Mathematical and Logical Foundations of Computer Science

Predicate Logic (Equivalences)

Vincent Rahli

(some slides were adapted from Rajesh Chitnis' slides)

University of Birmingham

Where are we?

- Symbolic logic
- Propositional logic
- ► Predicate logic
- ▶ Intuitionistic vs. Classical logic
- Type theory

Today

Equivalences:

- ▶ in Natural Deduction
- ▶ in the Sequent Calculus
- using semantics

Today

Equivalences:

- in Natural Deduction
- ▶ in the Sequent Calculus
- using semantics

Further reading:

Chapter 8 of

http://leanprover.github.io/logic_and_proof/

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \wedge P \mid P \vee P \mid P \rightarrow P \mid \forall x.P \mid \exists x.P \end{array}$$

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1, \ldots, t_n)$ is a well-formed formula only if p has arity n

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t,\ldots,t) \\ P & ::= & p(t,\ldots,t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The syntax of predicate logic is defined by the following grammar:

$$\begin{array}{ll} t & ::= & x \mid f(t, \dots, t) \\ P & ::= & p(t, \dots, t) \mid \neg P \mid P \land P \mid P \lor P \mid P \to P \mid \forall x.P \mid \exists x.P \end{array}$$

where:

- x ranges over variables
- f ranges over function symbols
- $f(t_1, \ldots, t_n)$ is a well-formed term only if f has arity n
- p ranges over predicate symbols
- $p(t_1,\ldots,t_n)$ is a well-formed formula only if p has arity n

The pair of a collection of function symbols, and a collection of predicate symbols, along with their arities, is called a **signature**.

The scope of a quantifier extends as far right as possible. E.g., $P \wedge \forall x.p(x) \vee q(x)$ is read as $P \wedge \forall x.(p(x) \vee q(x))$

Substitution is defined recursively on terms and formulas: $P[x \mid t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas: $P[x \mid t]$ substitute all the free occurrences of x in P with t.

Substitution is defined recursively on terms and formulas:

 $P[x \mid t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

Substitution is defined recursively on terms and formulas:

 $P[x \setminus t]$ substitute all the free occurrences of x in P with t.

The additional conditions ensure that free variables do not get captured.

These conditions can always be met by silently renaming bound variables before substituting.

Recap: $\forall \& \exists$ elimination and introduction rules

Natural Deduction rules for quantifiers:

$$\frac{P[x \backslash y]}{\forall x.P} \quad [\forall I] \qquad \frac{\forall x.P}{P[x \backslash t]} \quad [\forall E] \qquad \frac{P[x \backslash t]}{\exists x.P} \quad [\exists I] \qquad \frac{\exists x.P \quad Q}{Q} \quad 1 \quad [\exists E]$$

Recap: $\forall \& \exists$ elimination and introduction rules

Natural Deduction rules for quantifiers:

$$\frac{P[x \backslash y]}{\forall x.P} \quad [\forall I] \qquad \frac{\forall x.P}{P[x \backslash t]} \quad [\forall E] \qquad \frac{P[x \backslash t]}{\exists x.P} \quad [\exists I] \qquad \frac{\exists x.P}{Q} \quad 1 \quad [\exists E]$$

Condition:

- for $[\forall I]$: y must not be free in any not-yet-discharged hypothesis or in $\forall x.P$
- for $[\forall E]$: fv(t) must not clash with bv(P)
- for $\exists I$: fv(t) must not clash with bv(P)
- for $[\exists E]$: y must not be free in Q or in not-yet-discharged hypotheses or in $\exists x.P$

Recap: ∀ & ∃ left and right rules

Sequent Calculus rules for quantifiers:

$$\frac{\Gamma \vdash P[x \backslash y]}{\Gamma \vdash \forall x. P} \quad [\forall R] \qquad \frac{\Gamma, P[x \backslash t] \vdash Q}{\Gamma, \forall x. P \vdash Q} \quad [\forall L]$$

$$\frac{\Gamma \vdash P[x \backslash t]}{\Gamma \vdash \exists x. P} \quad [\exists R] \qquad \frac{\Gamma, P[x \backslash y] \vdash Q}{\Gamma, \exists x. P \vdash Q} \quad [\exists L]$$

Recap: \forall & \exists left and right rules

Sequent Calculus rules for quantifiers:

$$\frac{\Gamma \vdash P[x \backslash y]}{\Gamma \vdash \forall x. P} \quad [\forall R] \qquad \frac{\Gamma, P[x \backslash t] \vdash Q}{\Gamma, \forall x. P \vdash Q} \quad [\forall L]$$

$$\frac{\Gamma \vdash P[x \backslash t]}{\Gamma \vdash \exists x. P} \quad [\exists R] \qquad \frac{\Gamma, P[x \backslash y] \vdash Q}{\Gamma, \exists x. P \vdash Q} \quad [\exists L]$$

Conditions:

- for $[\forall R]$: y must not be free in Γ or $\forall x.P$
- for $[\forall L]$: fv(t) must not clash with bv(P)
- for $[\exists R]$: fv(t) must not clash with bv(P)
- for $[\exists L]$: y must not be free in Γ , Q, or $\exists x.P$

Models: a model provides the interpretation of all symbols

Models: a model provides the interpretation of all symbols

```
Given a signature \langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle
```

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \leqslant i \leqslant m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \leqslant i \leqslant n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

Models: a model provides the interpretation of all symbols

Given a signature $\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure $\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

lacktriangle a partial function v

Models: a model provides the interpretation of all symbols

Given a signature
$$\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure
$$\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$$

- of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace **truth assignments** for propositional logic

Variable valuations:

- ightharpoonup a partial function v
- ▶ that map variables to *D*

Models: a model provides the interpretation of all symbols

Given a signature
$$\langle\langle f_1^{k_1},\dots,f_n^{k_n}\rangle,\langle p_1^{j_1},\dots,p_m^{j_m}\rangle\rangle$$

- of function symbols f_i of arity k_i , for $1 \le i \le n$
- of predicate symbols p_i of arity j_i , for $1 \le i \le m$

a model is a structure
$$\langle D, \langle \mathcal{F}_{f_1}, \dots, \mathcal{F}_{f_n} \rangle, \langle \mathcal{R}_{p_1}, \dots, \mathcal{R}_{p_m} \rangle \rangle$$

- ightharpoonup of a non-empty domain D
- interpretations \mathcal{F}_{f_i} for function symbols f_i
- interpretations \mathcal{R}_{p_i} for function symbols p_i

Models of predicate logic replace truth assignments for propositional logic

Variable valuations:

- ightharpoonup a partial function v
- that map variables to D
- i.e., a mapping of the form $x_1 \mapsto d_1, \dots, x_n \mapsto d_n$

Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:

- $[\![t]\!]_v^M$ gives meaning to the term t w.r.t. M and v
- $ightharpoonup \models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:

- $[\![t]\!]_v^M$ gives meaning to the term t w.r.t. M and v
- $\blacktriangleright \models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Meaning of terms:

- $\qquad \qquad \mathbf{I}_{f}(t_{1},\ldots,t_{n})\mathbf{I}_{v}^{M} = \mathcal{F}_{f}(\langle [t_{1}]_{v}^{M},\ldots,[t_{n}]_{v}^{M}\rangle)$

Recap: Semantics of Predicate Logic

Given a model M with domain D and a variable valuation v:

- $[\![t]\!]_v^M$ gives meaning to the term t w.r.t. M and v
- $ightharpoonup \models_{M,v} P$ gives meaning to the formula P w.r.t. M and v

Meaning of terms:

- $\qquad \qquad \mathbf{I}_v f(t_1, \dots, t_n) \mathbf{I}_v^M = \mathcal{F}_f(\langle [t_1]_v^M, \dots, [t_n]_v^M \rangle)$

Meaning of formulas:

- $\blacktriangleright \models_{M,v} p(t_1,\ldots,t_n) \text{ iff } \langle \llbracket t_1 \rrbracket_v^M,\ldots,\llbracket t_n \rrbracket_v^M \rangle \in \mathcal{R}_p$
- $\blacktriangleright \models_{M,v} \neg P \text{ iff } \neg \models_{M,v} P$
- $ightharpoonup \models_{M,v} P \land Q \text{ iff } \models_{M,v} P \text{ and } \models_{M,v} Q$
- $\blacktriangleright \models_{M,v} P \lor Q \text{ iff } \models_{M,v} P \text{ or } \models_{M,v} Q$
- $\blacktriangleright \models_{M,v} P \to Q \text{ iff } \models_{M,v} Q \text{ whenever } \models_{M,v} P$
- $\blacktriangleright \models_{M,v} \forall x.P$ iff for every $d \in D$ we have $\models_{M,(v,x\mapsto d)} P$
- $\blacktriangleright \models_{M,v} \exists x.P$ iff there exists a $d \in D$ such that $\models_{M,(v,x \mapsto d)} P$

Recap: Logical equivalences for Propositional Logic

The same equivalences hold as in Propositional Logic:

- ▶ De Morgan's law (I): $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$
- ▶ De Morgan's law (II): $\neg(A \land B) \leftrightarrow (\neg A \lor \neg B)$
- ▶ Implication elimination: $(A \to B) \leftrightarrow (\neg A \lor B)$
- ▶ Commutativity of \wedge : $(A \wedge B) \leftrightarrow (B \wedge A)$
- ▶ Commutativity of \vee : $(A \lor B) \leftrightarrow (B \lor A)$
- ▶ Associativity of \wedge : $((A \wedge B) \wedge C) \leftrightarrow (A \wedge (B \wedge C))$
- ▶ Associativity of \vee : $((A \lor B) \lor C) \leftrightarrow (A \lor (B \lor C))$
- ▶ Distributivity of \land over \lor : $(A \land (B \lor C)) \leftrightarrow ((A \land B) \lor (A \land C))$
- ▶ Distributivity of \lor over \land : $(A \lor (B \land C)) \leftrightarrow ((A \lor B) \land (A \lor C))$
- ▶ Double negation elimination: $(\neg \neg A) \leftrightarrow A$
- ▶ Idempotence: $(A \land A) \leftrightarrow A$ and $(A \lor A) \leftrightarrow A$

$$\blacktriangleright (\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $\blacktriangleright \ (\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x. A \lor B) \leftrightarrow ((\exists x. A) \lor (\exists x. B))$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x. A \lor B) \leftrightarrow ((\exists x. A) \lor (\exists x. B))$
- $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- $(\neg \exists x. A) \leftrightarrow (\forall x. \neg A)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $\bullet (\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $\bullet (\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \bullet $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin fv(A)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \bullet $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $\blacktriangleright \ (\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \mathtt{fv}(B)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \bullet $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \bullet $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$
- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \bullet $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x.A \lor B) \leftrightarrow ((\forall x.A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$
- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x. A \lor B) \leftrightarrow ((\forall x. A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$
- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \mathtt{fv}(B)$
- $\bullet (\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B)$ if $x \notin fv(A)$

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $\blacktriangleright (\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- \bullet $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$
- $(\forall x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A) \leftrightarrow A \text{ if } x \notin \text{fv}(A)$
- $(\forall x. A \lor B) \leftrightarrow ((\forall x. A) \lor B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \land B) \leftrightarrow ((\exists x.A) \land B) \text{ if } x \notin \text{fv}(B)$
- $(\forall x.A \to B) \leftrightarrow ((\exists x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\exists x.A \to B) \leftrightarrow ((\forall x.A) \to B) \text{ if } x \notin \text{fv}(B)$
- $(\forall x.A \to B) \leftrightarrow (A \to \forall x.B) \text{ if } x \notin \text{fv}(A)$
- $(\exists x.A \to B) \leftrightarrow (A \to \exists x.B)$ if $x \notin \text{fv}(A)$

As before to prove a logical equivalence $A \leftrightarrow B$, we will prove:

- ▶ that we can derive B form A
- ▶ that we can derive A form B

As before to prove a logical equivalence $A \leftrightarrow B$, we will prove:

- that we can derive B form A
- ▶ that we can derive A form B

We will prove:

- $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$
- $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$
- $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$
- $(\neg \exists x. A) \leftrightarrow (\forall x. \neg A)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

Prove the logica Natural Deducti	•	$(x.A \wedge B) \leftrightarrow$	$((\forall x.A) \land (\forall x.A))$.B)) in
Here is a proof of	of the left-to-rigl	ht implication	n (constructive)	:
			_	
	$(\forall x.A) \wedge ($	$(\forall x.B)$		

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

Here is a proof of the left-to-right implication (constructive):

 $\frac{\forall x.A}{(\forall x.A) \land (\forall x.B)} \quad [\land I]$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{A[x \setminus y]}{\forall x.A} \quad [\forall I] \qquad \overline{\forall x.B} \quad [\land I]$$

$$(\forall x.A) \land (\forall x.B)$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $\forall x.A \land B$ or in $\forall x.A$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

- pick y such that it does not occur in A or B
- ▶ y must not be free in $\forall x.A \land B$ or in $\forall x.A$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{A[x \setminus y] \wedge B[x \setminus y]}{A[x \setminus y]} [\forall E] \\
\frac{A[x \setminus y]}{\forall x.A} [\forall I] \\
\frac{\forall x.B}{(\forall x.A) \wedge (\forall x.B)} [\wedge I]$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $\forall x.A \land B$ or in $\forall x.A$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{ \frac{\forall x.A \wedge B}{A[x \backslash y] \wedge B[x \backslash y]}}{\frac{A[x \backslash y]}{\forall x.A}} [\forall E] \qquad \qquad \frac{B[x \backslash y]}{\forall x.B} [\forall I] \qquad \qquad \frac{B[x \backslash y]}{\forall x.B} [\land I]$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $\forall x.A \land B$ or in $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in $\forall x.A \land B$ or in $\forall x.B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{\frac{\forall x.A \wedge B}{A[x \backslash y] \wedge B[x \backslash y]} \underset{[\wedge E_L]}{[\forall E]}}{\frac{A[x \backslash y] \wedge B[x \backslash y]}{\underbrace{\frac{A[x \backslash y]}{\forall x.A}}} \underset{[\wedge I]}{[\forall I]}} \underset{[\wedge I]}{\underbrace{\frac{B[x \backslash y]}{\forall x.B}}} \underset{[\wedge I]}{[\forall I]}$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $\forall x.A \land B$ or in $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in $\forall x.A \land B$ or in $\forall x.B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{\frac{\forall x.A \wedge B}{A[x \backslash y] \wedge B[x \backslash y]}}{\frac{A[x \backslash y]}{\forall x.A}}_{[\forall I]}^{[\forall E]} \qquad \frac{\frac{\forall x.A \wedge B}{A[x \backslash y] \wedge B[x \backslash y]}}{\frac{B[x \backslash y]}{\forall x.B}}_{[\wedge I]}^{[\forall I]}$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $\forall x.A \land B$ or in $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in $\forall x.A \land B$ or in $\forall x.B$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction
Here is a proof of the right-to-left implication (constructive):

$\forall x.A \wedge B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{A[x \backslash y] \wedge B[x \backslash y]}{\forall x. A \wedge B} \quad [\forall I]$$

- pick y such that it does not occur in A or B
- y must not be free in $(\forall x.A) \land (\forall x.B)$ or in $\forall x.A \land B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{\overline{A[x \backslash y]} \qquad \overline{B[x \backslash y]}}{\frac{A[x \backslash y] \wedge B[x \backslash y]}{\forall x. A \wedge B}} \ _{[\wedge I]}^{[\wedge I]}$$

- pick y such that it does not occur in A or B
- y must not be free in $(\forall x.A) \land (\forall x.B)$ or in $\forall x.A \land B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{\frac{\forall x.A}{A[x \backslash y]} \quad [\forall E]}{\frac{A[x \backslash y] \wedge B[x \backslash y]}{\forall x.A \wedge B}} \quad [\land I]$$

- pick y such that it does not occur in A or B
- y must not be free in $(\forall x.A) \land (\forall x.B)$ or in $\forall x.A \land B$
- y must not clash with bv(A)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

e is a proof of the right-to-left implication (construe)
$$\frac{(\forall x.A) \wedge (\forall x.B)}{\frac{\forall x.A}{A[x \backslash y]}} [\land E_L] \frac{}{B[x \backslash y]} \frac{}{A[x \backslash y] \wedge B[x \backslash y]} [\land I]} \frac{A[x \backslash y] \wedge B[x \backslash y]}{\forall x.A \wedge B} [\forall I]$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $(\forall x.A) \land (\forall x.B)$ or in $\forall x.A \land B$
- y must not clash with bv(A)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{(\forall x.A) \land (\forall x.B)}{\frac{\forall x.A}{A[x \backslash y]}} \stackrel{[\land E_L]}{=} \frac{\frac{\forall x.B}{B[x \backslash y]}}{\frac{A[x \backslash y] \land B[x \backslash y]}{\forall x.A \land B}} \stackrel{[\forall E]}{=}$$

- pick y such that it does not occur in A or B
- ▶ y must not be free in $(\forall x.A) \land (\forall x.B)$ or in $\forall x.A \land B$
- y must not clash with bv(A)
- y must not clash with bv(B)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in Natural Deduction

$$\frac{(\forall x.A) \land (\forall x.B)}{\frac{\forall x.A}{A[x \backslash y]}} [\forall E] [\land E_L] \frac{(\forall x.A) \land (\forall x.B)}{\frac{\forall x.B}{B[x \backslash y]}} [\land E_R] \\
\frac{A[x \backslash y] \land B[x \backslash y]}{\forall x.A. \land B} [\forall I]$$

- pick y such that it does not occur in A or B
- y must not be free in $(\forall x.A) \land (\forall x.B)$ or in $\forall x.A \land B$
- y must not clash with bv(A)
- y must not clash with bv(B)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

Prove the logical equivalence ($\forall x$ the Sequent Calculus	$(x.A \wedge B) \leftrightarrow ((\forall x.A) \wedge (\forall x.B))$ ir
Here is a proof of the left-to-righ	t implication (constructive):
	$A \land (\forall x.B)$

 $\forall x.A \land B \vdash (\forall x.A) \land (\forall x.B)$

 $\forall x.A \land B \vdash \forall x.A$

 $\forall x.A \land B \vdash \forall x.B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{\forall x.A \land B \vdash A[x \backslash y]}{\forall x.A \land B \vdash \forall x.A} \quad [\forall R] \qquad \overline{\forall x.A \land B \vdash \forall x.B} \quad [\land R]$$

$$\forall x.A \land B \vdash (\forall x.A) \land (\forall x.B)$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]} [\land L] \\
\frac{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]}{\forall x.A \land B \vdash A[x \setminus y]} [\forall R] \\
\frac{\forall x.A \land B \vdash A[x \setminus y]}{\forall x.A \land B \vdash \forall x.A} [\forall R] \\
\frac{\forall x.A \land B \vdash \forall x.B}{\forall x.A \land B \vdash (\forall x.A) \land (\forall x.B)} [\land R]$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]} [\land L] \\
\frac{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]}{\forall x.A \land B \vdash A[x \setminus y]} [\forall R] \\
\frac{\forall x.A \land B \vdash A[x \setminus y]}{\forall x.A \land B \vdash \forall x.A} [\forall R] \\
\frac{\forall x.A \land B \vdash \forall x.A}{\forall x.A \land B \vdash (\forall x.A) \land (\forall x.B)} [\land R]$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus x] \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A \land B \vdash A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A \land B \vdash A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A \land B \vdash A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A \land B \vdash A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A \land B \vdash A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot x] \land A[x \setminus y]} [AL] = \frac{A[x \setminus y] \land A[x \setminus y]}{A[x \cdot$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in the context or $\forall x.B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}{A[x \backslash y] \land B[x \backslash y] \vdash A[x \backslash y]} [\forall L] \frac{A[x \backslash y] \land B[x \backslash y] \vdash B[x \backslash y]}{[\forall L]} [\forall L] \frac{A[x \backslash y] \land B[x \backslash y] \vdash B[x \backslash y]}{[\forall x.A \land B \vdash A[x \backslash y]} [\forall R]} [\forall R] \frac{A[x \backslash y] \land B[x \backslash y] \vdash B[x \backslash y]}{[\forall x.A \land B \vdash B[x \backslash y]} [\forall R]} [\forall R]$$

$$\frac{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}{[\forall x.A \land B \vdash A[x \backslash y]]} [\forall R]$$

$$\frac{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}{[\forall x.A \land B \vdash A[x \backslash y]]} [\forall R]$$

$$\frac{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}{[\forall x.A \land B \vdash A[x \backslash y]]} [\forall R]$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in the context or $\forall x.B$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{\overline{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \land B[x \backslash y] \vdash A[x \backslash y]} \begin{bmatrix} [Id] \\ [\land L] \end{bmatrix} \frac{\overline{A[x \backslash y], B[x \backslash y] \vdash B[x \backslash y]}}{A[x \backslash y] \land B[x \backslash y] \vdash B[x \backslash y]} \begin{bmatrix} [\land L] \\ [\forall L] \end{bmatrix} \frac{\overline{A[x \backslash y], B[x \backslash y] \vdash B[x \backslash y]}}{A[x \backslash y] \land B[x \backslash y] \vdash B[x \backslash y]} \begin{bmatrix} [\forall L] \\ [\forall L] \end{bmatrix} \frac{\overline{A[x \backslash y], B[x \backslash y] \vdash B[x \backslash y]}}{A[x \backslash x] \land B \vdash B[x \backslash y]} \begin{bmatrix} [\forall L] \\ [\forall L] \end{bmatrix} \frac{\overline{A[x \backslash y], B[x \backslash y] \vdash B[x \backslash y]}}{A[x \backslash x] \land B \vdash B[x \backslash y]} \begin{bmatrix} [\forall R] \\ [\land R] \end{bmatrix}} \begin{bmatrix} [\forall R] \\ [\land R] \end{bmatrix}$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in the context or $\forall x.B$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash A[x \setminus y]} \begin{bmatrix} Id \\ \\ [\land L] \end{bmatrix} \frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix} \frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix} \frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix} \frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix}$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix}$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix}$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix}$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y] \land B[x \setminus y] \vdash B[x \setminus y]} \begin{bmatrix} [\land L] \\ \\ [\forall L] \end{bmatrix}$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A$
- y must not clash with $bv(A \wedge B)$
- y must not be free in the context or $\forall x.B$
- y must not clash with $bv(A \wedge B)$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

Prove the logic the Sequent Ca	•	$(\forall x.A) \land (\forall x.B))$ in
Here is a proof	of the right-to-left imp	plication (constructive):
	$\overline{(\forall x.A) \wedge (\forall x.B) \vdash \forall x.}$	$\overline{A \wedge B}$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

 $\frac{\forall x.A, \forall x.B \vdash \forall x.A \land B}{(\forall x.A) \land (\forall x.B) \vdash \forall x.A \land B} \quad [\land L]$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{\forall x.A, \forall x.B \vdash A[x \backslash y] \land B[x \backslash y]}{\forall x.A, \forall x.B \vdash \forall x.A \land B} [\forall R]$$
$$(\forall x.A) \land (\forall x.B) \vdash \forall x.A \land B$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A \land B$

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \backslash y], \forall x.B \vdash A[x \backslash y] \land B[x \backslash y]}{\forall x.A, \forall x.B \vdash A[x \backslash y] \land B[x \backslash y]} \quad [\forall L]$$
$$\frac{\forall x.A, \forall x.B \vdash \forall x.A \land B}{(\forall x.A) \land (\forall x.B) \vdash \forall x.A \land B} \quad [\land L]$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A \land B$
- y must not clash with bv(A)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y] \land B[x \backslash y]}{A[x \backslash y], \forall x.B \vdash A[x \backslash y] \land B[x \backslash y]} [\forall L]$$

$$\frac{\forall x.A, \forall x.B \vdash A[x \backslash y] \land B[x \backslash y]}{\forall x.A, \forall x.B \vdash \forall x.A \land B} [\forall R]$$

$$\frac{\forall x.A, \forall x.B \vdash \forall x.A \land B}{(\forall x.A) \land (\forall x.B) \vdash \forall x.A \land B} [\land L]$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A \land B$
- y must not clash with bv(A)
- y must not clash with bv(B)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]} \qquad [\land R]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], \forall x.B \vdash A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], \forall x.B \vdash A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y], B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash B[x \setminus y]}{A[x \setminus y], B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], B[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], B[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], B[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], B[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], B[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], B[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], A[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land B[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], A[x \setminus y] \vdash A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y] \land A[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], A[x \setminus y], A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y], A[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], A[x \setminus y], A[x \setminus y] \land B[x \setminus y]}{A[x \setminus y], A[x \setminus y], A[x \setminus y]} \qquad [\forall L]$$

$$\frac{A[x \setminus y], A[x \setminus y], A$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A \land B$
- y must not clash with bv(A)
- y must not clash with bv(B)

Prove the logical equivalence $(\forall x.A \land B) \leftrightarrow ((\forall x.A) \land (\forall x.B))$ in the Sequent Calculus

$$\frac{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]}{A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y]} \begin{bmatrix} [Id] \\ A[x \backslash y], B[x \backslash y] \vdash A[x \backslash y] \land B[x \backslash y] \end{bmatrix} \begin{bmatrix} [\forall L] \\ [\forall L] \end{bmatrix}}{A[x \backslash y], \forall x.B \vdash A[x \backslash y] \land B[x \backslash y]} \begin{bmatrix} [\forall L] \\ [\forall L] \end{bmatrix}} \begin{bmatrix} [\forall L] \\ [\forall x.A, \forall x.B \vdash A[x \backslash y] \land B[x \backslash y] \end{bmatrix}} \begin{bmatrix} [\forall R] \\ [\forall x.A, \forall x.B \vdash \forall x.A \land B \end{bmatrix}} \begin{bmatrix} [\forall L] \end{bmatrix}$$

- pick y such that it does not occur in A or B
- y must not be free in the context or $\forall x.A \land B$
- y must not clash with bv(A)
- y must not clash with bv(B)

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

Prove the logical equivalence $(\exists x.A \lor Natural\ Deduction)$	$B) \leftrightarrow ((\exists x.A) \lor (\exists x.B)) i$
Here is a proof of the left-to-right imp	olication (constructive):
$(\exists x.A) \lor (\exists x.B)$	

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\exists x.A \vee B}{(\exists x.A) \vee (\exists x.B)} \quad 1 \ [\exists E]$$

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y]} = \frac{A[x \setminus y] \to (\exists x.A) \vee (\exists x.B)}{A[x \setminus y] \to (\exists x.A) \vee (\exists x.B)}$$

$$\frac{\exists x.A \vee B}{(\exists x.A) \vee (\exists x.B)} = 1 \quad [\exists E]$$

- pick y such that it does not occur in A or B
- 1: $A[x \backslash y] \vee B[x \backslash y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y]} \stackrel{1}{\longrightarrow} \frac{A[x \setminus y] \to (\exists x.A) \vee (\exists x.B)}{A[x \setminus y] \to (\exists x.A) \vee (\exists x.B)}$$

$$\frac{\exists x.A \vee B}{(\exists x.A) \vee (\exists x.B)} \stackrel{(\exists x.A) \vee (\exists x.B)}{A[x \setminus y] \to (\exists x.A) \vee (\exists x.B)}$$

$$(\exists x.A) \vee (\exists x.B)$$

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \vee B[x \setminus y]} \stackrel{1}{=} \frac{(\exists x.A) \vee (\exists x.B)}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{2}{=} [\neg I] \stackrel{B}{=} \frac{B[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)}{B[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)}$$

$$(\exists x.A) \vee (\exists x.B) \qquad \qquad (\exists x.A) \vee (\exists x.B) \qquad \qquad (\exists x.B)$$

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

- pick y such that it does not occur in A or B
- 1: $A[x \backslash y] \vee B[x \backslash y]$
- ightharpoonup 2: $A[x \setminus y]$
- ightharpoonup 3: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{A[x\backslash y]}{\exists x.A} \stackrel{?}{[\exists I]} \qquad \frac{\exists x.B}{\exists x.B} \qquad [\lor I_R]$$

$$\frac{A[x\backslash y] \lor B[x\backslash y]}{A[x\backslash y] \lor B[x\backslash y]} \stackrel{1}{1} \frac{A[x\backslash y] \to (\exists x.A) \lor (\exists x.B)} \stackrel{?}{2} [\to I] \stackrel{?}{1} \frac{\exists x.B}{(\exists x.A) \lor (\exists x.B)} \stackrel{[\lor I_R]}{\exists x.B} \qquad [\lor I_R]$$

$$2 \vdash I \mid B[x\backslash y] \to (\exists x.A) \lor (\exists x.B) \qquad [\lor E]$$

$$\exists x.A \lor B \qquad (\exists x.A) \lor (\exists x.B) \qquad 1 \quad [\exists E]$$

- pick y such that it does not occur in A or B
- 1: $A[x \backslash y] \vee B[x \backslash y]$
- ightharpoonup 2: $A[x \setminus y]$
- ightharpoonup 3: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\overline{A[x\backslash y]}}{\exists x.A} \stackrel{2}{[\exists I]} \qquad \qquad \frac{\overline{B[x\backslash y]}}{\exists x.B} \stackrel{[\exists I]}{\exists x.B} \qquad \qquad \overline{B[x\backslash y]} \qquad [\exists I]$$

$$\frac{A[x\backslash y] \vee B[x\backslash y]}{A[x\backslash y] \vee B[x\backslash y]} \stackrel{1}{=} \frac{\overline{A[x\backslash y]} \vee A[x\backslash y]}{A[x\backslash y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{2}{=} [\to I]}{A[x\backslash y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{2}{=} [\to I]$$

$$\frac{\exists x.A \vee B}{(\exists x.A) \vee (\exists x.B)} \qquad 1 \quad [\exists E]$$

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$
- ightharpoonup 2: $A[x \setminus y]$
- ightharpoonup 3: $B[x \backslash y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{A[x \setminus y]}{\exists x.A} \stackrel{?}{[\exists I]} \qquad \frac{B[x \setminus y]}{\exists x.B} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \stackrel{?}{[\exists I]} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee B[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.B)} \qquad \frac{A[x \setminus y] \vee A[x \setminus y]}{A[x \setminus y] \rightarrow (\exists x.A) \vee (\exists x.A) \vee (\exists$$

- pick y such that it does not occur in A or B
- 1: $A[x \setminus y] \vee B[x \setminus y]$
- ightharpoonup 2: $A[x \setminus y]$
- ightharpoonup 3: $B[x \backslash y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

Prove the logica		$\in (\exists x.A \lor A)$	$B) \leftrightarrow ((\exists x. A$	$)\vee(\exists x.B))$ in
Natural Deducti	on			
Here is a proof	of the right-t	to-left impl	ication (const	tructive):
	_			
			=	
_				
_				
		$A \vee B$		
	$\exists u$.	$A \lor D$		

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$(\exists x.A) \lor (\exists x.B) \qquad \exists x.A \to \exists x.A \lor B \qquad \qquad \exists x.B \to \exists x.A \lor B$$

 $\exists x. A \lor B$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{\exists x.A \lor B}{\exists x.A \to \exists x.A \lor B} \quad 1 \ [\to I] \qquad \qquad \overline{\exists x.B \to \exists x.A \lor B}$$

$$\exists x.A \lor B \qquad [\lor E]$$

▶ 1: ∃x.A

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\exists x.A}{\exists x.A \lor B} \quad 2 \quad [\exists E]$$

$$\frac{\exists x.A \lor B}{\exists x.A \lor B} \quad 1 \quad [\to I]$$

$$\exists x.B \to \exists x.A \lor B$$

$$\exists x.B \to \exists x.A \lor B$$

$$[\lor E]$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\exists x.A}{\exists x.A} \stackrel{1}{\exists x.A \lor B} \stackrel{2}{\exists x.A \lor B} \stackrel{2}{\exists x.A \lor B} \stackrel{1}{\exists x.A$$

- ▶ 1: ∃*x*.*A*
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\exists x.A}{\exists x.A} \stackrel{1}{\xrightarrow{\exists x.A \vee B}} \stackrel{\exists II}{=} \stackrel{-}{\xrightarrow{\exists x.A \vee B}} \stackrel{[\vee E]}{=} \stackrel{[\vee E]}{=} \stackrel{-}{\xrightarrow{\exists x.A \vee B}} \stackrel{[\vee E]}{=} \stackrel{-}{\xrightarrow{\boxtimes A}} \stackrel{[\vee$$

- **▶** 1: ∃*x*.*A*
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\overline{A[x \setminus y]}}{A[x \setminus y] \vee B[x \setminus y]} \xrightarrow{[\exists I]} - \frac{\overline{A[x \setminus y] \vee B[x \setminus y]}}{\exists x.A \vee B} \xrightarrow{[\exists I]} - \frac{\overline{A[x \setminus y] \vee B[x \setminus y]}}{\exists x.A \vee B} \xrightarrow{[\exists I]} - \frac{\overline{A[x \setminus y] \vee B[x \setminus y]}}{\exists x.A \vee B} \xrightarrow{[\forall I]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{[\forall I]} \overline{A[x \setminus A \vee B]} \xrightarrow{[\forall I]} \overline{A[x \setminus A \vee B]} \xrightarrow{[\forall I]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus A \vee B]} \xrightarrow{A[x \setminus A \vee B]} \overline{A[x \setminus$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\overline{A[x\backslash y]}^{2}}{A[x\backslash y] \vee B[x\backslash y]} \xrightarrow{[\vee I_{L}]} \xrightarrow{[\exists I]} \xrightarrow{[\exists x.A \vee B]} \xrightarrow{[\forall x.A \vee B]} \xrightarrow{[\forall x.A \vee B]} \xrightarrow{[\vee E]}$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\overline{A[x \setminus y]}^{2}}{A[x \setminus y] \vee B[x \setminus y]} = \begin{bmatrix} [\vee I_{L}] \\ \exists x.A \end{bmatrix} = \begin{bmatrix} \exists x.A \vee B \\ \exists x.A \vee B \end{bmatrix} = \begin{bmatrix} \exists x.A \vee B \\ \exists x.A \vee B \end{bmatrix} = \begin{bmatrix} \exists x.A \vee B \\ \exists x.A \vee B \end{bmatrix} = \begin{bmatrix} \exists x.A \vee B \\ \exists x.A \vee B \end{bmatrix} = \begin{bmatrix} [\vee E] \end{bmatrix}$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$
- **▶** 3: ∃*x*.*B*

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{\overline{A[x \setminus y]}^{2}}{A[x \setminus y] \vee B[x \setminus y]} \xrightarrow{[\forall I_{L}]} \frac{\overline{A[x \setminus y] \vee B[x \setminus y]}}{\exists x.A \vee B} \xrightarrow{[\exists I]]} \frac{\exists x.B}{\exists x.A \vee B} \xrightarrow{\exists x.A \vee B} 4 \xrightarrow{[\exists E]} \frac{\exists x.A \vee B}{\exists x.A \vee B} \xrightarrow{3 \ [\forall I]} \frac{\exists x.A \vee B}{\exists x.A \vee B} \xrightarrow{[\forall E]} \frac{\exists x.A \vee B}{\exists x.B \to \exists x.A \vee B} \xrightarrow{[\forall E]}$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$
- **▶** 3: ∃x.B
- 4: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\underbrace{\frac{\overline{A[x\backslash y]}}_{\exists x.A} \stackrel{2}{1} \frac{\overline{A[x\backslash y]} \vee B[x\backslash y]}{\exists x.A \vee B}}_{\exists x.A \vee B} \stackrel{[\exists I]}{1} \underbrace{\frac{\exists x.A \vee B}{\exists x.A \vee B}}_{\exists x.A \vee B} \stackrel{1}{1} \underbrace{[\exists E]}_{\exists x.A \vee B} \underbrace{\frac{\exists x.A \vee B}{\exists x.A \vee B}}_{\exists x.A \vee B} \stackrel{3}{1} \underbrace{[\neg I]}_{\exists x.B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B}}_{[\neg E]}$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$
- **▶** 3: ∃x.B
- 4: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\frac{A[x \setminus y]}{A[x \setminus y]}^2 = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus y] \times B[x \setminus y]} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus y] \times B[x \setminus y]} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus y] \times B[x \setminus y]} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times B[x \setminus y]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus y] \times A[x \setminus x]}{A[x \setminus x] \times A \times B} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x] \times A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x] \times A[x \setminus x]}{A[x \setminus x]} = \frac{A[x \setminus x]}{A[x \setminus x]} =$$

- **▶** 1: ∃x.A
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$
- **▶** 3: ∃x.B
- 4: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\underbrace{\frac{\overline{A[x\backslash y]}^{2}}{A[x\backslash y] \vee B[x\backslash y]}}_{\exists x.A} \stackrel{[\vee I_{L}]}{\exists x.A \vee B} \stackrel{[\exists I]}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I_{I}]}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I]}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I]}{\exists x.B \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I]}{\exists x.B \vee B}$$

$$ightharpoonup$$
 1: $\exists x.A$

- pick y such that it does not occur in A or B
- ightharpoonup 2: $A[x \setminus y]$
- **▶** 3: ∃x.B
- 4: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in Natural Deduction

$$\underbrace{\frac{\overline{A[x\backslash y]}^{2}}{A[x\backslash y] \vee B[x\backslash y]}}_{\exists x.A} \stackrel{[\vee I_{L}]}{\exists x.A \vee B} \stackrel{[\exists I]}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I_{I}]}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I]}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{\exists x.A \vee B}{\exists x.A \vee B} \stackrel{[\to I]}{\exists x.B \vee B} \stackrel{\exists x.A \vee B}{\exists x.B \vee B} \stackrel{\exists x.A \vee B}{\exists x.B \vee B} \stackrel{[\to I]}{\exists x.B \vee B}$$

- ▶ 1: ∃*x*.*A*
- pick y such that it does not occur in A or B
- 2: $A[x \setminus y]$
- **▶** 3: ∃x.B
- 4: $B[x \setminus y]$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Prove the logical equivalence $(\exists x.A \lor the Sequent Calculus)$	$B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in
Here is a proof of the left-to-right imp	olication (constructive):

 $\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{A[x \backslash y] \vee B[x \backslash y] \vdash (\exists x.A) \vee (\exists x.B)}{\exists x.A \vee B \vdash (\exists x.A) \vee (\exists x.B)} \quad [\exists L]$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{A[x \setminus y] \vdash (\exists x.A) \lor (\exists x.B)}{B[x \setminus y] \vdash (\exists x.A) \lor (\exists x.B)} \qquad [\lor L]$$

$$\frac{A[x \setminus y] \lor B[x \setminus y] \vdash (\exists x.A) \lor (\exists x.B)}{\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)} \qquad [\exists L]$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x\backslash y] \vdash \exists x.A}}{A[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)} [\lor R_1] \frac{\overline{B[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)}}{B[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)} [\lor L]$$

$$\frac{A[x\backslash y] \lor B[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)}{\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)} [\exists L]$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \vdash \exists x.A} \quad [\exists R] \qquad \overline{\qquad}$$

$$\frac{\overline{A[x \backslash y] \vdash (\exists x.A) \lor (\exists x.B)}}{B[x \backslash y] \vdash (\exists x.A) \lor (\exists x.B)} \quad [\lor L]$$

$$\frac{A[x \backslash y] \lor B[x \backslash y] \vdash (\exists x.A) \lor (\exists x.B)}{\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)} \quad [\exists L]$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{A[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \vdash \exists x.A} \stackrel{[\exists R]}{=} \frac{B[x \setminus y] \vdash (\exists x.A) \vee (\exists x.B)}{B[x \setminus y] \vdash (\exists x.A) \vee (\exists x.B)} \stackrel{[\lor L]}{=} \frac{A[x \setminus y] \vee B[x \setminus y] \vdash (\exists x.A) \vee (\exists x.B)}{\exists x.A \vee B \vdash (\exists x.A) \vee (\exists x.B)} \stackrel{[\exists L]}{=}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \vdash \exists x.A} \stackrel{[Id]}{=} \frac{\overline{B[x \backslash y] \vdash \exists x.B}}{B[x \backslash y] \vdash (\exists x.B)} \stackrel{[\lor R_2]}{=} \frac{A[x \backslash y] \vdash (\exists x.A) \lor (\exists x.B)}{B[x \backslash y] \vdash (\exists x.A) \lor (\exists x.B)} \stackrel{[\lor L]}{=} \frac{A[x \backslash y] \lor B[x \backslash y] \vdash (\exists x.A) \lor (\exists x.B)}{\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)} \stackrel{[\exists L]}{=}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x\backslash y] \vdash A[x\backslash y]}}{A[x\backslash y] \vdash \exists x.A} \stackrel{[Id]}{=\exists R]} \qquad \frac{\overline{B[x\backslash y] \vdash B[x\backslash y]}}{B[x\backslash y] \vdash \exists x.B} \stackrel{[\exists R]}{=} \\ \frac{A[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)}{B[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)} \stackrel{[\lor R_2]}{=} \\ \frac{A[x\backslash y] \lor B[x\backslash y] \vdash (\exists x.A) \lor (\exists x.B)}{\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)} \stackrel{[\exists L]}{=}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\frac{A[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \vdash \exists x.A} \quad [\exists R]}{\frac{B[x \setminus y] \vdash B[x \setminus y]}{B[x \setminus y] \vdash \exists x.B}} \quad [\exists R]$$

$$\frac{A[x \setminus y] \vdash (\exists x.A) \lor (\exists x.B)}{B[x \setminus y] \vdash (\exists x.A) \lor (\exists x.B)} \quad [\lor R_{2}]$$

$$\frac{A[x \setminus y] \lor B[x \setminus y] \vdash (\exists x.A) \lor (\exists x.B)}{\exists x.A \lor B \vdash (\exists x.A) \lor (\exists x.B)} \quad [\exists L]$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ it he Sequent Calculus		
ere is a proof of the right-to-left implication (constructive):		
$\exists x.A) \lor (\exists x.B) \vdash \exists x.A \lor B$		

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\exists x.A \vdash \exists x.A \lor B}{(\exists x.A) \lor (\exists x.B) \vdash \exists x.A \lor B} \quad [\lor L]$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \setminus y] \vdash \exists x.A \vee B}{\exists x.A \vdash \exists x.A \vee B} \quad \exists L] \quad \exists x.B \vdash \exists x.A \vee B \\
(\exists x.A) \vee (\exists x.B) \vdash \exists x.A \vee B$$
[$\vee L$]

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y] \vee B[x \backslash y]}}{\frac{A[x \backslash y] \vdash \exists x. A \vee B}{\exists x. A \vdash \exists x. A \vee B}} \begin{bmatrix} \exists R \end{bmatrix}} \begin{bmatrix} \exists R \end{bmatrix} \begin{bmatrix} \exists x. B \vdash \exists x. A \vee B \end{bmatrix} \begin{bmatrix} \forall L \end{bmatrix}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x\backslash y] \vdash A[x\backslash y]}}{A[x\backslash y] \vdash A[x\backslash y] \lor B[x\backslash y]} \xrightarrow{[\exists R]} \frac{}{\exists x.A \vdash \exists x.A \lor B} \xrightarrow{[\exists L]} \overline{\exists x.B \vdash \exists x.A \lor B} \xrightarrow{[\forall L]} (\exists x.A) \lor (\exists x.B) \vdash \exists x.A \lor B}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \setminus y] \vdash A[x \setminus y]}{A[x \setminus y] \vdash A[x \setminus y]} \xrightarrow{[\forall R_1]} \frac{A[x \setminus y] \vdash A[x \setminus y]}{[\exists R]} \xrightarrow{[\exists R]} \frac{A[x \setminus y] \vdash \exists x.A \lor B}{[\exists x.A \vdash \exists x.A \lor B]} \xrightarrow{[\exists L]} \frac{\exists x.B \vdash \exists x.A \lor B}{[\forall L]}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y]} \underset{[\exists R]}{[\exists R]} = \frac{}{\frac{A[x \backslash y] \vdash \exists x.A \lor B}{\exists x.A \vdash \exists x.A \lor B}} \underset{[\exists L]}{[\exists L]} = \frac{}{\frac{B[x \backslash y] \vdash \exists x.A \lor B}{\exists x.B \vdash \exists x.A \lor B}} \underset{[\lor L]}{[\exists L]}$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \backslash y] \vdash A[x \backslash y]}{A[x \backslash y] \vdash A[x \backslash y] \vee B[x \backslash y]} [\lor R_1] = \frac{A[x \backslash y] \vdash A[x \backslash y] \vee B[x \backslash y]}{[\exists R]} [\exists R]$$

$$\frac{A[x \backslash y] \vdash \exists x. A \vee B}{[\exists x. A \vdash \exists x. A \vee B]} [\exists L] = \frac{B[x \backslash y] \vdash A[x \backslash y] \vee B[x \backslash y]}{[\exists x. B \vdash \exists x. A \vee B]} [\exists L]$$

$$(\exists x. A) \vee (\exists x. B) \vdash \exists x. A \vee B$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \vdash A[x \backslash y]} \begin{bmatrix} Id \\ [\lor R_1] \\ \exists R \end{bmatrix} = \frac{\overline{B[x \backslash y] \vdash B[x \backslash y]}}{B[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y]} \begin{bmatrix} [\lor R_2] \\ \exists R \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \\ \exists A[x \backslash y] \vdash \exists x.A \lor B \end{bmatrix} \begin{bmatrix} \exists A[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ \exists A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor} A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor} A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \\ A[x \backslash y] \vdash A[x \backslash y] \lor} A[x \backslash y] \end{bmatrix}} \begin{bmatrix} A[x \backslash y] \vdash A[x \backslash y] \lor} A[x \backslash y] \lor} A[x \backslash y] \bot} A[x \backslash y] \bot} A[x \backslash y] \bot} A[x \backslash y] \bot} A[$$

Prove the logical equivalence $(\exists x.A \lor B) \leftrightarrow ((\exists x.A) \lor (\exists x.B))$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{A[x \backslash y] \vdash A[x \backslash y]}{A[x \backslash y] \vdash A[x \backslash y]} \begin{bmatrix} Id \\ [\lor R_1] \end{bmatrix} \begin{bmatrix} [\lor R_1] \\ B[x \backslash y] \vdash B[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ B[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ B[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ B[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ B[x \backslash y] \vdash A[x \backslash y] \lor B[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} A[x \backslash y] \end{bmatrix} \begin{bmatrix} [\lor R_2] \\ A[x \backslash y] \vdash A[x \backslash y] \lor A[x \backslash y] \end{bmatrix} A[x \backslash y] \end{bmatrix} A[x \backslash y] \end{bmatrix} A[x \backslash y]$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural
Deduction
Here is a proof of the left-to-right implication (classical):

 $\exists x. \neg A$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Here is a proof of the left-to-right implication (classical):

 $\frac{\neg \neg (\exists x. \neg A)}{\exists x. \neg A} \quad [DNE]$

▶ 1: $\neg(\exists x.\neg A)$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$ightharpoonup$$
 1: $\neg(\exists x. \neg A)$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Here is a proof of the left-to-right implication (classical):

$$\frac{\neg \forall x.A \qquad \forall x.A}{\bot \qquad [\neg E]}$$

$$\frac{\bot}{\neg \neg (\exists x. \neg A)} \quad {}^{1} \quad {}^{[\neg I]}$$

$$\frac{\exists x. \neg A}{} \quad {}^{[DNE]}$$

ightharpoonup 1: $\neg(\exists x.\neg A)$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{A[x \setminus y]}{\forall x.A} \quad [\forall I]$$

$$\frac{\bot}{\neg \neg (\exists x. \neg A)} \quad [\neg I]$$

$$\frac{\bot}{\neg \neg (\exists x. \neg A)} \quad [DNE]$$

- ightharpoonup 1: $\neg(\exists x. \neg A)$
- pick y such that it does not occur in A

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{\neg \neg A[x \setminus y]}{A[x \setminus y]} \quad [DNE]$$

$$\frac{\neg \forall x. A}{\forall x. A} \quad [\neg E]$$

$$\frac{\bot}{\neg \neg (\exists x. \neg A)} \quad [DNE]$$

$$\frac{\neg \neg A[x \setminus y]}{\forall x. A} \quad [DNE]$$

- ightharpoonup 1: $\neg(\exists x.\neg A)$
- pick y such that it does not occur in A

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

- ightharpoonup 1: $\neg(\exists x.\neg A)$
- pick y such that it does not occur in A
- $ightharpoonup 2: \neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{\neg(\exists x.\neg A)}{\neg(\exists x.\neg A)} \frac{\neg E}{\exists x.\neg A}$$

$$\frac{\bot}{\neg\neg A[x \setminus y]} 2 [\neg I]$$

$$\frac{A[x \setminus y]}{\neg A[x \setminus y]} [\neg E]$$

$$\frac{\bot}{\neg C[\exists x.\neg A)} 1 [\neg I]$$

$$\frac{\bot}{\neg C[\exists x.\neg A)} [DNE]$$

- ightharpoonup 1: $\neg(\exists x.\neg A)$
- pick y such that it does not occur in A
- $ightharpoonup 2: \neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{-(\exists x.\neg A)}{1} \frac{1}{\exists x.\neg A} \frac{-}{\exists x.\neg A} \\
\frac{\perp}{\neg \neg A[x \setminus y]} 2 [\neg I] \\
\frac{-\forall x.A}{A[x \setminus y]} [DNE] \\
\frac{-\forall x.A}{\forall x.A} [\neg E] \\
\frac{\perp}{\neg \neg (\exists x.\neg A)} [DNE]$$

- ightharpoonup 1: $\neg(\exists x.\neg A)$
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{-(\exists x. \neg A)}{}^{1} \frac{\overline{-A[x \setminus y]}}{\exists x. \neg A} \quad [\exists I]$$

$$\frac{\bot}{\neg \neg A[x \setminus y]} \quad [\neg E]$$

$$\frac{A[x \setminus y]}{\forall x. A} \quad [\forall I]$$

$$\neg \forall x. A \quad \frac{\bot}{\neg \neg (\exists x. \neg A)} \quad [\neg E]$$

$$\frac{\bot}{\neg \neg (\exists x. \neg A)} \quad [DNE]$$

- ightharpoonup 1: $\neg(\exists x.\neg A)$
- pick y such that it does not occur in A
- $ightharpoonup 2: \neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{-(\exists x. \neg A)}{-(\exists x. \neg A)} \stackrel{1}{=} \frac{-A[x \setminus y]}{\exists x. \neg A} \stackrel{[\exists I]}{=} \frac{1}{\exists x. \neg A}$$

$$\frac{\bot}{-\neg A[x \setminus y]} \stackrel{2}{=} [\neg E]$$

$$\frac{A[x \setminus y]}{\forall x. A} \stackrel{[\forall I]}{=} \frac{1}{\neg \neg (\exists x. \neg A)} \stackrel{1}{=} [\neg E]$$

$$\frac{\bot}{-\neg (\exists x. \neg A)} \stackrel{1}{=} [DNE]$$

- ightharpoonup 1: $\neg(\exists x.\neg A)$
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

 $\neg \forall x.A$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

▶ 1: ∀*x*.*A*

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{\exists x. \neg A \qquad \qquad \bot}{-\forall x. A} \ ^{1} \ [\neg I] \ ^{2} \ [\exists E]$$

- ▶ 1: ∀*x*.*A*
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{\neg A[x \backslash y] \qquad \overline{A[x \backslash y]}}{\bot} \quad [\neg E]$$

$$\frac{\bot}{\neg \forall x. A} \quad 1 \quad [\neg I]$$

- ightharpoonup 1: $\forall x.A$
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{\exists x. \neg A \qquad \frac{\neg A[x \backslash y]}{\bot} \quad \overline{A[x \backslash y]}}{\bot \quad 2 \quad [\exists E]} \quad [\neg E]$$

$$\frac{\bot}{\neg \forall x. A} \quad 1 \quad [\neg I]$$

- ▶ 1: ∀*x*.*A*
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{\neg A[x \backslash y]}{\neg A[x \backslash y]} \stackrel{2}{\sim} \frac{\overline{\forall x.A}}{A[x \backslash y]} \quad [\forall E]$$

$$\frac{\exists x. \neg A}{\qquad \qquad \qquad \bot} \quad {}_{2} \ [\exists E]$$

$$\frac{\bot}{\neg \forall x.A} \quad {}_{1} \ [\neg I]$$

- ▶ 1: ∀x.A
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in Natural Deduction

$$\frac{-A[x\backslash y]}{\frac{\neg A[x\backslash y]}{\bot}} \stackrel{2}{\xrightarrow{\forall x.A}} \stackrel{1}{\xrightarrow{(\forall E)}}$$

$$\frac{\bot}{\neg \forall x.A} \stackrel{1}{\xrightarrow{[\neg I]}} \stackrel{2}{\xrightarrow{\exists E}}$$

- ▶ 1: ∀x.A
- pick y such that it does not occur in A
- ightharpoonup 2: $\neg A[x \backslash y]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Prove the	logical	equivalence	$(\neg \forall x.A)$	\leftrightarrow ($(\exists x. \neg A)$	in	the	Sequen	t
Calculus									

Here is a proof of the left-to-right implication (2nd classical version):

 $\neg \forall x.A \vdash \exists x. \neg A$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (2nd classical version):

$$\frac{}{\neg \forall x.A, \exists x. \neg A} \frac{}{\neg \forall x.A \vdash \exists x. \neg A} [\neg L]$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (2nd classical version):

$$\frac{ \vdash A[x \backslash y], \exists x. \neg A}{ \vdash \forall x.A, \exists x. \neg A} \ [\forall R] \\ \frac{ \vdash \forall x.A, \exists x. \neg A}{ \neg \forall x.A \vdash \exists x. \neg A}$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (2nd classical version):

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (2nd classical version):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{\vdash A[x \backslash y], \neg A[x \backslash y]} |_{[\exists R]}$$

$$\frac{\vdash A[x \backslash y], \exists x. \neg A}{\vdash \forall x. A, \exists x. \neg A} |_{[\forall R]}$$

$$\frac{\vdash \forall x. A, \exists x. \neg A}{\neg \forall x. A \vdash \exists x. \neg A} |_{[\neg L]}$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (2nd classical version):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{ \vdash A[x \backslash y], \neg A[x \backslash y]} \begin{bmatrix} [Id] \\ [\neg R] \\ [\exists R] \end{bmatrix} \\ \frac{\vdash A[x \backslash y], \exists x. \neg A}{ \vdash \forall x. A, \exists x. \neg A} \begin{bmatrix} [\forall R] \\ [\neg L] \end{bmatrix}$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

 $\exists x. \neg A \vdash \neg \forall x. A$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

 $\frac{\exists x. \neg A, \forall x. A \vdash \bot}{\exists x. \neg A \vdash \neg \forall x. A} \quad [\neg R]$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{-A[x \setminus y], \forall x.A \vdash \bot}{\exists x. \neg A, \forall x.A \vdash \bot} \begin{bmatrix} \exists L \\ \neg R \end{bmatrix}$$

$$\exists x. \neg A \vdash \neg \forall x.A \begin{bmatrix} \neg R \end{bmatrix}$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{\forall x.A \vdash A[x \backslash y]}}{\neg A[x \backslash y], \forall x.A \vdash \bot} \begin{bmatrix} \neg L \\ \exists L \end{bmatrix}} \begin{bmatrix} \neg L \\ \exists L \end{bmatrix}$$

$$\frac{\exists x. \neg A, \forall x.A \vdash \bot}{\exists x. \neg A, \vdash \neg \forall x.A} \begin{bmatrix} \neg R \end{bmatrix}$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{\forall x.A \vdash A[x \backslash y]} [\forall L]$$

$$\frac{\neg A[x \backslash y], \forall x.A \vdash \bot}{\exists x. \neg A, \forall x.A \vdash \bot} [\exists L]$$

$$\exists x. \neg A \vdash \neg \forall x.A$$

Prove the logical equivalence $(\neg \forall x.A) \leftrightarrow (\exists x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{ \overline{A[x \backslash y] \vdash A[x \backslash y]}}{ \forall x.A \vdash A[x \backslash y]} [\forall L]$$

$$\frac{ \neg A[x \backslash y], \forall x.A \vdash \bot}{ \exists x. \neg A, \forall x.A \vdash \bot} [\exists L]$$

$$\exists x. \neg A, \vdash \neg \forall x.A$$

$$[\neg R]$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

Here is a proof of the left-to-right implication (constructive):

 $\forall x. \neg A$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{\neg A[x \backslash y]}}{\forall x. \neg A} \quad [\forall I]$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\bot}{\neg A[x \backslash y]} \stackrel{1}{}_{[\forall I]}$$

$$\frac{\bot}{\forall x. \neg A} \stackrel{[\forall I]}{}$$

- pick y such that it does not occur in A
- ightharpoonup 1: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\neg \exists x.A \quad \exists x.A}{\Box x.A} \quad [\neg E]}{\frac{\bot}{\neg A[x \backslash y]} \quad 1 \quad [\neg I]} \\ \frac{\neg A[x \backslash y]}{\forall x. \neg A} \quad [\forall I]}$$

- pick y such that it does not occur in A
- ightharpoonup 1: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\neg \exists x.A \quad \frac{\overline{A[x \backslash y]}}{\exists x.A}}{\begin{bmatrix} \exists I \end{bmatrix}} \begin{bmatrix} \exists I \end{bmatrix}}{\begin{bmatrix} \neg E \end{bmatrix}}$$

$$\frac{\bot}{\neg A[x \backslash y]} \begin{bmatrix} 1 \ [\neg I] \end{bmatrix}}{\begin{bmatrix} \forall I \end{bmatrix}}$$

- pick y such that it does not occur in A
- ightharpoonup 1: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\neg \exists x.A}{\frac{\overline{A[x \backslash y]}}{\exists x.A}} \begin{bmatrix} 1 \\ [\exists I] \\ [\neg E] \end{bmatrix}$$

$$\frac{\bot}{\neg A[x \backslash y]} \begin{bmatrix} 1 \\ [\neg I] \\ [\forall I] \end{bmatrix}$$

- pick y such that it does not occur in A
- ightharpoonup 1: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

 $\neg \exists x.A$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

Here is a proof of the right-to-left implication (constructive):

$$\frac{\bot}{\neg \exists x. A} \ ^{1} \left[\neg I \right]$$

▶ 1: ∃*x*.*A*

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\exists x.A}{\frac{\bot}{\neg \exists x.A}} \xrightarrow{1 \ [\neg I]} \xrightarrow{2 \ [\exists E]}$$

- **▶** 1: ∃x.A
- pick y such that it does not occur in A
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\exists x.A}{}^{1} \frac{\bot}{-\exists x.A} {}^{1} [\neg I]$$

- **▶** 1: ∃x.A
- pick y such that it does not occur in A
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

$$\frac{\exists x.A}{} \stackrel{1}{=} \frac{\overline{\neg A[x \backslash y]}}{\underbrace{\bot}} \stackrel{A[x \backslash y]}{=} [\neg E]$$

$$\frac{\bot}{\neg \exists x.A} \stackrel{1}{=} [\neg I]$$

- **▶** 1: ∃x.A
- pick y such that it does not occur in A
- 2: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

eroof of the right-to-left implication (construction)
$$\frac{\frac{\forall x. \neg A}{\neg A[x \backslash y]} \quad [\forall E] \quad \overline{A[x \backslash y]}}{\frac{\bot}{\neg \exists x. A} \quad 1 \quad [\neg E]} \quad [\neg E]$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in Natural Deduction

groof of the right-to-left implication (construction)
$$\frac{\frac{\forall x. \neg A}{\neg A[x \backslash y]} \ [\forall E] \ \overline{A[x \backslash y]} \ ^2}{\frac{\bot}{\neg \exists x. A} \ ^1 \ [\neg I]} \ ^2 \ [\exists E]$$

- ightharpoonup 1: $\exists x.A$
- pick y such that it does not occur in A
- ightharpoonup 2: $A[x \setminus y]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Prove the	logical	equivalence	$(\neg \exists x.A)$	\leftrightarrow ($\forall x. \neg A)$	in	the	Sequen ⁻
Calculus								

Here is a proof of the left-to-right implication (constructive):

 $\neg \exists x.A \vdash \forall x. \neg A$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

 $\frac{\neg \exists x. A \vdash \neg A[x \backslash y]}{\neg \exists x. A \vdash \forall x. \neg A} \ [\forall R]$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{-\exists x.A, A[x \backslash y] \vdash \bot}{\neg \exists x.A \vdash \neg A[x \backslash y]} [\neg R] \\ \neg \exists x.A \vdash \forall x. \neg A [\forall R]$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{A[x \setminus y] \vdash \exists x.A}{\neg \exists x.A, A[x \setminus y] \vdash \bot} \quad [\neg L]$$

$$\frac{\neg \exists x.A \vdash \neg A[x \setminus y]}{\neg \exists x.A \vdash \forall x. \neg A} \quad [\forall R]$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \vdash \exists x.A} [\exists R]$$

$$\frac{\neg \exists x.A, A[x \backslash y] \vdash \bot}{\neg \exists x.A \vdash \neg A[x \backslash y]} [\neg R]$$

$$\frac{\neg \exists x.A \vdash \forall x. \neg A}{[\forall R]}$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the left-to-right implication (constructive):

$$\frac{ \overline{A[x \backslash y] \vdash A[x \backslash y]}}{A[x \backslash y] \vdash \exists x.A} \begin{bmatrix} Id \\ \exists R \end{bmatrix}$$

$$\frac{\neg \exists x.A, A[x \backslash y] \vdash \bot}{\neg \exists x.A \vdash \neg A[x \backslash y]} \begin{bmatrix} \neg R \end{bmatrix}$$

$$\frac{\neg \exists x.A \vdash \neg A[x \backslash y]}{\neg \exists x.A \vdash \forall x. \neg A} \begin{bmatrix} \forall R \end{bmatrix}$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

 $\forall x. \neg A \vdash \neg \exists x. A$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

Here is a proof of the right-to-left implication (constructive):

$$\frac{\forall x. \neg A, \exists x. A \vdash \bot}{\forall x. \neg A \vdash \neg \exists x. A} \quad [\neg R]$$

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

$$\frac{\forall x. \neg A, A[x \backslash y] \vdash \bot}{\forall x. \neg A, \exists x. A \vdash \bot} \begin{bmatrix} \exists L \end{bmatrix} \\ \frac{\forall x. \neg A, \exists x. A \vdash \bot}{\forall x. \neg A \vdash \neg \exists x. A} \begin{bmatrix} \neg R \end{bmatrix}$$

- pick y such that it does not occur in A
- we have to use $[\exists L]$ before $[\forall L]$ because y must not be free in the context

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

$$\frac{\neg A[x \backslash y], A[x \backslash y] \vdash \bot}{ \frac{\forall x. \neg A, A[x \backslash y] \vdash \bot}{\forall x. \neg A, \exists x. A \vdash \bot}} [\exists L] \\ \frac{\forall x. \neg A, \exists x. A \vdash \bot}{\forall x. \neg A, \vdash \neg \exists x. A} [\neg R]$$

- pick y such that it does not occur in A
- we have to use $[\exists L]$ before $[\forall L]$ because y must not be free in the context

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

$$\frac{\overline{A[x \backslash y] \vdash A[x \backslash y]}}{\neg A[x \backslash y], A[x \backslash y] \vdash \bot} \begin{bmatrix} \neg L \\ \forall x. \neg A, A[x \backslash y] \vdash \bot \\ \hline \forall x. \neg A, \exists x. A \vdash \bot \\ \hline \forall x. \neg A \vdash \neg \exists x. A \end{bmatrix} \begin{bmatrix} \neg R \end{bmatrix}$$

- pick y such that it does not occur in A
- we have to use $[\exists L]$ before $[\forall L]$ because y must not be free in the context

Prove the logical equivalence $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$ in the Sequent Calculus

$$\frac{\overline{A[x\backslash y] \vdash A[x\backslash y]}}{\neg A[x\backslash y], A[x\backslash y] \vdash \bot} \begin{bmatrix} [Td] \\ \neg A[x\backslash y], A[x\backslash y] \vdash \bot \\ \hline \forall x. \neg A, A[x\backslash y] \vdash \bot \\ \hline \forall x. \neg A, \exists x. A \vdash \bot \\ \hline \forall x. \neg A \vdash \neg \exists x. A \end{bmatrix} \begin{bmatrix} [Td] \\ [\neg L] \\ [\forall L] \\ [\neg R] \end{bmatrix}$$

- pick y such that it does not occur in A
- we have to use $[\exists L]$ before $[\forall L]$ because y must not be free in the context

As before: if $(P \leftrightarrow Q \text{ or } Q \leftrightarrow P)$ and P occurs in A, then replacing P by Q in A leads to a formula B, such that $A \leftrightarrow B$

As before: if $(P \leftrightarrow Q \text{ or } Q \leftrightarrow P)$ and P occurs in A, then replacing P by Q in A leads to a formula B, such that $A \leftrightarrow B$

Also,

As before: if $(P \leftrightarrow Q \text{ or } Q \leftrightarrow P)$ and P occurs in A, then replacing P by Q in A leads to a formula B, such that $A \leftrightarrow B$

Also,

Semantical equivalence: two formulas P and Q are equivalent if for all models M and valuations v, $\models_{M,v} P$ iff $\models_{M,v} Q$

Example: prove $(\neg \exists x.A) \leftrightarrow (\forall x. \neg A)$

• if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x.\neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e = d

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x.\neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v,x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e=d
- if $\models_{M,v} \forall x. \neg A$ then $\models_{M,v} \neg \exists x. A$

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e=d
- if $\models_{M,v} \forall x. \neg A$ then $\models_{M,v} \neg \exists x. A$
 - ▶ to prove: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e = d
- if $\models_{M,v} \forall x. \neg A$ then $\models_{M,v} \neg \exists x. A$
 - ▶ to prove: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v.x\mapsto e} A$
 - ▶ assume that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$, and prove a contradiction

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e = d
- if $\models_{M,v} \forall x. \neg A$ then $\models_{M,v} \neg \exists x. A$
 - ▶ to prove: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v.x\mapsto e} A$
 - ▶ assume that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e = d
- if $\models_{M,v} \forall x. \neg A$ then $\models_{M,v} \neg \exists x. A$
 - ▶ to prove: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - ▶ assume that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v,x\mapsto d} A$
 - therefore, instantiating this assumption with e: it is not the case that ⊨_{M,v,x→e} A

- if $\models_{M,v} \neg \exists x.A$ then $\models_{M,v} \forall x. \neg A$
 - ▶ to prove: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v.x\mapsto d} A$
 - ▶ assume $d \in D$ and $\models_{M,v,x\mapsto d} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - contradiction! there is one: take e = d
- if $\models_{M,v} \forall x. \neg A$ then $\models_{M,v} \neg \exists x. A$
 - ▶ to prove: $\models_{M,v} \neg \exists x.A$, i.e., it is not the case that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$
 - ▶ assume that there exists a $e \in D$ such that $\models_{M,v,x\mapsto e} A$, and prove a contradiction
 - ▶ assumption: $\models_{M,v} \forall x. \neg A$, i.e., for every $d \in D$ it is not the case that $\models_{M,v,x\mapsto d} A$
 - therefore, instantiating this assumption with e: it is not the case that ⊨_{M,v,x→e} A
 - contradiction!

Conclusion

What did we cover today?

- Equivalence using Natural Deduction
- Equivalence using the Sequent Calculus
- Equivalences using semantics

Conclusion

What did we cover today?

- Equivalence using Natural Deduction
- Equivalence using the Sequent Calculus
- Equivalences using semantics

Further reading:

Chapter 8 of

```
http://leanprover.github.io/logic_and_proof/
```

Conclusion

What did we cover today?

- Equivalence using Natural Deduction
- Equivalence using the Sequent Calculus
- Equivalences using semantics

Further reading:

Chapter 8 of

```
http://leanprover.github.io/logic_and_proof/
```

Next time?

Predicate Logic – Equivalences