Exercise 1 (2.1: 14). a. Determine whether there exists a SES $0 \to \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4 \to 0$.

- b. Determine which abelian groups A fit into a short exact sequence $0 \to \mathbb{Z}_{p^m} \to A \to \mathbb{Z}_{p^n} \to 0$ with p prime.
- c. What about $0 \to \mathbb{Z} \to A \to \mathbb{Z}_n \to 0$?
- a. By the first isomorphism theorem, exactness of the SES given is equivalent to finding injective $i: \mathbb{Z}_4 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2$ and surjective $j: \mathbb{Z}_8 \oplus \mathbb{Z}_2 \to \mathbb{Z}_4$ such that

$$\frac{\mathbb{Z}_8 \oplus \mathbb{Z}_2}{i(\mathbb{Z}_4)} = \frac{\mathbb{Z}_8 \oplus \mathbb{Z}_2}{\operatorname{Ker} j} \cong \mathbb{Z}_4.$$

There aren't actually many candidates for i, so we can start our search with those. Note that in order for i to be a homomorphism, we need $4 \cdot i(1) = i(4) = i(0) = 0$. Since i must also be injective, this implies that i(1) must be of order 4 exactly in $\mathbb{Z}_8 \oplus \mathbb{Z}_2$. There are two such elements: (2,0) and (2,1).

Mapping $1 \to (2,0)$ doesn't work, as $\frac{\mathbb{Z}_8 \oplus \mathbb{Z}_2}{i(\mathbb{Z}_4)}$ in that case isn't cyclic and thus can't be isomorphic to \mathbb{Z}_4 . So we instead define i by mapping $1 \mapsto (2,1)$. The image of i is then

$$i(\mathbb{Z}_4) = \{(0,0), (2,1), (4,0), (6,1)\},\$$

and we can use this to show that the cosets of $\frac{\mathbb{Z}_8 \oplus \mathbb{Z}_2}{i(\mathbb{Z}_4)}$ are

$$(0,0) + i(\mathbb{Z}_4), \quad (1,0) + i(\mathbb{Z}_4), \quad (0,1) + i(\mathbb{Z}_4), \quad (1,1) + i(\mathbb{Z}_4).$$

Note that this quotient group is generated by [(1,0)] since

$$2 \cdot [(1,0)] = [(2,0)] = [(0,1)],$$

$$3 \cdot [(1,0)] = [(3,0)] = [(1,1)],$$

$$4 \cdot [(1,0)] = [(4,0)] = [(0,0)].$$

Thus the map determined by $[(1,0)] \mapsto 1$ is an isomorphism $\frac{\mathbb{Z}_8 \oplus \mathbb{Z}_2}{i(\mathbb{Z}_4)}$. This means the sequence

$$0 \to \mathbb{Z}_4 \stackrel{i}{\to} \mathbb{Z}_8 \oplus \mathbb{Z}_2 \stackrel{j}{\to} \mathbb{Z}_4 \to 0$$

is exact, where j is the composition of the canonical projection $\mathbb{Z}_8 \oplus \mathbb{Z}_2 \twoheadrightarrow \frac{\mathbb{Z}_8 \oplus \mathbb{Z}_2}{i(\mathbb{Z}_4)}$ and the above isomorphism.

b. In order to be exact, we need

$$\frac{A}{\mathbb{Z}_{p^m}} \cong \mathbb{Z}_{p^n},$$

which forces the order of A to be $p^n p^m = p^{n+m}$. We know A is abelian, and now we know it's finite, so it must then be finitely generated. Any finitely generated, finite group A of order p^{m+n} can be written

$$A \cong \bigoplus_{i=1}^{\ell} \mathbb{Z}_{p^{k_i}}$$

for some ℓ and natural numbers k_i . Similar to part (a), i(1) must be order p^m in order for ito be an injective homomorphism, so $\max_i k_i \geq m$. We'll now show that $\ell = 2$ since A is generated by 2 elements.

We claim $A = \langle i(1), \tilde{a} \rangle$, where $j(\tilde{a}) = 1$ (we know such an \tilde{a} exists since j is surjective). Suppose $a \in \text{Im } i$, then since $i(\mathbb{Z}_{p^m})$ is cyclic, a is generated by i(1). Now suppose $a \notin \text{Im } i =$ Ker j, then $j(a) \neq 0$, so $j(a) = r \cdot j(\tilde{a}) = j(r\tilde{a})$ for some $r \in \mathbb{N}$. Then $j(a - r\tilde{a}) = 0$, so $a-r\tilde{a} \in \text{Ker } j = \text{Im } i$. Since this element is then generated by i(1), we have $a-r\tilde{a} = s \cdot i(1)$ for some $s \in \mathbb{N}$. Rearranging gives $a = s \cdot i(1) + r\tilde{a}$, so a is generated by i(1) and \tilde{a} .

By this argument, we know A is the direct sum of exactly two groups $\mathbb{Z}_{p^{k_1}}$ and $\mathbb{Z}_{p^{k_2}}$. Since $\max_i k_i \ge m$, this leaves us with the following family of possible A:

$$\mathbb{Z}_{p^{m+n-k}} \oplus \mathbb{Z}_{p^k}$$

for $0 \le k \le \min\{n, m\}$. As it turns out, all of these work.

To construct i, we'll use the same observation from part (a) that i(1) should have order p^m and define i by mapping $i: 1 \mapsto (p^{n-k}, 1)$. We now claim that the cosets of $\frac{\mathbb{Z}_{p^{m+n-k}} \oplus \mathbb{Z}_{p^k}}{i(\mathbb{Z}_{p^m})}$ are generated by [(1,0)]. Consider any coset $[(x,y)] = (x,y) + \operatorname{Im} i$, then

$$[(x,y)] = [(x,y) - y(p^{n-k},1)] = [(x - yp^{n-k},0)] = (x - yp^{n-k})[(1,0)].$$

Thus this quotient group is cyclic. To find its order, note that

$$p^{n}[(1,0)] = [(p^{n},0)] = p^{k}[(p^{n-k},0)] = p^{k}[(0,0)] = 0.$$

This is the smallest integer multiple that yields 0, so the order of the quotient is p^n , i.e. it's isomorphic to \mathbb{Z}_{p^n} . Then the sequence

$$0 \to \mathbb{Z}_{p^m} \stackrel{i}{\rightarrowtail} \mathbb{Z}_{p^{n+m-k}} \oplus \mathbb{Z}_{p^k} \stackrel{j}{\twoheadrightarrow} \mathbb{Z}_{p^n} \to 0$$

is exact, where j is the composition of the canonical projection $\frac{\mathbb{Z}_{p^n+m-k}\oplus\mathbb{Z}_{p^k}}{i(\mathbb{Z}_{p^m})}$ \twoheadrightarrow $i(\mathbb{Z}_{p^m})$ and the isomorphism of this quotient with \mathbb{Z}_{p^n} .

c. By the same argument as in part (b), A is the direct sum of two cyclic groups. Since $\mathbb{Z} \mapsto A$ is injective when the sequence is exact, we know that 1 of them must be \mathbb{Z} . Since $A \to \mathbb{Z}_n$ is surjective when the sequence is exact, we know the other must be \mathbb{Z}_m for some m dividing n.

As it turns out, any such direct sum works. Define i by mapping $i: 1 \mapsto (1, n/d)$, and define $j:(x,y)\mapsto y-xn/d$. Since for all x, we have

$$(ii)(x) = i(x, xn/d) = xn/d - xn/d = 0.$$

we know $\text{Im } i \subset \text{Ker } j$. Conversely, suppose $j(x,y) = y - xn/d = 0 \mod n$, then $y = x + n + 1 \pmod n$ xn/d = nk for some $k \in \mathbb{N}_0$. Rearranging gives y = nk + xn/d, so we rewrite (x, y) as

$$(x,y) = (x, nk + xn/d) = (x, xn/d) = i(x),$$

where the second equality follows from the second coordinate being mod n. Thus $\operatorname{Ker} j \subset \operatorname{Im} i$, so the two are actually equal. Thus the sequence

$$0 \to \mathbb{Z} \stackrel{i}{\rightarrowtail} \mathbb{Z} \oplus \mathbb{Z}_d \stackrel{j}{\twoheadrightarrow} \mathbb{Z}_n \to 0$$

is exact.

Exercise 2 (2.1: 15). For $A \to B \to C \to D \to E$ exact, show that $C = 0 \iff$ the map $A \to B$ is surjective and $D \to E$ is injective. Then show that $A \hookrightarrow X$ induces isomorphisms on all homology groups $\iff H_n(X, A) = 0$ for all n.

First part: Suppose $H_n(X,A) = 0$, then we have the exact sequence

$$A \xrightarrow{a} B \xrightarrow{b} 0 \xrightarrow{c} D \xrightarrow{d} E.$$

By exactness, $\operatorname{Im} a = \operatorname{Ker} b = B$ (i.e. a is surjective) and $\operatorname{Ker} d = \operatorname{Im} c = 0$ (i.e. d is injective). Conversely, suppose we have the exact sequence

$$A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D \xrightarrow{d} E$$

where a is surjective and d is injective. By exactnes and the surjectivity of a, we have $\operatorname{Ker} b = \operatorname{Im} a =$ B, so b is the zero map. Then again by exactness, $\operatorname{Ker} c = \operatorname{Im} b = 0$. Finally, by exactness and the injectivity of d, we have $\operatorname{Im} c = \operatorname{Ker} d = 0$, so c is also the zero map. In order for the zero map to have trivial kernel, C=0.

Second part: Fix $A \subset X$. We will make frequent use of the long exact sequence

$$\cdots \to H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to H_{n-1}(X) \to \cdots$$

For the forward direction, suppose $H_n(A) \cong H_n(X)$ via i_* for all n. Since i_* is the map $H_n(A) \to I_n(A)$ $H_n(X)$ in the long exact sequence above, we necessarily have exact sequences of the form

$$H_n(A) \to H_n(X) \to H_n(X,A) \to H_{n-1}(A) \to H_{n-1}(X)$$

Conversely, suppose $H_n(X, A) = 0$ for all n. We then have exact sequences of the form

$$H_n(A) \to H_n(X) \to 0 \to H_{n-1}(A) \to H_{n-1}(X)$$

for all n. By the first part of the problem, this implies $H_n(A) woheadrightarrow H_n(X)$ is surjective. Applying the first part of the problem to the exact sequence

$$H_{n+1}(A) \to H_{n+1}(X) \to 0 \to H_n(A) \to H_n(X)$$

shows that $H_n(A) \rightarrow H_n(X)$ is also injective, so it's an isomorphism. Thus $H_n(A) \cong H_n(X)$ for all n.

Exercise 3 (2.1: 16). a. $H_0(X, A) = 0 \iff A$ meets each path component of X.

b. $H_1(X, A) = 0 \iff H_1(A) \to H_1(X)$ is surjective and each path component of X contains at most one path component of A.

Suppose X has path components $\{X_{\alpha}\}_{\alpha}$, then we know

- (i) $H_n(X) \cong \bigoplus_{\alpha} H_n(X_{\alpha})$; and
- (ii) $H_0(X) \cong \bigoplus_{\alpha} \mathbb{Z}$.

Lemma 1. $H_0(X,A) = 0 \iff$ there is a surjective map $H_0(A) \cong H_0(X)$.

Proof. This is essentially just a restriction of the previous problem. Consider the following exact sequence taken from the long exact sequence of the pair (X, A).

$$H_0(A) \to H_0(X) \to H_0(X,A) \to 0 \rightarrowtail 0.$$

The rightmost map $0 \rightarrow 0$ is necessarily injective, so by part (a) of the previous problem, $H_0(X, A) = 0 \iff H_0(A) \rightarrow H_0(X)$ is surjective.

a. A intersects all $X_{\alpha} \iff$ the generators of $H_0(A \cap X_{\alpha})$ also generate $H_0(X_{\alpha})$ for all α . This occurs iff $H_0(A \cap X_{\alpha}) \stackrel{i_*}{\twoheadrightarrow} H_0(X_{\alpha})$ is surjective for all α .

By (i), $H_0(A) \cong \bigoplus_{\alpha} H_0(A \cap X_{\alpha})$ and $H_0(X) \cong \bigoplus_{\alpha} X_{\alpha}$. Then direct summing each $H_0(A \cap X_{\alpha}) \twoheadrightarrow H_0(X_{\alpha})$ gives a surjective map $H_0(A) \twoheadrightarrow H_0(X)$. Then by the lemma, this happens $\iff H_0(X,A) = 0$.

b. We have the following exact sequence from the exact sequence of the pair (X, A).

$$H_1(A) \to H_1(X) \to H_1(X,A) \to H_0(A) \to H_0(X)$$

By part (a) of the previous problem $H_1(X,A) = 0 \iff H_1(A) \twoheadrightarrow H_1(X)$ is surjective and $H_0(A) \rightarrowtail H_0(X)$ is injective. But $H_0(A) \rightarrowtail H_0(X)$ is injective if and only if any path component of X contains at most 1 path component of A:

Forward: Suppose not, then by (ii), $H_0(A \cap X_\alpha)$ for some α is isomorphic to the direct sum of 2 or more copies of \mathbb{Z} . By (i), we know $H_0(X_\alpha) \cong \mathbb{Z}$ for that same α , but there is no injective map $\bigoplus_{i \in \mathcal{J}} \mathbb{Z} \to \mathbb{Z}$ when $|\mathcal{J}| > 1$. So taking direct sums, there is no injective map $H_0(A) = \bigoplus_{\alpha} H_0(A \cap X_\alpha) \to \bigoplus_{\alpha} H_0(X_\alpha) = H_0(X)$, a contradiction.

Backward: Suppose there's at most 1 path component of A in each path component of X. Then by (ii), $H_0(A) \cong \bigoplus_{\beta \in \mathcal{B}}$, where $\mathcal{B} \subset \mathcal{A}$ and $H_0(X) \cong \bigoplus_{\alpha \in \mathcal{A}}$. We can clearly include $H_0(A)$ inside $H_0(X)$.

- a. Compute $H_n(X,A)$ when X is S^2 or $S^1 \times S^1$ and A is a finite **Exercise 4** (2.1: 17). set of points in X.
 - b. Compute $H_n(X,A)$ and $H_n(X,B)$ for X a closed orientable surface of genus two with A and B the circles shown.
- a. 2-Sphere: We know $\tilde{H}_n(S^2) = \mathbb{Z}$ when n=2 and 0 otherwise. We also know that $H_n(\operatorname{pt}) =$ \mathbb{Z} when n=0 and 0 otherwise. Then since the n-th homology of a space is the direct sum of the *n*-th homologies of its path components, we have $H_n(A) = \mathbb{Z}^m$ when n = 0 and 0 otherwise, where m is the number of points in A. Its reduced homology is then $\tilde{H}_n(A) = \mathbb{Z}^{m-1}$ when n = 0 and 0 otherwise.

We can now form the long exact of the pair (X, A) in reduced homology.

$$\tilde{H}_{3}(A) \longrightarrow \tilde{H}_{3}(X) \longrightarrow H_{3}(X,A)$$

$$\longrightarrow \tilde{H}_{2}(A) \longrightarrow \tilde{H}_{2}(X) \longrightarrow H_{2}(X,A)$$

$$\longrightarrow \tilde{H}_{1}(A) \longrightarrow \tilde{H}_{1}(X) \longrightarrow H_{1}(X,A)$$

$$\longrightarrow \tilde{H}_{0}(A) \longrightarrow \tilde{H}_{0}(X) \longrightarrow H_{0}(X,A)$$

$$\longrightarrow 0$$

Plugging in our calculated values of \tilde{H}_n , this becomes the following.

$$0 \longrightarrow 0 \longrightarrow H_3(X,A) \longrightarrow 0 \longrightarrow H_2(X,A) \longrightarrow 0 \longrightarrow 0 \longrightarrow H_1(X,A) \longrightarrow \mathbb{Z}^{m-1} \longrightarrow 0 \longrightarrow H_0(X,A) \longrightarrow 0$$

All rows above this that aren't shown are identical to the top row, except with different n. Since an exact sequence $0 \to Y \to 0$ implies that Y = 0, we see that for $n \ge 3$ and n = 0, $H_n(X,A)=0$. Since $0\to X\to Y\to 0$ exact implies $X\cong Y$, we have $H_2(X,A)\cong \mathbb{Z}$ and $H_1(X,A) \cong \mathbb{Z}^{m-1}$.

Torus: The strategy here is the same, except the homology groups $H_n(X)$ are different. To start, we can draw the torus as a simplicial complex as follows.

The homology groups of the torus are then

$$\begin{split} H_n(X) &= 0 \text{ when } n \geq 3, \\ H_2(X) &= \operatorname{Ker} \partial_2 = \langle \sigma - \tau \rangle \cong \mathbb{Z}, \\ H_1(X) &= \frac{\operatorname{Ker} \partial_1}{\operatorname{Im} \partial_2} = \frac{\langle a, b, c \rangle}{\langle a + b - c \rangle} \cong \langle a, b \rangle \cong \mathbb{Z}^2, \\ H_0(X) &= \frac{C_0(X)}{\operatorname{Im} \partial_1} = \frac{\langle v \rangle}{0} \cong \mathbb{Z}. \end{split}$$

Note that the reduced homologies are all the same, except now $\tilde{H}_0(X) = 0$. The long exact sequence of the pair (X, A) in reduced homology is then as follows.

$$0 \longrightarrow 0 \longrightarrow H_3(X,A) \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z} \longrightarrow H_2(X,A) \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}^2 - \alpha \longrightarrow H_1(X,A) \longrightarrow 0$$

$$0 \longrightarrow \mathbb{Z}^{m-1} \longrightarrow 0 \longrightarrow H_0(X,A) \longrightarrow 0$$

By the same arguments as for the 2-sphere, $H_n(X,A)=0$ when $n\geq 3$ and n=0, and $H_2(X,A)\cong \mathbb{Z}$. To calculate $H_1(X,A)$, note that we have a short exact sequence

$$0 \to \mathbb{Z}^2 \to H_1(X, A) \to \mathbb{Z}^{m-1} \to 0$$

so by the first isomorphism theorem,

$$\mathbb{Z}^{m-1} \cong \frac{H_1(X,A)}{\operatorname{Ker} \delta} = \frac{H_1(X,A)}{\operatorname{Im} \alpha} \cong \frac{H_1(X,A)}{\mathbb{Z}^2}.$$

Thus $H_1(X, A) \cong \mathbb{Z}^{m+1}$.

b. We'll once again figure out what the relative homology groups are via the long exact sequence of a pair in reduce homology. This time, though, A and B will induced different maps in the long exact sequence, leading to different relative homology groups.

To start, we'll calculate the homology of the genus 2 surface X. We can turn its fundamental polygon into a simplicial complex as below. In the figure, I've noted which edges give A and В.

All vertices are identified to the same point v, so $C_0(X) = \langle v \rangle \cong \mathbb{Z}$ and Im $\partial_1 = 0$. Thus $H_0(X) = C_0(x)/\operatorname{Im} p_1 \cong \mathbb{Z}$, which implies $\tilde{H}_0(X) = 0$. There are 9 edges a, b, \ldots, h, i that are all cycles, so Ker $\partial_2 = \langle a, b, \dots, h, i \rangle \cong \mathbb{Z}^9$. The image of ∂_2 is generated by

$$\partial \sigma_1 = a + b - e, \quad \partial \sigma_2 = a + f - e, \quad \partial \sigma_3 = b + g - f,$$

 $\partial \sigma_4 = c + g - h, \quad \partial \sigma_5 = d + h - i, \quad \partial \sigma_6 = c + d - i.$

To compute $H_1(X) = \frac{\langle a, b, ..., i \rangle}{\partial \sigma_1, ..., \partial \sigma_6}$, we can set each of the 6 equations above to 0 and solve the system to get

$$i = c + d$$
, $h = c$, $g = 0$, $f = b$, $e = a + b$.

Thus modding out by our 6 relations gets rid of all of the generators except those on the boundary of the polygon, i.e. $H_1(X) \cong \langle a, b, c, d \rangle \cong \mathbb{Z}^4$. Finally, $\operatorname{Ker} \partial_2 = \langle \sigma_1 - \sigma_2 - \sigma_3 + \sigma_4 + \sigma_5 - \sigma_4 - \sigma_4 - \sigma_5 - \sigma_4 - \sigma_4 - \sigma_5 - \sigma_4 - \sigma_5 - \sigma_4 - \sigma_5 - \sigma_5$ $\sigma_6 \cong \mathbb{Z}$, so $H_2(X) = \text{Ker } \partial_2 \cong \mathbb{Z}$. There are no higher dimensional cells, so $H_n(X) = 0$ for all $n \geq 0$.

Now note that both A and B are just S^1 , so $\tilde{H}_n(A) = \tilde{H}_n(B) = \mathbb{Z}$ when n = 1 and 0

otherwise. Thus the long exact sequence at first glance looks the same for both.

$$0 \longrightarrow 0 \longrightarrow H_3(X, A) \longrightarrow \delta$$

$$0 \longrightarrow \mathbb{Z} - \alpha \longrightarrow H_2(X, A) \longrightarrow \delta$$

$$0 \longrightarrow \delta \longrightarrow H_1(X, A) \longrightarrow \delta$$

$$0 \longrightarrow 0 \longrightarrow H_0(X, A) \longrightarrow \delta$$

We can use the same argument as in part (a) to show that

$$H_n(X, A) = H_n(X, B) = 0$$
 for $n \ge 3$ and $n = 0$.

The only difference between A and B is what the 1st and 2nd relative homology groups are.

A: Since $A = g = \delta(\sigma_3 - \sigma_1 - \sigma_2)$, we know it is 0 in homology. Thus for A, the map β is the 0 map. Then Ker $\gamma = \text{Im } \beta = 0$, so γ is injective. And since γ is necessarily also surjective since $\mathbb{Z}^4 \to H_1(X, A) \to 0$ is exact, it's an isomorphism, i.e. $H_1(X, A) \cong \mathbb{Z}^4$.

Finally, Im $\delta = \operatorname{Ker} \beta = \mathbb{Z}$ since $\beta = 0$, so δ is surjective. We also know α is injective since $0 \to \mathbb{Z} \stackrel{\alpha}{\to} H_2(X,A)$ is exact. By the first isomorphism theorem,

$$\mathbb{Z} \cong \frac{H_2(X,A)}{\operatorname{Ker} \delta} = \frac{H_2(X,A)}{\operatorname{Im} \alpha} \cong \frac{H_2(X,A)}{\mathbb{Z}},$$

so $H_2(X,A) \cong \mathbb{Z}^2$.

B: We can use the same diagram for the long exact sequence of the pair (X, B) as we did for (X, A), just replacing every A with a B. I'll keep all the names of the maps the same. The main difference in this case is that β is a nonzero map.

When computing the homology of X, we showed that B=c was a generator of $H_1(X)$, so β maps $1\mapsto (0,0,1,0)$. Then $\operatorname{Ker} \gamma=\operatorname{Im} \beta=\langle (0,0,1,0)\rangle$, so by the first isomorphism theorem and the fact that γ is surjective,

$$H_1(X,B) \cong \frac{\mathbb{Z}^4}{\langle (0,0,1,0) \rangle} \cong \mathbb{Z}^3.$$

We also know $\operatorname{Im} \delta = \operatorname{Ker} \beta = 0$ since β is injective, so δ is the 0 map. Then $\operatorname{Im} \alpha = \operatorname{Ker} \delta = H_2(X,B)$, so α is surjective. Since α is already necessarily injective, it's an isomorphism, i.e. $H_2(X,B) \cong \mathbb{Z}$.

Exercise 5 (2.1: 26). Show that $H_1(X,A)$ is not isomorphic to $\tilde{H}_1(X/A)$ if X=[0,1] and A is the sequence $1, 1/2, 1/3, \ldots$ together with its limit 0.

The strategy here will be to show that $H_1(X,A)$ is countable while $\tilde{H}_1(X/A)$ is uncountable, making it impossible to find a bijection (let alone an isomorphism) between them. Since $A \subset X$, we can calculate $H_1(X,A)$ using the long exact sequence of the pair (X,A) in reduced homology. To do this, we'll need the homologies of A and X individually.

Since [0,1], it has the same homotopy type as a point. Then since homology is a homotopy invariant, $H_n(X) \cong H_n(\operatorname{pt}) = \mathbb{Z}$ if n = 0 and 0 otherwise. Then $H_n(X) = 0$ for all n.

A is the union of a bunch of isolated points, and we know that we can decompose the homology of a space into the direct sum of the homologies of its path components. Each isolated point is its own path component, so $H_1(A) = 0$ and $H_0(A) \cong \bigoplus_{n \in \mathbb{N}_0} \mathbb{Z}$. Taking reduced homology gives $H_0(A) \cong \bigoplus_{n \in \mathbb{N}} \mathbb{Z}$. We then have the following exact sequence.

$$\tilde{H}_1(A) \to \tilde{H}_1(X) \to H_1(X,A) \to \tilde{H}_0(A) \to \tilde{H}_0(X)$$

Based on the above computations, this becomes the following.

$$0 \to 0 \to H_1(X, A) \to \bigoplus_{n \in \mathbb{N}} \mathbb{Z} \to 0$$

This implies $H_1(X,A) \cong \bigoplus_{n \in \mathbb{N}} \mathbb{Z}$. Since the direct sum of countable sets is itself countable, this shows that $H_1(X,A)$ is countable. To show that $H_1(X/A)$ is uncountable, we'll follow a strategy similar to that in Example 1.25 in the text.

First off, note that X/A is the Hawaiian earring space composed of circles $\{C_n\}_{n\in\mathbb{N}}$ all intersecting at a single common point. For all n, there is a retraction $r_n: X/A \to C_n$ fixing C_n and sending all other C_i to their common intersection point. Then since H_1 is a covariant functor, we can apply it to get induced maps $(r_n)_*: H_1(X/A) \to H_1(C_n) = H_1(S^1) \cong \mathbb{Z}$.

$$X/A \xleftarrow{r_n} C_n \qquad H_1(X/A) \xrightarrow{(r_n)_*} \mathbb{Z}$$

Note that r_n being surjective is equivalent to $r_n i = id$. Then since $(r_n)_* i_* = (r_n i)_* = id_* = id$, the induced map $(r_n)_*$ is also surjective. The product of the many $(r_n)_*$ maps is then a surjective map $H_1(X/A) \to \prod_{n \in \mathbb{N}} \mathbb{Z}$. But $\prod_{n \in \mathbb{N}} \mathbb{Z}$ is uncountable, so this map being surjective implies that $H_1(X/A) \cong H_1(X/A)$ is also uncountable. Thus $H_1(X/A)$ and $H_1(X,A)$ cannot possibly be isomorphic.