Exercício 1

Um reagrupamento simples de uma série é tal que os termos positivos e negativos da série rearranjada ocorrem na mesma ordem que na série original. Vamos considerar reagrupamentos simples da série harmônica alternada com blocos de p termos positivos alternados por blocos de p termos negativos. Esses reagrupamentos podem ser descritos por

$$\underbrace{\left(1+\cdots+\frac{1}{2p-1}\right)}_{\text{p termos}} - \underbrace{\left(\frac{1}{2}+\cdots+\frac{1}{2n}\right)}_{\text{n termos}} + \underbrace{\left(\frac{1}{2p+1}\cdots+\frac{1}{4p-1}\right)}_{\text{p termos}} - \underbrace{\left(\frac{1}{2n+2}+\cdots+\frac{1}{4n}\right)}_{\text{n termos}} + \dots$$

Vamos considerar somas parciais que fazem o truncamento da série após a soma de k blocos positivos e negativos alternados, indicando essa soma parcial por s_k . É possível mostrar que

$$S = \lim_{k \to \infty} s_k = \ln 2 + \frac{1}{2} \ln \left(\frac{p}{n} \right)$$

- 1. Faça um programa em Python que permita calcular o valor da sequência (s_k) . Considere p=2, n=1 e k=100. Determine o valor de s_{100} e calcule o erro da aproximação $S-s_{100}$.
- 2. Considerando p=2, n=1 calcule a sequência de erro $e_k=S-s_k$ e determine o menor valor de k para o qual $|e_k| < 0.0001 \ (1.10^{-4})$. Faça duas figuras uma com o gráfico de s_k em função de k e outra com e_k em função de k. Escolha as escalas adequadamente de forma que seja possível visualizar as informações relevantes. Se for necessário podem ser feitas mais figuras com trechos ampliados dos gráficos.