Project Development Phase Model Performance Test

Date	18 November 2022	
Team ID	PNT2022TMID23587	
Project Name	Project – Web phishing detection	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: Decision tree MAE – 0.075 MSE - 0.15 RMSE – 0.387 R2 score – 0.84 Classification Model: Confusion Matrix Accuracy Score-0.96	In [27] In [28] In the second service of the second second service of the second service of the second second service of the second second service of the second seco
2.	Tune the Model	Hyperparameter Tuning - Grid Search Cross Validation	In [31] from skiam.axold_selection inpart (printerior) prid_(cl_sxx. = sciamerior(cr_prom_graph_error), emr_n, m_n, m_n, m_n, m_n, m_n) prid_(cl_sxx. = sciamerior(cr_prom_graph_error), emr_n, m_n, m_n, m_n, m_n) prid_(cl_sxx. = sciamerior(cr_prom_graph_error), emr_n, m_n, m_n, m_n, m_n, m_n, m_n, m_n, m

Metrics:

1.Regression Model:

```
In [28]:
    mae = mean_absolute_error(y_test, y_pred2)
    mse = mean_squared_error(y_test, y_pred2)
    rmse = np.sqrt(mse)
    rmsle = np.log(rmse)
    n,k = x_train.shape
    r2=r2_score(y_test,y_pred2)
    adj_r2= 1 - ((1-r2)*(n-1)/(n-k-1))
    print(mae,mse,rmse,rmsle,r2,adj_r2)
    0.07507914970601538 0.15015829941203077 0.38750264439359733 -0.9480326059704789 0.8488059398990573 0.8482912659170956
```

2. Classification Model:

```
In [25]: print('Accuracy Score : ' + str(accuracy_score(y_test,y_pred2)))
    from sklearn.metrics import confusion_matrix
    print('Confusion Matrix : \n' + str(confusion_matrix(y_test,y_pred2)))

    Accuracy Score : 0.9624604251469923
    Confusion Matrix :
    [[ 960    54]
        [ 29    1168]]
```


3. Tuning the Model:

```
In [33]: from sklearn.model_selection import GridSearchCV
grid_values = {'penalty': ['l1', 'l2'],'C':[0.001,.009,0.01,.09,1,5,10,25]}
grid_clf_acc = GridSearchCV(clf, param_grid = grid_values,scoring = 'recall')
grid_clf_acc.fit(x_train, y_train)

y_pred_acc = grid_clf_acc.predict(x_test)

print('Accuracy Score : ' + str(accuracy_score(y_test,y_pred_acc)))
print('Precision Score : ' + str(precision_score(y_test,y_pred_acc)))
print('Recall Score : ' + str(recall_score(y_test,y_pred_acc)))
print('F1 Score : ' + str(f1_score(y_test,y_pred_acc)))

Accuracy Score : 0.9185888738127544
Precision Score : 0.9130787977254264
Recall Score : 0.9390142021720969
F1 Score : 0.9258649093904447
```