We shall show that the cubic given by the equation $C = y^2z - x^3 - x^2z$ is birationally equivalent to the projective line L = x - 2z. The rational map f will be given by projection from the point (0,0,1) on C and will be defined on $C \setminus \{(0,0,1)\}$ and $L \setminus \{(2,2,1),(2,-2,1)\}$.

We shall show that this map, which is explicitly given by $(a, b, c) \mapsto (2a, 2b, a)$, induces an isomorphism on the rings $f^* : \mathcal{O}_L(\mathfrak{D}(y^2 - 4z^2)) \to \mathcal{O}_C(\mathfrak{D}(y^2 - x^2))$.

Note that $\mathcal{O}_L(\mathfrak{D}(y^2-4z^2))=(k[x,y,z]/(x-2z))_{\mathfrak{D}(y^2-4z^2),0}$ (i.e., you are allowed to \mathfrak{D} ivide by the element y^2-4z^2) and $\mathcal{O}_C(\mathfrak{D}(y^2-x^2))=(k[x,y,z]/(y^2z-x^3-x^2z))_{\mathfrak{D}(y^2-x^2),0}$. Also note that in \mathcal{O}_L , we have 2z=x and so $y^2-4z^2=y^2-x^2$. Then note $f^*(x)=2x$, $f^*(y)=2y$ and $f^*(z)=x$. Then note that f^* is surjective since $z=x^3/(y^2-x^2)$ in \mathcal{O}_C and so $f^*\left(\frac{x^3}{2y^2-2x^2}\right)=z$.

The inverse map is given by $(f^*)^{-1}(x) = x/2$, $(f^*)^{-1}(y) = y/2$, and $(f^*)^{-1}(z) = x^3/(2y^2 - 2x^2) = (x^3)/(2(y^2 - 4z^2))$.

Technically, we should only be looking at degree-0 stuff but showing that this stuff works for degree-1 stuff gets us that.