

Chapter 3 Graphs

last update, march 15 2011

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

3.1 Basic Definitions and Applications

Undirected Graphs

Undirected graph. G = (V, E)

- V = nodes.
- E = edges between pairs of nodes.
- Captures pairwise relationship between objects.
- Graph size parameters: n = |V|, m = |E|.

Some Graph Applications

Graph	Nodes	Edges		
transportation	street intersections	highways		
communication	computers	fiber optic cables		
World Wide Web	web pages	hyperlinks		
social	people	relationships		
food web	species	predator-prey		
software systems	functions	function calls		
scheduling	tasks	precedence constraints		
circuits	gates	wires		

World Wide Web

Web graph.

• Node: web page.

■ Edge: hyperlink from one page to another.

Ecological Food Web

Food web graph.

- Node = species.
- Edge = from prey to predator.

Reference: http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.giff

Graph Representation: Adjacency Matrix

Adjacency matrix. n-by-n matrix with $A_{uv} = 1$ if (u, v) is an edge.

- Two representations of each edge.
- Space proportional to n².
- Checking if (u, v) is an edge takes $\Theta(1)$ time.
- Identifying all edges takes $\Theta(n^2)$ time.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7	0		1					
8	0	0	1	0	0	0	1	0

Graph Representation: Adjacency List

Adjacency list. Node indexed array of lists.

- Two representations of each edge.
- Space proportional to m + n.
- Checking if (u, v) is an edge takes O(deg(u)) time.
- Identifying all edges takes $\Theta(m + n)$ time.

degree = number of neighbors of u

Paths and Connectivity

Def. A path in an undirected graph G = (V, E) is a sequence P of nodes $v_1, v_2, ..., v_{k-1}, v_k$ with the property that each consecutive pair v_i, v_{i+1} is joined by an edge in E.

Def. A path is simple if all nodes are distinct.

Def. An undirected graph is connected if for every pair of nodes u and v, there is a path between u and v.

Cycles

Def. A cycle is a path v_1 , v_2 , ..., v_{k-1} , v_k in which $v_1 = v_k$, k > 2, and the first k-1 nodes are all distinct.

cycle C = 1-2-4-5-3-1

Trees

Def. An undirected graph is a tree if it is connected and does not contain a cycle.

Theorem. Let G be an undirected graph on n nodes. Any two of the following statements imply the third.

- G is connected.
- G does not contain a cycle.
- G has n-1 edges.

Rooted Trees

Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.

Importance. Models hierarchical structure.

a tree

the same tree, rooted at 1

Phylogeny Trees

Phylogeny trees. Describe evolutionary history of species.

GUI Containment Hierarchy

GUI containment hierarchy. Describe organization of GUI widgets.

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

3.2 Graph Traversal

Connectivity

s-t connectivity problem. Given two node s and t, is there a path between s and t?

s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Applications.

- Friendster. ←
- Maze traversal.
- ▲ Kevin Bacon number.
- Fewest number of hops in a communication network.

Small world phenomenon: any individual involved in the Hollywood, California film industry can be linked through his or her film roles to actor Kevin Bacon within six steps

was previously known as a social networking website, now is a social gaming site, mostly Asian countries

2013 Oscar for best picture: Argo

Daniel Day-Lewis in "Lincoln"

Jennifer Lawrence in "Silver Linings Playbook"

"Life of Pi" Ang Lee

Breadth First Search

BFS intuition. Explore outward from s in all possible directions, adding nodes one "layer" at a time.

$S \subset L_1 \subset L_2 \subset \cdots \subset L_{n-1}$

BFS algorithm.

- $L_0 = \{ s \}.$
- L_1 = all neighbors of L_0 .
- L_2 = all nodes that do not belong to L_0 or L_1 , and that have an edge to a node in L_1 .
- L_{i+1} = all nodes that do not belong to an earlier layer, and that have an edge to a node in L_i .

Theorem. For each i, L_i consists of all nodes at distance exactly i from s. There is a path from s to t iff t appears in some layer.

Breadth First Search

Property. Let T be a BFS tree of G = (V, E), and let (x, y) be an edge of G. Then the level of x and y differ by at most 1.

Breadth First Search: Analysis

Theorem. The above implementation of BFS runs in O(m + n) time if the graph is given by its adjacency representation.

Pf.

- Easy to prove $O(n^2)$ running time:
 - at most n lists L[i]
 - each node occurs on at most one list; for loop runs ≤ n times
 - when we consider node u, there are \leq n incident edges (u, v), and we spend O(1) processing each edge
- Actually runs in O(m + n) time:
 - when we consider node u, there are deg(u) incident edges (u, v)
 - total time processing edges is $\Sigma_{u \in V} \deg(u) = 2m$

each edge (u, v) is counted exactly twice in sum: once in deg(u) and once in deg(v)

Connected Component

Connected component. Find all nodes reachable from s.

Connected component containing node $1 = \{1, 2, 3, 4, 5, 6, 7, 8\}$.

Connected Component

Connected component. Find all nodes reachable from s.

R will consist of nodes to which s has a path Initially $R = \{s\}$ While there is an edge (u,v) where $u \in R$ and $v \notin R$ Add v to R Endwhile

it's safe to add v

Theorem. Upon termination, R is the connected component containing s.

- BFS = explore in order of distance from s.
- DFS = explore in a different way.

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

• Node: pixel.

■ Edge: two neighboring lime pixels.

■ Blob: connected component of lime pixels.

recolor lime green blob to blue Tux Paint Magic Tools Colors

Flood Fill

Flood fill. Given lime green pixel in an image, change color of entire blob of neighboring lime pixels to blue.

• Node: pixel.

■ Edge: two neighboring lime pixels.

■ Blob: connected component of lime pixels.

recolor lime green blob to blue Tux Paint Magic Tools Thick Colors Click in the picture to fill that area with color.

Implementing Breadth-first Search

- Maintain an array Discovered of length n.
- Set Discovered[v] = true when the search sees v.
- Constructs layers of nodes L₁, L₂, ... in lists L[i].

```
Set Discovered[s]=true and Discovered[v]=false for all other v
Initialize L[0] to consist a single element s
Set the layer counter i=0
Set the current BFS tree T=\emptyset
While L[i] is not empty
   Initialize an empty list L[i+1]
   For each node u in L[i]
      Consider each edge (u,v) incident to u
      If Discovered[v]=false then
         Set Discovered[v]=true
         Add edge (u,v) to the tree T
         Add v to the list L[i+1]
      Endif
   Endfor
   Increment i by one
Endwhile
```

Implementing Breadth-first Search

lacktriangle This implementation runs in O(m+n)-time if the graph is given by the adjacency list representation.

Proof:

- Easy to bound by O(n²)
- Each node occurs on at most one list.
 - -> For loop runs at most n times.
- Consider a node u: There can be at most n edges incident to u.
 - \rightarrow Total time spent on one iteration of for is at most O(n).
- To get the improved time O(n+m):
- Let n_u denote the degree of node u
- Time spent in for loop considering a node is $O(n_u)$
- The total over all nodes $O(\sum_{u} n_{u}) = O(m)$
- We need additional time to set up lists and manage the array
 Discovered. (However it is order of n and n is smaller than m)

Implementing Breadth-first Search

- We can implement the algorithm using a single list that is maintained as a queue.
- Each time a node is discovered it is added to the end of queue.
- The algorithm always processes the edges of the node that is first in the queue.
- lacktriangle All nodes in layer L_i appear in the queue ahead of all nodes in layer L_{i+1}

Implementing Depth-first Search

Pay attention to Figure 3.2 and Figure 3.5

- Maintain the nodes to be processed in a stack.
- When DFS explores a node u, it scans the neighbors of u until it finds the first not-yet-explored node v, and then shifts attention to exploring v.
- Use an array Explored.
- Set Explored[v]=true when the v's incident edges are scanned. i.e. it is popped from the stack.

```
Dftree =\emptyset
//Keep in the stack the node u and its parent p(u)
// p(u) the node that caused u to be put in the stack
Initialize S to be a stack with one element [\emptyset,s]
While S is not empty
   Take a node u from S
   If Explored[u]=false then
      Set Explored[u]=true
      //p(u):parent of u
      add (p(u),u) to Dftree
      For each edge (u,v) incident to u
         Add v to the stack S
      Enfor
   Endif
Endwhile
```

DFS Construction Example

DFS Construction Example

DFS Construction Example

Implementing Depth-first Search

- The main step is to add and delete nodes to and from the stack.
- To bound the running time we need to bound the number of these operations.
- So, count the number of nodes added to stack.

How many elements get added to 5?

- Let n_v denote the degree of node v.
- v will be added to the stack every time one of its adjacent nodes is explored.
- So the total number of nodes added is at most 2m.

This implementation of DFS runs in time O(m+n) if the graph is given by the adjacency list representation.

3.4 Testing Bipartiteness

Bipartite Graphs

Def. An undirected graph G = (V, E) is bipartite if the nodes can be colored red or blue such that every edge has one red and one blue end.

Applications.

- Stable marriage: men = red, women = blue.
- Scheduling: machines = red, jobs = blue.

a bipartite graph

Testing Bipartiteness

Testing bipartiteness. Given a graph G, is it bipartite?

- Many graph problems become:
 - easier if the underlying graph is bipartite (matching)
 - tractable if the underlying graph is bipartite (independent set)
- Before attempting to design an algorithm, we need to understand structure of bipartite graphs.

a bipartite graph G

another drawing of G

An Obstruction to Bipartiteness

Lemma. If a graph G is bipartite, it cannot contain an odd length cycle.

Pf. Not possible to 2-color the odd cycle, let alone G.

not bipartite (not 2-colorable)

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (i)

- Suppose no edge joins two nodes in the same layer.
- This implies all edges join nodes on different levels.
- Bipartition: red = nodes on odd levels, blue = nodes on even levels.

Bipartite Graphs

Lemma. Let G be a connected graph, and let L_0 , ..., L_k be the layers produced by BFS starting at node s. Exactly one of the following holds.

- (i) No edge of G joins two nodes of the same layer, and G is bipartite.
- (ii) An edge of G joins two nodes of the same layer, and G contains an odd-length cycle (and hence is not bipartite).

Pf. (ii)

- Suppose (x, y) is an edge with x, y in same level L_{j} .
- Let z = lca(x, y) = lowest common ancestor.
- Let L_i be level containing z.
- Consider cycle that takes edge from x to y, then path from y to z, then path from z to x.
- Its length is 1 + (j-i) + (j-i), which is odd. ■

 (x,y) path from path from y to z z to x

Bipartite Graphs: Designing the Algorithm

- It can be implemented on top of BFS.
- Employ an additional array, *Color*, which will keep the colors of the nodes.
- While moving outward from s, color nodes (blue/red) as soon as we first encounter them.
- ■At the end check if there is an edge of which ends having the same color. If so the graph is not bipartite.

Bipartite Graphs: Designing the Algorithm

```
Set Discovered[s]=true and Discovered[v]=false for all other v
Set Color[s]=red and Color[v]=black for all other v
Initialize L[0] to consist a single element s
Set the layer counter i=0
Set the current BFS tree T=\emptyset
While L[i] is not empty
   Initialize an empty list L[i+1]
  For each node u in L[i]
      Consider each edge (u,v) incident to u
      If Discovered[v]=false then
         Set Discovered[v]=true
         If (i+1) is odd then
            Set Color[v]=blue
           else
            Set Color[v]=red
         Endif
         Add edge (u,v) to the tree T
         Add v to the list L[i+1]
      Endif
  Endfor
   Increment i by one
Endwhile
Check endpoints(e) for all edges e in E
```

3.5 Connectivity in Directed Graphs

Directed Graphs

Directed graph. G = (V, E)

■ Edge (u, v) goes from node u to node v.

Ex. Web graph - hyperlink points from one web page to another.

- Directedness of graph is crucial.
- Modern web search engines exploit hyperlink structure to rank web pages by importance.

Graph Search

Directed reachability. Given a node s, find all nodes reachable from s.

Directed s-t shortest path problem. Given two node s and t, what is the length of the shortest path between s and t?

Graph search. BFS extends naturally to directed graphs.

Web crawler. Start from web page s. Find all web pages linked from s, either directly or indirectly.

Strong Connectivity

Def. Node u and v are mutually reachable if there is a path from u to v and also a path from v to u.

Def. A graph is strongly connected if every pair of nodes is mutually reachable.

Lemma. Let s be any node. G is strongly connected iff every node is reachable from s, and s is reachable from every node.

Pf. \Rightarrow Follows from definition.

Pf. ← Path from u to v: concatenate u-s path with s-v path.

Path from v to u: concatenate v-s path with s-u path.

ok if paths overlap

Strong Connectivity

Theorem. Can determine if G is strongly connected in O(m + n) time. Pf.

- Pick any node s.
- Run BFS from s in G. reverse orientation of every edge in G
- Run BFS from s in G^{rev} . (to check if the other nodes can reach it)
- Return true iff all nodes reached in both BFS executions.
- Correctness follows immediately from previous lemma.

strongly connected

not strongly connected

3.6 DAGs and Topological Ordering

Def. An DAG is a directed graph that contains no directed cycles.

Ex. Precedence constraints: edge (v_i, v_j) means v_i must precede v_j .

Def. A topological order of a directed graph G = (V, E) is an ordering of its nodes as $v_1, v_2, ..., v_n$ so that for every edge (v_i, v_j) we have i < j.

Precedence Constraints

Precedence constraints. Edge (v_i, v_j) means task v_i must occur before v_j .

Applications.

- Course prerequisite graph: course v_i must be taken before v_j .
- Compilation: module v_i must be compiled before v_j . Pipeline of computing jobs: output of job v_i needed to determine input of job v_i .

Lemma. If G has a topological order, then G is a DAG.

Pf. (by contradiction)

- Suppose that G has a topological order v_1 , ..., v_n and that G also has a directed cycle C. Let's see what happens.
- Let v_i be the lowest-indexed node in C, and let v_j be the node just before v_i ; thus (v_i, v_i) is an edge.
- By our choice of i, we have i < j.
- On the other hand, since (v_j, v_i) is an edge and $v_1, ..., v_n$ is a topological order, we must have j < i, a contradiction. ■

the supposed topological order: $v_1, ..., v_n$

Lemma. If G has a topological order, then G is a DAG.

- Q. Does every DAG have a topological ordering?
- Q. If so, how do we compute one?

Lemma. If G is a DAG, then G has a node with no incoming edges.

Pf. (by contradiction)

- Suppose that G is a DAG and every node has at least one incoming edge. Let's see what happens.
- Pick any node v, and begin following edges backward from v. Since v has at least one incoming edge (u, v) we can walk backward to u.
- Then, since u has at least one incoming edge (x, u), we can walk backward to x.
- Repeat until we visit a node, say w, twice.
- Let C denote the sequence of nodes encountered between successive visits to w. C is a cycle. ■

Lemma. If G is a DAG, then G has a topological ordering.

Pf. (by induction on n)

- Base case: true if n = 1.
- Given DAG on n > 1 nodes, find a node v with no incoming edges.
- \blacksquare G { v } is a DAG, since deleting v cannot create cycles.
- By inductive hypothesis, $G \{v\}$ has a topological ordering.
- Place v first in topological ordering; then append nodes of $G \{v\}$
- in topological order. This is valid since v has no incoming edges.

To compute a topological ordering of G: Find a node v with no incoming edges and order it first Delete v from GRecursively compute a topological ordering of $G-\{v\}$ and append this order after v

Topological Sorting Algorithm: Running Time

Theorem. Algorithm finds a topological order in O(m + n) time.

Pf.

- Maintain the following information:
 - count [w] = remaining number of incoming edges
 - S = set of remaining nodes with no incoming edges
- Initialization: O(m + n) via single scan through graph.
- Update: to delete v
 - remove v from S
 - decrement count[w] for all edges from v to w, and add w to S if count[w] hits 0
 - this is O(1) per edge •