- **1. Identyfikacja problemu** = po czym poznać, że zadanie trzeba rozwiązać tą metodą:
 - metoda służy do wyliczania napięć i prądów w obwodzie. Jest to metoda macierzowa, rozmiar macierzy zależy od liczby węzłów, zatem dla ich dużej liczby policzenie macierzy odwrotnej będzie skomplikowane
 - metoda jest szczególnie przydatna w zadaniach, gdzie jest dużo źródeł napięć/prądów i nie można kombinować z wyznaczaniem impedancji zastępczych
 - najczęściej jest wykorzystywana przy wyznaczaniu napięć w zadaniach na stan nieustalony przy wymuszeniu prądem stałym

Rozwiązanie

2. Przekształcenia symboliczne

(jak w zadaniach na rozpływ prądów, bilans mocy, impedancję zast., metodę Thevenina):

• źródła napięć i prądów zmieniane z wartości chwilowych (funkcji czasu) na wartości skuteczne zespolone:

$$\begin{split} u(t) &= U_m \sin \left(\omega t + \Psi_{\mathrm{u}}\right) \quad \Rightarrow \qquad \quad U = \frac{U_m}{\sqrt{2}} e^{j\Psi_{\mathrm{u}}} = \frac{U_m}{\sqrt{2}} \left(\cos(\Psi_{\mathrm{u}}) + j \sin(\Psi_{\mathrm{u}})\right) \\ i(t) &= I_m \sin \left(\omega t + \Psi_{\mathrm{i}}\right) \quad \Rightarrow \qquad \quad I = \frac{I_m}{\sqrt{2}} e^{j\Psi_{\mathrm{i}}} = \frac{I_m}{\sqrt{2}} \left(\cos(\Psi_{\mathrm{i}}) + j \sin(\Psi_{\mathrm{i}})\right) \end{split}$$

• impedancje cewek i kondensatorów

cewka:

$$Z_L = j\omega L = jX_L$$

kondensator:

$$Z_C = \frac{1}{i\omega C} = -jX_C$$

3. Analiza węzłów

- 1. należy dokładnie przeanalizować liczbę węzłów:
 - 1. "scalić" węzły połączone tylko "drucikiem" (gałęzią bez żadnych elementów)
 - 2. w razie potrzeby gdy takich "scaleń" jest dużo lub dotyczą kilku węzłów należy przerysować obwód już po wszystkich "scaleniach"
 - 3. po "scaleniach" węzłów należy określić poszczególne gałęzie oraz ich podłączenie do węzłów
- 2. Spośród węzłów wybieramy **węzeł odniesienia** i oznaczamy go na schemacie obwodu symbolem uziemienia:

- 3. Resztę węzłów numerujemy wedle uznania:D
- 4. Wyznaczamy admitancje wszystkich elementów. Admitancja (Y) to odwrotność impedancji wyliczonej w etapie poprzednim (dla każdego elementu):

$$Y = \frac{1}{7}$$

oczywiście źródła prądu i napięcia nie mają admitancji

5. wyznaczamy prądy płynące w gałęziach - ale **tylko** w tych gałęziach, w których **są źródła prądu lub napięcia**

Przykład

na rysunku już są wyznaczone admitancje oraz wielkości symboliczne zespolone napięć i prądów źródeł

Analizujemy węzły - na poniższym rysunku na niebiesko zaznaczone jest scalanie węzłów, które połączone były tylko drucikiem. Dodatkowo wybrany jest węzeł odniesienia oraz reszta jest ponumerowana.

Ważne jest też dokładne rozdzielenie gałęzi - poniżej wszystkie gałęzie pozaznaczane na zielono i oznaczone literkami:

Wyznaczamy prądy w gałęziach ze źródłami prądu/napięcia:

gałąź A:

 $I_A = E_1 Y_1$

gałąź B:

 $I_B = I_1$

gałąź C - brak źródła prądu/napięcia

gałąź D:

 $I_D = gU_3$

gałąź E - brak źródła prądu/napięcia

gałąź F:

 $I_F = I_2$

gałąź G - brak źródła prądu/napięcia

4. Macierz węzłowa

- 1. Macierz węzłowa jest macierzą kwadratową o liczbie wierszy i kolumn równej liczbie ponumerowanych węzłów (bez uwzględniania węzła odniesienia).

 Dodatkowo macierz jest symetryczna względem przekątnej głównej
- 2. Wyznaczanie wyrazów na przekątnej głównej są to "admitancje własne" węzłów

 kolejne pozycje na przekątnej głównej wyznaczane są zgodnie z wprowadzoną numeracją węzłów

- 2. Dla każdego węzła sumujemy admitancje wszystkich gałęzi podłączonych do tego węzła i taką sumę wstawiamy do macierzy na odpowiednie miejsce przekątnej
- 3. Wyznaczanie elementu w i-tym wierszu oraz j-tej kolumnie, poza przekątną (i≠j) są to "admitancje wzajemne" węzłów i oraz j.

Wartość ta jest równa admitancji wszystkich gałęzi łączących **bezpośrednio** te dwa węzły z **dostawionym znakiem minus**.

Jeśli te dwa węzły nie są połączone bezpośrednio żadną gałęzią, to do macierzy wstawiamy w tym miejscu 0.

Oczywiście tak wyliczoną wartość wstawiamy w i-tym wierszu oraz j-tej kolumnie oraz symetrycznie: w j-tym wierszu i i-tej kolumnie

4. otrzymaną macierz oznaczamy literą Y

Przykład c. d.

wyrazy na głównej przekątnej:

węzeł nr 1: dołączone do niego są gałęzie A, B, C, zatem jego admitancja własna jest równa sumie admitancji tych gałęzi i wynosi:

$$Y_1 + Y_2$$

węzeł nr 2: dołączone do niego są gałęzie C, D, E, zatem jego admitancja własna wynosi:

$$Y_2 + Y_3$$

węzeł nr 2: dołączone do niego są gałęzie E, F, G zatem jego admitancja własna wynosi:

$$Y_3 + Y_4$$

admitancje wzajemne:

węzeł 1 i 2: połączone są bezpośrednio tylko gałęzią C, zatem ich admitancja wzajemna jest równa admitancji tej gałęzi z minusem i wynosi $-Y_2$

węzeł 2 i 3: połączone są bezpośrednio tylko gałęzią E, zatem ich admitancja wzajemna wynosi $-Y_3$ węzeł 1 i 3 nie są połączone bezpośrednio żadną gałęzią, więc ich admitancja wzajemna jest równa 0

Mamy już wszystkie elementy macierzy węzłowej - wypisujemy ją:

$$\mathbf{Y} = \begin{pmatrix} Y_1 + Y_2 & -Y_2 & 0 \\ -Y_2 & Y_2 + Y_3 & -Y_3 \\ 0 & -Y_3 & Y_3 + Y_4 \end{pmatrix}$$

normalnie wszystkie admitancje dają się policzyć, bo są dane (albo impedancje). Dlatego tutaj trzeba wstawić te liczby, żeby dostać macierz liczbową

5. Wektor wymuszeń prądowych

Wyznaczamy wektor wymuszeń prądowych.

1. Dla każdego węzła sprawdzamy jakie prądy do niego wpływają, a jakie wypływają - uwzględniamy tylko prądy ze źródeł napięć i prądów w poszczególnych gałęziach, które wyznaczyliśmy w etapie analizy węzłów dla każdej gałęzi.

- Na i-tym miejscu wektora wymuszeń prądowych jest suma prądów wpływających i wypływających do i-tego węzła (zgodnie z przyjętą numeracją), przy czym prądy wpływające bierzemy z plusem, a prądy wypływające - z minusem.
- 3. otrzymany wektor oznaczamy literą I_{zr}

Przykład c. d.

wezeł nr 1:

wpływa do niego prąd z gałęzi A, wypływa prąd z gałęzi B (a gałąź C nie miała żadnych źródeł, więc jątu pomijamy). Zatem prąd wymuszenia dla węzła nr 1 wynosi:

$$I_A - I_B = E_1 Y_1 - I_1$$

węzeł nr 2:

wypływa z niego prąd z gałęzi D, zatem prąd wymuszenia dla tego węzła wynosi:

$$-I_D = -gU_3$$

węzeł nr 3:

wypływa z niego prąd z gałęzi F, zatem prąd wymuszenia dla tego węzła wynosi:

$$-I_F = -I_2$$

Wszystkie wymuszenia prądowe policzone (dla wszystkich węzłów), więc można wypisać wektor wymuszeń prądowych:

$$\boldsymbol{I_{zr}} = \begin{pmatrix} E_1 Y_1 - I_1 \\ -g U_3 \\ -I_2 \end{pmatrix}$$

Tutaj należy wstawić dane z zadania - powinien wyjść wektor liczbowy. Wyjątek stanowią zadania ze źródłami sterowanymi - w takim przypadku zależność opisująca sterowanie zostanie we wzorku na wektor w postaci literek.

6. Równanie macierzowe

1. Zapisujemy równanie macierzowe opisujące obwód:

$$Y \cdot V = I_{zr}$$

gdzie V oznacza wektor szukanych potencjałów w wezłach:

- 2. UWAGA! Jeśli w obwodzie występowały źródła sterowane (czyli takie, gdzie prąd lub napięcie jest uzależnione od jakiegoś innego napięcia/prądu w obwodzie), to w wektorze prądów wymuszeń pojawi się wielkość do usunięcia, zastąpienia potencjałami węzłowymi. I tak:
 - jeśli <u>sterowanie zależy od prądu</u> na jakimś elemencie układu, to prąd wyliczamy z prawa Ohma dla gałęzi, w której ten element się znajduje.

Jako napięcie w gałęzi bierzemy różnicę potencjałów węzłów, które są na końcach gałęzi:

$$U_{gala\acute{z}} = V_i - V_j$$

Jeśli jednym z końców gałęzi jest węzeł odniesienia, to wstawiamy zamiast V wartość 0

Z prawa Ohma liczymy prąd:

 $I_{gałaź} = U_{gałaź} \cdot Y_{gałaź}$

gdzie Y_{gałąź} to admitancja gałęzi

po wstawieniu pierwszego wzoru:

$$I_{ga!a\acute{z}} = (V_i - V_j) \cdot Y_{ga!a\acute{z}}$$

I taki prąd wstawiamy do wektora wymuszeń w miejsce wzorka dla źródła sterowanego

 jeśli <u>sterowanie zależy od napięcia</u> na jakimś elemencie układu, to napięcie to wyliczamy z prawa Ohma dla gałęzi, w której ten element się znajduje.
 Najpierw wyznaczamy napięcie na całej gałęzi jako różnicę potencjałów węzłach końcowych tej gałęzi:

$$U_{gala\acute{z}} = V_i - V_j$$

Jeśli jednym z końców gałęzi jest węzeł odniesienia, to wstawiamy zamiast V wartość 0

Z prawa Ohma liczymy prąd płynący przez gałąź:

$$I_{gala\acute{z}} = U_{gala\acute{z}} \cdot Y_{gala\acute{z}}$$

gdzie $Y_{gałq\acute{z}}$ to admitancja gałęzi.

A teraz z prawa Ohma dla danego elementu liczymy napięcie na tym elemencie:

$$U_{element} = \frac{I_{ga\nmid \acute{q}\acute{z}}}{Y_{element}}$$

gdzie $Y_{element}$ to admitancja samego elementu (nie całej gałęzi) wstawiamy do ostatniego wzorka dwa poprzednie:

$$U_{element} = \frac{U_{ga\nmid \dot{\gamma}} \cdot Y_{ga\nmid \dot{\gamma}}}{Y_{element}} = \frac{\left(V_i - V_j\right) \cdot Y_{ga\nmid \dot{\gamma}}}{Y_{element}}$$

3. Jeśli były źródła sterowane, to po wstawieniu powyżej wyliczonych wzorów należy przenieść wartości stojące przy V_i i V_j z przeciwnymi znakami do i-tej i j-tej kolumny macierzy

Przykład c. d.

Wyliczone macierz i wektory

$$Y = \begin{pmatrix} Y_1 + Y_2 & -Y_2 & 0 \\ -Y_2 & Y_2 + Y_3 & -Y_3 \\ 0 & -Y_3 & Y_3 + Y_4 \end{pmatrix}$$

$$I_{zr} = \begin{pmatrix} E_1 Y_1 - I_1 \\ -g U_3 \\ -I_2 \end{pmatrix}$$

$$V = \begin{pmatrix} V_1 \\ V_2 \\ V_2 \end{pmatrix}$$

Równanie macierzowe:

$$\begin{pmatrix} Y_1 + Y_2 & -Y_2 & 0 \\ -Y_2 & Y_2 + Y_3 & -Y_3 \\ 0 & -Y_3 & Y_3 + Y_4 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} E_1 Y_1 - I_1 \\ -g U_3 \\ -I_2 \end{pmatrix}$$

W obwodzie było jedno źródło sterowane, dlatego w wektorze prądów wymuszonych jest wyrażenie gU_3 , które należy usunąć. Zgodnie ze schematem U_3 to napięcie na rezystorze w gałęzi E.

Określamy napięcie na tej gałęzi zgodnie z kierunkiem U_3 ze schematu. Końcem tej gałęzi z uwzględnieniem kierunku jest węzeł 2, a początkiem tej gałęzi jest węzeł 3. Zatem napięcie na tej gałęzi liczone w tym kierunku jest równe różnicy potencjałów węzła końcowego (nr 2) i węzła początkowego (nr 3):

$$U_{gałaź} = V_2 - V_3$$

Jako że w tej gałęzi występuje tylko jeden element, to napięcie na nim jest równe napięciu na całej gałęzi, czyli:

$$U_3 = U_{gala\acute{z}} = V_2 - V_3$$

i taką zależność wstawiamy do równania macierzowego:

$$\begin{pmatrix} Y_1 + Y_2 & -Y_2 & 0 \\ -Y_2 & Y_2 + Y_3 & -Y_3 \\ 0 & -Y_3 & Y_3 + Y_4 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} E_1 Y_1 - I_1 \\ -g(\frac{V_2 - V_3}{2}) \\ -I_2 \end{pmatrix}$$

widać, że w wektorze prądów wymuszeń pojawiły się potencjały V_2 i V_3 Trzeba je przerzucić do odpowiednich kolumn w macierzy (wiersz pozostaje bez zmian jak ich aktualne położenie - czyli drugi). Wcześniej wymnażamy współczynnik g przez te potencjały.

$$\begin{pmatrix} Y_1 + Y_2 & -Y_2 & 0 \\ -Y_2 & Y_2 + Y_3 & -Y_3 \\ 0 & -Y_3 & Y_3 + Y_4 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} E_1 Y_1 - I_1 \\ -g \frac{V_2}{2} + g \frac{V_3}{3} \\ -I_2 \end{pmatrix}$$

Zatem współczynnik przy V_2 z przeciwnym znakiem dodajemy do elementu w kolumnie drugiej, a współczynnik przy V_3 również z przeciwnym znakiem dodajemy do elementu w kolumnie trzeciej:

$$\begin{pmatrix} Y_1 + Y_2 & -Y_2 & 0 \\ -Y_2 & Y_2 + Y_3 + g & -Y_3 - g \\ 0 & -Y_3 & Y_3 + Y_4 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} = \begin{pmatrix} E_1 Y_1 - I_1 \\ 0 \\ -I_2 \end{pmatrix}$$

i już mamy uporządkowane równanie

W tym wzorze po usunięciu wzorków wynikających ze źródeł sterowanych powinny zostać już tylko same dane liczbowe oraz wektor V w postaci zmiennych V_i

7. Rozwiązanie równania macierzowego

- 1. Aby rozwiązać równanie należy wyznaczyć macierz odwrotną Y^{-1} Kalkulator potrafi tylko dla macierzy 2x2 i 3x3
- 2. Metoda standardowa liczenia macierzy odwrotnej
 - przypadek macierzy 1x1 (co oznacza, że był tylko jeden węzeł a w zadaniach z egzaminu to bardzo możliwe)

W tym przypadku macierz to po prostu liczba:

$$Y = a_{11}$$

Wektor potencjałów węzłowych to też tylko jeden element:

$$V = V_1$$

Wektor prądów wymuszonych to też jedna liczba:

$$I_{zr} = i_1$$

Wyliczona macierz odwrotna to:

$$Y^{-1} = \frac{1}{a_{11}}$$

A rozwiązanie równania to:

$$V_1 = \frac{1}{a_{11}} i_1$$

2. przypadek macierzy 2x2 (co oznacza, że były dwa węzły)

W tym przypadku macierz ma postać:

$$\mathbf{Y} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$

Wektor potencjałów wezłowych:

$$V = \begin{pmatrix} V_1 \\ V_2 \end{pmatrix}$$

Wektor prądów wymuszonych to też jedna liczba:

$$I_{zr} = \begin{pmatrix} i_1 \\ i_2 \end{pmatrix}$$

Wyliczona macierz odwrotna to:

$$\mathbf{Y^{-1}} = \frac{1}{a_{11}a_{22} - a_{21}a_{12}} {a_{22} - a_{21} \choose -a_{21}} {a_{22} - a_{12} \choose -a_{21}}$$

Aby rozwiązać równanie czyli wyznaczyć wektor V trzeba pomnożyć macierz odwrotną i wektor prądów wymuszonych:

$$\binom{V_1}{V_2} = \frac{1}{a_{11}a_{22} - a_{21}a_{12}} \binom{a_{22} & -a_{12}}{-a_{21}} \binom{i_1}{i_2}$$

3. przypadek macierzy 3x3 (co oznacza, że były 3 węzły)

W tym przypadku macierz ma postać:

$$\mathbf{Y} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Wektor potencjałów węzłowych:

$$\boldsymbol{V} = \begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

Wektor prądów wymuszonych to też jedna liczba:

$$I_{zr} = \begin{pmatrix} i_1 \\ i_2 \\ i_3 \end{pmatrix}$$

Wyznacznik macierzy:

 $det(Y) = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}$ Macierz odwrotną liczy się klasycznie - każdy element to wyznacznik macierzy dopełnień algebraicznych, czyli macierzy z wykreślonym wierszem i kolumną elementu, który teraz liczymy i przemnożony przez (-1) do potęgi równej sumie nr wiersza i kolumny (np. dla elementu w 1 wierszu i 2 kolumnie liczymy wyznacznik macierzy z wykreślonym pierwszym wierszem i drugą kolumną przemnożony przez (-1) $^{1+2}$):

$$\mathbf{Y^{-1}} = \frac{1}{\det(\mathbf{Y})} \begin{pmatrix} (-1)^{1+1} det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} & (-1)^{1+2} det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} & (-1)^{1+3} det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \\ (-1)^{2+1} det \begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} & (-1)^{2+2} det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} & (-1)^{2+3} det \begin{pmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{pmatrix} \\ (-1)^{3+1} det \begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix} & (-1)^{3+2} det \begin{pmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{pmatrix} & (-1)^{3+3} det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \end{pmatrix}$$

Aby rozwiązać równanie czyli wyznaczyć wektor V trzeba pomnożyć macierz odwrotną i wektor prądów wymuszonych:

$$\begin{pmatrix} V_1 \\ V_2 \\ V_3 \end{pmatrix} \\ = \frac{1}{\det(\mathbf{Y})} \begin{pmatrix} (-1)^{1+1} det \begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix} & (-1)^{1+2} det \begin{pmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{pmatrix} & (-1)^{1+3} det \begin{pmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{pmatrix} \\ (-1)^{2+1} det \begin{pmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{pmatrix} & (-1)^{2+2} det \begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} & (-1)^{2+3} det \begin{pmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{pmatrix} \\ (-1)^{3+1} det \begin{pmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{pmatrix} & (-1)^{3+2} det \begin{pmatrix} a_{11} & a_{13} \\ a_{21} & a_{23} \end{pmatrix} & (-1)^{3+3} det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \end{pmatrix}$$

8. Wyznaczenie prądów w obwodzie

- 1. Dla każdej gałęzi wypisujemy wzór na prąd przez nią płynący:
 - Jeśli gałąź nie zawiera żadnych źródeł napięcia U: $I_{gałąź} = (V_j V_i)Y_{gałąź}$ gdzie V_i oraz V_j to wyliczone z równania macierzowego potencjały w węzłach i oraz j, a węzły te są początkiem i końcem wyliczanej gałęzi. Początek i koniec

ustalamy zgodnie z kierunkiem przepływu prądu (strzałka wypływa z początku (węzeł i) i wpływa w koniec (węzeł j)).

Jeśli początek lub koniec gałęzi to węzeł odniesienia (ten z symbolem uziemienia), to zamiast V wstawiamy 0.

• Jeśli gałąź zawiera źródła napięcia:

$$I_{ga!a\acute{z}} = (V_j + E - V_i)Y_{ga!a\acute{z}}$$

gdzie V_i oraz V_j to wyliczone z równania macierzowego potencjały w węzłach i oraz j, a węzły te są początkiem i końcem wyliczanej gałęzi. Początek i koniec ustalamy zgodnie z kierunkiem przepływu prądu (strzałka wypływa z początku (węzeł i) i wpływa w koniec (węzeł j)).

E to suma wszystkich źródeł napięcia na tej gałęzi, przy czym z plusem bierzemy te źródła, które mają zgodny z prądem gałęziowym kierunek, a z minusem - jeśli przeciwny.

Jeśli początek lub koniec gałęzi to węzeł odniesienia (ten z symbolem uziemienia), to zamiast V wstawiamy 0.

- Jeśli gałąź zawiera źródła prądu to nie trzeba nic liczyć prąd jest równy sumie prądów źródeł (jeśli jest więcej niż jedno - i znów bierzemy z plusem kierunki zgodne z przyjętym kierunkiem prądu w gałęzi, a z minusem - przeciwne)
- 2. Jeśli konieczne jest wyznaczenie napięcia na poszczególnych elementach gałęzi, to korzystamy z wyliczonego wcześniej prądu w gałęzi oraz impedancji elementu:

$$U_{element} = \frac{I_{galq\acute{z}}}{Y_{element}}$$