

Symbol Grounding from Natural Conversation for Human-Robot Communication

Ye Kyaw Thu^λ, Takuya Ishida^λ, Naoto Iwahashi^λ, Tomoaki Nakamura[†], Takayuki Nagai[†]

^λArtificial Intelligence Lab., Okayama Prefectural University (OPU), Okayama, Japan †Intelligent Systems Lab., The University of Electro-Communications, Tokyo, Japan

1. Introduction

- Symbol Grounding × Chatting
- Research on language acquisition and symbol grounding (focus on the acquisition of physically grounded knowledge through utterances that express physical things, such as objects and motions)
- Most of the previous studies have focused on learning without any prior symbolic knowledge
- The problem of how to acquire physically grounded knowledge based on grounded utterances through natural interaction has yet to be explored
- We focus on object-teaching utterances as grounded utterances

3. Propose Method

A set of object image concept and word pairs

5. Experimental Setup

• some examples of dialogue conducted in the experiment are as follows:

Human	Robot	
Do you know any toys?	I am not familiar with toy.	
Here is the stuffed toy.	Oh, I see.	
Do you like animals?	I like dogs.	
I like this penguin.	I got it.	

• The ten objects used in the experiment are as follows:

Here, two black stuffed toy cats (small & big), two stuffed toy fishes (red & yellow), and two cups (red & yellow)

2. Experimental Environment

4. Learning Method (MHDP+tf-idf)

6. Results

Table. Results of learning accuracy of object and words (%)

Method	P_{w}	P_c	P_{wc}
w/o loop	31% (61/196)	30% (59/196)	10% (19/196)
w/ loop	35% (69/196)	57% (112/196)	28% (54/196)

Here,

- $^{ullet}P_{oldsymbol{w}}$: probability of selecting correct word in each sentence
- $^{ullet}P_{c}$: probability of selecting object image concept for each sentence
- P_{wc} : probability of selecting both correct word and object image concept for each sentence
- Result: without loop < with loop

ACKNOWLEDGEMENTS

This work was supported by JSPS KAKENHI (grant number 15K00244) and JST CREST ("Symbol Emergence in Robotics for Future Human-Machine Collaboration")