Überblick über die Oracle Cloud Infrastructure

Dr. Ingo Laue, EMEA OCI Outbound PM.

Frankfurt, 19. Juni 2018

Latest Technologies Enable a Modern Cloud Infrastructure

Technology	Benefit
Availability domains	Enables enterprise-level high availability
Flat, non-blocking network	Enables predictable low latency; eliminates "noisy neighbors"
Off-box IO virtualization & automated hardware wiping	Enables secure deployments of bare metal servers without Oracle management software overhead
Direct-attached NVMe storage	Enables highest IO workloads

Region / Availability Domain Topology

- Regions serve different geographies, provide Disaster Recovery
- Availability Domains provide a High Availability foundation in a Region

Inside a Region – High Availability Building Blocks

- Multiple fault-decorrelated, completely independent datacenters –
 Availability Domains (ADs), about 10km mutual distance
- Predictable low latency & high speed, encrypted interconnect between ADs
 - < 500μs latency

Datacenters

Availability Domain 1
Domain 2
Domain 2
Domain 3

Inside an AD – High Scale, High Performance Network

- Non-oversubscribed network flat, fast, predictable
- Very high scale ~1 million network ports in an AD
- Predictable low latency & high speed interconnect between hosts in an AD
 - < 100μs RTT latency, 25Gb/s bandwidth, two hops max

Physical Network

Datacenters

Comprehensive Virtual Network with Off-box Virtualization

- Highly configurable private overlay networks moves management and IO out of the hypervisor and enables lower overhead and bare metal instances
- No Layer 2 Overlay network between virtual hosts, all networking done through smart NICs

Virtual Network

Physical Network

Region

Datacenters

Availability Domain 1

Availability Domain 2

Domain 3

Cutting-edge, High IO Hardware Technology

High Performance Compute Systems

36 Cores per Server (52 Cores with X7)

Standard: Non-NVMe SSD, 256 GB RAM

High I/O: 12.8 TB NVMe SSD, 512 GB RAM

Dense I/O: 28.8 TB NVMe SSD, 512 GB RAM

High Performance Storage Systems

Local NVMe: up to 28.8 TB/Server, ~4 Million 4K Read IOPs

Block Storage: 256GB-2TB, 1.5K-6K IOPs per Volume

Object Storage – High Throughput, Strong Consistency

More cores
More RAM
2X Storage
6X Write IOPS

Putting it All Together – Reliable, Predictable, Flexible, Fast

Oracle Cloud Infrastructure Services Overview

Bare metal compute, VM compute, high performance storage, database, on the same virtual network

Big Data Workloads **Cloud Native** Workloads

Oracle Database Workloads

General Purpose Workloads

dentity Access Management REST API / Console Billing / Metering

Physical Infrastructure / Multiple Availability Domains

- **Broad Range of Elastic Compute**
 - Bare Metal servers; Bare Metal with NVMe; VMs
 - Provision in mins; Pay by the hour
- High Performance Storage
 - Local NVMe servers
 - Dynamically attachable remote Block Storage with consistent general purpose IOPS
 - High performance, high durability Object Storage
- Virtual Private Networking
 - Manage your own high scale private IP networks
 - IPSec VPN; FastConnect
 - Stateful firewalls; optional Internet gateway; load balancing

Private Subnet with a VPN

- Create an IPSec connection for VPN
- Data center admin needs to configure the on-premises router before network traffic can flow between your on-premises network and VCN
- At your end of the IPSec VPN is the actual router in your onpremises network (hardware or software). A virtual representation of the router in Oracle Cloud Infrastructure Services is referred to as Customer-Premises Equipment (CPE)
- If you need a throughput-reliable connection (i.e. not using the public internet), you can connect to the Oracle Cloud Infrastructure through dedicated lines through partner (FastConnect) or co-location.

IAM Service

Service Limits

Tagging

Oracle Database Cloud Service Offers Infrastructure Choice

Virtual Machines

- Test, Development,
 Departmental Applications
- Oracle AppsUnlimited, PaaS
- Compute Shapes by OCPU, Standard or High RAM
- Block Storage by the GB
- Up to 40TB database

Bare Metal

- Intensive Test, Development,
 Departmental Applications
- Custom Applications
- Bare Metal Compute Shapes –
 by core, HighIO or DenselO
- Fixed NVMe Storage by Shape
- Up to 9TB database

Engineered Systems

- Mission Critical, Intensive
 OLTP and Decision Support
- Oracle and Custom Apps
- ¼, ½ and Full Rack Shapes
- Fixed Storage and Memory by Shape
- Up to 168TB database

Web Console

Java SDK with REST API underneath

```
public static Instance createInstance(
       ComputeClient computeClient,
       String compartmentId,
       AvailabilityDomain availabilityDomain,
       String instanceName,
       Image image,
       Shape shape,
       Subnet subnet,
       String sshPublicKey) {
   Map<String, String> metadata = new HashMap<>();
   metadata.put("ssh_authorized_keys", sshPublicKey);
   LaunchInstanceResponse response =
            computeClient.launchInstance(
                   LaunchInstanceRequest.builder()
                            .launchInstanceDetails(
                                    LaunchInstanceDetails.builder()
                                            .availabilityDomain(availabilityDomain.getName())
                                            .compartmentId(compartmentId)
                                            .displayName(instanceName)
                                            .imageId(image.getId())
                                            .metadata(metadata)
                                            .shape(shape.getShape())
                                            .subnetId(subnet.getId())
                                            .build())
                            .build()):
   return response.getInstance();
```

Command Line Interface (Unix-Shell) with REST API underneath

```
oci compute instance launch
--availability-domain "maUU:EU-FRANKFURT-1-AD-2"
-c ocidl.compartment.ocl..aaaaaaaau4qyploevXXX
--shape "VM.Standard1.1"
--display-name "Instance created from Custom Image"
--image-id ocidl.image.ocl.eu-frankfurt-1.aaaaaaaaqa4pyXXXX
--subnet-id ocidl.subnet.ocl.eu-frankfurt-1.aaaaaaaaqyjcjppqXXXX
```


• Cloud Orchestration Tools (Terraform). Non-procedural, designs the required target architecture

```
resource "oci core instance" "MyDemoInstance" {
 availability domain = "${lookup(data.oci identity availability domains.ADs.availability domains[var.AD - 1], "name")}"
                     = "${var.compartment ocid}"
 compartment id
 display name = "MyDemoInstance"
 hostname_label = "instance1"
        = "${lookup(data.oci_core_images.OLImageOCID.images[0], "id")}"
= "${var.InstanceShape}"
 image
 shape
 subnet_id
                     = "${var.SubnetOCID}"
 metadata {
   ssh_authorized_keys = "${var.ssh_public_key}"
                       = "${base64encode(file(var.BootStrapFile))}"}
    user data
```

Docker and Kubernetes

- Popular, easy to use tooling targeting developer productivity
- De Facto standard container runtime and image format
- Developer on-boarding and Gen1 application management (Compose, Swarm)

- Production grade container management targeting DevOps and Ops, widespread adoption
- Complex but powerful toolset supporting Gen2 applications
- Rich operations feature set, autoscaling, rolling upgrades, stateful apps and more.

Container Orchestration And Containers as a Service (CaaS)

- Multi-container apps
- Scheduling
- Service Discovery
- Maintaining Desired State

- Orchestration as a service
- Hosted Container Runtime
- Minimize operational overhead

Container Native Application Development Capabilities Build, Deploy, Operate Container Based Applications

OCI Container Engine for Kubernetes (OKE)

Oracle Cloud Infrastructure Registry (OCIR)

Docker Compliant Container Image Registry

Oracle Container Pipelines
Oracle Developer Cloud

Continuous Integration and Delivery Pipeline

Fn Project

Open Source Serverless Functions Framework

Open Source Extensibility

OKE supports HELM for easy deployments

https://github.com/kubernetes/charts/tree/master/stable

Oracle Cloud Infrastructure and Kubernetes

Roll Your Own, Pre-Built Installer, Managed Service

laaS CaaS

Detail: OCI Container Engine for Kubernetes and Registry

An Open, Fully-Managed Kubernetes Platform & Private Registry

ORACLE

Introducing OCI Registry - OCIR

- High availability Docker v2 container registry service on Oracle Cloud Infrastructure
- Full integration with OKE
- Stores Docker Images in Private Repositories
- Automatic Org Image Layer De-duplication
- Co-located regionally with Container Engine for low latency Docker image deploys

OKE and OCIR

Oracle and Customer Managed Aspects

Oracle Cloud Infrastructure (Summary)

- Network virtualization is processed by the software-driven network. No network overhead for customer instances. Subnets, connectivity to your DC, FastConnect, secure through route tables and firewall rules
- Fast, non-blocking, not oversubscribed flat networks.
- Concept of Availability Domains: Min. 3 geographically separated, independently operated data centers offer better DR that just separated Availability Zones (cages within the same DC)
- Wide Spectrum of Compute Shapes: From single-core VMs to full 52 core Bare Metal Servers, databases up to full Exadata racks
- Choice of storage: Attached NVMe SSDs, block volumes, object and archive storage
- Fine-grained Identity and Access Management through users, groups, compartments, policies and tagging.
- Embraces Open Source Technologies (Docker, Kubernetes, Fn, ...)

Thank you.

ingo.laue@oracle.com

