BME 5481 Homework 2

Libo Zhang (NetID: (2200)

Problem / caz:

Email: libo. zhang @ duke. edu

$$X = \begin{bmatrix} 1 & -1 & 0 \\ 1 & 0 & 0 \\ 1 & 1 & 0 \end{bmatrix} {c \times 1}, \quad Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} +1 \\ -1 \\ +1 \end{bmatrix} \quad w = \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix}_{3x1}$$

I use np. linalg. pinv (X) to compute the pseudo-inverse, I get

$$X^{\dagger} = \begin{bmatrix} 3.33338 - o & 3.3338 - o & 3.3338 - o & 3.3338 - o & 3.3338 - o & 3.3388 - o & 0.3388 - o & 0.0088 - o & 0.00$$

$$W = \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix} = X^{\dagger} Y = X^{\dagger} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} 0.33 & 0.33 & 0.33 & 0.33 \\ -0.5 & 0 & 0.5 \\ 0 & 0 & 0 \end{bmatrix}_{3\times3} \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}_{3\times1}$$

$$W = \begin{bmatrix} b \\ w_1 \\ w_2 \end{bmatrix}_{3x1} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}_{3x1}.$$

$$\begin{cases} b = 0.33 \\ w_1 = 0 \\ w_2 = 0 \end{cases}$$

$$\begin{cases} w_1 = 0 \\ w_2 = 0 \end{cases}$$

Problem | (b):

$$\hat{X} = \begin{bmatrix} 1 & 1 & 1 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}_{3\times3} \quad \text{we know from } | \text{(a) that}$$

$$\hat{X} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}_{3\times3} \quad \text{we know from } | \text{(a) that}$$

$$\hat{X} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}_{3\times3} \quad \text{we know from } | \text{(a) that}$$

$$\hat{X} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}_{3\times3} \quad \text{oold} \quad \text{$$

feature ("b") is not contributing any additional information at all.

Problem 1000: Wixi=[3-4 1 o] Then we can build a $W_{1} = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 3 & 0 \\ 0 & -1 & 3 \\ 0 & 0 & -1 \end{bmatrix}_{4\times3}$ W1 X2 = [3 - 10 0]T new 3x4 data matrix $W_i X_3 = [32 - 10]^T$ row having a data point. $X_c = \begin{bmatrix} 3 & -4 & 1 & 0 \\ 3 & -1 & 0 & 0 \\ 3 & 2 & -1 & 0 \end{bmatrix}$ With the help of np. linalg. Pinv (X_c) , we can calculate the pseudo-inverse of X_c , $X_c^{\dagger} \approx \begin{bmatrix} 0.06 & 0.11 & 0.16 \\ -0.15 & -0.004 & 0.145 \\ 0.044 & -0.011 & -0.066 \\ 0 & 0 & 0 \end{bmatrix}$ Then we can find the weights $W_2 \in IR^{4\times 1}$ by $W_2 = X_c^{\dagger} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}_{3\times 1}$.. W2 ≈ [0./0989, -0.00366, -0.0/099, 0]T. : $y^* = [y_1^*, y_2^*, y_3^*]_{123} = Sign(w_2^T(\hat{X}_c)) = Sign(w_2^T(X_c)^T)$ = $Sign\left(w_{2}^{T}\begin{bmatrix} 3 & 3 & 3 \\ -4 & 4 & 2 \\ 1 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}\right) = Sign\left([0.33, 0.33], 0.33]\right)$ $\therefore y^{*} = [y_{1}^{*}, y_{2}^{*}, y_{3}^{*}] = [+1, +1, +1] = \gamma$ $\begin{cases} y_{1}^{*} = y_{1}, \text{ Correct.} \\ y_{2}^{*} \neq y_{2}, \text{ wrong.} \\ y_{3}^{*} = y_{3}, \text{ Correct.} \end{cases}$ Therefore, it is Still impossible cunables $\begin{cases} y_{1}^{*} = y_{1}, \text{ Correct.} \\ y_{2}^{*} \neq y_{2}, \text{ wrong.} \\ y_{3}^{*} = y_{3}, \text{ Correct.} \end{cases}$ to determine a $[y_{1}]_{2}$ that an apposite $[y_{3}]_{3}$ to determine a Wz that can correctly classify the three points.

Page 3.

Problem | (d): $W_1 = \begin{bmatrix} 3 & 0 & 0 \\ -1 & 3 & 0 \\ 0 & -1 & 3 \\ 0 & 0 & 1 \end{bmatrix}$ $X_0 = \begin{bmatrix} 3 & -4 & 1 & 0 \\ 3 & -1 & 0 & 0 \\ 3 & 2 & 1 & 0 \end{bmatrix}$ (X_1) (X_2) based After adding Reluce, compared with 1000, we can build a new 3x4 data matrix Xd & 1R3x4 from Xc, with each row having a data point. $Xd = RelU(X_0) = \begin{bmatrix} 3 & 0 & | & 0 \\ 3 & 0 & 0 & 0 \\ 3 & 2 & 0 & 0 \end{bmatrix} (X_1) \quad \text{fix} = RelU(X) = \max(0, X).$ Find the pseudo-inverse of Xd $X_{d} \approx \begin{bmatrix} 0 & 0.33 & 0 \\ 0 & -0.5 & 0.5 \\ -1 & 0 \end{bmatrix}$ Then we can find the weights by $W_{2} = X_{d} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}, \text{ where } W_{2} \in \mathbb{R}^{4\times 1}$ $W_{3} = X_{d} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}, \text{ where } W_{2} \in \mathbb{R}^{4\times 1}$... $W_2 \approx [-0.333, 1.0, 2.0, 0]^T$ Then we can perform classification task: $y^* = [y_1^*, y_2^*, y_3^*] = Sign(w_2^T Relu(\hat{X}_d)), \hat{X}_d \text{ has column-based } X_1, X_2, X_3$ = $Sign(W_2^T Relu(cX_d)^T)$: $\begin{cases} y_1^* = y_1 \\ y_2^* = y_2 \end{cases}$ All classifications

= $Sign(W_2^T \begin{bmatrix} 3 & 3 & 3 \\ 0 & 0 & 2 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}_{4x3}$ Therefore, here it is Possible cable)

to determine a W_2 that, accurately ≈ sign ([1.0, -1.0, 1.0]) to determine a Wz that accurately classify the 3 points [can] contained =[+1,-1,+1]. in the columns of $\hat{\chi}$, and $W_2 = [-0.333, 1, 2, 0]^T$. Page 24

WZ G/R4X/

Problem 2 ca):

Without loss of generality (WOLOG), we can assume that here we have m features in total, so that $\underline{w} \in |R^{m\times 1}| \times n \in |R^{m\times 1}|$ and for all N data points $X = \begin{bmatrix} x \\ x \\ x \\ x \end{bmatrix}$, $X \in |R^{N\times m}|$ In problem 2 (a), to Compute the gradient [] xx] of Lincw = 1 & (n 4+e-1/2 ×n), we Start with Scalar examples, so wolog, we can set m=2 here. $L = \lim_{n \to \infty} \frac{1}{N} \sum_{n=1}^{N} \ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \sum_{n=1}^{N} \frac{1}{N} \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] \sum_{n=1}^{N} \frac{1}{N} \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right] = \left[\ln c / + e^{(-\frac{1}{2}n) \cdot (W_1 \cdot X_{n_1} + W_2 \cdot X_{n_2})} \right]$ This is because $\underline{w} = [w_1 \ w_2 \cdots w_m]^T, \underline{w} \in \mathbb{R}^{m \times l}$, m = 2 and $\frac{X_n = [X_{n_1} \ X_{n_2} \ \dots \ X_{n_m}]^T \ X_n \in \mathbb{R}^{m \times 1} \ m=2.}{\frac{\partial L}{\partial W_1} = \frac{1}{N} \sum_{n=1}^{N} \frac{e^{(-\frac{1}{N})^T (W_1 X_{n_1} + W_2 X_{n_2})}}{\frac{1}{N} \sum_{n=1}^{N} \frac{e^{(-\frac{1}{N})^T (W_1 X_{n_2} + W_2 X_{n_2})}}{\frac{1}{N} \sum_{n=1}^{N} \frac{e^{(-\frac{1}{N})^T (W_1 X_{n_2}$ 1+0-4n)(W,Xn,+W2Xn2) · (-4n).(Xn1) $\frac{\partial L}{\partial W_2} = \frac{1}{N} \cdot \sum_{n=1}^{N} \frac{e^{c-y_n \cdot (w_i \times n_1 + W_2 \times n_2)}}{1 + e^{c-y_n \cdot (w_i \times n_1 + W_2 \times n_2)} \cdot (-y_n) \cdot (x_{n_2})}$ Consider $\theta(x) = \frac{e^x}{1+e^x}$, then we can have Simpler forms below $\frac{\partial L}{\partial W_1} = \frac{1}{N} \sum_{n=1}^{N} (-y_n) \cdot (X_{n_1}) \cdot \theta \left[(-y_n) \cdot (W_1 X_{n_1} + W_2 X_{n_2}) \right]$ $\frac{\partial L}{\partial W_2} = \frac{1}{N} \sum_{n=1}^{N} (-y_n) (X_{n2}) \cdot \Theta \left[(-y_n) (W_1 X_{n1} + W_2 X_{n2}) \right]$

CPlease continue to the next page for 2 cas) Page 5

Problem 2 car: w=[w, w= wm], xn=[xn, xnz ... Xnm]. Clearly, if we extend the previous calculation to the m-th feature,

 $\frac{\partial L}{\partial W_m} = \frac{1}{N} \sum_{n=1}^{N} (-y_n) (X_{nm}) \cdot \Theta \left[(-y_n) \cdot (W_1 X_{n1} + W_2 X_{n2} + \dots + W_m \cdot X_{nm}) \right]$

and then we write the scalar equations in a vectorized form,
$$\frac{\partial L}{\partial w} = \begin{bmatrix}
\frac{\partial L}{\partial w_{1}} \\
\frac{\partial L}{\partial w_{2}}
\end{bmatrix} = \begin{bmatrix}
\frac{1}{N} \sum_{n=1}^{N} (-y_{n})(X_{n}) \cdot \theta(-y_{n} \underline{w}^{T} \underline{x}_{n}) \\
\frac{1}{N} \sum_{n=1}^{N} (-y_{n})(X_{n}) \cdot \theta(-y_{n} \underline{w}^{T} \underline{x}_{n})
\end{bmatrix} = \nabla_{\underline{w}} L_{in} \cdot \underline{w}).$$

Finally we can have

$$\frac{\partial L}{\partial w} = \sqrt{m} Lin(w) = \frac{1}{N} \sum_{n=1}^{N} -y_n \cdot x_n \cdot \theta \left(-y_n \cdot w^T \cdot x_n\right), \text{ where}$$

$$\theta(x) = \frac{e^x}{e^x + 1}, \quad w = \int_{w_2}^{w_1} \int_{w_2}^{w_2} \int_{w_2}^{w_1} And \quad x_n = \left[x_{n_1} \cdot x_{n_2} \cdot w \cdot x_{n_m}\right]^T$$

$$\sum_{w_m} \sum_{m \neq 1}^{N} \sum_{m \neq 1}^{N} \frac{x_m}{x_m} \int_{m \neq$$

Problem 2 cb2:

Without loss of generality (WOLOG), we assume m=2, and an input data point has 2 features $\underline{X}n = [Xn_1 \ Xn_2]^T = [+1 + 1]^T$. The current weights are $\underline{W} = [w_1 \ w_2]^T = [\frac{1}{2} \ \frac{1}{2}]^T$, but the true label $y_n = -1$ (Assume we are doing Binary Classification between -1 and +1). Now $Sign(\underline{W}^T\underline{X}n) = \underline{w}^T\underline{X}n = \frac{1}{2} + \frac{1}{2} = +1$, so this is a misclassified input. To facilitate calculation, wolog, we assume having only 1 data point, so N=n=1. Then we can have

$$= \frac{e'}{1+e'} \cdot 1 \cdot 1 = \frac{e}{1+e}$$

$$\frac{\partial L}{\partial W_{2}} \Big|_{Wrong} = \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-y_{n} \times w_{1} \times n_{1} + w_{2} \times n_{2}}}{1 + e^{c-y_{n} \times w_{1} \times n_{1} + w_{2} \times n_{2}}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N=1} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-c-c-y) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N=1} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-c-c-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-c-c-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{\sum_{n=1}^{N} \frac{e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}}}{1 + e^{c-c+y \times (\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 1)}} \cdot (-c-c-y_{n}) \cdot x_{n2}$$

$$= \frac{1}{N} \frac{e^{c-y \times (\frac{1}{N} \cdot 1 + \frac{1}{N} \cdot 1 + \frac{1}{N} \cdot 1)}}{1 + e^{c-c+y \times (\frac{1}{N} \cdot 1 + \frac{1}{N} \cdot 1 + \frac{1}{N} \cdot 1)}}$$

Please continue to the next Page for 2060.

Page 7.

Problem 2:b): Now we have the gradient of a misclassified input, what about the gradient of a correctly classified input? We keep the weights \underline{w} and features $\underline{x}n$ the same but change the true label $y_n = -1$ to $y_n^* = +1 = \text{Sign}(\underline{w}^T\underline{x}n) = \underline{w}^T\underline{x}n$ (Assume we are doing Binary Classification between -1 and +1), so now the classification is correct, then we calculate the gradient.

is Correct, then we calculate the gradient. \times_{n_1} $\frac{\partial L}{\partial W_1}$ correct = $\frac{1}{1}\sum_{n=1}^{N=1}\frac{e^{(-c+)>c+)}}{1+e^{(-c+)>c+|>}}\cdot (-c+|>)\cdot (c+|>=\frac{1}{1+e^{-1}}=\frac{1}{1+e}$ $\frac{\partial L}{\partial W_2}$ correct = $\frac{1}{1}\sum_{n=1}^{N=1}\frac{e^{(-c+)>c+|>}}{1+e^{(-c+)>c+|>}}\cdot (-c+|>)\cdot (c+|>=\frac{e^{-1}}{1+e^{-1}}=\frac{1}{1+e}$

 $\frac{\partial L}{\partial W_{1}} wrong = \frac{e}{1+e} > \frac{1}{1+e} = \frac{\partial L}{\partial W_{1}} correct; \text{ we extend to multiple features } cm>2) \text{ and more }$ $\frac{\partial L}{\partial W_{2}} wrong = \frac{e}{1+e} > \frac{1}{1+e} = \frac{\partial L}{\partial W_{2}} correct; \text{ data points } cN>1> \text{ because }$ $e \approx 2.718.$ $e \approx 2.718.$

Therefore, we have proved that a misclassified input contributes more to the gradient than a correctly classified input.

Problem 2 cCo obonus problem):

According to Lecture T, we know that the optimal Step Size & should be (Assume we have) $\mathcal{E}^{*} = \frac{g^{T}g}{g^{T}Hg}$, $\mathcal{E}^{*} \in \mathbb{R}$. $\underbrace{g \in \mathbb{R}^{m \times l}}_{H \in \mathbb{R}^{m \times m}}$

 \mathcal{E}^* is a Scalar and $g = \frac{\partial L}{\partial w} = \nabla_w \operatorname{Lin}(w)$, $g \in \mathbb{R}^{m \times l}$ cassume in features) And the Hessian of Lincwo with respect to w should be

 $H = \begin{bmatrix} H_{11} & H_{12} & \cdots & H_{1m} \\ H_{21} & H_{22} & \cdots & H_{2m} \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 L}{\partial w_1 \partial w_1} & \frac{\partial^2 L}{\partial w_2 \partial w_2} & \cdots & \frac{\partial^2 L}{\partial w_2 \partial w_2} \\ \frac{\partial^2 L}{\partial w_2 \partial w_1} & \frac{\partial^2 L}{\partial w_2 \partial w_2} & \cdots & \frac{\partial^2 L}{\partial w_2 \partial w_m} \end{bmatrix} \\ H_{m_1} & H_{m_2} & \cdots & H_{mm} \end{bmatrix}_{m \times m} \begin{bmatrix} \frac{\partial^2 L}{\partial w_m \partial w_1} & \frac{\partial^2 L}{\partial w_m \partial w_2} & \cdots & \frac{\partial^2 L}{\partial w_m \partial w_m} \\ \frac{\partial^2 L}{\partial w_m \partial w_1} & \frac{\partial^2 L}{\partial w_m \partial w_2} & \cdots & \frac{\partial^2 L}{\partial w_m \partial w_m} \end{bmatrix}_{m \times m}$

Where $H_{ij} = \frac{\partial^2 L}{\partial w_i \partial w_j}$, $| \leq i, j \leq m$, the Hessian is also a symmetric matrix.

Since I have derived in 2 cas that

 $\frac{g}{g} = \frac{\partial L}{\partial w} = \sqrt{w} \operatorname{Lin}(w), \ gT = \left[\frac{\partial L}{\partial w}\right]^T, \ \left[\frac{g}{g} \operatorname{E} | R^{mx}|\right]$ As long as I can derive an equation for $\operatorname{Hij}(R)$, then we can solve the optimal Step size CXwe can solve the optimal step size ex.

please continue to the next page for 2.00.

Problem 2 (C): Since I need to use the Chain Rule to derive Hij, I want to first work on $\frac{d[\theta x)}{dx}$ where $\theta x = \frac{e^x}{1+e^x} = \frac{1}{1+e^{-x}}$ $\frac{d[\theta x)}{dx} = c-|x|(1+e^{-x})^{-2}e^{-x}c-|z| = \frac{e^{-x}}{(1+e^{-x})^2} = \frac{1+e^{-x}-1}{(1+e^{-x})^2}$ $\frac{1+e^{-x}}{1+e^{-x}}$ $= \frac{1 + e^{-x}}{c(1 + e^{-x})^2} - \frac{1}{c(1 + e^{-x})^2} = \frac{1}{1 + e^{-x}} - \frac{1}{c(1 + e^{-x})^2} = \theta ixi \cdot [1 - \theta ixi]$ $\frac{\partial L}{\partial w_{\hat{i}}} = \sqrt{\sum_{n=1}^{N} (-y_n) \cdot X_{n\hat{i}}} \cdot \Theta(-y_n \cdot \underline{w}^T \underline{x}_n), \text{ so that}$ $\frac{\partial^{2}L}{\partial w_{i} \partial w_{j}} = \frac{1}{N} \sum_{n=1}^{N} (-y_{n}) \cdot X_{n} \dot{z} \cdot \frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})]}{\partial w_{j}}$ $\frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})]}{\partial w_{j}} = \frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})]}{\partial w_{j}} = \frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})]}{\partial w_{j}}$ $\frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})]}{\partial w_{j}} = \frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})}{\partial w_{j}} = \frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})]}{\partial w_{j}} = \frac{\partial [\Theta(-y_{n} \underline{w}^{T} X_{n})}{\partial w_{j}} = \frac{\partial [\Theta$ $= \theta \left(-\frac{y_n}{N} \frac{w^T x_n}{x_n}\right) \left[1 - \theta \left(-\frac{y_n}{N} \frac{w^T x_n}{x_n}\right)\right] \cdot \left[(-\frac{y_n}{y_n}) \cdot x_n\right]$ $\frac{\partial^{2}L}{\partial w_{i} \partial w_{j}} = \frac{1}{N} \cdot \sum_{n=1}^{N} \left(X_{n \hat{i}} \cdot X_{n \hat{j}} \cdot (y_{n})^{2} \cdot \theta \left(-y_{n} \underline{w}^{T} \underline{X}_{n} \right) \left[1 - \theta \left(-y_{n} \underline{w}^{T} \underline{X}_{n} \right) \right] \right)$ = Hij EIR (scalar value), 1= i,j=m.

Therefore, I have derived Hessian of Linew) with respect to w, next page I will Summarize all the work to find the optimal Step Size Ex.

Problem 2 cc): To Summarize, the optimal Step Size &* is $\mathcal{E}^* = \frac{g \cdot g}{g^T H \cdot g}, \, \mathcal{E}^* \in IR.$ where $g = \frac{\partial L}{\partial w} = \nabla_w L_{in}(w) = \frac{1}{N} \sum_{n=1}^{N} -y_n \cdot \underline{x}_n \cdot \theta(-y_n \underline{w}^T \underline{x}_n), \underline{g} \in \mathbb{R}^{m \times 1}$ gT = (31)T = [Vwlin w]T, gTe /R xm. $\underline{H} = \begin{bmatrix}
H_{11} & H_{12} & \dots & H_{1m} \\
H_{21} & H_{22} & \dots & H_{2m}
\end{bmatrix}, \quad H_{ij} = \frac{\partial^2 L}{\partial w_i \partial w_j}, \quad | \leq i, j \leq m.$ $\begin{bmatrix}
H_{m1} & H_{m2} & \dots & H_{mm}
\end{bmatrix}_{mxm} \quad \underline{H} \in \mathbb{R}^{m \times m}, \quad H_{ij} \in \mathbb{R}, \quad \text{and}.$ $H_{ij} = \frac{1}{N} \cdot \sum_{n=1}^{N} \left\{ x_{ni} \cdot x_{nj} \cdot (y_n)^2 \cdot \theta \left(-y_n w^T x_n \right) \left[1 - \theta \left(-y_n w^T x_n \right) \right] \right\}$ $\underline{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} = \begin{bmatrix} x_{n_1} \\ x_{n_2} \\ \vdots \\ x_{n_1} \end{bmatrix} \times x_{n_2} = x_{n_2} \times x_{n_2$ Expression for \mathcal{E}^{*} Solved found. $\begin{bmatrix}
w_{1} \\
w_{2} \\
w_{3}
\end{bmatrix}$ $\begin{bmatrix}
x_{1} \\
x_{1} \\
x_{2}
\end{bmatrix}$ $\begin{bmatrix}
x_{2} \\
x_{2}
\end{bmatrix}$ $\begin{bmatrix}
x_{1} \\
x_{2}
\end{bmatrix}$ $\begin{bmatrix}
x_{2} \\
x_{3}
\end{bmatrix}$ $\begin{bmatrix}
x_{2} \\
x_{4}
\end{bmatrix}$ $\begin{bmatrix}
x_{2$ any misunderstanding)

Problem 3 ca):

Similar to problem 2. We can Still assume, without loss of generality c WOLOG7, that there are m features in total, so that we can have $\underline{W}ct > = [W_1ct) W_2ct > \cdots W_m(t)]^T$, $\underline{W}ct > \in [R^{m \times l}]$ $\underline{X}ct > = [X_1ct) X_2ct > \cdots X_m(t)]^T$, $\underline{X}ct > \in [R^{m \times l}]$

If one example is misclassified, we have

 $y_{ct} \neq Sign[w_{ct} \cdot x_{ct}] = Sign[\sum_{i=1}^{m} w_{i}(t) \cdot x_{i}(t)]$

According to the problem, we only consider Binary Classification here,

 $\underline{\mathcal{W}}^{T}(t)\cdot\underline{\mathcal{X}}(t)<0\Rightarrow g(t)\underline{\mathcal{W}}^{T}(t)\cdot\underline{\mathcal{X}}(t)<0$

 $\therefore \text{ If } y(t) = -|@ \Rightarrow y(t) = -| \neq \text{ Sign}[w^{T}(t) \cdot X(t)] \Rightarrow$

 $\underline{w}^{T_{(t)}} \cdot \underline{x}_{(t)} > 0 \implies y_{(t)} \cdot \underline{w}^{T_{(t)}} \underline{x}_{(t)} < 0$

Both labels \ \ \ \ y(t)=+1 of Binary Classification have been shown, \ \ y(t)=-1

So we have proved that yets wets xet> < 0.

Problem 3 6): I will solve 3 b) using 2 proof methods.

Proof Method (1) evector-form).

Given the update rule $\underline{w}(t+|j=\underline{w}(t)+y(t),\underline{x}(t))$, we have $y(t)\cdot\underline{w}^{T}(t+|j,\underline{x}(t))=y(t)\cdot[\underline{w}(t)+y(t),\underline{x}(t)]^{T}\cdot\underline{x}(t)$

= $y(t) \cdot \underline{w}^T(t) \cdot \underline{x}(t) + [y(t)]^2 \cdot \underline{x}^T(t) \cdot \underline{x}(t)$, $\underline{x}(t) \in \mathbb{R}^{m \times l} \cdot \underline{x}(t) \in \mathbb{R}^{l \times m}$

= $y(t) \cdot \underline{w}^T(t) \cdot \underline{x}(t) + [y(t)]^2 ||\underline{x}(t)||_2^2$

where $\|\underline{x}_{ct}\|_{2}^{2} = \sum_{i=1}^{m} [x_{i}(t)]^{2}$

Since y(t)=+| or c-|, and it will be meaningless if all features in X(t) are 0, so we have $y(t)\neq 0$ and $X(t)\neq 0$,

.. [y(t)]2. || x(t)||2 70

 $: y(t) \cdot \underline{w}^{T}(t+|\gamma \cdot \underline{X}(t) - y(t) \cdot \underline{w}^{T}(t) \cdot \underline{X}(t) = [y(t)]^{2} ||\underline{X}(t)||_{2}^{2} > 0.$

· · · yet). wtt+/2.xet) > yet). wtet) xet), Proved.

Proof Method (2) (Scalar-form) is on the next page.

Problem 3 cb):

Proof Method (3) (Scalar - form).

Given the update rule $w(t+1) = w(t) + y(t) \cdot x(t)$, we have

$$\begin{bmatrix} W_{1}(t+|\gamma) \\ W_{2}(t+|\gamma) \\ \vdots \\ W_{m}(t+|\gamma) \end{bmatrix} = \begin{bmatrix} W_{1}(t) \\ W_{2}(t) \\ \vdots \\ W_{m}(t) \end{bmatrix} + \begin{bmatrix} y_{1}(t) \cdot X_{1}(t) \\ y_{1}(t) \cdot X_{2}(t) \\ \vdots \\ y_{n}(t) \cdot X_{m}(t) \end{bmatrix} = \begin{bmatrix} W_{1}(t) + y_{1}(t) \cdot X_{1}(t) \\ W_{2}(t) + y_{1}(t) \cdot X_{2}(t) \\ \vdots \\ W_{m}(t) + y_{1}(t) \cdot X_{m}(t) \end{bmatrix}_{m \times 1}$$

 y_{it} · $w_{ctt|}$ · x_{it}) = y_{it} · $\left[\sum_{i=1}^{m}(w_{ict}) + y_{it}$ · $x_{i(t)}\right]$ · $x_{i(t)}$

$$=y_{(t)}\left[\sum_{i=1}^{m}(w_{i(t)}.X_{i(t)})+\sum_{i=1}^{m}(y_{(t)}.X_{i(t)}.X_{i(t)})\right]$$

=
$$y(t)$$
 $\left[\sum_{i=1}^{m} W_{i}(t) \cdot X_{i}(t)\right] + \left[y(t)\right]^{2} \cdot \sum_{i=1}^{m} \left[X_{i}(t)\right]^{2}$

=
$$y(t) \cdot \underline{w}^{T}(t) \cdot \underline{X}(t) + [y(t)]^{2} \cdot ||\underline{X}(t)||_{2}^{2}$$

70 as discussed in Proof Method 1)

·· yet)·wt+/2·x(t) > yet)·wtt)·x(t), Proved.

Problem 3 cc): Recall the update rule, we have $\underline{w}^{T}(tt) = \underline{x}(t) = [\underline{w}(t) + \underline{y}(t) \cdot \underline{x}(t)]^{T} \cdot \underline{x}(t).$ = wtit) · Zit) + yit) · Xtit) · Zit), Ztit) e IR Ixm, zit) e IR mxl $= \underbrace{w}_{(t)}^{T} \cdot \underline{\chi}_{(t)} + y_{(t)} \cdot \underbrace{\xi}_{i=1}^{m} \left[\chi_{i(t)} \right]^{2}$ $= \underline{w}^{T}(t) \cdot \underline{x}(t) + \underline{y}(t) \cdot ||\underline{x}(t)||_{2}^{2}$ Since (Zit), yit) is one "Currently missclassified" training data point, .. yet) = sign[wTet>. Xet)], then we can have Case (1). If yet =+1, w(t) x(t) <0, y(t) / x(t) / 20. Case (2). If y(t) = -1, $\underline{w}^T(t) \underline{x}(t) + 70$, $y(t) \cdot ||\underline{x}(t)||_2^2 < 0$. Since $\underline{w}^T(tt|) \cdot \underline{X}(t) = \underline{w}^T(t) \cdot \underline{X}(t) + \underline{Y}(t) \cdot ||\underline{X}(t)||_2^2$, and Since we know that the features X(t) and the label of I data point do not change while the number of iteration (t) increases, .. Yct+1>= yct), Zct+1>= Zct) for this misclassified data point. Then in case (), the updated wittly is trying to move upwards with yets. || xets || 270. And in case (2), the updated wct+/> is trying to move downwards with y(t). ||x(t)||2 < 0. An example 2D picture is shown

Page 15

on the next page.

Problem 3.67:

Case (1): $y_{(t+)} = y_{(t+)} = +1$, $w_{(t)} \cdot x_{(t)} < 0$, $y_{(t)} \cdot ||x_{(t)}||_2^2 > 0$, $w_{(t+)} \cdot x_{(t+)} = w_{(t+)} \cdot x_{(t+)} = w_{(t)} \cdot x_{(t)} + y_{(t)} \cdot ||x_{(t)}||_2^2$.

Point A is where $w_{(t+)} x_{(t)} < 0$ iteration located, and $w_{(t+)} x_{(t)} < 0$ in Point B or C, which depends on the "moving upwards" strength of $y_{(t)} \cdot ||x_{(t)}||_2^2 = d_1 \text{ or } d_2$, but both d_1 and $w_{(t+)} \cdot x_{(t)} < 0$ As $||x_{(t+)} \cdot x_{(t+)}||_2 = d_1 \text{ or } d_2$, but both d_1 and $||x_{(t+)} \cdot x_{(t)}||_2 = d_1 \text{ or } d_2$, but both d_1 and $||x_{(t+)} \cdot x_{(t+)}||_2 = d_1 \text{ or } d_2$, but both $||x_{(t+)} \cdot x_{(t+)}||_2 = d_1 \text{ or } d_2$.

Case (2): $||x_{(t+)} - x_{(t+)}||_2 = d_1 \text{ or } d_2$, $||x_{(t+)}||^2 = d_1 \text{ or } d_2$.

Case ②: $y(t) = y(t+|\gamma = -|, \underline{w}^T(t) \times z(t) > 0, y(t) \cdot || \times || \times || \cdot || \times || \times || \cdot || \times || \times || \cdot || \times ||$

Therefore, we have proved that as far as classifying zets is concerned, moving from wets to wett/s is a move in the right direction.

Problem 4:

D Convlayer 1. Stride=2, Padding=2, InelRIXH, IntelRYXI

[cd>; c2; 0 0 0 0 0 0]
0 0 047, 027, 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cc/2 Cc22 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 $\begin{bmatrix}
O \\
O
\end{bmatrix}
PAD(X_n^T) \in |R^{8\times 1}| \\
\underline{Y}_1 \in |R^{8\times 8}; \underline{W}_1 \text{ is Stacked} \\
\underline{Y}_1 \in |R^{8\times 8}; \underline{W}_1 \text{ is Stacked} \\
by two <math>2\times 1 \text{ conv filters}.$ $= \underline{W}_1 \cdot P AD(X_n^T) = \\
X_2 \\
\underline{X_3} \\
\underline{X_4} \\
O \\
C \\
Simplified-version results to$

2) Sum-pooling Layer 1. Stride = 2.

 W_1 is the convolution matrix I,

Wz is the Sum-pooling matrix/.

go to the next page for the following layers.

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} & \begin{array}{c} W_2 \\ \end{array} & \begin{array}{c} A \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} B \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} W_2 \\ \end{array} & \begin{array}{c} \end{array} & \begin{array}{c} A \\ & A \end{array} & \begin{array}{c} A \\ \end{array} & \begin{array}$$

save space for next layer.

B is the input to the Second convolutional layer, it is stacked by 2 channels from conv.

thannel 2.
$$B = \begin{bmatrix} B_1 \\ B_2 \end{bmatrix}$$
 thannel 1
 $B = \begin{bmatrix} B_2 \\ B_3 \end{bmatrix}$ thannel 2
 $B \neq \begin{bmatrix} B_4 \\ B_4 \end{bmatrix}$

Problem 4:

3. Conv Layer 2. No Padding this conv layer, Stride = 2.

[C4)2	C12	2 0	0
0	0	042	(2)
[1]2	C.2,2	0	0
			C12)2
		0	
0	0	C423	
Cc/22		100	0
0.	0 0	474 1	[12)4]

 $\begin{bmatrix}
B_1 \\
B_2
\end{bmatrix} = \underline{W_3} \underline{B} \xrightarrow{ReLU} \underline{D}$ $B_3 \quad \underline{W_3} \text{ is the convolution}$ $B_4 \quad \underline{W_3} = |R|^{8 \times 4}$ $B_4 \quad \underline{W_3} = |R|^{8 \times 4}$

 \underline{W} 3 is Stacked by four $2\times |$ Convolutional filters, and $\underline{D} \in |R^{8\times |} = |R^{24\times (2\times |)}$, and \underline{D} is also Stacked by 4 channels from Conv 2.

4. Sum-pooling Layer 2, Stride = 2.

$$\begin{bmatrix}
\frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{0}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} \\
\frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{1}{0} & \frac{1}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{1}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{1}{0} & \frac{0}{0} \\
\frac{1}{0} & \frac{0}{0} & \frac$$

W4 is the Sum-pooling matrix 2.

W4 G1R4x8

Go the next page for FC Layer and expression Summary.

$$= W_{4} D = E \in \mathbb{R}^{4 \times 1}$$

$$= \begin{bmatrix} E_{1} & Channel \\ E_{2} & Channel \\ E_{3} & Channel \\ E_{4} & Channel \\ Squeezed form of four$$

channels from convlayer 2.

Problem 4:

3 Fully-Connected Layer. 3 possible categories.

$$\begin{bmatrix} W_{11} & W_{12} & W_{13} & W_{14} \\ W_{21} & W_{22} & W_{23} & W_{24} \\ W_{31} & W_{32} & W_{33} & W_{34} \end{bmatrix}_{3\times4} \begin{bmatrix} E_{1} \\ E_{2} \\ E_{3} \\ E_{4} \end{bmatrix}_{24\times1} = \underbrace{W_{5}}_{E} \underbrace{\begin{bmatrix} ReLU \\ Y_{2} \\ Y_{3} \end{bmatrix}_{3\times1}}_{Y_{3}} = \underbrace{(Y_{n})^{T}}_{3\times4}$$

Finally, if we take the transpose again $[(\underline{y}_n)^T]^T = (\underline{y}_n^T)^T = \underline{y}_n \in \mathbb{R}^{1\times 3}$, so we have mapped from $\underline{X}_n = [\underline{X}_1, X_2, X_3, X_4] \in \mathbb{R}^{1\times 4}$ to

yn= [y1, y2, y3] ∈ IR 1x3

To summarize, the final expression should be

$$\underline{\mathcal{I}}_{n} = \left\{ ReLU \left(\underline{W}_{5} \underline{W}_{4} ReLU \underline{W}_{3} \underline{W}_{2} ReLU \underline{W}_{1} \left[PAD(\underline{X}_{n}^{T}) \right] \right) \right\}^{T}$$

With this matrix operation expression, the mapping between $\underline{X}_n \in \mathbb{R}^{1\times 4}$ and $\underline{Y}_n \in \mathbb{R}^{1\times 3}$ can be successfully established.