Continuity of the Deconfinement Transition in (Super) Yang Mills Theory

Thomas Schaefer, North Carolina State University

with Mithat Ünsal and Erich Poppitz

arXiv:1205.0290 & arxiv:1212.1238

Confinement and the QCD string

Leinweber (2001) Bali (2001)

Confinement well established numerically (and empirically)

Confinement and the QCD string

Challenge: Understand confinement analytically

Not just a problem in pure mathematics: Understand dynamics, suggest new observables, . . .

Some successes (QCD-like gauge theories)

- Polyakov model (compact QED in 2+1)
- $\mathcal{N}=2$ SUSY YM softly broken to $\mathcal{N}=1$

Typical mechanism: Dual superconductivity

Long distance description contains magnetic monopoles.

Monopoles condense: "Dual" superconductivity.

Landau-Ginzburg theory describes electric flux tubes: Confining strings.

String tension determined by dual photon mass.

Confinement: Goals

• Mass gap in the pure gauge theory: $m_{0^{++}}$

$$\langle \text{Tr}[F^2(x)] \text{Tr}[F^2(0)] \rangle \sim f^2 \exp(-m_{0^{++}}x)$$

String tension, effective theory of the QCD string.

$$\langle W(C) \rangle = \left\langle \text{Tr} \exp \left[i \int_C A^{\mu} dx_{\mu} \right] \right\rangle \sim \exp(-\sigma A(C))$$

Polykaov line: Effective potential, correlation functions.

$$\langle \Omega(\vec{x}) \rangle = \left\langle \text{Tr} \exp \left[i \int_0^\beta A_4 dx_4 \right] \right\rangle \sim 0$$

Critical temperature, center symmetry breaking

$$\Omega \to z\Omega$$
 $z \in Z_N$

• Theta dependence, $d^2E/d\theta^2 \neq 0$.

In this work we will pursue a more modest goal.

We will study confinement and the deconfinement phase transition in a non-abelian gauge theory which is weakly coupled (by using a suitable compactification).

We will argue that this theory is continuously connected (by decoupling an extra matter field) to pure gauge theory.

SU(2) YM with $n_f^{adj}=1$ Weyl fermions on $R^3\times S_1$

Phase diagram in L-m plane

Ingredients

- $R^3 \times S_1$ circle-compactified gauge theory.
- Small S_1 : Effective 3d theory involving holonomy and (dual) photon.
- Double expansion: Perturbative and non-perturbative effects (monopoles, topological molecules).
- Topological molecules: supersymmetry versus BZJ.
- Competition: Center stabilizing molecules, center breaking perturbative (and monopole) effects.

Gauge theory on $R^3 \times S_1$

SU(2) gauge theory, $n_f = 1$ adjoint Weyl fermion

$$\mathcal{L} = -\frac{1}{4g^2} F^a_{\mu\nu} F^{a\,\mu\nu} - \frac{i}{g^2} \lambda^a \sigma \cdot D^{ab} \lambda^b + \frac{m}{g^2} \lambda^a \lambda^a$$

$$A^a_\mu(0) = A^a_\mu(L)$$

$$\lambda^a(0) = \lambda^a(L)$$

Vacua labeled by Polyakov line

$$\Omega = \exp\left[i\int A_4 dx_4\right]$$

Center symmetry $\Omega o z\Omega$ $z \in Z_2$

$$\Omega \to z\Omega$$

$$z \in \mathbb{Z}_2$$

Small S_1 : Effective Theory

Consider small S_1 : Effective theory in 3d

 $\Omega \neq 1$: A_4^3 is a Higgs field, theory abelianizes $SU(2) \to U(1)$.

Light bosonic modes: (dual) "photon" σ and holonomy b

$$\mathcal{L} = \frac{g^2}{32\pi^2 L} \left[(\partial_i b)^2 + (\partial_i \sigma)^2 \right] + V(\sigma, b)$$

$$\Omega = \begin{pmatrix} e^{i\Delta\theta/2} & 0 \\ 0 & e^{-i\Delta\theta/2} \end{pmatrix} \quad b = \frac{4\pi}{g^2} \Delta\theta \qquad \epsilon_{ijk} \partial_k \sigma = \frac{4\pi L}{g^2} F_{ij}$$

holonomy b

dual photon σ

Note: m=0 effective theory can be super-symmetrized

$$B = b + i\sigma + \sqrt{2}\theta^{\alpha}\lambda^{\alpha}$$

Perturbation Theory

Perturbative potential for holonomy (Gross, Pisarski, Yaffe, 1981)

$$V(\Omega) = -\frac{m^2}{2\pi^2 L^2} \sum_{n=1}^{\infty} \frac{1}{n^2} |\operatorname{tr} \Omega^n|^2 = -\frac{m^2}{L^2} B_2 \left(\frac{\Delta \theta}{2\pi}\right)$$

m=0: Bosonic and fermionic terms cancel.

 $m \neq 0$: Center symmetric vacuum $tr(\Omega) = 0$ unstable.

Non-perturbative effects

Topological classification on $R^3 \times S_1$ (GPY)

1. Topological charge

$$Q_{top} = \frac{1}{16\pi^2} \int d^4x \, F\tilde{F}$$

2. Holonomy (eigenvalues q^{α} of Polyakov line at spatial infinity)

$$\langle \Omega(\vec{x}) \rangle = \left\langle \text{Tr} \exp \left[i \int_0^\beta A_4 dx_4 \right] \right\rangle$$

3. Magnetic charges

$$Q_M^{\alpha} = \frac{1}{4\pi} \int d^2 S \operatorname{Tr} \left[P^{\alpha} B \right]$$

Periodic instantons (calorons)

Instanton solution in \mathbb{R}^4 can be extended to solution on $\mathbb{R}^3 \times \mathbb{S}^1$

SU(2) solution has 1+3+1+3=8 bosonic zero modes

$$\int \frac{d\rho}{\rho^5} \int d^3x \, dx_4 \int dU \, e^{-2S_0} \qquad 2S_0 = \frac{8\pi^2}{g^2}$$

 $4n_{adj}$ fermionic zero modes

$$\int d^2\zeta d^2\xi$$

Calorons at finite holonomy: monopole constituents

KvBLL (1998) construct calorons with non-trivial holonomy

BPS and KK monopole constituents. Fractional topological charge, 1/2 at center symmetric point.

 $2 \times (3+1) = 8$ bosonic zero modes, 2×2 fermionic ZM.

$$\int d\phi_1 \int d^3x_1 \int d^2\zeta \, e^{-S_1} \int d\phi_2 \int d^3x_2 \int d^2\xi \, e^{-S_2}$$

Topological objects

$$(Q_M, Q_{top}) = (\int_{S_2} B \cdot d\Sigma, \int_{R^3 \times S_1} F\tilde{F})$$

Note: BPS/KK topological charges in \mathbb{Z}_2 symmetric vacuum. Also have (2,0) (magnetic) bions.

Topological objects: Coupling to low energy fields

$$(Q_M, Q_{top}) = (\int_{S_2} B \cdot d\Sigma, \int_{R^3 \times S_1} F\tilde{F})$$

Non-perturbative effects at m=0 from supersymmetry

Monopoles contribute to superpotential: $(\lambda\lambda)e^{-b+i\sigma}\sim\int d^2\theta e^{-B}$

$$W = \frac{M_{PV}^3 L}{g^2} \left(e^{-B} + e^{-2S_0} e^B \right)$$

Scalar potential

$$V(b,\sigma) \sim \left| \frac{\partial \mathcal{W}}{\partial B} \right|^2 \sim \frac{M_{PV}^6 L^3 e^{-2S_0}}{g^6} \left[\cosh \left(\frac{8\pi}{g^2} \left(\Delta \theta - \pi \right) \right) - \cos(2\sigma) \right]$$

Center symmetric vacuum $tr(\Omega) = 0$ preferred

Mass gap for dual photon $m_{\sigma}^2 > 0 \ (\rightarrow \text{confinement})$

Non-perturbative effects at m=0 from BZJ

Consider magnetically neutral topological molecules. Integrate over near zero-mode:

$$V_{BPS,\overline{BPS}} \sim e^{-2b} e^{-2S_0} \int d^3r \, e^{-S_{12}(r)}$$

$$S_{12}(r) = \frac{4\pi L}{g^2 r} (q_m^1 q_m^2 - q_b^1 q_b^2) + 4\log(r)$$

Saddle point integral after analytic continuation $g^2 \rightarrow -g^2$ (BZJ)

$$V(b,\sigma) \sim \frac{M_{PV}^6 L^3 e^{-2S_0}}{g^6} \cosh\left(\frac{8\pi}{g^2} \left(\Delta\theta - \pi\right)\right)$$

Same for magnetically charged molecules: $V \sim \cos(2\sigma)$.

Effective potential for $m \neq 0$

Effective potential: molecules, monopoles, perturbation theory

$$\begin{split} \tilde{V} &= \cosh 2b' - \cos 2\sigma \\ &+ \frac{\tilde{m}}{2\tilde{L}^2} \cos \sigma \left(\cosh b' - \frac{b' \sinh b'}{3 \log \tilde{L}^{-1}} \right) \\ &- \frac{1}{1728} \left(\frac{\tilde{m}}{\tilde{L}^2} \right)^2 \frac{1}{\log^3 \tilde{L}^{-1}} \left(b' \right)^2 . \end{split}$$

$$\tilde{L} = L\Lambda, \, \tilde{m} = m/\Lambda, \, b' = \frac{4\pi}{g^2} (\Delta\theta - \pi)$$

Critical
$$S_1$$
 size

$$\tilde{L}_c^2 = \frac{\tilde{m}}{8} \left[1 + \mathcal{O}\left(\frac{1}{\log \tilde{L}}, \frac{\tilde{m}}{\tilde{L}^2}\right) \right],$$

Corresponds to
$$T_c = \sqrt{\frac{8}{\tilde{m}}} \Lambda_{QCD}$$

SU(2) YM with $n_f^{adj}=1$ Weyl fermions on $R^3\times S_1$

Phase diagram in L-m plane

Higher rank gauge groups, θ dependence

 $SU(N \geq 3)$: First order transition $Z_N \to \emptyset$

Smooth $N_c \to \infty$ limit (because $Q_{top} \sim 1/N_c$)

$$\mu_{PV}^3 e^{-\frac{8\pi^2}{g^2 N_c}} \sim \Lambda^3$$

Large N_c : Eigenvalues of P for $N_c = 4, 5, 6$

$$\theta \neq 0$$
: Get $V_k \sim \cos\left(\frac{2\pi k + \theta}{N_c}\right)$, $k = 1, \dots, N-1$.

 2π periodicity + $1/N_c$ scaling \rightarrow mulitiple branches

 θ dependence of T_c (Anber, arXiv:1302.2641)

 G_2 : First order transition without change of symmetry.

Outlook

Continuity of deconfinement transition on $R^3 \times S_1$ can be studied on the lattice (with presently available technology).

Direct calculation in pure gauge theory: Find center stabilizing molecules from BZJ. But: Semi-classical approximation not reliable.

Other topics: Fundamental matter, effective theories for the QCD string,