

SRM Institute of Science and Technology

Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB102T ADVANCED CALCULUS & COMPLEX ANALYSIS

SRINIVASA RAMANUJAN THE MAN WHO KNEW INFINITY

UNIT -V Complex Integration and Cauchy's Theorem

Tutorial Sheet -1	
Questions	Answe

Sl.No.		Questions	Answer
Part – A			
1	Evaluate $\int_C \frac{dz}{z}$	$\frac{z}{a}$, where C is the circle $ z-a =r$.	$2\pi i$
2	Evaluate $\int_C (z + z)^{-1}$	$[-a]^n dz [n, any integer \neq -1], \text{ where } C \text{ is the circle } z-a = r.$	0
3	Evaluate $\int_{0}^{1+i} (x^{i})^{1+i}$	$(z^2 + iy)dz$, along the paths $y = x$ and $y = x^2$.	$\frac{1}{6}(5i-1)$
4	State Cauchy'	s Theorem and Cauchy's integral formula.	
5	Evaluate $\int_C \frac{1}{z}$	$\frac{e^{2z}}{-1(z-2)}dz$, where C is the circle $ z = 3$.	$2\pi i \left(e^4-e^2\right)$
Part – B			
6	Evaluate $\int_C \frac{1}{z}$	$\frac{\cos \pi z^2}{-1(z-2)} dz$, where C is the circle $ z = 3$.	$4\pi i$
7	Evaluate $\int_{C} \frac{\epsilon}{z}$	$\frac{e^{2z}}{(z^2+1)^4}dz$, where C is the circle $ z =2$.	$\frac{8\pi i}{3}e^{-2}$
8	Evaluate $\int_{C} \frac{\cos z}{z^2}$	$\frac{8\pi z}{-1}dz$, where C is the rectangle with vetices $2\pm i$, $-2\pm i$.	0
9	Evaluate $\int_{C} \frac{z}{(z-z)^{2}}$	$\frac{e^{2z}}{-1)^3}dz$, where C is the circle $ z+i =2$.	$8\pi ie^2$
10	Evaluate $\int_{C} \frac{z^3}{()^2}$	$\frac{-2z+1}{(z-i)^2}dz$, where C is the circle $ z =2$.	$-10\pi i$

Coordinators: Dr.Sundarammal Kesavan, Dr.V.Srinivasan, Dr.N.Parvathi and Dr.N.Balaji