Assignment 3: Applied data science

ANSWERS:

- 1. Solution are described in the following sections:
 - a. Reading dta data process is attached in the source code.
 - b. Summary of statistics:

rns =			
count	758.000000	kww =	
mean	0.269129	count	758.000000
std	0.443800	mean	36.573879
min	0.000000	std	7.302247
25%	0.000000	min	12.000000
50%	0.000000	25%	32.000000
75%	1.000000	50%	37.000000
max	1.000000	75%	41.000000
dtype:	float64	max	56.000000
		dtype:	float64
mrt =			
count	758.000000	age =	
mean	0.514512	count	758.000000
std	0.500119	mean	21.835092
min	0.000000	std	2.981756
25%	0.000000	min	16.000000
50		25%	20.000000
용	1.000000	50%	22.000000
75%	1.000000	75%	24.000000
max	1.000000	max	30.000000
dtype:	float64	dtype:	float64
smsa =		s =	
count	758.000000	count	758.000000
mean	0.704485	mean	13.405013
std	0.456575	std	2.231828
min	0.000000	min	9.000000
25%	0.000000	25%	12.000000
50%	1.000000	50%	12.000000
75%	1.000000	75%	16.000000
max	1.000000	max	18.000000
dtype:	float64	dtype:	float64
med =		expr =	
count	758.00000	count	758.000000
mean	10.91029	mean	1.735429
std	2.74112	std	2.105542
min	0.00000	min	0.000000
25%	9.00000	25%	0.281500
50%	12.00000	50%	0.960000
75%	12.00000	75%	2.440000
max	18.00000	max	11.444000
dtype:	float64	dtype:	float64
		7	
ziq =	750 00000	lw =	750 00000
count	758.000000	count	758.000000
mean	103.856201	mean	5.686739
std	13.618666	std	0.428949
min	54.000000	min	4.605000
25%	95.250000	25%	5.380000
50%	104.000000	50%	5.684000
75%	113.750000	75%	5.991000
max	145.000000	max	7.051000
dtype:	float64	dtype:	float64

c. Scatter plot of Log Wages against (RNS ,MRT, SMSA,KWW,EXPR):

d. The bivariate square models for model point c:

RNS

Omnibus:

OLS Regression Results						
Dep. Variab	======= le:		lw	R-square	======================================	0.022
Model:		0:	LS	Adj. R-	squared:	0.021
Method:		Least Squa	ares	F-stati:	stic:	17.30
Date: Thu, 25 Sep 2		2014	Prob (F	-statistic):	3.56e-05	
Time:		14:47:	:11	Log-Like	elihood:	-424.90
No. Observa	tions:		758	AIC:		853.8
Df Residual	s:		756	BIC:		863.1
Df Model:			1			
		std err	t	P> t	[95.0% Conf. Int.]
const	5.7256	0.018	317.540	0.000	5.690 5.76	51
rns	-0.1446	0.035	-4.159	0.000	-0.213 -0.07	6
=======				=======		======

1.734

7.316 Durbin-Watson:

Prob(Omnibus): 0.026 Jarque-Bera (JB): 7.370

Skew: 0.223 Prob(JB): 0.0251

Kurtosis: 2.817 Cond. No. 2.45

MRT

OLS Regression Results

							====
Dep. Variabl	e:		lw	R-square	ed:	0	.089
Model:		OL	S	Adj. R-s	quared:		0.088
Method:		Least Squa	res	F-statis	tic:	7	73.70
Date:	Th	u, 25 Sep 2	014	Prob (F-	statistic):	5.	14e-17
Time:		14:47:	12	Log-Like	elihood:	-3	98.21
No. Observat	ions:		758	AIC:		80	0.4
Df Residuals	:	7	56	BIC:	BIC:		9.7
Df Model:		1					
	coef	std err	t	P> t	[95.0% Conf.	Int.]	
const	5.5552	0.021	260.095	0.000	5.513	5.597	
					0.197		
Omnibus:			26 Durbir			1.667	
Prob(Omnibus	0.	172 Jarqu	ıe-Bera (JB	e-Bera (JB):			
Skew: 0.092			2 Prob(J	B):	C	.203	
			41 Cond.	No.		2.65	

SMSA

OLS Regression Results

			======
Dep. Variable:	lw	R-squared:	0.046
Model:	OLS	Adj. R-squared:	0.045
Method:	Least Squares	F-statistic:	36.85
Date:	Thu, 25 Sep 2014	Prob (F-statistic):	2.02e-09

Time:		14:47:	14:47:13		Log-Likelihood:	
No. Observat		758			834.9	
Df Residuals	:		756 BIC:		844.1	
Df Model:			1			
=======================================						
	coef	std err	t	P> t	[95.0% Conf. Int.]	
const	5.5441	0.028	197.967	0.000	5.489 5.599	9
smsa	0.2025	0.033	6.070	0.000	0.137 0.268	

Omnibus: 5.469 Durbin-Watson: 1.766

 Prob(Omnibus):
 0.065
 Jarque-Bera (JB):
 5.357

 Skew:
 0.174
 Prob(JB):
 0.0687

 Kurtosis:
 2.781
 Cond. No.
 3.45

KWW

OLS Regression Results

========							======
Dep. Variabl	e:		lw	R-square	R-squared:		
Model: 0:		JS	Adj. R-s	squared:		0.101	
Method: Least Squa			res	F-statis	stic:		85.91
Date: Thu, 25 Sep			2014 Prob (F-statistic):				1.93e-19
Time: 14:47:			14	Log-Like	elihood:		-392.68
No. Observations:			758	AIC:			789.4
Df Residuals:		7	756	BIC:	BIC:		798.6
Df Model:			1				
	coef	std err	t	P> t	[95.0% Conf.	Int.]	
const	5.0005	0.076	66.228	0.000	4.852	5.149	
kww	0.0188	0.002	9.269	0.000	0.015	0.023	
Omnibus:		4.1	35	Durbin-V	Vatson:		1.731
Prob(Omnibus	3):	0.	126	Jarque-E	Bera (JB):		3.864

Skew:	0.123	Prob(JB):	0.145
Kurtosis:	2.752	Cond. No.	191.

EXPR

OLS Regression Results

Dep. Variable:			lw	R-sq	uared:		0.007
Model:			OLS	Adj.	R-squared:		0.006
Method:		Least Squ	ares	F-st	atistic:		5.452
Date:		Fri, 26 Sep	2014	Prob	(F-statistic)	:	0.0198
Time:		18:1	0:22	Log-	Likelihood:	-	430.75
No. Observatio	ns:		758	AIC:			865.5
Df Residuals:			756	BIC:			874.8
Df Model:			1				
							=====
	coef					[95.0% Conf.	_
const	5.6568					5.617	
expr	0.0172	0.007		2.335	0.020	0.003	0.032
========	======						
Omnibus:		7	.070	Durb	in-Watson:		1.673
Prob(Omnibus):		C	.029	Jarq	ue-Bera (JB):		6.678
Skew:		C	.187	Prob	(JB):		0.0355
Kurtosis:			.733		. No.		3.74

Comments:

- RNS

Negative coefficient shows that people from southern states tend to have lower wage than non-southern resident.

- MRT

Positive coefficient shows that married people tend to have higher wage, possibly because the demand of financial stability.

- SMSA

Positive coefficient shows that people who live in urban areas have a tendency to have higher wage.

- KWW

The data shows strong positive correlation between the result of "Knowledge of the World of Work" test score with high wage.

- EXPR

The graph shows strong correlation between experience in years to higher wage.

e. Bivariate least squares model relating log wages to schooling and its 95 confidence interval:

OLS Regression Results

========						
Dep. Variabl	e:		lw	R-square	R-squared:	
Model: 03		LS	Adj. R-s	Adj. R-squared:		
Method: Least Squares		ares	F-statis	F-statistic:		
Date:	Date: Thu, 25 Sep 2014		2014	Prob (F-	statistic):	8.52e-50
Time:		14:47	:14	Log-Like	Log-Likelihood:	
No. Observat	ions:		758	AIC:		650.1
Df Residuals	:		756	BIC:		659.4
Df Model:			1			
				========		
					[95.0% Conf.	-
					4.230	
S	0.0966	0.006	15.991	0.000	0.085	0.108
	======			.=======		
Omnibus:		1.	749	Durbin-W	Jatson:	1.733
Prob(Omnibus):		0	.417	Jarque-E	Jarque-Bera (JB):	
Skew:		0.0	21	Prob(JB)	:	0.428
Kurtosis:		3.	228	Cond. No		83.2

Note: using python statsmodels we can automatically calculate the range of 95% confidence level, which is **0.085** (lower boundaries) and **0.108** (upper boundaries).

f. Multivariate least squares model relating log wages to the variables in b:

OLS Regression Results

========		========					
Dep. Variabl	e:		lw	R-squ	uared:		0.433
Model:		C	DLS	Adj.	R-squared:		0.426
Method:		Least Squar	es	F-sta	atistic:		63.38
Date:	Th	u, 25 Sep 20	14	Prob	(F-statistic):	4.	21e-86a
Time:		15:47:	24	Log-I	Likelihood:	-	218.67
No. Observat	ions:	7	758	AIC:			457.3
Df Residuals	:	7	48	BIC:			503.6
Df Model:			9				
	coef	std err		t	P> t	[95.0% Conf.	<pre>Int.]</pre>
const	3.4149	0.123	27.	.838	0.000	3.174	3.656
rns	-0.0877	0.027	-3.	.203	0.001	-0.142	-0.034
mrt	0.1007	0.027	3.	.716	0.000	0.047	0.154
smsa	0.1368	0.027	5.	.144	0.000	0.085	0.189
med	0.0059	0.005	1.	.258	0.209	-0.003	0.015
iq	0.0042	0.001	3.	.998	0.000	0.002	0.006
kww	-0.0023	0.002	-1.	.174	0.241	-0.006	0.002
age	0.0497	0.006	8.	.342	0.000	0.038	0.061
s	0.0479	0.008	6.	.159	0.000	0.033	0.063
expr	0.0022	0.007	0.	.310	0.757	-0.012	0.016
							=====
Omnibus:		12.1	.22	Durbi	in-Watson:		1.798
Prob(Omnibus):	0.0	002	Jarqı	ue-Bera (JB):		18.748
Skew:		-0.1	.04	Prob	(JB):	8.	49e-05
Kurtosis:		3.7	42	Cond.	. No.	1.	19e+03

Warnings:

^[1] The condition number is large, 1.19e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Note: using python statsmodels we can automatically calculate the range of 95% confidence level, which is **0.033** (lower boundaries) and **0.063** (upper boundaries).

g. Generate a variable that is age raised to the power of two (i.e., is age squared), then re-estimate f. including age-squared:

Results						
Dep. Variabl				uared:		0.438
Model:		03	LS Adj.	R-squared:		0.430
Method:		Least Square	es F-st	atistic:		58.21
Date:	Т	hu, 25 Sep 20	14 Prob	(F-statistic):	1.	06e-86
Time:		16:14:	55 Log-	Likelihood:	-	-215.09
No. Observat	cions:	7.	58 AIC:			452.2
Df Residuals	S:	7	47 BIC:			503.1
Df Model:			10			
	coef	std err	t	P> t	[95.0% Conf.	Int.]
const	4.8628	0.557	8.728	0.000	3.769	5.957
rns	-0.0847	0.027	-3.103	0.002	-0.138	-0.031
mrt	0.1118	0.027	4.095	0.000	0.058	0.165
smsa	0.1400	0.027	5.281	0.000	0.088	0.192
med	0.0056	0.005	1.207	0.228	-0.004	0.015
iq	0.0041	0.001	3.880	0.000	0.002	0.006
kww	-0.0020	0.002	-1.037	0.300	-0.006	0.002
age	-0.0838	0.050	-1.660	0.097	-0.183	0.015
S	0.0511	0.008	6.519	0.000	0.036	0.066
expr	0.0037	0.007	0.515	0.606	-0.010	0.018
a	0.0029	0.001	2.664	0.008	0.001	0.005
========						
Omnibus:		14.2	25 Durb	in-Watson:		1.795
Prob(Omnibus	s):	0.0	01 Jarq	ue-Bera (JB):		22.965
Skew:		-0.1	21 Prob	(JB):	1.	03e-05
Kurtosis:		3.8	18 Cond	. No.	2.	46e+04
=========						

Warnings:

[1] The condition number is large, 2.46e+04. This might indicate that there are strong multicollinearity or other numerical problems.

Note: by including age square into the equation, the coefficient of original age variable is getting smaller while some other variables' coefficients also changed. This shows that in multivariate regression adding new variables affect the whole coefficient, mostly one with high correlation with the one to be included (in this one age and age square).

h. The difference of estimates of the returns to schooling in e. and f. results shows that multivariable might have correlation to each other. Moreover, it can also be assumed that the covariance of the schooling and the unknown error might not be zero.

ANSWERS:

- 2. Solution are described in the following sections:
 - a. simulation of DGP assuming 10,000 observations and estimate the least squares value for $\,b_1\,$ based on equations in problem 2a:

OLS Regression Results

Dep. Variable:	У	R-squared:	0.342
Model:	OLS	Adj. R-squared:	0.342
Method:	Least Squares	F-statistic:	5202.
Date:	Thu, 25 Sep 2014	Prob (F-statistic):	0.00
Time:	17:09:09	Log-Likelihood:	-17503.
No. Observations:	10000	AIC:	3.501e+04
Df Residuals:	9998	BIC:	3.502e+04
Df Model:	1		
co	ef std err	t P> t	[95.0% Conf. Int.]

const	1.0101	0.014	72.509	0.000	0.983	1.037
x1	1.0143	0.014	72.122	0.000	0.987	1.042
========				========		======
Omnibus:		1.1	.33 Durbi	n-Watson:		2.017
Prob(Omnibus)	:	0.5	67 Jarqu	e-Bera (JB):		1.109
Skew:		-0.0	02 Prob(JB):		0.574
Kurtosis:		3.0	51 Cond.	No.		1.02

b. simulation of DGP assuming 10,000 observations and estimate the least squares value for $\,b_1\,$ based on equations in problem 2b:

Dep. Variable:

y R-squared:

0.160

Model:

OLS Adj. R-squared:

0.160

Method:		Least Squa:	res	F-sta	atistic:		1906.
Date:		Thu, 25 Sep 20	014	Prob	(F-statistic):		0.00
Time:		17:15	:39	Log-1	Likelihood:	-	18896.
No. Observatio	ons:	10	000	AIC:		3.7	80e+04
Df Residuals:		9:	998	BIC:		3.7	81e+04
Df Model:			1				
	coef	std err		t	P> t	[95.0% Conf.	Int.]
const	0.9779	0.016	61	1.073	0.000	0.947	1.009
x 1	0.4957	0.011	43	3.663	0.000	0.473	0.518
==========			====				=====
Omnibus:		0.3	328	Durb	in-Watson:		1.976
Prob(Omnibus):		0.8	849	Jarqı	ue-Bera (JB):		0.359
Skew:		-0.0	005	Prob	(JB):		0.836
Kurtosis:		2.	972	Cond	. No.		1.41
=========							

c. Comments:

To find all variables that are relevant in the real world is impossible, and what's more it may also lead to add unnecessary process as follows:

- If we limit to the data being used in this problem 2, (data are random variables and independent), the overuse of many more statistical model might result in these problems:
 - Model might show that predictors have correlation to each other (although it should be totally independent)
 - O Covariance to new unknown errors might not be zero.
- Every time you add more predictor, by default the value of R-squared increases. Too many predictors and higher order polynomials may lead to model new random noise in the data, as known as *overfitting*, where it could produce higher R values and make it harder to make predictions.

ANSWERS:

- 3. Solution are described in the following sections:
 - a. Reading dta data process is attached in the source code.
 - b. Treating the years 70-78 of the NLSW data as a training set and estimate the model presented in class both as a linear and a logit:
- Get the data year 70-78 and fit the linear and logit model

```
df_sliced2 = df[df['year'] >=70]

df_sliced = df_sliced2[df['year'] <=78]

x= df_sliced[['year','age','grade','south','black','smsa']]

y = df_sliced.union

X = sm.add_constant(x)

#Least square regression

model_linear = sm.OLS(y, X)

results_linear = model_linear.fit()

print(results_linear.summary())

#Logit square regression

model_logit = sm.Logit(y, X)

results_logit = model_logit.fit()

print(results_logit.summary())</pre>
```

OLS Regression Results

Dep. Variable:		unio	n	R-squ	ared:	0.045
Model:		OI	ıS	Adj.	R-squared:	0.045
Method:		Least Square	s	F-sta	tistic:	204.8
Date:		Thu, 25 Sep 201	.4	Prob	(F-statistic):	2.98e-256
Time:		18:16:4	9	Log-L	ikelihood:	-13562.
No. Observation	ıs:	2620	0	AIC:		2.714e+04
Df Residuals:		2619	3	BIC:		2.720e+04
Df Model:			6			
		std err				[95.0% Conf. Int.]
		0.052				0.069 0.274

year	-0.0029	0.001	-3.183	0.001	-0.005	-0.001
age	0.0044	0.001	5.240	0.000	0.003	0.006
grade	0.0121	0.001	11.283	0.000	0.010	0.014
south	-0.1421	0.005	-26.236	0.000	-0.153	-0.131
black	0.1442	0.006	24.148	0.000	0.132	0.156
smsa	0.0159	0.006	2.781	0.005	0.005	0.027
=======						
Omnibus:		4332.	120 Durbii	n-Watson:		1.987
Prob(Omnib	us):	0.	000 Jarque	e-Bera (JB):		6880.188
Skew:		1.	252 Prob(JB):		0.00
Kurtosis:		2.	815 Cond.	No.		1.90e+03
========						

Warnings:

[1] The condition number is large, 1.9e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Optimization terminated successfully.

Current function value: 0.506056

Iterations 6

Logit Regression Results

				======			
Dep. Variable	:	ι	union	No. 0	Observations:		26200
Model:		1	Logit	Df Re	esiduals:		26193
Method:			MLE	Df Mo	odel:		6
Date:	-	Thu, 25 Sep	2014	Pseud	do R-squ.:		0.04368
Time:		18:1	16:49	Log-I	Likelihood:		-13259.
converged:			True	LL-Nı	ıll:		-13864.
				LLR p	-value:	1.8	894e-258
=========						========	
	coef	std err		Z	P> z	[95.0% Con	f. Int.]
const	-1.5927	0.318	-	5.016	0.000	-2.215	-0.970
year	-0.0180	0.006	-	3.270	0.001	-0.029	-0.007
age	0.0269	0.005		5.293	0.000	0.017	0.037
grade	0.0744	0.007	1	1.265	0.000	0.061	0.087

south	-0.9013	0.035	-25.440	0.000	-0.971	-0.832
black	0.8535	0.036	23.994	0.000	0.784	0.923
smsa	0.0890	0.036	2.445	0.014	0.018	0.160

c. Treat the years 80-88 of the NLSW data as a set of attributes on individuals that you would like to classify as union/non-union, using a threshold of 0.25 and both the linear and the logit classifiers estimated in b.:

The output of the calculation:

- Using the coefficient from year 70-78 to predict year 80-88:

```
df_sample2 = df[df['year'] >=80]

df_sample = df_sample2[df['year'] <=88]

y_hat_linear = []

y_hat_logit = []

var= df_sample[['year','age','grade','south','black','smsa']]

X_pred = sm.add_constant(var)

#linear

y_hat_linear = results_linear.predict(X_pred)

#logit

y_hat_logit = results_logit.predict(X_pred)
...

Output:</pre>
```

LINEAR: Estimated number of people which is Union : 4308 LOGIT : Estimated number of people which is Union : 3749

- d. For both models, summarize the accuracy of your support vector machine (with a threshold of 0.2) in a table by comparing your union prediction to what was actually observed. It might look something like the table below.
- Now comparing prediction based on data year 70-78 with the actual linear and logit model from actual observation (year 80-88):

```
df sample2 = df[df['year'] >= 80]
df sample = df sample2[df['year'] <=88]</pre>
y act = df sample.union
var= df sample[['year','age','grade','south','black','smsa']]
X pred = sm.add constant(var)
#linear regression
model linear act = sm.OLS(y act, X pred)
results linear act = model linear act.fit()
#Logit square regression
model logit act = sm.Logit(y act, X pred)
results logit act = model logit act.fit()
 #Actual value from the data
#################################
union count real = 0
for people in df sample.union:
 if float(people) == 1: union count real += 1
print 'REAL DATA : Actual number of people which is Union : %d' %
union count real
```

Because there might be misunderstanding to this questions, the middle column stating the number of union student predicted using coefficient in 80-88 were added

SVM	Number of Union	Number of Union	Number of Union
	Members (Predicted	Members (predicted	Members (Actual)
	using 70-78 training	using 80-88 actual	
	data)	data)	
Linear	9217	9968	3323
Logit	8230	9421	