

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Ans: $4x - x^2$			
1.2	If $f(8) = 10$, $f(10) = 19$, $f(12) = 32.5$, $f(14) = 54$, $f(16) = 89.5$, then	1	L1	1
	$\Delta^2 f(12) = \underline{\hspace{1cm}}$			
	Ans: 14		~ .	
1.3	The value of $\Delta^3[(1+3x)(1-5x)(1-4x)]$ taking the interval of differencing $h=1$ is	1	L1	1
	Ans: 360			
1.4	The particular solution of the initial value problem $y'' + y' + 0.25y = 0$ with $y(0) = 3$ and	2	L2	2
1.4	The particular solution of the initial value problem $y'' + y' + 0.25y = 0$ with $y(0) = 3$ and $y'(0) = -3.5$ is		L2	2
	$y(0) = -3.5 \text{ is} $ Ans: $(3 - 2x)e^{-x/2}$			
1.5	Particular integral of $2\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 2y = e^{x/2}$ is	1	L2	2
	an an			
	Ans: $\frac{xe^{x/2}}{5}$			
1.6	If $x = e^{-3t}$ is the solution of the differential equation $\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + kx = 0$, then $k = 0$	1	L1	1
	$\overline{\text{Ans: } k} = 3$			
1.7	Given Given	2	L2	1
1.7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		LZ	1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	The value of $f'(2) = \underline{\hspace{1cm}}$.			
	Ans: -3			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
1.2	Ans: $x^2 - x - 6$ If $f(1) = 0$, $f(1.2) = 0.128$, $f(1.4) = 0.544$, $f(1.6) = 1.296$, $f(1.8) = 2.432$, then $\nabla^2 f(1.6) = \underline{\hspace{1cm}}$ Ans: 0.336	1	L1	1
1.3	The value of $\Delta^6[(2-3x)(3-4x^2)(2+5x^3)]$ taking the interval of differencing $h=1$ is Ans: 43200	1	L1	1
1.4	The particular solution of the initial value problem $9y'' + 6y' + y = 0$ with $y(0) = 4$ and $y'(0) = -\frac{13}{3}$ is Ans: $(4 - 3x)e^{-x/3}$	2	L2	2
1.5	Particular integral of $4\frac{d^2y}{dx^2} + 3\frac{dy}{dx} - 10y = e^{-2x}$ is Ans: $-\frac{xe^{-2x}}{13}$	1	L2	2
1.6	If the roots of the auxiliary equation are -2 and 3, then the corresponding differential equation is Ans: $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = 0$	1	L1	1
1.7	Given $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	L2	1

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	x 2 4 5 y 0 6 12			
	Ans: $x^2 - 3x + 2$			
1.2	If $f(0.2) = 0.0350$, $f(0.4) = 0.1170$, $f(0.6) = 0.2165$, $f(0.8) = 0.2995$, $f(1) = 0.3340$, then $\Delta^2 f(0.8) = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	1	L1	1
	Ans: Does not exist			
1.3	The value of $\Delta^3[(1-x)(1-3x)(1-5x)]$ taking the interval of differencing $h=2$ is	1	L1	1
1.4	Ans: -720	2	1.0	2
1.4	The particular solution of the boundary value problem $y'' + y = 0$ with $y(0) = 1$ and $y(\frac{\pi}{2}) = 2$ is	2	L2	2
	Ans: $\cos x + 2 \sin x$			_
1.5	Particular integral of $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = 3^x + e^x$ is Ans: $\frac{e^x}{10} + \frac{3^x}{(\log_e 3)^2 + 4\log_e 3 + 5}$	1	L2	2
1.6	If the complementary function of the differential equation is $y = (c_1 + c_2 x)e^{-2x}$, then the	1	L1	1
1.5	corresponding differential equation is	1		1
	Ans: $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$			
1.7	Given $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	L2	1
	The value of $f'(30) =$			
	Ans: -10.1			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - I	Maximum marks: 10
Course code: 22MA21C	First semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-P	Time: 20 Minutes Date: 05-07-2023

Name:	Branch:	USN:

Q.No	Quiz questions	M	BT	CO
1.1	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
1.2	Ans: $-x^2 + 10x - 16$ If $f(1) = 7.4036$, $f(2) = 7.7815$, $f(3) = 8.1311$, $f(4) = 8.4554$, $f(5) = 8.7574$, then	1	T 1	1
1.2	If $f(1) = 7.4036$, $f(2) = 7.7815$, $f(3) = 8.1311$, $f(4) = 8.4554$, $f(5) = 8.7574$, then $\nabla^2 f(4) = \underline{\hspace{1cm}}$ Ans: -0.0253	1	L1	1
1.3	The value of $\Delta^4[(1-2x)(1-3x)(1-5x)(1-6x)]$ taking the interval of differencing $h=$	1	L1	1
	2 is Ans: 69120			
1.4	The particular solution of the initial value problem $9y'' - 25y = 0$ with $y(0) = 0$ and	2	L2	2
	y'(0) = -5 is Ans: $-1.5e^{\frac{5x}{3}} + 1.5e^{-\frac{5x}{3}}$			
1.5	Particular integral of $3\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 5y = e^{5x/3}$ is Ans: $\frac{xe^{\frac{5x}{3}}}{8}$	1	L2	2
1.6	Alls• 8		7.1	
1.6	If $x = e^{-t}$ is the solution of the differential equation $\frac{d^2x}{dt^2} - 6\frac{dx}{dt} - nx = 0$, then $n = \frac{1}{4}$. Ans: $n = 7$	1	L1	1
1.7	Given	2	L2	1
	Ans: -105.2222			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - II	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 16-08-2023

Name:	Branch:	USN:
ranic.	Diancii.	CDIV.

Q.No	Quiz questions	M	BT	CO
1.1	The Wronskian of the function $u = e^{2x}$ and $v = xe^{2x}$ is	2	L2	2
	4			
	Ans: e^{4x}			
1.2	Reduce the Cauchy-Euler differential equation $x^2 \frac{d^2y}{dx^2} - 7x \frac{dy}{dx} + 16y = \log_e(x)$ to linear	1	L1	1
	differential equation with constant coefficients.			
	Ans: $(D_1^2 - 8D_1 + 16)y = z$, $D_1 = \frac{d}{dz}$			
1.3	The number of integers less than 176 that are relatively prime to 176 is	1	L2	2
	Ans: 80			
1.4	Non-negative remainder obtained when $1! + 2! + 3! + \cdots + 100!$ is divided by 12 is	1	L1	1
	Ans: 9			
1.5	The number of positive divisors of the integer 1363 is	1	L1	1
	Ans: 4			
1.6	If $720 = 2^a 3^b 5^c$, where a, b, c are positive integers, then the product of a, b, c is	1	L1	1
	Ans: 8			
1.7	The multiplicative inverse of 7 (mod 23) is	1	L2	2
	Ans: 10			
1.8	Remainder obtained when 21 ⁸⁷⁵ is divided by 17 is	2	L2	2
	Ans: 13			
		1		

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - II	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 16-08-2023

Name:	Branch:	USN:

Q.No	Quiz questions	M	BT	CO
1.1	The Wronskian of the function $u = \sin\left(\frac{x}{2}\right)$ and $v = \cos\left(\frac{x}{2}\right)$ is	2	L2	2
	Ans: $-\frac{1}{2}$			
1.2	Reduce the Cauchy-Euler differential equation $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \sin(\log_e(x))$ to linear differential equation with constant coefficients.	1	L1	1
	Ans: $(D_1^2 - 2D_1 + 2)y = e^z \sin(z)$, $D_1 = \frac{d}{dz}$			
1.3	The number of integers less than 223 that are relatively prime to 223 is	1	L2	2
	Ans: 222			
1.4	Non-negative remainder obtained when $1! + 2! + 3! + \cdots + 100!$ is divided by 14 is	1	L1	1
	Ans: 5			
1.5	The number of positive divisors of the integer 1412 is	1	L1	1
	Ans: 6			
1.6	If $1008 = 2^p 3^q 7^r$, where p, q, r are positive integers, then the sum of p, q, r is	1	L1	1
	Ans: 7			
1.7	The multiplicative inverse of 12 (mod 19) is	1	L2	2
	Ans: 8			
1.8	Remainder obtained when 51 ⁷³³ is divided by 29 is	2	L2	2
	Ans: 13			

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - II	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 16-08-2023

Name:	Branch:	USN:
-------	---------	------

Q.No	Quiz questions	M	BT	CO
1.1	The Wronskian of the function $u = e^{-3x}$ and $v = e^{x/5}$ is Ans: $\frac{16}{5}e^{-\frac{14}{5}x}$	2	L2	2
1.2	Reduce the Cauchy-Euler differential equation $x^2 \frac{d^2y}{dx^2} + 2x \frac{dy}{dx} - 12y = x^2 \log_e(x)$ to linear differential equation with constant coefficients. Ans: $(D_1^2 + D_1 - 12)y = e^{2z}z$, $D_1 = \frac{d}{dz}$	1	L1	1
1.3	The number of integers less than 247 that are relatively prime to 247 is Ans: 216	1	L2	2
1.4	Non-negative remainder obtained when $1! + 2! + 3! + \cdots + 100!$ is divided by 7 is Ans: 5	1	L1	1
1.5	The number of positive divisors of the integer 1881 is Ans: 12	1	L1	1
1.6	If $693 = 3^k 7^l 11^m$, where k, l, m are positive integers, then the sum of k, l, m is Ans: 4	1	L1	1
1.7	The multiplicative inverse of 11 (mod 27) is Ans: 5	1	L2	2
1.8	Remainder obtained when 71 ⁷¹⁷ is divided by 23 is Ans: 4	2	L2	2

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	QUIZ - II	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 16-08-2023

Name:	Branch:	USN:

Q.No	Quiz questions	M	BT	CO
1.1	The Wronskian of the function $u = xe^{4x}$ and $v = e^{4x}$ is	2	L2	2
	Ans: $-e^{8x}$			
1.2	Reduce the Cauchy-Euler differential equation $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + 5y = x^3 \cos(\log_e(x))$ to linear differential equation with constant coefficients.	1	L1	1
	Ans: $(D_1^2 + 2D_1 + 5)y = e^{3z}cos(z)$, $D_1 = \frac{d}{dz}$			
1.3	The number of integers less than 301 that are relatively prime to 301 is	1	L2	2
	Ans: 252			
1.4	Non-negative remainder obtained when $1! + 2! + 3! + \cdots + 100!$ is divided by 8 is	1	L1	1
	Ans: 1			
1.5	The number of positive divisors of the integer 1045 is	1	L1	1
	Ans: 8			
1.6	If $882 = 2^x 3^y 7^z$, where x, y, z are positive integers, then the product of x, y, z is	1	L1	1
	Ans: 4			
1.7	The multiplicative inverse of 13 (mod 29) is	1	L2	2
	Ans: 9			
1.8	Remainder obtained when 47 ⁷⁵⁷ is divided by 19 is	2	L2	2
	Ans: 9			
				<u> </u>

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^4[(4+2x)(2-x)(1-3x^2)]$ taking the interval of differencing $h=1$ is	1	L1	1
	.			
	Ans: 144			
1.2	A vector point function \vec{F} is irrotational if	1	L1	1
	Ans: $curl(\vec{F}) = 0$			
1.3	If vector $\vec{f} = ax\hat{\imath} - 2y\hat{\jmath} + z\hat{k}$ is solenoidal, then the value of the constant 'a' is	1	L1	1
	Ans: $a = 1$			
1.4	If $\nabla \phi = 2\sqrt{6}\hat{\imath} + 11\hat{\jmath} - 5\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$\sqrt{6}\hat{\imath} + 3\hat{\jmath} - 7\hat{k} \text{ is } \underline{\hspace{1cm}}.$			
	Ans: 10			
1.5	A particle moves along the curve $x = e^{-t}$, $y = 2\cos 3t$, $z = 2\sin 3t$, the velocity vector	2	L1	1
	at $t = 0$ is and acceleration vector at $t = 0$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=0} = -\hat{\imath} + 6\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=0} = \hat{\imath} - 18\hat{\jmath}$			
1.6	The unit normal vector to the surface $3x^2 + y^3z^2 + 5 = 0$ at $(-1, -1, 2)$ is	2	L2	2
	Ans: $\frac{-6\hat{i}+12\hat{j}-4\hat{k}}{14}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$\begin{array}{c cccc} x & 1 & 2 & 4 \\ \hline y & 6 & 2 & 0 \\ \end{array}$			
	Ans: $x^2 - 7x + 12$			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^4[(3+x)(1+4x^2)(5-2x)]$ taking the interval of differencing $h=1$ is	1	L1	1
	·			
	Ans: -192			
1.2	A vector point function \vec{g} is said to be conservative if	1	L1	1
	Ans: $curl(\vec{g}) = 0$.			
1.3	If vector $\vec{f} = 3x\hat{\imath} - by\hat{\jmath} + 2z\hat{k}$ is solenoidal, then the value of the constant 'b' is	1	L1	1
	Ans: $b = 5$			
1.4	If $\nabla \phi = \sqrt{2}\hat{\imath} + \sqrt{3}\hat{\jmath} - \sqrt{6}\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$3\sqrt{2}\hat{i} + 2\sqrt{3}\hat{j} - \sqrt{6}\hat{k}$ is			
	Ans: 3			
1.5	A particle moves along the curve $x = 1 - t^3$, $y = 4t^3 + 3$, $z = 2t - 7$, the velocity vector	2	L1	1
	at $t = 1$ is and acceleration vector at $t = 2$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=1} = -3\hat{\imath} + 12\hat{\jmath} + 2\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=2} = -12\hat{\imath} + 48\hat{\jmath}$			
1.6	The unit normal vector to the surface $4x - 5y + z^2 + 5 = 0$ at $(1, 2, -1)$ is	2	L2	2
	Ans: $\frac{4\hat{\iota} - 5\hat{\jmath} - 2\hat{k}}{\sqrt{45}}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	x 1 3 4 y 3 7 0			
	Ans: $-3x^2 + 14x - 8$			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:	USN:
------------	------

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^3[(7+4x)(1-2x)(5+x)]$ taking the interval of differencing $h=2$ is	1	L1	1
	Ans: -384			
1.2	Curl of a constant vector is	1	L1	1
	Ans: Zero vector			
1.3	If vector $\vec{f} = 7x\hat{\imath} + 6y\hat{\jmath} + mz\hat{k}$ is solenoidal, then the value of the constant 'm' is	1	L1	1
	Ans: $m = -13$			
1.4	If $\nabla \phi = 10\hat{\imath} - 7\hat{\jmath} + 2\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$3\hat{i} - 2\hat{j} + 6\hat{k}$ is			
	Ans: 8			
1.5	A particle moves along the curve $x = t^3 - 4t$, $y = t^2 + 4t$, $z = 8t^2 - 5$, the velocity	2	L1	1
	vector at $t = 2$ is and acceleration vector at $t = 0$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=2} = 8\hat{i} + 8\hat{j} + 32\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=0} = 2\hat{j} + 16\hat{k}$			
1.6	The unit normal vector to the surface $x^2 + y^2 = 6z + 14$ at $(1, 1, -2)$ is	2	L2	2
	Ans: $\frac{2\hat{\imath}+2\hat{\jmath}-6\hat{k}}{\sqrt{44}}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	Ans: $2x^2 + x - 3$			

Approved by AICTE, New Delhi, Accredited By NAAC, Bengaluru And NBA, New Delhi

DEPARTMENT OF MATHEMATICS

Course: NUMBER THEORY, VECTOR CALCULUS AND COMPUTATIONAL METHODS	Improvement QUIZ	Maximum marks: 10
Course code: 22MA21C	Second semester 2022-2023 Physics Cycle Branch: AI, BT, CD, CS, CY, IS, SPARK-C	Time: 20 Minutes Date: 06-09-2023

Name: USN:

Instructions to students: Rough work can be done at the backside of the sheet.

Q.No	Quiz questions	M	BT	CO
1.1	The value of $\Delta^3[(3+x)(1+3x)(1+4x)]$ taking the interval of differencing $h=2$ is	1	L1	1
	·			
	Ans: 576			
1.2	Curl of the position vector $\vec{r} = x\hat{\imath} + y\hat{\jmath} + z\hat{k}$ is	1	L1	1
	Ans: Zero vector			
1.3	If vector $\vec{f} = 2ax\hat{\imath} - ay\hat{\jmath} + 4z\hat{k}$ is solenoidal, then the value of the constant 'a' is	1	L1	1
	Ans: $a = -4$			
1.4	If $\nabla \phi = 6\hat{\imath} + 8\hat{\jmath} - 7\hat{k}$ then the directional derivative along the direction of the vector	1	L1	2
	$2\hat{\imath} - \hat{\jmath} - 2\hat{k} \text{ is } \underline{\hspace{1cm}}.$			
	Ans: 6			
1.5	A particle moves along the curve $x = 4 \sin t$, $y = 4 \cos t$, $z = 3t^2$, the velocity vector at	2	L1	1
	$t = \pi$ is and acceleration vector at $t = 0$ is			
	Ans: $\left(\frac{d\vec{r}}{dt}\right)_{t=\pi} = -4\hat{\imath} + 6\pi\hat{k}$ and $\left(\frac{d^2\vec{r}}{dt^2}\right)_{t=0} = -4\hat{\jmath} + 6\hat{k}$			
1.6	The unit normal vector to the surface $y^2 - 4x^2 + 3z = 3$ at $(1, -2, 1)$ is	2	L2	2
	Ans: $\frac{-8\hat{\imath}-4\hat{\jmath}+3\hat{k}}{\sqrt{89}}$			
1.7	Using suitable interpolation, fit a polynomial for the data	2	L2	3
	Ans: $3x^2 - 7x + 2$			
