

Facultad de Ingeniería y Ciencias Agropecuarias Carrera de Ingeniería Ambiental LAB500/ Laboratorio de Análisis, Monitoreo y Medición Ambiental Período 2016-1

1. Identificación

Número de sesiones: 64

Número total de horas de aprendizaje: 160 h = 64 h presenciales + 96 h de trabajo

autónomo.

Créditos - malla actual: 4

Profesor: Ing. Camilo Haro Barroso, M.Eng.

Ing. Javier Alava Castelo.

Correo electrónico del docente (Udlanet): camilo.haro@udlanet.ec

jm.alava@udlanet.ec

Coordinador: Ing. Paola Posligua MSc.

Campus: Queri

Pre-requisito: IAI330/ Microbiología General.

Co-requisito: Paralelo: 1, 2, 3 Tipo de asignatura:

Optativa	
Obligatoria	X
Práctica	

Organización curricular:

Unidad 1: Formación Básica	
Unidad 2: Formación Profesional	X
Unidad 3: Titulación	

Campo de formación:

Campo de formación							
Fundamentos Praxis Epistemología y Integración de Comunicación teóricos profesional metodología de la saberes, contextos lenguajes investigación y cultura							
	x						

2. Descripción del curso

Se estudia los problemas ambientales a partir del análisis químico clásico e instrumental, aplicando los conocimientos de química analítica en el campo ambiental, esto permite que el estudiante desarrolle sus habilidades prácticas y de razonamiento para poder interpretar, discutir y analizar los resultados obtenidos, para cotejarlos con la normativa vigente. El curso comprende: el análisis de contaminantes en matrices ambientales, evaluación de las características físico-químicas de matrices ambientales contaminadas y plan de monitoreo ambiental.

3. Objetivo del curso

Identificar experimentalmente los contaminantes más comunes que se encuentran en matrices ambientales, mediante la realización de muestreos y posterior análisis mediante técnicas de química clásica e instrumental.

4. Resultados de aprendizaje deseados al finalizar el curso

Resultados de aprendizaje (RdA)	RdA perfil de egreso de carrera	Nivel de desarrollo (carrera)
 Analizar procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento de las matrices ambientales. Aplicar técnicas de ingeniería para el análisis, interpretación y solución de problemas ambientales. Aplicar la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental - estadístico, resultados, rechazo de hipótesis. 	 Diseña (proactivamente), optimiza e innova tecnologías y procesos de prevención y remediación, enfocado en el control ambiental mediante la investigación e implementación de principios de producción más limpia, eficiencia de los recursos energéticos, estudios de ordenamiento territorial, evaluaciones de impacto ambiental y auditorías ambientales basados en el cumplimiento de la normativa ambiental vigente generando soluciones técnicamente factibles y económicamente viables en el diseño de tratamiento de residuos y efluentes. Aplica metodologías de investigación en la búsqueda, fundamentación y elaboración de soluciones que garanticen la conservación, sustentabilidad, sostenibilidad y gestión integral de los recursos. 	Medio (x)

5. Sistema de evaluación

De acuerdo al Modelo Educativo de la UDLA la evaluación busca evidenciar el logro de los resultados de aprendizaje (RdA) enunciados en cada carrera y asignatura, a través de mecanismos de evaluación (MdE). Por lo tanto la evaluación debe ser continua, formativa y sumativa. La UDLA estipula la siguiente distribución porcentual para los reportes de evaluaciones previstas en cada semestre de acuerdo al calendario académico:

Rep	35%	
-	Ensayos y Ejercicios	6%
-	Informes de Laboratorio	8%
-	Pruebas Progreso	6%
-	Examenes Progreso	15%

Rep	oorte de progreso 2	35%
-	Ensayos y Ejercicios	6%
-	Informes de Laboratorio	8%
-	Pruebas Progreso	6%
-	Examenes Progreso	15%
Ev	aluación final	30%
-	Exposición Final	10%
-	Examenes Progreso	20%

Al finalizar el curso habrá un examen de recuperación para los estudiantes que, habiendo cumplido con más del 80% de asistencia presencial a clases, deseen reemplazar la nota de un examen anterior (ningún otro tipo de evaluación). Este examen debe integrar todos los conocimientos estudiados durante el periodo académico, por lo que será de alta exigencia y el estudiante necesitará prepararse con rigurosidad. La nota de este examen reemplazará a la del examen que sustituye. Recordar que para rendir el EXAMEN DE RECUPERACIÓN, es requisito que el estudiante haya asistido por lo menos al 80% del total de las sesiones programadas de la materia. No se podrá sustituir la nota de un examen previo en el que el estudiante haya sido sancionado por una falta grave, como copia o deshonestidad académica.

6. Metodología del curso y de mecanismos de evaluación.

Las metodologías y mecanismos de evaluación se explican a continuación:

6.1. Escenario de aprendizaje presencial.

Durante las horas de clase presenciales se efectuarán presentaciones magistrales en base a la planificación y al programa a seguir, empezando por un proceso de retroalimentación y el planteamiento de los objetivos respectivos. El desarrollo de contenidos se realizarán mediante foros abiertos, exposiciones y ponencias, además de ejercicios aplicativos relacionados con el tema tratado. En cada capítulo se desarrollarán actividades grupales donde se planteen problemas y casos prácticos, además de prácticas de laboratorio y salidas de campo. La evaluación de cada actividad se efectuará sea por ensayos, entrega de informes y pruebas objetivas.

6.2. Escenario de aprendizaje virtual.

Se reforzarán ciertos aspectos teóricos adquiridos durante las actividades presenciales mediante la realización de foros y discusiones, trabajos grupales, exposiciones y presentaciones. Todas estas actividades se podrán realizar mediante la utilización de herramientas como internet, aula virtual y video-foro.

6.3. Escenario de aprendizaje autónomo.

Se fortalecerán las capacidades de análisis, investigación y crítica por medio del planteamiento de posibles soluciones a problemas relacionados con la materia. La capacidad de discusión e disernimiento serán potencializadas mediante lecturas de artículos científicos y material bibliográfico; generación y discusión de resultados derivados de las actividades de campo y de prácticas de laboratorio, y de la elaboración de trabajos, proyectos y presentaciones realizadas sea de forma individual o grupal.

7. Temas y subtemas del curso

RdA	Temas	Subtemas
2. Aplicar técnicas de ingeniería para el análisis, interpretación y solución de problemas ambientales.	1. Análisis de contaminantes en matrices ambientales	1.1. Buenas Prácticas de Laboratorio y Bioseguridad Normativas ecuatorianas e internacionales sobre contaminantes en el ambiente 1.2. Curvas de calibración de compuestos químicos de interés ambiental 1.4. Determinación de pH, conductividad eléctrica, potencial de oxo-reducción, salinidad y turbiedad. 1.5. Análisis fotométrico de compuestos orgánicos (nitritos, nitratos, amonio, fosfatos, sulfatos). 1.6. Análisis fotométrico de metales pesados (cadmio, aluminio, cobre, plomo, mercurio). 1.7. Demanda Química de Oxígeno DQO. 1.8. Demanda Bioquímica de oxígeno DBO. 1.9. Análisis Gravimétrico. 1.10. Técnicas Instrumentales avanzadas.
2. Analizar procesos naturales y antropogénicos: transporte, monitoreo, control y tratamiento de las matrices ambientales.	2. Evaluación de las características físico-químicas de matrices ambientales contaminadas	 2.1. Principales efectos de los contaminantes en las matrices ambientales 2.2. Termodinámica del movimiento y acumulación de contaminantes en el ambiente. 2.3. Coloides.
6. Aplicar la cadena de investigación científica: problemática, motivo, objetivo, hipótesis, diseño experimental - estadístico, resultados, rechazo de hipótesis.	3. Plan de monitoreo ambiental	3.1. Tipos de muestreo: toma y conservación de muestras.3.2. Ubicación del muestreo.3.3. Cadena de custodio.3.4. Diseño de planes de monitoreo ambiental.

8. Planificación secuencial del curso

	Semana 1-7						
RdA	Tema	Sub te	ma	Actividad/ estrategia de clase	Tarea/ trabajo autónomo	MdE/Producto/ fecha de entrega	
	1. Análisis de						
#2	contaminantes	1.1.	Buenas	(1) Generalidades	(1) Exposición	Ensayo.	
	en matrices	Prácticas	de	y discusión de la	Normativa	Espectrofotometría	
	ambientales	Laboratorio	V	normativa	ambiental	y espectroscopia.	

	T_: -	T	Г	T
	Bioseguridad	ambiental vigente.	Ecuatoriana.	Tipología.
	Normativas	Clase Magistral	TULAS y RAOH.	(Rúbrica para
	ecuatorianas e	4.5 = 5.5		ensayos)
	internacionales	(1) Elaboración de	(1)Ejercicios	
	sobre	curvas de	Aplicativos.	Entrega de
	contaminantes en el	calibración. Clase		ejercicios. (Rubrica
	ambiente	Magistral y mesa	(1) Resolución	para ensayos.
	1.2. Curvas de	de discusión.	de ejercicios.	Tareas escritas)
	calibración de			
	compuestos	(1) Taller de	(1) Lecturas	Informe de
	químicos de interés	ejercicios.	Métodos	Laboratorio y salida
	ambiental		fotométricos,	de campo
	1.4. Determinación	(1) Clase	espectrométricos	(Rúbrica para
	de pH,	Magistral.		Informes.)
	conductividad		(1) Exposición:	8 días después de la
	eléctrica, potencial	(1) Toma de	Métodos	práctica.
	de oxo-reducción,	muestra y	fotométricos y	_
	salinidad y	caracterización de	principales	
	turbiedad.	parámetros	reacciones a	Presentación
		instrumentales.	manifestarse con	exposiciones.
	1.5. Análisis	Salida de campo.	elementos	(Rúbrica para
	Gravimétrico.	•	metálicos y no	Exposiciones.)
		(1) y (2)	metálicos	
	1.6. Análisis	Presentación		
	fotométrico de	exposiciones.	(1) Exposición.	Entrega de
	compuestos	F	DBO y DQO.	ejercicios. (Rubrica
	orgánicos (nitritos,	(1) Clase	- y = v -·	para ensayos.
	nitratos, amonio,	Magistral.	(1) Ejercicios	Tareas escritas)
	fosfatos, sulfatos).	. 0	Aplicativos.	
		(1) Métodos		Informe de
	1.7. Análisis	colorimétricos.		Laboratorio
	fotométrico de	Trabajo en Equipo.		(Rúbrica para
	metales pesados			Informes.)
	(cadmio, aluminio,	(1) Taller de		8 días después de la
	cobre, plomo,	ejercicios.		práctica.
	mercurio).	,		*
		(1) Determinación		
	1.8. Demanda			
	Química de Oxígeno	sólidos totales,		
	DQO.	sólidos volátiles y		
		fijos.		
	1.9. Demanda	Laboratorio.		
	Bioquímica de			
	oxígeno DBO.	(1) Determinación		
	3	DBO, DQO.		
	1.10. Técnicas			
	Instrumentales	(1) Determinación		
	avanzadas.	de elementos		
		metálicos y no		
		metálicos.		
		Laboratorio.		
		Prueba Progreso		
		3		
2. Evalu				
#2 de	las 2.1. Principales	(1) Clase Magistral.	(1) Exposición.	Presentación
caracterís	ticas efectos de los		Contaminación	exposiciones.
físico-	contaminantes en	(1) y (2)	por agentes	(Rúbrica para
químicas	de las matrices	Presentación	químicos,	Exposiciones.)

	matrices ambientales contaminadas	ambientales 2.2. Termodinámica del movimiento y acumulación de contaminantes en el ambiente. 2.3. Coloides.	exposiciones. Trabajo en grupo (1) Clase Magistral (1) Remoción del color y turbiedad. Laboratorio.	agentes físicos y biológicos en las matrices ambientales. Lecturas: Mecanismos de transporte y acumulación de contaminantes.	Ensayo. Mecanismos de trasporte de contaminantes. (Rúbrica para ensayos) Informe de Laboratorio (Rúbrica para Informes.) 8 días después de la práctica.
#6	3. Plan de monitoreo ambiental	3.1. Tipos de muestreo: toma y conservación de muestras. 3.2. Ubicación del muestreo. 3.3. Cadena de custodio. 3.4. Diseño de planes de monitoreo ambiental.	 (1) Clase Magistral (1) Salida de Campo. Toma de muestras, cadena de custodia y check list . (1) Diseño de planes de monitoreo. Trabajo en equipo. (1) Talleres de discusión de resultados experimentales Prueba Progreso 	Lecturas: Tipos de muestreo y conservación de muestras. Lectura: Estructura de los planes de monitoreo ambiental.	Informe de Campo (Rúbrica para Informes.) 8 días después de la práctica. Ensayo. Elaboración de Planes de monitoreo.

9. Normas y procedimientos para el aula

- La clase inicia a la hora indica, se permite el ingreso de los estudiantes hasta con 5 minutos de retraso, tiempo durante el cual se tomará asistencia. Cerrada la puerta no se permitirá el ingreso.
- Se permitirá unicamente el uso de dispositivo electrónico solo por motivos didácticos, durante la hora de clase. Durante pruebas y exámenes queda prohibido el uso de dispositivos electrónicos.
- Los trabajos, deberes y pruebas deben ser entregados en las fechas indicadas, en caso de retraso se calificará por la mitad del puntaje del mismo, siempre que sea entregado el día siguiente y con la justificación respectiva.
- Si el estudiante no asiste a la práctica de laboratorio o a la salida de campo no podrá presentar el informe.
- En las prácticas de laboratorio y en las salidas de campo el estudiante debe utilizar el uniforme adecuado y cumplir con las normas de seguridad establecidas por el docente.

10. Referencias bibliográficas

10.1. Principales.

Romero J. (2005). Potabilización. Colombia: Escuela Colombiana de Ingeniería. Romero J. (2009). Calidad del Agua. Colombia: Escuela Colombiana de Ingeniería.

10.2. Referencias complementarias.

Chang, R. (2010). Química. México McGraw-Hill. Sterner, O. (2010). Chemistry, health, and environment. Weinheim Wiley Sons.

11. Perfil del docente

Ing. Camilo Pavel Haro Barroso. Ingeniero en Biotecnología Ambiental. Máster en Ingeniería para el Ambiente y el Territorio. Experiencia en el campo docente, en Seguridad Industrial y Ambiente. Amplias habilidades y destrezas adquiridas en el manejo de equipos de laboratorios de Calidad Ambiental e Ingeniería sanitaria. Líneas de investigación enfocadas a la Ingeniería Sanitaria Ambiental, Biotecnología Ambiental y Tratamiento de efluentes.

Contacto: camilo.haro@udlanet.ec

Tutorías

Lunes: 10:15-11:15 Miércoles: 9:10-10:10

Atención al estudiante

Lunes: 11:20- 12:20 Martes: 11:20-12:20