Homework

Lei Bichang

1 Composition of Ramified Extensions

Consider $X^p - pX \in \mathcal{L}_{-p}$. Let π be a root of the Eisenstein polynomial $f_{\pi}(X) = X^{p-1} - p \in \mathbb{Z}_p[X]$ in $\overline{\mathbb{Q}}_p$, and let $K := \mathbb{Q}_p(\pi)$, then K/\mathbb{Q}_p is totally ramified. We claim that $K(\zeta_p)/\mathbb{Q}_p$ is not totally ramified.

 \lceil

Let $F := \mathbb{Q}_p(\zeta_p)$ and $\eta := \zeta_p - 1$ a uniformizer of F. Write $p = u\eta^{p-1}$ in F, where $u \in \mathcal{O}_F^{\times}$. Then π is a root of

$$X^{p-1} - p = X^{p-1} - u\eta^{p-1} \in \mathcal{O}_F[X],$$

so $z := \pi/\eta$ is a root of $X^{p-1} - u \in \mathcal{O}_F[X]$.

Next, we compute $u \mod \eta$. For this we note that the following equation holds.

Lemma 1.
$$(\zeta_p - 1)(\zeta_p^2 - 1) \dots (\zeta_p^{p-1} - 1) = p$$
.

Proof. This is because the minimal polynomial of $\zeta_p - 1$ is

$$\frac{(1+X)^p - 1}{X} = X^{p-1} + \dots + p,$$

whose roots are $\zeta_p^i - 1$, $1 \le i \le p - 1$.

From here we see that

$$u = \frac{p}{\eta^{p-1}} = (\zeta_p + 1)(\zeta_p^2 + \zeta_p + 1) \dots (\zeta_p^{p-2} + \dots + \zeta_p + 1)$$

$$\equiv 1 \cdot 2 \cdots (p-1) \equiv -1 \pmod{\eta}.$$

So as $p \geq 3$, the polynomial

$$\overline{X^{p-1}-u}=X^{p-1}+1\in\mathbb{F}_p[X]$$

is irreducible of degree ≥ 2 . Therefore $K(\zeta_p) = \mathbb{Q}_p(\zeta_p, \pi) = \mathbb{Q}_p(\zeta_p, z)$ is a nontrivial unramified extension over $F = \mathbb{Q}_p(\zeta_p)$, and the inertia degree $f(K(\zeta_p)/\mathbb{Q}_p) = f(K(\zeta_p)/K) > 1$.

2 Multiplication by p

Write $[p](X) = \sum_{i \geq 1} a_i X^i$, so $[p]'(X) = \sum_{i \geq 1} i a_i X^{i-1}$. We know that $[p]'(0) = a_1 = p$. Consider the invariant differential

$$\omega_F(X) = \frac{dX}{F_1(0,X)}.$$

The endomorphism [p](X) satisfies the equation

$$\omega_F \circ [p] = [p]'(0)\omega_F = p\omega_F,$$

i.e.,

$$\frac{[p]'(X) dX}{F_1(0,[p](X))} = p \frac{dX}{F_1(0,X)}.$$

Hence

$$[p]'(X) = p \frac{F_1(0, [p](X))}{F_1(0, X)}$$

Since $F_1(0, X) = 1 + X + \text{ terms of higher degree, it is invertible in } R[X], \text{ and thus } F_1(0, [p](X))/F_1(0, X) \in R[X].$ Therefore every coefficient of [p]'(X) is divided by p, so

$$p \nmid i \implies p \mid a_i$$

for each integer $i \ge 1$. This shows that $[p](X) \in pR[\![X]\!] + R[\![X^p]\!]$.

3 The Zeroes of the Logarithm

3.1

Let

$$\omega(X) = (1 + a_1 X + a_2 X^2 + \dots) dX = \frac{dX}{F_1(0, X)}$$

be the normalized invariant differential of F, so

$$\log_F(X) = X + \frac{a_1}{2}X^2 + \frac{a_3}{3}X^3 + \dots$$

As F is defined over \mathcal{O}_K , $F_1(0,X) \in \mathcal{O}_K[\![X]\!]^{\times}$ and the numbers $a_i \in \mathcal{O}_K$. Let $z \in \mathfrak{m}_{\mathbb{C}_p}$, then $v_p(z) > 0$, and thus

$$v_p\left(\frac{a_iz^i}{i}\right) = v_p(a_i) + iv_p(z) - v_p(i) \ge iv_p(z) - v_p(i) \to +\infty$$

as $i \to \infty$, because $v_p(i)$ grows in the speed of $\log(i)$. So $\log_F \in \mathcal{H}_K$.

3.2

By Exercise 2, there eixst $f, g \in \mathcal{O}_K[\![X]\!]$ s.t.

$$[p](X) = pf(X) + g(X^p),$$

so

$$|[p](z)|_p \le \max\{p^{-1}|f(z)|_p, |g(z^p)|_p\}.$$

Because [p](X) = pX + terms of higher order, f(0) = g(0) = 0 and f = X + terms of higher order. Write $f(X) = Xf_1(X)$ and $g(X) = Xg_1(X)$, where $f_1 = 1$ + terms of higher order. As $0 < |z|_p < 1$, we have $|f_1(z)|_p = 1$ and $|g_1(z^p)|_p \le 1$. Hence

$$p^{-1}|f(z)|_p = p^{-1}|z|_p < |z|_p,$$

and

$$|g(z^p)|_p \le |z|_p^p < |z|_p.$$

So $|[p](z)|_p < |z|_p$.

3.3

Assume that $z \in \mathfrak{m}_{\mathbb{C}_p}$ is a zero of \log_F . Since \log_F is an isomorphism $F \to \mathbb{G}_a$ over K, we have

$$\log_F([p](z)) = p \log_F(z) = 0.$$

From here we can prove that $z \in \text{Tors}(F)$.

• If $z \notin \text{Tors}(F)$, then $z \neq 0$. Using the previous computation inductively, we see that $[p^n](z) \neq 0$ is a zero of \log_F for each $n \geq 1$. Exercise 3.2 tells us that

$$1 > |z|_p > |[p](z)|_p > |[p^2](z)|_p > \dots > 0,$$

so these $[p^n](z)$'s are disjoint and \log_F has infinitely many zeroes in the ball $B(0,|z|_p)$. But a function in \mathcal{H}_K can have only finitely many zeroes in $B(0,|z|_p)$, so this contradicts the fact that $\log_F \in \mathcal{H}_K$.

Conversely, if $z \in \text{Tors}(F)$, then $[p^n](z) = 0$ for some $n \ge 1$. So

$$p^n \log_E(z) = \log_E([p^n](z)) = \log_E(0) = 0,$$

and thus $\log_F(z) = 0$.

4 Torsion of some formal group

4.1

It suffices to check the associativity and the commutativity. For associativity,

$$\begin{split} F_{\alpha}(X,F_{\alpha}(Y,Z)) &= X + (Y + Z + \alpha YZ) + \alpha X(Y + Z + \alpha YZ) \\ &= X + Y + \alpha XY + Z + \alpha (X + Y + XY)Z \\ &= F_{\alpha}(F_{\alpha}(X,Y),Z). \end{split}$$

Commutativity is clear.

4.2

(1) Compute Tors(F). Following the hint, we compute

$$1 + \alpha F_{\alpha}(X, Y) = 1 + \alpha X + \alpha Y + \alpha^{2} XY = 1 + \mathbb{G}_{\mathrm{m}}(\alpha X, \alpha Y).$$

Hence $\alpha X \in \mathcal{O}_K[\![X]\!]$ is a homomorphism $F_{\alpha} \to \mathbb{G}_m$, and

$$\alpha[n]_{F_{\alpha}}(X) = [n]_{\mathbb{G}_m}(\alpha X) = (1 + \alpha X)^n - 1, \quad \forall n \in \mathbb{Z}.$$

Since $(1 + \alpha X)^n - 1 \in \alpha \mathcal{O}_K[\![X]\!]$, the multiply-by-n endomorphism for F_α is

$$[n]_{F_{\alpha}} = \frac{(1 + \alpha X)^n - 1}{\alpha}$$

if $\alpha \neq 0$. In case $\alpha = 0$, $F_{\alpha} = \mathbb{G}_{a}$ and $[n]_{F_{\alpha}}(X) = nX$. Therefore,

$$\operatorname{Tors}(F_{\alpha}) = \begin{cases} \{z \in \mathfrak{m}_{\mathbb{C}_p} | 1 + \alpha z \in \mu_{p^{\infty}} \}, & \alpha \neq 0, \\ \{0\}, & \alpha = 0. \end{cases}$$

- (2) Compute the height of F_{α} . We divide the problem into two cases.
 - $\alpha \in \mathfrak{m}_K$. In this case $\bar{F}_{\alpha} = X + Y = \bar{\mathbb{G}}_a$, so the height of F_{α} is infinity.
 - $\alpha \in \mathcal{O}_K^{\times} = \mathcal{O}_K \setminus \mathfrak{m}_K$. By the computation above,

$$[p]_{\bar{F}_{\alpha}} = \frac{(1 + \bar{\alpha}X)^p - 1}{\bar{\alpha}} = \bar{\alpha}^{p-1}X^p.$$

So the height of F_{α} is 1.

4.3

Choose a uniformizer π of K. Then $[p](X) \in \pi \mathcal{O}_K[\![X]\!]$ because $[\overline{p}](X) = 0$, and $[p^n](X) = [p]([p^{n-1}](X)) \in \pi \mathcal{O}_K[\![X]\!]$ for every integer $n \geq 1$. In fact, we have a better control for $[p^n]$.

Lemma 2. For every $n \in \mathbb{Z}_{\geq 1}$, $[p^n](X) \in \pi^n \mathcal{O}_K[X]$.

Proof. The case of n=1 is known. Suppose that $[p^n](X) \in \pi^n \mathcal{O}_K[\![X]\!]$, then every coefficient of $[p^{n+1}](X) = [p]([p^n(X)])$ is a finite sum of the form $\sum ab_1 \cdots b_r$, where a is a coefficient of [p](X) and b_1, \ldots, b_r are coefficients of $[p^n](X)$. So $\pi^{n+1} \mid ab_1 \cdots b_r$, and thus π^{n+1} divides all coefficients of $[p^{n+1}](X)$.

Now we look at $Tors(F) = \bigcup_{n \geq 1} F[p^n]$. Since $F[p^n] \subset F[p^{n+1}]$, Tors(F) is finite if and only if $\#F[p^n]$ is finite and constant for n sufficiently large. For simplicity, we introduce the following definition.

Definition 1. For $f(X) = \sum_{i \geq 0} a_i X^i \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!]$, let w(f) be the index of the lowerest term whose coefficient has minimum valuation, i.e.,

$$w(f) := \min\{i \in \mathbb{Z}_{\geq 0} \mid v_p(a_i) \leq v_p(a_j), \forall j \in \mathbb{Z}_{\geq 0}\}.$$

By definition, if d is the integer s.t. $\pi^d f(X)$ has finite Weierstrass degree w, then w = w(f). So by Weierstrass preparation theorem, $\#F[p^n] = w([p^n]) < \infty$.

Lemma 3. If $[p^n](X) \in p\mathcal{O}_K[\![X]\!]$, then $w([p^{n+1}]) = w([p^n])$.

Proof. Write $[p](X) = pX + \pi X^2 f(X)$ with $f(X) \in \mathcal{O}_K[\![X]\!]$, and $[p^n](X) = \sum_{i \geq 1} a_i X^i$ with $v_p(a_i) \geq v_p(p)$. Then

$$[p^{n+1}](X) = [p]([p^n](X))$$

$$= p[p^n](X) + \pi([p^n](X))^2 f([p^n](X))$$

$$= \sum_{i \ge 1} p a_i X^i + \left(\sum_{k \ge 2} \left(\sum_{i+j=k} \pi a_i a_j\right) X^k\right) f([p^n](X)).$$

Let $d := w([p^n])$, so $v_p(a_i) > v_p(a_d) \ge v_p(p)$ for $1 \le i \le d-1$. From here we deduce that all the terms appeared in $G(X) := \pi([p^n](X))^2 f([p^n](X))$ will

- either have coefficient with valuation strictly greater than $v_p(pa_d)$,
- or have order strictly greater than d.

More precisely, we look at the sum $S(X) := \sum_{k \geq 2} \left(\sum_{i+j=k} \pi a_i a_j \right) X^k$. For $i+j=k \leq d$ with $i,j \in \mathbb{Z}_{\geq 1}$, $v_p(\pi a_i a_j) > v_p(a_i a_j) > v_p(pa_d)$. As $S(X) \mid G(X)$, every term of G of degree < d is a sum of elements divided by some $\left(\sum_{i+j=k} \pi a_i a_j \right) X^k$ with k < d, so the statement holds.

Therefore
$$w([p^{n+1}]) = d = w([p^n]).$$

By Lemma 2, if $e \in \mathbb{Z}_{\geq 1}$ is the ramification index of K/\mathbb{Q}_p , then $[p^n] \in \pi^n \mathcal{O}_K[\![X]\!] \subset p\mathcal{O}_K[\![X]\!]$ for all $n \geq e$. So Lemma 3 indicates that $F[p^n] = F[p^e]$ for all $n \geq e$, and $Tors(F) = F[p^e]$ is finite.

4.4

By Exercise 3, the only zero of \log_F in $\mathfrak{m}_{\mathbb{C}_p}$ is 0 as $\operatorname{Tors}(F) = \{0\}$. Particularly, \log_F has finitely many zeros in $\mathfrak{m}_{\mathbb{C}_p}$, so $\log_F \in K \otimes_{\mathcal{O}_K} \mathcal{O}_K[\![X]\!]$. Thus there exists $d \in \mathbb{Z}$ s.t. $\pi^d \log_F \in \mathcal{O}_K[\![X]\!]$ and the Weierstrass degree of $\pi^d \log_F$ equals the number of zeros of \log_F in $\mathfrak{m}_{\mathbb{C}_p}$, which is 1. Since $\log_F(X) = X$ + higher terms, we must have d = 0 and hence $\log_F \in \mathcal{O}_K[\![X]\!]$. Then \log_F gives an isomorphism $F \xrightarrow{\sim} \mathbb{G}_a$ over \mathcal{O}_K .

4.5

Since K/\mathbb{Q}_p is unramified and F is of infinite height, $[p](X) = pX + \cdots \in p\mathcal{O}_K[X]$. In particular, $[p](X)/p \in \mathcal{O}_K[X]$ has Weierstrass degree 1, and the only zero of [p](X) in $\mathfrak{m}_{\mathbb{C}_p}$ is 0.

For $n \geq 2$ and $z \in \mathfrak{m}_{\mathbb{C}_p}$,

$$[p^n](z) = 0 \iff [p^{n-1}](z) \in F[p] = \{0\}.$$

We can then deduce inductively that $F[p^n] = 0$ for all positive integer n. So $Tors(F) = \{0\}$.