Midterm Review

ECE 422/CS 461

Early Informal Feedback

Help us make discussions better

Midterm Date/Format

- Location & Time
 - October 16 Monday
 - o ECEB 1002
 - o 7 9pm
- Conflict
 - October 13 Friday
 - o 4 6pm
 - o **MUST** have *already* emailed Ryan

- ~50% Lecture content
 - Multiple Choice
 - Short answer
- ~50% MPs 1 & 2
 - Short answer
 - Long answer
- Note: Can be more than one answer to MC questions

Midterm Content

Lecture Content

- Authentication
- Message integrity
- Pseudorandomness
- Symmetrical/Asymmetrical Cryptography
- o TLS
- Key Management
- Buffer Overflows and Beyond
- Malware
- Access Control
- Isolation
- o and more ...

Cryptography MP problems

- Weak Hashing Algorithm
- Factoring P's/Q's
- Length Extension
- Padding Oracle
- o and more ...

Systems MP problems

- Buffer overflow
- Pointer Manipulation
- Integer overflow
- o ROP
- Format String Attack
- o and more ...

Note: These slides are not a comprehensive review of all materials

Security Mindset

Laws/Disclosure models

- CIA triad
 - Confidentially
 - Integrity
 - Availability
- CFAA
 - Illegal access
- DMCA
 - Circumvent protection
- ECPA
 - Restrictions on wiretaps of electronic messages (transmitted/stored)
- FERPA/HIPAA
 - Access of educational/medical records

- Non-disclosure
 - Keep vulnerability secret
- Full Disclosure
 - Distribute knowledge to everyone
- Limited Disclosure
 - Privately disclose to vendor so a patch can be developed

Cryptography Unit

Don't rely on a secret function

Authentication

- Binds identity to a subject
- Passwords
 - Attacks
 - Uniformly distributed
 - Longer → larger brute force search space
 - Store hashes
- Token-based
 - Something user *has*
 - Static memory cards
 - Credit Card
 - Smart card
 - OTP
 - Challenge Response

- Biometric Authentication
 - Something user is or does
 - Biological features
 - Facial recognition
 - Approximate matching
 - Replay Attack/Can be forced to give away (fingerprints)
- Multifactor Authentication (2FA)
 - Combination of previous measures

Hashes

- Hash Function Properties
 - 1st Pre-image
 - Given h(m), find m
 - o 2nd Pre-image
 - Given m1, find h(m1) = h(m2)
 - Collision
 - h(m1) = h(m2)
- Avalanche Effect
 - Flipping one bit of input causes all output bits to change w/ 50% probability
- Confusion
 - Output changes on several parts based on input
- Diffusion
 - Changing a character changes many characters in output (vice versa)

- Attacks
 - Pigeonhole principle
 - Input space > output space
 - Birthday Attack
 - Table of entries
 - Cycle Finding
 - "Tortoise and hare"

Cipher Block Chaining (CBC) mode decryption

Integrity

- Problem: Send a message over an untrusted channel without being changed
- **Provably Secure:** Random Function
- Practical: Pseudorandom function
- Real world use: HMACs

Hash-based Message Authentication Code

Confidentiality

- Problem: Sending a message in the presence of an eavesdropper
- Provably Secure: OTP
 - Never reuse any part of the pad
- Practical: Pseudorandom Generator, Block
 Cipher
- Real world: Stream ciphers, AES

PRF vs. PRG

PRF = arbitrary length input → fixed length
PRG = fixed k (seed) → arbitrary length stream

Key Exchange

- Diffie-Hellman Protocol
 - Agree on public parameter
 - Alice generates random secret a, send g^a
 - Bob generates random secret b, send g^b
 - \circ Computes (g^b)^a == (g^a)^b, shared secret
- Safe against **passive** eavesdropping attacks
- Vulnerable to Man-in-the-middle attacks
 - Out of band communications
 - Physical contact
 - DH w/ user authentication

Public Key Encryption

- Key Generation: Generate key pair (public, private)
- Encrypt: Anyone can encrypt with public key - C = Enc(public, M)
- Decrypt: Needs private key to decrypt M= Enc(priv, C)
- Security: Infeasible to guess M or private key even knowing ciphertexts and public key

- Can be used for digital signatures
- Sign with private key, anyone can verify with public key
- "Unforgeable" computationally infeasible to guess S or the private key

RSA

Key Generation

- Pick large random primes p, q
- Compute N = p * q
- Pick **e** to be relatively prime to $\Phi(\mathbf{N})$
- Find d s.t. ed mod (p-1)(q-1) == 1

Public key is (**e**, **N**) Private key is (**d**, **N**)

Encryption

$$c = m^e (mod \ n)$$

Decryption

$$m = c^d \pmod{n}$$

Confidentiality

- Encrypt with public key
- Decrypt with private key

Integrity

- Sign (encrypt) with private key
- Verify (decrypt) with public key
- Implementation details can lead to compromise
 - Common p,q's

Key Management

- Hardest part of crypto is key management
- Each key should only have one purpose
- Vulnerability increases:
 - The more you use it
 - The more places you store it
 - o The longer you use it
- Forward Secrecy: Learning old key shouldn't help adversary learn new keys
- Secure Channel
 - Confidentiality and integrity
 - Encrypt then MAC
 - Use separate keys

TLS

- Almost all encrypted protocols use SSL for transport encryption
- Lives in between the HTTP (application) and TCP (transport) layer
- Certificates are issued by Certificate
 Authorities and are used by the browser to verify identity and trust
 - "Chain of trust"
- Cipher Suite
 - Key Exchange Algorithm (ECDHE_RSA)
 - Authentication Algorithm (ECDSA)
 - Bulk Encryption (AES_256_CBC)
 - MAC (SHA384)
 - o Example:
 - TLS_ECDHE_ECDSA_WITH_AES_2 56_CBC_SHA384

Handshake Protocol

HTTPS

Systems Unit

Smashing the Stack for Fun and Profit

Buffer Overflow

- Attack consists of overflowing the buffer to write arbitrary values to memory and variables
 - Little Endian
- Once the **EIP** is overwritten, whole control of the program is gained
- Main goal is usually to run a root shell
- Canaries
 - Random value between return address and local variables, check if same
- DEP
 - Instructions on the stack are not allowed to be executed
- ASLR
 - Randomize addresses of each memory region

oxFFFF0000

return address Old base pointer Locals **Buffer** Buffer Buffer Buffer Free

000000000

Beyond Buffer Overflows

- Return Oriented Programming
- Integer Overflow
- Heap Overflow
- Format String Exploits

Malware & Attacks

 Program inserted into a system with the intent of compromising the CIA of the victim's data

Insider attack

 Security breach caused by someone part of the org

Backdoor

 Hidden feature or command that allows users to perform commands not normally allowed

Trojan Horses

 Software designed to desirable function but is designed to perform malicious functions

Virus

- Code that propagates across systems by arranging to execute itself creating new instances
 - Infects by altering stored code
 - Typically w/ help of user assistance

Worms

- Code that self-propagates across by arranging itself to immediately execute
 - Generally infects by altering running code
 - No user intervention required

Payloads

- Information theft
- Stealthing
 - Backdoor
 - Rootkits
- Adware
- Ransomware
- Droppers
- Keylogging / Password Stealing

Botnets

- Collection of compromised machines under control of an attacker
- "Phones home" to a C&C server

APT

- Advanced, custom malware targeted at specific systems
- Usually incorporate zero-days and are persistent
 - Example: Stuxnet

Access Control

- Collection of methods/components that support CIA
- Only allow authorized subjects to access permitted objects
- Mandatory Access Control
 - Don't allow users to define permissions
- Discretionary Access control
 - Users given ability to determine the permissions governing access to their files
- Role based access control
 - Users are assigned roles
 - Roles have permissions
- Attribute-based Access Control
 - Users/Objects given attributes
 - Decisions made based on attributes of both

- Security Policy
 - Defining constraints and rules so that an asset is secure
- Unix permissions
 - Each file owned by user and group
 - Rwx
- Data Leakage by lost devices
 - Lost laptops
 - USB sticks
- Device to Data Encryption
- Password policies

Isolation

- Confinement
 - Ensure misbehaving app cannot harm the rest of the system
 - Hardware, VMs
- Reference Monitor
 - Mediates requests
 - Must always be invoked
 - Tamperproof

- Virtual Machines
 - Run apps in their own OS on top of Host OS
 - Sample Checks
 - Covert Channels
 - Unintended communication channel between isolated components
 - Can leak classified data

Malware Prevention

- Intrusion Prevention Systems (IPS)
 - Prevent Attack before reaches system
- Intrusion Detection Systems (IDS)
 - Detect attack after it has happened
 - HIDS/NIDS Host/Network based IDS
- Anomaly based
 - Collect data on legit users
 - Flag behaviour that is weird
- Signature/Heuristic based
 - Examine known attack patterns
 - Develop signatures that match to those patterns
- Consistency
 - % two binaries are classified the same by different AV
- Completeness
 - % of malware samples detected

Encrypted Virus

- Decryption engine + encrypted payload
- Detection: Look for decryption engine

Polymorphic Virus

- Encrypted virus w/ random variations of the decryption engine
- Detection: Use CPU emulator

Metamorphic Virus

- Different virus bodies
- Code permutation, instruction replacement
- **Detection**: Challenging to detect

Machine Problems

Did ya miss us?

Cryptography

- Basic Ciphers
 - Caesar
 - Substitution
 - o etc.
- Weak Hashing Algorithm
- Length Extensions
- MD5 Collisions
- Padding Oracle
- Common P,Q's
- Colliding Certs

Systems

- Stack layout and registers
- C Calling Conventions
- Shellcode
- Buffer overflow
 - Variables
 - Pointers
 - o EIP
- Integer overflow
- Linked List
- System
- ROP
- Callback Shell
- Format String Attack