MA 515-001, Fall 2017, Practice Problems

Problem 1. Let K be a closed subset of metric space X. For any $x \in X$, the distance from x to K is defined as

$$d_K(x) = \inf_{w \in K} d(x, w).$$

Show that x belongs to K if and only if $d_K(x) = 0$.

Problem 2. Given a metric space (X, d) and a nonempty subset B if X, the distance from a point $x \in X$ to K is defined as

$$d_K(x) = \inf_{w \in K} d(x, w).$$

Show that d_K is a Lipschitz function with a Lipschitz constant 1, i.e.,

$$|d_K(x) - d_K(y)| \le d(x, y) \quad \forall x, y \in X.$$

Problem 3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be Banach spaces. Prove that the Cartersian product

$$X \times Y = \{(x, y) \mid x \in X, y \in Y\}$$

is also a Banach space, with norm

$$||(x,y)|| = \max\{||x||_X, ||y||_Y\} \quad \forall (x,y) \in X \times Y.$$

Problem 4. Let (X,d) be a *compact* metric space and a map $T:X\to X$ such that

$$d(T(x), T(y)) < d(x, y) \quad \forall x, y \in X.$$

Show that T has a fixed point.

Problem 5. Let $f: \mathbb{R} \to [0,1]$ be a contractive map. Using Banach contraction principle to show that the equation

$$e^{f(x)} = 4x$$

has a unique solution.

Problem 6. If (X, d) is complete, show that (X, \tilde{d}) , where

$$\tilde{d}(x,y) = \frac{d(x,y)}{1+d(x,y)} \quad \forall x,y \in X,$$

is also complete.

Problem 7. Let (X, d_X) and (Y, d_Y) be isometric, i.e., there exists a map $T: X \to Y$ such that T(X) = Y and

$$d_Y(T(x_2), T(x_1)) = d_X(x_1, x_2) \quad \forall x_1, x_2 \in X.$$

Show that if (X, d_X) is complete then (Y, d_Y) is complete.

Problem 8. Given X be a vector space, let $\|\cdot\|_1$ and $\|\cdot\|$ be equivalent norms in X, i.e., there exists a constant $C \ge 1$ such that

$$\frac{1}{C} \cdot \|x\| \ \leq \ \|x\|_1 \ \leq \ C \cdot \|x\| \qquad \forall x \in X \,.$$

Show that

- (a) If $E \subset X$ is closed in $(X, \|\cdot\|)$ then E is closed in in $(X, \|\cdot\|_1)$.
- (b) If $(X, \|\cdot\|)$ is complete then $(X, \|\cdot\|_1)$ is complete.

Problem 9. Given X be a vector space, let K be a compact subset of X. Show that

- (a) If $E \subset X$ is open then $K \setminus E$ is compact in X
- (b) If $E \subset X$ is compact then the set

$$H = \left\{ e^{\|x\|} \cdot x + 2 \cdot y \mid x \in K, y \in E \right\}$$

is compact.