Indoor Localisation with Sensor fusion of PDR and single RTT Wi-FI

Annie Marandi CS19M009 Sai Rohitth Chiluka ED18B027

Problem definition

- Indoor localization without using trilaterization.
- We are only considering Single access point for Wi-Fi RTT.
- > Initial position is also known.
- Position of AP is fixed.

Application Examples

Supermarket Cart Location Analysis

➤ Localization for the Visually Impaired in Public Places

Getting IMU Data

- ➤ Why we used PDR?
 - TYPE_LINEAR_ACCELERATION
 - Low-pass filter and high-pass filter
 - Double integration
 - Error accumulation

PDR

$$X_{t} = X_{t-1} + L_{t} \begin{bmatrix} sin(\theta_{t}) \\ cos(\theta t) \end{bmatrix}$$

Where, L is the step length

and, θ is the heading w.r.t phone

Step length

$$L = K\sqrt[4]{a_{max} - a_{min}}$$

Where, K = 0.68 - 0.37 * v + 0.15 *pow(v,2)

and, v is the average step velocity

Step detect

Sensor fusion using complementary filter

Acceleration

Raw acceleration readings

Acceleration remove gravity with LPF

RTT range simulation

- Gaussian noise added with mean 0 and std. Dev 0.5
- Effect of Position of AP
 - Any point on perpendicular at the ends
 - On the circumference
- Effect of Radius of circle
 - Bigger circle better
- Effect of update frequency
 - updating less often better!

Single RTT Localization

- Infinite solutions problem
- Using PDR estimate position and find the closest point to this estimate:

$$x = x_a + (x_p - x_a) * r/d$$

$$y = y_a + (y_{pdr} - y_a) * r/d$$

- Downside
 - Bad estimate if drift overpowers.

Kalman filter

Assumes all the noise is gaussian and all the models are linear.

Algorithm Kalman_filter($\mu_{t-1}, \Sigma_{t-1}, u_t, z_t$):

$$\begin{split} \bar{\mu}_t &= A_t \; \mu_{t-1} + B_t \; u_t \\ \bar{\Sigma}_t &= A_t \; \Sigma_{t-1} \; A_t^T + R_t \\ K_t &= \bar{\Sigma}_t \; C_t^T (C_t \; \bar{\Sigma}_t \; C_t^T + Q_t)^{-1} \\ \mu_t &= \bar{\mu}_t + K_t (z_t - C_t \; \bar{\mu}_t) \\ \Sigma_t &= (I - K_t \; C_t) \; \bar{\Sigma}_t \\ return \; \mu_t, \Sigma_t \end{split}$$

- Adjustment to make the model stay linear.
- Achieving different update frequencies
 - Button
- > Downside
 - Measurement model may not be linear (EKF)

Bias variance estimation

- Experiment procedure
 - Step length

Errors in each step length — Almost Gaussian

Orientation

Downside

Errors in step length and step detect combined

Walking simulation and post error analysis

- For the line each step is taken to be 1m and and every 3m the RTT reading is also taken.
- ➤ For the circle each step is taken as 1.73m, and a rotation of 20 degrees. Every 60 degrees the RTT is also taken into account.
- Drift simulation
 - Sample output

$$(x,y,\theta)(v_{xx},v_{yy},v_{\theta\theta})$$

Mean and max localization errors are calculated

Android App

Thank You!