Zadanie 1. O zdarzeniach A, B, C z pewnej przestrzeni uzyskaliśmy informacje, iż następujące prawdopodobieństwa: $\Pr(A|B\cap C)$, $\Pr(B|A\cap C)$ oraz $\Pr(C|A\cap B)$ są określone i wynoszą odpowiednio: 0.6, 0.3 oraz 0.9 . $\Pr[(A\cap B\cap C)(A\cap B)\cup (A\cap C)\cup (B\cap C)]$ wynosi:

- (A) 0.3000
- (B) $\frac{9}{37}$
- (C) $\frac{9}{55}$
- (D) uzyskane informacje nie wystarczają do udzielenia jednoznacznej odpowiedzi
- (E) odpowiedzi udzielić się nie da, bo uzyskane informacje są nawzajem sprzeczne

Zadanie 2. Mamy 4 urny, a w każdej z nich po 4 kule, przy czym w urnie *k-tej* jest *k* kul czarnych i (4-*k*) kul białych. Wybieramy przypadkowo (z równym prawdopodobieństwem wyboru) jedną z 4 urn. Z wybranej urny wyciągnęliśmy kulę czarną. Odkładamy ją na bok i z tej samej urny ciągniemy drugą kulę. Jakie jest prawdopodobieństwo, że wyciągniemy znów kulę czarną?

- $(A) \qquad \frac{5}{12}$
- (B) $\frac{1}{2}$
- (C) $\frac{3}{5}$
- (D) $\frac{2}{3}$
- (E) $\frac{3}{4}$

Zadanie 3. Pobieramy 8 niezależnych realizacji jednowymiarowej zmiennej losowej o nieznanym (ale ciągłym) rozkładzie. Po uporządkowaniu zaobserwowanych wartości w ciąg rosnący $\{z_1, ..., z_8\}$ tworzymy przedział (z_2, z_7) . Z jakim prawdopodobieństwem tak określony przedział pokrywa wartość mediany rozkładu badanej zmiennej losowej?

- (A) $\frac{110}{128}$
- (B) $\frac{112}{128}$
- (C) $\frac{119}{128}$
- (D) $\frac{120}{128}$
- (E) $\frac{127}{128}$

Zadanie 4. Funkcja gęstości dana jest wzorem:

$$f(x,y) = \begin{cases} \frac{3}{4}x + 2xy + \frac{1}{4}y & \text{dla } (x,y) \in (0,1) \times (0,1) \\ 0 & \text{poza tym} \end{cases}$$

$$\Pr\left(X > \frac{1}{2} \middle| Y > \frac{1}{2}\right)$$
 wynosi:

- (A) $\frac{5}{7}$
- (B) $\frac{3}{4}$
- (C) $\frac{7}{9}$
- (D) $\frac{4}{5}$
- (E) $\frac{9}{11}$

Zadanie 5. Rozkład warunkowy zmiennej S (równej $X_1 + \cdots + X_N$) przy danym $\Lambda = \lambda$ jest złożonym rozkładem Poissona z parametrem częstotliwości λ oraz z rozkładem wykładniczym składnika sumy (X_i) o wartości oczekiwanej równej 2.

Rozkład brzegowy zmiennej Λ dany jest funkcją prawdopodobieństwa: $Pr(\Lambda = 1) = \frac{3}{4}$

 $Pr(\Lambda = 2) = \frac{1}{4}$. Wariancja (z rozkładu bezwarunkowego) zmiennej S wynosi:

- (A) 5
- (B) 10
- (C) $10\frac{3}{4}$
- (D) $15\frac{7}{8}$
- (E) 17

Zadanie 6. Niech x_1, \ldots, x_n będą niezależnymi realizacjami zmiennej losowej normalnej o nieznanej średniej i wariancji. Rozpatrzmy klasę estymatorów wariancji określonych wzorem $S(c) = c \cdot \sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2$, gdzie \overline{x} jest średnią z próbki, a c jest pewną dodatnią liczbą rzeczywistą. Wartość c, przy której błąd średniokwadratowy (Mean Square Error) estymatora S(c) osiąga minimum, wynosi:

- (A) $\frac{1}{n-1}$
- (B) $\frac{1}{n-\frac{1}{2}}$
- (C) $\frac{1}{n}$
- $(D) \qquad \frac{1}{n+\frac{1}{2}}$
- (E) $\frac{1}{n+1}$

Zadanie 7. Niech x_1,\ldots,x_n będzie próbką niezależnych obserwacji z rozkładu jednostajnego na przedziale $(0,\varphi)$ z nieznanym prawym końcem przedziału φ . Estymator $\frac{n+1}{n}\cdot\max\{x_1,\ldots,x_n\}$ jest nieobciążony. Jego wariancja wynosi:

(A)
$$\frac{\varphi^2}{n(n+2)}$$

(B)
$$\frac{\varphi^2}{(n+1)(n+2)}$$

(C)
$$\frac{\varphi^2}{6n}$$

(D)
$$\frac{\varphi^2}{2n^2}$$

(E)
$$\frac{\varphi^2}{12n}$$

Zadanie 8. Macierz prawdopodobieństw przejścia w pojedynczym kroku w łańcuchu Markowa o trzech stanach (E_1, E_2, E_3) jest postaci:

$$\begin{bmatrix} q & p & 0 \\ q & 0 & p \\ 0 & q & p \end{bmatrix}, \quad \text{gdzie} \quad q \in (0,1) \quad , \quad p = 1 - q \ .$$

Załóżmy, iż po nieograniczenie rosnącej liczbie kroków rozkład prawdopodobieństwa na przestrzeni stanów zbiega do: $\Pr(E_1) = \frac{1}{7}$, $\Pr(E_2) = \frac{2}{7}$, $\Pr(E_3) = \frac{4}{7}$. Wobec tego q wynosi:

- $(A) \qquad \frac{1}{7}$
- (B) $\frac{1}{3}$
- (C) $\frac{2}{7}$
- (D) to zależy od rozkładu początkowego na przestrzeni stanów
- (E) założenie jest fałszywe, ponieważ rozkład po parzystej liczbie kroków zbiega do innej granicy niż rozkład po nieparzystej liczbie kroków.

Zadanie 9. Pobieramy próbkę x_1,\ldots,x_n niezależnych obserwacji z rozkładu Poissona o nieznanym parametrze λ . Szacujemy parametr $p_0=e^{-\lambda}$ za pomocą estymatora $\hat{p}_0=e^{-\bar{x}}$, gdzie \bar{x} jest średnią z próbki. Obciążenie $E(\hat{p}_0)-p_0$ estymatora jest:

- (A) zerowe
- (B) ujemne
- (C) dodatnie
- (D) dodatnie lub ujemne, w zależności od liczebności próbki n
- (E) dodatnie lub ujemne, w zależności od wartości parametru λ

Zadanie 10. Niech X ma funkcję gęstości:

$$f(x) = \begin{cases} (1+a)x^a & \text{dla } 0 \le x \le 1\\ 0 & \text{poza tym} \end{cases}$$

Testujemy H_0 : a=1 przeciwko H_1 : a=2 . Jeśli dysponujemy pojedynczą obserwacją X, to test najmocniejszy o rozmiarze $\alpha=0.1$ polega na odrzuceniu H_0 jeśli:

- (A) $X > \sqrt[4]{0.9}$
- (B) $X > \sqrt[2]{0.9}$
- (C) X > 0.9
- (D) X < 0.1
- (E) $X < \sqrt[2]{0.1}$

Egzamin dla Aktuariuszy z 5 października 1996 r.

Prawdopodobieństwo i statystyka

${\bf Arkusz\ odpowiedzi}^*$

Imię i nazwisko :	KLUCZ ODPOWIEDZI
Pasal	

Zadanie nr	Odpowiedź	Punktacja*
1	В	
2	D	
3	C	
4	A	
5	C	
6	D	
7	A	
8	В	
9	C	
10	В	

11

^{*} Oceniane są wylącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.