COVID-19 Total Cases Prediction on Country-based Multivariable Time Series

Nange Li, DSI Brown University Oct. 15th 2021

Introduction

- COVID-19 Pandemic
 - Target: total cases
 - Regression
- Dataset
 - OWID^[1] (*Our World in Data*)
 - Previous works
 - Bimodel distribution^[2] deaths
 - Cloud Computing & Curve Fitting^[3] new_cases

[3] Tuli, S., Tuli, R., Gil, S S., 2020. "Predicting the growth and trend of COVID-19 pandemic using machine learning and cloud computing". *Internet of Things*, Volume 11, 2020, 100222, ISSN 2542-6605, Doi: https://doi.org/10.1016/j.iot.2020.100222

^[1] Ritchie, H., Mathieu, E., et al. 2020. "Coronavirus Pandemic (COVID-19)". Published online at *OurWorldInData.org*. Retrieved from: https://ourworldindata.org/coronavirus [2] Valvo, & Paolo S. 2020. "A Bimodal Lognormal Distribution Model for the Prediction of COVID-19 Deaths". *Applied Sciences 10*, no. 23: 8500. Doi: https://doi.org/10.3390/app10238500

- 65 columns
- **122636** records
- 233 countries
- 2020-02-24 to 2021-10-06

Some columns cannot be directedly applied to prediction

- Country indices, date
- Columns regarding new_cases

• 54 features are selected

1.0

8.0

0.6

0.4 -

0.2

0.0

Ratio

• 19 features – almost 80% missed

Raw Data

Group on country

Time series ordered by date

• Data: Time series of different countries

Data Splitting

Preprocessing

- Continuous
 - Some feature types: int
 - new_tests, aged_65_older, etc.
 - Standard Scaler
- Scaled within KFold splitting

Q&A

Thank you for your listening!