## **Assignment-4**

## **Basic Electronics (BE): ECE113**

## Winter-2023

Release: 26-May-2023 (3:00 PM) Submission: 2-June-2023 (3:00 PM)

## **Instructions**

- Institute Plagiarism Policy Applicable. This will be subjected to strict plagiarism check.
- This assignment should be attempted individually.
- A maximum point for this assignment is 40. All questions are compulsory.
- **File Submission:** Only a .pdf file are acceptable, which you have to submit on Google Classroom. Use A4 size sheets only (ruled or blank) to solve your assignment and scan it to create a .pdf file. Attempt each question on a different sheet. Do not start a new question at the back of the previous one. Do not forget to mention Page Number (bottom canter) clearly on each sheet of the assignment. Submit a .pdf file named A1\_ RollNo.pdf (e.g., A1\_PhD22100.pdf), which containing the quality scan copy of your solved assignment.
- **Submission Policy:** Turn-in your submission as early as possible to avoid late submissions. In case of multiple submissions, the latest submission will be evaluated. Expect **No Extensions**. Late submissions will not be evaluated and hence will be awarded zero marks strictly.
- Clarifications: Symbols have their usual meaning. Assume the missing information & mention it in the report. Use Google Classroom for any queries. In order to keep it fair for all, no email queries will be entertained.
- There could be multiple ways to approach a question. Please justify your answers. Questions without justification will get zero marks.

**Q1:** In Fig.-1, find out the value of output voltage  $(V_0)$ .

[8 Points]



Figure 1

**Q2:** In Fig.-2, the switch was initially opened for long time. At time t=0 sec, the switch is closed. Find voltage across capacitor  $(V_c)$ , current through capacitor  $(I_c)$  & output voltage  $(V_0)$  at time t=1 msec.

[8 Points]



Figure 2

**Q3:** In Fig.-3, If  $V_i(t) = 4$  Sin (t) then find out value of  $V_o(t)$ , with proper explanation. Define the nature of the circuit and draw the transfer characteristics &  $V_o(t)$  of the circuit. [8 Points]



Q4: In Fig.-4, V<sub>Z</sub>=10V, I<sub>L</sub>=10mA-85mA & I<sub>Zmin</sub>=15mA (symbol have their usual meaning). Find R. [8 Points]



Figure 4

**Q5:** In Fig.-5, if  $V_i(t) = 5 \sin(wt)$  then draw the curve for capacitor voltage  $[V_c(t)]$  & output voltage  $[V_o(t)]$  with explanation. Define the nature of circuit. [8 Points]



Figure 5