YaDiff

Encore un outil de diff de binaires propagation de symboles

B. Amiaux, J. Bouetard, V. Comiti, F.Grelot, E.Renault, M. Tourneboeuf

Direction Générale de l'Armement / Maîtrise de l'Information

14 juin 2018

Introduction

- - Systèmes embarqués, binaires lourds
 - ► Temps d'exécution raisonnable

Introduction

- - Systèmes embarqués, binaires lourds
 - ► Temps d'exécution raisonnable
- © Propager le maximum d'information
 - ightharpoonup Version X.Y \rightarrow W.Z
 - ightharpoonup Linux \rightarrow Windows
 - ightharpoonup Lib ightharpoonup Exécutable

Introduction

- - Systèmes embarqués, binaires lourds
 - ► Temps d'exécution raisonnable
- © Propager le maximum d'information
 - \triangleright Version X.Y \rightarrow W.Z
 - ightharpoonup Linux \rightarrow Windows
 - ightharpoonup Lib ightharpoonup Exécutable
- Supporter plusieurs architectures
 - ► ARM, x86, autre?
 - ▶ Options de compilation (optimisations, deboggage...)

État de l'art

Logiciel	Entrée	License	Plugiciel IDA	Méthode	Autres Limitations
BinDiff	ASM	Privative	Oui	Signature des fonctions, basics blocs, séquences	
Diaphora	ASM	Libre	Oui	Signature des fonctions	Lent
Gorille	CFG	Privative	Non	Isomorphisme de sous-arbres	Compare seulement le CFG
SMIT	ASM	Privative	Non	Graphe d'appel	Ignore les fonctions isolées
TurboDiff	ASM	Libre	Oui	Signature des fonctions	Pas beaucoup d'heuristiques Incompatible avec Linux
PatchDiff	ASM	Libre	Oui	Signature des fonctions	
DarunGrin	nASM	Libre	Oui	Signature des fonctions	Pas facile à installer
BitShred	Octets	Privative	Non	N-gram	Pas cross-archi
Fcatalog	Octets	Libre	Oui	N-gram	Pas cross-archi

État de l'art

Logiciel	Entrée	License	Plugiciel IDA	Méthode	Autres Limitations
BinDiff	ASM	Privative	Oui	Signature des fonctions, basics blocs, séquences	
Diaphora	ASM	Libre	Oui	Signature des fonctions	Lent
Gorille	CFG	Privative	Non	Isomorphisme de sous-arbres	Compare seulement le CFG
SMIT	ASM	Privative	Non	Graphe d'appel	Ignore les fonctions isolées
TurboDiff	ASM	Libre	Oui	Signature des fonctions	Pas beaucoup d'heuristiques Incompatible avec Linux
PatchDiff	ASM	Libre	Oui	Signature des fonctions	•
DarunGrir	nASM	Libre	Oui	Signature des fonctions	Pas facile à installer
BitShred	Octets	Privative	Non	N-gram	Pas cross-archi
Fcatalog	Octets	Libre	Oui	N-gram	Pas cross-archi

- Pas de support des binaires lourds
- Pas de traitement de la sortie (autre qu'affichage)

État de l'art

Logiciel	Entrée	License	Plugiciel IDA	Méthode	Autres Limitations
BinDiff	ASM	Privative	Oui	Signature des fonctions, basics blocs, séquences	
Diaphora	ASM	Libre	Oui	Signature des fonctions	Lent
Gorille	CFG	Privative	Non	Isomorphisme de sous-arbres	Compare seulement le CFG
SMIT	ASM	Privative	Non	Graphe d'appel	Ignore les fonctions isolées
TurboDiff	ASM	Libre	Oui	Signature des fonctions	Pas beaucoup d'heuristiques Incompatible avec Linux
PatchDiff	ASM	Libre	Oui	Signature des fonctions	
DarunGrir	nASM	Libre	Oui	Signature des fonctions	Pas facile à installer
BitShred	Octets	Privative	Non	N-gram	Pas cross-archi
Fcatalog	Octets	Libre	Oui	N-gram	Pas cross-archi

- Pas de support des binaires lourds
- Pas de traitement de la sortie (autre qu'affichage)

Notre solution : YaDiff

Contenu

Orchestrateur d'algorithmes : YaDiff "legacy"

Enchainement des algorithmes

Algorithme d'Intelligence Artificielle

Vecteur de caractéristiques

Apprentissage supervisé

Contenu

Orchestrateur d'algorithmes : YaDiff "legacy" Enchainement des algorithmes

Algorithme d'Intelligence Artificielle

Vecteur de caractéristiques

Apprentissage supervisé

Définitions

- Objet
 - ► Concept introduit dans notre chaine d'outils
 - ▶ Abstrait le type d'un élément (fonctions, blocs basiques, données)
- Bloc basique
 - ► Séquence d'instructions
- Fonction
 - Fonctionnalité
 - Implémentation
- Référence croisée
 - ► Lien logique entre les objets

Signatures

- Associer un maximum d'objets de manière fiable
- Tolérant aux changements mineurs
- Temps d'exécution rapide

mov r0, r1

add r2,

0x12345678

bl

Génération des signatures (Octets invariants)

#0x8

Génération des signatures (Octets invariants)

Génération des signatures (Octets invariants)

imm

register register mov register add

address

bl

Génération des signatures (Octets invariants)

→ Condensat

Algorithmes

Algorithmes

- a Algo 1 : Association initiale
- a Algo 2 : Propagation par références croisées montantes
- Algo 3 : Propagation par références croisées descendantes

 S_A

 S_F

 S_Z

Binaire 1

 S_K

 S_B

$$S_B$$

$$S_E$$

$$egin{array}{c} S_W \ \hline S_A \ \hline S_G \ \hline \end{array}$$

Binaire 2

 $\overline{S_A}$

 S_F

 S_Z

 S_X

 S_K

Binaire 1

 S_B

 S_{T}

 S_Z

 S_G

 S_A

 S_X

Binaire 2

 S_D

 \overline{S}_A

 $|S_F|$

 S_Z

Binaire 1

 S_X

 S_K

 S_B

 S_Z

 S_A $|S_G|$

 S_X

Binaire 2

 S_X

 S_K

 S_B

 $\overline{S_A}$

 $|S_F|$

 S_Z

Binaire 1

 S_Z

$$S_G$$

 S_W

Binaire 2

 $|S_D|$

 S_A

 S_F

 S_Z

Binaire 1

 S_X

 S_K

 S_B

 $egin{array}{c} S_A \ \hline S_E \ \hline S_G \ \hline \end{array}$

 S_Z

 S_W

 $|S_D|$

Binaire 2

 S_A

 S_F

 S_Z

Binaire 1

 S_X

 S_K

$$S_W$$

 S_Z

 S_B

Binaire 2

 S_Z

Binaire 1

 S_X

 S_K

 S_Z

 S_X

 S_K

 \overline{S}_A

 S_Z

Binaire 1

 S_B

 S_Z

 S_W

 S_A

Binaire 2

 S_A

 S_Z

 S_X

 S_K

Binaire 1

 S_B

 S_Z

 S_W

Binaire 2

Algo 2: Propagation montante

Algo 2 : Propagation montante

Algo 2: Propagation montante

Algo 2: Propagation montante

Algo 3: Propagation descendante

Enchainement des algorithmes

```
Fonction association():
    algo1_association_initiale()
    répéter
        algo2_propagation_montante()
        algo3_propagation_descendante()
    tant que nouvelles associations ajoutées
```


Résultats et applications

- Utilisable sur des gros binaires

Conclusion intermédiaire

- Répond à notre besoin
- Activement utilisé

Mais

- Pourrait obtenir un plus grand nombre de correspondances
- Ne supporte pas le multi-architecture
- Ne supporte pas les modifications importantes.

Contenu

Orchestrateur d'algorithmes : YaDiff "legacy" Enchainement des algorithmes

Algorithme d'Intelligence Artificielle Vecteur de caractéristiques Apprentissage supervisé

Vecteur de caractéristiques

- Instructions
- © Graphe d'appel

Vecteur de caractéristiques

Vecteur de caractéristiques : Graphe de flot de contrôle

Vecteur de caractéristiques : Graphe de flot de contrôle

BB Inst Boucle ... Xref JC READ ADD RE


```
BB Inst Boucle I... Xref JC READ ADD I.. I.. I.. RET
```


BB Inst Boucle ... Xref JC READ ADD RET

Distance entre vecteurs de caractéristiques

- Nombre de dimensions élevé
- Distances difficiles à définir
 - Quelques paramètres prépondérants
 - ► Certaines coordonnées sont liées
- Frontières floues

Définition

- Problème : étant donnés 2 vecteurs, représentent-ils la même fonction ?
- o Solution : un réseau de neurones
- Méthode : apprentissage supervisé
- Données d'entrée : un ensemble de vecteurs de fonctions connues

Corpus d'apprentissage

- Suffisamment fourni
- Facilement accessible
- Représentatif des données analysées

Corpus d'apprentissage

- Suffisamment fourni
- Facilement accessible
- Représentatif des données analysées

Dépôt Linux debian

- Wheezy & Jessie & Stretch
- 400k fichiers
- À faire évoluer une fois la démarche validée

Corpus d'apprentissage

Entraînement vs Validation

- Objectif: détecter et éviter le sur-apprentissage
- Exclusion d'une partie du corpus de l'entraînement
- Tests sur cette partie
- libxhtml.so isolation de 3 binaires : nfsd.ko, cc1plus, libxhtml.so
 - environ 100k fonctions

© Vecteur de caractéristiques + Architecture

© Vecteur de caractéristiques + Architecture

Normalisation

- Pour chaque coordonnée, distribution :
 - non équirépartie
 - potentiellement non bornée
 - différente

© Vecteur de caractéristiques + Architecture

Normalisation

- Pour chaque coordonnée, distribution :
 - non équirépartie
 - potentiellement non bornée
 - différente

© Vecteur de caractéristiques + Architecture

Normalisation

- Pour chaque coordonnée, distribution :
 - non équirépartie
 - potentiellement non bornée
 - différente
- - ▶ de 0 à 1
 - maximise la variance

- Pour chaque vecteur, on conserve le nom du binaire et le nom de la fonction
- - ▶ Deux instances de fonctions sont sémantiquement identiques si les deux noms le sont (binaire+fonction)
 - ► Elles sont différentes sinon

Conception de l'algorithme d'apprentissage automatique

Apprentissage : fonctions étiquetées

Apprentissage: + et -

Apprentissage : réseau de projection

Apprentissage : fonction de coût

Apprentissage : fonction de coût

Exploitation

Exploitation

Résultats

Comparaison d'une fonction avec les autres versions du même binaire

```
[LADDER][EVAL][0.00s][0] metric: 477.96982
                                                          / 32 bits): 933.70588 [17 sibblings], ranks in [6 - 133
Ladder for [876864] Infsd -- remove proc entry (Intel
    1079790][0.504<u>219574][0.005551429][nrsd -- atomic_dec_and</u> spin lock (Intel 80386 / 32 bits)|
     130338][0.752887033][0.009280259][nfsd -- __copy_from_user_ll (Intel 80386 / 32 bits)]
     533093][1.091241859][0.010920132][nfsd -- arm copy from user (ARM / 32 bits)]
    1079883][0.916691100][0.012009483][nfsd -- rt spin unlock (Intel 80386 / 32 bits)]
      129502][0.900925817][0.012271119][nfsd -- pv lock ops (Intel 80386 / 32 bits)]
     1079784][1.071697658][0.014492417][nfsd -- mutex lock (Intel 80386 / 32 bits)]
     943605][0.810944381][0.014661974][nfsd -- remove proc entry (ARM / 32 bits)]
      900646][1.071307493][0.015965492][nfsd -- csum partial (PowerPC or cisco 4500 / 32 bits)]
     1080171][0.892108948][0.016692763][nfsd
                                             -- rt up write (Intel 80386 / 32 bits)]
       70770][1.121043705][0.017173097][nfsd
                                             -- .rpc shutdown client (64-bit PowerPC or cisco 7500 / 64 bits)]
      71397][1.062122340][0.018237174][nfsd
                                             -- .gword addhex (64-bit PowerPC or cisco 7500 / 64 bits)]
                                             -- .wake up process (64-bit PowerPC or cisco 7500 / 64 bits)]
      71479][1.045865227][0.018292412][nfsd
                                             -- mutex do init (Intel 80386 / 32 bits)1
    1079991][0.979788133][0.018413384][nfsd
                                             -- .mnt want write file (64-bit PowerPC or cisco 7500 / 64 bits)]
       71277][1.046812001][0.018891755][nfsd
       706961[1.0445347091[0.0190419031[nfsd
                                               .mnt drop write file (64-bit PowerPC or cisco 7500 / 64 bits)]
      71573][1.073005776][0.019122235][nfsd
                                             -- .rpc unlink (64-bit PowerPC or cisco 7500 / 64 bits)]
      70543][1.063754186][0.019183440][nfsd
                                             -- .vfs rmdir (64-bit PowerPC or cisco 7500 / 64 bits)]
                                                .cache check (64-bit PowerPC or cisco 7500 / 64 bits)]
      71261][1.081320947][0.019579004][nfsd
      70625][1.072801285][0.019587792][nfsd
                                             -- .locks end grace (64-bit PowerPC or cisco 7500 / 64 bits)]
       71483 [1.093553917] [0.019799624] [nfsd -- .set posix acl (64-bit PowerPC or cisco 7500 / 64 bits)]
```


Résultats

Comparaison d'une fonction avec les autres versions du même binaire

```
[LADDER][EVAL][120.00s][337744] metric: 114.80121
Ladder for [876864][nfsd -- remove_proc_entry (Intel 80386 / 32 bits)]: 8.00000 (17 sibblings), ranks in [2 - 39]/1345
    1079790][0.504219574][0.002655557][nfsd -- atomic dec and spin lock (Intel 80386 / 32 bits)]
     129536][1.134311844][0.002689022][nfsd -- set fs (Intel 80386 / 32 bits)]
ΪκΊΪ
     943605][0.810944381][0.002886003][nfsd -- remove proc entry (ARM / 32 bits)]
     9473061[2.0499496341[0.005552270][nfsd -- remove proc entry (PowerPC or cisco 4500 / 32 bits)]
     198972][5.925486433][0.005908569][nfsd -- remove proc entry (PowerPC or cisco 4500 / 32 bits)]
     781199 [3.443695263] [0.006057259] [nfsd -- remove proc entry (Intel 80386 / 32 bits)]
                                               remove proc entry (ARM / 32 bits)]
[X]
      52439][1.088887903][0.006791204][nfsd
     756194][5,790339007][0,010467720][nfsd
                                                remove proc entry (x86-64 / 64 bits)]
     781202][1.069555127][0.012558789][nfsd
                                                net generic.part.1 0 (Intel 80386 / 32 bits)]
     781584][1.068393730][0.013884161][nfsd
                                                net generic.part.3 (Intel 80386 / 32 bits)]
     781626][1.062813000][0.014329499][nfsd
                                                net generic.part.6 (Intel 80386 / 32 bits)]
     781423][1.087630798][0.016591001][nfsd
                                                net generic.part.1 (Intel 80386 / 32 bits)]
1[X]
     496018][1.709477965][0.017667634][nfsd
                                                remove proc entry (ARM / 32 bits)]
     372374][5.332226244][0.018103490][nfsd
                                                remove proc entry (Intel 80386 / 32 bits)]
     781276][1.069777819][0.020596625][nfsd
                                                net generic.part.1 1 (Intel 80386 / 32 bits)]
     1079771][1.176402809][0.022174485][nfsd
                                                call rcu (Intel 80386 / 32 bits)1
    1080196][5.569054868][0.022854714][nfsd
                                                remove proc entry (Intel 80386 / 32 bits)]
    1028625][4.934297144][0.022904934][nfsd
                                                remove proc entry (Intel 80386 / 32 bits)]
     533481][1.394036595][0.023260947][nfsd -- remove proc entry (ARM / 32 bits)]
     888361][2.356059694][0.029136794][nfsd --
                                                put zone device page (x86-64 / 64 bits)]
```


Résultats

Comparaison d'une fonction avec les autres versions du même binaire

```
[LADDER][EVAL][540.00s][1608032] metric: 45.34632
Ladder for [870864][nfsd -- remove proc entry (Intel 80386 / 32 bits)]: 0.00000 (17 sibblings), ranks in [0 - 16]/1345
     372374][5.332226244][0.001001099][nfsd -- remove proc entry (Intel 80386 / 32 bits)]
     781199][3.443695263][0.001294585][nfsd -- remove proc entry (Intel 80386 / 32 bits)]
      943605][0.810944381][0.002491688][nfsd -- remove proc entry (ARM / 32 bits)]
     1028625 [4.934297144] [0.002592712] [nfsd -- remove proc entry (Intel 80386 / 32 bits)]
      496018][1.709477965][0.003801425][nfsd -- remove proc entry (ARM / 32 bits)]
     1080196][5.569054868][0.004284129][nfsd -- remove proc entry (Intel 80386 / 32 bits)]
ΓXΊ
      52439][1.088887903][0.007239995][nfsd -- remove proc entry (ARM / 32 bits)]
                                             -- remove proc entry (PowerPC or cisco 4500 / 32 bits)]
      947306][2.049949634][0.009259175][nfsd
      269148][6.218058688][0.012043204][nfsd
                                             -- remove proc entry (x86-64 / 64 bits)]
     888060][5.620438449][0.013195468][nfsd
                                             -- remove proc entry (x86-64 / 64 bits)]
[X]
     676419][3.700961476][0.015630072][nfsd
                                             -- remove proc entry (ARM / 32 bits)]
ΪΪΧΊ
     186528][5.473922680][0.015866069][nfsd
                                                remove proc entry (Intel 80386 / 32 bits)]
                                                remove proc entry (PowerPC or cisco 4500 / 32 bits)]
[X][
      198972][5.925486433][0.017689172][nfsd
ĪſXĪ
      533481][1.394036595][0.022609925][nfsd
                                             -- remove proc entry (ARM / 32 bits)]
[X]
      900676][7.413600353][0.024682559][nfsd
                                                remove proc entry (PowerPC or cisco 4500 / 32 bits)]
īrxī
      130054][6.355939734][0.031016290][nfsd
                                                remove proc entry (Intel 80386 / 32 bits)]
                                             -- remove proc entry (x86-64 / 64 bits)]
      756194][5.790339007][0.044317406][nfsd
      781584][1.068393730][0.044801235][nfsd
                                                net generic.part.3 (Intel 80386 / 32 bits)]
      877037][1.064036173][0.047644138][nfsd -- __be32_to_cpup.isra.7 (Intel 80386 / 32 bits)]
      129536][1.134311844][0.086903065][nfsd -- set fs (Intel 80386 / 32 bits)]
```


Total

```
Fonction association():
   algo1 apprentissage automatique()
   algo4 associations initiales()
   répéter
        algo2 propagation montante()
        algo3 propagation descendante()
        pour chaque association de la liste faire
            si score ia élevé
                ajouter association à la liste point de pivot
    tant que nouvelles associations ajoutées
```


Travaux restants

- Vecteurs : ajouter d'autres paramètres discriminants
- Apprentissage : Gradient Boosting, . . .
- Sortie: "function dating"

Conclusion

- Fonctionne
- Utilisé
- IA prometteur

NOTE : pour en savoir plus, lire le papier

One more thing

- https://github.com/DGA-MI-SSI/YaCo
- GPLv3

NOTE: pour en savoir plus, lire le papier

Questions?

 $\ensuremath{@}$ Rendez-vous ce soir pour en discuter

Améliorations

- Intégrer l'IA
 - ▶ Dans la version open source sur Github

