Practical Bioinformatics

Making Sense of Gene Lists
Part 4

Stefan Wyder stefan.wyder@uzh.ch **URPP Evolution** www.evolution.uzh.ch

Gene List Annotation

- You performed a genomic experiment and obtained a gene list
- Who wants to work through a list of hundreds of genes?
- What's next?

Gene List Annotation

- We test whether the differentially expressed genes in our experiment are enriched in some predefined gene lists.
- Based on previous knowledge

Obtaining Biological Insight

- to summarize gene lists
- to help and speed up the interpretation of an experiment
- to gain mechanical insight
- to find regulated processes/pathways
- to find involved regulatory elements (TF, miRNA)
- to identify new members of a pathway
- to find similar experiments
-

Analysis based on gene lists is expected to be more robust and reproducible than single-gene analysis.

Interpretability depends mostly on appropriate experimental design!

The more different tissues/cell types/stages were pooled in a sample the more complex and difficult to understand the ongoing processes (e.g. observed changes can simply be due to changes in relative abundance of different cell types independent of regulation)

Enrichment Analysis

Over-Representation Analysis

- hypergeometric aka Fisher's exact test
- input: 4 counts
- we need to set a cut-off a priori
- different results at different thresholds!

Gene Set	Enrichment	Analysis	(GSEA)
-----------------	-------------------	-----------------	--------

Subramanian et al. (2005) PNAS and many follow-up papers

- bypasses the need for a cut-off
- input: list of all measured genes ranked by some statistics / effect size
- weak but consistent regulation of several members of a gene set can be detected

Network Analysis

- covers also the less well understood portion of gene interactions
- based on co-expression, co-citation, PPI,
- example: STRING (http://www.string-db.org/)

8	12
2	2412

Over-Representation Analysis

5000 black and 10 red balls in an urn each ball represents 1 gene
10 red balls ("Cytochromes")

Our list of differentially expr. genes: 4/5 balls are red

What is the probability? 2x2 contigency table

	Selected	Not
in category	4	6
not in category	1	4989

one-sided Fisher's exact test p-value = 4.03e-11

Gene Set Enrichment Analysis

Subramanian et al. (2005) PNAS

Annotation Sources

Pathways

KEGG, Reactome, BioCyc, ...

Gene Ontology (GO)

Gene/Protein Networks

e.g. STRING

Pathways

- pathway maps (aka reaction networks / wiring diagrams) represent experimental knowledge on metabolism and various other functions of the cell and the organism
- manually curated
- the main databases are KEGG and Reactome
- KEGG is free to use over the web but file download requires subscription
- KEGG covers >3000 species (Archae, Bacteria, Plants, Animals) and Reactome covers 20 species (mostly mammals + fly + plants + E.coli) as of May 2014.

Example KEGG Pathway

Gene Ontology

Gene Ontology (GO)

http://www.geneontology.org/

- describes how gene products behave in a cellular context (BP, MF, C)
- controlled vocabulary of terms
- transparent (sources)
- manually curated lists for model species
- transfer to orthologs in other species (inferred annotation)

Example

murine ADAM10

Molecular function

GO:0008237 metallopeptidase activity

GO:0042169 SH2 domain binding

. .

Biological Process

GO:0007220 Notch receptor processing

GO:0001701 in utero embryonic development

GO:0008284 positive regulation of cell proliferation

..

Cellular Compartment

GO:0005794 Golgi apparatus

GO:0009986 cell surface

• •

Lookup of GO terms

AmiGO http://amigo.geneontology.org

GO Table View GO:0006508 Proteolysis

Graphical View GO:0006508 Proteolysis

Ancestors and Children

AmiGO http://amigo.geneontology.org

Ancestors and Children	Inferred Tree View	Graph View	Other Views	Downloads	Mappings			
			Ancestors of pr	oteolysis (GO:0006	508)			
s	subject ¢		relation \$		o	bject ¢	ann	otations ¢
proteolysis		■ is	_a (inferred)	biological_p	ocess (GO:000	8150)	665024	
proteolysis		■ is	_a (inferred)	metabolic pr	ocess (GO:0008	8152)	368913	
proteolysis		■ is	_a (inferred)	organic subs	tance metaboli	c process (GO:0071704)	300256	
proteolysis		■ is	_a (inferred)	macromolec	ule metabolic p	rocess (GO:0043170)	202070	
proteolysis		■ is	_a (inferred)	primary met	abolic process ((GO:0044238)	277534	
proteolysis		■ is	_a	protein meta	bolic process (GO:0019538)	105597	
Children of proteolysis (GO:0006508)								
s	subject ø		relation ¢		o	bject ¢	ann	otations \$
membrane protein proteoly	ysis (GO:0033619)	Ⅱ is	_a	proteolysis			387	
negative regulation of prot	teolysis (GO:0045861)	₽ ne	egatively_regulate:	s proteolysis			502	
positive regulation of prote	eolysis (GO:0045862)	⊉ p	ositively_regulates	proteolysis			696	
proteolysis in other organi	sm (GO:0035897)	■ is	_a	proteolysis			83	
proteolysis involved in cell (GO:0051603)	ular protein catabolic pro	ocess I is	_a	proteolysis			8312	
regulation of proteolysis (C	GO:0030162)	⊠ r€	egulates	proteolysis			4093	
self proteolysis (GO:00972	.64)	■ is	_a	proteolysis			38	

Ancestors and Children 2

GO statistics

Even in model organisms only a minority of genes has experimental GO annotation

http://beta.geneontology.org/user-story-tags/everybody?page=5

False Discovery Rate (FDR)

Significance (alpha) level: probability of rejecting the null hypothesis given that it is true

Therefore at 5% significance level: for 100 tests where all null hypotheses are true, the expected number of incorrect rejections is 5

tests	incorrect rejections
100	5
10,000	500

Multiple Testing Correction

- Bonferroni
- False Discovery Rate (FDR): If we find 100 genes significantly differentially expressed at a 5% FDR, we expect 5 false discoveries in the list.

Summary

- RNA-Seq is a versatile technology to study gene expression and the transcriptome
- RNA-Seq analysis methods for differential expression are mature
- Gene list annotation with Pathways and Gene Ontology can help to obtain biological insight.
- Biological interpretation is often by far the most difficult and timeconsuming step of an experiment as it requires broad knowledge of physiology&biochemistry.
- Even experts can usually not make sense of all the significantly enriched processes/pathways in well understood biological systems.

URLs & Tips

Main general Annotation Sources

- Gene Ontology (http://www.geneontology.org/)
 - AmiGO: http://amigo.geneontology.org
 - QuickGO: http://www.ebi.ac.uk/QuickGO/
 - Compilation of GO Tools: http://www.geneontology.org/GO.tools.shtml
- KEGG (http://www.genome.jp/kegg)
- Reactome (http://www.reactome.org)

- Most pathway databases offer also tools to colorize genes of interest on pathways
- Pathway analysis can also be done in R/bioconductor, see
 http://www.bioconductor.org/packages/release/BiocViews.html#___Pathways