2023 D&A Deep Session 6차시 CNNA A (GoogleNet, ResNet)

CONTENTS

/ 01

Review

- -LeNet
- AlexNet
- -VGG

/ 02

GoogleNet

- -Intro
- Overall Architecture
- -GoogleNet의 구조
- -Outro

/ 03

ResNet

- Intro
- Overall Architecture
- -ResNet의구조
- -Outro

정리

Review LeNet, AlexNet, VGG

LeNet

- 최초의 CNN 모델

AlexNet

- 227x227 size, RGB 3 channel
- 병렬구조
- LRN(Local Response Normalization)

VGG

- 3x3 filter 사용

CONTENTS

/ 01

Review

- -LeNet
- AlexNet
- -VGG

GoogleNet

- -Intro
- Overall Architecture
- -GoogleNet의 구조
- -Outro

/ 03

ResNet

- Intro
- Overall Architecture
- -ResNet의구조
- -Outro

정리

GoogleNet(Going deeper with Convolutions) Intro – GoogleNet의 철학

▋ 딥러닝의 성능을 높이는 방법은 무엇일까?

- 1. layer를 깊게(depth)
- 2. width를 증가(channel)

네트워크의 증가로 인한 문제점

- 1. Overfitting 발생 -> 학습 데이터에 과하게 학습됨
- 2. Gradient vanishing 발생

=> layer을 깊게 쌓되, 효율적으로 깊게 쌓자!

GoogleNet Overall Architecture

주요 특징들

- 1. 기본 CNN 사용
- 2. 9개의 inception 차원 축소 1x1 conv layer 적용
- 3. Auxiliary classifier(보조 분류기)
- 4. Global Average Pooling

GoogleNet의 구조 – level 1

기본적인 CNN 구조 활용

- 효율적인 메모리 사용을 위해 낮은 layer에서는 기본 CNN 구조 사용
- Conv -> pooling -> Conv -> pooling

9개의 inception module

(b) Inception module with dimension reductions

1. 다양한 Conv layer의 병렬 사용

- 1x1, 3x3, 5x5 layer
- 다양한 layer로 처리하기 때문에 다양한 정보 학습 가능

2. 3x3 max-pooling

- conv network에 필수요소로 생각
- 있으면 더 좋다

3. 차원 축소 1x1 conv layer

- 연산량 줄이기 위해 사용

(a) Inception module, naïve version

(b) Inception module with dimension reductions

3. 차원 축소 1x1 conv layer

- 연산량 줄이기 위해 사용
- -> Bottle Neck 이라고 표현 (병의 주둥이와 같이 좁은 곳을 통과한다의 의미)

(b) Inception module with dimension reductions

GoogleNet의 구조 – level2

4. Concat

- 네 개의 특징 맵(output)들을 하나로 겹쳐주는 역할
- 각 분기의 결과는 크기를 하나로 통일하게 설계해야 concat이 가능

480= 128+192+96+64 28x28x480 Filter concatenation 28x28x128 _ 28x28x192 28x28x96 28x28x64 1x1 conv, 5x5 conv, 3x3 conv, 1x1 conv, 192 128 28x28x64 28x28x64 28x28x256 1x1 conv, 1x1 conv, 3x3 pool Module input: Previous Layer 28x28x256

- Auxiliary classification(보조 분류기)
- 보조 분류기 2개 사용

Auxiliary classification(보조 분류기)

- 기존의 경우, 마지막 층의 softmax만을 통해 gradient를 구했음
- layer가 깊어질수록 학습이 잘 진행되지 않는 Gradient Vanishing(기울기 소실) 문제 발생
- ⇒따라서 layer 중간중간 softmax 함수를 출력하여 gradient 역전파를 진행
- *0.3을 곱해서 적용(가중치), test 시에는 제거함

Global Average Pooling

- 기존의 경우
- : 1차원으로 flatten 시킨 후, FC를 거쳐 1x1x1024의 벡터로 생성
- -> 50176x1024의 연산 필요
 - *50176= 7x7x1024

Global average pooling

Global Average Pooling

- GAP의 경우
- : 각각의 특성맵 하나하나를 평균 내어 1024개의 벡터를 연결해줌
- -> 평균을 내기 때문에 파라미터 계산이 필요 x

GoogleNet Outro

Team	Year	Place	Error (top-5)	Uses external data
SuperVision	2012	1st	16.4%	no
SuperVision	2012	1st	15.3%	Imagenet 22k
Clarifai	2013	1st	11.7%	no
Clarifai	2013	1st	11.2%	Imagenet 22k
MSRA	2014	3rd	7.35%	no
VGG	2014	2nd	7.32%	no
GoogLeNet	2014	1st	6.67%	no

GoogleNet Outro

주요 특징들

- 1. 기본 CNN 사용
- 2. 9개의 inception- 차원 축소 1x1 conv layer 적용
- 3. Auxiliary classifier(보조 분류기)
- 4. Global Average Pooling

CONTENTS

/ 01

Review

- -LeNet
- AlexNet
- -VGG

/ 02

GoogleNet

- -Intro
- Overall Architecture
- -GoogleNet의 구조
- -Outro

/ 03

ResNet

- Intro
- Overall Architecture
- -ResNet의구조
- -Outro

정리

ResNet(Residual neural network) Intro

- VGG보다 8배 깊은 152개의 layer 사용
- 3.57%의 error를 보여줌
- ILSVRC 2015에서 1위 차지함
- ImageNet detection, ImageNet localization, COCO detection, COCO segmentation에서도 1위를 차지

ResNet Intro

깊이가 깊어질수록 네트워크의 성능은 무조건 향상될까?

- Layer가 증가할수록 오히려 더 높은 error 발생
- -> gradient vanishing, overfitting, 연산량 증가 등의 문제
- -> 연산이 진행되면서 원래 정보를 잃게 됨

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

- ⇒ Layer는 깊게 하되, 학습하는 양을 줄이자!
- \Rightarrow Layer를 거친 값에 x를 더해줘 기존 정보를 살리자!

ResNet **Overall Architecture**

주요 특징

- Residual Learning
- Short cut(skip) connection

Figure 2. Residual learning: a building block.

ResNet

ResNet의 구조 – 잔차 학습

Residual Learning

1. Plain layers

- Layer가 깊어짐에 따라, 정보 손실이 발생
- ⇒최적 H(x)값을 구하기가 어려움

2. Residual block

- F(x) = H(x) x
- 앞서 학습된 기존 정보(x)에 잔여한 정보(F(x))를 더하자! (정보 손실 방지)
- F(x)만 추가적으로 학습하면 됨 (연산량 감소)
- H'(x)= F'(x) + 1이므로 적어도 기울기가 1로 유지됨 (기울기 소실 문제 해소)
- ⇒F(x)를 H(x)- x로 변형시켜 H(x)에 근사하도록 학습시키는 것이 목표
- ⇒F(x)가 0에 가까워지도록 학습시킴 (잔차의 개념)

ResNet

ResNet의 구조 – Short cut connection

Short cut(skip) connection

- 두 개의 conv layer마다 화살표가 나오는 것을 확인할 수 있음
- 레이어를 뛰어 넘어서 값 전달
- Shortcut(skip) 구조라고 표현

1) Identity Shortcut(일반적인 구조)

$$\Rightarrow$$
 y = $F(x, W_i) + x$

2) Projection Shortcut

$$\Rightarrow$$
 y = $F(x, W_i) + W_S x$

* (Ws는 size 맞춰주는 행렬)

ResNet Outro

Figure 5. A deeper residual function \mathcal{F} for ImageNet. Left: a building block (on 56×56 feature maps) as in Fig. 3 for ResNet-34. Right: a "bottleneck" building block for ResNet-50/101/152.

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer
conv1	112×112	-		7×7, 64, stride 2		<u> </u>
				3×3 max pool, strid	le 2	
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	1×1, 64 3×3, 64 1×1, 256	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$
conv3_x	28×28	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3 \times 3, 128 \\ 3 \times 3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times6$	1×1, 256 3×3, 256 1×1, 1024 ×6	1×1, 256 3×3, 256 1×1, 1024 ×23	1×1, 256 3×3, 256 1×1, 1024 ×36
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	\[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array} \times 3	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	1×1, 512 3×3, 512 1×1, 2048 ×3
	1×1			rage pool, 1000-d fc,	softmax	
FL()Ps	1.8×10 ⁹	3.6×10^{9}	3.8×10^{9}	7.6×10^{9}	11.3×10 ⁹

- Layer가 50개 이상이 될 때 1x1 conv를 통해 연산량을 줄여줌
- Bottle Neck 구조 (병의 주둥이와 같이 좁은 곳 통과한다는 의미)
- * GoogleNet의 inception module 과 유사

ResNet Outro

	plain	ResNet	
18 layers	27.94	27.88	
34 layers	28.54	25.03	

Table 2. Top-1 error (%, 10-crop testing) on ImageNet validation. Here the ResNets have no extra parameter compared to their plain counterparts. Fig. 4 shows the training procedures.

- 18 layer보다는 34 layer에서 훨씬 낮은 에러율을 보였고,
- 18 layer에서는 plain과 ResNet과 에러율은 비슷했으나, 학습 파라미터 수가 ResNet이 더 적어 학습 속도가 더 빨랐음

ResNet

주요 특징

- Residual Learning
- Short cut(skip) connection

Figure 2. Residual learning: a building block.

GoogleNet 정리

주요 특징들

- 1. 기본 CNN 사용
- 2. 9개의 inception- 차원 축소 1x1 conv layer 적용
- 3. Auxiliary classifier(보조 분류기)
- 4. Global Average Pooling

1.GoogleNet 주석 달기 2.ResNet 논문 review

②2023 D&A
Basic Session 6朴人
THANK YOU