Herstellung des Arduino Shield

Stückliste:

- 1x Leiterkarte Arduino Shield
- 2x MP2307 (360) Step-Down Converter 17mm x 11mm
- 2x Tantal-Elko SMD 100μF/16 V (Gehäusetyp D oder X)
- 2x Widerstand SMD Chip 0805-1206 6.8 k Ω
- 1x Widerstand SMD Chip 0805-1206 680 Ω
- 1x Widerstand SMD Chip 0805-1206 1.0 k Ω ±1%
- 1x Widerstand SMD Chip 0805-1206 1.5 k Ω ±1%
- 1x Widerstand SMD Chip 0805-1206 4.7 k $\Omega \pm 1\%$
- 1x LED (rot/orange/gelb/grün) SMD Chip
- 1x Taster/Mikroschalter RM 5.08, z.B. DAOKAI
- 2x JST-Buchse 6-polig
- 4x JST-Buchse 5-polig
- 2x JST-Buchse 3-polig
- 1x JST-Buchse 2-polig
- 4x Stiftleiste RM 2.54 10-/8-/8-/6-polig
- versilberter Kupferdraht 0.6 mm

Bestückungsplan:

Bei der Bestückung der Elkos auf die Polarität achten (Markierung auf Gehäuse = +)

Bei der Bestückung der LED auf die Polarität achten (aus Datenblatt entnehmen)

Die beiden Converter mittels jeweils 4 kurzer Silberdrähte verlöten.

Der Reset-Taster (links unten) bleibt unbestückt, falls die Regeln einen weiteren Taster verbieten.

Den Start-Stop-Taster (links oben) entsprechend seinen Anschlüssen montieren (gewöhnlich untere Reihe)

Bestückte Leiterkarte:

Die mittleren Anschlüsse der I2C-Buchsen sind standardmäßig nicht kontaktiert. Sie können jedoch nach Bedarf mit einem Digital-Pin des Arduino über eine dünne Leitung verbunden werden.

Für den Farbsensor V2 ist eine der Buchsen z.B. mit D13 des Arduino zu verbinden:

Kalibrierung:

Die beiden Spannungs-Converter sind mit Hilfe der Potentiometer auf die erforderlichen Ausgangsspannungen einzustellen. Das muss unbedingt vor der ersten Verbindung mit dem Arduino Zero oder anderen Komponenten geschehen, sonst werden diese zerstört!

- Schließe eine Spannung von ca. 12 V an die 2-polige Buchse an, z.B. von einem Labor-Netzteil oder vom Akku-Schutz-Modul.

- Miss mit einem Voltmeter die Ausgangsspannung des 3.3V Converters am Elko oder an der unteren Stiftleiste (3V3 und GND) oder an einer I2C-Buchse (zwischen den beiden oberen Stiften). Stelle das Potentiometer so ein, dass eine Spannung von 3.3 bis 3.4 Volt entsteht.
- Miss mit einem Voltmeter die Ausgangsspannung des 5.5V Converters am Elko oder an einer Servo-Buchse (zwischen den beiden linken Stiften). Stelle das Potentiometer so ein, dass eine Spannung von 5.4 bis 5.6 Volt entsteht.
- Sichere am besten die Poti-Einstellungen mit einem Lacktropfen (danach nicht mehr verstellbar).

Vorsichtshalber sollte noch die Spannung am Arduino-Pin A0 (rechts unten) überprüft werden. Sie muss etwa 1.5V bis 1.7V betragen

Verbindung mit dem Arduino Zero:

Das Shield kann direkt auf ein Arduino Zero Board gesteckt werden. Es empfiehlt sich, die mitgelieferte transparente Trägerplatte des Zero zu verwenden und an der Seite der USB-Buchsen mit einem Lego-Rahmen 88 mm x 56 mm zu verschrauben (2x M3):

Technische Daten:

Controller-Baustein	Arduino Zero
Versorgungsspannung	8 - 16 V
Stromaufnahme	Leerlauf: 32 mA @ 12 V
Spannungswandler	Verlustarmer Step-Down-Wandler MP1584, eingestellte Ausgangsspannung: 3.3V (-0/+0.1V), max. 1.5 A Ruhestrom @ 12 V: 2 × 9 mA
Interne Kapazität an 3.3 V	100 μF
I2C-Bus	Master-Funktion Pullup-Widerstände zu SDA, SCL: 4 kΩ Clock-Frequenz: 100 kHz 4 x Onboard-Anschlüsse JST-Buchse 5-polig (GND, 3.3V, DIO, SDA, SCL) (DIO nur optional verbunden)
Universal-ADC/DIO-Anschlüsse	2 x JST-Buchse 6-polig (2 x ADC, GND, 3.3V, 2 x DIO) 1. Anschluss: Ports A3, A4, D3, D2 2. Anschluss: Ports A1, A2, D5, D4 (A1-A4 alternativ D15-D18 per Software)
ADC / Referenzspannung	10 bit / 2.23 V
Servomotor-Anschlüsse	2 x JST-Buchse 3-polig (GND, 5V, DIO) eingestellte Versorgungsspg.: 5.5V (±0.2V), max. 1.5 A Ports: D8 / D9
Unterstützende Bibliotheken	anadigMaster: Battery, Button, Led, ServoMotor
Zusatz-Komponenten	LED orange (Port D6, 2 mA): Warten nach Booten

	Taster rot (Port D7): Start/Stop Reset-Taster optional Spannungsteiler 7.2:1 für 12V-Messung mit ADC A0
Bluetooth/WiFi	nicht verfügbar
Größe	80 mm x 58 mm
Höhe	32 mm
Masse	60 g
Befestigungslöcher	2 x 3 mm Ø, Abstand 48 mm (6 Lego-Löcher)

Belegung der Arduino-Zero-Anschlüsse:

DIO = digital input/output; nc = not connected

obere linke Reihe:

SCL	SDA	Aref	GND	D13	D12	D11	D10	D9	D8
I2C	I2C	nc	GND	I2C-Buchse (optional)	(optional zu verdrahten)	(optional zu verdrahten)	(optional zu verdrahten)	Servo links	Servo rechts

obere rechte Reihe:

D7	D6	D5	D4	D3	D2	TX	RX
Taster	LED	DIO links	DIO links	DIO rechts	DIO rechts	nc	nc

untere linke Reihe:

ATN	IOref	Reset	3V3	5V	GND	GND	Vin
nc	nc	R-Taster (optional)	3V3	nc	GND	GND	nc

untere rechte Reihe:

A0	A1	A2	A3	A4	A5
12V-	ADC	ADC	ADC	ADC	nc
Messung	links	links	rechts	rechts	

Belegung der JST-Buchsen: (Blick auf Buchse)

ADC-DIO-Universal (6-polig):

Kerbe	_					_
Stift	•	•	•	•	•	•
#	1	2	3	4	5	6
Funktion	ADC (oder DIO)	ADC (oder DIO)	GND	3V3	DIO	DIO
Port 1 (rechts)	A3 (D17)	A4 (D18)	GND	3V3	D3	D2
Port 2 (links)	A1 (D15)	A2 (D16)	GND	3V3	D5	D4

I2C-Bus (5-polig):

Kerbe	—				_
Stift	•	•	•	•	•
#	1	2	3	4	5
Funktion	GND	3V3	(DIO)	SDA	SCL

optional

Servo (3-polig):
Kerhe	_

Kerbe	_		_
Stift	•	•	•
#	1	2	3
Funktion	GND	5V5	D8 / D9
Kabel	br	rt	or

12 V (2-polig):

•	•		
1	2		
_	+		
SW	rt		