

SUPERCAL IFRAGILIS TICEXPIAL IDOCIOUS

Logistic Regression

for classification

Overview

Why not ordinary linear regression?

The logistic regression model: modeling odds of events

Uses for predictive task

Uses for explanatory task

Baby Example: Beer Preference

Beer manufacturer wants to understand what demographics separate **light beer** drinkers from **regular beer** drinkers

Task and Data

Demographics (predictors) output

Task: Profile beer drinkers
in terms of demographics

Beer data & analysis.xls

Two classes
4 explanatory variables

100 records

				V
Gender	Married	Income	Age	Preference
0	1	\$39,942	21	Light
0	0	\$33,088	22	Light
0	0	\$30,841	24	Light
0	1	\$33,700	25	Light
1	1	\$42,108	26	Light
1	0	\$42,775	27	Light
0	0	\$43,593	27	Light
0	0	\$39,370	28	Light
0	0	\$26,598	29	Light
0	0	\$35,406	29	Light
1	1	\$58,164	30	Light
1	1	\$42,404	30	Light
1	0	\$23,234	31	Regular
0	1	\$44,558	31	Light
1	1	\$40,261	31	Light
0	0	\$36,821	32	Light
0	1	\$48,259	32	Light
1	0	\$37,926	33	Light
1	1	\$48,957	33	Light
1	0	\$28,513	34	Regular

Why not linear regression?

Code response as

$$Y = \begin{cases} 1 & \text{ifLight} \\ 0 & \text{ifRegular} \end{cases}$$

Fit the model

$$Y = \alpha + \beta_1$$
 Gender + β_2 Married + β_3 Income + β_4 Age + ε

Partial Output

Row Id	Predicted Value	Actual Value	Residual	Gender	Married	Incom e	Age
1	0.2333295	0	-0.2333295	0	0	\$31,779.00	46
2	0.14347264	0	-0.14347264	1	1	\$32,739.00	50
3	-0.00633473	0	0.00633473	1	1	\$24,302.00	46
4	0.59862394	0	-0.59862394	1	1	\$64,709.00	70
5	0.31359163	0	-0.31359163	1	1	\$41,882.00	54
6	0.62723779	0	-0.62723779	1	0	\$38,990.00	36

Different Formulation

?

Categorical Y → continuous Y

How about p = Prob(Y=1)?

p = probability that customer prefers light beer

$$p = \alpha + \beta_1$$
 Gender $+ \beta_2$ Married $+ \beta_3$ Income $+ \beta_4$ Age $+ \varepsilon$

How about a function of *p*?

- Range (-∞, ∞)
- Meaningful

Meaningful functions

Probability of the event Y=1

$$p = \text{Prob}(Y=1)$$

Better: **odds** of the event Y=1

$$w = \frac{p}{1 - p}$$

Best: **logit** of the event Y=1

$$\log i = \ln(w) = \ln \frac{p}{1 - p}$$

Business Analytics
Using Data Mining ISB

Probability, odds, logit

Given the odds of an event, its probability is:

$$p = \frac{w}{1+w}$$

Given the *logit* of an event, its odds are:

$$w = e^{\text{logit}}$$

and its probability is:

$$p = \frac{e^{\log it}}{1 + e^{\log it}} = \frac{1}{1 + e^{-\log it}}$$

The logistic regression model

is a nonlinear model between Y and predictors

Linear relationship between logit and predictors

 $logit = \alpha + \beta_1 Gender + \beta_2 Married + \beta_3 Income + \beta_4 Age$

Multiplicative relationship between odds and predictors

odds = $\exp{\{\alpha + \beta_1 \text{ Gender} + \beta_2 \text{ Married} + \beta_3 \text{ Income} + \beta_4 \text{ Age}\}}$

And...

Non-linear relationship between p (probability of Y=1) and predictors

$$p = \frac{1}{1 + e^{-(\alpha + \beta_1 \text{GENDER} + \beta_2 \text{MARRIED} + \beta_3 \text{INCOME} + \beta_4 \text{AGE})}}$$

Plotting the logistic relationship (single predictor)

Linear

Logistic

Estimating the model

Estimate α , β_1 , β_2 , β_3 , β_4

How?

What to use for Y column?

Cannot use least squares (like linear regression)

Instead: Maximum Likelihood Estimation (find estimates that maximize the chance of obtaining the data that we see); done iteratively

Personal Loan Offer

(UniversalBank.csv)

Outcome variable: accept bank loan (0/1)

Predictors: Demographic info, and info about their bank relationship

Classifying

To classify an observation:

- 1. Use estimated model to obtain *logit*
- 2. Estimate p = probability that Y = 1

$$p = \frac{e^{\text{logit}}}{1 + e^{\text{logit}}} = \frac{1}{1 + e^{\text{-logit}}}$$

3. Use cutoff value to determine class membership

Variable Selection

Like in linear regression: stepwise, forward selection, backward elimination, best subsets

XLMiner: "best subsets" button

Metrics for comparing models:

RSS = residual sum of squares (smaller=better)

Cp (should be \cong # predictors)

Perfectly separable data

Remember perfect multicollinearity in linear regression?

If all records in class Y=0 have $X_2<3.5$, and all records in class Y=1 have $X_2>3.5$,

The dataset is said to be perfectly separable using X_2 .

Trivial classification?

Is X₂ available at time of prediction?

Software: estimation procedure for logistic regression cannot proceed (error message)

Advantages and weaknesses

The Good

- Model-based (little data needed)
- Useful for explaining and predicting
- Interpretable
- Variable selection
- (Similar to linear regression)

The Bad

- Model-based (specify exact relationship)
- Global relationship
- (Similar to linear regression)