Final Documentation - Insurance charges prediction

1. Problem statement identification

According to the requirements, the goal is to predict insurance charges based on several parameters.

Stage 1: Domain Selection

 Machine Learning is chosen since the dataset primarily contains numerical data.

Stage 2: Learning Selection

- **Supervised learning** is appropriate because:
 - The requirement is clearly defined (predicting insurance charges).
 - Both input features and output labels are available.

Stage 3: Supervised Learning Type

 Since the output label (insurance charges) consists of numerical values, the problem falls under Regression.

ML -> Supervised -> Regression

2. Basic information about the given dataset

The objective is to predict insurance charges using the features Age, Sex, BMI, Children, and Smoker. The dataset consists of 1338 rows and 6 columns.

3. Pre-processing methods

The Sex and Smoker columns are nominal data without order, so they are converted into numbers using One-Hot Encoding.

4. Find the good model with r2_score

Machine Learning Algorithms:

Simple Linear Regression-> Not suitable, as the dataset contains multiple input features rather than a single input.

Multiple Linear Regression -> Applied to the dataset, resulting in an R² score of 0.7891.

Support Vector Machine Regression (Non-linear):

Hyper parameter	linear	poly	rbf	sigmoid
parameter	(r value)	(r value)	(r value)	(r value)
C=10	-0.0017	-0.0930	-0.0818	-0.0909
C=100	0.5432	-0.0992	-0.1245	-0.1185
C=500	0.6269	-0.0817	-0.1245	-0.4735
C=1000	0.6338	-0.0546	-0.1176	-1.7112
C=2000	0.6898	-0.0016	-0.1078	-5.8190
C=3000	<mark>0.7590</mark>	0.0494	-0.0962	-12.5445

The SVM Regression use R^2 Value(linear and hyper parameter (C=3000)) = 0.7590

Decision Tree Regression:

criterion	max_features	splitter	R Value
friedman_mse	log2	random	0.64632
friedman_mse	log2	best	0.7163

friedman_mse	sqrt	random	0.6230
friedman_mse	sqrt	best	0.7496
squared_error	log2	random	0.6605
squared_error	log2	best	0.7769
squared_error	sqrt	random	0.6397
squared_error	sqrt	best	0.7119
absolute_error	log2	random	0.7367
absolute_error	log2	best	0.6030
absolute_error	sqrt	random	0.7589
absolute_error	sqrt	best	0.6187
poisson	log2	random	0.6611
poisson	log2	best	0.6911
poisson	sqrt	random	0.6510
poisson	sqrt	best	0.6527

The Decision Tree Regression use R² value (criterian=squared_error, max_features=log2 and splitter=best) = 0.7769

Random Forest Regression:

criterion	max_features	n_estimators	R Value
friedman_mse	log2	10	0.8568

friedman_mse	log2	100	0.8632
friedman_mse	sqrt	10	0.8547
friedman_mse	sqrt	100	0.8665
squared_error	log2	10	0.8419
squared_error	log2	100	0.8644
squared_error	sqrt	10	0.8594
squared_error	sqrt	100	0.8682
poisson	log2	10	0.8435
poisson	log2	100	0.8612
poisson	sqrt	10	0.8500
poisson	sqrt	100	0.8671

The Random Forest Regression use R² value (criterian=squared_error, max_features=sqrt and n_estimators=100) = 0.8682

5. The final model for machine learning best method of Regression:

Random Forest R² Value (squared_error, sqrt, 100) = 0.8682

The Random Forest algorithm was chosen as it provides results that closely approach 1 for a perfect model.