Question: In the following triangle $\triangle ABC$, $\angle B = 2\angle C$, $\angle BAD = 60^{\circ}$ and BD = DC. Show $\angle BAC = 90^{\circ}$ without using law of sines or cosines.

Proof:

Proof by contradiction. Suppose $\angle BAC > 90^{\circ}$.

First since BD = DC, we can draw a perpendicular bisector of BC from point D, intersecting AC at E. Then we connect point B and point E. Lastly, we draw a perpendicular line from point E to side BA, intersecting at point F.

Since $\angle BAC > 90^{\circ}$, point F is on the extension of side BA. Thus, BF > BA.

Since ED perpendicularly bisects BC, $\triangle EDB \cong \triangle EDC$. Thus, $\angle EBD = \angle C$. Since $\angle ABD = 2\angle C$, $\angle ABD = 2\angle EBD$ and $\angle EBA = \angle EBD$. Thus, E is on the angle bisector of $\angle ABD$. Thus, $\triangle EBF \cong \triangle EBD$ and BD = BF > BA. Therefore, $\angle BAD > \angle ADB$.

Let $\angle C = \alpha$. Then $\angle ABD = 2\alpha$. Since $\angle BAD = 60^{\circ}$, $\angle ADB = 180^{\circ} - 60^{\circ} - 2\alpha = 120^{\circ} - 2\alpha$. Since $\angle BAD > \angle ADB$, $60^{\circ} > 120^{\circ} - 2\alpha$ and thus $\alpha > 30^{\circ}$.

On the other hand, $\angle BAC = 180^{\circ} - \angle C - \angle ABC = 180^{\circ} - \alpha - 2\alpha = 180^{\circ} - 3\alpha > 90^{\circ}$ and thus $\alpha < 30^{\circ}$ which is a contradiction. Hence, $\angle BAC \le 90^{\circ}$.

Similarly, we can show $\angle BAC \ge 90^{\circ}$. Hence, $\angle BAC = 90^{\circ}$.