Hugo Marquerie 27/02/2025

Espacio proyectivo

Sea V un espacio vectorial normado sobre un cuerpo K. Denotamos por $K^* = K \setminus \{0\}$ y $V^* = V \setminus \{0\}$. Definimos la relación de equivalencia \sim en V^* mediante

$$\forall x, y \in V^*: \quad x \sim y \iff \exists \lambda \in K^*: x = \lambda y.$$

Tomamos la topología cociente en $\mathbb{P}(V) := V^*/\sim$ inducida por la proyección $\pi : V^* \longrightarrow V^*/\sim$ dada por $\pi(x) = [x]$. La denotaremos por $\mathcal{T}_{\sim} := \{U \subset \mathbb{P}(V) : \pi^{-1}(U) \in \mathcal{T}_{V^*}\}$ donde \mathcal{T}_{V^*} es la topología inducida en V^* por \mathcal{T}_V (que viene dada por la base de bolas abiertas de V).

Definición 1. El espacio topológico $(\mathbb{P}(V), \mathcal{T}_{\sim})$ se denomina espacio proyectivo sobre V.

Veamos que \sim es una relación abierta en V^* . Por definición, esto significa que

$$\pi$$
 es una aplicación abierta $\iff \forall U \in \mathcal{T}_{V^*} : \pi(U) \in \mathcal{T}_{\sim}$

$$\iff \forall U \in \mathcal{T}_{V^*} : \pi^{-1}(\pi(U)) \in \mathcal{T}_{V^*}$$

$$\iff \forall U \in \mathcal{T}_{V^*} : \{ p \in V^* : \exists q \in U : \exists \lambda \in K^* : p = \lambda q \} \in \mathcal{T}_{V^*}.$$

Ahora bien, podemos ver este último conjunto como la unión de los conjuntos $\{\lambda q: q \in U\}$ con $\lambda \in K^*$. Como $U \in \mathcal{T}_{V^*}$, tenemos que $\forall p \in U: \exists \delta > 0: B_{\delta}(p) \subset U$. Por tanto, $\forall \lambda \in K^*: \exists \hat{\delta} = |\lambda| \cdot \delta > 0: B_{\hat{\delta}}(\lambda p) \subset \{\lambda q: q \in U\}$, luego $\forall \lambda \in K^*: \{\lambda q: q \in U\} \in \mathcal{T}_{V^*}$.

$$\implies \forall U \in \mathcal{T}_{V^*} : \{ p \in V^* : \exists q \in U : \exists \lambda \in K^* : p = \lambda q \} = \bigcup_{\lambda \in K^*} \{ \lambda q : q \in U \} \in \mathcal{T}_{V^*}.$$

Por tanto, π es una aplicación abierta y \sim es una relación abierta.

Referenciado en

• Esp-proyectivo-real