Brief Description for MRBrainS18 - HUST-LRDE

Canpei Hu, Élodie Puybareau, Thierry Géraud, Yongchao Xu

September 12, 2018

Github: https://github.com/hucanpei/MRBrainS18

Figure 1: pipeline

We use a HED-like [1] FCN structure with $3 \times VGG16$ as backbone, with carefully preprocessing. We use preprocessed T1,IR,FLAIR volumes.

Problems:

- The edge at the tissue boundary is not clear.
- Some small organizations are difficult to segment.
- There are many neighbors between different organizations.

Conclusions:

- Shallow network works much better than deep network.
- Transfer learning plays a big role.
- Multimodal image have great benefits for segmenting CSF and GM.

Preprocessing(shown in 2):

- histogram equalization(only for T1);
- stack 3 continue slices as a RGB image;
- rotate for $[0, \pm 5, \pm 10, \pm 15]$ for data augmentation;
- crop to reduce background in image and ensure width and height can be devided by 16;

Pipeline: Following [2], which is a HED-like [1] structure. It is an simple and efficient decoder, which can handle little object better. Simply pass image in 3 modalities through 3 streams of VGG, and concat them in every stage, shown in 1.

Figure 2: preprocess

Parameters:

• Total number of iterations: 80k.

 \bullet loss: CrossEntropy, optimizer: SGD.

• $base_lr: 10^{-3}$, $lr_decay: 0.1/4k$ iterations.

 \bullet momentum: 0.99.

• $weight_decay: 0.0005$.

LOSO Results:

Dice	CSF	GM	WM
3*VGG16	0.8247	0.8353	0.8663
VGG16	0.8053	0.8203	0.8628
without transfer	0.7821	0.7995	0.8457
Resnet50	0.7808	0.7896	0.8179

References

- [1] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In *IEEE International Conference on Computer Vision*, pages 3–18, 2016.
- [2] Yongchao Xu, Thierry Géraud, Isabelle Bloch, and Télécom ParisTech LTCI. From neonatal to adult brain mr image segmentation in a few seconds using 3d-like fully convolutional network and transfer learning. In Proceedings of the 23rd IEEE International Conference on Image Processing (ICIP), Beijing, China, pages 4417–4421, 2017.