

1 Allgemeines

1.1 Konstanten

$$g = 9.81 \, \frac{\text{m}}{\text{s}^2} \tag{1.1}$$

$$c = 3 \cdot 10^8 \, \frac{\mathsf{m}}{\mathsf{s}} \tag{1.2}$$

$$e = 1,6021773 \cdot 10^{-19} \,\text{C}$$
 (1.3)

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}}{\text{V m}}$$
 (1.4)

$$\mu_0 = 1,257 \cdot 10^{-6} \, \frac{\text{V s}}{\text{A m}} \tag{1.5}$$

$$h = 6,626 \cdot 10^{-34} \,\mathrm{Js} \tag{1.6}$$

$$u = 1,66054 \cdot 10^{-27} \,\mathrm{kg}$$
 (1.7)

$$N_A = 6,022 \cdot 10^{23} \, \frac{1}{\text{mol}} \tag{1.8}$$

$$m_e = 9.1 \cdot 10^{-31} \,\mathrm{kg} \tag{1.9}$$

$$m_n = 1,675 \cdot 10^{-27} \,\mathrm{kg}$$
 (1.10)

$$m_p = 1,673 \cdot 10^{-27} \,\mathrm{kg}$$
 (1.11)

$$R = 8.31 \frac{J}{\text{mol K}}$$
 (1.12)

1.2 Einheiten

$$[P] = 1 W = 1 \frac{J}{s} = 1 V A$$
 (1.13)

$$[W] = 1 J = 1 N m = 1 V A s$$
 (1.14)

$$[F] = 1 \text{ N} = 1 \frac{\text{kg m}}{s^2}$$
 (1.15)

$$[Q] = 1 C = 1 A s$$
 (1.16)

$$[R] = 1 \Omega = 1 \frac{V}{A} \tag{1.17}$$

$$[C] = 1 F = 1 \frac{C}{V}$$
 (1.18)

$$[B] = 1 \text{ T} = 1 \frac{N}{A}$$
 (1.19)

$$[B] = 1 \text{ T} = 1 \frac{\text{N}}{\text{A m}}$$
 (1.19)
 $[L] = 1 \text{ H} = 1 \frac{\text{V s}}{\text{A}}$ (1.20)

$$[E] = 1 \frac{V}{m} = 1 \frac{N}{C}$$
 (1.21)

$$[\Phi] = 1 \, \text{T m}^2 = 1 \, \text{V s}$$
 (1.22)

$$[\sigma] = 1 \frac{\mathsf{C}}{\mathsf{m}^2} \tag{1.23}$$

$$[f] = 1\frac{1}{s} = 1 \,\mathrm{Hz}$$
 (1.24)

1.3 Einheitenpräfixe

Т	G	М	k	h	da	
10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10^1	10 ⁰
	d	С	m	μ	n	р
10 ⁰	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

1.4 Griechische Buchstaben

Alpha	β, Β	Beta	γ , I	Gamma
Delta	ε, Ε	Epsilon	ζ, Ζ	Zeta
Eta	ϑ, ⊖	Theta	ι, Ι	lota
Kappa	λ, <i>L</i>	Lambda	μ , M	Му
Ny	ξ , \equiv	Xi	o, O	Omikron
Pi	ρ, R	Rho	σ, Σ	Sigma
Tau	υ, Υ	Ypsilon	φ, Φ	Phi
Chi	ψ , Ψ	Psi	ω, Ω	Omega
	Delta Eta Kappa Ny	Delta ε , E Eta ϑ , Θ Kappa λ , L Ny ξ , Ξ Pi ϱ , R Tau v , Y	Delta ε , E Epsilon Eta ϑ , Θ Theta Kappa λ , L Lambda Ny ξ , Ξ Xi Pi ϱ , R Rho Tau υ , Υ Ypsilon	Delta ε , E Epsilon ζ , Z Eta ϑ , Θ Theta ι , I Kappa λ , L Lambda μ , M Ny ξ , Ξ Xi o , O Pi ϱ , R Rho σ , Σ Tau υ , Y Ypsilon φ , Φ

1.5 Mathematik

1.5.1 Kugeloberfläche

$$A = 4 \cdot \pi \cdot r^2 \tag{1.25}$$

1.5.2 Kugelvolumen

$$V = \frac{4}{3} \cdot \pi \cdot r^3 \tag{1.26}$$

1.5.3 pq-Formel

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$
 (1.27)

$$mit 0 = x^2 + p \cdot x + q$$

1.5.4 Trigonometrische Beziehungen

$$\sin \alpha = \frac{a}{c} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 (1.28)

$$\sin \alpha = \frac{a}{c} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 (1.28)

$$\cos \alpha = \frac{b}{c} = \frac{\text{Ankathete}}{\text{Hypotenuse}}$$
 (1.29)

$$\tan \alpha = \frac{a}{b} = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$
 (1.30)

$$\tan \alpha = \frac{a}{b} = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$
 (1.30)

2 Mechanik

2.1 Geradlinige, gleichförmige Bewegung

$$v = \frac{\Delta s}{\Delta t} \tag{2.1}$$

2.2 Geradlinige, gleichmäßig beschleunigte Bewegung

$$a = \frac{\Delta v}{\Delta t} \tag{2.2}$$

$$\Delta s = \frac{(v_2 + v_1) \cdot \Delta t}{2} \tag{2.3}$$

$$s(t) = \frac{1}{2} \cdot a \cdot t^2 + v_0 \cdot t + s_0 \tag{2.4}$$

2.3 Grundgleichung der Mechanik (Newtons Grundgesetz)

$$F = m \cdot a \tag{2.5}$$

2.4 Gewichtskraft

$$F_G = m \cdot g \tag{2.6}$$

2.5 Hookesches Gesetz

$$F = D \cdot s \tag{2.7}$$

2.6 Schiefe Ebene

$$F_H = F_G \cdot \sin \alpha \tag{2.8}$$

$$F_N = F_G \cdot \cos \alpha \tag{2.9}$$

2.7 Reibung

$$F_h > F_{ql} > F_{roll} \tag{2.10}$$

$$F_{al} = f_{al} \cdot F_N \tag{2.11}$$

$$F_{h,max} = f_h \cdot F_N \tag{2.12}$$

2.8 Bremsverzögerung

$$|a| = f_{ql} \cdot g \tag{2.13}$$

$$|a| = f_h \cdot g \tag{2.14}$$

2.9 Zentripetalkraft

$$F_z = \frac{m \cdot v^2}{r} \tag{2.15}$$

2.10 Energieerhaltung

$$W_L + W_B + W_{Sp} = \text{konst.} \tag{2.16}$$

$$W_L = m \cdot g \cdot h \tag{2.17}$$

$$W_B = \frac{1}{2} \cdot m \cdot v^2 \tag{2.18}$$

$$W_{Sp} = \frac{1}{2} \cdot D \cdot s^2 \tag{2.19}$$

2.11 Energie / Arbeit

$$W = F_s \cdot s \tag{2.20}$$

2.12 Leistung

$$P = \frac{\Delta W}{\Delta t} \tag{2.21}$$

2.13 Impuls

$$p = m \cdot v \tag{2.22}$$

2.14 Impulserhaltung

$$m_1 \cdot u_1 + m_2 \cdot u_2 = m_1 \cdot v_1 + m_2 \cdot v_2$$
 (2.23)

3 Elektrische und magnetische Felder

3.1 Stromstärke

$$I = \frac{\Delta Q}{\Delta t} \tag{3.1}$$

$$I = \frac{n \cdot e \cdot v}{\Lambda s} \tag{3.2}$$

3.2 Elektrische Feldstärke

$$E = \frac{F}{a} \tag{3.3}$$

3.3 Bifilares Plättchen im elektrischen Feld

$$F = F_G \cdot \frac{s}{h} \tag{3.4}$$

$$F \approx F_G \cdot \frac{s}{\ell} \tag{3.5}$$

3.4 Elektrische Spannung

$$U = \frac{W}{q} \tag{3.6}$$

$$U = E \cdot d \tag{3.7}$$

3.5 Ohmsches Gesetz

$$U = R \cdot I \tag{3.8}$$

3.6 Spezifischer Widerstand

$$R = \varrho \cdot \frac{\ell}{A} \tag{3.9}$$

3.7 Elektrische Energie

$$W = U \cdot I \cdot t \tag{3.10}$$

3.8 Elektrische Leistung

$$P = \frac{W}{t} = U \cdot I \tag{3.11}$$

3.9 Reihenschaltung von Widerständen

$$U = U_1 + U_2 \tag{3.12}$$

$$I = I_1 = I_2 \tag{3.13}$$

$$R = R_1 + R_2 (3.14)$$

3.10 Parallelschaltung von Widerständen

$$U = U_1 = U_2 \tag{3.15}$$

$$I = I_1 + I_2 \tag{3.16}$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \tag{3.17}$$

3.11 Elektrisches Potential

$$\Delta \varphi = \varphi_2 - \varphi_1 \tag{3.18}$$

3.12 Flächenladungsdichte

$$\sigma = \frac{Q}{A} \tag{3.19}$$

$$\sigma = \varepsilon_0 \cdot \varepsilon_r \cdot E \tag{3.20}$$

3.13 Coulomb-Gesetz

$$F = q \cdot E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Q \cdot q}{r^2}$$
 (3.21)

3.14 Coulomb-Potential

$$\varphi = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Q}{r} \tag{3.22}$$

$$W_{12} = \frac{Q \cdot q}{4 \cdot \pi \cdot \varepsilon_0} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \tag{3.23}$$

$$U_{12} = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \tag{3.24}$$

3.15 Kondensatoren

$$C = \frac{Q}{II} \tag{3.25}$$

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d} \tag{3.26}$$

3.16 Kugelkondensator

$$C = \frac{4 \cdot \pi \cdot \varepsilon_0}{\frac{1}{r_1} - \frac{1}{r_2}} \tag{3.27}$$

3.17 Reihenschaltung von Kondensatoren

$$Q = Q_1 = Q_2 (3.28)$$

$$U = U_1 + U_2 \tag{3.29}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \tag{3.30}$$

3.18 Parallelschaltung von Kondensatoren

$$Q = Q_1 + Q_2 (3.31)$$

$$U = U_1 = U_2 \tag{3.32}$$

$$C = C_1 + C_2 \tag{3.33}$$

3.19 Kondensatorentladung

$$T_H = 0.69 \cdot R \cdot C \tag{3.34}$$

$$U(t) = U_0 \cdot 2^{-\frac{t}{T_H}} \tag{3.35}$$

$$Q(t) = Q_0 \cdot 2^{-\frac{t}{T_H}} \tag{3.36}$$

$$I(t) = I_0 \cdot 2^{-\frac{t}{T_H}} \tag{3.37}$$

3.20 Energie eines geladenen Kondensators

$$W = \frac{1}{2} \cdot C \cdot U^2 \tag{3.38}$$

$$W = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \cdot V \tag{3.39}$$

3.21 Räumliche Dichte der elektrischen Energie

$$\varrho_{el} = \frac{W}{V} = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \tag{3.40}$$

3.22 Anziehungskraft zwischen zwei Kondensatorplatten

$$F = \frac{\Delta W}{\Delta s} \tag{3.41}$$

$$F = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \cdot A \tag{3.42}$$

$$F = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot \frac{U^2}{d^2} \cdot A \tag{3.43}$$

3.23 Magnetische Flussdichte

$$B = \frac{F}{I \cdot s} \tag{3.44}$$

$$B = \mu_0 \cdot \mu_r \cdot \frac{n}{\ell} \cdot I \tag{3.45}$$

$$\mu_r = \frac{B_m}{B_0} \tag{3.46}$$

3.24 Lorentzkraft

$$F_L = Q \cdot v_s \cdot B \tag{3.47}$$

3.25 Hall-Spannung

$$U_H = B \cdot v_s \cdot h \tag{3.48}$$

3.26 Magnetfeld der Erde

B_V Inklinationswinkel: i
 Horizontalkomponente des
 Erdmagnetfelds: B_h
 Vertikalkomponente des
 Erdmagnetfelds: B_V

3.27 Ladungen im Magnetfeld

$$r = \frac{v_s \cdot m}{B \cdot a} \tag{3.49}$$

3.28 Magnetische Induktion

Anzahl der Leiterschleifen: n

 A_s ist die senkrecht von den Feldlinien durchsetzte Fläche. Sie ist mit Hilfe der trigonometrischen Funktionen aus A berechenbar.

3.28.1 durch Leiterbewegung

$$U_{ind} = n \cdot B \cdot d \cdot v_s \tag{3.50}$$

3.28.2 durch Flächenänderung

$$U_{ind} = n \cdot B \cdot d \cdot v_s = n \cdot B \cdot \frac{\Delta A_s}{\Delta t}$$
 (3.51)

3.28.3 durch Drehung

$$U_{ind} = n \cdot B \cdot \frac{\Delta A_s}{\Delta t} \tag{3.52}$$

3.28.4 durch Flussdichteänderung

$$U_{ind} = n \cdot A_s \cdot \frac{\Delta B}{\Delta t} \tag{3.53}$$

3.28.5 durch Änderung des magnetischen Flusses

$$U_{ind}(t) = n \cdot \frac{\Delta \Phi}{\Delta t} \tag{3.54}$$

Seite 4

3.28.6 Momentanspannung für $\Delta t \rightarrow 0$

$$U_{ind}(t) = n \cdot \dot{\Phi}(t) \tag{3.55}$$

3.29 Magnetischer Fluss

$$\Phi = B \cdot A_s \tag{3.56}$$

3.30 Selbstinduktion einer Spule

$$U_{ind}(t) = -n \cdot \dot{\Phi}(t) = -L \cdot \dot{I}(t) \tag{3.57}$$

$$L = \mu_0 \cdot \mu_r \cdot n^2 \cdot \frac{A}{\ell} \tag{3.58}$$

4 Schwingungen und Wellen

$$f = \frac{n}{t} = \frac{1}{T} \tag{4.1}$$

4.1 Harmonische Schwingung

 $\varphi = \text{Phasenwinkel}, 360^{\circ} = 2\pi$

4.1.1 Winkelgeschwindigkeit ω

$$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi f \tag{4.2}$$

4.1.2 Elongation s

$$s = r \cdot \sin \varphi \quad \hat{s} = r \tag{4.3}$$

4.1.3 Zeit-Weg-Gesetz

$$s(t) = \hat{s} \cdot \sin(\omega \cdot t) \tag{4.4}$$

4.1.4 Zeit-Geschwindigkeits-Gesetz

$$v(t) = \omega \cdot \hat{s} \cdot \cos(\omega \cdot t) \tag{4.5}$$

4.1.5 Zeit-Beschleunigungs-Gesetz

$$a(t) = -\omega^2 \cdot \hat{s} \cdot \sin(\omega \cdot t) \tag{4.6}$$

$$a(t) = \dot{v}(t) = \ddot{s}(t)$$
 (4.7)

4.1.6 Elongations-Kraft-Gesetz

(Bedingung für harmonische Schwingung)

$$F = -D \cdot s \tag{4.8}$$

mit Richtgröße D

$$D = m \cdot \omega^2 \tag{4.9}$$

liefert die Periodendauer

$$T = 2\pi \sqrt{\frac{m}{D}} \tag{4.10}$$

4.1.7 Energie einer ungedämpften harmonischen Schwingung

$$W = W_{Elong} + W_B$$

= $\frac{1}{2}D \cdot s^2 + \frac{1}{2}m \cdot v^2 = \text{konst.}$ (4.11)

4.1.8 Schwingung des Fadenpendels

$$D = \frac{m \cdot g}{\ell} \tag{4.16}$$

$$T = 2\pi \sqrt{\frac{\ell}{g}} \tag{4.17}$$

4.1.9 Elektromagnetischer Schwingkreis

$$Q = \hat{Q}\cos(\omega \cdot t) \tag{4.18}$$

$$U = \hat{U}\cos(\omega \cdot t) \tag{4.19}$$

$$I = -\hat{I}\sin(\omega \cdot t) \tag{4.20}$$

$$\omega = \frac{1}{\sqrt{L \cdot C}} \tag{4.21}$$

$$\hat{I} = \frac{\hat{U} \cdot C}{\sqrt{I \cdot C}} \tag{4.22}$$

$$T = 2\pi\sqrt{L \cdot C} \tag{4.23}$$

4.1.10 Resonanzbedingung

$$f = f_0 \quad \text{mit} \quad \varphi = \frac{\pi}{2} \tag{4.24}$$

4.1.11 Eigenschwingungen zwischen zwei festen Enden

$$\ell = k \cdot \frac{\lambda_k}{2}$$
 $k = 1, 2, 3, \dots$ (4.25)

$$f_k = k \cdot \frac{c}{2 \cdot \ell} = k \cdot f_1 \quad k = 1, 2, 3, \dots$$
 (4.26)

4.2 Ausbreitungsgeschwindigkeit

$$c = \frac{\lambda}{T} = \frac{\Delta x}{\Lambda t} = \lambda \cdot f \tag{4.27}$$

4.3 Wellengleichung

$$s(t,x) = \hat{s} \cdot \sin \left[\omega \left(t - \frac{x}{c}\right)\right]$$
 (4.28)

$$s(t,x) = \hat{s} \cdot \sin \left[2\pi \left(\frac{t}{T} - \frac{x}{\lambda} \right) \right]$$
 (4.29)

4.4 Überlagerung von Schwingungen

$$s(t) = s_1(t) + s_2(t)$$

= $\hat{s}_1 \cdot \sin(\omega \cdot t) + \hat{s}_2 \cdot \sin(\omega \cdot t + \varphi_0)$ (4.30)

4.5 Konstruktive Interferenz

$$\Delta \varphi = 0, 2\pi, 4\pi, \dots$$

$$\delta = k \cdot \lambda, \quad k = 0, 1, 2, \dots$$
(4.31)

4.6 Destruktive Interferenz

$$\Delta \varphi = \pi, 3\pi, 5\pi, \dots$$

$$\delta = (2 \cdot k - 1) \cdot \frac{\lambda}{2}, \quad k = 1, 2, 3, \dots$$
(4.32)

4.7 Verhältnis Gangunterschied zu Phasendifferenz

$$\frac{\Delta\varphi}{2\pi} = \frac{\Delta s}{\lambda} \tag{4.33}$$

4.8 Doppler-Effekt

4.8.1 Bewegter Beobachter, ruhender Sender

Annähern

$$f' = f \cdot \left(1 + \frac{v}{c}\right) \tag{4.34}$$

Entfernen

$$f' = f \cdot \left(1 - \frac{V}{c}\right) \tag{4.35}$$

4.8.2 Bewegter Sender, ruhender Beobachter

Annähern

$$\lambda' = \lambda \cdot \left(1 - \frac{v_s}{c}\right) \quad f' = \frac{f}{1 - \frac{v_s}{c}} \tag{4.36}$$

Entfernen

$$f' = \frac{f}{1 + \frac{v_s}{c}} \tag{4.37}$$

4.8.3 Machsche Zahl

$$M = \frac{V_s}{c} \tag{4.38}$$

4.9 Brechungsgesetz

$$\frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2} \tag{4.39}$$

4.10 Beugung und Interferenz am Doppelspalt

$$\sin \alpha = \frac{a}{\ell} = \frac{a}{\sqrt{e^2 + a^2}} \tag{4.40}$$

4.10.1 Maxima

$$n \cdot \lambda = d \cdot \sin \alpha_n \tag{4.41}$$

4.10.2 Minima

$$(2 \cdot n - 1) \cdot \frac{\lambda}{2} = d \cdot \sin \alpha_n \tag{4.42}$$

4.11 Beugung und Interferenz am Gitter

$$n \cdot \lambda = g \cdot \sin \alpha_n = \frac{g \cdot a_n}{\ell} = \frac{g \cdot a_n}{\sqrt{e^2 + a_n^2}}$$
 (4.43)

5 Quantenphysik

5.1 Photoeffekt

5.1.1 Maximale Energie der Photoelektronen

$$W_{max} = e \cdot U_{max} \quad W_{max} = h \cdot f - W_A \tag{5.1}$$

5.1.2 Grenzfrequenz der Elektronenablösung

$$f_{gr} = \frac{W_A}{h} \tag{5.2}$$

5.1.3 Photostrom

$$I_{Ph} = Z \cdot \frac{e}{t} \tag{5.3}$$

5.2 Umkehrung des Photoeffekts

$$W_{EI} = e \cdot U = h \cdot f \tag{5.4}$$

$$f_{max} = \frac{c}{\lambda_{min}} \tag{5.5}$$

$$h \cdot f_{max} = e \cdot U \tag{5.6}$$

5.3 Masse-Energie-Äquivalent

$$W_0 = m_0 \cdot c^2 \tag{5.7}$$

5.4 Masse der Photonen

$$m = \frac{W}{c^2} = \frac{h \cdot f}{c^2} \tag{5.8}$$

5.5 Impuls der Photonen

$$p = m \cdot v = \frac{h \cdot f}{c} = \frac{h}{\lambda} \tag{5.9}$$

5.6 Paarbildung

 $\mathsf{Photon} \to \mathsf{Elektron} + \mathsf{Positron}$

5.6.1 Energieerhaltung

$$h \cdot f = 2 \cdot m_e \cdot c^2 + 2 \cdot W_{kin} \ge 1,02 \,\text{MeV}$$
 (5.10)

5.6.2 Massenerhaltung

$$\frac{h \cdot f}{c^2} = \frac{2 \cdot W_{kin}}{c^2} + 2 \cdot m_e \tag{5.11}$$

5.6.3 Impulserhaltung

$$\frac{h \cdot f}{c} = 2 \cdot m_e \cdot v < 2 \cdot m_e \cdot c \le \frac{h \cdot f}{c} \tag{5.12}$$

5.7 Zerstrahlung

Elektron + Positron \rightarrow 2 Photonen

5.7.1 Energieerhaltung

$$2 \cdot m_e \cdot c^2 = 2 \cdot h \cdot f = 1,02 \,\text{MeV}$$
 (5.13)

5.7.2 Massenerhaltung

$$2 \cdot m_{\rm e} = \frac{2 \cdot h \cdot f}{c^2} \tag{5.14}$$

5.7.3 Impulserhaltung

$$0 = \frac{h \cdot f}{c} + \left(-\frac{h \cdot f}{c}\right) \tag{5.15}$$

5.8 Compton-Effekt

$$\Delta \lambda = \lambda' - \lambda = \lambda_C \cdot (1 - \cos \beta) \tag{5.16}$$

$$\lambda_C = \frac{h}{m_e \cdot c} = 2.4 \,\mathrm{pm} \tag{5.17}$$

5.9 Photon als Quantenobjekt

$$\Psi_{Res} = \Psi_1 + \Psi_2 \quad |\Psi_{Res}|^2 = |\Psi_1 + \Psi_2| \quad (5.18)$$

Antreffwahrscheinlichkeit: $|\Psi|^2$

5.10 De-Broglie-Wellenlänge

$$\lambda_B = \frac{h}{p} \tag{5.19}$$

6 Kernphysik

6.1 Abschätunzung der Kerngröße (Rutherford)

$$\frac{1}{2} \cdot m \cdot v^2 = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Z \cdot e \cdot 2 \cdot e}{b} \tag{6.1}$$

6.2 Energie der Elektronen in der Atomhülle

$W_p = -\frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{(Z \cdot e) \cdot e}{r}$ (6.2)

$$W_k = \frac{1}{8 \cdot \pi \cdot \varepsilon_0} \cdot \frac{(Z \cdot e) \cdot e}{r} \tag{6.3}$$

$$W_{ges} = -\frac{1}{8 \cdot \pi \cdot \varepsilon_0} \cdot \frac{(Z \cdot e) \cdot e}{r}$$
 (6.4)

6.3 Erstes Bohr-Postulat (Bahndrehimpuls)

$$L = r \cdot m \cdot v = n \cdot \frac{h}{2 \cdot \pi}$$
 $n = 1, 2, 3, ...$ (6.5)

6.4 Zweites Bohr-Postulat (Frequenzbedingung)

$$h \cdot f = E_m - E_n = \Delta E \tag{6.6}$$

6.5 Frequenz des Photons

$$f = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right) \tag{6.7}$$

6.5.1 Rydberg-Frequenz

$$R = \frac{m_e \cdot e^4}{8 \cdot \varepsilon_0^2 \cdot h^3} = 3,2898 \cdot 10^{15} \,\text{Hz} \tag{6.8}$$

6.6 Zerfallsgesetz

$$N(t) = N_0 \cdot e^{-\lambda \cdot t} \tag{6.9}$$

$$N(t) = N_0 \cdot 2^{-\frac{t}{T_{1/2}}} \tag{6.10}$$

6.7 Zerfallskonstante

$$\lambda = \frac{\ln 2}{T_{1/2}} \tag{6.11}$$

6.8 Aktivität

$$A = \frac{\Delta N}{\Delta t} \tag{6.12}$$

$$A(t) = \lambda \cdot N(t) = A_0 \cdot e^{-\lambda \cdot t}$$
 (6.13)

7 Chemie

7.1 Stoffmengenberechnung

$$n = \frac{m}{M} \tag{7.1}$$

$$n = \frac{m}{M}$$
 (7.1)
$$n = \frac{V}{V_m}$$
 (7.2)

$$n = c \cdot V \tag{7.3}$$

$$\frac{n_1}{n_2} = \frac{N_1}{N_2} \tag{7.4}$$

7.2 Teilchenzahl

$$N = n \cdot N_A \tag{7.5}$$

7.3 Massenanteil

$$w = \frac{m}{m_l} \tag{7.6}$$

7.4 Massenwirkungsgesetz

Für die Reaktion $\nu_{\rm A} {\rm A} + \nu_{\rm B} {\rm B} \Longrightarrow \nu_{\rm c} {\rm C} + \nu_{\rm D} {\rm D}$

$$K_C = \frac{c^{\nu_C}(C) \cdot c^{\nu_D}(D)}{c^{\nu_A}(A) \cdot c^{\nu_B}(B)}$$
(7.7)

$$K_P = \frac{p^{\nu_C}(C) \cdot p^{\nu_D}(D)}{p^{\nu_A}(A) \cdot p^{\nu_B}(B)}$$
(7.8)

$$K_P = K_C \cdot (R \cdot T)^{\Delta \nu}$$

mit $\Delta v = (\nu_C + \nu_D) - (\nu_A + \nu_B)$ (7.9)

7.5 Allgemeines Gasgesetz

$$n \cdot R \cdot T = p \cdot V \tag{7.10}$$

7.6 Gleichgewichtskonstante

$$\ln K(T) = -\frac{1}{R \cdot T} \cdot \Delta_R G_m^0 \tag{7.11}$$

7.7 Säuren und Basen

$$K_W = c \left(H_3 O^+ \right) \cdot c \left(O H^- \right) = 10^{-14} \frac{\text{mol}^2}{l^2}$$
 (7.12)

$$pK_w = -\lg \frac{k_w}{\frac{\text{mol}^2}{l^2}} = 14 = pH + pOH$$
 (7.13)

$$pH = -\lg \frac{c(H_3O^+)}{\frac{mol}{I}} \quad (7.14)$$

$$c(H_3O^+) = 10^{-pH}$$
 (7.15)

$$pOH = -\lg \frac{c\left(\mathsf{OH}^{-}\right)}{\frac{\mathsf{mol}}{\mathsf{I}}} \quad (7.16)$$

7.8 Säurekonstante

Für die Reaktion $HA + H_2O \Longrightarrow H_3O^+ + A^-$

$$K_{S} = \frac{c \left(\mathsf{H}_{3} \mathsf{O}^{+} \right) \cdot c \left(\mathsf{A}^{-} \right)}{c \left(\mathsf{H} \mathsf{A} \right)} \tag{7.17}$$

$$pK_{S} = -\lg \frac{K_{S}}{\frac{\mathsf{mol}}{\mathsf{I}}} \tag{7.18}$$

$$pK_S = -\lg \frac{K_S}{\frac{mol}{I}}$$
 (7.18)

7.9 Basenkonstante

Für die Reaktion $B + H_2O \Longrightarrow OH^- + BH^+$

$$K_{B} = \frac{c \left(\mathsf{OH}^{-} \right) \cdot c \left(\mathsf{BH}^{+} \right)}{c \left(\mathsf{B} \right)}$$

$$pK_{B} = -\lg \frac{K_{B}}{\frac{\mathsf{mol}}{1}}$$

$$(7.19)$$

$$pK_B = -\lg \frac{K_B}{\underline{\text{mol}}} \tag{7.20}$$

$$pK_B = 14 - pK_S$$
 (7.21)

7.10 Puffergleichung

$$pH = pK_S + \lg \frac{c \text{ (Base)}}{c \text{ (S\"{a}ure)}}$$
 (7.22)

7.11 Löslichkeitsprodukt

$$K_L(A_m B_n) = c^m(A) \cdot c^n(B) \tag{7.23}$$

7.12 Nernstsche Gleichung

$$U_{H}\left(Me^{z+}/Me\right) = U_{H}^{0}\left(Me^{z+}/Me\right) + \frac{0,059 \,\mathrm{V}}{z} \cdot \lg \frac{c\left(Me^{z+}\right)}{\frac{\mathrm{mol}}{l}}$$
(7.24)

7.13 Reaktionsenthalpie

$$\Delta_R H = -Q = -c_p \cdot m \cdot \Delta T$$

$$\Delta_R H_m^0 = \sum \Delta_f H_m^0 \text{ (Produkte)} - \sum \Delta_f H_m^0 \text{ (Edukte)}$$
(7.26)

7.14 Entropie

$$\Delta_R S_m^0 = \sum S_m^0 (\text{Produkte}) + \sum S_m^0 (\text{Edukte})$$
(7.27)

7.15 Freie Enthalpie und Gibbs-Helmholtzgleichung

$$\Delta_{R}G_{m} = \Delta_{R}H_{m} - T \cdot \Delta_{R}S_{m}$$

$$\Delta_{R}G_{m}^{0} = \sum \Delta_{f}G_{m}^{0} (Produkte) - \sum \Delta_{f}G_{m}^{0} (Edukte)$$
(7.29)

~	_	m. 4.00	20.18	gas 0 0 22p ⁶	39.95	on gas 0 0 23p ⁶	83.80	gas 0 0	ره 131.29	gas 0 1,105p ⁶	222:02	on gas 0 0 45d ¹⁰ 6p ⁶	o :	0				1-04-14)
18	>	2 Helium -272.2 -268.93 0.1782	01 00 N	-248. 0.8999	A Ar	Argon 38 -189.35 -185.85 7 1.784 [Ne]3s ² 3p ⁶	30 36 Kr	ig -157.36 gi -153.22 7 3.733 [Ar]4s ² 3d ¹⁰ 4p ⁶	× Xe	Xenon st -111.7 gas 56 -108.12 C 7 5.897 2.4,6 [Kr]55²44105p ⁶		Radon 9as 2 -7.1 9as -2 -61.7 0 7 9.97 0 p ⁵ [Xe]6s ² 44 ⁴ 5d ¹⁰ 6p ⁶	Uuo	0	<u></u>	ন জ ল্ম	3 0%	ufen am 2014
17	=		9 19.00 F	-219.67 -188.12 1.696 [He]	17 35.4 CI	Chlor — 101.5 gas — 1 34.04 3.16 — 1 3.5, 7 1.7 [Ne]3s ³ 3p ⁵	35 79.9 Br	5007	53 126.9	lod 113.7 fest -1 184.3 -1.1, 3.5, 7.58 [K/J5s²4d ¹⁰ 5p ⁵ [F	85 209.9 At	Astat 302 fest - 337 -1.1, 3, 5, 7 (Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁵ [Ununseptium		71 174.9	Lutetium 1652 fee 3402 1.2 9.84 (Xe)6s ² 4f ¹⁴ 5d ¹	Lr Lawrencium 1627 1.187 1.18017-25-64-6-6-1	DE,EN,FR (abger
16	>		8 16.00 O	Sau -218.7 -182.9 1.4289	16 32.07 S	Schwefel 115.21 fest -1 444.6 2.58 -3 2.07 -2,2,4, 6 3.2 [Ne]3s ² 3p ⁴	34 78.96 Se	221 fest -7 685 2.55 58: 4.81 -2.4,6 3.1: [Ar]4s ² 3d ¹⁰ 4p ⁴ [52 127.60 Te	Tellur 449.51 fest 113 988 2.10 188 6.25 -2,4,6 4.9 [Kr]55244 ¹⁰ 5p ⁴ [F	84 208.98 Po	Polonium fest 302 , 2 337	Lv	0	70 173.04	Y D Ytterbium 824 fest 1196 1.1 6.96 3 [Xe]65 ² 4f ⁴	Nobelium Nobelium fest 827 1.3 RR1722554 2	v1.2.4.1, Wikipedia
15	>		7 14.01 N	Stickstoff -210 gas -195.8 3.04 1.251 -3, 2, 3, 4, 5 [He]25 ² 2p ³	15 30.97 P	Fest 44.15 Fest 115.21 1.9 277 2.19 444.6 4 1.82 -3.3, 5 2.07 -2 2 [Ne]38 ² 39	33 74.92 AS	615 615 5.73 [Ar]	51 121.76 Sb	Antimon 30.63 fest 587 2.07 69 -3,3,5 [Kr]5s ² 4d ¹⁰ 5p ³	83 208.98 Bi	Bismut 71.5 fes 564 1.6 79 3 .6 :e]6s ² 4f ¹⁴ 5d ¹⁰ 6p ¹⁰ 6p	Uup Ununpentium	. 0	69 168.93	Thulium Ytter Thulium Ytter 1545 1.25 1196 9.32 3 6.96 (25.11 101 258.10 Md Mendelevium fest 827 fest 1.3 18.3 11.3 11.3	Merck: EMD PTE,
14	≥		5 12.01	Kohlenstoff 3550 fest 4827 2.55 2.267 4 [He]2s ² 2p ²	Si S	icium 3s ² 3p		Sermanium 38.25 fest 833 2.01 .32 4 [Ar]4 <i>s</i> ² 3d ¹⁰ 4p ²	118.71	Zinn 31.93 fest 602 1.96 2,4 [Kr]5s ² 4d ¹⁰ 5p ²	Pb	Blei fest 27.46 1.8 1.1 1.35 2.4 9 [Xelos 2.4 9]	Flerovium	0	167.26	Er Thulium Erbium Thulium Thulium Tall 1529 1286 1241 1550 13 9.32 [Xe]65244 ¹³	25.08 100 257.1 Fm The Fermium fest 1527 1.3 1.3 1.3 Rn7ze35f ¹² 3	tem der Elemente,
13	≡		10.81 B	fest 2.04 2p ¹	13 26.98 I	Aluminiu 7.32 19 0 [Ne]3s ² 3ş	31 69.72 32 Ga	1.81 1.31	19 114.82 [156.6 fest 2 2072 1.78 2 7.30 3 7 [Kr]5s ² 4d ¹⁰ 5p ¹	= 504.38	Quecksilber Thallium 38.83 filissig 304 fest 1.80 56.73 1.90 1473 1.80 3.59 1, 2 11.85 1.30 [Xe]65²4f⁴5d¹0 [Xe]65²4f⁴5d¹06p¹ [Uut Ununtriim	0	57 164.93	HOmium Ert Holmium [1461 [259 2720 1.23 2868 8.80 [Xe] 55²44 ¹¹ [Xe]	ES Einsteinium	el: Das Periodensys
12	lla		<u>.</u>		,,,		30 65.41 3 Zn	Zink 9.53 fest 7 1.65 13 2 [Ar]4s ² 3d ¹⁰		Cadmium Cadmium 1.93 767 1.69 1.767 1.69 [Kr] 58-84 10 [Kr] 58-84 10 2	Hg	Quecksilber -38.83 flüssig 356.73 1.90 13.59 [Xe]65 ² 4 f ⁴ 5d ¹⁰	Cn 285 Copernicium	0	162.50	Dysprosium Dysprosium 1.1 2567 3 8.567	Cf Californium Fest 900 1.3 3 RR1722569	11, Europa-Lehrmitt
11	lа						Cu 63.55	fest 1.90 1.2	Ag 107.87	Silber 1.78 62 .50 [Kr]5s ¹ 4		Gold fest 6 2.40 32 1,3 32 1,3 e]6s ¹ 4f ¹⁴ 5d ¹⁰	Rg Roentgenium	0	55 158.93	- b Terbium 6 (Xe)65 ² 4f	Berkeliun	r Elemente, Mai 20
10	VIIIa						Nieles	%2° ≥	46 106.42	Palladium 1554.9 fest 2963 2.20 12.02 2 ,4 [Kr]5s ⁰ 4d ¹⁰	78 195.08	Platin 8.3 fest 5.20 46 2 ,4 (e]6s ¹ 4f ¹⁴ 5d ⁹	Ds	0	54 157.25	Gadolinium Gadolinium 3273 fest 7.89 3 [xe]65 ² 4 ² 5d ¹	243.0b 96 247.00 Cm Cm Curium Curium Curium Curium 1.13 31.0 1.28 1.34	n: Periodensystem de
Gruppe 9	VIIIa						27 58.93 Co 58.93	Cobait 1.88 0 2.3 [Ar]4s ² 3d ⁷	45 102.91 Rh	Rhodium 964 fest 695 2.28 2.41 3 ,4 [Kr]5s ¹ 4d ⁸	# 192.22 	Iridium 2446 fest 4428 2.20 22.42 2.3, 4 ,6 [Xe] 6s ² 4f ¹⁴ 5d ⁷	109 268.14 Mt	0	63 151.96	m fest 1.2 1.2	Ameri Ameri 1176 2607 13.67 [Rulzs	Quellen: GSI Heimholtzzentrum: Periodesisystem der Elemente, Mai 2011, Europa-Lehrmittel. Das Periodesisystem der Elemente, Merck: EMID PTE, v1.2.4.1, Wikipedia DE,EN FR (abgerufen am 2014-04-14)
œ	VIIIa			agen			26 55.85 Fe	Elsen 38 fest 61 1.83 374 2, 3 [Ar]4s ² 3d ⁶	Ru 101.07	Ruthenium 2334 fest 4150 2.20 12.30 3,4,6 [Kr] 55,14d7	% 190.23 Os	Osmium 8033 fest 8012 2.20 22.48 2,3,4,6,8 [Xe]65 ² 4f ⁴ 5d ⁶	Hassium	0	62 150.36	Samarium Europiu 1072 fest 826 1794 37 1559 7.54 3 5.26 654	Pu Pu Plutonium 739.4 fest 7228 1.28 19.81 4	
7	VIIa		95	bei Normalbedingungen : (Pauling)			25 54.94 Mn	Mangan 46 fest 61 1.55 14 2.3, 4, 6, 7 [Ar]4s ² 3d ⁵	43 97.91 TC	Technetium 1157 fest 205 1.90 11.5 7	75 186.21 Re	Rhenium 3186 fest 5596 1.90 21.04 2,4, 6, 7 [Xe]6s ² 4f ¹⁴ 5d ⁵	107 264.12 Bh Bohrium	0		Promethium 1042 fest 3000 1.13 7.2 [Xe]6s ² 4f ²	Neptunium Neptunium 644 fest 4000 1.3 20,45 5	
9	Vla		Relative Atommasse	Aggreg atzustand bei Elektronegativitat (P: Oxidationsstufen	_		C 52:00 25	51.61	Mo	Molybdi 2623 4639 10.22 2, 3, [Kr]5s ¹ 4	X 183.84	Wolfram 2 fest 5 2.36 27 2,3,4,5,6 (e]6s ² 4f ¹⁴ 5d ⁴	Sg Seaborgium	0		Neodym 1024 fest 3074 1.14 7.00 3	Uran Uran 132 fest 4131 17 191 16 18 17 16 18	
വ	Va		26 55.85 Fe	Eisen fest / 2861 1.87 1.874 2.3 (Ar/4s ² 3d ⁶	Elektronenkonfiguration		23 50.94 24 V	fest 1.63 4, 5	Nb 92.91	Niob fest 1.60 3, 5 5s¹4d⁴	73 180.95 Ta	Tantal 7 fest 8 1.50 0 s	105 262.11 Db Dubnium	0		Praseodym 935 fest 3520 1.13 6.77 3 [Xe]65 ² 4 ^g	Pa 231.04 Pa Protactinium Protactinium 1568 fest 4027 11.5 15.37 1.5 15.37 5.5644	
4	IVa		Ordnungszahl		ā		22 47.87	теап 1668 3287 4.51 [Ar]4 <i>s</i> ² 3с	40 91.22 Zr	Zirconii 1855 4409 6.50 [Kr]55 ² 4	72 178.49 Hf	Hafnium fest 4603 1.30 13.31 4	Rutherfordium	0 [Rn]7s²5f ¹⁴ 6d²	28	Cer (est 172) 25 (est 172) 3 (7 5304 Thorium Thorium 19842 fest 478 11.7 Rn172-55-0642	
က	Ша			Sc Dichte in g			21 44.96 Sc	Scandium 1541 fest 2836 1.36 2.99 3 [Ar]4s ² 3d ¹	39 ★	Yttrium 1526 fest 3336 1.22 4.47 3 [Kr]55 ² 4d ¹	57-71	Lanthanoide	89-103 Actinoide		 57 138.91	La Lanthan 920 fest 7 3464 1.10 6.16 3 ([Xe]65 ² 4f ⁰ 5d ¹	89 227.03 AC Actinium 1050 Fest 3198 1.10	
2	=		4 9.01 Be	B 1287 2469 1.85	12 24.31 Mg	650 1090 1.74	20 40.08 Ca	Carcium 842 fest 1484 1.00 1.53 2 [Ar]4 <i>s</i> ²	38 Sr	Strontium 777 fest 1382 0.95 2.67 2 [Kr]5s ²	56 137.33 Ba	Barium 727 fest 1897 0.89 3.733 2 [Xe]6s ²	88 226.03 Ra Radium	700 1737 5.5		Lanthanoide	Actinoide	© ⊕ ⊕ B.Süssmann, 21. April 2014
\leftarrow	_	1 1.008 Wasserstoff -259.14 9as -252.87 2.20 0.0889 1	3 6.94	Lithium 180.54 fest 1342 0.98 0.534 1	11 22.99 T	Natrium 97.72 fest 883 0.93 0.971 1	19 39.10 Z	Nallum 63.38 fest 759 0.82 0.862 1 [Ar]4s ¹	37 85.47 3 Rb	Rubidium 39.31 fest 688 0.82 1.53 1 [Kr]5s ⁴	Cs 132.91	Caesium 28.44 fest 671 0.79 1.90 1	87 223.02 Fr	271.5 fest 677 0.70 [Rn]7s ¹		La		© ⊕ ⊕ ⊕ B.Süss
		Н		7		m		oin9¶ ₄		2		9	1					

Seite 10