Tommy Olney

10.12)

Determine all the points in $E_{11}(1,6)$, in other words find solutions (x,y) to the equation $y^2 = x^3 + x + 6 \pmod{11}$.

(2,4),(2,7),(3,5),(3,6),(5,2),(5,9),(7,2),(7,9),(8,3),(8,8),(10,2),(10,9)

10.13)

What are the negatives of the following points over \mathbb{Z}_{17} ? P=(5,8), Q=(3,0), and R=(0,6)

$$-P = (5,9)$$

$$-Q = (3,0)$$

$$-R = (0,11)$$

10.14)

 $E_{11}(1,6)$, point G=(2,7), compute multiples of G from 2G through 13G.

G	М	R
2	$\frac{3 * 2^2 + 1}{2 * 7} = 8$	(5,2)
3	$\frac{7-2}{2-5} = 2$ 7-3	(8,3)
4	${2-8} = 3$	(10,2)
5	$ \begin{array}{r} 7-2 \\ 2-10 \\ = 9 \end{array} $	(3,6)
6	$\begin{array}{r} 7-6\\ \hline 2-3\\ = 10 \end{array}$	(7,9)
7	$\frac{7-9}{2-7} = 7$	(7,2)
8	$ \frac{7-2}{2-7} \\ = 10 $	(3,5)
9	$\frac{7-5}{2-3} = 9$	(10,9)

10	7 – 9	(8,8)
	$ \begin{array}{r} 2 - 10 \\ = 3 \end{array} $	
11	$\frac{7-8}{2-8} = 2$	(5,9)
12	$\frac{7-9}{2-5} = 8$	(2,4)
13	$\frac{3 * 2^2 + 1}{2 * 7} = 8$	(5,2)

10.15)

a. (7,2)b. (8,3),(10,2)c. $P_m = C_2 - n_B \times C_1 = (10,2) - 7 \times (8,3) = (10,9)$

Commented [JA1]: Incorrect