Universidade Federal de Goiás Instituto de Informática Curso de Engenharia de Software Introdução à Programação 2018-1 Prova P4

Prof. Thierson Couto Rosa

Sumário

1	Matriz Transposta - 3,0 pontos	2
2	Matriz de Permutação - 3,0 pontos	3
3	Matriz Quadrada - 4,0 pontos	4

1 Matriz Transposta - 3,0 pontos

Encontrar a matriz transposta de uma matriz qualquer. Dada uma matriz D de ordem $m \times n$ ($m \le 100$ linhas, $n \le 100$ colunas), a matriz transposta de D será representada por D^t de ordem $n \times m$.

Entrada

A entrada possui dois valores inteiros, m e n, correspondentes ao número de linhas e ao número de colunas da matriz de entrada, seguidos por $m \times n$ números inteiros correspondendo aos valores da matriz de entrada.

Saída

A saída corresponde a impressão da matriz transposta D^t . Os elementos devem estar separados por um espaço. Não deve haver espaço após o último número de cada linha. Após imprimir o último elemento da matriz (isto é, o elemento no índice n-1, m-1) quebre a linha.

Exemplo

Eı	Entrada					
3						
3						
1	2	3				
4	5	6				
7	8	9				
Sa	Saída					
1	4	7				
2	5	8				
3	6	9				

Eı	ntr	ada			
2					
3					
8	2	4			
3	1	5			
Saída					
8	3				
2	1				
4	5				

Entrada					
5					
3					
9	2	3			
1	6	4			
8	7	1			
2	5	9			
1	7	2			
Saída					
9	1	8	2	1	
2	6	7	5	7	
3	4	1	9	2	

Entrada						
2						
2						
33	44					
66	77					
Saída						
33	66					
44	77					

2 Matriz de Permutação - 3,0 pontos

Dizemos que uma matriz inteira $A_{n \times n}$ é uma matriz de permutação se em cada linha e em cada coluna houver n-1 elementos nulos e um único elemento igual a 1. Escreva um programa para ler várias matrizes quadradas e indicar para cada uma se ela é matriz de permutação ou não.

Entrada

A primeira linha da entrada é constituída por um único inteiro positivo $N(N \le 100)$, o qual corresponde ao número de casos de testes. Para cada caso de teste há uma linha com um único número inteiro positivo $d \le 20$ que corresponde à dimensão de uma matriz quadrada. Em seguida, de d linhas. Para cada linha há d números inteiros separados entre si por um espaço. Após o último número em uma linha há o caractere de quebra de linha.

Saída

Para cada caso de teste o programa deve imprimir uma das duas mensagens : "Matriz permutacao" ou "Nao permutacao".

Exemplo

Entrada						
2						
4						
0	1	0	0			
0	0	1	0			
1	0	0	0			
0	0	0	1			
3						
-2	2 -	-1	0			
-1	L 2	2 ()			
0	0	1				
4						
1	0	0	0			
0	1	0	1			
1	0	0	0			
0	0	1	0			
Sa	Saída					
Má	Matriz permutacao					
Ná	Nao permutacao					

Nao permutacao

3 Matriz Quadrada - 4,0 pontos

Escreva um algoritmo que leia um inteiro N ($0 \le N \le 100$), correspondente a ordem de uma matriz M de inteiros, e construa a matriz de acordo com o exemplo na próxima página.

Entrada

A entrada consiste de vários inteiros, um valor por linha, correspondentes as ordens das matrizes a serem construídas. O final da entrada é marcado por um valor de ordem igual a zero (0).

Saída

Para cada inteiro da entrada imprima a matriz correspondente, de acordo com o exemplo. Os valores nas linhas das matrizes devem ser separados entre si por apenas um espaço. Não deve haver espaço após o último elemento de cada linha. Após imprimir uma matriz, o programa deve imprimir uma linha em branco.

Exemplo

Entrada						
1						
2						
3						
4						
5						
6						
	ıída					_
1	iiu					-
_						
1	1					
1	1					
1	1	1				
	2	1				
1	1	1				
1	1	1	1			
1	2	2	1			
1	2	2	1			
1	1	1	1			
1	1	1	1	1		
1	2	1 2	2	1		
1	2	3	2	1		
1	2	2	2	1		
1	1	1	1	1		
4	-1	-1	-	-	4	
1	1 2	1 2	1	1 2	1	
1	2	3	3	2	1	
1	2	3	3	2	1	
1	2	2	2	2	1	
1	1	1	1	1	1	