ZIMSKI ISPITNI ROK 13.2.2020.

1. (10 bodova) Zadane su matrice

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 4 & 0 \\ 1 & 0 & 2 \end{bmatrix} \quad i \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- (a) Dokažite da su matrice \mathbf{A} , \mathbf{B} i $\mathbf{A}^{-1} + \mathbf{I}$ regularne.
- (b) Riješite matričnu jednadžbu

$$(\mathbf{AX})^{-1} + \mathbf{X}^{-1} = \mathbf{B}.$$

2. (10 bodova) Zadane su matrice $\mathbf{A}, \mathbf{B} \in \mathcal{M}_4$ za čije rangove vrijedi $r(\mathbf{A}) = 4, r(\mathbf{B}) = 3$. Koje od sljedećih tvrdnji mogu vrijediti za takve matrice?

Za one koje mogu vrijediti nađite odgovarajuće primjere matrica ${\bf A}$ i ${\bf B}$, a za one koje ne mogu vrijediti dajte odgovarajući dokaz.

- (T1) Matrica **AB** može imati rang 4.
- (T2) Matrica $\mathbf{A} + \mathbf{B}$ može imati rang 4.
- (T3) Homogen linearni sustav $\mathbf{A}\mathbf{x} = \mathbf{0}$ može imati jedinstveno rješenje.
- (T4) Homogen linearni sustav $\mathbf{B}\mathbf{x} = \mathbf{0}$ može imati jedinstveno rješenje.
- 3. (10 bodova) Zadan je pravac

$$p \dots \begin{cases} x + y - 3z + 6 = 0 \\ x - y - z = 0 \end{cases}$$

- (a) Odredite točku pravca p najbližu ishodištu.
- (b) Odredite točku simetričnu ishodištu s obzirom na pravac $\boldsymbol{p}.$
- 4. (10 bodova) Linearni operator $A\colon X\to X$ u bazi $\{{\bf a}_1,{\bf a}_2,{\bf a}_3\}$ vektorskog prostora X ima matrični prikaz

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ -1 & 1 & 0 \\ 2 & 1 & 1 \end{bmatrix}.$$

- (a) Zapišite vektor $A(\mathbf{a}_1-2\mathbf{a}_2+2\mathbf{a}_3)$ kao linearnu kombinaciju vektora $\mathbf{a}_1,\,\mathbf{a}_2$ i $\mathbf{a}_3.$
- (b) Neka je $\mathbf{b}_1 = \mathbf{a}_1$, $\mathbf{b}_2 = \mathbf{a}_1 + \mathbf{a}_2$, $\mathbf{b}_3 = \mathbf{a}_1 + \mathbf{a}_2 + \mathbf{a}_3$. Odredite matrični prikaz od A u bazi $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$.

5. (10 bodova) Neka je $\{\mathbf{a}_1, \mathbf{a}_2\}$ baza vektorskog prostora X i neka za linearni operator $A \colon X \to X$ vrijedi

$$A(\mathbf{a}_1) = 3\mathbf{a}_1 - 2\mathbf{a}_2, \quad A(\mathbf{a}_2) = -2\mathbf{a}_1 + 6\mathbf{a}_2.$$

Dokažite da postoji baza vektorskog prostora X u kojoj linearni operator A ima dijagonalni matrični prikaz te zapišite vektore te baze kao linearnu kombinaciju vektora \mathbf{a}_1 i \mathbf{a}_2 .

- 6. (10 bodova) Zadan je realan unitarni prostor X sa skalarnim produktom $(\cdot \mid \cdot) : X \times X \to \mathbb{R}$. Neka je norma $\|\cdot\| : X \to \mathbb{R}$ dobivena iz skalarnog produkta.
 - (a) Ako su ne-nul vektori $\mathbf{e}_1,\dots,\mathbf{e}_k\in X$ međusobno ortogonalni, dokažite i da su oni linearno nezavisni.
 - (b) Ako je $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ ortogonalna baza za X, dokažite da za svaki vektor $\mathbf{x}\in X$ vrijedi

$$\mathbf{x} = \sum_{j=1}^{n} \frac{(\mathbf{x} \mid \mathbf{e}_j)}{\|\mathbf{e}_j\|^2} \mathbf{e}_j.$$

(c) Ako je $\{\mathbf{e}_1,\ldots,\mathbf{e}_n\}$ ortonormirana baza za X, dokažite da za svaki vektor $\mathbf{x}\in X$ vrijedi

$$\|\mathbf{x}\|^2 = (\mathbf{x} \mid \mathbf{e}_1)^2 + \ldots + (\mathbf{x} \mid \mathbf{e}_n)^2.$$

Napomena: Ispit se piše 150 minuta. Nije dopuštena upotreba kalkulatora ni podsjetnika.