Predicates:

Statements involving variables, such as "x > 3" and "Computer x is functioning properly" can be true or false depending on the value of x.

Statement "x is greater than 3" has two parts:

- 1. Subject: variable x
- 2. Predicate: "is greater than 3"

We can denote the statement "x is greater than 3" by **P(x)**, where x is a variable.

- P denotes the predicate "is greater than 3".
- P is also called as "Propositional Function".

Predicate Logic (Predicate Calculus):

The area of logic that deals with predicates and quantifiers.

Essentially, it's dealing with the declarative statements which has **propositional variables** and convert them into **propositions**.

How?

- 1. By assigning a value to the variable.
- 2. By quantifying the value of the variable.

- P(x) is the value of the **propositional function** P at x.
- P(x) becomes a proposition when a value is assigned to x (and P is defined).

Eg: Let P(x) denote the statement "x > 3".

- P(4) denotes "4 > 3", which is true.
- ∴ P(4) is true.
- P(2) denotes "2 > 3", which is false.
- ∴ P(2) is false.

Eg: Let P(x,y) denote the statement "x = y + 3".

- P(1, 2) denotes "1 = 2 + 3", which is false.
- ∴ P(1, 2) is false.
- P(4, 1) denotes "4 = 1 + 3", which is true.
- ∴ P(4, 1) is true.
- P(x, y) is a binary predicate.
- P(x) is an unary predicate.

n-ary predicate:

A statement having n variables $x_1, x_2, ..., x_n$ can be denoted by $P(x_1, x_2, ..., x_n)$.

A statement of the form $P(x_1, x_2, ..., x_n)$ is the value of the propositional function P at the n-tuple $(x_1, x_2, ..., x_n)$.

P is the called as n-place predicate or an n-ary predicate.

Quantifiers:

Another way to convert a propositional function to a proposition.

Universal Quantification:

 $\forall x P(x)$: "P(x) for all values of x in the domain"

Eg: "All politicians are dishonest"

Existential Quantification:

 $\exists xP(x)$: "There exists an element x in the domain such that P(x)"

Eg: "There is a politician who is honest"

Let dishonest ≡ ¬honest.

Universal Quantification:

```
∀xP(x): "P(x) for all values of x in the domain" or "for all x P(x)"
or "for every x P(x)"
or for each, all of, given any, for arbitrary, or for any
```

 $\forall x P(x)$ is true when P(x) is true for all the values of x in the domain.

Just one counterexample is good enough to prove $\forall x P(x)$ is false.

Existential Quantification:

 $\exists xP(x)$: "There exists an element x in the domain such that P(x)"

or "there exists an x such that P(x)"

Or "there is at least one value of x such that x P(x)"

Or for some, there is a

 $\exists x P(x)$ is true when P(x) is true for at least one value of x in the domain.

 $\exists x P(x)$ is false only when P(x) is false for all x.

Q: Let P(x) be the statement " $x^2 > 0$ ". What is the truth value of the quantification $\forall x P(x)$, where the domain consists of the set of **integers**.

Soln: P(x) is not true for x=0. P(0) is false.

It is a counterexample.

 $\therefore \forall x P(x)$ is a false proposition.

 $Q: ... \forall x P(x) ...$ positive integers.

Soln: P(x) is true for all the values of x in the domain.

 $\therefore \forall x P(x)$ is a true proposition.

 $Q: ... \exists x P(x) ... integers.$

Soln: P(x) is true for x=1. P(1) is true.

 $\therefore \exists x P(x)$ is a true proposition.

When all the elements of the domain can be listed like x_1 ,

$$x_2, ..., x_n$$
 (domain is a finite set),

$$\forall x P(x) \equiv P(x_1) \land P(x_2) \land ... \land P(x_n)$$

$$\exists x P(x) \equiv P(x_1) \vee P(x_2) \vee ... \vee P(x_n)$$

Eg: P(x): " $x^2 < 9$ " and x is an int in the range [1, 3].

$$\forall x P(x) \equiv P(1) \land P(2) \land P(3)$$

P(3), which is " $3^2 < 9$ " is false.

∴ ∀xP(x) is a false proposition

$$\exists x P(x) \equiv P(1) \lor P(2) \lor P(3)$$

P(1), which is " $1^2 < 9$ " is true.

∴ ∃xP(x) is a true proposition

Binding Variables:

 $\exists x(x+y=1)$, the variable x is bound, but y is free. Hence, it is not a proposition. If any variable in the expression is not bound, the expression is not yet a proposition.

 $\exists x(P(x) \land Q(x)) \lor \forall xR(x)$ and $\forall x\exists y(x+y=1)$ are propositions because all the involved variables are bound.

Precedence of quantifiers and logical operators:

A 3

 ΛV

 $\longrightarrow \longleftrightarrow$

Eg: $pV \neg q \land r \rightarrow s$ is same as $(p \lor ((\neg q) \land r)) \rightarrow s$

Eg: $\forall x P(x) \lor Q(x)$ is same as ($\forall x P(x) \lor Q(x)$

$$\sum_{1}^{n} (a+b) = \sum_{1}^{n} a + \sum_{1}^{n} b$$

$$\sum_{1}^{4} (3+5) = \sum_{1}^{4} 3 + \sum_{1}^{4} 5$$

$$(3+5) + (3+5) + (3+5) + (3+5)$$

$$= (3+3+3+3) + (5+5+5+5)$$

$$8+8+8+8 = 12+20$$

$$32 = 32$$

Which of the following logical equivalences are valid?

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

$$\forall x (P(x) \lor Q(x)) \equiv \forall x P(x) \lor \forall x Q(x)$$

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

$$\exists x (P(x) \land Q(x)) \equiv \exists x P(x) \land \exists x Q(x)$$

Universal quantification of conjunction of two predicates is equivalent to conjunction of universal quantification of the two predicates, where same domain is used throughout.

$$\forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$

$$\exists x (P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$$

But,
$$\forall x(P(x) \lor Q(x)) \not\equiv \forall xP(x) \lor \forall xQ(x)$$

 $\exists x(P(x) \land Q(x)) \not\equiv \exists xP(x) \land \exists xQ(x)$

Q: Show that $\forall x(P(x) \land Q(x)) \equiv \forall xP(x) \land \forall xQ(x)$ where the same domain is used throughout.

(That is, a universal quantifier can be distributed over a conjunction)

Proof: $\forall x(P(x) \land Q(x)) \equiv \forall xP(x) \land \forall xQ(x) \text{ means}$ $\forall x(P(x) \land Q(x)) \leftrightarrow \forall xP(x) \land \forall xQ(x) \text{ is a tautology.}$

That is, to prove

 $\forall x(P(x) \land Q(x)) \rightarrow \forall xP(x) \land \forall xQ(x)$ is a tautology **and** $\forall xP(x) \land \forall xQ(x) \rightarrow \forall x(P(x) \land Q(x))$ is a tautology.

- To prove: $\forall x(P(x) \land Q(x)) \rightarrow \forall xP(x) \land \forall xQ(x)$ is a T.
- Suppose, $\forall x(P(x) \land Q(x))$ is true.
- $P(a) \wedge Q(a)$ is true for any 'a' in the domain.
- P(a) is true and Q(a) is true.

Because 'a' is an arbitrary element in the domain and P(a) is true, we can conclude that $\forall x P(x)$ is true.

Similarly, $\forall x Q(x)$ is true.

That means $\forall x P(x) \land \forall x Q(x)$ is true.

∴ $\forall x(P(x)\land Q(x)) \rightarrow \forall xP(x) \land \forall xQ(x)$ is a tautology .. ①

- To prove: $\forall x P(x) \land \forall x Q(x) \rightarrow \forall x (P(x) \land Q(x))$ is a T.
- Suppose, $\forall x P(x) \land \forall x Q(x)$ is true.
- That is, $\forall x P(x)$ is true and $\forall x Q(x)$ is true.
- P(a) is true and Q(a) is true for any 'a' in the domain.
- Because P(a) and Q(a) true for all values in the domain, for a given 'a', P(a) \wedge Q(a).
- Because 'a' is an arbitrary element in the domain, $\forall x(P(x) \land Q(x))$ is true
- ∴ $\forall x P(x) \land \forall x Q(x) \rightarrow \forall x (P(x) \land Q(x))$ is a tautology. ---(2)
- By (1) and (2),
- $\forall x(P(x) \land Q(x)) \leftrightarrow \forall xP(x) \land \forall xQ(x) \text{ is a tautology.}$
- $\therefore \forall x (P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$

Eg: What is the negation of "All politicians are dishonest"?

Let P(x) be "x is a dishonest politician". $\forall x P(x)$ is "All politicians are dishonest".

¬∀xP(x) would be "It is not the case that all politicians are dishonest".

In other words, "Not all politicians are dishonest".

That is, "There is a politician who is not dishonest".

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$
 not dishonest

■ honest

∃x¬P(x) would be "There exists a politician who is **not** dishonest".

Q: Prove that $\neg \forall x P(x) \equiv \exists x \neg P(x)$

Proof: $\neg \forall x P(x)$ is true iff $\forall x P(x)$ is false.

 $\forall x P(x)$ is false iff there is an element x in the domain for which P(x) is false.

There is an element x in the domain for which $\neg P(x)$ is true.

That is, $\exists x \neg P(x)$ is true.

$$\therefore \neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\forall x(P(x) \land Q(x)) \equiv \forall x P(x) \land \forall x Q(x)$$
 $\exists x(P(x) \lor Q(x)) \equiv \exists x P(x) \lor \exists x Q(x)$

But, $\forall x(P(x) \lor Q(x)) \not\equiv \forall x P(x) \lor \forall x Q(x)$
 $\exists x(P(x) \land Q(x)) \not\equiv \exists x P(x) \land \exists x Q(x)$

De Morgan's laws for quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

Eg: $\forall x (x^2>0)$ where $x \in \mathbb{R}^ \forall_{x<0} (x^2>0)$ where $x \in \mathbb{R}$

For every real number x which is lesser than zero, $x^2>0$.

In other words, for every real number x, if x < 0, then $x^2 > 0$.

i.e. $\forall x (x < 0 \rightarrow x^2 > 0)$ where $x \in R$

Eg: $\forall_{x<0} (x^2 > 0)$ where $x \in \mathbb{R}$

For every real number x which is lesser than zero, $x^2 > 0$.

In other words, for every real number x, if x < 0, then $x^2 > 0$.

i.e. $\forall x (x < 0 \rightarrow x^2 > 0)$ where $x \in R$

Eg: $\exists_{x<0}$ ($x^2=2$) where $x \in R$

There exists a real number x < 0, such that $x^2 = 2$. In other words, there exists a real number x, such that x < 0 and $x^2 = 2$.

i.e.
$$\exists x ((x < 0) \land (x^2 = 2)) \text{ where } x \in R$$

Eg: $\forall_{x<0} (x^2 > 0)$ where $x \in \mathbb{R}$

Equivalent to: $\forall x \ (x < 0 \rightarrow x^2 > 0)$ where $x \in R$

Not equivalent to: $\forall x (x < 0 \land x^2 > 0)$ where $x \in R$

Eg: $\exists_{x<0}$ ($x^2=2$) where $x \in R$

Equivalent to: $\exists x ((x < 0) \land (x^2 = 2))$ where $x \in R$

Not equivalent to: $\exists x ((x < 0) \rightarrow (x^2 = 2))$ where $x \in R$

Let the domain be all the animals.

D(x): x is a dog

M(x): x is a mammal

C(x): x is cute

"All dogs are mammals" is equivalent to

$$\forall x (D(x) \rightarrow M(x)) \text{ or } \forall x (D(x) \land M(x)) ?$$

"Some dogs are cute" is equivalent to

$$\exists x (D(x) \rightarrow C(x)) \text{ or } \exists x (D(x) \land C(x)) ?$$

Explanation for: "All dogs are mammals"

What does $\forall x (D(x) \rightarrow M(x))$ mean? $\forall x (D(x) \rightarrow M(x)) \equiv \forall x (\neg D(x) \lor M(x))$ Each animal is a non-dog or a mammal. It means all dogs are mammals.

What does $\forall x (D(x) \land M(x))$ mean? $\forall x (D(x) \land M(x)) \equiv (\forall x D(x)) \land (\forall x M(x))$ All animals are dogs and all animals are mammals. It is **not** same as "All dogs are mammals".

Explanation for: "Some dogs are cute"

What does $\exists x (D(x) \land C(x))$ mean?

There exists an animal, which is both a dog and a cute animal.

It means there exists a cute dog.

What does
$$\exists x (D(x) \rightarrow C(x))$$
 mean?
 $\exists x (D(x) \rightarrow C(x)) \equiv \exists x (\neg D(x) \lor C(x))$
 $\equiv (\exists x \neg D(x)) \lor (\exists x C(x))$

There is a non-dog animal or there is a cute animal.

It is **not** same as "Some dogs are cute"

Nested Quantifiers

Eg: ∀x∃y (x+y=0) where x,y∈**R** In words, "For each real number x, there exists a real number y such that x+y=0".

 $\forall x \exists y (x+y=0)$ is a proposition

 $\forall x Q(x)$ where Q(x) is $\exists y (x+y=0)$.

 $\forall xQ(x)$ where Q(x) is $\exists y P(x,y)$ and P(x,y) is x+y=0

Other Quantifiers:

We can define quantifier other than the standard universal and existential quantifiers.

 $\forall x \exists ! y (x+y=0)$ where $x,y \in \mathbb{R}$ means "For each real number x, there exists **exactly one** real number y such that x+y=0".

3! means "there exists exactly one" \exists_{10} means "there exists exactly 10"

Eg: $\forall x \forall y ((x<0) \land (y<0) \rightarrow (xy > 0))$ where $x,y \in \mathbb{R}$ "For each pair of real numbers (x,y), if both are greater than 0, then their product is greater than 0"

$$\forall y \forall x ((x>0) \land (y>0) \rightarrow (xy>0))$$
 where $x,y \in \mathbb{R}$?

Eg: $\exists x \exists y \exists z \ (x^2 + y^2 = z^2)$ where $x,y,z \in \mathbb{Z}^+$ "There is a 3-tuple (x,y,z) of non-trivial positive integers for which $(x^2 + y^2 = z^2)$ is true"

∃y∃z∃x $(x^2 + y^2 = z^2)$ where x,y,z are non-trivial positive integers ?

$$\forall x \exists y \ P(x,y) \equiv \exists y \forall x \ P(x,y) ?$$

Let
$$P(x, y)$$
: $x+y=0$

$$\forall x \exists y (x+y=0)$$

"For each real number x, there exists a real number y such that x+y=0"

$$\exists y \forall x (x+y=0)$$

"There is a real number y which matches with every real number x such that x+y=0"

$$\therefore$$
 ∀x∃y P(x,y) $\not\equiv$ ∃y∀x P(x,y)

Nested Quantification of two variables

∀x∀y P(x,y) ∀y∀x P(x,y)	P(x,y) is true for every pair (x,y)
∃x∃y P(x,y) ∃y∃x P(x,y)	P(x,y) is true for at least one pair of (x,y)
∀х∃у Р(х,у)	For each x, there is a y such that P(x,y) is true
∃x∀y P(x,y)	There is a x such that P(x,y) is true for every y

Are these statements true?

$$\exists x \exists y \exists z (x^2 + y^2 = z^2)$$
 where $x,y,z \in \mathbb{R}^+$

$$\forall x \exists y \exists z (x^2 + y^2 = z^2)$$
 where $x,y,z \in \mathbb{R}^+$

$$\forall x \forall y \exists z (x^2 + y^2 = z^2)$$
 where $x,y,z \in \mathbb{R}^+$

$$\forall x \forall y \forall z (x^2 + y^2 = z^2)$$
 where $x,y,z \in \mathbb{R}^+$

Are these statements true?

 $\exists x \exists y \exists z \ (x^2 + y^2 = z^2)$ where $x,y,z \in \mathbb{R}^+$ "There is a 3-tuple (x,y,z) for which $(x^2 + y^2 = z^2)$ is true"

 $∀x∃y∃z (x^2 + y^2 = z^2)$ where x,y,z ∈ R^+ "For all x, there is a pair (y,z) for which (x²+y²=z²) is true"

∀x∀y∃z ($x^2 + y^2 = z^2$) where x,y,z ∈ R^+ "For every pair (x,y) there is a z for which ($x^2+y^2=z^2$) is true"

 $\forall x \forall y \forall z \ (x^2 + y^2 = z^2)$ where $x,y,z \in \mathbb{R}^+$ "For every 3-tuple (x,y,z), $(x^2 + y^2 = z^2)$ is **false**"

Eg: Negation of $\forall x \exists y (xy = 1)$.

Soln: Negation of $\forall x \exists y (xy = 1)$ $\equiv \neg \forall x \exists y (xy = 1)$

Eg: Negation of $\forall x \exists y (xy = 1)$.

```
Soln: Negation of \forall x \exists y \ (xy = 1)
\equiv \neg \forall x \exists y \ (xy = 1)
\equiv \exists x \neg \exists y \ (xy = 1)
\equiv \exists x \forall y \ \neg (xy = 1)
\equiv \exists x \forall y \ \neg (xy = 1)
\equiv \exists x \forall y \ (xy \neq 1)
\equiv \exists x \forall y \ (xy \neq 1)
```