I Exercices sur les familles sommables

Exercice 1:

1 - Montrer que la famille
$$\left(\frac{1}{(p+q^2)(p+q^2+1)}\right)_{(p,q)\in\mathbb{N}\times\mathbb{N}^*}$$
 est sommable.

2 - Calculer
$$\sum_{(p,q)\in\mathbb{N}\times\mathbb{N}^*} \frac{1}{(p+q^2)(p+q^2+1)}$$
.

Exercice 2:

1 - Montrer que la famille
$$\left(\frac{1}{k!}\right)_{(n,k)\in I}$$
 (avec $I=\{(n,k)\in\mathbb{N}^2\mid k\geq n\}$) est sommable.

2 - Calculer
$$\sum_{n=0}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k!}$$
.

 $\underline{Exercice\ 3}$:

Soit $x \in]-1;1[$.

1 - Démontrer que la famille $(x^{k\ell})_{(k,\ell)\in(\mathbb{N}^*)^2}$ est sommable.

2 - En déduire que :

$$\sum_{k=1}^{+\infty} \frac{x^k}{1 - x^k} = \sum_{n=1}^{+\infty} d(n)x^n$$

où d(n) est le nombre de diviseurs positifs de n.

II Exercices sur la réduction

Exercice 4:

Soient $n \in \mathbb{N} \setminus \{0; 1\}$ et $f \in \mathcal{L}(\mathbb{R}^n)$ de rang 1.

1 - Justifier que 0 est valeur propre de f et préciser la dimension de $E_0(f)$. En déduire que f est trigonalisable.

2 - En déduire que f est diagonalisable si, et seulement si, $\operatorname{tr}(f) \neq 0$.

3 - Montrer que $f^2 = tr(f)f$ (on discutera selon tr(f)).

Exercice 5:

Soient $n \in \mathbb{N}^*$ et $a_0, a_1, ..., a_{n-1} \in \mathbb{K}$.

On considère le polynôme $P_n=X^n+a_{n-1}X^{n-1}+...+a_1X+a_0$ et la matrice $A\in\mathcal{M}_n(\mathbb{K})$ définie par :

$$A = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & \ddots & & \vdots & -a_1 \\ 0 & \ddots & \ddots & \vdots & -a_2 \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots \\ \vdots & & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

1 - Montrer que les sous-espaces propres de ${\cal A}$ sont des droites.

2 - Montrer que pour tout $\lambda \in \mathbb{K}$:

$$\det(\lambda I_n - A) = P_n(\lambda)$$

3 - En déduire que A est diagonalisable si, et seulement si, P_n admet n racines distinctes dans \mathbb{K} .

Exercice 6:

À toute polynôme P de $\mathbb{R}[X]$, on associe le polynôme Q = f(P) défini par :

$$Q = (X - 1)(X - 2)P' - 2XP$$

1 - Préciser f(1), f(X) et $f(X^2)$.

2 - Justifier que f est un endomorphisme de $\mathbb{R}[X]$.

3 - Montrer que si P est un vecteur propre de f, alors $\deg(P)=2$.

4 - Donner les valeurs propres et les vecteurs propres de f.

III Exercices avec questions ouvertes

Exercice 7:

Soient $n \in \mathbb{N}^*$ et $A, B \in \mathcal{M}_n(\mathbb{K})$ deux matrices diagonalisables.

La matrice A+B est-elle toujours diagonalisable? La matrice AB est-elle toujours diagonalisable?

 $\underline{Exercice~8~:}$

1 - Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ inversible est-elle limite d'une suite de matrices non inversibles ?

2 - Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ non inversible est-elle limite d'une suite de matrices inversibles ?