קורס ביולוגיה חישובית - עבודת סיום תשפ"ב

מאת: יעל ליברמן (318376449), טהר צביטמן (318192838) ואילת ג'יבלי (208691675)

חלק א': איסוף ועיבוד מידע אודות גנום החיידק בצילוס סבטיליס

1. הכרת וספירת האלמנטים בגנום:

דיווח על מספר האלמנטים מכל אזור בגנום החיידק:

gene: 4536, CDS: 4237, misc_RNA: 93, misc_feature: 89, tRNA: 86, rRNA: 30, ncRNA: 2

2. אפיון אורכי הגנים:

- א. עבור כל גן חישבנו את אורכו על ידי end start לאחר בדיקה שהsequence לא כולל את הend). הוספנו את עמודת האורכים לתוך מdataframe של קובץ הGenBank
 - ב. חילקנו את הdataframe לשניים: השורות של הגנים שמקודדים לחלבון וכל השאר.
 - ג. הגנים אשר מקודדים לחלבון: ממוצע: 874.57, מינימום: 63, מקסימום: 16467.
 - שאר הגנים: ממוצע: 324.12, מינימום: 33, מקסימום: 2928.
 - ד. ההתפלגות עבור כל קבוצה:

<u>המסקנות שלנו מהגרף:</u> ניתן לראות כי הגנים המקודדים לחלבון ארוכים יותר באופן משמעותי מהגנים שאינם מקודדים לחלבון. זה אכן תואם לציפיות מאחר וגנים המקודדים לחלבון צריכים להיות בעלי קידוד אחיד שיתורגם בהמשך לחומצות אמינו שמתקפלות לחלבון, ולכן הם בד"כ יותר ארוכים. לעומת זאת, גנים שאינם מקודדים לחלבון יהיו בד"כ רצפי בקרה, שמקשרים בין חלבונים או מובילים לחלבונים אחרים, ולכן גם האורך שלהם יהיה קצר יותר.

3. חישוב אחוז GC בגנים:

- א. ממוצע בגנום החיידק: 43.51%.
- ב. עבור כל גן חישבנו את GC%. הוספנו את עמודת הGC% לתוך הdataframe של קובץ הGenBank. ממוצע בגנים המקודדים לחלבון: 43.12%.
- ג. <u>האם התוצאה תואמת לציפיות?</u> אזורים עם אחוז GC גבוהה הם לרוב אזורי בקרה. התכונה של הנוקלאוטידים האלו היא שהם יוצרים קשר כימי חזק וזוהי תכונה חשובה לרצפי בקרה שמטרתם להיצמד

לאתרים וליצור קשרים. ניתן לראות כי אחוז הGC קטן מחצי בגנום כולו, ונמוך יותר בגנים המקודדים לחלבון. זה אכן הגיוני מאחר ורוב הגנום מורכב מגנים המקודדים לחלבון שבהם אחוז הGC לא גבוהה במיוחד.

ד. התפלגות GC% בחלבונים:

ה. חמשת הגנים שבהם יש את אחוז הGC הגבוה ביותר:

GC%	אורך	סוג	סטרנד	ๆเ๐	התחלה	שם הגן (locus tag)	מקום
67.12	73	tRNA	-1	3194527	3194454	BSU tRNA 86	.1
65.79	76	tRNA	1	11627	11551	BSU tRNA 6	.2
65.79	76	tRNA	1	32095	32019	BSU tRNA 9	.3
65.79	76	tRNA	1	96221	96145	BSU tRNA 20	.4
65.79	76	tRNA	1	166328	166252	BSU tRNA 28	.5

חמשת הגנים שבהם יש את אחוז הGC הנמוך ביותר:

GC%	אורך	סוג	סטרנד	ๆเ๐	התחלה	שם הגן (locus tag)	מקום
20.83	168	CDS	-1	2699677	2699509	BSU 26360	.1
23.38	201	CDS	-1	1905195	1904994	BSU 17700	.2
24.52	261	CDS	-1	1901377	1901116	BSU 17670	.3
25.45	444	CDS	-1	4036787	4036343	BSU 39290	.4
25.81	399	CDS	-1	4132736	4132337	BSU 40210	.5

4. בדיקת עקביות בקובץ הדאטה:

כדי לבדוק את עקביות קובץ הדאטה, הגדרנו את השיקולים הבאים עבור גנים המתורגם לחלבון:

- .start codon. בדיקה האם רצף הגן מתחיל
 - 2. בדיקה האם אורך רצף הגן מתחלק ב 3.
 - 3. בדיקה האם התרגום הנתון נכון.
- לפי מסגרת stop codon ולא קיים stop codon לפי מסגרת (לפי מסגרת). האם רצף הגן מסתיים באמצע הרצף (לפי מסגרת).

הגנים שעבורם נמצאה סתירה:

סיבה	טבלת תרגום	סוג	סטרנד	ๆเ๐	התחלה	(locus tag) שם הגן	מס'
Sequence length 1798 is not a multiple of three	11	CDS	-1	2161778	2159980	BSU 20040	.1
Extra in frame stop codon found	11	CDS	-1	2165614	2162107	BSU 20060	.2
Sequence length 1102 is not a multiple of three	11	CDS	-1	3628240	3627138	BSU 35290	.3

חלק ב': אנליזת חלבונים בעזרת אתר ה-UniProt

1. הצלבה בין החלבונים בקובץ ה-GenBank לבין החלבונים מקובץ ה-UniProt:

לאחר חקירה של קובץ GenBank, בחרנו את השדה "locus_tag" כמזהה של הגן, מאחר והוא מופיע בכל הרשומות וייחודי לכל רשומה. לאחר מכן, הוספנו את העמודה המתאימה לקובץ הUniProt - שם העמודה באתר הוא "Gene names (ordered locus)". על סמך מזהה זה, הצלבנו בין החלבונים הנמצאים בין 2 באתר הוא "Gene names (ordered locus)". על סמך מזהה זה, מקף תחתון בערך המזהה, ובקובץ הקבצים. היה צורך בעיבוד מקדים, מאחר ובקובץ הBenBank היה מקף תחתון בערך המזהה, ובקובץ הUniProt היו המון רשומות שלא היה להם מזהה או רשומות שבהם הופיעו כמה מזהים לאותו חלבון.

סיכום ההפרשים:

In Genbank but not in Uniport:

```
['BSU01790', 'BSU02585', 'BSU02785', 'BSU03385', 'BSU04345', 'BSU04536', 'BSU04745', 'BSU04849', 'BSU06812', 'BSU07735', 'BSU11515', 'BSU11525', 'BSU11800', 'BSU12671', 'BSU12815', 'BSU12875', 'BSU13545', 'BSU14568', 'BSU16845', 'BSU17099', 'BSU17679', 'BSU17689', 'BSU17715', 'BSU17845', 'BSU18275', 'BSU18595', 'BSU18596', 'BSU18689', 'BSU18978', 'BSU19745', 'BSU19915', 'BSU21058', 'BSU21409', 'BSU21546', 'BSU21638', 'BSU21639', 'BSU21639', 'BSU26055', 'BSU26075', 'BSU26305', 'BSU26399', 'BSU26449', 'BSU26569', 'BSU26826', 'BSU26827', 'BSU26935', 'BSU27009', 'BSU27035', 'BSU27085', 'BSU29845', 'BSU30466', 'BSU31289', 'BSU31725', 'BSU32539', 'BSU33221', 'BSU34399', 'BSU35678', 'BSU36079', 'BSU36215', 'BSU36575', 'BSU36668', 'BSU36739', 'BSU37089', 'BSU37569', 'BSU38495', 'BSU40022', 'BSU40358', 'BSU40576']
```

Missing:80, from total: 4237

In Uniport but not in Genbank (after removing nan):

```
['BSU16840', 'BSU33220', 'BSU18930', 'BSU16890', 'BSU16900', 'BSU06810', 'BSU13790', 'BSU20030', 'BSU26080', 'BSU25760', 'BSU26390', 'BSU03570', 'BSU06050', 'BSU34410', 'BSU35610', 'BSU26040', 'BSU02180', 'BSU34420', 'BSU35230', 'BSU16640', 'BSU35150', 'BSU13799', 'BSU18110', 'BSU18940', 'BSU39030', 'BSU23290', 'BSU12670', 'BSU07740',
```

'BSU22660', 'BSU07180', 'BSU40020', 'BSU11381', 'BSU11382', 'BSU28480', 'BSU01840', 'BSU35690']

Missing: 36, Nan values: 4353, from total: 8541

בצורה ויזואלית:

מאיפה נובעים ההבדלים? ההבדלים נובעים מהשוני בין סוגי הקבצים. בקבצי genBank מוצגים כל הרצפים בגן שמקודדים לחלבונים פונקציונליים, זאת אומרת- גנים שמקודדים לחלבונים פונקציונליים, זאת אומרת- גנים שנחקרו ויש עליהם מידע. לכן אם מופיע קודון אתחול של גן, הגן שמתחיל אחריו יופיע בקובץ genbank ללא קשר למידע הנוסף שיש עליו, לעומת זאת ב uniprot הוא יופיע רק אם הוא נחקר וידוע לנו מה הפונקציונליות שלו.

2. אפיון הרצפים הטרנסממברנליים:

א. אפיון אורכי הרצפים - ההתפלגות:

על מנת לבודד את הרצפים הטרנסממברנליים בנינו dataframe נפרד עבורם. לכל תת רצף שורה נפרדת. לאחר מכן הוספנו לdataframe הזה את העמודה של האורכים.

ב. אפיון אחוז חומצות האמינו ההידרופוביות - ההתפלגות:

ממוצע: 70.09, מינימלי: 28.57, מקסימלי: 100.

ממוצע: 20.40, מינימלי: 10, מקסימלי: 43.

<u>האם התוצאה של אחוז חומצות האמינו ההידרופוביות ברצפי הטרנסממברנליים תואמת לציפיות?</u> רצפים טרנסממברנליים אלו רציפים המקודדים לחומצות אמינו הנמצאות בתוך הממברנה (קרום התא). הממברנה היא הידרופובית מאחר והיא עשויה מליפידים בעלי ראש הידרופילי, ושני זנבות של חומצות שומן הידרופוביות. המבנה הזה מאפשר לה להוות חיץ הידרופובי בין שני תמיסות מימיות- תמיסה חיצונית לתא ותמיסה פנימית לתא. בגלל המבנה הזה, על מנת לשמור על יציבות החלבון, הרצפים הטרנסממברנליים צריכים לקודד לחומצות אמינו הידרופוביות כדי להתאים למבנה הממברנה. מכאן ניתן להסיק שהתוצאות אכן תואמות לציפיות מאחר והתוצאות מראות אחוזי חומצות אמינו הידרופיביות גבוהה ברצפים אלו.

אפיוו התפלגות אחוז GC בקבוצות השונות:

א. התפלגות GC% ברצפי הגנים שהם CDS, שנמצאים בחיתוך בין GenBank לבין האחד:

ב. טבלה המסכמת את הסטטיקות עבור קבוצות הגנים השונות:

קבוצה	ממוצע	חציון	מינימום	מקסימום
A: All proteins	43.12	43.89	20.83	56.44
B: Proteins with transmembrane	43.28	44.08	20.83	54.26
C: Proteins without transmembrane	43.07	43.87	23.38	56.44

התפלגות ה GC% בכל הקבוצות על אותו הגרף עם ארבעה חלקים:

חלק ג': אנליזה מנקודת מבט אבולוציונית - וירוסים

1. חישוב העמדות הסינונימיות לכל קודון עבור הקוד הגנטי של וירוס הקורונה:

הקוד הגנטי המתאים לוירוס הקורונה הוא הקוד מטבלה 1, מכיוון שבקובץ לא מופיע השדה המציין את מספר הטבלה מדובר בקוד הגנטי הסטנדרטי מטבלה 1.

: (Nei-Gojobori (NG86) דיווח על מספר עמדות סינונימיות עבור כל קודון (לפי השיטה של

{'TTT': 0.33, 'TCT': 1.0, 'TAT': 0.43, 'TGT': 0.38, 'TTC': 0.33, 'TCC': 1.0, 'TAC': 0.43, 'TGC': 0.38, 'TTA': 0.86, 'TCA': 1.29, 'TAA': 0.0, 'TGA': 0.0, 'TTG': 0.75, 'TCG': 1.12, 'TAG': 0.0, 'TGG': 0.0, 'CTT': 1.0, 'CCT': 1.0, 'CAT': 0.33, 'CGT': 1.0, 'CTC': 1.0, 'CCC': 1.0, 'CAC': 0.33, 'CGC': 1.0, 'CTA': 1.33, 'CCA': 1.0, 'CAA': 0.38, 'CGA': 1.5, 'CTG': 1.33, 'CCG': 1.0, 'CAG': 0.38, 'CGG': 1.33, 'ATT': 0.67, 'ACT': 1.0, 'AAT': 0.33, 'AGT': 0.33, 'ATC': 0.67, 'ACC': 1.0, 'AAC': 0.33, 'AGC': 0.33, 'ATA': 0.67, 'ACA': 1.0, 'AAA': 0.38, 'AGA': 0.75, 'ATG': 0.0, 'ACG': 1.0, 'AAG': 0.38, 'AGG': 0.38, 'AGG': 0.67, 'GTT': 1.0, 'GCT': 1.0, 'GAT': 0.33, 'GGT': 1.0, 'GTC': 1.0, 'GCC': 1.0, 'GAC': 0.33, 'GGC': 1.0, 'GTG': 1.0, 'GCG': 1.0, 'GAG': 0.38, 'GGG': 1.0, 'GTG': 1.0, 'GCG': 1.0, 'GAG': 0.38, 'GGG': 1.0}

2. השוואה בין וירוס הקורונה שבודד ביולי 2020 לבין וירוס הקורונה שבודד בינואר 2022:

א. בתור מזהי הגנים לקחנו את שדה "gene" המופיע בכולם (בניגוד לlocus_tag שבקובץ זה אינו מופיע בכולם). לאחר ההשוואה ראינו שכל 11 מזהי הגנים משני הקבצים משותפים.

שמות הגנים המשותפים:

['ORF1ab', 'S', 'ORF3a', 'E', 'M', 'ORF6', 'ORF7a', 'ORF7b', 'ORF8', 'N', 'ORF10']

ב. חישוב dnds - אופן החישוב:

1. ביצוע עימוד לפי התרגום לחלבונים, מיון העימודים האפשריים ולקיחת האחרון מביניהם. את העימוד נבצע על סמך מטריצת "BLOSUM62". נשים לב שרק בעימוד האחרון ברשימה הממוינת לא נכנס גאפ במקום של התחלפות חלבונים (כי בצורה זאת הגאפ "מעלים" מוטציה אסינונמית) אלא יש גאפים רק במקרה ובאמת חסרים חלבונים.

דוגמה הממחישה למה רק העימוד האחרון הוא המתאים לחישוב המדד:

```
1 aligner = Align.PairwiseAligner()
 2 alignments = aligner.align("MKIILFL", "MKIAILFG")
 3 for alignment in sorted(alignments):
       print("Score = %.1f:" % alignment.score)
       print(alignment)
Score = 6.0:
MKI-ILF-L
111-111--
MKIAILFG-
Score = 6.0:
MKI-ILFL-
111-111--
MKIAILF-G
Score = 6.0:
MKI-ILFL
|||-|||-
MKIAILFG
```

- 2. תרגום חזרה לdna לפי הreading frame והמקורי, כאשר גאפ נתרגם חזרה כשלושה גאפים.
 - 3. חישוב מדדי dn,ds בעזרת הפונקציה cal_dn_ds של ספרית

התוצאות עבור חמישה גנים מהגנים המשותפים:

סוג סלקציה	ds	dn	ๆเ๐	התחלה	תפקיד	שם הגן	מקום
Negative	0.001194	0.000338	25384	21562	CDS	S	.1
Natural	0.0	0.0	27191	26522	CDS	М	.2
Natural	0.0	0.0	27387	27201	CDS	ORF6	.3
Positive	0.0	0.003614	27759	27393	CDS	ORF7a	.4
Natural	0.0	0.0	29533	28273	CDS	N	.5

הסבר קצר על תיכון הקוד:

מאחר ויש קריאה של קובץ GenBank בכל חלק בפרויקט, ועדכון תמידי של תכונות נוספות על סמך המידע בקובץ, יצרנו מחלקה המייצגת אובייקט של GenBank עם התכונות הבאות:

- של pandas של pandas של פירוט של גן את העמודות (לא שומר את הרשומות שהופיעו עם pandas של type 'gene'
 - 'id', 'start', 'end', 'strand', 'type', 'table', 'translation', 'codon_start' (ואפשר להוסיף לו עמודות לפי הצורך)
 - משתנה sequence השומר את רצף הגנום.
 - .type 'gene' משתנה genes השומר את שמות הגנים שהופיעו עם
- type' ששומר את השורות הרלוונטיות מnot_cds של הגנים שלא הופיעו עם not_cds משתנה cds.'cds

בנוסף, פונקציות גלובליות השימושיות לכל החלקים של הפרויקט, שמרנו במודול נפרד בשם 'generic_functions'.