1. (4.5.2) Let  $S(k) = I^k/\partial I^k$ . We have canonical homeomorphisms

(a) 
$$\Omega^k(Y) = F^0(S(k), Y) \cong F((I^k, \partial I^k), (Y, *))$$
 and (b)  $\Omega^k \Omega^l(Y) \cong \Omega^{k+l}(Y)$ .

*Proof.* Let p be the quotient map from  $I^k$  to  $I^k/\partial I^k = S(k)$ . Then the homeomorphism in (a) is given by the assignment  $f: S(k) \to Y \mapsto f \circ p: I \to Y$ . We show that the assignment is bijective, continuous, and open (briefly, as 4.5.6 is a similar problem and the work is more clear there):

For two distinct  $f, g \in \Omega^k(Y)$ , they differ at a point in the interior of  $I^k$ , so  $f \circ p$  and  $g \circ p$  differ. For some  $w \in F((I^k, \partial I^k), (Y, *))$  consider  $\overline{w}$  which is w on the interior of  $I^k$ , but takes on \* on the equivalence class for  $\partial I^k$ . This is continuous as w itself agrees on points on  $\partial I$  and  $\overline{w} \circ p$  agrees with w as needed. Hence the assignment is bijective.

For continuity and openness we consider subbase elements. Let  $\{w \in \Omega^k(Y) \mid w(K) \subset U\}$  be an element of the subbase for the subspace topology on  $\Omega Y$ . Then its preimage is given by  $\{f \mid (f \circ p)(K) \subset U\}$ , which is  $\{f \mid f(p(K)) \subset U\}$ . Since p(K) is compact, the preimage is open so the assignment is continuous. Let  $\{f \mid f(K) \subset U\}$  be a subbase element of  $F((I^k, \partial I^k), (Y, *))$ . Then the image under the assignment is  $\{f \circ p \mid f(K) \subset U\} = \{f \circ p \mid (f \circ p)(p^{-1}(K)) \subset U\}$  and  $p^{-1}(K)$  is compact,  $p(p^{-1}(K)) = K$  since p is surjective. It follows that this assignment is open.

Hence the assignment is a homeomorphism as desired.

For (b) Since products of intervals are compact (locally compact), we can use Theorem 2.4.6 (Exponential law) to see that the adjunction map  $\alpha \colon Y^{I^k \times I^l} \xrightarrow{\cong} (Y^{I^l})^{I^k}$  is a homeomorphism. Restricting to the subspaces which fix the image of the boundaries of these cubes to the basepoint of Y, we should also obtain a homeomorphism of subspaces  $\Omega^k \Omega^l(Y) \cong \Omega^{k+l}(Y)$ . In particular, the subspace  $\Omega^{k+l}(Y)$  would be sent to the subspace of  $(Y^{I^l})^{I^k}$  whose elements are maps which all send the boundaries of cubes to the basepoint of Y, which is  $\Omega^k \Omega^l(Y)$ .

2. (4.5.3) The space  $F((I,0),(Y,*)) \subset Y^I$  is pointed contractible.

Proof. We show the identity map is homotopic to the constant map: For  $x \in X = F((I,0),(Y,*)) \subset Y^I$ , define for  $s \in I$ ,  $sx \colon I \to Y$  by sx(t) = x((1-s)t) (it is clear each sx is continuous). Then the homotopy  $H \colon X \times I \to X$  given by H(x,s) = sx starts with H(x,0) = 0x = x and ends at  $H(x,1) = 1x = 1_*$ , with  $1_*$  being the path sending I to  $* \in Y$  (since x(0) = \* for all  $x \in X$ ). Thus X is contractible to its base point, the constant map sending I to \*.

3. (4.5.6) Verify the homeomorphism  $F^0(I/\partial I, Y) \cong \Omega Y$ .

*Proof.* The homeomorphism  $F^0(I/\partial I, Y) \cong \Omega Y$  is given by the assignment  $f: I/\partial I \to Y \mapsto f \circ p: I \to Y$ , where f is a pointed continuous map taking  $\partial I$  to  $* \in Y$ .

We show that this assignment is bijective, continuous, and open. It is clear that the assignment is injective since if  $f, g \in F^0(I/\partial I, Y)$  are distinct then  $f \circ p$  and  $g \circ p$  differ at some  $t \in (0,1)$ . Given some path  $w \in \Omega Y$ , define  $\overline{w} \colon I/\partial I \to Y$  which agrees with w on (0,1) and on  $\partial I$  is w(0) = w(1) = \*. This is continuous since w agrees on  $\partial I$ , and  $\overline{w} \circ p$  agrees with w on I as needed.

For continuity and openness it suffices to check on the subbase for the compact open topology. Let  $\{w \in \Omega Y \mid w(K) \subset U\}$  be an element of the subbase for the subspace topology on  $\Omega Y$ . Then its preimage is given by  $\{f \mid (f \circ p)(K) \subset U\}$ , which is  $\{f \mid f(p(K)) \subset U\}$ . Since p(K) is compact also, we have an open set in  $F^0(I/\partial I, Y)$ , so the assignment is continuous. Let  $\{f \mid f(K) \subset U\}$  be a subbase element of  $F^0(I/\partial I, Y)$ . Then the image under the assignment is  $\{f \circ p \mid f(K) \subset U\} = \{f \circ p \mid (f \circ p)(p^{-1}(K)) \subset U\}$  and  $p^{-1}(K)$  is compact,  $p(p^{-1}(K)) = K$  since p is surjective. It follows that this assignment is open.

Hence the assignment is a homeomorphism as desired.

4. (4.6.1) Let the left square in the next diagram be a pushout with an embedding j and hence an embedding J. Then F induces a homeomorphism  $\overline{F}$  of the quotient spaces.

$$\begin{array}{ccc}
A & \xrightarrow{j} & X & \xrightarrow{p} & X/A \\
\downarrow^{f} & \downarrow^{F} & \downarrow^{\overline{F}} \\
B & \xrightarrow{J} & Y & \xrightarrow{q} & Y/B
\end{array}$$

*Proof.* We check that pushouts of embeddings are embeddings: Embeddings, like j, are injective continuous maps which are open/closed (so A is homeomorphic to its image under j; also the image of A need not be open or closed in X). We show first that as a set map J is injective. Let  $j_{\ell}^{-1}$  be the left inverse of j (since j is injective). Then in the following diagram



by the universal property of pushouts we obtain a left inverse  $J_{\ell}^{-1}$  for J. In **Top** J is continuous, so we show that J is an open/closed map. Let Z be an open/closed set in B. Then  $f^{-1}(Z)$  is open/closed so that  $jf^{-1}(Z)$  is open/closed. Then also  $J_{\ell}^{-1}J(Z)=Z$  is open/closed; so  $F^{-1}J(Z)$  is open/closed; so J is an open/closed map.

Recall that Y is  $(X \sqcup B)/\sim$  where  $j(a)\sim f(a)$ . Then with j,J embeddings, the quotient spaces make sense. Observe that in Y/B, since  $f(a)\in B$ , every point f(a) gets identified. But j(a) is also identified with f(a), so A is also identified to the same point as B. So there is a bijection  $\overline{F}$  between equivalence classes in X/A with those in Y/B given basically by the identity, since for  $[x]\in X/A$  yields  $[x]=\{x\}$  if  $x\notin j(A)$  and [x]=j(A) otherwise, and similarly  $[x]\in Y/B$  yields  $[x]=\{x\}$  if  $x\notin j(A)$ , and if  $x\in j(A)$ ,

then  $[x] = j(A) \sqcup B$ . Note that the dependence on being in J(B) is removed since B is identified with j(A). The diagram above commutes and so  $\overline{F}$  is continuous since F,q are continuous and p is open; similarly  $\overline{F}^{-1}$  is continuous (imagine  $\overline{F}$  is given by the identity on equivalence classes). Hence  $\overline{F}$  is a homeomorphism as desired.