ENGG104 Tutorial 10 Class Questions

Team Name: _____

Question 1 - [past exam question]

$$e_{\text{in}} = 60 \sin(377t + 45^{\circ})$$

 $v_b = 20 \sin(377t - 45^{\circ})$

In the above circuit, e_{in} and v_{b} are given, determine the expression for v_{a} .

QUESTION 2 - [past exam question]

For the circuit above, find $Z_T, X_L, X_C, I, V_R, V_L, V_C$, Power delivered to the 4 Ohms resistor, and the power factor F_p

QUESTION 3 - [past exam question]

For the circuit above,find $\mathbf{Z}_{\text{T}}\text{, }V_{\text{1}}\text{,}I_{\text{1}}\text{,}\text{and }I_{\text{s}}$

$$Z1 = 2 Ω - j2 Ω = 2.828 Ω ∠-45°
Z2 = 3 Ω - j9 Ω + j6 Ω
= 3 Ω - j3 Ω = 4.243 Ω ∠-45°
Z3 = 10 Ω ∠0°$$

$$\mathbf{Y}_{T} = \frac{1}{\mathbf{Z}_{1}} + \frac{1}{\mathbf{Z}_{2}} + \frac{1}{\mathbf{Z}_{3}} = \frac{1}{2.828 \,\Omega \,\angle - 45^{\circ}} + \frac{1}{4.243 \,\Omega \,\angle - 45^{\circ}} + \frac{1}{10 \,\Omega \,\angle 0^{\circ}}$$

$$= 0.354 \,\mathrm{S} \,\angle 45^{\circ} + 0.236 \,\mathrm{S} \,\angle 45^{\circ} + 0.1 \,\mathrm{S} \,\angle 0^{\circ} = 0.59 \,\mathrm{S} \,\angle 45^{\circ} + 0.1 \,\mathrm{S} \,\angle 0^{\circ}$$

$$= 0.417 \,\mathrm{S} + j0.417 \,\mathrm{S} + 0.1 \,\mathrm{S}$$

$$\mathbf{Y}_{T} = 0.517 \,\mathrm{S} + j \,0.417 \,\mathrm{S} = \mathbf{0.66} \,\mathrm{S} \,\angle \mathbf{38.89^{\circ}}$$

$$\mathbf{Z}_{T} = \frac{1}{\mathbf{Y}_{T}} = \frac{1}{0.66 \,\mathrm{S} \,\angle \mathbf{38.89^{\circ}}} = \mathbf{1.52} \,\Omega \,\angle -\mathbf{38.89^{\circ}}$$

b.
$$V_1 = \frac{(2 \Omega \angle 0^{\circ})(60 \text{ V} \angle 0^{\circ})}{2 \Omega - j2 \Omega} = \frac{120 \text{ V} \angle 0^{\circ}}{2.828 \angle -45^{\circ}} = 42.43 \text{ V} \angle 45^{\circ}$$

c.
$$\mathbf{I}_{1} = \frac{\mathbf{E}}{\mathbf{Z}'} = \frac{60 \text{ V } \angle 0^{\circ}}{3 \Omega - j9 \Omega + j6 \Omega} = \frac{60 \text{ V } \angle 0^{\circ}}{3 \Omega - j3 \Omega} = \frac{60 \text{ V } \angle 0^{\circ}}{4.243 \angle -45^{\circ}}$$
$$= \mathbf{14.14 \ A \angle 45^{\circ}}$$

d.
$$\mathbf{I}_s = \frac{\mathbf{E}}{\mathbf{Z}_T} = \frac{60 \text{ V } \angle 0^{\circ}}{1.52 \Omega \angle -38.89^{\circ}} = \mathbf{39.47 \text{ A } \angle 38.89^{\circ}}$$