細径空圧筋を用いた外骨格生物模倣ロボットの開発

Development of an Exoskeletal Biomimetic Robot Using Fine Pneumatic Muscles

研究者 濱口 紘生 指導教員 中西 大輔

Keywords: McKibben Pneumatic Actuater, Exoskeleton, Biomimetic Robot

1. 緒言

代表的な人工筋肉として, 圧縮空気を印加すること により骨格筋のように収縮する McKibben 型人工筋肉 (MPA) があげられる. 従来は直径が数十 mm 程度のも のが多かったが、近年では数 mm 程度の MPA が注目 を集めている1). その細さを生かして小さい筋肉、あ るいは集積によって単純な紡錘形以外の筋肉を表現可能 なことから, 筋骨格系ロボットにおいて特盛んに用いら れている 1). 一方で、甲殻類をはじめとする外骨格を有 する生物模倣ロボットについては, ワイヤ駆動や関節に サーボモータを配置したものが主流であった²⁾. これは 外骨格内部にアクチュエータを配置するのが困難なため である. 細径 MPA であれば骨格内部にアクチュエータ を配置することが可能であり、実際の生物に近い構成で ロボットを作成することが可能である. そこで本研究で は外骨格生物のうち甲殻類の蟹をモデルに、実際の蟹の 筋肉と関節の構造を参考にして細径 MPA を使用した蟹 の歩脚ロボットの開発に取り組む.

2. MPA および生物モデルについて

2.1 **細径 MPA** について

従来の MPA と細径 MPA を図1に示す. 細径 MPA の特徴として以下の点が挙げられる. 1つ目に細くて軽 量のため限られた狭いスペースへの配置と集積が可能, 2つ目に集積化により収縮量増大させること、3つ目に 集積化により羽状筋のような複雑な筋肉の再現が可能で あることである.

2.2 外骨格生物のモデルについて

蟹などの甲殻類の脚は鋏脚と歩脚の5対10本からな る. 脚は7つの節から構成されており、それぞれ甲に近 いほうから, 底節, 基節, 座節, 長節, 腕節, 前節, 指 節と呼ばれている3).長節以降の節は直交しており、手 先は3次元運動することが可能である. また, 甲殻内部 は図2のように筋肉と腱と呼ばれる組織で構成されて いる. 筋繊維の一端は甲殻の内壁に付着し, もう一方は 腱に付着することによって各節を繋げ脚を開閉させてい る. なお底節, 基節, 座節部分は筋配置が複雑なため省 略し、本研究では長節以降の歩脚の再現を目指す.

細径 MPA 作成方法

3.1 MPA の締結方法

昨年度卒業研究では図3の上のように MPA の端部 を PE ラインと呼ばれる釣り糸を巻き付けその部分に 接着剤を塗布することで細径 MPA を作成していた. こ の締結方法では時間がかかり、空気が漏れることがあっ

図 1: MPA の外径

図 2: 蟹の筋構造 3)

図 3: 細径 MPA

図 4: 細径 MPA 端部部品

た. そこで、図3の下のように MPA の端部に O リン グを付けその部分に接着剤を塗布して MPA を試作して みたところ, 製作時間を大幅に短縮でき空気が漏れるこ となく動作することを確認することができた. これによ り MPA 作成時の効率が大幅に上がった.

3.2 MPA の固定部品

生物の筋肉は弛緩する際に筋肉の角度を変化させてい る. それを再現するために図4のような細径 MPA の端 部の部品を作成した. この部品の左側にある穴を回転の 軸にして細径 MPA の角度が自由に変化するという仕組 みになっている. これにより細径 MPA が動作する時に MPA が端部の部品に干渉しないことが確認できた.

結言

本稿では、外骨格生物模倣ロボットの開発をするにあ たって課題となる細径 MPA の作成方法と固定方法に対 していくつかの部品を作製した. しかし、蟹の関節と筋 配置についての再現はできなかった. 今後は、蟹の関節 部分の力学的構造、腱と筋肉の配置の分析を行い、MPA のみで動作可能な3次元3自由度の歩脚ロボットの開発 を目指す.

参考文献

- 脇本修一,細径 McKibben 型人工筋の開発と用途開拓,計測と
- 制御, 57 巻, 11 号, pp.812-815, 2018 CHEN, Xi, et al. Study on the Design and Experimental Research on a Bionic Crab Robot with Amphibious Multi-Modal Movement, Journal of Marine Science and
- Engineering, 10, 12, p.1804, 2022 Vidal-Gadea AG, Belanger JH, Muscular anatomy of the legs of the forward walking crab, Libinia emarginata (Decapoda, Brachyura, Majoidea), Arthropod Struct Dev, May;38(3), pp179-94, 2009