Mathematical models of action potentials

Part 4

Outline: Part 4

Example results with Hodgkin-Huxley model

Sub-threshold and supra-threshold responses

Refractoriness

Anode break excitation

Theme

Each of these simulations represented an independent validation of the model.

Overall Hodgkin-Huxley model

Membrane represented as parallel conductances

Hodgkin & Huxley (1952), J. Physiol. 117:400.

Four ODEs

$$C_{m} \frac{dV}{dt} = -g_{L} (V - V_{L}) - \overline{g}_{Na} m^{3} h (V - V_{Na}) - \overline{g}_{K} n^{4} (V - V_{K})$$

$$\frac{dm}{dt} = \alpha_{m} (V) (1 - m) - \beta_{m} (V) m$$

$$\frac{dh}{dt} = \alpha_{h} (V) (1 - h) - \beta_{h} (V) h$$

$$\frac{dn}{dt} = \alpha_{n} (V) (1 - n) - \beta_{n} (V) n$$

Voltage-dependent rate constants

$$lpha_m = 0.1(V_m + 35.0)/(1. - e^{(-(V_m + 35.0)/10.0)})$$
 $eta_m = 4.0 \, e^{(-(V_m + 60.0)/18.0)}$
 $lpha_h = 0.07 \, e^{(-(V_m + 60.0)/20.0)}$
 $eta_h = 1./(1 + e^{(-(V_m + 30.0)/10.0)})$
 $lpha_n = 0.01(V_m + 50.0)/(1 - e^{(-(V_m + 50.0)/10.0)})$
 $eta_n = 0.125 \, e^{(-(V_m + 60.0)/80.0)}$

Why was voltage clamp transformative?

Voltage and conductance changing together

Voltage controlled. Conductance changes can be quantified.

Simulation of simplified experiment was critical for both model development and understanding

Important note: equations and parameters were derived from voltage-clamp data, action potential simulations were an independent test

In addition to producing realistic action potentials, the model:

- 1) exhibits sub-threshold and supra-threshold responses
- 2) correctly reproduces refractoriness
- 3) reproduces "anode break" excitation

Response to brief injected current

The model exhibits sub-threshold and supra-threshold responses

The threshold results from the positive feedback between V and I_{Na} \uparrow V leads to \uparrow I_{Na} leads to \uparrow V, etc.

In other words, bistability

The model correctly reproduces refractoriness

Stimuli given soon after an initial AP will fail to induce a second AP, until the refractory period is over.

Mechanism of refractoriness

Increase in g_K as well as decrease in g_{Na}

Remember: $g_K \sim n^4$, $g_{Na} \sim m^3 h$

The model reproduced and explained "anode break" excitation.

Depolarizing (cathodal) stimuli

Because this comes about after the stimulus, this is called "break" excitation

Summary

The Hodgkin-Huxley equations were derived entirely from voltageclamp data. Simulations of action potentials represented an independent test of the model.

The model was able to reproduce several observed phenomena:

threshold behavior refractoriness anode break excitation

The simulations of these phenomena generated new predictions about the underlying biological mechanisms.