Fiches de Révision MPSI

TOME II - Mathématiques

Jean-Baptiste Théou

Licence

J'ai décidé d'éditer cet ouvrage sous la licence Créative Commons suivante : CC-by-nc-sa. Pour plus d'information :

http://creativecommons.org/licenses/by-nc-sa/2.0/fr/.

Ce type de licence vous offre une grande liberté, tout en permettant de protéger mon travail contre une utilisation commercial à mon insu par exemple.

Pour plus d'information sur vos droits, consultez le site de Créative Commons

Avant-propos

Il y a un plus d'un an, au milieu de ma SUP MP, j'ai décidé de faire mes fiches de révision à l'aide de Latex, un "traitement de texte" très puissant. Il en résulte les fiches qui suivent. Je pense que travailler sur des fiches de révision, totalement séparé de notre cours, est un énorme plus, et réduit grandement la quantité de travail pour apprendre son cours, ce qui laisse plus de temps pour les exercices. Mon experience en tout cas va dans ce sens, j'ai notablement progressé à l'aide de ces fiches.

J'ai décidé de les rassembler sous forme d'un "livre", ou plutôt sous forme d'un recueil. Ce livre à pour principal interet pour moi d'être transportable en cours. C'est cet interet qui m'a poussé à faire ce livre.

Dans la philosophie de mes fiches de révision, ce livre est disponible gratuitement et librement sur mon blog. Il est édité sous License Créative Commons. Vous pouvez librement adapter ce libre à vos besoins, les sources Latex sont disponibles sur mon blog. Je pense que pour être en accord avec la philosophie de ces fiches, il serai bien que si vous effectuez des modifications de mon ouvrage, vous rendiez ces modifications disponible à tous. Je laisserai volontiers une place pour vos modifications sur mon blog. Je pense sincèrement que ce serai vraiment profitable au plus grand nombre, et dans la logique de mon travail.

J'ai hiérarchisé mon ouvrage de façon chronologique, tout en rassemblant les chapitres portant sur le même sujet sous une même partie. Les parties sont rangées dans l'ordre "d'apparition" en MPSI. J'ai mis en Annexe des petites fiches de méthodologie, qui peuvent s'avérer utiles.

Je vous souhaite une bonne lecture, et surtout une bonne réussite.

Jean-Baptiste Théou

Remerciements

Je tient à remercier tout particulièrement Yann Guillou, ex Professeur de Physique-Chimie en MPSI au Lycée Lesage, actuellement en poste en Guadeloupe, qui m'a permis de consolider mes connaisances en physique et qui m'a ouvert les yeux sur la réalité de la physique et sur son histoire. Ces "digressions historiques" resterons de bons moments dans mon esprit, pour longtemps. Je remercie aussi Paul Maheu, Professeur de Mathématiques en MPSI au Lycée Lesage, qui m'a permis d'aquérir de solides connaisances en Mathématiques.

Sans eux, ce livre ne pourrai exister.

Pour finir, je me dois à mon avis d'insérer cette citation dans mon ouvrage, citation que nous a donné Mr Guillou pour nos premiers coups de crayon en Prépa. Elle est à méditer

Je suis convaincu qu'il est plus bénéfique pour un étudiant de retrouver des démonstrations à partir de quelques indications que de les lire et de les relire Qu'il les lisent une fois, qu'il les retrouvent souvent

> SRINIVÂSA AIYANGÂR RÂMÂNUJAN(1886-1920)

Première partie Fonctions de $\mathbb R$ dans $\mathbb R$

| | | Chapitre

 \mathbb{R}

1.1 Définitions

1.2 Structure

Définition 1 $(\mathbb{R},+,\times)$ est un corps totalement ordonnée. On dit qu'il est archimédien.

Définition 2 La relation " \leq " est une relation d'ordre. Elle est :

 \rightarrow Reflexive:

$$\forall x \in \mathbb{R} \ x \le x$$

 \rightarrow Anti-symétrique :

$$\forall (x,y) \in \mathbb{R}^2 \ si : (x \le y, y \le x), \ alors \ x = y$$

 \rightarrow *Transitive*:

$$\forall (x, y, z) \in \mathbb{R}^3 \ si : (x \le y, y \le z), \ alors \ x \le z$$

1.2.1 Majorant - Minorant

Soit A un ensemble

Majorant

Définition 3 Si M est un majorant de A, avec $M \in A$, alors :

$$M = Max(A)$$

Définition 4 Si M est le plus petit des majorants de A, alors M est la borne supérieure de A :

$$M = Sup(A)$$

Propriété 1 Si $A \subset \mathbb{R}$, si Max(A) existe, alors Sup(A) existe et :

$$Sup(A) = Max(A)$$

Minorant

Définition 5 Si M est un minorant de A, avec $M \in A$, alors :

$$M = Min(A)$$

Définition 6 Si M est le plus grand des minorant de A, alors M est la borne inférieure de A :

$$M = Inf(A)$$

Propriété 2 Si $A \in \mathbb{R}$, si Min(A) existe, alors Inf(A) existe et :

$$Min(A) = Inf(A)$$

1.2.2 Borne supérieure - Borne inférieure

Propriété 3 Toute partie de \mathbb{R} non vide et minorée possède une borne inférieure.

Propriété 4 Toute partie de \mathbb{R} non vide et majorée possède une borne supérieure.

Propriété 5 Toute partie de Z non vide et majorée possède un plus grand éléments. (Max)

1.2.3 Partie bornée de \mathbb{R}

Soit A une partie de E. On note ceci : $A \in P(E)$. A est bornée si et seulement si :

$$\exists M \in \mathbb{R} \ tq \ \forall a \in A, \ |a| \leq M$$

Propriété 6 *Propriété d'Archimède : Soient* $(x,y) \in \mathbb{R}$ *et x>0, alors :*

$$\exists p \in Z \ tq \ y < px$$

1.2.4 Partie entière

Définition 7 *Soit* $x \in \mathbb{R}$.

Il existe un unique entier p telque $p \le x < p+1$

Cette entier p en la partie entière de x. On le note E(x).

Définition 8 En complément, on défini la partie décimale de x, notée D(x):

$$D(x) = x - E(x)$$

1.2.5 Densité

Définition 9 *Soit A une partie de* \mathbb{R}

A est dense dans \mathbb{R} si, avec $x \neq y$:

$$\forall (x,y) \in \mathbb{R}^2 \ \exists a \in A \ tq \ a \in]x;y[$$

Propriété 7 Puisque l'espace des fractions rationnels, notée Q, est dense dans \mathbb{R} , si $x \in \mathbb{R}$, alors il existe une suite de rationnelle qui converge vers x.

1.3 Partie de \mathbb{R}

Définition 10 *Soient* $(a,b) \in \mathbb{R}^2$. *On appelle segment d'extrémité a,b* :

$$[a,b] = \{x \in \mathbb{R}/a \le x \le b\}$$

Définition 11 Soit I une partie de \mathbb{R} . I est un intervalle si :

$$\forall x \in I, \forall y \in I, [x; y] \ c \ I$$

1.3.1 Sous-groupes de (\mathbb{R} ;+)

Critère de reconnaissance des sous-groupes

Définition 12 *Soit H une partie de* \mathbb{R} . *On dit de H est un sous-groupe de* (\mathbb{R} ;+) *si* (H;+) *est un groupe.*

Propriété 8 H est un sous-groupe si et seulement si :

1- $H c \mathbb{R}$ et H non vide

2- $\forall (x;y) \in H^2, x-y \in H$

$^{\circ}$ Chapitre

Limite d'une fonction

2.1 Définitions

Définition 13 *Soit f une fonction, I un intervalle. f est majorée sur I si :*

$$\exists m \ tq \ \forall x \in I \ f(x) < m$$

Définition 14 On dit que f est croissante sur I si:

$$\forall (x, x') \in I^2 \text{ si } x < x', \ f(x) \le f(x')$$

2.1.1 Fonction k-lipschitzienne

Définition 15 *Soit* $f: I \to \mathbb{R}$.

f est k-lipschitzienne si :

$$\forall (x,y) \in I^2 |f(x) - f(y)| \le k|x - y|$$

Propriété 9 Soient f et g deux fonctions k-lipschitziennes sur I, alors f+g est aussi k-lipschitzienne sur I

2.1.2 Limite et continuité

Au voisinage d'un réel a

Soit $a \in R$.

Définition 16 La propriété P est vraie au voisinage de a si elle est vraie sur l'intersection de I et d'un intervalle ouvert de centre a :

$$(\exists \alpha > 0 \ tq \ (P) \ soit \ vraie \ \forall x \in]a - \alpha; a + \alpha[\cap I)$$

Au voisinage de $+\infty$

Définition 17 (P) est vraie au voisinage de $+\infty$ si elle est vrai sur $I \cap]A; +\infty[$, avec A fixé.

2.1.3 Limite

Définition 18 *Soit* $(a,b) \in \mathbb{R}^2$:

$$(\lim_{a} f = b) \Leftrightarrow (\forall \varepsilon > 0 \; \exists \alpha > 0 \; \forall x \in D_f \; |x - a| \le \alpha \; \Rightarrow \; |f(x) - b| < \varepsilon)$$

Propriété 10 *Soit a un réel, a* = $+\infty$ *ou a* = $-\infty$.

On suppose que f et g coincident au voisinage de a, alors :

$$\lim_{a} f = \lim_{a} g$$

2.1.4 Continuité

Définition 19 Si f est définie en a, la limite éventuelle en a est nécessairement b=f(a)

Propriété 11 Soit $a \in \mathbb{R}$:

- $-Sia \in D_f$
 - $-Si \lim_{x \to a} f = f(a)$, alors f est continue en a.
 - $Si \lim_{n \to \infty} f \neq f(a)$, alors c'est impossible.
 - Si la limite n'existe pas, alors f n'est pas continue en a
- $-Sia \notin D_f$
 - $-Si \lim_{f} f$ existe (dans \mathbb{R}), alors f est prolongable par continuité
 - Si la limite n'existe pas, rien à dire, sauf que f n'est pas prolongable.

Caractérisation à l'aide de suite

Propriété 12

$$(\lim_{a} f = b) \Leftrightarrow (\forall (x_n) \text{ suite convergente de limite a, } f(x_n) \text{ converge vers } b)$$

On en déduit que :

Propriété 13 Si il existe (u_n) , (v_n) deux suite telque :

$$\begin{cases} \lim_{n \to +\infty} (u_n) = a \\ \lim_{n \to +\infty} (v_n) = a \end{cases}$$

et avec $b \neq b'$:

$$\begin{cases} \lim_{n \to +\infty} (f(u_n)) = b \\ \lim_{n \to +\infty} (f(v_n)) = b' \end{cases}$$

alors $\lim_a f$ n'existe pas

2.2 Limité ou continuité à gauche et à droite

2.2.1 Segment

Définition 20 Soit $I \subset \mathbb{R}$. I est un intervalle si $\forall (a,b) \in I^2$ $[a,b] \subset I$

Définition 21 *Soit* $a \in \mathbb{R}$, *et I un intervalle.*

a est interieur à I si :

$$\exists \alpha > 0 \ tq \]a - \alpha, a + \alpha [CI]$$

L'interieur de I, notée $\overset{\circ}{I}$, est l'ensemble des points interieurs à I.

2.2.2 Limite à droite, limite à gauche

Limite à droite

Définition 22 Soit f, fonction définie sur un intervalle I, sauf peut etre en a, avec a interieur à I. La limite à droite de f en a est, si elle existe, la limite en a de la restriction de f à $I \cap]a$, $+\infty[$ On la note :

$$\lim_{a^+} f$$

Limite à gauche

Définition 23 Soit f, fonction définie sur un intervalle I, sauf peut etre en a, avec a interieur à I. La limite à gauche, de f en a est, si elle existe, la limite en a de la restriction de f à $I \cap J - \infty$, a[On la note : Intervalle <math>I is a surface of I and I is a surface I in I i

$$\lim_{a^{-}} f$$

Propriété 14 Si f est défini au voisinage de a: Si $a \in D_f$, la limite en a de f est b si et seulement si:

$$\begin{cases} \lim_{a^+} f = b \\ \lim_{a^-} f = b \\ f(a) = b \end{cases}$$

Si $a \notin D_f$, la limite en a de f est b si et seulement si :

$$\begin{cases} \lim_{a^+} f = b \\ \lim_{a^-} f = b \end{cases}$$

Propriété 15 Si:

$$\lim_a f = b$$

et

$$\lim_{b} g = c$$

Alors:

$$\lim_a gof = c$$

2.2.3 Continuité d'un intervalle

Propriété 16 Soit $a \in I$:

$$(\lim_{a} f \ existe) \Leftrightarrow (f \ est \ continue \ en \ a)$$

Propriété 17 Soit I un intervalle :

$$(fest\ continue\ sur\ I\)\Leftrightarrow (\forall a\in I,\ fest\ continue\ en\ a\)$$

2.3 Image continue

2.3.1 D'un intervalle

Théorème des valeurs intermédiaires

Propriété 18 *Soit I un intervalle,* $(a,b) \in I^2$. *Si f est continue sur I, et* $y_0 \in [f(a), f(b)]$ *, alors :*

$$\exists c \in [a, b] \ tq \ y_0 = f(c)$$

Propriété 19 Si f est continue sur I, un intervalle, si $a \in I$, et $b \in I$, et f(a) et f(b) sont de signes contraire, alors :

$$\exists c \in [a, b] \ tq \ f(c) = 0$$

Propriété 20 Si I est un intervalle, et f continue sur I, alors f(I) est un intervalle.

2.3.2 D'un segment

Propriété 21 Soit f fonction continue sur [a,b], avec a et b réel. Alors f est bornée sur [a,b]

Propriété 22 Soit f fonction continue sur [a,b], avec a et b réel. Alors le Sup et l'Inf de la fonction sur [a,b] existent.

Propriété 23 *Soit f continue sur [a,b]. Alors :*

$$\exists (m, M) \in \mathbb{R}^2, \ tq \ f([a, b]) = [m, M]$$

2.4 Continuité uniforme sur un intervalle

Définition 24 *Soit f fonction définie sur un intervalle I. On dit que f est uniformement continue sur I si :*

$$\forall \varepsilon > 0, \ \exists \alpha > 0 \ tq \ \forall (x,y) \in I^2 \ |x-y| < \alpha \ \Rightarrow |f(x) - f(y)| < \varepsilon$$

Propriété 24 Si f est uniformement continue sur I, alors f est continue sur I.

Propriété 25 Une fonction k-lipschitzienne sur I est uniformement continue sur I.

Théorème 1 Théorème de Heine :

Toutes fonctions continue sur un segments [a,b] est uniformement continue sur le segment.

2.5 Fonction monotone

2.5.1 Théorème de la "limite monotone"

Propriété 26 Si f est croissante sur I, et $a \in \overset{\circ}{I}$, alors :

 $\lim_{a^{-}} f$ et $\lim_{a^{+}} f$ existent, mais peuvent etre différentes

2.5.2 Monotonie et continuité

Propriété 27 Soit f fonction définie et croissante sur I

$$(f est continue sur I) \Leftrightarrow (f(I) est un intervalle)$$

2.5.3 Théorème de la bijection

Propriété 28 Soit I un intervalle.

Si f est continue, strictement monotone sur I, alors f est une bijection de I sur l'intervalle f(I), et f^{-1} est continue sur f(I).

Chapitre 3

Dérivation des fonctions de $\mathbb R$ dans $\mathbb R$

3.1 Définitions

3.1.1 Définitions

Définition 25 Soit f définie sur un voisinage d'un réel a. f est dérivable en a si :

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existe dans \mathbb{R}

Si f est dérivable, cette limite est le nombre dérivée de f en a.

Propriété 29 Le nombre dérivé est la pente d'une droite passant par a. Cette droite est appelé tangente à la courbe représentative de f au point d'abscisse a.

L'équation de cette tangente est :

$$y = f(a) + f'(a)(x - a)$$

3.1.2 Lien entre tangente et dérivabilité

Soit $x \in D_f$.

Propriété 30 Si on peut écrire f(x) sous la forme :

$$f(x) = f(a) + A(x - a) + \varepsilon(x)(x - a)$$

avec:

$$\lim_{x \to a} \varepsilon(x) = 0$$

alors f est dérivable en a et f'(a) = A.

3.1.3 Continuité et dérivabilité

Propriété 31 Si f est dérivable en a, alors f est continue en a

Propriété 32 f est dérivable en a si et seulement si :

$$\begin{cases} f \text{ est dérivable à droite en a} \\ f \text{ est dérivable à gauche en a} \\ f'_d(a) = f'_g(a) \end{cases}$$

3.1.4 Théorème de Rolle

Théorème 2 Si:

$$\begin{cases} f est continue sur [a,b] \\ f est dérivable sur]a,b[\\ f(a) = f(b) \end{cases}$$

alors:

$$\exists c \in]a, b[tq f'(c) = 0$$

3.1.5 Théorème des accroissement finies

Théorème 3 Si:

$$\begin{cases} f est continue sur [a,b] \\ f est dérivable sur]a,b[\end{cases}$$

alors:

$$\exists c \in]a, b[tq \frac{f(b) - f(a)}{b - a} = f'(c)$$

3.1.6 Inégalité des accroissement finies

Théorème 4 Si:

$$\left\{ \begin{array}{l} f \ est \ continue \ sur \ [a,b] \\ f \ est \ dérivable \ sur \]a,b[\\ f' \ est \ borné \ sur \]a,b[\end{array} \right.$$

Soit M un majorant de | f' | , alors :

$$|f(b) - f(a)| \le M|b - a|$$

Conséquence

- \rightarrow Si f est croissante sur I, alors f'(a) > 0
- \rightarrow Si f et g sont dérivable sur [a,b], avec : $\forall x \in [a,b] \ f'(x) \leq g'(x)$, alors :

$$f(b) - f(a) \le g(b) - g(a)$$

3.1.7 Classe d'une fonction

Soit f fonction, I un intervalle

Définition 26 f est de classe C^n sur I si $f^{(n)}$ est définie et continue sur I

Opération

Propriété 33 Soit I un intervalle, soit $n \in N$.

La somme, le produit, la composé de fonction \mathbb{C}^n sur \mathbb{I} , sont des fonctions \mathbb{C}^n sur \mathbb{I}

3.1.8 Formulaire

 $\forall n \in N, \forall x \in \mathbb{R}$:

$$cos^{(n)}(x) = cos(x + \frac{n\pi}{2})$$

$$sin^{(n)}(x) = sin(x + \frac{n\pi}{2})$$

3.1.9 Formule de Leinbniz

Soient f et g deux fonctions n fois dérivable sur I :

$$(fg)^{n} = \sum_{k=0}^{n} \left(\frac{n}{k}\right) f^{(k)} \cdot g^{(n-k)}$$

Chapitre 4

Étude locale d'une fonction

4.1 Étude locale

4.1.1 Dominance - Équivalence - Négligeabilité

Soit $a \in \mathbb{R} \cup \{+\infty, -\infty\}$. Soient f et g deux fonctions définie au voisinage de a sauf peut être en a.

Définition 27 On dit que f est dominée par g au voisinage de a si $\exists V_a$, voisinage de a telque $\mid \frac{f}{g} \mid$ soit majorée de V_a

$$(f(x) = 0(g(x))) \Leftrightarrow (\exists V_a, \ voisinage \ de \ a, \exists M \in \mathbb{R} \ telque \ \forall x \in V_a \mid f(x) \mid \leq M \mid g(x) \mid)$$

Définition 28 On dit que f est négligeable devant g au voisinage de a, si, pour $a \in \mathbb{R}$:

$$\forall \varepsilon > 0 \; \exists \alpha > 0 \; telque \; \forall x \in [a + \alpha; a - \alpha] \; |f(x)| \leq \varepsilon |g(x)|$$

On le note $f(x) \ll g(x)$ et f(x) = o(g(x)). On a :

$$(f(x) \ll g(x)) \Leftrightarrow (\lim_{x \to a} \frac{f(x)}{g(x)} = 0)$$

La définition est identique si a est infini

Définition 29 On dit que f est équivalent à g, si :

$$f(x) - g(x) \ll g(x)$$

On note $f(x) \sim g(x)$. Et on a :

$$(f(x) \sim g(x)) \Leftrightarrow (\lim_{x \to a} \frac{f(x)}{g(x)} = 1)$$

4.1.2 Comparaison successives

Soit f,g,h trois fonctions défini au voisinage de a, sauf peut être en a. Si :

$$\rightarrow$$
 Si $f(x) \ll g(x), g(x) \ll h(x)$ alors:

$$f(x) \ll h(x)$$

$$\rightarrow$$
 Si $f(x) \ll g(x)$, $g(x) \sim h(x)$ alors:

$$f(x) \ll h(x)$$

$$\rightarrow$$
 Si $f(x) \sim g(x)$, $g(x) \ll h(x)$ alors:

$$f(x) \ll h(x)$$

$$ightarrow \, \mathrm{Si} \; f(x) \sim g(x)$$
 , $g(x) \sim h(x)$ alors

$$f(x) \sim g(x)$$

4.1.3 Échelle de comparaison

Au voisinage de 0 :

$$0 \ll .. \ll x^2 \ll x \ll 1 \ll \ln(x) \ll \frac{1}{x}$$

Au voisinage de ∞

$$0 \ll \frac{1}{x^2} \ll \frac{1}{x} \ll 1 \ll 1 \ll \ln(x) \ll \sqrt{x} \ll x^2 \ll e^x$$

4.1.4 Règles de Manipulation

Somme de deux fonctions

Si, au voisinage de a :

$$\begin{cases} f(x) \sim \alpha u(x) \\ g(x) \sim \beta u(x) \\ \alpha + \beta \neq 0 \end{cases}$$
 Alors $f(x) + g(x) \sim (\alpha + \beta)u(x)$

Produit, rapport, valeur absolu

$$\begin{cases} f(x) \sim u(x) \\ g(x) \sim v(x) \end{cases}$$
 Alors $f(x) \times g(x) \sim u(x) \times v(x)$

De plus:

$$\frac{f(x)}{g(x)} \sim \frac{u(x)}{v(x)}$$

Soit α un réel :

$$(f(x))^{\alpha} \sim (u(x))^{\alpha}$$

 $|f(x)| \sim |u(x)|$

Changement de variable

Le changement de variable dans un équivalent est autorisé, mais pas la composé ne l'est pas.

Propriété 34 Si $f(x) \sim g(x)$, alors $\lim_a f$ et $\lim_b f$ ont même nature et si elles existent sont égales

4.1.5 Formule de Taylor avec reste de Young

Préliminaire

Théorème 5 Si φ est une fonction dérivable sur V_0 , un voisinage de 0, et si

$$\left. \begin{array}{l} \varphi(0) = 0 \\ \exists n \in N \text{ telque si } x \to 0, \\ \varphi'(x) = O(x^n) \end{array} \right\} A lors \ \varphi(x) = O(x^{n+1})$$

 $Si \varphi$ est dérivable sur V_0 et si :

$$\begin{array}{l} \varphi(0) = 0 \\ \sin x \to 0, \varphi'(x) = o(x^n) \end{array} \right\} Alors \ si \ x \to 0 \ \varphi(x) = o(x^{n+1})$$

Formule de Taylor

Définition 30 Si f est de classe C^n sur V_0 , alors $\forall x \in V_0$:

$$f(x) = f(0) + f'(0)x + \dots + \frac{x^n}{n!}f^{(n)}(0) + o(x^n)$$

Si f est de classe C^n sur un voisinage de a, V_a , $a \in \mathbb{R}$, alors $\forall x \in V_a$:

$$f(x) = f(0) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a) + o((x-a)^n)$$

Chapitre 5

Développements limités

5.1 Notation de Landau

Définition 31 *Si, lorsque* $x \mapsto 0$, $f(x) \ll g(x)$, *on note* :

$$f(x) = o(g(x))$$

Soit n,p entiers :

$$\rightarrow x^n \times o(x^p) = o(x^{n+p})$$

$$\rightarrow o(x^n) \times o(x^p) = o(x^{n+p})$$

$$\rightarrow o(x^n) + o(x^p) = o(x^{inf(n,p)})$$

 \rightarrow Si A est un réel fixé :

$$A \times o(x^n) = o(x^n)$$

5.2 Définitions

Définition 32 *Soit f une fonction définie au voisinage de O.*

On dit que f possède un développement limité d'ordre n si il $\exists (a_0,...a_n) \in \mathbb{R}^n$ telque :

$$f(x) - (a_0 + a_1 x + \dots + a_n x^n) \ll x^n$$

donc, au voisinage de 0, $f(x) = a_0 + a_1 x + ... + a_n x^n + o(x^n)$.

Il y a unicité du développement limité.

On peut faire une combinaisons linéaire de développement limité.

Définition 33 On appelle partie principale du développement limité la fonction polynomiale suivant :

$$x \mapsto a_0 + a_1 x + \dots + a_n x^n$$

5.3 Équivalence et développement limité

Définition 34 Si f possède un développement limité d'ordre n au voisinage de 0, si $\exists k$ telque $a_k \neq 0$, notons p l'indice du 1^{er} terme non nuls, alors, au voisinage de 0:

$$f(x) \sim a_p x^p$$

5.4 Régularité au voisinage de 0 et développement limité

Définition 35 Au voisinage de 0 :

 \rightarrow f est de classe $C^0 \Leftrightarrow \exists$ un développement limité d'ordre O

 $\rightarrow f$ est dérivable $\Leftrightarrow \exists$ un développement limité d'ordre 1

$$f$$
 est de classe $C^1\Rightarrow\exists$ un développement limité d'ordre 1 f est de classe $C^2\Rightarrow\exists$ un développement limité d'ordre 2 g Formule de Taylor-Young

5.5 Développement limités usuels

5.6 Dérivation et Intégration

Définition 36 Pour obtenir le développement limité de f'(x), on dérive terme à terme le développement limité de f(x).

Pour obtenir le développement limité de F(x), une primitive de f(x), on intègre terme à terme : $Si\ f(x) = a_0 + ... + a_n x^n + o(x^n)$, alors :

$$F(x) = F(0) + a_0 x + \dots + \frac{a_n}{n+1} x^{n+1} + o(x^{n+1})$$

5.7 Développement limité au voisinage d'un réel a

Définition 37 *Soit f fonction défini au voisinage de a. On dit que f possède, au voisinage de a, un développement limité d'ordre n si* $\exists P \in \mathbb{R}_n[X]$ *telque :*

$$f(x) = \lambda_0 + \lambda_1(x-a) + \dots + \lambda_n(x-a)^n + o((x-a)^n)$$

De plus:

(f est dérivable en a)⇔ (f est défini en a,

et f possède au voisinage de a un développement limité d'ordre 1)

5.7.1 Tangente

Propriété 35 *Si, au voisinage de a, f*(x) = $\lambda_0 + \lambda_1(x-a) + o((x-a))$, *alors*:

$$y = \lambda_0 + \lambda_1(x - a)$$

est tangent à la courbe en a. Le terme suivant non nul détermine la position relative de la tangente par rapport à la courbe.

5.8 Développement limité généralisé

Soit $\alpha \in \mathbb{R}$

Définition 38 Si au voisinage de 0, on peut écrire :

$$f(x) = \lambda_0 x^{\alpha} + \dots + \lambda_n x^{\alpha+n} + o(x^{\alpha+n})$$

Alors ceci constitue un développement limité généralisé de f en 0.

Définition 39 Si $x\mapsto +\infty$, avec f défini au voisinage de $+\infty$. Si on peut écrire :

$$f(x) = \lambda_0 x^{\alpha} + \dots + \lambda_n x^{\alpha - n} + o(x^{\alpha - n})$$

Deuxième partie Les suites

Chapitre 6

Suite numérique - Géneralité

6.1 Propriétés

6.1.1 Opérations

Soit (a),(b),(c) trois suites. On peut effectuer trois types d'opérations sur les suites :

 \rightarrow Une somme :

$$((a) + (b) = (c)) \Leftrightarrow (\forall n \in N \ a + b = c)$$

 \rightarrow Un produit :

$$((a).(b) = (c)) \Leftrightarrow (\forall n \in N \ a.b = c)$$

 \rightarrow Un produit par un scalaire :

$$((a) = \lambda(c)) \Leftrightarrow (\forall n \in N \ a = \lambda c)$$

6.2 Suites particulière

6.2.1 Suite arithmétiques

Soit (u_n) une suite arithmétiques :

$$\sum_{k=0}^{n} u_k = (n+1) \cdot \frac{u_0 + u_n}{2}$$

6.2.2 Suite géométrique

Soit (u_n) une suite géométrique, de raison q :

$$\sum_{k=0}^{n} u_k = u_0 \cdot \frac{1 - q^{n+1}}{1 - q}$$

6.3 Suites vérifiant une relation de récurrence linéaire à coefficients constants

Soit (u_n) une suite vérifiant la récurrence :

$$u_{n+2} = a.u_{n+1} + b.u_n$$

Alors, on obtient l'équation caractéristique, en simplifiant par r^n :

$$r^2 = ar + b$$

Donc:

$$\exists (A, B) \in \Re^2 \ tq \ (u_n) = A(r_1)^n + B(r_2)^n$$

Chapitre 7

Convergence des suite numériques réelles

7.1 Suites convergentes

Définition 40 Soit $(u_n)_{n\geq 0}$ une suite de nombre réels. On dit que $(u_n)_{n\geq 0}$ converge vers 0 si :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \ tq \ \forall n \geq n_0 \ |u_n| < \varepsilon$$

Définition 41 *Soit* $l \in \mathbb{R}$. *La suite* u_n *converge vers* l si :

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \ tq \ \forall n \geq n_0 \ |u_n - l| < \varepsilon$$

Les suites convergentes possède les propriétés suivantes :

- \rightarrow Une suite constante est convergente
- → Une suite géométrique de raison a avec |a|<1 converge vers 0
- \rightarrow La suite $(\frac{1}{n})_{n\geq 1}$ converge vers 0
- \rightarrow Si (u_n) converge vers une limite l, elle est unique.
- \rightarrow Un suite (u_n) converge vers 0 si et seulement si $(|u_n|)$ converge vers 0
- → Une suite convergente est bornée
- $\rightarrow \text{Si } (a_n) \text{ converge vers } 0 \text{ et } \exists n_0 \in \mathbb{N} \ tq \ \forall n \geq n_0 \ |u_n| \leq |a_n|, \text{ alors } (u_n) \text{ converge vers } 0$

7.1.1 Caractérisation de la borne supérieur

On peut caractériser la borne supérieur d'un ensemble non vide et majorée à l'aide d'une suite. Soit A une partie de $\mathbb R$

$$(\ \text{M est la borne supérieur de A}\) \Leftrightarrow \left\{ \begin{array}{l} \text{M est un majorant de A} \\ \exists (a_n) \ tq \ \forall n \in \mathbb{N} a_n \in A \ et \ a_n \ \text{converge vers M} \end{array} \right.$$

7.1.2 Caractérisation d'une partie dense

Soit A une partie de $\mathbb R$

(A est dense dans \mathbb{R}) \Leftrightarrow $(\forall x \in \mathbb{R}, \exists (u_n) \in \mathbb{R}^n, \forall n \ u_n \in A \ et \ a_n \ converge \ vers \ x)$

7.1.3 Opération sur les suites convergentes

Nous avons les propriétés suivantes :

- \rightarrow La somme de deux suites convergente est convergente, et la limite de la somme est la somme des limites.
- → Le produit par une constante d'une suite convergente est convergente
- → Le produit d'une suite bornée par une suite convergente de limite nul est une suite convergente de limite nul.
- → Le produit d'une suite convergente par une suite convergente de limite nul est une suite convergente de limite nul.
- \rightarrow Le produit de deux suite convergentes est une suite convergente
- \rightarrow Si (u_n) est une suite convergente de terme tous non nuls, si $l \neq 0$, alors $\frac{1}{u_n}$ converge vers $\frac{1}{l}$
- \rightarrow Si (u_n) est une suite convergente de limite l, alors $(|u_n|)$ converge vers |1|

7.1.4 Lien entre le signe de la limite et le signe des termes de la suite

- \rightarrow Si l>0, alors $\exists n_0 \in \mathbb{N}$, tq $\forall n \geq n_0, u_n > 0$
- \rightarrow Si l<0, alors $\exists n_0 \in \mathbb{N}$, tq $\forall n \geq n_0, u_n < 0$
- $\rightarrow \text{ Si } \exists n_0 \in \mathbb{N} \text{ tq } \forall n \geq n_0, u_n < 0, \text{ alors } l \leq 0$
- \rightarrow Si $\exists n_0 \in \mathbb{N}$ tq $\forall n \geq n_0, u_n > 0$, alors $l \geq 0$

De ces correspondances, on détermine les comparaisons entre deux suites convergentes.

7.1.5 Théorème d'encadrement

Si:

$$\begin{cases} (u_n) \text{ converge vers l} \\ (v_n) \text{ converge vers l} \\ \exists n_0 \in \mathbb{N}, \ \forall n \geq n_0, \ u_n \leq x_n \leq v_n \end{cases}$$

Alors x_n converge vers l.

7.1.6 Suite extraites

Propriété 36 $Si(u_n)$ converge, alors toutes ses suites extraites converge vers la même limite.

Propriété 37 Si:

$$\left\{\begin{array}{l} (u_{\varphi_{(n)}})\ et\ (u_{\psi_{(n)}})\ converge\ vers\ la\ même\ limite\\ \{\varphi_{(n)}\ /\ n\in\mathbb{N}\}\cup\{\psi_{(n)}\ /\ n\in\mathbb{N}\}=\mathbb{N} \end{array}\right.$$

7.2 Suites divergentes

7.2.1 Caractéristation des suites divergentes

Si:

$$\left\{\begin{array}{l} (u_{\varphi_{(n)}})\ et\ (u_{\psi_{(n)}})\ \text{converge vers des limites différentes}\\ \{\varphi_{(n)}\ /\ n\in\mathbb{N}\}\cup\{\psi_{(n)}\ /\ n\in\mathbb{N}\}=\mathbb{N} \end{array}\right.$$

Alors la suite (u_n) diverge

7.2.2 Suites qui diverge vers $\pm \infty$

Définition 42 Soit $(u_n)_{n\geq 0}$ une suite de nombre réels. On dit que $(u_n)_{n\geq 0}$ diverge vers $+\infty$ si :

$$\forall A \in \mathbb{R}^+, \exists n_0 \in \mathbb{N} \ tq \ \forall n \geq n_0 \ u_n > A$$

Définition 43 Soit $(u_n)_{n\geq 0}$ une suite de nombre réels. On dit que $(u_n)_{n\geq 0}$ diverge vers $-\infty$ si :

$$\forall B \in \mathbb{R}^-, \exists n_0 \in \mathbb{N} \ tq \ \forall n \geq n_0 \ u_n < B$$

Propriétés

- $\rightarrow ((u_n) \text{ diverge vers } -\infty) \Leftrightarrow ((-u_n) \text{ diverge vers } +\infty)$
- \rightarrow La somme d'une suite bornée et d'une suite qui diverge vers $+\infty$ diverge vers $+\infty$
- \rightarrow L'inverse d'une suite qui tend vers $+\infty$ converge vers 0

7.2.3 Théorème de minoration

Théorème 6 Si (u_n) et (v_n) sont deux suites telque :

$$\begin{cases} (u_n) \text{ diverge vers } + \infty \\ \exists n_0 \text{ } tq \forall n \ge n_0 \text{ } u_n \ge x_n \end{cases}$$

Alors (x_n) diverge vers $+\infty$

7.3 Suite monotone et convergente

Théorème 7 Soit (u_n) une suite croissante.

Si elle est majorée, alors elle converge. Sinon, elle diverge vers $+\infty$

Théorème 8 *Soit* (u_n) *une suite décroissante.*

Si elle est minorée, alors elle converge. Sinon, elle diverge vers $-\infty$

7.3.1 Suites adjacentes

Définition 44 Soient (u_n) et (v_n) deux suites. Elle sont dites adjacentes si :

- 1. (u_n) croissante
- 2. (v_n) décroissante
- 3. $(u_n v_n)$ converge vers 0

Propriété 38 $Si(u_n)$ et (v_n) sont adjacentes, alors elles convergent vers la même limite, notée l et :

$$\forall n \in \mathbb{N}, u_n < l < v_n$$

7.3.2 Segments emboités

Définition 45 On considère une suite de segments. On dit que la suite est emboitée si :

$$\forall n \in \mathbb{N} \ [a_{n+1}, b_{n+1}] C [a_n, b_n]$$

Propriété 39 Nous avons les propriétés suivantes :

- ightarrow L'intersection de tous les intervalles d'une suites d'intervalle emboitée est non vide
- ightarrow Si la longeur de l'intervalle tend vers 0, alors l'intersection est un singleton

7.3.3 Théorème de Bolzano-Weierstrass

Théorème 9 De toutes suites réelle bornée, on peut extraire une suite convergente.

Chapitre 8

Suite à valeur complexe

8.1 Convergence

Définition 46 Soit (z_n) une suite à valeur complexe. On dit que cette suite converge vers λ si et seulement si:

$$\forall \varepsilon > 0, \exists n_0 \in \mathbb{N} \ tq \ \forall n \ge n_0 \ |u_n - \lambda| < \varepsilon$$

8.2 Partie réeles, partie imaginaire

Propriété 40 Si $Re(z_n)$ converge vers a et $Im(z_n)$ converge vers b, alors (z_n) converge vers a+ib.

8.3 Suites des modules et suites des arguments

Soit (z_n) la suite défini par :

$$\forall n \in \mathbb{N} \ z_n = \rho_n e^{i\theta_n}$$

Propriété 41 Si:

$$\begin{cases} (\rho_n) \text{ converge vers a} \\ (\theta_n) \text{ converge vers b} \end{cases}$$

alors (z_n) converge vers ae^{ib}

Mais si la suite des arguments ne converge pas, la suite (z_n) peut quand meme converger.

8.4 Opération

8.4.1 Somme de deux suites convergente

Propriété 42 Soient (z_n) et (z'_n) deux suites convergentes de limite λ et λ' . On obtient que $(z_n+z'_n)$ converge vers $\lambda+\lambda'$

Chapitre 9

Etude des suites

9.1 Suite complexe

Soit (z_n) une suite de complexe

Propriété 43

$$((z_n) \text{ converge vers } \lambda) \Leftrightarrow (|z_n - \lambda| \text{ converge vers } 0)$$

Propriété 44

$$((z_n) \text{ converge vers } \lambda) \Leftrightarrow (Re(z_n) \text{ converge vers } Re(\lambda) \text{ et } Im(z_n) \text{ converge vers } Im(\lambda))$$

Propriété 45 Si (z_n) converge vers λ , alors $(|z_n|)$ converge vers $|\lambda|$. Mais aucune information sur le comportement de l'argument.

Propriété 46 Si le module de z_n converge vers R et que l'argument de z_n converge vers α , alors (z_n) converge vers $Re^{i\alpha}$

Propriété 47 Soit (z_n) suite complexe défini par :

$$\forall n \in \mathbb{N} \ z_n = a^n$$

Avec $a \in C$. Si:

- $\rightarrow a=0, (z_n)$ est une suite constante
- $\rightarrow a \in]0,1[,(z_n) \text{ converge vers } 0]$
- $\rightarrow |a| > 1$, (z_n) diverge vers $+\infty$
- $\rightarrow |a| = 1.$
 - \rightarrow Si a \neq 1, alors la suite diverge
 - \rightarrow Si a = 1, (z_n) est une suite constante

9.2 Suites définies par récurrence

Définition 47 Soit f une fonction de \mathbb{R} dans \mathbb{R} , définie sur D_f , et (u_n) une suite définie telque :

$$u_0 \in \mathbb{R}$$

$$\forall n, \ u_{n+1} = f(u_n)$$

9.2.1 Existance de la suite

Propriété 48 Soit (u_n) une suite de réel, défini par récurrence à l'aide de la fonction f.

$$(\forall n, u_n \text{ existe}) \Leftarrow (u_0 \in D_f \text{ et } D_f \text{ est stable par } f)$$

$$(\forall n, u_n \ existe) \Leftarrow (u_0 \in D_f \ et \ f(D_f)CD_f)$$

9.2.2 Sens de variation

Propriété 49 Soit (u_n) une suite de réel, défini par récurrence à l'aide de la fonction f.

$$((u_n) \ est \ croissante) \Leftrightarrow (\forall n \in \mathbb{N}, \ u_{n+1} \ge u_n)$$

$$((u_n) \ est \ croissante) \Leftrightarrow (\forall n \in \mathbb{N}, \ f(u_n) \ge u_n)$$

En pratique, si $\forall x \in I$, $f(x) \ge x$ et si $\forall n \in \mathbb{N}$, $u_n \in I$, alors (u_n) est croissante.

9.2.3 Limite éventuelle

Si (u_n) converge vers l et que f est continue en l, alors l = f(l)

9.3 Règle de d'Alembert

Soit (u_n) une suite de réels positifs. Supposons que :

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = a$$

- $\rightarrow \text{ Si a} \in [0,1[$, (u_n) converge vers 0
- \rightarrow Si a>1, (u_n) diverge vers $+\infty$

9.4 Comparaison des suites

9.4.1 Définitions

Définition 48 Soit (u_n) et (v_n) deux suites à valeur réelle. On dit que (v_n) domine (u_n) si :

$$\exists A \in \mathbb{R}^+ \ tq \ \forall n \in \mathbb{N} \ |u_n| \le A.|v_n|$$

On note $u_n = O(v_n)$

Définition 49 On dit que (u_n) est négligable devant (v_n) ou que (v_n) est préponderant devant (u_n) si :

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ tq \ \forall n \ge n_0 \ |u_n| \le \varepsilon |v_n|$$

On note $u_n \ll v_n$ ou $u_n = o(v_n)$

Définition 50 On dit que (u_n) est équivalent à (v_n) si $(u_n - v_n)$ est négligable devant (v_n)

9.4.2 Comparaison des suites de référence

Propriété 50 Soit (c_n) une suite telleque :

$$\lim_{n \to +\infty} |c_n| = +\infty$$

 $Si(a_n)$ converge vers 0, $Si(b_n)$ converge vers $l, l \neq 0$, alors:

$$a_n \ll b_n \ll c_n$$

Comparaison des suites qui divergent vers $+\infty$

Soit A > 1, α > 0:

$$ln(n) \ll n^{\alpha} \ll A^n \ll n! \ll n^n$$

Comparaion des suites qui converge vers 0

Soit B < 1, β < 0, alors :

$$0 \ll B^n \ll n^\beta \ll \frac{1}{\ln(n)}$$

Comparaion des suites convergente de limite non nul

Soient l,l' deux réels non nuls.

Soient (u_n) et (v_n) deux suites qui convergent respectivement vers l et l'. Alors :

 $u_n \sim \frac{l}{l'} v_n$

9.5 Règles d'utilisation des équivalents et négligabilité

Propriété 51 Soient (u_n) , (v_n) et (w_n) trois suites.

$$u_n \ll v_n \text{ et } v_n \ll w_n \Rightarrow u_n \ll w_n$$

 $u_n \sim v_n \text{ et } v_n \sim w_n \Rightarrow u_n \sim w_n$
 $u_n \sim v_n \text{ et } v_n \ll w_n \Rightarrow u_n \ll w_n$
 $u_n \ll v_n \text{ et } v_n \sim w_n \Rightarrow u_n \ll w_n$

Propriété 52 Soient (u_n) , (v_n) deux suites et (a_n) , (b_n) deux autres suites. Si:

$$(u_n) \sim (v_n) \ et \ (a_n) \sim (b_n)$$

alors:

$$(u_n)(a_n) \sim (v_n)(b_n)$$

Ceci n'est pas vrai dans le cas de l'addition.

Propriété 53 Soient (u_n) , (v_n) et (a_n) trois suites et λ , μ deux réels de somme non nuls. Si:

$$(u_n) \sim \lambda(a_n) \ et \ (v_n) \sim \lambda(a_n)$$

Alors:

$$u_n + v_n \sim (\lambda + \mu)a_n$$

Si la somme des deux réels est nul, nous n'avons aucun résultats.

Propriété 54 Si $u_n \sim v_n$, alors $u_n^{\alpha} \sim v_n^{\alpha}$

Propriété des équivalents

Propriété 55 Soient u_n et v_n deux suites telque $u_n \sim v_n$.

- \rightarrow Si u_n diverge, alors v_n diverge
- $\rightarrow Si u_n$ converge, alors v_n converge vers la même limite
- \rightarrow Si la limite de u_n en l'infini est l'infini, alors la limite de v_n en l'infini est aussi l'infini

Troisième partie

Arcs Paramétré

Arcs Paramétrés et Arcs Polaire

Étude locale d'un arc 10.1

Définition 51 *Soit* τ *un arc paramétré défini par (F,I), avec I un intervalle et F une fonction :*

$$F:I\to\mathbb{R}^2$$

$$t \mapsto M(t)$$

$$avec: M(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$

Propriété 56 Supposons que x et y soient de classe C^n sur I, alors on dit que (τ) est de classe C^n

10.1.1 Point Régulier

Si $\frac{d\overrightarrow{M}}{dt}(t_0) \neq \overrightarrow{0}$, alors $\frac{d\overrightarrow{M}}{dt}(t_0)$ est un vecteur directeur de la tangente au support de l'arc en M(t_0). On dit alors que M(t_0) est un point régulier de l'arc.

10.1.2 Point Singulier

Si $\frac{d\overrightarrow{M}}{dt}(t_0) = \overrightarrow{0}$, alors $M(t_0)$ est un point singulier. Par application de la formule de Taylor, on obtient les deux entiers caractéristiques suivants.

Premier entier caractéristique de (τ) en M (t_0)

Définition 52 *Notons p, si il existe :*

$$p = Min\{k / \frac{d^k \overrightarrow{M}}{dt^k}(t_0) \neq \overrightarrow{O}\}$$

alors $\frac{d^p \overrightarrow{M}}{dt^p}(t_0)$ est tangent à l'arc en $M(t_0)$

Deuxième entier caractéristique de (τ) en $M(t_0)$

Notons q, si il existe:

$$q = Min\{k/\frac{d^k \overrightarrow{M}}{dt^k}(t_0) \ et \ \frac{d^p \overrightarrow{M}}{dt^p}(t_0) \ \text{soient non colinéaire}\}$$

Coordonnée de M(t) dans un repère particulier

Soit R le repère défini par : $(M(t_0), \frac{d^p \overrightarrow{M}}{dt^p}(t_0), \frac{d^q \overrightarrow{M}}{dt^q}(t_0))$ Dans ce repère, on obtient les coordonnées suivantes pour M(t) :

$$\begin{cases} X(t) \sim \frac{(t-t_0)^p}{p!} \\ Y(t) \sim \frac{(t-t_0)^q}{q!} \end{cases}$$

On obtient donc:

→ p paire, q impaire : Point de rebroussement du première ordre

→ p paire, q paire : Point de rebroussement du deuxième ordre

 $\rightarrow p$ impaire, q paire : Point ordinaire

→ p impaire, q impaire : Point d'inflexion

10.2 Etude métrique des arc paramétré

10.2.1 Longeur d'un arc

Soit (τ) un arc de classe C^1 sur I = [a,b], avec a < b. Soit $\widehat{I(M(a)M(b))}$ la longeur de l'arc (τ) reliant M(a) à M(b). On obtient :

$$l(\widehat{M(a)M}(b)) = \int_{a}^{b} ||\frac{d\overrightarrow{M}}{dt}(t)||dt$$

10.2.2 Abscisse curviligne

Soit τ un arc de classe C^1 sur un intervalle I. On défini une abscisse curviligne avec :

1- Un point de l'arc, appelé origine.

2- Une orientation sur l'axe:

 \rightarrow Le sens des t croissants

→ Ou le sens des t décroissants

Soit M(t₀) l'origine de l'abcisse, soit s(t) l'abscisse du point M(t).

$$s(t) = \varepsilon \int_{t_0}^t || \frac{d\overrightarrow{M}}{dt}(u) || du$$

avec $\varepsilon = \pm 1$ selon l'orientation de l'axe.

On obtient aussi:

$$\frac{ds}{dt} = ||\frac{d\overrightarrow{M}}{dt}||.\varepsilon$$

s est un paramétrage du support de l'arc. De plus, on obtient :

$$||\frac{d\overrightarrow{M}}{ds}|| = 1$$

Repère de Frenet en M(t)

On note $\overrightarrow{T} = \frac{d\overrightarrow{M}}{ds}$ le premier vecteur de Frenet en M(t). On le calcul en utilisant le faite que :

$$\frac{d\overrightarrow{M}}{ds} = \frac{\varepsilon}{||\frac{d\overrightarrow{M}}{dt}||} \cdot \frac{d\overrightarrow{M}}{dt}$$

On note \overrightarrow{N} l'unique vecteur vérifiant que $(M(t), \overrightarrow{T}, \overrightarrow{N})$ soit un repère orthonormée directe, appelé repère de Frenet en M(t).

Soit $\varphi = (\overrightarrow{i}, \overrightarrow{T})[2\pi]$, avec \overrightarrow{i} vecteur horizontal passant par M(t).

$$\overrightarrow{T} = \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \end{pmatrix}$$

$$\overrightarrow{N} = \begin{pmatrix} -\sin(\varphi) \\ \cos(\varphi) \end{pmatrix}$$

10.2.3 Courbure d'un arc en un point

Définition 53 On défini le rayon de courbure en M(t), notée R, par :

$$R=\frac{ds}{d\varphi}$$

Définition 54 *La courbure en M(t), notée* γ *, est défini par :*

$$\gamma = \frac{1}{R} = \frac{d\varphi}{ds} = \frac{\frac{d\varphi}{dt}}{\frac{ds}{dt}}$$

10.2.4 Formules de Frenet

Soit $\overrightarrow{T}\begin{pmatrix}\cos(\varphi)\\\sin(\varphi)\end{pmatrix}$ et $\overrightarrow{N}\begin{pmatrix}-\sin(\varphi)\\\cos(\varphi)\end{pmatrix}$ les deux vecteurs de la base de Frenet. Sachant que :

$$\frac{d\overrightarrow{T}}{d\varphi} = \overrightarrow{N}$$

On obtient:

$$\frac{d\overrightarrow{T}}{ds} = \gamma \overrightarrow{N}$$

De meme, on obtient que:

$$\frac{d\overrightarrow{N}}{ds} = -\gamma \overrightarrow{T}$$

Lien entre courbure, vitesse et accélération

Notons
$$\overrightarrow{V} = \frac{d\overrightarrow{M}}{dt}$$
 et $\mathbf{v} = |\overrightarrow{V}|$.

On obtient:

$$\overrightarrow{V}=\varepsilon.v.\overrightarrow{T}$$

. Notons $\overrightarrow{a} = \frac{d\overrightarrow{V}}{dt}$. Alors :

$$\overrightarrow{a} = \varepsilon . \frac{dv}{dt} . \overrightarrow{T} + v^2 . \gamma . \overrightarrow{N}$$

De cette expression, on en déduit que :

$$\gamma = \varepsilon. \frac{Det(\overrightarrow{V}, \overrightarrow{a})}{v^3}$$

10.3 Plan d'étude d'un arc paramétré

- 1- Domaine de définition
- 2- Réduction du domaine d'étude :
 - → Periodicité
 - → Symétrie
 - → Partié
- 3- Dérivablité : Faire un double tableau de variation (un pour x, un pour y)
- 4- Tangentes
 - \rightarrow En un point régulier : Le vecteur de coordonée $(x'(t_0), y'(t_0))$ est tangent en t_0 .
 - \rightarrow En un point singulier :

$$\lim_{t \to t_0} \frac{y'(t)}{x'(t)}$$

Ou on peut utiliser la méthode des entiers caractéristiques

→ En un point limite

$$\lim_{t \mapsto t_0} \frac{y(t) - \lim_{t_0} y}{x(t) - \lim_{t_0} x}$$

- 5- Branches infinies : Si $\lim_{t_0} x = +\infty$ et $\lim_{t_0} y = +\infty$
 - $\rightarrow \lim_{t_0} \frac{y}{x}$
 - $\rightarrow \infty$: Branche de direction Oy
 - $\rightarrow a \in \mathbb{R}$:
 - $\rightarrow \lim_{t_0} y ax$:
 - $\rightarrow b \in \mathbb{R}$: y = ax+b asymptote
 - $\rightarrow \infty ou \emptyset$: Branche de direction ax
 - $\rightarrow 0$: Branche de direction Ox
 - $\rightarrow \emptyset$: Aucune méthode
- 6- Concavité:
 - $\rightarrow \text{ Etude du signe de } Det(\overrightarrow{v};\overrightarrow{\Gamma})$
 - \rightarrow L'angle $(\overrightarrow{v};\overrightarrow{\Gamma})$ donne la position de la tangente
 - → Les points d'inflexion sont les points de changements de concavité

7- Point double : On résoud le système suivant, d'inconnu (t,t'), avec $t \neq t'$:

$$\begin{cases} x(t) = x(t') \\ y(t) = y(t') \end{cases}$$

10.4 Arcs polaire

10.4.1 Liens polaire-cartésien

Soit (ρ,θ) les coordonnée de M, telque :

$$\overrightarrow{OM} = \rho \overrightarrow{u}(\theta)$$

On obtient les coordonées cartérisien de M avec :

$$\left\{ \begin{array}{l} x = \rho cos(\theta) \\ y = \rho sin(\theta) \end{array} \right.$$

On a donc:

$$\rho = \pm \sqrt{x^2 + y^2}$$

10.4.2 Equivalence et symétrie

Soit $M(\rho,\theta)=M(-\rho,\theta+\pi)$ (cette égalité est vérifie pour tout point du plan) :

 $\rightarrow M_1$ symétrique de M par rapport à (Ox) si :

$$M_1(\rho, -\theta + k2\pi/k \in Z)$$

 $\rightarrow M_2$ symétrique de M par rapport à (Oy) si :

$$M_2(\rho, \pi - \theta)$$

 $\rightarrow M_3$ symétrique de M par rapport à l'origine si :

$$M_3(\rho, \pi + \theta)$$

10.4.3 Étude des tangentes

 $\rightarrow \mbox{ Si } \rho(\theta)$ est dérivable en θ : $\frac{dM(\theta)}{\theta}$ est tangent en $\mbox{M}(\theta)$

$$\frac{dM(\theta)}{\theta} = \rho' \overrightarrow{u} + \rho \overrightarrow{v}$$

avec:

$$\overrightarrow{u}(\theta) \begin{pmatrix} \cos(x) \\ \sin x \end{pmatrix}$$

$$\overrightarrow{v}(\theta) \begin{pmatrix} -sin(x) \\ \cos x \end{pmatrix}$$

 \rightarrow Si $\rho(\theta) = 0$: $\overrightarrow{u}(\theta)$ est tangent en 0

10.4.4 Etude d'une branche infini

Si:

$$\lim_{\theta\mapsto\theta_0}\rho(\theta)=\infty$$

Alors la courbe possède une branche infini de direction $\overrightarrow{u}(\theta_0)$. On réalise alors une étude dans le repère $(0, \overrightarrow{u}(\theta_0), \overrightarrow{v}(\theta_0))$:

$$\lim_{\theta \mapsto \theta_0} Y(\theta)$$

avec
$$Y(\theta) = \rho sin(\theta - \theta_0)$$

Les coniques

11.1 Définition

Définition 55 *On appelle conique de foyer F, de directrice* Δ *et d'excentricité e l'ensemble :*

$$\{M/e.distance(M, \Delta) = MF\}$$

11.1.1 Définitions bifocale d'une ellipse

Définition 56 *Soit F et F' les deux foyers de l'ellipse. On défini cette ellipse par :*

(M appartient à l'ellipse)
$$\Leftrightarrow$$
 (MF + MF' = $cte = 2.a$)

avec a le demi-grand axe.

11.1.2 Définitions bifocale d'une hyperbole

Définition 57 *Soit F et F' les deux foyers de l'hyperbole. On défini cette hyperbole par :*

(M appartient à l'hyperbole)
$$\Leftrightarrow$$
 ($|MF - MF'| = cte = 2.a$)

avec a la valeur absolue de la distance du point d'intersection entre l'axe 0x et l'hyperbole avec l'origine.

Définition 58 *On appelle cercle principale d'une ellipse le cercle de centre O et de rayon a.*

11.2 Les différentes coniques

11.2.1 L'ellipse

Une ellipse est définie par l'équation suivante :

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Avec a>b, a est appelé le demi grand axe, et b le demi petit axe. On peut aussi paramétrer un point M de l'ellipse par :

$$\left\{ \begin{array}{l} x(t) = acos(t) \\ y(t) = bsin(t) \end{array} \right.$$

Avec t l'angle entre l'axe Ox et OP, avec P le point correspondant à M sur le cercle principale de l'ellipse. M est obtenir à partir de P à l'aide d'une affinité.

11.2.2 L'hyperbole

Une hyperbole est définie par l'équation suivante :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Pour vérifier cette formule, on prend y=0, et on doit obtenir deux solutions. De plus, on obtient les asymptotes en annulant 1. On peut aussi paramétrer un point M de l'hyperbole par :

$$\left\{ \begin{array}{l} x(t) = ach(t) \\ y(t) = bsh(t) \end{array} \right.$$

11.2.3 Parabole

L'équation réduite est :

$$y^2 = 2px$$

11.3 Équation polaire dans un repère de centre F

Soit $M(\rho, \theta)$, Δ droite d'équation $x = x_{\Delta}$. L'équation générale est :

$$\rho = \frac{ex_{\Delta}}{1 + ecos(\theta)}$$

avec e l'excentricité de la conique. Notons c l'abscisse de F.

 \rightarrow Si e < 1 : C'est une ellipse. Nous avons donc les résultats suivants

$$\rightarrow e = \frac{c}{a}$$

$$\rightarrow c^2 = a^2 - b^2$$

$$\rightarrow x_{\Delta} = \frac{a^2}{c}$$

 \rightarrow Si e = 1 : C'est une parabole.

 \rightarrow Si e > 1 : C'est une hyperbole.

$$\rightarrow e = \frac{c}{a}$$

$$\rightarrow c^2 = a^2 + b^2$$

$$\rightarrow x_{\Delta} = \frac{a^2}{c}$$

Quatrième partie Fonctions de \mathbb{R}^2 dans \mathbb{R}

 $\boxed{12}$

Fonctions de \mathbb{R}^2 dans \mathbb{R}

12.1 Norme

Définition 59 *Soit E un espace vectoriel.*

n est une norme de E si:

$$n: E \to \mathbb{R}$$

telque:

- $\rightarrow \forall x \in E \ n(x) \geq 0$
- $\rightarrow \forall \lambda \in \mathbb{R}, \ \forall x \in E, \ n(\lambda x) = |\lambda| n(x)$
- $\rightarrow \forall x \in E, \ n(x) = 0 \Leftrightarrow x = 0$
- $\rightarrow \forall (x,y) \in E^2 n(x+y) \le n(x) + n(y)$

Propriété 57 La norme euclidienne, notée $||(x,y)||_2$ est défini par :

$$\forall (x,y) \in \mathbb{R}^2 ||(x,y)||_2 = \sqrt{x^2 + y^2}$$

Définition 60 On défini la norme $||(x,y)||_n$ par :

$$||(x,y)||_n = (|x|^n + |y|^n)^{1/n}$$

Définition 61 On défini la norme infini par :

$$\forall (x,y) \in \mathbb{R}^2 ||(x,y)||_{\infty} = Max(|x|,|y|)$$

12.1.1 Boules

Définition 62 Soit n une norme sur E, soit $x_0 \in E$, et $r \in \mathbb{R}^+$. On appelle Boule de centre x_0 , de rayon r:

$$B(x_0, r) = \{x \in E / n(x_0 - x) \le r\}$$

12.1.2 Norme équivalentes

Définition 63 Soient n_1, n_2 deux normes sur E.

 n_1 et n_2 sont dites équivalentes si il existe deux réels strictement positifs telque $\forall x \in E$:

$$\alpha n_2(x) \le n_1(x) \le \beta n_2(x)$$

$$\frac{1}{\beta}n_1(x) \le n_2(x) \le \frac{1}{\alpha}n_1(x)$$

Propriété 58 Dans un espace de dimension finie, toutes les normes sont équivalentes.

12.1.3 Convergence d'une suite

Soit (u_n) une suite de vecteur de E :

- \rightarrow On dit que (u_n) converge vers 0 pour la norme n si la suite des réels $(n(u_n))$ converge vers 0
- \rightarrow Si deux normes sont équivalente, toutes suites convergentes pour l'une est convergente pour l'autre
- → Dans un espace de dimension finie, la définition de la convergence ne dépend pas de la norme considéré.

12.2 Limite d'une fonction de \mathbb{R}^2 dans \mathbb{R}

Définition 64 *Soit A une partie de* \mathbb{R}^2 , *et n une norme de* \mathbb{R}^2 .

Soit f une fonction de A dans \mathbb{R} .

Soit $(x_0, y_0) \in A$, et l un réel.

On dit que : $\lim_{(x_0,y_0)} f = l$

$$\forall \varepsilon > 0 \ \exists \alpha > 0 \ tq \ \forall (x,y) \in B((x_0,y_0),\alpha) : |f(x,y)-l| < \varepsilon$$

Propriété 59 Soit f et g deux fonction défini sur A :

- \rightarrow La limite de la somme et la somme des limites.
- \rightarrow La limite du produit et le produit des limites
- o Composition : Soit $f: \mathbb{R}^2 \xrightarrow{} \mathbb{R}$ et $\varphi: \mathbb{R} \to \mathbb{R}$. Si $\lim_{(a,b)} f = l$ et si $\lim_{l} \varphi = m$, alors :

$$\lim_{(a,b)} \varphi of = m$$

12.2.1 Théorème d'encadrement

Soient f,g,h fonctions défini sur A.

Si $\forall (x,y) \in A$:

$$h(x,y) \le f(x,y) \le g(x,y)$$

et si $\lim_{(a,b)} g = \lim_{(a,b)} h = l$, alors :

$$\lim_{(a,b)} f = l$$

12.2.2 Caractérisation de la divergence

$$\begin{array}{l} \operatorname{Si}: \\ \to \lim_{t_0} x_1 = a \\ \to \lim_{t_0} y_1 = b \\ \to \lim_{t_0} x_2 = a \\ \to \lim_{\alpha} y_2 = b \\ \operatorname{et} \lim_{t \to t_0} f(x_1(t), y_1(t)) = l \operatorname{et} \lim_{u \to \alpha} f(x_2(y), y_2(u)) = l', \operatorname{avec} l \neq l', \operatorname{alors}: \\ \lim_{(a,b)} f \operatorname{n'existe pas} \end{array}$$

12.2.3 Continuité

Définition 65 Si f est une fonction définie en (a,b) et sur un voisinage de (a,b), avec :

$$\lim_{(a,b)} f = f(a,b)$$

Alors, on dit que f est continue en (a,b).

12.3 Dérivation

12.3.1 Dérivées partielles

Soit f fonction définie au voisinage de (a,b).

Définition 66 On appelle première dérivée partielle de f en (a,b) :

$$\frac{\partial f}{\partial x}(a,b) = \lim_{x \to a} \frac{f(x,b) - f(a,b)}{x - a}$$

Définition 67 On appelle deuxième dérivée partielle de f en (a,b) :

$$\frac{\partial f}{\partial y}(a,b) = \lim_{y \to b} \frac{f(a,y) - f(a,b)}{y - b}$$

12.3.2 Dérivée suivant un vecteur

Définition 68 Soit $\overrightarrow{u}(\alpha, \beta)$ un vecteur de \mathbb{R}^2 . On défini le nombre dérivée de f en (a,b) suivant \overrightarrow{u} , notée $d_{\overrightarrow{u}}f(a,b)$, par :

$$d_{\overrightarrow{u}}f(a,b) = \lim_{t \to 0} \frac{f(a+\alpha.t, b+\beta.t) - f(a,b)}{t}$$

12.3.3 Fonction de classe C^1

Définition 69 Soit A une partie de \mathbb{R}^2 . On dit que f est de classe C^1 sur A si :

- → f possède sur A deux dérivées partielles
- \rightarrow Ces deux fonctions sont continue sur A

12.3.4 Développement limité d'ordre 1

Si f est de classe C^1 sur A, voisinage de (a,b), alors :

$$\forall (x,y) \in A \ f(x,y) = f(a,b) + \frac{\partial f}{\partial x}(a,b).(x-a) + \frac{\partial f}{\partial y}(a,b).(y-b) + o(||(x,y) - (a,b)||)$$

Propriété 60 *Soit* $\overrightarrow{u}(\alpha, \beta)$ *et f une fonction de classe* C^1 *au voisinage de (a,b).*

$$d_{\overrightarrow{u}}f = \alpha \cdot \frac{\partial f}{\partial x}(a,b) + \beta \frac{\partial f}{\partial y}(a,b)$$

On en déduit que si f est de classe C^1 au voisinage de (a,b), alors $\forall \overrightarrow{u} \in \mathbb{R}^2$, $d_{\overrightarrow{u}}f$ existe et est continue.

12.3.5 Plan tangent

Définition 70 On appelle plan tangent à la surface représentative d'une fonction de classe C^1 le plan définie par le repère :

$$(M(a,b,f(a,b),\overrightarrow{t_i},\overrightarrow{t_i},\overrightarrow{t_i})$$

avec:

$$\overrightarrow{t_{i}} = \begin{pmatrix} 1 \\ 0 \\ \frac{\partial f}{\partial x}(a, b) \end{pmatrix}$$

$$\overrightarrow{t_{\overrightarrow{j}}} = \begin{pmatrix} 0 \\ 1 \\ \frac{\partial f}{\partial y}(a, b) \end{pmatrix}$$

Vecteur normale au plan tangent

Définition 71 On défini un vecteur normale au plan tangent, notée \overrightarrow{n} , par :

$$\overrightarrow{n} = \overrightarrow{grad}(f(x,y) - z)$$

12.3.6 Dérivées partielles d'ordre 2

Définition 72 *Soit f définie sur une partie A de* \mathbb{R}^2 .

Si $\frac{\partial f}{\partial x}$ est défini sur A et possède des dérivées partielles, on les notes :

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x}.\frac{\partial f}{\partial x}$$

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \cdot \frac{\partial f}{\partial x}$$

Respectivement pour $\frac{\partial f}{\partial u}$, on obtient :

$$\frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \cdot \frac{\partial f}{\partial y}$$

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \cdot \frac{\partial f}{\partial y}$$

Théorème 10 Si $\frac{\partial^2 f}{\partial x \partial y}$ et $\frac{\partial^2 f}{\partial y \partial x}$ sont continue sur A, alors :

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$$

12.3.7 Dérivée des composées

Premier type de composées

Soit f une fonction de classe C^1 de A dans \mathbb{R} , avec $Ac\mathbb{R}$. Soit φ une fonction dérivable sur \mathbb{R} . Soit $g = \varphi$ o f.

$$g: A \to \mathbb{R}$$

 $(x,y) \mapsto \varphi(f(x,y))$

On obtient les dérivées partielles suivantes :

$$\frac{\partial g}{\partial x}(x,y) = \frac{\partial f}{\partial x}(x,y).\varphi'(f(x,y))$$

$$\frac{\partial g}{\partial y}(x,y) = \frac{\partial f}{\partial y}(x,y).\varphi'(f(x,y))$$

Second type de composées

Soit x,y deux fonctions de $\mathbb R$ dans $\mathbb R$, dérivable sur $\mathbb R$. Soit f une fonction de $\mathbb R^2$ dans $\mathbb R$, de classe C^1 sur $\mathbb R^2$. Soit φ la fonction définie par :

$$\varphi : \mathbb{R} \to \mathbb{R}$$

 $t \mapsto f(x(t), y(t))$

On obtient, à l'aide d'un développement limité :

$$\forall t: \varphi'(t) = x'(t).\frac{\partial f}{\partial x}(x(t),y(t)) + y'(t).\frac{\partial f}{\partial y}(x(t),y(t))$$

Cinquième partie Equations differentielles

 $\boxed{13}$

Équation différentielle

13.1 Fonction exponentielle complexe

Soit:

$$f: t \mapsto x(t) + iy(t) = e^{rt}$$

Avec r = a+ib. On obtient, $\forall t \in \mathbb{R}$:

$$f'(t) = re^{rt}$$

13.2 Équation différentielle

13.2.1 Première ordre

$$(\forall x \in \mathbb{R} \ ay'(t) + by(t) = 0) \Leftrightarrow (\exists K \in \mathbb{R}, \ tq \ \forall x \in \mathbb{R} \ y = Ke^{-\frac{b}{a}x})$$

13.2.2 Second ordre

On établie l'équation caractéristique, de la forme :

$$ax^2 + bx + c = 0$$

On détermine Δ et on obtient :

$$\rightarrow \Delta > 0$$
:

$$\exists (A, B) \in \mathbb{R}^2 \ tq \ \forall x \in \mathbb{R} \ y(x) = Ae^{r_1 x} + Be^{r_2 x}$$

$$\rightarrow \Delta = 0$$
:

$$\exists (A,B) \in \mathbb{R}^2 \ tq \ \forall x \in \mathbb{R} \ y(x) = (Ax+B)e^{r_0x}$$

 $ightarrow \ \Delta > 0$: Solution dans C, avec $r_0 = \pm i \omega$

$$\exists (A, B) \in \mathbb{R}^2 \ tq \ \forall x \in \mathbb{R} \ y(x) = (Acos(\omega x) + Bsin(\omega x))e^{r_0 x}$$

13.3 Recherche d'une solution particulière

13.3.1 Second membre constant

Soit (E) l'équation différentielle suivante :

$$ay'' + by' + cy = d$$

Si $C \neq 0$:

$$y_0: x \mapsto \frac{d}{c}$$

est une solution particulière. Si C=0:

$$y_0: x \mapsto \frac{d}{b}x$$

est une solution particulière

13.3.2 Second membre polynomiale

En géneral, on recherche un polynome de meme degrès. Soit :

$$y'' + 3y = 2x + 1$$

On pose:

$$y_0: x \mapsto ax + b$$

On dérive deux fois y_0 et on remplace dans l'équation pour déterminer a et b

13.3.3 Second membre exponentielle

Si le second membre est de la forme :

$$x \mapsto e^{\alpha x}$$

Alors on peut espérer une solution de la forme $\lambda e^{\alpha x}$

13.4 Méthode de variation de la constante

Soit (E) l'équation différentielle suivante :

$$(E) : ay'(t) + by(t) = f(x)$$

On résoud l'équation sans second membre, plus on pose $\forall x \in \mathbb{R}$:

$$z(x) = \frac{y(x)}{e^{-\frac{b}{a}x}} \Leftrightarrow y(x) = z(x)e^{-\frac{b}{a}x}$$

Puis on injecte cette expression y(x) dans (E) pour déterminer z(x)

13.5 Principe de superposition

Soit (E) l'équation différentielle suivante :

$$(E): ay'' + by' + cy = f_1(x) + f_2(x)$$

On considere:

$$(E_1): ay'' + by' + cy = 0$$

$$(E_2): ay'' + by' + cy = f_1(x)$$

$$(E_3): ay'' + by' + cy = f_2(x)$$

Soit y_1, y_2 solutions respective de (E_2) et (E_3) . La solution particuliere de (E) est $y_1 + y_2$

Équations différentielle linéaire

14.1 Généralité

Définition 73 On considère (E) l'équation d'inconnue la fonction y n fois dérivable sur une partie A de \mathbb{R} :

$$\forall x \in A, \ a_n(x).y^{(n)}(x) + ... + a_0.y(x) = b(x)$$

avec : $a_n, ..., a_0, b$ des fonctions définies sur A.

On dit que (E) est une équation differentielle linéaire d'ordre n.

Nota 1 On note cette équation :

$$(E): \forall x \in A: a_n(x).y^{(n)} + ... + a_0.y = b(x)$$

Propriété 61 L'ensemble des solutions de (E) est soit :

- → Vide
- → Un espace affine de direction l'espace vectoriel des solutions de l'équation sans second membre.

Si les coefficients sont constant.

L'ensemble des solutions est un espace de dimension n.

Chapitre 15

Équations différentielles linéaire d'ordre 1

Définition 74 Soit $A \in \mathbb{R}$. Soit a,b,c trois fonctions définies sur A, et (E): $(E): \ a(x).y' + b(x).y = c(x)$ $(E_0): \ a(x).y' + b(x).y = 0$ Si: $\rightarrow Si \ a \ et \ b \ sont \ continues \ sur \ A$ $\rightarrow A \ est \ un \ intervalle, \ notons \ le \ I$ $\rightarrow \forall x \in I \ a(x) \neq 0$ Alors: $(E_0) \Leftrightarrow (\exists K \in \mathbb{R} \ tq \ \forall x \in I \ y(x) = K.e^{\int \frac{-b(x)}{a(x)} dx})$

Sixième partie
Intégration

Chapitre 16

Intégration

Définition 75 L'intégrale d'une fonction est par définition un nombre. Une primitive est une autre fonction.

16.1 Fonctions continues par morceaux

16.1.1 Subdivision

Soit [a,b] segment de \mathbb{R} , avec a<b.

Définition 76 *On appelle subdivision de [a,b], une liste vérifiant :*

$$a = x_0 < x_1 < \dots < x_n = b$$

On note $\sigma = (x_i)_{a \le i \le n}$.

Le pas d'une subdivision, qui est la longueur d'intervalle la plus importante, est défini comme :

$$\max_{1 \le i \le n} |x_i - x_{i-1}|$$

Si les intervalles sont tous de la mêmes longueurs, la subdivision est dite régulière. De plus, si σ est celle d'une subdivision régulière de [a,b], alors :

$$\forall k, \ x_k = a + k \frac{b - a}{n}$$

16.1.2 Fonction en escalier sur [a,b]

Soit f fonction définie sur [a,b].

Définition 77 On dit que f est en escalier si il existe une subdivision de [a,b]: $(x_i)_{0 \le i \le n}$ telle que :

$$\forall i \in \{1, ...n\}, fest constante sur | x_{i-1}; x_i [$$

Propriété 62 On défini les propriétés suivantes :

- → Une fonction en escalier est bornée
- \rightarrow L'ensemble des fonctions en escalier sur [a,b] est un \mathbb{R} -espace vectoriel

16.1.3 Fonction continue par morceaux

Soit f défini sur [a,b]

Définition 78 f est continue par morceaux sur [a,b] si:

$$\left\{ \begin{array}{l} \forall i \in \{1,2,...,n\} \ f \textit{ est continue sur }]x_{i-1};x_i[\\ \forall i \in \{1,2,...,n\} \ \lim\limits_{\substack{x_i^- \\ x_i^+}} \textit{ existe} \\ \forall i \in \{0,2,...,n-1\} \ \lim\limits_{\substack{x_i^+ \\ x_i^+}} \textit{ existe} \end{array} \right.$$

Propriété 63 On défini les propriétés suivantes :

- → Une fonction continue par morceaux est bornée
- \rightarrow L'ensemble des fonctions continue par morceaux sur [a,b] est un espace vectoriel
- → Une fonction en escalier est continue par morceaux
- \rightarrow *Une fonction continue sur [a,b] est continue par morceaux*

16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier

Soit f continue par morceaux sur [a,b] (ce qui comprend les fonctions continues sur [a,b])

Définition 79

 $\exists \varepsilon > 0$ Il existe deux fonctions en escalier sur [a,b], φ et ψ telque

$$\left\{ \begin{array}{c} \forall x \in [a,b] \; \varphi(x) \leq f(x) \leq \psi(x) \\ 0 \leq \psi(x) - \varphi(x) \leq \varepsilon \end{array} \right.$$

16.2 Intégrale de Riemann

16.2.1 Intégrale d'une fonction en escalier

Définition 80 Soit φ fonction en escalier sur [a,b]. Notons $(x_i)_{0 \le i \le n}$ une subdivision adaptée à φ , et posons :

$$\forall i \in \{1,..,n\}, \ \forall x \in]x_{i-1}; x_i[\varphi(x) = \lambda_i]$$

L'intégrale sur [a,b] de φ est :

$$\int_{[a,b]} \varphi = \sum_{i=1}^{n} (x_i - x_{i-1}) \lambda_i$$

On note aussi cette intégrale de la façon suivante :

Si a < b, alors:

$$\int_{[a,b]} \varphi = \int_a^b \varphi$$

Si b < a:

$$\int_{[a,b]} \varphi = \int_b^a \varphi$$

Convention:

$$\int_{a}^{b} \varphi = -\int_{b}^{a} \varphi$$
$$\int_{a}^{a} \varphi = 0$$

Propriété 64 Si φ et ψ sont deux fonctions en escalier sur [a,b]. Si λ et μ sont deux réels :

$$\int_{[a,b]} \lambda \varphi + \mu \varphi = \lambda \int_{[a,b]} \varphi + \mu \int_{[a,b]} \psi$$

Propriété 65 Soient φ et ψ deux fonctions en escalier sur [a,b].

 $Si \ \forall x \in [a,b], \ \varphi(x) \leq \psi(x), \ alors:$

$$\int_{[a,b]} \varphi \le \int_{[a,b]} \psi$$

De plus, si $\varphi \ge 0$ sur [a,b] alors :

$$\int_{[a,b]} \varphi \ge 0$$

16.3 Intégrale d'une fonction continue par morceaux

Soit f fonction continue par morceaux sur [a,b]. Notons :

$$\left\{ \begin{array}{l} E_{+} = \left\{\varphi \text{ en escalier sur [a,b] }/\varphi \geq g\right\} \\ E_{-} = \left\{\varphi \text{ en escalier sur [a,b] }/\varphi \leq g\right\} \\ A_{+} = \left\{\int_{[a,b]} \varphi/\varphi \in E_{+}\right\} \\ A_{-} = \left\{\int_{[a,b]} \varphi/\varphi \in E_{-}\right\} \end{array} \right.$$

Propriété 66 $Inf(A_{+})$ et $Sup(A_{-})$ existent et sont égaux

Définition 81 La valeur commune de ces deux réels est l'intégrale de Riemannsur [a,b] de f. On la note :

$$\int_{[a,b]} f$$

16.3.1 Somme de Riemann

Propriété 67 Soit f fonction continue par morceaux sur [a,b]. Notons $\forall n \in N : Alors (u_n)_{n \geq 0}$ et $(v_n)_{n \geq 0}$ converge vers $\int_{[a,b]} f$

$$\begin{cases} u_n = \frac{b-a}{n} \sum_{k=1}^n f(a+k\frac{b-a}{n}) \\ v_n = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a+k\frac{b-a}{n}) \end{cases}$$

16.3.2 Linéarité

Propriété 68 *Soient* λ,μ *réels, f, g fonctions continues par morceaux.*

$$\int_{[a,b]} \lambda \varphi + \mu \varphi = \lambda \int_{[a,b]} \varphi + \mu \int_{[a,b]} \psi$$

16.3.3 Transmition de l'ordre

Propriété 69 Si f et g sont continue par morceaux et $f \leq g$, alors :

$$\int_{[a,b]} f \le \int_{[a,b]} g$$

16.3.4 Intégrale et valeur absolu

Propriété 70 Soit f fonction continue par morceaux sur [a,b], donc :

$$\int_{[a,b]} |f| \ge |\int_{[a,b]} f|$$

16.3.5 Relation de Chasles

Propriété 71 *Soit f continues par morceaux sur* [a,b] *et* $b \in [a,c]$.

$$\int_{[a,c]} f = \int_{[a,b]} f + \int_{[b,c]} f$$

16.3.6 Inégalité de la moyenne

Propriété 72 Soit f,g continues par morceaux sur [a,b], g est bornée, avec a < b. Donc $M = \sup_{[a,b]} |g|$ existe.

$$|\int_{[a,b]} fg| \le \sup_{[a,b]} |g| \times \int_{[a,b]} |f|$$

Définition 82 $\frac{1}{b-a} \int_{[a,b]} g \ est \ la \ valeur \ moyenne \ de \ g \ sur \ [a,b].$

$$\int_{[a,b]} g = \mu(b-a)$$

16.4 Intégrale et primitive d'une fonction continue

On obtient les propriétés suivant :

 $\begin{cases} \text{ Soit } x \in I. \text{ f est continue sur I, donc } \int_a^x f \text{ existe} \\ \text{Si } x_0 \text{ est à l'intérieur de I, si f est continue sur I, alors } \int_a^x f \text{ est aussi continue sur I} \\ \text{Si f est continue sur I, alors } g: x \mapsto \int_a^x f \text{ est dérivable sur I et sa dérivé est f.} \end{cases}$

De la dernière propriété, on déduit que g est de classe C^1 sur I. En résumé, si f est de classe C^n alors g est de classe C^{n+1}

Propriété 73 Si φ est une fonction positive et continue sur [a,b] d'inégalité nulle, alors :

$$\varphi = 0$$

16.4.1 Utilisation des primitives d'une fonction continue

Définition 83 Soit f définie sur un intervalle I. Une primitive de f sur I, c'est une fonction dérivable sur I dont la dérivée est f.

16.4.2 Ensemble des primitives d'une fonction continue

Soit f continue sur un intervalle I, si F est une primitive de f sur I, alors :

(G est une autre primitive de f sur I) \Leftrightarrow $(\exists K \in \mathbb{R} \text{ tq } \forall x \in I \text{ } G(x) = F(x) + K)$

Il en découle que :

(F est une primitive de f sur I)
$$\Leftrightarrow$$
 $(\exists K \in \mathbb{R} \text{ tq } \forall x \in I \text{ } F(x) = \int_{a}^{x} f(t)dt + K)$

Et que $\forall (a,b)^2 \in I^2$

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

16.4.3 Notation

Définition 84 Si f est continue sur $I: \int f(x)dx$ désigne la valeur de x d'une primitive de f.

16.4.4 Technique de calcul d'une intégrale

Intégrale par partie

Définition 85 Si f,g sont de classe C^1 sur I, $(a,b) \in I^2$, alors :

$$\int_a^b fg' = [fg]_a^b - \int_a^b f'g$$

Changement de variables

Définition 86 *Soit u une bijection de classe* C^1 *de* $[\alpha, \beta]$ *sur un intervalle* [a,b] *Soit f continue sur* [a,b].

$$\int_{a}^{b} f(u)du = \int_{\alpha}^{\beta} f(u(t))u'(t)dt$$

16.4.5 Intégrale d'une fonction paire, impaire, periodique

Fonction paire

Propriété 74 *Soit* $a \in \mathbb{R}$

Si f est continue et paire sur [-a,a], alors :

$$\int_{-a}^{a} f = 2 \int_{0}^{a} f$$

Fonction impaire

Propriété 75 Si f est continue et impaire sur [-a,a], alors:

$$\int_{-a}^{a} f = 0$$

Fonction periodique

Propriété 76 Si f est continue et T periodique sur \mathbb{R}

Soit $a \in \mathbb{R}$

$$\int_a^{a+T} f$$
 est indépendant de a

16.5 Inégalité de Cauchy-Schwarz

Définition 87 *Soient f,g continues sur [a,b]* :

$$|\int_{[a,b]} fg| \le \sqrt{\int_{[a,b]} f^2 \int_{[a,b]} g^2}$$

Si cette inégalité devient une égalité, alors $\exists \lambda_0 \in \mathbb{R}$ telque

$$g = -\lambda_0 f$$

16.6 Formule de Taylor avec reste intégrale

Définition 88 Soit f fonction de classe C^n . $\forall x \in D_f$, au voisinage de a:

$$f(x) = f(a) + \dots + \frac{(x-a)^{n-1}}{(n-1)!} f^{(n-1)}(a) + \int_a^x \frac{(x-a)^{n-1}}{(n-1)!} f^{(n)}(t) dt$$

Inégalité de Taylor-Lagrange 16.7

Définition 89 Soit f de classe C^{n+1} sur I, $a \in I$. Supposons que $f^{(n+1)}$ soit majorée sur I. Notons $M_{n+1} = \sup_{I} |f^{(n+1)}|$

 $\forall x \in I$:

$$\left| \int_{a}^{x} \frac{(x-t)^{n}}{n!} (t) dt \right| \le \frac{(x-a)^{n+1}}{(n+1)!} M_{n+1}$$

Septième partie Nombres complexes

$\frac{1}{1}$

Nombres complexes

17.1 Formules

17.1.1 Généralités

 \rightarrow (C,+,x) est un corps

$$\rightarrow$$
 (a+ib)+(a'+ib') = (a+a')+i(b+b')

$$\rightarrow$$
 (a+ib).(a'+ib') = (aa'-bb')+i(ab'+a'b)

ightarrow Il y a unicité de la partie réelle et de la partie imaginaire pour un complexe.

$$\to \overline{z+z'} = \overline{z} + \overline{z'}$$

$$\rightarrow \overline{z.z'} = \overline{z}.\overline{z'}$$

$$\rightarrow \text{Re}(z) = \frac{z + \overline{z}}{2}$$

$$\rightarrow \operatorname{Im}(z) = \frac{z - \overline{z}}{2}$$

$$\rightarrow z_{\overrightarrow{AB}} = z_b - z_a$$

ightarrow On défini le barycentre de la façon suivante :

$$\alpha + \beta \neq 0, z_g = \frac{\alpha z_A + \beta z_B}{\alpha + \beta}$$

17.1.2 Forme Trigonométrique et exponentielle

Soit z = x+iy un complexe.

$$\rightarrow |z| = \sqrt{x^2 + y^2}$$

$$\rightarrow |z|^2 = z.\overline{z}$$

$$\rightarrow |-z| = |z| = |\overline{z}|$$

$$\rightarrow (z \in \mathbb{R}) \Leftrightarrow (\overline{z} = z)$$

$$\rightarrow (z \in i\mathbb{R}) \Leftrightarrow (\overline{z} = -z)$$

$$\rightarrow |Im(z)| \leq |z|$$

$$\rightarrow |Re(z)| \le |z|$$

$$\rightarrow |z.z'| = |z|.|z'|$$

$$\rightarrow |z + z'| \le |z| + |z'|$$

$$\rightarrow e^{i(\theta+\theta')} = cos(\theta+\theta') + isin(\theta+\theta')$$

$$\rightarrow \frac{e^{i\theta} + e^{-i\theta}}{2} = \cos(\theta)$$

$$\rightarrow \; \frac{e^{i\theta}-e^{-i\theta}}{2} = sin(\theta)$$

$$\rightarrow \cos(iy) = ch(y)$$

$$\rightarrow \sin(iy) = ish(y)$$

 \rightarrow Formule de Moivre :

$$(e^{i\theta})^n = e^{in\theta} \Leftrightarrow (\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(in\theta)$$

$$\rightarrow z = x + iy = \rho e^{i\theta}$$

 \rightarrow Racine n^{eme} de l'unite :

$$z^{n} = 1 \Leftrightarrow \exists k \in \{0, 1, ..., n-1\} \ z = e^{i\frac{k2\pi}{n}}$$

 $\rightarrow \,$ Racine n^{eme} d'un complexe non nul, avec $z=\rho e^{i\theta}$, $z_0=\rho_0 e^{i\theta_0}$:

$$z^{n} = z_{0} \Leftrightarrow \exists k \in \{0, 1, ..., n-1\} \ z = A.e^{i\frac{k2\pi}{n}}$$

Avec A la solution évidente (Passage à la racine n^{eme})

 $\lceil_{\text{Chapitre}}\,18$

Nombres complexe et géométrie dans le plan

18.1 Alignement, Orthogonalité, Cocyclicité

Soit $(\overrightarrow{AB}; \overrightarrow{AC})$ l'angle formé par ces deux vecteurs.

$$(\overrightarrow{AB};\overrightarrow{AC}) = arg\left(\frac{c-a}{b-a}\right) \ [2\pi]$$

Soit:

$$z = \left(\frac{c-a}{b-a}\right)$$

18.1.1 Alignements

A,B,C alignées
$$\Leftrightarrow \left(\frac{c-a}{b-a} \in \mathbb{R}\right) \Leftrightarrow arg\left(\frac{c-a}{b-a}\right) = 0$$

A,B,C alignées
$$\Leftrightarrow (z=\overline{z}) \Leftrightarrow (Det(\overrightarrow{AB};\overrightarrow{AC}))=0$$

 $\operatorname{avec}\, Det(\overrightarrow{u},\overrightarrow{v)}=xy'-x'y$

18.1.2 Orthogonalité

$$\overrightarrow{AB}; \overrightarrow{AC} \text{ orthogonaux} \Leftrightarrow \left(\frac{c-a}{b-a} \in i\mathbb{R}\right) \Leftrightarrow arg\left(\frac{c-a}{b-a}\right) = \frac{\pi}{2} \ [\pi]$$

$$\overrightarrow{AB}; \overrightarrow{AC} \text{ orthogonaux} \Leftrightarrow (z=-\overline{z}) \Leftrightarrow (\overrightarrow{AB}.\overrightarrow{AC}) = 0$$

18.1.3 Cocyclicité

Soit A,B,C trois points d'un cercle C de centre O.

$$(\overrightarrow{OB};\overrightarrow{OC})=2(\overrightarrow{AB};\overrightarrow{AC})\;[2\pi]$$

Condition de cocyclicité

Propriété 77 Si $(\overrightarrow{AB}; \overrightarrow{AC}) = (\overrightarrow{DB}; \overrightarrow{DC})$ $[\pi]$ alors A,B,C,D sont soit cocyclique, soit alignés.

18.2 Similitude

Soit z l'affixe de M, z' l'affixe de M'.

18.2.1 Translation

Définition 90 *Soit* \overrightarrow{u} *vecteur du plan. On appele translation de vecteur* \overrightarrow{u} *l'application :*

$$t_{\overrightarrow{\mathcal{M}}}:P\to P$$

$$M \mapsto M'$$

$$avec \ \overrightarrow{MM'} = \overrightarrow{u}$$

Expression analytique complexe

soit α l'affixe de \overrightarrow{u} Alors :

$$z' = \alpha + z$$

Bijectivité

 $t_{\overrightarrow{u}}$ est une application bijective. Soit :

$$t_{\overrightarrow{u}}^{-1}:P\to P$$

$$M \mapsto M'$$

avec $z' = z - \alpha$

18.2.2 Homothetie

Définition 91 Soit Ω un point d'affixe ω . Soit $k \in \mathbb{R}$. On appele homothétie de centre Ω et de rapport k l'application :

$$h: P \to P$$

$$M \mapsto M'$$

$$avec \ \overrightarrow{\Omega M'} = k \overrightarrow{\Omega M}$$

Expression analytique complexe

$$z' - \omega = k(z - \omega)$$

On détermine le centre d'une homothétie en déterminant son point fixe, donc en résolvant :

$$z=z'$$

Bijectivité

h est une application bijective. Soit:

$$h^{-1}: P \to P$$

$$M \mapsto M'$$

avec z' -
$$\omega = \frac{1}{k}(z - \omega)$$

18.2.3 Rotation

Définition 92 Soit Ω un point d'affixe ω et θ un réel. On appele rotation de centre Ω et d'angle θ l'application

$$r: P \to P$$

 $M \mapsto M'$

avec
$$\Omega M' = \Omega M$$
 et $(\overrightarrow{\Omega M}; \overrightarrow{\Omega M'}) = \theta [2\pi]$

Expression analytique complexe

$$z' - \omega = e^{i\theta}(z - w)$$

On détermine le centre d'une rotation en déterminant son point fixe, donc en résolvant :

$$z = z'$$

Bijectivité

h est une application bijective. Soit:

$$r^{-1}:P\to P$$

$$M \mapsto M'$$

avec z' -
$$\omega = e^{-i\theta}(z - \omega)$$

18.2.4 Similitude

Définition 93 Soit Ω un point d'affixe ω et $(\theta,k) \in \mathbb{R}^2$. On appele similitude direct de centre Ω , d'angle θ , et de rapport k l'application :

$$S: P \to P$$

$$M \mapsto M'$$

avec
$$\Omega M' = k\Omega M$$
 et $(\overrightarrow{\Omega M}; \overrightarrow{\Omega M'}) = \theta [2\pi]$

Expression analytique complexe

$$z' - \omega = ke^{i\theta}(z - w)$$

On détermine le centre d'une similitude en déterminant son point fixe, donc en résolvant :

$$z = z'$$

Bijectivité

S est une application bijective. Soit :

$$S^{-1}: P \to P$$

$$M \mapsto M'$$

avec z' -
$$\omega = \frac{1}{k}e^{-i\theta}(z - \omega)$$

18.2.5 Affinité

Soit φ l'application défini par :

$$\varphi: Plan \mapsto Plan$$

$$P(x,y) \mapsto M(x,\frac{b}{a}.y)$$

 φ est appelé affinité de base Ox, de direction Oy et de rapport $\frac{b}{a}$

Huitième partie Polynomes

hoChapitre 19

Les polynomes

19.1 Définitions

Soit K un corps (Soit \mathbb{R} , soit \mathbb{C})

Définition 94 Un polynome à coefficiants dans K est une suite d'élement de K tous nul à partir d'un certain rang.

$$P = (a_0,, a_n, 0, ...)$$

On peut l'écrire aussi sous la forme :

$$P = a_0 + a_1 X + \dots + a_n X^n$$

avec X l'indéterminé.

Il existe aussi la forme suivante :

$$P = \sum_{k=0}^{n} a_k X^k$$

L'ensemble des polynomes à coefficiants dans K est notée K[X].

Soit P et Q deux polynomes. On as:

$$P = Q \Leftrightarrow \forall k \in N \ a_k = b_k$$

19.1.1 Opérations

On peut effectuer quatres opérations :

 \rightarrow Une addition :

$$P + Q = \sum_{k=0}^{\infty} (a_k + b_k) X^k$$

 \rightarrow Un produit :

$$P.Q = \sum_{k,k' \ge 0}^{\infty} (a_k.b'_k) X^{k+k'}$$

 \rightarrow Un produit par λ , $\lambda \in K$:

$$\lambda P = \sum_{k=0}^{\infty} (\lambda a_k) X^k$$

 \rightarrow Une composée :

$$P(Q) = \sum_{k=0}^{\infty} a_k Q^k$$

19.1.2 Structure

19.1.3 Polynome constante

On observe qu'un polynome constant s'identifie à un élement du corps. On obtient donc que :

Structure de (K[X],+,x)

- \rightarrow (K[X],+) est un groupe commutatif
- \rightarrow (K[X],+,x) est un anneau commutatif : On peut donc utiliser les identités remarquables sur les polymones. Cette anneau est intègre, ce qui signifie que :

$$(P.Q = 0) \Leftrightarrow (P = 0 \text{ ou } Q = 0)$$

19.1.4 Fonction polynome associée

Soit $P \in K[X]$, défini par :

$$P = a_0 + a_1 X + \dots + a_n X^n$$

On obtient la fonction polynome associée :

$$\forall x \in K, \ \widetilde{P}(x) = a_0 + a_1 x + \dots + a_n x^n$$

L'application qui lie le polynome à sa fonction associée est une bijection.

Toutes les notions de partié se transmette de la fonction polynome associée au polynome.

19.1.5 Degrés

Définition 95 On défini le degrés d'un polynome par :

$$deg(P) = Max \{ k \in N/a_k \neq 0 \}$$

Par convention:

$$deg(0) = -\infty$$
$$deg(P_{Constant}) = 0$$

Degrés d'une combinaison

On peut déterminer le degrés de deux combinaison :

$$deg(P.Q) = deg(P) + deg(Q)$$
$$deg(P+Q) \le Max(deg(P), deg(Q))$$

19.1.6 Valuation

Définition 96 On défini la valuation d'un polynome par :

$$val(P) = Min\{k \in N/a_k \neq 0\}$$

Par convention:

$$deg(0) = +\infty$$

Valuation d'une combinaison

On peut déterminer le degres de deux combinaison :

$$val(P.Q) = val(P) + val(Q)$$

 $val(P+Q) > Min(val(P), val(Q))$

19.1.7 Division euclidienne dans K[X]

Diviseur, Multiple

Définition 97 *Soient A,B deux polynomes. On dit que B divise A, ou que A multiplie B, si*:

$$\exists Q \in K[X] \ A = B.Q$$

Il en découle que les polynomes constant non nuls divisent tous les autres.

Division euclidienne

Définition 98 *Soit A,B deux polynomes, B non nul.*

$$\exists ! (R,Q) \in K[X] \ tq \ A = B.Q + R$$

avec $deg(R) \leq deg(Q)-1$.

On appelle respectivement R et Q le reste et le quotient de la division euclidienne.

19.1.8 Formule de Taylor

Soit a un réel. Soit P un polynome de degrés n.

On obtient:

$$P = \sum_{k=0}^{n} \frac{\widetilde{D^{k}(P)(a)}}{k!} (X - a)^{k}$$

avec $\widetilde{D^k(P)}(a)$ la dérivé k^{eme} de P prise en a.

19.2 Racine d'un polynome

Soit $P \in K[X]$. Soit $r \in K$

19.2.1 Racine simple

Définition 99 r est une racine de P si $\widetilde{P}(r) = 0$

Propriété 78 (r est une racine de P) \Leftrightarrow ((X-r) divise P)

19.2.2 Racine multiple et ordre de multiplicité

Définition 100 r est une racine d'ordre α si $(X-r)^{\alpha}$ divise P et $(X-r)^{\alpha+1}$ ne divise pas P.

Propriété 79 (r est une racine d'ordre α de P) \Leftrightarrow ($\forall i \in \{0,..,\alpha-1\}$ $\widetilde{D^i(P)}(r) = 0$ et $\widetilde{D^\alpha(P)}(r) \neq 0$)

19.2.3 Polynome scindé

Soit $P \in K[X]$ de degrés n et de termes dominant $a_n X^n$

Définition 101 *P est scindé si le nombre de racine, en comptant les ordres de multiplicité, est n :*

$$\exists (r_1, ..., r_n) \in K^n, \exists (\alpha_1, ..., \alpha_n) \in N^n \ tq \ P = a_n (X - r_1)^{\alpha_1} ... (X - r_n)^{\alpha_n}$$

Lien entre coefficiants et racine d'un polynome scindé

On obtient les relations suivantes :

$$\sum_{i=1}^{n} r_i = \frac{-a_{n-1}}{a_n}$$

$$r_1...r_n = (-1)^n \frac{a_0}{a_n}$$

19.2.4 Polynome irréductible

Dans $\mathbb{R}[X]$

Définition 102 Un polynome est irréductible si il n'est divisible que par les polynomes constant et par les produits de lui-meme par un constante.

Dans $\mathbb{C}[X]$

Théorème 11 *Tout polynome non constant dans* $\mathbb{C}[X]$ *possède au moins une racine complexe.*

On en déduit donc que :

- \to Tout polynomes dans $\mathbb{C}[X]$ est scindé \to Les seuls polynomes irréductible de $\mathbb{C}[X]$ sont ceux de degrés 1

Neuvième partie
Espace vectoriel

20

Espace vectoriel

20.1 Définitions

Définition 103 *Soit E un espace et K un corps.*

Donc dit que (E,+,.) est un K-espace vectoriel si il vérifie les propriétés suivantes :

1- + est une loi de composition interne :

$$\forall (x,y) \in E^2 \ x + y \in E$$

2- + est une loi associative :

$$\forall (x, y, z) \in E^3 (x + y) + z = x + (y + z)$$

3- + possède un élement neutre O_E :

$$\forall x \in E \ x + O_E = O_E + x = x$$

4- Tous éléments x de E est symétrisable pour + dans E. Ce symétrique est -x:

$$\forall x \in E \ x + (-x) = (-x) + x = O_E$$

5- + est commutatif dans E:

$$\forall (x,y) \in E^2 \ x + y = y + x$$

6- "." est une loi de composition externe :

$$\forall x \in E, \forall \lambda \in K, \; \lambda.x \in E$$

7- "." possède un élement neutre 1_K :

$$\forall x \in E \ 1_k.x = x$$

8- "." vérifie :

$$\forall x \in E, \forall (\lambda, \mu) \in K^2 \ \lambda.(\mu.x) = (\lambda \times \mu).x$$

9- "." vérifie :

$$\forall x \in E, \forall (\lambda, \mu) \in K^2 (\lambda + \mu).x = (\lambda.x) + (\mu.x)$$

10- "." vérifie :

$$\forall (x,y) \in E^2, \forall \lambda \in K \ \lambda.(x+y) = \lambda.x + \lambda.y$$

Si un espace ne vérifie que les 4^{ere} propriétés, on dit que c'est un groupe. Si il vérifie les 5^{ere} , c'est un groupe commutatif.

Propriété 80 Soit E un K-espace vectoriel:

$$\rightarrow \forall x \in E, \ 0_K.x = 0_E$$

$$\rightarrow \forall x \in E - x = (-1_K).x$$

 \rightarrow Soit x un vecteur de E, $\lambda \in K$:

$$(\lambda . x = O_E) \Leftrightarrow (\lambda = O_K \text{ ou } x = O_E)$$

20.2 Sous-espaces vectoriels

20.2.1 Définitions

Définition 104 *Soit E un K-espace vectoriel. Soit F un espace. On dit que F est un sous-espace de E si :*

$$\left\{ \begin{array}{l} F\ c\ E \\ (F,+,.)\ est\ un\ K\mbox{-espace}\ vectoriel \end{array} \right.$$

Propriété 81 Soit E un K-espace vectoriel. Soient F et G deux sous espace de E :

- $\rightarrow \{O_E\}$ est le plus petit sous espace de E.
- $\rightarrow F \cap G$ est un sous espace de E
- $ightarrow F \cup G$ est un sous espace de E

20.2.2 Critère de reconaissance

Propriété 82 (F est un sous espace de E)
$$\Leftrightarrow$$

$$\begin{cases} F c E \\ F \neq \emptyset \\ \forall (x,y) \in F^2, \forall (\lambda,\mu) \in K^2, \ \lambda x + \mu y \in F \end{cases}$$

20.2.3 Sous espace supplémentaire

Soit E un K-espace vectoriel. Soient F,G deux sous espace de E.

Définition 105 *F et G sont dit en somme direct si :*

$$F \cap G = \{O_E\}$$

Définition 106 F et G sont supplementaire si ils sont en somme direct et que :

$$F + G = E$$

On le note:

$$F \oplus G = E$$

Propriété 83 Si F et G sont supplementaires, alors

$$\forall x \in E$$

, il existe un unique couple (x,y) avec $y \in F, z \in G$ telque :

$$x = y + z$$

20.2.4 Partie génératrice d'un sous-espace

Sous espace engendré par un partie

Soit A une partie de E. Soit G le plus petit espace contenant A.

Définition 107 *G* est le sous espace engendré par A. On le note :

$$G = Vect(A)$$

On dit que A est une partie génératrice de G.

Sous espace engendré par une partie fini

Soit $u_1, ..., u_n$ n vecteur de E.

$$Vect(\{u_1, ..., u_n\}) = \{\lambda_1 u_1 + ... + \lambda_n u_n / \lambda_1, ..., \lambda_n \in K^n\}$$

20.2.5 Produit de deux espaces

Définition 108 *Soient E et F deux K-espace vectoriel. On munit le produit E \times F des deux lois suivant :*

$$\forall (x,y) \in E \times F, \forall (x',y') \in E \times F, \forall \lambda \in K$$

$$\begin{cases} (x,y) + (x',y') = (x+x',y+y') \\ \lambda.(x+y) = (\lambda x, \lambda y) \end{cases}$$

Propriété 84 $(E \times F, +, .)$ est un K-espace vectoriel, de vecteur nul (O_E, O_F)

20.3 Application linéaire

Définition 109 *Soient E et F deux K-espace vectoriels, f une application de E dans F. f est une application linéaire si :*

$$\forall (x,y) \in E^2 \ \forall (\lambda,\mu) \in K^2 \ f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

20.3.1 Vocabulaire

- $\rightarrow \ Application \ linéaire \rightarrow Morphisme \ d'espace \ vectoriel$
- \rightarrow Application linéaire de E dans E \rightarrow Endomorphisme
- → Application linéaire bijective → Isomorphisme
- \rightarrow Application linéaire bijective de E dans E \rightarrow Automorphisme

On note L(E, F) l'ensemble des applications linéaire de E dans F

Propriété 85 Soit f isomorphisme de E dans F. Alors f^{-1} existe et est linéaire de F dans E

20.3.2 Noyau et Image d'une application linéaire

Soit
$$f \in L(E, F)$$

Image

Définition 110 *On appele image de f l'ensemble des images de tous les vecteurs de E par f :*

$$Im(f) = \{ f(x)/x \in E \}$$

Im(f) est un sous espace vectoriel de F

Noyau

Définition 111 On appele noyau de f l'ensemble des antécédants O_F par f:

$$Ker(f) = \{x \in E/f(x) = 0\}$$

Ker(f) est un sous espace vectoriel de E

Propriété 86 f est une application injective si et seulement Ker(f) est réduit au vecteur nul :

$$(f est injective) \Leftrightarrow (Ker(f) = \{O_E\})$$

20.3.3 Opérations sur les applications linéaires

- → La combinaison linéaire de deux applications linéaire est une application linéaire
- → La composée de deux applications linéaire est linéaire

20.3.4 Structure

- \rightarrow (L(E),+,o,.) est un K-Algèbre : On peut donc utiliser les identites remarquables
- \rightarrow GL(E): Groupe des automorphisme de E. Dans ce groupe:

$$(f \circ g)^{-1} = g^{-1} \circ f^{-1}$$

20.3.5 Projecteur

Définition 112 Soit E un K-espace vectoriel, soient F et G deux sous espaces supplémentaire de E. Soit $x \in E$

$$\exists ! (y, z), y \in F, z \in G, x = y + z$$

On appelle projeté de x sur F parallement à G, notée p(x), le vecteur y.

Propriété 87 p est une application linéaire

Propriété 88 Soit p la projection de F parallement à G :

- $\to \ Im(p) = F$
- $\rightarrow Ker(p) = G$
- $\rightarrow pop = p$
- $\rightarrow \forall x \in E (p(x) = x) \Leftrightarrow (x \in F)$

Propriété 89 Soit q la projection de G parallement à F. p et q sont deux projecteur associé.

- $\rightarrow Im(q) = G$
- $\rightarrow Ker(q) = F$
- \rightarrow poq = O_E
- $\rightarrow p+q = Ide$

Propriété caractéristique

Propriété 90 Si:

$$\begin{cases} f est linéaire \\ f o f = f \end{cases}$$

Alors f est une projection sur F parallement à G avec :

$$\left\{ \begin{array}{l} F = \{x \in E/f(x) = x\} \\ G = Ker(f) \end{array} \right.$$

20.3.6 Symétrie

Définition 113 Soit E un K-espace vectoriel, soient F et G deux sous espaces supplémentaire de E. Soit $x \in E$

$$\exists ! (y, z), y \in F, z \in G, x = y + z$$

On appelle symétrie de x par rapport à F parallement à G:

$$s(x) = y - z$$

avec:

$$\left\{ \begin{array}{l} (s(x) = x) \Leftrightarrow (x \in F) \\ (s(x) = -x) \Leftrightarrow (x \in G) \end{array} \right.$$

Propriété 91 Soit s une symétrie :

- ightarrow s est une application linéaire
- \rightarrow sos = Ide, donc s est une bijection

Propriété caractéristique

Propriété 92 Si:

$$\begin{cases} f est linéaire \\ f o f = I de \end{cases}$$

Alors f est une symétrie

21

Espace vectoriel de dimensions finies

21.1 Partie libre - Partie liée - Partie génératrice

21.1.1 Partie finie liée

Définition 114 Soient $u_1, ..., u_p$ p vecteurs d'un K-espace vectoriels de E. On dit que $\{u_1, ..., u_n\}$ est liée ou que les vecteurs $u_1, ..., u_n$ sont linéairement dépendants si $\exists (\lambda_1, ..., \lambda_p) \in K^p$ non tous nuls telque :

$$\lambda_1 u_1 + \dots + \lambda_p u_p = O_E$$

Propriété 93 Toutes parties qui contient le vecteur nul est liée

Propriété 94 Si L est liée, et L c L', alors L' est liée.

Vecteurs colinéaires

Soit u,v deux vecteurs de E.

(u et v sont colinéaire $\Leftrightarrow (\exists \lambda \in K \ tq \ u = \lambda v \ ou \ v = 0))$

21.1.2 Partie fini libre

Définition 115 Soit L partie finie de E.

$$(L \ est \ libre) \Leftrightarrow (L \ n'est \ pas \ libre)$$

On la caractérise par : Si $\exists (\lambda_1,...,\lambda_p) \in K^p$ tq $\lambda_1 u_1 + ... + \lambda_p u_p = O_E$ alors

$$\lambda_1 = \dots = \lambda_p = 0$$

On dit que la partie est linéairemement indépendante.

Propriété 95 Si L est libre, et L' c L, alors L' est aussi libre.

21.1.3 Partie génératrice

Soit E un K espace vectoriel. Nous avons l'ensemble des propriétés suivantes :

1- G est une partie génératrice de E si :

$$Vect(G) \ c \ E$$

2- Si A et B sont deux parties de E, si A c B, alors :

$$Vect(A) \ c \ Vect(B)$$

3- Si G est une partie génératrice de E, G' une partie telque G c G', alors G' est une partie génératrice de E

21.1.4 Base

Définition 116 *Une base d'un espace E est une partie génératrice de E et libre.*

Propriété 96 Si $B = e_1, ..., e_n$ est une base fini de E, alors, $\forall u \in E$, $\exists !$ n uplet de scalaire $(x_1, ..., x_n)$ telque :

$$u = x_1 e_1 + \dots + x_n e_n$$

Le n-uplet $(x_1,...,x_n)$ est appelé le n-uplet de coordonées de u dans la base B. On le note aussi :

$$mat_B(u) = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Base de référence

$$\rightarrow \mathbb{R}_n[X]: \{1, X, X^2, \dots, X^n\}$$

$$\rightarrow \mathbb{R}^n : \{(1,...,0),...,(0,...,1)\}$$

21.2 Dimension d'un espace de dimension finie

Définition 117 *Soit E un K-espace vectoriel.*

Si E possède une partie génératrice finie, on dit que E est un espace de dimension finies.

Propriété 97 Soit E un espace de dimension finies et $G = \{u_1, ..., u_p\}$ une partie génératrice de E. Si G est libre, alors G est une base de E.

Propriété 98 De toute partie génératrice finie, on peut extraire une base.

Théorème 12 Théorème de la base incomplète :

Soit $L = \{u_1, ..., u_n\}.$

Si L est une partie libre, on peut la completer en une base.

Propriété 99 Lemme de Steiniz:

Si E possède une partie génératrice de n vecteurs, alors toute partie de n+1 vecteurs est liée

Théorème 13 Si E est de dimension finie, toutes les bases de E ont le meme nombre d'élements et ce nombre commun est la dimension de l'espace.

Si B est une base de E:

$$dim(E) = card(B)$$

Propriété 100 Soit E un espace de dimension n, soit A une partie de E

- $\rightarrow Si\ A$ est une partie génératrice de E, alors $card(A) \ge n$
- \rightarrow Si card(A) < n, alors A n'est pas génératrice de E
- \rightarrow Si A est libre, alors card(A) $\leq n$
- \rightarrow Si card(A) > n, alors A est liée.

21.2.1 Caractérisation des bases

Soit E un espace vectoriel de dimension n et A une partie de E. Si A est une base, alors A est libre, A est génératrice de E et card(A) = dim(E).

- \rightarrow A est une base \Leftrightarrow A est libre et card(A) = dim(E)
- \rightarrow A est une base \Leftrightarrow A est génératrice de E et card(A) = dim(E)

21.3 Sous-espace d'un espace de dimension finie

Soit E un K-espace vectoriel de dimension finie :

Propriété 101 *Soit F sous espace de E.* F *est de dimension finie et dim* $(F) \leq dim(E)$.

Propriété 102 *Soient F et G deux sous-espace de E :*

$$(F = G) \Leftrightarrow \left\{ \begin{array}{l} F \ c \ G \\ dim(F) = dim(G) \end{array} \right.$$

Propriété 103 Formule de Grassman:

Soit F et G deux sous-espace de E:

$$dim(F+G) = dim(F) + dim(G) - dim(F \cap G)$$

Propriété 104 Soit E espace de dimension finie.

Soient F et G deux sous espaces de E. F et G sont supplémentaire si :

$$\left\{ \begin{array}{l} F+G=E\\ dim(E)=dim(F)+dim(G) \end{array} \right.$$

Propriété 105 Tous sous-espace possède au moins un supplémentaire

Propriété 106 $\rightarrow dim(\emptyset) = 0$

- \rightarrow Si D est un sous espace de dimension 1, c'est une droite vectorielle
- → Si P est un sous espace de dimension 2, c'est un plan vectoriel
- \rightarrow Si H est un sous espace de dimension n-1, c'est un hyperplan
- → Tout supplémentaires d'un hyperplan est une droite vectoriel

21.3.1 Rang d'une partie

Définition 118 *Soit A une partie d'un espace E.*

Le rang de A est la dimension du sous espace engendré par A :

$$rang(A) = dim(VectA)$$

Propriété 107 *Soit A c E :*

- \rightarrow $(rang(A) = dim(E)) \Leftrightarrow (A \text{ est une partie génératrice de } E)$
- \rightarrow (A est libre) \Leftrightarrow (rang(A) = card(A))

21.3.2 Sous espace supplémentaire et base

Soient F,G deux sous espaces de E, de base B_F , B_G :

(F et G sont supplémentaire)
$$\Leftrightarrow \left\{ \begin{array}{l} B_F \cup B_G = B_E \\ B_F \cap B_G = \emptyset \end{array} \right.$$

21.4 Application linéaire entre deux espaces de dimension finies

Soient E et F deux K-espaces vectoriel de dimension finies

21.4.1 Caractérisation par l'image d'une base de E

Soit $B_E = e_1, ..., e_p$ une base de E. Soit u un vecteur de E telque :

$$mat_B(u) = \begin{bmatrix} x_1 \\ \vdots \\ x_p \end{bmatrix}$$

Si $f \in L(E,F)$, alors :

$$f(u) = x_1 f(e_1) + \dots + x_p f(e_p)$$

21.4.2 Image d'une partie libre, liée ou génératrice de E

Soit $f \in L(E,F)$.

- \rightarrow Si $L_1 = u_1, ..., u_p$ est une partie liée, alors $f(u_1), ..., f(u_p)$
- \rightarrow Si $L_1 = u_1, ..., u_p$ est une partie libre, alors??????
- → L'image d'une partie génératrice de E est une partie génératrice de Im(f)
- → Si B est une base de E, alors f(B) est génératrice de Im(f)

21.4.3 Rang d'une application linéaire

Définition 119 *Soit* $f \in L(E,F)$.

Le rang de f est la dimension de l'image de f :

$$rang(f) = dim(Im(f))$$

Propriété 108 (f est surjective) \Leftrightarrow (rang(f) = dim(F))

21.4.4 Théorème du rang

Soit $f \in L(E,F)$:

$$dim(Ker(f)) + rang(f) = dim(E)$$

Propriété 109 (f est injective) \Leftrightarrow (rang(f) = dim(E))

21.4.5 Forme linéaire

Définition 120 *Une forme linéaire d'un espace est une application linéaire de E dans son corps K.*

Propriété 110 Si φ est une forme linéaire : $rang(\varphi) \leq 1$

Propriété 111 Le noyau d'une forme linéaire non nuls est un hyperplan

21.5 Isomorphisme

Définition 121 On considère E,F deux espaces de dimension finie.

On dit que E et F sont isomorphe si il existe un isomorphisme de E dans F. Dans cette situation, on obtient :

- $\rightarrow Ker(f) = O_E$
- $\rightarrow Im(f) = F$
- \rightarrow rang(f) = dim(F) = dim(E)
- \rightarrow Deux espaces isomorphe ont meme dimension
- \rightarrow Soit B_E une base de E, f un isomorphisme, alors $f(B_E)$ est une base.

21.5.1 Caractérisation des isomorphismes

Soit φ une application linéaire de E dans F :

Propriété 112

$$(\varphi \ est \ bijective) \Leftrightarrow \left\{ \begin{array}{l} Ker(\varphi) = \{O_E\} \\ dim(E) = dim(F) \end{array} \right.$$

$$(\varphi \ est \ bijective) \Leftrightarrow \left\{ \begin{array}{l} rang(\varphi) = dim(F) \\ dim(E) = dim(F) \end{array} \right.$$

$$(\varphi \ est \ bijective) \Leftrightarrow (\varphi(B_E) \ est \ une \ base \ de \ F)$$

21.5.2 Espace isomorphe

Théorème 14 Si F est un espace de dimension finie, si E et F sont isomorphe, alors E est aussi de dimension finie, et dim(E) = dim(F)

Dixième partie Espace vectoriel euclidien

22

Espaces vectoriels euclidiens

22.1 Produit scalaire

Définition 122 *Soit* E *un* \mathbb{R} – *espace vectoriel et :*

$$\varphi: E \times E \to \mathbb{R}$$

 φ est un produit scalaire sur E si :

- ightarrow arphi est bilinéaire
- $\rightarrow \varphi$ est symétrique
- $\rightarrow \varphi$ est positive
- $ightarrow \, arphi$ est définie

22.1.1 Notation et Vocabulaire

 $\rightarrow \,$ Si φ est un produit scalaire sur E, on note :

$$\forall (u, v) \in E^2 \ \varphi(u, v) = \langle u, v \rangle$$

 \rightarrow On défini la norme de u par :

$$\forall u \in E \mid \mid u \mid \mid = \sqrt{\langle u, u \rangle}$$

ightarrow Sachant que φ est définie, on obtient :

$$\forall u \in E, (||u|| = 0) \Leftrightarrow (u = 0)$$

 \rightarrow On dit que u et v sont orthogonaux si :

$$< u, v > = 0$$

- \rightarrow Un espace vectoriel est dit euclidien si :
 - 1- E est de dimension finies
 - 2- On a défini un produit scalaire sur E

22.2 Propriétés

Propriété 113 *Soit* E *un* \mathbb{R} *-espace euclidien.*

Soient u,v deux vecteurs de E:

$$||u+v||^2 = ||u||^2 + 2 < u, v > + ||v||^2$$

Théorème 15 Théorème de Pythagore :

$$(u \ et \ v \ sont \ orthogonaux) \Leftrightarrow (||u+v|| = ||u||^2 + ||v||^2)$$

Propriété 114 Soit $u \in E$, soit $\lambda \in \mathbb{R}$

$$||\lambda u|| = |\lambda|.||u||$$

Propriété 115 *Inégalité de Cauchy* :

Soient u,v deux vecteurs:

$$|< u, v>| \le ||u|| \times ||v||$$

Si il y a égalité, alors u et v sont colinéaire

Propriété 116 Inégalité de Minkouskay:

$$||x + y|| \le (||x|| + ||y||)$$

Propriété 117 Si $\{u_1,...,u_n\}$ sont des vecteurs non nuls et 2 à 2 orthogonaux, alors la partie est libre.

22.3 Base orthonormée

Définition 123 Soit $(e_1, ..., e_n)$ n vecteur de E, avec E espace de dimension n, deux à deux ortogonaux (famille orthogonale) et unitaire (famille normée) ($\forall k ||e_k|| = 1$). Alors, $(e_1, ..., e_n)$ est une famille dites orthonormée, qui, de plus, est ici une base.

Propriété 118 *Tout* \mathbb{R} *espace vectoriel euclidien de dimension finie admet au moins une base orthonormée.*

Propriété 119 Soit B une base orthonormée de E. Soient u,v deux vecteurs de E de coordonnée respectif $(x_1,...,x_n)$ et $(y_1,...,y_n)$, alors :

$$< u, v > = x_1 y_1 + ... + x_n y_n$$

Propriété 120 On défini dans ce cas la norme de u par :

$$||u|| = \sqrt{x_1^2 + \ldots + x_n^2}$$

Propriété 121 Pour déterminer les coordonnées dans une base orthonormée, on détermine :

$$\forall k \in \{1, ..., p\} < u, e_k > = x_k$$

22.3.1 Matrice orthogonales

Définition 124 *Une matrice de passage entre deux bases orthonormées est dites orthogonale.*

Propriété 122 *Soit* B *une base orthonormée. Soit* B' *une autre base. Soit* $P = mat_B(B')$.

$$(B' \ est \ orthogonale) \Leftrightarrow (P^{-1} = {}^{t} P)$$

Propriété 123 Soit P une matrice orthogonale :

$$det(P) = \pm 1$$

Propriété 124 Si P est orthogonale, alors tP est orthogonale et $(l_1,...,l_n)$ forme aussi une base orthonormée de \mathbb{R}^n

22.3.2 Orientation de l'espace vectoriel

Définition 125 *Soit E un espace vectoriel.*

On oriente une base en définisant une base dites directe.

Propriété 125 Soit B_0 une base directe.

Si B est une base de E:

$$\begin{cases} det_{B_0}(B) > 0 \text{ B est directe} \\ det_{B_0}(B) < 0 \text{ B est indirecte} \end{cases}$$

Propriété 126 *Soit B,B' deux bases de E :*

$$(det_B(B') > 0) \Leftrightarrow (B \text{ et } B' \text{ ont la même orientation})$$

Dans le cas des bases orthonormée, on as :

Bases orthonormée

Propriété 127 Soit B_1 une base orthonormée directe

$$\left\{ \begin{array}{l} det_{B_1}(B)=1 \ alors \ B \ est \ orthonorm\'ee \ directe \\ det_{B_1}(B)=-1 \ alors \ B \ est \ orthonorm\'ee \ indirecte \end{array} \right.$$

Propriété 128 Soit $(u_1,...,u_n) \in \mathbb{R}^n$.

Si B et B' sont deux bases orthonormée directe :

$$det_B(u_1, ..., u_n) = det_{B'}(u_1, ..., u_n)$$

Ce déterminant commun à toutes les bases orthonormée directe est notée $Det(u_1, ..., u_n)$

22.3.3 Orthogonalité et sous-espace

Soit E un espace euclidien

Sous espace orthogonaux

Définition 126 Soient F et G deux sous-espaces.

(F est orthogonal à G)
$$\Leftrightarrow$$
 $(\forall x \in F, \forall y \in G, \langle x, y \rangle = 0)$

Propriété 129 *Deux sous espaces orthogonaux sont en somme directe.*

Propriété 130 On en déduit que :

$$dim(F) + dim(G) \le dim(E)$$

Orthogonal d'un sous-espace

Définition 127 *Soit F un sous espace de E.*

On appele orthogonale de F l'ensemble des vecteurs de E qui sont orthogonaux à tous les vecteurs de F. On note :

$$F^{\perp} = \{x \in E/\forall y \in F \ < x,y> = 0\}$$

Propriété 131 F^{\perp} est un espace vectoriel.

Propriété 132 F et F^{\perp} sont deux sous espaces supplémentaire

Propriété 133 On en déduit que :

$$dim(F^{\perp}) = dim(E) - dim(F)$$

Propriété 134 L'orthogonale de l'orthogonale de F :

$$(F^{\perp})^{\perp} = F$$

Propriété 135 Soit $\varphi \in L(E, \mathbb{R})$.

Soit u un vecteur de E de coordonée $(x_1,...,x_n)$. Il existe donc $(a_1,...,a_n)$ telque :

$$\varphi(u) = a_1 x_1 + \dots + a_n x_n$$

On obtient donc:

$$\varphi(u) = \langle a, u \rangle$$

Par conséquence :

$$Ker(\varphi) = (Vect(a))^{\perp}$$

22.3.4 Projection orthogonale

Définition 128 La projection orthogonale sur un sous espace vectoriel F est la projection sur F parallèlement à F^{\perp}

Définition 129 Soit $B(e_1, ... e_p)$ une base orthonormée de F.

Soit x un vecteur de E de coordonnées $(x_1,...,x_p)$.

On obtient donc le projetté orthogonale de x sur F, notée p(x):

$$p(x) = \langle x, e_1 \rangle e_1 + ... + \langle x, e_p \rangle e_p$$

Propriété 136 Si p est la projection orthogonale sur F. Si $u \in E$, alors :

$$Inf\{||x - y||/y \in F\} = ||x - p(x)||$$

Et on note:

$$d(x,F) = \inf_{y \in F} \parallel x - y \parallel$$

Et on appelle ceci distance de x à F.

Propriété 137 Si:

Alors y = p(x).

23

Espace euclidien de dimension 3

23.1 Définitions

23.2 Angle de deux vecteurs non nuls

Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs non nuls, non colinéaire. Soit \overrightarrow{n} vecteur orthogonale à \overrightarrow{u} et \overrightarrow{v} . On obtient :

$$\begin{cases} cos(\theta) = \frac{\langle \overrightarrow{u}; \overrightarrow{v} \rangle}{||\overrightarrow{u}||.||\overrightarrow{v}||} \\ et : \\ sin(\theta) = \frac{Det(\overrightarrow{u}; \overrightarrow{v}; \overrightarrow{n})}{||\overrightarrow{u}||.||\overrightarrow{v}||.||\overrightarrow{n}||} \end{cases}$$

23.2.1 Produit vectoriel

Définition 130 Soit $(\overrightarrow{i}, \overrightarrow{j}, \overrightarrow{k})$ une base orthonormée directe de E. Le produit vectoriel est l'unique application de $E \times E$ dans E:

– Alternée :
$$\overrightarrow{u} \wedge \overrightarrow{v} = -\overrightarrow{v} \wedge \overrightarrow{u}$$

$$- \ \textit{Bilinéaire} \\ - \ \textit{Vérifiant} : \left\{ \begin{array}{c} \overrightarrow{i} \land \overrightarrow{j} = \overrightarrow{k} \\ \overrightarrow{j} \land \overrightarrow{k} = \overrightarrow{i} \\ \overrightarrow{k} \land \overrightarrow{i} = \overrightarrow{j} \end{array} \right.$$

La définition du produit vectoriel est indépendante du choix de la base orthonormée.

Propriété 138 *Soit* \overrightarrow{u} , \overrightarrow{v} *deux vecteurs :*

$$(\overrightarrow{u} \wedge \overrightarrow{v} = \overrightarrow{0}) \Leftrightarrow (\overrightarrow{u} \ et \ \overrightarrow{v} \ sont \ colinéaire)$$

Propriété 139 Soient \overrightarrow{u} , \overrightarrow{v} deux vecteurs non colinéaire :

$$\overrightarrow{u} \wedge \overrightarrow{v} \perp \overrightarrow{u}$$

Propriété 140 On obtient la propriété suivante, pour la norme du produit vectoriel :

$$||\overrightarrow{u} \wedge \overrightarrow{v}|| = ||\overrightarrow{u}||.||\overrightarrow{v}||.|sin(\theta)|$$

23.2.2 Double produit vectoriel

Propriété 141 Soient \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} trois vecteurs :

$$\overrightarrow{a}\wedge(\overrightarrow{b}\wedge\overrightarrow{c})=\overrightarrow{b}.(\overrightarrow{a}.\overrightarrow{c})-\overrightarrow{c}.(\overrightarrow{a}.\overrightarrow{b})$$

23.2.3 Produit mixte

Définition 131 Soient \overrightarrow{u} , \overrightarrow{v} , \overrightarrow{w} trois vecteurs de E:

$$\overrightarrow{u}\wedge\overrightarrow{v}.\overrightarrow{w}=Det(\overrightarrow{u},\overrightarrow{v},\overrightarrow{w})$$

24

Isométrie Vectorielle

24.1 Généralités

Définition 132 Soit E un espace euclidien, soit $f \in L(E)$. f est une isométrie vectorielle si:

$$\forall x \in E ||f(x)|| = ||x||$$

Propriété 142 $Soit f \in L(E)$.

(f est une isométrie vectorielle) \Leftrightarrow $(\forall x \in E \ \forall y \in E, < f(x), f(y) > = < x, y >)$

On dit que f est un endomorphisme orthogonale

Propriété 143 Une isométrie vectorielle est bijective

Propriété 144 La réciproque d'une isométrie vectorielle est une isométrie vectorielle

Propriété 145 La composée de deux isométries vectorielles est une isométrie vectorielle

Propriété 146 L'ensemble des isométrie vectorielles, munie de la loi de composition des applications est un groupe, appelé le groupe orthogonale de E, notée O(E)

Propriété 147 *Soit f endomorphisme de E, et B base orthonormée.*

(f est une isométrie vectorielle) \Leftrightarrow (f(B) est une base orthonomée) (f est une isométrie vectorielle) \Leftrightarrow (mat_B(f) est une base orthogonale)

24.2 Isométrie vectorielle plane

24.2.1 Classification

Nom	Matrice	Déterminant	Vecteur invariant
Rotation d'angle θ	$\begin{bmatrix} \cos(x) & -\sin(x) \\ \sin(x) & \cos(x) \end{bmatrix}$	+1	{0} ou E pour Ide
Symétrie \perp / à une droite D	$\begin{bmatrix} \cos(x) & \sin(x) \\ \sin(x) & -\cos(x) \end{bmatrix}$	-1	Droite vectorielle

24.2.2 Cas particulier des rotations

Propriété 148 L'ensemble des rotations vectorielle planes est un sous groupe de O(E), appelé groupe spéciale orthogonale. Il est notée SO(E)

24.2.3 Rotation orthogonales

Propriété 149 La composée de deux symétries orthogonales par rapport à deux droites est une rotation d'angle deux fois l'angle entre les deux droites.

24.3 Isométrie vectorielle d'un espace euclidien de dimension 3

24.3.1 Symétrie orthogonale

Soit E un espace euclidien de base B=(i,j,k) orthonormée directe. Soit F un sous espace de E, et s_f la symétrie orthogonale par rapport à F:

Définition de F	Base	Matrice	Déterminant	Type
F = {0}	Quelconque	$ \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $	-1	$s_f = h_{-1}$
dim(F) = 1	$(e_1, e_2, e_3) D = Vect(e_1)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	1	×
dim(F) = 2	$(e_1, e_2, e_3) \text{ P =Vect}(e_1, e_2)$	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$	-1	Réflection
dim(F) = 3	Quelconque	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	1	$s_f = Ide$

24.3.2 Propriété de la matrice d'un symétrie orthogonale dans une base orthonormée

Si B est une base orthonormée et s une symétrie orthogonale.

Soit $M=mat_B(s)$.

Sachant que s est une symétrie, M est inversible et $M^{-1} = M$. De plus, la symétrie est orthogonale, donc la matrice l'est aussi, donc $M^{-1} = t$ M.

On obtient donc $M = {}^tM$. Donc M est une symétrie.

24.3.3 Rotation

Définition 133 *Soit D une droite vectorielle orienté et* θ *un réel.*

La rotation d'axe de D et d'angle θ est l'application linéaire r telque :

- $\rightarrow \forall u \in D \ r(u)=u$
- \rightarrow Le plan D^{\perp} est stable par r et la restriction de r à ce plan est une rotation plane d'angle θ orienté par D.

Propriété 150 Soit $B_{=}(e_1, e_2, e_3)$ base orthonormée directe telle que $D=Vect(e_1)$ et $D^{\perp}=Vect(e_2, e_3)$, alors:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Donc:

$$det(r) = 1$$

Propriété 151 Cas particulier :

- $\rightarrow \theta = 0$, alors r = Ide
- $\rightarrow \theta = \pi$, alors $r=s_D$

Propriété 152 Composée de deux réflections :

Soient P,P' deux plans distincts telque P \cap *P'* = *D* :

$$\rightarrow Si \ u \in D : s_{P'}(s_P(u)) = u$$

$$ightarrow Si \ u \in D^{\perp} \ r \ est \ stable \ dans \ D^{\perp}$$

 $\rightarrow s_{P'}os_P(u)$ est une rotation d'axe D.

24.3.4 Calcul de l'image d'un vecteur de x par une rotation

Soit r
 rotation d'axe D, orienté par \overrightarrow{d} , vecteur directeur de D, et d'angle
 $\theta.$ Soit $\overrightarrow{x} \notin D$:

$$r(\overrightarrow{x}) = \frac{<\overrightarrow{x}, \overrightarrow{d}>}{||d||^2}.\overrightarrow{d} + cos(\theta) \frac{(\overrightarrow{d} \wedge \overrightarrow{x}) \wedge \overrightarrow{d}}{||\overrightarrow{d}||^2} + sin(\theta) \frac{\overrightarrow{d} \wedge \overrightarrow{x}}{||\overrightarrow{d}||}$$

Si
$$||\overrightarrow{d}|| = 1$$
:

$$r(\overrightarrow{x}) = <\overrightarrow{x}, \overrightarrow{d} > .\overrightarrow{d} + cos(\theta)(\overrightarrow{d} \wedge \overrightarrow{x}) \wedge \overrightarrow{d} + sin(\theta)\overrightarrow{d} \wedge \overrightarrow{x}$$

24.3.5 Classification

Soit Inv(f) l'ensemble des vecteurs invariants.

dim(Inv(f))	f	Base	Matrice	Det
3	Ide	Quelconque	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	1
2	Réflexion s_p	Base adaptée	$ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} $	-1
1	Rotation d'axe D, d'angle θ	Base adaptée	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$	1
0	Réflexion o rotation	Base adaptée	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta) & -\sin(\theta) \\ 0 & \sin(\theta) & \cos(\theta) \end{bmatrix}$	-1

24.3.6 Élements caractéristiques d'une rotation

- → L'axe : L'ensemble des vecteurs invariante
- \rightarrow L'angle:
 - $\rightarrow \cos(\theta)$ est obtenu par la Trace(r) = 1 + 2cos(θ) dans une base adaptée.
 - \rightarrow Le signe de $sin(\theta)$ est obtenu par le signe de $det{Det}(x,r(x),d)$, avec x espace non invariant de l'espace, r(x) la rotation et d un vecteur directeur de l'axe

24.3.7 Autres résultats

Propriété 153 La matrice d'une projection orthogonale dans une base orthonormée est symétrique

Onzième partie

Espace Affine

25

Espace Affine

25.1 Définitions

Définition 134 *Soit* E *un* \Re *espace vectoriel.*

Soit ξ un ensemble.

On dit que ξ est un espace affine de direction l'espace vectoriel E si il existe φ défini par :

$$\varphi: \xi \times \xi \to E$$

$$(a,b)\mapsto \overrightarrow{ab}$$

telle que :

Vocabulaire 1 Si ξ est un espace affine, ses éléments sont appelé points.

Vocabulaire 2 Si B est une base de E, $O \in \xi$, alors (O,B) est un repère de ξ

Vocabulaire 3 Si $M \in \xi$, les coordonées de M dans (O,B) sont celles de \overrightarrow{OM} dans B.

Propriété 154 \Im *est un sous espace affine de* ξ *si* :

$$\rightarrow \Im = \emptyset$$

 \rightarrow ou $\exists A \in \xi$ et F sous espace vectoriel de E telque :

$$\Im = A + F$$

25.2 Applications affines

Définition 135 *Soit* ξ *un espace affine,* E *un espace vectoriel.*

On appelle application affine de ξ toute application f de ξ dans ξ telle qu'il existe $\varphi \in L(E)$ et O,O' deux points telque :

$$\forall M \in \xi \ \overrightarrow{O'f(M)} = \varphi(\overrightarrow{OM})$$

$$\forall M \in \xi \ f(M) = O' + \varphi(\overrightarrow{OM})$$

On dit que φ est l'application linéaire associée à f.

Propriété 155 Si f est une application affine associée à φ :

$$\forall (A, B) \in \xi^2 \ \overrightarrow{f(A)f(B)} = \varphi(\overrightarrow{AB})$$

Propriété 156 La composée de deux applications affines est affine et l'application linéaire associée est la composée des applications linéaires associées.

25.2.1 Homothétie affine

Définition 136 *Soit* $A \in \xi$ *et* $k \in \Re$.

On appelle homothétie de centre A et de rapport k l'application :

$$h: \xi \to \xi$$

$$M \mapsto M'$$

avec $\overrightarrow{AM'} = k\overrightarrow{AM}$.

h est une application affine.

25.2.2 Conservation du barycentre

Propriété 157 Si f est l'application affine associée à φ , et G le barycentre de $\{(M_i, \lambda_i)/i = 1, ..., p\}$, alors : f(G) est le barycentre de $\{(f(M_i), \lambda_i)/i = 1, ..., p\}$

25.2.3 Expression analytique dans un repère

Définition 137 Soit f application affine de E, et R=(O,B) un repère de ξ . Il existe des réels $a_{i,j}$, b_i telque si M à pour coordonnées $(x_1,...,x_n)$ et M' à pour coordonées $(x_1',...,x_n')$:

$$\left\{ \begin{array}{l} x_1' = a_{1,1}x_1 + \ldots + a_{1,n}x_n + b_1 \\ \ldots \\ \ldots \\ x_n' = a_{n,1}x_1 + \ldots + a_{n,n}x_n + b_n \end{array} \right.$$

25.3 Isométries affines

25.3.1 Généralités

Définition 138 *Soit f une application affine d'un espace affine* ξ *. f est une isométrie si* :

$$\forall M,N \in \xi^2 \mid \mid \overrightarrow{f(M)f(N)} \mid \mid = \mid \mid \overrightarrow{MN} \mid \mid$$

Propriété 158 Si φ est l'application linéaire associée à f:

(f est une isométrie) \Leftrightarrow (φ est un endomorphisme orthogonale)

Vocabulaire 4 Si:

- $\rightarrow det(\varphi) = 1$, alors f est un déplacement
- \rightarrow $det(\varphi) = -1$, alors f est un anti-déplacement

25.3.2 Déplacement du plan

Soit f un déplacement plan.

Application linéaire	Isométrie
Identité	Translation
Rotation d'angle θ [2 π]	Rotation affine d'angle θ [2 π] de centre Ω

25.3.3 Déplacement de l'espace affine de dimension 3

Application linéaire	Point Fixe	Isométrie
Identité	Aucun	Translation
Rotation d'angle θ	Un point	Rotation affine d'axe affine Δ , orienté par D, d'angle θ
Rotation d'angle θ	Aucun	Vissage d'axe affine Δ , de vecteur u , d'angle θ

Un vissage est la composée d'une translation de vecteur \bot au plan et d'une rotation plane.

Propriété 159 Si f est un vissage, r une rotation plane, et $\overrightarrow{u_1}$ un vecteur \perp à ce plan, alors :

$$f = \overrightarrow{u_1} or = ro\overrightarrow{u_1}$$

26

Equations linéaires

26.1 Espace affine

Définition 139 *Soit* E *un* K-espace vectoriel. *Soit* F *un sous-espace* vectoriel de E et $x_0 \in E$

$$\{x_0\} + F = \{x_0 + y/y \in F\}$$

est appelé espace affine de direction F.

Propriété 160 Les espaces vectorielles sont des espaces affines particuliers.

Propriété 161 Si F est de dimension finies, on dit que $\{x_0\} + F$ est un espace affine de dimension finies. Si F est une droite vectorielle, alors $\{x_0\} + F$ est une droite affine.

26.2 Equations linéaires

Définition 140 Soient E et F deux K-espace vectoriel.

Soit $f \in L(E, F)$. Soit $b \in F$.

L'équation d'inconnue x, vecteur de E:

$$f(x) = b$$

est appelé équation linéaire.

26.2.1 Structure de l'ensemble des solutions

- \rightarrow Si $b \in Im(f)$, l'espace des solutions est un espace affine de dimenseion Ker(f)
- \rightarrow Si $b \notin Im(f)$, l'espaces des solutions est l'ensemble vide.

Propriété 162 *Si l'équation* f(x) = b à une unique solution, alors :

- $\rightarrow b \in Im(f)$
- $\rightarrow Ker(f) = \{O_E\}$

Donc:

- $\rightarrow b \in Im(f)$
- \rightarrow f est injective

26.3 Système linéaire

Définition 141 Soit (S) un système d'inconnu $(x_1, ..., x_p)$.

Posons:

$$K^p \to K^n$$

$$(x_1,...,x_n) \to (a_{1,1}x_1 + ... + a_{1,p}x_p,...,a_{n,1}x_1 + ... + a_{n,p}x_p)$$

Notons:

On dit que:

- \rightarrow f est l'application associée à (S)
- → Le rang du système est le rang de A ou rang de f
- \rightarrow Si $b \in Im(f)$, alors S est un espace affine de dimension p-rang(A) = p-rang(S)

26.3.1 Système de Cramer

Définition 142 Un système de Cramer est un système linéaire de n équations, à n inconnues, de rang n.

On obtient la formule :

$$x_j = \frac{1}{\det(A)} \det_{\varphi}(c_1, ..., c_{j-1}, b, c_{j+1}, ..., c_n)$$

Douzième partie Matrice

Chapitre 27

Matrice et espaces vectoriel de dimension finies

27.1 Matrice

27.1.1 Définition

Définition 143 La matrice à n lignes et p colonnes est défini par :

$$M = [a_{i,j}]$$

avec i variant de 1 à n, et j variant de 1 à p

27.1.2 Matrice carrée

Définition 144 Une matrice M est carrée si n=p. On défini la diagonale de A comme le n-uplet : $(a_{11}, a_{22}, ..., a_{nn})$

27.1.3 Vecteur ligne

Définition 145 On défini le vecteur ligne comme le p-uplet :

$$l_i = (x_{i,1}, ..., x_{i,p})$$

27.1.4 Vecteur colonne

Définition 146 On défini le vecteur colonne comme le n-uplet :

$$l_j = (x_{1,j}, ..., x_{n,j})$$

27.1.5 Matrice carrée particulière

Soit
$$T = [x_{i,j}] \in M_n(K)$$

Définition 147 On dit que T est triangulaire supérieur si :

$$T = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ 0 & a_{2,2} & a_{2,3} \\ 0 & 0 & a_{3,3} \end{bmatrix}$$

Définition 148 On dit que T est triangulaire inférieur si :

$$T = \begin{bmatrix} a_{1,1} & 0 & 0 \\ a_{2,1} & a_{2,2} & 0 \\ a_{3,1} & a_{3,2} & a_{3,3} \end{bmatrix}$$

Définition 149 *On dit que T est une matrice scalaire si* :

$$T = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

Si λ =1, alors la matrice est la matrice unité, noté I_n

27.1.6 Matrice carrée symétrique et antisymétrique

Définition 150 Soit $S = [x_{i,j}] \in M_n(K)$

S est symétrique si $x_{i,j} = x_{j,i}$

S est antisymétrique si $x_{i,j}=-x_{j,i}$. Ceci implique que la diagonale de S est forcément nul dans ce cas

27.1.7 Transposition et trace

Définition 151 *La transposée de M noté* ^t *M est défini par :*

$$M = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \end{bmatrix}$$

alors

$${}^{t}M = \begin{bmatrix} a & e & i \\ d & f & j \\ c & g & k \\ d & h & l \end{bmatrix}$$

On a:

$$t(tM) = M$$

Définition 152 On défini la trace d'un matrice carrée comme la somme des termes de sa diagonale :

$$Trace(A) = \sum_{i=1}^{n} x_{k,k}$$

27.1.8 Espace vectoriel des matrices

On note $M_{n,p}(K)$ l'ensemble des matrices à n lignes et p colonne. L'addition des matrices est une addition termes à termes $(M_{n,p}(K),+)$ est un groupe commutatif d'élément neutre [O] $(M_{n,p}(K),+,o)$ est un K espace vectoriel Soit

L'ensemble $A_{1,1},....,A_{n,p}$ est une base de $M_{n,p}(K)$ et $\dim(M_{n,p}(K))$ =n.p $(M_n(K),+,x,o)$ est un K-algèbre de dimension n^2 . Si AB=BA, alors les identités remarquables sont utilisables.

27.1.9 Transposition

Définition 153 Soit :

$$\varphi: M_{n,p}(K) \to M_{p,n}(K)$$

$$M \mapsto^t M$$

 φ est un isomorphisme, donc c'est une application linéaire. De plus, si la matrice est une matrice carrée :

$$\varphi$$
 est symétrie de $M_n(K)$

$$\left. \begin{array}{l} ^tM = M \Leftrightarrow M \ est \ sym \'etrique \\ ^tM = -M \Leftrightarrow M \ est \ antisym \'etrique \end{array} \right\} Ce \ sont \ deux \ espaces \ suppl\'ementaire \end{array}$$

27.1.10 Produit de matrice

Définition 154 On défini le produit de matrice par :

Soit l_1 la première ligne de la matrice ASoit c_1 la première colonne de la matrice BSoit a_1 le première terme de la matrice produit

$$AB = \begin{bmatrix} a & b & c & d \end{bmatrix} \times \begin{bmatrix} e \\ f \\ g \\ h \end{bmatrix} = [ae + bf + cg + dh]$$

avec $[ae+bf+cg+dh] = a_1$ Le produit $l_2.c_1$ donne le terme $a_{2,1}$ Le produit est non commutatif

Cas particuliers

Si
$$M \in M_{n,p}(K)et[0] \in M_{p,q}(K)$$
 alors :

$$M \times [0] = 0$$

Soit T une matrice scalaire $\in M_{p,q}(K)$, alors :

$$M \times T = \lambda M$$

Soit I_n matrice unité d'ordre n, et $M \in M_n(K)$ alors :

$$MI_n = I_n M = M$$

27.1.11 Transposition et trace du produit

Soit A et B deux matrice $\in M_{n,p}(K)$. Alors :

$$^{t}(AB) = ^{t}B \times ^{t}A$$

et

Trace(AB) = Trace (BA), mais généralement AB $\neq BA$

27.1.12 Matrice Carrée inversible

Définition 155 *Soit* $M \in M_n(K)$. *On dit que* M *est inversible si*

$$\exists N \in M_n(K) \text{ telque } MN = NM = I_n$$

On pose $N = M^{-1}$. On note $GL_n(K)$ l'ensemble des matrice carrée inversible d'ordre n. Cette ensemble est un groupe linéaire. Et :

$$(AB)^{-1} = B^{-1}A^{-1}$$

Propriété 163 *Soit* $(A,B) \in (M_n(k))^2$ *telque* :

$$AB = I_n$$

On obtient que:

$$\left\{ egin{array}{l} A \ est \ inversible \ et \ B = A^{-1} \ B \ est \ inversible \ et \ A = B^{-1} \ \end{array}
ight.$$

Matrice carrée et inverse

Voir Méthodologie.

27.1.13 Rang d'une matrice

Définition 156 Le rang d'une matrice est le rang de ses vecteurs colonnes. Si $A \in M_{n,p}(K)$ et qu'on note c_i son i^{eme} vecteurs colonnes, alors :

$$rang(A) = rang(\{c_1,...,c_p\}) = dim(Vect\{c_1,...,c_p\})$$

et de plus :

$$0 \le rang(A) \le Min\{n, p\}$$

Rang de matrice particulière

Le rang d'une matrice diagonale est r, si :

$$\forall i \in \{1,, r\} \, \lambda_{ii} \neq 0$$

Si dans une matrice carrée d'ordre n, les termes diagonaux sont non tous nul, alors rang(A) = n

27.1.14 Opération élémentaire

Définition 157 Il existe trois opérations élémentaire :

- *I)* L'échange de deux colonnes : $c_i \leftrightarrow c_j$
- II) Le produit d'une colonne par un scalaire non nuls
- III) L'addition à une colonne d'une combinaison linéaire des autres

Ces opérations élémentaire ne modifie par le rang de A

27.2 Matrice et espaces vectoriel de dimension finies

27.2.1 Matrice de coordonnée d'un vecteur dans une base

Définition 158 Soit $B=\{e_1,...,e_n\}$ base d'un espace vectoriel de E Soit $u\in E$, $\exists !(x_1,...,x_n)\in K^n$ telque :

$$u = x_1 e_1 + \dots + x_n e_r$$

On note
$$mat_B(u)=egin{bmatrix} x_1\\ \vdots\\ x_n \end{bmatrix}\in M_{1,n}(K)$$
 la matrice de de u dans B

27.2.2 Matrice d'une famille de vecteurs

Définition 159
$$Si \ \forall j \in \{1,..p\}, \ u_j \in E \ et \ mat_B(u) = \begin{bmatrix} x_{1,j} \\ \vdots \\ x_{n,j} \end{bmatrix}$$
, alors :

$$mat_B(u_1, ..., u_p) = \begin{bmatrix} x_{1,1} & . & . & x_{1,p} \\ . & . & . & . \\ . & . & . & . \\ x_{n,1} & . & . & x_{n,p} \end{bmatrix}$$

De plus, le rang de la matrice est le rang de la famille de vecteurs.

27.2.3 Matrice de passage entre deux bases

Définition 160 On note $mat_B(B')$ la matrice de passage de B à B'. On la note P

27.2.4 Coordonnée d'un vecteur dans deux bases

Définition 161 On note B et B' deux bases de E.

On note $P = mat_B(B') \in M_n(K)$ la matrice de passage de B à B'

Soit $u \in E$

On pose $X = mat_B(u)$ et $X' = mat_{B'}(u)$

On obtient la relation:

$$X = PX'$$

De plus, P est inversible, et son inverse est :

$$P^{-1} = mat_{B'}(B)$$

27.2.5 Matrice d'une application linéaire

Définition 162 *Soit* $f \in L(E, F)$.

Soit $B_E = \{e_1, ..., e_p\}$ base de E et $B_F = \{f_1, ..., f_n\}$ base de F.

Soit M la matrice de f dans B_E, B_F :

$$M = mat_{B_E,B_F}(f) = mat_{B_F}(\{f(e_1),...,f(e_p)\})$$

Le nombre de colonne de la matrice est défini par la dimension de l'espace de départ, celui des ligne par la dimension de l'espace d'arrivé

Cas Particuliers

- I) La matrice de l'application nul $\in L(E,F)$ est la matrice nul de $M_{dim(F),dim(E)}(K)$
- II) La matrice d'un endomorphisme de E est une matrice carrée d'ordre dim(E)
- III) La matrice de l'identité est I_n
- IV) La matrice de l'homothétie est de rapport k par rapport à I_n

27.2.6 Coordonnée de l'image d'un vecteur

Définition 163 *Soit* B_E *base de* E, B_F *base de* F.

Soit $u \in E$

Posons $M = mat_{B_E,B_F}(f)$, $X = mat_{B_E}(u)$, $Y = mat_{B_F}(u)$. Alors:

$$Y = M.X$$

De plus:

Théorème 16 Si f est une application de E dans F telque $\exists M \in M_{n,p}$ telque $\forall u \in E$, l'égalité ci-dessus est vérifié, alors f est une application linéaire

27.2.7 Unicité de la matrice, pour les bases fixes

Définition 164 Soient B_E , B_F bases de E et de F, avec dim(E) = p, dim(F) = n Soit :

$$\varphi: L(E,F) \to M_{n,p}(K)$$

$$f \to mat_{B_E,B_F}(f)$$

 φ est une application linéaire. On en déduit donc que :

$$(f = g) \Leftrightarrow (mat_{B_E,B_F}(f) = mat_{B_E,B_F}(g))$$

Propriété 164 Soit $f \in L(E, F)$, B_E, B_F bases de E et F

Soit $A \in M_{n,p}(K)$

Soit $x \in E$. Supposons que $X = mat_{B_E}(x)$ et $Y = mat_{B_E}(f(x))$, et qu'on obtient :

$$Y = AX$$

Alors $A = mat_{B_E,B_F}(f)$

27.2.8 Matrice et opérations

Définition 165 Soient B_E , B_F bases fixées de E et de F.

 φ est une application linéaire, c'est donc un isomorphisme. Nous avons en effet montré que φ est bijective. On en déduit que $M_{n,p}(K)$ est de dimension finies, donc L(E,F) l'est aussi.

$$dim(L(E, F) = dim(E) \times dim(F) = dim(M_{n,p})$$

27.2.9 Composée d'application linéaire

Définition 166 Soient E,F,G espaces vectoriel de dimension finie, et de bases respective B_E, B_F, B_G . Soit $f \in L(E, F)$, $g \in L(F, G)$. Alors:

$$mat_{B_E,B_G}(gof) = mat_{B_E,B_G}(g) \times mat_{B_E,B_F}(f)$$

27.2.10 Matrice inversible et isomorphisme - Endomorphisme

Définition 167 Si f est un isomorphisme de E dans F, alors $mat_{B_E,B_F}(f)$ est inversible est :

$$(mat_{B_E,B_F}(f))^{-1} = mat_{B_F,B_E}(f^{-1})$$

Si f est un endomorphisme, on a:

$$(mat_{B_E}(f))^n = mat_{B_E}(f^n)$$

27.2.11 Changement de bases

Définition 168 Soit $f \in L(E, F)$. Soient $B_E, B_{E'}$ bases de E. Soient $B_F, B_{F'}$ bases de F. On pose :

$$\begin{cases} M = mat_{B_E,B_F}(f) \\ M' = mat_{B_{E'},B_{F'}}(f) \\ P = mat_{B_E}(B_{E'}) \\ Q = mat_{B_{F'}}(B_F) \end{cases}$$

Alors:

$$M' = Q^{-1}MP$$

ou, si f est un endomorphisme:

$$M' = P^{-1}MP$$

27.2.12 Trace d'un endomorphisme

Soit f un endomorphisme, A,B deux matrices d'ordre n. On sait déjà que Trace(AB)=Trace(BA) et si :

$$\left\{ \begin{array}{l} M = mat_{B_E}(f) \\ M' = mat_{B_{E'}}(f) \end{array} \right.$$

alors

$$\left\{ \begin{array}{l} rang(M) = rang(M') = rang(f) \\ Trace(M) = Trace(M') = rang(f) \\ det(M) = det(M') = det(f) \end{array} \right.$$

27.2.13 Matrice semblable

Définition 169 Soient A,B deux matrice carrée d'ordre n. On dit que A et B sont semblable si $\exists E$ espace vectoriel, $\exists B_E, B_{E'}$ bases de E, $\exists f$ endomorphisme de E telque :

$$B = P^{-1}MP$$

Ce qui revient à :

$$(A \ et \ B \ sont \ semblables) \Leftrightarrow (\exists P \in GL_n(K) \ telque \ B = P^{-1}MP)$$

27.2.14 Rang d'une application linéaire

On peut toujours ramener la matrice dans des bases $B_{E'}$, $B_{F'}$ de f à J_r :

$$J_r = \begin{bmatrix} 1 & . & . & . & 0 \\ 0 & 1 & . & . & . \\ . & . & 1 & . & . \\ . & . & . & . & . \\ 0 & . & . & . & 0 \end{bmatrix}$$

Donc si:

 $f \in L(E,F)$ tel qu'il $\exists B_{E'}, B_{F'}$ bases de E et F telque $mat_{B_{E'},B_{F'}}(f) = J_r$, alors rang(f)=r De plus, on a :

$$({}^{t}P)^{-1} = {}^{t}(P^{-1})$$

On montre que tA et tJ_r sont semblable, donc le rang d'une matrice est le rang de ses vecteurs colonnes comme celui de ses vecteurs lignes.

Et on obtient:

$$rang(^tA) = rang(A)$$

$^{\circ}$ Chapitre $^{\circ}28$

Déterminants

28.1 Forme n-linéaire

Soit E un K-espace vectoriel de dimension n.

Définition 170 Soit :

$$\varphi:E^n\to K$$

$$(u_1,...,u_n)\mapsto \varphi(u_1,...,u_n)$$

 φ est une forme n-linéaire si elle est linéaire par rapport à chacune de ses variables.

Expression dans une base

Définition 171 *Soit* $B = (e_1, ..., e_n)$ *base de* E.

Soit $u_1, ..., u_n$ n vecteurs de E.

Notons pour
$$j \in \{1,...,n\}$$
 $mat_B(u_j) = \begin{bmatrix} x_{1,j} \\ \vdots \\ x_{n,j} \end{bmatrix}$

 $Si \varphi$ est une forme n-linéaire, alors :

$$\varphi(u_1,...,u_n) = \sum_{1 \le i_1,...,i_n \le n} x_{i_1,1}...x_{i_n,n} \varphi(e_{i_1},...,e_{i_n})$$

28.1.1 Forme n-linéaire alterné

Définition 172 *Soit* φ *forme n-linéaire.*

On dit que φ est alternée si :

 $\forall u_1, ..., u_n \in E^n$

 $\forall i, j \text{ éléments distinct de } \{1, ..., n\}$

$$\varphi(u_1, ..., u_i, ..., u_j, ..., u_n) = -\varphi(u_1, ..., u_j, ..., u_i, ..., u_n)$$

Propriété 165 Si φ est une forme n-linéaire alterné.

 $Si \{u_1, ..., u_n\}$ est une partie liée de E.

Alors:

$$\varphi(u_1, ..., u_n) = 0$$

Expression dans une base

Soit φ forme n linéaire alterné et B base de E.

$$\varphi(u_1,...,u_n) = \sum_{1 \le i_1,...,i_n \le n} x_{i_1,1}...x_{i_n,n} \varphi(e_{i_1},...,e_{i_n})$$

Soit S_n l'ensemble des bijections de $\{1, ..., n\}$ dans lui même.

$$\varphi(u_1,...,u_n) = \sum_{\sigma \in S_n} x_{\sigma_1,1}...x_{\sigma_n,n} \varphi(e_{\sigma_1},...,e_{\sigma_n})$$

Si $\sigma \in S_n$, on note $\varphi(e_{\sigma_1},...,e_{\sigma_n}) = \varepsilon(\sigma) \varphi(e_1,...,e_n)$

On dit que $\varepsilon(\sigma)$ est la signature de σ , avec $\varepsilon(\sigma) = (-1)^p$, avec p nombre de changement effectuer pour obtenir le bon ordre de la base.

On obtient donc:

$$\varphi(u_1, ..., u_n) = \left[\sum_{\sigma \in S_n} \varepsilon(\sigma) x_{\sigma_1, 1} ... x_{\sigma_n, n}\right] \varphi(e_1, ..., e_n)$$

Définition 173 Le déterminant dans la base B est l'unique forme n-linéaire alternée φ vérifiant :

$$\varphi(e_1, ..., e_n) = 1$$

On le note : det_B

Propriété 166 Toutes les applications de $E \times E \times \times E \to K$ défini par $\forall (u_1, ..., u_n) \in E^n$:

$$\varphi(u_1, ..., u_n) = A \sum_{\sigma \in S_n} \varepsilon(\sigma) x_{\sigma(1), 1} ... x_{\sigma(n), n}$$

avec A scalaire fixé, est une forme n-linéaire de alterné et $\varphi(B) = A$, avec B base de E.

Autre formulation:

Propriété 167 L'ensemble des formes n-linéaire alternée est une droite vectorielle.

$$Vect(det_b) = \{ A.det_b / A \text{ scalaire quelconque } \}$$

28.2 Déterminant dans une base B

Définition 174 *Soit B base de E.*

 det_B est l'unique forme n-linéaire alternée vérifiant $det_B(B) = 1$.

$$det_B(u_1, ..., u_n) = \sum_{\sigma \in S_n} \varepsilon(\sigma) x_{\sigma(1), 1} ... x_{\sigma(n), n}$$

28.2.1 Déterminant dans deux bases différentes

Soit B,B' deux bases de E. $\forall u_1,...,u_n$ vecteurs de E :

$$det_{B'}(u_1,...,u_n) = det_{B'}(B).det_B(u_1,...,u_n)$$

Propriété 168

$$(det_B(u_1,...,u_n)=0) \Leftrightarrow (\{u_1,...,u_n\} \text{ est liée})$$

 $(det_B(u_1,...,u_n) \neq 0) \Leftrightarrow (\{u_1,...,u_n\} \text{ est une base})$

Propriété 169 Si B et B' sont deux bases :

$$det_{B'}(B) = \frac{1}{det_B(B')}$$

Formulaire

28.3 Déterminant d'un endomorphisme

Définition 175 Soit $f \in L(E)$

Soient B et B' deux bases de E.

$$det_B(f(B)) = det_{B'}(f(B'))$$

Ce scalaire, indépendant du choix de la base, est appelé déterminant de f. On le note : det(f)

Propriété 170 Si f,g sont deux endomorphisme de E :

$$det(fog) = det(g).det(f)$$

Propriété 171 $Si f \in L(E)$:

$$(fest bijectif) \Leftrightarrow (det(f) \neq 0)$$

Propriété 172 Si f est un automorphisme de E :

$$det(f^{-1}) = \frac{1}{det(f)} = (det(f))^{-1}$$

28.4 Déterminant d'une matrice carrée

Définition 176 Soit $A \in M_n(K)$.

Notons $c_1, ..., c_n$ ses vecteurs colonnes, élément de K^n .

Notons $l_1, ..., l_n$ ses vecteurs lignes, élément de K^n .

Soit φ la base canonique de K^n .

$$det(A) = det_{\omega}(c_1, ..., c_n) = det_{\omega}(l_1, ..., l_n)$$

Propriété 173 *Soit* $f \in L(E)$, avec B base de E.

Notons $M = mat_B(f)$.

On obtient:

$$det(f) = det_B(f(B)) = det(M)$$

28.4.1 Lien entre vecteurs lignes et vecteurs colonnes

Si
$$A = [a_{i,j}]_{1 \le i,j \le n}$$
:

$$det(A) = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{\sigma(1),1} ... a_{\sigma(n),n} = \sum_{\sigma \in S_n} \varepsilon(\sigma) a_{1,\sigma(1)} ... a_{n,\sigma(n)}$$

Propriété 174 D'après l'égalité ci-dessus, on établie que :

$$det(^tA) = det(A)$$

28.4.2 Déterminant singulier

Soient (A,B)
$$\in M_n(K)^2$$
, $\lambda \in K$.

$$det(AB) = det(A).det(B)$$

$$det(\lambda A) = \lambda^n det(A)$$

$$det(A+B) = ????$$

Opérations élémentaires et déterminant 28.4.3

On peut effectuer des opérations élémentaires, tout comme pour le calcul de rang, pour calculer le déterminant d'une matrice. Ceci implique les règles suivantes :

- $\rightarrow c_i \leftrightarrow c_j$: Changement de signe du déterminant
- $\rightarrow c_i \leftarrow \lambda c_j : \lambda$ fois le déterminant $\rightarrow c_i \leftarrow \sum_{k=1, k \neq i} \lambda_k . c_k :$ Aucun changement

28.4.4 Déterminant remarquable

Matrice diagonale

Soit A, matrice diagonale de diagonale : $(d_1, ..., d_n)$ On obtient :

$$det(A) = d_1 d_2 ... d_n$$

Matrice triangulaire

Soit A, matrice triangulaire de diagonale : $(t_{11}, ..., t_{nn})$ On obtient :

$$det(A) = t_{11}...t_{nn}$$

28.5 Développement de déterminant d'une matrice

Définition 177 *Soit* $A = [a_{i,j}]_{1 \le i,j \le n}$.

Soit $j \in \{1, ..., n\}$.

Le développement par rapport à la j-ème colonne donne :

$$det(A) = a_{1,j}\Delta_{1,j} + \dots + a_{n,j}\Delta_{n,j}$$

Le développement par rapport à la i-ème ligne donne :

$$det(A) = a_{i,1}\Delta_{i,1} + \dots + a_{i,n}\Delta_{i,n}$$

On appelle cofacteur de $a_{i,j}$ dans le développement $\Delta_{i,j}$:

$$\Delta_{i,j} = \sum_{\sigma \in S_n, \sigma(j)=i} \varepsilon(\sigma) a_{\sigma(1),1} \dots a_{\sigma(j-1),j-1} a_{\sigma(j+1),j+1} \dots a_{\sigma(n),n}$$

Calcul des cofacteurs 28.5.1

Propriété 175 On détermine le cofacteurs à l'aide de l'égalité suivantes :

$$\Delta_{i,j} = (-1)^{i+j} \times A$$

Avec:

 $\rightarrow A$: Déterminant de la matrice obtenu en enlevant la ligne i et la colonne j.

Inverse d'une matrice inversible 28.5.2

Soit A = $[a_{i,j}]_{1 \le i,j \le n}$. Soit la comatrice de A:

$$Com(A) = [\Delta_{i,j}]_{1 \le i,j \le n}$$

Si A est inversible, donc $det(A) \neq 0$, alors :

$$A^{-1} = \frac{1}{\det(A)}^t Com(A)$$

28.5.3 Formule de Sarrus, pour n=3

La formule de Sarrus est de reporte la 1^{er} et la 2^{nd} ligne de la matrice sous la matrice, puis de trace les diagonales et les anti-diagonales. Les diagonales sont comptées positivement, les anti-diagonales négative

Treizième partie Annexe

Trigonométrie

A.1 Formules

A.1.1 Décomposition

$$\rightarrow \cos(a+b) = \cos(a).\cos(b) - \sin(a).\sin(b)$$

$$\rightarrow \cos(a-b) = \cos(a).\cos(b) + \sin(a).\sin(b)$$

$$\rightarrow \sin(a+b) = \sin(a).\cos(b) + \sin(b).\cos(a)$$

$$\rightarrow \sin(a-b) = \sin(a).\cos(b) - \sin(b).\cos(a)$$

$$\rightarrow \tan(a+b) = \frac{tan(a) + tan(b)}{1 - tan(a) \cdot tan(b)}$$
$$\rightarrow \tan(a-b) = \frac{tan(a) - tan(b)}{1 + tan(a) \cdot tan(b)}$$

$$\rightarrow \tan(a-b) = \frac{tan(a) - tan(b)}{1 + tan(a).tan(b)}$$

A.1.2 Angle double

$$\rightarrow \sin(2a) = 2.\sin(a).\cos(a)$$

$$\rightarrow \cos(2a) = 2.\cos^2(a) - 1 = 1 - 2.\sin^2(a)$$

$$\rightarrow \tan(2a) = \frac{2.tan(a)}{1 - tan^2(a)}$$

A.1.3 Linéarisation

$$\rightarrow$$
 2.cos(a).cos(b) = cos(a+b) + cos(a-b)

$$\rightarrow$$
 2.sin(a).sin(b) = cos(a-b) - cos(a+b)

$$\rightarrow$$
 2.sin(a).cos(b) = sin(a+b) + sin(a-b)

$$\rightarrow \cos^2(a) = \frac{1 + \cos(2a)}{2}$$

$$\rightarrow \sin^2(a) = \frac{1 - \cos(2a)}{2}$$

A.1.4 Somme

$$\begin{split} &\operatorname{Soit}\,(p,q) \in \mathbb{R}^2 \\ &\to \cos(\mathsf{p}) + \cos(\mathsf{q}) = 2.(\cos(\frac{p+q}{2}).\cos(\frac{p-q}{2})) \\ &\to \cos(\mathsf{p}) - \cos(\mathsf{q}) = -2.(\sin(\frac{p+q}{2}).\sin(\frac{p-q}{2})) \\ &\to \sin(\mathsf{p}) + \sin(\mathsf{q}) = 2.(\sin(\frac{p+q}{2}).\cos(\frac{p-q}{2})) \\ &\to \sin(\mathsf{p}) - \sin(\mathsf{q}) = 2.(\cos(\frac{p+q}{2}).\sin(\frac{p-q}{2})) \end{split}$$

A.2 Fonction inverse

A.2.1 Fonction Hyperbolique

A.2.2 Fonction Trigonométrique

Fonction	D_f	$D_{f'}$	f'(x)
Arccos	[-1:1]]-1;1[$\frac{-1}{\sqrt{1-x^2}}$
Arcsin	[-1:1]]-1;1[$\frac{1}{\sqrt{1-x^2}}$
Arctan	\mathbb{R}	\mathbb{R}	$\frac{1}{1+x^2}$

$$\rightarrow \forall x \in \mathbb{R} \arcsin(x) + \arccos(x) = \frac{\pi}{2}$$

$$\rightarrow \ \forall x \in \mathbb{R}^* \ \operatorname{arctan}(\mathbf{x}) + \operatorname{arctan}(\frac{1}{x}) = \pm \frac{\pi}{2} \ (\text{dépend du signe de x})$$

$$\rightarrow \forall x \in \mathbb{R} \cos^2(x) + \sin^2(x) = 1$$

$$\rightarrow \ \forall x \in \mathbb{R} \ ch^2(x) - sh^2(x) = 1$$

Table des matières

Licence					
Av	Avant-propos Remerciements				
Re					
Ι	For	Fonctions de $\mathbb R$ dans $\mathbb R$			
1	\mathbb{R}		3		
	1.1	Définitions	. 3		
	1.2	Structure	. 3		
		1.2.1 Majorant - Minorant	. 3		
		1.2.2 Borne supérieure - Borne inférieure	. 4		
		1.2.3 Partie bornée de $\mathbb R$. 4		
		1.2.4 Partie entière	. 4		
		1.2.5 Densité	. 4		
	1.3	Partie de $\mathbb R$. 4		
		1.3.1 Sous-groupes de (\mathbb{R} ;+)	. 5		
2	Lim	nite d'une fonction	7		
	2.1	Définitions	. 7		
		2.1.1 Fonction k-lipschitzienne	. 7		
		2.1.2 Limite et continuité			
		2.1.3 Limite	. 7		
		2.1.4 Continuité	. 8		
	2.2	Limité ou continuité à gauche et à droite	. 8		
		2.2.1 Segment	. 8		
		2.2.2 Limite à droite, limite à gauche			
		2.2.3 Continuité d'un intervalle	. 9		
	2.3	Image continue	. 9		
		2.3.1 D'un intervalle	. 9		
		2.3.2 D'un segment	. 10		
	2.4	Continuité uniforme sur un intervalle	. 10		
	2.5	Fonction monotone	. 10		
		2.5.1 Théorème de la "limite monotone"	. 10		
		2.5.2 Monotonie et continuité	. 10		
		2.5.3 Théorème de la bijection	. 10		

	Dér		des fonctions de $\mathbb R$ dans $\mathbb R$	11
	3.1	Défini	tions	11
		3.1.1	Définitions	11
		3.1.2	Lien entre tangente et dérivabilité	11
		3.1.3	Continuité et dérivabilité	11
		3.1.4	Théorème de Rolle	12
		3.1.5	Théorème des accroissement finies	12
		3.1.6	Inégalité des accroissement finies	12
		3.1.7	Classe d'une fonction	12
		3.1.8	Formulaire	12
		3.1.9	Formule de Leinbniz	13
1	É	do local	e d'une fonction	15
4	4.1	_	locale	15
	4.1			
		4.1.1	Dominance - Équivalence - Négligeabilité	15
		4.1.2	Comparaison successives	15
		4.1.3	Échelle de comparaison	16
		4.1.4	Règles de Manipulation	16
		4.1.5	Formule de Taylor avec reste de Young	16
5	Dév		ments limités	19
	5.1	Notati	on de Landau	19
	5.2		tions	19
	5.3		alence et développement limité	19
	5.4	Régula	arité au voisinage de 0 et développement limité	19
	5.5		oppement limités usuels	20
	5.6		ition et Intégration	20
	5.7		oppement limité au voisinage d'un réel a	20
		5.7.1	Tangente	20
	5.8	Dévelo	pppement limité généralisé	21
TT	Le	es suite		23
11		es surc	25	23
	Suit		rique - Géneralité	25
	Suit	te numé	rique - Géneralité	
		te numé	e <mark>rique - Géneralité</mark> étés	25
	6.1	te numé Propri 6.1.1	e <mark>rique - Géneralité</mark> étés	25 25 25
		te numé Propri 6.1.1 Suites	érique - Géneralité étés	25 25 25 25
	6.1	te numé Propri 6.1.1 Suites 6.2.1	erique - Géneralité étés	25 25 25 25 25
	6.1	ropri 6.1.1 Suites 6.2.1 6.2.2	érique - Géneralité étés	25 25 25 25
6	6.16.26.3	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites	erique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants	25 25 25 25 25 25 25
	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites	erique - Géneralité étés	25 25 25 25 25 25 25 25
6	6.16.26.3	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites	erique - Géneralité étés Opérations Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes	25 25 25 25 25 25 25 27
6	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Evergend Suites 7.1.1	érique - Géneralité étés Opérations Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur	25 25 25 25 25 25 25 27 27
6	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Evergend Suites 7.1.1 7.1.2	erique - Géneralité étés Opérations Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense	25 25 25 25 25 25 25 27 27 27 28
6	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites vergend Suites 7.1.1 7.1.2 7.1.3	erique - Géneralité étés Opérations Opérations Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes	25 25 25 25 25 25 25 27 27 27 28 28
6	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Vergen 7.1.1 7.1.2 7.1.3 7.1.4	erique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite	25 25 25 25 25 25 25 27 27 27 28 28 28
6	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Evergene Suites 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5	étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement	25 25 25 25 25 25 25 27 27 27 28 28 28 28
6	6.16.26.3Con 7.1	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites vergen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6	erique - Géneralité étés Opérations Opérations Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites	25 25 25 25 25 25 25 27 27 27 28 28 28 28 28 28
6	6.16.26.3Cont	Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Vergen 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Suites	erique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites divergentes	25 25 25 25 25 25 25 27 27 27 28 28 28 28 28 29
6	6.16.26.3Con 7.1	ropri 6.1.1 Suites 6.2.1 6.2.2 Suites vergend Suites 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Suites 7.2.1	erique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites divergentes Caractéristation des suites divergentes Caractéristation des suites divergentes	25 25 25 25 25 25 25 27 27 27 28 28 28 28 29 29
6	6.16.26.3Con 7.1	re numé Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Suites 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Suites 7.2.1 7.2.2	crique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites divergentes Caractéristation des suites divergentes Caractéristation des suites divergentes Suites qui diverge vers ±∞	25 25 25 25 25 25 27 27 27 28 28 28 28 29 29
6	6.16.26.3Con 7.1	re numé Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Suites 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Suites 7.2.1 7.2.2 7.2.3	rique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites divergentes Caractéristation des suites divergentes Suites qui diverge vers ±∞ Théorème de minoration	25 25 25 25 25 25 27 27 27 28 28 28 28 29 29 29
6	6.16.26.3Con 7.1	re numé Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Suites 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Suites 7.2.1 7.2.2 7.2.3	crique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites divergentes Caractéristation des suites divergentes Caractéristation des suites divergentes Suites qui diverge vers ±∞	25 25 25 25 25 25 27 27 27 28 28 28 28 29 29 29 29
6	6.16.26.3Con 7.17.2	re numé Propri 6.1.1 Suites 6.2.1 6.2.2 Suites Suites 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 Suites 7.2.1 7.2.2 7.2.3	rique - Géneralité étés Opérations particulière Suite arithmétiques Suite géométrique vérifiant une relation de récurrence linéaire à coefficiants constants ce des suite numériques réelles convergentes Caractérisation de la borne supérieur Caractérisation d'une partie dense Opération sur les suites convergentes Lien entre le signe de la limite et le signe des termes de la suite Théorème d'encadrement Suite extraites divergentes Caractéristation des suites divergentes Suites qui diverge vers ±∞ Théorème de minoration	25 25 25 25 25 25 27 27 27 28 28 28 28 29 29 29

		7.3.3	Théorème de Bolzano-Weierstrass	30
8	Suit	e à vale	eur complexe	31
	8.1			31
	8.2			31
	8.3			31
	8.4			31
	0.1			31
0	Titue d			33
9		le des s		
	9.1		1	33
	9.2		1	33
		9.2.1		34
		9.2.2		34
		9.2.3		34
	9.3	Règle o	de d'Alembert	34
	9.4	Compa	araison des suites	34
		9.4.1	Définitions	34
		9.4.2		34
	9.5	Règles		35
	,	1108100	a amount are equivalent of negations of the state of the	, ,
***	г А	n		. –
III	l A	rcs Pa	ramétré 3	37
10	Arcs	Param	étrés et Arcs Polaire	39
	10.1	Étude	locale d'un arc	39
				39
			U	39
	10.2		0	1 0
	10.2			40
				40
			O .	1 0
	100	10.2.4		41
	10.3	Plan d	1	12
	10.4			43
			1	43
				43
		10.4.3	Étude des tangentes	43
		10.4.4	Etude d'une branche infini	43
11		conique		15
	11.1			45
		11.1.1	Définitions bifocale d'une ellipse	45
				45
	11.2			45
				45
				16 16
			7.5	
	11 0			46 46
	11.3	Equati	on polaire dans un repère de centre F	46
IV	F	onctio	ns de \mathbb{R}^2 dans \mathbb{R}	ŀ7
12	Fone	ctions d	le \mathbb{R}^2 dans \mathbb{R}	19
				19
				19
				19
		14.1.4	Tionic equivalence	. /

	12.2	12.1.3 Convergence d'une suiteLimite d'une fonction de \mathbb{R}^2 dans \mathbb{R} 12.2.1 Théorème d'encadrement12.2.2 Caractérisation de la divergence12.2.3 Continuité	50 50 50 50 50
	12.3	Dérivation	51 51
		12.3.2 Dérivée suivant un vecteur	51 51
		12.3.4 Développement limité d'ordre 1	51
		12.3.5 Plan tangent	51 52
		12.3.7 Dérivée des composées	52
V	Ec	quations differentielles	53
13		ation différentielle	55
		Fonction exponentielle complexe	55
	13.2	Équation différentielle	55 55
		13.2.2 Second ordre	55
	13.3	Recherche d'une solution particulière	55
		13.3.1 Second membre constant	55
		13.3.2 Second membre polynomiale	56 56
	13.4	Méthode de variation de la constante	56
		Principe de superposition	56
14	Équ 14.1	ations différentielle linéaire Généralité	57 57
15	Équ	ations différentielles linéaire d'ordre 1	59
	I I,		(1
		ntégration	61
V] 16	Inté	gration	63
	Inté	gration Fonctions continues par morceaux	63
	Inté	gration Fonctions continues par morceaux	63
	Inté	Fonctions continues par morceaux 16.1.1 Subdivision	63 63
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier	63 63 63 63 64
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann	63 63 63 63 64 64
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier	63 63 63 63 64 64 64
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux	63 63 63 63 64 64 64 65
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier	63 63 63 63 64 64 64
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux 16.3.1 Somme de Riemann 16.3.2 Linéarité 16.3.3 Transmition de l'ordre	63 63 63 63 64 64 64 65 65 65
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux 16.3.1 Somme de Riemann 16.3.2 Linéarité 16.3.3 Transmition de l'ordre 16.3.4 Intégrale et valeur absolu	63 63 63 63 64 64 65 65 65
	Inté 16.1	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux 16.3.1 Somme de Riemann 16.3.2 Linéarité 16.3.3 Transmition de l'ordre 16.3.4 Intégrale et valeur absolu 16.3.5 Relation de Chasles	63 63 63 63 64 64 65 65 65 65 65
	Inté 16.1 16.2 16.3	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux 16.3.1 Somme de Riemann 16.3.2 Linéarité 16.3.3 Transmition de l'ordre 16.3.4 Intégrale et valeur absolu 16.3.5 Relation de Chasles 16.3.6 Inégalité de la moyenne	63 63 63 63 64 64 65 65 65
	Inté 16.1 16.2 16.3	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux 16.3.1 Somme de Riemann 16.3.2 Linéarité 16.3.3 Transmition de l'ordre 16.3.4 Intégrale et valeur absolu 16.3.5 Relation de Chasles	63 63 63 63 64 64 65 65 65 65 66 66
	Inté 16.1 16.2 16.3	Fonctions continues par morceaux 16.1.1 Subdivision 16.1.2 Fonction en escalier sur [a,b] 16.1.3 Fonction continue par morceaux 16.1.4 Approximation d'une fonction continue par morceaux par des fonctions en escalier Intégrale de Riemann 16.2.1 Intégrale d'une fonction en escalier Intégrale d'une fonction continue par morceaux 16.3.1 Somme de Riemann 16.3.2 Linéarité 16.3.3 Transmition de l'ordre 16.3.4 Intégrale et valeur absolu 16.3.5 Relation de Chasles 16.3.6 Inégalité de la moyenne Intégrale et primitive d'une fonction continue	63 63 63 63 64 64 65 65 65 65 66 66 66

	16.6	16.4.4 Technique de calcul d'une intégrale 16.4.5 Intégrale d'une fonction paire, impaire, periodique Inégalité de Cauchy-Schwarz Formule de Taylor avec reste intégrale Inégalité de Taylor-Lagrange	67 67 67 67 68
VI	I I	Nombres complexes	69
17	Non	nbres complexes	71
	17.1	Formules	71
		17.1.1 Généralités	71 71
18	Non	nbres complexe et géométrie dans le plan	73
	18.1	Alignement, Orthogonalité, Cocyclicité	73
		18.1.1 Alignements	73
		18.1.2 Orthogonalité	73
	40.0	18.1.3 Cocyclicité	73
	18.2	Similitude	74
		18.2.1 Translation	74
		18.2.2 Homothetie	74
		18.2.3 Rotation 18.2.4 Similitude	75 75
		18.2.5 Affinité	75 75
		10.2.5 Affilite	75
VI	II	Polynomes	77
19	Les	polynomes	79
		Définitions	79
		19.1.1 Opérations	79
		19.1.2 Structure	80
		19.1.3 Polynome constante	80
		19.1.4 Fonction polynome associée	80
		19.1.5 Degrés	80
		19.1.6 Valuation	80
		19.1.7 Division euclidienne dans K[X]	81
		19.1.8 Formule de Taylor	81
	19.2	Racine d'un polynome	81
		19.2.1 Racine simple	81
		19.2.2 Racine multiple et ordre de multiplicité	81
		19.2.3 Polynome scindé	81
		19.2.4 Polynome irréductible	82
	_		
IX	Es	space vectoriel	83
20	Espa	ace vectoriel	85
		Définitions	85
		Sous-espaces vectoriels	86
		20.2.1 Définitions	86
		20.2.2 Critère de reconaissance	86
		20.2.3 Sous espace supplémentaire	86
		20.2.4 Partie génératrice d'un sous-espace	87
		20.2.5 Produit de deux espaces	87
	20.3	Application linéaire	87

20.3.1 Oyoyau et Image d'une application linéaire 87 20.3.3 Opérations sur les applications linéaires 88 20.3.4 Structure 88 20.3.5 Symétrie 88 20.3.6 Symétrie 88 21.1 Partie libre - Partie liée - Partie génératrice 91 21.1.1 Partie finie libre 91 21.1.2 Partie fini libre 91 21.1.3 Partie génératrice 91 21.1.4 Base 92 21.2 Dimension d'un espace de dimension finie 92 21.2.1 Caractérisation des bases 92 21.3 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.5 Somorphisme 94 21.5 I Caractérisation des isomorphismes 95 <t< th=""><th></th><th></th><th>20.3.1</th><th>Vocabulaire</th><th>87</th></t<>			20.3.1	Vocabulaire	87
20.3.4 Structure			20.3.2	Noyau et Image d'une application linéaire	87
20.3.5 Projecteur			20.3.3	Opérations sur les applications linéaires	88
20.3.5 Projecteur			20.3.4	Structure	88
20.3.6 Symétrie 89			20.3.5	Projecteur	88
21.1 Partie libre - Partie liée 91 21.1.1 Partie finie liée 91 21.1.2 Partie fini libre 91 21.1.3 Partie génératrice 91 21.1.4 Base 92 21.2 Dimension d'un espace de dimension finie 92 21.3 Sous-espace d'un espace de dimension finie 93 21.3 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5 Isomorphisme 94 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.2 Propriétés 99 22.3 Maje de deux de l'espace vectoriel 10			20.3.6	Symétrie	89
21.1 Partie libre - Partie liée 91 21.1.1 Partie finie liée 91 21.1.2 Partie fini libre 91 21.1.3 Partie génératrice 91 21.1.4 Base 92 21.2 Dimension d'un espace de dimension finie 92 21.3 Sous-espace d'un espace de dimension finie 93 21.3 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5 Isomorphisme 94 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.2 Propriétés 99 22.3 Maje de deux de l'espace vectoriel 10	21	Espa	ace vect	toriel de dimensions finies	91
21.1.1 Partie finie liée 91 21.1.2 Partie fini libre 91 21.1.3 Partie génératrice 91 21.1.4 Base 92 21.2 Dimension d'un espace de dimension finie 92 21.2.1 Caractérisation des bases 92 21.3.2 Sous-espace d'un espace de dimension finie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22. Propriétés 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3 Base orthonormée 100 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102		-			
21.1.2 Partie fini libre 91 21.1.3 Partie génératrice 91 21.1.4 Base 92 21.2. Dimension d'un espace de dimension finie 92 21.3. Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4.3 Polication linéaire entre deux espaces de dimension finies 93 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.2.1 Produit scalaire 99 22.2.2 Propriétés 99 22.3 Base orthonormée 100 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102					91
21.1.3 Partie génératrice 91 21.1.4 Base 92 21.2.1 Dimension d'un espace de dimension finie 92 21.2.1 Caractérisation des bases 92 21.3 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une application linéaire 94 21.4.3 Rang d'une application linéaire 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22. Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 O'ientation de l'espace vectoriel 101 22.3.3 O'rthogonalité et sous-espace 101 22.3.4 Projection orthogonale 103 23.2.1 Produit vectoriel 103					
21.1.4 Base 92 21.2. Dimension d'un espace de dimension finie 92 21.2.1 Caractérisation des bases 92 21.3. Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4.3 Philication linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une pattie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5.1 Isomorphisme 94 21.5.2 Espace isomorphe 95 21.5.2 Espace isomorphe 95 21.5.2 Espace vectoriel euclidien 97 22. Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 O'rientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 23.2.1 Produit vectoriel 103 <td></td> <td></td> <td></td> <td></td> <td></td>					
21.2.1 Dimension d'un espace de dimension finie 92 21.2.1 Caractérisation des bases 92 21.3.5 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4.3 Polication linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une application linéaire 94 21.4.3 Rang d'une application linéaire 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22. Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 Ortentation de l'espace vectoriel 101 22.3.2 Orthogonalité et sous-espace 101 22.3.3 Orthogonalité et sous-espace 101 23.2.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double pr					92
21.2.1 Caractérisation des bases 92 21.3 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une application linéaire 94 21.4.3 Rang d'une application linéaire 94 21.4.5 Forme linéaire 94 21.5.1 Somorphisme 94 21.5.2 Isomorphisme 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 Z2 Espaces vectoriels euclidiens 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace uclidien de dimension 3 103 23.1 Définitions 103 23.2.2 Double produit vectoriel 103 23.2.2 Double produit vectoriel 103 <		21.2			92
21.3 Sous-espace d'un espace de dimension finie 93 21.3.1 Rang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une application linéaire 94 21.4.3 Rang d'une application linéaire 94 21.4.5 Forme linéaire 94 21.5.1 Somorphisme 94 21.5.2 Espace isomorphe 95 21.5.2 Espace isomorphe 95 21.5.2 Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.2.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 <					92
21.3.1 Řang d'une partie 93 21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 Z. Espace vectoriel euclidien 97 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3.3 Base orthonormée 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.2 Orientation de l'espace vectoriel 101 22.3.4 Projection orthogonale 102 23.5 Produit met vectoriel 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle plane 105		21.3			93
21.3.2 Sous espace supplémentaire et base 93 21.4 Application linéaire entre deux espaces de dimension finies 93 21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.5 Forme linéaire 94 21.4.5 Forme linéaire 94 21.5.1 Isomorphisme 94 21.5.2 Espace isomorphe 95 21.5.2 Espace isomorphe 95 21.5.2 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 106 <					93
21.4.1 Caractérisation par l'image d'une base de E 94 21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.4.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.2.1 Notation et Vocabulaire 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification			21.3.2	Sous espace supplémentaire et base	93
21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105		21.4			93
21.4.2 Image d'une partie libre, liée ou génératrice de E 94 21.4.3 Rang d'une application linéaire 94 21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105			21.4.1	Caractérisation par l'image d'une base de E	94
21.4.4 Théorème du rang 94 21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie orthogo					94
21.4.5 Forme linéaire 94 21.5 Isomorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2.2 Propriétés 99 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.1 Produit vectorielle 103 24.1 Généralités 105 24.2 Isométrie Vectorielle 105 24.2.1 Classification 105 24.2.2 Rosaparticulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie orthogonale 106					94
21.5 I Somorphisme 94 21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.2 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Rotation orthogonales 106 24.3.1 Symétrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106			21.4.4	Théorème du rang	94
21.5.1 Caractérisation des isomorphismes 95 21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.2.1 Notation et Vocabulaire 99 22.2 Propriétés 99 23.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.2.1 Généralités 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie orthogonale 106 24.3.1 Symétrie orthogonale 106			21.4.5	Forme linéaire	94
21.5.2 Espace isomorphe 95 X Espace vectoriel euclidien 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		21.5	Isomo	rphisme	94
X Espace vectoriel euclidiens 97 22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie vectorielle d'un espace euclidien de dimension 3			21.5.1	Caractérisation des isomorphismes	95
22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie orthogonale 106 24.3.1 Symétrie orthogonale 106			21.5.2	Espace isomorphe	95
22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie orthogonale 106 24.3.1 Symétrie orthogonale 106					
22 Espaces vectoriels euclidiens 99 22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3.1 Symétrie orthogonale 106 24.3.1 Symétrie orthogonale 106					
22.1 Produit scalaire 99 22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	X	Es	pace v	ectoriel euclidien	97
22.1.1 Notation et Vocabulaire 99 22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106			•		
22.2 Propriétés 99 22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa	aces vec	ctoriels euclidiens	99
22.3 Base orthonormée 100 22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa	aces vec Produi	ctoriels euclidiens it scalaire	99 99
22.3.1 Matrice orthogonales 100 22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1	aces ved Produi 22.1.1	ctoriels euclidiens it scalaire	99 99 99
22.3.2 Orientation de l'espace vectoriel 101 22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1 22.2	aces vec Produi 22.1.1 Propri	ctoriels euclidiens it scalaire	99 99 99
22.3.3 Orthogonalité et sous-espace 101 22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1 22.2	Produi 22.1.1 Propri Base o	ctoriels euclidiens it scalaire	99 99 99 99 100
22.3.4 Projection orthogonale 102 23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2.1 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1 22.2	Produit 22.1.1 Proprid Base of 22.3.1	Ctoriels euclidiens it scalaire	99 99 99 99 100 100
23 Espace euclidien de dimension 3 103 23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1 22.2	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2	ctoriels euclidiens it scalaire	99 99 99 100 100 101
23.1 Définitions 103 23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1 22.2	Produit 22.1.1 Proprid Base 0. 22.3.1 22.3.2 22.3.3	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace	99 99 99 100 100 101
23.2 Angle de deux vecteurs non nuls 103 23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106		Espa 22.1 22.2	Produit 22.1.1 Proprid Base 0. 22.3.1 22.3.2 22.3.3	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace	99 99 99 100 100 101
23.2.1 Produit vectoriel 103 23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	22	Espa 22.1 22.2 22.3	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.3 22.3.4	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale	99 99 99 100 100 101 101 102
23.2.2 Double produit vectoriel 103 23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	22	Espa 22.1 22.2 22.3 Espa	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.3 22.3.4	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3	99 99 99 100 100 101 101 102 103
23.2.3 Produit mixte 104 24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	22	Espa 22.1 22.2 22.3 Espa 23.1	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.4 Proce eucl	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions	99 99 99 100 100 101 101 102 103
24 Isométrie Vectorielle 105 24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	22	Espa 22.1 22.2 22.3 Espa 23.1	Produit 22.1.1 Proprie Base of 22.3.1 22.3.2 22.3.4 Acce eucl Définit Angle 23.2.1	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel	99 99 99 100 101 101 102 103 103 103
24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	22	Espa 22.1 22.2 22.3 Espa 23.1	Produit 22.1.1 Proprie Base of 22.3.1 22.3.2 22.3.4 Acce eucl Définit Angle 23.2.1	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel	99 99 99 100 101 101 102 103 103 103
24.1 Généralités 105 24.2 Isométrie vectorielle plane 105 24.2.1 Classification 105 24.2.2 Cas particulier des rotations 105 24.2.3 Rotation orthogonales 106 24.3 Isométrie vectorielle d'un espace euclidien de dimension 3 106 24.3.1 Symétrie orthogonale 106	22	Espa 22.1 22.2 22.3 Espa 23.1	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.4 Proce eucl Définit Angle 23.2.1 23.2.2	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel	999 999 999 1000 1011 1012 103 103 103 103 103
24.2 Isométrie vectorielle plane10524.2.1 Classification10524.2.2 Cas particulier des rotations10524.2.3 Rotation orthogonales10624.3 Isométrie vectorielle d'un espace euclidien de dimension 310624.3.1 Symétrie orthogonale106	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.4 Proce eucl Définit Angle 23.2.1 23.2.2 23.2.3	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte	99 99 99 99 100 101 101 102 103 103 103 103 104
24.2.1 Classification10524.2.2 Cas particulier des rotations10524.2.3 Rotation orthogonales10624.3 Isométrie vectorielle d'un espace euclidien de dimension 310624.3.1 Symétrie orthogonale106	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.4 Acce eucl Définit Angle 23.2.1 23.2.2 23.2.3	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte	99 99 99 99 100 101 101 102 103 103 103 103 104 105
24.2.2 Cas particulier des rotations10524.2.3 Rotation orthogonales10624.3 Isométrie vectorielle d'un espace euclidien de dimension 310624.3.1 Symétrie orthogonale106	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.4 Produit 23.2.1 23.2.2 23.2.3 Prefer V Généra	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte	99 99 99 99 100 101 101 102 103 103 103 103 104 105
24.2.3 Rotation orthogonales	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2	Produi 22.1.1 Propridase of 22.3.1 22.3.2 22.3.3 22.3.4 Définit Angle 23.2.1 23.2.2 23.2.3 Métrie V Généra Isomét	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte Vectorielle alités trie vectorielle plane	99 99 99 99 100 101 101 102 103 103 103 104 105 105
24.3 Isométrie vectorielle d'un espace euclidien de dimension 3	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2	Produi 22.1.1 Proprie Base of 22.3.1 22.3.2 22.3.3 22.3.4 Ace eucl Définit Angle 23.2.1 23.2.2 23.2.3 Métrie V Généra Isomét 24.2.1	Ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale Itidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte Vectorielle alités trie vectorielle plane Classification	99 99 99 99 99 100 101 101 102 103 103 103 104 105 105 105
24.3.1 Symétrie orthogonale	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2	Produit 22.1.1 Proprie Base of 22.3.1 22.3.2 22.3.4 Définite Angle 23.2.1 23.2.2 23.2.3 Détrie V Généra Isomét 24.2.1 24.2.2	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte Vectorielle alités trie vectorielle plane Classification Cas particulier des rotations	99 99 99 99 100 101 101 102 103 103 103 103 104 105 105 105 105
	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2 Ison 24.1 24.2	Produit 22.1.1 Proprie Base of 22.3.1 22.3.2 22.3.4 Définite Angle 23.2.1 23.2.2 23.2.3 Détrie V Généra Isomét 24.2.1 24.2.2 24.2.3	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte //ectorielle alités trie vectorielle plane Classification Cas particulier des rotations Rotation orthogonales	99 99 99 99 100 101 101 102 103 103 103 103 104 105 105 105 105 106
	22	Espa 22.1 22.2 22.3 Espa 23.1 23.2 Ison 24.1 24.2	Produit 22.1.1 Proprid Base of 22.3.1 22.3.2 22.3.4 Produit 23.2.1 23.2.2 23.2.3 Prefer V Généra Isomét 24.2.1 24.2.2 24.2.3 Isomét	ctoriels euclidiens it scalaire Notation et Vocabulaire étés rthonormée Matrice orthogonales Orientation de l'espace vectoriel Orthogonalité et sous-espace Projection orthogonale lidien de dimension 3 tions de deux vecteurs non nuls Produit vectoriel Double produit vectoriel Produit mixte /ectorielle alités trie vectorielle plane Classification Cas particulier des rotations Rotation orthogonales trie vectorielle d'un espace euclidien de dimension 3	999 999 100 1001 101 102 103 103 103 103 104 105 105 105 106 106

		4.3.3 Rotation	
		1.3.4 Calcul de l'image d'un vecteur de x par une rotation	
		1.3.5 Classification	
		1.3.6 Élements caractéristiques d'une rotation	
		4.3.7 Autres résultats	7
ΧI	Es	ace Affine 10	9
25	Espa	Affine 11	1
	25.1	éfinitions	
	25.2	pplications affines	
		5.2.1 Homothétie affine	2
		5.2.2 Conservation du barycentre	2
		5.2.3 Expression analytique dans un repère	2
		ométries affines	2
		5.3.1 Généralités	
		5.3.2 Déplacement du plan	
		5.3.3 Déplacement de l'espace affine de dimension 3	2
26	Equa	ons linéaires 11	5
	26.1	space affine	5
	26.2	quations linéaires	_
		5.2.1 Structure de l'ensemble des solutions	_
		ystème linéaire	-
		5.3.1 Système de Cramer	6
ΧI	T N	atrice 11	7
ΛI	.1 1	inice 11	,
25			
41		e et espaces vectoriel de dimension finies	-
<i>21</i>	27.1	[atrice]	9
21	27.1	[atrice] 11 7.1.1 Définition 11	9 9
4 1	27.1	Iatrice	9 9 9
<i>Δ1</i>	27.1	Iatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11	9 9 9 9
<i>Δ1</i>	27.1	Iatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11	9 9 9 9 9
<i>21</i>	27.1	Iatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11	9 9 9 9 9
<i>∠1</i>	27.1	Iatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12	9 9 9 9 9 9
<i>∠1</i>	27.1	Ilatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12	9 9 9 9 9 9 0
21	27.1	Ilatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12	9 9 9 9 9 9 9 0 0
21	27.1	Itatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12	9 9 9 9 9 9 9 0 0 0
21	27.1	Itatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12	9 9 9 9 9 9 9 0 0 0 0
21	27.1	Itatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12	9 9 9 9 9 9 0 0 0 0 1
21	27.1	Iatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12	9 9 9 9 9 9 0 0 0 0 1 1 1
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12	9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 latrice et espaces vectoriel de dimension finies 12	9 9 9 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 Iatrice et espaces vectoriel de dimension finies 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12	9 9 9 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 Iatrice et espaces vectoriel de dimension finies 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12	9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 Iatrice et espaces vectoriel de dimension finies 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12	9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 3
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12 7.2.4 Coordonnée d'un vecteur dans deux bases 12	9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 3 3 3
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12 7.2.4 Coordonnée d'un vecteur dans deux bases 12 7.2.5 Matrice d'une application linéaire 12	9 9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 12.1.14 Opération élémentaire 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12 7.2.4 Coordonnée d'un vecteur dans deux bases 12 7.2.5 Matrice d'une application linéaire 12 7.2.6 Coordonnée de l'image d'un vecteur 12	9 9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3
21	27.1	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 12.1.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12 7.2.4 Coordonnée d'un vecteur dans deux bases 12 7.2.5 Matrice d'une application linéaire 12 7.2.6 Coordonnée de l'image d'un vecteur 12 7.2.7 Unicité de la matrice, pour les bases fixes 12	9 9 9 9 9 9 9 9 9 0 0 0 0 1 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
21	27.2	Matrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 1atrice et espaces vectoriel de dimension finies 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12 7.2.4 Coordonnée d'un vecteur dans deux bases 12 7.2.5 Matrice d'une application linéaire 12 7.2.6 Coordonnée de l'image d'un vecteur 12 7.2.7 Unicité de la matrice, pour les bases fixes 12 7.2.8 Matrice et opérations	9 9 9 9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3
21	27.2	flatrice 11 7.1.1 Définition 11 7.1.2 Matrice carrée 11 7.1.3 Vecteur ligne 11 7.1.4 Vecteur colonne 11 7.1.5 Matrice carrée particulière 11 7.1.6 Matrice carrée symétrique et antisymétrique 12 7.1.7 Transposition et trace 12 7.1.8 Espace vectoriel des matrices 12 7.1.9 Transposition 12 7.1.10 Produit de matrice 12 7.1.11 Transposition et trace du produit 12 7.1.12 Matrice Carrée inversible 12 7.1.13 Rang d'une matrice 12 7.1.14 Opération élémentaire 12 12.1.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.1 Matrice de coordonnée d'un vecteur dans une base 12 7.2.2 Matrice d'une famille de vecteurs 12 7.2.3 Matrice de passage entre deux bases 12 7.2.4 Coordonnée d'un vecteur dans deux bases 12 7.2.5 Matrice d'une application linéaire 12 7.2.6 Coordonnée de l'image d'un vecteur 12 7.2.7 Unicité de la matrice, pour les bases fixes 12	9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

		27.2.11 Changement de bases	24
		27.2.12 Trace d'un endomorphisme	24
			.25
			.25
28	Déte	erminants 1	27
	28.1	Forme n-linéaire	.27
		28.1.1 Forme n-linéaire alterné	.27
	28.2	Déterminant dans une base B	.28
		28.2.1 Déterminant dans deux bases différentes	.28
	28.3	Déterminant d'un endomorphisme	29
			29
		28.4.1 Lien entre vecteurs lignes et vecteurs colonnes	29
			29
			.30
			.30
	28.5		.30
			.30
			.30
		28.5.3 Formule de Sarrus, pour n=3	.31
ΧI	II .	Annexe 1	33
Α	Trig	onométrie 1	35
			.35
			.35
			.35
			.35
			.36
	A.2		.36
			.36
			.36