CLAIMS

What is claimed is:

1	1.	A liquid catalyst mixture receptacle comprising:
2		a receptacle body having a first wall with a vertical portion and an angled portion;
3		an air inlet to the receptacle body through the first wall, the air inlet being spaced
4		from the vertical portion of the first wall by the angled portion such that if
5		air bubbles are released into a catalyst mixture in the receptacle body from
6		the air inlet, the air bubbles do not contact the vertical wall portion of the
7		first wall before reaching an upper surface of the catalyst mixture; and
8		an opening in a wall of the receptacle body for releasing sparging gas from the
9		body.
1	2.	The liquid catalyst mixture receptacle of claim 1, wherein the air inlet opening is
2		horizontally spaced from the vertical portion of the first wall by a distance of
3		approximately 1/4 inch or greater.
1	3.	The liquid catalyst mixture receptacle of claim 2, wherein the air inlet opening is
2		horizontally spaced from the vertical portion of the first wall by a distance of
3		approximately 5/8 inch or greater.

- 1 4. The liquid catalyst mixture receptacle of claim 1, further comprising a chamber in
 2 communication with the opening in the wall, the chamber having a plurality of
 3 cross-sectional plane areas parallel to the opening, the opening in the wall having
- 4 an area smaller than a largest area of the cross-sectional plane areas.
- The liquid catalyst mixture receptacle of claim 1, wherein the wall opening has a
 dimension of approximately 1/4 inch or greater.
- 1 6. The liquid catalyst mixture receptacle of claim 5, wherein the wall opening has a
 2 dimension of approximately 5/8 inch or greater and a dimension of the largest of
 3 the cross-sectional plane areas is approximately 1.5 inch or greater.
- 7. The liquid catalyst mixture receptacle of claim 1, further comprising a check
 valve in fluid communication with the air inlet.
- The liquid catalyst mixture receptacle of claim 7, wherein the check valve

 comprises a buoyant stopper sized and shaped to block the air inlet if liquid rises

 above a stop level in the air inlet to permit air to flow around the stopper if liquid

 does rise above the stop level in the air inlet.

- The liquid catalyst mixture receptacle of claim 8, wherein the check valve further

 comprises a sealing gasket disposed about the air inlet such that the buoyant

 stopper contacts and creates a sealing engagement with the sealing gasket to block
- 4 the air inlet if liquid rises above the stop level in the air inlet.
- 1 10. The liquid catalyst mixture receptacle of claim 1, wherein the body of the
- 2 receptacle includes a reinforcing indentation in a wall thereof, the reinforcing
- indentation being oriented and positioned such that the receptacle body may be
- 4 strapped to a vehicle by aligning and seating a strap upon the reinforcing
- 5 indentation.
- 1 11. A liquid catalyst mixture receptacle comprising:
- 2 a receptacle body having an opening in a wall thereof;
- an air inlet to the receptacle body; and
- a chamber in communication with the opening in the wall, the chamber having a
- 5 cross-sectional area larger than an area of the opening.
- 1 12. The liquid catalyst mixture receptacle of claim 11, wherein a dimension of the
- 2 opening in the wall is approximately 1/4 inch or greater.

1	13.	The liquid catalyst mixture receptacle of claim 12, wherein a dimension of the
2		opening in the wall is approximately 5/8 inch or greater.
1	14.	The liquid catalyst mixture receptacle of claim 11, further comprising a check
2		valve in fluid communication with the air inlet.
1	15.	The liquid catalyst mixture receptacle of claim 14, wherein the check valve
2		comprises a buoyant stopper sized and shaped so as to block the air inlet if liquid
3		rises above a stop level in the air inlet to permit air to flow around the stopper if
4		liquid does not rise above the stop level.
1	16.	A liquid catalyst delivery system comprising:
2		a liquid catalyst receptacle having an air inlet and an outlet; and
3		a catalyst transport for transporting catalyst particles in a sparging gas to a flame
4		zone of a combustion process, the catalyst transport comprising:
5		a first sparging gas transport path coupled to the receptacle outlet and
6		configured to transport sparging gas at a first rate; and
7		a second sparging gas transport path coupled to the receptacle outlet and
8		configured to transport sparging gas at a second rate in response to
9		an increase in demand for catalyst at the flame zone.

- 1 17. The liquid catalyst delivery system of claim 16, wherein the first sparging gas
- 2 transport path comprises a pump coupled to the receptacle outlet, the pump
- 3 configured to pump the sparging gas from the receptacle outlet at the first rate.
- 1 18. The liquid catalyst delivery system of claim 17, wherein the second sparging gas
- 2 transport path comprises a check valve configured to open to sparging gas flow
- 3 therethrough in response to pressure on a side of the check valve exceeding a
- 4 predetermined threshold pressure.
- 1 19. The liquid catalyst delivery system of claim 16, wherein the first and second
- 2 transport paths join into a joined transport path configured to transport the
- 3 sparging gas from the first and second transport paths, and wherein the second
- 4 transport path is configured to transport catalyst only when vacuum pressure in
- 5 the joined transport path exceeds a predetermined threshold pressure.
- 1 20. The liquid catalyst delivery system of claim 16, wherein the first rate is a variable
- 2 rate.
- 1 21. The liquid catalyst delivery system of claim 16, wherein the second rate is a
- 2 variable rate.

- 1 22. The liquid catalyst delivery system of claim 16, further comprising a catalyst
- 2 transport control coupled to the catalyst transport and configured to regulate flow
- 3 of sparging gas through at least one of the transport paths.
- 1 23. The liquid catalyst delivery system of claim 16, further comprising a catalyst
- 2 transport control configured to monitor catalyst transport and relay catalyst
- 3 transport information to a remote location.
- 1 24. The liquid catalyst delivery system of claim 23, wherein the catalyst transport
- 2 information comprises an indication that a predetermined threshold of operation
- 3 has been reached.
- 1 25. The liquid catalyst delivery system of claim 16, further comprising a mounting
- 2 plate coupled to the receptacle and a vibration source.
- 1 26. The liquid catalyst delivery system of claim 25, wherein the vibration source
- 2 comprises a pump.

1	27.	The liquid catalyst delivery system of claim 16, wherein the receptacle comprises
2		an air inlet opening positioned and oriented such that air bubbles released into a
3		catalyst mixture in the receptacle from the air inlet opening do not contact a solid
4		object before reaching an upper surface of the catalyst mixture.

The liquid catalyst delivery system of claim 16, wherein the receptacle comprises a chamber in communication with an opening in a wall of the receptacle, the chamber having a cross-sectional area larger than an area of the opening.

1	29.	A method of providing catalyst to an air intake for a combustion process, the
2		method comprising:
3		sparging air through a liquid catalyst mixture in a receptacle to produce sparging
4		gas;
5		transporting the sparging gas from the receptacle at a first rate before transporting
6		the sparging gas from the receptacle at a second rate higher than the first
7		rate when demand for sparging gas at the air intake exceeds a
8		predetermined threshold.
1	30.	The method of claim 29, wherein the second rate is a variable rate.
1	31.	The method of claim 29, wherein the variable rate corresponds to a vacuum
2		pressure caused by air moving through the air intake.
1	32.	The method of claim 29, wherein transporting sparging gas at a first rate
2		comprises pumping the sparging gas with a vacuum pump.
1	33.	The method of claim 29, wherein transporting sparging gas at the first rate
2		comprises transporting sparging gas through a first transport path and transporting
3		sparging gas at the second rate comprises transporting sparging gas through both

the first transport path and a second transport path.

- 1 34. The method of claim 33, wherein transporting sparging gas at the second rate
- 2 comprises opening a valve to allow sparging gas to be drawn through the second
- 3 transport path by a vacuum caused by air moving through the air intake.

1	35.	A method of sparging air through a catalyst mixture to produce a sparging gas, the
2		method comprising:
3		bubbling air through a catalyst mixture in a receptacle;
4		transferring catalyst particles to an air space above the catalyst mixture to produce
5		a sparging gas; and
6		transporting the sparging gas within the receptacle at a first velocity toward a
7		receptacle outlet, then transporting the sparging gas within the receptacle
8		at a second velocity less than the first velocity toward the receptacle outlet
9		then transporting the sparging gas within the receptacle to the receptacle
10		outlet.
		\cdot
1	36.	The method of claim 35, wherein transporting the sparging gas within the
2		receptacle at the first velocity, then a second velocity, then to the receptacle outlet
3		comprises passing the sparging gas through a chamber between a body of the
4		receptacle and the receptacle outlet, the chamber having an opening with an
5		opening area smaller than a maximum cross-sectional area of the chamber.
1	37.	The method of claim 35, further comprising releasing bubbles into the catalyst
2		mixture from an inlet structure having a vertical portion and an angled portion, the

angled portion horizontally spacing the released bubbles from the vertical portion

- such that the bubbles do not contact the vertical portion before they reach a
- 2 surface of the catalyst mixture.
- 1 38. The method of claim 37, wherein releasing the bubbles comprises releasing the
- 2 bubbles away from any vertical surface.

* * * *