

Модуль 1. Математические основы помехоустойчивого кодирования

Постановка задачи кодирования. Основные теоремы и базовые понятия. Код с повторением и проверкой на четность, код Хэмминга.

Иванов Ф. И. к.ф.-м.н., доцент

Национальный исследовательский университет «Высшая школа экономики»

Основная задача

Основная задача кодирования - защита передаваемой информации от шумов.

Ни одна система связи не обходится без кодирования. Без кодирования невозможны:

- Беспроводная связь (3G, LTE, Wi-Fi);
- Проводная связь (ВОЛС, Ethernet);
- Системы хранения данных (CD, DVD, HDD, SSD и т.д.).
- Даже QR-коды построены на принципах теории кодирования

Модель передачи данных

Рис.: Простейшая модель передачи данных

- Передатчик передает последовательности длины n из 0 и 1: $\mathbf{u} = (u_1, u_2, \dots, u_n), u_i \in \{0,1\}.$
- В канале действует случайная помеха: каждый символ передаваемой последовательности независимо от других может быть искажен с вероятностью $\tau < 1/2$.

Двоичный симметричный канал

Рис.: Двоичный симметричный канал

$$p(0|0) = p(1|1) = 1 - \tau, \ p(0|1) = p(1|0) = \tau$$

Простейшая модель ошибки

Введем в рассмотрение вектор:

$$\mathbf{e} = (e_1, e_2, \dots, e_n), u_i \in \{0,1\},$$

причем $e_i=1$ тогда и только тогда, когда произошло искажение в i символе ${\bf u}$.

Пример

Пусть $\mathbf{u}=(110001001)$, а на приемном конце получен вектор $\mathbf{v}=(010001101)$. Это означает, что в канале подверглись искажению первый и седьмой символы передававшегося вектора. Это означает, что в векторе \mathbf{e} единицы расположены на первом и седьмом местах, т.е. $\mathbf{e}=(100000100)$.

Легко заметить, что

$$v = u + e$$
,

где
$$0+0=1+1=0$$
, $0+1=1+0=1$

Простейший код - код с повторением

Пусть через канал передаются только 2 возможных сообщения: 0 или 1. Выберем произвольное n>1 и будем осуществлять кодирование сообщений следующим образом:

$$0 \rightarrow (0, \dots 0); 1 \rightarrow (1, \dots 1),$$

т. е. дублируем символ n раз.

Так как au < 1/2, то n au < n/2 и при $n o \infty$

$$P_e = P(k > n/2) = \sum_{i=n/2+1}^{n} {n \choose i} \tau^i (1-\tau)^{n-i} \to 0$$

Но вместо 1 бита передаем n:

$$R = 1/n$$

Основная идея кодирования

Вероятность передать k некодированнных бит без ошибок:

$$P(k) = (1 - \tau)^k,$$

Например, при $au = 10^{-3}$, P(1000) < 0.37, а $P(10000) < 10^{-4}$

Основная идея – добавление избыточности

Рис.: Основная идея кодирования

Основные термины

- Код произвольное множество векторов длины n: $C = \{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_M\}$, $\mathbf{c}_i = (c_i^1, c_i^2, \dots, c_i^n)$, $c_i^j \in \{0,1\}$. Обычно код обозначают как (n,k) или (n,M).
- Информационный вектор произвольный двоичный вектор длины k, k < n.
- n длина кода, M мощность кода, R = k/n или $R = \log_2 M/n$ скорость кода
- **Кодирование** преобразование ϕ (): ϕ (**u**) = **c** \in C, где **u** информационный вектор.
- Декодирование преобразование $\phi^{-1}()$: $\phi^{-1}(\mathbf{v}) = \widetilde{\mathbf{u}}$, где $\widetilde{\mathbf{u}}$ оценка информационного вектора, а \mathbf{v} принятое (возможно с ошибками) слово

Расширенная модель передачи

- 1. Информационный вектор ${\bf u}$ длины ${\bf k}$ поступает из источника в кодер
- 2. Кодер ϕ вычисляет кодовое слово $\mathbf{c} = \phi(\mathbf{u})$ длины n > k
- 3. Кодовое слово передается через канал, где вносятся ошибки. В итоге приемник принимает $\mathbf{v} = \mathbf{c} + \mathbf{e}$
- 4. Декодер пытается восстановить информацию из принятого вектора $\phi^{-1}(\mathbf{v})=\widetilde{\mathbf{u}}$
- 5. Получатель принимает $\widetilde{\mathbf{u}}$ или уведомление об отказе декодирования

Основная теорема кодирования

Теорема

(Прямая теорема Шеннона) Существует (n,M) код такой, что если $N \to \infty$ и его скорость R < C, то $\forall \epsilon > 0$ вероятность ошибки декодирования $P_e < \epsilon$.

C=1-h(au) — пропускная способность ДСК, $h(x)=-x*\log_2(x)-(1-x)*\log_2(1-x)$ — функция двоичной энтропии.

Минимальное расстояние

На множестве V^n всех двоичных векторов длины n введем метрику (Хэмминга):

$$d(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{n} |x_i - y_i|$$

Например, если $\mathbf{x} = (11011)$, $\mathbf{y} = (01010)$, тогда $d(\mathbf{x}, \mathbf{y}) = 2$. Для кода C определим величину минимального расстояния Хэмминга:

$$d_{min}(C) = \min_{\mathbf{x}, \mathbf{y} \in C, \mathbf{x} \neq \mathbf{y}} d(\mathbf{x}, \mathbf{y})$$

Минимальное расстояние и исправление ошибок

Пусть
$$d_{min}(C) = 2t + 1$$
:

Рис.: Сферы вокруг слов

Минимальное расстояние и исправление ошибок

- Сферы радиуса t такие, что их центры это кодовые слова, не пересекаются
- Если вместо переданного слова $\mathbf{x} \in C$ было принято $\mathbf{y} \in V^n$, причем $d(\mathbf{x},\mathbf{y}) \leq t$, то \mathbf{y} "не выскочит"из сферы радиуса t, т. е. $\forall \mathbf{x}' \in C, \mathbf{x}' \neq \mathbf{x}: d(\mathbf{x},\mathbf{y}) < d(\mathbf{x}',\mathbf{y}).$
- При переборе всех кодовых слов ближайшим к **у** окажется переданное **х**, т. е. декодирование будет успешным

Теорема

При $d \geq 2t+1$ код исправляет все ошибки кратности до t.

Минимальное расстояние и исправление ошибок

Пусть d = 2t + 2, тогда:

- Сферы радиуса t+1 такие, что их центры это кодовые слова, не пересекаются, но могут касаться
- Если вместо переданного слова $\mathbf{x} \in C$ было принято $\mathbf{y} \in V^n$, причем $d(\mathbf{x},\mathbf{y}) \leq t$, то \mathbf{y} "не выскочит"из сферы радиуса t, т. е. $\forall \mathbf{x}' \in C, \mathbf{x}' \neq \mathbf{x}: d(\mathbf{x},\mathbf{y}) < d(\mathbf{x}',\mathbf{y})$ ошибка будет исправлена
- Если же d(x,y) = t+1, то может найтись еще одно слово $\mathbf{x}' \in C, \mathbf{x}' \neq \mathbf{x}: d(\mathbf{x},\mathbf{y}) = d(\mathbf{x}',\mathbf{y})$, то есть при декодировании обнаружится по крайней 2 слова, равноудаленных от принятого ошибка обнаружена.

Теорема

При $d \ge 2t + 2$ код исправляет все ошибки кратности до t и обнаруживает ошибки кратности t + 1.

Минимальное расстояние и обнаружение ошибок

Пусть d = t + 1, тогда:

- Сферы радиуса t такие, что их центры это кодовые слова, могут пересекаться, но каждая сфера включает единственное кодовое слово
- Если вместо переданного слова $\mathbf{x} \in C$ было принято $\mathbf{y} \in V^n$, причем $d(\mathbf{x}, \mathbf{y}) \leq t$, то \mathbf{y} "не перейдет"ни в какое другое кодовое слово (так как слово в сфере радиуса t единственное) ошибка обнаружена.

Теорема

При $d \geq t+1$ код обнаруживает все ошибки кратности до t.

Параметры простейших кодов - код с повторением

Пример

Код с повторением R: количество информационных символов k=1, длина n, скорость R=1/n, код состоит из 2-х слов: (0,0,...,0) и (1,1,...,1). Минимальное расстояние равно d=n, число исправляемых ошибок: $t=\frac{n-1}{2}$.

Данный код исправляет ошибки до половины своей длины и является оптимальным: не существует кода с большим минимальным расстоянием. Основной недостаток - очень низкая скорость.

Параметры

простейших кодов - код с проверкой на четность

Пример

Код с проверкой на четность P: количество информационных символов k=n-1, длина n, скорость $R=\frac{n-1}{n}$, код состоит из 2^{n-1} слова: $\mathbf{c}=(c_1,c_2,...,c_{n-1},p_n)$, где $c_1,c_2,...,c_{n-1}$ - произвольные биты (информационные символы), а

$$p_n = \sum_{k=1}^{n-1} c_k$$

Все слова кода имеют четный вес. Минимальное расстояние равно d=2, то есть код обнаруживает любую одиночную (нечетной кратности) ошибку.

Данный код обнаруживает все одиночные и является оптимальным: не существует кода с большим минимальным расстоянием при данном числе информационных символов.

Код Хэмминга

Рассмотрим матрицу

$$H = \left[\begin{array}{ccccccc} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{array} \right].$$

Построим код H как множество векторов, образующих ядро этой матрицы:

$$H = \{ \mathbf{c} \in V^n : \mathbf{cH}^T = \mathbf{0} \}.$$

По сути это означает, что если $(c_1, c_2, ..., c_7) \in H$, то:

$$c_2 + c_3 + c_4 + c_5 = 0$$

$$c_1 + c_2 + c_3 + c_6 = 0$$

$$c_1 + c_2 + c_4 + c_7 = 0$$

Декодирование кодов Хэмминга

Рассмотрим $\mathbf{c} \in H$: $\mathbf{c} = (1000011)$. Внесем одну ошибку на 4 позицию и примем: $(1000011) + (0001000) = (1001011) = \mathbf{v}$. Вычислим:

$$\mathbf{vH}^T = (1001011) \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}^T = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Это 4 столбец матрицы ${f H}$ — ошибка исправлена!

Параметры кодов Хэмминга

В общем случае код Хэмминга H_m имеет параметры:

- Длина $n = 2^m 1$
- Число информационных символов $k = 2^m m 1$
- Минимальное расстояние d=3 исправляет одну ошибку
- Матрица **H**, определяющая код Хэмминга состоит из всех 2^m-1 различных ненулевых столбцов высоты m
- Код Хэмминга совершенный. Это плотная упаковка пространства V^n : все пространство распадается на содержимое сфер радиуса 1 с центрами в кодовых словах кода H_m .

Границы в теории кодирования

Нам бы хотелось построить код C у которого при заданной длине n:

- 1. Максимальное d наилучшая корректирующая способность
- 2. Максимальная R наибольшая скорость передачи
- 3. Простые процедуры кодирования и декодирования

Но пункты (1)-(2) противоречат друг другу!

У нас есть (n,1,n) код с повторением и (n,n-1,2) код с проверкой на четность!

Увеличивая расстояние d мы уменьшаем R и наоборот!

Вероятно, есть границы $\delta(n,d,R)$ связывающая эти величины...

Будем строить (n,M,d) код слово за слово. Также будем считать, что число информационных символов $k = \log_2 M$.

Первое слово ${\bf c}_1$ берем любым из 2^n доступных. Выбрасываем "шар" — это те слова, которые находятся на расстоянии меньше чем d от выбранного ${\bf c}_1$. Таких слов будет $\sum\limits_{i=1}^{d-1} {n \choose i}$.

У нас есть 1 слово ${\bf c}_1$ и $2^n - \sum\limits_{i=1}^{d-1} \binom{n}{i}$ способов выбрать второе слово.

Все эти слова заведомо находятся на расстоянии по крайней мере d от \mathbf{c}_1 . Второе слово \mathbf{c}_2 выбираем случайно.

Снова выбрасываем "шар" — это те слова, которые находятся на расстоянии меньше чем d от выбранного \mathbf{c}_2 . Таких слов будет $\sum\limits_{i=1}^{d-1} \binom{n}{i}$. Тогда уже выбросили не более чем $2\sum\limits_{i=1}^{d-1} \binom{n}{i}$ слов.

Продолжаем этот процесс выбрасывания для 3, 4, ..., M-1 слова. Некоторые слова выбрасываются по несколько раз.

После выбора слова \mathbf{c}_{M-1} выброшено уже $(M-1)\sum\limits_{i=1}^{d-1}\binom{n}{i}$ слов, находящихся на расстоянии менее чем d от $\mathbf{c}_1,...,\mathbf{c}_{M-1}$.

Если

$$2^{n} - (M-1)\sum_{i=1}^{d-1} {n \choose i} > 0$$

то это значит, что "зазор" есть! То есть можно выбрать еще одно слово \mathbf{c}_M , такое что $d(\mathbf{c}_i,\mathbf{c}_M)\geq d$ для i=1..n-1. То есть код (n,M,d) построен!

Теорема

Если

$$R < 1 - \frac{1}{n} \log_2 \sum_{i=1}^{d-1} \binom{n}{i},$$

то код с параметрами (n,M,d) существует.