O sistema de numeração é uma forma de representar quantidades por meio de símbolos ou dígitos. Existem vários sistemas de numeração, sendo os mais comuns o decimal, binário, octal e hexadecimal. Cada sistema de numeração utiliza um conjunto diferente de símbolos para representar quantidades.

- Os sistemas de numeração estão na base da matemática.
- Eles são responsáveis por estabelecer a relação entre valores e símbolos.
- Sem eles fica muito difícil realizar operações simples como adição ou divisão.

- Um sistema de numeração precisa definir:
 - Uma base numérica: base 10, base 2, base 16, base 134 etc.
 - Um conjunto de símbolos distintos (alfabeto),
 sendo um para cada valor da base: algarismos arábicos, alfabeto hexadecimal, {0,1} etc

- O sistema de numeração mais utilizado pelos humanos é o decimal (base 10, com os algarismos arábicos).
- Com o advento da computação digital, o sistema de numeração binário (ou simplesmente sistema binário) ganhou uma importância crucial, principalmente para os profissionais da área.

- Por que o sistema binário em detrimento do sistema decimal?
- Quando as máquinas (computadores)
 passaram a ser dispositivos elétricos, começou
 a ficar complicado representar 10 tipos
 diferentes de correntes elétricas.
- Era muito mais simples representar apenas: passagem de corrente (circuito fechado) ou não (circuito aberto).

- Cada valor é representado por combinação de símbolos 0 e 1, da esquerda para direita.
- Estes símbolos que compõem os números são chamados de bits.
- A cada 8 bits temos 1 byte.
- 1024 bytes equivalem a 1 Kilobyte (KB)
- 1024 KBs equivalem a 1 Megabyte (MB)
- 1024 MBs equivalem a 1 Gigabyte (GB)
- 1024 GBs equivalem a 1 Terabyte (TB)
- 1024 TBs equivalem a 1 Petabyte (PB)

- O sistema binário se adequa muito bem às máquinas digitais, permitindo um processamento bastante eficiente.
- Todas as operações matemáticas básicas presentes no sistema decimal podem ser facilmente adaptadas para o sistema binário.
- Entretanto, primeiro é necessário entender como converter valores entre os dois sistemas.

Conversão de decimal para binário

Para realizar a conversão de decimal para binário, realiza-se a divisão sucessiva por 2 (base do sistema binário). O resultado da conversão será dado pelo último quociente e o agrupamento (em ordem inversa) dos restos de divisão será o número binário.

Por exemplo, vamos converter o número 45 em binário:

Obs: A mesma regra de conversão também serve para outras bases, como octal e hexadecimal

$$45_{10} = 101101_2$$

Conversão de binário para decimal

Multiplicar cada bit pela potência de sua posição e somar os resultados. Por exemplo, vamos converter o número 45 em binário:

a conversão do número 1011, para decimal é feita da seguinte forma:

Obs: A mesma regra de conversão também serve para outras bases, como octal e hexadecimal

Conversão de octal para binário

A conversão de octal para binário é feita convertendo dígito a dígito de octal em binário. Cada digito é convertido para um grupo de 3 bits

Ex: converter o número 1754₈ para binário

Obs: A mesma regra de conversão também serve para hexadecimal. Cada 4 dígitos binários equivale a 1 Hexadecimal.

Conversão de binário para octal

Separa-se o número em grupo de 3 bits (a partir da direita) e converte cada grupo no octal correspondente.

Ex: converter o número 11001000, para octal

$$11001000_2 = 310_8$$

Obs: A mesma regra de conversão também serve para hexadecimal. Cada dígito Hexadecimal equivale a 4 binários.

Hexadecimal	Octal	Binário	Decimal
0	0	0	0
1	1	1	1
2	2	10	2
3	3	11	3
4	4	100	4
5	5	101	5
6	6	110	6
7	7	111	7
8	10	1000	8
9	11	1001	9
Α	12	1010	10
В	13	1011	11
С	14	1100	12
D	15	1101	13
E	16	1110	14
F	17	1111	15