tctccctgtc	tccgggtaaa				990
<211> <212>	6 324 DNA Homo sapiens					
<400>	6					
cgaactgtg	g ctgcaccatc	tgtcttcatc	ttcccgccat	ctgatgagca	gttgaaatct	60
ggaactgcc	t ctgttgtgtg	cctgctgaat	aacttctatc	ccagagaggc	caaagtacag	120
tggaaggtg	g ataacgccct	ccaatcgggt	aactcccagg	agagtgtcac	agagcaggac	180
agcaaggac	a gcacctacag	cctcagcagc	accctgacgc	tgagcaaagc	agactacgag	240
aaacacaaa	g tctacgcctg	cgaagtcacc	catcagggcc	tgagctcgcc	cgtcacaaag	300
agcttcaac	a ggggagagtg	ttag				324
<211> <212>	7 30 DNA Artificial So	equence				
	primer					
	7 c caagggccca	tcggtcttcc				30
<211> <212>	8 33 DNA Artificial Se	equence				
<220> <223>	primer					
	8 c agcacctgaa	ctcctqqqqq	gac			33

```
<210>
         9
<211>
         33
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         primer
<400>
                                                                             33
cgtcatgccc agcacctgaa ctcctggggg gac
<210>
         10
<211>
         35
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         primer
<400>
                                                                             35
cgtcatgccc agcacctgag ttcctggggg gacca
<210>
         11
<211>
         26
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         primer
<400>
cggcacctga actcctgggg ggaccg
                                                                             26
<210>
         12
<211>
         69
<212>
         DNA
<213>
         Escherichia coli
<400>
         12
atgaaaaaga caatcgcatt tcttcttgca tctatgttcg ttttttctat tgctacaaat
                                                                             60
                                                                             69
gcccaggcg
<210>
         13
<211>
         45
<212>
         DNA
<213>
         Artificial Sequence
```

<220> <223>	primer					
<400> tctattgct	13 a caaatgccca	ggccttccca	accattccct	tatcc		45
<210> <211> <212> <213>	14 45 DNA Artificial Se	equence				
<220> <223>	primer					
<400> agataacga	14 t gtttacgggt	ccggaagggt	tggtaaggga	atagg		45
<210> <211> <212> <213>	15 984 DNA Homo sapiens					
<400> gcttccacc	15 a agggcccatc	cgtcttcccc	ctggcgccct	gctccaggag	cacctccgag	60
agcacagco	g ccctgggctg	cctggtcaag	gactacttcc	ccgaaccggt	gacggtgtcg	120
tggaactca	g gcgccctgac	cagcggcgtg	cacaccttcc	cggctgtcct	acagtcctca	180
ggactctac	t ccctcagcag	cgtggtgacc	gtgccctcca	gcagcttggg	cacgaagacc	240
tacacctgo	a acgtagatca	caagcccagc	aacaccaagg	tggacaagag	agttgagtcc	300
aaatatggt	c ccccatgccc	atcatgccca	gcacctgagt	tcctgggggg	accatcagtc	360
ttcctgttc	c ccccaaaacc	caaggacact	ctcatgatct	cccggacccc	tgaggtcacg	420
tgcgtggtg	g tggacgtgag	ccaggaagac	cccgaggtcc	agttcaactg	gtacgtggat	480
ggcgtggag	g tgcataatgc	caagacaaag	ccgcgggagg	agcagttcaa	cagcacgtac	540
cgtgtggtc	a gcgtcctcac	cgtcctgcac	caggactggc	tgaacggcaa	ggagtacaag	600
tgcaaggtc	t ccaacaaagg	cctcccgtcc	tccatcgaga	aaaccatctc	caaagccaaa	660
gggcagccc	c gagagccaca	ggtgtacacc	ctgcccccat	cccaggagga	gatgaccaag	720
aaccaggto	a gcctgacctg	cctggtcaaa	ggcttctacc	ccagcgacat	cgccgtggag	780

tgggagag	a atgggcagcc g	gagaacaac	tacaagacca	cgcctcccgt	gctggactcc	840
gacggctcd	t tetteeteta e	agcaggcta	accgtggaca	agagcaggtg	gcaggagggg	900
aatgtcttd	t catgeteegt g	atgcatgag	gctctgcaca	accactacac	acagaagagc	960
ctctccct	jt ctctgggtaa a	tga				984
<210>	16					
<211>	35					
<212>	DNA					
<213>	Artificial Seq	uence				
<220>						
<223>	primer					
44005	1.6					
<400>	16					
cgtcatgco	c agcacctgag t	tcctggggg	gacca			35
<210>	17					
<211>	42					
<212>	DNA					
<213>	Artificial Seq	uence				
<220>						
<223>	primer					
<400>	17					
	t catttaccca g	agacaggga	gaggetette	ta		42
55555000	g carrendoda g	agacaggga	gaggetette	-9		16
<210>	18					
	29					
	DNA					
<213>	Artificial Seq	uence				
<220>						
<223>	primer					
<400>	18					
		~~~~+~~				20
cggcacctg	a gttcctgggg g	gaccatca				29
<210>	19					
<211>	30					
	DNA					
<213>	Artificial Sequ	uence				
<220>						

```
<223>
         primer
<400>
         19
                                                                            30
cggcttccac caagggccca tccgtcttcc
<210>
         20
<211>
         21
<212>
         DNA
<213>
         Artificial Sequence
<220>
<223>
         primer
<400>
         20
cgcgaactgt ggctgcacca t
                                                                            21
<210>
         21
<211>
         220
<212>
         PRT
<213>
         Homo sapiens
<400>
         21
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe
Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val
                                  25
Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe
         35
Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro
Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr
Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val
                 85
Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala
                                 105
Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg
        115
                            120
                                                 125
Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly
    130
                        135
```

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro

145					150					155					160
Glu	Asn	Asn	Tyr	Lys 165	Thr	Thr	Pro	Pro	Val 170	Leu	Asp	Ser	Asp	Gly 175	Ser
Phe	Phe	Leu	Tyr 180	Ser	Lys	Leu	Thr	Val 185	Asp	Lys	Ser	Arg	Trp 190	Gln	Gln
Gly	Asn	Val 195	Phe	Ser	Cys	Ser	Val 200	Met	His	Glu	Ala	Leu 205	His	Asn	His
Tyr	Thr 210	Gln	Lys	Ser	Leu	Ser 215	Leu	Ser	Pro	Gly	Lys 220				
<210 <211 <211 <211	L> 2>	22 220 PRT Hor	r	apier	าร										
_		22 Pro	Ala	_	Glu	Leu	Leu	Gly		Pro	Ser	Val	Phe		Phe
1				5					10					15	
Pro	Pro	Lys	Pro 20	Lys	Asp	Thr	Leu	Met 25	Ile	Ser	Arg	Thr	Pro 30	Glu	Val
Thr	Cys	Val 35	Val	Val	Asp	Val	Ser 40	His	Glu	Asp	Pro	Glu 45	Val	Lys	Phe
Asn	Trp 50	Tyr	Val	Asp	Gly	Val 55	Glu	Val	His	Asn	Ala 60	Lys	Thr	Lys	Pro
Arg 65	Glu	Glu	Gln	Tyr	Asn 70	Ser	Thr	Tyr	Arg	Val 75	Val	Ser	Val	Leu	Thr 80
Val	Leu	His	Gln	Asp 85	Trp	Leu	Asn	Gly	Lys 90	Glu	Tyr	Lys	Cys	Lys 95	Val
Ser	Asn	Lys	Ala 100	Leu	Pro	Ala	Pro	Ile 105	Glu	Lys	Thr	Ile	Ser 110	Lys	Ala
Lys	Gly	Gln 115	Pro	Arg	Glu	Pro	Gln 120	Val	Tyr	Thr	Leu	Pro 125	Pro	Ser	Arg
Asp	Glu 130	Leu	Thr	Lys	Asn	Gln 135	Val	Ser	Leu	Thr	Cys 140	Leu	Val	Lys	Gly
Phe 145	Tyr	Pro	Ser	Asp	Ile 150	Ala	Val	Glu	Trp	Glu 155	Ser	Asn	Gly	Gln	Pro 160
Glu	Asn	Asn	Tyr	Lys 165	Thr	Thr	Pro	Pro	Val 170	Leu	Asp	Ser	Asp	Gly 175	Ser

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln 180 185 190

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220

<210> 23

<211> 220

<212> PRT

<213> Homo sapiens

<400> 23

Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe
1 5 10 15

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 20 25 30

Thr Cys Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe 35 40 45

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 50 55 60

Arg Glu Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 65 70 75 80

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 85 90 95

Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala 100 105 110

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg 115 120 125

Asp Glu Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 145 150 155 160

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 175

Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln
180 185 190

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205 Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 215 220

<210> 24

<211> 327

<212> PRT

<213> Homo sapiens

<400> 24

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg
1 5 10 15

Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30

Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45

Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60

Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr 65 70 75 80

Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys
85 90 95

Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro Ala Pro 100 105 110

Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 115 120 125

Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 130 135 140

Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp 145 150 155 160

Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe 165 170 175

Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 180 185 190

Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu 195 200 205

Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 210 215 220

Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys

Asn	Gln	Val	Ser	Leu 245	Thr	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	Asn 270	Tyr	Lys
Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Tyr	Ser
Arg	Leu 290	Thr	Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
Cys 305	Ser	Val	Met	His	Glu 310	Ala	Leu	His	Asn	His 315	Tyr	Thr	Gln	Lys	Ser 320
Leu	Ser	Leu	Ser	Leu 325	Gly	Lys									
<210 <211 <212 <213	L> 2>	25 330 PRI Hon		apier	ns										
<400		25													
Ala 1	Ser	Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Ser	Ser 15	Lys
Ser	Thr	Ser	Gly 20	Gly	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
Phe	Pro	Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Gln	Thr 80
Tyr	Ile	Cys	Asn	Val 85	Asn	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
Lys	Val	Glu	Pro 100	Lys	Ser	Cys	Asp	Lys 105	Thr	His	Thr	Cys	Pro 110	Pro	Cys
Pro	Ala	Pro 115	Glu	Leu	Leu	Gly	Gly 120	Pro	Ser	Val	Phe	Leu 125	Phe	Pro	Pro
Lys	Pro 130	Lys	Asp	Thr	Leu	Met 135	Ile	Ser	Arg	Thr	Pro 140	Glu	Val	Thr	Cys

Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu 170 Glu Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu 180 His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn 200 Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly 215 Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu 225 230 235 Leu Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr 245 Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn 260 265 270 Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn 295 Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr 305 310 320 Gln Lys Ser Leu Ser Leu Ser Pro Gly Lys 325 <210> 26 <211> 15 <212> PRT <213> Homo sapiens <400> Glu Pro Lys Ser Cys Asp Lys Thr His Thr Cys Pro Pro Cys Pro 1 5 10 <210> 27 <211> 217 <212> PRT <213> Homo sapiens

Ala Pro Glu Leu Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys

<400>

1 10 15 Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu 50 55 Gln Tyr Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln 100 Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu 120 Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro 130 135 Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn 145 150 155 Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu 170 Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln 195 200 Lys Ser Leu Ser Leu Ser Pro Gly Lys 210 <210> 28 <211> 12 <212> PRT <213> Homo sapiens Glu Ser Lys Tyr Gly Pro Pro Cys Pro Ser Cys Pro 1 <210>

29

220

<211>

<212> PRT

<213> Homo sapiens

<400> 29

Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe 1 5 10 15

Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val 20 25 30

Thr Cys Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe 35 40 45

Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro 50 55 60

Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr 65 70 75 80

Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val 85 90 95

Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala 100 105 110

Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln
115 120 125

Glu Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly 130 135 140

Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro 145 150 155 160

Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser 165 170 175

Phe Phe Leu Tyr Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu 180 185 190

Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His 195 200 205

Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu Gly Lys 210 215 220

<210> 30

<211> 217

<212> PRT

<213> Homo sapiens

<400> 30

Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys

1				5					10					15	
Pro	Lys	Asp	Thr 20	Leu	Met	Ile	Ser	Arg 25	Thr	Pro	Glu	Val	Thr 30	Cys	Val
Val	Val	Asp 35	Val	Ser	Gln	Glu	Asp 40	Pro	Glu	Val	Gln	Phe 45	Asn	Trp	Tyr
Val	Asp 50	Gly	Val	Glu	Val	His 55	Asn	Ala	Lys	Thr	Lys 60	Pro	Arg	Glu	Glu
Gln 65	Phe	Asn	Ser	Thr	Tyr 70	Arg	Val	Val	Ser	Val 75	Leu	Thr	Val	Leu	His 80
Gln	Asp	Trp	Leu	Asn 85	Gly	Lys	Glu	Tyr	Lys 90	Cys	Lys	Val	Ser	Asn 95	Lys
Gly	Leu	Pro	Ser 100	Ser	Ile	Glu	Lys	Thr 105	Ile	Ser	Lys	Ala	Lys 110	Gly	Gln
Pro	Arg	Glu 115	Pro	Gln	Val	Tyr	Thr 120	Leu	Pro	Pro	Ser	Gln 125	Glu	Glu	Met
Thr	Lys 130	Asn	Gln	Val	Ser	Leu 135	Thr	Cys	Leu	Val	Lys 140	Gly	Phe	Tyr	Pro
Ser 145	Asp	Ile	Ala	Val	Glu 150	Trp	Glu	Ser	Asn	Gly 155	Gln	Pro	Glu	Asn	Asn 160
Tyr	Lys	Thr	Thr	Pro 165	Pro	Val	Leu	Asp	Ser 170	Asp	Gly	Ser	Phe	Phe 175	Leu
Tyr	Ser	Arg	Leu 180	Thr	Val	Asp	Lys	Ser 185	Arg	Trp	Gln	Glu	Gly 190	Asn	Val
Phe	Ser	Cys 195	Ser	Val	Met	His	Glu 200	Ala	Leu	His	Asn	His 205	Tyr	Thr	Gln
Lys	Ser 210	Leu	Ser	Leu	Ser	Leu 215	Gly	Lys							
<210 <211 <212 <213	.> !>	31 29 DNA pri	ı .mer												
<400 cgcc		31 :cc a	ıgcac	ctcc	g gt:	ggcg	ıgga								

<210> <211> <212>

32 33 DNA

```
<213>
        primer
<400>
         32
                                                                           33
gggggatcct catttacccg gagacaggga gag
<210>
         33
<211>
         12
<212>
         PRT
<213>
         Homo sapiens
<400>
Glu Arg Lys Cys Cys Val Glu Cys Pro Pro Cys Pro
<210>
        34
<211>
        107
<212>
        PRT
<213>
       Homo sapiens
<400>
       34
Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu
Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe
             20
                                 25
Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln
Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser
     50
                         55
Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu
Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser
Pro Val Thr Lys Ser Phe Asn Arg Gly Glu Cys
            100
<210>
         35
<211>
        219
<212>
        PRT
<213>
        Homo sapiens
<400>
       35
Pro Cys Pro Ala Pro Pro Val Ala Gly Pro Ser Val Phe Leu Phe Pro
```

Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr

			20					25					30		
Cys	Val	Val 35	Val	Asp	Val	Ser	His 40	Glu	Asp	Pro	Glu	Val 45	Gln	Phe	Asn
Trp	Туг 50	Val	Asp	Gly	Val	Glu 55	Val	His	Asn	Ala	Lys 60	Thr	Lys	Pro	Arg
Glu 65	Glu	Gln	Phe	Asn	Ser 70	Thr	Phe	Arg	Val	Val 75	Ser	Val	Leu	Thr	Val 80
Val	His	Gln	Asp	Trp 85	Leu	Asn	Gly	Lys	Glu 90	Tyr	Lys	Cys	Lys	Val 95	Ser
Asn	Lys	Gly	Leu 100	Pro	Ala	Pro	Ile	Glu 105	Lys	Thr	Ile	Ser	Lys 110	Thr	Lys
Gly	Gln	Pro 115	Arg	Glu	Pro	Gln	Val 120	Tyr	Thr	Leu	Pro	Pro 125	Ser	Arg	Glu
Glu	Met 130	Thr	Lys	Asn	Gln	Val 135	Ser	Leu	Thr	Cys	Leu 140	Val	Lys	Gly	Phe
Tyr 145	Pro	Ser	Asp	Ile	Ala 150	Val	Glu	Trp	Glu	Ser 155	Asn	Gly	Gln	Pro	Glu 160
Asn	Asn	Tyr	Lys	Thr 165	Thr	Pro	Pro	Met	Leu 170	Asp	Ser	Asp	Gly	Ser 175	Phe
Phe	Leu	Tyr	Ser 180	Lys	Leu	Thr	Val	Asp 185	Lys	Ser	Arg	Trp	Gln 190	Gln	Gly
Asn	Val	Phe 195	Ser	Cys	Ser	Val	Met 200	His	Glu	Ala	Leu	His 205	Asn	His	Tyr
Thr	Gln 210	Lys	Ser	Leu	Ser	Leu 215	Ser	Pro	Gly	Lys					
<210 <211 <212 <213	!> ?>	36 23 PR1 Esc	r cheri	chia	a col	Li									
<400 Met 1		36 Lys	Asn	Ile 5	Ala	Phe	Leu	Leu	Ala 10	Ser	Met	Phe	Val	Phe 15	Ser
Ile	Ala	Thr	Asn 20	Ala	Tyr	Ala									

<210> <211>

```
<212> PRT
<213>
      Escherichia coli
<400>
       37
Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                 5
                                   10
Ile Ala Thr Asn Ala Gln Ala
             20
<210>
        38
<211>
        23
<212>
        PRT
<213>
        Escherichia coli
<400>
        38
Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                                   10
Ile Ala Thr Val Ala Gln Ala
            20
<210>
       39
<211>
        23
<212>
        PRT
<213>
       Escherichia coli
<400>
        39
Met Lys Lys Thr Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                 5
                                   10
                                                        15
Ile Ala Thr Asn Ala Gln Ala
            20
<210>
       40
<211>
        23
<212>
        PRT
<213>
        Escherichia coli
<400>
Met Lys Lys Ser Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                5
                                   10
Ile Ala Thr Asn Ala Gln Ala
            20
<210>
        41
<211>
        23
<212>
        PRT
<213>
       Escherichia coli
```

```
Met Lys Lys Ser Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                                   10
Ile Ala Thr Val Ala Gln Ala
            20
<210>
       42
<211>
        23
<212>
        PRT
<213>
        Escherichia coli
<400> 42
Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Gly Phe Val Phe Ser
                                   10
Ile Ala Thr Val Ala Gln Ala
            20
<210>
       43
<211>
       23
<212>
        PRT
<213>
       Escherichia coli
<400> 43
Met Lys Lys Thr Ile Ala Phe Leu Leu Ala Ser Leu Phe Val Phe Ser
                5
                                   10
                                                       15
Ile Ala Thr Val Ala Gln Ala
            20
<210>
       44
<211>
       23
<212>
        PRT
<213>
       Escherichia coli
<400>
       44
Met Lys Lys Ser Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
               5
                                   10
                                                       15
Ile Ala Thr Asn Ala Gln Ala
            20
<210>
        45
<211>
        23
<212>
        PRT
<213>
        Escherichia coli
<400>
       45
```

```
Met Val Lys Lys Thr Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
                                    10
Ile Ala Thr Asn Ala Gln Ala
            20
<210>
        46
<211>
      23
<212>
       PRT
<213>
      Escherichia coli
<400>
       46
Met Lys Lys Ile Ala Phe Leu Leu Ala Ser Met Phe Val Phe Ser
Ile Ala Thr Val Ala Gln Ala
            20
<210>
        47
<211>
       10
<212>
      PRT
<213>
      Homo sapiens
<400> 47
Pro Cys Pro Ala Pro Glu Leu Leu Gly Gly
<210>
        48
<211>
        10
<212>
        PRT
<213>
        Homo sapiens
<400>
        48
Ser Cys Pro Ala Pro Glu Phe Leu Gly Gly
<210>
        49
<211>
        10
<212>
        PRT
<213>
       Homo sapiens
<400>
       49
Pro Cys Pro Ala Pro Pro Val Ala Gly Pro
```