Экспоненциальные ряды в анализе сингулярного спектра

Пимахов Кирилл Юрьевич, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., д. Некруткин В.В. Рецензент: к.ф.-м.н., д. Голяндина Н.Э.

Санкт-Петербург 2016г

Basic SSA: задача восстановления сигнала

• Исходный ряд (сигнал): $F_N = (x_0, x_1, \dots, x_{N-1})$, задаваемый минимальной рекуррентной формулой

$$x_n = \sum_{k=1}^d b_k x_{n-k}, \quad d \leqslant n \leqslant N.$$

- Помеха: $E_N = (e_0, e_1, \dots, e_{N-1}).$
- ullet Наблюдаемый ряд: $\mathrm{F}_N(\delta) = \mathrm{F}_N + \delta \mathrm{E}_N$.

Цель — оценить сигнал F_N .

Basic SSA: траекторная матрица

ullet Траекторная матрица L imes K ряда $F_N = (x_0, x_1, \dots, x_{N-1}),$ L + K = N + 1:

$$\mathbf{H} = \begin{pmatrix} x_0 & x_1 & \cdots & x_{K-1} \\ x_1 & \ddots & & \vdots \\ \vdots & & \ddots & x_{L+K-2} \\ x_{L-1} & \cdots & x_{L+K-2} & x_{L+K-1} \end{pmatrix}.$$

- ullet rank $\mathbf{H}=d$, где d порядок рекуррентной формулы, задающей F_N .
- Е аналогичная траекторная матрица помехи.

Basic SSA: восстановление сигнала

- f H сумма d главных элементарных матриц сингулярного разложения ${f H}(\delta)={f H}+\delta{f E}.$
- $oldsymbol{\hat{\mathrm{F}}}_N(\delta) = \mathcal{S}\widehat{\mathbf{H}}$ восстановленный сигнал (диагональное усреднение).
- Ошибка восстановления траекторной матрицы:

$$\Delta_{\delta}(\mathbf{H}) = \widehat{\mathbf{H}} - \mathbf{H}.$$

• Максимальная ошибка восстановления исходного сигнала:

$$\begin{split} \|\widehat{\mathbf{F}}_{N}(\delta) - \mathbf{F}_{N}\|_{\max} &= \max_{0 \leq i \leq N-1} |\widehat{f}_{i}(\delta) - f_{i}| = \\ &= \max_{0 \leq i \leq N-1} |\mathcal{S}(\Delta_{\delta}(\mathbf{H}))_{[i]}|. \end{split}$$

Формализация задачи: обозначения

- \mathbf{H} траекторная матрица сигнала \mathbf{F}_N , $\operatorname{rank} \mathbf{H} = d$.
- $oldsymbol{eta} \mathbf{H}(\delta)$ траекторная матрица возмущенного сигнала $\mathbf{F}_N(\delta).$
- $\bullet \ \mathbf{A} = \mathbf{H}\mathbf{H}^{\mathrm{T}}, \quad \mathbf{A}(\delta) = \mathbf{H}(\delta)\mathbf{H}^{\mathrm{T}}(\delta).$
- \mathbb{U}_0^{\perp} подпространство, порожденное собственными векторами \mathbf{A} , соответствующими ненулевым собственным числам (размерность d).
- $\mathbb{U}_0^{\perp}(\delta)$ подпространство, образованное d главными собственными векторами матрицы $\mathbf{A}(\delta)$.
- \mathbf{P}_0^\perp и $\mathbf{P}_0^\perp(\delta)$ соответственно операторы ортогонального проектирования на \mathbb{U}_0^\perp и $\mathbb{U}_0^\perp(\delta)$.

Формализация задачи

В. В. Некруткин (SII, 2010).

Ошибка восстановления траекторной матрицы:

$$\Delta_{\delta}(\mathbf{H}) = \widehat{\mathbf{H}} - \mathbf{H} = \left(\mathbf{P}_{0}^{\perp}(\delta) - \mathbf{P}_{0}^{\perp}\right)\mathbf{H}(\delta) + \delta\mathbf{P}_{0}^{\perp}\mathbf{E}.$$

Нас интересует близость исходного и восстановленного сигналов при увеличении длины ряда $N \to \infty.$

Точность аппроксимации сигнала F_N зависит от $\|\mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\|$.

Техника: теорема Като

$$\mathbf{B}(\delta) = \mathbf{A}(\delta) - \mathbf{A} = \mathbf{H}(\delta)\mathbf{H}(\delta)^{\mathrm{T}} - \mathbf{H}\mathbf{H}^{\mathrm{T}}.$$
 μ_{\min} — минимальное положительное собственное число $\mathbf{H}\mathbf{H}^{\mathrm{T}}.$

Teopeмa (T. Kato, Perturbation theory for linear operators, 1966)

Если существует такое δ_0 , что при любом $\delta\in(-\delta_0,\delta_0)$ выполнено неравенство $\|\mathbf{B}(\delta)\|/\mu_{\min}<1/2$, то

$$\mathbf{P}_0^{\perp}(\delta) = \mathbf{P}_0^{\perp} + \sum_{n=1}^{\infty} \delta^n \mathbf{V}_0^{(n)},$$

где $\mathbf{V}_0^{(n)}$ — некоторые матрицы, выражающиеся через траекторные матрицы ряда и помехи.

Цель работы

Для сигнала
$$f_n=a_1^n+ca_2^n$$
 с $a_1>a_2>1$ и $c\neq 0$ и помехи $\mathbf{E}_N=(1,1,\ldots,1)$ при $L,K\to\infty$

- Уточнить условие существования разложения возмущенного оператора проектирования, получаемое из $\|{f B}(\delta)\|/\mu_{\min} < 1/2;$
 - Для этих рядов требование $\|\mathbf{B}(\delta)\|/\mu_{\min} < 1/2$ при грубых оценках нормы $\|\mathbf{B}(\delta)\|$ порождает условие $a_1 < a_2^2$.
- ullet Исследовать асимптотику $\|\mathbf{P}_0^\perp(\delta) \mathbf{P}_0^\perp\|$;
- Исследовать асимптотическое поведение ошибки восстановления исходного ряда F_N .

Результаты

$$L, K \to \infty$$
, $a_1 < a_2^2$.

В. В Некруткин, SII, 2010	Новые результаты
$\ \mathbf{B}(\delta)\ /\mu_{\min} = O\left(\sqrt{LK}(a_1/a_2^2)^N\right)$	$\ \mathbf{B}(\delta)\ /\mu_{\min} \sim \delta \beta\sqrt{L}(a_1/a_2^2)^N$
$\ \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\ = O\left(\sqrt{LK}(a_1/a_2^2)^N\right)$	$\ \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\ = O\left(\sqrt{L}a_2^{-N}\right)$ при $a_1 < a_2^2 \le a_1^{4/3};$ $\ \mathbf{P}_0^{\perp}(\delta) - \mathbf{P}_0^{\perp}\ \sim \delta d\sqrt{L}a_2^{-N}$ при $a_1 < a_2^{3/2}.$

Здесь d, β — константы, выражающиеся через a_1, a_2, c .

Результаты: асимптотика нормы разности проекторов

 $\delta \mathbf{V}_0^{(1)}$ — линейный член разложения возмущенного оператора проектирования $\mathbf{P}_0^\perp(\delta)$.

Теорема

При $L, K \to \infty$

$$\left\|\mathbf{V}_0^{(1)}\right\| \sim d \frac{\sqrt{L}}{a_2^N},$$

где d — константа, выраженная через a_1, a_2, c .

Следствие

Если $a_1 < a_2^{3/2}$, то $\delta \mathbf{V}_0^{(1)}$ — главный член разности $\mathbf{P}_0^\perp(\delta) - \mathbf{P}_0^\perp.$

Результаты. Точность восстановления сигнала F_N

- ullet $\widehat{F}_N=(\widehat{f}_0,\widehat{f}_1,\ldots,\widehat{f}_{N-1})$ аппроксимация сигнала $F_N.$
- ullet $\|\widehat{F}_N F_N\|_{\max} = \max_{1 \leq i < N} |\widehat{f}_i f_i|$ максимальная ошибка воостановления.

Теорема

Если
$$a_1^{3/2}/a_2^2 < 1$$
 и $L,K o \infty$, то

$$|\widehat{f}_{N-1} - f_{N-1}| = |\delta| r_{LK} + o(1),$$

где $r_{LK} o r_{\infty} \in \mathbb{R}$.

Замечание

Вообще говоря, $r_\infty \neq 0$. В этом случае $\|\widehat{F}_N - F_N\|_{\max} \nrightarrow 0$ при $L, K \to \infty$.

Пример. Значения r_{∞}

Рис.: Значение r_{∞} в зависимости от a_2 для нескольких a_1 .

Численный пример. Ошибки восстановления в последней точке ряда

$$D_{SSA}(N) = \frac{|\widehat{f}_{N-1} - f_{N-1}|}{|\delta|r_{\infty}}.$$

Рис.: Нормированная ошибка восстановления последнего элемента ряда. Параметры: $a_1 = 1.15$, $a_2 = 1.13$, c = -2, $L = \lfloor (N+1)/2 \rfloor$, $\delta = 1$.

Численный пример. Ошибки восстановления

Рис.: Ошибка восстановления i-го элемента ряда $0 \le i < N$ при N=1500,2000. Параметры: $a_1=1.01, a_2=1.0095, c=-1, \delta=1, L=\lfloor (N+1)/2 \rfloor$.

Итог

Для сигнала $f_n = a_1^n + ca_2^n$ с $a_1 > a_2 > 1$ и $c \neq 0$ и константной помехи при $L, K \to \infty$:

- Доказано, что с помощью точной оценки $\|\mathbf{B}(\delta)\|/\mu_{\min}$ нельзя ослабить условие $a_1 < a_2^2$.
- ullet Уточнена оценка $ig\| \mathbf{P}_0^\perp(\delta) \mathbf{P}_0^\perp ig\|.$
- ullet Доказано, что полученная оценка точна при $a_1 < a_2^{3/2}.$
- Доказано, что ошибка восстановления, вообще говоря, не стремится к нулю.