Course Introduction

Lecture 1

Course Outline

- Digital Hardware Design
 - Programmable Logic Devices (PLDs)
 - FPGA (Field-Programmable Logic Array) vs. CPLD (Complex Programmable Logic Array)
 - CPLD Architecture
 - LUTs and FPGA Architecture
 - Combinational and Sequential Design
 - Logic Design with LUTs
 - Arithmetic Circuits, Memory, I/O systems
 - Hardware Description Languages
 - Software Tools
 - FPGA Design Flow
 - Timing Analysis
- Mixed Signal Design and More Advanced Topics
- Projects/Labs

Tentative Timeline

Midterm Project Oct 22

Final Project

- Proposal: Oct 29
- Components list: Nov 12
- Final Presentation/Demo: Dec 3-10

Hardware & Software Requirements

Xilinx Vivado Design Suite

System Requirements for Xilinx Vivado Design Suite

OS: 64bit Windows or Linux (CentOS)

RAM: Minimum 4GB (recommended 8GB)

Disk space: About 35 GB

Target FPGA development board is provided

Xilinx Zynq®-7000 SoC Evaluation and Development Board or <u>ZedBoard</u> https://reference.digilentinc.com/ media/zedboard:zedboard ug.pdf

Objectives of this course

- Provide the foundation for FPGA design in embedded systems
 - What is an FPGA?
 - How was the technology developed?
 - How to select the best FPGA architecture for a given application?
 - How to use the software tools
- Learn about the tools for FPGA development for creation of prototypes or products for a variety of applications.
- Solve critical digital design problems using FPGAs.

Why FPGAs?

- The latest FPGAs have as many as 20 million gates.
- They are displacing **Application Specific Integrated Circuits** (ASIC) in most applications because:
 - time to market is faster and
 - capability is nearly the same.
- Programmable Logic Provides:
 - Design with ultimate flexibility
 - Allowing the part to provide almost any digital function.
 - Combined with Hard Core IP to make a System on a Chip (SoC), which
 - Allow quick development of
 - very sophisticated products at
 - relatively low cost.

Where are FPGAs Used?

- Programmable logic devices (PLDs) are rapidly becoming prevalent in most electronic products constituting a \$6 billion a year business and are expected to grow to \$10 billion a year by 2020.
- They are the key technology enabling many new product developments in the near future, including:
 - Autonomous vehicles
 - The Internet of things
 - Secure data centers and cloud computing
 - Robotics
 - Machine vision and learning
 - Renewable energy
 - Home automation
 - 8K video and video surveillance
 - Facial recognition and bioinformatics
 - 5G cellular networks and
 - Smart medical diagnostics

Xilinx Software Tools Vivado Design Suite Installation and Licensing

- https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/vivado-design-tools.html
- https://www.xilinx.com/support/documentation-navigation/design-hubs/dh0013-vivado-installation-and-licensing-hub.html
- https://www.xilinx.com/support/documentation/sw manuals/xilinx2
 018 1/ug973-vivado-release-notes-install-license.pdf
- https://www.xilinx.com/products/design-tools/vivado/memory.html