

ESCUELA POLITÉCNICA NACIONAL

Facultad: Ingeniería de Sistemas

Carrera: Computación

Asignatura: ICCR163 - Fundamentos de ciencias de la computación

Profesor: PhD. Josafá Pontes

Fecha: 07 de septiembre de 2020

Estudiante: Ricardo Xavier Paredes

Firma:

(Vale 30% de la nota del segundo bimestre)

Durante el examen, queda prohibido todo tipo de copia. Cualquier detección de copia será severamente sancionada con **nota igual a cero** en el examen. Contestar las preguntas en el propio Word. Al final, enviar el archivo.doc y el idéntico.pdf firmado junto con todos archivos del JFLAP.

1) Encuentre i) el dfa, ii) la gramática lineal-derecha (CFG Stanford), y iii) la expresión regular formal y práctica (regex101.com) a partir del autómata simplificado para los siguientes lenguajes sobre el alfabeto $\Sigma = \{a,b\}$.

a) (7.5%) L = $\{w \in \{a,b\}^* \mid w = a^n b^m : n + m \text{ es impar}\}.$

i) DFA:

ii) Gramática Lineal a la Derecha.

Start symbol: **\$**

 $S \rightarrow bB \mid aaA \mid aC$

 $B \rightarrow bbB \mid \epsilon$

 $\mathbf{A} \rightarrow aa\mathbf{A} \mid b\mathbf{B}$

 $\boldsymbol{C} \to b\boldsymbol{D} + \epsilon$

 $D \rightarrow bC$

iii) Expresión Regular y Práctico

Expresión Regular: r = (b+(aa(aa)*b(bb)*)+(a(aa)*(bb)*))

Expresión Práctica (Regex101): \land (b | (aa(aa)*b(bb)*) | (a(aa)*(bb)*))\$

iv) (Bono 2.5%) La gramática lineal-izquierda (CFG Stanford).

b) (7.5%) L = {w \in {a,b}* | w = n_a(w) mod 3 > n_b(w) mod 3}.

i) DFA:

Modificado para más cadenas:

ii) Gramática Lineal a la Derecha:

Primera Gramática:

Start symbol: **S**

 $S \rightarrow GA \mid bE \mid GS \mid GP \mid GT$

 $A \rightarrow aaaA \mid bbbA \mid aB \mid bD$

 $E \rightarrow aaaE \mid bbbE \mid aF$

 $\mathbf{B} \rightarrow \mathbf{aaaB} \mid \mathbf{bbbB} \mid \mathbf{bC}$

 $\mathbf{D} \rightarrow \mathbf{aaaD} \mid \mathbf{bbbD} \mid \mathbf{aC}$

 $\textbf{C} \rightarrow \text{aaa}\textbf{C} \mid \text{bbb}\textbf{C} \mid \epsilon$

 $F \rightarrow aaaF \mid bbbF \mid aG$

 $\textbf{G} \rightarrow \text{aaa}\textbf{G} \text{ | } \text{bbb}\textbf{G} \text{ | } \epsilon$

 $\mathbf{P} \rightarrow \mathbf{a}\mathbf{G}$

 $T \rightarrow aGR$

 $\mathbf{R} \to \mathbf{a}\mathbf{G}$

Segunda Gramática:

Start symbol: **S**

 $S \rightarrow aaaS \mid bE \mid bbbS \mid aA$

```
\mathbf{E} 
ightarrow \mathbf{aF} \mid \mathbf{aaaE} \mid \mathbf{bbbE}
\mathbf{A} 
ightarrow \epsilon \mid \mathbf{aC} \mid \mathbf{aaaA} \mid \mathbf{bB} \mid \mathbf{bbbA}
\mathbf{D} 
ightarrow \epsilon \mid \mathbf{aaaC} \mid \mathbf{bbbD}
\mathbf{C} 
ightarrow \epsilon \mid \mathbf{aaaC} \mid \mathbf{bD} \mid \mathbf{bbbC}
\mathbf{G} 
ightarrow \epsilon \mid \mathbf{aaaG} \mid \mathbf{bbbG}
\mathbf{H} 
ightarrow \mathbf{bI} \mid \mathbf{aaaH} \mid \mathbf{aJ} \mid \mathbf{bbbH}
\mathbf{I} 
ightarrow \mathbf{aaI} \mid \mathbf{aG} \mid \mathbf{bbbI}
\mathbf{F} 
ightarrow \mathbf{bH} \mid \mathbf{aaaF} \mid \mathbf{aG} \mid \mathbf{bbbF}
\mathbf{J} 
ightarrow \mathbf{bG} \mid \mathbf{aaaJ} \mid \mathbf{bbbJ}
\mathbf{B} 
ightarrow \mathbf{aD} \mid \mathbf{aaaB} \mid \mathbf{bbbB}
```

iii) Expresión Regular y Práctico:

Expresión Regular:

r = (aaa+bbb)*(a(aaa+bbb)* + a(aaa+bbb)* a(aaa+bbb)* + (aaa+bbb)*(aaa+bbb)* (b(aaa+bbb)* a(aaa+bbb)* a(aaaa+bbb)* a(aaaa+bbbb)* a(aaaa+bbb

Expresión Práctica:

^(aaa|bbb)*((a(aaa|bbb)*)|(a(aaa|bbb)*(a(aaa|bbb)*)|(a(aaa|bbb)*((a(aaa|bbb)*)))|(b(aaa|bbb)*a(aaa|bbb)*)))|(b(aaa|bbb)*a(aaa|bbb)*

iv) (Bono 2.5%) La gramática lineal-izquierda (CFG Stanford).

2) Considere los **números binarios** sin formato w generados sobre el alfabeto Σ = {0,1}. Encuentre i) el dfa, ii) la gramática lineal-derecha (CFG Stanford), iii) la expresión regular formal y práctica (regex101.com) a partir del autómata simplificado para los siguientes lenguajes. Pista 1: Agregar un cero al final de w significa multiplicarlo por 2. Agregar un uno al final de w significa multiplicarlo por 2 y sumarle 1. Pista 2: Tras agregar un dígito al final de w y realizar la respectiva operación indicada en la Pista 1, se saca el valor del módulo para determinar la transición al siguiente estado con este dígito.

a) (7.5%) L = {w \in {0,1}+ | w mod 5 = 0} con 6 estados: qo, 0, 1, 10, 11 y 100. i)DFA:

5					1	0	1
10				1	0	1	0
15				1	1	1	1
20			1	0	1	0	0
25			1	1	0	0	1
30			1	1	1	1	0
35		1	0	0	0	1	1
40		1	0	1	0	0	0
45		1	0	1	1	0	1
50		1	1	0	0	1	0
55		1	1	0	1	1	1
60		1	1	1	1	0	0
65	1	0	0	0	0	0	1
70	1	0	0	0	1	1	0
75	1	0	0	1	0	1	1
80	1	0	1	0	0	0	0

ii)Gramática lineal a la Derecha:

Start symbol: **\$**

S → 0**A** | 1**B**

 $\mathbf{A} \rightarrow \mathbf{\epsilon} \mid 1\mathbf{B} \mid 0\mathbf{A}$

B → 1**D** | 0**C**

 $\mathbf{E} \rightarrow 0\mathbf{D} \mid 1\mathbf{E}$

 $D \rightarrow 1C \mid 0B$

$\mathbf{C} \rightarrow 1\mathbf{A} \mid 0\mathbf{E}$

iii) Expresión Formal Regular y Práctica Expresión Formal Regular:

r =

(0+101+11(01)*(1+00)1+(100+11(01)*(1+00)0)(1+0(01)*(1+00)0)*0(01)*(1+00)1)(0+101+11(01)*(1+00)1+(100+11(01)*(1+00)0)(1+0(01)*(1+00)0)*0(01)*(1+00)1)*

Práctico (Regex101):

^(0 | 101 | 11(01)*(1 | 00)1 | (100 | 11(01)*(1 | 00)0)(1 | 0(01)*(1 | 00)0)*0(01)*(1 | 00)1) (0 | 101 | 11(01)*(1 | 00)1 | (100 | 11(01)*(1 | 00)0)(1 | 0(01)*(1 | 00)0)*0(01)*(1 | 00)1)*\$

iv) (Bono 2.5%) La gramática lineal-izquierda (CFG Stanford).

b) (7.5%) L = $\{w \in \{0,1\} + \mid w \mod 7 = 0\}$ con 8 estados: qo, 0, 1, 10, 11, 100, 101 y 110.

i)DFA:

ii) Gramática lineal a la Derecha

Start symbol: \$

 $S \rightarrow 1B \mid 0A$

 $\mathbf{B} \rightarrow 1\mathbf{C} \mid 0\mathbf{D}$

 $A \rightarrow 1B \mid \epsilon \mid 0A$

F → 0**E**

E → 0**C**

 $D \rightarrow 1C \mid 1E \mid 0B$

 $C \rightarrow 0F \mid 1A$

iii) Expresión Regular y Práctica

Expresión Regular: r =

(0+111+10(00)*(1+01)1+10(00)*101+(110+10(00)*(1+01)0+10(00)*100)(000)*001)(0+111+10(00)*(1+01)1+10(00)*(1+01)1+(110+10(00)*(1+01)0+10(00)*100)(000)*001)*

Práctica (Regex101):

iv) (Bono 2.5%) La gramática lineal-izquierda (CFG Stanford).