1)
$$v_1 = {}^{+}(1,0,-2), \quad v_2 = {}^{+}(0,1,3), \quad v_3 = {}^{+}(2,1,0)$$

 $\phi(e_1) = {}^{+}(-3,-2,0), \quad \phi(e_2) = {}^{+}(6,4,0), \quad \phi(e_3) = {}^{+}(-2,-1,1)$
 $\{v_1,v_2,v_3\} \in \text{lin. indip. } , \rightarrow e \text{ una bose di } \mathbb{R}^3.$
 $\phi(v_4) = \phi(e_4) - 2\phi(e_3) = {}^{+}(1,0,-2) = v_4$
 $\phi(v_2) = \phi(e_2) + 3\phi(e_3) = {}^{+}(9,1,3) = v_2$
 $\phi(v_3) = 2\phi(e_1) + \phi(e_2) = {}^{+}(9,0,0)$
 $\Rightarrow \text{Nella bose } B \in \text{endomorfisms } \phi \text{ ha matrice } B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$
Poiché $e_1 = -3v_1 - 2v_2 + 2v_3$, $e_2 = 6v_1 + 4v_2 - 3v_3$, $e_3 = -2v_1 - v_2 + v_3$,

la matrice di Cambio di base e $C = \begin{pmatrix} -3 & 6 & -2 \\ -2 & 4 & -1 \\ 2 & -3 & 1 \end{pmatrix}$.

- 2) a) $k^2h \geqslant 0 \rightarrow (k \neq 0 \land h \geqslant 0) \lor (k=0)$
 - b) $(h_1k)=(1,k)$, $\forall k \in \mathbb{R}$ V $(h_1k)=(-1,0)$
 - c) h + 0 1 K + 0 1 h + 1 1 h > 0

3)
$$\begin{cases} x+y+z=0 \\ 2x+y+z=0 \\ x+y+z=0 \end{cases} \begin{cases} z=-x-y \\ x+y+z=0 \end{cases} \Rightarrow x=0 \ \forall y=0 \ \forall z=0 \\ xy(x+y)=0 \Rightarrow xyz=0 \end{cases}$$
Per simmetria, bosta studiare il coso $x=0$:
$$\begin{cases} y+z=0 \\ y+z=0 \end{cases} \begin{cases} z=-x-y \\ xy(x+y)=0 \Rightarrow x=0 \ \forall y=0 \ \forall z=0 \end{cases}$$

- 4) $|A-\lambda I| = (a-\lambda) \left[(a-\lambda)^2 2b^2 \right] = 0$ $\lambda_1 = a$, $\lambda_{2,3} = a \pm b\sqrt{2}$. Per $b \neq 0$ si hanno 3 autovoloni distinti. Per b = 0, $A = \begin{pmatrix} a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a \end{pmatrix}$ e' diagonale. In oqui coso, $A \in A$ diagonalizadile. $A \in A$ diagonalizadile.
- 5) dim ker (A-I)=¥ (blocchi elementari di Jordon totali)

 dim ker (A-I)²- dim ker (A-I)=5 (blocchi di Jordon di ordine almeno 2)

 → 2 blocchi di ordine 1

 olim ker (A-I)³- dim ker (A-I)²= 1 (blocco di Jordon di ordine almeno 3)

 → 4 blocchi di ordine 2

 → 1 blocco di ordine 5.
 - ⇒ JA = diag (Ja(1), Ja(1), J2(1), J2(1), J2(1), J2(1), J5(1)).