Econometrics II TA Session #3

Hiroki Kato

1 Empirical Application of Binary Model: Racial Discrimination in Court

Brief Background. Recently, in the U.S., anti-racism activities called "Black Lives Matter" are getting hot. These activities stems from the death of George Floyd, who was killed by a white police officer on May 25, 2020. The empirical application of binary model investigates whether the judgement of death penalty is based on race of defendant and race of victim.

Data. The package catdata contains many built-in dataets which include categorical variables. We use the built-in dataset deathpenalty which is about the death-penalty judgement of defendants in cases of multiple murders in Florida between 1976 and 1987.

```
# If there is no package called 'catdata', run 'install.packages("catdata")'
# After that run following codes
library(catdata)
data(deathpenalty)
deathpenalty
```

##		DeathPenalty	${\tt VictimRace}$	${\tt DefendantRace}$	Freq
##	1	0	0	0	139
##	2	1	0	0	4
##	3	0	1	0	37
##	4	1	1	0	11
##	5	0	0	1	16
##	6	1	0	1	0
##	7	0	1	1	414
##	8	1	1	1	53

This dataset contains three dummy variables

- 1. DeathPenalty is a dummy variable taking 1 if the judgement is death penalty.
- 2. VictimRace is a dummy variable taking 1 if the race of the victim is white.
- 3. DefendantRace is a dummy variable taking 1 if the race of the defendant is white.

This dataset aggregates observations with repect to DeathPenalty, VictimRace and DefendantRace. The variable Freq represents the number of observations. Since it is in-

convinient for us to use the original data for estimation, we disaggregate this dataset. For example, we make 37 rows whose elements are DeathPenalty = 0, VictimRace = 1, and DefendantRace = 0 because there are 37 obaservations, i.e., Freq = 37.

```
dt <- deathpenalty
dt <- dt[rep(seq_len(nrow(dt)), dt[,"Freq"]), -4]</pre>
```

Model. In a binary model, a dependent (outcome) variable y_i takes only two values, i.e., $y_i \in \{0,1\}$. A binary variable is sometimes called a *dummy* variable. In this application, the outcome variable is DeathPenalty taking 1 if the judgement is death penalty. We make three explanatory variables.

- 1. WB is a dummy variable taking 1 if the race of the victim and the defendant is white and black, respectively.
- 2. BW is a dummy variable taking 1 if the race of the victim and the defendant is black and white, respectively.
- 3. WW is a dummy variable taking 1 if the race of both the victim and the defendant is black.

```
dt$WB <- ifelse(dt$VictimRace == 1 & dt$DefendantRace == 0, 1, 0)
dt$BW <- ifelse(dt$VictimRace == 0 & dt$DefendantRace == 1, 1, 0)
dt$WW <- ifelse(dt$VictimRace == 1 & dt$DefendantRace == 1, 1, 0)</pre>
```

The regression function is

```
\begin{split} &\mathbb{E}[DeathPenalty|WB,BW,WW] \\ =&\mathbb{P}[DeathPenalty=1|WB,BW,WW] = G(\beta_0+\beta_1WB+\beta_2BW+\beta3WW). \end{split}
```

The function $G(\cdot)$ is arbitrary function. In practice, we often use following three specifications:

- Linear probability model (LPM): $G(\mathbf{x}_i\beta) = \mathbf{x}_i\beta$.
- Probit model: $G(\mathbf{x}_i\beta) = \Phi(\mathbf{x}_i\beta)$ where $\Phi(\cdot)$ is the standard Gaussian cumulative function.
- Logit model: $G(\mathbf{x}_i\beta) = 1/(1 + \exp(-\mathbf{x}_i\beta))$.

1.1 Linear Probability Model

The linear probability model is

```
\mathbb{P}[DeathPenalty = 1|WB, BW, WW] = \beta_0 + \beta_1 WB + \beta_2 BW + \beta_3 WW
```

This model can be estimated using the OLS method. In R, we can use the OLS method, running lm() function.

```
model <- DeathPenalty ~ WB + BW + WW
LPM <- lm(model, data = dt)</pre>
```

However, lm() function does not deal with heteroskedasticity problem. To resolve it, we need to claculate heteroskedasticity-robust standard errors using the White method.

$$\hat{V}(\hat{\beta}) = \left(\frac{1}{n} \sum_{i} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1} \left(\frac{1}{n} \sum_{i} \hat{u}_{i}^{2} \mathbf{x}_{i}' \mathbf{x}_{i}\right) \left(\frac{1}{n} \sum_{i} \mathbf{x}_{i}' \mathbf{x}_{i}\right)^{-1}$$

```
# heteroskedasticity-robust standard errors
dt$"(Intercept)" <- 1
X <- as.matrix(dt[,c("(Intercept)", "WB", "BW", "WW")])</pre>
u <- diag(LPM$residuals^2)</pre>
XX < - t(X) % X
avgXX \leftarrow XX * nrow(X)^{-1}
inv avgXX <- solve(avgXX)</pre>
uXX <- t(X) %*% u %*% X
avguXX \leftarrow uXX * nrow(X)^{-1}
vcov_b <- (inv_avgXX %*% avguXX %*% inv_avgXX) * nrow(X)^{-1}</pre>
rse_b <- sqrt(diag(vcov_b))</pre>
# homoskedasticity-based standard errors
se_b <- sqrt(diag(vcov(LPM)))</pre>
print("The Variance of OLS"); vcov(LPM)
## [1] "The Variance of OLS"
##
                 (Intercept)
                                         WB
                                                       BW
## (Intercept)
                0.0006194791 - 0.0006194791 - 0.0006194791 - 0.0006194791
               -0.0006194791 0.0024650104
                                            0.0006194791 0.0006194791
## WB
               -0.0006194791 0.0006194791
                                             0.0061560732 0.0006194791
## BW
## WW
               -0.0006194791 0.0006194791
                                             0.0006194791
                                                          0.0008091697
print("The Robust variance of OLS"); vcov_b
## [1] "The Robust variance of OLS"
##
                (Intercept)
                                                    BW
                                       WB
                                                                   WW
                0.000190137 - 0.000190137 - 0.000190137 - 0.0001901370
## (Intercept)
## WB
               -0.000190137 0.003870331 0.000190137 0.0001901370
## BW
               -0.000190137
                             0.000190137 0.000190137
                                                        0.0001901370
               ## WW
                                                        0.0004055766
print("The Robust se using White method"); rse b
```

[1] "The Robust se using White method"

```
## (Intercept) WB BW WW
## 0.01378902 0.06221198 0.01378902 0.02013893

print("The Robust t-value using White method"); coef(LPM)/se_b

## [1] "The Robust t-value using White method"

## (Intercept) WB BW WW
## 1.1238559 4.0523507 -0.3565103 3.0063494
```

Using the package lmtest and sandwich is the most easiest way to calculate heteroskedasticity-robust standard errors and t-statistics.

```
library(lmtest) #use function `coeftest`
library(sandwich) #use function `vcovHC`
coeftest(LPM, vcov = vcovHC(LPM, type = "HCO"))[, "Std. Error"]

## (Intercept) WB BW WW
## 0.01378902 0.06221198 0.01378902 0.02013893

coeftest(LPM, vcov = vcovHC(LPM, type = "HCO"))[, "t value"]

## (Intercept) WB BW WW
## 2.028573 3.234017 -2.028573 4.246418
```

Finally, we obtain follwing results of linear probability model. We will discuss interpretation of results and goodness-of-fit of LPM later.

```
# t-stats
t b <- coef(LPM)/se b
rt b <- coef(LPM)/rse b
# p-value Pr( > |t|)
p b <- pt(abs(t b), df = nrow(X)-ncol(X), lower = FALSE)*2</pre>
rp_b <- pt(abs(rt_b), df = nrow(X)-ncol(X), lower = FALSE)*2</pre>
library(stargazer)
stargazer(
  LPM, LPM,
  se = list(se_b, rse_b), t = list(t_b, rt_b), p = list(p_b, rp_b),
  t.auto = FALSE, p.auto = FALSE,
  report = "vcstp", keep.stat = c("n"),
  add.lines = list(
    c("Standard errors", "Homoskedasticity-based", "Heteroskedasticity-robust")),
  title = "Results of Linear Probability Model",
  type = "latex", header = FALSE, font.size = "small"
)
```

Table 1: Results of Linear Probability Model

	Dependent variable: DeathPenalty		
	(1)	(2)	
WB	0.201	0.201	
	(0.050)	(0.062)	
	t = 4.052	t = 3.234	
	p = 0.0001	p = 0.002	
BW	-0.028	-0.028	
	(0.078)	(0.014)	
	t = -0.357	t = -2.029	
	p = 0.722	p = 0.043	
WW	0.086	0.086	
	(0.028)	(0.020)	
	t = 3.006	t = 4.246	
	p = 0.003	p = 0.00003	
Constant	0.028	0.028	
	(0.025)	(0.014)	
	t = 1.124	t = 2.029	
	p = 0.262	p = 0.043	
Standard errors	Homoskedasticity-based	Heteroskedasticity-robust	
Observations	674	674	
Note:	*p<0.1; **p<0.05; ***p<0.01		

5