AUTOMATE ASINCRONE

S.l. dr. Ing. Vlad-Cristian Miclea

Universitatea Tehnica din Cluj-Napoca Departamentul Calculatoare

- 1) Introducere
- 2) Automate asincrone
- 3) Analiza automatelor asincrone
- 4) Sinteza automatelor asincrone
- 5) Evitarea curselor critice
- 6) Concluzii

PLAN CURS

- Partea 1 VHDL
 - 1. Limbajul VHDL 1
 - 2. Limbajul VHDL 2
 - 3. Limbajul VHDL 3
- Partea 2 Implementarea sistemelor numerice
 - 4. Microprogramare
 - 5. Partea 1 Unitate de comanda exemplu cuptor
 - 5. Partea 2 Unitate de executie exemplu cuptor
- Partea 3 Automate
 - 6. Automate finite
 - 7. Stari
 - 8. Automate sincrone
 - 9. Automate asincrone
 - 10. Identificarea automatelor
 - 11. Automate fara pierderi
 - 12. Automate liniare
- Partea 4 Probleme si discutii

CONTEXT

Cursurile trecute

- Automate finite
 - Abstractizarea circuitelor secventiale
 - Reprezentari
 - Clasificarea automatelor (Moore, Mealy)
- Stari ale automatelor
 - Reducerea numarului de stari
 - Codificarea eficienta a starilor
- Automate sincrone
 - Implementarea folosind memorii
 - Modalitati de eficientizare

Curs AutomateAsincrone

AUTOMATE FINITE

Reprezentarea

- \blacksquare $X_1, X_2, ..., X_n$ variabile de intrare
- \blacksquare $z_1, z_2, ..., z_m$ variabile de ieşire
- Y₁, Y₂, ..., Y_s variabile de stare
- Y₁, Y₂, ..., Y_s funcţiile secundare (de excitaţie)
- Sistem de ecuaţii ţin cont de variabilele de intrare şi de stare pentru determinarea stării următoare Y şi a ieşirii Z
 - $Y_i(t) = f_i(x_1(t),..., x_n(t), y_1(t), ..., y_s(t))$ i = 1,s

AUTOMATE ASINCRONE

Caracteristici

- Starea următoare dată de funcţia de tranziţie (secundară)
 - $y_i(t+1) = Y_i(t)$ i=1,s
- Stări stabile şi instabile
- Stare stabilă:
 - $y_i(t+1) = Y_i(t) = y_i(t)$
- Tranziţiile dintr-o stare în alta doar prin modificarea variabilelor de intrare
- Automat determinist până când automatul nu ajunge într-o stare stabilă nu se modifică altă variabilă de intrare
- Funcţionare:
 - Mod fundamental variabilele de intrare = nivel (dau o "etapa" in timp)
 - Mod impuls variabilele de intrare = impuls

ANALIZA AUTOMATELOR ASINCRONE

Analiza

Procedura de determinare a funcţiilor pe care un anume automat le poate îndeplini si eventual depistarea anomaliilor de funcţionare

Curs AutomateAsincrone

ANALIZA AUTOMATELOR ASINCRONE

Etape de analiză

- 1. Se identifică variabilele de intrare, stare și ieșire. Se determină funcțiile secundare (de tranziție) Y_i și de ieșire Z_j
- 2. Se construiesc tabelele pentru funcţiile secundare şi pentru ieşiri
- 3. Se construieşte tabelul de evoluţie al automatului asincron determinând stările stabile şi instabile
- 4. Se verifică evoluţia automatului pentru stări iniţiale şi intrări specificate

-

ANALIZA AUTOMATELOR ASINCRONE

Exemplu

Avem automatul asincron:

ANALIZA AUTOMATELOR ASINCRONE

- 1. Se identifică variabilele de intrare, stare şi ieşire
 - 1 variabilă de intrare: x,
 - 2 variabile de stare: y₁, y₂
 - \blacksquare 4 variabile de ieşire: z_1 , z_2 , z_3 , z_4
- Se determină funcțiile secundare Y_i și de ieșire Z_i
 - $Y_1 = xy_1 + xy_2$
 - $Y_2 = xy_1 + xy_2$
 - $\mathbf{z}_1 = \mathbf{y}_2 \mathbf{y}_1$
 - $\mathbf{z}_2 = \mathbf{y}_2 \mathbf{y}_1$
 - $\mathbf{z}_3 = \mathbf{y}_2 \mathbf{y}_1$
 - $z_4 = y_2 y_1$

ANALIZA AUTOMATELOR ASINCRONE

- 2. Se construiesc tabelele pentru funcţiile secundare şi pentru ieşiri
 - Automatul este de tip Moore pentru că ieşirile nu depind de intrări

y ₁ y ₂ x	0	1	
00	00	01	
01	11	01	
11	11	10	
10	00	10	
Y_1Y_2			

y ₁ y ₂ x	0	1
00	1000	1000
01	0100	0100
11	0001	0001
10	0010	0010

 $\mathsf{Z}_1\mathsf{Z}_2\mathsf{Z}_3\mathsf{Z}_4$

urs AutomateAsincro

ANALIZA AUTOMATELOR ASINCRONE

- 3. Se construieşte tabelul de evoluţie al automatului asincron pentru determinarea stărilor stabile şi instabile
 - Stările stabile: se compară valorile variabilelor de stare y₁y₂ cu cele ale funcţiilor secundare Y₁Y₂ şi la coincidenţa lor va fi o stare stabilă se încercuieşte
 - 8 stări ale automatului: 4 sunt stabile, 4 sunt instabile

<u>Y1</u> <u>Y2</u> X	0	1
00	(00)	01
01	11	(01)
11	(11)	10
10	00	(10)
	Y_1Y_2	

y_1y_2 X	0	1
1		2
2	3	2
3	3	4
4	1	4

ANALIZA AUTOMATELOR ASINCRONE

Etapa 4

 4. Se verifică evoluţia automatului pentru stări iniţiale şi intrări specificate

y ₁ y ₂ x	0	1
1	1	2
2	3	2
3	3	4
4	1	4

- Dacă suntem în starea 1 (adică 00), pentru intrarea x = 0, automatul rămâne în starea 1, deci starea 1 este stabilă
- Dacă suntem în starea 1, pentru x = 1 automatul trece în starea instabilă 2. Durata stării instabile 2 este egală cu cea a duratei procesului de comutaţie din circuit. Din starea instabilă 2 automatul va trece în starea stabilă 2. O tranziţie de la o stare instabilă la starea stabilă corespunzătoare este specificată prin notarea celor două stări cu aceeaşi cifră
- Pentru a trece de la o stare stabilă la altă stare stabilă se trece printr-o stare instabilă

ANALIZA AUTOMATELOR ASINCRONE

- 4. Se verifică evoluţia automatului pentru stări iniţiale şi intrări specificate
 - Putem reprezenta tranziţiile unui automat asincron prin diagrame de timp

Sinteza

Sinteza unui automat asincron (circuit secvenţial asincron) cu o anumită comportare constă în construirea unei scheme logice (reţele de comutare) secvenţiale care să realizeze comportarea cerută

Surs AutomateAsincrone

SINTEZA AUTOMATELOR ASINCRONE

Etape de sinteză

- 1. Se determină tabelul primar al stărilor și tabelul ieșirilor
- 2. Se elimină stările redundante din tabelul primar
- 3. Se construieşte un tabel al stărilor cu un număr minim de stări interne şi un tabel al ieşirilor
- 4. Se codifică stările interne obţinându-se tabelul tranziţiilor
- 5. Se scriu expresiile minime pentru starea următoare şi pentru ieşiri
- 6. Se proiectează (desenează) schema circuitului pe baza expresiilor obţinute
- 7. Se verifică dacă schema obţinută funcţionează corect (se elimină hazardul)

Logica Allen

intervalelor

(raţionare temporală)

Relaţia	llus	strarea	Interpretarea
X <y Y>X</y 	▼ ¬		X apare înaintea lui Y
X = Y	X Y		X este egal cu Y
X meets Y	X Y		X precedă (întâlneşte) Y
X overlap Y	X Y		X se suprapune parţial peste Y
X duringY	X		X apare în timpul lui Y
X starts Y	X Y		X pornește (inițiază) pe Y
X finishes Y	X		X opreşte (termină) Y

Surs AutomateAsincrone

SINTEZA AUTOMATELOR ASINCRONE

Exemplu

- Să se proiecteze un automat asincron cu 2 intrări, x_1 și x_2 și o ieșire z, care respectă următoarele condiții de funcționare:
 - leşirea automatului va lua valoarea 1 când pe ambele intrări x_1 și x_2 se aplică 1, dar numai când x_2 se aplică înaintea lui x_1
 - În acest caz ieşirea z se menţine la valoarea 1 atât timp cât intrarea x₂ se menţine la valoarea 1
 - Se consideră că intrările x₁ şi x₂ nu se pot modifica simultan

Funcţionarea – forme de undă

- 1. Determinarea tabelului primar al stărilor şi tabelului ieşirilor
- Tabelul primar al stărilor = matrice ce va conţine pe o linie o singură stare stabilă şi toate tranziţiile posibile implicate de această stare
 - Numărul de coloane este dat de numărul maxim de combinaţii ale variabilelor de intrare
 - Schimbând starea intrărilor, automatul aflat într-o stare stabilă trece într-o stare instabilă pe coloana corespunzătoare intrărilor, pe care trebuie să fie starea stabilă pe altă linie
- Tabelului primar al stărilor îi corespunde un tabel al ieşirilor pentru fiecare stare stabilă determinată a automatului

Surs AutomateAsincrone

.

SINTEZA AUTOMATELOR ASINCRONE

- 1. Determinarea tabelului primar al stărilor și tabelului ieşirilor
- Tabelul primar al stărilor trebuie completat în totalitate (toate compartimentele!!!)
 - Pentru locaţiile care nu pot fi atinse pot exista 2 situaţii:
 - stări interzise corespund unor condiţii de funcţionare interzise, dar care pot să apară. Pentru astfel de situaţii interzicerea tranziţiilor se reduce la menţionarea ieşirilor sau la modificarea lor impusă
 - stări indiferente corespund situaţiilor de funcţionare care nu pot fi atinse. Conţinutul lor este indiferent
 - În cazul nostru locaţiile necompletate corespund condiţiei ca variabilele de intrare să nu comute simultan

- 1. Se determină tabelul primar al stărilor și tabelul ieșirilor
- Tabelul ieşirilor se completează în prima etapă cu ieşirile corespunzătoare stărilor stabile
- Pentru continuarea completării tabelului se analizează tranziţiile dintre stările stabile:
 - \bullet $(j) \rightarrow j \rightarrow (j)$ nu modifică ieşirea \Rightarrow ieşirea automatului trebuie menţinută şi în starea instabilă
 - \bullet $j \rightarrow j \rightarrow j \Rightarrow$ dacă se modifică ieşirea pe durata stării instabile, ieşirea poate fi considerată indiferentă
 - În cazul nostru locaţiile indiferente se pot considera cele care corespund trecerii între două stări stabile care presupun modificarea simultană a variabilelor de intrare
 - Observaţie
 - Sunt automate care trebuie să evolueze mai rapid sau mai lent
 - La evoluţie rapidă, în starea instabilă se pune deja ieşirea corespunzătoare stării stabile următoare (nu se lasă indiferentă)
 - La evoluţie lentă se păstrează în starea instabilă ieşirea stării stabile anterioare

Etapa 1

■ 1. Determinarea tabelului primar al stărilor și tabelului ieşirilor

$S x_1 x_2$	00	01	11	10
1		3	ı	2
2	1	1	4	
3	1	3	5	-
4	-	3	4	2
5	-	6	(5)	2
6	1	6	5	-

$S x_1 x_2$	00	01	11	10
1	0	0	X	0
2	0	Х	0	0
3	0	0	X	X
4	X	0	0	0
5	X	1	1	Х
6	X	1	1	X

- 2. Eliminarea stărilor redundante din tabelul primar
- Pentru reducerea costului automatului se face o reducere a liniilor tabelului primar al stărilor
- Reducerea se obţine prin fuzionarea liniilor în condiţiile impuse de compatibilităţile şi acoperirile din teoria automatelor finite
- Fuzionarea a două linii se face după următoarele reguli:
 - Două linii pot fuziona dacă locaţiile corespunzătoare fiecărei coloane corespund aceluiaşi număr de stare stabilă sau instabilă
 - Prin fuzionarea unei stări stabile cu una instabilă rezultă o stare stabilă
 - Prin fuzionarea unei stări stabile sau instabile cu o stare interzisă rezultă o stare stabilă, respectiv instabilă
 - Forma minimă obţinuta dupa fuzionare nu este unică

Etapa 3

- 3. Tabelul redus al stărilor și tabelul redus al ieșirilor
- Pentru a se obține cea mai bună soluție de minimizare se construiește un poligon al alipirilor
 - Poligonul are în noduri stările automatului și se marchează prin arce to alipirile posibile între liniile tabelului primar al stărilor
 - Pentru obţinerea formei minime se urmăreşte determinarea de poligoane închise cu un număr cât mai mare de laturi
 - O stare poate să apară o singură dată
- Soluţii pot fi:

A

 $\{1, 3\}$

 $\{1, 2, 4\}$

■ B {2, 4}

sau

 $\{3\}$

 \mathbf{C}

 $\{5, 6\}$

 $\{5, 6\}$

Curs AutomateAsincrone

.

SINTEZA AUTOMATELOR ASINCRONE

Etapa 3

- 3. Tabelul redus al stărilor şi tabelul redus al ieşirilor
- Dacă se alege prima soluţie se obţin următoarele tabele reduse ale stărilor şi ieşirilor

	X_1X_2
\bigcirc	{1, 3}
B	{2, 4}
(C)	{5, 6}

00	01	11	10
1	(3)	5	2
1	3	4	(7)
1	6	(5)	2

X_1X_2	00	01	11	10
	0	0	Х	0
	0	0	0	0
	Х	1	1	Х

•

Surs AutomateAsincrone

SINTEZA AUTOMATELOR ASINCRONE

- 4. Codificarea stărilor
- În tabelul primar al stărilor codificarea unei stări se realizează numai prin variabilele secundare
- În tabelul redus al stărilor, pe aceeaşi linie pot să apară mai multe stări stabile, deci putem avea o evoluţie a automatului dintr-o stare stabilă în altă stare stabilă fără modificarea variabilelor de stare, doar prin modificarea variabilelor de intrare
- Pentru un număr "p" de stări reduse sunt necesare "q" variabile de stare: 2^q ≥ p

- 4. Codificarea stărilor
- **Restricţie**: Codificarea stărilor trebuie făcută pentru a se evita hazardul de tranziţie, care poate să apară în cazul modificării simultane a cel puţin 2 variabile secundare
- Definiţii:
 - Un eveniment în care se modifică mai mult de o variabilă secundară se numeşte cursă
 - Dacă starea finală a automatului nu depinde de ordinea de modificare a variabilelor secundare cursa este necritică
 - Dacă starea finală a automatului depinde de ordinea de modificare a variabilelor secundare cursa este critică şi trebuie evitată
 - Ciclu trecerea automatului printr-o succesiune unică de stări instabile
 - Codificarea (asignarea) stărilor care nu conţine curse critice este o codificare (asignare) validă

- 4. Codificarea stărilor
- Pentru evitarea curselor critice trebuie evitate tranziţiile de stare la care se modifică simultan mai multe variabile de stare
- Observaţii:
 - Dacă într-o coloană a tabelului redus al stărilor există o singură stare stabilă cursa este necritică
 - Dacă într-o coloană a tabelului redus al stărilor există mai mult de o stare stabilă, tranziţiile dintre două stări codificate neadiacent, care conduc la stări stabile, generează curse critice

Curs AutomateAsincrone

SINTEZA AUTOMATELOR ASINCRONE

Etapa 4

- 4. Codificarea stărilor
- Pentru a realiza o codificare corectă se construieşte un graf al tranziţiilor
- Graful are în noduri stările alipite (reduse), iar ca laturi arce orientate conform tranziţiilor posibile

	X_1X_2	00	01	11	10
\bigcirc	00		3	5	2
B.	01	1	3	4	2
(C)	10	1	6	(F)	2

 Având tranziţii duble între A şi B şi A şi C, dar şi tranziţie simplă între C şi B nu putem face nici o codificare cu 2 variabile secundare care să rezolve problema adiacenţei

- 4. Codificarea stărilor
- Cu codificarea făcută apare cursă la tranziţia din C în B, unde se modifică ambele variabile de stare
- Pe ultima coloană, corespunzătoare tranziţiei din C în B avem o singură stare stabilă (starea 2), deci cursa este necritică → se poate păstra codificarea făcută

	X_1X_2	00	01	11	10
\bigcirc	00	1	3	5	2
B .	01	1	3	4	(1)
C,	10	1	6	(5)	2

Etapa 4

■ 4. Codificarea stărilor

Tabelul redus al stărilor şi tabelul redus al ieşirilor, utilizând codificarea (asignarea) validă: A=00, B=01, C=10 devin:

y_1y_2 x_1x_2	00	01	11	10
00		3	5	2
01	1	3	4	
11	-	-	_	-
10	1	6	(5)	2

y_1y_2 x_1x_2	00	01	11	10
00	0	0	Х	0
01	0	0	0	0
11	Х	Х	Х	Х
10	Х	1	1	Х

Etapa 5

 5. Se determină expresiile minime pentru starea următoare şi pentru ieşiri

y_1y_2 x_1x_2	00	01	11	10
00	00	00	10	01
01	00	00	01	01
11	XX	XX	XX	XX
10	00	10	10	01

y_1y_2 x_1x_2	00	01	,11,	10
00	0	0	1/	0
01	0	0	0	0
11	Х	X	X	Х
10	0	1	/1	0
		$\overline{Y_1}$	7	

$$Y_1 = y_1 x_2 + y_2 \overline{x_1} x_2$$

 $Y_2 = y_2 x_1 + x_1 x_2$
 $Z = y_1$

y_1y_2 x_1x_2	00	01	11	10
00	0	0	0	[/1\]
01	0	0	1	1
11	Х	Х	X	$\left[\left[x \right] \right]$
10	0	0	0	1
Y_2				

Etapa 6

■ 6. Se proiectează (desenează) schema circuitului pe baza expresiilor obţinute

Etapa 4

- 4. Codificarea stărilor OBSERVAŢIE
- Dacă se alege cealaltă variantă rezultată din poligonul alipirilor pentru tabelul redus al stărilor şi ieşirilor obţinem:

	x_1x_2	00	01	11	10
\bigcirc	00 {1, 2, 4}	1	3	4	2
B	01 {3}	1	3	5	-
(C)	10 {5, 6}	1	(6)	. [5]	2

x_1x_2	00	01	11	10
	0	0	0	0
	0	0	Х	Х
	Х	1	1	Х
	Z			'

Pornind din starea 01 (B), dacă x_1x_2 trec din 01 în 11 şi dacă y_2 se modifică prima, tranziția este B (01) \rightarrow A (00), iar dacă y_1 se modifică prima, tranziția este B (01) \rightarrow C (10), deci avem o *cursă critică* (starea finală a automatului este în funcție de modificarea variabilelor de stare)

Metode de evitare a curselor critice

- Evitarea curselor critice, datorate modificării în momente de timp diferite ale variabilelor de stare, se poate face prin mai multe metode:
 - 1. Recodificarea stărilor
 - 2. Utilizarea combinaţiilor de codificare nefolosite:
 - a. Asignarea unei stări cu două combinații de variabile secundare
 - b. Introducerea unei stări instabile pe coloana corespunzătoare cursei critice
 - 3. Introducerea unei variabile secundare suplimentare

Metode de evitare a curselor critice

■ 1. Recodificarea stărilor

	V ₁ V ₂ X ₁ X ₂	00	01	11	10
Α	00	3	1	6	2
В	01	3	1	6	(2)
C	11	(3) -	→ 11	6	(4)
D	10	3	(5)	6	2

- Graful de tranziţii dintre stări arată necesitatea codificării adiacente a stărilor
- Din starea stabilă C = 11, pentru a ajunge în starea stabilă A = 00, la modificarea variabilelor de intrare x_1x_2 din 00 în 01, dacă variabila secundară y_1 se modifică prima se ajunge în starea stabilă A = 00 (3 \rightarrow 1 \rightarrow 1), dar dacă y_2 se modifică prima, se ajunge în starea stabilă D = 10 (3 \rightarrow 1 \rightarrow 5), deci avem o cursă critică
- Daca schimbam aceeasi variabila la momente diferite (dupa/inaintea schimbarii altro variabile) si se trece in stari diferite = cusra critica!
- Există cursă critică şi între D şi B

- 1. Recodificarea stărilor
- Pentru eliminarea curselor critice se face o reasignare (recodificare) a stărilor astfel încât tranziţiile critice să implice schimbarea unei singure variabile secundare
- Cursele care apar (B \rightarrow C şi A \rightarrow D) sunt necritice, deci asignarea este validă

	$y_1y_2 \times_1 x_2$	00	01	11	10
Α	00	3	1	6	2
В	01	3	1	6	(2)
C	10	(3)-	1	6	(4)
D	11	3	(5)	(6)	2

Metode de evitare a curselor critice

- 2. Utilizarea combinaţiilor de codificare nefolosite
 - a. Se acordă două coduri pentru aceeași stare
 - Pentru exemplul de automat asincron rezolvat, am avut cursă critică la tranziția din B în C

	X_1X_2	00	01	11	10
\bigcirc	00 {1, 2, 4}	1	3	4	2
B	01 {3}	1	(3)	5	-
	10 {5, 6}	1	6	<u>(5</u>)	2

x_1x_2	00	01	11	10
	0	0	0	0
	0	0	Х	Х
	Х	1	1	Х
	Z			

■ Codificăm starea C cu două coduri, 10 și 11 și obținem:

•	y ₁ y ₂ x ₁ x ₂	00	01	11	10
\bigcirc	00	\bigcirc	3	4	\bigcirc
B	01	1	3	5	-
(C)	11	1	6	(5)	2
(C)	10	1	6	5	2

	V ₁ V ₂ X ₁ X ₂	00	01	11	10
\bigcirc	00	00	01		00
\bigcirc	01	00	01)	11	-
(C)	11	00	11)	11)	00
(C)	10	00	10	10	00

- 2. Utilizarea combinaţiilor de codificare nefolosite –
 b. Se introduce o stare instabilă suplimentară
 - La tranziţia din B în C se forţează trecerea prin starea instabilă 11
 - Această variantă conduce la ecuații mai simple la minimizare

	y_1y_2 x_1x_2	00	01	11	10
\bigcirc	00	1	3	\bigcirc	2
B	01	1	(M)	5	-
	11	-	-	5*	-
(C)	10	1	6	(5)	2

	<u></u> <u> </u>	00	01	11	10
\bigcirc	00	0	01	0	0
\bigcirc	01	00	01)	11	-
	11	1	1	11	-
(C)	10	00	1	10	00

- 3. Introducerea unei variabile de stare suplimentare
- Metoda se foloseşte în situaţiile în care sunt utilizate toate combinaţiile de codificare şi în nici o asignare nu se poate realiza adiacenţa codificării stărilor
- Exemplu cu curse critice între B şi D (cursă critică pentru tranziția din 4 în 3) şi C şi A (cursă critică pentru tranziția din 5 în 2)

	y_1y_2 x_1x_2	00	01	11	10
\bigcirc	00	1	2	4	6
B	01	1	3	4	7
(C)	11	1	2	(5)	8
	10	1	(3)	5	6

Surs Automate Asincrone

SINTEZA AUTOMATELOR ASINCRONE

- 3. Introducerea unei variabile de stare suplimentare
- Se introduce variabila de stare suplimentară y_3 și se face codificare cu 3 variabile de stare $y_1y_2y_3$
- Urmărim realizarea adiacenţei între stările automatului, pentru a evita apariţia curselor critice
- Vom folosi diagrama Karnaugh pentru codificarea stărilor
 - Alegem A=000 şi B, C, D le plasăm în celule adiacente. Pentru tranziţiile B
 → D şi D → C care pot genera curse critice introducem stările instabile D'
 şi C'.

V1 Y2V3	00	01	11	10
0	A	(C)	C′ ←	9
1	<u>В</u>			→ D'

- 3. Introducerea unei variabile de stare suplimentare
- Cu codificarea: A=000, B=100, C=001, D=010, D'=110 şi C'=011 avem:

	$y_1y_2y_3$ x_1x_2	00	01	11	10
Α	000	1	2	4	6
С	001	1	2	↑ (5)	8
C'	011			5	
D	010	1	3,—	5	6
D'	110		3 T		
	111				
	101				
В	100	1	3 ←	<u> </u>	7

Surs AutomateAsincrone

SINTEZA AUTOMATELOR ASINCRONE

- 3. Introducerea unei variabile de stare suplimentare
- Se poate face o asignare (codificare) validă pentru un tabel redus al stărilor cu 4 linii, cu ajutorul a 3 variabile de stare, prin asignarea a 2 coduri adiacente ale variabilelor de stare pentru fiecare linie din tabel

y ₁	00	01	11	10
0	Α	В	В	С
1	Α	D	D	С

- Pentru orice tabel cu 2ⁿ linii o asignare validă se poate face cu 2ⁿ⁻¹ variabile de stare astfel încât să fie posibilă tranziţia între oricare 2 linii ale tabelului
- Pentru un tabel cu 8 linii se pot folosi 4 variabile secundare

Α	В	E	Е	
Α	В	F	F	
С	С	G	Н	
D	D	G	Н	

Curs Automate Asincrone

SINTEZA AUTOMATELOR ASINCRONE

Automate asincrone în mod impuls

- Un automat asincron poate primi un singur impuls la intrare
- Pentru ca funcţionarea să fie deterministă se impun restricţiile:
 - Impulsurile trebuie să fie suficient de lungi ca să schimbe starea automatului
 - Impulsurile trebuie să fie suficient de scurte încât să nu mai fie prezente după schimbarea stării automatului
- La apariţia impulsului automatul evoluează dintr-o stare stabilă în altă stare stabilă
- Acest mod de funcţionare diferă de cel fundamental, deoarece automatul în mod impuls este stabil şi când nu are intrări → numărul de coloane din tabelul de tranziţii este egal cu numărul variabilelor de intrare

Surs AutomateAsincrone

SINTEZA AUTOMATELOR ASINCRONE

Automate asincrone în mod impuls

- **Exemplu:** Automat pentru taxat automobile
 - Taxa este de 1 leu. Se acceptă monede de 10 și 50 bani
 - Un sistem electromecanic acceptă monezile secvenţial, chiar dacă ele se introduc deodată, generând impulsurile X1, X5. În momentul în care moneda este primită, ea este luată în considerare
 - Automatul produce un nivel de ieşire care aprinde un bec verde dacă s-a primit 1 leu
 - După ce a trecut o maşină automatul se resetează cu impulsul de resetare XR şi revine în starea iniţială
 - Orice sumă mai mare de 1 leu se consideră credit pentru maşina următoare (!)

Automate asincrone în mod impuls

- **Exemplu:** Automat pentru taxat automobile
- Soluţie:

Lei	Stare prezentă	X ₁	X ₅	X _R	Z
0	А	В	F	А	0
0,1	В	С	G	А	0
0,2	С	D	Н	А	0
0,3	D	Е		А	0
0,4	E	F	J	А	0
0,5	F	G	K	А	0
0,6	G	Н	K	А	0
0,7	Η		K	А	0
0,8		J	K	А	0
0,9		K	K	А	0
≥1	K	K	K	А	1

Automate asincrone

- Analiza automatelor asincrone
 - Etape analiza
- Sinteza automatelor asincrone
 - Etape sinteza
 - Metode de evitare a curselor critice
- Automate in modul impuls

Data viitoare – identificarea automatelor