POLITECHNIKA WROCŁAWSKA PROJEKTOWANIE ELEMENTÓW I ZESPOŁÓW MECHANICZNYCH					
Αι	itor	Grupa M01-39a			
Imię i nazwisko:	Numer indeksu:	Numer projektu:	Data oddania:		
Patryk Olearczyk	261089	IV	25.05.2022		
Temat projektu:					
Projekt wstępny wału wraz z łożyskowaniem					

Projekt 4/C/2:

Zaprojektować wał pośredni przekładni zębatej wraz z łożyskowaniem, o wymiarach i obciążeniu jak na schematach poniżej. W ramach projektu należy:

- przeprowadzić obliczenia statyczne wału, a w tym: wyznaczyć reakcje podpór, wyznaczyć rozkłady momentów zginających w poszczególnych płaszczyznach i sporządzić wykresy Mg,
- wyznaczyć wypadkowy moment zginający (+ wykres), obliczyć moment skręcający i sporządzić jego wykres, wyznaczyć moment zastępczy i sporządzić jego wykres,
- dobrać materiał wału i przeprowadzić obliczenia wytrzymałościowe,
- wykreślić teoretyczny zarys wału, dobrać łożyska i uszczelnienia,
- ustalić kształt konstrukcyjny,
- wykonać rysunek złożeniowy wału z łożyskowaniem i zaznaczonymi piastami kół osadzonych na wale, wykonać rysunek wykonawczy wału,
- przeprowadzić obliczenia prędkości krytycznej i dynamicznej strzałki ugięcia zaprojektowanego wału, wskazać niebezpieczny przekrój wału i przeprowadzić niezbędne obliczenia zmęczeniowe (sprawdzić zmęczeniowy współczynnik bezpieczeństwa.

Dane: a = 30 mm, b = 140 mm, c = 50 mm, $d_{p1} = 200$ mm, $d_{p2} = 250$ mm, $P_1 = 5$ kN, $P_{1r} = 1,82$ kN, $P_{1w} = 0,6$ kN, $P_2 = 4$ kN, $P_{2r} = 1,45$ kN. $P_3 = 0$, $P_4 = 0,6$ kN, $P_{2r} = 1,45$ kN. P_{2r}

- 2. Obliczanie momentów gnących na wale:
- 2.1. Momenty gnące w płaszczyźnie XY:
- I. $0 \le x_1 \le a$

$$\begin{aligned} Mg(x_1) = \ P_{1w} \cdot \frac{1}{2} d_{p1} - P_{1r} \cdot x_1 \\ Mg(0) = \ P_{1w} \cdot \frac{1}{2} d_{p1} - P_{1r} \cdot 0 = 60 - 1,82 \cdot 0 \ [kN \cdot mm] = 60 \ Nm \end{aligned}$$

$$Mg(a) = P_{1w} \cdot \frac{1}{2} d_{p1} - P_{1r} \cdot a = 60 - 1.82 \cdot 30 = 5.4 \text{ Nm}$$

II. $a \le x_2 \le a + b$

$$\begin{aligned} Mg(x_2) &= P_{1w} \cdot \frac{1}{2} d_{p1} - P_{1r} \cdot x_1 + R_{Ay}(x_2 - a) \\ Mg(a) &= P_{1w} \cdot \frac{1}{2} d_{p1} - P_{1r} \cdot a + R_{Ay}(a - a) = 60 - 1,82 \cdot 30 + 2,84 \cdot 0 \, 5,4 \, \text{Nm} \\ Mg(a + b) &= P_{1w} \cdot \frac{1}{2} d_{p1} - P_{1r} \cdot (a + b) + R_{Ay} \cdot b = \\ &= 60 - 1,82 \cdot 170 + 2,84 \cdot 140 = 148,8 \, \text{Nm} \end{aligned}$$

III. $0 \le x_3 \le c$ (od lewej)

$$Mg(x_3) = R_{By} \cdot x_3$$

 $Mg(0) = 0 \text{ Nm}$
 $Mg(c) = R_{By} \cdot c = 2,98 \cdot 50 = 148,8 \text{ Nm}$

Rys. 2.1. Wykres momentów gnących w płaszczyźnie XY

- 2.2. Momenty gnące w płaszczyźnie XZ:
- I. $0 \le x_1 \le a$ (od lewej)

$$Mg(x_1) = -P_1 \cdot x_1$$

 $Mg(0) = 0 \text{ Nm}$
 $Mg(a) = -P_1 \cdot a = 5 \cdot 30 = 150 \text{ Nm}$

II. $a \le x_2 \le a + b \text{ (od lewej)}$

$$Mg(x_2) = -P_1 \cdot x_1 + R_{Az} \cdot (x_2 - a)$$

$$Mg(a) = -P_1 \cdot a + R_{Az} \cdot 0 = 150 \text{ Nm}$$

$$Mg(a + b) = -P_1 \cdot (a + b) + R_{Az} \cdot b = -5 \cdot 170 + 6,17 \cdot 140 = 13,8 \text{ Nm}$$

4. Dobór materiału na wał:

Na materiał do wykonania wału wybrano stal 30H/~34Cr4, czyli stal stopową, konstrukcyjną do ulepszania cieplnego i hartowania

5. Wyznaczenie momentu zastępczego:

Tab. 5.1. Zestawienie momentów wypadkowych, zastępczych i teoretycznych średnic wału na odcinku $0 \le x \le a$.

X	Mg – XY	Mg – XZ	Mg_wyp	Moment zastępczy	teoretyczna średnica wału
[mm]	[Nm]	[Nm}	[Nm]	[Nm]	[mm]
0	60	0	60,0	247,4	28,2
5	50,9	-25	56,7	246,6	28,2
10	41,8	-50	65,2	248,7	28,3
15	32,7	-75	81,8	253,6	28,5
20	23,6	-100	102,7	261,1	28,7
25	14,5	-125	125,8	271,0	29,1
30	5,4	-150	150,1	283,1	29,5

Tab. 5.2. Zestawienie momentów wypadkowych, zastępczych i teoretycznych średnic wału na odcinku a \leq x \leq a + b.

X	Mg – XY	Mg - XZ	Moment wypadkowy	Moment zastępczy	Teoretyczna średnica wału
[mm]	[Nm]	[Nm}	[Nm]	[Nm]	[mm]
30	5,4	-150	150,1	283,1	29,5
40	15,6	-138,3	139,2	277,4	29,3
50	25,9	-126,6	129,2	272,6	29,2
60	36,1	-114,9	120,4	268,5	29,0
70	46,4	-103,2	113,1	265,3	28,9
80	56,6	-91,5	107,6	263,0	28,8
90	66,9	-79,8	104,1	261,6	28,8
100	77,1	-68,1	102,9	261,1	28,7
110	87,3	-56,4	104,0	261,6	28,8
120	97,6	-44,7	107,3	262,9	28,8
130	107,8	-33,0	112,8	265,2	28,9
140	118,1	-21,3	120,0	268,3	29,0
150	128,3	-9,6	128,7	272,3	29,1
160	138,6	2,1	138,6	277,1	29,3
170	148,8	13,8	149,4	282,7	29,5

Tab. 5.3. Zestawienie momentów wypadkowych, zastępczych i teoretycznych średnic wału na odcinku 0 < x < c od lewei strony

				, ,	teoretyczna
X	Mg - XY	Mg - XZ	Mg_wyp	Moment zastępczy	średnica wału
50	148,8	13,8	149,4	149,4	23,9
45	133,9	12,4	134,5	134,5	23,0
40	119,0	11,0	119,6	119,6	22,2
35	104,2	9,7	104,6	104,6	21,2
30	89,3	8,3	89,7	89,7	20,1
25	74,4	6,9	74,7	74,7	18,9
20	59,5	5,5	59,8	59,8	17,6
15	44,6	4,1	44,8	44,8	16,0
10	29,8	2,8	29,9	29,9	14,0
5	14,9	1,4	14,9	14,9	11,1
0	0	0	0,0	0,0	0,0

Przykładowe obliczenia:

Do przykładowych obliczeń przyjęto dane z pierwszego wiersza tabeli 4.2.:

x = 30 mm

 $Mg_{XY} = 5.4 \text{ Nm}$

 $Mg_{XZ} = -150 \text{ Nm}$

 $M_s = 500 \ Nm$

 $egin{aligned} k_{go} &= 110 \text{ MPa} \\ k_{sj} &= 115 \text{ MPa} \end{aligned}$

Obliczenia momentu wypadkowego
$$M_w$$
:
$$M_w = \sqrt{{M_{XY}}^2 + {M_{XZ}}^2} = \sqrt{5,\!4^2 + (-150)^2} = \ 150,\!1 \ Nm$$
 Współczynnik redukcyjny α :

Współczynnik redukcyjny α:

$$\alpha = \frac{k_{go}}{k_{sj}} = \frac{110}{115} = 0.96$$

Obliczenia momentu zastępczego M_z :

$$M_z = \sqrt{M_w^2 + (\frac{\alpha}{2}M_s)^2} = \sqrt{150,1^2 + (\frac{0,96}{2} \cdot 500)^2} = 283,1 \text{ Nm}$$

Obliczanie teoretycznej średnicy wału na podstawie momentu zastępczego:

$$\sigma_{g} = \frac{M_{z}}{W_{x}} \le k_{go} = > \frac{M_{z}}{k_{go}} \le W_{x}$$

$$\frac{\pi}{32} d^{3} \ge \frac{M_{z}}{k_{go}}$$

$$d \ge \sqrt[3]{\frac{M_{z} \cdot 32}{k_{go} \cdot \pi}} \left[\sqrt[3]{\frac{Nm}{MPa}} \right]$$

$$d \ge \sqrt[3]{\frac{283,1 \cdot 32}{110 \cdot \pi}} \cdot 10 \text{ [mm]}$$

$$d \ge 29,5 \text{ mm}$$

Rys 5.1. Wykres momentu wypadkowego działającego na wale.

Rys 5.2. Wykres momentu zastępczego działającego na wale.

 $E = 2,1.10^5 \text{ MPa}$ a = 30 mmb = 140 mmc = 50 mm $d_{p1} = 200 \text{ mm}$ $d_{p2} = 250 \ mm$ $P_1=5\ kN$ $P_{1r} = 1,82 \text{ kN}$ $P_{1w} = 0.6 \text{ kN}$ $P_{2w}=0\ kN$ $P_2 = 4 \text{ kN}$ $P_{2r} = 1.45 \text{ kN}$ $R_{Ax} = -0.6 \text{ kN}$ $R_{Ay} = 2,84 \text{ kN}$ $R_{Bv} = 2,98 \text{ kN}$ $R_{Bz} = 0.28 \text{ kN}$

 $R_{Az} = 6.17 \text{ kN}$

6. Obliczenia strzałki ugięcia:

Strzałka ugięcia metodą Clebscha:

6.1. Strzałka ugięcia w płaszczyźnie XY

$$EI\frac{d^2y}{dx^2} = -P_{1w} \cdot \frac{1}{2} \cdot d_{p1} + P_{1r} \cdot x|^a - R_{Ay}(x-a)|^{a+b} + P_2(x-a-b)|^{a+b+c}$$

$$EI\frac{dy}{dx} = -P_{1w} \cdot \frac{1}{2} \cdot d_{p1} \cdot x + P_{1r} \cdot \frac{x^2}{2} |^a - R_{Ay} \frac{(x-a)^2}{2} |^{a+b} + P_2 \frac{(x-a-b)^2}{2} |^{a+b+c} + C_1$$

$$EI \cdot y = -P_{1w} \cdot \frac{1}{4} \cdot d_{p1}x^2 + P_{1r} \cdot \frac{x^3}{6} |^a - R_{Ay} \frac{(x-a)^3}{6} |^{a+b} + P_2 \frac{(x-a-b)^3}{6} |^{a+b+c} + C_1 x + D_1$$

Warunki brzegowe:

$$y(x = a) = 0$$
:

$$-P_{1w} \cdot \frac{1}{4} \cdot d_{p1}a^2 + P_{1r} \cdot \frac{a^3}{6} + C_1a + D_1 = 0$$

$$-0.6 \cdot \frac{1}{4} \cdot 200 \cdot 30^2 + 1.82 \cdot \frac{30^3}{6} - 0 + 4 \frac{(-140)^3}{6} + C_1 \cdot 30 + D_1 = 0$$

$$C_1 \cdot 30 + D_1 = 18810$$

y(x = a + b + c) = 0:

$$-P_{1w} \cdot \frac{1}{4} \cdot d_{p1}(a+b+c)^2 + P_{1r} \cdot \frac{(a+b+c)^3}{6} - R_{Ay} \frac{(b+c)^3}{6} + P_2 \frac{(c)^3}{6} + C_1(a+b+c) + D_1 = 0$$

$$C_1 \cdot 220 + D_2 = 1385367$$

$$\begin{cases} C_1 \cdot 30 + D_1 &= 18810 \\ C_1 \cdot 220 &+ D_2 &= 1385367 \end{cases} = > \begin{cases} C_1 &= 7192,4 \\ D_1 &= -196962 \end{cases}$$

$$EI \cdot y = -P_{1w} \cdot \frac{1}{4} \cdot d_{p1}x^2 + P_{1r} \cdot \frac{x^3}{6} - R_{Ay} \frac{(x-a)^3}{6} + P_2 \frac{(x-a-b)^3}{6} + 7192,4x - 196962$$

Ugięcie statyczne w płaszczyźnie XY:

$$y(0) = \frac{1}{EI} \cdot \left(-P_{1w} \cdot \frac{1}{4} \cdot d_{p1}0^2 + P_{1r} \cdot \frac{0^3}{6} + 7192, 4 \cdot 0 - 196962 \right)$$
$$y(0) = \frac{-196962}{EI} = \frac{-196962}{2.1 \cdot 10^5 \cdot 0.1 \cdot 30^4} = 0,01158 \ mm$$

y(0) = 0.01158 mm

6.2. Strzałka ugięcia w płaszczyźnie XZ:

$$EI \cdot \frac{d^2z}{dx^2} = P_1 x|^a - R_{Az}(x-a)|^{a+b} + P_{2r}(x-a-b)|^{a+b+c}$$

$$EI \cdot z = P_1 \frac{x^3}{6} |^a - R_{Az} \frac{(x-a)^3}{6} |^{a+b} + P_{2r} \frac{(x-a-b)^3}{6} |^{a+b+c} + C_2 x + D_2$$

Warunki brzegowe:

$$y(x = a) = 0$$
:

$$P_1 \frac{a^3}{6} + C_2 a + D_2 = 0$$

$$30C_2 + D_2 = -22500$$

$$y(x = a + b + c) = 0$$
:

$$P_{1} \frac{(a+b+c)^{3}}{6} - R_{Az} \frac{(b+c)^{3}}{6} + P_{2r} \frac{(c)^{3}}{6} + C_{2}x + D_{2} = 0$$

$$220C_{2} + D_{2} = -1850203$$

$$\begin{cases} C_1 \cdot 30 + D_1 = -22500 \\ C_1 \cdot 220 + D_2 = -1850203 \end{cases} = \begin{cases} C_1 = -9619,5 \\ D_1 = 226084,7 \end{cases}$$

$$EI \cdot z = P_1 \frac{x^3}{6} - R_{Az} \frac{(x-a)^3}{6} + P_{2r} \frac{(x-a-b)^3}{6} - 9619,5x + 226084,7$$
Ugięcie statyczne w płaszczyźnie XZ:

$$z(0) = \frac{1}{EI} (P_1 \frac{0^3}{6} - 9619,5 \cdot 0 + 226084,7)$$

$$z(0) = \frac{226084,7}{EI} = \frac{226084,7}{2,1 \cdot 10^5 \cdot 0,1 \cdot 30^4} = 0,01564 \text{ mm}$$

z(0) =0,01564 mm

6.3.

$$f_{stat} = \sqrt{y(0)^2 + z(0)^2} = \sqrt{0.01158^2 + 0.01564^2} = 0.0195 \, mm$$

 $\begin{array}{l} f_{stat} \\ = 0.0195 \ mm \end{array}$

Obliczenia prędkości krytycznej metodą inżynierską:

Prędkość krytyczna:

Predkość obrotowa:

 $C_k = 25,1 \text{ kN}$

 $C_{\rm w} = 14,1 \, {\rm kN}$

 $n = 360 \frac{obr}{min}$

 $X_0 = 0.5$

 $Y_0 = 0.33$ $R_{Ax} = 0.6 \text{ kN}$

 $R_{Av} = 6,17 \text{ kN}$

 $R_{Az} = 2,84 \text{ kN}$

$$\omega_k = \sqrt{\beta \frac{g}{f_{stat}}} = \sqrt{1 \cdot \frac{9,81 \cdot 10^3}{0,0195}} \left[\sqrt{\frac{mm}{s^2 \cdot mm}} \right] = 710 \frac{obr}{s}$$

$$n_k = 30 \cdot \frac{\omega}{\pi} = 30 \cdot \frac{710}{\pi} = 6780 \frac{obr}{min}$$

 $\omega_k = 710 \frac{obr}{s}$

 $n_k = 6780 \frac{obr}{min}$

Obliczenia nośności łożysk:

Na podstawie działających sił oraz średnie czopów wału dobrano łożysko kulkowe 7007 oraz łożysko walcowe NU1005.

Przyjęto prędkość obrotową równą n = 360 $\frac{obr}{min}$

Obliczanie nośności łożyska kulkowego 7208:

$$R_r = R_{Az}^2 + R_{Av}^2 = 6.8 \text{ kN}$$

$$F_z = X_0 \cdot R_{Ay} + Y_0 \cdot R_{Ax} = 0.39 \cdot 6.8 + 0.76 \cdot 0.6 = 3.1 \text{ kN}$$

 $F_z \le C_k$

$$\begin{split} L_{10k} &= (\frac{C_k}{F_z})^{p_k} = (\frac{^{25,1}}{^{3,6}})^3 = 338,9 \text{ obrot\'ow} \\ L_{10hk} &= \frac{^{10^6 \cdot L_{10}}}{^{60 \cdot n}} = 10^6 \cdot \frac{^{338,9}}{^{60 \cdot 360}} = 15689 \text{ godz} \end{split}$$

 $L_{10k} =$ 338,9 obr L_{10hk} $= 15689 \, \text{godz}$

Obliczanie nośności łożyska walcowego NU1005:

$$\begin{split} R_r &= R_{Az}^2 + R_{Ay}^2 = 6,8 \text{ kN} \\ R_r &\leq C_w \\ L_{10w} &= \big(\frac{C_w}{F_z}\big)^{p_w} = \big(\frac{14,1}{3,6}\big)^{\frac{10}{3}} = 94,78 \text{ obrotów} \\ L_{10hw} &= \frac{10^6 \cdot L_{10}}{60 \cdot n} = 10^6 \cdot \frac{194,6}{60 \cdot 360} = 4385 \text{ godz} \end{split}$$

 $L_{10w} =$ 94,78 obr L_{10hw} = 4385 godz

Obliczanie długości wpustów:

Wpusty:

Materiał na wpusty – stal C45

$$p = k_o \ge \frac{4M_s}{h \cdot d \cdot l_o} = 0.8 \cdot 170 = 136 \text{ MPa}$$

 $l_o \ge \frac{4M_s}{h \cdot d \cdot k_o}$
 $l_o \ge \frac{4 \cdot 500}{7 \cdot 30 \cdot 136} \implies l_o \ge 70.1 \text{ mm}$

Długość wpustu jest zbyt długa by zastosować pojedynczy wpust.

Dla koła o średnicy d_{p2} = 250 mm należy zastosować dwa wpusty, stąd długość rowków na wpusty na drugim kole jest równa $l_2 = \frac{70.1}{2} + b = 35,05 + b = 35,05 + 8 = 43,05.$ Przyjęto $l_2 = 43,1 \, mm$.

W przypadku koła zebatego o średnicy d_{pl} = 200 mm również dwa wpusty nie wystarczą do przeniesienia obciążenia. Należy zastosować połączenie wielowpustowe:

$$l_1 \ge \frac{8M}{(D-d)\cdot(D+d)\cdot z\cdot\varphi\cdot k_o} = \frac{8\cdot 500}{(34-28)\cdot(34+28)\cdot 6\cdot 0,75\cdot 136} = 17,6 \ mm$$

10. Obliczenia zmęczeniowe:

10.1. Wymagany współczynnik bezpieczeństwa:

$$x_{wym} = x_1 x_2 x_3 x_4$$

Przyjęto:

$$x_1 = 1.3$$

 $x_2 = 1.1$
 $x_3 = 1.1$
 $x_4 = 1.1$

$$x_2 = 1,$$

$$x_3 = 1$$
,

$$x_4 = 1$$
,

Stad:

$$x_{wym} = 1.3 \cdot 1.1 \cdot 1.1 \cdot 1.1 = 1.73$$

Obliczanie współczynnika bezpieczeństwa w niebezpiecznym przekroju: 10.2.

$$\kappa = 1 = \frac{\sigma_m}{\sigma_a} \Rightarrow \sigma_a = \sigma_m$$

$$R = 0 = \frac{\sigma_{max}}{\sigma_a} => \sigma_{max} = 0$$

$$x_z = \frac{R_e}{\beta \gamma \sigma_a + \sigma_m}$$

$$x_z = \frac{\kappa_e}{\beta \gamma \sigma_a + \sigma_m}$$

Rys 10.2.1. Przekrój niebezpieczny wału

10.2.1. Obliczenia naprężeń nominalnych spowodowanych skręcaniem:

$$\sigma_a = \frac{M}{W_o} = \frac{16 \cdot M}{\pi \cdot d^3} = \frac{16 \cdot 282,7}{\pi \cdot 30^3} = 53,33 MPa$$

10.2.2. Obliczenia współczynnika wrażliwości na działanie karbu:

$$\beta_k = 1 + \eta_k (\alpha_k - 1)$$

 $l_2 = 43.1 \, mm$

 $l_1 \ge 17,6mm$

 σ_a = 53,33 MPa

 $R_m = 880 \text{ MPa}$ $R_e = 740 \text{ MPa}$ $Z_{\rm go}=370\;MPa$ R = 0 $\kappa = 1$

 $M_s = 500 \text{ Nm}$ $k_o = 136 \text{ MPa}$

 $P_1 = 5 \text{ kN}$ $P_2 = 4kN$

h = 7 mmb = 8 mm

 $\varphi = 0.75$

z = 6

Rys. 10.2.2. Wykres zależności promienia karbu od współczynnika wrażliwości materiału na działanie karbu dla materiałów o znanej wytrzymałości na rozciąganie

Przyjęto $\eta_k = 0.72$

$$\frac{\rho}{d} = \frac{0.5}{20.9} = 0.024$$

Rys. 10.2.2. Współczynnik kształtu przy skręcaniu okrągłego wału z rowkiem wpustowym.

Przyjęto $\alpha_k = 2.6$

$$\beta_k = 1 + \eta_k(\alpha_k - 1) = 1 + 0.72 \cdot (2.6 - 1) = 2.15$$

$$\alpha_k = 2.6$$

$$\beta_k = 2.15$$

Rys 10.2.3. Współczynnik stanu powierzchni dla części rozciąganych Przyjęto $\beta_p \, = 1{,}23$

$$\beta = \beta_p \cdot \beta_k = 2,15 \cdot 1,23 = 2,65$$

Rys 10.2.4. Współczynnik wielkości przedmiotu dla elementów stalowych Przyjęto $\gamma = 1,\!36$

 $\beta_p = 1,23$ $\beta = 2,65$

 $\gamma = 1.36$

10.2.3. Obliczenia współczynnika bezpieczeństwa: $x_z = \frac{R_e}{\beta\gamma\sigma_a + \sigma_m} = \frac{740}{2,65\cdot 1,36\cdot 53,33 + 53,33} = 3,02 \ge x_{wym} = 1,73$	
Warunek $x_z \ge x_{wym}$ jest spełniony.	

- $[1] \qquad \underline{https://www.flt.krasnik.pl/baza-wiedzy/12-zasady-doboru-i-obliczania-trwalosci-lozysk-w-wezlach-lozyskowych}$
- [2] <u>https://pkm.edu.pl</u>
- [3] Materiały udostępnione w ramach wykładów.