Abstract Algebra: An Integrated Approach by J.H. Silverman. Page 26–34: 1.2, 1.5, 1.7, 1.11, 1.14, 1.16, 1.18

Problem 1 (1.2). Use truth tables to prove the following logical equivalences:

(a) $P \iff \neg(\neg P)$

P	$\neg P$	$\neg(\neg P)$
T	F	T
T	F	T
F	T	F
F	T	F

(b) $\neg (P \lor Q) \iff (\neg P) \land (\neg Q)$

$$\begin{array}{c|ccccc} P & Q & \neg (P \lor Q) & \neg P & \neg Q & (\neg P) \land (\neg Q) \\ \hline T & T & F & F & F & F \\ T & F & F & F & T & F \\ F & T & F & T & F & F \\ F & F & T & T & T & T \end{array}$$

(c)
$$(P \implies Q) \iff (\neg Q \implies \neg P)$$

(d)
$$(P \implies Q) \iff (\neg P) \lor Q$$

$$\begin{array}{c|cccc} P & Q & P \implies Q & \neg P & (\neg P) \lor Q \\ \hline T & T & T & F & T \\ T & F & F & F & F \\ F & T & T & T & T \\ F & F & T & T & T \end{array}$$

(e) $(P \iff Q) \iff \neg(P \veebar Q)$

P	Q	$P \iff Q$	$P \veebar Q$	$\neg (P \veebar Q)$
T	T	T	F	\overline{T}
T	F	F	T	F
F	T	F	T	F
F	F	T	F	T

(f) $P \veebar Q \iff (P \land \neg Q) \lor (\neg P \land Q)$

	P	Q	$P \veebar Q$	$\neg P$	$\neg Q$	$P \land \neg Q$	$\neg P \land Q$	$(P \land \neg Q) \lor (\neg P \land Q)$
_	T	T	F	F	F	F	F	\overline{F}
	T	F	T	F	T	T	F	T
	F	T	T	T	F	F	T	T
	F	F	F	T	T	F T F F	F	F
			ļ.			!		!

(g) $P \veebar Q \iff (P \lor Q) \land \neg (P \land Q)$

P	Q	$P \lor Q$	$P \wedge Q$	$\neg (P \land Q)$	$(P \lor Q) \land \neg (P \land Q)$	$P \veebar Q$
T	T	T	T	F	F	F
T	F	T	F	T	T	T
F	T	T	F	T	T	T
F	F	F	F	T	F	F

(h) $P \wedge (Q \vee R) \iff (P \wedge Q) \vee (P \wedge R)$

P	Q	R	$Q \vee R$	$P \wedge (Q \vee R)$	$P \wedge Q$	$P \wedge R$	$ (P \land Q) \lor (P \land R) $
\overline{T}	T	T	T	T	T	T	T
T	T	F	T	T	T	F	T
T	F	T	T	T	F	T	T
T	F	F	F	F	F	F	F
F	T	T	T	F	F	F	F
F	T	F	T	F	F	F	F
F	F	T	T	F	F	F	F
F	F	F	F	F	F	F	F

(i) $P \lor (Q \land R) \iff (P \lor Q) \land (P \lor R)$

P	Q	R	$Q \wedge R$	$P \vee (Q \wedge R)$	$P \lor Q$	$P \vee R$	$ (P \vee Q) \wedge (P \vee R) $
\overline{T}	T	T	T	T	T	T	T
T	T	F	F	T	T	T	T
T	F	T	F	T	T	T	T
T	F	F	F	T	T	T	T
F	T	T	T	T	T	T	T
F	T	F	F	T	T	F	F
F	F	T	F	T	F	T	F
F	F	F	F	F	F	F	F
						l	

Problem 2. (1.5)

(a) Let \mathbb{E} denote the set of even natural numbers. Give a mathematical description of the set \mathbb{E} , similar to our description of the set of primes \mathbb{P} .

The set \mathbb{E} , which consists of even natural numbers, can be described as:

$$\mathbb{E} = \{ n \in \mathbb{N} \mid n = 2k \text{ for some } k \in \mathbb{N} \}.$$

In words, \mathbb{E} is the set of all natural numbers that are divisible by 2.

(b) Goldbach's Conjecture says that every even natural number, except for 2, is equal to a sum of two prime numbers. Give a methematical description of Goldbach's conjecture. You may use \mathbb{P} to denote the set of primes and \mathbb{E} to denote the set of even numbers.

Goldbach's Conjecture states that every even natural number greater than 2 can be expressed as the sum of two prime numbers. Using the given notation, we can formally express this as:

$$\forall n \in \mathbb{E}, \quad n > 2 \implies \exists p_1, p_2 \in \mathbb{P} \text{ such that } n = p_1 + p_2.$$

Here, $\mathbb{E} = \{n \in \mathbb{N} \mid n \text{ is even}\}$ represents the set of even natural numbers, and \mathbb{P} denotes the set of prime numbers. The conjecture asserts that for every even n > 2, there exist two primes p_1 and p_2 whose sum equals n.

Problem 3 (1.7). Let S, T, and U be sets. Prove each of the following formulas:

(a)
$$S \cap (T \cup U) = (S \cap T) \cup (S \cap U)$$

Let x be an arbitrary element.

- (\subseteq) Suppose $x \in S \cap (T \cup U)$. Then, $x \in S$ and $x \in T \cup U$, meaning x is in at least one of T or U. This implies $x \in (S \cap T)$ or $x \in (S \cap U)$, so $x \in (S \cap T) \cup (S \cap U)$.
- (\supseteq) Suppose $x \in (S \cap T) \cup (S \cap U)$. Then, $x \in S \cap T$ or $x \in S \cap U$, meaning $x \in S$ and either $x \in T$ or $x \in U$. This implies $x \in S \cap (T \cup U)$.

Thus, the two sets are equal.

(b)
$$S \cup (T \cap U) = (S \cup T) \cap (S \cup U)$$

Let x be arbitrary.

- (\subseteq) If $x \in S \cup (T \cap U)$, then either $x \in S$ or $x \in T \cap U$. If $x \in S$, then $x \in S \cup T$ and $x \in S \cup U$, so $x \in (S \cup T) \cap (S \cup U)$. If $x \in T \cap U$, then $x \in T$ and $x \in U$, so $x \in S \cup T$ and $x \in S \cup U$. Thus, $x \in (S \cup T) \cap (S \cup U)$.
- (\supseteq) If $x \in (S \cup T) \cap (S \cup U)$, then $x \in S \cup T$ and $x \in S \cup U$. If $x \in S$, then $x \in S \cup (T \cap U)$. Otherwise, $x \in T$ and $x \in U$, so $x \in T \cap U$, implying $x \in S \cup (T \cap U)$.

Thus, the two sets are equal.

(c) Suppose that S and T are subsets of U. Then

$$(S \cup T)^c = S^c \cap T^c$$
 and $(S \cap T)^c = S^c \cup T^c$

Using De Morgan's Laws:

- $(S \cup T)^c = S^c \cap T^c$ because $x \notin S \cup T$ means $x \notin S$ and $x \notin T$, which is exactly $x \in S^c \cap T^c$.
- $(S \cap T)^c = S^c \cup T^c$ because $x \notin S \cap T$ means $x \notin S$ or $x \notin T$, which defines $S^c \cup T^c$.
- (d) The symmetric difference of S and T, denoted $S\Delta T$, is defined to be the set of elements that are in one of S and T, but not in both. Prove that

$$S\Delta T = (S \cup T) \backslash (S \cap T) = (S \backslash T) \cup (T \backslash S)$$

By definition, $S\Delta T$ is the set of elements in S or T, but not both.

- The set $(S \cup T) \setminus (S \cap T)$ consists of elements in $S \cup T$ that are not in $S \cap T$, meaning they are in exactly one of S or T, which matches $S \Delta T$.
- The set $(S \setminus T) \cup (T \setminus S)$ consists of elements in S but not T, or in T but not S, which again matches $S\Delta T$.

Thus, the given expressions for $S\Delta T$ are equal.

Problem 4 (1.11). Which of the following are equivalence relations on the set of integers \mathbb{Z} ? For the equivalence relations, describe the distinct equivalence classes, and for the non-equivalence relations, explain which of the three properties of an equivalence relation fail.

- (a) $a \sim b$ if a b is a multiple of 5
 - Reflexive: For any $a \in \mathbb{Z}$, a a = 0, which is a multiple of 5, so $a \sim a$.
 - Symmetric: If $a \sim b$, then a-b is a multiple of 5, meaning b-a=-(a-b) is also a multiple of 5. Thus, $b \sim a$.
 - Transitive: If $a \sim b$ and $b \sim c$, then a-b and b-c are multiples of 5. Adding these, a-c=(a-b)+(b-c) is a multiple of 5, so $a \sim c$.

The equivalence classes are the sets of integers that leave the same remainder when divided by 5. For example:

$$[0] = \{\dots, -10, -5, 0, 5, 10, \dots\}, \quad [1] = \{\dots, -9, -4, 1, 6, 11, \dots\}, \quad \text{and so on.}$$

(b) $a \sim b$ if a + b is a multiple of 5

This is not an equivalence relation because it fails the transitive property. Let $a=0,\,b=3,$ and c=2:

• $a \sim b$ because a + b = 0 + 3 = 3, which is a multiple of 5.

- $b \sim c$ because b + c = 3 + 2 = 5, which is a multiple of 5.
- However, a+c=0+2=2, which is not a multiple of 5, so $a \not\sim c$.

Thus, the relation is not transitive.

- (c) $a \sim b$ if $a^2 b^2$ is a multiple of 5
 - Reflexive: For any $a \in \mathbb{Z}$, $a^2 a^2 = 0$, which is a multiple of 5, so $a \sim a$.
 - Symmetric: If $a \sim b$, then $a^2 b^2$ is a multiple of 5. Since $a^2 b^2 = -(b^2 a^2)$, $b \sim a$.
 - Transitive: If $a \sim b$ and $b \sim c$, then $a^2 b^2$ and $b^2 c^2$ are multiples of 5. Adding these, $a^2 c^2 = (a^2 b^2) + (b^2 c^2)$, which is a multiple of 5, so $a \sim c$.

The equivalence classes correspond to the remainders of $a^2 \mod 5$. Since the possible remainders of $a^2 \mod 5$ are 0, 1, and 4, there are three equivalence classes:

(d) $a \sim b$ if $a - b^2$ is a multiple of 5

This is not an equivalence relation because it fails the symmetric property. For example, let a=6 and b=1:

- $a \sim b$ because $a b^2 = 6 1^2 = 5$, which is a multiple of 5.
- However, $b \sim a$ would require $b-a^2$ to be a multiple of 5, but $1-6^2=1-36=-35$ is not a multiple of 5.

Thus, the relation is not symmetric.

(e) $a \sim b$ if a - b is purple

This is not an equivalence relation because the definition of the relation is not well-defined. The term "purple" has no mathematical meaning, so the relation cannot satisfy reflexivity, symmetry, or transitivity.

Problem 5 (1.14). Which of the following binary relations are reflexive, symmetric, antisymmetric, and/or transitive? Which are equivalence relations? Which are partial orders?

- (a) $S = \mathbb{R}$, and $(a, b)_{\mathcal{B}}$ iff $a \ge b$
 - Reflexive: Yes, since for all $a \in \mathbb{R}$, we have $a \geq a$.
 - *Symmetric*: No, because if $a \ge b$, it does not necessarily mean $b \ge a$ unless a = b.
 - Antisymmetric: Yes, since if $a \ge b$ and $b \ge a$, then a = b.
 - Transitive: Yes, because if $a \ge b$ and $b \ge c$, then $a \ge c$.

Since the relation is reflexive, antisymmetric, and transitive, it is a **partial order**. However, it is not an equivalence relation because it is not symmetric.

- (b) $S = \mathbb{N}$, and $(a, b)_{\mathcal{B}}$ iff gcd(a, b) = 1
 - *Reflexive*: No, since gcd(a, a) = a, which is not necessarily 1.
 - *Symmetric*: Yes, because gcd(a, b) = gcd(b, a).
 - Antisymmetric: No, since there exist distinct a and b such that gcd(a, b) = 1.
 - Transitive: No, since gcd(a, b) = 1 and gcd(b, c) = 1 does not imply gcd(a, c) = 1.

This relation is not an equivalence relation or a partial order.

- (c) $S = \mathbb{N}$, and $(a, b)_{\mathcal{B}}$ iff a|b
 - Reflexive: Yes, since a|a for all $a \in \mathbb{N}$.
 - *Symmetric*: No, since a|b does not imply b|a unless a=b.
 - Antisymmetric: Yes, since if a|b and b|a, then a=b.
 - Transitive: Yes, since if a|b and b|c, then a|c.

This relation is a partial order but not an equivalence relation.

- (d) S is the set of students at your school, and $(a, b)_{\mathcal{B}}$ iff a and b have the same birthday.
 - *Reflexive*: Yes, since everyone shares their own birthday.
 - *Symmetric*: Yes, since if a has the same birthday as b, then b has the same birthday as a.
 - Antisymmetric: No, since two distinct students can have the same birthday.
 - *Transitive*: Yes, since if *a* shares a birthday with *b* and *b* shares a birthday with *c*, then *a* shares a birthday with *c*.

This relation is an equivalence relation but not a partial order.

- (e) S is a graph, and $(a, b)_{\mathcal{B}}$ iff a = b or there is an edge connecting a and b.
 - Reflexive: Yes, since a = a.
 - *Symmetric*: Yes, since if there is an edge from a to b, there is an edge from b to a in an undirected graph.
 - *Antisymmetric*: No, unless the graph has no edges.
 - *Transitive*: No, since a connected to b and b connected to c does not imply a is connected to c.

This is neither an equivalence relation nor a partial order.

- (f) S is a graph, and $(a, b)_{\mathcal{B}}$ iff a = b or a sequence of edges connects a to b.
 - Reflexive: Yes.
 - *Symmetric*: Yes, if the graph is undirected.

- *Antisymmetric:* No, unless the graph is trivial.
- Transitive: Yes, since if a is connected to b and b to c, then a is connected to c.

This relation is an equivalence relation for connected components.

- (g) $S = \mathbb{R}$, and $f : S \to \mathbb{R}$ is a function, and $(a, b)_{\mathcal{B}}$ iff f(a) = f(b). Equivalence relation as it satisfies reflexivity, symmetry, and transitivity.
- (h) S = (the collection of subsets of a set Σ), and $(A,B)_{\mathcal{B}}$ iff $A\subseteq B$.

Partial order

(i) S =(the collection of subsets of a set Σ), and $(A, B)_{\mathcal{B}}$ iff $A \cap B \neq \emptyset$.

This relation is symmetric but not transitive or reflexive.

(j) S =(the collection of subsets of a set Σ), and $(A, B)_{\mathcal{B}}$ iff $A \cap B = \emptyset$.

This relation is symmetric but neither reflexive nor transitive.

Problem 6 (1.16). Let S and T be finite sets containing the same number of elements, and let $f: S \to T$ be a function from S to T. Prove that the following are equivalent:

(a) *f* is injective

Since S and T have the same finite number of elements, say |S| = |T| = n, an injective function f maps n distinct elements of S to n distinct elements of T. Since T also contains exactly n elements, no element in T can be left out. Thus, f must also be surjective.

(b) f is surjective

If f is surjective, then every element of T has at least one preimage in S. Since |S| = |T| = n, the surjectivity ensures that there are exactly n preimages. If f were not injective, then at least one element of T would have more than one preimage in S, contradicting the fact that S has only n elements. Hence, f must be injective.

(c) f is bijective

By definition, a function is bijective if and only if it is both injective and surjective. Since we have shown that injectivity implies surjectivity and vice versa, it follows that f is bijective.

Problem 7 (1.18). Let S and T be finite sets, and let $f: S \to T$ be a function from S to T. Prove that

$$\#S = \sum_{t \in T} \#\{s \in S : f(s) = t\}$$

Each element $t \in T$ has a preimage set given by:

$$S_t = \{ s \in S \mid f(s) = t \}.$$

The cardinality of this set is $\#S_t$, which represents the number of elements in S that map to t under f.

Since f is a function, every element $s \in S$ is mapped to exactly one element in T, meaning that the sets S_t for different t are disjoint. Moreover, their union covers all of S, i.e.,

$$S = \bigcup_{t \in T} S_t.$$

By the principle of counting for disjoint unions, we sum the sizes of these sets to obtain:

$$\#S = \sum_{t \in T} \#S_t.$$

Since $\#S_t = \#\{s \in S \mid f(s) = t\}$, we obtain the desired result:

$$\#S = \sum_{t \in T} \#\{s \in S \mid f(s) = t\}.$$