DATA MINING

PREPROCESING AND VISUALIZATION

ABOUT ME

Pablo González de Prado Salas gonzalezdepradosalas.weebly.com

LECTURE OVERVIEW

- 1. Knowing your data
- 2. Measuring data
- 3. Visualizing data
- 4. Cleaning data
- 5. Reducing data
- 6. Transforming data

KNOWING YOUR DATA

DATA OBJECTS

Name	Address	Age
John Doe	Happy Road 2	2
Jane Doe	Happy Road 2	25
Joan Petersen	Spring Way 42	63

 A data set is made of data objects, also known as:

Samples, examples, instances, data points, data tuple...

- Data objects **describe** the entities in a data set
- Each row in a data base is a data object

ATTRIBUTES

Name	Address	Age
John Doe	Happy Road 2	2
Jane Doe	Happy Road 2	25
Joan Petersen	Spring Way 42	63

- An attribute is a data field and describe a characteristic of a data object
- Known as dimension, feature and variable
- Many types!

ATTRIBUTES

	Name	Address	Age
	John Doe	Happy Road 2	2
	Jane Doe	Happy Road 2	25
Data object	Joan Petersen	Spring Way 42	63
	Attribute 1	Attribute 2	Attribute 3

ATTRIBUTE TYPES

Qualitative

Nominal

Binary

Ordinal

- Quantitative
- Not necessarily exclusive!

Name	Age	Position
John Doe	2	None
Jane Doe	25	Student
Joan Petersen	63	Professor

- "Of, relating to, or constituting a name"
- No meaningful order between possible values of the attribute
- Known as categorical or enumeration

•	Can be encoded using integers:
	E.a., none = 0 , student = 1 , professor = 2

• \/	Vhen er	ncoded	as in	tegers,	can	we	use
n	ominal	attribut	tes qu	uantitat	tively	/?	

E.g., calculate differences, averages

Name	Age	Position
John Doe	2	None
Jane Doe	25	Student
Joan Petersen	63	Professor

When encoded as integers,
 can we use nominal attributes
 quantitatively?

E.g., calculate differences, averages

No!

	Name	Age	Position
	John Doe	2	None (0)
	Jane Doe	25	Student (1)
	Joan Petersen	63	Professor (2)
Average:	??	30	Student (1)

Nominal attributes should never be used quantitatively

	Name	Age	Position
	John Doe	2	None (0)
	Jane Doe	25	Student (1)
	Joan Petersen	63	Professor (2)
Average:	??	30	Student (1)
		•	

BINARY ATTRIBUTES

Nominal attribute that can
 only take two possible values

0 usually means attribute absence

1 usually means attribute presence

Name	Likes Coke	Flu-Positive
John Doe	0	1
Jane Doe	0	0
Joan Petersen	1	1

• Known as **Boolean** when 1/0 correspond to **true/false**

BINARY ATTRIBUTES

Name	Likes Coke	Flu-Positive
John Doe	0	1
Jane Doe	0	0
Joan Petersen	1	1

- Symmetric binary
 Both values equally important
- Asymmetric binary

Convention: most relevant outcome takes value 1

ORDINAL ATTRIBUTES

•	Similar to nominal, but possible
	values have a ranking

Drink	Size	Price \$
Juice	small	1.50
Juice	1arge	2.50
Smoothie	medium	1.99
Smoothie	1arge	2.99

NUMERIC: INTERVAL-SCALED

 Numerical attributes measured on an equal-size scale

- Possible values have order (-1 < 2)
- Differences in values may be compared and quantified

NUMERIC: INTERVAL-SCALED

Date	Forecast	Temperature (°C)
03/01/17	Rain	3°
04/01/17	Snow	3°
05/01/17	Sunny	-4°

6° is not two times 3°!

0° is not "null temperature"

NUMERIC: RATIO-SCALED

Date	Forecast	Temperature (K)
03/01/17	Rain	276°
04/01/17	Snow	276°
05/01/17	Sunny	268°

- Numeric attribute with zero-point
- May directly compare values (multiples, ratios)

2.9% decrease in temperature

NUMERIC: INTERVAL VS RATIO

Which example belongs to which category?

- Height
- X-axis position
- Calendar year
- Speed

DISCRETE VS CONTINUOUS ATTRIBUTES

Classify these examples:

- Drink Size
- Height
- Zip-code
- Speed
- Age

DISCRETE VS CONTINUOUS ATTRIBUTES

Technical **definition** may be **tricky**!

https://en.wikipedia.org/wiki/Continuous_and_discrete_variables

Are rational numbers continuous or discrete?

In practice, memory limitations mean no true continuous!

DISCRETE VS CONTINUOUS ATTRIBUTES

Are any intermediate values valid?

MEASURING DATA

CENTRAL TENDENCY

Where do most values fall?

- Mean
- Median
- Mode

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N} = \frac{x_1 + x_2 + \dots + x_N}{N}$$

Most common measure for the "centre" of a data set

	Name	Age	Position
	John Doe	2	None
	Jane Doe	25	Student
	Joan Petersen	63	Professor
	Jerry Perry	53	Janitor
Average:		35.75	_

(2+25+63+53)/4 = 35.75

Any problems here?

Problem: sensitivity to outliers

Trimmed mean

After removing outliers

Subjective: careful with data overcooking!

Weighted mean

Using weights for each value

Weights carry some meaning!

	Name	Age
	Johnny Doe	2
	Little Jane	5
	Jerry Small	3
	Old Samuel	93
Average:	<u>—</u>	25.75

Example from my past!

Average filament length

Picking monomers at random: average length of the filaments where they belong

Average:

W. average:

Filament ID	Length
Filament 1	2
Filament 2	1
Filament 3	5
Filament 4	3
	2.75
_	3.54

CENTRAL TENDENCY—MODE AND MEDIAN

Median

At most half values are strictly less/greater than the median

Mode

Most frequent value

	Name	Age
	Johnny Doe	2
	Little Jane	5
	Jerry Small	3
	Billy Mouse	2
	Patrick Wise	93
Mean:	_	27.2
Median:	_	3
Mode:	_	2

CENTRAL TENDENCY—MODE AND MEDIAN

CENTRAL TENDENCY—MIDRANGE

The midrange is the average of the lowest and highest values in the set

	Name	Age
	Johnny Doe	2
	Little Jane	5
	Jerry Small	3
	Billy Mouse	2
	Patrick Wise	93
Mean:		27.2
Midrange:	_	47.5

SYMMETRIC/ASYMMETRIC DATA

DATA DISPERSION

Range

Difference between largest and smallest value

Quantiles

Divide sorted data into equal-sized sets

- 4-Quantiles (quartiles) Interquartile range, $IQR = Q_3 - Q_1$
- 100-Quantiles (percentiles)

VARIANCE/STANDARD DEVIATION

- Measurement of how close data values tend to be with respect to the mean
- Low standard deviation means values close to the mean

VARIANCE/STANDARD DEVIATION

The **variance** of N observations, x_1, x_2, \dots, x_N , for a numeric attribute X is

$$\sigma^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})^2 = \left(\frac{1}{N} \sum_{i=1}^{N} x_i^2\right) - \bar{x}^2, \tag{2.6}$$

where \bar{x} is the mean value of the observations, as defined in Eq. (2.1). The **standard deviation**, σ , of the observations is the square root of the variance, σ^2 .

DATA DISPERSION

$$s_N = \sqrt{rac{1}{N}\sum_{i=1}^N (x_i - \overline{x})^2}$$

$$s = \sqrt{rac{1}{N-1}\sum_{i=1}^N (x_i-\overline{x})^2}$$

The standard deviation is a **biased** estimator!

Alternate formulas try to correct this

Normally not so important, but be consistent!

DATA DISPERSION—FIVE NUMBER SUMMARY

- No single measure is enough to describe skewed data
- Five-number summary:
 - 1. Minimum value
 - 2. Q₁
 - 3. Median (Q_2)
 - 4. Q₃
 - 5. Maximum value

DATA DISPERSION—FIVE NUMBER SUMMARY

- Its visualization is known as boxplot
- Outlier value:
 - Value that is "distant" from the rest
 - May be errors during data collection or odd behaviours
 - Rule of thumb: outliers are over
 1.5 IQR below Q₁ or above Q₃

- Measures "difference" between two data objects
 - Used in clustering, outlier analysis, nearest-neighbor classification, ...
- Typically returns 0 if two data objects are completely unalike,
 1 if they are the same
- Dissimilarity is the opposite measure

- Different measures for each attribute type!
 - See sections 2.4.2–2.4.5 (!) in the book
- Used when the data object has only one kind of attribute
- What to do with mixed attribute types?

- Measures "difference" between two data objects
 - Used in clustering, outlier analysis, nearest-neighbor classification, ...
- Typically returns 0 if two data objects are completely unalike,
 1 if they are the same
- Dissimilarity is the opposite measure

Suppose the data contains *p* attributes:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

 $\delta_{ij}^{(f)}$ equals 0 if either x_i or x_j are absent for variable f^* , otherwise it is 1.

*Or $x_i = x_j = 0$ and f is asymmetric binary

- If f is interval-based: $d_{ij}^{(f)} = \frac{|x_{if} x_{jf}|}{\max_h x_{hf} \min_h x_{hf}}$, where h runs over all nonmissing objects for variable f.
- If *f* is binary or categorical: $d_{ij}^{(f)} = 0$ if $x_{if} = x_{jf}$; otherwise $d_{ij}^{(f)} = 1$.
- If f is ordinal: compute the ranks r_{if} and $z_{if} = \frac{r_{if}-1}{M_f-1}$, and treat z_{if} as intervalscaled.
- If f is ratio-scaled: either perform logarithmic transformation and treat the transformed data as interval-scaled; or treat f as continuous ordinal data, compute r_{if} and z_{if} , and then treat z_{if} as interval-scaled.

If f is interval-based: $d_{ij}^{(f)} = \frac{|x_{if} - x_{jf}|}{mdx_hx_{hf} - min_h}x_{hf}$, where h runs over all nonmissing objects for variable f.

There are many metrics to calculate distances!

Example: Minkowski distance:

$$\left(\sum_{i=1}^n \left|x_i-y_i
ight|^p
ight)^{1/p}$$

■ If f is ordinal: compute the ranks r_{if} and $z_{if} = \frac{r_{if}-1}{M_f-1}$, and treat z_{if} as intervalscaled.

Size name	Small	Medium	Large	$r_{if} = 2 - 1$
Rank	1	2	3	$M_{if} = 3$
				$z_{c} = \frac{1}{2} =$

If, for object x_i , $x_{if} = medium$, then

$$r_{if} = 2 - 1 = 1$$

$$Z_{if} = \frac{1}{2} = 0.5$$

If f is ratio-scaled: either perform logarithmic transformation and treat the transformed data as interval-scaled; or treat f as continuous ordinal data, compute r_{if} and z_{if} , and then treat z_{if} as interval-scaled.

Is the scale **linear**? Regardless of the strategy, make sure that your similarity is **normalized**.

Any doubts?

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

VISUALIZING DATA

BOXPLOT

Visualization of five-number summary

- Ends of box: Q₁ and Q₃
- Median (Q₂) marked by line in box
- "Whiskers": last value within $Q_1 1.5 \cdot IQR$ and $Q_3 + 1.5 \cdot IQR$ *
- Values without whiskers: outliers
- Variations for whiskers exist!

HISTOGRAMS

Distribution of attribute values

More informative than boxplots

Values divided into buckets/bins

- Bucket range = width
- Typically constant width

Used in data reduction

HISTOGRAMS—BIN SIZE

PIE CHARTS: DON'T!

PIE CHARTS: DON'T!

http://www.businessinsider.com/pie-charts-are-the-worst-2013-6?r=US&IR=T&IR=T

SCATTER PLOTS

- Shows patterns, trends and relationships between attributes
- Attribute values treated as coordinates
- What is correlation?

SCATTER PLOTS—CORRELATION

- Positive correlation:
 y increases as x increases
- Negative correlation
 y decreases as x increases
- Complex correlations possible!

SCATTER PLOTS—CORRELATION

Examples of data sets with no correlation between axes

HEAT MAPS

Attributes over a map

Higher values, higher "temperature"

Attributes are often counts

E.g., number of deaths

HEAT MAPS—HALO 3

Number of deaths

Player navigation

How Microsoft Labs Invented a New Science of Play. Thompson, Wired

OTHER METHODS

Chernoff faces

QUICK NOTE:

QUICK NOTE: AVOID RAINBOW PALETE!

QUICK NOTE: AVOID RAINBOW PALETE!

Peter Kovesi

Ten simple rules for better figures

CLEANING DATA

DATA CLEANING

Missing data

Smoothing

Removal of redundant and inconsistent attributes

Ignore object

May be problematic! Usually done when the class label is missing.

Fill in value

How?

Manually

Time consuming, often not feasible with big sets

Global constant ("unknown")

May confuse algorithms (why do these objects share the value "unknown"?)

Central tendency

Fill in with median (perhaps the mean)

Class tendency

If the object belongs to a known class, we can use the median/mean for this class

Most probable value

Many inference techniques (regression, Bayesian formalism, decision trees...)

All methods for **filling** in missing attributes may **bias** the data

NOISY DATA—SMOOTHING

Smoothing is used to reduce noise in data

Noise is a random error or variance in a measured variable

SMOOTHING

Binning: smoothing by looking at neighbours

- Sort values and distribute them into equal-sized bins
- Smoothing by means
 Replace values with bin mean
- Smoothing by medians
 Replace values with bin median
- Smoothing by boundaries
 Replace values with closest boundary value in the bin

SMOOTHING

Binning: smoothing by looking at neighbours

- Sort values and distribute them into equal-sized bins
- Smoothing by means
 Replace values with bin mean
- Smoothing by medians
 Replace values with bin median
- Smoothing by boundaries
 Replace values with closest boundary value in the bin

Data	8	9	28	15	21	34	4	21	26	29	25	24
Sorted	4	8	9	15	21	21	24	25	26	28	29	34
By means	9	9	9	9	22.8	22.8	22.8	22.8	29.3	29.3	29.3	29.3
By medians	8.5	8.5	8.5	8.5	22.5	22.5	22.5	22.5	28.5	28.5	28.5	28.5
By boundaries	4	4	4	15	21	21	25	25	26	26	26	34

Regression: fit data into a regression function

Danger 1: oversimplify underlying phenomena

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Danger 2: wishful fitting (xkcd 1725)

NOISY DATA—CLUSTERING

- Use clustering to remove outliers
- Divide data into clusters (for example, k-means)
- Data outside a range considered outliers
- More on clusters ahead on the course!

DATA REDUNDANCY

 An attribute is redundant if it can be derived from other attributes

Example: area, width, height

- Visual detection (using scatter plots, etc.)
- Correlation analysis (chapter 3.3.2 (!))

(Chi-square test for nominal data, Pearson's correlation coefficient, etc.)

DATA REDUNDANCY

<u>x1</u>	x2	x3
1	2	2.23
-	_	_,
2	4	7.82
3	6	11

Correlation does not mean redundancy!

REDUCING DATA

- Data analysis using huge data sets can take a long time
- Is it possible to reduce the size while retaining the relevant characteristics of the original set?

Dimensionality reduction: reduce number of attributes

Wavelet transform (3.4.2), principal components (3.4.3), attribute subset selection (3.4.4).

Numerosity reduction: replace data with a smaller-size representation

- Parametric methods create models. Model parameters are stored instead of data. Example: regression.
- Non-parametric methods store a reduced representation of the data. Examples: histograms, clustering, sampling.

Data **compression**: data is transformed into reduced representation. (Think of mp3.) Lossless (original data can be recreated) or lossy (only an approximation can be recovered).

ATTRIBUTE SUBSET SELECTION

- Based on the task at hand we may be able to identify irrelevant attributes
 - Often difficult and time-consuming
 - Danger: accidental removal of relevant attributes
 - Example: student ID for academic results prediction
- Attribute subset selection algorithms

ATTRIBUTE SUBSET SELECTION

- Algorithms require definition of "good" attribute
- Usually statistical significance or another measure like *information gain* (more on this later!)

ATTRIBUTE SUBSET SELECTION

Forward selection	Backward elimination	Decision tree induction
Forward selection Initial attribute set: $\{A_1, A_2, A_3, A_4, A_5, A_6\}$ Initial reduced set: $\{\}$ => $\{A_1\}$ => $\{A_1, A_4\}$ => Reduced attribute set: $\{A_1, A_4, A_6\}$	Initial attribute set:	Initial attribute set:
		=> Reduced attribute set: $\{A_1, A_4, A_6\}$

SAMPLING

- Smaller data set by randomly selecting objects in the set
- Different strategies (3.4.8), examples:
 - SRSWOR: simple random sample without replacement
 - SRSWR: simple random sample with replacement

TRANSFORMING DATA

DATA TRANSFORMATION OVERVIEW

- Smoothing
- Attribute construction

Example: (width, height) → area

- Aggregation
 - Example: daily sales → monthly sales

DATA TRANSFORMATION OVERVIEW

Normalization

Data range reduction (typically [0, 1])

Discretization

Continuous attributes to discretized or nominal attributes.

Example: age to "young, old", or age groups: 0–10, 10–20, etc.

DATA TRANSFORMATION OVERVIEW

Concept hierarchy generation

(street < city < state < country)

Allow data exploration in different scales

Different techniques!

NORMALIZATION

- The relative values of numerical attributes may affect results!

 Attribute in centimeters vs meters
- Can make attributes take more weight in results
- Normalization standardizes the values range
- Different techniques
 - Min-max: values based on minimum and maximum values
 - Z-score: using mean and standard deviation of the attribute
 - Decimal scaling: multiplication by a power of 10

NORMALIZATION

Min-max normalization performs a linear transformation on the original data. Suppose that min_A and max_A are the minimum and maximum values of an attribute, A. Min-max normalization maps a value, v, of A to v' in the range $[new_min_A, new_max_A]$ by computing

$$v' = \frac{v - min_A}{max_A - min_A} (new_max_A - new_min_A) + new_min_A. \tag{2.11}$$

Min-max normalization preserves the relationships among the original data values. It will encounter an "out-of-bounds" error if a future input case for normalization falls outside of the original data range for A.

CONCLUSION

VISUALIZATION AND DESCRIPTIVE STATISTICS

Data my be too complex to evaluate by looking at it!

Visualization helps us to understand the data

It also helps to identify problems!

PREPROCESSING

Real data is not perfect, we need cleaning and preprocessing!

Good data-collection design avoids many problems

GETTING WHAT YOU ASK FOR

Poor questionnaires yield poor data

Worse: tailoring questions to lead answers

Example: Yes, Minister (BBC comedy series)

Were any questions in last week's questionnaire framed?

