CS2040S Data Structures and Algorithms

Puzzle of the Week: Squares

(Courtesy: Riddler)

Start with five shaded squares, infinite grid.

At every iteration, color a square if at least three neighboring were colored in the previous iteration.

As N gets large, how many squares will be shaded in generation N (as a function of N)?

Housekeeping:

Problem Set 4 Release:

- Wednesday Release 12-Feb
 - Duration: 1 week
 - Will be on trees

Plan:

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Plan:

Trees

- Terminology
- Traversals
- Operations

New concept! A data structure!

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Dictionary Interface

A collection of (key, value) pairs:

interface IDictionary void insert (Key k, Value v) insert (k,v) into table get value paired with k Value search (Key k) Key successor (Key k) find next key > kKey predecessor (Key k) find next key < k void delete(Key k) remove key k (and value) is there a value for k? boolean contains (Key k) int size() number of (k, v) pairs

Dictionary Interface

A collection of (key, value) pairs:

Implementation

Option 1: Sorted array

- insert : ?
- search : ?

Option 2: Unsorted array

- insert : ?
- search : ?

- insert:?
- search : ?

Implementation

Option 1: Sorted array

- insert : add to middle of array = ??
- search : binary search = ??

Option 2: Unsorted array

- insert : add to end of array = ??
- search : unsorted = ??

- insert : add to head of list = ??
- search : list traversal = ??

Implementation

Option 1: Sorted array

- insert : add to middle of array = O(n)
- search : binary search = O(log n)

Option 2: Unsorted array

- insert : add to end of array = ??
- search : unsorted = ??

- insert : add to head of list = ??
- search : list traversal = ??

Implementation

Option 1: Sorted array

- insert : add to middle of array = O(n)
- search : binary search = O(log n)

Option 2: Unsorted array

- insert : add to end of array = O(1)
- search : unsorted = O(n)

- insert : add to head of list = ??
- search : list traversal = ??

Implementation

Option 1: Sorted array

- insert : add to middle of array = O(n)
- search : binary search = O(log n)

Option 2: Unsorted array

- insert : add to end of array = O(1)
- search : unsorted = O(n)

- insert : add to head of list = O(1)
- search : list traversal = O(n)

Implementation

Option 1: Sorted array

- insert : add to middle of array = O(n)
- search : binary search = $O(\log n)$

Option 2: Unsorted array

- insert : add to end of array = O(1)
- search : unsorted = O(n)

Option 3: Linked list

- insert : add to head of list = O(1)
- search : list traversal = O(n)

Notice here that all the operations seem to have something be in linear time.

Can we do better?

Dictionary Implementation

Possible Choices:

- Implement using an array
- Implement using a queue.
- Implement using a linked list
- **–** ...

Binary Search Trees

1. Terminology and Definitions —

- 2. Basic operations:
 - height
 - search, insert
 - searchMin, searchMax
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Implementation idea: Tree

Implementation idea: Tree

Critical Components:

- Nodes
- Edges directed from one node to another.
- Root (?)
- No cycles

Root node is the node at the "start" of the tree

Terminology

A node is a "child" of a "parent" node if the parent points to the child.

Two nodes are called "siblings" if they have the same "parent"

A leaf has 0 children.

Terminology

Terminology

A binary tree is either: (a) empty ; or (b) a node pointing to two binary trees

Java??

```
public class TreeNode {
   private TreeNode leftTree;
   private TreeNode rightTree;
   private KeyType key;
   private ValueType value;
   // Remainder of binary tree implementation
```

Java??

```
public class TreeNode {
                                      Example:
   private TreeNode leftTree;
                                    We want to store
   private TreeNode rightTree;
                                    integer keys and
   private int key;
                                    values.
   private int value;
   // Remainder of binary tree implementation
```

Binary Search Trees (BST)

BST Property:

all keys in left sub-tree < key < all keys in right sub-tree

- 1. Yes
- 2. No
- 3. I don't know.

- ✓1. Yes
 - 2. No
 - 3. I don't know.

- 1. Yes
- 2. No
- 3. I don't know.

- 1. Yes
- **√**2. No
 - 3. I don't know.

Binary Search Trees

1. Terminology and Definitions

2. Basic operations:

- height
- search, insert
- searchMin, searchMax

3. Traversals

in-order, pre-order, post-order

4. Other operations

Height:

Number of edges on longest path from root to leaf.

Calculating the heights

check for null

```
public int height() {
   int leftHeight = -1;
   int rightHeight = -1;
   if (leftTree != null)
       leftHeight = leftTree.height();
   if (rightTree != null)
       rightHeight = rightTree.height();
   return max(leftHeight, rightHeight) +
```


- 1. 2
- 2. 4
- 3. 5
- 4. 6
- 5. 7
- 6. 42

1. Terminology and Definitions

- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Search for the maximum key:

Search for the maximum key:

Search for maximum key

Searching for the node with the maximum key

```
public TreeNode searchMax() {
    if (rightTree != null) {
        return rightTree.searchMax();
    }
    else return this; // Key is here!
}
```


Search for the minimum key:

Searching for the node with the minimum key

```
public TreeNode searchMin() {
    if (leftTree != null) {
        return leftTree.searchMin();
    }
    else return this; // Key is here!
}
```

searchMin()

searchMin()

searchMin()

1. Terminology and Definitions

- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Search for a key:

Search for a key:

25 < 41

Search for a key:


```
public TreeNode search(int queryKey) {
   if (queryKey < key) {
      if (leftTree != null)
          return leftTree.search(key);
      else return null;
   else if (queryKey > key) {
      if (rightTree != null)
          return rightTree.search(key);
      else return null;
   else return this; // Key is here!
```

```
public TreeNode search(int queryKey) {
   if (queryKey < key) {
      if (leftTree != null)
          return leftTree.search(key);
      else return null;
   else if (queryKey > key) {
      if (rightTree != null)
          return rightTree.search(key);
      else return null;
   else return this; // Key is here!
```

```
public TreeNode search(int queryKey) {
   if (queryKey < key) {
       if (leftTree != null)
          return leftTree.search(key);
      else return null;
   else if (queryKey > key) {
      if (rightTree != null)
          return rightTree.search(key);
      else return null;
   else return this; // Key is here!
```

```
public TreeNode search(int queryKey) {
   if (queryKey < key) {
       if (leftTree != null)
          return leftTree.search(key);
      else return null;
   else if (queryKey > key) {
      if (rightTree != null)
          return rightTree.search(key);
      else return null;
   else return this; // Key is here!
```

```
public TreeNode search(int queryKey) {
   if (queryKey < key) {
       if (leftTree != null)
          return leftTree.search(key);
                                           If we have no
      else return null;
                                           more
                                           sub-tree to
   else if (queryKey > key) {
                                           recurse on,
                                           the key
      if (rightTree != null)
                                           doesn't exist.
          return rightTree, search (key);
      else return null;
   else return this; // Key is here!
```


1. Terminology and Definitions

2. Basic operations:

- height
- searchMin, searchMax
- search, insert

3. Traversals

in-order, pre-order, post-order

4. Other operations

Inserting a new key:

25 < 41

Inserting a new key:

Inserting a new key:

Binary Tree

Inserting a new key

```
public void insert(int insKey, int intValue) {
   if (insKey < key) {
      if (leftTree != null)
          leftTree.insert(insKey);
      else leftTree = new TreeNode(insKey,insValue);
   else if (insKey > key) {
      if (rightTree != null)
          rightTree.insert(insKey);
      else rightTree = new TreeNode(insKey,insValue);
   else return; // Key is already in the tree!
```

Binary Tree

Inserting a new key

```
public void insert(int insKey, int intValue) {
   if (insKey < key) {
      if (leftTree != null)
          leftTree.insert(insKey);
      else leftTree = new TreeNode(insKey,insValue);
   else if (insKey > key) {
      if (rightTree != null)
          rightTree.insert(insKey);
      else rightTree = new TreeNode(insKey,insValue);
   else return; // Key is already in the tree!
```

Binary Tree

Inserting a new key

```
public void insert(int insKey, int intValue) {
   if (insKey < key) {
      if (leftTree != null)
          leftTree.insert(insKey);
      else leftTree = new TreeNode(insKey,insValue);
   else if (insKey > key) {
      if (rightTree != null)
          rightTree.insert(insKey);
      else rightTree = new TreeNode(insKey,insValue);
   else return; // Key is already in the tree!
```


- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(2^n)$

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(2^n)$

- 1. O(1)
- 2. O(log n) ???
- 3. O(n)
- 4. $O(n^2)$
- 5. $O(n^3)$
- 6. $O(2^n)$

search(72) : O(h) h is the height of the tree

search(72) : O(height)

search(72) : O(height)

- 1. O(1)
- 2. O(log n)
- **√**3. O(n)
 - 4. $O(n^2)$
 - 5. $O(n^3)$
 - 6. $O(2^n)$

Trees come in many shapes

What determines shape?

What was the order of insertion?

- 2. 20, 11, 41, 29, 65
- 3. 11, 20, 41, 29, 65
- 4. 65, 41, 29, 20, 11
- 5. Impossible to tell.

What was the order of insertion?

- **√2**. 20, 11, 41, 29, 65
 - 3. 11, 20, 41, 29, 65
 - 4. 65, 41, 29, 20, 11
 - 5. Impossible to tell.

What determines shape?

- Order of insertion
- Does each order yield a unique shape?

What determines shape?

- Order of insertion
- Does each order yield a unique shape? NO
 - # ways to order insertions: n!
 - # shapes of a binary tree? ~4ⁿ

Catalan Numbers

What determines shape?

- Order of insertion
- Does each order yield a unique shape? NO
 - # ways to order insertions: n!
 - # shapes of a binary tree? ~4ⁿ

By Pigeonhole principle, this means that there exists at least 2 orderings that share the same shape.

Catalan Numbers

 $C_n = \#$ of trees with (n+1) nodes

 $C_n = \#$ expressions with n pairs of matched parentheses

```
((())) ()(()) (()()) (()())
```

Puzzle: why are these the same?

Trees come in many shapes

Trees come in many shapes

- same keys ≠ same shape
- performance depends on shape
- insert keys in a random order ⇒ balanced

1. Terminology and Definitions

2. Basic operations:

- height
- searchMin, searchMax
- search, insert

3. Traversals

in-order, pre-order, post-order

4. Other operations


```
public void in-order-traversal() {
      Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   visit(this);
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

```
public void in-order-traversal() {
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   visit(this);
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

```
public void in-order-traversal() {
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   visit(this);
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

How long does an in-order-traversal take?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
- 4. O(n log n)
- 5. $O(n^2)$
- 6. $O(2^n)$

in-order-traversal(v)

```
public void in-order-traversal() {
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   visit(this);
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

Running time: O(n)

visits each node at most once

in-order-traversal(v)

```
public void in-order-traversal() {
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   visit(this);
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

Running time: O(n)

visits each node at most once, each visit costs O(1)

in-order-traversal(v)

```
public void in-order-traversal() {
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   visit(this);
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

Running time: O(n)

- n nodes x O(1) work per node = O(n)

How long does an in-order-traversal take?

- 1. O(1)
- 2. O(log n)
- 3. O(n)
 - 4. O(n log n)
 - 5. $O(n^2)$
 - 6. $O(2^n)$

in-order-traversal(v)

- left-subtree
- SELF
- right-subtree

pre-order-traversal(v)

- SELF
- left-subtree
- right-subtree

post-order-traversal(v)

- left-subtree
- right-subtree
- SELF

pre-order-traversal(v)

```
public void pre-order-traversal() {
   visit(this);
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

pre-order-traversal(v)

```
public void pre-order-traversal() {
   visit(this);
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```

pre-order-traversal(v)

```
public void pre-order-traversal() {
   visit(this);
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
```


41 20 11 29

post-order-traversal(v)

```
public void post-order-traversal() {
   // Traverse left sub-tree
   if (leftTree != null)
        leftTree.in-order-traversal();
   // Traverse right sub-tree
   if (rightTree != null)
       rightTree.in-order-traversal();
   visit(this);
```


11 32 29 20 50 72 99 91 65 41

- 1. In-order
- 2. Pre-order
- 3. Post-order
- 4. Level-Order traversal —— New!

41

41 20 65

41 20 65 11 29 50 91

41 20 65 11 29 50 91 32 72 99

level-order-traversal

41

Will see how to do level-order later on in the semester.

32 72 99

41 20 65 11 29 50 91 32 72 99

Binary Search Trees

1. Terminology and Definitions

- 2. Basic operations:
 - height
 - searchMin, searchMax
 - search, insert
- 3. Traversals
 - in-order, pre-order, post-order
- 4. Other operations

Airport Scheduling

Dictionary

Example:

Storing plane departure times in 2400h format in our dictionary.

Airport Scheduling

Dictionary

6:35	7:00	7:19	8:21	12:21	14:23	14:42		

Use case:

Given some time t, we want to find the next plane that is going to take off.

Airport Scheduling

Dictionary

- successor(8:24) = 12:21

How do we implement this?

2 possible cases: Either k is in the tree or it's not

E.g. Key 42 is not in the tree

E.g. Key 42 is not in the tree

But notice: If you search for key not

in the tree:

But notice: If you search for key not

in the tree:

Assume not:

Assume not: Case 1, search(key) returns node that is larger than actual successor of key.

Case 1 derives a contradiction!

Assume not: Case 1, search(key) returns node that is larger than actual successor of key.

You can argue similarly in case 2 where search(key) returns node that is smaller than predecessor of key

But notice: If you search for key not

in the tree:

Basic strategy: successor(key)

1. Search for key in the tree.

2. If (result > key), then return result.

3. If (result <= key), then search for successor of result.

Basic strategy: successor(key)

proven it is indeed the successor

1. Search for key in the tree.

2. If (result > key), then return result.

3. If (result <= key), then search for successor of result.

Basic strategy: successor(key)

proven it is indeed the successor

1. Search for key in the tree.

2. If (result > key), then return result.

If (result <= key), then search for successor of result.

if result == key,
successor(key) is the
true successor

Basic strategy: successor(key)

proven it is indeed the successor

1. Search for key in the tree.

2. If (result > key), then return result.

3. If (result <= key), then search for successor of result.

```
if result == key,
successor(key) is the
true successor
```

if result < key, then
successor(result) is the first
smallest result > key
(because key was not in tree!)

Basic strategy: successor(key)

proven it is indeed the successor

1. Search for key in the tree.

2. If (result > key), then return result.

3. If (result <= key), then search for successor of result.

In the bottom case: we are searching for a successor of an item that is guaranteed to be in a tree.

Not the same problem as before where item was not in the tree!

Successor: Key in the Tree

Case 1: node has a right child.

Case 1: node has a right child.

Case 2: node has no right child.

```
public TreeNode successor() {
   if (rightTree != null)
       return rightTree.searchMin();
   TreeNode parent = parentTree;
   TreeNode child = this;
   while ((parent != null) && (child == parent.rightTree))
       child = parent;
      parent = child.parentTree;
   return parent;
```

```
public TreeNode successor() {
   if (rightTree != null)
       return rightTree.searchMin();
   TreeNode parent = parentTree;
   TreeNode child = this;
   while ((parent != null) && (child == parent.rightTree))
       child = parent;
      parent = child.parentTree;
   return parent;
```

```
public TreeNode successor() {
   if (rightTree != null)
       return rightTree.searchMin();
   TreeNode parent = parentTree;
   TreeNode child = this;
   while ((parent != null) && (child == parent.rightTree))
       child = parent;
      parent = child.parentTree;
   return parent;
```

```
public TreeNode successor() {
   if (rightTree != null)
                                         root.parent == null
       return rightTree.searchMin();
   TreeNode parent = parentTree;
   TreeNode child = this;
   while ((parent != null) && (child == parent.rightTree))
       child = parent;
      parent = child.parentTree;
   return parent;
```

1. Terminology and Definitions

2. Basic operations:

- height
- searchMin, searchMax
- search, insert

3. Traversals

- in-order, pre-order, post-order
- 4. Other operations

delete(v)

delete(v)

delete(50)

delete(50)

delete(29)

delete(29)

delete(29)

delete(41)

delete(41)

Binary Sez

delete(41)

Case 3: 2 childre

Claim: successor of deleted node has at most 1 child!

Proof:

- Deleted node has two children.
- Deleted node has a right child.
- successor() = right.findMin()
- min element has no left child.

delete(41)

delete(41)

delete(41)

delete(41)

delete(v)

Running time: O(height)

Three cases:

- 1. No children:
 - remove v
- 2. 1 child:
 - remove v
 - connect child(v) to parent(v)
- 3. 2 children
 - x = successor(v)
 - delete(x)
 - remove v
 - connect x to left(v), right(v), parent(v)

Modifying Operations

- insert: O(h)
- delete: O(h)

Query Operations:

- search: O(h)
- predecessor, successor: O(h)
- findMax, findMin: O(h)
- in-order-traversal: O(n)

Plan of the Day

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations

Part 2

On the importance of being balanced

Part 2

On the importance of being balanced

- Height-balanced binary search trees
- AVL trees
- Rotations

Operations take O(height) time

What is the largest possible height h?

- 1. $\Theta(1)$
- 2. $\Theta(\log n)$
- 3. $\Theta(\operatorname{sqrt}(n))$
- 4. $\Theta(n)$
- 5. $\Theta(n^2)$

What is the largest possible height h?

- 1. $\Theta(1)$
- 2. $\Theta(\log n)$
- 3. $\Theta(\operatorname{sqrt}(n))$
- \checkmark 4. $\Theta(n)$
 - 5. $\Theta(n^2)$

Operations take O(h) time

 $h \leq n$

What is the smallest possible height h?

- 1. $\Theta(1)$
- 2. $\Theta(\log n)$
- 3. $\Theta(\log n)$
- 4. $\Theta(\operatorname{sqrt}(n))$
- 5. $\Theta(n)$
- 6. $\Theta(n^2)$

What is the smallest possible height h?

- 1. $\Theta(1)$
- 2. $\Theta(\log \log n)$
- $3. \Theta(\log n)$
 - 4. $\Theta(\operatorname{sqrt}(n))$
 - 5. $\Theta(n)$
 - 6. $\Theta(n^2)$

Operations take O(h) time

Operations take O(h) time

$$n \le 1 + 2 + 4 + ... + 2^h$$

 $\le 2^0 + 2^1 + 2^2 + ... + 2^h < 2^{h+1}$

Operations take O(h) time

$$log(n) -1 \le h \le n$$

A BST is <u>balanced</u> if $h = O(\log n)$

On a balanced BST: all operations run in O(log n) time.

Operations take O(h) time

$$log(n) -1 \le h \le n$$

A BST is <u>balanced</u> if $h = O(\log n)$

On a balanced BST: all operations run in O(log n) time.

Side note: Items might be closer to the root, operations on those items might take less than O(log n) time.

Perfectly balanced:

Almost perfectly balanced:

Every subtree has (almost) the same number of nodes.

Not perfectly balanced:

Left tree has 6, right tree has 1.

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[a] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

Balanced Search Trees

Many different flavors of balanced search trees

- AVL trees (Adelson-Velsii & Landis, 1962)
- B-trees / 2-3-4 trees (Bayer & McCreight, 1972)
- BB[a] trees (Nievergelt & Reingold 1973)
- Red-black trees (see CLRS 13)
- Splay trees (Sleator and Tarjan 1985)
- Treaps (Seidel and Aragon 1996)
- Skip Lists (Pugh 1989)
- Scapegoat Trees (Anderson 1989)

How to get a balanced tree:

- Define a good property of a tree.
- Show that if the good property holds, then the tree is balanced.
- After every insert/delete, make sure the good property still holds. If not, fix it.

Step 0: Augment

Step 1: Define Height Balance

Step 2: Maintain Balance

Step 0: Augment

In every node v, store <u>height</u>:v.height = h(v)

Step 0: Augment

In every node v, store <u>height</u>:v.height = h(v)

Why? Because then we don't have to recompute it when we need it.

Step 0: Augment

In every node v, store <u>height</u>:v.height = h(v)

On insert & delete operations, update <u>height</u>:

```
insert(x)
  if (x < key)
    left.insert(x)
  else right.insert(x)
  height = max(left.height, right.height) + 1</pre>
```


Step 0: Augment

In every node v, store height:v.height = h(v)

On insert & delete update height:

```
insert(x)
  if (x < key)
    left.insert(x)
  else right.insert(x)
  height = max(left.height, right.height) + 1</pre>
```

Step 0: Augment

Step 1: Define Height Balance

Step 2: Maintain Balance

Step 1: Define Invariant

– A node v is <u>height-balanced</u> if:

|v.left.height – v.right.height| ≤ 1

Step 1: Define Invariant

– A node v is <u>height-balanced</u> if:

|v.left.height – v.right.height| ≤ 1

Step 1: Define Invariant

- A node v is <u>height-balanced</u> if:
 |v.left.height v.right.height| ≤ 1
- A binary search tree is <u>height balanced</u> if <u>every</u>
 node in the tree is height-balanced.

Is this tree height-balanced?

- 1. Yes
- 2. No
- 3. I'm confused.

Is this tree height-balanced?

- ✓1. Yes
 - 2. No
 - 3. I'm confused.

Is this tree height-balanced?

- 1. Yes
- 2. No
- 3. I'm confused.

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

If we can prove this fact, we can say our operations cost O(h) = O(log n) time.

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

- \Leftrightarrow h/2 < log(n)
- \Leftrightarrow 2^{h/2} < 2^{log(n)}
- \Leftrightarrow 2^{h/2} < n

Equivalent claim:

A height-balanced tree with height h has

at least n > 2^{h/2} nodes

Claim:

A height-balanced tree with n nodes has <u>at</u> most height h < 2log(n).

$$\Leftrightarrow$$
 h/2 < log(n)

$$\Leftrightarrow$$
 $2^{h/2} < 2^{\log(n)}$

$$\Leftrightarrow$$
 2^{h/2} < n

We will prove this claim instead

Equivalent claim:

A height-balanced tree with height h has

at least
$$n > 2^{h/2}$$
 nodes

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h > 2^{h/2}$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_{h} \ge 1 + n_{h-1} + n_{h-2}$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_{h} \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

How many times?

Base case:

$$n_0 = 1$$

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_h \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2^{1}n_{h-2}$$
 $\geq 2^{2}n_{h-4}$
 $\geq 2^{3}n_{h-6}$
 $\geq ... \geq 2^{k}n_{0}$

What is

Base case:

Proof:

Let n_h be the minimum number of nodes in a height-balanced tree of height h.

$$n_{h} \ge 1 + n_{h-1} + n_{h-2}$$

$$\geq 2n_{h-2}$$

$$\geq 2^{h/2} n_0$$

Base case:

$$n_0 = 1$$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

$$h < 2log(n_h)$$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

$$n_h > 2^{h/2}$$
 \Leftrightarrow
 $h < 2log(n_h)$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

$$n_h > 2^{h/2}$$
 \Leftrightarrow
 $h < 2log(n_h)$

Claim:

A height-balanced tree with n nodes has height h < 2log(n).

Show (induction):

$$\begin{split} F_n &= n^{th} \text{ Fibonacci number} \\ n_h &= F_{h+2} - 1 \cong \phi^{h+1}/\sqrt{5} - 1 \text{ (rounded to nearest int)} \\ h &\cong log(n) \ / \ log(\phi) \qquad \phi \cong 1.618 \\ h &\cong 1.44 \ log(n) \end{split}$$

Claim:

A height-balanced tree is balanced, i.e., has height h = O(log n).

Step 0: Augment

Step 1: Define Height Balance

Step 2: Maintain Balance

It's good that we don't have to

Balance perfectly

Step 2: Show how to maintain height-balance

Before insertion, balanced insert(37)

No longer balanced after insertion!

Need to rebalance!

Which nodes need rebalancing?

Which nodes need rebalancing?

Which nodes need rebalancing?

Trick to rebalance the tree

Tree rotation!

A < B < C < D < E

Rotations maintain ordering of keys.

→ Maintains BST property.

Wait....

What is a left rotation and what is a right rotation!?

The root of the subtree moves right

Left

Rotation

The root of the subtree moves left

```
right-rotate(v) // assume v has left != null 
w = v.left
```



```
right-rotate(v) // assume v has left != null
w = v.left
w.parent = v.parent
```



```
right-rotate(v)
                         // assume v has left != null
    w = v.left
    w.parent = v.parent
    v.left = w.right
                                            W
              W
```

```
right-rotate(v)
                         // assume v has left != null
    w = v.left
    w.parent = v.parent
    v.left = w.right
     v.parent = w
                                           W
     w.right = v
              W
```


rotate-right requires a left child rotate-left requires a right child

After insert:

Use tree rotations to restore balance.

Height is out-of-balance by 1

Inserting in an AVL Tree

Use tree rotations to restore balance.

After insert, start at bottom, work your way up.

Assume subtree rooted at A is **LEFT-heavy**.

Assume subtree rooted at A is **LEFT-heavy**.

Left-heavy: Left subtree is taller than right subtree

Assume subtree rooted at A is **LEFT-heavy**.

Left-heavy: Left subtree is taller than right subtree

3 cases: B is left-heavy, B is balanced, B is right-heavy

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 1: **B** is balanced : h(L) = h(M)

$$h(\mathbf{R}) = h(\mathbf{M}) - 1$$

right-rotate:

Case 1: **B** is balanced : h(L) = h(M)

$$h(\mathbf{R}) = h(\mathbf{M}) - 1$$

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 2: **B** is left heavy : h(L) = h(M) + 1

$$h(\mathbf{R}) = h(\mathbf{M})$$

right-rotate:

Case 2: **B** is left-heavy: h(L) = h(M) + 1

$$h(\mathbf{R}) = h(\mathbf{M})$$

Tree Rotations (Left Heavy)

Assume **A** is the lowest node in the tree violating balance property.

Case 3: **B** is right heavy : h(L) = h(M) - 1

$$h(\mathbf{R}) = h(\mathbf{L})$$

right-rotate:

Case 3: **B** is right-heavy: h(L) = h(M) - 1h(R) = h(L)

Are we done?

- 1. Yes.
- 2. No.
- 3. Maybe.

Are we done?

- 1. Yes.
- **√**2. No.
 - 3. Maybe.

Let's do something first before we right-rotate(A)

right-rotate:

Case 3: **B** is right-heavy: h(L) = h(M) - 1

$$h(\mathbf{R}) = h(\mathbf{L})$$

Let's do something first before we right-rotate(A)

Case 3: **B** is right-heavy: h(L) = h(M) - 1

$$h(\mathbf{R}) = h(\mathbf{L})$$

Left-rotate B

After left-rotate B: A and C still out of balance.

After right-rotate A: all in balance.

Summary:

If v is out of balance and left heavy:

- 1. v.left is balanced: right-rotate(v)
- 2. v.left is left-heavy: right-rotate(v)
- 3. v.left is right-heavy: left-rotate(v.left) right-rotate(v)

If v is out of balance and right heavy: Symmetric three cases....

How many rotations do you need after an insertion (in the worst case)?

- 1. 1
- 2. 2
- 3. 4
- 4. log(n)
- 5. 2log(n)
- 6. n

How many rotations do you need after an insertion (in the worst case)?

- 1. 1
- 2. 2
- 3. 4
- 4. log(n)
- 5. 2log(n)
- 6. n

Question: Why isn't it 2log(n)?

How many rotations do you need after an insertion (in the worst case)?

- 1. 1
- **√2**. 2
 - 3. 4
 - 4. log(n)
 - 5. 2log(n)
 - 6. n

We can actually bound it by 2

Insert in AVL Tree

Summary:

- Insert key in BST.
- Walk up tree:
 - At every step, check for balance.
 - If out-of-balance, use rotations to rebalance.
 - Then we are done

Insert in AVL Tree

Summary:

- Insert key in BST.
- Walk up tree:
 - At every step, check for balance.
 - If out-of-balance, use rotations to rebalance.
 - Then we are done

Note: only need to perform two rotations

- Why?
- In cases 2, 3: reduce height of sub-tree by 1
- Case 3: Next week

Today and Next Week

Trees

- Terminology
- Traversals
- Operations

Balanced Trees

- Height-balanced binary search trees
- AVL trees
- Rotations