

E-Textile Battery-Less Walking Step Counting System with <23 pW Power, Dual-Function Harvesting from Breathing, and No High-Voltage CMOS Process

Anil Kumar Gundu¹, Luigi Fassio¹, and Massimo Alioto¹

¹ National University of Singapore

Outline

- Background and Motivation
- Details of our Work
- System Measurements
- Comparison of Results with Previously Reported Work
- Conclusion
- Miscellaneous

Background and Motivation

- The predicted IoT sensor nodes keeps decreasing,
- Problem : <u>Battery!</u>
 - 1 trillion sensor world demands:
 - ~3 year life span of battery
 - 913,242,009 BATTERY
 REPLACEMENTS everyday
- Solutions : <u>Self-powered</u> <u>systems</u>
- Conformable Storages
 - form-fitting devices with unprecedented design freedom

Source: Everactive report. available: https://cdn.everactive.com/content/uploads/2019/06/17103828/EverActive_Infograph_1.pdf
Source: IOT analytics report. Available: https://iot-analytics.com/wp/wp-content/uploads/2023/05/Insights-Release-State-of-IoT-2023-Number-of-connected-IoT-devices-growing-16-to-16.0-billion-globally.pdf

Background and Motivation

 Energy can neither be created not destroyed.

 While breathing, walking, running, or any physical activities we expend energy.

– What if we harness that energy?

What if we have

- E-textile harvester ?
- E-textile harvester acting as a sensor?
- Interfaced with CMOS chip embedded intextile

e-textile

energy

storage

energy

harvesting

Smart T-Shirt with Always-On Step Counting

We present, an always-on walking step counting system for e-textile applications

Value proposition :

- Powered by an in-textile Triboelectric nanogenerator (TENG)
- True full system (sensing to communication)
- Battery-less, inductor-less, No LDO, minimal off-chip components (~1mm size)
- Minimal in-textile components (durability)
 - Dual-function TENG as harvester and sensor
- Implemented in std CMOS for low cost (non-high voltage)

Requirements

- $-E_{Consumed} < E_{Harvested}$
- pW level operation

What can we do?

- E-textile for healthcare, Wellness monitoring, ...
- 3D modelling for virtual tailoring

Proposed Step Counting System Architecture

- Dual function TENG
 - Harvesting from walking naturally provides power when needed
 - Breathing sustains pW system power when no sensing needed
- EH-PMU
 - Harvester may produce high voltages
 - Over protection circuit for limiting voltage
 - ULP rectifier for VDD to the processing blocks

Features: <u>Battery less operation; Harvesting + Sensing + Step Counting + Storage, No LDO</u>

- Other Circuitry
 - Filtering and voltage comparison for step detection
 - Level shifters
- On-chip capacitor
 - Analog circuit
 functionality with
 human cadence
- Bondable capacitor
 - Breathing domain
- Storage and TX
 - DLS memory for storage
 - NFC TX

Proposed Step Counting System Architecture

• WALKING: 20-pw range (peak) power for just-in-time harvesting in walking event-drive activation

Proposed Step Counting System Architecture

• BREATHING: pw-range power + lowest f_{min} < 0.1Hz for <u>always-on</u> basic functions, even with minuscule kinetic power from breathing

• Supply voltage (V_{DD}) to the blocks from breathing event

Characterization of TENG (1)

- In-house designed TENG
 - Kapton and Cu-Ni material -> weak triboelectrification to keep voltage lower than ~3.3V
 - Patterned in a tiled fashion 2cm * 2cm
 - Total in-textile area ~25cm²
 - Same TENG is reused for sensing and harvesting

Characterization of TENG (2)

- Measurements of the TENG for various activities transient response
 - nominal hand touch, walking, and breathing
 - NO sufficient energy from single tile
 - 2 tiles in parallel -> <u>sufficient</u> for detecting walking
 - Minimum energy harvested from breathing
 - 4 tiles in parallel for sufficient power/voltage at rectifier side

Operation of the ULP Rectifier (1)

Voltage V_{G1} rises and M1 into super-cutoff

Opposite

- Full bridge active rectifier
 - formed with this block and its duality.
 - OFF current well below the regular transistor leakage. for other half circuit
 - $-M_3/M_4$ are in super cutoff region of operation.

considerations

Operation of the ULP Rectifier (2)

Over Protection Circuit - Analysis

CAN ONLY CLAMP +VE WAVE

CAN CLAMP +VE AND -VE WAVE

PROPOSED OVER PROTECTION CIRCUIT

System Response - Walking Step Event

- 1. Transient response of the TENG due to walking;
- 2. Voltage after the rectifier $(V_{rectifier})$;
- 3. Response of the analog filter for the walking events. step-missed due to wakeup;
- 4. Response of the comparator;
- 5. Data written to the DLS memory during negative edge;

Testchip and System Measurements

System Functionality for Various Activities

First 3 bits of 16 bit DLS counter is depicted along with the rectified voltage

- response of the system is monitored for walking at random speed
- shown here is response after the system start-up
- total 40 steps with no steps missing

voltage across the capacitor stored at the output of the rectifier

first bit of 16 bit _DLS memory

second bit of 16 bit _DLS memory

third bit of 16 bit _DLS memory

System Measurements

Setup for the Demonstration

Advancing the State of the Art

	This work	JSSC'21 [2]	JSSC'19 [3]	JSSC'21 [4]	ISSCC'13 [1]	ISSCC'19 [5]	ISSCC'18 [6]
technology (nm)	180	180	180 BCD (HV)	180 BCD (HV)	180	350	40
area (mm²)	0.36 core + 0.68 cap (die-stackable)	0.81	5.91	1.69	1.46	1.9	0.55
type of system	step counter w/ harvesting from breathing / walking / motion	body temperature monitor	harvesting sub-system	harvesting sub-system (vibration)	e-textile body area network	harvesting sub-system (multi-axial motion)	harvesting sub-system (vibration)
energy harvester and substrate	low-voltage triboelectric (<3.3 V) e-textile substrate	triboelectric (4 triboelect substrate	riciboelectric (130 V)	triboelectric (36 V) rigid substrate	inductive RF	piezo-electric (1. Plezo d-el substrate	piezo-electric ectric igid substrate
total power consumption (mode)	3.4 pW (breathing mode) 23 pW (walking sensing)	17.01 nW (temp. sensing) 5.21 nW (PMU)	N/A (harvesting only)	N/A harvesting only)	2.9 mW (data transmission)	N/A (harvesting only)	N/A (harvesting only)
voltage before rectifier (V)	≤3.3 V _{pp}	4 V _{pp}	130 V _{pp}	36 V _{pp}	2 (after rectifier)	1.6 V _{pp}	6 V _{pp}
harvesting efficiency (mode)	63.7% (peak 80.2%)	N/A	70.7%	75.6% (harvesting mode)	N/A	84.6% (harvesting mode)	94% (harvesting mode)
sensing accuracy	>98% (step counting)	±1 °C (temp.)	N/A	N/A	N/A	N/A	N/A

Advancing the State of the Art

	This work	JSSC'21 [2]	JSSC'19 [3]	JSSC'21 [4]	ISSCC'13 [1]	ISSCC'19 [5]	ISSCC'18 [6]
technology (nm)	180	180	180 BCD (HV)	180 BCD (HV)	180	350	40
max energy retention (storage cap)	16 minutes (>> respiratory period)	10 s	N/A	24.7 s*	N/A	11.5 min*	~0.2 s*
cold start-up voltage (V)	0.4	0.6	N/A	2.8	N/A	1.5	1.5
power extraction improvement FOM [6]**	~442	N/A	314	N/A	NA	511	420
min. harvesting frequency	<0.1 Hz (breathing, human motion)	1 Hz (human motion, no breathing)	250 Hz (vibration, no human motion)	55 Hz (vibration, no human motion)	27 MHz (from inductive RF)	90 Hz (vibration, rare/sudden human motion)	75 Hz (vibration, no human motion)
full-system demo	full system demonstration	NO	NO	sub4syste	m(s)\only	NO	NO
sub-system coverage	harvester+ sensing+processing+ MEM+NFC comms	harvester + on-chip rectifier/ sensor	harvester + multi-die stacking harvesting	harvester + on-chip harvesting	harvester + on- chip harv./ comms + off-chip AFE	harvester + on-chip harvesting	harvester + on-chip harvesting
off-chip components	1 bondable cap (1 μF, <1 mm², stackable on main die)	storage capacitors, digital sub- system	inductor (10 mH), battery	rectifier, inductor, 100 V capacitors, battery	AFE	large inductor, capacitors (total 57 μF)	large inductor, capacitors (total 110 µF)

Conclusion

- Power as key system interaction dimension
- Record-breaking power reductions and enablement of brand-new capabilities
 - pw range: smart T-shirt with always-on step counting (no battery, inductors..) for conformability and low cost
 - Lowest power and f_{min}: 23pW (1.4pW)
 walking (retention), <0.1 Hz
 - ->230X better than prior partial system demo reporting power.

Acknowledgments

• This material is based upon work supported by SHINE - Singapore. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors.

The authors would like to thank Mr. Feng Zheng and Prof. Lee Pooi See, NTU -

Singapore

Green IC Research Group!

Thank You!

References

- [1] Nachiket V. Desai, Jerald Yoo, Anantha P. Chandrakasan, "A scalable 2.9mW 1Mb/s eTextiles body area network transceiver with remotely powered sensors and bi-directional data communication," *IEEE International Solid-State Circuits Conference*, pp. 206-207, Feb. 2013.
- [2] J. S. Y. Tan, J. H. Park, J. Li, Y. Dong, K. H. Chan, G. W. Ho, and J. Yoo, "A Fully Energy-Autonomous Temperature-to-Time Converter Powered by a Triboelectric Energy Harvester for Biomedical Applications," *IEEE Journal of Solid-State Circuits*, vol. 56, no. 10, pp. 2913-2923, Oct.2021.
- [3] J. Lee, S.-H. Lee, G.-G. Kang, J.-H. Kim, G.-H. Cho, and H.-S. Kim, "A 130V Triboelectric Energy-Harvesting Interface in 180nm BCD with Scalable Multi-Chip-Stacked Bias-Flip and Daisy-Chained Synchronous Signaling Technique," *IEEE International Solid- State Circuits Conference*, Feb. 2022.
- [4] J. Maeng, I. Park, M. Shim, J. Jeong, and C. Kim, "A High-Voltage Dual-Input Buck Converter With Bidirectional Inductor Current for Triboelectric Energy-Harvesting Applications," *IEEE Journal of Solid-State Circuits*, vol. 56, no. 2, pp. 541-553, Feb. 2021.
- [5] M. Meng, A. Ibrahim, T. Xue, H. G. Yeo, D. Wang, S. Roundy, S. Trolier-McKinstry, and M.Kiani, "Multi-Beam Shared-Inductor Reconfigurable Voltage/SECE-Mode Piezoelectric Energy Harvesting of Multi-Axial Human Motion," *IEEE International Solid-State Circuits Conference*, pp. 426-428, Feb. 2019.
- [6] A. Quelen, A. More, P. Gasnier, R. Grezaud, S. Monfray, and G. Pillonnet, "A 30nA quiescent 80nW-to-14mW power-range shock-optimized SECE-based piezoelectric harvesting interface with 420% harvested-energy improvement," *IEEE International Solid-State Circuits Conference*, pp. 150-152, Feb. 2018.

Miscellaneous

Triboelectric Material Series

- All materials including metals, polymers, wood, and semiconductors... exhibits triboelectric effect.
- Depends on the strength of triboelectrification.

Operation of the ULP rectifier

- Full bridge active rectifier
 - formed with this block and its duality.
 - OFF current well below the regular transistor leakage.
 - Devices are in super cutoff region of operation.

Over Protection Circuit - Detailed Analysis

 Measure transient waveform of the over-voltage protection circuit

Dual Mode Logic

[7] L. Lin, S. Jain and M. Alioto, "Sub-nW Microcontroller With Dual-Mode Logic and Self-Startup for Battery-Indifferent Sensor Nodes," in *IEEE Journal of Solid-State Circuits*, vol. 56, no. 5, pp. 1618-1629, May 2021

Harvesting Energy - TENG

Area	Walking	Breathing
2cm*2cm	~248 pJ	~100 pJ

TENG:

Kapton Material Cu-Ni Electrode

Energy Source	Power Density	Frequency	Characteristics
Solar/PV	10 - 15 μW/cm ²	DC	Exposure to light
RF Energy	0.1 μW/cm ²	380M - 5 Hz	
Thermal - body heat	40 μW/cm ²	DC	High temperature difference
Piezo	4 μW/cm ²	> 30 Hz	
TENG	1 μW/cm ²	< 5 Hz	

TENG Analysis

TENG Analysis

Circuit Simulations and Measurements:

- ☐ TENG is operated at an input frequency of 3.2Hz [2].
- ☐ Total charge transferred between the electrodes of TENG is 52nC (Fig. 9).
- $oldsymbol{\square}$ Keithley 6517B need to use for testing the TENG in order to avoid electrostatic discharge.
- ☐ Sample test set up for characterizing the TENG is shown.

TENG Analysis

Testchip and System Measurements

Power and System Design Implications

- Power target vs. energy source
 - -w/battery:
 - Average power limits function feasibly executed
 - Battery life
 - -w/o battery :
 - battery.
 - Harvested power
 - Peak power matters
 - Power profile :
 - Patterns of the power/power profile coupled affect the type of decision

 BATTERYA
 - Always-on
 - Duty cycles
 - Event-driven

Operation of the ULP rectifier

Energy Harvesting and Power Management

- TENG-CHIP co-design for low voltage operation
 - integrated over-voltage and rectifier into silicon chip and used std CMOS.
- Sensing the walking event
 - Dual-function TENG
- Regular harvesting from breathing
 - Time-bounded event repetitions -> store energy with very small cap
- Harvesting from walking
 - just-in-time harvesting power provision to support step sensing and counting

Over Protection Circuit - Analysis

CAN ONLY CLAMP +VE WAVE

CAN CLAMP +VE AND -VE WAVE

PROPOSED OVER PROTECTION CIRCUIT

MEASURED RESPONSE

