Applications of Spatial Coupling

Avinash Vem

Advisor: Dr.Krishna Narayanan

Department of Electrical and Computer Engineering Texas A&M University

Dec 02, 2016

Outline

Outline

An (ℓ, r) LDPC Code

Parity-Check Matrix

$$H = egin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\ell = 2$$
 $r = 3$

LDPC Code $C = \{x : H \odot x = 0\}$

Tanner Graph

Compressed Representation

Belief Propagation(BP) Decoder

lacktriangle For BEC(arepsilon), h=arepsilon. For general BMS channel, $C^{\mathrm{Sh}}=1-h$

Belief Propagation(BP) Decoder

$$\xrightarrow{m_1, \ldots, m_k} \text{LDPC Encoder} \xrightarrow{x_1, \ldots, x_n} \xrightarrow{\text{channel } \left(\mathbf{h}\right)} \xrightarrow{r_1, \ldots, r_n} \xrightarrow{\text{Decoder}} \xrightarrow{\hat{m}_1, \ldots, \hat{m}_k}$$

▶ For BEC(ε), $h = \varepsilon$. For general BMS channel, $C^{Sh} = 1 - h$

Belief Propagation (BP)

- Non-optimal
- ► Popular, low-complexity
- ▶ Threshold: h^{BP}

Figure: (3, 6), P_B vs BSC(ε) for $n = 2^i$.

 $arepsilon^{\mathrm{BP}} = exttt{0.084}$, equivalent $\mathtt{h}^{\mathrm{BP}} = exttt{0.4160}$ whereas for rate 1/2 code $h^{Sh} = 0.5$

BP vs MAP

lacktriangle For BEC(arepsilon), h=arepsilon. For general BMS channel, $C^{\mathrm{Sh}}=1-h$

Belief Propagation (BP)

- Non-optimal
- ► Popular, low-complexity
- ► Threshold: h^{BP}

Maximum a Posteriori (MAP)

- Optimal decoder
- ► Not realizable
- ► Threshold: h^{MAP}

BP vs MAP

lacktriangle For BEC(arepsilon), h=arepsilon. For general BMS channel, $C^{\mathrm{Sh}}=1-h$

Belief Propagation (BP)

Maximum a Posteriori (MAP)

- ► Non-optimal
- Popular, low-complexity
- ► Threshold: h^{BP}

- Optimal decoder
- ► Not realizable
- ► Threshold: h^{MAP}

LDPC	Shannon	AWGN		BSC	
(ℓ, r)	\mathtt{h}^{Sh}	\mathtt{h}^{BP}	$\mathtt{h}^{ ext{MAP}}$	\mathtt{h}^{BP}	$\mathtt{h}^{\mathrm{MAP}}$
(3,6)	0.5000	0.4293	0.4794	0.4160	0.4681
(4,6)	0.6667	0.5211	0.6645	0.5203	0.6633

BP vs MAP

ightharpoonup For BEC(arepsilon), h=arepsilon. For general BMS channel, $C^{\mathrm{Sh}}=1-h$

Belief Propagation (BP)

Maximum a Posteriori (MAP)

- ► Non-optimal
- ► Popular, low-complexity
- ► Threshold: h^{BP}

- Optimal decoder
- ► Not realizable
- ► Threshold: h^{MAP}

LDPC	Shannon	AWGN		BSC		
(ℓ,r)	\mathtt{h}^{Sh}	\mathtt{h}^{BP}	$\mathtt{h}^{ ext{MAP}}$	\mathtt{h}^{BP}	$\mathtt{h}^{\mathrm{MAP}}$	
(3,6)	0.5000	0.4293	0.4794	0.4160	0.4681	
(4,6)	0.6667	0.5211	0.6645	0.5203	0.6633	

Spatial-Coupling aids in bridging this gap

(ℓ, r, N, w) Spatially-Coupled Ensemble

▶ An LDPC code of left-degree $\ell = 3$ and right-degree r = 4

(ℓ, r, N, w) Spatially-Coupled Ensemble

(ℓ, r, N, w) Spatially-Coupled Ensemble

- ▶ Shown for $\ell = 3$, r = 4, and w = 3
- ▶ Check-nodes at Section $\{i\}$ are connected to variable-nodes in Sections $\{i-(w-1),\ldots,i\}$
- ► Shown to have near optimal BP thresholds

Threshold Saturation Result

MAP Performance with a BP Decoder!

For large
$$N, w$$
 $h_c^{BP} = h^{MAP}$

Threshold Saturation Result

MAP Performance with a BP Decoder!

For large
$$N, w$$
 $h_c^{BP} = h^{MAP}$

SC-LDPC	Shannon	AWGN	BSC
(ℓ,r)	\mathtt{h}^{Sh}	$\mathtt{h}_{\mathrm{c}}^{\mathrm{BP}}$	$\mathtt{h}_{\mathrm{c}}^{\mathrm{BP}}$
(3,6)	0.5000	0.4794	0.4681
(4,6)	0.6667	0.6645	0.6633
(5,6)	0.8333	0.8333	0.8333

The video link comes here

Rate loss for finite N and w

SC-LDPC	Shannon	AWGN	BSC
(ℓ, r, N, w)	\mathtt{h}^{Sh}	$\mathtt{h}_{\mathrm{c}}^{\mathrm{BP}}$	$\mathtt{h}_{\mathrm{c}}^{\mathrm{BP}}$
(3,6,10,3)	0.5434	0.4794	0.4681
(3,6,20,3)	0.5222	0.4794	0.4681
(3,6,30,3)	0.5149	0.4794	0.4681
(4,6,10,3)	0.7245	0.6645	0.6633
(4,6,20,3)	0.6963	0.6645	0.6633
(4,6,30,3)	0.6866	0.6645	0.6633
(5,6,10,3)	0.9056	0.8333	0.8333
(5,6,20,3)	0.8704	0.8333	0.8333
(5,6,30,3)	0.8582	0.8333	0.8333

Pros & Cons

Pros

- ► Significant improvment in thresholds
- Achieves capacity under simple BP decoding [KRU'11,KYMP'14]
- Universality works for all channels models!

Cons

► Need large blocklengths to leverage the gains

Outline

Lattice

Lattice

Let $\mathbf{G} \in \mathbb{R}^{n \times k}$. An *n*-dimensional real lattice Λ can be defined as

$$\Lambda = \{\mathbf{Gz}, \mathbf{z} \in \mathbb{Z}^k\}$$

Lattice

Lattice

Let $\mathbf{G} \in \mathbb{R}^{n \times k}$. An *n*-dimensional real lattice Λ can be defined as

$$\Lambda = \{\mathbf{Gz}, \mathbf{z} \in \mathbb{Z}^k\}$$

Example:

$$\mathbf{G} = \left[\begin{array}{cc} 1 & -1/2 \\ 0 & \sqrt{3}/2 \end{array} \right]$$

Lattices and Lattice Codes

Lattice

Let $\mathbf{G} \in \mathbb{R}^{n \times k}$. An *n*-dimensional real lattice Λ can be defined as

$$\Lambda = \{\mathbf{Gz}, \mathbf{z} \in \mathbb{Z}^k\}$$

- Efficient structures for
 - Mathematics: sphere packing and sphere covering problems
 - Information Theory: channel coding & quantization
- ► Single user Gaussian channel Erez and Zamir
- ► Coding with side information Wyner-Ziv and Costa, Zamir, Erez and Shamai
- ► Secrecy He and Yener
- ▶ Dirty multiple access channel Philosof, Khisti, Erez and Zamir

"Lattices are everywhere" by Ram Zamir

Prior Work

New perspectives for dealing with interference:

▶ Interference alignment - Sridharan, Jafarian, Vishwanath and Jafar

Prior Work

New perspectives for dealing with interference:

- ▶ Interference alignment Sridharan, Jafarian, Vishwanath and Jafar
- Compute-and-forward Nazer & Gastpar
- Physical layer network coding Wilson et al, Nam et al

Prior Work

New perspectives for dealing with interference:

- ▶ Interference alignment Sridharan, Jafarian, Vishwanath and Jafar
- Compute-and-forward Nazer & Gastpar
- ▶ Physical layer network coding Wilson et al, Nam et al

Above schemes are all based on lattices good for channel coding

Background on lattices

Voronoi region

The fundamental Voronoi region V of a lattice, is the set of all points in \mathbb{R}^n that are closest to the zero vector.

$$\mathcal{V} \mathrel{\mathop:}= \left\{ \boldsymbol{x} : \|\boldsymbol{x} - \boldsymbol{0}\| \leq \|\boldsymbol{x} - \boldsymbol{c}\| \quad \forall \boldsymbol{c} \in \boldsymbol{\Lambda} \right\}$$

Background on lattices

Voronoi region

The fundamental Voronoi region V of a lattice, is the set of all points in \mathbb{R}^n that are closest to the zero vector.

$$\mathcal{V} := \{ \mathbf{x} : \|\mathbf{x} - \mathbf{0}\| \le \|\mathbf{x} - \mathbf{c}\| \quad \forall \mathbf{c} \in \Lambda \}$$

Background on lattices

Voronoi region

The fundamental Voronoi region V of a lattice, is the set of all points in \mathbb{R}^n that are closest to the zero vector.

$$\mathcal{V} := \{ \mathbf{x} : \|\mathbf{x} - \mathbf{0}\| \le \|\mathbf{x} - \mathbf{c}\| \quad \forall \mathbf{c} \in \Lambda \}$$

Fundamental volume of Λ , $V(\Lambda)$: Vol(V)

Goodness of Lattices for Channel Coding

- ▶ Let a lattice point $\lambda \in \Lambda$ is transmitted via AWGN channel of variance σ^2
- Volume-to-noise ratio(VNR) of Λ:

$$VNR := \frac{V(\Lambda)^{2/n}}{2\pi e \sigma^2}$$

▶ $P(\Lambda, \sigma^2) := \Pr(d(\lambda, \lambda + \mathbf{z}) \ge d(\lambda', \lambda' + \mathbf{z}))$ for some $\lambda' \in \Lambda$

Goodness of Lattices for Channel Coding

- ▶ Let a lattice point $\lambda \in \Lambda$ is transmitted via AWGN channel of variance σ^2
- Volume-to-noise ratio(VNR) of Λ:

$$VNR := \frac{V(\Lambda)^{2/n}}{2\pi e \sigma^2}$$

▶ $P(\Lambda, \sigma^2) := \Pr(d(\lambda, \lambda + \mathbf{z}) \ge d(\lambda', \lambda' + \mathbf{z}))$ for some $\lambda' \in \Lambda$

Poltyrev Goodness for Channel Coding

For any VNR> 1 $\exists \{\Lambda_n\}$ such that $P(\Lambda_n, \sigma^2) \to 0$ as $n \to \infty$.

▶ *Poltyrev*-good lattices are at the core of such lattice coding schemes

Motivating questions

- ▶ All the existing results were based on Construction-A.
 - Linear codes over *increasing field sizes* and their ML decoding

Motivating questions

- ▶ All the existing results were based on Construction-A.
 - Linear codes over increasing field sizes and their ML decoding
- Is this construction fundamental to good lattices?
- ► Can we work with just binary codes under practical decoding schemes?

Motivating questions

- ▶ All the existing results were based on Construction-A.
 - Linear codes over increasing field sizes and their ML decoding
- ▶ Is this construction fundamental to good lattices?
- ► Can we work with just binary codes under practical decoding schemes?

Main Result

▶ Codes over \mathbb{F}_2 and BP decoding suffice

Motivating questions

- ▶ All the existing results were based on Construction-A.
 - Linear codes over increasing field sizes and their ML decoding
- Is this construction fundamental to good lattices?
- ► Can we work with just binary codes under practical decoding schemes?

Main Result

- ▶ Codes over \mathbb{F}_2 and BP decoding suffice
- ▶ We show existence of sequence of lattices that are *Poltyrev*-good under BP
- ► Apply proposed lattices to Symmetric Interference Channel
- ► Can be applied to other problems which adopt Construction-A lattices

Construction D with L levels

- ▶ Barnes and Sloane '83, Forney, Chung and Trott '00, Yan, Ling, Wu ' 13
- ▶ Choose $G_1 \subseteq ... \subseteq G_L$ where G_l is a gen matrix of code C_l over \mathbb{F}_2 .

Construction D with L levels

- ▶ Barnes and Sloane '83, Forney, Chung and Trott '00, Yan, Ling, Wu ' 13
- ▶ Choose $G_1 \subseteq ... \subseteq G_L$ where G_l is a gen matrix of code C_l over \mathbb{F}_2 .

Multi-Level Decoding(Successive Cancellation)

$$\underline{y} = \boxed{\underline{w}_1 \mathbf{G}_1 + 2\underline{w}_2 \mathbf{G}_2 \dots + 2^{L-1} \underline{w}_{L-1} \mathbf{G}_{L-1} + 2^L \mathbb{Z}^N} + \underline{n}$$

Multi-Level Decoding(Successive Cancellation)

$$\underline{y} = \left[\underline{w}_1 \mathbf{G}_1 + 2\underline{w}_2 \mathbf{G}_2 \dots + 2^{L-1} \underline{w}_{L-1} \mathbf{G}_{L-1} + 2^L \mathbb{Z}^N \right] + \underline{n}$$

- ▶ Decode \underline{w}_1 , reconstruct \underline{w}_1 **G**₁ and subtract from \underline{y}

Theorem (Forney, Trott & Chung)

There exists a sequence of Construction D lattices based on $C_1 \subseteq C_2 \ldots \subseteq C_L$ such that the VNR $\to 1$ and the $Pr(\lambda, \sigma^2) \to 0$.

- ► Take *L* large enough.
- ▶ It's sufficient that C_i at each level is capacity achieving for the mod-2 AWGN channel.

Theorem (Forney, Trott & Chung)

There exists a sequence of Construction D lattices based on $C_1 \subseteq C_2 \ldots \subseteq C_L$ such that the VNR $\to 1$ and the $Pr(\lambda, \sigma^2) \to 0$.

- ► Take *L* large enough.
- ▶ It's sufficient that C_i at each level is capacity achieving for the mod-2 AWGN channel.

Objective:

► Capacity achieving nested code constructions, preferably under BP decoding.

Proposed Nested Spatially-Coupled LDPC Ensemble

- **a** Begin with a (d_v^1, d_c) SC LDPC code. For ex, $(d_v^1 = 3, d_c = 6, L = 3, w = 2)$.
- ② Group check nodes into type \mathcal{T}_k , $k \in \{1,\ldots,d_v^1\}$

Proposed Nested Spatially-Coupled LDPC Ensemble

- **a** Begin with a (d_v^1, d_c) SC LDPC code. For ex, $(d_v^1 = 3, d_c = 6, L = 3, w = 2)$.
- ② Group check nodes into type \mathcal{T}_k , $k \in \{1, \ldots, d_v^1\}$
- **3** Remove all check nodes of type $\mathcal{T}_1, \ldots, \mathcal{T}_{d_v^1 d_v^2}$. Ex: $(d_v^2 = 2, 6)$ sup-code.

Proposed Nested Spatially-Coupled LDPC Ensemble

- **a** Begin with a (d_v^1, d_c) SC LDPC code. For ex, $(d_v^1 = 3, d_c = 6, L = 3, w = 2)$.
- ② Group check nodes into type \mathcal{T}_k , $k \in \{1, \ldots, d_v^1\}$
- **3** Remove all check nodes of type $\mathcal{T}_1, \ldots, \mathcal{T}_{d_v^1 d_v^2}$. Ex: $(d_v^2 = 2, 6)$ sup-code.
- Results in a super-code that is a (d_v^2, d_c) SC LDPC code.

Lattice Design based on the proposed Nested SC LDPC ensemble

① For a given σ , compute the capacity of the mod-2 AWGN channel at each level:

$$\underline{y_i} = \underline{w_i} \mathbf{G}_i + \frac{1}{2^{i-1}} \underline{n} \mod 2 = \underline{w_i} \odot \mathbf{G}_i + \boxed{\frac{1}{2^{i-1}} \underline{n} \mod 2}$$

② Fix check node degree d_c . Choose d_v^1, \ldots, d_v^r such that the rate of the code at each level is arbitrarily close to the capacity at the respective level.

Lattice Design based on the proposed Nested SC LDPC ensemble

① For a given σ , compute the capacity of the mod-2 AWGN channel at each level:

$$\underline{y_i} = \underline{w}_i \mathbf{G}_i + \frac{1}{2^{i-1}} \underline{n} \mod 2 = \underline{w}_i \odot \mathbf{G}_i + \boxed{\frac{1}{2^{i-1}} \underline{n} \mod 2}$$

② Fix check node degree d_c . Choose d_v^1, \ldots, d_v^r such that the rate of the code at each level is arbitrarily close to the capacity at the respective level.

Lemma

Given nested binary linear codes $C_1 \subseteq C_2 \subseteq ... \subseteq C_r$ there exists nested generator matrices for these codes.

Proposed Ensemble is Capacity achieving

Theorem

Each code ensemble in the proposed nested Spatially-Coupled LDPC ensemble is capacity achieving.

Proof.

- ► Each derived protograph has the same spatially coupled structure.
- ▶ Show that the mod 2 AWGN channel is BMS.
- ▶ The proof follows from [KRU'12] & [KYMP'13]'s results.

Proposed Lattices are Poltyrev-Good

Theorem

There exists a sequence of SC LDPC lattices with $VNR(\Lambda, \sigma^2) \to 1$ for which, under multistage BP decoding, $\mathbb{E}\left[P(\lambda, \sigma^2)\right] \to 0$ as $w, L, M \to \infty$.

Proof.

- ► The proposed nested ensemble achieve capacity.
- ► Follows from Forney's result.

Proposed Lattices are Poltyrev-Good

Theorem

There exists a sequence of SC LDPC lattices with $VNR(\Lambda, \sigma^2) \to 1$ for which, under multistage BP decoding, $\mathbb{E}\left[P(\lambda, \sigma^2)\right] \to 0$ as $w, L, M \to \infty$.

Proof.

- ► The proposed nested ensemble achieve capacity.
- ► Follows from Forney's result.

- ▶ Binary codes and more importantly practical BP decoding suffices.
- Practically we observe that two levels of coding gets you lattices very close to Poltyrev limit.

Target error probability $P(2^L\mathbb{Z}^n,\sigma_L^2)=10^{-4}$ in the uncoded level $\implies \sigma_L=0.08$

Target error probability $P(2^L\mathbb{Z}^n, \sigma_L^2) = 10^{-4}$ in the uncoded level $\implies \sigma_L = 0.08$

Capacities for the mod 2 AWGN channel for respective levels:

	Level L-1	Level L-2	Level L-3	
σ_{eff}	0.16	0.32	0.64	
Сар	0.99	0.57	0.02	
(14,30) (3,30)	0.9	0.533	0	

Target error probability $P(2^L\mathbb{Z}^n,\sigma_L^2)=10^{-4}$ in the uncoded level $\implies \sigma_L=0.08$

Capacities for the mod 2 AWGN channel for respective levels:

	Level L-1	Level L-2	Level L-3	
σ_{eff}	0.16	0.32	0.64	
Сар	0.99	0.57	0.02	
(14,30) (3,30)	0.9	0.533	0	

- \bullet Fix L=3 and use (3,30), (14,30) nested SC-LDPC codes.
 - Note $P(4\mathbb{Z}^n, \sigma^2) \approx nP(4\mathbb{Z}, \sigma^2)$
 - We fix $n = 2 \times 10^5$

=	(d_c, d_v^1, d_v^2)	(L,w)	$P(4\mathbb{Z},\sigma^2)$	$\sigma_{\sf max}$	VNR	$\overline{VNR_{rate-loss}}$
	(30,14,3)	(32,4)	$5 imes 10^{-10}$	0.3184	1.02dB	1.347dB

Target error probability $P(2^L\mathbb{Z}^n,\sigma_L^2)=10^{-4}$ in the uncoded level $\implies \sigma_L=0.08$

Capacities for the mod 2 AWGN channel for respective levels:

	Level L-1	Level L-2	Level L-3	
σ_{eff}	0.16 0.32		0.64	
Сар	0.99	0.57	0.02	
(14,30) (3,30)	0.9	0.533	0	

- \bullet Fix L=3 and use (3,30), (14,30) nested SC-LDPC codes.
 - Note $P(4\mathbb{Z}^n, \sigma^2) \approx nP(4\mathbb{Z}, \sigma^2)$
 - We fix $n = 2 \times 10^5$

(d_c,d_v^1,d_v^2)	(L,w)	$P(4\mathbb{Z},\sigma^2)$	$\sigma_{\sf max}$	VNR	$VNR_{rate-loss}$
(30,14,3)	(32,4)	$5 imes 10^{-10}$	0.3184	1.02dB	1.347dB
(60, 26, 3)	(72, 12)	$5 imes 10^{-10}$	0.3200	0.482dB	0.927dB
(60, 27, 3)	(64, 9)	$5 imes 10^{-10}$	0.3203	0.57dB	0.951dB

Alternate Nested SC LDPC ensemble

- ▶ Derive a lower rate code by "splitting the checks"
- ► Consider a (3,8) code

Alternate Nested SC LDPC ensemble

- ▶ Derive a lower rate code by "splitting the checks"
- ► Consider a (3,8) code
- ▶ Split each check into "two" checks to derive a (3,4) sub-code
- ▶ Easy to prove that resulting code is from the (3,4) SC LDPC ensemble

Simulation Results

Simulation Results

Note that the Block Error Probability is 10^{-4} at uncoded level.

3-User Symmetric Interference Channel

3-User Symmetric Interference Channel

▶ $\mathbf{x}_i \in \Lambda_C \triangleq \Lambda \cap \mathbb{Z}_4^N$ is transmitted.

Symmetric Interference Channel - Decoding Sums

Interference at Destination 1:

$$\begin{aligned} \mathbf{x}_2 + \mathbf{x}_3 &= (\underline{w}_2^1 + \underline{w}_3^1)\mathbf{G}_1 + 2(\underline{w}_2^2 + \underline{w}_3^2)\mathbf{G}_2 + 4\mathbf{k}_{23} \\ &= (\underline{w}_2^1 \oplus \underline{w}_3^1)\mathbf{G}_1 + 2(\underline{c}_{23}^1 \oplus \underline{w}_2^2 \oplus \underline{w}_3^2)\mathbf{G}_2 + 4(\underline{c}_{23}^2 + \mathbf{k}_{23})\mathbf{Z} \end{aligned}$$

where the carry overs are

$$\begin{array}{l} \underline{c_{13}} = 0.5 \left(\underline{w_1^1} + \underline{w_1^2} - \underline{w_1^1} \oplus \underline{w_1^2} \right), \\ \underline{c_{23}} = 0.5 \left(\underline{c_{23}} + \underline{w_1^2} + \underline{w_2^2} - \underline{c_{23}} \oplus \underline{w_2^1} \oplus \underline{w_2^2} \right) \end{array}$$

Achievable Information Rates

Concluding Remarks

- ► Multilevel constructions efficient ways to decode integer combinations
- Need capacity achieving nested codes
- Multilevel construction is provably good under message passing decoding

Concluding Remarks

- Multilevel constructions efficient ways to decode integer combinations
- Need capacity achieving nested codes
- Multilevel construction is provably good under message passing decoding
- ► Coding schemes based on binary codes and iterative decoding suffice

Outline

Lossy Source Coding Problem

$$X^n = (X_1, \dots, X_n), X_i \sim \text{Bernoulli}(\frac{1}{2})$$

Binary code C = (n, k), rate R = k/n

Lossy Source Coding Problem

$$X^n = (X_1, \dots, X_n), X_i \sim \mathsf{Bernoulli}(\frac{1}{2})$$

Binary code
$$C = (n, k)$$
, rate $R = k/n$

Lossy Source Coding

- ▶ Compress X^n to $\hat{X}^n \in \mathcal{C}$
- ▶ Min. Hamming distortion

$$D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}|X_i - \hat{X}_i|$$

Lossy Source Coding Problem

$$X^n = (X_1, \cdots, X_n), X_i \sim \mathsf{Bernoulli}(\frac{1}{2})$$

Binary code C = (n, k), rate R = k/n

Lossy Source Coding

- ▶ Compress X^n to $\hat{X}^n \in \mathcal{C}$
- ► Min. Hamming distortion

$$D = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}|X_i - \hat{X}_i|$$

► Rate-Distortion theory:

$$R > 1 - h(D)$$

▶ $h(\cdot)$ is binary entropy function

$$h(D) = -D \log_2 D - (1-D) \log_2 (1-D)$$

Side-Information Problems: Wyner-Ziv

Wyner-Ziv Formulation

- ▶ Side-information Zⁿ about Xⁿ
- ► Decoder additionally has Zⁿ
- ▶ Say $Z_i = X_i \oplus \operatorname{Ber}(\delta)$

Side-Information Problems: Wyner-Ziv

Wyner-Ziv Formulation

- ightharpoonup Side-information Z^n about X^n
- ightharpoonup Decoder additionally has Z^n
- ▶ Say $Z_i = X_i \oplus Ber(\delta)$
- ► Wyner-Ziv theory:

$$R > I.c.e\{h(D * \delta) - h(D), (\delta, 0)\}$$

 $D * \delta = D(1 - \delta) + \delta(1 - D)$

Side-Information Problems: Gelfand-Pinsker

Side-Information Problems: Gelfand-Pinsker

Gelfand-Pinsker Formulation

- ▶ Message M^k encoded to $X^n \in \mathcal{C}$ with $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- ightharpoonup Side-information Z^n is available only at the encoder
- ▶ The output at the decoder is

$$Y^n = X^n \oplus Z^n \oplus W^n$$
, $\{W_i\} \sim \text{Ber}(\delta)$

Side-Information Problems: Gelfand-Pinsker

Gelfand-Pinsker Formulation

- ▶ Message M^k encoded to $X^n \in \mathcal{C}$ with $\frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i] \leq p \leq \frac{1}{2}$
- \triangleright Side-information Z^n is available only at the encoder
- ▶ The output at the decoder is

$$Y^n = X^n \oplus Z^n \oplus W^n$$
, $\{W_i\} \sim \text{Ber}(\delta)$

► Capacity region by Gelfand-Pinsker:

$$R < h(p) - h(\delta)$$

Main Result

Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
 - Low-complexity encoding and decoding

Main Result

Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
 - Low-complexity encoding and decoding

Idea

- Wainwright et al. used compound LDGM/LDPC codes with optimal encoding/decoding
- Message-passing algorithms have non-negligible gap

Main Result

Objective

- Construct low-complexity coding schemes that achieve the complete rate regions of Wyner-Ziv and Gelfand-Pinsker
 - Low-complexity encoding and decoding

Idea

- Wainwright et al. used compound LDGM/LDPC codes with optimal encoding/decoding
- Message-passing algorithms have non-negligible gap
- Remedy via Spatial-Coupling
 - Channel coding in coupled compound codes (Kasai et al.)
 - Lossy source coding with spatially-coupled LDGM (Aref et al.)
 - Encoding with compound codes has additional challenges

An (ℓ, r) LDGM Code

Generator Matrix

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\ell = 3$$
 $r = 2$

LDGM Code $C = \{x : x = m \odot G\}$

Tanner Graph

An (ℓ, r) LDGM Code

Generator Matrix

$$G = egin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 0 & 0 & 1 \ 0 & 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\ell = 3$$
 $r = 2$

LDGM Code $C = \{x : x = m \odot G\}$

Tanner Graph

$$x_1 = m_1 \oplus m_3 \iff x_1 \oplus m_1 \oplus m_3 = 0$$

Compound LDGM/LDPC Codes

- Codebook C(n, m k k')
- Message constraints

$$u_1 \oplus u_2 \oplus u_5 = s_1, \quad u_1 \oplus u_3 \oplus u_6 = 0$$

▶ Codeword (x_1, \dots, x_9) :

$$x_1 = u_1 \oplus u_4, \qquad x_2 = \cdots$$

Compound LDGM/LDPC Codes

- Codebook C(n, m k k')
- Message constraints

$$u_1\oplus u_2\oplus u_5=s_1,\quad u_1\oplus u_3\oplus u_6=0$$

ightharpoonup Codeword (x_1, \dots, x_9) :

$$x_1=u_1\oplus u_4, \qquad x_2=\cdots$$

Key Properties

- Compound code is
 - a good source code under optimal encoding
 - a good channel code under optimal decoding
- LDGM code is
 - a good source code under optimal encoding
 - (side note) LDGM code is not a good channel code

Good Code

"Good" source code

- ▶ Rate of the code is $R = 1 h(D) + \varepsilon$
- ▶ When this code is used to *optimally encode* Ber $(\frac{1}{2})$ source
- ► The average Hamming distortion is at most *D*

Good Code

"Good" source code

- ▶ Rate of the code is $R = 1 h(D) + \varepsilon$
- ▶ When this code is used to *optimally encode* Ber $(\frac{1}{2})$ source
- ► The average Hamming distortion is at most *D*

"Good" channel code

- ▶ Rate of the code is $R = 1 h(\delta) \varepsilon$
- ▶ When this code is used for channel coding on BSC(δ)
- Message est. under optimal decoding with error at most ε

Coding Scheme: Wyner-Ziv

Coding Scheme: Wyner-Ziv

$$x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9$$

► Encode X^n to \hat{X}^n using LDGM w/Distortion $\approx D$

$$\frac{m}{n} \approx 1 - h(D) + \varepsilon$$

Coding Scheme: Wyner-Ziv

$$x_1$$
 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

- ► Encode X^n to \hat{X}^n using LDGM w/Distortion $\approx D$
- Compute & transmit s_i 's $R = \frac{k}{n} \approx h(D * \delta) h(D)$
- ▶ Decoder has Z^n :

$$Z_i = X_i \oplus \operatorname{\mathsf{Ber}}(\delta)$$

 $pprox \hat{X}_i \oplus \operatorname{\mathsf{Ber}}(D) \oplus \operatorname{\mathsf{Ber}}(\delta)$
 $= \hat{X}_i \oplus \operatorname{\mathsf{Ber}}(D * \delta)$

▶ Decode \hat{X}^n from $Z^n \& s_i$

$$\frac{m}{n} \approx 1 - h(D) + \varepsilon$$
 $\frac{m-k}{n} \approx 1 - h(D*\delta) + \varepsilon$

- ▶ With message M^k , encode Z^n to \hat{Z}^n

$$rac{m-k-k'}{n}pprox 1-h(
ho)+arepsilon \qquad rac{m-k'}{n}pprox 1-h(\delta)+arepsilon$$

 \mathcal{P}_2 , $|\mathcal{P}_2| = k'$

 \mathcal{P}_1 , $|\mathcal{P}_1| = k$

m

- \hat{z}_1 \hat{z}_2 \hat{z}_3 \hat{z}_4 \hat{z}_5 \hat{z}_6 \hat{z}_7 \hat{z}_8 \hat{z}_9 \hat
 - $\frac{m-k'}{n} \approx 1 h(\delta) + \varepsilon$

 \mathcal{P}_2 , $|\mathcal{P}_2| = k'$

- ▶ With message M^k , encode Z^n to \hat{Z}^n (Distortion $\approx p$)
- ▶ Transmit $X^n = Z^n \oplus \hat{Z}^n$
- Decoder has

$$Y^n = X^n \oplus Z^n \oplus W^n$$
$$= \hat{Z}^n \oplus W^n$$

▶ Decode \hat{Z}^n and compute M^k

$$\frac{m-k-k'}{n} \approx 1 - h(p) + \varepsilon$$
 $\frac{m-k'}{n} \approx 1 - h(\delta) + \varepsilon$

- ▶ With message M^k , encode Z^n to \hat{Z}^n (Distortion $\approx p$)
- ► Transmit $X^n = Z^n \oplus \hat{Z}^n$
- Decoder has

$$Y^n = X^n \oplus Z^n \oplus W^n$$
$$= \hat{Z}^n \oplus W^n$$

- ▶ Decode \hat{Z}^n and compute M^k
- $ightharpoonup R = \frac{k}{p} \approx h(p) h(\delta)$

Remarks

- ▶ Need codes that are *simultaneously good* for channel and source coding
- ► Use message-passing algorithms instead of *optimal*
- ▶ Use spatial-coupling for *goodness* of codes under message-passing

Decoding in Spatially-Coupled Compound Codes

$$L = L_1 + \cdots + L_k$$

$$tanh L = (-1)^{s} \cdot tanh L_{1} \cdots tanh L_{k}$$

$$\vdots$$

Remarks

- ► Standard message-passing algorithm
- ▶ Threshold saturation proven for SC compound codes on BEC
- ► Empirically observed for BMS channels

Encoding in Spatially-Coupled Compound Codes

$$(-1)^{x_i} \tanh \beta$$

$$i \quad \bigcirc \longrightarrow$$

$$L = L_1 + \cdots + L_k$$

$$\tanh L = (-1)^{s} \cdot \tanh L_{1} \cdots \tanh L_{k}$$

$$\vdots$$

Remarks

- ▶ Inverse temperature parameter β
- ► Message-passing rules are the same
- ► However, a crucial decimation step is needed

Encoding in SC Compound Codes: BPGD Algorithm

```
while There are active LDPC bit-nodes do
  for t = 1 to T do
     Run the BP equations
  end for
  Evaluate LLRs m; for each LDPC bit-node
  Choose max. of |m_i| in left-most w active sections
  if |m_{i^*}| = 0 then
     Set u_{i*} to 0 or 1 uniformly randomly
  else
     Set u_{i^*} to 0 or 1 with prob. \frac{1+\tanh m_{i^*}}{2} or \frac{1-\tanh m_{i^*}}{2}
  end if
  Decimate (remove) LDPC bit-node i^* and update parities
end while
If \{u_i\} fail to satisfy LDPC checks, then re-encode
```

Encoding in SC Compound Codes: Remarks

- ▶ Randomization in setting u_{i*} is crucial
- BPGD applied to uncoupled code always failed
- ► Spatially-coupled structure is crucial for successful encoding
 - In addition, distortion is close to optimal thresholds
 - Does not encode if decimated from both left and right
 - Does not encode if both left and right boundary is set to 0

Encoding in SC Compound Codes: Numerical Example

Block length (n)	4-cycles	Attempts $1/2/3/4/ \geq 5$
9000	yes	5/3/5/2/35
9000	no	21/12/5/3/9
27000	no	35/15/0/0/0
45000	no	40/9/0/0/1
63000	no	44/6/0/0/0
81000	no	50/0/0/0/0

Remarks

- ▶ # Attempts to encode 50 seq. in (6,3) LDGM / (3,6) LDPC
- L = 20, w = 4, $\beta = 0.65$, T = 10
- Removing 4-cycles dramatically improves success
- How much do 6-cycles matter?

Numerical Results: Wyner-Ziv

LDGM	LDPC	(L, w)	(D_*,δ_*)	(D,δ)
(d_v, d_c)	$(d_{v}^{\prime},d_{c}^{\prime})$			
(6,3)	(3,6)	(20,4)	(0.111,0.134)	(0.1174, 0.122)
(8,4)	(3,6)	(20,4)	(0.111, 0.134)	(0.1149, 0.120)
(10,5)	(3,6)	(20,4)	(0.111,0.134)	(0.1139, 0.122)

Remarks

▶ D_* and δ_* are calculated based on the rate of the respective code:

$$D_* = h^{-1}(1 - R1)$$
 $\delta_* = h^{-1}(1 - R2)$

▶ $n \approx 140000$, $\beta = 1.04$, T = 10

Numerical Results: Gelfand-Pinsker

LDGM	LDPC	(L, w)	(p_*, δ_*)	(p, δ)
(d_v, d_c)	$(d_{v}^{\prime},d_{c}^{\prime})$			
(6, 3)	(3,6)	(20,4)	(0.215, 0.157)	(0.2200, 0.152)
(8,4)	(3,6)	(20,4)	(0.215, 0.157)	(0.2230, 0.151)
(10,5)	(3,6)	(20,4)	(0.215, 0.157)	(0.2200, 0.151)

Remarks

▶ p_* and δ_* are calculated based on the rate of the respective code:

$$p_* = h^{-1}(1 - R1)$$
 $\delta_* = h^{-1}(1 - R2)$

▶ $n \approx 140000$, $\beta = 0.65$, T = 10

Concluding Remarks

Conclusion

- Spatially-coupled codes achieve the rate regions of Wyner-Ziv and Gelfand-Pinsker problems
- Coupling structure is also crucial
 - to achieve optimum thresholds
 - for encoding to succeed with decimation

Open Questions

- ► Effect of degree profiles, short-cycles on encoding success
- ► Precise trade-offs with polar codes

Outline

Write-Once Memories

Flash Memory

- ▶ In typical flash memory, changing from 0 to 1 is easy
- ► Resetting 1 to 0 requires rewriting whole block
- ▶ Write-once memories model such storage systems

Write-Once Memories

Flash Memory

- ightharpoonup In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- ▶ Write-once memories model such storage systems

Binary Write-Once Memories

 $ightharpoonup 0 \longrightarrow 1$ is allowed

Write-Once Memories

Flash Memory

- ightharpoonup In typical flash memory, changing from 0 to 1 is easy
- Resetting 1 to 0 requires rewriting whole block
- ▶ Write-once memories model such storage systems

Binary Write-Once Memories

- $ightharpoonup 0 \longrightarrow 1$ is allowed
- ▶ $1 \longrightarrow 0$ is forbidden

Capacity Region (I) - Noiseless

Write-Once Memory without Noise

- ▶ In 1982, Rivest and Shamir gave first WOM codes
 - 2 bits in 2 writes with only 3 cells

2+2 bits in 2-write WOM

X	r(x)	r'(x)
00		
01		
10		
11		

2+2 bits in 2-write WOM

X	r(x)	r'(x)
00	000	
01	001	
10	010	
11	100	

2+2 bits in 2-write WOM

X	r(x)	r'(x)
00	000	111
01	001	110
10	010	101
11	100	011

Capacity Region (I) - Noiseless

Write-Once Memory without Noise

- ▶ In 1982, Rivest and Shamir gave first WOM codes
 - 2 bits in 2 writes with only 3 cells
- ▶ Only about $nt/\log(t)$ cells required to store n bits for t writes

Capacity Region (I) - Noiseless

Write-Once Memory without Noise

- ▶ In 1982, Rivest and Shamir gave first WOM codes
 - 2 bits in 2 writes with only 3 cells
- ightharpoonup Only about $nt/\log(t)$ cells required to store n bits for t writes
- ▶ In 1985, Heegard gave the *capacity* for *t*-write system
- ▶ For a 2-write system, it is

$$\{(R_1, R_2) \mid 0 \le R_1 < h(\delta), \ 0 \le R_2 < 1 - \delta\}$$

Capacity Region (II) - Read Errors

Write-Once Memory with Read Errors

- ▶ Different from write errors
- ▶ $Y = X \oplus Ber(p)$, where Ber(p) denotes the Bernoulli noise
- ► Capacity region is *unknown*

Main Result

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding

Main Result

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding
- Focus on the 2-write WOM system
 - Achieves the capacity region of the noiseless system
 - · For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

Main Result

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - · Low-complexity encoding and decoding
- Focus on the 2-write WOM system
 - Achieves the capacity region of the noiseless system
 - For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

Extension to multi-write systems seems possible with BPGD

Main Result

Objective

- Construct low-complexity coding schemes that achieve the capacity region of the WOM system
 - Low-complexity encoding and decoding
- Focus on the 2-write WOM system
 - · Achieves the capacity region of the noiseless system
 - · For read errors, achieves

$$R_1 < h(\delta) - h(p),$$
 $R_2 < 1 - \delta - h(p).$

Extension to multi-write systems seems possible with BPGD

Idea

- ► Use compound LDGM/LDPC codes
- ► Encoding for second write is *erasure quantization*
- Use spatial coupling with message-passing

Compound LDGM/LDPC Codes

- ▶ Codebook (n, m k k')
- Message constraints

$$u_1\oplus u_2\oplus u_5=s_1,\quad u_1\oplus u_3\oplus u_6=0$$

▶ Codeword (x_1, \dots, x_9) :

$$x_1 = u_1 \oplus u_4, \qquad x_2 = \cdots$$

▶ Parametrized by s^k : $C(s^k)$

Compound LDGM/LDPC Codes

- ► Codebook (n, m k k')
- ► Message constraints

$$u_1\oplus u_2\oplus u_5=s_1,\quad u_1\oplus u_3\oplus u_6=0$$

▶ Codeword (x_1, \dots, x_9) :

$$x_1 = u_1 \oplus u_4, \qquad x_2 = \cdots$$

▶ Parametrized by s^k : $C(s^k)$

Key Properties of Compound Codes

- ▶ a natural coset decomposition: $C = \bigcup_{s^k \in \{0,1\}^k} C(s^k)$
- ightharpoonup achieves capacity over eras. chan. under MAP (when m=n)
- ▶ a good source code under optimal encoding
- ▶ a good channel code under optimal decoding

Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$

$$\frac{m-k-k'}{n} \approx 1 - h(\delta)$$
 $\frac{m-k'}{n} \approx 1 - h(p)$

- With message s^k , encode 0^n to x^n (Distortion $\approx \delta$)
- ightharpoonup Store x^n

Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$

$$\frac{m-k'}{n} \approx 1 - h(p)$$

- ▶ With message s^k , encode 0^n to x^n (Distortion $\approx \delta$)
- ightharpoonup Store x^n
- Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

Coding Scheme for 2-write WOM: First Write

$$R_1 < h(\delta) - h(p)$$

$$\frac{m-k'}{n} \approx 1 - h(p)$$

- \blacktriangleright With message s^k , encode 0^n to x^n (Distortion $\approx \delta$)
- ightharpoonup Store x^n
- Decoder has

$$y_i = x_i \oplus \operatorname{Ber}(p)$$

- \triangleright Dec. x^n and compute s^k
- $ightharpoonup R_1 = \frac{k}{n} \approx h(\delta) h(p)$

Need to find a *consistent* codeword in $C(s^k)$

- Need to find a *consistent* codeword in $C(s^k)$
- ► Closely related to Binary Erasure Quantization (BEQ)
- ► En Gad, Huang, Li and Bruck (ISIT 2015)

Binary Erasure Quantization

- ▶ Quantize a sequence in $\{0,1,*\}^n$ to $x^n \in \mathcal{C} \subset \{0,1\}^n$
 - 0's and 1's should match exactly
 - *'s can take either 0 or 1
- Can map the second write of 2-write WOM to BEQ
 - Map 0's to *'s and keep 1's
 - Quantize to codeword in $C(s^k)$
- BEQ is the dual of decoding on binary erasure channel
 - Martinian and Yedidia (Allerton 2003)
 - ullet Can quan. all seq. with erasure pattern $\mathbf{e}^n \in \{0,1\}^n$ to $\mathcal C$

Chan. dec. for \mathcal{C}^{\perp} can correct all vectors with eras. $1^n \oplus e^n$

▶ Choose a good (dual) code $C(s^k)$

- ► Change 0's to *'s
- ► With message s^k , encode seq. to $C(s^k)$

- ► Change 0's to *'s
- ► With message s^k , encode seq. to $C(s^k)$
- ► Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

$$R_2<1-\delta-h(p)$$

- ► Change 0's to *'s
- ▶ With message s^k , encode seq. to $C(s^k)$
- ▶ Decoder has

$$y_i = x_i \oplus \mathrm{Ber}(p)$$

- ▶ Dec. x^n and compute s^k
- $R_2 = \frac{k}{n} \approx 1 \delta h(p)$

Iterative Erasure Quantization Algorithm

► Peeling type encoder

- ► Need codes that are *simultaneously good* for channel/source coding and erasure quantization
- ► Use message-passing algorithms instead of *optimal*
- ▶ Use spatial-coupling for *goodness* of codes under message-passing

Decoding in Spatially-Coupled Compound Codes

Channel LLR

$$y_i \longrightarrow L = L_1 + \cdots + L_k$$

$$\tanh L = (-1)^{s} \cdot \tanh L_{1} \cdots \tanh L_{k}$$

$$\vdots$$

- ► Standard message-passing algorithm
- ▶ Threshold saturation proven for SC compound codes on BEC
- ► Empirically observed for BMS channels

Numerical Results: Noiseless WOM

LDGM/LDPC	δ^*	δ	δ	δ
(d_v, d_c, d'_v, d'_c)		w=2	w = 3	w=4
(3,3,3,6)	0.500	0.477	0.492	0.494
(3, 3, 4, 6)	0.333	0.294	0.324	0.326
(3,3,5,6)	0.167	0.095	0.156	0.158
(4,4,3,6)	0.500	0.461	0.491	0.492
(4, 4, 4, 6)	0.333	0.278	0.323	0.325
(4,4,5,6)	0.167	0.086	0.155	0.159
(5,5,3,6)	0.500	0.436	0.488	0.491
(5,5,4,6)	0.333	0.260	0.320	0.324
(5,5,5,6)	0.167	0.079	0.154	0.159

- $ightharpoonup \delta^*$ is the Shannon threshold
- ▶ L = 30, Single system length ≈ 24000

Numerical Results: WOM with Read Errors

LDGM/LDPC	W	(δ^*, p^*)	(δ, p)
(d_v,d_c,d'_v,d'_c)			
(3, 3, 4, 6)	3	(0.333, 0.0615)	(0.321, 0.0585)
(3,3,4,8)	3	(0.500, 0.0417)	(0.490, 0.0387)
(3,3,6,8)	4	(0.250, 0.0724)	(0.239, 0.0684)
(4, 4, 4, 6)	4	(0.333, 0.0615)	(0.324, 0.0585)
(4,4,4,8)	4	(0.500, 0.0417)	(0.492, 0.0387)
(4,4,6,8)	4	(0.250, 0.0724)	(0.241, 0.0694)

- \blacktriangleright δ^* and p^* are the Shannon thresholds
- ▶ L = 30, Single system length ≈ 30000

Numerical Results: Small Blocklength

- ► (L, w) = (30, 3), Single system length 1200, Shannon threshold of 0.5
- ► A total of 10⁵ were attempted to encode
- ▶ No failures for δ < 0.43

Concluding Remarks

Conclusion

- ► Spatially-coupled compound codes achieve the capacity of 2-write systems
- Coupling structure is also crucial
 - to achieve optimum thresholds
 - for encoding to succeed

Multi-Write Systems

▶ Will BPGD work for multi-write systems?

Outline

- ► SC-LDPC Lattices [C1]
- ► SC-Compound Codes
 - Side-Information Problems [C2]
 - Coding for WOM [C3]
- ► Sparse graph coding tools for solving sparse recovery problems
 - Regular bipartite sparse graphs for compressed sensing [C5]
 - Group testing*
 - Pattern matching*
- Uncoordinated multiple access
 - Universal schemes for massive uncoordinated multiple access [C4]
 - Optimal distributions for finite user multiple access*
- ► Coding for low latency requirements*
- C1. A. Vem, Y. C. Huang, K. R. Narayanan and H. D. Pfister, "Multilevel lattices based on spatially-coupled LDPC codes with applications", in Proc. IEEE. ISIT, pp. 2336–2340, 2014.
- C2. S. Kumar, A. Vem, K. R. Narayanan and H. D. Pfister, "Spatially-coupled codes for side-information problems", in *Proc. IEEE. ISIT*, pp. 516-520, 2014. C3. S. Kumar, A. Vem, K. R. Narayanan and H. D. Pfister, "Spatially-coupled codes for write-once memories", in *Proc. Allerton. Conf.*, pp. 125-131, 2015.
- C4. A. Taghavi, A. Vem, J.-F. Chamberland and K. R. Narayanan "On the design of universal schemes for massive uncoordinated multiple access", in Proc. IEEE. ISIT, pp. 345–349, 2016.
- C5. A. Vem, N. T. Janakiraman, and K. R. Narayanan, "Sub-linear time compressed sensing for support recovery using left and right regular sparse-graph codes", in *Proc. IEEE. ITW*, pp. 429–433, 2016.

^{*-}To be submitted