What is claimed is:

1. Use of hydroxydiphenyl ether compounds of the following formula

$$(1) \qquad \begin{array}{c} R_3 \\ R_2 \end{array} \qquad \begin{array}{c} O \\ R_1 \end{array}$$

wherein when OH is in the para position with respect to the ether linkage

R₁ and R₂ are independently of each other hydrogen, hydroxy, C₁-C₂₀alkyl, C₃-C₃cycloalkyl, C₁-C₄alkylcarbonyl, C₁-C₂₀alkoxy, phenyl or phenyl-C₁-C₃-alkyl;

R, is hydrogen, C₁-C₂₀alkyl or C₁-C₂₀alkoxy;

R₄ is hydrogen, C_1 - C_{20} alkyl, hydroxy substituted C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl C_1 - C_3 alkyl or carboxyallyl;

wherein when OH is in the meta position with respect to the ether linkage

R₂ is hydrogen, C₁-C₂₀alkyl, hydroxy substituted C₁-C₂₀alkyl or C₁-C₆alkylcarbonyl;

R₁ and R₃ are independently of each other hydrogen, C₁-C₆alkylcarbonyl or C₁-C₂₀alkyl;

 R_4 is hydrogen, C_1 - C_{20} alkyl, hydroxy substituted C_1 - C_{20} alkyl, C_5 - C_7 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl C_1 - C_3 alkyl or carboxyallyl;

wherein when OH is in the ortho position with respect to the ether linkage

 R_1 is hydrogen, C_1 - C_6 alkyl carbonyl or C_1 - C_{20} alkyl;

 R_4 is hydrogen, C_1 - C_{20} alkyl, hydroxy substituted C_1 - C_{20} alkyl, C_3 - C_5 cycloalkyl, hydroxy, formyl, acetonyl, C_1 - C_6 alkylcarbonyl, C_2 - C_{20} alkenyl, carboxy, carboxy C_1 - C_3 alkyl, C_1 - C_3 alkylcarbonyl C_1 - C_3 alkyl or carboxyallyl;

 R_2 and R_3 are independently of each other hydrogen, C_1 - C_6 alkyl carbonyl or C_1 - C_{20} alkyl; with the proviso that compounds wherein OH is in the para position with respect to the ether linkage and R_1 and R_3 are both hydrogen and R_2 is methoxy or methyl; or a compound wherein OH is in the para position with respect to the ether linkage R_2 is hydrogen, R_1 is isopropyl and R_3 is methyl are excluded; as antimicrobial agents.

2. Use of the compounds according to claim 1 wherein in formula (1) when OH is in the para position with respect to the ether linkage

 R_1 and R_2 are independently of each other hydrogen, C_1 - C_{20} alkyl, C_1 - C_6 alkyl carbonyl or C_1 - C_{20} alkoxy;

 R_3 is hydrogen, C_1 - C_{20} alkyl or C_1 - C_{20} alkoxy;

 R_4 is hydrogen, C_1 - C_∞ alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl, hydroxy substituted C_1 - C_∞ alkyl or C_1 - C_0 alkyl carbonyl;

wherein when OH is in the meta position with respect to the ether linkage

 R_2 is hydrogen, C_1 - C_{20} alkyl, hydroxy substituted C_1 - C_{20} alkyl or C_1 - C_6 alkyl carbonyl;

R₁ and R₃ are independently of each other hydrogen, C₁-C₆ alkyl carbonyl or C₁-C₂₀alkyl;

 R_4 is hydrogen, C_1 - C_{20} alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl, hydroxy substituted C_1 - C_{20} alkyl or C_1 - C_4 alkyl carbonyl;

wherein when OH is in the ortho position with respect to the ether linkage

R, is hydrogen, C₁-C₆ alkyl carbonyl or C₁-C₂₀alkyl;

 R_4 is hydrogen, C_1 - C_{20} alkyl, hydroxy, formyl, acetonyl, allyl, carboxymethyl, carboxyallyl, hydroxy substituted C_1 - C_{20} alkyl or C_1 - C_4 alkyl carbonyl;

 R_2 and R_3 are independently of each other hydrogen, C_1 - C_6 alkyl carbonyl or C_1 - C_{20} alkyl; with the proviso that compounds wherein OH is in the para position with respect to the ether linkage and R_1 and R_3 are both hydrogen and R_2 is methoxy or methyl; or a compound wherein OH is in the para position with respect to the ether linkage R_2 is hydrogen, R_1 is isopropyl and R_3 is methyl are excluded.

3. Use of the compounds of formula

R, is C,-C,alkyl.

4. Use of the compounds of formula

- R₄ is C₁-C₅alykl.
- 5. Use of the compounds according to one of claims 1 to 4 for finishing of undyed and dyed or printed fibre materials.
- 6. Use of the compounds according to one of claims 1 to 4 for the antimicrobial treatment of skin, mucous membrane or hair.
- 7.Use of the compounds according to one of claims 1 to 4 for the incorporation into and for the antimicrobial finishing of polymeric materials.
- 8. Use of the compounds according to one of claims 1 to 4 for the antimicrobial treatment of hard surfaces.
- 9. Use of the compounds according to one of claims 1 to 4 for the antimicrobial treatment of teeth and gums.
- 10. A personal care composition comprising at least one compound of formula (1) according to claim 1 and cosmetically tolerable carriers or auxiliaries.
- 11. An oral care composition comprising at least one compound of formula (1) according to claim 1.
- 12. A detergent composition comprising at least one compound of formula (1) according to claim 1.

- 13. Compounds of formula (1) wherein OH is in the ortho position with respect to the ether linkage and R_2 , R_3 and R_4 are hydrogen and R_1 is C_1 - C_{20} alkyl.
- 14. Compounds of formula (1) wherein OH is in the meta position with respect to the ether linkage and R_2 , R_3 and R_4 are hydrogen and R_1 is C_1 - C_{20} alkyl.
- 15.Compounds of formula (1) wherein OH is in the para position with respect to the ether linkage and R_2 and R_4 are hydrogen and R_1 and R_3 are C_1 - C_{20} alkyl.
- 16. A process for the preparation of compounds according to one of claims 13 to 15 comprising reacting a substituted phenol with an ether substituted halogenphenol in the presence of alkali and a catalytically active quantity of copper or of a copper compound, then heating the resulting alkyloxybenzol compound in the presence of hydrogen halide and acid.
- 17. Compounds of formula (1) wherein OH is in the ortho position with respect to the ether linkage and R_1 , R_2 and R_3 are hydrogen and R_4 is in the meta position with respect to the ether linkage and is C_1 - C_4 alkyl carbonyl.
- 18. Compounds of formula (1) wherein OH is in the meta position with respect to the ether linkage and R_1 , R_2 and R_3 are hydrogen and R_4 is in the para position with respect to the ether linkage and is C_1 - C_6 alkyl carbonyl.
- 19. A process for the preparation of compounds according to claims 17 and 18 which comprises reacting an acyl chloride with a phenoxyphenol in the presence of activated zinc at a temperature of between 70°c to 80°C, then heating the resulting acyl compound at a temperature of 145°C to 150°C in the presence of aluminium chloride.
- 20. Compounds of formula (1) wherein OH is in the meta position with respect to the ether linkage and R_1 , R_2 and R_3 are hydrogen and R_4 is in the para position with respect to the ether linkage and is C_1 - C_{20} alkyl.

21. A process for the preparation of compounds according to claims 17 and 18 which comprises reacting an acyl chloride with a phenoxyphenol in the presence of activated zinc at a temperature of between 70°c to 80°C, then heating the resulting acyl compound at a temperature of 145°C to 150°C in the presence of aluminium chloride, then refluxing the resulting acylated phenol in the presence of amalgamated zinc, hydrochloric acid and a solvent such as toluene.