# Week 10: Logistic Regression

### **Table of Contents**

- 1. Soft Binary Classification
- 2. Logistic Hypothesis
- 3. Evaluating Logistic Regression Error
  - Logistic Regression Likelihood
  - Cross Entropy Error
  - Minimize  $E_{in}(w)$  for Logistic Regression
- 4. Gradient Descent

### **Soft Binary Classification**

- 1. Similar form as (hard) binary classification, but interested in the **probability** rather than the exact  $\pm 1$
- 2. Target function  $f(x) = P(+1|x) \in [0,1]$
- 3. Can be thought of as hard binary classification, just with noise that shifts prediction away from  $\pm 1$  into range [0, 1]

### **Logistic hypothesis**

1. For features  $\mathbf{x} = (x_0, x_1, x_2, \dots x_d)$ , the goal is to obtain a weighted score s, where

$$s = \sum_{i=0}^{d} \mathbf{w}_i x_i = \mathbf{w}^T x$$

- Logistic function  $\theta(s)$  converts the score into estimated probability between 0 and 1
- 2. For such target functions, the corresponding logistic hypotheis is

$$h(\mathbf{x}) = \theta(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

3. Given that score s has value range  $(-\infty, \infty)$ , and the target function demands a value mapped to [0, 1]. logistic function has form:

$$\theta(s) = \frac{e^s}{1 + e^s} = \frac{1}{1 + e^{-s}}$$



- 4. Logistic function  $\theta(s)$  is:
  - Smooth
  - Sigmoid
  - Monotonic
- 5. Substituting logistic function into logistic hypothesis uses:

$$h(\mathbf{x}) = \frac{1}{1 + exp(-\mathbf{w}^T \mathbf{x})}$$

to approximate target function  $f(\mathbf{x}) = P(+1|\mathbf{x})$ 

### **Evaluating Logistic Regression Error**

- 1. Optimizing logistic regression through squared error does not work because:
  - Under logistic regression hypothesis, squared error becomes

$$err(h, x_n, y_n) = \begin{cases} (\theta(w^T x) - 0)^2 & y_n = 0\\ (1 - \theta(w^T x))^2 & y_n = 1 \end{cases}$$
$$= y_n (1 - \theta(w^T x))^2 + (1 - y_n)\theta^2(w^T x)$$

- This is a **non-convex** function, for which a global minimum is difficult to find
- 2. Instead, error function of logistic regression is expressed as likelihood

#### **Logistic Regression Likelihood**

1. Given target function of logistic regression, f(x) = P(+1|x)

$$f(x) = P(+1|x) \Leftrightarrow P(y|x) = \begin{cases} f(x) & \text{for } y = +1 \\ 1 - f(x) & \text{for } y = -1 \end{cases}$$

2. For a given sample  $\mathcal{D} = [(x_1, +1), (x_2, -1), \dots, (x_N, -1)]$ , the probability that target function f and hypothesis h give correct value of y for every point in  $\mathcal{D}$  is:

## probability that f generates $\mathcal{D}$

$$P(\mathbf{x}_1)P(\circ|\mathbf{x}_1) \times P(\mathbf{x}_2)P(\times|\mathbf{x}_2) \times \dots P(\mathbf{x}_N)P(\times|\mathbf{x}_N)$$

## likelihood that $m{h}$ generates $\mathcal D$

$$P(\mathbf{x}_1)h(\mathbf{x}_1) \times P(\mathbf{x}_2)(1-h(\mathbf{x}_2)) \times \dots P(\mathbf{x}_N)(1-h(\mathbf{x}_N))$$

### probability that f generates $\mathcal{D}$

$$P(\mathbf{x}_1)f(\mathbf{x}_1) \times P(\mathbf{x}_2)(1 - f(\mathbf{x}_2)) \times \dots P(\mathbf{x}_N)(1 - f(\mathbf{x}_N))$$

## likelihood that h generates $\mathcal{D}$

$$P(\mathbf{x}_1)h(\mathbf{x}_1) \times P(\mathbf{x}_2)(1 - h(\mathbf{x}_2)) \times \dots P(\mathbf{x}_N)(1 - h(\mathbf{x}_N))$$

3. If hypothesis h is a good approximation of target function f, we expect the probability (f) and likelihood (h) with respect to training data set  $\mathcal{D}$  to be similar, and large values (since f is the true representation of population, where  $\mathcal{D}$  is sampled from)

if  $h \approx f$ , then likelihood(h)  $\approx$  (probability using f)  $\approx$  large

4. Logistic regression can therefore be optimized by **maximizing likelihood function** 

$$g = \underset{h}{argmax} \ likelihood(h)$$

5. Substituting in  $h(x) = \theta(w^T x)$ , and recall that logistic regression is symmetric  $\to 1 - h(x) = h(-x)$ , there is

$$likelihood(h) = P(x_1)h(x_1) \times P(x_2)(1 - h(x_2)) \times ... \times P(x_N)(1 - h(x_N))$$
  
=  $P(x_1)h(x_1) \times P(x_2)(h(-x_2)) \times ... \times P(x_N)(h(-x_N))$   
=  $P(x_1)h(x_1) \times P(x_2)(h(y_2x_2)) \times ... \times P(x_N)(h(y_Nx_N))$ 

6. The likelihood provided by logistic hypothesis h is therefore **proportional** to the **product** of all y and x

$$likelihood(logistic h) \propto \prod_{n=1}^{N} h(y_n x_n)$$

#### **Cross-Entropy Error**

1. Given that larger the likelihood for logistic hypothesis h to generate training set  $\mathcal{D}$ , the better it approximates target function f, the goal of optimization is to **maximize** likelihood(logistic h)

$$\max_{h} \ likelihood(logistic \ h) \propto \prod_{n=1}^{N} h(y_n x_n)$$

Substituting h with definition of logistic hypothesis  $h(\mathbf{x}) = \theta(\mathbf{w}^T \mathbf{x})$ 

$$\max_{\mathbf{w}} \ likelihood(\mathbf{w}) \propto \prod_{n=1}^{N} \theta(\mathbf{y}_{n} \mathbf{w}^{T} \mathbf{x}_{n})$$

Add log to convert product to sum through logarithm product rule

$$\propto \ln \prod_{n=1}^{N} \theta(y_n \mathbf{w}^T x_n)$$

$$\propto \frac{1}{N} \sum_{n=1}^{N} \ln \theta(y_n \mathbf{w}^T x_n)$$

Maximizing equation above is equivalent to minimizing its negative:

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} -\ln \theta(\mathbf{y}_n \mathbf{w}^T \mathbf{x}_n)$$

Substituting definition of logistic function function  $\theta(s) = \frac{1}{1 + exp(-s)}$ 

$$\Rightarrow \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \ln(1 + \exp(-y_n \mathbf{w}^T x_n))$$

$$\Rightarrow \min_{\mathbf{w}} \frac{1}{N} \sum_{n=1}^{N} \exp(\mathbf{w}, x_n, y_n)$$

$$E_{in}(\mathbf{w})$$

2. Error function derived above is known as **cross-entropy error** 

$$err(\mathbf{w}, x, y) = ln(1 + exp(-y\mathbf{w}x))$$
  
cross-entropy error

#### Minimize $E_{in}(w)$ for Logistic Regression

1. Given error function, the cost function  $E_i n(w)$  of logistic regression is:

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} ln(1 + exp(-y_n \mathbf{w}^T x_n))$$

2.  $E_{in}(\mathbf{w})$  is continuous, differentiable, twice-differentiable, convex



3. Gradient of the cost function,  $\nabla E_{in}(w)$  can be found as partial derivative of  $E_{in}(w)$ 

$$E_{\text{in}}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln \left( \underbrace{1 + \exp(-y_n \mathbf{w}^T \mathbf{x}_n)}_{\square} \right)$$

$$\frac{\partial E_{\text{in}}(\mathbf{w})}{\partial w_{i}} = \frac{1}{N} \sum_{n=1}^{N} \left( \frac{\partial \ln(\square)}{\partial \square} \right) \left( \frac{\partial (1 + \exp(\bigcirc))}{\partial \bigcirc} \right) \left( \frac{\partial -y_{n} \mathbf{w}^{T} \mathbf{x}_{n}}{\partial w_{i}} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left( \frac{1}{\square} \right) \left( \exp(\bigcirc) \right) \left( -y_{n} x_{n,i} \right) \\
= \frac{1}{N} \sum_{n=1}^{N} \left( \frac{\exp(\bigcirc)}{1 + \exp(\bigcirc)} \right) \left( -y_{n} x_{n,i} \right) = \frac{1}{N} \sum_{n=1}^{N} \theta(\bigcirc) \left( -y_{n} x_{n,i} \right)$$

Treating  $x_{n,i}$  in equation above as element of x vector gives:

$$\nabla E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} \theta(-y_n w^T x_n) (-y_n x_n)$$

4. To minimize  $E_{in}(w)$  for logistic regression optimization, we want

$$\nabla E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} \theta(-y_n w^T x_n) (-y_n x_n) = 0$$

which requires either:

- $\theta(\cdot) = 0$  for all n
  - Possible only when  $y_n w^T x_n \approx \infty \Rightarrow w^T x_n$  gives correct prediction of  $y_n$  for every n
    - Only possible when  $\mathcal{D}$  is **linear separable**
- Weighted sum = 0
  - Non-linear equation of w without closed-form, analytical solution

- 5. Iterative optimization (similar to PLA) can be used to find approximation of optimized w
  - For t= 0, 1,...
  - Pick some n, and update  $w_t$  by

$$w_{t+1} \leftarrow w_t + \underbrace{1}_{\eta} \cdot \underbrace{\left( \|sign(w_t^T x_n) \neq y_n \| \cdot y_n x_n \right)}_{v}$$

- $\eta$  is step size
  - Step size is set to 1 in equation above, such that it resembles the iterative procedure defined by PLA
- v is a vector reprsenting the \*direction of correction
  - Assumed to be a unit vector
- When stop condition is reached, return last w as g
- Choice of  $(\eta, v)$  and stopping condition defines **iterative optimization approach**

#### **Gradient Descent**

- 1. Greedy approach to iterative optimization
  - For some given  $\eta > 0$ , find

$$\min_{\|\mathbf{v}\| = 1} E_{in}(\underbrace{w_t + \mathbf{\eta}w}_{w_{t+1}})$$

- Still non-linear optimization, with added constraint
- Hard to solve directly, handled instead through local approximation by linear formula
  - Non-linear curve can be approximated by linear segments within small range

$$E_{in}(w_t + \eta v) \approx E_{in}(w_t) + \eta v^T \nabla E_{in}(w_{in})$$
 for very small  $\eta \to \text{Taylor Expansion}$ 

2. Gradient descent is an approximate greedy approach for some given small step size  $\eta$ 

$$\lim_{\|\mathbf{v}\| = 1} \frac{E_{in}(w_t) + \mathbf{v}^T \nabla E_{in}(w_t)}{known}$$
 given positive  $known$ 

• Since the end goal is to "correct"  $E_{in}$  as much as possible for the given step size, the correction direction should be **opposite** of  $\nabla E_{in}(w_t)$ , or

$$v = -\frac{\nabla E_{in}(w_t)}{\|\nabla E_{in}(w_t)\|}$$

• In gradient descent, for **small**  $\eta$ :

$$w_{t+1} \leftarrow w_t - \eta \frac{\nabla E_{in}(w_t)}{\|\nabla E_{in}(w_t)\|}$$

3. Choices of step size  $\eta$ 



- $\circ$  Step size too small  $\rightarrow$  Takes long time to converge
- Step size too large → Unstable result, possibly missing out on global minimum and ends up in local minimum
- Step size **monotonic of**  $\|\nabla E_{in}(w_t)\| \to \text{Allow faster convergence at beginning of iterations, and slow down as approaching stopping point$
- 4. Fixed leaerning rate
  - Use fixed learning rate  $\eta$  as a way to keep dynamic learning rate  $\eta$  monotonic of  $\|\nabla E_{in}(w_t)\|$

$$w_{t+1} \leftarrow w_t - \eta \frac{\nabla E_{in}(w_t)}{\|\nabla E_{in}(w_t)\|}$$

$$\|$$

$$w_t - \eta \nabla E_{in}(w_t)$$

- 5. Fixed learning rate gradient descent for logistic regression
  - Initialize w<sub>0</sub>
  - $\circ$  For t = 0, 1, ...
    - Compute

$$\nabla E_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} \theta(-y_n w^T x_n) (-y_n x_n)$$

• Update w by

$$w_t - \eta \nabla E_{in}(w_t)$$

until  $\nabla E_{in}(w_{t+1}) = 0$  or enough iterations

• Return *last*  $w_{t+1}$  as g Fixed learning rate gradient descent has time complexity similar to **Pocket PLA** per iteration