Hunter W. Nich S. Andrew P.

Homework 7

5.1-1
$$\chi(n) = (-1)^n (\alpha(n) - \alpha(n-\epsilon))$$

$$v \neq \{x(n) = \frac{7}{2} \left(\frac{1}{2}\right)^n = 1 - \left(\frac{1}{2}\right)^{n+1} = 1 - z^{-8} \quad \text{Roc } |x| \ge 0$$

$$1 - \left(\frac{1}{2}\right) = 1 + z^{-1}$$

pole
$$z = -1$$
 zeros at intervals of $\pi/8$ cause $7 = e^{-3\pi/8}$
from $k = 0, 1, 3, 3, 4, 5, 6, 7$
 $6 = \frac{\pi}{8}$, $\pi/4$, $\frac{3\pi}{8}$, $\pi/6$, $\frac{5\pi}{8}$, $\frac{3\pi}{4}$, $\frac{\pi\pi}{8}$, 0

$$\frac{5.1-6}{2\{u[n]-u[n-2]} = z^2-1 = (z-1)(z+1) = z+1}{2(z-1)}$$

b)
$$\overline{\mathcal{Z}}\left\{\gamma^{n} u\left[n-3\right]\right\}^{2} = \frac{1}{z^{2}}\left(\frac{z}{z-\delta}\right) - \frac{1}{z(z-\delta)}$$

c)
$$x(n) = 3^{n-1}u(n-1) + e^{n-2}u(n) = 3^{(n-2)}u(n-1) + e^{n-2}u(n)$$

 $\Rightarrow x(n) = 3^{n-2}u(n-2)$
 $\exists \{x(n)\} = \frac{u}{z(z-3)} + \frac{1}{e} = \frac{z}{z-e}$

5-1.6
e)
$$x[n] - ny^n u[n-1] = (n+1-1)y^{n+1-1}u[n-1] = yu[n-1] + (n-1)y^n u[n-1]$$

$$\begin{cases}
x[n] z = \frac{y}{z-1} & y \\
z-1 & (z-y)^y
\end{cases}$$

$$\begin{cases}
x[n] = n(n-1)(n-y)y^{n-3}u[n-m], \text{ for } m = 3 \\
x[n] = y^{-3}[n(n-1)(n-y)y^n u[n]]
\end{cases}$$

$$x[n] = y^{-3}[x(n-y)y^n u[n]]$$

$$\begin{cases}
x[n] z = y^{-3}[x(n-y)y^n u[n]]
\end{cases}$$

$$\begin{cases}
x[n] z = y^{-3}[x(n-y)y^n u[n]
\end{cases}$$

$$\begin{cases}
x[$$

ECE 634 Andrew Brown Homework 7 Show X[7] 1-2-2 from the Graph I can tell this. is a combination of two UCn) functions U(n) N(n-m): n=m Start OF Second Which

Reference: Table 5.1 text book

5.2-13 a.s XCs > x (2) Show EX[K] >> ZX(Z) V(n) > EX(x) Same EX(x)U(n-14)

USing Convolution Property and table 5.1 weser U(n) * X(n) Z{U(n)*X(n)}===X(Z) (n-10) >0(n) a150 Icrow ZES(n)}=1 using a.) UEnJ*X(D)=== X(Z) X(n)=S(n)-) = X(Z) $\frac{2}{2-1}$ $\chi(z) = \frac{2}{2-1}(1)/$

NAMES OF	
-	5.2-14 A number of causal time-domain functions
-	are shown in Fig. PS=2-14, List the function of
	time that corresponds to earth of the following
	functions of z. Few or no calcalations are necessary.
	Be careful, the graphs may be scaled differently.
	7
	a) (2-0.75)2 × 13
	22-0,92/Va
	b) $\frac{z^2 - 0.92/\sqrt{2}}{z^2 - 0.9\sqrt{2}z + 0.81}$ q
	Y -2K
	C) \(\xi \varphi^{-2K} \)
	10
	$d) = \frac{2}{1-2}$
	15
	$e) \frac{z}{z^{1}-1}$ 15
	1) 0.752
	f) (2-0.75) ² 7
	2-2/2
	$y) = \frac{z^2 - z\sqrt{2}}{z^2 - \sqrt{2}z + 1}$
	$h) \frac{z^{-1} - s_z^{-s} + 4z^{-6}}{s(1-z^{-1})^2}$
	1) = 1.1