

CONCOURS ARTS ET MÉTIERS ParisTech - ESTP - POLYTECH

Épreuve de Sciences Industrielles PSI

Durée 5 h

Si, au cours de l'épreuve, un candidat repère ce qui lui semble être une erreur d'énoncé, d'une part il le signale au chef de salle, d'autre part il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

L'usage de calculatrices est autorisé.

AVERTISSEMENT

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies. En particulier, les résultats non justifiés ne seront pas pris en compte. Les candidats sont invités à encadrer les résultats de leurs calculs.

Le candidat devra porter l'ensemble de ses réponses sur le cahier réponses, à l'exclusion de toute autre copie. Les résultats doivent être reportés dans les cadres prévus à cet effet.

ETUDE D'UNE CELLULE D'ASSEMBLAGE POUR AVION FALCON

Figure 1 : vue générale CAO de la cellule d'assemblage en cours de travail

Le sujet comprend :

- un questionnaire ;
- un dossier annexe;
- un document réponse.

Le questionnaire est composé de 4 parties :

- Partie 1 : choix du robot ;
- Partie 2 : étude de l'assemblage ;
- Partie 3 : étude des déplacements ;
- Partie 4 : étude de la sélection des fixations.

Présentation du support d'étude

1 Introduction

Dans un contexte mondial de plus en plus concurrentiel la société DASSAULT doit en permanence améliorer les procédés de production de ses avions.

Une des étapes importantes de la réalisation d'un avion est l'assemblage de sa structure. Comme le montre la Figure 2, la structure d'un avion est composée de plusieurs éléments devant être assemblés entre eux pour donner la structure finale de l'appareil.

Figure 2 : FALCON 7X et vue éclatée des différents sous-ensembles d'un FALCON 7X

Afin de répondre à des exigences de qualité croissantes et permettre une amélioration de sa productivité, la société DASSAULT développe en permanence de nouveaux moyens d'assemblage des éléments de structure. La cellule d'assemblage de cette étude répond à cette problématique. Elle permet d'assister les opérateurs dans la réalisation des tâches d'assemblage.

Les éléments de structure sont assemblés entre eux par des éléments de fixation appelés rivets : c'est l'opération de rivetage. L'assemblage complet correspond à une succession d'opérations à répéter pour chacun des points de fixations :

- mise en place des éléments à assembler ;
- perçage des éléments ;
- dépose d'un rivet ;
- pose d'une bague déformable ;
- serrage du rivet par déformation de la bague.

Ces opérations devant être répétées un très grand nombre de fois (environ 300 heures d'opérations d'assemblages sur un avion) le gain de productivité apporté par la cellule est important.

De plus, l'utilisation d'un robot permet de diminuer le nombre d'opérations de montage / démontage des éléments à assembler (comparativement à un travail manuel) ce qui permet un gain de travail supplémentaire.

Le support de cette étude, la cellule d'assemblage, permet la réalisation de l'assemblage du tronçon central du fuselage du Falcon 7X. La Figure 3 présente l'extrémité du robot en cours de travail sur ce tronçon central (composé des tronçons 1 et 2).

Figure 3 : structure de Falcon 7X en cours d'assemblage par la cellule

2 Présentation du procédé d'assemblage par rivetage

2.1 Positionnement des éléments à assembler

Les différents éléments de l'appareil sont assemblés par rivetage. Pour permettre cet assemblage, chacun des éléments possède à son extrémité un épaulement (partie moins épaisse) permettant l'assemblage. Lorsque les deux éléments à assembler sont en vis-à-vis, les deux tôles des extrémités se superposent permettant ensuite l'obtention d'une structure unique d'épaisseur uniforme.

Extrémités des tronçons avant positionnement

Extrémités des tronçons positionnés

Figure 4 : principe de l'assemblage par superposition de tôles

Les deux extrémités ainsi positionnées sont prêtes à être percées pour recevoir l'élément de fixation. Dans notre étude, nous supposerons que tous les éléments sont déjà positionnés et que des éléments de maintien en position permettent le respect de ce positionnement durant la totalité des opérations de fixation.

2.2 Assemblage des éléments

Le rivetage consiste à assembler deux pièces de façon permanente, il permet donc la réalisation d'une liaison encastrement non démontable. Les opérations de rivetage connaissent également des évolutions technologiques liées à l'emploi de matériaux plus performants comme le titane. Le rivet en aluminium, massivement employé dans la construction aéronautique, est partiellement remplacé par le rivet en titane. Ces rivets en titane permettent de meilleures performances mécaniques ; les fixations obtenues ont une tension entre tôles assemblées plus importante que pour les rivets en aluminium. Les rivets en titane permettent ainsi de réduire le nombre de rivets comparativement aux rivets en aluminium.

Figure 5 : bagues et rivets

Pour ces raisons, notre étude ne portera que sur l'assemblage par rivetage avec rivets de type titane. La phase d'assemblage étudiée est réalisée conjointement par le bras robot de la cellule et un opérateur. Le bras robot est situé à l'extérieur de l'avion (voir Figure 3) tandis que l'opérateur est situé à l'intérieur de l'avion. L'opérateur contrôle le bras robot à l'aide d'une télécommande et il dispose les bagues déformables (voir Figure 5) nécessaires à la réalisation de l'opération de rivetage.

La phase d'assemblage se décompose en cinq opérations :

- opération 1 : mise en position des tronçons d'avion à assembler sur un châssis de montage ;
- opération 2 : perçage des tronçons par le bras robot ;
- opération 3 : introduction dans le trou (percé) d'un rivet titane par le bras robot;
- opération 4: pose d'une bague déformable par l'opérateur sur l'extrémité du rivet située à l'intérieur de l'avion;
- opération 5 : déformation de la bague et rupture du rivet.

Figure 6 : rivet installé

La fixation obtenue à la fin de ces cinq opérations est celle de la Figure 6. Les cinq opérations sont répétées sur chacune des fixations de l'avion. Chaque rivet installé permet l'établissement d'une action mécanique (appelée tension installée) entre les deux tôles assemblées. La somme des tensions installées, correctement réparties sur les éléments, permet d'obtenir un assemblage rigide non démontable permettant de résister aux contraintes mécaniques subies pendant l'utilisation de l'avion. Le détail des opérations 4 et 5 est donné en annexe 1.

3 Structure de la cellule d'assemblage

3.1 Présentation fonctionnelle

Figure 7 : vue partielle de la cellule d'assemblage

La cellule d'assemblage (Figure 7) est un système permettant de réaliser, en collaboration avec l'opérateur, l'ensemble des opérations d'assemblage décrites précédemment. Les exigences fonctionnelles de la cellule sont données dans l'annexe 2.

3.2 Description structurelle de la cellule

La cellule est composée de plusieurs sous-ensembles fonctionnels (voir Figure 7 et diagramme en annexe 2) :

- un pupitre de commande permettant de piloter et paramétrer la cellule, ce pupitre peut être déporté grâce à une télécommande ce qui permet le pilotage à distance ;
- une plateforme permettant d'assurer la liaison au bâti et le positionnement des autres sousensembles :
- un robot six axes de marque ABB équipé d'un effecteur, cet effecteur intègre les outils nécessaires à l'assemblage;
- un magasin de stockage des rivets ;
- une unité d'aspiration des copeaux (non représentée sur la Figure 7).

Partie 1 : choix du robot

1 Objectif

L'objectif de cette partie sera de choisir un robot permettant de satisfaire aux exigences fonctionnelles 1 et 1.3. Pour cela l'étude va porter sur :

- la position de la cellule dans le hall de production (exigence 1.3);
- l'assemblage des tronçons à l'aide des rivets en choisissant le robot permettant d'atteindre tous les points de la couture (exigence 1) ;
- la stabilité de la plateforme (exigence 1.3).

2 Étude de la liaison plateforme (1) / sol (0)

La plateforme réalise l'interface entre le robot et le hall de production. Chaque plateforme est composée :

- d'une partie supérieure qui permet de fixer le robot et les accessoires associés à la plateforme ;
- d'une partie inférieure qui permet de lier la plateforme (1) au sol du hall (0).

Le positionnement de la plateforme au sol du hall (annexe 3) est réalisé par trois liaisons. Afin de pouvoir déplacer la plateforme sur les différentes zones d'assemblage, elles sont dupliquées dans le hall de production.

Question 1

En vous aidant de l'annexe 3, tracer le graphe de structure entre le sol (0) et la plateforme (1).

Question 2

Nommer et caractériser les liaisons entre le sol (0) et la plateforme (1).

Question 3

Le positionnement proposé par ces 3 liaisons est-il isostatique ? Justifier la réponse.

Question 4

Donner le nom de la liaison équivalente entre le sol (0) et la plateforme (1). Cette liaison doit-elle être démontable ? Justifier la réponse.

3 Choix du robot - Exigence 1

L'implantation est considérée comme optimale lorsque la totalité des points visés est accessible : l'extrémité du robot doit atteindre le point de fixation de la demi-couture des tronçons. Dans le cas de l'étude, le robot doit réaliser une couture orbitale entre deux tronçons et éviter les collisions éventuelles (annexe 5). La masse de l'effecteur positionnée à l'extrémité du robot est de 100 kg.

Ce choix sera une estimation : cette pré-étude sera validée si plus de 90 % de la zone à couturer est atteinte. Pour cela, les enveloppes de travail de l'annexe 5 seront à utiliser.

Une analyse plus fine sera réalisée par une étude d'implantation dans un environnement numérique 3D de l'atelier de production, des tronçons et des robots permettant ainsi la validation du choix.

Question 5

À l'aide de la documentation des annexes 4 et 5, choisir le robot qui permettra de réaliser la couture orbitale de la position extrême 1 à la position extrême 2 en complétant le schéma du document réponse. Votre schéma devra faire apparaitre :

- la position de l'embase de rotation du robot (point O_1) sur l'axe $\vec{y}_{_D}$;
- les dimensions utiles (permettant d'atteindre la zone à couturer) des enveloppes de travail des robots.

4 Validation du non-basculement du robot - Exigence 1.4

Afin de garantir le non-basculement de la plateforme lorsque le robot se situe dans les positions extrêmes, un dispositif complémentaire d'équilibrage statique doit être adapté sur la plateforme. Ce dispositif devra :

- être manœuvré manuellement par un opérateur ;
- utiliser l'énergie musculaire de l'opérateur ;
- s'adapter au sol du hall d'assemblage ;
- permettre un réglage fin.

Question 6

Proposer une solution technique permettant de garantir le non-basculement de la plateforme. Vous utiliserez une représentation cinématique en numérotant les solides et en nommant les différentes liaisons qui composent votre solution.

Le sol du hall de production sera numéroté (0) et la plateforme sera numérotée (1).

Question 7

Donner une description de son fonctionnement.

Question 8

Sur un schéma de la plateforme, proposez une implantation de ce dispositif afin de garantir son efficacité (position et nombre) ?

Partie 2 : étude de l'assemblage

1 Objectif

L'objectif de cette partie est de vérifier que le robot choisi permet d'assurer le perçage des tronçons de l'avion.

2 Détermination des actions mécaniques – Exigence 1.2

2.1 Objectif

L'objectif est de déterminer l'effort lié au perçage des tôles dans le cas le plus défavorable (exigence 1.2 en annexe 2).

2.2 Données

L'effort lié au perçage peut être déterminé par le modèle suivant : $F = K'.K_c.R.f$

Avec:

- F : effort lié au perçage (en N) ;
- K': coefficient lié à la forme de l'outil;
- K_c: pression spécifique de coupe fonction du matériau (en N.mm⁻²);
- R : rayon de l'outil de perçage (en mm) ;
- f : avance de l'outil en (mm.tour⁻¹).

Les essais expérimentaux de perçage sont donnés dans les tableaux de l'annexe 6. Ces essais ont été réalisés sur les deux matériaux les plus utilisés pour les tronçons de l'avion (aluminium et composite aluminium/carbone).

Question 9

Déterminer l'effort F dans chacun des cas.

Question 10

Quel est le cas le plus défavorable pour l'opération de perçage ?

Cette valeur d'effort sera ensuite choisie pour les validations des caractéristiques robots.

3 Validation des caractéristiques du robot – Exigence 1.2

3.1 Objectif

L'objectif est de déterminer le couple articulaire C_{12} à appliquer sur le bras 2 afin de garantir l'effort de perçage et l'effort presseur (exigence 1.2).

3.2 Notations

Les éléments de réduction d'un torseur d'action mécanique du solide i (noté S_i) sur le solide j (noté S_j) au point O dans le repère R_0 seront notés :

$$\{S_i \rightarrow S_j\} = \begin{cases} \overrightarrow{R}(S_i \rightarrow S_j) \\ \overrightarrow{M}(O, S_i \rightarrow S_j) \end{cases} = \begin{cases} X_{ij} & L_{ij} \\ Y_{ij} & M_{ij} \\ Z_{ij} & N_{ij} \end{cases}_{O \text{ dans } R_0}$$

3.3 Hypothèses

- l'étude est réalisée pour une demi couture orbitale (couture supérieure) ;
- le repère $R_0(O_0; \vec{x}_0; \vec{y}_0; \vec{z}_0)$ sera supposé galiléen ;
- \vec{y}_0 est l'axe vertical ascendant et $\vec{g} = -g.\vec{y}_0$ avec $g = 9.81 \text{ m.s}^{-2}$;
- toutes les liaisons sont supposées parfaites.

3.4 Repérage et paramétrage (Figure 8)

Le repère associé à **l'embase fixe (0)** est le repère $R_0(O_0; \vec{x}_0; \vec{y}_0; \vec{z}_0)$, \vec{y}_0 étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1; \vec{y}_1)$, par rapport au bâti (0), a pour repère associé le repère $R_1(O_1; \vec{x}_1; \vec{y}_1; \vec{z}_1)$ tel que $O_0 = O_1$, $\vec{x}_0 = \vec{x}_1$, $\vec{y}_0 = \vec{y}_1$, $\vec{z}_0 = \vec{z}_1$.

Le bras (2), en liaison pivot d'axe $(O_2; \vec{z}_2)$ par rapport à l'embase de rotation (1), a pour repère associé le repère $R_2(O_2; \vec{x}_2; \vec{y}_2; \vec{z}_2)$ tel que $\overrightarrow{O_1O_2} = L_1.\vec{x}_1 + L_2.\vec{y}_1, \vec{z}_1 = \vec{z}_2$ et $(\vec{x}_1, \vec{x}_2) = (\vec{y}_1, \vec{y}_2) = \theta_{12}$.

Le bras (3), en liaison pivot d'axe $(O_3; \vec{z}_3)$ par rapport au bras (2), a pour repère associé le repère $R_3(O_3; \vec{x}_3; \vec{y}_3; \vec{z}_3)$ tel que $\overrightarrow{O_2O_3} = L_3.\vec{x}_2, \vec{z}_1 = \vec{z}_3$ et $(\vec{x}_1, \vec{x}_3) = (\vec{y}_1, \vec{y}_3) = \theta_{13}$.

Le bras (4), en liaison pivot d'axe $(O_4\,;\vec{x}_4)$ par rapport au bras (3), a pour repère associé le repère $R_4\big(O_4\,;\vec{x}_4\,;\vec{y}_4\,;\vec{z}_4\big)$ tel que $\overrightarrow{O_3O_4}=L_4.\vec{x}_3+L_5.\vec{y}_3,\,\vec{x}_3=\vec{x}_4$ et $\big(\vec{y}_3,\vec{y}_4\big)=(\vec{z}_3,\vec{z}_4)=\theta_{34}.$

L'ensemble (E1) composé du bras (5), du poignet et de l'outil, en liaison pivot d'axe $(O_5; \vec{z}_5)$ par rapport au bras (4), a pour repère associé le repère $R_5(O_5; \vec{x}_5; \vec{y}_5; \vec{z}_5)$ tel que $\overrightarrow{O_4O_5} = L_6.\vec{x}_3, \vec{z}_1 = \vec{z}_5$ et $(\vec{x}_1, \vec{x}_5) = (\vec{y}_1, \vec{y}_5) = \theta_{15}$.

La masse du bras (2) est notée M_2 et la position du centre de gravité est définie par $\overrightarrow{O_2G_2} = \frac{1}{2}$. L₃. \vec{x}_2

La masse du bras (3) et du bras (4) est notée M_{34} et la position du centre de gravité est définie par $\overrightarrow{O_3G_3} = \frac{1}{3} \cdot L_4 \cdot \vec{x}_3 + L_5 \cdot \vec{y}_3$.

La masse de l'ensemble (E1) est notée M_{E1} et la position du centre de gravité est définie par $\overrightarrow{O_5G_5} = L_7.\vec{x}_5$.

L'extrémité de l'outil est définie par le point P définie par $\overrightarrow{O_5P} = L_8.\vec{x}_5$

Le torseur d'action mécanique lié au perçage sera noté :

$$\{\text{Tronçon (perçage)} \rightarrow \text{E1}\} = \begin{cases} -F & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{P \text{ dans } R_e}$$

Un effort presseur est de plus nécessaire pour le perçage optimal des deux tronçons. Le torseur d'action mécanique associé sera noté :

$$\{Tronçon (presseur) \rightarrow E1\} = \begin{cases} -P & 0 \\ 0 & 0 \\ 0 & 0 \end{cases}_{P \text{ dans } R_5}$$

La rotation entre les solides (0) et (1) est supposée bloquée dans la suite du sujet.

Figure 8 : paramétrage

Question 11

Réaliser le graphe de structure de l'ensemble en précisant les liaisons.

Question 12

Quel est l'ensemble Σ à isoler afin de déterminer le couple C_{12} ?

Question 13

Réaliser un bilan des actions mécaniques extérieures appliquées à Σ et écrire les éléments de réduction de chaque torseur d'actions mécaniques.

Question 14

Quel théorème doit-être appliqué et sur quel axe de projection, pour déterminer le couple C₁₂ ?

La configuration correspondant à la position extrême supérieure de la couture orbitale correspond aux angles suivant : θ_{12} = 60 °; θ_{13} = -4 °; θ_{15} = -90 °.

Dans la suite de l'étude, l'angle θ_{13} sera considéré nul.

Question 15

Déterminer l'équation littérale du couple C₁₂ en fonction de g, F, P, M₂, M₃₄, M_{E1}, L₃, L₄, L₅, L₆, L₇, θ₁₂, θ_{15} .

Les valeurs du robot considéré sont :

- $M_2 = 264 \text{ kg}$; $M_{34} = 430 \text{ kg}$; $M_{E1} = 150 \text{ kg}$; P = 150 N;
- $L_1 = 0.405 \text{ m}$; $L_2 = 0.433 \text{ m}$; $L_3 = 1.075 \text{ m}$; $L_4 = 1.762 \text{ m}$; $L_5 = 0.165 \text{ m}$; $L_6 = 0.250 \text{ m}$; $L_7 = 0.550 \text{ m}$; $L_8 = 0.750 \text{ m}$;

Question 16

Déterminer alors la valeur du couple C₁₂.

La valeur limite supérieure du couple C₁₂ est fixée par le constructeur à 9000 N.m.

Question 17

Le choix du robot permettra-t-il de garantir les conditions d'assemblage dans cette position ? Justifier la réponse.

Partie 3 : étude des déplacements

1 Contexte

En fonction des diamètres de trous à percer ou pour effectuer une maintenance sur la tête de perçage (affutage d'outils...), le robot change automatiquement de tête à l'aide d'un magasin positionné sur la plateforme. Afin de gagner du temps lors de ces changements de tête, les accélérations des moteurs sont utilisées au maximum.

2 Étude d'une phase dynamique

2.1 Objectif

L'objectif de cette partie est de déterminer le couple articulaire C₂₃ sur le bras (3) afin de garantir l'accélération maximale.

2.2 Hypothèses

- le repère R₀(O₀; \$\vec{x}_0; \$\vec{y}_0; \$\vec{z}_0\$) sera supposé galiléen;
- \$\vec{y}_0\$ est l'axe vertical ascendant et \$\vec{g}\$ = -g.\$\vec{y}_0\$ avec \$g\$ = 9.81 m.s⁻²;
- · toutes les liaisons sont supposées parfaites ;
- θ₁₂ est supposé constant.

2.3 Repérage et paramétrage (Figure 9)

La modélisation proposée, différente de la partie 2 pour des raisons de simplification, est la suivante : Le repère associé à l'embase fixe (0) est le repère $R_0(O_0\,;\,\vec{x}_0\,;\,\vec{y}_0\,;\,\vec{z}_0),\,\,\vec{y}_0$ étant l'axe vertical ascendant.

L'embase de rotation (1), en liaison pivot d'axe $(O_1; \vec{y}_1)$, par rapport au bâti (0), a pour repère associé le repère $R_1(O_1; \vec{x}_1; \vec{y}_1; \vec{z}_1)$ tel que $O_0 = O_1$, $\vec{x}_0 = \vec{x}_1$, $\vec{y}_0 = \vec{y}_1$, $\vec{z}_0 = \vec{z}_1$.

Le bras (2), en liaison pivot d'axe $(O_2; \vec{z}_2)$ par rapport au bâti de rotation (1), a pour repère associé le repère $R_2(O_2; \vec{x}_2; \vec{y}_2; \vec{z}_2)$ tel que $\overline{O_1O_2} = L_1.\vec{x}_1 + L_2.\vec{y}_1$, $\vec{z}_1 = \vec{z}_2$ et $(\vec{x}_1, \vec{x}_2) = (\vec{y}_1, \vec{y}_2) = \theta_{12}$.

L'ensemble (E2) composé des bras (3) et (4), et du poignet, en liaison pivot d'axe $(O_3; \vec{z}_3)$ par rapport au bras (2), a pour repère associé le repère $R_3(O_3; \vec{x}_3; \vec{y}_3; \vec{z}_3)$ tel que $O_2O_3 = L_3.\vec{x}_2, \vec{z}_1 = \vec{z}_3$ et $(\vec{x}_1, \vec{x}_3) = (\vec{y}_1, \vec{y}_3) = \theta_{13}$.

L'effecteur, noté (EF), est fixé à l'extrémité du poignet du robot.

La masse du bras (2) est notée M_2 et la position du centre de gravité est définie par $\overline{O_2G_2} = \frac{1}{2} \cdot L_3 \cdot \vec{x}_2$. La masse de l'ensemble (E2) est notée M_{E2} et la position du centre de gravité est définie par $\overline{O_3G_3} = \frac{1}{3} \cdot L_4 \cdot \vec{x}_3 + L_5 \cdot \vec{y}_3$. Son moment d'inertie par rapport à l'axe $(O_3; \vec{z}_3)$ est noté J_{E2} . La masse de l'effecteur est notée M_{EF} et la position du centre de gravité sera considéré comme le

La masse de l'effecteur est notée M_{EF} et la position du centre de gravite sera considere comme le point G_5 avec $\overrightarrow{O_3G_5} = L_4 \cdot \overrightarrow{x}_3 + L_5 \cdot \overrightarrow{y}_3 + L_6 \cdot \overrightarrow{x}_3 + L_7 \cdot \overrightarrow{x}_3$. Son moment d'inertie par rapport à l'axe $(G_5; \vec{z}_3)$ est noté J_{EF} .

C₂₃ est la notation du couple articulaire exercé par le moteur sur le bras (3). L'inertie de son rotor est négligée.

Figure 9 : paramétrage

Question 18

Déterminer la vitesse du solide (E2) au point G_3 dans son mouvement par rapport à R_1 notée $\overrightarrow{V}(G_3 \in E2/R1)$ en fonction de L_4 , L_5 et $\dot{\theta}_{13}$.

Question 19

Déterminer la vitesse du solide (EF) au point G_5 dans son mouvement par rapport à R_1 notée $\overrightarrow{V}(G_5 \in EF/R1)$ en fonction de L_4 , L_6 , L_7 et $\dot{\theta}_{13}$.

Afin de déterminer le couple C_{23} , le théorème de l'énergie sera appliqué à l'ensemble $\Sigma = \{EF \ U \ E2\}$.

Question 20

Donner l'expression des puissances développées par les actions extérieures à l'ensemble $\Sigma = \{EF \ U \ E2\}$, dans son mouvement par rapport au repère R_1 .

Question 21

Donner l'expression des puissances développées par les actions intérieures à l'ensemble $\Sigma = \{EF \ U \ E2\}$, dans son mouvement par rapport au repère R_1 . Justifier la réponse.

Question 22

Déterminer l'énergie cinétique de Σ dans son mouvement par rapport à R₁.

Question 23

En déduire l'expression du couple C_{23} en fonction de g, J_{E2} , J_{EF} , M_{E2} , M_{EF} , L_4 , L_5 , L_6 , L_7 , θ_{13} , θ_{13}

Question 24

L'accélération $\ddot{\theta}_{13}$ est supposée constante. Pour quelle valeur de θ_{13} le couple C_{23} est-il maximal ?

L'accélération maximale est fixée à $\ddot{\theta}_{13}=1.5~\text{rad.s}^{-2}$ et le couple articulaire maxi C_{23} à $C_{23\text{max}}=8000~\text{Nm}$.

De plus, $M_{E2} = 480 \text{ kg.m}^2$; $M_{EF} = 100 \text{ kg}$; $J_{E2} = 272 \text{ kg.m}^2$; $J_{EF} = 2.2 \text{ kg.m}^2$; $L_4 = 1.762 \text{ m}$; $L_5 = 0.165 \text{ m}$; $L_6 = 0.250 \text{ m}$; $L_7 = 0.550 \text{ m}$.

Question 25

Déterminer dans ces conditions le couple articulaire C₂₃ et conclure sur le choix du robot.

L'étude a permis de valider le choix du robot permettant de réaliser une couture orbitale.

Partie 4 : étude de la sélection des fixations

L'objectif de cette partie est de valider les choix effectués par la société pour le sous ensemble de sélection des fixations de la cellule (exigence 1.1).

1 Fonctionnement du magasin de rivets

1.1 Présentation

Le magasin de rivets doit assurer le stockage des rivets prévus pour l'assemblage ainsi que leur distribution vers le robot. Les rivets sélectionnés dans le magasin sont acheminés vers l'effecteur au moyen d'un système d'aspiration (non étudié ici).

Avant d'être acheminés vers l'effecteur, les rivets sont stockés dans des cassettes rangées verticalement dans l'armoire de stockage (Figure 11). Un chariot de sélection se déplace verticalement pour déplacer la buse d'aspiration qui permettra d'acheminer les rivets contenus dans la cassette vers l'effecteur (Figure 10).

Figure 10 : vue arrière du chariot

Figure 11 : localisation du magasin de stockage sur la cellule

1.2 Axe chariot

Le déplacement du chariot est assuré par un axe numérique asservi en vitesse et en position. Cet axe est composé d'un moteur à courant continu, d'un système de transmission de puissance de type poulies / courroie et d'un rail (Figure 12 et annexe 7).

Figure 12 : schéma de principe du guidage

1.3 Modélisation du système de déplacement du chariot

Figure 13 : modèle cinématique

2 Sélectionner les fixations - Exigence 1.1

Afin de sélectionner le type de fixation, la buse d'aspiration doit être déplacée en face de la cassette avec une erreur inférieure à 0,5 mm (voir exigences fonctionnelles). Cependant le fabricant du système poulie-courroie du rail indique déjà une erreur de +/- 0,25 mm due notamment à l'élasticité de la courroie. Par conséquent, l'erreur en position de la commande doit être nulle.

De plus, afin de ne pas perdre de temps lors de la production, le temps maximal de déplacement lors de la sélection est imposé à une seconde.

L'étude se fera dans le cas le plus défavorable c'est-à-dire un déplacement du chariot vers le haut entre les deux cassettes de rivets les plus éloignées. L'axe de déplacement est appelé $\overrightarrow{y_c}$.

2.1 Notations domaine temporel – domaine de Laplace

Les notations entre le domaine temporel et celui de Laplace sont données dans la suite. Ainsi, si la fonction f(t) possède une transformée de Laplace, elle sera notée : F(p) = L[f(t)]

Les équations caractéristiques du moteur à courant continu sont rappelées ci-dessous (les conditions de Heaviside sont respectées) :

$$u(t) = e(t) + L \cdot \frac{di(t)}{dt} + R.i(t)$$

$$e(t) = K_E$$
. $\omega_m(t)$ et $C_M(t) = K_C$. $i(t)$

$$J_{eq} \cdot \frac{d \ \omega_m(t)}{dt} + f. \ \omega_m(t) = C_M(t) - C_R(t)$$

Avec:

- u(t): tension moteur;
- i(t): courant moteur;
- e(t) : force contre-électromotrice ;
- $\omega_m(t)$: vitesse de rotation moteur ;
- C_M(t): couple moteur;
- C_R(t) : couple résistant modélisant l'action de pesanteur.

2.2 Critères à respecter pour l'exigence 1.2

Exigence	Exigence Critères	
	Stabilité Marge de gain Marge de phase	$M_G = 6 \text{ dB mini}$
Déplacer le chariot	 Marge de phase Précision Erreur statique ε_s par rapport à une consigne de vitesse constante. 	M _φ = 45 ° mini nulle
	 Rapidité Temps de réponse à 5 % en réponse à une consigne échelon. 	Tr _{5%} = 0,1 s maxi

2.3 Choix d'une architecture de la chaine de transmission

Question 26

À partir du document réponse, proposer sous la forme d'un schéma une autre solution permettant le déplacement du chariot. La conversion de l'énergie électrique en énergie mécanique par un moteur doit être conservée.

Question 27

Donner un avantage et un inconvénient significatif de votre solution par rapport à celle proposée Figure 13.

Compte tenu des vitesses de translation importantes, le système retenu est de type poulie-courroie.

2.4 Détermination de l'inertie équivalente

Les grandeurs caractéristiques (notations et valeurs) des éléments de l'axe du chariot sont données dans le tableau ci-dessous :

Moment d'inertie du rotor du moteur autour de son axe	J _m	140.10 ⁻⁶ kg.m ²
Moment d'inertie du réducteur ramené à l'arbre moteur	$J_{\text{réd}}$	60.10 ⁻⁴ kg.m ²
Moment d'inertie de la poulie motrice autour de son axe	J_{PM}	38.10 ⁻⁴ kg.m ²
Moment d'inertie de la poulie réceptrice autour de son axe	J_{PR}	38.10 ⁻⁴ kg.m ²
Masse totale du chariot	М	5 kg
Vitesse de rotation de l'arbre moteur	ω_{m}	
Vitesse de rotation de l'arbre de sortie du réducteur	$\omega_{\rm r}$	
Rayon d'une poulie motrice ou réceptrice	R_p	45 mm

Rapport de réduction réducteur (ω_r/ω_m)	λ	1/5

Question 28

À partir des grandeurs définies, déterminer l'expression littérale de l'inertie équivalente J_{eq} de l'ensemble Σ = {moteur + réducteur + poulies + chariot} ramenée sur l'arbre moteur. Cette inertie équivalente est définie par $E_c(\Sigma) = \frac{1}{2} J_{eq} \omega_m^2$

Question 29

Déterminer la valeur numérique de l'expression précédente.

2.5 Modèle de connaissance du moteur à courant continu

L'objectif de cette partie est d'établir un modèle de la motorisation de l'axe afin de simuler un déplacement.

Question 30

À partir des équations du moteur à courant continu, compléter le schéma bloc du moteur à courant continu sur le document réponse.

Question 31

En considérant $C_R(p) = 0$, déterminer la fonction de transfert $H_M(p) = \frac{\Omega_m(p)}{U(p)}$ sous sa forme canonique.

Question 32

Montrer que la fonction de transfert $H_M(p)$ peut se mettre sous la forme simplifiée $H_M(p) = \frac{K_0}{K_0.K_e + R.J_{eq}.p + L.J_{eq}.p^2}$

Justifier la réponse. Pour cette question, la valeur numérique de J_{eq} considérée sera $J_{eq} = 7.10^{-3}$ kg.m² indépendamment du résultat numérique calculé précédemment.

Question 33

Montrer qu'avec l'expression simplifiée $H_M(p)$ peut s'écrire sous la forme $H_M(p) = \frac{K_M}{(1+T_E.p).(1+T_M.p)}$ (avec $T_E < T_M$).

Cette expression sera maintenant utilisée pour la simulation numérique.

2.6 Étude de l'asservissement en position de l'axe

La partie précédente a permis de déterminer un modèle du moteur. La suite de l'étude va permettre, par simulation, de déterminer les réglages nécessaires de l'axe vis-à-vis du cahier des charges.

La Figure 14 ci-après présente le principe de l'asservissement de l'axe du chariot :

Figure 14 : schéma de principe de l'asservissement

Les grandeurs caractéristiques des blocs de l'asservissement de l'axe chariot sont données dans le tableau ci-dessous :

Générateur	K _G	À déterminer
Capteur de position	K _{capt}	5.10 ⁻³ V.rad ⁻¹
Correcteur amplificateur	C(p)	Variable, voir énoncé

Question 34

Quelle doit être la valeur de K_G pour assurer un asservissement correct (c'est à dire l'écart ϵ doit être nul si la position de l'axe est identique à la consigne) ?

Question 35

Compléter le schéma bloc de l'asservissement de l'axe du document réponse.

Afin de faciliter les calculs, le schéma bloc à retour unitaire est donné Figure 15. Le couple résistant C_R dû à l'action de pesanteur est supposé constant.

Figure 15 : schéma avec retour unitaire

$$\text{Avec}: \ H_M(p) = \frac{K_m}{(1 + T_E.p).(1 + T_M.p)} \ ; \ H_C(p) = \frac{(R + L.p).K}{(1 + T_E.p).(1 + T_M.p)} \ ; \ C_R(p) = \frac{C_0}{p}$$

Le diagramme de Bode de la fonction de transfert en boucle ouverte $H_{BO}(p)$ est donné sur le document réponse. Le tracé est donné pour C(p) = 1.

Question 36

Identifier la fonction de transfert sur le diagramme de Bode. Toutes les constructions nécessaires devront apparaître sur le diagramme.

Le couple résistant est un couple constant C₀ qui traduit l'action mécanique de pesanteur subie par l'ensemble mobile.

Question 37

Justifier que \dot{s} i C(p) = 1, l'exigence fonctionnelle liée à la précision (erreur nulle) ne peut être respectée.

Proposer une forme générale de fonction de transfert pour ce correcteur permettant de satisfaire à cette exigence fonctionnelle.

Afin de répondre totalement au cahier des charges, l'utilisation d'un correcteur proportionnel intégral dérivé est retenue. En effet, la commande de l'axe intègre directement ce type de correcteur.

Dans la suite du problème, le correcteur C(p) sera de la forme : $C(p) = K_I \cdot \left(1 + \frac{1}{T_I,p}\right) \cdot (1 + T_D.p)$. Le réglage des coefficients a été fait par simulation numérique.

Question 38

Ce nouveau correcteur permet-il de respecter l'exigence fonctionnelle liée à la précision ? Justifier la réponse par un calcul littéral.

Le diagramme de Bode de la nouvelle fonction de transfert en boucle ouverte H'_{BO}(p) est donné sur le document réponse.

Question 39

À partir du diagramme de Bode conclure sur l'exigence fonctionnelle liée à la stabilité. Les constructions graphiques permettant la justification de la réponse devront apparaître sur le document réponse.

Afin de vérifier maintenant le critère de rapidité, le document réponse donne la réponse temporelle de l'axe à un échelon de position de 1 m.

Question 40

Conclure sur la conformité au cahier des charges du système ainsi réglé.

La simulation a permis de déterminer un réglage satisfaisant vis-à-vis des exigences fonctionnelles pour ce système. Il faut maintenant vérifier ces réglages par la mesure directe d'un déplacement de l'axe.

3 Vérification des performances de l'axe du magasin de rivets

Afin de vérifier les réglages précédents, un essai sur le système réel est réalisé. L'absence de système d'acquisition dédié impose un système de mesure extérieur au système réel. C'est un dispositif d'analyse d'image qui est retenu pour ces mesures.

L'objectif de cette partie est de traiter les mesures obtenues puis de vérifier que les performances obtenues sont satisfaisantes.

3.1 Importation et tracé des mesures

Le système d'analyse d'image a permis de récupérer la position du chariot en fonction du temps. Le résultat de ces mesures est donné en annexe 8 (fichier mesure_chariot.txt). Le fichier indique les valeurs de la position en mètre du chariot associée au temps en seconde. Les mesures correspondent à un déplacement entre les deux positions théoriques extrêmes de sélection (1 m à -0,9 m dans le repère de mesure).

Le programme de traitement des mesures est partiellement fourni sur le document réponse dans le langage Python.

Dans un premier temps, les mesures du fichier doivent être récupérées pour afficher la position du chariot en fonction du temps.

Question 41

Compléter sur le document réponse les lignes de commande 8 à 13 qui permettent de créer deux tableaux (X le déplacement et T le temps) dans lesquels seront stockées les valeurs de mesures importées du fichier texte.

Question 42

Écrire les lignes de commandes (à compléter ligne 16 et 17) permettant d'obtenir le tracé de la Figure 16 (les commandes permettant d'obtenir le style du tracé et les légendes de la figure ne sont pas demandées).

Figure 16 : graphique de la position du chariot en fonction du temps

3.2 Traitement des mesures

Le traitement des mesures récupérées précédemment va permettre de valider les performances de l'axe concernant la vitesse instantanée. Pour cela, des lignes de commandes sont ajoutées au programme précédent. L'ébauche de cet ajout est donnée dans le document réponse dans le langage Python.

Question 43

Écrire les lignes de commandes (à compléter ligne 28 à 32) permettant d'obtenir une liste de valeurs V contenant la vitesse instantanée du chariot.

Question 44

Écrire les lignes de commandes (à compléter ligne 36 à 39) permettant d'obtenir le tracé de la Figure 17 (les commandes permettant d'obtenir le style du tracé et les légendes de la figure ne sont pas demandées).

Figure 17 : graphique de la position et de la vitesse du chariot en fonction du temps

Question 45

Justifier l'allure du tracé de la vitesse entre 0,2 s et 0,6 s. Comment peut être amélioré ce tracé ?

3.3 Vérification des performances

Pour conclure l'étude, les performances de l'axe en vitesse et en position sont à vérifier.

Exigence	Critères	Niveaux
Sélectionner le type de fixation	Temps de sélectionErreur de position du convoyeur	1 s maxi Inférieure à 0,5 mm

Question 46

À partir des mesures précédentes (fichier de mesures et tracés), conclure sur le respect des exigences fonctionnelles de l'axe du magasin de stockage des rivets.

	Académie :	Session :	Modèle EN.
	Examen ou Concours :		Série* :
	Spécialité/option :	Repère de l'	épreuve :
)RE	Épreuve/sous-épreuve :		
DANS CE CADRE	NOM: (en majuscules, suivi, s'il y a lieu, du nom d'épouse) Prénoms: Né(e) le	N° du candidat	(le numéro est celui qui figure sur la convocation ou la liste d'appel)
NE RIEN ÉCRIRE			025

Cahier réponses

L'usage de calculatrices est autorisé.

Épreuve de Sciences Industrielles PSI

NE RIEN ÉCRIRE	DANS CE CAD	DE	
NE THEN COMME	DAILO GE GAD	···-	

Document réponse				
Question 1 : graphe de structure entre le sol (0) et la plateforme (1)				
Question 2 : liaison entre le sol (0) et la plateforme (1)				
• Liaison 1 :				
Liaison 2 :				
• Liaison 3 :				
Question 3 : isostatisme du positionnement				
Question 4 : liaison équivalente entre le sol (0) et la plateforme (1)				

Question 6 : solution technique permettant le non basculement de la plateforme			
Schéma cinématique :			
Numérotation des solides :	Liste des liaisons :		
Question 7 : description du fonctionnement			
Question 8 : proposition d'implantation sur la	ı plateforme		

Question 9 : détermination de l'effort F

Cas 1	Cas 2	Cas 3	Cas 4		

Question 10 : cas le plus défavorable

Question 11 : graphe de structure de l'ensemble

Question 12 : ensemble Σ à isoler

_			

Question 13 : bilan des actions mécaniques extérieures à ${f \Sigma}$

$$\left\{ \begin{array}{c} \rightarrow \\ \left\{ \begin{array}{c} \rightarrow \\ \end{array} \right\} = \left\{ \begin{array}{c} \\ \\ \end{array} \right\}$$

NE RIEN ÉCRIRE	>	DANS CE CADRE

$$\left\{ \begin{array}{c} \rightarrow \\ \\ \\ \\ \\ \end{array} \right\} = \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\}$$

$$\left\{ \begin{array}{c} \rightarrow \\ \\ \\ \end{array} \right\} = \left\{ \begin{array}{c} \\ \\ \\ \\ \end{array} \right\}$$

Question 14 : théorème à utiliser pour déterminer C ₁₂					

Questi	on 15 : détermi	nation de l'expi	ression littérale	e du couple C ₁	2	
C ₁₂ =						

	_	
	NE DIEN ÉCDIDE	DANC OF CADDE
	NE RIEN ÉCRIRE	DANS CE CADRE
Question 16 · va	aleur du couple C ₁₂	
Quodion 10 . Vi	arour du ocupio c ₁₂	
Question 17 : va	alidation du choix du robot et j	ustification
Question 18 : de	étermination de la vitesse du s	olide E2 au point G₃ par rapport à R₁
Question 19 : de	étermination de la vitesse du s	olide EF au point G₅ par rapport à R₁

Question 23 : détermination de l'expression littérale du couple \mathbf{C}_{23}

Question 24 : valeur de de θ_{13} ou le coupe C_{23} est maximum

Question 25 : application numérique et conclusion

Question 27 : avantage et inconvénient de votre solution

Avantage :
Inconvénient :

Question 28 : expression littérale de J_{eq}

Question 29 : valeur numérique de J_{eq}

 $AN: J_{eq} =$

Question 30 : schéma bloc du moteur à courant continu

Question 31 : fonction de transfert H _M (p)	
L	

Question 32 : forme simplifiée de H _M (p)				

Question 33 : écriture de H _M (p)		

Question 34 : valeur de K_{G}

```
K<sub>G</sub> =
```

Question 35 : schéma bloc de l'asservissement de l'axe

Question 36 : stabilité du système

Question 37 : exigence fonctionnelle liée à la précision et proposition du correcteur C(p) = 1

Question 38 : exigence fonctionnelle liée à la précision pour le correcteur PID

Question 39 : exigence fonctionnelle liée à la stabilité

Page 14 sur 17

Question 40 : conformité du cahier des charges

Conformité de la commande vis-à-vis du cahier des charges :

Questions 41 et 42 : lignes 8 à 13 puis lignes 16 et 17

```
1 #Lecture du fichier de mesure chariot
                                              # Ouverture du fichier en lecture
2 fic=open("chariot.txt","r")
                                              #Lecture de l'ensemble des lignes
3 texte=fic.readlines()
                                              # Fermeture du fichier
4 fic.close()
5
6 #Lecture du tableau de données
                                              # Sélection des lignes du fichier
  texte[4:33]
                                              \# Initialisation des variables T et X
8
9 for
                                              # Suppression du retour à la ligne
10 ligne=texte[i].rstrip("\n")
                                              # Découpage au niveau des virgules
11 ligne=ligne.split(",")
                                              # Ajout au tableau T
12
                                              # Ajout au tableau X
13
14
15 # Tracé de la courbe de déplacement
16
17
19 plt.legend(loc='upper left')
                                              # Récupération ligne 1 pour le titre
20 plt.title(texte[0])
                                              # Récupération ligne 2 pour le titre de l'axe y
21 plt.ylabel(texte[1])
                                              # Récupération ligne 3 pour le titre de l'axe x
22 plt.xlabel(texte[2])
                                              # Affichage du quadrillage
23 plt.grid(True)
                                              # Affichage du graphique
24 plt.show()
```

Question 43 et 44 : lignes 28 à 32 puis lignes 36 à 39

```
24 # plt.show() # Mise en commentaire de l'affichage précédent
25
27 # Calcul de la vitesse instantanée à partir des mesures
28
29
30
31
32
33 # Suppression des valeurs extrêmes
34 delT[0]
35 delT[27]
36
37 plt.legend(loc='upperleft') # Insertion légende et placement dans le graphique
38
39
```

	NE RIEN ÉCRIRE	DANS CE CADRE	
			_
Question 45 : j	ustification de l'allure du tracé et	amélioration	
Question 46 : c	onclusion sur exigences fonction	nelles	
	•		
		N	
	—		

ANNEXE 1 : détail des opérations 4 et 5

ANNEXE 2: diagrammes SysML

1 Diagramme des exigences

2 Critères et valeurs associées aux exigences fonctionnelles

Exigence	ld	Critères	Valeurs associées
1	Assembler les tronçons à l'aide de	Tension installée entre les tôles	150 daN
'	rivets	Déplacements relatifs entre les tôles	Aucun
4.4	Sélectionner le type	Temps de sélection	1 s maxi
1.1	de fixation	Erreur de position du convoyeur	Inférieure à 0,5 mm
1.2	Percer les tronçons	Erreur par rapport à la position nominale dans le repère avion	Erreur inférieure à 0,1 mm
1.2 Felcel les tionçons		Quantité de matière enlevée	Aucun copeau après perçage
	Positionner la cellule	Position de la cellule par rapport à l'avion	Position cellule +/- 1 cm
1.3	dans le hall de production	Stabilité de la position	Aucun basculement en fonctionnement
1.4	Piloter la cellule Aider à poser la fixation	Opérateur nécessaire pour le pilotage et la pose	Un opérateur

3 Diagramme de blocs internes de la cellule d'assemblage

ANNEXE 3 : schéma de la plateforme

ANNEXE 4: description du robot

Dénomination des articulations du robot

ANNEXE 5: choix du robot

1 Schéma d'implantation

Hypothèse:

La zone de fixation du robot est dans le même plan que la zone à couturer.

Données :

- · O : centre des troncons ;
- A: position de l'ancrage 1;
- B : position de l'ancrage 2 ;
- H: hauteur du centre du tronçon au sol du hall d'implantation H = 2700 mm;
- h: hauteur du plan supérieur de la plateforme au sol du hall d'implatation h = 300 mm;
- R : rayon du tronçon à couturer R = 1170 mm ;
- L : distance entre centre du tronçon et l'axe \vec{y}_p L = 3180 mm ;
- I : distance entre l'axe \vec{y}_p et le bord intérieur de la plateforme I = 1240 mm.

IRB 7600

Robot industriel

CARACTÉRISTIQUES TECHNIQUES, ROBOT INDUSTRIEL IRB 7600

Versions du robot	Rayon d'action	Capacité de charge	Centre de gravité	Couple du poignet
IRB 7600-500	2.30 m	500 kg	360 mm	3010 Nm
IRB 7600-400	2.55 m	400 kg	512 mm	3010 Nm
IRB 7600-340	2.80 m	340 kg	360 mm	2750 Nm
IRB 7600-150°	3.50 m	150 kg	360 mm	1880 Nm

50 kg sur le bras supérieur et 550 kg sur le bâti de l'axe 1.

Nombre d'axes	6	
Protection	Robot : IP 67	
Montage	Fixé au sol	
PERFORMANCES		
Mouvement des axes		
Axe 1	+180° à -180°	
Axe 2	+80° à -60°	
Axe 3	+60° à -180°	
Axe 4	+ 300° à -300°	
Axe 5	+100° à -100°	
Axe 6	+300° à -300°	

Vitesses maximum des axes

	500 Kg	340/400 Kg	150 Kg
Axe 1	75°/s	75°/s	100°/s
Axe 2	60°/s	60°/s	60°/s
Axe 3	60°/s	60°/s	60°/s
Axe 4	100°/s	100°/s	100°/s
Axe 5	100°/s	100°/s	100°/s
Axe 6	160°/s	160°/s	160°/s

Une fonction de supervision évite la surchauffe lors d'applications nécessitant des mouvements frequents

RACCORDEMENTS ÉLECTRIQUES 200-600 V, 50/60 Hz Tension d'alimentation DIMENSIONS ET POIDS Dimensions embase robot Poids (toutes versions) 1206,5 x 1200 mm 2500 kg ENVIRONNEMENT Température ambiante unité mécanique En fonctionnement de +5°C à +50°C de -25°C à +55°C jusqu'à +70°C Lors du transport et du stockage Pendant de courtes périodes Humidité relative 95 % maxi 73 dB (A) maxi Niveau sonore Circuits redondants avec supervision, arrêts d'urgence et fonctions de sécurité, palette homme-mort 3 positions Sécurité

Blindage CEM/IEM

Immunité

ENVELOPPES DE TRAVAIL

IRB 7600-500/2.30

IRB 7600-340/2.80

ABB France - Division Robotique Rue de l'Equerre - ZI des Béthunes 95310 Saint-Ouen l'Aumône - France Tél. : +33 (0) 1 34 40 25 25 - Fax : +33 (0) 1 34 40 24 24

3 Données complémentaires

Robot	IRB 7600-500/2.30	IRB 7600-400/2.55	IRB 7600-340/2.80	IRB 7600-150/3.50
L ₁	405 mm	405 mm	405 mm	405 mm
L_2	433 mm	433 mm	433 mm	433 mm
L_3	1075 mm	1075 mm	1075 mm	1075 mm
L_4	556 mm	806 mm	1056 mm	1762 mm
L_5	165 mm	165 mm	165 mm	165 mm
L ₆	250 mm	250 mm	250 mm	250 mm
C ₁₂ limite	9000 N.m	9000 N.m	9000 N.m	9000 N.m

ANNEXE 6 : résultats des essais de perçage

Essai	1	2	3	4
Matériaux	1	1	2	2
K _c (en N/mm ²)	750	750	1750	1750
Type d'outil	1	1	2	3
Ø outil (en mm)	5	6	5	5
K'	0.5	0.5	0.4	0.5
f (en mm/tour)	0.16	0.20	0.24	0.3

ANNEXE 7: documentation axe linéaire

1 Vue 3D extérieure axe chariot de sélection

2 Caractéristiques du moteur d'axe

Vitesse nominale (Couple nominal (C _{nom})	Courant nominal (I _{nom})	Courant maxi (I _{max})	Tension nominale (U _{nom})	Inductance (L)	Résistance de l'induit (R)
3000 tr.mi	1 ⁻¹ 3 Nm	4,8 A	30 A	400 V	9 mH	3 ohms

Coefficient de frottement visqueux (f)	Constante de couple (K _c)	Constante de fcem (K_E)
0,2.10 ⁻² Nm.s.rad ⁻¹	1,3 Nm.A ⁻¹	1,3 V.(rad.s ⁻¹) ⁻¹

ANNEXE 8: fichier des mesures

Le fichier texte est nommé « mesure_chariot.txt », il comporte 33 lignes :

Mesures axe chariot

Position chariot

t en s

T,X

0,1.02

0.033,1.02

0.066, 1.02

0.099,1.02

0.133,1.01

0.166,0.935

0.199,0.86

0.233,0.7549

0.266,0.6422

0.299,0.503

0.333,0.39

0.366,0.29

0.399,0.1877

0.433,0.063

0.466,-0.0337

0.499,-0.1577

0.533,-0.2779

0.566,-0.3830

0.599,-0.5145

0.633,-0.623

0.666,-0.7098

0.699,-0.80

0.733,-0.886

0.766,-0.9239

0.799,-0.93

0.833,-0.93

0.866,-0.93

0.899,-0.93

0.933,-0.93