$$H(X) \le \log_2(|suppX|)$$

$$\begin{split} H(X,Y) &= -\sum_{i,j} p(a_i,b_j) \log_2 p(a_i,b_j) \\ &= -\sum_{i,j} p(a_i,b_j) \log_2 p(a_i) p(b_j|a_i) \\ &= -\sum_{i,j} p(a_i,b_j) [\log_2 p(a_i) + \log_2 p(b_j|a_i)] \\ &= -\sum_{i,j} p(a_i,b_j) \log_2 p(a_i) - \sum_{i,j} p(a_i,b_j) \log_2 p(b_j|a_i) \\ &= -\sum_{i,j} p(a_i,b_j) \log_2 p(a_i) - \sum_{i,j} p(a_i).p(b_j|a_i) \log_2 p(b_j|a_i) \\ &= -\sum_{i=1}^m p(a_i) \log_2 p(a_i) \sum_{j=1}^n p(b_j|a_i) + H(Y|X) \\ &= -\sum_{i=1}^m p(a_i) \log_2 p(a_i) + H(Y|X) = H(X) + H(Y|X) \end{split}$$
 (Do $\sum_{j=1}^n p(b_j|a_i) = \sum_{j=1}^n \frac{P(b_j.a_i)}{P(a_i)} = \frac{1}{P(a_i)} \sum_{j=1}^n P(b_j.a_i) = \frac{1}{P(a_i)} P(a_i) = 1$) $H(Y|X) \le -\sum_{i=1}^d Prob(X \in E_j) \log_2 j.$

$$H(X,Y) = \sum_{j=1}^{d} \sum_{a \in E_j} p(a)H(Y|a)$$

$$\leq \sum_{j=1}^{d} \sum_{a \in E_j} p(a)\log_2 j$$

$$= \sum_{j=1}^{d} Prob(X \in E_j)\log_2 j.$$
(1)

Định lý 1. Đặt $M=(m_{ij})$ là ma trận $n\times n$ chỉ chứa hai giá trị 0,1 và đặt $d_1,...,d_n$ là tổng các hàng của ma trận M, hay $d_i=\sum_{j=1}^n m_{ij}$. Khi đó:

$$perM \le \prod_{i=1}^{n} (d_i!)^{1/d_i}.$$

Chứng minh: Xét $G=(U\cup V,E)$ là đồ thị hai phía tương ứng với ma trận M, trong đó d_i là bậc tương ứng của các đỉnh u_i , và kí hiệu Σ là tập các perfect matching của G. Vì $perM=m(G)=|\Sigma|$ nên thay vì tìm cận trên cho perM như định lý 1, ta sẽ tìm cận trên cho $|\Sigma|$. Giả sử $|\Sigma|\neq 0$ và mỗi $\sigma\in\Sigma$ là một hoán vị tương ứng $\sigma(1)\sigma(2)....\sigma(n)$ của các chỉ số. Vì vậy, tương ứng với mỗi giá trị $u_i\in U$ là một giá trị $v_{\sigma(i)}\in U$ theo phép song ánh σ

Ý tưởng ban đầu là chọn σ một cách ngẫu nhiên và xét biến ngẫu nhiên $X=(X_1,X_2,..,X_n)=(\sigma(1),\sigma(2),...,\sigma(n)).$

Theo mệnh đề (A),

$$H(\sigma(1), \sigma(2),, \sigma(n)) = \log_2(|\Sigma|)$$

Do đó chỉ cần chỉ ra

$$H(\sigma(1), ..., \sigma(n)) \le \log_2(\prod_{i=1}^n (d_i!)^{1/d_i}) = \sum_{i=1}^n \frac{1}{d_i} \log_2(d_i!).$$
 (2)

Sử dụng mệnh đề (B), ta có

$$H(\sigma(1), \sigma(2),, \sigma(n)) = \sum_{i=1}^{n} H(\sigma(\sigma_i)|\sigma(1), \sigma(2),, \sigma(i-1))$$
(3)

Ý tưởng của Radhakrishnan là xét các đỉnh $u_1, u_2,, u_n$ theo một thứ tự ngẫu nhiên τ , với xác suất là như nhau và bằng $\frac{1}{n!}$, và lấy giá trị kì vọng của các entropy. Nói cách khác, ta xét các cặp matching theo thứ tự $\sigma(\tau(1)), \sigma(\tau(2)),, \sigma(\tau(n))$. Xét τ cố định, khi đó $k_i = \tau^{-1}(i)$ được hiểu là vị trí của u_i theo thứ tự ngẫu nhiên τ là k_i . Khi đó, biểu thức (2) trở thành:

$$H(\sigma(1), ..., \sigma(n)) = \sum_{i=1}^{n} H(\sigma(i)|\sigma(\tau(1)), ..., \sigma(\tau(k_i - 1)))$$

Khi đó

$$H(\sigma(1), ..., \sigma(n)) = \frac{1}{n!} \sum_{\tau} \left(\sum_{i=1}^{n} H(\sigma(i) | \sigma(\tau(1)), ..., \sigma(\tau(k_i - 1))) \right)$$

Xét biểu thức

$$H(\sigma(i)|\sigma(\tau(1)),...,\sigma(\tau(k_i-1))) \tag{4}$$

Để tìm cận trên cho , ta sẽ sử dụng mệnh đề (C), áp dụng với biến ngẫu nhiên $X = \left(\sigma(\tau(1)),...,\sigma(\tau(k_i-1))\right)$ và $Y = \sigma(i)$. Với mỗi σ đặt $N_i(\sigma,\tau)$ $\sigma(\tau_1),\sigma(\tau_2),....,\sigma(\tau_n)$ $H(\sigma(\tau_1),...,\sigma(\tau_n)) = \sum_{i=1}^n H(\sigma(\tau_i)|\sigma(\tau_1),...,\sigma(\tau_{k_i-1}))$ $H(\sigma(\tau_1),...,\sigma(\tau_n)) = \frac{1}{n!} \sum_{\tau} \left(\sum_{i=1}^n H(\sigma(\tau_i)|\sigma(\tau_1),...,\sigma(\tau_{k_i-1}))\right)$ $\Theta(n^{\log_2 2})$