수치 모델링 및 머신러닝을 이용한 대기 오염 예측

수학과 2017010698 오서영 수학과 2018010705 신영민

목차

수행 결과 수행 결론 개요 과정 분석

1. 수행개요

목적 및 필요성

미세먼지에 의한 사망률이 증가하는 추세

미세먼지가 인체에 미치는 영향

문 알레르기성 결막염, 각막염
코 알레르기성 비염
기관지 기관지염, 폐기종, 천식
2.5㎞ 미만 미세먼지는 폐속 깊이 침투해 폐포에 흡착, 폐포를 손상

미세먼지 농도 예측의 필요성

<출처: 국민 재난 안전 포털, 보험연구원, OECD>

1. 수행개요

목표

두가지 방법론을 사용하여 미세먼지 농도 예측하기

수학적 모델링 (Mathematical modeling)

기계 학습 (Machine learning)

데이터 수집 및 정제

DATASET

지역별 시간당 **미세먼지 농도** (Pm-10)

풍속, 풍향 데이터 (2019-04-05)

지역별 위도 경도 데이터

37.519977, 126.984509

위도

경도

DATASET

데이터 정제 필요성

공간에 대한 통계자료를 모든 지점에서 획득하기는 현실적으로 불가능

1. 바람 데이터

3차 보간법 (Cubic Interpolation)

2. 미세먼지 데이터

IDW(Inversed distance weighted)

$$\hat{u}(x) = \frac{\sum_{k=0}^{N} w_k(x) u_k}{\sum_{k=0}^{N} w_k}, w_k(x) = \frac{1}{d(x, x_k)}$$

데이터 수집 및 정제

1. 바람 데이터 3차 보간법

Wind data after Cubic Interpolation Air pollution data after IDW Reconstruction 127.5 Longitude 128.5 129.5

2. 미세먼지 데이터 IDW

수학적 모델링

→ 가정 : 물질들 사이의 화학적인 변화가 없다 공기 질 모델링 ~ 대류 + 확산

대류-확산방정식 (Convection-Diffusion equation)

대류 방정식 : $\frac{\partial c}{\partial t}(x,t) + \frac{\partial(uc)}{\partial x}(x,t) = 0$ 확산 방정식 : $\frac{\partial c}{\partial t}(x,t) = D\frac{\partial^2 c}{\partial x^2}(x,t)$

대류 방정식

상수 u의 속도로 물질이 흘러가고 있다면 물질의 분포는

$$C(x,t) = C_0(x - ut)$$

로 쓸 수 있다.

양변을 x와 t로 각각 편미분을 하면 연쇄법칙에 의하여 아래와 같은 결과가 나온다.

$$\frac{\partial C}{\partial x} = C_0'(x - ut)$$
$$\frac{\partial C}{\partial t} = C_0'(x - ut)(-u)$$

이를 정리하면,

$$\frac{\partial C}{\partial t}(x,t) + \frac{\partial (uC)}{\partial x}(x,t) = 0$$

와 같은 대류 방정식을 얻을 수 있다.

확산 방정식

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$
 (D:확산계수) $\frac{\partial C}{\partial t} \to 0$ $\frac{\partial^2 C}{\partial x^2} \to 0$

대류-확산방정식 (Convection-Diffusion equation)

c(x,y,t)와 (u(x,y), v(x,y))를 2차원 공간 (x,y)와 시간 t에서의 어떤 물질의 농도와 속도장이라고 하면

$$\frac{\partial c(x,y,t)}{\partial t} + \frac{\partial}{\partial x} \left[u(x,y)c(x,y,t) \right] + \frac{\partial}{\partial y} \left[v(x,y)c(x,y,t) \right]$$
$$= D\left[\frac{\partial^2 c(x,y,t)}{\partial x^2} + \frac{\partial^2 c(x,y,t)}{\partial y^2} \right]$$

대류-확산방정식 (Convection-Diffusion equation)

이산화를 위한 차분 공식

테일러 전개:
$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(x)}{3!} + \cdots$$

1계 중앙차분

$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(\xi)}{3!}$$

$$f(x-h) = f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f'''(\xi)}{3!}$$

위 두식을 빼면

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + O(h^2)$$

대류-확산방정식 (Convection-Diffusion equation)

이산화를 위한 차분 공식

테일러 전개:
$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(x)}{3!} + \cdots$$

2계 중앙차분

$$f(x+h) = f(x) + hf'(x) + h^2 \frac{f''(x)}{2!} + h^3 \frac{f'''(\xi)}{3!}$$

$$f(x-h) = f(x) - hf'(x) + h^2 \frac{f''(x)}{2!} - h^3 \frac{f'''(\xi)}{3!}$$

위 두식을 더하면

$$f''(x) = \frac{f(x+h) - f(x) + f(x-h)}{h^2} + O(h^2)$$

대류-확산방정식 (Convection-Diffusion equation)

이산화한 결과

$$c_{ij}^{n+1}$$

$$= c_{ij}^{n} - \Delta t \left[\frac{cu_{i+1,j}^{n} - cu_{i-1,j}^{n}}{2h} + \frac{cv_{i,j+1}^{n} - cv_{i,j-1}^{n}}{2h} \right]$$

$$+ D \frac{\Delta t}{h^{2}} \left[c_{i+1,j}^{n} + c_{i,j+1}^{n} - 4c_{ij}^{n} + c_{i-1,j}^{n} + c_{i,j-1}^{n} \right]$$

RNN (Recurrent Neural Network)

시계열 데이터 예측에 적합한 딥러닝 모델

 x_t : 현재 입력, h_{t-1} : 과거 기억, h_{t-1} : 현재기억

머신러닝

RNN

RNN (Recurrent Neural Network)

→ LSTM (Long Short Term Memory)

장기 의존성 문제

: 은닉층의 과거 정보가 마지막까지 전달되지 못하는 현상

장기 의존성 학습을 할 수 있는 RNN의 한 종류

머신러닝

LSTM

$$f_{t} = \sigma(W_{xh_{-}f}x_{t} + W_{hh_{-}f}h_{t-1} + b_{h_{-}f})$$

$$i_{t} = \sigma(W_{xh_{-}i}x_{t} + W_{hh_{-}i}h_{t-1} + b_{h_{-}i})$$

$$o_{t} = \sigma(W_{xh_{-}o}x_{t} + W_{hh_{-}o}h_{t-1} + b_{h_{-}o})$$

$$\hat{c}_{t} = tanh(W_{xh_{-}\hat{c}}x_{t} + W_{hh_{-}\hat{c}}h_{t-1} + b_{h_{-}\hat{c}})$$

$$c_{t} = f_{t} \odot c_{t-1} + i_{t} \odot \hat{c}_{t}$$

$$h_{t} = o_{t} \odot \tanh(c_{t})$$

Gate: 정보가 전달될 수 있는 추가적인 방법

1. Forget Gate : 과거 정보를 잊기 위한 게이트

2. Input Gate: 현재 정보를 기억하기 위한 게이트

3. Output Gate

수학적 모델링: Convection-Diffusion model

24시간 대기오염 농도

머신러닝: LSTM

마지막 한시간에 대한 대기오염 농도

Kurnia, Jundika Candra, Agus Pulung Sasmito, and Arun Sadashiv Mujumdar. "Dust dispersion and management in underground mining faces." International Journal of Mining Science and Technology 24.1 (2014): 39-44.

4. 결론

질의응답

확산 방정식

$$C_{i}^{n+1} = C_{i}^{n} + kC_{i-1}^{n} - kC_{i}^{n} + kC_{i+1}^{n} - kC_{i}^{n}$$

$$= C_{i}^{n} + k(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})$$

$$C_{i}^{n+1} - C_{i}^{n} = k(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})$$

$$\frac{C_{i}^{n+1} - C_{i}^{n}}{\Delta t} = \frac{k}{\Delta t}(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})$$

$$\frac{C_{i}^{n+1} - C_{i}^{n}}{\Delta t} = \frac{kh^{2}(C_{i-1}^{n} - 2C_{i}^{n} + C_{i+1}^{n})}{h^{2}}$$

$$\frac{\partial C}{\partial t} = D\frac{\partial^{2}C}{\partial x^{2}} \quad (D = \frac{kh^{2}}{\Delta t})$$

대류-확산방정식 (Convection-Diffusion equation)

경계 조건은 **노이만 경계 조건** (Neumann boundary condition) 을 사용

