Predicting Landsat Reflectance with Deep Generative Fusion

Shahine Bouabid Maxime Rischard Maxim Chernetskyi Jevgenij Gamper

Cervest Itd.

Motivation

- Precision agriculture and humanitarian response could benefit from detailed imagery
- Public missions bound to trade-off between Spatial and Temporal resolution

	Landsat	MODIS	
Revisit cycle	16 days	1-2 days	
Ground resolution cell size	30 m	250-500 m	

Motivation

- Precision agriculture and humanitarian response could benefit from detailed imagery
- Public missions bound to trade-off between Spatial and Temporal resolution

	Landsat	MODIS	
Revisit cycle	16 days	1-2 days	
Ground resolution cell size	30 m	250-500 m	

Dataset and Problem

Time series of co-registered
Landsat-MODIS (256, 256) patches for
550 locations and 14 dates on
near-infrared, red, green and blue bands

Experiment

L1 supervision → low-frequency components **SSIM supervision** → high-frequency components

Results

Substantial test Image Quality Metrics improvement againt SOTA

Method	PSNR			SSIM			SAM (10 ⁻²)		
Band	NIR	R	G	В	NIR	R	G	В	
Bilinear Upsampling	20.0	19.0	21.0	21.1	0.568	0.550	0.633	0.639	3.87
ESTARFM [36]	19.6	20.2	21.8	22.3	0.555	0.640	0.688	0.696	4.88
cGAN Fusion + L_1	22.1	21.8	23.7	23.8	0.675	0.697	0.747	0.747	2.75
cGAN Fusion + L_1 + SSIM	22.3	22.0	23.9	24.0	0.694	0.714	0.761	0.760	2.70

Table 1: Image quality scores on testing set; cGAN models scores are averaged over 3 independently trained models

Captures and blends coarse reflectance in ground instances

Blurred predictions, struggles to fuse into small fields

SSIM improves stability of adversarial training