3 Monotonie d'une suite récurrente

Rappelons le cadre de travail de notre section 3 :

On se donne une partie I de \mathbb{R} , une fonction f définie sur I et une suite $(u_n)_{n\in\mathbb{N}}$ vérifiant la relation $u_{n+1}=f(u_n)$ pour tout $n\in\mathbb{N}$.

L'exemple ci-dessus illustre une fois de plus le fait que la croissance de $(u_n)_{n\in\mathbb{N}}$ ne peut être déduite de celle de f. Il existe cependant un lien plus ténu entre ces deux notions :

Proposition I (Monotonie d'une suite récurrente (deuxième volet)). Supposons $(u_n)_{n\in\mathbb{N}}$ bien définie et à valeurs dans I.

- Si f est croissante sur I, alors $(u_n)_{n\in\mathbb{N}}$ est monotone.
- Si f est décroissante sur I, alors $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones et de sens de variation opposés.

Insistons une dernière fois : la croissance de f n'implique donc pas celle de $(u_n)_{n\in\mathbb{N}}$ mais sa monotonie.

Démonstration de la proposition l — On considère successivement les deux cas.

• Supposons f croissante sur I.

Si $u_0 \leqslant u_1$, en composant cette inégalité par f on obtient $f(u_0) \leqslant f(u_1)$, soit $u_1 \leqslant u_2$; en composant à nouveau cette inégalité par f, on obtient $f(u_1) \leqslant f(u_2)$ soit $u_2 \leqslant u_3$, et ainsi de suite pour obtenir $u_n \leqslant u_{n+1}$ pour tout $n \in \mathbb{N}$. Ainsi, si $u_0 \leqslant u_1$ alors $(u_n)_{n \in \mathbb{N}}$ est croissante.

Inversement, si $u_0 \geqslant u_1$, en composant par f on obtient $u_1 \geqslant u_2$, puis $u_2 \geqslant u_3$, et plus généralement $u_n \geqslant u_{n+1}$ pour tout $n \in \mathbb{N}$. Ainsi, si $u_0 \geqslant u_1$ alors $(u_n)_{n \in \mathbb{N}}$ est décroissante.

Dans les deux cas, la suite $(u_n)_{n\in\mathbb{N}}$ est bien monotone.

• Supposons à présent que f est décroissante, et posons $v_n = u_{2n}$ et $w_n = u_{2n+1}$ pour tout $n \in \mathbb{N}$. Pour tout $n \in \mathbb{N}$ on a

$$v_{n+1} = u_{2(n+1)} = u_{2n+2} = f(u_{2n+1})$$
$$= f(f(u_{2n})) = (f \circ f)(u_{2n}) = (f \circ f)(v_n)$$

ainsi que

$$w_{n+1} = u_{2(n+1)+1} = u_{2n+3} = f(u_{2n+2})$$
$$= f(f(u_{2n+1})) = (f \circ f)(u_{2n+1}) = (f \circ f)(w_n),$$

Cette preuve passe sous silence une récurrence facile. Nous aurons souvent recours à ce raccourci pour ne pas allonger inutilement les démonstrations, mais il est impératif de vérifier que vous êtes en mesure de détailler la démonstration par récurrence si besoin. donc les suites $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont récurrentes simples et satisfont une relation de récurrence assurée par la fonction composée $f\circ f$. Or cette fonction est croissante sur I puisque f est décroissante (en effet, si $x,y\in I$ sont tels que $x\leqslant y$ alors $f(x)\geqslant f(y)$, donc $f(f(x))\leqslant f(f(y))$; ainsi, d'après le premier point de la proposition, les suites $(v_n)_{n\in\mathbb{N}}$ et $(w_n)_{n\in\mathbb{N}}$ sont monotones.

Il reste à établir que leurs sens de variation sont opposés. Mais si $v_0 \leqslant v_1$, c'est-à-dire $u_0 \leqslant u_2$, alors en composant par la fonction décroissante f on obtient $u_1 \geqslant u_3$, soit $w_0 \geqslant w_1$, et on montre par le même raisonnement itératif que dans le point précédent que $(w_n)_{n \in \mathbb{N}}$ est décroissante : en d'autres termes, la croissance de $(v_n)_{n \in \mathbb{N}}$ implique la décroissance de $(w_n)_{n \in \mathbb{N}}$. Un raisonnement similaire permet de montrer que la décroissance de $(v_n)_{n \in \mathbb{N}}$ implique la croissance de $(w_n)_{n \in \mathbb{N}}$, ce qui clôt la preuve.

La preuve ci-dessus permet de voir que dans le cas où f est croissante (et donc où $(u_n)_{n\in\mathbb{N}}$ est monotone), il suffit pour déterminer si $(u_n)_{n\in\mathbb{N}}$ est croissante ou décroissante de considérer la positition relative de ses deux premiers termes.

Exemple. Considérons la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 3$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 1 + \sqrt{u_n - 1},$

dont on peut montrer par une récurrence facile qu'elle est bien définie et à valeurs dans $[1, +\infty[$. La fonction $x \mapsto 1 + \sqrt{x-1}$ étant croissante sur $[1, +\infty[$, la suite $(u_n)_{n \in \mathbb{N}}$ est monotone. Pour savoir si elle est croissante ou décroissante, il suffit de comparer $u_0 = 3$ et $u_1 = 1 + \sqrt{3-1} = 1 + \sqrt{2} < 3$: comme $u_0 > u_1$, la suite est décroissante.

Dans le cas où f est décroissante, la même technique s'applique aux suites extraites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$:

Exemple. Considérons la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{1}{1 + u_n^2}$.

La suite est bien définie et strictement positive car l'intervalle \mathbb{R}_+^* , qui contient u_0 , est stable par la fonction $f: x \mapsto \frac{1}{1+x^2}$. Comme

On laisse le soin au lecteur de tracer la courbe de la fonction $x \mapsto 1+\sqrt{x-1}$ par transformation à partir de la courbe de la fonction racine carrée, puis de représenter les premiers termes de la suite $(u_n)_{n\in\mathbb{N}}$.

la fonction f est décroissante sur \mathbb{R}_+^* , les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont monotones et de sens de variation opposés. Or $u_0=1$, donc

$$u_1 = \frac{1}{1+1^2} = \frac{1}{2}$$
 et $u_2 = \frac{1}{1+\left(\frac{1}{2}\right)^2} = \frac{1}{1+\frac{1}{4}} = \frac{1}{\frac{5}{4}} = \frac{4}{5}$,

d'où $u_0 < u_2$. On en déduit que $(u_{2n})_{n \in \mathbb{N}}$ est croissante, et donc que $(u_{2n+1})_{n \in \mathbb{N}}$ est décroissante.

Pour éviter l'utilisation du deuxième point de la proposition I, les sujets de concours invitent souvent à étudier les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$. Cette étude peut se faire à l'aide de méthodes plus élémentaires (par exemple en considérant les différences $u_{2(n+1)} - u_{2n}$).