RETHINKING ALGORITHMS FOR SECURE COMPUTATION A Greedy Approach

Muthu Venkitasubramaniam (joint work with abhi shelat)

Secure Computation

- [STEP 1] Compile f to
 - Boolean Circuits, Arithmetic Circuits, ORAM
- [STEP 2] Generic Approaches
 - Yao based, GMW based, Information Theoretic based
- How to determine which approach
 - Depends on size, latency, bandwidth, etc
- Sometimes specific approaches are better
 - PSI (great primitive, several applications)

THIS TALK

A New Algorithmic Approach for Designing Secure Computation Protocols

SECURE COMPUTATION OF MEDIAN

Aggarwal, Mishra, Pinkas (Eurocrypt `04, JOC `10)

WALK THROUGH

PROVING Semi-honest SECURITY

WHAT ELSE CAN WE COMPUTE USING MILLIONAIRE?

- Convex Hull
- Minimum Spanning Tree [BS05]
- Unit Job Scheduling
- Single Source All Destination Shortest Paths [BS05]
- Set Cover / Vertex Cover / Max Cover*

RESULTS (communication complexity)

Algorithm	Our Work (O)	Circuit (Ω)	ORAM (Ω)
Convex Hull	$\mathbf{O}\ell$	I $log(I)\ell$	$I log^3(I)\ell$
MST	$\mathbf{V}\ell$	$(V\alpha(V))^2\ell$	$V\alpha(V) log^3(V)\ell$
Unit Job Scheduling	$\mathbf{O}\ell$	$\mathbf{I}^2\ell$	$I log^3(I)\ell$
Single Src ADSP	$\mathbf{V}\ell$	$\mathrm{E}^2\ell$	$E log^3(E)\ell$
Cover Problems	$\mathbf{O}\ell$	$I_S^{\ 2}\ell$	$I_{S} log^{3}(I_{S})\ell$

I - input size

 $\alpha()$ - Inverse Ackerman fn.

O - output size

V - #Vertices

- integer representation E - #Edges

WHAT PARADIGM ABSTRACTS THESE ALGORITHMS?

Greedy Algorithms

- Iteratively find the (local) optimal choice and hope for the best
- Leads to optimal in many problems
 - Convex Hull: Jarvis March
 - MST: Kruskal, Prim's algorithm
 - Job Scheduling (many variants)
 - Shortest Path: Dijkstra
 - Set Cover: Submodular Function Approximation

Our Greedy-Millionaire Framework

A function f is secure greedy compatible if there exists a function F such that:

- 1. UNIQUE SOLUTION Given inputs U and V of Alice and Bob f(U,V) is unique
- 2. UNIQUE ORDER If $f(U, V) = (c_1, ..., c_l)$, then $F(^{\wedge}, U \stackrel{.}{\to} V) = c_1 \text{ and } F(c_{fi}, U \stackrel{.}{\to} V) = c_{i+1}$
- 3. LOCAL UPDATABILITY

$$F(c_{Ei}, U \to V) = LT(F(c_{Ei}, U), F(c_{Ei}, V))$$

Secure Greedy-Millionaire Algorithm

Generic Iterative Secure Computation

Alice Input: Distinct elements $U = \{u_1, \dots, u_n\}$

Bob Input: Distinct elements $V = \{v_1, \dots, v_n\}$

Output:

- 1. Alice initializes $(u_a, k_a) \leftarrow F(\bot, U)$ and Bob initializes $(v_b, k_b) \leftarrow F(\bot, V)$.
- 2. Repeat for $\ell(|U|, |V|)$ times:
 - (a) Alice and Bob execute the secure protocol $c_j \leftarrow \mathrm{LT}_f((u_a, k_a), (v_b, k_b))$.
 - (b) Alice updates $(u_a, k_a) \leftarrow F(c_{\leq j}, U)$ and Bob updates $(v_b, k_b) \leftarrow F(c_{\leq j}, V)$.

GENERALIZED COMPARE

Alice Input: Tuple (u, x) with k-bit integer key x

Bob Input: Tuple (v, y) k-bit integer key y

 LT_f Output: Return u if x > y and v otherwise

Secure Greedy-Millionaire Algorithm

Generic Iterative Secure Computation

Alice Input: Distinct elements $U = \{u_1, \dots, u_n\}$

Bob Input: Distinct elements $V = \{v_1, \dots, v_n\}$

Output:

- 1. Alice initializes $(u_a, k_a) \leftarrow F(\bot, U)$ and Bob initializes $(v_b, k_b) \leftarrow F(\bot, V)$.
- 2. Repeat for $\ell(|U|, |V|)$ times:
 - (a) Alice and Bob execute the secure protocol $c_i \leftarrow \mathsf{LT}_f((u_a, k_a), (v_b, k_b))$.
 - (b) Alice updates $(u_a, k_a) \leftarrow F(c_{\leq j}, U)$ and Bob updates $(v_b, k_b) \leftarrow F(c_{\leq j}, V)$.

CORRECTNESS:

$$\begin{split} f(U,V) &= \left(c_1, \dots, c_l\right) \\ F(^{\wedge}, U \,\dot{\vdash}\, V) &= c_1 \text{ and } F(c_{\mathrm{E}i}, U \,\dot{\vdash}\, V) = c_{i+1} \\ F(c_{\mathrm{F}i}, U \,\dot{\vdash}\, V) &= LT\left(F(c_{\mathrm{F}i}, U), F(c_{\mathrm{F}i}, V)\right) \end{split}$$

Secure Greedy-Millionaire Algorithm

Generic Iterative Secure Computation

Alice Input: Distinct elements $U = \{u_1, \dots, u_n\}$

Bob Input: Distinct elements $V = \{v_1, \dots, v_n\}$

Output:

- 1. Alice initializes $(u_a, k_a) \leftarrow F(\bot, U)$ and Bob initializes $(v_b, k_b) \leftarrow F(\bot, V)$.
- 2. Repeat for $\ell(|U|, |V|)$ times:
 - (a) Alice and Bob execute the secure protocol $c_j \leftarrow \operatorname{LT}_f((u_a, k_a), (v_b, k_b))$.
 - (b) Alice updates $(u_a, k_a) \leftarrow F(c_{\leq j}, U)$ and Bob updates $(v_b, k_b) \leftarrow F(c_{\leq j}, V)$.

SIMULATION:

Input U and Output $(c_1,...,c_l)$

Unique Solution and Unique Order

- output of iteration i is c_i

Matroid Set Systems

A set system (S,I) where S is a finite set, and I a nonempty family of subsets of S is a matroid if

Hereditary Property:

If $B \in I$ and $A \subseteq B$, then $A \in I$.

Exchange Property:

If A,B \in I and |A| < |B|, then there exists x in B \ A such that A \cup {x} is in I

Weighted Matroid: a weight function w : S → R+

THEOREM: The greedy algorithm finds maximal independent set with minimum cost.

Examples of Matroids

Example 1: Let M be a matrix. Let S be the set of rows of M and $I = \{A \mid A \subseteq S, A \text{ is linearly independent } \}$

Example 2: Let G = (V,E) be an undirected graph. Choose S = E and I = { A | H = (V,A) is an induced subgraph of G such that H is a forest }

Greedy Algorithm for Matroids

Greedy ALGORITHM ((S,I),w)

- 1. Set A to be empty
- 2. For each x in S taken in monotonically decreasing order do
 - If A∪{x} in I then set A = A∪{x}
- 3. Return A

Matroids are secure-greedy-compatible if

- UNIQUE SOLUTION and UNIQUE ORDER: Assume weights are distinct
- LOCAL UPDATABILITY: If membership in I can be done locally

CAN WE ACHIEVE MALICIOUS SECURITY?

- Unfortunately NOT because we iteratively reveal answer
 - Adversary can adaptively abort in the middle of the computation

SECURE MEDIAN COMPUTATION

PROVING MALICIOUS SECURITY

CAN WE ACHIEVE MALICIOUS SECURITY?

- Unfortunately NOT because we iteratively reveal answer
 - Adversary can adaptively abort in the middle of the computation

NEXT BEST THING: Covert Security

Covert Security

Definition (Informal): [Aumann-Lindell`10] A protocol π is said to compute f in the presence of covert adversaries with ϵ -deterrence if for every PPT Bob and distinguisher D there exists negligible function μ () such that

Pr[Alice outputs "Bob is corrupt"]
≥ ε (Distinguishing gap) – μ(k)

IDEA: After output is revealed, prove that in each step, the greedy update was correctly done

Achieving Covert Security

- Adaptively select inputs
 - Use commitments

- Failure to follow greedy update
 - Use inputs output of order
 - Missing inputs, i.e. use only a subset of inputs committed
- IDEA: Use signatures and consistency checks

Secure Greedy Covert Protocol – High-Level

- Input Commitment Phase: Using an extractable commitment Alice and Bob commit to their inputs.
 - Alice and Bob additional share verification keys for a signature scheme
- Secure Computation Phase: As before iteratively reveal answers. Additionally outputs are signed by both parties.
- Consistency Check Phase: A short protocol that shows each input committed in the first phase used correctly

Consistency Checks

For every input commitment prove that the value contained is either

- In the output, or
- Not part of the optimal solution

Convex Hull: Show that a particular point is not on

the hull.

Consistency Checks - Matroids

Let (S,I) be a weighted matroid set system.

Question: How do you show that particular element is not part of minimum cost maximal independent set?

MST: Show that a particular edge does not decrease cost of tree

Show that in the cycle this edge is of maximum cost

Consistency Checks - Matroids

Let (S,I) be a weighted matroid set system.

Question: How do you show that particular element is not part of minimum cost maximal independent set?

Matroid: Show that a particular element does not decrease

B

cost of independent set.

Show that in the *fundamental* cycle this element is of maximum cost

Proof Length: O(|B|) per input

Efficient Consistency Check - MST

- Naïve approach: Cost O(|V|) proof length per edge
- Improve to O(log n) per edge
- IDEA: UNION-FIND data structure
 - Using the pointer data structure: FIND operations cost O(log n) and Union operations cost O(1)
 - Use signatures to get union and find operations attested
- If we use Tarjan's Union-Find, we can improve to $O(\alpha(n))$ where α is the inverse ackerman function.

RESULTS FOR COVERT SECURITY

Algorithm	Our Work (O) COVERT	Circuit (Ω) MALICIOUS
Convex Hull	$O\ell\Box I\ell$	I $log(I)\ell$
MST	$V log(V)\ell$	$(V\alpha(V))^2\ell$
Unit Job Scheduling	$\mathbf{O}\ell\Box\mathbf{I}\ell$	$I^2\ell$
Single Src ADSP	$V\ell\Box E\ell$	$E^2\ell$

I - input size α ()- Inverse Ackerman fn.

O - output size V - #Vertices

 ℓ - integer representation E - #Edges

CONCLUSION

- Leverage techniques from algorithms to improve secure computation
- Secure computation using only comparison operations
- OPEN PROBLEM 1: What about other primitives?
- OPEN PROBLEM 2: What about other paradigms?
 - Dynamic Programming
 - Randomized Algorithms