

ZnI Isotope Shift.							
Ų							
Angeli (2)	S(r2) (relative to 66, 64)						
64 15.43'							
68 15,73	70,68 .88 .95(3)						
70 15.88							
$8v^{A',A} = (e_{NMS} + k_{SMS}) \left(\frac{1}{A} - \frac{1}{A'} \right) + F S (r^2)^{A',A}$ $8v_{so8} = (534.6 + k_{SMS}) GHz.amm \left(\frac{1}{A} - \frac{1}{A} \right) + (-1.51) Gk/fm^2 8(r^2)^{A',A}$							
Sures = (534.6 + Keme) (Hz anu (1-1)+(-1.51) GHz/Fm² S 2							
A A'							
ksms = 2.64(9) x Knms							
K ₃₀₈ = 1946 (48) GHz. amu.							
· 82 = 1996 (48)	(1-1)-1.51, 8/2 > 67.66						
	66 67/						
0.3971(20)= +0.440 (11) - 1.51 S(2)66							
S (2 × 3,66 =	-0.043 (13)						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
	0.028 (8) fm2						
Or using Angeli + 1	Compbell						

Or using Angeli + Campbell SC2567,66 = 0.17 × 0.19+0.06 = 0.032+0.010

```
2062-7 Å
            45 - 4P1/2
 ZnII
              45 - 4P3/2
                              2026 2
2026 (4 p 3/2)
  82^{66,64} = [-812 - 1266(69)][1 - 1] + -1596(64^{-2})^{66,64}
          = 0.984(33) - 1.596 \times 0.17(2)
                             .271 (32)
 = 0.7(3 (33)(32)
exp: 0.676 (6) ediff is (37)
   87^{68,64} = -2078(69) \times (\frac{1}{68} - \frac{1}{64}) - 1.596 \times 0.30
          = 1.910 (63) - 548 6.479 (32)
          = 1.431 (63) (32)
    exp: 1-346 (10) diff (85)
    80,70,64 = 2.783 (92) - 0-718 (32)
         = 2.065 (92) (32)
     exp: 1-914 (20) diff (151)
    8v^{70,68} = 0.873(29) - 0.239(32) = 0.634(60)
     exp: 0.568 (10) life $(66)
                                          Angeli 8427
ksns from Matsubara | F. 8 (2) 66,64 0.17
66,64: -1363 -0.35 68,66 0.13
                                         68,66 0.13
       68,66: - $30 136$ -0-30
                                          70,68 0.15
       70,68 : - 1378 -0.35
8267,64 [Julian]: 1.454 (48) - 1.596 x 6+20 (3) = 1.135(100)
```

From Compbell: FS(-247,66 = 0.19 FS(-2766,64 .. Matsubara result $5r^{67,64} = \left[-812 - 1365(20)\right]\left(1 - 1\right) + -6.35 \times 1.19$ = 1.523 (10) - 0.4165 = 1-106 (40) ZnI 2062 (45-4942) Becognt: $(69)^{-1} = [-797 - 1310(69)](1 - 1) - 1596 \times 0.17(2)$ $= -2107 (69) \times (1 - 1) - 1.596 \times 0.17 (2)$ = 0.998 (33) - 0.271 (32) 2 0.727 (33) (32) If we use E. scaled 2026 km= -2177 - Scale SMS by beengut factor: kms = -2209 RMS = -2107 $4\sqrt{3}$ $6^{66,64} = 1.045 - 0.35 = 0.695$ (3) $8^{67,64} = 1.545 - 0.35 \times 1.19 = 1.129 (47) (24)$ (4) $8^{67,64} = 1.474 - 1.596 \times 6.20 = 1.155 (48) (48)$

		,		28	
relative	to 6	4			
		5MS	F	Total	
66:	2:	1.046	-0.35	0.70	
	(A):	0.998	-0.271	0.737	
,					
68:	(3): (7)	2.030		(-38	
	(F)	1,937	-0.479	包要自1.458	
760:		2.956		1.956	
	(A) ?	2.822	-0.718	2-104 (92) (100)	
					-
					e and a second
	-				
		-			
			1		
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		