Python Lecture 2

Tanay Bhadra (message on Slack if you have questions!)
Curriculum Manager
ULAB Physics and Astronomy

Goal of this Lecture

- Understand Python Division, Floor Division and Modulo
- Explore Python on the Jupyter.
 - a. Variables
 - b. Lists
 - c. Conditionals
 - d. Great Rule of Equality

Division, Floor Division, Modulo

True Division: / (decimal division)	Floor Division: // (integer division)	Modulo: % (remainder)
>>> 1 / 5	>>> 1 // 5	>>> 1 % 5
0.2	0	1
>>> 25 / 4	>>> 25 // 4	>>> 25 % 4
6.25	6	1
>>> 4 / 2	>>> 4 // 2	>>> 4 % 2
2.0	2	0
>>> 5 / 0	>>> 5 // 0	>>> 5 % 0
ZeroDivisionError	ZeroDivisionError	ZeroDivisionError

Data Type	Explanation	Example	
Integer (Int)	Positive or	A = 5	
	negative integer		
Float	Decimal (floating	A =	
	point) number	3.1415926	
Boolean	True or False	A = True or A	
(Bool)		= False	
List	Ordered List of	A = [1, 2, 3]	
	Value		
String (Str)	A List of	A = 'Marvin	
	Characters (text)	the depressed	
		robot'	
Dictionary	A mapping of	$A = \{\text{`e'}: 2.718,$	
(Dict)	keys and values	'pi', 3.141}	
None	Nonetype (null	A = None	
	or missing		
	value)		

Variables

- Variables are containers that store the data we want to keep track of.
- To find the variable type, we use the type() function where the variable is passed in as an input to the function. Our variable type can change dynamically. If I declare A as an integer, I can change it to be a Boolean value in the very next step.

Print Statements and Operations

Operator	Name	Example
+	Addition	A + B
•	Subtraction	A - B
*	Multiplication	A*B
**	Exponentiation	A**B
==	Equal	A == B
!=	Not equal	A!=B
>	Greater Than	A > B
<	Less than	A < B
>=	Greater Than or Equal To	A >= B
<=	Less than Or Equal To	A <= B
and	As a condition, it returns true if both statements are true. If there is one false statement, returns first False statement. If both are True, returns the last True Statement.	A > B and B > C
or	As a condition, it returns true if both statements are true. If there is one false statement, returns first True statement. If both are True, returns the first True Statement.	A > B or B > C
not	If result is True, returns false	not (A < B)

List Elements **Forward** Index Reverse Index

Lists

- A list is a data structure that acts like a container and stores multiple elements. Each element can be of any type, even a list itself.
- Lists are accessed with their index.
- We can also slice lists. Slicing a list creates a copy of part or all of list. The syntax for slicing a list is 'list[<start index>:<end index>:<step size>].