Clase 1

Espacios muestrales y eventos. Axiomas de Probabilidad. Interpretación y propiedades de la medida de Probabilidad

Situaciones reales o hipotéticas

Experimento aleatorio

Un experimento aleatorio es cualquier acción o proceso cuyo resultado está sujeto a la incertidumbre. Se conocen los posibles resultados, pero no se sabe de antemano cual va a ocurrir.

Ejemplos:

- Lanzar una moneda.
- Lanzar un dado.
- Resultado final de un partido de fútbol.
- Jugar la lotería.

Espacio muestral

El espacio muestral se denota por la letra S y es el conjunto de todos los posibles resultados de un experimento aleatorio.

Ejemplo:

Se lanza una moneda al aire. ¿Cuál será el espacio muestral? Solución:

$$S = \{cara, sello\}$$

Ejemplo:

Se lanza dado de seis caras. ¿Cuál será el espacio muestral? Solución:

$$S = \{4, 5, 1, 2, 3, 6\}$$

Ejercicio 2.1 tomado de Devore (2012)

- 1. Cuatro universidades, 1, 2, 3 y 4, están participando en un torneo de básquetbol. En la primera ronda, 1 jugará con 2 y 3 jugará con 4. Acto seguido los ganadores jugarán por el campeonato y los dos perdedores también jugarán. Un posible resultado puede ser denotado por 1324 (1 derrota a 2 y 3 derrota a 4 en los juegos de la primera ronda y luego 1 derrota a 3 y 2 derrota a 4).
 - a. Enumere todos los resultados en S.

Evento

Un evento es un subconjunto del espacio muestral S. Los eventos se denotan usualmente con las letras A, B, C, \cdots

Ejemplo:

Se lanza dado de seis caras. Si el evento A es que el resultado sea divisible por 3, ¿cuáles son los elementos del evento A?

Solución:

$$S = \{4, 5, 1, 2, 3, 6\}$$

 $A = \{3, 6\}$

Evento nulo o vacío

El evento nulo o vacío se denota por \emptyset y se caracteriza por ser un conjunto sin elementos, es decir $\emptyset = \{ \}.$

Ejemplo:

Se lanza dado de seis caras. Si el evento D es que el resultado sea mayor que 10, ¿cuáles son los elementos del evento D?

Solución:

$$S = \{4, 5, 1, 2, 3, 6\}$$

 $D = \{\} = \emptyset$

Complemento de un evento

El complemento de un evento A se puede denotar de dos formas: A^c o A' y representa los elementos que NO están en A.

Ejercicio 2.1 tomado de Devore (2012)

- 1. Cuatro universidades, 1, 2, 3 y 4, están participando en un torneo de basquetbol. En la primera ronda, 1 jugará con 2 y 3 jugará con 4. Acto seguido los dos ganadores jugarán por el campeonato y los dos perdedores también jugarán. Un posible resultado puede ser denotado por 1324 (1 derrota a 2 y 3 derrota a 4 en los juegos de la primera ronda, y luego 1 derrota a 3 y 2 derrota a 4).
 - **b.** Que A denote el evento en que 1 gana el torneo. Enumere los resultados en A.
 - **c.** Que *B* denote el evento en que 2 gana el juego de campeonato. Enumere los resultados en *B*.

Se lanzan dos dados de seis caras, uno azul y otro rojo. Considere los eventos:

A: La suma de los resultados es a lo sumo 3.

B: La suma de los resultados es múltiplo de 5.

C: El producto de los resultados obtenidos es 7.

Escriba por extensión los eventos A, B y C.

	•	•		•		
•	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
\mathbf{r}	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
::	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
×	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
:::	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

Número de elementos de un conjunto

Si A es un conjunto, el número de elementos lo podemos denotar por #(A).

Ejemplo:

Se lanza una moneda al aire. ¿Cuántos elementos tiene el espacio muestral?

Solución:

$$S = \{cara, sello\}$$

 $\#(S) = 2$

Tarea

- Recordar la utilidad de los diagramas de Venn.
- Consultar las operaciones entre conjuntos.
- Consultar las propiedades de las operaciones entre conjuntos.

¿Qué es la probabilidad?

La probabilidad es una medida de la posible ocurrencia de un evento A.

Axiomas de probabilidad

Sea S un espacio muestral y A un evento en S.

1)
$$P(A) \ge 0$$

2)
$$P(S) = 1$$

3) Si A_1, A_2, A_3 , ... es un colección infinita de eventos mutuamente excluyentes, entonces

$$P(A_1 \ U \ A_2 \ U \ A_3 \ U \ ...) = \sum_{i=1}^{\infty} P(A_i)$$

Enfoques para calcular probabilidades

Clásico:

$$P(A) = \frac{\#(A)}{\#(S)}$$

Frecuentista:

$$P(A) = \frac{N^{\circ} \ veces \ que \ se \ present\'o \ A}{N^{\circ} \ veces \ que \ se \ observ\'o \ el \ experimento}$$

Subjetivo:

$$P(A) = criterio de un experto$$

Se lanzan al aire tres monedas. Considere los siguientes eventos:

- 1. A el evento de que se observen al menos dos caras.
- 2. *B* el evento de que se observe un solo sello.
- 3. Que se observe A y B al mismo tiempo.

La siguiente tabla presenta la historia de 940 productos de un proceso de fabricación de semi-conductores.

Contaminación Alta

	SI	NO	Total
SI	246	112	358
NO	68	514	582
Total	314	626	940

Revisión Electrónica

Suponga que se elige uno al azar, calcular las probabilidades de los siguientes eventos:

- 1. A: que el semi-conductor tenga altos niveles de contaminación.
- 2. B: que el semi-conductor haya pasado por un proceso de revisión electrónica.
- 3. Que el producto tenga altos niveles de contaminación y haya pasado por revisión electrónica.
- 4. Que el producto tenga altos niveles de contaminación y no pase por revisión electrónica.

			Revisión Electrónica		
A			SI	NO	Total
В	Contaminación	SI	246	112	358
	Alta	NO	68	514	582
		Total	314	626	940

Teoremas

1.
$$0 \le P(A) \le 1$$

2.
$$P(\phi) = 0$$

- 3. P(A') = 1 P(A), donde A' es el complemento de A. P(A) = 1 P(A')
- 4. Si $A \subseteq B$, entonces $P(A) \le P(B)$.
- 5. $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 6. $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C)$

Tarea

Consultar en el texto las demostraciones de las propiedades anteriores y sus ejemplos.

