(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 20 January 2005 (20.01.2005)

PCT

(10) International Publication Number $WO\ 2005/005597\ A2$

 $(51) \ \ International \ Patent \ Classification ^7:$

C12N

CA 94707 (US). **HAYASHIZAKI, Yoshihide** [—/—]; **

(21) International Application Number:

PCT/US2003/027106

(22) International Filing Date: 28 August 2003 (28.08.2003)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

 60/476,632
 9 June 2003 (09.06.2003)
 US

 60/476,621
 9 June 2003 (09.06.2003)
 US

 60/485,359
 8 July 2003 (08.07.2003)
 US

 60/485,217
 8 July 2003 (08.07.2003)
 US

- (71) Applicants (for all designated States except U/S): FIVE PRIME THERAPEUTICS, INC. [US/US]; 951 Gateway Boulevard, South San Francisco, CA 94080 (US). RIKEN [JP/JP]; (The Institute of Physical and Chemical Reseach), 2-1, Hirosawa, Wako,Saitama, 351-0198 (JP). KABUSHIKI KAISHA DNAFORM [JP/JP]; 3-35, Mita 1-chome, Minato-ku, Tokyo 108-0073 (JP).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): WILLIAMS, Lewis, T. [US/US]; 125 Chapel Drive, Mill Valley, CA 94941 (US). CHU, Keting [US/US]; 2017 Easton Drive, Burlingame, CA 94010 (US). LEE, Ernestine [US/US]; 226 Arlington Avenue, kensington, CA 94707 (US). HES-TIR, Kevin [US/US]; 226 Arlington Avenue, Kensington,

(74) Agent: GARRETT, Arthur, S.; Finnegan, Henderson,

(**). KAMIYA, Mamoru [—/—]; ** (**).

- Farrabow Garrett & Dunner, LLP, 1300 I Street, N.W., Washington, DC 20005-3315 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL MOUSE POLYPEPTIDES ENCODE BY POLYNUCLEOTIDES AND METHODS OF THEIR USE

(57) Abstract: The invention provides novel polynucleotides, related polypeptides, related nucleic acid and polypeptide compositions, and related modulators, such as antibodies and small molecule modulators. The invention also provides methods to make and use these polynucleotides, polypeptides, related compositions, and modulators. These methods include diagnostic, prophylactic and therapeutic applications. The compositions, and methods of the invention are useful in treating proliferative disorders, e.g., cancers, and inflammatory, immune, bacterial, and viral disorders.

NOVEL MOUSE POLYPEPTIDES ENCODED BY POLYNUCLEOTIDES AND METHODS OF THEIR USE

PRIORITY CLAIM

[001] This application is related to the following provisional applications filed in the United States Patent and Trademark Office, the disclosures of which are hereby incorporated by reference:

Application	Title	Filing Date
Number		:
60/476,632	Novel Mouse Polynucleotides Relating to Kinases,	June 9, 2003
	Phosphatases, and Proteases	ì
60/476,621	Methods of Use for Novel Mouse Polynucleotides	June 9, 2003
	Relating to Kinases, Phosphatases, and Proteases	
60/485,539	Novel Mouse Polynucleotides Relating to Secreted and	July 8, 2003
	Transmembrane Proteins	
60/485,217	Methods of Use for Novel Mouse Polynucleotides	July 8, 2003
	Relating to Secreted and Transmembrane Proteins	

TECHNICAL FIELD

[002] The present invention is related generally to novel polynucleotides and novel polypeptides encoded thereby, their compositions, antibodies directed thereto, and other agonists or antagonists thereto. The polynucleotides and polypeptides are useful in diagnostic, prophylactic, and therapeutic applications for a variety of diseases, disorders, syndromes and conditions, as well as in discovering new diagnostics, prophylactics, and therapeutics for such diseases, disorders, syndromes, and conditions (hereinafter disorders). The present invention also relates to methods of modulating biological activities through the use of the novel polynucleotides and novel polypeptides of the invention and through the use of agonists and antagonists, such as antibodies, thereto.

[003] This application further relates to the field of polypeptides that are associated with regulating cell growth and differentiation, that are over-expressed in cancer, and/or that can be associated with proliferation or inhibition of cancer growth, including hematopoietic cancers such as leukemias, lymphomas, and solid

cancers such as lung cancer, for example, adenocarcinomas and/or squamous cell carcinomas. These polypeptides may also be associated with other conditions, such as inflammatory, immune, and metabolic disorders, as well as microbial infections, including viral, bacterial, fungal, and parasitic diseases, disorders, syndromes, or conditions.

[004] This application further relates to modulators of biological activity that can specifically bind to these polynucleotides or polypeptides, or otherwise specifically modulate their activity. For example, they can directly or indirectly induce antibody-dependent cellular cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), endocytosis, apoptosis, or recruitment of other cells to effect cell activation, cell inactivation, cell growth or differentiation or inhibition thereof, and cell killing.

[005] The sequences of the invention encompass a variety of different types of nucleic acids and polypeptides with different structures and functions. They can encode or comprise polypeptides belonging to different protein families ("Pfam"). The "Pfam" system is an organization of protein sequence classification and analysis, based on conserved protein domains; it can be publicly accessed in a number of ways, for example, at http://pfam.wustl.edu. Protein domains are portions of proteins that have a tertiary structure and sometimes have enzymatic or binding activities; multiple domains can be connected by flexible polypeptide regions within a protein. Pfam domains can comprise the N-terminus or the C-terminus of a protein, or can be situated at any point in between. The Pfam system identifies protein families based on these domains and provides an annotated, searchable database that classifies proteins into families (Bateman et al., 2002).

[006] Sequences of the invention can encode or be comprised of more than one Pfam. Sequences encompassed by the invention include, but are not limited to, the polypeptide and polynucleotide sequences of the molecules shown in the Sequence Listing and corresponding molecular sequences found at all developmental stages of an organism. Sequences of the invention can comprise genes or gene segments designated by the Sequence Listing, and their gene products, i.e., RNA and polypeptides. They also include variants of those presented in the Sequence Listing that are present in the normal physiological state, e.g., variant alleles such as SNPs, splice variants, as well as variants that are affected in pathological states, such as disease-related mutations or sequences with alterations that lead to pathology, and

variants with conservative amino acid changes. Sequences of the invention are categorized below; any given sequence can belong to one or more than one category. Secreted Protein-Related Sequences

- [007] Secreted proteins, also referred to as secreted factors, include proteins that are produced by cells and exported extracellularly, extracellular fragments of transmembrane proteins that are proteolytically cleaved, and extracellular fragments of cell surface receptors, which fragments may be soluble. An example of a secreted protein is keratinocyte growth factor (KGF), which stimulates the growth of keratinocytes, and is useful for repairing tissue after chemotherapy or radiotherapy.
- [008] Many and widely variant biological functions are mediated by a wide variety of different types of secreted proteins. Yet, despite the sequencing of the human genome, relatively few pharmaceutically useful secreted proteins have been identified. It would be advantageous to discover novel secreted proteins or polypeptides, and their corresponding polynucleotides that have medical utility.
- [009] Pharmaceutically useful secreted proteins of the present invention will have in common the ability to act as ligands for binding to receptors on cell surfaces in ligand/receptor interactions, to trigger certain intracellular responses, such as inducing signal transduction to activate cells or inhibit cellular activity, to induce cellular growth, proliferation, or differentiation, or to induce the production of other factors that, in turn, mediate such activities.
- [010] The cell types having cell surface receptors responsive to secreted proteins are various, including, for example, stem cells; progenitor cells; and precursor cells and mature cells of the hematopoietic, hepatic, neural, lung, heart, thymic, splenic, epithelial, pancreatic, adipose, gastrointestinal, colonic, optic, olfactory, bone and musculoskeletal lineages. Further, the hematopoietic cells can be red blood cells or white blood cells, including cells of the B lymphocytic (B cell), T lymphocytic (T cell), dendritic, megakaryocytic, natural killer (NK), macrophagic, eosinophilic, and basophilic lineages. The cell types responsive to secreted proteins also include normal cells or cells implicated in disease, disorders, syndromes, or other pathological conditions.
- [011] As an example, certain of the secreted proteins of the present invention can stimulate T or B cell growth or differentiation by interacting with precursor T or B cells or hematopoietic progenitor cells, or bone marrow stem cells. As another example, certain secreted proteins of the present invention can maintain

stem cells, progenitor cells or precursor cells in an undifferentiated state. As a further example, certain secreted proteins of the present invention can regulate bone growth by stimulation or inhibition thereof, secretion of insulin, glucose metabolism, cell proliferation, response to microbial infection, and regeneration of tissues including neural, muscular, and epithelial. Moreover, certain secreted proteins of the present invention can induce apoptosis such as in cancer cells or inflammatory cells.

- [012] Certain of the secreted proteins of the present invention are useful for diagnosis, prophylaxis, or treatment of disorders in subjects that are deficient in such secreted proteins or require regeneration of certain tissues, the proliferation of which is dependent on such secreted proteins, or requires an inhibition or activation of growth that is dependent on such secreted proteins. Examples of such disorders include cancer, such as bone cancer, brain tumors, breast and ovarian cancer, Burkitt's lymphoma, chronic myeloid leukemia, colon cancer, endocrine system cancers, gastrointestinal cancers, gynecological cancers, head and neck cancers, leukemia, lung cancer, lymphomas, malignant melanoma, metastases, multiple endocrine neoplasia, myelomas, neurofibromatosis, pancreatic cancer, pediatric cancers, penile cancer, prostate cancer, disorders related to the Ras oncogene, retinoblastoma (RB), sarcomas, skin cancers, testicular cancer, thyroid cancer, urinary tract cancers, and von Hippel-Lindau syndrome.
- [013] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of hematopoeisis, including thrombosis; bleeding; anemias, e.g., iron deficiency and other hypoproliferative anemias, megaloblastic anemias, hemolytic anemias, acute blood loss, and aplastic anemia; hemoglobinopathies; disorders of granulocytes and monocytes; myelodysplasias and related bone marrow failure syndromes; polycythemias, e.g., polycythemia vera; acute and chronic myeloid leukemia, and other myeloproliferative diseases, e.g., malignancies of lymphoid cells; stimulation of replacement cell growth following irradiation or chemotherapy; and plasma cell disorders.
- [014] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of hemostasis, such as disorders of the platelet and vessel wall, disorders of coagulation and thrombosis, and anticoagulant, fibrinolytic and antiplatelet therapies.
- [015] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the cardiovascular system including

disorders of the heart, such as heart failure; congenital heart disease; rheumatic fever; cor pulmonale; cardiomyopathies e.g., myocarditis; pericardial disease; cardiac tumors; cardiac manifestations of systemic diseases; and vascular diseases, such as acute myocardial infarction, ischemic heart disease, hypertensive vascular disease, diseases of the aorta, and vascular diseases of the extremities.

- [016] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the respiratory system, such as asthma, hypersensitivity pneumonitis, e.g., with pulmonary infiltration, pneumonia, necrotizing pulmonary infections, bronchiectasis, cystic fibrosis, chronic bronchitis, emphysema and airway obstruction, interstitial lung diseases, primary pulmonary hypertension, pulmonary thromboembolism, disorders of the pleura, mediastinum, and diaphragm, disorders of ventilation, sleep apnea, and acute respiratory distress syndrome.
- [017] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the kidney and urinary tract, such as, for example, chronic renal failure and glomerulopathies.
- [018] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the gastrointestinal system, including disorders of the alimentary tract, such as, for example, peptic ulcer disease and related disorders, inflammatory bowel disease, irritable bowel syndrome; disorders of the liver and biliary tract, such as, for example, hyperbilirubinemias, acute viral hepatitis, chronic hepatitis, and cirrhosis; and disorders of the pancreas, such as acute or chronic pancreatitis.
- [019] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the immune system, connective tissue, and joints, including, for example, autoimmune diseases, primary immune deficiency diseases, human immunodeficiency virus diseases, allergies, systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, Sjogren's syndrome, ankylosing spondylitis, reactive arthritis, vasculitis, sarcoidosis, amyloidosis, osteoarthritis, gout, psoriatic, and other arthritis.
- [020] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the endocrine system, including, for example, disorders of the pituitary, hypothalamus, neurohypophysis, thyroid gland,

adrenal cortex, testes, ovary, and other organs of the female reproductive system, such as breast; as well as pheochromocytoma, diabetes mellitus, and hypoglycemia.

- [021] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of bone and mineral metabolism, and other metabolic processes, including, for example, diseases of the parathyroid gland and other hyper- and hypocalcemic disorders, osteoporosis, Paget's disease and other dysplasia of bone, disorders of lipoprotein metabolism, hemochromatosis, porphyries, disorders of purine and pyrimidine metabolism, Wilson's disease, lysosomal storage diseases, glycogen storage diseases, lipodystrophies, and other primary disorders of adipose tissue.
- [022] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the central nervous system, including, for example, seizures and epilepsy, cerebrovascular diseases, Alzheimer's disease and other extrapyramidal disorders, ataxic disorders, amylotrophic lateral sclerosis and other motor neuron diseases, disorders of the autonomic nervous system, diseases of the spinal cord, including spinal cord injury, primary and metastatic tumors of the nervous system, multiple sclerosis, and other demyelinating diseases, as well as chronic and recurrent meningitis.
- [023] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of nerves or muscle, including, for example, Guillain-Barre Syndrome, myasthenia gravis and other diseases of the neuromuscular junction, polymyositis, dermatomyositis, muscular dystrophies, and other muscle diseases.
- [024] Certain of the secreted proteins herein can be used for diagnosis, prophylaxis, and treatment of disorders of the skin, including, for example, eczema, psoriasis, cutaneous infections, acne, and other common skin disorders, and immunologically mediated skin diseases.
- [025] The agonists or antagonists of the secreted proteins herein or fragments thereof can be useful in treating elevated levels of such proteins in ny of the disorders above, and including angina, anoxia, arrhythmias, asthma, atherosclerosis, benign prostatic hyperplasia, Buerger's Disease, cardiac arrest, cardiogenic shock, cerebral trauma, Crohn's Disease, congenital heart disease, mild congestive heart failure (CHF), severe congestive heart failure, cerebral ischemia, cerebral infarction, cerebral vasospasm, cirrhosis, diabetes, dilated cardiomyopathy, endotoxic shock,

gastric mucosal damage, glaucoma, head injury, hemodialysis, hemorrhagic shock, hypertension (essential), hypertension (malignant), hypertension (pulmonary), hypertension (e.g., pulmonary, after bypass), hypoglycemia, inflammatory arthritis, ischemic bowel disease, ischemic disease, male penile erectile dysfunction, malignant hemangioendothelioma, myocardial infarction, myocardial ischemia, prenatal asphyxia, postoperative cardiac surgery, prostate cancer, preeclampsia, Raynaud's Phenomenon, renal failure (acute), renal failure (chronic), renal ischemia, restenosis, sepsis syndrome, subarachnoid hemorrhage (acute), surgical operations, status epilepticus, stroke (thromboembolic), stroke (hemorrhagic), Takayasu's arteritis, ulcerative colitis, uremia after hemodialysis, and uremia before hemodialysis.

- [026] Secreted proteins can be screened for functional activities in appropriate functional assays, as is conventional in the art. Such assays include, for example, *in vitro* and *in vivo* assays for factors that stimulate the proliferation or differentiation of stem cells, progenitor cells, or precursor cells into T cells, B cells, pancreatic islet cells, bone cells, neuronal cells, etc.
- The tetratricopeptide repeat (TPR) is an example of a protein domain [027] characteristic of a protein family, and is present in some of the secreted polypeptides of the invention. The TPR family is characterized by a degenerate 34 amino acid sequence present in a wide variety of proteins; it mediates protein-protein interactions, and is involved in scaffold formation and the assembly of multiprotein complexes (http://pfam.wustl.edu/cgi-bin/getdesc?name=TPR). Secreted protein-related sequences can also possess or interact with cytochrome P450 domains, which are involved in the oxidative degradation of various compounds, including environmental toxins and mutagens (http://pfam.wustl.edu/cgi-bin/getdesc?name=p450). Secreted protein-related sequences, e.g., cholesteryl ester transfer protein and phospholipid transfer protein, can also possess or interact with the LBP/BPI/CETP domain, which is characteristically found in lipid-binding serum glycoproteins (http://pfam.wustl. edu/cgi-bin/getdesc?name=LBP_BPI_CETP). Secreted protein-related sequences can also possess or interact with peptidase S8 domains, also known as subtilase domains, which are comprised of serine proteases with a wide range of peptidase activities, including exopeptidase, endopeptidase, oligopeptidase, and omega-peptidase activity (http://pfam.wustl.edu/cgi-bin/getdesc?name=Peptidase_S8).. Secreted proteinrelated sequences can also possess or interact with adh_short, or short-chain dehydrogenase domains, which are found in a large family of proteins, and are made

up of short-chain dehydrogenases and reductase enzymes; most family members function as NAD- or NADP- dependent oxidoreductases (http://pfam.wustl.edu/cgi-bin/getdesc?name=adh short).

[028] The inventors herein have identified novel secreted proteins using an algorithm that is constructed on the basis of a number of attributes including hydrophobicity, two-dimensional structure, prediction of signal sequence cleavage site, and other parameters. Based on such algorithm, a sequence that has a secreted tree vote of 0.5 - 1.0, preferably, 0.6 - 1.0, is believed to be a secreted protein.

Transmembrane Protein-Related Sequences

- [029] Transmembrane proteins extend into or through the cell membrane's lipid bilayer; they can span the membrane once, or more than once. Transmembrane proteins that span the membrane once are "single transmembrane proteins" (STM), and transmembrane proteins that span the membrane more than once are "multiple transmembrane proteins" (MTM). Examples of transmembrane proteins include the insulin receptor, adenylate cyclase, and intestinal brush border esterase.
- [030] A single transmembrane protein typically has one transmembrane (TM) domain, spanning a series of consecutive amino acid residues, numbered on the basis of distance from the N-terminus, with the first amino acid residue at the N-terminus as number 1. A multi-transmembrane protein typically has more than one TM domain, each spanning a series of consecutive amino acid residues, numbered in the same way as the STM protein.
- [031] Transmembrane proteins, having part of their molecules on either side of the bilayers, have many and widely variant biological functions. They transport molecules, e.g., ions or proteins across membranes, transduce signals across membranes, act as receptors, and function as antigens. Transmembrane proteins are often involved in cell signaling events; they can comprise signaling molecules, or can interact with signaling molecules. For example, tyrosine kinases can be transmembrane receptor proteins. Abnormalities of receptor tyrosine kinases are associated with human cancers; tumor cells are known to use receptor tyrosine kinases in transduction pathways to achieve tumor growth, angiogenesis and metastasis. Therefore, receptor tyrosine kinases represent pivotal targets in cancer therapy. It would be similarly advantageous to discover novel transmembrane proteins or polypeptides, and their corresponding polynucleotides that have additional medical utility.

The transmembrane polypeptides of the invention, like the secreted [032] polypeptides, also have many different functional domains, and belong to a wide variety of Pfam families. Transmembrane protein-related sequences can possess or interact with immunoglobulin (ig) domains, which are characteristically found in the immunoglobulin superfamily, comprised of hundreds of proteins, with various functions (http://pfam.wustl.edu/cgi-bin/getdesc?name=ig). Transmembrane proteinrelated sequences can also possess or interact with ion_trans domains, which are polypeptides characterized by six transmembrane helices, and which transport ions across membranes (http://pfam.wustl.edu/cgi-bin/getdesc?name=ion_trans). Proteins in this family can demonstrate specificity for particular ions, e.g., sodium, potassium, and calcium. Transmembrane protein-related sequences can also possess or interact with integrase core domains, which mediate the integration of a DNA copy of a viral genome into a host chromosome; e.g., HIV integrase catalyses the incorporation of virally derived DNA into the human genome, presenting a target for the development of new therapeutics for the treatment of AIDS (http://pfam.wustl.edu/cgibin/getdesc?name=rve). Transmembrane protein-related sequences can also possess or interact with domains designated as differentially expressed in neoplastic vs. normal cells "DENN" domains, which are involved in signal transduction. Characteristically, these domains are found in protein components of signaling pathways that utilize rab proteins or mitogen-activated protein (MAP) kinases (http://pfam.wustl.edu/cgi-bin/getdesc?name=DENN).

- [033] Transmembrane protein-related sequences can also possess or interact with acyl coA binding protein (ACBP) domains, which are protein domains that bind medium- and long-chain acyl-CoA esters with high affinity (http://pfam.wustl.edu/cgi-bin/getdesc?name=ACBP). Membrane-related sequences also possess or interact with SPFH domain/band 7 family (Band_7) domain, which are protein domains that include a transmembrane segment, and regulate cation conductivity (http://pfam.wustl.edu/cgi-bin/getdesc?name=Band_7).
- [034] Transmembrane proteins that are differentially expressed on the surface of cancer cells, particularly those that are differentially expressed on the surface of cancer cells but not on the surface of normal tissues, such as heart and lung, are desirable targets for production of antibodies, e.g., diagnostic antibodies or therapeutic antibodies, such as antibodies that mediate ADCC or CDC to effect tumor cell killing.

[035] Transmembrane proteins with extracellular fragments that can be cleaved can be useful as secreted proteins to effect ligand/receptor binding so as to mediate intracellular responses, such as signal transduction. Transmembrane proteins that act as receptors, and possess a ligand binding extracellular portion exposed on a cell surface and an intracellular portion that interacts with other cellular components upon activation can be also be useful as transmembrane proteins to mediate intracellular responses, such as signal transduction.

Kinase-Related Sequences

- [036] A kinase is an enzyme that catalyzes the transfer of phosphate groups from phosphate donors to acceptor substrates. Kinase substrates include, but are not limited to, proteins and lipids. Sequences of the invention that phosphorylate protein substrates are designated "Pkinases." Examples of kinase-related sequences include calcium, calmodulin-dependent protein kinase II, myosin light chain kinase, and phosphatidlyinositol kinase.
- [037] Kinases and phosphatases are counteracting: kinases add phosphate groups and phosphatases liberate phosphate groups. The counteracting activities of kinases and phosphatases provide cells with a "switch" that can turn on or turn off the function of various proteins. The activity of any protein regulated by phosphorylation depends on the balance, at any given time, between the activities of the kinase(s) that phosphorylate it, and the phosphatase(s) that dephosphorylate it. Phosphorylation plays a important role in intercellular communication during development, homeostasis, and the function of major bodily systems, including the immune system.
- [038] In conjunction with phosphatases, kinases control such diverse and essential cellular processes as transcription, cell division, cell cycle progression, differentiation, cytoskeletal function, apoptosis, receptor function, learning and memory, hematopoeisis, fertilization, neural transmission, muscle contraction, non-muscle motor function, glycogen metabolism, and hormone secretion.
- [039] Most kinases act within a network of kinases and other signaling effectors, and are modulated by autophosphorylation and phosphorylation by other kinases (Manning et al., 2002). Intracellular signaling involves a multitude of diverse mechanisms that combine to modulate the activity of individual proteins in response to different biological inputs.
- [040] Defects in cell signal transduction pathways are responsible for a number of disorders, including the majority of cancers, immune disorders, and many

inflammatory conditions, including, but not limited to, Crohn's disease (Geffen and Man, 2002; Van Den Blink et al., 2002; Lodish 1999). Over-expression and/or structural alteration of kinases, for example, receptor tyrosine kinase family members, is often associated with human cancers. For example, tumor cells are known to use receptor tyrosine kinases in transduction pathways to achieve tumor growth, angiogenesis and metastasis. Therefore, receptor tyrosine kinases represent pivotal targets in cancer therapy. A number of small molecule receptor tyrosine kinase inhibitors have been synthesized, are in clinical trials, are being analyzed in animal models, or have been marketed. Inhibitory mechanisms include ligand-dependent down regulation, e.g., by the adaptor Cbl (Brunelleschi et al., 2002).

- [041] Kinase-related sequences can possess or interact with protein kinase (pkinase) domains, which share a conserved catalytic core common in serine/threonine and tyrosine protein kinases (http://pfam.wustl.edu/cgi-bin/getdesc?name=pkinase). Kinase-related sequences can also possess or interact with A-kinase anchoring protein 95 (AKAP95) domains, which comprise two zinc fingers, and have been implicated in chromosome condensation (http://pfam.wustl.edu/cgi-bin/getdesc?name=AKAP95). Kinase-related sequences can also possess or interact with inositol 1,3,4,-trisphosphate 5/6 kinase (Ins134_P3_kin) domains, which mediate the function of inositol 1.3.4-trisphosphate, a branch point in inositol phosphate metabolism (http://pfam.wustl.edu/cgi-bin/getdesc?name=Ins134_P3_kin).
- [042] Kinases, by virtue of their participation in many and varied intracellular activities, are useful as targets of therapeutic intervention such as, for example, in cancer and inflammation. Cells transfected with cDNA encoding a kinase can be used in screening for small molecule agonists or antagonists, for example.

Ligase-Related Sequences

[043] Ligases are enzymes that join together, or ligate, two molecules. Ligase substrates include nucleic acids and proteins. For example, DNA ligases link two DNA molecules together; they play a role in DNA repair and replication. DNA ligases also are involved in the rearrangement of immunoglobulin gene segments, such as those responsible for the generation of antibody diversity. Examples of protein ligases include ubiquitin protein ligases, which add an ubiquitin molecule to an amino acid residue, typically as part of a peptide or polypeptide. Examples of nucleic acid ligases include DNA ligase I, DNA ligase III alpha, and T4 RNA ligase 2.

[044] Ligases are also involved in cellular regulatory processes. For example, glutamate-cysteine ligase (GCL) is the first and rate-limiting enzyme involved in the biosynthesis of glutathione. Polymorphisms of human GCL account for differences in sensitivity to environmental toxicants and chemotherapeutic agents in human cancer cell lines (Walsh et al., 2001). Also by way of example, glutamate-ammonia ligase, or glutamine synthetase (GS), is expressed at a higher than normal level in human primary liver cancer, and may be involved in hepatocyte transformation (Christa et al., 1994).

- [045] Ligase-related sequences can possess or interact with ATP dependent DNA ligase (DNA_ligase) domains, which can join two DNA fragments by catalyzing the formation of an internucleotide ester bond between a phosphate and a deoxyribose (http://pfam.wustl.edu/cgi-bin/getdesc?name= DNA_ligase). Ligase-related sequences can also possess or interact with glutamate-cysteine ligase (GCS) domains, which catalyze the rate-limiting step in the biosynthesis of glutathione. (http://pfam.wustl.edu/cgi-bin/getdesc?name=GCS). Ligase-related sequences can also possess or interact with 2',5' RNA ligase (2_5_ligase) domains, which ligate tRNA half molecules containing 2',3'-cyclic phosphate and 5' hydroxyl terminal to products containing a 2'5' phosphodiester linkage (http://pfam.wustl.edu/cgi-bin/getdesc?name=2_5_ligase).
- [046] Like kinases, ligases are also useful as targets for identification of agonists and antagonists, such as small molecule drugs.

Receptor-Related Sequences (Including Nuclear Hormone and T-Cell Receptors)

- [047] A receptor is a polypeptide that binds to a specific signaling molecule and initiates a cellular response. Receptors can be present on the cell surface or inside the cell. Example of receptor types include G-protein-linked receptors, ion channel-linked receptors, enzyme-linked receptors, T-cell receptors, thyroid hormone receptors, retinoid receptors, nuclear hormone receptors, and the related category of steroid hormone receptors, e.g., cortisol receptors (Alberts et al., 1994).
- [048] G-protein-linked receptors transduce extracellular signals into intracellular responses by interacting with guanine nucleotide binding proteins. The same ligand can activate many different G-protein-linked receptors. G-protein-linked receptors mediate cellular responses to a diverse range of signaling molecules, including hormones, neurotransmitters, and local mediators, which are varied in

structure and function, and encompass proteins and small peptides, as well as amino acids and their derivatives, and fatty acids and their derivatives. Many signaling molecules are active at low concentrations, and their receptors often bind with high affinity. Examples of G-protein-linked receptors include, but are not limited to, rhodopsins, olfactory receptors, and β -adrenergic receptors.

- [049] Ion channel-linked receptors are involved in synaptic signaling. These receptors regulate ion channels, to which they are linked. Some respond to signals from neurotransmitters, e.g., acetylcholine, serotonin, GABA, and glycine. A common mechanism of action for ion channel-linked receptors is to transiently open or close their respective ion channel, transiently changing the permeability of the membrane in which they reside to a specific ion or ions.
- [050] Enzyme-linked receptors can be linked to enzymes or can function as enzymes. Their ligand binding site is commonly on one side of the membrane, e.g., an extracellular domain, and the catalytic site is on the other, e.g., a cytoplasmic domain. Transmembrane tyrosine-specific protein kinase receptors for growth and differentiation factors are enzyme-linked receptors; examples include receptors for epidermal growth factor (EGF), platelet-derived growth factor (PDGF), fibroblast growth factors (FGFs), hepatocyte growth factors (HGF), insulin, insulin like growth factor-1 (IGF-1), nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and macrophage colony stimulating factor (M-CSF).
- [051] Nuclear hormone receptors generally function by crossing the plasma membrane of target cells and binding to intracellular protein ligands. Ligand binding activates these receptors in some instances, exposing a DNA binding domain which regulates the transcription of specific genes. Generally, nuclear hormone receptors bind to specific DNA sequences adjacent to or in the vicinity of the genes regulated by their ligand. A host of cell type-specific regulatory proteins can collaborate with the nuclear hormone receptor to influence the transcription of specific genes or sets of genes (Alberts et al., 1994). Examples of nuclear hormone receptors include estrogen-related receptors, such as hERR1, which modulates the estrogen receptor-mediated response of the lactoferrin gene promoter (Yang et al., 1996), and is a transcriptional regulator of the human medium chain acyl coenzyme A dehydrogenase gene (Sladek et al., 1997). Examples of nuclear hormone receptors also include photoreceptor-specific nuclear receptors, such as NR2E3, which are part

of a large family of nuclear receptor transcription factors involved in signaling pathways. NR2E3 plays a role in cone function and human retinal photoreceptor differentiation and degeneration (Milam et al., 2002; Kobayashi et al., 1999).

- [052] T-cell receptors are membrane proteins comprised of two disulfide-linked polypeptide chains, each with two immunoglobulin-like domains. They display a similarity to antibodies in that they have a variable amino-terminal region and a constant carboxyl-terminal region which is coded for by variable, joining, and constant region genes (Wei et al., 1997; Alberts et al., 1994). Rearrangement of T-cell receptor genes have been associated with human T-cell leukemias (Fisch et al., 1993).
- [053] Receptors are involved in cellular processes that regulate growth and differentiation. Their dysregulation can lead to hyperproliferative conditions, and they are common therapeutic targets. For example, the EGF receptor is aberrantly activated in neoplasia, especially in tumors of epithelial origin. EGF receptor antagonists can successfully treat some of these tumors, either alone or in combination with chemotherapy or ionizing radiation (Kari et al., 2003). The progesterone receptor, an intracellular steroid hormone receptor, plays a role in the development and function of the mammary gland, the uterus, and the ovary. Mutation or aberrant expression of the progesterone receptor, or its regulatory molecules, can affect its normal function and lead to cancer (Gao and Nawaz, 2002).
- [054] Receptors are also involved in cellular processes that regulate inflammation and immunity. For example, members of the type 1 interleukin-1 receptor family mediate immune and inflammatory responses, and function in host defense. (O'Neill, 2002). Their activation can lead to the activation of signaling cascades, e.g., pathways involving transcription factors and protein kinases, resulting in an inflammatory response (O'Neill, 2002). Another mechanism by which receptors regulate inflammation and immunity is by their selective expression, at discrete stages of differentiation, by cells involved in the inflammatory response. For example, expression of the triggering receptor expressed on myeloid cells (TREM-1) and the myeloid DAP12-associating lectin (MDL-1) are correlated with myelomonocytic differentiation. These receptors are more highly expressed in differentiated cells, are involved in monocyte activation and the inflammatory response, and are expressed at a lower level in malignant compared to normal cells (Gingras et al., 2002).

Receptor-related sequences can possess or interact with seven [055] transmembrane receptor (7tm_1) domains, which are protein domains with a structural framework comprising seven transmembrane helices found in receptors, e.g., receptors in the rhodopsin family with a wide range of functions, activated by ligands that vary widely in structure and character (http://pfam.wustl.edu/cgibin/getdesc?name=7tm_1). Receptor-related sequences can also possess or interact with L1 transposable element (transposase_22) domains, some of which have been characterized to exhibit reverse transcriptase activity, and some of which are capable of retrotransposition. Receptor-related sequences can also possess or interact with a SH2 domain, which is a protein domain of about 100 amino acid residues found in many intracellular signal-transducing proteins, that can regulate intracellular signaling cascades by interacting with phosphotyrosine-containing target peptides in a sequence-specific and phosphorylation-dependent manner (http://pfam.wustl.edu/cgibin/getdesc?name=SH2). Receptor-related sequences can also possess or interact with LDL receptor domains, e.g., the low-density lipoprotein receptor repeat class B (Ldl_recept_b) domain, which comprises a conserved YWTD motif in multiple tandem repeats (http://pfam.wustl.edu/cgi-bin/getdesc?name=ldl_recept_b). Receptor-related sequences can also possess or interact with ribosomal L10 (Ribosomal_L10e) domains, which are protein domains commonly found in the large ribosomal subunit (http://pfam.wustl.edu/cgi-bin/getdesc?name=Ribosomal_L10e).

[056] Receptor-related sequences can possess or interact with zinc finger C4 type domains, which are DNA binding domains of nuclear hormone receptors that share a conserved cysteine-rich region of approximately 65 amino acids and regulate such diverse biological processes as pattern formation, cellular differentiation, and homeostasis (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc? PF00105). Receptor-related sequences can also possess or interact with a ligand binding domain of nuclear hormone receptors (hormone_rec), which are helical domains involved in the regulation of eukaryotic gene expression, cellular proliferation, and differentiation in target tissues (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF00104). Receptor-related sequences can also possess or interact with Mov34 domains, which are regulatory subunits of the proteasome found in some regulators of transcription factors (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc? PF01398). Receptor-related sequences can also possess or interact with immunoglobulin domains, which are described above.

[057] Receptors, and fragments of receptors can be used as therapeutics. For example, a ligand-binding portion, an effector-binding portion, and a kinase or phosphatase domain or consensus sequence can comprise fragments that can function as agonists or antagonists enhance or reduce, e.g., ligand binding to the natural receptors, or effector function by the natural receptors.

Phosphatase-Related Sequences

- [058] A phosphatase, as indicated above, is an enzyme that catalyses the hydrolysis of esters of phosphoric acid. Its substrates include, but are not limited to, nucleic acids, proteins, and lipids. Together with kinases, phosphatases are active in a broad range of cellular functions, including transcription, cell division, cell-cycle progression, intermediate cellular metabolism, glycogen metabolism, lipogenesis and lipolysis, maintenance of electrochemical gradients, neuronal function, immune responses, intracellular vesicular transport, cytoskeletal function, sperm motility, and skeletal, cardiac, and smooth muscle function (Oliver and Shenolikar, 1998).
- [059] Disruption in these functions may lead to disorders. For example, as noted above, phosphatases regulate pathways of cell growth and programmed cell death; disruptions in these pathways can lead to abnormal cell growth, such as that which occurs in cancer. Mutations in serine/threonine protein phosphatase 2A (PP2A), a multifunctional regulator of cell growth and function, are associated with the increased growth of tumor cells (Schonthal, 2001). The tumor suppressor "phosphatase and tensin-homology deleted on chromosome 10" (PTEN) gene encodes PIP₃, a lipid phosphatase that dephosphorylates phosphatidlyinositol, thus countering the action of the oncogenes PI₃-kinase and Akt, which promote cell survival. PTEN has been identified as a tumor suppressor; it is deleted in multiple types of advanced human cancers.
- [060] Also as noted above, phosphatases regulate pathways that control immune function. For example, the CD45 phosphotyrosine phosphatase is one of the most abundant glycoproteins expressed on immune cells, and regulates T-cell signaling and development (Alexander, 2000). In addition, the serine/threonine phosphatase calcineurin plays a central role in lymphocyte activation, among other important and wide-ranging cellular functions (Baksh and Burakoff, 2000). Certain compounds, specifically, cyclosporine and FK-506 (Tacrolimus), have been found to inhibit the phosphatase activity of calcineurin, thereby suppressing the production of IL-2 and other cytokines. In addition, these compounds have recently been found to

block the JNK and p38 signaling pathways triggered by antigen recognition in T-cells. Finally, phosphatase inhibitors have proven to be valuable as immune suppressant drugs, and those in the field believe that modulators of phosphatase activity promise to be important immunoregulatory compounds (Allison, 2000).

- [061] Phosphatase-related sequences can possess or interact with protein phosphatase 2C (PP2C) domains, which display Mn⁺⁺ or Mg⁺⁺ dependent protein serine/threonine phosphatase activity (http://pfam.wustl.edu/cgi-bin/getdesc? name=PP2C). Phosphatase-related sequences can also possess or interact with protein-tyrosine phosphatase (Y_phosphatase) domains, which catalyze the removal of a phosphate group attached to a tyrosine residue (http://pfam.wustl.edu/cgi-bin/getdesc?name=Y_phosphatase). Phosphatase-related sequences can also possess or interact with protein phosphatase inhibitor 1/DARPP-32 (DARPP-32) domains, which inhibit protein phosphatases, and play a role in regulating neurotransmitter pathways, receptors, and ion channels (http://pfam.wustl.edu/cgi-bin/getdesc? name=DARPP-32).
- [062] Like kinases, phosphatases can be used as targets for therapeutic intervention, in cell-free or cell-based assays, for example, in screening for drugs, including small molecule drugs.

Protease-Related Sequences

- [063] Proteases, also known as endopeptidases, are enzymes that cleave polypeptide chains by hydrolyzing peptide bonds at positions within the amino acid chain. Different proteases recognize different polypeptide sequences. Endopeptidase substrate specificities vary from broad to narrow; for example, subtilisins are relatively non-specific, and can cleave polypeptide chains with a wide variety of amino acid sequences, whereas thrombin is more specific and can only cleave polypeptide chains with an arginine residue on the carboxyl side of the susceptible peptide bond and glycine on the amino side. Additional examples of protease-related sequences include collagenases, trypsin, and damage-induced neuronal endopeptidase (Kiryu-Seo et al., 2000).
- [064] Proteases mediate the continuous remodeling of living tissues. For example, the extracellular matrix, a tissue skeleton that mediates communication among cells, and influences the structure and function of associated tissues and organs, is continuously remodeled. A strictly controlled balance is maintained between breakdown of the extracellular matrix by proteases and reconstruction of the

extracellular matrix. This continued matrix remodeling is a dynamic process that shapes the structure and function of tissues and organs (Wojtowicz-Praga, 1999).

- [065] Defects in protease function are responsible for a number of disorders, including cancer and other hyperproliferative disorders. Proteases are involved in the pathogenesis of such disorders both by virtue of their involvement in programmed cell death and tumor invasion and metastasis (Los et al., 2003; Stetler-Stevenson et al., 1993). Detection of the presence or characteristics of proteases can be used to screen for and diagnose prostate cancer (Karanazanashvili and Abrahamsson, 2003). Proteases are also involved in the pathogenesis of inflammatory and arthritic diseases, such as pancreatitis, osteoarthritis, and rheumatoid arthritis (Pfutzer and Whitcomb, 2001; Martel-Pelleteir et al., 2001; Lerch and Gorelick, 2000).
- [066] Protease-related sequences possess or interact with a variety of different protease domains, including domains belonging to the cysteine protease family, the serine protease family, and the metalloproteinase family (http://pfam.wustl.edu/cgi-bin/text search?terms=endopeptidase&search_what= all§ions=DE§ions=CC&size=10).

Phosphodiesterase-Related Sequences

- [067] Phosphodiesterases are enzymes that cleave phosphodiester bonds, i.e., bonds formed by two hydroxyl groups in an ester linkage to the same phosphate group, such as those between adjacent RNA or DNA nucleotides. Phosphodiesterases are found in both soluble and membrane-associated forms. Most phosphodiesterases act within a network of signal transduction molecules and other signaling effectors, and are modulated by components of these pathways. Phosphodiesterases regulate the metabolism and synthesis of cyclic nucleotides in signal-transduction pathways. They hydrolyze cAMP and cGMP, molecules that play an important and widespread role in signal transduction. Phosphodiesterases also repair damage to nucleic acids. Some phosphodiesterases are regulated primarily by calcium and calmodulin, others are regulated primarily by cGMP. They differ in their sensitivity to individual inhibitors, but all share a homologous catalytic region (Siegel, et al., 1999).
- [068] Examples of phosphodiesterases include nucleotide pyrophosphatases (NPP) and plasma membrane glycoprotein PC-1, which are present in elevated levels in the fibroblasts of patients with Lowe's syndrome (Funakoshi et

al., 1992). Another example of a phosphodiesterase is myomegalin-like protein, which is expressed at high levels in the nucleus and cytoplasm of heart and skeletal muscle (Soejima et al., 2001). Phosphodiesterases have demonstrated promise in cancer chemotherapy, analgesia, the treatment of Parkinson's disease, and the treatment of learning and memory disorders (Weishaar, et al., 1985).

- [069] Phosphodiesterase-related sequences can possess or interact with type I phosphodiesterase/nucleotide pyrophosphatase (phosphodiest) domains, which catalyze the cleavage of phosphodiester and phosphosulfate bonds (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF01663). Phosphodiesterase-related sequences can also possess or interact with 3'5'-cyclic nucleotide phosphodiesterase (PDEase) domains, which are involved in signal transduction (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF00233).
- [070] Phosphodiesterases (PDEs) are also useful as targets for therapeutic intervention, for example, for identification of agonists or antagonists, such as in the screening of small molecule inhibitors. A well known PDE-5 inhibitor, sildenafil citrate (Viagra®) is used for treatment of erectile dysfunction (Brock, 2000). The mechanism of action involves inhibition of PDE-5 enzyme and resulting increase in cyclic guanosine monophosphate (cGMP) and smooth muscle relaxation in the penis (Rosen and McKenna, 2002). Such inhibitors may also find use for treatment of severe pulmonary arterial hypertension. (Ghofrani et al., 2003).

Kinesin-Related Sequences

- [071] Cells transport proteins and organelles in an orderly and regulated manner along cytoskeletal filaments. Molecular motor proteins, such as kinesins, can carry such cargo along the cytoskeletal filaments to specific destinations, in a highly regulated manner. Exemplary membrane-bound cargoes include mitochondria, lysosomes, endoplasmic reticulum, and axonal vesicles (Vale, 2003). Kinesins also transport nonmembranous cargo, such as mRNAs, tubulin monomers, and intermediate filaments (Vale, 2003).
- [072] Kinesins, e.g., KIF11, function in the cell division process (Miki et al., 2001). In the nucleus, kinesins are necessary to establish spindle bipolarity, position chromosomes on metaphase plates, and maintain forces in the spindle. Several members of the kinesin family are associated with the chromosomes, and are likely to perform a role in mitotic chromosome movement (Miki et al., 2001). For example, the C-terminal kinesin KIFC1 is involved in the processes of meiosis,

mitosis, and karyogamy (Miki et al., 2001). The kinesin GAKIN binds to the human analog of the Drosophila Discs Large tumor suppressor protein (hDlg), a membrane associated guanylate kinase (Hanada, 2000). GAKIN undergoes translocation in T-lymphocytes upon their cellular activation (Hanada, 2000). The GAKIN/hDlg complex is also hypothesized to play a role in cell division (Hanada, 2000). Thus, the kinesin GAKIN plays a role in cell proliferation and T-cell mediated immune function.

- [073] Kinesin-mediated intracellular transport is also implicated in as a mechanism of tumorigenesis. For example, kinesin transports the tumor suppressor adenomatous polyposis colon protein (APC) (Jimbo et al., 2002). The APC gene is mutated in both sporadic and familial colorectal tumors. The APC protein interacts with the microtubule plus-end-directed kinesin proteins KIF3A and KIF3B through an association with the kinesin superfamily-associated protein 3 (KAP3). Normally, the APC tumor suppressor is transported to its correct intracellular location at the tips of membrane protrusions. Mutant APCs derived from cancer cells, however, are unable to undergo kinesin-mediated transport, and do not accumulate with normal efficiency in clusters in the membrane protrusions, and thereby can not function efficiently as tumor suppressors.
- [074] In view of the connection to cancer, investigators have sought small molecules to inhibit specific molecular motors in cells, such as the mitotic kinesin Eg5/Ksp (Mayer, 1999). In addition, others have found small molecule inhibitors of Eg5/Kap with low nanomolar affinity have anti-tumor activity, and one such agent has entered clinical phase I trials (Vale, 2003).
- [075] In another arena, it has been proposed that impairing motor-driven delivery of MHC peptide complexes to the surface of dendritic cells could provide immunomodulation. Additionally, inhibiting the cell surface delivery of cytotoxic granules in T cells could help provide immunosuppressive therapy (Vale, 2003).
- [076] Kinesin-related sequences can possess or interact with kinesin motor (kinesin) domains, which hydrolyze ATP and bind to microtubules to produce a motor-active force that transports intracellular vesicles and organelles (http://pfam.wustl.edu/cgi-bin/getdesc?name=kinesin). Kinesin-related sequences can also possess or interact with kinesin-associated protein (KAP) domains, which are non-motive domains that form a complex with kinesin (http://pfam.wustl.edu/cgi-

bin/getdesc?name=KAP). Kinesin-related sequences can also possess or interact with MyTH4 domains, which are present in the tail of the motor ATPase proteins kinesin and myosin (http://pfam.wustl.edu/cgi-bin/getdesc?name=MyTH4).

[077] Kinesins, like kinases, are useful as targets for therapeutic intervention, for example, in screening for small molecule inhibitors for the treatment of cancer.

Immunoglobulin-Related Sequences

- [078] An immunoglobulin is an antibody molecule, and is typically composed of heavy and light chains, each of which have constant regions that display similarity with other immunoglobulin molecules and variable regions that convey specificity to particular antigens. Most immunoglobulins can be assigned to classes, e.g., IgG, IgM, IgA, IgE, and IgD, based on antigenic determinants in the heavy chain constant region; each class plays a different role in the immune response.
- [079] Immunoglobulins are characterized by a structural motif, the immunoglobulin (Ig) domain, which is approximately one hundred amino acids long, is involved in protein-protein and protein-ligand interactions, and includes a conserved intradomain disulfide bond (http://pfam.wustl.edu/cgi-bin/getdesc? name=ig). It is one of the most common domains found among all known proteins, and is present in hundreds of proteins with diverse functions. Proteins with the ig domain comprise the immunoglobulin superfamily; members include antibodies, T-cell receptors, major histocomptability proteins, the CD4, CD8, and CD28 coreceptors, most of the invariant polypeptide chains associated with B and T cell receptors, leukocyte F_c receptors, the giant muscle kinase titin, and receptor tyrosine kinases (Janeway et al., 2001; Alberts, et al., 1994).
- [080] Polypeptides with immunoglobulin-like domains can be markers for specific types of tissues and tumors. For example, a 43-kDa protein membrane antigen with two immunoglobulin-like domains in its extracellular region is expressed in normal human colonic and small bowel epithelium and > 95% of human colon cancers, but absent from most other human tissues and tumor types (Heath et al., 1997).
- [081] Polypeptides with immunoglobulin-like domains are also involved in inflammation. For example, myelin oligodendrocyte glycoprotein, a myelin-specific protein found in the central nervous system, specifically binds to and activates complement, an effector of the immune system, via its extracellular immunoglobulin-

like domain. By virtue of providing the means for an interaction between myelin and the complement component of the immune response, myelin oligodendrocyte glycoprotein is a modulator of central nervous system inflammation and has been predicted by those in the field to be relevant to the pathogenesis of demyelinating diseases such as multiple sclerosis (Johns and Barnard, 1997).

[082] Immunoglobulin-related sequences can also possess or interact with leucine-rich repeat domains, which are involved in protein-protein interactions, and are used in molecular recognition processes as diverse as signal transduction, cell adhesion, cell development, DNA repair and RNA processing (http://pfam.wustl.edu/cgi-bin/getdesc?name =LRRNT). Immunoglobulin-related sequences can also possess or interact with fibronectin type III repeat (fn3) domains (http://pfam.wustl.edu/cgi-bin/getdesc?name=fn3), which contain binding sites for DNA and heparin. Immunoglobulin-related sequences can also possess or interact with WASp Homology domain 1 (WH1), which can bind the metabotropic glutamate receptors mGluR1alpha and mGluR5 (http://pfam.wustl.edu/cgi-bin/getdesc? name=WH1).

Glycosylphosphatidylinositol Anchor-Related Sequences

[083] Glycosylphosphatidylinositol (GPI) anchor proteins are synthesized as single membrane proteins; the transmembrane segment is cleaved away in the endoplasmic reticulum, where a GPI membrane anchor is added. The resulting protein is bound to the non-cytoplasmic, i.e., either extracellular or luminal, side of the membrane by the GPI anchor. GPI anchor proteins can be dissociated from the membrane by phosphatidylinositol-inositol-specific phospholipase C (Alberts et al., 1994). Examples of GPI-anchor proteins include prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin (Vainberg et al., 1998), and carboxypeptidase M, which is associated with the differentiation of monocytes to macrophages (Rehli et al., 1995).

[084] GPI anchor protein-related sequences can possess or interact with KE2 domains, which may contain a DNA binding leucine zipper motif(http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF01920). GPI anchor protein-related sequences can also possess or interact with zinc carboxypeptidase (Zn_carbOpept) domains, which include carboxypeptidase H regulatory domains and carboxypeptidase A digestive domains (http://www.sanger.ac.uk/cgi-bin/Pfam/getacc?PF00246).

Other Polypeptide-Related Sequences Activator-Related Sequences

[085] An activator is a molecule or collection of molecules that positively modulates the activity of a regulatory protein, or that binds to DNA and regulates one or more genes by increasing the rate of transcription. Regulatory protein activators contribute to an increase in protein activity. Transcriptional activators provide a positive control over gene transcription; for example, they can sense the internal condition of the cell and bind to a sequence of DNA near a target promoter, resulting in the transcription of an appropriate gene. Examples of activator-related sequences include template-activating factors, bacterial catabolite activators, and the coenzyme thiamine pyrophosphatase. Activator-related sequences, e.g., factors that influence viral replication and transcription, can be encoded by oncogenes (Nagata et al., 1995).

[086] Activator-related sequences can possess or interact with SH2 domains, which are protein domains of about 100 amino acid residues found in many signal-transducing proteins. SH2 domains can regulate signaling cascades, e.g., by interacting with phosphotyrosine-containing target peptides in a sequence-specific and phosphorylation-dependent manner (http://pfam.wustl.edu/cgi-bin/getdesc? name=SH2). Activator-related sequences also possess or interact with nucleosome assembly protein (NAP) domains, which regulate gene expression, and are accessible to histones (http://pfam.wustl.edu/cgi-bin/getdesc?name=NAP).

Adaptor-Related Sequences

[087] Adaptors are proteins involved in the process of capturing specific cargo molecules into membrane-bound vesicles for transport through the cell. Different adaptors recognize different receptors for cargo molecules, and also recognize different vesicle coat proteins, accounting, in part, for the specificity of the content of intracellular vesicles bound to specific destinations within the cell (Kirsch et al., 1999). Examples of adaptor-related sequences include adaptins, clathrins, adaptor-related protein complex subunits, and Cas ligand with multiple Src homology 3 domains (CMS) adaptors.

[088] Adaptor-related sequences can possess or interact with src homology 3 (SH3) domains, which are small protein modules of approximately 50 amino acid residues found in a variety of intracellular or membrane-associated proteins. SH3 domains are often indicative of a protein involved in signal

transduction events related to cytoskeletal organization. (http://pfam.wustl.edu/cgi-bin/getdesc?name=SH3). Adaptor-related sequences also possess or interact with the adaptin N-terminal (Adaptin_N) protein domain, which is found in the N terminal region of various adaptor protein complexes. The N-terminal region of adaptor proteins is relatively constant in comparison to the C-terminal (http://pfam.wustl.edu/cgi-bin/getdesc?name=Adaptin_N).

Adhesion Molecule-Related Sequences

- [089] Adhesion molecules are molecules that mediate the adhesion of cells with other cells, and with the extracellular matrix. Examples of adhesion molecules include members of the immunoglobulin superfamily, integrins, cadherins, selectins, and transmembrane proteoglycans. The adhesion molecule carcinoembryonic antigen (CEA) is present nearly exclusively on cancer cells, and is expressed on the cell surface of approximately 80% of all solid cancerous tumors (Berinstein et al., 2002).
- [090] Adhesion molecule-related sequences can possess or interact with the immunoglobulin (ig) domain, which are described above. Adhesion molecule-related sequences can also possess or interact with integrin alpha cytoplasmic region (integrin_A) domains, which comprise the short, intracellular region of the integrin alpha chain http://pfam.wustl.edu/cgi-bin/getdesc?name=integrin_A).

Antigen-Related Sequences

- [091] An antigen is a molecule that provokes an immune response; they include both foreign antigens and autoantigens. Antigens can be expressed in a tissue-specific manner and their expression can be developmentally regulated. For example, the heat stable antigen HSA is expressed in both a tissue-specific manner, i.e., it is restricted to hematopoeitic cells, and a developmentally-regulated manner, i.e., it is more highly expressed in immature precursor cells than in terminally differentiated cells (Wenger et al., 1993). Antigens can be expressed on the cell surface or inside the cell, e.g., in the nucleus or on intermediate filaments. Antigenrelated sequences include sequences related to tumor antigens, which are expressed exclusively in tumor cells, or in greater amounts in tumor cells than in normal cells. Tumor antigens can be transmembrane proteins, with one or more transmembrane domains (Li et al., 1996; Linnenbach, et al., 1993).
- [092] Autoantigens, which are components of the body that provoke an immune response, are involved in the pathogenesis of autoimmune disease.

Autoantigens can be either selectively or ubiquitously expressed among cell and tissue types. They can be localized to any region of the cell, including the nucleus, nucleolus, nuclear envelope, and intermediate filaments (Racevskis et al., 1996). For example, pancreatic islet cell antigens are involved in the autoimmune pathogenesis of diabetes, and thyroid antigens are involved in autoimmune thyroid disease.

Antigen-related sequences can possess or interact with the ICAp69 domain, which is characterized by a 69 kDa pancreatic islet cell autoantigen present in autoimmune (insulin-dependent) diabetes mellitus (http://pfam.wustl.edu/cgibin/getdesc?name=ICA69). Antigen-related sequences can also possess or interact with the Ku70/Ku80 C-terminal arm (Ku C) or Ku70/Ku80 N-terminal alpha/beta (Ku_N) domains, which belong to the Ku family of peptides (http://pfam.wustl. edu/cgi-bin/getdesc?name=Ku_C; http://pfam.wustl.edu/cgi-bin/getdesc? name=Ku N). Ku, an antigen associated with autoimmune disease, normally functions to bind DNA double-strand breaks and facilitate DNA repair, but induces autoimmunity under pathological conditions. Antigen-related sequences can also possess or interact with the bZIP transcription factor (bZIP) domain, which comprises a basic region and a leucine zipper region (http://pfam.wustl.edu/cgi-bin/getdesc? name=bZIP). Antigen-related sequences can possess or interact with YT521-B-like (YTH) domains, which comprise YT521-B, a tyrosine-phosphorylated nuclear protein domain that modulates alternative RNA splice site selection, and interacts with other nuclear proteins, e.g., scaffold attachment factor B, and Sam68, a 68-kDa substrate associated with Src during mitosis (http://pfam.wustl.edu/cgi-bin/getdesc?name= YTH).

ATPase-Related Sequences

[094] ATPases are enzymes that use the energy of ATP hydrolysis to move ions or small molecules across a membrane against a chemical concentration gradient or electrical potential. For example, ATPases can maintain low intracellular calcium and sodium ion concentrations, and generate a low pH inside lysosomes, plant-cell vacuoles, and the lumen of the stomach. Vacuolar ATPases are ATP-dependent proton pumps that create pH gradients by transporting protons across membranes, while coupling the energy produced in the conversion of ATP to ADP with proton transport (Forgac, 1999). They can acidify or alkalinize cells, organelles, and extracellular compartments, and create voltage gradients that drive the secretion or absorption of ions and fluids (Wieczorek et al. 1999). Examples of ATPase-related

sequences include proton transporters, glucose transporters, multidrug resistance factors, calcium ATPases, and porins.

[095] ATPase-related sequences can possess or interact with ATP synthase F/14-kDa subunit (ATP-synt-F) domains, which correspond to a 14-kDa subunit in the peripheral catalytic part of vacuolar ATPases (http://pfam.wustl.edu/cgi-bin/getdesc?name=ATP-synt_F). ATPase-related sequences can also possess or interact with vacuolar (H⁺)-ATPase C, D, G, and H subunit (V-ATPase) domains, which are membrane-attached sequences that generate an acidic environment (http://pfam.wustl.edu/cgi-bin/getdesc?name=V-ATPase_G).

ATP-Related Sequences

- [096] Adenosine trisphosphate (ATP) is a nucleotide comprising an adenine, a ribose, and a trisphosphate unit. The trisphosphate unit contains two phosphoanhydride bonds that confer an energy-rich property to ATP. The free energy liberated in the hydrolysis of one or both of these bonds can drive reactions that require an input of free energy. A wide range of physiological and pathological processes are driven by the energy of ATP, including cellular movement, the synthesis of biomolecules from precursors, muscle contraction, ciliary and flagellar function, intermediary metabolism, glycolysis, fatty acid oxidation, oxidative phosphorylation, and membrane transport (Ku et al., 1990). Examples of ATP-related sequences include ATPases, ATP synthases, ATP carrier proteins, and myosin.
- [097] ATP-related sequences can possess or interact with ATP-synthase subunit C protein domains (ATP-synt_C), which are protein domains that consist of two long terminal hydrophobic regions, and are implicated in the proton-conducting activity of ATPases (http://pfam.wustl.edu/cgi-bin/getdesc?name=ATP-synt_C). ATP-related sequences can also possess or interact with mitochondrial carrier protein (mito_carr) domains, which are involved in energy transfer across the inner mitochondrial membrane (http://pfam.wustl.edu/cgi-bin/getdesc? name=mito_carr).

Binding Protein-Related Sequences

[098] A binding protein is a protein that binds to another molecule with specificity. Binding proteins can be involved in building macromolecular structures, e.g., in cytoskeletal assembly or scaffolding (Machesky et al., 1997). Proteins often exist in the cell in complexes with other proteins, nucleic acids, lipids, and/or small molecules. For example, steroid receptors, e.g., the progestin, estrogen, androgen,

and glucocorticoid receptors, bind to heat-shock proteins and FKBP52, a calcium-regulated immunosuppressant, to form functional complexes (Peattie et al., 1992; Sanchez et al., 1990). DNA binding proteins and general transcription factors bind to the TATA box, a consensus sequence in a gene's promoter region that specifies the position of transcription initiation, forming a functional transcription complex (Chalut et al., 1995). Proteins can interact with multiple molecules simultaneously. For example, Nedd4, an ubiquitin-protein ligase, can interact with multiple proteins and lipids through its lipid binding domain and multiple protein binding domains (Jolliffe et al., 2000).

[099] Proteins utilize a large number of motifs to bind other molecules. Binding protein-related sequences can possess or interact with the cold-shock DNA-binding (CSD) domain, a conserved domain of about 70 amino acids that helps the cell survive in temperatures below optimum growth temperature by inducing the synthesis of proteins that negatively regulate transcription, translation, and recombination, resulting in suppressed cell proliferation (http://pfam.wustl.edu/cgi-bin/getdesc?name=CSD). Proteins induced by exposure to cold include DNA-binding proteins, and cold inducible RNA binding proteins, which have RNA binding domains at or near their N-termini (Nishiyama et al., 1997). For example, contrin, a testis-specific DNA/RNA binding protein with a cold shock domain also has a large number of phosphorylation sites, each of which can mediate intermolecular interactions (Tekur et al., 1999). Contrin is involved in transcription of testis-specific genes; its inactivation could provide a reversible male contraceptive.

[0100] Binding protein-related sequences can possess or interact with the ARID/BRIGHT DNA binding (ARID) domain, which is an approximately 100 amino acid sequence involved in a wide range of DNA interactions, including, but not limited to, interaction with AT-rich regions (http://pfam.wustl.edu/cgi-bin/getdesc? name=ARID). ARID-encoding genes are involved in a variety of biological processes, including regulation of cell growth, development, cell lineage gene regulation, cell cycle control, and tissue-specific gene expression.

[0101] Binding protein-related sequences can also possess or interact with nucleosomal binding domains to facilitate binding within the nucleosome, a nuclear structure comprised of chromosomal DNA and proteins. For example, the HMG14 and HMG17 (HMG14_17) domain is present in some nucleosome proteins, most commonly, in proteins HMG14 and HMG17, members of a family designated as high

mobility group proteins, which form components of chromatin, and bind to nucleosomal DNA, regulating the interaction of the DNA with histone proteins (http://pfam.wustl.edu/cgi-bin/getdesc? name=HMG14_17).

[0102] Binding protein-related sequences can also possess or interact with conserved motifs that recognize RNA, and allow the protein to bind RNA (http://pfam. wustl.edu/cgi-bin/textsearch?terms=rna+ binding&search_what= all§ions=DE§ions=CC&size=100). These motifs include the RNA recognition (rrm) domain, also known as a RRM, RBD, or RNP domain (http://pfam. wustl.edu/cgi-bin/getdesc?name=rrm). Numerous RNA binding proteins possess the rrm domain, including heterogeneous nuclear ribonucleoproteins (hnRNP) proteins, which are implicated in the regulation of alternative splicing, and LA proteins, which are among the main autoantigens in systemic lupus erythematosus (SLE).

[0103] Binding protein-related sequences can also possess or interact with conserved motifs that mediate their binding to ions, e.g., calcium. Calcium-binding proteins such as calmodulin, the calcineurins, and their homologues and related proteins are widely used to regulate cellular processes (http://pfam.wustl.edu/cgi-bin/textsearch?terms=calcium +binding& search_what=all§ions=DE§ions=CC&size=100). Ion-binding proteins include phosphoproteins that bind to other molecules in an manner dependent on their phosphorylation state, and can regulate many types of molecules and processes, including those that utilize complex signaling cascades (Pang et al., 2001; Pang et al., 2002; Lin et al., 1999). Ion-binding protein-related sequences can possess or interact with the EF hand (efhand) domain, a calcium-binding domain that comprises a loop of twelve amino acids that coordinates a calcium ion in a pentagonal bipyramidal configuration and is flanked on both sides by a twelve amino acid alpha-helical domain (http://pfam.wustl. edu/cgi-bin/getdesc? name=efhand).

Breakpoint-Related Sequences

[0104] A breakpoint is the location on a chromosome where a gene is disrupted, and one segment of the gene is severed from the other. Chromosomal breaks that disrupt coding or regulatory sequences can result in gene mutation. Chromosomal breaks can also serve as molecular landmarks, e.g., a break can be detected on Southern blots as the loss of an expected band and the appearance of two novel bands. Examples of breakpoint-related sequences include the sequences that generate the Philadelphia chromosome translocation, the sequences that generate the

chromosome translocation (t(1;7)(q42;p15)), which is implicated in Wilms' tumor, and the sequences that generate the chromosomal translocation t(18;21)(q22.1q21.3), which is implicated in Down syndrome.

- [0105] Breakpoints commonly occur in discrete regions of the chromosome. Breakage at these regions can lead to a recognized disease phenotype. One way of generating such a phenotype is by chromosomal translocation, i.e., chromosomes mutate by exchanging parts. When a segment from one chromosome is exchanged with a segment from another nonhomologous chromosome, two mutated chromosomes are simultaneously generated (Griffiths, et al., 1999). The Philadelphia chromosome, a mutation sometimes associated with chronic myelogenous leukemia (CML), is an example. It results from the translocation of a discrete segment of chromosome 22 into a discrete region of chromosome 9. Patients with the Philadelphia chromosome mutation generally have a better prognosis than CML patients with other characteristics.
- [0106] Acquired clonal chromosomal abnormalities are found in the malignant cells of most patients with leukemia, lymphoma, and solid tumors. Some of these abnormalities are the result of consistent chromosomal rearrangements. For example, in a preponderant number of chronic myelogenous leukemia cases, breakpoints at chromosome band 22q11 occur within a breakpoint cluster region of 5-6 kb (Weinstein et al., 1988).
- [0107] Chromosome rearrangements affecting band 3q21 are associated with a particularly poor prognosis in myeloid leukemia or myelodysplasia. These breakpoints cluster in a breakpoint cluster region of approximately 30 kb, located centromeric and downstream of the ribophorin I (RPN-I) gene (Weiser, 2002). The apoptotic gene *bcl-2*, was isolated as a breakpoint rearrangement in human follicular lymphomas and was shown to act as an oncogene that promoted cell survival rather than cell proliferation.
- [0108] Some proteins can act as leukemia or lymphoma-specific antigens for major histocompatibility complex-restricted T cell cytotoxicity. These include the breakpoint cluster region (bcr)-abl, and other fusion oncoproteins. Genetically engineered chimeric and humanized antibodies have demonstrated activity against overt lymphomas and leukemias. Radioimmunotherapy has produced significant therapeutic responses with minimal radiation exposure to normal tissues (Jurcic et al., 2000).

[0109] Breakpoint-related sequences can possess or interact with RhoGAP domains, also known as the breakpoint cluster region-homology domain, and mediates signal transduction by small G proteins (http://pfam.wustl.edu/cgibin/getdesc?name=RhoGAP). Breakpoint-related sequences can also possess or interact with RhoGEF domains, which comprise approximately 200 amino acid residues that encode a guanine nucleotide exchange factor (http://pfam.wustl.edu/cgibin/getdesc?name=RhoGEF). Breakpoint-related sequences can also possess or interact with Plectin/S10 (S10_plectin) domains, which are found at the N-terminus of some isoforms of plectin and ribosomal S10 protein (http://pfam.wustl.edu/cgibin/getdesc?name=S10_plectin).

Carrier or Transport-Related Sequences

- [0110] A membrane transport protein is an integral transmembrane protein that aids one or more molecules across a cell membrane. Most, if not all, types of molecules are transported across membranes, including proteins, ions, and fatty acids (Schaffer and Lodish, 1994). Even molecules such as water and urea, which can diffuse across pure phospholipid bilayers, are frequently accelerated by transport proteins. Transporters clear cells of toxins, and confer drug resistance on tumor lines (Ramalho-Santos et al., 2002). The rate of transport varies considerably among membrane transport proteins. Membrane transport proteins function in the plasma membrane and in intracellular organellar membranes, including the nuclear, mitochondrial, lysosomal, and vesicular membranes. For example, transportin, also known as karyopherin beta2, imports nuclear mRNA binding proteins from the cytoplasm across the nuclear membrane, into the nucleus (Bonifaci et al., 1997).
- [0111] Membrane transport proteins can have either a broad or a narrow range of specificity for the transported substance. In mammalian cells, nucleoside transport across membranes is mediated by broad specificity transporters. Nucleoside transport plays a role in such diverse cellular functions as nucleotide synthesis, neurotransmission, and platelet aggregation. Nucleoside transporters carry chemotherapeutic nucleosides, and are a target of interest in chemotherapeutic and cardiac drug design (Griffiths et al., 1997; Ku et al., 1990).
- [0112] Carriers are another class of membrane transport proteins; they bind to a solute and transport it across the membrane by undergoing a series of conformational changes. In contrast to channel proteins, transporters bind only one, or a few, substrate molecules at a time; after binding substrate molecules, they

undergo a conformational change such that the bound substrate molecules, and only those molecules, are transported across the membrane. Carriers transport a wide variety of molecules, including fatty acids across the plasma membrane (Schaffer and Lodish, 1994); purines, pyrimidines, and components of nucleosides across the nuclear membrane, and adenine nucleotides across the inner mitochondrial membrane (Battini et al., 1997).

[0113] Membrane transport-related sequences can possess or interact with vacuolar (H⁺)-ATPase C, D, G, and H subunit (V-ATPase) domains, which are membrane-attached sequences that generate an acidic environment (http://pfam.wustl.edu/cgi-bin/getdesc? name=V-ATPase_C). Membrane transportrelated sequences can also possess or interact with nucleoside transporter (nucleoside tran) domains, which are found in proteins that transport nucleosides across the plasma membrane, and are employed to synthesize nucleotides via the salvage pathways in cells that lack their own de novo synthesis pathways (http://pfam.wustl.edu/cgi-bin/getdesc?name=Nucleoside tran). Membrane transportrelated sequences can also possess or interact with ATP synthase F/14-kDa subunit (ATP-synt-F) domains, which correspond to a 14-kDa subunit in the peripheral catalytic part of vacuolar ATPases (http://pfam.wustl.edu/cgi-bin/getdesc? name=ATP-synt_F). Membrane transport-related sequences can also possess or interact with mitochondrial carrier protein (mito carr) domains, which are involved in energy transfer across the inner mitochondrial membrane (http://pfam.wustl.edu/cgibin/getdesc?name=mito_carr). Membrane transport-related sequences can also possess or interact with an AMP-binding enzyme (AMP-binding) domain, which is a domain rich in serine, threonine, and glycine, and is characterized by a conserved proline-lysine-glycine triplet sequence (http://pfam.wustl.edu/cgibin/getdesc?name=AMP-binding).

[0114] Membrane transport proteins, such as those expressed in cancer cells, are useful as targets for therapeutic intervention, for example, in the screening for small molecule inhibitors. Inhibition of membrane transport, as indicated above, may make cancer cells more susceptible to chemotherapy, for example.

Channel-Related Sequences

[0115] Channel proteins transport water or specific types of ions down their concentration or electrical potential gradients. They form a protein-lined passageway across the membrane through which multiple water molecules or ions

move at a very rapid rate, e.g., up to 10^8 per second. The plasma membrane, for example, contains potassium-specific channel proteins that generate the cell's resting electric potential across the plasma membrane. Examples of channel-related sequences include the sodium hydrogen exchanger, sodium potassium ATPase, and the cystic fibrosis transmembrane regulator.

- [0116] Members of this subset of membrane transport proteins have wide-ranging functions in both normal physiology and in pathology. For example, the transport system that mediates the transmembrane exchange of sodium for hydrogen across the plasma membrane plays a physiological role in the regulation of intracellular pH, the control of cell growth and proliferation, stimulus-response coupling, metabolic responses to hormones, the regulation of cell volume, and the transepithelial absorption and secretion of several ions. The sodium-hydrogen exchanger also plays a role in cancer and in tissue and organ hypertrophy (Mahnensmith and Aronson, 1985).
- [0117] Channel-related sequences can possess or interact with sodium/hydrogen exchanger (Na_H_Exchanger) domains, which exchange sodium for hydrogen across a membrane in an electroneutral manner (http://pfam.wustl. edu/cgi-bin/getdesc? name=Na_H_Exchanger). Channel-related sequences can also possess or interact with neurotransmitter-gated ion-channel ligand binding (Neur_chan_LBD) domains, which form the extracellular domains of some ion channels (http://pfam.wustl.edu/cgi-bin/getdesc?name=Neur_chan_LBD). Channel-related sequences can also possess or interact with UBX domains, which are present in ubiquitin-regulatory proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=UBX).

Checkpoint-Related Sequences

[0118] The cell division cycle is the fundamental means by which living things are propagated. Fundamental to successful propagation is the faithful replication of DNA; a cell cycle control system exists to coordinate the cycle as a whole. The control system is regulated by brakes that can stop the cycle at specific checkpoints. Thus, the checkpoints arrest the cycle upon the occurrence of undesirable events, such as DNA damage, replication stress, or mitotic spindle disruption. For example, DNA lesions and disrupted replication forks are recognized by the DNA damage checkpoint and replication checkpoint, respectively. Checkpoints can also, for example, initiate protein kinase-based signal transduction cascades to activate downstream effectors that elicit cell cycle arrest, DNA repair, or

apoptosis. These actions prevent the conversion of aberrant DNA structures into inheritable mutations and minimize the survival of cells with unrepairable damage (Qin and Li, 2003).

- [0119] Dysregulation of the cell-cycle is a hallmark of tumor cells. Defective checkpoint function results in genetic modifications that contribute to tumorigenesis. Checkpoint function can be abrogated by many different mechanisms (Bast, et al., 2000). For example, cyclin-dependent kinases that normally are activated at a checkpoint can be inactivated or activated in an abnormal manner. Alternatively, the normal activities of the cyclin-dependent kinase inhibitors, phosphatases, or other regulatory molecules of the cell cycle can be altered. Tumor suppressors are among the classes of molecules that can effect cell cycle dysregulation. The abrogation of checkpoint function can alter the sensitivity of tumor cells to chemotherapeutics (Stewart et al, 2003).
- [0120] Checkpoint-related sequences can possess or interact with phosphoribosylaminoimidazole-succinocarboxamide synthase (SAICAR_synt) domains, which function in *de novo* purine synthesis (http://pfam.wustl.edu/cgibin/getdesc?name =SAICAR_synt). Checkpoint-related sequences can also possess or interact with WD40 domains, which comprise a domain of approximately 40 amino acids, which are sometimes present in tandem repeats (http://pfam.wustl.edu/cgibin/getdesc?name=WD40). Checkpoint-related sequences can also possess or interact with cyclin, C-terminal (cyclin_C) domains, which regulate cyclin dependent kinases (http://pfam.wustl.edu/cgi-bin/getdesc? name=cyclin_C).
- [0121] Thus, checkpoint related proteins, e.g., kinases, phosphatases, etc., are useful as targets for therapeutic intervention, such as in screening for small molecule drugs for the treatment of cancer, immune disorders, and inflammation.

Complex-Related Sequences

[0122] Complexes are molecular entities comprised of two or more components. Molecular complexes within cells form functional units that carry out cellular operations. For example, complexes at the cell membrane perform structural and regulatory tasks, including regulating membrane traffic and maintaining organelle integrity. Complexes at the cytoskeleton perform static and dynamic roles with respect to cell shape, intracellular transport, and communication with the extracellular matrix. Complexes in the nucleus transcribe and regulate genes, and complexes at sites of protein synthesis translate and regulate proteins. Complexes can reside

intracellularly and/or extracellularly, e.g., in the extracellular matrix. Examples of complex-related sequences include cytoskeletal and filamentous proteins, ADP-ribosylation factor (ARF) proteins, and protein synthesis initiation factors (Amor et al., 1994).

[0123] Complex-related sequences can possess or interact with ADP-ribosylation factor family (arf) domains, which are GTP-binding domains involved in protein trafficking (http://pfam.wustl.edu/cgi-bin/getdesc?name=arf). Complex-related sequences can also possess or interact with eukaryotic initiation factor domains, e.g., the eukaryotic initiation factor 4E (IF4E) domain, which recognizes and binds mRNA during protein synthesis (http://pfam.wustl.edu/cgi-bin/getdesc?name=IF4E). Complex-related sequences can also possess or interact with intermediate filament (filament) protein domains, which form filamentous structures typically 8 to 14 nm wide, and form components of the cytoskeleton and nuclear envelope, e.g., neurofilaments, cytokeratins, lamins, vimentin, and desmin (http://pfam.wustl.edu/cgi-bin/getdesc?name=filament).

Cytokine-Related Sequences

[0124] A cytokine is an extracellular signaling protein or peptide that acts as a local mediator in communication among cells. Cytokines regulate proliferation and differentiation, for example, they mediate differentiation of cells in the hematopoeitic lineage. Examples of cytokines include interleukins, interferons, and colony stimulating factors of the hematopoeitic system. Some cytokines, e.g., interferons and interleukins, can be induced by viral activity, and possess antiviral activity (Sheppard et al., 2003). Cytokine-related sequences may enable the expression of a cytokine, for example, as a cytokine transcription factor (Kao et al., 1994). They can also be part of a cytokine effector pathway, for example, as an intracellular effector of cytokine-related cytoskeletal changes in response to events in the extracellular matrix (Hirsh et al., 2001; Joberty et al., 1999).

[0125] Cytokine-related sequences can possess or interact with interferon-induced transmembrane protein (CD225) domains, which are associated with interferon-induced cell growth suppression (http://pfam.wustl.edu/cgibin/getdesc?name=CD225). Cytokine-related sequences can also possess or interact with SelR (SelR) domains, which bind both selenium and zinc, and/or methionine sulfoxide reductase enzymatic domains (http://pfam. wustl.edu/cgibin/getdesc?name=SelR). Cytokine-related sequences can also possess or interact

with reverse transcriptase (rvt) domains, which are involved in RNA-directed DNA polymerase activity, an enzymatic activity that uses an RNA template to produce DNA for integration into a host genome (http://pfam.wustl.edu/cgi-bin/getdesc? name=rvt). Cytokine-related sequences can also possess or interact with L1 transposable element domains (Transposase_22), which are described above.

[0126] Cytokines, thus, are useful as therapeutic proteins for the treatment of disorders such as cancer, immune disorders, and inflammation.

Dehydrogenase-Related Sequences

[0127] Dehydrogenases are enzymes that catalyze the removal of hydrogen atoms in the absence of oxygen. They contribute to a wide range of enzymatic reactions, including those involved in amino acid degradation, amino acid synthesis, the citric acid cycle, fatty acid oxidation, fatty acid synthesis, glycolysis, the pentose phosphate pathway, photosynthesis, pyruvate oxidation, and oxidative phosphorylation (Walker et al., 1992). Examples of dehydrogenases include steroid dehydrogenases, NADH dehydrogenases, and glyceraldehyde-3-phosphate dehydrogenase.

[0128] Dehydrogenase-related sequences can possess or interact with glyceraldehyde 3-phosphate dehydrogenase, NAD binding (GPDH) domains, which play a role in glycolysis and gluconeogenesis by reversibly catalyzing the oxidation and phosphorylation of D-glyceraldehyde-3-phosphate to 1,3-diphospho-glycerate (http://pfam.wustl.edu/cgi-bin/getdesc?name=gpdh). Dehydrogenase-related sequences can also possess or interact with 3-hydroxyacyl-CoA dehydrogenase, NAD binding (3HCDH_N) domains, which catalyze the reduction of 3-hydroxyacyl-CoA to 3-oxoacyl-CoA in fatty acid metabolism (http://pfam.wustl.edu/cgi-bin/getdesc? name=3HCDH_N).

Disease-Related Sequences

Amyotrophic Lateral Sclerosis

[0129] Amyotrophic Lateral Sclerosis (Lou Gehrig's Disease) is a neurodegenerative disease that affects the motor neurons. The disease displays multiple clinical variants and can affect motor neurons throughout the nervous system, e.g., the spinal cord and brainstem. One clinical variant, the autosomal recessive form of juvenile amyotrophic lateral sclerosis, has been mapped to the human chromosome 2q33-q34 region (Hadano et al., 2001). A protein family characterized by the HAP1 N-terminal conserved region (HAP1_N) domain possesses

a N-terminal conserved region from hypothetical protein products of ALS2CR3 genes found in the 2q33-2q34 region of chromosome 2 (http://pfam.wustl.edu/cgi-bin/getdesc?name= HAP1_N).

Gaucher's Disease

[0130] Gaucher's Disease is a genetic disease characterized by a deficiency of enzymes responsible for the breakdown and recycling of glycolipids, i.e., lipids with carbohydrate moieties, e.g., glucosylceramide; and sphingolipids, lipids with sphingosine moieties, e.g., sphingomyelin. Normally, the glycolipids and sphingolipids in the membranes of senescent cells are metabolized by a multi-step process that includes the activities of acid beta-glucosidases and saposins. When these activities are absent, or present in reduced amounts, glucosylceramide and sphingolipids accumulate, and produce the Gaucher's disease phenotype. The disease displays multiple clinical variants, and can manifest with central nervous system pathology, enlargement of organs, e.g., liver and spleen, and an increase in the level of the cytokine transforming growth factor beta (Zhao and Grabowski, 2002; Perez Calvo et al., 2000; Cormand et al., 1997). The variability in clinical presentation is consistent with the large number of different mutations observed in the acid beta-glucosidase and saposin genes.

[0131] Acid beta-glucosidases are enzymes that metabolize glycolipids. Saposins are small proteins that are described in more detail below. Mammalian saposins are synthesized as a single precursor molecule (prosaposin) with saposin-A (SAPA) and saposin-B (SapB_1; SapB_2) domains; prosaposin becomes an active saposin following a proteolytic activation reaction (http://pfam.wustl.edu/cgi-bin/getdesc?name=SAPA; http://pfam.wustl.edu/cgi-bin/getdesc?name=SapB_1; http://pfam.wustl.edu/cgi-bin/getdesc?name=SapB_1.

Huntington Disease

[0132] Huntington Disease is a progressive neurodegenerative genetic disorder characterized by dementia, psychiatric symptoms, and a choriform movement disorder. It is caused by an increased number of repeats of the codon CAG, which encodes the amino acid glutamine, in a gene located at the 4p16.3 region of chromosome 4, which codes for a protein called huntingtin. The polyglutamine tracts expressed by the mutant form of the gene selectively ablate striatal and cortical neurons, (Ho et al., 2001).

[0133] The Huntington Disease gene is widely expressed, but exerts tissue-specific effects on neurons (Lin et al., 1993). The gene expresses multiple distinct transcripts, and differential polyadenylation of the gene leads to the expression of transcripts of different sizes (Lin et al., 1993). There is a relative increase in the abundance of one transcript in the human brain, which has been hypothesized to account for the tissue-specific effects of the disease (Lin et al., 1993). The HAP1_N protein domain, described above, binds to the gene product, huntingtin, in a polyglutamine repeat-length-dependent manner (http://pfam.wustl.edu/cgi-bin/getdesc?name=HAP1_N). This domain is also found in several huntingtin-associated protein 1 (HAP1) homologues.

Multiple Sclerosis (MS)

[0134] Multiple sclerosis (MS) is a disease characterized by demyelination, i.e., the loss of the myelin coating, of nerve axons. Its clinical course varies among patients; these variations fall into two broad categories, a relapsing/remitting course, and a chronic progressive course. MS has a complex etiology; it has an autoimmune component, is influenced by genetics, and sometimes involves infectious agents. MS results from an abnormal immune response to one or more antigens present in the myelin sheaths that cover the nerve axons of genetically susceptible individuals, which may be preceded by exposure to a causal infectious agent (Oksenberg et al., 1999).

[0135] The genetic susceptibility to MS is determined by MS susceptibility genes, most of which demonstrate only a small to moderate effect on susceptibility, e.g., the major histocompatibility complex at chromosome 6p21 (Oksenberg et al., 1999). An etiological infectious agent has been isolated from the plasma and cerebrospinal fluid of patients with multiple sclerosis (Perron et al., 1997). This agent is a retroviral oncovirus, known as multiple sclerosis-associated retrovirus (MSRV), also called LM7, and is found in association with virions produced by the cultured cells of MS patients (Perron et al., 1997). MSRV proteins possess protein domains characteristic of retroviral proteins. These include the Gag P30 core shell protein (Gag_p30) domain, which is involved in viral assembly (http://pfam.wustl.edu/cgi-bin/getdesc?name=Gag_p30) and the reverse transcriptase (rvt) domain, which was described above.

Obesity

[0136] Although single-gene mutations have been shown to cause obesity in animal models, the most common forms of human obesity arise from the interactions of multiple genes, environmental factors, and behavior. Several genes have been shown to affect body weight regulation in humans and other animals. These include the ob, lep, CPE, ASIP, LEP, TUB, UPC, POMC, CCKAR, TNFA, and PPAR- γ genes (Comuzzie et al., 1998). Genetic regulation of body weight can be effected through diverse mechanisms. For example, the TUB gene family regulates body weight by encoding proteins that are phosphorylated in response to insulin, mediate insulin signaling, and are associated with a maturity onset obesity associated with insulin resistance (Ikeda et al., 2002). CCKAR genes regulate body weight in a different manner; they regulate the hormone cholecystokinin, which produces a feeling of satiety following food intake (Ritter et al., 1994).

[0137] Some genes that regulate body weight possess the WH1 domain, which is described above. Genes that regulate body weight can also possess or interact with the sprouty (sprouty) domain. This domain is found in sprouty proteins, which inhibit the Ras/mitogen-activated protein kinase cascade, a pathway initiated by receptor tyrosine kinases and involved in development (http://pfam.wustl.edu/cgi-bin/getdesc?name=Sprouty). Genes that regulate body weight can also possess or interact with a Tub (Tub) domain, which is found in Tubby, a mouse gene in which an autosomal recessive mutation resulting from a splicing defect causes maturity-onset obesity, insulin resistance and sensory deficits (http://pfam.wustl.edu/cgi-bin/getdesc?name=Tub).

Oncogene

[0138] An oncogene is any one of a large number of genes that can help make a cell cancerous. Typically, an oncogene is a mutant form of a normal gene, and is often a gene involved in the control of cell growth, division, or differentiation. Cells in higher organisms normally grow, divide, differentiate, and die under the regulation of other cells. Cancer cells proliferate, in part, because they are able to divide without input from other cells, as the result of accumulated mutations. Oncogenes include, but are not limited to, genes encoding GTP binding proteins, e.g., ras; growth factors, e.g., platelet-derived growth factor; growth factor receptors, e.g.,

platelet-derived growth factor receptor; kinases, e.g., src; nuclear proteins, e.g., myc; and tumor suppressors, e.g., retinoblastoma proteins.

[0139] The products of oncogenes are frequently proteins involved in cell signaling, e.g., kinases, GTP-binding proteins, and receptors. For example, many human cancers have a mutation in a ras gene (Alberts et al., 1994). The ras proteins belong to a large superfamily of monomeric GTPases, and relay signals from receptor tyrosine kinases to the nucleus, stimulating cell proliferation or differentiation. Ras proteins function as switches, cycling between an active state in which GTP is bound, and an inactive state, in which GDP is bound. A ras gene mutation can result in the translation of a protein that fails to hydrolyze its bound GTP, and persists abnormally in its active state, transmitting an intracellular signal for cell proliferation or differentiation even in the presence of regulatory non-proliferation and nondifferentiation signals. Oncogene-related proteins can possess one of many ras protein domains (http://pfam.wustl.edu/cgi-bin/textsearch?terms=ras&search what=all§ions=DE §ions=CC&size=100), including the sub-families Ras, Rab, Rac, Ral, Ran, Rap, and Ypt1. Oncogene-related proteins can also possess a Gtr1/RagA G-protein conserved region (gtr1 RagA) domain, which is found in some G-proteins of the Ras family, e.g., the RagA/B human homologues of the ras GTP binding protein Gtr1 (http://pfam.wustl.edu/cgi-bin/getdesc?name=Gtr1_RagA). Oncogene-related sequences can also possess or interact with an ATPase domain associated with diverse cellular activities; proteins with the AAA ('A'TPases 'A'ssociated with diverse cellular 'A'ctivities) domain can perform chaperone-like functions that assist in assembling, operating, or disassembling protein complexes. The domain includes a conserved region of approximately 220 amino acids that contains an ATP-binding site which can act as an ATP-dependent protein clamp to hold a protein in place (http://pfam.wustl.edu/cgi-bin/getdesc?name=AAA). Some oncogene-related sequences can also possess or interact with a C2 domain of approximately 116 amino-acid residues, which can be involved in calcium-dependent phospholipid binding and inositol-1,3,4,5-tetraphosphate binding, and is found, e.g., in some isozymes of protein kinase C (http://pfam.wustl.edu/cgibin/getdesc?name=C2). C2 domains are typically located between C1 domains (which bind phorbol esters and diacylglycerol) and protein kinase catalytic domains. Regions with homology to the C2 domain are present in many proteins, e.g., synaptotagmin.

Parkinson's Disease

[0140] Parkinson's disease is a neurological disorder that affects movement control. Complex interactions among groups of nerve cells in the central nervous system coordinate to control movement. One such group of neurons is located in the substantia nigra of the midbrain; these neurons release the neurotransmitter dopamine, which allows an organism to fine-tune its movements. In Parkinson's disease, neurons of the substantia nigra progressively degenerate, leaving the patient with clinical symptoms that may include resting tremor, muscular rigidity, a slowness of spontaneous movement, and poor balance and motor coordination (Seigel et al., 1999).

- [0141] Parkinson's disease has multiple causes, including both genes and the environment. It also has multiple presentations, including juvenile-onset (before age 45) and adult onset (after age 45), and can be transmitted through either autosomal dominant or autosomal recessive mechanisms. In keeping with the diversity of etiologies, presentation, and genetic mechanisms, there are a large and diverse number of genes and gene products involved in the pathogenesis of Parkinson's disease. For example, the PARK2 gene, which encodes the protein parkin, is mutant in autosomal recessive juvenile parkinsonism. PARK2 is a ubiquitin protein ligase that is a component in the pathway that attaches ubiquitin to specific proteins, designating them for degradation (Fishman, and Oyler, 2002).
- [0142] Parkinson's disease-related sequences can possess or interact with synuclein domains, which are expressed on the cytoplasmic regions of proteins found predominantly in neurons (http://pfam.wustl.edu/cgi-bin/getdesc?name=Synuclein). Alpha-synuclein, which possesses a synuclein domain, is mutated in several families with autosomal dominant Parkinson's disease. Gamma-synuclein, which also possesses a synuclein domain, is overexpressed in breast and ovarian cancers (Lavedan, 1998).

Retinitis Pigmentosa

[0143] Retinitis pigmentosa is a group of inherited retinopathies characterized by early stage loss of night vision, followed by loss of peripheral vision. Defects in any structural or functional proteins associated with the rod photoreceptor neurons of the retina, which are the cells that transduce light into a neuronal action potential, can lead to the disease (Seigel et al., 1999).

[0144] GTPase regulators have been implicated in the pathology of retinitis pigmentosa. GTPase regulators are proteins that determine whether a GTP binding protein exists in a GTP-bound or GDP-bound state (Zhao et al., 2003); they are described in more detail below. GTPase regulators have a broad spectrum of intracellular functions, including intracellular vesicular transport. These proteins localize to a specific region of rod photoreceptor cells, in a narrow cilium that connects the cell body, where protein synthesis and basic metabolism takes place, with the rod outer segment, where light is transduced to an action potential of the optic nerve (Zhao et al., 2003). Proteins necessary for the light transduction process are made in the cell body and must be transported to the outer segment via vesicular transport mechanisms. Mutant GTPase regulators, which regulate vesicular transport, play a role in the pathogenesis of retinitis pigmentosa (Roepman et al., 2000). Retinitis pigmentosa-related sequences can possess or interact with a Tctex-1 domain, which is comprised of a dynein light chain, and can bind to the cytoplasmic tail of rhodopsins, which are light-sensing proteins present in retinal rod cells (http://pfam.wustl.edu/cgi-bin/getdesc?name=Tctex-1). Mutations in this domain that are responsible for retinitis pigmentosa inhibit this binding.

Alzheimer's Disease

- [0145] Alzheimer's disease is a neurodegenerative dementing illness. It is a genetically complex disease with multiple forms, including familial and sporadic forms, and early onset and late-onset forms. Mutations in at least four genes are known to cause Alzheimer's disease, and there is evidence for additional Alzheimer's loci (McKusick, 2003). One form of Alzheimer's disease is caused by mutations in the amyloid precursor gene, another form is associated with the apolipoprotein E4 allele, a third form is caused by a mutant presentilin-1 gene that encodes a seven-transmembrane domain protein, and a fourth form is caused by a mutant gene encoding a similar seven -transmembrane domain protein, presentilin-2 (McKusick, 2003).
- [0146] Consistent with its multiple etiologies, multiple clinical presentations, and multiple genetic loci, Alzheimer disease has a complex pathology. One facet of the pathology of Alzheimer's disease is the formation of amyloid plaques from amyloid precursor protein (Clark and Karlawish, 2003). Amyloid precursor protein can be processed *in vitro* by several different proteases such as secretases and caspases to yield peptide fragments, suggesting that these proteases may play a role in

the formation of pathogenic amyloid plaques *in vivo* (Suh and Checler, 2002). Presenilins have been identified as likely candidates for the proteases that cleave amyloid precursor protein to pathogenic peptide fragments *in vivo* (Selkoe, 2001). Another facet of Alzheimer's disease pathology is an inflammatory component mediated by microglial cells, the brain's primary immunoeffector cells (Tan et al., 1999). Microglial cells are attracted to and activated by amyloid deposits; they release inflammatory mediators that promote the aggregation of the deposits into plaques, and also directly induce or promote neurodegeneration (Hoozemans et al., 2002). Therefore, current treatment strategies include anti-inflammatory and immunotherapeutic approaches, including vaccines (Weiner and Selkoe, 2002).

[0147] Alzheimer's disease-related sequences can possess or interact with trypsin domains, which demonstrate a wide range of peptide degrading activities, including exopeptidase, endopeptidase, oligopeptidase and omega-peptidase activities (http://pfam. wustl.edu/cgi-bin/getdesc?name=trypsin). Alzheimer's disease-related sequences can also possess or interact with low-density lipoprotein receptor (ldl_rece) domains, which are characterized by seven successive cysteine-rich repeats of about 40 amino acids at the N-terminal region, and which are also present in receptors for low density lipoprotein (LDL), the major cholesterol-carrying lipoprotein of plasma (http://pfam.wustl.edu/cgi-bin/textsearch?terms=ldl_rece +&search_what=all& sections=DE§ions=CC&size=100). Alzheimer's disease-related sequences can also possess or interact with a PT repeat (pt_a) domain, which includes the tetrapeptide XPTX, or a similar, conserved, sequence.

Williams-Beuren Syndrome

[0148] Williams-Beuren syndrome is a complex genetic developmental disorder with multisystemic manifestations, and variability in its presentation. In 90-95% of the cases reported, a gene deletion occurs at the 7q11.23 location on the long arm of chromosome 7; in the remaining cases, a variety of other chromosomal deletions and translocations have been observed (Wang et al., 1999). The most severe cases are characterized by cardiac anomalies, including aortic stenosis, mental retardation, growth deficiency, a characteristic facial appearance, dental malformation, and infantile hypercalcemia (Lashkari et al., 1999).

[0149] The underlying molecular basis for the syndrome is the absence of the proteins encoded by the genes of the affected region of the chromosome. A missing elastin gene, with resulting extracellular matrix anomalies, is a consistent

finding. Other genes that are present in and near the commonly deleted region of chromosome 7, and thus are likely to contribute to pathogenesis, are (1) a gene encoding a regulator of chromosome condensation-like G-exchanging factor, which is a factor that exchanges nucleotides for small GTP-binding proteins, (2) an N-acetylgalactosaminyltransferase, (3) a DNAJ-like chaperone, (4) NOL1/NOP2/sun domain-containing proteins, including a novel protein designated WBSCR20, which is expressed in skeletal muscle, and is similar to a 120 kilodalton proliferation-associated nucleolar antigen, (5) a methyltransferase designated WBSCR22, and (6) other proteins with no known homologies (Merla et al., 2002; Doll and Grzeschik, 2001). Williams-Beuren-related sequences can possess or interact with a GTF2I-like repeat (GTF2I) domain, which is a DNA binding domain commonly deleted in Williams-Beuren syndrome, (http://pfam.wustl.edu/cgi-bin/getdesc?name=GTF2I).

Rheumatic Diseases

[0150] Rheumatic diseases are inflammatory conditions that can have autoimmune, infective, or traumatic origins. They include arthritis, systemic lupus erythematosus, scleroderma, and Sjogren's syndrome. Arthritis refers to any inflammation of a joint. Systemic lupus erythematosus is an autoimmune disease in which patients produce antibodies to their own tissues, resulting in an inflammatory process that can damage organs. Scleroderma can present as systemic scleroderma, a chronic, progressive disease that is characterized by hardening and stiffening of the skin and damage to internal organs, e.g., heart, lungs, kidneys and esophagus. Sjogren's syndrome is a progressive immunological disorder characterized by inflammation and the subsequent destruction of exocrine glands, e.g., salivary glands, sweat glands, and lacrimal (tear) glands.

[0151] The serum of patients with scleroderma and Sjogren's syndrome have antibodies directed against a protein that is a normal component of the Golgi apparatus (Seelig et al., 1994), an intracellular organelle composed of a stack of flattened cisternae with associated transport vesicles. The Golgi apparatus sorts proteins and sends them to their correct intracellular destination. This antigenic protein is a "golgin," one of a class of molecules characterized by an integral membrane domain and a large cytoplasmic region. Golgins organize the Golgi's structure, and influence protein sorting (Gillingham et al., 2002). Golgins function in a variety of ways, including cross-bridging Golgi cisternae to one another (Linstedt and Hauri, 1993) and tethering Golgi transport vesicles to the cisternal membranes

(Shorter et al., 2002). Rheumatic disease-associated sequences can possess or interact with golgin-97, RanBP2alpha, Imh1p, and p230/golgin (GRIP) domains, which are found in many large coiled-coil proteins, are sufficient for targeting to the Golgi, and have a conserved tyrosine residue (http://pfam.wustl.edu/cgi-bin/getdesc? name=GRIP).

Disintegrin-Related Sequences

[0152] Disintegrins are proteins that interfere with the function of integrins. Disintegrins are generally proteins of about 70 amino acid residues that contain multiple disulfide bonds, bind with high affinity to a subset of integrins, and interfere with integrin binding to physiological ligands. Examples of disintegrin-related sequences include snake venoms and related proteins, cysteine-rich metalloproteinases and related non-enzymatic sequences, e.g., those expressed in the male reproductive tract, and membrane-anchored metalloproteinases with diverse functions, e.g., the shedding of cell-surface proteins such as cytokines and cytokine receptors, and the conferring of asthma susceptibility (Van Eerdewegh et al., 2002; Perry et al., 1995).

[0153] Disintegrin-related sequences can possess or interact with disintegrin domains, which contain an Arg-Gly-Asp sequence, a sequence commonly found in adhesion proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=disintegrin). Proteins that comprise both disintegrin and metalloproteinase peptidase domains include ADAM proteins. Disintegrin-related sequences can also possess or interact with reprolysin family propeptide (Pep_M12B_propep) domains, which are domains that include the propeptide sequence of members of the peptidase family M12B, and contain a sequence motif similar to a sequence found in matrixin proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=Pep_M12B_propep).

Factor-Related Sequences

- [0154] A factor is any molecule that contributes to a bodily process. Factors can function in specific biochemical reactions and cellular functions. There are many categories of factors, and factors are involved in many, if not all, physiological and pathological processes. Some exemplary factors are described in the following paragraphs; they are not exhaustive of the category.
- [0155] Transcription factors are factors that initiate or regulate transcription in eukaryotes. They include gene regulatory proteins, which turn specific sets of genes on or off, and general transcription factors, which assemble at the promoter

region to enable and regulate transcription of many genes. They also include transcription elongation factors, which are proteins required for the addition of amino acids to growing polypeptide chains on ribosomes (Alberts et al., 1994). Transcription factors interact with a wide variety of molecules, including DNA binding proteins, polymerases, regulatory molecules such as kinases, and specific regions of DNA, e.g., promoters, and enhancers (Alberts et al., 1994; Vallejo et al., 1993).

- [0156] Translation factors, including translation initiation factors and release factors, are involved in initiating and regulating the rate of protein synthesis. They also interact with many molecules, including ribosomal proteins, mRNA, and molecules that regulate the incorporation of amino acids into protein, such as kinases and GTP (Price et al., 1993; Alberts, 1994).
- [0157] Export factors are involved in the export of molecules, e.g., RNA, from the nucleus (Stutz et al., 2000). Folding factors are involved in the process of folding proteins into their functional three dimensional shapes, and are also involved in receptor function (Gao et al., 1994). Factors such as activators and coactivators interact with nuclear receptors to modulate cellular processes, e.g., transcription (Mahajan et al., 2002).
- [0158] ADP-ribosylation factors are involved in the addition of an ADP-ribose group donated from nicotinamide adenine dinucleotide (NAD) to specific amino acid residues in heterotrimeric G-proteins. They are involved in, for example, normal cellular processes, such as vesicular transport, and also in the pathologic states induced by cholera, pertussis, and botulinum toxins (Alberts et al., 1994; Amor et al., 1994). Guanine nucleotide exchange factors bind to small G-proteins, such as Ras, and displace GDP in favor of GTP. They act as effectors or modulators of small G-proteins (Ehrhardt et al., 2001; Janeway et al., 2001; Shao and Andres, 2000).
- [0159] Factor-related sequences can possess or interact with ADP-ribosylation factor family (arf) domains, which are GTP-binding domains involved in protein trafficking (http://pfam.wustl.edu/cgi-bin/getdesc?name=arf). Factor-related sequences can also possess or interact with elongation factor Tu GTP binding (GTP_EFTU) domains, which are elongation factors that promote the GTP-dependent binding of aminoacyl tRNA to ribosomes during protein biosynthesis, and catalyze the translocation of the newly synthesised protein chain (http://pfam.wustl.edu/cgi-bin/getdesc?name=GTP_EFTU). Factor-related sequences can also possess or

interact with 4F5 protein family (4F5) domains, which comprise ubiquitously expressed short proteins rich in aspartate, glutamate, lysine and arginine (http://pfam.wustl.edu/cgi-bin/getdesc?name=4F5). Factor-related sequences can also possess or interact with eukaryotic initiation factors, e.g., eukaryotic initiation factor 4E (IF4E), which recognizes and binds mRNA during an early step of protein synthesis (http://pfam.wustl.edu/cgi-bin/getdesc?name=IF4E).

Germ Cell Specific Protein-Related Sequences

- [0160] Germ cells, also called gametes, are cells that contribute to a new generation of organisms by giving rise to either an egg or a sperm. They are haploid cells specialized for sexual fusion. Proteins that are specific to germ cells can be found at one or more developmental stages of gametes.
- [0161] Germ cell-related sequences include germ cell genes and their gene products, their regulators and effectors, genes and gene products affected in disorders associated with germ cells, and antibodies that specifically recognize or modulate germ cell-related sequences. Examples of germ cell-related sequences include the germ cell-specific Y-box binding protein and contrin. Germ cell specific protein-related sequences possess or interact with the cold-shock DNA-binding (CSD) domain, which is described above.

Growth Factor-Related Sequences

- [0162] A growth factor is an extracellular polypeptide signaling molecule that stimulates a cell to grow or proliferate. Many types of growth factors exist, including protein hormones and steroid hormones. Some growth factors have a broad specificity, and some have a narrow specificity. Examples of growth factors with broad specificity include platelet-derived growth factor, epidermal growth factor, insulin like growth factor I, transforming growth factor β, and fibroblast growth factor, which act on many classes of cells. Examples of growth factors with narrow specificity include erythropoeitin, which induces proliferation of precursors of red blood cells, interleukin-2, which stimulates proliferation of activated T-lymphocytes, interleukin-3, which stimulates proliferation and survival of various types of blood cell precursors, and nerve growth factor, which promotes the survival and the outgrowth of nerve processes from specific classes of neurons.
- [0163] Most growth factors have other actions in addition to inducing cell growth or proliferation, e.g., they may influence survival, differentiation, migration,

or other cellular functions. Growth factors can have complex effects on their targets, e.g., they may act on some cells to stimulate cell division, and on others to inhibit it. They may stimulate growth at one concentration, and inhibit it an another. Growth factors are also involved in tumorogenesis.

- [0164] Growth factor related sequences include sequences associated with the process of stimulating cell growth or proliferation by a growth factor. For example, they include intracellular effectors of growth, such as components of intracellular pathways that respond to growth factors (Kothapalli et al., 1997; Wax et al., 1994), sequences that bind directly or indirectly to growth factors (Van den Berghe et al., 2000), and sequences affected as a result of growth factor action.
- [0165] Growth factor-related sequences can possess or interact with a transforming growth factor beta like (TGF-beta) domain, which is a multifunctional peptide sequence that controls proliferation, differentiation and other functions in many cell types (http://pfam. wustl.edu/cgi-bin/getdesc?name=TGF-beta). Growth factor-related sequences can also possess or interact with a fibroblast growth factor (FGF) domain, which is found in a family of proteins involved in growth and differentiation (http://pfam.wustl.edu/cgi-bin/getdesc? name=FGF).

GTPase-Related Sequences

- [0166] GTPases are enzymes that catalyze GTP hydrolysis, and comprise a large family of proteins with a similar globular GTP binding domain. When GTP is bound to a GTPase, it is hydrolyzed to GDP, and the domain undergoes a conformational change that inactivates the protein. GTPases are regulated by GTPase regulators, proteins that determine whether a GTP binding protein exists in a GTP-bound or GDP-bound state (Zhao et al., 2003). GTPase regulators include GTPase activating proteins, which bind the GTPase and induce it to hydrolyze its bound GTP to GDP; the GTPase remains in an inactive, GDP-bound state until it encounters a guanine nucleotide releasing protein, which binds to the GTPase and causes the release of the nucleotide. GTPases have a broad spectrum of intracellular functions, including intracellular vesicular transport. Examples of GTPase-related sequences include ras, GTPase-activating proteins, and guanine nucleotide releasing proteins.
- [0167] GTPase-related sequences can possess or interact with GTPase activator protein for Ras-like GTPase (RasGAP) domains, which are protein domains of about 250 residues that accelerate the GTPase activity of ras

(http://pfam.wustl.edu/cgi-bin/getdesc?name=RasGAP). GTPase-related sequences can also possess or interact with putative GTPase activating protein for ARF (ArfGap) domains, which are protein domains with a zinc finger involved in intermolecular associations (http://pfam.wustl.edu/cgi-bin/getdesc?name=ArfGap). GTPase-related sequences can also possess or interact with ankyrin repeat domains (ank), which are tandemly repeated modules of about 33 amino acids found in a variety of functionally diverse proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=ank). GTPase-related sequences can also possess or interact with pleckstrin homology (PH) domains, which are protein domains of about 100 residues involved in intracellular signaling, or as components of the cytoskeleton (http://pfam.wustl.edu/cgi-bin/getdesc?name=PH).

Heat-Shock Protein-Related Sequences

[0168] Heat-shock proteins, also referred to as stress-response proteins, are proteins that are synthesized in response to an elevated temperature or other cell stressor, and help the cell withstand environmental insults. A cell stressor can induce a battery of genes that encode gene products that protect the cell from the result of the insult, e.g., proteins that stabilize and repair partially denatured cell proteins. Some heat-shock proteins, e.g., chaperones, are present at high levels in unstressed cells, and further induced by stress. Chaperones assist other proteins in attaining their proper secondary and tertiary structures. For example, members of the tubulin-specific chaperone A family possess tubulin-specific chaperone A (TBCA) domains that fold tubulin polypeptides into their functional configuration (http://pfam.wustl.edu/cgi-bin/getdesc?name=TBCA).

[0169] Heat and other stressors further induce the synthesis of a family of 90-kDa heat-shock proteins that are already abundant in unstressed cells (Pepin et al., 2001;Lees-Miller et al., 1989; Rebbe et al., 1987). Members of this family possess a hsp 90 protein (HSP90) domain that interacts with tubulin, actin, tyrosine kinase oncogene products of retroviruses, eIF2alpha kinase, and steroid hormone receptors (Lees-Miller and Anderson, 1989). This domain includes a highly-conserved N-terminal region, separated from a conserved, acidic C-terminal region by a highly-acidic, flexible linker region (http://pfam. wustl.edu/cgi-bin/getdesc?name=HSP90).

[0170] Another family of heat-shock proteins, the hsp70 proteins, have an average molecular weight of 70 kDa; some members of this family are only expressed under conditions of stress, while some are present in cells under normal conditions. Hsp70 proteins reside in different cellular compartments, e.g., the nucleus, cytosol,

mitochondria, and endoplasmic reticulum. Hsp70 proteins, e.g., Hsc73, can be differentially expressed at different stages of development (Soulier et al., 1996). Hsp70 proteins, e.g., the chaperone hsp70-like dnaK protein, can associate with proteins that possess a DnaJ domain, which comprises an N-terminal conserved domain of about 70 amino acids, a glycine-rich region of about 30 amino acids, a central domain containing four repeats of a CXXCXGXG motif, and a C-terminal region of 120 to 170 amino acids (http://pfam.wustl.edu/cgi-bin/getdesc? name=DnaJ). Proteins with DnaJ domains can be postranslationally modified by farnesylation (Andres et al., 1997).

Helicase-Related Sequences

[0171] Helicases are enzymes that use energy from the hydrolysis of ATP to unwind the DNA helix at the replication fork, allowing the single stands to be copied. Proteins with DNA helicase activity play roles in DNA replication, repair, and recombination. Disorders associated with helicases include Xeroderma pigmentosum, Cockayne syndrome, diffuse collagen disease, alpha-thalassemia, Bloom syndrome, Werner syndrome, and Rothmund-Thomson syndrome (Miyajima, 2002). Examples of helicases include RNA helicases, RECQL4, and minichromosome maintenance helicase.

[0172] Helicase-related sequences can possess or interact with helicase associated (HA) domains, which are protein domains comprising alpha helices that may bind to nucleic acids (http://pfam.wustl.edu/cgi-bin/getdesc?name=HA). Helicase-related sequences can also possess or interact with helicase conserved C-terminal (helicase_C) domains, which are protein domains that are found in a subset of helicases designated the DEAD/H helicases (http://pfam.wustl.edu/cgi-bin/getdesc?name=helicase_C).

Hydrolase-Related Sequences

[0173] Hydrolases are enzymes that catalyze the hydrolysis of a variety of bonds, such as esters, glycosides, and peptides. Hydrolases split a molecule into fragments by adding water; the water's hydrogen atom is incorporated into one fragment, and the hydroxyl group is incorporated into another. Hydrolases are involved in a wide range of physiological and pathological processes, including proteolysis, phosphatase activity, and sugar metabolism. Examples of hydrolases include protein hydrolases, lipid hydrolases, nucleic acid hydrolases, and small molecule, e.g., coenzyme A, hydrolases (Hawes et al., 1996).

[0174] Hydrolase-related sequences can possess or interact with alpha/beta hydrolase fold (abhydrolase) domains, which are catalytic domains found in a wide range of hydrolytic enzymes of different phylogenetic origins and catalytic functions (http://pfam.wustl.edu/cgi-bin/getdesc?name=abhydrolase). Hydrolase-related sequences can also possess or interact with dUTPase domains, which are proteins domains that hydrolyze dUTP to dUMP and pyrophosphate.

Immune Cell-Related Sequences

[0175] An immune cell is a cell involved in, or associated with, the immune system. Immune cells include cells in the myeloid and lymphocytic arms of the immune response, as well as their precursors. Immune cells also include cells at all stages in the differentiation pathways that produce cells associated with the immune system. These cells can reside, either permanently or temporarily, in the spleen, lymph nodes or mucosal-associated lymphoid tissues (MALT). Immune cell-related sequences are involved in all functions of the immune response, e.g., antibody production and cell-mediated immunity, and can function at any point in time, ranging from the embryonic formation of the immune system, through the time of an immune challenge, to many decades later, e.g., when a B-cell memory response is invoked (Janeway, 2001).

[0176] Immune-cell related sequences of differentiating immune cells include pre-B cells that do not produce immunoglobulin light chain, but express a transcript homologous to immunoglobulin lambda light-chain genes, the expression of which is limited to pre-B cells and select other cells that have no surface immunoglobulin (Hollis et al., 1989). Immune-cell related sequences of activated immune cells include a B-cell-restricted transcription factor expressed by activated B cells; its expression pattern suggests it has a role in regulating B-cell differentiation (Massari et al., 1998).

[0177] Examination of the expression of immune-cell related sequences can detect and diagnose immunoregulatory abnormalities. For example, genes that encode proteins which mediate the combinatorial process that combines a finite number of component genes into the very broad range of antigen-specific immunoglobulin and T-cell binding proteins, are expressed at higher levels in patients with systemic lupus erythematosis (SLE) than in healthy subjects (Girschick et al., 2002).

[0178] Immune cell-related sequences can possess or interact with a CUB domain, which is an extracellular domain of approximately 110 amino acids, and is present in functionally diverse, including developmentally regulated, proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=CUB). Immune cell-related sequences can also possess or interact with a CD-20 domain, which has four transmembrane regions, both extracellular and cytoplasmic extensions, and is found, inter alia, in a high affinity IgE receptor (http://pfam.wustl.edu/cgi-bin/getdesc?name=CD20). Immune cell-related sequences can also possess or interact with an interferon-induced transmembrane protein (CD225) domain, which is found in a family of proteins that includes the human leukocyte antigen CD225, an interferon-inducible transmembrane protein associated with interferon-induced cell growth suppression (http://pfam.wustl. edu/cgi-bin/getdesc?name=CD225). Immune cell-related sequences can also possess or interact with sushi domains, also known as complement control protein (CCP) modules, or short consensus repeats (SCR). These domains are found in a wide variety of complement and adhesion proteins, including proteins responsible for the antigenicity of blood group antigens on the external face of the red blood cell membrane (http://pfam.wustl.edu/cgi-bin/getdesc?name=sushi). Immune cell-related sequences can also possess or interact with SH2 domains and rvt domains; both are described above.

Integrase-Related Sequences

[0179] Integrases are enzymes that form proviruses by inserting a linear double-stranded DNA copy of a retroviral genome into host cell DNA. Examples of integrases include HIV integrase, PhiC31 integrase, and Sip.

[0180] Integrase-related sequences can possess or interact with an integrase zinc binding domain (Integrase_Zn) domain, which is a zinc binding protein domain placed near the N-terminus (http://pfam.wustl.edu/cgi-bin/getdesc? name=Integrase_Zn). Integrase-related sequences can also possess or interact with an integrase core (rve) domain, which is a protein domain that forms the central catalytic core of the integrase (http://pfam.wustl.edu/cgi-bin/getdesc?name=rve). This domain acts as an endonuclease to cleave the nucleotide and catalyzes the transfer of the viral DNA strand to the integration site of the host DNA. Integrase-related sequences also possess or interact with an integrase DNA binding (integrase) domain, which is a DNA-binding protein domain near the C-terminus (http://pfam.wustl.edu/cgi-bin/getdesc?name=integrase). Integrase-related sequences also possess or interact

reverse transcriptase (rvt) domains, which are described above. Integrase-related sequences also possess or interact with a RNase H domain, which is a protein domain that hydrolyzes the RNA portion of RNA/DNA hybrids (http://pfam.wustl.edu/cgi-bin/getdesc?name=maseH).

Integrin-Related Sequences

Integrins are transmembrane proteins that mediate cell to cell as [0181] well as cell to matrix adhesion, and provide a means of communication between the interior of a cell and the extracellular matrix. The extracellular portion of integrins binds to components of the extracellular matrix, e.g., collagen, fibronectin and laminin. The intracellular portion of integrins interacts with the cell cytoskeleton, e.g., actin filaments near the cell surface. Integrins transmit information about the extracellular environment across the plasma membrane to the cytoskeleton, where it is available to intracellular signaling mechanisms (Alberts et al., 1994). Structurally, integrins consist of heterodimers of an alpha and a beta subunit. Each subunit has a large N-terminal extracellular domain followed by a transmembrane domain and a short C-terminal cytoplasmic region. The pairing of certain alpha subunits with certain beta-subunits determines ligand specificity, localization and function. The extracellular binding domains of integrins often bind their ligands with low affinity; simultaneous, weak, binding with multiple matrix molecules provides the cell with a means to sense its complex, changing, extracellular environment without becoming glued to it. Examples of integrin-related sequences include integrin alpha and beta subunits, collagens, and integrin-linked kinase (Zhang et al., 2002).

[0182] Integrin-related sequences can possess or interact with von Willebrand factor type A (vwa) domains, which are protein domains that participate in diverse biological functions, e.g., cell adhesion, migration, homing, pattern formation, and signal transduction (http://pfam.wustl. edu/cgi-bin/getdesc? name=vwa). Integrin-related sequences can also possess or interact with FG-GAP repeat (FG-GAP) domains, which are protein domains present in the vicinity of ligand binding domains at the N-terminus of integrin alpha subunits (http://pfam.wustl.edu/cgi-bin/getdesc?name=FG-GAP).

Interacting Protein-Related Sequences

[0183] An "interacting protein" is a protein that interacts with another molecule. Interacting proteins are involved in every aspect of cellular function. Interacting proteins have been characterized in all known locations in the cell, and

include all, or most types of, proteins. Interacting proteins in the nucleus regulate such diverse functions as apoptosis, transcription, homologous recombination, and DNA repair. Nuclear fibroblast growth factor-2 interacting factor interacts with fibroblast growth factor 2 to prevent apoptosis (Van den Berghe et al., 2000). Grap2 cyclin-D interacting protein (GCIP) a nuclear cell-cycle protein, inhibits select transcriptional events, and reduces the level of phosphorylation of nuclear retinoblastoma protein (Chang et al., 2000). Pir 51, a human homologue of Rec A, a bacterial enzyme that mediates genetic recombination, interacts with the enzyme rad51 to regulate homologous recombination and DNA repair in mammalian cells (Kovalenko et al., 1997). Hepatitis B virus X-associated protein (HBXAP), a protein demonstrated to play a role in the development of hepatocelluar carcinoma, interacts with the hepatitis B virus regulatory gene product HBx to increase viral transcription (Shamay et al., 2002).

[0184] Interacting protein-related proteins can utilize many protein domain motifs for interaction. They can possess or interact with domains that mediate interaction with DNA, RNA, ions, or other proteins. For example, PDZ domains, which are also known as DHR or GLGF domains, target signaling molecules to membranes and mediate the assembly of functional membrane domains (Fanning and Anderson, 1999). Interacting protein-related proteins can also possess or interact with rrm domains, which are described above.

Isomerase-Related Sequences

- [0185] Isomerases are enzymes that convert molecules into their positional isomers, i.e., into molecules with the same chemical formula but a different stereochemical arrangement of atoms. Isomerases act on a wide variety of molecules, including sugars, amino acids, and nucleic acids. They are involved in a wide range of physiological and pathological functions, including those involving metabolic and synthetic pathways.
- [0186] Isomerase-related sequences include isomerase genes and gene products, their substrates, products, activators, inhibitors, effectors, and cofactors, regulatory molecules that modulate their function, genes and gene products affected in disorders associated with isomerases and antibodies that specifically recognize or modulate isomerase-related sequences. Examples of isomerase-related sequences include triosephosphate isomerases, peptidyl-prolyl isomerases, glucose phosphate

isomerases, disulfide isomerases, ketosteroid isomerases, and ribosyltransferaseisomerases (Brown et al., 1985).

[0187] Isomerase-related sequences can possess or interact with triosephosphate isomerase (TIM) domains, which are protein domains that catalyze the reversible interconversion of glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (http://pfam.wustl.edu/cgi-bin/getdesc?name=TIM). Isomerase-related sequences can also possess or interact with cyclophilin type peptidyl-prolyl cis-trans isomerase (pro_isomerase) domains, which accelerate protein folding by catalyzing the cis-trans isomerization of peptide bonds (http://pfam.wustl.edu/cgibin/getdesc?name=pro_isomerase).

Mucin-Related Sequences

Muc3 membrane bound intestinal mucin.

[0188] The term mucin refers to both an albumin-like substance that is present in mucus, and to transmembrane proteins that can typically be produced in both soluble and transmembrane forms. Soluble mucins comprise mucus gels that protect epithelial cells in the airways, digestive tract, and other organs, and are found in body fluids, such as milk, tears, and saliva. In their transmembrane forms, mucins provide a steric barrier to protect the apical surface of epithelial cells.

Transmembrane mucins are also involved in pathogenesis; for example, they mediate viral entry into cells, promulgate the inflammatory response, and are involved in the regulation of abnormal cell proliferation (Jeffery and Zhu, 2002; Tsuda et al., 1993). Examples of mucins include MUC2 mucin, mucin carcinoembryonic antigen, and

[0189] Mucin -related sequences can possess or interact with mucin-like glycoprotein (tryp_mucin) domains, which are domains that are involved in the interaction of parasites with host cells (http://pfam.wustl.edu/cgi-bin/getdesc?name=Tryp_mucin). Mucin-related sequences can also possess or interact with multi-glycosylated core protein (MGC-24) domains, which are protein domains of sialomucins that are expressed in many normal and cancerous tissues (http://pfam.wustl.edu/cgi-bin/getdesc?name=MGC-24).

Other Polypeptide-Related Sequences

[0190] In addition to the sequences described above, the sequences of the invention include nucleotide and amino acid sequences, some with known function, and some with unknown function, that fall into a broad array of categories.

Polypeptide-related sequences of the invention can possess or [0191] interact with groucho/TLE N-terminal Q-rich (TLE N) domains, which are protein domains found in co-repressor proteins, and are involved in oligomerization (http://pfam.wustl.edu/cgi-bin/getdesc?name=TLE N). Polypeptide-related sequences of the invention can also possess or interact with uncharacterized protein family 0160 (UPF0160) domains, which are protein domains found in proteins that include multiple metal-binding residues, and in some cases act as a phosphodiesterase (http://pfam.wustl.edu/cgi-bin/getdesc?name=UPF0160). Polypeptide-related sequences of the invention can also possess or interact with SNF7 domains, which are protein domains involved in protein sorting and transport from the endosome to the lysosome or vacuole of eucaryotic cells (http://pfam.wustl.edu/cgi-bin/getdesc? name=SNF7). Polypeptide-related sequences of the invention can also possess or interact with NifU-like N-terminal (NifU_N) domains, which are protein domains involved in nitrogen fixation, and other functions (http://pfam.wustl.edu/cgibin/getdesc? name=NifU_N). Polypeptide-related sequences of the invention can also possess or interact with tRNA synthetases class II (D, K, and N) (tRNA-synt 2) domains, which are protein domains that activate the amino acids asparagines, aspartic acid, and lysine, and transfer them to specific tRNA molecules (http://pfam.wustl.edu/cgi-bin/getdesc?name=tRNA-synt_2).

[0192] Polypeptide-related sequences of the invention can also possess or interact with dynein heavy chain (dynein_heavy) domains, which are protein domains that correspond to the C-terminal region of the dynein heavy chain (http://pfam.wustl.edu/cgi-bin/getdesc?name=Dynein_heavy). Polypeptide-related sequences of the invention can also possess or interact with cyclin-dependent kinase regulatory subunit (CKS) domains, which are protein domains of approximately 79-150 amino acid residues that are involved in regulating progression through the cell cycle (http://pfam.wustl.edu/cgi-bin/getdesc?name= CKS).

[0193] Polypeptide-related sequences of the invention can also possess or interact with nucleoside diphosphate linked to some other moiety X (NUDIX) domains, which are protein domains that are involved in removing oxidatively damaged nucleotides (http://pfam.wustl.edu/cgi-bin/getdesc?name=NUDIX). Polypeptide-related sequences of the invention can also possess or interact with T-complex protein/cpn60 chaperonin (cpn60_TCP1) domains, which are protein domains involved in protein folding and oligomerization (http://pfam.wustl.edu/cgi-

bin/getdesc?name=cpn60_TCP1). Polypeptide-related sequences of the invention can also possess or interact with F-actin capping protein, beta subunit (F_actin_cap_B) domains, which are protein domains of approximately 280 amino acids that are involved in capping actin, i.e., blocking the exchange of actin monomers (http://pfam. wustl.edu/cgi-bin/getdesc?name=F_actin_cap_B).

Polypeptide-related sequences of the invention can also possess [0194] or interact with G-protein alpha subunit (G-alpha) domains, which are protein domains that bind guanyl nucleotides, and function as a GTPase (http://pfam.wustl. edu/cgi-bin/getdesc? name=G-alpha). Polypeptide-related sequences of the invention can also possess or interact with Kruppel-associated box (KRAB) domains, which are protein domains involved in protein-protein interactions, and present in some zinc finger proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=KRAB). Polypeptiderelated sequences of the invention can also possess or interact with metallopeptidase family M24 (Peptidase M24) domains, which are protein domains that are found in some metalloproteases, including proline dipeptidase, and methionine aminopeptidase (http://pfam.wustl.edu/cgi-bin/getdesc?name=Peptidase_M24). Polypeptide-related sequences of the invention can also possess or interact with thioredoxin (thiored) domains, which are protein domains involved in oxidation/reduction reactions by reversibly oxidizing disulfide bonds (http://pfam.wustl.edu/cgi-bin/getdesc? name=thiored).

or interact with TUDOR domains, which are protein domains involved in the formation of primordial germ cells, and for normal abdominal segmentation (http://pfam.wustl.edu/cgi-bin/getdesc?name =TUDOR). Polypeptide-related sequences of the invention can also possess or interact with SIT4 phosphatase-associated protein (SAPS) domains, which are protein domains that are involved in cyclin transcription (http://pfam.wustl.edu/cgi-bin/getdesc?name=SAPS). Polypeptide-related sequences of the invention can also possess or interact with ankyrin repeat (ank) domains, which are protein domains of approximately 33 amino acids, and are sometimes found in tandemly repeated modules (http://pfam.wustl.edu/cgi-bin/getdesc? name=ank). Polypeptide-related sequences of the invention can also possess or interact with nicotinamide N-methyltransferase/phenylethanolamine N-methyltransferase/ thioether S-methyltransferase (NNMT_PNMT_TEMT) domains, which are protein domains that are found in proteins that use S-adenosyl-L-

methionine as the methyl donor (http://pfam.wustl.edu/cgi-bin/getdesc?name= NNMT_PNMT_TEMT). Polypeptide-related sequences of the invention can also possess or interact with C1q domains, which are protein domains involved in activating the serum complement system (http://pfam.wustl.edu/cgi-bin/getdesc? name=C1q). Polypeptide-related sequences of the invention can also possess or interact with collagen triple helix repeat (Collagen) domains, which are protein domains that typically form extracellular connective tissue (http://pfam.wustl.edu/cgi-bin/getdesc? name=Collagen).

Polypeptide-related sequences of the invention can also possess [0196] or interact with the hyaluronan/mRNA binding family (HABP4_PAI-RBP1) domain, which is a protein domain that can bind to the glucosaminoglycan hyaluronan, and to RNA (http://pfam.wustl.edu/cgi-bin/getdesc?name=HABP4 PAI-RBP1). Polypeptide-related sequences of the invention can also possess or interact with eucaryotic aspartyl protease (asp) domains, which are protein domains that cleave peptide bonds; proteins with this domain include pepsins, cathepsins, and rennin (http://pfam.wustl.edu/cgi-bin/getdesc?name=asp). Polypeptide-related sequences of the invention can also possess or interact with trypsin domains, which are protein domains that function as serine proteases (http://pfam.wustl.edu/cgi-bin/getdesc? name=trypsin). Polypeptide-related sequences of the invention can also possess or interact with Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz_BPTI) domains, which are protein domains that is found in serine protease inhibitors (http://pfam. wustl.edu/cgi-bin/getdesc?name=Kunitz_BPTI). Polypeptide-related sequences of the invention can also possess or interact with proliferating cell nuclear antigen, Nterminal (PCNA) domains, which are protein domains that are found on non-histone acidic nuclear proteins, and play a role in controlling DNA replication (http://pfam. wustl.edu/cgi-bin/getdesc?name=PCNA).

Oxygenase-Related Sequences

[0197] Oxygenases are enzymes that catalyze the incorporation of molecular oxygen into organic substances. Dioxygenases, also known as oxygen transferases, catalyze the introduction of both atoms of molecular oxygen, and typically contain iron. Monooxygenases, also known as mixed function oxygenases, introduce one oxygen atom; the other is reduced to water. Examples of oxygenase-related sequences include cytochrome oxygenases, heme oxygenases, cyclooxygenases, lipoxygenases, and peptide-aspartate beta-dioxygenase.

[0198] Oxygenase-related sequences can possess or interact with alkyl hydroperoxide reductase/thiol specific antioxidant (AhpC-TSA) domains, which are responsible for providing a defense against sulfur-containing radicals; proteins that possess this domain include allergens, e.g., asp f 3, mal f 2, and mal f 3 (http://pfam.wustl.edu/cgi-bin/getdesc?name=AhpC-TSA). Oxygenase-related sequences can also possess or interact with monooxygenase domains, which are protein domains that utilize flavin adenine dinucleotide (FAD) (http://pfam.wustl.edu/cgi-bin/getdesc?name=Monooxygenase). Oxygenase-related sequences can also possess or interact with dioxygenase domains, which are protein domains that catalyze the incorporation of both atoms of molecular oxygen into substrates (http://pfam.wustl.edu/cgi-bin/getdesc?name= Dioxygenase).

Peroxidase-Related Sequences

[0199] Peroxidases are enzymes that catalyze the reduction of hydrogen peroxide. Peroxidases are generally located within peroxisomes, which are intracellular organelles that metabolize fatty acids and toxic compounds. Disorders associated with peroxidase-related sequences include X-linked adrenoleukodystrophy. Examples of peroxidase-related sequences include glutathione peroxidases, thiol peroxidases, catalases, horseradish peroxidases, anionic peroxidases, and thyroid peroxidases.

[0200] Peroxidase-related sequences can possess or interact with alkyl hydroperoxide reductase/thiol specific antioxidant (AhpC-TSA) domains, which are protein domains that can reduce organic hydroperoxides (http://pfam.wustl.edu/cgi-bin/getdesc? name=AhpC-TSA).

Phospholipase-Related Sequences

[0201] Phospholipases are enzymes that act on phospholipids. They characteristically generate products that are active in signal transduction pathways. For example, phospholipase C hydrolyzes phosphatidylinositol bisphosphate (PIP₂) to generate the two intracellular mediators, inositol trisphosphate (IP₃) and diacylglycerol. IP₃ releases Ca²⁺ from stores in the endoplasmic reticulum, increasing the cytosolic Ca²⁺ concentration. Diacylglycerol remains in the plasma membrane and activates protein kinase C.

[0202] Phospholipase activity is involved in the synthesis of eicosanoids, inflammatory mediators that include prostaglandins, prostacyclins, thromboxanes, and leukotrienes. Corticosteroid hormones, such as cortisone, for example, inhibit

phospholipase activity in the first step of the eicosanoid synthesis pathway. Corticosteroid hormones are widely used clinically to treat noninfectious inflammatory diseases, such as some forms of arthritis (Ribardo et al., 2002).

[0203] Phospholipids play a pivotal role in the modulation of intestinal inflammation. The mucosal surface of the digestive tract functions as a regulatory barrier between the gastrointestinal lumen and the underlying mucosal immune system. Phospholipids help preserve the mucosa following various forms of injury or physiological damage to the lumen, thus preventing invasion of harmful luminal factors into the host, which subsequently may lead to inflammation, or a pathological immune response, both promoting and inhibiting gastrointestinal inflammation and immunity (Sturm and Dignass, 2002).

[0204] Phospholipase-related sequences can possess or interact with lysophospholipase catalytic (PLA2_B) domains, which catalyze the release of fatty cids from lysophospholipids (http://pfam.wustl.edu/cgi-bin/getdesc?name=PLA2_B). Phospholipase-related sequences can also possess or interact with phospholipase/carboxylesterase (abhydrolase_2) domains, which have broad substrate specificity (http://pfam.wustl.edu/cgi-bin/getdesc?name=abhydrolase_2). Phospholipase-related sequences can also possess or interact with GDSL-like lipase/acylhydrolase (Lipase_GDSL) domains, which are present in lipolytic enzymes with serine in the active site (http://pfam.wustl.edu/cgi-bin/getdesc?name=Lipase_GDSL).

Prosaposin-Related Sequences

[0205] Saposins are small lysosomal proteins that activate lysosomal lipid-degrading enzymes, including enzymes that metabolize sphingosine. They typically isolate lipids from their membrane surroundings, and increase their accessibility to degradative enzymes. Mammalian saposins are synthesized as a single precursor molecule, prosaposin, which becomes an active saposin following proteolytic activation. Examples of prosaposin-related sequences include saposin A, saposin B, and saposin C. Disorders associated with prosaposin-related sequences include neurodegenerative diseases similar to similar to Tay-Sachs and Sandhoff diseases, e.g., Gaucher's disease, which is described above.

[0206] Prosaposin-related sequences can possess or interact with saposin-A (SAPA) domains, saposin B1 (SapB_1) domains, and saposin B2 (SapB_2) domains, which are described above.

Proteasome-Related Sequences

[0207] Proteasomes are intracellular complexes that degrade proteins. Proteasomes recognize proteins that have been marked for destruction by the addition of an ubiquitin molecule, unfold these ubiquitinated proteins, cleave them into small peptides of 6-12 amino acids, and release them into the cytosol (Mitch and Goldberg, 1996). Examples of proteasome-related sequences include 26S proteasome subunits, 26S proteasome regulatory chains, and ubiquitin.

[0208] Proteasome-related sequences can possess or interact with proteasome/cyclosome repeat (PC_rep) domains, which are protein domains that are present in regulatory subunits of the proteasome (http://pfam.wustl.edu/cgibin/getdesc?name= PC_rep). Proteasome-related sequences can also possess or interact with Mov34/MPN/PAD-1 family (Mov34) domains, which are protein domains found at the N-terminus of regulatory subunits of the proteasome (http://pfam.wustl.edu/cgi-bin/getdesc?name=Mov34).

Reductase-Related Sequences

[0209] Reductases are enzymes that catalyze reduction reactions, i.e., reactions in which hydrogen is combined with a molecule, or reactions in which oxygen is removed from a molecule. Examples of reductases include dehydrogenase reductases, oxidoreductases, quinone reductases, CoA reductases, dihydrofolate reductases, tetrahydrofolate reductases, carbonyl reductases, nitrate reductases, epoxide reductases, NADP(+) reductases, ribonucleotide reductases, and thioredoxin reductases (Loeffen et al., 1998).

[0210] Reductase-related sequences can possess or interact with short chain dehydrogenase (adh_short) domains, which are present in a wide variety of proteins (http://pfam.wustl.edu/cgi-bin/getdesc?name=adh_short). Reductase-related sequences can possess or interact with NADH-Ubiquinone oxidoreductase (complex I), chain 5 N-terminus (oxidored_q1_N) domains, which are protein domains that catalyze the transfer of electrons from NADH to ubiquinone in a reaction that can be associated with proton translocation across a membrane (http://pfam.wustl.edu/cgi-bin/getdesc?name=oxidored_q1_N).

Reverse Transcriptase-Related Sequences

[0211] Reverse transcriptases are enzymes that make double stranded DNA copies from single stranded nucleic acid template molecules. Typically, a reverse transcriptase is a DNA polymerase that can copy both RNA and DNA

templates, and has an integral RNase H activity (Lim et al., 2002). The two enzymatic domains of reverse transcriptase reflect these two activities; the first is a DNA polymerase domain that can use either RNA or DNA as a template to synthesize either the minus-strand or the plus strand of DNA, and the second is an RNase H domain that degrades the RNA in RNA-DNA hybrids (Coffin, 1997; Wu and Gallo, 1975).

- [0212] Reverse transcriptase plays a role in the replication of some viruses, e.g., retroviruses. It copies the retroviral RNA genome to produce a single minus strand of DNA, then catalyzes the synthesis of a complementary plus strand. Accordingly, reverse transcriptase is a therapeutic target for conditions that involve retroviruses, e.g., Aquired Immune Deficiency Syndrome (AIDS). A number of anti-retroviral drugs inhibit reverse transcriptase (Frank, 2002).
- [0213] Reverse transcriptase is also a standard scientific research tool in the field of molecular biology. The reverse transcriptase polymerase chain reaction (RTPCR) amplifies specific DNA sequences rapidly, and *in vitro*. RTPCR can detect trace amounts of RNA and DNA, and is used in a wide range of applications, including forensics, the diagnosis of genetic diseases, determination of the prognosis of diagnosed diseases, and the detection of viral infection (Alberts, et al., 1994). For example, reverse transcriptase is used to diagnose cancer (Rowland, 2002), and to provide prognostic information about the predicted survival of patients with prostate cancer (Kantoff et al., 2001).
- [0214] An example of a reverse transcriptase is telomerase, a general tumor marker with a reverse transcriptase catalytic subunit (Kirkpatrick and Mokbel, 2001). Most human somatic cells do not express the telomerase reverse transcriptase gene; conversely, most cancer cells express this gene (Ducrest et al., 2002; Kyo et al., 2000). The human telomerase reverse transcriptase promoter has been placed in gene therapy vectors that specifically target telomerase-positive tumor cells, and spare nearby telomerase-negative cells (Pan and Koeneman, 1999). Human telomerase reverse transcriptase is also recognized as a tumor antigen that can be a target for immunotherapeutic approaches to cancer (Gordan and Vonderheide, 2002).
- [0215] Reverse transcriptase-related sequences can possess or interact with rvt, transposase_22, WD40, and Exo_endo_phos domains, all of which are described above.

Ribosome-Related Sequences

[0216] A ribosome is a particle comprised of ribosomal proteins and ribosomal RNA that catalyzes protein synthesis from messenger RNA. Ribosomes are composed of two subunits, the large (L) subunit and the small (S) subunit. The typical mammalian ribosome comprises four RNA molecules and approximately eighty different proteins, which are highly conserved among prokaryotes and eukaryotes, and perform a variety of tasks related to protein synthesis . e.g., coordinating protein synthesis in a manner that maintains cell homeostasis (Yoshihama et al., 2002; Kenmochi et al., 1998).

[0217] Ribosomal proteins can perform functions independent of their involvement in protein synthesis. For example, they are involved in cell-cycle progression, e.g., as cell cycle checkpoints, and mediators of homologous recombination, embryogenesis, and skeletal development (Yoshihama et al., 2002; Chen and Ioannou, 1999). They also contribute to the regulation of cell growth, transformation, and death, and can induce apoptosis (Chen and Ioannou, 1999; Naora et al., 1999). Mutations in ribosomal proteins are associated with human diseases, including Down syndrome, Diamond-Blackfan anemia, Turner syndrome, and Noonan syndrome (Yoshihama et al., 2002).

[0218] Ribosomal proteins have been grouped into protein families on the basis of sequence similarities in functional domains. One family of ribosomal proteins, the ribosomal protein L11, RNA binding (Ribosomal_L11) domain, is comprised of members that possess the L11 RNA binding domain; this family includes the ribosomal proteins L11 and L12, which are components of the large subunit. L11 is a protein of 140 to 165 amino-acids that binds to a 23S RNA molecule, the C-terminal region of which is buried within the ribosomal structure (http://pfam.wustl.edu/cgi-bin/getdesc?name=Ribosomal_L11). Another family of large ribosomal subunit proteins possess the ribosomal protein L13e (Ribosomal_L13e) domain, which is found in a wide range of vertebrates and in lower-order species (http://pfam.wustl.edu/cgi-bin/getdesc?name=Ribosomal_L13e), as is the ribosomal protein L44 (Ribosomal_L44) domain (http://pfam.wustl.edu/cgi-bin/getdesc?name=Ribosomal_L44).

[0219] Additional ribosomal protein families encompass small subunit proteins. The ribosomal protein S6e (Ribosomal_S6e) domain is present in a family of proteins which includes protein kinase substrates that control cell growth and

proliferation by selectively translating particular classes of mRNA (http://pfam.wustl.edu/cgi-bin/getdesc?name= Ribosomal_S6e). The ribosomal protein S8e (Ribosomal_S8e) domain is present in a family of proteins comprising approximately 220 amino acids in eukaryotes, and about 125 amino acids in archebacteria (http://pfam.wustl.edu/cgi-bin/getdesc?name=Ribosomal_S8e). The ribosomal protein S10p/S20e (Ribosomal_S10) domain is present in a family of proteins which includes the small ribosomal subunit S10 from prokaryotes and S20 from eukaryotes (http://pfam.wustl.edu/cgi-bin/getdesc?name= Ribosomal_S10). S10 is involved in binding transfer RNA to the ribosome, and also operates as a transcriptional elongation factor.

RNase-Related Sequences

- [0220] RNases are enzymes that cleave RNA. RNases generally recognize their targets by tertiary structure, rather than by sequence; they include exonucleases, which remove the terminal base in an RNA sequence, and endonucleases, which can cleave non-terminal bases. Examples of RNases include RNase E, which is involved in the formation of 5S ribosomal RNA from pre-ribosomal RNA; RNase F, which cleaves both viral and host RNA in response to interferons, inhibiting protein synthesis; RNase H, which is specific for the RNA strand of an RNA-DNA hybrid; RNase P, which generates transfer RNA from precursor transcripts; and RNase T, which removes the terminal AMP from nonaminoacylated tRNA (Coffin, et al., 1997).
- [0221] RNase-related sequences can possess or interact with rvt, rve, RNase H, and gag_p30 domains, all of which are described above.

RNase H-Related Sequences

- [0222] RNase H is a nuclease specific for the RNA strand of an RNA-DNA hybrid that cleaves phosphodiester bonds to produce molecules with 3'-OH and 5'-PO₄ ends. Multiple forms of RNase H are present in both prokaryotes and eukaryotes. RNase H may be part of larger polypeptides and its activity can be influenced by other regions of these polypeptides (Coffin, et al., 1997; Crouch 1990).
- [0223] During retroviral replication, RNase H activity forms oligonucleotides that prime DNA synthesis. Therefore, the RNase H activity of reverse transcriptase is a target for therapeutic intervention. For example, small molecule inhibitors of retroviral RNase H function have shown promise in managing HIV infection (Klarman, et al., 2002).

[0224] Another therapeutic indication for RNase H is the regulation of cancer genes by targeting mRNA translation. Antisense deoxyoligonucleotides down-regulate mRNA expression by annealing to specific regions of an mRNA. Formation of the DNA:RNA heteroduplex then triggers mRNA cleavage by RNase H. Cleavage is rapidly followed by further degredation, irreversibly preventing translation of the target mRNA. Antisense deoxyoligonucleotides that trigger RNase H activity can thus be used as cancer therapeutic agents (Crooke, 1996; Curcio et al., 1997).

[0225] RNase H-related sequences can possess or interact with maseH, Gag_p30, rvt, and rve domains, all of which are described above.

SH3-Related Sequences.

[0226] Src homology region 3 (SH3) is a polypeptide domain commonly found in intracellular signaling proteins; it binds with moderate affinity and selectivity to proline-rich ligands. SH3 domains are heterogeneous; different SH3 domains bind to different proline-rich sequences (Gmeiner and Horita, 2001). SH3 domains are involved in a wide variety of biological processes, including mediating the assembly of large multiprotein complexes, regulating enzyme activity, and modulating the local concentration or subcellular localization of signaling pathway components (Mayer, 2001). Examples of SH3-related sequences include phosphotyrosine receptors, membrane associated guanylate kinases, mitogen-activated protein kinases, myosin 1, the Crk adaptor protein, phospholipase C-γ, Grb2, Sos, src-SH3, Abl-SH3, the Nck adaptor, and alpha-spectrin-SH3.

[0227] SH3-related sequences can possess or interact with SH3 domains, which are protein domains of approximately 50-70 amino acids, and are present in a large number of proteins involved in intracellular signaling (http://pfam. wustl.edu/cgi-bin/getdesc?name=SH3). SH3-related sequences can also possess or interact with SH3 domain-binding protein 5 (SH3BP5) domains, which are protein domains that act as a substrate for c-Jun N-terminal kinase (http://pfam.wustl.edu/cgi-bin/getdesc?name=SH3BP5).

Stem Cell-Related Sequences

[0228] Stem cells are pluripotent or multipotent cells that generate maturing cells in multiple differentiation lineages. Pluripotent cells have the capacity to differentiate into each and every cell present in the organism. Embryonic stem cells are pluripotent; they can differentiate into any of the cells present in the adult.

Multipotent cells have the ability to differentiate into more than one cell type. Organspecific stem cells are multipotent; they can differentiate into any of the cells of the organ they inhabit.

[0229] When they divide *in vivo*, both pluripotent and multipotent stem cells can maintain their pluripotency or multipotency while giving rise to differentiated progeny. Thus, stem cells can produce replicas of themselves which are pluri- or multipotent, and are also able to differentiate into lineage-restricted committed progenitor cells. For example, hematopoeitic stem cells, which are multipotent cells specifically able to form blood cells, can divide to produce replicate hematopoeitic stem cells. They can also divide to produce more highly differentiated cells, which are precursors of blood cells. The precursors differentiate, sometimes through several generations of cells, into blood cells. A hematopoetic stem cell can also divide into a cell with the capacity to form, for example, a relatively undifferentiated cell that is committed to differentiate into, i.e., granulocytes, or erythrocytes, or another type of blood cell.

[0230] Stem cells can also reproduce and differentiate *in vitro*. Embryonic stem cells have been directed to differentiate into cardiac muscle cells *in vitro* and, alternatively, into early progenitors of neural stem cells, and then into mature neurons and glial cells in vitro (Trounson, 2002).

[0231] Stem cell therapy is effective in treating cancer in humans (Slavin et al., 2001), and offers several advantages over traditional cancer therapies (Weissman, 2000). One advantage of stem cell therapy exists when used in conjunction with radiation therapy. In radiation therapy for cancer, the dose of radiation necessary to kill the cancer cells in an organ can also be sufficient to destroy the healthy cells of the organ. In combined stem cell and radiation therapy, an organ is first treated with sufficient radiation to destroy all of the cancer cells and most or all of the healthy cells, but then stem cells are infused to repopulate the organ. In the ensuing weeks, as the cancer cells and healthy cells die, the stem cells replace the healthy cells. Another advantage of this approach, compared to heterologous organ transplants, is that there is no risk of rejection, since stem cells do not provoke an immune response. A further advantage is that stem cells are inherently programmed to regulate their numbers and differentiation status, i.e., once provided to the patient, the necessary number will differentiate, and the rest will remain undifferentiated (Weissman, 2000).

[0232] Stem cell therapy is also effective in treating autoimmune disease in humans. For example, immunosuppression in conjunction with stem-cell transplantation has induced remission in patients with refractory, severe rheumatic autoimmune disease (Van Laar and Tyndall, 2003). Patients with rheumatoid arthritis, systemic lupus erythematosus, systemic sclerosis, and juvenile idiopathic arthritis have benefited from stem cell transplants (Van Laar and Tyndall, 2003).

- [0233] Preclinical studies also suggest the potential of stem cell transplantation for the treatment of neural and muscular injuries and disorders, including those of the central nervous system, peripheral nervous system, and skeletal, cardiac and smooth muscle (Deasy and Huard, 2002). Stem cells transplanted into the bone marrow of mice migrate to the site of injured muscle and differentiate into new muscle cells. For example, patients with myasthenia gravis, muscular dystrophies, amyotrophic lateral sclerosis, congestive heart failure, Parkinson's disease, and Alzheimer's disease may benefit from stem cell therapy (Henningson, 2003).
- [0234] In addition to therapeutic uses, research using stem cells can provide useful information about normal stem cell function and the pathogenesis of disease. Stem cells derived from a patient with a genetic disease can provide a tool for studying that disease. To derive these stem cells, a somatic cell, i.e., a cell that is not in the oocyte or spermatocyte lineage, is donated by the patient, and the nucleus is removed and transferred to an unfertilized human oocyte. This nuclear transplant procedure produces, at the blastocyst stage of development, embryonic stem cells with the same set of genes as the patient with the genetic disease. Studying these cells, and their progeny in vitro, permits analysis of a specific model of the disease. For example, placing stem cells derived from a patient with a genetic disorder under the control of various stem cell regulatory factors can elicit abnormal responses from the affected stem cells compared to stem cells derived from a healthy individual's somatic nucleus.
- [0235] Embryonic stem cell-related sequences can possess or interact with the stem cell factor (SCF) domain, a transmembrane domain having a soluble, secreted form, which is involved in hematopoeisis, and which binds to and activates a receptor tyrosine kinase, stimulating the proliferation of mast cells and augmenting the proliferation of myeloid and lymphoid hematopoietic progenitors in bone marrow culture (http://pfam.wustl.edu/cgi-bin/getdesc?name=SCF).

[0236] Certain stem cell related sequences can possess the ability to maintain the stem cell in undifferentiated state while allowing cell proliferation. Such compositions can be useful in *ex vivo* cell therapy to expand populations of cells for cell replacement therapy.

[0237] Certain stem cell related sequences can possess the ability to cause cell differentiation to a relatively mature cell type and are useful to *in vivo* or *ex vivo* therapy to compensate for deficiency of such relatively mature cell type.

Synthetase-Related Sequences

[0238] A synthetase is an enzyme that catalyzes the synthesis of a molecule. Synthetases comprise a broad class of enzymes; they catalyze the synthesis of nucleic acids, peptides, and lipids (Agou et al., 1996). Examples of synthetases include lysyl-tRNA synthetase, asparaginyl t-RNA synthetase, holocarboxylase synthetase, carbamyl phosphate synthetase I, and argininosuccinate synthetase.

[0239] Synthetase-related sequences can possess or interact with transfer RNA synthetase domains, which are protein domains that activate amino acids and transfer them to specific transfer RNA molecules as a step in protein biosynthesis (http://pfam.wustl.edu/cgi-bin/getdesc?name=tRNA-synt_2). The 20 aminoacyl-tRNA synthetases are divided into class I and class II, each of which contain multiple synthetases with different specificities. For example, there is a protein domain involved in the asparagines, aspartic acid, and lysine synthesis (http://pfam.wustl.edu/cgi-bin/textsearch?terms=trna-synt&search_what=all& sections=DE§ions=CC&size=100). Synthetase-related sequences can also possess or interact with lipid-A-disaccharide synthetase (LpxB) domains, which are protein domains that catalyze the synthesis of disaccharides (http://pfam.wustl.edu/cgi-bin/getdesc? name=LpxB).

TATA Box-Related Sequences

- [0240] A TATA box is a consensus sequence in the promoter region of many eucaryotic genes that binds a general transcription factor and plays a role in specifying the position for transcription initiation. TATA boxes are generally found approximately 25 nucleotides before the site of transcription initiation (Chalut et al., 1995). Examples of TATA box-related sequences include TATA box binding protein, 13 TATA/TBP, and small nuclear RNA-activating protein 190 Myb DNA.
- [0241] TATA box-related sequences can possess or interact with transcription factor TFIID, also known as the TATA-binding protein (TBP) domain,

which is a protein domain that specifically binds to the TATA box promoter element (http://pfam.wustl.edu/cgi-bin/getdesc?name=TBP). TATA box-related sequences can also possess or interact with HMG14 and HMG17 (HMG14_17) domains, which are members of a family of high mobility group proteins, described above (http://pfam.wustl.edu/cgi-bin/getdesc? name=HMG14_17).

Tat-Related Sequences

[0242] Tat is a human immunodeficiency virus (HIV) protein involved in viral production of new RNA genomes and new complete viral particles. Tat is also involved in AIDS pathogenesis; it plays a role in reactivating latent viruses, e.g., the JC retrovirus; it is involved in the development of AIDS-related Kaposi's Sarcoma; and it depresses the function of, and induces apoptosis in, helper CD4 cells (Yu et al., 1995). Examples of Tat-related sequences include Tat-associated proteins, e.g., Tap, HIV-1 Rev, and tat-associated kinase (also known as positive transcriptional elongation factor b).

[0243] Tat-related sequences can possess or interact with transactivating regulatory protein (Tat) domains, which are protein domains that contribute to efficient transcription of a viral genome (http://pfam.wustl.edu/cgi-bin/getdesc?name=Tat). Tat-related sequences can also possess or interact with mitochondrial glycoprotein (MAM33) domains, which are protein domains found in mitochondrial matrix proteins, and which can be involved in mitochondrial oxidative phosphorylation and in interactions between the nucleus and the mitochondria (http://pfam.wustl.edu/cgi-bin/getdesc?name=MAM33).

Transferase-Related Sequences

[0244] Transferases are enzymes that transfer a designated group of atoms from a donor molecule to an acceptor molecule. For example, acyl transferases transfer acyl groups, methyl transferases transfer methyl groups, nucleotidyl transferases transfer nucleotides, prenyltransferases transfer prenyl groups, and glycosyl transferases transfer glycosyl groups (Lin et al., 1996). Examples of transferases include acetyltransferases, hydroxymethyltransferases, sialyltransferases, arginine N-methyltransferase, glucoronosyltransferase, NTP-transferase, and GDP-mannose pyrophosphorylase B.

[0245] Transferase-related sequences possess or interact with UDP-glucuronosyl and UDP-glucosyl transferase domains, which are protein domains found in a superfamily of enzymes that catalyze the addition of the glycosyl group

from a UTP-sugar to a small hydrophobic molecule (http://pfam.wustl.edu/cgi-bin/getdesc?name=UDPGT). Transferase-related sequences also possess or interact with nucleotide transferase (NTP_transferase) domains, which are protein domains that transfer nucleotides onto phosphorylated sugars (http://pfam.wustl.edu/cgi-bin/getdesc?name=NTP_transferase).

Transposase-Related Sequences

[0246] Transposases are site-specific recombination enzymes that catalyze the transposition of a segment of DNA from one part of the genome to another. The movable segments are called transposable elements; each transposable element is occasionally moved by a transposase, which functions as an integrase, by inserting DNA sequences into other DNA sequences. Transposases are often encoded by the DNA of the transposable element itself. Transposases bind specifically to terminal inverted repeats of 10-500 bp that are characteristically part of transposable elements (Smit and Riggs, 1996). They catalyze both cutting and pasting of a transposable element from one segment of the genome to another. Sequences related to transposases can have other functions, e.g., as transcription factors, or in the assembly of centromere proteins (Smit and Riggs, 1996). Examples of transposase-related sequences include mariner, pogo, hobo, tigger, MER37, Galileo, Occan, Impala, Tn MERI1, MsqTc3, and the sleeping beauty transposon system (Robertson and Zumpano, 1997; Robertson, 1996; Smit and Riggs, 1996).

[0247] Transposase-related sequences can possess or interact with a transposase 1 (Transposase_1) domain, which is characterized by sequences that can excise and/or insert mobile genetic elements such as transposons or insertion sequences; for example, mariner possesses a transposase 1 domain (http://pfam.wustl.edu/cgi-bin/getdesc? name= Transposase_1). Transposase-related sequences can also possess or interact with L1 transposable element (Transposase_22) domains, which have been described above. Transposase-related sequences can also possess or interact with a DDE endonuclease (DDE) domain, which is responsible for coordinating metal ions needed for endonuclease catalytic activity (http://pfam.wustl.edu/cgi-bin/getdesc? name=DDE). Transposase-related sequences can additionally possess or interact with a zinc finger, C2H2 type (zf-C2H2) domain, which bind nucleic acids using a mechanism that involves coordinating a zinc atom with a pair of cysteine residues and a pair of histidine residues (http://pfam.wustl.edu/cgi-bin/getdesc?name=zf-C2H2). Transposase-related sequences can also possess or

interact with a reverse transcriptase (rvt) domain, and/or a low-density lipoprotein receptor (ldl_rece) domain, both of which are described above.

Ubiquitin-Related Sequences

- [0248] Ubiquitin is a protein found in all eucaryotic cells examined to date. When it is linked to the lysine side chain of a protein by the formation of an amide bond with its C-terminal glycine, ubiquitin renders the ubiquitin-bound protein subject to rapid proteolysis in the proteasome. In addition to its role in the selective degradation of cellular proteins, ubiquitin also plays a role in maintaining chromosome structure, regulating gene expression, responding to stresses on the organism, the regulation of gene expression, and ribosome biogenesis. Examples of ubiquitin-related sequences include elongins, ubiquitin-specific proteases, ubiquitin-calmodulin ligase, ubiquitin carrier protein kinase, ubiquitin N-alpha-protein hydrolase, and the small ubiquitin-related modifier (Sumo-1) (Kamitani et al., 1997).
- [0249] Ubiquitin-related sequences can possess or interact with a ubiquitin domain, which is a conserved sequence of approximately 76 amino acid residues that comprise the protein ubiquitin (http://pfam.wustl.edu/cgi-bin/getdesc?name=ubiquitin). Ubiquitin-related sequences can also possess or interact a ubiquitin carboxyl-terminal hydrolase (UCH) domain, which is a protein domain that comprises a thiol protease that recognizes and hydrolyses the peptide bond at the C-terminal glycine of ubiquitin (http://pfam.wustl.edu/cgi-bin/get desc?name=UCH).

Virus-Related Sequences

- [0250] The human chromosome has integrated endogenous genes that are related to viral genes. Some endogenous viral genes, e.g., the retroviral HERV-W family, are widely and heterogeneously dispersed among human chromosomes (Voisset et al., 2000; Everett et al., 1997; Werner et al., 1990). Endogenous proviruses are usually transcriptionally silent, but are expressed under certain conditions (Coffin et al., 1997). Endogenous viral expression can be specific to host factors, such as cell type or stage of differentiation, as well as other factors including the position on the chromosome, the influence of *cis*-acting sequences, or the presence of host-mediated DNA methylation (Coffin).
- [0251] Endogenous viral expression can have a number of consequences, both beneficial and detrimental. Among the beneficial consequences is the ability of endogenous retroviruses to confer resistance to infection by exogenous

viruses. For example, mice with endogenous mouse mammary tumor virus (MMTV) can be immune to exogenous infection (Golovkina, et al., 1992). Among the detrimental effects is a causative role in disease. Evidence indicates an association between endogenous viruses with cancers and autoimmune diseases (Coffin et al., 1997). For example, spontaneous tumors of specific origin, murine mammary adenocarcinomas, and murine T-cell lymphomas have been associated with the presence of specific endogenous retroviruses. Furthermore, a transformed phenotype is associated with the increased transcription of certain classes of endogenous viral elements (Coffin et al., 1997). With respect to autoimmune disease, an endogenous virus that influences the immunoregulatory process has been associated with spontaneous autoimmune thyroiditis in a chicken model of human Hashimoto disease (Wick et al., 1987). Examples of viral-related proteins include hepatitis B virus x-interacting protein, herpesvirus associated ubiquitin-specific protease, and Coxsackievirus and adenovirus receptor precursor.

[0252] Viral-related sequences can possess or interact with rvt, rve, and gag p30 sequences, all of which are described above.

Zinc Finger-Related Sequences

[0253] A zinc finger domain is a small, self-folding, structural motif of 25 to 30 amino-acid residues present in many nucleic acid-binding proteins. It is comprised of a polypeptide loop held in a hairpin bend and bound to a zinc atom, and includes two conserved cysteine and two conserved histidine residues. Many classes of zinc fingers have been characterized according to the number and positions of the conserved histidine and cysteine residues. The amino acid configuration that holds the zinc atom in a tetrahedral array has a finger-like projection that interacts with nucleotides in the major groove of the bound nucleic acid. Zinc finger motifs have conserved regions near the zinc molecule, and variable regions at the nucleic acid binding site that provide specificity for the nucleic acid sequences they bind. Zinc finger proteins have a variety of functions, including as transcription regulators and intracellular receptors. Zinc finger domains are also involved in protein-protein interactions, e.g., those involving protein kinase C. Recently, zinc finger nucleases have been used to target genes for gene replacement by homologous recombination (Bibikova et al., 2003). Examples of zinc finger proteins include XC3H-3b, the transcription factor Slug, and transcription factor IIIA.

[0254] Zinc finger-related sequences can possess or interact with a zinc finger C2H2 type (zf-C2H2) domain, which binds a zinc atom with two cysteine and two histidine residues, and is utilized, e.g., in RNA transcription (http://pfam.wustl.edu/cgi-bin/getdesc?name=zf-C2H2). Zinc finger-related sequences can also possess or interact with a C3HC4 type, RING finger (zf-C3HC4) domain, which is a specialized type of zinc finger domain comprised of 40 to 60 amino acids that binds two zinc atoms; variants of RING-finger domains include the C3HC4-type and the C3H2C3-type (http://pfam.wustl.edu/cgi-bin/getdesc?name=zf-C3HC4). Proteins with RING-finger domains have developmental and functional roles; they are involved in intracellular receptor binding, and in mediating protein-protein interactions (Gray et al., 2000). RING-finger domains can exhibit ubiquitin-protein ligase activity, and can bind to E2 ubiquitin-conjugating enzymes.

[0255] Zinc finger-related sequences can also possess or interact with a zinc knuckle (zf-CCHC) domain, which is an 18-amino acid zinc finger domain found in RNA-binding and single strand DNA-binding proteins; they are often involved in eukaryotic gene regulation (http://pfam.wustl.edu/cgi-bin/getdesc?name=zf-CCHC). Zinc knuckles are also found in retroviral gag and nucleocapsid proteins, where they function in genome packaging, and early in the infection process. Zinc finger-related sequences can also possess or interact with a BTB/POZ (BTB) domain, which mediates both homomeric and heteromeric protein dimerization (http://pfam.wustl. edu/cgi-bin/getdesc?name=BTB). Zinc finger-related sequences can also possess or interact with NF-X1 type zinc finger (zf-NF-X1) domains, which are found in the transcriptional repressor NK-X1, where they repress transcription of HLA-DRA, and in the shuttle craft protein, which plays a role in late stage embryonic neurogenesis (http://pfam.wustl.edu/cgi-bin/getdesc?name=zf-NF-X1). Zinc finger-related sequences can also possess or interact with a KRAB box (KRAB) domain, also known as a Kruppel-associated box, which is comprised of approximately 75 amino acids, enriched in charged amino acids, and involved in protein-protein interactions (http://pfam.wustl.edu/cgi-bin/getdesc? name=KRAB). KRAB domains can function as transcription factors, e.g., as a transcriptional repressor, and can assume roles in cell differentiation and development (Aubry et al., 1992; Lovering and Trowsdale, 1991). Zinc finger-related sequences can possess or interact with a transposase 22 domain, which is described above.

INDUSTRIAL APPLICABILITY

The invention provides sequences related to secreted sequences, [0256] single-transmembrane sequences, multiple-transmembrane sequences, kinase-related sequences, ligase-related sequences, nuclear hormone receptor-related sequences, phosphatase-related sequences, protease-related sequences, phosphodiesterase-related sequences, kinesin-related sequences, immunoglobulin-related sequences, T-cell receptor-related sequences, glycosylphosphatidylinositol anchor-related sequences, and sequences related to other nucleic acid and amino acid sequences of the invention, including activators, adaptors, adhesion molecules, ATPases, ATP, breakpoints, channels, checkpoints, complexes, dehydrogenases, disintegrins, endopeptidases, germ-cells, GTPases, helicases, hydrolases, integrases, integrins, isomerases, membranes, mucins, oxygenases, peroxidases, phopholipases, prosaposins, proteosomes, reductases, reverse trancriptases, RNases, RNases H, SH3, synthetases, TATA boxes, Tat proteins, transferases, transposases, ubiquitins, and viruses. The invention provides for novel polynucleotides, related novel polypeptides and active fragments thereof, as well as novel nucleic acid compositions encoding these polypeptides, compositions comprising the related polypeptides, and methods for their use.

[0257] The present invention also provides for vectors, host cells, and methods for producing the polynucleotides and polypeptides of the invention in these vectors and host cells. The present invention further provides for antisense molecules that are capable of regulating the expression of the polynucleotides or polypeptides herein. In addition, modulators, including antibodies that bind specifically to the polypeptides or modulate the activity of the polypeptides, are also provided.

[0258] The present polynucleotides, polypeptides, and modulators find use in therapeutic agent screening/discovery applications, such as screening for receptors or competitive ligands, for use, for example, as small molecule therapeutic drugs. Also provided are methods of modulating a biological activity of a polypeptide and methods of treating associated disease conditions, particularly by administering modulators of the present polypeptides, such as small molecule modulators, antisense molecules, and specific antibodies.

[0259] The present polypeptides, polynucleotides, and modulators find use in a number of diagnostic, prophylactic, and therapeutic applications. The polynucleotides and polypeptides of the invention can be detected by methods

provided herein; these methods are useful in diagnosis, and can be accomplished by the use of diagnostic kits. The polynucleotides and polypeptides of the invention are useful for treating a variety of disorders, including cancer, proliferative disorders, inflammatory disorders, immune disorders, viral disorders, bacterial disorders, and metabolic disorders. For example, subjects who suffer from a deficiency, or a lack of a particular protein, or are otherwise in need of such protein to repair or enhance a desirable function, benefit from the administration of a protein or an active fragment thereof by any conventional routes of administration. These include therapeutic vaccines in the form of nucleic acid or polypeptide vaccines, such as cancer vaccines, where the vaccines can be administered alone, such as naked DNA, or can be facilitated, such as via viral vectors, microsomes, or liposomes. Therapeutics antibodies include those that are administered alone or in combination with cytotoxic agents, such as radioactive or chemotherapeutic agents.

[0260] In particular, the polypeptides, polynucleotides, and modulators of the present invention can be used to treat cancers, including, but not limited to, cancers of the prostate, breast, bone, soft tissue, liver, kidney, ovary, cervix, skin, pancreas, and brain, as well as leukemias, lymphomas, lung cancers such as adenocarcinomas and squamous cell carcinoma, and cancers of gastrointestinal organs such as stomach, colon, and rectum. Further, the polypeptides, polynucleotides, and modulators of the present invention can be used to treat inflammatory, immune, viral, bacterial, and metabolic diseases, disorders, syndromes, or conditions, including, but not limited to, intestinal inflammation and immunity, autoimmune thyroiditis, and retroviral infections, as well as tissue and/or organ hypertrophy.

DISCLOSURE OF THE INVENTION

[0261] The present invention features an isolated polynucleotide that encodes a polypeptide. In some embodiments, the polypeptide has at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, or at least about 99% amino acid sequence identity with an amino acid sequence derived from a polynucleotide sequence chosen from at least one nucleotide sequence according to SEQ ID NOS.: 1-104. In some embodiments, the polypeptide has an amino acid sequence chosen from at least one amino acid sequence encoded by SEQ ID NOS.: 1-104. In many

embodiments, the polypeptide has at least one activity associated with the naturally occurring encoded polypeptide.

[0262] In some embodiments, the polypeptide includes a signal peptide. In alternative embodiments, the polypeptide comprises a mature form of a protein, from which the signal peptide has been cleaved. In other embodiments, the polypeptide is a signal peptide. In a further aspect, the invention provides fragments of a polypeptide chosen from at least one amino acid sequence encoded by SEQ ID NO.: 1 - 104, where each fragment is an extracellular fragment of the polypeptide, or an extracellular fragment of the polypeptide minus the signal peptide. The invention provides an N-terminal fragment containing a Pfam domain, and a C-terminal fragment containing a Pfam domain and either or both may be biologically active.

[0263] In yet other embodiments, the polypeptides function as secreted proteins. In yet further embodiments, the polypeptides function as single-transmembrane proteins. In yet further embodiments, the polypeptides function as multiple-transmembrane proteins. In yet further embodiments, the polypeptides function as kinases. In yet further embodiments, the polypeptides function as ligases. In yet further embodiments, the polypeptides function as ligases. In yet further embodiments, the polypeptides function as nuclear hormone receptors. In yet further embodiments, the polypeptides function as phosphatases. In yet further embodiments, the polypeptides function as proteases. In yet further embodiments, the polypeptides function as phosphodiesterases: In yet further embodiments, the polypeptides function as kinesins. In yet further embodiments, the polypeptides function as immunoglobulins. In yet further embodiments, the polypeptides function as T-cell receptors. In yet further embodiments, the polypeptides function as glycosylphosphatidylinositol anchors.

[0264] In yet further embodiments, the polypeptides function as cytokines. In still further embodiments, the polypeptides function as immune cells. In further embodiments, the polypeptides function as antigens. In yet further embodiments, the polypeptides function as binding proteins. In other embodiments, the polypeptides function as factors. In further embodiments, the polypeptides function as growth factors. In further embodiments, the polypeptides function as heat-shock proteins. In some embodiments, the polypeptides function as membrane transport proteins. In yet further embodiments, the polypeptides function as ribosomal proteins. In some

embodiments, the polypeptides function as zinc fingers. In some embodiments, the polypeptides function as embryonic stem cell-related peptides. In still further embodiments, the polypeptides function in pathological states. In other embodiments, the polypeptides function as one or more of these.

[0265] In yet further embodiments, the polypeptides function as activators. In yet further embodiments, the polypeptides function as adaptors. In yet further embodiments, the polypeptides function as adhesion molecules. In yet further embodiments, the polypeptides function as ATPases. In yet further embodiments, the polypeptides function as ATP-related polypeptides. In further embodiments, the polypeptides function as channel-related polypeptides. In yet further embodiments, the polypeptides function as checkpoint-related polypeptides. In yet further embodiments, the polypeptides function as complexes. In yet further embodiments, the polypeptides function as dehydrogenases. In yet further embodiments, the polypeptides function as disintegrins. In yet further embodiments, the polypeptides function as endopeptidases. In yet further embodiments, the polypeptides function as germ-cells. In yet further embodiments, the polypeptides function as GTPases. In yet further embodiments, the polypeptides function as helicases. In yet further embodiments, the polypeptides function as hydrolases. In yet further embodiments, the polypeptides function as integrases. In yet further embodiments, the polypeptides function as integrins. In yet further embodiments, the polypeptides function as isomerases. In yet further embodiments, the polypeptides function as membranes. In yet further embodiments, the polypeptides function as mucins. In yet further embodiments, the polypeptides function as oxygenases. In yet further embodiments, the polypeptides function as peroxidases. In some embodiments, the polypeptides function as phospholipases. In yet further embodiments, the polypeptides function as prosaposins. In yet further embodiments, the polypeptides function as proteasomes. In yet further embodiments, the polypeptides function as reductases. In other embodiments, the polypeptides function as reverse transcriptase-related polypeptides. In yet further embodiments, the polypeptides function as RNases. In further embodiments, the polypeptides function as RNase H-related polypeptides. In yet further embodiments, the polypeptides function as SH3-related polypeptides. In yet further embodiments, the polypeptides function as synthetases. In yet further embodiments, the polypeptides function as TATA box-related polypeptides. In yet further embodiments, the polypeptides function as TAT-related polypeptides. In yet

further embodiments, the polypeptides function as transferases. In yet further embodiments, the polypeptides function as transposases. In yet further embodiments, the polypeptides function as ubiquitin-related polypeptides. In yet further embodiments, the polypeptides function as virus-related polypeptides. In other embodiments, the polypeptides function as one or more of these.

- [0266] The present invention features an isolated polynucleotide that hybridizes under stringent hybridization conditions to a coding region of at least one nucleotide sequence shown in SEQ ID NOS.: 1 104, or a complement thereof.
- [0267] The present invention features an isolated polynucleotide that shares at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, at least about 99% nucleotide sequence identity with a nucleotide sequence of the coding region of at least one sequence shown in SEQ ID NOS.: 1 104, or a complement thereof. In some embodiments, a subject polynucleotide has the nucleotide sequence shown in at least one of SEQ ID NOS.: 1 104, or a coding region thereof.
- [0268] The present invention also features a vector, e.g., a recombinant vector, that includes a subject polynucleotide, and a promoter the drives its expression. This vector can transform a host cell, and the present invention further features such host cells, e.g., isolated *in vitro* host cells, and *in vivo* host cells, that comprise a polynucleotide of the invention, or a recombinant vector of the invention.
- [0269] The present invention further features a library of polynucleotides, wherein at least one of the polynucleotides comprises the sequence information of a polynucleotide of the invention. In specific embodiments, the library is provided on a nucleic acid array. In some embodiments, the library is provided in computer-readable format.
- [0270] The present invention features a pair of isolated nucleic acid molecules, each from about 10 to about 200 nucleotides in length. The first nucleic acid molecule of the pair comprises a sequence of at least 10 contiguous nucleotides having 100% sequence identity to at least one nucleic acid sequence shown in SEQ ID NOS.: 1 104. The second nucleic acid molecule of the pair comprises a sequence of at least 10 contiguous nucleotides having 100% sequence identity to the reverse complement of at least one nucleic acid sequence shown in SEQ ID NOS.: 1 104. The sequence of said second nucleic acid molecule is located 3' of the nucleic acid sequence of the first nucleic acid molecule shown in SEQ ID NOS.: 1 104. The pair

of isolated nucleic acid molecules are useful in a polymerase chain reaction or in any other method known in the art to amplify a nucleic acid that has sequence identity to the sequences shown in SEQ ID NOS.: 1 - 104, particularly when cDNA is used as a template.

- [0271] The invention features a method of determining the presence of a polynucleotide substantially identical to a polynucleotide sequence shown in the Sequence Listing, or a complement of such a nucleotide by providing its complement, allowing the polynucleotides to interact, and determining whether such interaction has occurred.
- [0272] The invention further features methods of regulating the expression of the subject polynucleotides and encoded polypeptides. The invention provides a method of inhibiting transcription or translation of a first polynucleotide encoding a first polypeptide of the invention by providing a second polynucleotide that hybridizes to the first polynucleotide, and allowing the first polynucleotide to contact and bind to the second polynucleotide. The second polynucleotide can be chosen from an antisense molecule, a ribozyme, and an interfering RNA (RNAi) molecule.
- [0273] The present invention further features an isolated polypeptide, e.g., an isolated polypeptide encoded by a polynucleotide, and biologically active fragments of such polypeptide. In some embodiments, the polypeptide is a fusion protein. In some embodiments, the polypeptide has one or more amino acid substitutions, and/or insertions and/or deletions, compared with at least one sequence shown in SEQ ID NOS.: 1 104. In some embodiments, the polypeptide has an amino acid sequence derived from at least one nucleotide sequence shown in SEQ ID NOS.: 1 104.
- [0274] The invention also provides a method of making a polypeptide of the invention by providing a nucleic acid molecule that comprises a polynucleotide sequence encoding a polypeptide of the invention, introducing the nucleic acid molecule into an expression system, and allowing the polypeptide to be produced.
- [0275] In some embodiments, the method involves *in vitro* cell-free transcription and/or translation. For example, the expression system can comprise a cell-free expression system, such as an E. coli system, a wheat germ extract system, a rabbit reticulocyte system, or a frog oocyte system.
- [0276] In certain other embodiments, the expression system can comprise a prokaryotic or eukaryotic cell, for example, a bacterial cell expression system, a fungal cell expression system, such as yeast or *Aspergillus*, a plant cell expression

system, e.g., a cereal plant, a tobacco plant, a tomato plant, or other edible plant, an insect cell expression system, such as SF9 of High Five cells, an amphibian cell expression system, a reptile cell expression system, a crustacean cell expression system, an avian cell expression system, a fish cell expression system, or a mammalian cell expression system, such as one using Chinese Hamster Ovary (CHO) cells. In some embodiments, the method involves culturing a subject host cell under conditions such that the subject polypeptide is produced by the host cells; and recovering the subject polypeptide from the culture, e.g., from within the host cells, or from the culture medium. In further embodiments, the polypeptide can be produced *in vivo* in a multicellular animal or plant, comprising a polynucleotide encoding the subject polypeptide.

[0277] The present invention further features a non-human animal injected with at least one polynucleotide comprising at least one nucleotide sequence chosen from SEQ ID NOS.: 1 - 104, and/or at least one polypeptide comprising at least one amino acid sequence encoded by SEQ ID NOS.: 1 - 104.

[0278] The present invention further features an antibody that specifically recognizes, binds to, interferes with, or modulates the biological activity of a subject polypeptide or a fragment thereof. The polypeptide can be a single-transmembrane protein, multiple-transmembrane protein, kinase, protein kinase, ligase, nuclear hormone receptor, phosphatase, protease, phosphodiesterase, kinesin, immunoglobulin, T-cell receptor, glycosylphosphatidylinositol anchor, or other nucleic acid and amino acid sequences, including, activators, adaptors, adhesion molecules, ATPases, ATP, breakpoints, channels, checkpoints, complexes, dehydrogenases, disintegrins, endopeptidases, germ-cells, GTPases, helicases, hydrolases, integrases, integrins, isomerases, membranes, mucins, oxygenases, peroxidases, phospholipases, prosaposins, proteasomes, reductases, reverse transcriptases, RNases, RNases H, SH3, synthetases, TATA boxes, Tat, transferases, transposases, ubiquitins, and viruses. The fragment can be an extracellular fragment of a subject polypeptide, or an extracellular fragment of a subject polypeptide minus the signal peptide.

[0279] The present invention further features an antibody that specifically inhibits binding of a polypeptide to its ligand or substrate. It also features an antibody that specifically inhibits binding of a polypeptide as a substrate to another molecule.

[0280] Another aspect of the present invention features a library of antibodies or fragments thereof, wherein at least one antibody or fragment thereof specifically binds to at least a portion of a polypeptide comprising an amino acid sequence encoded by SEQ ID NOS.: 1 - 104, and/or wherein at least one antibody or fragment thereof interferes with at least one activity of such polypeptide or fragment thereof. In certain embodiments, the antibody library comprises at least one antibody or fragment thereof that specifically inhibits binding of a subject polypeptide to its ligand or substrate, or that specifically inhibits binding of a subject polypeptide as a substrate to another molecule. The present invention also features corresponding polynucleotide libraries comprising at least one polynucleotide sequence that encodes an antibody or antibody fragment of the invention. In specific embodiments, the library is provided on a nucleic acid array or in computer-readable format.

[0281] An antibody of the present invention may comprise a monoclonal antibody, polyclonal antibody, single chain antibody, intrabody, and active fragments of any of these. The active fragments include variable regions from either heavy chains or light chains. The antibody can comprise the backbone of a molecule with an immunoglobulin domain, e.g., a fibronectin backbone, a T-cell receptor backbone, or a CTLA4 backbone.

[0282] The present invention further features a targeting antibody, a neutralizing antibody, a stabilizing antibody, an enhancing antibody, an antibody agonist, an antibody antagonist, an antibody that promotes cellular endocytosis of a target antigen, a cytotoxic antibody, and an antibody that mediates antibody dependent cellular cytotoxicity (ADCC). The antibody that mediates ADCC can have a cytotoxic component, e.g., a radioisotope, a radioactive molecule, a microbial toxin, a plant toxin, a chemotherapeutic agent, or a chemical substance, such as doxorubicin or cisplatin. The invention also features an inhibitory antibody, functioning to specifically inhibit the binding of a cognate polypeptide to its ligand or its substrate, or to specifically inhibit the binding of a cognate peptide as the substrate of another molecule.

[0283] The antibodies of the present invention also encompass a human antibody, a non-human primate antibody, a monkey antibody, a non-primate animal antibody, e.g., a rodent antibody, rat antibody, a mouse antibody, a hamster antibody, a guinea pig antibody, a chicken antibody, a cattle antibody, a sheep antibody, a goat antibody, a horse antibody, porcine antibody, a cow antibody, a rabbit antibody, a cat

antibody, or a dog antibody. It also features a humanized antibody, a primatized antibody, and a chimeric antibody.

- [0284] The antibodies of the invention can be produced *in vitro* or *in vivo*. For example, the present invention features an antibody produced in a cell-free expression system, a prokaryote expression system or a eukaryote expression system, as described herein.
- [0285] The invention further provides a host cell that can produce an antibody of the invention or a fragment thereof. The antibody may also be secreted by the cell. The host cell can be a hybridoma, or a prokaryotic or eukaryotic cell. The invention also provides a bacteriophage or other virus particle comprising an antibody of the invention, or a fragment thereof. The bacteriophage or other virus particle may display the antibody or fragment thereof on its surface, and the bacteriophage itself may exist within a bacterial cell. The antibody may also comprise a fusion protein with a viral or bacteriophage protein.
- [0286] The invention further provides transgenic multicellular organisms, e.g., plants or non-human animals, as well as tissues or organs, comprising a polynucleotide sequence encoding a subject antibody or fragment thereof. The organism, tissues, or organs will generally comprise cells producing an antibody of the invention, or a fragment thereof.
- [0287] In another aspect, the present invention features a method of making an antibody by immunizing a host animal. In this method, a polypeptide or a fragment thereof, a polynucleotide encoding a polypeptide, or a polynucleotide encoding a fragment thereof, is introduced into an animal in a sufficient amount to elicit the generation of antibodies specific to the polypeptide or fragment thereof, and the resulting antibodies are recovered from the animal. The polypeptide can be encoded by a nucleic acid molecule comprising a nucleotide sequence chosen from at least one polynucleotide sequence according to SEQ ID NOS.: 1 104.
- [0288] The invention thus also provides a non-human animal comprising an antibody of the invention. The animal can be a non-human primate, (e.g., a monkey) a rodent (e.g., a rat, a mouse, a hamster, a guinea pig), a chicken, cattle (e.g., a sheep, a goat, a horse, a pig, a cow), a rabbit, a cat, or a dog.
- [0289] The present invention also features a method of making an antibody by isolating a spleen from an animal injected with a polypeptide or a fragment thereof, a polynucleotide encoding a polypeptide, or a polynucleotide encoding a

fragment thereof, and recovering antibodies from the spleen cells. Hybridomas can be made from the spleen cells, and hybridomas secreting specific antibodies can be selected.

- [0290] The present invention further features a method of making a polynucleotide library from spleen cells, and selecting a cDNA clone that produces specific antibodies, or fragments thereof.. The cDNA clone or a fragment thereof can be expressed in an expression system that allows production of the antibody or a fragment thereof, as provided herein.
- [0291] The invention also provides a method for determining the presence or measuring the level of a polypeptide that specifically binds to an antibody of the invention. This method involves allowing the antibody to interact with a sample, and determining whether interaction between the antibody and any polypeptide in the sample has occurred. Antibodies that specifically bind to at least one subject polypeptide are useful in diagnostic assays, e.g., to detect the presence of a subject polypeptide. Similarly, the invention features a method of determining the presence of an antibody to a polypeptide of the invention, by providing the polypeptide, allowing the antibody and the polypeptide to interact, and determining whether interaction has occurred.
- [0292] The present invention further features a method of identifying an agent that modulates the level of a subject polypeptide (or an mRNA encoding a subject polypeptide) in a cell. The method generally involves contacting a cell (e.g., a eukaryotic cell) that produces the subject polypeptide with a test agent; and determining the effect, if any, of the test agent on the level of the polypeptide in the cell.
- [0293] The present invention further features a method of identifying an agent that modulates biological activity of a subject polypeptide. The methods generally involve contacting a subject polypeptide with a test agent; and determining the effect, if any, of the test agent on the activity of the polypeptide. In certain embodiments, the polypeptide is expressed on a cell surface. In certain embodiments, the agent or modulator is an antibody, for example, where an antibody binds to the polypeptide or affects its biological activity.
- [0294] The present invention further features biologically active agents (or modulators) identified using a method of the invention.

[0295] The present invention also features a method of modulating biological activity using an agent selectable by the above methods. Briefly, the method of modulating biological activity comprises contacting the agent with a first human or a non-human host cell, thereby modulating the activity of the first host cell or a second host cell. In one example, contacting the agent with the first human or non-human host cell results in the recruitment of a second host cell. The agent may be an antibody or antibody fragment of the invention.

[0296] The modulation can comprise directly enhancing cell activity, indirectly enhancing cell activity, directly inhibiting cell activity, or indirectly inhibiting cell activity. The cell activity that is modulated can include transcription, translation, cell cycle control, signal transduction, intracellular trafficking, cell adhesion, cell mobility, proteolysis, ion transport, water transport, DNA repair, hydrolysis, lipase activity, polymerization using an RNA temple or a DNA template, and nuclease activity. The modulation can result in cell death or apoptosis, or inhibition of cell death or apoptosis, as well as cell growth, cell proliferation, or cell survival, or inhibition of cell growth, cell proliferation, or cell survival; as well as mucosal preservation, inhibition of eicosanoid synthesis, or resistance to infection by viruses.

[0297] Either the first or the second host cell can be a human or a non-human host cell. Either the first or the second host cell can be an immune cell, e.g., a T cell, B cell, NK cell, dendritic cell, macrophage, muscle cell, stem cell, skin cell, fat cell, blood cell, brain cell, bone marrow cell, endothelial cell, retinal cell, bone cell, kidney cell, pancreatic cell, liver cell, spleen cell, prostate cell, cervical cell, ovarian cell, breast cell, lung cell, liver cell, soft tissue cell, colorectal cell, other cell of the gastrointestinal tract, or a cancer cell.

[0298] The invention also provides a method of diagnosing cancer, proliferative, inflammatory, immune, viral, bacterial, or metabolic disorder in a patient, by allowing an antibody specific for a polypeptide of the invention to contact a patient sample, and detecting specific binding between the antibody and any antigen in the sample to determine whether the subject has cancer, proliferative, inflammatory, immune, viral, bacterial, or metabolic disorder.

[0299] The invention further provides a method of diagnosing cancer, proliferative, inflammatory, immune, viral, bacterial, or metabolic disorder in a patient, by allowing a polypeptide of the invention to contact a patient sample, and

detecting specific binding between the polypeptide and any interacting molecule in the sample to determine whether the subject has cancer, proliferative, inflammatory, immune, viral, bacterial, or metabolic disorder.

[0300] The invention also features a method of providing a polynucleotide, a polypeptide, or an agent of the invention, such as an antibody, to a subject by oral, buccal, nasal, rectal, intraperitoneal, intradermal, transdermal, intratracheal, intrathecal, or parenteral administration, or otherwise by implantation or inhalation. For example, the polynucleotide, polypeptide or agent can be administered intranasally, intravenously, intra-arterially, intracardiacally, subcutaneously, intraperitoneally, transdermally, intraventricularly, or intracranially. The invention also provides a method for formulating a polynucleotide, polypeptide, or modulator composition, such as an antibody composition, for delivery by any of the routes of administration provided above, for example, for treatment of disorders. For example, the parenteral delivery can be via inhalation or implantation. The parenteral delivery can also be oral, intranasal, intraventricular, or intracranial.

[0301] The present invention also features a pharmaceutical composition comprising a polynucleotide, polypeptide, or modulator of the invention and a carrier. The carrier can be a pharmaceutically acceptable carrier. The modulator can be obtainable by any methods of the invention, for example, the modulator can be an antibody or a fragment thereof. Further, oral formulations, preparations for injection, aerosol formulations, and suppositories can be prepared, each comprising the polynucleotide, polypeptide, or modulator composition. Further, nucleic acid compositions comprising polynucleotide sequences encoding the subject antibodies, or fragments thereof, can be prepared for administration to a subject.

[0302] The invention also features a non-human animal injected with the polynucleotide, polypeptide, or modulator composition, for example the antibody composition. Again, the animal can be a non-human primate, (e.g., a monkey) a rodent (e.g., a rat, a mouse, a hamster, a guinea pig), a chicken, cattle (e.g., a sheep, a goat, a horse, a pig, a cow), a rabbit, a cat, or a dog.

[0303] In another aspect, the invention provides a method of treating a disorder in a subject needing or desiring such treatment, comprising administering a polynucleotide, polypeptide, or modulator of the invention to the subject. The subject can be a human or a non-human animal. The disorder can be cancer, proliferative, inflammatory, immune, metabolic, ulcerative, bacterial, or viral disorders.

[0304] For example, the method of treatment may comprise administering an antibody composition with a first antibody that specifically binds to a first epitope of a first polypeptide or a fragment thereof, or that interferes with at least one activity of the first polypeptide or a fragment thereof, wherein the first polypeptide is encoded by a nucleic acid molecule comprising a nucleotide sequence chosen from SEQ ID NOS.: 1 - 104, or any nucleic acid of the present invention. In certain embodiments, this method further comprises using a second antibody that binds specifically to or interferes with the activity of a second epitope of the first polypeptide or to a first epitope of a second polypeptide. The second polypeptide can be encoded by a nucleic acid molecule comprising a nucleotide sequence chosen from SEQ ID NOS.: 1 - 104, or any nucleic acid of the present invention. In certain embodiments, the antibody binds, or interferes with the activity of, at least one polypeptide fragment, wherein the fragment is an extracellular fragment of the polypeptide, or an extracellular fragment of the polypeptide minus the signal peptide, for the treatment, for example, of proliferative disorders, such as cancer.

[0305] In other embodiments, the modulator may bind to a cell surface molecule that is over-expressed in the disorder. Further the modulator may be linked to an antibody of the invention. The antibody can be capable of initiating antibody dependent cell cytotoxicity, e.g., where the antibody is in turn coupled to cytotoxic agents. This method is applicable when the disorder is cancer, another proliferative disorder, inflammatory, immune, bacterial, viral, or metabolic disorder, and the cell surface molecule is over-expressed in a cancer cell, diseased cell or virus-infected cell. The cell surface molecule can be a single-transmembrane-related protein, a multiple-transmembrane-related protein, a kinase-related protein, a protein kinaserelated protein, a ligase-related protein, a nuclear hormone receptor-related protein, a phosphatase-related protein, a protease-related protein, a phosphodiesterase-related protein, a kinesin-related protein, an immunoglobulin-related protein, a T-cell receptor-related protein, a glycosylphosphatidylinositol anchor-related protein, or other amino acid sequence, including, an activator-related protein, an adaptor-related protein, an adhesion molecule-related protein, an ATPase-related protein, an ATPrelated protein, a breakpoint-related protein, a channel-related protein, a checkpointrelated protein, a complex-related protein, a dehydrogenase-related protein, a disintegrin-related protein, an endopeptidase-related protein, a germ-cell-related protein, a GTPase-related protein, a helicase-related protein, a hydrolase-related

protein, an integrase-related protein, an integrin-related protein, isomerase-related protein, a membrane-related protein, a mucin-related protein, an oxygenase-related protein, a peroxidase-related protein, a phopholipase-related protein, a prosaposin-related protein, a proteasome-related protein, a reductase-related protein, a reverse transcriptase-related protein, an RNase-related protein, an RNase H-related protein, an SH3-related protein, a synthetase-related protein, a TATA box-related protein, a Tat-related protein, a transferase-related protein, a transposase-related protein, a ubiquitin-related protein, or virus-related protein that is over-expressed in cancer, proliferative, inflammatory, immune, bacterial, viral, or metabolic disorder.

[0306] The invention also provides a method for prophylactic or therapeutic treatment of a subject needing or desiring such treatment by providing a vaccine, that can be administered to the subject. The vaccine may comprise one or more of a polynucleotide, polypeptide, or modulator of the invention, for example an antibody vaccine composition, a polypeptide vaccine composition, or a polynucleotide vaccine composition, useful for treating cancer, proliferative, inflammatory, immune, metabolic, bacterial, or viral disorders.

[0307] For example, the vaccine can be a cancer vaccine, and the polypeptide can concomitantly be a cancer antigen. The vaccine may be an anti-inflammatory vaccine, and the polypeptide can concomitantly be an inflammation-related antigen. The vaccine may be a viral vaccine, and the polypeptide can concomitantly be a viral antigen. In some embodiments, the vaccine comprises a polypeptide fragment, comprising at least one extracellular fragment of a polypeptide of the invention, and/or at least one extracellular fragment of a polypeptide of the invention minus the signal peptide, for the treatment, for example, of proliferative disorders, such as cancer. In certain embodiments, the vaccine comprises a polynucleotide encoding one or more such fragments, administered for the treatment, for example, of proliferative disorders, such as cancer. Further, the vaccine can be administered with or without an adjuvant.

[0308] In another aspect, the invention provides a method for gene therapy by providing a polynucleotide comprising a nucleic acid molecule encoding a polypeptide, such as an antibody of the invention, and administering the polynucleotide to a subject needing or desiring such treatment.

[0309] The invention further provides a kit comprising one or more of a polynucleotide, polypeptide, or modulator composition, such as an antibody

composition, which may include instructions for its use. Such kits are useful in diagnostic applications, for example, to detect the presence and/or level of a polypeptide in a biological sample by specific antibody interaction.

MODES FOR CARRYING OUT THE INVENTION

Brief Description of the Table

[0310] Each sequence shown in Table 1 is identified by a Five Prime Therapeutics, Inc. (FP) identification number (FP ID). Each protein in Table 1 is also described by an annotation of the Fantom mouse protein with the greatest degree of similarity to the claimed sequences. The Fantom database was compiled by the Fantom Consortium and is accessible, for example, at http://fantom.gsc.riken.go.jp/db/ (Bono et al., 2002). It provides curated functional annotation to full-length mouse sequences (Okzaki et al., 2002). The similarities of the claimed sequences of the invention with the annotated sequences in Table 1 suggest that they may share structural and functional properties, and exhibit similar expression profiles and localizations.

Definitions

- [0311] "Related sequences" include nucleotide and amino acid sequences that are involved in the function of their referent. For example, "receptor-related sequences" include all sequences that are involved in receptor function. This includes, but is not limited to, sequences that are involved in receptor synthesis, receptor regulation, receptor effector function, and receptor degradation. "Related sequences" also encompass complementary nucleic acid sequences, and biologically active fragments of nucleic acid and amino acid sequences.
- [0312] The terms "polynucleotide," "nucleotide," "nucleic acid," "polynucleic molecule," "nucleotide molecule," "nucleic acid molecule," "nucleic acid sequence," "polynucleotide sequence," and "nucleotide sequence" are used interchangeably herein to refer to polymeric forms of nucleotides of any length. The polynucleotides can contain deoxyribonucleotides, ribonucleotides, and/or their analogs or derivatives. For example, nucleic acids can be naturally occurring DNA or RNA, or can be synthetic analogs, as known in the art. The terms also encompass genomic DNA, genes, gene fragments, exons, introns, regulatory sequences or regulatory elements (such as promoters, enhancers, initiation and termination regions, other control regions, expression regulatory factors, and expression controls), DNA

comprising one or more single-nucleotide polymorphisms (SNPs), allelic variants, isolated DNA of any sequence, and cDNA. The terms also encompass mRNA, tRNA, rRNA, ribozymes, splice variants, antisense RNA, antisense conjugates, RNAi, and isolated RNA of any sequence. The terms also encompass recombinant polynucleotides, heterologous polynucleotides, branched polynucleotides, labeled polynucleotides, hybrid DNA/RNA, polynucleotide constructs, vectors comprising the subject nucleic acids, nucleic acid probes, primers, and primer pairs. The polynucleotides can comprise modified nucleic acid molecules, with alterations in the backbone, sugars, or heterocyclic bases, such as methylated nucleic acid molecules, peptide nucleic acids, and nucleic acid molecule analogs, which may be suitable as, for example, probes if they demonstrate superior stability and/or binding affinity under assay conditions. Analogs of purines and pyrimidines, including radiolabeled and fluorescent analogs, are known in the art. The polynucleotides can have any three-dimensional structure, and can perform any function, known or as yet unknown. The terms also encompass single-stranded, double-stranded and triple helical molecules that are either DNA, RNA, or hybrid DNA/RNA and that may encode a full-length gene or a biologically active fragment thereof. Biologically active fragments of polynucleotides can encode the polypeptides herein, as well as anti-sense and RNAi molecules. Thus, the full length polynucleotides herein may be treated with enzymes, such as Dicer, to generate a library of short RNAi fragments which are within the scope of the present invention.

[0313] The novel polynucleotides herein include those shown in the Table, SEQ ID NOS.: 1-104, and biologically active fragments thereof. The polynucleotides also include modified, labeled, and degenerate variants of the nucleic acid sequences, as well as nucleic acid sequences that are substantially similar or homologous to nucleic acids encoding the subject proteins.

[0314] A "biologically active" entity, or an entity having "biological activity," is one having structural, regulatory, or biochemical functions of a naturally occurring molecule or any function related to or associated with a metabolic or physiological process. Biologically active polynucleotide fragments are those exhibiting activity similar, but not necessarily identical, to an activity of a polynucleotide of the present invention. The biological activity can include an improved desired activity, or a decreased undesirable activity. For example, an entity demonstrates biological activity when it participates in a molecular interaction with

another molecule, or when it has therapeutic value in alleviating a disease condition, or when it has prophylactic value in inducing an immune response to the molecule, or when it has diagnostic value in determining the presence of the molecule, such as a biologically active fragment of a polynucleotide that can be detected as unique for the polynucleotide molecule, or that can be used as a primer in PCR.

- [0315] The term "degenerate variant" of a nucleic acid sequence refers to all nucleic acid sequences that can be directly translated, according to the standard genetic code, to provide an amino acid sequence identical to that translated from a reference nucleic acid sequence.
- [0316] The term "gene" or "genomic sequence" as used herein is an open reading frame encoding specific proteins and polypeptides, for example, an mRNA, cDNA, or genomic DNA, and also may or may not include intervening introns, or adjacent 5' and 3' non-coding nucleotide sequences involved in the regulation of expression up to about 20 kb beyond the coding region, and possibly further in either direction. A gene can be introduced into an appropriate vector for extrachromosomal maintenance or for integration into a host genome.
- [0317] The term "transgene" as used herein is a nucleic acid sequence that is incorporated into a transgenic organism. A "transgene" can contain one or more transcriptional regulatory sequences, and other sequences, such as introns, that may be useful for expressing or secreting the nucleic acid or fusion protein it encodes.
- [0318] The term "cDNA" as used herein is intended to include all nucleic acids that share the sequence elements of mature mRNA species, where sequence elements are exons and 3' and 5' non-coding regions. Generally, mRNA species have contiguous exons, the intervening introns having been removed by nuclear RNA splicing to create a continuous open reading frame encoding a protein.
- [0319] The term "splice variant" refers to all types of RNAs transcribed from a given gene that when processed collectively encode plural protein isoforms. The term "alternative splicing" and related terms refer to all types of RNA processing that lead to expression of plural protein isoforms from a single gene. Some genes are first transcribed as long mRNA precursors that are then shortened by a series of processing steps to produce the mature mRNA molecule. One of these steps is RNA splicing, in which the intron sequences are removed from the mRNA precursor. A cell can splice the primary transcript in different ways, making different "splice variants," and thereby making different polypeptide chains from the same gene, or from the same

mRNA molecule. Splice variants can include, for example, exon insertions, exon extensions, exon truncations, exon deletions, alternatives in the 5'untranslated region and alternatives in the 3'untranslated region.

[0320] "Oligonucleotide" may generally refer to polynucleotides of between about 5 and about 100 nucleotides of single-or double-stranded nucleic acids. For the purposes of this disclosure, there is no upper limit to the length of an oligonucleotide. Oligonucleotides are also known as oligomers or oligos and can be isolated from genes, or chemically synthesized by methods known in the art.

[0321] "Nucleic acid composition" as used herein is a composition comprising a nucleic acid sequence, including one having an open reading frame that encodes a polypeptide and is capable, under appropriate conditions, of being expressed as a polypeptide. The term includes, for example, vectors, including plasmids, cosmids, viral vectors (e.g., retrovirus vectors such as lentivirus, adenovirus, and the like), human, yeast, bacterial, P1-derived artificial chromosomes (HAC's, YAC's, BAC's, etc), and mini-chromosomes, *in vitro* host cells, *in vivo* host cells, tissues, organs, allogenic or congenic grafts or transplants, multicellular organisms, and chimeric, genetically modified, or transgenic animals comprising a subject nucleic acid sequence.

[0322] An "isolated," "purified," or "substantially isolated" polynucleotide, or a polynucleotide in "substantially pure form," in "substantially purified form," in "substantial purity," or as an "isolate," is one that is substantially free of the sequences with which it is associated in nature, or other nucleic acid sequences that do not include a sequence or fragment of the subject polynucleotides. By substantially free is meant that less than about 90%, less than about 80%, less than about 70%, less than about 60%, or less than about 50% of the composition is made up of materials other than the isolated polynucleotide. For example, the isolated polynucleotide is at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% free of the materials with which it is associated in nature. For example, an isolated polynucleotide may be present in a composition wherein at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, at least about 99% of the total macromolecules (for example, polypeptides, fragments thereof, polynucleotides, fragments thereof, lipids, polysaccharides, and oligosaccharides) in the composition is the isolated

polynucleotide. Where at least about 99% of the total macromolecules is the isolated polynucleotide, the polynucleotide is at least about 99% pure, and the composition comprises less than about 1% contaminant. As used herein, an "isolated," "purified" or "substantially isolated" polynucleotide, or a polynucleotide in "substantially pure form," in "substantially purified form," in "substantial purity," or as an "isolate," also refers to recombinant polynucleotides, modified, degenerate and homologous polynucleotides, and chemically synthesized polynucleotides, which, by virtue of origin or manipulation, are not associated with all or a portion of a polynucleotide with which it is associated in nature, are linked to a polynucleotide other than that to which it is linked in nature, or do not occur in nature. For example, the subject polynucleotides are generally provided as other than on an intact chromosome, and recombinant embodiments are typically flanked by one or more nucleotides not normally associated with the subject polynucleotide on a naturally-occurring chromosome.

The terms "polypeptide," "peptide," and "protein," used [0323] interchangeably herein, refer to a polymeric form of amino acids of any length, which can include naturally-occurring amino acids, coded and non-coded amino acids, chemically or biochemically modified, derivatized, or designer amino acids, amino acid analogs, peptidomimetics, and depsipeptides, and polypeptides having modified, cyclic, bicyclic, depsicyclic, or depsibicyclic peptide backbones. The term includes single chain protein as well as multimers. The term also includes conjugated proteins, fusion proteins, including, but not limited to, GST fusion proteins, fusion proteins with a heterologous amino acid sequence, fusion proteins with heterologous and homologous leader sequences, fusion proteins with or without N-terminal methionine residues, pegolyated proteins, and immunologically tagged proteins. Also included in this term are variations of naturally occurring proteins, where such variations are homologous or substantially similar to the naturally occurring protein, as well as corresponding homologs from different species. Variants of polypeptide sequences include insertions, additions, deletions, or substitutions compared with the subject polypeptides. The term also includes peptide aptamers.

[0324] The novel polypeptides herein include amino acid sequences encoded by an open reading frame (ORF), described in greater detail below, including the full length protein and fragments thereof, particularly biologically active fragments and/or fragments corresponding to functional domains, e.g., a signal peptide or leader

sequence, an enzyme active site, including a cleavage site and an enzyme catalytic site, a domain for interaction with other protein(s), a domain for binding DNA, a regulatory domain, a consensus domain that is shared with other members of the same protein family, such as a kinase family or an immunoglobulin family; an extracellular domain that may act as a target for antibody production or that may be cleaved to become a soluble receptor or a ligand for a receptor; an intracellular fragment of a transmembrane protein that participates in signal transduction; a transmembrane domain of a transmembrane protein that may facilitate water or ion transport; a sequence associated with cell survival and/or cell proliferation; a sequence associated with cell cycle arrest, DNA repair and/or apoptosis; a sequence associated with a disease or disease prognosis, including types of cancer, degenerative disease, inflammatory disease, immunological disease, genetic disease, metabolic disease, and/or viral infection; and including fusions of the subject polypeptides to other proteins or parts thereof; modifications of the subject polypeptide, e.g., comprising modified, derivatized, or designer amino acids, modified peptide backbones, and/or immunological tags; as well as intra- and inter-species homologs of the subject polypeptides.

[0325] As noted above, a "biologically active" entity, or an entity having "biological activity," is one having structural, regulatory, or biochemical functions of a naturally occurring molecule or any function related to or associated with a metabolic or physiological process. Biologically active polypeptide fragments are those exhibiting activity similar, but not necessarily identical, to an activity of a polypeptide of the present invention. The biological activity can include an improved desired activity, or a decreased undesirable activity. For example, an entity demonstrates biological activity when it participates in a molecular interaction with another molecule, or when it has therapeutic value in alleviating a disease condition, or when it has prophylactic value in inducing an immune response to the molecule, or when it has diagnostic value in determining the presence of the molecule. A biologically active polypeptide or fragment thereof includes one that can participate in a biological reaction, for example, as a transcription factor that combines with other transcription factors for initiation of transcription, or that can serve as an epitope or immunogen to stimulate an immune response, such as production of antibodies, or that can transport molecules into or out of cells, or that can perform a catalytic activity, for example polymerization or nuclease activity, or that can participate in

signal transduction by binding to receptors, proteins, or nucleic acids, activating enzymes or substrates.

[0326] A "signal peptide," or a "leader sequence," comprises a sequence of amino acid residues, typically, at the N terminus of a polypeptide, which directs the intracellular trafficking of the polypeptide. Polypeptides that contain a signal peptide or leader sequence typically also contain a signal peptide or leader sequence cleavage site. Such polypeptides, after cleavage at the cleavage sites, generate mature polypeptides, for example, after extracellular secretion or after being directed to the appropriate intracellular compartment.

[0327] "Depsipeptides" are compounds containing a sequence of at least two alpha-amino acids and at least one alpha-hydroxy carboxylic acid, which are bound through at least one normal peptide link and ester links, derived from the hydroxy carboxylic acids. "Linear depsipeptides" can comprise rings formed through S–S bridges, or through an hydroxy or a mercapto group of an hydroxy-, or mercapto-amino acid and the carboxyl group of another amino- or hydroxy-acid but do not comprise rings formed only through peptide or ester links derived from hydroxy carboxylic acids. "Cyclic depsipeptides" are peptides containing at least one ring formed only through peptide or ester links, derived from hydroxy carboxylic acids.

[0328] An "isolated," "purified," or "substantially isolated" polypeptide, or a polypeptide in "substantially pure form," in "substantially purified form," in "substantial purity," or as an "isolate," is one that is substantially free of the materials with which it is associated in nature or other polypeptide sequences that do not include a sequence or fragment of the subject polypeptides. By substantially free is meant that less than about 90%, less than about 80%, less than about 70%, less than about 60%, or less than about 50% of the composition is made up of materials other than the isolated polypeptide. For example, the isolated polypeptide is at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% free of the materials with which it is associated in nature. For example, an isolated polypeptide may be present in a composition wherein at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 97%, or at least about 99% of the total macromolecules (for example, polypeptides, fragments thereof, polynucleotides, fragments thereof, lipids, polysaccharides, and oligosaccharides) in the composition is the isolated polypeptide. Where at least about

99% of the total macromolecules is the isolated polypeptide, the polypeptide is at least about 99% pure, and the composition comprises less than about 1% contaminant. As used herein, an "isolated," "purified," or "substantially isolated" polypeptide, or a polypeptide in "substantially pure form," in "substantially purified form," in "substantial purity," or as an "isolate," also refers to recombinant polypeptides, modified, tagged and fusion polypeptides, and chemically synthesized polypeptides, which by virtue or origin or manipulation, are not associated with all or a portion of the materials with which they are associated in nature, are linked to molecules other than that to which they are linked in nature, or do not occur in nature.

[0329] Detection methods of the invention can be qualitative or quantitative. Thus, as used herein, the terms "detection," "identification," "determination," and the like, refer to both qualitative and quantitative determinations, and include "measuring." For example, detection methods include methods for detecting the presence and/or level of polynucleotide or polypeptide in a biological sample, and methods for detecting the presence and/or level of biological activity of polynucleotide or polypeptide in a sample.

[0330] As used herein, the term "array" or "microarray" may be used interchangeably and refers to a collection of plural biological molecules such as nucleic acids, polypeptides, or antibodies, having locatable addresses that may be separately detectable. Generally, "microarray" encompasses use of sub microgram quantities of biological molecules. The biological molecules may be affixed to a substrate or may be in solution or suspension. The substrate can be porous or solid, planar or non-planar, unitary or distributed, such as a glass slide, a 96 well plate, with or without the use of microbeads or nanobeads. As such, the term "microarray" includes all of the devices referred to as microarrays in Schena, 1999; Bassett et al., 1999; Bowtell, 1999; Brown and Botstein, 1999; Chakravarti, 1999; Cheung et al., 1999; Cole et al., 1999; Collins, 1999; Debouck and Goodfellow, 1999; Duggan et al., 1999; Hacia, 1999; Lander, 1999; Lipshutz et al., 1999; Southern, et al., 1999; Schena, 2000; Brenner et al, 2000; Lander, 2001; Steinhaur et al., 2002; and Espejo et al, 2002. Nucleic acid microarrays include both oligonucleotide arrays (DNA chips) containing expressed sequence tags ("ESTs") and arrays of larger DNA sequences representing a plurality of genes bound to the substrate, either one of which can be used for hybridization studies. Protein and antibody microarrays include arrays of polypeptides or proteins, including but not limited to, polypeptides or proteins

obtained by purification, fusion proteins, and antibodies, and can be used for specific binding studies (Zhu and Snyder, 2003; Houseman et al., 2002; Schaeferling et al., 2002; Weng et al., 2002; Winssinger et al., 2002; Zhu et al., 2001; Zhu et al. 2001; and MacBeath and Schreiber, 2000).

- [0331] A "nucleic acid hybridization reaction" is one in which single strands of DNA or RNA randomly collide with one another, and bind to each other only when their nucleotide sequences have some degree of complementarity. The solvent and temperature conditions can be varied in the reactions to modulate the extent to which the molecules can bind to one another. Hybridization reactions can be performed under different conditions of "stringency." The "stringency" of a hybridization reaction as used herein refers to the conditions (e.g., solvent and temperature conditions) under which two nucleic acid strands will either pair or fail to pair to form a "hybrid" helix.
- [0332] " T_m " is the temperature in degrees Celsius at which 50% of a polynucleotide duplex made of complementary strands of nucleic acids that are hydrogen bonded in an anti-parallel direction by Watson-Crick base pairing dissociate into single strands under conditions of the hybridization reaction. T_m can be predicted according to a standard formula, such as: $T_m = 81.5 + 16.6 \log[X^+] + 0.41$ (%G/C) 0.61 (%F) 600/L, where [X^+] is the cation concentration (usually sodium ion, Na $^+$) in mol/L; (%G/C) is the number of G and C residues as a percentage of total residues in the duplex; (%F) is the percent formamide in solution (wt/vol); and L is the number of nucleotides in each strand of the paired nucleic acids.
- [0333] A "buffer" is a system that tends to resist change in pH when a given increment of hydrogen ion or hydroxide ion is added. Buffered solutions contain conjugate acid-base pairs. Any conventional buffer can be used with the inventions herein including but not limited to, for example, Tris, phosphate, imidazole, and bicarbonate.
- [0334] A "library" of polynucleotides comprises a collection of sequence information of a plurality of polynucleotide sequences, which information is provided in either biochemical form (e.g., as a collection of polynucleotide molecules), or in electronic form (e.g., as a collection of polynucleotide sequences stored in a computer-readable form, as in a computer-based system, a computer data file, and/or as part of a computer program).

[0335] A "library" of polypeptides comprises a collection of sequence information of a plurality of polypeptide sequences, which information is provided in, e.g., a collection of polypeptide sequences stored in a computer-readable form, as in a computer-based system, a computer data file, and/or as part of a computer program.

- [0336] "Media" refers to a manufacture, other than an isolated nucleic acid molecule, that contains the sequence information of the present invention. Such a manufacture provides the genome sequence or a subset thereof in a form that can be examined by means not directly applicable to the sequence as it exists in a nucleic acid, e.g., with computer-readable media comprising data storage structures. Such media include, but are not limited to: magnetic storage media, such as a floppy disc, a hard disc storage medium, and a magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM and ROM; and hybrids of these categories such as magnetic/optical storage media.
- [0337] "Recorded" refers to a process for storing information on computer readable media, using any such methods as known in the art.
- [0338] As used herein, "a computer-based system" refers to the hardware means, software means, and data storage means used to analyze the nucleotide sequence information of the present invention. The minimum hardware of the computer-based systems of the present invention comprises a central processing unit (CPU), input means, output means, and data storage means. A skilled artisan can readily appreciate that any one of the currently available computer-based systems are suitable for use in the present invention. The data storage means can comprise any manufacture comprising a recording of the present sequence information as described above, or a memory access means that can access such a manufacture.
- [0339] "Search means" refers to one or more programs implemented on the computer-based system, to compare a target sequence or target structural motif, or expression levels of a polynucleotide in a sample, with the stored sequence information. A variety of known algorithms are publicly known and commercially available, e.g., MacPattern (EMBL), BLAST, BLASTN and BLASTX (NCBI), gapped BLAST, BLAZE, the Wise package, FASTX, Clustalw, FASTA, FASTA3, Align0, TCoffee, BestFit, FastDB, and TeraBLAST (TimeLogic, Crystal Bay, Nevada). Search means can be used to identify fragments or regions of the genome that match a particular target sequence or target motif, for example, based on

sequence similarity, for example, to identify open reading frames (ORFs) within the genome that contain homology to ORFs from other organisms.

[0340] "Sequence similarity," "sequence homology," "homology," "sequence identity," and "percent sequence identity," used interchangeably herein, describe the degree of relatedness between two polynucleotide or polypeptide sequences. In general, "identity" means the exact match-up of two or more nucleotide sequences or two or more amino acid sequences, where the nucleotide or amino acids being compared are the same. Also, in general, "similarity" or "homology" means the exact match-up of two or more nucleotide sequences or two or more amino acid sequences, where the nucleotide or amino acids being compared are either the same or possess similar chemical and/or physical properties. The terms also refer to the percentage of the "aligned" bases (for the polynucleotides) or amino acid residues (for the polypeptides) that are identical when the sequences are aligned. Sequences can be aligned in a number of different ways and sequence similarity can be determined in a number of different ways. For example, the bases or amino acid residues of one sequence can be aligned to a gap in the other sequence, or they can be aligned only to another base or amino acid residue in the other sequence. A gap can range anywhere from one nucleotide, base, or amino acid residue to multiple exons in length, up to any number of nucleotides or amino acid residues. Further, sequences can be aligned such that nucleotides (or bases) align with nucleotides, nucleotides align with amino acid residues, or amino acid residues align with amino acid residues.

[0341] A "target sequence" can be any polynucleotide or amino acid sequence of six or more contiguous nucleotides or two or more amino acids, for example, from about 5 or from about 10 to about 100 amino acids, or from about 15 or from about 30 to about 300 nucleotides. A variety of comparing means can be used to accomplish comparison of sequence information from a sample (e.g., to analyze target sequences, target motifs, or relative expression levels) with the data storage means. A skilled artisan can readily recognize that any one of the publicly available homology search programs can be used as the search means for the computer based systems of the present invention to accomplish comparison of target sequences and motifs. Computer programs to analyze expression levels in a sample and in controls are also known in the art. A "target sequence" includes an "antibody target sequence," which refers to an amino acid sequence that can be used as an

immunogen for injection into animals for production of antibodies or for screening against a phage display or antibody library for identification of binding partners.

[0342] A "target structural motif," or "target motif," refers to any rationally selected sequence or combination of sequences in which the sequence(s) are chosen based on a three-dimensional configuration that is formed upon the folding of the target motif, or on consensus sequences of regulatory or active sites. There are a variety of target motifs known in the art. Protein target motifs include, but are not limited to, enzyme active sites and signal sequences. Nucleic acid target motifs include, but are not limited to, hairpin structures, promoter sequences, and other expression elements such as binding sites for transcription factors.

[0343] A "matrix" is a geometric network of antibody molecules and their antigens, as found in immunoprecipitation and flocculation reactions. An antibody matrix can exist in solution or on a solid phase support.

[0344] The term "binds specifically," in the context of antibody binding, refers to high avidity and/or high affinity binding of an antibody to a specific polypeptide, or more accurately, to an epitope of a specific polypeptide. Antibody binding to such epitope on a polypeptide can be stronger than binding of the same antibody to any other epitopes, particularly other epitopes that can be present in molecules in association with, or in the same sample as the polypeptide of interest. For example, when an antibody binds more strongly to one epitope than to another, adjusting the binding conditions can result in antibody binding almost exclusively to the specific epitope and not to any other epitopes on the same polypeptide, and not to any other polypeptide, which does not comprise the epitope. Antibodies that bind specifically to a subject polypeptide may be capable of binding other polypeptides at a weak, yet detectable, level (e.g., 10% or less of the binding shown to the polypeptide of interest). Such weak binding, or background binding, is readily discernible from the specific antibody binding to a subject polypeptide, e.g., by use of appropriate controls. In general, antibodies of the invention bind to a specific polypeptide with a binding affinity of 10^{-7} M or greater (e.g., 10^{-8} M, 10^{-9} M, 10^{-10} , 10^{-11} , etc.).

[0345] The term "host cell" includes an individual cell, cell line, cell culture, or *in vivo* cell, which can be or has been a recipient of any polynucleotides or polypeptides of the invention, for example, a recombinant vector, an isolated polynucleotide, antibody or fusion protein. Host cells include progeny of a single host cell, and the progeny may not necessarily be completely identical (in

morphology, physiology, or in total DNA, RNA, or polypeptide complement) to the original parent cell due to natural, accidental, or deliberate mutation and/or change. Host cells can be prokaryotic or eukaryotic, including mammalian, insect, amphibian, reptile, crustacean, avian, fish, plant and fungal cells. A host cell includes cells transformed, transfected, transduced, or infected *in vivo* or *in vitro* with a polynucleotide of the invention, for example, a recombinant vector. A host cell which comprises a recombinant vector of the invention may be called a "recombinant host cell."

"Biological sample," "patient sample," "clinical sample" "sample," or [0346] "biological specimen," used interchangeably herein, encompasses a variety of sample types obtained from an individual, including biological fluids such as blood, serum, plasma, urine, cerebrospinal fluid, tears, saliva, lymph, dialysis fluid, lavage fluid, semen, and other liquid samples or tissues of biological origin. It includes tissue samples and tissue cultures or cells derived therefrom and the progeny thereof, including cells in culture, cell supernatants, and cell lysates. It includes organ or tissue culture derived fluids, tissue biopsy samples, tumor biopsy samples, stool samples, and fluids extracted from physiological tissues. Cells dissociated from solid tissues, tissue sections, and cell lysates are included. The definition also includes samples that have been manipulated in any way after their procurement, such as by treatment with reagents, solubilization, or enrichment for certain components, such as polynucleotides or polypeptides. Also included in the term are derivatives and fractions of biological samples. A biological sample can be used in a diagnostic, monitoring, or screening assay.

[0347] The terms "individual," "host," "patient," and "subject," used interchangeably herein, refer to a mammal, including, but not limited to, murines, simians, humans, felines, canines, equines, bovines, porcines, ovines, caprines, mammalian farm animals, mammalian sport animals, and mammalian pets.

"Mammals" or "mammalian," are used broadly to describe organisms which are within the class mammalia, including the orders carnivore (e.g., dogs and cats), rodentia (e.g., mice, guinea pigs, and rats), and other mammals, including cattle, goats, sheep, cows, horses, rabbits, and pigs, and primates (e.g., humans, chimpanzees, and monkeys).

[0348] The terms "agent," "substance," "modulator," and "compound" are used interchangeably herein. These terms refer to a substance that binds to or

modulates a level or activity of a subject polypeptide or a level of mRNA encoding a subject protein or nucleic acid, or that modulates the activity of a cell containing the subject protein or nucleic acid. Where the agent modulates a level of mRNA encoding a subject protein, agents include ribozymes, antisense, and RNAi molecules. Where the agent is a substance that modulates a level of activity of a subject polypeptide, agents include antibodies specific for the subject polypeptide, peptide aptamers, small molecules, agents that bind a ligand-binding site in a subject polypeptide, and the like. Antibody agents include antibodies that specifically bind a subject polypeptide and activate the polypeptide, such as receptor-ligand binding that initiates signal transduction; antibodies that specifically bind a subject polypeptide and inhibit binding of another molecule to the polypeptide, thus preventing activation of a signal transduction pathway; antibodies that bind a subject polypeptide to modulate transcription; antibodies that bind a subject polypeptide to modulate translation; as well as antibodies that bind a subject polypeptide on the surface of a cell to initiate antibody-dependent cytotoxicity ("ADCC") or to initiate cell killing or cell growth. Small molecule agents include those that bind the polypeptide to modulate activity of the polypeptide or cell containing the polypeptide in a similar fashion. The term "agent" also refers to substances that modulate a condition or disorder associated with a subject polynucleotide or polypeptide. Such agents include subject polynucleotides themselves, subject polypeptides themselves, and the like. Agents may be chosen from amongst candidate agents, as defined below.

[0349] The terms "candidate agent," "subject agent," or "test agent," used interchangeably herein, encompass numerous chemical classes, typically synthetic, semi-synthetic, or naturally occurring inorganic or organic molecules, small molecules, or macromolecular complexes. Candidate agents can be small organic compounds having a molecular weight of more than about 50 and less than about 2,500 daltons. Candidate agents can comprise functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and can include at least an amine, carbonyl, hydroxyl or carboxyl group, and can contain at least two of the functional chemical groups. The candidate agents can comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more of the above functional groups. Candidate agents are also found among biomolecules, including oligonucleotides, polynucleotides, and fragments thereof, depsipeptides, polypeptides and fragments thereof, oligosaccharides, polysaccharides

and fragments thereof, lipids, fatty acids, steroids, purines, pyrimidines, derivatives thereof, structural analogs, modified nucleic acids, modified, derivatized or designer amino acids, or combinations thereof.

- [0350] An "agent which modulates a biological activity of a subject polypeptide," as used herein, describes any substance, synthetic, semi-synthetic, or natural, organic or inorganic, small molecule or macromolecular, pharmaceutical or protein, with the capability of altering a biological activity of a subject polypeptide or of a fragment thereof, as described herein. Generally, a plurality of assay mixtures is run in parallel with different agent concentrations to obtain a differential response to the various concentrations. Typically, one of these concentrations serves as a negative control, i.e., at zero concentration or below the level of detection. The biological activity can be measured using any assay known in the art.
- [0351] An agent which modulates a biological activity of a subject polypeptide increases or decreases the activity at least about 10%, at least about 15%, at least about 20%, at least about 25%, at least about 50%, at least about 100%, or at least about 2-fold, at least about 5-fold, or at least about 10-fold or more when compared to a suitable control.
- [0352] The term "agonist" refers to a substance that mimics the function of an active molecule. Agonists include, but are not limited to, drugs, hormones, antibodies, and neurotransmitters, as well as analogues and fragments thereof.
- [0353] The term "antagonist" refers to a molecule that competes for the binding sites of an agonist, but does not induce an active response. Antagonists include, but are not limited to, drugs, hormones, antibodies, and neurotransmitters, as well as analogues and fragments thereof.
- [0354] The term "receptor" refers to a polypeptide that binds to a specific extracellular molecule and may initiate a cellular response.
- [0355] The term "ligand" refers to any molecule that binds to a specific site on another molecule.
- [0356] The term "modulate" encompasses an increase or a decrease, a stimulation, inhibition, or blockage in the measured activity when compared to a suitable control. "Modulation" of expression levels includes increasing the level and decreasing the level of an mRNA or polypeptide encoded by a polynucleotide of the invention when compared to a control lacking the agent being tested. In some embodiments, agents of particular interest are those which inhibit a biological activity

of a subject polypeptide, and/or which reduce a level of a subject polypeptide in a cell, and/or which reduce a level of a subject mRNA in a cell and/or which reduce the release of a subject polypeptide from a eukaryotic cell. In other embodiments, agents of interest are those that increase a biological activity of a subject polypeptide, and/or which increase a level of a subject polypeptide in a cell, and/or which increase a level of a subject mRNA in a cell and/or which increase the release of a subject polypeptide from a eukaryotic cell.

[0357] An agent that "modulates the level of expression of a nucleic acid" in a cell is one that brings about an increase or decrease of at least about 1.25-fold, at least about 1.5-fold, at least about 5-fold, at least about 10-fold, or more in the level (i.e., an amount) of mRNA and/or polypeptide following cell contact with a candidate agent compared to a control lacking the agent.

[0358] "Modulating a level of active subject polypeptide" includes increasing or decreasing activity of a subject polypeptide; increasing or decreasing a level of active polypeptide protein; increasing or decreasing a level of mRNA encoding active subject polypeptide, and increasing or decreasing the release of subject polypeptide for a eukaryotic cell. In some embodiments, an agent is a subject polypeptide, where the subject polypeptide itself is administered to an individual. In some embodiments, an agent is an antibody specific for a subject polypeptide. In some embodiments, an agent is a chemical compound such as a small molecule that may be useful as an orally available drug. Such modulation includes the recruitment of other molecules that directly effect the modulation. For example, an antibody that modulates the activity of a subject polypeptide that is a receptor on a cell surface may bind to the receptor and fix complement, activating the complement cascade and resulting in lysis of the cell.

[0359] The term "over-expressed" refers to a state wherein there exists any measurable increase over normal or baseline levels. For example, a molecule that is over-expressed in a disorder is one that is manifest in a measurably higher level compared to levels in the absence of the disorder.

[0360] "Treatment," "treating," and the like, as used herein, refer to obtaining a desired pharmacologic and/or physiologic effect, covering any treatment of a pathological condition or disorder in a mammal, including a human. The effect may be prophylactic in terms of completely or partially preventing a disorder or symptom thereof and/or may be therapeutic in terms of a partial or complete cure for

a disorder and/or adverse affect attributable to the disorder. That is, "treatment" includes (1) preventing the disorder from occurring or recurring in a subject who may be predisposed to the disorder but has not yet been diagnosed as having it, (2) inhibiting the disorder, such as arresting its development, (3) stopping or terminating the disorder or at least symptoms associated therewith, so that the host no longer suffers from the disorder or its symptoms, such as causing regression of the disorder or its symptoms, for example, by restoring or repairing a lost, missing or defective function, or stimulating an inefficient process, or (4) relieving, alleviating, or ameliorating the disorder, or symptoms associated therewith, where ameliorating is used in a broad sense to refer to at least a reduction in the magnitude of a parameter, such as inflammation, pain, and/or tumor size.

[0361] A "pharmaceutically acceptable carrier," "pharmaceutically acceptable diluent," or "pharmaceutically acceptable excipient," or "pharmaceutically acceptable vehicle," used interchangeably herein, refer to a non-toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any conventional type. A pharmaceutically acceptable carrier is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the carrier for a formulation containing polypeptides would not normally include oxidizing agents and other compounds that are known to be deleterious to polypeptides. Suitable carriers include, but are not limited to, water, dextrose, glycerol, saline, ethanol, and combinations thereof. The carrier can contain additional agents such as wetting or emulsifying agents, pH buffering agents, or adjuvants which enhance the effectiveness of the formulation. Adjuvants of the invention include, but are not limited to Freunds's, Montanide ISA Adjuvants [Seppic, Paris, France], Ribi's Adjuvants (Ribi ImmunoChem Research, Inc., Hamilton, MT), Hunter's TiterMax (CytRx Corp., Norcross, GA), Aluminum Salt Adjuvants (Alhydrogel - Superfos of Denmark/Accurate Chemical and Scientific Co., Westbury, NY), Nitrocellulose-Adsorbed Protein, Encapsulated Antigens, and Gerbu Adjuvant (Gerbu Biotechnik GmbH, Gaiberg, Germany/C-C Biotech, Poway, CA). Topical carriers include liquid petroleum, isopropyl palmitate, polyethylene glycol, ethanol (95%), polyoxyethylene monolaurate (5%) in water, or sodium lauryl sulfate (5%) in water. Other materials such as anti-oxidants, humectants, viscosity stabilizers, and similar agents can be added as necessary. Percutaneous penetration enhancers such as Azone can also be included.

[0362] "Pharmaceutically acceptable salts" include the acid addition salts (formed with the free amino groups of the polypeptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, mandelic, oxalic, and tartaric. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, 2-ethylamino ethanol, and histidine.

- [0363] Compositions for oral administration can form solutions, suspensions, tablets, pills, capsules, sustained release formulations, oral rinses, or powders.
- [0364] The term "unit dosage form," as used herein, refers to physically discrete units suitable as unitary dosages for human and animal subjects, each unit containing a predetermined quantity of compounds of the present invention calculated in an "effective amount," that is, a dosage sufficient to produce the desired result or effect in association with a pharmaceutically acceptable carrier. The specifications for the novel unit dosage forms of the present invention depend on the particular compound employed, the host, and the effect to be achieved, as well as the pharmacodynamics associated with each compound in the host.

Compositions

- [0365] The present invention provides novel isolated polynucleotides encoding polypeptides and fragments thereof. The present invention also provides novel isolated polypeptides, fragments thereof, and compositions comprising same. The present invention further provides polynucleotide compositions that can be used to identify the polypeptides.
- [0366] The present invention provides recombinant vectors and host cells for use in gene expression, primer pairs for use in hybridizations, computer-based embodiments for use in bioinformatics, and transgenic animals and embryonic stem cell lines for use in mutating and regulating gene expression.

Nucleic Acids

Sequences

[0367] This invention provides genes encoding proteins, the encoded proteins, and fragments and homologs thereof. It provides human polynucleotide sequences and the corresponding mouse polynucleotide sequences.

[0368] The nucleic acids of the subject invention can encode all or a part of the subject proteins. Double or single stranded fragments can be obtained from the DNA sequence by chemically synthesizing oligonucleotides in accordance with conventional methods, for example by restriction enzyme digestion or polymerase chain reaction (PCR) amplification. The use of the polymerase chain reaction has been described (Saiki et al., 1985) and current techniques have been reviewed (Sambrook et al., 1989; McPherson et al. 2000; Dieffenbach and Dveksler, 1995). For the most part, DNA fragments will be of at least about 5 nucleotides, at least about 8 nucleotides, at least about 10 nucleotides, at least about 15 nucleotides, at least about 18 nucleotides, at least about 20 nucleotides, at least about 25 nucleotides, at least about 30 nucleotides, or at least about 50 nucleotides, at least about 75 nucleotides, or at least about 100 nucleotides. Nucleic acid compositions that encode at least six contiguous amino acids (i.e., fragments of 18 nucleotides or more), for example, nucleic acid compositions encoding at least 8 contiguous amino acids (i.e., fragments of 24 nucleotides or more), are useful in directing the expression or the synthesis of peptides that can be used as immunogens (Lerner, 1982; Shinnick et al., 1983; Sutcliffe et al., 1983).

[0369] In some embodiments, a polynucleotide of the invention comprises a nucleotide sequence of at least about 5, at least about 8, at least about 10, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, at least about 50, at least about 75, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, at least about 500, at least about 550, at least about 600, at least about 650, at least about 700, at least about 750, at least about 800, at least about 850, at least about 900, at least about 950, at least about 1000, at least about 1100, at least about 1200, at least about 1300, at least about 1400, at least about 1500, at least about 1600, at least about 1700, at least about 1800, at least about 1900, at least about 2000, at least about 2100, at least about 2200, at least about 2300, at least about 2400, at least about 2500, at least about 5000 contiguous nucleotides of any one of the sequences shown in SEQ ID NOS.: 1-104, or the coding region thereof, or a complement thereof.

[0370] In other embodiments, a polynucleotide of the invention has at least about 60%, 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, or at least

about 99% nucleotide sequence identity with a nucleotide sequence, or a fragment thereof, of the coding region of any one of the sequences shown in SEQ ID NOS.: 1-104, or a complement thereof. These sequence variants include naturally-occurring variants (e.g., SNPs, allelic variants, and homologs from other species), degenerate variants, variants associated with disease or pathological states, and variants resulting from random or directed mutagenesis, as well as from chemical or other modification.

- [0371] In some embodiments, a polynucleotide of the invention comprises a nucleotide sequence that encodes a polypeptide comprising an amino acid sequence of at least about 5, at least about 8, at least about 10, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, at least about 50, at least about 75, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, at least about 500, at least about 550, at least about 500, at least about 550, at least about 600, at least about 650, at least about 700, at least about 950, or at least about 1000 contiguous amino acids of at least one of the sequences encoded by SEQ ID NOS.: 1-104.
- [0372] In some embodiment, the present invention includes the present polynucleotide selected from SEQ ID NOS.: 1 104, which contain 300 bp of 5' terminus of a protein encoding polynucleotide sequence. Such a polynucleotide is useful for the purposes of clustering gene sequences to determine gene family.
- [0373] In further embodiments, a polynucleotide of the invention hybridizes under stringent hybridization conditions to a polynucleotide having the coding region of any one of the sequences shown in SEQ ID NOS.: 1 104, or a complement thereof.
- [0374] The polynucleotides of the invention include those that encode variants of the polypeptide sequences encoded by the polynucleotides of the Sequence Listing. In some embodiments, these polynucleotides encode variant polypeptides that include insertions, additions, deletions, or substitutions compared with the polypeptides encoded by the nucleotide sequences shown in SEQ ID NOS.: 1 104, and in Table 1. Conservative amino acid substitutions include serine/threonine, valine/leucine/isoleucine, asparagine/histidine/glutamine, glutamic acid/aspartic acid, etc. (Gonnet et al., 1992).
- [0375] The nucleic acids of the invention include degenerate variants that can be translated, according to the standard genetic code, to provide an amino acid

sequence identical to that translated from the nucleic acid sequences herein. For example, synonymous codons include GGG, GGA, GGC, and GGU, each encoding Glycine.

- [0376] The nucleic acids of the invention include single nucleotide polymorphisms (SNPs), which occur frequently in eukaryotic genomes (Lander, et al. 2001). The nucleotide sequence determined from one individual of a species can differ from other allelic forms present within the population.
- [0377] The nucleic acids of the invention include homologs of the polynucleotides. The source of homologous genes can be any species, e.g., primate species, particularly human; rodents, such as rats, hamsters, guinea pigs, and mice; rabbits, canines, felines; cattles, such as bovines, goats, pigs, sheep, equines, crustaceans, birds, chickens, reptiles, amphibians, fish, insects, plants, fungi, yeast, nematodes, etc. Among mammalian species, e.g., human and mouse, homologs have substantial sequence similarity, e.g., at least about 60% sequence identity, at least about 75% sequence identity, or at least about 80% sequence identity among nucleotide sequences. In many embodiments of interest, homology will be at least about 75%, at least about 90%, at least about 90%, at least about 95%, at least about 97%, or at least about 98%, where in certain embodiments of interest homology will be as high as about 99%.
- [0378] Modifications in the native structure of nucleic acids, including alterations in the backbone, sugars or heterocyclic bases, have been shown to increase intracellular stability and binding affinity. Among useful changes in the backbone chemistry are phosphorothioates; phosphorodithioates, where both of the non-bridging oxygens are substituted with sulfur; phosphoroamidites; alkyl phosphotriesters and boranophosphates. Achiral phosphate derivatives include 3'-O'-5'-S-phosphorothioate, 3'-S-5'-O- phosphorothioate, 3'-CH₂-5'-O-phosphonate and 3'-NH-5'-O-phosphoroamidate. Peptide nucleic acids replace the entire ribose phosphodiester backbone with a peptide linkage.
- [0379] Sugar modifications are also used to enhance stability and affinity. The α -anomer of deoxyribose can be used, where the base is inverted with respect to the natural β -anomer. The 2'-OH of the ribose sugar can be altered to form 2'-O-methyl or 2'-O-allyl sugars, which provides resistance to degradation without comprising affinity.

[0380] Modification of the heterocyclic bases must maintain proper base pairing. Some useful substitutions include deoxyuridine for deoxythymidine; 5-methyl-2'- deoxycytidine and 5-bromo-2'-deoxycytidine for deoxycytidine. 5-propynyl-2'- deoxyuridine and 5-propynyl-2'-deoxycytidine have been shown to increase affinity and biological activity when substituted for deoxythymidine and deoxycytidine, respectively.

- [0381] A genomic sequence of interest comprises the nucleic acid present between the initiation codon and the stop codon, as defined in the listed sequences, including all of the introns that are normally present in a native chromosome. It can further include the 3' and 5' untranslated regions found in the mature mRNA. It can further include specific transcriptional and translational regulatory sequences, such as promoters, enhancers, etc., including about 1 kb, about 2 kb, and possibly more, of flanking genomic DNA at either the 5' or 3' end of the transcribed region. The genomic DNA can be isolated as a fragment of 100 kbp or smaller; and substantially free of flanking chromosomal sequence. The genomic DNA flanking the coding region, either 3' or 5', or internal regulatory sequences as sometimes found in introns, contains sequences required for proper tissue and stage specific expression.
- [0382] Nucleic acid molecules of the invention can comprise heterologous nucleic acid molecules, i.e., nucleic acid molecules other than the subject nucleic acid molecules, of any length. For example, the subject nucleic acid molecules can be flanked on the 5' and/or 3' ends by heterologous nucleic acid molecules of from about 1 nucleotide to about 10 nucleotides, from about 10 nucleotides to about 20 nucleotides, from about 50 nucleotides, from about 50 nucleotides to about 100 nucleotides, from about 250 nucleotides, from about 250 nucleotides, from about 250 nucleotides, or from about 500 nucleotides to about 1000 nucleotides, or from about 500 nucleotides to about 1000 nucleotides, or from about 500 nucleotides to about 1000 nucleotides, or more in length.
- [0383] The subject polynucleotides include those that encode fusion proteins comprising the subject polypeptides fused to "fusion partners." For example, the present soluble receptor or ligand can be fused to an immunoglobulin fragment, such as an Fc fragment for stability in circulation or to fix complement. Other polypeptide fragments that have equivalent capabilities as the Fc fragments can also be used herein.
- [0384] The isolated nucleic acids of the invention can be used as probes to detect and characterize gross alteration in a genomic locus, such as deletions,

insertions, translocations, and duplications, e.g., applying fluorescence *in situ* hybridization (FISH) techniques to examine chromosome spreads (Andreeff et al., 1999). The nucleic acids are also useful for detecting smaller genomic alterations, such as deletions, insertions, additions, translocations, and substitutions (e.g., SNPs).

[0385] When used as probes to detect nucleic acid molecules capable of hybridizing with nucleic acids described in the Sequence Listing, the nucleic acid molecules can be flanked by heterologous sequences of any length. When used as probes, a subject nucleic acid can include nucleotide analogs that incorporate labels that are directly detectable, such as radiolabels or fluorophores, or nucleotide analogs that incorporate labels that can be visualized in a subsequent reaction, such as biotin or various haptens. Haptens that are commonly conjugated to nucleotides for subsequent labeling include biotin, digoxigenin, and dinitrophenyl.

[0386] Suitable fluorescent labels include fluorochromes e.g., fluorescein and its derivatives, e.g., fluorescein isothiocyanate (FITC6-carboxyfluorescein (6-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE),), 6-carboxy-2',4',7',4,7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM); coumarin and its derivatives, e.g., 7-amino-4-methylcoumarin, aminocoumarin; bodipy dyes, such as Bodipy FL; cascade blue; Oregon green; rhodamine dyes, e.g., rhodamine, 6-carboxy-X-rhodamine (ROX), Texas red, phycoerythrin, and tetramethylrhodamine; eosins and erythrosins; cyanine dyes, e.g., allophycocyanin, Cy3 and Cy5 or N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA); macrocyclic chelates of lanthanide ions, e.g., quantum dye, etc; and chemiluminescent molecules, e.g., luciferases.

[0387] Fluorescent labels also include a green fluorescent protein (GFP), i.e., a "humanized" version of a GFP, e.g., wherein codons of the naturally-occurring nucleotide sequence are changed to more closely match human codon bias; a GFP derived from *Aequoria victoria* or a derivative thereof, e.g., a "humanized" derivative such as Enhanced GFP, which are available commercially, e.g., from Clontech, Inc.; other fluorescent mutants of a GFP from *Aequoria victoria*, e.g., as described in U.S. Patent No. 6,066,476; 6,020,192; 5,985,577; 5,976,796; 5,968,750; 5,968,738; 5,958,713; 5,919,445; 5,874,304; a GFP from another species such as *Renilla reniformis, Renilla mulleri*, or *Ptilosarcus guernyi*, as previously described (WO 99/49019; Peelle et al., 2001), "humanized" recombinant GFP (hrGFP) (Stratagene[®]);

any of a variety of fluorescent and colored proteins from Anthozoan species, (e.g., Matz et al., 1999).

[0388] Probes can also contain fluorescent analogs, including commercially available fluorescent nucleotide analogs that can readily be incorporated into a subject nucleic acid. These include deoxyribonucleotides and/or ribonucleotide analogs labeled with Cy3, Cy5, Texas Red, Alexa Fluor dyes, rhodamine, cascade blue, or BODIPY, and the like.

[0389] Suitable radioactive labels include, e.g., 32 P, 35 S, or 3 H. For example, probes can contain radiolabeled analogs, including those commonly labeled with 32 P or 35 S, such as α - 32 P-dATP, -dTTP, -dCTP, and dGTP; γ - 35 S-GTP and α - 35 S-dATP, and the like.

[0390] Nucleic acids of the invention can also be bound to a substrate. Subject nucleic acids can be attached covalently, attached to a surface of the support or applied to a derivatized surface in a chaotropic agent that facilitates denaturation and adherence, e.g., by noncovalent interactions, or some combination thereof. The nucleic acids can be bound to a substrate to which a plurality of other nucleic acids are concurrently bound, hybridization to each of the plurality of the bound nucleic acids being separately detectable.

[0391] The substrate can be porous or solid, planar or non-planar, unitary or distributed; and the bond between the nucleic acid and the substrate can be covalent or non-covalent. The substrate can be in the form of microbeads or nanobeads. Substrates include, but are not limited to, a membrane, such as nitrocellulose, nylon, positively-charged derivatized nylon; a solid substrate such as glass, amorphous silicon, crystalline silicon, plastics (including e.g., polymethylacrylic, polyethylene, polypropylene, polyacrylate, polymethylmethacrylate, polyvinylchloride, polytetrafluoroethylene, polystyrene, polycarbonate, polyacetal, polysulfone, cellulose acetate, or mixtures thereof).

[0392] The subject nucleic acids include antisense RNA, ribozymes, and RNAi. Further, The nucleic acids of the invention can be used for antisense or RNAi inhibition of transcription or translation using methods known in the art (Phillips, 1999a; Phillips, 1999b; Hartmann et al., 1999; Stein et al., 1998; Agrawal et al., 1998).

Expression Vectors

[0393] The instant invention further provides host cells, e.g., recombinant host cells, that comprise a subject nucleic acid, host cells that comprise a recombinant vector, and host cells that secrete antibodies of the invention. Subject host cells can be cultured *in vitro*, or can be part of a multicellular organism. Host cells are described in more detail below. The instant invention further provides transgenic plants and non-human animals, as described in more detail below.

[0394] In addition to the plurality of uses described in greater detail in following sections, the subject nucleic acids find use in the preparation of all or a portion of the polypeptides of the subject invention, as described above, using an expression system. For expression, an expression vector can be employed. The expression vector will provide a transcriptional and translational initiation region, which may be inducible, conditionally-active, or constitutive, or tissue-specific, where the coding region is operably linked under the transcriptional control of the transcriptional initiation region, and a transcriptional and translational termination region. These control regions can be native to a gene encoding the subject peptides, or can be derived from heterologous or exogenous sources.

[0395] The subject nucleic acids can also be provided as part of a vector (e.g., a polynucleotide construct comprising an expression cassette), a wide variety of which are known in the art. Vectors include, but are not limited to, plasmids; cosmids; viral vectors; human, yeast, bacterial, P1-derived artificial chromosomes (HAC's, YAC's, BAC's, etc.), mini-chromosomes, and the like. Vectors are amply described in numerous publications well known to those in the art (Ausubel, et al.; Jones et al., 1998a; Jones et al., 1998b). Vectors can provide for nucleic acid expression, for nucleic acid propagation, or both.

[0396] A recombinant vector or construct that includes a nucleic acid of the invention is useful for propagating a nucleic acid in a host cell; such vectors are known as "cloning vectors." Vectors can transfer nucleic acid between host cells derived from disparate organisms; these are known in the art as "shuttle vectors." Vectors can also insert a subject nucleic acid into a host cell's chromosome; these are known in the art as "insertion vectors." Vectors can express either sense or antisense RNA transcripts of the invention *in vitro* (e.g., in a cell-free system or within an *in vitro* cultured host cell) or *in vivo* (e.g., in a multicellular plant or animal); these are

known in the art as "expression vectors," which can be part of an expression system. Expression vectors can also produce a subject antibody.

[0397] Vectors typically include at least one origin of replication, at least one site for insertion of heterologous nucleic acid (e.g., in the form of a polylinker with multiple, tightly clustered, single cutting restriction endonuclease recognition sites), and at least one selectable marker, although some integrative vectors will lack an origin that is functional in the host to be chromosomally modified, and some vectors will lack selectable markers. Vectors are transiently or stably be maintained in the cells, usually for a period of at least about one day, at least about several days to at least about several weeks.

[0398] Prior to vector insertion, the DNA of interest will be obtained substantially free of other nucleic acid sequences. The DNA can be "recombinant," and flanked by one or more nucleotides with which it is not normally associated on a naturally occurring chromosome.

[0399] Expression vectors generally have convenient restriction sites located near the promoter sequence to provide for the insertion of nucleic acid sequences encoding heterologous protein or RNA molecules. A selectable marker operative in the expression system or host can be present. Expression vectors can be used for the production of fusion proteins, where the fusion peptide provides additional functionality, i.e., increased protein synthesis, a leader sequence for secretion, stability, reactivity with defined antisera, or an enzyme marker, e.g., β -galactosidase.

[0400] Promoters of the invention can be naturally contiguous or not naturally contiguous to the expressed nucleic acid molecule, to the nucleic acid molecule. Promoter can be inducible, a conditionally-active (such as the cre-lox promoter), constitutive, and/or tissue-specific.

[0401] Expression vectors can be prepared comprising a transcription cassette comprising a transcription initiation region, the gene or fragment thereof, and a transcriptional termination region. Of particular interest is the use of DNA sequences that allow for the expression of functional epitopes or domains, at least about 5, at least about 8, at least about 10, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, at least about 50, at least about 75, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, at least about 500, at

least about 550, at least about 600, at least about 650, at least about 700, at least about 750, at least about 800, at least about 850, at least about 900, at least about 950, or at least about 1000 amino acids in length, or any of the above-described fragments, up to and including the complete open reading frame of the gene. After introduction of these DNA sequences, the cells containing the vector construct can be selected by means of a selectable marker, and the selected cells expanded and used as expression-competent host cells.

- [0402] Host cells can comprise prokaryotes or eukaryotes that express proteins and polypeptides in accordance with conventional methods, the method depending on the purpose for expression. For large scale production of the protein, a unicellular organism, such as *E. coli, B. subtilis, S. cerevisiae*, insect cells in combination with baculovirus vectors, or cells of a higher organism such as vertebrates, particularly mammals, e.g., COS 7 cells, can be used as the expression host cells. In some situations, it is desirable to express eukaryotic genes in eukaryotic cells, where the encoded protein will benefit from native folding and post-translational modifications.
- [0403] Specific expression systems of interest include plants, bacteria, yeast, insect cells, and mammalian cell-derived expression systems. Representative systems from each of these categories are provided below.
- [0404] Expression systems in plants include those described in U.S. Patent No. 6.096,546 and U.S. Patent No. 6,127,145.
- [0405] Expression systems in bacteria include those described by Chang et al., 1978; Goeddel et al., 1979; Goeddel et al., 1980; EP 0 036,776; U.S. Patent No. 4,551,433; DeBoer et al., 1983); and Siebenlist et al., 1980.
- [0406] Expression systems in yeast include those described by Hinnen et al., 1978; Ito et al., 1983; Kurtz et al., 1986; Kunze et al., 1985; Gleeson et al., 1986; Roggenkamp et al., 1986; Das et al., 1984; De Louvencourt et al., 1983; Van den Berg et al., 1990; Kunze et al., 1985; Cregg et al., 1985; U.S. Patent Nos. 4,837,148 and 4,929,555; Beach and Nurse, 1981; Davidow et al., 1985; Gaillardin et al., 1985; Ballance et al., 1983; Tilburn et al., 1983; Yelton et al., 1984; Kelly and Hynes, 1985; EP 0 244,234; WO 91/00357; and U.S. Patent No. 6,080,559.
- [0407] Expression systems for heterologous genes in insects include those described in U.S. Patent No. 4,745,051; Friesen et al., 1986; EP 0 127,839; EP 0 155,476; Vlak et al., 1988; Miller et al., 1988; Carbonell et al., 1988; Maeda et al.,

1985; Lebacq-Verheyden et al., 1988; Smith et al., 1985); Miyajima et al., 1987; and Martin et al., 1988. Numerous baculoviral strains and variants and corresponding permissive insect host cells are described in Luckow et al., 1988, Miller et al., 1986, and Maeda et al., 1985. The insect cell expression system is useful not only for production of heterologous proteins intracellularly, but can be used for expression of transmembrane proteins on the insect cell surfaces. Such insect cells can be used as immunogen for production of antibodies, for example, by injection of the insect cells into mice or rabbits or other suitable animals, for production of antibodies.

[0408] Mammalian expression systems include those described in Dijkema et al., 1985; Gorman et al., 1982; Boshart et al., 1985; and U.S. Patent No. 4,399,216. Additional features of mammalian expression are facilitated as described in Ham and Wallace, 1979; Barnes and Sato, 1980 U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985. Mammalian cell expression systems can also be used for production of antibodies.

[0409] The present polynucleotides can also be used in cell-free expression systems such as bacterial system, e.g., *E. coli* lysate, rabbit reticulocyte lysate system, wheat germ extract system, frog oocyte lysate system, and the like which is conventional in the art. See, for example, WO 00/68412, WO 01/27260, WO 02/24939, WO 02/38790, WO 91/02076, and WO 91/02075.

[0410] When any of the above-referenced host cells, or other appropriate host cells or organisms, are used to replicate and/or express the polynucleotides of the invention, the resulting replicated nucleic acid, RNA, expressed protein or polypeptide, is within the scope of the invention as a product of the host cell or organism.

[0411] Once the gene corresponding to a selected polynucleotide is identified, its expression can be regulated in the gene's native cell types. For example, an endogenous gene of a cell can be regulated by an exogenous regulatory sequence inserted into the genome of the cell at a location that will enhance or reduce expression of the gene corresponding to the subject polypeptide. The regulatory sequence can be designed to integrate into the genome via homologous recombination, as disclosed in U.S. Patent Nos. 5,641,670 and 5,733,761, the disclosures of which are herein incorporated by reference. Alternatively, it can be designed to integrate into the genome via non-homologous recombination, as described in WO 99/15650, the disclosure of which is also herein incorporated by

reference. Also encompassed in the subject invention is the production of proteins without manipulating the encoding nucleic acid itself, but rather by integrating a regulatory sequence into the genome of a cell that already includes a gene that encodes the protein of interest; this production method is described in the above-incorporated patent documents.

Isolated Primer Pairs

[0412] In some embodiments, the invention provides isolated nucleic acids that, when used as primers in a polymerase chain reaction, amplify a subject polynucleotide, or a polynucleotide containing a subject polynucleotide. The amplified polynucleotide is from about 20 to about 50, from about 50 to about 75, from about 75 to about 100, from about 100 to about 125, from about 125 to about 150, from about 150 to about 175, from about 175 to about 200, from about 200 to about 250, from about 250 to about 300, from about 300 to about 350, from about 350 to about 400, from about 400 to about 500, from about 500 to about 600, from about 600 to about 700, from about 700 to about 800, from about 800 to about 900, from about 3000, from about 3000 to about 3000 to about 4000, from about 4000 to about 5000, or from about 5000 to about 6000 nucleotides or more in length.

[0413] The isolated nucleic acids themselves are from about 10 to about 20, from about 20 to about 30, from about 30 to about 40, from about 40 to about 50, from about 50 to about 100, or from about 100 to about 200 nucleotides in length. Generally, the nucleic acids are used in pairs in a polymerase chain reaction, where they are referred to as "forward" and "reverse" primers.

[0414] Thus, in some embodiments, the invention provides a pair of isolated nucleic acid molecules, each from about 10 to about 200 nucleotides in length, the first nucleic acid molecule of the pair comprising a sequence of at least 10 contiguous nucleotides having 100% sequence identity to a nucleic acid sequence as shown in SEQ ID NOS.: 1 - 104 and the second nucleic acid molecule of the pair comprising a sequence of at least 10 contiguous nucleotides having 100% sequence identity to the reverse complement of the nucleic acid sequence shown in SEQ ID NOS.: 1 - 104, wherein the sequence of the second nucleic acid molecule is located 3' of the nucleic acid sequence of the first nucleic acid molecule shown in SEQ ID NOS.: 1 - 104. The primer nucleic acids are prepared using any known method, e.g., automated synthesis,

and can be chosen to specifically amplify a cDNA copy of an mRNA encoding a subject polypeptide.

[0415] In some embodiments, the first and/or the second nucleic acid molecules comprise a detectable label. The label can be a radioactive molecule, fluorescent molecule or another molecule, e.g., hapten, as described in detail above. Further, the label can be a two stage system, where the amplified DNA is conjugated to another molecule, i.e., biotin, digoxin, or a hapten, that has a high affinity binding partner, i.e., avidin, antidigoxin, or a specific antibody, respectively, and the binding partner conjugated to a detectable label. The label can be conjugated to one or both of the primers. Alternatively, the pool of nucleotides used in the amplification is labeled, so as to incorporate the label into the amplification product.

[0416] Conditions that increase stringency of both DNA/DNA and DNA/RNA hybridization reactions are widely known and published in the art. See, for example, Sambrook, 1989, and examples provided above. Examples of relevant conditions include (in order of increasing stringency): incubation temperatures of 25°C, 37°C, 50°C, and 68°C; buffer concentrations of 10 x SSC, 6 x SSC, 1 x SSC, 0.1 x SSC (where 1 x SSC is 0.15 M NaCl and 15 mM citrate buffer); and their equivalents using other buffer systems; formamide concentrations of 0%, 25%, 50%, and 75%; incubation times from 5 minutes to 24 hours; 1, 2, or more washing steps; wash incubation times of 1, 2, or 15 minutes; and wash solutions of 6 x SSC, 1 x SSC, 0.1 x SSC, or deionized water.

[0417] For example, "high stringency conditions" include hybridization in 50% formamide, 5X SSC, 0.2 μg/μl poly(dA), 0.2 μg/μl human cot1 DNA, and 0.5% SDS, in a humid oven at 42°C overnight, followed by successive washes in 1X SSC, 0.2% SDS at 55°C for 5 minutes, followed by washing at 0.1X SSC, 0.2% SDS at 55°C for 20 minutes. Further examples of high stringency conditions include hybridization at 50°C and 0.1×SSC (15 mM sodium chloride/1.5 mM sodium citrate); overnight incubation at 42°C in a solution containing 50% formamide, 1 × SSC (150 mM NaCl, 15 mM sodium citrate), 50 mM sodium phosphate (pH 7.6), 5 × Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 × SSC at about 65°. High stringency conditions also include aqueous hybridization (e.g., free of formamide) in 6X SSC (where 20X SSC contains 3.0 M NaCl and 0.3 M sodium citrate), 1% sodium

dodecyl sulfate (SDS) at 65°C for about 8 hours (or more), followed by one or more washes in 0.2 X SSC, 0.1% SDS at 65°C. Highly stringent hybridization conditions are hybridization conditions that are at least as stringent as any one of the above representative conditions. Other stringent hybridization conditions are known in the art and can also be employed to identify nucleic acids of this particular embodiment of the invention.

[0418] Conditions of "reduced stringency," suitable for hybridization to molecules encoding structurally and functionally related proteins, or otherwise serving related or associated functions, are the same as those for high stringency conditions but with a reduction in temperature for hybridization and washing to lower temperatures (e.g., room temperature or about 22°C to 25°C). For example, moderate stringency conditions include aqueous hybridization (e.g., free of formamide) in 6X SSC, 1% SDS at 65°C for about 8 hours (or more), followed by one or more washes in 2X SSC, 0.1% SDS at room temperature. Low stringency conditions include, for example, aqueous hybridization at 50°C and 6×SSC (0.9 M sodium chloride/0.09 M sodium citrate) and washing at 25°C in 1×SSC (0.15 M sodium chloride/0.015 M sodium citrate).

[0419] The specificity of a hybridization reaction allows any single-stranded sequence of nucleotides to be labeled with a radioisotope or chemical and used as a probe to find a complementary strand, even in a cell or cell extract that contains millions of different DNA and RNA sequences. Probes of this type are widely used to detect the nucleic acids corresponding to specific genes, both to facilitate the purification and characterization of the genes after cell lysis and to localize them in cells, tissues, and organisms.

[0420] Moreover, by carrying out hybridization reactions under conditions of "reduced stringency," a probe prepared from one gene can be used to find homologous evolutionary relatives - both in the same organism, where the relatives form part of a gene family, and in other organisms, where the evolutionary history of the nucleotide sequence can be traced. A person skilled in the art would recognize how to modify the conditions to achieve the requisite degree of stringency for a particular hybridization.

Libraries

[0421] The polynucleotide libraries of the invention generally comprise a collection of sequence information of a plurality of polynucleotide sequences, where at least one of the polynucleotides has a sequence shown in SEQ ID NOS.: 1 - 104. By plurality is meant at least 2, at least 3, or at least all of the sequences in the Sequence Listing. The information may be provided in either biochemical form (e.g., as a collection of polynucleotide molecules), or in electronic form (e.g., as a collection of polynucleotide sequences stored in a computer-readable form, as in a computer-based system, a computer data file, and/or as a part of a computer program). The length and number of polynucleotides in the library will vary with the nature of the library, e.g., if the library is an oligonucleotide array, a cDNA array, or a computer database of the sequence information.

[0422] The sequence information contained in either a biochemical or an electronic library of polynucleotides can be used in a variety of ways, e.g., as a resource for gene discovery, as a representation of sequences expressed in a selected cell type (e.g., cell type markers), or as markers of a given disorder or disease state. In general, a disease marker is a representation of a gene product that is present in all cells affected by disease either at an increased or decreased level relative to a normal cell (e.g., a cell of the same or similar type that is not substantially affected by disease). For example, a polynucleotide sequence in a library can be a polynucleotide that represents an mRNA, polypeptide, or other gene product encoded by the polynucleotide, that is either over-expressed or under-expressed in one cell compared to another (e.g., a first cell type compared to a second cell type; a normal cell compared to a diseased cell; a cell not exposed to a signal or stimulus compared to a cell exposed to that signal or stimulus; and the like).

[0423] The nucleotide sequence information of the library can be embodied in any suitable form, e.g., electronic or biochemical forms. For example, a library of sequence information embodied in electronic form comprises an accessible computer data file that may contain the representative nucleotide sequences of genes that are differentially expressed (e.g., over-expressed or under-expressed) as between, e.g., a first cell type compared to a second cell type (e.g., expression in a brain cell compared to expression in a kidney cell); a normal cell compared to a diseased cell (e.g., a non-cancerous cell compared to a cancerous cell); a cell not exposed to an internal or external signal or stimulus compared to a cell exposed to that signal or stimulus (e.g.,

a cell contacted with a ligand compared to a control cell not contacted with the ligand); and the like. Other combinations and comparisons of cells will be readily apparent to the ordinarily skilled artisan. Biochemical embodiments of the library include a collection of nucleic acid molecules that have the sequences of the genes in the library, where the nucleic acids can correspond to the entire gene in the library or to a fragment thereof, as described in greater detail below.

[0424] Where the library is an electronic library, the nucleic acid sequence information can be present in a variety of media. For example, the nucleic acid sequences of any of the polynucleotides shown in SEQ ID NOS.: 1 - 104 can be recorded on computer readable media of a computer-based system, e.g., any medium that can be read and accessed directly by a computer. One of skill in the art can readily appreciate how any of the presently known computer readable mediums can be used to create a manufacture comprising a recording of the present sequence information. Any convenient data storage structure can be chosen, based on the means used to access the stored information. A variety of data processor programs and formats can be used for storage, e.g., word processing text file, database format, etc. In addition to the sequence information, electronic versions of the libraries of the invention can be provided in conjunction or connection with other computer-readable information and/or other types of computer-based files (e.g., searchable files, executable files, etc, including, but not limited to, for example, search program software, etc.).

[0425] By providing the nucleotide sequence in computer readable form in a computer-based system, the information can be accessed for a variety of purposes. Computer software to access sequence information is publicly available. Conventional bioinformatics tools can be utilized to analyze sequences to determine sequence identity, sequence similarity, and gap information. For example, the gapped BLAST (Altschul et al., 1990, Altschul et al., 1997), and BLAZE (Brutlag et al., 1993) search algorithms on a Sybase system, or the TeraBLAST (TimeLogic, Crystal Bay, Nevada) program optionally running on a specialized computer platform available from TimeLogic, can be used to identify open reading frames (ORFs) within the genome that contain homology to ORFs from other organisms. Homology between sequences of interest can be determined using the local homology algorithm of Smith and Waterman, 1981, as well as the BestFit program (Rechid et al., 1989), and the FastDB algorithm (FastDB, 1988; described in Current Methods in Sequence

Comparison and Analysis, Macromolecule Sequencing and Synthesis, Selected Methods and Applications, pp. 127-149, 1988, Alan R. Liss, Inc).

[0426] Alignment programs that permit gaps in the sequence include Clustalw (Thompson et al., 1994), FASTA3 (Pearson, 2000) Align0 (Myers and Miller, 1988), and TCoffee (Notredame et al., 2000). Other methods for comparing and aligning nucleotide and protein sequences include, for example, BLASTX (NCBI), the Wise package (Birney and Durbin, 2000), and FASTX (Pearson, 2000). These algorithms determine sequence homology between nucleotide and protein sequences without translating the nucleotide sequences into protein sequences. Other techniques for alignment are also known in the art (Doolittle, et al., 1996; BLAST, available from the National Center for Biotechnology Information; FASTA, available in the Genetics Computing Group (GCG) package, from Madison, Wisconsin, USA, a wholly owned subsidiary of Oxford Molecular Group, Inc.; Schlessinger, 1988a; Schlessinger, 1988b; and Needleman and Wunch, 1970).

[0427] Sequence similarity is calculated based on a reference sequence, which may be a subset of a larger sequence, such as a conserved motif, coding region, flanking region, etc. The reference sequence is usually at least about 18 nt long, at least about 30 nt long, or may extend to the complete sequence that is being compared.

[0428] One parameter for determining percent sequence identity is the percentage of the alignment in the region of strongest alignment between a target and a query sequence. Methods for determining this percentage involve, for example, counting the number of aligned bases of a query sequence in the region of strongest alignment and dividing this number by the total number of bases in the region. For example, 10 matches divided by 11 total residues gives a percent sequence identity of approximately 90.9%. The length of the aligned region is typically at least about 55%, at least about 58%, or at least about 60% of the total sequence length, and can be as great as about 62%, as great as about 64%, and even as great as about 66% of the total sequence length.

[0429] The present invention includes human and mouse polynucleotide and polypeptide sequences that are at least about 95%, at least about 96%, at least about 97%, at least about 98%, or at least about 99% homologous to the sequences in the Sequence Listing, based on using the method of determining sequence identity with the insertion of gaps to detect the maximum degree of sequence identity. In other

embodiments of interest, homology will be at least about 80%, at least about 85%, or as high as about 90%.

[0430] A variety of structural formats for the input and output means can be used to input and output the information in the computer-based systems of the present invention. One format for an output means ranks the relative expression levels of different polynucleotides. Such presentation provides a skilled artisan with a ranking of relative expression levels to determine a gene expression profile.

[0431] As discussed above, the library of the invention also encompasses biochemical libraries of the polynucleotides shown in SEQ ID NOS.: 1 - 104 and 2463 - 3697, e.g., collections of nucleic acids representing the provided polynucleotides. The biochemical libraries can take a variety of forms, e.g., a solution of cDNAs, a pattern of probe nucleic acids stably associated with a surface of a solid support (i.e., an array) and the like. Of particular interest are nucleic acid arrays in which one or more of the polynucleotide sequences shown in SEQ ID NOS.: 1 - 104 is represented on the array. A variety of different array formats have been developed and are known to those of skill in the art. The arrays of the subject invention find use in a variety of applications, including gene expression analysis, drug screening, mutation analysis, and the like, as disclosed in the herein-listed exemplary patent documents.

[0432] In addition to the above nucleic acid libraries, analogous libraries of polypeptides are also provided, where the polypeptides of the library will represent at least a portion of the polypeptides encoded by a gene corresponding to one or more of the sequences shown in SEQ ID NOS.: 1 - 104.

[0433] Further, analogous libraries of antibodies are also provided, where the libraries comprise antibodies or fragments thereof that specifically bind to at least a portion of at least one of the subject polypeptides. Further, antibody libraries may comprise antibodies or fragments thereof that specifically inhibit binding of a subject polypeptide to its ligand or substrate, or that specifically inhibit binding of a subject polypeptide as a substrate to another molecule. Moreover, corresponding nucleic acid libraries are also provided, comprising polynucleotide sequences that encode the antibodies or antibody fragments described above.

Polypeptides

Sequences

[0434] This invention provides novel polypeptides, and related polypeptide compositions. The novel polypeptides of the invention encompass proteins encoded by the nucleic acids having nucleotide sequences shown in SEQ ID NOS.: 1 - 104. The subject polypeptides are human polypeptides, fragments thereof, variants (such as splice variants), homologs from other species, and derivatives thereof. In particular embodiments, a polypeptide of the invention has an amino acid sequence substantially identical to the sequence of any polypeptide encoded by a polynucleotide sequence shown in SEQ ID NOS.: 1 - 104.

[0435] These polypeptides may reside within the cell, or extracellularly. They may be secreted from the cell, reside in the cytoplasm, in the membranes, or in any of the intracellular organelles, including the nucleus, mitochondria, ribosomes, or storage granules.

[0436] In many embodiments, a novel polypeptide of the invention functions as a secreted protein, a single-transmembrane protein, a multiple-transmembrane protein, a kinase, a protein kinase, a ligase, a nuclear hormone receptor, a phosphatase, a protease, a phosphodiesterase, a kinesin, an immunoglobulin, a T-cell receptor, or a glycosylphosphatidylinositol anchor. A novel polypeptide of the invention can also possess one or more of the following functions or properties: (1) an activator functioning to regulate one or more genes by increasing the rate of transcription, (2) an activator functioning to positively modulate an allosteric enzyme, (3) an adaptor functioning to sort cargo molecules into transport vesicles, (4) an adaptor functioning to form a clathrin-coated vesicle, (5) an adhesion molecule functioning to mediate the adhesion of cells with other cells and/or the extracellular matrix, (6) an ATPase functioning to move ions or small molecules across a membrane against a chemical concentration gradient or electrical potential, (7) an ATPase functioning to translocate nucleotides across membranes, (8) a breakpointrelated sequence functioning as an oncoprotein, (9) a breakpoint-related sequence functioning as a tumor-specific antigen, (10) a channel functioning as a water channel, (11) a channel functioning as an ion channel, (12) a checkpoint-related sequence functioning at DNA damage checkpoints, (13) a checkpoint-related sequence functioning at replication checkpoints, (14) a checkpoint-related sequence functioning to initiate signal transduction cascades eliciting cell cycle arrest, DNA repair, or

apoptosis, (15) a complex functioning as a protein scaffold, (16) a complex functioning in ADP-ribosylation, (17) a dehydrogenase functioning to synthesize amino acids, (18) a disintegrin functioning to inhibit blood clotting, (19) a disintegrin functioning as a metallopeptidase, (20) a GTPase functioning as a negative regulator of p53, (21) a GTPase functioning to stimulate ras GTPase activity, (22) a helicase functioning in DNA replication, (23) a hydrolase functioning in proprionate metabolism, (24) an integrase functioning to integrate a DNA copy of a retroviral genome into a host chromosome, (25) an integrin functioning as a tumor marker, (26) an integrin functioning in cell migration, (27) an isomerase functioning as an immunosuppressant, (28) a membrane protein functioning as a scaffolding component at the cytoplasmic face of a lipid raft, (29) a membrane protein functioning as a ligand for a receptor tyrosine kinase, (30) oxygenases and peroxidases functioning as antioxidants, (31) a phospholipase functioning in eicosanoid synthesis, (32) a phospholipase functioning in preserving the intestinal mucosa, (33) a prosaposin functioning in lipid catabolism, (34) a proteasome component functioning in muscle wasting, (35) a reductase-related sequence functioning as a coenzyme A reductase inhibitor, (36) a reverse transcriptase functioning as an RNA-dependent reverse transcriptase, (37) a reverse transcriptase functioning as a DNA-dependent reverse transcriptase, (38) an RNase functioning in viral assembly, (39) an RNase H functioning to form oligonucleotides that prime DNA synthesis, (40) an RNase H functioning to cleave the RNA strand of an RNA-DNA hybrid, (41) SH3 domains functioning in actin cytoskeletal organization, (42) SH3 domains functioning in signal transduction, (43) a synthetase functioning as an autoantigen (44) synthetases functioning in nucleotide sugar phosphate synthesis, (45) TATA boxes functioning as a transcription initiators, (46) tat functioning as a transcriptional coactivator, (47) transferases functioning in signal transduction, (48) transposases functioning as gene transfer agents, (49) ubiquitins functioning to protect cells against tumor necrosis factor induced cell death, (50) proteasome components and ubiquitin functioning in protein degradation, (51) a virus-related sequence functioning to confer resistance to infection by viruses, (52) other sequences of the invention interacting with one or more proteins, (53) other sequences of the invention enzymatically modifying one or more proteins, (54) other sequences of the invention binding one or more small molecule ligands, (55) other sequences of the invention binding one or more peptides,

(56) other sequences of the invention binding one or more carbohydrates, and (57) other sequences of the invention functioning in vesicular transport.

[0437] In some embodiments, the present novel polypeptide modulates the cells or tissues of animals, particularly humans, such as, for example, by stimulating, enhancing or inhibiting T or B cell function or the function of other hematopoeitic cells or bone marrow cells; modulates adult or embryonic stem cell or precursor cell growth or differentiation; modulates cell function or activity of neuronal cells or other cells of the CNS, heart cells, liver cells, kidney cells, lung cells, pancreatic cells, gastrointestinal cells, spleen cells, breast cells, prostate cells, ovarian cells, and the like.

[0438] In some embodiments, a subject polypeptide is present as a multimer. Multimers include homodimers, homotrimers, homotetramers, and multimers that include more than four monomeric units. Multimers also include heteromultimers, e.g., heterodimers, heterotrimers, heterotetramers, etc. where the subject polypeptide is present in a complex with proteins other than the subject polypeptide. Where the multimer is a heteromultimer, the subject polypeptide can be present in a 1:1 ratio, a 1:2 ratio, a 2:1 ratio, or other ratio, with the other protein(s).

[0439] In addition to the above specifically listed proteins, polypeptides from other species are also provided, including mammals, such as: primates, rodents, e.g., mice, rats, hamsters, guinea pigs; domestic animals, e.g., sheep, pig, horse, cow, goat, rabbit, dog, cat; and humans, as well as non-mammalian species, e.g., avian, reptile and amphibian, insect, crustacean, fish, plant, fungus, and protozoa.

[0440] By "homolog" is meant a protein having at least about 35 %, at least about 40%, at least about 60%, at least about 70%, at least about 75%, at least about 80%, at least about 85%, at least about 90%, or at least about 95%, or higher, amino acid sequence identity to the reference polypeptide, as measured with the "GAP" program (part of the Wisconsin Sequence Analysis Package available through the Genetics Computer Group, Inc. (Madison WI)), where the parameters are: Gap weight:12; length weight:4. In many embodiments of interest, homology will be at least about 75%, at least about 80%, or at least 85%, where in certain embodiments of interest, homology will be as high as about 90%.

[0441] Also provided are polypeptides that are substantially identical to the at least one amino acid sequence shown in the Sequence Listing, or a fragment thereof, whereby substantially identical is meant that the protein has an amino acid

sequence identity to the reference sequence of at least about 75%, at least about 80%, at least about 85%, at least about 90%, at least about 95%, at least about 97%, at least about 98%, or at least about 99%.

- [0442] The proteins of the subject invention (e.g., polypeptides encoded by the nucleotide sequences shown in SEQ ID NOS.: 1 104 have been separated from their naturally occurring environment and are present in a non-naturally occurring environment. In certain embodiments, the proteins are present in a composition where they are more concentrated than in their naturally occurring environment. For example, purified polypeptides are provided.
- [0443] In addition to naturally occurring proteins, polypeptides that vary from naturally occurring forms are also provided. Fusion proteins can comprise a subject polypeptide, or fragment thereof, and a polypeptide other than a subject polypeptide ("the fusion partner") fused in-frame at the N-terminus and/or C-terminus of the subject polypeptide, or internally to the subject polypeptide.
- [0444] Suitable fusion partners include, but are not limited to, immunologically detectable proteins (e.g., epitope tags, such as hemagglutinin, FLAG, and c-myc); polypeptides that provide a detectable signal or that serve as detectable markers (e.g., a fluorescent protein, e.g., a green fluorescent protein, a fluorescent protein from an Anthozoan species; β -galactosidase; luciferase; cre recombinase; and the like); polypeptides that provide a catalytic function or induce a cellular response; polypeptides that provide for secretion of the fusion protein from a eukaryotic cell; polypeptides that provide for secretion of the fusion protein from a prokaryotic cell; polypeptides that provide for binding to metal ions (e.g., His_n, where n=3-10, e.g., 6His) and structural proteins. Fusion partners can also be those that are able to stabilize the present polypeptide, such as polyethylene glycol ("PEG") and a fragment of an immunoglobulin, such as the Fc fragment of IgG, IgE, IgA, IgM, and/or IgD.
- [0445] Detection methods are chosen based on the detectable fusion partner. For example, where the fusion partner provides an immunologically recognizable epitope, an epitope-specific antibody can be used to quantitatively detect the level of polypeptide. In some embodiments, the fusion partner provides a detectable signal, and in these embodiments, the detection method is chosen based on the type of signal generated by the fusion partner. For example, where the fusion partner is a fluorescent protein, fluorescence is measured.

[0446] Where the fusion partner is an enzyme that yields a detectable product, the product can be detected using an appropriate means. For example, β-galactosidase can, depending on the substrate, yield a colored product that can be detected with a spectrophotometer, and the fluorescent protein luciferase can yield a luminescent product detectable with a luminometer.

[0447] In some embodiments, a polypeptide of the invention comprises at least about 5, at least about 8, at least about 10, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, at least about 50, at least about 75, at least about 100, at least about 150, at least about 200, at least about 250, at least about 300, at least about 350, at least about 400, at least about 450, at least about 500, at least about 550, at least about 500, at least about 550, at least about 650, at least about 700, at least about 750, at least about 800, at least about 850, at least about 900, at least about 950, or at least about 1000 contiguous amino acid residues of at least one of the sequences according to SEQ ID NOS.: 1 - 104, up to and including the entire amino acid sequence.

[0448] Fragments of the subject polypeptides, as well as polypeptides comprising such fragments, are also provided. Fragments of polypeptides of interest will typically be at least about 5, at least about 8, at least about 10, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, at least about 50, at least about 75, at least about 100, at least about 150, at least about 200, at least about 250, or at least 300 aa in length or longer, where the fragment will have a stretch of amino acids that is identical to the subject protein of at least about 5, at least about 8, at least about 10, at least about 15, at least about 18, at least about 20, at least about 25, at least about 30, or at least about 50 aa in length.

[0449] In some embodiments, fragments exhibit one or more activities associated with a corresponding naturally occurring polypeptide. Fragments find utility in generating antibodies to the full-length polypeptide; and in methods of screening for candidate agents that bind to and/or modulate polypeptide activity. Specific fragments of interest include those with enzymatic activity, those with biological activity including the ability to serve as an epitope or immunogen, and fragments that bind to other proteins or to nucleic acids.

[0450] The invention provides polypeptides comprising such fragments, including, e.g., fusion polypeptides comprising a subject polypeptide fragment fused in frame (directly or indirectly) to another protein (the "fusion partner"), such as the

signal peptide of one protein being fused to the mature polypeptide of another protein. Such fusion proteins are typically made by linking the encoding polynucleotides together in a vector or cassette. Suitable fusion partners include, but are not limited to, immunologically detectable proteins (e.g., epitope tags, such as hemagglutinin, FLAG, and c-myc); polypeptides that provide a detectable signal or that serve as detectable markers (e.g., a fluorescent protein, e.g., a green fluorescent protein, a fluorescent protein from an Anthozoan species; β -galactosidase; luciferase; cre recombinase); polypeptides that provide a catalytic function or induce a cellular response; polypeptides that provide for secretion of the fusion protein from a eukaryotic cell; polypeptides that provide for secretion of the fusion protein from a prokaryotic cell; polypeptides that provide for binding to metal ions (e.g., His_n, where n=3-10, e.g., 6His) and structural proteins. Fusion partners can also be those that are able to stabilize the present polypeptide, such as polyethylene glycol ("PEG") and a fragment of an immunoglobulin, such as the Fc fragment of IgG, IgE, IgA, IgM, and/or IgD.

Polypeptide Preparation.

[0451] Polypeptides of the invention can be obtained from naturally-occurring sources or produced synthetically. The sources of naturally occurring polypeptides will generally depend on the species from which the protein is to be derived, i.e., the proteins will be derived from biological sources that express the proteins. The subject proteins can also be derived from synthetic means, e.g., by expressing a recombinant gene encoding a protein of interest in a suitable system or host or enhancing endogenous expression, as described in more detail above. Further, small peptides can be synthesized in the laboratory by techniques well known in the art.

[0452] In all cases, the product can be recovered by any appropriate means known in the art. For example, convenient protein purification procedures can be employed (e.g., see <u>Guide to Protein Purification</u>, Deuthscher et al., 1990). That is, a lysate can be prepared from the original source, (e.g., a cell expressing endogenous polypeptide, or a cell comprising the expression vector expressing the polypeptide(s)), and purified using HPLC, exclusion chromatography, gel electrophoresis, or affinity chromatography, and the like.

[0453] The invention thus also provides methods of producing polypeptides. Briefly, the methods generally involve introducing a nucleic acid construct into a host

cell *in vitro* and culturing the host cell under conditions suitable for expression, then harvesting the polypeptide, either from the culture medium or from the host cell, (e.g., by disrupting the host cell), or both, as described in detail above. The invention also provides methods of producing a polypeptide using cell-free *in vitro* transcription/translation methods, which are well known in the art, also as provided above

[0454] Moreover, the invention provides polypeptides, including polypeptide fragments, as targets for therapeutic intervention, including use in screening assays, for identifying agents that modulate polypeptide level and/or activity, and as targets for antibody and small molecule therapeutics, for example, in the treatment of disorders.

Methods

[0455] The present invention provides methods of producing a subject polypeptide and provides antibodies that specifically bind to a subject polypeptide. The present invention further provides screening methods for identifying agents that modulate a level or an activity of a subject polypeptide or polynucleotide. The present invention thus also provides agents that modulate a level or an activity of a subject polypeptide or polynucleotide, as well as compositions, including pharmaceutical compositions, comprising a subject agent.

[0456] The present invention further provides methods for treating disorders such as, for example, cancer and other proliferative disorders or conditions, inflammatory and immune disorders, metabolic disorders or conditions and bacterial or viral disorders or conditions.

Diagnostic and Therapeutic Applications

Screening and Diagnostic Methods

1. Identifying Biological Molecules that Interact with a Polypeptide

[0457] Formation of a binding complex between a subject polypeptide and an interacting polypeptide or other macromolecule (e.g., DNA, RNA, lipids, polysaccharides, and the like) can be detected using any known method. Suitable methods include: a yeast two-hybrid system (Zhu et al., 1997; Fields and Song, 1989; U.S. Pat. No. 5,283,173; Chien et al. 1991); a mammalian cell two-hybrid method; a fluorescence resonance energy transfer (FRET) assay; a bioluminescence resonance energy transfer (BRET) assay; a fluorescence quenching assay; a fluorescence

anisotropy assay (Jameson and Sawyer, 1995); an immunological assay; and an assay involving binding of a detectably labeled protein to an immobilized protein.

[0458] Immunological assays, and assays involving binding of a detectably labeled protein to an immobilized protein can be performed in a variety of ways. For example, immunoprecipitation assays can be designed such that the complex of protein and an interacting polypeptide is detected by precipitation with an antibody specific for either the protein or the interacting polypeptide.

[0459] FRET detects formation of a binding complex between a subject polypeptide and an interacting polypeptide. It involves the transfer of energy from a donor fluorophore in an excited state to a nearby acceptor fluorophore. For this transfer to take place, the donor and acceptor molecules must be in close proximity (e.g., less than 10 nanometers apart, usually between 10 and 100 Å apart), and the emission spectra of the donor fluorophore must overlap the excitation spectra of the acceptor fluorophore. In these embodiments, a fluorescently labeled subject protein serves as a donor and/or acceptor in combination with a second fluorescent protein or dye.

[0460] Fluorescent proteins can be produced by generating a construct comprising a protein and a fluorescent fusion partner. These are well-known in the art, as described above, including green fluorescent protein (GFP), i.e., a "humanized" version of a GFP, e.g., wherein codons of the naturally-occurring nucleotide sequence are changed to more closely match human codon bias; a GFP derived from Aequoria victoria or a derivative thereof, e.g., a "humanized" derivative such as Enhanced GFP, which are available commercially, e.g., from Clontech, Inc.; other fluorescent mutants of a GFP from Aequoria victoria, e.g., as described in U.S. Patent No. 6,066,476; 6,020,192; 5,985,577; 5,976,796; 5,968,750; 5,968,738; 5,958,713; 5,919,445; 5,874,304; a GFP from another species such as Renilla reniformis, Renilla mulleri, or Ptilosarcus guernyi, as previously described (WO 99/49019; Peelle et al., 2001), "humanized" recombinant GFP (hrGFP) (Stratagene®); any of a variety of fluorescent and colored proteins from Anthozoan species, (e.g., Matz et al., 1999); as well as proteins labeled with other fluorescent dyes, fluorescein and it derivatives, e.g., fluorescein isothiocyanate (FITC), 6-carboxyfluorescein (6-FAM), 6-carboxy-2'.4'.7'.4.7-hexachlorofluorescein (HEX), 5-carboxyfluorescein (5-FAM), 2',7'-dimethoxy-4',5'-dichloro-6-carboxyfluorescein (JOE); rhodamine dyes, e.g., Texas red, phycoerythrin, tetramethylrhodamine, rhodamine, 6-carboxy-X-rhodamine

(ROX); coumarin and its derivatives, e.g., 7-amino-4-methylcoumarin, aminocoumarin; bodipy dyes, such as Bodipy FL; cascade blue; Oregon green; eosins and erythrosins; cyanine dyes, e.g., allophycocyanin, Cy3, Cy5, and N,N,N',N'-tetramethyl-6-carboxyrhodamine (TAMRA); macrocyclic chelates of lanthanide ions, e.g., quantum dye, etc; and chemiluminescent molecules, e.g., luciferases.

- [0461] Fluorescent subject proteins can also be generated by producing the subject protein in an auxotrophic strain of bacteria which requires addition of one or more amino acids in the medium for growth. A subject protein-encoding construct that provides for expression in bacterial cells is introduced into the auxotrophic strain, and the bacteria are cultured in the presence of a fluorescent amino acid, which is incorporated into the subject protein produced by the bacterium. The subject protein is then purified from the bacterial culture using standard methods for protein purification.
- [0462] BRET is a protein-protein interaction assay based on energy transfer from a bioluminescent donor to a fluorescent acceptor protein. The BRET signal is measured by the ratio of the amount of light emitted by the acceptor to the amount of light emitted by the donor. The ratio of these two values increases as the two proteins are brought into proximity. The BRET assay has been described in the literature (U.S. Patent Nos. 6,020,192; 5,968,750; 5,874,304; Xu, et al. 1999). BRET assays can be performed by analyzing transfer between a bioluminescent donor protein and a fluorescent acceptor protein. Interaction between the donor and acceptor proteins can be monitored by a change in the ratio of light emitted by the bioluminescent and fluorescent proteins. In this application, the subject protein serves as donor and/or acceptor protein.
- [0463] Fluorescence anisotropy is a measurement of the rotational mobility of a multi-molecular complex. It can be used to generate information about the binding of one molecule to another, including the affinity and specificity of binding sites. It can be applied to polypeptides or nucleic acids of the present invention.
- [0464] Fluorescence quenching measurements are useful in detecting protein multimerization, such as where the subject protein interacts with at least a second protein and, for example, where multimerization interaction is affected by a test agent. As used herein, the term "multimerization" refers to formation of dimers, trimers, tetramers, and higher multimers of the subject protein. Whether a subject protein forms a complex with one or more additional protein molecules can be determined

using any known assay, including assays as described above for interacting proteins. Formation of multimers can also be detected using non-denaturing gel electrophoresis, where multimerized subject protein migrates more slowly than monomeric subject protein. Formation of multimers can also be detected using fluorescence quenching techniques.

[0465] Formation of multimers can also be detected by analytical ultracentrifugation, for example through glycerol or sucrose gradients, and subsequent visualization of a subject protein in gradient fractions by Western blotting or staining of SDS-polyacrylamide gels. Multimers are expected to sediment at defined positions in such gradients. Formation of multimers can also be detected using analytical gel filtration, e.g., in HPLC or FPLC systems, e.g., on columns such as Superdex 200 (Pharmacia Amersham Inc.). Multimers run at defined positions on these columns, and fractions can be analyzed as above. The columns are highly reproducible, allowing one to relate the number and position of peaks directly to the multimerization status of the protein.

2. Detecting mRNA Levels and Monitoring Gene Expression

[0466] The present invention provides methods for detecting the presence of mRNA in a biological sample. The methods can be used, for example, to assess whether a test compound affects gene expression, either directly or indirectly. The present invention provides diagnostic methods to compare the abundance of a nucleic acid with that of a control value, either qualitatively or quantitatively, and to relate the value to a normal or abnormal expression pattern.

[0467] Methods of measuring mRNA levels are known in the art (Pietu, 1996; Zhao, 1995; Soares, 1997; Raval, 1994; Chalifour, 1994; Stolz, 1996; Hong, 1982; McGraw, 1984; WO 97/27317). These methods generally comprise contacting a sample with a polynucleotide of the invention under conditions that allow hybridization and detecting hybridization, if any, as an indication of the presence of the polynucleotide of interest. Appropriate controls include the use of a sample lacking the polynucleotide mRNA of interest, or the use of a labeled polynucleotide of the same "sense" as a polynucleotide mRNA of interest. Detection can be accomplished by any known method, including, but not limited to, *in situ* hybridization, PCR, RT-PCR, and "Northern" or RNA blotting, or combinations of such techniques, using a suitably labeled subject polynucleotide. A variety of labels and labeling methods for polynucleotides are known in the art and can be used in the

assay methods of the invention. A common method employed is use of microarrays which can be purchased or customized, for example, through conventional vendors such as Affymetrix.

[0468] In some embodiments, the methods involve generating a cDNA copy of an mRNA molecule in a biological sample, and amplifying the cDNA using an isolated primer pairs as described above, i.e., a set of two nucleic acid molecules that serve as forward and reverse primers in an amplification reaction (e.g., a polymerase chain reaction). The primer pairs are chosen to specifically amplify a cDNA copy of an mRNA encoding a polypeptide. A detectable label can be included in the amplification reaction, as provided above. Methods using PCR amplification can be performed on the DNA from a single cell, although it is convenient to use at least about 10⁵ cells.

[0469] The present invention provides methods for monitoring gene expression. Changes in a promoter or enhancer sequence that can affect gene expression can be examined in light of expression levels of the normal allele by various methods known in the art. Methods for determining promoter or enhancer strength include quantifying the expressed natural protein, and inserting the variant control element into a vector with a quantitative reporter gene such as β-galactosidase, luciferase, or chloramphenicol acetyltransferase (CAT).

3. Detecting Polymorphisms and Mutations

[0470] Biochemical studies can determine whether a sequence polymorphism in a coding region or control region is associated with disease. Disease-associated polymorphisms can include deletion or truncation of the gene, mutations that alter expression level, or mutations that affect protein function, etc. A number of methods are available to analyze nucleic acids for the presence of a specific sequence, e.g., a disease associated polymorphism. Genomic DNA can be used when large amounts of DNA are available. Alternatively, the region of interest is cloned into a suitable vector and grown in sufficient quantity for analysis. Cells that express the gene provide a source of mRNA, which can be assayed directly or reverse transcribed into cDNA for analysis. The nucleic acid can be amplified by conventional techniques, i.e., PCR, to provide sufficient amounts for analysis. (Saiki et al., 1988; Sambrook et al., 1989, pp.14.2-14.33). Alternatively, various methods are known in the art that utilize oligonucleotide ligation as a means of detecting polymorphisms (Riley et al., 1990; Delahunty et al., 1996).

[0471] The sample nucleic acid, e.g., an amplified or cloned fragment, is analyzed by one of a number of methods known in the art. The nucleic acid can be sequenced by dideoxy nucleotide sequencing, or other methods, and the sequence of bases compared to a wild-type sequence. Hybridization with the variant sequence can also be used to determine its presence, e.g., by Southern blots, dot blots, etc. The hybridization pattern of a control and variant sequence to an array of oligonucleotide probes immobilized on a solid support, as described in US Pat. No. 5,445,934, or WO 95/35505, can also be used as a means of detecting the presence of variant sequences. Single strand conformational polymorphism (SSCP) analysis, denaturing gradient gel electrophoresis (DGGE), and heteroduplex analysis in gel matrices can detect variation as alterations in electrophoretic mobility resulting from conformational changes created by DNA sequence alterations. Alternatively, where a polymorphism creates or destroys a recognition site for a restriction endonuclease, the sample can be digested with that endonuclease, and the products fractionated according to their size to determine whether the fragment was digested. Fractionation can be performed by gel or capillary electrophoresis, for example with acrylamide or agarose gels.

[0472] Screening for mutations in a gene can be based on the functional or antigenic characteristics of the protein. Protein truncation assays are useful in detecting deletions that might affect the biological activity of the protein. Various immunoassays designed to detect polymorphisms in proteins can be used in screening. Where many diverse genetic mutations lead to a particular disease phenotype, functional protein assays have proven to be effective screening tools. The activity of the encoded protein can be determined by comparison with the wild-type protein.

4. Detecting and Monitoring Polypeptide Presence and Biological Activity

[0473] The present invention provides methods for detecting the presence and/or biological activity of a subject polypeptide in a biological sample. The assay used will be appropriate to the biological activity of the particular polypeptide. Thus, e.g., where the biological activity is an enzymatic activity, the method will involve contacting the sample with an appropriate substrate, and detecting the product of the enzymatic reaction on the substrate. Where the biological activity is binding to a second macromolecule, the assay detects protein-protein binding, protein-DNA binding, protein-carbohydrate binding, or protein-lipid binding, as appropriate, using well known assays. Where the biological activity is signal transduction (e.g.,

transmission of a signal from outside the cell to inside the cell) or transport, an appropriate assay is used, such as measurement of intracellular calcium ion concentration, measurement of membrane conductance changes, or measurement of intracellular potassium ion concentration.

- [0474] The present invention also provides methods for detecting the presence or measuring the level of a normal or abnormal polypeptide in a biological sample using a specific antibody. The methods generally comprise contacting the sample with a specific antibody and detecting binding between the antibody and molecules of the sample. Specific antibody binding, when compared to a suitable control, is an indication that a polypeptide of interest is present in the sample. Suitable controls include a sample known not to contain the polypeptide, and a sample contacted with a non-specific antibody, e.g., an anti-idiotype antibody.
- [0475] A variety of methods to detect specific antibody-antigen interactions are known in the art, e.g., standard immunohistological methods, immunoprecipitation, enzyme immunoassay, and radioimmunoassay. The specific antibody can be detectably labeled, either directly or indirectly, as described at length herein, and cells are permeabilized to stain cytoplasmic molecules. Briefly, antibodies are added to a cell sample, and incubated for a period of time sufficient to allow binding to the epitope, usually at least about 10 minutes. The antibody may be labeled with radioisotopes, enzymes, fluorescers, chemiluminescers, or other labels for direct detection. Alternatively, specific-binding pairs may be used, involving, e.g., a second stage antibody or reagent that is detectably-labeled, as described above. Such reagents and their methods of use are well known in the art
- [0476] Alternatively, a biological sample can be brought into contact with an immobilized antibody on a solid support or carrier, such as nitrocellulose, that is capable of immobilizing cells, cell particles, or soluble proteins. The antibody can be attached (coupled) to an insoluble support, such as a polystyrene plate or a bead. After contacting the sample, the support can then be washed with suitable buffers, followed by contacting with a detectably-labeled specific antibody. Detection methods are known in the art and will be chosen as appropriate to the signal emitted by the detectable label. Detection is generally accomplished in comparison to suitable controls, and to appropriate standards.
- [0477] The present invention further provides methods for detecting the presence and/or levels of enzymatic activity of a subject polypeptide in a biological

sample. The methods generally involve contacting the sample with a substrate that yields a detectable product upon being acted upon by a subject polypeptide, and detecting a product of the enzymatic reaction. Further, polypeptides that are subsets of the complete sequences of the subject proteins may be used to identify and investigate parts of the protein important for function.

[0478] The present invention further includes methods for monitoring activity of a polypeptide through observation of phenotypic changes in a cell containing such polypeptide, such as growth or differentiation, or the ability of such a cell to secrete a molecule that can be detected, such as through chemical methods or through its effect on another cell, such as cell activation.

5. Modulating mRNA and Peptides in Biological Samples

[0479] The present invention provides screening methods for identifying agents that modulate the level of a mRNA molecule of the invention, agents that modulate the level of a polypeptide of the invention, and agents that modulate the biological activity of a polypeptide of the invention. In some embodiments, the assay is cell-free; in others, it is cell-based. Where the screening assay is a binding assay, one or more of the molecules can be joined to a label, where the label can directly or indirectly provide a detectable signal.

[0480] As discussed above, the invention encompasses endogenous polynucleotides of the invention that encode mRNA and/or polypeptides of interest. Again as discussed previously, the invention also encompasses exogenous polynucleotides that encode mRNA or polypeptides of the invention. For example, the polynucleotide can reside within a recombinant vector which is introduced into the cell. For example, a recombinant vector can comprise an isolated transcriptional regulatory sequence which is associated in nature with a nucleic acid, such as a promoter sequence operably linked to sequences coding for a polypeptide of the invention; or the transcriptional control sequences can be operably linked to coding sequences for a polypeptide fusion protein comprising a polypeptide of the invention fused to a polypeptide that facilitates detection.

[0481] In these embodiments, the candidate agent is combined with a cell possessing a polynucleotide transcriptional regulatory element operably linked to a polypeptide-coding sequence of interest, e.g., a subject cDNA or its genomic component; and determining the agent's effect on polynucleotide expression, as measured, for example by the level of mRNA, polypeptide, or fusion polypeptide

[0482] In other embodiments, for example, a recombinant vector can comprise an isolated polynucleotide transcriptional regulatory sequence, such as a promoter sequence, operably linked to a reporter gene (e.g., β -galactosidase, CAT, luciferase, or other gene that can be easily assayed for expression). In these embodiments, the method for identifying an agent that modulates a level of expression of a polynucleotide in a cell comprises combining a candidate agent with a cell comprising a transcriptional regulatory element operably linked to a reporter gene; and determining the effect of said agent on reporter gene expression.

- [0483] Known methods of measuring mRNA levels can be used to identify agents that modulate mRNA levels, including, but not limited to, PCR with detectably-labeled primers. Similarly, agents that modulate polypeptide levels can be identified using standard methods for determining polypeptide levels, including, but not limited to an immunoassay such as ELISA with detectably-labeled antibodies.
- [0484] A wide variety of cell-based assays can also be used to identify agents that modulate eukaryotic or prokaryotic mRNA and/or polypeptide levels. Examples include transformed cells that over-express a cDNA construct and cells transformed with a polynucleotide of interest associated with an endogenously-associated promoter operably linked to a reporter gene. A control sample would comprise, for example, the same cell lacking the candidate agent. Expression levels are measured and compared in the test and control samples.
- [0485] The cells used in the assay are usually mammalian cells, including, but not limited to, rodent cells and human cells. The cells can be primary cell cultures or can be immortalized cell lines. Cell-based assays generally comprise the steps of contacting the cell with a test agent, forming a test sample, and, after a suitable time, assessing the agent's effect on macromolecule expression. That is, the mammalian cell line is transformed or transfected with a construct that results in expression of the polynucleotide, the cell is contacted with a test agent, and then mRNA or polypeptide levels are detected and measured using conventional assays
- [0486] A suitable period of time for contacting the agent with the cell can be determined empirically, and is generally a time sufficient to allow entry of the agent into the cell and to allow the agent to have a measurable effect on subject mRNA and/or polypeptide levels. Generally, a suitable time is between about 10 minutes and about 24 hours, including about 1 to about 8 hours. Alternatively, incubation periods may be between about 0.1 and about 1 hour, selected for example for optimum

activity or to facilitate rapid high-throughput screening. Where the polypeptide is expressed on the cell surface, however, a shorter length of time may be sufficient. Incubations are performed at any suitable temperature, i.e., between about 4°C and about 40°C. The contact and incubation steps can be followed by a washing step to remove unbound components, i.e., a label that would give rise to a background signal during subsequent detection of specifically-bound complexes.

[0487] A variety of assay configurations and protocols are known in the art. For example, one of the components can be bound to a solid support, and the remaining components contacted with the support bound component. Remaining components may be added at different times or at substantially the same time. Further, where the interacting protein is a second subject protein, the effect of the test agent on binding can be determined by determining the effect on multimization of the subject protein.

[0488] The present invention further provides methods of identifying agents that modulate a biological activity of a polypeptide of the invention. The method generally comprises contacting a test agent with a sample containing a subject polypeptide and assaying a biological activity of the subject polypeptide in the presence of the test agent. An increase or a decrease in the assayed biological activity in comparison to the activity in a suitable control (e.g., a sample comprising a subject polypeptide in the absence of the test agent) is an indication that the substance modulates a biological activity of the subject polypeptide. The mixture of components is added in any order that provides for the requisite interaction.

[0489] External and internal processes that can affect modulation of a macromolecule of the invention include, but are not limited to, infection of a cell by a microorganism, including, but not limited to, a bacterium (e.g., *Mycobacterium* spp., *Shigella*, or *Chlamydia*), a protozoan (e.g., *Trypanosoma* spp., *Plasmodium* spp., or *Toxoplasma* spp.), a fungus, a yeast (e.g., *Candida* spp.), or a virus (including viruses that infect mammalian cells, such as human immunodeficiency virus, foot and mouth disease virus, Epstein-Barr virus, and viruses that infect plant cells); change in pH of the medium in which a cell is maintained or a change in internal pH; excessive heat relative to the normal range for the cell or the multicellular organism; excessive cold relative to the normal range for the cell or the multicellular organism; an effector molecule such as a hormone, a cytokine, a chemokine, a neurotransmitter; an ingested or applied drug; a ligand for a cell-surface receptor; a ligand for a receptor that exists

internally in a cell, e.g., a nuclear receptor; hypoxia; light; dark; sleep patterns; electrical charge; ion concentration of the medium in which a cell is maintained or an internal ion concentration, exemplary ions including sodium ions, potassium ions, chloride ions, calcium ions, and the like; presence or absence of a nutrient; metal ions; a transcription factor; mitogens, including, but not limited to, lipopolysaccharide (LPS), pokeweed mitogen; antigens; a tumor suppressor; and cell-cell contact and must be taken into consideration in the screening assay.

- [0490] A variety of other reagents can be included in the screening assay. These include salts, neutral proteins, e.g., albumin, detergents, and other compounds that facilitate optimal binding and/or reduce non-specific or background interactions. Reagents that improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, or anti-microbial agents, etc., can be used.
- [0491] Accordingly, the present invention provides a method for identifying an agent, particularly a biologically active agent that modulates the level of expression of a nucleic acid in a cell, the method comprising: combining a candidate agent to be tested with a cell comprising a nucleic acid that encodes a polypeptide, and determining the agent's effect on polypeptide expression.
- [0492] Some embodiments will detect agents that decrease the biological activity of a molecule of the invention. Maximal inhibition of the activity is not always necessary, or even desired, in every instance to achieve a therapeutic effect. Agents that decrease a biological activity can find use in treating disorders associated with the biological activity of the molecule. Alternatively, some embodiments will detect agents that increase a biological activity. Agents that increase a biological activity of a molecule of the invention can find use in treating disorders associated with a deficiency in the biological activity. Agents that increase or decrease a biological activity of a molecule of the invention can be selected for further study, and assessed for physiological attributes, i.e., cellular availability, cytotoxicity, or biocompatibility, and optimized as required. For example, a candidate agent is assessed for any cytotoxic activity it may exhibit toward the cell used in the assay using well-known assays, such as trypan blue dye exclusion, an MTT ([3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2 H-tetrazolium bromide]) assay, and the like.
- [0493] A variety of different candidate agents can be screened by the above methods. Candidate agents encompass numerous chemical classes, as described above.

Candidate agents are obtained from a wide variety of sources [0494] including libraries of synthetic or natural compounds. Numerous means are available for random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides and oligopeptides. For example, random peptide libraries obtained by yeast two-hybrid screens (Xu et al., 1997), phage libraries (Hoogenboom et al., 1998), or chemically generated libraries. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced, including antibodies produced upon immunization of an animal with subject polypeptides, or fragments thereof, or with the encoding polynucleotides. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means, and can be used to produce combinatorial libraries. Further, known pharmacological agents can be subjected to directed or random chemical modifications, such as acylation, alkylation, esterification, and amidification, etc, to produce structural analogs.

6. Kits

[0495] The present invention provides methods for diagnosing disease states based on the detected presence and/or level of polynucleotide or polypeptide in a biological sample, and/or the detected presence and/or level of biological activity of the polynucleotide or polypeptide. These detection methods can be provided as part of a kit. Thus, the invention further provides kits for detecting the presence and/or a level of a polynucleotide or polypeptide in a biological sample and/or or the detected presence and/or level of biological activity of the polynucleotide or polypeptide. Procedures using these kits can be performed by clinical laboratories, experimental laboratories, medical practitioners, or private individuals.

[0496] The kits of the invention will comprise a molecule of the invention. The kits for detecting a polynucleotide will also comprise a moiety that specifically hybridizes to a polynucleotide of the invention. The polynucleotide molecule can be of any length. For example, it can comprise a polynucleotide of at least 6, at least 7, at least 8, or at least 9 contiguous nucleotides of a molecule of the invention. Kits of the invention for detecting a subject polypeptide will comprise a moiety that specifically binds to a polypeptide of the invention; the moiety includes, but is not limited to, a polypeptide-specific antibody.

[0497] The kits are useful in diagnostic applications. For example, the kit is useful to determine whether a given DNA sample isolated from an individual comprises an expressed nucleic acid, a polymorphism, or other variant.

[0498] Kits for detecting polynucleotides comprise a pair of nucleic acids in a suitable storage medium, e.g., a buffered solution, in a suitable container. The pair of isolated nucleic acid molecules serve as primers in an amplification reaction (e.g., a polymerase chain reaction). The kit can further include additional buffers, reagents for polymerase chain reaction (e.g., deoxynucleotide triphosphates (dNTP), a thermostable DNA polymerase, a solution containing Mg²⁺ ions (e.g., MgCl₂), and other components well known to those skilled in the art for carrying out a polymerase chain reaction). The kit can further include instructions for use, which may be provided in a variety of forms, e.g., printed information, or compact disc, and the like. The kit may further include reagents necessary to extract DNA from a biological sample and reagents for generating a cDNA copy of an mRNA. The kit may optionally provide additional useful components, including, but not limited to, buffers, developing reagents, labels, reacting surfaces, means for detections, control samples, standards, and interpretive information.

[0499] In some embodiments, a kit of the invention for detecting a polynucleotide, such as an mRNA encoding a polypeptide, comprises a pair of nucleic acids that function as "forward" and "reverse" primers that specifically amplify a cDNA copy of the mRNA. The "forward" and "reverse" primers are provided as a pair of isolated nucleic acid molecules, each from about 10 to about 200 nucleotides in length, the first nucleic acid molecule of the pair comprising a sequence of at least about 10 contiguous nucleotides having 100% sequence identity to a nucleic acid sequence shown in from SEQ ID NOS.: 1 - 104, and the second nucleic acid molecule of the pair comprising a sequence of at least about 10 contiguous nucleotides having 100% sequence identity to the reverse complement of a nucleic acid sequence shown in SEQ ID NOS.: 1 - 104, wherein the sequence of the second nucleic acid molecule is located 3' of the nucleic acid sequence of the first nucleic acid molecule. The primer nucleic acids are prepared using any known method, e.g., automated synthesis. In some embodiments, one or both members of the pair of nucleic acid molecules comprise a detectable label.

[0500] Where the kit provides for polypeptide detection, it can include one or more specific antibodies. In some embodiments, the antibody specific to the

polypeptide is detectably labeled. In other embodiments, the antibody specific to the polypeptide is not labeled; instead, a second, detectably-labeled antibody is provided that binds to the specific antibody. The kit may further include blocking reagents, buffers, and reagents for developing and/or detecting the detectable marker. The kit may further include instructions for use, controls, and interpretive information.

[0501] Where the kit provides for detecting enzymatic activity, it includes a substrate that provides for a detectable product when acted upon by a polypeptide of interest. The kit may further include reagents necessary to detect and develop the detectable marker.

[0502] The present invention provides for kits with unit doses of an active agent. These agents are described in more detail below. In some embodiments, the agent is provided in oral or injectable doses. Such kits will comprise containers containing the unit doses and an informational package insert describing the use and attendant benefits of the drugs in treating a condition of interest.

Therapeutic Compositions

[0503] The invention further provides agents identified using a screening assay of the invention, and compositions comprising the agents, subject polypeptides, subject polynucleotides, recombinant vectors, and/or host cells, including pharmaceutical compositions for therapeutic administration. The subject compositions can be formulated using well-known reagents and methods. These compositions can include a buffer, which is selected according to the desired use of the agent, polypeptide, polynucleotide, recombinant vector, or host cell, and can also include other substances appropriate to the intended use. Those skilled in the art can readily select an appropriate buffer, a wide variety of which are known in the art, suitable for an intended use.

1. Excipients and Formulations

[0504] In some embodiments, compositions are provided in formulation with pharmaceutically acceptable excipients, a wide variety of which are known in the art (Gennaro, 2000; Ansel et al., 1999; Kibbe et al., 2000). Pharmaceutically acceptable excipients, such as vehicles, adjuvants, carriers or diluents, are readily available to the public. Moreover, pharmaceutically acceptable auxiliary substances, such as pH adjusting and buffering agents, tonicity adjusting agents, stabilizers, wetting agents and the like, are readily available to the public.

[0505] In pharmaceutical dosage forms, the compositions of the invention can be administered in the form of their pharmaceutically acceptable salts, or they can also be used alone or in appropriate association, as well as in combination, with other pharmaceutically active compounds. The subject compositions are formulated in accordance to the mode of potential administration. Administration of the agents can be achieved in various ways, including oral, buccal, nasal, rectal, parenteral, intraperitoneal, intradermal, transdermal, subcutaneous, intravenous, intra-arterial, intracardiac, intraventricular, intracranial, intratracheal, and intrathecal administration, etc., or otherwise by implantation or inhalation. Thus, the subject compositions can be formulated into preparations in solid, semi-solid, liquid or gaseous forms, such as tablets, capsules, powders, granules, ointments, solutions, suppositories, injections, inhalants and aerosols. The following methods and excipients are merely exemplary and are in no way limiting.

[0506] For oral preparations, the agents, polynucleotides, and polypeptides can be used alone or in combination with appropriate additives to make tablets, powders, granules or capsules, for example, with conventional additives, such as lactose, mannitol, corn starch, or potato starch; with binders, such as crystalline cellulose, cellulose derivatives, acacia, corn starch, or gelatins; with disintegrators, such as corn starch, potato starch, or sodium carboxymethylcellulose; with lubricants, such as talc or magnesium stearate; and if desired, with diluents, buffering agents, moistening agents, preservatives, and flavoring agents.

[0507] Suitable excipient vehicles are, for example, water, saline, dextrose, glycerol, ethanol, or the like, and combinations thereof. In addition, if desired, the vehicle can contain minor amounts of auxiliary substances such as wetting or emulsifying agents or pH buffering agents. Actual methods of preparing such dosage forms are known, or will be apparent, to those skilled in the art (Remington, 1985). The composition or formulation to be administered will, in any event, contain a quantity of the agent adequate to achieve the desired state in the subject being treated.

[0508] The agents, polynucleotides, and polypeptides can be formulated into preparations for injection by dissolving, suspending or emulsifying them in an aqueous or nonaqueous solvent, such as vegetable or other similar oils, synthetic aliphatic acid glycerides, esters of higher aliphatic acids or propylene glycol; and if desired, with conventional additives such as solubilizers, isotonic agents, suspending

agents, emulsifying agents, stabilizers and preservatives. Other formulations for oral or parenteral delivery can also be used, as conventional in the art

- [0509] The agents, polynucleotides, and polypeptides can be utilized in aerosol formulation to be administered via inhalation. The compounds of the present invention can be formulated into pressurized acceptable propellants such as dichlorodifluoromethane, propane, nitrogen, and the like. Further, the agent, polynucleotides, or polypeptide composition may be converted to powder form for administration intranasally or by inhalation, as conventional in the art.
- [0510] Furthermore, the agents can be made into suppositories by mixing with a variety of bases such as emulsifying bases or water-soluble bases. The compounds of the present invention can be administered rectally via a suppository. The suppository can include vehicles such as cocoa butter, carbowaxes and polyethylene glycols, which melt at body temperature, yet are solidified at room temperature.
- [0511] A polynucleotide, polypeptide, or other modulator, can also be introduced into tissues or host cells by other routes, such as viral infection, microinjection, or vesicle fusion. For example, expression vectors can be used to introduce nucleic acid compositions into a cell as described above. Further, jet injection can be used for intramuscular administration (Furth et al., 1992). The DNA can be coated onto gold microparticles, and delivered intradermally by a particle bombardment device, or "gene gun" as described in the literature (Tang et al., 1992), where gold microprojectiles are coated with the DNA, then bombarded into skin cells.
- [0512] Unit dosage forms for oral or rectal administration such as syrups, elixirs, and suspensions can be provided wherein each dosage unit, for example, teaspoonful, tablespoonful, tablet, or suppository, contains a predetermined amount of the composition containing one or more agents. Similarly, unit dosage forms for injection or intravenous administration can comprise the agent(s) in a composition as a solution in sterile water, normal saline or another pharmaceutically acceptable carrier.
 - 2. Active Agents (or Modulators)
- [0513] The nucleic acid, polypeptide, and modulator compositions of the subject invention find use as therapeutic agents in situations where one wishes to modulate an activity of a subject polypeptide in a host, particularly the activity of the subject polypeptides, or to provide or inhibit the activity at a particular anatomical

site. Thus, the compositions are useful in treating disorders associated with an activity of a subject polypeptide. The following provides further details of active agents of the present invention.

- a) Antisense Oligonucleotides
- [0514] In certain embodiments of the invention, the active agent is an agent that modulates, and generally decreases or down regulates, the expression of a gene encoding a target protein in a host, i.e., antisense molecules. Anti-sense reagents include antisense oligonucleotides (ODN), i.e., synthetic ODN having chemical modifications from native nucleic acids, or nucleic acid constructs that express such anti-sense molecules as RNA. The antisense sequence is complementary to the mRNA of the targeted gene, and inhibits expression of the targeted gene products. Antisense molecules inhibit gene expression through various mechanisms, e.g., by reducing the amount of mRNA available for translation, through activation of RNase H, or steric hindrance. One or a combination of antisense molecules can be administered, where a combination can comprise multiple different sequences.
- [0515] Antisense molecules can be produced by expression of all or a part of the target gene sequence in an appropriate vector, where the transcriptional initiation is oriented such that an antisense strand is produced as an RNA molecule.

 Alternatively, the antisense molecule is a synthetic oligonucleotide. Antisense oligonucleotides can be chemically synthesized by methods known in the art (Wagner et al., 1993; Milligan et al., 1993) Oligonucleotides can be chemically modified from the native phosphodiester structure to increase their intracellular stability and binding affinity, for example, as described in detail above. Antisense oligonucleotides will generally be at least about 7, at least about 12, or at least about 20 nucleotides in length, and not more than about 500, not more than about 50, or not more than about 35 nucleotides in length, where the length is governed by efficiency of inhibition, and specificity, including absence of cross-reactivity, and the like. Short oligonucleotides, of from about 7 to about 8 bases in length, can be strong and selective inhibitors of gene expression (Wagner et al., 1996).
- [0516] A specific region or regions of the endogenous sense strand mRNA sequence is chosen to be complemented by the antisense sequence. Selection of a specific sequence for the oligonucleotide can use an empirical method, where several candidate sequences are assayed for inhibition of expression of the target gene in an *in*

vitro or animal model. A combination of sequences can also be used, where several regions of the mRNA sequence are selected for antisense complementation.

[0517] As an alternative to anti-sense inhibitors, catalytic nucleic acid compounds, e.g., ribozymes, or anti-sense conjugates can be used to inhibit gene expression. Ribozymes can be synthesized *in vitro* and administered to the patient, or can be encoded in an expression vector, from which the ribozyme is synthesized in the targeted cell (WO 9523225; Beigelman et al., 1995). Examples of oligonucleotides with catalytic activity are described in WO 9506764. Conjugates of anti-sense ODN with a metal complex, *e.g.*, terpyridyl Cu(II), capable of mediating mRNA hydrolysis are described in Bashkin *et al.*, 1995.

b) Interfering RNA

[0518] In some embodiments, the active agent is an interfering RNA (RNAi), including dsRNAi. RNA interference provides a method of silencing eukaryotic genes. Double stranded RNA can induce the homology-dependent degradation of its cognate mRNA in *C. elegans*, fungi, plants, *Drosophila*, and mammals (Gaudilliere et al., 2002). Use of RNAi to reduce a level of a particular mRNA and/or protein is based on the interfering properties of double-stranded RNA derived from the coding regions of a gene. The technique reduces the time between identifying an interesting gene sequence and understanding its function, and thus is an efficient high-throughput method for disrupting gene function (O'Neil, 2001). RNAi can also help identify the biochemical mode of action of a drug and to identify other genes encoding products that can respond or interact with specific compounds.

[0519] In one embodiment of the invention, complementary sense and antisense RNAs derived from a substantial portion of the subject polynucleotide are synthesized *in vitro*. The resulting sense and antisense RNAs are annealed in an injection buffer, and the double-stranded RNA injected or otherwise introduced into the subject, i.e., in food or by immersion in buffer containing the RNA (Gaudilliere et al., 2002; O'Neil et al., 2001; WO99/32619). In another embodiment, dsRNA derived from a gene of the present invention is generated *in vivo* by simultaneously expressing both sense and antisense RNA from appropriately positioned promoters operably linked to coding sequences in both sense and antisense orientations.

c) Peptides and Modified Peptides

[0520] In some embodiments of the present invention, the active agent is a peptide. Suitable peptides include peptides of from about 3 amino acids to about 50,

from about 5 to about 30, or from about 10 to about 25 amino acids in length. In some embodiments, a peptide has a sequence of from about 3 amino acids to about 50, from about 5 to about 30, or from about 10 to about 25 amino acids of corresponding naturally-occurring protein. In some embodiments, a peptide exhibits one or more of the following activities: inhibits binding of a subject polypeptide to an interacting protein or other molecule; inhibits subject polypeptide binding to a second polypeptide molecule; inhibits a signal transduction activity of a subject polypeptide; inhibits an enzymatic activity of a subject polypeptide; or inhibits a DNA binding activity of a subject polypeptide.

[0521] Peptides can include naturally-occurring and non-naturally occurring amino acids. Peptides can comprise D-amino acids, a combination of D- and L-amino acids, and various "designer" amino acids (e.g., β-methyl amino acids, Cα-methyl amino acids, and Nα-methyl amino acids, etc.) to convey special properties. Additionally, peptides can be cyclic. Peptides can include non-classical amino acids in order to introduce particular conformational motifs. Any known non-classical amino acid can be used. Non-classical amino acids include, but are not limited to, 1,2,3,4-tetrahydroisoquinoline-3-carboxylate; (2S,3S)-methylphenylalanine, (2S,3R)methyl-phenylalanine, (2R,3S)-methyl-phenylalanine and (2R,3R)-methylphenylalanine; 2-aminotetrahydronaphthalene-2-carboxylic acid; hydroxy-1,2,3,4tetrahydroisoquinoline-3-carboxylate; β-carboline (D and L); HIC (histidine isoquinoline carboxylic acid); and HIC (histidine cyclic urea). Amino acid analogs and peptidomimetics can be incorporated into a peptide to induce or favor specific secondary structures, including, but not limited to, LL-Acp (LL-3-amino-2propenidone-6-carboxylic acid), a β-turn inducing dipeptide analog; β-sheet inducing analogs; β-turn inducing analogs; α-helix inducing analogs; γ-turn inducing analogs; Gly-Ala turn analogs; amide bond isostere; or tretrazol, and the like.

[0522] A peptide can be a depsipeptide, which can be linear or cyclic (Kuisle et al., 1999). Linear depsipeptides can comprise rings formed through S–S bridges, or through an hydroxy or a mercapto group of an hydroxy-, or mercapto-amino acid and the carboxyl group of another amino- or hydroxy-acid but do not comprise rings formed only through peptide or ester links derived from hydroxy carboxylic acids. Cyclic depsipeptides contain at least one ring formed only through peptide or ester links, derived from hydroxy carboxylic acids.

[0523] Peptides can be cyclic or bicyclic. For example, the C-terminal carboxyl group or a C-terminal ester can be induced to cyclize by internal displacement of the -OH or the ester (-OR) of the carboxyl group or ester respectively with the N-terminal amino group to form a cyclic peptide. For example, after synthesis and cleavage to give the peptide acid, the free acid is converted to an activated ester by an appropriate carboxyl group activator such as dicyclohexylcarbodiimide (DCC) in solution, for example, in methylene chloride (CH₂Cl₂), dimethyl formamide (DMF) mixtures. The cyclic peptide is then formed by internal displacement of the activated ester with the N-terminal amine. Internal cyclization as opposed to polymerization can be enhanced by use of very dilute solutions. Methods for making cyclic peptides are well known in the art.

[0524] The term "bicyclic" refers to a peptide with two ring closures formed by covalent linkages between amino acids. A covalent linkage between two nonadjacent amino acids constitutes a ring closure, as does a second covalent linkage between a pair of adjacent amino acids which are already linked by a covalent peptide linkage. The covalent linkages forming the ring closures can be amide linkages, i.e., the linkage formed between a free amino on one amino acid and a free carboxyl of a second amino acid, or linkages formed between the side chains or "R" groups of amino acids in the peptides. Thus, bicyclic peptides can be "true" bicyclic peptides, i.e., peptides cyclized by the formation of a peptide bond between the N-terminus and the C-terminus of the peptide, or they can be "depsi-bicyclic" peptides, i.e., peptides in which the terminal amino acids are covalently linked through their side chain moieties.

[0525] A desamino or descarboxy residue can be incorporated at the terminal ends of the peptide, so that there is no terminal amino or carboxyl group, to decrease susceptibility to proteases or to restrict conformation. C-terminal functional groups include amide, amide lower alkyl, amide di (lower alkyl), lower alkoxy, hydroxy, and carboxy, and the lower ester derivatives thereof, and the pharmaceutically acceptable salts thereof.

[0526] In addition to the foregoing N-terminal and C-terminal modifications, a peptide or peptidomimetic can be modified with or covalently coupled to one or more of a variety of hydrophilic polymers to increase solubility and circulation half-life of the peptide. Suitable nonproteinaceous hydrophilic polymers for coupling to a peptide include, but are not limited to, polyalkylethers as exemplified by polyethylene

glycol and polypropylene glycol, polylactic acid, polyglycolic acid, polyoxyalkenes, polyvinylalcohol, polyvinylpyrrolidone, cellulose and cellulose derivatives, dextran, and dextran derivatives. Generally, such hydrophilic polymers have an average molecular weight ranging from about 500 to about 100,000 daltons, from about 2,000 to about 40,000 daltons, or from about 5,000 to about 20,000 daltons. The peptide can be derivatized with or coupled to such polymers using any of the methods set forth in Zallipsky, 1995; Monfardini et al., 1995; U.S. Pat. Nos. 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192; 4,179,337, or WO 95/34326.

d) Antibodies

[0527] The invention provides antibodies that specifically recognize a particular polypeptide. Antibodies are obtained by immunizing a host animal with peptides, polynucleotides encoding polypeptides, or cells, each comprising all or a portion of the target protein ("immunogen"). Suitable host animals include rodents (e.g., mouse, rat, guinea pig, hamster), cattle (e.g., sheep, pig, cow, horse, goat), cat, dog, chicken, primate, monkey, and rabbit. The origin of the protein immunogen can be any species, including mouse, human, rat, monkey, avian, insect, reptile, or crustacean. The host animal will generally be a different species than the immunogen, e.g., a human protein used to immunize mice. Methods of antibody production are well known in the art (Howard and Bethell, 2000; Harlow et al., 1998; Harlow and Lane, 1988).

[0528] The immunogen can comprise the complete protein, or fragments and derivatives thereof, or proteins expressed on cell surfaces. Immunogens comprise all or a part of one of the subject proteins, where these amino acids contain post-translational modifications, such as glycosylation, found on the native target protein. Immunogens comprising protein extracellular domains are produced in a variety of ways known in the art, e.g., expression of cloned genes using conventional recombinant methods, or isolation from tumor cell culture supernatants, etc. The immunogen can also be expressed *in vivo* from a polynucleotide encoding the immunogenic peptide introduced into the host animal.

[0529] Polyclonal antibodies are prepared by conventional techniques. These include immunizing the host animal *in vivo* with the target protein (or immunogen) in substantially pure form, for example, comprising less than about 1% contaminant. The immunogen can comprise the complete target protein, fragments, or derivatives thereof. To increase the immune response of the host animal, the target

protein can be combined with an adjuvant; suitable adjuvants include alum, dextran, sulfate, large polymeric anions, and oil & water emulsions, e.g., Freund's adjuvant (complete or incomplete). The target protein can also be conjugated to synthetic carrier proteins or synthetic antigens. The target protein is administered to the host, usually intradermally, with an initial dosage followed by one or more, usually at least two, additional booster dosages. Following immunization, blood from the host will be collected, followed by separation of the serum from blood cells. The immunoglobulin present in the resultant antiserum can be further fractionated using known methods, such as ammonium salt fractionation, or DEAE chromatography and the like.

[0530] The method of producing polyclonal antibodies can be varied in some embodiments of the present invention. For example, instead of using a single substantially isolated polypeptide as an immunogen, one may inject a number of different immunogens into one animal for simultaneous production of a variety of antibodies. In addition to protein immunogens, the immunogens can be nucleic acids (e.g., in the form of plasmids or vectors) that encode the proteins, with facilitating agents, such as liposomes, microspheres, etc, or without such agents, such as "naked" DNA.

[0531] Antibodies can also be prepared using a library approach. Briefly, mRNA is extracted from the spleens of immunized animals to isolate antibody-encoding sequences. The extracted mRNA may be used to make cDNA libraries. Such a cDNA library may be normalized and subtracted in a manner conventional in the art, for example, to subtract out cDNA hybridizing to mRNA of non-immunized animals. The remaining cDNA may be used to create proteins and for selection of antibody molecules or fragments that specifically bind to the immunogen. The cDNA clones of interest, or fragments thereof, can be introduced into an *in vitro* expression system to produce the desired antibodies, as described herein.

[0532] In a further embodiment, polyclonal antibodies can be prepared using phage display libraries, conventional in the art. In this method, a collection of bacteriophages displaying antibody properties on their surfaces are made to contact subject polypeptides, or fragments thereof. Bacteriophages displaying antibody properties that specifically recognize the subject polypeptides are selected, amplified, for example, in *E. coli*, and harvested. Such a method typically produces single chain antibodies

[0533] Monoclonal antibodies are also produced by conventional techniques, such as fusing an antibody-producing plasma cell with an immortal cell to produce hybridomas. Suitable animals will be used, e.g., to raise antibodies against a mouse polypeptide of the invention, the host animal will generally be a hamster, guinea pig, goat, chicken, or rabbit, and the like. Generally, the spleen and/or lymph nodes of an immunized host animal provide the source of plasma cells, which are immortalized by fusion with myeloma cells to produce hybridoma cells. Culture supernatants from individual hybridomas are screened using standard techniques to identify clones producing antibodies with the desired specificity. The antibody can be purified from the hybridoma cell supernatants or from ascites fluid present in the host by conventional techniques, e.g., affinity chromatography using antigen, e.g., the subject protein, bound to an insoluble support, i.e., protein A sepharose, etc.

[0534] The antibody can be produced as a single chain, instead of the normal multimeric structure of the immunoglobulin molecule. Single chain antibodies have been previously described (i.e., Jost et al., 1994). DNA sequences encoding parts of the immunoglobulin, for example, the variable region of the heavy chain and the variable region of the light chain are ligated to a spacer, such as one encoding at least about four small neutral amino acids, i.e., glycine or serine. The protein encoded by this fusion allows the assembly of a functional variable region that retains the specificity and affinity of the original antibody.

[0535] The invention also provides intrabodies that are intracellularly expressed single-chain antibody molecules designed to specifically bind and inactivate target molecules inside cells. Intrabodies have been used in cell assays and in whole organisms (Chen et al., 1994; Hassanzadeh et al., 1998). Inducible expression vectors can be constructed with intrabodies that react specifically with a protein of the invention. These vectors can be introduced into host cells and model organisms.

[0536] The invention also provides "artificial" antibodies, e.g., antibodies and antibody fragments produced and selected *in vitro*. In some embodiments, these antibodies are displayed on the surface of a bacteriophage or other viral particle, as described above. In other embodiments, artificial antibodies are present as fusion proteins with a viral or bacteriophage structural protein, including, but not limited to, M13 gene III protein. Methods of producing such artificial antibodies are well known in the art (U.S. Patent Nos. 5,516,637; 5,223,409; 5,658,727; 5,667,988; 5,498,538;

5,403,484; 5,571,698; and 5,625,033). The artificial antibodies, selected for example, on the basis of phage binding to selected antigens, can be fused to a Fc fragment of an immunoglobulin for use as a therapeutic, as described, for example, in US 5,116,964 or WO 99/61630. Antibodies of the invention can be used to modulate biological activity of cells, either directly or indirectly. A subject antibody can modulate the activity of a target cell, with which it has primary interaction, or it can modulate the activity of other cells by exerting secondary effects, i.e., when the primary targets interact or communicate with other cells. The antibodies of the invention can be administered to mammals, and the present invention includes such administration, particularly for therapeutic and/or diagnostic purposes in humans.

[0537] Antibodies may be administered by injection systemically, such as by intravenous injection; or by injection or application to the relevant site, such as by direct injection into a tumor, or direct application to the site when the site is exposed in surgery; or by topical application, such as if the disorder is on the skin, for example.

embodiments it is desirable to decrease the antigenicity of the antibody. An immune response of a recipient against the antibody may potentially decrease the period of time that the therapy is effective. Methods of humanizing antibodies are known in the art. The humanized antibody can be the product of an animal having transgenic human immunoglobulin genes, e.g., constant region genes (e.g., Grosveld and Kolias, 1992; Murphy and Carter, 1993; Pinkert, 1994; and International Patent Applications WO 90/10077 and WO 90/04036). Alternatively, the antibody of interest can be engineered by recombinant DNA techniques to substitute the CH1, CH2, CH3, hinge domains, and/or the framework domain with the corresponding human sequence (see, e.g., WO 92/02190). Both polyclonal and monoclonal antibodies made in non-human animals may be "humanized" before administration to human subjects.

[0539] Chimeric immunoglobulin genes constructed with immunoglobulin cDNA are known in the art (Liu et al. 1987a; Liu et al. 1987b). Messenger RNA is isolated from a hybridoma or other cell producing the antibody and used to produce cDNA. The cDNA of interest can be amplified by the polymerase chain reaction using specific primers (U.S. Patent nos. 4,683,195 and 4,683,202). Alternatively, a library is made and screened to isolate the sequence of interest. The DNA sequence encoding the variable region of the antibody is then fused to human constant region

sequences. The sequences of human constant regions genes are known in the art (Kabat et al., 1991). Human C region genes are readily available from known clones. The choice of isotype will be guided by the desired effector functions, such as complement fixation, or antibody-dependent cellular cytotoxicity. IgG1, IgG3 and IgG4 isotypes, and either of the kappa or lambda human light chain constant regions can be used. The chimeric, humanized antibody is then expressed by conventional methods.

- [0540] Consensus sequences of heavy ("H") and light ("L") J regions can be used to design oligonucleotides for use as primers to introduce useful restriction sites into the J region for subsequent linkage of V region segments to human C region segments. C region cDNA can be modified by site directed mutagenesis to place a restriction site at the analogous position in the human sequence.
- [0541] A convenient expression vector for producing antibodies is one that encodes a functionally complete human CH or CL immunoglobulin sequence, with appropriate restriction sites engineered so that any VH or VL sequence can be easily inserted and expressed, such as plasmids, retroviruses, YACs, or EBV derived episomes, and the like. In such vectors, splicing usually occurs between the splice donor site in the inserted J region and the splice acceptor site preceding the human C region, and also at the splice regions that occur within the human CH exons. Polyadenylation and transcription termination occur at native chromosomal sites downstream of the coding regions. The resulting chimeric antibody can be joined to any strong promoter, including retroviral LTRs, e.g., SV-40 early promoter, (Okayama, et al. 1983), Rous sarcoma virus LTR (Gorman et al. 1982), and Moloney murine leukemia virus LTR (Grosschedl et al. 1985), or native immunoglobulin promoters.
- [0542] In yet other embodiments, the antibodies can be fully human antibodies. For example, xenogenic antibodies, which are produced in animals that are transgenic for human antibody genes, can be employed. By xenogenic human antibodies is meant antibodies that are fully human antibodies, with the exception that they are produced in a non-human host that has been genetically engineered to express human antibodies. (e.g., WO 98/50433; WO 98,24893 and WO 99/53049).
- [0543] Antibody fragments, such as Fv, F(ab')2 and Fab can be prepared by cleavage of the intact protein, e.g., by protease or chemical cleavage. These fragments can include heavy and light chain variable regions. Alternatively, a

truncated gene can be designed, e.g., a chimeric gene encoding a portion of the F(ab')2 fragment that includes DNA sequences encoding the CH1 domain and hinge region of the H chain, followed by a translational stop codon. The antibodies of the present invention may be administered alone or in combination with other molecules for use as a therapeutic, for example, by linking the antibody to cytotoxic agent, as discussed above, or to a radioactive molecule. Radioactive antibodies that are specific to a cancer cell, disease cell, or virus-infected cell may be able to deliver a sufficient dose of radioactivity to kill such cancer cell, disease cell, or virus-infected cell. The antibodies of the present invention can also be used in assays for detection of the subject polypeptides. In some embodiments, the assay is a binding assay that detects binding of a polypeptide with an antibody specific for the polypeptide; the subject polypeptide or antibody can be immobilized, while the subject polypeptide and/or antibody can be detectably-labeled. For example, the antibody can be directly labeled or detected with a labeled secondary antibody. That is, suitable, detectable labels for antibodies include direct labels, which label the antibody to the protein of interest, and indirect labels, which label an antibody that recognizes the antibody to the protein of interest.

[0544] These labels include radioisotopes, including, but not limited to ⁶⁴Cu, ⁶⁷Cu, ⁹⁰Y, ¹²⁴I, ¹²⁵I, ¹³¹I, ¹³⁷Cs, ¹⁸⁶Re, ²¹¹At, ²¹²Bi, ²¹³Bi, ²²³Ra, ²⁴¹Am, and ²⁴⁴Cm; enzymes having detectable products (e.g., luciferase, β-galactosidase, and the like); fluorescers and fluorescent labels, e.g., as provided herein; fluorescence emitting metals, e.g., ¹⁵²Eu, or others of the lanthanide series, attached to the antibody through metal chelating groups such as EDTA; chemiluminescent compounds, e.g., luminol, isoluminol, or acridinium salts; and bioluminescent compounds, e.g., luciferin, or aequorin (green fluorescent protein), specific binding molecules, e.g., magnetic particles, microspheres, nanospheres, and the like.

[0545] Alternatively, specific-binding pairs may be used, involving, e.g., a second stage antibody or reagent that is detectably-labeled and that can amplify the signal. For example, a primary antibody can be conjugated to biotin, and horseradish peroxidase-conjugated strepavidin added as a second stage reagent. Digoxin and antidigoxin provide another such pair. In other embodiments, the secondary antibody can be conjugated to an enzyme such as peroxidase in combination with a substrate that undergoes a color change in the presence of the peroxidase. The absence or presence of antibody binding can be determined by various methods, including flow

cytometry of dissociated cells, microscopy, radiography, or scintillation counting. Such reagents and their methods of use are well known in the art.

e) Peptide Aptamers

[0546] Another suitable agent for modulating an activity of a subject polypeptide is a peptide aptamer. Peptide aptamers are peptides or small polypeptides that act as dominant inhibitors of protein function. Peptide aptamers specifically bind to target proteins, blocking their functional ability (Kolonin and Finley, 1998). Due to the highly selective nature of peptide aptamers, they can be used not only to target a specific protein, but also to target specific functions of a given protein (e.g., a signaling function). Further, peptide aptamers can be expressed in a controlled fashion by use of promoters which regulate expression in a temporal, spatial or inducible manner. Peptide aptamers act dominantly, therefore, they can be used to analyze proteins for which loss-of-function mutants are not available.

[0547] Peptide aptamers that bind with high affinity and specificity to a target protein can be isolated by a variety of techniques known in the art. Peptide aptamers can be isolated from random peptide libraries by yeast two-hybrid screens (Xu et al., 1997). They can also be isolated from phage libraries (Hoogenboom et al., 1998) or chemically generated peptides/libraries.

Therapeutic Applications: Methods of Use

[0548] The instant invention provides various therapeutic methods. In some embodiments, methods of modulating, including increasing and inhibiting, a biological activity of a subject protein are provided. In some embodiments, methods of modulating an enzymatic activity of a subject protein are provided. In some embodiments, methods of increasing the level of enzymatically active subject protein are provided, while in some embodiments, methods of decreasing a level of enzymatically active subject protein are provided.

[0549] In some embodiments, methods of modulating enzymatic activity of a subject protein are provided. In other embodiments, methods of modulating a signal transduction activity of a subject protein are provided. In further embodiments, methods of modulating interaction of a subject protein with another, interacting protein or other macromolecule (e.g., DNA, carbohydrate, lipid) are provided. In further embodiments, methods of modulating transport activity of a subject protein are provided. In further embodiments, methods of modulating phopholipase activity of a subject protein are provided. In further embodiments, methods of modulating

polymerase activity of a subject protein are provided. In further embodiments, methods of modulating nuclease activity of a subject protein are provided.

[0550] As mentioned above, an effective amount of the active agent (e.g., small molecule, antibody specific for a subject polypeptide, a subject polypeptide, or a subject polynucleotide) is administered to the host, where "effective amount" means a dosage sufficient to produce a desired effect or result. In some embodiments, the desired result is at least a reduction in a given biological activity of a subject polypeptide as compared to a control, for example, a decreased level of enzymatically active subject protein in the individual, or in a localized anatomical site in the individual. In further embodiments, the desired result is at least an increase in a biological activity of a subject polypeptide as compared to a control, for example an increased level of enzymatically active subject protein in the individual, or in a localized anatomical site in the individual.

[0551] Typically, the compositions of the instant invention will contain from less than about 1% to about 95% of the active ingredient, about 10% to about 50%. Generally, between about 100 mg and about 500 mg will be administered to a child and between about 500 mg and about 5 grams will be administered to an adult.

[0552] Other effective dosages can be readily determined by one of ordinary skill in the art through routine trials establishing dose response curves, for example, the amount of agent necessary to increase a level of active subject polypeptide can be calculated from *in vitro* experimentation. Those of skill will readily appreciate that dose levels can vary as a function of the specific compound, the severity of the symptoms, and the susceptibility of the subject to side effects, and preferred dosages for a given compound are readily determinable by those of skill in the art by a variety of means. For example, in order to calculate the polypeptide, polynucleotide, or modulator dose, those skilled in the art can use readily available information with respect to the amount necessary to have the desired effect, depending upon the particular agent used.

[0553] The active agent(s) can be administered to the host via any convenient means capable of resulting in the desired result. Administration is generally by injection and often by injection to a localized area. The frequency of administration will be determined by the care given based on patient responsiveness. For example, the agents may be administered daily, weekly, or as conventionally determined appropriate.

[0554] A variety of hosts are treatable according to the subject methods. The host, or patient, may be from any animal species, and will generally be mammalian, e.g., primate sp., e.g., monkeys, chimpanzees, and particularly humans; rodents, including mice, rats and hamsters, guinea pig; rabbits; cattle, including equines, bovines, pig, sheep, goat, canines; felines; etc. Animal models are of interest for experimental investigations, providing a model for treatment of human disease.

Proliferative Conditions

[0555] In some embodiments, a protein of the present invention is involved in the control of cell proliferation, and an agent of the invention inhibits undesirable cell proliferation. Such agents are useful for treating disorders that involve abnormal cell proliferation, including, but not limited to, cancer, psoriasis, and scleroderma. Whether a particular agent and/or therapeutic regimen of the invention is effective in reducing unwanted cellular proliferation, e.g., in the context of treating cancer, can be determined using standard methods. For example, the number of cancer cells in a biological sample (e.g., blood, a biopsy sample, and the like), can be determined. The tumor mass can be determined using standard radiological or biochemical methods.

[0556] Tumors that can be treated using the methods of the instant invention include carcinomas, e.g., colorectal, prostate, breast, bone, kidney, skin, melanoma, ductal, endometrial, stomach or other organ of the gastrointestinal tract, pancreatic, mesothelioma, dysplastic oral mucosa, invasive oral cancer, non-small cell lung carcinoma ("NSCL"), transitional and squamous cell urinary carcinoma; brain cancer and neurological malignancies, e.g., neuroblastoma, glioblastoma, astrocytoma, and gliomas; lymphomas and leukemias such as myeloid leukemia, myelogenous leukemia, hematological malignancies, such as childhood acute leukemia, non-Hodgkin's lymphomas, chronic lymphocytic leukemia, malignant cutaneous T-cell lymphoma, mycosis fungoides, non-MF cutaneous T-cell lymphoma, lymphomatoid papulosis, T-cell rich cutaneous lymphoid hyperplasia, bullous pemphigoid, discoid lupus erythematosus, lichen planus, and human follicular lymphoma; cancers of the reproductive system, e.g., cervical and ovarian cancers and testicular cancers; liver cancers including hepatocellular carcinoma ("HCC") and tumors of the biliary duct; multiple myelomas; tumors of the esophageal tract; other lung cancers and tumors including small cell and clear cell; Hodgkin's lymphomas; adenocarcinoma; and sarcomas, including soft tissue sarcomas.

Immunotherapeutic Approaches to Proliferative Conditions

[0557] The polynucleotides, polypeptides, and modulators of the present invention find use in immunotherapy of hyperproliferative disorders, including cancer, neoplastic, and paraneoplastic disorders. That is, the subject molecules can correspond to tumor antigens, of which 1770 have been identified to date (Yu and Restifo, 2002). Immunotherapeutic approaches include passive immunotherapy and vaccine therapy and can accomplish both generic and antigen-specific cancer immunotherapy.

[0558] Passive immunity approaches involve antibodies of the invention that are directed toward specific tumor-associated antigens. Such antibodies can eradicate systemic tumors at multiple sites, without eradicating normal cells. In some embodiments, the antibodies are combined with radioactive components, as provided above, for example, combining the antibody's ability to specifically target tumors with the added lethality of the radioisotope to the tumor DNA.

[0559] Useful antibodies comprise a discrete epitope or a combination of nested epitopes, i.e., a 10-mer epitope and associated peptide multimers incorporating all potential 8-mers and 9-mers, or overlapping epitopes (Dutoit et al., 2002). Thus a single antibody can interact with one or more epitopes. Further, the antibody can be used alone or in combination with different antibodies, that all recognize either a single or multiple epitopes.

[0560] Neutralizing antibodies can provide therapy for cancer and proliferative disorders. Neutralizing antibodies that specifically recognize a secreted protein or peptide of the invention can bind to the secreted protein or peptide, e.g., in a bodily fluid or the extracellular space, thereby modulating the biological activity of the secreted protein or peptide. For example, neutralizing antibodies specific for secreted proteins or peptides that play a role in stimulating the growth of cancer cells can be useful in modulating the growth of cancer cells. Similarly, neutralizing antibodies specific for secreted proteins or peptides that play a role in the differentiation of cancer cells can be useful in modulating the differentiation of cancer cells.

[0561] Vaccine therapy involves the use of polynucleotides, polypeptides, or agents of the invention as immunogens for tumor antigens (Machiels et al., 2002). For example, peptide-based vaccines of the invention include unmodified subject polypeptides, fragments thereof, and MHC class I and class II-restricted peptide

(Knutson et al., 2001), comprising, for example, the disclosed sequences with universal, nonspecific MHC class II-restricted epitopes. Peptide-based vaccines comprising a tumor antigen can be given directly, either alone or in conjunction with other molecules. The vaccines can also be delivered orally by producing the antigens in transgenic plants that can be subsequently ingested (U.S. Patent No. 6,395,964).

- [0562] In some embodiments, antibodies themselves can be used as antigens in anti-idiotype vaccines. That is, administering an antibody to a tumor antigen stimulates B cells to make antibodies to that antibody, which in turn recognize the tumor cells
- [0563] Nucleic acid-based vaccines can deliver tumor antigens as polynucleotide constructs encoding the antigen. Vaccines comprising genetic material, such as DNA or RNA, can be given directly, either alone or in conjunction with other molecules. Administration of a vaccine expressing a molecule of the invention, e.g., as plasmid DNA, leads to persistent expression and release of the therapeutic immunogen over a period of time, helping to control unwanted tumor growth.
- [0564] In some embodiments, nucleic acid-based vaccines encode subject antibodies. In such embodiments, the vaccines (e.g., DNA vaccines) can include post-transcriptional regulatory elements, such as the post-transcriptional regulatory acting RNA element (WPRE) derived from Woodchuck Hepatitis Virus. These post-transcriptional regulatory elements can be used to target the antibody, or a fusion protein comprising the antibody and a co-stimulatory molecule, to the tumor microenvironment (Pertl et al., 2003).
- [0565] Besides stimulating anti-tumor immune responses by inducing humoral responses, vaccines of the invention can also induce cellular responses, including stimulating T-cells that recognize and kill tumor cells directly. For example, nucleotide-based vaccines of the invention encoding tumor antigens can be used to activate the CD8⁺ cytotoxic T lymphocyte arm of the immune system.
- [0566] In some embodiments, the vaccines activate T-cells directly, and in others they enlist antigen-presenting cells to activate T-cells. Killer T-cells are primed, in part, by interacting with antigen-presenting cells, i.e., dendritic cells. In some embodiments, plasmids comprising the nucleic acid molecules of the invention enter antigen-presenting cells, which in turn display the encoded tumor-antigens that

contribute to killer T-cell activation. Again, the tumor antigens can be delivered as plasmid DNA constructs, either alone or with other molecules.

[0567] In further embodiments, RNA can be used. For example, dendritic cells can be transfected with RNA encoding tumor antigens (Heiser et al., 2002; Mitchell and Nair, 2000). This approach overcomes the limitations of obtaining sufficient quantities of tumor material, extending therapy to patients otherwise excluded from clinical trials. For example, a subject RNA molecule isolated from tumors can be amplified using RT-PCR. In some embodiments, the RNA molecule of the invention is directly isolated from tumors and transfected into dendritic cells with no intervening cloning steps.

[0568] In some embodiments the molecules of the invention are altered such that the peptide antigens are more highly antigenic than in their native state. These embodiments address the need in the art to overcome the poor *in vivo* immunogenicity of most tumor antigens by enhancing tumor antigen immunogenicity via modification of epitope sequences (Yu and Restifo, 2002).

[0569] Another recognized problem of cancer vaccines is the presence of preexisting neutralizing antibodies. Some embodiments of the present invention overcome this problem by using viral vectors from non-mammalian natural hosts, i.e., avian pox viruses. Alternative embodiments that also circumvent preexisting neutralizing antibodies include genetically engineered influenza viruses, and the use of "naked" plasmid DNA vaccines that contain DNA with no associated protein. (Yu and Restifo, 2002).

[0570] All of the immunogenic methods of the invention can be used alone or in combination with other conventional or unconventional therapies. For example, immunogenic molecules can be combined with other molecules that have a variety of antiproliferative effects, or with additional substances that help stimulate the immune response, i.e., adjuvants or cytokines.

[0571] For example, in some embodiments, nucleic acid vaccines encode an alphaviral replicase enzyme, in addition to tumor antigens. This recently discovered approach to vaccine therapy successfully combines therapeutic antigen production with the induction of the apoptotic death of the tumor cell (Yu and Restifo, 2002).

[0572] In certain other embodiments, a DNA or RNA vaccine of the present invention can also be directed against the production of blood vessels in the vicinity of the tumor, a process called antiangiogenesis, thereby depriving the cancer cells of

nutrients. For example, the antiangiogenic molecules angiostatin (a fragment of plasminogen), endostatin (a fragment of collagen XVIII), interferon-γ, interferon-γ inducible protein 10, interleukin 12, thrombospondin, platelet factor-4, calreticulin, or its protein fragment vasostatin can be used to treat tumors by suppressing neovascularization and thereby inhibiting growth (Cheng et al., 2001). The antiangiogenesis approach can be used alone, or in conjunction with molecules directed to tumor antigens.

[0573] Furthermore, adjuvants can be used in conjunction with the antibodies and vaccines disclosed herein. Adjuvants help boost the general immune response, for example, concentrating immune cells to the specific area where they are needed. They can be added to a cancer vaccine itself or administered separately, and in some embodiments, a viral vector can be engineered to display adjuvant proteins on its surface.

[0574] Cytokines can also be used to help stimulate immune response. Cytokines act as chemical messengers, recruiting immune cells that help the killer T-cells to the site of attack. An example of a cytokine is granulocyte-macrophage colony-stimulating factor (GM-CSF), which stimulates the proliferation of antigen-presenting cells, thus boosting an organism's response to a cancer vaccine. As with adjuvants, cytokines can be used in conjunction with the antibodies and vaccines disclosed herein. For example, they can be incorporated into the antigen-encoding plasmid or introduced via a separate plasmid, and in some embodiments, a viral vector can be engineered to display cytokines on its surface.

Inflammation and Immunity

[0575] In other embodiments, e.g., where the subject polypeptide is involved in modulating inflammation or immune function, the invention provides agents for treating such inflammation or immune disorders. Disease states that are treatable using formulations of the invention include various types of arthritis such as rheumatoid arthritis and osteoarthritis, autoimmune thyroiditis, various chronic inflammatory conditions of the skin, such as psoriasis, the intestine, such as inflammatory bowel disease (IBD), insulin-dependent diabetes, autoimmune diseases such as multiple sclerosis (MS), intestinal immune disorders and systemic lupus erythematosis (SLE), allergic diseases, transplant rejections, adult respiratory distress syndrome, atherosclerosis, ischemic diseases due to closure of the peripheral

vasculature, cardiac vasculature, and vasculature in the central nervous system (CNS). After reading the present disclosure, those skilled in the art will recognize other disease states and/or symptoms which might be treated and/or mitigated by the administration of formulations of the present invention.

[0576] Neutralizing antibodies can provide immunosuppressive therapy for inflammatory and autoimmune disorders. Neutralizing antibodies can be used to treat disorders such as, for example, multiple sclerosis, rheumatoid arthritis, inflammatory bowel disease, transplant rejection, and psoriasis. Neutralizing antibodies that specifically recognize a secreted protein or peptide of the invention can bind to the secreted protein or peptide, e.g., in a bodily fluid or the extracellular space, thereby modulating the biological activity of the secreted protein or peptide. For example, neutralizing antibodies specific for secreted proteins or peptides that play a role in activating immune cells are useful as immunosuppressants.

Disorders Related to Cell Death

[0577] Where a polypeptide of the invention is involved in modulating cell death, an agent of the invention is useful for treating conditions or disorders relating to cell death (e.g., DNA damage, cell death, apoptosis). Cell death-related indications that can be treated using the methods of the invention to reduce cell death in a eukaryotic cell, include, but are not limited to, cell death associated with Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, autoimmune thyroiditis, septic shock, sepsis, stroke, central nervous system inflammation, intestinal inflammation, osteoporosis, ischemia, reperfusion injury, cardiac muscle cell death associated with cardiovascular disease, polycystic kidney disease, cell death of endothelial cells in cardiovascular disease, degenerative liver disease, multiple sclerosis, amyotropic lateral sclerosis, cerebellar degeneration, ischemic injury, cerebral infarction, myocardial infarction, acquired immunodeficiency syndrome (AIDS), myelodysplastic syndromes, aplastic anemia, male pattern baldness, and head injury damage. Also included are conditions in which DNA damage to a cell is induced by external conditions, including but not limited to irradiation, radiomimetic drugs, hypoxic injury, chemical injury, and damage by free radicals. Also included are any hypoxic or anoxic conditions, e.g., conditions relating to or resulting from ischemia, myocardial infarction, cerebral infarction, stroke, bypass heart surgery, organ transplantation, and neuronal damage, etc.

[0578] DNA damage can be detected using any known method, including, but not limited to, a Comet assay (commercially available from Trevigen, Inc.), which is based on alkaline lysis of labile DNA at sites of damage; and immunological assays using antibodies specific for aberrant DNA structures, e.g., 8-OHdG.

[0579] Cell death can be measured using any known method, and is generally measured using any of a variety of known methods for measuring cell viability. Such assays are generally based on entry into the cell of a detectable compound (or a compound that becomes detectable upon interacting with, or being acted on by, an intracellular component) that would normally be excluded from a normal, living cell by its structurally and functionally intact cell membrane. Such compounds include substrates for intracellular enzymes, including, but not limited to, a fluorescent substrate for esterase; dyes that are excluded from living cells, including, but not limited to, trypan blue; and DNA-binding compounds, including, but not limited to, an ethidium compound such as ethidium bromide and ethidium homodimer, and propidium iodide.

[0580] Apoptosis, or programmed cell death, is a regulated process leading to cell death via a series of well-defined morphological changes. Programmed cell death provides a balance for cell growth and multiplication, eliminating unnecessary cells. The default state of the cell is to remain alive. A cell enters the apoptotic pathway when an essential factor is removed from the extracellular environment or when an internal signal is activated. Genes and proteins of the invention that suppress the growth of tumors by activating cell death provide the basis for treatment strategies for hyperproliferative disorders and conditions.

[0581] Apoptosis can be assayed using any known method. Assays can be conducted on cell populations or an individual cell, and include morphological assays and biochemical assays. A non-limiting example of a method of determining the level of apoptosis in a cell population is TUNEL (TdT-mediated dUTP nick-end labeling) labeling of the 3'-OH free end of DNA fragments produced during apoptosis (Gavrieli et al., 1992). The TUNEL method consists of catalytically adding a nucleotide, which has been conjugated to a chromogen system, a fluorescent tag, or the 3'-OH end of the 180-bp (base pair) oligomer DNA fragments, in order to detect the fragments. The presence of a DNA ladder of 180-bp oligomers is indicative of apoptosis. Procedures to detect cell death based on the TUNEL method are available

commercially, e.g., from Boehringer Mannheim (Cell Death Kit) and Oncor (Apoptag Plus).

[0582] Another marker that is currently available is annexin, sold under the trademark APOPTESTTM. This marker is used in the "Apoptosis Detection Kit," which is also commercially available, e.g., from R&D Systems. During apoptosis, a cell membrane's phospholipid asymmetry changes such that the phospholipids are exposed on the outer membrane. Annexins are a homologous group of proteins that bind phospholipids in the presence of calcium. A second reagent, propidium iodide (PI), is a DNA binding fluorochrome. When a cell population is exposed to both reagents, apoptotic cells stain positive for annexin and negative for PI, necrotic cells stain positive for both, live cells stain negative for both. Other methods of testing for apoptosis are known in the art and can be used, including, e.g., the method disclosed in U.S. Patent No. 6,048,703.

Other Pathological Conditions

[0583] Other pathological conditions that can be treated using the methods of the instant invention include disorders of hematopoeisis, cell differentiation, disorders of ion channels, e.g., cystic fibrosis, and tissue or organ hypertrophy, bacterial disorders, viral disorders, including acquired immunodeficiency syndrome (AIDS), angiogenesis, metastasis, metabolic disorders such as diabetes and obesity, cardiovascular disorders such as congestive heart failure and stroke, male erectile dysfunction, and the disorders described throughout the specification.

Investigative Applications

[0584] The subject nucleic acid compositions find use in a variety of different investigative applications. Applications of interest include identifying genomic DNA sequence using molecules of the invention, identifying homologs of molecules of the invention, creating a source of novel promoter elements, identifying expression regulatory factors, creating a source of probes and primers for hybridization applications, identifying expression patterns in biological specimens; preparing cell or animal models to investigate the function of the molecules of the invention, and preparing *in vitro* models to investigate the function of the molecules of the invention.

Genomic DNA Sequences

[0585] Human genomic polynucleotide sequences corresponding to molecules of the present invention are identified by conventional means, such as, for

example, by probing a genomic DNA library with all or a portion of the polynucleotide sequences.

Homologs

[0586] Homologs are identified by any of a number of methods. By using probes, particularly labeled probes of DNA sequences, one can isolate homologous or related genes, as described in detail above. Briefly, a fragment of the provided cDNA can be used as a hybridization probe against a cDNA library from the target organism of interest, under various stringency conditions, e.g., low stringency conditions. The probe can be a large fragment, or one or more short degenerate primers, and is typically labeled. Sequence identity can be determined by hybridization under stringent conditions, as described in detail above. Nucleic acids having a region of substantial identity or sequence similarity to the provided nucleic acid sequences, for example allelic variants, related genes, or genetically altered versions of the gene, bind to the provided sequences under less stringent hybridization conditions.

Promoter Elements and Expression Regulatory Factors

[0587] The sequence of the 5' flanking region can be utilized as promoter elements, including enhancer binding sites that provide for tissue-specific expression and developmental regulation in tissues where the subject genes are expressed, providing promoters that mimic the native pattern of expression. Naturally occurring polymorphisms in the promoter region are useful for determining natural variations in expression, particularly those that may be associated with disease. Promoters or enhancers that regulate the transcription of the polynucleotides of the present invention are obtainable by use of PCR techniques using human tissues, and one or more of the present primers.

[0588] Alternatively, mutations can be introduced into the promoter region to determine the effect of altering expression in experimentally defined systems. Methods for the identification of specific DNA motifs involved in the binding of transcriptional factors are known in the art, for example sequence similarity to known binding motifs, and gel retardation studies (Blackwell et al., 1995; Mortlock et al., 1996; Joulin and Richard-Foy, 1995).

[0589] The regulatory sequences can be used to identify *cis* acting sequences required for transcriptional or translational regulation of expression, especially in different tissues or stages of development, and to identify *cis* acting sequences and *trans*-acting factors that regulate or mediate expression. Such transcription or

translational control regions can be operably linked to a gene in order to promote expression of wild type genes or of proteins of interest in cultured cells, embryonic, fetal or adult tissues, and for gene therapy (Hooper, 1993).

Primers and Probes

[0590] Small DNA fragments are useful as primers for reactions that involve nucleic acid hybridization, as described in detail above. Briefly, pairs of primers will be used in amplification reactions, such as PCR. Amplification primers hybridize to complementary strands of DNA, for example, under stringent conditions, and will prime towards each other. In some embodiments a pair of primers will generate an amplification product of at least about 50 nt, or at least about 100 nt. Algorithms for the selection of primer sequences are generally known, and are available in commercial software packages.

[0591] The nucleotides can also be used as probes to identify genomic DNA or gene expression in a biological specimen, as described above and as is well established in the art. Briefly, DNA or mRNA is isolated from a cell sample. Detection of mRNA hybridizing to the subject sequence is indicative of gene expression in the sample. The mRNA can be amplified by RT-PCR, using reverse transcriptase to form a complementary DNA strand, followed by polymerase chain reaction amplification using primers specific for the subject DNA sequences. Alternatively, the mRNA sample is separated by gel electrophoresis, transferred to a suitable support, *e.g.*, nitrocellulose, nylon, *etc.*, and then probed with a fragment of the subject nucleotides as a probe. Other techniques, such as oligonucleotide ligation assays, *in situ* hybridizations, and hybridization to probes arrayed on a solid chip may also find use.

Targeted Mutations for In Vivo and In Vitro Models

[0592] The sequence of a gene according to the subject invention, including flanking promoter regions and coding regions, can be mutated in various ways known in the art to generate targeted changes, i.e., changes in promoter strength, or sequence of the encoded protein, etc. The DNA sequence or protein product of such a mutation will usually be substantially similar to the sequences provided herein. The sequence changes can be substitutions, insertions, deletions, or a combination thereof.

Deletions can further include larger changes, such as deletions of a domain or exon.

[0593] Techniques for *in vitro* mutagenesis of cloned genes are known. Examples of protocols for site specific mutagenesis may be found in Gustin et al.,

1993; Barany 1985; Colicelli et al., 1985; Prentki et al., 1984. Methods for site specific mutagenesis can be found in Sambrook et al., 1989 (pp. 15.3-15.108); Weiner et al., 1993; Sayers et al. 1992; Jones and Winistorfer; Barton et al., 1990; Marotti and Tomich 1989; and Zhu, 1989. Such mutated genes can be used to study structure-function relationships of the subject proteins, or to alter properties of the protein that affect its function or regulation. Other modifications of interest include epitope tagging, e.g., with hemagglutinin (HA), FLAG, or c-myc. For studies of subcellular localization, fluorescent fusion proteins can be used.

[0594] The subject nucleic acids can be used to generate transgenic, nonhuman animals and/or site-specific gene modifications in cell lines; suitable methods are known in the art (Grosveld and Kollias, 1992; Hooper, 1993; Murphy and Carter, 1993; Pinkert, 1994). Thus, in some embodiments, the invention provides a nonhuman transgenic animal comprising, as a transgene integrated into the genome of the animal, a nucleic acid molecule comprising a sequence encoding a subject polypeptide in operable linkage with a promoter, such that the subject polypeptideencoding nucleic acid molecule is expressed in a cell of the animal. Either a complete or partial sequence of a gene native to the host can be introduced. Alternatively, a complete or partial sequence of a gene exogenous to the host animal, e.g., a human sequence of the subject invention, can be introduced. Transgenic animals can be made through homologous recombination, where the endogenous locus is altered. Thus, DNA constructs for homologous recombination will comprise at least a portion of the human gene or of a gene native to the species of the host animal, wherein the gene has the desired genetic modification(s), and includes regions of homology to the target locus. Methods for generating mammalian cells having targeted gene modifications through homologous recombination are known in the art (Keown et al., 1990).

[0595] Alternatively, a nucleic acid construct is randomly integrated into the genome. Vectors for stable integration include plasmids, retroviruses and other animal viruses, and YACs. DNA constructs for random integration need not include regions of homology to mediate recombination.

[0596] Conveniently, markers for positive and negative selection are included. A detectable marker, such as $lac\ Z$ can be introduced into a locus at which up-regulation of expression will result in a detectable change in phenotype.

transgenic animals. An embryonic stem (ES) cell line can be a source of embryonic stem cells, or they can be newly obtained from a host animal, e.g., a mouse, rat, or guinea pig. The cells are grown on an appropriate fibroblast-feeder layer or in the presence of leukemia inhibiting factor (LIF). Following transformation, the cells are plated for growth onto a feeder layer in an appropriate medium. Cells containing the relevant construct can be detected by employing a selective medium and analyzing them for the occurrence of homologous recombination or integration of the construct. Positive colonies can be used for embryo manipulation and blastocyst injection. Blastocysts are obtained from 4 to 6 week old super-ovulated females. The ES cells are trypsinized, and the modified cells are injected into the blastocoel of the blastocyst. After injection, the blastocysts are returned to each uterine horn of pseudopregnant female animals that proceed to term. The resulting offspring are screened for the construct. By providing for a different phenotype of the blastocyst and the genetically modified cells, chimeric progeny can be readily detected.

[0598] The chimeric animals are screened for the presence of the modified gene and males and females having the modification are mated to produce homozygous progeny. If the gene alterations cause lethality at some point in development, tissues or organs can be maintained as allogeneic or congenic grafts or transplants, or in *in vitro* culture. The transgenic animals can be any non-human mammal.

[0599] The modified cells or animals are useful in the study of gene function and regulation. For example, a series of small deletions and/or substitutions can be made in the host's native gene to determine the role of different exons in biological processes such as oncogenesis or signal transduction. Of interest is the use of genes to construct transgenic animal models for cancer, where expression of the subject protein is specifically reduced or absent. Specific constructs of interest include anti-sense constructs, which will block expression, expression of dominant negative mutations, and gene over-expression.

[0600] One can also provide for expression of the gene, e.g., a subject gene, or variants thereof, in cells or tissues where it is not normally expressed, at levels not normally present in such cells or tissues, or at abnormal times of development. One can also generate host cells (including host cells in transgenic animals) that comprise a heterologous nucleic acid molecule which encodes a polypeptide which functions to

modulate expression of an endogenous promoter or other transcriptional regulatory region, or the biological activity of a subject polypeptide.

[0601] The transgenic animals can also be used in functional studies, for example drug screening, to determine the effect of a candidate drug on a biological activity of a subject polypeptide.

Table 1. Characteristics of the Fantom Mouse Protein With the Highest Degree of Similarity to the Claimed Sequences

FP ID	Fantom Top Hit Annotation
HG1000214N0_160000_gene_predictio	
n1 "	pre-B lymphocyte gene 1 [Mus musculus]
HG1000323N0_160000_gene_predictio	1
	lipoprotein lipase [Mus musculus]
HG1000323N0_160000_gene_prediction2	similar to procollagen, type V, alpha 2 [Mus musculus]
HG1000327N0_1000_gene_prediction1	unnamed protein product [Mus musculus]
HG1000327N0_160000_gene_prediction1	unnamed protein product [Mus musculus]
HG1000434N0_160000_gene_prediction1	uromodulin; Tamm-Horsfall glycoprotein [Mus musculus]
HG1000449N0_160000_gene_prediction1	trefoil factor 1 [Mus musculus]
HG1000807N0_160000_gene_prediction1	IGFBP-like protein [Mus musculus]
HG1000807N0 5000 gene prediction1	gi 9055246 ref NP_061211.1 IGFBP-like protein [Mus musculus]
HG1001280N0_160000_gene_prediction1	gi 26336763 dbj BAC32064.1 unnamed protein product [Mus musculus]
HG1000193N0_160000_gene_prediction1	gi 21595011 gb AAH31409.1 RIKEN cDNA 2410030O07 gene [Mus musculus]
HG1000286N0_160000_gene_prediction1	gi 303678 dbj BAA02298.1 47-kDa heat shock protein [Mus musculus]
HG1000569N0_160000_gene_prediction1	gi 20881983 ref XP_122793.1 similar to heat- stable antigen-related hypothetical protein HSA-C - mouse [Mus musculus]
HG1000992N0_160000_gene_prediction1	gi 26331916 dbj BAC29688.1 unnamed protein product [Mus musculus]
HG1001148N0_160000_gene_prediction1	gi 6752962 ref NP_033744.1 a disintegrin and metalloprotease domain 15 (metargidin); a disintegrin and metalloproteinase domain (ADAM) 15 (metargidin) [Mus musculus]
HG1001185N0_160000_gene_prediction2	gi 26329785 dbj BAC28631.1 unnamed protein product [Mus musculus]
HG1001280N0_5000_gene_prediction1	gi 26336763 dbj BAC32064.1 unnamed protein product [Mus musculus]
HG1001302N0_160000_gene_prediction2	gi 20136122 gb AAM11539.1 matrilin-2 [Mus musculus]
HG1000361N0_160000_gene_prediction1	gi 20867549 ref XP_125932.1 RIKEN cDNA 9030421L11 [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1000361N0 20000 gene prediction	gi 26330472 dbj BAC28966.1 unnamed protein
1	product [Mus musculus]
HG1000792N0 160000 gene predictio	gi 27229118 ref NP_082129.2 RIKEN cDNA
n1	0610006F02 [Mus musculus]
HG1000934N0 160000 gene predictio	gi 20867549 ref XP_125932.1 RIKEN cDNA
n1	9030421L11 [Mus musculus]
	gi 11967965 ref NP_071879.1 cytochrome
	P450, subfamily IVF, polypeptide 14
	(leukotriene B4 omega hydroxylase) [Mus
	musculus]
HG1000992N0_10000_gene_prediction	gi 26331916 dbj BAC29688.1 unnamed protein
1	product [Mus musculus]
	gi 26329785 dbj BAC28631.1 unnamed protein
	product [Mus musculus]
HG1001185N0_160000_gene_predictio	gi 26329785 dbj BAC28631.1 unnamed protein
n1	product [Mus musculus]
	gi 26329785 dbj BAC28631.1 unnamed protein
HG1001185N0_1000_gene_prediction2	product [Mus musculus]
	gi 26329785 dbj BAC28631.1 unnamed protein
HG1001185N0_5000_gene_prediction1	product [Mus musculus]
HG1001280N0_10000_gene_prediction	gi 26336763 dbj BAC32064.1 unnamed protein
1	product [Mus musculus]
HG1000361N0_10000_gene_prediction	gi 26330472 dbj BAC28966.1 unnamed protein
1	product [Mus musculus]
	gi 26343077 dbj BAC35195.1 unnamed protein
HG1001381N0_1000_gene_prediction1	product [Mus musculus]
	gi 26360198 dbj BAB25612.2 unnamed protein
HG1000263N0_5000_gene_prediction1	product [Mus musculus]
	gi 20072693 gb AAH27297.1 Similar to cyclin
HG1001052N0_0_gene_prediction1	K [Mus musculus]
HG1000498N0_160000_gene_predictio	gi 26352844 dbj BAC40052.1 unnamed protein
n1	product [Mus musculus]
HG1000579N0_160000_gene_predictio	gi 26330550 dbj BAC29005.1 unnamed protein
n1	product [Mus musculus]
	gi 6753236 ref NP_033915.1 calcium channel,
HG1000685N0_160000_gene_predictio	voltage dependent, alpha2/delta subunit 3;
n1	alpha 2 delta-3 [Mus musculus]
HG1000191N0_160000_gene_predictio	
n1	1810055D05 [Mus musculus]
HG1000296N0_160000_gene_predictio	
n2	type 9B [Mus musculus]
	gi 26330504 dbj BAC28982.1 unnamed protein
HG1000346N0_1000_gene_prediction1	
HG1000963N0_5000_gene_prediction1	gi 12963665 ref NP 075892.1 mesoderm

FP ID	Fantom Top Hit Annotation
	development candiate 2; RIKEN cDNA
,	2210015O11 gene [Mus musculus]
HG1000610N0_160000_gene_prediction	gi 26335037 dbj BAC31219.1 unnamed protein product [Mus musculus]
HG1000342N0_160000_gene_prediction1	gi 20881983 ref XP_122793.1 similar to heat- stable antigen-related hypothetical protein HSA-C - mouse [Mus musculus]
HG1000342N0_160000_gene_prediction2	gi 20881983 ref XP_122793.1 similar to heat- stable antigen-related hypothetical protein HSA-C - mouse [Mus musculus]
HG1000650N0_20000_gene_prediction	gi 20270210 ref NP_083847.1 RIKEN cDNA 1110001A12 [Mus musculus]
HG1000191N0_160000_gene_prediction2	gi 13385832 ref NP_080608.1 RIKEN cDNA 1810055D05 [Mus musculus]
n3	gi 6755773 ref NP_035705.1 trefoil factor 3, intestinal [Mus musculus]
HG1000181N0_20000_gene_prediction	gi 26334755 dbj BAC31078.1 unnamed protein product [Mus musculus]
HG1001058N0_160000_gene_prediction1	gi 20344262 ref XP_110959.1 similar to LD31582p [Drosophila melanogaster] [Mus musculus]
HG1000187N0_160000_gene_predictio n2	product [Mus musculus]
HG1000191N0_1000_gene_prediction1	gi 13385832 ref NP_080608.1 RIKEN cDNA 1810055D05 [Mus musculus]
HG1000319N0_160000_gene_prediction1	gi 25021456 ref XP_207950.1 similar to pORF2 [Mus musculus domesticus]
HG1000137N0_0_gene_prediction1	gi 20843789 ref XP_133814.1 similar to hypothetical protein IMAGE3455200 [Homo sapiens] [Mus musculus]
HG1000191N0_5000_gene_prediction1	gi 12842346 dbj BAB25565.1 unnamed protein product [Mus musculus]
HG1000622N0_160000_gene_prediction1	gi 25022040 ref XP_204233.1 similar to ORF2 [Mus musculus domesticus]
HG1000390N0_1000_gene_prediction1	gi 20892585 ref XP_147977.1 RIKEN cDNA 2610001E17 [Mus musculus]
HG1001350N0_5000_gene_prediction1	gi 13386102 ref NP_080892.1 RIKEN cDNA 1500026D16 [Mus musculus]
HG1000327N0_160000_gene_prediction2	gi 26324414 dbj BAC25961.1 unnamed protein product [Mus musculus]
HG1000179N0_160000_gene_prediction1	gi 20862121 ref XP_146270.1 similar to putative alpha 1,3-fucosyl transferase [Mus musculus]
HG1000806N0 20000 gene prediction	gi 23592855 ref XP 129487.2 hypothetical

FP ID	Fantom Top Hit Annotation
1	protein MGC40674 [Mus musculus]
HG1000991N0_160000_gene_prediction1	gi 6755338 ref NP_036013.1 ring finger protein 13 [Mus musculus]
HG1001489N0_20000_gene_prediction	gi 23592855 ref XP_129487.2 hypothetical protein MGC40674 [Mus musculus]
HG1001038N0 5000 gene prediction1	gi 20892051 ref XP_148657.1 similar to Lethal(2)neighbour of tid protein 2 (NOT53) [Mus musculus]
HG1001376N0_160000_gene_predictio n2	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]
HG1001376N0_20000_gene_prediction 2	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]
HG1001478N0_10000_gene_prediction	musculus]
n1	gi 23592855 ref XP_129487.2 hypothetical protein MGC40674 [Mus musculus]
HG1000409N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000884N0_160000_gene_prediction1	product [Mus musculus]
HG1000575N0_160000_gene_prediction1	gi 20889984 ref XP_129281.1 RIKEN cDNA 4930538D17 [Mus musculus]
HG1000403N0_160000_gene_prediction1	gi 26340168 dbj BAC33747.1 unnamed protein product [Mus musculus]
HG1000906N0_10000_gene_prediction	gi 20836822 ref XP_130277.1 similar to Plakophilin 4 (p0071) [Mus musculus]
HG1001201N0_160000_gene_prediction1	gi 26341746 dbj BAC34535.1 unnamed protein product [Mus musculus]
HG1000485N0_160000_gene_prediction1	gi 23597904 ref XP_129263.2 protein phosphatase 1, regulatory (inhibitor) subunit 3C [Mus musculus]
HG1000328N0_160000_gene_prediction1	gi 26336731 dbj BAC32048.1 unnamed protein product [Mus musculus]
HG1000231N0_160000_gene_prediction1	gi 26341312 dbj BAC34318.1 unnamed protein product [Mus musculus]
	gi 26346593 dbj BAC36945.1 unnamed protein product [Mus musculus]
TICIONOSCNO 5000 cono prodiction1	gi 9506367 ref NP_062425.1 ATP-binding cassette, sub-family B, member 10; ATP-binding cassette, sub-family B (MDR/TAP), member 12; Abc-mitochondrial erythroid [Mus musculus]
HG100026N0_5000_gene_prediction1	4
HG1000300N0 160000 gene prediction	gi 12846244 dbi BAB27089.1 unnamed protein

FP ID	Fantom Top Hit Annotation
n1	product [Mus musculus]
	gi 22779909 ref NP_690028.1 RIKEN cDNA 2700083B01 [Mus musculus]
HG1000617N0_20000_gene_prediction	gi 7949115 ref NP_058079.1 Ser/Arg-related nuclear matrix protein; plenty-of-prolines-101; serine/arginine repetitive matrix protein 1 [Mus musculus]
HG1001110N0_160000_gene_prediction1	gi 22779909 ref NP_690028.1 RIKEN cDNA 2700083B01 [Mus musculus]
HG1001334N0_160000_gene_prediction1	gi 26332062 dbj BAC29761.1 unnamed protein product [Mus musculus]
HG1001376N0_160000_gene_prediction3	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]
HG1000026N0_20000_gene_prediction	gi 9506367 ref NP_062425.1 ATP-binding cassette, sub-family B, member 10; ATP-binding cassette, sub-family B (MDR/TAP), member 12; Abc-mitochondrial erythroid [Mus musculus]
HG1000276N0 1000 gene_prediction1	gi 19527228 ref NP_598768.1 DNA segment, Chr 10, ERATO Doi 214, expressed [Mus musculus]
HG1000822N0_160000_gene_prediction2	gi 6680195 ref NP_032255.1 histone deacetylase 2; DNA segment, Chr 10, Wayne State University 179, expressed [Mus musculus]
HG1000173N0_20000_gene_prediction	gi 26345110 dbj BAC36204.1 unnamed protein product [Mus musculus]
HG1000834N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001044N0_1000_gene_prediction1	gi 26330836 dbj BAC29148.1 unnamed protein product [Mus musculus]
HG1000299N0_1000_gene_prediction1	gi 6753882 ref NP_034349.1 FK506 binding protein 4 (59 kDa) [Mus musculus]
	gi 25955698 gb AAH40387.1 Similar to PTPL1-associated RhoGAP 1 [Mus musculus]
HG1000839N0_160000_gene_prediction2	gi 17512422 gb AAH19171.1 Similar to RIKEN cDNA 2310010G13 gene [Mus musculus]
HG1000659N0_160000_gene_prediction1	gi 26333733 dbj BAC30584.1 unnamed protein product [Mus musculus]
HG1000659N0_160000_gene_prediction	gi 26333733 dbj BAC30584.1 unnamed protein product [Mus musculus]
	gi 20881136 ref XP_126284.1 similar to sperm antigen HCMOGT-1 [Homo sapiens] [Mus

FP ID	Fantom Top Hit Annotation
	musculus]
HG1000173N0_160000_gene_predictio n1	gi 26345110 dbj BAC36204.1 unnamed protein product [Mus musculus]
HG1000330N0_160000_gene_prediction1	gi 27462832 gb AAO15605.1 AF462146_1 modulator of estrogen induced transcription [Mus musculus]
HG1000360N0_20000_gene_prediction	gi 7861746 gb AAF70384.1 AF189263_1 GABA-A receptor epsilon-like subunit [Mus musculus]
HG1000178N0_10000_gene_prediction	gi 13384830 ref NP_079706.1 RIKEN cDNA 1110066C01 [Mus musculus]
HG1000178N0_10000_gene_prediction 2	gi 13384830 ref NP_079706.1 RIKEN cDNA 1110066C01 [Mus musculus]
HG1000360N0_20000_gene_prediction 2	gi 7861746 gb AAF70384.1 AF189263_1 GABA-A receptor epsilon-like subunit [Mus musculus]
HG1000640N0_160000_gene_prediction1	gi 21313034 ref NP_080346.1 RIKEN cDNA 2900091E11 [Mus musculus]
HG1001000N0_160000_gene_prediction1	gi 10181212 ref NP_065613.1 RIKEN cDNA 1300007B12; clone MNCb-2755 [Mus musculus]
HG1001418N0_160000_gene_prediction1	gi 20819462 ref XP_158058.1 hypothetical protein XP_158058 [Mus musculus]
HG1000153N0_20000_gene_prediction	gi 26379523 dbj BAB29070.2 unnamed protein product [Mus musculus]
HG1000255N0_160000_gene_prediction1	gi 13385532 ref NP_080303.1 RIKEN cDNA 2700086I23 [Mus musculus]
HG1000186N0_160000_gene_prediction1	gi 20963196 ref XP_135684.1 RIKEN cDNA 1700022L20 [Mus musculus]
HG1000259N0_160000_gene_prediction1	gi 26360198 dbj BAB25612.2 unnamed protein product [Mus musculus]
HG1000559N0_10000_gene_prediction	
HG1000084N0_10000_gene_prediction	gi 6678794 ref NP_032953.1 mitogen activated protein kinase kinase 1; MAP kinase kinase 1; protein kinase, mitogen activated, kinase 1, p45 [Mus musculus]
HG1000217N0_160000_gene_prediction1	gi 6681015 ref NP_031789.1 cysteine rich intestinal protein [Mus musculus]
HG1000217N0_160000_gene_prediction2	gi 6681015 ref NP_031789.1 cysteine rich intestinal protein [Mus musculus]
	gi 26330870 dbj BAC29165.1 unnamed protein product [Mus musculus]
	gi 6716522 gb AAF26675.1 AF155821 1

FP ID	Fantom Top Hit Annotation
n1	CPG16 [Mus musculus]
HG1000617N0_40000_gene_prediction	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000227N0_160000_gene_prediction1	gi 21362402 sp Q9CZB0 C560_MOUSE Succinate dehydrogenase cytochrome b560 subunit, mitochondrial precursor (Integral membrane protein CII-3) (QPS1) (QPs-1)
1	gi 7706341 ref NP_057145.1 yippee protein [Homo sapiens]
HG1000615N0 160000_gene_predictio	gi 4506725 ref NP_000998.1 ribosomal protein S4, X-linked X isoform; 40S ribosomal protein S4, X isoform; ribosomal protein S4X isoform; single-copy abundant mRNA; cell cycle gene 2
n2	[Homo sapiens]
HG1000617N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000621N0_160000_gene_prediction2	gi 4506725 ref NP_000998.1 ribosomal protein S4, X-linked X isoform; 40S ribosomal protein S4, X isoform; ribosomal protein S4X isoform; single-copy abundant mRNA; cell cycle gene 2 [Homo sapiens]
HG1000990N0_160000_gene_predictio	gi 10946760 ref NP_067381.1 triggering receptor expressed on myeloid cells 1; triggering receptor expressed in monocytes 1 [Mus musculus]
HG1000998N0_160000_gene_prediction1	gi 6678483 ref NP_033483.1 ubiquitinactivating enzyme E1, Chr X [Mus musculus]
HG1001225N0_160000_gene_prediction1	gi 10181192 ref NP_065589.1 sulfotransferase-related protein SULT-X1 [Mus musculus]
HG1001269N0_5000_gene_prediction1	gi 21311883 ref NP_080887.1 RIKEN cDNA 0610007O07 [Mus musculus]
HG1001269N0_160000_gene_prediction1	gi 21311883 ref NP_080887.1 RIKEN cDNA 0610007O07 [Mus musculus]
HG1000103N0_160000_gene_prediction1	gi 26327721 dbj BAC27604.1 unnamed protein product [Mus musculus]
HG1000143N0_1000_gene_prediction1	gi 14141193 ref NP_001004.2 ribosomal protein S9; 40S ribosomal protein S9 [Homo sapiens]
HG1000396N0_160000_gene_predictio n1	gi 25024769 ref[XP_207136.1 similar to ORF2 [Mus musculus domesticus]
HG1001502N0_160000_gene_prediction2	gi 2144100 pir I64837 Set beta isoform - rat
HG1000066N0_160000_gene_prediction1	gi 26337951 dbj BAC32661.1 unnamed protein product [Mus musculus]

FP ID	Fantom Top Hit Annotation
	gi 26346587 dbj BAC36942.1 unnamed protein
	product [Mus musculus]
HG1000117N0_160000_gene_predictio	gi 20875580 ref XP_131162.1 sorting nexin 7
n1	[Mus musculus]
	gi 26344914 dbj BAC36106.1 unnamed protein
n1	product [Mus musculus]
n1	gi 21313022 ref NP_083674.1 RIKEN cDNA 5730496E24 [Mus musculus]
HG1000501N0_160000_gene_prediction1	gi 27370478 ref NP_766552.1 hypothetical protein E130310N06 [Mus musculus]
HG1000656N0_10000_gene_prediction	gi 12855078 dbj BAB30210.1 unnamed protein product [Mus musculus]
HG1000656N0 10000 gene prediction	gi 12855078 dbj BAB30210.1 unnamed protein
2	product [Mus musculus]
HG1000750N0_160000_gene_predictio	gi 26336392 dbj BAC31881.1 unnamed protein
n1	product [Mus musculus]
HG1001012N0_160000_gene_prediction1	gi 21312504 ref NP_081554.1 RIKEN cDNA 2810432D09 [Mus musculus]
	gi 20882986 ref XP_126218.1 similar to
HG1001237N0_10000_gene_prediction	Hermansky-Pudlak syndrome protein variant [Rattus norvegicus] [Mus musculus]
HG1000228N0_40000_gene_prediction	gi 26342390 dbj BAC34857.1 unnamed protein product [Mus musculus]
HG1000228N0_20000_gene_prediction	gi 13507676 ref NP_109647.1 pumilio 1 (Drosophila) [Mus musculus]
HG1000228N0_160000_gene_prediction1	gi 13507676 ref NP_109647.1 pumilio 1 (Drosophila) [Mus musculus]
HG1000390N0_160000_gene_prediction1	gi 20892585 ref XP_147977.1 RIKEN cDNA 2610001E17 [Mus musculus]
	gi 26006245 dbj BAC41465.1 mKIAA1047 protein [Mus musculus]
HG1000611N0_160000_gene_predictio	gi 6650539 gb AAF21895.1 AF103877_1
n1	epsilon-sarcoglycan [Mus musculus]
HG1000847N0_10000_gene_prediction	
	gi 20467423 ref NP_620570.1 chondroitin
HG1000015N0_0_gene_prediction1	sulfate proteoglycan 4 [Mus musculus]
	gi 16741633 gb AAH16619.1 pyruvate kinase
HG1000088N0_5000_gene_prediction1	3 [Mus musculus]
HG1000143N0_10000_gene_prediction	gi 20896345 ref XP_128324.1 carbonyl reductase 3 [Mus musculus]
	gi 12848663 dbj BAB28043.1 unnamed protein
HG1000167N0_5000_gene_prediction1	product [Mus musculus]

FP ID	Fantom Top Hit Annotation
	gi 8393534 ref NP_058653.1 high mobility
	group protein 17 [Mus musculus]
HG1000825N0_160000_gene_prediction1	gi 21311983 ref NP_080956.1 RIKEN cDNA 0610012C01 [Mus musculus]
HG1001019N0_1000_gene_prediction1	gi 26343769 dbj BAC35541.1 unnamed protein product [Mus musculus]
HG1000044N0_160000_gene_prediction	gi 15079309 gb AAH11494.1 Similar to Myosin of the dilute-myosin-V family [Mus musculus]
HG1000100N0_10000_gene_prediction	gi 4506127 ref NP_002755.1 phosphoribosyl pyrophosphate synthetase 1 [Homo sapiens]
HG1000149N0_160000_gene_prediction1	gi 12834813 dbj BAB23054.1 unnamed protein product [Mus musculus]
HG1000183N0_1000_gene_prediction1	gi 27370150 ref NP_766364.1 hypothetical protein D630002G06 [Mus musculus]
HG1000183N0_160000_gene_prediction2	gi 27370150 ref NP_766364.1 hypothetical protein D630002G06 [Mus musculus]
HG1000213N0_5000_gene_prediction1	gi 6753178 ref NP_035923.1 breakpoint cluster region protein 1; barrier to autointegration factor [Mus musculus]
HG1000294N0_5000_gene_prediction1	gi 18390327 ref NP_083908.1 protein phosphatase 1, regulatory (inhibitor) subunit 11; t-complex testis-expressed 5 [Mus musculus]
HG1000331N0_160000_gene_prediction1	gi 20840824 ref XP_141031.1 similar to slit homolog 1 (Drosophila); slit (Drosophila) homolog 1; slit1 [Homo sapiens] [Mus musculus]
n2	gi 20887543 ref XP_134475.1 RIKEN cDNA 2310022B05 [Mus musculus]
HG1000430N0_160000_gene_prediction1	gi 26382861 dbj BAC25510.1 unnamed protein product [Mus musculus]
HG1000597N0_160000_gene_prediction1	gi 26325886 dbj BAC26697.1 unnamed protein product [Mus musculus]
HG1000078N0_5000_gene_prediction1	gi 26346587 dbj BAC36942.1 unnamed protein product [Mus musculus]
	gi 23597632 ref XP_127052.2 similar to hypothetical protein FLJ13920 [Homo sapiens]
HG1000139N0_5000_gene_prediction1 HG1000143N0_160000_gene_prediction1	
	gi 20835770 ref XP_132127.1 similar to 60S RIBOSOMAL PROTEIN L13 [Mus musculus]
	gi 12841593 dbi BAB25272.1 unnamed protein

FP ID	Fantom Top Hit Annotation
n1	product [Mus musculus]
HG1000187N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000247N0_160000_gene_prediction1	gi 7656920 ref NP_056547.1 axin2 [Mus musculus]
HG1000273N0_160000_gene_prediction2	gi 25030042 ref XP_207307.1 similar to Retrovirus-related POL polyprotein [Mus musculus]
HG1000415N0_10000_gene_prediction	gi 9367840 emb CAB97523.1 hypothetical protein, weakly similar to (AF102871) neuronal apoptosis inhibitory protein 2 [Mus musculus] [Homo sapiens]
HG1000539N0_160000_gene_predictio n1	gi 7521942 pir T29096 gag polyprotein - murine endogenous retrovirus ERV-L
HG1000539N0_160000_gene_predictio n2	gi 7521942 pir T29096 gag polyprotein - murine endogenous retrovirus ERV-L
HG1000560N0_160000_gene_predictio n1	gi 12860683 dbj BAB32021.1 unnamed protein product [Mus musculus]
HG1000618N0_10000_gene_prediction 1	gi 26350749 dbj BAC39011.1 unnamed protein product [Mus musculus]
HG1000740N0_160000_gene_predictio n1	homolog [Mus musculus]
HG1001197N0_160000_gene_prediction1	gi 26327779 dbj BAC27630.1 unnamed protein product [Mus musculus]
HG1000599N0_5000_gene_prediction1	gi 12836542 dbj BAB23701.1 unnamed protein product [Mus musculus]
HG1000020N0_5000_gene_prediction1	gi 20887101 ref XP_129228.1 similar to phosphoglucomutase 5 [Homo sapiens] [Mus musculus]
	gi 6678794 ref NP_032953.1 mitogen activated protein kinase kinase 1; MAP kinase kinase 1; protein kinase, mitogen activated, kinase 1, p45
HG1000084N0_5000_gene_prediction1	gi 21312189 ref NP_081197.1 RIKEN cDNA
HG1000135N0_5000_gene_prediction1	<u> </u>
HG1000169N0_20000_gene_prediction	aminotransferase [Mus musculus]
HG1000169N0_160000_gene_prediction1	gi 20886743 ref XP_129211.1 phosphoserine aminotransferase [Mus musculus]
HG1000189N0_160000_gene_prediction	gi 20879992 ref XP_140210.1 similar to BG:DS01759.1 gene product [Drosophila melanogaster] [Mus musculus]
HG1000189N0_160000_gene_prediction	gi 20879992 ref XP_140210.1 similar to BG:DS01759.1 gene product [Drosophila

FP ID	Fantom Top Hit Annotation
	melanogaster] [Mus musculus]
	gi 21450297 ref NP_659157.1 UDP- GalNAc:polypeptide N- acetylgalactosaminyltransferase [Mus
HG1000246N0_5000_gene_prediction1	musculus]
HG1000248N0_0_gene_prediction1	gi 9790219 ref NP_062745.1 destrin; Sid23p [Mus musculus]
HG1000288N0_10000_gene_prediction	gi 20909512 ref XP_153447.1 hypothetical protein XP_153447 [Mus musculus]
HG1000424N0_5000_gene_prediction1	gi 25031822 ref XP_207741.1 hypothetical protein XP_207741 [Mus musculus]
HG1000443N0_40000_gene_prediction	gi 26354072 dbj BAC40666.1 unnamed protein product [Mus musculus]
HG1000590N0_1000_gene_prediction1	gi 26378096 dbj BAB28595.2 unnamed protein product [Mus musculus]
HG1000626N0_160000_gene_prediction1	gi 9938030 ref NP_064667.1 hypothetical protein, MNCb-4193; hypothetical protein MNCb-4193 [Mus musculus]
HG1000871N0_160000_gene_prediction1	gi 6752958 ref NP_033742.1 activin A receptor, type II-like 1; activin receptor-like kinase-1 [Mus musculus]
HG1000959N0_10000_gene_prediction	gi 22507385 ref NP_081019.1 RIKEN cDNA 1110014F12 [Mus musculus]
HG1000961N0_160000_gene_predictio n3	3110004O18 [Mus musculus]
HG1000974N0_5000_gene_prediction1	gi 26378096 dbj BAB28595.2 unnamed protein product [Mus musculus]
HG1001045N0_160000_gene_predictio	gi 25020138 ref XP_207789.1 similar to Retrovirus-related POL polyprotein [Mus musculus]
HG1001110N0_0_gene_prediction1	gi 23956080 ref NP_058675.1 putative serine/threonine kinase [Mus musculus]
HG1001223N0_1000_gene_prediction1	gi 26339658 dbj BAC33500.1 unnamed protein product [Mus musculus]
HG1001281N0_160000_gene_prediction1	gi 15431279 ref NP_203538.1 dedicator of cyto-kinesis 2 [Mus musculus]
HG1001317N0_5000_gene_prediction1	gi 26327365 dbj BAC27426.1 unnamed protein product [Mus musculus]
HG1001485N0_5000_gene_prediction1	gi 26327365 dbj BAC27426.1 unnamed protein
HG1000674N0_160000_gene_prediction	gi 24211881 sp Q8VCR8 KML2_MOUSE
	gi 25019831 ref XP 207463.1 similar to

FP ID	Fantom Top Hit Annotation
1	CD59B [Mus musculus]
HG1001017N0_1000_gene_prediction1	gi 25019831 ref XP_207463.1 similar to CD59B [Mus musculus]
HG1000014N0_160000_gene_predictio n2	gi 6680744 ref NP_031528.1 ATPase, Na+/K+ transporting, beta 3 polypeptide; ATPase, Na+/K+ beta 3 polypeptide [Mus musculus]
HG1000043N0_160000_gene_prediction3	gi 26337385 dbj BAC32378.1 unnamed protein product [Mus musculus]
HG1000052N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000084N0_5000_gene_prediction2	gi 6678794 ref NP_032953.1 mitogen activated protein kinase kinase 1; MAP kinase kinase 1; protein kinase, mitogen activated, kinase 1, p45 [Mus musculus]
HG1000093N0_1000_gene_prediction1	gi 26350865 dbj BAC39069.1 unnamed protein product [Mus musculus]
HG1000105N0_160000_gene_predictio n1	gi 14198371 gb AAH08247.1 Similar to cyclin B2 [Mus musculus]
HG1000157N0 1000 gene prediction1	gi 5803225 ref NP_006752.1 tyrosine 3/tryptophan 5 -monooxygenase activation protein, epsilon polypeptide; 14-3-3 epsilon; mitochondrial import stimulation factor L subunit; protein kinase C inhibitor protein-1 [Homo sapiens]
HG1000210N0_40000_gene_prediction	gi 17160840 gb AAH17597.1 RIKEN cDNA 5830401B18 gene [Mus musculus]
HG1000242N0_5000_gene_prediction1	gi 9789937 ref NP_062768.1 DnaJ (Hsp40) homolog, subfamily A, member 2; DNA J protein [Mus musculus]
HG1000243N0_5000_gene_prediction2	gi 8393534 ref NP_058653.1 high mobility group protein 17 [Mus musculus]
HG1000256N0_160000_gene_prediction1	gi 13959400 sp Q9R0Y5 KAD1_MOUSE Adenylate kinase isoenzyme 1 (ATP-AMP transphosphorylase) (AK1) (Myokinase)
HG1000279N0_0_gene_prediction1	gi 15617203 ref NP_254279.1 chloride intracellular channel 1 [Mus musculus]
HG1000280N0_5000_gene_prediction1	gi 7106337 ref NP_034796.1 keratin complex- 1, gene C29 [Mus musculus]
HG1000280N0_5000_gene_prediction2	
HG1000282N0_160000_gene_prediction1	gi 20902823 ref XP_128021.1 similar to Mitochondrial import receptor subunit TOM22 homolog (Translocase of outer membrane 22 kDa subunit homolog) (hTom22) (1C9-2) [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1000292N0_160000_gene_prediction1	gi 6981488 ref NP_037356.1 ribosomal protein S26 [Rattus norvegicus]
HG1000313N0_160000_gene_prediction1	gi 4506283 ref NP_003454.1 protein tyrosine phosphatase type IVA, member 1; Protein tyrosine phosphatase IVA1 [Homo sapiens]
HG1000330N0_20000_gene_prediction	gi 22122511 ref NP_666146.1 hypothetical protein MGC30562 [Mus musculus]
HG1000339N0_160000_gene_prediction1	gi 26350551 dbj BAC38915.1 unnamed protein product [Mus musculus]
HG1000340N0_160000_gene_prediction1	gi 20912842 ref XP_126689.1 RIKEN cDNA 3300001P08 [Mus musculus]
HG1000344N0_160000_gene_prediction1	gi 21450239 ref NP_659092.1 hypothetical protein MGC27983 [Mus musculus]
	gi 25046794 ref XP_207489.1 similar to RNP particle component [Mus musculus]
HG1000384N0_160000_gene_prediction1	<u> </u>
HG1000448N0_160000_gene_prediction1	gi 6678247 ref NP_033358.1 transcription factor 7-like 1 [Mus musculus]
HG1000482N0_160000_gene_prediction1	gi 26334795 dbj BAC31098.1 unnamed protein product [Mus musculus]
HG1000486N0_20000_gene_prediction 1	gi 26350551 dbj BAC38915.1 unnamed protein product [Mus musculus]
HG1000506N0_160000_gene_prediction1	gi 20909520 ref XP_126941.1 RIKEN cDNA 2600011C06 [Mus musculus]
HG1000518N0_160000_gene_prediction1	gi 26351279 dbj BAC39276.1 unnamed protein product [Mus musculus]
HG1000550N0_160000_gene_predictio n1	gi 20909520 ref XP_126941.1 RIKEN cDNA 2600011C06 [Mus musculus]
HG1000556N0_160000_gene_prediction1	gi 25031497 ref XP_207552.1 similar to Retrovirus-related POL polyprotein [Mus musculus]
HG1000588N0_160000_gene_prediction1	gi 13277747 gb AAH03768.1 interferon- induced protein with tetratricopeptide repeats 1 [Mus musculus]
HG1000600N0_160000_gene_prediction1	gi 20863376 ref XP_134148.1 similar to hypothetical protein [Macaca fascicularis] [Mus musculus]
HG1000647N0_160000_gene_prediction1	gi 9506517 ref NP_062338.1 cytotoxic and regulatory T cell molecule; class I-restricted T cell-associated molecule [Mus musculus]
HG1000648N0_160000_gene_prediction1	gi 20900199 ref XP_128639.1 RIKEN cDNA 2810055C19 [Mus musculus]
HG1000688N0 160000 gene prediction	gi 26327707 dbi BAC27597.1 unnamed protein

FP ID	Fantom Top Hit Annotation
n1	product [Mus musculus]
HG1000696N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000788N0_160000_gene_predictio	gi 20847912 ref XP_144610.1 similar to KIAA1904 protein [Homo sapiens] [Mus musculus]
HG1000874N0_160000_gene_predictio	gi 20342176 ref XP_110490.1 similar to hypothetical protein MGC955 [Homo sapiens] [Mus musculus]
HG1000902N0_20000_gene_prediction	gi 6753324 ref NP_033968.1 chaperonin subunit 6a (zeta); chaperonin containing TCP-1 [Mus musculus]
HG1000902N0_160000_gene_predictio n2	gi 6753324 ref NP_033968.1 chaperonin subunit 6a (zeta); chaperonin containing TCP-1 [Mus musculus]
HG1000902N0_1000_gene_prediction1	gi 6753324 ref NP_033968.1 chaperonin subunit 6a (zeta); chaperonin containing TCP-1 [Mus musculus]
HG1000904N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000966N0_1000_gene_prediction1	gi 22122617 ref NP_666215.1 hypothetical protein MGC25511 [Mus musculus]
HG1000966N0_5000_gene_prediction1	gi 22122617 ref NP_666215.1 hypothetical protein MGC25511 [Mus musculus]
HG1000994N0_160000_gene_prediction1	gi 12855175 dbj BAB30238.1 unnamed protein product [Mus musculus]
HG1001014N0_160000_gene_prediction3	gi 26337385 dbj BAC32378.1 unnamed protein product [Mus musculus]
HG1001041N0_5000_gene_prediction1	gi 25071304 ref XP_146497.3 similar to protein serine kinase Pskh1 [Mus musculus]
HG1001337N0_160000_gene_prediction1	gi 27369704 ref NP_766096.1 hypothetical protein 6030499008 [Mus musculus]
HG1001417N0_5000_gene_prediction1	gi 26349767 dbj BAC38523.1 unnamed protein product [Mus musculus]
HG1001485N0_160000_gene_prediction1	
HG1000151N0_160000_gene_prediction1	
HG1000330N0_160000_gene_prediction3	
	gi 25024769 ref XP_207136.1 similar to ORF2 [Mus musculus domesticus]
HG1000960N0_0_gene_prediction1	gi 20908689 ref XP_127449.1 RIKEN cDNA 4632401C08 [Mus musculus]

FP ID	Fantom Top Hit Annotation
	gi 20908689 ref XP_127449.1 RIKEN cDNA
HG1000960N0_0_gene_prediction2	4632401C08 [Mus musculus]
	gi 26336763 dbj BAC32064.1 unnamed protein
	product [Mus musculus]
HG1001502N0 160000 gene predictio	gi 27370240 ref NP_766415.1 hypothetical
n1	protein 4732490P18 [Mus musculus]
	gi 13624305 ref NP_112440.1 procollagen,
1	type II, alpha l [Mus musculus]
HG1000041N0 160000 gene predictio	gi 26390169 dbj BAC25854.1 unnamed protein
n1	product [Musculus]
HG1000043N0_160000_gene_predictio	gi 26337385 dbj BAC32378.1 unnamed protein
n2	product [Mus musculus]
	gi 15079309 gb AAH11494.1 Similar to
·	Myosin of the dilute-myosin-V family [Mus
HG1000044N0_5000_gene_prediction1	musculus]
HG1000051N0_160000_gene_predictio	gi 14250190 gb AAH08515.1 interferon
n1 ."	regulatory factor 6 [Mus musculus]
HG1000057N0_160000_gene_predictio	gi 6755040 ref NP_035202.1 profilin 1; actin
n1	binding protein [Mus musculus]
HG1000060N0_160000_gene_predictio	gi 6755901 ref NP_035783.1 tubulin, alpha 1;
nl	tubulin alpha 1 [Mus musculus]
HG1000061N0_10000_gene_prediction	gi 20827552 ref XP_130234.1 expressed
1	sequence AW610751 [Mus musculus]
HG1000079N0_160000_gene_predictio	gi 20887309 ref XP_129200.1 adenylate kinase
n1	3 alpha like [Mus musculus]
HG1000098N0_160000_gene_predictio	gi 26340666 dbj BAC33995.1 unnamed protein
nl	product [Mus musculus]
11.11.1	gi 12850600 dbj BAB28785.1 unnamed protein
HG1000105N0_5000_gene_prediction1	product [Mus musculus]
	gi 26346402 dbj BAC36852.1 unnamed protein
n1	product [Mus musculus]
HG1000131N0_160000_gene_predictio	gi 26329183 dbj BAC28330.1 unnamed protein
n1	product [Mus musculus]
	gi 12860377 dbj BAB31934.1 unnamed protein
n1	product [Mus musculus]
HG1000134N0_160000_gene_predictio	
n2	product [Mus musculus]
_	gi 26389519 dbj BAC25745.1 unnamed protein product [Mus musculus]
nl	<u> </u>
HG1000147N0_160000_gene_prediction	gi 3717978 emb CAA73041.1 5S ribosomal
<u>n1</u>	protein [Mus musculus]
	gi 20908717 ref XP_127445.1 similar to
l .	flavoprotein subunit of succinate-ubiquinone reductase [Rattus norvegicus] [Mus musculus]
n1	tennerase [varius noi vegicus] [ivius museurus]

FP ID	Fantom Top Hit Annotation
·	gi 6681095 ref NP_031834.1 cytochrome c,
HG1000172N0_1000_gene_prediction1	somatic [Mus musculus]
	gi 6681095 ref NP_031834.1 cytochrome c,
HG1000172N0_1000_gene_prediction2	somatic [Mus musculus]
	gi 26354216 dbj BAC40736.1 unnamed protein
HG1000175N0_5000_gene_prediction1	product [Mus musculus]
HG1000175N0 10000 gene prediction	gi 26354216 dbj BAC40736.1 unnamed protein
1	product [Mus musculus]
HG1000175N0_160000_gene_predictio	gi 26354216 dbj BAC40736.1 unnamed protein
n1	product [Mus musculus]
	gi 26354216 dbj BAC40736.1 unnamed protein
HG1000175N0_1000_gene_prediction1	product [Mus musculus]
	gi 10946614 ref NP_067287.1 WD repeat
HG1000192N0_160000_gene_predictio	domain 12; nuclear protein Ytm1 [Mus
n1	musculus]
	gi 21728370 ref NP_080178.1 RIKEN cDNA
<u>n2</u>	1500009M05 [Mus musculus]
	gi 17390530 gb AAH18231.1 Unknown
n1	(protein for MGC:19236) [Mus musculus]
HG1000197N0_160000_gene_predictio	gi 21450185 ref NP_659063.1 hypothetical
n1	protein MGC28186 [Mus musculus]
HG1000202N0_20000_gene_prediction	gi 26331946 dbj BAC29703.1 unnamed protein
1	product [Mus musculus]
HG1000210N0_20000_gene_prediction	
1	5830401B18 gene [Mus musculus]
TXG10000103T0 1000 mm-disting1	gi 6681015 ref NP_031789.1 cysteine rich intestinal protein [Mus musculus]
HG1000218N0_1000_gene_prediction1	
HG1000218N0_160000_gene_predictio	gi 6681015 ref NP_031789.1 cysteine rich intestinal protein [Mus musculus]
nl	
	gi 6681015 ref NP_031789.1 cysteine rich intestinal protein [Mus musculus]
1	gi 13385054 ref NP_079873.1 RIKEN cDNA
IIC1000222NO 1000 cone prediction1	2700033I16 [Mus musculus]
HG1000222N0_1000_gene_prediction1	gi 12847362 dbj BAB27541.1 unnamed protein
	product [Mus musculus]
HG1000233N0_1000_gene_prediction1	gi 12847362 dbj BAB27541.1 unnamed protein
HG1000234N0 1000 gene prediction1	product [Mus musculus]
HG1000234N0_160000_gene_predictio	product [Mus musculus]
n1	gi 6671549 ref NP_031479.1 anti-oxidant
	protein 2; acidic calcium-independent
HG1000238N0_160000_gene_predictio	
m2	[Mus musculus]
	gi 26328673 dbi BAC28075.1 unnamed protein
1101000240110 100000 gene prediction	Participants of the Harden of

FP ID	Fantom Top Hit Annotation
n1	product [Mus musculus]
1101001 101100111_0	gi 12850132 dbj BAB28604.1 unnamed protein product [Mus musculus]
	gi 12850132 dbj BAB28604.1 unnamed protein product [Mus musculus]
	gi 6754654 ref NP_034905.1 mannose binding lectin, liver (A) [Mus musculus]
HG1000251N0_160000_gene_predictio	gi 20881913 ref XP_126211.1 Dullard homolog [Mus musculus]
	gi 20825536 ref XP_129507.1 ring finger protein 2 [Mus musculus]
HG1000254N0_160000_gene_predictio n1	gi 13385058 ref NP_079878.1 hypothetical protein D10Ertd718e [Mus musculus]
HG1000262N0_160000_gene_prediction1	gi 21312163 ref NP_082683.1 RIKEN cDNA 2900054P12 [Mus musculus]
HG1000264N0_1000_gene_prediction1	gi 21624617 ref NP_081018.1 RIKEN cDNA 1110007M04 [Mus musculus]
HG1000264N0_1000_gene_prediction2	gi 21624617 ref NP_081018.1 RIKEN cDNA 1110007M04 [Mus musculus]
HG1000270N0_20000_gene_prediction 1	gi 12844196 dbj BAB26273.1 unnamed protein product [Mus musculus]
HG1000270N0_1000_gene_prediction1	gi 12852884 dbj BAB29566.1 unnamed protein product [Mus musculus]
HG1000274N0_160000_gene_prediction1	gi 26347831 dbj BAC37564.1 unnamed protein product [Mus musculus]
HG1000276N0_160000_gene_prediction1	gi 19527228 ref NP_598768.1 DNA segment, Chr 10, ERATO Doi 214, expressed [Mus musculus]
HG1000276N0_5000_gene_prediction1	gi 19527228 ref NP_598768.1 DNA segment, Chr 10, ERATO Doi 214, expressed [Mus musculus]
HG1000278N0_5000_gene_prediction1	gi 19527026 ref NP_598568.1 expressed sequence AA959742 [Mus musculus]
HG1000280N0_160000_gene_prediction1	gi 7106337 ref NP_034796.1 keratin complex-1, gene C29 [Mus musculus]
HG1000280N0 1000 gene prediction1	gi 7106337 ref NP_034796.1 keratin complex- 1, gene C29 [Mus musculus]
HG1000280N0_160000_gene_prediction2	
HG1000280N0_1000_gene_prediction2	gi 7106337 ref NP_034796.1 keratin complex- 1, gene C29 [Mus musculus]
HG1000305N0_5000_gene_prediction1	gi 27369902 ref NP_766218.1 hypothetical

FP ID	Fantom Top Hit Annotation
	gi 27369902 ref NP_766218.1 hypothetical
HG1000305N0_5000_gene_prediction2	protein A530095G11 [Mus musculus]
HG1000307N0_160000_gene_predictio	gi 8393853 ref NP_058614.1 nudix (nucleoside diphosphate linked moiety X)-type motif 5
nl	[Mus musculus]
HG1000334N0_160000_gene_prediction1	gi 20888553 ref XP_134832.1 similar to Probable serine/threonine protein kinase SNF1LK [Mus musculus]
HG1000335N0_160000_gene_predictio	gi 20888553 ref XP_134832.1 similar to Probable serine/threonine protein kinase SNF1LK [Mus musculus]
HG1000337N0_5000_gene_prediction1	gi 12851918 dbj BAB29207.1 unnamed protein product [Mus musculus]
HG1000343N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000343N0_160000_gene_prediction2	gi 13386340 ref NP_083008.1 RIKEN cDNA 4632428N05 [Mus musculus]
HG1000369N0_160000_gene_prediction1	gi 12837873 dbj BAB23982.1 unnamed protein product [Mus musculus]
HG1000372N0_160000_gene_prediction1	gi 20913947 ref XP_126555.1 RIKEN cDNA 1190006K01 [Mus musculus]
HG1000378N0_160000_gene_prediction1	gi 26348995 dbj BAC38137.1 unnamed protein product [Mus musculus]
HG1000387N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000387N0_160000_gene_prediction2	gi 26382861 dbj BAC25510.1 unnamed protein product [Mus musculus]
HG1000397N0_5000_gene_prediction1	gi 20836469 ref XP_129717.1 hypothetical protein XP_129717 [Mus musculus]
HG1000408N0_160000_gene_prediction1	
HG1000414N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
	gi 8394057 ref NP_058565.1 low density lipoprotein receptor-related protein 4; low density lipoprotein-related protein 4; Low
HG1000431N0_160000_gene_prediction1	4; corin [Mus musculus]
HG1000439N0_160000_gene_prediction1	gi 12851918 dbj BAB29207.1 unnamed protein product [Mus musculus]
HG1000449N0_20000_gene_prediction	gi 25025117 ref XP_207206.1 similar to transcription factor-like nuclear regulator; putative transcription regulation nuclear protein; putative transcription factor-like
1	protein, paulive dansemption factor file

FP ID	Fantom Top Hit Annotation
	nuclear regulator; TATA box binding protein (TBP)-associated factor, RNA polymerase III, GTF3B subunit 1; [Mus musculus]
n1	gi 20824761 ref XP_133346.1 liver-specific bHLH-Zip transcription factor [Mus musculus]
HG1000458N0_160000_gene_prediction1	gi 12841242 dbj BAB25129.1 unnamed protein product [Mus musculus]
HG1000461N0_160000_gene_prediction1	gi 25032310 ref XP_205729.1 hypothetical protein XP_205729 [Mus musculus]
HG1000463N0_160000_gene_prediction1	gi 12861068 dbj BAB32114.1 unnamed protein product [Mus musculus]
HG1000463N0_160000_gene_prediction2	gi 13249351 ref NP_076402.1 inositol- requiring 1 alpha (yeast) [Mus musculus]
HG1000476N0_160000_gene_prediction1	
HG1000481N0_160000_gene_prediction1	gi 21311873 ref NP_077181.1 RIKEN cDNA 0610007A03 [Mus musculus]
HG1000530N0_160000_gene_prediction1	gi 20860491 ref XP_153755.1 hypothetical protein XP_153755 [Mus musculus]
HG1000556N0_160000_gene_predictio n2	gi 25031497 ref XP_207552.1 similar to Retrovirus-related POL polyprotein [Mus musculus]
HG1000584N0_160000_gene_predictio n1	gi 27370500 ref NP_766581.1 hypothetical protein D230008H22 [Mus musculus]
HG1000587N0_160000_gene_predictio n1	gi 23682449 ref XP_158842.2 hypothetical protein XP_158842 [Mus musculus]
HG1000592N0_160000_gene_predictio n1	gi 26349599 dbj BAC38439.1 unnamed protein product [Mus musculus]
HG1000594N0_160000_gene_prediction1	gi 22095015 ref NP_084065.1 RIKEN cDNA 0610013I17 [Mus musculus]
HG1000594N0_160000_gene_prediction2	gi 22095015 ref NP_084065.1 RIKEN cDNA 0610013I17 [Mus musculus]
HG1000608N0_160000_gene_prediction1	gi 20345223 ref XP_109778.1 similar to Neurabin-II (Neural tissue-specific F-actin binding protein II) (Protein phosphatase 1 regulatory subunit 9B) (Spinophilin) (p130) (PP1bp134) [Mus musculus]
HG1000615N0_160000_gene_prediction1	receptor bound protein 14 [Mus musculus]
HG1000620N0_160000_gene_prediction1	musculus]
HG1000621N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]

FP ID	Fantom Top Hit Annotation
HG1000621N0_160000_gene_prediction3	gi 26382861 dbj BAC25510.1 unnamed protein product [Mus musculus]
HG1000631N0_40000_gene_prediction	gi 6681283 ref NP_031938.1 epidermal growth factor receptor; avian erythroblastic leukemia viral (v-erb-b) oncogene homolog [Mus musculus]
HG1000652N0_160000_gene_predictio n1	gi 25030122 ref XP_207332.1 similar to endonuclease/reverse transcriptase [Mus musculus]
HG1000663N0_160000_gene_prediction1	gi 20915416 ref XP_162987.1 hypothetical protein XP_162987 [Mus musculus]
HG1000686N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
	gi 16508047 gb AAL17972.1 pORF2 [Mus musculus domesticus]
	gi 26327167 dbj BAC27327.1 unnamed protein product [Mus musculus]
HG1000709N0_160000_gene_prediction1	gi 220579 dbj BAA00448.1 open reading frame (196 AA) [Mus musculus]
HG1000712N0_160000_gene_prediction1	gi 12841826 dbj BAB25366.1 unnamed protein product [Mus musculus]
HG1000720N0_160000_gene_predictio	gi 7657415 ref NP_035986.2 odd Oz/ten-m homolog 2 (Drosophila); odd Oz/ten-m homolog 3 (Drosophila) [Mus musculus]
HG1000727N0_160000_gene_prediction1	gi 26335645 dbj BAC31523.1 unnamed protein product [Mus musculus]
HG1000743N0_160000_gene_prediction2	gi 26338834 dbj BAC33088.1 unnamed protein product [Mus musculus]
HG1000767N0_5000_gene_prediction1	gi 12851918 dbj BAB29207.1 unnamed protein product [Mus musculus]
HG1000786N0_160000_gene_prediction2	gi 6678303 ref NP_033386.1 transcription factor A, mitochondrial [Mus musculus]
HG1000822N0_160000_gene_prediction1	gi 6680195 ref NP_032255.1 histone deacetylase 2; DNA segment, Chr 10, Wayne State University 179, expressed [Mus musculus]
·	gi 21450159 ref NP_659049.1 cDNA sequence BC024131; hypothetical protein MGC37896 [Mus musculus]
HG1000848N0_160000_gene_prediction1	gi 26350995 dbj BAC39134.1 unnamed protein product [Mus musculus]
	gi 26325678 dbj BAC26593.1 unnamed protein product [Mus musculus]
The second secon	gi 21450209 ref NP 659075.1 hypothetical

FP ID	Fantom Top Hit Annotation
1	protein MGC25509 [Mus musculus]
nl	gi 21450209 ref NP_659075.1 hypothetical protein MGC25509 [Mus musculus]
HG1000898N0_20000_gene_prediction	gi 21450209 ref NP_659075.1 hypothetical protein MGC25509 [Mus musculus]
HG1000902N0_160000_gene_prediction1	gi 21450209 ref NP_659075.1 hypothetical protein MGC25509 [Mus musculus]
HG1000904N0_160000_gene_predictio n3	gi 6753324 ref NP_033968.1 chaperonin subunit 6a (zeta); chaperonin containing TCP-1 [Mus musculus]
HG1000906N0_20000_gene_prediction	gi 20344324 řef XP_109683.1 RIKEN cDNA 1810027O10 [Mus musculus]
HG1000906N0_160000_gene_prediction1	gi 26346114 dbj BAC36708.1 unnamed protein product [Mus musculus]
HG1000921N0_5000_gene_prediction1	
HG1000938N0_10000_gene_prediction	gi 26350775 dbj BAC39024.1 unnamed protein product [Mus musculus]
HG1000952N0_160000_gene_prediction1	gi 26339054 dbj BAC33198.1 unnamed protein product [Mus musculus]
HG1000961N0_160000_gene_prediction1	musculus domesticus]
HG1000961N0_160000_gene_predictio n2	gi 25051287 ref XP_146665.3 similar to KIAA0877 protein [Homo sapiens] [Mus musculus]
HG1001000N0_160000_gene_prediction2	norvegicus] [Mus musculus]
HG1001003N0_160000_gene_prediction1	gi 19527072 ref NP_598613.1 expressed sequence AW555139 [Mus musculus]
HG1001007N0_160000_gene_prediction1	gi 13277825 gb AAH03796.1 Similar to lymphocyte specific 1 [Mus musculus]
HG1001009N0_0_gene_prediction1	gi 26334641 dbj BAC31021.1 unnamed protein product [Mus musculus]
HG1001014N0_160000_gene_prediction	product [Mus musculus]
HG1001017N0_40000_gene_prediction	gi 26337385 dbj BAC32378.1 unnamed protein product [Mus musculus]
HG1001017N0_20000_gene_prediction	gi 25019831 ref XP_207463.1 similar to CD59B [Mus musculus]
HG1001144N0_160000_gene_prediction1	gi 25019831 ref XP_207463.1 similar to CD59B [Mus musculus]
	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]

FP ID	Fantom Top Hit Annotation
HG1001214N0_20000_gene_prediction	gi 26340706 dbj BAC34015.1 unnamed protein
1	product [Mus musculus]
HG1001229N0_160000_gene_prediction1	
HG1001253N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001253N0_160000_gene_prediction2	gi 26326251 dbj BAC26869.1 unnamed protein product [Mus musculus]
HG1001267N0_160000_gene_prediction1	gi 26326251 dbj BAC26869.1 unnamed protein product [Mus musculus]
HG1001289N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001343N0_10000_gene_prediction	gi 26333317 dbj BAC30376.1 unnamed protein product [Mus musculus]
HG1001343N0_160000_gene_prediction1	gi 6755060 ref NP_035214.1 phosphatidylinositol 3-kinase, C2 domain containing, gamma polypeptide [Mus musculus]
HG1001390N0_160000_gene_prediction1	gi 6755060 ref NP_035214.1 phosphatidylinositol 3-kinase, C2 domain containing, gamma polypeptide [Mus musculus]
HG1001468N0_160000_gene_predictio n1	gi 6680083 ref NP_032189.1 growth factor receptor bound protein 2 [Mus musculus]
HG1001508N0_160000_gene_predictio	gi 25030495 ref XP_205178.1 similar to bA130N24.1 (novel protein similar to REV3L (REV3 (yeast homolog)-like, catalytic subunit of DNA polymerase zeta) (POLZ)) [Homo sapiens] [Mus musculus]
HG1000084N0_160000_gene_prediction1	gi 26382861 dbj BAC25510.1 unnamed protein product [Mus musculus]
HG1000084N0_160000_gene_prediction2	gi 25031822 ref XP_207741.1 hypothetical protein XP_207741 [Mus musculus]
HG1000209N0_160000_gene_prediction1	gi 25031822 ref XP_207741.1 hypothetical protein XP_207741 [Mus musculus]
HG1000382N0_160000_gene_prediction1	gi 20858167 ref XP_125585.1 similar to
HG1000591N0_160000_gene_prediction1	gi 6678716 ref NP_032539.1 low density lipoprotein receptor-related protein 5; low density lipoprotein-related protein 5 [Mus musculus]
HG1000904N0_160000_gene_prediction4	gi 26330005 dbj BAC28741.1 unnamed protein product [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1000005N0 160000 gene predictio	gi 20835832 ref XP_129684.1 complement
n1	receptor 2 [Mus musculus]
HG1000014N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1	musculus domesticus]
9	gi 6680744 ref NP_031528.1 ATPase, Na+/K+
HG1000015N0_160000_gene_predictio	transporting, beta 3 polypeptide; ATPase,
n1	Na+/K+ beta 3 polypeptide [Mus musculus]
HG1000015N0_20000_gene_prediction	gi 20467423 ref NP_620570.1 chondroitin
1	sulfate proteoglycan 4 [Mus musculus]
	gi 20467423 ref NP_620570.1 chondroitin
HG1000015N0_5000_gene_prediction1	sulfate proteoglycan 4 [Mus musculus]
HG1000015N0_160000_gene_predictio	gi 20467423 ref NP_620570.1 chondroitin
n2	sulfate proteoglycan 4 [Mus musculus]
HG1000020N0_160000_gene_predictio	gi 20467423 ref NP_620570.1 chondroitin
<u>n1</u>	sulfate proteoglycan 4 [Mus musculus]
	gi 26330706 dbj BAC29083.1 unnamed protein
HG1000020N0_5000_gene_prediction2	product [Mus musculus]
	gi 20887101 ref XP_129228.1 similar to
HG1000024N0_10000_gene_prediction	phosphoglucomutase 5 [Homo sapiens] [Mus
1	musculus]
	gi 12853786 dbj BAB29848.1 unnamed protein product [Mus musculus]
n1	
	gi 9506367 ref NP_062425.1 ATP-binding cassette, sub-family B, member 10; ATP-
	binding cassette, sub-family B (MDR/TAP),
HG1000030N0_160000_gene_predictio	member 12; Abc-mitochondrial erythroid [Mus
n1	musculus]
	gi 26006203 dbj BAC41444.1 mKIAA0696
n1	protein [Mus musculus]
	gi 7106453 ref NP_035897.1 zinc finger RNA
HG1000041N0_5000_gene_prediction1	binding protein [Mus musculus]
HG1000043N0 160000 gene predictio	
n1	product [Mus musculus]
	gi 26337385 dbj BAC32378.1 unnamed protein
HG1000043N0_5000_gene_prediction1	product [Mus musculus]
HG1000044N0 20000 gene prediction	gi 26337385 dbj BAC32378.1 unnamed protein
1	product [Mus musculus]
	gi 15079309 gb AAH11494.1 Similar to
HG1000052N0_160000_gene_predictio	
n2	musculus]
HG1000052N0_10000_gene_prediction	gi 26324852 dbj BAC26180.1 unnamed protein
1	product [Mus musculus]
HG1000052N0_20000_gene_prediction	gi 26324852 dbj BAC26180.1 unnamed protein
1	product [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1000058N0_10000_gene_prediction	gi 26324852 dbj BAC26180.1 unnamed protein product [Mus musculus]
HG1000061N0 5000 gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000065N0_5000_gene_prediction1	gi 5031571 ref NP_005713.1 actin-related protein 2; ARP2 (actin-related protein 2, yeast) homolog [Homo sapiens]
HG1000065N0_10000_gene_prediction	gi 13386220 ref NP_081610.1 RIKEN cDNA 2210414H16 [Mus musculus]
HG1000065N0_160000_gene_prediction1	gi 13386220 ref NP_081610.1 RIKEN cDNA 2210414H16 [Mus musculus]
HG1000068N0_160000_gene_prediction1	gi 13386220 ref NP_081610.1 RIKEN cDNA 2210414H16 [Mus musculus]
HG1000070N0_0_gene_prediction1	gi 26326191 dbj BAC26839.1 unnamed protein product [Mus musculus]
HG1000073N0_20000_gene_prediction	gi 21595527 gb AAH32275.1 Similar to receptor-like tyrosine kinase [Mus musculus]
HG1000075N0_160000_gene_predictio n1	gi 26326407 dbj BAC26947.1 unnamed protein product [Mus musculus]
HG1000076N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000081N0_160000_gene_predictio	gi 4502549 ref NP_001734.1 calmodulin 2 (phosphorylase kinase, delta); phosphorylase kinase delta [Homo sapiens]
HG1000106N0_160000_gene_prediction1	gi 6680305 ref NP_032328.1 heat shock protein, 84 kDa 1 [Mus musculus]
	gi 6681225 ref NP_031905.1 developmentally regulated GTP binding protein 1; developmentally regulated GTP-binding protein 1 [Mus musculus]
HG1000109N0_0_gene_prediction1	gi 6754774 ref NP_034986.1 myosin heavy chain, cardiac muscle, adult; alpha cardiac MHC; alpha myosin [Mus musculus]
HG1000112N0_160000_gene_prediction	
HG1000116N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
	gi 6680305 ref NP_032328.1 heat shock protein, 84 kDa 1 [Mus musculus]
HG1000130N0_160000_gene_prediction1	gi 20825377 ref XP_143696.1 similar to hypothetical protein dJ122O8.2 [Homo sapiens] [Mus musculus]
	gi 6754208 ref NP_034569.1 high mobility group box 1; high mobility group protein 1

FP ID	Fantom Top Hit Annotation
	[Mus musculus]
HG1000133N0_160000_gene_prediction1	gi 26347765 dbj BAC37531.1 unnamed protein product [Mus musculus]
HG1000134N0_20000_gene_prediction	gi 26382599 dbj BAB22733.2 unnamed protein product [Mus musculus]
HG1000134N0_20000_gene_prediction 2	gi 26353738 dbj BAC40499.1 unnamed protein product [Mus musculus]
HG1000142N0_160000_gene_prediction1	gi 26353738 dbj BAC40499.1 unnamed protein product [Mus musculus]
HG1000144N0_20000_gene_prediction	gi 6679108 ref NP_032748.1 nucleophosmin 1; nucleolar protein NO38 [Mus musculus]
HG1000145N0_160000_gene_prediction1	gi 6677779 ref NP_033107.1 ribosomal protein L28; DNA segment, Chr 7, Wayne State University 21, expressed [Mus musculus]
HG1000146N0_160000_gene_prediction1	gi 6677779 ref NP_033107.1 ribosomal protein L28; DNA segment, Chr 7, Wayne State University 21, expressed [Mus musculus]
HG1000150N0_10000_gene_prediction	gi 3717978 emb CAA73041.1 5S ribosomal protein [Mus musculus]
HG1000152N0_160000_gene_prediction1	gi 11037798 ref NP_067621.1 dynactin 5; dynactin 4; p25 dynactin subunit [Mus musculus]
HG1000161N0_160000_gene_predictio	gi 21536242 ref NP_573499.1 glucocorticoid induced transcript 1; testhymin; thymocyte/spermatocyte selection 1 [Mus musculus]
HG1000163N0_160000_gene_prediction1	gi 20819730 ref XP_129359.1 hypothetical protein XP_129359 [Mus musculus]
HG1000164N0_5000_gene_prediction1	gi 20835770 ref XP_132127.1 similar to 60S RIBOSOMAL PROTEIN L13 [Mus musculus]
HG1000165N0_1000_gene_prediction1	gi 26340448 dbj BAC33887.1 unnamed protein product [Mus musculus]
HG1000166N0_160000_gene_prediction2	gi 26353666 dbj BAC40463.1 unnamed protein product [Mus musculus]
HG1000167N0_160000_gene_prediction1	gi 27369878 ref NP_766203.1 hypothetical protein 5330403K09 [Mus musculus]
HG1000171N0_40000_gene_prediction	gi 26354683 dbj BAC40968.1 unnamed protein product [Mus musculus]
HG1000171N0_160000_gene_prediction1	gi 26325838 dbj BAC26673.1 unnamed protein product [Mus musculus]
HG1000175N0_160000_gene_prediction2	gi 26325838 dbj BAC26673.1 unnamed protein product [Mus musculus]
HG1000176N0_1000_gene_prediction1	gi 26354216 dbj BAC40736.1 unnamed protein product [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1000176N0_160000_gene_predictio	
n1	product [Mus musculus]
HG1000177N0_160000_gene_predictio	gi 26337635 dbj BAC32503.1 unnamed protein
n1	product [Mus musculus]
H.G.1000150010 160000	gi 20884040 ref XP_134731.1 endothelial
HG1000178N0_160000_gene_prediction1	differentiation, sphingolipid G-protein-coupled
	receptor, 5 [Mus musculus]
HG1000178N0_160000_gene_prediction2	gi 13384830 ref NP_079706.1 RIKEN cDNA 1110066C01 [Mus musculus]
112	
HG1000180N0_1000_gene prediction1	gi 13384830 ref NP_079706.1 RIKEN cDNA 1110066C01 [Mus musculus]
HG1000181N0 10000 gene prediction	gi 13384730 ref NP 079640.1 RIKEN cDNA
11010001011110_10000_gene_prediction	1110005A23 [Mus musculus]
	gi 25023031 ref XP 205093.1 similar to
HG1000181N0_160000_gene_predictio	hypothetical protein FLJ38281 [Homo sapiens]
n1	[Mus musculus]
HG1000183N0_160000_gene_predictio	gi 26334755 dbj BAC31078.1 unnamed protein
n1	product [Mus musculus]
HG1000186N0_20000_gene_prediction	gi 27370150 ref NP_766364.1 hypothetical
1	protein D630002G06 [Mus musculus]
HG1000186N0_160000_gene_predictio	1
<u>n2</u>	,
HG1000187N0_20000_gene_prediction	gi 26342222 dbj BAC34773.1 unnamed protein
I	product [Mus musculus]
HG1000187N0_160000_gene_prediction3	
113	gi 25024769 ref XP_207136.1 similar to ORF2
HG1000189N0_1000 gene prediction1	[Mus musculus domesticus]
proutout	gi 26325734 dbj BAC26621.1 unnamed protein
HG1000189N0 5000 gene prediction1	product [Mus musculus]
= = = =	gi 20879992 ref XP_140210.1 similar to
	BG:DS01759.1 gene product [Drosophila
HG1000189N0_1000_gene_prediction2	melanogaster] [Mus musculus]
	gi 26325734 dbj BAC26621.1 unnamed protein
HG1000189N0_5000_gene_prediction2	product [Mus musculus]
	gi 20879992 ref XP_140210.1 similar to
I .	BG:DS01759.1 gene product [Drosophila
	melanogaster] [Mus musculus]
HG1000199N0_160000_gene_prediction1	
	(protein for MGC:19236) [Mus musculus]
HG1000201N0_10000_gene_prediction	gi 20824845 ref XP_131963.1 expressed sequence C77020 [Mus musculus]
	gi 27477269 ref XP 209223.1 similar to
1	Transforming protein RhoC (H9) [Homo

FP ID	Fantom Top Hit Annotation
	sapiens]
HG1000204N0_10000_gene_prediction	gi 26333233 dbj BAC30334.1 unnamed protein product [Mus musculus]
HG1000209N0_160000_gene_prediction2	gi 26326739 dbj BAC27113.1 unnamed protein product [Mus musculus]
HG1000215N0_5000_gene_prediction1	gi 27369784 ref NP_766142.1 hypothetical protein A230053P19 [Mus musculus]
	gi 6671756 ref NP_031732.1 suppressor of cytokine signaling 2; cytokine inducible SH2-containing protein 2; high growth; STAT-induced STAT inhibitor 2; cytokine-inducible
HG1000215N0_1000_gene_prediction1	SH2 protein 2 [Mus musculus]
HG1000219N0_10000_gene_prediction	gi 26328915 dbj BAC28196.1 unnamed protein product [Mus musculus]
HG1000221N0_160000_gene_prediction1	gi 4504255 ref NP_002097.1 H2A histone family, member Z; H2AZ histone [Homo sapiens]
HG1000221N0_20000_gene_prediction	gi 11360345 pir T42725 actin binding protein ACF7, neural isoform 1 - mouse (fragment)
HG1000223N0_160000_gene_prediction1	gi 11360345 pir T42725 actin binding protein ACF7, neural isoform 1 - mouse (fragment)
HG1000225N0_160000_gene_predictionl	gi 25019988 ref XP_207469.1 similar to Retrovirus-related POL polyprotein [Mus musculus]
HG1000235N0_160000_gene_prediction1	gi 20137004 ref NP_035320.1 proteasome (prosome, macropain) 28 subunit, beta; protease (prosome, macropain) 28 subunit, beta [Mus musculus]
HG1000236N0_160000_gene_prediction1	gi 15617197 ref NP_077135.1 ATPase, H+ transporting, lysosomal 13kD, V1 subunit G isoform 1; ATPase, H+ transporting, lysosomal (vacuolar proton pump) [Mus musculus]
HG1000238N0_160000_gene_prediction1	gi 6671704 ref NP_031664.1 chaperonin subunit 7 (eta) [Mus musculus]
	gi 6671549 ref NP_031479.1 anti-oxidant protein 2; acidic calcium-independent phospholipase A2; peroxiredoxin 5; 1-Cys Prx
HG1000238N0_5000_gene_prediction1	[Mus musculus]
HG1000239N0_160000_gene_prediction1	gi 6671549 ref NP_031479.1 anti-oxidant protein 2; acidic calcium-independent phospholipase A2; peroxiredoxin 5; 1-Cys Prx [Mus musculus]
HG1000241N0_160000_gene_predictionl	gi 7657357 ref NP_056596.1 nucleosome assembly protein 1-like 1; nucleosome assembly protein-1 [Mus musculus]

FP ID	Fantom Top Hit Annotation
	gi 4759158 ref NP_004588.1 small nuclear
•	ribonucleoprotein D2 polypeptide 16.5kDa;
HG1000243N0_160000_gene_predictio	small nuclear ribonucleoprotein D2 polypeptide
n1	(16.5kD) [Homo sapiens]
HG1000243N0_160000_gene_predictio	gi 8393534 ref NP_058653.1 high mobility
n2	group protein 17 [Mus musculus]
	gi 8393534 ref NP_058653.1 high mobility
HG1000245N0_1000_gene_prediction1	group protein 17 [Mus musculus]
HG1000250N0_160000_gene_predictio	gi 12850132 dbj BAB28604.1 unnamed protein
n1	product [Mus musculus]
HG1000252N0 160000 gene predictio	gi 20824845 ref XP_131963.1 expressed
n1	sequence C77020 [Mus musculus]
	gi 17105394 ref NP_000975.2 ribosomal
	protein L23a; 60S ribosomal protein L23a;
HG1000255N0_10000_gene_prediction	melanoma differentiation-associated gene 20
1	[Homo sapiens]
HG1000262N0_160000_gene_predictio	
n2	2700086I23 [Mus musculus]
HG1000263N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1	musculus domesticus]
	gi 26360198 dbj BAB25612.2 unnamed protein
HG1000264N0_5000_gene_prediction1	product [Mus musculus]
	gi 21624617 ref NP_081018.1 RIKEN cDNA
HG1000264N0_5000_gene_prediction2	[1110007M04 [Mus musculus]
HG1000265N0_160000_gene_predictio	gi 21624617 ref NP_081018.1 RIKEN cDNA
n1	1110007M04 [Mus musculus]
·	gi 25070241 ref XP_192786.1 proline rich
HG1000266N0_0_gene_prediction1	protein expressed in brain [Mus musculus]
HG1000266N0_160000_gene_predictio	gi 12584972 ref NP_075021.1 lipin 3 [Mus
n1	musculus]
	gi 26340094 dbj BAC33710.1 unnamed protein
HG1000267N0_5000_gene_prediction1	product [Mus musculus]
HG1000270N0 160000 gene_predictio	gi 6679937 ref NP_032110.1 glyceraldehyde-
n1	3-phosphate dehydrogenase [Mus musculus]
HG1000271N0 10000 gene prediction	gi 12844196 dbj BAB26273.1 unnamed protein
1	product [Mus musculus]
HG1000271N0_160000_gene_predictio	gi 26345908 dbj BAC36605.1 unnamed protein
n1	product [Mus musculus]
HG1000273N0 160000_gene_predictio	gi 26345908 dbj BAC36605.1 unnamed protein
n1	product [Mus musculus]
	gi 20888943 ref XP_129258.1 cDNA sequence
nl	AF233884 [Mus musculus]
HG1000296N0_160000_gene_predictio	
n1	1200003O06 [Mus musculus]

PCT/US2003/027106 WO 2005/005597

FP ID	Fantom Top Hit Annotation
HG1000299N0_160000_gene_prediction1	gi 25054735 ref XP_192839.1 ATPas, class II, type 9B [Mus musculus]
HG1000300N0_10000_gene_prediction	gi 6753882 ref NP_034349.1 FK506 binding protein 4 (59 kDa) [Mus musculus]
HG1000306N0_0_gene_prediction1	gi 25024769 ref XP_207136.1 similar to ORF2 [Mus musculus domesticus]
HG1000306N0_0_gene_prediction2	
HG1000312N0_160000_gene_prediction1	
HG1000314N0_1000_gene_prediction1	gi 4506283 ref NP_003454.1 protein tyrosine phosphatase type IVA, member 1; Protein tyrosine phosphatase IVA1 [Homo sapiens]
HG1000315N0_160000_gene_prediction1	gi 4506285 ref NP_003470.1 protein tyrosine phosphatase type IVA, member 2, isoform 1; protein tyrosine phosphatase IVA; protein tyrosine phosphatase IVA2; phosphatase of regenerating liver 2 [Homo sapiens]
HG1000330N0_160000_gene_predictio n2	gi 6679553 ref NP_033003.1 protein tyrosine phosphatase, non-receptor type 2 [Mus musculus]
HG1000330N0_160000_gene_prediction4	gi 12860388 dbj BAB31939.1 unnamed protein product [Mus musculus]
HG1000332N0_10000_gene_prediction	gi 26344091 dbj BAC35702.1 unnamed protein product [Mus musculus]
HG1000337N0_1000_gene_prediction1	gi 20987322 gb AAH30185.1 Unknown (protein for MGC:29401) [Mus musculus]
HG1000341N0_5000_gene_prediction1	gi 4506725 ref NP_000998.1 ribosomal protein S4, X-linked X isoform; 40S ribosomal protein S4, X isoform; ribosomal protein S4X isoform; single-copy abundant mRNA; cell cycle gene 2 [Homo sapiens]
	gi 26332837 dbj BAC30136.1 unnamed protein product [Mus musculus]
HG1000353N0_160000_gene_prediction1	gi 17157989 ref NP_473384.1 Musashi homolog 2 (Drosophila) [Mus musculus]
HG1000357N0_20000_gene_prediction	gi 25021483 ref XP_207941.1 similar to
HG1000358N0_5000_gene_prediction1	gi 27372319 dbj BAC53724.1 Piccolo [Mus musculus]
HG1000359N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]

FP ID	Fantom Top Hit Annotation
HG1000364N0_160000_gene_prediction1	gi 19484126 gb AAH25846.1 Unknown (protein for MGC:32383) [Mus musculus]
HG1000367N0_160000_gene_predictio	gi 13928676 ref NP_113687.1 proline rich protein 2 [Mus musculus]
HG1000379N0_160000_gene_predictio	gi 20863632 ref XP_164160.1 hypothetical protein XP 164160 [Mus musculus]
HG1000390N0_10000_gene_prediction	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000390N0_5000_gene_prediction1	gi 20892585 ref XP_147977.1 RIKEN cDNA 2610001E17 [Mus musculus]
HG1000391N0_160000_gene_predictio	gi 20892585 ref XP_147977.1 RIKEN cDNA 2610001E17 [Mus musculus]
HG1000396N0_160000_gene_predictio n2	gi 26330368 dbj BAC28914.1 unnamed protein product [Mus musculus]
HG1000401N0_10000_gene_prediction	
HG1000407N0_160000_gene_prediction1	gi 12853695 dbj BAB29819.1 unnamed protein product [Mus musculus]
HG1000408N0_160000_gene_predictio n2	gi 25029560 ref XP_203691.1 similar to PROBABLE POL POLYPROTEIN [Mus musculus]
HG1000414N0_160000_gene_prediction2	gi 26326871 dbj BAC27179.1 unnamed protein product [Mus musculus]
HG1000416N0_160000_gene_predictio n1	gi 20902061 ref XP_147959.1 hypothetical protein XP_147959 [Mus musculus]
HG1000428N0_160000_gene_prediction1	gi 25032567 ref XP_207391.1 similar to ORF2 [Mus musculus domesticus]
HG1000429N0_160000_gene_prediction1	gi 25022040 ref XP_204233.1 similar to ORF2 [Mus musculus domesticus]
HG1000431N0_20000_gene_prediction	gi 26339864 dbj BAC33595.1 unnamed protein product [Mus musculus]
·	gi 8394057 ref NP_058565.1 low density lipoprotein receptor-related protein 4; low density lipoprotein-related protein 4; Low Density Lipoprotein Receptor Related Protein 4; corin [Mus musculus]
HG1000441N0_160000_gene_predictio	gi 26340972 dbj BAC34148.1 unnamed protein product [Mus musculus]
HG1000441N0_160000_gene_prediction2	
HG1000446N0_160000_gene_prediction1	
	gi 25031497 ref XP_207552.1 similar to Retrovirus-related POL polyprotein [Mus

FP ID	Fantom Top Hit Annotation
	musculus]
HG1000449N0_160000_gene_prediction2	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
77.010.00.151770.1.00000	gi 25054021 ref XP_192811.1 similar to Transmembrane protease, serine 2
n1	(Epitheliasin) (Plasmic transmembrane protein X) [Mus musculus]
HG1000455N0_10000_gene_prediction	gi 20846744 ref XP_144090.1 similar to hypothetical protein FLJ12457 [Mus musculus]
HG1000461N0_10000_gene_prediction	gi 20824899 ref XP_144255.1 hypothetical protein XP_144255 [Mus musculus]
HG1000474N0_5000_gene_prediction1	gi 12853695 dbj BAB29819.1 unnamed protein product [Mus musculus]
HG1000476N0_1000_gene_prediction1	gi 12834707 dbj BAB23011.1 unnamed protein product [Mus musculus]
HG1000489N0_160000_gene_prediction1	no blast hit
HG1000499N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000500N0_160000_gene_prediction1	gi 20912903 ref XP_126663.1 RIKEN cDNA 2410154J16 [Mus musculus]
HG1000505N0_160000_gene_prediction1	gi 25044951 ref XP_195302.1 similar to olfactory receptor MOR256-23 [Mus musculus]
HG1000509N0_10000_gene_prediction	gi 26334721 dbj BAC31061.1 unnamed protein product [Mus musculus]
HG1000510N0_160000_gene_prediction1	gi 12834707 dbj BAB23011.1 unnamed protein product [Mus musculus]
HG1000513N0_160000_gene_prediction1	gi 12859663 dbj BAB31727.1 unnamed protein product [Mus musculus]
HG1000519N0_160000_gene_predictio n1	gi 119146 sp P20001 EF11_CRIGR Elongation factor 1-alpha 1 (EF-1-alpha-1) (Elongation factor 1 A-1) (eEF1A-1) (Elongation factor Tu) (EF-Tu)
HG1000521N0_160000_gene_prediction1	gi 2495301 sp Q63934 BR3B_MOUSE Brain- specific homeobox/POU domain protein 3B (BRN-3B) (BRN-3.2)
HG1000524N0_160000_gene_prediction1	gi 21280325 dbj BAB96760.1 type XXVI collagen [Mus musculus]
1	gi 6679921 ref NP_032102.1 gamma- aminobutyric acid (GABA-A) receptor, subunit rho 2 [Mus musculus]
HG1000530N0_160000_gene_prediction2	gi 23622684 ref XP_156394.2 expressed sequence AL023001 [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1000534N0 160000 gene_predictio	
n1	
HG1000545N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1	musculus domesticus]
HG1000549N0_160000_gene_predictio	gi 26341288 dbj BAC34306.1 unnamed protein
n1	product [Mus musculus]
HG1000549N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n2	musculus domesticus]
HG1000549N0_160000_gene_predictio	gi 21312126 ref NP_081135.1 RIKEN cDNA
n3	1110068E11 [Mus musculus]
HG1000553N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1	musculus domesticus]
	gi 25032555 ref XP_207412.1 similar to
HG1000560N0_160000_gene_predictio	Retrovirus-related POL polyprotein [Mus
n2	musculus]
HG1000562N0_160000_gene_predictio	
n1	Nagara (1871) 4 54 (1871) 4 11 11 11 11 11 11 11 11 11 11 11 11 1
HG1000566N0_40000_gene_prediction	gi 20856064 ref XP_151615.1 hypothetical
	protein XP_151615 [Mus musculus]
HG1000566N0_160000_gene_predictio	
nl	USCCCOSOL CAID OCCCSO 11 DIEEN ADALA
HG1000582N0_160000_gene_predictio	gi 7656873 ref NP_056579.1 RIKEN cDNA 5730583K22 gene [Mus musculus]
nl	
HG1000598N0_160000_gene_predictio	[Mus musculus]
nl	
HG1000606N0_20000_gene_prediction	sequence AI327031 [Mus musculus]
HG1000607N0_160000_gene_predictio	-
n1	protein XP 206318 [Mus musculus]
	gi 3599320 gb AAC72793.1 ORF2 [Mus
1	musculus domesticus]
	gi 26387941 dbi BAC25633.1 unnamed protein
HG1000616N0_1000_gene_prediction1	product [Mus musculus]
HG1000622N0_160000_gene_predictio	
n2	
HG1000623N0_160000_gene_predictio	gi 20904129 ref XP_155605.1 hypothetical
n1	protein XP_155605 [Mus musculus]
	gi 13542693 gb AAH05553.1 putative chloride
HG1000624N0_160000_gene_predictio	15.7
n1	musculus]
HG1000625N0 160000 gene prediction	gi 20901495 ref XP_140099.1 RIKEN cDNA
n1	9130404H23 [Mus musculus]
HG1000628N0_40000_gene_prediction	gi 3599320 gb AAC72793.1 ORF2 [Mus
	musculus domesticus]

FP ID	Fantom Top Hit Annotation
HG1000628N0_20000_gene_prediction	gi 26339720 dbj BAC33523.1 unnamed protein
	product [Mus musculus]
	gi 3599320 gb AAC72793.1 ORF2 [Mus
HG1000638N0_5000_gene_prediction1	musculus domesticus]
HG1000642N0_160000_gene_predictio	
n1	No record 1) A Crozon 1 ODEO DA
HG1000646N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
	gi 25049717 ref XP_149640.2 similar to gene
HG1000649N0_160000_gene_predictio	Dbp73D protein - fruit fly (Drosophila
n1	melanogaster) [Mus musculus]
HG1000650N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1	musculus domesticus]
HG1000652N0_160000_gene_prediction2	gi 26377673 dbj BAC25377.1 unnamed protein product [Mus musculus]
HG1000656N0_160000_gene_predictio	gi 13384666 ref[NP_079583.1 nuclear receptor
n1	binding factor 2 [Mus musculus]
HG1000656N0 160000 gene_predictio	gi 25050704 ref XP_133465.2 RIKEN cDNA
n2	2410004H02 [Mus musculus]
HG1000659N0 20000 gene_prediction	gi 25050704 ref XP_133465.2 RIKEN cDNA
	2410004H02 [Mus musculus]
HG1000661N0 20000 gene_prediction	gi 26333733 dbj BAC30584.1 unnamed protein
1	product [Mus musculus]
HG1000664N0_160000_gene_predictio	gi 27372319 dbj BAC53724.1 Piccolo [Mus
n1	musculus]
	gi 6680195 ref NP_032255.1 histone
	deacetylase 2; DNA segment, Chr 10, Wayne
HG1000670N0_160000_gene_predictio	State University 179, expressed [Mus musculus]
nl	
	gi 17313266 ref NP_478121.1 RecQ protein- like 4 [Mus musculus]
n2	ince 4 [ivius museurus]
HG1000690N0_20000_gene_prediction	
	gi 26340662 dbj BAC33993.1 unnamed protein
2	product [Mus musculus]
HG1000696N0 20000_gene_prediction	
1	product [Mus musculus]
HG1000696N0_40000_gene_prediction	gi 26326171 dbj BAC26829.1 unnamed protein
1	product [Mus musculus]
HG1000697N0 160000 gene predictio	gi 25024387 ref XP_207341.1 hypothetical
nl	protein XP_207341 [Mus musculus]
HG1000700N0_160000_gene_predictio	gi 26351279 dbj BAC39276.1 unnamed protein
n2	product [Mus musculus]
	gi 21644579 ref NP 660253.1 Williams-
	<u> </u>

FP ID	Fantom Top Hit Annotation
	Beuren syndrome critical region gene 17 [Mus
	musculus]
HG1000711N0_20000_gene_prediction	gi 23273683 gb AAH37239.1 Similar to
1	BCL2-associated athanogene 4 [Mus musculus]
HG1000738N0_160000_gene_predictio	gi 12856848 dbj BAB30802.1 unnamed protein
n1	product [Mus musculus]
	gi 26339470 dbj BAC33406.1 unnamed protein
n1	product [Mus musculus]
HG1000739N0_160000_gene_prediction2	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000740N0_10000_gene_prediction	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1000743N0 160000 gene predictio	gi 23601536 ref XP_130965.2 Nice-4 protein
n1	homolog [Mus musculus]
HG1000779N0_160000_gene_predictio	gi 2627027 dbj BAA23475.1 Ftp-1 [Mus
n1	musculus]
HG1000781N0_160000_gene_predictio	gi 25023334 ref XP_204722.1 similar to
n1	formin [Mus musculus]
HG1000781N0_160000_gene_predictio	gi 26350877 dbj BAC39075.1 unnamed protein
n2	product [Mus musculus]
4	gi 25023581 ref XP_207103.1 similar to
HG1000786N0_160000_gene_predictio	Retrovirus-related POL polyprotein [Mus musculus]
n1	gi 26340832 dbj BAC34078.1 unnamed protein
IIC1000788NIO 1000 cone prediction1	product [Mus musculus]
HG1000788N0_1000_gene_prediction1	gi 20847912 ref XP_144610.1 similar to
HG1000799N0 20000 gene_prediction	KIAA1904 protein [Homo sapiens] [Mus
1	musculus]
HG1000808N0 160000 gene_predictio	
n1	product [Mus musculus]
	gi 20882231 ref XP_139203.1 similar to
HG1000817N0_160000_gene_predictio	
n1	musculus]
	gi 13242237 ref NP_077327.1 Heat shock
HG1000822N0_20000_gene_prediction	cognate protein 70; heat shock 70kD protein 8
1	[Rattus norvegicus]
	gi 6680195 ref NP_032255.1 histone
TYCHOOOD AND 160000 10-21-21-	deacetylase 2; DNA segment, Chr 10, Wayne State University 179, expressed [Mus
HG1000824N0_160000_gene_predictio	musculus]
n1	gi 20883564 ref XP_152815.1 hypothetical
HG1000824N0_10000_gene_prediction	protein XP_152815 [Mus musculus]
HG1000839N0 160000 gene_prediction	
n1	protein XP 152815 [Mus musculus]
111	<u> </u>

FP ID	Fantom Top Hit Annotation
HG1000842N0 160000_gene_predictio	gi 26339496 dbj BAC33419.1 unnamed protein
n1	product [Mus musculus]
HG1000842N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n2	musculus domesticus]
HG1000869N0_160000_gene_predictio	gi 6715564 ref NP_032607.1 melanoma
n1	antigen, 80 kDa [Mus musculus]
HG1000870N0_160000_gene_predictio	gi 20881174 ref XP_147875.1 hypothetical
n1	protein XP_147875 [Mus musculus]
HG1000870N0 160000 gene predictio	gi 27369942 ref NP_766246.1 hypothetical
n2	protein 9530051F04 [Mus musculus]
HG1000878N0 20000 gene prediction	gi 27369942 ref NP_766246.1 hypothetical
1	protein 9530051F04 [Mus musculus]
HG1000878N0 20000 gene prediction	gi 27369942 ref NP_766246.1 hypothetical
2	protein 9530051F04 [Mus musculus]
HG1000904N0 160000 gene predictio	gi 27369942 ref NP_766246.1 hypothetical
n2	protein 9530051F04 [Mus musculus]
HG1000904N0_40000 gene_prediction	gi 3599320 gb AAC72793.1 ORF2 [Mus
	musculus domesticus]
	gi 3599320 gb AAC72793.1 ORF2 [Mus
HG1000906N0_5000_gene_prediction1	musculus domesticus]
HG1000906N0 160000 gene predictio	gi 20836822 ref XP_130277.1 similar to
n2	Plakophilin 4 (p0071) [Mus musculus]
HG1000910N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1 = ==================================	musculus domesticus]
HG1000948NO_160000_gene_predictio	gi 26325846 dbj BAC26677.1 unnamed protein
n1	product [Mus musculus]
HG1000955N0_160000_gene_predictio	gi 3599320 gb AAC72793.1 ORF2 [Mus
n1	musculus domesticus]
HG1000959N0_160000_gene_predictio	gi 7670427 dbj BAA95065.1 unnamed protein
n1	product [Mus musculus]
	gi 22507385 ref NP_081019.1 RIKEN cDNA
HG1000959N0_5000_gene_prediction1	1110014F12 [Mus musculus]
	gi 22507385 ref NP_081019.1 RIKEN cDNA
HG1000990N0_5000_gene_prediction1	1110014F12 [Mus musculus]
	gi 10946762 ref NP_067382.1 triggering
	receptor expressed on myeloid cells 3;
HG1000994N0_10000_gene_prediction	triggering receptor expressed on monocytes 3
1	[Mus musculus]
	gi 12855175 dbj BAB30238.1 unnamed protein
n2	product [Mus musculus]
	gi 12855175 dbj BAB30238.1 unnamed protein
2	product [Mus musculus]
_	gi 12855175 dbj BAB30238.1 unnamed protein
n1	product [Mus musculus]

FP ID	Fantom Top Hit Annotation
	gi 26337385 dbj BAC32378.1 unnamed protein
HG1001001N0_0_gene_prediction1	product [Mus musculus]
HG1001002N0_160000_gene_predictio	gi 27370034 ref NP_766297.1 hypothetical
n1	protein A530025J20 [Mus musculus]
	gi 20348159 ref XP_111588.1 similar to
HG1001003N0_0_gene_prediction1	TRAV9D-3 [Mus musculus]
HG1001007N0_160000_gene_predictio	gi 27370034 ref NP_766297.1 hypothetical
n2	protein A530025J20 [Mus musculus]
HG1001011N0_160000_gene_predictio	gi 13097000 gb AAH03291.1 Similar to
n1	hypothetical protein FLJ10342 [Mus musculus]
HG1001011N0_160000_gene_predictio	gi 26336525 dbj BAC31945.1 unnamed protein
n2	product [Mus musculus]
	gi 25047957 ref XP_130582.2 similar to
HG1001014N0_160000_gene_predictio	hypothetical protein MGC14161 [Homo
n1	sapiens] [Mus musculus]
	gi 26337385 dbj BAC32378.1 unnamed protein
HG1001014N0_5000_gene_prediction1	product [Mus musculus]
HG1001017N0_160000_gene_predictio	gi 26337385 dbj BAC32378.1 unnamed protein
<u>n1</u>	product [Mus musculus]
HG1001020N0_160000_gene_predictio	gi 25019831 ref XP_207463.1 similar to
n1	CD59B [Mus musculus]
HG1001024N0_160000_gene_predictio	gi 26338976 dbj BAC33159.1 unnamed protein
n1	product [Mus musculus]
HG1001024N0_160000_gene_predictio	gi 20915148 ref XP_149841.1 hypothetical
n2	protein XP_149841 [Mus musculus]
HG1001031N0_160000_gene_predictio	gi 20915148 ref XP_149841.1 hypothetical protein XP_149841 [Mus musculus]
n1	
TICLONIOSENIO FORO come mundiction1	gi 25071690 ref XP_193591.1 hypothetical protein XP 193591 [Mus musculus]
HG1001035N0_5000_gene_prediction1	<u> </u>
	gi 26347249 dbj BAC37273.1 unnamed protein
111	
IIC1001046NIO 5000 cone prediction1	
TIO 1001040140 2000 Sette brememoni	
UC1001046NO 160000 gana predictio	
<u> </u>	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
HG1001047N0 1000 gene prediction1	
	
_	101
HG1001048N0 160000 gene predictio	
n2	[Mus musculus]
	gi 20346197 ref XP 110161.1 RAN binding
n1 HG1001046N0_5000_gene_prediction1 HG1001046N0_160000_gene_prediction1 HG1001047N0_1000_gene_prediction1 HG1001048N0_160000_gene_prediction1 HG1001048N0_160000_gene_prediction2	product [Mus musculus] gi 6678714 ref NP_032537.1 lymphoid- restricted membrane protein [Mus musculus] gi 25048969 ref XP_143803.3 similar to bA401.1 (novel protein) [Homo sapiens] [Mus musculus] gi 25021180 ref XP_207917.1 similar to RNP particle component [Mus musculus] gi 26353724 dbj BAC40492.1 unnamed protein product [Mus musculus] gi 20343845 ref XP_109652.1 similar to hypothetical protein FLJ25217 [Homo sapiens]

FP ID	Fantom Top Hit Annotation
1	protein 1 [Mus musculus]
HG1001148N0_160000_gene_predictio n2	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001172N0_160000_gene_prediction1	gi 26339628 dbj BAC33485.1 unnamed protein product [Mus musculus]
HG1001172N0_20000_gene_prediction	gi 22122489 ref NP_666128.1 hypothetical protein MGC38936 [Mus musculus]
HG1001187N0_160000_gene_prediction1	gi 26340706 dbj BAC34015.1 unnamed protein product [Mus musculus]
HG1001192N0_160000_gene_prediction1	gi 18497290 ref NP_084056.1 protein kinase raf 1; murine sarcoma 3611 oncogene 1; sarcoma 3611 oncogene [Mus musculus]
HG1001194N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001199N0_160000_gene_predictio n1	gi 20837732 ref XP_132241.1 hypothetical protein XP_132241 [Mus musculus]
HG1001199N0_160000_gene_predictio n2	gi 20071068 gb AAH27341.1 Similar to elongation factor G2 [Mus musculus]
HG1001220N0_160000_gene_prediction1	gi 20071068 gb AAH27341.1 Similar to elongation factor G2 [Mus musculus]
HG1001223N0_160000_gene_prediction1	gi 20908735 ref XP_122598.1 similar to helix-destabilizing protein - rat [Mus musculus]
HG1001229N0_160000_gene_predictio n2	gi 25024769 ref XP_207136.1 similar to ORF2 [Mus musculus domesticus]
HG1001230N0_5000_gene_prediction1	gi 6754206 ref NP_034568.1 hexokinase 1; downeast anemia [Mus musculus]
HG1001235N0_160000_gene_prediction1	gi 12857205 dbj BAB30930.1 unnamed protein product [Mus musculus]
HG1001235N0_10000_gene_prediction	gi 21703918 ref NP_663438.1 hypothetical protein BC024118 [Mus musculus]
HG1001235N0_20000_gene_prediction	gi 26339338 dbj BAC33340.1 unnamed protein product [Mus musculus]
HG1001235N0_160000_gene_predictio n2	gi 26339338 dbj BAC33340.1 unnamed protein product [Mus musculus]
HG1001235N0_160000_gene_predictio n3	gi 26340904 dbj BAC34114.1 unnamed protein product [Mus musculus]
HG1001260N0_160000_gene_prediction1	gi 26327795 dbj BAC27638.1 unnamed protein product [Mus musculus]
HG1001260N0_40000_gene_prediction	gi 8922328 ref NP_060517.1 hypothetical protein FLJ10290 [Homo sapiens]
HG1001264N0_160000_gene_prediction1	gi 8922328 ref NP_060517.1 hypothetical protein FLJ10290 [Homo sapiens]
	gi 26383198 dbi BAC25520.1 unnamed protein

FP ID	Fantom Top Hit Annotation
n1	product [Mus musculus]
n1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001284N0_160000_gene_prediction2	gi 26326843 dbj BAC27165.1 unnamed protein product [Mus musculus]
HG1001292N0_160000_gene_prediction1	gi 26326843 dbj BAC27165.1 unnamed protein product [Mus musculus]
HG1001302N0_160000_gene_prediction1	gi 13097342 gb AAH03421.1 Similar to ATPase, H+ transporting, lysosomal (vacuolar proton pump) 31kD [Mus musculus]
HG1001313N0_160000_gene_prediction1	gi 12852631 dbj BAB29486.1 unnamed protein product [Mus musculus]
HG1001323N0_160000_gene_prediction1	gi 25053141 ref XP_193739.1 similar to betaine-homocysteine methyltransferase [Rattus norvegicus] [Mus musculus]
HG1001328N0_5000_gene_prediction1	gi 26347687 dbj BAC37492.1 unnamed protein product [Mus musculus]
HG1001328N0_40000_gene_prediction	gi 26352918 dbj BAC40089.1 unnamed protein product [Mus musculus]
HG1001331N0_0_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001335N0_160000_gene_predictio n1	gi 20381292 gb AAH27770.1 stromal cell derived factor receptor 2 [Mus musculus]
HG1001335N0_160000_gene_predictio n2	gi 2193870 dbj BAA20419.1 reverse transcriptase [Mus musculus]
HG1001348N0_160000_gene_prediction1	transcriptase [Mus musculus]
HG1001349N0_160000_gene_prediction1	protein XP_150033 [Mus musculus]
HG1001354N0_160000_gene_predictio n1	gi 7305215 ref NP_038599.1 kinase suppressor of ras [Mus musculus]
HG1001361N0_160000_gene_predictio	gi 6678690 ref NP_032525.1 LIM homeobox protein 5; LIM homeo box protein 5 [Mus musculus]
HG1001376N0_160000_gene_prediction1	gi 20345901 ref XP_109824.1 hypothetical protein XP_109824 [Mus musculus]
HG1001376N0 5000 gene_prediction1	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]
	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]
HG1001376N0_5000_gene_prediction2	gi 27261816 ref NP_080861.1 RIKEN cDNA
HG1001376N0_5000_gene_prediction3	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]

FP ID	Fantom Top Hit Annotation
HG1001417N0_160000_gene_prediction1	gi 27261816 ref NP_080861.1 RIKEN cDNA C530005J20 [Mus musculus]
HG1001417N0_1000_gene_prediction1	gi 26349767 dbj BAC38523.1 unnamed protein product [Mus musculus]
HG1001417N0_160000_gene_predictio n2	gi 26349767 dbj BAC38523.1 unnamed protein product [Mus musculus]
HG1001417N0_160000_gene_prediction3	gi 26349767 dbj BAC38523.1 unnamed protein product [Mus musculus]
HG1001436N0_5000_gene_prediction1	gi 26349767 dbj BAC38523.1 unnamed protein product [Mus musculus]
HG1001436N0_20000_gene_prediction	gi 20987280 gb AAH29643.1 Unknown (protein for MGC:25768) [Mus musculus]
HG1001436N0_160000_gene_prediction1	gi 25051637 ref XP_194491.1 RIKEN cDNA 1110053F02 [Mus musculus]
HG1001439N0_160000_gene_prediction1	gi 25051637 ref XP_194491.1 RIKEN cDNA 1110053F02 [Mus musculus]
HG1001484N0_160000_gene_prediction1	gi 6753290 ref NP_033943.1 calsequestrin 1 [Mus musculus]
HG1001485N0_10000_gene_prediction	gi 25029827 ref XP_207226.1 similar to ORF2 [Mus musculus domesticus]
HG1001500N0_160000_gene_prediction1	gi 3599320 gb AAC72793.1 ORF2 [Mus musculus domesticus]
HG1001500N0_160000_gene_prediction2	gi 6679108 ref NP_032748.1 nucleophosmin 1; nucleolar protein NO38 [Mus musculus]
HG1001508N0_160000_gene_prediction1	gi 25029928 ref XP_207257.1 similar to Retrovirus-related POL polyprotein [Mus musculus]
	gi 20340683 ref XP_110361.1 similar to phospholipase C beta 2 [Rattus norvegicus] [Mus musculus]

Examples

[0602] The examples, which are intended to be purely exemplary of the invention and should therefore not be considered to limit the invention in any way, also describe and detail aspects and embodiments of the invention discussed above. The examples are not intended to represent that the experiments below are all or the only experiments performed. Efforts have been made to ensure accuracy with respect to numbers used (e.g., amounts, temperature, etc.) but some experimental errors and deviations should be accounted for. Unless indicated otherwise, parts are parts by weight, molecular weight is weight average molecular weight, temperature is in degrees Centigrade, and pressure is at or near atmospheric.

[0603] While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications can be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

[0604] Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims. Moreover, advantages described in the body of the specification, if not included in the claims, are not per se limitations to the claimed invention.

[0605] It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Moreover, it must be understood that the invention is not limited to the particular embodiments described, as such may, of course, vary. Further, the terminology used to describe particular embodiments is not intended to be limiting, since the scope of the present invention will be limited only by its claims.

[0606] With respect to ranges of values, the invention encompasses each intervening value between the upper and lower limits of the range to at least a tenth of the lower limit's unit, unless the context clearly indicates otherwise. Further, the

invention encompasses any other stated intervening values. Moreover, the invention also encompasses ranges excluding either or both of the upper and lower limits of the range, unless specifically excluded from the stated range.

[0607] Unless defined otherwise, the meanings of all technical and scientific terms used herein are those commonly understood by one of ordinary skill in the art to which this invention belongs. One of ordinary skill in the art will also appreciate that any methods and materials similar or equivalent to those described herein can also be used to practice or test the invention. Further, all publications mentioned herein are incorporated by reference.

[0608] It must be noted that, as used herein and in the appended claims, the singular forms "a," "or," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to "a subject polypeptide" includes a plurality of such polypeptides and reference to "the agent" includes reference to one or more agents and equivalents thereof known to those skilled in the art, and so forth.

[0609] Further, all numbers expressing quantities of ingredients, reaction conditions, % purity, polypeptide and polynucleotide lengths, and so forth, used in the specification and claims, are modified by the term "about," unless otherwise indicated. Accordingly, the numerical parameters set forth in the specification and claims are approximations that may vary depending upon the desired properties of the present invention. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits, applying ordinary rounding techniques. Nonetheless, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors from the standard deviation of its experimental measurement.

[0610] The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.

Example 1 Expression in E. coli

[0611] Sequences can be expressed in *E. coli*. Any one or more of the sequences according to SEQ ID NOS.: 1-104 can be expressed in *E. coli* by subcloning the entire coding region, or a selected portion thereof, into a prokaryotic expression vector. For example, the expression vector pQE16 from the QIA expression prokaryotic protein expression system (Qiagen, Valencia, CA) can be used. The features of this vector that make it useful for protein expression include an efficient promoter (phage T5) to drive transcription, expression control provided by the lac operator system, which can be induced by addition of IPTG (isopropyl-beta-D-thiogalactopyranoside), and an encoded 6XHis tag coding sequence. The latter is a stretch of six histidine amino acid residues which can bind very tightly to a nickel atom. This vector can be used to express a recombinant protein with a 6XHis. tag fused to its carboxyl terminus, allowing rapid and efficient purification using Nicoupled affinity columns.

PCR, then ligated into digested pQE16 vector. The ligation product can be transformed by electroporation into electrocompetent *E. coli* cells (for example, strain M15[pREP4] from Qiagen), and the transformed cells may be plated on ampicillin-containing plates. Colonies may then be screened for the correct insert in the proper orientation using a PCR reaction employing a gene-specific primer and a vector-specific primer. Also, positive clones can be sequenced to ensure correct orientation and sequence. To express the proteins, a colony containing a correct recombinant clone can be inoculated into L-Broth containing 100 μg/ml of ampicillin, and 25 μg/ml of kanamycin, and the culture allowed to grow overnight at 37 degrees C. The saturated culture may then be diluted 20-fold in the same medium and allowed to grow to an optical density of 0.5 at 600 nm. At this point, IPTG can be added to a final concentration of 1 mM to induce protein expression. After growing the culture for an additional 5 hours, the cells may be harvested by centrifugation at 3000 times *g* for 15 minutes.

[0613] The resultant pellet can be lysed with a mild, nonionic detergent in 20 mM Tris HCl (pH 7.5) (B PER.TM. Reagent from Pierce, Rockford, IL), or by sonication until the turbid cell suspension turns translucent. The resulting lysate can be further purified using a nickel-containing column (Ni-NTA spin column from

Qiagen) under non-denaturing conditions. Briefly, the lysate will be adjusted to 300 mM NaCl and 10 mM imidazole, then centrifuged at 700 times g through the nickel spin column to allow the His-tagged recombinant protein to bind to the column. The column will be washed twice with wash buffer (for example, 50 mM NaH₂ PO₄, pH 8.0; 300 mM NaCl; 20 mM imidazole) and eluted with elution buffer (for example, 50 mM NaH2 PO₄, pH 8.0; 300 mM NaCl; 250 mM imidazole). All the above procedures will be performed at 4 degrees C. The presence of a purified protein of the predicted size can be confirmed with SDS-PAGE.

Example 2: Expression in Mammalian Cells

[0614] The sequences encoding the proteins of Example 1 can be cloned into the pENTR vector (Invitrogen) by PCR and transferred to the mammalian expression vector pDEST12.2 per manufacturer's instructions (Invitrogen). Introduction of the recombinant construct into the host cell can be effected by transfection with Fugene 6 (Roche) per manufacturer's instructions. The host cells containing one of polynucleotides of the invention can be used in conventional manners to produce the gene product encoded by the isolated fragment (in the case of an ORF). A number of types of cells can act as suitable host cells for expression of the proteins. Mammalian host cells include, for example, monkey COS cells, Chinese Hamster Ovary (CHO) cells, human kidney 293 cells, human epidermal A431 cells, human Colo205 cells, 3T3 cells, CV-1 cells, other transformed primate cell lines, normal diploid cells, cell strains derived from *in vitro* culture of primary tissue, primary explants, HeLa cells, mouse L cells, BHK, HL-60, U937, HaK or Jurkat cells.

Example 3: Expression in Cell-Free Translation Systems

[0615] Cell-free translation systems can also be employed to produce proteins using RNAs derived from the DNA constructs of the present invention. Appropriate cloning and expression vectors containing SP6 or T7 promoters for use with prokaryotic and eukaryotic hosts have been described (Sambrook et al., 1989). These DNA constructs can be used to produce proteins in a rabbit reticulocyte lysate system or in a wheat germ extract system.

[0616] Specific expression systems of interest include plant, bacterial, yeast, insect cell and mammalian cell derived expression systems. Expression systems in plants include those described in U.S. Patent No. 6,096,546 and U.S. Patent No. 6,127,145. Expression systems in bacteria include those described by Chang et al.,

1978, Goeddel et al., 1979, Goeddel et al., 1980, EP 0 036,776, U.S. Patent No. 4.551.433: DeBoer et al., 1983, and Siebenlist et al., 1980.

[0617] Mammalian expression is further accomplished as described in Dijkema et al. 1985, Gorman et al., 1982, Boshart et al., 1985, and U.S. Patent No. 4,399,216. Other features of mammalian expression are facilitated as described in Ham and Wallace, Meth. Enz., 1979, Barnes and Sato, 1980, U.S. Patent Nos. 4,767,704, 4,657,866, 4,927,762, 4,560,655, WO 90/103430, WO 87/00195, and U.S. RE 30,985.

Example 4: Expression of the Secreted Factors in Yeast

[0618] Primers can be designed to amplify the secreted factors using PCR and cloned into pENTR/D-TOPO vectors (Invitrogen, Carlsbad, CA). The secreted factors in pENTR/D-TOPO can be cloned into the yeast expression vector pYES-DEST52 by Gateway LR reaction (Invitrogen, Carlsbad, CA). The resulting yeast expression vectors can be transformed into INVSc1 strain from Invitrogen to express the secreted factors according to the manufacturer's protocol (Invitrogen, Carlsbad CA). The expressed secreted factors will have a 6XHis tag at the C-terminal. Expressed protein can be purified with ProBondTM resin (Invitrogen, Carlsbad, CA).

[0619] Expression systems in yeast include those described in Hinnen et al., 1978, Ito et al., 1983, Kurtz et al., 1986, Kunze et al., 1985, Gleeson et al., 1986, Roggenkamp et al., 1986, Das et al., 1984, De Louvencourt et al., 1983, Van den Berg et al., 1990, Kunze et al., 1985, Cregg et al. 1985, U.S. Patent No. 4,837,148, U.S. Patent No. 4,929,555, Beach and Nurse, 1981, Davidow et al., 1985, Gaillardin et al., 1985, Ballance et al., 1983, Tilburn et al., 1983, Yelton et al., 1984, Kelly and Hynes, 1985, EP 0 244,234, and WO 91/00357.

Example 5: Expression of Secreted Factors in Baculovirus Expression System.

[0620] The secreted factors in pENTR/D-TOPO can be cloned into Baculovirus expression vector pDEST10 by Gateway LR reaction (Invitrogen, Carlsbad, CA). The secreted factors can be expressed by the Bac-to-Bac expression system from Invitrogen (Carlsbad CA), briefly described as follows. The expression vectors containing the secreted factors are transformed into competent DH10BacTM *E. coli* strain and selected for transposition. The resulting *E coli* contain recombinant bacmid that contains the secreted factor. High molecular weight DNA can be isolated from the *E. coli* containing the recombinant bacmid and then transfected into insect

cells with Cellfectin reagent. The expressed secreted factors will have a 6XHis tag at N-terminal. Expressed protein will be purified by ProBondTM resin (Invitrogen, Carlsbad, CA).

[0621] Expression of heterologous genes in insects can be accomplished as described in U.S. Patent No. 4,745,051; Doerfler et al., 1087; Friesen *et al.*, 1986; EP 0 127,839, EP 0 155,476, Vlak *et al.*, 1988, Miller *et al.*, 1988, Carbonell *et al.*, 1988, Maeda *et al.*, 1985, Lebacq-Verheyden *et al.*, 1988, Smith *et al.*, 1985, Miyajima *et al.*; and Martin *et al.*, 1988. Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts have been previously described (Setlow et al., 1986, Luckow *et al.*, 1988; Miller *et al.*, 1986; Maeda *et al.*, 1985).

Example 6: Primer Design

[0622] To design the forward primer for PCR amplification, the melting point of the first 20 to 24 bases of the primer can be calculated by counting total A and T residues, then multiplying by 2. To design the reverse primer for PCR amplification, the melting point of the first 20 to 24 bases of the reverse complement, with the sequences written from 5-prime to 3-prime can be calculated by counting the total G and C residues, then multiplying by 4. Both start and stop codons can be present in the final amplified clone. The length of the primers is such to obtain melting temperatures within 63 degrees C to 68 degrees C. Adding the bases "CACC" to the forward primer renders it compatible for cloning the PCR product with the TOPO pENTR/D (Invitrogen, CA).

Example 7: Reverse Transcriptase Reaction

[0623] cDNA can be prepared by the following method. Between 200 ng and 1.0 μg mRNA is added to 2 μl DMSO and the volume adjusted to 11 μl with DEPC-treated water. One μl Oligo dT is added to the tube, and the mixture is heated at 70° C for 5 min., quickly chilled on ice for 2 min., and the mixture is collected at the bottom of the tube by brief centrifugation. The following 1st strand components are then added to the mRNA mixture: 2 μl 10X Stratascript (Stratagene, CA) 1st strand buffer, 1 μl 0.1 M DTT, 1 μl 10 mM dNTP mix (10 mM each of dG, dA, dT and dCTP), 1 μl RNAse inhibitor, 3 μl Stratascript RT (50 U/ μl). The contents are gently mixed and the mixture collected by brief centrifugation. The mixture is incubated in a 42° C water bath for 1 hour, placed in a 70° C water bath for 15 min. to stop the reaction, transferred to ice for 2 min., and centrifuged briefly in a microfuge to collect the reaction product at the bottom of the reaction vessel. Two μl RNAse H is then

added to the tube, the contents are mixed well, incubated at 37° C in a water bath for 20 min., and centrifuged briefly in a microfuge to collect the reaction product at the bottom of the reaction vessel. The reaction mixture can proceed directly to PCR or be stored at -20° C.

Example 8: Full Length PCR

[0624] Full length PCR can be achieved by placing the products of the reaction described in Example 7, with primers diluted to 5μM in water, into a reaction vessel and adding a reaction mixture composed of 1x Taq buffer, 25 mM dNTP, 10 ng cDNA pool, TaqPlus (Stratagene, CA) (5u/ul), PfuTurbo (Stratagene, CA) (2.5u/ul), water. The contents of the reaction vessel are then mixed gently by inversion 5-6 times, placed into a reservoir where 2μl F₁/R₁ primers are added, the plate sealed and placed in the thermocycler. The PCR reaction is comprised of the following eight steps. Step 1: 95° C for 3 min. Step 2: 94° C for 45 sec. Step 3: 0.5° C/sec to 56-60° C. Step 4: 56-60° C for 50 sec. Step 5: 72° C for 5 min. Step 6: Go to step 2, perform 35-40 cycles. Step 7: 72° C for 20 min. Step 8: 4° C.

[0625] The products can then be separated on a standard 0.8 to 1.0% agarose gel at 40 to 80 V, the bands of interest excised by cutting from the gel, and stored at – 20° C until extraction. The material in the bands of interest can be purified with QIAquick 96 PCR Purification Kit (Qiagen, CA) according to the manufacturer instructions. Cloning can be performed with the Topo Vector pENTR/D-TOPO vector (Invitrogen, CA) according to the manufacturer's instructions.

References

[0626] The specification is most thoroughly understood in light of the following references, all of which are hereby incorporated by reference in their entireties. The disclosures of the patents and other references cited above are also hereby incorporated by reference.

- Agou, F., Quevillon, S., Kerjan, P., Latreille, M.T., Mirande, M. (1996)
 Functional replacement of hamster lysyl-tRNA synthetase by the yeast
 enzyme requires cognate amino acid sequences for proper tRNA recognition.
 Biochemistry 35:15322-15331.
- Agrawal, S., Crooke, S.T. eds. (1998) <u>Antisense Research and Application</u>
 (<u>Handbook of Experimental Pharmacology, Vol 131</u>). Springer-Verlag New
 York, Inc.
- 3. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D. (1994)

 Molecular Biology of the Cell. 3rd ed. Garland Publishing, Inc.
- 4. Alexander, D.R. (2000) The CD45 tyrosine phosphatase: a positive and negative regulator of immune cell function. *Semin. Immunol* 12:349-359.
- 5. Allison, A.C. (2000) Immunosuppressive drugs: the first 50 years and a glance forward. *Immunopharmacology* 47:63-83.
- 6. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic alignment search tool. *J. Mol. Biol.* 215:403-410.
- Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zheng, Z., Miller, W., Lipman, D.J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. *Nucleic Acids Res.* 25:3389-3402.
- 8. Amor, J.C., Harrison, D.H., Kahn, R.A., Ringe, D. (1994) Structure of the human ADP-ribosylation factor 1 complexed with GDP. *Nature* 372:704-708.
- 9. Andreeff, M., Pinkel, D. eds. (1999) <u>Introduction to Fluorescence In Situ</u>
 <u>Hybridization: Principles and Clinical Applications</u>. John Wiley & Sons.
- Andres, D.A., Shao, H., Crick, D.C., Finlin, B.S. (1997) Expression cloning of a novel farnesylated protein, RDJ2, encoding a DnaJ protein homologue. *Arch. Biochem. Biophys.* 346:113-124.
- Ansel, H.C., Allen, L., Popovich, N.G. eds. (1999) <u>Pharmaceutical Dosage</u>
 <u>Forms and Drug Delivery Systems</u>. 7th ed. Lippencott Williams and Wilkins Publishers.

12. Aubry, M., Marineau, C., Zhang, F.R., Zahed, L., Figlewicz, D., Delattre, O., Thomas, G., de Jong, P.J., Julien, J.P., Rouleau, G.A. (1992) Cloning of six new genes with zinc finger motifs mapping to short and long arms of human acrocentric chromosome 22 (p and q11.2). *Genomics* 13:641-648.

- Ausubel, F., Brent. R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., eds. (1999) <u>Short Protocols in Molecular Biology</u>. 4th ed. Wiley & Sons.
- 14. Baksh, S., Burakoff, S.J. (2000) The role of calcineurin in lymphocyte activation. *Semin. Immunol.* 12:405-415.
- 15. Ballance, D.J., Buxton, F.P., Turner, G. (1983) Transformation of *Aspergillus nidulans* by the orotidine-5'-phosphate decarboxylase gene of *Neurospora crassa. Biochem. Biophys. Res. Commun.* 112:284-289.
- 16. Barany, F. (1985) Single-stranded hexameric linkers: a system for in-phase insertion mutagenesis and protein engineering. *Gene* 37:111-123.
- 17. Barnes, D., Sato, G. (1980) Methods for growth of cultured cells in serum-free medium. *Anal. Biochem.* 102:255-270.
- Barton, M.C., Hoekstra, M.F., Emerson, B.M. (1990) Site-directed, recombination-mediated mutagenesis of a complex gene locus. *Nucleic Acids Res.* 18:7349-7355.
- 19. Bashkin, J.K., Sampath, U., Frolova, E. (1995) Ribozyme mimics as catalytic antisense reagents. *Appl. Biochem. Biotechnol.* 54:43-56.
- 20. Bassett, D.E., Eisen, M.B., Boguski, M.S. (1999) Gene expression informatics it's all in your mine. *Nature Genetics* 21:51-55.
- 21. Bast, R.C., Kufe, D.W., Pollock, R.E., Weichselbaum, R.R., Holland, J.F., Frei, E., eds. (2000) Cancer Medicine. 5th ed. B.C. Decker, Inc.
- 22. Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., Sonnhammer, E.L.L. (2000) *Nucleic Acids Research* 30:276-280.
- 23. Battini, R., Ferrari, S., Kaczmarek, L., Calabretta, B., Chen, S.T., Baserga, R. (1987) Molecular cloning of a cDNA for a human ADP/ATP carrier which is growth-regulated. *J. Biol. Chem.* 262:4355-4359.
- 24. Beach, D., Durkacz, B., Nurse, P. (1982) Functionally homologous cell cycle control genes in budding and fission yeast. *Nature* 300:706-709.

 Beigelman, L., Karpeisky, A., Matulic-Adamic, J., Haeberli, P., Sweedler, D., Usman, N. (1995) Synthesis of 2'-modified nucleotides and their incorporation into hammerhead ribozymes. *Nucleic Acids Res.* 23:4434-4442.

- 26. Bennett, J. (2000) Gene therapy for retinitis pigmentosa. *Curr. Opin. Mol. Ther.* 2:420-425.
- 27. Berinstein, N.L. (2002) Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review. *J. Clin. Oncol.* 20:2197-2207.
- 28. Bibikova, M., Beumer, K., Trautman, J.K., Carroll, D. (2003) Enhancing gene targeting with designed zinc finger nucleases. *Science* 300:764.
- 29. Birney, E., Durbin, R. (2000) Using GeneWise in the *Drosophila* annotation experiment. *Genome Res.* 10:547-548.
- Blackwell, J.M., Barton, C.H., White, J.K., Searle, S., Baker, A.M., Williams, H., Shaw, M.A. (1995) Genomic organization and sequence of the human NRAMP gene: identification and mapping of a promoter region polymorphism. *Mol. Med.* 1:194-205.
- Bodzioch, M., Orso, E., Klucken, J., Langmann, T., Bottcher, A., Diederich,
 W., Drobnik, W., Barlage, S., Buchler, C., Porsch-Ozcurumez, M., Kaminski,
 W.E., Hahmann, H.W., Oette, K., Rothe, G., Aslanidis, C., Lackner, K.J.,
 Schmitz, G. (1999) The gene encoding ATP-binding cassette transporter 1 is
 mutated in Tangier disease. *Nat. Genet.* 1999 22:347-351.
- 32. Bonifaci, N., Moroianu, J., Radu, A., Blobel, G. (1997) Karyopherin beta2 mediates nuclear import of a mRNA binding protein. *Proc. Natl. Acad. Sci.* 94:5055-5060.
- 33. Bono, H., Kasukawa, T., Furuno, M., Hayashizaki, Y., Okazaki, Y. (2002) FANTOM DB: database of Functional Annotation of RIKEN Mouse cDNA Clones. *Nucleic Acids Res.* 30:116-118.
- 34. Boshart, M., Weber, F., Jahn, G., Dorsch-Hasler, K., Fleckenstein, B., Schaffner, W. (1985) A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. *Cell* 41:521-530.
- 35. Bowtell, D.D.L. (1999) Options available from start to finish for obtaining expression data by microarray. *Nature Genetics* 21:25-32.
- 36. Brenner, S., Williams, S.R., Vermass, E.H., Storck, T., Moon, K., McCollum, C., Mao, J.I., Luo, S., Kirchner, J.J., Eletr, S., DuBridge, R.B., Burcham, T., Albrecht, G. (2000) *In vitro* cloning of complex mixtures of DNA on

- microbeads: physical separation of differentially expressed cDNAs. *Proc. Natl. Acad. Sci. USA* 97:1665-1670.
- 37. Brock, G. (2000) Sildenafil citrate (Viagra®). Drugs Today 36:125-134.
- 38. Brown, J.R., Daar, I.O., Krug, J.R., Maquat, L.E. (1985) Characterization of the functional gene and several processed pseudogenes in the human triosephosphate isomerase gene family. *Mol. Cell Biol.* 5:1694-1706.
- 39. Brown, P.O, Botstein, D. (1999) Exploring the new world of the genome with DNA microarrays. *Nature Genetics* 21:33-37.
- 40. Brunelleschi, S., Penengo, L., Santoro, M.M., Gaudino, G. (2002) Receptor tyrosine kinases as target for anti-cancer therapy. *Curr. Pharm. Des.* 8:1959-1972.
- 41. Brutlag, D.L., Dautricourt, J.P., Diaz, R., Fier, J., Moxon, B., Stamm, R. (1993). BLAZE: An implementation of the Smith-Waterman comparison algorithm on a massively parallel computer. *Computers and Chemistry* 17:203-207.
- 42. Carbonell, L.F., Hodge, M.R., Tomalski, M.D., Miller, L.K. (1988) Synthesis of a gene coding for an insect-specific scorpion neurotoxin and attempts to express it using baculovirus vectors. *Gene* 73:409-418.
- 43. Chakravarty, A. (1999) Population genetics making sense out of sequence. *Nature Genetics* 21:56-60.
- 44. Chalifour, L.E., Fahmy, R., Holder, E.L., Hutchinson, E.W., Osterland, C.K., Schipper, H.M., Wang, E. (1994) A method for analysis of gene expression patterns. *Anal. Biochem.* 216: 299-304.
- 45. Chalut, C., Gallois, Y., Poterszman, A., Moncollin, V., Egly, J.M. (1995) Genomic structure of the human TATA-box-binding protein (TBP). *Gene* 161:277-282.
- 46. Chang, A.C., Nunberg, J.H., Kaufman, R.J., Erlich, H.A., Schimke, R.T., Cohen, S.N. (1978) Phenotypic expression in *E. coli* of a DNA sequence coding for mouse dihydrofolate reductase. *Nature* 275:617-624.
- 47. Chang, M.S., Chang, C.L., Huang, C.J., Yang, Y.C. (2000) p29, a novel GCIP-interacting protein, localizes in the nucleus. *Biochem. Biophys. Res. Commun.* 279:732-737.
- 48. Chen, F.W., Ioannou, Y.A. (1998) Ribosomal proteins in cell proliferation and apoptosis. *Int. Rev. Immunol.* 18:429-448.

49. Chen, S.Y., Bagley, J., Marasco, W.A. (1994) Intracellular antibodies as a new class of therapeutic molecule for gene therapy. *Hum. Gene Ther.* 5:595-601.

- 50. Cheng, W.F., Hung, C.F., Chai, C.Y., Hsu, K.F., He, L., Ling, M., Wu, T.C. (2001) Tumor-specific immunity and angiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. *J. Clin. Invest.* 108:669-678.
- Cheung, V.G., Morley, M., Aquilar, F., Massimi, A., Kucherlapati, R., Childs,
 G. (1999) Making and reading microarrays. *Nature Genetics* 21:15-19.
- 52. Chien, C., Bartel, P.L., Sternglanz, R., Fields S. (1991) The two-hybrid system: A method to identify and clone genes for proteins that interact with a protein of interest. *Proc. Natl. Acad. Sci.* 88:9578-9581.
- Christa, L., Simon, M.T., Flinois, J.P., Gebhardt, R., Brechot, C., Lasserre, C.
 (1994) Overexpression of glutamine synthetase in human primary liver cancer. *Gastroenterology* 106:1312-1320.
- Clark, C.M., Karlawish, J.H. (2003) Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. *Ann. Intern. Med.* 138:400-410.
- 55. Coffin, J.M., Hughes, S.H., Varmus, H.E. (1997) <u>Retroviruses</u>. Cold Spring Harbor Laboratory Press.
- 56. Cole, K.A., Krizman, D.B., Emmert-Buck, M.R. (1999) The genetics of cancer a 3D model. *Nature Genetics* 21:38-41.
- 57. Colicelli, J., Lobel, L.I., Goff, S.P. (1985) A temperature-sensitive mutation constructed by "linker insertion" mutagenesis. *Mol. Gen. Genet.* 199:537-539.
- 58. Collins, F.S. (1999) Microarrays and macroconsequences. *Nature Genetics* 21:2.
- 59. Comuzzie, A.G., Allison, D.B. (1998) The search for human obesity genes. *Science* 280:1374-1377.
- 60. Cormand, B., Montfort, M., Chabas, A., Vilageliu, L., Grinberg, D. (1997) Genetic fine localization of the beta-glucocerebrosidase (GBA) and prosaposin (PSAP) genes: implications for Gaucher disease. *Hum. Genet.* 100:75-79.
- 61. Cregg, J.M., Barringer, K.J., Hessler, A.Y., Madden, K.R. (1985) *Pichia* pastoris as a host system for transformations. *Mol. Cell. Biol.* 5:3376-3385.

62. Crooke, S.T. (1996) Progress in antisense therapeutics. *Med. Res. Rev.* 16:319-344.

- 63. Crouch, R.J. (1990) Ribonuclease H: from discovery to 3D structure. *New Biol.* 2:771-777.
- 64. Curcio, L.D., Bouffard, D.Y., Scanlon, K.J. (1997) Oligonucleotides as modulators of cancer gene expression. *Pharmacol. Ther.* 74:317-332.
- 65. Das, S., Kellermann, E., Hollenberg, C.P. (1984) Transformation of *Kluyveromyces fragilis*. *J. Bacteriol*. 158:1165-1167.
- Davidow, L.S., Kaczmarek, F.S., DeZeeuw, J.R., Conlon, S.W., Lauth, M.R., Pereira, D.A., Franke, A.E. (1987) The Yarrowia lipolytica LEU2 gene. *Curr. Genet.* 11:377-383.
- 67. de Boer, H.A., Comstock, L.J., Vasser, M. (1993) The tac promoter: a functional hybrid derived from the trp and lac promoters. *Proc. Natl. Acad. Sci.* 80:21-25.
- 68. De Louvencourt, L., Fukuhara, H., Heslot, H., Wesolowski, M. (1983)

 Transformation of *Kluyveromyces lactis* by killer plasmid DNA. *J. Bacteriol*. 154:737-742.
- 69. Deasy, B.M., Huard, J. (2002) Gene therapy and tissue engineering based on muscle-derived stem cells. *Curr. Opin. Mol. Ther.* 4:382-389.
- 70. Delahunty, C., Ankener, W., Deng, Q., Eng, J., Nickerson, D.A. (1996)
 Testing the feasibility of DNA typing for human identification by PCR and an oligonucleotide ligation assay. Am. J. Human Genetics 58:1239-1246.
- 71. Deutscher, M.P., Simon, M.I., Abelson, J.N., eds. (1990) <u>Guide to Protein</u>

 <u>Purification: Methods in Enzymology. (Methods in Enzymology Series, Vol</u>

 182). Academic Press.
- 72. Dieffenbach, C.W., Dveksler, G.S., eds. (1995) PCR Primer: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
- 73. Dijkema, R., van der Meide, P.H., Pouwels, P.H., Caspers, M., Dubbeld, M., Schellekens, H. (1985) Cloning and expression of the chromosomal immune interferon gene of the rat. *EMBO J.* 4:761-767.
- 74. Doerfler, W., Bohm, P., eds. (1987) <u>The Molecular Biology Of Baculoviruses</u>. Springer-Verlag, Inc.

 Doll, A., Grzeschik, K.H. (2001) Characterization of two novel genes, WBSCR20 and WBSCR22, deleted in Williams-Beuren syndrome. Cytogenet. Cell Genet. 95:20-27.

- 76. Doolittle, R.F., Abelson, J.N., Simon, M.I., eds. (1996) <u>Computer Methods</u> for Macromolecular Sequence Analysis. 1st ed. Academic Press.
- 77. Ducrest, A.L., Suzutorisz, H., Lingner, J., Nabholz, M. (2002) Regulation of the human telomerase reverse transcriptase gene. *Oncogene* 21:541-52.
- 78. Dutoit, V., Taub, R.N., Papadopoulos, K.P., Talbot, S., Keohan, M.L., Brehm, M., Gnjatic, S., Harris, P.E., Bisikirska, B., Guillaume, P., Cerottini, J.C., Hesdorffer, C.S., Old, L.J., Valmori, D. (2002) Multiepitope CD8⁺ T cell response to an NY-ESO-1 peptide vaccine results in imprecise tumor targeting. *J. Clin. Invest.* 110:1813-1822.
- Egilsson, V., Gudnason, V., Jonasdottir, A., Ingvarsson, S., Andresdottir, V.
 (1986) Catabolite repressive effects of 5-thio-D-glucose on Saccharomyces cerevisiae. J. Gen. Microbiol. 132:3309-3313.
- 80. Ehrhardt, G.R., Korherr, C., Wieler, J.S., Knaus, M., Schrader, J.W. (2001) A novel potential effector of M-Ras and p21 Ras negatively regulates p21 Rasmediated gene induction and cell growth. *Oncogene* 20:188-197.
- Espejo, A., Cote, J., Bednarek, A., Richard, S., Bedford, M.T. (2002) A protein-domain microarray identifies novel protein-protein interactions.
 Biochem. J. 367:697-702.
- 82. Everett, R.D., Meredith, M., Orr, A., Cross, A., Kathoria, M., Parkinson, J. (1997) A novel ubiquitin-specific protease is dynamically associated with the PML nuclear domain and binds to a herpesvirus regulatory protein. *EMBO J.* 16:1519-1530.
- 83. Fanning, A.S., Anderson, J.M. (1999) Protein modules as organizers of membrane structure. *Curr. Opin. Cell Biol.* 11:432-439.
- 84. Fields, S., Song, O. (1989) A novel genetic system to detect protein-protein interactions. *Nature* 340:245-246.
- 85. Fisch, P., Forster, A., Sherrington, P.D., Dyer, M.J., Rabbitts, T.H. (1993) The chromosomal translocation t(X;14)(q28;q11) in T-cell pro-lymphocytic leukaemia breaks within one gene and activates another. *Oncogene* 8:3271-3276.

86. Fishman, P.S., Oyler, G.A. (2002) Significance of the parkin gene and protein in understanding Parkinson's disease. *Curr. Neurol. Neurosci. Rep.* 2:296-302.

- 87. Forgac, M. (1999) Structure and properties of the vacuolar (H+)-ATPases. J. Biol. Chem. 274:12,951-12,954.
- 88. Frank, I. (2002) Antivirals against HIV-1. Clin. Lab. Med. 22:741-757.
- 89. Frithz, G., Ericsson, P., Ronquist, G. (1976) Serum adenylate kinase activity in the early phase of acute myocardial infarction. *Ups J Med Sci.* 81:155-158.
- 90. Funakoshi, I., Kato, H., Horie, K., Yano, T., Hori, Y., Kobayashi, H., Inoue, T., Suzuki, H., Fukui, S., Tsukahara, M., et al. (1992) Molecular cloning of cDNAs for human fibroblast nucleotide pyrophosphatase. *Arch. Biochem. Biophys.* 295:180-187.
- 91. Furth, P.A., Shamay, A., Wall, R.J., Hennighausen, L. (1992) Gene transfer into somatic tissues by jet injection. *Anal. Biochem.* 205:365-368.
- 92. Gaillardin, C., Ribet, A.M. (1987) LEU2 directed expression of beta-galactosidase activity and phleomycin resistance in *Yarrowia lipolytica*. *Curr. Genet.* 11:369-375.
- 93. Gao, X., Nawaz, Z. (2002) Progesterone receptors animal models and cell signaling in breast cancer: Role of steroid receptor coactivators and corepressors of progesterone receptors in breast cancer. *Breast Cancer Res.* 4:182-186.
- 94. Gao, Y., Melki, R., Walden, P.D., Lewis, S.A., Ampe, C., Rommelaere, H., Vandekerckhove, J., Cowan, N.J. (1994) A novel cochaperonin that modulates the ATPase activity of cytoplasmic chaperonin. *J. Cell Biol*. 125:989-996.
- 95. Gaudilliere, B., Shi, Y., Bonni, A. (2002) RNA interference reveals a requirement for MEF2A in activity-dependent neuronal survival. *J. Biol. Chem.* 277:46,442-46,446.
- 96. Gavrieli, Y., Sherman, Y., Ben-Sasson, S.A. (1992) Identification of programmed cell death *in situ* via specific labeling of nuclear DNA fragmentation. *J. Cell Biol.* 119:493-501.
- 97. Geffen D.B., Man S. (2002) New drugs for the treatment of cancer, 1990-2001. *Isr. Med. Assoc. J.* 4:1124-31.
- 98. Gennaro, A., ed. (2000) <u>Remington: The Science and Practice of Pharmacy</u>. 20th ed. Lippincott, Williams, & Wilkins.

Ghotrani, H.A., Rose, F., Schermuly, R.T., Olschewski, H., Wiedemann, R., Kreckel, A., Weissmann, N., Ghofrani, S., Enke, B., Seeger, W., Grimminger, F. (2003) Oral sildenafil as long-term adjunct therapy to inhaled iloprost in severe pulmonary arterial hypertension. *J. Am. Coll. Cardiol.* 42:158-164.

- 100. Gillingham, A.K., Pfeifer, A.C., Munro, S. (2002) CASP, the alternatively spliced product of the gene encoding the CCAAT-displacement protein transcription factor, is a Golgi membrane protein related to giantin. *Mol. Biol. Cell* 13:3761-3774.
- Gingras, M.C., Lapillonne, H., Margolin, J.F. (2002) TREM-1, MDL-1, and DAP12 expression is associated with a mature stage of myeloid development. *Mol. Immunol.* 38:817-824.
- 102. Girschick, H.J., Grammer, A.C., Nanki, T., Vazquez, E., Lipsky, P.E. (2002) Expression of recombination activating genes 1 and 2 in peripheral B cells of patients with systemic lupus erythematosus. *Arthritis. Rheum.* 46:1255-1263.
- 103. Gmeiner, W.H., Horita, D.A. (2001) Implications of SH3 domain structure and dynamics for protein regulation and drug design. *Cell Biochem. Biophys.* 35:127-140.
- 104. Goeddel, D.V., Heyneker, H.L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D.G., Ross, M.J., Mizzari, G., Crea, R., Seeburg, P.H. (1979) Direct expression in *E. coli* of a DNA sequence coding for human growth hormone.

 Nature 281:544-548.
- 105. Goldstein, L.S.B., Yang, Z. (2000) Microtubule-based transport systems in neurons: the roles of kinesins and dyneins. *Annu. Rev. Neurosci.* 23:39-71.
- 106. Golovkina, T.V., Chervonsky, A., Dudley, J.P., Ross, S.R. (1992) Transgenic moue mammary tumor virus superantigen expression prevents viral infection. *Cell* 69:637-645.
- 107. Gonnet, G.H., Cohen, M.A., Benner, S.A. (1992) Exhaustive matching of the entire protein sequence database. *Science* 256:1443-1445.
- 108. Gordan, J.D., Vonderheide, R.H. (2002) Universal tumor antigens as targets for immunotherapy. *Cytotherapy* 4:317-327.
- 109. Gorman, C.M., Merlino, G.T., Willingham, M.C., Pastan, I., Howard, B.H. (1982) The Rous sarcoma virus long terminal repeat is a strong

promoter when introduced into a variety of eucaryotic cells by DNA-mediated transfection. *Proc. Natl. Acad. Sci.* 79:6777-6781.

- 110. Gray, T.A., Hernandez, L., Carey, A.H., Schaldach, M.A., Smithwick, M.J., Rus, K.M., Graves, J.A., Stewart, C.L., Nicholls, R.D. (2002) The ancient source of a distinct gene family encoding proteins featuring RING and C(3)H zinc-finger motifs with abundant expression in developing brain and nervous system. *Genomics*. 66:76-86.
- Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C., Gelbart,
 W.M. (1999) <u>Introduction to Genetic Analysis</u>. 7th ed. W.H. Freeman.
- Griffiths, M., Beaumont, N., Yao, S.Y., Sundaram, M., Boumah, C.E.,
 Davies, A., Kwong, F.Y., Coe, I., Cass, C.E., Young, J.D., Baldwin, S.A.
 (1997) Cloning of a human nucleoside transporter implicated in the cellular uptake of adenosine and chemotherapeutic drugs. *Nat. Med.* 3:89-93.
- 113. Grosschedl, R., Baltimore, D. (1985) Cell-type specificity of immunoglobulin gene expression is regulated by at least three DNA sequence elements. *Cell* 41:885-897.
- 114. Grosveld, F., Kollias, G., eds. (1992) <u>Transgenic Animals</u>. 1st ed. Academic Press.
- 115. Gustin, K., Burk, R.D. (1993) A rapid method for generating linker scanning mutants utilizing PCR. *Biotechniques* 14:22-24.
- 116. Hacia, J.G. (1999) Resequencing and mutational analysis using oligonucleotide microarrays. *Nature Genetics* 21:42-47.
- 117. Hadano, S., Yanagisawa, Y., Skaug, J., Fichter, K., Nasir, J., Martindale, D., Koop, B.F., Scherer, S.W., Nicholson, D.W., Rouleau, G.A., Ikeda, J., Hayden, M.R. (2001) Cloning and characterization of three novel genes, ALS2CR1, ALS2CR2, and ALS2CR3, in the juvenile amyotrophic lateral sclerosis (ALS2) critical region at chromosome 2q33-q34: candidate genes for ALS2. *Genomics* 71:200-213.
- 118. Hall, M., Mickey, D.D., Wenger, A.S., Silverman, L.M. (1985)

 Adenylate kinase: an oncodevelopmental marker in an animal model for human prostatic cancer. *Clin. Chem.* 31:1689-1691.
- 119. Ham, R.G., McKeehan, W.L. (1979) Media and growth requirements. *Methods Enzymol.* 58:44-93.

Hanada, T., Lin, L., Tibaldi, E.V., Reinherz, E.L., Chishti, A.H.
(2000) GAKIN, a novel kinesin-like protein associates with the human homologue of the Drosophila discs large tumor suppressor in T lymphocytes.
J. Biol. Chem. 275:28,774-28,784.

- 121. Harlow, E., Lane, D., eds. (1988) <u>Antibodies: A Laboratory Manual</u>. Cold Spring Harbor Laboratory.
- 122. Harlow, E., Lane, D., Harlow, E., eds. (1998) <u>Using Antibodies: A</u>
 <u>Laboratory Manual: Portable Protocol NO. I.</u> Cold Spring Harbor Laboratory.
- 123. Hartmann, G., Endres, S., eds. (1999) <u>Manual of Antisense</u>

 <u>Methodology (Perspectives in Antisense Science</u>). 1st ed. Kluwer Law

 International.
- 124. Hassanzadeh, G.H.G., De Silva, K.S., Dambly-Chudiere, C., Brys, L., Ghysen, A., Hamers, R., Muyldermans, S., De Baetselier, P. (1998) Isolation and characterization of single-chain Fv genes encoding antibodies specific for Drosophila Poxn protein. *FEBS Lett.* 437:75-80.
- 125. Hawes, J.W., Jaskiewicz, J., Shimomura, Y., Huang, B., Bunting, J., Harper, E.T., Harris, R.A. (1996) Primary structure and tissue-specific expression of human beta-hydroxyisobutyryl-coenzyme A hydrolase. *J. Biol. Chem.* 271:26,430-26,434.
- Heath, J.K., White, S.J., Johnstone, C.N., Catimel, B., Simpson, R.J., Moritz, R.L., Tu, G.F., Ji, H., Whitehead, R.H., Groenen, L.C., Scott, A.M., Ritter, G., Cohen, L., Welt, S., Old, L.J., Nice, E.C., Burgess, A.W. (1997) The human A33 antigen is a transmembrane glycoprotein and a novel member of the immunoglobulin superfamily. *Proc. Natl. Acad. Sci.* 94:469-474.
- 127. Heiser, A., Coleman, D., Dannull, J., Yancey, D., Maurice, M.A., Lallas, C.D., Dahm, P., Niedzwiecki, D., Gilboa, E., Vieweg, J. (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. *J. Clin. Invest.* 109:409-417.
- 128. Henningson, C.T. Jr., Stanislaus, M.A., Gewirtz, A.M. (2003)
 Embryonic and adult stem cell therapy. *J. Allergy Clin. Immunol.* 111:S745-S753.
- 129. Hinnen, A., Hicks, J.B., Fink, G.R. (1978) Transformation of yeast. *Proc. Natl. Acad. Sci.* 75:1929-1933.

130. Hirsch, D.S., Pirone, D.M., Burbelo, P.D. (2001) A new family of Cdc42 effector proteins, CEPs, function in fibroblast and epithelial cell shape changes. *J. Biol. Chem.* 276:875-883.

- 131. Ho, L.W., Carmichael, J., Swartz, J., Wyttenbach, A., Rankin, J., Rubinsztein, D.C. (2001) The molecular biology of Huntington's disease. *Psychol. Med.* 31:3-14.
- 132. Hollis, G.F., Evans, R.J., Stafford-Hollis, J.M., Korsmeyer, S.J., McKearn, J.P. (1989) Immunoglobulin lambda light-chain-related genes 14.1 and 16.1 are expressed in pre-B cells and may encode the human immunoglobulin omega light-chain protein. *Proc. Natl. Acad. Sci.* 86:5552-5556.
- 133. Hong, G.F. (1982) Sequencing of large double-stranded DNA using the dideoxy sequencing technique. *Biosci. Rep.* 2:907-912.
- 134. Hoogenboom, H.R., de Bruin, A.P., Hufton, S.E., Hoet, R.M., Arends, J.W., Roovers, R.C. (1998) Antibody phage display technology and its applications. *Immunotechnology* 4:1-20.
- 135. Hooper, M.L. (1993) Embryonal Stem Cells: Introducing Planned Changes into the Animal Germline. Gordon & Breach Science Pub.
- Hoozemans, J.J., Veerhuis, R., Rozemuller, A.J., Eikelenboom, P.
 (2002) The pathological cascade of Alzheimer's disease: the role of inflammation and its therapeutic implications. *Drugs Today (Barc)* 38:429-443.
- 137. Houseman, B.T., Huh, J.H., Kron, S.J., Mrksich, M. (2002) Peptide chips for the quantitative evaluation of protein kinase activity. *Nature Biotechnol*. 20:270-274.
- 138. Howard, G.C., Bethell, D.R. (2000) <u>Basic Methods in Antibody</u>
 <u>Production and Characterization</u>. CRC Press.
- Huynh, D.P., Yang, H.T., Vakharia, H., Nguyen, D., Pulst, S.M.
 (2003) Expansion of the polyQ repeat in ataxin-2 alters its Golgi localization, disrupts the Golgi complex and causes cell death. *Hum. Mol. Genet.* 12:1485-1496.
- 140. Ikeda, A., Nishina, P.M., Naggert, J.K. (2002) The tubby-like proteins, a family with roles in neuronal development and function. *J. Cell Sci.* 115(Pt 1):9-14.

141. Ito, H., Fukuda, Y., Murata, K., Kimura, A. (1978) Transformation of intact yeast cells treated with alkali cations. *J. Bacteriol.* 153:163-168.

- 142. Jameson, D.M., Sawyer, W.H. (1995) Fluorescence anisotropy applied to biomolecular interactions. *Methods Enzymol.* 246:283-300.
- 143. Janeway, C.A., Travers, P. Walport, M. Shlomchik, M. (2001)

 Immunobiology. 5th ed. Garland Publishing.
- 144. Jeffery, P., Zhu, J. (2002) Mucin-producing elements and inflammatory cells. *Novartis Found. Symp.* 248:51-75, 277-82.
- 145. Jimbo, T., Kawasaki, Y., Koyama, R., Sato, R., Takada, S., Haraguchi, K., Akiyama, T. (2002) Identification of a link between the tumour suppressor APC and the kinesin superfamily. *Nat. Cell Biol.* 4:323-327.
- 146. Joberty, G., Perlungher, R.R., Macara, I.G. (1999) The Borgs, a new family of Cdc42 and TC10 GTPase-interacting proteins. *Mol. Cell Biol.* 19:6585-6597.
- 147. Johns, T.G., Bernard, C.C. (1997) Binding of complement component Clq to myelin oligodendrocyte glycoprotein: a novel mechanism for regulating CNS inflammation. *Mol. Immunol.* 34:33-38.
- Jolliffe, C.N., Harvey, K.F., Haines, B.P., Parasivam, G., Kumar, S. (2000) Identification of multiple proteins expressed in murine embryos as binding partners for the WW_domains of the ubiquitin-protein ligase Nedd4. *Biochem. J.* 351:557-565.
- 149. Jones, D.H., Winistorfer, S.C. (1992) Recombinant circle PCR and recombination PCR for site-specific mutagenesis without PCR product purification. *Biotechniques* 12:528-530.
- 150. Jones, P., ed. (1998a) <u>Vectors: Cloning Applications: Essential</u>
 <u>Techniques</u>, John Wiley & Son, Ltd.
- 151. Jones, P., ed. (1998b) <u>Vectors: Expression Systems: Essential</u>
 <u>Techniques</u>, John Wiley & Son, Ltd.
- Jost, C.R., Kurucz I., Jacobus, C.M., Titus, J.A., George, A.J., Segal,
 D.M. (1994) Mammalian expression and secretion of functional single-chain
 Fv molecules. *J. Biol. Chem.* 269:26,267-26,273.
- 153. Joulin, V., Richard-Foy, H. (1995) A new approach to isolate genomic control regions. Application to the GATA transcription factor family. *Eur. J. Biochem.* 232:620-626.

154. Jurcic, J.G., Cathcart, K., Pinilla-Ibarz, J., Scheinberg, D.A. (2000) Advances in immunotherapy of hematlogic malignancies: cellular and humoral approaches. *Curr. Opin. Hematol.* 7:247-254.

- 155. Jury, J.A., Perry, A.C., Hall, L. (1999) Identification, sequence analysis and expression of transcripts encoding a putative metalloproteinase, eMDC II, in human and macaque epididymis. *Mol. Hum. Reprod.* 5:1127-1134.
- 156. Kabat, E.A., Wu T.T. (1991) Identical V region amino acid sequences and segments of sequences in antibodies of different specificities. Relative contributions of VH and VL genes, minigenes, and complementarity-determining regions to binding of antibody-combining sites. *J. Immunol*. 147:1709-1719.
- 157. Kamitani, T., Nguyen, H.P., Yeh, E.T. (1997) Preferential modification of nuclear proteins by a novel ubiquitin-like molecule. *J. Biol. Chem.* 272:14,001-14,004.
- 158. Kantoff, P.W., Halabi, S., Farmer, D.A., Hayes, D.F., Vogelzang, N.A., Small, E.J. (2001) Prognostic significance of reverse transcriptase polymerase chain reaction for prostate-specific antigen in men with hormone-refractory prostate cancer. *J. Clin. Oncol.* 9:3025-3028.
- 159. Kao, P.N., Chen, L., Brock, G., Ng, J., Kenny, J., Smith, A.J., Corthesy, B. (1994) Cloning and expression of cyclosporin A- and FK506-sensitive nuclear factor of activated T-cells: NF45 and NF90. *J. Biol. Chem.* 269:20,691-20,699.
- 160. Karanazanashvili, G., Abrahamsson, P. (2003) Prostate specific antigen and human glandular kallikrein 2 in early detection of prostate cancer. *J. Urol.* 169:445-457.
- 161. Kari, C., Chan, T.O., Rocha de Quadros, M., Rodeck, U. (2003) Targeting the epidermal growth factor receptor in cancer: apoptosis takes center stage. *Cancer Res.* 63:1-5.
- 162. Kelly, J.M., Hynes, M.J. (1985) Transformation of *Aspergillus niger* by the mdS gene of *Aspergillus nidulans*. *EMBO J.* 4:475-479.
- 163. Kenmochi, N., Kawaguchi, T., Rozen, S., Davis, E., Goodman, N., Hudson, T.J., Tanaka, T., Page, D.C. (1998) A map of 75 human ribosomal protein genes. *Genome Res.* 8:509-523.

164. Keown, W.A., Campbell, C.R., Kucherlapati, R.S. (1990) Methods for introducing DNA into mammalian cells. *Methods Enzymol.* 185:527-537.

- 165. Kibbe, A.H., ed. (2000) <u>Handbook of Pharmaceutical Excipients.</u> 3rd ed. Pharmaceutical Press.
- 166. Kirkpatrick, K.L., Mokbel, K. (2001) The significance of human telomerase reverse transcriptase (hTERT) in cancer. *Eur. J. Surg. Oncol.* 27:754-760.
- 167. Kirsch, K.H., Georgescu, M.M., Ishimaru, S., Hanafusa, H. (1999) CMS: an adapter molecule involved in cytoskeletal rearrangements. *Proc. Natl. Acad. Sci.* 96:6211-6216.
- 168. Kiryu-Seo, S., Sasaki, M., Yokohama, H., Nakagomi, S., Hirayama, T., Aoki, S., Wada, K., Kiyama, H. (2000) Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers. *Proc. Natl. Acad. Sci.* 97:4345-4350.
- 169. Klarman, G.J., Hawkins, M.E., Le Grice, S.F. (2002) Uncovering the complexities of retroviral ribonuclese H reveals its potential as a therapeutic target. *AIDS Rev.* 4:183-194.
- 170. Knutson, K.L., Schiffman, K., Disis, M.L. (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. *J. Clin. Invest.* 107:477-484.
- 171. Kobayashi, M., Takezawa, S., Hara, K., Yu, R.T., Umesono, Y., Agata, K., Taniwaki, M., Yasuda, K., Umesono, K. (1999) Identification of a photoreceptor cell-specific nuclear receptor. *Proc. Natl. Acad. Sci.* 96:4814-4819.
- 172. Kolonin, M.G., Finley, R.L. Jr. (1998) Targeting cyclin-dependent kinases in *Drosophila* with peptide aptamers. *Proc. Natl. Acad. Sci.* 95:14,266-14,271.
- 173. Korner, C., Knauer, R., Stephani, U., Marquardt, T., Lehle, L., von Figura, K. (1999) Carbohydrate deficient glycoprotein syndrome type IV: deficiency of dolichyl-P-Man:Man(5)GlcNAc(2)-PP-dolichyl mannosyltransferase. *EMBO J.* 18:6816-6822.
- 174. Kothapalli, R., Buyuksal, I., Wu, S.Q., Chegini, N., Tabibzadeh, S. (1997) Detection of ebaf, a novel human gene of the transforming growth

factor beta superfamily association of gene expression with endometrial bleeding. *J. Clin. Invest.* 99:2342-2350.

- 175. Kovalenko, O.V., Golub, E.I., Bray-Ward, P., Ward, D.C., Radding, C.M. (1997) A novel nucleic acid-binding protein that interacts with human rad51 recombinase. *Nucleic Acids Res.* 25:4946-4953.
- 176. Kratzschmar, J., Lum, L., Blobel, C.P. (1996) Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. *J. Biol. Chem.* 271:4593-4596.
- Ku, D.H., Kagan, J., Chen, S.T., Chang, C.D., Baserga, R., Wurzel, J.
 (1990) The human fibroblast adenine nucleotide translocator gene. Molecular cloning and sequence. *J. Biol. Chem.* 265:16,060-16,063.
- 178. Kuisle, O., Quiñoá, E., Rigura, R. (1999) Solid phase synthesis of depsides and depsipeptides. *Tetrahedron Lett.* 40:1203-1206.
- 179. Kunze, G. et al., (1985) Transformation of the industrially important yeasts *Candida* maltosa and *Pichia* guilliermondii. *J. Basic Microbiol*. 25:141-144.
- 180. Kurtz, M.B., Cortelyou, M.W., Kirsch, D.R. (1986) Integrative transformation of Candida albicans, using a cloned *Candida* ADE2 gene. *Mol. Cell. Biol.* 6:142-149.
- 181. Kyo, S., Takakura, M., Inoue, M. (2000) Telomerase activity in cancer as a diagnostic and therapeutic target. *Histol. Histopathol.* 15:813-824.
- 182. Lander, E.S. (1999) Array of hope. *Nature Genetics* 21:3-4.
- 183. Lander, E.S., Linton, L., M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., Funke, R., Gage, D., Harris, K., Heaford, A., Howland, J., Kann, L., Lehoczky, J., LeVine, R., McEwan, P., McKernan, K., Meldrim, J., Mesirov, J.P., Miranda, C., Morris, W., Naylor, J., Raymond, C., Rosetti, M., Santos, R., Sheridan, A., Sougnez, C., Stange-Thomann, N., Stojanovic, N., Subramanian, A., Wyman, D., Rogers, J., Sulston, J., Ainscough, R., Beck, S., Bentley, D., Burton, J., Clee, C., Carter, N., Coulson, A., Deadman, R., Deloukas, P., Dunham, A., Dunham, I., Durbin, R., French, L., Grafham, D., Gregory, S., Hubbard, T., Humphray, S., Hunt, A., Jones, M., Lloyd, C., McMurray, A., Matthews, L., Mercer, S., Milne, S., Mullikin, J.C., Mungall, A., Plumb, R., Ross, M.,

Shownkeen, R., Sims, S., Waterston, R.H., Wilson, R.K., Hillier, L.W., McPherson, J.D., Marra, M.A., Mardis, E.R., Fulton, L.A., Chinwalla, A.T., Pepin, K.H., Gish, W.R., Chissoe, S.L., Wendl, M.C., Delehaunty, K.D., Miner, T.L., Delehaunty, A., Kramer, J.B., Cook, L.L., Fulton, R.S., Johnson, D.L., Minx, P.J., Clifton, S.W., Hawkins, T., Branscomb, E., Predki, P., Richardson, P., Wenning, S., Slezak, T., Doggett, N., Cheng, J.F., Olsen, A., Lucas, S., Elkin, C., Uberbacher, E., Frazier, M., Gibbs, R.A., Muzny, D.M., Scherer, S.E., Bouck, J.B., Sodergren, E.J., Worley, K.C., Rives, C.M., Gorrell, J.H., Metzker, M.L., Naylor, S.L., Kucherlapati, R.S., Nelson, D.L., Weinstock, G.M., Sakaki, Y., Fujiyama, A., Hattori, M., Yada, T., Toyoda, A., Itoh, T., Kawagoe, C., Watanabe, H., Totoki, Y., Taylor, T., Weissenbach, J., Heilig, R., Saurin, W., Artiguenave, F., Brottier, P., Bruls, T., Pelletier, E., Robert, C., Wincker, P., Smith, D.R., Doucette-Stamm, L., Rubenfield, M., Weinstock, K., Lee, H.M., Dubois, J., Rosenthal, A., Platzer, M., Nyakatura, G., Taudien, S., Rump, A., Yang, H., Yu, J., Wang, J., Huang, G., Gu, J., Hood, L., Rowen, L., Madan, A., Qin, S., Davis, R.W., Federspiel, N.A., Abola, A.P., Proctor, M.J., Myers, R.M., Schmutz, J., Dickson, M., Grimwood, J., Cox, D.R., Olson, M.V., Kaul, R., Raymond, C., Shimizu, N., Kawasaki, K., Minoshima, S., Evans, G.A., Athanasiou, M., Schultz, R., Roe, B.A., Chen, F., Pan, H., Ramser, J., Lehrach, H., Reinhardt, R., McCombie, W.R., de la Bastide, M., Dedhia, N., Blocker, H., Hornischer, K., Nordsiek, G., Agarwala, R., Aravind, L., Bailey, J.A., Bateman, A., Batzoglou, S., Birney, E., Bork, P., Brown, D.G., Burge, C.B., Cerutti, L., Chen, H.C., Church, D., Clamp, M., Copley, R.R., Doerks, T., Eddy, S.R., Eichler, E.E., Furey, T.S., Galagan, J., Gilbert, J.G., Harmon, C., Hayashizaki, Y., Haussler, D., Hermjakob, H., Hokamp, K., Jang, W., Johnson, L.S., Jones, T.A., Kasif, S., Kaspryzk, A., Kennedy, S., Kent, W.J., Kitts, P., Koonin, E.V., Korf, I., Kulp, D., Lancet, D., Lowe, T.M., McLysaght, A., Mikkelsen, T., Moran, J.V., Mulder, N., Pollara, V.J., Ponting, C.P., Schuler, G., Schultz, J., Slater, G., Smit, A.F., Stupka, E., Szustakowski, J., Thierry-Mieg, D., Thierry-Mieg, J., Wagner, L., Wallis, J., Wheeler, R., Williams, A., Wolf, Y.I., Wolfe, K.H., Yang, S.P., Yeh, R.F., Collins, F., Guyer, M.S., Peterson, J., Felsenfeld, A., Wetterstrand, K.A., Patrinos, A., Morgan, M.J., Szustakowki, J., de Jong, P., Catanese, J.J., Osoegawa, K., Shizuya, H., Choi, S., Chen, Y.J.: International

- Human Genome Sequencing Consortium. (2001) Initial sequencing and analysis of the human genome *Nature* 409:860-921.
- 184. Lasham, A., Moloney, S., Hale, T., Homer, C., Zhang, Y.F., Murison, J.G., Braithwaite, A.W., Watson, J. (2003) The Y-box binding protein YB1: A potential negative regulator of the p53 tumor suppressor. *J. Biol. Chem.* Epub ahead of print, June 30, 2003.
- 185. Lashkari, A., Smith, A.K., Graham, J.M. Jr. (1999) Williams-Beuren syndrome: an update and review for the primary physician. *Clin. Pediatr*. 38:189-208.
- 186. Lavedan, C. (1998) The synuclein family. Genome Res. 8:871-880.
- 187. Lebacq-Verheyden, A.M., Kasprzyk, P.G., Raum, M.G., Van Wyke Coelingh, K., Lebacq, J.A., Battey, J.F. (1988) Posttranslational processing of endogenous and of baculovirus-expressed human gastrin-releasing peptide precursor. *Mol. Cell. Biol.* 8:3129-3135.
- 188. Lees-Miller, S.P., Anderson, C.W. (1989) Two human 90-kDa heat-shock proteins are phosphorylated in vivo at conserved serines that are phosphorylated *in vitro* by casein kinase II. *J. Biol. Chem.* 264:2431-2437.
- 189. Lerch, M.M., Gorelick, F.S. (2000) Early trypsinogen activation in acute pancreatitis. *Med. Clin. North Amer.* 84:549-563.
- 190. Lerner, R.A. (1982) Tapping the immunological repertoire to produce antibodies of predetermined specificity. *Nature* 299:592-596.
- 191. Li, E., Bestagno, M., Burrone, O. (1996) Molecular cloning and characterization of a transmembrane surface antigen in human cells. *Eur. J. Biochem.* 238:631-638.
- 192. Lim, D., Orlova, M., Goff, S.P. (Aug. 2002) Mutations of the RNase H C helix of the Moloney murine leukemia virus reverse transcriptase reveal defects in polypurine tract recognition. *J. Virol.* 76:8360-8373.
- 193. Lin, B., Rommens, J.M., Graham, R.K., Kalchman, M., MacDonald, H., Nasir, J., Delaney, A., Goldberg, Y.P., Hayden, M.R. (1993) Differential 3' polyadenylation of the Huntington disease gene results in two mRNA species with variable tissue expression. *Hum. Mol. Genet.* 2:1541-1545.
- 194. Lin, W.J., Gary, J.D., Yang, M.C., Clarke, S., Herschman, H.R. (1996) The mammalian immediate-early TIS21 protein and the leukemia-

- associated BTG1 protein interact with a protein-arginine N-methyltransferase. *J. Biol. Chem.* 271:15,034-15,044.
- 195. Lin, X., Sikkink, R.A., Rusnak, F., Barber, D.L. (1999) Inhibition of calcineurin phosphatase activity by a calcineurin B homologous protein. *J. Biol. Chem.* 274:36,125-36,131.
- 196. Linnenbach, A.J., Seng, B.A., Wu, S., Robbins, S., Scollon, M., Pyrc, J.J., Druck, T., Huebner, K. (1993) Retroposition in a family of carcinoma-associated antigen genes. *Mol. Cell Biol.* 13:1507-1515.
- 197. Linstedt, A.D., Hauri, H.P. (1993) Giantin, a novel conserved Golgi membrane protein_containing a cytoplasmic domain of at least 350 kDa. Mol. Biol. Cell 4:679-693.
- 198. Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., Lockhart, D.J. (1999) High density synthetic oligonucleotide arrays. *Nature Genetics* 21:20-24.
- 199. Liu A.Y., Robinson R.R., Hellstrom K.E., Murray E.D. Jr., Chang C.P., Hellstrom I. (1987a) Chimeric mouse-human IgG1 antibody that can mediate lysis of cancer cells. *Proc. Natl. Acad. Sci.* 84:3439-3443.
- 200. Liu, A.Y., Robinson, R.R., Murray, E.D. Jr., Ledbetter, J.A., Hellstrom, I., Hellstorm, K.E. (1987b) Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. J. Immunol. 139:3521-3526.
- Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D.,
 Darness, J. (1999) Molecular Cell Biology. 4th ed. W H Freeman & Co.
- 202. Loeffen, J.L., Triepels, R.H., van den Heuvel, L.P., Schuelke, M., Buskens, C.A., Smeets, R.J., Trijbels, J.M., Smeitink, J.A. (1998) cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed. *Biochem. Biophys. Res.* Commun. 253:415-422.
- 203. Los, M., Burek, C.J., Stroh, C., Benedyk, K., Hug, H., Mackiewicz.
 (2003) Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. *Drug Discov. Today* 15:67-77.
- 204. Lovering R, Trowsdale J. (1991) A gene encoding 22 highly related zinc fingers is expressed in lymphoid cell lines. *Nucleic Acids Res.* 19:2921-2928.

205. Luckow, V., Summers, M. (1988) Trends in the development of baculovirus expression vectors. *Bio/Technology* 6:47-55.

- 206. MacBeath, G., Schreiber. S.L. (2000) Printing proteins as microarrays for high-throughput function determination. *Science* 289:1760-1763.
- 207. Machesky, L.M., Reeves, E., Wientjes, F., Mattheyse, F.J., Grogan, A., Totty, N.F., Burlingame, A.L., Hsuan, J.J., Segal, A.W. (1999) Mammalian actin-related protein 2/3 complex localizes to regions of lamellipodial protrusion and is composed of evolutionarily conserved proteins. *Biochem. J.* 328:105-112.
- 208. Machiels, J.P., van Baren, N., Marchand, M. (2002) Peptide-based cancer vaccines. *Semin. Oncol.* 29:494-502.
- 209. Mackay, A., Jones, C., Dexter, T., Silva, R.L., Bulmer, K., Jones, A., Simpson, P., Harris, R.A., Jat, P.S., Neville, A.M., Reis, L.F., Lakhani, S.R., O'Hare, M.J. (2003) cDNA microarray analysis of genes associated with ERBB2 (HER2/neu) overexpression in human mammary luminal epithelial cells. *Oncogene* 22:2680-2688.
- Maeda, S., Kawai, T., Obinata, M., Fujiwara, H., Horiuchi, T., Saeki,
 Y., Sato, Y., Furusawa, M. (1985) Production of human alpha-interferon in
 silkworm using a baculovirus vector. *Nature* 315:592-594.
- 211. Mahajan, M.A., Murray, A., Samuels, H.H. (2002) NRC-interacting factor 1 is a novel cotransducer that interacts with and regulates the activity of the nuclear hormone receptor coactivator NRC. *Mol. Cell Biol.* 22:6883-6894.
- 212. Mahimkar, R.M., Baricos, W.H., Visaya, O., Pollock, A.S., Lovett, D.H. (2000) Identification, cellular distribution and potential function of the metalloprotease-disintegrin MDC9 in the kidney. J. Am. Soc. Nephrol., 11:595-603.
- 213. Mahnensmith, R.L., Aronson, P.S. (1985) Interrelationships among quinidine, amiloride, and lithium as inhibitors of the renal Na+-H+ exchanger. *J. Biol. Chem.* 260:12,586-12,592.
- Manning, G., Whyte, D.B., Martinez, R., Hunter, T., Sudarsanam, S.(2002) The protein kinase complement of the human genome. *Science* 298:1912-1934.

215. Marotti, K.R., Tomich, C.S. (1989) Simple and efficient oligonucleotide-directed mutagenesis using one primer and circular plasmid DNA template. (1989) Gene Anal. Tech. 6:67-70.

- 216. Martel-Pelletier, J., Welsch, D.J., and Pelleteir, J.P. (2001) Metalloproteases and inhibitors in arthritic diseases. *Best Pract. Res. Clin. Rheumatol.* 15:805-829.
- 217. Martin, B.M., Tsuji, S., LaMarca, M.E., Maysak, K., Eliason, W., Ginns, E.I. (1988) Glycosylation and processing of high levels of active human glucocerebrosidase in invertebrate cells using a baculovirus expression vector. *DNA* 7:99-106.
- 218. Massari, M.E., Rivera, R.R., Voland, J.R., Quong, M.W., Breit, T.M., van Dongen, J.J., de Smit, O., Murre, C. (1998) Characterization of ABF-1, a novel basic helix-loop-helix transcription factor expressed in activated B lymphocytes. *Mol. Cell Biol.* 18:3130-3139.
- Matz, M.V., Fradkov, A.F., Labas, Y.A., Savitsky, A.P., Zaraisky,
 A.G., Markelov, M.L., Lukyanov, S.A. (1999) Fluorescent proteins from nonbioluminescent *Anthozoa* species. *Nat. Biotechnol.* 17:969-973.
- 220. Mayer, B.J. (2001) SH3 domains: complexity in moderation. *J. Cell Sci.* 114:1253-1263.
- 221. Mayer, T.U., Kapoor, T.M., Haggarty, S.J., King, R.W., Schreiber, S.L., Mitchison, T.J. (1999) Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. *Science* 286:971-974.
- 222. McGraw, R.A. III (1984) Dideoxy DNA sequencing with end-labeled oligonucleotide primers. *Anal. Biochem.* 143:298-303.
- 223. McKusick, V.A.. (2003) OMIM: Online Mendelian Inheritance in Man http://www.ncbi.nlm.nih.gov, #104300.
- 224. McPherson, M.J., Møller, S.G., Benyon, R., Howe, C. (2000) PCR

 Basics: From Background to Bench. Springer Verlag.
- 225. Merla, G., Ucla, C., Guipponi, M., Reymond, A. (2002) Identification of additional transcripts in the Williams-Beuren syndrome critical region. *Hum. Genet.* 110:429-438.
- 226. Miki, H., Setou, M., Kaneshiro, K., Hirokawa, N. (2001) All kinesin superfamily protein, KIF, genes in mouse and human. *Proc. Natl. Acad. Sci.* 98:7004-7011.

227. Milam, A.H., Rose, L., Cideciyan, A.V., Barakat, M.R., Tang, W.X., Gupta, N., Aleman, T.S., Wright, A.F., Stone, E.M., Sheffield, V.C., Jacobson, S.G. (2002) The nuclear receptor NR2E3 plays a role in human retinal photoreceptor differentiation and degeneration. *Proc. Natl. Acad. Sci.* 99:473-478.

- 228. Milligan, J.F., Matteucci, M.D., Martin, J.C. (1993) Current concepts in antisense drug design. *J. Med. Chem.* 36:1923-1937.
- 229. Mitch, W.E., Goldberg, A.L. (1996) Mechanisms of muscle wasting. The role of the ubiquitin-proteasome pathway. *N. Engl. J. Med.* 335:1897-1905.
- 230. Mitchell, D.A., Nair, S.K. (2000) RNA-transfected dendritic cells in cancer immunotherapy. *J. Clin. Invest.* 106:1065-1069.
- 231. Miyajima A. (2002) Functional analysis of yeast homologue gene associated with human DNA helicase causative syndromes. *Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku* 120:53-74.
- 232. Miyajima, A., Schreurs, J., Otsu, K., Kondo, A., Arai, K., Maeda, S. (1987) Use of the silkworm, *Bombyx mori*, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. *Gene* 58:273-281.
- 233. Monfardini, C., Schiavon, O., Caliceti, P., Morpurgo, M., Harris, J.M., Veronese, F.M. (1995) A branched monomethoxypoly(ethylene glycol) for protein modification. *Bioconjugate Chem.* 6:62-69.
- 234. Mori, N. (1997) Neuronal growth-associated proteins in neural plasticity and brain aging. *Nihon Shinkei Seishin Yakurigaku Zasshi* 17:159-167.
- 235. Mortlock, D.P., Nelson, M.R., Innis, J.W. (1996) An efficient method for isolating putative promoters and 5' transcribed sequences from large genomic clones. *Genome Res.* 6:327-335.
- 236. Murphy, D., Carter, D.A., eds. (1993) <u>Transgenesis Techniques:</u>
 Principles and Protocols. Humana Press.
- 237. Myers, E.W., Miller, W. (1988) Optimal alignments in linear space. *Comput. Appl. Biosci.* 4:11-7.
- 238. Nagata, K., Kawase, H., Handa, H., Yano, K., Yamasaki, M., Ishimi, Y., Okuda, A., Kikuchi, A., Matsumoto, K. (1995) Replication factor encoded

by a putative oncogene, set, associated with myeloid leukemogenesis. *Proc. Natl. Acad. Sci.* 92:4279-4283.

- 239. Naora, H. (1999) Involvement of ribosomal proteins in regulating cell growth and apoptosis: translational modulation or recruitment for extraribosomal activity? *Immunol. Cell Biol.* 77:197-205.
- 240. Needleman, S.B., Wunch, C.D. (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. *J. Mol. Biol.* 48;443-453.
- 241. Nelson, N., Harvey, W.R. (1999) Vacuolar and plasma membrane proton-adenosine triphosphatases. *Physiol. Rev.* 79:361-385.
- 242. Nishiyama, H., Higashitsuji, H., Yokoi, H., Itoh, K., Danno, S., Matsuda, T., Fujita, J. (1997) Cloning and characterization of human CIRP (cold-inducible RNA-binding protein) cDNA and chromosomal assignment of the gene. Gene 204:115-120.
- 243. Noma, T., Fujisawa, K., Yamashiro, Y., Shinohara, M., Nakazawa, A., Gondo, T., Ishihara, T., Yoshinobu, K. (2001) Structure and expression of human mitochondrial adenylate kinase targeted to the mitochondrial matrix. *Biochem. J.* 358:225-232.
- 244. Notredame, C., Higgins, D., Heringa, J. (2000) T-Coffee: A novel method for multiple sequence alignments. *J. Molec. Biol.* 302:205-217.
- Okazaki, Y., Furuno, M., Kasukawa. T., Adachi, J., Bono, H., Kondo, S., Nikaido, I., Osato, N., Saito, R., Suzuki, H., Yamanaka, I., Kiyosawa, H., Yagi, K., Tomaru, Y., Hasegawa, Y., Nogami, A., Schonbach, C., Gojobori, T., Baldarelli, R., Hill, D.P., Bult, C., Hume, D.A., Quackenbush, J., Schriml, L.M., Kanapin, A., Matsuda, H., Batalov, S., Beisel, K.W., Blake, J.A., Bradt, D., Brusic, V., Chothia, C., Corbani, L.E., Cousins, S., Dalla, E., Dragani, T.A., Fletcher, C.F., Forrest, A., Frazer, K.S., Gaasterland, T., Gariboldi, M., Gissi, C., Godzik, A., Gough, J., Grimmond, S., Gustincich, S., Hirokawa, N., Jackson, I.J., Jarvis, E.D., Kanai, A., Kawaji, H., Kawasawa, Y., Kedzierski, R.M., King, B.L., Konagaya, A., Kurochkin, IV, Lee, Y., Lenhard, B., Lyons, P.A., Maglott, D.R., Maltais, L., Marchionni, L., McKenzie, L., Miki, H., Nagashima, T., Numata, K., Okido, T., Pavan, W.J., Pertea, G., Pesole, G., Petrovsky, N., Pillai, R., Pontius, J.U., Qi, D., Ramachandran, S., Ravasi, T., Reed, J.C., Reed, D.J., Reid, J., Ring, B.Z., Ringwald, M., Sandelin, A.,

Schneider, C., Semple, C.A., Setou, M., Shimada, K., Sultana, R., Takenaka, Y., Taylor, M.S., Teasdale, R.D., Tomita, M., Verardo, R., Wagner, L., Wahlestedt, C., Wang, Y., Watanabe, Y., Wells, C., Wilming, L.G., Wynshaw-Boris, A., Yanagisawa, M., Yang, I., Yang, L., Yuan, Z., Zavolan, M., Zhu, Y., Zimmer, A., Carninci, P., Hayatsu, N., Hirozane-Kishikawa, T., Konno, H., Nakamura, M., Sakazume, N., Sato, K., Shiraki, T., Waki, K., Kawai, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Miyazaki, A., Sakai, K., Sasaki, D., Shibata, K., Shinagawa, A., Yasunishi, A., Yoshino, M., Waterston, R., Lander, E.S., Rogers, J., Birney, E., Hayashizaki, Y.; FANTOM Consortium; RIKEN Genome Exploration Research Group Phase I & II Team. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. *Nature* 420:563-573.

- 246. Okayama, H., Berg, P. (1983) A cDNA cloning vector that permits expression of cDNA inserts in mammalian cells. *Mol. Cell. Biol.* 3:280-289.
- 247. Oksenberg, J.R., Barcellos, L.F., Hauser, S.L. (1999) Genetic aspects of multiple sclerosis. *Semin. Neurol.* 19:281-288.
- 248. Oliver, C.J., Shenolikar, S. (1998) Physiologic importance of protein phosphatase inhibitors. *Frontiers in Bioscience* 3:961-972.
- 249. O'Neil, N.J., Martin, R.L., Tomlinson, M.L., Jones, M.R., Coulson, A., Kuwabara, P.E. (2001) RNA-mediated interference as a tool for identifying drug targets. Am. J. Pharmacogenomics 1:45-53.
- 250. O'Neill, L.A. (2002) Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. *Curr. Top. Microbiol. Immunol.* 270:47-61.
- 251. Page, D.C., Silber, S., Brown, L.G. (1999) Men with infertility caused by AZFc deletion can produce sons by intracytoplasmic sperm injection, but are likely to transmit the deletion and infertility. *Hum. Reprod.* 14:1722-1726.
- 252. Pan, C.X., Koeneman, K.S. (1999) A novel tumor-specific gene therapy for bladder cancer. *Med. Hypothesis* 53:130-135.
- 253. Pang, T., Wakabayashi, S., Shigekawa, M. (2001) Calcineurin homologous protein as an essential cofactor for Na+/H+ exchangers. *J. Biol. Chem* 276:17,367-17,372.

254. Pang, T., Wakabayashi, S., Shigekawa, M. (2002) Expression of calcineurin B homologous protein 2 protects serum deprivation-induced cell death by serum-independent activation of Na+/H+ exchanger. *J. Biol. Chem.* 277:43,771-43,777.

- 255. Papagerakis, S., Shabana, A.H., Depondt, J., Gehanno, P., Forest, N. (2003) Immunohistochemical localization of plakophilins (PKP1, PKP2, PKP3, and p0071) in primary oropharyngeal tumors: correlation with clinical parameters. *Hum. Pathol.* 34:565-572.
- 256. Pearson, W.R. (2000) Flexible sequence similarity searching with the FASTA3 program package. *Methods Mol. Biol.* 132:185-219.
- 257. Peattie, D.A., Harding, M.W., Fleming, M.A., DeCenzo, M.T., Lippke, J.A., Livingston, D.J., Benasutti, M. (1992) Expression and characterization of human FKBP52, an immunophilin that associates with the 90-kDa heat-shock protein and is a component of steroid receptor complexes. *Proc. Natl. Acad. Sci.* 89:10,974-10,978.
- 258. Peelle, B., Gururaja, T.L., Payan, D.G., Anderson, D.C. (2001) Characterization and use of green fluorescent proteins from *Renilla mulleri* and *Ptilosarcus guernyi* for the human cell display of functional peptides. *J. Protein Chem.* 20:507-519.
- 259. Pepin, K., Momose, F., Ishida, N., Nagata, K. (2001) Molecular cloning of horse Hsp90 cDNA and its comparative analysis with other vertebrate Hsp90 sequences. *J. Vet. Med. Sci.* 63:115-124.
- 260. Perez Calvo, J.I., Inigo Gil, P., Giraldo Castellano, P., Torralba Cabeza, M.A., Civeira, F., Lario Garcia, S., Pocovi, M., Lara Garcia, S. (2000) Transforming growth factor beta (TGF-beta) in Gaucher's disease. Preliminary results in a group of patients and their carrier and non-carrier relatives *Med. Clin. (Barc)* 115:601-604.
- 261. Perron, H., Garson, J.A., Bedin, F., Beseme, F., Paranhos-Baccala, G., Komurian-Pradel, F., Mallet, F., Tuke, P.W., Voisset, C., Blond, J.L., Lalande, B., Seigneurin, J.M., Mandrand, B., The Collaborative Research Group on Multiple Sclerosis (1997) Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. *Proc. Natl. Acad. Sci.* 94:7583-7588.

262. Perry, A.C., Jones, R., Hall, L. (1995) Analysis of transcripts encoding novel members of the mammalian metalloprotease-like, disintegrin-like, cysteine-rich (MDC) protein family and their expression in reproductive and non-reproductive monkey tissues. *Biochem. J.* 312(Pt 1):239-244.

- 263. Pertl, U., Wodrich, H., Ruelmann, J.M., Gillies, S.D., Lode, H.N., Reisfeld, R.A. (2003) Immunotherapy with a posttranscriptionally modified DNA vaccine induces complete protection against metastatic neuroblastoma. *Blood* 101:649-654.
- 264. Pfutzer, R.H., Whitcomb, D.C. (2001) SPINK1 mutations are associated with multiple phenotypes. *Pancreatology* 1:457-460.
- 265. Phillips, M.I., ed. (1999a) Antisense Technology, Part A. Methods in Enzymology Vol. 313. Academic Press, Inc.
- 266. Phillips, M.I., ed. (1999b) <u>Antisense Technology, Part B. Methods in Enzymology Vol. 314</u>. Academic Press, Inc.
- 267. Pietu, G., Alibert, O., Guichard, V., Lamy, B., Bois, F., Mariage-Sampson, R., Hougatte, R., Soularue, P., Auffray, C. (1996) Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. *Genome Res.* 6:492-503.
- 268. Pinkert, C.A., ed. (1994) <u>Transgenic Animal Technology: A Laboratory Handbook</u>. Academic Press.
- 269. Pisegna, J.R., Wank, S.A. (1996) Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. *J. Biol. Chem.* 271:17,267-17,274.
- 270. Prentki, P., Krisch, H.M. (1984) *In vitro* insertional mutagenesis with a selectable DNA fragment. *Gene* 29:303-313.
- 271. Price, N.T., Hall, L., Proud, C.G. (1993) Cloning of cDNA for the beta-subunit of rabbit translation initiation factor-2 using PCR. *Biochim. Biophys. Acta* 1216:170-172.
- 272. Qin, J., Li., L. (2003) Molecular anatomy of the DNA damage and replication checkpoints. *Radiat. Res.* 159:139-148.
- 273. Racevskis, J., Dill, A., Stockert, R., Fineberg, S.A. (1996) Cloning of a novel nucleolar guanosine 5'-triphosphate binding protein autoantigen from a breast tumor. *Cell. Growth Differ*. 7:271-280.

- 274. Ramalho-Santos, M. (2002) "Stemness" Science 298:597-600.
- 275. Raval, P. (1994) Qualitative and quantitative determination of mRNA. *J. Pharmacol. Toxicol. Methods* 32:125-127.
- 276. Rebbe, N.F., Ware, J., Bertina, R.M., Modrich, P., Stafford, D.W.(1987) Nucleotide sequence of a cDNA for a member of the human 90-kDa heat-shock protein family. *Gene* 53:235-245.
- 277. Rechid, R., Vingron, M., Argos, P. (1989) A new interactive protein sequence alignment program and comparison of its results with widely used algorithms. *Comput. Appl. Biosci.* 5:107-113.
- 278. Rehli, M., Krause, S.W., Kreutz, M., Andreesen, R. (1995)

 Carboxypeptidase M is identical to the MAX.1 antigen and its expression is associated with monocyte to macrophage differentiation. *J. Biol. Chem.* 270:15644-15649.
- 279. Remington, J.P. (1985) <u>Remington's Pharmaceutical Sciences</u>. 17th ed. Mack Publishing Co.
- 280. Ribardo, D.A., Peterson, J.W., Chopra, A.K. (2002) Phospholipase A2-activating protein--an important regulatory molecule in modulating cyclooxygenase-2 and tumor necrosis factor production during inflammation. *Indian J. Exp. Biol.* 40:129-138.
- 281. Riley, J., Butler, R., Ogilvie, D., Finniear, R., Jenner, D., Powell, S., Anand, R., Smith, J.C., Markham, A.F. (1990) A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. *Nuc. Acids Res.* 18:2887-2890.
- 282. Ritter, R.C., Brenner, L.A., Tamura, C.S. (1994) Endogenous CCK and the peripheral neural substrates of intestinal satiety. *Ann. N. Y. Acad. Sci.* 713:255-267.
- 283. Robertson, H.M. (1996) Members of the pogo superfamily of DNA-mediated transposons in the human genome. *Mol. Gen. Genet.* 252:761-766.
- 284. Robertson, H.M., Zumpano, K.L. (1997) Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. *Gene* 205:203-217.
- 285. Roepman, R., Bernoud-Hubac, N., Schick, D.E., Maugeri, A., Berger, W., Ropers, H.H., Cremers, F.P., Ferreira, P.A. (2000) The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like

proteins in the outer segments of rod photoreceptors. *Hum. Mol. Genet.* 9:2095-2105.

- 286. Roessler, B.J., Nosal, J.M., Smith, P.R., Heidler, S.A., Palella, T.D., Switzer, R.L., Becker, M.A. (1993) Human X-linked phosphoribosylpyrophosphate synthetase superactivity is associated with distinct point mutations in the PRPS1 gene. *J. Biol. Chem.* 268:26476-26481.
- 287. Roggenkamp, R., Janowicz, Z., Stanikowski, B., Hollenberg, C.P. (1984) Biosynthesis and regulation of the peroxisomal methanol oxidase from the methylotrophic yeast *Hansenula polymorpha*. *Mol. Gen. Genet*. 194:489-493.
- 288. Rosen, R.C., McKenna, K.E. (2002) PDE-5 inhibition and sexual response: pharmacological mechanisms and clinical outcomes. *Ann. Rev. Sex Res.* 13:36-88.
- 289. Rosato, R.R., Grant, S. (2003) Histone deacetylase inhibitors in cancer therapy. *Cancer Biol. Ther.* 2:30-37.
- 290. Rowland, J.M. (2002) Molecular genetic diagnosis of pediatric cancer: current and emerging methods. *Pediatr. Clin. North Am.* 49:1415-1435.
- 291. Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V.E., Rago, C., St Croix, B., Romans, K.E., Choti, M.A., Lengauer, C., Kinzler, K.W., Vogelstein, B. (2001) A phosphatase associated with metastasis of colorectal cancer. *Science* 294:1343-1346.
- 292. Saiki, R.K, Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. (1988) Primer-directed enzymatic amplification of DNA with amplification of DNA with a thermostable DNA polymerase. *Science* 239:487-491.
- 293. Sambrook, J., Russell, D.W., Sambrook, J. (1989) <u>Molecular Cloning</u>.

 <u>A Laboratory Manual</u>. 2nd ed. Cold Spring Harbor Laboratory Press.
- 294. Sanchez, E.R., Faber, L.E., Henzel, W.J., Pratt, W.B. (1990) The 56-59-kilodalton protein identified in untransformed steroid receptor complexes is a unique protein that exists in cytosol in a complex with both the 70- and 90-kilodalton heat-shock proteins. *Biochemistry* 29:5145-5152.

295. Sayers, J.R., Krekel, C., Eckstein, F. (1992) Rapid high-efficiency site-directed mutagenesis by the phosphothioate approach. *Biotechniques* 13:592-596.

- 296. Schaeferling, M., Schiller, S., Paul, H., Kruschina, M., Pavlickova, M., Meerkamp, M., Giammasi, C., Kambhampati, D. (2002) Application of self-assembly techniques in the design of biocompatible protein microarray surfaces. *Electrophoresis* 23:3097-3105.
- 297. Schaffer, J.E., Lodish, H.F. (1994) Expression cloning and characterization of a novel adipocyte long chain fatty acid transport protein. *Cell* 79:393-395.
- Schena, M., ed. (1999) <u>DNA Microarrays: A Practical Approach</u>.
 Oxford Univ. Press.
- 299. Schena, M., ed. (2000) <u>Microarray Biochip Technology</u>. 1st ed. Eaton Publishing Co.
- 300. Schlesinger, D.H. (1988a) <u>MacRomolecular Sequencing and</u>
 <u>Synthesis: Selected Methods and Applications.</u> Wiley-Liss.
- 301. Schlesinger, D.H., ed. (1988b) <u>Current Methods in Sequence</u>
 <u>Comparison and Analysis. Macromolecule Sequencing and Synthesis.</u>
 <u>Selected Methods and Applications</u>, pp. 127-149, Alan R. Liss, Inc.
- 302. Schonthal, A.H. (2001) Role of serine/threonine protein phosphatase 2A in cancer. *Cancer Lett.* 170:1-13.
- 303. Seelig, H.P., Schranz, P., Schroter, H., Wiemann, C., Renz, M. (1994) Macrogolgin--a new 376 kD Golgi complex outer membrane protein as target of antibodies in patients with rheumatic diseases and HIV infections. *J. Autoimmun.* 7:67-91.
- 304. Selkoe, D.J. (2001) Presenilin, Notch, and the genesis and treatment of Alzheimer's disease. *Proc. Natl. Acad. Sci.* 98:11,039-11,041.
- 305. Setlow, J., Hollaender, A., eds. (1986) Genetic Engineering:

 Principles and Methods. Plenum Pub. Corp.
- 306. Shamay, M., Barak, O., Doitsh, G., Ben-Dor, I., Shaul, Y. (2002) Hepatitis B virus pX interacts with HBXAP, a PHD finger protein to coactivate transcription. *J. Biol. Chem.* 277:9982-9988.
- 307. Shao, H., Andres, D.A. (2000) A novel RalGEF-like protein, RGL3, as a candidate effector for rit and Ras. *J. Biol. Chem.* 275:26,914-26,924.

308. Sheppard, P., Kindsvogel, W., Xu, W., Henderson, K., Schlutsmeyer, S., Whitmore, T.E., Kuestner, R., Garrigues, U., Birks, C., Roraback, J., Ostrander, C., Dong, D., Shin, J., Presnell, S., Fox, B., Haldeman, B., Cooper, E., Taft, D., Gilbert, T., Grant, F.J., Tackett, M., Krivan, W., McKnight, G., Clegg, C., Foster, D., Klucher, K.M. (2003) IL-28, IL-29 and their class II cytokine receptor IL-28R. *Nat. Immunol.* 4:63-68.

- 309. Shinnick, T.M., Sutcliffe, J.G., Green, N., Lerner, R.A. (1983) Synthetic peptide immunogens as vaccines. *Ann. Rev. Microbiol.* 37:425-446.
- 310. Shorter, J., Beard, M.B., Seemann, J., Dirac-Svejstrup, A.B., Warren, G. (2002) Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. *J. Cell Biol.* 157:45-62.
- 311. Siebenlist, U., Simpson, R.B., Gilbert, W. (1980) *E. coli* RNA polymerase interacts homologously with two different promoters. *Cell* 20:269-281.
- 312. Siegal, G.J., Agranoff, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D., eds. (1999) <u>Basic Neurochemistry, Molecular, Cellular, and Medical Aspects</u>. 6th ed. Lippencott, Williams & Wilkins.
- 313. Sladek, R., Bader, J.A., Giguere, V. (1997) The orphan nuclear receptor estrogen-related receptor alpha is a transcriptional regulator of the human medium-chain acyl coenzyme A dehydrogenase gene. *Mol. Cell Biol.* 17:5400-5409.
- 314. Slavin, S., Or, R., Aker, M., Shapira, M.Y., Panigrahi, S., Symeonidis, A., Cividalli, G., Nagler, A. (2001) Nonmyeloablative stem cell transplantation for the treatment of cancer and life-threatening nonmalignant disorders: past accomplishments and future goals. *Cancer Chemother. Pharmacol.* 48:S79-S84.
- 315. Smit, A.F., Riggs, A.D. (1996) Tiggers and DNA transposon fossils in the human genome. *Proc. Natl. Acad. Sci.* 93:1443-1448.
- 316. Smith, G.E., Ju, G., Ericson, B.L., Moschera, J., Lahm, H.W., Chizzonite, R., Summers, M.D. (1985) Modification and secretion of human interleukin 2 produced in insect cells by a baculovirus expression vector. *Proc. Natl. Acad. Sci.* 82:8404-8408.
- 317. Smith, T.F., Waterman, M.S. (1981) Comparison of biosequences. *Adv. Appl. Math.* 2:482-489.

318. Soares, M.B. (1997) Identification and cloning of differentially expressed genes. *Curr. Opin. Biotechnol.* 8:542-546.

- 319. Soejima, H., Kawamoto, S., Akai, J., Miyoshi, O., Arai, Y., Morohka, T., Matsuo, S., Niikawa, N., Kimura, A., Okubo, K., Mukai, T. (2001) Isolation of novel heart-specific genes using the BodyMap database. Genomics. 74:115-120.
- 320. Soulier, S., Vilotte, J.L., L'Huillier, P.J., Mercier, J.C. (1996)

 Developmental regulation of murine integrin beta 1 subunit- and Hsc73encoding genes in mammary gland: sequence of a new mouse Hsc73 cDNA.

 Gene 172:285-289.
- 321. Southern, E., Mir, K., Shchepinov, M. (1999) Molecular interactions on microarrays. *Nature Genetics* 21:5-9.
- 322. Stein, C.A., Kreig, A.M., eds. (1998) <u>Applied Antisense</u> <u>Oligonucleotide Technology</u>. Wiley-Liss.
- 323. Steinhaur, C., Wingren, C., Hager, A.C., Borrebaeck, C.A. (2002) Single framework recombinant antibody fragments designed for protein chip applications. *Biotechniques, Supp.*:38-45.
- 324. Stetler-Stevenson, W.G., Liotta, L.A., Kleiner, D.E. Jr. (1993) Extracellular matrix 6: role of matrix metalloproteinases in tumor invasion and metastasis. *FASEB J.* 7:1434-1441.
- 325. Stewart, Z.A., Westfall, M.D., Pietenpol, J.A. (2003) Cell-cycle dysregulation and anticancer therapy. *Trends Pharmacol. Sci.* 24:139-145.
- 326. Stolz, L.E., Tuan, R.S. (1996) Hybridization of biotinylated oligo(dT) for eukaryotic mRNA quantitation. *Mol. Biotechnol.* 6:225-230.
- 327. Sturm, A., Dignass, A.U. (2002) Modulation of gastrointestinal wound repair and inflammation by phospholipids. *Biochim. Biophys. Acta* 1582:282-288.
- 328. Stutz, F., Bachi, A., Doerks, T., Braun, I.C., Seraphin, B., Wilm, M., Bork, P., Izaurralde, E. (2000) REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. *RNA* 6:638-650.
- 329. Suh, Y.H., Checler, F. (2002) Amyloid precursor protein, presenilins, and alpha-synuclein: molecular pathogenesis and pharmacological applications in Alzheimer's disease. *Pharmacol. Rev.* 54:469-525.

330. Sutcliffe, J.G., Shinnick, T.M., Green, N., Lerner, R.A. (1983)
Antibodies that react with predetermined sites on proteins. *Science* 219:660-666.

- 331. Tan, J., Town, T., Paris, D., Mori, T., Suo, Z., Crawford, F., Mattson, M.P., Flavell, R.A., Mullan, M. (1999) Microglial activation resulting from CD40-CD40L interaction after beta-amyloid stimulation. *Science* 286:2352-2355.
- 332. Tang, D.C., DeVit, M., Johnston, S.A. (1992) Genetic immunization is a simple method for eliciting an immune response. *Nature* 356:152-154.
- 333. Tekur, S., Pawlak, A., Guellaen, G., Hecht, N.B. (1999) Contrin, the human homologue of a germ-cell Y-box-binding protein: cloning, expression, and chromosomal localization. *J. Androl.* 20:135-144.
- 334. Terada, R., Yamamoto, K., Hakoda, T., Shimada, N., Okano, N., Baba, N., Ninomiya, Y., Gershwin, M.E., Shiratori, Y. (2003) Stromal cell-derived factor-1 from biliary epithelial cells recruits CXCR4-positive cells: implications for inflammatory liver diseases. *Lab. Invest.* 83:665-672.
- 335. Thompson, J.D., Higgins, D.G., Gibbon, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. *Nucleic Acids Res.* 22:4673-80.
- Tilburn, J., Scazzocchio, C., Taylor, G.G., Zabicky-Zissman, J.H.,
 Lockington, R.A., Davies, R.W. (1983) Transformation by integration in Aspergillus nidulans. Gene 26:205-221.
- 337. Trounson, A. (2002) Human embryonic stem cells: mother of all cell and tissue types. *Reprod. Biomed. Online* 4 Suppl. 1:58-63.
- Tsuda, T., Gallup, M., Jany, B., Gum, J., Kim, Y., Basbaum, C.(1993) Characterization of a rat airway cDNA encoding a mucin-like protein.Biochem. Biophys. Res. Commun. 195:363-373.
- 339. Tukey, R.H., Pendurthi, U.R., Nguyen, N.T., Green, M.D., Tephly, T.R. (1993) Cloning and characterization of rabbit liver UDP-glucuronosyltransferase cDNAs. Developmental and inducible expression of 4-hydroxybiphenyl UGT2B13. *J. Biol. Chem.* 268:15,260-15,266.

340. Vainberg, I.E., Lewis, S.A., Rommelaere, H., Ampe, C., Vandekerckhove, J., Klein, H.L., Cowan, N.J. (1998) Prefoldin, a chaperone that delivers unfolded proteins to cytosolic chaperonin. *Cell* 93:863-873.

- 341. Vale, R.D. (2003) The molecular motor toolbox for intracellular transport. *Cell* 112:467-480.
- 342. Vallejo, M., Ron, D., Miller, C.P., Habener, J.F. (1993) C/ATF, a member of the activating transcription factor family of DNA-binding proteins, dimerizes with CAAT/enhancer-binding proteins and directs their binding to cAMP response elements. *Proc. Natl. Acad. Sci.* 90:4679-4683.
- van den Berg, J.A., van der Laken, K.J., van Ooyen, A.J., Renniers,
 T.C., Rietveld, K., Schaap, A., Brake, A.J., Bishop, R.J., Schultz, K., Moyer,
 D. (1990) Kluyveromyces as a host for heterologous gene expression:
 expression and secretion of prochymosin. Bio/Technology 8:135-139.
- 344. Van den Berghe, L., Laurell, H., Huez, I., Zanibellato, C., Prats, H., Bugler, B. (2000) FIF [fibroblast growth factor-2 (FGF-2)-interacting-factor], a nuclear putatively antiapoptotic factor, interacts specifically with FGF-2. *Mol. Endocrinol.* 14:1709-1724.
- 345. Van Den Blink, B., Ten Hove T., Van Den Brink G.R., Peppelenbosch M.P., Van Deventer S.J. (2002) From extracellular to intracellular targets, inhibiting MAP kinases in treatment of Crohn's disease. *Ann. N. Y. Acad. Sci.* 973:349-58.
- 346. van der Spoel, A.C., Jeyakumar, M., Butters, T.D., Charlton, H.M., Moore, H.D., Dwek, R.A., Platt, F.M. (2002) Reversible infertility in male mice after oral administration of alkylated imino sugars: a nonhormonal approach to male contraception. Proc. Natl. Acad. Sci. 99:17173-17178.
- Van Eerdewegh, P., Little, R.D., Dupuis, J., Del Mastro, R.G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., Walsh, A., Liu, Z., Hayward, B., Folz, C., Manning, S.P., Bawa, A., Saracino, L., Thackston, M., Benchekroun, Y., Capparell, N., Wang, M., Adair, R., Feng, Y., Dubois, J., FitzGerald, M.G., Huang, H., Gibson, R., Allen, K.M., Pedan, A., Danzig, M.R., Umland, S.P., Egan, R.W., Cuss, F.M., Rorke, S., Clough, J.B., Holloway, J.W., Holgate, S.T., Keith, T.P. (2002) Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. *Nature*. 418:426-430.

348. Van Laar, J.M., Tyndall, A. (2003) Intense immunosuppression and stem-cell transplantation for patients with severe rheumatic autoimmune disease: a review. *Cancer Control* 10:57-65.

- 349. Verhey, K.J., Meyer, D., Deehan, R., Blenis, J., Schnapp, B.J., Rapoport, T.A., Margolis, B. (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. *J. Cell Biol.* 152:959-970.
- 350. Vlak, J.M., Klinkenberg, F.A., Zaal, K.J., Usmany, M., Klinge -Roode, E.C., Geervliet, J.B., Roosien, J.,van Lent, J.W. (1988) Functional studies on the p10 gene of Autographa californica nuclear polyhedrosis virus using a recombinant expressing a p10-beta- galactosidase fusion gene. *J. Gen. Virol.* 69:765-776.
- 351. Voisset, C., Bouton, O., Bedin, F., Duret, L., Mandrand, B., Mallet, F., Paranhos-Baccala. G. (2000) Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. *AIDS Res. Hum. Retroviruses* 16:731-740.
- 352. Wagner, R.W., Matteucci, M.D., Lewis, J.G., Gutierrez, A.J., Moulds, C., Froehler, B.C. (1993) Antisense gene inhibition by oligonucleotides containing C-5 propyne pyrimidines. *Science* 260:1510-1513.
- Wagner, R.W., Matteucci, M.D., Grant, D., Huang, T., Froehler, B.C.
 (1996) Potent and selective inhibition of gene expression by an antisense heptanucleotide. *Nat. Biotechnol.* 14:840-844.
- 354. Walker, J.E., Arizmendi, J.M., Dupuis, A., Fearnley, I.M., Finel, M., Medd, S.M., Pilkington, S.J., Runswick, M.J., Skehel, J.M. (1992) Sequences of 20 subunits of NADH: ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. *J. Mol. Biol.* 226:1051-1072.
- 355. Walsh, A.C., Feulner, J.A., Reilly, A. (2001) Evidence for functionally significant polymorphism of human glutamate cysteine ligase catalytic subunit: association with glutathione levels and drug resistance in the National Cancer Institute tumor cell line panel. *Toxicol. Sci.* 61:218-223.
- 356. Wang, J., Kirby, C.E., Herbst, R. (2002) The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. *J. Biol. Chem.* 277:46659-46668.

357. Wang, M.S., Schinzel, A., Kotzot, D., Balmer, D., Casey, R., Chodirker, B.N., Gyftodimou, J., Petersen, M.B., Lopez-Rangel, E., Robinson, W.P. (1999) Molecular and clinical correlation study of Williams-Beuren syndrome: No evidence of molecular factors in the deletion region or imprinting affecting clinical outcome. *Am. J. Med. Genet.* 86:34-43.

- 358. Wax, S.D., Rosenfield, C.L., Taubman, M.B. (1994) Identification of a novel growth factor-responsive gene in vascular smooth muscle cells. *J. Biol. Chem.* 269:13,041-13,047.
- 359. Wei, S., Charmley, P., Concannon, P. (1997) Organization, polymorphism, and expression of the human T-cell receptor AV1 subfamily. *Immunogenetics* 45:405-412.
- 360. Weishaar, R.E., Cain, M.H., Bristol, J.A. (1985) A new generation of phosphodiesterase inhibitors: multiple molecular forms of phosphodiesterase and the potential for drug selectivity. *J. Med. Chem.* 28:537-545.
- 361. Weiner, H.L., Selkoe, D.J. (2002) Inflammation and therapeutic vaccination in CNS diseases. *Nature* 420:879-884.
- 362. Weiner, M.P., Felts, K.A., Simcox, T.G., Braman, J.C. (1993) A method for the site-directed mono- and multi- mutagenesis of double-stranded DNA. *Gene* 126:35-41.
- 363. Weinstein, M.E., Grossman, A., Perle, M.A., Wilmot, P.L., Verma, R.S., Silver, R.T., Arlin, Z., Allen, S.L., Amorosi, E., Waintraub, S.E., et al. (1988) The karyotype of Philadelphia chromosome-negative, bcr rearrangement-positive chronic myeloid leukemia. *Cancer Genet Cytogenet*. 35:223-229.
- 364. Weissman, I.L. (2000) Translating stem and progenitor cell biology to the clinic: barriers and opportunities. *Science* 287:1442-1446.
- Weng, S., Gu, K., Hammond, P.W., Lohse, P., Rise, C., Wagner, R.W., Wright, M.C., Kuimelis, R.G. (2002) Generating addressable protein microarrays with PROfusion covalent mRNA-protein fusion technology. *Proteomics* 2:48-57.
- 366. Wenger, R.H., Rochelle, J.M., Seldin, M.F., Kohler, G., Nielsen, P.J. (1993) The heat stable antigen (mouse CD24) gene is differentially regulated but has a housekeeping promoter. *J. Biol. Chem.* 268:23,345-23,352.

367. Werner, T., Brack-Werner, R., Leib-Mosch, C., Backhaus, H., Erfle, V., Hehlmann, R. (1990) S71 is a phylogenetically distinct endogenous retroviral element with structural and sequence homology to mimian sarcoma virus (SSV). *Virology* 174:225-238.

- 368. Wick, G., Kromer, G., Neu, N., Fassler, R., Ziemiecki, A., Muller, R.G., Ginzel, M., Beladi, I., Kuhr, T., Hala, K. (1987) The multi-factorial pathogenesis of autoimmune disease. *Immunol. Lett.* 16:249-257.
- Wieczorek, H., Brown, D., Grinstein, S., Ehrenfeld, J., Harvey, W.R.
 (1999) Animal plasma membrane energization by proton-motive V-ATPases.
 Bioessays 21:637-648.
- 370. Wieser, R. (2002) Rearrangements of chromosomal band 3q21 in myeloid leukemia. *Leuk. Lymphoma* 43:59-65.
- Winssinger, N., Ficarro, S., Schultz, P.G., and Harris, J.L. (2002)
 Profiling protein function with small molecule microarrays. *Proc. Natl. Acad. Sci.* 99:11,139-11,144.
- 372. Wojtowicz-Praga, S. (1999) Clinical potential of matrix metalloprotease inhibitors. *Drugs R. D.* 1:117-129.
- 373. Wu, A.M., Gallo, R.C. (1975) Reverse Transcriptase. CRC Crit. Rev. Biochem. 3:289-347.
- 374. Xu, C.W., Mendelsohn, A.R., Brent, R. (1997) Cells that register logical relationships among proteins. *Proc. Natl. Acad. Sci. (USA)* 94:12,473-12,478.
- 375. Xu, Y., Piston, D.W., Johnson, C.H. (1999) A bioluminescence resonance energy transfer (BRET) system: Application to interacting circadian clock proteins. *Proc. Natl. Acad. Sci.* 96:151-156.
- 376. Yang, N., Shigeta, H., Shi, H., Teng, C.T. (1996) Estrogen-related receptor, hERR1, modulates estrogen receptor-mediated response of human lactoferrin gene promoter. *J. Biol. Chem.* 271:5795-5804.
- 377. Yelton, M.M., Hamer, J.E., Timberlake, W.E. (1984) Transformation of *Aspergillus* nidulans by using a trpC plasmid. *Proc. Natl. Acad. Sci.* 81:1470-1474.
- 378. Yoshihama, M., Uechi, T., Asakawa, S., Kawasaki, K., Kato, S., Higa, S., Maeda N., Minoshima, S., Tanaka, T., Shimizu, N., Kenmochi, N. (2002)

The human ribosomal protein genes: sequencing and comparative analysis of 73 genes. *Genome Res.* 12:379-390.

- 379. Yu, L., Zhang, Z., Loewenstein, P.M., Desai, K., Tang, Q., Mao, D., Symington, J.S., Green, M. (1995) Molecular cloning and characterization of a cellular protein that interacts with the human immunodeficiency virus type 1 Tat transactivator and encodes a strong transcriptional activation domain. *J. Virol.* 69:3007-3016.
- 380. Yu, Z., Restifo, N.P. (2002) Cancer vaccines: progress reveals new complexities. *J. Clin. Invest.* 110:289-294.
- 381. Zallipsky, S. (1995) Functionalized poly(ethylene glycols) for preparation of biologically relevant conjugates. *Bioconjugate Chem.*, 6:150-165.
- 382. Zhang, Q., Acland, G.M., Wu, W.X., Johnson, J.L., Pearce-Kelling, S., Tulloch, B., Vervoort, R., Wright, A.F., Aguirre, G.D. (2002) Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. *Hum. Mol. Genet.* 11:993-1003.
- Zhang, W.M., Popova, S.N., Bergman, C., Velling, T., Gullberg, M.K., Gullberg, D. (2002) Analysis of the human integrin alpha11 gene (ITGA11) and its promoter. *Matrix Biol.* 21:513-523.
- Zhao, H., Grabowski, G.A. (2002) Gaucher disease: Perspectives on a prototype lysosomal disease. *Cell Mol. Life Sci.* 59:694-707.
- 385. Zhao, N., Hashida, H., Takhshi, N., Misumi, Y., Sakaki, Y. (1995) High-density cDNA filter analysis: a novel approach for large-scale quantitative analysis of gene expression. *Gene* 156:207-215.
- 386. Zhao, Y., Hong, D.H., Pawlyk, B., Yue, G., Adamian, M., Grynberg, M., Godzik, A., Li, T. (2003) The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein: Subserving RPGR function and participating in disk morphogenesis. *Proc. Natl. Acad. Sci.* 100:3965-3970
- 387. Zhu, D.L. (1989) Oligonucleotide-directed cleavage and repair of a single stranded vector: a method of site-specific mutagenesis. *Anal. Biochem.* 177:120-124.
- 388. Zhu, H., Bilgin, M., Bangham, R., Hall, D., Casamayor, P., Bertone, P., Lan, N., Jansen, R., Bidlingmaier, S., Houfek, T., Mitchell, T., Miller, P.,

Dean, R.A., Gerstein, M., Snyder, M. (2001) Global analysis of protein activities using proteome chips. *Science* 293:2101-2105.

- 389. Zhu, H., Klemic, J.F., Chang, S., Bertone, P., Casamayor, A., Klemic, K.G., Smith, D., Gerstien, M., Reed, M.A., Snyder, M. (2000) Analysis of yeast protein kinases using protein chips. *Nat. Genetics* 26:283-289.
- 390. Zhu, H., Snyder, M. (2003) Protein chip technology. Curr. Opin. Chem. Biol. 7:55-63.
- 391. Zhu, J., Kahn, C.R. (1997) Analysis of a peptide hormone-receptor interaction in the yeast two-hybrid system *Proc. Natl. Acad. Sci.* 94:13,063-13,068.

SEQUENCE LISTING

[0627] A sequence listing transmittal sheet and a sequence listing in paper format accompanies this application.

CLAIMS

1. A first nucleic acid molecule comprising a polynucleotide sequence chosen from at least one polynucleotide sequence according to SEQ ID NOS.: 1-104.

- 2. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule is a DNA or a RNA molecule.
 - 3. An animal injected with the nucleic acid molecule of claim 1.
- 4. A double-stranded isolated nucleic acid molecule comprising the first nucleic acid molecule of claim 1 and its complement.
- 5. The nucleic acid molecule of claim 4, wherein the first polynucleotide sequence encodes a polypeptide chosen from a polypeptide comprising a signal peptide, a mature polypeptide that lacks a signal peptide, a signal peptide, a biologically active fragment of a polypeptide, a polypeptide lacking a signal peptide cleavage site, a polypeptide consisting essentially of a N-terminal fragment that contains a Pfam domain, and a polypeptide consisting essentially of a C-terminal fragment that contains a Pfam domain.
- 6. A second nucleic acid molecule comprising a second polynucleotide sequence that is at least about 70%, or about 80%, or about 90%, or about 95% homologous to the first nucleic acid molecule of claim 1.
- 7. A second isolated nucleic acid molecule comprising a second polynucleotide sequence that hybridizes to the first polynucleotide sequence of claim 1 under high stringency conditions.
- 8. The second isolated nucleic acid molecule of claim 6, wherein the second polynucleotide sequence is complementary to the first polynucleotide sequence.
- 9. A vector comprising the nucleic acid molecule of claim 1 and a promoter that drives the expression of the nucleic acid molecule.
- 10. The vector of claim 9, wherein the promoter is chosen from one or more of a promoter that is naturally contiguous to the nucleic acid molecule, a promoter that is not naturally contiguous to the nucleic acid molecule, an inducible promoter, a conditionally active promoter, a constitutive promoter, and a tissue specific promoter.
- 11. A host cell transformed, transfected, transduced, or infected with the nucleic acid molecule of claim 1.

12. The host cell of claim 11, wherein the cell is chosen from one or more of a prokaryotic cell, a eucaryotic cell, a human cell, a mammalian cell, an insect cell, a fish cell, a plant cell, and a fungal cell.

- 13. A nucleic acid composition comprising a pharmaceutically acceptable carrier or a buffer and one or more compositions chosen from the nucleic acid molecule of claim 1, the nucleic acid molecule of claim 4, the vector of claim 9, and the host cell of claim 11.
- 14. One or more polypeptide molecules comprising a polypeptide sequence chosen from at least one amino acid sequence encoded by SEQ ID NOS.: 1-104.
 - 15. An animal injected with the polypeptide molecule of claim 14.
- 16. The polypeptide of claim 14, wherein the polypeptide has a function chosen from an agonist, an antagonist, a ligand, and a receptor.
- 17. The polypeptide of claim 14, wherein the polypeptide is chosen from a polypeptide comprising a signal peptide, a mature polypeptide that lacks a signal peptide, a signal peptide, a biologically active fragment of a polypeptide, a polypeptide lacking a signal peptide cleavage site, a biologically active fragment consisting essentially of an N-terminal fragment containing a Pfam domain, and a C-terminal fragment containing a Pfam domain.
- 18. A polypeptide composition comprising the polypeptide molecule of claim 14 and a pharmaceutically acceptable carrier or a buffer.
 - 19. A cell culture medium comprising the polypeptide of claim 14.
- 20. The cell culture medium of claim 19, further comprising responder cells chosen from one or more T cells, B cells, NK cells, dendritic cells, macrophages, muscle cells, stem cells, epithelial skin cells, fat cells, blood cells, brain cells, bone marrow cells, endothelial cells, retinal cells, bone cells, kidney cells, pancreatic cells, liver cells, spleen cells, prostate cells, cervical cells, ovarian cells, breast cells, lung cells, liver cells, soft tissue cells, colorectal cells, cells of the gastrointestinal tract, and cancer cells.
- 21. The cell culture medium of claim 20, wherein the responder cells proliferate in the medium.
- 22. The cell culture medium of claim 20, wherein the responder cells are inhibited in the medium.

23. A cell culture comprising transfected cells, wherein the transfected cells are transfected with the polynucleotide of claim 1.

- 24. The cell culture of claim 23, further comprising responder cells chosen from one or more T cells, B cells, NK cells, dendritic cells, macrophages, muscle cells, stem cells, epithelial skin cells, fat cells, blood cells, brain cells, bone marrow cells, endothelial cells, retinal cells, bone cells, kidney cells, pancreatic cells, liver cells, spleen cells, prostate cells, cervical cells, ovarian cells, breast cells, lung cells, liver cells, soft tissue cells, colorectal cells, cells of the gastrointestinal tract, and cancer cells.
- 25. The cell culture of claim 23, wherein the responder cells proliferate in the cell culture.
- 26. The cell culture of claim 23, wherein the responder cells are inhibited in the cell culture.
- 27. A method of making a transformed, transfected, transduced, or infected host cell comprising:
 - (a) providing a composition comprising the vector of claim 9, and
- (b) allowing a host cell to come into contact with the vector to form a transformed, transfected, transduced, or infected host cell.
 - 28. A method of making a polypeptide comprising:
- (a) providing a nucleic acid molecule that comprises a polynucleotide sequence encoding the polypeptide of claim 14;
 - (b) introducing the nucleic acid molecule into an expression system; and
 - (c) allowing the polypeptide to be produced.
 - 29. A method of making a polypeptide comprising:
 - (a) providing a composition comprising the host cell of claim 11;
 - (b) culturing the host cell to produce the polypeptide; and
 - (c) allowing the polypeptide to be produced.
- 30. A diagnostic kit comprising a polynucleotide molecule, wherein the polynucleotide molecule comprises a sequence chosen from (a) at least 6, (b) at least 7, (c) at least 8, and (d) at least 9 contiguous nucleotides chosen from the nucleic acid molecule of claim 1.

31. A diagnostic kit comprising a polypeptide molecule, wherein the polypeptide molecule comprises an amino acid sequence or a biologically active fragment thereof, derived from the nucleic acid molecule of claim 1.

- 32. A genetically modified mouse comprising a deletion, substitution, or modification of a sequence chosen from SEQ ID NOS.: 1-104, wherein the deletion, substitution or modification prevents or reduces expression of said sequence and results in a mouse deficient in or completely lacking one or more gene products of a sequence chosen from SEQ ID NOS.: 1-104.
- 33. A method of determining the presence of the nucleic acid molecule of claim 1 or its complement comprising:
- (a) providing a complement to the nucleic acid molecule or providing a complement to the complement of the nucleic acid molecule;
 - (b) allowing the molecules to interact; and
 - (c) determining whether interaction has occurred.
- 34. A method of determining the presence of an antibody to the polypeptide of claim 14 in a sample, comprising:
 - (a) providing the polypeptide;
- (b) allowing the polypeptide to interact with any specific antibody in the sample; and
 - (c) determining whether interaction has occurred.
- 35. An antibody specifically recognizing, binding to, and/or modulating the biological activity of at least one polypeptide encoded by a nucleic acid molecule of claim 1, or a biologically active fragment thereof.
- 36. An antibody composition comprising the antibody of claim 35 and a pharmaceutically acceptable carrier.
- 37. The antibody of claim 35, wherein the antibody is chosen from one or more of a monoclonal antibody, a polyclonal antibody, a single chain antibody, an antibody comprising a backbone of a molecule with an Ig domain, a targeting antibody, a neutralizing antibody, a stabilizing antibody, an enhancing antibody, an antibody agonist, an antibody antagonist, an antibody that promotes endocytosis of a target antigen, a cytotoxic antibody, an antibody that mediates ADCC, a human antibody, a non-human primate antibody, a non-primate animal antibody, a rabbit antibody, a mouse antibody, a rat antibody, a sheep antibody, a goat antibody, a horse

antibody, a porcine antibody, a cow antibody, a chicken antibody, a humanized antibody, a primatized antibody, and a chimeric antibody.

- 38. The antibody of claim 37, wherein the antibody is produced in a manner chosen from *in vivo* and *in vitro*.
- 39. The antibody of claim 37, wherein the antibody is produced in an organism chosen from a prokaryote and a eukaryote.
- 40. The antibody of claim 39, wherein the organism is chosen from a bacterial cell, a fungal cell, a plant cell, an insect cell, and a mammalian cell.
- 41. The antibody of claim 40, wherein the cell is chosen from a yeast cell, an *Aspergillus* cell, an SF9 cell, a High Five cell, a cereal plant cell, a tobacco cell, and a tomato cell.
- 42. The cytotoxic antibody of claim 37, further comprising one or more cytotoxic component chosen from a radioisotope, a microbial toxin, a plant toxin, and a chemical compound.
- 43. The cytotoxic antibody of claim 42, wherein the chemical compound is chosen from doxorubicin and cisplatin.
- 44. The antibody of claim 35, wherein the antibody has a function chosen from specifically inhibiting the binding of the polypeptide to a ligand, specifically inhibiting the binding of the polypeptide to a substrate, specifically inhibiting the binding of the polypeptide as a ligand, and specifically inhibiting the binding of the polypeptide as a substrate.
- 45. A bacteriophage, wherein the antibody of claim 35, or a fragment thereof, is displayed on the bacteriophage.
 - 46. A bacterial cell comprising the bacteriophage of claim 45.
- 47. A non-human animal injected with the antibody composition of claim 36.
 - 48. A host cell that secretes the antibody of claim 35.
 - 49. A method of making an antibody, comprising:
- (a) introducing a polypeptide, polynucleotide encoding the polypeptide, or a biologically active fragment thereof into an animal in sufficient amount to elicit generation of antibodies specific to the polypeptide, wherein the polypeptide:
 - (i) is encoded by the nucleic acid molecule of claim 1; or
 - (ii) comprises the polypeptide sequence of claim 14; and

- (b) recovering the antibodies therefrom.
- 50. The method of claim 49, further comprising after step (a), the step of isolating a spleen from the animal injected with the polypeptide or polynucleotide or a fragment thereof, and the step of recovering the antibodies from the spleen cells.
- 51. The method of claim 50, further comprising the step of making a hybridoma using cells from the spleen and selecting a hybridoma that secretes the antibodies.
- 52. The method of claim 50, further comprising making a polynucleotide library from the spleen cells, selecting a cDNA clone that produces the antibodies, and expressing the cDNA clone in an expression system to produce antibodies or fragments thereof.
 - 53. A method of modulating biological activity comprising:
 - (a) providing the antibody of claim 35; and
- (b) contacting the antibody with a first human or a non-human host cell thereby modulating the activity of a first human or non-human animal host cell, or a second host cell.
- 54. The method of claim 53, wherein the modulation of biological activity is chosen from enhancing cell activity directly, enhancing cell activity indirectly, inhibiting cell activity directly, and inhibiting cell activity indirectly.
- 55. The method of claim 53, wherein the step of contacting the antibody with a first human or non-human host cells results in recruitment of the second host cell.
 - 56. The method of claim 53, wherein the first host cell is a cancer cell.
- 57. The method of claim 53, wherein the first or second host cell is chosen from a T cell, B cell, NK cell, dendritic cell, macrophage, muscle cell, stem cell, skin cell, fat cell, blood cell, brain cell, bone marrow cell, endothelial cell, retinal cell, bone cell, kidney cell, pancreatic cell, liver cell, spleen cell, prostate cell, cervical cell, ovarian cell, breast cell, liver cell, soft tissue cell, colorectal cell, and gastrointestinal tract cell.
- 58. A method of diagnosing a disease, disorder, syndrome, or condition chosen from cancer, proliferative, inflammatory, immune, metabolic, genetic, bacterial, and viral diseases, disorders, syndromes, or conditions in a patient, comprising:
 - (a) providing the antibody of claim 35;

- (b) allowing the antibody to contact a patient sample; and
- (c) detecting specific binding between the antibody and an antigen in the sample to determine whether the subject has cancer, a proliferative, inflammatory, immune, metabolic, genetic, bacterial, or viral disease, disorder, syndrome, or condition.
- 59. A method of diagnosing a disease, disorder, syndrome, or condition chosen from cancer, proliferative, inflammatory, immune, bacterial, and viral diseases, disorders, syndromes, or conditions in a patient, comprising:
- (a) providing a polypeptide that specifically binds the antibody of claim 35;
 - (b) allowing the polypeptide to contact a patient sample; and
- (c) detecting specific binding between the polypeptide and any interacting molecule in the sample to determine whether the subject has cancer, a proliferative, inflammatory, immune, bacterial, or viral disease, disorder, syndrome, or condition.
- 60. A method of identifying an agent that modulates the biological activity of a polypeptide comprising:
- (a) providing a polypeptide or an active fragment thereof, wherein the polypeptide comprises at least one amino acid sequence encoded by SEQ ID NOS.: 1-104;
 - (b) allowing at least one agent to contact the polypeptide; and
- (c) selecting an agent that binds the polypeptide or affects the biological activity of the polypeptide.
- 61. The method of claim 60, wherein the polypeptide is expressed on a cell surface.
- 62. A modulator composition comprising a modulator and a pharmaceutically acceptable carrier, wherein the modulator is obtainable by the method of claim 60.
- 63. The modulator composition of claim 62, wherein the modulator is an antibody.
- 64. A method of treating a disease, disorder, syndrome, or condition in a subject, comprising administering the composition of any one of claims 13, 18, and 36 to the subject.

65. The method of claim 64, wherein the composition is administered in a manner chosen from orally, parenterally, by implantation, by inhalation, intranasally, intravenously, intra-arterially, intracardiacally, subcutaneously, intraperitoneally, transdermally, intraventricularly, intracranially, and intrathecally.

- 66. The method of claim 64, wherein the disease, disorder, syndrome, or condition is chosen from cancer, a proliferative, inflammatory, immune, metabolic, genetic, bacterial, and viral disease, disorder, syndrome, or condition.
 - 67. The method of claim 64, wherein the disease is cancer.
- 68. A method of treating a disease, disorder, syndrome, or condition chosen from cancer, proliferative, inflammatory, immune, metabolic, genetic, bacterial, and viral diseases, disorders, syndromes, or conditions in a subject, comprising:
 - (a) providing an antibody composition that comprises a first antibody or fragment thereof that specifically binds to a first epitope of a first polypeptide or a biologically active fragment thereof, wherein the first polypeptide:
 - (i) is encoded by the nucleic acid molecule of claim 1; or
 - (ii) comprises the polypeptide of claim 14; and
 - (b) administering the antibody composition to the subject.
- 69. The method of claim 68, wherein the antibody composition further comprises a second antibody that binds specifically to or interferes with the activity of a second epitope of the first polypeptide or to a first epitope of a second polypeptide.
- 70. The method of claim 69, wherein the second polypeptide comprises the polypeptide of 14.
 - 71. A kit comprising the antibody of claim 35 and instructions for its use.
 - 72. A method of gene therapy, comprising:
 - (a) providing a polynucleotide comprising a nucleic acid molecule encoding the antibody of claim 35; and
 - (b) administering the polynucleotide to a subject.
- 73. A method for prophylactic or therapeutic treatment of a subject, comprising:
 - (a) providing a vaccine; and
 - (b) administering the vaccine to the subject:

wherein the vaccine comprises a polynucleotide or a polypeptide chosen from at least one sequence according to SEQ ID NOS.: 1-104 or a biologically active fragment thereof.

- 74. The method of claim 73, wherein the vaccine is a cancer vaccine, and the polypeptide is a cancer antigen.
- 75. A method of inhibiting transcription or translation of a first polynucleotide encoding a first polypeptide, comprising:
- (a) providing a second polynucleotide that hybridizes to the first polynucleotide, wherein the first polynucleotide comprises a polynucleotide sequence chosen from:
 - (i) at least one polynucleotide sequence according to SEQ ID NOS.: 1-104;
 - (ii) a polynucleotide encoding a polypeptide comprising an amino acid sequence chosen from at least one amino acid sequence according to SEQ ID NOS.: 1-104; and
 - (iii) a polynucleotide encoding a fragment of a polypeptide comprising an amino acid sequence chosen from at least one amino acid sequence according to SEQ ID NOS.: 1-104; and
 - (b) allowing the first polynucleotide to contact the second polynucleotide.
- 76. A method of treating a disease, disorder, syndrome or condition comprising administering a modulator to a subject, wherein the modulator binds to a cell surface molecule that is over-expressed in the disease, disorder, or condition, and is linked to the antibody of claim 35.
- 77. The method of claim 76, wherein the antibody is capable of initiating ADCC.
- 78. The method of claim 76, wherein the disease, disorder, syndrome or condition is cancer and the cell surface molecule is over-expressed in a cancer cell.

SEQUENCE LISTING

<110> FIVEPRIME THERAPEUTICS, INC. <120> NOVEL MOUSE POLYPEPTIDES ENCODED BY POLYNUCLEOTIDES AND METHODS OF THEIR USE <130> 08940.0012-00304 <140> <141> <150> 60/485,217 <151> 2003-07-08 <150> 60/485,539 <151> 2003-07-08 <150> 60/476,621 <151> 2003-06-09 <150> 60/476,632 <151> 2003-06-09 <160> 104 <170> PatentIn version 3.2 <210> 1 <211> 2145 <212> DNA <213> Mus musculus aaacaggtga cacaggagta gatgttgtct tagtcagggt ttctattcct gcacaaacat 60 catgaccaag aagcagttgg ggcggtaagg gtttattcag cttacatttc cacatttctg 120 tttatcacca aaggaagtca ggactggaac tcaagcatgt caggaagcag gagctgatgc 180 agaggccatg gagggatgtt ccttactggc ttgcctcccc tggcttgctc agcctgctct 240 cttatagaac ccaagactac cagcccagag atggtcccac ccacaagggg cctttccccc 300 ttgatcacta attgagaaaa tacctcacag ctggatctcg tggaggcatt tccacaactg 360 aageteettt etetatggta aetecagett gtgteaagtt gacacaaaac tagteagtae 420

agatgtcttc atggagaaga gagggtgagg attgtaacta tctggggaga gaagccgggt

gggtgggata agatgtgcga tgatcttttg tgtaacattc tcacatactc ctcaatgact

tatacatgtg attccaagcc cagtccacag aatggactaa gtcatttcct ttcctgggcc

480

540

600

agggttctga d	ccgtgtatgg	agagtagagt	agatttaaga	ttgcccatct	tecetggtte	660
tctgtggtca g	ggcttgctca	ggactcagtg	cacatgcctg	tcttgggagg	tgcgttagct	720
cttccctgat (gccatttctc	aagctgtaga	gttttcccct	gtccccttga	acgagccact	780
gtcgtctggg (taaggggact	cccctgcctg	cagcaaggca	ggactattgt	gttccctcct	840
tagttctgtc	ttccatctgt	taacagtggt	gcctgctgct	ctttatgttc	atagtctgac	900
gagggaggct	aatgacccac	agtggggtcc	cagggtcaaa	ctgcctatgt	ccttcttctg	960
ccgttgacca	tgagacttgg	gctcatggcc	tctctctgct	tccttgggtc	agtgtgggta	1020
ggcacaggga	aaggetetgg	tgaggacaag	gctttgctga	ccattctgct	gcttctctgg	1080
gtctctctgc	cttgtctgct	ttctcctcct	tcttctgttt	cccctgtttc	ctcctcctct	1140
ggtaccttct	tcccccaacc	tggagagtgt	gcctgggttt	acagcgtgca	tcccctgccc	1200
tcactcagga	acaggtgtgt	ggcctctgcg	ggaactttga	tggcatccag	aacaatgact	1260
tcaccactag	cagcctccag	gtggaggaag	accccgtcaa	ctttgggaac	tcctggaaag	1320
tgagctcaca	gtgtgctgac	acgagaaagc	tgtcactaga	tgtttcccct	gccacttgcc	1380
acaacaacat	catgaaacag	acgatggtgg	actcagcctg	cagaatcctt	accagtgacg	1440
tcttccaggg	ctgcaacagg	ctggtgagac	tttgtgggta	gagaggaggc	aaaatgatcc	1500
aaaggcttgt	gcctgccttg	agtgtcagtg	tccgatgtga	gcaccaacta	ggctggagtc	1560
ctgcaagggt	tcaccacaat	agctctttct	tggcttctag	atgagaagag	catgcatagt	1620
ctttgaggga	agcaatggct	ggccaagcgc	tttccttgta	cgcaagaagt	ctcttgctct	1680
gaagttctct	ctgcattgcc	tccaatcaga	gccagggaat	teettteett	gttactgttc	1740
tacgggtcca	gacccagcca	gaacctttcc	aatcatcaac	cacaagcaaa	tcagcaaact	1800
gcctctttag	tgcccagttc	ccttctcatt	caaactcgtt	ttctggcatt	aagtccagtg	1860
attttggagt	ctgcttttt	ttttttctg	gettetttte	attcctctgt	ctcacacatt	1920
tcatagcata	taacatcaaa	. caatagtgat	gaattetee	a cagttaagtg	g gacttctttg	1980
ggcatttgca	tgcacgtgcg	g cacaagcats	g tatgattgtg	g tetetacaca	a aatgcttatc	2040
cattgtgcac	ctgtgctgtt	tcccttaaac	atgattgatg	g ggttgagted	c atgtatctca	2100
tttttttt	agctctccag	g agacttccag	g cccagaaaca	a gtcct		2145

<210> 2 <211> 2412 <212> DNA <213> Mus musculus

<400> 2

gagttcatag atctttgtgt aaaactgagt atctccatgg gcatgtaatg tttaagtctg 60 cctagttaac agtgacaaac tttatttttg cattttgggc aatcattgac ctctgacaga 120 180 acttaaggga catatttatg agcttctggg aaaggtcttc aattctactc cccatcatga cctctacagg aacgttcctt ctagccagcc aagtagcaaa agaacaggac gacatctgag 240 300 ctgtcccttc cctcctccgt gggccatacc gctccggggg cttgacgcca ggggtaacct gttctcatct gatgttctct ttagagaatg gcaatggtct ctgcaatgtc ctgggccctg 360 tacttgtgga taagtgcttg tgcgatgctg ctctgccatg ggtcactcca acacaccttc 420 cagcagcatc acctgcaccg gccagaagga gggacctgtg aagtgatcgc ggcccacagg 480 tgttgtaaca agaaccgcat cgaggagcgg tcacaaacag tgaagtgttc ctgtttacct 540 gggaaagtgg ctgggacaac aagaaaccga cetteetgtg tggatgeete catagtaatt 600 gggaaatggt ggtgtgagat ggagccctgc ctagaaggag aagaatgtaa gacactccct 660 gacaattctg gatggatgtg tgctacaggc aacaagatta agactacacg aattcaccca 720 780 agaacctaac agaagcattt gttatataaa taggaaaaag aacaacctgt ggaatatacg ttgtgaggat ttaaaacatc ttccatagtt gcaagccaag tggatctctt atctgcactt tggttaccag ataaccacag tgcacttact ctgatacaca gtatcccaaa agaagaagac 900 960 togggatttt otggcaacat caaggaaaat ggottttaaa aaaaaatgag ttttototgt 1020 gaaatttgga ggatcatgaa gaacgatcaa ctgtcttcta atttggaact aacattactt 1080 tgtaccattt gaaatatata tgtatatata atattttgaa atattatata ttctcttcaa gaaatgaaca gtaccacaat gtgaggtggc tggtgtatcc ctttcagttt tggatgtttg 1140 1200 gtcggttttg ttttgtttgc cattcctttt tctctcggta aggaagatac atgcccatgt gaaaatccaa catggcactc tccctggaag gccagctgca agccgactcc tggaagctga 1260 ggcatcctaa cagtactgag tcaagagett ceceetgttt etacetggtg acceaaggaa 1320 1380 geteettgte ttgatttatt getttetate etgtgeaata ttageatgea agettggett 1440 acataatcat actttatatt cgattgatat ataataaccg ttctaacctc ttccaggaaa

atatttttag aactactagc ttttccacag ataagcaaat ggggattctt gagggagctg	1500
ctccaccgtg ctattaagac tctggcagga tggtaggatg tagatcccta tattaataag	1560
teetgtaaat acagtgtett agggetttgt atagetgtee tagaetacag aagtgteete	1620
tgattaaatc caaagtctgc cattgttaac tccatagtgc tgtagcgaca cgttttatca	1680
tggcgcctct ttctatgttt gctttgcttt ttcctagagt gttcatctct cctctgatga	1740
gataggaaag ctatggaagc aattaggttt cccaatgatc tatgtgacca agtgttggac	1800
agecetatta aagtggtaaa taaettettt ettaaeeeae tegteetett tgtetgeeat	1860
ttagttttat agactctctt ttaactaaac cgagagatca cgagactacg gaggctatta	1920
tttccaacaa taatattttt gaaacttaga aactcattaa tatgattgta gtaaaatatc	1980
caattacaat ttctgggatt ccatgtgggt cactctgata atatatatgg ggctcacaca	2040
cacacacaca cacacaca cacacacaca ccaatgagag gtaaaaaaca acaaaaacct	2100
aaaatccatt atccctgtct ttttcgagtt actgagctga gaggtaagag gtaaacacct	2160
acttaaggtc tagttttcct ggggaaaatt ttaatgggat tttacactcc gatgtcatct	2220
cacaactgca gggttttttt tttcttccca aattattctc tgtcatctgt gtttttagag	2280
cctcttagta aatcacagca ctgtagtccc taagtctgta ctttttagga tcaaacttca	2340
agtaaaactc aagattacct cttattatac ccagaaagcc tgaagtttaa ttgaatgtgt	2400
gaagttctaa cc	2412
<210> 3 <211> 2627 <212> DNA <213> Mus musculus	
<400> 3 gctttttttt ttttttttg gcttgtattc tggacttaaa gtcacagccc tgccctgaac	60
ttcactagtg ccagcatete gtccaaatte tgctccccca ececttecte acettectee	120
attectgece ccaaceggge attetgettt caeteateae tgecaeettt ttgtttetet	180
toccogattt agattttogt gocagaogtg cagagoagoo atotoatttg gtaaacaota	240
gatgaacact tottaaatag aagcaacato otttocagot agotttgtta aaggggcaga	300
gaccgttcag cccatcaaac tgatggatta aaaaaaaaag taacatgtaa gttagaaaaa	360

tacttcagga aagatgtgcc atcattatca gttcctcaag ataatcaatt agaaggaaac 420

tcattgacca	ctaagtgtgg	aactcttccg	aaagcagcag	gtgaagggga	agcaactcct	480
ggagcccacc	tgccatcaag	cctgttccca	atgctgaacc	tacacaagag	gcaatagaac	540
cctatttgag	ggtcctgact	tttctgttca	gtatctgcca	tagatgggct	acatcaaagg	600
aaagattggc	tagcaaacca	gtccaaatct	atgacccttc	ttttaaaatg	gatcatgagg	660
gccttaaacc	atgggtcaac	tgcaaagtgt	cataataact	ttgcttccca	agtttcttta	720
tgaatttgcc	tggaagtggc	acacctttga	agaacttgtg	tgtgtgtgtg	tgtgtgtgtg	780
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tatttatgtg	tttgttttct	ctgtggaatc	840
ttgaacatct	accccttttc	taccttagtt	tatttaccta	tcaaatgagg	ttgaatatat	900
gaaaacaatt	attaaattgt	ggaaattcat	gtgaaattta	ctaagaaatg	acaacaacgc	960
tgtgtataca	gcaaacactc	aataaatttt	aataattatt	tcagtaaaac	cacaattact	1020
gtataaggat	tgaaagacat	tacagacaat	atcatgcctg	cccctgagaa	agattcgcaa	1080
taagcactgt	actaaacgca	tacattttt	tataatcact	tgatagcaaa	ggtagtttcc	1140
actggaaaag	tgcaattaag	agctcctaaa	acaaagcaaa	actgtgtggt	gtgtatgtgt	1200
tcatacagtt	tctaaagaca	gaaaattcta	aaactgactc	cccataggct	gctactccaa	1260
gaagctgtag	aactgccatt	aggtctaagt	cttgctttca	gaaaaatcca	tggaaagtgt	1320
tagcagagaa	caatccaggg	gaagttactg	tagcattcag	aaacctggcc	aggtggcttt	1380
caaggtctga	gaatgtgagg	gaggaggtat	ccaaaagtag	tctctaaaag	agccacaggt	1440
catgggcagc	tccacccagt	tgatcccctt	atctttgctg	gctcagctac	ttgtccttgg	1500
cagatattcc	ggcaatgcac	tctgttgaac	aagagtgaat	gggagaactt	taaacagggc	1560
aaaaagaaag	cttagcaacg	gagggaaaag	tgagtatttt	ctaaccaaag	tcactgcctc	1620
taactagatt	ttatagtttg	ggttaaaaaa	. tttaaatctc	: tcttaagctt	taggtgggtg	1680
ttctctctct	ctctctctct	ctctctctct	ctctctctct	ctctctct	ctctctctct	1740
ctctctctag	ttaatatatt	atttacttag	caaatgttt <u>c</u>	ttgaccattt	atcctgccac	1800
atgtcaggat	ctgctatagg	aaagaagata	acaattccaa	ccttgtatga	ctgttgtaaa	1860
gagaacatga	gtttgtatat	agaacatgct	: tgatacaato	attagtacco	ataccattgg	1920
ctacaatcat	tgagacaatc	: attaatacca	ı teggetagtt	: aatgattatt	atactttagc	1980
ctgcatgact	ctcaccatag	g agcttaacaa	ttatggattt	ttcctggagt	aacacccata	2040

gatactccag ttctgaaggt ataaaagaaa gtgacatagg aatgtgcatt tttaatggct 2100 gtaataactq actgtgtggc ccatgaaatg gaacttcaag agaagtggac tttttcttca 2160 2220 tgttcttccc aatttccaaa tgaagattca aagcctggat tcaaaggtct cttgactcta ccggcctctc aatgctacat tcaatgtctt gattgataag aacaatgtgc atatgaccag 2280 gaatgatagt aaggtaaaaa tgtgtttgta tttgcccatt cccaagttac tttatgatac 2340 ctaaaggagg ccatgattga cagatcatca ttatcccttg aataaatgtt ctagcataga 2400 2460 qtacattqca tqtqqcttta agatttqctt agacaaaagc agataccata catctataat 2520 cctqtqtctt qttttattct aataataqtc tccaagtgct tctcaattca actcacctat gttactcttc ccctgattgc agtgttcctg atggctgtta tctttcccga tttagtcact 2580 2627 tectettaat agacactaag agtatettte agaageteet gagagae

<210> 4

<211> 3153

<212> DNA

<213> Mus musculus

<220>

<221> modified base

<222> (1410) . . (1410)

<223> a, c, t, g, unknown or other

<400> 4

ccccatcct tgcctaaact ctagatatgg tctctacatg ttctatctcc cctttgttgg 60 gtatttcagc ctatctcatc cccctttggt cctgggagcc tcttgctttc ctggcatctg 120 ggaattgctg gtggctatat ctagttccca atcccccatt gctactaaat accactgttc 180 aatttcctgg cactctgtat atcacccctg cctcctccca tacctgatcc catccccaat 240 totocottco ottoctottt tootoogaag tototoccac actacttcac aagagtattt 300 tgttccccct tctacacatt tcagtgttcg ttcttcttga cctacatatg gtctatgaat 360 tgtaatttgg gtattccaag cttttgaaca aatatcaacc tatcaatcag tgcataccat 420 qtgtgctgtt ttgagactgg gtcacttcac tcaggatatt ttctagttcc atccatttgc 480 540 ctaaqaattt tatgaagtca ttattttaat tagctgagaa gtattacatt gtggaaaggt actacatttt ctatatccat tcctctgttg aaggacacct gggttctttc cagcatctgg 600 atattataaa taaggotgot atgaacatag tagaacattt gttottgtta tatgtotttt 660

gggtatatgc	cctgtagtag	tatagttgta	tcttcaggtc	caattttctg	aattcaatta	720
tctgagtaac	tgccagactg	atttccagag	tggttgtact	aggttgcaat	cctaccaaca	780
gtagaggaag	gttcttcctt	ctccacatcc	tcaccagcat	cttctatgtc	cagaattttc	840
gatcttagcc	attatgacta	ttgtaaggta	gaatctcagg	gttgttttga	tttgcatttt	900
cccaatgatt	aaggatgatg	aacatttctt	taggtgcttc	tcagccactt	gagactcctc	960
atttgagatt	tttgtttgtt	tgttttagtt	ctgtactcca	tttataatat	ggttatttgg	1020
ttctttggaa	tctaattggt	tgagttgttt	ggatattagc	ctgctattgg	atataggttt	1080
ggtaaagatc	ttttaccaat	ctgtaggttg	ccattttatc	ctgttgaccg	tgttctttgc	1140
ctaaataaaa	taaaataaat	aaataaaaat	aaacttttca	attttatgag	atcccatttg	1200
tctatagttg	aacttacagc	ctgagccatg	ggtgtactat	tcaggaaatt	ttcacatgtg	1260
ccattgtgtt	caaggctctt	tcccactttc	ttttctattt	gattcagtgt	gtctggtttt	1320
atatggaggt	ccttgatcca	ctgggactag	aggttagtca	atgagatagg	aattgatcag	1380
tttgcatatg	tctacatggc	atgaccatan	ggtgtgtggg	tttaattccg	ggttttcaat	1440
ttcattccat	tcatctacct	gtatgtcttt	gaaccaatat	catgaggttt	ttttgtttt	1500
tgttttttg	tttttatcac	catcacactg	tagtgcagtt	tgtggtcaag	agtgtttatt	1560
ctcccaggag	ttctcttatt	ggtgggaata	agaatagttt	tcatatcctg	cgtttctgct	1620
atacagataa	tttagaatgc	tcttctatat	ctgtgagaat	gagttgcatt	tgatggggat	1680
tgattgatct	ggtattgctt	ttggtagatg	ccattgtttt	atgtaatgct	gcaatcatga	1740
gaatggagat	ctttctgtct	tctgagagct	ttttcaattt	ctttctttag	agacttgaac	1800
ttctttactt	acagatcttt	cacttgcttg	gttagagtca	taccaagata	tttcatatta	1860
tttgtgacta	ttttgaagga	tttcatttcc	gtaatttctt	cctcagacta	tttatccttc	1920
gagtagagga	aggctactga	ttgaaaaatt	ttatatccag	ccactttgct	gaagttgttt	1980
atctgctata	ggaattctct	gatgcaattt	ttggagtcac	ttaagtacaa	tatcatataa	2040
cctgcacaga	attatatcat	gacttcttcc	tttctgatat	gtgtcatttt	gaactcattt	2100
ggtggctaat	tgecetgggt	agaacttcca	gtacaatact	gcatgtgtag	ggagagagta	2160
ggcagccttg	tttaatccta	gattttagtg	tcattgcttc	aagtttcact	ccattttgtt	2220
tgatgctggc	tattggtttg	ttgtgtatgg	taagtatgtt	taggtatggg	cctttaatta	2280

ctgatatttc	caagactttt	tacatgaagg	gttgttgtat	tttgtcaaat	gatttttcag	2340
catctaaaga	tttgaccatg	tgggtttttt	tctttgagtt	cctttatata	gtagattata	2400
ttgatacatt	tccatatatt	gaatcatccc	tacatccctg	agataaagtc	tacttgatca	2460
tggtgaatga	tcgttttgat	gtgttcttgg	atttggtttg	tgagaatttt	attgaggttt	2520
ttattgcatg	aatattcata	agcaaaattg	gtctgaagtt	ttcctgcttt	gttcagttgt	2580
tgtgtgtttt	tggtatcagc	ataactgtac	cttcataaaa	cgaatggggt	ggtgtccctt	2640
ctgtttctat	tttgtgaaat	aatttgaata	gtattggtat	taggtcttct	ttgaaggtct	2700
gatagaattc	tacactaaaa	taatctgctc	ggatttttgt	tgttgtttgg	agatgtttaa	2760
tgactgcttc	tatttcttta	gggtttatga	gactatttag	atgatttatc	ttactctgat	2820
ttcaatttgg	tagctggcat	ctgtatagaa	attgtccatt	ttatccatat	tttcaagttt	2880
tcttgagtat	agtcttttgt	agtaggatct	catgattttt	taaattttct	ctgtgcccta	2940
tagttagttt	gactaaaggt	ttatctattt	tgttcatttt	ctcaaaaaca	acaacaacaa	3000
caacaacaaa	aaacagctcc	tagttgtgtt	aattctttat	ataattctct	gtaggcttat	3060
tgattgtgtt	ctgctccttg	gggaagaacg	atacatgagt	tgaccatgct	tacaaaagat	3120
tgtctctggc	tgggtgtggg	aaatgcctta	agg			3153

<210> 5

<211> 2900

<212> DNA

<213> Mus musculus

<400> 5

gagtatcaaa ggcatgaacc accatacact gcctccaaac ctgcttgaac atgaagcctc 60 aqtccqtcqt ccaagaagtg atttcgcata cacaacaaac acgtcaacgc ccccacctca 120 gcacacagag gaaaatgcca aacaggttac ttacgaggag tcttcgtttg ccttcgaaag 180 accccaacag gtcggccact gacttcttgg gacttggagc gagatgtttt gcggtgggct 240 totgattgtc atcetgctct gtcttacccg cctttttctt cttattcttg tctttctct 300 360 tttgcactct tccctttttt cttcttctcc ttctcaggtt tctcgagctt ttcaagcttt 420 ttcgactcct tggcattctg cgagggaacg ctatccacct gccgctcctc ctccacctga 480

gaggaggtgg gctggctgag	gtcatacttg	tcttcatatt	cgttgctgag	aattctgtcc	540
ttctttttgg gcagcttccc	ctttactggc	ttgtgaggac	ctggcaccgc	atttgggtcc	600
tgatggccat gttcccgtt	gtctgtccgg	ttgtcccgga	aacggcttgt	gcccacaact	660
cttgcgctga cctcccagag	ggtgggaggt	ggggtggctg	tgaagcttcc	atagttggtg	720
getttgetgg geeteetggt	ggeetgtgge	ttatatatat	gttgctcctt	ccgaggtaga	780
gggtatagct gctctgagad	ggaggggccc	ctggcagtgg	tcacctctgc	tgttgcaggg	840
ggcctgtggg agactgagaa	a gggatgcaac	cgggatgtcc	agggcctctg	ggtagctgga	900
taggcagtgg tggttgtagg	g tettgegget	attgtcacta	cccgggatgt	ggcccgagtg	960
gctgtcgtga ctggagcag	g aggaagggtg	gtggcccttg	gagttggggg	aggctgagga	1020
gtggctgcct tgctggtgg	c ctgctttctc	ggagcctctc	tggtggggtg	gacttgtgtt	1080
ctccttgggt cctctttcc	cttatcaccg	cccaggcctg	tacctcctgc	tcctccaccg	1140
ccctcgtttc cttcctgga	c tacatggccc	tctatgcccg	aggccttaca	cttttggaca	1200
aaacccttct gcctgattt	t ctcgatcctg	cggatgggac	cttgatcaat	gacctcatac	1260
atggetteca geetgaeeg	g gtaagggtag	cgctcctcca	cctgcagagt	cttttttaac	1320
agcaccatgc taaacttgc	c cttctccagt	ttcaagaagc	tcatcagctt	tgggatgaga	1380
ttggggtcca gaggctgct	c caggatctgc	ccttcattgg	tgatcctccg	taccttgccc	1440
cetteetege etgeetggt	g gaagagcaca	atctgttgga	tgtgcctttc	tgccagctca	1500
caatacacgt cgtccttca	g gaggeteate	atgaggcggt	agtagecete	tgaggcgtga	1560
ggggctgaga tgacccata	c cctgttcttt	cctgcaaagc	tggccaggat	attgggagag	1620
ctagatccag aggggaatc	g caacattctt	gtccgagcag	aagacccctc	atctcggacc	1680
atctcacgcg ccgagctcc	t agctatgggt	ctcacctcag	gtctgactgg	aactccattg	1740
atacctgagg ggggtggtc	t catggtcggg	tgagctaatc	tcaacactgg	tacactcttc	1800
ctcctttgga aaggctgag	g atttggttct	teetgggtgg	atttctcaac	tccaccagac	1860
ctcccggtgt gcctcagat	a ccgagctgac	: ctactgctga	ttggagaaac	caaaggtact	1920
ttccgtccag tgtggctgt	c gctatccaag	gcaggagaat	gagatgctga	tccacacacc	1980
agccacatgg ccaagagcg	t ggtgaagtgg	ggtcccattt	tccacatcat	tgtattatcc	2040
acttggggac gcagagggg	g tataatacaa	ı aaatgaaaat	aacataaaat	gagaagggag	2100

aaaaagaaaa	gaaaaaaagt	cattaattgc	aagcagagct	gggcatgatc	tctttctcta	2160
acttggccaa	aaagaaaggg	caggagatag	ttaaagaaga	aaaaggaggg	caagcagagg	2220
agggcaaaca	gagagaggc	ttctcttaaa	ctgctgcgat	tgtcagtgct	tagcagagtc	2280
agtctttaag	caggaaatcc	agctttgatt	tacaggcggc	aggcatgagg	cacgcctgct	2340
ctgcctcagc	tgtgcccaga	tgcaccagag	actgtgtaaa	ctgagcatgc	taattatgaa	2400
ttctaactgt	gaatgtgcat	tcacacttca	tgtcttcaaa	caagcaacaa	ggaaacaaac	2460
accagagagc	aaggttggca	cacttacaca	gtggttcatg	gagatgcttg	cagaggettt	2520
ccagagaaac	gtgaaggttg	gtccccagga	cagtttccta	ggtgagatcg	gttccttcct	2580
gctctctgtc	tccttgtctg	tctgcaaagc	agccccaggg	agcccagcct	gggccgattc	2640
cttttgctgg	ctgtgtcttt	taccttctgg	tccagtggga	ggaggtgaac	gctgctgtcc	2700
ttgggaccgt	ttgtatctcc	atttgtctgc	agtttctcct	gggtctgtgt	gtgccggtcc	2760
ttggttgcca	cagggatctt	cctgaaagtg	aagtcctagt	gatttctgaa	tatagatatt	2820
cccttctgtg	gagttttccc	agaacttctt	atcacccttc	ccctcctgca	gtctggccga	2880
gtccctttgt	ttccgagcgt					2900

<210> 6 <211> 1852

2117 103

<212> DNA

<213> Mus musculus

<400> 6 atcttctttg atttctttct taagagactt gaagttctta tcatacaaat ctttcacttc 60 cttagttaga gtcacaccaa ggtattttat attatttatg acctttttta ttttttgtt tttcgtgaca gggtttctct gtatagctct ggctgtcctg gaactcactt tttagaccag 180 gctggcctca cactcagaaa tccgcctcct ctgcctctcg agtgctgaga ttaaaggtgt 240 gcgctatcac acccggctct ctttatgact attttgaaga gtgttgtttc cctaattttt 300 ttctcagcct gtttatcctt tgtgtagaga aaggccactg atttgtttga gttaatttta 360 tatccaacta cttcactgaa gttgtttagg agttctctga tagaattttg gggtgactta 420 aatatactat catatcatct gcaaatagtg atattttgac ttcttccttt ccgatttgta 480 ttcctttgat ctccttttgt tgtctaattg ctctagctag gacttcaagt actatattga 540 ataggtaggg aaagagtggg cagccttgtt tagtccctga ttttagaggg gttgcttcaa 600

gtttctctcc	atttagtctg	atgttggcta	ctggtttgct	gtatatggct	tttattatga	660
ttaggtatgg	gccttgaatt	cctgatcttt	cccagacttt	tatcatcaac	ggaggttgga	720
atttgtcaaa	ttctttctca	gcgtcccaag	agatgatcat	gtggttttg	tctttgagtt	780
tgtttatcta	ggtggattat	gttgatagat	ttctgtaaat	tgaaccatcc	ccgcatccct	840
gggatgaaac	ccacttgatc	atgatagatg	atcgttttga	cgtgttcttg	gatttggttt	900
tcgagaattt	tattgagtat	ttttgtattg	atattcataa	gggaaattgg	tctgaagttc	960
tctttctttg	ttgggtgtgg	tttagatatc	agagtagttg	tgacttcata	gaacaaactg	1020
ggtagagtac	cttctgtttc	tattttatgg	tatagtttga	ggagtattag	aattaggtcc	1080
tttttgaagg	tctgatagag	ctctgcacta	aacccatcag	gttctgggct	tttttttggt	1140
tgggagacta	ttaatgactg	tttctatttc	tttaggggat	atgggactgt	ttagatcatt	1200
aatctgatcc	tgattttact	ttggcacctg	gtatctgtct	agaaacttgt	ccatttcatc	1260
caggttttcc	agttttgttg	agtataggct	ttcgtagtag	gatctgatga	ttttttggat	1320
ttcctcagat	tctgttgtta	tgtctccttt	ttcatttctg	attttgttaa	ttagtatact	1380
gtccctgtgc	cctctagtta	gtctggctaa	gggtttatct	atcttgttga	tttttctcaa	1440
agaatcagct	tctggtatgg	ttgattcttt	gaatagttct	ttttgtttct	atttggttga	1500
tttcagccct	gagtttgatt	atttggtgcc	ttctactcct	cttgggtgag	tttgcttcct	1560
tttgttctag	agcttttagg	tttgctgtca	agctcctcgt	gtatgctctc	tccagattct	1620
ttttgaaggc	actcagagct	atgattctaa	cttttaggga	ctgcttcatt	gtgtttcata	1680
agtttggata	tgttgtggcc	ccttctcatt	aaactctaaa	aagtctttaa	cttctctctt	1740
tataaccagt	cttccaaaca	aaggaaagat	aaggaatato	tgactgtgct	cttctttcca	1800
ggggggcatt	cacactaata	tgtaggctta	agtgatttgc	: ttctttaaaa	aa	1852
<210> 7 <211> 2417						

<212> DNA

<213> Mus musculus

ggtgaaggtt gccctaggat gtctaagaac atggctaaac aagccatggg gaggaagcca 60 ctgagcaacg gtccttcaga gccattgctc tgttcctgcc tccaggttcc tgctctggct 120

tcttccttca gtgatgcccc	gtgaactgta	agatgaaacg	aaccctttcc	ttccctgatt	180
geggttgate ategtgttet	ttgcagcaac	agaaggcaaa	tgaggacacg	gaccattagg	240
tctaactagc cccttctacg	tgtatttgga	ggcccgaccc	ctagacaatt	acagtaccca	300
tcacattggt gacactggcc	accatggcta	ggcatgacag	ggaagcttca	ggactcccct	360
ttgccagggt gttctgagtc	tggaacaagc	ttctccttaa	ctcaaaggga	gttcacgctg	420
ctgagttagc ctggagacat	ttggggtctg	tggacagtga	agatggatgg	tgtctacagg	480
atggtggtgg tggtggtgac	agcaactgac	atgagctggg	tgtgggactc	aggcattact	540
tggatcagct cattcagatc	accacagete	tagcaagaca	gtggcaacat	tgccctcttc	600
tttagatggg agactgtgtt	gctaaaactc	tcatcagact	gttgatggta	gcatccggct	660
ttgctcacct ctgcaagtga	ccatgaccag	gggatgagat	ctctctactg	acaagcaagc	720
aagtcacggg cacttgtggc	atacaatatg	gcccctgttc	ttctgttact	cttcttatta	780
gataaaaagt gtgaatgttt	gtgtgtacat	gttcatatgc	atgtgtgtga	gcatgtatgt	840
atgtgtgagc atgtatgtgt	gtgtgagcat	gcatgtatgt	gtgagcatgt	atgtgtgtgt	900
gagtgtgtgt tactcttctt	attaaaataa	gaatgtaaat	aaaatgtgtg	tacatgttca	960
tatgtatgtg ttgtgagcat	gagcatgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgagagaga	1020
gagagagaga gagagagaga	gagagagaga	gagagcattt	gtacaggtga	aatgtcaagt	1080
gtetteettg ateteetee	atcttgtttt	ttgagatgaa	atctctcact	gacctggagc	1140
tcctagactg tgtagactga	caaaccaacg	atgctcacgc	cattgcctcc	ttagcaggga	1200
atcatggatg tgcaagacca	cacatgtcct	ttttcatgga	ttctggggac	tcagtcccag	1260
gttctatatt tgtgcagcaa	. acattttatc	agctatgcca	tctccccgga	cttcgttgtc	1320
atttattgta atgagtgatg	tgagctaatg	gtgtgccctg	attcagatct	cccgggttaa	1380
cgtgtaacgt ggaccactgt	tcaaggcata	tggggcagaa	gttctgatcc	attttaggtt	1440
ttccagagtg gcaggagagt	taggtaaaag	ggtcagcaat	gacaaatgta	gagtgccaag	1500
tgcttcatct acatgcagac	aaagatatct	gttcccccaa	gacacctggg	ttgtcactga	1560
gaaaatatcc acaaggcaaa	acaatgccac	gtgggcaaac	ttacctacct	tcagccttgc	1620
tattggagcc attcactggc	: tgctcaccag	aaacacagga	acggagttct	taccctgtgg	1680
ggtactggga ccagggataa	gattcctttt	atttgtctgg	acatgaattt	aagctacaga	1740

acctcacaac ccattacaca ttgaagaact cactatatcc agccaccagc catctatcag 1800 gtgaccactg agaggttcca ggacccaaga aaaccacgag tgtgtgagcc tcctccctcc 1860 acagtgtcgg agectccccc tatgtcctat gctcccgctg gatacatcag cacatgcccc 1920 accetgggge etggeceace etttggecae egtgagggea caaatgagae ttggagteat 1980 2040 tccagcacct ctgctctgga gcggccgtgg aaggaggagg tttgttgttg atgaatcaat agtagtgagt gactctcatt ccacggcagg aattccaggg atacaaacac acatctcaga 2100 ttaaagaaca tgtgctagag catgaagtag cttatcacaa ccatttaccg tctccagcgc 2160 2220 agacagaatg acaggagaga ctaggcagag gtcacagggg gtacatttcg ccatcaaaag ccgtatcgac tggagtccat tatgacaacc tccgagtgaa aaggtggaca ggctccggag 2280 2340 cattagtgag cttcccaaat acaagaaaat tgatccgtga ccaattaatc ctggcagctt 2400 tcattttcga tttcctttct gattatacgg aaccattaaa atgaacccaa atagaaagga 2417 atgagatggg acatcgg

<210> 8

<211> 1298

<212> DNA

<213> Mus musculus

<400> 8 gactgtggcc aggtgcagcc aagccactct tgccggcgct cgtatcctta gttaggtggc 60 gaaatgctga tgggctctcc tattcggggg aatgcggtag tgatgtataa ggtatgaaag 120 atgtggcctg cagagagccg gcactatctc tactgctgct gctgctgcca ccgctgcctt 180 tgctgccgcc actactgccg ccactagagc tgccgggagt gagcctccct tcttccagat 240 acccagetee gttgcatete cegeteeetg geceegeacg gaceteeeeg ceceagggaa 300 caaaagcaga gtccgggtcg cccctgttct gcagccagag gatgatgtgt cgagagggct 360 gagcagagtg tggtcttcag cggctggaag ctgctccctg ccctttctcc atgagtcctg 420 actcgtggcc ctggcaatct cagaagagct tcactgaatt cccttccgac cagaacctgg 480 gaactcactc cccccagcat cacccctgtg cagcctggac acactgactg aaccaacttt 540 taggacattt cattcagtaa gacatggtgg tgaaccaagg ctctaaatct tcatgattga 600 aggactetta cacaaggeaa agateaagat getettteae teagtgttgg atetecaetg 660 tttctgcaca tctcatctga catcatctca cctcttagaa tgagatggca tttgctccct 720

aaagagtttg	atggctcaag	catggtggat	taggcctttt	ctgctgggat	gctatgactc	780
catttacatg	tatgtgtctc	tatcactatc	catggccctc	tgaaatgggg	aaatacatct	840
tttctattgt	tttcctgatt	gttaacacag	tacccaacac	atagtgaagt	gtaggatatc	900
tgataaacaa	atctatcaat	agatttggca	aacggggtag	ccctgtaata	ttctatggaa	960
agagtaaaat	atatgcaaat	gtggacagat	ggtgtctcct	ctctcaattt	aaaatgacaa	1020
agtgtattat	tagtaaagca	caaagaggaa	aaagactgta	cgtgggagtg	ctgtaaagaa	1080
actggctgtt	gaagagatgc	aaagacttca	atagatttat	tcatgcgctt	acagataggc	1140
agctttttag	tccatggaca	tttcatcatc	ctgtacaatt	gctattgaca	tgccaatgag	1200
ttccacattt	ttctgtccat	ccttactgaa	ctcagggctc	ctcttgcatt	ctcaaacatc	1260
ttctggatat	attctggcag	attaagtttc	aaaaatcc			1298

<210> 9

<211> 4319

<212> DNA

<213> Mus musculus

<400> 9 acacagtttc gaagaagccg geggtgeeeg caaaggetgg agtagegaga acgaeteeca 60 gtctagegge tgegegetee teaacetgea gacegaaage tegggaggae eeggeetage 120 180 cccgcagaac tggtgggtgc tggaccagag catctaggtg ctctaagccg gagactccag cttagccaga gcccctgctc tcctcgggcg caacaacttt gacgatctat cgcggacaga 240 gctcaaaacc agacaacacc taagctggcc actccctcga agagcccgat ttggagagtc 300 360 tagatgccaa gctcagaagc agcgaggacc tcaggccaga aagttgaacc cgggccactg ctgtgaagca gcttcctctt agccactcca ggggtctggt ctctccat tctgaacaac 420 cgccatattg ttcatcagac ggaacaagtc tgagaccagc agatgaacag gcagaggcct 480 gaagacccca ggaacagete tgeetteett gtteettgat eeetetetgt caateateat 540 atcctacagt gacatcccgc cccaccgaaa gctgcctgga gacaagaccg atggagaggc 600 ccaccagcaa ctggagcgca ggcagctggg tgcttgcact gtgcctcgcc tggctgtgga 660 720 cgtgtccggc ctctgcttcc ttgcagcctc caacatccgc agtcctagtg aagcagggca cctgcgaggt gattgctgca catcgctgct gcaaccggaa ccgcattgag gagcgctccc 780

agacggtcaa	atgctcctgc	ctgtccggcc	aggtggctgg	caccaccaga	gcaaagccct	840
cctgcgtgga	cgcctccatc	gtcctgcaga	agtggtggtg	tcagatggag	ccctgcctgc	900
tgggagagga	gtgtaaggtg	ctcccggacc	tgtcagggtg	gagctgcagc	agtggacaca	960
aggtcaaaac	caccaaggtc	acacggtaac	tctcggaggt	catggcttag	gtaggacagc	1020
cttgactgag	ctcgggactg	aagaaaggcc	tggtcaccag	acagcagata	agaggactta	1080
cctggacatg	tgcccatgtc	aagtgtaaca	tagaccggcc	agggcccctg	ggcagcactc	1140
tgttcagcta	aaatgcttgg	atctttggcc	acacacttga	gagacctgtg	ctctcctatg	1200
aacaaagtca	acacacaaac	ctatccttaa	ggaatatctt	gtcaagttaa	ggagtggatg	1260
acaggcaatt	tcaacagttt	aaagtgtttg	gtaccgtggc	ttctgagcga	cctgcagtgg	1320
gtgtggtggg	gtggggcgga	tggaatttac	acagatette	agccacccga	tcccaggaca	1380
caaagttatg	agggccacac	cagtatette	ccatcttggc	cttcccatca	aacctgcatc	1440
cccagcaaga	tgctaagatg	tgagaggaaa	acactgcccc	ctggtgccaa	gccagtggga	1500
tctcttttgg	acagcactgg	aaagtagaga	tgaagggctt	cttccgcaca	cctctgcaga	1560
ggcaggggcg	gggcgcacat	cccatgctgt	ccatggatgg	acaggacctc	agtcagaatc	1620
acccctccac	cttgaacttc	gggtgtttgg	ttgctgtttt	aaaggacgag	gaaaccgagt	1680
cacagaggat	gagatggatt	tgcccaggat	ctcacagctt	ggccttccaa	aaacacggat	1740
gttaggactc	cagcctaggc	cttccgtggc	agttttatct	agacagtgag	accccgcaaa	1800
cactgtctgg	atagcaccaa	catgattctt	gggagatggg	actttgacca	ctggaatttt	1860
ggttgaggcc	actgatctcc	catcaaacaa	acaaacaaac	: aaaccctaga	atatacacac	1920
acacacacac	acacagcaga	gtggagctcd	ttctcagtcc	: cccaaggcca	aacaggcccc	1980
gtgacagccc	agaggtcgct	cageceageg	gcagcagaag	g cagtgtgago	agttaggtat	2040
cccatcaccc	actctgcttc	tctatcagga	gcttcagcca	gcccctaca	taggtacctg	2100
ccaggaggca	gaggggcagg	ccagaggact	tcataaccag	gctggcctcc	: tagatggctt	2160
gggagtagca	. agctggctta	cttttattac	: caaggcctta	agtgttagag	tgagtgttag	2220
agaccagcct	ggatgatggt	tccctgagaa	ggtaaatcag	g ccatagttta	cactggaatc	2280
ttggtgccct	tctccttgcc	: tgtgtcccaa	tgcatttgad	taagactctg	g gtatcacccc	2340
acctcagggc	: atgttttggg	g tttggcaaaa	tgagatgaad	agtaacgtta	tctttcaaag	2400

gcaggcctct	gtcagtctct	gcttgtagca	cggtgacagg	ccagggtcac	caagggtcaa	2460
tggcagtcat	ggtctccttc	agtactgagg	agtggaggcc	agagggtgtg	ttaagtctcc	2520
gtgacatatt	ctttgttttg	ttgttttgct	tctttttgtc	tttaaaaaca	ttatagactt	2580
gccaatgcca	tctttagctc	tagggaggga	aggaacacat	tgttgcccat	gtcaggtctg	2640
tgacccttcc	caggggacgt	cgaaggcctg	ggatggcctc	ccagcctctt	ggctcaccct	2700
ctgtaccatg	gaaacctgag	cggcagggct	ggggctgggt	ttgttttcct	cctgatgctc	2760
agagagagat	gtgtgagtga	attatttagg	ttacggcttc	agcagagcca	gacagtgaaa	2820
gcctgctttc	ctggaggcaa	aaggtagttc	tgtcgggggg	tgtggagcgc	catagactct	2880
ctgctcactc	tgtcctggac	actgtcaccc	aacggtcggc	tcccctgcct	tgccccacct	2940
gtgttgtcca	cacgaactgg	gttagagtgg	agagttcaga	gatgacgcgt	cacaagcctc	3000
cgagagcggc	cagtctcctc	cagctccccc	ccacccccg	ctgcctcggg	gtcctgattc	3060
tgtaccttct	ctgaccccca	ctaaagttgg	ctaattcctt	gttaagtctc	cctccctgcc	3120
tcctgaccta	gccatgcatt	tagtgggtga	actctgagct	gagtgggtat	ctgtagattt	3180
ccagggaagc	cccacacaaa	aagctctggc	aaagaaaaga	tccagacccc	cacctccaac	3240
tccaccccc	cccaaaattt	gtatccagct	gaatccaaac	ctgtgtaggt	tttgtagcta	3300
tgcaaagaac	agtctagaaa	taaatggagg	gttttttggt	ttggttttgg	ggggggttt	3360
agagcatagg	ggttcctcca	gtcatttgac	tteetetgee	ctccttgacg	agaacatctc	3420
atcatctgag	gtttgctgga	. accccatctc	ttcagctatg	cgggctctag	gaaagccagc	3480
aactactaaa	tcatgtgact	gatttctgct	aacctcctgg	cagttgtact	gagtctgtga	3540
gtgacatcct	gattaatgat	cccagacago	tccacaacat	tgacttgcac	: attgagacga	3600
cageteeeta	aacccagaat	tatagttgca	agagggttta	. gaagccaact	ctttgatttg	3660
ccagcctggg	agagggtago	: tcagaaaggt	taagtaattt	gcccgaagto	acacagcaag	3720
ctggtggcat	gteettgete	agtgactcag	g catagagtto	: tttccactat	tgtacatccc	3780
attgtacccc	agagcagato	g agaacttgga	aggagaacag	ggttcttaac	tgtgagagtc	3840
tcattctgga	atcgcccaac	actgtgagag	g caagggccag	g agggaagaag	g agcaggaaac	3900
acatagtgat	cacatacaca	tagggaagca	agaaggggag	g gggtggatgo	c ccagaatttc	3960
aaactacaga	gtcaaaccga	a acaggacaaa	tgccacacga	a aggagaacto	gtgcctgtcc	4020
<u>~</u>						

60

120

180

WO 2005/005597 PCT/US2003/027106

tttcctgagg	aggcaacatg	gagtgttgtc	agtccttggc	aaactgggtg	tgggggtgca	4080
tgcctatatc	ccaggtactc	aggaagcaat	aaggaggatg	gcaagatgga	ggccaggctg	4140
gacctaacag	agaccctgtc	aaaagaggaa	caacaataac	aacagaaaaa	gaatggaaac	4200
ccttgcagaa	ccttgatgct	gtcttgatca	ccccaggttc	tttttgtcct	atgcagagga	4260
ttgcaaacta	aagcacatag	gttacttttt	ttttaacaaa	taaagtttta	ttgaaacat	4319

<210> 10

<211> 3423

<212> DNA

<213> Mus musculus

<400> 10
ggctagactg aaacccccag aggctggccc ctaatggccc aagtctgccc tacttctcaa
aaataggcta catcccacag cctgtcaaaa tagtgccacc tactggggac cacatgttca
aacctaggcg cctgtgagga gtatttttgc ctttaatggg taacaattct caacttgttc

ccacaccaca aacatagett atgtgagatt tggtgageac etgageacag ttecageetg 240
ctagttgate aettaaatge ageageeaaa gtecaagage acacaetgte tettgaggee 300
agaaccecag cetettggag catcaccece eggtgeeatg tttetteece ecaceceae 360

cccgaatatt tcttcagcct ttaatgttct ctcgtgttct cctcagctat taaatcctgc 420 aggtagataa tattcatctc tacttatcag gactctgtaa gtctatctca tgactacact 480

ttaaaaaaaa aagatttatt tattttagta tgtgagtaca ttgtacctgt cttcagacat 540 accagaagag ggtatcggat cccattacag atggttgtga gccaccatgt ggttgctggg 600

aattgaactc aggacetetg gagageagte agtgetetta accaetgage cateteteea 660 geeecettat gaetacaeet taactgagte titeatteae teaetaaate tetiteeet 720

tatggcccac acggttgttt tttccccagg tatctgtgta aattttactt aagttctaga 780 cagctttgtt gttttgcatg gtgtttataa ctggcatctt caatctagat ccagttgttt 840

gtactgaaca aatattttga ettteaacae aatgtettae gttgttgeta tgataaatgt 900
ttagtgttet geataatatg eecaatagtg gagagatetg atgagagagg agagaagaaa 960
gagggteatt teaatgatet getgttgatg tittgaaatg teetageagg aettggtgtt 1020

gaggeteatt teaatgatet getgttgatg ttttgaaatg teetageagg acttggtgtt 1020 etgttetteg actgagggaa aageagttgt tageagteae etgteattet eetggeacaa 1080

atcttgagcc caagtaatga agcaattctt cacagggttg aggcccacag gaggctgcat 1140

agtagtctca gcagacagcc	agcttcattc	aggaggcccc	tgacatctgt	gtcctccctg	1200
atgaccacct gtgcacactt	tctcagagga	agaagagaga	tcatccttta	aagccaaatg	1260
tgaaacgagt aaatgattaa	gtccatgcag	tccctaaggg	cccattcact	ccgagtccac	1320
attgaatgaa gcttcaagac	agatatggaa	atggcagtct	cataaccttc	tggctctaca	1380
aggcatcact cattgtagtg	ggccagagca	gcattgcccc	atagcaagac	acaggaggat	1440
attcccacgt gtctccatat	tgtaaacaga	gtaatgttat	aattttttgt	cagaaataaa	1500
gactgacttc ctttaggcag	gtttgtctgt	ctgctgcgtg	tagtgtgtgt	gtgtgtatac	1560
acaaagatga aaagaggtat	tccaagtccc	ctggagctgg	agttacaggt	gtacagagct	1620
gcctgaggtg ggtgggtgct	gggacccaga	ctctggtcct	ttggcagatt	aggaagctct	1680
ctaaacaaac atctgagtta	tctctccatc	cccataagca	ggctttggaa	agcagaacta	1740
taccaggcta catgtaattg	ttttacataa	tctgctgcta	tactgcccta	tgtaaatata	1800
actatttata gtgcccaccc	actctgggaa	ttatcacttt	ggcttacttt	gctatggatg	1860
acagacgtgt aatagaatcg	aacttttta	cttgaatttt	tttatatttc	tggtgaggca	1920
gagttttgcc tgtgataact	gatggtctaa	cctgaattgc	atgctttcat	tgtgcttgga	1980
tgaattettt atatatttgg	aaaatccagt	ttctatagaa	tcttattgct	gcaagcttat	2040
aaaatgtcag atagggtgtt	tagcattttt	tgtgtgttat	ctaatttaat	tatcacagta	2100
tctctgtcac agggcattct	gatatggtgt	ttaagtattg	aattgggtgg	ttcttggttt	2160
aagttctgat accactgttt	cctcttgtga	ccattggtaa	actttatata	tcctgcaagt	2220
cttcctttgt gttatatttt	tattttgtgt	ctgtctgtct	gtaccacctc	actgtctata	2280
tgtgaatgta tgtatatata	tatatatata	tatatatata	tatatacaca	catatatgtg	2340
tgtgtgttat gtatgtatgt	atgtgtacgc	atatgtgtat	gtacatatgt	ttatgtgttc	2400
atctctctat gtctgtgtgt	gtgtctgtgt	gtatatttgt	gtatctgtgt	ctgtatgtct	2460
ctctctctct ctctctctct	ctctctctct	ctctctctct	ctctgtgagt	gcatgtgtgt	2520
agaagtaaga ggaagatgca	ggcatcattc	ctctctgggt	tctagggttt	gaactcaggt	2580
caccagggtt ggcaagcatc	tttacactcc	gagccatctt	gcctgcccag	tttcctctcc	2640
tatgtattgg aaataactgt	ccctgtctta	catgcttgta	aggattgaga	gagtgcatat	2700
gtgcaccatc atgtacacag	cacacactca	tttaatatcc	attgagacag	tgggtgtttt	2760

ctctttttc	cctgggttaa	tttaggttga	gaaccaccag	tctagctggt	ataatggaaa	2820
agacccatgg	gctacttttg	aagtaaaggg	ggatttattt	aggcttagaa	ttttggagtc	2880
aaacctaagg	ctaggcagcc	cattacttta	ggccttgcac	gccatggcag	gagcacatgg	2940
gcaagtaagt	gctcacttct	ccagccagga	agcagcgtga	gagactgact	cagggtccac	3000
agtctcatgg	gcatagctca	aggtctcagc	ttcgaagatc	agcagcacct	acctaccaga	3060
cctgccaccc	tgggtatcga	attctgacct	ctgagggggc	acccagctct	aaagaaaacc	3120
atctagctga	ctctatcaaa	gctgctgttt	ttatagaagt	tggtaaccaa	ggcttaaaag	3180
tatttgaatt	atttccagtt	ctgtgccttg	tgctcaccaa	aggctacagt	gttgccaaca	3240
gtcaagcagc	tctgtgtggt	tggtgccagg	gacccatgca	tggggtaggg	ctcagaacct	3300
gcagtcctta	tctgggtact	cagccagcct	ggagcagatg	aagctgaggc	atgtcaatca	3360
actaggagag	aatttccagt	gggaaaatag	ggatgcccag	cttgtgctca	ggctttgggt	3420
ttt						3423

<210> 11

<211> 3340

<212> DNA

<213> Mus musculus

<400> 11 getetteegt ceaeceettt ceaagteete agtgeetegg teteteaece tetetgeate 60 caagaccccc aggctcggtt ccgggcgcca cttcctcctc ttcaggtcag atctgttccc 120 ctggacccag gttctctggt aggtgacctg gaaggccttt gtccccgggg gcggggccgg 180 caccggcaca ggacacctgc aatgtcaccg tcttccacga gggtgcgcgc tagctagcac 240 cacttettag agetgagaga cettteaaat eetgettaag agteeeggge tttetetaca 300 gccttatcag ataagagtca ttaacaggag gtggagctga aggagaaaag aagccctagt 360 gaaaagaaag aatgcataaa gtagccaaca ctgctgggag ttctagagat taagggaaaa 420 ctttcactac ctgcttcctg acttgaattt cataaattac ggtattgttt attttattac 480 tgtttttgtg ttttgttttt tagagacagg gtttctttgt gtagctctgg ttgtcatgaa 540 acttgctctg tagaatagct taacctcaaa ctcacagaga teegeetgee tetgeeteee 600 aagtgctggg attaaaggcg tgcaccacca ccgcctggca cttattttac taatttttaa 660

aatttgtatt tttatagget agagagataa etgggtgett caaagetgee gttgaggaga	720
acatgggttc gagtatcagc tcacagctgt ttgtaattcg tttcagtgaa cctgatgctc	780
tctctggtct ccatggactc cagacacaca tgtgatgctc aggcaggcac acatacaggc	840
aaaacatcaa aacgcataaa ataagttttt tttctaaatt ttgtaaatat gtgtgtgggg	900
attacatgta ggggaaggca tgtgcccaca gaagccagaa gagggtgatc tatcccttga	960
agctgaaatc acagatggtt gtgagctgcc tggcatgggt ggtgggaacc aaactcaggt	1020
cttctgcaag atcaatcgtc actctgaact tctgaaccat ccttctggtc ccttttttat	1080
tttttttatt aaagatttat ttattgtata tgagtacact gtagctgtct tcagacacag	1140
cagaagagga catcggatct cattacagat ggttgtgagc caccatatgg ttgctgggat	1200
ttgaactcag gacctctggg agaacagttg gtgctcttaa cgttgagcca tctctccagc	1260
ctcccctttt ttattttcaa ccttagatgc catatctttt gagctgtgca cctcgttttg	1320
ttgtcattgt tgtacatatt ttacaacttt gagagactat ctgtgtgtat acatacatgt	1380
gtgcaagtgc acaccaccat gtaggtgtgc ctttgtgcag actagaggtc agcactgggt	1440
gtetteeteg gttgtgetee atettettet etgagteagg geeteggatg aaggeegaat	1500
cttgttgatt ctgctttggt ggctggccgg ccggcctgcg agctcagaga gcctcctgtc	1560
tccacctcca cagggctggc attatagttc ccgtgttgga catggaaccc aggccttcgt	1620
gctcatgtgg caggcctgag ccatctccct gacccccgtg tactcccatg tcacaaggag	1680
acgtacacaa aaccegeetg tetecagaaa eccaagttea gttetgeeea etaggtgetg	1740
agaaagataa cgttgagaag gggatttagg gatttctaat tgccaagctg tgctgcttct	1800
accttctacg cacagtgagg aggagatcgg aaaggagaga tttgggctca gaggggcatg	1860
caggggtgtg gagetggatt cagaettett atggttttgg tgtttteete tatgaateat	1920
ctctgccatt ggcactgaag agcatgcgcc tcacacactt atggtcccat gacctctagg	1980
aattacttgt agggattaca tggaatctgt gatgccgcta ccattttaat tattgcaatg	2040
tataagcaca gaagcatgtg tgtatgtatg tgtgtgtaca tgtctgtgtg cctgtgtgct	2100
tgtctgtgtc catgtgtgct catatgtgtg tgtccatgtg cacatgagtg tgtgtgtgtg	2160
tgtgtgtacg agcatgtgtg catgtgctct tgtgcacatg tgtgcacatt tttccatttc	2220
tttttaaaat gtttttaatt taattttttt ttttttatgt tatgaaatcc gcctgcttct	2280

gcctccgaag	tgctgggatc	aaaggcgtgc	gccaccaccc	ctcagagagt	cttccatttc	2340
tttaatcagt	ttttcagaat	ctggtctgag	gatgtagctc	agttggggtg	cttgcctaac	2400
acgtttgagt	gctgtattca	aacctaggca	tcgcgtaaac	acagtgtggt	ggagaacacc	2460
tgtaattcca	ggaggcagaa	ggatcagaag	tccttgagca	gccttggtta	atagggagtt	2520
caatgccggc	ctgggcaggc	atctctgaac	caaaataaac	ttgaattttc	aggtacaggt	2580
tttccctctc	tgagtcctta	gaactgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	2640
tgtgtgtcgt	aaagggcatc	gctttctgat	ttgtcttttt	taatatttga	tgtctcctct	2700
ctctgtgttt	ttcaagactg	ggtttctctg	tgaagccctg	gatatcctga	actcactctg	2760
tagaccagac	tggcttggta	ctcagagatc	tgagtgtctc	tgcctgtctt	ccaagtgcta	2820
ggactaaagg	cttttgccac	cactgcctgg	ctagaaatat	ttctcaagag	ctagagaggc	2880
agctcattag	ttaagagcgc	ttgctcttgc	agaagagcag	tgttgggttc	ccagctcctc	2940
gaccaggtag	ttcacatagt	ccaggaactc	catctccagg	ggatccaacg	ccttcttctg	3000
gcctcagtgg	gcacttgcag	tttccttgta	cacatattac	taaataaaaa	gaaatcttta	3060
gaaaaataaa	ataaacaaca	cagctgagta	acttaaatta	ttcacatggc	teceggettg	3120
tggctgccca	. ttctgcctca	ctaaggtcgc	atctttggag	ttaaaatcag	tatagagctg	3180
atgttctcct	taatcttcag	acaccacagt	cacctgtage	tccagttcca	gggttttgat	3240
gccctcttct	agtetetaag	ggcactacac	actcgtagtg	aacatacata	. catacatact	3300
tgcaggcaaa	acattcgtac	tcattaaatt	. ttttttaaag			3340
<210> 12 <211> 3933 <212> DNA <213> Mus						
<400> 12 gtctctccc	teeggetete	aggcatacag	g etteceggge	: caaaggcaga	actctgccct	60
tggcaaagct	tgccttacct	gtaccaagat	caccagccto	: tcegttctct	tcaggaaccc	120
ggcatctgag	g actcagctgt	: atgactagag	g gacatttcct	cttagccttt	ctttccacag	180
gcatccggg	c gtgctcctca	cactggtgtt	ggcgaggcat	ggggcttcct	cacagtggtg	240
gggctggag	ggcttgtgtg	g cataggtggg	g tttgtgagct	gggtggacco	tgaccccaga	300

gcctggtagg gtctgtctga gcggtgaggg tgtgtgaggc atggtgacta gcccgtgccc 360

cacttotace cetacetget etgeceteat egtecetgge actgetggtg ggecetacee	420
tgtccactgt gtctctccat gagtcctaag teetetgtga geggegtggt eegtgtgcae	480
ctgtgtgcac gtgtgtgtgc gaggggcaca ggagtcctgt cttgtctctg tgctgtgtgg	540
gcagatggag gttggcctgt ttttactctc tctgtgtttc tccttgtctt tttttattcc	600
ctctcatcct catcgcactc tgccatcaac ccaaactctc atctctcaga tcagcgagaa	660
ggttggtcgt tttcacttct tatccatcta cagttcgccc accgactgtg cccgtcagtt	720
gggaccagcg ggcttggteg geteceteag getegeteea geegegeetg eeegeeagtt	780
ggcctcttct cggtgtttgg gctggctggc aggcaggacc agggatgggt gggcaggcct	840
tetgeeetge atgtacetgt tgettgaeee tgattegetg tgtgtetgea tgteeeetta	900
gccaggctcc gctgttggag tggccacaca tgcacggtgc acggcataaa actgtaccct	960
acagaactgc actcagcttt gcacccagac caggctagcc ctctgtttca ggaatggtca	1020
tggggatete tgteagagaa actaaactae atgettggea tgtaggagtt cagggaaget	1080
totaccattt coccacccac cottatgttg totgoggaac taagagaagg cagaactgca	1140
ggaggcaata ggaggaggct aatttagagt gagttgtccc cttgagatct cacagtacgc	1200
gacacagtee tgeagtgtet gecetgeeet tgaggeeeee agageettae caatgeteea	1260
caaagcagac tggctgtact gagacttaag accagccttg gtctgcctct caaagaccct	1320
gatggccgta gtccaaggca ggtggcatca ttttcataca ctgagtaagt gtcccgacat	1380
tatatetttt etgteteeta eegggteeaa accaaggtea eeetgeetge eeagaeeaet	1440
ctaccegage ttecaageea geetetgtge eteteegagg gtacagtgta tgtggeteae	1500
tgaccagcta acagccctca gtcccatgct gggcagtggc actgagcgtt cagatccagt	1560
ttgcttatgc ctggagtgac tgaattgtca ctgcagtctc cttaggcctt gagtatcaat	1620
cagtccagct cagccttaga ttgggcaggg ctttttgaaa ctccctggat cctctcccag	1680
agetgteece tggageeagg cetetattte eeagtacagg accaacaagg ggetggtggt	1740
cctttatata tcgtgtggtg taaagggtta atcactgggc tttggggggt ccaaggaaga	1800
agcacagggc agaccccagc taccaggtgg cctctgcatc atgctctgtg gctttgagtt	1860
tactccggga ggacaaggga gccagtcagg aggagggctg cagcctgggc tcagatatca	1920
acataagcct ccatctgtat gcactcctga gctctggggc atttcggtta caccatttcg	1980

ctgaccaggc	ggatctgcca	gggcgttcag	aaaatagtca	tcagcagaca	gcccagcccg	2040
cagccactcc	ccccacaccc	cttcacctac	cctctgcatc	ctttgttctc	tccccaccca	2100
ccctgtggtc	ccaccaaaaa	tacacacata	cacaaatatt	taacgggaag	gagaaatgag	2160
tttctaaata	ttccgggggg	atttgccggg	ctggtaattt	gtttggtgct	gataattgca	2220
tcttacattt	ttctagcttt	acttaaaact	gtgtgccggg	tgtgccagca	tttaattact	2280
gctctgcggc	agccacaagg	ttatttatta	aagagttatt	ttatcttgat	acagtggatc	2340
ctgcccctta	tcccctcctt	aatgttgtgt	tattttcatc	agagaaattt	ccgcaagtga	2400
atgcagattg	cggggctacc	tccccctgcg	attaggctgt	cactccactg	aatgcggata	2460
cctccaggcg	ccgcaccacc	ctattatagg	gggttgtcag	cgcaaataat	tagacttaaa	2520
agttacagct	gaaatataat	ccagaaatgg	cagggccctg	ttttggaaat	tgtctataaa	2580
atgtcagcag	taaggatgca	cggggaacag	taatagaccg	gcattgttgg	agcctgagat	2640
tagaccctaa	gtgcattttc	cccagctcca	gtttttcctt	ccctgctgtt	gcttctgtca	2700
atagaccaag	tccagggaga	gtcctgttcc	ctttggaggc	cctgtgcttg	tggcggccgg	2760
gggaggacgg	tggagatgct	atgttggagc	atcagccact	tgcaactgtt	ggcacaggag	2820
tagctgtcta	ggctgggcta	ggacacaggg	cctctagcat	ttggggcact	ttgttgcctc	2880
tttccccatt	ttcagtagat	atgctggcct	acctgagctc	tagcagattg	acttccagga	2940
gtctttgcat	gtggctggac	cccagtgccc	ttctatagga	atgtagttat	cagtggaata	3000
cctggggcct	ctggctgagt	tcctttccca	gtgctgaggt	gaccctgacc	tcacacctgt	3060
ctgtagcccc	caaagttctc	cctatagctt	gcatcttgga	gggaaaataa	aagccattct	3120
tagccgggcg	tggtggcaca	cgcctttaat	cccagcactc	aggaggcaaa	ggcaggggga	3180
tttctgagtt	cgaggccagc	ctggtctaca	aagtgagtto	caggacagcc	agggctatac	3240
agagaaaccc	tgtctcgaaa	aaccaaaaaa	aaagaaaaag	ccattcttag	tgtcacttcc	3300
catgggggcc	cagtttcctg	acatcgacta	gagatggagg	ctttgaaagg	agcggcccag	3360
ggcattggcc	tggctccgaa	gctgatccct	gaggactctg	ctggcttgga	. aaacactgtc	3420
caccatggac	tatccagggg	tcaaagtttg	gacatgttta	ggtatgggcd	ccaggtattt	3480
tagccaaaga	cctacttcct	actgcataaa	. cccagtggcc	cctctttcat	: ttgggttcca	3540
ccattaacta	gagccaccat	taactagtgt	cactctcaaa	agtcttatct	gtatgccatc	3600

tggagetega cattatgeca aegetaaage eecatggeet teatgggett tegaagatag 3660 agtttttacc acacagacct gatcttcctg aggatataaa ggcagatgcg tcacttcctg 3720 tgtcagcatt gactctggcc ctcatctgca attgagacat ggtggcacag gcaccctctg 3780 3840 tacagagtac agagtggctt tccactaggc atgatgtgca tggctttaat cccagcactc agaaggcaga ggcaggtaga cctttgtgag ttcaaggcca ccctggtgta tacactaagc 3900 3933 ttcaggatag ccagggatat ataaaccctg tcc <210> 13 <211> 2272 <212> DNA <213> Mus musculus <400> 13 60 aaatagaagt tocaagtoca otgtgaggag ocagggatgg cactgttoca tgtaagtgtt 120 180 ataaaactat tgtagaactg tttaaatcca atttgaaatt tcaaatagcc acataaaaat 240 gtaaaagaag ataaagtcag aggtagagtg caagtttagc atttataata ctctgggttc 300 360 agatagatag atagatagat agatagatag atagatattc attccttttt agtaagttca 420 aatagtettt gaacatgtaa tecacataaa getaattaca aaataaatat attacatgga 480 tttttatatc atgtctttaa agttttatct gttgtgcata ttttaattca gatcagtcat 540 aagtagetge catattggae agtggageet tacaagaetg accetteeeg etgeetteea 600 aaacatgttc acatttagag gatggactct gccaacactg cctaagcccc ttcattttac 660 aggtgaagat gaccagatct agagatgctg ggttgcttag aatcccatag ccattcacat 720 cagaagcccc accettttgt ctgacttcaa ttgctttcat cattctttct ttccttagat 780 ttgtgttgct gcaactactc actgtgagac tgttgctgtt ggttaaatat tgagccagga 840 gtcttaaaaa catttggtcc actcagtaaa gccactgttt gatttggtgg aaactgtttt 900 gagcagagta ggtagaacta ccaggcacat tgacagttct ccatgagata gtaataggag 960

1020

gtgataatgg ggacaggggt gactttatgc ttgttggtgt tgctgtgggc attataggag

tatgtgactt caaattttga aatgctagct gcctgcttac aggaagggag atgagctgtt	1080
cccatgcaaa gtttattgtc tagttgtatg tataagccta cacatgatga atatcttaat	1140
gcttaactct ctctggaaat ggcagggtta agcttttata tttcatattt ttttcttgta	1200
ttaggaacgt gtgtgtgtgt gtgtgtgtg gtgtgtgt gtgtgtgtgt gtgtgtgtat	1260
gtgtgtgtgt gtgaatgtac tcctatttct cactcagtta tacttaaagt gtgatgattt	1320
ttgacaagtt aatcccagta cactcctggc atgtaaagta ttttcagaat gtaagcccat	1380
gtggaaattc gttggcttgg tatgacgggt tcgggcaggg gaggcatagt gtgatcccgt	1440
ggagtgttcg gagctgccaa gtatttgttc ttcggtgtga aagcgtgctt gacgggtgga	1500
ctttcctagc tggaaggtgc tttgttcatc cttcctaaaa catttatcag cacggatgtt	1560
gtagatcgtg taagagagtc coetttattc atgtgactta gttcagtgat ettagattta	1620
gagttaagtt tttgtgttcc agggttggga ctaattccca gccatggccc agctttaccc	1680
acaaaggaac taccgacctg taaggatatt catttgatgc gtttgctttt gttcctggtg	1740
ccagtcattg gattttgcct atagtgcttt atgtggctat acttagaagt tttatagctt	1800
gtagcaatca ggtgaaagta cagggatatg gctgagtact gtaacttgcg tctgtaatcc	1860
cagccagagg caggaggatc accagtccag ggcaatttga gctacagagg caaactgaaa	1920
aaggaaaaga aaaaaaaaaa gagatteett tattteettt ggeetteata cacaaatatt	1980
taaattotta atgtacggtt ttaagtcage cocctacete coccaecttg gtagtttgca	2040
tagtacacat tagcatttga aacaaaagtt ttgagctata agatgctcat gggagtcatt	2100
ctgaaatatg tttaaggtgg attgattcgg aaaggatgca aatccaagtt aggctggctg	2160
aggeeteece gettetttag agggtgatae ggaaggtttg aggaeecagt etgetteggt	2220
cggagtgtgg acagccagtg agggcagtgc agcaaaaccg tgtctcagaa tc	2272
<210> 14 <211> 1554 <212> DNA <213> Mus musculus	

<400> 14
atgtatgtac acacatatgt gtatatgtgt gtgtatgtgt gtatatatat gtacatatat 60
atgtgtgtgt atgtgtatat atgtatacat acacacacaa acacatatat atatatcaca 120
gaaagttatg gaccatttta aaatatcact atttgtcatt gatttagttt tacacaatac 180

tattctccag taacgtttct tctttttcca tttctttcat ttcttttctc tcttcttta 240 ctaaattggc acacttgttt acttctcagg ttttgcaaac atccttaata tgttggtatg 300 360 gcaaatgcat ttcaattcaa atagcaactg caagttgata tgcagaagaa cagaagtaat gtggtctgga attaatttgc tcaattgctt acaagcaata tgctatgtat gaaaagatta 420 480 ccaaattaca ggtattaaat tctaaatgat ttaacagttt attatgattt attctattta 540 acaacctagg gagtttgaag ccattggaaa ctccagtggc aagttcaggt gcagttggga 600 gttcaggaat ctcaatggag ctattagtgt agcagacttg tgggtaaaat atatgcatct ctcaatagca aatgtgaaag actctctaaa atggacctca gtgacttcat tctccacaag 660 ctqtcctqqc ccactcaqca tatcctttat tgttccatga tattaaggca tgtctgcttt 720 780 ttttttttt taataataaa tccatgacca cctgaaggtt ttaacttggt atgcacggca ttaaggettt cacagecace ataggtattt tetectecat ceattatgtt attataaact 840 attactttga tgccatagga actttcttag tttttcctac acattctggg acactggcag 900 aaataacttc ttccagatta tagttgcttt gtgcaacagg aaggagatca gtcaacaatg 960 gatttataaa ctctcagata acacagaaag ttacatctca tgtccaaaaa tgaccttatt 1020 acttggccct aatttagttt tgcatgaatt tttaaagcag gaatcataaa tggcccaagt 1080 gtcttaattc aaattcttac ctgactgtgg agaagaaatc attgtgattt ttgaacacac 1140 ataattatgg tttaaaaaca aactaacctg aatttgtttg aatatagttt ttcaactttc 1200 tetgatacta ataaactcat cagecagttg gaaattgett tecagaaaaa atteteattg 1260 cttatatgtt catatatttg tacatgtata aaagatttca aaaacttgga ataagtttag 1320 accattetta ataaggatat taatggatat ttaaagtgee tgtettttea gtgtttggaa 1380 atttatttag tgtttcttca gggcgtatca aatcaataaa atgtccatgt ctgtgatgac 1440 taggaagatg ttcttctatt ttctttctct tgctgcataa cctgtcttat tcagaactaa 1500 atttcaaatg tgaacagttt tagctgaacc actgaattaa aataattatg aact 1554

<210> 15

<211> 4007

<212> DNA

<213> Mus musculus

<400> 15 tgtgtgtgtg tgtgtacatg tgagttcagg ggcacatgga agccagaagg aggtgtgaga	60
agctccacat tggtcctctc caagagcagg agatgctgtt taccactaag ccatctctct	120
gtccccagga agtgacaatc ttcaggcagt ttgtctgcat tttatacttt ctatttaatt	180
ataatattaa aattttgaag cacacactga gaaatctaaa ggtggtttat tcctttccca	240
tttttttaaa gagagtcaaa taaaggttca tttcctcaga ggaggtcagg tgaaatacaa	300
gggettattg teacteaaga gattetteee aagaaaagte acattaagaa aggaaaggag	360
agagacatgt aggtcaaaac agagataatg aagtcaagca aagataaatg tgacttaaat	420
aggcatttaa tgtggctgaa tcatatttaa ccatgtgttc tggacatata cccaaagggt	480
gagteeggtg gtatateace ttaggtetaa ggggaggaag gageattetg attgagaagt	540
gttcatcact tttcttctgg gactaaggcc tttcccataa tgatggttta attcaatctc	600
gtcaattacc tettetcaga gagetgcagg ttgtgccace ttgctggaaa tggtcaaate	660
ccattaaact tetgttettt gtagcagagg gaaaaggaaa gatecagega tteaattaag	720
acataaatga ccaggtgtct gtggcacaga atcagctttt ctggtctgac caagaaaacc	780
caatttccat cttggctagg aagctatgtg agccctcact cacctttgct gttagcttcc	840
tggccatggt taaaggctca gactgcacag gaacacacaa gagttttctt tgtattcaca	900
gtggaagage ccccctcccc acggagttgg gtggagtggc cagaagacct tctccatccc	960
tgccctttgc tgctttgttt ccagaaagga gggggaggaa attaccaggg tatgagatgc	1020
tgcctcttgg gaacaaggaa attaatgcag cgacctgaat tatgtgcgtg acacatttgc	1080
atategetea etageagttt etgaagaaae aacaaatttt gtgtaattet aatetetttt	1140
gcaaagcaag ggaagaggaa aagctacctc cgatttactg tctacaaaga aagctgaatt	1200
ttaggatcaa atttgctcac atttagtggt aggctaaatg ttaaaacata agggtgcatc	1260
ttttaaatca ctctttgtgt gtggctgagt gtaaatgtca ggcatgtgta catgcatggg	1320
tgcatgtgtg catgggtacg tgtatgcatg catgcttgtg tacgtgtgtg cttgtgtgcg	1380
tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgt tgtgcacatg tatgcatgtg	1440
gaggacagag ttcaatgaca ggtctcattc tctatcatta tcaatgataa tttatagctt	1500
gaatatettg tateattata eetatgtete eeagateatt atatteattt gggagggtat	1560
ctagtataat ttactattat tatggtaatc atggaatttg ggggatggaa tgactgattc	1620

attgtcagtt	tataaccagg	ctgatgtaga	aaactcaaat	gaagaccaat	tatcaatgtc	1680
tttgtagtca	ataaaat t aa	tatctggaga	agtgagtccc	tctaaggaaa	atcttctagt	1740
cagagaaggc	ataggaaggg	agaatgctta	aagtttgtat	caacttctct	ttgtgaggtt	1800
taagcaattc	tcatgttgca	atcggccagt	atcactgtaa	tcctcgagat	ttctagaaga	1860
gcaaattggt	gaagcttgca	agccttttct	gaaataagga	aaattggcat	agtttagaaa	1920
aaaaaaatgt	tgggagattt	cttaacaatt	gctttttgct	gaacaaaagg	ctggtacttt	1980
ccttgatcaa	gttgcagaaa	tgctgtctgc	tctgtgagtt	ttgtagagag	aaaaattaca	2040
cattttataa	acctggcttg	gctgcttttc	tgttttgatt	ttgacttctg	attctgctct	2100
gattcgactt	agctaccaaa	gttgacagat	tattgaccca	cagtcacagc	ttataccttc	2160
tgtctctccc	tccgtcccta	gaagtctctg	tctcttcact	cctcctatca	cagtgttaat	2220
ggtgatatcc	agatgacttt	gacccaagca	gaggcacaca	gggtagagct	gacatcatta	2280
accattcact	tccttcccct	tcatttgagt	tttcttatca	gataaaggtt	gctagtgttg	2340
aagtcatagt	ttccaaagaa	acaaggcttg	gggatgctcc	aggtactaca	ttcagagctg	2400
ggggggctag	atttggaaca	tgccaagtat	tttgaggcca	gaagcacaca	tcttttctct	2460
tcgtgaagat	gctgtgctca	gcaagaataa	tgacaacaca	caagccatgg	actcagtagc	2520
actgaagtgt	ggttcgaagt	gggcttcatg	tattatttaa	ttgttagtct	gaccttcaga	2580
ctagaaccct	ggagctataa	caaggataat	gtatttaagt	aacccagctg	gtaagtggta	2640
aagcatggac	tgaccacaga	ttcctatctc	tcgggaccag	aagtttaatc	agagaggtaa	2700
atcgaatcaa	ccaaagaaaa	ttacgcttta	agttaaatta	agcattctaa	aattatctag	2760
taatctcatc	tetgettete	gacacatgtc	agatttgtat	tggtactctc	aaaattaatt	2820
taccatatgt	ttgtgtctct	tgtgctagac	tttggagcaa	ctgttagaga	tcaataaaca	2880
agctctgaca	catttcatac	tctcatgaag	ttctgccttg	gagaatctcc	ctagtttgag	2940
tttctcaggt	taaaattctt	ttcaagaatt	aattaaatta	cttcactgag	ttttagttcc	3000
tgtctctctg	cttgcagatt	catatgggga	cccatttcat	cattatattg	atttagattc	3060
ttgccattca	aaacgcttgg	catccattgt	cagccatact	acagaaacag	agatgcaccc	3120
ttgtatagtg	tgcagcgcac	attccctcaa	aatatttact	atgtagttct	ctatacgtta	3180
ggaaatctat	tcattcaaca	cagatgttga	. gcctcattta	atttactttc	tccactttac	3240

tgtattttc	ccagtatatt	tttgccccgt	ggtttttatg	ttagaagaag	ggccaacaga	3300
aagatagcag	tgagttgggt	aacaagtgtt	tctttttgca	aagtaaaaga	cgccgttgct	3360
gggaaagcag	taagcgtgaa	cagggaggac	tgtctaaatg	actgacgcag	ttggtgatga	3420
cgtcagcact	gggcactgac	ttaacagaac	tccactggga	cttgtctatc	ttctgtttgt	3480
ccagtttgca	gctaatccct	agcaatgtcc	tcagaccaca	ggagaagggc	taaattgctg	3540
attaaaattc	cttaagaaac	aaaataactt	caactgtatc	ttccttgatt	ttggttttta	3600
gttcctagac	actgtaaaat	gacacacaca	ggtgctgctt	acctgctgct	gtggcatcaa	3660
tattgataaa	gaaatgtact	gcaaagtgtt	tcatccatac	ccagagcagg	tgctagagca	3720
attcattgta	tatcatataa	gattagagtc	ttaatccttt	tttttttcag	atatacgtgc	3780
atacacacac	agatacagac	acacacagag	aaagacacac	agacagagtg	gcgcgcacac	3840
acaaacaaat	gctgtgctat	ttgtatgtat	aaccaacctg	ggtagtatct	gtgtactgtg	3900
aaccctctgt	ggttgtggtt	tagccatcag	agacgagcca	tcagagccca	gcctgatgtt	3960
agagcccagc	tcctgtattt	ctcggctgag	cagttctttt	tccagct		4007

<210> 16

<211> 2755

<212> DNA

<213> Mus musculus

<400> 16 60 taggggactt tcaggatagc atttgaaatg taaatgaaga aaatatctaa taaaaaattg 120 aaaaaaaaag totgtttoca tacccaaaag atattcaaat atotgatata aagtototaa 180 ggagagtaaa tagagcctct tatcaaaatc tagcatttgc cattcacttg agtaagatat 240 gcaagatgaa gttttaccag acctttgtgt gacagaactt ttcctgggga tacacaatac 300 acatatetae teacecagae agggaateea tgaetgaeca cagtacagat accacegaag 360 tccaacttgg taatccaacg aattttatta cgattactta cgggcgtatg gatgaggagt 420 tacttaaagt agcagaaacg actgagaaga ctgtgtcacc aaagcccacc acagcatagg 480 540 ggatgactta caaagctggg aaccaggagc acactacaca gtctgcaggc agctcaacca

600

gttggggatt gtccttgcca ggtgcctcag ttggtctaaa ccttttccag gcagttggtc

tgggctcagt	cttctctgca	gcttggtttc	tctgagagtt	gacacagctc	aacttccttc	660
tgtctgagag	agactttcag	ctttttacaa	ttcaaatgtt	atcccctttc	ctagtttccc	720
ctctgaaaat	cccctgtcct	ctcctccctc	tegetgetee	ccaacccacc	cactcctgct	780
tcctggcctt	ggcattcccc	tataccaggg	catagaaatg	tcacaggatc	aagggcttct	840
cctctcaatg	atgacctact	aggccatcct	ctgctacata	tgcaattaga	gccttgagtc	900
cctccatgtg	atttctttga	ttggtggttt	agtcccaggg	aactctgggg	ttgctggtta	960
gttcatattg	ttgttcctcc	tagggggcta	cagacccctt	cagctccttc	attggggacc	1020
ctgtgctcca	tctaatggat	gactgtgagc	atccacttct	gtgttcatca	ggcgctggca	1080
gagcctctca	agagacagtt	atatcaggct	cctgtcagca	agctcttgtt	ggcatctgca	1140
atagtgtctg	ggtttggtgg	ttgtttatgg	gatggatcct	cagaagggac	agtttttgga	1200
tggccattac	tttagtttct	gctccaaatg	ttgtctctaa	taactcaggt	attttgttct	1260
cctttctaag	aaggatcaaa	gtatccacac	tttggtcttc	cttcttcttg	agtttcatgt	1320
gttttacaaa	ttgtatcttg	ggtattctga	gattctcggc	taatatccac	ttatcagtga	1380
gtgtatatca	tgtgtgttct	tttgtgattg	ggttacctca	ctcaagatga	tatcctccag	1440
atccatccat	ttgtctaaga	atttcatgaa	ttcattgttt	ttaatagctg	agtagtactc	1500
cattgtgtaa	atgtaccacg	ttttctttac	ccattcctct	gttgagggac	atctgggttc	1560
tttccagctt	ctggctatta	taaataaggc	tgctatgagc	atagtggagc	atgtgtcctt	1620
cttaccggtt	ggaacatctt	ctggatatat	gcccaggaga	ggtattgcag	gatectetgg	1680
tggtactata	tccaattttc	tgaggaacca	cctgactgat	ttccagagtg	gttgtacaag	1740
cttgcaatcc	catcagcaat	ggaggagtgt	tcctctttct	ctacatcctc	accagcatct	1800
gctgtcgcct	gagttttta	tcttagccat	tctgacttgt	gtgagatgga	atctcagggt	1860
tgttttgatt	tgcatttccc	tgatgattaa	ggatgttgaa	ctttttttt	tttttttagg	1920
tgcttctcag	ccatttggta	tttctcagtt	gagaattctt	tgtttagctc	ttaccccact	1980
tttaaatagg	gttatttggt	tttctggagt	ccaacttctt	gagttctctc	tctatatatt	2040
ggatattagc	ccccttttgg	atttaggatt	ggtaatgato	ttttcccaat	ctgttggttg	2100
ccattttgtc	ttattgacag	tgtcctttgc	cttatagaag	ctttgtaatt	ttatggcatc	2160
ccatttgttg	attettgate	: ttacagcaca	agccattgct	gttctgttca	ggaattttc	2220

tcctgtgtcc	atatctttga	ggctcttcct	cactttctcc	tctgtaagtt	tcggtgtcgc	2280
cagcactgct	tttgcttact	ctgtcaggga	cgggttgaat	caatctggtc	cgtttcagag	2340
agtttctgat	gctgttttaa	tatggacaaa	actgttacat	aaaacacttt	tagtcaaacc	2400
ttcacatgtg	ataccaacca	gggtcacatt	tgttaacctc	cagagagatg	aacaaagtac	2460
actcagaaaa	ccctcttcag	attcccaacc	taattactct	caaacagaaa	tactactttt	2520
gtttttgttt	ttcagataga	gtgtctctat	aaagccctgg	ttatcctaga	aatggcttat	2580
gtagaccaga	ttggccttga	atccatcaag	atccacctac	ctctgctttc	tgagtgctgg	2640
attaaaggca	tgtaccacca	tgccaggtta	aaaaaaacca	cacatacaaa	aataatacaa	2700
aactaatcaa	ccaaacaacc	aaccaaaaaa	caaacaaaca	aacaaacccc	aaacc	2755

<210> 17

<211> 1811

<212> DNA

<213> Mus musculus

<400> 17

ttttacatgt acctagagaa agaaaacaaa aaacaaaaa aaccaaaggc tcattacatg 60 ttgagtgtct gactgaaagt gtagccctgg gactccatgt gtaacagtag caatgggatt 120 gcagcaaata agatgggaga agacactcag gtatggctgc attgaggaaa ctaatcatat 180 ccagcatttc tggtgttgaa ttaaactgac atggtgaaag tcaagctttg gttttgtaaa 240 tgccagagaa aaaacagaga acattgcaca gtaaacctga gtttaaatgg cctcagtgtt 300 tgaggcaagc tttgaagcta gggtgtcaat atctgtgttt tctgtaacta atctgaagag 360 ccctcgagag tactgtgtct gtgaggcctg aagttcagat ttctctccag agttcttttg 420 480 attgttctta tgtacccagg agaagtcatt gtgattctta gaatggatca tttgagtgat tactgctcct ctggtggctg acaaacaaca tggtcccaaa agaatttcag gggtaagacc 540 tttcggtctt agaacatcca catgtggcag ggcacattgg ccctttctta cccagaactc 600 ttttgtgtgg ctgcatctct ttctccagtt ctctcttaac tggagcatgc ctattctttg 660 toottttgtc tttagtatct ttgttgttgt tagatgccat ctgaagttac actcacaagt 720 ttaagcaaat gctgccttct tgtcagcctt gtgattctgt gtgcatttca tgcaagggaa 780 cctgtatgtt tgctctctgc attcttacat ttcatattgt ctcttcttcc accacatggt 840 aaatgttatg agtacacatt tgtcttcatc aacgaaaatg catgtgaaaa cctctctgtc 900

cttcttgcat ct	tagctttg	ttttgttctc	acatttttac	tgatattcca	caagaaagat	960
ttgccatatc ca	atttaggaa	acattgagcg	atagatagtt	ctcctagaaa	ttctcaaaga	1020
catgttattt ac	ccatatcaa	actctcagga	atgtattgga	aaattatcct	agtaacattg	1080
ctgttactta ta	acctgctgc	tggaggaaaa	aagtttattc	atgacacatt	tacctttgat	1140
cataaataaa ag	gagaaaggg	ccaccttttt	ggagttagtc	atggtagtca	ttagtgatat	1200
ttttgaaccg tt	tttaattt	gaaatacttc	aaaggaagta	aaggtcatgg	cttagctcaa	1260
aaaaatgctc ca	agaagttgg	gctgcttaaa	tcatcagtac	aataatatac	tgtgtgtgcg	1320
tgcatgcgtg to	gtgtgtgtg	tgtgtgtgca	tgcgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	1380
tgtgtgtgtg ta	atgaaatga	gaattgccac	ataattggag	catttgcatt	catccgcaaa	1440
tcatgttgag ac	caaactgta	gctggccgtc	ttgattaaag	ccaagtggtc	cctgtggctg	1500
tgaggaagag t	ttttcttgc	aaaaactttg	gcaagtgatg	acttcgaaac	ttacaaaggc	1560
tattgccttt t	ttttttta	acaccagtag	tgaccttcag	ttccttcagt	ctgagtttaa	1620
gggtagaatt c	taaatttgt	attctaatct	gtcttttgtg	gaaaattttg	aaaatagtat	1680
gtatatgtaa ta	attgtatat	gcaaattgtg	ttgttttact	tgttttgcat	atgaccagca	1740
ctgactgaaa g	gcatgttta	actataaaca	ctgttgcttt	ctttgtgaaa	tgaaaataaa	1800
agtatttaaa t						1811

<210> 18 <211> 2438

<212> DNA

<213> Mus musculus

<400> 18

gcaccgtttg gtgtgtgt gtgtgtgtat gtgtgtgtac atgcgcgcat gtgcatttgt 60 gtgtgtgtgt gtatgtgt gtatttgtgc ttacacatgt gcacgtgaaa gtatgtgtat 120 atatgaatgt aagtgtgcat gtgtatgtgt gtgcatgtgt gtaagtatgt gtgttaattg 180 tgttttttgt gagcaagtaa ataaataaat agttctttct taaagcagca aaagaaaagc 240 agcaagtcat gtaaaaataa gtcccatcag aataacagca gatttatcag tagttatctt 300 acagacaagc ggaggatggc attatatact caaagctgta aaaaataatt tttcaatcaa 360 aatataccta gaaaagctat cccccaagga tgaaaagagaa gtgaaaactt tcctaaagaa 420

						400
aacaaaact	caagacattt	gtcagcattt	tatcagctct	acaagagatg	cccaagggag	480
cagtttatag	aaattgaagg	atgactacca	atatacaaat	gcacaaaact	acaaaaaat	540
gtgcaaaata	gtgctaaaat	atgcaggtga	atgaggaatc	taactctatt	tgtacaaaga	600
aatcaccaag	gcacaaaatg	aacaagaaag	gtgggaacaa	aaaaaggata	cacaaaacca	660
gaaaaaaatg	acagtactga	ctattcattg	ttaataatgt	taaatattgc	actggcagtt	720
cttctctttt	ttttttattt	tattagatag	tttctccaat	tacatttcaa	atgttatccc	780
ctttcctggt	ttcccctctg	aaaatccctt	tcccttaact	ccttccctct	cccctgctc	840
accaacccac	ccactccaac	ttcctgtccc	tagcattccc	ctacactgga	gcatggagcc	900
ttcacaggat	gaagggcctc	tcctcccatt	gataaccaac	taggccatcc	tctgctgcat	960
atgtagctgg	agccatgagc	cccaccatgt	gtattctttg	gttgttggtt	tagtccctgg	1020
gagctctgtg	gatagtgctt	agttcatatt	gttgttcctc	ctatggagct	gtaaacccct	1080
tcaactcctt	tggtcctttc	tccagctcct	tcaatgggga	ccctgtactc	agtccaatgg	1140
atggctgtga	acatccactt	ctgtatttgt	caggcactgg	caaagcctct	caggggaaag	1200
ctatatcagg	ctcctgccag	caagcacttg	ttggcagcta	caatagtgtc	tgggtttgga	1260
tggatcccca	ggtggcacag	tetetggatg	gtcattcttt	cagtctctgc	tccccatttt	1320
gtctctgtaa	ctccttccat	gggtattttg	ttcccacttc	: taggaaggat	cgaagtatcc	1380
acactttggt	cttccttcct	cttgagtttc	atgtggtttg	, tgaatt gta t	cttgggtatt	1440
tcgagcttct	ggctagtato	cacttatcag	taagtgtgta	tcatgtgtgt	tcttttgtga	1500
ttgggttacc	tcactcagga	tgatatcctc	cagatcaatc	catttgccta	ggaatttcat	1560
aaattcattg	tttttaataa	ı ctaagtggta	. ctccattgtg	g taaatgtaco	atatttttt	1620
tttatccatt	cctctattga	ggggcatctg	ggttctttc	agcttctggc	: tattataaat	1680
aaggctgcta	. taaacatagt	ggagcatgtg	tccttattac	ctgttggaga	atcttttgga	1740
tatatgccca	ggaatggtat	ggctgggtcc	: tcaggtagta	a ctatgtccaa	tcttctgagg	1800
aaccgccaga	ctgatttcca	a aagtggttgt	accagettg	c aaccccacca	gcaatggagg	1860
agtgttcctc	tttctccaca	a teeteaceag	g catctgctg	t cattggagtt	ttttatctta	1920
gccattctga	ctggtgtga	g gtggaatcto	agggttgtt	t tgatttgcat	ttccctggtg	1980
actaaggatg	g ttaaacact	t tttaggtgct	tctcagtca	t tcagtattc	c ttagttgaga	2040

gttctttgtt	tagctctgta	ccccatttt	ttaatatggt	tttttgtttt	tctggagtct	2100
aacttcttga	ggtctttgta	tatattggat	attagccctc	tattggattt	aggattggta	2160
aagagatatg	agcacagggg	gaaaattcct	gaccagagca	ccaatggctt	gtgctgtaag	2220
atcaagaatt	gacaaatggg	acctcataaa	attgcaaacc	ttctgtaagg	caaaggacac	2280
tgtcaataat	accaaaaggc	agttcttatt	tctttttctg	gtttttttt	gaggcagcag	2340
agggagaaga	gtgtcagcga	gggtaatttt	tggtcttagg	agatatttag	ggttgctgta	2400
taaagcatct	tcttgtatta	agtctaagtc	gatttagc			2438

<210> 19

<211> 1712

<212> DNA

<213> Mus musculus -

<400> 19

ggcagacggg agtttctcct cgggacggag caggaggcac gcggagtgag gccacgcatg 60 agccgaaget aaccccccac cccagccgca aagagtetac atgtetaggg tetagacatg 120 ttcagctttg tggacctccg gctcctgctc ctcttagggg ccactgccct cctgacgcat 180 ggccaagaag acatccctga agtcagctgc atacacaatg gcctaagggt ccccaatggt 240 gagacgtgga aacccgaggt atgcttgatc tgtatctgcc acaatggcac ggctgtgtgc 300 gatgacgtgc aatgcaatga agaactggac tgtcccaacc cccaaagacg ggagggcgag 360 tgctgtgctt tctgcccgga agaatacgta tcaccaaact cagaagatgt aggagtcgag 420 ggacccaagg gagaccctgg cccccaaggc ccaaggggac ccgttggccc ccctggtgaa 480 cctggcgagc ctggcggttc aggtccaatg ggtccccgag gtccccctgg ccctcctggc 540 aagaatggag atgatgggga agctgggcaa gcccggccgt cctggtcccc ctgggccccc 600 cggacccct ggccttggag gaaactttgc ttcccagatg tcctatggct atgatgaaaa 660 atcagctgga gtttccgtgc ctggccccat gggtccttct ggtcctcgtg gtctccctgg 720 ccccctggt gcacctggtc cacaaggttt ccaaggcccc cctggtgaac caggaacacc 780 aggaggagga ggagaagaaa taatgagtga ttgtgtctcc gtttatggaa agagtttgat 840 ggggtactaa tgttggtaaa tataatattc aaacatgaaa ttctaataaa ataagtgaaa 900 gatatcagaa agcettcaaa atcetgcaaa cacaatatac agaatatata ttaaatttaa 960 ttgacaacta taccttctta gatctattgt tcatttgata attattcaa attttttctt 1020

ctccatttaa	tagtatggct	cttaagagac	ctgcagtgta	tgttaagact	atttggattt	1080
gtgctttcat	aaggcttaaa	atgtttatgt	atttttttt	aattttctat	ttgtatcttt	1140
gtatagcatc	tttgaagaaa	tgtgtactca	aagaattact	catgtagaat	ctcactgtgc	1200
tgccatctgg	gacatcaagt	tcatttgtga	acccatgctt	cctctcagca	tcataagaag	1260
atcactacag	aagctgatca	ccacacttaa	ctagtggtat	tgtaaaatct	cttcattaat	1320
gactttcatt	tttgcttggc	ttgtgtataa	aattgaattg	aaagtttata	ttatctcatt	1380
tgctaacagg	tttgcttaaa	accctcttag	aaataacatt	tttattactt	gtcatgtttt	1440
tttttattta	cagcaagata	tttaaacact	gaatatattt	tgtagtattt	aatttttcat	1500
tatttaaaac	aatgtttaaa	tcaaatattc	aattatatta	tgccattcct	ccaagttctt	1560
catattgtct	cccattttct	acccaacttt	aagttctttg	tcaataaaga	tacaaaaatc	1620
caattgaaaa	caaacccctc	aaaatcagga	aaacacattc	aaaacaaaca	atcagaaaac	1680
cccaaacaaa	caataaagaa	aacaacaaaa	at			1712

<210> 20

<211> 3651

<212> DNA

<213> Mus musculus

<400> 20 aaaagactgg ctagttgaga atgcaccagg ggatgaggtt ccagttggcc attctttaac 60 aggttttgcc actgcctttg actttttata taatctatta ggtaatcagc gtaaacaaaa 120 atacctagaa aaaatttgga ttgttactga ggaaatgtat gaatattcca agattcgatc 180 atggggcaaa caacttcttc ataaccatca agctacaaat atgatagctt tactcatagg 240 ggccttggtt actggagtag ataaaggatc taaagcaaac atatggaaac aagttgttgt 300 360 tgatgtgatg gaaaagacta tgtttctctt gaagcatatt gtagatggct cattggatga aggtgtggcc tatggaagct atacctcaaa atcagttaca cagtatgttt ttttggcaca 420 acgccatttt aacatcaaca actttgataa taactggcta aaaatgcatt tttggtttta 480 ttatgctaca cttttgccag gctatcaaag aactgtaggc atagcagatt ccaattataa 540 ttggttttat ggtccagaga gccagctagt tttcttggat aagttcattt tacagaatgg 600 agctggaaat tggttagctc agcaaattag aaagcatcga cctaaggatg gaccaatggt 660

tccttccact	gctcagcggt	ggagtactct	tcatactgaa	tacatctggt	atgatccaac	720
actcacccca	cagcctcctg	ttgattttgg	cactgcaaaa	atgcacacat	ttcctaactg	780
gggtgtcgtg	acttatgggg	gtgggctgcc	aaacacccag	accaatacct	ttgtgtcttt	840
taaatctggg	aaactgggag	gacgagctgt	gtatgacata	gttcactttc	agccatattc	900
ctggattgat	ggatggagaa	gctttaaccc	aggacatgaa	catccagatc	aaaattcatt	960
tactttcgct	cctaatgggc	aggtattcgt	ttctgaggct	ctttatggac	caaaattgag	1020
gccaccttaa	caacgtattg	gtgtttgccc	catcaccatc	aagtcaatgt	aatcagccct	1080
gggaaggtca	actgggagaa	tgtgcacagt	ggctcaagtg	gactggggaa	gaggttggtg	1140
atgcagctgg	ggaagttatt	actgctgctc	aacatggtga	taggatgttt	gtgagtgggg	1200
aagcagtgtc	tgcttattct	tctgccatga	gactgaaaag	tgtctatcgt	gctttacttc	1260
ttttaaattc	acaaactctg	cttgttgtcg	atcatattga	aaggcaagaa	acttccccaa	1320
taaattctgt	cagtgccttc	tttcataatt	tggatattga	ttttaaatac	atcccataca	1380
agtttatgaa	tagatataat	ggtgccatga	tggatgtgtg	ggatgcacac	tataaaatgt	1440
tttggtttga	tcaccatggc	aacagtcctg	tggctaatat	acaggaagca	gaacaggctg	1500
ctgaatttaa	gaaacggtgg	acacagtttg	ttaatgttac	atttcatatg	gaatccacaa	1560
tcacaagaat	tgcttatgta	tttatgggd	catatgtcaa	. tgtttccagc	tgcagattta	1620
ttgatagttc	cagttgtgga	cttcagattt	ctttacatgt	: caacagtact	gaacatagtg	1680
tgtctgttgt	aactgactat	: caaaacctta	aaagcagatt	cagttacctg	ggatttggtg	1740
gttttgccag	tgtggctaat	: caaggacaga	taaccagatt	: tggtttgggt	actcaagaaa	1800
tagtaaaccc	: tgtaagacat	gataaagtta	atttcccctt	: tgggtttaaa	ı tttaatatag	1860
cagttggatt	: cattttgtgt	attagtttgg	ttattttaac	ttttcaatgg	g cggttttacc	1920
tttcctttag	aaagctaatg	g cgctgtgtat	: taatacttgt	tattgccttg	g tggtttattg	1980
agcttctgga	tgtatggagt	acatgcacto	agcccatcto	g tgcaaaatgg	g acaaggagct	2040
gaagctaagg	g caaatgagaa	a ggtcatgatt	tctgaaggg	atcatgtgga	a tcttcctaat	2100
gttattatta	a cctcactcc	c tggttcagga	a gctgaaatto	c tcaaacagct	ttttttcaac	2160
agcagtgatt	ttctctaca	t cagaattcct	acageetae	a tggatatcc	c tgaaactgaa	2220
tttgaaattg	g actcatttg	t agatgettgt	t gagtggaaa	g tatcagata	ccgcagtggg	2280

cactttcatc	ttcttcgagg	gtggctgcag	tctttggtcc	aggatacaaa	acttcacttg	2340
caaaacatcc	atctacatga	aaccagtagg	agtaaactgg	cccaatattt	tacaactaat	2400
aaggacaaaa	agcgaaaatt	aaaaagaagg	gagtctttgc	aagttcaaag	aagtagaata	2460
aaaggaccat	ttgatagaga	tgctgaatat	attagggctt	taagaagaca	ccttgtttat	2520
tacccaagtg	cacgtcctgt	gctcagctta	agtagtggta	gctggacatt	gaagcttcat	2580
ttttttcagg	aagttttagg	aacttcaatg	cgggcattgt	acatagtaag	agaccctcga	2640
gcttggatct	attcagtgct	atatggtagt	aaaccaagtc	tttattcttt	gaagaatgta	2700
ccagagcact	tagcaaaatt	gtttaaaata	gaggaaggta	aaagcaaatg	taattcgaat	2760
tctggctatg	cttttgagta	tgaatcactg	aagaaagaat	tagaaatatc	ccaatcaaat	2820
gctatctcct	tattatctca	tttgtgggta	gcaaacactg	cagcagcctt	gagaataaat	2880
acagatttgc	tgcctaccaa	ttaccatctg	gtcaagtttg	aagatattgt	tcattttcct	2940
cagaagacta	ctgaaaggat	ttttgctttc	cttggcattc	ctttgtctcc	tgctagttta	3000
aaccaaatgc	tatttgccac	ttccacaaac	cttttttatc	ttccatatga	gggggaaata	3060
tcaccatcta	atactaatat	ttggaaaaca	aacttgccta	gagatgaaat	taaactaatt	3120
gaaaacattt	gctggacact	gatggatcat	ctaggatatc	caaagtttat	ggactaaatg	3180
ctgcaggtcg	gcaaaatttg	cactaatgtg	tcccaaccta	ctttgtggat	atgaactaga	3240
aaactttgtt	tattcttgta	catgtatgta	tgtgtgtaga	gtgagtgcgt	gtgtccagta	3300
tgttatttgc	acagagatat	tttcaaaata	ggcaccatat	ttggcctagc	aggatttatt	3360
tttatgttac	cacttttctt	gcctttgttt	ctgaatttt	ttctgctaaa	atgtttctgc	3420
tacagaggta	tatattctgg	ggttctgaaa	tatggggttt	taatggactt	taactcaact	3480
totttggaaa	ctatttatct	atcttaggac	ctcaaacact	acaaacggcc	ttgcaattgc	3540
tgctgtatct	agtcatctct	cgcctcttaa	tatggactac	aaaactttat	gttttgaaaa	3600
cgtctaacat	ttaccttgca	cacaaaaacg	agaaataaaa	aaacaaaaat	. c	3651

<210> 21

<211> 2205

<212> DNA

<213> Mus musculus

<400> 21

acatcctctt aaataatctt accaaggaat aatcaggaac agtcacgctt ctgtgtccct 60

ttctgttttg	ctaaagctaa	gcttatgtac	caagttagaa	catcaatgac	attaaatgtg	120
gagacctttg	ctactttttg	ttagagggca	tccctatatt	tgcttgcttt	tattttaaac	180
cgtggaaatc	tgaatccaga	tagaaacaaa	attagggttt	tttccatacc	acatgctagc	240
atttgcactg	attttcatag	gaaaaaaaac	ttcaaacaga	acaaaataaa	aacatgtagc	300
ctatagccat	tcctatttaa	aatgattggt	ttccttggct	aggtaaaatt	ctgcatgatt	360
aaattgccaa	taattctgac	atttgggttt	ttgcatagat	tttccaaaat	ttaggtccta	420
agttgttatg	gtaacttttt	tttaaagaaa	gtttaatttt	aaattacaga	tggattttgc	480
tgggcattag	caatttgtgt	ttatttagaa	aatagagtgc	tcttattttt	gtaaatgtct	540
cacggaaata	actaaatttg	tttataaatt	gagactacta	aagcacaatc	gttgaagcca	600
tagagaacat	cttgaaatac	agttttaagt	ggagaatttt	aggaaactta	cataatatca	660
taactcaaat	atatttaaat	tgcaattctc	tcagccttta	tactcatgtg	ctgtatacac	720
agttactcta	aacaatgtaa	gagacatata	cagtagcccc	tagagttatg	aatttttaag	780
tcaattaatt	tccatgaaga	aaattgagaa	tggctgttta	tgtctgtata	tggtgtgatc	840
ctctagttgg	tgcatgcatg	tgtgcatgca	tgtgtgtatg	tgtgcatgta	cacgtgcgtg	900
tgtatgtttg	tgtgtgtgtg	tgtgttgagt	tttctcccaa	tccttgtaat	ataggaaatg	960
aacacttatc	caaatgttga	gagttcattc	acaccgcatc	: tgagttacta	ggteetggga	1020
cagtggatat	aggtatttt	ctcttttgtg	gccaatttat	: ttaaatataa	aacaatggtg	1080
ttagtcttag	taggagttta	. gagtgacaaa	gacttaaaat	: ttcctttgag	agtggtattg	1140
ctcatgccta	gcatctttgt	gtatgtgcag	aaaaggagag	tagtgttagg	ggetgetgag	1200
actatgggga	gaaatgatga	ı tacattgaag	agctaggtct	agggagaga	atcaaaatac	1260
tcttgaaaga	taggaaaaca	ı ttgacatagg	gctacctcat	: atttttttt	tttatttgca	1320
tgaaataaaa	ctagaattat	aaaattcaca	. ttctcaattg	g ggatattata	tttgttaatc	1380
cataaaacta	tttacattgt	atgtggcaag	ttgtagtcat	ttttaagagt	tagactctta	1440
ttgcttccaa	ccaagaaaaa	a taaatgaatt	: cagtctagaa	a ttggcaagag	g taatgaagta	1500
ataattgtaa	aaattgttgg	g agtatgtctt	: cctgagaato	c atagteteet	gtatagettg	1560
actggccttg	aagaacagto	g gtgacaacag	g agcctgatgt	t ctgttgcac	tttgagtctg	1620
tcattattt	atagacaaga	a tctgaagcto	tgataaccct	t ggctaaaaa	atttttaaga	1680

aaagaaagtt actttaatat tatatattat tgttttactc atcaatagtt attgcttatg 1740 gttatattta ttcaatggaa aacactgtat ttgtattgga tacaaacatg gatttgatat 1800 ccttttcttt aaatatatta aatgaaatta aaaaacatat ggggctttcc ttggggttga 1860 tttttcttcc cctataaaat gagtttctgt ggttcagaga caacctgaca gatcaactaa 1920 aatatgaaac tgtgagtctg tgatctgaca gatcaactaa aatatgaaac tgtgagtctg 1980 tgatgcttag ggcttcttgc acctaaagta ggaattatta gaaccagttc tttgttcaat 2040 2100 gcatgctatg gtttgactaa tgtcgaatgg ttgctgtgca tcagaaaagg aagatattat tgagcttctc tcagtttgaa gaaggcaagt gaagtaccaa gcaggtatta gcagagttat 2160 2205 ttaaagctgc agactttaca ttagggaaca cactcagata aaact

<210> 22

<211> 4059

<212> DNA

<400> 22

<213> Mus musculus

aaatatatat ggaagtgatt ttcttaaacc cttaaaagac caatcaaatg tggtgttact 60 aattottatg taacagatta actocaactg ctagaaggta acatgaaaaa tgcccagctt 120 180 gattggcatg tctgttgtat ttcttgacag cttgaaatga tgtgtgttga gaaatgaatc tttccaggat ggtgctttca tttagtgcag tctactctag ctggttgctc tgaattttag 240 teccagacea aagetggtag geaacettat aetttgecae tatggeaace eegeattget 300 ggtgttacct gctgggtaag cactaaagag agagccgtca ggccgctctg cccattccat 360 ccctaactgt gcttcttcac cctgcctcct gtgctttctc tgatcaacca tcgacacccc 420 cttccttctg ctctgccggt gaccacagaa gtctggaaag caagtgatga ccatgagcat 480 atagtgaaac agcctcacag gcaggttatg tttcgttctt ctgaactcag tccactaaca 540 cacaccatgg ctttaggtat ggaagaacat gtctaacaac tccctggacc agggtgtttt 600 gctactgcag tagcagtata actaaatgaa tgactaaaat gcccagcttg atttaactgc 660 720 accaataagc tctcaccttt tccacttggt agtctaaagc ttagcttgat ccccatatgt 780

840

aatttcttcc ttcttgtctc aagaagtctt taatctattt ctatcattct ttaaatcctg

actagtctga	gttatttctg	tctttacaaa	gtttcactac	ttgttgctta	aaggataaaa	900
atctctgctc	atcagcatag	cagcaataat	tcctcatgcc	tggccttttg	atttctttgt	960
cccatgatga	tcttcagcca	gttccagatg	gtcatctcct	ctctgtagaa	ggaacccaca	1020
tgttcaaggt	cctactcaga	aaaggctctt	cagttgccaa	gatgcactgg	atcctacaca	1080
ttatagttat	tcctgtgtct	ttgttcatcc	attaatgtgg	tgcttataat	agtgggtatt	1140
agtatggtca	tcatcattga	cttcctagct	gtccaagtcg	caagaagaga	ttgtctgcat	1200
gagtttgtat	ttcctgagtt	gttccaaact	ttttggaata	cattttttct	taaacacaaa	1260
tagtctcatc	cttccacaaa	ggctctgagc	tctactcata	gtttgtctct	taaccccaag	1320
ctctctgggt	tggtcaagca	gtcacatgtg	ccatcctact	agccatggaa	tgaatgactt	1380
tgatatcaac	tcaaaaatct	atgaccagtg	aaagccaaag	acacttggtt	aggagactct	1440
gatttaacct	ttcagggaaa	ctgaatgtaa	gaaagaaaga	ctatgaccca	gctccggtat	1500
ctagtgaacg	gagagacaga	aaagctgccc	ttggttcttg	tgggtccccg	gaatgcaccc	1560
cagtagcctt	ctgctggacc	cttttgtatg	taggtcaaag	gattggcttg	gttctttgca	1620
acagcaagga	ttctaacgtc	tgtaggtatt	ttcctttgag	gcttgagatc	tattgggtgt	1680
agaagctcag	tccacaccct	gttcaaaatg	gtgtaagact	tctaaattcc	cttgagtcaa	1740
ggcagaactg	tggccttaca	agaataaagc	ctatcttcgg	tgcctaccta	atatccctaa	1800
ctaggctctt	tgaccttggc	cctttgtcct	ataactccct	cacttagaat	getttetett	1860
ctcttcttac	ctaactacaa	cttgtacctc	agaacctacc	tcaggtgacg	catcatcagg	1920
aagaccgctc	ctcataccct	aagtcagccc	atgtcacacc	actgtcctac	ttgtctttgt	1980
tetetgetae	atggtaactc	ctcaagggcc	aaaaatggto	tcattttagc	tttgcacttc	2040
tagagccaaa	cagtccttgc	cccattacag	gcttgctaaa	. tgtttataag	tgaatggatg	2100
gggccatcta	actcagtagt	cattttcctc	: ttgatggcga	cactgttcag	agtgacatct	2160
tgtccagcat	: catgtagcca	tttaccttt	agtttactaa	. agagaaagtt	ttaaagggaa	2220
taatatcttt	: agaggagaaa	attaatgctt	: tatttttca	tttaagtgaa	tacatatata	2280
gtaaaactga	ı acatatgtaa	agtagaatto	: tctttaagtg	taccgtttgg	g tataaatgga	2340
tgtacccatg	tcacctcttt	: taataattga	ggtagccgaa	tgttcccctc	acctaagaca	2400
gtagatccct	atatgccctt	cctattcagt	ctcctgcaca	ctcacagate	gggactccaa	2460

accgtcacag	aactgtggct	agccctaaag	actagccttt	cttctctaga	ggttcaactc	2520
tatactcttg	tgtctggctt	gctctacttg	gcataatgtg	ctgggattca	tactgtggca	2580
ttggtagttc	actgtcgatt	gtggctgaat	acatatcttc	atagaggcat	gcatcttcct	2640
tcccctgagg	caaatgccaa	gtataaccga	tactgtgagt	catatatccg	tacttgttta	2700
ccttcctaag	aagtcttcag	gttcttgtgt	gaagtgattc	caccatttac	actcccacca	2760
acagtggagg	agttgcagtg	gttccccgtc	ctggttgtca	atgtattaat	taagttaata	2820
ggtgggcatg	ttttatttt	tctgttattt	ccccgttag	atagaacagc	accttattat	2880
gcttggtggc	tgtttataca	taagttatta	ttttatagtc	tactctttgg	tccatttaaa	2940
tcagttacct	tcttattaca	ttttaagact	tatttattgt	ggatatagca	tagaaatccc	3000
attatgcatt	ataccttatt	ttttattaac	tatacccttt	ttctttttaa	tttttattta	3060
aaaatttacc	cctcactcat	atttacataa	aatttattat	tccccccgc	ccccgcacaa	3120
cactaattac	ctttttcaac	agcaaaagct	tttatttggt	ggaaaaaaaa	ttgggcattt	3180
tttttttct	tttaaagggt	ttttgtgtac	tatctataaa	atccttgtgt	aactcagtta	3240
cacatacttt	ccccatgttt	tcctctataa	attttataaa	tttagttcat	tcatttagag	3300
ctatgtttct	ttttctttag	ttcctttaag	gtatgtgtga	ggttaagggc	taaggttcat	3360
gttttcactc	tggtgcccac	ctttgctaag	caggecaeet	ttccatgctg	catcacgcct	3420
ctataaagtc	aggaggaggg	actegetgge	atctgacttg	acttcatttc	: ctgtggattt	3480
gtgtctgttc	tcactgcaat	agtatagcat	cttgattttt	gtggatttag	g agcgagtctt	3540
gggattgaca	. gtacaactgt	tcacttaggt	caaaattatt	: taagctatgt	: cagtattatt	3600
gcttataact	tttagaatca	gcattttggt	tttttcacaa	aatagtttgt	: taggattttt	3660
ttttaataga	cagtattago	cctataatag	gcttagggad	: aattgatato	atagtattga	3720
gctatccaat	ccatgaacac	agtatatctt	tttatttact	tagctctttt	aaattttcac	3780
tcaataatat	attttagttt	tgagtgggca	gttcttgcat	tcattttgtt	ttaaaatatc	3840
cctagatatt	tcacatttct	gttattgtaa	attatattt	taactttaaa	tttccagtgt	3900
cttgttaata	tagacaaata	a caactaaaco	ttttatattg	g accetgtate	ctaaaatctt	3960
gaaaaactta	a atacttctgt	tatcttttt	ggtagcttco	c ctaggattti	ctacatatat	4020
aatataccaa	a ctgcaaataa	a agattatatt	gettettee			4059

<210> 23 <211> 1496 <212> DNA <213> Mus musculus

<400> 23 60 gattctgagc aaacacggac tgccacaacg gaggtcctag ccaccttctg atattgactg tgaccactgg atacagaaat ggctaacaat ttcactaccc cactggcaac gtctcatggc 120 aataactgtg atctctatgc ccaccacagc acagccaggg tattaatgcc tctgcattac 180 240 agcctggtct tcatcattgg gctggtggga aacctgctgg ccttggttgt cattgttcaa aacagaaaaa aaatcaactc aaccactctc tattcaatga acttggtcat ttctgacatc 300 ctgtttacca cagctttacc cactcggata gcctactatg cgctgggctt tgattggagg 360 ataggtgatg ccctgtgccg ggtaactgct ctggtgttct acatcaacac gtacgcaggt 420 gtgaacttca tgacttgctt gagcatagac cgcttcttcg ctgtggtgca cctctgcgct 480 acaacaagat taaaagaatc gaatacgcaa agggtgtctg cctgtccgtc tggattctgg 540 600 totttgctca aacactgccg ctgctcctca cccctatgtc taaggaggag ggagacaaga ccacttgcat ggagtatcca aactttgaag ggacagcgtc cctgccgtgg attctgctcg 660 gagectgtet getgggetae gtgetgeeta teacagteat teteetgtgt taeteteaga 720 tetgetgeaa actetteagg actgeeaage agaaceeact cacegagaaa tetggtgtga 780 acaaaaaggc tctcaacaca attatcctca tcattgtcgt gttcatcctg tgcttcacgc 840 cctaccacgt ggccatcatt cagcacatga taaagatgct ctgctcccct ggagccctgg 900 agtgtggggc gagacattcc ttccagatct ctctgcactt cacggtgtgc ctgatgaact 960 tcaactgctg catggacccg ttcatatact tctttgcatg caaagggtat aagagaaagg 1020 tcatgaagat gctcaaacgt caagtgagtg tgtcgatctc cagcgcagtg aggtcagccc 1080 ctgaagagaa ttcgcgggaa atgacagagt ctcagatgat gatccactcc aaggcctcca 1140 atggaaggta aaggcacttg ggacttcaca gcacagcaag ctgcgggatg ggccccgccc 1200 accgactggt cggctcccaa caaagatgcc ttccactgcc gccccaccgg ccaatgcact 1260 gagatccaga ccagatcgag gagacaaaaa agcaagttca acttcataaa tgaaatataa 1320 tgtatataaa ggaaggctct cataagtctc aatgtaaaaa gaaattcttt gtgaaattac 1380 tatttcttgt caatagtttg gcaaaagacg actaattgca ctgtatattg ccagtgtaaa 1440

aatgttaata ctgtaatata tgaatatatt tcttaattta cacctctttc aatttc	1496
<210> 24 <211> 1341 <212> DNA <213> Mus musculus	
<400> 24 ggtggcagct tttctacaat gaaggctgga aagaccttgt gagaaatgag agacaagtga	60
gattcctctg ctgcatgttt gcccacatgt ggttcctagc tcggtggcgg aggggcactg	120
ggtcgtcatg tcaaaacggg ccagcttgct gccattaagg ttatggatgt cacaggggat	180
gaagaggaag aaatcaaaca agaaattaac atgttgaaga aatattctca tcacaggaac	240
attgctacat actacggtgc ttttatcaaa aagaaccetc ctggcatgga tgaccaactc	300
tggttggtta tggagttctg tggtgctggc tctgtcactg acctgatcaa gaacacgaaa	360
ggcaacacat tgaaagagga gtggattgca tacatctgca gggagatett acggggeetg	420
agtcacctgc accagcacaa agtgattcat cgagatatca aagggcagaa cgtcttgttg	480
actgaaaatg cagaggttaa gctagtggat tttggagtga gtgcccagct tgaccgaact	540
gtgggcagga ggaacacgtt catcgggact ccctactgga tggcaccaga agtcattgcc	600
tgtgatgaga acccggatgc cacatatgat ttcaagagtg acttgtggtc tttgggaatc	660
accgccatag agatggcaga aggtgccccc cccctctgtg acatgcatcc catgagagcc	720
ctcttcctca tcccacggaa ccctgcacct cggctcaagt ctaagaagtg gtcaaaaaaa	780
ttccagtcat ttatcgagag ctgcttggta aagaatcaca gccagcggcc agccacggag	840
cagttgatga agcacccatt catacgagac caacctaatg agaggcaggt ccgcatccag	900
ctgaaggacc acattgatcg aacaaagaag aagcgaggag aaaaagatga gactgagtat	960
gaatacagcg gaagtgagga agaagaggaa gagaatgact ctggggaacc cagctccatt	1020
ttgaacctac caggggagtc aacactgcga agggacttcc tgagactgca gctggccaac	1080
aaggagcgct cagaggccct gcggcgccaa cagctggagc agcagcagcg ggagaatgaa	1140
gaacacaagc ggcagctact ggctgagcgc cagaagcgca tcgaagagca gaaggagcaa	1200
aggcggaggc tggaggagca acaaaggcga gaaaaagagc ttcggaaaca gcaggagcgg	1260
gaacagcgcc ggcactacga agaacagatg cgtcgggagg aggagaggag	1320

1

WO 2005/005597 PCT/US2003/027106

catgagcagg aatataagcg c	1341
<210> 25	
<211> 2368	
<212> DNA	
<213> Mus musculus	

<400> 25 tottactatt aagtatgggg atgattotgg tttttacaaa tgtgttagto agattaaaga 60 aattgeette tgtteetagg atttagagtg tttttattgt gaageagttt tgaattttae 120 cagaggettt tttaaaacct gattttgtgt atgeatteat geceatgtet gtetgtetgt 180 240 ctcacttgta tatgtgtgtg catgtgtttt cttttttatt gatatggctt attgcattga 300 ttgatttttc agttatttta tttatttgtt attttatgtg aatgaatatt ttgcatgcat 360 gtatgtctgt gcaccacctg tgttactggt ccctgaggag gccaaaagaa gtagtcaggt 420 480 ccctcacact agaattgcag aaggctgtga accgccatcc tgagcttagg gtttaaatga ggtcttctgg aaaagcagct gaaccacctc tccagccctt gatttttagg tttgtttta 540 attattattt atttttattg gctattttat ttattttaat ttcaaatgtt atcccccttc 600 caagtttccc ctctaaaaac ctccctccac acccgcccta cctctttgag ggtgctccca 660 cacctaccca cccactccta cctcagtgcc ccagcatttc cccaccctag attcagctct 720 taaactagct ttgcattcct ctaataaatt ccatttcaac atgccttaat tatcttcatg 780 tgttgatgaa tttgttttgt taattttttg gtggtaattt ttctatgttg catataggtt 840 aaattgttct atcgtttctt tttcttaatg acttttttt tggtttgact ctgatagcac 900 agtgatatta getteataaa atgtgttgat gtateeccat ttetaatatt tggageaget 960 tetgagcatt tttcaatttt tetttaaaca tttttgaaat ataacgatca aagatatttg 1020 gtccaggatt ttctttgttg atagttttat tattattatt attattatta ttattattat 1080 agattcaggc tctttcctaa tgctttatta cctatttttt cctgatttag tttcagtgga 1140 aactagctta tttcaatatt tttatagtat ttattaagcc ttctcatctt tcatctggtt 1200 ctttctataa tgtgtcattt tctccatctt catttaaatc tttctatagc ttcaaacctc 1260 aaatgcttct tattggtatt atgactgatt atttttatgg acttatctaa cttgctgaac 1320 tatgtgtaga gtagcataag gatccagtta ctgtatttat ttcccgtacc ttttgtgtgt 1380

atgtaggtgt	ttgtctgaac	gtgtggtctt	tgtaccacct	tgtgcagtgt	ttacagtcac	1440
ctatgtatgg	ttaaggttct	cggggactag	agttacagat	agttgtgagc	cactgcatgg	1500
ctgctagaaa	ccaacttcgc	tcctctggag	gagcagccac	tgattcaggc	cctaaccagt	1560
atttctgttt	tgttgtttta	ttgccactta	aaagtttgcc	ccacttgtga	tcttacattt	1620
ttcaatttaa	aaaattacag	cacagatagc	tttcaattta	taatcagttt	gaaagtgttt	1680
caaatattat	ttcataaaac	attttatgat	actgggtatc	acaatcttac	ccaaattaaa	1740
caaaatatgt	ctttaggaaa	agaagaaatt	acaggccaat	ttatcctaaa	aaaaaaaaa	1800
aaacaagaac	agaacacttt	ttaataaaat	actgacaaaa	ccaaaatcat	cactatatgt	1860
aattaattaa	tggcatgcag	aagtttttt	caaaggaatg	gaaggttaga	cctgaaagct	1920
ggtaaaaaga	atgcattgca	ttctaaattt	tactcatcga	tattgaataa	aattcttaca	1980
tttgttatg	tttctatgaa	gaaaaatctc	ttaaaaatag	aacgataaca	ctaaagctat	2040
ttaaatgcaa	tgttagggtt	ttgttaatgt	agagaaaaca	attttcattt	tcaaatgttt	2100
gggttatatg	ataatgtgta	gagttcttta	gtgatgacat	gattttttt	tttcttgagc	2160
tacaaaaagt	cccaaagtag	aaattaagtt	taaatttttc	taaatcctta	. attaattaaa	2220
aaaaaagttt	catgctgagt	gtggtggcca	aaggcaggtg	aatctctgtg	g cgtgtagggc	2280
agcctggtat	tcattgcaag	taccaggcca	tccagtgcta	catagtgago	ccctgtcaac	2340
caatgaagca	ı gagacaaaga	aacaaacc				2368

<210> 26

<211> 1941

<212> DNA

<213> Mus musculus

<400> 26
aagctagcct tgaactcaga agtetgeetg cetetgeett teaagtgetg gaaataaagg 60

tgtgtgeeae cactgeetga ceataaaatt acttttatg tagaattttt ttttttttt 120

tttttttt tgagacaggg ttteetgta tageeetgge tgteetggaa eteaetetgt 180

agaccaggat ggeetaaaac teaaaaatee gettgeetet geeteecagg tgetgggatt 240

aaaagggtge geeaccacca eetgaetaga attttatat ataetttgta tatagaaata 300

ettttatat agatggteat gttetgtata ggetatetag eagtettggt teacaacett 360

tcctgaattt ttagggcttt cttgttgtga tctaatgagc ttctgtgctt atttcagagt 420 aacaatcttt gagggtagca acttgtaaat acagaatgtt tagcctagat tactgtaaaa 480 540 attaaatgtt ggatgaattt tgaataggtt tgaacgaact atttacttat gaaggaaaca ttagttaatc tttaccactc ctgtttagct ttcactaata aagaaactcc tcaagtcctc 600 aggtaatttt catgctcact gagtgctcag tacctgattt cactggtggt ctaagacttt 660 taccctgagg agttatcata tcctcagtta atcaggaaac tgtgtcttaa gtatttgtaa 720 tgttgatcat ctatttttca atttacccga tcattatcaa taaactgtta atgtacttga 780 tgataaggtg tgattacttt atttcctata gtgtattctg tatctctgta cttcccagag 840 tcagatcttc ccaattcatc ggttgtttat taagccctta actgttttta tagtgttagg 900 ctatttgaat ttagatgatt taggtagttt gccataaagt atgggcatga tatccctgtt 960 cttttgatcc tcctattgtt gatgtactct gtaagccttt gtctattgtc tatgtttgta 1020 aataaggctg tattttaaat gtgtagtttt tttttctctc tccagaagga tctgcttttt 1080 catttagctg aaagtgttta aaaatcatgt ctgtctgtaa agatgacaac agctcccagt 1140 aacacagaag cctgtattgt gtgagctata acttggaaga atttcagata tacaatgtcg 1200 tagtgatttt ctataacaat tttttattta aaagggagaa gaaactggct ttgtactctg 1260 tgaatttcag ctttgtgttg tctatacatt gctcctagtg ccttggtaat gctgactatg 1320 atgacatttt tgttacagtc ggcgaggctc tggcctgggc aagagaggag cagctgaggc 1380 ccggcggcaa gagaaaatgg cagaccctga aagcaaccag gagacagtaa attcctcagc 1440 tgcccggaca gatgaagctc cccaaggagc tgcaggtata ctgactggca cttaaaacac 1500 acatatattt ttgttcgttt cacaaattta tctttggatg aattttcttg ttctacatcc 1560 taagtaggat gaaaggaggg gagagaatta agaggttacc atgaaacact tttattttag 1620 gtcatagatt gggtgctctt gatttgtggg ctcatttgtt gttaagactt aaactctcaa 1680 gcagtccata catgtactac tttcagaggg atttatagta aggtataaat tttccattta 1740 aggtttttat atattgctta gagttgacta atgattgttt cattgaattt aaattcataa 1800 taaaaaagta aagatgtatt tgaattgctt tctaagcatg tagatcttag cattttatac 1860 gccctaaaaa tttgttttgt tctgaagcta ctttagtaat atttagattt ttatgggctt 1920 1941 atttgatatc ttggattgcc g

<210> 27 <211> 1940 <212> DNA <213> Mus musculus

<400> 27

aagctaqcct tqaactcaga agtctgcctg cctctgcctt tcaagtgctg gaaataaagg 60 tgtgtgccac cactgcctga ccataaaatt actttttatg tagaattttt ttttttttt 120 tttttttttt tgagacaggg tttctctgta tagccctggc tgtcctggaa ctcactctgt 180 agaccaggat ggcctaaaac tcaaaaatcc gcttgcctct gcctcccagg tgctgggatt 240 aaaagggtgc gccaccacca cctgactaga atttttatat atactttgta tatagaaata 300 ctttttatat agatggtcat gttctgtata ggctatctag cagtcttggt tcacaacctt 360 tectgaattt ttagggettt ettgttgtga tetaatgage ttetgtgett attteagagt 420 aacaatcttt gagggtagca acttgtaaat acagaatgtt tagcctagat tactgtaaaa 480 attaaatqtt qqatqaattt tgaataggtt tgaacgaact atttacttat gaaggaaaca 540 ttagttaatc tttaccactc ctgtttagct ttcactaata aagaaactcc tcaagtcctc 600 aggtaatttt catgotcact gagtgotcag tacctgattt cactggtggt ctaagacttt 660 taccctgagg agttatcata tcctcagtta atcaggaaac tgtgtcttaa gtatttgtaa 720 780 tgttgatcat ctatttttca atttacccga tcattatcaa taaactgtta atgtacttga tgataaggtg tgattacttt atttcctata gtgtattctg tatctctgta cttcccagag 840 900 tcagatcttc ccaattcatc ggttgtttat taagccctta actgttttta tagtgttagg 960 ctatttgaat ttagatgatt taggtagttt gccataaagt atgggcatga tatccctgtt cttttgatcc tcctattgtt gatgtactct gtaagccttt gtctattgtc tatgtttgta 1020 aataaggctg tattttaaat gtgtagtttt tttttctctc tccagaagga tctgcttttt 1080 catttagctg aaagtgttta aaaatcatgt ctgtctgtaa agatgacaac agctcccagt 1140 aacacagaag cctgtattgt gtgagctata acttggaaga atttcagata tacaatgtcg 1200 tagtgatttt ctataacaat tttttattta aaagggagaa gaaactggct ttgtactctg 1260 tgaatttcag ctttgtgttg tctatacatt gctcctagtg ccttggtaat gctgactatg 1320 atgacatttt tgttacagtc ggcgaggctc tggcctgggc aagagaggag cagctgaggc 1380 ccggcggcaa gagaaaatgg cagaccctga aagcaaccag gagacagtaa attcctcagc 1440

tgcccggaca	gatgaagctc	cccaaggagc	tgcaggtata	ctgactggca	cttaaaacac	1500
acatatattt	ttgttcgttt	cacaaattta	tctttggatg	aattttcttg	ttctacatcc	1560
taagtaggat	gaaaggaggg	gagagaatta	agaggttacc	atgaaacact	tttattttag	1620
gtcatagatt	gggtgctctt	gatttgtggg	ctcatttgtt	gttaagactt	aaactctcaa	1680
gcagtccata	catgtactac	tttcagaggg	atttatagta	aggtataaat	tttccattta	1740
aggtttttat	atattgctta	gagttgacta	atgattgttt	cattgaattt	aaattcataa	1800
taaaaaagta	aagatgtatt	tgaattgctt	tctaagcatg	tagatcttag	cattttatac	1860
gccctaaaaa	tttgttttgt	tctgaagcta	cttagtaata	tttagatttt	tatgggctta	1920
tttgatatct	tggattgccg					1940
<210> 28 <211> 2935 <212> DNA <213> Mus	_					
<400> 28 tgtatctctt	: tcatcaattt	ttctctgtgg	tatagcaaat	gaccacaact	caggagcttg	60
gaatagtat	g tttattgttt	gtgtgtttt	atggatcaac	tgggtctctt	tattttttgt	120
tgttgtttt	g ctttgtttct	tgttttttg	agacaggatt	tetetgtgta	gccctgaact	180
ccgtttgtag	g accaaacttt	ctttgaactc	agagaagtaa	gettgettet	tcctctcgag	240
tgctgggat	c aaagacatgt	gctgctacca	cccagcttca	. gctgagtagg	tctcttattc	300
aggcatcac	c aggtggcctt	acagtgttag	ccaggctatg	ttccccttct	gagcttcaat	360
cttcttcca	a gecetetete	, tetgetggea	gattcctcat	ggtctgaaag	aatgaagctc	420
cattttctt	t ttctttttt	: tttttaagat	tttatttatt	: tattatatgt	aagtacactg	480
tagctgttt	t cagacactco	agaagacgga	gtcagatctc	gttacggatg	gttgtgagcc	540
accatgtgc	t tgctgggatt	tgaactccgg	acctttggaa	a gagcggtcgg	g gtgctcttac	600
ccactgagc	c atctcaccag	g cccaaagcto	cattttctag	g ccggttgtta	a acagaccatt	660
cctagctac	t gtgttatgc	c ctcctttggg	g agtgcatgti	agctgtttgt	gtccttctat	720
gccagcaag	a gcagcctctg	g ctttggaagt	geteacetat	t gtagaggcag	g aaggatcgag	780

gagttcaggg tcatcttcat ccacatagcc cgcttagaca acatgagacc ttgtgtcaaa 840

agaaatgaac	aataggagct	ggcaagcttg	ctaagtaaat	gaggatgttt	gccaccaagc	900
ctggcagctt	gagctcaatt	cctaaaattc	acatggtaag	agagaaacaa	tttccataac	960
ttatcctcgt	tctgcccaat	aaataacaaa	tgcttttttg	tttgtttctt	tgtttgtttg	1020
gttttttaaa	atctttttaa	aagcgctcat	gtggtaggat	tgatcagcga	gggtaagttc	1080
cactetgtgg	gttggtagca	ggactctgga	gaagggcagc	ctcgcacctt	tgttagtcct	1140
acttacaaag	aaccaaaatc	taagccccag	tgaggacctg	cttttctgtt	ttttcttctt	1200
ttcttttctt	ttcttttctt	ttcttttctt	ttctttctt	ttcctttctt	tctttcttt	1260
cttttcttt	tttttttt	ttttgagaca	gggtttctct	gtgtatccct	ggctatcctg	1320
gaactcactc	tgtagaccag	gctggcctcg	aggatctgct	tttctgatcc	ctgtgatata	1380
tgtttagtag	ttcatagggg	tttgtttgcg	aactgcagtg	tttgctaaat	gcatcttcat	1440
attttcctcc	tgacccggcc	tctgtttcat	aatgccgaga	tcgactagct	cttttatagt	1500
cactaatcca	gttaggaatc	ttctgtctgt	cttccacaag	ggaggaagag	atgcccaaga	1560
aggaggtctg	atctaagagc	agattatttg	ttgtcactag	gttgaaagag	ttgtgcagct	1620
atgcaagggt	tgttgtccta	gggggcattc	ttagaggcgt	agtcattatt	ttgttgagtg	1680 ·
tttcctctgt	gcctctagag	ctgaaaactg	aacctagggc	tttgtacttg	ctaagcaagt	1740
gttctatcat	ggagctaaat	ccccaaccct	tggtggttta	gtcattagca	ccatcttctc	1800
tgaagcctgt	gatagctcac	acctaacttc	ttggatggtc	tttttctcag	aggctcaggt	1860
atgaggagct	agtgtaatca	cttagccaaa	tatctctgtc	tccgtagctc	agggcagctc	1920
tggacagaga	gccttcaggt	aaggagtggg	gactgtgtga	gggagacttg	gctcaggagg	1980
agctgggttc	tggctgaggc	tctgcttaag	ggtagtccct	gaacatgcac	ttgtttctgt	2040
attcactaac	aatataatat	ttccatttat	ccaaggttct	gaagactcag	aagatggagt	2100
agaaatggca	acggcagcaa	tagagactca	agggaagctt	gaagctagca	gtgtacccaa	2160
ttctgatgat	gatgcagaga	gctgccccat	ttgcctcaat	gcatttagag	accaggctgt	2220
gggcacccca	gagacctgtg	cccattattt	ctgcctggat	tgcatcatcg	aatggtccag	2280
ggtgagttgg	cttttcagtg	ggctactgct	accccttatg	actaggctgc	cttctctgca	2340
gcaaaactga	acacagggct	gagtgctgcc	tgggttctca	gcattgtggg	gaaggaatgc	2400
ttactgtggg	ggctgttact	gggtgagaaa	ggatgactct	ggcttttctg	agggtcagga	2460

cacaaactct	tcggcaacct	cacatagtaa	gtgtaaggca	gcctctgtag	gtattggaat	2520
ggtgcaagtg	tgcttactca	gttctgatgg	caagtcatga	agagacaagc	ttttatcacg	2580
ctgcttacct	tgcagtgaac	tttaaggaga	cttgcctggg	ccttcaccca	ctggcaaaga	2640
cttttatatg	tgtacaggta	tgtggtgtgt	gcctgtcttt	acacgtagag	gctaaaggat	2700
gtcaggtatc	ctgctctgtc	gctttctgcg	ttattccttt	gagtcaggat	cttttactga	2760
agctgcagca	taataggcag	ctagtaaacc	caagacattc	tctcattctt	catggcatta	2820
gcattgagag	atgaaggtat	aatcttgccc	aggtttttat	gtggatgttg	agatatgagt	2880
ttgggtcctt	gtgtttgcat	aacaaatttt	cttatctgtt	gagccatccc	catcc	2935

<210> 29

<211> 4090

<212> DNA

<213> Mus musculus

<400> 29

tacccaaata caagtaccag ggtggggagc tacaaggcct ccctgtgtga tctgggacat 60 gaaggggcaa gggcaagggg attcctgaag ggaaggggtg gcattcaaat tctgaaagcg 120 tggaagatct tattagcaga cagaggtctg ggccgggcga ggcagctggc aggggttctg 180 ccatcattgc tggtccaggt aggcagacaa cagaagctct ggaggcagga aatccaggtg 240 300 geggttgetg acttteatet geeteeggee eteeaggtea geaetggetg ttgteeagea tagcggtgta cacagcttgg ggggacaccg agaagaacgc cagcagccgt tcctcccaac 360 tetecagggt ttecattggg atgeggetge gettgageae ggaeegeagg egaeggetga 420 tgcgcctgaa gcactcgtgg ggtgtgaaga cagggtcctc tctccgtcgg tcctccccac 480 ggccaggccc acgtctccgc ttgccctggc tctcatcctc caagtaacgg agcactcgct 540 cttgctcctc tcccgagcgg ttcataaaat cattccagac ctccacatag gtggcattgc 600 tgcaggcctc tgcgaagatg ccaggtgcag caggagtcag gagggccccc ttccagtaag 660 720 actggagaga gtgtgtcagt gccgtcgtcc atggagagtg aggaagccgc agaagtcaca gatgacccaa tggagcaaga ctaactactc agaaacactt agaggcagta ttttacatac 780 agttctggtt ttacactgta taagactttt aagtaataaa gtggaccttt agttttacaa 840 gagaaacagg ctgtaaaata aagaacctta agaataaacc ctgaaggttg tatgtggaag 900 960

ttttgtttgc ttttttcctg gtg	tactcaa atcagtggtt	tgtgtataga	ttttttttt	1020
aatttagaat taaagttttt aaa	ctggaag ataattataa	ttttgaaaac	tttaaagatg	1080
atctcatttg gtttatacat aca	.caaggaa gatttttgtc	ttgtctctag	cagtttccat	1140
attttggtca tagtttaaac atg	ttaacat gtgaattaat	agggtttcat	gtggtttcag	1200
atttttattg ttcgactgta caa	tggaacc ttaagtcata	tatacatata	tagattatcc	1260
tgaggggga tgttatattt ttd	tgtttct ataagagatg	aatacagtgg	atacttttt	1320
attggtaatg actgagttca ctt	ctttcag aagacatctt	ctcttctgag	tagttgagac	1380
aaaaatctgg cccctgtgag acc	etgggaa tettteagte	tgttgaaata	ccaggttaaa	1440
cacattccaa gagatctgtg caa	actaaat tcttttgtat	acttctaagg	tgcctgagac	1500
aacaagactt catttattta tgg	gaaagtgt gctttatctt	gggagttgtg	ctcaagcatt	1560
agcttgctgt ctgtagaatg agt	gettegg ageetgaeat	gaaaccatct	caagagccca	1620
caggtcccat aacattcggt tgc	cttttctg aacactgtca	acatcacatc	tgtctttctg	1680
aataatccta tatgccgcat ggc	cactggtg tgaaacatca	ctgtactgga	agaattagta	1740
gaggacttca gtaatgtacc tga	agctaaaa tgaccgaggc	gttaggggtg	cacagaaacc	1800
accatgattt gtataacatt ttg	gaagtgaa ttaatatttt	tgaacatgct	tcttcaacag	1860
ccagtgttat atttttcaga tca	aacacaaa gcacaatggt	tactactcta	taaactcaat	1920
attttcaaat tcacatattt aaa	agtcatgc aagctgcaac	ttccctgtca	gaattactgg	1980
ctgccaaatt tatacctgtt tct	tcagctg tactttttga	tatttagaat	ttttaaattt	2040
ctgtaaagta ggttttgtag act	gtaatgt gttcactgcc	tttgtgaagc	ggtatattgt	2100
ataatttcgt gtgtaactga atg	gettggge tttcaataca	gtattcatat	aaagcaataa	2160
atattaatgt tatgaaatat tgg	gagtacat ttttatcaaa	. atacaaaatc	tctttttag	2220
tttcagacat ctgaggtaca ggg	gatggacc taatagctga	. tacaaacagt	ttctcacact	2280
ttatctatcc taagcttcgg gtg	gatcagag ggaaaccaca	. aggtttgcat	tttgactgct	2340
tagacgttac tatggctaaa aag	gatatttg gctccgtttg	ttcataaagt	aatatgctac	2400
tgactgatga ccttcaggtt cac	cagcagct ggacagtaga	tttatgaatc	tgtctagtaa	2460
aactgtcgat ttactgtacc caa	aaggggtg aaagtcaaat	gtaacttcaa	gttttttggc	2520
aaaaagatta aaatgaagca aaa	atttaagt gtgacattca	tttgtaatgg	cctgttagag	2580

ttgagggatt	gacagtaaga	gcagatttta	aacattttag	gtttagagtt	tttgagattt	2640
tccttaggat	atttatgagg	ttgttgtcaa	taaacctgtt	ctctaagctc	ctgtgacctt	2700
tgatagtctt	tatttatggt	gccatggacc	atttacaaac	aagtcagttt	gctgttggtt	2760
aaaagttgaa	gatttcgcat	catgaataga	ggtctgtggc	tttatttgta	aacttgcaat	2820
tgctatcttt	gcaaggggaa	gtgtatttct	ttattaaata	aagtacaatt	aataatggtg	2880
aatgtaccaa	aatgacatca	ctcaattcta	tgagaggtct	gcattttaac	ctatagttta	2940
atagctttaa	tatttattag	ctattcctat	gttgatcata	gatgaaagtt	gttgctgttt	3000
atacagatac	acgtaggata	ctggtgaagg	gtctctaggg	cagttgtaat	attcatcacc	3060
gtgtgaggcc	atgttcagac	tgtggatgca	ttggtccctt	ggaagtccat	ttccacacgt	3120
ggtgttagat	gcacttacag	gagactgcag	gaaagtgtca	gttctaatga	gcactgagtc	3180
ctttgtgagt	gacagaatga	gacccaagag	ggagggtcaa	gccgtcccgt	ggctgaagta	3240
gctggctctt	tgatgttgaa	cagattccta	accgggttct	cctttcccaa	gcctaactca	3300
gatctgggca	gtgctgatgg	tgctgacaga	atacacatga	catggttttg	ccacccctcc	3360
cttttaaaaa	gtgaaaacat	tttgaaaact	ctataaagtt	ctgtacatgt	agaacagaag	3420
tgagtagtga	aaatatattt	tgaggattag	taaacttaat	ccacttaatt	gtcacaactc	3480
cggtctttcc	catatgtagc	cagagcaatg	gagttacaac	tetggettte	gaaagctatt	3540
ccagaaaccc	tgccccagaa	agtcttaaag	cattgagato	cttgtgtttt	attttggcag	3600
tgtagatagg	catgtattta	tgcatttgta	aaatcaattt	ttttcaaata	. atgtatgtaa	3660
tgtactagct	taaacggtac	tgggcagagc	ctagagctac	: tgcgaggatt	gaatgtgaag	3720
ccggtatcgc	gggtggaaat	gtacctgcag	agctacagca	aactattccg	ggtagtgttt	3780
caggetgeet	ttgagcagga	gtttcttaga	tctattggtt	: ttgacaaact	gaagatcagt	3840
tcttgagatt	tgtgttaato	: atgagatgaa	tggatgcaaa	aaacccctt <u>c</u>	, taatttcatg	3900
tggaattatg	aaaattagct	: tgatgggata	ttggcctaac	: aaggatgatg	gtatgtactg	3960
gctagaatac	atatatttca	catataaaaa	ataatccgga	a caccagaatt	: ctcttctttc	4020
aatttggagc	ctagatcgat	: cactttgcca	ı aataaatgta	ttattttcat	aatgcaataa	4080
agtgtaaact						4090

60

WO 2005/005597 PCT/US2003/027106

<210> 30 <211> 3272 <212> DNA <213> Mus musculus

<400> 30

tttttttttt ttttttttgt ttcaagacac agtggcccag gttggcctag aactcactat 120 gtagcctatg ctggcctcaa attcacaaca ctcttcttgc ttgtctcctg aatgctggga 180 ttgcagggct tgttcatcat gtctggttta tgtagtactg gaaatagaag gcagggttcc atgcacacta ggcaggtgct ctgctagagt agtggatcaa tcgcagtgac tgcatctggg 240 300 gagtagtgga tcaatcgcag tgactgcatc tggggagtag tggatcaatc gcagtgactg catctggaga gtagtggatc aatcgcagtg actgcatctg gggtacactg aagctgtctg 360 gggacatttc cagttaacac cactgagaat gatcaggctc cagcaggtga ggcaagggac 420 gctgataagc atcttgatgt gcaaagatgt tgcttacaat gagctagcat ctggcccaaa 480 tgtgggaaag tacaaaggct taaagtagac tgaagtctcc acgtgcaggg gatctgtgaa 540 getttgetge etgetgecag ttggtgetaa ttaettgtgt gteaetgtaa ggggaacett 600 gagggaaatt gtgtgggaag aaagctgttc tttggctctt catttcagag ggcctcaatc 660 cagtectgea ttgaagttag cetgagtgee ceetgetgtg aceteatact ceaggeacet 720 gggactgggg tggtcagatc agggataaga tggccagttc tgtctgattt tgactttcag 780 aaaagtgaat gaagagttat ctagtgcagg tgtgtcccac accagtgaag gacatctgtg 840 ctgttactcg gtaggatcta gcagtcgcat cccaaagcaa ttaagttact aaccagagta 900 ctgggcagtc acctgaaaca cattcttatc cttagaaatc ttccaagcga accccccaga 960 1020 caactctggt tactgatagc tgtccataga ctgataggca gtctcccttg ctgaagacaa 1080 cacctacata actcactgaa cacggagagg tcatgctggt gcctttggcc ctgcagacta gtgtccgtgg ttctgggagg tactctgcat gctatcagag gagaaaggtg aacaccaacc 1140 cagatacaaa tetttttate tgeaatggtg acetteetge atgagatget ggggcaatgg 1200 1260 cggcactaag gttgtagaag taacccacac tctctggatt taaagaactg catgggatag ageccatgee teaegetgae ttggtggeea ggaacetgag actacataaa ecatgaeeta 1320 gggggaaact attgttctgc tcaagggcta tagcaataca acaattccca atgtcactct 1380 gctgtactca cagatcagca ccttgctcag ccatcatcag agaagcttcc ctctttagta 1440

gatgggaata	aatacagaga	ctcaacaact	ggacattgtg	cagatagtga	aagacattgg	1500
aacactcagc	cctaaatggt	aacaggaact	atgcagatga	ggaggtggag	ccagagggga	1560
tggagggctc	caagggaaca	gtgccttcca	ggcccaacag	aactgatgca	catatgagct	1620
gacagactgt	ggcagcgcac	agggcctatg	caggtccaaa	ccagatggtt	ctcagtactg	1680
aggtgggga	aggagacata	agctctcatc	cctaacccaa	agctataact	aacaactgcc	1740
tatgaaggaa	aaaattaatt	tctccaagag	tatcttactg	gatatacaaa	tacaattaag	1800
ggcaggtccc	atgctcagga	aaacatggtg	aacaccacaa	gtaaactctg	tgtgtgtgtg	1860
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgag	agagagagag	agagagagag	agagagagag	1920
agagaagtca	tggatagccc	tggtgttgtt	tgtattttga	tgctaattcc	gattccctaa	1980
gaggggctgc	ctaggaggag	gagtgaatca	cctactcagg	tgacttcatg	tgaccattct	2040
aatgaataaa	gatttcaagg	aaaccattcc	ctggacgggt	aggcgggtct	tccaggtcag	2100
acgggcatgg	cgggggtggg	gtggggcaaa	agaggagagg	agagtgggct	ggaggacagg	2160
agcataaaga	cgaaaatgta	ggtagtgaat	ccccgctccc	ccaccccctg	tttcaggtgg	2220
cagatctgtt	tgggtcagct	accagaggat	ttaact t aga	atggctgata	aattaggatg	2280
ttaattgttg	tgcccagtga	ttgagttacc	gttgattctg	aactaagttt	gtgtggtgtt	2340
ttctttcact	tggcggctca	. actgggttcc	ggagagaaaa	ggtacagtga	tgtggaatcc	2400
cagccagcca	. caggaatttg	gaagtgtgga	gctggcatgg	g cagettaaca	. agcagggtgg	2460
agagctccag	gagcagagag	tctgctgaga	agaacaaggo	: ccgccagtgc	: cttgctggca	2520
atagcatgga	tagtttcttt	ttacatttcc	: tgctgtgtgt	atgtgtgtgt	gtctatgtga	2580
gtgtctctgt	ctgtgtctat	gcatgtgtct	gtatgtcttg	g tgctctttt	tagtttcttt	2640
tttgtttatg	g tgtcttcgtt	ttgttttaac	cttgaatgct	tgtcttttt	atatgcctat	2700
tttttttaa	a gagagaaaga	aggtgtggg	g ttgaaagggt	ggagaggtgg	g aaaggatctg	2760
ggaggagaca	a agggaag g g	a aaaccatggo	c cagaatatat	cacatgaaag	g taactttatt	2820
ttcaattaaa	a aaaagaaatt	tcccattat	g gttatgaggt	agcaatgaad	actacggttg	2880
ggggtcagca	a catgaggaad	c tttgttaaaa	a gactgcagca	a ttagaagggt	tgagaaccac	2940
tgtcctatga	a acttctggc	t gtcctcatg	t teeteeace	c tgagaaatc	g caatactgct	3000
gtatttacts	g tegeetgea	a accetecet	a agggttggt	g agatggctca	a gtgagtgggt	3060

ggaaagaaaa agaatagaga ggaaaagggg gccaccttat tgctagacta cttcctgctg 3180 attaaaggtg tccagttcct tgggtacctc tgatctttgt catcaggata tctatttcc 3240 tgttgttgtt tctttttgc tcaagactac tc 3272 <210 > 31 <221. > 3821 <221. > 3821 <221. > 3821 <221. > 3821 <221. > 3823 <221. > 3823 <221. > 3823 <221. > 3824 <221. > 3821 <221. > 3824 <221. > 3825 <221. > 3825 <221. > 3825 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <221. > 3826 <222. > 3826 <222. > 3826 <222. > 3826 <222. > 3826 <222. >	+a++a+a+a+	tagaagatta	ttaactcctt	cccaccctt	tcaacctcca	acactaaata	3120
tgttgttgtt tcttttttgc tcaagactac tc gatcattgt catcaggata tctattttcc 3270 catcaggatgttgtt tcttttttgc tcaagactac tc 3270 catcaggatgtgtt tcttttttgc tcaagactac tc 3270 catcaggatgtgtgtt tctttttttgc tcaagactac tc 3270 catcaggatgtgtgtgtt tcttttttgc tcaagaggatgtggtggtgggggggggg							
<pre> <210 > 31 <211 > 3821 <212 > DNA <212 > DNA <213 > Mus musculus </pre> <pre> <400 > 31 gcttttggaa accagagact cogagggagg cgaccaggct gcggaggaga gggccggctc</pre>							
<pre><210> 31 <211> 3821 <212> DNA <213> Mus musculus </pre> <pre><400> 31 gcttttggaa accagagact ccgagggagg cgaccaggct gcggaggaga gggccggctc acaaagtgct gctttgacac atccttagga tggaagttaa gtgaaaacag aaccacacaa 120 aacaaaactc cgcgaagtgg tgctgctacg gaggaaacca aggggagaaa aacccggtgg 180 gcaggtcaat ggttgcttcg cagcgctttg gcaagtttgt ggaacacttt ctaggaatta ggtctttttt gtaccccat catcttcttg acttccgaag aaagaagttg tgtttggatt 300 gcaatggagt ctaaggagac agggctagac gcacgtgaat agtcccgca gctgggctga atttgtggga atttagaaag acagcctgtg gaagtgaac gtctctgaag tccccctggg 420 ttcattcgga tggcacctaa cgcgtcccgt gacagacct ttcaccaaca gcttccgatg ttgccatttt gctcttcttg accttaatta atctctagga aagtctaac ttcggaccta cctcttttt tgatacttat tttttgtact tctgctctc gggattggt tcttaaacaa cctggatcct tttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt tggattctc tgcattcaga ttgatagac tcgtcttggt gaagtgac taaagaagact ttcccccagg gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg ftaaagcagag ggcgaccca cccccaccat tgaatggtac aaggatggtg agagggtgga aagacaag gatgatccca ggcccacaa atgatggtac caagaagact ttttattctt gacagacaag gatgatccca ggcccaccaa acggacgaa gggagttacg ttttattctt gacagaccaag gatgatccca ggcccaccaa acggacgaa gggagttacg ttttttttt gacagacaag gacgaacca cccccaccat tgaatggtac caagaagact ttccccccag gacgaacaag gacgaacca cccccaccaa acggacgaa gggagttacg ttttattctt gacagacaag gacgaacca cccccaccaa acggacgaa gggagttacg ttttattctt gacagacaat cttggtgaag cagtagatga aacgacgaa gggagttacg ttttattctt gcaagacaat cttggtgaag cagtagatga aacgacgaa gggagttacg ttttattctt good aagaagactat ctgggaaaacc ccaccagatgt ggtagtcga gctggaagac ctgcaatctt loop agaggaccac caccacggg gacacccaa accaccatc tactggaaaa aggacaaag l100 gcaccacacacacacacacacacacacacacacacacac</pre>	attaaaggtg	tccagttcct	tgggtacctc	tgatctttgt	catcaggata	tctattttcc	3240
<pre><211> 3821 <212> DNA <213> Mus musculus </pre> <pre><400> 31 gottttggaa accagagact ccgagggagg cgaccaggct gcggaggaga gggccggctc 60 acaaagtgct gctttgacac atcettagga tggaagttaa gtgaaaacag aaccacacaa 120 aacaaaactc cgcgaagtgg tgctgctacg gaggaaacca aggggagaaa aacccggtgg 180 gcaggtcaat ggttgcttcg cagcgctttg gcaagtttg ggaacactt ctaggaatta 240 ggtcttttt gtacccccat catcttcttg acttccgaag aaagaagttg tgtttggatt 300 gcaatggagt ctaaggagac agggctagac gcacgtgaat agtcccgca gctgggctga 360 atttgtggga atttagaaag acagcctgtg gaagtgcaac gtctctgaag tcccctggg 420 ttcattcgga tggcacctaa cgcgtcccgt gacagacctc ttcaccaaca gcttccgatg 480 ttgccatttt gctcttcttg accttaatta atctctagga aagtctaaac ttcggaccta 540 cctctttttt tgatacttat tttttgtact tctgctctct gggattggtt tcttaaacaa 600 cctggatcct tttccatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggattctc tgcattcaga ttgatggatc tcgcatcgg gaggcagaac gagccacca ctctgaactg 720 gatcgtagaa caccttctg atgtcatcgt ctccaaggga gagccccca ctctgaactg 720 gatcgtagaa caccttctg atgtcatcgt ctccaaggga gagcccaca ctctgaactg 780 taaagcagag ggccgacca ccccaccat tgaatggaac aggagtgga agagggggaa 840 gacagacaag gatgatccca ggtccacaag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatggaa cagtgagtcg aaatgcatc ctggaagtgg cattattgcg 1020 aaggaactat cttggtgaag cagtgagtcg aaatgcatc ctggaagtgg cattattgcg 1020 aggagtgccag ccaccacggg gacacccaag accaccaca ctctgaaactg 1020 aggagtgccag ccaccacggg gacacccaag accaccaca ctctgaaactg 1020 aggagtgccag ccaccacggg gacacccaagaga accaccaca ctctgaacacg 1020 aggagtgccag ccaccacggg gacacccaagaga accaccacacaca</pre>	tgttgttgtt	tetttttge	tcaagactac	tc			3272
acaaagtgct getttgacac atcettagga tggaagttaa gtgaaaacag aaccacacaa 120 aacaaaactc cgcgaagtgg tgctgctacg gaggaaacca aggggagaaa aaccacacaa 120 gcaggtcaat ggttgcttcg cagcgctttg gcaagtttg ggaacactt ctaggaatta 240 ggactttttt gtacccccat catcttcttg acttccgaag aaagaagttg tgtttggatt 300 gcaatggagt ctaaggagac agggctagac gcacgtgaat agtcccgcca gctgggctga 360 atttgtggga atttagaaag acagcctgtg gaagtgcaac gtctctgaag tccccctggg 420 ttcattcgga tggcacctaa cgcgtcccgt gacagacctc ttcaccaaca gcttccgatg 480 ttgccatttt gctcttcttg accttaatta atctctagga aagtctaaac ttcggaccta 540 cctctttttt tgatacttat tttttgtact tctgctcct gggattggtt tcttaaacaa 600 cctggatcct tttcaatag tcaaaatgaa tccctcgatg tttaccactat tattgctctt 660 tggattctc tgcattcaga ttgatggatc tcgctcgga gaggccacca ctctgaactg 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca ccccaccat tgaatggac aaggatggt agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccagggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgttgtc 960 aaggaaccat cttggtgaag cagtgagtcg aaatgcatc tctggaagtg cattattgcg 1020 agatgacctc cggcaaaacc ccaccaggg gacaccaca cccggagac ctgcaatctt 1080 ggagtgccag ccaccaggg gacaccagga accaccac tactggaagac ctgcaatctt 1080	<211> 3821 <212> DNA	musculus					
acaaagtgct gctttgacac atcettagga tggaagttaa gtgaaaacag aaccacacaa 120 aacaaaactc ogcgaagtgg tgctgctacg gaggaaacca aggggagaaa aacccggtgg 180 gcaggtcaat ggttgcttcg cagcgctttg gcaagtttgt ggaacacttt ctaggaatta 240 ggtcttttt gtaccccat catcttcttg acttccgaag aaagaagttg tgtttggatt 300 gcaatggagt ctaaggagac agggctagac gcacgtgaat agtcccgcca gctgggctga 360 atttgtggga atttagaaag acagcctgtg gaagtgcaac gtctctgaag tccccctggg 420 ttcattcgga tggcacctaa egcgtcccgt gacagacctc ttcaccaaca gcttccgatg 480 ectcttttt tgatacttat tttttgtact tctgctact gggattggtt tcttaaacaa 600 cctggatcct ttttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggattctc tgcattcaga ttgatggatc tcgtctcgt gaagagacta ttcccccagg 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca ccccaccat tgaatggta aaggatggtg agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccagggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatc tcggaagtg cattattgcg 1020 agatgacctc cggcaaaacc ccaccaggg gatagtcga gcggagagc ctgcaatctt 1080 ggagtgccag ccaccaggg gacacccag accaccac tactgaaag ctgcaaccatct 1080 ggagtgccag ccaccaggg gacacccag accaccac tactggaaga ctgcaacct 1080	<400> 31 qcttttqqaa	accagagact	ccgagggagg	cgaccaggct	gcggaggaga	gggceggete	60
aacaaaactc ogogaagtgg tgctgctacg gaggaaacca aggggagaaa aacccggtgg 180 gcaggtcaat ggttgcttcg cagcgctttg gcaagtttgt ggaacacttt ctaggaatta 240 ggtctttttt gtaccccat catcttcttg acttccgaag aaagaagttg tgtttggatt 300 gcaatggagt ctaaggagac agggctagac gcacgtgaat agtcccgcca gctgggctga 360 atttgtggga atttagaaag acagcctgtg gaagtgcaac gtctctgaag tccccctggg 420 ttcattcgga tggcacctaa cgcgtcccgt gacagacctc ttcaccaaca gcttccgatg 480 cctcttttt tgatacttat tttttgtact tctgctctc gggattggt tcttaaacca 600 cctcttttt tgatacttat tttttgtact tctgctctc gggattggt tcttaaacaa 600 cctggattcct tttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt fggatttctc tgcattcaga ttgatggatc tcgcatgg tcccccag 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagaa gagcaccaa cccccaccat tgaatggtac aaggatggtg agagggtgga 840 gacagacaag gatgatcca ggtccaccaa aatgcttctg cccaagggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttcc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatc ctggaagtgg cattattgcg 1020 agatggccag ccaccacggg gacaccacg ggtagtccacag accaccacggg gcagaaccac ccaccagatgt ggtagtcgca gctggaagac ctgcaaactt 1080 ggagtgccag ccaccacggg gacaccacgg gacaccacg ccaccaggat cttctgaaag 1020 agatgacctc cggcaaaacc ccacagatgt ggtagtcgca gctggaagac ctgcaaactt 1080 ggagtgccag ccaccacggg gacaccacgg gacaccaca accaccacacaccacaccacacaca							120
ggtaggtcaat ggttgetteg cagegetteg geagettegs geagettegs geagettegs geagettegs and geagettegs geagettegs geagettegs and geagettegs geagetgaat agtecegeca getgggetga 360 attegggga atteagaag acageetgg gaagtgeace geetetgaag tececetggg 420 tecattegga tggcacetaa egegteeegt gacagacete tecaceaca getecegatg 480 tegecattet getettettg acettaatta ateetetagga aagtetaaac teeggaceta 540 eetettitt tgatacetat tettegtace teeggeteete gggattggt teetaaacaa 600 eeteggateet tetteetagga tegateeta tettegaateet teeggateet tetteaacaa 600 eeteggateet tetteetagga tegateggat teetaaacaa teeggateete tggatteete tgeatteaga tegatggate tegetetet gggattggt teetaaacaa 600 eeteggateet tetteetagga tegatggate tegetetetg eaagaagace teececaag 720 gateggagaa caccettetg atgecategt etecaaggga gageecacea etetgaacetg 780 taaaggagag ggeegaceca eececacaat tgaatggtac aaggatggt agagggtgga 840 gacagacaag gatgateeca ggteecacaa aatgettetg eecageggat etttattett 900 tettgegaatt gtteatggge geagaagtaa aceggacgaa gggagttaeg tettgttteg 960 aaggaactat ettggtgaag eagtgagteg aaatgeatet etggaagge eattattgeg 1020 agatgacete eggcaaaace eecacagatgt ggtagteega getggaagae etgcaatett 1080 ggagtgecag eecacacaggg gacacecaga accaaccate tactggaaaa aggacaaagt 1140							180
gcaatggagt ctaaggagac agggctagac gcacgtgaat agtcccgcca gctgggctga 360 atttgtggga atttagaaag acagcctgtg gaagtgcaac gtctctgaag tccccctggg 420 ttcattcgga tggcacctaa cgcgtcccgt gacagacctc ttcaccaaca gcttccgatg 480 ttgccatttt gctcttcttg accttaatta atctctagga aagtctaaac ttcggaccta 540 cctcttttt tgatacttat tttttgtact tctgctctct gggattggtt tcttaaacaa 600 cctggatcct ttttcatatg tcaaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggatttctc tgcattcaga ttgatggatc tcgtcttcgt caagaagact ttcccccagg 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca cccccaccat tgaatggtac aaggatggt agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccageggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgactc cggcaaaacc ccaccaga gcagaagta ggtagtcga gctgcaacatt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	gcaggtcaat	ggttgcttcg	cagcgctttg	gcaagtttgt	ggaacacttt	ctaggaatta	240
atttgtggga atttagaaag acagcctgtg gaagtgcaac gtetctgaag tececetggg 420 tteattegga tggeacetaa egegteeegt gacagacete tteaceaaca getteegatg 480 ttgecatttt getettettg acettaatta atetetagga aagtetaaac tteggaceta 540 cetetttttt tgatacttat tttttgtaet tetgetetet gggattggtt tettaaacaa 600 cetggateet tttteatatg teaaaatgaa teetetgatg tttacactat tattgetett 660 tggatteet tgeatteaga ttgatggate tegtettegt eaagaagaet tteececeag 720 gategtagaa caccettetg atgteategt etecaaggga gageecacea etetgaactg 780 taaagcagag ggeegaceea eeeecaceat tgaatggtae aaggatggtg agagggtgga 840 gacagacaag gatgateeca ggteecacag aatgettetg eeeageggat etttattett 900 tttgegaatt gtteatggge geagaagtaa aeeggacgaa gggagttaeg tttgtgttge 960 aaggaactat ettggtgaag eagtgatge aaatgeatet etggaagtg eattattgeg 1020 agatgeeag eeaceaggg gacacecaga aceaceate tactggaaaa aggacaaagt 1140	ggtcttttt	gtacccccat	catcttcttg	actteegaag	aaagaagttg	tgtttggatt	300
ttcattcgga tggcacctaa cgcgtcccgt gacagacctc ttcaccaaca gcttccgatg 480 ttgccatttt gctcttcttg accttaatta atctctagga aagtctaaac ttcggaccta 540 cctctttttt tgatacttat tttttgtact tctgctctct gggattggtt tcttaaacaa 600 cctggatcct ttttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggatttctc tgcattcaga ttgatggatc tcgtcttcgt caagaagact ttcccccag 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca ccccaccat tgaatggtac aaggatggt agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgccag ccaccacggg gacacccaga accaccatc tactggaaaa aggacaaagt 1140	gcaatggagt	ctaaggagac	agggctagac	gcacgtgaat	agtcccgcca	gctgggctga	360
ttgccatttt gctcttcttg accttaatta atctctagga aagtctaaac ttcggaccta 540 cctcttttt tgatacttat tttttgtact tctgctctct gggattggtt tcttaaacaa 600 cctggatcct ttttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggatttctc tgcattcaga ttgatggatc tcgtcttcgt caagaagact ttcccccag 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca ccccaccat tgaatggtac aaggatggt agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgacttc cggcaaaacc ccacagatgt ggtagtcgca gctggagagc ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	atttgtggga	ı atttagaaag	acagcctgtg	gaagtgcaac	: gtctctgaag	tccccctggg	420
cctcttttt tgatacttat tttttgtact tctgctctct gggattggtt tcttaaacaa 600 cctggatcct ttttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggattctc tgcattcaga ttgatggatc tcgtcttcgt caagaagact ttccccccag 720 gatcgtagaa cacccttctg atgtcatcgt ctcaaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca ccccaccat tgaatggtac aaggatggt agagggtgga 840 gacagacaag gatgatcca ggtcccacag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatggge gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgactc cggcaaaacc ccacagatgt ggtagtcga gctggagac ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	ttcattcgga	tggcacctaa	cgcgtcccgt	gacagaccto	ttcaccaaca	gcttccgatg	480
cctcggatcct ttttcatatg tcaaaatgaa tcctctgatg tttacactat tattgctctt 660 tggatttctc tgcattcaga ttgatggatc tcgtcttcgt caagaagact ttccccccag 720 gatcgtagaa cacccttctg atgtcatcgt ctccaaggga gagcccacca ctctgaactg 780 taaagcagag ggccgaccca ccccaccat tgaatggtac aaggatggtg agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgacttc cggcaaaacc ccacagatgt ggtagtcgca gctggagag ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	ttgccatttt	getettettg	accttaatta	atctctagga	a aagtctaaac	ttcggaccta	540
tggatttete tgcattcaga ttgatggate tegtettegt caagaagaet tteececcag 720 gategtagaa caccettetg atgteategt etecaaggga gageecacea etetgaactg 780 taaageagag ggeegaceca eccecaceat tgaatggtae aaggatggtg agagggtgga 840 gacagacaag gatgatecca ggteecacag aatgettetg eecageggat etttattett 900 tttgegaatt gtteatggge geagaagtaa aeeggaegaa gggagttaeg tttgtgttge 960 aaggaactat ettggtgaag eagtgagteg aaatgeatet etggaagtgg eattattgeg 1020 agatgaette eggeaaaace ecacagatgt ggtagtegaa getggagage etgeaatett 1080 ggagtgecag ecacaeggg gacacecaga aeeaaceate taetggaaaa aggacaaagt 1140	cctcttttt	tgatacttat	tttttgtact	tetgetetet	gggattggti	tcttaaacaa	600
gategtagaa caccettetg atgteategt etecaaggga gageecacca etetgaactg taaageagag ggeegaceca eececaccat tgaatggtac aaggatggtg agagggtgga gacagacaag gatgateeca ggteecacag aatgettetg eecageggat etttattett goo tttgegaatt gtteatggge geagaagtaa aceggacgaa gggagttacg tttgtgttge aaggaactat ettggtgaag eagtgagteg aaatgeatet etggaagtgg eattattgeg agatgaette eggeaaaace eeacagatgt ggtagtega getggagag etgeaatett ggagtgecag eeaccaeggg gacacecaga aceaaccate tactggaaaa aggacaaagt 1140	cctggatcct	ttttcatatg	tcaaaatgaa	a teetetgate	g tttacactat	tattgctctt	660
taaagcagaa ggccgaccca cccccaccat tgaatggtac aaggatggta agagggtgga 840 gacagacaag gatgatccca ggtcccacag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgacttc cggcaaaacc ccacagatgt ggtagtcgca gctggagagc ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	tggatttct	c tgcattcaga	ttgatggat	c tegtettegt	caagaagact	ttccccccag	720
gacagacaag gatgatcca ggtccacag aatgcttctg cccagcggat ctttattctt 900 tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgacttc cggcaaaacc ccacagatgt ggtagtcgca gctggagagc ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	gategtaga	a caccettete	atgtcatcg	t ctccaaggga	a gageccacc	a ctctgaactg	780
tttgcgaatt gttcatgggc gcagaagtaa accggacgaa gggagttacg tttgtgttgc 960 aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg 1020 agatgacttc cggcaaaacc ccacagatgt ggtagtcgca gctggagagc ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	taaagcaga	g ggccgaccca	a cccccacca	t tgaatggtad	c aaggatggt	g agagggtgga	840
aaggaactat cttggtgaag cagtgagtcg aaatgcatct ctggaagtgg cattattgcg agatgacttc cggcaaaacc ccacagatgt ggtagtcgca gctggagagc ctgcaatctt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	gacagacaa	g gatgatccca	a ggtcccaca	g aatgcttct	g cccagcgga	t ctttattctt	900
aggaactat cttggtgaag tagtgagteg dategoates oogsaageg agaatett 1080 agatgactat cttggtgaag tagtgagteg dategoates oogsaageg tagtagtegt 1080 ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	tttgcgaat	t gttcatggg	c gcagaagta	a accggacga	a gggagttac	g tttgtgttgc	960
ggagtgccag ccaccacggg gacacccaga accaaccatc tactggaaaa aggacaaagt 1140	aaggaacta	t cttggtgaag	g cagtgagtc	g aaatgcatc	t ctggaagtg	g cattattgcg	1020
	agatgactt	c cggcaaaac	c ccacagatg	t ggtagtcgc	a gctggagag	c ctgcaatctt	1080
ccgaattgat gacaaggaag agagaataag tatccgtggt gggaagctga tgatctctaa 1200	ggagtgcca	g ccaccacgg	g gacacccag	a accaaccat	c tactggaaa	a aggacaaagt	1140
	ccgaattga	t gacaaggaa	g agagaataa	g tatccgtgg	t gggaagctg	a tgatctctaa	1200

tactaggaaa agcgatgctg gcatgtacac ctgtgtggga accaatatgg tgggaga	aag 1260
ggacagegae cetgeagage teactgtett tgaacgaeee acatttetea ggaggee	aat 1320
taaccaggtg gtgctagagg aagaagctgt agaattccgt tgtcaggtcc aaggaga	tcc 1380
ccagccaacg gtgaggtgga aaaaagatga tgcagacttg ccgagaggaa ggtatga	tat 1440
caaagatgac tacacgctga gaattaaaaa ggccatgagt actgatgaag gtaccta	tgt 1500
gtgtattgct gagaatcggg tgggaaaagt ggaagcctct gctaccctca ctgtccg	gagt 1560
tegecetgtt geteeteeae agtttgtggt taggecaaga gateagateg ttgetea	agg 1620
ccgaacagtg acattcccct gtgaaactaa aggaaaccca cagccagctg ttttttg	gca 1680
gaaagaaggc agccagaacc tacttttccc gaatcaacct cagcagccca acagccg	gatg 1740
ttcagtgtcg cccacggggg acctcaccat caccaacatc cagcgttcag atgcggg	gtta 1800
ctacatctgc caggeectaa cegtggeagg aageatttta getaaageae agttgga	agt 1860
tactgacgtt ttgacagata gacctccacc cataatcttg caaggaccaa taaacca	aaac 1920
acttgcagta gacggtacag cattgttgaa gtgtaaagcc actggtgagc ctctgc	etgt 1980
aattagctgg ctaaaggagg gctttacttt tctggggaga gatccaagag ccacgat	tcca 2040
agaccaagga acactgcaga ttaagaattt acggatatct gatactggca cttatac	cttg 2100
tgtggctaca agttccagtg gagagacttc ctggagtgca gtgctggatg taacaga	aatc 2160
tggagcaaca atcagtaaaa attatgatat gaatgacctc ccgggaccac catccaa	aacc 2220
tcaggtcact gatgtttcta agaacagtgt caccttatcc tggcagccag gtacacc	ctgg 2280
cgttcttcct gcaagcgcgt atatcattga ggctttcagc caatcggtga gcaata	gctg 2340
gcagacagtg gcaaaccatg ttaagacaac tctgtataca gtaagggggc tgaggc	caac 2400
acaatctact tgtttatggt cagagcgatc aacccacaag gtctcagtga tccaag	tcct 2460
atgtcggatc ctgtacgcac acaagatatc agccccccag cacaaggagt ggacca	caga 2520
caggtgcaga aggaattagg tgatgtcgtt gttcgtctcc ataatccagt tgtcct	gaca 2580
cctacaactg ttcaagtcac atggacggtg gaccgacaac cccagtttat tcaggg	ctac 2640
agagtgatgt accgtcagac ttcgggacta caagcctcaa ctgtgtggca gaatct	agac 2700
gccaaagtcc cgactgagag gagtgctgtc cttgtgaatt tgaaaaaggg ggtgac	ttat 2760
gaaattaaag teeggeegta ttttaaegag tteeaaggaa tggaeagtga ategaa	aaca 2820

,	gtccgaacca	ctgaggaagc	cccaagtgcc	cctccccagt	ctgtcactgt	gctgacagtt	2880
	ggaagtcaca	acagcacaag	catcagtgtt	tcctgggatc	ctccaccagc	cgaccaccag	2940
	aatggaatta	ttcaggaata	taagatctgg	tgtctgggaa	acgaaacgcg	attccatatc	3000
	aataaaacgg	tggatgcagc	cattcgctct	gtagtaatag	gtggcttgtt	ccctggaatt	3060
	cagtaccggg	tagaagtggc	agctagcaca	agtgcagggg	ttggagtaaa	aagtgaacca	3120
	cagccgataa	taattggggg	acgtaacgaa	gttgtcatta	ctgaaaacaa	taacagcatc	3180
	actgagcaaa	tcacggatgt	cgtgaagcaa	ccggcattta	tagctggcat	tggtggtgcc	3240
	tgctgggtaa	ttctgatggg	ttttagcatc	tggttgtact	ggagaagaaa	gaagagaaag	3300
	ggactcagca	attatgctgt	aacatttcaa	agaggagatg	gaggactaat	gagcaatggg	3360
	agccgtccca	ggtcttctaa	atgctggcga	tcccaattac	ccatggcttg	ctgattcttg	3420
	gccagccacg	agtttgccag	tgaacaatag	caatagtggc	ccaaatgaaa	ttggaaattt	3480
	tgggcgtgga	gatgtgctgc	ctccggtgcc	aggccaaggg	gataaaacag	cgaccatgct	3540
	ctcggatgga	gccatttata	gcagcattga	cttcactacc	aaaaccactt	acaacagttc	3600
	cagccaaata	acacaggcca	ccccatatgc	cactacacaa	atcctgcatt	caaacagcat	3660
	ccacgaactg	gcagttgatc	ttcctgatcc	acagtggaaa	agctcagttc	aacagaagac	3720
	agacctcatg	ggatttggtt	attcgctacc	tgatcagaac	aaggggaaca	acggtgggaa	3780
	aggtggaaaa	aagaagaaaa	ctaaaaattc	ttcgaaagcg	С		3821

<210> 32

<211> 1490

<212> DNA

<213> Mus musculus

<400> 32

gaacggaagc	aggettetge	atcgccaggg	ttcaggttcc	ttctcctggt	ttgagttctg	420
ttttttttt	tttttaaat	gtgaagagat	tttctttgtc	atttctaaaa	ctcctgtcag	480
ttgctggatg	tcctaaagct	gttgaatatg	gacgtaactg	taaatcccag	agtgttttat	540
tttgagatga	gagttttgct	acagtttata	caggatattt	tcctatttag	acctcagggc	600
tatcttggga	cccactacta	agtgtgaccc	ctccccgcag	cttcaattct	gggtagatga	660
gttacataac	ttttaaatgt	gatatccagc	aggaagaatg	tatttctctc	ttttaacttc	720
gggcaaattt	tgttttaaag	gtctagaaaa	aagacagtag	aagaaaacag	aggtaaaaga	780
attaaaaacc	aactgtaaaa	taaacattct	catggtatac	aattgtgcta	cctgaataaa	840
cttatgtgca	taaattattt	aaaagtgcta	tgaaacatat	ggtattttcc	tgtcatttgt	900
ttgggttggt	gtggttttat	tcatttgatt	tccacatatt	tgcactttat	ttttcaaagc	960
taagggccct	tctagtcgtg	atccacccct	tccaggaggg	gagcacccct	ggacaaaatg	1020
tacctctgtt	tccctgtgta	tctctttatg	agtggcacgc	catatgcgct	ttcatccagg	1080
gcttttcttc	ccccatcaat	taaaatgtcc	ttgagattta	aaaataattg	gaaatatatt	1140
tttatattta	ttgtgcgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgagaga	gagagaga	1200
gagagagaga	gagagagaga	gagagaacat	gctggtgtgt	tagtgtagtg	ggttaaagga	1260
cggctgtaga	agctggcccc	ctccttccac	cacatataca	. ctagggatca	aactcaagtc	1320
gtcaggctta	gcagcaagcg	ccttgaccac	agagtcatgt	: caccagtcta	aagatgtagt	1380
tcaggttgac	ctcaaagttg	tgatectect	geetetgeet	: cttgagcata	tccttcttgc	1440
atgcaccacc	acaattgact	taaaatattt	taaaaatcag	ttttaatggo	:	1490
<210> 33 <211> 2185 <212> DNA <213> Mus						
<400> 33 ggctgctgct	getgetgetg	g ctgctgctgg	g agcaaatgaa	a gaactcttt	tcttaagcag	60
ataaccagct	: tctggcagtt	gcatgatctt	gctattgaag	g tggaccttgg	g taaaaagtgc	120
tggtatcact	ccatatttg	c ctgtcccatt	cttegtcage	c aaacaacaga	a taacaatcca	180
cccatgaaat	tggtttgtg	g tcatattata	a tcaagagac	g ccctgaataa	a aatgtttaat	240

ggtagcaaat taaaatgtcc atattgccca atggaacaga gtccaggaga tgccaaacag 300

atatttttct gaagaatgag tttgtttgca atttgtaagt gaaactgaat tatgggtaca 360 ttcaagacaa gagtgttcca ttgactgcag ctatccaagg accgcctgtt cataagctat 420 480 gctccagagg ctgccgattc actcgtgtgc acggaggggg tgctccagat gggaatcaca cagggettte tteactettg gtettegttt etgateaagt aaacaccage agttgteatt 540 cagtgcaggt ttttgtactt ctatatggtg attttttac ttaaaagcag aaacagaagt 600 tgaccttcct gacatgtgtt taatattcct cctgctttta cagattctga cgttttcttg 660 ataattgtaa gettgagagt gtttgtggaa gaacttaett tettettatg tatacataat 720 taaatgaaaa gtcttcatag gagtttgaca aaatgaattg tggttataaa acgaatttgc 780 ttttttgttg ttttgtttt cttttttggc ctaaggaaga aagctgtgat aaatttcaaa 840 900 tttgcatagc ttttcaatgt tttgctctgc tcccgctctt gcttcagagt cggcacactc acctgcattt gagttctgtc tatagcccag caggctgcct gtttaaaatc ccatcatgaa 960 tttaacaggc tgatgtgaga atgaaataga tattactggg gttttgttgt tgtttgttta 1020 tttgttttgc ttttattacc aagaggtgct ttttaataaa tggatattga agttagggtg 1080 ttactaattt gatgtatggt ttcacagtct agcatactgt cetttgacat ctgcctttaa 1140 gacttggctg agtgtctcat tagtttatca tcacagatac gcagtgttat gcatgtgtat 1200 agaagtgtgt gcaccagcat caaacattgt gtgtgtggaa gggaagaagc ctgtccattc 1260 taaacgcagt tgccagtctc atcacttcag gtccttacgg gcaggctcta gcaactttcc 1320 1380 qtqtatggac ctcgtttttt gctgttttgt gtttaattag tatattgttc atgcctctct 1440 totgcagtgt otcatotcat agactgtgaa cotgtatatt attcaaatgg otacagataa 1500 tgctcttttc ttttgtgagg tctcttcatt taatgcactg cccagaaaga gccatgtgta 1560 agagttgttc tctgtttgag gaactaacta catggaaaag acttctgact taaacccatg aaatacttca tottgagaag agtgotatgt ggaaatcacc aaatatotog caactttatt 1620 tcatctggtg taaatctgaa catcaacata ggaaaactgt catgagaaaa tgaaaaagca 1680 taaacacaga agcaacgaga aatgtgactc ttgttatttt aaaccacaga cggacttggg 1740 ttaagggaat ggggacgaca gctttggtgc taagttaatc agaaattgcg agcatgcaca 1800 gtggtatgcc agcctgggtg atgctttcct aggagagccg gtatttgctt gtaagggaaa 1860 gaatggtatt gtagaaaaac ccaagaaatg accacgtggt cagtttcatg gtgatggcta 1920

60

WO 2005/005597 PCT/US2003/027106

ctgtgtactg tgtaggttac	ctgggtcaag	actggtccag	cttagagtgc	atgctctgtt	1980
catactcagc ctagctcaca	gtgacttgtg	cttcactgtc	aggatgctct	gtaaagttcc	2040
tcatccctgt gaagcaggga	aagaacagag	gtgcctctgg	actgcaggag	aaaggcgtcg	2100
tgccaggcag tatcctgtgg	agggaggagg	gtgtacgttc	gtttactatg	gatagttttt	2160
cctttgaatt aaattgtagc	gtgtc				2185

<210> 34 <211> 3598

<212> DNA

<213> Mus musculus

<400> 34

aaagagagga aagatttaaa atagccatat taggttatct ataatggggt caccatccac 120 gctttgcact gtctatttga aagtctcaga aggtatggtt taccttatcc cagccaccgt 180 aattaagtga atgcttttag actgtgaaag gatagttgcc atttggccta agagcactta 240 ggcagagcgc ttcattcccg tgtgatgctg cataccgttg tttttattta caatcccaaa 300 cgctctgtgc cttggttttt cactcgccaa aaccaacctt actctactaa atgaaatgca 360 atcttaccag tttaaccagt atgctgtgat attgtagtga gtctcagaga tgactggaaa 420 caggaggcct gtcatttcag tgagcaccat cacctaagcg gtaatcattt ctcctgtgtc 480 ttaaactgct ctgactcctg agcaagtgtt catgtctgtg tgtcaaaata aaaagttttg 540 tgtgaaggac tgtctttgct ttcctccatg gtttttactg tacatttccc tgtcgtcatg 600 aagtggggtg cagagactca ccttttatta aagtagctgt gtgaagtaag ctttcggtgt 660 atccctaagt ctgttagcat gtactccttt gtaatatctt gagtacggtg atctttatgt 720 acgttttact taccaactca caaatactgt agcaaatgaa tgtgaacatt tactttctga 780 aaagccagac aattttgttt tcaattatag tactgagcaa ttaagcattt agataatctt 840 ttaataacca aagctggtcc cattctggtt ttgccttttg cttacttgtt gcttcaatgt 900 ttttagagca gatgtttttg gttttttggt ttttttgttt tttctaatat atgtggcttc 960 attgttttaa gttggtgtgg gtatctaact tacaaagctt ttacattttc tttaactggg 1020 cctcatgtgg tcccgagtag ctcttgtaaa cttagtcgga cagtaagtca ataaactctg 1080

cttgtttcct	cctgagcctc	tgtgtgcccg	gtagccacat	ctcgtacatc	tgcatcaggt	1140
tcagtggttg	gtettteece	caggttaccg	tagtccagcg	tcatgagttg	aatgtgatcc	1200
gtggtgatat	cttctacaga	cattcaggtt	ttctttcctt	gttacctgcc	tctgttcact	1260
tgtttaactc	ttcttgtcta	ttcaccccca	ggctctgccc	caccccaact	ctattctggg	1320
gactaatccc	ctggcccgct	ttaggcttgc	tgggaaggtg	cctagcactg	agctaacccc	1380
tcagctcctg	ggtttggctc	ccttgtttca	gtgtttgcta	aacccttttc	cacccttctc	1440
accagtccct	accttttgtt	ttcaaagcct	tgctccatac	ttgtagctgt	ttgtttttct	1500
tcagtgtttt	tccaagtccc	aaaattgtta	gtacttttaa	ttaaattgtg	tggatgctat	1560
aaataaattt	gataagtacc	aacatttact	taaagtcaca	caatagtgaa	acattgggac	1620
aaaattcagc	ccctcatctt	caaatcagaa	atcctctttg	gtagatcctt	atacgttcac	1680
aggtccagct	gtggctggcg	tcagctgccc	ctgattgtgg	gaagcattag	atcctgtcct	1740
gaaggagtct	gggtacccgc	ttagtgtcct	ctggtcaaaa	tgtttctagc	ctgtattcct	1800
gggtaaacat	tcagaatgac	attgccaagc	acaggctaag	ttacaccact	ggagtacctt	1860
tgcaaataga	aatgtcctat	caaagatgac	accggtgatc	aaagagttgg	gactaggaat	1920
t ttagccagg	aattaaatct	cacgctcggt	gtgctaatta	aataactggg	aaacaaaaa	1980
cttgaggggg	tgagcaagtc	ctgtctgtgg	aagctgacta	gtaaatatgg	cacttaattc	2040
tgccaatgtt	caggtcaagc	aatttaaggc	agttagcata	tttgaaagt	agggaactgt	2100
tgttttgttt	tgagacacgg	tctcacttta	. tagcccaggg	ttggcctgga	actcattttg	2160
tagtctagtc	ggtcttcaaa	ctcaaggcag	teeteetgee	ttaaccttcc	aagtgctggg	2220
attatagacc	taaaccgtag	tgtccagata	ctgctcagtt	: ttaatagata	. cactataggg	2280
aggaatgctc	caaaaaagat	tcatcttgta	ataacgtgag	catagttcag	gtcagccggc	2340
ctggttgatc	tcagctcctt	cactcagggg	g cgagggctag	g ctcagttcct	ctgccctggc	2400
tgtgatagta	ctgggtagag	cagcagtctt	: caacctgtgg	gtcacatgtc	: agatgtctgc	2460
attatgattc	gtaacagtag	caacattgca	gtcttgaagt	agcaacaaaa	taactcgtgg	2520
tgtctgcatg	aggaactgtg	ttaagggtco	cggcgttagg	g aaggtatctg	, ttgaggattg	2580
tgctttcctc	tcgccctgat	gttgtctttg	g cttccctggc	tcccctttct	cgcctttcct	2640
cctcttatgt	ctggcagcat	: tttctcactc	g aaggaactgt	caacatgaac	ctctctctct	2700

cactcactct	cattctctct	ctctctctct	ctctctctct	ctctctctct	ctctctgtct	2760
ctctctct	gtctctgtct	tgcacacaca	cacacaaat	gacaaactct	tecececca	2820
tccaaaaaga	aatctacctg	tatttcaaca	atagattaat	gctgaaattt	tgactcatac	2880
aaactaaggg	ttttttctta	aactcgtaga	ttattaattt	gaataacgta	cagagaattt	2940
taagtttgct	taagatctct	ttggataaga	acacctatta	aaaaatattt	gagggggctg	3000
gtgagatggc	tcagagggtt	agagcacccg	actgttcttc	caaaggtcca	gagttcaaat	3060
cccagcaacc	acatggtggc	tcacaaccat	ccgtaacgag	atctgactcc	ctcttctgga	3120
gtgtttgaag	acagctacaa	tgtacttaca	tataataaat	aaataaatct	ttaaaaaaaa	3180
atatttgagg	actagagttt	tgtcacaaag	ataaaactcc	aaccgccttc	acattacttc	3240
cttctggacg	tggaagctgg	gtaaacagga	gagttacttc	cttcttgtaa	aatgtttgta	3300
ctggagatgt	tgaaaggcca	gctctgtgtt	ctcaggactg	taaattatct	aagcattttg	3360
atggattggg	ctggcttaat	tteeteeete	tagttaaaaa	gaaatgcagt	tgtttacatc	3420
ttgcttgtag	ctaatcttaa	aagagagccc	tgtttcactc	aggtcttcag	ggcacgtgtg	3480
ctacagaatt	ttttggaaat	gtgtgacttg	cgcaaagctt	ggtggtagag	cacttgccta	3540
gaatgtgtga	agaagtcctg	tgtgtgtgtt	taaaatgtac	tttttaataa	aacttttt	3598

<210> 35

<211> 4153

<212> DNA

<213> Mus musculus

<400> 35

gatcagaaat tcaaagccag cctgagctag atagtaaaag gtttgttttt tttttttaa 60 gttaaaaata ttttaaatta tttctgttaa ataaataaaa ttttaaaaacg taaaaattca 120 cagcccaaaa ttgtatatat ggaatggggt tgattacata cctctaattt tgcatgtaca 180 240 qaacaagacc gatggggaaa aaaaaataca tctagaatta aacttcaccc agaaggatgg tgggccaatg taatagtctc ttcctctccc agtgtagttc cagtccaggg ctaaacagta 300 tggtgtgtgc ctctgctgct cttacaggaa agcgagcagg cagaaaagat caacatcagc 360 cttgccttct tcctgtatga cctcctgtca atcatggaca gaggcttcgt gttcaacctc 420 atcaagcatt actgcagcca gctgtcagcc aagctgaata tccttccaac gctcatctcc 480 atgeggetgg aatteetgag gateetetge ageeatgage actaceteaa ettgaacete 540

ctcttcatga	ataccgacac	cgcaccagca	tctccctgcc	cctccatatc	ctcccaggta	600
gtctgctaac	tacaggaaag	gggcgagctg	ctttgttaat	tagcttagtt	caatggggca	660
tctcctatct	tactaattag	aggaaaatca	cactattcaa	accagatcag	ttgatccaga	720
tatgggctct	acggttccct	gaagctgcag	catctaaatt	gaccattttc	aaatcaagta	780
atttggcaca	agggtcccta	aggaggttaa	ctatgtagga	agaaatctgt	aagcctagga	840
aaatgaagaa	acacaggtta	agtctcaagt	cctccactgt	cgacataaac	caattattgt	900
acaatatagt	gtgcaaatac	aggtttagta	tatttgcaaa	tacaggtttg	caatgtctag	960
caagattcag	aagcactgtg	ttagcctagt	ctctttgtcc	gacagettae	aaaggaagaa	1020
ctgcagaggg	ggaggggcac	gagatgaaat	gattcccaat	aggatttgac	tgtggcaaat	1080
gtccttactg	cgtcggcacc	agaggtttct	caaggagtta	gtgtcctcta	gaaaaccctt	1140
aaagaaatgt	tattttatag	ccctaatcca	gatgtgggaa	acaaggcaga	tgttgacagc	1200
agtaggcaag	atagctcagg	atggtattag	attctattct	gctgcatatc	cttggtacta	1260
gtacagaggg	aaaggcttga	cagtgataag	cgccttaagt	tccaggacta	agaggacggg	1320
ggtggggatc	acatgggccc	aggagttagt	tccagatcag	cctgagcatt	atagtgaagc	1380
ctcatttaaa	aataataata	ataataataa	gtcatagtag	tagctatttg	tgcctgacaa	1440
tatacctgaa	gttagctcca	tgaccattat	aatgtgatct	gggacacacg	tgacttacaa	1500
ggaccaattc	caaatggact	tattattgtc	tgctgtcgtc	tgttctgtgg	gctgaatcct	1560
ataacttccc	catgctgacc	ttgccctggg	tectetecce	atgctcctct	tetggetgee	1620
ctaaagagtt	gacagaccca	gggcccctac	tccacagagc	tccaggactt	gcagggacac	1680
ttacttctgt	ccccggtgaa	ggatgtcacg	ctcccggagt	aagaacacgg	gacaggaatg	1740
gcctagggct	gccaactctg	gcattgtcgt	agcagacacc	acttctggtt	ccaggccagc	1800
taacatccag	acactgtgct	cagatgacct	tcagaaagga	ttctggggag	acagaccaca	1860
gcgagggact	gggtacagtc	cttatttctc	tgtccacgtg	taccctgggc	tgttcatctg	1920
caacttttaa	taccagacag	gcaagggagg	gattagctag	ttttctttgt	tctgttttc	1980
ccattttgct	gttctgggga	cctggtcata	tcaggcacat	ttcccaccac	taagcttgac	2040
ccctagccta	gttttcatag	tcatgttcat	gttggccagt	cagtgcatgc	gccgtccggc	2100
cagageteeg	taaatgcaag	ccagcactgt	tttaattcca	gctcttcata	ctcataaagc	2160

tgccgttggt atttctgtag aactcgagtt cctgctccag tttccaggac caaaagattg	2220
ccagcatgtt cgatctgacc ccggagtacc ggcagcagca cttccttaca gggctgctct	2280
tcacggagct ggctgttgcc ctggatgctg agggggatgg gtgagtatct gacgcctaaa	2340
atggaacctg aagggaaaga tgttaacagc attcccagtt caacttctta tgtgtacagc	2400
aagacctcag aactgtacca cttaccagtt ccaagaagaa gcactcctgt cttaagaaag	2460
tggtactggt ggagtataga gaggcaaggt gattagaaga tccatgaaat gggcttcttt	2520
ttacagcact ggcagttgaa ctgagagcct ctcacactgt aggccagtac tgtatcaatg	2580
agccacattc ccagccccaa atgtctattg tttgtttgtt ttttattttc gtgacagttt	2640
ctctgtgtag tcctggctat cctagaactc actctgtaga ccaggcttgc ctcaaactca	2700
gaaatetgee tgeetetgee ttecaagtge tagaattaat ggtgtgeace accaecatae	2760
ctgcctcaga aagaggtttt gttttgtttt gttttgtttt	2820
gttttgtttt gtttttcgag acagggtttc tctgtatagc cctggctgtc ctggaactca	2880
ctttgtagac caggetggee tegaacttag aaatetgeet geetetgeet eeegagtget	2940
gggattaaag gcgtgtgcca ccacgcccgg ctcagaaaga ctttttaaag tcccttgttt	3000
gagcagaatt tgcagagaat gctttgctga gtgaattccc taagggcaaa cccattttgc	3060
aggggagget getgaggtgg aacceaggge tttgcacaca ctaagcagge getectecae	3120
taagctatcc cgtcagccct aacaaggtca cctctgacaa agtgagcaca gagacgaaat	3180
aaataccagc atgccactgt ccgaggctgg caaaggaagt gacggtgaag aagccagctg	3240
tettgggtet agatgaeget tettatggge aageettete aggeaaagge agatgeeata	3300
ggcatgggtc tcgtgaatct tctcactgtg tccatccctg agcacctgag tgtatggcag	3360
tgcccggact tacttgttgg ctcttggctt gtattctgtc atcttttctc tgctctaacg	3420
acattccagt cttctcagaa ttttctgtcc tataactaac ttattttctc agcatcaaaa	3480
agtgccctag gatatatgct gataaggtcc tgaaagaaga aaatttgcct tgcaatataa	3540
acaaccccc attttcactt tcttaattgt ttttaataaa tagcatggct ttaagtaatt	3600
totgaaacta tottttatat acacagtago agtagttttt aattitotat tittgtooca	3660
gttggagaca tccctgccgt ctggttttga ttcttctaaa atcattgctg ggatattgct	3720
atatagettt agetgtteeg ggetteaeta tgeaaaetag aetggeetea aaettaeaga	3780

gatctgcctg cctctgcctc cccccaccac caccccagt actggagtta gaggcatgtg	3840
ccaccatgct gagctcctaa tatttttgaa gagcaaaagg ttgaaataga cattttccaa	3900
agaatgcgtg gtcaaaagca cacaaaaaag gtgtccagaa tctctaacag tcaggcagtg	3960
cttcattaaa acaatgatta tataccacat tctgcctact agaatagttt gatcaacaag	4020
acagacaggc cagggatgtg gctcagtggt agatctctag catgtgctaa ggtctgggtt	4080
ccatccccag cactttaaaa aaaaaaaaa agaaagaaaa gaaaagaaaa	4140
aaaaagatgg ttg	4153
<210> 36 <211> 3009 <212> DNA <213> Mus musculus	
<400> 36 atagcaacaa caggagcctg tagcaagagc aggagccaca tgggccctgt tgcacagagc	60
tcagagaagg cgatgatgcc catgccaggg taggaagcaa ggagttggaa gtttaatggc	120
gcatcttgga gatgcggcgt gactcctggc cgaggtctgg ttcttctcct agcccaagtg	180
gggacgctct ctctgccatc cttctgcctt ggctataccg aggatgcgca agagtctggt	240
gtcctcctag aggactetec tgttactgte tttccccttt gctgttcttc acatgaaatg	300
atgataataa agtaaaatca cgtcagtcca aacgtcacag ttttaaagtt caaaatgact	360
teccaagtgt ggeetgeagg tectetgeeg gateggtegg aacaggttet caegtgateg	420
tggggaggtt cattctgagc cgctagtccc gccgagactt tatgctagtc aggaaactgt	480
gttctctgga aaggattatc ctgctggctg tcctacctct ctgttaagtg gcggcccgat	540
gccgtggact ggtgtgattt tattgcacta ttaatcatta tcatgggtga agctgccgta	600
gatggtgtaa agtggctggg tcccccttcg ttctgtctgc acagggctac aataaataag	660
ccagtgcgtg gacaggaagg gagtctttat cccagaatgg ggttcagcct ggagcaccat	720
cacccagctt cttagcggag ccctgggtgt ggccggatct cctctgggat ctctctattc	780
tccactgcac cctgggaatt aaggacagct atgcctctgc ttgagcaagc ttcccagccc	840
caccttttct ctctgcttgc ctccctgcct cgctccctgc cgggggagtg gcctcgcttg	900
ctctgggcac cccagtetet teccetagea tecttggtet cctatteact eccetgttea	960

tttttgtttc	cagtgaagtg	tgccaccccc	agccctccca	cctcccctgc	ttccccgatt	1020
ccaccagtca	accccctctc	gtctgaccgc	ccacggggcg	ccgacagcag	ccataccatg	1080
cgggtctgag	ctctgactgc	aagccctggc	tgaggccaat	gctgtgaagc	tccacagagc	1140
caccttctga	tagcatccat	tgcacacctg	gggctctggc	ttctcaccct	ggcctcctgc	1200
ccttccaccc	accatgggaa	cacgtcagag	agccaggctg	gggaccgggg	ctgcttcata	1260
aaggaacatg	gatgccttca	agttcacatc	tgctgccctt	tccctgaagc	ctggcactgt	1320
cattttatgg	ttttaaggca	agacccgggc	atggcaaggc	caggatggcg	tcctctctga	1380
tgcccctgtc	acggggagct	caagtgcagt	tctggatgga	ttgtgtggcc	ctcctgcacc	1440
atcccccgtg	gagtccatgt	gctggtggga	agctcatgct	atgggtgagg	gctagaagtg	1500
aagacaagac	agactccatc	ccttggaacc	cgtacaacac	agcgagaggc	caggtcttgc	1560
catcaccttc	ctcccattca	gtcccagctg	cctcagcgat	gcccaaggct	ttggcacggc	1620
tctgctgatg	ggtttcccag	agttcactgg	aggccagcta	ccctgcttga	gccaaagaag	1680
acgatgagtt	ctagggagag	gctcctgggc	tcccagaggg	gtcaagtgtg	tgacagagag	1740
acgacagcag	gtctgcacag	tgtctgaggg	caagttggaa	gcaaggagca	agatggaaga	1800
gaaaagaggc	ttagagagtg	aaggaagaga	aggcagacgc	ttttcacaag	caacagggat	1860
gtaaagaagg	agggaaatgg	gaagggagaa	tagaaatggc	ttccctagtg	tggagcctta	1920
ggtcagtgcc	aagcagaggg	gctgtcacct	ctgtaccttc	acgtcttcct	cgggagcagg	1980
aggcgccagg	aggactcatg	ccaggcacat	gccagctcca	actgaggtgc	ttggtagcaa	2040
ggtatgaggt	aaggggttgt	tagagtgcta	tagcctgtga	gatggtccta	tctgtgtcaa	2100
ggcctgctgt	ctctctccca	gggtcatagg	cagagagaag	acggtctcat	atgaagtctg	2160
tcagccttgg	ggccttacct	agccagttta	aacccggaaa	gtactgtggg	ctgactgagg	2220
tttgccctcg	gaggaggaat	gaggaattaa	ctgtgaggcc	aagttctagg	tccttccttc	2280
tcatctcagg	catttagagc	agggccagat	gctttcctcc	accccacctg	cccagggagg	2340
acaggacagg	gagagaccct	agcagagcag	aatcttcctt	tagcccacct	accgtgcgtg	2400
aatgtagcca	gacagcagca	aaggaaggct	agcttcagac	accaagccac	cagacctggc	2460
tetecacaca	tttttgccca	gagacttcag	cctgaacatc	agtggcccag	gaaacaactg	2520
catcagctcc	catcaatcca	tcaccactcc	gtcatgggtc	gggacagtta	ctggttcata	2580

tgcaagtaaa g	72 t	atttaacaa	aaattaqtqa	aggagtgtgt	atatatcaga	2640
cactgttcta (ggtgcttagg	atattgtctt	gcttctgagg	gactctggat	cgggaggatt	2700
ccacctgttt t	ttgcctctct	ctggcttctg	gaaagtgctc	cttcatgaca	tcccctatct	2760
gcatagttca a	agcaccccaa	atctgcccct	tcctccttaa	agactggtag	atgggatcag	2820
ctcccaggtt a	accctctctc	cccataccct	cttccaaaag	aaacaaaatg	ttagggcttt	2880
ccccgtcgtt	gtctctcctt	ttttaaaaa	gtggtatttt	ttagaaatac	atgtggaata	2940
ccaagaaatg	tetttgeete	cccaccactc	tcacctacat	ttcataaagc	tggctcttta	3000
tgttgcttt						3009
<210> 37 <211> 1599 <212> DNA <213> Mus m	usculus					
<400> 37 gagaagcatt	tgcatgcaga	gttggggatg	gggcacagag	gggagagacg	agaacagtca	60
gtcggtgggg	tgcagtctgg	aagagtgctg	tctaggaaca	cagaagtaat	tagcaggaga	120
aacagctgca	ggatttaaga	ttggattttc	cgagaggatg	aaattggttt	tgaagtaaag	180
gtggatccag	cttttgtgtt	tgacctttac	cctgtggaat	aacttgattt	ttctaagctg	240
caagctgttc	gaaacctctt	ttagcccatc	agtggtttgt	ttcattttgt	tttgagatgg	300
gctttcactg	tggcgaccca	tgctcttggc	ctccgtggaa	. cageteegge	cttagcctct	360
caagtgctcg	gattacaaca	tgtaccacac	caggcccatc	: tgccagactt	ggagtaaatc	420
accaagtctt	aggagccctg	acacagatgo	catctgccac	aggcatette	ccttctgcct	480
ttgtccttcc	cggctgagct	ccagattgta	. gaagacatct	aaggttccag	tatgactcca	540
tccatggcaa	attcaatggc	acagtcaagg	ccgagaatgg	g gaagcttgto	: atcaacagga	600
agcccatcac	catcttccag	gagcgagacc	cctctaacat	caaatgggad	gatgctggta	660
ctgagtatgt	catggagtct	actggcatct	: tcaccaccat	ggggaaggc	gggggccac	720
ttgaagggtg	gagccaaaag	ggtcatcatc	teegeeeett	ctgccgatgo	c ccccatgttt	780
gtgatgggtg	tgaaccagga	gaaatatgad	atttcactca	a aggttgtcag	g cactgcatcc	840
tgcaccacca	actgcttagc	caccatgga	c aaggtcatco	c atgacaacti	t tggcattgtg	900

gaagggetea tgaccatggt ccatgccatc actgccactc aggagaccgt gaatggcccc 960

tctggaaagc	tgtggtgtga	tggccatggg	gctgcccaaa	acatcatccc	tgcatccact	1020
ggtgctgcca	aggctgtggg	caaggtcatc	ccagagctga	atgggaagct	cactggcatc	1080
accttccatg	tttctacccc	caatatgtct	actgtggatc	tgacacgctg	cctggagaaa	1140
cctgccaagt	atgatgacta	gaaggcagtg	aagcaggcat	ctgagggccc	actgaaggac	1200
atcctgggct	aaattgatga	ccaggttgtc	tcctgtaact	tcaacagcaa	ctcacactct	1260
tccacctttg	atgctggggc	tggcattgct	ctcaatgata	actttgtaaa	gctcatttcc	1320
tggtatgaca	gtgaatatgg	ctacagcaac	agggtgatgg	acctcatggc	ctatgtggcc	1380
tccaaggagt	aagaaaccct	ggaccaccca	ccctagcaag	gacactgaga	gcaagagaga	1440
ggccctcagt	tgctgaggag	tccatatccc	aactaggggc	acccaacact	gagcatctcc	1500
ctcacagttt	ccatcccaga	ccccataat	aacaggaggg	gcctaggagc	cctccctact	1560
ctcttgaatg	ccatcaataa	agttcactgc	aacccaccc			1599

<210> 38

<211> 2627 <212> DNA

<213> Mus musculus

<400> 38 gagctgggga aaaccaagta ctattattct gttaaaggaa cataggcatt gtggtgtatt 60 caaaaataag ggccatgctc agctatcatc agagatgttc ctgcaacagt gcaagaaata 120 aatacagagt cccacagcca ggtattgtgt agagagtgat atgcatagag tttgcaagga 180 totgcacctg aaaggggtcc cattgttgag agaagtagac acatgcctcc agccttaaac 240 aagaagctat caccaatgac cacttaaaaa tgaagatttt tttaccacct gtagtctcaa 300 taaggataaa aacccctctt aaagacagcc cctatgccta gtaatagaga tggccaacac 360 aaaatgaact caatgacatc tttggatatt atttgcatca ggtttttcca agtcaatttt 420 ttaacctttt aggcactttg aatatatt atttccaagt catttttatg ttattcttgt 480 ggctacaaag gtatacaact ctgcatttat atgattttct ttggatcatt ttctatgttt 540 600 tttaagattc ttgttggtct tcttacaaga aacaggcagg ggatgaatct ttttttttg 660 ttttttttgt tttttttt ttgttttttg agatagggtt tctctgtata gccctggcta 720

ccctggaact (cactttgtag	accaggctgc	cctggaactc	agaaatctgc	ctgcctctgc	780
ttcctgagtg	ctgggattaa	aggtgtgtgc	catcacacac	ggctgggatg	aatcttaatg	840
gaagttgtat	aaggggaaac	catactcaaa	attggtttta	ttttaaaaat	atctatttta	900
aatctaagaa	aaataggaca	gaatttctaa	ttcttcgtga	aattggcttg	aacatatttc	960
tgctatttta	aatatattct	cagctactct	gattacaaaa	ttattatatc	attcaaccgt	1020
gatgtttttg	aaaagctttg	ggtctaccgt	atcaaatatt	tagctaacat	ttaatttcct	1080
tataaaataa	gaacctctgt	atctttagta	ttcaaatttg	tttttgtctt	aaacataaaa	1140
tttattttaa	aataacttta	tacttactat	cagtaatttt	atttttatgc	catttacata	1200
ttttaaaact	tgctacagta	taaaattttc	ttgtgtatac	aggattgtaa	atagaactgc	1260
ttttaattta	aaaaaaaaa	gaatgtcact	taagattgaa	tcctgatata	caaaagaaaa	1320
tttgaacatc	ttagaaatta	gcattaatgt	caatcagatt	ggaaactcaa	aatttaatgg	1380
cgaatagttc	ctaaactgac	tgaaaatacc	ttcaaaccat	atccagaaaa	gtgtccttta	1440
acagtaagca	tgaaacgaag	actagaaaaa	ataaagtcct	tacaatgtat	taaaatcatg	1500
cagctaacaa	tcttatttac	tttaaagatc	tatgaataac	aacaacaaca	accaaaatgt	1560
caccatgacc	tgaaatgtto	: agtaatagca	tgtatgccta	tatggtaacc	aacagcgttc	1620
ttactggact	tattacccac	actgtggaga	ı tgagggagaa	tcatgcctgg	aatcagaaac	1680
ctgtgagagt	gtccaacaat	: actgaaatca	aggataagaa	tgcactatgg	tcatttatta	1740
aaccaacaaa	atctctaact	aaattctaaa	a tgtttgtcat	tatgctgtac	: atagataaga	1800
gaagtcctca	ttactcatca	a agaaatttt	ctgtgcagca	a aatgaagata	tttaaacaac	1860
caattgaaat	ttagagttg	gaggccaatt	tcccaatgt	g tatatatcca	taactcctat	1920
acttaaggct	taggaagcat	t tggcaaaagg	g acacagaaa	c ctggagtttg	g ctgtaagact	1980
atgatttcca	gaaatgtga	g aatttgcago	c tatggagtc	t caccaaggct	tccaaaatgt	2040
tgcctgaact	gtgataaag	g caatagaca	t actaacatc	a agcagcaaa	a tctcatgacc	2100
cctcaaatct	agacaaaga	a atacagata	c ctaaagaat	a ccgagaaca	g gagaaatagt	2160
ctacctcaaa	a gaaaagcag	a ttaattggt	g atccaataa	c gacagttca	g gtctgaaaac	2220
atacaagaaa	a cagtactca	g aaccaggct	c tatttatgt	a attaggagt	g ttcacatgca	2280
tgcatgtgca	a tgtgtgtgt	g tgtgtgtgt	g tgtgtgtgt	g tgtgtgtgt	a gtgtatttt	2340

tgtatatgta	tgtatatgca	tatttgtaga	tgcatgtgtt	tgtatgtgtg	tatgtgctag	2400
atacagatac	ctatgtcaca	gcaattaaag	aaagtcatga	atttgaaaag	ggggggagat	2460
ataaatgaaa	gggaatgaga	aagtgatgta	attatattat	aattttgaac	tgaataatct	2520
tctaatttca	aacccgtcca	tatatatgta	agttcaaatt	ctagcttttt	caatttaaat	2580
ctacctcaat	gccagctgtc	tctgtctttg	tctttgtttc	cttatcc		2627
<210> 39 <211> 1854 <212> DNA <213> Mus	musculus					
<400> 39 tcaaaactaa	ctccttgagc	tgaccaggaa	agatgccctt	gagcagcatt	gcagttttta	60
cagcacagac	aacccagaaa	cgtacatact	gcctaaagtg	atggtctgcc	cagcatctct	120
ctctccagcc	agctctcaga	gctgcccaga	gcttcaacac	cttgaaccct	atgtgcttag	180
gagtgacagt	agtcaggata	gcccagcagg	cagctgggta	tactttattc	agggcacttt	240
ctgtacatgt	ggggttagtd	tttatatgta	ggagattatt	aaatgccctt	ttgctgcttc	300
ataataattg	g cagataccto	atctttgttt	cctactactc	ttctttgtag	aggggcctga	360
tggcctctgg	g ccctcctcta	tcataattcc	: atgattcctt	cccctgcttc	tgtctttcct	420
ttatgagga	gcttctctca	accctccctc	: ttcattctac	acattgtagt	: gggggcaaat	480
ttttacttga	a gagatacgta	catagtatgo	agtttatcct	tgtacagtgt	acatttgatt	540
gtcgtctati	tacagagete	, tggaaccatt	atcatcatca	gttttagaac	c atatttatca	600
ccagaaaaa	cctgttccca	ctagcagtco	tccttcacct	ctcctcagac	ctggcaacta	660
ctaatcttt	c tgtccttgtg	g gatttgccta	a taacggacct	ttcataaatg	g ttatatgcga	720
tgtgcaatg	t gtctgtttac	ttagttttaa	a ggttcatctg	tgccatggta	a tatatcatca	780
tttcaagta	g tgagtacct	c totototot	c tetetettte	tctctctctc	c tgtgtgtgtg	840
tgtgtgtgt	g tgtgtgtgt	g tgegegtgtg	g cgcttagaca	ttttcattg	t gtggccctgg	900
ctgccctta	g aacaggctg	g tcttgagtt	c acagaggaag	g ctctgcttc	c caggtgctgg	960
gattaaagg	t gtgtggcac	t gtgcctgcc	a gtgggtttgt	tttgttttg	t cttttctctt	1020
cagttttt	a aattgtcta	a atatttcat	t acagtgcata	a taatgggcg	t tctgtgattt	1080
ctagtcagg	a cgatcatga	a taggettet	g tatatatgt	g tgtgcaaca	c cccttcatgt	1140

tctccttcat	ggacatgtgg	gggttttggt	ggtggtggag	gtgggttttt	gtttgtttgt	1200
ttgtttttgt	ttttgagaca	gggtttccct	gtgtaacaag	ctctgtctgt	cctggactca	1260
atttgtagac	cagggcctgg	gcctcgaact	cacagagacc	ctcctgcctc	tgctagccaa	1320
gtgctgggat	taaaggggtg	caccaccaca	cccagcgtgt	tttcattctt	ttgtatagga	1380
atagaatgga	tggatcgtaa	ggcagctctt	acctttagtc	tttggaggaa	ttgccaagct	1440
gtgttcccat	ggaggatatc	aggattccag	tttatcaagt	cttcaccaat	attgtttact	1500
aatttgaagt	gtgtttcatt	gtgtatgtgc	tgtgttttat	tttgtgggca	gtgcagggga	1560
ccagacccag	gacttgcaga	tgtagacaag	tattgtacca	ctgggctcca	tccacagtcc	1620
cttagctggt	tctgagttgc	agtttcctaa	taactagtga	tgttggccat	tatgtcttcc	1680
tetteeteet	gtgtctgtgt	ctgtggtttt	aagatagggt	ttcatgtgtt	ggacaatatt	1740
tttgttttgt	ctttttttt	ttttcaaaga	tagaatttct	caggctgggg	aaataggctt	1800
acaaccaaaa	atataagagt	tcggttccta	gcacccatag	ctgtctctcc	agcc	1854

<210> 40

<211> 3683

<212> DNA

<213> Mus musculus

<400> 40 acgattataa actgaagaca cttaattctg gtagatacgt agactcagct gataatacca 60 atcactactg atcaaactca ggatccatgt gtgaactgta ttcatttctc tgtggtgctg 120 ggagtggaac ccgggatctt gtattctagc aagtgctata cctttgagcc acacttgagc 180 cctcccacac gtacagtctt aagcatgctg ctgcccacac tgacacacag agatgcacac 240 tgacaggcag agtagcccca gcaacccaca tacagatgtg tgtatctaca cagatgactg 300 agtotoacca atgoacatto coaagtaact agaacctata agottotgtg atgottggtt 360 cttaaactcc cccactctcc ccggcctcag tgcagacaat ggggccagct actaggcagg 420 aaactggagt ggcaaggtag gccatggtta ttaaagaaac cagacggggt ggtggtgcac 480 acttcaaagc ctagetetag gaagacagag geaggtggat etetaggeta geetggtetg 540 600 cagaatgagt tccagaacag ttagggggac ctaaacaaac cctgtatcta aaaacaagag ctatatccag ttgctgctgg cattgggcag gtgccagctc cacatacacc tccatggcag 660

tgggcacacc	ttcctcttcc	tctagggaca	gcgactcaga	cttgtacagt	taccagcccc	720
agagetgtet	ctctgcttca	taagatgtca	ctcctcattt	ttaggggtga	gaaaatg gg g	780
aagaatatat	aggctgtaga	caggataagg	agttgagcca	aggccaggtt	ccctccactt	840
tctctggtgt	gctgtttgtg	cacacgtgtg	agtatctaga	cttgcaaaga	tactgcttct	900
caacaggagt	ctgggatgta	agagacaggg	actgggggct	ggagaagtgg	ctcagggctt	960
aagagcactt	attgctcttt	ccaaggatct	gggctctatt	cacagtacct	ccagggtagc	1020
ttaccaccat	cttgtaactc	caattccatg	gggatctgac	gecetettet	gatctgtggg	1080
caccaggcgt	gcaaaacatt	taaaatataa	ttaagtcttt	tttaaaagta	actttaaaag	1140
tcgtttattt	ttatttcatg	cgtattattg	gtgctttgcc	tgcgtgtatg	tctgggtgag	1200
gatgtccgat	ttcctggaac	aggagttaca	gacagctgtt	agctgccatg	tggttgctgg	1260
gagttgaacc	agagtcctgc	aagagcagcc	agtgctctta	accacagagc	catctctcca	1320
ttccaagtca	ttgcattttt	aaagagttca	aagaaagaag	gtgggatggt	aggtaggtac	1380
tgagcctctg	cagtggggta	aagtcagatc	aggactggta	tttgtggagc	atgcccacct	1440
ggctcagttg	ccctctgcct	gactcctccg	tccatgctcc	atctatgctt	atctttggtg	1500
tgctgtgttt	gcttctacag	atggggaggt	tgcctgactg	tctacccatc	ggcctggacc	1560
ccagagccaa	gccagctgag	tgagtgccga	gggtcccagg	tgaccggggg	agtggcactg	1620
ctcaggcctc	tgcaaagact	accctggaga	agctgatgct	ggtggagaca	gccctttctt	1680
gctgagtcca	gcctctgcag	agcctgcgca	ggtaactgtg	agccagtgta	acaaagatcg	1740
cctcttagct	taggcagaga	gagagacatt	aatctagcct	attogaacto	cccattatcc	1800
agagaaggga	atagaggctc	atgtggcaca	gtgagtccct	tagcatcctg	cctcctagcc	1860
tgaggactct	tccctatgcc	tccatgacct	. ggagaactgg	gcggagagat	gggttgtgac	1920
ggtgaccagg	attcagggca	gaggtggaag	ccagcgtgcc	tgatatatgo	: agctgacctc	1980
cccaggactc	ctctacagag	ctgagaggcc	: atggtagtcc	: aggtgtgatt	gcatgcccgg	2040
cagctggccg	cagggcaggc	catggcagga	cccatctttc	: ttgtggccca	ggtttagccc	2100
acccaggctc	ccagccacag	aggccaggtg	gggctgccct	gccctataga	ggcaactccc	2160
tgaactgaca	catgaagcct	caggetecag	gaagctcctt	agagtttago	c ctgctggaaa	2220
ccccacccaa	cttccaaagg	agcattects	g aggtctgcat	gggggttggg	g cctccaggga	2280

tgggaagggt ggggaggcag	ggctgcagga	ggatgtgagg	ctgtaaatgt	gctgtgctgg	2340
gtctgtgtgc aagcaggtgt	gtggggctct	ctgtccttag	tgcacagggt	tgtgtatgca	2400
agagttacat aagtggccta	tgtggggga	atagttaaga	gcttcacatg	tgtgctgtag	2460
tggtgactgc tggctatgga	tcctatgcag	gtgtgggtat	cctgggctgt	ctaccacaca	2520
gggtactagt ggaccaagac	tcaaacaccc	ttgggtgggt	ttgtgtgtgc	tcagggttct	2580
gagcacaagg tgaggtggca	tgtgcacatg	gctccctttg	tgttttggag	gtgggctggg	2640
caggacttgg gctgcgctgg	gctcagcaat	gcccagcctt	gtggccaaac	tgctgaagtc	2700
acttcctttt caacagtgac	tttccagggg	gaggagttct	tccgacctgg	tcggcagtga	2760
ggggcgtggc cgaactggct	ctctctgggg	agggatgtgg	gcgggggcgg	gagagaggtg	2820
ggaggaggtg ctagtggtac	tggaagaggg	agteetetgg	gagacagaag	gaaagacaag	2880
gacaggagtc tggaagggcc	aagggcagga	gggaatgggg	gtggagtggg	gctgaaagca	2940
cagtccctgg gtgacctcgg	agggaggaag	ggagggctgc	caatgaggtg	accctcgggt	3000
tcagtgagag ctggcagtgg	cgcctacaca	cctggcactc	ggggcaaggg	gctggcaggg	3060
ggcggttcag gaacagacct	gcttgccagg	tgccccactc	tggacaggaa	gagggtgggc	3120
gggggctgta caaaggagct	ctgtgtggct	gaggataggg	tagggtgggg	tatgcagtgc	3180
tgtactgttc tggggttggg	ggagatgatg	ggggcggggc	aggaccagtt	ccccttgggg	3240
catcagtggc tccaggggga	cacctagtgg	tcaggggagg	tagtgcatct	tgataacaaa	3300
ctgggggaaa agagattaga	agtggtagtt	gagatagttg	aggaggccag	ggctagtctg	3360
aatctttgga tgatgaagca	atttgactta	aaggatccca	acaaaaccaa	acttaggtga	3420
caacaaagct gattggcatg	gctgtgtgtc	cttaagggca	tgactaagcc	tctctgtgtt	3480
cacatttaaa tgcaaaacaa	gtgactgggg	ctggtgagat	ggctcagcag	gtaagagcac	3540
ccgactgctc ttccaaaggt	ctagagttca	aatcccagca	accacatggt	ggctcacaac	3600
catccctaac gagatctgac	tccctcttct	ggtgtgtctg	aagacagcta	cagtgtactt	3660
acatgtaata aataaataat	ctc				3683

<210> 41

<211> 2311

<212> DNA

<213> Mus musculus

<400> 41 aaatgtgcgt	tattggggtg	taattgcgat	tgctagcagt	tttgagtagg	atggcagcat	60
agttgtatat	atccaaggct	gatacagaat	ttggtaggac	ttgttatgtt	atctatcaat	120
gggagacaag	ttgctggaca	tcaagctcag	gggttatgcc	tgctatgaaa	ggctaccagc	180
aattgagccg	catcccagtc	tgtctgtgtg	tcttgtcttg	tctttttctt	ccttccttcc	240
ttccttcctt	ccttccttcc	ttccttactt	ccttccttcc	ttccttcctt	ccttccttcc	300
tctctctctc	tctctctc	tetetete	tctctctc	tctcttttt	ttttcttttg	360
gttttttgag	acagggtttt	tctgtgtagc	cctggctgtc	ctggaactca	ctttgtagaa	420
caggctgacc	tcgaactcag	aaatctgcct	gcctctgcct	ccttagtgct	gggattaaag	480
ggcgccacca	ccgcccggct	atccctgtct	ttcttgattg	cgagatttag	aacatgggct	540
taatgaagaa	gttgcttagt	gagataaggt	acaagttata	tttttaaaat	taaatttata	600
aaactacata	atacttttga	aatcatttaa	tgttcaaata	tttttattcc	ttatatctca	660
tttaaagaag	tatcacacag	aaaagcttaa	aattatacat	gagattgcta	taatagagtg	720
tatgagctgt	agcaatttca	ataaaacaga	tgcttgaaaa	attatgtaat	gactgacctt	780
actaattgtc	ataaacttca	catgtcactt	gtaatagggc	aaaaactgcc	tctattaagt	840
gttttataga	aacctgcttt	attgcatttt	agttacagga	ataattcttt	tgttgggata	900
caacctccac	tttgtcctct	ggaagagtag	agaccttgtt	agatgttcag	gataagaaga	960
aagatacgag	atatataaac	tgtattgtga	aagctctgtt	ttagattgaa	agctgcctgg	1020
aaataggtac	tacagttttg	ttttttcaac	ttataagctt	attaaaaatt	cacgaaaagg	1080
agtgtacaag	acacacatct	atctaggatc	cttttttc	ttcctgggac	acattcaaga	1140
gagagcagtg	ggttctgaag	tgccatttgg	ttttgcattg	cctttattt	tggtctagcc	1200
gcactgttgc	ccagacttgt	cttgaactca	. tggactgaag	ccatcactct	gcctcagcct	1260
cttaggtgca	tacatggtca	. cctggcgctt	cttaccgtct	ctgctacaag	agtacttgca	1320
catataattt	atattgttac	agtaaggcat	taatgcagtc	agacctgttg	ctaagggtca	1380
gggttccaga	. atcttacttg	tgctaaatta	atgtgtgttg	gttggttago	: tggctggctg	1440
gctgttgttg	aatttgtato	aaccttagtg	ctgaaattac	: aaatgtgtca	tcacatcgac	1500
ttaacctaat	ataattgttt	ttgcccagtt	: agactattca	ttttccaaag	tccacttaag	1560
gactttgttg	tgtatggttc	: taggtagctt	gccacagtat	ccctccctcc	: agattctagt	1620

catgagggag	cttcctgctg	gttgttgctg	cactgcatat	cagtttcttt	tgacagaaga	1680
ggtctacagc	tttttacaat	actttgataa	tttgaactat	atttgcatcc	ctacatttta	1740
caggtgtgtt	tgctacagac	cctttgtcag	tttcagcatc	aattgttttt	ctaaaaagtg	1800
tagtcttagt	ttaatgaact	tgaatttgta	agatttatat	aatgtatata	tatcctttga	1860
atctttgatt	tactgtcttc	tattgattat	atctattctt	attagtccct	ctggaccctt	1920
ttcttatcat	ggccacctcc	caactttatc	tcctcctcaa	agtagttttt	ataagaattt	1980
gtgtatgaaa	aagaggcaga	gaagatataa	atatgccatg	tgtacccaca	gaggcattgg	2040
atcttcctac	ttacgggcat	tgtgagccac	ctgatgaggc	tactgggaat	agaacttgtg	2100
ttctctggaa	gagtggcaaa	tgccatggaa	tcttctccag	cccctttcc	tttttttt	2160
tttctttct	cctcttgcct	atggctttgt	ttttgttgtg	ggggagtggg	gatctttatc	2220
tttacttttg	taaagtgttt	ataaaaaccc	atcagcattt	ttcctactct	tgcttccctc	2280
tttaaaactt	aataaatttt	ttgagaattc	С			2311

<210> 42

<211> 2421

<212> DNA

<213> Mus musculus

<400> 42

tetetetete tetetetete tetetetete tettttaata ttaacaggag accaccatgg 60 acagcatcag ctatccatgt tatttacctc agtttagcca gttatttacc tcaggacaga 120 atggaagtgg gagataaaga cagaggtgta gggaggagag ggagaggagc acctccgtga 180 cctcttcacc cagttacatc aagttccaga accttccagg acagtgccag cagctgcatg 240 ccaagtgttt aatacataag ccttttggga acatacttcg tatctaaatc acagtgagct 300 atgtgctggc atacagtgct cataccctca tetgagccta ctcccccgta accctgcgaa 360 tctaaggtct tcctgttagg ccagtgaggc agctcagtaa ttaatggtgc ctgatgccaa 420 ggctgacacc ttgagtttga tccccagagt acacatggtg gagggagaga cctgactttc 480 aaggtggttc tctaacttct gcatgcacat cccctcctgt cctgcccgac aagtaaataa 540 agtgtgacgt aactcattag taagaaaatc aagtcccact cctcaaaatc ttttttttc 600 tagagatttt atttatttat ttatttactt ttaaagattt atttaatata tatgaataca 660

ctgtagctgt	cttcagacac	cccagaagag	ggtatccgat	ttcattacag	atggttgtga	720
gtcaccatgt	ggttgctggg	aattgaactt	aggacctctg	gaagagcagt	cagtgctctt	780
agctgctagg	ccatctctcc	aattctttga	aagtggattc	cccccatga	gtggttagca	840
ccatttttct	gtatgcagaa	tcgtggcacg	gggacttaag	ctgcttctaa	actacaagtc	900
gtcttagctt	ggccgttatc	ccaatcggta	cggccacacc	cagggattcc	atctgtcacc	960
aagctcctga	gtatcttggt	gtacttgatg	cttgttggaa	ttgggttttc	tctggtcagc	1020
tgaatcattg	gccacccatc	tactaacttc	acaatttgca	aatctaggtt	actgttttca	1080
tcatcatttt	aatttttctt	tatgaatcta	taccattaca	caaaatgtat	tattttcatc	1140
ttgtggggga	attcaggaga	ggatggaatt	aaaatgtgtg	tccagctaat	actgatttac	1200
ttggacatct	acattttatt	gacagaaaaa	acatgctgtc	aaattgtttt	attaaggcag	1260
ttccctccat	cctggactga	ctgacttaga	aaacctccat	caataaaaga	cattgtcttt	1320
gtcataatgc	ttgcagtttg	aacagacagc	attgaataat	tatggaaata	aactttgatg	1380
ggctctgaga	aggaaaaaaa	gtctgatggg	aaacatgaat	atttacagta	tagattctac	1440
tagaatcttc	caaagggcca	tcctcactat	tggagaaact	ttttagtgta	acgaccacag	1500
cactcaggat	accagctgtg	aacagtggtg	ccattaacca	ccaagaggga	gcacagtcta	1560
gtgacaaaaa	gatagaaata	aagggagttg	gagtcacatt	tcagagttct	ttggcaagat	1620
aaagctgttg	gcactaaatc	aatacactca	tcatgactgt	gtcatcaact	ggacaacgtg	1680
ctaggagacg	gttaattgct	ttattcttt	cttttttgaa	tgtgtttgcg	tgtgtgtatg	1740
tgtgtgtgca	tgtgtgtgaa	tgtgtgtatg	tgtgtgtgtg	tgtgcatttt	gtgtgtgaat	1800
tgtgggccac	agaggagcag	tggaggtcag	atgacaacct	ccggttggtc	ctcaccttct	1860
actgtatttg	aaacaggacg	tettgtttgg	tggtaccact	gtatatacac	atcacactaa	1920
ctgctcatga	. ccttctggag	catectacet	tggcttcctg	tctcacctcg	gctgcactgt	1980
cgtcacagaa	. tatacactac	: cgtgtcccca	getttecate	gcttcagctc	ttaatgacac	2040
gtgtttttgc	tcaccgaacc	ctctccccag	cgtttagcgc	ttattcttgt	atgaacaaac	2100
ttgtatctaa	cacctactgo	atgcacagac	: tacagatgct	agctgttaag	agttatgcaa	2160
tgacatccct	catagaaaco	atgcatgtco	: ttgtttggtt	tttetgeeet	taacctcttg	2220
aagttgtgga	tttgaaacca	a cagatgagat	ggatgagctg	gtgagatggo	: tcagcaggca	2280

catgtgcttg tcgtcaagcc tgagatagag tccctaaaat ctgtgtggag gaagaaggcg	2340
tggaacttet aacagetgte ttetgacace cacatgtgta etgtagaatg ecetgeecae	2400
ccccataaac aaataaatgt t	2421
<210> 43 <211> 2545 <212> DNA <213> Mus musculus	
<400> 43 aagcagtctc tacatggcct ttcctacagt ctctgatcta ctctttccct ctgtatttcc	60
tttagacagg ggccaagcct aacctctgta tatggtctct acaagttctc tctccccttt	120
gtatttcaaa taatgtcatc actgttgggt tctgggaacc tcttgctttc ctggcatctg	180
ggactttatg gttgctatcc ccatttcacc atcccacact gctatacact tctgtttaaa	240
tttgtgaccc tctgtacatc tttactgttt cctcccacac ctgatcttgc ccccttttgc	300
cccgacctct ctctctcctc actccctccc aagtctatct ccctcattcc atcttccagg	360
atggttttgt tececettet aagtaggaet gaageateea eactitgate tteettttte	420
ttgagettea tttggtetat gaattgtace aegggtatte tgagettttt ttgtaatate	480
cacttattag tgaatacata ccatgtgtgt tcttttgtga ctgggttagc tcacacagga	540
tgatattttg tagttccatc catttgcaga atttcatgaa gtcattgttt ttaatagctg	600
agaactaatc cattgtgtaa atgtaccaag ttttctgcat ctattcctgt tgaaggacat	660
ctaggttgtt tccagattct ggctattata aataaggctg ctatgaatat agtagagcat	720
gtgtccttat tacatgttgg agcatctttt gaatatatgc cccagagtgg tatagctggg	780
tcctcagata gcagtactat gtccaatttt ctgaggaact gacaaactga tttccagagt	840
ggttgtgcaa gcttgcaatc ccaacaacaa tgaaggaatg aatgttcctt tttttccaca	900
acctcactag catctgctgt cacttgcgtt tttgatctta gctattctga ctagtgtaag	960
gtggaatctc agggttgttt tgatttgcat tttcctgatg actaaggatg ttgaacattt	1020
ctttaggtga ttctatgcca ttcaagattc ctcagttgag aaatctttgt ttagctctgt	1080
acccattttt taatagggct atttggttct ccggagtcta acttactgag ttctttgtat	1140
atattggata ttagccttct atcagttgta gggttggtaa agatcttttc ccaatttgta	1200
ggttgccatt ttatcatatt ggcagtgtcg tttgccttac agaagctttg caatcttaag	1260

agatcccatt	tgtctacagt	tgatcttaga	ccttaggaca	ctagtgttct	gctcaggaaa	1320
atttcctatg	cccatgtgtt	cgaggctctt	tctcactttt	tctcctgtta	gattttgtgt	1380
ttctggcttt	atatggaggt	tcttggtcca	cctggacttg	aactttgtac	aaggagataa	1440
gaatggatca	atttgca tt a	ttctacatgc	agactgctac	ttgagccagc	accatttgtt	1500
gaatatgctg	tttttttt	ttccccccac	tggatgattt	taacttcttt	gtcaaagatt	1560
agatgagcat	aagtgtgtgg	gtttaattct	gaatcttcaa	ttctatttca	tcgaactacc	1620
tgcctttctc	tgtgccaaga	tgatgaggtt	tttatgtata	ttgctttgta	atagagtagg	1680
gatggtgatt	tcccccataa	gatctctgtt	gagaatagtt	ttggatatcc	tgggttttt	1740
ttgttgttgt	tgttttttca	aatgaatttg	agaattgctc	tttttatctc	tgtgaagatt	1800
tgagttggaa	tttgatgggg	attgcattga	atctgtagat	tgcttttggt	aagatggcca	1860
tttttactat	gttaatactg	acgatccatg	agcatgggag	atctttccat	cttttgaggt	1920
cttctttgat	gtcttttttg	ggagactaga	agttcttatc	atacagatct	ttcacttgct	1980
ttgttagaat	cacaccaagg	tattttatat	tacttgtgac	ttttgtgaag	ggtattcgca	2040
attcctttct	cagcccattt	atttttttg	agtagaggaa	aactactgat	ttgtttgagt	2100
taattttaca	tccagccact	ttgctgaagt	tgtttaacag	ctgtaggagt	tetetggtgg	2160
aaattttagg	gtcacttata	tatactatca	tatcatctgc	aaatagtgat	atttegaett	2220
cctcttttc	aatttgtatc	ctatttgcat	agaaggctaa	tatccaattg	aagatctcct	2280
tttgttgtct	aattgctcta	gctaaatctt	caagtactat	attgaataga	tagaaagagg	2340
acaaaaagaa	gcaaacacac	ctaagaggag	tagacagcag	gaaataatca	aatttgggcc	2400
tgaaataaac	caatttgaaa	caaagagaac	tatacacata	attaagaaaa	ccaggagccg	2460
gttctttgag	aaaatcaaca	agatagataa	atccttagcc	agacttacca	. gagggcatag	2520
agagagaatc	taaagtaaca	aaacc				2545
<210> 44			1.			

<210> 44

<211> 2435

<212> DNA

<213> Mus musculus

<400> 44

tctctctgtc ctgcttgtca ggaatcagca tgatcatgag ctgtggttag acatgatggt 60

ttacaaaatt	ctattgaacc	tggcatgaaa	aaaaaagtc	tcgggaaata	ttctttttaa	120
gttttcagtt	atttcagaac	cttactaaaa	tatactgcta	cttgctttta	aagtcggttt	180
tgcgcacata	cgtcttttgt	tgctttcagg	ttctcccatc	ctctgtttgt	agaaatggga	240
cagacaccat	ctacaatgta	agcacaaaga	attgccaaat	gtcttaagtt	catagatgtc	300
ttcatagaag	tgatactatt	atatttttct	ctttctctat	tttcccgaag	tttttttt	360
ctgaaaaagt	tttttttt	aaagaagatt	gggtgattga	gaaaaatcct	ttttgtctct	420
ttgccttgat	gctgtctttt	aaatgcttat	tatcattatt	aaaaggtttg	tgtactttct	480
cagtgtttat	ttttctctca	ttgtttttgt	ttgctgtttt	cctcaagtac	catggtatag	540
tttccttgaa	actagagggc	gacagattct	cagctcacaa	acggaaggcc	aaaatatcca	600
ttgttagtca	gccacagagg	acaatcaagg	tggcagagct	gcctctagct	gataaggtgg	660
aatccacaac	tgatttgcac	tttctcagac	aggtatggaa	atcttccttc	cttcctgttt	720
gccttccagc	aagctgttcc	ctgggccaca	aacacacttc	attcacaaaa	tggaccccaa	780
gttgggggac	agtttacttg	acacagatgt	tgtactgtag	atgaagaccc	aaggaaggaa	840
actgctatca	gcttgcgtga	aatcaattct	aatctgccac	tcttgcctac	agggtctgcg	900
gcccttgttt	ccaaagaatt	gttctgtgga	cttaaaggga	ctctttcatt	ttgaagaaag	960
cacccacaga	ttgtatcaat	gtgatgggat	ctcctggaaa	gcctggagcc	CCCaaaCCaa	1020
ggtgggacat	tggctatagc	taagcacctt	taatgagcaa	tatgccattt	aatgagctta	1080
cagcgtgatt	caatgtgtga	ttctcaaatc	gcacatgtct	tttcttatta	tacctagaaa	1140
gccatgaggg	aaacatggta	cgaagtgact	ttttaagatc	caaagtataa	agccaggtgg	1200
tggtggtacc	tgctttgaat	tcctgcagag	acaggtagat	ctctgagttt	gaagtcagcc	1260
tgatctatag	agtgagtttc	aggacagcct	gaactacaca	gagtctgggg	gaataaacaa	1320
cagcaacaac	aagatccaca	atatagtatt	agaccagtcg	attttgttta	gttatcagaa	1380
tgtcagtggt	ataacattga	accatttctg	actgaggtag	tcctttcagt	aagaagtcat	1440
ttatttctta	agatgagaaa	ttacagcgag	ggcttcctct	gcttcgctga	agtgagaagg	1500
ctcacaggct	tgtactatga	ggccgacttc	agatgatcaa	gtccattccg	gggtgaacac	1560
gcacaactgt	cttgcagggg	ctggaggaca	gatectgeec	aggtggatgg	ctccttcatt	1620
ctggctactg	tcacatcttg	gtcacaagac	agaaaggcac	ctggaccaca	gctacccgag	1680

cttgcagaga	acagtaagga	acccgacatc	acacgtgcct	gccgttttcc	ttattttcac	1740
atggaaatgt	aggcctgcat	aagtcattga	ataagtattg	aacgtctact	gtctgtccag	1800
ctttgtctaa	ggagcctaaa	gggagtttgt	agtttggaat	ggatttgtgg	ctgactttga	1860
tacttctgtc	tgctaaggtc	tttgctgtta	tggctatact	ggtgtcacac	tcttttctgt	1920
ttccttttat	ttccacgttt	taaagaaaaa	gtctaacaac	tttcctgagt	tagcagcatg	1980
gtggcttctg	atattttctc	atctctcttt	gttccccctt	caaatgacag	acatccatgc	2040
ctattgattt	taaagtacct	ggtaataaaa	ggccttggca	tccagcctct	ggcagtgcag	2100
gaggcacgga	tgcccataaa	gccaggcgag	taggacaaag	gctcactggg	taacagtcaa	2160
taaaagatga	cttgtggtca	gataatgaca	acaaaatcca	tctgatccag	aaggagtttg	2220
aaaatgcata	tgtagcagtc	cttgaccaac	ctttttattt	gataacctgg	atattatcca	2280
aacaatgcaa	ttacactaat	atgcatgcat	tcttgttgaa	attgagactt	cagtaatttc	2340
tagttaatat	tgatcatatc	ctatacttta	tcaaatttaa	aagggttgtg	ctcatcaaag	2400
gacaccatta	agaaaatgaa	aggtaaacca	tatcc			2435

<210> 45

<211> 1718

<212> DNA

<213> Mus musculus

<400> 45 aagtgaccca cattactaaa gaatgtcttt caagagagga aaactaaatg gccagtaaga 60 aaggatette acaaagaett teegaggeat tgaggteeaa ttetteaagg tetteagagg 120 ctgccaaact caggctccca ccctctcctt ccatgggagt ctgtctaggc tgaaatctaa 180 gtccaaatga atgaatctgc ttggggggtg ggagcaagcc acagctgtga ctctagctca 240 ctgggggttt ctgttttata ggcggtcagg atcgagtctc tgaaattatc aacttgggac 300 taggaaaaca attgatacta tctgatttgt agaatagccc tgggtaggga aatactaatt 360 ttaaatatca ttcatctttc cttttatcca gtctctgcgc tgtaatggaa ttaggtgaaa 420 ggactgagtc caagctgtag tgagctcagg ggagcttgca caccgaactg acaaattaat 480 ctgtggacag ccctcatcca gtacttattt agtcaatagt cagtgaatga gaaaagggga 540 600 660

ccctccctcc	ctttttctct	ctctctctct	ctctctct	ctctctct	ctttcttct	720
ttctttcttt	ctttcttct	ttctttcttt	ctttcttatt	tactcattag	aattttttcc	780
aatcagcata	ctgtgaacct	tctgtatctt	ttccaaaacc	atcaattttc	agcttaattg	840
ttttccccc	: cttctgacta	aaatgtgaac	tcttgaagta	aacgtattta	catgttaaac	900
ttcccagact	gagttaagag	aattagaaaa	ggactcagga	gataggaaat	atgttcagct	960
ctgtggaaga	gctcattatg	gaacgtttcc	caaacagctc	tgcaatgaat	gcattgtgag	1020
accacctata	a atcgatagac	acatgtgtaa	actgttaaag	gaaatactta	gcaaggtttc	1080
agaatttgag	g gctgatgggg	ggaacttctg	ctatttgaat	ttataaggag	caccaggttg	1140
cagggcacat	cacactagca	ctcctgtgat	cctagcacat	gttattatat	aagtctgttt	1200
gtgttagtg	g gggtacatat	gtgtgcatgt	gtgcacatgc	agagggcaaa	tgtgaacctg	1260
tgtgtaatt	c cttagggtac	tgcctacctc	ggttttttt	aggcacaggc	tctcattggc	1320
tcaggcctc	c cttatttggt	tatgtttgct	agccagtgag	cccgagggac	ccacctgtct	1380
cccagctc	t gggattcctt	ctacctgcca	acaggttggg	gattttttg	tgtgagttgt	1440
gaagatcca	a ctcagggctt	cgtgcttgct	aacatagcaa	gcatttatta	gccatgttat	1500
catctctgc	t teetggggtg	tgtccattca	ttaacttatt	caataagcat	tgtgactgaa	1560
tggtgcaat	g ttctactgag	aagaacttag	aaccaatttt	ctgtgctcga	atcctgactc	1620
taaaagata	t catctgcttg	aacttggcca	aatcacttga	cttctctgaa	ccccagtttc	1680
ttttttgta	g aaggggtaat	: aaataaataa	ggggtagg			1718
<210> 46						

<210> 46 <211> 3044

<212> DNA

<213> Mus musculus

<400> 46

tottttatt ttattatt atttttgac aatttetett tgetttatg ggggagagaa 60
agttttteet tgettaggag gaaaatgaca ggtetttaet tggttgtttg tgetgagace 120
acactetaag atatatttga aaagtacete agetgaagea geetetgeta gtteacagaa 180
gaacacaaag aagetaceeg cacaaagetg gataagteag taagagaaga tteeatggga 240
tetaagaaca gaaatetgtg ttttagtgte atettattat eeetacetta tttettgee 300

tctctgtgct	cttgacttta	attcagggta	agtagccctt	gatccccttc	ccctcttcag	360
acacgggctt	ccacattggc	tacccgacgc	ctgcttctgg	agactcctct	gttgagtacc	420
tgcctttgca	gtggttgccc	caaagctgta	gtgagacagt	gacatggttg	cctgagactg	480
tgctgtaagc	agaacatgtg	cggatgaagg	tttccttact	ccagactgga	ggagatgggt	540
caaccatagt	tcttcatata	tggcggatac	tgtttatatt	gcagacagca	gtgacagaaa	600
aattatgatc	gatgcttatt	ttatttcagt	ggaagacaca	attccatgaa	tcagaagaca	660
acaaatgcca	agaaaggacc	aggttaaaaa	ggttccaaga	tcaaaccatc	ttccaaaact	720
caacccgtga	ctccagagct	gggcagactt	ctatttttc	catcttttc	gtcattcagt	780
gtcttcagtt	taggaagcta	atgttcaata	cattcctcag	gggaggaaat	agatgaggga	840
gagcggcttc	tctcactctt	tcaaaagttg	attcttctgc	cctgcataaa	agtcatgggt	900
ctccagcaac	cctaaatatc	cagtacatgt	gcttatagtt	cttacaatac	cttagaaggg	960
acccgaaggt	tgacatcctt	ctggcactct	cagtagagtg	tttctgatat	tctctgattg	1020
cacttttatg	ttgtatttgg	tttctaaatt	gaccattagt	tagaactata	tattgtttta	1080
tatattatat	ataatatctc	cacctttttg	ttattttaaa	ttgcatcatg	ctcagttcaa	1140
ctttctaaaa	tcaaggtttc	aacatattcc	cagatcacat	gcatatgaaa	gtttcaggaa	1200
aatattatca	ataacttcag	ccatgcactg	cattgttctt	gcccccatcc	cccccccc	1260
gccagtaacc	ttgaggattt	agggttatcc	tatcacctca	tgtttatttc	ctacatctag	1320
aaaaatggct	gtgctaaact	gtataattta	taaaatttct	agaaattcag	tcacaggggt	1380
ctgccactgt	gtatgtggca	ttaaagtcat	tttgtgacat	ttactaattc	acaaaaatgg	1440
tctagttttt	ggaccaaact	ttgcaggagt	ttggaatact	ggagactaga	aggaaataga	1500
gggagaataa	gaaattgttt	ttaggaccta	tgaactttat	tgaattttat	tcatgtttag	1560
ggtgttttgt	gactcgaatg	ttttttctaa	ttgtagtaga	gatcaggaag	attcatataa	1620
cttacccatt	taaatgagag	aaattattgg	aatttaaatt	tcttgtgcat	gttaagcaag	1680
tggtgtttta	acctatatct	gatgaaaaaa	. gtcatttggt	tcctttta ₍ ta	tgtaatgtgc	1740
cttttacacc	tgaggggttt	atgtgtatgt	atgtatgtgt	gtatgtatgt	atgtatgtat	1800
gtatgtatgt	attatgcata	. atatgtacat	gtatgtgtag	ataatagaac	cataatgctg	1860
cactcatgaa	cttgcagtag	ctatggttgc	: ctgcacaaaa	cctgctcaag	atcaagctag	1920

ccaacattcc agctccagtg gcagagggac acatgggcct cacccctagc tgagaagctg 1980

gtgacagcaa	ggtctgctag	gagagggaga	gtccgtcctt	ttaagggtgt	ggtccctggt	2040
aggttcagaa	tgatccagta	gatggcccca	cggctatgta	tttatggaca	gcactaactg	2100
gcttcaatgg	aatagatgtg	tgtgtgaata	aacatatata	tggatgtata	tgtgtgtatg	2160
tatacacacg	tatttaaaga	tatgctgttg	ggaaggggtt	atgggatctt	ggaattggtg	2220
tgtgtatgaa	ataaatacat	tgtatacatg	tgtgaaatta	tcgaagaata	aaatatttta	2280
ataaaatgga	atattgacat	gatagggctt	taatgtacat	attttctctt	tctttatttc	2340
tcttccaagt	ttgtttctaa	agactgattt	tteteetgge	tttgggtctc	ccattctgct	2400
tcatatatct	atacagtttt	tattggatgt	tgagtatcaa	taatatcata	ttgcagattg	2460
caatattcct	atgagcattt	aaattgctta	cagttctatt	taacgcctca	gacttccatt	2520
ggagtgagta	aacctgccaa	gagtgaggtt	gttaagatat	agctagcctg	aggccccagt	2580
gaagttaccg	tgaatgacac	aaaggacaca	tagctctgct	tggcccagac	ctggatgcct	2640
ggagacctgt	aggcactctg	cttcaccatt	ttgcaattta	tgccttggtg	tcctgtaggg	2700
gctcgtggta	tcctgtgcag	acttggggtt	ctgtttttgg	acaggccttt	gtgttcacca	2760
tcagcctctt	ccaccagctt	ctgtctcctc	taatgtggga	aacggacctg	ttaccatggt	2820
acttccttct	ctgaagtctg	tgatgtgtat	aggggaggag	ctaaggaggc	aactggactt	2880
gctgccttct	caaggateee	ctcttacacc	: tgcaaacaac	tcttttatct	atttttatct	2940
acccttctat	ttagtcacag	tgaatggcta	aatttggctc	tgccactctt	gcaaggccag	3000
aactgaagaa	a cacattcact	tgatattaaa	actatttta	aagc		3044
<210> 47 <211> 3100 <212> DNA <213> Mus						
<400> 47 aagtttata	g ctatactgtg	g tacatagtat	atataatata	ı tatgaaatat	: atatccatat	60
gcaaaaagt	c ctgcatgcct	caattttct	c atccctgaaa	ı ctggaagctt	cacttatcat	120
ttacaaaca	g gttccaacat	teetetttt	t gtgtctggtg	g ccagaactgg	g tttggaagct	180

240

300

gttaacatgg ctgttttgct tgctgcacaa ttcggtttcc atctgtgctt atttacagac

aaaattcaat gttgggagat gcttctcaag gttcaatctc agacctttta ctttcgttgg

tttggttttg	gtgccgccga	acggtgtcag	gtgagcaccg	tgagtccgct	cttctcccct	360
tgtgttttcc	cctcgtctct	gcggatactg	tacagcaatg	gtcaactttg	ccacttgcac	420
tgagttttga	gtcaaaccta	ttttcttaaa	tgaagttgta	acttcggtat	aactcaagta	480
tattgtatat	tctttgcttt	tagttaaaaa	aaaaaagta	aaacatttta	gctaattaaa	540
aagcactcag	gtgataatta	tgtaggaaaa	aaaaaaaaa	acaatcttgc	caaataatga	600
acccatccta	ggatgtgtag	acaataatct	gcttgaatat	ttttgtagct	cacttcctcc	660
ccacgtttcc	ccaagtaaag	ctgaagtgca	gatgattcag	agctgacact	ggatgctcaa	720
gtcctccaca	gggacagagc	ggatggctcg	aaggactgca	gagcaaaaga	gcgggagcct	780
gcggtggtgt	gttagaacgc	cacaggcact	ggtgaggaga	cagcagggga	ggaattctct	840
tcatttaagc	atttctttct	ggcctctgct	tagacagcgc	tcagaaatgc	catgtggtag	900
ggcctgcttc	tttgaaggtc	acagctaacc	aacccccagc	tttcctgccc	aggcctggcc	960
tcagctttca	gtggcagccc	cctagattaa	ttgagctcac	caagagtagg	aaagagaatg	1020
gcagaatgga	gcctgggatc	cacaaggact	taggctaatg	catttctttc	ttccttttac	1080
ccttccaatg	ccctctgtac	tcttgaggtt	ttgttctgca	cccccctcc	cccaagtctc	1140
ttgtctgaaa	gctgcttcat	cgaggcatag	gacagatacc	gtaggagccc	tatgaaatat	1200
gcccaagccc	tccacccctc	acccccacct	ttctcccacc	ccaggtaata	atctgcttcc	1260
cttcctaaaa	actgcttggt	ttgcagatct	gtcgagcagc	ttccttggcc	ccagggtatc	1320
ctggtgcaag	ccatgtttac	aggaaggcat	gccccagggg	tcagctccct	cctcccaaat	1380
ggtctctatc	tatctgcttc	tgttcagcag	cctggagacc	actccagctg	tgcaaggtta	1440
tccagaaaag	tctgatgttg	ggatagggta	gagggtaatg	gggactagat	ggatggttga	1500
ctttgtttct	tcctctgtgc	cattgtttgg	, acaatattaa	agctgcatgt	aaaggggaaa	1560
gtaatgtatg	actagtaggo	aaaagtgaaa	ccctagtgac	acgttctagt	agtactaact	1620
tctttctgta	. cctgtagtag	tactaaaggt	ttaagtatgt	atgaatgcca	gaagttgttg	1680
attcatgcag	tagaatttaa	ggggaaattt	acttcttta	a aaataggtco	attttttaaa	1740
acctgcctct	gggttttgag	g agagagagag	g agagagagag	g agagtgtgtg	tgtgtgtgtg	1800
tgtgtgtgtg	tgcagatttt	gatacagcta	a tgttggagct	gccatcgttg	g ttacaacgtt	1860
ggtacttcct	ggtctactct	: aacagttcc	c ttcaccagag	g gcatgtctco	atgaaaagca	1920

ggtaaagcta acgtttagct ccttgcgaat catggggtac tcacagttgc ctgttatggt	1980
acaggagtca gcagacagta ttttttttt taactctctt attgcctttt taagtgacct	2040
cttctaaaga aacagaagge ttgtattetg etcaggecat catcagtgeg gagaageete	2100
totgottgtt ttatgtttto coagocogtg otgoagotgg aggtottgco acattocaca	2160
gtttacccac tacgtttctg ttgccagtag ctcagaccca tggcagccac ttccagggct	2220
gggggccagg gcgtcaggtc tcctcgtttc tctctgccct aactcagccc tcatcttcct	2280
cgttttcttt tcctcttcca ccccatctgt gccatggaaa ctagcatttt caaaggactc	2340
taaaaactcc tatttctttg ttgttgtttt ttttttttt tagtttggtt ggtttttggg	2400
gtgttttgtt ttggttttgt ctttgttttt tgagacaggg tttctctgta tagccctggc	2460
tgtcctggaa ctcactctgt agactaggct ggcctcgaac tcagaaatcc gcctgcctct	2520
gtctcccaag tgctgggatt aaaggcgtgc accaccaccg cccggcttct ttggtatttt	2580
taacaagtaa ttttattcag tatccaccag gaacagcaac tggctttgtg tagttgctca	2640
cggggcatgt ccgtgtcttt tactgttcca aaccattgct tatcaaaatt gtttctgagt	2700
tgattcaaaa ggagacctca ctggggacca gaatctaagt tctttaagtg gaattcagac	2760
gtccccagtc tgtccttccc tggaatccct cagtcaacca cattccctct gtagaaaaga	2820
aaggggaaga gaagagagga gagtgtgttt taaaggaaca tttagttgtg tgtttgaagg	2880
tottttottt caacaataca ggacactoot atocaaacco aggootooco otoggagcag	2940
cctctgtcct cctgtgtctc tgaacagcct ccttcaggtt gcccaggctg tgggcaggtg	3000
tgtgctttgc cgagttgtgt ttgtgtctct gcgttatctg gggggtgcct tgaataaagt	3060
acaacttcat gacttactga ttctggaact aagcagttcc	3100
<210> 48 <211> 2023 <212> DNA <213> Mus musculus	
<400> 48 gaggaggagg agccgaccgg agagatgg agcttctggc cagacttcgg aacaagaagg	60

120

180

acacaacaac cttgtaaggt cttgtagagg cgataactgg cagcctctgc cactggcgga

tagctgatat aagctagcag ataaggttag ggcaggagat tetttgecca ecgattgtgt

tctctggcca	gttttaagat	aataaaacag	tctatgtttt	tetteettgg	agaaaagctg	240
gacagagaaa	gagggaagcc	acctgacagc	ttggtgaagc	taagcttcga	ggggctagcg	300
ggaatgatca	cgatgccgag	gaaggcacta	agccaggagc	gctggcagag	ccctcgggaa	360
ggcaatagcg	tgttttataa	aattacacgc	aacacaactt	atatgcgaaa	ataaaacaca	420
acgagctcat	aagcaggtgc	agggaggact	gcagggtggc	atgcctttct	ccaaggtttt	480
tttttttgtt	ttgttttgtt	ttttttaaac	tcatttagac	acaacagttc	aggctgacct	540
ctgttttgat	ggatcctgag	tgaaggctac	agttggggaa	caacaacaac	aactactact	600
actacttact	acttctacta	cttctactac	tactactact	actactacta	ctactactac	660
tagcagcagc	aactactact	acttactact	tctactacta	ctactagcag	cagcaactac	720
tactacttac	tacttctact	actactacta	gcagcaacta	ctactactta	ctacttacta	780
ctactactac	tactactagc	agcagcagca	gcagcagcag	gctggctaga	gagatggctc	840
agcggttaag	agcacttagc	tgctcttcca	gaggttccga	gttcaaccta	cttggtggct	900
cacaaccatc	tgtaatggca	tctgatgccc	tcttctggtg	tgtctgaaga	gagcaacaat	960
gtactcatat	acattaaata	aataaatctt	ttaataataa	taataagcct	cagaatatat	1020
gaccaacttg	atcttgctct	gagccaaact	atttttctat	gtctatagtc	aagctgtttt	1080
tatgtcagca	atatgggatg	gctggcaggc	atgaaacaaa	ggggttacag	ctaagctaac	1140
ggtttcatca	atgatcatgt	gccctagagc	ctgggattta	cctttgagaa	ttcgtagata	1200
gaaacgatgg	gtttggactg	ggtattata	taccatcctg	ttagtatggt	ttaaatgtcg	1260
ggtttcttta	acgttggtgg	aacaggtcag	aagcggcatg	catagaaaca	aagctccaag	1320
ctgctgtctg	aagcatcatt	cagagttcct	ttacccttta	aggaccttca	ctcagataag	1380
actggtcccg	tgctttaact	: caaaagaatc	teggagtgag	r ccaatagtga	accagagccg	1440
gctcttgtgc	ttgtttccct	: ttgttttta	. agatttcatt	ttggtattgg	agaaatacct	1500
gaacagttaa	gagcacaaca	ı gaaaacccag	gtcagttctc	agcaccctca	tccagtggct	1560
cacaagtgtg	tgtaactcca	gctcctgaco	: tgggagaatt	gagaacgcct	gectecetgt	1620
gtggtgcaca	agctcccaca	tgggtggatg	gteetgeace	atctttccac	atgtttacaa	1680
ttttttatt	: tttttattt	tggtttttcc	: agacagggtt	tetetgegta	gccctgattg	1740
tectggaact	cactctgtaa	a accaggctgg	g cctcgaacto	agaaatccgc	ctgcctctac	1800

ctcccaagtg	ctgggattaa	aggcatgcgc	caccactgcc	cggcatggtt	acaattttt	1860
attttgtcgt	tatagttcct	tttccatttg	gtaaaatcta	gtcattttac	cttgggacaa	1920
aacctccccc	tccccccacc	ctgtttttaa	aattttattc	attttgtttc	ttgttttaga	1980
gtggggcttc	atgtagtcca	ggtttacctt	atgctatgta	gcc		2023
<210> 49 <211> 3693 <212> DNA <213> Mus m	nusculus					
<400> 49 gctttctgga	cttagggtcc	agtgaggaaa	gcatccaaca	tctatgacaa	atagtgaata	60
agaaactgta	cattaactat	ggagaaagag	ctgtgaggga	aaggaggcct	ttgacatttt	120
agactatctc	ttagcccttc	tcctgcctct	taattaagag	gtgctttctc	tttgcactgg	180
accctggaaa	tgatacagtc	atccccgctt	ggttccttct	ggccggcaac	ttctgtctgg	240
tetteceete	ctgcttctag	aaaggaaaca	agaagtcatt	taaagatatt	gctgagatca	300
gggacgagtc	atttcttgtc	tcttttctgt	ccttctgaag	gtcactatga	ccagctccac	360
ctcagacctt	agaagttacc	cggtctgagg	agaggagaca	aagtcgtcta	tcactcgctg	420
gcttggaagt	catgaatctt	cctgccagcg	agctatttct	ttgcagacac	ttactatgtc	480
cccagttctg	ggttagtgtt	ggctctgggc	aggaccaatt	agggatgcag	gacaggaacc	540
ataaagcaag	cttccaggaa	atgaggctcc	aagttcacag	tcagctttat	ttaagggctt	600
gtttgcaagc	acagggacag	ggccgtgcca	ggcaagttaa	acattgtccc	tggccccaag	660
gggatggatc	atggcgagtg	cagacatggc	ctggtgcaga	gagggtgaga	agacagcctg	720
accactgata	aggtaagcct	atagacagtt	gtcacaagca	tgacactgct	cactgttgct	780
ctctaacctt	ggtccagaat	cacgggcatt	ccatagttgg	caactgggct	acgtctggtt	840
catcgcaagc	tgtcatggaa	ggagaatgta	tgtcaggagc	cactgtgccc	tgcccccac	900
ccccccgcc	ccactctcag	gtettteeca	gggcctacct	catagtttcc	aaacctttca	960

agactgcggt aatgccctct ctaccggtac attttaagcc ccgctacttt gtttgttact

ataaaagtcg catcagacat tcccagaccc caagaggcca gacaaacgcc aactgtcctc

ctgtggtcct gctagacaca tctagaataa cccagtcagt caatggacag gggagacatc

tetgtgtage etggcaggtg ggggaagtat ecegtgtggg acatacetge etgteeteag

1020

1080

1140

1200

ttatctgaaa t	ttccagtgta	ggcggacatc	ctgtactttc	tcagcagctt	ctgtgaaatg	1260
ggtgaatcca 🤅	gaaaggacaa	agactctaga	ggattctgaa	ggtccccagg	aagggtcaga	1320
agggacccta t	ttactgtggc	tgctaactgc	ctgctgtcat	gtctgctggt	atacccaggc	1380
ctaggcatag (ctcctctgtg	cactgggatg	ggtgtgccgg	gccttttcct	cctctccacc	1440
actaagctct (ccccagggat	gggacacagt	gagggtccca	tcccaacctt	ggcccaggac	1500
tcaagaggcc (caccaggcca	tcagaaggcc	gttcttgttt	cctcactgac	tagcagcaaa	1560
atgcaacact (cttggctcaa	acaatacaga	aaatgtcccc	tccatcttaa	ttagtcctag	1620
cacaggcagc (tccagtgttg	gctaattcag	tgttagcaga	gactgttatt	ttgacctgta	1680
gcctgtgcga (ctctttcttg	tacccagggc	atgtcgcctt	atgtccttta	ttggcttcag	1740
atggctgctg (cacgtctcaa	tgtctgcctg	aggacatggt	aacaagccat	caaggaagaa	1800
gagagggtgg	cttgcccaga	tgttcaagcc	catgatgtca	ttctcaggaa	ctcccatcag	1860
atageteetg	tgtgtgtgtt	tgagctgaag	ttgtcacgtg	cttgcatgta	cgtcagccta	1920
aggcacagca	gtggcctctg	actgtcactg	tttgttgctg	gagtggtccc	tgggtgttca	1980
gtgcatggag	tggagacaca	cacacacaca	cacatacaca	cacacctgag	ctacaccagg	2040
ttctctaacc	actccctacc	ttattctata	aagacttcga	ggttgttgtt	tttaatctgt	2100
tttctcatta	aaaactcaag	cattacagag	aaccatgact	aaaaaaaatt	ccaataattt	2160
aactcattct	aaccatactt	gggtctatga	caaattacct	aattttattt	catacaaatg	2220
taatccgatt	ttaatttagg	tttttgtttt	tctgtttctt	tctctttcc	ttattttggg	2280
cttttgagat	gagagtttta	agatgtatcc	ctgcctgccc	tggaactcac	tatatagacc	2340
aggctggact	caaacttgtg	gccaccatct	gagtattggg	atttcaggcc	tgcaccacca	2400
ggggcagcta	acctcctact	tcatcatttt	aatgccactt	cacacgtttc	cctttgccat	2460
tttaatttaa	ttatactagc	aatcacatgc	ggctttggtc	aggttcttag	gtgacagccg	2520
cagctctgtc	tcccatggac	agccttatag	aagaacctcg	cggtaaccca	tttcacagga	2580
gaggctacac	attcctcatg	cttaacaaca	tccagtgagc	aatggctggt	ggaccacaaa	2640
ctgatgtgtg	catgggcatg	tgcatgtgtg	catgtgtgtg	tgctcgtgag	cacacaggct	2700
tgcatgcatg	tgcatgtatt	gtgcatgtgt	gcacatgaag	gtaggcatgg	catgccttag	2760
tgtgcatgtg	gaggtcagaa	cggaggacag	acttggggag	ccagttctca	ccttctacct	2820

tgcttggcat	ggggtctttg	gccatttctg	ttgctaagct	ctgtacccca	ggctggctga	2880
cttgtgagct	tctgggtgat	tctcttgtcc	acaactccca	tcttgctgta	gaagtgctgg	2940
gattgcagat	gcaggctgtt	gcagctgggc	tttttctgtg	agttctgggg	aatctcaggc	3000
tgccgtgctt	atttgtaaaa	tgctttaccc	gctgagccac	ctccctgttt	cgtgtctcag	3060
ctcggacagc	tgacatcatc	cttctttcc	tatggatagc	tgccaccatc	catggtggca	3120
gaggtcgcca	tatatatata	catatacata	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	3180
tgtgtgtgtg	tgtgtaggaa	catattcata	aaatgtatcc	gttttcttct	cactttatta	3240
catcattggg	tgatattccc	ctgaagataa	catggtgtgt	cagttacggt	ttctatggct	3300
gcaagaatac	accaagacca	aaaagcaagt	tggagaagaa	agggtttctt	tggcttacac	3360
ttccatgtca	ttgtcatcac	cacaggaagt	caggacagga	actcaagaaa	cacaggaacc	3420
tggagacagg	agcagatgca	gaggccatgg	aggggtgctg	cctactggct	tactccccct	3480
ggcttgctca	gcctcctttc	ttacagaacc	cgagaccacc	atgctttctt	acagaacccg	3540
agaccaccag	tgcagggatg	gcaccaccca	caaggggctg	tgccctctcc	tgttgatcgc	3600
taattgagaa	aatgctttat	agctggatat	catagaggta	tttcctctgg	agctccttcc	3660
actctgatag	ctgtagattg	tgtcaggttg	acc .			3693

<210> 50

<211> 4226

<212> DNA

<213> Mus musculus

<400> 50

cctatgaaaa	ggattcacta	gagagaattt	agttgtgctt	ccctataggc	tcaaatgtga	540
tccccaatta	tggattgcta	cttctcaata	accttcagga	gcttcacact	atagttagtt	600
ttagggcttt	cagatttaag	tcacaagagg	tacacacgtt	cttttcagtg	ttatccaggt	660
gataatgcaa	aggaagaggg	gcaagcaatt	aagtaggaat	ttagagagtc	agagggagag	720
tttcaccacc	agtgcctctc	ttcagaatcc	tacattccta	gtcatagagc	atccttttgt	780
ttttcttaat	ttccatacaa	atatcagtaa	gcctatttac	cttgctctgc	ccttggctta	840
caggctttag	gaatctcagg	tcaactggag	gttatttctt	gaatgaacct	tcagatttca	900
ctctggggac	caactccctt	cctgttgaca	cagctaagta	cactgaacaa	caaaattgaa	960
atgtgctcta	gactccatgg	aaccagcgag	gttaaatctt	tgccaaggtt	ctagtgcctc	1020
ttggtgtact	tctggagatt	ggagccccaa	gcaaagtttt	cttggaggac	agaatcaaag	1080
aagataaagg	aactaaagtc	aaaacagcct	ggaaatgaga	atgagagatt	tcccagcagg	1140
cactgtctgt	aagagccttg	atatcattgc	attaaagctt	cttttccctg	tagacaatct	1200
ctccaccatc	atttattgag	ggtcaatgct	tgtcttctat	gtcttcagga	gcttagcaga	1260
gtctctgctc	caatgtatat	tettggtete	tctgtctctc	tgtctctgtc	tctctgtctc	1320
tctgtctctc	tgtctctctg	tctctctc	tctctctctc	tctctctctc	tetetetete	1380
tgtgtattaa	tcaattgtta	ggttgttcca	actgtacttt	aattccaatg	gttgctaaat	1440
aataatgttt	cttttattt	tcatatgtga	ctaacatacc	agtttttctt	tctttttaag	1500
ctaaaagtgc	catggaattc	caccaacaaa	aggggcttaa	gaatttgaaa	acaccatttt	1560
tcagatatag	cttaacagca	tattaatatc	atatgtataa	gctgcttaac	ctctctgtgc	1620
ctcactttca	tataaattag	aattataaat	actcactctt	aggatgaaga	aaaaagggaa	1680
tggggatgcc	ccacttcttc	tttttcactc	cccctaacac	ccaatatgca	tgaatgtgac	1740
ctctcagagt	tacttatgaa	ctctgctatg	tatggagcta	. aggccgtggc	tatgacctct	1800
cggaacagca	ggtaaagtca	gggctcatgt	gctcccaatg	agtccacatg	gtatgcagct	1860
gctttgtctg	tctctggcag	tcagtatcca	. tcacagggtt	acagttactc	agcgcttcag	1920
acaggtatct	tgtggcttac	atgaagaagt	ggctcgttcg	ctaagaatgt	attaattgtt	1980
ctctctgtgg	tcagaactgg	gagcgtggca	gttcattgaa	aggggtacaa	tctttgttca	2040
agtagaacat	gagaagagag	agaaagagag	agagggagag	agagagaggg	agagagaggg	2100

							01.00
	gtgagagaaa (gagagagtaa	gagattaatt	acttcttgac	agaatcaaga	aggataggaa	2160
,	gagcttgcct	tagaatgtga	atgtaattag	gaagataaag	gatgaaagaa	taactgggaa	2220
	gggggcaaca	ttactagaat	atcttttaca	gacaggaggg	tgaagcatca	tggtatactc	2280
	tgatgagcct	gtggcatgaa	cgaagctgag	atagcagggg	cagagaatgc	agtgactaag	2340
	aaaggacttg	tccatccttg	gagcttaaat	gttattttcg	gtgcagcata	acactgagaa	2400
	ttgatggcat	cacctgaaga	cggatctgga	ctcttagaaa	tagctcccac	ccactttctt	2460
	gagaccatcc	tacacccatg	acaagatcta	tgtcatggtg	aattacagct	ttttctttgt	2520
	gtcaaccaaa	ctaggttatc	catgaatttt	cagtgtcctt	gtcccaattt	cctgaatcac	2580
	aaaagagcac	aggaagaatg	cccctcccca	tgccaaccga	atccccctgt	ctatggatca	2640
	gcacagcatg	tcttaaagcc	tgagtgagct	taaagagtaa	ttgctattgt	ttaactttac	2700
	caaggctaat	ctatcacacc	tcacccagag	aacccctgat	ccactctttg	agcattctct	2760
	gtcctgaggt	aaaacataac	aagcaaataa	ataagaaggg	aactgtgtgg	aaaccctctt	2820
	tgtcactact	gaagcatgtt	catttattta	gcaaaatgtc	cataatttt	aaattgcttg	2880
	aatcagccac	tggctatttg	gtatcttcaa	. ggggtcccca	ı tcaggaataa	tacttcccca	2940
	ttacctgcaa	aaaaaaatat	tgaggcaggc	ttttgatcac	: aggaattaat	tacatgcaca	3000
	gaatttcatt	gctgggagca	gcaagcagct	ggttcctgca	gggccctggt	tgaactctct	3060
	tgccaactcc	ccttctatgc	ttgatcctcc	ctgcacacct	acacccttgo	: tttctttcat	3120
	tatgctccac	aggttctatt	caatggggga	aaattgtaat	taaaacattt	: acaaagcttt	3180
	ccttatgacc	gcccttaagg	ctgcgaacct	tcacaattca	a atctttttt	ttttttccaa	3240
	ataaggcaca	atgacagagt	. ttccaggaat	ttetteeteg	g gggactcagg	g cctcctagaa	3300
	tgatattaat	acattaaaaa	aaaaaaaaa	a acttcacaat	t gaagetetge	g gataaaagga	3360
	gagcacgtat	cttcttcaag	ggagggaga	a atattgtaat	t gatgactaat	tattctcagg	3420
	agccaacagc	ttccctggtt	gtcagtggga	a tcagttaaca	a atggcttago	ttgtctatct	3480
	tccttatttt	cctgttaatt	attcctacct	t ctgctacca	a gagaagggg	ttgttttcct	3540
	cttagatgta	attagagtaa	ı tgaaagggti	t tataatatt	t atatatttt	a tttctaggac	3600
	tctattcaat	tttactttca	a tgcaggacag	g aatatagaa	t gcaaaacaga	a aacctcaagt	3660
	tcctaggttt	tgtgaagtct	tacagagaa	a attggtttc	a ccataatag	c aattaggagg	3720

gataattcct	agatgaacaa	cctgaaatta	ctcccttaaa	ggcaatactt	tatataggat	3780
tttgagaaag	gtggggaaga	tgaggtgaca	attttggtgc	attttatttg	tgttgatctt	3840
tgtattttgt	gataaagaag	gaaggcaaac	cattggtgta	ttcttctata	gacctgcatt	3900
tgcatatggt	ttgtctctgt	tgaatagatt	ttggtttgga	tgacaaatta	aatccccagc	3960
ttccaaacac	ccaagttctt	ttgttcagaa	tttataagcc	aggatgccca	aatacagctc	4020
ttcttcaaag	gtaaaggggt	taagcaaaca	gttgctagac	aattattctc	ctttttatac	4080
taacaaaacc	accttctagc	agctcagaac	acatagcaaa	tagcatttaa	aaggtattat	4140
gccccatcat	cacaggcatt	tccatggcaa	tgaagtgatg	tggcacacac	aaacaaggat	4200
gtaccagttt	ttttttcaac	atgctg				4226

<210> 51

<211> 1560

<212> DNA

<213> Mus musculus

<400> 51

gcctacactt ctgcactatc tgtgatcagg acgacagtcc aaattcaact atatattaac 60 ttcaattact tgaggtgttt aaaagataaa agtgtactca aggttttcag catctgaaaa 120 180 tatatagaga aaaaaattat agcaaactaa tacttcatgt ggaagtatta aatttaaaat 240 ttaaattatg tacccacaca ccacagttat atctttaaca gtactaacac cagatatgca gcctaaagta cttctcacag acttgaactc catctacaac taacattaag aaataaaaac 300 aaaaaccatc ttcataaacc actgatcata aatttctatt ttttgttctc taacttgata 360 ctatatttaa ttaactgact ccttttgttt aggtatgctt acacctaaaa gatggagatt 420 gttttgatac taagataaaa ctttgagaat ccttaccaaa ttttaccatt aaaaccctta 480 gtataaaaga ttcctatgat caaagtctaa tagttctttt taagttgtat ttttaaaata 540 ttaatgatta gatgctccac ctgctgaaga agaatatgac ctggaattcc aaaattgaca 600 660 catggttcat aaacgaaagt tacttagaga aaatagcctg aaaaatgaaa aagaacagcg aatccttgtt ctaaaggaaa gagaaaacct gcatgtgtaa ataagttcca gtggaaggtt 720 tagaatctgt cctgtgcccc atgctgttta ttaattactg cagtttaaaa caacaacaat 780 aacaacaagg aggatgtgtg aactgcattg ctccttcatt caggtcagct tggctttctt 840 cttgccaggg cccttatgcc ctttggcctt tcttctcaga ttgcgcctgt ctactacagg 900

aacttccact	tcaatctcct	ctgagctgct	atccacagct	ttctctgctg	actgtgtaaa	960
ctgttccagg	tgctcagagg	acgcttcaga	ctgttcctct	gactggctct	tctgtcctgc	1020
attctgtgga	aatggcgcgt	cttcaagttc	tacctctatc	agagaactct	gagtagccga	1080
tggttcctgg	gcctcaggtg	ctcctcctc	accctggtct	tccactgagg	aagtagtgtt	1140
gggtgataaa	ttctgagaga	ctggttcttc	gggaaattct	ggtaccacag	aattgggaaa	1200
attaccatca	gacttttcta	tatttgatac	agtggcaaca	ttgtctgagc	tccccaaaag	1260
tgttttcttt	tttgaaactg	gggacagatt	ttcttcagta	tgtcctttat	catcagatgg	1320
gctttgatcg	atcaacattt	ctgagtcagt	atcaggtgag	gtctgggaaa	agcacacaag	1380
aaacaggtca	gtgaggcatt	ttacaatgca	gttctaaagc	gattcattct	caatgtcact	1440
gtgaagacct	ctggactcct	catttttgtt	cagcatgaag	acattatttt	aaatgcaact	1500
caatttcttc	aaaattgtct	catgttgact	gtaatacaat	aaaagaaatc	tttatgcccg	1560

<210> 52

<211> 2849

<212> DNA

<213> Mus musculus

<400> 52

gccagcctca cgggcctgct gccactgtct gccctgtcct attgcactgc atctccgaac 60 ctgagccaaa gaaatactta agaatttggt catagcaatg agaaaagtag taactaattc 120 aataaccctg gcttgaactg tttcttttac ttcgcaccaa tgcatttatt cttatataaa 180 240 ctctctct ctctctct ctctctct ggttttgctt catccattca tttgtcctag 300 agttcctaag ggaatataga tctttccctc tccagatctg tcatagcact ttcttcacat 360 ctgtacttcg tgtcttctgt gtgccgtgtt ctgcacaaag gcccagccaa taagaacacc 420 catctccctt gcctgccgtt ctgtttggag ggagaacttt ccagtgcacc cagttactgt 480 gctcatctcc ttcatcactt ccttttcttg attttcatat gttagagaac aacaaattag 540 cccttcatgg tattttaagg gaaaacatgt aaaagactca caaatagatg aaaatactct 600 cqttaaattc aatggaagat tgaacatcat atgatctggt tctatgcagc cttttcttgt 660 ccttgagtta ttttacattg ctgtaaatta cattctacta gtaacaatgc aaatgactca 720

tccatacaaa tgcaaattat	acctaatttg	agattcgact	gattattgca	tgtgcctttt	780
catgtgagca tgtgcatgtt	gaggccatgg	gacagtctct	agtcttacag	ctcagtagct	840
gtctgtctta tttcttgaga	cagtgtctct	ttctggcttg	gaactcagca	agtagggcta	900
aactggtagc caaataatcc	cagagatcag	cctaactccg	cctctccagg	gcttggacta	960
aaatgtgttt cacagtggtt	ggtatttaaa	gaatgatttc	taatgtgggt	tctgggaatt	1020
taccctatag tcacacattt	actattggcc	cttggattac	cacagtttct	ttctttctac	1080
ccaatgetee ccettttgee	tcttgcttct	actaccagta	tggggaacac	aaactatctg	1140
tgtcgcctcc aaactgctca	tgtgtctggt	ggcataaatt	tgtttggaca	atgtgggaat	1200
aaagtagaca acaacaacaa	caaaaaaaag	gaataaaagt	ggacaggttg	aagacaaagt	1260
ttacaaggaa acctgacaaa	gttggcctat	gggttgcatt	tggatcaaga	atcatgagaa	1320
tcatgataac ttctgtgtct	ggcgtgaaag	actgggtctc	cagggaacat	ggatgtagga	1380
agaagtgttg tgtgatgagc	cgggggaaaa	gtccttaaaa	tattgttttt	aaaaataatt	1440
gattacatac aggcatatag	aaagttaaaa	gcgaacatcc	ccaggacatg	gtaaagattc	1500
acgtataaaa ttctgcctca	agttaccacc	cttttcccac	ccaggacaga	agttcacaaa	1560
ggacatccac tctgttccca	gcttgcagcc	attctttgag	gcacaattgc	agtttttccc	1620
actagtgagt ctgtgttctt	ttgtttatga	actggaaaga	aagacatgcc	ctgaatctcc	1680
ctcatagact aagaaaaatg	ctttctatgg	agtatttggt	ttccaatggc	tggaaattta	1740
caggtcactg cttcttaaaa	ggcacactgt	cccttggaga	aggtgaatat	gactatcccc	1800
ccattgtctc tatggtagaa	aacatgtaac	cattgattgg	gtcagagtgt	ggcaactgaa	1860
atctggaaaa ggaaatttta	aatgactatc	ctgacttcac	agcctcttgg	ccaaatggca	1920
gtagcattat cattgagcag	gttaaggatg	ggcaatggtg	gttaattgag	ttatagtcct	1980
tgtagatgaa atgtccaaag	tgcgcgaggc	ctcaggaaag	tctaatgctg	ttagatgcat	2040
cctgtataat agaatacctg	caaatgtctg	taaacaaatt	aggattgctt	tttgagtggg	2100
aatgtatagc tctgcaggga	catgcgaaat	gtatctggta	atgtctgtaa	agcacttgaa	2160
atgttttttt ttcttttagc	cacttttcct	cagggatact	ttgtctcccg	tacttctaat	2220
tccaatgata aagaataatt	gtcaattcta	cacttagtgg	gttgtgcaga	gtgactcacg	2280
aagctattta caacacatcc	agaactcacg	attacatttc	tcatcatgaa	gatctgcctt	2340

tctaacttgt	gacatttaga	taccactttc	agcttgcagg	agtggcagct	ataacttcgt	2400
ggtccttagg	gaaaaacttt	actaccggag	tagaagaatg	tagtaaaaag	gagcgtaggt	2460
ttggaaagaa	catttggtac	ctgacacctg	gctctcacat	ttatgagcta	cacaatctgg	2520
caaatcactt	tacctcctgg	actccagctc	tcttacctgt	aaaatgaaga	caatggcacc	2580
tgccactcaa	ggctgtttgt	gtgtctcggt	gagtaatgta	tagttcttga	cagtttaatg	2640
atgcccaatg	aaacctcctt	tttccttcta	aattcattgc	aattagtcaa	ctcaagagca	2700
attattctta	aatcttccct	ctgtctatgc	aggtcaattc	agaggttaac	tgatataatt	2760
tttttaaaa	tagccaagtc	caacatacat	acatgcactt	agattgttaa	atagttcttg	2820
actgaacctt	aaaaaacaa	aacaaaatg				2849

<210> 53

<211> 3551

<212> DNA

<213> Mus musculus

<400> 53

60 tattcactga agaaacaatt gactttcgct tctctgttgt caaagtggcc cctggtgata gtgctgcagt ggctagatag agcgagcaga atggcttcct cctggctggt gggctggcag 120 cttcactqqc actqccaaat gtacttccta tttgttgtgc aagggaattg gaacagcgag 180 240 gcatttatca tatcatcccc tactcctcaa tgcgagcaaa aaaggagaag ttgtcaatga 300 aagaaaaaga actgtaatcg cacatttaca tatgcttcta attgttgatt tggggatttt 360 ctatgaatat agctttacaa aacagatgct gtttaagaaa agggggaaca taattttgtg 420 ggcaatgaat taagtgtttt tgtggccctc tcatccgtag ctaggagcag tttgtggacc 480 qcqtctgtga acgcggctca taattgtttt tcacacataa gttatgcaaa tgagctttta 540 tqqcaactgg cataacaatt agcatcctcc agcaatattt tagcaggtta attgcaaaat 600 ttctaaattq tacatctqac ttgttaatta ggcatgacag aggtggtaaa atagttatct tcaggcagtg gcagccagga gctgcttgaa atgcaaagag caaggattga ttggatttga 660 gggctgcaat tgtgggagca gggctgctgt caagtgccgc ctagcagctc tgctccagcc 720 qctqcctcag agcaagacca ggacttgctg caaggatcct gccacttaca agcctgcttt 780 atttaactca acaacagtcc cattcccacc tatctgaact gtttatgttg tacagtttgc 840 tggccatcgg gatcattgaa atgaggtagc aacacaaaag aagttctttt gggcttgagt 900

tttaggaccc	tggaagttta	ctttctattt	taaagtctgt	gtcagcactt	gccacttaaa	960
aaaaaacaa	tgtttagata	ggtaaacaca	attcccaatt	tttattgaat	gtaaatttta	1020
gttatccagg	catcaagtgt	gatcattttc	tttgtgataa	tttaactttt	caacatcatt	1080
tcctttcatg	attggcatgc	ttggggaata	ctattttgtt	atttatttat	ttttaacaaa	1140
gtaagagaga	aagagagtga	atgtcagaac	tacgtaaagt	acattggttt	actttgggaa	1200
atctataaaa	tgataatatt	gaacatagca	tattattctt	agattttata	ttagtaaaga	1260
attcttctgt	agtatggttt	aagtaatttt	taaatgactt	aaaaaatttc	tatggacggt	1320
ttcatagtct	gaatggtata	atttgctaag	cataaacatt	agtgaataga	gcatgatgac	1380
acgtgtgtat	ctgcttgtgt	cacgatgaac	catgctcttt	gtatttaaat	tagctaatta	1440
catttttctg	tgcatatagt	acacacaagt	acaccacata	tgaagtgaag	catgtatgaa	1500
gtctgatgtc	atctttgaat	tcacatatat	tttcttgact	aatccagatt	atgtttaatg	1560
ttgaaatgtt	atattttcat	ttaaaaagta	aatgttctgc	atgtgcagct	gtgctaatat	1620
tttacatttt	cttgtgacat	gtgtatatgg	agaaagtgcc	atttatgata	tgttgtcatc	1680
aataattttg	tcattgagaa	taaaaggctt	aaattcatcc	acccagtgga	acattttgtc	1740
atatttattt	taagagatga	aattagtgaa	cagttgggct	ctttatatgt	aggagatgtg	1800
aaaatagcag	aacatttacc	atgaatggag	tgcaacatta	gcatctcagt	gccactaaat	1860
tatacagtag	tagtggtagt	gtattctata	gacatctaat	aaatagttto	ttgttttccc	1920
actttcttta	. tatgtgttct	ttatatggcc	tagtttcata	ataaaggtga	tattaattat	1980
tggttaactt	tttagagtg	atctatcaca	tttgaaacta	ttgtatttcg	aatgagaata	2040
aaacgttgtt	ccaaatcatt	acatttactg	attaaatgct	caccgatttt	tatccattgg	2100
tgtatttggc	: aatttaagta	. agagtttacc	acagtaatgo	ttcagtggat	aatatttgga	2160
atagagtaac	cattttaatg	agttcatcga	gggagattca	. gcagggagca	tttcaggtgt	2220
attacggctt	: ttgtcttgtc	aggatgcaca	atctccatac	: cattagagaa	aaggcttcag	2280
agtcccacto	atctccgtta	. ataatgatac	: taacaacaac	aacaacagca	acaacagcag	2340
cagcagcago	agcagcagca	ı gcagcagcag	g cagcagcaaa	ı gacaaaataa	taatctagag	2400
cttctccttt	ccagtaaagt	: ctgggcagca	agatagaaag	g cacaggcagg	tcgagtgttt	2460
ttaggaaact	tgttaagcga	ataccattto	tgtgggttaa	atttccatca	a catttttaac	2520

tgtcctaata ttgatcaccc tacagaggaa tgagactgaa gcctggtagt tattagtata	2580
aagagggtca gctgctgaga cggtccagag cagaggctct catggtaatg atgctgctat	2640
ttatagatcc ccatttcatt agttgcagag tttcaaggaa gagattttct ctaggggaaa	2700
tggatacttg aagttcattt tcttcctcac attaaggcag gaacgtgaac aaccttcagt	2760
ataggatgtg cgattatggt atttttgcag gggcagttta ttccctacat gtatttgcca	2820
cagtaaatgt acatttaaaa cataatgtag ggactcagaa atgccagctg ctgttttggc	2880
cgaatagtac attatgtacg ttgctcttga tatccttgtc atttttttt cttgtaaaaa	2940
ttaaatttca aaaattgtcc aaagctgagt ataatcatgg tcttctcttt cttccgagtg	3000
ctttagagcc taagaaggat tgtgagaagt gccagtcccc ccaggtccag tctgtctaca	3060
gtgtgttatc tgtctatatt tgtgatatag gtaattgtgc tttctttctg gaattcttga	3120
catttgagtt attttttcc ctttaagaga atatttactt agctagtatt cacttaatta	3180
gaactgactg tttaatgttt tetgggeggg tatttatggt attttetttg etatatttge	3240
attccagaaa ttaagtcccc ctgccattat tcggcaagcc tttcatacat tagaatgatg	3300
aattgaaagc agaaatggga aaaagactgc aatgcaatga aaatttaatc agcgtcttct	3360
gctgctttaa taaggcaaat aattcttatt ggccgctgtg ttaaggtttc taatatttaa	3420
ttcataacaa accttgcatt attctgcagt tgcatcgaca gctccacttt gctgcctgcc	3480
aacaggcaac cataaaaact taaaagcaga tgtaaatgtc taaaacaagg agaatgatta	3540
gatctaaagc g	3551
<210> 54 <211> 2244 <212> DNA <213> Mus musculus	
<400> 54 gcaatggagg tggtgttcag acaaagagag tgggtttcat gttcaaggaa gacattctat	60
aagaagtgat ctcagaccat gggctagaga agtggacaga gaattgaacc aggtagtcct	120
tcagagcgag gctaagagct ttagagtcat ccctagcaca gggaatctgc tgagagagtc	180
actagatatc tgcagcctgt tctaaggtca agattcttgt caacttcttc tctgaggtgt	240

ttgctgttag aagctctgct tctagaagct cggttcctag agcagagatg gtcataggtg 300

PCT/US2003/027106 WO 2005/005597

gcgaactcca	aagaggtgat	ggctagaagg	gacaaaggtt	ggtctcatga	gactaaagtc	360
ctagttttga	tgtgatctac	ctcttttatg	tatgtgcttt	ccactgtaat	tccatgcact	420
agagctaaac	tgatgatgaa	accatgcttt	tgaacatcta	gaaatgtgat	ccaaagaaac	480
tagagggaca	gactgtgttc	caatggtcag	atgcaactct	ctcactaact	gataggaggc	540
actgttcttg	ttatgttggg	ttagtgttta	ctgtaagtaa	tgttcctcta	gcaaacgcta	600
aactactttt	aattttaata	agtcaaagat	caggcaattt	aatatgtata	tagaatttgt	660
aaattaattg	tataaaataa	tttacatata	cattttataa	cattatagca	catacattta	720
tataaacaat	atagggtaag	catttaagct	tatttgttga	ggtatccaag	cctcaacaaa	780
gtgtggggta	agaaacacca	atagagatgg	ctcagcactt	tgtcctgtgc	ctctctctgt	840
ggctcactct	tgtctcctgt	cacacactct	cttcctgaag	atggcagccc	aagttcacag	900
ggcgcatgga	gccctgtgct	tgctatagag	ccaagaatga	ccatgaagtc	ctgaccctcc	960
tgccttcaac	ttccaggatt	ataggtacac	accacaacgt	ctggcttctg	aagttctgga	1020
aatcaaatcc	agggctctgt	gcatgctagg	caagcactct	ggcaaataag	ctttgtctct	1080
ctctgaagag	agactctctt	ttttctttca	gtacatttgt	aattgaaaat	agacaccact	1140
ctcctaactt	ccttcttcca	accccttcta	tgcaacccca	ttctccagcc	agttggtagc	1200
ctcttttcat	tactattatt	ttctatctat	ctatctatct	atctatctat	ctatctatct	1260
atctatctaa	tctacatatc	atctatctat	tatctatcta	atatatctat	ctatttaatc	1320
tataatctat	catctatcat	tctaattatc	atctagctat	ctaatctatc	tatcatttat	1380
ctttgtttct	atctatcatt	tatctttgtt	tctatctgtc	tatcaatcat	ttatctatgt	1440
atgtatgtat	ctatccatcc	atctatctaa	tctattatct	atctatctat	ctatctatct	1500
atctatctat	ctatctatct	atctatctat	ctatctacct	acctatctat	ctatctatct	1560
atctatctat	ctatctatct	atctaatcta	ttatctatgt	atcttcatgt	atacaaagat	1620
atataaatac	agtgtgatga	gtgagctcat	tttcttgttt	gtatgtatat	cctttcaggg	1680
atgaccactt	tgcagtggac	aatgataagg	tagettatet	ttgagaggtc	aactctactc	1740
ccagcagtca	tttgttgtct	acagttcttt	gactaggggc	agggctgtcc	aaaatttgaa	1800
tggtagatga	tatttacata	gatgtggtaa	cttcatccaa	. ttgtatacaa	. atgttgtatt	1860
ctgattaaat	ggaagaatta	. tcaaatagat	gaaaaccccc	atcttttaaa	taaagtcctt	1920

ccatccaatg aagtaaatca tgaagcaata aatgtagaaa catgagataa atctaaaaaa 1980 tatatggett caacetgage ccaqtqcate ttgacccage etgeccaetg gcatecceta 2040 2100 qqqaqqtcat qtqacctaca catqctqtqc taatctcaca tctgctqtaa cagtaaaacc 2160 tototocace etteaateeg ecteetetgt gatteecata tteteetgte cacaetgtte 2220 caccettetg etgeaceace caatggeeca aaggeettat ttaatteage taageattte 2244 ccatttttca agaacgagct tgct <210> 55 <211> 1511 <212> DNA <213> Mus musculus <400> 55 60 gggtcactgc agtgtcttct cccttcaaaa gatccaactg atgctgaggt agaaattgaa tgtcggcgcc ccctaatcct cctctgcgga ctcttgggag gatgtctctt cagtctcctg 120 180 agcaggette ttetgaacga ettgttgtgg ceattteeta ggtetgeete ttggeegttt tttctccaat ggtctctgct ttcttctggg ctgctttaga gggactcttg tttttgctgc 240 ctttgggtct tcctctgggt ctcttaggag agggctcaca ggagcttagg aggttggctc 300 ttgctgctgc ttcctgggtc ggccgcgtcc tcgcttctgt ggcacctggg cggcaggttg 360 cccctgggct gatgtggaag gctgcccggc gccctcaccg cgtgcgctca tcctgcctcc cgccgccgct accactgcct ccgccggtac cgccactgca gccgctcggc ctccaccgcc 480 ccggatccgc ccagcacctt tcggtagacg ggatggagag agctggagag ggcaagagca 540 gcgagagcag gcgagctggc gtgtgcgcct gggactgctg ctgcttaggc tgccgccgct 600 gccaccatcc tgcatcactg ttaagggaag tggaaacttg agggttcttt ggaaagtcgg 660 tgggatggtg ttttgctggg gcaaacacgt gaaggaatgt tgccgttgcg ttaaagtgga 720 cacaggtgtg aaaggctaag gcagactcct gaagaaacgt tttgttgaag ctgacacagg 780 agagaggatg ttctgctaaa gcaagaaagg atacctgatg aaggattctt cgataacaac 840 atgcatgtac tggtcagctt tacattgtgt agttgagctg tattttgcca ggacgccata 900 gagagaaatg caccaaaaaa cttctggtgg tgtgctgcag cttcttgatg cttccaagga 960 ctcgggctga ttggcagagt gatgccagct gagacaggcg attgtgctga ggcaaggcat 1020

1080

gtggaggaca cgtgatctat ggagggacta aatagaactt gacggacagt ggcagaggct

gagettgget t	gtttagaga	gctagctgtg	caacagtttg	tcagtctcgc	agcattgctg	1140
atcactgctg a	gaggagagg	cacaaccagg	aacttctcag	ggcattcctc	tgggtccttc	1200
ctgctgactc a	agctgaagc	tatggccagg	ttatctctgc	taggtcatgt	ctccactgtt	1260
gattcgtgtt t	gctatccca	actct actga	actgcactgc	tgtgtatctg	tgaaaagttt	1320
gttgccgcca t	ctgctaacc	tgtaaactga	actgcagatt	tccagacaac	acagacagga	1380
gttgctccaa a	gaagttttc	taaacaggtc	cacttccccc	atatcctttc	tttcccacct	1440
tctgttgggt g	gtgggctaa	aagagggtta	actcatttaa	gaatttgaaa	aattaaagtt	1500
acaattaaca g	ı					1511
<210> 56 <211> 1219 <212> DNA <213> Mus mu	ısculus					
<400> 56 gccgaccccc g	gagaccgaag	attggggaaa	aaaaaagcaa	aacaaattta	aaaaaaaaat	60
aaaaaaagaa a	agaaaggaaa	agaaaagaaa	ccacgtcaaa	agttagcagt	gaaacccgcc	120
ctccgtttct t	gtacagtct	ggaggatttt	cgctacattt	tgacaactct	gaaacgtgtt	180
aactcttagt g	gccatcaaga	atcccatttg	ggagtatttt	tgatttttct	actttttgtt	240
gacaaaaggg a	atttgtactc	tgtgcattgg	atggacctgt	ttggtacttg	ggattttcct	300
ctttgagtca a	acatcagtgt	tgtaaattcg	ataaacggat	. tcacttttag	cagcagactt	360
tgaactgcag (cttcgcccgg	ctgatgctgg	gegggegeeg	aggacacccg	actgagctca	420
cgtacctgcg (ctgcagacca	agccttcgcc	cgagttcaag	actccagtgg	actacctttt	480
tgcacagcgc	tgcatgttga	taccactgcc	: tttactcact	ttggtttgtt	: tggtttttgt	540
ttttcgcttc	cagttgggat	gggggaaggc	ctttgtgtgt	gtattggggg	g gaggggttaa	600
aaataattat	cccaaatttt	ttaatgtatt	gcttttttt	ttttcttta	ctgttttttt	660
tttctttctt	tctttttt	ttttggcttc	: tttaccattt	taagttctga	a cctcaggcct	720
ccatttgggc	ccagggcctc	ttggaggctt	: cgcgttttct	gtaccttgtg	g atgaatgtta	780
ataggcgttt	ttattataca	gagctgaatg	tcatttctcg	g totgtagttt	tctggcactc	840

acattccgtt	ttggtctttt	tccaaaaaaa	aaaaaagaga	aaagaaaaga	aaaaaaaga	960
tcccaaaggc	tgcaccttac	acctgaaggt	cccacacgg	ggacatgaca	tcctgccagt	1020
aagagaatga	atgacagaaa	aggaaagaga	gaaacgcacg	cgcgcacact	ctagggacat	1080
ggcagattca	tttcacaaaa	acagtattgg	gggtgggatg	ggggactgtt	ggaggttttt	1140
cttttttc	tttttcatag	cacccaccat	tgtgagtaac	tgccaccaca	ttctctcagc	1200
atcaggaaac	acagccacg					1219

<210> 57

<211> 4491

<212> DNA

<213> Mus musculus

<220>

<221> modified_base

<222> (3755)..(3755)

<223> a, c, t, g, unknown or other

<400> 57

agccatctgc gaagttcctg gaggagagga agaggtgaag agttaggagt tgggcactgg 60 ggagttgctg tagtcagtag agcacttgct atgcaaaata aggatctgag ctcggatccc 120 180 taaagcccat gggaaagccg agaatgtctg tgtgcatctg taacctcaga cctgggaggc 240 agagacaggc agatgcctga gttcgctggc cagtcagcct ggctgaatca atgagttcta ggttcactga gagaccctgt ctcagaataa agtaaaggtg tgagtgatag aggaagacat 300 ccgatgtcaa cctctggctt tgacaggagt gcacactcac actcctcatg cacaagttca 360 tgcacatgtg aacacgtagc acacatacac accagcatgc acaagtacac acacatatgc 420 acacacetge aaggacacee aggateacaa gtacatacae acaaacagae acacacatge 480 540 acacacacc cctacctgca ggtacatcca cgtgtacaaa cacacacaca cacacacaca cacacacaag aactcctcaa actcagaaat ccacctgcct ctgcctccca agtgctggga 600 ttaaaggcat gtgccaccat gcttagcaaa agttgaagaa tataaaacca taataaatag 660 aaatgattga gaaaataaaa tcaacattga atatcatttt attaaaataa acaaatcaga 720 agccattaaa gacaaatctt taaagataag atcacagtta ttttcctgtg gctatgttca 780 ggatgggctt tctggagcag gtggaccaga agtgatgggc aaacttcaga tgggttgagg 840 aaggagggga gaggggtgat tgaagtcagg agaacagggg acccacaaaa cagcaagctt 900

gtctgtaaag	cagagagagc	attgggatga	cagagtgagc	atttggccaa	attaaccatt	960
ttctcaaacc	atagttgcac	aattaatttt	atctcagttg	acggtgactc	cgtccttttt	1020
gttgctcagg	ctgtgaaacc	ttagtcagtc	ttggcttccc	cacctttcat	ctgccaggct	1080
ctttttgttc	gtggtaagct	cttttgccct	ctgagtcatc	ccgctgccac	ctagaccgtt	1140
ggaaaatctt	gtateteett	ttagaccata	tctggagcct	gactgcctct	cagcccctcc	1200
actgctaatg	gctggcacaa	gccaccacaa	cttctggtct	gagttgctgc	acagtcatcc	1260
tcactggact	gctaatggcc	tctctgcctt	caacagcagc	acaccagcca	gatggagcct	1320
catcgagtgt	acagcagatc	atgtcaccct	gttaaaaccc	tgttgtgact	gcttaaatga	1380
ttgcagagta	aaggtcagcg	catctgctgt	ggcctcgggg	tgcggacacc	cctgcacctg	1440
ttcctctctg	acctcatctc	cagtactctc	ccttacacag	ctccagccac	actggcctca	1500
cgcagcaccc	tcctgtttca	aggtctcagc	tgtgctctgc	caagactgtt	cttgtcccag	1560
agagctgtgg	ggtaatattt	gctcacatgc	cgtcttttta	ttgaagcctg	cctttgtctt	1620
gacgctgaaa	attgtgcctg	ttcctactta	ccacttctac	tgcctcagcc	accttctcct	1680
actgggacga	taacctctac	ttcccatgga	aggctggtca	atgctcctca	ctgctacatc	1740
agacttcctt	cctgccttac	agagaattca	acatcctggc	ttgggactca	cacaggtcca	1800
gaaatagacc	tgcttcttgt	cagtgacttt	catggcaaat	gttgaacaca	gtgtctgctg	1860
tggtctgaat	ggaagaggac	atttctctag	tgggattttc	attagataaa	ctcatgtttt	1920
gtcacttaag	gcttatacaa	atttgactct	ttaggatatg	aaaacatcta	ttaaacagaa	1980
tttattgttt	gttctatttt	ataaccttat	gtattgccac	cctgactttg	acatgataca	2040
ttttgaaaac	tgtatgttta	tgaccatata	tatataatat	gcatatttt	tcattttctg	2100
ctaaacattt	tttttattct	ctaaaggatt	gaaattagca	aagtcaaagc	aatctgccta	2160
gaaatgtaca	ttaaaatcgt	aactttccca	ttttgtggct	aagtgcctcg	aggcttggga	2220
tctgtctgaa	gtcactcttt	tggtggactg	tgagttagtc	ctggtcgtca	cacctcctga	2280
agatcaatga	tctcttaccc	aagatcacct	tcaaaatgcg	tgtggggcga	atgtgcagct	2340
agccaggtta	tatttactta	ttagctggca	ctagctaata	. aagttggggc	aaacaagacc	2400
aagccaccat	ctctctggct	ggctcacaga	tggaatgaga	. tttaatttga	aaatatatag	2460
aacccatttc	tataaagctt	tggcagttca	ccctctggca	. ttagcattga	gaațtattaa	2520

ttaccaccct	ggttccacgt	gtgcatatgt	atctattta	taaqatctaa	tgaggaagtg	2580
				tggtaggttt		2640
taaccaaaag	aaacacgagt	gggacgatgt	taattagatc	aatgtagcca	ttccataatg	2700
tctgcaacat	gttgtagacc	ataaatatgt	attcttttt	aatatttaaa	atgttaatta	2760
atttttaaca	aacaaacagt	gtagaccttg	tcaggtaaaa	ctgttttgtt	gggatgcaga	2820
atggtaacca	tagtagccag	gtcaggttgc	tcagacactt	gtgaggctgg	ggacttcagg	2880
agagacttgg	tcaccatccc	ttttatctcc	aggactaatg	acccttttc	tttttccact	2940
tacagttctc	agtggttgca	aaacggaagt	caagttttcc	catgtttgtt	gaagtgcaga	3000
cttgctttag	gccagggata	aattaacagt	aaactcaggt	tgaaaacctg	gaccagcaca	3060
gaactgagaa	ctcatgactt	ttctaatctg	ccatctgtgc	taggacgggg	taattacaga	3120
gattttgcaa	ctgtttatac	agcatttgaa	attctagact	tctactccca	ggagatcagg	3180
gtcagactgt	ttatgtctct	catcagttga	gtgagagtct	ctttactatt	ttaaatggtc	3240
cctccatcct	gccgtgtttc	ctgataacca	accttcacca	agagctcgga	acaggcagta	3300
ataattagac	attaacaaag	gacgggtttt	taagctagtc	ctttatggtt	tatggtacgc	3360
agattttagg	agctgttttg	tatttgctgg	gggaaaaacc	gtaagaaatg	ggaatgtagg	3420
atgaacatac	tcaggtttac	ccaagattaa	agggaaggca	cgttctattt	ctattttaca	3480
attcactgtc	ccagagtgtt	ggctgtttgg	aatgcagcct	atgccctgtt	ggcagggatt	3540
tggaatcaat	ttacagtgtg	tgagatgata	acacatgttc	tggatcaggg	gcagggaatg	3600
ctcggagctg	taactctgtc	tgtctcccat	tagcacaaag	tcttgcaaac	tcgaagctgg	3660
agaagtgcct	aaaaatgcta	ggctcagaat	gtatgtgtgc	ctttacaaat	gcaacacaaa	3720
acataggccc	aggataaatg	ccataaattg	aagtnatcaa	aaaagatgaa	gacaaaaaaa	3780
cccacctcca	tttaactgat	ttcctggtat	tgggtagaga	tgctactttt	gtgaaccaga	3840
aatacagctg	tatgcacatt	gacatctgtg	cctagtgttt	cgataacgtt	caacaacagc	3900
ctggagactg	catctgagac	tcactcgctg	gggagaaaaa	acteggtgga	aagcgtctgt	3960
gctaataagg	cacagcagta	tgtgtacaaa	attcagacag	tgtaagttga	aacctgatac	4020
ccccgaggca	cgaggtagaa	gctgacctct	tggctctaga	agctaaacaa	tcaagtaacg	4080
tgtatgtgcg	tgtaagggca	ggcttgggac	aggcgccatt	cagaagcctt	tgtgaaacca	4140

aatggcaagg	ctcagccaaa	cgatgaaacg	ctgcttcttc	gaaagatgag	atttacacat	4200
tgaaatgatc	agaaaattaa	aagttagatt	tctttttat	ttaaatccta	aaacctattg	4260
tgtcctggac	ttttaaatga	atgccttatt	gcttttactt	tacctgtaca	catatatgta	4320
tatgtatgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtatata	tatatatata	tatatatata	4380
tatatataca	tatacataca	tacgcacaca	cattctctga	tgatggtctt	gagtaaatgt	4440
cagtggctat	gtgattttaa	atattcagac	tataaaatca	ttgcacaaat	С	4491

<210> 58

<211> 2875

<212> DNA

<213> Mus musculus

<400> 58

ggcgggggt gagttttcct gtctctttat taggttgttt actaatatgt caggacgagg 60 120 aaaaggcggc aagggtctgg ggaaaggtgg cgccaagcga caccgcaagg ttctccgcga caacatccag ggccattacc aagcccgcta tccggcggtt ggctcggcgt ggcggcgtga 180 240 agegeatete gggteteate tacgaggaga etegeggtgt ceteaaggtt tteettgaga atgtgatccg cgacgccgtc acctacaccg agcacgccaa gcgcaagacg gttacggcta 300 tggacgtggt gtacgcgctc aagcgccagg gccgcactct gtacggcttc ggcggctaag 360 420 cgagccctcc tgtgcctagg ccgttccctt ggcccggctt cccccatcca caaaggccct tttcagggcc cacaaagcat cagaaaggag ctgtggacat ttgtagttct cactagttat 480 gagcgtctca ttactttttg tatttggtat gctttgtctt gtatgcaaat tgagctgcct 540 600 gggtgcactt tttcattgga ggacttgggc tggtggcccc gcctaccgcc tgggacctgc tcagaatgct tgcggagtgg tctgcgtgaa tgagtttttt taggtgtctg ttgagttgac 660 720 agccccagag tgctagggtg cagcctctgc ggacgctcta aaaaggggaa aaaagctcct gtagagacag tggacctgaa tgagggcagg tgtggaggct tggaacccca caataaagtc 780 accetgtage ttaaacttgg ettteteage tgtagetgtt tetetgeett aagcaegtgg 840 gtttggggga agaggagcac tcggatgtct accatttagt tcaggctggt ataagtcttt 900 cggtggtcct tctgtttcag cttccacaga ccatatgtgt ctcatttaag tcttcagagt 960 1020 aggttagtca cagcccttgc tgctccttca aagtacttgt attcgatgct ccatacccag atgggtttaa ctctggatcc aggaagtcgc ttccttaggc ccctggactc aggtctgctt 1080

accggctttc	tgtacacatt	actcaaaacg	gtagttttgt	ttttcagatc	tctaggtttt	1140
tacatctgat	gtttacgggt	cttctcactg	gctgaagaaa	taggagactg	ttcctacagt	1200
tcctggagca	ggaacctggc	atttcattaa	gatatggtta	tctcgtgttc	aatgctttct	1260
gtgtggcaga	aacttggtgc	ggtctttcag	cagatttatt	ttaagtgttg	atagtgagta	1320
cagctgtgga	tgagacaacg	aaggctaaaa	ttttggagcc	tagatttgaa	ctctgctctg	1380
tgcgatttta	cacaacctcg	ttttatgtgc	cactggtgtt	tttgtttgtt	tgtttgtttt	1440
gttttgtttt	gttttttgtt	tttgcgagag	tcttctctgc	ccctgtgggc	tgacacttca	1500
cttctagagt	ctgagcatac	ataacactga	taccattagt	ctagtgaact	cattttctta	1560
aagcaagtga	aaaatgagat	gtttatttt	ctgtcttgag	aaatatttca	gttacagtta	1620
tatggttttt	attttcttat	aaagtcacat	gttctatcaa	actatgaaac	acaaaatgta	1680
ataataatga	ttatcacccc	tcttttaatc	tgagttttga	ttatttgaga	taatcaaaca	1740
tctataacta	ttactagcaa	aaagaaatga	aacaaaaaa	tgaaacttaa	atatcattta	1800
ttattacaca	aataacaaca	gcaacaaaag	tatttgtgca	ttcactgtgg	aaatcatttc	1860
tctcaaaagg	cttaaattag	aaactgccat	gtcacctgcc	cggatggaaa	gttacttagt	1920
ggtaagaaaa	acagaaatct	tacactgaca	agatgatgga	cgggacagaa	atcactatat	1980
taagcaaaat	tgtgtgggaa	gccgccctca	catttgccat	tataagatgg	cgctgacagc	2040
tgtgttctaa	gtggtaaaca	taatctgcac	acgtgcaggg	gcagttttcc	cgccatgtgt	2100
tctgcctttc	tcgtgatgac	aactgggccg	atgggctgca	gccaatcagg	gagtaatacg	2160
tcctaggcgg	aggataattc	tccttaaaag	ggacggggtt	ttgccattct	tgttctttct	2220
cttgctttct	tgttcttgtt	ctttttcttg	ctcttgttct	ttttctttct	cttgctttct	2280
tgttctttt	ctctctcttg	ctttcttgtt	ctttctcttg	ctttcttgtt	cttgttctct	2340
tgcttgctct	tgctttttct	ctctcttgtt	cttgcttttt	ctctctcttg	ttcttgcttt	2400
ttctctctct	tgttcttgct	ttttctctct	cttgttcttg	ctttttctct	ctcttgttct	2460
tgctttttct	ctctcttgtt	cttgcttttt	ctctctcttg	ttettgettt	ttctctctct	2520
tgttcttgct	ttttctctct	cttgctttct	tgttctttt	ctttctctct	cttgctctct	2580
tgcactctgg	ctcctgaaga	tgtaagcaat	aaagttttgc	cgcagaagat	tccggtttgt	2640
tgcgtctttc	ctggccggtc	gcgaacgcgt	gtaagaaaat	tggactctga	aagattaaaa	2700

aaacaaaaag ca	aaagaaat	gtgttttctt	cgatgtagag	ttgtgtgtgt	gtgcatgtgt	2760
tgtgtgtgtg tg	gcatgtgtt	gtgtgtgcct	gtgttgtgtg	tgcatgtgtt	gtgtgtgcat	2820
gtgtatgtga gt	catgaaac	tacaaagaag	atgctagagg	agatgaaata	aatac	2875
<210> 59 <211> 3560 <212> DNA <213> Mus mus	sculus					
<400> 59 catttagttt ct	tgaggacac	aggccttgtg	ttagtgcaaa	tttaagagtg	atagtttttt	60
ttttttttt tg	gctctaatc	tgtctagctt	ctagataatc	aagacagagg	ctattagatt	120
tattcaacaa go	ccttaaggc	acaataactg	agcagatatt	aatctattct	aaccctctaa	180
actaatctag c	tactttcca	gcccaaattc	ccaatatact	tttagtattt	tagtattgat	240
tttaggattt ta	aatattgat	ttggctctct	ctgcctgctc	catttgtgtt	ctcatggtga	300
ctcctggtcc c	tcaccacct	ggagaaacct	ctccttcttc	ttccactacc	cctgccctgg	360
cggggactgg a	agtccagcc	ctgtcatctc	ctctgcccag	tgattggctg	atcagctttt	420
tatccaccca c	cagagctaa	ttggggagca	gtgtttacac	aacgctgaga	caggagattc	480
ttagaagaag c	actacaatg	ccatgtcgga	attgcaacaa	gatatgaggg	ccccgaaatc	540
agtatttgaa t	gatacacgg	atagtcgtca	cacagggcac	aataacatta	tgccaacagc	600
cttgctttta g	accactgag	caaaaccagc	tctccaagca	tctgtggtct	gaccaaagcc	660
aggcaactgt g	ctcatccat	ctcagcatac	ttgttggtgg	cctagaactg	gcactctgcc	720
tcatcatgat g	ıcaaatggta	gtttcaggga	ggtgtgcttt	ccacagagto	atttgcttat	780
acaacctagg a	ıggtgatgag	gagatggaag	ggtctggtct	ggggtgggtg	ggctgtgtga	840
ctctgaaagg c	cagtgtgtg	ttcggaggtg	gacagcacac	ctggagctgc	actgctggaa	900
ggctcagaca t	ctagctgga	ggagatgatt	ccaattgcac	tegecaettt	aggtetgtgt	960
ccagaaatgt a	agaagcgat	ggaaagtgct	agggttcctt	tgtgtcccaa	getetetggt	1020
tctaaccctg a	a ctg acttgt	agaccatgtg	aatgaggctt	tgaaggtgto	cttagagatg	1080
ttttcattcc c	agaagcttg	gtggcttgct	ttgagttgct	tgtcagggac	agtgcagagt	1140
gacagtggat t	cacataaaac	cagagtttat	ccatctgtca	ggtaggagto	cacagtggca	1200

gctgtgggaa gt	caaggact	cgggcacttc	ctgtgacatt	ctgccaccta	agcataggac	1260
tttgatgtta tt						1320
ctgggctctt tc	cagtagag	gttcctgctt	aatcctgttg	tccagaaaat	agtcacatgg	1380
gcacaaggta gg	gtggcgaaa	tgtagcgctc	accccagcaa	gcaatgaacg	gtaggtcagt	1440
gactgtgggc aa	agtaaaag	agatcagatg	cggggtgaac	acttacttct	gcctcactag	1500
gatcttcagg ac	attcaaac	cttactggcc	cttaatgtgg	aggtaatggt	tgcatttggc	1560
ccagacagtc cc	gaagcagc	ttcctgatag	ccgcaggaat	tgaggccaag	tgtcactacc	1620
atctcagcat ta	agactcag	atacattttt	agagtcccct	ctctaaattg	cttcatatac	1680
tgcctaggaa ac	acttaggg	tgtctgtgaa	ggtgcatatt	cataagtgct	ctggcaatta	1740
acactccacc ca	acccctct	ttcttctcct	ccccctccc	ccttgtcttc	ctcctctccc	1800
ttcccttccc ct	ccctccct	ctctctcatc	ttccccccac	tccctcctct	tctccatctc	1860
ctcatgcctt ct	ctctggcc	taacagcaaa	cacgatattt	tcactttaga	agacagtgta	1920
ccctgagagg aa	ataaaaata	attttcttcc	aacctgatgg	tgccaaactc	ataacagaac	1980
aacccgaccc go	gcattgaga	agttgtctag	catgcacaac	agttcagggc	atagcagaag	2040
cctagatcca gt	tgtaccagt	gggaacagga	cagacccagc	cttgccccct	gagggaggtc	2100
tagaatacct ta	aagtcttga	atccaaagcg	gccacatctc	acaggtctta	ggagtgtttt	2160
tggtcattca go	egttttgct	ttctcttgac	gcagctgtgc	tcagtaattg	ggtgtcccgt	2220
ttttagtgca gt	tctcaccat	tagcattctg	catgttccaa	acttcattgg	gttttgatgg	2280
gcccattctt ca	atacaccca	cccgttcccc	aacaaacaca	caggcagaat	ctatgaatct	2340
acattaaaat tt	tgtgttaaa	ggcgggctga	gagcaagtgt	ctacctgtac	tgaatgtatt	2400
gttactaata ag	gaattaaag	gtctggagat	ggctcagcta	gtcaaagtgc	ttgccgggta	2460
agcctgacta ca	atgaattcc	acttgggtat	agtgacaagc	ctggtaactt	ctcgggcgcc	2520
atctctcaat ag	gctgcaatc	ttgacaagtc	accatgttcc	tcgatatccc	aggttttagt	2580
ttcttgaggt ac	caaacagag	gtgcctccca	tgtgctattg	ggagaactgg	cctgtgcttc	2640
agggtctgtg to	gggacagat	ccagcctgca	tggtctcagt	gacacacatt	tcatttgtac	2700
atgcatgtgt gt	tgtctgtgg	atgtcttggt	gtgtgagtac	gtgtgtgtgt	ctatgtgtac	2760
atgtgtgtgt at	tgtgtgtgt	ctttatgtgt	gtgtgcatat	gtgtgtatgt	atatgtgtgt	2820

acatgtatgt	gcatgtgtgt	atgagtgtgt	atgtgtgtac	atgtatgtgc	atgcgtgtgt	2880
gtgtgtgtgt	gtgcatgtgt	gtgtgtcttt	atgtatgcat	gcatgtgtgt	gtctgtgtgt	2940
atgtgtatgt	atgtgcatat	atgtgcatgt	gtgtgtgtga	gttgtcattc	cagttgatgt	3000
ctaggagttc	cggaatgaaa	tgatagaacg	tagcagttgg	atttgtatat	caatcttgtg	3060
tggaactcgt	ggccaaagag	gcagccctga	ggaattgtgt	atgtatgact	ctgcatgtgt	3120
gtcatcctca	gcacttgatg	gcagcaccga	ctctcaggac	ctgtctcaga	catgtagatg	3180
gaggcccagc	cattggtgct	ttaaccagat	gtgcagagga	cctgaatgtg	cagtattagc	3240
atctgagagc	tggcaccaac	ctcagacctc	attggatctc	atatttcctt	gtggaccccc	3300
tgccccctt	ctgactcagt	gattctggac	ttcagctcag	gctgagactt	taagtaggac	3360
tctgctctgt	ggagctgggg	aggtaggata	gctcagcagg	tagagtgctt	gctgtgcaaa	3420
ccctgaggac	ctattcaggc	atgttgcttg	tgtttataat	accagagcct	tggcatagga	3480
gacaggtgaa	tccttgggtc	tgctggccag	cccatctcac	ctaatgtaca	gattccagtc	3540
caatggaaga	gcctgcctcg					3560

<210> 60

<211> 2334

<212> DNA

<213> Mus musculus

<400> 60

taaaaaccca aattggaact atctcctccc tttacccctt tcccttaatt cctattctga 60 tgacactttg gacatgaatt caaggggcag atgaattttt ggcattgtgt tttttcttac 120 tcaaaatctg tttattgggt tactgcccc ataaaaagta aacatgactt ttaagtattt 180 ttttataaac agctcaatat aaaacataga cagtgtttga ttattttcct tgtgtaagtt 240 300 tgatttaaaa cgttggaaat gtgtgctttt tagtgtttac taaagtgata agaaaataaa 360 gcattcaata cactatagat tccaaaacat aacattgcac caaatagaaa tgtatatttt attatgcaat gccttagtca taaactgggc tcaaacaatc ctcagcctaa aacactgttg 420 tottttaata tgottocaac ccaaaggoot ttoatotoag tatotgtoaa acttgaataa 480 cgtcttctct ttactattac acacgaggca gcctattaac ctgtgtctta gaattgttgt 540 atatagttct tttaatatcc atagggtata tttttgaatt ttttggtgag tatttgttga 600 atttgagata gcatacagta gatgtttaag aaatagtagg aagtccggtg agacggctgt 660

PCT/US2003/027106 WO 2005/005597

ttccatcaag	aactcctagc	actgctgtaa	atatcatggt	gcctactgga	agggaatgta	720
gatgctatgc	attttggaaa	taatctgcat	ctgttaaacc	tgcagaagtt	ttttaatgcc	780
actttaacac	taatgcactg	acagattcta	aatattttgt	gagaaatgtt	gaaatgttta	840
acctgatagg	cttctctata	aaagagtgtt	ttgtttttt	ccctgcacca	caagctgtgt	900
ttatcacttt	acagttgcat	gttcaacttg	tcatagctgg	aattactgta	taaaaagaac	960
tgattgtgac	ttgtagttct	tctctagagg	atgctgctag	aacgtggttt	tgctttgcat	1020
tttgtagttc	ttcccgtcag	tgctgtgtgt	agtcctgctt	cttccagtct	gcagtattca	1080
ctagaggcgc	cctttgcatg	ttgcactctg	ttctcatttg	gaggttggac	tcagaccagt	1140
tagcacagta	ttctctcatc	tgtgtcactt	tgtaaaacta	actgtactct	gtatttctta	1200
tttgtacata	tcaatgtgag	aaatctccct	tttttatgtt	gcaattacct	tgtgatcagg	1260
cagcttgagt	gctatgcaaa	tagtaagtag	tgtagtggtg	atttttcttt	gcatgttgtg	1320
tgtgatatac	ctagccagaa	atagatgtgg	cttttgtttt	gggggcagat	tactttcaaa	1380
agcaaataca	attcacttga	atttgacaaa	ctgaagcaga	caagtgttct	gggtcctctg	1440
ataatttggg	gtgtttggct	gtcagctagg	ctcatgaagt	ccactgtact	gtaatgatgg	1500
tatttacctc	tgtgctattt	taattaccct	cgcgtctgtg	gaactgctga	tttgagtagt	1560
gattagcatt	tagaaatttt	gtaatgtaga	gttttagaga	gagcactttg	aaagataaac	1620
attttattat	gatggtgcta	ggtacaaaat	ttatagcatg	ggatgtgaag	aaaaaaatg	1680
agaacccatt	gaaaggaaga	aaggaatttg	ttgtctgctt	ctaagctaga	gtggttgtaa	1740
aggttctgct	ctgccagtgt	tcagtatcag	tggctgaatt	atggataaga	actgtagaga	1800
atcttctgtt	tagtccgtgc	tttttatgta	gaattggttt	tatctaatag	ttttactatg	1860
gaaatcgcct	tttgatatta	aagccagatt	ttagaggttt	gatatgtttg	gtctcaggag	1920
ctcaaaagaa	gtagcttttt	ccagtgtctt	ttgtgttact	gatttgggaa	. atgttgaaag	1980
attggacagg	gaagaatago	gcttggtgtc	ctcatggtca	ttctgtctta	ccttagtggc	2040
ttgacagtac	ttactatago	: tcctgaggga	agccaatcaa	cttctgtttt	cctacctgac	2100
ctgcagggca	tgatggatca	ı gtgatgaaag	aattgtagco	tgtggcactt	: tgttttgacc	2160
tctggtatag	aactctgact	tttatagttt	: taaaatgato	aatctttgta	tgaaagtcag	2220
ttttcttct	ttaggtatca	gaagattttg	ccttattctg	g aggtcggact	agggccaagc	2280

aagctttttc cttcatgtga	gctgtcatac	tgtattttga	cctctttctg	cacg	2334
<210> 61 <211> 4052 <212> DNA <213> Mus musculus					
<400> 61 atggaaatga tttttctttt	tttccccatt	t gggatgatg	ttggctgtga	gcttgctgta	60
tattgccttt ttttttaggt	taagctatgt	cccctgtatt	cctagattct	ttgggacttt	120
tctcatgaaa gtatgttgga	ttttatcaaa	ggtttttctc	tgtctaaaga	gataatcatt	180
agattttcat tactcagtct	atctgtgtag	tagattatac	ttatttctat	gtatgaggta	240
gattacattt atttatgtat	gtatattgaa	caatctctgt	atccctgggg	tgaaactgac	300
ttcattataa tgggtaatct	ttatgatgtg	ttcttgaatt	cagtttgcaa	attgaaatgt	360
aaacttaagg gttttttgga	aagtcagttg	tgttggatgg	tattttcttg	gagcaaacac	420
ttgaaggagt attttactga	agcagacaca	gatgaaagga	tgttttgcta	aatcaagcat	480
gtgggacatg tgaaggattc	atcactaatg	agatgcctat	attgatctga	cttacactgc	540
acagctgagc tctgtttgtt	gtgacttcat	agaattgcat	caaaaaaact	aaacaaaca	600
aaacaaaaaa aaaaacttta	ggctgattgg	caaagtgatg	tcagctgata	cagattcaag	660
tgaagttttg ctaagtcaga	ttcacatgct	caggcaagat	gtggtgaggc	aagcaagacc	720
catgaaggac atgtaatact	tggagggaat	gtaagtagga	ctcaacaggc	tgtgagagag	780
gettgggtag gettggettg	cttgctagta	gagctagctg	tacaaatcat	cttcacatct	840
tcactgagag aggcacagcc	aagaacttct	ggcattcccc	ttggccttga	ttcttcctgc	900
ggaatcgtgg cgattaggct	gaggcctggc	tgtctctgct	aggtcatgct	accactgatg	960
attcaagttt gctattctga	ctctattgaa	ctagctggtt	tgttggtata	ttcatgaagg	1020
atttgcaagt ggattgagct	gccattgctg	agctgaactg	aactgctgat	ctcctgacaa	1080
tgcagatggg atttgctcca	aagaaccatt	tctaaacagg	tgcaccccct	cccacctcc	1140
atccaaccct ctgtatcctt	tcttttcctc	gacctctggt	gggtggaggt	ggaggactac	1200
aaagaaagtt aaagggttta	agaaccaaca	ttaaaagtag	gccctgaaaa	aaattaacat	1260
tattctaagg ggttttattg	agagttttc	cattcattca	tatttatcaa	agagattgaa	1320

atataattat att				F-1-1		1000
ctatgattct ctt	ittgtgta taa	ggaggtc	tttctctgat	tttggtataa	gggtgatact	1380
ggcattgtaa aaa	atgatgaa atg	tccttta	atttcctatt	ttgtggaata	atttgaggcg	1440
tatttgtatg agt	tcttttg aag	gtgttag	aaatctgtgg	cgaatccatc	catctggtac	1500
tatgctgttt tga	aattggag gat	tttaatt	actggatctt	tctcgttgga	tgttatagtt	1560
ctatttaaat tat	ttatttc atc	ttgatat	agatttagct	tttataggtg	atatgtatct	1620
agaaattaat tta	atgtcttt cag	attttct	attatgttag	aatatagata	ttttaaaaa	1680
tattgtcatg att	ctctgaa ttt	ccttttt	atataacttt	ctgtatatta	taatgactat	1740
taatttgaat cct	tcttttc att	gatttgt	ctaaaggttt	gtcaatcttt	tcaaagaacc	1800
aacaccttat taa	aattgatt ctt	tgttttg	ttttgttttc	tatttcattc	attttcagag	1860
ctgatttgat tgt	ctctgcc cat	ctacttt	gtttttttt	ttcccaagga	ctttgtgtgt	1920
attattaatt tga	agatgeet tge	ttgcttg	cttgcttgct	tggttacttg	cttcctttct	1980
ttcttctttc tcc	ccccacc ctc	ttcctct	ttctctttct	ttttcttcct	tccttccttc	2040
cttccttcct tcc	ttccttc ctt	cctttta	gctgtagtgt	tatggaattt	tttcttagga	2100
cttactgtct tca	attgtgtc cca	tagattt	tgggatgtta	tgttttcatt	cagtagtttt	2160
aggaattaat aaa	attctta att	tctttct	ttcttcattc	agttaacact	cagtgagatt	2220
ttatttattg tct	acaagct tgt	gaactgt	ctgtggtttc	tgtgattgat	acatagcttt	2280
ataccattgt ggc	aagatag gaa	atggggt	gtaatttgaa	gtttgctgca	tattttagac	2340
ctttttttgt atc	ataataa gta	gttgatt	ttggagaatg	tttcactggc	tcctgagaaa	2400
ttattcttgt gat	aattagc tta	aaatcgc	atgtaaaaca	aagcatacct	gaatctcttt	2460
gatacagatt ato	gtgtgatt aca	tcaaaac	actttataaa	gtatatatga	cactctccat	2520
aaagataaat ttt	gtagatt ggt	agaaatg	tccgtgagct	acacatattg	aaacaaaggt	2580
caccaggcta gag	gagcacct cca	gtccagc	cttctcagta	gaaagggggc	tttgcattct	2640
ttctctgaaa gaa	catecet gtg	tgcttga	tattctgggt	tcccagagta	catatgtgta	2700
agcacaaaga tac	ctctgta ttt	aatgcgt	agttttgtta	ggtctagtaa	tcttgtttga	2760
aacatgggat tgt	tcaggac ttg	gaataca	tgcaggctct	tctggcttta	atatgttcta	2820
ttctaatgta tgt	geettta tet	ctctcat	agagctttca	gtgctctatg	agagctcttt	2880
agtctgtgtt ctt	aatattt gaa	ccataaa	atatgaatta	ctttcttctc	tggacttgtc	2940

tatttggtat	tctgtacgcc	tgttttgtac	ctagatgagc	ataattttag	gtttgggaaa	3000
tagtcttgta	tggatttact	gaagatattc	tatgcatttg	ctgtagcatt	ctgtatttct	3060
t tt tatgcct	ttaattcagg	aagttgaggt	ttggtttttg	ttggtttctt	tctttcttt	3120
tttttttc	cttttatccc	cagtttatag	aattttggcc	ttctgatagt	tttggttgac	3180
tctctgtatt	cttttggtat	gtgtttcatc	acttttggcc	ttggtctata	ctggtttttg	3240
ccatgtgctc	aattttattt	tggcttttta	cattgtagag	ctttgggata	cattattagg	3300
ttatttatta	gtgtgaacac	tttcagccat	aacctttcct	ctaaggattg	cttaggtatg	3360
tcccagaggt	tctgaaaagt	gttgttttca	ttttcattat	gtttccattt	gttaagacct	3420
ccaaggtttc	ttcagtttaa	aagtgtgctg	ttcagtctcc	aagtatgttt	tctgaggtta	3480
tcattgtttt	tgatttctag	tttgattgta	ctggggtctg	acagatgcag	gaatcgtttg	3540
cttttccttt	cctcttcctt	gcatccttcc	ttttgctttg	tgttctacaa	tgtgttcaaa	3600
agagtgtcat	gtgccactga	tgaaactgca	ttatttatct	gttaggtgca	atgtttgtag	3660
ctctaccaag	taagtttagt	tcacctgtgg	tatgacttaa	ccctaaggtt	tctttgttga	3720
atttttttg	actgttgttt	ttggtgggta	tttggggttt	tttgttttct	tgagactggt	3780
tttctctgtt	taactttggc	tgtcctggaa	ctcactgtag	agtagggtag	atctcaaact	3840
cccagagatc	tagctgcctc	tacctcctga	gtgctgggaa	ctaaaggtgt	gtaccaccac	3900
ggatggtctt	tgctgaattt	gatttggagg	acacatctac	ctagtgtgaa	agtgaggtcc	3960
tatctccagg	cctctgcagt	gatgtgtacc	gtttaatgtc	aggactcaga	aaatatgtgg	4020
acccaataaa	gcctcagtgt	gtcttttgag	cg			4052
<210> 62 <211> 1815 <212> DNA <213> Mus	musculus					
<400> 62						

<400> 62
agtttttact tattccctct tattgagact gttagtcctg acctagttag ctgcattatt 60
tattccctgt tagatcacag catggagtcg ttgaaatgat actttcagtc agcgtcactt 120
ctttccacag tgcagaaagg tctggaaaac ctcaggcacc ttgagattca gcctgtgtta 180
gggctgcagc ttgagaaaaa caccgtgtga ctctgaaaca tttccccgac ggctgaattt 240

ccttttctgg gttttcctcc gtgccacaag ctcaggacca agtgtaagaa gcagcccttg 300

١	aaaaatggca	gcagggccta	gcaatctcca	gtgtgagcct	tcctgcctgc	ctcagcgtga	360
	catcggggga	cactgaagtg	gatgctaatc	gtgtgggctg	attccttgca	cctgctggct	420
	gaccccaggg	gaaatctgtg	actagcaacg	tctggccagt	gtctgcctac	tttattcagt	480
	acgcttattt	tccatcccca	tagaaggaga	aaaattagta	gagacatttt	attcactttg	540
	catttgtgta	catatgtata	aatttactct	gagttcacgt	gtgtgcatgt	atgtgtgagt	600
	gcatgcatga	tcgtgtgtgt	gcatgtatgt	gtgtgtgcat	gtatgtgtgt	gtgcatgtat	660
	gttcacgtgt	gtgcatgtat	gtgtgtgtgc	atgtatgtgt	gtgtatgtat	gttcacgtgt	720
	gtgcatgtat	gttcccgtgt	gtgcatgtat	gtgtgtgttc	atgtatgtgt	gtgtgcatgc	780
	agaagccaga	ggtcactgtt	gagtgtctgc	ctgtgttgca	ctccaccttg	ccatttgaga	840
	ccgggtctgt	catcaaatct	ggaacttaac	aattgagata	gaatggctgg	ccagagagct	900
	ccagagatct	tctgtctcca	taaagcactc	tgtcccccc	cccccccca	gttcagtgct	960
	gtggttatag	aactgcgaca	caagcttttt	atatgtgcac	tggggatgca	acccagttcc	1020
	ccgtgattgt	atggtaggca	tgttactcac	tgagccgtct	ccctagcact	taagtttacc	1080
	tctgaattgt	tagactctag	cgtgtctgta	gtgaagagcc	cattaactag	aggagtagtg	1140
	ttttcttagc	aacctcaagt	atggtaaaat	gttatactgg	ctagcttgca	tcagagggaa	1200
	aacactttt	tttttttaac	tttttgggat	ttctatgatc	attatttcaa	atcaggaaga	1260
	aaggaatttt	ccttgtggaa	agctaacatg	gtttgaagta	tttggctctg	cattgcactt	1320
	gtctagagcc	tgtttgcaga	tcagagttta	cgcagtgccc	acacacatga	tctccttcca	1380
	ttgtgatgat	catcctgtaa	aatgggtagg	acaggaggca	ttatctcctt	ctaaggtgag	1440
	aaggcgggtc	ctggaagatt	aaatgactgg	tttgcagtca	gcaggcaggc	aggtcctgga	1500
	agattaagtg	actgatttgc	tgccagcagg	gcagaaatga	cagaaacgat	acagaaggga	1560
	tccaaatcta	cttcttgtgg	tttagttccc	ccttctttgc	atgatacago	aacaactcag	1620
	tacagtccag	agatgcagtt	tatttattta	tttatttatt	tatttagact	cactggtgtg	1680
	tctgtgaaca	gtcatcatga	gtcgtcgtct	ggcatagtcc	ctatgagcac	caggatttgt	1740
	gaatatcttt	attttgacag	gaacggaatc	accactgctg	tgtcccttaa	taataaaatc	1800
	tgtatttggt	tcacc					1815

<210> 63 <211> 1727 <212> DNA

<213> Mus musculus

<400> 63

60 gtcgtacaag tccaaaaagg gaaatagaaa atggagcatg ctgtagaata gaccttgaat 120 ggactggaaa gtctcttgtg aggagggtgg ccttatttaa ggacacaggg attttattta agggttttta aagtggagta ggagaagaaa gcagagaatg taatcaaggt tgtgtaatgt 180 240 ttgactttga aaccaaataa gattcataag aattttcaaa aatagtacaa agggtgttat 300 gtgtcttcac cctgtttctc ccagtcagag aaccttacac aatcataata tagtgttgaa aatacactta tgttgctgag tgtcattggc taagatgtag atatatttcg attttataat 360 420 ttattttagc ttaaaagttc aaaacaatgc atagaaagga ctgaagccat ggctggaact ataaattcac aatcttagtt ggagattaag gagcaaagcc cagttggtag atgagcgatt 480 540 gtttgccaag atagttagaa gggctaaaat gatgtctcag ttggtaaagt gtttgccatg 600 caagcacaaa gacccaagct tggattccca gcactcacaa agaaagatga acatgatggt gtgtgcctgt aattctaggt ctagggaagt ggagacagga ggagctcact ggttatccac 660 tcttgctgaa ttgtttagtt ccaggttcaa caagagactc tatccaaaat tataaagtgg 720 780 agagtgacag agaaggacag ccgatcaggc atgcacatgt ttgtatgttt gtgttatcta tctatgtatc tatgtatcta tgtatctatc tatctatgta tctatctatc atctatctat 840 ctatctatct atctatctct gtctttcaca gacacacatg tgtatacaca catacatcat 900 acacaaataa aatctagatt actagaaata tttagaggta gaaatgctct atatgtctaa 960 1020 gtgactacat acttgtgagg cagaagagat aaagtccaag gggagctatc agtcagtgtt tatgcttcta actgagaact agaagagaag cagatttatg gaaaaccaag acactttcac 1080 cgtgatcaca gtgacccgca gacacctgtg taggggatgt tcttactacc tgaagctcaa 1140 1200 gaaagatggc ggctggagtt gggagggtta aaggtttagg catcctacat gtatgggata 1260 ataaacaacc tggttaacac tgtcactttc ctgtgattct acttaaagtt atgattcaaa 1320 gatttcctgt gggttttttt ggtgtgtttt gttatgcttt tgtttttaaa gcttagcatt tatattagtg taaactgaat tcatgataaa gtgtgatgtt ttctttaaca ttccctccaa 1380 aatgttgctt tgctttggga atacttaaat aatgtactgt ttaggttttt ccctcaagtt 1440

agcaaagata caataatctg	ggaaggagga	aactcaaccg	agaaactgcc	tccatcagat	1500
tggcctataa acaagcctgt	gggtgcattt	tcttgctgga	tgattgatgt	ggaaagaccc	1560
agccctctat ggctgtggct	cccctggaaa	ggtggccttg	gtttatataa	gaaagcaatc	1620
tcagtgaagc aatctgaggg	gcaagtgtaa	gcaccagtgc	tccccttcc	gtgtgtcagg	1680
acggatgtca gttgtccaga	agatttctga	gttcacttct	cagaatg		1727
<210> 64 <211> 2314 <212> DNA <213> Mus musculus					
<400> 64 ggttgattcc caagtctaca	ctcattcaca	tctttgtgtc	tttgtttatt	tgtttttatt	60
tttttaactg aaattgtttt	tacacaatat	attcttgtca	tggttcctct	ctgcctcctc	120
cctctcagcc catatcctcc	cgacttcccc	acccaaccac	ctgactccat	gccccttctt	180
cctctctcgc tttaaaaaat	aacaaacaag	ttactccctc	ctctcctatg	gtctcaagac	240
catctctctc agtgttacac	agcattcccc	aacacagcat	tcacctgtga	aggctgggtc	300
ctggttttgc tacatggact	ccctaactct	tcaatttcta	tctatctatc	tatctatcta	360
tctatctatc tatctatcta	tctatctatt	tatttttatg	tatgaattta	tttattcact	420
tttaaaattt atttatttt	attaggtatt	ttcttctttt	acatttcaaa	tgctatccca	480
aaagtccccc agacccgttg	aggaccacat	ctttttgttc	gattgattct	atttatgatt	540
ctacaccaac tctcctcgag	cacgagacct	tgcatgtcct	tatggtgtct	ttcttaggtt	600
aaatttgtta gcctggcatg	agaagttaag	cgtatgcttc	taccttaagg	cattcatgag	660
gaatagctat ggagagtgaa	tgatatttca	gtgtttttgt	ttctcccacc	tggagttttt	720
gtcagttgtt ttatgaatgt	tttaaagtgg	gttcgacttc	tatttccact	tctatttgca	780
aaatgtgtgt ttctgtctca	ctcgactctg	ctcacctgta	caagtgaaat	tgtttctaaa	840
cagaagcatt gtgactgtgg	gaaggtctac	ccatgatcat	gggaaattca	aagttcagat	900
tcagacaaac ttaagcaaat	ctgtatactt	agcactgcag	ataaatggga	gtgtatttca	960
agccaaacaa agatctggct	ttatgaagac	acagatetea	ttaatctatg	tcaaattgtt	1020
gtttaaatac aagccttttg	gaataattca	agctcgctct	tgcaggaatt	aatctatctt	1080
cactttgcca tttgtaattg	ctgacctgac	aggcatttac	tggatttgtt	ttgtagtgta	1140

aagtatttaa ggtggaaaat	taacatcatg	agacaaaatg	tcaccttttg	ggtgaaaaca	1200
ctcagcgttt ttacctcctg	aagtggcagc	ccaattcttc	tgatggatgg	gtacacctgc	1260
tgctttcaga aaaggcttcc a	agtgggtcat	gaagtctctt	tttgaaaatt	ctaaaatata	1320
cagtatgatt acacctgagg	ctgcaaggtg	tgtgtgtgtg	tgtgtgtgtg	tgtgaatgca	1380
tttatatgct tatgtgcctc	tgcatacata	tgcatagaag	cttgtggaac	tgtctggact	1440
ctaaaaaaaa atacacatca	tcattttgtt	ctttgtcaaa	cacaattctc	aaaaagagtc	1500
tagtgtaatt aatttaaaat	tcaatgagca	tttgttgggc	acaatctgaa	ctgaacagtg	1560
gaaaactgaa cagattgaga q	gacttaagga	cttcagggca	cagtggacag	atcaaccagg	1620
taaggaagta actgaagatc	ggggttactg	ggatccacgc	aatactgtca	ccagtagtgg	1680
taaatacaga ggacagagtt	agcactgatc	agtctaggag	aaactgtaga	gcaaatacca	1740
tagagaaggc tcatttttat	ctaaccttga	agaatacacc	cacctggaag	tattatggaa	1800
ggaagaaagt gttaaaagac	acagaaacca	tgaagtagca	tgaaatattc	ataaattgct	1860
gaaggcagga gttgggagac	agcccttgtt	ctggttatgg	ggctcttgga	agggacaacc	1920
gagaatagcc actattggcc	acctttgtat	taaattcaag	gctgaaaaac	tcaaggggtt	1980
gcagaaagtt tctgcagaag	ctgcctatga	gtctgttgct	aggactgact	tgttagtggt	2040
cagtcttggc tccgtttcca	ttctttcaag	tgtggcgact	cccaggaaaa	taatctacca	2100
tgtgttaact gtgctgcacg	atttcctctt	cacgttatac	aagtgctaga	catttgttga	2160
ctaacagaga gatgttagag	agatggaaga	tggtgcttta	aggcatttcc	agtttgtgag	2220
agattaggca taaacgtgca	aagtactcac	aatgtagggc	ttcagtgaca	gtcgcattaa	2280
aagtaatttg agaagattgg	ttggaacaag	ctcc			2314
<210> 65 <211> 3368					

<212> DNA

<213> Mus musculus

<400> 65

tgagtggtga gtgactcggg gcggctccaa acaagctgga gggcttggcc ccgccttcct 60 cttgctctgt ttttgtgggc ggtctagccc aggcctcatt ccacgctcag tccagctcag 120 tcatccctga gtcttcagtg tttccagatt tagcctgtta ctccaccacc ctcttacacc 180

tccactcatc tggttactgc	ctgtctttgt	tactgagctc	ttcactaccc	ccatccatct	240
aaaatactcc cgaaggtcag	cacacttctg	caggggaaat	ggtaagagac	agctcagcca	300
ggaagaatgg agaaggctgc	ctatgccccg	gtagccatgg	tggatggcag	agaggtgtgc	360
cttggtccac agtgtgtggc	ctagggcttt	tgtgtattgg	gtccatcttg	gtgggaaggc	420
tgagacaaaa gaacttcagc	ctggagttag	ccaaagaaaa	gctgggcatg	gtagttcgtg	480
cctgtagtgc caggattcag	gaaggttggg	gattttgagg	cctgccagag	aggtacatgg	540
taaggtttgg gaaaagggga	aggggagaag	gggtgtgtat	gggcagggat	ctaagacagg	600
gaagcagcgg gacttggtat	gggcatcctt	gatggacggg	tgctttaggg	taccctttac	660
tcgctcctag gaacaggtaa	tggggatgtt	tagaggaggt	ggggtgggtg	aaagggtccc	720
acagtgtgct tcatggattc	tcttggtctc	ttgcagaaac	gggggatatt	tatatctggg	780
gctggaatga gtcagggcag	ctggccctgc	ccacaaggag	tgggacagag	aacaaagcag	840
agagagagga agccacagaa	ttgaatgaag	atggtctcaa	agaggaatta	gctgtggctg	900
atgcaggagc tcctgcccac	ttcatagcca	tccagccctt	ccctgctctt	ctggatcttc	960
ccctgggctc agatgcagtt	atggccagct	gcggatcccg	acacacagct	gtggtgacac	1020
gcacaggaga actctatacc	tggggctggg	gtaaatacgg	acagcttggc	cacaaggaca	1080
gcaccagctt ggatcgaccc	tgctgtgtgg	agtactttgt	agaaagacaa	cttgaagtaa	1140
gggctgtgac atgtggaccc	tggaatacct	atgtctatgc	aatggaaaga	gacaaaagct	1200
gaactatccc ttagtggatc	cccacttatg	tgcctggttg	ctgtatggac	caatgacagc	1260
cccattaaga cagcaggacc	agagactcag	ataaaaatct	ctgcagccgg	agctgtgaca	1320
agggaagcaa tagttatatc	aaaacagcca	aggctgtcca	agtctctcag	aggaaaatgt	1380
ctggacccat gagaagagaa	agcactttta	tgagattctt	atatattcat	attcaaatct	1440
tetetatgta geacaggetg	gcttccactt	tgactcaggt	tcctgaatgc	tggattatgt	1500
ttagagatta aatctaggac	atcacgtatg	ctggtaacac	ctcctaccac	tgaactaaac	1560
ccacagtggt gtagataaca	attttgcatc	aatccacaag	atgtctggaa	ctccctgtct	1620
tgaactcctg agatctgtag	attacagcct	cccgagcaat	gcgattacag	actatactca	1680
agagatgaga agcccacacc	attacatgct	cagcgtttac	acagagaaga	ggccgagtag	1740
ccgcgacttg cggcggcgcc	tgagctcggc	cgccagctac	gccaggcctg	agacaaaccc	1800

accccggcct	cgaggaagcg	tgtcaacccc	gcgctgtccc	cgctgctcgc	cccgctagtg	1860
gcctcgggca	cagatgccct	ccggagccgg	cttcgagcgc	cccagccaca	gacatcggtg	1920
cctgaagacc	ggcgaaccca	gcttgtcgaa	cctggtacca	gacccgcacc	tcagtaatgg	1980
gtcccgcccc	taagagaccc	gcaccttctc	ctcatggtgg	acgctccaag	ctgtccagaa	2040
tcgagaccct	ccacttgcca	cgcgcgggac	ggagaacggt	aaccagccgc	agcagacttc	2100
acccggagtc	cgtctccact	ctcgagccgt	tggaccccgc	ggaattcaaa	ccgagccaga	2160
ggcggtgcca	aatgacaatt	ggttaccgcg	tccgccactc	acggagcccc	gccctcgtcc	2220
cgcccctcct	gcgaagggct	gctgcctagg	cctgggatac	agagaccgcc	tagggcgtgg	2280
gaagcgcttg	cacggggagc	gtgcgggcct	caatatgcgc	atgcgtgcac	ctatgcccgc	2340
ctcaagggtg	gggtgtaggg	gtgtggccga	tgatgtcacc	ggtacccact	gagttgctgc	2400
cgttgggttt	caaatttttg	tgcttcctga	gaagtattgg	gtagactgcc	agaacagctc	2460
gacttcttgc	tactctccaa	tgtcccaaga	ggagcaggga	ctagcaggaa	agcttagaag	2520
gaaaaaaaaa	ccaggctctt	ggtcctggta	ccttagtgga	caagtttatc	gcatttaatc	2580
attagaacac	acctgttaat	aatgatcatc	actatcctga	agaaaaagat	ttgagtagct	2640
tttccagaac	gtaggcggca	gagacaggac	agggaaatag	tttgggctac	aggaaaaaac	2700
tgacttgccc	aatttagctg	tgagcaaatg	gtgatttggg	ctttgttttt	cttgcacatt	2760
ataagattta	ggtaaatcag	gaaaactcca	caatttgaac	atgacatcaa	agtatttgtg	2820
tagccgggcg	tggtggcgca	cgcctttaat	accagcactt	gggaggcgga	ggcaggcgga	2880
tttctgagtt	cgaggccagc	ctggtccgca	aagtgagtto	caggacagcc	agggctacac	2940
agagaaaccc	tgtctcgaaa	aaccaaaaca	aacaaacaaa	caaacaaaa	acaaaaacaa	3000
aaaacaacca	aagtatttgt	gtgtcctttt	cttcccactg	acccatagca	tctgtatccc	3060
attttcaatg	atttactatt	acctaataca	ctgctatggg	agtatctcct	ttgctactca	3120
gactaaaatt	tgtaataaag	ctgagatgaa	tttcttttt	gctacctcct	ccaaaatgat	3180
ttgtagaagt	gtaattattg	aattctcctt	tgcgaagagg	tacttattaa	. cctatcttct	3240
gcaccaaact	ttacctggag	tatccttgtt	acccacagca	. ctggtgatta	gcaatgcgct	3300
tttaaaccac	tagcttccat	ctataggccc	: aaaataaaac	aaaatctagt	ttatactgaa	3360
ttataacc						3368

<210> 66 <211> 1763 <212> DNA <213> Mus musculus

<400> 66

gagacttgag cccatcggga ggattgtgtt ctggggcctc ctcaggcagt acctctggga 60 acaggggett ggateggtea atgaegaaca tetegtgtee atggteatea eggageteet 120 cgagctgtgc aaaggtgcaa ggcccatccg aataatcgtt gacaaatagg gtgccttctc 180 ccgacggcgc aggcaccttt ttccgccggc gtcggcgtcg gcagatcata gctgccaaca 240 acagegeggt gagegeeage agegetatgg etgetgtgat egetgtetge gttgetagge 300 ccagggctcg gaaagccatg ctacctgcct catgctgggg ttcatgtccc acagggcgtg 360 tagctggggc ttgcgggtca ggtagctgct gtgactgctg ccgagatgcg ttgaccagta 420 gatgaaaggg cactcgagct ttgccacctg cattggcggc ctcgcattcg tacttgcctg 480 cgtgagccag tgtgatgttg gtgaggaaga gcatgccgct gccagtatct cgggtgccgt 540 gcccgcccaa gcctggcgcc ccaccttcca gctgggcctg ggcttgaggc ttaccatcgc 600 gaggetgggg cacetttete cagaccacca ggggetgtgg gtagcetgat geetgacagg 660 cgacctgcag gtcctccccc agattagctg taaactccgg gggctccacg ttcacagagg 720 ggggaatgca gatgaggcta ccaccagata cttctagtag actctgtagc gccaggcgtg 780 ggggetetge acatgtgate ttettgtete tggageteag aageegtegg eecceetett 840 tgatccaaga gcccagccag tgaagggcac agtcacaacg ccatgggttc tctgtgtagg 900 960 gcagaataga gcctaggtag atggatccta ctaatccaaa cagaagccct tatctatctc 1020 ttacagatgc ctatagggtt ctagaaccct tgtcacctct tccctcactc caacttccta ggaatgtttg tgatgacagt tcctgaaaag gcgtcagctt ctcctgtcct ggctttgcaa 1080 gcctctgcat ccctcagccc ggcactqaaa ccctgtcgtc acatgagctc tgtccagttt 1140 tgcctggctc cccctgatga caagttagaa gagcctcaaa tctctacaca cagcgttcta 1200 ggacaaccag tgcctcacag aaaactctgt cttgaaaacc aaaacaaaaa agagcttcaa 1260 ttotgttaag ttactotgca gaacttgtac cttgtttoct taaatagatg cataagotgt 1320 agetectaae agtaetecet ggtagtecet tateaaggee gaggttettg tgtggeeete 1380 caaagtaatg cccactggct gccatagtga agcaagacag acaaggggaa aatatagggg 1440

cacaggaagg	gaggcaagtc	cccatagaat	ctggctgaag	cctctcacca	agtgacatca	1500
acattaactt	tgaagattgc	caacataaca	atactccttt	tacatttaga	agaatattaa	1560
aacagcagtg	aactctagga	aaggcctcgg	catgtatctg	tggtcctcaa	ggatgagctt	1620
gctctttttg	taggtagtaa	cgagactaaa	cttttgttta	cagtacgggc	acgttccctg	1680
gcaacccctg	ttacttggga	gcatgcacta	tcttctgtat	ccctacccaa	tgtgcaggac	1740
ccacgctata	aatgattcca	ccg				1763
<210> 67 <211> 2324 <212> DNA <213> Mus t	musculus					
<400> 67 aaaagccttg	gaagaatcat	ttgacctcgt	agaaatgtca	cacacttcaa	gctattttta	60
agaatatatt	tatttttaat	tgcacatgca	gaaggtgtat	gtgcatatgt	gattgtgggt	120
gcccacaaag	gctataaaag	gatggcgggt	cacctggacc	tggtcttaca	gacatctgag	180
cagcctgagc	caggaaatga	acttggttct	tgcaaaggaa	gtaaacactc	tttaatcctt	240
gggccttctc	teetgetett	atcctgttct	tgtgaaaaag	tgaatctata	caagtgtagc	300
acctctccta	gcctcatgtt	ttttctgtgg	ataaaaaaag	cccgactcat	catttttttg	360
atgtccttaa	aattggattg	cgggattggg	caggatgaga	aatttcctat	attgtatctc	420
ctttggtctt	cctaaaggat	gctaaatcta	tctgtgcaaa	ccataactgg	agttagacac	480
tttgctctgg	ccttttcagg	agctccgaat	tctagaaaga	atttaaaaga	aaagattaaa	540
ttgtaattga	atcaataaga	gccagagcga	taaactttta	tatagagaaa	tgagaattta	600
aaactgtagt	aagaagtgac	ccattaccct	ccactattag	ggtgatgaat	taaccaatga	660
aagaattcgc	taaagataaa	ttatttagaa	ctggattctt	ctctgaccaa	ttgtttaaaa	720
aaagaaaaag	aaaaacacaa	tactatcaca	gctgaatgct	cttctggtgc	ttgcttaaac	780
ctgagttata	caacagtgta	aaaatgttgc	cttcaggaac	taaaatctat	cactctgtat	840
tagatgatac	ttcaatgact	accccagcaa	cattagatca	aattagtgct	gatctaagga	900
aagtattatg	tgcttagttt	tgctcacttt	acagctgttg	ttcttacctg	cccatgggtg	960
tcacctgcag	acttgccagc	ctcgaacttt	aaggccaacc	caaagtcagc	aatgcaagct	1020

gtcagattgt	ttttcaacag	cacattttta	cttttgatgt	cccttcaaac	ataaaaataa	1080
aatatcttaa	gcaagttatc	tttcaaattt	ttctactgaa	tacatggaga	atatgatata	1140
aaaataaagt	tacttaaaac	taagaaactt	tatttagagc	aaagaagagt	gcctcatctg	1200
gttcaactta	aagacaàctc	tagccaacat	gtctatgctc	tcatcaatag	gtacacttag	1260
aagtagtcat	ttagttctac	aaaaagatga	aggtagagtc	aaatgctcca	gacaccaact	1320
gacaaacatt	ttaaagggcc	ctataactaa	taagttaggg	gactcataaa	catgaaagaa	1380
aggagaggac	tttctaaaga	agtcatggtt	tggtaacact	caactacaca	tctgctaaat	1440
caatatgtta	ataccgactt	ttaaaacagc	cattttaaaa	ctgaatagaa	agacaactca	1500
atcccatatt	attccaagga	agttaaataa	tagcaaacta	aatttatttc	ccagaaacaa	1560
atatttttcc	tttttaagac	tgtaacagtc	atttcactga	tgagcactat	ttctttactc	1620
aagagctagc	tgtctcctct	tggttggtcc	cttctacttt	agctcaagga	atgaatgtta	1680
tatttattca	tccaaaagac	agagaaaata	ctttatcctt	aattctatca	ctgtggattt	1740
actaaaaatt	gtctttaaac	tcaaaatttt	gagttaaaat	catttctcct	ttgaaataga	1800
gaaaatacac	ttttattctc	aaacatactt	tcagaagtta	cacaaattaa	aacatgggat	1860
cattagactt	tattaacaag	attaacatgt	acattaacat	gtacatacca	aaacacaccc	1920
tagccaatct	cacctaattt	taaaaacttg	aaaagtcttt	gcctcttcaa	atatgattgg	1980
ataatçactg	caaaaataaa	ttttactcca	agagttaaaa	gtttaagtag	taaacatttg	2040
agctggatga	aaagacaata	cagattttgt	tctacctgtg	agagattgca	ggcttgtggc	2100
catcttttaa	gccaggtata	tcctcatgta	aatatgccaa	tcctctagcc	atggtttctg	2160
caatatgaca	aagttcattc	caagagacca	cattagcctt	aagaaagtct	gacagtgagc	2220
cctaaagaaa	ggagaggtgg	gagggaaata	cccataagct	cttgatcaca	atttcacata	2280
aacagaaact	tttctctgga	tataaaagca	acacattcct	ttcc		2324

<210> 68

<400> 68

tttgttgagt tggtttttgt gtccccatcc tgcttcccag cctcttgcat cagtctccac 60 cctttagcca tatgctgtac cgtagtcatt gttttcttcc taccgtgtac aacatctcac 120

<211> 1378

<212> DNA

<213> Mus musculus

cacgaaacag	cagcatgggg	ccagcacttg	gggcccaaaa	gcctgaagtc	tgaagaggaa	180
ggaagcggca	gtgcaagcgt	cactgcagag	gagccgggct	atgcccagtc	acageteetg	240
gccttcacct	cgaggatgaa	gttgaaggcc	acagagacag	atgcacactg	tgcacagaag	300
aaaacacagc	agatgccact	ttggagaggg	caagagaaag	gaataaactc	tatttgataa	360
tttatattag	gaggaaagag	gactgaagat	gttctgtgta	ggaacagaag	aacggacagc	420
atttctgtta	gtcatttcct	ggaaaagtaa	tattttaatg	ggaaattatg	gaaacaatct	480
aaatgtccaa	ttgctgtgct	agggtaggga	ttattttctg	ggaggtgtgt	gtgtgtgtgc	540
gcgcgtgtgt	gtcccacaca	tggctttcta	ctctcccaga	gggcaagggc	taagtgtggg	600
aaatagtgtg	gagcttagct	gaaggacagc	tgtagagcaa	agcacatcca	ggagccccag	660
gtgtcactgg	ggtctgggca	gccccgaaat	gagatggggt	aaggtattgc	tcattgctct	720
tcagaaagag	tgcttgaagc	cccaggctta	ctctattgct	cttttagttt	gacatggtat	780
ttggattttt	tttcttttt	ctttttttt	ttgtttttt	gtttttttgt	tttgttttt	840
gggttttggt	ttttgttttg	ttttgttttt	gaaaggtctg	aaagtgaaac	ccttcactaa	900
atggcaaaag	aaactgtctg	tgctgctcca	gtccctccct	gtgtccatct	ttgtcctctc	960
cctgtccctt	ccctgctacc	ttcacccagt	ttgtgtatgt	aagctctgca	ttcagacagc	1020
tgcagcattc	cgaggttgga	aatgtcactg	attcttgcac	cttagaccag	ccaacaggtt	1080
taccagttcc	ctccctgcag	tacccacttc	ccagctatag	ccccagtctg	catgagaatt	1140
tggtgtttgg	aatgtttatg	actctctcgg	cggggttcct	cgccttgcca	tcctcactgt	1200
ggggtaatga	agaaggggag	gagaatcttc	atcaactggt	tttgtgtaat	aaactttcgt	1260
gttttgtttt	gatttgattt	gatttggggt	tgtttttccc	ccctgtctgt	ctgtctgtgc	1320
aagatctgca	gctgctgaaa	tcagctttgc	ctttaattaa	accgtgttct	ctccaagc	1378
<210> 69 <211> 3137 <212> DNA <213> Mus <400> 69	musculus					
	tgtaatatga	ctaatttgaa	tggtgtgaaa	ttattttatc	atgtaatgtc	60

120

attttcacct aaacagtaca attaagatat ttaaaactaa agatccaatc attttacaaa

ttcctaaaaa	taagtgatag	attttgtata	cactagtaca	tcctccacat	aaaaagtagt	180
tttgtgtatt	tgaatgctca	aaatttcttc	aagatgggat	taaaaatttt	ttttcctagt	240
tctctgttat	ctcattttta	atcccttctc	cctatgttct	gcctagttac	cgttttctat	300
ccaaattctg	agtgtttcct	aggtcttggg	ccttatctat	ttcttttctt	tatgcagtct	360
gcttcggagc	acatctgtga	gcttagaatt	atgtacaatt	aaatgtatac	caaaaccatt	420
cacactcccc	tttcctctca	ttgcatgcct	tagtatctta	aaggaaaata	aaaatgcctc	480
agtttaaaat	atatgagtta	aaatcccttg	agctgcagga	tatgtgcaat	aatgtctttc	540
accaaaatca	agctgtggat	tatttcctca	cactcagagc	ctaaatgttc	attggagatt	600
taccattgca	cttaagtgcc	agaggaaatg	acaaggtgac	cattggaatt	gttgtccaaa	660
cagaaaccat	tgatatttaa	gagaagattc	ataaatctga	agttatggtt	ttctatgcca	720
gacaaatcag	ggaacattac	acttaggcta	ctggagtcaa	ggtcatttac	gatttgtcac	780
ccacttcaaa	aattaatttt	attttttaag	attacaatat	gattacatca	tttcgccctt	840
cgattttctc	cctctattgc	ctctaatata	gctccccctt	tagccctgtt	tcggattcat	900
atatatgtat	atatatat	gtatgcacat	atgtatacat	atatatatat	atacatatat	960
acatatatat	gtatgtgtgt	atatatgtat	gtgtgtatat	atgtatgtgt	gtatatatgt	1020
atacatatac	acacacacac	atatcttctg	ttacttgtat	gtatgttttc	agagctgacc	1080
atttggcact	agatgaactg	tcagagtgct	cctccctggg	gaggactgtt	tecteegeet	1140
ctcaggcttc	cttagttgcc	tgtggttctt	tgtataggac	taaggcattg	tgggtttcct	1200
tgttcccttt	ggcaagtctc	ttgtttctct	ctttgtttac	ctcctattta	agcagtcatg	1260
ttggtgaggc	gttatgagtg	cagcttggga	cattcctgga	gacatgaact	ctgtcacttg	1320
tttttaaaa	agtcctttcc	taaatatgca	cccagcagct	ctagggatga	ctcattggtg	1380
aaatccatat	cataatctaa	ccatttttgt	cactctaatg	gcaataatgg	tgagtttgtc	1440
tattttaatt	atgtacattt	tgcattttt	tttacattta	tttattttgt	atatgagggt	1500
tgagcaagca	ttttccacaa	cacagatgta	aaaattggag	gacaattttc	agaagtctat	1560
tttttacctt	ccactgtgat	tattgacctc	acgtcaggcc	aggctttaat	acataccaag	1620
teetetggge	catcccaata	gccctatttt	actaatttt	ttaaaggctt	agcaaatttc	1680
aactacaaga	aaatattttc	tttatatttc	ttatattttc	tttacatttc	tgttattgtt	1740

gaaatgacta			ggtgtgtgac	tetteetgga	gagaaaggga	1800
	gtcacctcag					
		ttaggcaact	gattagtcta	aggaagtcac	ccaagtccaa	1860
cataggaaga	gccctagtaa	atctggtctg	tttcaggtac	ttcctgaagc	gattaagatg	1920
tttacttcct	gagtttaaag	agtttcctta	cagcatgtgt	ttcaggatgt	cacctgtttt	1980
gacatcttgt	atcttaagga	tcttccttca	agatggaagt	gtgtatttca	gagggaatta	2040
gcacactcat	ccagattgga	ctctgaatcc	ctgaagaggc	tgcaggctac	tgagcttctg	2100
cttatttctg	ccacgctgac	cactacacac	gatgccg t ga	aacaaaccta	aggctttagg	2160
catgttcagc	aaacacttac	caaatgtgct	atatctccag	ccccaaata	agttctgcca	2220
ccttggtggt	cctatggatt	gaactcaagt	cagtaggcag	tgcagcaggc	ctatttatgg	2280
actttcttgc	tggtctccaa	atgaattctg	ataagaataa	aaataagatt	aggaaacaat	2340
agtgtgcttg	taatttctca	ctgtgaagta	tcctgggtct	ggagtgtggt	gtattttcgg	2400
tagaaacatt	tccctcccac	tgtcttccct	acctgactct	attaatactc	aaactgtgtc	2460
ttagacatag	ttatgtaaca	ttatgcatta	tagaaatcta	agaatggtca	agatttgggc	2520
cttttcatca	gtcccagtac	ttagtatttc	ggcaagtcct	gctgggactc	tcaaatgttc	2580
ttgaatttaa	ggtttatcgc	attctatttt	gtcacctcgt	cagggccagc	caccctcaac	2640
tttttcttca	gttcactgaa	ccaaaagatt	aactgctctc	caagcatcca	ctgcgacccc	2700
aaacctgctg	tacatcttca	. ccaaagtgat	ctttatttat	tgaatcgcag	tacttctctt	2760
ttcaatcctc	ctgataactt	tctatctggc	ctaaaataaa	attgaaactc	tccacagcaa	2820
agccactgag	cacacagcat	cactcaatat	actttctgtc	aactttctgc	ttaatctctt	2880
cttatttctc	agagagaaaa	aaaatgaaat	tgttattttg	tttgattctt	ttatcttcgc	2940
cctttggttg	ttttctgtcc	: cctctaggat	attacaaact	tgtaactaaa	cttagcccgt	3000
gatatctaga	. aatgaataaa	actcctacac	: acatcagaag	taagcacagg	gtcgcctatc	3060
tgaaaacagg	accaaagagt	ctttccaact	: tatttggaaa	aacaaagctg	agagcagtgg	3120
tcagtatcat	tttctgc					3137
	gacatcttgt gcacactcat cttatttctg catgttcagc ccttggtggt actttcttgc agtgtgcttg tagaaacatt ttagacatag ctttcatca ttgaatttaa tttttctca aaacctgctg ttcaatcctc agccactgag cttatttctc cctttggttg gatatctaga tgaaaacagg	gacatcttgt atcttaagga gcacactcat ccagattgga cttatttctg ccacgctgac catgttcagc aaacacttac ccttggtggt cctatggatt acttcttgc tggtctccaa agtgtgcttg taatttctca tagacatag ttatgtaaca ctttcatca gtcccagtac ttgaatttaa ggtttatcgc ttttcttca gttcactgaa aaacctgctg tacatcttca ttcaatcctc ctgataactt agcactgag cacacagcat cttatttctc agagagaaaa cctttggttg ttttctgtcc gatatctaga aatgaataaa	gacactcat ccagattgga ctctgaatcc cttattctg ccacgctgac cactacacac catgttcagc aaacacttac caaatgtget ccttggtggt cctatggatt gaactcaagt acttcttgc tggtctccaa atgaattctg agtgtgcttg taattctca ctgtgaagta tagaaacatt tccctccac tgtcttccct ttagacatag ttatgtaaca ttatgcatta ctttcatca gtcccagtac ttagtattc ttgaatttaa ggtttatcgc attctattt ttttcttca gttcactgaa ccaaaagatt tccatcgctg tacatctca ccaaagtgat ttcaatcctc ctgataactt tctatctggc agccactgag cacacagcat cactcaatat cttattctc agagagaaaa aaaatgaaat cctttggttg ttttctgtcc cctctaggat gatatctaga aatgaataaa actcctacac tgaaaacagg accaaagagt ctttccaact tgaaaacagg accaaagagt ctttccaact tgaaaacagg accaaagagt ctttccaact tgaaaacagg accaaagagt ctttccaact	gacatcttgt atcttaagga tcttccttca agatggaagt gcacactcat ccagattgga ctctgaatcc ctgaagaggc cttatttctg ccacgctgac cactacacac gatgccgtga catgttcagc aaacacttac caaatgtgct atatctccag ccttggtggt cctatggatt gaactcaagt cagtaggcag acttcttgc tggtctccaa atgaattctg ataagaataa agtgtgcttg taattctca ctgtgaagta tcctgggtct tagaacatt tcccccac tgtcttccct acctggctct ttagacatag ttatgtaaca ttatgcatta tagaaatcta ctttcatca gtcccagtac ttagtattc ggcaagtcct ttgaatttaa ggtttatcgc attcatttt gtcacctcgt ttttcttca gttcactgaa ccaaaagatt aactgctct aaacctgctg tacatcttca ccaaaagatt acctgctct aaacctgctg tacatcttca ccaaaagatt acctgctct aaacctgctg tacatcttca ccaaaagtgat ctttattat ttcaatcctc ctgataactt tctatctggc ctaaaaataaa agccactgag cacacagcat cactcaatat acttctgtc cttatttctc agagagaaaa aaaatgaaat tgttatttg cctttggttg ttttctgtcc cctctaggat attacaaact gatatctaga aatgaataaa actcctacac acatcagaag tgaaaacagg accaaagagt ctttccaact tatttggaaa	gacatcttgt atcttaagga tcttccttca agatggaagt gtgtatttca gcacactcat ccagattgga ctctgaatcc ctgaagaggc tgcaggctac cttatttctg ccacgctgac cactacacac gatgccgtga aacaaaccta catgttcagc aaacacttac caaatgtgct atatctccag cccccaaata ccttggtggt cctatggatt gaactcaagt cagtaggcag tgcagcaggc actttcttgc tggtctccaa atgaattctg ataagaataa aaataagatt agtgtgcttg taatttctca ctgtgaagta tcctgggtct ggagtgtggt tagaaacatt tccctcccac tgtcttccct acctgactct attaatactc ttagacatag ttatgtaaca ttatgcatta tagaaatcta agaatggtca cttttcatca gtcccagtac ttagtattc ggcaagtcct gctgggactc ttgaatttaa ggtttatcgc attctattt gtcacctcgt cagggccagc tttttcttca gttcactgaa ccaaaagatt aactgctct caaggaccacg ttttcatcc ctgataactt tctatctggc ctaaaaataaa attgaaactc agccactgag cacacagcat cactcaatat actttctgtc aactttctgc cttatttctc agagagaaaa aaaatgaaat tgttattttg tttgattctt cctttggttg ttttctgtcc cctctaggat attacaaact tgtaactaaa gatatctaga aatgaataaa actcctacac acatcagaag taagcacagg tgaaaacagg accaaagagt cttttccaact tatttggaaa aacaaagctg	tttacttcct gagtttaaag agtttcctta cagcatgtg ttcagatgt cacctgtttt gacatcttgt atcttaagga tcttccttca agatggaagt gtgtatttca gagggaatta gcacactcat ccagattgga ctctgaatcc ctgaagaggc tgcaggctac tgagcttctg cttattctg ccacgctgac cactacacac gatgccgtga aacaaaccta aggctttagg catgttcagc aaacacttac caaatgtgct atatctccag cccccaaata agttctgcca ccttggtggt cctatggatt gaactcaagt cagtaggcag tgcagcagc ctatttatgg acttctgtc tggtctccaa atgaattctg ataagaataa aaataagatt aggaaacaat agtgtgcttg taatttctca ctgtgaagta tcctggtgtt ggagtggtg gtattttcgg tagaaacaat tccccccca tgtcttccct acctggtct ggagtggtg gtattttcgg tagaaacaat tccccccac tgtcttccct acctgactct attaatactc aaactgtgc ctttcatca gtcccagtac ttagtattc ggaaatcta agaatggtca gagttggc ctaatggcc cttttcatca gtcccagtac ttagtattc ggcaagtcct gctgggactc tcaaatgttc ttgaatttaa ggtttatcgc attctattt gtcacctcgt caagggccagc caccctcaac ttttctctca gttcactgaa ccaaaagatt aactgctct caagggccagc caccctcaac ttttctctca gttcactgaa ccaaaagatt aactgctctc caagcatca ctgcggacccc aaacctgctg tacatctca ccaaaggat ctttatttat tgaatcgcag tacttctctt ttcaatccc ctgataactt tctatctgc ctaaaataaa attgaaact tccacagcaa agccactgag caccacgaca caccaaataa acttctctgc aacttctctc tttatttctc agaggagaaaa aaaatgaaat tgttattttg ttttgattctt ttatcttcgc ctttatttctc agaggagaaaa aaaatgaaat tgttattttg tttgattctt ttatcttcgc ctttggttg ttttctgcc ccctctaggat attacaaacc tgtaaccaag gtcgcctatc tgaaaccag accaaagag ctttccaacc acatcagaag taagcacagg gtcgcctatc tgaaaacagg accaaagag ctttccaacc acatcagaag taagcacagg gtcgcctatc tgaaaacagg accaaagag ctttccaacc acatcagaag taagcacagg gtcgcctatc tgaaaacagg accaaagag ctttccaacc tatttggaaa aacaaagctg agagcagtgg tcagtatcat

<210> 70

<211> 2795

<212> DNA

<213> Mus musculus

<400> 70 tttcagtgtt	gttcaaatca	cacacattcc	attatttgat	tttagagagc	acagtagata	60
ggtttcagct	tccctagaga	attctagaag	gttcttggat	ggttacttca	aacgaagaat	120
actgctgtac	ctgagttgaa	cagctaggga	tttcctatat	taacctggct	tcggcacata	180
ttaaaatgac	ctgacttcta	tccaagggaa	attcaaggta	ttatgtcaag	aatctaataa	240
atacatcttt	actatcatgt	cagagctaat	agcacctctc	taattgagtc	tctctaatgt	300
ttgcctcgga	agcttggctt	tttgtttgtt	tatttgtttg	aattgtcttt	ttttttttct	360
gtttttttt	ttttttgact	tgtggtaaat	aacgtgccct	tggtttgtct	tcctagacat	420
tcgcagtcat	gagtttcatt	tgtattaaag	agattttatt	atttactgag	gtggtaagca	480
cagateteae	atatttttct	ctcactgctt	gaaaggccct	gctcaggcca	ctttaaaaat	540
aaatatatta	aaatttaccc	tagcattgcg	aatgagtgat	gtcatccaga	gtgttactag	600
ggatggcaga	cagtcttctc	tgaacacaaa	gcttgacaag	aagcctcaca	gtgagagcct	660
cagcctgaag	cattcctgtc	agaacctcac	actgcctttg	ttttcgcctt	ggccgttctt	720
tgtgcactgt	gcatattcag	ccactgggtg	gcagtatgtg	cttaagaata	tttaatgttt	780
gccaccttgt	tttgacagaa	tttaagaagt	caggtttttg	tttgtttgtt	tgtttgtttg	840
tttttgtttg	tttgttttgt	tttttgcttt	tcaatcttgc	aaaatgacca	ttgtattgaa	900
tataagaaat	acaagtattt	tctgaatgca	acagcctact	cataaagtgc	ctgaaaatac	960
ttcţtttaaa	aatatattta	atttgagttt	tacagtttcc	gaggattgaa	ttcatgacca	1020
ccatggtggg	agaccatgag	gcagagagaa	ctaacaggga	atggggtggg	cattggcaca	1080
cttccttcaa	caagaacaca	tatcctaatc	cctcccaaac	agttccacct	cctggggacc	1140
aaacgtctga	atgtacatgc	ctatggaagt	cactcttgtt	caaatctcca	cagttaaaat	1200
gtatggtgat	gctctgcttg	gcttttctca	aagatgttgg	aacccagcta	actttgtagg	1260
cctcctctct	aagaagcttc	tattgcagaa	ttgggagtct	gtaaattcta	tcagaacacc	1320
acacaccttc	tccaactcat	gggagtggtt	ttctgacacc	aggtcctagt	actgacagga	1380
gacacacaca	cacacaca	caaacaccca	tccctaactc	agacgtgatg	ttcactgatg	1440
accaatcgca	aatggaaaat	cagttcttgc	taatgaatca	cagtggaatc	acccataagg	1500
ccagccacca	tgcccagctg	tagctggcca	acacaaaaca	aaggaattgg	cattgttggg	1560
ggttctttga	ctcagaaggt	tttaacaagg	ctggggcatt	gtttgtttta	ttaccttgta	1620

ggtcctttgc	ataacatcag	agcttcatgt	tttctgtgtg	cataaacatg	tgtgtctctg	1680
catctacatg	tgtatctcac	gctctctctt	cggctctttt	cttctgtttg	tgtctttgtt	1740
ttgtcctgta	tctgcttttg	tatatacata	tatacaattt	t gtgtgtata	tatatatata	1800
tgtatatata	tatatatgcg	tgtgtgtgta	tacatatata	tgtgtgcgtg	cgcgtgtgca	1860
cacacacaca	cacacacaca	cacagaatgc	attcggtttg	cctatctggc	ctctggttct	1920
tggccactca	agcagtgtta	gggatgggct	ccattgcata	ggctttaagt	taaatcagac	1980
gagctttctg	ccacaattgc	accggtatat	cttgcaggag	aatcaacatt	gtagatcaca	2040
gacttggtag	ctggatttgg	atttatcttt	ctcctttcat	ggcatgcagg	gtagcctcca	2100
gcaccatgaa	cactagtctc	taaagctgag	agctgtgcgg	caggctccag	tgcaacttct	2160
ttgtgcttga	taagccttgt	aggtgttgtc	ttcagccctg	gtgctcttac	ctctctgtct	2220
gttgcctgat	gatggatttt	tctccttcca	cgatgttccc	caaacgtcaa	aatacagcca	2280
cagtgatatc	aggagctaag	ccattagtct	agcaccacaa	ctttctgata	ttttctgtct	2340
taccctaggc	atgatacatg	gatacgtgca	gatgttgaat	gtccatgcac	ttaaattaat	2400
tctatcccca	aagcagaatg	agaccaatta	atttgttctg	aatataattt	ctcttcagtt	2460
aagacaatgc	ttcccgacct	tcctcatgct	tcaacccttt	aatacagttc	tccatgttat	2520
ggtgacctcc	ccatcataaa	attatttcat	tgctacttca	tacctgtaac	tttgctactg	2580
ctataaatca	taatataaat	atctgatatg	caggatatct	gatatacaat	ttccaaaggg	2640
cttacaaccc	atagtctgag	aacagcttaa	ctcaaaacac	tataaacatg	gaattatcaa	2700
agtgcatatt	tttctctttt	ggttgtttgt	ggatttttcc	tatgttttac	ttaataaaaa	2760
taatatttac	tcttaaatca	tgttttatct	ttctc			2795

<210> 71

<211> 2554

<212> DNA

<213> Mus musculus

<400> 71

aaaaaggttg tototaatca ttgtatacag aattotggac aatgaacott gcataattaa 60 cagattggaa cacacagaaa gtaaggotto aaagaatagt attaaaacat taggttttat 120 gaagtggagt cattotattg ttoaagacoo tgtoattgaa taatgttgga catggotoag 180

aattttatga	tgtagaagaa	ttcaaatgcc	aaatgtgcat	ttgatctttt	aagagggtga	240
atagtaagtt	gttattgtga	ttgcgctggc	cctttaagaa	atgagtgttt	ggtaagttta	300
tgtgtaacac	ttgccatgat	tttggttatg	aataggtcgc	aaagatgttc	ctcgtgctgg	360
cagatggaag	ggcagcaaga	taggtggctg	ggaggaaagc	cggaggcgga	gttgtgctag	420
aaagaacata	gcaaattcaa	cagatggagg	atgatagatc	agttggcaaa	aagaggtgct	480
acaggagaac	aggggaagct	agtgaagaca	tggatggata	gacagccagg	agtgggctaa	540
atgaaccagt	aataaaagaa	atagagcagt	acaggggccc	caaagttcaa	gaacaaatag	600
ataaatatca	aagacgacaa	ctacaaaatt	cctctgtatc	tgagcttggg	aaaatatctt	660
cctttaaaat	gtcttttatt	ataatctttc	aaaaatgctt	taaatgaaca	aagatctcat	720
atacggaaaa	tctttattgt	aaaacttaga	gattcatact	atggaggaaa	tttattctgt	780
aaaaaaatga	tcatggatgt	aaagttaatc	ttattcctta	gttttgtgtt	ttctgcaaat	840
ttggattttt	gacagctttt	attatgtaaa	tatgtcagga	cctggctgga	aaataatgct	900
gaggtatatg	gtccacaggg	atgagaagtt	tgatttcttt	caatagagta	gtataaaaga	960
atggaaaatg	gaaatacagc	attatcctta	caaaatgtcc	tgttttctct	gcttaccagg	1020
agtgacaata	gctatgtgct	cattaacctt	aagtaagtaa	atatgttgtt	tgtcctgttt	1080
ttgccttcag	cctcaacttc	ccatataacc	accatttttc	ttaggaaata	gtcttacatg	1140
aaaaccctta	gacagttaag	taacataacc	aagttccctt	tgattaataa	ctgttactat	1200
agattaatat	ataaatgaca	ggctcactaa	tatatgcaga	aagagggttg	gcttaatata	1260
cccattataa	ctgaccttta	aatacctgca	tgggttgcaa	agctactccc	attgccccca	1320
tatacatgaa	tgtagcacga	gcacttttga	tatataaaaa	ctggagccaa	tctctgaagc	1380
aaaggaacac	tttatggaaa	actccacagg	cactatggca	gacgtgatgg	taggcactat	1440
ggcagacatg	atggtaggca	ctatggcaga	catgatggta	ggcactatgg	caggcattat	1500
tgaagacaga	cactatggta	ggtccccagg	gtaaataaag	gcagagaaac	aatcagttca	1560
ctcagagtcc	tgggagagag	tcattgttct	tcagtgtctc	aggtacaatt	atgaaatgca	1620
atggtcttgt	ctatctttgt	gagtccttta	cttacgtgtg	cctgtgtgct	tgtgtgtgtg	1680
gatatgtgcg	ggtgcatcca	tgtgcatgtg	tgtccctatg	catgtgtgtg	tgcatgtgtg	1740
tetgtgtgtg	tgtgtgtgtc	cgtgtgtgtg	cctgtgagca	cacataggtg	tgtgaatgca	1800

ggcacccatg tgcaaataga	agttagaagt	taattcttag	gagtagaatg	ttccttttac	1860
catgagttcc aggggctgaa	cttggcttgt	cttgcacaaa	aaacactttt	agtctctgag	1920
ccatcttgtt gactaaaaga	tgtgggacag	aagggcccca	aactcctatt	ttctgcttct	1980
atgccctatc aacacgtgcc	accatgaatc	ttttttagat	taaggacctc	actagattcc	2040
tcactcagaa agtacttatt	aggaacttcc	ttgttcagtt	gctctgtaga	cagaagtatt	2100
tcactgtttt cattgacaaa	atgggtcaac	tgaaatggga	aaaaaagcaa	agaaaattta	2160
ctagacaact gcagctctca	gaaagacata	gagtctccag	catagtgact	atacaattgc	2220
tgtgactacc attagtaatc	agccaagaaa	gcttttttca	atatgaagat	taaaaggtgg	2280
gtaagagaga ttattcatta	tagttcatga	attaacaatt	cacacttcag	agccatgtat	2340
tcaatgaaca caacttgcaa	gtagcaatgg	catgttctgg	gctcagcact	aagatactac	2400
aggttctctc ctagatccat	gtaactcttc	taaattcctt	tgacagtttt	gagacacctt	2460
caactgacca tgtatgaatc	tacccatgat	attctgcatc	cttttaactc	aaaggtttac	2520
ctttctttca ttaaaaaaa	tatacacac	ככככ			2554
ctttctttca ttaaaccaac	tgtttttt	CCCC			2001
<210> 72 <211> 3154 <212> DNA <213> Mus musculus	tyteeteet				2331
<210> 72 <211> 3154 <212> DNA			cagaatactc	tgtcagaatg	60
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72	tctcttaata	taaaggtttc	_		
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72 ttgtctcagc ggaatggact	tctcttaata gctgagtatt	taaaggtttc actcagtttt	aactaacagc	cctagacgtg	60
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72 ttgtctcagc ggaatggact aaggacacat ttccaataga	tctcttaata gctgagtatt cgcagaagct	taaaggtttc actcagtttt gaataggatg	aactaacagc aataagagaa	cctagacgtg	60 120
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72 ttgtctcagc ggaatggact aaggacacat ttccaataga ggatagcagc tgctcggatg	tctcttaata gctgagtatt cgcagaagct cttcctgcaa	taaaggtttc actcagtttt gaataggatg ggatctggga	aactaacagc aataagagaa tcaatcctct	cctagacgtg accgctttgt tgtttctgta	60 120 180
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72 ttgtctcagc ggaatggact aaggacacat ttccaataga ggatagcagc tgctcggatg aatatattct cctccaggtt	tctcttaata gctgagtatt cgcagaagct cttcctgcaa ggagacctgc	taaaggtttc actcagtttt gaataggatg ggatctggga acagattcac	aactaacagc aataagagaa tcaatcctct tgtcttgtgg	cctagacgtg accgctttgt tgtttctgta aatctccatg	60 120 180 240
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72 ttgtctcagc ggaatggact aaggacacat ttccaataga ggatagcagc tgctcggatg aatatattct cctccaggtt acctcccgcc tcatcaccga	tctcttaata gctgagtatt cgcagaagct cttcctgcaa ggagacctgc ttgaaaacat	taaaggtttc actcagtttt gaataggatg ggatctggga acagattcac gagttatagt	aactaacagc aataagagaa tcaatcctct tgtcttgtgg ggtatttggg	cctagacgtg accgctttgt tgtttctgta aatctccatg gcttgcttat	60 120 180 240 300
<210> 72 <211> 3154 <212> DNA <213> Mus musculus <400> 72 ttgtctcagc ggaatggact aaggacacat ttccaataga ggatagcagc tgctcggatg aatatattct cctccaggtt acctcccgcc tcatcaccga gcgacatgca cttcagttct	tetettaata getgagtatt egeagaaget etteetgeaa ggagacetge ttgaaaacat ttatttattt	taaaggtttc actcagtttt gaataggatg ggatctggga acagattcac gagttatagt atttatttat	aactaacagc aataagagaa tcaatcetet tgtettgtgg ggtatttggg ttatttattt	cctagacgtg accgctttgt tgtttctgta aatctccatg gcttgcttat atttatttat	60 120 180 240 300 360

600

660

gtcttggcca atgcatatcc tgattttatg gttaagacac acagtccttg aaggtttgta

aacaggagca caatacactg gaatcctgca tctctgagta taagtctggg gtatgtgcgc

ttgcatattc	ttatcccttg	tgaaagagga	aataattaga	aaatgagagt	aaagagaaaa	720
caaaactttc	tttaaaaatg	cctgtattgc	tctttgggaa	attatttagg	ttgtctccaa	780
catgaaacat	ccatgtgttt	aatatatgac	cttgaaaggc	atgaaggaga	gaataaatgt	840
aaacttcaaa	tttctgccat	cagaaaccaa	aggctt tgg g	gtatttactt	ctagccacaa	900
tttatctgca	tacttttaaa	atacacttat	gctgtggtct	tcaatattgg	tggtttttt	960
aatttattaa	atcaaaatca	tttttaaatg	cttctagatt	gtcctatcaa	aactggggag	1020
gggcagggca	ctcacaatga	cagatcgggt	aagctacaaa	atcacttggc	aatacagaaa	1080
ggctgacact	tcagggctga	gcagagccac	aaatggaatg	cgtctattgg	tacttcttcc	1140
ctttttaggg	tcatttaaat	tctgcaggta	taaatggctt	atgcaggtag	tttgttctga	1200
gcagaggcta	agagagacac	ccaagaatca	tgtatcatga	attgtctaag	tcagaatgga	1260
aggactagaa	agcagcaacg	tgttgggaca	aacagaaaaa	tacttgactg	ggtatagtga	1320
tggtgtgccc	ttcagtggta	ctttctttgg	acacctccga	agggtttcaa	acaggaagga	1380
cccaattctc	cggaagacgt	gttttgcctg	gggatgttta	tctcagaacc	tgagttctgt	1440
acagttctgt	atctccgtta	cctgagccag	gcacaaactt	gggtgaaatc	ctgtagtgat	1500
cttgaggtgg	gtgcctctgc	tttgttctat	ggccgaagag	agatagtaag	accatagcaa	1560
gccaagtttt	atttggaaga	tcggtagtga	aaacagtttg	taatctgaac	tgatgaagca	1620
ttatggctgc	acaaataact	aaaaatatag	ggcctagaaa	atcagtacca	tggtctccag	1680
ctagggttac	tcacatgaca	ttatttaatg	atgagaagct	gtgtattcca	caggcattgg	1740
taggcaatat	aattagaaga	atgctttgcc	agcgatacaa	ctaggagtga	actaatttat	1800
gatttattt	taagtgacta	ggacccttaa	tttatctacc	aggacatcac	tgaggtaaaa	1860
ataaaaataa	taataataat	aaattttaaa	ataagcattg	caaatgcagt	ggcattgaag	1920
tactaaacag	gaacttaaaa	agcaacagaa	acaattatgg	r ctaatgaagt	agattaattg	1980
actaattggt	gtttccatgt	gtaattgtto	ctgcaattat	gattcacttg	ccgctttcta	2040
tactgctatt	ctctaaacat	atcctgacat	ggagtggagg	g tagaagacat	: tggcagtttg	2100
ggagatctat	tgagcaaagg	atttttacct	taaagtgaga	ı aggcaggaca	tcaaagcaca	2160
cctgacgaga	gctgaggaaa	ctgtactcag	catcatctcc	: tcgactttga	ccaacctgat	2220
ggactttcat	cttctaatgg	gcacttatct	: aatctataaa	a atgacagggt	atggtttcag	2280

ccttaaaaca	ggattagcca	gtccaaatca	caactgcccg	tgcctttaac	gttttaagga	2340
gaaatgatgt	attgatcatg	cacgagattc	tattttcatt	ccagacaaat	tcaccttcca	2400
tgcaaataga	cgcctggcgg	ctgttccagg	gtgctgtgta	ggtaaataac	tgtgggggac	2460
actgtttccc	taagaattac	aacaacattt	gaaaacaaaa	acatgttgct	ttccccagga	2520
atgtaaatct	cagactgtgc	tcaagtctga	agagaaatat	gatgggccaa	ggaaaaataa	2580
actctaaaaa	taagattcaa	acctaaacga	tgtgcacagt	aactagactt	actcaaaaca	2640
cactctagaa	atacattcct	ttttatttt	taactgaaaa	taattttttg	tacagtatat	2700
tttgatcatc	atttttcctc	cctcatctcc	tccaagatcc	tccccctacc	tcctaacctg	2760
tccaaatcca	cacctttccc	tctgtcttta	ttgatggtct	gtttgatttc	atgatgccaa	2820
agatttaatt	gtgtgcttgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	2880
gtgtgtgtgt	gtgtgtggtg	agactatgcc	acatgtgccc	agatgcccat	ggaggttgga	2940
agaagacato	ttcctgtaac	tggagttgtg	ggtgccagca	acttaagtcc	cttggaagaa	3000
tataccatgo	gcccttaact	ctaaaatgta	atgttttagt	tatttgagaa	gttcatgcaa	3060
tgtattttga	ccacattcag	gececaetee	tttcctaact	cttctcagac	caattctcaa	3120
ctgcacgtta	a cttccaatat	catgttctct	tttt			3154
<210> 73 <211> 161 <212> DNA <213> Mus						
<400> 73 tttctagta	a taatagttca	tcctcaatca	aatgttgtco	: tagacttcct	ggaagtcatt	60
ggtatttgt	g caaacaaaa	: cagagagcca	cactgtgcta	ggtggccctg	gaggatatga	120
agacatacg	a tggccctggc	accactcttt	ctgccaccca	aggtgctctt	: tcttgtcatt	180
aacagaatc	t aaacaggcaa	ggagaactac	tggaaaattt	accataga c a	ggtgaaggtt	240
ttcatacaa	a tctgttatgt	agcagatggt	ttatgt ct aa	a ataagttctt	ctaatgtatt	300
tgcattttt	g aaaataggct	acaaagtaa	ttaatgtgat	aactggattt	: tttataaagc	360
aaaataaat	c tatgttgga	a atacacaaa	g acaattatgt	atgttactag	g caagtcttat	420

tttgtacaaa ttacagaata cccattttta aaaaaacata cacatgacct ttgatggtac 480

atttctatgc	tggcaaatat	atttctgata	caaaggcact	ttgaaaaccc	aatatggttt	540
ggtttgtaag	tttgcaaggt	acaaactatt	tctacaaaca	tatgattaca	ctgaagaacg	600
tcaacaactg	tgacattaca	tagaaaacag	acttctttt	gtaaaaacaa	cactggtttt	660
atgggaataa	aagcagtggt	ttccagcagc	tttagtgaag	acattcagaa	ggttgaaggc	720
ctccagtctg	aatttctcac	tggctgggtg	ggatgataag	gatggggtga	gtgtgatcag	780
caagaaccct	cagcggggaa	agataaccca	ataccctaga	aggaacccag	aaccctcagc	840
agtcagaatg	gcttgaaggg	aaagcacaca	ggcagcagtc	tgggcaggat	ccggctgtga	900
caccgctcga	acacgcggct	gactctacct	gcgtccttgg	tgcttctgag	ttgtagtggt	960
cgtgtctctg	tttcagagca	ctgggtagta	caatgctttg	gactgcacag	tactgggaaa	1020
gtttggtcct	caatcagttt	ccttcctttg	actacattgc	cgcaaagtca	atctgtacat	1080
aaagctgtct	cactccagcc	tggaaagtta	gaaagaaaaa	ttacaacatc	aaacctgaaa	1140
acctgaaaca	gatgaacatt	ctagaaaagt	ggtaggaaag	caaacaacac	ctcatttgtc	1200
tttaaaaatg	gaattatttt	tgtcttttgc	ttctaagaaa	ctatccattt	tcattgtaag	1260
tcgtcaaact	actacaggaa	aaaaaaatgt	gtgtcattag	ccacatggcc	tgcgtatgcg	1320
cccttagatg	ggtttattta	tgtgccgcct	ctgttagagg	acacgacagt	gctggattag	1380
gcagccaccc	attcaaacca	gctcaccacg	ggctatatct	tcccatggct	tttaaaaatc	1440
acaagtggca	actgcttact	tattttacac	tccgactcct	tcagtcttgg	ccatgagcta	1500
gctactcaag	ggcactactg	tctaaattgc	accctatttc	ttctgtatta	tcaattttat	1560
tctctcaact	aggtcatttt	tattagtgat	caaacacact	ataatttctt	tcactg	1616
<210> 74 <211> 447 <212> DNA <213> Mus t	musculus	,				
<400> 74	annaataaaa	atasaaataa	+~~+~++~~+	~~~~	atastaataa	60

taatgtggca caacgtgggg ctgaccctgc tggtgttcgt ggccacgctg ctgatcgtcc 60
tgttgctgat ggtgtgcggt tggtattttg tatggcatct attttatct aaattcaagt 120
ttcttcggga gcttgtggga gacacaggat cccaggaagg agataatgag cagccttcag 180
ggtctgaaac agaagaagac ccttcggctt caccacagaa gatcagatct gctcgccaga 240
gaaggccacc tgttgacgcc ggccactgag cagacaaagc agtgtcttag agtgtgggcc 300

aaggcagtca	cgagcctctg	tccttagtgg	cgacctagct	ttgaaagtta	ctaagtgacc	360
gaggaacatt	tgcaattgga	tttatatcca	gttttaaaaa	aaaaagattt	acacgtaagc	420
catatagaaa	taaagggaat	ttaaacc				447
<210> 75 <211> 2706 <212> DNA <213> Mus r	nusculus					
<400> 75	caaacactca	catttattta	ctttcatccc	acattctacc	ctagtctact	60
				tggttactta		120
						180
				cctgaggatc		
				tagacctttt		240
aatgcaaatc	tgagaatgct	tataggatac	taagctggca	aatctgtctg	aagtgttggc	300
ccatttcctg	tacttctata	ctgtgtgtta	gtttagcact	tagtaggtac	ttcacgaatg	360
ttttacctcc	tgaggtcaca	gtaatttgtc	tgcatccagg	ttcttagtgg	aaatgcctac	420
cacattttgt	acctagctag	ctacttccac	aggagaccag	atttgtgtgc	agtttatgtg	480
aaatacttaa	ctcaggctcc	aaatgttcca	agtgtgtgtt	agcttcttgc	acagctccct	540
gttttcccta	agacccaatc	ttcccaagat	gggcctgata	ggagaacaaa	aaggcaggaa	600
ccctactttt	gcctattaat	gtggctaatg	gagtttgtga	ccagtacaga	gtacatgcag	660
tccacacttt	ggacaaggat	aggtcaaagt	ttagctccct	ccctttaaag	aaaaagaaag	720
cattgtgggg	ggtgcatttt	gaaattttga	cccatatcct	ttggaggcct	aggagagctc	780
actgtgtcca	gagaatttta	gttcccaagg	cctataattg	ttgaaaagct	agggaaactg	840
gcactattgg	ggtaggagct	gataccctgc	cttttcaggt	tcccaggcag	gcctctagta	900
teetgteett	gctcaggagt	tatctttacc	cctgaaatca	aatactacac	atagcaccct	960
gtaaaactgc	ttccttgtaa	gcttcaccga	gcttgctaag	taaacatccg	cccatgcttc	1020
tggaacagaa	ttcatttctg	cttcctggtc	atctcttgtt	tttctgttct	cagtgcccca	1080
ccgaatcatt	ttaatggaag	aaagacctag	aattagtcag	aggcacctaa	gatgattgct	1140
ttaatcttag	taaaattctg	aggaggaaga	aaagttttcc	tacagagtgt	caccatactt	1200

tgcaagtcac	cactgctgtc	atggccattt	ctctgtgaag	actttagcac	agtcttgctg	1260
tgttgcagac	cacagtggcc	tcactcctca	agttctatgg	ctatgtttgt	ccctacttta	1320
ttcccatgaa	tetettgett	gtttctcatg	atttacctct	tgtcacttct	acctaccatg	1380
acattcctat	tgccatggca	ctgagtagcc	acatcattca	ccaagttcat	gagattttga	1440
gctcactcta	tgctgatcct	acttccttct	agttccccct	cctgaaagag	aaggctcctt	1500
ggcagagctc	tttgtttatt	tgatcctggg	ctcatgggta	aatctggaat	gtcctgacat	1560
gaacttaggc	atgttttttg	ttgttgtttt	tgtttgtccc	cctcccctg	gagaaggaaa	1620
ctggaaaatg	gagatctgaa	taagcagagg	accattctgg	gggccttgcc	ttaagtgaca	1680
ttaaagccat	atgcctttgc	tcatcagacc	agtaggtgac	ttctttattg	gcatacgcta	1740
ccctgcagcc	cagaaggtgt	aaatttgaag	cactttcccc	tccctgggat	cctggcacaa	1800
atgccctggg	cttcttttaa	aaccagggaa	taccaggttg	tcttccaggt	ggtccttctc	1860
tctgatggct	gaaatattag	ccagggtggt	tgtgtaaagg	ctgtatagga	tagttggtat	1920
agaagaggtg	gttgcctgac	ctcttgttca	tctttctgaa	agttgcaaga	tgcattttat	1980
gaatcagctt	attgcctcag	gacccaaaca	catctaaaac	atctagctag	aggctggtgt	2040
agaaaacatt	tatatatata	ataagttata	tatataatag	ttggaacatg	agccttgttg	2100
aatgtgtctg	gttatgtagg	gttcattggg	ttagtatctg	agctattctt	tgtagcattg	2160
\tcaggaaagg	ggatgttaga	agctgtgctt	tgctgctaag	agttgtcact	accctaaagt	2220
aacttgtacc	tggctctgaa	gcatcagtgg	aactttcctc	ataagagttt	ccaggtatgt	2280
ggatgtgtta	aagtattgct	caaggactgg	gggttcatct	ggttacccat	cctagggaag	2340
aaacaggtat	tggctatgtt	aggtctaggc	ttggccatca	ttctgttgtc	ttttttgttg	2400
tcagaaggat	cttgggaaga	aatgactcag	caacaaatct	tagatgtgtg	gccttcctgc	2460
ctttggggaa	gtaattgaac	atacctaact	agattctaaa	attttaaaca	ctgaatgaat	2520
agacgtacat	tactctggat	ttcttcaggc	tgctgtttgg	tttattcttt	aaaatacctg	2580
atctgataga	aggatctcat	ttgtggagtt	agcaaaaaaa	atgttttaat	tatgcttttt	2640
agccttagga	aattcaggat	ttaaaagtcc	tgatttcatg	ccccaaaaca	aaacaaacaa	2700
acaagc						2706

<210> 76 <211> 1902 <212> DNA <213> Mus musculus

<400> 76

gagacatccg tgggagcact gacagctttc acaccaaaca ctaaccagga gtcagctctg 60 ggtagagctg cccacgaagg aagagtgcct aagtcagccg tgctcatctt gaccctcacg 120 gcaggggaga cggaagcctg aagcccccc tccctgtaga ttcacttccc accagggaac 180 ttaccaatat ttcctccaac ttcataaaca aggaaggtga ccggcttcgt gttactgtaa 240 gacagagaaa aacgtccact ggactctgct acacaaggca aggccacccc aggtctggaa 300 ggagcatcct cagggatttg tggtcctagt aggaagggcc tgaggactct tctgagagaa 360 caggagccaa tgaaagagac cagcctccag aagcagagag gggaagggag aggcagggag 420 gtagtcagtc cttgggaaag atcagcccca ggtgctctgc cacagggcat cagaagtggg 480 cttcaggggg ttcggtcagg gtgacaagtg gagcgagcac cctgctgtga gcaccggctt 540 ctgcatcaag gaggaatgtg tatgactctg tgtgggttat aacaatacaa gtgtataatt 600 atccgatgat gattataggt atcctggatt tggatccaqq atctaccct qactaqcttq 660 tgtctttgga catgcctttg gcctttgatt tctcattagt atcagaagga attgggtcag 720 acacttggta agggctgata ctctgggggt ctttgtgcca accccaggaa ggaagctccc 780 aaggactccg gctgctactc cttgtgcctg ggaatgacag ctacgtatca gccccctgat 840 gcatttggcc acaccgtttc ttgcttcctt aggacctctg cacatgcagg gttctgtgcc 900 eggaageett gtttgeteet caggttacag taggeacete aqtgeaatte atqttatata 960 agacaatata gtgtttaact tgactcagct acttaattta tqtctqtctc ttttctcatq 1020 gcatgagcct gtaaaggcca gaacctttgt tgttgttgtt qttqtttttq aqacaqqqtt 1080 tetetgtata gecetggetg teetacaget caetttgtag accaggetgg cettgaacte 1140 agaaatccgc ctgcctttgc ctcccaagtg ctgggattaa aggcatgcac caccaaccc 1200

cagctggttt tttttttta aatatttatt tctattcttt tgtttgtctg tttgtttgtt

1260

1320

1380

1440

ttctttcttc	ccttctttct	ttcttatttt	ttttgacaca	tagtttctct	atttaacagc	1500
cctggctgtc	caggaacttg	ctttttagac	caggctggcc	tgaaactcag	aaatctgcct	1560
gcctctgcct	tcccaagtgc	tgggaaggcg	tgcgccacca	cagctggcta	tttatgttta	1620
gttacgagtt	gggggtggtg	tacatgcaca	tgtgtgtggg	tgtctgtgga	ggccagattg	1680
ctgtgtaccc	tggagctgga	gtcacaggtg	gtcatgggct	gcctgactag	ggcagctggg	1740
aaccgaactc	caatcctctg	caacagtggt	cagtgctctt	aaccactggg	ctgtctctcc	1800
agcccctctg	ttaaggcctt	tcattgccat	tttagcattc	catgcaccgt	ctgatctaca	1860
gtagctattt	attaatatat	attaaaatca	gtaatgaatg	gt		1902

<210> 77

<211> 1086

<212> DNA

<213> Mus musculus

<400> 77

60 ggacagtaga tttccgagag gaaaggagaa gagaagatag ggatggaagc agagaaagaa 120 aggtttaggg agagaactgc gaagggatgg cagggggtgg tcacaaaaaag agaaagggag aagagatcag gctaatctta cccaatcgat ccagcgatca ggtgatcgtt tatgcggtat 180 240 caggacacga aaatggctcg acaatgcaat ccacaacaaa gctatttctt tctctagttt 300 agettggtaa etgetggaat caaatgeaag geagaeatgg caeagaegge caetegtgea cccctcctac cccaccccca gtggaccagg gacagttctc ggactgccct aacatctagc 360 420 ttcttgtagc atggtcttta gcgcaggggc tcagtactga aagcaattgc cttaaacaca 480 ggctgcatga tttaacgagg aagtgggacc taggaaggct gctgccgcct aggtaaccca 540 tcatcagect cttggtcatc ttgctaaccc tccaaagcat agegeceteg aaaactetga 600 qtqactacqa ccttcaacca ttcacctccc agcccctgtc tatgcaaaaa aaatcgctga ggattagatc aatgcaatgg gaccggtcct gctggtttat ttgggctgtg tgttaagtcg 660 attttcttac tatgcctgga tcagtttctg caagggaaag gattccaagg aagtgctagt 720 gaaatgcact gatggaatac tattaatcct aatgataaca ttcccagtgc aggtaaactc 780 tqaaaagaac tgtgagtggg aagatcctgc aggatttccg aagcgctgct ctcctgaatt 840 900 ctcattggat catccccagc agcctaaatc agtgctgctg ctctctgaag atgactacag cctageteae tagttgteta etcetgttta caacacatee ttteaettet etttggagat 960

ctgtttgtct tattcatcct gttctcttgg gttacccagc ttcctcactt tgtg	ggtact 1020
tccagtttgg tacatttgtt tgcctgagga ttatcataag aaaggttccc actg	ttaacc 1080
attctc	1086
<210> 78 <211> 3701 <212> DNA <213> Mus musculus	
<400> 78 gttetegtet getgaggtat gaetetgagg tatgaeteea geeaettgtt ttee	ctattct 60
tgcaatagtg tgatgattta gtaaagcatc atagaagaaa atgtattcac tccc	J
ttaggcaagt tgaaatttta ttaaattatc tatcttatta taaattacta aaa	_
ctaaaatatt ggctttgaaa gatattactg taatacgttg ctcaaaactc caag	ggttatt 240
gggaaattag aatattotaa tgggagattg tgtcatactt tattootttt atg	cctgtat 300
cttactttct tctgctgttg gaataagatt ttttttcatt gccctgtcat ttc	atatata 360
gattatcata aataaattgg accatttaat atttctttcc ctaagaaaag attg	gaaccac 420
ttaactcact ggtaatttgt tataataaga aatgaactca ttttaaattt att	ctttta 480
aaatccaagc actctcttcg aaacaattta tctctggcta tcgttacaca gga	ctttct 540
ccagccatgc tgtcgccatc atgacttcat catgacttca tcatgacttc atca	atgactt 600
ctcttgcaaa agatctccat ggctaggctt attgcccgct tggctttccc tca	tccaagg 660
aaaaggtgga agggttaaag cgcccttatc caaatatagg gccctctgcc cag	ccagctg 720
acggcaatct accctaattg cacgtggtct ctgggaggag ccagaagtga gtc	agccggg 780
aagaatgagg gggaaagctc tgctctaccc ccccccgcc catccatgct ggt	ttcagac 840
cctctagtgt ggcttcttta tggtctccca agttcctccc cattatcact tac	tgattac 900
tctaaattgt ttagactcat tggttccccc agtgaactct ggtgttattg ttc	tgtggtt 960
tgtcatgggg acttaggagg aaggagctct cgcgcacaca cgtgcactcg cgc	gegegea 1020
cacacacaca cacacacaca cacacaca cacacaca	ctcacaa 1080
ctgctatgta gttcttagaa attcttatgt ctgtgtgaaa ggcttcttct aac	
attgctgatg ctttacagtt tcacgtggcc cttgcctttt taatggcttc tct	
wood0	

tctgcctcac	agtgattgat	gtcattaaat	taccacgcag	agtaatcata	aatattgtat	1260
tatgatatgt	atttgaaaat	tgagtcatgt	cagagaggag	aggaactatt	gcacaatttc	1320
ttcatattta	ctattttaca	taaatatcac	ttaatggaaa	aatagtgtca	agatgtctgt	1380
actaaattgo	cgtggtgaag	ctgagcttag	gaaagaaagt	gcattataaa	tattatcaaa	1440
acaatgtatt	atcagacttt	actttacaca	ggggaatcta	ttttgggagt	agaaagcatt	1500
acctctaago	cttgttataa	ccaagtttcc	cgttatcatt	agagctccta	aaatacactt	1560
gcagtcttga	a ctataaaatg	tcatttgtta	caaaccctta	atcaattatt	ttgctttaag	1620
ggtttttat	ttttgttggt	ggtgatggca	gtggcttttg	ttttgtttta	ttttttcatt	1680
accagcaaat	ggccagcatc	tactggtaga	aataaagaat	gggcgcttga	taactacacg	1740
aatatgcati	gtttctttt	ctttctttt	tttaacagaa	caaaaaaaga	aatataagag	1800
tttctattc	c tettttgcae	acacatatta	atacacacac	atgcacgtac	tactagggat	1860
tgatcgcgg	g geeteeecea	tgctaaattg	ctttgcctat	cttacctaag	ctcagcctta	1920
tttttaagt	t ttatttggag	aagaagtgtc	cttagctcac	ctaggctgtc	ttgactctct	1980
atggagcac	a gacatgcctt	gaagtttgat	ccttctatct	cagcctccag	tccagatgta	2040
gatataggt	g tgtgctacta	tgccctgttg	tctacaaagt	catgcctttg	tgacattaag	2100
taatgttaa	t gaattggaat	tagcttcatt	caggttcctg	gggcgggggg	aagtactcag	2160
tcccacaaa	c tttcctcacc	tcagatgcca	ggtgcatgtt	tctagttctc	aggttgccag	2220
cacttctct	g tgccctctgt	gccctctgtg	ccctctgtgc	cctctgtgcc	ctggctacaa	2280
agctaaagc	a ttcctactct	cctactacgg	gggttgggca	tttgtaggaa	caactcttaa	2340
ggactccaa	a aacacttact	tgctgttatc	aatgaatgtt	attgctatta	ttgattatca	2400
gaaagagcc	a aatgaatgat	gcttaaagta	aagtgttggg	gaggagacct	gacccattca	2460
gggctttgt	t ccagttgcga	agtatcctcc	agggaagccc	actcagatgc	aggttcaaag	2520
caatagcca	g tctttattag	tcagccagta	gctgcagtgg	gtgttcaaga	ccctggtgca	2580
gtccccagc	c tttctcgagg	tgagctttta	agcacagagt	ccacaccctg	gattggcaca	2640
ccacggttc	g tgagaacagt	tagcaggaag	cagaactaca	gaagccaaaa	agcgaggtcc	2700
ctatattta	g ggactttccc	ggaattatgg	actttgatgg	atttgacctt	ggttgtagat	2760
ttggccagt	g ttactgtcac	atgaagagtt	taaagcccat	acaatgcttc	tatcctgctg	2820

tcagctatgc	taaggtctgg	gggcctttaa	caatgcctat	tttggacaca	ctcttgttcc	2880
cacacctcag	tgtgtatata	tcagtgtgtg	tatatcagtg	tgtatatatc	agtgtgtata	2940
tatcagtgtg	tatatatcag	tgtgtgtata	tcagtgtgta	tatatcagtg	tgtatatatc	3000
agtgtgtata	tatcagtgtg	tatatatcag	tgtgtatata	tcagtgtgta	tatatcagtg	3060
tgtgtatatc	agtgtgtata	tatcagtgtg	tgtatatcag	cctaaaggct	ctctgaacct	3120
tcttgcttag	gaggggatgc	atgtgttctc	ctaactaata	tatatattta	gcacatgaaa	3180
tattggattt	cactttgaca	ttttcataca	cacatattaa	tatactttgg	tcatatccac	3240
cctcatcacc	ctacattctt	cttcactccc	atggcttcct	tttccctttc	caaagacttc	3300
ctcctctgct	ttcttttcct	atgaactttt	aaatcaaata	tgtgtatata	ccatgtgtat	3360
atgtgtttgt	gtgtatgcat	gtacatgtgt	gtgcgtgtac	atgtgtgtgt	gagtgtgttt	3420
gtgtacagga	gtactggggt	agaggaaaag	gcagagtgag	catgagtaca	gcaggaaccc	3480
agggatacac	tatagccctc	tgcaggctat	aatactcatg	tggctctgtg	cctatggtaa	3540
gctgagctga	catagagctc	tgcattcctt	agcccaactt	cagttttctc	agtcagttgt	3600
tactctatag	ttaactaaca	agctaccatt	gcaagaaagt	gacaaacttc	caccacatct	3660
ctccatcagt	tttacaattt	ccctacactt	ataattgttc	С		3701

<210> 79

<211> 2346

<212> DNA

<213> Mus musculus

<220>

<221> modified_base

<222> (2281)..(2281)

<223> a, c, t, g, unknown or other

400> 79

gataggaaaa ttttggaggg taaacgagga aagacaataa catttgaaat gtaaataaag 60
,aaaatatcta ataaaaaatt aactaaaaat ataggtaata aatatacctg ataaatattg 120
gtaactaatg ctaacctagc ttttcttcaa tattcaagga gaataatgat ttgtaaataa 180
cgtagaatta ctaaaaagga aatgtaccat atataaagtg ctcaaaaatg cctacaatta 240
tagaaagatc aagaatatta gactaaaata cataacaaaa ggcagaacac agagttattg 300
agagaaagtg tataaaatgag caaaatgtaa ggaacacacc tttatctttc tttgaatgtg 360

ggacatcttt	ggagtcttct	aaaaagaaca	aaaatgaaga	gtcagtagaa	gaaaacatgt	420
cagaaaaaaa	aaagaaaaga	aaacatgtca	gaatgaatat	tatataaaca	atgctgaata	480
agcaagtact	tagagaaaag	gaagcctttt	tacttttttg	gatggaaatt	aaattggtta	540
ataactcacc	agagaaaagt	tatggagttt	ttcaaaatca	tgaagaattt	gtctgtcatg	600
caatattcag	cgggttcact	taggagtaca	tgttatcatg	tgcttaaact	tttctaagac	660
agcaaatggt	aagattgttc	agttatttaa	gtgtgtgtaa	gtacgaaggc	ttgtgtctag	720
ctggcaagaa	ttaaggtagc	atgacatggt	tcacaactat	aatcctaaca	ctataaatga	780
ggaaccaggg	agattcctgg	agctggctga	cagctagtct	tcccaaatca	atgaacacct	840
gctcaaaaaa	tcacggtgga	gagctatgca	ggaaaacact	gatatagaca	tggaggttca	900
acaagcttgt	gcacacacct	gcaagaacct	acacatgtgc	acacgaaagg	caaacctgaa	960
gccatgacac	acacacac	acacacacac	acacacacac	acaccacaca	cgattctgta	1020
agacaactaa	ttataaagtt	cttaatataa	aggtttgcat	ttaataaata	ttttcttcaa	1080
ggaaactaag	aggaaaagaa	gacatttaat	gtaaagtgga	aaatcagaga	cactatttat	1140
gtaacaatat	tactataaat	aagttatatt	agttaaagtc	aattggtctt	ttatacattc	1200
tgacttgcag	gcacatatgg	actcctgtgg	aagtaatttt	aaatcagaga	taacactaac	1260
aatatacttg	agccatcttt	tattttcact	gcaaactttt	agtactgttt	tatttactaa	1320
gagtttggat	accatatttt	aactgataag	ttgaaaaggg	ggaagatagc	tcagtacgaa	1380
gaatttttc	tgatacaaag	aaatgtgatc	ttcaaataga	agtattagtg	tgggtggtgt	1440
gtggtcccat	gtgtgtgtgt	gtgtttgtga	atggtgtatg	tgtacactgt	gtatttatat	1500
gtatgtgtgt	gtgatatgta	tgtatggctt	atgtatatgt	gtatatctat	tctgtgtgtg	1560
gtgtgtatat	gttgttaata	tgtatatgta	ttatgtattt	atgtatgtgt	atgtatgtat	1620
gcatatgtat	ggttatatgt	gtatatatat	atatgtgtgt	gtccaggtcc	tattctgcct	1680
tttttaattc	tctgggtttc	tccctttatg	agaggctttt	agctatagtt	aacttttttg	1740
aaagcagttc	ctgataaaat	aagagatttt	cacttcttgt	tcaagttatc	ctcatacatg	1800
ataatgttaa	aataatgttt	ctgaatattt	gccaataaat	gtatctaata	actactttta	1860
aataatgcca	tcctagtaat	ttccttatat	acaaagatat	gtatagttta	gcaattatga	1920
aagtgtcaaa	gtatttctat	cccataaatg	ttacttagaa	atgtcaataa	ctataccaag	1980

agatcaaaaa cattag	jacta aaacaaacca	accacataat	acaaaatatt	taatttttaa	2040
gagaaagtgt gtaata	acca acatttaaca	aactcccctt	tatctttctt	tgaagttggt	2100
gcttctttgg aatctt	ctag agaaaaataa	aaaataaatc	acagtctaag	ttctttttgt	2160
ttttttctaa aagaat	attt tttactttac	ttaaagggtt	tttttttggg	gggggaagcc	2220
agttagaggt tetete	ctaat cctaaataaa	gtgttcctct	tttttatata	aaaatttaat	2280
nttttatatt taaact	atag attatacatg	attttgctaa	ggagactgcc	ccaaacaata	2340
tcttcc					2346
<210> 80 <211> 3320 <212> DNA <213> Mus musculu	ıs				
<400> 80 gggagacacc ggcttt	tagcc gggacaagca	gggtgggtcc	tctgtggcag	gaagggtggc	60
tgggcttgct tcaggt	ttcaa cgtagagatc	gcagagagca	tcgccactgt	cgctatccct	120
ggggatgacc acctto	cttgc tgctgctgct	gttgctgatg	ctctcttctt	ctgggccagg	180
ggtggtggag tcccag	gtage ceteateget	gttaggaaca	ccttcttgat	geteettete	240
cggatgtttg ggctcd	ctcct tctgctggga	ctcaatggga	attctgtgga	gcctcctgcg	300
cttgaccgag gacatg	gtact tggatgatta	cccacaccgg	gtatcactgg	aggtctcagg	360
ggccaacttg atgtc	ggaag cagtggctgc	cttcgctgcg	ccttcttgag	ttccttgtcc	420
ttggtcctca gtctgg	ggaca acatgtccca	gaattccggg	agataggtgt	cgtccacctg	480
atccgggctg gccato	ctect eccetectec	ttggtaggcc	accacgctgg	cgttcttttt	540
agagagaact ggctto	gcctg gcccggggac	atgcttgtca	cagctggggc	ctgcctcttc	600
ttctgggtct gcaata	aatat ctccacagcc	tgtaagagag	tcaaagcttt	tcagtgaagt	660
cacgtcagaa aacat	caaac aaatacgatc	tgccgacggg	tctgagggtg	gatcaacaga	720
ggaagggtca gggaca	agcag acgcccggcc	gctgccacct	tcggagtcga	caagggggac	780
ggtctttatc ggaac	gtcac ctgtcttgga	cgcatcctcg	gccgcctgga	cctcaccggc	840
tecegaeteg aggge	tgeec egggettete	ctcgcgccga	tgeccetegg	cgtcctctcc	900
ccgggagctt tgatc	gccag agccggtggg	gctcccggcc	tcgaggcaga	tccgctccgg	960
ggcgctctcg gcgga	cgcgg gcgcctgctc	tccccctgcg	ggctcacctg	ctgcgtgtcg	1020

cgaggcgtcc	tggcccgggc	tgtccgggcg	gcgcgcggct	cggggcggct	cctccttgac	1080
gcactccagg	ctggcggtga	gcgaaccggg	cagaaccagg	ttgcccgggc	ccgccgcgcg	1140
caccgccttc	tcctcctcct	ccttgccgcg	cttgtccctc	cggtgccagc	gcatgctgct	1200
gaagatccct	ttcagccccc	tcttttgttt	gccgccagcc	ttgctcgcct	cggcatggtc	1260
tcccttgccg	gtctccgatc	gcccgttctt	tttcagcagg	gagaagaagc	tgtgggactt	1320
ggccaccgag	ctgctggcca	gggagcccag	gccaggcccg	gagggtttgg	ggggtccggg	1380
gatcggccgg	gccccgctgt	gatcgctccc	gccaggcggc	tcctccttct	tgctgccctc	1440
cagcaccaac	acctcggcta	gtccgtcgtg	ggtcctgctt	ctcaccattc	ccgtcggccc	1500
cgagctcttc	ccatcccctt	tgtttttgac	cccaaaaatg	ctgggcatgg	tgccccccga	1560
tttccttttc	ttgaataact	tgaacgcagc	cttattgatc	ttccccgacg	geggetetge	1620
ggcgggcgtc	teegeggege	actcacaatg	cgagtccatg	tctgcagcga	gggccccggc	1680
ctgctcctgc	ctcccgcaga	ccccgcgcg	cgcgccgccg	ccgcgctcgc	tgacagccgc	1740
gccgccgccg	cggctcctgc	ccgtctccat	ggaaaccgag	tgggatcagc	cgctgtcgtc	1800
agccgtaggc	tegegeeagg	ccactgtcac	ccgcgttcta	aatcaacctg	agcggctctc	1860
gctgctgcgc	tgtggctact	gcaactgcgg	cggctgaagc	gcacaaaccg	gactatctcc	1920
cctcctgcca	agggcttata	taatatcctg	ggtgccacat	aggtttttgt	gtagcaagag	1980
ccttcatcgc	agcctcgagg	cgaaagaaaa	aaatgaaatt	cataattatg	ggctttggat	2040
cccagtgcgt	tgattctcac	cacctcaggt	tcttcttcct	ctagcccagc	ttttcctagg	2100
atcgcagctt	caaaaattaa	cacatgcgtc	ccccatgtcc	acaaagaaca	atgccttttc	2160
ctttatcatc	tgttttggac	ttcatgcagc	ctcctatctt	tctccggtcc	ttcacatagg	2220
tcttagcgtg	tgggtactaa	gcccaagagg	caccatgcca	atctgttcac	gcctgcgtct	2280
ggtccagtgc	cgaatgtagt	cctcttcagg	ttgatgctgt	attctgatca	tgtggctctg	2340
atttcctgtt	acagaagcaa	cagccgtcag	tcaaatacca	attagcagct	ctcagcaacg	2400
aaagtgcaac	agtcccctag	ggttcgctgg	tcctttggga	gaccacaaag	cttttatccc	2460
ccaccccagt	gacatggggc	ttaagtcaca	gaagccacca	attggtcaca	atagactgag	2520
cacactgaga	acttaggttg	gagaattctg	atccctctgc	aggtgggtct	tagaggcctg	2580
ggctcagtct	tcctctttca	ttcaggggta	tggtaagtat	acctctctct	gttgtgccca	2640

gcctacccct	gtctaagaac	acccaaggac	cccactcgct	gtctttccca	ataggacagg	2700
ggggaaaacc	agacaggggt	cagaggtcgt	ccctgtggtt	gcttctgacc	ccactggtct	2760
agaggcaaag	ggaactgggt	tccagagaac	aacctgtgtg	ggtaaggttt	ctgtgttctg	2820
actttgaaga	caactgctaa	cattgtagct	tttcctaacc	aagggcttgc	cagcaaaata	2880
gggaaggatt	tggaaaagat	tcatgtttta	taatccttaa	taaccctatt	ttaaaaatat	2940
tgattatata	tagtgattat	ttgattgtat	atactattta	catacaaaca	ccagtctttc	3000
ctgcttctct	tgaatttatt	ttccacaagt	tacttatatt	ttgcagattc	agagttactt	3060
atatactgta	cttatactga	actgcagatt	cagttgttgg	ccaaggcagc	ctccagggtt	3120
cacagttaga	ccatggagtt	gagcagtcat	gttgctcttt	ctcatctcaa	tgaaaaaacg	3180
gctgtaaact	gagactggaa	tcaaaggacc	tttctgtttt	cagagttcaa	accccaccag	3240
ctctttccac	ctactaacag	gactctttat	ggacagaata	tacaacaaca	gacttttaaa	3300
aaaaaatgag	ttttctttc					3320

<210> 81

<211> 1573

<212> DNA

<213> Mus musculus

<400> 81 60 caagcaaggg ctgttttgaa agaactcaaa aaaaaataaa aataaaaaca atgtgaggtt 120 taatatattg ctagacttgt ccaacagaca gaaaattaga actctgagaa cttggaaaca 180 cacagtgtag ttctctgcct ttgggtttaa taacttaatt ataagggatt agtcctgatg 240 gcagcagtgg ttcaactttg ttcctctatt tggtcttatt gtttttttaa cttaaagaaa 300 ataacccggg aacttgacat catatgcata gactgtgttt cttaacacac aaatggacat 360 actatacttg cgtatatata tgggatagac aggttttgtc tccaacttca ttgtttatga 420 agtcatattt tgggttttac accatctccc ccccataagt tattacagaa aaatatcagt 480 ttagattgga caaagttctt ccccctctca ttaaaaaaga caaatgaagg agagggatac 540 attttaaata tttcctttct ccccctttgt taatatttca gtgcattttt tttaccttgt 600 ctacatqqqa aatqqcttac tccccacaca atagaatatt ctggaaggtg taggtaagaa 660

aacaaaacag	aaaaggcaat	ggctatactg	aaattaacac	cattaaaact	gtgatcagtt	720
taaaaaatta	aatagttatc	agcacaaaag	ggcgttaaaa	gggaaaacac	ttttttatta	780
accttaaatg	tttcggattt	tatttctttg	ttaggtatca	gataaatgtt	atttcaaaca	840
attaaattct	cactaccata	caattatggt	tcagcatcag	attagcactg	cactccgtag	900
ttaaggtttt	aggaaaaatg	ctttatccag	tattgtcttt	acaaacatct	gtgattgttt	960
cattttcaat	gtttttacaa	gataaatggt	gacttataat	gggcatattt	atttgcctgt	1020
atttcatttc	ccccaatgaa	tgtcacagga	gatgccatag	agctatttca	ggttatatca	1080
cactgcttgt	tcctgatgtg	tggggactgg	ccttcagtga	agcaatccag	agaagggcaa	1140
atagccaatg	gtaaaaggag	gaaatgaatg	tgcagatacc	aagtaggtaa	ggtccgaagc	1200
tggggttctc	tcttgctctc	ttaggcttac	aaagatggac	attaccactg	aaccttacca	1260
tatgtatata	tgtttaatat	ctgtcttttg	aaatgcagaa	atagtttaaa	tgtttctttg	1320
tctattttc	tttttctttt	ttttaaatgc	tacccaggga	aatattttca	tatcgtttta	1380
cgtggcctgc	ctcaatgtat	atttatttct	ttggagcaaa	aaggttctga	aaactggttt	1440
tctgtagctt	taaatgagta	ggtagcaaga	tctatatggg	atgtcatttt	tttgttcagt	1500
ttcttttaa	aaaatgcttt	gttttgatac	atttggttgt	gcttgtgggg	aaaataaaag	1560
cgcagagatc	ctt					1573
<210> 82 <211> 868 <212> DNA <213> Mus	musculus					
<400> 82 taatgtttct	cactagcagt	ctgggcatat	gctggtgttt	catctctgcc	caaataattc	60
acctcctaac	ctatgtgtgt	gtgtgtgcac	atggatgtgt	gtgcctgagt	gtgtgagtgt	120
gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtttat	gaacagtata	ggttttaaaa	180
gaacagtatt	ttacaaaagc	catcactttt	ataagagttc	tgtaaaggaa	ggatgtactt	240
cttcgctcac	tatagtttaa	aaaaaattct	attttagagg	aaaaaaaag	aaaatatgag	300
ggctctgagc	atgactttta	taactagttt	cagttttatc	taataactta	cttttaaaaa	360
atcaatattt	atcaataatt	ttcatgtatg	ctgtgctttt	tgagagacat	gtttggctgt	420
tcagtaaago	ataagagtat	atggcctaag	aatcaaaaag	aaatgaaaaa	ataaaataaa	480

aagagggaaa	agaaaaatga	aaagggaaga	aagaagatgg	agcaaacaga	aatttctatt	540
gtattttagg	aaaatgcatc	attttcaagt	attttaaata	ctgagttaat	attgttattt	600
ttttttaatt	ccagcagtaa	caaaatggtt	taacctaact	ggcttgctaa	gaaacgtgta	660
agtcttagat	ttgaaagaat	ttaacattca	tagetetgga	ttgaaatcaa	aggtcatttt	720
ctgcaaaatt	ccttccttag	atcaggtcag	tgctctgctc	ccttcaaaat	agaaggggca	780
agctagagtg	gcagagcttg	tggcttctat	ctgacacttg	ctttgggtaa	acaggacctt	840
tccctcctgc	ctgcatgtat	agcacttg				868
<210> 83 <211> 1888 <212> DNA <213> Mus r	musculus					
<400> 83 gagagggaac	tttgtggagg	ctctggcagg	aacgtgtggg	ttctgtatac	ccaaggctgt	60
gtgcctaggt	gtacctttcc	ctgggacttt	gcctctctgg	atcaggtgtg	tgtctgaacg	120
tacatcttcc	tgtccctctg	tctctcgctg	gatctgcatc	cttgcctctg	caaacacacc	180
tctttgaagg	tgtgtggctg	cctgtctctc	tgtgtcccta	tctctgagtg	tcttgagtct	240
catttctcta	ccagtctctc	tgtgtatcac	tgtctctttt	cacgactgca	tgtccctttg	300
ccctcgggga	caggteteca	tggggtcggt	atcggtggtt	ctgtgcgtct	tgcatgtgtc	360
tctgcctttg	tgtctatctc	tcctccaagc	tgtgtgtctc	tctgtctctg	tgtgggtcac	420
tgcctcttta	tactcgtcca	agatctctgt	ttttcgaccc	tctgcccgta	ggggagcccc	480
ccttacctga	gttgagcccg	gtgcgcgccc	gcgagagggt	ccgggacaac	gggatgctca	540
gcgccgactg	aggctccaga	gcctgcgggc	ggggggggc	gagaggcggg	caggggcgac	600
gtccactccc	cgggccctcc	ccctgggccg	cgcagcctcc	gccggccgct	cccgccgggg	660
cgcgaccggg	ccggcctctg	ccgcgggcgg	tctgcggaga	gcgggcacct	cctcccctg	720
gggcggcgcc	tcctccgcgg	ccggggccgc	tagctcgctc	gctcgctcgc	tctctcgctc	780
ggcagcactc	gggcggcggc	ggcaggagcg	tcgaggagtt	cggctgggct	cggctgcggt	840
teggetggge	tcggctacgg	cgggagggag	tcggctaagc	tcggctgagc	tcggcgggca	900

gcaaaaaaca gcggagagcc ccgcctcgtg agtggccagc ggcctgcggc cctttggggg 960

aggagccatc tctgtgccgc	tgccgccgtt	caattggctg	tccgggccaa	gttcccgcgc	1020
cattggttgt gctctggggt	gggacacgac	catcctggtg	caggagagaa	ggagggaggg	1080
gcttgggaag ggtgagagga	ggggtatata	ggggccactt	tgttttgatc	catcccttga	1140
aaaggtgaag ggtcagccca	cctttttgca	gggatttctt	gcatcttcca	cacctggaat	1200
gcaccccac atgtgaagcg	tccacccctc	catatctgag	agaagtctgt	ttctattatc	1260
tgagaaagtc catgtgcctc	cacacctgac	cctcctcacc	tatcatcttt	ctacatatcc	1320
ctctcccagt agagtgtaga	gtacctcatg	tccactttac	agcgcctgta	gattgcccct	1380
agtcctaata acagtgtgat	ctctgggaat	tcatgacctt	tgttgcgttt	tactgatttc	1440
tcacccagtg ttggtcacag	ggttgtgcat	ggcttgctgg	agggaacttg	agacacctga	1500
agaatggccc agctctggct	gaactagatc	cagacggcat	ggatggcctg	actctccatc	1560
ctaacagttc tgagaccaag	gtagcttgga	caggagcagt	caagtaggcc	ttcccctctc	1620
agacccttaa gtagcagggc	tcacacatgc	aaggagctac	atttctggcc	ctttagtgat	1680
tcttaagtgt acttgtgtgt	ggcttctatc	acatattgtc	catggacagt	cagagaccca	1740
tggccccaca tccagcctta	acttccctca	gaatactata	ctcacagcaa	aatgcatact	1800
ggagtcacag tggtgttggt	tcctggttcc	actttctaac	tctcttaaac	gaagctttct	1860
tctcaataaa actgtcatag	taatagct				1888
<210> 84 <211> 3946 <212> DNA <213> Mus musculus					
aaatagcacc aggcctttgt	gatgatgtat	aagaatacat	gcctatctgt	tatttaagaa	60
ggaacaattc tatagctttc	actaagtagc	actgagtcta	cttatctagc	cttaaaaata	120
tatcataaac tcggagacct	gatgccttaa	gaaaccattg	actttgttat	taataggaca	180
caatgtttcc ctgtttttaa	catttatttg	tttatttgtg	tacctgtttg	tatataatat	240
ttgtgtgagt ggtatggaac	acatgtgcta	tgacacacat	tagcggtcag	agaacacatg	300
taggagtgga ttctctcatt	ttgatctttg	attccaacaa	ctgaacaatc	ttatattagt	360
gtgattatta atgtgatgat	aatattaata	ctaataatag	ctgttcatca	ggcattaaac	420

tttttctact ctacacactg ttctcattgt tttcaatcct gtttattatt ccaacatctg 480

catgatacaa gcagaataat	tctattctac	agaggagaaa	gctgcagctc	agaagcatga	540
aactcagcaa tacaagtagc	tcctgtaata	agaagctggc	attcagtctc	aggactagtt	600
tcatgactat tttttttaa	agagttggta	cggcttttga	agccaccatt	gtctagcgca	660
agattatagg ttattgtttt	ttctttgaca	tattgactaa	tgcttctcag	tgatgttatt	720
ttttcttcct ttggtttgtc	tttgaagagg	aaatgctcaa	aaacagaaag	ggcagcgatc	780
gcacaaccta tgttaatcag	attaatattc	aaagttccaa	gctgtacttg	tatacacatt	840
tagtcatgca attaataaat	taatacttta	ctgattttct	tatatgtgat	aggcactgat	900
aaaataatga tagaaatgct	aacgtgatct	agctcgggaa	agaaactttc	tgtaccccaa	960
tcaaactgat caatctttaa	aaacaaatac	tttttcttat	cagcaccatg	attcatctta	1020
aaacagaggg tctgctgaag	tttgtttgaa	cattgttaca	atagctttga	acattatgat	1080
agccagtttt caaagtagtc	tgccagctag	tgtttaactt	tacccagagg	gtctaatatc	1140
atacaaataa taaactaatt	ttaaaagaaa	acagtgttca	cctttaaaaa	tgtatttaaa	1200
tactgagtaa attaataaaa	aatgtatgaa	tgtcatctca	ttttactgta	ttcttgaaag	1260
aaagtgagtg cctgaaccaa	atatttagca	gtgggaatta	taaaatcata	agacgattaa	1320
gttagctagt cttagaattc	caatattgct	ttttaaatga	cttcaggata	taggaggtac	1380
taaggttatt atctgttatc	tggaatacag	tggaattgta	caactggata	ataaccaaac	1440
aaactgacac aatgtaaaat	tacattatca	gtgtgttaaa	acaaaattgc	gccctaaagg	1500
agtccacatg ccagctcaga	gctgcagtgt	aattatgctt	aactctgata	attaaaatac	1560
aacggagatc aacagaatca	ttttcattaa	gaaaattatt	aatgatggtg	gtatagcagt	1620
aattgatttc agagcaccac	aggataacgt	gacgctggaa	acccaacttg	tttaatgatc	1680
gtctgaggct ttttgtggtt	atgttctgtt	aaaatgggaa	atacattttg	aggcatgagc	1740
agtttattat gcctgctctg	agaatcagtg	attgggaaaa	tggctgattt	agaaaatcac	1800
agttttgatt caaagggtca	ttgtggagag	gtttgcaagg	tcaagacaag	cggccccacc	1860
aatgatggag ttattgttaa	cagagttttc	tattgcaaat	agcagaatgg	ccgcgtgttc	1920
agcaaatatt ggactctctg	ctgtttccat	ttetttetgt	gcattgccag	gttttacaat	1980
tgtgctaatg gcttactagt	attgtgttga	cccaagtctg	cttacacatt	tacagttatt	2040
aatgtatgtc atgtatgcaa	atctatactt	gttttcatac	agatgtcatg	gtgggtttac	2100

tagtaaataa	gcctgtaata	tatcattgtt	accttaatga	gggagatgtg	ctaacatgtg	2160
gtagaaaaaa	atattttaaa	cccacttgga	tccatatatg	agtgaagctt	gtgtctcttg	2220
agggatagaa	actaagttag	actgttggca	aatgataaga	actggggata	tatcagtgtt	2280
atgtgtataa	aaatgagaaa	tgaaaagcag	ggtctttgga	gaggtgaatc	actatcatgt	2340
gaggatgtta	gcttgtcagt	caaacagatg	ataatcttga	aagctacccc	cagaagtatc	2400
tttgtcagct	aaactgaggg	acaactccta	agagtaaaat	tttttagaat	aagacatcct	2460
aaatagcttt	ttaaacatca	tacagaatag	atgaagttgt	tgccttataa	tgctagttga	2520
gaaaagcaga	aaatatgctt	ttgtatccac	tataattaga	gtaacattta	aaagcatatg	2580
cacaagaaac	agagggaaat	aaaattgcat	gaaattgcaa	aagtatttct	gtaaggagaa	2640
atttgtggcc	attatttgtc	tctacttatg	ttacttattt	gagagagaag	ctaaactcca	2700
agaggcacta	gcaaagtact	tgtgcaaacc	actggacttt	gaggcttgta	tcctctctta	2760
taaataaact	tcttagagtt	tttttcctca	tagagtttaa	gaaaagtact	tacatattca	2820
aatcctatgt	cttaatctgt	tctcagactc	attcattcat	tcactcattc	actcattcat	2880
tgcattccac	tgctggagat	gaaacccttg	tctccacgtc	tacacatggg	ctgggaacct	2940
gttgcaccat	tgcatgattt	cagcccttct	tttatgattc	aaaccctaga	ataagaaatg	3000
tttaattcac	aaaatcctta	ttccacaaaa	attgatgttt	ttgcccctgc	ttatataatt	3060
aaactttctt	aatacacata	tgaatgcctt	aaaagtattt	ttccttaaga	tagtttccta	3120
aaaaaatata	agtaatcaaa	cacatgcata	ttctccaaat	tatggtattg	gaatgaggat	3180
acaaattaat	ctaaaacaag	ctttggttta	acaaagtcac	tgaaaccttt	attaatcaag	3240
tatacttaaa	catttaaata	atgacttcag	tcagtagctc	ataagcaagc	cgagactcat	3300
gaagggtgtg	aaagttggtt	ttgttttagt	ttgtttaaaa	ctaagccatc	agttctagga	3360
atgggtgagg	gcatttaaag	ggtttgaatc	tgtgagccta	gtggctcata	gcgtgggatg	3420
ctcacagagg	acagttttgt	aaggctaggc	aacttgcaaa	tgagaaccgt	gatgggcgaa	3480
ttagtttccc	accattcact	tgactgatgc	cgagtctttg	attatcacgt	catggtagag	3540
ctgatcatcc	agcaacatcc	gtaatccaaa	tgagagtttg	tcagataact	gtgtcaaaaa	3600
caaacttgta	tccacattca	tttgaaaact	atatcccaat	gggaaaatgg	tgttgtagcc	3660
acacacttct	agcaggtaat	aaaccagcct	ccttcctcta	cttgttacct	gaattcgttt	3720

	7700
teettatteg taggteaact ggettgtgte acatggatee ateattetaa acaeteeate	3780
cacetettae gettetettt teatggeett tateagettg acaatactge tggeeatttg	3840
ctgttctccc caacttactc ctggttggac ccagcagaca gatggttact atttgtgaaa	3900
tgctcggaat agcaccgtct tagttccttc tctcattcct gtgacc	3946
<210> 85 <211> 2805 <212> DNA <213> Mus musculus	
<400> 85 taacatatag aagaagatcc caaggatctc aaagtccctc agatgtcacc ctcttggtgg	60
cactgaaaag atgcattgca catcttcctg ggcacctttc agaaataata gttttgagac	120
taggtccacg tgatatggag agcattcagt gtgtgatggt gagactgtgc gcattcttcc	180
gtotootgot gttacagaca gttaatgtaa aaatggoott ttattggaaa cacaaatatg	240
tattcacttc aagaatagga gcagaggggg gacaaagtgt ctctcccgtt ctctgtttat	300
tgtgtgaaaa ctaaaacaaa caaacaaaag cggcaagtgc tgtaatttct caagtcaagc	360
catecttgtt gtgggcaggt tgtgcaettt etttetteaa ggagetgaag tatgetttge	420
acacetttet eccagggagt ggeatttaae tgtggggetg tecagggget agaaaatgea	480
gctggatgtg gaactgccag gctgggccag ggcaggcacc ttcagttcag	540
attgggcaca ttaatggcac attttagagt cctggaaaat cattagcttt acactgtagc	600
ttctgtcttt ggccaacatg ggggagctaa attgtggcac ataacaaata tggaatgcag	660
attttagatt ttcatgctgt cttcctggtg gtgttgaata aaggacgtgg ggcaaatggc	720
ttttcatagc tgccacagag tcagaaagtt tggctttcct gtgggggaag atgtaagatt	780
gaagggcgaa ggagagccca tggaagatgt cactgggcac ttatctgatc tatcttggtt	840
gcatcettta tgacacaagg aaattatttg acaaaattca ettcaagace cagtetatet	900
tatacacagt agtactagec tettteagta aaaageaett ageateaaae tggaeegagt	960
ttggcacatt gccacaattt atcgtgagat ttaatcacca agaatctttg gtaccttttt	1020
gctagttcag atttcatttg ggtcatgact atgtcagcac tgtttctatt tcaaagaaaa	1080
aaatacgttt tttacagtag ggcccatttt taatatttca aacaggtttt tattttatgt	1140

gttaatttgg	aggatgttaa	taaagttcat	aaaatatgtg	cagactatat	aatttaatgg	1200
aaaatagctg	gtatttttta	tttgtaatac	aaatagagaa	ctgaccactg	tgccctcctc	1260
tctgtccctg	gagtggccca	ggtaaatcag	tgcccttaag	ctgcttttcc	ctttcgctgc	1320
caagtctgca	gacccggcca	atatctgtaa	atttaccttt	gtaatttgcc	atgtagtttt	1380
tgcaacaatg	acctaattaa	tttgagcacg	aaccatatta	ttgctactgg	actcattttc	1440
tgtcacaaac	ttaatttcca	ggaaatgcaa	cctgacgaat	aagaattctt	tagctctcca	1500
catgtgttct	ctgagaccaa	aggcaaattt	aaaataataa	taataaatac	taaaatgcca	1560
gcattattaa	aggcaatatg	cttgatgcca	aactcaattt	gaagctagta	aacatcaaac	1620
tgtatttcta	atcagttttc	gaatgtaacg	tattccatat	tgagtttgct	ggattctgtc	1680
tctgcatttt	actggccagc	tgcactcccc	tctgcatttt	taaaacattt	cagcaaagga	1740
ttttgctgtt	cttagcaggg	ttagtaactt	ggggtctatt	tctgagctca	ttcgtcattc	1800
tgagatggca	ttgagttagg	ctggcaaggg	aaggatttga	ggcatggggg	ggagggggt	1860
ggcgaggtca	cttctgatcc	cagcagggaa	taggtgagct	tcatttgcct	ttacaatagg	1920
cgcacagtta	ctgcaccttg	gaggggctct	caggtgccgc	tcagatgggc	gcatgtaaat	1980
gccctgtcag	atgtggcgtt	ggaatattaa	tgattaataa	accgctgcac	cataataaag	2040
ctgtacacag	cgagcttaat	atgcagctag	gctagggaat	tgtataaact	tagatagccc	2100
agtgtaagag	acagcgatgg	aagaatgcgc	ggtatgctac	agttcccagc	ttgttctgct	2160
ttgatctata	gcaaaatgaa	aacatcatct	attcctcctc	gcagagttgt	ctcctcaact	2220
ctgccgcctc	ccagtccacc	tccagttagg	attttctttc	cttttccttt	tccttttcct	2280
tttccttttc	cttttccttt	tccttttcct	tttccttttc	cttttccttt	ccctttttct	2340
ttttcttctc	tetetetete	tctctctctc	tctctctctc	tctctctc	tetetete	2400
tttctctctc	tetttetget	ggtatggaga	aactcaacat	aatttgtttc	atatggttaa	2460
ttacaggcat	ttgaatattt	aaaatttaaa	atagccatgg	ctccagcttt	ttctgttaaa	2520
aagtatgtga	tttgaacaaa	gggattagag	tgtaaatatt	tgtggtgatt	tgcaacaccc	2580
ttcttctccc	attaaacaca	cacgcacaca	tccacactgc	tgatttaagg	actcccatac	2640
ctttatttat	acttcttttt	aaaaacctac	tctcaattgg	agcgccatta	aaatactttt	2700
ccattatatt	tttgagtctg	ttattgcttg	aggttttata	gagaattttt	atcatgtgtt	2760

catttaacag	aatcaacagc	tgtcagaacc	agttgtgcta	aatcc 2	805
<210> 86					
<211> 3481					
<212> DNA					

<213> Mus musculus

<400> 86 60 120 tcatcacact cctcccctga agtcatcaca ctcctccccc gaaggggagc catagttatg aaggtcagtg attggcacac ccacctgatc aggaacctgc tgtgaattet ctaagactgc 180 atcagcettt gtgetetttg etgaaaagea ggettggget ttetttgete ttacetttaa 240 ttacaggaaa aatgtcagcc tggttgtgcc aatggttcct catctcagaa gtgagacttc 300 360 aggtgattcc cctaagcaat gtgtaattca aggcaattcc ccagagtcat aggaagacac totocattoc aagaacaata eteteteett eceteceete taceteeatt eteagggtge 420 480 cttagcgaat gtgaggaggt ctattgaaca tctaatcctc aaatcaaagc caagcagaag gggaacttag ccttctgaag atgtattaca aagaagtgct agcttttccg ggctatttta 540 tgagggaaac aaattccagt cgtggataag ctagtcctaa atctaggaaa tcaatcattt 600 attettttaa ggtteeetaa ttteaeetea tttagaggte ettaaaeett teeaaagaea 660 720 ctqttacaat tccctcagag gcagtgagga atgagccagc ctgtgccgca gagagagatg 780 agetteegaa geagatggge catggeeatg ttetgagaac eccacettta gtgeatette agtgcagagt cgcacagtgt tgttgcctga gtagaactcg gccatgacat aacttttgac caagctacca aaggggtctg gtctctgaaa acagcgtgct ctggacctgg cttgctggaa 900 960 gccagagaac agttctgtat tcgagtcctg tttcaatgtc tgctatcaag ataatgttaa gtatetttet cetetgeage eteaattget tagagtgagt attgtacaaa tgccaggtte 1020 1080 tgccacagcc ccagttttcc catctgtaga ctgagggcac tttaatgtag cctatgtatt atgaggattc agtgcagtgg gggcagacat tttgccttgt aagtattaga tattcagggg 1140 1200 ttggtggett acttactggt agetettett tattttttte ceettaactt tetteteagt agattggtcc tcagctattg aagttataaa agttatcaaa taaagtccta gggactgacc 1260 ttcaatgaga cttgcagact ttctatatta ttacaggtct aatgggaaag gcgtggctcc 1320 tattgccact gatcaaatgc caaggaattt catgggttga agaaacattc atgatttaca 1380

ctcttcttgc	tctggaggag	cagagccctc	catcactcta	gctggaggtg	tgggcttgac	1440
atttcaaatg	gaagctctgt	gaggagacac	attgcctacc	tgctcctacc	tacacacaat	1500
ctatagtttg	agggggctgc	acacatccct	ctttatcctc	aggaagacct	ctgtgtgaca	1560
ttcaggccaa	atctcaagat	ttgaacttag	tcacagttaa	aatgttcctt	ctcccagata	1620
aggttgcacc	ctgccagggt	ccaggaatta	ctatgtggat	accgaggcat	ctatccatca	1680
tcctggtgag	cccgcagctc	taatgcttca	gctgtcatta	agattaccca	gatgtcagag	1740
caaggctact	ttggcctagg	ggagttttgt	ggctctctcc	aatcaagtct	gecetecegt	1800
ccagagctgg	cacaaaagtc	cggaatggta	atgccagaca	gccatgaaga	acaggatete	1860
aatgtcctgt	gaaagtacag	cagctgtctg	agtcatccga	ggaaggtttg	attaggttcc	1920
atctcattga	aagtgtacat	tgttccaagt	atttgaaact	gacaatccat	gggctacatc	1980
tagtctttat	ttggctcagc	tcaaaggacc	tgctatgtag	aagtccttca	ttcctaatag	2040
gaacatttga	ttattacaaa	ccccatccaa	agtggggttg	cacacaagtg	gcatccatga	2100
ctttattctg	gagtgatgca	tacagetgee	tcaagccctc	tgctattttt	acctctcacc	2160
ctcctcaata	aagtcacact	tttcttttgt	aagcatcaat	taagtgccaa	ttgtgtattt	2220
ctcactggcc	tgtgatacat	taggattcgt	gttataacag	agggatgaac	atgcttttgg	2280
ggcctctttt	gtgtcttctt	gggaagagct	ggatttcctg	gtaagataaa	aaaaatgttg	2340
acaaagaatc	atggtacaag	agtttactct	ggaaatgtgt	ggtgacccat	gcagaagggc	2400
ccaggctgga	gcacacagct	gtgtggctga	agaggaacta	agggcactat	aggtgaaagg	2460
ctttagcctc	atgttcaaag	ggccttgaaa	agtcagctaa	aggaaagcag	agccaggaca	2520
agattgttta	acatgggcag	attctatttt	caggtataat	ttggcagggt	gcatggaggg	2580
atgctcagga	taggacaaaa	acatctgctg	gaaaaagggc	caaccaaggt	gatggtgtta	2640
ggggctactg	tggatctgta	gtatgtgaga	cctccaggga	gatctttagg	tcattgggag	2700
gttatccttg	aagacaatta	tgaactggag	tcccaatccc	tccttgcatc	cttgtttgtg	2760
ttgtaagtcg	gtcacttcac	cttggatttc	tactgggatg	tgctggcatt	cttgaggctg	2820
gaagcagcga	ggctgccaag	tttgtaagta	aaacctttag	gaccatgaga	taaataatcg	2880
ttttttcttt	ctataagtta	gttgtgtcag	ttcagaaaca	. gggaatggat	gagtgttaag	2940
cattaagttg	aaaatcaagt	gtatgtctcg	tgcctgcctg	cetgeetgee	tgcctgcctg	3000

cctgcctgcc tgcctgcctg	tctgtctgtc	tgtctgtctc	tgtgtgtttc	tctctctct	3060
tctctctctc tctctctctc	tctctctctc	tctctctctc	tctctctgtg	tgtgtgtgtg	3120
tgtgtgtgtg aaacatacat	atacctacat	aaaaaaaagt	aaggaaaagt	gtgacacagg	3180
ataaaatcca tgagtgccac	tgaagggact	agaagagact	aagtctgagg	tattggacaa	3240
acageteeta aacaattte	cccctcttct	ccattgcact	tttcagacag	tccacagcca	3300
gcttcccctc tgacccacca	gcctgcacat	tattcccgtt	tcctaaggaa	tgtgcttgga	3360
tggagatgga ccacccctcc	acctctgggg	aaaagcccca	ttatcttctc	aaactcttag	3420
aggcgtttta cagcttaaat	ccactagatt	ccctgctctg	cccctgggtg	ctatatccat	3480
t					3481
<210> 87 <211> 1469 <212> DNA <213> Mus musculus					
<400> 87 actttgggaa gatatcagag	ctttgtgatg	atcagtatac	tgggggaaat	tgtctatgct	60
taaatttata gtgctatttg					120
tttaagtaca tgtataaaag	tagactttta	tgacgaaaac	gacatgcagt	gccaagtgat	180
tagcataggt gtttaagact	attaaattat	agcagaaaaa	ggttatgaat	gatgtcaatg	240
gtaatagcaa tcattgaaaa	attgtctata	aatattagat	attaccaaaa	tgtcaatacc	300
gtagtttttc aagagtttag	aattaatctt	agtcatataa	atttgtacta	ttgataatta	360
tttaataatt tggaggagtt	tgaacagtta	agctggttgt	aaactgtgaa	tttctaattg	420
taaattgtca tttctaattg	aaatttttc	aagaacagat	ttcagcttca	catactaagt	480
actgacaaat aaaaaagtga	gaaatttagt	atttataaga	aaataggctc	taaaatgtct	540
tatgcttttc tgtttctgct	tagagtataa	tggaggaaga	cagtgtcccc	tgacctaagt	600
gtttctaata aagagtaagt	gtagagacat	cccacaagac	agcagcagtg	caaggctctt	660
aggaagtgtg tgcactgttg	ctgtggtgat	gtatccaagt	caccaggagc	cgtgtcctca	720
ggagctttcg gctcttgtcc	agagcttgag	acagttgaag	ctgggttcca	tcactgagac	780
cagatgtgcg taggggctgc	tagtgtgtgt	gtaaactgcc	cactgctgtt	tccatgcact	840

ctcagcccct	tcagctgatg	cccctggtgc	cccactcaaa	gcacagacca	ttaagcaata	900
aacaaaattg	tcattcaaat	tataattgtg	gttattctcc	tgtgataaga	ggtgctaatt	960
ttgtgtgaga	agaacatgtg	acctctttgg	aaatatagtt	tggaagtaaa	gtttttcccc	1020
ctcttcttgt	acttccattt	tgtcccaaat	tcacagttca	tgaaagaaaa	gtaaaattgt	1080
ttaggagact	tctaagaaga	gctgcttgca	ataaacattt	cagattttcc	cgagtgtgag	1140
ttgggaaggt	ctccatttcc	tccatactga	caaagcctgt	tgttccaacg	tctcttagct	1200
tggagagtgt	ctctacactg	agtctcacct	cagcctgcca	gtgaccctga	ggtcactgct	1260
gaggaagaca	caggagtctg	cactagtctt	tacaagagcc	gttgtcattt	caggtccccg	1320
ggggttcatt	acagtacatt	tatacaactc	acaagagtgt	gggattccgc	ccctttgagt	1380
atttttatag	ttaggtggat	aactgccgca	gatgcatgga	ttgcacattt	tgactctata	1440
atacttagta	tgaaaaatta	atttatgcc				1469

<210> 88

<211> 3497

<212> DNA

<213> Mus musculus

<400> 88

60 aaatgaagga tgttttttaa tttaactttt tttttttt aaagaaaaat atcagtaata ggtcggcaac agcagccgta ggaagtacaa cttagggtag cattaaagca tactgtagtg 180 tggatatatt tttttcttt tttaaaatgt gatattgaca ttttattaat atttttaaa ttgttacgtt tataaatttg gtacttaagg cacagccagt gtgaggcact gaacgcgaca 240 tttattacaa tgagctgctg cactcctact tttataaatt ttactaacaa gtagactaat 300 gtagacattc acagacggga tagcgcagaa gcatcttcac acgacaagtc tccaaaaaaa 360 aaaagctaat tcagagaggg cgggaggaag cctgttcccg ttctaattaa gtgcaacctt 420 gttttatctt attgttttat tttttaagaa aggaaatcat gttctttttt tatatctcta 480 tatataagat acagagttgt ttggtaaggt ttggggtgtt ttttgttttg ttttgtttta agtttccaaa caaccaaact aagaaaaatg ctggatgctt ttagaataca aaacttactc aagtcataaa ataacaaaat agaactttta ctttaagaaa caacaacaaa gagagagaga gactcgattc ccagcaagtc agtgtctcac aagggcactg gctaattact cttctgtccg 720 cgttgctgat gtcctgtccc cagcccctgt ccatctcccc cacactccca tcacctcata 780

ţ

gaacgctctt	tgttgatcat	tgtctgttaa	taatgtataa	aatggctatc	ttgtaagtgt	840
gctgtcttgg	tactagtgta	gtgacttttt	ttctcctctt	ctagtacata	ttgataggta	900
taatgtaatt	aaggttttaa	aaaaaataga	catagttatt	cagattagga	ccagtaagga	960
tagaactttc	tcttatttat	gaaaagaaaa	aaaatgctaa	taatttgggg	gcagttttt	1020
ccttttttt	ttttttccaa	gttcaaattt	acttttattt	ttgctgattt	gatgtggttt	1080
caactaaccc	aaggtctcac	aatgttcaaa	tggcggctga	ctctacagca	ttctgtaggt	1140
ccctgcccc	ctagctgaag	gggtgtgcca	tactacctta	aatgcaaaca	ctagatatgc	1200
aaaactggat	ttttttaatt	tattttttaa	aagagggagg	tgtggtatat	taaaatgatt	1260
ttactaagag	aaaaaaata	tttttttaag	gatgctcaga	agaaattgat	aatctgtgtg	1320
aatatgtttt	agatgtttat	atacattttg	aagagaccca	gtagcccata	gcacaaatct	1380
tgtgaacatc	tgatatgttt	tcaagtggct	acctaggata	aggttcatca	ttagtacccc	1440
cacccccacc	ccaccgccat	ctagaagtcc	atcttaaaca	attttttgta	aattctttca	1500
gcactggtgt	ccatctttgt	ctttgtttca	gttaagctca	atagcgaatg	tgggaccccc	1560
tcctctgacc	ttccctgggg	gagaaaccct	cttggctaat	ggctcttccc	tggcattatc	1620
aataaccacc	cggggactct	ctggctttca	gatccatctg	cctgagaccc	caaggtcctc	1680
tcctccctag	aggggaggtg	gagcagcagt	tgactcctgg	ttccctccct	atttcagcct	1740
ggatgtgggg	ctggtggaga	tgcctccacc	ccaggagcct	ctgcatatgt	ggttcgtggc	1800
cttcttctca	cccattggga	aaaccaaaca	gcctcacact	ctgtccccat	cgctcattgg	1860
cttaactcaa	gtgagacccc	aactgggcct	ttgcgttttg	tttttgtttt	tttttaaatc	1920
cttcatgacc	attctcttaa	tttgaactcg	tagcttgggc	tttaaggtag	catggctcga	1980
ttgctgtcga	cttaatgttc	cactgcacag	caattcacgg	ccagtgaatg	ttacacacat ,	2040
cttgctagac	tagtataaaa	atcattgggt	aattgttggt	tctaatgacc	tgaaaggtgt	2100
tcagtttgtg	ggttttttt	gggggggct	gcttgggggg	ttgtttttcc	ttctttgttt	2160
ttttttaatt	tgagaattta	gggggataat	ttttgggggg	gggttccaaa	taaaaaaata	2220
gaaagctatt	ttgatcttta	gtgcaaacta	gggacgtagc	ctccatcacc	acaaccacac	2280
cgcttcgctc	tgccatccac	ccaccgcagc	agcatcttca	agaataaagc	aatatagttt	2340
actacatttt	ttttaaaat	tgaaggtcag	ccatgctttc	tgtattatat	tgcatatgaa	2400

attgtttaca aaagaaacac	taactcatcc	ttctctttat	cagttgaaag	tgacacacgg	2460
gacagaggga aattggaggg	caggtgaggg	aggggagagg	gtttttttgt	attttggttt	2520
gtttggtttt ggtttctttt	cttgaatgtg	ctttagtagc	cagatectec	aaggaaggca	2580
aaagccagcc agccagagag	agagta gcga	agcgggcagg	ctgcaggtaa	gcacactgaa	2640
caagagacac actggcaagc	tcccccacct	cagcgagagc	agaaagcgaa	cagctcagcc	2700
cagtcctggg cacagacact	acacaaggca	atgctggaat	tgaaacaata	ctttaatacc	2760
gtttaagttt gtttcctttt	tttttttcct	ctttttttt	tctttcacca	agaaaagaaa	2820
aaagtaaact aaaatacaaa	atacaaaaac	aaacaaacaa	acaacaaccc	atataaataa	2880
aacccacccc tctctgggaa	acaaccataa	ttcaaacatg	gctatttagt	aatcagaagg	2940
tattgtctca gacaggattt	catttccggg	aggcagggcg	tgagggggga	ggggggtggg	3000
actgagagac agttccagag	cctccaggga	aggcttctac	tgctaactgc	tgtattctgt	3060
atatactgtg ccaccctgtg	tggagtctgt	gagtgtgctc	ttgagtagcg	tgggctagcc	3120
aatctgccat tcatggtgtt	ataaactcgg	aattccatat	gtaataggat	gcaagtctaa	3180
gcgtttcatg tggacataaa	tgtatctaaa	taaaacttcc	cctagcactg	tggctgacct	3240
caccettact tttatacttt	agtatg aaac	tgatgagaac	tttggtagtg	agtattttt	3300
ttatatatat acatatatat	gtatctatat	atatatatat	atctcaagca	tctttcaggt	3360
ctttgtgtgt ggctttctta	aag ccctgtt	gtaaaaaaaa	aaaaaaatta	ctaagtggat	3420
ggcagtctct cacatcacag	atgtgg aa ag	tataatttta	tatttgtatt	ttcaaataaa	3480
taagtttgtg aaaggct					3497
<210> 89 <211> 4277 <212> DNA <213> Mus musculus <400> 89					
tttcaacaaa cattttggct	caggatacaa	agtttaaact	cctttgctag	agaactttga	60

tagtggtatg ggatgagttg atcattatag ttttgtataa tgaatattgc acatgtatat

aaattactgg tctggggcag caacaggtat acagaagcat gagcctttag tgggcagtta

gctcagtggt tgagtgctgg tggagaatac atgaagcaaa gcactgggtt ctcacgggag

120

180

240

gagggggagg	atctgcaata	ggagggtgcc	attaactggt	ttatctgtgg	gaaagacctg	300
ttgtcttgga	tgaactgagt	taactggcca	tgtggaatat	tgcagaaaat	aaagctagaa	360
atgtggtcat	taccaagagt	gcagatacgt	gagcataaga	accatcttgt	ttagactgcc	420
aaagtattca	tgactttgta	ttgtctgaag	atctcattgt	atgtggtggt	gttatgggtc	480
tgtttgtata	tt t cttctta	atgggcattt	tagcaagttg	ctcacactgt	tcaatttctc	540
acccttttgg	agaaatcaac	attagtctgg	ctttaaagcc	taaaacatac	catctaatga	600
cagactttgt	tagagaaaag	cttagaagtc	agctaatatc	tgagtgtctg	cctttgggga	660
gcaagcagct	cctgtgtctc	ttatatcaaa	accttccaca	ggaataatgt	gttctggctc	720
ctcattgtgc	atgacgcccc	tcccagataa	gaaacagtct	ggttttcagg	ttctcattct	780
gacttttgag	agcacaagat	aaagatctta	gctctacttg	gataattgac	tatagaaatc	840
agaattctca	gaaatcaact	gctttagaag	gttaaaatgt	gaagtttctt	gtttgttttt	900
tgcttgtact	gaatatt tt g	aattttaatc	tacctcgtct	cattttttgt	agttacttct	960
gtcattgcca	cttgagcatg	aagcttgact	ttggtcgttg	tctaaaatgg	gatctctcct	1020
gttcagtgac	agttttttct	cttgcctttc	ctcttggccc	ccatttcacc	taacatcatc	1080
tcttattgct	cctgtcagaa	atatgtttta	aagtcttgtt	ttatgggaaa	aagtggttca	1140
ccaatgctgt	ttgtctctga	ggtcagtgag	agaaggagtt	aaaacacagt	ggtgaaggaa	1200
gggcagatcc	tgctctggag	gcaaaagctg	acaaggaagg	agtcattaat	tacagacaat	1260
ttcaaagtca	actgattgtg	atcattaatg	tcacaataga	tcaaaaccta	attatcacag	1320
cctaggtaag	agccatcagt	attaatcgga	aaatctaata	ggaaactatt	accaagaaat	1380
taggccaaat	tgaatgcaat	gaacttttta	tcatcttttt	ttggtaatgt	tcttggtgtt	1440
ggcaactgtg	accctaacag	ctggtccaag	cccagattgc	taatttcact	tttaaagagc	1500
ctaggctggc	cctagtgctt	gtagtactcc	tgcctcagcc	ttaaatactg	ggattatgag	1560
gggatgtgtg	cattcctgtt	tgtgtgggtg	ggtaggagag	aattgaactc	agggccttgt	1620
acattttaga	caagtgctca	accactga gc	tgtattccta	gttcagagtg	ttttgtttgt	1680
tagggaagtt	tccagagaga	ctgaatctga	gctaacattg	ctgaaacacc	aaccttgaat	1740
tttctcatca	t ggatttgtc	cagtctaatc	agatcagtgg	gatatacagg	tatatattaa	1800
agtcatagag	tgtccctggt	gaacattgtt	gctgtatcat	ccgttgagtg	cttgtgtata	1860

gagctctgta	ctggctgctg	tgaaggctgt	gggaggaaga	cagtgtcctg	ctttgaaatt	1920
ctttgagaac	taaaaagata	gtttccttgt	atgacaacag	gaagaagatg	caagccagtg	1980
ttttcctgtt	tgcagtaacg	ctaggatttg	atcctgaaca	gcctggcagt	gtgcctgatc	2040
ccagtagttc	taagatagga	acaaaatgat	ttcccactgg	aattctaagg	gatggggaag	2100
atatctttgt	tttcctttct	gtgttacaag	ttatatctct	ggtagtagga	gaagccatca	2160
gtatgtcctt	aagatgtttg	taaagatgct	accacctttg	ggtgagatga	gtcaggcagt	2220
ggaaaagttg	ctgtcctttg	ggtgtcacag	gaggaatgcc	aggcagtagt	agagggaatt	2280
gtgcctagga	gtctacactg	tgccctgcag	ccctgctgca	cttcaggtgc	tcagtgctaa	2340
tcttacttag	gaaggccatg	ctcctttctg	gaacttggat	tacccactac	aagactgaga	2400
atcagtgtct	tttgtttgtt	tggtttttt	tttttttt	taagacaggg	tttctatgta	2460
gccatggatg	tcctggaact	tgctctgttg	accaggctgg	cctctaactc	agagatctgc	2520
ctgcccctgc	ctcccaagta	ctgggatcaa	acatgtgtat	caccactgcc	tggctaaccc	2580
ttcacttctt	aagtgagttt	tagtgtttaa	aatgcaactt	aattttcaaa	atggcactaa	2640
ggtggtttgt	ccagccttgg	tttactccag	atgagcagca	gccctcaaca	gtgtgttgat	2700
tgaactcatc	tggctgcagt	gaaatggctg	aaagtgagat	tttctagtgc	atacttctgt	2760
gctagcctcc	ctacttggtc	ttaatggctg	accttgggca	agtctttcct	ttcaatgcct	2820
cagttcccca	tctgtcaaat	ggggtgataa	tactgaccta	cctcatgggg	tgttgtgagg	2880
cattacagat	cagagctgat	caactccttt	aggattgcct	gtggaggata	ccttcagtcg	2940
aagtttttt	agccctcact	gagctacttc	caagtttgga	agtacttagt	gaccttggtg	3000
agtttctgtc	cccaatccct	taacccctca	tcaatgctgc	tagttcagat	gttgacagtg	3060
ttttgtgaat	gttggagtct	tgatcatcca	gtctaacttg	ggatgctgtg	agggaaggca	3120
cttgtgggct	ctgtgtcttg	catcacaaag	agacttagaa	attcaagagc	cttgggttag	3180
ggaatcttga	ggcaggagtg	ctacttcatg	tctttctctg	caggcaggag	ttaaggtcct	3240
attctcatgg	atgacttgtg	ctgattgtct	tggtagtgtg	gattgatatt	gttgcttcca	3300
ttttccaggc	tgacctagga	caggtcgtcc	actgaactct	tcatgctccg	atgeetetge	3360
cctctcatag	aagccagacg	gctcaagcaa	cataacactc	ccttccccta	ccaaaaagag	3420
ctacattgta	ttttgtttt	tttctagaaa	taggtatacc	atttcagaat	tgagcattgg	3480

	tcctcaaggc	ttcttttcag	ttcactgtgt	gtggaatctg	tcacctcttt	tcagtgtata	3540
	ccatctgacc	cactgaggac	atcttggaca	cttgtttgcc	cacctgaggg	ttcaagagcc	3600
	tttcttgctc	tgtctcagta	tagggactaa	ggcatcccca	gattcttcat	gataggtttc	3660
	cttttcccct	acttgacctt	ctattggtac	ccatgaaaaa	gcacaaggtc	ctagctccct	3720
	gtagatacac	actccagttc	tgttgggtag	actctactcc	taacaggggt	cctagagggt	3780
	tctctggagg	atgggaaagg	aacagtctca	tgtcctgcca	aatagtagcc	agcagttgcc	3840
	ttacccctgc	ctgctggcca	tgaacccaca	ttctcacgga	aagggctttc	agagacccct	3900
	ggtttttctc	agcactgtac	cattttgtgt	aggaagcagg	tcacaccttg	tagccaggtc	3960
	taaatggaag	tgagacagtg	aattctctgt	ggacttttt	ggtttgtggg	ggggttttgg	4020
	ttgtgtttct	tggttctgtt	tcagccaaac	ttgtctgctt	ttga ttt ctt	taaaggataa	4080
	gtggtctatc	tatctatcta	cacgtatgtt	tgcattttaa	gtgtaagtgt	t tt g agaaaa	4140
	aaaaaaaca	gacattatgt	cattctacaa	ctgacatcca	attcagacat	catcctctcc	4200
	cccttccacc	ctctttttcc	tcttttccct	cttttcatac	tcttgtattg	gttctaataa	4260
	acgattgctt	ttcaaat					4277
<210> 90 <211> 3887 <212> DNA <213> Mus musculus							
	<221> modif <222> (3295 <223> a, c,) (3295)	own or othe	er			
	<400> 90						
	tagcagtgac	aggccatttt	tggtatgctt	aggattactc	acatttgttg	cagcatgaga	60
	gtttggaaga	attggaagca	ggtccaatct	ctaccttatt	acttatttta	atcaattttt	120
	aagtctttgg	cttttgcagt	agaattccta	gaggtttttt	tttttttt	ttagtatttt	180
	tatacattga	tataaaaaag	aaagaagcca	gaaggacaag	tattattttt	ctccctacaa	240
	aaggaagaaa	ttaagagact	atagttgtca	gatacaaatt	tttaatattt	aattatttct	300
	gattattttc	taaaagaaga	gaaggggata	atggctggta	agacttgata	ataaaaccaa	360

atgtagacaa aattatcggg gtaggagaaa agtgaaaaag gaaaccagga acaaagtagt 420

taatagaaat	agtatctccc	tctttacatt	ctctcatcca	agtgttgtgt	attttaaaac	480
tgttaatctc	tcaggtattc	tgcaggtcaa	aacacatcct	tgcttggaaa	aaacaaagtg	540
tcaggtaaga	cagctgtaga	gtaggtacca	catatgacta	gggttcaacc	actgctcata	600
agaagteteg	atgacataag	gataaatata	cagtgttctc	cgtggtgagg	gtaactcggt	660
ttccatcctg	gttacactaa	gagcaagcat	ctaagtggca	tctaatgggt	cagaattaga	720
gctttctgtc	ctcattttgt	gttgttagtc	acagggaaag	ccttcctatg	ttaccagctg	780
gttggttcac	tcctttgtct	ccttgtactt	atcttctaga	cagattctga	aaaagagaat	840
ggaagaaaag	gttttaaatt	gttttctggc	atctggcaaa	ggacttgagc	atgccttttg	900
gctctgatag	gcacttgtaa	gcagacatct	aatgaggcta	ggctagtgtt	tttatcctct	960
aatcaggctc	tatcttactc	tgtcttgctt	tctaaatcct	atctctaaac	aacaccaagt	1020
gtcttatctt	tggatgggag	gataagtgaa	ttagaagtcc	ggcctcagtt	tgggaagagt	1080
tctcaatatg	aaaggttaat	aacaccattc	ttacagaaag	aaaaaaatca	tccattgccc	1140
aaattgggaa	gccacagaaa	atgcttgagc	taaccaaaca	tcccataatc	gattttctat	1200
tcacttaacc	agtctattca	cgcaactagt	cactagctat	gttctattta	aaacagccac	1260
cactaatcag	aatttcactt	tctcacctga	gctaacatta	ttcactgatt	ttggttggca	1320
tatttcctca	tgcctgtggg	ctcctcttc	tggctctctg	aaatgatgat	cttgtttgta	1380
ttacagagct	cttatttgga	agacagtgaa	tcagcagcat	tactttgctg	tgaatatgga	1440
gaatcagaaa	tctttagtga	tttcaatgta	cgtaggtata	tgtttttata	cacacacaaa	1500
taacatacag	cccttggtac	tcatggatat	tttgttattg	tttctaggga	gctttattat	1560
gctgtagtac	atttactcag	ctattaaaaa	caatgaattt	atgaaattca	tagacaaatg	1620
gatggatctg	gaggatatca	tcctaagtga	ggtaacccaa	tcacaaaaga	acacacatta	1680
tatgcactca	ctgataagtg	gatattggcc	cagaattttg	gaataccaag	atattaccaa	1740
gatacagtcc	acataaagct	caagaagaag	gaagaccacc	atgtagatac	ttcagtcctt	1800
cttagaaggg	ggatcaaaat	acctatggga	ggaaatagac	aaagtgtgga	gcagaaactg	1860
agggaaaggt	catccagtga	ctgtcccacc	tggggatcca	tcccatatac	agtcaccaaa	1920
cccagatgct	attgtggatg	tcaacaagtg	cttgctgaca	ggagcctgat	atagctgtct	1980
cctgagaggc	tctgccagtg	cctgacaaat	tttgtttctt	ctaatacata	tctgtggcta	2040

aaattaataa	2021200100	~++ <+- <		E 1 11 1		
	acatagctga					2100
atggaaatat	gtgttggtgt	tacttctcag	gtataagatt	cagcctcttt	accccttttc	2160
tccatggtac	agttctagga	cataattgta	ttgcctcacc	tggttggatt	tcattccatc	2220
ttgatgaaga	gtctggaatg	ccacagattc	aattattgtg	gctcataaat	agctggagtg	2280
gtgctcattt	ccctaatgct	taccgacatt	aactgatgaa	tctacacaaa	cactctttta	2340
tcatgacact	ttatagatga	cagactgagt	gtggaaaggt	tataagattg	ttcggtgttt	2400
gtgatacgca	gggacagcac	tgacgtgcac	atttcagctg	acagctatca	gtgagctcat	2460
taccagagag	cagagtcatt	catagattat	gtaccaggct	cctatatagt	atactatgag	2520
attttattca	gtgtgttttt	taaccttgca	aataattatt	taggtacttt	tacttcacag	2580
gcaactaatt	tcttttcctt	teetteetge	ttgtagccat	ctcccccaac	tgcctcccca	2640
gtagtatctc	tctaggtcac	tcaggctatc	tcagaacttg	ccatgtagcc	taaactggcc	2700
tcaagtttgt	aatcttgctt	tcacctccct	agtcctggaa	atactgacaa	tcattttata	2760
gccagaattt	ttattcattt	gaaatgtcag	gtttcactct	tgccacgtag	gcctgatgac	2820
ctcagtttga	tccctatgtt	tcttagtgaa	aggagagaac	taactcctga	aagtcatcct	2880
ctgaatctat	acataggctg	gtacacacgc	acgcgtgcgc	acacacacac	acatacacgc	2940
acatacacac	acacacacat	acacacacac	acacatacac	acacatacac	acacacagac	3000
acacacacac	acacacacac	acggcaagtt	gactgaaaat	tttttgttat	tttcctggtt	3060
ttttgttttg	atttttgagg	cagggtctca	tgtatccaag	gctgacctca	gactcactgt	3120
gcagccaatg	atgattttga	acttctgatc	cttctgcctt	taatttccag	agtgctcaga	3180
gcacaagcat	gcaccaccat	acttgctttg	tacacttctg	gagatcaaat	ctagggcttt	3240
gtgcatgcta	ggçaagcact	ttactactaa	gtcacaaccc	tacccgtgga	ctacntgagg	3300
ccctgcttct	ctatctttgt	ttaaaggttt	tgggtccatt	ttgttcactc	agggagtatt	3360
ttcaacctct	acctctttct	gcctattagt	actccaatat	ctaaggaaat	ttgaagaggt	3420
cctttctaac	ttaaagtctt	gggatttagc	tcagtggcag	gatgcttgtc	tagtattcac	3480
aaagttctgg	ttcacttcca	agtactgccc	attcaagcat	acggagtaac	agtaatctga	3540
agatttagca	tagagggtgg	tggtatttgt	agagcaaaca	ttgaaatcct	cattatttaa	3600
ctttcttcaa	aggaagtgat	atgggatctt	gataaagaag	tggaaatact	catgtaaaga	3660

ggaagagtag atgataaagc	caattactga	gaacctgtct	gtaatcttgg	agtaataata	3720
gtgtgaactt tggctagatg	cactcattca	ttcagcaatc	attgattgac	tattatgtgt	3780
aagactactg ggtaaagagc	tatgtagttt	ggacataaaa	tacagaatct	gtgcttagag	3840
aatgtataat caattgacaa	gttagtttta	tggatggata	tgaaagc		3887
<210> 91 <211> 2219 <212> DNA <213> Mus musculus					
<400> 91 ggccagttaa cttttctggt	gccaatgtga	actttaaatg	tttttattt	acctgctttg	60
tggatgaaaa atatttctga	gtggtagttt	tctgacaggt	agatcatgtc	tttttatctt	120
gtttcaaaat aactatttct	gattttgtaa	aatgaaatat	aaaatatgtc	tcagatcttc	180
caattaatta gtaaggattc	acccttaatc	cttgctagtt	gaagcctgcc	taagtcactt	240
tactaaaaga tctttgttaa	cccagtattg	taaccatctg	tccgcttacg	taggtaaatg	300
tagacgcctg gtgtatatgg	cttgtagttt	tagtgttggc	tctccgtgtt	gagattcttt	360
ctcagtgtca ttctgtgtcc	tacaagtttc	atgtaggttt	cgatgttagg	atggttaaga	420
tgtatatagt acaaaatgtt	cagtctttga	ttgttttatg	tttgtttgtt	ttcatgacta	480
gtaatggtag tggatacttt	aaaaatattt	tctgaagatc	cttaaaacct	tggaaattgt	540
aacatactga gaagagtggt	tgtttgaata	tttttaacaa	cttgtataag	tcaatatgaa	600
tacaatcaaa agctaaagtg	cttcatagaa	cacgggattt	accttaagta	attatcatga	660
gagacctctt gtaaagactg	gtctatttta	ctacagagaa	cagtttgaga	gtgaaactgt	720
tacaatttag actttttgtt	gtattttcta	agagaaagag	tattgttagg	ttctcctaac	780
ctctgttgac tactatggta	agtgatgtta	tttaattgc	aaatttaaat	agaaaccaac	840
agaattaagt aactgactgt	ctctctctct	ctctctctct	ctgtcttctt	catgaaaatc	900
cttagttctg tatactgcct	tctgcttaga	tttagttata	tgatcattag	gttacatttg	960
atctaagttg actaagattt	caatttcaat	ttatatttca	agcattctgc	cagggaatag	1020
ttttaaaaat tgtttccaag	gcacttcagg	tacaagtcat	ataggtagtt	tgtttaatct	1080
agtecttage ctaggaetca	aggactgaat	gttttcaaat	aacacttttc	ttgttctcag	1140
agcctcagtt cattaaaact	cttttaaaac	ctgtgtgctg	agagttaagc	aagacctctt	1200

ttcttgtctt catgagttgc gaaattgaat tcatggagct gatgtggcta acaagtttat 1260

	ovvocgcocc	cacgageege	gaaacogaac	0000990900	gacgeggeea	acaageeeae	1200
	tttaggaatt	gtttagaaaa	tgctgttgct	tcgggttctt	aaaatcacag	cactccaact	1320
,	ctaatcaaat	tattggagac	ttagcagagc	tggtctgaaa	tcacactaaa	aaaaaaagg	1380
	tactggatcc	tttccagtat	ggttgtgtaa	aaaatggtca	ctcggaaggt	cacagaataa	1440
	ccggctctga	atcaccaccc	ctgagagagt	tcagtgtctg	cgtgctgatg	gtcttttgct	1500
	gtataaagtt	cattctagaa	ttttgaagta	accacccgtt	ttactacata	ttagtcatgt	1560
,	gaattttgaa	gttattttgt	aatagttact	ttcatttgtt	atttactgtg	ttgatcaaga	1620
	tgtgtgtgag	tgtttagcat	ttattaaagt	attgtctttc	ctcctagact	tttgcctctt	1680
	cctgtagtta	ggggtagagg	tgaggtgagt	ggagtgacta	caatgtgatt	cgctggggta	1740
	ggacagtttg	ttgtcttgtt	agtcacagtg	tgttgctctg	ttttttattt	tagtaagatt	1800
	tatattttga	gctctctgaa	tggaaagtgc	cactgcaacc	ttagctgcat	gcattgttcc	1860
	cattagacct	aagtcttcct	ggacttctga	gtccccagat	actggataaa	ggaagaggag	1920
	agatggagta	gcctgtctgt	cactgctatg	agagaagcaa	gaaagtgggt	agagaaatac	1980
	ttcacatttt	agtcacatct	tctcttttta	aaaaggtagc	catcagtgaa	ggaaagaact	2040
	agtcaaaaat	aggcttgaca	acctgaattc	agatccccag	aacgggcata	aaagcagcca	2100
	ggtcatggtt	agtgcactcc	tttaatccca	gcatttggga	ggcaggggta	gacatatctg	2160
	ggtttgaagc	cagcctgatc	tacagagtga	gttccaggac	agggaaccct	gtcttattc	2219
	<210> 92 <211> 3433 <212> DNA <213> Mus 1	musculus			,		
	<400> 92 ttttataaac	agctcaatat	aaaacataga	cagtgtttga	ttattttcct	tgtgtaagtt	60
	tgatttaaaa	cgttggaaat	gtgtgctttt	tagtgtttac	taaagtgata	agaaaataaa	120
	gcattcaata	cactatagat	tccaaaacat	aacattgcac	caaatagaaa	tgtatatttt	180
	attatgcaat	gccttagtca	taaactgggc	tcaaacaatc	ctcagcctaa	aacactgttg	240
	tcttttaata	tgcttccaac	ccaaaggcct	ttcatctcag	tatctgtcaa	acttgaataa	300

cgtcttctct ttactattac acacgaggca gcctattaac ctgtgtctta gaattgttgt 360

atatagttct tttaa	ațatcc atagggtata	tttttgaatt	ttttggtgag	tatttgttga	420
atttgagata gcata	acagta gatgtttaag	aaatagtagg	aagtccggtg	agacggctgt	480
ttccatcaag aacto	cctagc actgctgtaa	atatcatggt	gcctactgga	agggaatgta	540
gatgctatgc atttt	tggaaa taatctgcat	ctgttaaacc	tgcagaagtt	ttttaatgcc	600
actttaacac taato	gcactg acagattcta	aatattttgt	gagaaatgtt	gaaatgttta	660
acctgatagg cttct	tctata aaagagtgtt	ttgtttttt	ccctgcacca	caagctgtgt	720
ttatcacttt ácagt	ttgcat gttcaacttg	tcatagctgg	aattactgta	taaaaagaac	780
tgattgtgac ttgta	agttot tototagagg	atgctgctag	aacgtggttt	tgctttgcat	840
tttgtagttc ttccc	ogtcag tgctgtgtgt	agtcctgctt	cttccagtct	gcagtattca	900
ctagaggcgc ccttt	tgcatg ttgcactctg	ttctcatttg	gaggttggac	tcagaccagt	960
tagcacagta ttctc	ctcatc tgtgtcactt	tgtaaaacta	actgtactct	gtatttctta	1020
tttgtacata tcaat	tgtgag aaatctccct	tttttatgtt	gcaattacct	tgtgatcagg	1080
cagcttgagt gctat	tgcaaa tagtaagtag	tgtagtggtg	atttttcttt	gcatgttgtg	1140
tgtgatatac ctago	ccagaa atagatgtgg	cttttgtttt	gggggcagat	tactttcaaa	1200
agcaaataca attca	acttga atttgacaaa	. ctgaagcaga	caagtgttct	gggtcctctg	1260
ataatttggg gtgtt	ttggct gtcagctagg	ctcatgaagt	ccactgtact	gtaatgatgg	1320
tatttacctc tgtg	ctattt taattaccct	cgcgtctgtg	gaactgctga	tttgagtagt	1380
gattagcatt tagaa	aatttt gtaatgtaga	. gttttagaga	gagcactttg	aaagataaac	1440
attttattat gatgo	gtgcta ggtacaaaat	ttatagcatg	ggatgtgaag	aaaaaaaatg	1500
agaacccatt gaaag	ggaaga aaggaatttg	ttgtctgctt	ctaagctaga	gtggttgtaa	1560
aggttctgct ctgc	cagtgt tcagtatcag	tggctgaatt	atggataaga	actgtagaga	1620
atcttctgtt tagto	ccatgc tttttatgta	gaattggttt	tatctaatag	ttttactatg	1680
gaaatcgcct tttga	atatta aagccagatt	ttagaggttt	gatatgtttg	gtctcaggag	1740
ctcaaaagaa gtago	cttttt ccagtgtctt	ttgtgttact	gatttgggaa	atgttgaaag	1800
attggacagg gaaga	aatagc gcttggtgtc	ctcatggtca	ttctgtctta	ccttagtggc	1860
ttgacagtac ttact	tatagc tcctgaggga	agccaatcaa	cttctgtttt	cctacctgac	1920
ctgcagggca tgatg	ggatca gtgatgaaag	aattgtagcc	tgtggcactt	tgttttgacc	1980

tctggtatag	aactctgact	tttatagttt	taaaatgatc	aatctttgta	tgaaagtcag	2040
ttttctttct	ttaggtatca	gaagattttg	ccttattctg	aggtcggact	agggccaagc	2100
aagctttttc	cttcatatga	gctgtcatac	tgtattttga	cctctttctg	cacgaaaaaa	2160
gaaagaaaaa	tgacagctgg	aaaaagtcct	ttgtattggc	acatgataaa	tcttgatgac	2220
gggctatatt	ctgaacaaac	gcttgcactg	accaaagctt	gtgtttagcg	tgtgtttagc	2280
ataggtgctg	tagttggagt	gggccccacc	tctgctcctt	tcagtgttct	tgctgttcaa	2340
gttattcctc	tcagacatcc	tccattgtcc	cacgcactcc	ttggcagcag	aatgctggca	2400
gcttgtgacc	ctcatgtttc	ctgtaagtct	gtttcatggt	agggttcata	cctgcctcag	2460
cctgacagga	gtaggttttc	cgcaacccac	tgtgctgaga	cagttgatgt	gatgcaaact	2520
attcttggag	tgtgttgttt	tetttggeee	aagggtaaac	taaaatacct	gtgaactgca	2580
aacttgcttg	tgattgactt	ggtgcaatac	agttcctttc	taaacgtttc	tggtttagag	2640
aatactcagc	catcctggaa	actagcaata	tttattttgc	ctcatttact	ttattttcag	2700
ttttagatga	ggtgaaggtt	ttctttcagt	tagggtactt	ggcaaggtcc	attctagtgt	2760
agctgaagag	gaagctatac	tattttctgt	ttactgtatt	ttgctcccta	ttttatgctt	2820
tttaaaaatc	tttcacagtg	actcacttga	ttgagcatat	tgatttgaaa	gagctaagat	2880
tttcctgctt	aatgtcagcc	attggctctc	ctgataattg	ggactttttg	tttgtttgtt	2940
ttttgttgtt	ttgtttttt	tgtttcccct	ttccctaaaa	ttataagttt	agagaatcct	3000
gtaagagggg	tgggtgcatg	tcttaatgct	gagaagcagc	agctttgggg	ttgaatttac	3060
ttgaatggtt	taaaaagatt	gcattgttac	aaagctagaa	aaaatttatg	tatgaaaaat	3120
gatectagee	ttacactgag	tacaataata	cttataagca	tgtgaagatg	tgatctttgt	3180
gatgttactt	gtacaaacat	atatacatat	ctatacatat	cttttgaagt	gttgaaagga	3240
atagtacttt	atattcttta	tcataccact	tttgtaagtg	ttgaatatat	tgctgtttat	3300
ttttctatgt	tctgtttcgt	agccttaaga	agtgtttcaa	acgatctgaa	tgtataaaac	3360
aagtcaatgc	cctacatggt	gtgatgctgc	attatatata	caaccgtgtg	catatattaa	3420
attctgtttg	tcg					3433

<210> 93 <211> 2228 <212> DNA <213> Mus musculus

<400> 93

99tgtccgcc gcccgcgggt ggggcagctt cttcaaggct cagcctccct cctgccggct 60 tecttgtget tttttteet ecaaceettt eegegateae ggttttetgg tacceaatag 120 aaatgggcga cagcgaaccg gcctttaacc tttccttgaa ttaatgagct tcaggttcag 180 cttcctccta ggttttttt ttttttctt ccttgttttt aatgaccctt cccaactcct 240 tttcctatcc ctgagagett cagttacttg caggaageca gegettteec aagetetgtg 300 tagcaggtoc coctcaacco coaccoctgt ctcagccaat cgcaactgtt ggacgtcgta 360 gcaaatttgt tggggtctct tggcagaaca agagtctatc cgagccgcgt tagatactca 420 gatgacaccg aggtecgtag cagatgggtg gaetgagaag gtacctgega geteccaqeq 480 gaattegetg geagetgegt gaggetetgg tgttttggtt tetttgaeat ttteecaget 540 tcaaagcgga gaacgggagt cagggattgg gcgaacttca acgtgttcgg ttacaaggta 600 attagattaa tgagagtggt gagtttttat gcagtgcaat tatgccacga tttcttgttq 660 720 tacctgactt gtcctccaaa acctggggca aacccctcc aactatctcc aaggaaaagg 780 gctagtaaac ggagacaaaa gaaagcactt gtggaggagt tgacgatagg atcccatttg 840 tcatcagata gtgtgaagtg gcatctcctc tggagagtgg cgtcagtgct cctaagagcc 900 acgttacttt ccccctgcct ctgccattct ccaaactgtt gaggactggc atttaaaatg 960 cacttagcgc aatctaaatt acagtttgca acttcacctg ctacattacc cagaatctct 1020 aattaggaat ctcctatcaa ctacaggcac attaatattc cacatgttac agtgtgctga 1080 tcaatgacca aggataattg gggggcaagc cttaagtctc cccatcttat tcattagaca 1140 cactgtggat teetcaaace accagateed taatgaagga gacetgtetg ttttcactgt 1200 aatttttcat tacttattac aggccatgat gattcaagtg gtaaacacac ctttcactac 1260 tcaagatata atccaagcct tatgtctatc tttaatatgc ttaataatag cctcagagtt 1320 gcctggagaa atgacttttc atggggggag ggctggaaga atctgacagc tttacataat 1380 ggtgtatact aaatgctatc aggacaaaca tttttaccat cttgcagtta ctacatataa 1440

tagacgaaac acagttcaga aaatattaat aagcatcttt cttttaaaga gtgatcaca	at 1500
gatgetette ttaaaagtte ttttagettg gagetgtaga gatggttgag tggttaag	ag 1560
cagtggctgc teteccaaaa gacettaggt teaettetea atgeceaeeg gcaaeteae	eg 1620
atagtetgta actecagtte caggggatte gagacecett caegtteaca ggcaceaa	ac 1680
acacacatgg tgcacagaca cacatgcagg caaaatgttc ttatacaaag attttaag	g 1740
cttttagata gctgattgac agcaaagtgt agagttttct tacctcaata tttaatta	a 1800
tccccaaagg tacattaggc tatcattaca tctcatataa acaaaaggtt aaagatcag	gt 1860
acattcaatt tggagtcttt ctgctgatga cttcgctttt tctgcactat cttgtgtg	a 1920
tatatgtatg tatatatata tatatata tatatatat	et 1980
agatattett ateagtagag ggeaceeteg agttgettea aateetgata teaaggaaa	aa 2040
aaaactgggg tggtggtggt gggggaggag aatcatcttt aaggtgtttt actgcacc	cc 2100
tgttgtaaaa tttgacaagc ttaagacatg tatgcctaac aattcacttt ttattacaq	gc 2160
gaagtgttca gctgctagag gaaaatgcta tttttttaa aaataaagta caaggtgg	t 2220
cctatttt	2228
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus</pre>	2228
<210> 94 <211> 2543 <212> DNA <213> Mus musculus <400> 94	
<210> 94 <211> 2543 <212> DNA <213> Mus musculus <400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga	ac 60
<210> 94 <211> 2543 <212> DNA <213> Mus musculus <400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctggaaaaaaaaaa	ac 60 et 120
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus <400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga aaataaatac tagcagttta attaaaacaa agtagtccaa catgtgcctc agaaataga aagttttaaa gcatatgtt ctgccaatgt accaacacaa gatggactta ataccaaaa</pre>	ac 60 at 120 aa 180
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus <400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga aaataaatac tagcagttta attaaaacaa agtagtccaa catgtgcctc agaaatagt aagttttaaa gcatatgtt ctgccaatgt accaacacaa gatggactta ataccaaaa gaaaaaaaa acagttcaac ctttttatta aaaaaaaaa aagaaaaaga aaaagaaat</pre>	ac 60 at 120 aa 180 ag 240
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus <400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga aaataaatac tagcagttta attaaaacaa agtagtccaa catgtgcctc agaaatagt aagttttaaa gcatatgtt ctgccaatgt accaacacaa gatggactta ataccaaaa gaaaaaaaa acagttcaac ctttttatta aaaaaaaaa aagaaaaaga aaaagaaat acagcaaaat ccctaaaaaa aggataatta actttcaat ggcgactata ttacatacgaaaaaaaaaa</pre>	ac 60 at 120 aa 180 ag 240 gt 300
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus </pre> <pre><400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga aaataaatac tagcagttta attaaaacaa agtagtccaa catgtgcctc agaaatagt aagttttaaa gcatatgttt ctgccaatgt accaacacaa gatggactta ataccaaaa gaaaaaaaa acagttcaac ctttttatta aaaaaaaaa aagaaaaaga aaaagaaat acagcaaaat ccctaaaaaa aggataatta acttttcaat ggcgactata ttacatacg ggacagtaat ttccaaagag gcacactaat gggggcacga agtctgctac aaaatagct</pre>	ac 60 at 120 aa 180 ag 240 gt 300 ag 360
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus </pre> <pre><400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga aaataaatac tagcagttta attaaaacaa agtagtccaa catgtgcctc agaaatagt aagttttaaa gcatatgttt ctgccaatgt accaacacaa gatggactta ataccaaaa gaaaaaaaa acagttcaac ctttttatta aaaaaaaaa aagaaaaaga aaaagaaat acagcaaaat ccctaaaaaa aggataatta acttttcaat ggcgactata ttacatacg ggacagtaat ttccaaagag gcacactaat gggggcacga agtctgctac aaaatagct agacaaaaca atgtacctca aaatgttttg caggactaca ctgtctttc cttcagaag agacaaaaca atgtacctca aaatgttttg caggactaca ctgtcttttc cttcagaag</pre>	ac 60 at 120 aa 180 ag 240 gt 300 ag 360 ag 420
<pre><210> 94 <211> 2543 <212> DNA <213> Mus musculus </pre> <pre><400> 94 acagaacaaa ctgcattaga atgcaaggca ataaagcaaa aaactagaaa catcctgga aaataaatac tagcagttta attaaaacaa agtagtccaa catgtgcctc agaaatagt aagttttaaa gcatatgttt ctgccaatgt accaacacaa gatggactta ataccaaaa gaaaaaaaa acagttcaac ctttttatta aaaaaaaaa aagaaaaaga aaaagaaat acagcaaaat ccctaaaaaa aggataatta acttttcaat ggcgactata ttacatacg ggacagtaat ttccaaagag gcacactaat gggggcacga agtctgctac aaaatagct</pre>	ac 60 at 120 aa 180 ag 240 at 300 ag 360 ag 420 ag 480

ctgatctgag gtcttatcag atcagtttta attggactga gtgtcacctt cagatttaat 600

gtcttcactq	gtcccattga	cctcattctt	agtgtcactt	teettegatt	Caggette	660
	tgettttete					
						720
cttcttttct	gccataaaag	aagacattga	ccatggaatt	tacagtgaaa	cacaacaaat	780
ctactactat	ttaaaacagg	aaacattgag	agcaaagaac	catttcccac	ggctgtgaga	840
cagtctgcag	agctcagtgc	tgtcagctgt	agattacaga	gggaaagggc	aagaagacca	900
aaaagaaaca	gaaaattctc	tcaaacctgc	tagagtcacc	ctataattga	caacttcagt	960
aaatttcatt	ctagataaag	accatccaaa	ggcaacaaga	aagacaaaag	acaaatacac	1020
aaaacggtta	acatgggtta	attaagttgc	aaggcaaaat	ggcacccaga	aatttaacat	1080
ttaaatgaca	cgtttattaa	aagaaaactt	atacatattt	aaatatccaa	gagggggcac	1140
acctagtaag	aaaatgagat	cttcaaaaaa	atctaaaaac	ccaaatttgt	gttttctgta	1200
atgaaatcta	agaggttttt	ttcctaaagg	aaaaaattaa	agctgagttt	ggaggaaaaa	1260
aaaggcagca	gtttccagct	ttccctagag	ttgcattaga	aaggtgaaaa	agcccatgtg	1320
aaggaaaagt	gtcgtctgcc	ttccagctgt	acattacatg	tacctctaca	aaaggattct	1380
gcaaaactat	taaacacacc	tttccataaa	agctattttc	cccttaaaac	taagaacaat	1440
tcattagttt	gacaaagtag	ctcataacag	gaagatgtct	gaagagaagc	actctccaga	1500
cagttgttac	agacacaaca	tcaaacacct	ggaaggagga	tgggagcaca	aaaaccagtg	1560
ctgtggactt	gcatctacag	aaaggaagga	gtgtgcatca	ggtccagcct	ttgtaaacca	1620
agcacagcac	tgtctaagtg	gttaaccata	gacttgcttc	ccagctgtct	gtccacctgt	1680
gggaactatg	ctctaactga	ccttgtggga	aagtcctccc	tttgagcctt	atgggcttct	1740
ccggtgcaca	ggtagcttca	atgaggaaga	gtcgtcttgt	tgctccgtag	aggactagta	1800
gtccaaaaat	cttatcttct	ggcctatgta	aatatggtag	atcttaatag	tcctaaggat	1860
atccatgtgt	gttggatttt	agagttaggg	attaaacaga	aactctctga	acagaatata	1920
gatacctatg	ggtagaaaat	tactccccct	ttgttgagtt	ccgttaggtg	cttctgttat	1980
gattacatca	cgtggagcag	tgaacagtct	tactcatctg	ccattattag	atgtttgtta	2040
gtacagatgc	ctgatgccca	caggccagaa	tgctatcttt	gtatattcag	aagtgtctag	2100
aacttcccta	agtcaataga	ctcatcattt	ctagaagtct	aaagtttacg	ttaatgctat	2160
aatggcaggc	ccaacataaa	taggcctgct	aagtttttc	agtatctagt	cttctctttt	2220

ccctagtctc accaggaaac	ttcagaattt	tactaaattc	aacttgtcac	aagtcagtaa	2280
tcaggacatg tttttgcttc a	aacacaaaat	tatacaaatg	ttgtctattt	aagtggcaag	2340
actggaaaag aacaattaat	aaaacagaaa	tatgtaatca	aaagcttcat	aatacatggg	2400
tgattgattt gatctgatgt a	aagagtcatc	aggtaactct	tcaaaactga	tctcacttaa	2460
aatataccaa agcctttcta	aacaaaacat	agtacaagag	gagacttcac	agaaacaatg	2520
tctgaattat aataagcaga (ggc				2543
<210> 95 <211> 2305 <212> DNA <213> Mus musculus					
<400> 95 acagacettt tgettttegt	tttctttgtt	tttttttt	tccatcctca	ccgtctcact	60
tcaccactgt gagaagacct	ctccaccctc	agagccccca	aagaagagag	agagaaagca	120
ggtgctgtct ctcttggccc	tctaccgggc	ttagttggtc	tctttggcag	cctgactctg	180
gatatgaact gagacccatc	tttgaactgg	acacgaacta	taaaccagtt	ctattctgtt	240
ctgtgctgtt ttgtttcttc	ttgatcaaaa	gccaagagaa	atgtttttgg	gaatgtggaa	300
ggccactctg gacatacaaa	gcttcctcag	gttcagtggc	tccgtctccc	ccatctctcc	360
ctgtcagcta tagcacttcg	cagatctctg	atagtctgat	ctttggggat	attgttgtga	420
atcatgggga cacttatctc	acagtgactc	gccatacgcc	agccatcttg	ggtcaacctc	480
ctatgtatct ttcctatgat	gctcctccga	ttgtcccact	gggaagtcac	ttcactggct	540
gaacatctga ctgctgctgc	cccagccact	gaatccagag	aatggtgggg	accccatgtc	600
cagctgatag atcatcatat	cacacaggct	ctggagtcta	gcagcttttc	accaacagag	660
aggegtteat tgeettttta	aggacgccgg	agtgggggat	cttcattctg	cttttagcat	720
gtggctgcct actactgttt (gccttacatt	cttgcctggc	ttcttctgga	atcttccctg	780
gttcttccgt acctttcccc	cacccaátct	tcagactaga	agtgaggcca	taaaccaaga	840
aactatgagg acatccaggc	tatctagctc	atttggaagg	agatggacat	tttctttccc	900
tgtgcaattt ttgtgagtct	tcagggtgtt	ccaacatata	tcctagaaga	tgaggtgcca	960
agaactgccc agcctctgac	tatagggcac	tctaccctgc	tgtgtgtcgc	tcaatctttg	1020

aaccttagat	ctttccttcc	acatgattgc	aagtgtccag	ttcggagaaa	aatgccaact	1080
cctccccac	tctccaggaa	tatcttgaac	ttttattttg	actctgagat	ctaggacaca	1140
acagaactct	gtccacagca	ataatccact	cagtactatg	ggatggatgg	gttagaagat	1200
gcgttactga	gcctgagact	ggtcagccag	ccactggaca	tgcgacctgc	ctcttgtagc	1260
ggtgccctgg	acaggttgac	actctggtgt	atgttacaag	acaaagtgct	gcatgtggtg	1320
aagtggtctg	cctggggctg	tgggatgtgc	tgctgttatg	aatttggagt	gaatggggga	1380
tacagatgct	ggttatccat	ctgtagctca	ttgcagtgag	cgtgatgaca	gggggcacgg	1440
ggattatctg	tgtagcatag	gcatgtgacc	tttgactaag	ctcttacccc	tgcactgtaa	1500
tgtgctgaaa	tgtctttgta	gacctgaagg	tgcacttaac	taaactgcct	actaaggaat	1560
gactctcatc	tggtccactt	cacactccct	tccaggtgtt	tgccctttca	ccccttctt	1620
aggtattgag	ccttgatagc	tcaagcccca	atgctaagac	ccgttttctc	tgtaaggaga	1680
agacttatga	tatactgata	gccatagccc	atctcttcca	acatgtaggg	ccctagttcc	1740
atagggtgcc	cttggaagga	tcaggtcatc	ctgtggctat	tagccatccc	agaatctctg	1800
aagtgcttaa	ctcacttcaa	gtgatctgaa	tcagagagac	caaagatatt	aattttctct	1860
gtcctcagat	ttctagaaga	cagactatgg	ccaggaaagg	ctttattttg	gtttgggctt	1920
tctctctctc	ctttctccat	ctgtacacat	cccctacctc	actccccact	tgagacctaa	1980
attttgaagc	tcaatgaccc	tgttcactgg	gagtgtgttt	gtgggttagt	ccagaatatc	2040
aggtccaaca	atttccccca	cactgtagtc	aatggacagt	cattttctct	aacacaaaac	2100
tgtgtggtgg	atttagattc	cactgaggtg	gaactggggt	tgccacagcc	ttgatcttct	2160
tgagactaga	cagaacaaga	gtggtggctg	agaaatacat	tttcctaagt	agaaatgagg	2220
tacaacccat	aaaggacttt	cttcacagtg	agcgtagcag	ttacgacttt	ttcaaattag	2280
agtctaaagg	aatcagtaaa	gaagt				2305
<210> 96 <211> 2771 <212> DNA <213> Mus n	nusculus					
<400> 96 gctctcttga	cagatgcacc	ttcccgttgc	ccctcgagtc	tcatgacatc	tcctgtttct	60

gctggggatt accatcttcc gttggaagaa ctgcttttag gatttcgtga gtgtgagcct 120

gtqqtqqtqa	attctggaga	actactttac	ctagaacaga	tetactaata	aaaattaaa	180
	tttttcattt					
						240
tccttcttcc	ttctcaggga	gagttcagct	ttcagccttg	tttttgcttc	ggaaagataa	300
caatgtatca	ttttcttgtg	tctttttta	cagtccccca	ccccaagtgg	gggttcagag	360
cctgggctca	gggcaaagca	ggcagtttaa	gctgcctttc	gtctcccgtg	ggtttttcca	420
gaaggtatcc	gggtgtggtt	tctttgtttc	aatcctgctt	gggcttgcag	atcttcccac	480
atctgtaagc	catgccttct	cttggattta	gaagttctta	atggttagtc	ctcaaacaca	540
gctccagcac	tttctccgtt	tecetettge	tgggctgcag	ttacacctgc	ccacgtggta	600
gggtgttccc	tggtaagcca	ccctcttctg	ttcccttata	tgctttagtt	ctgacctttg	660
cttgccgatc	cccagtcttt	agcccagaat	gctactacat	ctaaaacaat	gtttgttcag	720
gttccacaat	taagtcctta	actcattagg	ggctgatccc	acagctggtg	agatccaggt	780
ctgatttcat	tcgtttgtac	acagacatcc	aactttccca	gcggtttgtt	aaaaagccca	840
cccactaccg	atcttagcat	gtttgtgtgg	ttccttctag	actgtctgct	acattccaat	900
gtctgcatct	ctctctctct	ctctctctct	ctctctctct	ctctctct	ctctctctct	960
ctctctctct	ctctctgttt	ttttttcatg	ctaataccat	gctgtttgat	ggctagaact	1020
ttgtaccata	gtctaaagtc	aggagaaatg	tataatgata	tattctttgt	gctttctggg	1080
ggagctgttt	gggttgtatt	tgggtctgaa	gttgtggtga	gtccacacac	agttggggat	1140
tgtttcttct	agttctgtag	agtcccctgg	gcattgttat	ggggatcatt	gcattgaatt	1200
tgtagatcgc	agcggaccgt	gtgcatgttt	tagcagcact	gagtcttgta	gcctgcaaat	1260
gggctatttc	cctttcctcc	gtgggctgtt	ccacttctgc	ccacttgctt	tataattttt	1320
gttttacgat	cgttcacttc	tttaactaaa	cttgtttcta	attgctctac	tactgataga	1380
gcaattaaaa	atgattttta	ttcttttcag	ctaagtccct	attggcaggt	ggaagagcca	1440
ctgtcgggtc	gggtgtgtgt	cctgtggctt	tgctggggtt	tttagttgta	atcatcttga	1500
gtaacatctt	caagggattc	tgtatatatg	tgacacgctg	tcgtccttga	acactaacat	1560
catttctcat	cctttctggt	ctgggtctct	gcattactat	ctatctcgta	ggactttcac	1620
tgttgaaatg	agtaagtgtg	acctggagtg	agtgtgccct	ggagtaagtg	tgccctggag	1680
taagcgtaac	ctggagtcct	tgtcaggttc	tggctccctg	ccttctgcgc	agcagacacg	1740

ggctctgcgt	aaccgcagac	acggactttg	gaggccaagc	tcttactgtc	acaggcatat	1800
ttctccttgg	cctactttgt	gctgatgcca	caccccatca	aggcctcccc	agtatctacg	1860
agaccatcat	gtgggtttat	catctcttct	atagatgggg	tgcactgtat	ttgtcaattg	1920
gtatacgctt	agccatcctt	gtctgaaact	gtggaattac	taggagaaat	gtaaaggaaa	1980
tgtgtcaaga	cattagctca	atgtctcttt	gatggtgacc	ccccaaagc	atagcaaatg	2040
gacaaacggg	atcatgtcaa	actacgaagc	ctccgtactg	cagaggaaac	aaccaacagt	2100
gtgaaaagac	catcctgcaa	acagggagga	aatgccagcc	aatcacacat	ctgatgatta	2160
atagcagaac	atgtgggaaa	taaaatctct	ctctctctct	ctctctctct	ctctctttt	2220
tttttttggt	ttttcgagac	agagttattc	tgtgtagccc	tggctgtcct	gtaactcact	2280
ctatagatca	ggctggcctt	gaactcagaa	atctgcctgc	ctctgcctcc	caagtgctgg	2340
gattaagggt	gtgcaccacc	accacctggc	agaataaaat	atcttaattg	caataaaaac	2400
caatttgaaa	acaggcaata	gtaccaaatg	ggtgaccaac	aggtacctga	aaaaaaagt	2460
tcaatattag	ggaaacaaac	caaaactaaa	atgagctagc	ctcatgtact	ggctgtaagg	2520
cattttctta	attagtgatc	aaggtgggag	ggcccattgt	gagtggtgct	atccctgggc	2580
tggtagttgt	gggatttata	agaaagtaag	ctgaacaaac	caggggaagc	aagccagtaa	2640
'gcagcattcc	tccatggcct	ctgcatcagt	teetgeetee	aagatcctgc	cctgtgtgag	2700
ttcctgtcct	gacctccttt	ggtgatgaac	agcaatgtgg	aagtgtaagc	tgaataaacc	2760
ctttcctccc	С					2771
<210> 97 <211> 1629 <212> DNA <213> Mus m	usculus					
<400> 97	catataaaaa	tgaaaggaag	tatasassa	catacacaca		
						60
				atagtttcag		120
tggaactaac						180
aggtgtgcca						240
tctttaaaca	ccycarrygg	accetetet	Laaggcaagg	gctgggtggg	cggttggttg	300

tattgttgat	tettgteteg	ggggctgatt	ggtcattttg	tcattttgaa	aggtgtgctc	360
actcatacac	acaagcacac	accgtgtgtg	ggaatccaga	gtggcttggt	taagaggggt	420
tcttccagat	agtttgcttc	tgtttcaccc	tcagggattt	tactgacatt	tcttggctcc	480
ggagctttag	atctcaggag	tagtgtagat	tcccgagagc	agcagagtct	ttcaggccgc	540
agtagacctg	ttctctctaa	tctgtatgct	aatgggcata	atgttgaatt	gatgcccctt	600
aaaatgaaag	ctcgacctgt	gtctcactgt	ggtggcaggg	taaagggaga	tggcatttaa	660
tgcttctctt	gtgctgtttg	caagcctaat	accacacgtg	tgtgtgtgtg	tgtgtgtgtg	720
tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgat	ttgtattgta	tatacaaagc	780
caaactactc	ttttggtttc	tgtaaactgc	tatgaaactg	ttctgcattt	cagctttctt	840
gtgtattttg	taagaattgt	taaatggata	tttggcatct	gcttgactgc	agtaaatcag	900
gcggatgtaa	tgaacttaga	atgtctgtaa	gcaagtgttg	atgtcttcat	ggatggagga	960
agaaaattag	ctaatgatgt	ctagctaaat	gaatttgtaa	tttgtttttg	tagttaatcc	1020
actgaagagg	ttggaatagt	tgatccattc	ttcacccttg	aataatattc	tgttaacaga	1080
atatattcag	atttcttcag	tggctttgat	aaatctatgt	caaaattttt	cagataaacc	1140
cagaagctgc	tacttgaaag	gtgaaaaaga	ctgagttaga	aaatctttct	gacaggtttg	1200
agtgagacgg	gctgttacca	ggagcccatg	agtgatagtt	agatttatag	gttacțaaga	1260
atcaggtatt	ttctttatgc	tgagtacctg	acatgtctat	cagcagcacc	tctgattctt	1320
acaacaaaac	tttgtaatat	tcctgacggt	gccacagatt	atctggagaa	aaattacttg	1380
cctgaggaca	gaagacattg	cacatgtgtt	cctcacagaa	gctgctagaa	aagaaggagg	1440
cagcatgtct	gtctgtctgc	agtaaaggag	gcagcactcc	tcttccagcc	ctatgctgct	1500
gtacccctca	aatggtcccc	agtcaggtcc	taaggctaag	gtcatcatag	cgttcaatta	1560
aaacagggaa	aaaagggtgt	gtccctagaa	atccatctca	actttagatg	tgataaaagg	1620
aataaacgc						1629
<210> 98						

<210> 98

<211> 2277

<212> DNA

<213> Mus musculus

<400> 98

attititit cttititit ccttictic attititit ttaaaagatc cagccttaat 60

aaaaggttgt	attaaaagca	cctggctagc	atgtgttatg	caaaaaatag	cagagacaga	120
ctgactgtca	. atttgattgc	ctatttttat	aggaaggtaa	aaatctgaat	tactaaagaa	180
atttagataa	agtcctaaag	ctaatttgtg	ttaaatgttt	taaagatett	attacctgtg	240
agagatctgt	gcattgactt	tttgaagttt	acgtaaattt	aagagcagag	cttaaggtct	300
gtgccatagg	ttgaggtaat	gagcagcttg	agaggtttgt	acttttcttc	agtgttgtct	360
tctctgcttt	taaaacactc	agaaatatcc	ataccactgc	cagttcattt	taaagcatct	420
gtgagcaggg	tatttttga	aaggtatcat	tggtgtttac	cacaactgtt	gttagctctc	480
agaaatgatt	tttcttaagt	gtttaatctt	gttgaaatgc	aattaccttt	taatttggga	540
gttgtatcaa	aatctatttt	cttgttttgt	atataggtct	tgtaagtttt	tgtcattttt	600
tagcttttt	taatagttca	attacaatgc	cctaatgtga	agctgtgtgg	acatacatgt	660
gtttacaagg	gggattagtt	aatagtgaga	ttaacaggta	agtacaatgt	ccatagatag	720
aatttctctg	aacattttaa	aaatggaatc	aaaaaataca	tatacttgaa	atgaaactgg	780
agattttgta	ctaattttaa	tcctttatta	ccttttattt	tttcttttta	aaaaaatcag	840
ttggaaccct	ttgtttgctc	tccttatgtc	acacttcttg	cttggcctat	ttcactcata	900
agcgactttg	gatgcagaca	gtgtattagc	cttgcttgct	gctgctggtc	cattacttta	960
agtgttgtta	ggaaaaaata	aaatagcttt	ggtttgtcta	attttgcagt	gtctcctacc	1020
tgataacaca	tgaatgtata	gcagtaaaag	taaaaattac	aaaccttgtt	atttgtcaaa	1080
gcccttctgt	tgtctaggag	ccagtttcat	ttgaaaactg	gtttttaatg	tgtaaaagca	1140
atccaaagag	atgaaatttt	acagacacca	aaaaagagag	agagagacaa	acaagtcaga	1200
gagaagaaaa	aaggagttaa	acacgtgtag	ttcatataga	gaggcagtga	cagcttgagc	1260
ttgtcttgag	tcccagcgtc	gctcagtgct	gtgtagtcac	attccttgca	gctagtagtg	1320
agattccaca	aggtatttct	cctgacgtgg	cactttgaat	tcaatatact	gctttgaggg	1380
aaaggaaata	gatttgtaga	aaggattcct	tcagtgtaaa	tttacatgtg	tttatgtttt	1440
gtcagttttc	atcagcaaga	tgagcaagat	tctaagtgac	ttgccatagt	tgttgatcat	1500
gtcaggccat	ttcatgtctc	cttaacctat	aatcttaagc	agttaactac	aatttggaat	1560
ttacaaatag	catgtagctt	aaggtattat	tttaatttga	ttctcctatg	gagactgttg	1620
ctttagtttt	tactagttta	aagtcagttc	taaaaataaa	catggacgct	ttcatgaaca	1680

ttgtataata	ttttatagta	aagggggga	agttgtttaa	agggtaagac	tttatctttc	1740
cctgtgttga	cacgtgccaa	tagcctgagt	acattctgtt	tcatacaaca	agatgccact	1800
gcaagactct	tccactggag	tgctcatgtc	acttcagttt	tgctacccaa	gtggttgttg	1860
cagtgtctat	atcttgcaag	gtggccccaa	tattgtgttt	taagcttcag	cttcagttat	1920
tttaagagga	agtttatgct	ctgattcttc	actgagaatt	cagtattgag	attcttgcta	1980
ttacacagat	agactgattt	ctaaatttta	ttcatgaact	tcatttgcat	cccatagccc	2040
tctgtaaatg	tttcccccag	ttgtatgtac	ttactaaatg	catgcttttt	cattgtacat	2100
actagacatt	ttttgtgcta	aaatttatta	agtagggttt	ttgtagcaaa	gcattctatt	2160
tttatgttct	tatagtgtat	gtgttaacat	taatattcag	tttaaacact	ggtgtattta	2220
tttttagcaa	cttgactcct	agaagcctta	gactaatttt	taaataaaca	ttcaacc	2277
<210> 99 <211> 2518 <212> DNA <213> Mus to	musculus					
<400> 99 taagtatttg		agggaaaggt	accaagacct	tggagtettg	agcatcatct	60
taagtatttg	taatccctga					60 120
taagtatttg		agttaacatg	tctaaatgtg	tttgtccaca	gtgtgtgcta	
taagtatttg tagagcatca tatgtataga	taatccctga gtagctgaac	agttaacatg gtacttatgt	tctaaatgtg agagtatcta	tttgtccaca atatacattg	gtgtgtgcta	120
taagtatttg tagagcatca tatgtataga tgctgcagag	taatccctga gtagctgaac atgtttgtgt	agttaacatg gtacttatgt ggagaattgt	tctaaatgtg agagtatcta ctaggactac	tttgtccaca atatacattg ccttagcatt	gtgtgtgcta aatggtacct agctctgcca	120 180
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt	taatccctga gtagctgaac atgtttgtgt tttctgacat	agttaacatg gtacttatgt ggagaattgt actagtgttg	tctaaatgtg agagtatcta ctaggactac gctctagagc	tttgtccaca atatacattg ccttagcatt ttctggacat	gtgtgtgcta aatggtacct agctctgcca gcttatagat	120 180 240
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt aatcagatca	taatccctga gtagctgaac atgtttgtgt tttctgacat tacaggactc	agttaacatg gtacttatgt ggagaattgt actagtgttg tttaaagctg	tctaaatgtg agagtatcta ctaggactac gctctagagc tggactactc	tttgtccaca atatacattg ccttagcatt ttctggacat tgtctacatc	gtgtgtgcta aatggtacct agctctgcca gcttatagat atttatcttg	120 180 240 300
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt aatcagatca aaaaataact	taatccctga gtagctgaac atgtttgtgt tttctgacat tacaggactc caaaggcact	agttaacatg gtacttatgt ggagaattgt actagtgttg tttaaagctg tttgtgagtc	tctaaatgtg agagtatcta ctaggactac gctctagagc tggactactc agaatcccag	tttgtccaca atatacattg ccttagcatt ttctggacat tgtctacatc cctgccctag	gtgtgtgcta aatggtacct agctctgcca gcttatagat atttatcttg tgtaatgctg	120 180 240 300 360
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt aatcagatca aaaaataact tctacctttg	taatccctga gtagctgaac atgtttgtgt tttctgacat tacaggactc caaaggcact gaagcagtct	agttaacatg gtacttatgt ggagaattgt actagtgttg tttaaagctg tttgtgagtc aaaaatgtgt	totaaatgtg agagtatota ctaggactac gototagagc tggactactc agaatoccag cttccctgag	tttgtccaca atatacattg ccttagcatt ttctggacat tgtctacatc cctgccctag gcctctggaa	gtgtgtgcta aatggtacct agctctgcca gcttatagat atttatcttg tgtaatgctg ggatgctgca	120 180 240 300 360 420
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt aatcagatca aaaaataact tctacctttg ttctcagatc	taatccctga gtagctgaac atgtttgtgt tttctgacat tacaggactc caaaggcact gaagcagtct gggataggct	agttaacatg gtacttatgt ggagaattgt actagtgttg tttaaagctg tttgtgagtc aaaaatgtgt ctaagagtct	tctaaatgtg agagtatcta ctaggactac gctctagagc tggactactc agaatcccag cttccctgag ggcccatagt	tttgtccaca atatacattg ccttagcatt ttctggacat tgtctacatc cctgccctag gcctctggaa cagccccatt	gtgtgtgcta aatggtacct agctctgcca gcttatagat atttatcttg tgtaatgctg ggatgctgca tctcccacag	120 180 240 300 360 420 480
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt aatcagatca aaaaataact tctacctttg ttctcagatc	taatccctga gtagctgaac atgtttgtgt tttctgacat tacaggactc caaaggcact gaagcagtct gggataggct tgatgggact	agttaacatg gtacttatgt ggagaattgt actagtgttg tttaaagctg tttgtgagtc aaaaatgtgt ctaagagtct aaggtggtcc	totaaatgtg agagtatota ctaggactac gctctagagc tggactactc agaatcccag cttccctgag ggcccatagt attgaacagc	tttgtccaca atatacattg ccttagcatt ttctggacat tgtctacatc cctgccctag gcctctggaa cagccccatt tctgctaagc	gtgtgtgcta aatggtacct agctctgcca gcttatagat atttatcttg tgtaatgctg ggatgctgca tctcccacag ctgttgccca	120 180 240 300 360 420 480 540
taagtatttg tagagcatca tatgtataga tgctgcagag ctgttcctgt aatcagatca aaaaataact tctacctttg ttctcagatc tattgattcc gtacacggta	taatccctga gtagctgaac atgtttgtgt tttctgacat tacaggactc caaaggcact gaagcagtct gggataggct tgatgggact taagaaatgg	agttaacatg gtacttatgt ggagaattgt actagtgttg tttaaagctg tttgtgagtc aaaaatgtgt ctaagagtct aaggtggtcc ttgtcccttt	totaaatgtg agagtatcta ctaggactac gctctagagc tggactactc agaatcccag cttccctgag ggcccatagt attgaacagc cctttccatg	tttgtccaca atatacattg ccttagcatt ttctggacat tgtctacatc cctgccctag gcctctggaa cagccccatt tctgctaagc gtacttcatc	gtgtgtgcta aatggtacct agctctgcca gcttatagat atttatcttg tgtaatgctg ggatgctgca tctcccacag ctgttgccca ctgtccctcc	120 180 240 300 360 420 480 540

780

aaagcattat ttatcttaca ttaatacctt aaaggatggt tcttagtatt gaaaatatga

acaagacatc	aaaagacttt	gatgatagtc	ttgttgaaaa	actgaccatt	gaagtacccc	840
ttgtataaaa	tctgtgtgta	tcttgggctt	cacccctacc	cccacatgct	agcttctaaa	900
aagatttacc	aggaacccag	ttttaaaaat	tctacttaga	gtccttgttt	tattggtata	960
togttagcat	ttctgaaaat	gtttttctaa	aagtctatat	aatttatcta	actcttagta	1020
atgcctaatt	aagtcaactg	ttacttattt	atgtttccat	tattccaaag	gaaaccagca	1080
tgtagaagac	tcctctggtt	gaaatagctt	ataggttata	tgtaactttt	taaaattgtg	1140
cttagataga	gccattttct	catgcaacga	tcttgtatag	tgtgtaaggt	gctctgtgcc	1200
cctctgtttt	ttcccctcat	cctgaaggta	aggactattt	ccaaggcaaa	tgtagtgtaa	1260
gggaattggt	tctgaaagag	gaaaacttac	tggttttcaa	ggcccagcta	gggttgtgtt	1320
ctaatctcct	tgggaagttg	agagcaggaa	ggtacaaagg	ttcttcttcg	ccttctgccc	1380
ctttatcatg	taaagaacaa	ggatgaagga	ccatgctctg	aaataagaaa	agaccgtcct	1440
gaaatactca	tcatctgtct	tttttattag	aagtcaattt	tccattgtct	ttccaaataa	1500
gagagacctt	agaggaagtt	agctgaacat	ggaaatttaa	ttctttggct	tttttttct	1560
attaatcatc	agttcaacct	tgcttggcat	taagtttgtt	agttctgaac	acctaagtat	1620
ttgtggctta	gctattatgg	atacaagata	tttttcagac	cagcagccac	gttcctggtt	1680
ttggcagaaa	atgatagtgt	tgtagttcaa	gtagcagtgt	attttcccta	taaagctcac	1740
actagcaccg	aagcagaatc	atagcatcag	ttaaacatat	actgcagttc	aagaatgata	1800
atgcatcttg	gggtctgagg	catatcagct	cttgtttcag	agcatctgtg	ttactcagac	1860
agaaacagac	cagacagttt	tacaggctcc	agcacctctt	tcttaccttc	attcacccag	1920
gccaggcagc	tggtaaatta	gcagaagtct	cggcacccat	ttgacatccg	ttgtcatcat	1980
gccttccaga	ggactctatc	aagccacaaa	aactaatccc	tggcatatta	cagaggtact	2040
ttgtcactgc	acttcctttc	agactccatt	tcatccttca	tacttaacag	gactgatatc	2100
tgaggtcatt	ctcattctgt	atctatagtg	ggcatcttat	agcagttggc	tcattgcatg	2160
tggagagaat	gtcagtaaat	acttgaatct	gcatggcagt	ttgctgacgt	gtatgcaaga	2220
gcaaggagcg	aggaatgcag	caagttactt	gtacatacag	taggtttcct	taggtcttgt	2280
gggcacatcc	cttgtaattt	atatgtatat	ctgttgtact	gaagcatttg	gggaaatact	2340
tgtatagaaa	gtatgtatgt	catatgtcaa	aggaaatgct	ttctgtcccc	tgccaatgtt	2400

gtatttgtgg	gtatttatag	ttgtatgtat	gtatgtacat	caatgtgtag	attgtgtatc	2460
agtatatggt	atatgtatgt	tgaaattatt	tttgtctttt	agcaaccagt	ataatatg	2518
<210> 100 <211> 1950 <212> DNA <213> Mus						
<400> 100	aagacggaat	caatgaaagt	tcattccccc	aggagagaa	aatoogatoo	60
	agagetgtee					
						120
	ccgatgctgg					180
	ggacgcggag					240
ccgctcccgg	ggggagccgg	ccagcgcagc	ggccgccaag	aactcaagcc	caacgtgggg	300
gccgaggggg	ccgggctgga	cctgggcgag	cggttctggg	cgttccggcc	gccagtgggc	360
acgggcgccg	agagctggga	gcgtctgccc	gcaacctcac	agcctcaggc	gcggctcgcc	420
cctctccagg	cgctcagcat	ccctccgcgg	cctcgcgctc	gcttcagcgc	cctggccttg	480
gccggggtcc	ggagcaccga	ggcgtgtccc	tgaccgtccg	gctgcaggag	ccccgccagc	540
ctccgtgtgc	ctcagcgacg	cccggacgct	ccgctgccgc	gctccagcct	cctccgccgc	600
cctctggagg	agctagggta	acggcctcgg	aaccgcagtg	ccgcagcaca	cccgccgccg	660
gcctggcggg	cgagcgcgcc	actccctccg	cgccagtatc	cttccgccga	ctccccgccc	720
tacagagaat	ctacctctgg	attgtgggag	aagaaaaccg	ctgcaagagc	gegeteeege	780
gtgagcgcgc	ccccggccgg	cccgccgccg	cccagattct	ggcggagcgt	ggacgcgcgg	840
acgatgcagc	tgcggcgggg	gcccgcgtcg	agtccgcgcc	ccggacggat	gccagggtgt	900
agggggcgag	actgaggaac	cgggcaagac	tgaggaaccg	ggtctgtctg	cttgctcgct	960
catgtctaat	tatggtttct	ttcctcctgg	agcgccttct	ttcatgtgtg	aaggaaaagg	1020
aacgaaaccc	atctttttt	taaacacgag	gggtgcagac	atcctcttc	ggacactttg	1080
atttgctctg	ttaaacatgc	tttctcgccc	cctaaaaggc	ctaggaaagc	tgcagcaaga	1140
agcaaaagca	catcttgggg	ggatggaggt	tgtttttgtt	ttcccgtctt	ttcatatata	1200
tatgaaatat	ttatagatat	aatatatatt	tatataattt	atatattata	tatatatgaa	1260
atatttataa	gagtcgagaa	taaccaaagc	tgcctttcaa	catgggattt	cctgactgga	1320

gtttccatga	tgcaggcatt	attttttgac	ttcttggtca	ctgggaaaaa	aaatccaaat	1380
tgagagccac	aagagaaaat	atttagaaat	catccaagtt	gtgtgacaaa	catttgttaa	1440
aaatcattta	tcttatgtac	tagagggccc	atcaaaatät	gacagttcca	cagcaaatta	1500
aatgttattc	ttcctcatac	ccatagcatg	tccaggataa	gatggaatag	aaaacatctt	1560
tttccaaaca	caatatggta	ttgtgatatt	acaatgcatt	ttatgtttgc	acagtgctta	1620
caagtaccta	tcctctttga	ctactcatat	gtttaatgat	atctattttt	gtatgtttta	1680
tttttcattg	attgtatgaa	tttttgcctt	ggatgtatgt	ttcttcccca	cttatgtgcc	1740
tggttcctgt	ggaggtcaga	agagggcact	aggttccctg	gaacagaggt	tagaggcagc	1800
catgagccac	tggatgccag	gaatcaaacc	ctggtcctct	gcaccagcaa	ccagagctca	1860
taaccactga	gtcatctctc	catctctcat	aatttaaggt	aacagtaaac	atgttttatc	1920
atatactaaa	ttaaacacca	caatttcttc				1950
<210> 101						
<211> 3530 <212> DNA <213> Mus r	musculus					
<212> DNA <213> Mus r <400> 101		aagtgcccaa	agggagaaag	tccagaagct	atgatctccc	60
<212> DNA <213> Mus t <400> 101 gtgtggccac	tgcaggtgag	aagtgcccaa gtgcctgtgt				60 120
<212> DNA <213> Mus r <400> 101 gtgtggccac tcccttccct	tgcaggtgag gcttgctcaa		ggaagattgg	gtcaatcagc	tctcaccagc	
<212> DNA <213> Mus r <400> 101 gtgtggccac tcccttccct agcatgcaga	tgcaggtgag gcttgctcaa aatgcagcaa	gtgcctgtgt	ggaagattgg cccctgaaaa	gtcaatcagc tgatttagta	tctcaccagc ccgaacagct	120
<212> DNA <213> Mus r <400> 101 gtgtggccac tcccttccct agcatgcaga cctccacatt	tgcaggtgag gcttgctcaa aatgcagcaa ttcatacagt	gtgcctgtgt	ggaagattgg cccctgaaaa gtacatgccc	gtcaatcagc tgatttagta tccctagagc	tctcaccagc ccgaacagct tttggctcct	120 180
<212> DNA <213> Mus r <400> 101 gtgtggccac tcccttccct agcatgcaga cctccacatt gcctccccac	tgcaggtgag gcttgctcaa aatgcagcaa ttcatacagt atctcaggac	gtgcctgtgt gtctgtctgt catctcttgg	ggaagattgg cccctgaaaa gtacatgccc ggttgtttgg	gtcaatcagc tgatttagta tccctagagc cggtgagttc	tctcaccagc ccgaacagct tttggctcct tagtgagtca	120 180 240
<212> DNA <213> Mus r <400> 101 gtgtggccac tcccttccct agcatgcaga cctccacatt gcctccccac ttttttcctt	tgcaggtgag gcttgctcaa aatgcagcaa ttcatacagt atctcaggac tctttgacat	gtgcctgtgt gtctgtctgt catctcttgg ctatgtcaga	ggaagattgg cccctgaaaa gtacatgccc ggttgtttgg gcttctgtgt	gtcaatcagc tgatttagta tccctagagc cggtgagttc gtgctgctca	tctcaccagc ccgaacagct tttggctcct tagtgagtca gaggtggcct	120- 180 240
<212> DNA <213> Mus r <400> 101 gtgtggccac tcccttccct agcatgcaga cctccacatt gcctccccac ttttttcctt cgaagaagtt	tgcaggtgag gcttgctcaa aatgcagcaa ttcatacagt atctcaggac tctttgacat ctggctctgt	gtgcctgtgt gtctgtctgt catctcttgg ctatgtcaga gcctgaaaat	ggaagattgg cccctgaaaa gtacatgccc ggttgtttgg gcttctgtgt gagtggagcg	gtcaatcagc tgatttagta tccctagagc cggtgagttc gtgctgctca ggcaccttcc	tctcaccagc ccgaacagct tttggctcct tagtgagtca gaggtggcct tagtgggaag	120- 180 240 300 360
<212> DNA <213> Mus residence of the contract	tgcaggtgag gcttgctcaa aatgcagcaa ttcatacagt atctcaggac tctttgacat ctggctctgt	gtgcctgtgt gtctgtctgt catctcttgg ctatgtcaga gcctgaaaat gagtaaggca	ggaagattgg cccctgaaaa gtacatgccc ggttgtttgg gcttctgtgt gagtggagcg aacccaagga	gtcaatcagc tgatttagta tccctagagc cggtgagttc gtgctgctca ggcaccttcc actcttcatg	tctcaccagc ccgaacagct tttggctcct tagtgagtca gaggtggcct tagtgggaag gtcttggaag	120- 180 240 300 360 420
<212> DNA <213> Mus residence of the contract	tgcaggtgag gcttgctcaa aatgcagcaa ttcatacagt atctcaggac tctttgacat ctggctctgt ctttggcttt attcgttaaa	gtgcctgtgt gtctgtctgt catctcttgg ctatgtcaga gcctgaaaat gagtaaggca cccaaaagca	ggaagattgg cccctgaaaa gtacatgccc ggttgtttgg gcttctgtgt gagtggagcg aacccaagga tgactctggg	gtcaatcagc tgatttagta tccctagagc cggtgagttc gtgctgctca ggcaccttcc actcttcatg tttgaaaact	tctcaccagc ccgaacagct tttggctcct tagtgagtca gaggtggcct tagtgggaag gtcttggaag gcatttctt	120 180 240 300 360 420 480

gccagcgctg gttatgattg gcagctgatg attaggaatc tcgacactcg tatttcatgt 720

ctgagaagaa	caccatttcc	tgagagaaga	cgaacaggcc	tagtctaccg	ccggcgtagg	780
ttttgtcata	gatgggtccc	gagtcagcca	tgattttctt	tccttcatac	atcaccactc	840
tgatataacc	ggtctttggc	ctgtggctga	gacgccatct	gtatgcagtg	aaatctttcc	900
agccgatgtg	gcgagggtca	tgccacaggg	tgcgcacctg	gccaggggtg	tttcctgtgt	960
gccacagtgc	attccgcagg	tgctcgccag	ggccggtggt	ggagttcaca	acctttacag	1020
acaggcctga	gtatccctga	gcccttgtgg	ggttggtgtc	ccagtaggac	tgggtgactt	1080
gtctccacat	cacaacgtag	aagcggctgc	tggactggta	gccgaaaaca	aagccagcgt	1140
agtcatcatc	tctctcggtg	ttgatgaaga	aggtaccgct	gaagtccaca	gcattaaact	1200
catcataacc	tacagcaagt	ccagggtcac	agtttacagt	ctggacaagt	tetttgeeet	1260
gatggcggac	aacccagtta	gggtcatttt	gggaggttcc	tttgggatct	agaggaatca	1320
tctggaattg	tcggaaatcg	gtttcactga	tgtcaaaatt	ctcaggacag	atgtcatcaa	1380
tatctggcac	attgtcatgg	tcaaagtcgt	ctttgcaggc	gtcacctcgg	ccatcaccat	1440
cagagtcctt	ctggtcagga	ttgggcacca	gcctgcagtt	gtctctgtca	tcagggatgc	1500
cgtcattgtc	atcgtcatgg	tcacaggcat	ctcctttgcc	atctttatca	tggtcggcct	1560
ggttggcatt	aggcacatag	ggacagttgt	ccagattgtt	ctgatggcca	tcctcatcga	1620
tgtcctgatt	gttgtcacaa	gtgtccccta	tgaggtctga	gtcagagtcc	agctggtctg	1680
gattgtgttc	cagggggcag	ttgtcacact	gatctccaac	cccatccatg	tccgtgtccc	1740
tctggtccac	gttgtaaacg	tactggcagt	tgtctcgttc	attgaggatt	ccatctccat	1800
cgatgtccac	agcacaggca	tcgccctccc	cgtttttgtc	tgtgtctgct	tggtcagggt	1860
tgtggttgta	ggggcagttg	tcacagcggt	ctcccacatc	atctctgtca	tagtcatact	1920
gggctgggtt	gtaatggaat	ggacagttgt	ccctgtcatc	ggggatcttg	tcgttgtcat	1980
cgtcatcatc	gcaggcatcg	ccaatcccgt	ccttgtcata	gtcttcctgc	cccgagttgg	2040
gaaggttggg	gcagttgtcc	tttttgcagt	ggtaggttgc	gttggccaca	cacaccaggt	2100
tttcattagg	ccagccgtcc	aggtctgtgt	cctctccgca	gatgatgcca	ttgcctgcat	2160
agccgggctt	gcactcacag	cggtacatgg	ggtcactgta	gtgacccagg	tagttgcact	2220
tagcgttctt	gttgcagtca	tgcgtcccgt	ccgtgcaggg	gtttcgcggt	ttgcacacct	2280
gtttgttggc	catggcatgt	tcgacacctc	ggccgaaggg	ctgtgagcca	gtgaatcgtg	2340

gtgggcaggg	caggcagttg	tagccaggat	ctgtgttctt	gcaccgatgt	tctccgttgt	2400
gattgaagca	agcatcaggc	acttctttgc	actcatcgac	gtctttgcac	tggatgccat	2460
ttccactgta	gccaggagga	cacgcaccac	atttccagct	accatcaggg	tagctagtac	2520
acttggcacc	agcaaagcca	gggattggac	aggcatccat	caattgggca	gtcctgcttg	2580
ttgcaaactt	gatttttctg	tcacatcgcc	aacacagtct	ttgcctccaa	actggggtgt	2640
ggggttgtta	cagagtcggc	tgcgtctctg	cactcctcct	ccacaggtga	cagagcagat	2700
gtcccatggt	gaccagggac	cccagccctc	cattaattgg	gcaggcgtct	ttcttgcagg	2760
ctttggtctc	ccgggcttca	ccttcacagg	gcttcccgtt	catctggggg	ctgggggagt	2820
tgcagagccg	gatccttgtg	atcacaccgt	caccacaggt	cacagaacag	gacgaccatg	2880
gagaccagtg	actccagcca	ccatcctgtt	taaatctttt	gtcacactcc	tgaatgtggc	2940
aggtccttgt	ctgtaccgaa	gagccctcgc	atctgttgtt	gaggctgtca	caggaacgac	3000
cacgttgctg	aattccattg	ccacatgtgg	cagagcagga	ggtccactca	gaccagggag	3060
accagccatc	gtcagcagag	tcgctgggcc	agcaccgtgg	gcagcattca	ccatcaggaa	3120
ctgtggcgtt	ggagcagggc	atgataggac	aggacacctt	tttgcagatg	gtaaccgagt	3180
tctggcagtg	acactctgtg	caactgtcta	cagtccactc	ctcgttgttc	ttgtactgga	3240
ctccattgtg	aaagcagagg	ggaggccgct	tcagctcact	gaccagctct	ctgttctctt	3300
ccgtcacttt	tcggatgctg	tcctgcagag	tggtcacgat	ggtgcgcagg	cccttcagtt	3360 ⁻
ccaggaccat	gctggatagt	tcatcacagg	agaggccaca	gatagcttgg	aggtcctttg	3420
ttttgtggcc	gatgtagttg	gtgcggatag	cagggctgga	accgttcacc	acgttgttgt	3480
caagggtaag	aaggacgttg	gtagctgagc	tggagcagcc	tttgttcctg		3530
<210> 102 <211> 1857 <212> DNA <213> Mus m	usculus					
<400> 102 tatagtgatt	aattatcgat	ttttccatct	gctgaagatt	ttccgtqtta	tagctttaag	60
attaactttt					_	120
cgttaatcag						180
tctgggaaat						240
				- -	- - "	

gtactgactg	tccttttatt	gaagtttgcc	agcagtgtgc	acttttgccg	aagctgaaaa	300
gccttagatc	aatgtgttga	gcaatagctg	gtagaatatt	ttaataacat	acataaactt	360
aatggaagga	gagcaacaca	atgaaatata	aaccagtttt	tctcttgaaa	cttgcttgag	420
ttagttacaa	aatctgttga	ctagtaaaat	gcctggtgga	actatagcct	tatttatgca	480
ttggatatta	gaactataac	cttatttatg	catcagatat	tagaaactta	ataaaatttc	540
agtttgatac	tctcaaatta	tgggattttt	atttttgtaa	tttctaaatt	actatctaaa	600
caacaaaata	cacacttgag	ttaattagac	atttttcatg	cactgtttat	gaaggaaatc	660
acctcttcat	acaatgagtg	tcatgcttac	tctggaaatt	catgtcatgc	tagttggcac	720
cctgccttcc	ttcatgccca	gcattttaat	gtttgagaac	ttactgcaag	cattgtgata	780
gagtagaaaa	gaacctaaga	cgcactaaag	ggaggccagc	ctcagccagt	tttgtgacct	840
tgacagtcag	gtcacctgaa	tcaccacaca	gcctatggtg	tgaaatactg	aagagacatc	900
ctcctcgaat	cacttttaga	tagtatttcc	ttgtggccac	tatccacctc	catggctcca	960
tgtagtggtg	aaagatcagc	tgttgtctct	gccacagtgt	gttgcctctg	tggtaagatt	1020
gaaaggaact	gtgtgtacac	agaggaccat	tggtaagaag	gcagtgagtg	ggagcctatc	1080
tcagcggagg	cgtgggctga	cagtgatggg	ggcacagtga	ggctgcatat	caagggaact	1140
gtgaaattta	tatgtattta	tacgtatatg	tgtatatata	tttatctctc	tctcacatat	1200
atttatctct	ttctctctct	ctctctctct	ctctctct	ctctctcaca	cacacacaca	1260
cacacacaca	cacacacggt	tctgtgttca	tgcacactgg	aggaaggact	caaattttat	1320
tacagatggt	tgtgagccac	catgtggttg	aactcatcac	atctggaaga	acagaggaac	1380
agccagagtg	gtcttaactg	ctgagccatc	tctttagtgc	cccccccc	cccataactt	1440
tttaagtaaa	gagagtactg	gggaaggcga	gcagattggt	tgggagatat	acaggagccc	1500
gcatgggaaa	cagcagtggc	ttagatttga	gagagaccgc	cgggtgagag	gagaggtgag	1560
agtttaggga	gccatggtac	tgagtttgat	acagaattgg	agagaggata	gagagtgtaa	1620
gggtattgtt	ggtgttgcca	tcgttggatg	agttggaagg	agtgggtttt	acgggggact	1680
attatagtaa	aagagtaatg	atgaatttac	aagttctctt	ttgttcattt	taaattacga	1740
aggctgtgtt	ctgaacttta	ccattagagg	agccacacat	cttgaagaaa	tatttatatc	1800
ttagaggaag	agttgaagat	ttttagactg	ttggcaaatt	gaaaacagta	actgatg	1857

<210> 103 <211> 4304 <212> DNA <213> Mus musculus

<400> 103

tttttttttttttttttttttttaagactgca gataatcttg ttgagctcct cggaaaatac 60 aaggaagtcc gtgtttgtgc agagcgcttt atgagtaact gtatagacag tgtggctgct 120 tcactcatcc cagagggctg cagctgtcgg cccatgaagt ggctgcagtg cctcgtgaga 180 totgotttgt tttgtttgga gtgaagtott tgaaaggttt gagtgcaact atataggact 240 gtttttaaat aagtagtatt cctcatgaac tttctcattg ttaagctaca ggacccaaac 300 tctaccacta agatattatt aacctcaaaa tgtagtttat agaaggaatt tgcaaataga 360 atatccagtt cgtacttata tgcatcttca acaaagattc tctgtgactt gttggatttg 420 gttcctgaac agcccatttc tgtatttgag gttaggaggg cataatgagg catcctaaaa 480 gacaatctga tataaactgt atgctagatg tatgctggta ggggagaaag cattctgtaa 540 agacatgatt taagacttca gctctgtcaa ccagaaacct tgtaaatact tcctgtcttg 600 gtgcagcccc gcccctttga tcacacgatg ttgtcttgtg cttgtcagac actgtcagag 660 ctgctgttcg tccctctgca gatctcacct gtccccactg cacacccacc tcctgcctct 720 tgcagacctc agcatctagc tttagttgga aacagttcag ggttcaggtg acttcttaaa 780 aaaaaaaaaa aaaccctacc tcctcagaat gaggtaatga atagttattt atttaaagta 840 tgaagagtca ggagcgctcg aacatgaagg tgatttaaga tggttccttt cgtgtgtatt 900 gtagctgagc acttgttttt gtcctaaagg gcattataca tttaagcagt gattctgttt 960 aaagatgttt ttctttaaag gtgtagctca gagtatctgt tgttggaatt ggtgccagag 1020 tetgettaat agattteaga ateetaaget taagteagte geatgaagtt aagtagttat 1080 ggtaacactt tgctagccat gatataattc tactttttag gagtaggttt ggcaaaactg 1140 tatgccttca aagtgagttg gccacagctt tgtcacatgc acagatactc atctgaagag 1200 actgcccagc taagagggcg gaaggatacc cttttttcct acgattcgct tctttgtcca 1260 cgttggcatt gttagtacta gtttatcagc accttgacca gcagatgtca accaataagc 1320 tatttttaaa accatagcca gagatggaga ggtcactgtg agtagaaaca gcaggacgct 1380

tacaggagtg aaatggtgta gggaggctct agaaaaatat cttgacaatt tgccaaatga 1440 tettaetgtg cetteatgat geaataaaaa getaacattt tageagaaat cagtgattta 1500 cgaagagagt ggccagtctg gtttaactca gctgggataa tatttttaga gtqcaattta 1560 gactgcgaag ataaatgcac taaagagttt atagccaatt cacatttgaa aaataagaaa 1620 atggtaaatt ttcagtgaaa tattttttta aagcacataa tccctagtgt agccagaaat 1680 atttaccaca tagagcagct aggctgagat acagtccagt gacatttcta gagaaacctt 1740 ttctactccc acgggctcct caaagcatgg aaattttata caaaatgttt gacattttaa 1800 gatactgctg tagtttagtt ttgaaatagt atgtgctgag cagcaatcat gtactaactc 1860 agagagagaa aacaacaaca aattgtgcat ctgatttgtt ttcagagaaa tgctgccaac 1920 ttagatactg agttctcaga gcttcaagtg taaacttgcc tcccaagtcc tgtttgcaaa 1980 tgaagttggc tagtgctact gactgctcca gcacatgatg gaaggcaggg ggctgtctct 2040 gaagtgtctt ctataaaggg acaatagaat agtgagagac ctggtcagtg tgtgtcagct 2100 ggacactcca tgctatggga cttgcatctt ctgtcctcac catccccaag acattgtgct 2160 ttcctcagtt gtcctctagc tgtttcactc agacaccaag atgaattact gatgccagaa 2220 ggggccaaaa tggccagtgt gttttggggg ttgtatcagt tgactggaca ataactttaa 2280 tagtttcaga tcatttattt ttacttccat tttgacagac atttaaatgg aaatttagtc 2340 ctaacttttg tcatttgaaa ggaaaaatta acagttccta taagatactt ttgaggtgga 2400 atotgacato ctaatttttt ttottttcag tgggtttgca gcgagggtct tgtatgcact 2460 aggcaagggt totaccacta agccacattt cocaggaaat aaaatgttaa cagttaaaac 2520 atacacacaa atacacaaac accttattac cactttagta aagtgagaga tgtgcgtcct 2580 ttgtctcagt ctccacgatt tcagctgccc cttgtatgaa taactcagtc tcgctaaact 2640 gtttactttt atttacctgg tttgactagt tgcagctata taaccagttg tgcatgagga 2700 caacagccag tgtgtttgtt ttgtttttgg ttttttgtgg tacatttttt gtaaagaatt 2760 ctgtagattg aagtgctctt tgaaaacaga actgagatat atttattctt gttagcatca 2820 aaaaacattt tgtgcaaatg atttgctttt cctggcaggc tgagtaccat atccagcgcc 2880 cacaattgcg ggttcccatc taccatgtcc acaggggaga cagacgggaa gcacatgagg 2940 ggtgtgttta cagagttgta ggagttatgt agttctcttg ttgccttgga aatcactgtt 3000

gttttaagac	tgttgaaccc	gtgtgtttgg	ctgggctgtg	, agttacatga	agaaactgca	3060
aactagcata	tgcagacaaa	gctcacagac	taggcgtaaa	tggaggaaaa	tggaccaaaa	3120
taaggcaggg	tgacacataa	accttgggct	tcggagaaaa	ctaagggtgg	agatgaacta	3180
taatcacctg	aatacaatgt	aagagtgcaa	taagtgtgct	tattctaagc	tgtgaacttc	3240
ttttaaatca	ttcctttcta	atacatttat	gtatgttcca	ttgctgacta	aaaccagcta	3300
tgagaacata	tgccttttta	ttcatgttaa	ctaccagttt	aagtggctaa	ccttaatgtc	3360
ttatttatct	tcattttgta	ttagtttaca	taccaggtat	gtgtgtgtgc	tgtactcttc	3420
ttccctttat	ttgaaaacac	ttttcactgg	gtcatctcct	tggccattcc	acaacacaac	3480
tttggtttgg	ctttcaatgt	caccttattt	gatggcctgt	gtcccagtag	cagaatttat	3540
ggtattccca	ttgctggctg	ctcttccgac	cctttgcttc	tacagcactt	gtctctccta	3600
agatagtcag	aaactaactg	atcaggggat	ggacttcacc	attcatcgtg	tctcttcaat	3660
tctattaaat	agaccactct	tgggctttag	accaggaaaa	aggagacagc	tctagccatc	3720
taccaagcct	caccctaaaa	ggtcacccgt	acttcttggt	ctgaggacaa	gtctccactc	3780
cagtaaggga	gaggggagga	aatgcttcct	gtttgaaatg	cagtgaattc	ctatggctcc	3840
tgtttcacca	cccgcaccta	tggcaaccca	tatacattcc	tcttgtctgt	aactgccaaa	3900
ggttgggttt	atgtcacttc	agttccactc	aagcattgaa	aaggttctca	tggagtctgg	3960
ggtgtgccca	gtgaaaagat	ggggactttt	tcattatcca	cagacctctc	tatacctgct	4020
ttgcaaaaat	tataatggag	taactatttt	taaagcttat	ttttcaattc	ataagaaaaa	4080
gacatttatt	ttcaatcaaa	tggatgatgt	ctcttatccc	ttatccctca	atgtttgctt	4140
gaattttgtt	tgttccctat	acctactccc	taattcttta	gtteetteet	gctcaggtcc	4200
cttcatttgt	actttggagt	ttttctcatg	taaatttgta	taatggaaaa	tattgttcag	4260
tttggataga	aagcatggag	aaataaataa	aaaaagatag	ctgg		4304
<210> 104 <211> 3673 <212> DNA <213> Mus m	usculus					
<400> 104 tgcctcctgt	actaatgtgt	ttatggctat	ttcccacctt	ctcttctatg	caatttattg	60
tatatggctt	tatgttgaag	tccttcatcc	actttgactt	gaaaattgtg	cagggtgata	120

aaaatggatc	tgttttcttt	ttttctgcat	gcagacatca	gttaagtcag	tatcatttgt	180
tgaagatgtt	ttcatttgtc	cattgtatgg	ttttgtcttc	catgtcaaat	tcaagagtcc	240
ataagtgtgt	gggtttattt	tggggtcttc	aattttattt	cattgatcaa	catatctgtt	300
tctgaaacca	attccatgca	gtttttatca	ctatttctct	gtattacagt	gtgaggtcag	360
ggatgatgat	tgcttcacaa	gtttttattt	atttgtttgt	ttgtttttgt	ttgtttattt	420
tcgtttgttt	tgattagaat	tgtttgactc	tcctgtgagc	tttttttt	tttttttaat	480
ttccatgtga	agttgagaat	ggctctaaac	atttgtgttg	gagttttgct	gaggattgca	540
ttgaatctgt	ctcttgcttt	tggtaagcaa	tctactatgt	tccttctact	aatctaggag	600
catgggaggt	ctttccatat	tctgataact	ccttcaattt	ctttcttcaa	agacttgaag	660
ttatttgtca	tagagttctt	tcacttactt	ggttagagtt	acaccaatat	attttgtatt	720
acctgtggct	attgtgaagg	gtatcttttt	ccctaatttc	tttctctgcc	cctctatcat	780
ttgtataaag	gagtagaact	gttttctatg	atttaatttt	gtatctaaca	acgtcttgtg	840
agccattctt	gggctcagct	ccagtgcacc	agagtattcc	ttgctaaaga	tggcatttcc	900
agtgcttcct	gacttttagc	tttggagtta	gctccacact	actttgatct	cttctcaagc	960
ctttctttgg	ttttgttttt	agcagaactt	agttctttcc	atgtgcagat	ctgtctatat	1020
gtagcaaata	aaatcctgga	tggattattc	tttagttttt	agcagttgat	ttttgttttc	1080
ttttcatctt	aatttctttc	atgtaactct	gatccattat	ttttagaaac	tttgcaaaat	1140
actctatttt	gttcatttgc	aatcacaaat	tattgatatt	gcttataata	gtcagttgta	1200
ctgggaggag	aagcttacat	attaaaatat	actaaaatat	tttatcatta	aattttatca	1260
tacacaacac	acgtgcgtga	gcacgcacac	acacgcacac	acacacacac	acacacac	1320
acacacacac	acacacctat	tgaggtaaga	tgtcataatt	ttcttggtgt	tcactgtata	1380
ggcaggacta	gctttggctt	cttatcctcc	ttcaatcttc	tgagtagttg	gaactaaagg	1440
tgtgtacctc	caagccatgt	tatattgctt	caattttctt	tcccactgtt	actagtgaat	1500
agagactttg	ttgtccattt	cattctttaa	attttgagga	attaataagg	atttcctttt	1560
atttgaaaca	aattaattca	acagtttctc	atttttctta	gagaaaaaca	agcccttact	1620
gtctggcttc	tctgctggca	ccctatctcc	tcagcttctg	tctcccacac	aaatcctgtt	1680
gtagggaagt	agactttgta	tttcctgtga	tgcagtttaa	tctctcattt	tactcagatt	1740

ctttctgaat	atattccagt	ttagcagcco	acactaaaco	tggaatttat	gctttgactt	1800
cctcaccaga	gatgaaatgo	ctttaggaat	cagttcagga	a aacaacatto	tggtaggaag	1860
tgtgaaaagg	ttcatcaatt	tctaccaaaa	ı gagaatggaa	a gacatgctgg	g tgttgaccag	1920
ccttgtatca	tatgttcata	tgacttttca	aaaacagtat	tttctttttg	gttgttcttg	1980
tcttccctaa	gggagtccc	agaagatgag	ttatgtttgg	r ctattagcag	j ttcagaattc	2040
ataatattt	attagaatat	catctgaagt	aatttttgca	. caagtagtta	ı aagtaagtgc	2100
ttttataaga	ccagcgagca	ı tettgtgeag	gaatattaca	getetettee	: cacagattct	2160
attggcaatc	ttctgttttg	tgaggaaatg	catgatatat	taagcttttt	gtgagtttta	2220
aaaacctctt	atttcctact	tagcacattt	acatgatato	ataaaaagtg	gattttttt	2280
tctgatacat	gaattaccat	ttagatgtat	gcaaagctaa	ttaccacact	tccttcctgc	2340
agggatttgg	agtgtcaggg	tggagaatag	accattactg	agatttcttt	tcttttgttt	2400
tattttttac	atggctaaag	atgccggtct	aagaagatat	ttctatagtc	ctttttagga	2460
tacttctctt	gatagtatgt	tgcagttggc	tttgaagtaa	cttatcctga	ggaacaatct	2520
gtacagagcc	atggaagaca	tccctaattc	cctgaataga	agagaaagca	aacaaaggaa	2580
aacaaaactt	cttcaccctc	tgcttttcta	taaatttgtc	tttgttatta	gtccatcttt	2640
gtgattgtca	ggctatgaag	actgtgacta	tcatactgtt	gtttggcagc	aagtatctaa	2700
attataagaa	cagaaacaag	ggatatgcca	gactccaatg	tttgtagcca	gttatttctt	2760
ggcatttgtt	aaaatatatt	ttgcacatac	aagatccaaa	catactccca	tcaaaaccgt	2820
gcttgatgtc	atataagtct	gctaaatcct	aattactatg	ttttctaact	agattcatgt	2880
gcttattgtt	ccatccataa	gctttataat	aagtgttgtt	caaaacattg	ggttccatat	2940
gtgtatttgg	ttatgtactt	tgaccataca	aattacttca	acatttaaaa	caaatataca	3000
aataaataaa	acaaaatcta	cttacttcca	aacatgagat	ctgatatgtt	gtgattaata	3060
tccatagtat	ttttccattg	gaaagaattg	attttccctt	ctgcagcata	tataagtgac	3120
agttcacttg	ttaaccttta	cccacatggc	tagggtttga	ttctttgaaa	atataacaaa	3180
ataaaatata	agacaaaaca	aaaactatca	agtagaagtt	gggcaagaca	aaacaatagt	3240
agaaaaagag	cccaagagaa	accataaggg	tcagagtata	ttgattcata	tactcagtaa	3300
tctcataaga	ataataaatt	ggaaatgaaa	atatcaattc	agagaaccaa	gtgtggctct	3360

ttgaaagttc	taagcaccat	tcataagtct	ctttgagetg	atateagett	tgattatgtt	3420
gatgtatagg	gccttgtatt	attggcatcc	tacattttct	tgctactatt	atttgcctct	34800
actgttttt	gctgcctcct	cttccttgtg	gttcacttag	ctctgagagg	agggatttga	3540
tggagacatc	catttacaac	tgatagttcc	aagttctcta	attctctgtg	tgatggctgt	3600
ctacagatct	ctaaatttgt	tccaatctgc	tataggagga	agcttctctg	atgacagctg	3660
aacaagataa	acc					3673