

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Arsenic(III)

Equilibrium reaction	$\lg K$ at infinite dilution and $T = 298 \text{ K}$				
	Baes and Mesmer, 1976	Nordstrom and Archer, 2003	Nordstrom et al., 2014		
$As(OH)_4^- + H^+ \rightleftharpoons As(OH)_3 + H_2O$	9.29	9.17	9.24 ± 0.02		

C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 370.

D.K. Nordstrom and D. Archer, Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Welch AH, Stollenwerk KG (eds) Kluwer Academic Publishers, Amsterdam, 2003, pp. 1–25.

D.K. Nordstrom, J. Majzlan and E. Königsberger, Thermodynamic properties for As minerals & aqueous species. Reviews in Mineralogy & Geochemistry, 79, 217–255 (2014).

Distribution diagrams

These diagrams have been computed at two As(III) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constant above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Arsenic(V)

Equilibrium reaction	$\lg K$ at infinite dilution and $T = 298 \text{ K}$				
	Baes and Mesmer, 1976	Khodakovsky et al., 1968	Nordstrom and Archer, 2003	Nordstrom et al., 2014	
$H_2AsO_4^- + H^+ \rightleftharpoons H_3AsO_4$	2.24	2.21	2.26 ± 0.078	2.25 ± 0.04	
$HAsO_4^{2^-} + H^+ \rightleftharpoons H_2AsO_4^-$		6.93	6.99 ± 0.1	6.98 ± 0.11	
$AsO_4^{3-} + H^+ \rightleftharpoons HAsO_4^{2-}$		11.51	11.80 ± 0.1	11.58 ± 0.05	
$HAsO_4^{2-} + 2 H^+ \rightleftharpoons H_3AsO_4$	9.20				
$AsO_4^{3-} + 3 H^+ \rightleftharpoons H_3AsO_4$	20.70				

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 370.
- I.L. Khodakovsky, B.N. Ryzhenko and G.B.Naumov, Thermodynamics of aqueous electrolyte solutions at elevated temperatures (Temperature dependence of the heat capacities of ions in aqueous solution). Geokhimiya, 12, 1486–1503, 1968.
- D.K. Nordstrom and D. Archer, Arsenic thermodynamic data and environmental geochemistry. In: Arsenic in Ground Water. Welch AH, Stollenwerk KG (eds) Kluwer Academic Publishers, Amsterdam, 2003, pp. 1-25.
- D.K. Nordstrom, J. Majzlan and E. Königsberger, Thermodynamic properties for As minerals & aqueous species. Reviews in Mineralogy & Geochemistry, 79, 217–255 (2014).

Distribution diagrams

These diagrams have been computed at two As(V) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

