עבודה עצמית 9

"ומתקיים: $S\subseteq T$ ען כך שS כך שלה 1 מתקיים:

- \mathbb{R}^4 א פורשת את S ו \mathbb{R}^4 את פורשת את T
- \mathbb{R}^4 את פורשת את S ו \mathbb{R}^4 את פורשת את T
 - \mathbb{R}^4 את פורשת את S ו \mathbb{R}^4 את פורשת את T

שאלה 2 - תהיינה $X\subseteq Y$ קבוצות של וקטורים ב \mathbb{R}^n - תהיינה מהיינה $X\subseteq Y$

- \mathbb{R}^n אם Y פורשת את \mathbb{R}^n אז X פורשת את אם
 - \mathbb{R}^n אם X פורשת את $0 \in X$
 - \mathbb{R}^n אם X לא פורשת את X לא
- \mathbb{R}^n אם Y פורשת את \mathbb{R}^n אז X פורשת את X
- \mathbb{R}^n אם מספר הוקטורים ב- X גדול מ- n אז אז פורשת את
 - $\operatorname{sp}(Y) \neq \operatorname{sp}(X)$ אז $\operatorname{v} \notin X$ כך ש $\operatorname{v} \in Y$ אם קיים

שאלה 3 נתונים הוקטורים

$$u_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 , $u_2 \begin{pmatrix} 1 \\ 2 \\ a \end{pmatrix}$, $u_3 \begin{pmatrix} 2 \\ a \\ a+1 \end{pmatrix}$

- $.u_3\in\operatorname{sp}(u_1,u_2)$ מצא לאילו ערכי a מתקיים
- a עבור ערך ב
 u_1,u_2 עבור ערך מצאת, הצג את עבור לינארי של הקטן שמצאת, הצג את את בירוף לינארי של
- \mathbb{R}^3 את פורשת $\{u_1,u_2,u_3\}$ פורשת ערכי מצא לאילו ערכי a

 \mathbb{R}^3 שאלה \bullet קבעו עבור כל אחת מהקבוצות הבאות אם היא מהווה בסיס של

- $\{(1,0,-1),(1,2,1),(0,4,2)\}$
 - $\{(1,1,0),(0,1,0),(0,1,1)\}$
 - $\{(1,1,0),(0,1,0),(1,2,0)\}$
- $\{(1,1,0),(0,1,0),(0,1,1),(3,5,2)\}$

$$\{(1,1,0),(0,1,0)\}$$

 $\mathrm{Nul}(A)$ אאלה כסור ובסיס ומימד של אוווים בסיס ומימד של אווים עבור המטריצות הבאות מצאו בסיס ומימד של

$$\begin{pmatrix} 2 & -1 & 3 & -2 & 4 \\ 4 & -2 & 5 & 1 & 7 \\ 2 & -1 & 1 & 8 & 2 \end{pmatrix} \qquad (8)$$

$$\begin{pmatrix} 1 & 3 & 5 & -1 \\ 2 & -1 & -3 & 4 \\ 5 & 1 & -1 & 7 \\ 7 & 7 & 9 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 2 & 1 & -1 & 2 & -3 \\ 3 & -2 & -1 & 1 & -2 \\ 2 & -5 & 1 & -2 & 2 \end{pmatrix} \qquad (2)$$

שאלה W הינה תחב של . $W=\mathrm{sp}\{u_1,u_2,u_3,u_4\}$ נסמן $\{u_1,u_2,u_3,u_4\}\in\mathbb{R}^5$ עבור W במקרים הבאים: \mathbb{R}^5 ומצאו בסיס ומימד של

$$.u_4=(1,2,1,-1,4)$$
 , $u_3=(3,5,-1,-2,5)$, $u_2=(1,2,-1,-2,1)$, $u_1=(1,1,1,2,3)$

$$.u_4 = (3, -7, 3, 8, -1)$$
, $u_3 = (1, -3, 1, 2, 1)$, $u_2 = (-2, 4, -2, -6, 2)$, $u_1 = (1, -2, 1, 3, -1)$

שאלה 7 מצאו בסיס ומימד של מרחב הפתרונות של המערכות ההומוגניות הבאות:

$$\begin{array}{ccc} x+z+t & = 0 \\ y-s+t & = 0 \\ x+y+z+s-t & = 0 \\ 2y+z+s+3t & = 0 \end{array} \right\}$$

$$x + 2y + z + t = 0$$

 $y + 3z + s + t = 0$
 $x + 2y - s = 0$

שאלה 8 במרחב הווקטורי (מרחב הפולינומים מסדר $\mathbb{R}_{\leq 3}[x]$ (מרחב הווקטורי במרחב $\mathbb{R}_{\leq 3}[x]$

$$p_1(t) = 2 - t + t^2$$
, $p_2(t) = 2t - 3t^2 + t^3$, $p_3(t) = 1 - t^2$, $p_4(t) = 3t - 6t^2 + t^3$

- אט טריוויאלי איז צריוף אם כן מצאו איל. אם כן $p_4(t)$, $p_3(t)$, $p_2(t)$, $p_1(t)$, $p_1(t)$ שלהם שווה בדקו אם הווקטורים לווקטור האפס.
 - $p_4(t)$, $p_3(t)$, $p_2(t)$, $p_1(t)$ מצאו בסיס ואת המימד של תת המרחב הנפרש על ידי הווקטורים (ב

- $p_4(t)$ בטא כל ווקטור מתוך $p_1(t)$ ביט $p_2(t)$ ביערוף ליניארי של הבסיס שמצאת בסעיף ב'.
 - . מצא את וקטור הקואורדינאטות של $p_4(t)$ ביחס לבסיס שמצאתם

שאלה 9 במרחב הווקטורי $\mathbb{R}^{2 imes 2}$ נתונים הוקטורים

$$\mathbf{v}_1 = \begin{pmatrix} 2 & 3 \\ 0 & 1 \end{pmatrix}$$
 , $\mathbf{v}_2 = \begin{pmatrix} -1 & 0 \\ 1 & 1 \end{pmatrix}$, $\mathbf{v}_3 = \begin{pmatrix} 3 & -1 \\ 2 & 1 \end{pmatrix}$,

 $W = sp(v_1, v_2, v_3)$ נגדיר

- v_1, v_2, v_3 תן דוגמא לוקטור כלשהו הנמצא ב W ושונה מוקטור האפס ומהוקטורים (א
 - $W=\mathbb{R}^{2 imes 2}$ האם $\mathbb{R}^{2 imes 2}$? האם W האם W
- השוה הקבוצה איברי איברי לא טריוויאלי ליניארי (v_1,v_2,v_3) ה"ל? אם כן, מצא צירוף ליניארי לא איברי הקבוצה (v_1,v_2,v_3) השוה לווקטור האפס.
 - W מצא בסיס ואת המימד של
 - Vו איזומורפי ל $V \neq W$ ו ע כך ש איזומורפי ל V
 - . מצא לאילו ערכי הפרמטר $\{2\mathbf{v}_1+3\mathbf{v}_2,4\mathbf{v}_1+k\mathbf{v}_2\}$ היא הקבוצה k היא בלתי ערכי מצא לאילו אילו ערכי

$\mathbb{R}_3[t]$ שאלה בסיס של האם היא קבעו הבאות, קבעו מהקבוצות מהקבוצות לכל אחת לכל

$$\{2t^3+t^2+t+1,3t^3+3t+2,t^3+t^2-t,4t^3+2t^2-2t+1\}$$

$$\{1, t-1, t^3-t^2+t-1, t^2-t+1\}$$

שאלה a,b,c הפרמטרים של ערכים לאילו לאילו אילו לאילו אילו

$$\{t^2 + t + 1, ct^2 + bt + a, c^2t^2 + b^2t + a^2\}$$

 $P_2(t)$ מהווה בסיס של

 $\mathbb{R}^{2 imes 2}$ שאלה 12 לכל אחת מהקבוצות הבאות, קבעו האם היא מהווה בסיס של

$$\left\{ \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \begin{pmatrix} 2 & -1 \\ 3 & 5 \end{pmatrix}, \begin{pmatrix} 1 & -3 \\ 2 & 3 \end{pmatrix} \right\}$$
 (X

$$\left\{ \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 5 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ 5 & 2 \end{pmatrix} \right\} \qquad \textbf{(a)}$$

 $\mathbb{R}^{2 imes2}$ שאלה מהוות מהוות הפרמטר m הפרמטר לאילו לאילו שאלה 13

$$\left\{ \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 5 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 3 & 6 \\ 5 & m-1 \end{pmatrix} \right\}$$
 (8

$$\left\{ \begin{pmatrix} 1 & m \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} m & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ m & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & m \end{pmatrix} \right\}$$
 (2)

שאלה 14

במרחב $\mathbb{R}^{2 imes 2}$ נתונים וקטורים

$$u_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} -1 & 8 \\ 4 & 5 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2a & 2 \\ b & 3 \end{pmatrix}$.

- u_1, u_2, u_3 שייך אילו ערכי שייך לתת המרחב אייד לתת שייך לתת שייך עבור אילו ערכי a, b ווקטור ע
- בשתי דרכים u_1,u_2,u_3 שמצאת בסעיף א', בטאו את ווקטור v כצירוף לינארי של b ,a שמצאת בסעיף א', בטאו את ווקטור v טונות (רשמו שני צירופים שונים).
 - . נמקו את המרחב $\mathbb{R}^{2 imes 2}$ נמקו את המרחב u_1,u_2,u_3,v פורשים את עבורם ערכי a,b נמקו את גאם קיימים את האם קיימים ערכי
- האם הווקטורים u_1,u_2,u_3 תלויים לינארית ? אם תשובתכם היא "כן", מצאו צירוף לינארי לא טריוויאלי u_1,u_2,u_3 השוה לווקטור האפס.

 $S=\left\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}i\\0\end{pmatrix},egin{pmatrix}0\\1\end{pmatrix},egin{pmatrix}0\\i\end{pmatrix}$ נתון מרחב וקטורי \mathbb{C}^2 מעל שדה \mathbb{C}^2 לפי בסיס של המרחב הנתון ומצאו את \mathbb{C}^2 את \mathbb{C}^2 (כלומר וקטור הקורדינטות של וקטור \mathbb{C}^2 לפי בסיס של המרחב הנתון ומצאו את \mathbb{C}^2 (כלומר וקטור הקורדינטות של וקטור \mathbb{C}^2

שאלה 16

$$A = \left(egin{array}{ccc} 2 & 2 & 2 \ k & k^2 & 1 \ 2k^2 & 4k^2 - 2 & 2 \end{array}
ight)$$
 מתונה מטריצה

- b יש פתרון לכל וקטור אילו ערכי $A\cdot X=b$ למערכת לכל ערכי עבור אילו ערכי

שאלה 17 לכל אחד מן המרחבים הבאים מצאו בסיס ומימד

$$W_1 = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 \middle| \left\{ \begin{array}{ll} x + y + z & = 0 \\ z - y + z & = 0 \end{array} \right\} \right\}$$

(2) $W_2 = \big\{ p(x) \in \mathbb{R}_{\le 3}[x] \big| p(0) = p(1) = 0 \big\}$

. כאן x מסמל את אוסף הפולינומים עם מקדמים ממשיים במשתנה עד מעלה $\mathbb{R}_{\leq 3}[x]$ כאן

 $W_3 = \{A \in \mathbb{R}^{2 \times 2}(\mathbb{Z}_3)\} | A = A^t \}$

- שאלה $A\mathbf{x}=0$ תהי $A\mathbf{x}=0$ כך שמרחב הפתרונות של המערכת ההומוגנית $A\mathbf{x}=0$ שווה ל

$$\operatorname{span}\left\{ \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 1\\2\\2 \end{pmatrix}, \begin{pmatrix} 1\\2\\5 \end{pmatrix} \right\}$$

A מצאו את הדרגה של

 $\dim (\mathrm{Nul}\ C)=4$ - נניח שB
eq 0 - מחת ההנחה שB=0. נגדיר מדיר $A\in \mathbb{R}^{5 imes 3}, B\in \mathbb{R}^{3 imes 4}$ ו- $A\in \mathbb{R}^{5 imes 3}$ ויש פתרון יחיד. נמקו תשובתכם. האם ייתכן שלמערכת המשוואות ההומוגנית $A\cdot \mathbf{x}=ar{0}$ יש פתרון יחיד.

פתרונות

שאלה 1

$$T = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\0\\1 \end{pmatrix} \right\}, S = \left\{ \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \right\}$$

$$T=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix},egin{pmatrix}0\\1\\0\\0\end{pmatrix}
ight\}$$
 , $S=\left\{egin{pmatrix}1\\0\\0\\0\end{pmatrix}
ight\}$ (2)

$$T = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \right\}, S = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

שאלה 2

:דוגמה נגדית

$$X = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}, \qquad Y = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

 \mathbb{R}^2 את פורשת את Y , \mathbb{R}^2 את את X

 \mathbb{R}^2 את פורשת את $X=\{ar{0}\}$ דוגמה נגדית:

$$\mathbb{R}^2$$
 את פורשת את $X=\left\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}0\\1\end{pmatrix},egin{pmatrix}0\\0\end{pmatrix}
ight\}$ פורשת את $X=\left\{egin{pmatrix}1\\0\end{pmatrix}$

 $X\subseteq Y$:נתון

 \mathbb{R}^n צ"ל: Y פורשת את

הוכחה

עך ער $\mathbf{v}_1,\dots,\mathbf{v}_n\in X$ קיימים $u\in\mathbb{R}^n$ לכן לכל $\mathsf{sp}(X)=\mathbb{R}^n$

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \ .$$

$$.{
m sp}(Y)=\mathbb{R}^n$$
 א"א $.u\in {
m sp}({
m v}_1,\ldots,{
m v}_n) \Leftarrow {
m v}_1,\ldots,{
m v}_n\in Y$ לכך $X\subseteq Y$

$$\mathbb{R}^2$$
 את פורשת את $X=\left\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}2\\0\end{pmatrix},egin{pmatrix}3\\0\end{pmatrix}
ight\}$ לא פורשת את

$$\operatorname{sp}(X)=\operatorname{sp}(Y)$$
 , $Y=\left\{egin{pmatrix}1\\0\end{pmatrix},egin{pmatrix}2\\0\end{pmatrix}
ight\}$, $X=\left\{egin{pmatrix}1\\0\end{pmatrix}
ight\}$ בוגמה נגדית:

שאלה 3

$$u_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 , $u_2 \begin{pmatrix} 1 \\ 2 \\ a \end{pmatrix}$, $u_3 \begin{pmatrix} 2 \\ a \\ a+1 \end{pmatrix}$

(N

$$k_1 u_1 + k_2 u_2 = u_3$$

$$\begin{pmatrix} 1 & 1 & 2 \\ 1 & 2 & a \\ 1 & a & a+1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 \\ 0 & 1 & a-2 \\ 0 & 0 & (a-1)(3-a) \end{pmatrix}$$

 $\left(\begin{array}{cc|c} 1 & 1 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right) \rightarrow \left(\begin{array}{cc|c} 1 & 0 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{array}\right)$

 $3u_1 - u_2 = u_3$

a=3 ו a=1 למערכת יש פתרון, לכן a=3 ו a=1

 $\underline{a=1}$

$$k_2 = -1$$
 , $k_1 = 3$

$$u_1,u_2,u_3$$
 עבור $a \neq 1,3$ בת"ל. \mathbb{R}^3 לכן u_1,u_2,u_3 לכן u_1,u_2,u_3 לכן $\dim(\mathbb{R}^3)=3$

שאלה 4

(N

(1

()

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 4 \\
-1 & 1 & 2
\end{array}\right) \rightarrow \left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 2 & 4 \\
0 & 0 & -2
\end{array}\right)$$

 \mathbb{R}^3 כל העמודות מובילות, לכן הוקטורים בת"ל. בת"ל. בת"ל. לכן הוקטורים מהווים בסיס של

 $\left(\begin{array}{ccc} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$

 \mathbb{R}^3 כל העמודות מובילות, לכן הוקטורים בת"ל. בת"ל. $\dim(\mathbb{R}^3)=3$

 $\left(\begin{array}{ccc} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 0 & 0 & 0 \end{array}\right)$

 \mathbb{R}^3 של בסיס בסיס לא מהווים לכן מובילה, לכן א מובילה כי עמודה עמודה א מובילה עמודה ליש

- $\dim(\mathbb{R}^3)=3$ כי , \mathbb{R}^3 כי להיות בסים לא יכולים לא יכולים להיות בסים של
 - $\dim(\mathbb{R}^3)=3$ כי , \mathbb{R}^3 , כי מהווים לא מהווים לא שני וקטורים לא

שאלה 5

(N

$$\begin{pmatrix}
2 & -1 & 3 & -2 & 4 \\
4 & -2 & 5 & 1 & 7 \\
2 & -1 & 1 & 8 & 2
\end{pmatrix}
\rightarrow
\begin{pmatrix}
2 & -1 & 3 & -2 & 4 \\
0 & 0 & -1 & 5 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

. מספר המודות המובילות - $\dim(\operatorname{col}(A)) = 2$ בסיס של $\operatorname{col}(A)$

 $\binom{3}{5}$

$$\begin{pmatrix} 2\\4\\2 \end{pmatrix}, \quad \begin{pmatrix} 3\\5\\1 \end{pmatrix}.$$

מספר העמודות הלא מובילות. - $\dim(\operatorname{Nul}(A))=4$ נמצא בסיס של $\operatorname{Nul}(A)$

$$\begin{pmatrix}
2 & -1 & 3 & -2 & 4 \\
0 & 0 & -1 & 5 & -1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & -\frac{1}{2} & 0 & \frac{13}{2} & \frac{1}{2} \\
0 & 0 & 1 & -5 & 1 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{array}{ll} x_1 & = \frac{1}{2}x_2 - \frac{13}{2}x_4 - \frac{1}{2}x_5 \\ x_3 & = 5x_4 - x_5 \end{array} \right\} , \qquad x_2, x_4, x_5 \in \mathbb{R}$$

$$\begin{pmatrix} \frac{1}{2}x_2 - \frac{13}{2}x_4 - \frac{1}{2}x_5 \\ x_2 \\ 5x_4 - x_5 \\ x_4 \\ x_5 \end{pmatrix} = x_2 \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} \frac{-13}{2} \\ 0 \\ 5 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} \frac{-1}{2} \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{-13}{2} \\ 0 \\ 5 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} \frac{-1}{2} \\ 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}.$$

(a

$$\begin{pmatrix}
1 & 3 & 5 & -1 \\
2 & -1 & -3 & 4 \\
5 & 1 & -1 & 7 \\
7 & 7 & 9 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 3 & 5 & -1 \\
0 & 7 & 13 & -6 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

 $\operatorname{col}(A)$ בסיס של . $\dim(\operatorname{col}(A))=3$

$$\begin{pmatrix} 1 \\ 2 \\ 5 \\ 7 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ -1 \\ 1 \\ 7 \end{pmatrix}, \quad \begin{pmatrix} -1 \\ 4 \\ 7 \\ 1 \end{pmatrix}.$$

 $.\dim(\operatorname{Nul}(A))=1$

$$\begin{pmatrix}
1 & 3 & 5 & -1 \\
0 & 1 & \frac{13}{7} & -\frac{6}{7} \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & -\frac{4}{7} & 0 \\
0 & 1 & \frac{13}{7} & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

 $.x_3\in\mathbb{R}$, $x_4=0$, $x_2=-rac{13}{7}x_3$, $x_1=rac{4}{7}$

$$\begin{pmatrix} \frac{4}{7}x_3 \\ -\frac{13}{7}x_3 \\ 0 \\ x_3 \end{pmatrix} = x_3 \begin{pmatrix} \frac{4}{7} \\ -\frac{13}{7} \\ 0 \\ 1 \end{pmatrix}$$

:Nul(A) בסיס של

$$\begin{pmatrix} \frac{4}{7} \\ -\frac{13}{7} \\ 0 \\ 1 \end{pmatrix}$$

()

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 2 & 1 & -1 & 2 & -3 \\ 3 & -2 & -1 & 1 & -2 \\ 2 & -5 & 1 & -2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & -8 & 4 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\operatorname{col}(A)$ בסיס של . $\dim(\operatorname{col}(A))=3$

$$\begin{pmatrix} 1 \\ 2 \\ 3 \\ 2 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ -1 \\ -2 \\ -5 \end{pmatrix}, \quad \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix}.$$

 $.\dim(\operatorname{Nul}(A))=2$

$$\begin{pmatrix} 1 & -2 & 1 & -1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{5}{8} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & \frac{1}{2} & -\frac{7}{8} \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{5}{8} \\ 0 & 1 & 0 & \frac{1}{2} & -\frac{5}{8} \\ 0 & 0 & 1 & -\frac{1}{2} & \frac{5}{8} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} -\frac{1}{2}x_4 + \frac{7}{8}x_5 \\ \frac{1}{2}x_4 + \frac{5}{8}x_5 \\ \frac{1}{2}x_4 - \frac{5}{8}x_5 \\ x_4 \\ x_5 \end{pmatrix} = x_4 \begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} \frac{7}{8} \\ \frac{5}{8} \\ -\frac{5}{8} \\ 0 \\ 1 \end{pmatrix}$$

 $\operatorname{:Nul}(A)$ בסיס של

$$\begin{pmatrix} -\frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \\ 1 \\ 0 \end{pmatrix}, \qquad \begin{pmatrix} \frac{7}{8} \\ \frac{5}{8} \\ -\frac{5}{8} \\ 0 \\ 1 \end{pmatrix}$$

 $W = \mathrm{sp}\{u_1, u_2, u_3, u_4\}$, $\{u_1, u_2, u_3, u_4\} \in \mathbb{R}^5$ שאלה 6

(N

$$\begin{pmatrix} 1 & 1 & 3 & 1 \\ 1 & 2 & 5 & 2 \\ 1 & -1 & -1 & 1 \\ 2 & -2 & -2 & -1 \\ 3 & 1 & 5 & 4 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 & 1 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $u_1, u_2, u_4 : W$ מספר העמודות המובילות. מספר העמודות מספר , $\dim(W) = 3$

(1

 $u_1,u_3:W$ מספר העמודות המובילות. מספר אמפר , $\dim(W)=2$

<u>שאלה 7</u>

(N

$$\begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 \\ 0 & 2 & 1 & 1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 0 & \frac{9}{2} \\ 0 & 1 & 0 & 0 & -\frac{1}{2} \\ 0 & 0 & 1 & 0 & \frac{11}{2} \\ 0 & 0 & 0 & 1 & -\frac{3}{2} \end{pmatrix}$$

$$.\dim(\operatorname{Nul}(A)) = 1$$

$$x = \frac{9}{2}t$$
, $y = \frac{1}{2}t$, $s = \frac{3}{2}t$, $t \in \mathbb{R}$.

בסיס:

$$\begin{pmatrix} \frac{9}{2} \\ \frac{1}{2} \\ -\frac{11}{2} \\ \frac{3}{2} \\ 1 \end{pmatrix}$$

(2

$$\begin{pmatrix}
1 & 2 & 1 & 0 & 1 \\
0 & 1 & 3 & 1 & 1 \\
1 & 2 & 0 & -1 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 2 & 1 & 0 & 1 \\
0 & 1 & 3 & 1 & 1 \\
0 & 0 & -1 & -1 & -1
\end{pmatrix}$$

 $.\dim(\operatorname{Nul}(A)) = 2$

$$\begin{pmatrix}
1 & 2 & 1 & 0 & 1 \\
0 & 1 & 3 & 1 & 1 \\
0 & 0 & -1 & -1 & -1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & 3 & 4 \\
0 & 1 & 0 & -2 & -2 \\
0 & 0 & 1 & 1 & 1
\end{pmatrix}$$

x = -3s - 4t, y = 2s + 2t, z = -s - t, $s, t \in \mathbb{R}$.

$$\begin{pmatrix} -3s - 4t \\ 2s + 2t \\ -s - t \\ s \\ t \end{pmatrix} = s \begin{pmatrix} -3 \\ 2 \\ -1 \\ 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -4 \\ 2 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

בסיס:

$$\begin{pmatrix} -3\\2\\-1\\1\\0 \end{pmatrix}, \qquad \begin{pmatrix} -4\\2\\-1\\0\\1 \end{pmatrix}$$

שאלה 8

(N

$$k_1 p_1(t) + k_2 p_2(t) + k_3 p_3(t) + k_4 p_4(t) = \bar{0}$$

$$k_1 (2 - t + t^2) + k_2 (2t - 3t^2 + t^3) + k_3 (1 - t^2) + k_4 (3t - 6t^2 + t) = \bar{0}$$

$$(2k_1 + k_3) + (-k_1 + 2k_2 + 3k_4)t + (k_1 - 3k_2 - k_3 - 6k_4)t^2 + (k_2 + k_4)t^3 = \bar{0}$$

$$\begin{pmatrix}
2 & 0 & 1 & 0 \\
-1 & 2 & 0 & 3 \\
1 & -3 & -1 & -6 \\
0 & 1 & 0 & 1
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 0 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$k_1 = k_4$$
, $k_2 = -k_4$, $k_3 = -2k_4$, $k_4 \in \mathbb{R}$

למערכת ש אינסוף פתרונות, לכן הוקטורים ת"ל. $k_3=-2$, $k_2=-1$, $k_1=1 \Leftarrow k_4=1$ נציב

$$p_1(t) - p_2(t) - 2p_3(t) + p_4(t) = \bar{0}$$

 $\dim (\operatorname{sp}(p_1(t), p_2(t), p_3(t), p_4(t))) = 3$

 $.p_1(t), p_2(t), p_3(t)$ בסיס:

(3

$$p_1(t) = 1 \cdot p_1(t) + 0 \cdot p_2(t) + 0 \cdot p_3(t) ,$$

$$p_2(t) = 0 \cdot p_1(t) + 1 \cdot p_2(t) + 0 \cdot p_3(t) ,$$

$$p_3(t) = 0 \cdot p_2(t) + 0 \cdot p_2(t) + 1 \cdot p_3(t)$$
,

$$p_4(t) = -1 \cdot p_1(t) + 1 \cdot p_2(t) + 2 \cdot p_3(t) .$$

$$[p_4(t)]_{\{p_1,p_2,p_3\}} = \begin{pmatrix} -1\\1\\2 \end{pmatrix}$$
 (7

שאלה 9

(1

$$v_1=\begin{pmatrix}2&3\\0&1\end{pmatrix}\ ,\qquad v_2=\begin{pmatrix}-1&0\\1&1\end{pmatrix}\ ,\qquad v_3=\begin{pmatrix}3&-1\\2&1\end{pmatrix}\ ,$$

 $.W = \operatorname{sp}(\mathsf{v}_1,\mathsf{v}_2,\mathsf{v}_3)$

 $\mathbf{v}_1+\mathbf{v}_2=egin{pmatrix} 1 & 3 \ 1 & 2 \end{pmatrix} \in W$.

ב. מרחב. $W=\mathrm{sp}(\mathrm{v}_1,\mathrm{v}_2,\mathrm{v}_3)$.dim(W)=3 ו מית ממיד תת מרחב. $W\neq\mathbb{R}^{2 imes2}$

 $k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 = +k_3 \mathbf{v}_3 = \bar{0}$

$$\begin{pmatrix} 2 & -1 & 3 \\ 3 & 0 & -1 \\ 0 & 1 & 2 \\ 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 4 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

כל העמודות מובילות, לכן v_1, v_2, v_3 בת"ל.

 $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 : W$ בסיס של . $\dim(W) = 3$

(1)

$${2\mathbf{v}_1 + 3\mathbf{v}_2, 4\mathbf{v}_1 + k\mathbf{v}_2}
x(2\mathbf{v}_1 + 3\mathbf{v}_2) + y(4\mathbf{v}_1 + k\mathbf{v}_2) = \bar{0}
(2x + 4y)\mathbf{v}_1 + (3x + ky)\mathbf{v}_2 = \bar{0}$$

ער, לכן v₁, v₂ בת"ל,

$$\begin{cases}
 2x + 4y &= 0 \\
 3x + ky &= 0
 \end{cases}$$

$$\begin{pmatrix}
 2 & 4 \\
 3 & k
 \end{pmatrix}
 \rightarrow
 \begin{pmatrix}
 2 & 4 \\
 0 & 2k - 12
 \end{pmatrix}$$

 $.k \neq 6$ למערכת ש פתרון יחיד עבור למערכת ש פתרון יחיד עבור לכן עבור $k \neq 6$ בת"ל.

שאלה 10

א) נבדוק אם הוקטורים בת"ל:

$$\begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & 3 & -1 & -2 \\ 1 & 0 & 1 & 2 \\ 2 & 3 & 1 & 4 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1 \atop R_3 \to R_3 - R_1} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & -1 & -3 \\ 0 & -2 & 1 & 1 \\ 0 & -1 & 1 & 2 \end{pmatrix} \xrightarrow{R_3 \to R_3 + 2R_2 \atop R_4 \to R_4 + R_2} \begin{pmatrix} 1 & 2 & 0 & 1 \\ 0 & 1 & -1 & -3 \\ 0 & 0 & -1 & -5 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

כל העמודות מובילות, לכן הוקטורין בת"ל. מדובר ב4וקטורים בח"ל, לכן הוקטורין לכן החמווים בסיס על העמודות מובילות, לכן הוקטורין בת"ל. מדובר ב $\mathbb{R}_{<3}[x]$

 $\mathbb{R}_{\leq 3}[x]$ אכן 3 הוקטורים לא מהווים בסיס של, $\dim(\mathbb{R}_{\leq 3}[x])=4$ בקבוצה יש מהווים בסיס של

 $c^2t^2 + b^2t + a^2$, $ct^2 + bt + a$, $t^2 + t + 1$ שאלה 11

$$\begin{pmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{pmatrix}$$

עבור b מקבלים שורת אפסים. הווקטורים ת"ל. עבור a=c מקבלים שורת אפסים. הווקטורים ת"ל. עבור a=c מקבלים שורת אפסים. $b-a \neq 0$, $c-a \neq 0 \Leftarrow a \neq c$, $a \neq b$ נניח

$$\begin{pmatrix} 1 & a & a^2 \\ 0 & b - a & b^2 - a^2 \\ 0 & c - a & c^2 - a^2 \end{pmatrix} \xrightarrow{R_2 \to \frac{1}{b - a} R_2} \begin{pmatrix} 1 & a & a^2 \\ 0 & 1 & a + b \\ 0 & 1 & c + a \end{pmatrix} \xrightarrow{R_3 \to R_3 - R_2} \begin{pmatrix} 1 & a & a^2 \\ 0 & 1 & a + b \\ 0 & 0 & c - b \end{pmatrix}$$

הוקטורים מהווים בסיס מלווים מחווים מחווים מחווים מחווים מחווים מחווים מחווים מחווים בסיס של , $\dim(\mathbb{R}_{\leq 2}[x])=3$. $b\neq c$, $a\neq b$, $a\neq c$, עבור $\mathbb{R}_{<2}[x]$

שאלה 12

 $\dim(\mathbb{R}^{2 imes2})=4$ כי של בסיס של א ימהווים בסיס לא ימהווים לא ימהווים לא

(1

$$\begin{pmatrix} 1 & -1 & 1 & 2 \\ 2 & 5 & 3 & 1 \\ 2 & 1 & 0 & 5 \\ 0 & 3 & 1 & 2 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 \atop R_3 \to R_3 - 2R_1} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & 7 & 1 & -3 \\ 0 & 3 & -2 & 1 \\ 0 & 3 & 1 & 2 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & -1 & 1 & 2 \\ 0 & 3 & -2 & 1 \\ 0 & 7 & 1 & -3 \\ 0 & 3 & 1 & 2 \end{pmatrix}$$

 $\mathbb{R}^{2 imes2}$ כל העמודות מובילות, לכן הוקטורים בת"ל. $4 \pmod{\mathbb{R}^{2 imes2}} = 4$ לכן הוקטורים בסיס של

שאלה 13

(X

$$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 6 \\ 2 & 5 & 0 & 5 \\ -1 & 0 & 1 & m-1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 \atop R_3 \to R_3 - 2R_1 \atop R_4 \to R_4 + R_1} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -3 & 1 & 0 \\ 0 & 3 & -2 & -1 \\ 0 & 1 & 2 & m+1 \end{pmatrix} \xrightarrow{R_3 \to R_2 + R_3 \atop R_4 \to R_2 + 3R_4} \begin{pmatrix} 1 & 1 & 1 & 3 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 7 & 3m+6 \end{pmatrix}$$

עבור $m
eq rac{1}{3}$ הוקטורים בת"ל. $\mathbb{R}^{2 imes 2} \iff \dim(\mathbb{R}^{2 imes 2}) = 4$

(a

$$\begin{pmatrix} 1 & m & 1 & 1 \\ m & 1 & 1 & 1 \\ 1 & 1 & m & 1 \\ 1 & 1 & 1 & m \end{pmatrix} \xrightarrow{R_1 \leftrightarrow R_4} \begin{pmatrix} 1 & 1 & 1 & m \\ m & 1 & 1 & 1 \\ 1 & 1 & m & 1 \\ 1 & m & 1 & 1 \end{pmatrix}$$

$$\begin{array}{c}
R_{2} \to R_{2} - mR_{1} \\
R_{3} \to R_{3} - R_{1} \\
R_{4} \to R_{4} - R_{1}
\end{array}$$

$$\begin{pmatrix}
1 & 1 & 1 & m \\
0 & 1 - m & 1 - m^{2} \\
0 & 0 & m - 1 & 1 - m \\
0 & m - 1 & 0 & 1 - m
\end{pmatrix}$$

$$= \begin{pmatrix} 1 & 1 & 1 & m \\ 0 & 1-m & 1-m & 1-m^2 \\ 0 & 0 & m-1 & 1-m \\ 0 & 0 & 0 & -(m+3)(m-1) \end{pmatrix}$$

שאלה 14

במרחב $\mathbb{R}^{2 imes 2}$ נתונים וקטורים

$$u_1 = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$$
, $u_2 = \begin{pmatrix} 2 & -1 \\ 1 & 2 \end{pmatrix}$, $\begin{pmatrix} -1 & 8 \\ 4 & 5 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 2a & 2 \\ b & 3 \end{pmatrix}$.

 u_1,u_2,u_3 שייך על ידי הנפרש על ידי שייך לתת אילו ערכי u,b ווקטורים על עבור אילו ערכי

$$xu_1 + yu_2 + zu_3 = \mathbf{v}$$

$$x + 2y - z = 2a$$

$$2x - y + 8z = 2$$

$$2x + y + 4z = b$$

$$3x + 2y + 5z = 3$$

$$\begin{pmatrix} 1 & 2 & -1 & 2a \\ 2 & -1 & 8 & 2 \\ 2 & 1 & 4 & b \\ 3 & 2 & 5 & 3 \end{pmatrix} \qquad \xrightarrow{\begin{array}{c} R_2 \to R_2 - 2R_1 \\ R_3 \to R_3 - 2R_1 \\ R_4 \to R_4 - 3R_1 \\ \end{array}} \begin{pmatrix} 1 & 2 & -1 & 2a \\ 0 & -5 & 10 & 2 - 4a \\ 0 & -3 & 6 & b - 4a \\ 0 & -4 & 8 & 3 - 6a \end{pmatrix}$$

 $a=rac{1}{2}$ יש פתרון אם $a=rac{1}{2}$

עבור $a=rac{1}{2}$ המדורגת של המטריצה המורחבת של המערכת היא

$$\begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 0 & -5 & 10 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix} \xrightarrow{R_2 \to -\frac{1}{5}R_2} \begin{pmatrix} 1 & 2 & -1 & | & 1 \\ 0 & 1 & -2 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}$$

$$\xrightarrow{R_1 \to R_1 - 2R_2} \begin{pmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

z = 1

$$z = 0$$
 , $y = 1$, $x = 1$

$$-2u_1 + 2u_2 + u_3 = v$$

z=2

$$z = 1$$
 , $y = 3$, $x = -2$

$$-5u_1 + 4u_2 + 2u_3 = v$$

מסעיף המתקבלת המדורגת המדורגת שווה 4. הקבוצה של המימד אם המימד $\mathbb{R}^{2 \times 2}$ אם המימד של הקבוצה $u_1, u_2, u_3, \mathbf{v}$ הקודם היא

$$\begin{pmatrix}
1 & 2 & -1 & 2a \\
0 & -5 & 10 & 2 - 4a \\
0 & 0 & 0 & -8a + 5b - 6 \\
0 & 0 & 0 & 7 - 14a
\end{pmatrix}$$

 $\mathbb{R}^{2 imes2}$ אין ערכים של a ו b שעבורם המימד של הקוצה שווה a לכן הקבוצה לכן העבורם המימד של המימד של אין אינה פורשת את

(†

$$xu_1 + yu_2 + zu_3 = 0$$

$$\begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 8 \\ 2 & 1 & 4 \\ 3 & 2 & 5 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1 \atop R_3 \to R_3 - 2R_1 \atop R_4 \to R_4 - 3R_1} \begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 10 \\ 0 & -3 & 6 \\ 0 & -4 & 8 \end{pmatrix}$$

פתרון: z=1 את הצירוף לינארי z=1 עבור z=1 נקבל געבור z=1 עבור z=1 עבור z=1

$$-3u_1 + 2u_2 + u_3 = 0$$
.

שאלה 15

נוכיח כי הקבוצה

$$S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} i \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ i \end{pmatrix} \right\}$$

בת"ל:

לכן
$$S = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} i \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ i \end{pmatrix} \right\}$$
 בת"ל.

$$\begin{pmatrix} 2-7i\\1+4i \end{pmatrix}_S = 2 \begin{pmatrix} 1\\0 \end{pmatrix} - 7 \begin{pmatrix} i\\0 \end{pmatrix} + 1 \begin{pmatrix} 0\\1 \end{pmatrix} + 4 \begin{pmatrix} 0\\i \end{pmatrix} = \begin{pmatrix} 2\\-7\\1\\4 \end{pmatrix}_S$$

שאלה 16

(N

$$\begin{pmatrix} 2 & 2 & 2 \\ k & k^2 & 1 \\ 2k^2 & 4k^2 - 2 & 2 \end{pmatrix} \xrightarrow{\begin{array}{c} R_2 \to 2R_2 - kR_1 \\ R_3 \to R_3 - k^2R_1 \end{array}} \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2(k-1)k & 2 - 2k \\ 0 & 2(k^2 - 1) & 2 - 2k^2 \end{pmatrix}$$

$$\xrightarrow{R_3 \to kR_3 - (k+1)R_2} \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2(k-1)k & 2 - 2k \\ 0 & 0 & -2(k-1)^2(k+1) \end{pmatrix}$$

$$= \begin{pmatrix} 2 & 2 & 2 \\ 0 & 2(k-1)k & 2(1-k) \\ 0 & 0 & -2(k-1)^2(k+1) \end{pmatrix}$$

 $\underline{k} = 1$

$$\left(\begin{array}{ccc}
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

עמודה 1 מובילה.

$$B\left(\operatorname{col}(A)\right) = \left\{ \begin{pmatrix} 2\\1\\2 \end{pmatrix} \right\}$$

 $.\dim(\operatorname{col}(A)) = 1$

k = -1

$$\left(\begin{array}{ccc}
2 & 2 & 2 \\
0 & 4 & 4 \\
0 & 0 & 0
\end{array}\right)$$

עמודה 1 ועמודה 2 מובילות.

$$B\left(\operatorname{col}(A)\right) = \left\{ \begin{pmatrix} 2\\-1\\2 \end{pmatrix} , \begin{pmatrix} 2\\1\\2 \end{pmatrix} \right\}$$

 $.\dim\left(\operatorname{col}(A)\right) = 2$

k = 0

$$\begin{pmatrix} 2 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & -2 \end{pmatrix} \xrightarrow{R_3 \to R_3 + R_2} \begin{pmatrix} 2 & 2 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

עמודה 1 ועמודה 3 מובילות.

$$B\left(\operatorname{col}(A)\right) = \left\{ \begin{pmatrix} 2\\0\\0 \end{pmatrix}, \begin{pmatrix} 2\\1\\2 \end{pmatrix} \right\}$$

 $.\dim\left(\operatorname{col}(A)\right) = 2$

$$k \neq 1, -1, 0$$

$$\begin{pmatrix} 2 & 2 & 2 \\ 0 & 2(k-1)k & 2(1-k) \\ 0 & 0 & -2(k-1)^2(k+1) \end{pmatrix}$$

עמודות 1, 2 ו 3 מובילות.

$$Bcol(A) = \left\{ \begin{pmatrix} 2 \\ k \\ 2k^2 \end{pmatrix}, \begin{pmatrix} 2 \\ k^2 \\ 4k^2 - 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix} \right\}$$

 $.\dim\left(\operatorname{col}(A)\right) = 3$

ב) עבור אילו ערכי k למערכת k יש פתרון לכל וקטור k? עבור אילו ערכי k למערכת k נקבל שורת סתירה במדורגת של המטריצה המורחבת k עבור k עבור k עבור k אם k עבור k אם k ולכן יש פתרון לכל וקטור k אם k אם k אם k לכן יש פתרון לכל וקטור k אם k אם k

שאלה 17

א) משים לב ש W_1 הוא מרחב הפתרונות של המערכת ההומוגנית הבאה:

$$\begin{aligned} x + y + z &= 0 \\ z - y + z &= 0 \end{aligned}.$$

נעבור לכתוב המטריצה המורחבת ונקבל:

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & 1 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & -2 & 0 \end{array}\right) \rightarrow \left(\begin{array}{ccc} 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

מכאן . $(x,y,z)=(-1,0,1)z,\ z\in\mathbb{R}$. מכאן

$$W_1 = \left\{ z \cdot \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \middle| z \in \mathbb{R} \right\} = \operatorname{span} \left\{ \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

הינו W_1 -בסיס אפשרי ל=

$$B_{W_1} = \left\{ \begin{pmatrix} -1\\0\\1 \end{pmatrix} \right\} ,$$

.dim $W_1=1$ -1

 $p(x) \in \mathbb{R}_{\leq 3}[x]$ כך:

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3.$$

$$p(1)=0$$
 וגם $p(0)=0\Leftrightarrow p(x)\in W_2$

$$p(0) = a_0 = 0$$
.

$$p(1) = a_0 + a_1 + a_2 + a_3 = 0.$$

מכאן נקבל מערכת משוואות של מקדמי הפולינום. נעבור למטריצה המורחבת של המערכת:

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{R_2 \to R_2 - R_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2}$$

 $a_2,a_3\in\mathbb{R}$ $(a_0,a_1,a_2,a_3)=(0,-a_2-a_3,a_2,a_3)=a_2(0,-1,1,0)+a_3(0,-1,0,1)$ הפתרון הוא

נסמן
$$s,t\in\mathbb{R}$$
 $egin{pmatrix} a_0\\a_1\\a_2\\a_3 \end{pmatrix}=tegin{pmatrix} 0\\-1\\1\\0 \end{pmatrix}+segin{pmatrix} 0\\-1\\0\\1 \end{pmatrix}$ לכן

$$p(x) = t \cdot x + s \cdot x^2 + (-s - t) \cdot x^3 = s(x^2 - x^3) + t(x - x^3)$$
.

א"ז

$$p(x) \in \text{span}\left\{x^2 - x^3, x - x^3\right\}$$
.

נשים לב כי הווקטורים W_2 - x^3 הם בת"ל. לפיכך בסיס אפשרי ל x^2-x^3 הינו

$$B_{W_2} = \left\{ x^2 - x^3, x - x^3 \right\}$$

.dim $W_2=2$ -1

הינו $\mathbb{F}^{2 imes 2}$ הינו בסיס של

$$\left\{e_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, e_2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, e_3 = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, e_4 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}\right\}$$

כך שכל מצטריצה $A \in \mathbb{F}^{2 imes 2}$ מצורה מצטריצות של $A \in \mathbb{F}^{2 imes 2}$ מצורה אמטריצות של $A \in \mathbb{F}^{2 imes 2}$ מצורה הבסיס:

$$A = k_1 e_1 + k_2 e_2 + k_3 e_3 + k_4 e_4 ,$$

. כאשר $k_1,\ldots,k_4\in\mathbb{F}$ סקלרים

 $A=egin{pmatrix} k_1&k_2\\k_2&k_4 \end{pmatrix}$ כך ש $k_2=k_3$ כך איברים ז"א איברים $k_2=k_3$ כך ש $k_2=k_3$ כתוצאה הצירוף לינארי לעיל הופך ל-

$$A = k_1 e_1 + k_2 (e_2 + e_3) + k_4 e_4 = k_1 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + k_2 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + k_4 \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} .$$

ז"א בסיס אפשרי של W_3 הינו

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \right. , \left. \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right. , \left. \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

 $\dim W_3 = 3$ לפיכך

שאלה 18 נתון כי

$$\operatorname{Nul}(A) = \operatorname{span}\left\{w_1 = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, w_2 = \begin{pmatrix} 1\\2\\2 \end{pmatrix}, w_3 = \begin{pmatrix} 1\\2\\5 \end{pmatrix}\right\}$$

 $\mathrm{Nul}(A)$ ומימד $\mathrm{col}(B)=\mathrm{Nul}(A)$ מכאן מכאן w_1,w_2,w_3 שעמודותה הם שעמודותה מטריצה מטריצה .rank(B) ומימד ומימד ר-

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 2 & 5 \end{pmatrix} \xrightarrow{R_2 \to R_2 - 2R_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 3 & 6 \end{pmatrix} \xrightarrow{R_2 \leftrightarrow R_3} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 3 & 6 \\ 0 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{R_2 \to \frac{1}{2}R_2} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{R_1 \to R_1 - R_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

. $\dim \operatorname{Nul}(A) = 2$ לכן rank(B) = 2

כלומר ,rank $(A)+\dim \mathrm{Nul}(A)=A$ כלומר מספר עמודות של

$$rank(A) + \dim Nul(A) = 3$$

אז נקבל כי

$$rank(A) + 2 = 3$$
 \Rightarrow $rank(A) = 1$.

שאלה 19

$$rank(C) = 4 - \dim Null(C) = 4 - 4 = 0.$$

.C=0 נסיק ש- rank(C)=0 מאחר ו-

-נסמן ב- B את העמודות של המטריצה b_1, b_2, b_3, b_4 נסמן ב-

$$C = A \cdot \begin{pmatrix} | & | & | & | \\ b_1 & b_2 & b_3 & b_4 \\ | & | & | & | \end{pmatrix} = \begin{pmatrix} | & | & | & | \\ A \cdot b_1 & A \cdot b_2 & A \cdot b_3 & A \cdot b_4 \\ | & | & | & | & | \end{pmatrix}.$$

מאחר ו- C=0 אז

$$A \cdot b_1 = A \cdot b_2 = A \cdot b_3 = A \cdot b_4 = 0$$

יש $A\cdot {f x}=ar 0$ אים שלמערכת לפחות שנה לפחות מתוך אחת מתוך שונה לפחות שונה מאפס. לפיכך קיבלנו שלמערכת לפחות שונה אחת מתוך אינסוף אינסוף פתרונות. פתרון לא טריוויאלי ובפרט לכל מערכת הומוגנית $A\cdot {f x}=ar 0$ יש אינסוף פתרונות.