Math 204: Final Exam Spring 2018

• Write your full name and Student ID number in the space provided below and sign.

Last Name, First Name:	
Student ID Number:	
Signature:	Analitar

- Mark the section you are registered below.
 - Section 1 (Mon. & Wed. 14:30-15:45, Instructor: Hasan İnci)
 - ☐ Section 2 (Tue. & Thu. 16:00-17:15, Instructor: Tolga Etgü)
 - ☐ Section 3 (Tue. & Thu. 13:00-14:15, Instructor: Tolga Etgü)
- You have 120 minutes.
- You must show all your work to receive full credit.

To be filled by the grader:

		_ 3		1	1			1 3 1
PROBLEM	1	2	3	4	5	6	7	TOTAL
POINTS	12	16	16	14	12	14	16	100
SCORE								

Problem 1. a) (8 pts) Given that $y_1(t) = t^2$ and $y_2(t) = t^{-1}$ are solutions of $t^2y'' - 2y = 0$, t > 0, find the general solution of the following equation.

$$t^{2}y''-2y=3t^{2}-1, \ t>0$$

$$st. \left\{ \text{form} : \ y''-\frac{2}{t^{2}}y=\frac{3t^{2}-1}{t^{2}} \right\}$$

$$W(y_{1},y_{2})=\left| t^{2} \right| t^{-1} = -3 \neq 0$$

$$var. of par. : y_{1}=u_{1}t^{2}+u_{2}t^{-1}$$

$$where \quad u_{1}=-\int \frac{t^{-1}}{-3} \cdot \frac{3t^{2}-1}{t^{2}} dt=-\frac{t^{3}}{3}t^{2}+u_{3}t^{-1}$$

$$u_{2}=\int \frac{t^{2}}{-3} \cdot \frac{3t^{2}-1}{t^{2}} dt=-\frac{t^{3}}{3}t^{2}+u_{3}t^{-1}$$

ger.
$$sln.$$
:
$$y = c_1 t^2 + c_2 t^2 + t^2 ln t + \frac{1}{6} - \frac{t^3}{3} t \frac{1}{3}$$

$$\left(= c_1 t^2 + c_2 t^2 + t^2 ln t + \frac{1}{2} \right)$$

b) (no explanation required, 2 points) True or false:

(i) $\{2t^2 + 2t^{-1}, 3t^2 + 3t^{-1}\}$ is a fundamental set of solutions of $t^2y'' - 2y = 0, t > 0$. T

(ii) $\{2t^2+t^{-1},t^2\}$ is a fundamental set of solutions of $t^2y''-2y=0,\ t>0.$

Problem 2. a) (12 pts) Find the general solution of the following equation.

$$D(D+2)(D-1)y = 2e^{-2t}$$

$$D(D+2)(D-1)y = 0$$

$$D(D+2)^{2}(D-1)y = 0$$

$$C_{1} + C_{2}e^{-2t} + C_{3}e^{-t} + C_{4}e^{-t}$$

$$C_{2} + C_{2}e^{-2t} + C_{3}e^{-t} + C_{4}e^{-t}$$

b) (no explanation required, 2 points each) True or false:

(i) $y=e^{-2t}+e^t+\frac{te^{-2t}}{3}$ is a solution of the equation above. (ii) $y=4+\frac{e^{-2t}}{2}+3e^{-t}+te^{-2t}$ is a solution of the equation above.

Problem 3. a) (12 pts) Solve the following initial value problem

$$y'' - y = \begin{cases} 1, & \text{if } 2 \le t < 4 \\ 0, & \text{otherwise} \end{cases}$$

$$y(0) = 0, \quad y'(0) = 0$$

$$2 \begin{cases} L(y''-y) = L(y(y)) \\ L(y''-y) = L(y'') - L(y) = s^2 L(y) - sy(0) - y'(0) - L(y) = (s^2 - 1) L(y) \end{cases}$$

et
$$F(s) = \frac{1}{s(s^2-1)} = \frac{a}{s} + \frac{b}{s-1} + \frac{c}{s+1} =) a(s-1)(s+1) + b(s)(s+1) + c(s)(s-1) = 1$$

Putting
$$S=1 \Rightarrow 2b=1 \Rightarrow b=1$$

$$S=-1 \Rightarrow 2c=1 \Rightarrow c=1$$

$$S=0 \Rightarrow -a=1 \Rightarrow a=1$$

$$F(s)=\frac{1}{S(s^2-1)} = \frac{-1}{S} + \left(\frac{1}{2}\right) +$$

- b) (no explanation required, 2 points each) True or false:
- (i) If the Laplace transforms $F(s) = \mathfrak{L}\{f(t)\}$ and $G(s) = \mathfrak{L}\{g(t)\}$ both exist for T(s) = s > 0, then $S(s) = \mathfrak{L}\{S(t)\}$ for $S(t) = \mathfrak{L}\{S($
- (ii) If the Laplace transforms $F(s) = \mathfrak{L}\{f(t)\}$ and $G(s) = \mathfrak{L}\{g(t)\}$ both exist for \mathfrak{T} F(s) = a > 0, then $2F(s) + 3G(s) = \mathfrak{L}\{2f(t) + 3g(t)\}$ for s > a > 0.

Problem 4. a) (12 pts) Find the solution of the following systems of equations that satisfies the given initial condition.

b) (no explanation required, 2 points) True or false:

The system
$$\begin{cases} x'_1 = 3x_1 + 6x_2 \\ x'_2 = -x_1 - 2x_2 \end{cases}$$
 is satisfied by the functions $x_1 = 2 + 3e^t$ and $x_2 = 1 + e^t$.

Problem 5. (12 pts) Find the general solution of the following system of equations.

Problem 5. (12 pts) Find the general solution of the following system of equations.

$$x' = \begin{pmatrix} -1 & 2 \\ 0 & -1 \end{pmatrix} \cdot x$$

The read to find eigenvalues at this reduce A.

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C+1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \Rightarrow C = -1 \text{ is the repeated}$$

$$|C-1| = (C+1)^2 = 0 \Rightarrow C = -1 \Rightarrow C =$$

 $W(X^{(1)},X^{(1)}) = \begin{pmatrix} e^{t} & te^{t} \\ 0 & e^{-t} \end{pmatrix} = \frac{e^{-2t}}{2} \pm 0 \quad \forall t \in \mathbb{R}$

Problem 6. (14 pts) Given that
$$\phi(t) = \begin{pmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{pmatrix}$$
 is a fundamental matrix for

the system $\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \cdot \mathbf{x}$, find the general solution of the following system of equations.

$$\mathbf{x}' = \begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix} \cdot \mathbf{x} + \begin{pmatrix} 1 \\ -1 \end{pmatrix} e^t$$

$$X = \emptyset(t) \cdot u(t)$$
where $\emptyset(t) \cdot u'(t) = g(t) = \begin{pmatrix} e^t \\ -e^t \end{pmatrix}$

$$\begin{pmatrix} 2e^{2t} & e^{-t} \\ e^{2t} & 2e^{-t} \end{pmatrix} \begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \begin{pmatrix} e^t \\ -e^t \end{pmatrix}$$

$$2/2e^{2t}u_1 + e^{-t}u_2 = e^{t}$$

$$e^{2t}u_1 + 2e^{-t}u_2' = -e^{t}$$

$$-3e^{2t}u_1' = -3e^{t}$$

$$U_1 = e^{-t}$$
 $U_1 = -e^{-t} + C_1$
 $U_2 = -e^{-t} + C_2$
 $U_2 = -e^{-t} + C_2$

$$\frac{\text{Solution: } X=\emptyset(t), u(t)}{=\left(2e^{2t}e^{-t}\right)\left(-e^{-t}tc_1\right)} = \frac{-2e^{t}+2c_1e^{2t}-e^{t}+c_2e^{-t}}{=e^{t}+2c_1e^{2t}-e^{t}+2c_2e^{-t}} = \chi(t)$$

$$=\left(e^{2t}e^{-t}\right)\left(-e^{-t}tc_1\right) = \left(-e^{t}+c_1e^{2t}-e^{t}+2c_2e^{-t}\right)$$

$$=\left(e^{2t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

$$=\left(e^{2t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

$$=\left(e^{-t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

$$=\left(e^{-t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

$$=\left(e^{-t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

$$=\left(e^{-t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

$$=\left(e^{-t}e^{-t}\right)\left(-e^{-t}+c_1e^{-t}\right)$$

Problem 7. (16 pts) Find the general solution of the following system for t > 0.

(Hint: Look for a solution of the form
$$x_1 = v_1 v_1$$
, $x_2 = v_2 v_1$, where v_1, v_2 , and r are suitable constants.)

(Hint: Look for a solution of the form $x_1 = v_1 v_1$, $x_2 = v_2 v_1$, where v_1, v_2 , and r are suitable constants.)

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\begin{aligned}
x_1' &= 7v_1 t^{r-1} \\
x_2' &= 7v_2 t^{r-1}
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}$$

$$\end{aligned}
\end{aligned}$$

$$\end{aligned}$$

eigenvolves: $\Gamma_1=1$, $\Gamma_2=-1$ eigenvectors: $\nabla^{(1)}=(\frac{1}{3})$, $\nabla^{(2)}=(\frac{1}{3})$ Hence $\nabla^{(1)}=(\frac{1}{3})$ $\nabla^{(2)}=(\frac{1}{3})$ $\nabla^{(2)}=(\frac{1$