Fitting: The Hough transform

Voting schemes

 Let each feature vote for all the models that are compatible with it

- Hopefully the noise features will not vote consistently for any single model
- Missing data doesn't matter as long as there are enough features remaining to agree on a good model

Hough transform

- An early type of voting scheme
- General outline:
 - Discretize parameter space into bins
 - For each feature point in the image, put a vote in every bin in the parameter space that could have generated this point
 - Find bins that have the most votes

P.V.C. Hough, *Machine Analysis of Bubble Chamber Pictures,* Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959

 A line in the image corresponds to a point in Hough space

• What does a point (x_0, y_0) in the image space map to in the Hough space?

- What does a point (x₀, y₀) in the image space map to in the Hough space?
 - Answer: the solutions of $b = -x_0m + y_0$
 - This is a line in Hough space

Where is the line that contains both (x₀, y₀) and (x₁, y₁)?

- Where is the line that contains both (x₀, y₀) and (x₁, y₁)?
 - It is the intersection of the lines $b = -x_0m + y_0$ and $b = -x_1m + y_1$

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m

- Problems with the (m,b) space:
 - Unbounded parameter domains
 - Vertical lines require infinite m
- Alternative: polar representation

Each point (x,y) will add a sinusoid in the (θ,ρ) parameter space

Algorithm outline

- Initialize accumulator H to all zeros
- For each feature point (x,y) in the image
 For θ = 0 to 180
 ρ = x cos θ + y sin θ

 $H(\theta, \rho) = H(\theta, \rho) + 1$

P: accumulator array (votes)

A

end

end

- Find the value(s) of (θ, ρ) where H(θ, ρ) is a local maximum
 - The detected line in the image is given by
 ρ = x cos θ + y sin θ

Basic illustration

Hough transform demo

Other shapes

Square Circle

Several lines

A more complicated image

Effect of noise

Effect of noise

Peak gets fuzzy and hard to locate

Effect of noise

 Number of votes for a line of 20 points with increasing noise:

Random points

Uniform noise can lead to spurious peaks in the array

Random points

 As the level of uniform noise increases, the maximum number of votes increases too:

Dealing with noise

- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Try to get rid of irrelevant features
 - E.g., take only edge points with significant gradient magnitude

Incorporating image gradients

- Recall: when we detect an edge point, we also know its gradient direction
- But this means that the line is uniquely determined!

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

Modified Hough transform:

```
For each edge point (x,y)

\theta = gradient orientation at (x,y)

\rho = x \cos \theta + y \sin \theta

H(\theta, \rho) = H(\theta, \rho) + 1

end
```

Generalized Hough transform

 We want to find a template defined by its reference point (center) and several distinct types of landmark points in stable spatial configuration

Generalized Hough transform

 Template representation: for each type of landmark point, store all possible displacement vectors towards the center

Template

Model

Generalized Hough transform

Detecting the template:

 For each feature in a new image, look up that feature type in the model and vote for the possible center locations associated with that type in the model

Test image

Model

Application in recognition

Index displacements by "visual codeword"

visual codeword with displacement vectors

training image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

Application in recognition

Index displacements by "visual codeword"

test image

B. Leibe, A. Leonardis, and B. Schiele, <u>Combined Object Categorization and Segmentation with an Implicit Shape Model</u>, ECCV Workshop on Statistical Learning in Computer Vision 2004

K-means

A clustering algorithm (unsupervised learning method)

Group similar things together.

K-means clustering

 Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X,M) = \sum_{\text{cluster } k} \sum_{\substack{\text{point } i \text{ in } \\ \text{cluster } k}} (\mathbf{x}_i - \mathbf{m}_k)^2$$

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - Recompute each cluster center as the mean of all points assigned to it

K-means demo

Source: http://shabal.in/visuals/kmeans/1.html
Another demo: http://www.kovan.ceng.metu.edu.tr/~maya/kmeans/

Local Minimum

Local Minimum

Visual codebook for generalized Hough transform

Implicit shape models: Training

 Build codebook of patches around extracted interest points using clustering (more on this later in the course)

Implicit shape models: Training

- Build codebook of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry

Implicit shape models: Training

- 1. Build *codebook* of patches around extracted interest points using clustering
- 2. Map the patch around each interest point to closest codebook entry
- 3. For each codebook entry, store all positions it was found, relative to object center

Implicit shape models: Testing

- Given test image, extract patches, match to codebook entry
- 2. Cast votes for possible positions of object center
- 3. Search for maxima in voting space
- Extract weighted segmentation mask based on stored masks for the codebook occurrences

Additional examples

B. Leibe, A. Leonardis, and B. Schiele, <u>Robust Object Detection with Interleaved Categorization and Segmentation</u>, IJCV 77 (1-3), pp. 259-289, 2008.

Implicit shape models: Details

Supervised training

Need reference location and segmentation mask for each training car

Voting space is continuous, not discrete

Clustering algorithm needed to find maxima

How about dealing with scale changes?

- Option 1: search a range of scales, as in Hough transform for circles
- Option 2: use interest points with characteristic scale

Verification stage is very important

 Once we have a location hypothesis, we can overlay a more detailed template over the image and compare pixel-bypixel, transfer segmentation masks, etc.

Review: Hough transform

- Hough transform for lines
- Generalized Hough transform for template detection
- Hough transform pros and cons

Hough transform: Pros and cons

Pros

- Can deal with non-locality and occlusion
- Can detect multiple instances of a model
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- It's hard to pick a good grid size