

Grundzüge der Informatik 1

Vorlesung 4

Überblick

Überblick

- Wiederholung O-Notation
- Ω-Notation
- Θ-Notation
- o-Notation
- ω-Notation
- Korrektheitsbeweise (Anfang)
- Mathematische Induktion
- Schleifeninvarianten

Wiederholung

Grundideen (asymptotische Analyse)

- Ignoriere konstante Faktoren
- Betrachte das Verhältnis von Laufzeiten für n→∞
- Klassifizieren Laufzeiten durch Angabe von "einfachen Vergleichsfunktionen"

O-Notation

- Lässt Konstanten und Terme niederer Ordnung weg
- Beschreibt Menge von Funktionen, die höchstens genau so schnell wachsen wie die Vergleichsfunktion
- Kann genutzt werden, um obere Schranken für die Laufzeit anzugeben

Definition 4.1 (O-Notation)

O(g(n)) = {f(n) : Es gibt positive Konstanten c und n₀, so dass für alle n≥n₀ gilt: 0 ≤ f(n) ≤ c ⋅ g(n)}

Wiederholung

Ω -Notation

- Lässt Konstanten und Terme niederer Ordnung weg
- Beschreibt Menge von Funktionen, die mindestens genau so schnell wachsen wie die Vergleichsfunktion
- Kann genutzt werden, um untere Schranken für die Laufzeit anzugeben

Definition 4.2 (Ω -Notation)

Ω(g(n)) = {f(n) : Es gibt positive Konstanten c und n₀, so dass für alle n≥n₀ gilt: 0 ≤ c) · g(n) ≤ f(n)}

Satz 4.1

• $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$

Beweis

- "⇒":
- Annahme: Es gilt f(n)∈O(g(n))
- Z.z.: $g(n) \in \Omega(f(n))$
- Da laut Annahme f(n)∈O(g(n)) gilt, gibt es pos. Konstanten c' und n₀, so dass für alle n≥n₀ gilt: 0 ≤ f(n) ≤ c' ⋅ g(n)
- Damit gilt auch 0 ≤ 1/c' f(n) ≤ g(n) für alle n≥n₀
- Es folgt ebenso für alle $n \ge n_0$: $0 \le c$ f(n) $\le g(n)$, wobei c=1/c'>0 ist
- Somit gilt $g(n) \in \Omega(f(n))$

Satz 4.1

• $f(n) \in O(g(n)) \Leftrightarrow g(n) \in \Omega(f(n))$

Beweis

- "**—"**:
- Annahme: Es gilt $g(n) \in \Omega(f(n))$
- $Z.z.: f(n) \in O(g(n))$
- Da laut Annahme g(n)∈Ω(f(n)) gilt, gibt es pos. Konstanten c' und n₀, so dass für alle n≥n₀ gilt: 0 ≤ c' · f(n) ≤ g(n)
- Damit gilt auch 0 ≤ f(n) ≤ 1/c' g(n) für alle n≥n₀
- Es folgt ebenso für alle n≥n₀: 0 ≤ f(n) ≤ c g(n), wobei c=1/c'>0 ist
- Somit gilt auch f(n)∈O(g(n))

Beispiele Ω -Notation

- 0.1n ist in Ω(n)
- 1000n ∉Ω(n²)
- $\Omega(1000n) = \Omega(n)$

Beweisskizze

- Ähnlich wie bei der O-Notation
- Man kann die ersten beiden Aussagen wegen unseres Satzes auch in O-Notation umwandeln:
- 0.1n ist in $\Omega(n)$ ist äquivalent zu n ist in O(0.1n)
- 1000n∉Ω(n²) ist äquivalent zu n²∉O(1000n)

Satz 4.2

• Die Worst-Case Laufzeit von Algorithmus InsertionSort ist in $\Omega(n^2)$.

Beweis

- Wir wissen, dass die Worst Case Laufzeit von InsertionSort T(n)= (3n²+7n-8)/2 ist
- Z.z.: Es gibt positive Konstanten c und n₀, so dass für alle n≥n₀ gilt: 0 ≤ c · n² ≤ (3n²+7n-8)/2
- Mit c=1 und n_0 =1 gilt:
- $(3n^2+7n-8)/2 = (2n^2 + n^2+7n -8)/2 \ge 2n^2/2 = n^2$
- Damit ist $(3n^2+7n-8)/2 \sin \Omega(n^2)$

Satz 4.2

• Die Worst-Case Laufzeit von Algorithmus InsertionSort ist in $\Omega(n^2)$.

Bedeutung

- Für jedes hinreichend große n ist die Worst-Case Laufzeit ungefähr n²
- D.h. es gibt für jedes hinreichend große n eine Eingabe der Größe n mit ungefähr dieser Laufzeit

Definition 4.3 (⊕-Notation)

• $f(n) \in \Theta(g(n)) \Leftrightarrow f(n) \in O(g(n))$ und $f(n) \in \Omega(g(n))$

Interpretation

- $f(n) \in \Theta(g(n))$ bedeutet, dass f(n) genauso stark wächst wie g(n) für $n \rightarrow \infty$
- Dabei ignorieren wir beim Wachstum konstante Faktoren
- Die Θ-Notation liefert eine obere und untere Schranke
- Die Funktionen f(n) und g(n) müssen asymptotisch nicht-negativ sein (für n groß genug, sind die Funktionen nicht-negativ)

Korollar 4.1

• Die Worst-Case Laufzeit von Algorithmus InsertionSort ist in $\Theta(n^2)$.

Interpretation des Resultats

- Für jedes hinreichend große n ist die Laufzeit jeder Eingabe höchstens n²
- Für jedes hinreichend große n ist die Laufzeit mindestens einer Eingabe der Größe n mindestens n²
- In den Aussagen ignoriere ich multiplikative Konstanten

Worst-Case Laufzeitanalyse mit ⊕-Notation

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad max = 1$
- 2. **for** i=2 **to** n **do**
- 3. **if** A[i] > A[max] **then** max = i
- 4. return max

Definition 4.4 (o-Notation)

o(g(n)) = {f(n) : Für jede Konstante c>0 gibt es eine Konstante n₀>0, so dass für alle n≥n₀ gilt: 0 ≤ f(n) ≤ c ⋅ g(n)}

Interpretation

- f(n)∈o(g(n)) bedeutet, dass f(n) weniger stark w\u00e4chst als g(n) f\u00fcr n→∞
- Dabei ignorieren wir beim Wachstum konstante Faktoren
- Die Funktionen f(n) und g(n) müssen asymptotisch nicht-negativ sein (für n groß genug, sind die Funktionen nicht-negativ)

Beispiel

n∈o(n²)

Beweis

- Z.z.: Für jedes c>0 gibt es n₀>0, so dass für alle n≥n₀ gilt: 0 ≤ n ≤ c · n²
- Sei also c>0 beliebig
- Wir wählen $n_0 = 1/c$
- Dann gilt n ≥ 1/c und somit cn≥1
- Damit folgt: $0 \le n \le cn \ n = c \ n^2$
- Da wir somit für jedes beliebige c>0 ein n₀ >0 gefunden haben, so dass für alle n≥n₀ gilt: 0 ≤ n ≤ c · n², folgt, dass n∈o(n²)

Definition 4.5 (ω-Notation)

• $f(n) \in \omega(g(n)) \Leftrightarrow g(n) \in o(f(n))$

Interpretation

- $f(n) \in \omega(g(n))$ bedeutet, dass f(n) echt stärker wächst als g(n) für $n \rightarrow \infty$
- Dabei ignorieren wir beim Wachstum konstante Faktoren
- Die Funktionen f(n) und g(n) müssen asymptotisch nicht-negativ sein (für n groß genug, sind die Funktionen nicht-negativ)

Schreibweise

- Es ist üblich f(n)=O(n) zu schreiben anstelle von f(n)∈O(n)
- Dies gilt auch für Ω-, Θ-, o- und ω-Notation.

Korrektheitsbeweis

Formale Argumentation, dass ein Algorithmus korrekt arbeitet

Problembeschreibung

Definiert für eine Menge von zulässigen Eingaben die zugehörigen gewünschten Ausgaben

Korrektheit

- Wir bezeichnen einen Algorithmus für eine vorgegebene Problembeschreibung als korrekt, wenn er für jede zulässige Eingabe die in der Problembeschreibung spezifizierte Ausgabe berechnet
- Streng genommen kann man also nur von Korrektheit sprechen, wenn vorher festgelegt wurde, was der Algorithmus eigentlich tun soll

Universit

Beispiel

- Eingabe: Folge von n Zahlen: (x₁,..., x_n)
- Ausgabe: Permutation $(x_1, ..., x_n)$ von $(x_1, ..., x_n)$ mit $x_1 \le x_2 \le ... \le x_n$

Beispiel

- Eingabe: Folge von n Zahlen: (x₁,..., x_n)
- Ausgabe: Permutation $(x_1, ..., x_n)$ von $(x_1, ..., x_n)$ mit $x_1 \le x_2 \le ... \le x_n$

Was muss man zeigen?

 Um zu zeigen, dass ein Sortieralgorithmus korrekt ist, muss man zeigen, dass er jede Folge von Eingabezahlen richtig sortiert

Motivation

- Elemente eines Korrektheitsbeweise (z.B. Schleifeninvarianten) können zur Überprüfung der Funktionsweise während der Laufzeit verwendet werden
- Außerdem lassen sich aus Korrektheitsbeweisen häufig gute Kommentare herleiten
- Letztendlich hält ein Korrektheitsbeweis nur die Überlegungen fest, die ein Entwickler sowieso machen muss
- Korrektheitsbeweise helfen dabei, sich dieser Überlegungen bewusst zu werden, und Fehler zu vermeiden

Korrektheitsbeweise – ein triviales Beispiel

EinfacherAlgorithmus(n)

- 1. X=10
- 2. Y=n
- 3. X=X+Y
- 4. return X

Behauptung

EinfacherAlgorithmus(n) gibt n+10 zurück.

Beweis:

- Zu Beginn des Algorithmus sind alle Variablen bis auf n undefiniert
- In Zeile 1 wird X der Wert 10 zugewiesen.
- In Zeile 2 wird Y der Wert n zugewiesen.
- In Zeile 3 wird X der Wert X+Y zugewiesen.
 Da X aktuell den Wert 10 hat und Y den Wert n, erhält X den Wert n+10.
- In Zeile 4 wird X zurückgegeben. Da X den Wert n+10 hat, folgt die Behauptung.

Universität

Beweisprinzip der mathematischen Induktion

- Sei A(n) eine Aussage über eine natürliche Zahl n∈N={1, 2, 3,...}
- Wir wollen zeigen, dass die Aussage für alle natürlichen Zahlen gilt

Mathematische Induktion besteht aus 2 Hauptkomponenten

- Induktionsanfang: Aussage A(1) stimmt
- Induktionsschritt: Wenn A(n) gilt, dann gilt auch A(n+1)

Beispiel

A(1)

• A(2)

A(3)

1= n then be h

Beispiel

• A(n) ist die Aussage: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Induktionsanfang:

• A(1): $\sum_{i=1}^{1} i = \frac{1(1+1)}{2}$ ist korrekt (beide Seiten sind 1)

Induktionsschritt:

• Annahme: Es gilt
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
 $\bigwedge \left(\bigwedge \right)$

• Z.z.: Es gilt auch
$$\sum_{i=1}^{n+1} i = \frac{(n+1)(n+2)}{2}$$
 $\bigwedge \left(\bigwedge \downarrow \bigwedge \right)$
• $\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + n + 1 = \frac{(n+2)(n+1)}{2}$

$$\sum_{i=1}^{n+1} i = \sum_{i=1}^{n} i + (n+1) = \frac{n(n+1)}{2} + n + 1 = \frac{(n+2)(n+1)}{2}$$

- Schleifeninvarianten

Schleifeninvariante

- A(n) ist eine Aussage über den Zustand des Algorithmus vor dem n-ten Durchlauf einer Schleife
- Eine Schleifeninvariante ist korrekt, wenn Sie zu Beginn jedes Schleifendurchlaufs erfüllt ist.
- A(1) wird auch als Initialisierung bezeichnet.

Korrektheitsbeweis für Invarianten

- Induktionsanfang: Die Aussage A(1) gilt
- Induktionsschluss: Gilt A(n) und ist die Eintrittsbedingung der Schleife erfüllt so gilt auch A(n+1)

Schleifeninvariante bei for-Schleifen - Annahmen

- Die Laufvariable wird am Ende der for-Schleife erhöht
- Zur Initialisierung wurde die Laufvariable bereits auf ihren Startwert gesetzt

Abhängigkeit von der Laufvariable

 Da bei for-Schleifen die Laufvariable i.a. eindeutig mit der Anzahl der Schleifendurchläufe zusammenhängt, können wir die Invariante auch in Abhängigkeit der Laufvariablen formulieren

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad \text{max} = 1$
- 2. for i=2 to n do
- 3. if A[i] > A[max] then max = i
- 4. **return** max

Schleifeninvariante

A(i): A[max] ist ein größtes Elements aus dem Teilarray A[1..i-1]

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad \text{max} = 1$
- 2. for i=2 to n do
- 3. if A[i] > A[max] then max = i
- 4. **return** max

Schleifeninvariante

A(i): A[max] ist ein größtes Elements aus dem Teilarray A[1..i-1]

Lemma 4.1

A(i) ist eine korrekte Schleifeninvariante.

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad \text{max} = 1$
- 2. for i=2 to n do
- 3. if A[i] > A[max] then max = i
- 4. **return** max

Beweis von Lemma 4.1:

- Induktionsanfang: Zu Beginn der for-Schleife (i=2) ist max=1 und damit Index eines größten Elements aus dem Teilarray A[1...i-1]
- Induktionsschluss:
- Annahme: max ist Index eines größten Elements aus A[1...i-1] und i ≤ n

MaxSuche(A, n) * Array A der Länge n wird übergeben

- $1. \quad \text{max} = 1$
- 2. for i=2 to n do
- 3. if A[i] > A[max] then max = i
- 4. **return** max

Beweis von Lemma 4.1:

- Annahme: max ist Index eines größten Elements aus A[1...i-1] und i ≤ n
- Ist A[i]≤A[max], so ändert sich max nicht und max ist der Index eines größten Elements aus A[1…i]
- Ist A[i]>A[max], so wird max auf i gesetzt und damit ist max ebenfalls der Index eines größten Elements aus A[1...i]

Zusammenfassung

Zusammenfassung

- Asymptotische Notation
- Korrektheitsbeweise (Anfang)
- Mathematische Induktion
- Schleifeninvarianten

