Notas de Álgebra Lineal

Carlos Francisco Flores Galicia.

Capítulo 1

Espacios vectoriales.

- 1.0.1. Espacios vectoriales
- 1.0.2. Subespacios vectoriales
- 1.0.3. Combinaciones lineales

Definición 1. Sea V un espacio vectorial $y \in S \subseteq V$, $S \neq \emptyset$. Un vector $v \in V$ es combinación lineal de elementos de S, si existe un conjunto finito $\{s_1, s_2, ..., s_n\} \subseteq S$ y escalares $a_1, a_2, ... a_n \in K$ tal que $v = a_1s_1 + a_2s_2 + ... + a_ns_n$. Se dice que v es combinación lineal de $\{s_1, s_2, ..., s_n\}$.

Definición 2. Sea V un espacio vectorial $y \subseteq V$. El conjunto generado por S se denota por $\langle S \rangle$, y es el conjunto de todas las combinaciones lineales formadas por los elementos de S.

Definición 3. $\langle \emptyset \rangle = \{0_V\}$

Teorema 1. Sea V un espacio vectorial $y \in S \subseteq V$, $S \neq \emptyset$, entonces $\langle S \rangle \subseteq V$ $y \langle S \rangle$ es el subespacio de V más pequeño que contiene a S (es decir, que $\langle S \rangle$ es un subconjunto de todos los subespacios de V que contienen a S).

Demostración. Probemos primero que $\langle S \rangle \leq V$. Como $S \neq \emptyset$, al menos $0_V \in \langle S \rangle$. Luego, sean $u,v \in \langle S \rangle$, por tanto u y v son combinaciones lineales de elementos de S, de manera que existen $s_1,s_2,...s_n,t_1,t_2,...,t_n \in S$ tales que $v=a_1s_1+...+a_ns_n$ y $u=b_1t_1+...+b_nt_n$, con $a_1,...a_n,b_1,...,b_n \in K$. Ahora bien, es claro que $v+u=a_1s_1+...+a_ns_n+b_1t_1+...+b_nt_n$ y $cu=cb_1t_1+...+cb_nt_n$ pertenecen a $\langle S \rangle$, para cualquier $c \in K$. Por lo tanto $\langle S \rangle \leq V$.

Por otra parte, sea U un subespacio de V que contiene a S. Sea $v \in \langle S \rangle$, entonces $v = a_1s_1 + ... + a_ns_n$, con $a_1, ..., a_n \in K$ y $s_1, ..., s_n \in S$, además como $S \subseteq U$ entonces $v = a_1s_1 + a_2s_2 + ... + a_ns_n \in U$, pues los subespacios vectoriales son cerrados bajo la suma y bajo el producto por escalares. Por tanto tenemos que si $v \in \langle S \rangle$ entonces $v \in U$, así que $\langle S \rangle \subseteq U$.

Definición 4. Sea $S \subseteq V$. Decimos que S genera a V si $\langle S \rangle = V$. También podemos decir que los elementos de S generan a V.

1.0.4. Dependencia e independencia lineal.

Definición 5. Sea $S \subseteq V$. Decimos que S es linealmente dependiente si existe $s \in S$ tal que $s \in \langle S - \{s\} \rangle$.

Teorema 2. Sea $S = \{s_1, s_2, ..., s_n\} \subset V$. S es linealmente dependiente si y solo si existen $a_1, a_2, ..., a_n \in K$ tal que $a_1s_1 + a_2s_2 + ... + a_ns_n = 0_V$ y $a_1, a_2, ..., a_n$ no son todos cero.

 $Demostraci\'on. \Rightarrow Supongamos que S$ es linealmente dependiente, entonces existe $s \in S$ tal que $s \in \langle S - \{s\} \rangle$, por tanto existen $s_1, s_2, ..., s_n \in S - \{s\}$ y los escalares $a_1, a_2, ..., a_n \in K$ tales que $s = a_1s_1 + a_2s_2 + ... + a_ns_n$. Al sumar -s en ambos lados de la expresión anterior obtenemos $0_V = -s + a_1s_1 + a_2s_2 + ... + a_ns_n$, con lo cual se garantiza que no todos los escalares que multiplican a los vectores son cero, pues -1 multiplica a s.

 \Leftarrow Supongamos que existen $a_1, a_2, ..., a_n \in K$, no todos cero, tales que $a_1s_1 + a_2s_2 + ... + a_ns_n = 0_V$. Puesto que no todos los escalares son cero, supongamos sin perdida de generalidad que $a_1 \neq 0$, por tanto podemos multiplicar en ambos lados de la igualdad anterior por el escalar $\frac{1}{a_1}$. En consecuencia obtenemos $s_1 + \frac{a_2}{a_1}s_2 + ... + \frac{a_n}{a_1}s_n = 0_V$. Luego, al sumar $-s_1$ y multiplicar por -1 en ambos lados nos queda que $s_1 = \left(-\frac{a_2}{a_1}\right)s_2 + ... + \left(-\frac{a_n}{a_1}\right)s_n$, esto es, que $s_1 \in \langle S - \{s_1\} \rangle$. Por lo tanto S es linealmente dependiente.

Definición 6. Sea $S \subseteq V$. Decimos que S es linealmente independiente si y solo si no es linealmente dependiente.

Por la equivalencia lógica $(P \Leftrightarrow \exists x(Q \land S)) \Leftrightarrow (\neg P \Leftrightarrow \forall x(Q \Rightarrow \neg S))$, el teorema anterior es equivalente a la siguiente proposición que enunciaremos como corolario.

Corolario 1. Sea $S = \{s_1, s_2, ..., s_n\} \subset V$. S es linealmente independiente si y solo si para todo $a_1, a_2, ..., a_n \in K$ tal que si $a_1s_1 + a_2s_2 + ... + a_ns_n = 0_V$ entonces $a_1, a_2, ..., a_n$ son todos cero.

Demostración. Se sigue del teorema anterior y de la equivalencia lógica $(P \Leftrightarrow \exists x(Q \land S)) \Leftrightarrow (\neg P \Leftrightarrow \forall x(Q \Rightarrow \neg S)).$

Proposición 1. Si $S \subseteq V$ y $0_V \in S$, entonces S es linealmente dependiente.

$$Demostraci\'on.$$

Teorema 3. El conjunto \emptyset es linealmente independiente

Demostración. Supongamos que \emptyset es linealmente dependiente, entonces existe $s \in \emptyset$ tal que $s \in \langle \emptyset - \{s\} \rangle$. Como $s \in \emptyset$ entonces por definición del conjunto vacío se cumple que $s \neq s$ lo cual es una contradicción. Por lo tanto el conjunto \emptyset es linealmente independiente.

Lemma 4. Si V es un K-espacio vectorial y $R \subseteq S \subseteq V$, entonces $\langle R \rangle \subseteq \langle S \rangle$.

Demostración. Supongamos que $R \subseteq S \subseteq V$, y sea $r \in \langle R \rangle$, por lo tanto existe un subconjunto finito $\{r_1, r_2, ..., r_m\} \subseteq R$ y los escalares $a_1, a_2, ... a_m \in K$ tal que $r = a_1 r_1, a_2 r_2, ..., a_m r_m$. Como $R \subseteq S$, entonces $r_1, r_2, ..., r_m \in S$, de manera que $r = a_1 r_1, a_2 r_2, ..., a_m r_m \in \langle S \rangle$, por lo tanto $\langle R \rangle \subseteq \langle S \rangle$.

Teorema 5. Sea V un K-espacio vectorial y sean $S_1 \subseteq S_2 \subseteq V$. Si S_1 es linealmente dependiente entonces S_2 también lo es.

Demostración. Supongamos que S_1 es linealmente dependiente, entonces existe $s \in S_1$ tal que $s \in \langle S_1 - \{s\} \rangle$. Luego, como $S_1 \subseteq S_2$ entonces $S_1 - \{s\} \subseteq S_2 - \{s\}$, y por el lema anterior $\langle S_1 - \{s\} \rangle \subseteq \langle S_2 - \{s\} \rangle$, por lo que $s \in \langle S_2 - \{s\} \rangle$, luego S_2 es linealmente dependiente.

Corolario 2. Sea V un K-espacio vectorial y sean $S_1 \subseteq S_2 \subseteq V$. Si S_2 es linealmente independiente entonces S_1 también lo es.

Demostración. La demostración se sigue de hacer la contrapositiva del teorema anterior.

1.0.5. Bases y dimensiones.

Definición 7. Sea $\beta \subseteq V$. Decimos que β es una base para V si y solo si β es linealmente independiente $y \langle \beta \rangle = V$.

Teorema 6. Sea V un espacio vectorial $y \beta \subseteq V$. Luego β es una base para V si y sólo si cada vector $v \in V$ puede ser expresado de manera única como una combinación lineal de vectores de β .

 $Demostración. \Rightarrow$ Supongamos que β es una base para V. Sea $v \in V$, entonces $v \in \langle \beta \rangle$, así que existe un subconjunto finito $\{b_1, b_2, ..., b_n\} \subseteq \beta$ y los escalares $a_1, a_2, ..., a_n \in K$ tal que $v = a_1b_1 + a_2b_2 + ... + a_nb_n$. Ahora, supongamos que esta representación no es única, que también $v = c_1b_1 + c_2b_2 + ... + c_nb_n$, con $c_1, c_2, ..., c_n \in K$. Entonces es claro que $v - v = 0_V = (a_1 - c_1)b_1 + (a_2 - c_2)b_2 + ... + (a_n - c_n)b_n$. Ya que β es linealmente independiente, $a_1 - c_1 = 0, a_2 - c_2 = 0, ..., a_n - c_n = 0$, en consecuencia $a_1 = c_1, a_2 = c_2, ..., a_n = c_n$, por lo tanto la representación de v como combinación lineal de β es única.

 \Leftarrow Supongamos que para cada vector $v \in V$ existe un subconjunto finito $\{b_1, b_2, ..., b_n\} \subseteq \beta$ y los escalares únicos $a_1, a_2, ..., a_n \in K$, de tal forma que $v = a_1b_1 + a_2b_2 + ... + a_nb_n$. Por lo tanto $\langle \beta \rangle = V$. Probemos ahora que β es linealmente independiente. Tenemos que el elemento 0_V puede ser expresado

como $0_V = a_1b_1 + a_2b_2 + ... + a_nb_n$, y puesto que esta manera es única, se tiene que cada escalar $a_1, a_2, ..., a_n$ debe ser forzosamente 0, por lo tanto β es linealmente independiente, y en consecuencia β es una base.

Teorema 7. Si V es un espacio vectorial y $S \subseteq V$ tal que S es finito y genera a V, entonces existe $S' \subseteq S$ tal que S' es una base para V.

Demostración. Si $S = \emptyset$ o $S = \{0_V\}$ entonces $V = \{0_V\}$ y como \emptyset es subconjunto de cualquier conjunto, entonces S es una base para V. De lo contrario, V tendrá al menos un elemento v_1 no nulo. Nótese que $\{v_1\}$ es un conjunto linealmente independiente. Continúese, si es posible, escogiendo elementos $v_2, v_3, ..., v_r \in V$ tales que $\{v_1, v_2, v_3, ..., v_r\}$ sea linealmente independiente. Puesto que S es finito, se llegará al punto en el que $S' = \{v_1, v_2, v_3, ..., v_r\}$ sea un subconjunto de S linealmente independiente, de manera que al agregar otro delemento de S a S', éste sea linealmente dependiente. Demostremos ahora que S' es una base para V. Como S' es linealmente independiente, basta mostrar que es generador de V, pero como $\langle S \rangle = V$, es suficiente demostrar que $S \subseteq \langle S' \rangle$. Sea $v \in S$. Si $v \in S'$, entonces $v \in \langle S' \rangle$. Por otro lado, si v no está en S', la anterior construcción mostraría que $S' \cup \{v\}$ es linealmente dependiente. Así, $v \in \langle S' \rangle$, y por tanto $S \subseteq \langle S' \rangle$.

Teorema 8. Sea V un espacio vectorial que tiene una base β con exactamente n elementos. Sea $S = \{s_1, s_2, ..., s_m\} \subseteq V$ linealmente independiente con exactamente m elementos, donde $m \leq n$. Entonces, existe un subconjunto $S_1 \subseteq \beta$ que contiene exactamente n-m elementos tales que $\langle S \cup S_1 \rangle = V$.

Demostración. La demostración se hará por inducción sobre m. Si m=0, entonces $S=\emptyset,$ y así $S_1=\beta$ satisface el teorema. Ahora, supongamos que que el teorema es cierto para m, tal que m < n, y demostremos que también se cumple para m+1. Sea $S=\{s_1,s_2,...,s_m,s_\ell(m+1)\}$ un subconjunto de V linealmente independiente, el cual contiene exactamente m+1 elementos. Puesto que $S = \{s_1, s_2, ..., s_m\}$ también es linealmente independiente, por la hipótesis de inducción se tiene que existe un subconjunto $\{b_1, b_2, ..., b_{\ell}(n-m)\}\$ de β tal que $\{s_1, s_2, ..., s_m\} \cup \{b_1, b_2, ..., b_{n-m}\}$ genera a V. En consecuencia existirán escalares $a_1, ..., a_m, c_1, c_2, ..., c_{n-m} \in K$ tales que $y_{m+1} = a_1s_1 + ... + a_ms_m + a_$ $c_1b_1+c_2b_2+\ldots+c_{n-m}b_{n-m}.$ Notemos que algún $b_i,$ tal como $b_1,$ es no nulo, de eso contradice el hecho de que S es linealmente independiente. Al despegar b_1 se obtiene $b_1 = (-c_1^{-1}a_1)s_1 + ... + (-c_1^{-1}a_m)s_m - (-c_1^{-1})s_{m+1} + (-c_1^{-1}c_2)s_2 + ... + (-c_1^{-1}c_{n-m})s_{n-m}$. Entonces $b_1 \in \langle \{s_1, ..., s_m, s_{m+1}, b_2, ..., b_{n-m} \} \rangle$, pero como $s_1,...,s_m,b_2,...,b_{n-m}$ son elementos de $\langle \{s_1,...,s_m,s_{m+1},b_2,...,b_{n-m}\} \rangle$, se tendrá que $\{s_1,...,s_m,b_2,...,b_{n-m}\}\subseteq \langle \{s_1,...,s_m,s_{m+1},b_2,...,b_{n-m}\}\rangle$. Por lo tanto $\langle \{s_1,...,s_m,s_{m+1},b_2,...,b_{n-m}\} \rangle = V$. Luego, al escoger $S_1 = \{s_2,...,s_{n-m}\}$ demuestra que el teorema es cierto para m+1. Esto completa la demostración.

Corolario 3. Sea V un espacio vectorial que tiene una base β que contenga exactamente n elementos. Entonces, cualquier subconjunto linealmente independiente de V que contenga exactamente n elementos es una base de V.

Demostración. Sea $S = \{s_1, s_2, ..., s_n\}$ un conjunto de V linealmente independiente que contiene exactamente n elementos. Por el teorema anterior, existe $S_1 \subseteq \beta$ que contiene n - n = 0 elementos tal que $\langle S \cup S_1 \rangle = V$. Obviamente $S_1 = \emptyset$; luego, $\langle S \rangle = V$. Como S es también linealmente independiente, S es una base para V.

Corolario 4. Sea V un espacio vectorial que tiene una base β que contenga exactamente n elementos. Entonces, cualquier subconjunto de V que contenga más de n elementos es linealmente dependiente.

Demostración. Sea $S\subseteq V$ que contiene más de n elementos. Supongamos que S es linealmente independiente. Sea $S_1\subset S$ con exactamente n elementos . Entonces, por el corolario anterior S_1 es una base para V. Como S_1 es subconjunto propio de S, podemos tomar un elemento $s\in S$ tal que $s\notin S_1$. Como S_1 es base para V, $s\in \langle S_1\rangle = V$. Luego, $S_1\cup \{s\}$ es linealmente dependiente. Pero $S_1\cup \{s\}\subseteq S$; luego, S es linealmente dependiente, y esto es una contradicción. Por lo tanto, S es linealmente dependiente.

Corolario 5. Sea V un espacio vectorial que tiene una base β con exactamente n elementos. Entonces, toda base para V contendrá exactamente n elementos.

Demostración. Sea S una base de V. Como S es linealmente independiente tendrá como máximo n elementos. Supongamos que S contiene exactamente m elementos; luego, $m \leq n$. Pero además, S es una base de V y β es linealmente independiente. Entonces, aplicamos el corolario anterior intercambiando los papeles de β y \S para dar $n \leq m$. Luego m = n.

Definición 8. Un espacio vectorial V es dimensionalmente finito si tiene una base cuya cardinalidad es un número finito. La cardinalidad de una base de V es la dimension de V, y se denota por $\dim(V)$. Si un espacio vectorial no es dimensionalmente finito, se llama dimensionalmente infinito.

Teorema 9. Sea $U \leq V$ y dim(V) = n. Entonces, W es dimensionalmente finito y $dim(W) \leq n$. Además, si dim(W) = n, entonces W = V.

Demostración. Si $W = \{0_w\}$, W es dimensionalmente finito y $dim(W) = 0 \le n$. De otra manera, existe un elemento no nulo $w_1 \in W$, y así $\{w_1\}$ es linealmente independiente. Continuando en esta forma, tómese elementos $w_1, w_2, ..., w_k \in W$ tales que $\{w_1, w_2, ..., w_k\}$ sea linealmente independiente. Este proceso debe terminar en una etapa donde $\{w_1, w_2, ..., w_k\}$ sea linealmente independiente pero de manera que al añadir cualquier elemento de W se tenga un conjunto linealmente dependiente. Entonces, W tiene una base finita que contiene no más de n elementos; esto es, $dim(W) \le n$. Si dim(W) = n, entonces una base para W

seria un subconjunto de V linealmente independiente que contuviera n elementos, y esto implicaría que la base para W es también una base para V, por tanto W=V.

Capítulo 2

Matrices y transformaciones lineales.

2.0.1. Matrices

2.0.2. Transformaciones lineales.

Definición 9. Sean V y W espacios vectoriales sobre un campo K. Una función $T:V\to W$ se llama transformación lineal de V en W si para todo $u,v\in V$ y para todo $c\in K$, se cumple que T(u+v)=T(u)+T(v) y T(cv)=cT(v). Si V=W, a la transformación lineal se le llama operador lineal.

Proposición 2. Sean $u, v \in V$ y $c \in K$. Luego, $T : V \to W$ es una transformación lineal si y solo si T(cu + v) = cT(u) + T(v).

Demostración. Como T es transformación lineal, entonces T(cu+v) = T(cu) + T(v) = cT(u) + T(v). La segunda implicación es análoga a la primera.

Proposición 3. Si $T: V \to W$ es una transformación lineal, entonces $T(0_V) = 0_W$.

De mostraci'on.

$$0_V = 0_V + 0_V$$

$$T(0_V) = T(0_V + 0_V)$$

$$T(0_V) = T(0_V) + T(0_V)$$

Por otra parte, como $T(0_V) \in W$, entonces $T(0_V) = T(0_V) + 0_W$. Luego

$$T(0_V) + T(0_V) = T(0_V) + 0_W$$

 $T(0_V) = 0_W$

Definición 10. Sean V y W espacios vectoriales y $T:V\to W$ una transformación lineal. El espacio nulo o kernel de T es

$$ker(T) = \{x \in V \mid T(x) = 0_W\}$$

Definición 11. Sean V y W espacios vectoriales y $T:V\to W$ una transformación lineal. La imagen de T es un subconjunto de W que se define como

$$Im(T) = \{T(x) \mid x \in V\}$$

Teorema 10. Si V y W son espacios vectoriales y T : $V \to W$ una transformación lineal, entonces ker(T) y Im(T) son subespacios de V y W, respectivamente.

Demostración. Como $T(0_V) = 0_W$, tenemos que $0_V \in ker(T)$. Sean $v_1, v_2 \in ker(T)$ y $c \in K$. Entonces $T(v_1 + v_2) = T(v_1) + T(v_2) = 0_W + 0_W = 0_W$, y $T(cv_1) = cT(v_1) = c0_W = 0_w$. Por lo tanto $v_1, v_2 \in ker(T)$ y $cv_1 \in ker(T)$. Luego $ker(T) \leq V$

Por otra parte, Como $T(0_V)=0_W$, tenemos que $0_W\in Im(T)$. Ahora, sean $w_1,w_2\in Im(T)$ y $c\in K$. Entonces existen v_1 y v_2 tales que $T(v_1)=w_1$ y $T(v_2)=w_2$. Así, $T(v_1+v_2)=T(v_1)+T(v_2)=w_1+w_2$, y $T(cv_1)=cT(v_1)=cw_1$. Por lo tanto, $v_1,v_2\in Im(T)$ y $cv_1\in Im(T)$. Luego $Im(T)\leq W$.

Definición 12. Sean V y W espacios vectoriales y $T:V \to W$ una transformación lineal. La nulidad de T es nul(T) = dim(ker(T)).

Definición 13. Sean V y W espacios vectoriales y $T: V \to W$ una transformación lineal. El rango de T es R(T) = dim(Im(T)).

Teorema 11. Si V y W son espacios vectoriales, V de dimension finita y $T:V \to W$ una transformación lineal, entonces nul(T) + R(T) = dim(V).

Demostración. Supongamos que dim(V) = n, y sea $\{b_1, b_2, ..., b_k\}$ una base para nul(T). Entonces podemos extender a $\{b_1, b_2, ..., b_k\}$ para que sea una base para V. Supongamos que esa extensión es $\beta = \{b_1, b_2, ..., b_n\}$. Demostraremos que el conjunto $S = \{T(b_{k+1}), ..., T(b_n)\}$ es una base para R(T).

Primero demostremos que S genera a R(T).

Corolario 6. Sean V y W espacios vectoriales y sea $T:V \to W$ una transformación lineal. Si V tiene una base β , entonces $Im(T) = \langle T(\beta) \rangle$.

Demostraci'on. Se sigue de la demostraci\'on del teorema anterior.

Teorema 12. Sean V y W dos espacios vectoriales y $T:V \to W$ una transformación lineal. La transformación T es inyectiva si y solo si $ker(T) = \{0_V\}$

Demostración. Supongamos que T es inyectiva y que $v \in ker(T)$. Entonces $T(v) = T(0_V) = 0_W$, y por lo tanto $v = 0_V$. Así, $ker(T) = \{0_V\}$. Ahora supongamos que $ker(T) = \{0_V\}$ y que $T(v_1) = T(v_2)$. Entonces $T(v_1) - T(v_2) = T(v_1 - v_2) = 0_W$, por lo tanto $x - y \in ker(T) = \{0_V\}$ y en consecuencia $x - y = 0_V$, esto es, x = y. Por lo tanto T es inyectiva.

Teorema 13. Sean V y W dos espacios vectoriales de dimensiones finitas e iguales y T : $V \to W$ una transformación lineal. Entonces T es inyectiva si y solo si es sobreyectiva.

 $Demostración. \Rightarrow \text{Supongamos que } T \text{ es inyectiva, entonces } ker(T) = \{0_V\},$ por lo tanto \emptyset es una base para ker(T), y así nul(T) = 0, por lo tato 0 + R(T) = dim(V) = dim(W), luego dim(Im(T)) = dim(W), y en consecuencia Im(T) = W.

 \Leftarrow Supongamos que T es sobreyectiva pero no es inyectiva. Entonces nul(T)>0, pues \emptyset no es base para ker(T). Como T es sobreyectiva, entonces Im(T)=W, y así R(T)=dim(W)=dim(V). Luego, nul(T)+R(T)>dim(V), lo cual es una contradicción, por lo tanto T es inyectiva.

Teorema 14. Sean V y W dos espacios vectoriales y $T:V \to W$ una transformación lineal. Entonces T es inyectiva si y solo si T lleva subconjuntos linealmente independientes de V a subconjuntos linealmente independientes de W.

Demostración.

Teorema 15. Sean V y W espacios vectoriales y supóngase que $\{b_1, b_2, ..., b_n\}$ es una base para V. Para cualquier subconjunto $\{w_1, w_2, ..., w_n\} \subset W$ existe exactamente una transformación lineal $T: V \to W$ tal que $T(b_i) = w_i$ para i = 1, 2, ..., n.

Demostración.

Definición 14. Sean V y W espacios vectoriales. Decimos que V es isomorfo a W, si existe una transformación lineal $T:V\to W$ que sea invertible. Tal transformación lineal se llama isomorfismo de V a W.

Proposición 4. Si V y W son espacios vectoriales y $T:V \to W$ una transformación lineal con inversa T^{-1} , entonces T^{-1} también es una transformación lineal.

Demostración. Sean $w_1, w_2 \in W$ y $c \in K$. Cómo T es biyectiva, existen los vectores únicos $v_1, v_2 \in V$ tales que $T(v_1) = w_1$ y $T(v_2) = w_2$. Entonces $T^{-1}(w_1) = v_1$ y $T^{-1}(w_2) = v_2$, así

$$T^{-1}(cw_1 + w_2) = T^{-1}(cT(v_1) + T(v_2))$$

$$= T^{-1}(T(cv_1 + v_2))$$

$$= cv_1 + v_2$$

$$= cT^{-1}(w_1) + T^{-1}(w_2)$$

Teorema 16. Sean V y W K-espacios vectoriales de dimensiones finitas. El espacio V es isomorfo a W si y solo si dim(V) = dim(W).

 $Demostraci\'on. \Rightarrow$ Supongamos que V es isomorfo a W, y que β es una base para V. Entonces existe una transformaci\'on $T:V\to W$ biyectiva, y por tanto, invertible. Puesto que T es inyectiva, entonces $T(\beta)$ es un subconjunto linealmente independiente de W. Luego, T es sobreyectiva, entonces $\langle T(\beta) \rangle = Im(T) = W$, por lo que $T(\beta)$ es una base para W, así dim(V) = dime(W).

 \Leftarrow Supongamos que dim(V) = dim(W). Sean $\beta = \{b_1, b_2, ..., b_n\}$ y $\alpha = \{a_1, a_2, ..., a_n\}$ bases para V y W respectivamente. Entonces existe una transformación lineal $T: V \to W$ tal que $T(b_i) = a_i$ con i = 1, 2, ..., n. Luego, como $\langle T(\beta) \rangle = Im(T) = \langle \alpha \rangle = W$, entonces T es sobreyectiva, y como V y W tienen la misma dimensión, se cumple que también T es inyectiva. Por lo tanto V es isomorfo a W.

Definición 15. Sean V y W espacios vectoriales sobre un campo K. El conjunto de todas las transformaciones lineales de V a W es L(V,W). Si V=W escribimos simplemente L(V), que sería el conjunto de todos los operadores lineales en V.

Proposición 5. Si $T, U \in L(V, W)$, entonces $T + U \in L(V, W)$.

Demostración. Sean $T, U \in L(V, W)$; $v, s \in V$ y $c \in K$. Entonces

$$(T+U)(cv+s) = T(cv+s) + U(cv+s)$$

$$= cT(v) + T(s) + cU(v) + U(s)$$

$$= cT(v) + cU(v) + T(s) + U(s)$$

$$= c[T(v) + U(v)] + T(s) + U(s)$$

$$= c[(T+U)(v)] + (T+U)(s)$$

Proposición 6. Si $T \in L(V, W)$ y $a \in K$, entonces $(aT) \in L(V, W)$.

Demostración. Sean $T \in L(V, W)$; $v, s \in V$ y $a, c \in K$. Entonces

$$(aT)(cv + s) = aT(cv + s)$$

$$= a(T(cv) + T(s))$$

$$= caT(v) + aT(s)$$

$$= c(aT)(v) + (aT)(s)$$

Teorema 17. El conjunto L(V, W) con las operaciones de suma de funciones y multiplicación por un escalar en K, es un K-espacio vectorial.

Demostración. Definiendo a la transformación nula como $T_0(v) = 0$, $\forall v \in V$ y con las proposiciones anteriores, la demostración es bastante sencilla.

Teorema 18. Si V, W y Z son espacios vectoriales y $T: V \to W$, $U: W \to Z$ transformaciones lineales, entonces $U \circ T: V \to Z$ es una transformación lineal.

Demostración. Sean $v, s \in V$ y $c \in K$. Entonces

$$\begin{split} (U \circ T)(cv + s) &= U(T(cv + s)) \\ &= U(cT(v) + T(s)) \\ &= U(cT(v)) + U(T(s)) \\ &= cU(T(v)) + U(T(s)) \\ &= c(U \circ T)(v) + (U \circ T)(s) \end{split}$$

Definición 16. Un álgebra sobre el campo K, o una K-álgebra, es un espacio vectorial sobre un campo K que tiene una tercera operación $\odot: V \to V$ tal que, para $u, v, w \in V$ y $\lambda \in K$, se cumple que

a)
$$u \odot (v + w) = u \odot v + u \odot w$$

b) $(v + w) \odot u = v \odot u + w \odot u$
c) $u \odot (\lambda v) = (\lambda u) \odot v = \lambda(u \odot v)$

Si hay un elemento $x \in V$ tal que $x \odot v = v \odot x = v$ para todo $v \in V$, decimos que es una K-álgebra con identidad. Por otra parte, decimos que una k-álgebra es conmutativa si $u \odot v = v \odot u$.

Teorema 19. El conjunto L(V) con las operaciones de suma de funciones, multiplicación de una función por un escalar y la composición de funciones, es una K-álgebra con identidad. Además, es una K-álgebra conmutativa si y solo si el espacio es de dimension 1.

Demostración. La demostración es inmediata por las propiedades de las operaciones.

2.0.3. Representación matricial de una transformación lineal

Definición 17. Sea V un espacio vectorial dimensionalmente finito. Una base ordenada para V es una base para V establecida con un orden específico; es decir, una secuencia finita de elementos de V que son linealmente independientes y que generan a V.

Definición 18. Sea $\beta = \{b_1, b_2, ..., b_n\}$ una base ordenada de un espacio vectorial V. Para $v \in V$ definimos el vector coordenado de v relativo a β , denotado por $[v]_{\beta}$, mediante

$$[v]_{\beta} = \left(\begin{array}{c} v_1 \\ \vdots \\ v_n \end{array}\right)$$

donde

$$v = \sum_{i=1}^{n} v_i b_i$$

Definición 19. Sean V y W dos espacios vectoriales con bases ordenadas $\beta = \{b_1, b_2, ..., b_n\}$ y $\gamma = \{y_1, y_2, ..., y_m\}$ respectivamente. Sea $T: V \to W$ lineal. Denotamos a la matriz de $m \times n$ que representa a T, como $[T]_{\beta}^{\gamma}$; y se define por $([T]_{\beta}^{\gamma})_{ij} = v_{ij}$, tal que

$$T(b_j) = \sum_{i=1}^{m} v_{ij} y_i \quad para \quad j = 1, 2, ..., n.$$

Si $\beta = \gamma$ escribimos simplemente $[T]_{\beta}$. Nótese que la representación matricial de un operador lineal es una matriz cuadrada.

Proposición 7. Sean V y W espacios vectoriales dimensionalmente finitos con bases β y γ respectivamente, y sean $U, T: V \to W$ transformaciones lineales. Entonces $[T+U]^{\gamma}_{\beta} = [T]^{\gamma}_{\beta} + [U]^{\gamma}_{\beta} \ y \ [cT]^{\gamma}_{\beta} = c[T]^{\gamma}_{\beta}$.

Demostración.

Teorema 20. Sean V y W espacios vectoriales con dimensiones n y m, respectivamente, y sean β y γ bases ordenadas para V y W, respectivamente. Entonces la función $\Phi: L(V,W) \to M_{m \times n}(K)$, definida por $\Phi(T) = [T]_{\beta}^{\gamma}$ para $T \in L(V,W)$ es un isomorfismo.

Demostración. Por la proposición anterior tenemos que Φ es lineal. Mostremos que Φ es biyectiva. Sean $\beta = \{b_1, b_2, ..., b_n\}$ y $\gamma = \{y_1, y_2, ..., y_m\}$. Luego, supongamos que $T \in L(V, W)$ y que $\Phi(T) = 0_{M_{m \times n}(K)}$, entonces, para cada j tenemos $T(b_j) = 0y_1 + 0y_2 + ... + 0y_m = 0_W$. Por lo tanto $T = T_0$, por lo que $ker(\Phi) = \{T_0\}$, y en consecuencia Φ es inyectiva.

Probemos ahora que Φ es sobreyectiva. Sea $A \in M_{m \times n}(K)$. Entonces existe $T \in L(V, W)$ tal que $T(b_j) = \sum_{i=1}^m A_{ij} y_i$ para $1 \le j \le n$. Entonces $[T]_{\beta}^{\gamma} = A$, y por lo tanto $\Phi(T) = A$, es sobreyectiva. Así, Φ es biyectiva y en consecuencia invertible, por lo que Φ es un isomorfismo.

Corolario 7. Sean V y W espacios vectoriales con dimensiones n y m, respectivamente. Entonces dim(L(V,W)) = mn

Demostración. Por el isomorfismo Φ se tiene que $dim(L(V, W)) = dim(M_{m \times n}(K))$, y puesto que $dim(M_{m \times n}(K))$, se concluye que dim(L(V, W)) = mn. \square

Proposición 8. Sean $V, W \ y \ Z$ espacios vectoriales dimensionalmente finitos con bases ordenadas $\alpha, \beta \ y \ \gamma$, respectivamente. Sean $T: V \to W \ y \ U: W \to Z$ transformaciones lineales. Entonces $[U \circ T]^{\gamma}_{\alpha} = [U]^{\gamma}_{\beta}[T]^{\beta}_{\alpha}$.

Demostraci'on.

2.0.4. Matriz de cambio de coordenadas y matrices similares.

Definición 20. Sean β y β' dos bases ordenadas para un espacio vectorial V dimensionalmente finito. La matriz de cambio de base de coordenadas es $Q = [I_V]_{\beta'}^{\beta}$.

Teorema 21.	Sean β y β'	$dos\ bases$	ordenadas	para un	espacio	$vectorial\ V$	di
mensionalmen	te finito y Q	$=[I_V]^{\beta}_{\beta'}$ le	a matriz de	cambio	de base a	$le\ coordena$	das
Entonces		,					

- $\begin{array}{l} a) \ Q \ es \ invertible. \\ b) \ Para \ toda \ v \in V, \ [v]_{\beta} = Q[v]_{\beta'}. \end{array}$

Demostración. Para el inciso a), tenemos que I_V es invertible, por tanto al aplicarle el isomorfismo Φ a la inversa de I_V obtenemos a la inversa de Q. Por otra parte, para el inciso b), tenemos que para toda $v \in V$, $[v]_{\beta} = [I_V(v)]_{\beta} =$ $[IV]^{\hat{\beta}}_{\beta'}[v]_{\beta'} = Q[v]_{\beta'}.$

Definición 21. Sean A y B matrices de $n \times n$ con entradas en el campo K. Decimos que B es similar a A si existe una matriz invertible $Q \in M_{n \times n}(K)$ tal $que B = Q^{-1}AQ.$

Teorema 22. La relación de ser similar en el conjunto de matrices cuadradas es una relación de equivalencia.

Capítulo 3

Diagonalización

3.0.1. Eigenvalores y eigenvectores

Definición 22. Se dice que un operador lineal T sobre un espacio vectorial dimensionalmente finito V es diagonalizable su existe una base ordenada β para V tal que $[T]_{\beta}$ sea una matriz diagonal. Por otra parte, una matriz cuadrada A decimos que es diagonalizable si A es similar a una matriz diagonal.

Teorema 23. Sea T un operador lineal sobre un espacio vectorial dimensionalmente finito V. Los siguientes incisos son equivalentes:

- a) T es diagonalizable.
- b) Existe una base ordenada β para V tal que la matriz $[T]_{\beta}$ es diagonalizable.
- c) La matriz $[T]_{\gamma}$ es diagonalizable para cualquier base ordenada γ para V.

Demostraci'on. Si T es diagonalizable, entonces existe una base ordenada β para V tal que $[T]_{\beta}$ es una matriz diagonal. Entonces $[T]_{\beta}$ es trivialmente diagonalizable, por lo que a) implica b).

Sea β una base ordenada para V tal que $[T]_{\beta}$ es diagonalizable. Entonces $[T]_{\beta}$ y $[T]_{\gamma}$ son similares. Luego, si $[T]_{\beta}$ es similar a una matriz diagonal, también $[T]_{\gamma}$ lo será por la transitividad de la relación de similitud. Y entonces $[T]_{\gamma}$ es diagonalizable, demostrando que b) implica c).

Finalmente, si $[T]_{\gamma}$ es diagonalizable, existe una matriz diagonal D similar a $[T]_{\gamma}$. Luego, existe una base ordenada β' para V tal que $[T]_{\beta'} = D$. Por tanto, T es diagonalizable y así c) implica a a).

Corolario 8. Una matriz A es diagonalizable si y solo si L_A es diagonalizable.

Teorema 24. Sea T un operador lineal sobre un espacio vectorial dimensionalmente finito V. Entonces T es diagonalizable si y solo si existe una base ordenada $\beta = \{b_1, b_2, ..., b_n\}$ para V y escalares $\lambda_1, \lambda_2, ..., \lambda_n$ (no necesariamen-

te distintos) tales que $T(b_j) = \lambda_j b_j$, para $1 \le j \le n$. Bajo estas circunstancias

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Demostración. Supongase que T es diagonalizable. Entonces existeuna base ordenada β para V tal que $[T]_{\beta} = D$ es una matriz diagonal. Sean $\lambda_j = D_{jj}$ y $\beta = \{b_1, b_2, ..., b_n\}$. Entonces para cada j,

$$T(b_j) = \sum_{i=1}^{n} D_{ij} x_i = D_{jj} x_j = \lambda_j x_j$$

Recíprocamente, supóngase que existe una base ordenada $\beta = \{b_1, b_2, ..., b_n\}$ y escalares $\lambda_1, ..., \lambda_n$ tales que $T(b_j) = \lambda_j b_j$. Entonces evidente que

$$[T]_{\beta} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Definición 23. Sea T un operador lineal en un espacio vectorial V. Un elemento no nulo $v \in V$ se llama eigenvector de T si existe un escalar λ tal que $T(v) = \lambda v$. Al escalar λ se le llama eigenvalor correspondiente al eigenvector v.

Análogamente, si A es una matriz de tamaño $n \times n$ en un campo K, un elemento no nulo $k \in K^n$ se denomina eigenvector de la matriz A, si k es un eigenvector de L_A . El escalar λ se denomina eigenvalor de A correspondiente al eigenvector k.

Teorema 25. Sea T un operador lineal en un espacio vectorial dimensionalmente finito V y sean β y β' un par de bases cualquiera para V. Entonces $det([T]_{\beta}) = det([T]_{\beta'})$.

Demostración. Sean $A = [T]_{\beta}$ y $B = [T]_{\beta'}$. Como A y B son similares, existe una matriz invertible Q tal que $B = Q^{-1}AQ$. Por lo tanto

$$det(B) = det(Q^{-1}AQ)$$

$$= det(Q^{-1})det(A)det(Q)$$

$$= [det(Q)]^{-1}det(A)det(Q)$$

$$= det(A)$$

Definición 24. Sea T un operador lineal en un espacio vectorial dimensionalmente finito V. Definimos el determinante de T, que denotaremos por det(T), de la manera siguiente: Escójase una base β para V, y defínase $det(T) = det([T]_{\beta})$. Nótese que por el teorema anterior, det(T) está bien definido, pues es independiente de la selección de la base β .

Proposición 9. Sea T un operador lineal en un espacio vectorial dimensionalmente finito. Si λ es un escalar y β es una base ordenada cualquiera para V, entonces $det(T - \lambda I_V) = det(A - \lambda I)$, donde $A = [T]_{\beta}$.

Demostración. Supongamos que λ es un escalar, β una base ordenada para V y $A = [T]_{\beta}$. Entonces $[I_V]_{\beta} = I$, y por lo tanto $[T - \lambda I_V]_{\beta} = A - \lambda I$. Luego, por definición $det(T - \lambda I_V) = det(A - \lambda I)$.

Teorema 26. Sea T un operador lineal en un espacio vectorial dimensionalmente finito V sobre un campo K. Un escalar $\lambda \in K$ es un eigenvalor de T si y solo si $det(T - \lambda I_V) = 0$.

Demostración. Supóngase que λ es un eigenvalor de T. Entonces existe un eigenvector distinto de cero $v \in V$ tal que $T(v) = \lambda v$. Luego $0 = T(v) - \lambda v = (T - \lambda I_V)(x)$. Como $v \neq 0$, $T - \lambda I_V$ no es invertible. Así, $det(T - \lambda I_V) = 0$.

Recíprocamente, supongamos que $det(T - \lambda I_V) = 0$, entonces $T - \lambda I_V$ no es invertible. Luego existe un vector no nulo $v \in V$ tal que $v \in ker(T - \lambda I_V)$. Entonces $T(T - \lambda I_V)(x) = 0$, y lógicamente $T(v) = \lambda v$. Por lo tanto v es un eigenvector de T.

Corolario 9. Sea A una matriz de $n \times n$ sobre un campo K. Entonces un escalar $\lambda \in K$ es un eigenvlor de A si y solo si $det(A - \lambda I) = 0$.

Demostraci'on.

Definición 25. Si $A \in M_{n \times n}(K)$, el polinomio det(A - tI) en la variable t se denomina polinomio característico de A.

Definición 26. Sea T un operador lineal en un espacio vectorial dimensionalmente finito V con base β . Definimos al polinomio característico f(t) de T como el polinomio característico de $A = [T]_{\beta}$; esto es, $f(t) = \det(A - tI)$.