FI FCTRIC VFHICLE X DRIVING RANGE PREDICTION - FV X DRP

Relatório de progresso

David P Coutinho Artur I Ferreira david.coutinho@isel.pt

arturj@isel.pt

David A. S. G. Albuquerque A43566@alunos.isel.pt

Instituto Superior de Engenharia de Lisboa

Friday, 25 March 2022

Outline

Introdução

Objetivo

O que é eRange?

O problema de estimação

Como resolver

Estado da arte

Datasets

Datasets

Implementações

Trabalho realizado

Trabalho futuro

Objetivos futuros

Diagrama

Introdução - Objetivo

 Realizar estimativas da distância de condução restante que um veículo elétrico pode efetuar relativamente à sua autonomia - eRange;

Introdução - O que é eRange?

- A distância máxima que um veículo elétrico consegue viajar;
- Alivia a ansiedade do condutor;
- Depende de vários dados da condução do veículo:
 - SOC (State of charge) indica o estado de carga da bateria;
 - Estado do ar condicionado;
 - Travagem regenerativa;
 - Inclinação da estrada;
 - (entre outros)

Introdução - O problema

- Dependência de vários fatores;
- Escassez de datasets;
- Escolha dos algoritmos de machine learning;

Introdução - Como resolver

- Uso de inteligência artificial para a resolução do problema;
- Aprendizagem através de datasets de viajens de carros electricos;

Estado da arte - Datasets

- EV Database (ev-database.org)¹;
- VED Dataset²:
 - Dados reais de condução de veículos elétricos (2013 Nissan leaf)
- Emobpy³.
 - Geração de dados de condução de veículos elétricos.

¹Electric Vehicle Database.

https://ev-database.org/car/1011/Nissan-Leaf. Accessed: 2022-04-12.

²G. S. Oh, David J. Leblanc, and Huei Peng. Vehicle Energy Dataset (VED), A Large-scale Dataset for Vehicle Energy Consumption Research. 2019.

³Carlos Gaete-Morales et al. "An open tool for creating battery-electric vehicle time series from empirical data, emobpy". In: *Scientific Data* (June 2021).

Estado da arte - Datasets de condução

Estado da arte - Implementações

- Uso combinado de Gradient Boosting Regression Trees⁴;
- Ensemble learning⁵ com:
 - Decision Tree ;
 - Random Forest;
 - K-Nearest Neighbor.
- Self-Organizing Maps⁶ (e híbridos com Regression Trees⁷);
- Redes neuronais com Multiple Linear Regression⁸.

 $^{^4}$ Liang Zhao et al. "Machine Learning-Based Method for Remaining Range Prediction of Electric Vehicles". In: IEEE Access (2020).

⁵Irfan Ullah et al. "Electric vehicle energy consumption prediction using stacked generalization: an ensemble learning approach". In: International Journal of Green Energy (2021).

⁶Chung-Hong Lee and Chih-Hung Wu. "A Novel Big Data Modeling Method for Improving Driving Range Estimation of EVs". In: *IEEE Access* (2015).

⁷B. Zheng et al. "A Hybrid Machine Learning Model for Range Estimation of Electric Vehicles". In: 2016 IEEE Global Communications Conference (GLOBECOM). 2016.

⁸Cedric De Cauwer et al. "A Data-Driven Method for Energy Consumption Prediction and Energy-Efficient Routing of Electric Vehicles in Real-World Conditions". In: *Energies* (2017).

Trabalho realizado

Trabalho realizado

- Estudo do problema e soluções existentes;
- Escolha de um dataset válido:
- Implementação de um modelo de baseado em historial⁹.

⁹David Pereira Coutinho. Classic EV X Project Driving Range Prediction TECHNICAL REPORT (draft version). July 2021.

- Arquitetura de projeto:
 - Escolha do algoritmo de machine learning;
- Implementação do projeto:
 - Integração do dataset;
 - Implementação do modelo;
- Testes;
- Recolha de resultados.

Name :	Start Date :	End Date :	Duration :	Progress %	Dependency :
Project Report Delivery	Mar 15, 2022	Mar 15, 2022	1 day	100	
→ Writting the document	Mar 15, 2022	Sep 15, 2022	132.75 days	0	
Finalization - Results & Conclusion	Aug 01, 2022	Sep 01, 2022	24 days	0	4FS
Document revision	Sep 01, 2022	Sep 13, 2022	9 days	0	6FS-1 days
Writting the document	Mar 15, 2022	Sep 15, 2022	132.88 days	0	
Project Testing	Jul 11, 2022	Jul 29, 2022	15 days	0	17FS+19 days
Valid estimations	Jul 29, 2022	Jul 29, 2022	0 days	0	
Project Implementation	Mar 28, 2022	Jul 28, 2022	89 days	0	
Implemented Model	Jun 13, 2022	Jun 13, 2022	0 days	0	15FS+20 days
Project Architecture	Mar 16, 2022	Jun 06, 2022	58.88 days	0	
Dataset integration	May 16, 2022	May 16, 2022	0 days	0	14FS+15 days
Choosen Machine Learning Algorithms	Apr 25, 2022	Apr 25, 2022	0 days	0	