Álxebra Linear

8 de xaneiro de 2018

- 1) Resolver razoadamente as seguintes cuestións:
 - a) Considerar, no espazo vectorial $\Re_3[X]$ dos polinomios de grao ≤ 3 nunha variábel con coeficientes reais, as seguintes bases: $C = \{1, X, X^2, X^3\}$ a canónica e $B_a = \{(X = a)^i \mid 0 \leq i \leq 3\}$ con $a \in \Re$ e $a \neq 0$. Calcular, facendo uso de operacións elementais, a inversa da matriz $A = (I)_{B_aC}$, o cambio de base de B_c a C.
 - b) Considerar a matriz real $n \times n$, $D = I_n + \alpha U_n$, con $\alpha \in \Re$, I_n a identidade de orde n, $U_n = (a_{ij})$ con $a_{ij} = 1$, $\forall i \in \forall j$. Empregando as propiedades dos determinantes, calcula $|D_n|$.
 - c) Considerar a aplicación linear $g: \Re^2 \to \Re^2$ tal que $g(e_2) = F_1 e g(F_2) = e_2$, sendo $B = \{F_1 = (1,1), F_2 = (-1,1)\}$ base de \Re^2 e $C = \{e_1 = (1,0), e_2 = (0,1)\}$ a base canónica. Calcula as seguintes matrices asociadas a g: $(g)_{cc}$, $(g)_{RC}$, $(g)_{CR}$, $(g)_{RR}$.
 - d) Demostra que toda matriz real de orde 3 antisimétrica $(A^T = -A)$ é diagonalizábel. Calcula os seus valores propios. Sucede o mesmo se o facemos coas antisimétricas de orde 2? Razoe a súa resposta.
- 2) Sexa C = [(3, 1, a + 1, 4 b), (0, -1, a, 3), (2, 1, -1, 3)], (por filas) a matriz asociada ao sistema S, un sistema de ecuacións lineares con coeficientes reais. Analizar a existencia dos escalares a e b para que se dean os seguintes casos:
 - a) S ten solución única.
 - b) S non ten solución.
 - c) As solucións de S veñen dadas en función dun parámetro.
 - d) As solucións de S veñen dadas en función de dous parámetros.
 - e) Dar os valores de a e b e as solucións en calquera dos casos de existiren estas. Nota do transcritor: Lamento pór a matriz así, no exame orixinal sae enteira. Barja quere que se discuta por Gauss.
- 3) Sexa $f: \mathbb{R}^3 \to \mathbb{R}^4$ e $g: \mathbb{R}^4 \to \mathbb{R}^3$ as aplicacións dadas por f(x,y,z) = (x+z,y-z,x+y,x-y+2z) e g(x,y,z) = (x+z,x-y+z,x+t).
 - a) Calcula $A = (f)_{c_3c_4}$, a matriz de f respecto das bases canónicas (de $\Re^3 e \Re^4$) e $B = (g)_{c_4c_3}$, a matriz de g respecto das bases canónicas. Proba que AB e BA son matrices diagonalizábeis, é dicir, $f \circ g$ e $g \circ f$ diagonalizan. Calcula en \Re_3 a base B_3 de vectores propios respecto da cal a matriz $D = (g \circ f)_{B_3}$ de $g \circ f$ respecto a B_3 é diagonal. Comproba que $P^{-1}BAP = D$.

b) Achar unha base ou as ecuacións de: $W_3 = ker(g \circ f)$, $U_3 = f^{-1}(W_4)$ e $U_4 = g^{-1}(W_3)$. Nótese que o subíndice de dos subespazos refírese ao ao espazo onde están, \Re^3 ou \Re^4 . Calcular $dim(U_4 + Im(f))$ e $dim(U_3 + Im(g))$. Son directas esas sumas?