Estructuras Discretas

Recursión en Listas

Rafael Reyes

Universidad Nacional Autónoma de México Facultad de Ciencias

13 de febrero de 2023

Preliminares

- Consideramos a la lista que no tiene ningún elemento como, la lista vacía y se simboliza sólo con dos corchetes cuadrados [].
- El primer elemento de la lista al cual llamamos cabeza (o en inglés head).
- La lista que se obtiene al quitar el primer elemento a la cual llamamos **cola** (o en inglés **tail**).
- Al último elemento se le llama último (o en inglés last).
- La lista que se obtiene de eliminar el último elemento se le llama inicial (o en inglés init).

Ejemplos

Considere las listas [1,2,3,4], [a,b,c,d,e] y [barco,mar,olas,arena,playa,sol,agua]

Cabeza de una lista

- cabeza [1,2,3,4] = 1
- cabeza [a,b,c,d,e] = a
- cabeza [barco,mar,olas,arena,playa,sol,agua] = barco

Ultimo de una lista

- \blacksquare ultimo [1,2,3,4] = 4
- ultimo [a,b,c,d,e] = e
- ultimo [barco,mar,olas,arena,playa,sol,agua] = agua

Ejemplos

Iniciales de una lista

- \blacksquare iniciales [1,2,3,4] = [1,2,3]
- iniciales [a,b,c,d,e] = [a,b,c,d]
- iniciales [barco,mar,olas,arena,playa,sol,agua] = [barco,mar,olas,arena,playa,sol]

Cola de una lista

- cola [1,2,3,4] = [2,3,4]
- \blacksquare cola [a,b,c,d,e] = [b,c,d,e]
- cola [barco,mar,olas,arena,playa,sol,agua] = [mar,olas,arena,playa,sol,agua]

Recursión en listas

Definición

Una lista de elementos del mismo tipo, se define recursivamente como:

- Caso Base: La lista vacía, es una lista y la representamos por [].
- Caso Recursivo Si *a* es un elemento y *xs* una lista del mismo tipo de elementos, entonces la inclusión del elemento *a* a la lista *xs*, es una lista, la cual denotamos por *a* : *xs*.

Donde : es la función constructora que añade el elemento a al inicio de la lista xs, de tal manera que a es la cabeza de la nueva lista y xs la cola.

Nota

Debemos hacer énfasis en algunos detalles

- El elemento *a* siempre debe ser del mismo tipo que los elementos de la lista *xs* que estemos considerando.
- La inclusión de un elemento en una lista, siempre coloca al elemento al inicio de la lista.

Ejemplo

Lista de frutas

Una lista de frutas se define recursivamente de la siguiente manera:

- Caso Base: La lista vacía, la cual denotamos por [], es una Lista de frutas.
- **Caso Recursivo:** Si f es una fruta y xs es una lista de frutas entonces f: xs es una lista de frutas.

En concreto tenemos que, la lista de frutas [naranja, papaya, pera, manzana] utilizando la función constructora : se representa de la siguiente manera:

```
naranja:(papaya:(pera:(manzana:[])))
```

y se construye paso a paso como:

```
L_0 = [] (por regla 1)

L_1 = \text{manzana} : L_0 = [\text{manzana}] (por regla 2)

L_2 = \text{pera} : L_1 = [\text{pera, manzana}] (por regla 2)

L_3 = \text{papaya} : L_2 = [\text{papaya, pera, manzana}] (por regla 2)
```

Rafael Reyes (UNAM) Recursión 13 de febrero de 2023 7

 L_4 = naranja : L_3 = [naranja, papaya, pera, manzana] (por regla 2)

Ejemplo

Lista de números

Una lista de números se define de manera recursiva de la siguiente forma:

- Caso Base: La lista vacía, la cual denotamos por [], es una lista de números.
- **Caso Recursivo:** Si *x* es un número y *xs* es una *lista de números*; entonces *x* : *xs*; es una lista de números.

De manera similar a la lista de frutas, la lista [12,3,6,7,3] = 12:(3:(6:(7:(3:[]))), se construye de la siguiente forma:

```
L_0 = [] (por regla 1)

L_1 = 3: L_0 = 3: [] (por regla 2)

L_2 = 7: L_1 = 7: (3: []) (por regla 2)

L_3 = 6: L_2 = 6: (7: (3: [])) (por regla 2)

L_4 = 3: L_3 = 3: (6: (7: (3: [])) (por regla 2)

L_5 = 12: L_4 = 12: (3: (6: (7: (3: []))) (por regla 2)
```

Funciones sobre listas

Consideremos algunas de las funciones básicas sobre listas y cómo definirlas.

La función que obtiene el último elemento de una lista, devuelve el último elemento de una lista.

Caso Base:

Caso Recursivo:

Funciones sobre listas

Consideremos algunas de las funciones básicas sobre listas y cómo definirlas.

La función que obtiene el último elemento de una lista, devuelve el último elemento de una lista.

Caso Base:

ultimo
$$[x] = x$$

Caso Recursivo:

ultimo
$$(x : xs) = \text{ultimo } xs$$

Ejemplo

Considere la lista [1,2,3,4,5,6] y obtenga el resultado de la función ultimo sobre dicha lista

ultimo 1 :
$$[2,3,4,5,6]$$
 = ultimo $[2,3,4,5,6]$ = ultimo 2 : $[3,4,5,6]$ = ultimo $[3,4,5,6]$ = ultimo 3 : $[4,5,6]$ = ultimo $[4,5,6]$ = ultimo 4 : $[5,6]$ = ultimo $[5,6]$ = ultimo $[5]$ = ultimo $[6]$ = $[6]$