Quantum Cryptography

Introduction to Computer Security
Naercio Magaia and Imran Khan

Quantum Cryptography

- Concerned with the development of cryptographic algorithms that are secure against the potential development of quantum computers
- Concerned with the security of asymmetric cryptographic algorithms

Quantum Computing

- Quantum computing is based on the representation of information in a form analogous to the behavior of elementary particles in quantum physics
- A practical application of this representation requires producing a physical system that performs computation making use of quantum physical principles
- As yet, no such general-purpose computing system has been developed but in principle it is possible to do so

Qubits

- Information in a quantum computer is represented as quantum bits, or qubits
 - A qubit can be viewed as a quantum analog of a classical bit, one that obeys the laws of quantum physics
- Qubits have two properties that are relevant to quantum computing:
 - Superposition: A qubit does not exist in a single state but in a superposition of different states. It is only when a measurement is taken that the qubit collapses into a unique state (binary 1 or 0). Prior to that it is only possible to express a probability that the qubit is a 1 or a 0. The qubit can be thought of a vector of unit magnitude in a two-dimensional vector space.
 - Entanglement: Qubits can be linked to each other over the course of operations reflecting the physical phenomenon known as quantum entanglement. The relevant implication of this is that state of a multiple-qubit system is not represented by a linear combination of the state vectors of each qubit but rather a tensor product.

RSA Key Lengths Broken by Conventional Computing Architectures

Grover's Algorithm

- Searches an unordered list in $O(\sqrt{n})$ time, while conventional algorithms require O(n)
- Can reduce the cost of attacking a symmetric cryptographic algorithm
- A 128-bit AES key is considered secure for the foreseeable future
 - To guard against a quantum attack using Grover's algorithm, the same level of security could be maintained by moving to a 256-bit key
- Similarly, Grover's algorithm can theoretically reduce the security of a cryptographic hash algorithm by a factor of two
 - This can be countered by doubling the hash length

Raising Awareness

- Although practical large-scale quantum computers are not likely for a number of years, there has been considerable interest and some urgency in developing cryptographic algorithms that are secure against such computers
- The following are examples:
 - In 2014, the ETSI Quantum Safe Cryptography (QSC) Industry Specification Group was formed to assess and make recommendations for quantum-safe cryptographic primitives and protocols
 - In 2015, the U.S. National Security Agency (NSA) released a major policy statement on the need for post-quantum cryptography
 - In 2016, NIST announced a request for submissions for public-key post-quantum cryptographic algorithms

Cryptoperiod

- The cryptoperiod of a cryptographic key is the time span during which a specific cryptographic key is authorized for use for its defined purpose
- A number of potential security threats make it advisable that any key not be used for a prolonged period of time.
 These threats include:
 - Brute-force attacks
 - Cryptanalysis
 - Other security threats

Lead Time for Quantum Safety

Suggested Cryptoperiods from SP 800- 57

Кеу Туре	OUP	RUP	
1. Private Signature Key	1 to 3 years	-	
2. Public Signature-Verification Key	Several years (depends on key size)		
3. Symmetric Authentication Key	≤2 years	≤ OUP + 3 years	
4. Private Authentication Key	1 to 2 years		
5. Public Authentication Key	1 to 2 years		
6. Symmetric Data Encryption Keys	≤2 years	≤ OUP + 3 years	
7. Symmetric Key Wrapping Key	≤2 years	≤ OUP + 3 years	
8. Symmetric RBG Keys	See [SP800-90]	_	
9. Symmetric Master Key	About 1 year	_	
10. Private Key Transport Key	≤2 years		
11. Public Key Transport Key	1 to 2 years		
12. Symmetric Key Agreement Key	1 to 2 years		
13. Private Static Key Agreement Key	1 to 2 years		
14. Public Static Key Agreement Key	1 to 2 years		
15. Private Ephemeral Key Agreement Key	One key-agreement transaction		
16. Public Ephemeral Key Agreement Key	One key-agreement transaction		
17. Symmetric Authentication Key	≤2 years		
18. Private Authentication Key	≤2 years		
19. Public Authentication Key	≤2 years		

Entities Vulnerable to Quantum Computing

CRYPTOSYSTEMS

designed on the presumed difficulty of discrete log or integer factorization

SECURITY ` PROTOCOLS

that rely on any of these cryptosystems

PRODUCTS

that derive their security from these protocols and cryptosystems

Impact of Quantum Computing on Common Cryptographic Algorithms

Cryptographic Algorithm	Type	Purpose	Impact from Large- Scale Quantum Computer
AES	Symmetric key	Encryption	Larger key sizes needed
SHA-2, SHA-3	Cryptographic hash	Hash function	Larger output needed
RSA	Asymmetric key	Signature, key establishment	No longer secure
ECDSA, ECDH (elliptic curve cryptography)	Asymmetric key	Signature, key exchange	No longer secure
DSA (finite field cryptography)	Asymmetric key	Signature, key exchange	No longer secure

Vulnerable Categories

- The types of asymmetric algorithms that are vulnerable to quantum computing are in the following categories:
 - Digital signatures
 - Encryption
 - Key-Establishment Mechanisms (KEMs)

Alternatives

- There is no single widely accepted alternative to the existing algorithms based on integer factorization or discrete logarithms
- Of the approaches reported in the literature, four general types of algorithms predominate:
 - Lattice-based cryptography:
 - These schemes involve the construction of primitives that involve lattices
 - Code-based cryptography:
 - These schemes are based on error-correcting codes
 - Multivariate polynomial cryptography:
 - These schemes are based on the difficulty of solving systems of multivariate polynomials over finite fields
 - Hash-based signatures:
 - These are digital signatures constructed using hash functions

Submissions to NIST Post-Quantum Cryptography Competition

	Signatures	KEM/Encryption	Total
Lattice-based	4	24	28
Code-based	5	19	24
Multivariate	7	6	13
Hash-based	4	_	4
Other	3	10	13
Total	23	59	82

Summary

 Explain the need for post-quantum cryptographic algorithms and which types of algorithms are affected