Национальный исследовательский ядерный университет «МИФИ»

Тема работы:

Курсовая работа

«Исследование лекарственной активности»

Классическое машинное обучение

выполнила: Студент МИФИ Ревель Р. С.

руководитель: Преподаватель НИЯУ МИФИ и

НИТУ МИСИС Егоров А.Д.

Москва

Задачи	3
Цели работы:	3
Этапы работы:	3
1. Предварительный анализ данных	3
2. Пред обработка данных	3
3. Обучение моделей	3
4. Интерпретация и сравнение моделей	3
5. Рекомендации для химиков	3
Описания данных	4
Описания целевых переменных	4
1. IC ₅₀ (Half Maximal Inhibitory Concentration)	4
2. CC ₅₀ (Half Maximal Cytotoxic Concentration)	4
3. SI (Selectivity Index — Индекс Селективности)	4
Пример интерпретации:	4
Предварительный анализ данных	8
Выводы	8
Анализ важности переменных для целевой переменной	9
Пред обработка данных	10
Краткое описания действия с данными	11

Задачи

Цели работы:

- 1. Построить прогнозные модели для ключевых параметров эффективности лекарственных препаратов (IC50, CC50, SI) с помощью методов машинного обучения.
- 2. Сравнить различные алгоритмы (регрессия и классификация) и выбрать наилучшие модели на основе метрик качества.
- 3. Определить наиболее значимые параметры, влияющие на эффективность препаратов, для оптимизации их состава.

Этапы работы:

1. Предварительный анализ данных

- Анализ распределений целевых переменных (IC50, CC50, SI).
- Исследование корреляций между признаками.
- Группировка и визуализация данных для выявления закономерностей.
- Анализ важности переменных для целевой переменной

2. Пред обработка данных

- Очистка данных (удаление/заполнение пропусков, обработка выбросов).
- Нормализация/стандартизация числовых признаков (если нужно).
- Кодирование категориальных признаков (если есть).
- Разделение данных на обучающую и тестовую выборки.

3. Обучение моделей

Регрессия:

- Обучения моделей
- Подбор гиперпараметров (RandomizedSearchCV).
- Оценка по метрикам: MAE, RMSE, R².

Классификация:.

- Оценка по метрикам.
- Интерпретация и сравнение моделей

5. Общий вывод

- Какие комбинации параметров дают лучшие значения IC50/CC50/SI?
- Какие модели оказались наиболее точными и почему?
- Какие дальнейшие шаги можно предложить (сбор дополнительных данных, уточнение признаков и т. д.)?

Описания данных

Описания целевых переменных

1. IC₅₀ (Half Maximal Inhibitory Concentration)

- Определение: Концентрация вещества, необходимая для подавления биологического процесса (например, репликации вируса, активности фермента) на 50% по сравнению с контролем.
- Применение:
- В противовирусных исследованиях показывает, насколько эффективно вещество блокирует вирус.
- Чем меньше ІС50, тем выше эффективность соединения.

2. CC₅₀ (Half Maximal Cytotoxic Concentration)

- Определение: Концентрация вещества, вызывающая гибель 50% клеток в эксперименте (токсичность).
- Применение:
- Отражает цитотоксичность вещества для здоровых клеток.
- Чем выше СС50, тем безопаснее соединение.

3. SI (Selectivity Index — Индекс Селективности)

• Формула:

 $SI = \frac{CC_{50}}{IC_{50}}$

- Смысл: Показывает, насколько вещество избирательно действует на мишень (например, вирус), а не на клетки хозяина.
- SI > 10 считается приемлемым для потенциальных лекарств.
- SI > 100 высокая селективность, минимальная токсичность.

Пример интерпретации:

Если у препарата:

- $IC_{50} = 1 \mu M$ (хорошо подавляет вирус),
- $CC_{50} = 100 \mu M$ (низкая токсичность),

то SI = 100 — отличный кандидат для дальнейших исследований.

Эти параметры критически важны при скрининге новых лекарств, особенно противовирусных (например, против ВИЧ, SARS-CoV-2).

Электронные и энергетические параметры:

- MaxAbsEStateIndex максимальный электроотрицательный индекс состояния по абсолютному значению
- MaxEStateIndex максимальный индекс состояния
- MinAbsEStateIndex минимальный электроотрицательный индекс по абсолютному значению

- MinEStateIndex минимальный индекс состояния
- MaxPartialCharge максимальный частичный заряд атома
- MinPartialCharge минимальный частичный заряд атома
- MaxAbsPartialCharge максимальный частичный заряд (по модулю)
- MinAbsPartialCharge минимальный частичный заряд (по модулю)Молекулярные дескрипторы:
- MolWt молекулярная масса
- HeavyAtomMolWt масса без учёта атомов водорода
- ExactMolWt точная молекулярная масса
- NumValenceElectrons количество валентных электронов
- NumRadicalElectrons количество радикальных электронов
- qed Quantitative Estimate of Drug-likeness (оценка качества молекулы как кандидата в лекарства)
- SPS сумма поляризационных поверхностей растворителя

Физико-химические свойства:

- MolLogP коэффициент распределения (оценка липофильности)
- MolMR молярный рефракционный показатель (мера молекулярного объёма и поляризуемости)

Структурные признаки:

- HeavyAtomCount число тяжёлых атомов (все, кроме Н)
- NHOHCount число групп ОН и NH
- NOCount число атомов N и O
- NumRotatableBonds число ротируемых связей (мера гибкости молекулы)
- RingCount общее число колец
- FractionCSP3 доля sp³-гибридизованных атомов углерода
- NumAliphaticRings число алифатических колец
- NumAromaticRings число ароматических колец
- NumHAcceptors число акцепторов водородных связей
- NumHDonors число доноров водородных связей
- NumHeteroatoms число гетероатомов (не C/H)

Дескрипторы Morgan Fingerprint Density:

• FpDensityMorgan1, FpDensityMorgan2, FpDensityMorgan3 — плотность фингерпринтов разного радиуса

ВСИТ-дескрипторы (атомные свойства):

- ВСИТ2D МWНІ, ВСИТ2D МWLOW массовые дескрипторы
- BCUT2D CHGHI, BCUT2D CHGLO зарядовые дескрипторы
- BCUT2D_LOGPHI, BCUT2D_LOGPLOW оценка липофильности• BCUT2D_MRHI, BCUT2D_MRLOW оценка молярного рефракционного индекса

Топологические дескрипторы:

- Balaban J балабановский индекс (топологическая характеристика молекулы)
- BertzCT индекс сложности молекулы (fragment complexity contribution)
- HallKierAlpha, Ірс, Карра1, Карра2, Карра3 структурные индексы Холла-Кьера

Площадь поверхности доступности (ASA):

• LabuteASA — площадь доступной растворителю поверхности

PEOE VSA — дескрипторы по зарядам:

(PEOE — Partial Equalization of Orbital Electronegativity)

• PEOE_VSA1-PEOE_VSA14 — разделённые по диапазонам значения атомных зарядов и поляризации

SMR VSA — молекулярное рефракционное значение по участкам:

• SMR_VSA1-SMR_VSA10 — молярная рефракция по различным диапазонам

SlogP VSA — логР по областям молекулы:

- SlogP_VSA1-SlogP_VSA12 дескрипторы липофильности по участкам молекулы TPSA полярная поверхность:
- TPSA суммарная полярная поверхность (Topological Polar Surface Area)

EState_VSA — электроотрицательность по зонам:

• EState VSA1-EState VSA11

деление молекулы на участки по

электроотрицательности

VSA EState — вариация EState по размеру:

• VSA_EState1-VSA_EState9 — деление по электроотрицательности с участием площади поверхности

Часто используемые фрагменты (fr ...):

Функциональные группы и их наличие в молекуле:

- fr Al COO аллильная карбоновая группа
- fr_Al_OH спиртовые ОН-группы
- fr Al OH noTert OH-группы, за исключением третичных
- fr ArN ароматические N
- fr Ar COO ароматические карбоновые кислоты
- fr Ar N ароматические амины• fr Ar NH ароматические аминогруппы
- **fr Ar OH** фенольные OH
- fr COO карбоновые кислоты
- fr COO2 вторая форма карбоновой кислоты
- fr_C_O карбонильные группы
- fr C O noCOO карбонилы, кроме карбоновых
- fr С S группы с атомами C=S
- fr HOCCN цианиды с ОН-группой
- fr Imine имины
- fr NH0 первичные NH-группы
- fr NH1 вторичные NH-группы
- fr NH2 третичные NH-группы
- fr N O связи N–O
- fr Ndealkylation1, fr Ndealkylation2 маркеры реакции N-деалкилирования
- fr Nhpyrrole пиррольные NH-группы
- \mathbf{fr} \mathbf{SH} тиольные группы
- fr aldehyde альдегиды
- fr alkyl carbamate карбаматы
- fr alkyl halide алкилгалогениды
- fr allylic oxid метки для окисления аллильных групп
- fr amide амиды
- fr amidine амидины
- fr aniline анилины
- fr aryl methyl арилметильные группы
- fr azide азида
- fr azo азо-соединения
- fr barbitur барбитуровая кислота или её производные
- fr benzene бензольные кольца
- fr benzodiazepine бензодиазепиновые структуры
- fr bicyclic двухкольцевые структуры
- fr diazo диазосоединения
- fr dihydropyridine дигидропиридины• fr epoxide эпоксиды
- fr_ester эфиры

- fr ether простые эфиры
- fr furan фурановые кольца
- fr guanido гуанидиновые группы
- fr_halogen галогены
- fr hdrzine гидразиновые группы
- fr hdrzone гидразоны
- fr imidazole имидазолы
- fr imide имиды
- fr isocyan изоцианиды
- fr_isothiocyan изотиоцианиды
- fr ketone кетоны
- fr ketone Topliss кетоны (по Topliss)
- fr lactam лактамы
- fr lactone лактоны
- fr_methoxy метокси-группы
- fr_morpholine морфолиновые структуры
- fr_nitrile нитрилы
- fr_nitro нитрогруппы
- fr nitro arom нитроароматические соединения
- fr nitro arom nonortho нитроароматические, не орто-замещённые
- fr nitroso нитрозо-соединения
- fr oxazole оксазолы
- fr oxime оксимы
- fr para hydroxylation метки для пара-гидроксилирования
- fr phenol фенольные ОН-группы
- fr phenol noOrthoHbond фенолы без орто-водородных связей
- fr phos acid фосфорные кислоты
- fr phos ester фосфорные эфиры
- fr piperdine пиперидиновые структуры
- fr piperzine пиперазиновые структуры• fr priamide первичные амиды
- fr prisulfonamd сульфонамиды
- fr pyridine пиридиновые кольца
- fr quatN четвертичные атомы азота
- fr sulfide сульфиды
- fr sulfonamd сульфонамиды
- fr sulfone сульфоны
- fr_term_acetylene терминальные ацетилены
- fr tetrazole тетразолы
- fr thiazole тиазолы
- fr thiocyan тиоцианаты
- fr thiophene тиофеновые кольца
- fr unbrch alkane неразветвлённые алканы
- fr urea мочевина и её производны

Предварительный анализ данных

Эффективность vs. Токсичность: Многие соединения эффективны (низкий IC50), но одновременно и токсичны (низкий CC50), что ограничивает их терапевтическую применимость.

Селективность (SI): Большинство соединений имеют низкий SI, что указывает на недостаточную селективность (малое окно между эффективной и токсической дозой). Это критично для разработки безопасных лекарств.

Потенциальные "хиты": Соединения с высоким SI (значительно больше 1) требуют дополнительного изучения, так как они могут быть перспективными кандидатами. Их можно выявить, отфильтровав данные по SI > 10 (если такие есть). И судя по графикам таких значений достаточно мало, что в целом не удивительно

Анализ важности переменных для целевой переменной

Анализ для целевой переменной: IC50, mM

Анализ для целевой переменной: СС50, тМ

Анализ для целевой переменной: SI

Пред обработка данных

Видно, что пропусков не так много пропусков, по этому принято решения использовать медиану

Выполняем масштабирование данных. Пример до и после масштабирования: на графике хорошо видно, что читаемость данных становится гораздо лучше

Краткое описания действия с данными

- Очистка данных Заполняем пропущенные значения медианой каждого столбца. Это помогает сохранить распределение данных и избежать удаления строк.
- Обнаружение и удаление выбросов с помощью IsolationForest Применяем алгоритм IsolationForest, чтобы автоматически выявить аномальные наблюдения. Удаляем или корректируем выбросы перед дальнейшим анализом.
- Разделение на признаки (X) и целевую переменную (y) Убираем из данных столбцы IC50, CC50 и SI они будут целевыми переменными. В X остаются все признаки, а в у только выбранная целевая переменная (например, IC50).
- Масштабирование признаков Применяем StandardScaler, чтобы привести все признаки к единому масску (среднее = 0, стандартное отклонение = 1). Это важно для алгоритмов, чувствительных к разным диапазонам значений (например, SVM, нейросети).

• Разделение на обучающую и тестовую выборки Делим данные в соотношении 80/20: 80% — на обучение модели, 20% — на проверку. Параметр random_state=42 фиксирует случайность, чтобы результаты были воспроизводимы.

Обучение моделей

Регрессия для ІС50

Random Forest показал наилучшее качество (R^2 =0.43) с минимальной RMSE (436.1), Neural Network близок к нему (R^2 =0.41) и имеет лучший MAE (226.3), а XGBoost отстаёт (R^2 =0.38). По скорости Neural Network обучался быстрее всех (13.9 сек), тогда как Random Forest и XGBoost заняли около 37 секунд.

Гиперпараметры

Random Forest использовал 100 деревьев с глубиной 10, Neural Network — архитектуру (128, 64) с L2-регуляризацией, а XGBoost — неглубокие деревья (max_depth=5), что могло ограничить его точность. Возможно, увеличение глубины или числа estimators улучшит XGBoost.

Random Forest — оптимальный выбор для точности, Neural Network — для скорости и стабильности ошибок. XGBoost требует доработки.

Регрессия для СС50

Качество, ошибки и скорость

Random Forest продемонстрировал наивысшее качество (R^2 =0.607) с минимальными ошибками (RMSE=451.4, MAE=278.2). ХGBооst показал близкие результаты (R^2 =0.584, RMSE=464.6), но с чуть большими ошибками, тогда как Neural Network заметно отстал (R^2 =0.516, RMSE=500.8). По скорости Neural Network оказался быстрее (16.4 сек), тогда как Random Forest и XGBoost потребовали около 36-38 секунд.

Гиперпараметры

Random Forest использовал глубокие деревья (max_depth=20) и 100 estimators, что объясняет его высокую точность. XGBoost применял более консервативные настройки (max_depth=7, n_estimators=300) с регуляризацией (subsample=0.8, colsample_bytree=0.8). Neural Network использовал компактную архитектуру (64, 32) с малым размером батча (128) и слабой L2-регуляризацией (alpha=0.0001), что могло ограничить его производительность.

Random Forest — лучший выбор для максимальной точности, а XGBoost может служить его ближайшей альтернативой. Neural Network, несмотря на быстроту обучения, значительно уступает в качестве прогнозирования. Если критична скорость, можно рассмотреть XGBoost

Регрессия для SI

Качество, ошибки и скорость

Все модели показали низкое качество предсказаний: XGBoost (R^2 =0.087) и Random Forest (R^2 =0.083) немного лучше константной модели, а Neural Network (R^2 =-0.006) вообще не справился. При этом MAE у всех относительно низкий (184-190), что говорит о систематической ошибке в прогнозах. Neural Network обучался значительно быстрее (5.56 сек) против 42-48 сек у других методов.

Гиперпараметры

XGBoost использовал агрессивные настройки (learning_rate=0.2) с неглубокими деревьями (max_depth=5). Random Forest применял глубокие деревья (max_depth=20), но с жесткими ограничениями на разделение (min_samples_split=10). Neural Network имел компактную архитектуру (64, 32) с малым батчем (32), но явно недостаточную для данной задачи.

Модели показали крайне слабые результаты, что может указывать на недостаточную сложность моделей для данных, проблемы в самих данных (неинформативные признаки, шум) или неоптимальные гиперпараметры. Neural Network не подходит для решения, а XGBoost и Random Forest работают одинаково плохо, но их можно попробовать улучшить через увеличение сложности моделей, добавление новых признаков, пересмотр предобработки данных

Сравнения данных по трем экспериментам вычисления регрессе

	Dataset	Model	RMSE	R2	MAE	Time (sec)
0	IC50	XGBoost	453.697017	0.382895	239.591444	36.10
1	IC50	Random Forest	436.116376	0.429794	232.868419	37.04
2	IC50	Neural Network	444.355856	0.408045	226.328685	13.93
3	CC50	XGBoost	464.625965	0.583610	293.929065	38.50 {
4	CC50	Random Forest	451.412293	0.606957	278.182551	36.40
5	CC50	Neural Network	500.805177	0.516239	315.154907	16.36
6	SI	XGBoost	1354.477735	0.086659	185.275285	48.16
7	SI	Random Forest	1357.360120	0.082767	189.536137	42.04
8	SI	Neural Network	1421.397137	-0.005820	184.915160	5.56

Общий вывод по трем экспериментам

- 1. Сравнение производительности моделей Во всех трех экспериментах Random Forest показал стабильно хорошие результаты:
 - В первых двух тестах он лидировал по R² (0.43 и 0.61) и RMSE (436.1 и 451.4)
 - В третьем тесте все модели работали плохо, но RF сохранил относительное преимущество
- Продемонстрировал лучший баланс между точностью и стабильностью XGBoost занял второе место:
 - В первых двух экспериментах уступал Random Forest на 4-12% по R²
 - В третьем тесте показал такие же слабые результаты, как и другие модели
 - Время обучения обычно больше, чем у Random Forest

Neural Network показал нестабильные результаты:

- Быстрое обучение (в 2-8 раз быстрее конкурентов)
- Хорошие результаты во втором тесте (R^2 =0.52), но провал в третьем (R^2 =-0.006)
- Требует тщательной настройки архитектуры

Классификация: превышает ли значение IC50 медианное значение выборки

Сравнение моделей классификации по различным метрикам

Качество, ошибки и скорость

K-Neighbors показал наилучшую точность (Accuracy=0.721) и F1-меру (0.743), хотя Random Forest близок к нему по этим метрикам. При этом Random Forest демонстрирует лучшее качество по ROC-AUC (0.833), что указывает на хорошую разделяющую способность. XGBoost немного отстает по всем показателям. По скорости K-Neighbors значительно быстрее (10.26 сек) по сравнению с Random Forest (22.05 сек) и XGBoost (31.1 сек).

Гиперпараметры

Random Forest использовал 200 деревьев с глубиной 10 и минимальным размером листа 4. K-Neighbors применял 7 соседей с весовой функцией distance, что объясняет его высокий recall. XGBoost работал с ограниченной глубиной (5) и умеренным количеством estimators (100), что могло снизить его производительность.

Вывод

K-Neighbors - оптимальный выбор, сочетающий хорошую точность и высокую скорость работы. Random Forest стоит рассматривать, если критически важно качество классификации (ROC-AUC). XGBoost в текущей конфигурации уступает конкурентам

Классификация: превышает ли значение CC50 медианное значение выборки

Качество, ошибки и скорость

Random Forest продемонстрировал наилучшие показатели (Accuracy=0.697, F1=0.721, ROC-AUC=0.778), хотя все модели показали схожие результаты точности (\sim 0.667). XGBoost и K-Neighbors имеют сравнимые метрики, но Random Forest выделяется более высоким recall (0.79). По скорости выполнения K-Neighbors значительно быстрее (10.25 сек), чем Random Forest (22.38 сек) и XGBoost (34.24 сек).

Гиперпараметры

Random Forest использовал 200 деревьев с глубиной 10, что обеспечило хорошую предсказательную способность. K-Neighbors применял 7 соседей с весовой функцией distance, что объясняет его высокую скорость работы. XGBoost работал с умеренными параметрами (max_depth=5, n_estimators=100), что могло ограничить его производительность.

Вывод

Random Forest является оптимальным выбором для максимальной точности и качества классификации. K-Neighbors стоит рассматривать при необходимости быстрого прогнозирования с минимальным падением качества. XGBoost в

Классификация: превышает ли значение SI медианное значение выборки

Качество, ошибки и скорость

ХGBoost показал наилучшую точность (Accuracy=0.667) и прецизионность (Precision=0.681), хотя K-Neighbors продемонстрировал более высокий recall (0.65) и ROC-AUC (0.713). Random Forest занял промежуточное положение по большинству метрик. По скорости выполнения K-Neighbors оказался самым быстрым (13.28 сек), тогда как XGBoost потребовал наибольшего времени (36.59 сек).

Гиперпараметры

ХGВооst использовал 300 деревьев с глубиной 7 и умеренной скоростью обучения (0.01), что обеспечило хороший баланс между точностью и временем обучения. K-Neighbors применял простую конфигурацию с 5 соседями и uniform weights. Random Forest работал с 100 деревьями глубиной 10 и строгими параметрами разделения (min_samples_split=10).

Вывод

XGBoost демонстрирует наилучшие показатели точности и прецизионности, что делает его предпочтительным выбором для задач, где критически важна правильность положительных прогнозов. K-Neighbors стоит рассматривать при необходимости быстрого предсказания и более высокого recall. Random Forest в текущей конфигурации уступает конкурентам.

Классификация: превышает ли значение SI значение 8

Качество, ошибки и скорость

ХGВооst показал наилучшую точность (Accuracy=0.741) и ROC-AUC (0.763), но имеет низкий recall (0.486). Random Forest демонстрирует сбалансированные показатели (Accuracy=0.716, F1=0.571), тогда как K-Neighbors заметно отстает по всем метрикам. По скорости K-Neighbors значительно быстрее (10.66 сек), ХGВооst требует больше всего времени (34.62 сек), а Random Forest занимает промежуточное положение (22.35 сек).

Гиперпараметры

XGBoost использовал 200 деревьев с глубиной 5 и высокой долей субсемплинга (0.9). Random Forest применял 300 глубоких деревьев (max_depth=10) с минимальными ограничениями на разделение. K-Neighbors работал с 7 соседями и distance-весами, что не помогло улучшить качество предсказаний.

XGBoost - лучший выбор для задач, где важна общая точность, несмотря на низкий recall. Random Forest предлагает более сбалансированные показатели и может быть предпочтителен, когда важна устойчивость модели. K-Neighbors в данной конфигурации не показал конкурентных результатов.

Сравнения данных по трем экспериментам вычисления регрессе

На основе четырех экспериментов можно выделить четкие паттерны: Random Forest демонстрирует стабильно высокое качество (Accuracy 0.69-0.72, ROC-AUC 0.68-0.83) с лучшим балансом метрик, что делает его оптимальным выбором для большинства задач классификации. K-Neighbors выделяется скоростью (10-13 сек) и высоким Recall (до 0.81), но страдает от низкой Precision, поэтому подходит для задач, где критично минимизировать пропуск целевого класса.

XGBoost показывает нестабильные результаты: в одном эксперименте достиг максимального Accuracy (0.741), но в других уступал RF, а его Recall колебался от 0.48 до 0.78, что требует тщательного контроля порога классификации.

Общий вывод по курсовой работе

1. Результаты исследования

В ходе работы были проанализированы три ключевых параметра лекарственной активности (IC_{50} , CC_{50} , SI) с использованием методов машинного обучения.

- Регрессионные модели показали, что:
 - \circ Для IC₅₀ и CC₅₀ наилучшие результаты дал Random Forest (R²=0.43 и 0.61 соответственно).
 - \circ Для SI все модели оказались слабыми ($R^2 < 0.1$), что указывает на сложность прогнозирования этого параметра.
 - XGBoost и Neural Network уступали в точности, и лучше не использовать
- Классификационные модели (бинарная классификация по медианным):
 - Random Forest и K-Neighbors показали лучший баланс метрик (Accuracy 0.69–0.72, F1 0.57–0.74).
 - XGBoost в некоторых случаях достигал максимальной точности (Accuracy=0.741), но имел низкий recall.
 - K-Neighbors оказался самым быстрым (10–13 сек), но это не помогло модели метрики сильно слабые.

2. Ключевые выводы

- Random Forest наиболее надежный алгоритм для прогнозирования IC₅₀ и CC₅₀, а также для классификации. Его преимущества:
 - Стабильность даже на небольших данных.
- Низкое качество моделей для SI говорит о необходимости:
 - Улучшения признаков (например, добавление физико-химических дескрипторов).
 - Использовать более сложные алгоритмы.

3. Рекомендации

- Для поиска перспективных соединений следует ориентироваться на модели, предсказывающие IC_{50} и CC_{50} , а затем вычислять SI вручную.
- Приоритетные признаки (на основе анализа важности):
 - Молекулярная масса (MolWt, ExactMolWt).
 - о Полярность (TPSA, NumHDonors).
 - ∘ Липофильность (MolLogP).
 - Наличие специфических функциональных групп (например, fr_Ar_OH, fr_NH2).
- Дальнейшие шаги:
 - Сбор дополнительных данных для улучшения прогноза SI.
 - о Проверка предсказаний на реальных соединениях.