

Adaptor Signature Based Atomic Swaps Between Bitcoin and a Mimblewimble Based Cryptocurrency

MASTER'S THESIS

submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Software Engineering Internet Computing

by

Jakob Abfalter, BSc

Registration Number 01126889

to the Facul	ty of Informatics
at the TU W	/ien
	Univ. Prof. Dr. Matteo Maffe Dr. Pedro Moreno Sanchez

/ienna, 6 th April, 2020			
	Jakob Abfalter	Matteo Maffei	

Erklärung zur Verfassung der Arbeit

Jakub Abiailei, Dol	Jakob	Abfalter	. BSc
---------------------	-------	----------	-------

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwendeten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 6. April 2020	
	Jakob Abfalter

Acknowledgements

Enter your text here.

Abstract

Enter your text here.

Contents

\mathbf{A}	bstract	vii
\mathbf{C}_{0}	ontents	ix
1	Introduction	1
2	Motivation & Objectives	3
3	Preliminaries3.1 Bitcoin3.2 Privacy-enhancing Cryptocurrencies3.3 Hash-time-locked Contracts3.4 Adaptor Signatures	5 5 5 5 5
4	Adaptor Signature Based Atomic Swaps Between Bitcoin and Grin4.1 General Notation4.2 Cryptographic Primitives4.3 Generalized Multiparty Adaptor Signature4.4 Atomic Swap Construction	7 7 7 7 8
5	Implementation5.1 Implementation Bitcoin side5.2 Implementation Grin side5.3 Performance Evaluation	9 9 9
6	Implementation Security and Privacy Evaluation6.1 Security Evaluation6.2 Privacy Evaluation	11 11 11
7	Related and Future Work 7.1 Payment Channel Networks on Grin	13 13 13 13

8 Conclusion	15
List of Figures	17
List of Tables	19
List of Algorithms	21
Bibliography	23

Introduction

TODO

Motivation & Objectives

TODC

Preliminaries

- 3.1 Bitcoin
- 3.1.1 Bitcoin Transaction Protocol
- 3.1.2 Bitcoin Scaling and Layer Two Solutions
- 3.2 Privacy-enhancing Cryptocurrencies
- 3.2.1 Zero Knowledge Proofs
- 3.2.2 Range Proofs
- 3.2.3 Mimblewimble (Grin)
- 3.3 Hash-time-locked Contracts
- 3.4 Adaptor Signatures
- 3.4.1 Schnorr Signature Construction
- 3.4.2 ECDSA Signature Construction

Adaptor Signature Based Atomic Swaps Between Bitcoin and Grin

- 4.1 **General Notation**
- 4.2 Cryptographic Primitives
- 4.3 Generalized Multiparty Adaptor Signature

We define a Generalized Multiparty Adaptor Signature Scheme from the standard construction of multiparty Schnorr signatures which are defined as follows:

```
GEN\_PART\_SIG(M, k, r, g^{k'}, g^{r'})
1: k \leftarrow \mathbb{Z}_q 1: e = h(M||g^k + g^{k'}||g^r + g^{r'})
2: r \leftarrow \mathbb{Z}_q 2: sig\_part = k + e * r
3: return (k,r) 3: return (sig_part,g^k,g^{r'})
\underbrace{VERF\_PART\_SIG(M,k,r,g^{k'},g^{r'},sig\_part)}
1: e = h(M||g^k + g^{k'}||g^r + g^{r'})
2: return g^{sig\_part} = g^{k'} + g^{e*r}
\underline{FINALIZE\_SIG(sig\_part,sig\_part',g^k,g^{k'}))}
1: return (sig\_part + sig\_part', g^k + g^{k'})
```

In order to have adaptable partial signature we add the following procedures

4.4 Atomic Swap Construction

- 4.4.1 Construction Bitcoin side
- 4.4.2 Construction Grin side
- 4.4.3 Security Definitions

Implementation

- 5.1 Implementation Bitcoin side
- 5.2 Implementation Grin side
- 5.3 Performance Evaluation

$_{\text{CHAPTER}}$

Implementation Security and Privacy Evaluation

- 6.1 Security Evaluation
- 6.2 Privacy Evaluation

Related and Future Work

- 7.1 Payment Channel Networks on Grin
- 7.2 Payment Channel Networks on Monero
- 7.3 Atomic Swaps With Related Cryptocurrencies
- 7.4 Tumbler Based Atomic Swaps

Conclusion

List of Figures

List of Tables

List of Algorithms

Bibliography