Mechanical Properties - Stresses & Strains

Types of Deformation: Elasic Plastic Anelastic

Elastic deformation is defined as instantaneous recoverable deformation

Hooke's law: For *tensile* loading, $\sigma = E \varepsilon$

where σ is stress defined as the load per unit area : $\sigma = P/A_0$, N/m², Pa

and *strain* is given by the change in length per unit length $\varepsilon = \frac{\Delta l}{l_0}$, %

The proportional constant E is the Young's modulus or modulus of Elasticity:

 $E \sim 10x10^6$ psi [68.9 GPa] for metals [varying from $10x10^6$ psi for Al, $30x10^6$ for Fe and $59x10^6$ for W].

Poisson's Ratio [ν]: ratio of lateral contraction to longitudinal elongation $\nu = -\varepsilon_{\rm X}/\varepsilon_{\rm Z} = -\varepsilon_{\rm Y}/\varepsilon_{\rm Z}$ [for isotropic materials]; in general, $\nu \sim 0.3$

Thus the total contractile strains is *less* than the expansion along the tensile axis thereby resulting in a slight increase in the volume of the material under stress - this is known as *Elastic Dilation*.

Modulus Of Rigidity or Shear Modulus [G]: $G = \tau / \gamma$; G is the shear modulus and is related to E and ν , $G = E / 2(1+\nu)$.

Bulk Modulus $[\kappa]$: the change in volume to the original volume is proportional to the hydrostatic pressure $[\sigma_{hyd}]$: $\Delta V/V = \beta \ \sigma_{hyd}$, where β is the compressibility.

The inverse of the compressibility is the bulk modulus $[\kappa]$: $\kappa = 1/\beta$.

 κ is also related to E and ν : $\kappa = E / 3(1-2\nu) = 2G(1+\nu) / 3(1-2\nu)$.

• • • Thus one can evaluate the various elastic moduli from one or more experimentally evaluated constants. Note that the elastic moduli are related to the interatomic bonding and thus decrease [slightly] with *increasing* temperature. Any change in the crystal structure, for example following a phase change [polymorphism], one notes a distinct change in the elastic moduli.

Stress - Strain Curve

Definitions

Nominal (engineering)

$$S = \frac{P}{A_0}$$
, $e = \frac{\Delta l}{l_0}$

Proportional limit (PL)

Yield strength (S_V) 0.2% offset; (S_{LY})

Tensile strength (TS or UTS or S_{UTS})

Fracture strength (S_F)

Uniform elongation (e_u)

Total elongation (ductility) (et or et in 2")

Necking strain $(e_n = e_t - e_u)$

Reduction in area (ductility) (RA)

Volume increases (Elastic Dilation)

VS

$$\sigma = \frac{P}{A}$$
, $\varepsilon = \ln\left(\frac{1}{l_0}\right)$

True

 $\sigma = S (1+e) \& \epsilon = \ln (1+e)$

true Yield stress (σ_v) 0.2% offset

true Tensile strength (TS or UTS or σ_{UTS})

true Fracture strength (σ_F)

true Uniform strain (ε_u)

true Total elongation (ductility) (ε_t or ε_f in 2")

true Necking strain $(\varepsilon_n = \varepsilon_t - \varepsilon_u)$

Volume **is** *conserved* $A_0l_0 = Al$

Energy to fracture

Elastic (
$$\sigma = E \epsilon$$
) Plastic ($\sigma = K \epsilon^n$)

Resilience (U^{el} =
$$\frac{\sigma^2}{2E}$$
) units (J/m³) Toughness (J = K $\frac{\epsilon^{n+1}}{n+1}$)

σ - ε curves

smooth (SSs & fcc)

with yield point (steels & bcc)

Rate Effects

Plastic deformation is rate dependent

(generally at high temperatures):
$$\sigma = f(\dot{\epsilon}) = A \dot{\epsilon}^m$$
, $m = SRS = (\frac{d \ln \sigma}{d \ln \dot{\epsilon}})_{T,\epsilon}$

 $m \sim 0$ at low temperatures $m|_{max} = 1$

$$m \uparrow e_t \uparrow vs n \uparrow e_u \uparrow$$

Group Work:

left of the instructor : (1) Derive relation between σ and S :

right of the instructor : (2) Derive relation between ε and e :

all (3) Show that $\varepsilon_u = n$

Concept of Stress

Figure 1-5 (a) Body in equilibrium under action of external forces P_1, \ldots, P_5 ; (b) forces acting or parts.

$$\sigma = \lim_{A \to 0} \frac{F}{A}$$

Force extended on reference section by $\underline{\text{remaining sections}} \leftarrow \text{body in } \underline{\text{equilibrium}}$

Normal and Shear Stresses

$$\sigma_N = \frac{F}{A} \cos \theta$$

$$\sigma_{\text{shear}} = \tau = \frac{F}{A} \sin \theta$$
 $\tau_{\text{x}} = \tau_{\text{y}} = \tau_{\text{y}}$

recall RSS (τ_{RSS}) :

Stress - Strain Relationships

Elastic Behavior

F, Force is a vector (1st rank tensor)

while σ_{ij} should be specified with 2 directions: plane normal and force direction - acts on plane perpendicular to i along j direction

Sign Convention (Fig. 2.2)

$$\sigma = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{zz} \\ \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{xy} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{xz} & \sigma_{yz} & \sigma_{zz} \end{pmatrix}; \text{ book notation } \Rightarrow \begin{pmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \sigma_{x} & \tau_{yz} & \sigma_{zz} \\ \sigma_{y} & \sigma_{zz} \end{pmatrix}$$

 \Rightarrow Values of σ_{ij} depend on the choice of reference axes (see 2-D example 2.3) \Leftarrow

{can determine these components using tensor transformations, Mohr circle, etc.}

First, we look at 3 important examples of Stress States

- 1. Plane Stress (p.20) 2. Hydrostatic & Deviatoric Stresses (p.46)
 - 3. Principal Stresses (various sections such as 2.14)

Plane Stress (p. 20)

- stresses are zero in one of the primary directions (or 2-D stress state) -

Examples:

- 1. Thin sheet with loaded in the plane (stresses are zero along the thickness direction)
- 2. Pressurized thin cylinder (stresses along r or thickness direction are zero for cylinders when wall-thickess is about $1/10^{th}$ of diameter):

$$\sigma_{\theta} = \frac{Pr}{t}, \, \sigma_{z} = \frac{Pr}{2t} \text{ with } \sigma_{r} \approx 0$$

Principal Stresses (p. 22)

Principal Planes are the planes on which maximum normal stresses act with no shear stresses and these stresses are the **Principal Stresses**

Designate σ_1 , σ_2 , $\sigma_3 \Leftrightarrow \text{implies no shear stresses or } \sigma_{ij} = \sigma_{ij} \delta_{ij}$

Proof is clear from Mohr's circle representation (see text Fig.2.6) for 2-D

Note:
$$\tau_{\text{max}} = \frac{\sigma_1 - \sigma_3}{2}$$

Hydrostatic and Deviatoric Stresses (p. 46)

Total stress tensor can be divided into two components (Fig. 2-18)

Hydrostatic or mean stress tensor (σ_m) involving only pure tension or compression

& **Deviatoric** stress tensor $(\sigma_{ij}^{'})$ representing pure shear with no normal components

$$\sigma_{\rm m} = \frac{\sigma_{\rm kk}}{3} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$$

$$\sigma_{ij} = \sigma'_{ij} + \frac{1}{3}\delta_{ij}\sigma_{kk}$$

Example on Hydrostatic and Deviatoric Stresses

Given the stress state: $\sigma_{ij} = \begin{pmatrix} 80 & 20 & -50 \\ 20 & -40 & 30 \\ -50 & 30 & 50 \end{pmatrix}$, **a**. Find the hydrostatic part of the stresses. **b**. Find the deviatoric part of the stresses.

Ans. (a)
$$\sigma_{ij}^{hyd} = \sigma_m \, \delta_{ij} = \frac{1}{3} \, (\sigma_{11} + \sigma_{22} + \sigma_{33}) \, \delta_{ij}$$
 where $\sigma_m = \frac{1}{3} \, (80 \, \text{-}40 \, \text{+}50) = 30$ so that

$$\sigma_{ij}^{hyd} = \begin{pmatrix} 30 & 0 & 0 \\ 0 & 30 & 0 \\ 0 & 0 & 30 \end{pmatrix}.$$

$$\textbf{(b)} \text{ By definition, } \sigma_{ij}^{dev} = \sigma_{ij} - \sigma_{ij}^{hyd} = \begin{pmatrix} 80 & 20 & -50 \\ 20 & -40 & 30 \\ -50 & 30 & 50 \end{pmatrix} - \begin{pmatrix} 30 & 0 & 0 \\ 0 & 30 & 0 \\ 0 & 0 & 30 \end{pmatrix} = \begin{pmatrix} 50 & 20 & -50 \\ 20 & -70 & 30 \\ -50 & 30 & 20 \end{pmatrix}$$

Note that the mean hydrostatic stress for $\sigma_{ij}^{dev} = (\sigma_{11}^{dev} + \sigma_{22}^{dev} + \sigma_{33}^{dev}) = 0$, as expected.

Principal Stresses (p. 22)

Principal Planes are the planes on which maximum normal stresses act with no shear stresses and these stresses are the Principal Stresses

Designate σ_1 , σ_2 , σ_3 / implies no shear stresses or $\sigma_{ij} = \sigma_{ij} \delta_{ij}$

Proof is clear from Mohr's circle representation (see text Fig.2.6) for 2-D

For 3-D such an analogy is not useful and these are determined from the roots of σ of the determinant (cubic in σ):

$$\begin{vmatrix} \sigma_{11} - \sigma & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} - \sigma & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} - \sigma \end{vmatrix} = 0 ; Expand the determinant $\Gamma$$$

$$0 = \sigma^{3} - (\sigma_{11} + \sigma_{22} + \sigma_{33}) \sigma^{2} +$$

$$(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - \sigma_{12}^{2} - \sigma_{23}^{2} - \sigma_{31}^{2}) \sigma -$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{22}^{2} - \sigma_{23}\sigma_{31}^{2} - \sigma_{23}\sigma_{31}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{22}^{2} - \sigma_{23}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{33}\sigma_{31} - \sigma_{11}\sigma_{22}^{2} - \sigma_{23}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$(\sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{33}\sigma_{31} - \sigma_{11}\sigma_{22}^{2} - \sigma_{23}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2})$$

$$\sigma^3 - I_1 \sigma^2 - I_2 \sigma - I_3 = 0$$

where I's are invariants of the stress tensor (Eqs. on p.28 of Text):

$$I_{1} = (\sigma_{11} + \sigma_{22} + \sigma_{33})$$

$$I_{1} = (\sigma_{11} + \sigma_{22} + \sigma_{33})$$

$$I_{2} = -(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - \sigma_{12}^{2} - \sigma_{23}^{2} - \sigma_{31}^{2})$$

$$I_{2} = -(\sigma_{11}\sigma_{22} + \sigma_{22}\sigma_{33} + \sigma_{33}\sigma_{11} - \sigma_{12}^{2} - \sigma_{23}^{2} - \sigma_{31}^{2})$$

$$I_{3} = \sigma_{11}\sigma_{22}\sigma_{33} + 2\sigma_{12}\sigma_{23}\sigma_{31} - \sigma_{11}\sigma_{23}^{2} - \sigma_{22}\sigma_{31}^{2} - \sigma_{33}\sigma_{12}^{2}$$

$$[text - x, y, z/1, 2, 3]$$

(a) Uniaxial stress :
$$\begin{pmatrix} \sigma & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 (b) Biaxial stress :
$$\begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- (c) Hydrostatic pressure : $\begin{pmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -n \end{pmatrix}$

• Special Stress States •

Normal and Shear Stresses on a Given Plane [Cut-Surface Method]

Given σ_{ij} in reference system 1 2 3;

 \hat{n} is the <u>unit vector</u> normal to the plane = $n_1 \ n_2 \ n_3$

 \hat{m} is the <u>unit vector</u> in the plane = $m_1 m_2 m_3$

 σ_N = normal stress along \bar{n}

 τ = shear stress along \overline{m}

Note:
$$\hat{n} \cdot \hat{m} = 0$$
; $n_1^2 + n_2^2 + n_3^2 = 1$ and $m_1^2 + m_2^2 + m_3^2 = 1$

note: if
$$\overline{n} = 1, 2, 5 \implies \hat{n} = \frac{1}{\sqrt{30}}, \frac{2}{\sqrt{30}}, \frac{5}{\sqrt{30}} \iff \hat{n} \text{ is a } \underline{\text{unit}} \text{ vector}$$
where $\sqrt{1^2 + 2^2 + 5^2} = \sqrt{30}$ so that $n_1^2 + n_2^2 + n_3^2 = 1$.

1. Find the stress $\underline{\text{vector}}(\overline{S})$

{the stress vector : the vector force per unit area acting on the cut }: $\overline{S} = \sigma \cdot \hat{n} \implies$

$$\begin{pmatrix} S_1 \\ S_2 \\ S_3 \end{pmatrix} = \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \Rightarrow S_i = \sum_{k=1}^3 \sigma_{ik} \ n_k \ ; \text{ i.e. } S_1 = \sigma_{11} n_1 + \sigma_{12} n_2 + \sigma_{13} n_3 \ ; \text{ etc.}$$

2. σ_N and τ follow as: $\sigma_N = \overline{S} \cdot \hat{n} = S_1 n_1 + S_2 n_2 + S_3 n_3$

$$\tau = \bar{S} \cdot \hat{m} = S_1 m_1 + S_2 m_2 + S_3 m_3$$

and τ_{max} occurs when n, S and m are in the same plane, or from Fig.

$$|\overline{S}|^2 = \sigma_N^2 + \tau_{max}^2$$

Normal and Shear Stresses on a Given Plane [Cut-Surface Method]

• EXAMPLE •

A stress state in a given reference frame is (MPa): $\sigma_{ij} = \begin{pmatrix} 8 & 2 & -5 \\ 2 & -4 & 3 \\ -5 & 3 & 6 \end{pmatrix}$

Assume that the stresses are independent of position (uniform stress state).

A plane "cut" is made through the body such that the normal to the cut is $\bar{n} = \sqrt{2}$, 2, -2.

- **a.** What is the normal stress σ_N on the plane?
- **b.** What is the shear stress τ along the direction $\overline{m} = 0, 1, 1$ in the plane?
- **c.** What is the *maximum* shear stress in the plane (consider all directions in the plane)?

Answer:

$$\hat{n} = \frac{\sqrt{2}}{\sqrt{10}} , \frac{2}{\sqrt{10}} , \frac{-2}{\sqrt{10}} \text{ and } \hat{m} = 0, \frac{1}{\sqrt{2}} , \frac{1}{\sqrt{2}} .$$

$$S_1 = \sigma_{11}n_1 + \sigma_{12}n_2 + \sigma_{13}n_3 = \frac{1}{\sqrt{10}} \left[8 \left(\sqrt{2} \right) + 2 \left(2 \right) + (-5) \left(-2 \right) \right] = 8 \text{ MPa},$$
Similarly, $S_2 = -3.53 \text{ MPa}$ and $S_3 = -4.13 \text{ MPa}.$

(a)
$$\sigma_N = S_1 n_1 + S_2 n_2 + S_3 n_3 = \frac{1}{\sqrt{10}} \left[8 \left(\sqrt{2} \right) + (-3.53) (2) + (-4.13) (-2) \right] = 3.96 \text{ MPa}$$

(b)
$$\tau = \overline{S} \cdot \hat{m} = S_1 m_1 + S_2 m_2 + S_3 m_3 = \frac{1}{\sqrt{2}} [8 (0) + (-3.53) (1) + (-4.13) (1)] = -5.42 \text{ MPa.}$$

note: "-" sign means the shear stress acts in the $-\hat{m}$ direction

(c) To find the maximum shear stress in the plane: Since $\tau = \overline{S} \cdot \hat{m}$, the maximum projection of \overline{S} along \hat{m} will occur when these 2 vectors are coplanar (containing \hat{n} also) - see Fig. below:

$$|\overline{S}|^2 = S_1^2 + S_2^2 + S_3^2 = (8)^2 + (-4.13)^2 + (-5.42)^2 = 93.5.$$

From the figure, note that

$$|\bar{S}|^2 = \sigma_N^2 + \tau_{\text{max}}^2 \text{ or}$$

$$\tau_{\text{max}} = \sqrt{|\bar{S}|^2 - \sigma_N^2} = \sqrt{93.5 - (3.96)^2} =$$

8.82 MPa.

Example: Stress Tensor Transformations

Given
$$\sigma_{ij} = \begin{pmatrix} 10 & 5 & 0 \\ 5 & 20 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 wrt x,y,z axes.

New axes (x',y',z') are rotated 45° around z-axis.

Need to find $\sigma_{ij}^{'}$. $\sigma_{ij}^{'} = a_{ik} \, a_{jn} \, \sigma_{kn}$

a. Calculate τ_{xy} .

$$\begin{array}{ccccc} & x & y & z \\ x' & 45^o & 45^o & 90^o \\ \theta_{ij}: & y' & 135^o & 45^o & 90^o \\ & z' & 90^o & 90^o & 0^o \end{array}$$

$$\tau'_{xy} = a_{xx} a_{yx} \sigma_{xx} + a_{xx} a_{yy} \sigma_{xy} + a_{xx} a_{yz} \sigma_{xz} = \frac{1}{\sqrt{2}} (-\frac{1}{\sqrt{2}})(10) + \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}})(5) + 0
+ a_{xy} a_{yx} \sigma_{yx} + a_{xy} a_{yy} \sigma_{yy} + a_{xy} a_{yz} \sigma_{yz} + \frac{1}{\sqrt{2}} (-\frac{1}{\sqrt{2}})(5) + \frac{1}{\sqrt{2}} (\frac{1}{\sqrt{2}})(20) + 0
+ a_{xz} a_{yx} \sigma_{zx} + a_{xz} a_{yy} \sigma_{zy} + a_{xz} a_{yz} \sigma_{zz} + 0 + 0 + 0$$

$$= 5 \text{ MPa}$$

b. Show that $\sigma_x' = 20 \text{ MPa}$ and $\sigma_y' = 10 \text{ MPa}$.

Thus
$$\sigma'_{ij} = \begin{pmatrix} 20 & 5 & 0 \\ 5 & 10 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
. Note that $\sigma_x + \sigma_y = \sigma'_x + \sigma'_y$ (= 30 MPa)

Example 2 : Same as above but in 2-D for a general case

x', y' rotation by
$$\theta$$

$$\theta_{ij}: x' \mid \frac{x}{\theta} \quad 90-\theta$$
$$y' \mid 90+\theta \quad \theta$$
$$a_{ij} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix}$$

$$\tau'_{xy}(\text{or }\tau'_{xy}) = a_{xx} a_{yx} \sigma_{xx} + a_{xx} a_{yy} \tau_{xy} + a_{xy} a_{yx} \tau_{yx} + a_{xy} a_{yy} \sigma_{yy}$$

$$= -\sin\theta \cos\theta \sigma_{xx} + \cos^{y}\theta \tau_{xy} - \sin^{y}\theta \tau_{xy} + \sin\theta \cos\theta \sigma_{yy}$$

$$= \frac{\sigma_{yy} - \sigma_{xx}}{2} \sin^{2}\theta + \tau_{xy} \cos^{2}\theta \implies \text{Eq. 2.7}$$

Similarly find
$$\sigma_x' = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cos 2\theta + \tau_{xy} \sin 2\theta$$
 (Eq 2.5)

and
$$\sigma_y' = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cos 2\theta - \tau_{xy} \sin 2\theta$$
 (Eq 2.6)

& Fig. 2.4 shows variation of these 3 stresses with θ .

Note: $\sigma_x + \sigma_y = \sigma_x' + \sigma_y'$ as should be since I_1 is invariant \Leftrightarrow i.e., sum of normal stresses on mutually perpendicular planes is invariant. same thing can be done using Mohr's circle representation (easier for 2-D case)

If
$$\tau'_{xy} = 0$$
, principal planes and stresses: $\tan 2\theta = \frac{2\tau_{xy}}{\sigma_x - \sigma_y}$ (Eq. 2.8)

whereas maximum shear stresses when $\tan 2\theta = -\frac{\sigma_x - \sigma_y}{2\tau_{xy}}$ (Eq.2.10) & τ_{max} given by Eq. 2.11.