Projekt

STEROWNIKI ROBOTÓW

Raport

Skład grupy: Tomasz Bednarski, 241495 Kamil Drewnowski, 241178

Termin: ptTP11

 $\begin{tabular}{ll} $Prowadzący:$\\ dr inż. Wojciech Domski \end{tabular}$

Spis treści

1	Opis projektu	2
2	2.2 USART 2.3 RCC 2.4 Timery	6 6 6
3	Konstrukcja mechaniczna	7
4	Zadania niezrealizowane	9
5	Podsumowanie	9
Bi	Bibilografia	10

1 Opis projektu

Celem projektu jest zaprojektowanie oraz wykonanie manipulatora o trzech stopniach swobody oraz efektora typu dwupalcowy chwytak siłowy. Ponadto manipulator sterowany będzie z użyciem mikrokontrolera. Zostanie on wykorzystany do wyliczania odwrotnego zadania kinematyki dla zadanych przez operatora współrzędnych końcowych. Współrzędne będą wprowadzane za pomocą joysticka, przycisku oraz wyświetlacza ciekłokrystalicznego. Budowa opierać się będzie na wykonaniu projektu przestrzennego w programie SketchUP oraz jego wydruku przy pomocy drukarki 3D. Materiał jaki zostanie wykorzystany do budowy modelu to PLA, ze względu na jego stosunkowo niską cenę oraz dobrą wytrzymałość i możliwość modyfikacji po wydruku.

2 Konfiguracja mikrokontrolera

Konfiguracja portów MCU wygenerowana w programie STM32CubeMX widoczna jest na rysunku 1. Konfiguracja zegarów przedstawiona jest na rysunku 2. W tych celach wykorzystano informacje znajdujące się w [3].

Rysunek 1: Konfiguracja wyjść mikrokontrolera w programie STM32CubeMX

Rysunek 2: Konfiguracja zegarów mikrokontrolera

2.1 Konfiguracja pinów

Nr pinu	PIN	Tryb pracy	Funkcja/etykieta
7	PC13	GPIO EXTI13	MFX IRQ OUT
8	PC14	$OSC3\overline{2}$ IN	RCC OSC32 IN
9	PC15	OSC32 OUT	RCC OSC32 OUT
12	PH0	\overline{OSC} \overline{IN}	RCC OSC IN
13	PH1	OSC OUT	RCC OSC OUT
18	PC3	LCD VLCD	VLCD
23	PA0	GPIO Input	JOY CENTER [MT-008A CENTER]
24	PA1	GPIO Input	JOY LEFT [MT-008A LEFT
25	PA2	GPIO Input	JOY RIGHT [MT-008A_EEFT]
26	PA3	GPIO_Input	JOY UP [MT-008A_RIGHT]
	PA4	ı — -	; ;
29		GPIO_EXTI4	MFX_WAKEUP
30	PA5	GPIO_Input	JOY_DOWN [MT-008A_DOWN]
31	PA6	LCD_SEG3	SEG23 [GH08172T_SEG23]
32	PA7	LCD_SEG4	SEG0 [GH08172T_SEG0]
33	PC4	LCD_SEG22	SEG22 [GH08172T_SEG22]
34	PC5	LCD_SEG23	SEG1 [GH08172T_SEG1]
35	PB0	LCD_SEG5	SEG21 [GH08172T_SEG21]
36	PB1	LCD_SEG6	SEG2 [GH08172T_SEG2]
37	PB2	GPIO_Output	LD_R [LED red]
39	PE8	GPIO_Output	LD_G [LED_Green]
42	PE11	TIM1 CH2	SERVO Piwnica
44	PE13	TIM1 CH3	SERVO Ramie
45	PE14	TIM1 CH4	SERVO Lokiec
47	PB10	I2C2 SCL	$MFX \overline{12}C SLC$
48	PB11	I2C2 SDA	MFX I2C SDA
51	PB12	LCD SEG12	SEG20 [GH08172T_SEG20]
52	PB13	LCD SEG13	SEG3 [GH08172T SEG3]
53	PB14	LCD SEG14	SEG19 [GH08172T SEG19]
54	PB15	LCD SEG15	SEG4 [GH08172T SEG4]
55	PD8	LCD SEG28	_ ,
56	PD9	_	SEG18 [GH08172T_SEG18]
		LCD_SEG29	SEG5 [GH08172T_SEG5]
57	PD10	LCD_SEG30	SEG17 [GH08172T_SEG17]
58	PD11	LCD_SEG31	SEG6 [GH08172T_SEG6]
59	PD12	LCD_SEG32	SEG16 [GH08172T_SEG16]
60	PD13	LCD_SEG33	SEG7 [GH08172T_SEG7]
61	PD14	LCD_SEG34	SEG15 [GH08172T_SEG15]
62	PD15	LCD_SEG35	SEG8 [GH08172T_SEG8]
63	PC6	LCD_SEG24	SEG14 [GH08172T_SEG14]
64	PC7	LCD_SEG25	SEG9 [GH08172T_SEG9]
65	PC8	LCD_SEG26	SEG13 [GH08172T_SEG13]
66	PC9	GPIO_Output	OTG_FS_PowerSwitchOn
67	PA8	LCD_COM0	COM0 [GH08172T_COM0]
68	PA9	LCD COM1	COM1 [GH08172T COM1]
69	PA10	LCD COM2	COM2 [GH08172T COM2]
70	PA11	USB OTG FS DM	OTG_FS_DM
71	PA12	USB OTG FS DP	OTG FS DP
72	PA13	SYS JTMS-SWDIO	SWDIO
76	PA14	SYS JTCK-SWCLK	SWCLK
77	PA15	(JTDI) LCD_SEG17	SEG10 [GH08172T SEG10]
78	PC10	GPIO EXTI10	OTG FS OverCurrent
79	PC10 PC11	l —	
1		GPIO_Output	OTG_FS_VBUS
81	PD0	GPIO_EXTI0	EXT_RST
86	PD5	USART2_TX	USART_TX
87	PD6	USART2_RX	USART_RX
89	PB3	(JTDO-TRACESWO) GPIO_Output	M3V3_REG-ON

Nr pinu	PIN	Tryb pracy	Funkcja/etykieta
90	PB4	(NJTRST) LCD_SEG8	SEG11 [GH08172T_SEG11]
91	PB5	LCD_SEG9	SEG12 [GH08172T_SEG12]
92	PB6	TIM4_CH1	SERVO_Chwytak
96	PB9	LCD_COM3	COM3 [GH08172T_COM3]

Tabela 1: Konfiguracja pinów mikrokontrolera

2.2 USART

Ustawienia interfejsu w programie CubeMX przedstawione zostały w tabeli 2.

Badu Rate	115200
Word Lenght	8 Bits
Parity	None
Stop Bits	1

Tabela 2: Konfiguracja USART

2.3 RCC

RCC - High Speed Clock (HSE): Crystal/Ceramic Resonator RCC - Low Speed Clock (LSE): Crystal/Ceramic Resonator

2.4 Timery

Ustawienia timerów dobrano na podstawie [1] oraz [2]. TIM1 - Internal Clock

Prescaler register	799
Counter period (ARR)	999
Channel 2 - mode	PWM Generation CH2
Channel 3 - mode	PWM Generation CH3
Channel 4 - mode	PWM Generation CH4

Tabela 3: TIM1 - uproszczona konfiguracja

TIM4 - Internal Clock

Prescaler register	799
Counter period (ARR)	999
Channel 1 - mode	PWM Generation CH1

Tabela 4: TIM4 - uproszczona konfiguracja

2.5 I2C2

I2C Speed Mode	Standard mode
I2C Speed Frequency	100 kHz

Tabela 5: I2C2 - uproszczona konfiguracja

2.6 LCD

LCD: 1/4 Duty Cycle

3 Konstrukcja mechaniczna

Konstrukcja została oparta na elementach wydrukowanych za pomocą drukarki 3D. Materiał użyty do druku to PLA. Na etapie planowania posłużono się informacjami zawartymi w [4] oraz [5]. Podczas modelowania ramienia wzorowano się na wykonanych już projektach celem usprawnienia projektu oraz ograniczeniem niepoprawnych wydruków. Modelowanie odbyło się przy pomocy programu SketchUP. Poniżej zaprezentowane zostały modele wydrukowanych elementów (wybrane z nich).

Rysunek 3: Cięgno

Rysunek 4: Ramię robota

Rysunek 5: Podstawa mocująca cięgna i silniki

Po wykonaniu modeli przetworzono je za pomocą środowiska Cura, czynność ta umożliwiła

"pocięcie"modeli oraz zapis ich w sposób gotowy do wydruku, z uwagi na dużą liczbę elementów wysokość warstwy ustawiono podczas druku na 0,3mm oraz prędkość druku na 50mm/s, ustawienia te ograniczyły czas wydruku ze standardowych 20 na około 13 godzin. Plastik z którego stworzono robota jest dwukolorowy, jest to wybór czysto estetyczny. Celem było zwrócenie uwagi na końcowe ramie robota, gdyby kolory wykorzystane były w odwrotny sposób widoczność chwytaka zmniejszyła by się.

Po dokonaniu wydruków zmontowano wszystkie elementy. Elementy w większości przypadków zostały połączone śrubami M4 – każda z nich została skrócona do odpowiedniego rozmiaru, tak aby nie przeszkadzała w późniejszej pracy urządzenia oraz nie stwarzała niebezpieczeństwa skaleczenia. Śruby skręcone są podwójnymi nakrętkami dodatkowo z wykorzystaniem podkładek. Działanie miało na celu ograniczenie niebezpieczeństwa niekontrolowanego odkręcenia się którejś ze śrub, podkładki natomiast pozwoliły na ograniczenie tarcia a zarazem zużywania się mocowań. Niektóre z połączeń zostały wzmocnione klejem na gorąco

Silniki na jakie postawiono podczas budowy urządzenia to serwa SG-90. Wybór padł konkretnie na ten model z uwagi na niską cenę, łatwą dostępność oraz niewielkie rozmiary. Dzięki zastosowaniu serw w prosty sposób możliwe jest sprawdzenie obecnego nachylenia ramienia.

Rysunek 6: Zmontowane urządzenie

Rysunek 7: Zmontowane urządzenie – zdjęcie 2

Po dokonaniu montażu z powodzeniem przetestowano działanie silników celem uniknięcia komplikacji w późniejszym etapie konfiguracji mikrokontrolera.

4 Zadania niezrealizowane

Zadanie *Sterowanie manipulatorem* pomimo, że według założeń miało zostać zrealizowane tylko częściowo i tak zostało wykonane w mniejszym stopniu niż zakładano. Jest to wynik złego oszacowania trudności zadania w połączeniu z napotkanymi, niespodziewanymi utrudnieniami. Dodatkowo czas realizacji pokrył się z przerwą świąteczną, co uniemożliwiło skorzystanie z konsultacji z prowadzącym.

5 Podsumowanie

Projekt jest złożeniem części mechanicznej – manipulator, efektor – oraz programistycznej – sterowanie, algorytm odwrotnego zadania kinematyki.

Jego wykonanie będzie wymagało wykorzystania w praktyce zdobytej wiedzy z zakresu programowania mikrokontrolerów jak i mechaniki analitycznej. Ponadto konieczne będzie poszerzenie swojej wiedzy o dziedziny dotychczas niepoznane.

Manipulatory wykorzystywane są w rozlicznych gałęziach przemysłu, z pewnością umiejętności zdobyte w trakcie realizacji projektu przydadzą się w przyszłych pracach. Dzięki wszystkim tym cechom projekt jest wymagający i ciekawy.

Literatura

- [1] Controllerstech. PWM (Pulse Width Mod) in STM32. Paz. 2017.
- [2] Controllerstech. Servo motor with STM32. Mar. 2018.
- [3] W. Domski. Sterowniki robotów, Laboratorium Wprowadzenie, Wykorzystanie narzędzi STM32CubeMX oraz SW4STM32 do budowy programu mrugającej diody z obsługą przycisku. Mar. 2017.
- [4] M. Przychodniak. Krok 10 ABS, PLA, nylon i inne, czyli przegląd filamentów do drukarek 3D. Mar. 2017.
- [5] E. Tyson. Czujnik odległości HC-SR04, funkcje. Czerw. 2017.