Ficha6 - Dependências Funcionais e Normalização

29 de abril de 2024 14

14:14

Grupo 1. Considere a seguinte instância de relação no esquema R(A, B, C, D, E):

\boldsymbol{A}	B	C	D	E
a_1	b_1	c_1	d_1	e_1
$\overline{a_1}$	b_2	c_1	d_1	e_1
a_2	b_2	c_1	d_2	e_3
a_2	b_3	c_3	d_2	e_2

Para cada uma das seguintes dependências funcionais indique, justificando, se ela é satisfeita pela instância de relação acima.

- 1. $A \rightarrow C$
- 2. $B \rightarrow C$
- 3. $D \rightarrow E$
- 4. $CD \rightarrow E$
- 1. A -> C

A1 -> c1 A2 -> c1, c3

Não, não é satisfeita

2. B -> C

b1 -> c1

b2 -> c1

B3 -> c3

Sim, é satisfeita

3. D -> E

d1 -> e1

d2 -> e2, e3

Não, não é satisfeita

4. CD -> E

c1d1 -> e1

c1d2 -> e3

c3d2 -> e2

Sim, é satisfeita

Grupo 2. Considere um esquema de relação R(A, B, C, D, E) e o conjunto F de dependências funcionais que se verificam em R, onde:

$$F = \{A \rightarrow C, AC \rightarrow E, AD \rightarrow B, B \rightarrow ADE, D \rightarrow E\}$$

Usando o conjunto de dependências funcionais F, determine o fecho de cada um dos seguintes conjuntos de atributos. O cálculo deve proceder passo-a-passo, aplicando apenas uma dependência funcional de cada vez, indicando qual a dependência funcional usada.

- 1. *D*
- 2. E
- 3. AD

+ -> todos os conjunto que consegues obter através do conjunto que se utiliza o fecho

- 1. D+ = D => (D->E) DE
- 2. $E^+ = E$
- 3. $AD^+ = AD \Rightarrow (A->C) ACD \Rightarrow (AD->B) ABCD \Rightarrow (AC->E) ABCDE$ AD é uma chave candidata

Grupo 3. Considere um esquema de relação R(A, B, C, D, E) e o conjunto F de dependências funcionais que se verificam em R, onde:

$$F = \{AB \rightarrow C, CE \rightarrow D, A \rightarrow E\}$$

Para cada umas dependências funcionais abaixo, determine se pertence ou não a F^+ .

- 1. $AB \rightarrow D$
- 2. $AC \rightarrow D$
- 3. $A \rightarrow C$
- 4. $A \rightarrow B$
- 5. $BE \rightarrow D$
- AB⁺ = AB => (AB->C) ABC => (A->E) ABCE => (CE->D) ABCDE
 Aplicando as regras conseguimos obter D partindo de AB através de F⁺ Pertence a F⁺
- 2. $AC^+ = AC \Rightarrow (A->E) ACE \Rightarrow (CE->D) ACDE$ Pertence a F⁺
- 3. $A^+ = A => (A->E) AE$

Não pertence a F+, pois C não pertence a A+

4. $A^+ = A => (A->E) AE$

Não pertence a F⁺, pois B não pertence a A⁺

5. $BE^+ = BE$

Não pertence a F+, pois D não pertence a BE+

Grupo 4. Determine uma cobertura canónica F_c , para cada par de esquema de relação R e conjunto de dependências funcionais F abaixo:

1.
$$R(A,B,C,D,E)$$
 e
$$F = \{AB \to CD, A \to B, BE \to DA, E \to D, C \to D\}$$

2.
$$R(A,B,C,D,E,G)$$
 e
$$F = \{ABD \to CE, BC \to D, CD \to E, DE \to G, A \to B\}$$

3.
$$R(A,B,C,D,E,F,G,H)$$
 e $F = \{AC \rightarrow G,D \rightarrow EG,BC \rightarrow D,CG \rightarrow BD,AC \rightarrow B,CE \rightarrow AG\}$

- 1. $F = \{AB \rightarrow CD, A \rightarrow B, BE \rightarrow DA, E \rightarrow D, C \rightarrow D\}$
 - a. $AB \rightarrow CD$
 - i. Lado direito
 - 1) A?
 - a) $(AB-A)^+ = B^+ = B -> logo A não é dispensável$
 - 2) B?
 - a) $(AB-B)^+ = A^+ = ABCD \rightarrow B$ pertence a A^+ , logo B é dispensável
 - ii. Lado esquerdo
 - 1) C? => F' = {A -> D, A \rightarrow B, BE \rightarrow DA, E \rightarrow D, C \rightarrow D}
 - a) A+ = ABD -> C não pertence a A+ logo não é dispensável
 - 2) D? => F' = {A-> C, A \rightarrow B, BE \rightarrow DA, E \rightarrow D, C \rightarrow D}
 - a) A+ = ABCD -> D pertence a A+ logo é dispensável
 - b. $BE \rightarrow DA$
 - i. Lado direito
 - 1) B?
 - a) (BE-B)+ = E+ = DE -> B não pertence a E+ logo B não é dispensável
 - 2) E?
 - a) $(BE-E)^+ = B^+ = B -> E$ não pertence a E^+ logo E não é dispensável
 - ii. Lado esquerdo
 - 1) D? => F' = {AB \rightarrow CD, A \rightarrow B, BE \rightarrow A, E \rightarrow D, C \rightarrow D}
 - a) BE+ = ABCDE -> D pertence a BE+ logo é dispensável
 - 2) A? \Rightarrow F' = {AB \Rightarrow CD, A \Rightarrow B, BE \Rightarrow D, E \Rightarrow D, C \Rightarrow D}
 - a) BE+ = BDE -> A não pertence a BE+ logo não é dispensável

 F_c = (retirar as dispensáveis) {AB \rightarrow CD, A \rightarrow B, BE \rightarrow DA, E \rightarrow D, C \rightarrow D} = {A \rightarrow C, A \rightarrow B, BE \rightarrow A, E \rightarrow D, C \rightarrow D} = (juntar quando o lado esquerdo é igual) {A \rightarrow BC, BE \rightarrow A, E \rightarrow D, C \rightarrow D}

Grupo 5. Considere o seguinte esquema de relação que guarda informação sobre uma biblioteca:

Biblioteca(Livro, Titulo, ISBN, Exemplar, Sucursal, Hora, Leitor, DataEntrega)

Sabendo que se verificam as seguinte dependências funcionais da Tabela 1:

Tabela 1: Dependências funcionais sobre o esquema Biblioteca

- a. $Livro \rightarrow Titulo$
- b. $Livro \rightarrow ISBN$
- c. $ISBN \rightarrow Livro$
- d. $Exemplar \rightarrow Livro$
- e. $Exemplar \rightarrow Sucursal$
- f. $Sucursal, Livro \rightarrow Exemplar$
- g. $Exemplar, Hora \rightarrow Leitor$
- h. $Sucursal, Livro \rightarrow DataEntrega$
- Interprete cada uma das dependências funcionais em Português.

R = {Livro, Título, ISBN, Exemplar, Sucursal, Hora, Leitor, DataEntrega} Relações 1 -> 1 é só converter para Português Outras relações:

- a. Livro → Título
- b. Livro → ISBN
- c. ISBN → Livro
- d. Exemplar → Livro
- e. Exemplar → Sucursal
- f. Sucursal, Livro \rightarrow Exemplar

Cada sucursal só pode ter uma cópia de cada livro

g. Exemplar, Hora → Leitor

Cada exemplar só pode ter um leitor por hora

h. Sucursal, Livro → DataEntrega

Cada livro numa Sucursal tem uma só data de entrega

2. Indique as chaves candidatas de Biblioteca.

(usar o teste de unicidade de chave candidata acelera o processo em vez de se fazer o fecho para cada "atributo")

R - (todos os atributos que estejam em qualquer relação do lado direito)

R-(Título, ISBN, Livro, Exemplar, Sucursal, Leitor, DataEntrega) = (Hora) Hora⁺ = Hora -> logo não pode ser sozinha chave candidata

(como Hora não é chave candidata então temos que encontrar com mais qual atributo é fica criada a chave candidata)

(Hora, Sucursal)⁺ = (Livro, Título, ISBN, Exemplar, Sucursal, Hora, Leitor, DataEntrega) é chave candidata (Hora, Exemplar, Livro)⁺ = (Livro, Título, ISBN, Exemplar, Sucursal, Hora, Leitor, DataEntrega) é chave candidata (Hora, Exemplar, ISBN)⁺ = (Livro, Título, ISBN, Exemplar, Sucursal, Hora, Leitor, DataEntrega) é chave candidata

 Indique, se existirem, as dependências funcionais que são causa de violação da Forma Normal de Boyce-Codd (BCNF).

```
a. Livro → Título
      (Livro)+ = (Livro, Título, ISBN)
            É causa de violação de BCNF
b. Livro → ISBN
      (Livro)+ = (Livro, Título, ISBN)
            É causa de violação de BCNF
c. ISBN → Livro
      (ISBN)+ = (Livro, Título, ISBN)
            É causa de violação de BCNF
d. Exemplar \rightarrow Livro
      (Exemplar) + = (Livro, Título, ISBN, Exemplar, Sucursal, DataEntrega)
            É causa de violação de BCNF
e. Exemplar → Sucursal
      (Exemplar) + = (Livro, Título, ISBN, Exemplar, Sucursal, DataEntrega)
            É causa de violação de BCNF
f. Sucursal, Livro → Exemplar
      (Sucursal, Livro)+ = (Livro, Título, ISBN, Exemplar, Sucursal, DataEntrega)
            É causa de violação de BCNF
g. Exemplar, Hora → Leitor
      (Exemplar, Hora)+ = (Livro, Título, ISBN, Exemplar, Sucursal, Hora, Leitor, DataEntrega)
            Não é causa de violação de BCNF
h. Sucursal, Livro → DataEntrega
      (Sucursal, Livro)<sup>+</sup> = (Livro, Título, ISBN, Exemplar, Sucursal, DataEntrega)
            É causa de violação de BCNF
```

 Indique, se existirem, as dependências funcionais que são causa de violação da 3ª Forma Normal (3NF).

```
Superchaves:
(Hora, Sucursal)<sup>+</sup>
(Hora, Exemplar, Livro)<sup>+</sup>
(Hora, Exemplar, ISBN)<sup>+</sup>
```

a. Livro → Título

Título não está contido numa chave candidata logo causa violação da 3ºFN

b. Livro \rightarrow ISBN

ISBN está contido numa chave candidata logo não causa violação da 3ºFN

c. ISBN \rightarrow Livro

Livro está contido numa chave candidata logo não causa violação da 3ºFN

d. Exemplar \rightarrow Livro

Livro está contido numa chave candidata logo não causa violação da 3ºFN

e. Exemplar \rightarrow Sucursal

Sucursal está contido numa chave candidata logo não causa violação da 3ºFN

f. Sucursal, Livro → Exemplar

Exemplar está contido numa chave candidata logo não causa violação da 3ºFN

g. Exemplar, Hora → Leitor

Leitor não está contido, contudo (Exemplar, Hora) é uma super-chave logo não causa violação da 3ªFN

h. Sucursal, Livro → DataEntrega

DataEntrega não está contido numa chave candidata logo causa violação da 3ºFN

5. Se a relação não estiver na BCNF, decomponha-a num conjunto de esquemas de relação que estejam na BCNF. Repita esta alínea para obter todas as decomposições possíveis. Indique quais as decomposições que preservam as dependências funcionais.

```
Superchaves:
(Hora, Sucursal)+
(Hora, Exemplar, Livro)+
(Hora, Exemplar, ISBN)+
                     (alpha -> beta)
                     Livro -> Título, ISBN
              R_1 = (Livro, Título, ISBN) (alpha * beta)
              R<sub>2</sub> = R -lado direito de R = (Livro, Exemplar, Sucursal, Hora, Leitor, DataEntrega) (R - beta)
       (R_1, R_2)
              R<sub>1</sub> => está na BCNF de R<sub>1</sub>
              R<sub>2</sub> = > não está em BCNF
                     (alpha -> beta)
                     Exemplar -> Livro, Sucursal
              R<sub>3</sub> = (Exemplar, Livro, Sucursal) (alpha * beta)
              R_4 = (Exemplar, Hora, Leitor, DataEntrega) (R_2 - beta)
              R<sub>3</sub> => está em BCNF
              R<sub>4</sub> => não está em BCNF pois Hora não pertence a (Exemplar)<sup>+</sup>
                     (alpha -> beta)
                     Exemplar -> DataEntega
              R<sub>5</sub> = (Exemplar, DataEntrega) (alpha * beta)
              R_6 = (Exemplar, Hora, Leitor) (R_4 - beta)
              R<sub>5</sub> => está em BCNF
              R<sub>6</sub> => está em BCNF pois (Exemplar) + = (Exemplar) o que não tem mais que a si próprio
              Result = R_1 \cup R_3 \cup R_5 \cup R_6
```

 Decomponha Biblioteca, se necessário, num conjunto de relações que estejam na 3NF.

```
R1 = (Lirvo, Título, ISBN)
R2 = (Sucursal, Livro, Exemplar, DataEntrega)
R3 = (Exemplar, Hora, Leitor)
```

(se está na BCNF então também está na 3FN, o contrário pode não ser válido)