Activity 10 – Introduction to Proof logical equivalence

(1) What are the contrapositive and the equivalent disjunction of

$$\neg P \implies Q$$
?

- (2) Suppose X and Y are compound statements that are equivalent. (They may involve many variables so the truth table could be enormous.) What will a truth table for $X \iff Y$ look like?
- (3) The patterns of T's and ϕ 's that we use in the initial columns of a truth table has a recursive structure.

When there is a single variable it look like $\begin{vmatrix} T \\ \phi \end{vmatrix}$. To build the next one (two variables) you put two copies of this above one another and prefix the top one with T's and the bottom one with ϕ 's.

Complete the setup of the following truth table with 3 variables using this recursive idea.

0			i .
A	B	C	?
	T	T	
	T	ϕ	
	$\phi \ \phi$	T	
	ϕ	ϕ	

Challenge: can you create a truth table with 4 variables (16 rows!)

(4) The following truth table has all the elements you'll need to verify the distributive property of \land over \lor . Fill it in.

A	B	C	$B \lor C$	$A \wedge B$	$A \wedge C$	$A \wedge (B \vee C)$	$A \wedge B \vee (A \wedge C)$
T	T	T					
T	T	ϕ					
T	ϕ	T					
T	ϕ	ϕ					
ϕ	T	T					
ϕ	T	ϕ					
ϕ	ϕ	T					
ϕ	ϕ	ϕ					

(5) Verify both versions of DeMorgan's law using truth tables.

- (6) Use DeMorgan's law(s) to find negations of the following.
 - (a) $A \vee \neg B$
 - (b) $\neg A \wedge B$
 - (c) $\neg A \lor \neg B$
- (7) Each of the following can be evaluated using one of the Domination, Identity or Complimentarity laws. Evaluate and also state which law was used. (The last one needs two.)
 - (a) $A \vee \neg A$
 - (b) $c \wedge B$
 - (c) $c \vee \neg B$
 - (d) $t \wedge C$
 - (e) $B \wedge \neg B$
 - (f) $(A \lor \neg A) \lor C$
- (8) Here's a statement that can be massively simplified using the absorption law (if you look at it the right way).

$$(A \wedge B) \vee ((\neg A \vee (A \wedge C)) \wedge (A \wedge B)).$$