UNIVERSIDAD NACIONAL DEL ALTIPLANO DE PUNO

Facultad de ingeniería mecánica eléctrica, electrónica y sistemas

Escuela profesional de ingeniería de sistemas

Trabajo en clase 1 y tabulaciones

PRESENTADO POR:

- Ccallo Arpita Jhak Esnayder

CURSO:

ALGORITMOS Y ESTRUCTURAS DE DATOS

DOCENTE:

ZANABRIA GALVEZ ALDO HERNAN

SEMESTRE IV PUNO – PERÚ 2025

Actividad en clase y tabulaciones en papel

1. Diseñar un algoritmo que determine si una cadena es un palíndromo (sin usar funciones integradas).

```
Código:
```

```
using namespace std;
  4 bool esPalindromo(string palabra){
         int tamano=0;
         bool palindromo = true;
         for(char letra : palabra){
              tamano++;
         tamano-=1;
         for(int i=0; i<(tamano)/2; i++){</pre>
              if(palabra[i]!= palabra[tamano-i]){
                  palindromo=false;
                  break;
         }
         return palindromo;
     string conMinuscula(string palabra){
          int cont=0;
          for(char letra: palabra){
               if(letra>='A' && letra<='Z'){</pre>
                    palabra[cont]+=32;
               cont++;
          }
          return palabra;
   int main(){
        string palabra;
        cout<<"Ingrese una palabra: ";</pre>
       cin>>palabra;
        if(esPalindromo(conMinuscula(palabra))){
50
51
52
53
54
55
56
57
            cout<<"la palabra es un palindromo"<<endl;</pre>
            cout<<"la palabra no es un palindromo"<<endl;</pre>
        cout<<palabra;
```

			2		
Ejerciu 1		132	323		
		4	-		
bool esPatind	romo (str	(engeled bus	1		
int toman					
pool baling	omo = Tro	36)			
for Censi	lotes : pa	3/62/5/6			
taman					
3					
tamano -=1					
	6	1			
for (inti=	o jictama	00/2 ; i++)	0		
2 2 2 2	,	3/3			
		stz sidsisa	Ti-onsm	12	
Bresk;	omo= fals	8)			
3					
3					
return Balina	grown o! 3				
2-1-1			1	1 . 1	Paggalla
Palabra	tonono	Palindromo	10/18	i	13012114
[2 2 3 2 1]	0	7508		-	2024-
(1) 2 (3 2 1	1	4508	1,7,	-	
115131511	2	tive	, S,	-	
[3] 2 2 2 3	3	truz	'3'	-	
2.	4	+100	1,5,	-	
[7] 5 3 5 7	5 4	1100	7	-	
12/2/2/2/1	4	1000	-	0	
	ų	1100	-	7	
	4	1 100			

2. Elaborar un algoritmo que recorra un arreglo de N elementos y determine el segundo valor más alto sin ordenarlo.

Código:

```
#include <iostream>
   using namespace std;
 5 int segMayor(int array[], int n){
         int mayor=INT_MIN;//INT_MIN es una constante definida en <cl
         int indMayor;
         for(int i=0;i<n; i++){</pre>
             if(mayor<array[i]){</pre>
11
                  mayor=array[i];
                  indMayor=i;
12
13
             }
         }
15
         mayor=INT_MIN;
17
         for(int i=0;i<n; i++){
   if(mayor<array[i] && array[i]!=array[indMayor]){</pre>
19
20
                  mayor=array[i];
             }
21
         }
22
23
24
         return mayor;
25
26 }
         main(){
27
    int
         int n;
         cout<<"introduzca el tamano del array: ";</pre>
         cin>>n;
30
         int array[n];
31
         cout<<"introduzca los datos del array: ";</pre>
32
         for(int i=0; i<n; i++){</pre>
             cin>>array[i];
         }
36
         cout<<"El segundo numero mayor es: "<<segMayor(array,n);</pre>
         return 0;
    }
```

					(5,1,5,	4	5						
i	nt .	Segt	layor	Cint	31134 [7	inte	3 (
	: 10	nt m	ayor	- TVIZ =	win!		4		1		1	1 3	-
	ife	it ic	dHay	, ,									-
	fo	T Cio	t = 0		3 (++)						1		\dashv
		1:4	Cma	4065 3	((3) [1]) {								
			m	yor = 2	ecsy [i];								1
	7	7	ांत	idM = i	;								
	3	3								4			-
	may	- 201	TOT	mini				,					-1
	1) -	110(2										-
	For	Cint	1=0	1, 145	3 (++) {			1					
					ray CI3		211	ay E	\$7 ;	= 011	ay Etnar	3 ([2048)	
	104	10	1										
		3	ws	201 = s	(13751)								4
13	3	3											-
			(1)		:	1.0							$-\parallel$
	retu	w w	13000										\exists
3		1											
	C	11241	- 7		1:00 Hayo	7		2					
		-			1,001109	Mago	1	·b					-
	1214	12/1	13	1	310000	7-TOIL	UN	Λ.	rey	0	100.1	120 May	7
	+)					D	,1-3		1110	le lag	-
1	2 4	17/2	3	0	1 0	2		2/4/=	2/2/3	1 4	1 2	INT	- 4
1	14						j.	2/4/	4/3/3	10	2	2	
	2 4	7/1	3	1	+	4		-					
	2141	4		2			11	2/4/	17/3	7	2	14	
	6111		3	-	2	7	1	1					
T	2/4/	7 2	3	3	1 2	12	1/3	14/2	17/3	2	1,5	14	
	1		4			7	16.	2/4/3	H3/2/	3	2		
1	24	17/1	3	4	1 2	17		411	1 12	13	4	()	
			2	0	2	1 4	(21	417	12/3	14	12	14	-
The same of	The same of	N. H. Takes	0	-	-	IRK		,,,					

3. Simular una calculadora de tarifas para transporte público basada en el tipo de usuario y distancia recorrida.

Código:

1 #include <iostream>
2 using namespace std;
3

```
//el tipo de usuario define el valor base de la tarifa
     double calTarifa(int t_usario, int d_recorrida){
           double tarifa;
           //definimos la tarifa base
 10
           switch(t_usario){
                case 1:
 11
                     tarifa=0.4;
 12
                     break;
 13
 14
                case 2:
                     tarifa=0.5;
 15
 16
                     break;
 17
                case 3:
                    tarifa=1.0;
 18
 19
                     break;
 20
           }
 21
          tarifa = tarifa + d_recorrida*1;
 22
 23
 24
          return tarifa;
 25
     }
    int main(){
        int t_usario, d_recorrida;
        cout<<"Indique el tipo de usario: "<<endl;</pre>
        cout<<"1. escolar "<<endl;
cout<<"2. universitario: "<<endl;</pre>
        cout<<"3. adulto "<<endl;</pre>
        cin>>t_usario;
37
38
39
40
41
        cout<<"Indique la distancia recorrida en km: "<<endl;</pre>
        cin>>d_recorrida;
        cout<<"la tarifa es de: "<<calTarifa(t_usario,d_recorrida)<<"soles ";</pre>
```

42 43

}

return 0;

Código y tabulación a mano:

	دنده .	31				70		_	2					6	5	-	+	+	+	-	4	-
000	160:							4			-				-		10	+	1	+	+	+
90	2/90	cal	Tan	fa (90	#	+-	USU	1260	0	10	7.	d-	500	-049	\$637)) [-	1	-	-	
	1006	2 42	57170										-	-	-	-	-	+	+	+	+	+
	Swit			100		1.0	1	()	4	4			-	*	-	-	-	-	-	+	+	-
	Swit	ch (Eusu	Brio	3 6							-	-	-	-	-	-	+	+	+	+	+
		1.1	6								-	-	-	-	4	-	+	-	-	+	-	+
		C35	5 7 2		49	6.6	2 -	0.	4!	-		-	-	-	-	-	-	+	+	+		+
	1.0	cel	Bs	28K													+	-	-	1	1	+
		cas	22'	3	45	1.730	a =	0	.51			1	-	+			-	+	-	-	-	
	151		b	lesk	1	-7	1		P=	71	1-)	1	-		-		+			+	
		cas	e 3'		4	211	ts.	= 7	-01		-		17	- '	1		-	+	+		1	
	3	19	b	iezv	(j			- 4	5/			100		-0	-							
		ropi		1/11				161	58	j							-	-	+	-	-	-
ta	sifa -	121=	ifa	+100	3/25	eco	177	gs	*0,	Si							-		-	-	-	+
,	eturn	12	Fire	aj				_									-	-	-	-	-	+
3								-									-	-	-	-	-	-
			111	1		-												-			-	-
Tab	olación				-	-	-											+			-	
	Soscie			0 - 00		12	1	1	36.15	2							-	-				
120	+	1	0-1			Ja	+	-	3.5													
	2			5	-	-	+		-													
	2			5				-	3						1							
1-1-	P 1			1			-	-	1													
-							-															
-					-	+	-				-				-							
				-	-		1															
														-								
			-	-	-	1	-		-				-		-	1		-		-		