Started on	Friday, 23 August 2024, 3:17 PM
State	Finished
Completed on	Friday, 23 August 2024, 3:27 PM
Time taken	9 mins 57 secs
uestion 1	
omplete	
arked out of 2.0	
larked out of 2.0	00
	e following is/are not true about the learning model of perceptron?
Which of th ✓ a. For	
Which of th ✓ a. For per	e following is/are not true about the learning model of perceptron? The activation of the perceptron, a simple weighted algebraic sum of the incoming input activations is
✓ a. For per	e following is/are not true about the learning model of perceptron? The activation of the perceptron, a simple weighted algebraic sum of the incoming input activations is a stronger.
Which of th a. For per b. If th c. The d. If th	e following is/are not true about the learning model of perceptron? The activation of the perceptron, a simple weighted algebraic sum of the incoming input activations is rformed. The weighted sum obtained in the perceptron is below a threshold, the perceptron is active.

Question 2

Complete

Marked out of 4.00

Assume that a perceptron is trained on a data set D where at each round t, a sample (x^t, y^t) is processed, such that $x^t \in \mathbb{R}^d$, $y^t \in \{+1, -1\}$. Assume that at round t, the weights associated with the perceptron are denoted by w^t . Assume that the perceptron's output for x^t is \hat{y}^t .

Also assume that D satisfies linear separability assumption where w^* is the normal vector to the the linear separator and γ is the associated margin.

Which of the following is/are true during the training of the perceptron?

- $oxed{u}$ a. When a mistake is made by the perceptron at round t, and $y^t=-1$, then the update is $w^{t+1}=w^t-x^t$.
- igcup b. When no mistake is made by the perceptron at round $t,\ y^t \ \langle w^t, x^t
 angle \ge 0$ holds.
- igsim c. For a sample with $y^t=-1$, $\langle w^t,x^t
 angle <-\gamma$ always holds.
- \square d. When a mistake is made by the perceptron at round t, $y^t \langle w^*, x^t
 angle < -\gamma$ holds.
- $oxed{oldsymbol{arphi}}$ e. When no mistake is made by the perceptron at round t, y^t $\langle w^*, x^t
 angle = y^t$ $\langle w^t, x^t
 angle$ holds.

Question 3

Complete

Marked out of 1.00

Consider x,z as binary variables which can take values from set $\{0,1\}$.

Which of the following functions is/are linearly separable in 2 dimensions?

- \square a. $\mathrm{f}(x,z)=+1$ when either x or z is 1 or when both are 1 and $\mathrm{f}(x,z)=-1$ when both x and z are 0.
- \square b. f(x,z)=-1 when x=z and f(x,z)=+1 otherwise.
- \bigcirc c. f(x,z) = +1 regardless of the values of x and z.

Which of the following is/are true regarding multi-layer perceptron (MLP)? a. There are connections from layer ℓ to $\ell+1$ and there are connections from layer $\ell-1$ to $\ell+1$ where $\ell \in \{0,1,2,\ldots,L\}$. b. The weight matrix connecting a layer ℓ with n_ℓ neurons to a layer $\ell+1$ with $n_{\ell+1}$ neurons is of size $n_{\ell+1} \times n_\ell$. (Assume notations discussed in class). c. The neurons within the same layer are not connected with each other. d. The vector of dot-products at the neurons at layer $\ell>1$ denoted by z^ℓ is computed as $\phi(W^\ell a^{\ell-1})$ where ϕ is a suitable activation function. e. If the number of neurons in layer ℓ and $\ell+1$ are same for each layer except possibly the output layer, and if the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that $W^{\ell+1}$ is invertible.	24, 05:28	in-class quiz 1: Attempt review
Which of the following is/are true regarding multi-layer perceptron (MLP)?	Question 4	
Which of the following is/are true regarding multi-layer perceptron (MLP)?	·	
a. There are connections from layer ℓ to $\ell+1$ and there are connections from layer $\ell-1$ to $\ell+1$ where $\ell\in\{0,1,2,\ldots,L\}.$ b. The weight matrix connecting a layer ℓ with n_ℓ neurons to a layer $\ell+1$ with $n_{\ell+1}$ neurons is of size $n_{\ell+1}\times n_\ell$. (Assume notations discussed in class). c. The neurons within the same layer are not connected with each other. d. The vector of dot-products at the neurons at layer $\ell>1$ denoted by z^ℓ is computed as $\phi(W^\ell a^{\ell-1})$ where ϕ is a suitable activation function. e. If the number of neurons in layer ℓ and $\ell+1$ are same for each layer except possibly the output layer, and if the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that $W^{\ell+1}$ is invertible.	Marked out	of 3.00
a. There are connections from layer ℓ to $\ell+1$ and there are connections from layer $\ell-1$ to $\ell+1$ where $\ell\in\{0,1,2,\ldots,L\}.$ b. The weight matrix connecting a layer ℓ with n_ℓ neurons to a layer $\ell+1$ with $n_{\ell+1}$ neurons is of size $n_{\ell+1}\times n_\ell$. (Assume notations discussed in class). c. The neurons within the same layer are not connected with each other. d. The vector of dot-products at the neurons at layer $\ell>1$ denoted by z^ℓ is computed as $\phi(W^\ell a^{\ell-1})$ where ϕ is a suitable activation function. e. If the number of neurons in layer ℓ and $\ell+1$ are same for each layer except possibly the output layer, and if the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that $W^{\ell+1}$ is invertible.		
$\ell \in \{0,1,2,\dots,L\}.$ $\ \ \ \ \ \ \ \ \ \ \ \ \ $	Which c	of the following is/are true regarding multi-layer perceptron (MLP)?
$n_{\ell+1} \times n_{\ell}$. (Assume notations discussed in class). $\ \ \ \ \ \ \ \ \ \ \ \ \ $	□ a.	
The vector of dot-products at the neurons at layer $\ell>1$ denoted by z^ℓ is computed as $\phi(W^\ell a^{\ell-1})$ where ϕ is a suitable activation function. $\ensuremath{\checkmark}$ e. If the number of neurons in layer ℓ and $\ell+1$ are same for each layer except possibly the output layer, and if the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that $W^{\ell+1}$ is invertible.	✓ b.	
where ϕ is a suitable activation function. \checkmark e. If the number of neurons in layer ℓ and $\ell+1$ are same for each layer except possibly the output layer, and if the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that $W^{\ell+1}$ is invertible.	✓ c.	The neurons within the same layer are not connected with each other.
the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that $W^{\ell+1}$ is invertible.	☐ d.	
< Previous Activity	✓ e.	the activation function is such that $\phi(q)=q$ for any real number q , then one can obtain the the activations a^ℓ at layer ℓ from dot products at layer $\ell+1$ denoted by $z^{\ell+1}$ using: $a^\ell=(W^{\ell+1})^{-1}z^{\ell+1}$ provided that
< Previous Activity		
	p to	
Novt Coetion >		< Previous Activity
		New Continue