$$\mathbf{3}$$
 $f(x)=x^m$ (m は正の整数)とする.正の数 a と $0< r< 1$ である r に対して $S_k=f(ar^{k-1})(ar^{k-1}-ar^k)$ ($k=1,\,2,\,\cdots\cdots,\,n$)

とおく.次の空欄を式で埋めよ.

$$\sum_{k=1}^{n} S_k = \sum_{k=1}^{n} r^{(k-1)(m+1)} \quad \dots \quad \mathbb{D}$$

級数 $\sum_{k=1}^n r^{(k-1)(m+1)}$ の和を求めると

$$\sum_{k=1}^{n} r^{(k-1)(m+1)} = \cdots 2$$

①に②を代入して無限級数 $\sum_{k=1}^\infty S_k$ の和を求めると $\sum_{k=1}^\infty S_k = a^{m+1}$. この $\sum_{k=1}^\infty S_k$ は r の関数であるが, $r \to 1$ とすれば $\sum_{k=1}^\infty S_k \to -1$.