برقی آلات

خالد خان يوسفر. كي

جامعہ کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

ix		ديباچه
3	<i>ڡ</i> ؙ <i>ڹ</i>	1 بنیادی خ
3	ينياد ي اکائيال	1.1
3	غيرستى	1.2
4	سمتير	1.3
5		1.4
5	1.4.1 كارتيسى محدد ي نظام	
7	1.4.2 نىکى محددى نظام	
9	سمتيررقبر	1.5
11	رقبه عمودی تراش	1.6
12	ىر قى اور مقناطىيى مىدان	1.7
12	1.7.1 برتی میدان اور برتی میدان کی شدت	
13	1.7.2 متناطیسی میدان اور مقناطیسی میدان کی شدت	

iv

13	سطحیاور حجمی کثافت	1.8	
13	1.8.1 منطحی ثثافت		
14	محجى كثافت	1.9	
15	صليبي ضرب اور ضرب نقط	1.10	
15	1.10.1 صلیبی ضرب		
17	1.10.2 نقطى ضرب نقطى ضرب.		
20	تفرق اور جزوی تفرق	1.11	
20	خطی تکمل	1.12	
21	سطح تمل	1.13	
22	دوری سمتنی	1.14	
27) او وار	يمقناطيسي	2
2727)اد وار مزاحمت اور نتچکچاہٹ		2
		2.1	2
27	مزاحمت اور نتکچابث	2.1	2
27 28 30	مزاحمت اور نتیکچابٹ	2.1	2
27 28 30 32	مزاحمت اور نتیکچابث	2.1 2.2 2.3	2
27 28 30 32 34	مزاجمت اور نیکچاب میران کی شدت گافت برقی رواور برقی میدان کی شدت گافت برقی او دار میدان کی شدت برقی او دار میدان کی شدت متناطبیی دور حصه اول میناطبی کی دور حصه کی دور	2.1 2.2 2.3 2.4	2
27 28 30 32 34 36	مزاحمت اور نتیکچابث کثافت برتی رواور برتی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول کثافت متناطیسی بهاواور متناطیسی میدان کی شدت	2.1 2.2 2.3 2.4 2.5	2
27 28 30 32 34 36	مزاجمت اور نیمکیاب گافت برقی رواور برقی میدان کی شدت برقی ادوار مقناطیسی دور حصه اول گافت مقناطیسی بهاواور مقناطیسی میدان کی شدت مقناطیسی دور حصه دوم	2.1 2.2 2.3 2.4 2.5 2.6	2

عـــنوان

57																															^	نسفار	ٹران	3
58					•			•																		ت	اہمیہ	کی	ار م	رانسفا	*	3	.1	
61																										مام	لحاقه	ر_	ار م	رانسفا	رُ	3	.2	
61																												باو	قىد	الی بر	ا	3	.3	
63										•							•						ياع	ىن	قالب	واور	قىرو	ربرا	انگيز	بجان	Ĩ	3	.4	
66	•		•		•			•	•											Ü	واح	کے خو	رو_	_ قی	له	تباد	واور	ادبا	برقی	بادله	تې	3	.5	
70										•												ژ	با)جان	رائح	كاابتا	وجھ	ب بو	جانسه	انوی.	ť	3	.6	
71					•																ب	طله	الار	نطوا	ير پر نق	ت	علام	کی	ار م	رانسفا	<i>*</i>	3	.7	
72										•							•										لہ .	نبادا	ك كا:	كاور	'n	3	.8	
77										•							•							بئر	يميد	ك-ا	ولر <u>.</u>	کاو	ار م	رانسفا	,	3	.9	
79										•							•					ار	ادو	باوك	رمر	بداور	امال	ر_	ار م	رانسفا	,	3.1	0	
79															نا	ہ کر	نده	عليح	امليه	امتعه	کی	.اگ	ن اور	حمت	مزا	ے کی	"	3	3.1	0.1	1			
81																									. ،	نامال	دِست	3	3.1	0.2	2			
82																		ن	ران	کےاث	_,	لب	ور قا	رواه	۔ تی	ی بر	ثانو	3	3.1	0.3	3			
83										•	•										باو	قى د	بابر	كالمالخ	يھے	ب ی -	ثانو	3	3.1	0.4	4			
83															ت	رار	اثر	2	مله	متعا	ور	تا	زاحمه	کی مز	ر گھے	ب ی	ثانو	3	3.1	0.5	5			
85																		وليه	. تبا	انب	ناج	نانو ک	ئىية	بتدا	16.	وٹ	رکا	3	3.1	0.6	5			
87																	ار	ادوا	وی	مسا	ين	ەتر	ساد	کے	. مر	سفار	ٹران	3	3.1	0.7	7			
88					•																		ائنه	ر مع	ردو	ركس	نداو	حا يَ	ورم	کھلے و	<u>-</u>	3.1	1	
89																								ئنہ	معا	دور	كطلا	3	3.1	1.1	1			
91										•														ئنه	معا	ردور	كم	3	3.1	1.2	2			
95																							•		٠.	رمر	نسفا)ٹرا	وري	نين و	;	3.1	2	
103																		زر	کا گز	ارو	رق	کی بر	ه محر	ز باد	لمحد	تے	لو کر	حال	ار م	. انسفا	ٹر	3.1	3	

vi

يكانى توانائى كا با بمى تبادله	بر قی اور	4
مقناطيسي نظام ميں قوت اور قوت مروڑ	4.1	
تبادله توانائی والاایک کچھے کا نظام	4.2	
توانائي اورېمه توانائي	4.3	
متعدد کچھوں کا متناطبیتی نظام	4.4	
129 شین کے بنیاد کی اصول	گو <u>مت</u> •	5
تانون فيرادُ ك يادي كان فيرادُ ك يادي كان	5.1	
معاصر مشين	5.2	
محرك برقی د باو	5.3	
کھیلے کچھے اور سائن نمامقنا طیسی دباو	5.4	
5.4.1 برلتار ووالے مشین		
مقناطىيى د باوكى گھومتى امواج	5.5	
5.5.1 ایک دورکی لینی مشین		
5.5.2 تين دور کي کپڻي مثين کا تخليل تجربيه		
5.5.3 تين دورکي لپڻي مشين کاتر سيمي تجربيه		
محرک برقی دباو	5.6	
5.6.1 بدلتي روبرتي جزير		
5.6.2 کیک سمتی روبر تی جزیئر		
موار قطب مشينوں ميں قوت مروڑ	5.7	
5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حباب		
5.7.2 مقناطیسی بہاویے میکانی قوت مر وڑ کا حیاب		

vii

ر مشين 179	ال حال، بر قرار چالو معاص	6 كيا
ىرمشين	6 متعدد مرحله معاص	.1
امالہ	6 معاصر مشین کے ا	.2
الله	6.2.1 نود	
تر که الله	6.2.2 شخ	
صراماله	6.2.3 معا	
ماوى دوريارياضى نمونه	6 معاصر مثين كامسا	.3
لى	6 برقی طاقت کی منتقا	.4
ر چالو مثین کے خصوصیات	6 کیساں حال، بر قرار	.5
196	6.5.1 معا	
197	6.5.2 معا	
رمعائنه	6 کھلے دوراور کسرِ دو	.6
يەدور معائنە	6.6.1	
ر دور موائد	6.6.2 کبر	

211	امالی مشیر	7
ساكن کچھوں کی گھومتی مقناطیبی موج	7.1	
مشین کی سر کنے اور گھومتی موجول پر تبصرہ	7.2	
ساكن كېھول مين امالي برقي د باو	7.3	
ساکن کچھوں کی موج کا گھومتے کچھوں کے ساتھ اضافی رفتار اور ان میں پیدا امالی برقی دباو	7.4	
گھو متے کچھوں کی گھو متی متناطبی دیاو کی موج یہ	7.5	
گھوٹے کچھوں کے مساوی فرضی ساکن کچھے ۔	7.6	
المالي موشر كامساوى برقى دور	7.7	
مىادى بر قى دور پرغور	7.8	
امالي موٹر كامساوى تقونن دوريارياضى نمونه	7.9	
پنچرانماامالي موٹر	7.10	
ب يو جھ موٹراور جايد موٹر كے معائند	7.11	
7.11.1 بي بو چھ موثر كامعائنہ		
7.11.2 جامد موٹر کامعا تنہ		
رومشين	يك سمتى	8
ميكاني ست كاركي بنيادى كاركروگى	8.1	
8.1.1 ميكاني سمت كاركى تفصيل		
ىك سى جزيرً كى برقى د باو	8.2	
قوت مرور مرور مرور مرور مرور مرور مرور مر	8.3	
يروني بيجان اور خود بيجان يك سمتى جزير	8.4	
يك سمتى مشين كى كار كرو گى كے خط	8.5	
8.5.1 حاصل برقی د باو بالقابل برقی بوجھ		
8.5.2 رفمار بالمقابل قوت مرور گریستان مرور گریستان مرور گریستان کرور گرور گریستان کرور گریستان ک		
269	ا	فرہناً

عـــنوان

0.8.3

باب5

گھومتے مشین کے بنیادی اصول

اس باب میں مختلف گھومتے مشینوں کے بنیادی اصولوں پر غور کیا جائے گا۔ظاہری طور پر مختلف مشین ایک ہی قشم کے اصولوں پر کام کرتے ہیں جنہیں اس باب میں اکٹھا کیا گیا ہے۔

5.1 قانون فيراد ك

قانور فیراڈے 1 کے تحت جب بھی کسی کچھے کا ارتباط بہاو λ وقت کے ساتھ تبدیل ہو، اس کچھے میں برقی دباو پیدا ہو گا:

$$(5.1) e = \frac{\partial \lambda}{\partial t} = N \frac{\partial \phi}{\partial t}$$

چونکہ ہمیں برقی دباو کی قیمت ناکہ اس کے ہے ہے ولچین ہے لہذا اس مساوات میں منفی کی علامت کو نظر انداز کیا گیا ہے۔

گھومتے مشین میں ارتباط بہاو کی تبدیلی مختلف طریقوں سے پیدا کی جا سکتی ہے۔مثلاً کچھے کو ساکن مقناطیسی بہاو میں گھما کر یا ساکن کچھے میں مقناطیس گھما کر، وغیرہ وغیرہ۔

Faraday's law¹

ان برقی مثینوں میں کچھے مقناطیسی قالب² پر لییٹے جاتے ہیں۔ اس طرح کم سے کم مقناطیسی دباو سے زیادہ سے زیادہ سے زیادہ مقناطیسی بہاو ماصل کیا جاتا ہے اور کچھوں کے مابین مشتر کہ مقناطیسی بہاو بڑھایا جاتا ہے۔ مزید قالب کی شکل تبدیل کر کہ مقناطیسی بہاو کو ضرورت کے مقام پر پہنچایا جاتا ہے۔

ان مشینوں کے قالب میں مقناطیسی بہاو وقت کے ساتھ تبدیل ہوتا ہے للذا قالب میں بھنور نما برقی رو³ پیدا ہوتا ہے۔ان بھنور نما برقی رو کو کم سے کم کرنے کی خاطر باریک لوہے کی پتری⁴ تہہ در تہہ رکھ قالب بنایا جاتا ہے۔ ۔ آپ کو یاد ہو گا، ٹرانسفار مرکا قالب بھی اس طرح بنایا جاتا ہے۔

5.2 معاصر مشين

شکل 5.1 میں معاصر برقی جزیئر کا ایک بنیادی شکل دکھایا گیا ہے۔ اس کے قالب میں ایک مقناطیس ہے جو کہ گھوم سکتا ہے۔ مقناطیس کا مقام اس کے میکانی زاویہ θ_m سے بتلائی جاتی ہے۔ افتی کیبر سے گھڑی کے مخالف زاویہ θ_m ناپا جاتا ہے۔

یہاں کچھ باتیں وضاحت طلب ہیں۔ اگر مقناطیں ایک مقررہ رفتار ہے، فی سینڈ n مکمل چکر کائنا ہو تب ہم کہتے ہیں کہ اس مقناطیں کے گھومنے کا تعدد n ہرٹر آئی ہے۔ اس بات کو یوں بھی بیان کیا جاتا ہے کہ مقناطیں 60n فی منٹ 6 کی رفتار سے گھوم رہا ہے۔ آپ جانتے ہیں کہ ایک چکر 360 زاویہ یا 2π ریڈ بیک 7 پر مشتمل ہوتا ہے للذا گھومنے کی اس رفتار کو 2π ریڈ بیک فی سیکٹہ بھی کہہ سکتے ہیں۔ یوں اگر مقناطیس f ہرٹز کی رفتار سے گھوم رہا ہو تب ہے 2π میں خوام کی جاتا ہے۔

$$(5.2) \omega = 2\pi f$$

اس كتاب مين كهومنے كى رفتار كو عموماً ريدينن في سينٹر مين بيان كيا جائے گا۔

شکل 5.1 میں مثین کے دو مقاطیسی قطب ہیں، اس لئے اس کو دو قطبی مثین کہتے ہیں۔ ساکن قالب میں، اندر کی جانب دو شگاف ہیں، جن میں N چکر کا کچھا موجود ہے۔ کچھے کو a اور a سے ظاہر کیا گیا ہے۔اس کچھے کی بنا

magnetic core²
eddy currents³
laminations⁴
Hertz⁵

nertz-

rounds per minute, rpm⁶ radians⁷

5.2 معاصر مشين

شکل 5.1: دوقطب، یک دوری معاصر جنریٹر۔

اس مشین کو ایک کچھے کا مشین بھی کہتے ہیں۔ چونکہ یہ کچھا جزیٹر کے ساکن حصہ پر پایا جاتا ہے للذا یہ کچھا بھی ساکن ہو گا جس کی بنا اسے ساکھے کچھا⁸ کہتے ہیں۔

مقناطیس کا مقناطیسی بہاو شالی قطب 9 N سے خارج ہو کر خلائی درز میں سے ہوتا ہوا، باہر گول قالب میں سے گزر کر، دوسرے خلائی درز میں سے ہوتا ہوا، مقناطیس کے جنوبی قطب 10 S میں داخل ہو گا۔ اس مقناطیسی بہاو کو ہلکی سیابی کے کمیروں سے دکھایا گیا ہے۔ یہ مقناطیسی بہاو، سارا کا سارا، ساکن کچھے میں سے بھی گزرتا ہے۔ شکل 5.1 میں مقناطیس سیدھی سلاخ کی مانند دکھایا گیا ہے۔

شکل 5.2 میں مقناطیس تقریباً گول ہے اور اس کے محور کا زاویہ θ_m صفر کے برابر ہے۔ مقناطیس اور ساکن قالب کے پچ صفر زاویہ، $0 = \theta$ ، پر خلائی درز کی لمبائی کم سے کم اور نوے زاویہ، $0 = |\theta|$ ، پر زیادہ سے زیادہ سے کم خلائی درز پر پچکچاہٹ کم ہو گی جبکہ زیادہ خلائی درز پر پچکچاہٹ زیادہ ہو گی للذا $0 = \theta$ پر خلائی درز سے زیادہ مقناطیسی بہاو گزرے گا۔خلائی درز کی لمبائی یوں تبدیل کی جاتی ہے کہ خلائی درز میں سائن نما مقناطیسی بہاو پیدا ہو۔ مقناطیسی بہاو مقناطیس سے قالب میں عمودی زاویہ پر داخل ہوتا ہے۔ اگر خلائی درز میں 0 = 0 سائن نما ہو

$$(5.3) B = B_0 \cos \theta_p$$

تب کثافت مقناطیسی بہاو B صفر زاویہ $\theta_p=0^\circ$ ، پر زیادہ سے زیادہ اور نوے زاویہ، $\theta_p=90^\circ$ ، پر صفر ہو گی اور خلائی درز میں مقناطیسی بہاو $\theta_p=0$ کے ساتھ تبدیل ہو گا۔ $\theta_p=0$ کو مقناطیس کے شالی قطب سے گھڑی کے مخالف

stator coil⁸ north pole⁹ south pole¹⁰

شكل 5.2: كثافت مقناطيسي بهاواور زاويه كاتبديلي_

رخ ناپا جاتا ہے۔ شکل 5.2 میں ساکن جے کے باہر نو کیلی لکیروں کی لمبائی سے کثافت مقناطیسی بہاو کی مطلق قیمت اور کلیروں کے رخ سے بہاو کا رخ دکھایا گیا ہے۔ اس شکل میں ہاکی سیابی سے $^{\circ}0$ - $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ اور $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ $^{\circ}0$ پر مقناطیسی بہاو رداسی رخ جبہ باتی آ دھے میں مخالف کے مخالف ہے۔ یوں شکل 5.2 میں آ دھے خلائی درز میں کثافت مقناطیسی بہاو کا ترسیم سائن نما ہو گا۔ شکل 5.3 میں مقناطیس دوسرے زاویہ پر دکھایا گیا ہے۔ یاد رہے کثافت مقناطیسی بہاو کی مطلق قیمت مقناطیس کے شائی قطب پر زیادہ سے زیادہ ہو گا۔ ور شائی قطب پر کثافت مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رداسی رخ ہو گی۔ شکل 5.3 میں خلائی درز میں کثافتِ مقناطیسی بہاو رہ وگا۔ شکل قطب پر کثافت مقناطیسی بہاو رداسی درج ذیل کھا جا سکتا ہے۔

(5.4)
$$B = B_0 \cos \theta_p$$
$$\theta_p = \theta - \theta_m$$

يوں درج ذيل ہو گا۔

$$(5.5) B = B_0 \cos(\theta - \theta_m)$$

شکل 5.3 میں مقناطیس اور اس کا سائن نما مقناطیسی دباو پیش کیا گیا ہے۔ جیسا شکل 5.4 میں دکھایا گیا ہے، ایسے مقناطیسی دباو کو عموماً ایک سمتیہ سے ظاہر کیا جاتا ہے جہاں سمتیہ کا طول مقناطیسی دباو کا حیطہ اور سمتیہ کا رخ مقناطیس کے شال کو ظاہر کرتا ہے۔ 5.2. معاصر مشين

شکل 5.5: چار قطب یک دوری معاصر جنریٹر۔

شکل 5.3 میں مقناطیس کو لمحہ t_1 ، زاویہ $\theta_m(t_1)$ پر دکھایا گیا ہے جہاں ساکن کچھے کا ارتباط بہاو $\theta_m(t_1)$ مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار ω_0 سے گھوم رہا ہو تب ساکن کچھے میں اس لمحہ پر برقی دباو e(t) پیدا ہو گا:

(5.6)
$$e(t) = \frac{\mathrm{d}\lambda_{\theta}}{\mathrm{d}t}$$

آوھے چکر، π ریڈیئن گھومنے کے، بعد مقناطیسی قطبین آپس میں جگہیں تبدیل کرتے ہیں، کچھے میں مقناطیسی بہاو کا رخ الٹ ہو گا، کچھے میں ارتباط بہاو θ_0 اور اس میں امالی برقی دباو e(t) ہو گا۔ ایک مکمل چکر بعد مقناطیس دوبارہ ای مقام پر ہو گا جو شکل 5.3 میں دکھایا گیا ہے، ساکن کچھے کا ارتباط بہاو دوبارہ θ_0 اور اس میں امالی برقی دباو کی دباو کو گا۔ یوں جب بھی مقناطیس $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں $\theta_m = 2\pi$ میکانی زاویہ طے کرے، امالی برقی دباو کے برقی زاویہ میں دو سرے کے برابر تبدیلی رونما ہوگی لہذا دو قطب، ایک کچھے کی مثنین میں میکانی زاویہ θ_m اور برقی زاویہ θ_0 ایک دو سرے کے برابر ہوں گ

$$\theta_e = \theta_m$$

اس مشین میں میکانی زاویہ θ_m اور برقی زاویہ θ_e وقت کے ساتھ تبدیل ہونے کے باوجود آپس میں ایک تناسب رکھتے ہیں لہٰذا ایسے مشین کو معاصر مشین 0 کہتے ہیں۔ یہاں یہ تناسب ایک کے برابر ہے۔

frequency¹¹

Hertz¹²

synchronous machine¹³

5.2 معاصر مشين

شکل 5.5 میں چار قطب، یک دوری معاصر جزیٹر دکھایا گیا ہے۔ چھوٹے مشینوں میں عموماً مقناطیس جبکہ بڑے مشینوں میں برقی مقناطیس 14 استعال ہوتے ہیں۔ اس شکل میں برقی مقناطیس استعال کیے گئے ہیں۔ دو سے زائد قطبین والے مشینوں میں کسی ایک شالی قطب کو حوالہ قطب تصور کیا جاتا ہے۔ شکل میں اس حوالہ قطب کو θ_m پر دکھایا گیا ہے اور یوں دوسرا شالی قطب کو θ_m زاویہ پر ہے۔

حییا کہ نام سے واضح ہے، اس مشین میں مقناطیس کے چار قطبین ہیں۔ ہر ایک ثالی قطب کے بعد ایک جنوبی قطب آتا ہے۔ یک دوری آلات میں مقناطیسی قطبین کے جوڑوں کی تعداد اور ساکن کچھوں کی تعداد ایک دوسرے قطب آتا ہے۔ یک دوری آلات میں مثنا سے قطبین قطبین ہیں، للذا اس مشین کے ساکن حصہ پر کے برابر ہوتی ہے۔ شکل 5.5 میں مشین کے چار قطب یعنی دو جوڑی قطبین ہیں، للذا اس مشین کے ساکن حصہ پر دو ساکن کچھے ہوں ہیں۔ ایک کچھے کو واشح کیا گیا ہے اور دوسرے کو ہے ہے۔ کچھے کو قالب میں موجود دوشگان اور a_1 میں رکھا گیا ہے۔ ان وونوں کچھوں دوشگان اور a_2 میں رکھا گیا ہے۔ ان دونوں کچھوں میں یکسال برقی دباو پیدا ہوتا ہے۔ دونوں کچھوں کو سلسلہ وار 15 جوڑا جاتا ہے۔ اس طرح جزیڑ سے حاصل برقی دباو ایک کچھے میں پیدا برقی دباو کا دگنا ہو گا۔ یک دوری آلات میں قالب کو مقناطیس کے قطبین کی تعداد کے برابر حصوں میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا میں تقسیم کرنے سے مشین کا ہر ساکن کچھا ایک حصہ گھرتا ہے۔ شکل 5.5 میں چار قطبین ہیں للذا اس کا ایک کچھا نوے مکانی زاویہ کے اطاطے کو گھیرتا ہے۔

ساکن اور حرکی کیجھوں کی کار کردگی ایک دوسرے سے مختلف ہوتی ہے۔اس کی وضاحت کرتے ہیں۔

جیسا پہلے بھی ذکر کیا گیا چھوٹی گھومتی مشینوں میں مقناطیسی میدان ایک مقناطیس فراہم کرتا ہے جبکہ بڑی مشینوں میں برقی مقناطیس کو گھومتا حصہ دکھایا گیا ہے، حقیقت میں برقی مقناطیس کی مشین میں گومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والا لچھا مشین کے کل برقی طاقت میں مقناطیس کسی مشین میں گھومتا اور کسی میں ساکن ہو گا۔ میدان فراہم کرنے والے اس کچھے کو میدانی لچھا¹⁶ کہتے ہیں۔اس کے چند فی صد برابر برقی طاقت استعال کرتا ہے۔میدان فراہم کرنے والے اس کچھے کو میدانی لچھا کہ ہیں۔اس کے برعکس مشین میں موجود دوسری نوعیت کے لچھے کو قومی لچھا¹⁷ کہتے ہیں۔برقی جزیر کے قوی کچھے سے برقی طاقت کے برعکس مشین میں موجود دوسری نوعیت کے لچھے میں چند فی صد برقی طاقت کے ضیاع کے علاوہ تمام برقی طاقت وی کچھے کو فراہم کی جاتی ہے۔

شکل 5.6 میں گھومتے اور ساکن حصہ کے بی خلائی درز میں شالی قطب سے مقناطیسی بہاو باہر نکل کر قالب میں داخل ہوتا ہے۔ شکل 5.6 میں داخل ہوتا ہے۔ شکل 5.6 میں

electromagnet¹⁴

series connected 15

field coil¹⁶

armature coil¹⁷

شكل 6.5: چار قطب، دولچھے مثین میں مقناطیسی بہاو۔

اس مقناطیسی بہاو کی کثافت کو دکھایا گیا ہے۔ یوں اگر ہم اس خلائی درز میں ایک گول چکر کا ٹیس تو مقناطیسی بہاو کا رخ دو مرتبہ باہر کی جانب اور دو مرتبہ اندر کی جانب ہو گا۔ ان مشینوں میں کوشش کی جاتی ہے کہ خلائی درز میں B سائن نما ہو۔ یہ کیسے کیا جاتا ہے، اس پر آگے خور کیا جائے گا۔ اگر تصور کر لیا جائے کہ B سائن نما ہے تب خلائی درز میں B کی مطلق قیت شکل 5.7 کی طرح ہو گی جہاں θ برتی زاویہ ہے۔

P قطبی مقناطیس کے معاصر مثین کے لئے لکھ درج ذیل ہو گا۔

$$\theta_e = \frac{P}{2}\theta_m$$

$$(5.8) f_e = \frac{P}{2} f_m$$

یہاں برقی اور میکانی تعدد کا تناسب 2 ہے۔

مثال 5.1: پاکستان میں گھریلو اور صنعتی صارفین کو $_{\rm Hz}$ کی برتی طاقت فراہم کی جاتی ہے۔یوں ہمارے ہاں $f_e=50$

- اگر برقی طاقت دو قطبی جزیٹر سے حاصل کی جائے تب جزیٹر کی رفتار کتنی ہو گی؟۔
 - اگر جزیر کے بیں قطب ہوں تب جزیر کی رفار کتنی ہو گی؟

حل:

5.2 معاصر شين

شکل 5.8: دو قطب، تین دوری معاصر مثین ـ

- مساوات 5.8 تحت وو قطبی، P=2، جنریٹر کا میکانی رفتار 50=6 تحت وو قطبی، P=9، جنریٹر کا میکانی رفتار 5.8 تحت وی سیکنڈ لیمنی 18 ہو گا۔
- بیں قطبی، P=20، جزیٹر کا میکانی رفتار $f_m=rac{2}{20}(50)=5$ چکر فی سینٹر لیعنی P=20، جزیٹر کا میکانی رفتار P=20

اب یہ فیصلہ کس طرح کیا جائے کہ جزیر کے قطب کتنے رکھے جائیں۔ در حقیقت پانی سے چلنے والے جزیر سست رفتار جبکہ ٹربائن سے چلنے والے جزیر تیزر فلار ہوتے ہیں، للذا پانی سے چلنے والے جزیر نریدہ قطب رکھتے ہیں جبکہ ٹربائن سے چلنے والے جزیر عموماً دو قطب کے ہوتے ہیں۔

a شکل 5.8 میں دو قطب تین دوری معاصر مشین دکھایا گیا ہے۔اس میں تین ساکن کچھے ہیں۔ان میں ایک کچھا a جو قالب میں شکاف a اور a میں رکھا گیا ہے۔ اگر اس شکل میں باقی دو کچھے نہ ہوتے تب یہ بالکل شکل a میں دیا گیا مشین ہی تھا۔البتہ دیے گئے شکل میں ایک کی بجائے تین ساکن کچھے ہیں۔

لچھے کا رخ درج ذیل طریقہ سے تعین کیا جاتا ہے۔

rpm, rounds per minute¹⁸

شكل 5.9: دوقطب تين دوري مشين ـ

• دائیں ہاتھ کی چار انگلیوں کو دونوں شگافوں میں برقی رو کے رخ کیپیٹیں۔ دائیں ہاتھ کا انگوٹھا کچھے کا رخ دے گا

شکل 5.8 میں کچھا a کا برقی رو شگاف a میں، کتاب کے صفحہ کو عمودی، باہر رخ جبکہ a' میں اس کے مخالف اندر رخ تصور کرتے ہوئے کچھا a کا رخ تیر دار لکیر سے دکھایا گیا ہے۔ اس رخ کو ہم صفر زاویہ تصور کرتے ہیں۔ یوں کچھا a صفر زاویہ پر لپیٹا گیا ہے، لیعنی a a ہے۔ باقی کچھوں کے زاویات کچھا a کے رخ سے، گھڑی کے مخالف رُخ نابے جاتے ہیں۔

شکل 5.9 میں اگر لمحہ t_1 پر کچھا a کا ارتباط بہاو $\lambda_a(t_1)$ ہو تب لمحہ t_2 پر، جب مقناطیس °120 زاویہ طے کر لے، کچھا d کا ارتباط بہاو $\lambda_b(t_2)$ ہو گا۔ لمحہ t_2 پر مقناطیس اور کچھا d ایک دوسرے کے لحاظ سے بالکل اسی طرح نظر آتے ہیں جیسے t_1 پر مقناطیس اور کچھا d ایک دوسرے کے لحاظ سے نظر آتے تھے۔ یوں لمحہ t_2 پر کچھا d کا ارتباط بہاو اتنا ہی ہو گا جتنا لمحہ t_1 پر t_2 کچھا کا ارتباط بہاو تھا:

$$\lambda_b(t_2) = \lambda_a(t_1)$$

اسی طرح کھے t_3 پر، جب مقناطیس مزید °120 زاویہ طے کر لے، کچھا c کا ارتباط بہاو ($\lambda_c(t_3)$ ہو گا جو $\lambda_c(t_1)$ کے برابر ہو گا۔یوں درج ذیل لکھا جا سکتا ہے۔

$$\lambda_c(t_3) = \lambda_b(t_2) = \lambda_a(t_1)$$

.5. معاصر مثين

شكل5.10: چار قطب، تين دوري معاصر مشين ـ

ان کمحات پر کچھوں کے امالی برقی دباو

(5.11)
$$e_a(t_1) = \frac{\mathrm{d}\lambda_a(t_1)}{\mathrm{d}t}$$

(5.12)
$$e_b(t_2) = \frac{\mathrm{d}\lambda_b(t_2)}{\mathrm{d}t}$$

$$(5.13) e_c(t_3) = \frac{\mathrm{d}\lambda_c(t_3)}{\mathrm{d}t}$$

ہوں گے۔ مساوات 5.10 کی روشنی میں درج ذیل ہو گا۔

(5.14)
$$e_a(t_1) = e_b(t_2) = e_c(t_3)$$

اگر شکل 5.9 میں صرف کچھا a پایا جاتا تب یہ بالکل شکل 5.1 کی طرح ہوتا اور اگر ایسی صورت میں مقناطیس گھڑی کے مخالف رخ ایک مقررہ رفتار a سے گھمایا جاتا تب، جیسے پہلے تذکرہ کیا گیا ہے، کچھا a میں سائن نما برقی دباو پیدا ہوتا۔ شکل 5.9 میں کسی ایک کچھے کو کسی دوسرے کچھے پر کوئی برتری حاصل نہیں ہے۔ یوں اگر شکل 5.9 میں مقناطیس اسی طرح گھمایا جائے تب تینوں ساکن کچھوں میں سائن نما برقی دباو پیدا ہوگا البتہ مساوات 5.14 کے تحت یہ برقی دباو آپس میں a میں a دوسر گھری کے۔

شکل 5.10 میں چار قطب ، تین دوری معاصر مثین دکھایا گیا ہے۔ گھومتے تھے پر شالی اور جنوبی قطبین باری باری باری بائے جاتے ہیں اور °180 میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ میں شال اور قریبی جنوب قطب کی ایک جوڑی بائی جاتی ہے۔ یہی میکانی زاویہ کے مارہ ہوگا۔ شکل 5.8 میں ساکن حصہ کے °360 برقی زاویہ کے اعاطہ میں تین دوری کچھوں نسب ہیں جن کی اطراف کی ترتیب، گھڑی کے مخالف رخ چلتے ہوئے، میں بالکل اسی طرح تین دوری کچھوں کے اطراف دو قطبین کے اعاطہ ، °100 میکانی زاویہ (یا °360 برقی زاویہ)، میں بالکل اسی طرح تین دوری کچھوں کے اطراف کی ترتیب ہوئے، میں بھی بالکل اسی طرح آپ کو چھوں کے اطراف کی ترتیب ہوئے ، میں بھی بالکل اسی طرح آپ کو گھوں کے اطراف کی ترتیب دوری کے ور '22 ہے۔ باقی دو قطبین کے اعاطے میں جبی بالکل اسی طرح آپ کو گا۔ تین دوری دوری کے کوٹ کوٹ کیاں کیاں برقی دباو پیدا ہو گا۔ تین دوری دو کیاں کچھوں کو سلسلہ وار یا متوازی جوڑ کر تین دوری برقی دباو عاصل کا جاتا ہے۔ شکل 5.10 میں انہیں متوازی جوڑ کر دکھایا گیا ہے۔ شکل 5.10 میں جبیل مے کوٹ کوٹ کیا گیا ہے۔

5.3 محرك برتى دباو

قانون لورینز 19 کے تحت مقناطیسی میدان $m{B}$ میں سمتی رفتار $m{v}$ سے حرکت پذیر برقی بار q^{20} درج ذیل قوت $m{F}$ محسوس کرے گا۔

$$(5.15) F = q(\boldsymbol{v} \times \boldsymbol{B})$$

یہاں سمتی رفتار سے مراد برقی میدان کے لحاظ سے برقی بار کی سمتی رفتار ہے للذا F کو ساکن مقاطیسی میدان میں برقی بار کی سمتی رفتار تصور کیا جا سکتا ہے۔اس قوت کا رخ دائیں ہاتھ کے قانون سے معلوم کیا جاتا ہے۔

مقناطیسی میدان میں ابتدائی نقطہ سے اختتامی نقطہ تک، جن کے ﷺ ہٹاو l ہے، برتی بار q نتقل کرنے کے لئے درکار کام W ہو گا:

$$(5.16) W = \mathbf{F} \cdot \mathbf{l} = q(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

اکائی مثبت برتی بار کو ایک نقطہ سے دوسرے نقطہ منتقل کرنے کے لئے درکار کام کو ان دو نقطوں کے پیج برقی دباو²¹ کہتے ہیں جس کی اکائی وولئے۔ V²² ہے۔ یوں اس مساوات سے ان دو نقطوں کے پیچ درج ذیل برتی دباو ہو گا۔

(5.17)
$$e = \frac{W}{q} = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

5.3. محسر کے برقی دباو

شكل 5.11: ابك چيكر كالجھامقناطيسي ميدان ميں گھوم رہاہے۔

حرکت کی مدد سے یوں حاصل برقی دباو کو محرکے برقی دباو²³ کہتے ہیں۔ روایتی طور پر کسی بھی طریقہ سے حاصل برقی دباو کو محرک برقی دباو کہتے ہیں۔ یوں کیمیائی برقی سیل وغیرہ کا برقی دباو بھی محرک برقی دباو کہلائے گا۔

شکل 5.11 میں گھڑی کے مخالف رخ گھومتے حصہ پر ایک چکر کا کچھا نسب ہے۔بائیں خلاء میں کچھا کی تار کے قطع پر غور کریں۔ مساوات 5.15 کے تحت بایاں قطع میں موجود مثبت برقی بار پر صفحہ کے عمودی باہر رخ قوت پیدا ہو گی۔مساوات 5.17 کے تحت اس قطع کا بالائی سرا مثبت اور نجلا سرا منفی برقی دباو پر ہو گا۔

ہم گھومتے حصہ کی محور پر نگی محدد قائم کرتے ہیں۔ یوں جنوبی قطب کے سامنے خلاء میں B رداسی رخ جبکہ شالی قطب کے سامنے خلاء میں B رداس کے مخالف رخ ہو گا۔ جنوبی قطب کے سامنے شگاف میں برقی تار B کے ہم درج ذیل لکھ سکتے ہیں۔

$$egin{aligned} oldsymbol{v}_S &= v oldsymbol{a}_{ heta} = \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_S &= B oldsymbol{a}_{ extsf{T}} \ oldsymbol{l}_S &= l oldsymbol{a}_{ extsf{Z}} \end{aligned}$$

یوں جنوبی قطب کے سامنے تار کے قطع میں درج ذیل محرک برقی دباو پیدا ہو گا۔

(5.19)
$$e = (\mathbf{v} \times \mathbf{B}) \cdot \mathbf{l}$$

$$= \omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z}$$

$$= \omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z}$$

$$= -\omega r B l$$

Lorentz law¹⁹ charge²⁰

potential difference, voltage²¹

volt²²

electromotive force, emf^{23}

جنوبی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا۔اس مساوات میں برتی دباو منفی ہونے کا مطلب ہے کہ برتی تارکا مثبت سراتار پر $-a_z$ رخ ہے لیعنی تارکا نجلا سرا مثبت اور بالائی سرا منفی ہے۔ اگر اس تار میں رو گزر سکے تو اس رو کا رخ $-a_z$ لینی صفحہ کو عمودی اندر رخ ہو گا جے شکل 5.11 میں شگاف میں دائرہ کے اندر صلیبی نشان سے ظاہر کیا گیا ہے۔

ای طرح شالی مقناطیسی قطب کے سامنے شگاف میں موجود برقی تار کے لئے ہم درج ذیل لکھ سکتے ہیں۔

(5.20)
$$egin{aligned} oldsymbol{v}_N &= v oldsymbol{a}_{ heta} &= \omega r oldsymbol{a}_{ heta} \ oldsymbol{B}_N &= -B oldsymbol{a}_{ ext{r}} \ oldsymbol{l}_N &= l oldsymbol{a}_{ ext{z}} \end{aligned}$$

یوں اس قطع میں درج ذیل دباو ہو گا۔

(5.21)
$$e_{N} = (\mathbf{v}_{N} \times \mathbf{B}_{N}) \cdot \mathbf{l}_{N} \\ = -\omega r B l(\mathbf{a}_{\theta} \times \mathbf{a}_{r}) \cdot \mathbf{a}_{z} \\ = -\omega r B l(-\mathbf{a}_{z}) \cdot \mathbf{a}_{z} \\ = \omega r B l$$

شالی مقناطیسی قطب کے سامنے شگاف میں برتی تارکی لمبائی کا رخ a_z لیا گیا ہے۔اس مساوات میں برتی دباو مثبت ہونے کا مطلب ہے کہ برتی تارکا مثبت سراتار پر a_z رخ ہو گا لیمن تارکا بالائی سرا مثبت اور نجلا سرا منفی ہو گا۔اگر اس تار میں رو گزر سکے تو اس کا رخ a_z لیمن صفحہ کو عمودی باہر رخ ہو گا جے شکل 5.11 میں شگاف میں دائرہ کے اندر نقطہ کے نشان سے دکھایا گیا ہے۔

یہ دونوں تار مل کر ایک چکر کا لچھا بناتے ہیں۔ ان تاروں کے نچلے سر ایک دوسرے کے ساتھ سلسلہ وار جڑے ہیں جس کو شکل میں نہیں دکھایا گیا۔یوں اس کچھے کے بالائی، نظر آنے والے، سروں پر کل برقی دباو e ان دو برقی تاروں میں پیدا برقی دباو کا مجموعہ ہو گا:

(5.22)
$$e = 2rlB\omega$$
$$= AB\omega$$

یہاں کچھے کا رقبہ A=2rl ہے۔اگر ایک چکر سے اتنا برقی دباو حاصل ہو تب N چکر کے کچھے سے درج ذیل دباو حاصل ہو گا جہاں $\phi=AB$ مقناطیسی بہاو ہے۔

(5.23)
$$e = \omega NAB$$
$$= 2\pi f NAB$$
$$= 2\pi f N\phi$$

گومتی مشینوں کی خلائی درز میں B اور v ہر لمحہ ایک دوسرے کے عمودی ہوتے ہیں۔ مساوات 5.17 کت مستقل زاویائی رفتار اور محوری لمبائی کی صورت میں پیدا کردہ برقی دباو ہر لمحہ B کا براہ راست متناسب ہو گا۔ خلائی درز میں زاویہ کے ساتھ تبدیل ہوتے ہوئے B کی صورت میں گھومتے کچھے میں پیدا برقی دباو بھی زاویہ کے ساتھ تبدیل ہو گا۔ یوں جس شکل کا برقی دباو درکار ہو اسی شکل کی کثافت مقناطیسی دباو خلائی درز میں پیدا کرنی ہو گی۔ سائن نما برقی دباو پیدا کرنے کے لئے خلائی درز میں سائن نما کثافت مقناطیسی بہاو درکار ہو گی۔

اگلے جھے میں خلائی درز میں ضرورت کے تحت B پیدا کرنے کی ترکیب بتلائی جائے گا۔

5.4 کھیے اور سائن نمامقناطیسی دیاو

ہم نے اب تک جتنے مشین دیکھے ان سب میں گیھ ²⁴ کچھ دکھائے گئے۔ مزید ان مشینوں میں گھومتے تھے پر موجود مقاطیس کے ابھرے قطب ²⁵ تھے۔ عموماً حقیقی مشینوں کے ہموار قطب ²⁶ اور پھیلے کچھ ²⁷ ہوتے ہیں جن کی بنا ساکن اور گھومتے حصوں کے بچ خلائی درز میں سائن نما مقناطیسی دباو اور سائن نما کثافت مقناطیسی بہاو پیدا کرنا ممکن ہوتا ہے۔

شکل 5.12 میں ایک گیجھ کچھا دکھایا گیا ہے جہاں مثین کے گھومتے جھے کا عمودی تراش گول صورت کا ہے۔ متحرک اور ساکن قالب کا $\infty + \mu_r \to \infty$ کا مقناطیسی دباو π کہ متعاطیسی بہاو π بیدا کرتا ہو کہ بیدا کرتا ہو ہلکی سیابی کی لکیروں سے ظاہر کیا گیا ہے۔ مقناطیسی بہاو خلائی درز میں سے دو مرتبہ گزرتا ہوا کچھے کے گرد ایک چکر کا شاہدا درج ذیل ہو گا۔

یوں ساکن کچھے کے مقناطیسی دباو کا آدھا حصہ ایک خلائی درز اور آدھا حصہ دوسرے خلائی درز میں مقناطیسی بہاو پیدا کرتا ہے۔ مزید آدھے خلائی درز میں مقناطیسی دباو (اور مقناطیسی بہاو) رداسی رخ اور باقی خلائی درز میں رداس کے

non-distributed coils²⁴ salient poles²⁵

non-salient poles²⁶

distributed winding²⁷

 $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ (اور مقاطیسی دباو (اور مقاطیسی بہاو (اور مقاطیسی دباو) رداس کے در میان رداسی رخ ہے لہذا اسے مثبت تصور کیا جائے گا جبکہ باقی حصہ پر مقاطیسی دباو (اور مقاطیسی بہاو) رداس کے در میان ردا ہی رخ ہے لہذا اسے منفی تصور کیا جائے گا۔ شکل 5.13 میں خلائی در زمیں مقاطیسی دباو کو زاویہ کے ساتھ ترسیم کیا گیا ہے۔ وقفہ $\frac{\pi}{2} > \theta < \frac{\pi}{2}$ خلائی در زمیں مقاطیسی دباو کے آدھا ہو اور اس کا رخ مثبت ہے جبکہ وقفہ $\frac{\pi}{2} > \theta < \frac{3\pi}{2}$ کے خلائی در زمیں مقاطیسی دباو کچھے کے مقاطیسی دباو کا آدھا اور منفی رخ ہے حوالہ سے نعین کیا جاتا ہے۔

5.4.1 بدلتار ووالے مثین

برلتارو (اے سی) مشین بناتے وقت کوشش کی جاتی ہے کہ خلائی درز میں مقناطیسی دباوسائن نما ہو۔سائن نما مقناطیسی دباو دباو کے حصول کی خاطر لیچھوں کو ایک سے زیادہ شگافوں میں تقسیم کیا جاتا ہے۔ ایسا کرنے سے سائن نما مقناطیسی دباو کیسے حاصل ہوتا ہے، اس بات کی یہاں وضاحت کی جائے گی۔

 $f(heta_p)^{-29}$ فوریئر تسلسل 28 کے تحت ہم کسی بھی تفاعل 29 $f(heta_p)^{-29}$ کو درج ذیل صورت میں لکھ سکتے ہیں۔

(5.25)
$$f(\theta_p) = \sum_{n=0}^{\infty} (a_n \cos n\theta_p + b_n \sin n\theta_p)$$

تفاعل کا دوری عرصہ T^{30} ہونے کی صورت میں فوریئر تسلسل کے عددی سر درج ذیل ہوں گے۔

(5.26)
$$a_0 = \frac{1}{T} \int_{-T/2}^{T/2} f(\theta_p) d\theta_p$$
$$a_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \cos n\theta_p d\theta_p$$
$$b_n = \frac{2}{T} \int_{-T/2}^{T/2} f(\theta_p) \sin n\theta_p d\theta_p$$

مثال 5.2: شکل 5.13 میں دیے گئے مقناطیسی دباو کا

Fourier series²⁸ function²⁹ time period³⁰

- فوريئر تسلسل حاصل كريي،
- تيسري موسيقائي جزو³¹ اور بنيادي جزو³² كا تناسب معلوم كرين-

حل:

• مساوات 5.26 کی مدد سے

$$a_0 = \frac{1}{2\pi} \left[\int_{-\pi}^{-\pi/2} \left(-\frac{Ni}{2} \right) d\theta_p + \int_{-\pi/2}^{\pi/2} \left(\frac{Ni}{2} \right) d\theta_p + \int_{\pi/2}^{\pi} \left(-\frac{Ni}{2} \right) d\theta_p \right]$$

$$= \frac{1}{2\pi} \left[\left(-\frac{Ni}{2} \right) \left(-\frac{\pi}{2} + \pi \right) + \left(\frac{Ni}{2} \right) \left(\frac{\pi}{2} + \frac{\pi}{2} \right) + \left(-\frac{Ni}{2} \right) \left(\pi - \frac{\pi}{2} \right) \right]$$

$$= 0$$

اور درج ذیل حاصل ہوں گے۔

$$a_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\cos n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \cos n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\cos n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[-\frac{\sin n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} + \frac{\sin n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} - \frac{\sin n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= \frac{Ni}{2n\pi} \left[\sin \frac{n\pi}{2} + 2\sin \frac{n\pi}{2} + \sin \frac{n\pi}{2} \right]$$

$$= \left(\frac{4}{n\pi} \right) \left(\frac{Ni}{2} \right) \sin \frac{n\pi}{2}$$

اس مساوات میں n کی قیمت ایک، دو، تین لیتے ہوئے درج ذیل حاصل ہوتا ہے۔

$$a_1 = \left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right), \quad a_3 = -\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right), \quad a_5 = \left(\frac{4}{5\pi}\right) \left(\frac{Ni}{2}\right)$$

$$a_2 = a_4 = a_6 = 0$$

third harmonic component³¹ fundamental component³²

اسی طرح درج ذیل ہو گا۔

$$b_n = \frac{2}{2\pi} \frac{Ni}{2} \left[\int_{-\pi}^{-\pi/2} -\sin n\theta_p \, d\theta_p + \int_{-\pi/2}^{\pi/2} \sin n\theta_p \, d\theta_p + \int_{\pi/2}^{\pi} -\sin n\theta_p \, d\theta_p \right]$$

$$= \frac{Ni}{2\pi} \left[\frac{\cos n\theta_p}{n} \Big|_{-\pi}^{-\pi/2} - \frac{\cos n\theta_p}{n} \Big|_{-\pi/2}^{\pi/2} + \frac{\cos n\theta_p}{n} \Big|_{\pi/2}^{\pi} \right]$$

$$= 0$$

• ان نتائج کا یکجا کرتے ہیں:

$$\left| \frac{a_3}{a_1} \right| = \frac{\left(\frac{4}{3\pi}\right) \left(\frac{Ni}{2}\right)}{\left(\frac{4}{\pi}\right) \left(\frac{Ni}{2}\right)} = \frac{1}{3}$$

يوں تيسرا موسيقائي جزو بنيادي جزو کا تيسرا حصه ليني 33.33 في صد ہو گا۔

مثال 5.2 میں حاصل کردہ a_1, a_2, \cdots استعال کرتے ہوئے ہم خلائی درز میں مقناطیسی دباو τ کا فوریئر تسلسل کھتے ہیں۔

(5.27)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p - \frac{4}{3\pi} \frac{Ni}{2} \cos 3\theta_p + \frac{4}{5\pi} \frac{Ni}{2} \cos 5\theta_p + \cdots$$

(5.28)
$$\tau_a = \frac{4}{\pi} \frac{Ni}{2} \cos \theta_p = \tau_0 \cos \theta_p$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.29)
$$\tau_0 = \frac{4}{\pi} \frac{Ni}{2}$$

شكل 5.14: تين دور لچھے۔

خلائی درج میں τ ، H اور B ایک دوسرے کے برائے راست متناسب ہوتے ہیں۔ یوں مساوات 5.28 کے تحت شکل 5.12 کا کچھے اور شکل 5.2 میں صفر زاویہ پر سلاخ نما مقناطیس کیساں τ (اور B) دیں گ۔ اس طرح اگر شکل 5.12 کا کچھا زاویہ θ_{m} پر ہوتا تب ہمیں شکل 5.3 میں موجود مقناطیس کے نتائج حاصل ہوتے۔

شکل 5.14 میں تین کیجے آپس میں °120 زاویہ پر دکھائے گئے ہیں۔ ہم مساوات 5.63 کی طرح اس شکل میں کیجا a کے لئے درج ذیل کھ سکتے ہیں۔

(5.30)
$$\begin{aligned} \tau_a &= \tau_0 \cos \theta_{p_a} \\ \theta_{p_a} &= \theta - \theta_{m_a} = \theta - 0^{\circ} \\ \tau_a &= \tau_0 \cos(\theta - \theta_m) = \tau_0 \cos \theta \end{aligned}$$

اسی طرح کیجھا b اور c جو بالترتیب $\theta_{m_b}=120^\circ$ اور $\theta_{m_b}=120^\circ$ زاویہ پر ہیں کے لئے درج ذیل ہو گا۔

(5.31)
$$\begin{aligned} \tau_b &= \tau_0 \cos \theta_{p_b} \\ \theta_{p_b} &= \theta - \theta_{m_b} = \theta - 120^{\circ} \\ \tau_b &= \tau_0 \cos(\theta - \theta_{m_b}) = \tau_0 \cos(\theta - 120^{\circ}) \end{aligned}$$

(5.32)
$$\begin{aligned} \tau_c &= \tau_0 \cos \theta_{p_c} \\ \theta_{p_c} &= \theta - \theta_{m_c} = \theta - 240^\circ \\ \tau_c &= \tau_0 \cos(\theta - \theta_{m_c}) = \tau_0 \cos(\theta - 240^\circ) = \tau_0 \cos(\theta + 120^\circ) \end{aligned}$$

ا گرچہ ظاہری طور پر خلائی درز میں مقناطیسی دباو سائن نما ہر گز نہیں لگتا لیکن مساوات 5.27 ہمیں بتلاتی ہے کہ یہ محض نظر کا دھوکا ہے۔ اس مقناطیسی دباو کا بیشتر حصہ سائن نما ہی ہے۔ اگر ہم کسی طرح مساوات 5.27 میں پہلے رکن کے علاوہ باتی تمام ارکان کو صفر کر سکیں تب ہمیں سائن نما مقناطیسی دباو حاصل ہو گا۔

شكل 5.15: كيميلا لجھا_

شکل 5.12 کے N چکر کچھے کو تین چھوٹے کیساں کچھوں میں تقسیم کرتے ہوئے شکل 5.15 حاصل کیا گیا ہے جہاں ہر چھوٹا کچھا کچھا کہ چکر کا ہے۔ ایسے چھوٹے کچھوں کو سلسلہ وار جوڑا 33 جاتا ہے لہذا ان میں ایک جیسا برتی روز 3 گزرے گا۔ ان تین کچھوں کو تین مختلف شگافوں میں رکھا گیا ہے۔ پہلے کچھے کو شگاف 3 و شگاف 3 میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف 3 و میں رکھا گیا ہے۔ دوسرے کچھے کو شگاف 3 و میں رکھا گیا ہے۔

شگافوں کے ایک جوڑا کو ایک ہی طرح کے نام دیے گئے ہیں، البتہ ایک شگاف کو a اور دوسرے کو a نام دیا گیا ہے۔ یوں شگافوں کا پہلے جوڑا a_{45} اور a_{45} ہے۔ شگاف کا نام شگاف کے زاویہ کے لحاظ سے رکھا گیا ہے۔ یوں شگاف a_{45} در حقیقت a_{50} زاویہ پر ہے، شگاف a_{90} نوے درجہ زاویہ پر اور شگاف a_{135} ایک سو پینیس درجہ زاویہ پر ہے۔ اس طرح a_{45} شگاف a_{45} کا جوڑا ہے۔

متمام کچھے کا جیل اور تمام کچھوں میں برقی روi ایک دوسرے جیبا ہے۔ شکل 5.15 کے تھیلے کچھے کا مقاطیسی دباو بالمقابل زاویہ کا ترسیم شکل 5.16 میں موٹی لکیر سے دکھایا گیا ہے۔ سب سے اوپر لچھا کہ مقاطیسی دباو کی ترسیم ہو شکل 5.13 کی ترسیم کی طرح لیکن صفر زاویہ سے -45 ہٹ کر ہے۔ دوسری ترسیم لچھا a_{90} کی ہے جو ہو بہو شکل 5.13 کی طرح ہے جبکہ تیسری ترسیم کچھا a_{135} کی ہے جو صفر زاویہ سے +45 کی طرح ہے جبکہ تیسری ترسیم کچھا موری ہے ہو صفر زاویہ سے +45 ہٹ کر ہے۔ ان تینوں ترسیمات کا انفرادی طول $-\frac{N_i}{N_i}$ ہے۔

ترسیمات au_{a45} ، اور au_{a135} ی سے کل مقناطیسی دباو کی ترسیم au_{a45} ، حاصل کرنا سیکھتے ہیں۔ شکل au_{a45} ی بائیں عمودی نقطہ دار کلیریں لگائی گئی ہیں۔ سب سے بائیں پہلی کلیر کی بائیں طرف خطہ کو "ا" کہا گیا ہے۔اس

series connected 33

شكل 5.16: تھيلے لچھے كاكل مقناطيسى د باو۔

خطه میں ترسیمات τ_{a45} ، τ_{a45} ، اور τ_{a135} کی انفرادی قیمتیں τ_{a45} ہیں لہذا ان کا مجموعہ τ_{a45} ، τ_{a45} ، وگلہ یا ان میں کل مقناطیسی دباو τ کی ترسیم کی قیمت τ_{a45} ہو گل۔ اس طرح خطہ "ب" میں کل مقناطیسی دباو τ کی ترسیم کی قیمت τ_{a45} ہو گل۔ اس کا مجموعہ τ_{a45} اور τ_{a45} ہو کی مقناطیسی دباو ہو گا۔ نظم بالائی تینوں ترسیمات کی قیمتیں بالترتیب τ_{a45} ، τ_{a45} ، اور τ_{a45} ہیں جن کا مجموعہ τ_{a45} ہیں۔ مقناطیسی دباو ہو گا۔ اس طرح آپ پوری ترسیم تھنچ سکتے ہیں۔

 $^{\circ}$ شکل $^{\circ}$ کی $^{\circ}$ کو شکل $^{\circ}$ کی میں دوبارہ پیش گیا ہے۔ شکل $^{\circ}$ کی لیے لیے اور شکل $^{\circ}$ کی لیے اور شکل $^{\circ}$ کی لیے اور شکل $^{\circ}$

شكل 5.17: تھلے لچھے كامقناطيسى دباو۔

شكل 5.18: پچيلے لچھے كاجزو پھيلاو۔

کے دباو کی ترسیمات ہیں۔ شکل 5.13 کے لحاظ سے شکل 5.17 کی صورت سائن نما کے زیادہ قریب ہے۔ فوریئر سلسل حل کرنے سے بھی یہی نتیجہ حاصل ہوتا ہے۔ شگافوں کے مقامات اور ان میں کچھوں کے چکر یوں رکھے جا سکتے ہیں کہ ان کے پیدا کردہ مقناطیسی دباوکی ترسیم کی صورت سائن نماکی زیادہ سے زیادہ قریب ہو۔

کے علی کھے کے مختلف حصے ایک ہی زاویہ پر مقناطیسی دباو نہیں بناتے للذا ان سے حاصل کل مقناطیسی دباو کا حیطہ (اتنے ہی چکر کے) ایک پچھ کچھ کے حیطہ سے کم ہوتا ہے۔ مساوات 5.29 میں اس اثر کو شامل کرنے کے لئے جزو k_w متعارف کیا جاتا ہے

(5.33)
$$\tau_0 = k_w \frac{4}{\pi} \frac{Ni}{2}$$

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta = \tau_0 \cos \theta$$

$$-\xi \sqrt[3]{2} \int_{\infty}^{\infty} e^{-\frac{\pi}{2}} \int_{\infty}^{\infty} e^{-\frac{\pi}{2}}$$

مثال 5.3: شکل 5.15 کے تھیلے کچھے کا k_w تلاش کریں۔

مل: شکل 5.18 سے رجوع کریں۔ شکل 5.15 کے تین مچھوٹے کچھے ایک دوسرے کے برابر مقناطیسی دباو $n=\frac{N}{3}$ پیدا کرتے ہیں البتہ ان کی سمتیں مختلف ہیں۔ یہاں ایک کچھا $\frac{N}{3}$ چکر کا ہے للذا $n=\frac{N}{3}$ ہو گا۔ ہم تینوں مقناطیسی دباو کے دوری سمتیات کا مجموعہ لے کر مقناطیسی دباو au معلوم کرتے ہیں۔

$$\tau_a = \tau_n \cos 45^\circ + \tau_n + \tau_n \cos 45^\circ$$
$$= 2.4142\tau_n$$

winding $factor^{34}$

يوں درج ذيل ہو گا

$$\tau_a = 2.4142 \frac{4}{\pi} \frac{ni}{2} = \frac{2.4142}{3} \frac{4}{\pi} \frac{Ni}{2} = 0.8047 \frac{4}{\pi} \frac{Ni}{2}$$

للذا $k_w = 0.8047$ کے برابر ہے۔

مثال 5.4: تین دوری، 50 ہر ٹز، ستارہ جڑے جزیٹر کو 3000 چکر فی منٹ کی رفتار سے چلایا جاتا ہے۔ تیس چکر کے میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا میدانی کچھے کا جزو پھیلاو 0.833 ہے۔ مثین کا رواس 0.7495 میٹر اور لمبائی 2.828 $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی کچھے میں $l_k=0.04$ میرانی میں درج ذیل تلاش کریں۔

- میدانی مقناطیسی دباو کی زیادہ سے زیادہ قیمت۔
 - خلائی درز میں کثافت مقناطیسی بہاو۔
 - ایک قطب پر مقناطیسی بہاو۔
 - متحرك تارير برقى د باو_

حل:

$$\tau_0 = k_{w,m} \frac{4}{\pi} \frac{N_m i_m}{2} = 0.9 \times \frac{4}{\pi} \times \frac{30 \times 1000}{2} = 17\,186\,\text{A} \cdot \text{turns/m}$$

$$B_0 = \mu_0 H_0 = \mu_0 \frac{\tau_0}{l_k} = 4\pi 10^{-7} \times \frac{17186}{0.04} = 0.54 \,\mathrm{T}$$

$$\phi_0 = 2B_0 lr = 2\times 0.54\times 2.828\times 0.7495 = 2.289\,15\,\mathrm{Wb}~\bullet$$

$$\begin{split} E_{rms} &= 4.44 f k_{w,q} N_q \phi_0 \\ &= 4.44 \times 50 \times 0.833 \times 15 \times 2.28915 \\ &= 6349.85 \, \mathrm{V} \end{split}$$

یوں ستارہ جڑی جزیئر کی تار کا برقی دباو درج ذیل ہو گا۔

 $\sqrt{3} \times 6349.85 \approx 11000 \,\text{V}$

ہم سائن نما مقناطیسی دباو حاصل کرنا چاہتے ہیں۔ چھوٹے کچھوں کے چکر اور شگافوں کے مقامات یوں چنے جاتے ہیں کہ یہ مقصد پورا ہو۔ شکل 5.17 میں صفر زاویہ کے دونوں اطراف مقناطیسی دباو کی ترسیم ایک جیسے گھٹتی یا بڑھتی ہے۔ مثلاً جمع اور منفی پینتالیس زاویہ پر مقناطیسی دباو $\frac{N_i}{3}$ گھٹتا ہے۔ اس طرح جمع اور منفی نوے زاویہ پر دباو مزید $\frac{N_i}{3}$ گھٹتا ہے، وغیرہ وغیرہ یہ ایک بنیادی اصول ہے جس کا خیال رکھنا ضروری ہے۔

چھوٹے لیجھوں کے چکر اور شگافوں کے مقامات کا فیصلہ فور بیئر تسلسل کی مدد سے کیا جاتا ہے۔فور بیئر تسلسل میں موسیقائی جزو کم سے کم اور بنیادی جزو زیادہ سے زیادہ رکھا جاتا ہے۔

ساکن کچھوں کی طرح متحرک کچھوں کو بھی ایک سے زیادہ چھوٹے کچھوں میں تقسیم کیا جاتا ہے تا کہ سائن نما مقناطیسی دباو حاصل ہو۔

5.5 مقناطيسي د باو کي گھومتي امواج

گھومتے مشین کے لیجھوں کو برقی دباو فراہم کیا جاتا ہے جس سے اس کا گھومنے والا حصہ حرکت میں آتا ہے۔ یہاں ہم اس بات کا مطالعہ کرتے ہیں کہ گھومنے کی حرکت کیسے پیدا ہوتی ہے۔

5.5.1 ایک دورکی لپٹی مشین

مساوات 5.33 مين ايك لحصي كا مقناطيسي دباو

$$\tau_a = k_w \frac{4}{\pi} \frac{Ni}{2} \cos \theta$$

دیا گیا ہے جو سائن نما برقی رو

$$(5.36) i_a = I_0 \cos \omega t$$

کی صورت میں

(5.37)
$$\tau_a = k_w \frac{4}{\pi} \frac{NI_0}{2} \cos \theta \cos \omega t = \tau_0 \cos \theta \cos \omega t$$

مقناطیسی رباو دے گا جہاں au_0 درج ذیل ہے اور کچھا کے برقی رو کو au_a کہا گیا ہے۔

(5.38)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

مساوات 5.37 کہتی ہے کہ مقناطیسی دباو زاویہ <math> heta اور کھہ t کے ساتھ تبدیل ہوتا ہے۔ مساوات 5.37 کو کلیہ

(5.39)
$$\cos \alpha \cos \beta = \frac{\cos(\alpha + \beta) + \cos(\alpha - \beta)}{2}$$

کی مدد سے دو ٹکڑوں

(5.40)
$$\tau_a = \tau_0 \left[\frac{\cos(\theta + \omega t) + \cos(\theta - \omega t)}{2} \right] = \tau_a^- + \tau_a^+$$

میں تقسیم کیا جا سکتا ہے جہاں au_a^+ اور au_a^+ درج ذیل ہوں گے۔

(5.41)
$$\tau_a^- = \frac{\tau_0}{2}\cos(\theta + \omega t)$$

$$\tau_a^+ = \frac{\tau_0}{2}\cos(\theta - \omega t)$$

مساوات 5.40 کہتی ہے کہ مقناطیسی دباو دو آپس میں مخالف رخ گھومتے مقناطیسی دباو کی موجوں کا مجموعہ ہے۔ اس کا یہلا جزو τ_a^+ زاویہ θ گھٹے کے رخ، لینی گھڑی کے رخ، گھومتا ہے جبکہ اس کا دوسرا جزو τ_a^+ گھڑی کے مخالف رخ، زاویہ بڑھنے کے رخ، گھومتا ہے۔

ایک دور کی لیٹی مثینوں میں گھومتے مقناطیسی دباو کی امواج میں سے کسی ایک کو بالکل ختم یا کم سے کم کرنے کی کوشش کی جاتی ہے۔ اس طرح ایک ہی رخ مقناطیس کی مانند ہوگا۔ تین دوری مثینوں میں ایسا کر نا نہایت آسان ہوتا ہے للذا انہیں پہلے سمجھ لینا زیادہ بہتر ہوگا۔

شكل 5.19: تين دوركي لپڻي مشين ـ

5.5.2 تين دور کي لپڻي مشين کا تحليلي تجربيه

شکل 5.19 میں تین دور کی لیٹی مشین دکھائی گئی ہے۔ مساوات 5.30 ، 5.31 اور 5.32 میں ایسے تین کچھوں k_x فور میر تسلسل کے بنیادی اجزاء دیے گئے ہیں جن میں جزو کچھلاو k_x شامل کر کے دوبارہ پیش کرتے ہیں۔

(5.43)
$$\tau_a = k_w \frac{4}{\pi} \frac{N_a i_a}{2} \cos \theta$$
$$\tau_b = k_w \frac{4}{\pi} \frac{N_b i_b}{2} \cos(\theta - 120^\circ)$$
$$\tau_c = k_w \frac{4}{\pi} \frac{N_c i_c}{2} \cos(\theta + 120^\circ)$$

ان لچھوں میں بالترتیب تین دوری برقی رو

(5.44)
$$i_a = I_0 \cos(\omega t + \alpha)$$
$$i_b = I_0 \cos(\omega t + \alpha - 120^\circ)$$
$$i_c = I_0 \cos(\omega t + \alpha + 120^\circ)$$

لینے سے مساوات 5.43 درج ذیل صورت اختیار کرتی ہیں۔

(5.45)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{N_{a} I_{0}}{2} \cos \theta \cos(\omega t + \alpha)$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{N_{b} I_{0}}{2} \cos(\theta - 120^{\circ}) \cos(\omega t + \alpha - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{N_{c} I_{0}}{2} \cos(\theta + 120^{\circ}) \cos(\omega t + \alpha + 120^{\circ})$$

$$N_a = N_b = N_c = N$$

لیتے ہوئے مساوات 5.39 کی استعال سے

(5.46)
$$\tau_{a} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{b} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha - 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

$$\tau_{c} = \frac{\tau_{0}}{2} \left[\cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta - \omega t - \alpha) \right]$$

 au_0 درج ذیل ہے۔ au_0 درج ذیل ہے۔

(5.47)
$$\tau_0 = k_w \frac{4}{\pi} \frac{NI_0}{2}$$

کل مقناطیسی دباو 7 ان سب کا مجموعہ ہو گا۔ انہیں جمع کرنے سے پہلے ہم درج ذیل ثابت کرتے ہیں۔

$$\cos\gamma + \cos(\gamma - 240^{\circ}) + \cos(\gamma + 240^{\circ}) = 0$$

ہم کلیات

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$
$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

میں
$$\alpha = \gamma$$
 اور $\alpha = 240^{\circ}$ کے کر

$$\cos(\gamma + 240^{\circ}) = \cos\gamma\cos 240^{\circ} - \sin\gamma\sin 240^{\circ}$$
$$\cos(\gamma - 240^{\circ}) = \cos\gamma\cos 240^{\circ} + \sin\gamma\sin 240^{\circ}$$

حاصل کرتے ہیں جن میں جن میں حاصل مو گا۔ $\cos 240^\circ = -\frac{\sqrt{3}}{2}$ ماصل کرتے ہیں جن میں جن میں اور $\cos 240^\circ = -\frac{1}{2}$

$$\cos(\gamma + 240^{\circ}) = -\frac{1}{2}\cos\gamma + \frac{\sqrt{3}}{2}\sin\gamma$$

$$\cos(\gamma-240^{\circ})=-\frac{1}{2}\cos\gamma-\frac{\sqrt{3}}{2}\sin\gamma$$

ان مساوات کو $\gamma \cos \gamma$ کے ساتھ جمع کرنے سے صفر حاصل ہو گا۔

$$\cos \gamma + \cos(\gamma + 240^{\circ}) + \cos(\gamma - 240^{\circ}) = 0$$

ہے۔ $\gamma=\theta+\omega t+\alpha$ کے لئے اس مساوات کو درج ذیل لکھا جا سکتا ہے۔

(5.48) $\cos(\theta + \omega t + \alpha) + \cos(\theta + \omega t + \alpha + 240^{\circ}) + \cos(\theta + \omega t + \alpha - 240^{\circ}) = 0$

اب مساوات 5.46 میں دیے au_b ، au_a اور au_c کو جمع کر کے مساوات 5.48 کا استعمال کرتے ہوئے ورج ذیل حاصل ہو گا۔

(5.49)
$$\tau^{+} = \tau_{a} + \tau_{b} + \tau_{c} = \frac{3\tau_{0}}{2}\cos(\theta - \omega t - \alpha)$$

مساوات 5.49 کہتا ہے کہ کل مقناطیسی دباو کا حیطہ کسی ایک کچھے کے مقناطیسی دباو کے حیطہ کے $\frac{3}{2}$ گنا ہے۔مزید سے کہ سے مقناطیسی دباو کی موج گھڑی کی اُلٹی سمت گھوم رہی ہے۔ لہذا تین کچھوں کو °120 زاویہ پر رکھنے اور انہیں تین دوری برقی رو، جو آپس میں °120 پر ہوں، سے ہیجان کرنے سے ایک ہی گھومتی مقناطیسی دباو کی موج وجود میں آتی ہے۔ یہاں اس بات کا ذکر کرنا ضروری ہے کہ اگر کوئی دو برقی رو آپس میں تبدیل کئے جائیں تو مقناطیسی موج کے گھومنے کی سمت تبدیل ہو جاتی ہو جاتی میں واضح کیا گیا ہے۔

اب ابتذائی کچہ لیعنی
$$t=0$$
 پر $t=0$ کی چوٹی $t=0$ کی چوٹی $t=0$ کرتے ہیں۔ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$ $\theta-\omega t=0$

ہم دیکھتے ہیں کہ موج کی چوٹی صفر برتی زاوبہ پر ہے۔اسے شکل 5.20 میں ہلکی سیابی میں نقطہ داو لکیر سے دکھایا گیا ہے۔ہم اس چوٹی کو کچھ وقفے کے بعد دوبارہ دیکھتے ہیں مثلاً t=0.001 سینڈ کے بعد۔

$$\theta - \omega t = 0$$

$$\theta - \omega \times 0.001 = 0$$

$$\theta = 0.001\omega = 0.001 \times 2 \times \pi \times 50 = 0.3142 \,\mathrm{rad}$$

اب یہ چوٹی 0.3142 یا $\frac{\pi}{10}$ برقی ریڈیئن لیخی °18 کے برقی زاویہ پر ہے۔اسے شکل میں ہلکی سابی کے شوس لکیر سے دکھایا گیا ہے۔ یہ بات واضح ہے کہ مقناطیسی دباو کی موج گھڑی کی اُلٹی سمت لیخی زاویہ بڑھنے کی سمت میں گھوم گئ ہے۔ اسی طرح 0.002 بریہ چوٹی °36 برقی زاویہ پر نظر آئے گی۔ کسی بھی لمحہ t پر بالکل اسی طرح چوٹی کا مقام معلوم کیا جا سکتا ہے جسے شکل میں تیز سابی کے شوس کئیر سے دکھایا گیا ہے۔

$$\theta - \omega t' = 0$$
$$\theta = \omega t'$$

اس مساوات سے یہ واضح ہے کہ چوٹی کا مقام متعین کرنے والا زاویہ بتدر تکے بڑھتا رہتا ہے۔اس مساوات سے ہم ایک مکمل 2π برتی زاویہ کے چکر کا وقت T حاصل کر سکتے ہیں یعنی

(5.50)
$$t = \frac{\theta}{\omega}$$

$$T = \frac{2\pi}{2\pi f} = \frac{1}{f}$$

اگر برتی روکی تعدد 50 ہو تو یہ مقناطیسی دباوکی موج ہر $\frac{1}{50}=0.02$ سینڈ میں ایک مکمل برتی چکر کا ٹتی ہے۔ ایک سینڈ میں 50 برتی چکر کا ٹتی ہے۔

اس مثال میں برقی زاویہ کی بات ہوتی رہی۔ دو قطب کی آلوں میں برقی زاویہ θ_e اور میکانی زاویہ θ_m برابر ہوتے ہیں۔ لہذا اگر دو قطب کی آلوں کی بات کی جائے تو مساوات 5.50 کے تحت ایک سینڈ میں مقناطیسی دباو کی موج f برقی یا میکانی چکر کاٹے گی جہاں f برقی رو کی تعدد ہے اور اگر P قطب رکھنے والی آلوں کی بات کی جائے تو چونکہ

$$\theta_e = \frac{P}{2}\theta_m$$

للذاایسے آلوں میں یہ مقاطیسی دباوکی موج ایک سینڈ میں f مقاطیسی چکر یعنی $rac{2}{D}f$ میکانی شکر کائے گ۔

ا گر ہم برتی رو کی تعدد کو f_e سے ظاہر کریں، مقناطیسی دباو کی موج کی چوٹی کے برتی زاویہ کو θ_e اور اس کے میکانی زاویہ کو θ_m سے ظاہر کریں اور اس طرح اس مقناطیسی دباو کی موج کے گھومنے کی رفتار کو ω_m یا ω_m سے ظاہر کریں تو

(5.52)
$$\omega_{m} = \frac{2}{P}\omega_{e} \quad \text{rad/s}$$

$$f_{m} = \frac{2}{P}f_{e} \quad \text{Hz}$$

$$n = \frac{120f_{e}}{P} \quad \text{rpm}$$

 ω_e اس موج کی معاصر رفتار برقی زاویہ فی سیکنڈ میں ہے جبکہ ω_m یہی معاصر رفتار میکانی زاویہ فی سیکنڈ میں ہے۔ برقی طرح f_e اس موج کی برقی معاصر رفتار برقی ہرٹز میں اور f_m اس کی میکانی معاصر رفتار f_e میکانی ہرٹز میں ہے۔ برقی معاصر رفتار f_e ہر ٹز ہونے کا مطلب یہ ہے کہ ایک سیکنڈ میں یہ موج f_e برقی چکر کا فاصلہ طے کرے گی جہاں ایک برقی چکر دو قطب کا فاصلہ لیعن ω_e ریڈ بیکن کا زاویہ ہے۔ اس طرح میکانی معاصر رفتار ω_e ہر ٹز ہونے کا مطلب ہے کہ یہ موج ایک سیکنڈ میں ایک چکر کا فاصلہ طے کرے گی۔ ایک میکانی چکر عام زندگی میں ایک چکر کو ہی کہتے ہیں۔ اس میاوات میں ω_e میکانی چکر کی منٹ ω_e کا خاصلہ کے کرتے ہیں۔ یہ میاوات معاصر رفتار کی میاوات ہے۔

یہاں اس بات کا ذکر کرنا ضروری ہے کہ ہم q دور کی لیٹی مثین جس کے کچھے ہوتی بر رکھے گئے ہوں اور جن میں q دوری بر تی رہ ہو، ایک ہی سمت میں گھومتی مقناطیسی دباو کی موج کو جنم دیتی ہے جیسے ہم نے تین دوری مثین کے لئے دیکھا۔ مزید سے کہ اس موج کا حیطہ کسی ایک کچھے سے پیدا مقناطیسی دباو کے حیطہ کے $\frac{q}{2}$ گنا ہو گا اور اس کے گھومنے کی رفتار $\omega_e = 2\pi f$ برقی ریڈیئن فی سکینڈ ہو گی۔

5.5.3 تین دورکی کپٹی مشین کاتر سیمی تجزیه

a شکل 5.19 میں تین دور کی لیٹی مشین دکھائی گئی ہے۔ اس میں مثبت برقی رو کی سمتیں بھی دکھائی گئی ہیں، مثلاً a

synchronous speed 35 rpm, rounds per minute 36

شگاف میں برتی دباو صفحہ سے عمودی سمت میں اندرکی جانب کو ہے اور یہ بات صلیب کے نشان سے واضح کی گئی ہے۔ اگر برتی رو مثبت ہو تو اس کی یہی سمت ہو گی اور اس سے پیدا مقناطیسی دباو ہے صفر زاویہ کی جانب ہو گا جیسے شکل میں دکھایا گیا ہے۔ لچھے میں برتی رو سے پیدا مقناطیسی دباوکی سمت دامیں ہاتھ کے قانون سے معلوم کی جا سکتی ہے۔ اب اگر اس کھھے میں برتی رو منفی ہو تو اس کا مطلب ہے کہ برتی رو اُلٹ سمت میں ہے۔ یعنی اب برتی رو ہ شگاف میں صفحہ کے عمودی سمت میں باہر کی جانب شگاف میں صفحہ کے عمودی سمت میں باہر کی جانب کو ہے۔ لہٰذا اس برتی رو سے پیدا مقناطیسی دباو بھی پہلے سے اُلٹ سمت میں ہوگی یعنی یہ شکل میں دیے گئے ہے کے بالکل اُلٹ سمت میں ہوگی۔ یہ برتی رو کے منفی بالکل اُلٹ سمت میں ہوگی۔ اس تذکرہ کا بنیادی مقصد سے تھا کہ آپ پر بیہ بات واضح ہو جائے کہ برتی رو کے منفی بونے سے اُلٹ ہو جاتی ہے۔

اس شکل میں لیچھوں میں برقی رو اور مقناطیسی دباویہ ہیں

$$i_a = I_0 \cos \omega t$$

$$i_b = I_0 \cos(\omega t - 120^\circ)$$

$$i_c = I_0 \cos(\omega t + 120^\circ)$$

(5.54)
$$\tau_{a} = k_{w} \frac{4}{\pi} \frac{Ni_{a}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos \omega t = \tau_{0} \cos \omega t$$

$$\tau_{b} = k_{w} \frac{4}{\pi} \frac{Ni_{b}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t - 120^{\circ}) = \tau_{0} \cos(\omega t - 120^{\circ})$$

$$\tau_{c} = k_{w} \frac{4}{\pi} \frac{Ni_{c}}{2} = k_{w} \frac{4}{\pi} \frac{NI_{0}}{2} \cos(\omega t + 120^{\circ}) = \tau_{0} \cos(\omega t + 120^{\circ})$$

جبکہ ان کے مثبت سمتیں شکل میں دیے گئے ہیں۔ اب ہم مختلف او قات پر ان مقداروں کا حساب لگاتے ہیں اور ان کا کل مجموعی مقناطیسی دباو حل کرتے ہیں۔

t=0 پر ان مساوات سے ملتا ہے۔

(5.55)
$$i_a = I_0 \cos 0 = I_0$$

$$i_b = I_0 \cos(0 - 120^\circ) = -0.5I_0$$

$$i_c = I_0 \cos(0 + 120^\circ) = -0.5I_0$$

(5.56)
$$\begin{aligned} \tau_a &= \tau_0 \cos 0 = \tau_0 \\ \tau_b &= \tau_0 \cos(0 - 120^\circ) = -0.5\tau_0 \\ \tau_c &= \tau_0 \cos(0 + 120^\circ) = -0.5\tau_0 \end{aligned}$$

شكل5.21:لمحه $t_0=0$ ير بر قى رواور مقناطيسى دباوـ

5.19 یہاں رکھ کر ذرا غور کریں۔اس لمحہ پر i_a مثبت ہے جبکہ i_b اور i_c منفی ہیں۔ للذا i_a است میں ہے جو شکل i_c میں i_b میں ورکھ کر ذرا غور کریں۔اس لفطے اور صلیب سے دکھائے گئے ہیں جبکہ i_b اور i_c شکل میں دیے گئے ستوں کے اُلٹ ہیں۔ ان تینوں برقی روکی اس لمحہ پر درست سمتیں شکل 5.21 میں دکھائی گئی ہیں۔اس شکل میں تینوں مقاطیسی دباو مجمی دکھائے گئے ہیں۔

کل مقناطیسی دباو با آسانی بذریعہ ترسیم، مجموعہ سمتیات سے معلوم کیا جا سکتا ہے یا پھر الجبرا کے ذریعہ ایسا کیا جا سکتا ہے۔

(5.57)
$$\begin{aligned} \boldsymbol{\tau}_{a} &= \tau_{0} \boldsymbol{a}_{\mathbf{X}} \\ \boldsymbol{\tau}_{b} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} - \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \\ \boldsymbol{\tau}_{c} &= 0.5 \tau_{0} \left[\cos(60^{\circ}) \boldsymbol{a}_{\mathbf{X}} + \sin(60^{\circ}) \boldsymbol{a}_{\mathbf{Y}} \right] \end{aligned}$$

$$\tau = \tau_a + \tau_b + \tau_c = \frac{3}{2}\tau_0 a_{\mathbf{X}}$$

کل مقناطیسی دباو ایک لچھے کے مقناطیسی دباو کے ڈیڑھ گنا ہے اور یہ صفر زاویہ پر ہے۔ اب ہم گھڑی کو چلنے دیتے ہیں اور پچھ کھے بعد t_1 پر دوبارہ یہی سب حباب لگاتے ہیں۔ چونکہ مساوات 5.53 اور مساوات 5.54 میں متغیرہ $\omega t_1 = 30°$ کا استعال زیادہ آسان ہے لہٰذا ہم کھہ t_1 کو یوں چنتے ہیں کہ $\omega t_1 = 30°$ کے برابر ہو۔ ایسا کرنے t

شكل 5.22: لحه $t_1=30^\circ$ لحي $\omega t_1=30^\circ$

سے ہمیں یہ دو مساواتوں سے حاصل ہوتا ہے۔

(5.59)
$$i_a = I_0 \cos 30^\circ = \frac{\sqrt{3}}{2} I_0$$
$$i_b = I_0 \cos(30^\circ - 120^\circ) = 0$$
$$i_c = I_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} I_0$$

(5.60)
$$\tau_a = \tau_0 \cos 30^\circ = \frac{\sqrt{3}}{2} \tau_0$$
$$\tau_b = \tau_0 \cos(30^\circ - 120^\circ) = 0$$
$$\tau_c = \tau_0 \cos(30^\circ + 120^\circ) = -\frac{\sqrt{3}}{2} \tau_0$$

یہ شکل 5.22 میں دکھایا گیا ہے۔کل مقناطیسی دباو کا طول ← کو تکون کے ذریعہ یوں حل کیا جا سکتا ہے۔ اسی طرح اس کا زاویہ بھی اسی سے حاصل ہوتا ہے۔ یعنی

(5.61)
$$\tau = \sqrt{\tau_a^2 + \tau_c^2 - 2\tau_a\tau_c\cos 120^\circ} = \frac{3}{2}\tau_0$$

اور چونکہ اس تکون کے دو اطراف برابر ہیں للذااس کے باقی دو زاویہ بھی برابر اور °30 ہیں۔

ہم دیکھتے ہیں کہ کل مقناطیسی دباو جو پہلے صفر زاویہ پر تھا اب وہ 30° کے زاویہ پر ہے بینی وہ گھڑی کے اُلٹ سمت گھوم گیا ہے۔ اگر ہم اسی طرح $\omega t = 40^\circ$ پر دیکھیں تو ہمیں کل مقناطیسی دباو اب بھی $\frac{3}{2}\tau_0$ ہی ملے گا البتہ اب یہ 000 کے زاویہ پر ہو گا۔ اگر کسی لمحہ جب 000 ہے جب 000 کے برابر ہو یہ سارا حساب کیا جائے تو کل مقناطیسی دباو اب بھی 000 ہی ملے گا البتہ یہ 000 کے زاویہ پر ہو گا۔ اس بھی 000 کے زاویہ پر ہو گا۔

5.6. محسر ك_برقى دباو

شکل 5.23: بنیادی بدلتی روجزیٹر۔

5.6 محرك برقى دباو

یہاں محرک برقی دباو³⁷ کو ایک اور زاویہ سے پیش کیا جاتا ہے۔

5.6.1 بدلتی روبر قی جزیٹر

شکل 5.23 میں ایک بنیادی بدلتے روجن پڑ³⁸ د کھایا گیا ہے۔اس کا گھومتا برقی مقناطیس، خلائی درز میں سائن نما مقناطیسی دباو پیدا کرتا ہے جس سے درز میں سائن نما کثافت مقناطیسی بہاو B پیدا ہوتی ہے، یعنی

$$(5.62) B = B_0 \cos \theta_p$$

یہ مقناطیس ω زاویاتی رفتار سے گھوم رہا ہے۔یوں اگر ابتدائی لمحہ t=0 پر یہ a کچھے کی سمت یعنی ہلکی سیاہی کی اُفقی کیر کی سمت میں ہو تو لمحہ t پر یہ گھوم کر زاویہ $\theta_m=\omega t$ پر ہو گا۔اس طرح یہی مساوات یوں بھی کھھا جا سکتا ہے۔

(5.63)
$$B = B_0 \cos(\theta - \theta_m)$$
$$= B_0 \cos(\theta - \omega t)$$

شکل 3.24 میں B کو زاویہ θ اور θ_p کے ساتھ ترسیم کیا گیا ہے۔ اس ترسیم میں کچھا a بھی دکھایا گیا ہے۔اس شکل

^{3&}lt;sup>7</sup> ہتداء ش حرکت سے پیدا ہونے والی برتی دیاو کو محرک برتی دیاو کہتے تھے۔اب روا بی طور پر کسی مجسی طرح پیدا کردو برتی دیاو کو محرک برتی دیاو کہتے ہیں۔ ac generator ³⁸

شكل 5.24: لحصے ميں سے گزر تامقناطيسي بہاو۔

میں ہلکی سیائی سے کھے کا محور ایک ہی سمت میں ہلکی سیائی سے کھے کا محور ایر ایک ہی سمت میں ہوتے ہیں جبکہ کالی سیائی میں اس B کو کسی بھی کھے t پر دکھایا گیا ہے۔اس کھے پر برتی مقناطیس کے محور اور کیھے کے محور کے مابین θ زاویہ ہے۔ یہ زاویہ برتی مقناطیس کے محور نے کی رفتار ω پر مخصر ہے لینی

$$(5.64) \theta = \omega t$$

لحد 0=t پر کچھے میں سے زیادہ سے زیادہ مقناطیسی بہاہ گزر رہی ہے۔ اگر خلائی درز بہت باریک ہو، تو اس کے اندر اور باہر جانب کے رداس تقریباً یکساں ہوں گے۔ برتی مقناطیس کے محور سے اس خلائی درز تک کا اوسط رداسی فاصلہ اگر ρ ہو اور برتی مقناطیس کا دھرے ρ کی سمت میں محور کی لمبائی ρ اس خلائی درز میں وہی مقناطیسی بہاہ ہو گا جو اس خلائی درز میں ρ کیا جا سکتا ہے۔ کہ ρ کا بین ہے۔ لحد ρ کے مابین ہے۔ لحد ρ کے مابین ہے۔ لحد وہ کے مابین ہے۔ الحد وہ کے مابین ہے۔ لحد وہ کا جو تو اس کھوم کیا جا سکتا ہے

$$\phi_a(0) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_0 \cos \theta_p) (l\rho \, d\theta_p)$$

$$= B_0 l\rho \sin \theta_p \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= 2B_0 l\rho$$

$$= \phi_0$$

 $\begin{array}{c} {\rm axle^{39}} \\ {\rm axial\ length^{40}} \end{array}$

5.6. محسر ك_بر قي دباو

جہاں آخر میں $\phi_a(0)$ کو $\phi_a(0)$ کہا گیا ہے۔ یہی حساب اگر لمحہ t پر کی جائے تو کچھ یوں ہو گا۔

$$\phi_{a}(t) = \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta} (B_{0} \cos \theta_{p}) (l\rho d\theta_{p})$$

$$= B_{0} l\rho \sin \theta_{p} \Big|_{-\frac{\pi}{2} - \vartheta}^{+\frac{\pi}{2} - \vartheta}$$

$$= 2B_{0} l\rho \cos \vartheta$$

$$= 2B_{0} l\rho \cos \omega t$$

جہال $\theta=\omega t$ کیا گیا ہے۔اسی مساوات کو بوں بھی حل کیا جا سکتا ہے

$$\phi_{a}(t) = \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} (B_{0} \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_{0}l\rho \sin(\theta - \omega t) \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= B_{0}l\rho \left[\sin\left(\frac{\pi}{2} - \omega t\right) - \sin\left(-\frac{\pi}{2} - \omega t\right) \right]$$

$$= 2B_{0}l\rho \cos \omega t$$

اس مرتبہ تکمل زاویہ 6 کے ساتھ کیا گیا ہے۔ انہیں مساوات 5.65 کی مدد سے یوں لکھا جا سکتا ہے۔

(5.68)
$$\phi_a(t) = 2B_0 l \rho \cos \omega t = \phi_0 \cos \omega t$$

 اور $\frac{7\pi}{6}$ جبکہ c میں دیے گئے ہیں۔ یول $+\frac{11\pi}{6}$ اور $+\frac{5\pi}{6}$ اور جبکہ $+\frac{7\pi}{6}$

$$\phi_b(t) = \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{\pi}{6}}^{\frac{7\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{\pi}{6}}^{\frac{7\pi}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{7\pi}{6} - \omega t\right) - \sin\left(\frac{\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos(\omega t - \frac{2\pi}{3})$$

اور

$$\phi_c(t) = \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} \mathbf{B} \cdot d\mathbf{S}$$

$$= \int_{\frac{5\pi}{6}}^{\frac{11\pi}{6}} (B_0 \cos(\theta - \omega t)) (l\rho d\theta)$$

$$= B_0 l\rho \sin(\theta - \omega t) \Big|_{\frac{5\pi}{6}}^{\frac{16}{6}}$$

$$= B_0 l\rho \left[\sin\left(\frac{11\pi}{6} - \omega t\right) - \sin\left(\frac{5\pi}{6} - \omega t\right) \right]$$

$$= 2B_0 l\rho \cos(\omega t + \frac{2\pi}{3})$$

اگرایک کچھے کے N چکر ہول تو اس میں پیدا برقی دباد کو یوں معلوم کیا جا سکتا ہے۔

(5.71)
$$\lambda_a = N\phi_a(t) = N\phi_0 \cos \omega t$$
$$\lambda_b = N\phi_b(t) = N\phi_0 \cos(\omega t - 120^\circ)$$
$$\lambda_c = N\phi_c(t) = N\phi_0 \cos(\omega t + 120^\circ)$$

5.6. محسر کے برقی دباو

ان مساوات میں $\frac{2\pi}{3}$ ریڈیٹن کو °120 کھا گیا ہے۔ان سے کچھوں میں پیدا امالی برقی دباو کا حساب یوں لگایا جا سکتا ہے۔

(5.72)
$$e_a(t) = -\frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = \omega N\phi_0 \sin \omega t$$
$$e_b(t) = -\frac{\mathrm{d}\lambda_b}{\mathrm{d}t} = \omega N\phi_0 \sin(\omega t - 120^\circ)$$
$$e_c(t) = -\frac{\mathrm{d}\lambda_c}{\mathrm{d}t} = \omega N\phi_0 \sin(\omega t + 120^\circ)$$

ان مساوات کو یوں بھی لکھ سکتے ہیں

(5.73)
$$e_a(t) = \omega N \phi_0 \cos(\omega t - 90^\circ)$$
$$e_b(t) = \omega N \phi_0 \cos(\omega t + 150^\circ)$$
$$e_c(t) = \omega N \phi_0 \cos(\omega t + 30^\circ)$$

یہ مساوات تین دوری محرک برقی دباو کو ظاہر کرتے ہیں جو آپس میں °120 زاویہ پر ہیں۔ان سب کا حیطہ E_0 کیسال ہے جہال

$$(5.74) E_0 = \omega N \phi_0$$

اور ان برقی دباو کی موثر قیمت⁴¹

(5.75)
$$E_{\dot{\tau}, \tau} = \frac{E_0}{\sqrt{2}} = \frac{2\pi f N \phi_0}{\sqrt{2}} = 4.44 f N \phi_0$$

ہو گی۔ چونکہ $\phi=B$ ہوتا ہے لہذا یہ مساوات بالکل صفحہ 52 پر دے مساوات 2.52 کی طرح ہے۔

مساوات 5.73 سائن نما برقی دباو کو ظاہر کرتا ہے۔ اگرچہ اسے یہ سوچ کر حاصل کیا گیا کہ خلائی درز میں مقناطیسی بہاو صرف برقی مقناطیس کی وجہ سے ہے تاہم برقی دباو کا اس سے کوئی تعلق نہیں کہ خلائی درز میں مقناطیسی بہاو کس طرح وجود میں آئی اور یہ مساوات ان حالات کے لئے بھی درست ہے جہاں یہ مقناطیسی بہاو جزیئر کے ساکن جھے میں پیدا ہوئی ہو۔

مساوات 5.75 ہمیں ایک گیھ لیچھ میں پیدا برقی دباو دیتی ہے۔ اگر لیھا تقسیم شدہ ہو تو اس کے مختلف شکافوں میں موجود اس کیھے کے حصول میں برقی دباو ہم قدم نہیں ہول گے للذا ان سب کا مجموعی برقی دباو ان سب کا حاصل جمع نہیں ہوگا بلکہ اس سے قدرِ کم ہوگا۔ اس مساوات کو ہم ایک پھیلے کیھے کے لئے یوں لکھ سکتے ہیں۔

$$(5.76) E_{r} = 4.44k_w f N \phi_0$$

 ${\rm rms}^{41}$

تین دوری برتی جزیٹر وں کے k_w کی قیمت 0.85 تا 0.95 ہوتی ہے۔ یہ مساوات ہمیں یک دوری برتی دباو دیتی ہے۔ تین دوری برتی جزیٹر وں میں ایسے تین کچھوں کے جوڑے ہوتے ہیں اور ان کو Y یعنی شارہ نما یا Δ یعنی شکونی جوڑا جاتا ہے۔

5.6.2 يك سمتي روبر قي جزيٹر

ہر گھو منے والا برقی جزیر بنیادی طور پر بدلتی رو جزیر ہی ہوتا ہے۔ البتہ جہاں یک سمتی برقی دباو⁴² کی ضرورت ہو وہاں مختلف طریقوں سے بدلتی برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جاتا ہے۔ ایسا الیکٹر انکس کے ذریعہ جزیر کے باہر برقیاتی سمتے کار⁴⁴ کی مدد سے جزیر کے باہر برقیاتی سمتے کار⁴⁴ کی مدد سے جزیر کے اندر ہی کیا جا سکتا ہے۔ مساوات 5.72 میں دیے گئے برقی دباو کو یک سمتی برقی دباو میں تبدیل کیا جائے تو یہ شکل 5.25 کی طرح ہو گا۔

مثال 5.5: شکل 5.25 میں یک سمتی برقی دباو دکھائی گئی ہے۔اس یک سمتی برقی دباوکی اوسط قیت حاصل کریں۔

حل:

$$E_{\mathbf{k},\mathbf{d}} = rac{1}{\pi} \int_0^\pi \omega N \phi_0 \sin \omega t \, \mathrm{d}(\omega t) = rac{2\omega N \phi_0}{\pi}$$

یک سمتی برقی جزیٹر پر باقاعدہ تبصرہ کتاب کے باب میں کیا جائے گا۔

DC voltage⁴² rectifier⁴³ commutator⁴⁴

شكل 5.26: ساكن اماليه اور گھومتااماليه

5.7 موار قطب مشينول مين قوت مرور الم

اس جھے میں ہم ایک کامل مشین میں قوتے مرور ⁴⁵ کا حساب لگائیں گے۔ ایسا دو طریقوں سے کیا جا سکتا ہے۔ ہم مشین کو دو مقناطیس سمجھ کر ان کے مابین قوتِ کشش، قوتِ دفع اور قوت مروڑ کا حساب لگا سکتے ہیں یا پھر اس میں ساکن اور گوشتے کچھوں کو امالہ سمجھ کر باب چار کی طرح توانائی اور کو توانائی کے استعمال سے اس کا حساب لگائیں۔ پہلے توانائی کا طریقہ استعمال کرتے ہیں۔

5.7.1 توانائی کے طریقے سے میکانی قوت مروڑ کا حساب

یہاں ہم ایک دوری مثین کی بات کریں گے۔ اس سے حاصل جوابات کو با آسانی زیادہ دور کی آلوں پر لا گو کیا جا سکتا ہے۔ شکل 5.26 میں یک دوری کامل مثین دکھائی گئی ہے۔ کسی بھی لمحہ اس کی دو لچھوں میں پچھ زاویہ ہو گا جسے θ سکتا ہے۔ شکل 5.26 میں یک دورز ہر جگہ میساں ہے لہذا یہاں اُبھرے قطب کے اثرات کو نظر انداز کیا جائے گا۔ مزید یہ کہ قالب کی θ سے نظر کی گئی ہے لہذا لیجھوں کی امالہ صرف خلائی درز کی مقاطیسی مستقل 46 میں منحصر ہے۔ پر منحصر ہے۔

 $L_{ar}(\theta)$ ال طرح ساكن كچھے كى امالہ L_{aa} اور گھومے كچھے كى امالہ L_{rr} مقررہ ہيں جبكہ ان كا مشتر كہ امالہ لامتناطيسى بہاو دوسرے لكھے سے زاويہ θ پر منحصر ہو گا۔ جب $\theta=0$ يا $\theta=0$ يا $\theta=0$ كے برابر ہو تو ايك لكھے كا سارا مقناطيسى بہاو دوسرے لكھے سے

torque⁴³

 $^{{\}bf magnetic\ constant},\, {\bf permeability}^{46}$

 $\theta=\mp180^\circ$ ہیں۔ جب L_{ar0} گورتا ہے۔ ایسے حالت میں ان کا مشتر کہ امالہ زیادہ سے زیادہ ہو گا جسے کھی گزرتا ہے۔ ایسے حالت میں ان کا مشتر کہ ہو اس کی سمت ہو اس کھی ایک مرتبہ پھر ایک کچھے کا سارا مقناطیسی بہاو دوسرے کچھے سے بھی گزرتا ہے البتہ اس کھی اس کی سمت المث ہوتی ہے لہذا اب ان کا مشتر کہ امالہ بھی منفی ہو گا یعنی $-L_{ar0}$ اور جب $\theta=\mp90^\circ$ ہو تب ان کا مشتر کہ امالہ صفر ہو گا۔ اگر ہم یہ ذہن میں رکھیں کہ خلائی درز میں مقناطیسی بہاو سائن نما ہے تب

$$(5.77) L_{ar} = L_{ar0}\cos\theta$$

ہو گا۔ ہم ساکن اور گھومتے کچھول کی ارتباط بہاو کو یوں لکھ سکتے ہیں

(5.78)
$$\lambda_{a} = L_{aa}i_{a} + L_{ar}(\theta)i_{r} = L_{aa}i_{a} + L_{ar0}\cos(\theta)i_{r}$$
$$\lambda_{r} = L_{ar}(\theta)i_{a} + L_{rr}i_{r} = L_{ar0}\cos(\theta)i_{a} + L_{rr}i_{r}$$

اگر ساکن کچھے کی مزاحمت R_a اور گھومتے کچھے کی مزاحمت R_r ہو تو ہم ان کچھوں کے سروں پر دیے گئے برقی دباو کو بول لکھ سکتے ہیں۔

$$(5.79) v_a = i_a R_a + \frac{\mathrm{d}\lambda_a}{\mathrm{d}t} = i_a R_a + L_{aa} \frac{\mathrm{d}i_a}{\mathrm{d}t} + L_{ar0} \cos\theta \frac{\mathrm{d}i_r}{\mathrm{d}t} - L_{ar0} i_r \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t}$$
$$v_r = i_r R_r + \frac{\mathrm{d}\lambda_r}{\mathrm{d}t} = i_r R_r + L_{ar0} \cos\theta \frac{\mathrm{d}i_a}{\mathrm{d}t} - L_{ar0} i_a \sin\theta \frac{\mathrm{d}\theta}{\mathrm{d}t} + L_{rr} \frac{\mathrm{d}i_r}{\mathrm{d}t}$$

یہاں heta برقی زاویہ ہے اور وقت کے ساتھ اس کی تبدیلی رفتار ω کو ظاہر کرتی ہے یعنی

$$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \omega$$

میکانی قوت مروڑ بذریعہ کو توانائی حاصل کی جا سکتی ہے۔ کو توانائی صفحہ 127 پر مساوات 4.72 سے حاصل ہوتی ہے۔ یہ مساوات موجودہ استعال کے لئے یوں لکھا جا سکتا ہے۔

(5.81)
$$W'_{m} = \frac{1}{2}L_{aa}i_{a}^{2} + \frac{1}{2}L_{rr}i_{r}^{2} + L_{ar0}i_{a}i_{r}\cos\theta$$

اس سے میکانی قوت مروڑ T_m یوں حاصل ہوتا ہے۔

(5.82)
$$T_{m} = \frac{\partial W'_{m}(\theta_{m}, i_{a}, i_{r})}{\partial \theta_{m}} = \frac{\partial W'_{m}(\theta, i_{a}, i_{r})}{\partial \theta} \frac{\partial \theta}{\partial \theta_{m}}$$

چونکہ P قطب مشینوں کے لئے

$$\theta = \frac{P}{2}\theta_m$$

شكل 5.27: لچھوں كے قطبين۔

للذا ہمیں مساوات 5.82 سے ملتا ہے

$$(5.84) T_m = -\frac{P}{2} L_{ar0} i_a i_r \sin\left(\frac{P}{2}\theta_m\right)$$

اس مساوات میں قوت مروڑ T_m منفی ہے۔ اس کا مطلب ہے کہ اگر کسی لمحہ پر ساکن اور گھومتے کچھوں کے مقناطیسی بہاو کے در میان زاوید مثبت ہو تو ان کے مابین قوت مروڑ منفی ہو گا یعنی قوت مروڑ ان دونوں مقناطیسی بہاو کو ایک سمت میں رکھنے کی کوشش کرے گا۔

5.7.2 مقناطیسی بہاوسے میکانی قوت مروڑ کا حساب

شکل 5.27 میں دو قطب والی یک دوری مشین دکھائی گئی ہے۔ اس شکل میں بائیں جانب صرف گھومتے لیچھے میں برتی رو ہے۔ اس لیچھے کا مقناطیسی بہاو تیر کے نشان سے دکھایا گیا ہے، یعنی تیر اس مقناطیس کے محور کو ظاہر کرتا ہے۔ یہاں اگر صرف گھومتے جھے پر توجہ دی جائے تو یہ واضح ہے کہ گھومتا حصہ ایک مقناطیس کی مانند ہے جس کے شالی اور جنوبی قطبین شکل میں دیے گئے ہیں۔ اسی طرح شکل میں دائیں جانب صرف ساکن لیچھے میں برقی رو ہے۔ اگر اس مرتبہ صرف ساکن تھے پر توجہ دی جائے تو اس کے بائیں جانب سے مقناطیسی بہاو نکل کر خلائی درز میں اگر اس مرتبہ صرف ساکن حصے پر توجہ دی جائے تو اس کے بائیں جانب سے مقناطیسی بہاو نکل کر خلائی درز میں داخل ہوتی ہے، لہذا یہی اس کا شالی قطب ہے اور اس مقناطیس کا محور بھی اسی تیر کی سمت میں ہے۔

یہاں میہ واضح رہے کہ اگرچہ کچھ کچھے دکھائے گئے ہیں لیکن در حقیقت دونوں کچھوں کے مقناطیسی دباو سائن-نما ہی ہیں اور تیر کے نشان ان مقناطیسی دباو کی موج کے چوٹی کو ظاہر کرتے ہیں۔

شكل 5.28: خلائى در زمين مجموعى مقناطيسى دياويه

شکل 5.28 میں اب دونوں کچھوں میں برتی رو ہے۔ یہ واضح ہے کہ یہ بالکل دو مقناطیسوں کی طرح ہے اور ان کے اُلٹ قطبین کے مابین قوتِ کشش ہوگا، یعنی یہ دونوں کچھے ایک ہی سمت میں ہونے کی کوشش کریں گے۔

یہاں یہ زیادہ واضح ہے کہ یہ دو مقناطیس کوشش کریں گے کہ θ_{ar} صفر کے برابر ہو یعنی ان کا میکانی قوت مروڑ θ_{ar} کے اُلٹ سمت میں ہو گا۔ یہی کچھ مساوات 5.84 کہتا ہے ۔

ان برقی مقناطیسوں کے مقناطیسی دباو کو اگر ان کے مقناطیسی محور کی سمت میں au_a اور au_r سے ظاہر کیا جائے جہاں au_a رمقناطیسی دباو au_a مقناطیسی دباو کے چوٹی کے برابر ہوں تو خلاء میں کل مقناطیسی دباو au_a ان کا جمع سمتیات ہو گا جیسے شکل میں دکھایا گیا ہے۔ اس کا طول au_a کوسائن کے قلیہ au_a سے بوں حاصل ہوتا ہے۔

(5.85)
$$\tau_{ar}^{2} = \tau_{a}^{2} + \tau_{r}^{2} - 2\tau_{a}\tau_{r}\cos(180^{\circ} - \theta_{ar})$$
$$= \tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar}$$

خلائی درز میں یہ کل مقناطیسی دباو، مقناطیسی شدت H_{ar} کو جنم دے گا جو اس قلیہ سے حاصل ہوتا ہے۔ $au_{ar} = H_{ar}l_q$ (5.86)

مقناطیسی شدت کی چوٹی کو ظاہر کرتا ہے۔ اب جہاں خلاء میں مقناطیسی شدت H ہو وہاں مقناطیسی ہمہ توانائی H_{ar} کی کثافت اس خلائی درز میں اوسط ضرب $\frac{\mu_0}{2}$ کی کثافت اس خلائی درز میں اوسط ضرب $\frac{\mu_0}{2}$

cosine law⁴⁷

ہو گی۔ کسی بھی سائن نما موت $H=H_0\cos heta$ کیا اوسط H_{ud}^2 یوں حاصل کیا جاتا ہے۔

(5.87)
$$H_{br,l}^{2} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H^{2} d\theta$$

$$= \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} H_{0}^{2} \cos^{2} \theta d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} \frac{1 + \cos 2\theta}{2} d\theta$$

$$= \frac{H_{0}^{2}}{\pi} \frac{\theta + \frac{\sin 2\theta}{2}}{2} \Big|_{-\frac{\pi}{2}}^{+\frac{\pi}{2}}$$

$$= \frac{H_{0}^{2}}{2}$$

لہذا خلائی درز میں اوسط ہمہ توانائی کی کثافت $\frac{\mu_0}{2} \frac{H_{ar}^2}{2}$ ہو گی اور اس خلاء میں کل ہمہ توانائی اس اوسط ہمہ توانائی ضرب خلاء کی حجم کے برابر ہو گا یعنی

(5.88)
$$W'_{m} = \frac{\mu_0}{2} \frac{H_{ar}^2}{2} 2\pi r l_g l = \frac{\mu_0 \pi r l}{2 l_g} \tau_{ar}^2$$

اس مساوات میں خلائی درزکی ردائی لمبائی $_{g}l_{g}$ ہے اور اس کی دھرے 48 کی سمت میں محوری لمبائی $^{49}l_{g}$ ہے۔ محور سے خلاء کی اوسط ردائی فاصلہ $_{g}r$ ہے۔ مزید ہیہ کہ $_{g}l_{g}$ ہے۔ اس طرح خلاء میں ردائی سمت میں کثافتِ مقناطیسی بہاو کی تبدیلی کو نظر انداز کیا جا سکتا ہے۔ اس مساوات کو ہم مساوات کی مدد سے یوں لکھ سکتے ہیں۔

(5.89)
$$W'_{m} = \frac{\mu_{0}\pi r l}{2l_{g}} \left(\tau_{a}^{2} + \tau_{r}^{2} + 2\tau_{a}\tau_{r}\cos\theta_{ar} \right)$$

اس سے میکانی قوت مروڑ یوں حاصل کیا جا سکتا ہے

(5.90)
$$T_m = \frac{\partial W'_m}{\partial \theta_{ar}} = -\frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

یہ حساب دو قطب والی مشین کے لئے لگایا گیا ہے۔ P قطب والے مشین کے لئے یہ مساوات ہر جوڑی قطب کا میکانی توت مروڑ دیتا ہے للذا ایسے مشین کے لئے ہم کھھ سکتے ہیں

$$(5.91) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_r \sin \theta_{ar}$$

axis⁴⁸ axial length⁴⁹

شکل5.29: مقناطیسی بہاواوران کے زاویے۔

یہ ایک بہت اہم مساوات ہے۔ اس کے مطابق مشین کا میکانی قوت مروڑ اس کے ساکن اور گھومتے لیجھوں کے مقاطیسی دباو کے چوٹی کے براہ راست متناسب ہے۔ اس طرح یہ ان دونوں کے درمیان برقی زاویہ θ_{ar} کے ساکن کے بھی براہ راست متناسب ہے۔ منفی میکانی قوت مروڑ کا مطلب ہے کہ یہ زاویہ θ_{ar} کے الٹ جانب ہے لیعنی یہ میکانی قوت مروڑ اس زاویہ کو کم کرنے کی جانب کو ہے۔ مشین کے ساکن اور گھومتے حصوں پر ایک برابر مگر الٹ ستوں میں میکانی قوت مروڑ ہوتا ہے البتہ ساکن جھے کا قوت مروڑ مشین کے وجود کے ذریعہ زمین تک منتقل ہو جاتا ہے جبکہ گھومتے جھے کا میکانی قوت مروڑ اس جھے کو گھماتا ہے۔

چونکہ مقناطیسی و باو برقی رو کے براہ راست متناسب ہے للذا au_i اور i_a آپس میں براہ راست متناسب ہیں جبکہ اور i_r اور i_r آپس میں براہ راست متناسب ہیں۔ اس سے یہ ظاہر ہوتا ہے کہ مساوات 5.84 اور 5.91 ایک جیسے ہیں۔ در حقیقت یہ ثابت کیا جا سکتا ہے کہ یہ دونوں بالکل برابر ہیں۔

شکل 5.29 میں ایک مرتبہ پھر ساکن اور گھومتے کچھوں کے مقناطیسی دباو دکھائے گئے ہیں۔ شکل میں بائیں جانب تکون ΔAEC اور ΔBEC میں CE مشترکہ ہے اور ان دو تکونوں سے واضح ہے کہ

$$(5.92) CE = \tau_r \sin \theta_{ar} = \tau_{ar} \sin \theta_a$$

اس مساوات کی مدد سے مساوات 5.91 یوں لکھا جا سکتا ہے۔

$$(5.93) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_a \tau_{ar} \sin \theta_a$$

اس طرح شکل WQ کی طرف مشتر کہ ہے اور ΔSWQ اور تکون ΔSWQ کی طرف مشتر کہ ہے اور

ان دو تکونول سے واضح ہے کہ

$$(5.94) WQ = \tau_a \sin \theta_{ar} = \tau_{ar} \sin \theta_r$$

اب اس مساوات کی مدد سے مساوات 5.91 یوں لکھا جا سکتا ہے۔

$$(5.95) T_m = -\frac{P}{2} \frac{\mu_0 \pi r l}{l_g} \tau_r \tau_{ar} \sin \theta_r$$

مساوات 5.91 مساوات 5.93 اور مساوات 5.95 كو ايك جبكه لكھتے ہيں۔

(5.96)
$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{r} \sin \theta_{ar}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{a} \tau_{ar} \sin \theta_{a}$$

$$T_{m} = -\frac{P}{2} \frac{\mu_{0} \pi r l}{l_{g}} \tau_{r} \tau_{ar} \sin \theta_{r}$$

ان مساوات سے یہ واضح ہے کہ میکانی قوت مروڑ کو دونوں کیجھوں کے مقناطیسی دباو اور ان کے مابین زاویہ کی شکل میں لکھا جا سکتا ہے یا پھر ایک کیچھے کی مقناطیسی دباو اور کل مقناطیسی دباو اور ان دو کے مابین زاویہ کی شکل میں لکھا جا سکتا ہے۔

اس بات کو یوں بیان کیا جاسکتا ہے کہ میکانی قوت مروڑ دو مقناطیسی دباو کے آپس میں رد عمل کی وجہ سے وجود میں آتا ہے اور یہ ان مقناطیسی دباو کی چوٹی اور ان کے مابین زاویہ پر منحصر ہوتا ہے۔

مقناطیسی دباو، مقناطیسی شدت، کثافت مقناطیسی بہاو اور مقناطیسی بہاو سب کا آپس میں تعلق رکھتے ہیں لہذا ان مساوات کو کئی مختلف طریقوں سے کھا جا سکتا ہے۔ مثلاً خلائی درز میں کل مقناطیسی دباو au_{ar} اور وہاں کثافت مقناطیسی بہاو B_{ar} کا تعلق

$$(5.97) B_{ar} = \frac{\mu_0 \tau_{ar}}{l_g}$$

استعال کر کے مساوات 5.96 کے آخری جزو کو یوں لکھا جا سکتا ہے

$$(5.98) T_m = -\frac{P}{2}\pi r l \tau_r B_{ar} \sin \theta_r$$

مقناطیسی آلوں میں مقناطیسی قالب کی مقناطیسی مستقل μ کی محدود صلاحیت کی وجہ سے قالب میں کثافت مقناطیسی بہاو تقریباً ایک ٹسلا تک ہی بڑھائی جا سکتی ہے۔ للذا مثین بناتے وقت اس حد کو مد نظر رکھنا پڑتا ہے۔ اس طرح گھومتے کچھے کا مقناطیسی دباو اس کچھے میں برتی رو پر مخصر ہوتا ہے۔ اس برتی رو سے کچھے کی مزاحمت میں برتی توانائی ضائع ہوتی ہے جس سے یہ لچھا گرم ہوتا ہے۔ برتی رو کو اس حد تک بڑھایا جا سکتا ہے جہاں تک اس کچھے کو ٹھنڈا کرنا ممکن ہو۔ لہذا مقناطیسی دباو کو اس حد کے اندر رکھنا پڑتا ہے۔ چونکہ اس مساوات میں یہ دو بہت ضروری حدیں واضح طور پر سامنے ہیں اس لئے یہ مساوات مثنین بنانے کی غرض سے بہت اہم ہے۔

اس مساوات کی ایک اور بہت اہم شکل اب دیکھتے ہیں۔ ایک قطب پر مقناطیسی بہاو ϕ_P ایک قطب پر اوسط کا رقبہ A_P ہوتا ہے۔ جہاں کثافت مقناطیسی بہاو اوسط ضرب ایک قطب کا رقبہ A_P ہوتا ہے۔ جہاں

(5.99)
$$B_{\text{be-yl}} = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{+\frac{\pi}{2}} B_0 \cos \theta \, d\theta = \frac{2B_0}{\pi}$$

$$(5.100) A_P = \frac{2\pi rl}{P}$$

للذا

$$\phi_P = \frac{2B_0}{\pi} \frac{2\pi rl}{P}$$

اور

$$(5.102) T_m = -\frac{\pi}{2} \left(\frac{P}{2}\right)^2 \phi_{ar} \tau_r \sin \theta_r$$

یہ مساوات معاصر مشینوں کے لئے بہت کار آمد ہے۔

فرہنگ

earth, 94	ampere-turn, 32
eddy current loss, 62	armature coil, 131, 251
eddy currents, 62, 126	axle, 161
electric field intensity, 10 electrical rating, 59 electromagnet, 131 electromotive force, 61, 137 emf, 137 enamel, 62 energy, 43 Euler, 21 excitation, 61	carbon bush, 177 cartesian system, 4 charge, 10, 136 circuit breaker, 178 coercivity, 46 coil high voltage, 56 low voltage, 56 primary, 55
excitation, 61 excitation current, 50, 60, 61 excitation voltage, 61 excited coil, 61	secondary, 55 commutator, 164, 241 conductivity, 25 conservative field, 108
Faraday's law, 38, 125 field coil, 131, 251 flux, 30 Fourier series, 63, 142 frequency, 130 fundamental, 142 fundamental component, 64	core, 55, 126 core loss, 62 core loss component, 64 Coulomb's law, 10 cross product, 13 cross section, 9 current transformation, 66 cylindrical coordinates, 5
ac, 159 ground current, 94 ground wire, 94 harmonic, 142	delta connected, 92 design, 195 differentiation, 18 dot product, 15
harmonic components, 64	E,I, 62

ئىرىتاك 270

parallel connected, 253	Henry, 39
permeability, 26	hunting, 178
relative, 26	hysteresis loop, 46
phase current, 94	
phase difference, 23	impedance transformation, 71
phase voltage, 94	in-phase, 69
phasor, 21	induced voltage, 38, 49, 61
pole	inductance, 39
non-salient, 140	
salient, 140	Joule, 43
power, 43	
power factor, 23	lagging, 22
lagging, 23	laminations, 31, 62, 126
leading, 23	leading, 22
power factor angle, 23	leakage inductance, 79
power-angle law, 188	leakage reactance, 79
primary	line current, 94
side, 55	line voltage, 94
	linear circuit, 226
rating, 96, 97	load, 98
rectifier, 164	Lorentz law, 136
relative permeability, 26	Lorenz equation, 102
relay, 101	
reluctance, 25	magnetic constant, 26
residual magnetic flux, 45	magnetic core, 31
resistance, 25	magnetic field
rms, 49, 164	intensity, 11, 33
rotor, 36	magnetic flux
rotor coli, 104	density, 33
rpm, 155	leakage, 78
	magnetizing current, 64
saturation, 47	mmf, 30
scalar, 1	model, 81, 207
self excited, 251	mutual flux linkage, 43
self flux linkage, 42	mutual inductance, 42
self inductance, 42	
separately excited, 251	name plate, 97
side	non-salient poles, 177
secondary, 55	
single phase, 23, 59	Ohm's law, 26
slip, 209	open circuit test, 86
slip rings, 176, 229	orthonormal, 3

ف رہنگ

unit vector, 2	star connected, 92
unit vector, 2	· · · · · · · · · · · · · · · · · · ·
VA, 75 vector, 2 volt, 137 volt-ampere, 75 voltage, 137 DC, 164 transformation, 66	stator, 36 stator coil, 104, 127 steady state, 175 step down transformer, 58 step up transformer, 58 surface density, 11 synchronous, 130 synchronous inductance, 184 synchronous speed, 155, 176
Watt, 43	
Weber, 32	Tesla, 33
winding distributed, 140 winding factor, 147	theorem maximum power transfer, 229 Thevenin theorem, 226 three phase, 59, 92 time period, 100, 142 torque, 165, 209 pull out, 178 transformer air core, 59 communication, 59 ideal, 65
	transient state, 175

پتریاں،62	ابتدائی
يورا بوجھ، 197	جانب،55
نیچے،80	گچھا، 55
ىتىپ پېش زاويە، 22	ار تباط بهاو، 39
	اضافي
تاخير ي زاويه، 22	زاویا کی رفتار، 212
تار کی برقی د باو،94	اکائی سمتیه، 2
تار کی برقی رو،94	اماله، 39
تانبا،28	امالى بر قى د باو، 38، 49، 61
تبادله	اوہم میٹر،237
ر کاوٹ، 71	ا یک، تین پتریال، 62
مختی،97	ایِک مرحلہ،59
تدريجي تفرق،113 - 120	ايمپيئر - چکر ، 32
تعدد،130 آت 179	
تعقب،178 تفرق،18	136.,
عرن،18 جزوی،18	بر قرار چالو،175،100 م ت
برون. تکمل،18	بر قي بار، 136،106
س،18 تکونی جوڙ،92	بر تي د باد، 28، 137
توني بور، 42 توانائي، 43	تبادله،66،56
وانان، 45،59 تین مرحله، 92،59	ځرک،137
20,000,000	بيجاني،185
ٹرانسفار مر	يك شتى،164 ق
برُ تی د باووالا، 59	بر تی رو،28 بیخور نما،126
بوجھ بردار،68	بسور ما،120 تبادله،66
خلائی قالب،59	مبادله،006 بیجان انگیز،50
د باوبر ماتا، 58	یجان۱ میر،30 برتی سکت،59
د باو ِ گھٹا تا،58	ېري سختي،ود بر تي ميدان،10
ذرائع ابلاغ، 59	بری شیدان،10 شدت،28،10
رووالاء59	مرت.28،10 بش،177
كال65،	بناوك، 86
شلا، 33	بنیادی جزو، 142،644
ٹھنڈی تار،94	بو تھ ، 98
ثانوي جانب، 55	بھٹی،114
33. 4 4031	بجينور نما
جاول،43	برتی رو، 62
97.	ضياع،62
يچىلاو،147	بھنور نمابر تی رو،126
جزوطاقت،23	بے بو جھ ،60
پ <u>ث</u> ن،23	
تاخيرى،23	پ ر ی، 31، 126

<u>ــــرہگ</u>ـــــ

سرك چىلے،176،229	جنزیٹر بدلتی رو، 159 جوڑ تکونی، 92 تالیم نیا 92
سطى تكمل، 181	بدلخارو،159
سطى كثافت،11	جوز گانی ۵۲
سكت،96،96	ستاره نماه 92 ستاره نماه 92
سلسله وار 145	92100
سمت كار، 241	چکر فی منٹ،126
برقیاتی،164	پولى - 211 چۇلى، 211
ميكاني،164	
سمتىيە،2	خطى
عمودياکائي، 3	ېر تې دور، 226
سمتی ر فتار ،102	خو دار تباط بهاو، 42
سير ابيت،47	خوداماله، 42
ضرب	داخلي ڀيجان
نقطه،15	ر ساسله وار ، 253 سلسله وار ، 253
ضرب صليبي، 13	متوازی، 253 متوازی، 253
42 ***	مرکب،253
طاقت،43	دور برطی مرکب، 253
طاقت بالمقابل زاويه، 188 طول موج، 18	دور شکن، 178
طول مون، ۱۵	دوری عرصه، 142،100
عار ضی صور ت، 175	دهره 161
عمودی تراش،9	
ر تبہ،9	رشا
•	اماله، 79
غيرسمتي،1	متعامله، 79
غير معاصر ،178	رستامتعامليت،217
250 / :	رفتار
فورئير،250 : برنسل دې ده د	اضافی زاویاکی، 212
فوريئرنشلىل،63،142	روغن،62
فیراڈے	رياضي نمونه، 207،81
تانون،38،125	ریلے،101
قالب،126	زاویه جزوطاقت، 23
قالبي ضياع، 62	رادييه اردي العربي . زمين ،94
64.9.7.	رين. زيني بر تي رو، 94
قانون	رين برن روم. زيني تار، 94
اوېم،26)-t-000-0
كولمب ،10	ساكن حصه،36
لورينز،136	ساكن كيچها،127،104
قدامت پبند میدان، 108	ستاره نماجوژ،92
قريب جڙي مر ٽب، 253	سرك،209

274 سنرہنگ

مر حلی فرق، 23	قطب
مركب جزيثر، 253	ابھرے،140،177
مزاَحت، 2ُ5ُ	ہموار،140،177
مساوات لورينز، 102	قوت مر و _ل ر، 209، 165
مسكم	انتهائي،178
تھو نن ،226	قوى اليكٹر انكس، 241،207
زیادہ سے زیادہ طاقت کی منتقلی، 228	قوى ك <u>ى</u> ھے، 251
مشتر كه ارتباط اماله، 43	•
مشتركه اماله، 42	كارين بش،177
معاصر،130	كِار گذارى،200
معاصراماله،184	^ک پیسر ،194
معاصر ر فتار ، 176،155	کافت :
معائنه	برقې دو، 27
کھلے دور ،86	کثافت مقناطیسی بهاو
مقناطيس	بقاي،45
برق،131	كسر دور ، 38
معائنه کطیر دور،86 متناطیس برتی،131 چال کادائرہ،46	04
خاتم شدت،46	گرم تار، 94 **
مقناطیسی بر قی رو، 64	گومتاحصه،36
مقناطیسی بهاو،30	گھومتالچھا،104
رتا،78	ليجا
كثافت،33	•
مقناطيسي چال،52	ابترائی،55 سال 140
مقناطیسی د باو، 30	<u>کھلے</u> ،140
سمت، 141	.يىچىدار، 40 ئاندى، 55
مقناطيسي قالب، 55،31	عوی،دی زیاده برتی دباو، 56
مقناطیسی مستقل،166،26	ريده بري د بري د. ساكن، 104
31.26.9.7.	سمت،104 سمت،133
مقناطیسی میدان	ئىت. قوي،131
شدت، 33،11	- دن. کم بر تی د باو، 56
موژ،49،19	ا برن دورد. گومتا، 104
موثر قیت ،164	موم،104 میدانی، 131
 موسیقائی جزو،64،142	131,0
موصلیت،25	محد د
ميداني لچھے، 251	محد د کار تثیمی، 4 نکلی 5
¥ · · ·	تَلَى، 5
واٹ، 43	محرك بر تي د باو، 61
وولٹ،137	161.15
وولٺ-ايمپيئر،75	مخلوط عدد، 192
ويبر،32	مرحلي سمتيه، 186،21

> ك سمتى رو مشين، 241 ك مر حله، 23 ك مر حله برقى د باو، 94 كي مر حله برقى د و، 94 يولر مساوات، 21

39، چکر، 39 نگلچاب ، 30،25 بم قدم، 69 بم قدم، 61 چیان، 13 خود، 251 پیچان انگیز برتی دو، 16 برتی دو، 16