WO 2005/052154

1

明細書

薬物の毒性予測方法

技術分野

5 本発明は、薬物の毒性予測方法およびそのためのツールに関する。より詳細には、本発明は、マーカー遺伝子の発現変動を指標とした、医薬候補化合物の毒性(例えば、リン脂質症誘発ポテンシャル等)の予測方法、並びに毒性マーカー遺伝子を検出するための試薬・キット等に関する。

10

15

20

25

背景技術

近年、コンビナトリアル・ケミストリーやハイ・スループット・スクリーニングの導入により、創薬研究におけるリード化合物最適化までのボトルネックは、薬効スクリーニングから毒性スクリーニングに移りつつある。従って、かかるボトルネックの解消に寄与し得る効率の良い毒性評価・毒性予測系の確立が強く望まれるところである。

現在、医薬品候補化合物の毒性評価は、通常、ラット等の実験動物への化合物投与によるインビボ毒性試験により行われているが、このような試験には、(1)毒性の発現に数日ないし数ヶ月を要する、(2)多量の化合物を必要とする等の欠点がある。特に、化合物の合成量に制限のある開発初期段階において、毒性の有無を迅速に予測し、構造の最適化を効率よく行うには、より少量で多検体を短時間で評価し得るインビトロスクリーニング系の構築が必須である。

薬物起因性リン脂質症(Phospholipidosis;以下、「PLsis」と略記する場合もある)は細胞内にリン脂質が過剰に蓄積する現象と定義され、抗うつ薬、抗狭心症薬、抗マラリア薬、抗食欲減退薬、抗高脂血症薬な

PCT/JP2004/017995

どの多くの薬剤もしくはその代謝物によって引き起こされる。PLsis では、リン脂質は主としてリソソーム内に蓄積し、電子顕微鏡学的には円形ないしは楕円形のミエリン様構造物(lamellar body)が観察される。毒性の発現機構は完全には解明されていないが、1)化合物によるリソソーム酵素(主にリン脂質分解酵素(ホスホリパーゼ))の活性阻害、2)化合物によるリン脂質代謝に関わる輸送経路の阻害、3)化合物とリン脂質の複合体形成による複合体の分解阻害、4)化合物によるリン脂質の合成亢進などに起因するものと考えられている。

5

10

15

20

25

PLsis を誘発する化合物の多くは、分子内に疎水性領域と陽性荷電した親水性領域とを併せ持つ(cationic amphiphilic drug; CAD)構造を有する。近年、ゲノム解析の進展に伴いオーファン受容体の創薬ターゲットとしての価値が認識され、受容体に対する作動薬もしくは拮抗薬の開発が進められているが、そのような化合物は、受容体に作用するという性質ゆえに CAD 構造を有している場合が多く、PLsis の発現が医薬品開発の妨げとなるケースが増加している。従って、効率の良い PLsis 誘発性の評価・予測系の開発が急務である。

これに対し、ホスホリパーゼ活性阻害を指標とした評価方法 (Matsuzawa, Y.および Hostetler, K.Y.、J. Biol. Chem. (米国)、1980年、第255巻 (第2号)、pp. 646-652) や、肝細胞もしくは培養リンパ球におけるリン脂質の蓄積を蛍光色素を用いて検出する方法 (Gum, R.J. ら、Biochem. Pharmacol. (英国)、2001年、第62巻、pp. 1661-1673および Xia, Z. ら、Biochem. Pharmacol. (英国)、1997年、第53巻、pp. 1521-1532) 等が提唱されているが、いずれも信頼性および/または迅速性などの面で不十分であり、未だ実用的なインビトロスクリーニング系の確立には至っていない。

WO 2005/052154

ところで、数千~数万種の mRNA の発現を同時にモニタリングするマイ クロアレイ技術(網羅的遺伝子発現解析、トランスクリプトミクス (transcriptomics)) が医学・生物学の種々の分野で盛んに利用されて きている。毒性学の分野でも、毒性発現メカニズムの解明や毒性予測の 研究に本技術が活用され始めており、トキシコゲノミクス (toxicogenomics) と呼ばれる新たな研究分野として期待されている (Aardema, M. J. および MacGregor, J. T. ら、Mutat. Res. (蘭国)、20 02年、第499巻、pp. 13-25)。毒性現象には、1ないし数個 の遺伝子の独立した変化だけでなく、遺伝子間の相互作用やカスケード 等のように多数の遺伝子が互いに関連し合った一体的な変動が伴うもの と考えられる。そのため、マイクロアレイというトランスクリプトーム レベルでの解析が可能な技術を用いることで、毒性発現に関わる分子の **挙動を包括的に捉えることが可能になると期待される。例えば、国際公** 開第02/10453号パンフレットおよび国際公開第02/0950 00号パンフレットには、膨大な遺伝子群から選択される2ないし10 0以上の遺伝子の、試験化合物存在下における発現量を調べ、その結果 を、既知陽性および陰性化合物を用いて個々の遺伝子について予め算出 された陽性平均および/または陰性平均発現量と比較することにより、 試験化合物の肝または腎毒性を予測する手法が開示されている。

20

25

5

10

15

発明の開示

本発明の目的は、PLsis の発現と相関して発現が変動する遺伝子、すなわち PLsis マーカー遺伝子を同定し、該遺伝子の発現変動を指標としたハイスループットな PLsis 誘発ポテンシャルの予測手段を提供することである。

また、本発明の別の目的は、ある毒性の発現に伴って発現が共通変動

10

15

20

する一連の遺伝子群を包括的に把握するとともに、これら遺伝子の網羅的発現解析により得られる情報から、薬物の毒性の有無をより正確に予測し得るように評価系を構築するための最適化方策を提供することである。

本発明者らは、マイクロアレイを用いて、種々の既知 PLsis 誘発化合物に曝露したヒト培養細胞における網羅的遺伝子発現解析を行った結果、これら化合物の多くで顕著に発現が変動した遺伝子を同定した。これらの中から機能が重複せず発現変動率が高い12遺伝子を抽出し、リアルタイム定量 P C R により精査した結果、これらの遺伝子は、電子顕微鏡学的観察によるミエリン様構造物あるいはその早期像である電子密度の高い構造物の出現程度と相関して発現が変動することが確認された。さらに、本発明者らは、PLsis の発現をこれらマーカー遺伝子の包括的な挙動との関連として捉え、発現の平均変動率という概念を導入することにより、偽陽性および偽陰性の確率が極めて低い、非常に信頼性に優れた PLsis 誘発ポテンシャルのインビトロ評価系を構築することに成功して本発明を完成するに至った。

すなわち、本発明は、

- [1] 配列番号1、3、5、7、9、11、13、15、17、19、21および23のいずれかに示される塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸、及び/又は該塩基配列に相補的な塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸を含有してなる、化合物のリン脂質症誘発ポテンシャル予測用試薬;
- [2] リン脂質症の発現と相関して発現が変動する遺伝子の転写産物 25 とハイストリンジェントな条件下でハイブリダイズし得る核酸、及び/ 又は該転写産物に相補的な塩基配列を有する核酸とハイストリンジェン

WO 2005/052154

トな条件下でハイブリダイズし得る核酸を含有する1もしくは2以上の 試薬を含んでなる、化合物のリン脂質症誘発ポテンシャル予測用キット であって、2以上の試薬を含む場合、各試薬は互いに異なる遺伝子の発 現を検出し得るものであるキット;

- 5 [3] 少なくとも1つの試薬は、配列番号1、3、5、7、9、11、13、15、17、19、21および23のいずれかに示される塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸、及び/又は該塩基配列に相補的な塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸を含有する、上10 記[2]記載のキット;
 - [4] 哺乳動物細胞を試験化合物に曝露した際の、各試薬中に含有される核酸がハイブリダイズし得る核酸の該細胞内での発現の平均変動率を指標とした場合に、リン脂質症誘発ポテンシャルの予測的中率が約70%以上である、上記[2]記載のキット;
- 15 [5] 化合物のリン脂質症誘発ポテンシャルの予測方法であって、化 合物に曝露された哺乳動物細胞含有試料もしくは化合物を投与された哺 乳動物より採取した試料における、リン脂質症の発現と相関して発現が 変動する1以上の遺伝子の発現変動を検出することを含む方法;
- [6] 少なくとも1つの遺伝子は、配列番号1、3、5、7、9、1 20 1、13、15、17、19、21および23のいずれかに示される塩 基配列と同一もしくは実質的に同一の塩基配列を有するものである、上 記[5]記載の方法;
 - [7] 化合物のリン脂質症誘発ポテンシャルの有無を判定するための 基準を決定する方法であって、
- 25 (1) 2以上の既知リン脂質症誘発化合物および2以上の既知リン脂質 症非誘発化合物の各々に曝露された哺乳動物細胞含有試料もしくは該化

· 5

10

20

合物の各々を投与された哺乳動物より採取した試料における、リン脂質 症の発現と相関して発現が変動する1以上の遺伝子の発現変動を検出し、

- (2) 該遺伝子の発現の平均変動率とリン脂質症誘発ポテンシャルとの 関係から、上記化合物のリン脂質症誘発ポテンシャルの有無を約70% 以上正しく判定することができる平均変動率の値を基準値とすることを 含む方法:
- [8] 少なくとも1つの遺伝子は、配列番号1、3、5、7、9、1 1、13、15、17、19、21および23のいずれかに示される塩 基配列と同一もしくは実質的に同一の塩基配列を有するものである、上 記[7]記載の方法;
- [9] 他の既知リン脂質症誘発化合物および既知リン脂質症非誘発化合物を用いて基準値の妥当性を検証することをさらに含む、上記[7]記載の方法;
- [10] 遺伝子の発現の平均変動率を、上記[7]または[9]記載 15 の方法により得られる基準値と比較することを含む、上記[5]記載の 方法:
 - 「11] 化合物の毒性の予測方法であって、
 - (1) 化合物に曝露された哺乳動物細胞含有試料もしくは化合物を投与された哺乳動物より採取した試料における、毒性の発現と相関して発現が変動する1以上の遺伝子の発現変動を検出し、
 - (2) 該遺伝子の発現の平均変動率を指標として該化合物の毒性の有無 を判定することを含む方法;

などを提供する。

25 図面の簡単な説明

図1は、PLsis 誘発化合物(アミオダロン、アミトリプチリン、AY

-9944、クロルシクリジン、クロルプロマジンおよびクロミプラミン) の構造式、分子量、薬効および添加濃度を示す。

図2は、PLsis 誘発化合物(フルオキセチン、イミプラミン、ペルヘキシリン、タモキシフェン、チオリダジンおよびジメリジン)の構造式、分子量、薬効および添加濃度を示す。

図3は、PLsis 誘発化合物(クロザピン、ケトコナゾール、ロラタジン、ペンタミジンおよびセルトラリン)の構造式、分子量、薬効および添加濃度を示す。

図4は、PLsis 非誘発化合物(アセトアミノフェン、クラリスロマイ 10 シン、ジソピラミド、エリスロマイシン、フレカイニドおよびハロペリ ドール)の構造式、分子量、薬効および添加濃度を示す。

図5は、PLsis 非誘発化合物(レボフロキサシン、オフロキサシン、 プロカイナミド、キニジン、ソタロール、スルファメトキサゾールおよ びスマトリプタン)の構造式、分子量、薬効および添加濃度を示す。

図6は、化合物添加24時間後のHepG2細胞におけるPLsisマーカー遺伝子の発現の平均変動率(縦軸)と、化合物添加72時間後のHepG2細胞におけるミエリン様構造物の出現程度(横軸)との相関を示す。+++:大型のミエリン様構造物が複数認められる;++:中等度のミエリン様構造物が少数認められる;+:軽微なミエリン様構造物が少数認められる;-:ミエリン様構造物はみとめられない

図7は、種々の化合物の添加24時間後のHepG2細胞におけるPLsisマーカー遺伝子の発現の平均変動率の再現性を示す。横軸は1回目の実験により得られた平均変動率、縦軸は2回目の実験により得られた平均変動率をそれぞれ示す。

15

20

5

8

本発明は、PLsis の発現と相関して発現が変動する遺伝子(すなわち、PLsis マーカー遺伝子)の発現を検出し得る核酸を含有する PLsis 誘発ポテンシャル予測用試薬を提供する。ここで「PLsis 誘発ポテンシャル」とは、化合物が標的哺乳動物細胞と接触した場合に該細胞内にミエリン様構造物あるいはその早期像である電子密度の高い構造物を生じさせる能力をいう。従って、インビボ投与で PLsis を誘発する化合物であっても、生体内代謝産物のみが PLsis 誘発性である場合は PLsis 誘発ポテンシャル陰性であり、一方、生体内で速やかに代謝されて無毒化される化合物であってもそれ自体が PLsis 誘発性である場合は PLsis 誘発ポテンシャル陽性である。

5

10

15

20

25

「PLsis の発現と相関して発現が変動する」とは、哺乳動物細胞を種々の化合物に曝露したときに、該化合物が該細胞内にミエリン様構造物あるいはその早期像である電子密度の高い構造物を生じさせるものである場合に発現が実質的に増加または減少し、該化合物が該細胞内にミエリン様構造物あるいはその早期像である電子密度の高い構造物を生じさせないものである場合には発現が実質的に変動しない、という傾向が統計学上有意に認められることをいう。尚、「実質的に増加または減少」とは、非曝露時の1.5倍以上に増加するか、あるいは非曝露時の2/3以下に減少することをいい、「実質的に変動しない」とは、非曝露時の2/3~1.5倍の発現レベルであることをいう。

具体的には、PLsis マーカー遺伝子としては、リソソーム酵素をコードする遺伝子、脂質代謝(例:コレステロール合成、脂肪酸伸長反応、不飽和脂肪酸合成等)関連蛋白質をコードする遺伝子、輸送(例:脂肪酸輸送、蛋白質輸送、アミノ酸輸送等)関連蛋白質をコードする遺伝子、細胞増殖関連蛋白質をコードする遺伝子、プロテアーゼもしくはプロテアーゼインヒビターをコードする遺伝子、アミノ酸代謝関連蛋白質をコ

ードする遺伝子などが挙げられる。より具体的には、本発明により抽出 された PLsis と相関して発現が増加する遺伝子としては、GenBank デー タベースに、それぞれ NM_014960、NM_000859、AL518627、NM_002130、 AA639705, BC005807, AF116616, NM_025225, U47674, D80010, NM_001731. AW134535, NM_004354, AF135266, AC007182, NM_003832, NM_019058, . 5 AB040875, AA488687, NM_018687, NM_021158, BG231932, NM_024307, NM_000235, AA873600, D63807, AF096304, AW150953, NM_001360, NM_021969, AC001305, NM_024090, NM_001443, NM_006214, NM_024108, NM_021980, NM_002151, AF003934, NM_000596, U15979, M92934, NM_002087, AK023348, NM_002773, NM_000131, BC003169, NM_002217, NM_003122, NM_001673, 10 NM:000050, NM_001085, U08024, NM_003167, BC005161, AF162690, AW517464, AF116616, NM_017983, AL136653, NM_016061, BE966922, BE552428, NM_022823、NM_012445、NM_000792、NM_015930、NM_021800、NM_005980、 NM_000565 および AB033025 の I Dを付されて登録されている塩基配列を 含有するヒト遺伝子および他の哺乳動物におけるそれらのホモログ等が 15 挙げられる。一方、PLsis と相関して発現が減少する遺伝子としては、 GenBank データベースに、それぞれ NM_006931、AL110298、NM_006931、 NM_001955, NM_003897, NM_003186, AA778684, NM_001283, NM_012242, AI934469、NM_003186 および NM_002450 の I Dを付されて登録されてい る塩基配列を有するヒト遺伝子および他の哺乳動物におけるそれらのホ 20 モログ等が挙げられる。

好ましくは、本発明の PLsis マーカー遺伝子として、配列番号1、3、5、7、9、11、13、15、17、19、21および23に示される各塩基配列と同一もしくは実質的に同一の塩基配列をそれぞれ有する12種の遺伝子が挙げられる。ここで「実質的に同一の塩基配列」とは、配列番号1、3、5、7、9、11、13、15、17、19、21お

· 5

10

15

25

よび23に示される各塩基配列の相補鎖配列を有する核酸とそれぞれハ イストリンジェントな条件下でハイブリダイズし得る塩基配列であって、 それにコードされる蛋白質が該配列番号に示される塩基配列にコードさ れる蛋白質と同一もしくは実質的に同一のものであるような配列を意味 する。「ハイストリンジェントな条件」とは、配列番号1、3、5、7、 9、11、13、15、17、19、21および23に示される各塩基・ 配列の相補鎖配列を有する核酸と、オーバーラップする領域において約 70%以上、好ましくは約80%以上、より好ましくは約90%以上、 特に好ましくは約95%以上の相補性を有する塩基配列を有する核酸と がハイブリダイズし得る条件をいい、例えば、ナトリウム濃度が約19 ~40 mM、好ましくは約19~20 mMで、温度が約50~70℃、 好ましくは約60~65℃、特に好ましくは、ナトリウム濃度が約19 mMで温度が約65℃の場合が挙げられる。当業者は、ハイブリダイゼ ーション溶液の塩濃度、ハイブリダゼーション反応の温度、プローブ濃 度、プローブの長さ、ミスマッチの数、ハイブリダイゼーション反応の 時間、洗浄液の塩濃度、洗浄の温度等を適宜変更することにより、所望 のストリンジェンシーに容易に調節することができる。

「実質的に同一の蛋白質」とは、配列番号2、4、6、8、10、12、14、16、18、20、22および24に示される各アミノ酸配列と約70%以上、好ましくは約80%以上、より好ましくは約90%以上、特に好ましくは約95%以上、最も好ましくは約98%以上の相同性を有するアミノ酸配列を有し、且つ上記各配列番号2に示されるアミノ酸配列を有する蛋白質を同質の活性を有する蛋白質をいう。「同質の活性」とは、活性が性質的に(例えば、生理学的に、または薬理学的に)同一であることをいい、量的には同等(例:0.5~2倍)であることが好ましいが、異なっていてもよい。また、アミノ酸配列の相同性の条

11

件を満たす限り、分子量などの他の量的要素が異なってもよい。

. 5

10

15

20

25

アミノ酸配列について、「相同性」とは、当該技術分野において公知の 数学的アルゴリズムを用いて2つのアミノ酸配列をアラインさせた場合 の、最適なアラインメント(好ましくは、該アルゴリズムは最適なアラ インメントのために配列の一方もしくは両方へのギャップの導入を考慮 し得るものである)における、オーバーラップする全アミノ酸残基に対 する同一アミノ酸および類似アミノ酸残基の割合(%)を意味する。「類 似アミノ酸」とは物理化学的性質において類似したアミノ酸を意味し、 . 例えば、芳香族アミノ酸 (Phe、Trp、Tyr)、脂肪族アミノ酸 (Ala、Leu、 Ile、Val)、極性アミノ酸(Gln、Asn)、塩基性アミノ酸(Lys、Arg、His)、 酸性アミノ酸 (Glu、Asp)、水酸基を有するアミノ酸 (Ser、Thr)、側鎖 の小さいアミノ酸(Gly、Ala、Ser、Thr、Met)などの同じグループに分 類されるアミノ酸が挙げられる。このような類似アミノ酸による置換は 蛋白質の表現型に変化をもたらさない(即ち、保存的アミノ酸置換であ る)ことが予測される。保存的アミノ酸置換の具体例は当該技術分野で 周知であり、種々の文献に記載されている(例えば、Bowie ら, Science, 247: 1306-1310 (1990)を参照)。

アミノ酸配列の相同性を決定するためのアルゴリズムとしては、例えば、Karlin ら、Proc. Natl. Acad. Sci. USA, 90: 5873-5877 (1993) に記載のアルゴリズム [該アルゴリズムは NBLAST および XBLAST プログラム (version 2.0) に組み込まれている (Altschul ら、Nucleic Acids Res., 25: 3389-3402 (1997))]、Needleman ら、J. Mol. Biol., 48: 444-453 (1970)に記載のアルゴリズム [該アルゴリズムは GCG ソフトウェアパッケージ中の GAP プログラムに組み込まれている]、Myers および Miller, CABIOS, 4: 11-17 (1988)に記載のアルゴリズム [該アルゴリズム [該アルゴリズム 人は CGC 配列アラインメントソフトウェアパッケージの一部である

12

ALIGN プログラム (version 2.0) に組み込まれている]、Pearson ら、Proc. Natl. Acad. Sci. USA, 85: 2444-2448 (1988) に記載のアルゴリズム [該アルゴリズムは GCG ソフトウェアパッケージ中の FASTA プログラムに組み込まれている] 等が挙げられるが、それらに限定されない。

より好ましくは、配列番号2、4、6、8、10、12、14、16、18、20、22および24に示されるアミノ酸配列と実質的に同一のアミノ酸配列とは、各配列番号に示されるアミノ酸配列とそれぞれ約70%以上、好ましくは約80%以上、より好ましくは約90%以上の同一性を有するアミノ酸配列である。

. 5

10

15

20

25

かかる相同性を有する蛋白質としては、例えば、1)配列番号2、4、 6、8、10、12、14、16、18、20、22または24に示さ れるアミノ酸配列中の1または2個以上(好ましくは1~30個程度、 より好ましくは1~10個程度、特に好ましくは数(1~5)個)のア ミノ酸が欠失したアミノ酸配列、2)配列番号2、4、6、8、10、1 2、14、16、18、20、22または24に示されるアミノ酸配列 に1または2個以上(好ましくは1~30個程度、より好ましくは1~ 10個程度、特に好ましくは数(1~5)個)のアミノ酸が付加したア ミノ酸配列、3) 配列番号2、4、6、8、10、12、14、16、1 8、20、22または24に示されるアミノ酸配列に1または2個以上 (好ましくは1~30個程度、より好ましくは1~10個程度、特に好 ましくは数(1~5)個)のアミノ酸が挿入されたアミノ酸配列、4)配 列番号2、4、6、8、10、12、14、16、18、20、22ま たは24に示されるアミノ酸配列中の1または2個以上(好ましくは1 ~30個程度、より好ましくは1~10個程度、特に好ましくは数(1 ~5)個)のアミノ酸が他のアミノ酸で置換されたアミノ酸配列、また は 5) それらを組み合わせたアミノ酸配列を含有する蛋白質などが含ま

れる。

· 5

10

20

25

上記のようにアミノ酸配列が挿入、欠失または置換されている場合、 その挿入、欠失または置換の位置は特に限定されない。

より具体的には、配列番号1、3、5、7、9、11、13、15、17、19、21および23に示される各塩基配列と実質的に同一の塩基配列を有する遺伝子として、各配列番号に示される塩基配列を有する遺伝子のアレル変異体や、該遺伝子の非ヒト哺乳動物(例:サル、ウシ、ウマ、ブタ、ヒツジ、ヤギ、イヌ、ネコ、ウサギ、ハムスター、モルモット、マウス、ラット等)におけるオルソログ (ortholog) などが該当する。

本発明のヒト由来 PLsis マーカー遺伝子の塩基配列(すなわち、配列番号1、3、5、7、9、11、13、15、17、19、21および23に示される塩基配列)はいずれも公知であり、GenBank データベース上で、それぞれ NM_014960、U47674、NM_024307、D63807、NM_021969、NM_001443 NM_002151 NM_001085 AL136653 NM_022823 NM_006931

15 NM_001443、NM_002151、NM_001085、AL136653、NM_022823、NM_006931 および NM_003186 の登録番号を付されて公開されている。

配列番号1に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「kiaa1001」と略記する場合がある)は、スルファターゼファミリーに属するリソソーム酵素、KIAA1001蛋白質をコードしている。

配列番号3に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「asah1」と略記する場合がある)は、セラミド代謝に関与するリソソーム酵素であり、ヒトにおいてはその欠損によりファーバー病(セラミド蓄積症)を生じるNーアシルスフィンゴシンアミドヒドロラーゼ(酸性セラミダーゼ)1をコードしている。

配列番号5に示される塩基配列と同一もしくは実質的に同一の塩基配

10

15

25

列を有する遺伝子(以下、「mgc4171」と略記する場合がある)は、リン 脂質の分解に関与するグリセロホスホリルジエステル ホスホジエステ ラーゼファミリーに属する MGC4171 蛋白質をコードしている。

配列番号7に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「lss」と略記する場合がある)は、コレステロール合成に関与するラノステロールシンターゼをコードしている。

配列番号 9 に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「nr0b2」と略記する場合がある)は、コレステロール 7 a ーヒドロキシラーゼ(CYP7A1)の発現調節に関わる核内受容体蛋白質(サブファミリー 0,グループ b,メンバー 2)をコードしている。

配列番号11に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「fabp1」と略記する場合がある)は、脂質輸送に関与する肝脂肪酸結合蛋白質1をコードしている。

上記6つの遺伝子は、一般的に PLsis 誘発との関連性が示唆され得る リソソーム酵素および脂質代謝関連蛋白質をコードしているが、これら 個々の遺伝子の発現が薬物の PLsis 誘発ポテンシャルと実際に相関する ことについてはこれまで報告されていない。

配列番号13に示される塩基配列と同一もしくは実質的に同一の塩基 20 配列を有する遺伝子(以下、「hpn」と略記する場合がある)は、膜貫通 型セリンプロテアーゼであるヘプシンをコードしている。

配列番号15に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「serpina3」と略記する場合がある)は、セリン(システイン)プロテアーゼインヒビター(クレードA,メンバー3)をコードしている。

配列番号17に示される塩基配列と同一もしくは実質的に同一の塩基

15

配列を有する遺伝子(以下、「depp」と略記する場合がある)は、プロゲステロンにより誘導される脱落膜由来蛋白質をコードしている。

配列番号19に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「flj22362」と略記する場合がある)は、フィブロネクチン タイプ III とホモロジーの高い蛋白質(FLJ22362)をコードしている。

. 5

10

20

25

配列番号21に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「s1c2a3」と略記する場合がある)は、グルコース輸送担体である溶質キャリアーファミリーに属する蛋白質(ファミリー2、メンバー3)をコードしている。

配列番号23に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子(以下、「tagln」と略記する場合がある)は、細胞骨格蛋白質であるトランスゲリンをコードしている。

これら6つの遺伝子にコードされる蛋白質は、一般的にも PLsis 誘発 15 との関連性が全く知られていない。

配列番号1、3、5、7、9、11、13、15、17および19に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子は、PLsis 発現と相関して発現が増加し、一方、配列番号21および23に示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子は、PLsis 発現と相関して発現が減少する。

本発明のPLsis 誘発ポテンシャル予測用試薬(以下、「本発明の試薬」と略記する場合がある)に含有されるPLsis マーカー遺伝子の発現を検出し得る核酸としては、例えば、PLsis マーカー遺伝子の転写産物とハイブリダイズし得る核酸(プローブ)や、該転写産物の一部もしくは全部を増幅するプライマーとして機能し得るオリゴヌクレオチドのセットなどが挙げられる。すなわち、該核酸としては、配列番号1、3、5、

16

7、9、11、13、15、17、19、21および23のいずれかに示される塩基配列を有する核酸(センス鎖=コード鎖)とハイストリンジェントな条件下でハイブリダイズし得る核酸、及び/又は該塩基配列に相補的な塩基配列を有する核酸(アンチセンス鎖=非コード鎖)とハイストリンジェントな条件下でハイブリダイズし得る核酸が好ましく例示される。「ハイストリンジェントな条件下でハイブリダイズし得る」とは上記と同義である。該核酸はDNAであってもRNAであってもよく、あるいはDNA/RNAキメラであってもよい。好ましくはDNAが挙げられる。

· 5

10

15

20

25

プローブとして用いられる核酸は、二本鎖であっても一本鎖であって もよい。二本鎖の場合は、二本鎖DNA、二本鎖RNAまたはDNA: RNAのハイブリッドでもよい。一本鎖の場合は、供される試料に応じ てセンス鎖 (例: c D N A、c R N A の場合) またはアンチセンス鎖 (例: mRNA、cDNAの場合)を選択して用いることができる。該核酸の 長さは標的核酸と特異的にハイブリダイズし得る限り特に制限はなく、 例えば約15塩基以上、好ましくは約30塩基以上である。該核酸は、 標的核酸の検出・定量を可能とするために、標識剤により標識されてい ることが好ましい。標識剤としては、例えば、放射性同位元素、酵素、 蛍光物質、発光物質などが用いられる。放射性同位元素としては、例え ば、[³²P]、[³H]、[¹4C] などが用いられる。酵素としては、安定で 比活性の大きなものが好ましく、例えば、 β - ガラクトシダーゼ、 β -グルコシダーゼ、アルカリフォスファターゼ、パーオキシダーゼ、リン ゴ酸脱水素酵素などが用いられる。蛍光物質としては、例えば、フルオ レスカミン、フルオレッセンイソチオシアネートなどが用いられる。発 光物質としては、例えば、ルミノール、ルミノール誘導体、ルシフェリ ン、ルシゲニンなどが用いられる。さらに、プローブと標識剤との結合

17

にビオチンー (ストレプト) アビジンを用いることもできる。一方、プローブとなる核酸を固相上に固定化する場合には、試料中の核酸を上記と同様の標識剤を用いて標識することができる。

プライマーとして用いられるオリゴヌクレオチドのセットとしては、各配列番号に示される塩基配列(センス鎖)およびそれに相補的な塩基配列(アンチセンス鎖)とそれぞれ特異的にハイブリダイズすることができ、それらに挟まれるDNA断片を増幅し得るものであれば特に制限はなく、例えば、各々約15~約100塩基、好ましくは各々約15~約50塩基の長さを有し、約100bp~数kbpのDNA断片を増幅するようにデザインされたオリゴDNAのセットが挙げられる。

5

10

15

20

25

微量RNA試料を用いて PLsis マーカー遺伝子の発現を定量的に解析 するためには、競合RT-PCRまたはリアルタイムRT-PCRを用 いることが好ましい。競合RT-PCRとは、目的のDNAを増幅し得 るプライマーのセットにより増幅され得る既知量の他の鋳型核酸を competitor として反応液中に共存させて競合的に増幅反応を起こさせ、 増幅産物の量を比較することにより、目的DNAの量を算出する方法を いう。従って、競合RT-PCRを用いる場合、本発明の試薬は、上記 プライマーセットに加えて、該プライマーセットにより増幅され、目的 DNAと区別することができる増幅産物(例えば、目的のDNAとはサ イズの異なる増幅産物、制限酵素処理により異なる泳動パターンを示す 増幅産物など)を生じる核酸をさらに含有することができる。この competitor 核酸はDNAであってもRNAであってもよい。DNAの場 合、RNA試料から逆転写反応によりcDNAを合成した後に competitorを添加してPCRを行えばよく、RNAの場合は、RNA試 料に最初から添加してRT-PCRを行うことができる。後者の場合、 逆転写反応の効率も考慮に入れているので、元のmRNAの絶対量を推

定することができる。

5

10

15

20

25

一方、リアルタイムRT-PCRは、PCRの増幅量をリアルタイムでモニタリングできるので、電気泳動が不要で、より迅速にPLsisマーカー遺伝子の発現を解析可能である。通常、モニタリングは種々の蛍光試薬を用いて行われる。これらの中には、SYBR Green I、エチジウムブロマイド等の二本鎖DNAに結合することにより蛍光を発する試薬(インターカレーター)の他、上記プローブとして用いることができる核酸(但し、該核酸は増幅領域内で標的核酸にハイブリダイズする)の両端をそれぞれ蛍光物質(例:FAM、HEX、TET、FITC等)および消光物質(例:TAMRA、DABCYL等)で修飾したもの等が含まれる。

PLsis マーカー遺伝子の発現を検出し得るプローブとして機能する核 酸は、該遺伝子の転写産物の一部もしくは全部を増幅し得る上記プライ マーセットを用い、哺乳動物 (例:ヒト、サル、ウシ、ウマ、ブタ、ヒ ツジ、ヤギ、イヌ、ネコ、ウサギ、ハムスター、モルモット、マウス、 ラット等)のあらゆる細胞[例えば、肝細胞、脾細胞、神経細胞、グリ ア細胞、膵臓β細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細 胞、表皮細胞、上皮細胞、杯細胞、内皮細胞、平滑筋細胞、繊維芽細胞、 繊維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、 B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、好酸球、 单球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨細胞、乳 腺細胞、肝細胞もしくは間質細胞、またはこれら細胞の前駆細胞、幹細 胞もしくはガン細胞など]もしくはそれらの細胞が存在するあらゆる組 織[例えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、 視床、視床下部、大脳皮質、延髄、小脳)、脊髄、下垂体、胃、膵臓、腎 職、肝臟、生殖腺、甲状腺、胆嚢、骨髄、副腎、皮膚、肺、消化管(例、 大腸、小腸)、血管、心臓、胸腺、脾臓、顎下腺、末梢血、前立腺、睾丸、

WO 2005/052154

· 5

10

15

卵巣、胎盤、子宮、骨、関節、脂肪組織、骨格筋など〕由来のcDNA もしくはゲノムDNAを鋳型としてPCR法によって所望の長さの核酸 を増幅するか、前記した細胞・組織由来のcDNAもしくはゲノムDN Aライブラリーから、コロニーもしくはプラークハイブリダイゼーショ ン等により上記 PLsis マーカー遺伝子もしくは c D N A をクローニング し、必要に応じて制限酵素等を用いて適当な長さの断片とすることによ り取得することができる。ハイブリダイゼーションは、例えば、モレキ ュラー・クローニング (Molecular Cloning) 第2版(前述)に記載の方 法などに従って行なうことができる。また、市販のライブラリーを使用 する場合、ハイブリダイゼーションは、該ライブラリーに添付された使 用説明書に記載の方法に従って行なうことができる。あるいは、該核酸 は、配列番号1、3、5、7、9、11、13、15、17、19、2 1および23に示される各塩基配列情報に基づいて、該塩基配列および /またはその相補鎖配列の一部もしくは全部を市販のDNA/RNA自 動合成機等を用いて化学的に合成することによっても得ることができる。 また、シリコンやガラス等の固相上で該核酸を直接 in situ (on chip) 合成することにより、該核酸が固相化されたチップを作成することもで きる。

PLsis マーカー遺伝子の転写産物の一部もしくは全部を増幅し得るプライマーとして機能する核酸は、配列番号1、3、5、7、9、11、13、15、17、19、21および23に示される各塩基配列情報に基づいて、該塩基配列およびその相補鎖配列の一部を市販のDNA/RNA自動合成機等を用いて化学的に合成することによって得ることができる。

25 PLsis マーカー遺伝子の発現を検出し得る核酸は、乾燥した状態もしくはアルコール沈澱の状態で、固体として提供することもできるし、水

20

もしくは適当な緩衝液(例:TE緩衝液等)中に溶解した状態で提供することもできる。標識プローブとして用いられる場合、該核酸は予め上記のいずれかの標識物質で標識した状態で提供することもできるし、標識物質とそれぞれ別個に提供され、用時標識して用いることもできる。

5

10

15

20

あるいは、該核酸は、適当な固相に固定化された状態で提供することもできる。固相としては、例えば、ガラス、シリコン、プラスチック、ニトロセルロース、ナイロン、ポリビニリデンジフロリド等が挙げられるが、これらに限定されない。また、固定化手段としては、予め核酸にアミノ基、アルデヒド基、SH基、ビオチンなどの官能基を導入しておき、一方、固相上にも該核酸と反応し得る官能基(例:アルデヒド基、アミノ基、SH基、ストレプトアビジンなど)を導入し、両官能基間の共有結合で固相と核酸を架橋したり、ポリアニオン性の核酸に対して、固相をポリカチオンコーティングして静電結合を利用して核酸を固定化するなどの方法が挙げられるが、これらに限定されない。

核酸プローブが固相に固定化された状態で提供される好ましい一例として、High Throughput Genomics 社より提供される ArrayPlateTM 等が挙げられる。ArrayPlateTM は96ウェルプレートの各ウェル底面に種々の核酸プローブが規則正しく配置した状態(例、4×4アレイ)で固定化されたものである。プローブとハイブリダイズし得る一端と標的核酸とハイブリダイズし得る他端とを有する核酸をスペーサーとして介在させることで、プローブと標的核酸とのハイブリダイゼーション反応を固相表面上ではなく液相中で行わせることができ、標的核酸の定量的な測定が可能となる。従って、単一のウェルで種々のPLsisマーカー遺伝子の発現変動を同時に一括検出することができ、十分な定量性が得られれば、各マーカー遺伝子の発現変動を別個に検出するリアルタイムPCRよりもさらに効率がよいという利点を有する。

10

15

20

25

本発明の試薬に関し、配列番号1、3、5、7、9、11、13、1 5、17、19、21および23のいずれかに示される塩基配列と同一 もしくは実質的に同一の塩基配列を有する遺伝子を検出し得る核酸を含 有する場合を強調して説明してきたが、本発明の試薬は、上記12個の PLsis マーカー遺伝子以外の PLsis マーカー遺伝子、例えば、リソソー ム酵素をコードする遺伝子、脂質代謝(例:コレステロール合成、脂肪 酸伸長反応、不飽和脂肪酸合成等)関連蛋白質をコードする遺伝子、輸 送(例:脂肪酸輸送、蛋白質輸送、アミノ酸輸送等)関連蛋白質をコー ドする遺伝子、細胞増殖関連蛋白質をコードする遺伝子、プロテアーゼ もしくはプロテアーゼインヒビターをコードする遺伝子、アミノ酸代謝 関連蛋白質をコードする遺伝子など、より具体的には、GenBank データ ベースに、それぞれ NM_000859、AL518627、NM_002130、AA639705、BC005807、 AF116616 NM 025225 D80010 NM 001731 AW134535 NM 004354 AF135266 AC007182 NM_003832 NM_019058 AB040875 AA488687 NM_018687 NM_021158, BG231932, NM_000235, AA873600, AF096304, AW150953, NM_001360, AC001305, NM_024090, NM_006214, NM_024108, NM_021980, AF003934, NM_000596, U15979, M92934, NM_002087, AK023348, NM_002773, NM 000131 BC003169 NM_002217 NM_003122 NM_001673 NM_000050 U08024 NM 003167 BC005161 AF162690 AW517464 AF116616 NM 017983 NM_016061, BE966922, BE552428, NM_012445, NM_000792, NM_015930, NM_021800, NM_005980, NM_000565, AB033025, AL110298, NM_006931, NM_001955、NM_003897、AA778684、NM_001283、NM_012242、AI934469、 NM_003186 および NM_002450 の I Dを付されて登録されている塩基配列 を有するヒト遺伝子および他の哺乳動物におけるそれらのホモログ等を 検出し得る核酸を含有するものであってもよい。

本発明の試薬は、PLsis マーカー遺伝子の発現を検出し得る核酸に加

えて、該遺伝子の発現を検出するための反応において必要な他の物質であって、共存状態で保存することにより反応に悪影響を及ぼさない物質をさらに含有することができる。あるいは、本発明の試薬は、PLsisマーカー遺伝子の発現を検出するための反応において必要な他の物質を含有する別個の試薬とともにキット化して提供することもできる。例えば、PLsisマーカー遺伝子の発現を検出するための反応がPCRの場合、当該他の物質としては、例えば、反応緩衝液、dNTPs、耐熱性DNAポリメラーゼ等が挙げられる。競合PCRやリアルタイムPCRを用いる場合は、competitor核酸や蛍光試薬(上記インターカレーターや蛍光プローブ等)などをさらに含むことができる。

· 5

10

15

20

25

個々の PLsis マーカー遺伝子は、すべての PLsis 誘発化合物について発現が変動し、すべての PLsis 非誘発化合物について実質的に発現が変動しないというものではない。そのため、個々のマーカー遺伝子の発現を単独の指標とした場合、ある程度の偽陽性および偽陰性化合物の出現は避けられない。しかしながら、複数の PLsis マーカー遺伝子の発現変動を調べることにより、予測的中率をさらに向上させることができる。

したがって、本発明はまた、PLsis マーカー遺伝子を検出し得る核酸を含有する2以上の試薬を組み合わせてなる、薬物のPLsis 誘発ポテンシャル予測用キットを提供する。ここで各試薬中に含有される核酸は、互いに異なるPLsis マーカー遺伝子を検出し得るものである。検出対象となるPLsis マーカー遺伝子は特に制限はなく、上記した通りのものが同様に例示されるが、好ましくは、該試薬の少なくとも1つは、配列番号1、3、5、7、9、11、13、15、17、19、21および23のいずれかに示される塩基配列と同一もしくは実質的に同一の塩基配列を有する遺伝子を検出し得る核酸を含有するものである。より好ましくは、上記12個のPLsis マーカー遺伝子のうちのいずれか2個以上、

23

さらに好ましくは3個以上、いっそう好ましくは4個以上、特に好ましくは5個以上、最も好ましくは6個以上を検出対象とするキットが挙げられる。

キットを構成する各試薬中に含有される核酸は、同一の方法(例: ノーザンブロット、ドットブロット、DNAアレイ技術、定量RT-PCR等)により PLsis マーカー遺伝子の発現を検出し得るように構築されていることが特に好ましい。

. 5

10

15

20

25

あるいは、好適なマーカー遺伝子の組み合わせとして、哺乳動物細胞を試験化合物に曝露した際の発現の平均変動率(後記 PLsis 誘発ポテンシャル予測方法の説明において詳述する)を指標とした場合に、PLsis 誘発ポテンシャルの予測的中率が約70%以上である組み合わせ、より好ましくは約80%以上、さらに好ましくは約90%以上、特に好ましくは約95%以上である組み合わせが挙げられる。ここで予測が的中するとは、PLsis 陽性であると予測された化合物を哺乳動物細胞に曝露した際に細胞内にミエリン様構造物あるいはその早期像である電子密度の高い構造物が観察され、PLsis 陰性であると予測された化合物を哺乳動物細胞に曝露した際に細胞内にミエリン様構造物あるいはその早期像である電子密度の高い構造物が観察されないことをいう。本明細書において、予測的中率は、図1~3に記載のPLsis 陽性化合物および図4~5に記載のPLsis 陰性化合物を基準化合物として算定される。

本発明のキットの構成として、上記本発明の試薬がそれぞれ別個に提供されるもの [例:核酸が標識プローブ (特にドットブロット解析の場合) やPCR (特にリアルタイム定量PCR) 用プライマーとして機能する場合等]、異なる PLsis マーカー遺伝子の発現を検出し得る核酸が同一の試薬中に含有されて提供されるもの [例:核酸がPCR (特に、増幅産物のサイズ等により各マーカー遺伝子を区別し得る場合) や標識プ

24

ローブ (特に、ノーザンブロット解析で転写産物のサイズにより各マーカー遺伝子を区別し得る場合)として機能する場合等]、あるいは、異なる PLsis マーカー遺伝子の発現を検出し得る核酸が、同一の固相の別個の領域にそれぞれ固定化されて提供されるもの [例:標識 c R N A 等とのハイブリダイゼーション用プローブとして機能する場合等] などが例示されるが、これらに限定されない。

- 5

10

15

本発明はまた、試験化合物を哺乳動物細胞含有試料またはヒトもしくは非ヒト哺乳動物に曝露した際の、1以上のPLsisマーカー遺伝子の発現変動を検出することを特徴とする、化合物のPLsis誘発ポテンシャルの予測方法を提供する。

本発明の方法により試験される化合物としては、例えば、医薬または動物薬の候補化合物などが挙げられる。特に、迅速に多検体を処理できるという点から、創薬初期段階で合成される多数の候補化合物群への適用が好ましい。この場合、細胞含有試料または非ヒト哺乳動物が被験体として用いられる。一方、PLsis マーカー遺伝子の発現変動は血液などの容易にサンプリングが可能な細胞含有試料を用いて測定することができるので、臨床試験という医薬品開発の最終段階においても好ましく使用し得る。

使用される哺乳動物細胞含有試料としては、哺乳動物(例:ヒト、サル、ウシ、ウマ、ブタ、ヒツジ、ヤギ、イヌ、ネコ、ウサギ、ハムスター、モルモット、マウス、ラット等)、望ましくは試験化合物の投与対象とされる哺乳動物のあらゆる細胞 [例えば、肝細胞、脾細胞、神経細胞、グリア細胞、膵臓 β 細胞、骨髄細胞、メサンギウム細胞、ランゲルハンス細胞、表皮細胞、上皮細胞、杯細胞、内皮細胞、平滑筋細胞、線維芽25 細胞、線維細胞、筋細胞、脂肪細胞、免疫細胞(例、マクロファージ、T細胞、B細胞、ナチュラルキラー細胞、肥満細胞、好中球、好塩基球、

15

20

25

好酸球、単球)、巨核球、滑膜細胞、軟骨細胞、骨細胞、骨芽細胞、破骨 細胞、乳腺細胞、間質細胞、またはこれら細胞の前駆細胞、幹細胞もし くはガン細胞など〕もしくはそれらの細胞が存在するあらゆる組織 [例 えば、脳、脳の各部位(例、嗅球、扁桃核、大脳基底球、海馬、視床、 視床下部、大脳皮質、延髓、小脳)、脊髄、下垂体、胃、膵臓、腎臓、肝 朦、生殖腺、甲状腺、胆囊、骨髓、副腎、皮膚、肺、消化管(例、大腸、 小腸)、血管、心臟、胸腺、脾臟、顎下腺、末梢血、前立腺、睾丸、卵巣、 胎盤、子宮、骨、関節、脂肪組織、骨格筋など]、あるいは上記の細胞・ 組織から樹立される細胞株などが例示される。好ましくは、肝細胞、腎 細胞、単球、末梢血リンパ球、線維芽細胞、副腎ステロイド産生細胞、 精巣細胞、卵巣細胞、腹腔マクロファージ、肺胞上皮細胞、気管支上皮 細胞、肺胞マクロファージ等が挙げられる。また、再現性の良さや(特 にヒト細胞の場合)入手の容易さ等から細胞株の使用が好ましい。例え ば、ヒト細胞株としては、肝癌由来のHepG2細胞株、リンパ腫由来のU-937 細胞株、単球由来の THP-1 細胞株、大腸癌由来の Caco-2 細胞株、子宮頚 癌由来の HeLa 細胞株等が挙げられる。

一方、非ヒト哺乳動物としては、ラット、ハムスター、モルモット、 ウサギ、マウス、サル、イヌ、ブタ、ネコ、ヒツジ、ヤギ、ウマ、ウシ 等が例示されるがこれらに限定されない。好ましくは、ラット、ハムス ター、モルモット、ウサギ、マウス、サル、イヌ等である。

哺乳動物細胞含有試料を試験化合物に曝露する方法は特に制限はないが、具体的には、例えば、細胞株を試料として用いる場合、適当な培地中、好適な条件下で培養した細胞増殖期の細胞を、トリプシン-EDT Aなどを用いて剥離させ、遠心して細胞を回収した後、適当な培地[例:約5~約20%の胎仔ウシ血清(FBS)を含むMEM培地(Science, 122:501 (1952))、DMEM培地(Virology, 8:396 (1959))、RPMI 1

6 4 0 培地 (The Journal of the American Medical Association, 199: 519 (1967))、1 9 9 培地 (Proceeding of the Society for the Biological Medicine, 73: 1 (1950)) など (必要に応じて、ペニシリン、ストレプ トマイシン、ハイグロマイシン等の抗生物質をさらに添加してもよい)] を加えて所望の細胞密度となるように懸濁する。細胞密度は、遺伝子発 現およびその変動が検出可能であれば特に限定されないが、細胞が細胞 増殖期の状態を保つように調整することが好ましい。したがって、好ま しい当初細胞密度は使用する細胞の増殖速度等によって異なり、当業者 であれば使用する細胞に応じて容易に設定することができるが、通常約 5×10⁴~約1×10⁷cells/mL である。適当な溶媒に溶解した試験 化合物を培地でさらに希釈し、終濃度が、例えば細胞が生存し得る最高 濃度 (当該濃度は、別途組織学的観察を行って決定することができる) となるように、上記細胞懸濁液に添加して、通常条件下、例えば、CO。 インキュベーター中で、5%CO2/95%大気、5%CO2/5%O2 /90%大気等の雰囲気下、約30~約40℃で、約0.5~約168 時間、好ましくは約3~約48時間、より好ましくは約23~約25時 間培養する。

. 5

10

15

20

25

哺乳動物を試験化合物に曝露する方法は、標的細胞(後に PLsis マーカー遺伝子の発現変動を調べるために該動物から採取する試料中に含まれる細胞)に十分量の試験化合物が到達するように、試験化合物を該動物に投与するものであれば特に制限はなく、例えば、試験化合物を固形、半固形、液状、エアロゾル等の形態で経口的もしくは非経口的(例:静脈内、筋肉内、腹腔内、動脈内、皮下、皮内、気道内等)に投与することができる。試験化合物の投与量は、化合物の種類、動物種、体重、投与形態などによって異なり、例えば、動物が生存し得る範囲で、標的細胞が生存し得る最高濃度の試験化合物に一定時間以上曝露され得るのに

10

15

20

25

必要な量などが挙げられる。投与は1回ないし数回に分けて行うことができる。投与から試料採取までの時間は試験化合物の体内動態等によって異なるが、通常、初回投与から約3時間~約3日間である。

試験化合物を投与された哺乳動物から採取される試料としては、哺乳動物細胞含有試料について例示された種々の細胞を含有するものが好ましく挙げられるが、迅速且つ簡便に採取することができ、動物への侵襲が少ないなどの点から、血液(例:末梢血)等が特に好ましい。

本発明の予測方法において発現変動を調べられる PLsis マーカー遺伝 子は特に制限されないが、例えば、リソソーム酵素をコードする遺伝子、 脂質代謝 (例:コレステロール合成、脂肪酸伸長反応、不飽和脂肪酸合 成等) 関連蛋白質をコードする遺伝子、輸送(例:脂肪酸輸送、蛋白質 輸送、アミノ酸輸送等)関連蛋白質をコードする遺伝子、細胞増殖関連 蛋白質をコードする遺伝子、プロテアーゼもしくはプロテアーゼインヒ ビターをコードする遺伝子、アミノ酸代謝関連蛋白質をコードする遺伝 子などが挙げられる。より具体的には、PLsis と相関して発現が増加す る遺伝子としては、GenBank データベースに、それぞれ NM_014960、 NM 000859 AL518627 NM_002130 AA639705 BC005807 AF116616 NM_025225, U47674, D80010, NM_001731, AW134535, NM_004354, AF135266, AC007182, NM_003832, NM_019058, AB040875, AA488687, NM_018687, NM_021158,BG231932,NM_024307,NM_000235,AA873600,D63807,AF096304, AW150953, NM_001360, NM_021969, AC001305, NM_024090, NM_001443, NM_006214, NM_024108, NM_021980, NM_002151, AF003934, NM_000596, U15979, M92934, NM_002087, AK023348, NM_002773, NM_000131, BC003169, NM_002217, NM_003122, NM_001673, NM_000050, NM_001085, U08024, NM_003167, BC005161, AF162690, AW517464, AF116616, NM_017983, AL136653, NM_016061、BE966922、BE552428、NM_022823、NM_012445、NM_000792、

20

25

NM_015930、NM_021800、NM_005980、NM_000565 および AB033025 の I D を付されて登録されている塩基配列を含有するヒト遺伝子および他の哺乳動物におけるそれらのホモログ等が挙げられる。一方、PLsis と相関して発現が減少する遺伝子としては、GenBank データベースに、それぞれ NM_006931、AL110298、NM_006931、NM_001955、NM_003897、NM_003186、AA778684、NM_001283、NM_012242、AI934469、NM_003186 および NM_002450の I Dを付されて登録されている塩基配列を有するヒト遺伝子および他の哺乳動物におけるそれらのホモログ等が挙げられる。

好ましくは、本発明の予測方法において発現変動を調べられる PLsis マーカー遺伝子の少なくとも1つは、配列番号1、3、5、7、9、11、13、15、17、19、21および23のいずれかに示される塩基配列と同一もしくは実質的に同一の塩基配列を有するものである。より好ましくは、上記12個の PLsis マーカー遺伝子のうちのいずれか2個以上、さらに好ましくは3個以上、いっそう好ましくは4個以上、特に好ましくは5個以上、最も好ましくは6個以上を検出対象とする方法が挙げられる。

あるいは、好適なマーカー遺伝子の組み合わせとして、本予測方法において全マーカー遺伝子の発現の平均変動率を指標とした場合に、PLsis誘発ポテンシャルの予測的中率が約70%以上である組み合わせ、より好ましくは約80%以上、さらに好ましくは約90%以上、特に好ましくは約95%以上である組み合わせが挙げられる。本発明の予測方法において「平均変動率」とは以下のように定義される。すなわち、各マーカー遺伝子について、哺乳動物(細胞)を試験化合物に曝露したときと曝露しなかったときとでそれぞれ発現量を測定し、曝露したときに発現量が増加した場合はその倍率(例えば、2倍に増加した場合は2)を、減少した場合はその倍率の逆数(例えば、1/2に減少した場合は2)

を、それぞれの遺伝子についての発現変動率(X)とし、全マーカー遺伝子(n個)の発現変動率の平均値を平均変動率と定義する(下式)。

[数1]

15

20

 $[平均変動率] = m, X_1 + m_2 X_2 + \cdot \cdot \cdot + m_n X_n$

5 (但し、 $m_1 + m_2 + \cdots + m_n = 1$)

上式において m_i ($i=1\sim n$) は各遺伝子の重みを表す。重みに特に制限はないが、好ましくは m_i × n=0. 2 ~ 5 であり、例えば、全て同じ重み ($m_i=1/n$) が挙げられる。

本発明の方法においては、この平均変動率が、後述する方法により決 10 定された基準値以上の場合は PLsis 陽性、基準値未満の場合は PLsis 陰 性と予測する。

試験化合物に曝露された哺乳動物細胞含有試料および試験化合物を投与された哺乳動物から採取した試料におけるPLsisマーカー遺伝子の発現は、該試料からRNA(例:全RNA、mRNA)画分を調製し、該画分中に含まれる該マーカー遺伝子の転写産物を検出することにより調べることができる。RNA画分の調製は、グアニジンーCsCl超遠心法、AGPC法など公知の手法を用いて行うことができるが、市販のRNA抽出用キット(例:RNeasy Mini Kit; QIAGEN 製等)を用いて、微量試料から迅速且つ簡便に高純度の全RNAを調製することができる。RNA画分中のPLsisマーカー遺伝子の転写産物を検出する手段としては、例えば、ハイブリダイゼーション(ノーザンブロット、ドットブロット、DNAチップ解析等)を用いる方法、あるいはPCR(RTーP

ット、DNAチップ解析等)を用いる方法、あるいはPCR(RT-PCR、競合PCR、リアルタイムPCR等)を用いる方法などが挙げられる。微量試料から迅速且つ簡便に定量性よくPLsisマーカー遺伝子の発現変動を検出できる点で競合PCRやリアルタイムPCRなどの定量的PCR法が、また、複数のマーカー遺伝子の発現変動を一括検出する

15

20

25

ことができ、検出方法の選択によって定量性も向上させ得るなどの点で DNAチップ解析が好ましい。

ノーザンブロットまたはドットブロットハイブリダイゼーションによる場合、PLsis マーカー遺伝子の検出は、標識プローブとして用いられる核酸を含有する上記本発明の試薬またはキットを用いて行うことができる。すなわち、ノーザンハイブリダイゼーションによる場合は、上記のようにして調製したRNA画分をゲル電気泳動にて分離した後、ニトロセルロース、ナイロン、ポリビニリデンジフロリド等のメンブレンに転写し、本発明の試薬または本発明のキット中に含まれる各試薬を含むハイブリダイゼーション緩衝液中、上記「ハイストリンジェントな条件下で」ハイブリダイゼーションを衝液中、上記「ハイストリンジェントな条件下で」ハイブリダイゼーションさせた後、適当な方法でメンブレンに結合した標識量をバンド毎に測定することにより、各PLsis マーカー遺伝子の発現量を測定することができる。ドットブロットの場合も、RNA画分をスポットしたメンブレンを同様にハイブリダイゼーション反応に付し(各PLsis マーカー遺伝子についてそれぞれ行う)、スポットの標識量を測定することにより、各マーカー遺伝子の発現量を測定することができる。

DNAチップ解析(上記本発明の試薬において記載した固相化プローブ)による場合、例えば、上記のようにして調製したRNA画分から、逆転写反応によりT7プロモーター等の適当なプロモーターを導入した cDNAを合成し、さらにRNAポリメラーゼを用いて cRNAを合成 する (この時ビオチンなどで標識したモノヌクレオチドを基質として用いることにより、標識された cRNAが得られる)。この標識 cRNAを上記固相化プローブと接触させてハイブリダイゼーション反応させ、固相上の各プローブに結合した標識量を測定することにより、各PLsisマーカー遺伝子の発現量を測定することができる。当該方法は、検出する

15

20

PLsis マーカー遺伝子(従って、固相化されるプローブ)の数が多くなるほど、迅速性および簡便性の面で有利である。

好ましい実施態様によれば、本発明の予測方法において、PLsis マーカー遺伝子の発現を検出する方法として定量的PCR法が用いられる。 定量的PCRとしては、例えば、競合PCRやリアルタイムPCRなどがあるが、増幅反応後の電気泳動が不要であるという点でリアルタイム PCRがより迅速性に優れている。

競合PCRによる場合、上記本発明の試薬において記載したプライマーセットに加えて、該プライマーセットで増幅でき、増幅後に標的核酸(すなわち、PLsis マーカー遺伝子の転写産物)の増幅産物と区別することができる(例えば、増幅サイズが異なる、制限酵素処理断片の泳動パターンが異なるなど)既知量の competitor 核酸が用いられる。標的核酸と competitor 核酸とはプライマーを奪い合って増幅が競合的に起こるので、増幅産物の量比が元の鋳型の量比を反映することになる。 competitor 核酸はDNAでもRNAでもよい。DNAの場合、上記のようにして調製されるRNA画分から逆転写反応により c DNAを合成した後に、本発明の試薬および competitor の共存下でPCRを行えばよく、RNAの場合は、RNA画分に competitor を添加して逆転写反応を行い、さらに本発明の試薬を添加してPCRを実施すればよい。

一方、リアルタイムPCRは、蛍光試薬を用いて増幅量をリアルタイムでモニタリングする方法であり、サーマルサイクラーと分光蛍光光度計を一体化した装置を必要とする。このような装置は市販されている。用いる蛍光試薬によりいくつかの方法があり、例えば、インターカレンター法、TaqManTMプローブ法、Molecular Beacon 法等が挙げられる。いずれも、上記のようにして調製されるRNA画分から逆転写反応によりcDNAを合成した後に、本発明の試薬とインターカレーター、TaqManTM

· 5

10

15

20

25

プローブまたは Molecular Beacon プローブと呼ばれる蛍光試薬 (プロー ブ)をそれぞれPCR反応系に添加するというものである。インターカ レーターは合成された二本鎖DNAに結合して励起光の照射により蛍光 を発するので、蛍光強度を測定することにより増幅産物の生成量をモニ タリングすることができ、それによって元の鋳型 c D N A 量を推定する ことができる。TaqManTM プローブは両端を蛍光物質と消光物質をそれぞ れで修飾した、標的核酸の増幅領域にハイブリダイズし得るオリゴヌク レオチドであり、アニーリング時に標的核酸にハイブリダイズするが消 光物質の存在により蛍光を発せず、伸長反応時にDNAポリメラーゼの エキソヌクレアーゼ活性により分解されて蛍光物質が遊離することによ り蛍光を発する。従って、蛍光強度を測定することにより増幅産物の生 成量をモニタリングすることができ、それによって元の鋳型 c D N A 量 を推定することができる。Molecular Beacon プローブは両端を蛍光物質 と消光物質をそれぞれで修飾した、標的核酸の増幅領域にハイブリダイ ズし得るとともにヘアピン型二次構造をとり得るオリゴヌクレオチドで あり、ヘアピン構造をとっている時は消光物質の存在により蛍光を発せ ず、アニーリング時に標的核酸にハイブリダイズして蛍光物質と消光物 質との距離が広がることにより蛍光を発する。従って、蛍光強度を測定 することにより増幅産物の生成量をモニタリングすることができ、それ によって元の鋳型 c D N A 量を推定することができる。

本発明の予測方法において、化合物の PLsis 誘発ポテンシャルの有無を判定する基準は、その基準に基づく予測結果が化合物スクリーニング系としての使用に堪え得る程度に十分な信頼性を有する限り特に制限されない。例えば、(1) 検出対象であるすべての PLsis マーカー遺伝子について、試験化合物の曝露により実質的に発現が増加または減少する(ここで「実質的に発現が増加または減少」とは上記と同義である) 場合に

15

20

25

·PLsis 陽性であると判定し、いずれかの PLsis マーカー遺伝子について、 試験化合物の曝露により実質的に発現が変動しない(ここで「実質的に 発現が変動しない」とは上記と同義である)場合に PLsis 陰性であると 判定する方法、(2) 検出対象であるすべての PLsis マーカー遺伝子につ いて、試験化合物の曝露により実質的に発現が変動しない場合に PLsis 陰性であると判定し、いずれかの PLsis マーカー遺伝子について、試験 化合物の曝露により実質的に発現が増加または減少する場合に PLsis 陽 性であると判定する方法、(3) 検出対象であるn個の PLsis マーカー遺 伝子のうち一定数 (例えば、2~(n-1)個)以上について、試験化 合物の曝露により実質的に発現が増加または減少する場合に PLsis 陽性 であると判定する方法などが挙げられる。しかしながら、上記(1)の方法 によれば、偽陽性化合物の出現頻度を低減することはできるが、偽陰性 化合物の出現頻度が多くなり、相当数の PLsis 誘発化合物が排除されな いという欠点がある。一方、(2)の方法によれば、偽陰性化合物の出現頻 度を低減することはできるが、偽陽性化合物の出現頻度が多くなり、有 望な化合物を排除して医薬品等の開発の幅を狭める可能性がある。

本発明は、選択された PLsis マーカー遺伝子の組み合わせにおいて、系の信頼性 (予測的中率)を最大限に向上するための判定基準の決定方法を提供する。すなわち、当該方法は、哺乳動物細胞含有試料またはヒトもしくは非ヒト哺乳動物を、2以上 (好ましくは5以上、より好ましくは10以上、さらに好ましくは15以上)の既知 PLsis 誘発化合物 (例えば、図1~3に記載される化合物) および2以上 (好ましくは5以上、より好ましくは10以上、さらに好ましくは15以上)の既知 PLsis 非誘発化合物 (例えば、図4~5に記載される化合物) の各々に曝露し、該試料もしくは該哺乳動物より採取した試料において、選択された1以上の PLsis マーカー遺伝子の発現変動を検出し、該マーカー遺伝子の発

34

現の平均変動率(ここで「平均変動率」は上記と同義である)と、現実の PLsis 誘発ポテンシャルの有無とを比較することを特徴とする。尚、本発明において、現実の PLsis 誘発ポテンシャルの有無は、哺乳動物細胞を化合物で曝露した際に細胞内にミエリン構造物あるいはその早期像である電子密度の高い構造物の出現を認めるか否かによって決定されるものとする。

5

10

15

20

25

比較の結果、上記の既知 PLsis 誘発および非誘発化合物の PLsis 誘発性の有無を、約70%以上、好ましくは約80%以上、より好ましくは約90%以上、特に好ましくは約95%以上の確率で正しく判定することができる平均変動率の値を求め、これを基準値とする。例えば、図1~5記載の化合物について、配列番号1、3、5、7、9、11、13、15、17、19、21および23に示される各塩基配列を有する12個の PLsis マーカー遺伝子の発現変動を調べると、平均変動率(各遺伝子の重みはすべて同じとする)は図6に示される通りであり、17種のPLsis 誘発化合物すべてを陽性と判定し、13種の PLsis 非誘発化合物中12種を陰性と判定することができる(従って、約97%の確率で正しく判定することができる)平均変動率1.5を基準値として決定することができる。

上記のようにして決定される基準値は、さらに別の既知 PLsis 誘発および非誘発化合物を用いて、同様に PLsis マーカー遺伝子の発現の平均変動率と現実の PLsis 誘発ポテンシャルの有無とを比較することにより、その妥当性を検討することがさらに好ましい。新たに検討した化合物についての判定結果を総合して、より高い確率で PLsis 誘発ポテンシャルの有無を正確に判定することができる平均変動率値が得られれば、基準値を補正すればよい。さらに、PLsis 誘発ポテンシャルの有無が未知の化合物群について、本法による判定と顕微鏡学的観察とを行って既知化

. 5

10

15

20

合物に関するデータを蓄積することにより、極めて精度の高い予測が可能となる。

本発明のPLsis予測方法において指標として好ましく用いられる平均変動率の概念は、網羅的遺伝子発現解析を用いた化合物の他の毒性予測方法にも適用することができる。例えば、肝毒性(例:肝炎、肝壊死、脂肪肝等の誘発性)の予測方法として、肝細胞を数種~数十種の既知肝毒性化合物(例:アセトアミノフェン、アミトリプチリン、ANIT、四塩化炭素、酢酸シプロテロン、エストラジオール、インドメタシン等)に曝露した後、RNAを抽出し、常法によりcDNA、次いで標識cRNAを合成した後、これを断片化し、市販の哺乳動物ゲノムのDNAマイクロアレイ(例:GeneChip(登録商標)Affymetrix社製など)を用いて網羅的遺伝子発現解析を行い、例えば、調べた化合物の半数以上で発現が共通変動した遺伝子群を肝毒性マーカー遺伝子として同定し、これらのマーカー遺伝子のいくつかを選択して、肝細胞を試験化合物に曝露した際のマーカー遺伝子の発現の平均変動率を上記と同様にして調べることにより、化合物の肝毒性を精度よく予測することができる。

本明細書において、塩基やアミノ酸などを略号で表示する場合、IUPAC-IUB Commission on Biochemical Nomenclature による略号 あるいは当該分野における慣用略号に基づくものであり、その例を下記する。またアミノ酸に関し光学異性体があり得る場合は、特に明示しなければL体を示すものとする。

DNA : デオキシリボ核酸

c D N A : 相補的デオキシリボ核酸

25 A : アデニン

T: チミン:

G:グアニン

C:シトシン

RNA : リボ核酸

mRNA :メッセンジャーリボ核酸

5 dATP : デオキシアデノシン三リン酸

d T T P : デオキシチミジン三リン酸

dGTP : デオキシグアノシン三リン酸

dCTP : デオキシシチジン三リン酸

ATP : アデノシン三リン酸

10 EDTA :エチレンジアミン四酢酸

SDS : ドデシル硫酸ナトリウム

Gly :グリシン

Ala:アラニン

Val :バリン

15 Leu : ロイシン

Ile :イソロイシン

Ser :セリン

Thr : スレオニン

C v s : システイン

20 Met :メチオニン

Glu :グルタミン酸

Asp: アスパラギン酸

L y s : リジン

Arg:アルギニン

25 His : ヒスチジン

Phe:フェニルアラニン

: チロシン Tyr

:トリプトファン Trp

・プロリン Pro

:アスパラギン Asn

: グルタミン Gln

: ピログルタミン酸 p G l u

: セレノシステイン (selenocysteine) Sec

実施例

. 5

15

以下に実施例を挙げて本発明をさらに具体的に説明するが、これらは 10 単なる例示であって本発明の範囲を何ら限定するものではない。

[実施例1]

参考例 化合物の PLsis 誘発ポテンシャルの電子顕微鏡学的検査

以下の30種の市販薬を試験化合物として、PLsis 誘発ポテンシャル の程度を、電子顕微鏡観察による細胞内ミエリン様構造物あるいはその 早期像である電子密度の高い構造物の出現を指標として調べた。アミオ ダロン (amiodarone) およびクロザピン (clozapine) は ICN Biomedicals から、イミプラミン(imipramine)、クラリスロマイシン(clarithromycin)、 ジソピラミド (disopyramide)、エリスロマイシン (erythromycin)、ハ ロペリドール (haloperidol)、ケトコナゾール (ketoconazole)、キニジ 20 ン (quinidine)、セルトラリン (sertraline) およびスルファメトキサ ゾール (sulfamethoxazole) は和光純薬工業 (株) から、アミトリプチ リン (amitriptyline)、AY-9944、クロルシクリジン (chlorcyclizine)、 クロルプロマジン(chlorpromazine)、クロミプラミン(clomipramine)、 フルオキセチン (fluoxetine)、ペルヘキシリン (perhexiline)、タモキ シフェン (tamoxifen)、チオリダジン (thioridazine)、ジメリジン

. 5

10

15

20

25

(dimelidine)、アセトアミノフェン (acetaminophen)、フレカイニド (flecainide)、オフロキサシン(ofloxacin)およびソタロール(sotalol) は Sigma から、レボフロキサシン (levofloxacin) は Apin Chemicals から、ロラタジン (loratadine) およびスマトリプタン (sumatriptan) は KEMPROTEC から、ペンタミジン (pentamidine) は Tronto Research Chemicals から、プロカイナミド (procainamide) は Aldrich Chemical からそれぞれ購入した。

試験化合物は終濃度 (別途、細胞を 72 時間化合物に曝露して細胞が生存していた最高濃度を採用した) が $8.3-25\,\mu$ mol/L になるようにジメチルスルホキシド (DMS0) に溶解した。試験化合物の構造式、分子量、薬効、添加濃度を図 $1\sim5$ に示す。

HepG2 細胞(ATCCより購入)への試験化合物の曝露は常法に従って実施した。HepG2 細胞は細胞増殖期の細胞を用いた。付着している HepG2 細胞を 0.05 w/v% EDTA を含むダルベッコのリン酸緩衝生理食塩水(カルシウムおよびマグネシウム塩不含; PBS (-))(大日本製薬)で 2 回洗浄後、0.25 vol% トリプシン-1 mmol/L EDTA (Gibco BRL)を PBS (-)で 2 倍に希釈した細胞解離液を用いて細胞を剥離させ、遠心して上清を除去し、培養液 [50 U/mL ペニシリン(Gibco BRL)-50 mmol/L ストレプトマイシン(Gibco BRL)および 5 vol% FBS(Bio whittaker)を添加したダルベッコ改変イーグル培地(DMEM)(Gibco BRL)]を加えて $2 \text{xi} 0^5 \text{ cells} / 250 \mu$ Lの濃度に調整した。DMSOのみ、もしくは上記試験化合物の DMSO 溶液を溶解した培養液を 250μ L ずつウェルに分注し、上記の細胞懸濁液 250μ Lを添加した後、 250μ Lを添加した後、 250μ L で培養した。

72 時間培養後、培養液を除去し、1 w/v% グルタールアルデヒド溶液を加えて固定した。常法に従い 2 w/v% オスミウム酸で 2 時間後固定し、

アルコール系列で脱水後、樹脂 (Quetol 812) に包埋した。超薄切片を作製し、電子染色後、電子顕微鏡 (H-300;日立)で観察し、各サンプルあたり3枚以上の写真 (倍率は5000倍)を撮影した。後固定以降の作業はアプライドメディカルリサーチにて実施した。電子顕微鏡写真を肉眼的に観察し、ミエリン様構造物の出現程度を重度、中等度、軽度、変化なしの4段階に盲検下で分類した (n=4)。尚、分類基準については、「重度」は大型のミエリン様構造物が複数見られるもの、「中等度」は中等度のミエリン様構造物が少数見られるもの、「軽度」は軽微なミエリン様構造物が少数見られるもの、「変化なし」はミエリン様構造物が見られないものとした。

その結果、12の既知 PLsis 誘発化合物(図 1 および 2 に示される化合物)のすべて、および 18 の評価系検討用化合物中 5 化合物(図 3 に示される化合物)において典型的な PLsis 像であるミエリン様構造物がリソソームに認められた。一方、評価系検討用化合物中 13 化合物(図 4 および 5 に示される化合物)においては、リソソームに変化は認められなかった。ミエリン様構造物の出現程度をランク付けした結果を表 1 に示す(化合物の添加濃度は、培養 72 時間後に細胞が生存していた最高濃度を示す)。

· 5

10

. 15

(表1)

ミエリン様構造物 出現程度	化合物	添加濃度 (µmol/L)
M-2012/3C	アミトリプチリン	25
重度	クロルシクリジン	25
<i>= 134</i> ,	フルオキセチン	8.3
	アミオダロン	8.3
	AY-9944	. 8.3
	クロルプロマジン	8.3
A Arte etc	イミプラミン	25
中等度	タモキシフェン	8.3
	ペルヘキシリン	8.3
	クロザピン	25
	セルトラリン	8.3
	クロミプラミン	8.3
	チオリダジン	8.3
軽度	ジメリジン	25
狂及	ケトコナゾール	8.3
ł	ロラタジン	8.3
	ペンタミジン	8.3
•	溶媒	-
,	アセトアミノフェン	25
	クラリスロマイシン	25
	ジソピラミド	25
ĺ	エリスロマイシン	25
	フレカイニド	25
変化なし	ハロペリドール	8.3
変化なし	レボフロキサシン	25
	オフロキザシン	25
İ	プロカイナミド	25
	キニジン	25
	ソタロール	25
	スルファメトキサゾール	25
	スマトリプタン	. 25

[実施例2]

既知 PLsis 誘発および非誘発化合物曝露による種々の遺伝子の発現変動 実施例 1 (参考例) と同様にして、HepG2 細胞を PLsis 誘発化合物 17 種および PLsis 非誘発化合物 14 種にそれぞれ 24 時間曝露した後、培養 液を除去し、-80℃で凍結保存した。 RNeasy Mini Kit (QIAGEN) を用い て該細胞から全 RNA を精製し、TaqMan Reverse Transcription Reagents (PE Applied Biosystems) を用いて 100 μLの系で cDNA を合成した。

10 配列番号1、3、5、7、9、11、13、15、17、19、21 および23に示される塩基配列を基に、PrimerExpress (PE Applied Biosystems)を用いてプライマーおよび FAM 標識プローブを設計、合成(シグマジェノシスジャパン社に委託) した。各プライマーおよびプローブの配列は配列番号 $25\sim6$ O にそれぞれ示した。グリセルアルデヒドー3-リン酸デヒドロゲナーゼ (GAPDH) のプライマーおよび VIC 標識プローブは TaqMan GAPDH Control Reagents (PE Applied Biosystems) に添付のものを用いた。

5 μL の cDNA を含む 100 μL の反応液(1x TaqMan Universal PCR Master Mix (PE Applied Biosystems)、200 nM フォーワードプライマー、200 nM リバースプライマーおよび 200 nM TaqMan プローブ)で、40 サイクル(1 サイクル=95℃, 15 秒;60℃, 1分)の PCR を行った。 PCR および蛍光検出は、ABI PRISM Sequence Detector 7000 (PE Applied Biosystems)を用いて実施した。内部標準として GAPDH を用い、測定値の補正を行った。対照群との有意差判定には t 検定を用いた (n=3)。

各試験化合物について、対照群に対する 12 遺伝子の各発現変動率を求めた。その結果を表 2 に示す。調べた 12 遺伝子のすべてについて、PLsis 誘発化合物の曝露によりその発現が変動し、PLsis 非誘発化合物の曝露によってはその発現が実質的に変動しない傾向が認められた。従って、これら 12 の遺伝子は薬物の PLsis 誘発ポテンシャル予測に有用なマーカー遺伝子であることが明らかとなった。

15

. 5

10

(表 2)

•				Γ		_			_		_		-	_	
			S	*				*	*		*	#	*	*	_
			1361 V	1.82	0.93	0.73	0.52	1.83	0.15	2.50	2.12	2.88	2.49	0.50	0.68
1			?	Г						*	*			*	#
			示がい	.42	ಜ	.5	爻	8	8	22	怒	0.79	12	0.48	0.44
				<u> </u>		_	<u>=</u>	Ξ	-	-	_				_
			¥	#	_	£.	***************************************	# 40	*	#	*	# 99	Ω.	*	<u>-</u>
	+		ジバジン かコナゾール	224	1.47	5	4.33	2.36	5.30	2.71	237	229	1.95	0.48	0.71
			3	*						#		#		Ŀ	*
			14.6	224	29	1.12	등	5	1.42	174	1.95	267	7	0.70	0.59
						_			*		#	#			#
			からプラン オオリダン	5.79	86	32	8	0.77	5.07	器	2.46	202	5	0.38	0.46
			7	rs,	<u>=</u>	<u></u>	લ			~		~	Ξ	0	_
1			77	<u>۔</u>	2		* 2		# 9	# 6	#	<u></u>	~	8	00
-			邕	3,83	0.82	<u>=</u>	1.52	0.98	2,36	239	203	20	1.48	0.63	0.78
			宗	*			#		*	*	*	*	*	*	#
			ながり	83	3.08	1.94	3.91	1.79	4.14	3.07	2.69	4.4	3.49	0.14 *	0.37
H			_	┢			#	•	_	#	*	#	#	_	#
ミエリン様構造物の出現程度			かがた	3.34 *	2.75	88.	69	.97	3.89	2.35	1.96	5.15	8	0.24 **	0.24
띪		业	~	┣	_		~			~	_	kći		0	<u>o</u>
認		発現変動率。	Ž	某	*	_	#	#	#	*	*	~	_	*	0.27 *
4		競組	莱	1.85	4.50	1.60	8	2.56	8.	2.19	2.12	202	1.53	9 70	0.2
ジ		" "	くだくすまり くびくきゃん	#		*	#	*	#	*	#	#	#	*	#
H			3	86.	3.12	8	3.10	209	2.49	222	2.50	2.55	3.42	0.22	0.28
	‡			#	-	<u> </u>	#	_	#	#	#	*	_	_	
			何形	2.11	4.52	*	* 69.7	34	2.45	232	2.12	336	* &	0.15	0.15
				8	4	=		က		_			=	0	Ö
			È	ı.	_	*	*	_	#	*	*	#	*		*
			夏	<u>등</u>	1.29	7.	1.99	1.20	2.56	17	1.94	2.95	1.70	0.43	0.65
			\$		#		*	#	#	*	*	#		*	*
-	-		AY-9944 / nucture/	8	4.71	1,63	4.78	2.71	3.16	2.68	1.97	3.32	1.45	0.22	0.21
٠				F		-	_		*	*	_				_
			7375102	35.	69	32	82	35	*	2.15	_	12	6	0.35 *	0.58 *
	L		Ķ	=	=		=		<u> </u>				Ĩ	Ö	0
	-		145	#	*	-	_	_	*	#	*	*	#	*	*
			1	<u>e</u>	6.5	5	3.5	27	2,8	2,35	7	30	2	000	20
	4		氢	#	×	*	*	*	2.62 **	*	*	*	¥	*	#
	‡	ĺ.	さいがわり かいかりが	2.47	3.23	2.43	2.98	2.46 *	.62	2.97	223	3.24	298	070	0,30
			둫	12	(2)									۳	"
			7	#	*	<u>‡</u>	¥ 61.	<u></u>	2.39 **	2.20 *	3.01	5.08 *	<u>#</u>	<u>ئ</u>	023 *
	<u> </u>	L	<u> </u>	2	쯩	22	Ξ	1.64	2	22	3.0	5.0	==	0.22	00
意	K H	ĺ	五五十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	盲		17					සි		29	^{دد}	
羅	学的检查	}	E E	kiaa 1001	asah1	mgc4171	93	5	혛	E	serpina3	epp	Fi22362	slc2a3	tagin
	爭	⊢		_	<u>ซ</u> ฉะ	<u> </u>	=	<u>2</u> (7)	<u>ند</u>	<u> </u>	0		Œ	<u> </u>	<u> </u>

十类变异						11.7.	机造物6.	ミエリン保保道物の出現程度					
学的検査							1						
たり表						7	発現変動率	М					
खाकर	プセトアシンシン	78173/32/05/JXCF4/0/5/12/731	シ光泽		77747	14111.vav	体加州	イオルキャン	7,由(持)	14:37	11-06%	9-14-114CTZ	18-14-14 X21-19-19-19-19-19-19-19-19-19-19-19-19-19
iaa1001	1.13	1.48	0.94	0.78	2.10 *	1.32	0.70	98.0	1.78	1.27	0.84	0.84	1.34
asah1	1.18	1.55	1.85	0.30	2.42	0.77	1.0	1.17	980	5 .	1.39	1.26	1.35
mgc4171	0.75	1.18	121	98.0	1.57	124	0.79	0.77	1,08	120	0.72	0.78	0.99
88	16:0	0.65	1.14	0.87	1.22	1.52	0.75	0.78	0,30	8.	0.88	0.82	1.23
10b2	0.69	0.78	0.63	060	1.02	1.49	0.79	0.81	0.74	<u> </u>	83.0	0.82	0.63
fabp1.	111	16.0	1.02	0.73	1.50	1.50 *	0.88	0.75	9:	138	0.98	0.85	<u>5</u>
2	1:0	96'0	1.12	0.87	1.26	1.43	0.83	0.72	89:	12	0.79	0.89	1.16
serpina3	0.99	1.39	0.99	0.85	. 8 6.	<u>E</u> .	0.92	0.82	96.0	122	0.78	96.0	0.95
lepp	0.94	0.93	06'0	0.71	1.73	89.	0.83	0.79	96.0	8	0.80	6.70	53:
j 22362	1.02	1.00	0.98	0.92	1.65	0.93	0.83	* 89.0	0.73	126	0.85	0,87	1.26
slc2a3	1.50 ##	98'0	1.03	0.73	0,46	0.44	1,07	0.94	0.88	0.37 ##	1.53	1:1	0.99
tagin	0,93	0.86	0.99	0.85	0.88	0.52 *	060	0.74	0.85	0.63 *	080	660	1.06

"宋施例1(参考例)参图

b PLoisマーカー遺伝子の路称 8 対照群の遺伝子発現量(平均値)を1.0としたときの化合物添加群の遺伝子発現量の相対値(平均値) *、*** 対照群との有意悪(複矩) *、p<0.05; **, p<0.001.

次に、各試験化合物について、12 遺伝子の発現の平均変動率(各遺伝子はすべて同じ重みとする)を算出した。この平均変動率の値とミエリン様構造物の出現程度との相関を調べた結果を図6に示す。平均変動率の高いものほどミエリン用構造物の出現程度も大きい傾向があり、両者の間に良好な相関が認められた。また、PLsis 誘発ポテンシャルの有無の判定基準値を平均変動率1.5 とした場合、17 の PLsis 誘発化合物すべてで平均変動率1.5 以上であるのに対し、13 の PLsis 非誘発化合物中12 化合物において平均変動率1.5 未満であり、計30 化合物中29 化合物(約97%)の確率で PLsis 誘発ポテンシャルの有無を正しく判定することができた。

[実施例3]

10

15

20

評価系の信頼性の確認

実施例1(参考例)と同様にして、HepG2 細胞を PLsis 誘発ポテンシャルの有無が未知の 26 種の化合物にそれぞれ 24 時間曝露した後、実施例2と同様にして、12 の PLsis マーカー遺伝子の発現変動率を求め、平均変動率(各遺伝子はすべて同じ重みとする)を算出した。同じ実験を2回実施した。1回目の実験での平均変動率を x 座標、2回目の実験での平均変動率を y 座標として各試験化合物をプロットした結果を図7に示す。2回の実験結果を比較したところ、良好な再現性(R=0.907)を示した。また、別途参考例の方法に従って、HepG2 細胞をこれら 26 化合物に72 時間曝露した際のミエリン様構造物の出現の有無を検出し、平均変動率との関係を調べた結果、PLsis 陰性化合物はグラフ中の平均変動率 1.5 未満の領域に、PLsis 陽性化合物は平均変動率 1.5 以上の領域にそれぞれ分布し、極めて良好な予測的中率を示すことが確認された。

本発明の PLsis の予測方法は、哺乳動物細胞を化合物に曝露した際の PLsis マーカー遺伝子の発現変動を検出することを特徴とすることにより、従来のインビボ毒性試験や酵素活性や細胞内へのリン脂質等の蓄積を指標とする評価方法に比べて、迅速且つ簡便に多数の化合物を検査することができるという有利な効果を奏する。

また、本発明の毒性の予測方法は、毒性の発現と相関して発現が共通変動する遺伝子群の平均発現変動率を指標とすることにより、従来の評価方法に比べてより正確に毒性の有無を予測することができるという優れた効果を奏する。

10 本発明の化合物の PLsis 誘発ポテンシャルの予測方法は、偽陽性およ び偽陰性の確率が低く、信頼性に優れた PLsis 誘発ポテンシャルのイン ビトロ評価系であるだけでなく、従来よりも迅速且つ簡便に多検体を処 理することができるので、特に、創薬初期段階での医薬候補化合物の毒 性評価に有用である。

15

20

配列表フリーテキスト

配列番号 2 5: kiaa1001 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 2 6: kiaa1001 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 2.7: kiaa1001 遺伝子転写産物の増幅を検出するためのTaqManプローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号28: asah1 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

25 配列番号 2 9: asah1 遺伝子転写産物を増幅するためのプライマーと して機能すべく設計されたオリゴヌクレオチド。 10

配列番号30:asah1遺伝子転写産物の増幅を検出するための TaqMan プローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号31:mgc4171 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号32:mgc4171 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 3 3 : mgc4171 遺伝子転写産物の増幅を検出するための TagMan プローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号34:1ss 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号35:1ss 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号36:1ss 遺伝子転写産物の増幅を検出するための TaqMan プローブとして機能すべく設計されたオリゴヌクレオチド。

15 配列番号 3 7: nr0b2 遺伝子転写産物を増幅するためのプライマーと して機能すべく設計されたオリゴヌクレオチド。

配列番号38:nr0b2 遺伝子転写産物を増幅するためのプライマーと して機能すべく設計されたオリゴヌクレオチド。

配列番号 3 9: nr0b2 遺伝子転写産物の増幅を検出するための TaqMan 20 プローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号 40: fabp1 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 4 1: fabp1 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

25 配列番号 4 2:fabp1 遺伝子転写産物の増幅を検出するための TaqMan プローブとして機能すべく設計されたオリゴヌクレオチド。 10

. 20

配列番号 4 3:hpn 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号44:hpn 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

n列番号45:hpn 遺伝子転写産物の増幅を検出するための TaqMan プローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号46:serpina3遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号47:serpina3遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号48:serpina3遺伝子転写産物の増幅を検出するためのTaqManプローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号49:depp 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

15 配列番号 5 0:depp 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号51:depp 遺伝子転写産物の増幅を検出するための TaqMan プローブとして機能すべく設計されたオリゴヌクレオチド。

配列番号 5 2:f1j22362 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 5 3:f1j22362 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 5 4: fl j22362 遺伝子転写産物の増幅を検出するための TagMan プローブとして機能すべく設計されたオリゴヌクレオチド。

25 配列番号 5 5: s1c2a3 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 5 6:s1c2a3 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 5 7:s1c2a3 遺伝子転写産物の増幅を検出するための TaqMan プローブとして機能すべく設計されたオリゴヌクレオチド。

5 配列番号 5 8: tagln 遺伝子転写産物を増幅するためのプライマーと して機能すべく設計されたオリゴヌクレオチド。

配列番号 5 9: tagln 遺伝子転写産物を増幅するためのプライマーとして機能すべく設計されたオリゴヌクレオチド。

配列番号 6 0: tagln 遺伝子転写産物の増幅を検出するための TaqMan 10 プローブとして機能すべく設計されたオリゴヌクレオチド。

本出願は、日本で出願された特願2003-397551(出願日: 2003年11月27日)を基礎としており、その内容は本明細書に全て包含されるものである。

請求の範囲

- 1.配列番号1、3、5、7、9、11、13、15、17、19、2 1および23のいずれかに示される塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸、及び/又は該塩基配列に相補的な塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸を含有してなる、化合物のリン脂質症誘発ポテンシャル予測用試薬。
- 2. リン脂質症の発現と相関して発現が変動する遺伝子の転写産物とハイストリンジェントな条件下でハイブリダイズし得る核酸、及び/又は10 該転写産物に相補的な塩基配列を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る核酸を含有する1もしくは2以上の試薬を含んでなる、化合物のリン脂質症誘発ポテンシャル予測用キットであって、2以上の試薬を含む場合、各試薬は互いに異なる遺伝子の発現を検出し得るものであるキット。
- 15 3.少なくとも1つの試薬は、配列番号1、3、5、7、9、11、1 3、15、17、19、21および23のいずれかに示される塩基配列 を有する核酸とハイストリンジェントな条件下でハイブリダイズし得る 核酸、及び/又は該塩基配列に相補的な塩基配列を有する核酸とハイス トリンジェントな条件下でハイブリダイズし得る核酸を含有する、請求 の範囲2記載のキット。
 - 4. 哺乳動物細胞を試験化合物に曝露した際の、各試薬中に含有される 核酸がハイブリダイズし得る核酸の該細胞内での発現の平均変動率を指標とした場合に、リン脂質症誘発ポテンシャルの予測的中率が約70% 以上である、請求の範囲2記載のキット。
- 25 5. 化合物のリン脂質症誘発ポテンシャルの予測方法であって、化合物 に曝露された哺乳動物細胞含有試料もしくは化合物を投与された哺乳動

15

物より採取した試料における、リン脂質症の発現と相関して発現が変動 する1以上の遺伝子の発現変動を検出することを含む方法。

- 6. 少なくとも1つの遺伝子は、配列番号1、3、5、7、9、11、13、15、17、19、21および23のいずれかに示される塩基配
 5 列と同一もしくは実質的に同一の塩基配列を有するものである、請求の 範囲5記載の方法。
 - 7. 化合物のリン脂質症誘発ポテンシャルの有無を判定するための基準を決定する方法であって、
- (1) 2以上の既知リン脂質症誘発化合物および2以上の既知リン脂質 10 症非誘発化合物の各々に曝露された哺乳動物細胞含有試料もしくは該化 合物の各々を投与された哺乳動物より採取した試料における、リン脂質 症の発現と相関して発現が変動する1以上の遺伝子の発現変動を検出し、
 - (2)該遺伝子の発現の平均変動率とリン脂質症誘発ポテンシャルとの 関係から、上記化合物のリン脂質症誘発ポテンシャルの有無を約70% 以上正しく判定することができる平均変動率の値を基準値とすることを 含む方法。
- 8. 少なくとも1つの遺伝子は、配列番号1、3、5、7、9、11、13、15、17、19、21および23のいずれかに示される塩基配列と同一もしくは実質的に同一の塩基配列を有するものである、請求の20 範囲7記載の方法。
 - 9. 他の既知リン脂質症誘発化合物および既知リン脂質症非誘発化合物を用いて基準値の妥当性を検証することをさらに含む、請求の範囲7記載の方法。
- 10. 遺伝子の発現の平均変動率を、請求の範囲7または9記載の方法 25 により得られる基準値と比較することを含む、請求の範囲5記載の方法。 11. 化合物の毒性の予測方法であって、

- (1) 化合物に曝露された哺乳動物細胞含有試料もしくは化合物を投与された哺乳動物より採取した試料における、毒性の発現と相関して発現が変動する1以上の遺伝子の発現変動を検出し、
- (2)該遺伝子の発現の平均変動率を指標として該化合物の毒性の有無 を判定することを含む方法。

化合物名	構造式	分子量	薬効	添加濃度 (μmol/L)
アミオダロン		681.8	抗不整脈薬	8.3
アミトリプチリン		313.9	抗うつ薬	25
AY-9944		464.3	高脂血薬	8.3
クロルシクリジ ン	C C C C C C C C C C C C C C C C C C C	337.3	抗ヒスタミン 薬	25
クロルプロマジ ン	CO	355.3	抗不安薬	8.3
クロミプラミン	CI CH3	351.3	抗うつ薬	8.3

図 2

		4 4		
化合物名	構造式	分子量	薬効	添加濃度 (µmol/L)
フルオキセチン	HN O	345.8	抗うつ薬	8.3
イミプラミン		316.9	抗うつ薬	25
ペルヘキシリン	000	393.6	抗狭心症薬	8.3
タモキシフェン		563.7	抗エストロゲン薬	8.3
チオリダジン		407	抗不安薬	8.3
ジメリジン	Br.	390.2	抗うつ薬	25

化合物名	構造式	分子量	薬効	添加濃度 (μmol/L)
クロザピン	CI N N N N N N N N N N N N N N N N N N N	326.8	抗精神病薬	25
ケトコナゾール	CH ₂ -C - N N - OCH ₂ - CI	531.4	抗真菌剤	8.3
ロラタジン	a Cociti	382.89	抗ヒスタミン 薬	8.3
ペンタミジン	OCH ₂ (CH ₂) ₃ CH ₂ O	340.4	抗感染症薬	8.3
セルトラリン	NHCH ₃	342.7	抗うつ薬	8.3

化合物名	構造式	分子量	薬効	添加濃度 (μ mol/L)
アセトアミノフェン	OH O = CH ₃	515.9	解熱鎮痛剤	25
クラリスロマイシン	HO TON ON TONOTON	748	抗生物質	25
ジソピラミド	H ₂ N - C - CCH ₂ CH ₂ N CHCH ₃ CHCH ₃ CHCH ₃ CHCH ₃ CHCH ₃ CHCH ₃	339.48	抗不整脈薬	25
エリスロマイシン	CH ₃ CH ₂ CH ₃ C	733.94	抗生物質	25
フレカイニド	CF ₃ O NH H NH H	474.4	抗不整脈薬	25
ハロペリドール	CI HO N O CH ₂ CH ₂ CH ₂ -C-	375.86	抗精神病薬	8.3

				<u> </u>
化合物名	構造式	分子量	薬効	添加濃度 (μmol/L)
レボフロキサシン	нас Сина	370.4	抗生物質	25
オフロキサシン	H ₃ O	361.4	抗生物質	25
プロカイナミド	OH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	271.8	抗不整脈	25
キニジン	H ₂ C=CH H HO,,,, H CH ₃ O	324.42	抗不整脈	25
ソタロール	CH ₃ OH NH CH ₃	308.8	抗不整脈薬	25
スルファトキサ	H ₂ N — S — N — CH ₃	253.3	抗感染症薬	25
スマトリプタン	H ₃ C CH ₃	413.5	偏頭痛薬	25

7/7 ·

SEQUENCE LISTING

<110> Takeda Pharmaceutical Company Limited

<120> Method for Predicting Drug Toxicity

<130> 09707

·<150> JP 2003-397551

<151> 2003-11-27

<160> 60

<170> PatentIn version 3.2

<210> ⋅ 1

<211> 4304

<212> DNA

<213> Homo sapiens

<220>

<221> - CDS

<222> (459).. (2033)

<400> 1 gcgagaactc atcctgtagt caccagatgg agtcccaaac agccaagcag atgtaaggcc 60 120 tgtgctgtgg ctctgaggcc ctgaatacag aagggtcact ttcttagtgg ccaaaagagca gttgttgaca ttgatgtcta attattgaac acgaccagtc attttactga gctgcggtga 180 ggaaacactg accatagaag atcaagccaa atgagggatt gcaaatttcc tgattctttt 240 gaattaggat tocagatggg ggcctcattt ctacagcccc caacattcct atagccgtta 300 teactgecat caccactgee accageatet tettgeagat tecacecetg etececagag 360 acttcctgct ttgaaagtga gcagaaagga agctctcaga aaaatctcta gtggtggctg 420 ccgtcgctcc agacaatcgg aatcctgcct tcaccacc atg ggc tgg ctt ttt cta: 476

3/158

Met Gly Trp Leu Phe Leu

1

5

aag gtt ttg ttg gcg gga gtg agt ttc tca gga ttt ctt tat cct ctt 524

Lys Val Leu Leu Ala Gly Val Ser Phe Ser Gly Phe Leu Tyr Pro Leu

10 15 20

gtg gat ttt tgc atc agt ggg aaa aca aga gga cag aag cca aac ttt 572

Val Asp Phe Cys Ile Ser Gly Lys Thr Arg Gly Gln Lys Pro Asn Phe

25 30 35

gtg att att ttg gcc gat gac atg ggg tgg ggt gac ctg gga gca aac 620

Val Ile Ile Leu Ala Asp Asp Met Gly Trp Gly Asp Leu Gly Ala Asn

40 45 50

tgg gca gaa aca aag gac act gcc aac ctt gat aag atg gct tcg gag 668

Trp Ala Glu Thr Lys Asp Thr Ala Asn Leu Asp Lys Met Ala Ser Glu

55 60 65 70

gga atg agg ttt gtg gat ttc cat gca gct gcc tcc acc tgc tca ccc 716
Gly Met Arg Phe Val Asp Phe His Ala Ala Ala Ser Thr Cys Ser Pro

75 80 85

tcc cgg gct tcc ttg ctc acc ggc cgg ctt ggc ctt cgc aat gga gtc

764

Ser Arg Ala Ser Leu Leu Thr Gly Arg Leu Gly Leu Arg Asn Gly Val

90

95

100

aca cgc aac ttt gca gtc act tct gtg gga ggc ctt ccg ctc aac gag 812

Thr Arg Asn Phe Ala Val Thr Ser Val Gly Gly Leu Pro Leu Asn Glu

105 110 115

acc acc ttg gca gag gtg ctg cag cag gcg ggt tac gtc act ggg ata 860

Thr Thr Leu Ala Glu Val Leu Gln Gln Ala Gly Tyr Val Thr Gly Ile

120 125 130

ata ggc aaa tgg cat ctt gga cac cac ggc tct tat cac ccc aac ttc 908

Ile Gly Lys Trp His Leu Gly His His Gly Ser Tyr His Pro Asn Phe

135 140 145 150

cgt ggt ttt gat tac tac ttt gga atc cca tat agc cat gat atg ggc 956

Arg Gly Phe Asp Tyr Tyr Phe Gly Ile Pro Tyr Ser His Asp Met Gly

155 160 165

tgt	act	gat	act	cça	ggc	tac	aac	cac	cct	cct	tgt	сса	gcg	tgt	cca	1004
Cys	Thr	Asp	Thr	Pro	Gly	Tyr	Asn	His	Pro	Pro	Cys	Pro	Ala	Cys	Pro	
•			170	٠.			•	175					180			
						•				-		•				٠
cag	ggt	gat	gga	cca	tca	agg	aac	ctt	caa	aga	gac	tgt	tac-	act	gaç	1052
Gln	Gly	Asp	G1y	Pro	Ser	Arg	Asn	Leu	Gln	Arg	Asp	Cys	Tyr	Thr	Asp	
•		185					190					195				•
	•						•	,								
gtg	gcc	ctc	cct	ctt	tat	gaa	aac	ctc	aac	att	gtg	gag	cag	ccg	gtg	1100
Val	Ala	Leu	Pro	Leu	Tyr	Glu	Asn	Leu	Asn	Ile	Val	Glu	Gln	Pro	Val	
	200					205					210					
													•			
aac	ttg	agc	agc	ctt	gcc	cag	aag	tat	gct	gag	aaa	gca	acc	cag	ttc	1148
								Tyr				•	•	•		•
215	•		•		220	•				225		•			230	
atc	CAP	cet	gca	agc	acc	agc	ggg	agg	ccc	ttc	ctg	ctc	tat	gtg	gct	1196
													•		Ala	
116	GTII	ия	піа	235		-	OIY	iu g	240			. 20u	- , .	245		
				2 00					<i>2∓</i> 0					<u></u>		

6/158

ctg	gcc	cac	atg	cac	gtg	ccc	tta	cct	gtg	act	caa	cta	cca	gca	gcg .	1244
Leu	Ala	His	Met	His	Val	Pro	Leu	Pro	Val	Thr	G1n	Leu	Pro	Ala	Ala	
			250		•			255					260			
cca	cgg	ggc	aga	agc	ctg	tat	ggt	gca	ggg	ctc	tġg	gag	atg	gac	agt	1292
Pro	Arg	Gly	Arg	Ser	Leu	Tyr	Gly	Ala	Gly	Leu	Trp	G1u	Met	Asp	Ser	
		265	•				270	•				275				
٠			•		-											
ct	gtg	ggc	cag	atc	aag	gac	aaa	gtt	gać	cac	aca	gtg	aag	gaa	aac	1340
Let	ı Val	Gly	Gln	Ile	Lys	Asp	Lys	Val	Asp	His	Thr	Val	Lys	Glu	Asn	
	280					285					290					
				·		•			•							
aca	ttc	ctc	tgg	ttt	aca	gga	gac	aat	ggc	ccg	tgg	gct	cag	aag	tgt	1388
Th	.Phe	Leu	Trp	Phe	Thr	Gly	Asp	Asn	Gly	Pro	Trp	Ala	Gln	Lys	Cys	•
29	5				300	•				305			•		310	
		•											•			`
ga	g cta	. gcg	ggc	agt	gtg	ggt	ccc	ttc	act	gga	ttt	tgg	caa	act	cgt	1436
G1	ı Leu	Ala	G1y	Ser	Val	G1y	Pro	Phe	Thr	Gly	Phe	Trp	G1n	Thr	Ārg	•
•				315	;				320)			•	325	i	
											•					

caa ggg gga agt cca gcc aag cag acg acc tgg gaa gga ggg cac cgg 1484

7/158

Gln Gly Gly Ser Pro Ala Lys Gln Thr Thr Trp Glu Gly Gly His Arg

330 335 340

gtc cca gca ctg gct tac tgg cct ggc aga gtt cca gtt aat gtc acc 1532

Val Pro Ala Leu Ala Tyr Trp Pro Gly Arg Val Pro Val Asn Val Thr

345 350 355

agc act gcc ttg tta agc gtg ctg gac att ttt cca act gtg gta gcc 1580

Ser Thr Ala Leu Leu Ser Val Leu Asp Ile Phe Pro Thr Val Val Ala

360 365 370

ctg gcc cag gcc agc tta cct caa gga cgg cgc ttt gat ggt gtg gac 1628

Leu Ala Gln Ala Ser Leu Pro Gln Gly Arg Arg Phe Asp Gly Val Asp

375 380 385 390

gtc tcc gag gtg ctc ttt ggc cgg tca cag cct ggg cac agg gtg ctg

Val Ser Glu Val Leu Phe Gly Arg Ser Gln Pro Gly His Arg Val Leu

395

400

405

ttc cac ccc aac agc ggg gca gct gga gag ttt gga gcc ctg cag act

1724

Phe His Pro Asn Ser Gly Ala Ala Gly Glu Phe Gly Ala Leu Gln Thr

410 415 420

gtc cgc ctg gag cgt tac aag gcc ttc tac att acc ggt gga gcc agg 1772

Val Arg Leu Glu Arg Tyr Lys Ala Phe Tyr Ile Thr Gly Gly Ala Arg

425

430

435

gcg tgt gat ggg agc acg ggg cct gag ctg cag cat aag ttt cct ctg

Ala Cys Asp Gly Ser Thr Gly Pro Glu Leu Gln His Lys Phe Pro Leu

440

445

450

att ttc aac ctg gaa gac gat acc gca gaa gct gtg ccc cta gaa aga 1868

Ile Phe Asn Leu Glu Asp Asp Thr Ala Glu Ala Val Pro Leu Glu Arg

455 460 465 470

ggt ggt gcg gag tac cag gct gtg ctg ccc gag gtc aga aag gtt ctt

1916

Gly Gly Ala Glu Tyr Gln Ala Val Leu Pro Glu Val Arg Lys Val Leu

475

480

485

gca gac gtc ctc caa gac att gcc aac gac atc tcc agc cca gat

Ala Asp Val Leu Gln Asp Ile Ala Asn Asp Asn Ile Ser Ser Pro Asp

490

495

500

tac act cag gac cct tca gta act ccc tgc tgt aat ccc tac caa	att 2012
Tyr Thr Gln Asp Pro Ser Val Thr Pro Cys Cys Asn Pro Tyr Gln	Ile
505 510 515	
gcc tgc cgc tgt caa gcc gca taacagacca atttttattc cacgaggag	g 2063
Ala Cys Arg Cys Gln Ala Ala	
520 525	
agtacctgga aattaggcaa gtttgcttcc aaatttcatt tttaccctct ttac	aaacac 2123
acgctttagt ttagtcttgg agtttagttt tggagttagc cttgcatatc cctt	ctgtat 2183
acgotttagt tragtoring agriculture tagagerage erigination	
cetgteete etceaegeeg accegagage agetgagetg egetggetet ggge	eagggag 2243
tgtgccttaa tgggaagcac acgggctttg gagtcaggca caggtgccag ctcc	eagcttt 2303
tgaacttggg caattgttta acctaacctg caagttgatt ttgagggtta aata	aaaggca 2363
tacatgaaaa tgcctggcaa attacctgac acagagcaga cattcaatac attt	ttagttt 2423

ccttgtttct	ctggttccca	gtttctctgg	tcattttggt	gtaaatccat	tctaattagt	2483
atttagggca	gagettetet	ctcttttctc	tttttttcct	tccacaaacc	agtgtactca	2543
ctggtctcca	tctttaatat	gcaaacaaat	cacctgggat	cttgtgagaa	tccggattct	2603
gtctcagtag	ggctcgagta	gatcctgaaa	tcctacattt	ctatcaaaca	atgccttgag	2663
gagcacagat	ttagaccaaa	gttaggtcgt	tttccagatc	tcagagcaga	cgagtccatg	2723
gataagtctg	tggcccaatc	cccttcctct	ccttttaagg	gtgaaatgac	tgcatttaaa	2783
agaagttaaa	gagttcctcc	tgtcccctat	aaccacaagg	aaacaaaaaa	atatataaaa	2843
acctcaaaaa	tgcattgcca	tgattttatt	attagtgtcc	aaaatgggac	tcccaagtaa	2903
taaatgattt	attccagcca	cagccaaaaa	agactttgcc	tggctaaaag	agtetetete	2963
taagtatgta	atatacaaga	aatacaattc	aaagagatgt	tcctataagt	acattttta	3023
cacggcatat	atttaaaaag	gaggcccctt	ttaatataaa	attccggtta	tataccaata	3083

tggttaatta	gcatttacac	tatagtttga	acgtatttta	aatagcatga	tgtgtataca	3143
atgteteceg	cgcccattgg	caaccagggt	cgtgggaagc	ttggtgagga	gttaaccagg ·	3203
tcctgtggtt	taagcagtgg	agcacccggg	attectgece	ccctttctgc	tcacacaatt	3263
gcactccatt	cttccgcctt	ccttgttttc	tccaaaacca	cctgataggg	gggatgtcct	3323
gatttctgag	gtgtgcttct	catcatgact	gcttcgtttt	gcccttctga	tttccacggc	3383
acaagattat	ctaccaaaat	caaaacagaa	tggccttact	cttctcagga	agaggctggt	3443
aggcaggtgc	attatcaaca	ggtctgtgcc	catgcagagt	gagcagggag	aggctgggca	3503
ctgtggaatt	tttctgtctg	aactcgctca	tggccacaga	atggtcaccc	agcttattta	3563
ggtgtagaca	agtatgacac	agttctagaa	aatactgact	ataaaaatgt	ctctgtgtgt	3623
gtgtgtatgt	atttatatgt	ațatgtatat	atttttaaaa	ggctcatctt	acttgtaaac	3683

atggactgct	caatcactat	taaaaagtca	gtttaggctg	ggcgcggtgg	ctcacgcctg	3743
tagtcccaga	gctttgggag	gctgaggtgg	gtggatcact	gggtcaggag	tttgagacca	3803
gcctggccaa	catggtgaaa	ccccatcgct	actaaaaaat	acaaaaatta	gccgggcatg	3863
gtggcgctca	cctgtaatcc	cggctactcg	ggaggctgag	gcaggagaga	atcgcttgaa	3923
ccggggaggt	ggaggctgca	gtgagccgag	ategeaceae	tgcactccag	cctgggtgat	3983
ggagcaagac	tccatctcaa	aaaaaaaaaa	gtcagtttag	gctgggcgca	gtggctcaca	4043
cctgtagtcc	cagcacttta	ggaggctgag	gggggtgatc	acctgaggtc	aggagtttga	4103
gaccagcctg	gccaacatgg	tgaaatcctg	tctctgctaa	aaatacaaaa	tttagctggg	4163
catggtggcg	tgcctgaaac	cccagctact	tgggaggctg	aggcactaga	atcgcttgag	4223
cctgggaggt	ggaggttgca	gtgagtggag	atcgcgccaa	cacattctag	cctgagggac	4283
agagtgagac	tctatcatct	c				4304

<210> 2

<211> 525

<212> PRT

<213> Homo sapiens

<400> 2

Met Gly Trp Leu Phe Leu Lys Val Leu Leu Ala Gly Val Ser Phe Ser

1

5

10

15

Gly Phe Leu Tyr Pro Leu Val. Asp Phe Cys Ile Ser Gly Lys Thr Arg

20.

25

30

Gly Gln Lys Pro Asn Phe Val Ile Ile Leu Ala Asp Asp Met Gly Trp

35

40

45

60

14/158

Gly Asp Leu Gly Ala Asn Trp Ala Glu Thr Lys Asp Thr Ala Asn Leu

55

50

Asp Lys Met Ala Ser Glu Gly Met Arg Phe Val Asp Phe His Ala Ala 65 70 75 80

Ala Ser Thr Cys Ser Pro Ser Arg Ala Ser Leu Leu Thr Gly Arg Leu

85 90 95

Gly Leu Arg Asn Gly Val Thr Arg Asn Phe Ala Val Thr Ser Val Gly

100 105 110

Gly Leu Pro Leu Asn Glu Thr Thr Leu Ala Glu Val Leu Gln Gln Ala

115 120 125

Gly Tyr Val Thr Gly Ile Ile Gly Lys Trp His Leu Gly His His Gly

WO 2005/052154

15/158

Ser Tyr His Pro Asn Phe Arg Gly Phe Asp Tyr Tyr Phe Gly Ile Pro

Tyr Ser His Asp Met Gly Cys Thr Asp Thr Pro Gly Tyr Asn His Pro

Pro Cys Pro Ala Cys Pro Gln Gly Asp Gly Pro Ser Arg Asn Leu Gln
180 185 190

Arg Asp Cys Tyr Thr Asp Val Ala Leu Pro Leu Tyr Glu Asn Leu Asn

Ile Val Glu Gln Pro Val Asn Leu Ser Ser Leu Ala Gln Lys Tyr Ala

16/158

Glu Lys Ala Thr Gln Phe Ile Gln Arg Ala Ser Thr Ser Gly Arg Pro
225 230 235 240

Phe Leu Leu Tyr Val Ala Leu Ala His Met His Val Pro Leu Pro Val
245 250 255

Thr Gln Leu Pro Ala Ala Pro Arg Gly Arg Ser Leu Tyr Gly Ala Gly
260 265 270

Leu Trp Glu Met Asp Ser Leu Val Gly Gln Ile Lys Asp Lys Val Asp
275
280
285

His Thr Val Lys Glu Asn Thr Phe Leu Trp Phe Thr Gly Asp Asn Gly
290 295 300

WO 2005/052154

17/158

Pro Trp Ala Gln Lys Cys Glu Leu Ala Gly Ser Val Gly Pro Phe Thr
305 310 315 320

Gly Phe Trp Gln Thr Arg Gln Gly Gly Ser Pro Ala Lys Gln Thr Thr
325 . 330 335

Trp Glu Gly Gly His Arg Val Pro Ala Leu Ala Tyr Trp Pro Gly Arg

340 345 350

Val Pro Val Asn Val Thr Ser Thr Ala Leu Leu Ser Val Leu Asp Ile
355 360 365

Phe Pro Thr Val Val Ala Leu Ala Gln Ala Ser Leu Pro Gln Gly Arg
370 375 380

18/158

Arg Phe Asp Gly Val Asp Val Ser Glu Val Leu Phe Gly Arg Ser Gln 385 390 395 400

Pro Gly His Arg Val Leu Phe His Pro Asn Ser Gly Ala Ala Gly Glu
405 410 415

Phe Gly Ala Leu Gln Thr Val Arg Leu Glu Arg Tyr Lys Ala Phe Tyr
420 425 430

Ile Thr Gly Gly Ala Arg Ala Cys Asp Gly Ser Thr Gly Pro Glu Leu
435 440 445

Gln His Lys Phe Pro Leu Ile Phe Asn Leu Glu Asp Asp Thr Ala Glu
450 455 460

Ala Val Pro Leu Glu Arg Gly Gly Ala Glu Tyr Gln Ala Val Leu Pro

19/158

465 470 475 480

Glu Val Arg Lys Val Leu Ala Asp Val Leu Gln Asp Ile Ala Asn Asp
485
490
495

Asn Ile Ser Ser Pro Asp Tyr Thr Gln Asp Pro Ser Val Thr Pro Cys
500 505 510

Cys Asn Pro Tyr Gln Ile Ala Cys Arg Cys Gln Ala Ala
515 520 525

⟨210⟩ 3

<211> 2258

<212> DNA

<213> Homo sapiens

20/158

<220>

<221> CDS

<222> (20)..(1201)

15

<400> 3

ggcgttggct gctagagcg atg ccg ggc cgg agt tgc gtc gcc tta gtc ctc 52

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu

1 5 10

25

ctg gct gcc gcg tca gct gtg ccg tcg cag cac gcg ccg ccg tgg aca 100
Leu Ala Ala Ser Ala Val Pro Ser Gln His Ala Pro Pro Trp Thr

20

gag gac tgc aga aaa tca acc tat cct cct tca gga cca acg tac aga 148
Glu Asp Cys Arg Lys Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg
30 35 40

ggt gca gtt cca tgg tac acc ata aat ctt gac tta cca ccc tac aaa 196
Gly Ala Val Pro Trp Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys

50 55

21/158

aga tgg cat gaa ttg atg ctt gac aag gca cca atg cta aag gtt ata Arg Trp His Glu Leu Met Leu Asp Lys Ala Pro Met Leu Lys Val Ile gtg aat tot otg aag aat atg ata aat aca tto gtg oca agt gga aaa Val Asn Ser Leu Lys Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys gtt atg cag gtg gtg gat gaa aaa ttg cct ggc cta ctt ggc aac ttt Val Met Gln Val Val Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe cct ggc cct ttt gaa gag gaa atg aag ggt att gcc gct gtt act gat Pro Gly Pro Phe Glu Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp ata cct tta gga gag att att tca ttc aat att ttt tat gaa tta ttt Ile Pro Leu Gly Glu Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe

acc att tgt act tca ata gta gca gaa gac aaa aaa ggt cat cta ata

WO 2005/052154

22/158

Thr Ile Cys Thr Ser Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile 155 150 145 140 532 cat ggg aga aac atg gat ttt gga gta ttt ctt ggg tgg aac ata aat His Gly Arg Asn Met Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn 170 165 160 580 aat gat acc tgg gtc ata act gag caa cta aaa cct tta aca gtg aat Asn Asp Thr Trp Val Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn 185 180 175 ttg gat ttc caa aga aac aac aaa act gtc ttc aag gct tca agc ttt 628 Leu Asp Phe Gln Arg Asn Asn Lys Thr Val Phe Lys Ala Ser Ser Phe 200 195 190 gct ggc tat gtg ggc atg tta aca gga ttc aaa cca gga ctg ttc agt 676 Ala Gly Tyr Val Gly Met Leu Thr Gly Phe Lys Pro Gly Leu Phe Ser 210 215 205 724 ctt aca ctg aat gaa cgt ttc agt ata aat ggt ggt tat ctg ggt att

Leu Thr Leu Asn Glu Arg Phe Ser Ile Asn Gly Gly Tyr Leu Gly Ile

WO 2005/052154

PCT/JP2004/017995

23/158

cta gaa tgg att ctg gga aag aaa gat gcc atg tgg ata ggg ttc ctc Leu Glu Trp Ile Leu Gly Lys Lys Asp Ala Met Trp Ile Gly Phe Leu act aga aca gtt ctg gaa aat agc aca agt tat gaa gaa gcc aag aat Thr Arg Thr Val Leu Glu Asn Ser Thr Ser Tyr Glu Glu Ala Lys Asn tta ttg acc aag acc aag ata ttg gcc cca gcc tac ttt atc ctg gga Leu Leu Thr Lys Thr Lys Ile Leu Ala Pro Ala Tyr Phe Ile Leu Gly ggc aac cag tot ggg gaa ggt tgt gtg att aca cga gac aga aag gaa Gly Asn Gln Ser Gly Glu Gly Cys Val Ile Thr Arg Asp Arg Lys Glu tca ttg gat gta tat gaa ctc gat gct aag cag ggt aga tgg tat gtg Ser Leu Asp Val Tyr Glu Leu Asp Ala Lys Gln Gly Arg Trp Tyr Val

gta	caa	aca	aat	tat	gac	cgt	tgg	aaa	cat	ccc	ttc	ţtc	ctt	gat	gat	1012
Val	Gln	Thr	Asn	Tyr	Asp	Arg	Trp	Lys	His	Pro	Phe	Phe	Leu	Asp	Asp	
				320					325					.330		
											•					
cgc	aga	acg	cct	gca	aag	atg	tgt	ctg	aac	cgc	acc	agc	caa	gag	aat	1060
Arg	Arg	Thr	Pro	Ala	Lys	Met	Cys	Leu	Asn	Arg	Thr	Ser	Gln	G1u	Asn	
			335					340					345			
atc	tca	ttt	gaa	acc	atg	tat	gat	gtc	ctg	tca	aca	aaa	cct	gtc	ctc	1108
Ile	Ser	Phe	Glu	Thr	Met	Tyr	Asp	Val	Leu	Ser	Thr	Lys	Pro	Val	Leu	
		350					355					360				
					٠											
aac	aag	ctg	acc	gta	tac	aca	acc	ttg	ata	gat	gtt	acc	aaa	ggt	caa	1156
Asn	Lys	Leu	Thṛ	Val	Tyr	Thr	Thr	Leu	Ile	Asp	Val	Thr	Lys	G1y	G1n	•
	365					370					375					
											•					
ttc	gaa	act	tac	ctg	cgg	gac	tgc	cct	gac	cct	tgt	ata	ggt	tgg	;	1201
		•			Arg										•	• • •
380			 -	•	385		٠		-	390						

tgagcacacg	tctggcctac	agaatgcggc	ctctgagaca	tgaagacacc	atctccatgt	1261
gaccgaacac	tgcagctgtc	tgaccttcca	aagactaaga	ctcgcggcag	gttctctttg	1321
agtcaatagc	ttgtcttcgt	ccatctgttg	acaaatgaca	gactttttt	ttttccccct	1381
atcagttgat	ttttcttatt	tatagataac	ttctttaggg	gaagtaaaac	agtcatctag	1441
aattcactga	gttttgtttc	actttgacat	ttggggatct	ggtgggcagt	cgaaccatgg	1501
tgaactccac	ctccgtgaat	aaatggagat	tcagcgtggg	tgttgaatcc	agcacgtctg	1561
tgtgagtaac	gggacagtaa	acactccaca	ttcttcagtt	tttcacttct	acctacatat	1621
ttgtatgttt	ttctgtataa	cagccttttc	cttctggttc	: taactgctgt	taaaattaat	1681
a <u>t</u> atcattat	ctttgctgtt	attgacagog	; atataattti	attacatatg	g attagaggga	1741
tgagacagac	attcacctg	t atatttcttt	taatgggcad	c aaaattggtg	g cetttgeete	1801
taaatagcac	tttttcggg	g tcaagaagta	a atcagatgca	a aagcaatcg	t ttatacaata	1861

26/158

attgaagcgc	acctttcaat	accactccag	tacctaagga	agtgctacta	aactgcatcc	1921
acgtctgtat	agtaataaca	gtcaagctgg	aatcgaggac	caattaattc	caatggcaca	1981
gagtagcatt	catgtaataa	acaggttttt	agtttgttct	tcagattgat	agggagtttt	2041
aaagaaattt	tagtagttac	taaaattatg	ttactgtatt	tttcagaaat	ccaactgctt	2101
atgaaaagta	ctaatagaac	ttgttaacct	ttctaacctt	cacgattaac	tgtgaaatgt	2161
acgtcatttg	tgcaagaccg	tttgtccact	tcattttgta	taatcacagt	tgtgttcctg	2221
acactcaata	aacagtcatt	ggaaagagaa	aaaaaaa			2258

<210> 4

<211> 394

<212> PRT

<213≻ Homo sapiens

27/158

·<400> 4

Met Pro Gly Arg Ser Cys Val Ala Leu Val Leu Leu Ala Ala Ala Ser

1 5 10 15

Ala Val Pro Ser Gln His Ala Pro Pro Trp Thr Glu Asp Cys Arg Lys
20 25 30

Ser Thr Tyr Pro Pro Ser Gly Pro Thr Tyr Arg Gly Ala Val Pro Trp

35 40 45

Tyr Thr Ile Asn Leu Asp Leu Pro Pro Tyr Lys Arg Trp His Glu Leu
50 55 60

Met Leu Asp Lys Ala Pro Met Leu Lys Val Ile Val Asn Ser Leu Lys
65 70 75 80

28/158

Asn Met Ile Asn Thr Phe Val Pro Ser Gly Lys Val Met Gln Val Val
85 90 95

Asp Glu Lys Leu Pro Gly Leu Leu Gly Asn Phe Pro Gly Pro Phe Glu

100 105 110

Glu Glu Met Lys Gly Ile Ala Ala Val Thr Asp Ile Pro Leu Gly Glu
115 120 125

Ile Ile Ser Phe Asn Ile Phe Tyr Glu Leu Phe Thr Ile Cys Thr Ser

130 135 140

Ile Val Ala Glu Asp Lys Lys Gly His Leu Ile His Gly Arg Asn Met

145 150 155 160

29/158

Asp Phe Gly Val Phe Leu Gly Trp Asn Ile Asn Asn Asp Thr Trp Val

Ile Thr Glu Gln Leu Lys Pro Leu Thr Val Asn Leu Asp Phe Gln Arg
180 185 190

Asn Asn Lys Thr Val Phe Lys Ala Ser Ser Phe Ala Gly Tyr Val Gly
195 200 205

Met Leu Thr Gly Phe Lys Pro Gly Leu Phe Ser Leu Thr Leu Asn Glu 210 215 220

Arg Phe Ser Ile Asn Gly Gly Tyr Leu Gly Ile Leu Glu Trp Ile Leu 225 230 235 240

Gly Lys Lys Asp Ala Met Trp Ile Gly Phe Leu Thr Arg Thr Val Leu

WO 2005/052154

30/158

245 250 255

Glu Asn Ser Thr Ser Tyr Glu Glu Ala Lys Asn Leu Leu Thr Lys Thr
260 265 270

Lys Ile Leu Ala Pro Ala Tyr Phe Ile Leu Gly Gly Asn Gln Ser Gly
275 280 285

Glu Gly Cys Val Ile Thr Arg Asp Arg Lys Glu Ser Leu Asp Val Tyr 290 295 300

Glu Leu Asp Ala Lys Gln Gly Arg Trp Tyr Val Val Gln Thr Asn Tyr 305 310 315 320

Asp Arg Trp Lys His Pro Phe Phe Leu Asp Asp Arg Arg Thr Pro Ala

325 330 335

31/158

Lys Met Cys Leu Asn Arg Thr Ser Gln Glu Asn Ile Ser Phe Glu Thr

340 345 350

Met Tyr Asp Val Leu Ser Thr Lys Pro Val Leu Asn Lys Leu Thr Val 355 360 365

Tyr Thr Thr Leu Ile Asp Val Thr Lys Gly Gln Phe Glu Thr Tyr Leu
370 375 380

Arg Asp Cys Pro Asp Pro Cys Ile Gly Trp

385 390

<210> 5

<211> 1336

<212> DNA

32/158

<213> Homo sapiens

<220>

<221> CDS

<222> (474).. (1241)

<400> 5

60	agtacggtca	cttctgtggg	gctgcaggag	tgagcgtgtg	cgcggacggc	agcacagtcc
120	ctctccatct	ctatgccatg	ccctgggcag	gccctccctg	gctgtactat	tgagcctttt
180	cgcatccgcc	teccacette	cgcccagggc	ctgctgcaca	ccggcctcat	tcttcctgcg
240	gccatggaga	caccatggag	tgctggagaa	tctggagagc	ccgaggagga	tgggggccca
300	gtggactgca	tgtgcaggtc	catgtgaggg	cccaggctgc	tetgeecetg	agtgagtgta
360	ggaggtggcc	ggcgcccct	ctgggtgact	cacttcctag	ggacgccatt	tcacagcaag
420	caccatgccc	. acctcccagc	attcccggcc	ccgctctcac	gccacgaact	tgcacatccc

												•				
ctca	tccc	ag t	cccc	tgcc	c ct	gccc	cccg	ctg	acct	tca	cccc	caca	gc t	cc a	tg	476
														M	let	
														1	•	
												•				
gcc	cag	cgc	tcg	gac	ctc	ctg	gag	ctc	gac	tgt	cag	ctg	aca	cgg	gac	524
Ala	G1n	Arg	Ser	Asp	Leu	Leu	Glu	Leu	Asp	Cys	Gln	Leu	Thr	Arg	Asp	
•			5			,		10					15			
													•			
aga	gtg	gtg	gtg	gtg	tca	cat	gat	gag	aac	ctg	tgc	cgc	cag	tcg	ggc	572
Arg	Val	Val	Val	Val	Ser	His	Asp	Glu	Asn	Leu	Cys	Arg	Gln	Ser	Gly	
		20					25					30				
cta	aac	agg	gat	gtg	ggc	agc	ctg	gac	ttc	gag	gac	ctg	ccc	c,tc	tac	620
Leu	Asn	Arg	Asp	Val	Gly	Ser	Leụ	Asp	Phe	Glu	Asp	Leu	Pro	Leu	Tyr	
	35					40	,				45					
							•					•				
aag	gag	aag	ctg	gag	gtt	tac	ttc	tct	cca	ggc	cac	ttt	gct	cac	ggg	668
Lys	G1u	Lys	Leu	Glu	Val	Tyr	Phe	Ser	Pro	G1y	His	Phe	Ala	His	G1y	•
50				•	55					60					65	

tca	gac	cgg	cgc	atg	gtt	cgt	ctg	gag	gac	ctg	ttc	cag	agg	ttt	cca	716
Ser	Asp	Arg	Arg	Met	Val	Arg	Leu	Glu	Asp	Leu	Phe	Gln	Arg	Phe	Pro	
				70					75 .					80		
									,							
agg	aca	ccc	atg	agc	gta	gag	atc	aaa	ggg	aag	aac	gaa	gag	ctc	atc	764
Arg	Thr	Pro	Met	Ser	Val	Glu	Ile	Lys	Gly	Lys	Asn	Glu	Glu	Leu	Ile	
		•	85					90	,				95			
						-							•			
cgt	gag	ata	gca	ggc	ttg	gtg	aga	cgc	tat	gac	cgt	aat	gaa	atc	acc	812
Arg	Glu	Ile	Ala	G1y	Leu	Val	Arg	Arg	Tyr	Asp	Arg	Asn	Glu	Ile	Thr	
		100			1	•	105					110				
atc	tgg	gcc	tcg	gag	aag	agc	tcg	gtc	atg	aag	aaa	tgc	aag	gct	gcc	860
Ile	Trp	Ala	Ser	Glu	Lys	Ser	Ser	Val	Met	Lys	Lys	Cys	Lys	Ala	Ala	
	115					120					125	;				
	•															
aac	ccc	gag	; atg	ccc	ctg	tcc	ttc	aca	ata	agc	cga	a gga	tto	tgg	ggtg	908
															o Val	
130					135				•	140					145	
															•	
ctø	ctt	: t.c.r	tao	tac	cte	ggg	g cts	g cts	g ccc	ttc	ato	c cca	ato	c cci	t gag	956
~ ~ 5								. •	-							

35/158

Leu Leu Ser Tyr Tyr Leu Gly Leu Leu Pro Phe Ile Pro Ile Pro Glu
150 155 160

aag ttc ttc ttc tgc ttc ctg ccc aac atc atc aac agg acc tat ttc 1004

Lys Phe Phe Phe Cys Phe Leu Pro Asn Ile Ile Asn Arg Thr Tyr Phe

165 170 175

cca ttt tcc tgc tct tgc ctg aac cag tta ttg gct gtg gtt tcg aaa 1052
Pro Phe Ser Cys Ser Cys Leu Asn Gln Leu Leu Ala Val Val Ser Lys
180 185 190

tgg ctg atc atg agg aag agt ctg atc cga cac ttg gag gag cga ggg 1100

Trp Leu Ile Met Arg Lys Ser Leu Ile Arg His Leu Glu Glu Arg Gly

195 200 205

gtg cag gtg gtc ttt tgg tgc ctt aat gaa gag tcg gat ttt gaa gca 1148

Val Gln Val Val Phe Trp Cys Leu Asn Glu Glu Ser Asp Phe Glu Ala

210 225

gcc ttc agc gtg gga gcc act ggc gtc ata acg gat tat ccc aca gcc 1196
Ala Phe Ser Val Gly Ala Thr Gly Val Ile Thr Asp Tyr Pro Thr Ala

36/158

230 235 240

ctg cgg cac tac ctg gac aac cat gga cca gct gcc cgg acc tcc

Leu Arg His Tyr Leu Asp Asn His Gly Pro Ala Ala Arg Thr Ser

245

250

255

taagtccaga agcctcgagg tcttctgttt ctcttcctga aaaataaata tttgcctttc 1301

gatcaaaaaa aaaaaaaaaa aaaaaaaaaa 1336

⟨210⟩ 6

<211> 256

<212> PRT

<213> Homo sapiens

<400> 6

Met Ala Gln Arg Ser Asp Leu Leu Glu Leu Asp Cys Gln Leu Thr Arg

1 5 10 15

37/158

Asp Arg Val Val Val Ser His Asp Glu Asn Leu Cys Arg Gln Ser

Gly Leu Asn Arg Asp Val Gly Ser Leu Asp Phe Glu Asp Leu Pro Leu

Tyr Lys Glu Lys Leu Glu Val Tyr Phe Ser Pro Gly His Phe Ala His

Gly Ser Asp Arg Arg Met Val Arg Leu Glu Asp Leu Phe Gln Arg Phe

Pro Arg Thr Pro Met Ser Val Glu Ile Lys Gly Lys Asn Glu Glu Leu

38/158

Ile Arg Glu Ile Ala Gly Leu Val Arg Arg Tyr Asp Arg Asn Glu Ile

Thr Ile Trp Ala Ser Glu Lys Ser Ser Val Met Lys Lys Cys Lys Ala

Ala Asn Pro Glu Met Pro Leu Ser Phe Thr Ile Ser Arg Gly Phe Trp

Val Leu Leu Ser Tyr Tyr Leu Gly Leu Leu Pro Phe Ile Pro Ile Pro

Glu Lys Phe Phe Phe Cys Phe Leu Pro Asn Ile Ile Asn Arg Thr Tyr

Phe Pro Phe Ser Cys Ser Cys Leu Asn Gln Leu Leu Ala Val Val Ser

39/158

180 185 190

Lys Trp Leu Ile Met Arg Lys Ser Leu Ile Arg His Leu Glu Glu Arg

195 200 205

Gly Val Gln Val Val Phe Trp Cys Leu Asn Glu Glu Ser Asp Phe Glu
210 215 220

Ala Ala Phe Ser Val Gly Ala Thr Gly Val IIe Thr Asp Tyr Pro Thr

225 230 235 240

Ala Leu Arg His Tyr Leu Asp Asn His Gly Pro Ala Ala Arg Thr Ser

245
250
255

⟨210⟩ 7

<211> 2631

40/158

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (19).. (2214)

<400> 7

gagageactg cagcagea atg acg gag ggc acg tgt ctg cgg cgc cga ggg 51

Met Thr Glu Gly Thr Cys Leu Arg Arg Gly

1 5 10

ggc ccc tac aag acc gag ccc gcc acc gac ctc ggc cgc tgg cga ctc 99
Gly Pro Tyr Lys Thr Glu Pro Ala Thr Asp Leu Gly Arg Trp Arg Leu

15 20 25

aac tgc gag agg ggc cgg cag acg tgg acc tac ctg cag gac gag cgc 147
Asn Cys Glu Arg Gly Arg Gln Thr Trp Thr Tyr Leu Gln Asp Glu Arg

30 35 40

gcc	ggc	cgc	gag	cag	acc	ggc	ctg	gaa	gcc	tac	gcc	ctg	ggg	ctg	gac	195
Ala	G1y	Arg	Glu	Gln	Thr	Gly	Leu	Glu	Ala	Tyr	Ala	Ļeu	Gly	Leu	Asp	
	45					50					55					
									•							
acc	aag	aat	tac	ttt	aag	gac	ttg	ccc	aaa	gcc	cac	acc	gcc	ttt	gag	243
Thr	Lys	Asn	Tyr	Phe	Lys	Asp	Leu	Pro	Lys	Ala	His	Thr	Ala	Phe	Glu	
60		-			65		•			70					75	
ggg	gct	ctg	aac	ggg	atg	aca	ttt	tac	gţg	ggg	ctg	cag	gct	gag	gat	291
G1y	Ala	Leu	Asn	Gly	Met	Thr	Phe	Tyr	Val	Gly	Leu	G1n	Ala	Glu	Asp	
		•		80					85					90		
ggg	cac	tgg	acg	ggt	gat	tat	ggt	ggc	cca	ctt	ttc	ctc	ctg	cca	ggc	339
Gly	His	Trp	Thr	Gly	Asp	Tyr	Gly	G1y	Pro	Leu	Phe	Leu	Leu	Pro	Gly	
	•	_	95					100					105			
			•		-											_
ctc	ctg	atc	act	tgc	cac	gtg	gca	cgc	atc	cct	ctg	cca	gcc	gga	tac	387
			Thr													
	Dou	110	1111	0,3	111.5	141	115		110	110	Dou	120	1114	Oly	1,1	
		110					TIU					140				
																465
aga	gaa	gag	att	gtg	cgg	tac	ctg	cgg	tca	gtg	cag	ctc	cct	gac	ggt	435

42/158

Arg Glu Glu Ile Val Arg Tyr Leu Arg Ser Val Gln Leu Pro Asp Gly

125 130 135

ggc tgg ggc ctg cac att gag gat aag tcc acc gtg ttt ggg act gcg 483
Gly Trp Gly Leu His Ile Glu Asp Lys Ser Thr Val Phe Gly Thr Ala

140 145 150 155

ctc aac tat gtg tct ctc aga att ctg ggt gtt ggg cct gac gat cct 531

Leu Asn Tyr Val Ser Leu Arg Ile Leu Gly Val Gly Pro Asp Asp Pro

160 165 170

gac ctg gta cga gcc cgg aac att ctt cac aag aaa ggt ggt gct gtg 579

Asp Leu Val Arg Ala Arg Asn Ile Leu His Lys Lys Gly Gly Ala Val

175 180 - 185

gcc atc ccc tcc tgg ggg aag ttc tgg ctg gct gtc ctg aat gtt tac 627

Ala Ile Pro Ser Trp Gly Lys Phe Trp Leu Ala Val Leu Asn Val Tyr

190 195 200

agc tgg gaa ggc ctc aat acc ctg ttc cca gag atg tgg ctg ttt cct 675

Ser Trp Glu Gly Leu Asn Thr Leu Phe Pro Glu Met Trp Leu Phe Pro

43/158

205 210 215

gtg tac ctg ccc atg agc tac tgc tac gcc gtt cgg ctg agt gcc gcg 771

Val Tyr Leu Pro Met Ser Tyr Cys Tyr Ala Val Arg Leu Ser Ala Ala

240 245 250

gaa gac ccg ctg gtc cag agc ctc cgc cag gag ctc tat gtg gag gac 819

Glu Asp Pro Leu Val Gln Ser Leu Arg Gln Glu Leu Tyr Val Glu Asp

255 260 265

ttc gcc agc att gac tgg ctg gcg cag agg aac aac gtg gcc ccc gac

867

Phe Ala Ser Ile Asp Trp Leu Ala Gln Arg Asn Asn Val Ala Pro Asp

270

275

280

gag ctg tac acg ccg cac agc tgg ctg ctc cgc gtg gta tat gcg ctc 915

Glu Leu Tyr Thr Pro His Ser Trp Leu Leu Arg Val Val Tyr Ala Leu

285 290 295

ctc	aac	ctg	tat	gag	cac	cac	cac	agt	gcc	cac	ctg	cgg	cag	cgg	gcc	963
Leu	Asn	Leu	Tyr	Glu	His	His	His	Ser	Ala	His	Leu	Arg	Gln	Arg	Ala	
300					305					310					315	
																•
gtg	cag	aag	ctg	tat	gaa	cac	att	gtg	gcc	gac	gac	cga	ttc	acc	aag	1011
Val	G1n	Lys	Leu	Tyr	G1u	His	Ile	Val	Ala	Asp	Asp	Arg	Phe	Thr	Lys	
				320					325					330		
agc	atc	agc	atc	ggc	ccg	atc	tcg	aaa	acc	atc	aac	atg	ctt	gtg	ege	1059
Ser	Ile	Ser	Ile	Gly	Pro	Ile	Ser	Lys	Thr	Ile	Asn	Met	Leu	Val	Arg	
			335					340					345			
								•								
tgg	tat	gtg	gac	ggg	ссс	gcc	tcc	act	gcc	ttc	cag	gag	cat	gtc	tcc	1107
Гrр	Tyr	Val	Asp	Gly	Pro	Ala	Ser	Thr	Ala	Phe	Gln	Glu	His	Val	Ser	
		350					355					360				
				•												
aga	atc	ccg	gac	tat	ctc	tgg	atg	ggc	ctt	gac	ggc	atg	aaa	atg	cag	1155
Arg	Ile	Pro	Asp	Tyr	Leu	Trp	Met	G1y	Leu	Asp	Gly	Met	Lys	Met	Gln	٠
	365					370					375			•		•

ggc	acc	aac	ggc	tca	cag	atc	tgg	gac	acc	gca	ttc	gcc	atc	cag	gct	1203
Gly	Thr	Asn	Gly	Ser	G1n	Ile	Trp	Asp	Thr	Ala	Phe	Ala	Ile	G1n	Ala	
380					385		•			390					395	
ctg	ctt	gag	gcg	ggc	ggg	cac	cac	agg	ccc	gag	ttt	tcg	tcc	tgc	ctg	1251
Leu	Leu	G1u	Ala	Gly	Gly	His	His	Arg	Pro	Glu	Phe	Ser	Ser	Cys	Leu	
				400					405					410		
cag	aag	gct	cat	gag	ttc	ctg	agg	ctc	tca	cag	gtc	cca	gat	aac	cct	1299
G1n	Lys	Ala	His	Glu	Phe	Leu	Arg	Leu	Ser	G1n	Val	Pro	Asp	Asn	Pro	
			415					420					425			
									•							
ccc	gac	tac	cag	aag	tac	tac	cgc	cag	atg	cgc	aag	ggt	ggc	ttc	tcc	1347
Pro	Asp	Tyr	Gln	Lys	Tyr	Tyr	Arg	G1n	Met	Arg	Lys	Gly.	Gly	Phe	Ser	
		430					435					440				
					•											
ttc	agt	acg	ctg	gac	tgc	ggc	tgg	atc	gtt	tct	gac	tgc	acg	gct	gag	1395
Phe	Ser	Thr	Leu	Asp	Cys	Gly	Trp	Ile	Val	Ser	Asp	Cys	Thr	Ala	Glu .	
	445					450			٠		455					•
															•	
gcc	ttg	aag	gct	gtg	ctg	ctc	ctg	cag	gag	aag	tgt	ccc	cat	gtc	acc	1443

46/158

Ala Leu Lys Ala Val Leu Leu Gln Glu Lys Cys Pro His Val Thr 465 470 475 460 gag cac atc ccc aga gaa cgg ctc tgc gat gct gtg gct gtg ctg ctg 1491 Glu His Ile Pro Arg Glu Arg Leu Cys Asp Ala Val Ala Val Leu Leu 480 490 485 1539 aac atg aga aat cca gat gga ggg ttc gcc acc tat gag acc aag cgt Asn Met Arg Asn Pro Asp Gly Gly Phe Ala Thr Tyr Glu Thr Lys Arg 500 505 495

ggg ggg cac ttg ctg gag ctg ctg aac ccc tcg gag gtc ttc ggg gac 1587

Gly Gly His Leu Leu Glu Leu Leu Asn Pro Ser Glu Val Phe Gly Asp

510 515 520

atc atg att gac tac acc tat gtg gag tgc acc tca gcc gtg atg cag 1635

Ile Met Ile Asp Tyr Thr Tyr Val Glu Cys Thr Ser Ala Val Met Gln

525 530 535

gcg ctt aag tat ttc cac aag cgt ttc ccg gag cac agg gca gcg gag 1683
Ala Leu Lys Tyr Phe His Lys Arg Phe Pro Glu His Arg Ala Ala Glu

47/158

atc cgg gag acc ctc acg cag ggc tta gag ttc tgt cgg cgg cag cag Ile Arg Glu Thr Leu Thr Gln Gly Leu Glu Phe Cys Arg Arg Gln Gln agg gcc gat ggc tcc tgg gaa ggc tcc tgg gga gtt tgc ttc acc tac Arg Ala Asp Gly Ser Trp Glu Gly Ser Trp Gly Val Cys Phe Thr Tyr ggc acc tgg ttt ggc ctg gag gcc ttc gcc tgt atg ggg cag acc tac Gly Thr Trp Phe Gly Leu Glu Ala Phe Ala Cys Met Gly Gln Thr Tyr cga gat ggg act gcc tgt gca gag gtc tcc cgg gcc tgt gac ttc ctg Arg Asp Gly Thr Ala Cys Ala Glu Val Ser Arg Ala Cys Asp Phe Leu ctg tcc cgg cag atg gca gac gga ggc tgg ggg gag gac ttt gag tcc Leu Ser Arg Gln Met Ala Asp Gly Gly Trp Gly Glu Asp Phe Glu Ser

tgc	gag	gag	cgg	cgt	tat	ttg	cag	agt	gcc	cag	tcc	cag	atc	cat	aac	1971	
Cys	Glu	Glu	Arg	Arg	Tyr	Leu	Gln	Ser	Ala	Gln	Ser	Gln	Ile	His	Asn		
				640					645					650			
•																	
aca	tgc	tgg	gcc	atg	atg	ggg	ctg	atg	gcc	gtt	cgg	cat	cct	gac	atc	2019)
Thr	Cys	Trp	Ala	Met	Met	Gly	Leu	Met	Ala	Val	Arg	His	Pro	Asp	Ile		
	•		655					660					665				
gag	gcc	cag	gag	aga	gga	gtc	cgg	tgt	cta	ctt	gag	aaa	cag	ctc	ccc	2067	7
G1u	Ala	G1n	Glu	Arg	Gly	Val	Arg	Cys	Leu	Leu	Glu	Lys	Gln	Leu	Pro		
		670					675					680					
aat	ggc	gac	tgg	ccg	cag	gaa	aac	att	gct	ggg	gtc	ttc	- aac	aag	tcc	2115	5
Asn	Gly	Asp	Trp	Pro	Gln	Glu	Asn	Ile	Ala	G1y	Val	Phe	Asn	Lys	Ser		
	685					690					695		-				
																•	
tgt	gcc	atc	tcc	tac	acg	agc	tac	agg	aac	atc	ttc	ccc	atc	tgg	gcc	2163	3
Cys	Ala	Ile	Ser	Tyr	Thr	Ser	Tyr	Arg	Asn	Ile	Phé	Pro	Ile	Trp	Ala		
700					705					710	١				715		

ctc	ggc	cgc	ttc	tcc	cag	ctg	tac	cct	gag	aga	gcc	ctt	gct	ggc	cac	221	1
Leu	Gly	Arg	Phe	Ser	Gln	Leu	Tyr	Pro	Glu	Arg	Ala	Leu	Ala	Gly	His		
				720					725					730			
					٠												
ccc	tga	gaac	atg (ccta	cctg	ct g	ggtgo	ccgt	c tg	tgcg	ttcc	atg	gcct	tca		226	64
Pro																	
agt	caca	gga	cgca	gcga	tt c	cctg	ccct	c tt	cggt	gtta	tta	caca	ggc	agga	cttca	ag 23:	24
															.		0.4
tgt	cagt	atc	cctg	cctt	ca g	tctt	cttt	a ga	aatc	acat	ctg	tgtt	caa	tcca	ttgt	tt 23	04
			4-44	+++	o+ a	.++00	acga	o 00	aaaa	.++++	† a †	teac	aat	toos	teac	aa 24	44
aga	ggga	grg	tatt		ici E	, , , , ,	auga	a ga	iggac	, , , , , , ,	ug u	toao	aa o	0880	0000		
tac		asa	tote	ttcc	etc c	ccce	tcgg	c tt	ctcg	gtgc	tgg	gagg	gtg	acct	gtcc	ca 25	04
USC	идив	.646	عن دن	, , , , ,													
gat	gact	cat	caco	ctga	ica t	gcto	cttga	.c aa	aagga	acaco	acc	aaga	ıgga	gate	gcag	ct 25	64
										•							
gta	ccgg	gtgc	agco	ctcte	gtc 1	tgagg	gggga	it at	tttg	cctca	ı gtg	gtgat	ttaa	aaat	cagt	ca 26	524
					•										•		
tga	aaga	ì														26	33

50/158

⟨210⟩ 8

<211> 732

<212> PRT

<213> Homo sapiens

<400> 8

Met Thr Glu Gly Thr Cys Leu Arg Arg Gly Gly Pro Tyr Lys Thr

1 5 10 15

Glu Pro Ala Thr Asp Leu Gly Arg Trp Arg Leu Asn Cys Glu Arg Gly
20 25 30

Arg Gln Thr Trp Thr Tyr Leu Gln Asp Glu Arg Ala Gly Arg Glu Gln
35 40 45

51/158

Thr Gly Leu Glu Ala Tyr Ala Leu Gly Leu Asp Thr Lys Asn Tyr Phe
50 55 60

Lys Asp Leu Pro Lys Ala His Thr Ala Phe Glu Gly Ala Leu Asn Gly
65 70 75 80

Met Thr Phe Tyr Val Gly Leu Gln Ala Glu Asp Gly His Trp Thr Gly

85 90 95

Asp Tyr Gly Gly Pro Leu Phe Leu Leu Pro Gly Leu Leu Ile Thr Cys

100 105 . 110

His Val Ala Arg Ile Pro Leu Pro Ala Gly Tyr Arg Glu Glu Ile Val

Arg Tyr Leu Arg Ser Val Gln Leu Pro Asp Gly Gly Trp Gly Leu His

52/158

130 135 140

Ile Glu Asp Lys Ser Thr Val Phe Gly Thr Ala Leu Asn Tyr Val Ser 145 150 155 160

Leu Arg Ile Leu Gly Val Gly Pro Asp Asp Pro Asp Leu Val Arg Ala 165 170 175

Arg Asn Ile Leu His Lys Lys Gly Gly Ala Val Ala Ile Pro Ser Trp
180 185 190

Gly Lys Phe Trp Leu Ala Val Leu Asn Val Tyr Ser Trp Glu Gly Leu
195 200 205

Asn Thr Leu Phe Pro Glu Met Trp Leu Phe Pro Asp Trp Ala Pro Ala
210 215 220

53/158

His Pro Ser Thr Leu Trp Cys His Cys Arg Gln Val Tyr Leu Pro Met 225 230 235 240

Ser Tyr Cys Tyr Ala Val Arg Leu Ser Ala Ala Glu Asp Pro Leu Val
245
250
255

Gln Ser Leu Arg Gln Glu Leu Tyr Val Glu Asp Phe Ala Ser Ile Asp 260 265 270

Trp Leu Ala Gln Arg Asn Asn Val Ala Pro Asp Glu Leu Tyr Thr Pro
275 280 285

His Ser Trp Leu Leu Arg Val Val Tyr Ala Leu Leu Asn Leu Tyr Glu 290 295 300

54/158

His His Ser Ala His Leu Arg Gln Arg Ala Val Gln Lys Leu Tyr 305 310 315 320

Glu His Ile Val Ala Asp Asp Arg Phe Thr Lys Ser Ile Ser Ile Gly
325 330 335

Pro Ile Ser Lys Thr Ile Asn Met Leu Val Arg Trp Tyr Val Asp Gly

340 345 350

Pro Ala Ser Thr Ala Phe Gln Glu His Val Ser Arg Ile Pro Asp Tyr
355 360 365

Leu Trp Met Gly Leu Asp Gly Met Lys Met Gln Gly Thr Asn Gly Ser 370 380

55/158

Gln Ile Trp Asp Thr Ala Phe Ala Ile Gln Ala Leu Leu Glu Ala Gly

Gly His His Arg Pro Glu Phe Ser Ser Cys Leu Gln Lys Ala His Glu

Phe Leu Arg Leu Ser Gln Val Pro Asp Asn Pro Pro Asp Tyr Gln Lys

Tyr Tyr Arg Gln Met Arg Lys Gly Gly Phe Ser Phe Ser Thr Leu Asp

Cys Gly Trp Ile Val Ser Asp Cys Thr Ala Glu Ala Leu Lys Ala Val

Leu Leu Cln Glu Lys Cys Pro His Val Thr Glu His Ile Pro Arg

56/158

465 470 475 480

Glu Arg Leu Cys Asp Ala Val Ala Val Leu Leu Asn Met Arg Asn Pro
485 490 495

Asp Gly Gly Phe Ala Thr Tyr Glu Thr Lys Arg Gly Gly His Leu Leu 500 505 . 510

Glu Leu Leu Asn Pro Ser Glu Val Phe Gly Asp Ile Met Ile Asp Tyr
515 520 525

Thr Tyr Val Glu Cys Thr Ser Ala Val Met Gln Ala Leu Lys Tyr Phe
530 535 540

His Lys Arg Phe Pro Glu His Arg Ala Ala Glu Ile Arg Glu Thr Leu 545 550 555 560

57/158

Thr Gln Gly Leu Glu Phe Cys Arg Gln Gln Arg Ala Asp Gly Ser
565 570 575

Trp Glu Gly Ser Trp Gly Val Cys Phe Thr Tyr Gly Thr Trp Phe Gly
580 585 590

Leu Glu Ala Phe Ala Cys Met Gly Gln Thr Tyr Arg Asp Gly Thr Ala
595 600 605

Cys Ala Glu Val Ser Arg Ala Cys Asp Phe Leu Leu Ser Arg Gln Met 610 615 620

Ala Asp Gly Gly Trp Gly Glu Asp Phe Glu Ser Cys Glu Glu Arg Arg
625 630 635 640

58/158

Tyr Leu Gln Ser Ala Gln Ser Gln Ile His Asn Thr Cys Trp Ala Met
645 650 655

Met Gly Leu Met Ala Val Arg His Pro Asp Ile Glu Ala Gln Glu Arg 660 665 670

Gly Val Arg Cys Leu Leu Glu Lys Gln Leu Pro Asn Gly Asp Trp Pro 675 680 685

Gln Glu Asn Ile Ala Gly Val Phe Asn Lys Ser Cys Ala Ile Ser Tyr 690 695 700

Thr Ser Tyr Arg Asn Ile Phe Pro Ile Trp Ala Leu Gly Arg Phe Ser
705 710 715 720

WO 2005/052154

- ر

53

59/158

Gln Leu Tyr Pro Glu Arg Ala Leu Ala Gly His Pro

725

730

<210> 9

<211> 1168

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (30).. (800)

<400> 9

gagetggaag tgagageaga teectaace atg age ace age caa eea ggg gee

Met Ser Thr Ser Gln Pro Gly Ala

1

5

tgc cca tgc cag gga gct gca agc cgc ccc gcc att ctc tac gca ctt

101

Cys Pro Cys Gln Gly Ala Ala Ser Arg Pro Ala Ile Leu Tyr Ala Leu

60/158

10 . 15 20

ctg agc tcc agc ctc aag gct gtc ccc cga ccc cgt agc cgc tgc cta 149

Leu Ser Ser Ser Leu Lys Ala Val Pro Arg Pro Arg Ser Arg Cys Leu

25 30 35 40

tgt agg cag cac cgg ccc gtc cag cta tgt gca cct cat cgc acc tgc 197

Cys Arg Gln His Arg Pro Val Gln Leu Cys Ala Pro His Arg Thr Cys

45 50 55

cgg gag gcc ttg gat gtt ctg gcc aag aca gtg gcc ttc ctc agg aac 245
Arg Glu Ala Leu Asp Val Leu Ala Lys Thr Val Ala Phe Leu Arg Asn
60 65 70

ctg cca tcc ttc tgg cag ctg cct ccc cag gac cag cgg cgg ctg ctg 293

Leu Pro Ser Phe Trp Gln Leu Pro Pro Gln Asp Gln Arg Arg Leu Leu

75 80 85

cag ggt tgc tgg ggc ccc ctc ttc ctg ctt ggg ttg gcc caa gat gct

Gln Gly Cys Trp Gly Pro Leu Phe Leu Leu Gly Leu Ala Gln Asp Ala

90 95 100

61/158

gtg	acc	ttt	gag	gtg	gct	gag	gcc	ccg	gtg	ccc	agc	ata	ctc	aag	aag	389
Val	Thr	Phe	G1u	Val	Ala	Glu	Ala	Pro	Val	Pro	Ser	İlė	Leu	Lys	Lys	
105					110					115					120	
att	ctg	ctg	gag	gag	ccc	agc	agc	agt	gga	ggc	agt	ggc	caa	ctg	cca	437
Ile	Leu	Leu	G1u	Glu	Pro	Ser	Ser	Ser	Gly	Gly	Ser	G1y	Gln	Leu	Pro	
				125					130					135		
									•							
gac	aga	ccc	cag	ccc	tcc	ctg	gct	gcg	gtg	cag	tgg	ċtt	caa	tgc	tgt	485
Asp	Arg	Pro	Gln	Pro	Ser	Leu	Ala	Ala	Val	Gln	Trp	Leu	Gln	Cys	Cys	
			140			•		145					150			
ctg	gag	tcc	ttc	tgg	agc	ctg	gag	ctt	agc	ccc	aag	gaa	tat	gcc	tgc	533
Leu	Glu	Ser	Phe	Trp	Ser	Leu	Glu	Leu	Ser	Pro	Lys	G1u	Tyr	Ala	Cys	
		155					.160					165				
										•						
ctg	aaa	ggg	acc	atc	ctc	ttc	aac	ccc	gat	gtg	cca	ggc	ctc	caa	gcc	581
Leu	Lys	Gly	Thr	Ile	Leu	Phe	Asn	Pro	Asp	Val	Pro	Gly	Leu	Gln	Ala	
	170			•	,	175					180			•	• •	

62/158

										•						
gcc	tcc	cac	att	ggg	cac	ctg	cag	cag	gag	gct	cac	tgg	gtg	ctg	tgt	629
Ala	Ser	His	Ile	Gly	His	Leu	G1n	Gln	G1u	Ala	His	Trp	Val	Leu	Cys	
185		•			190		٠			195					200	
gaa	gtc	ctg	gaa	ccc	tgg	tgc	cca	gca	gcc	caa	ggc	cgc	ctg	acc	cgt	677
G1u	Val	Leu	Glu	Pro	Trp	Cys	Pro	Ala	Ala	Gln	Gly	Arg	Leu	Thr	Arg	
				205					210					215		
gtc	ctc	ctc	acg	gcc	tcc	acc	ctc	aag	tcc	att	ccg	acc	agc	ctg	ctt	725
Val	Leu	Leu	Thr	Ala	Ser	Thr	Leu	Lys	Ser	Ile	Pro	Thr	Ser	Leu	Leu	e
			220					225					230	,		
ggg	gac	ctc	ttc	ttt	cgc	cct	atc	att	gga	gat	gtt	gac	atc	gct	ggc	773
G1y	Asp	Leu	Phe	Phe	Arg	Pro	Ile	Ile	Gly	Asp	Val	Asp	. Ile	Ala	Gly	
		235					240					245				
												٠				
ctt	ctt	ggg	gac	atg	ctt	ttg	ctc	agg	tga	cctg	ttc	cago	ccag	gc		820
					Leu				-			Ū	_			
Leu			nap	Me	Dea	255		111.6								
	250					<i>2</i> 00									,	
						•										

agagatcagg tgggcagagg ctggcagtgc tgattcagcc tggccatccc cagaggtgac

880

63/158

ccaatgctcc	tggaggggca	agcctgtata	gacagcactt	ggctccttag	gaacagctct	940
tcactcagcc	acaccccaca	ttggacttcc	ttggtttgga	cacagtgctc	cagctgcctg	1000
ggaggctttt	ggtggtcccc	acagcctctg	ggccaagact	cctgtccctt	cttgggatga	1060
gaatgaaagc	ttaggctgct	tattggacca	gaagtcctat	cgactttata	cagaactgaa	1120
ttaagttatt	gatttttgta	ataaaaggta	tgaaacacta	aaaaaaaa		1168

<210> 10

<211> 257

<212> PRT

<213> Homo sapiens

<400> 10

Met Ser Thr Ser Gln Pro Gly Ala Cys Pro Cys Gln Gly Ala Ala Ser

1 5 10 15

64/158

Arg Pro Ala Ile Leu Tyr Ala Leu Leu Ser Ser Leu Lys Ala Val

Pro Arg Pro Arg Ser Arg Cys Leu Cys Arg Gln His Arg Pro Val Gln

Leu Cys Ala Pro His Arg Thr Cys Arg Glu Ala Leu Asp Val Leu Ala

Lys Thr Val Ala Phe Leu Arg Asn Leu Pro Ser Phe Trp Gln Leu Pro

Pro Gln Asp Gln Arg Arg Leu Leu Gln Gly Cys Trp Gly Pro Leu Phe

65/158

Leu Leu Gly Leu Ala Gln Asp Ala Val Thr Phe Glu Val Ala Glu Ala

100 105 110

Pro Val Pro Ser Ile Leu Lys Lys Ile Leu Leu Glu Glu Pro Ser Ser 115 120 125

Ser Gly Gly Ser Gly Gln Leu Pro Asp Arg Pro Gln Pro Ser Leu Ala 130 135 140

Ala Val Gln Trp Leu Gln Cys Cys Leu Glu Ser Phe Trp Ser Leu Glu

145 150 155 160

Leu Ser Pro Lys Glu Tyr Ala Cys Leu Lys Gly Thr Ile Leu Phe Asn 165 170 175

66/158

Pro Asp Val Pro Gly Leu Gln Ala Ala Ser His Ile Gly His Leu Gln

Gln Glu Ala His Trp Val Leu Cys Glu Val Leu Glu Pro Trp Cys Pro

Ala Ala Gln Gly Arg Leu Thr Arg Val Leu Leu Thr Ala Ser Thr Leu

Lys Ser Ile Pro Thr Ser Leu Leu Gly Asp Leu Phe Phe Arg Pro Ile

Ile Gly Asp Val Asp Ile Ala Gly Leu Leu Gly Asp Met Leu Leu

Arg

67/158

<210> 11

<211> 489

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

⟨222⟩ (43)..(423)

<400> 11

5

agageegeag gteagtegtg aagagggage tetattgeea ee atg agt tte tee

54

Met Ser Phe Ser

20

1

ggc aag tac caa ctg cag agc cag gaa aac ttt gaa gcc ttc atg aag

Gly Lys Tyr Gln Leu Gln Ser Gln Glu Asn Phe Glu Ala Phe Met Lys

15·

10

68/158

gca	atc	ggt	ctg	ccg	gaa	gag	ctc	atc	cag	aag	ggg	aag	gat	atc	aag	150
Ala	Ile	G1y	Leu	Pro	Glu	Glu	Leu	Ile	Gln	Lys	Gly	Lys	Asp	Ile	Lys	
				25					30					35		
ggg	gtg	tcg	gaa	atc	gtg	cag	aat	ggg	aag	cac	ttc	aag	ttc	acc	atc	198
Gly	Va1	Ser	G1u	Ile	Val	Gln	Asn	Gly	Lys	His	Phe	Lys	Phe	Thr	Ile	
•			40					45					50			
acc	gct	ggg	tcc	aaa	gtg	atc	caa	aac	gaa	ttc	acg	gtg	ggg	gag	gaa	246
Thr	Ala	Gly	Ser	Lys	Val	Ile	Gln	Asn	Glu	Phe	Thr	Val	Gly	Glu	G1u	
		55					60	•				65				
tgt	gag	ctg	gag	aca	atg	aca	ggg	gag	aaa	gtc	aag	aca	gtg	gtt	cag	294
Cys	Glu	Leu	G1u	Thr	Met	Thr	Gly	G1u	Lys	Val	Lys	Thr	Val	Val	G1n	
	70					7 5					80					
ttg	gaa	ggt	gac	aat	aaa	ctg	gtg	aca	act	ttc	aaa	aac	atc	aag	tct	342
Leu	Glu	Gly	Asp	Asn	Lys	Leu	Val	Thr	Thr	Phe	Lys	Asn	Ile	Lys	Ser	
85				•	90 (95				•	100	

69/158

gtg acc gaa ctc aac ggc gac ata atc acc aat acc atg aca ttg ggt

Val Thr Glu Leu Asn Gly Asp Ile Ile Thr Asn Thr Met Thr Leu Gly

105 110 115

gac att gtc ttc aag aga atc agc aag aga att taaacaagtc tgcatttcat

443
Asp Ile Val Phe Lys Arg Ile Ser Lys Arg Ile

120 125

attattttag tgtgtaaaat taatgtaata aagtgaactt tgtttt 489

<210> 12

⟨211⟩ 127

<212> PRT

<213> Homo sapiens

<400> 12

Met Ser Phe Ser Gly Lys Tyr Gln Leu Gln Ser Gln Glu Asn Phe Glu

1 5 10 15

70/158

Ala Phe Met Lys Ala Ile Gly Leu Pro Glu Glu Leu Ile Gln Lys Gly
20 25 30

Lys Asp Ile Lys Gly Val Ser Glu Ile Val Gln Asn Gly Lys His Phe
35 40 45

Lys Phe Thr Ile Thr Ala Gly Ser Lys Val Ile Gln Asn Glu Phe Thr
50 55 60

Val Gly Glu Glu Cys Glu Leu Glu Thr Met Thr Gly Glu Lys Val Lys
65 70 75 80

Thr Val Val Gln Leu Glu Gly Asp Asn Lys Leu Val Thr Thr Phe Lys

85 90 95

71/158

Asn Ile Lys Ser Val Thr Glu Leu Asn Gly Asp Ile Ile Thr Asn Thr

100

105

110

Met Thr Leu Gly Asp Ile Val Phe Lys Arg Ile Ser Lys Arg Ile

115

120

125

<210> 13

<211> 1783

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (246).. (1496)

<220>

<221> sig_peptide

<222> (246)..(731)

72/158

<220>			
<221> mat_peptide			
<222> (732) (1496)			
<400> 13			
tcgagcccgc tttccaggga	ccctacctga gggcc	cacag gtgaggcagc	ctggcctagc 60
aggccccacg ccaccgcctc	tgcctccagg ccgcc	ecgctg ctgcggggcc	accatgctcc 120
tgcccaggcc tggagactga	cccgaccccg gcact	tacete gaggeteege	cccacctgc 180
tggaccccag ggtcccaccc	tggcccagga ggtca	agccag ggaatcatta	acaagaggca 240
		•	
gtgac atg gcg cag aag	g gag ggt ggc cgg	g act gtg cca tg	c tgc tcc 287
Met Ala Gln Lys	s Glu Gly Gly Arg	g Thr Val Pro Cy	s Cys Ser
-160	-19	55	-150
	·		
aga ccc aag gtg gca	gct ctc act gcg	ggg acc ctg cta	ctt ctg 332
Arg Pro Lys Val Ala	Ala Leu Thr Ala	Gly Thr Leu Leu	Leu Leu
-145	-140	·	-135

73/158

aca	gcc	atc	ggg	gcg	gca	tcc	tgg	gcc	at	t gt	g go	et g	tt c	tc	ct	c	377
Thr	Ala	Ile	G1y	Ala	Ala	Ser	Trp	Ala	. Il	e Va	1 A]	la Va	al L	eu	Le	eu	
			-130					-12	5				_	120			
agg,	agt	gac	cag	gag	ccg	ctg	tac	cca	gt	g ca	ıg gt	tc a	gc t	ct	gc	g	422
Arg	Ser	Asp	G1n	G1u	Pro	Leu	Tyr	Pro	Va	1 G1	n Va	al S	er S	er	A.I	la	
•			-115					-11	.0				_	105			
			•											•			
gac	gct	cgg	ctc	atg	gtc	ttt	gac	aag	ace	gaa	ı ggg	g ac	g te	g c	gg	ctg	470
Asp	Ala	Arg	Leu	Met	Val	Phe	Asp	Lys	Thr	Glu	ı Gly	y Th	r Tr	р Аз	rg	Leu	
			-100					-95	i				– 6	00 .			
ctg	tgc	tcc	tcg	cgc ·	tcc :	aac ;	gcc	agg	gta	gcc	gga	ctc	ago	tge	C §	gag	518
Leu	Cys	Ser	Ser	Arg S	Ser	Asn /	Ala.	Arg	Val	Ala	G1y	Leu	Ser	Cy	s (Glu .	
		-85					-80					-75					
gag	atg	ggc	ttc	ctc a	agg ;	gca	ctg	acc	cac	tcc	gag	ctg	gao	gt	g	cga	566
G1u	Met	Gly	Phe :	Leu 1	Arg	Ala	Leu	Thr	His	Ser	G1u	Leu	Asp	Va:	1 /	Arg	
	-70					-65					-60				٠		

74/158

acg	gcg	ggc	gcc	aat	ggc	acg	tcg	ggc	ttc	ttc	tgt	gtg	gac	gag	ggg	614
Thr	Ala	G1y	Ala	Asn	G1y	Thr	Ser	G1y	Phe	Phe	Cys	Val	Asp	Glu	Gly	
-55					-50					-45					-40	
agg	ctg.	ccc	cac	acc	cag	agg	ctg	ctg	gag	gtc	atc	tcc	gtg	tgt	gat	662
Arg	Leu	Pro	His	Thr	G1n	Arg	Leu	Leu	Glu	Val	Ile	Ser	Val	Cys	Asp	
				-35					-30					-25		
tgc	ccc	aga	ggc	cgt	ttc	ttg	gcc	gcc	atc	tgc	caa	gac	tgt	ggc	cgc	710
Cys	Pro	Arg	G1y	Arg	Phe	Leu	Ala	Ala	Ile	Cys	Gln	Asp	Cys	Gly	Arg	
			-20					-15					-10			
												-				
agg	aag	ctg	ccc	gtg	gac	cgc	atc	gtg	gga	ggc	cgg	gac	acc	agc	ttg	758
Arg	Lys	Leu	Pro	Val	Asp	Arg	Ile	Val	Gly	Gly	Arg	Asp	Thr	Ser	Leu	
•		-5				-1	1 ·				5					
ggc	cgg	tgg	ccg	tgg	caa	gtc	agc	ctt	cgc	tat	gat	gga	gca	cac	ctc	808
Gly	Arg	Trp	Pro	Trp	G1n	Val	Ser	Leu	Arg	Tyr	Asp	Gly	Ala	His	Leu	
10					15					20					25	
					_									-		
					•											

tgt ggg gga tcc ctg ctc tcc ggg gac tgg gtg ctg aca gcc gcc cac 854

75/158

Cys Gly Gly Ser Leu Leu Ser Gly Asp Trp Val Leu Thr Ala Ala His

30 35 40

tgc ttc ccg gag cgg aac cgg gtc ctg tcc cga tgg cga gtg ttt gcc 902

Cys Phe Pro Glu Arg Asn Arg Val Leu Ser Arg Trp Arg Val Phe Ala

45 50 55

ggt gcc gtg gcc cag gcc tct ccc cac ggt ctg cag ctg ggg gtg cag 950

Gly Ala Val Ala Gln Ala Ser Pro His Gly Leu Gln Leu Gly Val Gln

60 65 70

gct gtg gtc tac cac ggg ggc tat ctt ccc ttt cgg gac ccc aac agc 998

Ala Val Val Tyr His Gly Gly Tyr Leu Pro Phe Arg Asp Pro Asn Ser

75 80 85

gag gag aac agc aac gat att gcc ctg gtc cac ctc tcc agt ccc ctg 1046
Glu Glu Asn Ser Asn Asp Ile Ala Leu Val His Leu Ser Ser Pro Leu
90 95 100 105

ccc ctc aca gaa tac atc cag cct gtg tgc ctc cca gct gcc ggc cag 1094

Pro Leu Thr Glu Tyr Ile Gln Pro Val Cys Leu Pro Ala Ala Gly Gln

76/158

gcc ctg gtg gat ggc aag atc tgt acc gtg acg ggc tgg ggc aac acg Ala Leu Val Asp Gly Lys Ile Cys Thr Val Thr Gly Trp Gly Asn Thr cag tac tat ggc caa cag gcc ggg gta ctc cag gag gct cga gtc ccc Gln Tyr Tyr Gly Gln Gln Ala Gly Val Leu Gln Glu Ala Arg Val Pro ata atc agc aat gat gtc tgc aat ggc gct gac ttc tat gga aac cag Ile Ile Ser Asn Asp Val Cys Asn Gly Ala Asp Phe Tyr Gly Asn Gln atc aag ccc aag atg ttc tgt gct ggc tac ccc gag ggt ggc att gat Ile Lys Pro Lys Met Phe Cys Ala Gly Tyr Pro Glu Gly Gly Ile Asp gee tge cag gge gac age ggt ggt eee ttt gtg tgt gag gac age ate Ala Cys Gln Gly Asp Ser Gly Gly Pro Phe Val Cys Glu Asp Ser Ile

77/158

Ser Arg Thr Pro Arg Trp Arg Leu Cys Gly Ile Val Ser Trp Gly Thr 205 210 215 ggc tgt gcc ctg gcc cag aag cca ggc gtc tac acc aaa gtc agt gac 1430 Gly Cys Ala Leu Ala Gln Lys Pro Gly Val Tyr Thr Lys Val Ser Asp 220 225 230 ttc cgg gag tgg atc ttc cag gcc ata aag act cac tcc gaa gcc agc 1478 Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgtttttct 1586	tct	cgg	acg	cca	cgt	tgg	cgg	ctg	tgt	ggc	att	gtg	agt	tgg	ggc	act	1382
ggc tgt gcc ctg gcc cag aag cca ggc gtc tac acc aaa gtc agt gac 1430 Gly Cys Ala Leu Ala Gln Lys Pro Gly Val Tyr Thr Lys Val Ser Asp 220 225 230 ttc cgg gag tgg atc ttc cag gcc ata aag act cac tcc gaa gcc agc 1478 Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586	Ser	Arg	Thr	Pro	Arg	Trp	Arg	Leu	Cys	Gly	Ile	Val	Ser	Trp	Gly	Thr	
Gly Cys Ala Leu Ala Gln Lys Pro Gly Val Tyr Thr Lys Val Ser Asp 220 225 230 ttc cgg gag tgg atc ttc cag gcc ata aag act cac tcc gaa gcc agc 1478 Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctggc cgaggatggg acgttttct 1586				205			,		210					215			
Gly Cys Ala Leu Ala Gln Lys Pro Gly Val Tyr Thr Lys Val Ser Asp 220 225 230 ttc cgg gag tgg atc ttc cag gcc ata aag act cac tcc gaa gcc agc 1478 Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctggc cgaggatggg acgttttct 1586																	
ttc cgg gag tgg atc ttc cag gcc ata aag act cac tcc gaa gcc agc 1478 Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctggc cgaggatggg acgttttct 1586	ggc	tgt	gcc	ctg	gcc	cag	aag	cca	ggc	gtc	tac	acc	aaa	gtc	agt	gac	1430
ttc cgg gag tgg atc ttc cag gcc ata aag act cac tcc gaa gcc agc 1478 Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctggc cgaggatggg acgttttct 1586	Gly	Cys	Ala	Leu	Ala	Gln	Lys	Pro	Gly	Val	Tyr	Thr	Lys	Val	Ser	Asp	
Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586	•		220					225					230				
Phe Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser 235 240 245 ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586																	
ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctggc cgaggatggg acgtttttct 1586	ttc	cgg	gag	tgg	atc	ttc	cag	gcc	ata	aag	act	cac	tcc	gaa	gcc	agc	1478
ggc atg gtg acc cag ctc tgaccggtgg cttctcgctg cgcagcctcc 1526 Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586	Phe	Arg	Glu	Trp	Ile	Phe	Gln	Ala	Ile	Lys	Thr	His	Ser	Glu	Ala	Ser	
Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586		235					240					245	•		٠		
Gly Met Val Thr Gln Leu 250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586																	
250 255 agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586	ggc	atg	gtg	acc	cag	ctc	tga	ccgg	tgg (cttc	tcgc	tg c	gcag	cctc	С		1526
agggcccgag gtgatcccgg tggtgggatc cacgctgggc cgaggatggg acgttttct 1586	Gly	Met	Val	Thr	Gln	Leu											
	250					255					•						
	agg	gccc	gag	gtga	tccc	gg t	ggtg	ggat	c ca	cgct	gggc	cga	ggat	ggg (acgt	ttttct	1586
										•							
tettgggece ggtecaeagg teeaaggaca eceteetee agggteetet ettecaeagt 1646	tct	tggg	ccc	ggtc	caca	gg t	ccaa;	ggac	a cc	ctcc	ctcc	agg	gtcc	tct	cttc	cacagt	1646

78/158

ggcgggccca ctcagccccg agaccaccca acctcaccct cctgaccccc atgtaaatat 1706

tgttctgctg tctgggactc ctgtctaggt gcccctgatg atgggatgct ctttaaataa 1766

taaagatggt tttgatt 1783

<210> 14

<211> 417

<212> PRT

<213> Homo sapiens

<400> 14

Met Ala Gln Lys Glu Gly Gly Arg Thr Val Pro Cys Cys Ser Arg
-160 -155 -150

Pro Lys Val Ala Ala Leu Thr Ala Gly Thr Leu Leu Leu Leu Thr
-145 -140 -135

79/158

Ala Ile Gly Ala Ala Ser Trp Ala Ile Val Ala Val Leu Leu Arg
-130 -125 -120

Ser Asp Gln Glu Pro Leu Tyr Pro Val Gln Val Ser Ser Ala Asp
-115 -110 -105

Ala Arg Leu Met Val Phe Asp Lys Thr Glu Gly Thr Trp Arg Leu Leu
-100 -95 -90

Cys Ser Ser Arg Ser Asn Ala Arg Val Ala Gly Leu Ser Cys Glu Glu
-85 -80 -75

Met Gly Phe Leu Arg Ala Leu Thr His Ser Glu Leu Asp Val Arg Thr
-70 -65 -60 -55

80/158

Ala Gly Ala Asn Gly Thr Ser Gly Phe Phe Cys Val Asp Glu Gly Arg
-50 -45 -40

Leu Pro His Thr Gln Arg Leu Leu Glu Val Ile Ser Val Cys Asp Cys
-35 -30 -25

Pro Arg Gly Arg Phe Leu Ala Ala Ile Cys Gln Asp Cys Gly Arg Arg
-20 -15 -10

Lys Leu Pro Val Asp Arg Ile Val Gly Gly Arg Asp Thr Ser Leu Gly
-5 -1 1 5 10

Arg Trp Pro Trp Gln Val Ser Leu Arg Tyr Asp Gly Ala His Leu Cys

15 20 25

Gly Gly Ser Leu Leu Ser Gly Asp Trp Val Leu Thr Ala Ala His Cys

81/158

30 35 40

Phe Pro Glu Arg Asn Arg Val Leu Ser Arg Trp Arg Val Phe Ala Gly
45 50 55

Ala Val Ala Gln Ala Ser Pro His Gly Leu Gln Leu Gly Val Gln Ala
60 65 70

Val Val Tyr His Gly Gly Tyr Leu Pro Phe Arg Asp Pro Asn Ser Glu
75 80 85 90

Glu Asn Ser Asn Asp Ile Ala Leu Val His Leu Ser Ser Pro Leu Pro
95 100 105

Leu Thr Glu Tyr Ile Gln Pro Val Cys Leu Pro Ala Ala Gly Gln Ala

110 115 120

82/158

Leu Val Asp Gly Lys Ile Cys Thr Val Thr Gly Trp Gly Asn Thr Gln

125
130
135

Tyr Tyr Gly Gln Gln Ala Gly Val Leu Gln Glu Ala Arg Val Pro Ile
. 140 145 150

Ile Ser Asn Asp Val Cys Asn Gly Ala Asp Phe Tyr Gly Asn Gln Ile

155 160 165 170

Lys Pro Lys Met Phe Cys Ala Gly Tyr Pro Glu Gly Gly Ile Asp Ala 175 180 185

Cys Gln Gly Asp Ser Gly Gly Pro Phe Val Cys Glu Asp Ser Ile Ser
190 195 200

83/158

Arg Thr Pro Arg Trp Arg Leu Cys Gly Ile Val Ser Trp Gly Thr Gly
205 210 215

Cys Ala Leu Ala Gln Lys Pro Gly Val Tyr Thr Lys Val Ser Asp Phe
220 225 230

Arg Glu Trp Ile Phe Gln Ala Ile Lys Thr His Ser Glu Ala Ser Gly
235 240 245 250

Met Val Thr Gln Leu

255

<210> 15

<211> 1534

<212> DNA

<213> Homo sapiens

84/158

<220> .

<221> CDS

<222> (26).. (1324)

<220>

<221> sig_peptide

<222> (26).. (100)

<220>

<221> mat_peptide

<222> (101)..(1324)

<400> 15

ggaattccct ggagcagagt tgaga atg gag aga atg tta cct ctc ctg gct

52

Met Glu Arg Met Leu Pro Leu Leu Ala

-25 -20

85/158

-15-10 -5 -1aac agc cca ctt gac gag gag aat ctg acc cag gag aac caa gac cga 148 Asn Ser Pro Leu Asp Glu Glu Asn Leu Thr Gln Glu Asn Gln Asp Arg 1 5 10 15 ggg aca cac gtg gac ctc gga tta gcc tcc gcc aac gtg gac ttc gct 196 Gly Thr His Val Asp Leu Gly Leu Ala Ser Ala Asn Val Asp Phe Ala 20 25 30 ttc agc ctg tac aag cag tta gtc ctg aag gcc ctt gat aag aat gtc 244 Phe Ser Leu Tyr Lys Gln Leu Val Leu Lys Ala Leu Asp Lys Asn Val 35 40 45 atc ttc tcc cca ctg agc atc tcc acc gcc ttg gcc ttc ctg tct ctg 292

Ile Phe Ser Pro Leu Ser Ile Ser Thr Ala Leu Ala Phe Leu Ser Leu

50 55 60

ggg gcc cat aat acc acc ctg aca gag att ctc aag gcc tcg agt tca 340

Gly Ala His Asn Thr Thr Leu Thr Glu Ile Leu Lys Ala Ser Ser Ser

70 75 80

86/158

cct	cac	gga	gac	tta	ctg	agg	cag	aaa	ttc	act	cag	agc	ttc	cag	cac	388
Pro	His	Gly	Asp	Leu	Leu	Arg	G1n	Lys	Phe	Thr	Gln	Ser	Phe	Gln	His	
				85					90					95		
					٠											
ctc	cgc	gca	ccc	tca	atc	agt	tcc	agc	gat	gag	ctg	cag	ctg	agt	atg	436
Leu	Arg	Ala	Pro	Śer	Ile	Ser	Ser	Ser	Asp	Glu	Leu	Gln	Leu	Ser	Met	
			100					105					110			
gga	aat	gcc	atg	ttt	gtc	aaa	gag	caa	ctc	agt	ctg	ctg	gac	agg	ttc	484
Gly	Asn	Ala	Met	Phe	Val	Lys	Glu	G1n	Leu	Ser	Leu	Leu	Asp	Arg	Phe	
		115					120					125				
acg	gag	gat	gcc	aag	agg	ctg	tat	ggc	tcc	gag	gcc	ttt	gcc	act	gac	532
Thr	Glu	Asp	Ala	Lys	Arg	Leu	Tyr	Gly	Ser	Glu	Ala	Phe	Ala	Thr	Asp	
	130					135					140					
															,	
ttt	cag	gac	tca	gct	gca	gct	aag	aag	ctc	atc	aac	gac	tac	gtg	aag	580
Phe	G1n	Asp	Ser	Ala	Ala	Ala	Lys	Lys	Leu	Ile	Asn	Asp	Tyr	Val	Lys	•
145					150					155				•	160	

87/158

aat	gga	act	agg	ggg	aaa	atc	aca	gat	ctg	atc	aag	gac	ccc	gac	tcg	628
Asn	Gly	Thr	Arg	Gly	Lys	Ile	Thr	Asp	Leu	Ile	Lys	Asp	Pro	Asp	Ser	
				165					170					175		
cag	aca	atg	atg	gtc	ctg	gtg	aat	tac	atc	ttc	ttt	aaa	gcc	aaa	tgg	676
Gln	Thr	Met _.	Met	Val	Leu	Val	Asn	Tyr	Ile	Phe	Phe	Lys	Ala	Lys	Trp	
			180					185					190			
•													٠			
gag	atg	ccc	ttt	gac	ccc	caa	gat	act	cat	cag	tca	agg	ttc	tac	ttg	724
Glu	Met	Pro	Phe	Asp	Pro	Gln	Asp	Thr	His	G1n	Ser	Arg	Phe	Tyr	Leu	
		195					200					205				
			•													
agc	aag	aaa	aag	tgg	gta	atg	gtg	ccc	atg	atg	agt	ţtg	cat	cac	ctg	772
Ser	Lys	Lys	Lys	Trp	Val	Met	Val	Pro	Met	Met	Ser	Leu	His	His	Leu	
	210					215					220					
						•										
act	ata	cct	tac	ttc	cgg	gac	gag	gag	ctg	tcc	tgc	acc	gtg	gtg	gag	820
Thr	Ile	Pro	Tyr	Phe	Arg	Asp	Glu	Glu	Leu	Ser	Cys	Thr	Val	Val	G1u	
225					230				•	235					240	
				•	•											

ctg aag tac aca ggc aat gcc agc gca ctc ttc atc ctc cct gat caa

868

88/158

Leu Lys Tyr Thr Gly Asn Ala Ser Ala Leu Phe Ile Leu Pro Asp Gln
245
250
255

gac aag atg gag gaa gtg gaa gcc atg ctg ctc cca gag acc ctg aag 916
Asp Lys Met Glu Glu Val Glu Ala Met Leu Leu Pro Glu Thr Leu Lys
260 265 270

cgg tgg aga gac tct ctg gag ttc aga gag ata ggt gag ctc tac ctg 964

Arg Trp Arg Asp Ser Leu Glu Phe Arg Glu Ile Gly Glu Leu Tyr Leu
275 280 285

Cca aag ttt tcc atc tcg agg gac tat aac ctg aac gac ata ctt ctc 1012

Pro Lys Phe Ser Ile Ser Arg Asp Tyr Asn Leu Asn Asp Ile Leu Leu
290 295 300

cag ctg ggc att gag gaa gcc ttc acc agc aag gct gac ctg tca ggg 1060 Gln Leu Gly Ile Glu Glu Ala Phe Thr Ser Lys Ala Asp Leu Ser Gly 305 310 315 320

atc aca ggg gcc agg aac cta gca gtc tcc cag gtg gtc cat aag gtc 1108

Ile Thr Gly Ala Arg Asn Leu Ala Val Ser Gln Val Val His Lys Val

89/158

325 330 335

gtg tct gat gta ttt gag gag ggc aca gaa gca tct gct gcc aca gca 1156
Val Ser Asp Val Phe Glu Glu Gly Thr Glu Ala Ser Ala Ala Thr Ala
340 345 350

gtc aaa atc acc ctc ctt tct gca tta gtg gag aca agg acc att gtg

Val Lys Ile Thr Leu Leu Ser Ala Leu Val Glu Thr Arg Thr Ile Val

355

360
365

cgt ttc aac agg ccc ttc ctg atg atc att gtc cct aca gac acc cag

1252

Arg Phe Asn Arg Pro Phe Leu Met Ile Ile Val Pro Thr Asp Thr Gln

370

375

380

aac atc ttc ttc atg agc aaa gtc acc aat ccc agc aag cct aga gct

Asn Ile Phe Phe Met Ser Lys Val Thr Asn Pro Ser Lys Pro Arg Ala

385

390

395

400

tgc atc aag cag tgg ggc tct cag taaggaactt ggaatgcaag ctggatgcct 1354

Cys Ile Lys Gln Trp Gly Ser Gln

405

1534

90/158

gggtctctgg gcacagctgg cccctgtgca ccgtagtggc catggcatgt gtggccctgt 1414
ctgcttatcc ttggaaggtg acagcgattc cctgtgaagc tctcacacgc acaggggccc 1474

atggactctt cagtctggag ggtcctggcc tcctgacagc aataaataat ttcgttggcc

⟨210⟩ 16

⟨211⟩ 433

<212> PRT

<213≻ Homo sapiens

<400> 16

Met Glu Arg Met Leu Pro Leu Leu Ala Leu Gly Leu Leu Ala Ala Gly
-25 -20 -15 -10

Phe Cys Pro Ala Val Leu Cys His Pro Asn Ser Pro Leu Asp Glu Glu
-5 -1 1 5

PCT/JP2004/017995 WO 2005/052154

91/158

Asn Leu Thr Gln Glu Asn Gln Asp Arg Gly Thr His Val Asp Leu Gly

Leu Ala Ser Ala Asn Val Asp Phe Ala Phe Ser Leu Tyr Lys Gln Leu

Val Leu Lys Ala Leu Asp Lys Asn Val Ile Phe Ser Pro Leu Ser Ile

Ser Thr Ala Leu Ala Phe Leu Ser Leu Gly Ala His Asn Thr Thr Leu

Thr Glu Ile Leu Lys Ala Ser Ser Pro His Gly Asp Leu Leu Arg

92/158

Gln Lys Phe Thr Gln Ser Phe Gln His Leu Arg Ala Pro Ser Ile Ser 90 95 100

Ser Ser Asp Glu Leu Gln Leu Ser Met Gly Asn Ala Met Phe Val Lys

105 110 115

Glu Gln Leu Ser Leu Leu Asp Arg Phe Thr Glu Asp Ala Lys Arg Leu
120 125 130 135

Tyr Gly Ser Glu Ala Phe Ala Thr Asp Phe Gln Asp Ser Ala Ala Ala

140 145 150

Lys Lys Leu Ile Asn Asp Tyr Val Lys Asn Gly Thr Arg Gly Lys Ile
155 160 165

93/158

Thr Asp Leu Ile Lys Asp Pro Asp Ser Gln Thr Met Met Val Leu Val
170 175 180

Asn Tyr Ile Phe Phe Lys Ala Lys Trp Glu Met Pro Phe Asp Pro Gln
185 190 195

Asp Thr His Gln Ser Arg Phe Tyr Leu Ser Lys Lys Lys Trp Val Met 200 205 210 215

Val Pro Met Met Ser Leu His His Leu Thr Ile Pro Tyr Phe Arg Asp

220 225 230

Glu Glu Leu Ser Cys Thr Val Val Glu Leu Lys Tyr Thr Gly Asn Ala
235 240 245

Ser Ala Leu Phe Ile Leu Pro Asp Gln Asp Lys Met Glu Glu Val Glu

WO 2005/052154

PCT/JP2004/017995

94/158

250 255 260

Ala Met Leu Leu Pro Glu Thr Leu Lys Arg Trp Arg Asp Ser Leu Glu 265 270 275

Phe Arg Glu Ile Gly Glu Leu Tyr Leu Pro Lys Phe Ser Ile Ser Arg
280 285 . 290 295

Asp Tyr Asn Leu Asn Asp IIe Leu Leu Gln Leu Gly IIe Glu Glu Ala
300 305 310

Phe Thr Ser Lys Ala Asp Leu Ser Gly Ile Thr Gly Ala Arg Asn Leu
315 320 325

Ala Val Ser Gln Val Val His Lys Val Val Ser Asp Val Phe Glu Glu
330 335 340

95/158

Gly Thr Glu Ala Ser Ala Ala Thr Ala Val Lys Ile Thr Leu Leu Ser 345 350 355

Ala Leu Val Glu Thr Arg Thr Ile Val Arg Phe Asn Arg Pro Phe Leu 360 365 370 375

Met Ile Ile Val Pro Thr Asp Thr Gln Asn Ile Phe Phe Met Ser Lys

380 385 390

Val Thr Asn Pro Ser Lys Pro Arg Ala Cys Ile Lys Gln Trp Gly Ser 395 400 405

G1n

96/158

<210>	17

<211> 2008

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (222)..(857)

<400> 17

tgggacactg ctcagggaag agcctgctac ggtggactgt gagactcagt gcactgtcct 60

cctcccagcg accccacgct ggacccctg ccggaccctc cacccttcgg cccccaagct 120

teccagggge tteetttgga etggaetgte eetgeteate catteteetg eeaceeceag 180

acctcctcag ctccaggttg ccacctcctc tcgccagagt g atg agg tcc cgg ctt 236

Met Arg Ser Arg Leu

1 5

ctø	ctc	tcc	øt.ø	gcc	cat	ctg	ССС	aca	att	CPP	gag	acc	acg	gag	gag	284
005	000		8.8	800	040		000	uou	400	~66	8-6		6	0-0	5-5	
Leu	Leu	Ser	Val	Ala	His	Leu	Pro	Thr	Ile	Arg	Glu	Thr	Thr	Glu	Glu	
				10					15					20		
	-															
atg	ctg	ctt	ggg	ggt	cct	gga	cag	gag	ccc	cca	ccc	tct	cct	agc	ctg	332
Met	Leu	Leu	Gly	Gly	Pro	Gly	Gln	G1u	Pro	Pro	Pro	Ser	Pro	Ser	Leu	
			25					30					35			
gat	gac	tac	gţg	agg	tct	ata	tct	cga	ctg	gca	cag	ccc	acc	tct	gtg	380
Asp	Asp	Tyr	Val	Arg	Ser	Ile	Ser	Arg	Leu	Ala	Gln	Pro	Thr	Ser	Val	
		40					4 5					50				
		40					40					00				
ctg	gac	aag	gcc	acg	gcc	cag	ggc	caa	ccc	agg	cca	ccc	cac	agg	cca	428
Leu	Asp	Lvs	Ala	Thr	Ala	Gln	Gly	Gln	Pro	Arg	Pro	Pro	His	Arg	Pro	
	_	_,_					•			J						
	55					60					65					
gcc	cag	gcc	tgc	cgg	aag	ggc	cgc	cct	gct	gtg	tcc	ctg	cga	gac	atc	476
						•										
Ala	GIn	Ala	Cys	Arg	Lys	Gly	Arg	Pro	Ala	Val	Ser	Leu	Arg	Asp	TTE	
70				٠	75					80					85	

acc	gca	cgt	ttc	agt	ggc	cag	cag	ccc	aca	ctg	ccc	atg	gct	gat	act	524
Thr	Ala	Arg	Phe	Ser	Gly	Gln	Gln	Pro	Thr	Leu	Pro	Met	Ala	Asp	Thr	
				90					95					100		
gtg	gac	ccc	ctg	gac	tgg	ctt	ttt	ggg	gag	tcc	cag	gaa	aag	cag	cca	572
Val	Asp	Pro	Leu	Asp	Trp	Leu	Phe	Gly	Glu	Ser	Gln	Glu	Lys	Gln	Pro	
		•	105					110					115			
agc	cag	agg	gac	ctg	cca	agg	agg	act	ggc	ccc	tct	gct	ggc	ctc	tgg	620
Ser	Gln	Arg	Asp	Leu	Pro	Arg	Arg	Thr	G1y	Pro	Ser	Ala	Gly	Leu	Trp	
		120					125					130				
ggt.	cca	cat	aga	cag	atg	gac	agc	agc	ลลฮ	ccc	acg	ggg	gcc	cicc	aga	668
						Asp										000
	135	1115	111.6	0111	1410 0	140		061	БуЗ	110		GIŞ	MIG	110	ше	
	100		٠			140					145	•				
																510
						agg										716
Gly	Arg	Leu	Cys	Glu		Arg	Met	Pro	Gly	His	Ser	Leu	Ala	Arg	Pro	
150					155					160					165	
					•											
ccg	cag	gat	ggg	cag	cag	agc	tct	gac	cta	aga	agc	tgg	act	ttt	ggg	764

99/158

Pro	Gln	Asp	G1y	Gln	G1n	Ser	Ser	Asp	Leu	Arg	Ser	Trp	Thr	Phe	Gly
				170					175					180	

cag	tct	gcc	caa	gcc	atg	gcc	tcc	cgc	cac	cgc	ccc	cgc	ccc	agc	agt	812
Gln	Ser	Ala	Gln	Ala	Met	Ala	Ser	Arg	His	Arg	Pro	Arg	Pro	Ser	Ser	
			185					190					195			

gtc	ctc	aga	aca	ctc	tac	tcg	cac	ctc	ccg	gtg	atc	cat	gaa	ctc		857
Val	Leu	Arg	Thr	Leu	Tyr	Ser	His	Leu	Pro	Val	Ile	His	Glu	Leu		
		200					205					210				

917	tcctctcgtc	ggtctgcatc	gagcatgctg	cttctgtaga	ccagtaaagg	tgacccctcc
977	ttctgcggag	ggaaatgctt	tctctgaaag	ccctggcagg	tggtcactgc	tcctccatgg
1037	acagectgtt	gaatatgata	gaccccctct	cagtgagacc	gggcagttca	gcccctgctt
1097	atcaccttga	ttgctggctg	gctctgaccc	aatcccettc	agatgttacc	tcacatgagg

gcaacttact taacatctgt gttcctcagt ttctcatggg taatataggg ataattactg 1157

gcacctgcct	cccaggccat	tctgacgtgt	aaccgcatat	aggagcccac	tggctgagta	1217
gctaccatca	tegetggtgg	ggaaactggt	ggtaggggtg	tgagggtagt	gggggtgtca	1277
gcccccagg	tgtttcagaa	caaggcctcg	ggcactccca	agtctgcctc	ttggctccca	1337
ccctcaaagc	ccatgttctg	· cgaggcccaa	gagaacacat	ggagtcttag	caaatgcact	1397
aatgtattcc	gggggactgt	cacctggcac	cactggggca	ctctgctggc	tacaactcat	1457
acgtcctgtg	gtggcattgg	gagagttccc	ccatgatgag	ggccaagata	gaatctgtac	1517
cactcagtgc	taccatcccc	acccctacac	cacttccaca	caggggcctc	atggcatggt	1577
cagggtccca	gctgtaggtg	agagcagggc	actgtccagc	tgtccactgg	ggaagtcaag	1637
atgtcctaag	gcccaggtca	gggcatctgg	agtctgaagg	accctagttc	ctagaggcat	1697
ctġgcagcaa	gaaggtgagg	catcagggaa	cgggaatcag	gctgggactg	atcagaggtg	1 757
aagggacaga	gagaggagag	gaggaagatt	gagctggggg	caacagccaa	gctcacctgg	1817

101/158

gcaggtctct	gccacctcct	tgctctgtga	gctgtcagtc	taggttattc	tcttttttg	1877
tggctatttt	taattgcttt	ggatttgtta	aatgttttct	gtcttctgtt	aagtgtgttt	1937
tctctggaga	tagaatgtaa	accatattaa	aaggaaaaag	tttcagacaa	gcaaaaaaaa	1997
aaaaaaaaaa	a					2008

<210> 18

<211> 212

<212> PRT

<213> Homo sapiens

<**400>** 18

Met Arg Ser Arg Leu Leu Leu Ser Val Ala His Leu Pro Thr Ile Arg

1 5 10 15

102/158

Glu Thr Thr Glu Glu Met Leu Leu Gly Gly Pro Gly Gln Glu Pro Pro

20 25 30

Pro Ser Pro Ser Leu Asp Asp Tyr Val Arg Ser Ile Ser Arg Leu Ala 35 40 45

Gln Pro Thr Ser Val Leu Asp Lys Ala Thr Ala Gln Gly Gln Pro Arg
50 55 60

Pro Pro His Arg Pro Ala Gln Ala Cys Arg Lys Gly Arg Pro Ala Val
65 70 75 80

Ser Leu Arg Asp Ile Thr Ala Arg Phe Ser Gly Gln Gln Pro Thr Leu

85 90 95

Pro Met Ala Asp Thr Val Asp Pro Leu Asp Trp Leu Phe Gly Glu Ser

103/158

100 105 110

Gln Glu Lys Gln Pro Ser Gln Arg Asp Leu Pro Arg Arg Thr Gly Pro
115 120 125

Ser Ala Gly Leu Trp Gly Pro His Arg Gln Met Asp Ser Ser Lys Pro
130 135 . 140

Ser Leu Ala Arg Pro Pro Gln Asp Gly Gln Gln Ser Ser Asp Leu Arg

165 170 175

Ser Trp Thr Phe Gly Gln Ser Ala Gln Ala Met Ala Ser Arg His Arg

180 185 190

104/158

Pro Arg Pro Ser Ser Val Leu Arg Thr Leu Tyr Ser His Leu Pro Val

195

200

205

Ile His Glu Leu

210

<210> 19

<211> 1649

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (367).. (1068)

<400> 19

agcgagcggg	gccagcgctg	cagaaggcgg	cggctggctc	tccgggacgg	tcacatcccg	60
ctgcaggggc	gggcggaggc	cgccgcactg	cctcccgcac	cggggaccca	ggccagcgtc	120
cgggcaacgc	ccctgctcc	cggacagact	ccgtggcccg	ctcgagccct	gggggctccg	180
cagacccgcg	cccgctccgc	ccgcagctcg	gcccgcgct	gcccgcgtcg	ccgggcccgc	240
gccgggatgg	ggtaggggca	gogocacoga	gtcgggcgat	gggccgccct	ctgggcaccg	300
agcagccccc	cgaggcctga	ccaaccgcga	ggaccggcgg	aggagccccg	cctggatgtc	360
			er Ser Pro	ccc agc gga Pro Ser.Gly 10		408
ggg gac at	g gct tcg c	tg gtg ccc	ctt tcc cca	tat cta ag	c ccc acg	456
Gly Asp Me	t Ala Ser L	eu Val Pro	Leu Ser Pro	Tyr Leu Se	r Pro Thr	
15	2	0	25		. 30	
gtc ctc ct	g ctg gtc a	gc tgt gac·	ctg ggc ttc	gtg cga gc	a gac cgg	504

106/158

Val Leu Leu Leu Val Ser Cys Asp Leu Gly Phe Val Arg Ala Asp Arg

35 40 45

cct ccc tct cct gtg aat gtg acg gtc act cac ctc aga gcc aac tcg 552

Pro Pro Ser Pro Val Asn Val Thr Val Thr His Leu Arg Ala Asn Ser
50 55 60

gcc act gtg tcc tgg gac gtc cca gaa ggc aac atc gtc att ggc tac 600

Ala Thr Val Ser Trp Asp Val Pro Glu Gly Asn Ile Val Ile Gly Tyr

65 70 75

tcc att tcc cag caa cgg cag aat ggc ccc ggg cag cgt gtg att cgg 648

Ser Ile Ser Gln Gln Arg Gln Asn Gly Pro Gly Gln Arg Val Ile Arg

80 85 90

gag gtg aac acc acc cgg gcc tgt gcc ctc tgg ggc ctg gct gaa 696

Glu Val Asn Thr Thr Thr Arg Ala Cys Ala Leu Trp Gly Leu Ala Glu

95 100 105 110

gac agt gac tac aca gtg cag gtc agg agc atc ggc ctt cgg gga gag 744

Asp Ser Asp Tyr Thr Val Gln Val Arg Ser Ile Gly Leu Arg Gly Glu

107/158

115. agt ccc cca ggg ccc cgg gtg cac ttc cga act ctc aag ggt tct gac Ser Pro Pro Gly Pro Arg Val His Phe Arg Thr Leu Lys Gly Ser Asp cgg cta cct tca aac agt tca agc cca ggt gac atc aca gtg gaa ggt Arg Leu Pro Ser Asn Ser Ser Ser Pro Gly Asp Ile Thr Val Glu Gly ctg gat gga gag cgg cca ctg cag act ggg gaa gtg gtc atc att gtg Leu Asp Gly Glu Arg Pro Leu Gln Thr Gly Glu Val Val Ile Ile Val gtg gtg ttg ctc atg tgg gct gct gta att ggg ctg ttc tgc cgt cag Val Val Leu Leu Met Trp Ala Ala Val Ile Gly Leu Phe Cys Arg Gln tat gac atc atc aag gac aat gac tcc aac aac aat ccc aag gag aag Tyr Asp Ile Ile Lys Asp Asn Asp Ser Asn Asn Asn Pro Lys Glu Lys

gga aag ggg ccg ga	a cag agt cct	cag gga agg	cca gtg ggg aca	aga 1032
Gly Lys Gly Pro Gl	ı Gln Ser Pro	Gln Gly Arg	Pro Val Gly Thr	Arg
210		215	220	
				·
cag aaa aag tca cc	a tet ate aac	acc atc gac	gtt tgagtgaaga	1078
Gln Lys Lys Ser Pr	Ser Ile Asn	Thr Ile Asp	Val	
225	230			
aacacaccca gaagaga	gat gcactaaca	a ctggggatag	ggatggggtc aggg	ggagcc 1138
caagatggtg atctgcc	cga gactcccag	a gggtaatgcc	acteceacaa tete	aggeet 1198
ggtacccatc ctctttc	cac tgtgagcag	a gccagaaggt	aggtctgttc agag	tctgtg 1258
• .				
ccctggacc tggggag	tgg atatcagat	g ggatatetee	ttccattccc cggt	ccaggg 1318
gagagtcact agttgta	ccc tactccatt	a ggtcccaaat	gggggcccca tttc	acctgt 1378
•				
atcaggactc tgagcat	ccc cagetgeed	c acatettgee	tctggccctc agag	aggggt 1438

109/158

gatgctgcac tgcactactc caatgtcttc catggagcct caggtgctcc ccctctcacc 1558
tggcagcccc ttcagctgct agtgatatca cttgttggac attttccaa taaaggttct 1618
tggacaaact ggaaaaaaaa aaaaaaaaa a 1649

<210> 20

⟨211⟩ 234

<212> PRT

<213> Homo sapiens

<400> 20

Met Pro Ser Gly Cys His Ser Ser Pro Pro Ser Gly Leu Arg Gly Asp

1 5 10 15

Met Ala Ser Leu Val Pro Leu Ser Pro Tyr Leu Ser Pro Thr Val Leu

110/158

20 25 30

Leu Leu Val Ser Cys Asp Leu Gly Phe Val Arg Ala Asp Arg Pro Pro

35 40 45

Ser Pro Val Asn Val Thr Val Thr His Leu Arg Ala Asn Ser Ala Thr
50 55 60

Val Ser Trp Asp Val Pro Glu Gly Asn Ile Val Ile Gly Tyr Ser Ile
65 70 75 80

Ser Gln Gln Arg Gln Asn Gly Pro Gly Gln Arg Val Ile Arg Glu Val
85 90 95

Asn Thr Thr Thr Arg Ala Cys Ala Leu Trp Gly Leu Ala Glu Asp Ser

100 105 110

111/158

Asp Tyr Thr Val Gln Val Arg Ser Ile Gly Leu Arg Gly Glu Ser Pro
115 120 125

Pro Gly Pro Arg Val His Phe Arg Thr Leu Lys Gly Ser Asp Arg Leu
130 135 140

Pro Ser Asn Ser Ser Ser Pro Gly Asp IIe Thr Val Glu Gly Leu Asp
145 150 155 160

Gly Glu Arg Pro Leu Gln Thr Gly Glu Val Val Ile Ile Val Val Val

165 170 175

Leu Leu Met Trp Ala Ala Val Ile Gly Leu Phe Cys Arg Gln Tyr Asp

180 185 190

112/158

Ile Ile Lys Asp Asn Asp Ser Asn Asn Pro Lys Glu Lys Gly Lys

195 200 205

Gly Pro Glu Gln Ser Pro Gln Gly Arg Pro Val Gly Thr Arg Gln Lys

210 215 220

Lys Ser Pro Ser Ile Asn Thr Ile Asp Val

225 230

<210> 21

<211> 3915

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

113/158

<222> (243)..(1730)

<400> 21

gtggggtggg gtgggg	ctgg gggcttgtcg cc	ctttcagg ctccaccctt	tgcggagatt 60
ataaatagtc atgatco	ccag cgagacccag ag	atgcctgt aatggtgaga	ctttggatcc 120
ttcctgagga cgtgga	gaaa actttctgct ga	gaaggaca ttttgaaggt	tttgttggct 180
gaaaaagctg tttctg	gaat cacccctaga tc	tttcttga agacttgaat	tagattacag 240
		gct ctg ata ttt gcc Ala Leu Ile Phe Ala	
1	5	10	15
-			
gtt gct aca atc g	gc.tct ttc caa ttt	ggc tac aac act ggg	g gtc atc 335
Val Ala Thr Ile G	ly Ser Phe Gln Phe	Gly Tyr Asn Thr Gly	Val Ile
20	0	25	30
			•
aat gct cct gag as	ag atc _{ata aag gaa}	ttt atc aat aaa act	ttg acg 383
Asn Ala Pro Glu Ly			

114/158

35 40 45

gac aag gga aat gcc cca ccc tct gag gtg ctg ctc acg tct ctc tgg 431

Asp Lys Gly Asn Ala Pro Pro Ser Glu Val Leu Leu Thr Ser Leu Trp

50 55 60

tcc ttg tct gtg gcc ata ttt tcc gtc ggg ggt atg atc ggc tcc ttt 479

Ser Leu Ser Val Ala Ile Phe Ser Val Gly Gly Met Ile Gly Ser Phe

65 70 75

tcc gtc gga ctc ttc gtc aac cgc ttt ggc agg cgc aat tca atg ctg 527

Ser Val Gly Leu Phe Val Asn Arg Phe Gly Arg Arg Asn Ser Met Leu

80 85 90 95

att gtc aac ctg ttg gct gtc act ggt ggc tgc ttt atg gga ctg tgt 575

Ile Val Asn Leu Leu Ala Val Thr Gly Gly Cys Phe Met Gly Leu Cys

100 105 110

aaa gta gct aag tcg gtt gaa atg ctg atc ctg ggt cgc ttg gtt att 623

Lys Val Ala Lys Ser Val Glu Met Leu Ile Leu Gly Arg Leu Val Ile

115 120 125

ggc	ctc	ttc	tgc	gga	ctc	tgc	aca	ggt	ttt	gtg	ccc	atg	tac	att	gga	671
Gly	Leu	Phe	Cys	Gly	Leu	Cys	Thr	G1y	Phe	Val	Pro	Met	Tyr	Ile	Gly	
		130					135					140				
gag	atc	tcg	cct	act	gcc	ctg	cgg	ggt	gcc	ttt	ggc	act	ctc	aac	cag	719
Glu	Ile	Ser	Pro	Thr	Ala	Leu	Arg	Gly	Ala	Phe	Gly	Thr	Leu	Asn	Gln	
	145					150					155					
ctg	ggc	atc	gtt	gtt	gga	att	ctg	gtg	gcc	cag	atc	ttt	ggt	ctg	gaa	767
Leu	Gly	Ile	Val	Val	Gly	Ile	Leu	Val	Ala	Gln	Ile	Phe	Gly	Leu	Glu	
160					165					170					175	
ttc	atc	ctt	ggg	tct	gaa	gag	cta	tgg	ccg	ctg	cta	ctg	ggt	ttt	acc	815
Phe	Ile	Leu	Gly	Ser	Glu	Glu	Leu	Trp	Pro	Leu	Leu	Leu	Gly	Phe	Thr	
	•			180					185					190		
atc	ctt	cct	gct	atc	cta	caa	agt	gca	gcc	ctt	cca	ttt	tgc	cct	gaa	863
Ile	Leu	Pro	Ala	Ile	Leu	G1n	Ser	Ala	Ala	Leu	Pro	Phe	Cys	Pro	Glu	
			195	•				200					205			

116/158

agt	ccc	aga	ttt	ttg	ctc	att	aac	aga	aaa	gaa	gag	gag	aat	gct	aag		911
Ser	Pro	Arg	Phe	Leu	Leu	Ile	Asn	Arg	Lys	Glu	Glu	Glu	Asn	Ala	Lys		
		210					215					220					
cag	atc.	ctc	cag	cgg	ttg	tgg	ggc	acc	cag	gat	gta	tcc	caa	gac	atc		959
Gln	Ile	Leu	Gln	Arg	Leu	Trp	Gly	Thr	G1n	Asp	Val	Ser	G1n	Asp	Ile		
	225					230					235						
•																	
cag	gag	atg	aaa	gat	gag	agt	gca	agg	atg	tca	caa	gaa	aag	caa	gtc	1	007
G1n	Glu	Met	Lys	Asp	G1u	Ser	Ala	Arg	Met	Ser	G1n	Glu	Lys	Gln	Val	•	
240					245					250					255		
												•		•			
acc	gtg	cta	gag	ctc	ttt	aga	gtg	tcc	agc	tac	cga	cag	ccc	atc	atc	1	.055
Thr	Val	Leu	G1u	Leu	Phe	Arg	Val	Ser	Ser	Tyr	Arg	G1n	Pro	Ile	Ile		
				260			•		265					270			
	ė																
att	tcc	att	gtg	ctc	cag	ctc	tct	cag	cag	ctc	tct	ggg	atc	aat	gct	1	.103
Ile	Ser	Ile	Val	Leu	G1n	Leu	Ser	Gln	G1n	Leu	Ser	G1y	Ile	Asn	Ala		
			275					280					285				

gtg ttc tat tac tca aca gga atc ttc aag gat gca ggt gtt caa gag 1151

117/158

Val Phe Tyr Tyr Ser Thr Gly Ile Phe Lys Asp Ala Gly Val Gln Glu
290 295 300

ccc atc tat gcc acc atc ggc gcg ggt gtg gtt aat act atc ttc act

1199
Pro Ile Tyr Ala Thr Ile Gly Ala Gly Val Val Asn Thr Ile Phe Thr

305
310
315

gta gtt tct cta ttt ctg gtg gaa agg gca gga aga agg act ctg cat

1247

Val Val Ser Leu Phe Leu Val Glu Arg Ala Gly Arg Arg Thr Leu His

320

325

330

335

atg ata ggc ctt gga ggg atg gct ttt tgt tcc acg ctc atg act gtt 1295

Met Ile Gly Leu Gly Gly Met Ala Phe Cys Ser Thr Leu Met Thr Val

340 345 350

tct ttg tta tta aag gat aac tat aat ggg atg agc ttt gtc tgt att

1343

Ser Leu Leu Leu Lys Asp Asn Tyr Asn Gly Met Ser Phe Val Cys Ile

355

360

365

ggg gct atc ttg gtc ttt gta gcc ttc ttt gaa att gga cca ggc ccc 1391 Gly Ala Ile Leu Val Phe Val Ala Phe Phe Glu Ile Gly Pro Gly Pro

118/158

370 375 380

att ccc tgg ttt att gtg gcc gaa ctc ttc agc cag ggc ccc cgc cca 1439

Ile Pro Trp Phe Ile Val Ala Glu Leu Phe Ser Gln Gly Pro Arg Pro

385 390 395

gct gcg atg gca gtg gcc ggc tgc tcc aac tgg acc tcc aac ttc cta 1487 Ala Ala Met Ala Val Ala Gly Cys Ser Asn Trp Thr Ser Asn Phe Leu 400 405 410 415

gtc gga ttg ctc ttc ccc tcc gct gct cac tat tta gga gcc tac gtt

1535

Val Gly Leu Leu Phe Pro Ser Ala Ala His Tyr Leu Gly Ala Tyr Val

420

425

430

ttt att atc ttc acc ggc ttc ctc att acc ttc ttg gct ttt acc ttc 1583

Phe Ile Ile Phe Thr Gly Phe Leu Ile Thr Phe Leu Ala Phe Thr Phe

435

440

445

ttc aaa gtc cct gag acc cgt ggc agg act ttt gag gat atc aca cgg

1631

Phe Lys Val Pro Glu Thr Arg Gly Arg Thr Phe Glu Asp Ile Thr Arg

450

455

460

gcc ttt gaa ggg cag gca cac ggt gca gat aga tct gga aag gac ggc	1679
Ala Phe Glu Gly Gln Ala His Gly Ala Asp Arg Ser Gly Lys Asp Gly	
465 470 475	
gtc atg gag atg aac agc atc gag cct gct aag gag acc acc acc aat	1727
Val Met Glu Met Asn Ser Ile Glu Pro Ala Lys Glu Thr Thr Asn	
480 485 490 495	
gtc taagtcgtgc ctccttccac ctccctcccg gcatgggaaa gccacctctc	1780
Val	
cctcaacaag ggagagacct catcaggatg aacccaggac gcttctgaat gctgctact	t 1840
aatteettte teateeeaeg eacteeatga geaeceeaag getgeggttt gttggatet	t 1900
·	
caatggcttt ttaaatttta tttcctggac atcctcttct gcttaggaga gaccgagtg	a 1960
	٠
acctaccttc atttcaggag ggattggccg cttggcacat gacaactttg ccagctttt	c 2020

ctcccttgg	g ttctgatatt	gccgcactag	gggatatagg	agaggaaaag	taaggtgcag	2080
ttcccccaa	c ctcagactta	ccaggaagca	gatacatatg	agtgtggaag	ccggagggtg	2140
tttatgtaa	g agcaccttcc	tcacttccat	acagetetae	gtggcaaatt	aacttgagtt	2200
ttatttatt	t tatcctctgg	tttaattaca	taatttttt	ttttttactt	taagtttcag	2260
gatacatgt	g ccgaatgtgc	aggtttgtta	cataggtata	tatatgccat	gatggaaata	2320
tttattttt	t taagogtaat	tttgccaaat	aataaaaaca	gaaggaaatt 	gagattagag	2380
ggaggtgtt	t aaagagaggt	tatagagtag	aagatttgat	gctggagagg	ttaaggtgca	2440
ataagaatt	t agggagaaat	gttgttcatt	attggagggt	aaatgatgtg	gtgcctgagg	2500
tctgtacgt	t acctettaac	aatttctgtc	cttcagatgg	aaactcttta	acttctcgta	2560
aaagtcata	t acctatataa	taaagctact	gatttccttg	gagctttttt	ctttaagata	2620
atagtttac	a tgtagtagta	` cttgaaatct	aggattatta	actaatatgg	gcattgtagt	2680

taatgatggt	tgatgggttc	taattttgga	tggagtccag	ggaagagaaa	gtgatttcta	2740
gaaagcctgt	tcccctcact	ggatgaaata	actccttctt	gtagtagtct	cattactttt	2800
gaagtaatcc	cgccacctat	ctcgtgggag	agccatccaa	ataagaaacc	taaaataatt	2860
ggttcttggt	agagattcat	tatttttcca	ctttgttctt	taggagattt	taggtgttga	2920
ttttctgttg	tattttaact	cataccttta	aaggaattcc	ccaaagaatg	tttatagcaa	2980
acttggaatt	tgtaacctca	gctctgggag	aggattttt	tctgagcgat	tattatctaa	3040
agtgtgttgt	tgctttaggc	tcacggcacg	cttgcgtatg	tetgttacca	tgtcactgtg	3100
gtcctatgcc	gaatgccctc	aggggacttg	aatctttcca	ataaaccagg	tttagacagt	3160
atgagtcaat	gtgcagtgta	gcccacactt	gagaggatga	atgtatgtgc	actgtcactt	3220
tgctctgggt	ggaagtaċgt	tattgttgac	ttattttctc	tgtgtttgtt	cctacagccc	3280

ctttttcata	tgttgctcag	tetecettte	ccttcttggt	gcttacacat	ctcagaccct	3340
ttagccaaac	ccttgtcagt	gacagtattt	tggttcttag	ttctcactgt	tccctctgct	3400
cctggagcct	ttgaataaaa	atgcacgtag	ctgaggccgg	atgcggtggc	tcacgcctgt	3460
aatcccagca	ctttgggagg	cctaggcggg	cggtcagggg	ttcgagacca	gtctggccaa	3520
catcgtgaaa	ccctgtctct	actaaaaatg	caaaaattag	ccgggcgtgg	tggcgggcgc	3580
ctgtaatccc	agctacttgg	gaagctgagg	cgggagaatc	atgtgaaccc	gggacgcagg	3640
ggttgcagtg	agcggagatc	gcatcattgc	actctagcct	gggccacagg	gcgagactcc	3700
gtctcaaaaa	aaaaaaatg	cacatagcta	tcgagtgtgc	tttagcttga	aaaggtgacc	3760
ttgcaacttc	atgtcaactt	tctggctcct	caaacagtag	gttggcagta	aggcagggtc	3820
ccatttctca	ctgagaagat	tgtgaatatt	tccatatgga	ttttctattg	ttactctggt	3880
tctttgtttt	aaaataaaaa	ttctgaatgt	acacg			3915

123/158

<210> 22

<211> 496

<212> PRT

<213> Homo sapiens

<400> 22

Met Gly Thr Gln Lys Val Thr Pro Ala Leu Ile Phe Ala Ile Thr Val

1 5 10 . 15

Ala Thr Ile Gly Ser Phe Gl
n Phe Gly Tyr As
n Thr Gly Val Ile As
n $\,$

20 25 30

Ala Pro Glu Lys Ile Ile Lys Glu Phe Ile Asn Lys Thr Leu Thr Asp

35 40 45

124/158

Lys Gly Asn Ala Pro Pro Ser Glu Val Leu Leu Thr Ser Leu Trp Ser

50 55 60

Leu Ser Val Ala Ile Phe Ser Val Gly Gly Met Ile Gly Ser Phe Ser

65 70 75 80

Val Gly Leu Phe Val Asn Arg Phe Gly Arg Arg Asn Ser Met Leu Ile

85 90 95

Val Asn Leu Leu Ala Val Thr Gly Gly Cys Phe Met Gly Leu Cys Lys

100 105 , 110

Val Ala Lys Ser Val Glu Met Leu Ile Leu Gly Arg Leu Val Ile Gly

115 120 125

Leu Phe Cys Gly Leu Cys Thr Gly Phe Val Pro Met Tyr Ile Gly Glu

125/158

130 135 140

Ile Ser Pro Thr Ala Leu Arg Gly Ala Phe Gly Thr Leu Asn Gln Leu
145 . 150 155 160

Gly Ile Val Val Gly Ile Leu Val Ala Gln Ile Phe Gly Leu Glu Phe 165 170 175

Ile Leu Gly Ser Glu Glu Leu Trp Pro Leu Leu Gly Phe Thr Ile

180 185 190

Leu Pro Ala Ile Leu Gln Ser Ala Ala Leu Pro Phe Cys Pro Glu Ser 195 200 205

Pro Arg Phe Leu Leu Ile Asn Arg Lys Glu Glu Glu Asn Ala Lys Gln
210 215 220

126/158

Ile Leu Gln Arg Leu Trp Gly Thr Gln Asp Val Ser Gln Asp Ile Gln
225 230 235 240

Glu Met Lys Asp Glu Ser Ala Arg Met Ser Gln Glu Lys Gln Val Thr
245
250
255

Val Leu Glu Leu Phe Arg Val Ser Ser Tyr Arg Gln Pro Ile Ile Ile
260 265 270

Ser Ile Val Leu Gln Leu Ser Gln Gln Leu Ser Gly Ile Asn Ala Val 275 280 285

Phe Tyr Tyr Ser Thr Gly Ile Phe Lys Asp Ala Gly Val Gln Glu Pro
290 295 300

. 127/158

Ile Tyr Ala Thr Ile Gly Ala Gly Val Val Asn Thr Ile Phe Thr Val
305 310 315 320

Val Ser Leu Phe Leu Val Glu Arg Ala Gly Arg Arg Thr Leu His Met
325 330 335

Ile Gly Leu Gly Gly Met Ala Phe Cys Ser Thr Leu Met Thr Val Ser

340 345 350

Leu Leu Lys Asp Asn Tyr Asn Gly Met Ser Phe Val Cys Ile Gly
355 360 365

Ala Ile Leu Val Phe Val Ala Phe Phe Glu Ile Gly Pro Gly Pro Ile
370 375 380

128/158

Pro Trp Phe Ile Val Ala Glu Leu Phe Ser Gln Gly Pro Arg Pro Ala 385 390 395 400

Ala Met Ala Val Ala Gly Cys Ser Asn Trp Thr Ser Asn Phe Leu Val
405 410 415

Gly Leu Leu Phe Pro Ser Ala Ala His Tyr Leu Gly Ala Tyr Val Phe
420 425 430

Ile Ile Phe Thr Gly Phe Leu Ile Thr Phe Leu Ala Phe Thr Phe Phe
435
440
445

Lys Val Pro Glu Thr Arg Gly Arg Thr Phe Glu Asp Ile Thr Arg Ala
450 455 460

Phe Glu Gly Gln Ala His Gly Ala Asp Arg Ser Gly Lys Asp Gly Val

129/158

465 470 475 480

Met Glu Met Asn Ser Ile Glu Pro Ala Lys Glu Thr Thr Thr Asn Val
485 490 495

⟨210⟩ 23

<211> 1085

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> (76).. (678)

<400> 23

atcetgtctg tecgaaceca gacacaagte tteacteett eetgegagee etgaggaage 60

cttctttccc cagac atg gcc aac aag ggt cct tcc tat ggc atg agc cgc 111

130/158

Met Ala Asn Lys Gly Pro Ser Tyr Gly Met Ser Arg

1 5 10

gaa gtg cag tcc aaa atc gag aag aag tat gac gag gag ctg gag gag 159

Glu Val Gln Ser Lys Ile Glu Lys Lys Tyr Asp Glu Glu Leu Glu Glu

15 20 25

cgg ctg gtg gag tgg atc ata gtg cag tgt ggc cct gat gtg ggc cgc 207

Arg Leu Val Glu Trp Ile Ile Val Gln Cys Gly Pro Asp Val Gly Arg

30 35 40

cca gac cgt ggg ccc ttg ggc ttc cag gtg tgg ctg aag aat ggc gtg 255

Pro Asp Arg Gly Pro Leu Gly Phe Gln Val Trp Leu Lys Asn Gly Val

50 55 60

att ctg agc aag ctg gtg aac agc ctg tac cct gat ggc tcc aag ccg 303

Ile Leu Ser Lys Leu Val Asn Ser Leu Tyr Pro Asp Gly Ser Lys Pro

65 70 75

gtg aag gtg ccc gag aac cca ccc tcc atg gtc ttc aag cag atg gag 351
Val Lys Val Pro Glu Asn Pro Pro Ser Met Val Phe Lys Gln Met Glu

131/158

80 85 90

cag gtg gct cag ttc ctg aag gcg gct gag gac tct ggg gtc atc aag 399
Gln Val Ala Gln Phe Leu Lys Ala Ala Glu Asp Ser Gly Val Ile Lys
95 100 105

act gac atg ttc cag act gtt gac ctc ttt gaa ggc aaa gac atg gca

447

Thr Asp Met Phe Gln Thr Val Asp Leu Phe Glu Gly Lys Asp Met Ala

110

115

120

gca gtg cag agg acc ctg atg gct ttg ggc agc ttg gca gtg acc aag 495
Ala Val Gln Arg Thr Leu Met Ala Leu Gly Ser Leu Ala Val Thr Lys
130 135 140

aat gat ggg cac tac cgt gga gat ccc aac tgg ttt atg aag aaa gcg 543
Asn Asp Gly His Tyr Arg Gly Asp Pro Asn Trp Phe Met Lys Lys Ala
145 150 155

cag gag cat aag agg gaa ttc aca gag agc cag ctg cag gag gga aag 591

Gln Glu His Lys Arg Glu Phe Thr Glu Ser Gln Leu Gln Glu Gly Lys

160 165 170

132/158

cat gtc	att	ggc	ctt	cag	atg	ggc	agc	aac	aga	ggg	gcc	tcc	cag	gcc		639	
His Val	Ile	Gly	Leu	Gln	Met	Gly	Ser	Äsn	Arg	G1y	Ala	Ser	G1n	Ala			
	175					180					185						
ggc.atg	aca	ggc	tac	gga	cga	cct	cgg	cag	atc	atc	agt	tag	agcg	gag		688	
Gly Met	Thr	Gly	Tyr	Gly	Arg	Pro	Arg	G1n	Ile	Ile	Ser						
190					195					200							
agggctag	gcc (ctgag	gcccg	gg cg	ctco	ccca	a gci	tcct1	tggc	tgca	agcca	atc	ccgc	ttagc	c	748	
tgcctcad	ccc a	acaco	cgtg	gt gg	gtaco	ettea	a gco	cctgg	gcca	agct	tttga	agg	ctctį	gtcac	t	808	
gagcaate	ggt a	aactg	gcacc	t gg	gcag	gctco	t to	cctgt	tgcc	ccca	agcct	tca	gccca	aactt	c	868	
															•		
ttacccga	aaa g	gcato	cacte	gc c1	ttggc	ccct	t cc	ctcc	egge	ggc	ccca	atc	acct	ctact	g	928	
tctcctc	cct (gggct	taago				ggg	gctgg	ggg	tago	ctgg	gat	gtgg	gcgaa	g	988	
٠				•		•										•	
tccactgt	tcc 1	tcctt	.ggcg	g ca	aaag	gccca	ı ttş	gaaga	aaga	acca	agcco	ag	cctg	cccc.	t 1	048	

133/158

atcttgtacc tggaatattt ttggggttgg aactctc

1085

<210> 24

⟨211⟩ 201

<212> PRT

<213> Homo sapiens

<400> 24

Met Ala Asn Lys Gly Pro Ser Tyr Gly Met Ser Arg Glu Val Gln Ser

1 5 10 15

Lys Ile Glu Lys Lys Tyr Asp Glu Glu Leu Glu Glu Arg Leu Val Glu

20 25 30

Trp Ile Ile Val Gln Cys Gly Pro Asp Val Gly Arg Pro Asp Arg Gly

35 40 45

134/158

Pro Leu Gly Phe Gln Val Trp Leu Lys Asn Gly Val Ile Leu Ser Lys

Leu Val Asn Ser Leu Tyr Pro Asp Gly Ser Lys Pro Val Lys Val Pro

Glu Asn Pro Pro Ser Met Val Phe Lys Gln Met Glu Gln Val Ala Gln

Phe Leu Lys Ala Ala Glu Asp Ser Gly Val Ile Lys Thr Asp Met Phe · 105

Gln Thr Val Asp Leu Phe Glu Gly Lys Asp Met Ala Ala Val Gln Arg

135/158

Thr Leu Met Ala Leu Gly Ser Leu Ala Val Thr Lys Asn Asp Gly His

130 135 140

Tyr Arg Gly Asp Pro Asn Trp Phe Met Lys Lys Ala Gln Glu His Lys

145 150 155 160

Arg Glu Phe Thr Glu Ser Gln Leu Gln Glu Gly Lys His Val Ile Gly

165 170 175

Leu Gln Met Gly Ser Asn Arg Gly Ala Ser Gln Ala Gly Met Thr Gly

180 185 .190

Tyr Gly Arg Pro Arg Gln Ile Ile Ser

195 200

<210> 25

136/158

⟨211⟩ 30

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying kiaa1001 gene transcript.

<400> 25

ggaacatctc tttgaattgt atttcttgta

30

<210> 26

<211> 22

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying kiaa1001 gene transcript.

137/158

<400> 26

agccacagcc aaaaaagact tt

22

<210> 27

⟨211⟩ 32

<212> DNA

⟨213⟩ Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of kiaa1001 gene transcript.

<400> 27

ttacatactt agagagagac tcttttagcc ag

32

⟨210⟩ 28

<211> 28

<212> DNA

<213> Artificial

138/158

<220>

<223> Oligonucleotide designed to act as primer for amplifying asahl gene transcript.

<400> 28

accctaagga agttgctaac ttaaaaaa

28

<210> 29

<211> 29

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying asahl gene transcript.

<400> 29

tccacaagtc tttgacttgt ttatttact

139/158

<210> 30

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of asahl gene transcript.

<400> 30

ctgcatccca cgttctgtta att

23

<210> 31

<211> 22

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying mgc4171

140/158

gene transcript.

<400> 31

caggtggtct tttggtgcct ta

22

<210> 32

⟨211⟩ 18

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying mgc4171 gene transcript.

<400> 32

agtggctccc acgctgaa

18

<210> 33

<211> 24

141/158

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of mgc4171 gene transcript.

<400> 33

tgaagagtcg gattttgaag cagc

24

<210> 34

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying lss gene transcript.

<400> 34

142/158

gtccggtgtc tacttgagaa acag

24

⟨210⟩ 35

⟨211⟩ 21

<212> DNA

<213≻ Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying lss
gene transcript.

<400> 35

agaccccagc aatgttttcc t

21

<210> 36

<211> 18

<212> DNA

<213> Artificial

143/158

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting
amplification of lss gene transcript.

<400> 36

cccaatggcg actggccg

18

<210> 37

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying nr0b2
gene transcript.

<400> 37

cagcacttgg ctccttagga a

21

144/158

<210> 38

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying nr0b2
gene transcript.

<400> 38

actgtgtcca aaccaaggaa gtc

23

<210> 39

.<211> 23

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of nrOb2 gene transcript.

145/158

<400> 39

agctetteae teagceaeae eec

23

<210> 40

<211> 22

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying fabpl gene transcript.

<400> 40

gagtttctcc ggcaagtacc aa

22

<210> 41

<211> 20

<212> DNA

146/158

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying fabpl gene transcript.

<400> 41

cagaccgatt gccttcatga

20

<210> 42

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of fabpl gene transcript.

<400> 42

147/158

⟨210⟩ 43

⟨211⟩ 22

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying hpn
gene transcript.

<400> 43

gaaaccagat caagcccaag at

22

<210> 44

⟨211⟩ 18

<212> DNA

⟨213⟩ Artificial

<220>

148/158

(223) Oligonucleotide designed to act as primer for amplifying hpn gene transcript.

<400> 44

ccctggcagg catcaatg

18

<210> 45

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of hpn gene transcript.

<400> 45

ttctgtgctg gctaccccga

20

<210> 46

WO 2005/052154

149/158

⟨211⟩ 21

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying serpina3 gene transcript.

<400> 46

gaggagggca cagaagcatc t

21

<210> 47

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying serpina3 gene transcript.

150/158

<400> 47

ccttgtctcc actaatgcag aaag

24

<210> 48

<211> 24

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of serpina3 gene transcript.

<400> 48

tgccacagca gtcaaaatca ccct

24

<210> 49

<211> 20

<212> DNA

<213> Artificial

151/158

<220>

<223> Oligonucleotide designed to act as primer for amplifying depp gene transcript.

<400> 49

tgtggtggca ttgggagagt

20

<210> 50

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying depp gene transcript.

<400> 50

tggtagcact gagtggtaca gattc

25

152/158

⟨210⟩ 51

⟨211⟩ 22

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of depp gene transcript.

⟨400⟩ 51

ccccatgat gagggccaag at

22

⟨210⟩ 52

<211> 22

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying flj22362

153/158

gene transcript.

<400> 52

ggtaatgcca ctcccacaat ct

22

<210> 53

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying flj22362 gene transcript.

<400> 53

ccttctggct ctgctcacag t

21

<210> 54

<211> 23.

154/158

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting
amplification of flj22362 gene transcript.

<400> 54

aggectggta cccatectet ttc

23

<210> 55

<211> 21

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying slc2a3
gene transcript.

<400> 55

155/158

gcttgaaaag gtgaccttgc a

21

<210> 56

<211> 23

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying slc2a3
gene transcript.

<400> 56

tgccttactg ccaacctact gtt

23

<210> 57

⟨211⟩ 23

<212> DNA

<213> Artificial

156/158

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting
amplification of slc2a3 gene transcript.

<400> 57

tcatgtcaac tttctggctc ctc

23

<210> 58

<211> 25

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying tagln gene transcript.

<400> 58

gagcataaga gggaattcac agaga

25

157/158

<210> 59

<211> 20

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as primer for amplifying tagln gene transcript.

<400> 59

ctgttgctgc ccatctgaag

20

<210> 60

<211> 27

<212> DNA

<213> Artificial

<220>

<223> Oligonucleotide designed to act as TaqMan probe for detecting amplification of tagln gene transcript.

158/158

<**400>** 60

agctgcagga gggaaagcat gtcattg

27

A. CLASSIFIC Int.Cl ⁷	CATION OF SUBJECT MATTER C12N15/09, C12Q1/68, 1/02, G0	1N33/53, 33/50, 33/15	
According to Int	ernational Patent Classification (IPC) or to both national	classification and IPC	
B. FIELDS SE	ARCHED		
Minimum docun	nentation searched (classification system followed by cla C12N15/00-90, C12Q1/00-70, G0	1N33/53, 33/50, 33/15	
	searched other than minimum documentation to the exter		
JICST :	pase consulted during the international search (name of d FILE (JOIS), EUROPAT (QUESTEL), M rot/PIR/GeneSeq, Genbank/EMBL/D	EDLINE/BIOSIS/WPIDS(STN	rms used)
C. DOCUME	NTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
A	C. GERBAUX et al., Hyperactiv B and other lysosomal enzymes exposed to azithromycin, a di antibiotic with exceptional t 1996, FEBS Letters, 394, p.30	in fibroblasts cationic macrolide issue accumulation,	1-11
T	H.SAWADA et al., A toxicogeno drug-induced phospholipidosis induction mechanism and estab in vitro screening system, 20 83(2), p.282-92.	: analysis of its lishment of a novel	1-11
× Further do	ocuments are listed in the continuation of Box C.	See patent family annex.	
"A" document of to be of par "E" earlier appling filing date "L" document of cited to est special reas "O" document of document of the actument priority date	regories of cited documents: defining the general state of the art which is not considered ticular relevance ication or patent but published on or after the international which may throw doubts on priority claim(s) or which is ablish the publication date of another citation or other con (as specified) eferring to an oral disclosure, use, exhibition or other means published prior to the international filing date but later than the e claimed al completion of the international search uary, 2005 (19.01.05)	"T" later document published after the interdate and not in conflict with the applicathe principle or theory underlying the in document of particular relevance; the considered novel or cannot be considered novel or cannot be considered to involve an inventive scombined with one or more other such being obvious to a person skilled in the document member of the same patent for the particular of mailing of the international sear 08 February, 2005	ation but cited to understand invention laimed invention cannot be lered to involve an inventive claimed invention cannot be step when the document is documents, such combination art camily
Japane	ng address of the ISA/ se Patent Office	Authorized officer	
Facsimile No.		Telephone No.	

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	H.F. Clark et al., The Secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment, 2003, ACCESSION: NM_014960, NM_022823, Genome Res., 13(10), p.2265-70	1-11
A	J.R.Churchill et al., A new gene family predicted by a novel human heart cDNA, 1995, ACCESSION: U47674, Mol.Biol.Cell, 6(Suppl), p.418a	1-11
Α	R.L. Strausberg et al., Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences, 2002, ACCESSION: NM_024307, Proc.Natl.Acad.Sci.U.S.A., 99(26), p.16899-903	1-11
A	C.K.Sung et al., Molecular cloning of cDNA encoding human lanosterol synthase, 1995, ACCESSION: D63807, Biol.Phar.Bull., 18, p.1459-61	1-11
А	K.Lai et al., Estrogen Receptor Regulates Expression of the Orphan Receptor Small Heterodimer Partner, Sep.2003, ACCESSION: NM_021969, J.Biol.Chem., 278(38), p.36418-29	1-11
А	M.M.Pelsers et al., Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility, Oct.2003, ACCESSION: NM_001443, Clin.Biochem., 36(7), p.529-35	1-11
A .	A.Tsuji et al., Hepsin a cell membrane- associated protease. Characterization, tissue distribution, and gene localization, 1991, ACCESSION: NM_002151, J.Biol.Chem., 266(25), p.16948-53	1-11
А	S.Hutchinson et al., Purification of human kallikrein 6 from biological fluids and identification of its complex with alpha (1) - antichymotrypsin, May 2003, ACCESSION: NM_001085, Clin.Chem., 49(5), p.746-51	1-11
А	S. Wiemann et al., Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs, 2001, ACCESSION: AL136653, Genome Res., 11(3), p.422-35	1-11

		101/012	2004/01/995
C (Continuation)	DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant	ant passages	Relevant to claim No.
A	T. Kayano et al., Human facilitative glucose transporters. Isolation, function characterization, and gene lacalization of cDNAs encoding an isoform (GLUT5) express in small intestine, Kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLU 1990, ACCESSION: NM_006931, J.Biol.Chem., 265(22), p.13276-82	of sed JT6),	1-11
A		n Ls nrough V:	1-11

Box No.	II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
l . —	rnational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons: Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. 🔀	Claims Nos.: parts of 2, 4, 5, 7 and 9 to 11 because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically: (See extra sheet.)
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No.	III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
The to cother on the to o of point fin fin fin fin fin fin fin fin fin fin	emational Searching Authority found multiple inventions in this international application, as follows: e genes of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 according laims 1 to 11 have no chemical structure in common but are common to each exclusively in being a gene the expression of which alters depending the occurrence of phospholipidosis. However, it is a publicly known attempt betain a gene the expression of which alters depending on the occurrence behospholipidosis, as reported in, for example, the following document. Gerbaux, et al., Hyperactivity of cathepsin B and other lysosomal enzymes fibroblasts exposed to azithromycin, a dicationic macrolide antibiotic a exceptional tissue accumulation, 1996, FEBS Letters, 394, p.307-10. The choice of the case, the inventions (continued to extra sheet) As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
2. 🔀	claims. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of
3.	any additional fee. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

International application No.

PCT/JP2004/017995

Continuation of Box No.II-2 of continuation of first sheet (2)

Claims 1, 3, 6 and 8

In these claims, it is unclear that the expression "having · sequence" means whether "consisting of · sequence" or "containing · sequence". Thus, these claims are not described in a clear manner.

Claims 4 and 7

In these claims, the expression "about" makes the scope of the invention unclear. Thus, these claims are not described in a clear manner.

Claims 2, 4, 5, 7 and 9 to 11

It is unclear what substances the "genes" the expression of which alters depending on the occurrence of phospholipidosis in the above claims are in practice. Thus, these claims are not described in a clear manner.

Although EXAMPLES and so on are discussed concerning the above "genes", it is unknown what genes other than those having base sequences represented by any of SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 and 23 correspond thereto. Thus, the inventions according to these claims are not sufficiently supported by the description nor disclosed therein in a manner sufficiently clear and complete for the inventions to be carried out by a person skilled in the art.

No search was made on the inventions which are neither sufficiently supported by the description nor disclosed in the description in a sufficiently clear and complete manner, as discussed above.

Continuation of Box No.III of continuation of first sheet(2)

relating to the above genes according to claims 1 to 11 cannot be considered as being a group of inventions so linked as to form a single general inventive concept but being 12 groups of inventions differing from each other.

	属する分野の分類(国際特許分類(IPC)) N 15/09, C12Q 1/68, 1/02, G01N 33/53, 33/50), 33/15	
B. 調査を行			
	浸小限資料(国際特許分類(IPC)) N 15/00−90, C12Q 1/00−70, G01N 33/53, 33/50), 33/15	
最小限資料以外	外の資料で調査を行った分野に含まれるもの		
JICSTファイバ	用した電子データベース(データベースの名称、 レ(JOIS), EUROPAT(QUESTEL), MEDLINE/BIOSIS/ R/GeneSeq, Genbank/EMBL/DDBJ/GeneSeq	調査に使用した用語) WPIDS(STN),	
	ると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	C. GERBAUX, et. al, Hyperactivity lysosomal enzymes in fibroblasts dicationic macrolide antibiotic walation, 1996, FEBS Letters, 394	exposed to azithromycin, a with exceptional tissue accu	1-11
T	H. SAWADA, et. al, A toxicogenomi phospholipidosis: analysis of its establishment of a novel in vitro Toxicol. Sci., 83 (2), p. 282-92.	induction mechanism and	1-11
区欄の続き	・ きにも文献が列挙されている。 	□ パテントファミリーに関する	別紙を参照。
もの 「E」国際出版 以後にな 「L」優先権 日若献(E 文 で で で で で で で で で で で で で で で で で で で	のカテゴリー 車のある文献ではなく、一般的技術水準を示す 質日前の出願または特許であるが、国際出願日 公表されたもの 主張に疑義を提起する文献又は他の文献の発行 くは他の特別な理由を確立するために引用する 理由を付す) よる開示、使用、展示等に言及する文献 質日前で、かつ優先権の主張の基礎となる出願	の日の後に公表された文献 「T」国際出願日又は優先日後に公司 出願と矛盾するものではなく、 の理解のために引用するもの 「X」特に関連のある文献であって、 の新規性又は進歩性がないと 「Y」特に関連のある文献であって、 上の文献との、当業者にとって よって進歩性がないと考えられ 「&」同一パテントファミリー文献	発明の原理又は理論 当該文献のみで発明 きえられるもの 当該文献と他の1以 て自明である組合せに
国際調査を完了	了した日 19. 01. 2005	国際調査報告の発送日 08.02	2.2005
日本国	の名称及びあて先 国特許庁 (ISA/JP) 郵便番号100-8915	特許庁審査官(権限のある職員) 阪野 誠司	4N 9286
果 从	部千代田区霞が関三丁目 4番 3 号	電話番号 03-3581-1103	L 内線 3448

C (続き) .	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A .	H. F. Clark, et. al, The secreted protein discovery initiative (SPDI), a large-scale effort to identify novel human secreted and transmembrane proteins: a bioinformatics assessment, 2003, ACCESSION: NM_014960, NM_022823, Genome Res., 13 (10), p.2265-70	1-11
A	J. R. Churchill, et. al, A new gene family predicted by a novel human heart cDNA, 1995, ACCESSION: U47674, Mol. Biol. Cell, 6 (Suppl), p.418a	1-11
A	R. L. Strausberg, et. al, Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences, 2002, ACCESSION: NM_024307, Proc. Natl. Acad. Sci. U.S.A., 99 (26), p.16899-903	1-11
, A	C. K. Sung, et. al, Molecular cloning of cDNA encoding human lanosterol synthase, 1995, ACCESSION: D63807, Biol. Phar. Bull., 18, p. 1459-61	1-11
A .	K. Lai, et. al, Estrogen Receptor Regulates Expression of the Orphan Receptor Small Heterodimer Partner, Sep. 2003, ACCESSION: NM_021969, J. Biol. Chem., 278 (38), p. 36418-29	1-11
A	M. M. Pelsers, et. al, Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility, Oct. 2003, ACCESSION: NM_001443, Clin Biochem., 36 (7), p. 529-35	1-11
A	A. Tsuji, et. al, Hepsin, a cell membrane—associated proteas e. Characterization, tissue distribution, and gene localization, 1991, ACCESSION: NM_002151, J. Biol. Chem., 266 (25), p.16948-53	1-11
A	S. Hutchinson, et. al, Purification of human kallikrein 6 from biological fluids and identification of its complex with alpha(1)-antichymotrypsin, May 2003, ACCESSION: NM_001085, Clin. Chem., 49 (5), p.746-51	1-11
A	S. Wiemann, et. al, Toward a catalog of human genes and proteins: sequencing and analysis of 500 novel complete protein coding human cDNAs, 2001, ACCESSION: AL136653, Genome Res., 11 (3), p. 422-35	1-11
		,

<u>C(続き).</u> 引用文献の カテゴリー*	関連すると認められる文献 引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	T. Kayano, et. al, Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6), 1990, ACCESSION: NM_006931, J. Biol. Chem., 265 (22), p. 13276-82	1-11
A	J. M. Shields, et. al, Loss of transgelin in breast and colon tumors and in RIE-1 cells by Ras deregulation of gene expression through Raf-independent pathways, 2002, ACCESSION: NM_003186, J. Biol. Chem., 277 (12), p. 9790-9	1-11
	·	
	·	
	·	
	·	

第Ⅱ欄 請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1.
2. <a> 請求の範囲 2,4,5,7,9-11の一部 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、特別ページを参照。
3. [] 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅲ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 請求の範囲1-11に係る配列番号1,3,5,7,9,11,13,15,17,19,21,23に係る遺伝子群は、共通の化学構造を有するものでなく、リン脂質症の発現と相関して発現が変動する遺伝子であることのみ共通する。しかしながら、リン脂質症の発現と相関して発現が変動する遺伝子を得ようとする課題は、例えば、以下の文献に記載されているように公知の事実である。 C. Gerbaux, et. al, Hyperactivity of cathepsin B and other lysosomal enzymes in fibroblasts exposed to azithromycin, a dicationic macrolide antibiotic with exceptional tissue accumulation, 1996, FEBS Letters, 394, p.307-10 よって、請求の範囲1-11に記載された上記遺伝子群に係る発明は、単一の一般的発明概念を形成するように連関している一群の発明であるとはいえず、異なった12の発明からなる発明群であると認められる。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. × 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

請求の範囲1、3、6、8

上記請求の範囲における「・・配列を有する」という記載は、「・・配列からなる」ことを意味するのか、「・・配列を含む」ことを意味するのか不明である。したがって、上記請求の範囲は明確に記載されていない。

請求の範囲4、7

上記請求の範囲における「約」という記載は、発明の範囲を不明確とするものである。したがって、上記請求の範囲は明確に記載されていない。

請求の範囲2、4、5、7、9-11

上記請求の範囲に係るリン脂質症の発現と相関して発現が変動する「遺伝子」は、具体的にどのような物であるか不明である。したがって、該請求の範囲は、明確に記載されているとはいえない。

また、該「遺伝子」について、実施例等を見ても、配列番号1、3、5、7、9、11、13、15、17、19、21、23のいずれかに示される塩基配列からなる遺伝子以外に、どのような遺伝子が該当するか不明である。したがって、上記請求の範囲に係る発明について、明細書に十分に裏付けられているとはいえないし、当該技術分野の専門家が実施できる程度に明確かつ十分に開示されていない。

なお、上記の如く、明細書に十分に裏付けられておらず、明細書に明確かつ十分に開示されていない発明については、調査を行っていない。