CSC 349 Lab 2 Report

This lab involved calculating the median of a given array using different algorithms. We implemented five different algorithms. Our first algorithm was a sort-based algorithm, where the arrays were sorted and the median was then either the middle element of the average of the two middle elements. Our second algorithm was a randomized median algorithm, where a random pivot position was picked, and the array was recursively divided into two arrays by comparing elements to the pivot element. Our last three algorithms (fast median K) split the array into chunks of size 3, 5, and 7, respectively, and uses the median of the medians of the chunks as the pivot element.

We tested the speed of these algorithms, especially how they behaved asymptotically as the size of the arrays were increased. We calculated the medians of the lists of a given size together 100 times for each algorithm, averaging the results.

Time in Microseconds	

Size of Array (N)	Sort-based	Randomized Median	Fast Median K3	Fast Median K5	Fast Median K7
1	Mean: 1.50;	Mean: 7.94;	Mean: 2.10;	Mean: 1.77;	Mean: 1.10;
	St Dev: .453	St Dev: 2.324	St Dev: 1.697	St Dev: 2.655	St Dev: 2.149
5	Mean: 1.49;	Mean: 5.23;	Mean: 3.96;	Mean: 5.16;	Mean: 0.88;
	St Dev: 6.009	St Dev: 2.102	St Dev: 4.283	St Dev: 1.884	St Dev: 1.597
10	Mean: 0.80;	Mean: 6.52;	Mean: 5.0;	Mean: 5.93;	Mean: 7.23;
	St Dev: 1.206	St Dev: 11.608	St Dev: 2.045	St Dev: 0.807	St Dev: 3.309
25	Mean: 1.86;	Mean: 8.00;	Mean: 7.97;	Mean: 7.98;	Mean: 9.57;
	St Dev: 1.045	St Dev: 4.526	St Dev: 5.474	St Dev: 1.676	St Dev: 3.580
50	Mean: 3.62;	Mean: 7.20;	Mean: 8.26;	Mean: 8.64;	Mean: 7.56;
	St Dev: 0.763	St Dev: 6.208	St Dev: 2.841	St Dev: 4.215	St Dev: 3.737
75	Mean: 7.8;	Mean: 8.29;	Mean: 14.56;	Mean: 11.75;	Mean: 11.08;
	St Dev: 2.234	St Dev: 5.366	St Dev: 2.567	St Dev: 1.783	St Dev: 1.727
100	Mean: 8.56;	Mean: 9.68;	Mean: 15.34;	Mean: 7.96;	Mean: 7.66;
	St Dev: 2.298	St Dev: 1.463	St Dev: 2.563;	St Dev: 4.134	St Dev: 5.370;
250	Mean: 5.83;	Mean: 8.59;	Mean: 15.97;	Mean: 17.68;	Mean: 16.74;
	St Dev: 1.422	St Dev: 3.499	St Dev: 1.800	St Dev: 4.404	St Dev: 1.998
500	Mean: 11.91;	Mean: 19.2;	Mean: 38.59;	Mean: 30.77;	Mean: 34.67;
	St Dev: 2.332	St Dev: 4.899	St Dev: 3.452	St Dev: 2.174	St Dev: 4.837
750	Mean: 21.53;	Mean: 29.62;	Mean: 57.53;	Mean: 55.23;	Mean: 49.23
	St Dev: 3.512	St Dev: 2.569	St Dev: 4.542	St Dev: 3.420	St Dev: 5.002
1000	Mean: 29.35;	Mean: 51.24;	Mean: 71.11;	Mean: 73.07;	Mean: 70.98;
	St Dev: 3.021	St Dev: 9.598	St Dev: 5.400	St Dev: 5.948	St Dev: 5.674
1250	Mean: 40.03;	Mean: 49.34;	Mean: 102.09	Mean: 101.89;	Mean: 98.90;
	St Dev: 4.932	St Dev: 3.984	St Dev: 6.039	St Dev: 5.898	St Dev: 6.092
1500	Mean: 42.90;	Mean: 49.7;	Mean: 123.90;	Mean: 89.93;	Mean: 107.84;
	St Dev: 5.099	St Dev: 4.683	St Dev: 5.904	St Dev: 4.958	St Dev: 6.348

Average Time to Calculate Median for Varying Algorithms & Array Sizes

The observed runtime behaviors of the the fast median K algorithms seem to potentially experience exponential growth, as the time required to perform the calculations increased at a greater rate as the size of the array increased. Generally speaking, the higher the K number, the slower the algorithm was. Both the sort-based algorithm and the randomized median algorithm performed better than the fast median K algorithms. As we know the sort-based algorithm grows at a rate of NlogN, it is possible that the randomized median algorithm grows at a similar rate, as its results were not far different.

It doesn't seem that any of the algorithms are overtaken by any other algorithm as the size of the arrays increases. There naturally were some changes in what algorithm took longer for the fast median K algorithms, but that seems to be simple statistical variation, as the results for those algorithms were very similar throughout testing.