

Data Types

- Numerical/Continuous Data
 - Interval
 - can + , can't * / (no true Zero) example: temperature
 - Difference between values is meaningful. Zero Celsius doesn't mean that there's no temperature!
 - Ratio
 - can + * / (has true Zero) example: weight
 - 0 means that there's no variable
- Categorical/Discrete Data
 - Nominal
 - No order is defined between categories. example –

(Male, Female)

- Ordinal
 - Order between categories is defined example -

level of energy, movie rating 1-5

	Provides:	Nominal	Ordinal	Interval	Ratio
e)	The "order" of values is known		V	V	•
	"Counts," aka "Frequency of Distribution"	•	V	V	•
	Mode	•	V	V	•
	Median		~	~	~
	Mean			v	•
	Can quantify the difference between each value			•	•
	Can add or subtract values			v	✓
	Can multiple and divide values				•
	Has "true zero"				v

Data Types Quiz

How much gas in your gas tank?

Continuous Ratio

 A rating of your health: "poor", "moderate", "good", "excellent"

Discrete Ordinal

• The race of your classmates

Discrete **Nominal**

Ages in years

Discrete **Ordinal**

Money spent in a store

Continuous Ratio

Statistics – Mean, Median, Mode

4. MeanMedianMode.ipynb

Statistics – Std.Dev, Variance

Variance is simply the average of the squared differences from the mean

 μ = Expected Value

-1 σ to 1σ = 1 Standard Deviation (ie: ~2/3 of the time, your results/variance will fall within this range) -2 σ to 2σ = 2 Standard Deviations (ie: 95% of the time, your results/variance will fall within this range) -3 σ to 3σ = 3 Standard Deviations (ie: 99.7 of the time, your results/variance will fall within this range)

variance =
$$\sigma^2 = \frac{\sum (x_r - \mu)^2}{n}$$

standard deviation
$$\sigma = \sqrt{\frac{\sum (x_r - \mu)^2}{n}}$$

 $\mu = \text{mean}$

Statistics – Std.Dev, Variance

- Std.Dev is usually used as a way to identify outliers/anomalies
- You can talk about how extreme a data point is by talking about "how many sigmas" away from the mean it is

Population vs Sample

 N-1 based Sample variance is a much better unbiased estimate of the population variance

Population Variance

$$\sigma^2 = \frac{\sum_{i=1}^n (X_i - X_{avg})^2}{n}$$

Population Standard Deviation

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - X_{avg})^2}{n}}$$

Sample Variance

$$s^{2} = \frac{\sum_{i=1}^{n} (X_{i} - X_{avg})^{2}}{n-1}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (X_i - X_{avg})^2}{n-1}}$$

5. StdDevVariance.ipynb

Probability Density Function (PDF)

 The probability density function ("p.d.f.") is a function of a continuous random variable, whose integral across an interval gives the probability that the value of the variable lies within the same interval.

Normal Distribution as a function (PDF)

• Surely, Its probability sums up to 1:

$$\int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = 1$$

Probability Mass Function (PMF)

 a probability mass function (pmf) is a function that gives the probability that a discrete random variable is exactly equal to some value.

Cumulative Distribution Function (CDF)

 the cumulative distribution function (CDF) of a real-valued random variable X, or just distribution function of X, evaluated at x, is the probability that X will take a value less than or equal to x.

CDF, PDF, PMF,...

"KEEP YOUR EYE ON THAT GUY, TOM. HES NOT, YOU KNOW...NORMAL!"

Distributions

#