XXI ISPRS Congress 7 July 2008 Beijing, China

Optimal Simplification of Building Ground Plans

Jan-Henrik Haunert

Institute of Cartography and Geoinformatics
Leibniz Universität Hannover
Germany

Alexander Wolff

Algorithms Group

Mathematics and Computer Science
Technische Universiteit Eindhoven
The Netherlands

Bandwidth criterion:

For each line segment (v_i, v_j) of the simplified line, the vertices $(v_{i+1}, v_{i+2}, \dots, v_{j-1})$ of the original line must be within ε distance.

Basic optimization approach:

Find a simplified line that satisfies the bandwidth criterion and has a minimum number of vertices.

 Optimization approach allows to apply different constraints and optimization criteria.

- Solutions exist to preserve
 - topological relationships (deBerg et al., 1998)
 - and to minimize changes of
 - distances,

(Gudmundson et al., 2007)

angles,

(Chen et al., 2005)

areas.

(Bose et al. 2006)

When reducing a building to a subsequence of vertices, shape regularities will get lost!

Idea: Reduce a building to a subsequence of its edges.

Idea: Reduce a building to a subsequence of its edges.

- Idea: Reduce a building to a subsequence of its edges.
- Basic problem:
 - Output polygon must be simple.
 - User-defined error tolerance ε must not be violated.
 - Number of edges is to be minimized.

Definition:

- lacktriangle A shortcut is a pair of edges (e_k, e_l) .
- Applying the shortcut (e_k, e_l) implies to omit edges $(e_{k+1}, e_{k+2}, \dots, e_{l-1})$.

Outline of our Paper

- Formal problem statement
- Complexity: The problem is NP-hard, if we require simple polygons as outcome
- An efficient algorithm for a relaxed problem
- An exact approach by integer programming
- An efficient heuristic
- Outline of an exact, fixed-parameter algorithm
- Experimental results

Outline of this Talk

- Formal problem statement
- Complexity: The problem is NP-hard, if we require simple polygons as outcome
- An efficient algorithm for a relaxed problem
- An exact approach by integer programming
- An efficient heuristic
- Outline of an exact, fixed-parameter algorithm
- Experimental results

Given

- lacktriangle a simple polygon $P = (e_1, e_2, \dots, e_n)$
- ullet an error tolerance arepsilon>0

find a polygon
$$P' = (e'_{i_1}, e'_{i_2}, \ldots, e'_{i_m})$$
 with $i_1 < i_2 < \ldots < i_m < n$ such that

- P' has a minimum number of edges and
- the three requirements R1- R3 hold (as follows).

Requirement R1:

• P' is simple.

infeasible

feasible

Requirement R2:

- lacksquare For $j=1,\ldots,m$ it holds that e_{i_j} and e'_{i_j}
 - a) intersect and
 - b) have the same directed supporting line.

infeasible (a)

Requirement R3 (similar to bandwidth criterion):

- for each pair of consecutive edges (e'_k, e'_l) in P'
 - a) the sequence $(e_{k+1}, e_{k+2}, ..., e_{l-1})$ is within an ε buffer of the L-shape defined by (e_k, e_l) .

Requirement R3 (similar to bandwidth criterion):

- for each pair of consecutive edges (e'_k, e'_l) in P'
 - b) the L-shape defined by (e_k, e_l) enters and leaves the ε buffer of the sequence $(e_{k+1}, e_{k+2}, \dots, e_{l-1})$ exactly ones.

1. Construct the shortcut graph $G_{\mathbf{scut}}(E,S)$ that contains a node for each edge of P and an arc for each shortcut that satisfies requirement R3 (the bandwidth criterion).

- 2. Find the shortest cycle in $G_{
 m scut}$.
 - The shortest cycle in a digraph can be found in $\mathcal{O}(mn)$ time (Itai & Rodeh, 1978).

- 2. Find the shortest cycle in $G_{
 m scut}$.
 - The shortest cycle in a digraph can be found in $\mathcal{O}(mn)$ time (Itai & Rodeh, 1978).

The obtained cycle yields a simplified building, but:

An edge may change its direction.

The simplicity requirement may be violated.

The obtained cycle yields a simplified building, but:

- An edge may change its direction.
 - Can be solved with a simple extension of the shortest cycle approach.

- The simplicity requirement may be violated.
 - Renders the problem NP-hard.

Integer programming is a special combinatorial optimization problem:

```
Given an m \times n integer matrix A, an m-vector of integers b, an n-vector of integers c, minimize z=c^T\cdot x subject to A\cdot x\geq b, x\geq 0 with x\in \mathbb{Z}^n.
```

- Many problems can be transformed into this form.
- Existing solvers can be applied (CPLEX, Ip_solve).

Variables:

$$x_s \in \{0,1\}$$
 for each shortcut $s \in S$ with $x_s = 1$ if and only if s is selected.

 $\bullet \quad \mathsf{Minimize} \quad \sum_{s \in S} x_s$

subject to

$$\sum_{s \in \{(e_i,e_k) \in S \mid i \leq j < k\}} x_s = 1$$
 for each edge $e_j \in E$

For each edge e_j of the original building, there is one shortcut omitting e_j or starting at e_j .

From each pair of conflicting shortcuts $s, t \in S$ do not select more than one.

$$x_s + x_t \leq 1$$

A shortcut $s \in S$ that implies an intersection with edge $e \in E$ must only be selected together with a shortcut that omits or sufficiently shortens e.

$$x_s \leq \sum_{t \in S_{s,e}} x_t$$

Processing time:

CPLEX 0.01s lp_solve 0.17s

Solution of relaxed problem

Conclusion

- We presented a new method for building simplification that yields results with a minimum number of line segments subject to several basic requirements.
- lacktriangle The method ensures a limited positional error arepsilon .
- The method ensures a simple polygon as output.
- Future research is needed to find an appropriate cost function that better reflects the quality of a generalized building.

XXI ISPRS Congress 7 July 2008 Beijing, China

Optimal Simplification of Building Ground Plans

Jan-Henrik Haunert

Institute of Cartography and Geoinformatics
Leibniz Universität Hannover
Germany

Alexander Wolff

Algorithms Group

Mathematics and Computer Science
Technische Universiteit Eindhoven
The Netherlands

