1 Općenito o iterativnim metodama za rješavanje nelinearnih jednadžbi

Računanje nultočaka nelinearnih funkcija jedan je od najčešćih zadataka primijenjene matematike.

Općenito, neka je zadana funkcija

$$f: I \to \mathbb{R}, \quad I \subseteq \mathbb{R}.$$

Tražimo sve one $x \in I$ za koje vrijedi

$$f\left(x\right) =0.$$

Takve točke x zovu se **rješenja** (korijeni) pripadne jednadžbe ili **nultočke** funkcije f.

U pravilu pretpostavljamo da je funkcija f neprekidna na intervalu I i da su joj nultočke izolirane. Naime, u protivnom bi postojao problem konvergencije.

Traženje nultočaka na zadanu točnost sastoji se od dvije faze:

• izolacije jedne nultočke ili više njih, tj. nalaženje intervala unutar kojeg se nalazi barem jedna nultočka funkcije

• iterativno nalaženje nultočke do na traženu točnost.

Prva faza traženja je teža i provodi se na temelju analize toka funkcije f.

Postoji mnoštvo metoda za nalaženje nultočaka nelinearnih funkcija do na zadanu točnost, no razlikuju se po tomu hoće li uvijek konvergirati i (ako konvergiraju) po brzini konvergencije. Općenito, brže metode nemaju sigurnu konvergenciju, dok je sporije metode imaju. Brzina konvergencije se opisuje pomoću reda konvergencije metode.

DEFINICIJA. Niz iteracija $(x_n)_{n\in\mathbb{N}_0}$ konvergira prema točki α s redom konvergencije $p,\ p\geq 1,$ ako vrijedi

$$|\alpha - x_n| \le c |\alpha - x_{n-1}|^p, \quad n \in \mathbb{N}$$
 (1)

za neki c>0. Ako je p=1, onda kažemo da niz **konvergira linearno** prema α . U tom slučaju je nužno da je c<1 i obično se c naziva **faktorom linearne konvergencije**.

Relacija (1) nije uvijek prikladna za linearne iterativne algoritme, no indukcijom se može pokazati da je za slučaj p=1 i c<1 nejednakost (1) ekvivalentna s

$$|\alpha - x_n| \le c^n |\alpha - x_0|, \quad n \in \mathbb{N},$$

što je katkad mnogo lakše dokazati nego (1). I u ovom slučaju govorimo o linearnoj konvergenciji s faktorom c.

2 Metoda polovljenja (bisekcije)

Najjednostavnija metoda nalaženja nultočaka nelinearne funkcije je **metoda polovl- jenja**. Ona funkcionira za sve neprekidne funkcije, no zato ima i najlošiju **ocjenu pogreške**.

Osnovna pretpostavka za primjenu algoritma polovljenja je neprekidnost funkcije f na intervalu [a,b] uz dodatni uvjet

$$f\left(a\right)f\left(b\right) < 0.$$

Ovaj uvjet nam osigurava da funkcija f ima na intervalu [a,b] barem jednu nultočku. Naravno, ako je

$$f(a) f(b) > 0$$

to ne znači da f nema nultočaka na [a,b]: može ih imati paran broj ili nultočku parnog reda. U prvom slučaju možemo riješiti problem boljom separacijom intervala [a,b], no u drugom slučaju metoda polovljenja neće dati rješenje.

Algoritam polovljenja je vrlo jednostavan: označimo s α prvu nultočku funkcije f i definiramo

$$a_0 := a, \quad b_0 := b, \quad x_0 = \frac{a_0 + b_0}{2}.$$

Neka je $n \geq 1$. U n-tom koraku algoritma konstruiramo interval $[a_n,b_n]$ komu je duljina polovina duljine prethodnog intervala $[a_{n-1},b_{n-1}]$, ali tako da nultočka ostane unutar intervala $[a_n,b_n]$. Konstrukcija intervala $[a_n,b_n]$ sastoji se u raspolavljanju intervala $[a_{n-1},b_{n-1}]$ točkom x_{n-1} i to tako da je

$$a_n := x_{n-1}, \quad b_n := b_{n-1}, \quad f(a_{n-1}) f(x_{n-1}) > 0,$$

 $a_n := a_{n-1}, \quad b_n := x_{n-1}, \quad f(a_{n-1}) f(x_{n-1}) < 0.$

Postupak zaustavljamo kad je ispunjen uvjet

$$|\alpha - x_n| \le \varepsilon.$$

No kako ćemo znati da to vrijedi ako ne znamo α ? Jer je x_n polovište intervala $[a_n, b_n]$ i $\alpha \in [a_n, b_n]$, to je

$$|\alpha - x_n| \le |b_n - x_n| = b_n - x_n,$$

pa je u stvari dovoljno postaviti zahtjev

$$b_n - x_n \leq \varepsilon$$
.

ALGORITAM (*Metoda polovljenja*)

$$x:=\left(a+b\right)/2$$
 while $b-x>\varepsilon$ do begin; if $f\left(x\right)*f\left(b\right)<0.0$ then $a:=x;$ else
$$b:=x;$$
 $x:=\left(a+b\right)/2;$ end;

Nelinearne jednadžbe

Iz konstrukcije same metode lako se ocijeni pogreška n-te aproksimacije nultočke. Vrijedi

$$|\alpha - x_n| \le b_n - x_n = \frac{1}{2} (b_n - a_n) = \frac{1}{2^2} (b_{n-1} - a_{n-1}) = \dots = \frac{1}{2^{n+1}} (b - a),$$
 (2)

odnosno

$$|\alpha - x_n| \le \frac{1}{2^n} (b - x_0).$$

Desna strana ove nejednakosti daje nam naslutit da će konvergencija biti dosta spora. Relacija (2) nam omogućava da unaprijed odredimo koliko će koraka biti potrebno da bismo postigli željenu točnost ε . Naime, da bi vrijedilo $|\alpha - x_n| \le \varepsilon$ dovoljno je zahtijevati

$$\frac{1}{2^{n+1}}(b-a) \le \varepsilon.$$

Jednostavnim računom dobijemo

$$n \ge \frac{\log(b-a) - \log\varepsilon}{\log 2} - 1, \quad n \in \mathbb{N}_0.$$

Ako je funkcija f još i neprekidno derivabilna na [a,b], možemo dobiti dinamičku ocjenu udaljenosti aproksimacije nultočke od prave nultočke. Po *Teoremu srednje vrijednosti* za funkciju f vrijedi

$$f(x_n) = f(\alpha) + f'(\xi)(x_n - \alpha),$$

pri čemu je ξ između α i x_n . Koristeći činjenicu da je $f(\alpha)=0$ dobijemo

$$|f(x_n)| = |f'(\xi)| |x_n - \alpha|,$$

odakle slijedi

$$|x_n - \alpha| = \frac{|f(x_n)|}{|f'(\xi)|}.$$

Pretpostavimo li da možemo dati ocjenu

$$|f'(\xi)| \ge m_1, \quad m_1 = \min_{x \in [a,b]} |f'(x)|,$$

ako je $m_1 \neq 0$ dobijemo

$$|x_n - \alpha| \le \frac{|f(x_n)|}{m_1}.$$

Dakle, želimo li postići da vrijedi

$$|\alpha - x_n| \le \varepsilon,$$

dovoljno je zahtijevati

$$|f(x_n)| \leq m_1 \varepsilon$$
.

3 Metoda pogrešnog položaja (Regula falsi)

Metoda koja nastaje kao prirodna posljedica ubrzavanja metode polovljenja je tzv. **regula falsi**. I ona sama je konvergentna čim se barem jedna nultočka funkcije f nalazi unutar intervala [a,b].

Pretpostavimo opet da je funkcija f neprekidna na intervalu [a,b] i da vrijedi

$$f\left(a\right)f\left(b\right) < 0.$$

Aproksimiramo funkciju f pravcem p koji prolazi točkama $T_1\left(a,f\left(a\right)\right)$ i $T_2\left(b,f\left(b\right)\right)$. Njegova je jednadžba

$$y - f(b) = \frac{f(a) - f(b)}{a - b}(x - b),$$

odnosno

$$y - f(a) = \frac{f(b) - f(a)}{b - a}(x - a).$$

Nultočku α funkcije f možemo aproksimirati nultočkom tog pravca, nazovimo je x_0 . Nakon toga pomaknemo ili točku a ili točku b u x_0 , no tako da nultočka α ostane unutar novodobivenog intervala. Postupak ponavljamo sve dok ne dobijemo željenu točnost ε . Točka x_0 se dobije jednostavno iz jednadžbe pravca p kao

$$x_0 = b - f(b) \frac{b - a}{f(b) - f(a)} = a - f(a) \frac{a - b}{f(a) - f(b)},$$

ili drugačije zapisano

$$x_0 = b - \frac{f(b)}{f[a,b]} = a - \frac{f(a)}{f[a,b]},$$
 (3)

gdje je

$$f[a,b] = \frac{f(b) - f(a)}{b - a}$$

prva podijeljena razlika funkcije f u točkama a i b.

Ipak, postoji nekoliko ozbiljnih problema s ovom metodom. Pogledajmo kakav je red konvergencije. Iz relacije (3) imamo

$$\alpha - x_0 = \alpha - b + \frac{f(b)}{f[a,b]} = (\alpha - b) \left[1 + \frac{f(b)}{(\alpha - b) f[a,b]} \right]$$

$$= (\alpha - b) \left[1 + \frac{f(b) - f(\alpha)}{(\alpha - b) f[a,b]} \right]$$

$$= (\alpha - b) \left[1 + (b - \alpha) \frac{f[b,\alpha]}{(\alpha - b) f[a,b]} \right]$$

$$= (\alpha - b) \left[1 - \frac{f[b,\alpha]}{f[a,b]} \right] = (\alpha - b) \frac{f[a,b] - f[b,\alpha]}{f[a,b]}$$

$$= -(\alpha - b) (\alpha - a) \frac{f[a,b,\alpha]}{f[a,b]}.$$

Podsjetimo se da je

$$f[a, b, \alpha] = \frac{f[b, \alpha] - f[a, b]}{\alpha - a}.$$

Ako je funkcija f neprekidno derivabilna, onda po Teoremu srednje vrijednosti imamo

$$f[a,b] = \frac{f(b) - f(a)}{b - a} = f'(\xi), \quad \xi \in [a,b].$$

Slično, ako je funkcija f još i dvaput neprekidno derivabilna, onda po Teoremu srednje vrijednosti imamo

$$f\left[a,b,\alpha\right] = \frac{f\left[b,\alpha\right] - f\left[a,b\right]}{\alpha - a} = \frac{1}{2}f''\left(\eta\right), \quad \eta \in \left[m,M\right],$$

pri čemu je

$$m = \min \{a, b, \alpha\}, \quad M = \max \{a, b, \alpha\}.$$

Iskoristimo li ovo dobijemo ocjenu

$$\alpha - x_0 = -(\alpha - b)(\alpha - a)\frac{f''(\eta)}{2f'(\xi)}.$$

Sada ćemo na jednom slučaju pokazati kako se provodi analiza konvergencije ove metode.

Pretpostavimo da je α jedini korijen funkcije f unutar [a,b] i da vrijedi $f'(\alpha) \neq 0$. Također pretpostavimo da je $f''(x) \geq 0$ za sve $x \in [a,b]$ (tj. da je f konveksna na [a,b]). Ako je f'(x) > 0 za sve $x \in [a,b]$, onda je f konveksna rastuća funkcija, a spojnica točaka $T_1(a,f(a))$ i $T_2(b,f(b))$ je uvijek iznad grafa funkcije f. Iz početnih uvjeta dobijemo da je

$$\alpha - x_0 = -(\alpha - b)(\alpha - a)\frac{f''(\eta)}{2f'(\xi)} > 0,$$

pa će se u sljedećem koraku pomaknuti a. Isto će se dogoditi i u svim narednim koracima. Dakle, b je fiksan, a α je stalno desno od aproksimacije x_n . To znači da vrijedi

$$\alpha - x_n = -(\alpha - b)(\alpha - a_n) \frac{f''(\eta_n)}{2f'(\xi_n)}.$$

Uzimanjem apsolutnih vrijednosti s desna i lijeva dobijemo da je konvergencija metode *regula falsi* u ovom slučaju linearna. Lako se vidi da je moguće naći primjere kod kojih metoda polovljenja konvergira brže nego metoda *regula falsi*.

4 Metoda sekante

Ako, slično kao kod *regule falsi*, graf funkcije f aproksimiramo sekantom, ali pri tom ne zahtijevamo da nultočka funkcije f ostane "zatvorena" unutar poljednje dvije iteracije, dobit ćemo **metodu sekante**. Time smo izgubili svojstvo sigurne konvergencije, ali se nadamo da će metoda konvergirati brže nego *regula falsi*.

U ovoj metodi počinjemo s dvije početne točke x_0 i x_1 , te povlačimo sekantu kroz točke $T_0\left(x_0,f\left(x_0\right)\right)$ i $T_1\left(x_1,f\left(x_1\right)\right)$. Ta sekanta siječe os x u točki x_2 . Postupak nastavljamo provlačenjem sekante kroz točke $T_1\left(x_1,f\left(x_1\right)\right)$ i $T_2\left(x_2,f\left(x_2\right)\right)$. Formule za metodu sekante dobiju se iteriranjem početne formule za *regulu falsi*, pa tako dobivamo

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}.$$

Iskoristimo li za svaki $n \in \mathbb{N}_0$ ocjenu

$$\alpha - x_n = -(\alpha - b)(\alpha - a_n) \frac{f''(\eta_n)}{2f'(\xi_n)},$$

dobit ćemo red konvergencije metode sekante uz odgovarajuće pretpostavke. Vrijedi

$$\alpha - x_{n+1} = -\left(\alpha - x_n\right)\left(\alpha - x_{n-1}\right) \frac{f''\left(\eta_n\right)}{2f'\left(\xi_n\right)}.$$
(4)

TEOREM. Neka su f, f' i f'' neprekidne na nekom intervalu $I \subset \mathbb{R}$, pri čemu I sadrži jednostruku nultočku α . Ako su početne iteracije x_0 i x_1 izabrane dovoljno blizu nultočke α , onda niz iteracija $(x_n)_{n\in\mathbb{N}_0}$ dobiven metodom sekante konvergira prema α s redom konvergencije p, gdje je

$$p = \frac{1 + \sqrt{5}}{2} \approx 1.618.$$

DOKAZ. Primijetimo da jednostrukost nultočke α osigurava ispunjenje uvjeta $f'(\alpha) \neq 0$. Također, za neki $\varepsilon > 0$ postoji okolina $O = [\alpha - \varepsilon, \alpha + \varepsilon] \subset I$ nultočke α , takva da je $f'(x) \neq 0$ za sve $x \in O$. U tom slučaju je dobro definiran broj

$$M = \frac{\max_{x \in O} |f''(x)|}{2\min_{x \in O} |f'(x)|}.$$

Zbog relacije (4) za sve $x_0, x_1 \in O$ vrijedi

$$|\alpha - x_2| \le M |\alpha - x_1| |\alpha - x_0|.$$

Da bismo skratili zapis označimo s

$$e_n = \alpha - x_n$$
.

grešku n-te iteracije aproksimacije nultočke α . Sada prethodnu nejednakost možemo nakon množenja sM pisati kao

$$M |e_2| \le M^2 |e_1| |e_0|$$
.

Pretpostavimo da su $x_0, x_1 \in O$ izabrani toliko blizu nultočke α da vrijedi

$$\delta = \max \{ M |e_1|, M |e_0| \} < 1,$$

19

iz čega odmah slijedi

$$M|e_2| \le \delta^2 < \delta,$$

pa je

$$|e_2| < \frac{\delta}{M} = \max\{|e_1|, |e_0|\} \le \varepsilon,$$

odnosno

$$x_2 \in [\alpha - \varepsilon, \alpha + \varepsilon] = O.$$

Primjenimo li ovaj argument induktivno, dobijemo

$$M |e_3| \le M^2 |e_2| |e_1| \le \delta^2 \cdot \delta = \delta^3,$$

 $M |e_4| \le M^2 |e_3| |e_2| \le \delta^3 \cdot \delta^2 = \delta^5,$

i općenito

$$M|e_{n+1}| \le M^2 |e_n| |e_{n-1}| \le \delta^{q_n} \cdot \delta^{q_{n-1}} = \delta^{q_{n+1}},$$

pri čemu je

$$q_{n+1} = q_n + q_{n-1}, \quad n \ge 1,$$

 $q_0 = q_1 = 1.$

Dakle, vidimo da se radi o rekurziji za Fibonaccijeve brojeve, pa se lako izračuna eksplicitno rješenje

$$q_n = c_0 r_0^n + c_1 r_1^n.$$

Pri tom je

$$r_0 = \frac{1+\sqrt{5}}{2}, \quad r_1 = \frac{1-\sqrt{5}}{2},$$
 $c_0 = \frac{1}{\sqrt{5}}r_0, \quad c_1 = -\frac{1}{\sqrt{5}}r_1.$

Dakle, dobili smo

$$q_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^{n+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{n+1} \right], \quad n \ge 0.$$

Kako je $r_0 \approx 1.618$ i $r_1 \approx -0.618$, to vidimo da r_1 teži k nuli kada n teži prema beskonačnosti, pa je za velike n

$$q_n \approx \frac{1}{\sqrt{5}} (1.618)^{n+1}$$
.

No vratimo se na grešku e_n . Vidjeli smo da je

$$M|e_n| \leq \delta^{q_n}, \quad n \geq 0,$$

pa budući da je $0 < \delta < 1$ i za velike n broj q_n teži k beskonačnosti, to vrijedi $|e_n| \to 0$, tj.

$$x_n \to \alpha, \quad n \to \infty$$

Napominjemo da je ovaj dokaz bitno pojednostavljen i nije posve korektan!

Mane ove metode su da ona bitno ovisi o dobrom odabiru početnih aproksimacija, te da se lako može javiti poznati problem "kraćenja" u brojniku i (posebno) nazivniku kvocijenta

$$\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

kada $x_n \to \alpha$. Također, budući da iteracije s obje strane ne zatvaraju nultočku α nije lako reći kada treba zaustaviti proces.

5 Metoda tangente (Newtonova metoda)

Ako graf funkcije f aproksimiramo tangentom umjesto sekantom, dobili smo **metodu tangente** ili **Newtonovu metodu**. Slično kao i kod metode sekante time smo izgubili sigurnu konvergenciju, no nadamo se da će metoda brzo konvergirati.

Pretpostavimo da je zadana početna točka x_0 . Ideja metode je povući tangentu u točki $T_0\left(x_0,f\left(x_0\right)\right)$ i definirati novu aproksimaciju x_1 u točki gdje tangenta siječe os x. Općenito bi to išlo ovako: u točki x_n napiše se jednadžba tangente

$$y - f(x_n) = f'(x_n)(x - x_n).$$

Nultočka joj je

$$x = x_n - \frac{f(x_n)}{f'(x_n)},$$

pa stavimo $x_{n+1} := x$.

Primijetimo da je ova metoda usko vezana uz metodu sekante jer je

$$f'(x_n) \approx \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}.$$

Do Newtonove metode možemo doći i korištenjem razvoja u Taylorov red funkcije f oko točke x_n uz pretpostavku da je f dvaput neprekidno derivabilna na u nekoj okolini nultočke α . Vrijedi

$$f(x) = f(x_n) + f'(x_n)(x - x_n) + \frac{f''(\xi_n)}{2}(x - x_n)^2,$$

pri čemu je ξ_n između x i x_n . Uvrštavanjem $x = \alpha$ dobivamo

$$0 = f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \frac{f''(\xi_n)}{2}(\alpha - x_n)^2.$$

Uz pretpostavku da je $f'(x_n) \neq 0$ dobijemo

$$\alpha = x_n - \frac{f(x_n)}{f'(x_n)} - (\alpha - x_n)^2 \frac{f''(\xi_n)}{2f'(x_n)}.$$

Kako je

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

to dobivamo

$$\alpha - x_{n+1} = -(\alpha - x_n)^2 \frac{f''(\xi_n)}{2f'(x_n)}, \quad n \in \mathbb{N}_0.$$

Iz ove zadnje jednakosti odmah vidimo da je Newtonova metoda, kada konvergira, kvadratno konvergentna. Ipak, takav zaključak vrijedi samo ako $f'(x_n)$ ne teži k nuli tijekom procesa, tj. ako je $f'(\alpha) \neq 0$ ili drugim riječima ako je nultočka α jednostruka.

TEOREM. Neka su f, f' i f'' neprekidne na intervalu $I \subset \mathbb{R}$, pri čemu I sadrži jednostruku nultočku α funkcije f. Ako je početna iteracija x_0 izabrana dovoljno blizu nultočke α , onda niz iteracija $(x_n)_{n\in\mathbb{N}_0}$ dobiven Newtonovom metodom konvergira prema α s redom konvergencije p=2. Štoviše, vrijedi

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} = -\frac{f''(\alpha)}{2f'(\alpha)}.$$

DOKAZ. Izaberimo okolinu $O = [\alpha - \varepsilon, \alpha + \varepsilon] \subset I$ nultočke α i neka je

$$M = \frac{\max_{x \in O} |f''(x)|}{2\min_{x \in O} |f'(x)|}.$$

Za sve $x_0 \in O$ korištenjem jednakosti

$$\alpha - x_{n+1} = -(\alpha - x_n)^2 \frac{f''(\xi_n)}{2f'(x_n)}, \quad n \in \mathbb{N}_0$$

u posebnom slučaju n=0 dobijemo

$$|\alpha - x_1| \le M |\alpha - x_0|^2,$$

odnosno

$$M |\alpha - x_1| \le (M |\alpha - x_0|)^2.$$

Izaberimo $x_0 \in O$ tako da zadovoljava uvjet $M |\alpha - x_0| < 1$. Tada vrijedi

$$M\left|\alpha - x_1\right| \le M\left|\alpha - x_0\right|,$$

odnosno

$$|\alpha - x_1| \le |\alpha - x_0| \le \varepsilon,$$

pa i x_1 leži u okolini O.

Induktivnom primjenom istog argumenta dobivamo

$$|\alpha - x_n| \le \varepsilon, \quad M |\alpha - x_n| < 1$$

za sve $n \in \mathbb{N}$.

Da bismo dokazali konvergenciju iskoristimo opet jednakost

$$\alpha - x_{n+1} = -(\alpha - x_n)^2 \frac{f''(\xi_n)}{2f'(x_n)}, \quad n \in \mathbb{N}_0.$$

Imamo

$$M |\alpha - x_{n+1}| \le (M |\alpha - x_n|)^2, \quad n \in \mathbb{N}_0,$$

pa indukcijom lako pokažemo

$$M |\alpha - x_n| \le (M |\alpha - x_0|)^{2^n}, \quad n \in \mathbb{N},$$

odnosno

$$|\alpha - x_n| \le \frac{1}{M} (M |\alpha - x_0|)^{2^n}, \quad n \in \mathbb{N}.$$

Budući vrijedi

$$M\left|\alpha - x_0\right| < 1,$$

odmah dobijemo $x_n \to \alpha$ kada $n \to \infty$,a kako ξ_n leži između x_n i α slijedi i da $\xi_n \to \alpha$ kada $n \to \infty$.

Zbog toga je

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^2} = -\lim_{n \to \infty} \frac{f''(\xi_n)}{2f'(x_n)} = -\frac{f''(\alpha)}{2f'(\alpha)} \quad \blacksquare$$

Prethodni teorem nam daje dovoljne uvjete za **lokalnu konvergenciju** Newtonove metode prema jednostrukoj nultočki α . Konvergencija je lokalna jer je postavljen uvjet da početna aproksimacija x_0 mora biti dovoljno blizu nultočke α . Veličina ε određena je uvjetom

$$M \left| \alpha - x_0 \right| < 1$$

koji osigurava konvergenciju metode.

Da bismo izveli ocjenu greške opet ćemo iskoristiti Taylorov teorem. Za dvije susjedne iteracije u Newtonovoj metodi vrijedi

$$f(x_n) = f(x_{n-1}) + f'(x_{n-1})(x_n - x_{n-1}) + \frac{f''(\xi_{n-1})}{2}(x_n - x_{n-1})^2,$$

pri čemu je ξ_{n-1} između x_{n-1} i x_n . Po definiciji iteracija u Newtonovoj metodi vrijedi

$$f(x_{n-1}) + f'(x_{n-1})(x_n - x_{n-1}) = 0,$$

pa je

$$f(x_n) = \frac{f''(\xi_{n-1})}{2} (x_n - x_{n-1})^2.$$

Promotrimo sada slučaj I=[a,b]. Pod pretpostavkom da su f'' i f' neprekidne na [a,b] one zasigurno na njemu postižu i svoj minimum i svoj maksimum. Označimo li

$$M = \max_{x \in [a,b]} |f''(x)|, \quad m = \min_{x \in [a,b]} |f'(x)|,$$

dobijemo

$$f(x_n) \le \frac{M}{2} (x_n - x_{n-1})^2$$

a kao i kod metode bisekcije ako je $m \neq 0$ iz Teorema srednje vrijednosti dobijemo i ocjenu

$$|x_n - \alpha| = \frac{|f(x_n)|}{|f'(\xi)|} \le \frac{|f(x_n)|}{m}.$$

Kombinacijom ovih dviju ocjena dobivamo

$$|x_n - \alpha| \le \frac{M}{2m} \left(x_n - x_{n-1} \right)^2.$$

Ako je ε gornja ograda za apsolutnu grešku (tj. tražena točnost), onda test

$$\frac{M}{2m}(x_n - x_{n-1})^2 \le \varepsilon,$$

ili (u drugoj formi zapisa)

$$|x_n - x_{n-1}| \le \sqrt{\frac{2m\varepsilon}{M}},$$

garantira da je

$$|x_n - \alpha| \le \varepsilon$$
.

Naravno, možemo koristiti i prije spomenuti test

$$|x_n - \alpha| \le \frac{|f(x_n)|}{m} \le \varepsilon.$$

U prethodnim ocjenama za lokalnu konvergenciju koristili smo pretpostavke da su f, f' i f'' neprekidne sve $x \in [a,b]$ i da je $m \neq 0$. No kako je $m = \min_{x \in [a,b]} |f'(x)|$, to znači da je

$$|f'(x)| > 0, x \in [a, b],$$

pa je f strogo monotona na [a,b]. Ako još i druga derivacija f'' ima svojstvo da joj je predznak isti na cijelom segmentu [a,b], onda možemo dobiti i uvjete za **globalnu konvergenciju** Newtonove metode.

TEOREM. Neka su f, f' i f'' neprekidne na segmentu $[a, b] \subset \mathbb{R}$, pri čemu je f(a) f(b) < 0, i neka f' i f'' nemaju nultočaka u [a, b] (tj. imaju stalan predznak na [a, b]). Ako polazna iteracija $x_0 \in [a, b]$ zadovoljava uvjet

$$f\left(x_0\right)f''\left(x_0\right) > 0,$$

onda niz iteracija dobiven Newtonovom metodom konvergira prema (jedinstvenoj jednostrukoj) nultočki α funkcije f.

DOKAZ. Uočimo najprije da uvjeti teorema osiguravaju postojanje i jedinstvenost jednostruke nultočke α .

Pretpostavimo, na primjer, da je za sve $x \in [a,b]$ ispunjeno f'(x) > 0 i f''(x) > 0. Tada je f monotono rastuća i zbog početnog uvjeta f(a) f(b) < 0 mora vrijediti f(a) < 0 i f(b) > 0. Jer je f'' pozitivna i vrijedi $f(x_0) f''(x_0) > 0$, to za početnu iteraciju x_0 mora vrijediti $f(x_0) > 0$. U praksi možemo uzeti $x_0 = b$, jer je to jedina točka za koju sigurno znamo da ispunjava taj uvijet.

Neka je $(x_n)_{n\in\mathbb{N}_0}$ niz iteracija generiran Newtonovom metodom iz startne točke x_0 za koju vrijedi $f(x_0)>0$. Dakle imamo

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

i znamo da je $x_0 > \alpha$ (zbog monotonosti funkcije f). Tvrdimo da vrijedi $\alpha < x_n \le x_0, \ n \in \mathbb{N}_0$. Dokaz provodimo matematičkom indukcijom čiju bazu već imamo. Pretpostavimo da tvrdnja vrijedi za $n \in \mathbb{N}_0$. Po pretpostavci je $f(x_n) > 0$ i $f'(x_n) > 0$, pa je $x_{n+1} < x_n$, što pokazuje da naš niz iteracija monotono pada. Posebno iz toga slijedi $x_{n+1} \le x_0$ jer je po pretpostavci indukcije $x_n \le x_0$.

Dokažimo još i lijevu nejednakost u dvostrukoj nejednakosti

$$\alpha < x_{n+1} \le x_0, \quad n \in \mathbb{N}_0.$$

Po Taylorovoj formuli vrijedi

$$0 = f(\alpha) = f(x_n) + f'(x_n)(\alpha - x_n) + \frac{f''(\xi_n)}{2}(\alpha - x_n)^2,$$

pri čemu je $\xi_n \in (\alpha, x_n) \subset [a, b]$. Zbog $f''(\xi_n) > 0$ imamo

$$f(x_n) + f'(x_n)(\alpha - x_n) < 0,$$

tj.

$$\alpha < x_n - \frac{f(x_n)}{f'(x_n)},$$

odakle slijedi

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} > \alpha.$$

Time je dokazan korak indukcije, pa i sama tvrdnja.

Uočimo da smo usput dokazali i monotonost niza $(x_n)_{n\in\mathbb{N}_0}$. Dokažimo sada da je limes ovog niza upravo nultočka α .

Kako je, dakle, niz $(x_n)_{n\in\mathbb{N}_0}$ monotono padajući i omeđen odozdo (s α), to postoji

$$\alpha' := \lim_{n \to \infty} x_n$$

za kojeg vrijedi

$$\alpha \leq \alpha' \leq x_0,$$

pa je $\alpha' \in [a,b]$. Prijelazom na limes u formuli za Newtonove iteracije dobijemo

$$\alpha' = \alpha' - \frac{f(\alpha')}{f'(\alpha')},$$

odakle zbog $f'(\alpha') \neq 0$ slijedi $f(\alpha') = 0$. Kako je α jedina nultočka funkcije f iz [a,b] slijedi

$$\alpha' = \alpha$$
.

Preostali slučajevi s obzirom na predznake f' i f'' dokažu se analogno

Napomenimo da uvjet

$$f\left(x_0\right)f''\left(x_0\right) > 0$$

ima vrlo jednostavno geometrijsko značenje: gledajući graf funkcije f početnu iteraciju x_0 trebamo izabrati na "strmijoj" strani funkcije.

Računanje korištenjem Newtonove metode može trajati duže nego računanje po metodi sekante iako Newtonova metoda ima veći red konvergencije nego metoda sekante. Objašnjenje leži u činjenici da se za svaki korak Newtonove metode mora izračunati i vrijednost funkcije i vrijednost derivacije u danoj iteraciji, dok se u metodi sekante računa samo vrijednost funkcije.

Metode koje nemaju sigurnu konvergenciju katkad se kombiniraju s metodom polovljenja na sljedeći način:

- izračunamo novu iteraciju po bržoj metodi i ako nije izašla iz danog intervala nastavimo dalje;
- u protivnom napravimo jedan iteracijski korak metodom polovljenja, a zatim se opet vratimo na bržu metodu.

6 Metoda jednostavne iteracije

Neka je $g:D\to\mathbb{R}$ neka zadana funkcija. Pretpostavimo da tražimo rješenje jednadžbe

$$x = g\left(x\right)$$

koje ćemo označiti s α . Definirajmo **jednostavnu iteracijsku funkciju** (jednostavnu u smislu da "pamti" samo jednu prethodnu iteraciju) s

$$x_{n+1} = g(x_n), \quad n \in \mathbb{N}_0,$$

pri čemu je neki $x_0 \in D$ na neki način odabrana prva iteracija (početna aproksimacija za α). Primijetimo da Newtonova metoda pripada klasi jednostavnih iteracija jer je u tom slučaju funkcija g definirana s

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Točke za koje vrijedi $x=g\left(x\right)$ nazivaju se **čvrstim (fiksnim)** točkama funkcije g. Mis mo najčešće zainteresirani za rješavanje jednadžbe oblika $f\left(x\right)=0$, no lako je uočiti da se iz problema $f\left(x\right)=0$ jednostavno prelazi na problem $x=g\left(x\right)$.

PRIMJER. Pretpostavimo da želimo riješiti jednadžbu

$$x^2 - a = 0, \quad a > 0,$$

ali prelaskom na rješavanje jednadžbe oblika $x=g\left(x\right)$. To možemo napraviti na više načina:

- $\bullet \ x = x^2 + x a,$
- $\bullet x = a/x, \quad x \neq 0,$
- $\bullet \ x = \frac{1}{2} \left(x + \frac{a}{2} \right).$

Prirodno se nameće pitanje kako se ponašaju razne jednostavne iteracije.

LEMA. Neka je funkcija g neprekidna na [a,b] i neka je

$$(\forall x \in [a, b])$$
 $a \le g(x) \le b,$

ili kraće $g\left([a,b]\right)\subseteq [a,b]$. Tada jednostavna iteracija $x=g\left(x\right)$ ima barem jedno rješenje na [a,b] .

DOKAZ. Za neprekidnu funkciju $G:[a,b] \to \mathbb{R}$ definiranu sG(x) = g(x) - x vrijedi

$$G(a) \ge 0, \quad G(b) \le 0,$$

pa ona nužno mijenja predznak na [a,b] . To znači da G ima nultočku na [a,b] , pa postoji rješenje jednadžbe $x=g\left(x\right)$ na [a,b] .

LEMA. Neka je funkcija g neprekidna na [a,b] i neka je $g([a,b])\subseteq [a,b]$. Nadalje, neka postoji konstanta $\lambda\in(0,1)$ takva da vrijedi

$$(\forall x, y \in [a, b]) |g(x) - g(y)| \le \lambda |x - y|$$

(drugim riječima pretpostavimo da je g Lipshitzova za $\lambda \in (0,1)$, odnosno da je **kontrakcija**). Tada jednostavna iteracija x=g(x) ima jedinstveno rješenje α na [a,b]. Također, niz iteracija $x_n=g(x_{n-1}), n\in\mathbb{N}$, konvergira prema α za proizvoljni $x_0\in[a,b]$.

DOKAZ. Prema prethodnoj lemi znamo da postoji barem jedno rješenje $\alpha \in [a,b]$ jednadžbe $x=g\left(x\right)$. Pokažimo da je ono jedinstveno. Dokaz ćemo provesti kontradikcijom: pretpostavimo da postoje dva različita rješenja α i β . Za njih tada vrijedi $\alpha=g\left(\alpha\right)$ i $\beta=g\left(\beta\right)$.

Iz ovoga i pretpostavke da je g kontrakcija slijedi

$$|\alpha - \beta| = |g(\alpha) - g(\beta)| \le \lambda |\alpha - \beta|,$$

odnosno

$$(1 - \lambda) |\alpha - \beta| \le 0.$$

Budući je po pretpostavci $\lambda \in (0,1)$, tj. $1-\lambda>0$, to mora biti $|\alpha-\beta|=0$, što je u kontradikciji s pretpostavkom da je $\alpha\neq\beta$. Dakle, ne mogu postojati dva različita rješenja.

Dokažimo još konvergenciju jednostavnih iteracija za proizvoljni $x_0 \in [a,b]$. Uočimo da $x_{n-1} \in [a,b]$ povlaći $x_n = g\left(x_{n-1}\right) \in [a,b]$. Dalje, vrijedi

$$\left|\alpha - x_n\right| = \left|g\left(\alpha\right) - g\left(x_{n-1}\right)\right| \le \lambda \left|\alpha - x_{n-1}\right|,$$

iz čega indukcijom slijedi

$$|\alpha - x_n| \le \lambda^n |\alpha - x_0|, \quad n \in \mathbb{N}.$$

Ako pustimo da n teži u beskonačno, onda zbog $\lambda \in (0,1)$ slijedi $\lambda^n \to 0$, pa $x_n \to \alpha \blacksquare$

No pogledajmo što se događa ako g ima još neke "lijepe" osobine. Ako je g derivabilna na (a,b), onda po *Teoremu srednje vrijednosti* za bilo koje $x,y\in [a,b]$ postoji odgovarajući $\xi\in (a,b)$ takav da vrijedi

$$g(x) - g(y) = g'(\xi)(x - y)$$
.

Definirajmo

$$\lambda = \max_{x \in (a,b)} |g'(x)|.$$

Tada možemo pisati

$$(\forall x, y \in [a, b]) |g(x) - g(y)| \le \lambda |x - y|,$$

tj. g je Lipshitzova za tako odabrani λ . No primijetimo da takav λ može biti i veći ili jednak 1, tj. g ne mora biti kontrakcija.

TEOREM. Neka je funkcija g neprekidno derivabilna na (a,b) , neka je ispunjeno g $([a,b]) \subseteq [a,b]$, te neka je

$$\lambda = \max_{x \in (a,b)} |g'(x)| < 1.$$

Tada vrijedi:

- 1. Jednadžba $x=g\left(x\right)$ ima točno jedno rješenje $\alpha\in\left[a,b\right]$.
- 2. Za proizvoljni $x_0 \in [a,b]$ niz jednostavnih iteracija $x_n = g\left(x_{n-1}\right), \ n \in \mathbb{N},$ konvergira prema α i vrijedi

$$|\alpha - x_n| \le \lambda^n |\alpha - x_0|, \quad n \in \mathbb{N},$$

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = g'(\alpha).$$

DOKAZ. Sve tvrdnje slijede direktno iz prethodnoga osim tvrdnje o brzini konvergencije.

Vrijedi

$$\alpha - x_{n+1} = g(\alpha) - g(x_n) = g'(\xi_n)(\alpha - x_n), \quad n \in \mathbb{N}_0,$$

pri čemu je ξ_n odabran između α i x_n . Budući da $x_n \to \alpha$ kada $n \to \infty$, to onda i $\xi_n \to \alpha$ (jer se interval "steže"). Dakle, vrijedi

$$\lim_{n\to\infty} \frac{\alpha - x_{n+1}}{\alpha - x_n} = \lim_{n\to\infty} g'(\xi_n) = g'(\alpha).$$

TEOREM. Neka je α rješenje jednadžbe x=g(x) i neka je g neprekidno derivabilna na nekoj okolini O točke α . Nadalje, neka je ispunjeno $|g'(\alpha)| < 1$ i neka je početna iteracija x_0 izabrana dovoljno blizu α . Tada vrijede sve tvrdnje prethodnog teorema.

DOKAZ. Definirajmo interval $I=[a,b]=[\alpha-\varepsilon,\alpha+\varepsilon]\subset O,$ gdje je $\varepsilon>0$ odabran tako je $x_0\in I$ i da vrijedi

$$\max_{x \in [\alpha - \varepsilon, \alpha + \varepsilon]} |g'(x)| = \lambda < 1,$$

(ovo je moguće ispuniti zbog uvjeta $|g'(\alpha)| < 1$ i zbog pretpostavke da je početna iteracija x_0 izabrana dovoljno blizu α). Tada je $g(I) \subseteq I$. Naime, ako je $x \in I$, tj. $|\alpha - x| \le \varepsilon$, onda za neki ξ između α i x slijedi

$$|\alpha - g(x)| = |g(\alpha) - g(x)| = |g'(\xi)| |\alpha - x| \le \lambda |\alpha - x| \le \lambda \varepsilon \le \varepsilon,$$

pa je $g(x) \in I$. Dakle, zaista se može primijeniti prethodni teorem, pa odmah slijede i njegove tvrdnje.

Vratimo se na primjer $x^2 - a = 0$, a > 0.

- U slučaju da smo izabrali zapis $x=x^2+x-a$, imali bismo $g\left(x\right)=x^2+x-a$, pa bi imali $g'\left(x\right)=2x+1$. Znamo da je pozitivna nultočka ove funkcije $\alpha=\sqrt{a}$, pa bi imali $g'\left(\sqrt{a}\right)=2\sqrt{a}+1>1$. Dakle, proces ne bi konvegirao.
- ullet U slučaju x=a/x imali bismo $g'(x)=-a/x^2,$ pa je $g'(\sqrt{a})=-1$ i opet nema konvergencije.
- ullet U slučaju $x=rac{1}{2}\left(x+rac{a}{x}
 ight)$ imali bismo $g'\left(x
 ight)=rac{1}{2}\left(1-rac{a}{x^2}
 ight)$, pa je $g'\left(\sqrt{a}
 ight)=0$, što je dobro.

I na kraju promotrimo kako postići da jednostavne iteracijske funkcije budu višeg reda konvergencije.

TEOREM. Neka je α rješenje jednadžbe $x=g\left(x\right)$ i neka je funkcija g p $(p\geq 2)$ puta neprekidno derivabilna na nekoj okolini O točke α . Nadalje, pretpostavimo da vrijedi

$$g'(\alpha) = g''(\alpha) = \dots = g^{(p-1)}(\alpha) = 0.$$

Ako je početna iteracija x_0 izabrana dovoljno blizu α , onda iteracijska funkcija

$$x_{n+1} = g(x_n), \quad n \in \mathbb{N}_0,$$

ima red konvergencije p i vrijedi

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^p} = (-1)^{p-1} \frac{g^{(p)}(\alpha)}{p!}.$$

DOKAZ. Uočimo najprije da su uvjeti ovog teorema jači nego uvjeti prethodnog teorema, pa odmah možemo zaključiti da niz jednostavnih iteracija konvergira prema α . Razvijmo sada funkciju g u red okolini točke α do uključivo potencije reda (p-1) i napišimo ostatak. Uvrstimo za argument $x=x_n$. Dobijemo

$$x_{n+1} = g(x_n)$$

$$= g(\alpha) + g'(\alpha)(x_n - \alpha) + \dots + \frac{g^{(p-1)}(\alpha)}{(p-1)!}(x_n - \alpha)^{p-1} + \frac{g^{(p)}(\xi_n)}{p!}(x_n - \alpha)^p,$$

gdje je ξ_n neka točka između x_n i α . Iskoristimo li činjenicu da je α čvrsta točka i pretpostavku $g'(\alpha) = \cdots = g^{(p-1)}(\alpha) = 0$, dobijemo

$$x_{n+1} = \alpha + \frac{g^{(p)}(\xi_n)}{p!} (x_n - \alpha)^p,$$

odnosno

$$\alpha - x_{n+1} = -\frac{g^{(p)}(\xi_n)}{p!} (x_n - \alpha)^p.$$

50

Kako $x_n \to \alpha$ kada $n \to \infty$, to onda i $\xi_n \to \alpha$ (jer se interval "steže"), pa dobijemo

$$\lim_{n \to \infty} \frac{\alpha - x_{n+1}}{(\alpha - x_n)^p} = (-1)^{p-1} \frac{g^{(p)}(\alpha)}{p!}.$$

Iz gornje relacije se vidi da je ta konvergencija reda p

Korištenjem prethodnog teorema možemo analizirati i Newtonovu metodu za koju je

$$g(x) = x - \frac{f(x)}{f'(x)}.$$

Deriviranjem slijedi

$$g'(x) = \frac{f(x) f''(x)}{(f'(x))^2}$$

i

$$g''(x) = \frac{(f'(x))^{2} f''(x) + f(x) f'(x) f'''(x) - 2f(x) (f''(x))^{2}}{(f'(x))^{4}} f'(x),$$

pa je uz pretpostavku da je α nultočka funkcije f i da je $f'(\alpha) \neq 0$ (što osigurava jednostrukost) ispunjeno

$$g'(\alpha) = 0, \quad g''(\alpha) = \frac{f''(\alpha)}{f'(\alpha)}.$$

Ako je $f''(\alpha) \neq 0$, onda je red konvergencije Newtonove metode jednak 2. No ako je $f'(\alpha) \neq 0$ i $f''(\alpha) = 0$, onda je red konvergencije barem 3.