SIMDI 226 - I Time series analysis: I

François Roueff http://www.tsi.enst.fr/~roueff

Telecom ParisTech

December 4, 2012

December 4, 2012 1 / 55 François Roueffhttp://www.tsi.enst.fr/~r Stochastic modelling of Time series Examples Random processes Examples Stationarity 3 Spectral random field

Plan 1 Stochastic modelling of Time series Examples • Random processes Examples 2 Stationarity Strict Stationarity \bullet L^2 processes Weak stationarity 3 Spectral random field • Random fields with orthogonal increments Stochastic integral Spectral representation François Roueffhttp://www.tsi.enst.fr/~r Stochastic modelling of Time series Examples Random processes Examples Stationarity 3 Spectral random field 4□ > 4個 > 4 種 > 4 種 > 種 ● 9 Q @

4□ > 4回 > 4回 > 4 回

Examples of applications

Time series analysis based on stochastic modeling is applied in various fields:

- ▶ Health : physiological signal analysis (image analysis).
- ▶ Engineering : monitoring, anomaly detection, localizing/tracking.
- ▶ Audio data : analysis, synthesis, coding.
- ▶ Ecology : climatic data, hydrology.
- ▶ Econometrics : economic/financial data.
- ▶ Insurance : risk analysis.

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ □ ⟨□⟩ ⟨□⟩

Internet traffic

Figure: Inter-arrival times of TCP packets, expressed in seconds, obtained from a 2 hours record of the traffic going through an Internet link. http://ita.ee.lbl.gov/.

Heartbeats

Figure: Heart rate of a resting person over a period of 900 seconds. This rate is defined as the number of heartbeats per unit of time. Here the unit is the minute and is evaluated every 0.5 seconds.

Speech audio data

Figure: A speech audio signal with a sampling frequency equal to 8000 Hz. Record of the unvoiced fricative phoneme sh (as in sharp).

(日) (원) (원) (원)

Climatic data: wind speed

Figure: Daily record of the wind speed at Kilkenny (Ireland).

Gross National Product of the USA

Figure: Quarterly growth national product (GNP) of the USA in Billions of \$s. http://research.stlouisfed.org/fred2/series/GNP.

イロン イ御 とくきと 不恵 とっき

Climatic data: temperature changes

Figure: Global mean land-ocean temperature index (solid red line) and surface-air temperature index (dotted black line).

http://data.giss.nasa.gov/gistemp/graphs/.

←□ → ←□ → ←□ → □ → ○ へ○

GNP quarterly rate

Figure: Quarterly rate of the US GNP.

Financial index

Figure: Daily open value of the Standard and Poor 500 index. This index is computed as a weighted average of the stock prices of 500 companies traded at the New York Stock Exchange (NYSE) or NASDAQ.

4□ > 4團 > 4 = > = 90

rançois Roueffhttp://www.tsi.enst.fr/~

SIMDI 226 -

December 4, 2012 13 / 55

François Roueffhttp://www.tsi.enst.fr/~r

SP 500 log-returns

0.05

4DL 226 |

Figure: SP500 log-retruns.

1990

2000

2010

1970

4 D > 4 B > 4 B > 4 B > 9 Q C

Main goals of time series analysis

- Stochastic modelling : seasonal/linear trend + noise + "structural properties".
- ▶ Statistical inference : estimate the parameters of the model, classify or detect (signal presence, anomalies).
- ▶ Forecasting: based on a stochastic model, use historical data to predict future values.
- ▶ Filtering and tracking : estimate hidden variables and track them.

 $\begin{tabular}{ll} \blacksquare & \textbf{Stochastic modelling of Time series} \\ \end{tabular}$

Financial index: log returns

- Examples
- Random processes
- Examples
- 2 Stationarity
- 3 Spectral random field

◆ロト ◆個ト ◆意ト ◆意ト 意 めなべ

rançois Roueffhttp://www.tsi.enst.fr/~r

SIMDI 226

December 4, 2012

2012 15 / 55

cois Roueffhttp://www.tsi.enst.fr/~r

000

ecember 4, 2012 1

10 / 5

Stochastic modelling

Definition: random processes

A random or stochastic process valued in (E,\mathcal{E}) and indexed on T is a collection of random variables $(X_t)_{t\in T}$ defined on the same probability space $(\Omega,\mathcal{F},\mathbb{P})$.

We will generally consider t as a time index, in which case $T = \mathbb{Z}$, \mathbb{R} , \mathbb{R}_+ ... A spatial index can also be considered, say $T = \mathbb{R}^d$.

Note that a random vector of length n can be seen as a random process $(X_t)_{t\in T}$ with $T=\{1,\ldots,n\}$.

François Roueffhttp://www.tsi.enst.fr/~r

SIMDI 226 -

December 4, 2012

/ / 55 François Roueff.

SI

D 1 4 0010 1

18 / 55

Finite distributions

Define

$$\mathcal{I}(T) = \{I \subset T, I \text{ finite}\}\ .$$

Definition: law

Let $(X_t)_{t \in T}$ be a random process. The law of the process in the sense of finite distributions is defined as the collection of probability distributions

$$\mathbb{P} \circ X^{-1} \circ \Pi_I^{-1} \left(\prod_{t \in I} A_t \right) = \mathbb{P} \left(X_t \in A_t, \, t \in I \right), \qquad I \in \mathcal{I}(T),$$

where Π_I is the canonical projection $(x_s)_{s\in T}\mapsto (x_s)_{s\in I}$.

We will denote

$$X \stackrel{\text{fidi}}{=} Y$$
.

when X and Y have the same law in the sense of finite distributions.

シック・ボー・ボー・ボー・ (中・・ロ・

Random path

Definition: path

Let $(X_t)_{t\in T}$ be a random process defined on $(\Omega,\mathcal{F},\mathbb{P})$. The path of the random experiment $\omega\in\Omega$ is defined as $(X_t(\omega))_{t\in T}$ viewed as an element of E^T .

We shall denote by X the random variable $\omega \mapsto (X_t(\omega))_{t \in T}$ valued in $(E^T, \mathcal{E}^{\otimes T})$, where $\mathcal{E}^{\otimes T}$ is the smallest σ -field containing the cylinder sets

$$A_1 \times \dots A_n \times E^{T \setminus \{1,\dots,n\}}, \qquad n \ge 1, \quad A_1,\dots,A_n \in \mathcal{E}.$$

It is also also the smallest σ -field on E^T which makes ξ_t measurable for all $t \in T$, where ξ_t is the canonical projection $\xi_t : (x_s)_{s \in T} \mapsto x_t$ from E^T to (E, \mathcal{E}) .

From finite distributions to path distribution

Note that if $J \subset I$ are in $\mathcal{I}(T)$, then, for all $A \in \mathcal{E}^{\otimes J}$,

$$\mathbb{P} \circ X^{-1} \circ \Pi_J^{-1}(A) = \mathbb{P} \circ X^{-1} \circ \Pi_I^{-1} \left(A \times E^{I \setminus J} \right) . \tag{1}$$

Theorem: Kolmogorov

Let (E, \mathcal{E}) be a measurable space, T an arbitrary set of indices and $(\nu_I)_{I \in \mathcal{I}(T)}$ such that each ν_I is a probability on $(E^I, \mathcal{E}^{\otimes I})$. The two following assertions are equivalent.

- (i) $(\nu_I)_{I\in\mathcal{I}(T)}$ satisfies the compatibility condition (1) for all $J\subseteq I$.
- (ii) There is a unique probability ν_T on $(E^T, \mathcal{E}^{\otimes T})$ such that $\nu_I = \nu_T \circ \Pi_I^{-1}$ for all $I \in \mathcal{I}(T)$.

What is all this about?

In practice, we do not start with $X_t(\omega)$ defined for all $t \in T$ and $\omega \in \Omega$. Instead we have the following steps:

- Step 1 Start with a collection of compatible finite distributions $(\nu_I)_{I\in\mathcal{I}(T)}$ on the measurable spaces $(E^I, \mathcal{E}^{\otimes I})$.
- Step 2 Deduce the probability space $(E^T, \mathcal{E}^{\otimes T}, \nu_T)$ by the Kolmogorov
- Step 3 Define the process X using the canonical process $X_t = \xi_t$, for all $t \in T$. Hence we get a process X on $(\Omega, \mathcal{F}, \nu_T)$ with the desired finite distributions.
- Step 4 Define new processes by filtering X, for instance $W_t = g_t(X)$ where $g_t: E^T \to F$ is measurable for all t, or equivalently, Y = g(X) where $q:E^T\to F^T$ is measurable.

rançois Roueffhttp://www.tsi.enst.fr/~r

Stochastic modelling of Time series

- Examples
- Random processes
- Examples
- Stationarity
- Spectral random field

Complementary facts

- ▶ In Step 1, the simplest possible finite distributions are often used, see the following item.
- ▶ Simulating a random process is often done by following the same steps with ν_I being the probability distribution of independent uniform random variables.
- ightharpoonup Let $T=\mathbb{N},\mathbb{Z},\mathbb{R}_+$ or \mathbb{R} . The process X is adapted to a given filtration $(\mathcal{F}_t)_{t\in T}$ if, for all $t\in T$, X_t is \mathcal{F}_t -measurable. Example: natural filtration $\mathcal{F}_t = \sigma(X_s, s < t)$.
- \triangleright If the paths a.s. belong to a subset A of E^T which is endowed with a metric: e.g. $\mathcal{C}([0,1]) \subset \mathbb{R}^{[0,1]}$, it might be interesting to define the path as a random element of A endowed with the corresponding Borel σ -field.

Independent random variables

Let $(\nu_t)_{t\in T}$ be a collection of probability measures on (E,\mathcal{E}) . For all $I \in \mathcal{I}$, set the probability on E^I with independent component having marginal distributions $(\nu_t)_{t\in I}$:

$$\nu_I = \bigotimes_{t \in I} \nu_t \;, \tag{2}$$

Then $(\nu_I)_{I\in\mathcal{I}}$ satisfies the compatibility condition (1).

We thus obtain a collection of independent random variables X_t such that $X_t \sim \nu_t$ for all $t \in T$.

If $\nu_t = \nu$ for all $t \in T$ we say that $(X_t)_{t \in T}$ is a is a collection of i.i.d. (independent and identically distributed) random variables with marginal distribution ν .

Gaussian processes

Let T be an arbitrary set of indices. Let $\mu = (\mu_t)_{t \in T}$ be real-valued and $(\gamma_{s,t})_{s,t \in T}$ be such that, for all $I \in \mathcal{I}(T)$

 $\Gamma_I = [\gamma_{s,t}]_{s,t \in I}$ is symmetric non-negative definite .

Then there exists a process $(X_t)_{t\in T}$ on a probability space $(\Omega, \mathcal{F}, \xi)$ such that, for all $I\in \mathcal{I}(T)$

$$\mathbb{P} \circ X^{-1} \circ \Pi_I^{-1} = \mathcal{N}\left((\mu_t)_{t \in I}, \Gamma_I\right) .$$

We will denote $X \sim \mathcal{N}(\mu, \gamma)$ and say that X is a Gaussian process with mean μ and covariance γ .

4□ > 4∰ > 4 분 > 4 분 > 1 분 90 4 €

rançois Roueffhttp://www.tsi.enst.fr/~r

SIMDI 226 - I

December 4, 2012

25 / 5

- Stochastic modelling of Time series
- Stationarity
 - Strict Stationarity
 - ullet L^2 processes
 - Weak stationarity
- Spectral random field

- Stochastic modelling of Time series
- 2 Stationarity
 - Strict Stationarity
 - \bullet L^2 processes
 - Weak stationarity
- 3 Spectral random field

ançois Roueffhttp://www.tsi.enst.fr/~r

SIMDI 226 - I

December 4, 2012

26 / 55

Shift and backshift operators

Suppose that $T = \mathbb{Z}$ or $T = \mathbb{N}$.

Definition: Shift and backshift operators

Let the shift operator $S: E^T \to E^T$ be defined by

$$S(x) = (x_{t+1})_{t \in T}$$
 for all $x = (x_t)_{t \in T} \in E^T$.

For all $\tau \in T$, we define S^{τ} by

$$S^{\tau}(x) = (x_{t+\tau})_{t \in T}$$
 for all $x = (x_t)_{t \in T} \in E^T$.

The operator S^{-1} is called the backshift operator.

Strict stationarity

Definition: Strict stationarity

Let $X=(X_t)_{t\in T}$ be a random process defined on (Ω,\mathcal{F},ξ) with $T=\mathbb{Z}$ or $T=\mathbb{N}$. We say that X is stationary in the strict sense if

$$X \stackrel{\text{fidi}}{=} S \circ X$$
.

which is equivalent to

$$\mathbb{P} \circ X^{-1} = \mathbb{P} \circ X^{-1} \circ S^{-1} .$$

rançois Roueffhttp://www.tsi.enst.fr/~r

Strict Stationarity

ullet L^2 processes Weak stationarity

Spectral random field

Stationarity

Stochastic modelling of Time series

SIMDI 226 - I

4□ > 4∰ > 4 = > 4 = > = 90

all $s, t \in T$.

 $\triangleright g = \sum_k \mathbf{h}_k \mathbf{S}^{-k} : x \mapsto \mathbf{h} \star x$ for a finitely supported sequence \mathbf{h} . $\triangleright g: x \mapsto (h \circ \Pi_I \circ S^t(x))_{t \in T} \text{ with } h: E^I \to E \text{ with } I \in \mathcal{I}(T).$

 L^2 space

Examples

Examples based on finite distributions

and only if they are i.i.d.

 \triangleright A constant process, $X_t = X_0$ for all $t \in T$ is stationary.

Examples based on stationarity preserving filters

Examples of filters $q: E^T \to F^T$ preserving stationarity:

▶ Time reversing operator: $g:(x_t)_{t\in\mathbb{Z}}\mapsto (x_{-t})_{t\in\mathbb{Z}}$.

▶ A sequence of independent random variables is strictly stationary if

 $\triangleright X \sim \mathcal{N}(\mu, \Gamma)$ is stationary if and only if $\mu_t = \mu_0$ and $\gamma_{s,t} = \gamma_{s-t,0}$ for

We set $E = \mathbb{C}^d$. We denote

$$L^2(\Omega,\mathcal{F},\mathbb{P}) = \left\{ X \ \mathbb{C}^d \text{-valued r.v. such that } \mathbb{E}\left[|X|^2\right] < \infty \right\} \ .$$

 (L^2,\langle,\rangle) is a Hilbert space with

$$\langle X, Y \rangle = \mathbb{E}\left[X^T \overline{Y}\right] .$$

Definition : L^2 Processes

The process $\mathbf{X} = (\mathbf{X}_t)_{t \in T}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in \mathbb{C}^d is an L^2 process if $\mathbf{X}_t \in L^2(\Omega, \mathcal{F}, \mathbb{P})$ for all $t \in T$.

Mean and covariance functions

Let $\mathbf{X} = (\mathbf{X}_t)_{t \in T}$ be an L^2 process.

- lts mean function is defined by $\mu(t) = \mathbb{E}[\mathbf{X}_t]$,
- ▶ Its covariance function is defined by

$$\Gamma(s,t) = \text{cov}(\mathbf{X}_s, \mathbf{X}_t) = \mathbb{E}\left[\mathbf{X}_s \mathbf{X}_t^H\right] - \mathbb{E}\left[\mathbf{X}_s\right] \mathbb{E}\left[\mathbf{X}_t\right]^H$$
.

Scalar case

Let $\mathbf{X} = (\mathbf{X}_t)_{t \in T}$ be an L^2 process with mean function $\pmb{\mu}$ and covariance function Γ . This is equivalent to say that for all $\mathbf{u} \in \mathbb{C}^d$, $\mathbf{u}^H \mathbf{X}$ is a scalar L^2 process with mean function $\mathbf{u}^H \boldsymbol{\mu}$ and covariance function $\mathbf{u}^H \boldsymbol{\Gamma} \mathbf{u}$.

rançois Roueffhttp://www.tsi.enst.fr/~r

Weakly stationary processes

- Stochastic modelling of Time series
- Stationarity
 - Strict Stationarity
 - \bullet L^2 processes
 - Weak stationarity
- Spectral random field

Covariance function, examples

Hermitian symmetry, non-negative definiteness (d=1)

For all $I \in \mathcal{I}(T)$, $\Gamma_I = \operatorname{Cov}([X(t)]_{t \in I}) = [\gamma(s,t)]_{s,t \in I}$ is a hermitian non-negative definite matrix.

Examples

 $\triangleright L^2$ random variables with marginals $(\nu_t)_{t\in T}$ have mean $\mu(t) = \int x \nu_t(\mathrm{d}x) = \nu_t(\mathrm{Id})$ and covariance

$$\Gamma(s,t) = \begin{cases} \nu_t(\mathrm{IdId}^H) - \nu_t(\mathrm{Id})\nu_t(\mathrm{Id})^H & \text{if } s = t, \\ 0 & \text{otherwise.} \end{cases}$$

 \triangleright A Gaussian process is an L^2 process whose law is entirely determined by its mean and covariance functions.

Let $T = \mathbb{Z}$. Let X be an L^2 strictly stationary process with mean function μ and covariance function Γ . Then $\mu(t) = \mu(0)$ and $\gamma(s,t) = \gamma(s-t,0)$

for all $s, t \in T$.

Definition: Weak stationarity

We say that a random process X is weakly stationary with mean μ and autocovariance function $\gamma: \mathbb{Z} \to \mathbb{C}$ if it is L^2 with mean function $t \mapsto \mu$ and covariance function $(s,t) \mapsto \gamma(s-t)$.

The autocorrelation function is defined (when $\gamma(0) > 0$) as

$$\rho(t) = \frac{\gamma(t)}{\gamma(0)} \ .$$

Examples based on finite distributions

An L^2 strictly stationary process is weakly stationary.

- \triangleright The constant L^2 process has constant autocovariance function.
- ightharpoonup A sequence of L^2 i.i.d. random variables is called a strong white noise, denoted by $X \sim \text{IID}(\mu, \sigma^2)$.
- \triangleright An L^2 process X with constant mean μ and constant diagonal covariance function equal to σ^2 is called a weak white noise. It is denoted by $X \sim WN(\mu, \sigma^2)$.

Heartbeats: autoregression

Figure: Illustration of $\gamma(1)$: X_t VS X_{t-1} for the heartbeats data. The red dashed line is the best linear fit.

Examples based on stationarity preserving linear filters

Let X be weakly stationary with mean μ and autocovariance γ .

Define Y = q(X). In the following examples, Y is weakly stationary with mean μ' and autocovariance γ' for

- \triangleright q = time reversing operator: $\mu' = \mu$ and $\gamma' = \gamma$.
- $ightharpoonup g = \sum_k \mathbf{h}_k \, \mathbf{S}^{-k} : x \mapsto \mathbf{h} \star x$ for a finitely supported sequence \mathbf{h} :

 - $\triangleright \mu' = \mu \sum_{k} h_{k}$ $\triangleright \gamma'(\tau) = \sum_{\ell,k} h_{k} \overline{h_{\ell}} \gamma(\tau + \ell k).$

Empirical estimates

Suppose you want to estimate the mean and the autocovariance from a sample X_1, \ldots, X_n . Define the empirical mean as

$$\widehat{\mu}_n = \frac{1}{n} \sum_{k=1}^n X_k \;,$$

and the empirical autocovariance and autocorrelation functions

$$\widehat{\gamma}_n(h) = \frac{1}{n} \sum_{k=1}^{n-|h|} (X_k - \widehat{\mu}_n)(X_{k+|h|} - \widehat{\mu}_n) \quad \text{and} \quad \widehat{\rho}_n(h) = \frac{\widehat{\gamma}_n(h)}{\widehat{\gamma}_n(0)} \; .$$

Heartbeats: autocorrelation (empirical)

Heart beat

White noise

Figure: Left : empirical autocorrelation $\widehat{\rho}_n(h)$ of heartbeat data for $h=0,\dots,100$. Right : the same from a simulated white noise sample with same length.

rançois Roueffhttp://www.tsi.enst.fr/~

SIMDI 226 -

François Roueffhttp://www.tsi.ens

Spectral measure

Herglotz Theorem

 $(X_t)_{t\in\mathbb{Z}}$ with autocovariance γ ?

1226 1

Given a function $\gamma: \mathbb{Z} \to \mathbb{C}$, does there exist a weakly stationary process

Let $\gamma: \mathbb{Z} \to \mathbb{C}$. Then the two following assertions are equivalent:

(ii) There exists a non-negative measure ν on the torus \mathbb{T} , called the spectral measure, such that, for all $t \in \mathbb{Z}$, $\gamma(t) = \int_{\mathbb{T}} \mathrm{e}^{\mathrm{i}\lambda t} \nu(\mathrm{d}\lambda)$.

(i) γ is hermitian symmetric and non-negative definite.

D-----h--- 4 2012 42 /

Examples

- ▶ Let $X \sim \text{WN}(\mu, \sigma^2)$. Then $f(\lambda) = \frac{\sigma^2}{2\pi}$.
- Let X be a weakly stationary process with spectral measure ν . Let $Y = \sum_k \mathbf{h}_k \mathbf{S}^{-k} \circ X$ for a finitely supported sequence \mathbf{h} . Then Y is weakly stationary process with spectral measure ν' having density $\lambda \mapsto \left|\sum_k \mathbf{h}_k \mathbf{e}^{-\mathrm{i}\lambda k}\right|^2$ with respect to ν ,

$$\mathbf{\nu}'(\mathrm{d}\lambda) = \left|\sum_{k} \mathrm{h}_{k} \mathrm{e}^{-\mathrm{i}\lambda k}\right|^{2} \mathbf{\nu}(\mathrm{d}\lambda) .$$

· •

Spectral density

If moreover $\gamma \in \ell^1(\mathbb{Z})$, these assertions are equivalent to

$$f(\lambda) = rac{1}{2\pi} \sum_{t \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i}\lambda t} \gamma(t) \geq 0 \; \text{for all} \; \lambda \in \mathbb{R} \; ,$$

and ν has density $f(\nu(d\lambda) = f(\lambda)d\lambda)$.

f is called the spectral density.

A special one : the harmonic process

Let $(A_k)_{1\leq k\leq N}$ be N real valued L^2 random variables. Denote $\sigma_k^2=\operatorname{Var}(A_k)$. Let $(\Phi_k)_{1\leq k\leq N}$ be N i.i.d. random variables with a uniform distribution on $[-\pi,\pi]$, and independent of $(A_k)_{1\leq k\leq N}$. Define

$$X_t = \sum_{k=1}^{N} A_k \cos(\lambda_k t + \Phi_k) , \qquad (3)$$

where $(\lambda_k)_{1 \leq k \leq N} \in [-\pi, \pi]$ are N frequencies. The process (X_t) is called an *harmonic process*. It satisfies $\mathbb{E}[X_t] = 0$ and, for all $s, t \in \mathbb{Z}$,

$$\mathbb{E}\left[X_s X_t\right] = \frac{1}{2} \sum_{k=1}^{N} \sigma_k^2 \cos(\lambda_k(s-t)) .$$

rancois Roueffhttp://www.tsi.enst.fr/~r

SIMDI 226 -

December 4, 2012

45 / 55

- Stochastic modelling of Time series
- Stationarity
- Spectral random field
 - Random fields with orthogonal increments
 - Stochastic integral
 - Spectral representation

- Stochastic modelling of Time series
- Stationarity
- 3 Spectral random field
 - Random fields with orthogonal increments
 - Stochastic integral
 - Spectral representation

nçois Roueffhttp://www.tsi.enst.fr/~r

SIMDI 226 - I

December 4, 2012

46 / 55

Random fields with orthogonal increments

In the following we let (X, \mathcal{X}) be a measurable space.

Definition: Random fields with orthogonal increments

Let η be a non-negative measure on (\mathbb{X},\mathcal{X}) . Let $W=(W(A))_{A\in\mathcal{X}}$ be an L^2 process indexed by \mathcal{X} . It is called a random field with orthogonal increments and intensity measure η if it satisfies the following conditions.

- (i) For all $A \in \mathcal{X}$, $\mathbb{E}[W(A)] = 0$.
- (ii) For all $A, B \in \mathcal{X}$, $Cov(W(A), W(B)) = \eta(A \cap B)$.

Consequence

For all $A, B \in \mathcal{X}$ such that $A \cap B = \emptyset$, W(A) and W(B) are uncorrelated and $W(A \cup B) = W(A) + W(B)$.

Example

We denote by δ_{λ} the Dirac mass at point λ .

Let λ_k , $k=1,\ldots,n$ be fixed elements of \mathbb{X} . Let Y_1,\ldots,Y_n be centered L^2 uncorrelated random variables with variances $\sigma_1^2,\dots,\sigma_n^2$. Then

$$W = \sum_{k=1}^{n} Y_k \ \delta_{\lambda_k}$$

is a random field with orthogonal increments and intensity measure

$${m \eta} = \sum_{k=1}^n \sigma_k^2 \; \delta_{\lambda_k} \; .$$

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ □ ⟨□⟩ ⟨□⟩

Stochastic integral

Let W be a random field with orthogonal increments defined on $(\Omega, \mathcal{F}, \mathbb{P})$, with intensity measure η on $(\mathbb{X}, \mathcal{X})$.

The stochastic integral with respect to W is defined by the following steps.

- Step 1 We set $W(1_A) = W(A)$, which defines a unitary operator from $\{\mathbb{1}_A, A \in \mathcal{X}\} \subset L^2(\mathbb{X}, \mathcal{X}, \mathbf{\eta}) \text{ to } L^2(\Omega, \mathcal{F}, \mathbb{P})$
- Step 2 Extend this unitary operator linearly on $\mathrm{Span}\,(\mathbb{1}_A,\,A\in\mathcal{X})$.
- Step 3 Extend this unitary operator continuously to $L^2(\mathbb{X}, \mathcal{X}, \boldsymbol{\eta}) = \overline{\operatorname{Span}} (\mathbb{1}_A, A \in \mathcal{X}).$
- Step 4 One obtains a unitary operator $L^2(\mathbb{X}, \mathcal{X}, \eta) \to L^2(\Omega, \mathcal{F}, \mathbb{P})$, denoted

$$W(g) = \int g \, \mathrm{d}W$$
.

Stochastic modelling of Time series

Stationarity

Spectral random field

• Random fields with orthogonal increments

Stochastic integral

Spectral representation

- Stochastic modelling of Time series
- Stationarity
- Spectral random field
 - Random fields with orthogonal increments
 - Stochastic integral
 - Spectral representation

Application

Let W be a random field with orthogonal increments with intensity measure η on $(\mathbb{T}, \mathcal{B}(\mathbb{T}))$.

Define, for all $t \in \mathbb{Z}$,

$$X_t = \int e^{it\lambda} dW(\lambda) ,$$

Then we have $\mathbb{E}\left[X_t\right] = 0$ and

$$\operatorname{Cov}(X_s, X_t) = \langle X_s, X_t \rangle = \langle e^{\mathrm{i}s \cdot}, e^{\mathrm{i}t \cdot} \rangle = \int_{\mathbb{T}} e^{\mathrm{i}(s-t)\lambda} \, \mathrm{d}\eta(\lambda) ,$$

We get a centered weakly stationary process with spectral measure η .

Spectral representation

By construction, every $Y \in \mathcal{H}_{\infty}^{X}$ can be represented as

$$Y = \int g(\lambda) \, \mathrm{d}\widehat{X}(\lambda) \; .$$

for some $g \in L^2(\mathbb{T}, \mathcal{B}(\mathbb{T}), \frac{\eta}{\eta})$.

In particular, for all $t \in \mathbb{Z}$,

$$X_t = \int e^{it\lambda} d\widehat{X}(\lambda) .$$

This expression is called the spectral representation of X.

Construction of the spectral random field

Step 1 Let $(X_t)_{t\in\mathbb{Z}}$ be a centered weakly stationary with spectral measure η . Define

$$\mathcal{H}_{\infty}^{X} = \overline{\operatorname{Span}}(X_{t}, t \in \mathbb{Z})$$
.

(the closure is taken in L^2 .)

- Step 2 As previously, we can extend $X_t \mapsto e^{it}$ linearly and continuously as a unitary operator from \mathcal{H}_{∞}^{X} to $L^{2}(\mathbb{T},\mathcal{B}(\mathbb{T}),\eta)$.
- Step 3 Since $\overline{\mathrm{Span}}\left(\mathrm{e}^{\mathrm{i}t},\,t\in\mathbb{Z}\right)=L^2(\mathbb{T},\mathcal{B}(\mathbb{T}),\frac{\eta}{\eta})$, this operator is bijective.
- Step 4 Let \widehat{X} be its inverse operator. Then \widehat{X} is a random field with orthogonal increments with intensity measure η on $(\mathbb{T}, \mathcal{B}(\mathbb{T}))$.