

Thermo

Fachgebiet Thermodynamik
Fakultät III – Prozesswissenschaften

Aufgabe 9.1

- a) Definieren Sie allgemein den Begriff Wirkungsgrad
- b) Was ist der thermische Wirkungsgrad $\eta_{\rm th}$? Wie ist er für eine Tubine zu berechnen?
- c) Was ist der exergetische Wirkungsgrad η_{ex} ? Wie ist er für eine Tubine zu berechnen?
- d) Was ist der isentrope Wirkungsgrad η_s ? Wie ist er für eine Tubine zu berechnen?

Aufgabe 9.2

Für einen experimentellen Hochtemperatur-Reaktor soll eine Gasturbine projektiert werden. Die niedrigste Temperatur des Arbeitsgases beträgt, $T_1 = 300 \,\mathrm{K}$, die höchste $T_3 = 1000 \,\mathrm{K}$. Die isentropen Wirkungsgrade von Verdichter und Turbine sind $\eta_{s,V} = 0.95$ und $\eta_{s,T} = 0.92$. Als Arbeitsgas ist Helium vorgesehen, das von 3 bar auf 25 bar adiabat verdichtet wird, dann auf $T_3 = 1000 \,\mathrm{K}$ isobar aufgeheizt und in

der Turbine wieder auf 3 bar adiabat entspannt wird. Vor dem Eintritt in den Verdichter wird das Helium auf $T_1 = 300 \,\mathrm{K}$ isobar zurück gekühlt.

- a) Wie groß ist die spezifische technische Arbeit des Verdichters und welche Temperatur T_2 stellt sich nach der Kompression ein?
- b) Stellen Sie den Prozess in einem T-s-Diagramm dar. Zeichnen Sie auch alle relevanten Isobaren und die Zustände 2s und 4s ein.
- c) Welcher Massenstrom muss erwärmt werden, damit das Helium $\dot{Q}=1250\,\mathrm{MW}$ Wärme aufnimmt?
- d) Welche spezifische technische Arbeit gibt die Turbine ab, wie groß ist demnach die gesamte Nutzleistung der Gasturbine?
- e) Wie groß ist der thermische Wirkungsgrad des Prozesses?
- f) Die Wärme wird bei $T_{\rm Reaktor} = 1050\,\mathrm{K}$ bereitgestellt. Berechnen Sie:
 - i) den exergetischen Wirkungsgrad der Anlage (gesamter Hochtemperatur-Reaktor)
 - ii) den exergetischen Wirkungsgraddes Prozesses (nur die Gasturbine selbst)

Hinweise:

Helium kann als ein ideales Gas mit $R_{\rm m}=8.314\,72\,{\rm kJ/(kmol\,K)},\ M=4\,{\rm kg/kmol},\ c_p=5.1967\,{\rm kJ/(kg\,K)},\ c_v=3.1180\,{\rm kJ/(kg\,K)}$ betrachtet werden. Die Temperatur der Umgebung beträgt $T_{\rm a}=288.15\,{\rm K}.$