Homework 6. Predicate Logic: PROLOG program. Resolution Proofs.

Rushikesh Khamkar

December 04, 2022

1. (Tableau Proof). Write a tableau proof for

$$((\forall x)(\phi(x) \land \psi(x))) \leftrightarrow ((\forall x\phi(x)) \land ((\forall x)\psi(x)))$$

2. Find the Prenex normal form of the following formula.

$$\forall x \exists y P(x, y) \lor \neg \exists x \forall y Q(x, y).$$

Solution:

Steps	Steps for Prenex Normal Form
a.	$\forall x \exists y P(x,y) \lor \neg \exists x \forall y Q(x,y)$
b.	$\forall u[\exists y P(u,y) \lor \neg \exists x \forall y Q(x,y)]$
c.	$\forall u \exists v [P(u,v) \lor \neg \exists x \forall y Q(x,y)]$
d.	$\forall u \exists v [P(u,v) \lor \forall x \neg \forall y Q(x,y)]$
e.	$\forall u \exists v [P(u,v) \lor \forall x \exists y \neg Q(x,y)]$
f.	$\forall u \exists v \forall w [P(u,v) \lor \exists y \neg Q(w,y)]$
g.	$\forall u \exists v \forall w \exists z [P(u,v) \vee \neg Q(w,z)]$

3. Find the Skolemization of the following sentence.

$$\forall x \forall y \forall z \exists w \varphi(x, w, y, z).$$

Solution:

Skolemization of the given $\forall x \forall y \forall z \exists w \varphi(x, w, y, z)$ sentence is $\forall x \forall y \forall z \varphi(x, d(x, y, z), y, z)$.

- 4. Let \mathcal{L} consist of the constant c, function symbol f/1 and the unary predicate R/1.
 - (a) What is the Herbrand universe for \mathcal{L} ?

Solution:

(b) Give infinitely many Herbrand structures for \mathcal{L} . When defining/inventing a relation on the Herbrand universe, you may use the enumeration methods. For example, one binary relation on the Herbrand universe could be $\{\}$ or $\{(c, f(c))\}$ or $\{(c, f(c)), (f(c), f(f(c))), \ldots\}$.

Sr.No.	Herbrand structures for \mathcal{L}
a.	$A = c, f(c), f(f(c)), \dots$
b.	$C^* = c$
c.	$fx^{}(c) = f(c)$
d.	$f^{(f^{(c)})} = f(f(c)),$

(c) Give a Herbrand model of $\forall x R(f(x))$.

Solution:

Sr.No.	Herbrand model of $\forall x R(f(x))$
a.	U(L): c, f(c), f(f(c)),
b.	$C^* = c$
c.	$R = \{c\}$
d.	$f^(x) = c$

5. Following the algorithm in the slides, list the major steps to find a most general unifier for the following expressions.

$${Q(h(x,y),w), Q(h(g(v),a), f(v)), Q(h(g(v),a), f(b))}.$$

The unify algorithm accepts term equations only. So, to unify the expressions above, the initial term equations are

$$Q(h(x,y),w) = Q(h(g(v),a), f(v))$$

(making the first two expressions identical) and

$$Q(h(g(v), a), f(v)) = Q(h(g(v), a), f(b))$$

(making the second expression and the third one identical and thus all expressions are identical and thus unified.)

Solution:

- (a) $D(S_0) = h(x, y), h(g(v), a), \sigma_0 = x/g(v),$ Next we obtain $S_0 = Q(h(g(v), y), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))$
- (b) $D(S_1) = h(g(v), y), h(g(v), a), \sigma_1 = y/a,$ Next we obtain $S_1 = Q(h(g(v), a), w), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))$
- (c) $D(S_2) = w, f(v), f(b), \sigma_2 = w/f(v),$ Next we obtain $S_2 = Q(h(g(v), a), f(b)), Q(h(g(v), a), f(v)), Q(h(g(v), a), f(b))$
- (d) $D(S_3) = f(v), f(v), f(b), \sigma_3 = v/b$, Next we obtain $S_3 = Q(h(g(b), a), f(b)), Q(h(g(v), a), f(b)), Q(h(g(v), a), f(b))$.
- (e) x/g(v), y/a, w/f(b), v/b = x/g(b), y/a, w/f(v), v/b.
- 6. State the Herbrand theorem.

- (a) Let $S = \varphi(x_1, ..., x_n)$ be a set of open formulas of a language \mathcal{L} .
- (b) Either,
 - i. S has an Herbrand model
 - ii. S is insatiable, and more specifically, there are a finite number of ground instances of S's constituent parts whose combination is insatiable. There are a limited number of ground instances of the negations of S formulae in which the disjunction is valid, which is equal to the latter case, (ii), (ii'). The disjunction is legitimate if and only if it is a truth-functional tautology (because these ground instances can be thought of as being constructed from propositional letters).
- 7. Find a resolvent for

$$\{P(x,y), P(y,z)\}, \{\neg P(u,f(u))\}$$

where x, y, z, u are variables.

Solution:

Resolvent for $\{P(x, y), P(y, z)\}, \{\neg P(u, f(u))\} = P(f(u), z).$

- 8. Translate the following formulas into a set S of clauses:
 - $\forall x \forall y (above(x, y) \land on(y, z) \rightarrow above(x, z))$
 - $\bullet \ \forall x \forall y (on(x,y) \rightarrow above(x,y))$
 - on(a,b)
 - on(b,c)

Write a resolution tree proof of clause $\{above(a,c)\}$ from S. Indicate the literals being resolved on and the substitutions being made to do the resolution. You may refer to Figure 35 of the textbook.

