Assignment 4

Kai Lukowiak 2018-03-25

Abstract

This paper looks into the predictive ability of certain factors into the likelyhood of a person getting into an accident and also the amount that the accident will cost.

- 1 Data Exploration
 - 1.1 The Data Frames
 - 1.2 Summary Statistics
 - 1.3 Descriptive Statistics
 - 1.4 Graphical EDA
- 2 Data Preperation
 - 2.1 Transformed Skewed Variables
- · 3 Build Models
 - 3.1 Ordinary Least Squares
 - 3.1.1 Baisic Regression
 - 3.1.2 Log Transformed3.2 BoxCox
 - 3.3 Regular logostic
 - 3.4 LASSO Logistic
 - 3.4.1 Theoretical Model
- 4 Chose a Model
 - 4.1 OLS Models
 - 4.1.1 Regular OLS
 - 4.2 Logisic Models
 - 4.2.1 Basic Logistic regression
 - **4.2.2**
 - 4.2.3 LASSO Logsitic
- 5 Model Selection
 - 5.1 OLS
 - 5.2 GLM Selection.
- 6 Predictions
 - 6.1 OLS
 - 6.2 GLM
- 7 Apendix

1 Data Exploration

1.1 The Data Frames

TARGET_FLAG	TARGET_AMT	KIDSDRIV	AGE	HOMEKIDS	YOJ	INCOME	PARENT1	HOME_VAL	MSTATUS	SEX	EDUCATION	JOB	TRAVTIME
0	0.000	0	30	2	13	103881	No	287047	Yes	М	Bachelors	z_Blue Collar	3:
1	2044.217	0	33	0	9	69641	No	230290	z_No	М	Bachelors	z_Blue Collar	3:
0	0.000	0	46	0	12	88359	No	267679	Yes	z_F	Masters	Lawyer	25
0	0.000	0	27	3	7	131567	Yes	0	z_No	z_F	Bachelors	Professional	32
0	0.000	0	51	0	13	85345	No	NA	Yes	М	Masters	NA	37
0	0.000	0	35	1	10	16039	No	124191	Yes	z_F	z_High School	Clerical	Ę

```
## Observations: 6,121
## Variables: 25
## $ TARGET_FLAG <int> 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, ...
## $ TARGET_AMT <dbl> 0.000, 0.000, 0.000, 0.000, 0.000, 2946.000, 0.000...
## $ KIDSDRIV \leq int > 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ AGE
                <int> 60, 43, 35, 51, 50, 34, 54, 37, 34, 50, 53, 43, 55...
## $ HOMEKIDS <int> 0, 0, 1, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 0, 3, 3,...
## $ YOJ
                 <int> 11, 11, 10, 14, NA, 12, NA, NA, 10, 7, 14, 5, 11, ...
## $ INCOME
                 <dbl> 67349, 91449, 16039, NA, 114986, 125301, 18755, 10...
## $ PARENT1
                <fct> No, No, No, No, No, Yes, No, No, No, No, No, No, No, No. . . .
                <dbl> 0, 257252, 124191, 306251, 243925, 0, NA, 333680, ...
## $ HOME VAL
## $ MSTATUS
                 <fct> z_{N0}, z_{N0}, Yes, Yes, Yes, z_{N0}, Yes, Yes, z_{N0}, z_{N0}, z_{N0}
## $ SEX
                 <fct> M, M, z_F, M, z_F, z_F, z_F, M, z_F, M, z_F, z_F, ...
## $ EDUCATION <fct> PhD, z_High School, z_High School, <high School, P...
## $ JOB
                 <fct> Professional, z_Blue Collar, Clerical, z_Blue Coll...
## $ TRAVTIME
                 <int> 14, 22, 5, 32, 36, 46, 33, 44, 34, 48, 15, 36, 25,...
## $ CAR USE
                 <fct> Private, Commercial, Private, Private, Private, Co...
## $ BLUEBOOK
                 <dbl> 14230, 14940, 4010, 15440, 18000, 17430, 8780, 169...
```

The training dataset is comprised of 26 variables, two of which are response variables, TARGET_FLAG and TARGET_AMT. These will be used to run logistic and regular regression respectivly.

The evaluation set looks similar but has NA s in the first two rows.

Sample of Values for the Test Set

KIDSDRIV	AGE	HOMEKIDS	YOJ	INCOME	PARENT1	HOME_VAL	MSTATUS
0	47	0	12	36150	No	174964	Yes
0	57	0	10	130831	No	365792	Yes
0	50	0	14	15989	No	117038	Yes
0	47	0	14	2825	No	91520	Yes
0	58	0	12	73283	No	251025	Yes
0	39	3	14	51524	Yes	0	z_No

The evaluation set is a similar data frame but excludes the target variable. As such it cannot be used for cross validation.

```
## Parsed with column specification:
## cols(
## 'Variable Name' = col_character(),
## Definition = col_character(),
## 'Theoretical Effect' = col_character()
## )
```

Variable Name	Definition	Theoretical Effect
INDEX	Index	None
TARGET_FLAG	Identification Variable (do not use)	None
TARGET_AMT	Was Car in crash 1=YES 0=NO	None
AGE	Age of Driver	Very young people tend to be risky. Maybe very old people also.
BLUEBOOK	Value of Vehicle	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_AGE	Vehicle Age	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_TYPE	Type of Car	Unknown effect on probability of collision, but probably effect the payout if there is a crash
CAR_USE	Vehicle Use	Commercial vehicles are driven more, so might increase probability of collision
CLM_FREQ	# Claims (Past 5 Years)	The more claims you filed in the past, the more you are likely to file in the future
EDUCATION	Max Education Level	Unknown effect, but in theory more educated people tend to drive more safely
HOMEKIDS	# Children at Home	Unknown effect
HOME_VAL	Home Value	In theory, home owners tend to drive more responsibly
INCOME	Income	In theory, rich people tend to get into fewer crashes
JOB	Job Category	In theory, white collar jobs tend to be safer
KIDSDRIV	# Driving Children	When teenagers drive your car, you are more likely to get into crashes
MSTATUS	Matitial Status	In theory, married people drive more safely
MVR_PTS	Motor Vehicle Record Points	If you get lots of traffic tickets, you tend to get into more crashes
OLDCLAIM	Total Claims (Past 5 Years)	If your total payout over the past five years was high, this suggests future payouts will be high
PARENT1	Single Parent	Unknown effect
RED_CAR	A red Car	Urban legend says that red cars (especially red sports cars) are more risky. Is that true?
REVOKED	License Revoked (Past 7 Years)	If your license was revoked in the past 7 years, you probably are a more risky driver.
Sex	Time in Force	Urban legend says that women have less crashes then men. Is that true?
TIF	Time in Force	People who have been customers for a long time are usually more safe.
TRAVTIME	Distance to Work	Long drives to work usually suggest greater risk
URBANCITY	Home/Work Area	Unknown
YOJ	Years on Job	People who stay at a job for a long time are usually more safe

1.2 Summary Statistics

Summary Statistics

TARGET_FLAG	TARGET_AMT	KIDSDRIV	AGE	HOMEKIDS	YOJ
Min. :0.0000	Min. : 0	Min. :0.0000	Min. :16.00	Min. :0.0000	Min. : 0.00
1st Qu.:0.0000	1st Qu.: 0	1st Qu.:0.0000	1st Qu.:39.00	1st Qu.:0.0000	1st Qu.: 9.00
Median :0.0000	Median : 0	Median :0.0000	Median :45.00	Median :0.0000	Median :11.00
Mean :0.2638	Mean : 1514	Mean :0.1704	Mean :44.68	Mean :0.7298	Mean :10.53
3rd Qu.:1.0000	3rd Qu.: 1029	3rd Qu.:0.0000	3rd Qu.:51.00	3rd Qu.:1.0000	3rd Qu.:13.00
Max. :1.0000	Max. :107586	Max. :4.0000	Max. :73.00	Max. :5.0000	Max. :19.00
NA	NA	NA	NA's :3	NA	NA's :347

Summary Statistics

INCOME	PARENT1	HOME_VAL	MSTATUS	SEX	EDUCATION	JOB
Min. : 0	No :5289	Min. : 0	Yes :3659	M :2827	<high 933<="" :="" school="" td=""><td>z_Blue Collar:1375</td></high>	z_Blue Collar:1375
1st Qu.: 27658	Yes: 832	1st Qu.: 0	z_No:2462	z_F:3294	Bachelors :1693	Clerical : 961
Median : 53904	NA	Median :159417	NA	NA	Masters :1240	Professional: 834
Mean : 61890	NA	Mean :154164	NA	NA	PhD: 541	Manager : 738
3rd Qu.: 86464	NA	3rd Qu.:238931	NA	NA	z_High School:1714	Lawyer : 615
Max. :367030	NA	Max. :885282	NA	NA	NA	(Other) :1191
NA's :343	NA	NA's :344	NA	NA	NA	NA's: 407

These tables give an overview of the variables, suggesting there may be some issues with distributions but we will need to look further before making any decisions on transforming the variables.

1.3 Descriptive Statistics

Descriptive Statistics

	vars	n	mean	sd	median
TARGET_FLAG	1	6121	2.638458e-01	4.407527e-01	0.0
TARGET_AMT	2	6121	1.514009e+03	4.776983e+03	0.0
KIDSDRIV	3	6121	1.703970e-01	5.102345e-01	0.0
AGE	4	6118	4.467980e+01	8.647718e+00	45.0
HOMEKIDS	5	6121	7.297827e-01	1.122196e+00	0.0
YOJ	6	5774	1.053152e+01	4.084161e+00	11.0
INCOME	7	5778	6.188946e+04	4.785552e+04	53903.5
PARENT1*	8	6121	1.135925e+00	3.427374e-01	1.0
HOME_VAL	9	5777	1.541642e+05	1.303360e+05	159417.0
MSTATUS*	10	6121	1.402222e+00	4.903863e-01	1.0
SEX*	11	6121	1.538147e+00	4.985834e-01	2.0
EDUCATION*	12	6121	3.066982e+00	1.445894e+00	3.0
JOB*	13	5714	5.008050e+00	2.468908e+00	5.0
TRAVTIME	14	6121	3.347100e+01	1.593407e+01	33.0
CAR_USE*	15	6121	1.627022e+00	4.836359e-01	2.0
BLUEBOOK	16	6121	1.567134e+04	8.455444e+03	14380.0
TIF	17	6121	5.349616e+00	4.106822e+00	4.0
CAR_TYPE*	18	6121	3.521157e+00	1.960455e+00	3.0
RED_CAR*	19	6121	1.290802e+00	4.541695e-01	1.0
OLDCLAIM	20	6121	4.070660e+03	8.867756e+03	0.0
CLM_FREQ	21	6121	7.952949e-01	1.152753e+00	0.0
REVOKED*	22	6121	1.121549e+00	3.267906e-01	1.0
MVR_PTS	23	6121	1.719164e+00	2.150401e+00	1.0
CAR_AGE	24	5735	8.334612e+00	5.747126e+00	8.0
URBANICITY*	25	6121	1.207156e+00	4.053012e-01	1.0

	trimmed	mad	min	max
TARGET_FLAG	2.048193e-01	0.0000	0	1.0
TARGET_AMT	5.889851e+02	0.0000	0	107586.1
KIDSDRIV	2.470900e-02	0.0000	0	4.0
AGE	4.473284e+01	8.8956	16	73.0
HOMEKIDS	5.064325e-01	0.0000	0	5.0
YOJ	1.110736e+01	2.9652	0	19.0
INCOME	5.676326e+04	42610.6653	0	367030.0
PARENT1*	1.044925e+00	0.0000	1	2.0
HOME_VAL	1.428207e+05	152887.1946	0	885282.0
MSTATUS*	1.377782e+00	0.0000	1	2.0
SEX*	1.547682e+00	0.0000	1	2.0
EDUCATION*	3.083725e+00	1.4826	1	5.0
JOB*	5.134952e+00	2.9652	1	8.0
TRAVTIME	3.301062e+01	16.3086	5	142.0
CAR_USE*	1.658771e+00	0.0000	1	2.0
BLUEBOOK	1.498274e+04	8510.1240	1500	69740.0
TIF	4.854605e+00	4.4478	1	25.0
CAR_TYPE*	3.526445e+00	2.9652	1	6.0
RED_CAR*	1.238513e+00	0.0000	1	2.0
OLDCLAIM	1.727992e+03	0.0000	0	57037.0
CLM_FREQ	5.860731e-01	0.0000	0	5.0
REVOKED*	1.026955e+00	0.0000	1	2.0
MVR_PTS	1.341842e+00	1.4826	0	13.0
CAR_AGE	7.954892e+00	7.4130	0	28.0
URBANICITY*	1.133960e+00	0.0000	1	2.0

Descriptive Statistics

	range	skew	kurtosis	se
TARGET_FLAG	1.0	1.0714201	-0.8521981	0.0056336
TARGET_AMT	107586.1	8.7901683	115.2132560	61.0579864
KIDSDRIV	4.0	3.3505408	11.7603038	0.0065217
AGE	57.0	-0.0564481	-0.0854251	0.1105597
HOMEKIDS	5.0	1.3343569	0.6505442	0.0143436
YOJ	19.0	-1.2180676	1.1808636	0.0537483
INCOME	367030.0	1.2145580	2.2994723	629.5688594
PARENT1*	1.0	2.1241626	2.5124772	0.0043808
HOME_VAL	885282.0	0.5294461	0.0815993	1714.7992717
MSTATUS*	1.0	0.3987149	-1.8413272	0.0062680
SEX*	1.0	-0.1529980	-1.9769145	0.0063727
EDUCATION*	4.0	0.1363664	-1.3715543	0.0184810
JOB*	7.0	-0.3418602	-1.1629758	0.0326614
TRAVTIME	137.0	0.4428075	0.7156313	0.2036646
CAR_USE*	1.0	-0.5251925	-1.7244545	0.0061817
BLUEBOOK	68240.0	0.8097543	0.8315495	108.0749994
TIF	24.0	0.8608451	0.3166601	0.0524922
CAR_TYPE*	5.0	0.0052126	-1.5099694	0.0250580
RED_CAR*	1.0	0.9210819	-1.1517962	0.0058051
OLDCLAIM	57037.0	3.1274684	9.9061482	113.3450445

CLM_FREQ	5.0	1.2115436	0.3061895	0.0147342
REVOKED*	1.0	2.3157911	3.3634379	0.0041769
MVR_PTS	13.0	1.3131263	1.2250866	0.0274858
CAR_AGE	28.0	0.2984052	-0.7372102	0.0758899
URBANICITY*	1.0	1.4448340	0.0875597	0.0051804

The count of NA values for each variable is given below.

Count of NA Values

 x
 x
 x
 x
 x
 x
 x

 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Count of NA Values

 x
 x
 x
 x
 x
 x
 x
 x
 x

 344
 0
 0
 0
 407
 0
 0
 0
 0

Count of NA Values

 x
 x
 x
 x
 x
 x
 x

 0
 0
 0
 0
 0
 386
 0

There are quite a few missing values accross several variables. However, compared to the size of the training set, around 6000, these numbers could be dropped if there is no correlation between the missing values and the response variables.

The correlation between missing values and the 'Claim Filed' response is -3.151689910^{-4} and 0.0086636 for the claim amount. Since these are very close to zero we are not worried about them effecting the regressions. As such, we will drop them.

1.4 Graphical EDA

Distribution of Values
Y values scaled to fit a common axis

The distrobutions are generally skeded upwards, nothing suggests problems with the dataset. The only variable that is very skewed is TARGET_AMT and this makes sense because most are zero or low and some are very high.

From these two graphs we can see that many of distributions are skewed in one direction or another. It is also interesting to see that the target variable is below zero. This means that the median and mean values are different.

The factor variables some uneven counts as well but nothing that is highly out of the ordinary.

2 Data Preperation

2.1 Transformed Skewed Variables

I will log transform TARGET_AMT in one of the models that build to account for the wide range. During this transformation it is important to add 1 to each variable because there are many zero values that would throw and error.

I also transformed TARGET_AMT with the power of -0.4 based off of a Box-Cox analysis. Given the nature of other variables it does not seem necessary to transform others.

3 Build Models

Model selection will be based off of automated selection techniques as well as specific transformations.

3.1 Ordinary Least Squares

3.1.1 Baisic Regression

Here I regressed all variables without transformation.

Call: $Im(formula = TARGET_AMT \sim ., data = dfCont)$

Residuals: Min 1Q Median 3Q Max -5602 -1702 -733 419 82515

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.206e+03 6.267e+02 3.520 0.000436 KIDSDRIV 2.624e+02 1.487e+02 1.765 0.077705.

AGE -5.843e+00 9.387e+00 -0.622 0.533648

HOMEKIDS -3.457e+01 8.506e+01 -0.406 0.684471

YOJ -8.626e+00 1.944e+01 -0.444 0.657279

INCOME -2.588e-03 2.719e-03 -0.952 0.341152

PARENT1Yes 6.711e+02 2.643e+02 2.539 0.011153

HOME_VAL -1.373e-03 8.504e-04 -1.615 0.106471

MSTATUSz_No 4.870e+02 2.001e+02 2.434 0.014982 *

SEXz_F -3.404e+02 2.408e+02 -1.414 0.157515

EDUCATIONBachelors -3.255e+02 2.662e+02 -1.222 0.221603

EDUCATIONMasters -3.557e+02 4.018e+02 -0.885 0.376129

EDUCATIONPhD 5.905e+02 4.993e+02 1.183 0.236960

EDUCATIONz_High School -1.534e+02 2.200e+02 -0.697 0.485834

JOBDoctor -1.365e+03 5.902e+02 -2.313 0.020762 *

JOBHome Maker 1.498e+01 3.263e+02 0.046 0.963375

JOBLawyer 1.771e+02 4.001e+02 0.443 0.658116

JOBManager -9.372e+02 3.075e+02 -3.048 0.002320 JOBProfessional 2.831e+02 2.825e+02 1.002 0.316268

JOBStudent -2.023e+02 3.145e+02 -0.643 0.520122

JOBz_Blue Collar 8.733e+01 2.464e+02 0.354 0.723062

TRAVTIME 1.666e+01 4.277e+00 3.895 9.98e-05 CAR_USEPrivate -8.516e+02 2.169e+02 -3.926 8.76e-05 BLUEBOOK 1.124e-02 1.139e-02 0.987 0.323848

TIF -4.546e+01 1.639e+01 -2.773 0.005570 ** CAR_TYPEPanel Truck 3.648e+02 3.928e+02 0.929 0.353128

CAR_TYPEPickup 4.390e+02 2.222e+02 1.975 0.048285 *

CAR_TYPESports Car 1.304e+03 2.773e+02 4.704 2.63e-06 CAR_TYPEVan 5.659e+02 2.912e+02 1.943 0.052050 .

CAR TYPEz SUV 7.651e+02 2.299e+02 3.328 0.000881 RED CARyes -1.374e+02 2.034e+02 -0.676 0.499234

OLDCLAIM -7.776e-03 9.851e-03 -0.789 0.429963

CLM FREQ 5.019e+01 7.386e+01 0.680 0.496839

REVOKEDYes 3.721e+02 2.356e+02 1.580 0.114251

MVR_PTS 1.654e+02 3.434e+01 4.817 1.51e-06 CAR_AGE -2.414e+01 1.720e+01 -1.404 0.160504

URBANICITYz_Highly Rural / Rural -1.918e+03 1.814e+02 -10.573 < 2e-16 — Signif. codes: 0 " 0.001 " 0.01 " 0.05 " 0.1 " 1

Residual standard error: 4494 on 4468 degrees of freedom Multiple R-squared: 0.07951, Adjusted R-squared: 0.07209 F-statistic: 10.72 on 36 and 4468 DF, p-value: < 2.2e-16

This is a pretty poor \mathbb{R}^2 . While there are some significant variables, the overall performance is poor.

3.1.2 Log Transformed

Next we look at the regression with a log transformed TARGET_AMT variable.

Call: $Im(formula = Iog(TARGET_AMT + 1) \sim ., data = dfCont)$

Residuals: Min 1Q Median 3Q Max -8.173 -2.340 -0.850 2.146 11.054

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.640e+00 4.466e-01 8.150 4.66e-16 KIDSDRIV 3.949e-01 1.060e-01 3.727 0.000197 AGE -6.131e-03 6.689e-03 -0.916 0.359457

HOMEKIDS -2.705e-02 6.061e-02 -0.446 0.655468

YOJ -1.264e-02 1.385e-02 -0.912 0.361683

INCOME -3.189e-06 1.937e-06 -1.646 0.099790 .

PARENT1Yes 8.902e-01 1.884e-01 4.726 2.36e-06 *HOME_VAL -1.442e-06 6.060e-07 -2.379 0.017379*

 $\textbf{MSTATUSz_No 4.756e-01 1.426e-01 3.335 0.000860} \ \ SEXz_F - 1.547e-01 \ 1.716e-01 \ -0.902 \ 0.367280$

EDUCATIONBachelors -5.226e-01 1.897e-01 -2.755 0.005901 EDUCATIONMasters -4.859e-01 2.864e-01 -1.697 0.089781 .

EDUCATIONPhD 1.498e-01 3.558e-01 0.421 0.673785

EDUCATIONz_High School 4.030e-02 1.568e-01 0.257 0.797156

JOBDoctor -1.388e+00 4.206e-01 -3.299 0.000978 JOBHome Maker -3.566e-01 2.325e-01 -1.534 0.125162

JOBLawyer -2.596e-01 2.851e-01 -0.910 0.362667

JOBManager -1.395e+00 2.191e-01 -6.368 2.11e-10 JOBProfessional -4.193e-01 2.013e-01 -2.083 0.037331

JOBStudent -4.121e-01 2.241e-01 -1.839 0.065963 .

JOBz_Blue Collar -3.573e-01 1.756e-01 -2.035 0.041932 *

TRAVTIME 2.163e-02 3.048e-03 7.095 1.50e-12 CAR_USEPrivate -1.199e+00 1.546e-01 -7.754 1.10e-14 BLUEBOOK -2.055e-05 8.115e-06 -2.532 0.011368 *

TIF -6.686e-02 1.168e-02 -5.724 1.11e-08 CAR_TYPEPanel Truck 5.446e-01 2.800e-01 1.945 0.051794

 $CAR_TYPEPickup\ 6.586e-01\ 1.584e-01\ 4.159\ 3.26e-05\ \textbf{CAR_TYPESports}\ \textbf{Car}\ \textbf{1.332e+00}\ \textbf{1.976e-01}\ \textbf{6.740}\ \textbf{1.78e-11}\ CAR_TYPEVan\ 5.699e-01$

2.075e-01 2.746 0.006057 CAR_TYPEz_SUV 8.588e-01 1.638e-01 5.242 1.66e-07 RED_CARyes -2.352e-01 1.449e-01 -1.623 0.104640 OLDCLAIM -1.883e-05 7.020e-06 -2.682 0.007347 ** CLM_FREQ 2.477e-01 5.263e-02 4.706 2.60e-06 REVOKEDYes 1.058e+00 1.679e-01

6.300 3.27e-10 MVR_PTS 1.949e-01 2.447e-02 7.965 2.07e-15 CAR_AGE -8.615e-03 1.226e-02 -0.703 0.482150

URBANICITYz_Highly Rural/ Rural -2.571e+00 1.293e-01 -19.894 < 2e-16 — Signif. codes: 0 '' 0.001 "' 0.01 " 0.05 \'. 0.1 " 1

Residual standard error: 3.203 on 4468 degrees of freedom Multiple R-squared: 0.2429, Adjusted R-squared: 0.2368 F-statistic: 39.81 on 36 and 4468 DF, p-value: < 2.2e-16

This is an improvement. It makes sense that we would need to transform the response variable given it's skewed nature.

3.2 BoxCox

bcPower Transformation to Normality Est Power Rounded Pwr Wald Lwr bnd Wald Upr Bnd Y1 -0.3997 -0.4 -0.4151 -0.3842

Likelihood ratio tests about transformation parameters LRT df pval LR test, lambda = (0) 3334.454 1 0 LR test, lambda = (1) 48980.134 1 0

Call: $Im(formula = I((TARGET_AMT + 1)^{-0.4})) \sim ., data = dfCont)$

Residuals: Min 1Q Median 3Q Max -1.22372 -0.26618 0.09885 0.27222 0.94841

Coefficients: Estimate Std. Error t value Pr(>ltl)

(Intercept) 5.718e-01 5.158e-02 11.087 < 2e-16 KIDSDRIV -4.597e-02 1.224e-02 -3.756 0.000175 AGE 7.686e-04 7.725e-04 0.995 0.319821

HOMEKIDS 3.092e-03 7.000e-03 0.442 0.658701

YOJ 1.362e-03 1.600e-03 0.851 0.394739

INCOME 3.641e-07 2.238e-07 1.627 0.103780

PARENT1Yes -1.008e-01 2.175e-02 -4.633 3.71e-06 HOME_VAL 1.613e-07 6.999e-08 2.304 0.021244

MSTATUSz No -5.537e-02 1.647e-02 -3.362 0.000781 SEX7 F 1.657e-02 1.982e-02 0.836 0.403263

EDUCATIONBachelors 5.935e-02 2.191e-02 2.709 0.006782 EDUCATIONMasters 5.585e-02 3.307e-02 1.689 0.091322 .

EDUCATIONPhD -1.270e-02 4.109e-02 -0.309 0.757357

EDUCATIONz_High School -4.987e-03 1.811e-02 -0.275 0.783029

JOBDoctor 1.581e-01 4.858e-02 3.255 0.001140 JOBHome Maker 4.226e-02 2.686e-02 1.573 0.115690

JOBLawyer 3.300e-02 3.293e-02 1.002 0.316351

JOBManager 1.629e-01 2.531e-02 6.438 1.34e-10 JOBProfessional 5.427e-02 2.325e-02 2.334 0.019625 *

JOBStudent 4.755e-02 2.588e-02 1.837 0.066220 .

JOBz Blue Collar 4.227e-02 2.028e-02 2.084 0.037178 *

TRAVTIME -2.493e-03 3.520e-04 -7.080 1.66e-12 CAR_USEPrivate 1.393e-01 1.785e-02 7.801 7.62e-15 BLUEBOOK 2.603e-06 9.372e-07 2.778 0.005501 TIF 7.735e-03 1.349e-03 5.734 1.05e-08 CAR_TYPEPanel Truck -6.329e-02 3.233e-02 -1.957 0.050359 .

2.778 0.005501 TIF 7.7356-03 1.3496-03 5.734 1.056-08 CAR_TYPEPanel Truck -6.3296-02 3.2336-02 -1.957 0.050359 .

CAR_TYPEPickup -7.5856-02 1.8296-02 -4.147 3.436-05 CAR_TYPESports Car -1.5186-01 2.2826-02 -6.650 3.296-11 CAR_TYPEVan -6.3726-

02 2.397e-02 -2.659 0.007873 CAR TYPEz SUV -9.798e-02 1.892e-02 -5.179 2.33e-07 RED CARyes 2.835e-02 1.674e-02 1.694 0.090340 .

 $\textbf{OLDCLAIM 2.323e-06 8.108e-07 2.865 0.004186 } \texttt{CLM_FREQ -} 3.064e-02 \ 6.079e-03 -5.041 \ 4.82e-07 \ \textit{REVOKEDYes -1.255e-01 1.939e-02} \\ \textbf{OLDCLAIM 2.323e-06 8.108e-07 2.865 0.004186 } \texttt{CLM_FREQ -} 3.064e-02 \ 6.079e-03 -5.041 \ 4.82e-07 \ \textit{REVOKEDYes -1.255e-01 1.939e-02} \\ \textbf{OLDCLAIM 2.323e-06 8.108e-07 2.865 0.004186 } \texttt{CLM_FREQ -} 3.064e-02 \ 6.079e-03 -5.041 \ 4.82e-07 \ \textit{REVOKEDYes -1.255e-01 1.939e-02} \\ \textbf{OLDCLAIM 2.32e-06 8.108e-07 2.865 0.004186 } \texttt{CLM_FREQ -} 3.064e-02 \ 6.079e-03 -5.041 \ 4.82e-07 \ \textit{REVOKEDYES -1.255e-01 1.939e-02} \\ \textbf{OLDCLAIM 2.32e-06 8.108e-07 2.865 0.004186 } \texttt{CLM_FREQ -} 3.064e-02 \ 6.079e-03 -5.041 \ 4.82e-07 \ \textit{REVOKEDYES -1.255e-01 1.939e-02} \\ \textbf{OLDCLAIM 2.32e-07 REVOKEDYES -1.255e-01 1.939e-02} \\ \textbf{OLDCLAIM 3.32e-07 REVOKEDYES -1.255e-07 REVOKEDYES -1.256e-07 REVOKEDYES -1.255e-07 R$

-6.471 1.08e-10 MVR PTS -2.202e-02 2.826e-03 -7.791 8.19e-15 CAR_AGE 9.464e-04 1.415e-03 0.669 0.503748

URBANICITYz_Highly Rural/ Rural 2.970e-01 1.493e-02 19.898 < 2e-16 — Signif. codes: 0 " 0.001 " 0.01 " 0.05 " 0.1 " 1.493e-02 19.898 | 0.10 |

Residual standard error: 0.3699 on 4468 degrees of freedom Multiple R-squared: 0.2444, Adjusted R-squared: 0.2383 F-statistic: 40.13 on 36 and 4468 DF, p-value: < 2.2e-16

3.3 Regular logostic

Call: glm(formula = TARGET_FLAG ~ ., data = dfLog)

Deviance Residuals: Min 1Q Median 3Q Max

-0.9859 -0.2831 -0.1032 0.2783 1.2625

Coefficients: Estimate Std. Error t value Pr(>|t|)

 $(Intercept)\ 4.462e-01\ 5.365e-02\ 8.316 < 2e-16\ \textit{KIDSDRIV}\ 4.778e-02\ 1.273e-02\ 3.753\ 0.000177\ \text{AGE}\ -8.077e-04\ 8.036e-04\ -1.005\ 0.314936\ -1.$

HOMEKIDS -3.191e-03 7.282e-03 -0.438 0.661319

YOJ -1.397e-03 1.665e-03 -0.839 0.401432

INCOME -3.775e-07 2.328e-07 -1.622 0.104895

PARENT1Yes 1.043e-01 2.263e-02 4.607 4.19e-06 HOME_VAL -1.665e-07 7.281e-08 -2.286 0.022276

MSTATUSz_No 5.775e-02 1.713e-02 3.370 0.000757 SEXz_F -1.718e-02 2.062e-02 -0.833 0.404608

EDUCATIONBachelors -6.133e-02 2.279e-02 -2.690 0.007162 EDUCATIONMasters -5.796e-02 3.440e-02 -1.685 0.092145 .

EDUCATIONPhD 1.286e-02 4.274e-02 0.301 0.763509

EDUCATIONz_High School 5.205e-03 1.884e-02 0.276 0.782319

JOBDoctor -1.644e-01 5.053e-02 -3.253 0.001149 JOBHome Maker -4.396e-02 2.794e-02 -1.574 0.115658

JOBLawyer -3.464e-02 3.426e-02 -1.011 0.311951

JOBManager -1.696e-01 2.633e-02 -6.444 1.29e-10 JOBProfessional -5.725e-02 2.419e-02 -2.367 0.017962 *

JOBStudent -4.933e-02 2.692e-02 -1.832 0.066990 .

JOBz_Blue Collar -4.370e-02 2.110e-02 -2.071 0.038385 *

TRAVTIME 2.589e-03 3.662e-04 7.071 1.78e-12 CAR_USEPrivate -1.449e-01 1.857e-02 -7.802 7.52e-15 BLUEBOOK -2.743e-06 9.749e-07 -2.814 0.004916 TIF -8.044e-03 1.403e-03 -5.732 1.06e-08 CAR_TYPEPanel Truck 6.574e-02 3.363e-02 1.955 0.050694.

 $\textbf{CAR_TYPEPickup 7.887e-02 1.903e-02 4.146 3.45e-05} \ \ \text{CAR_TYPESports Car 1.575e-01 2.374e-02 6.632 3.71e-11} \ \ \textbf{CAR_TYPEVan 6.581e-02 2.493e-02 2.640 0.008331} \ \ \ \text{CAR_TYPEZ_SUV } \ \ 1.015e-01 \ \ 1.968e-02 \ \ 5.159 \ \ 2.59e-07 \ \ \ \textbf{RED_CARyes -2.978e-02 1.741e-02 -1.710 0.087280} \ .$

OLDCLAIM -2.447e-06 8.434e-07 -2.901 0.003740 CLM_FREQ 3.222e-02 6.324e-03 5.096 3.62e-07 REVOKEDYes 1.308e-01 2.017e-02 6.484 9.92e-11 MVR PTS 2.279e-02 2.940e-03 7.752 1.11e-14 CAR AGE -9.862e-04 1.472e-03 -0.670 0.503048

URBANICITYz_Highly Rural/ Rural -3.087e-01 1.553e-02 -19.879 < 2e-16 — Signif. codes: 0 '' 0.001 " 0.01 " 0.05 '.' 0.1 " 1

(Dispersion parameter for gaussian family taken to be 0.1480396)

Null deviance: 875.19 on 4504 degrees of freedom Residual deviance: 661.44 on 4468 degrees of freedom AIC: 4217.7

Number of Fisher Scoring iterations: 2

##

lowess

3.4 LASSO Logistic

```
## Loading required package: gplots
```

```
## Attaching package: 'gplots'

## The following object is masked from 'package:stats':
```

```
## Warning in aucDF$lasso.prob <- predict(lasso.model, type = "response", newx
## = X, : Coercing LHS to a list</pre>
```



```
## 24 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept) 9.311645e-01
## KIDSDRIV
                2.104515e-01
## AGE
               -3.066729e-03
## HOMEKIDS
## Y0J
## INCOME
               -5.091546e-06
## PARENT1
                5.400654e-01
## HOME_VAL
               -1.319478e-06
## MSTATUS
                2.495976e-01
## SEX
               1.950305e-02
## EDUCATION
## JOB
               -3.135790e-04
## TRAVTIME
                1.298654e-02
## CAR_USE
               -8.073200e-01
## BLUEBOOK
               -1.739624e-05
               -3.631229e-02
## TIF
## CAR TYPE
                9.955364e-02
## RED CAR
               -3.785589e-02
## OLDCLAIM
## CLM_FREQ
                1.374393e-01
## REVOKED
                4.762156e-01
## MVR_PTS
                1.130536e-01
               -1.716225e-02
## CAR AGE
## URBANICITY -1.888708e+00
```

3.4.1 Theoretical Model

This model is selected for variables that I think will play a larger role based on my prior belifes.

4 Chose a Model

Here we chose the best of each class of model.

4.1 OLS Models

4.1.1 Regular OLS

```
rstudent unadjusted p-value Bonferonni p
## 2988 19.17386
                        8.3009e-79
                                     3.7395e-75
## 3916 17.71827
                        6.0975e-68
                                     2.7469e-64
## 1393 16.20840
                        1.8631e-57
                                      8.3935e-54
## 309 13.01407
                        4.9631e-38
                                     2.2359e-34
## 2422 12.82457
                         5.3304e-37
                                      2.4013e-33
## 3223 12.77978
                         9.2987e-37
                                      4.1891e-33
                         6.6975e-35
## 2848 12.43057
                                      3.0172e-31
## 586 11.88084
                         4.5067e-32
                                      2.0303e-28
                        2.1799e-30
                                      9.8206e-27
## 3419 11.54189
                        3.8883e-24
## 246 10.19349
                                     1.7517e-20
```

```
## Warning in rlm.default(x, y, weights, method = method, wt.method =
## wt.method, : 'rlm' failed to converge in 20 steps
```

QQ Plot

Influence Plot

Distribution of Studentized Residuals

Spread-Level Plot for fit


```
## lag Autocorrelation D-W Statistic p-value
## 1 -0.003806213  2.007557  0.892
## Alternative hypothesis: rho != 0
```

We can see from the QQ Plot that we have some serious troubles with this model.

Let's hope that we can find someting better. $\#\#\ \text{Log Scaled Model}$

```
##
## No Studentized residuals with Bonferonni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferonni p
## 2834 3.464935 0.00053535 NA
```

QQ Plot

Influence Plot

Hat-Values Circle size is proportial to Cook's Distance

Distribution of Studentized Residuals

Spread-Level Plot for fit


```
## lag Autocorrelation D-W Statistic p-value
## 1 -0.02836693  2.056647  0.038
## Alternative hypothesis: rho != 0
```

This model looks better but it is still far from perfect. The QQ Plot is greatly improved but there are still issues with cooks distance etc.

```
##
## No Studentized residuals with Bonferonni p < 0.05
## Largest |rstudent|:
## rstudent unadjusted p-value Bonferonni p
## 2834 -3.32102.... 0.00090407 NA
```


Influence Plot

Distribution of Studentized Residuals


```
## Alternative hypothesis: rho != 0
```

Even this model with a Box-Cox transformation has not great results. Given these results on our transformed models, I think that it might be worthwile examaning non-linear models such as tree based models. This, however, goes beyond the scope of the course.

4.2 Logisic Models

4.2.1 Basic Logistic regression

```
## Warning: package 'pROC' was built under R version 3.4.4
## Type 'citation("pROC")' for a citation.
## Attaching package: 'pROC'
## The following object is masked from 'package:plotROC':
##
##
       ggroc
## The following object is masked from 'package:glmnet':
##
##
       auc
## The following objects are masked from 'package:stats':
##
##
       cov, smooth, var
## [[1]]
```

AUC Graph for Baisic GLM Model


```
##
## [[2]]
## Area under the curve: 0.8207
```

4.2.2

The theoretical model performs much worse than the model with everyting in it.

4.2.3 LASSO Logsitic


```
## [[1]]
## [1] 0.8087627
```

5 Model Selection

5.1 OLS

I will base my selection off of the \mathbb{R}^2 value. As such, we select the log transformed logistic regression.

5.2 GLM Selection.

For the GLM Model we will use AUC as a selector. As such, I chose the baisc model.

6 Predictions

6.1 OLS

```
## 1 2 3 4 5 6
## 1.07923964 2.50448156 1.98003329 1.54566376 3.63463698 0.05468482
```

6.2 GLM

```
## 1 2 3 4 5 6
## 0.12471795 0.29952584 0.24145782 0.17842149 0.43940253 0.01132441
```

7 Apendix

```
knitr::opts_chunk$set(echo = FALSE)
knitr::opts_knit$set(root.dir = "/Users/kailukowiak/DATA621/Assignments")
knitr::opts_chunk$set(echo=FALSE)
library(MASS)
library(car)
library(leaps)
library(tidyverse)
library(knitr)
library(kableExtra)
library(psych)
library(ggthemes)
library(corrplot)
library(glmnet)
library(bestglm)
library(xtable)
library(caTools)
options(xtable.floating = FALSE)
options(xtable.timestamp = "")
moneyCV <- function(df){</pre>
  for (colName in names(df)){
   if (grepl('\\$', df[, colName])){
```

```
df[, colName] = gsub("\\$|,", "", df[[colName]]) %>% as.numeric()
   }
  return(df)
}
factorCV <- function(df){</pre>
  for (colName in names(df)){
   if (is.character(df[[colName]])) {
      df[, colName] = df[[colName]] %>% as.factor()
  return(df)
# Loading the data
LabledDF <- read csv('Assignment4/insurance training data.csv')
LabledDF <- moneyCV(LabledDF)</pre>
LabledDF <- factorCV(LabledDF)
LabledDF <- LabledDF %>% select(-INDEX)
set.seed(101)
sample = sample.split(LabledDF$TARGET_FLAG, SplitRatio = .75)
df <- subset(LabledDF, sample == TRUE)</pre>
testDF <- subset(LabledDF, sample == FALSE)</pre>
temp <- df %>% sample_n(6)
temp %>% kable()
# temp[,1:8] %>% kable(caption = 'Sample of Values for the Training Set')
# temp[9:17] %>% kable(caption = 'Sample of Values for the Training Set')
# temp[18:25] %>% kable(caption = 'Sample of Values for the Training Set')
qlimpse(df)
evalDF <- read_csv('/Users/kailukowiak/DATA621/Assignments/Assignment4/insurance-evaluation-data.csv')</pre>
evalDF <- moneyCV(evalDF)</pre>
evalDF <- factorCV(evalDF)</pre>
evalDF <- evalDF %>% select(-INDEX, -TARGET_AMT, -TARGET_FLAG)
temp <- evalDF %>% sample_n(6)
temp[1:8] %>% kable(caption = 'Sample of Values for the Test Set')
setwd("~/DATA621/Assignments")
lables <- read_csv('Assignment4/dataLegend.csv')</pre>
lables %>% kable()
# Summary Tables
SumTab <- summary(df)
SumTab1 <- SumTab[, 1:6]</pre>
SumTab2 <- SumTab[, 7:13]</pre>
kable(SumTab1, caption = 'Summary Statistics')
kable(SumTab2, caption = 'Summary Statistics')
dis <- describe(df)</pre>
dis[, 1:5] % kable(caption = 'Descriptive Statistics')
dis[, 6:9] % kable(caption = 'Descriptive Statistics')
dis[, 10:13] %>% kable(caption = 'Descriptive Statistics')
temp <- map(df, ~sum(is.na(.)))</pre>
temp <- t(temp)
temp[1:8] %>% kable(caption = 'Count of NA Values')
temp[9:17] %>% kable(caption = 'Count of NA Values')
temp[18:25] %>% kable(caption = 'Count of NA Values')
df$CONTAINS_NA <- ifelse(complete.cases(df), FALSE, TRUE)</pre>
corFlag <- cor(df$TARGET_FLAG, df$CONTAINS_NA)</pre>
corAmt <- cor(df$TARGET_AMT, df$CONTAINS_NA)</pre>
df <- df %>% select(-CONTAINS_NA)
df <- df[complete.cases(df),]</pre>
evalDF <- evalDF[complete.cases(evalDF),]</pre>
testDF <- testDF[complete.cases(testDF),]</pre>
df %>%
 select_if(is.numeric) %>%
  scale() %>%
  as_tibble() %>%
  gather() %>%
  ggplot(aes(x = key, y = value)) +
  theme\_tufte() +
  geom_violin()+
  #geom_tufteboxplot(outlier.colour="black")+
  theme(axis.title=element_blank()) +
  ylab('Scaled Values')+
  xlab('Variable')+
  theme(axis.text.x = element_text(angle = 90, hjust = 1))+
  ggtitle('Distrobution of Values', subtitle = 'Y values scaled to fit a common axis')
df %>%
 select if(is.numeric) %>%
  scale() %>%
  as_tibble() %>%
  gather() %>%
  ggplot(aes(x = key, y = value)) +
  # geom_violin()+
  # geom_tufteboxplot(outlier.colour="black", outlier.shape = 22)+
```

```
geom_boxplot()+
  theme_tufte() +
  theme(axis.title=element_blank()) +
 ylab('Scaled Values')+
 xlab('Variable')+
 theme(axis.text.x = element_text(angle = 90, hjust = 1))+
 ggtitle('Distrobution of Values', subtitle = 'Y values scaled to fit a common axis')
 select_if(is.factor) %>%
 gather() %>%
 ggplot(aes(x=value))+
 geom_bar()+
 facet_wrap(~key,scales='free_x')+
 theme(axis.text.x = element_text(angle = 90, hjust = 1))
dfCont <- df %>% select(-TARGET_FLAG)
dfLog <- df %>% select(-TARGET_AMT)
mod1 <- lm(TARGET\_AMT \sim ., data = dfCont)
#summary(mod1)
options(xtable.comment = FALSE)
summary(mod1)
mod2 <- lm(log(TARGET_AMT+1) ~ ., data = dfCont) # Note the `+1`</pre>
summary(mod2)
# Box Cox Method, univariate
summary(p1 <- powerTransform(I(TARGET\_AMT+1) ~., dfCont))
bcTrans <- lm(I((TARGET\_AMT+1)^{(-0.4)}) \sim ., dfCont)
summary(bcTrans)
logMod1 <- glm(TARGET_FLAG~., data = dfLog)</pre>
logMod1 %>% summary()
X <- dfLog %>% dplyr::select(-TARGET_FLAG)
X <- data.matrix(X)</pre>
#X <- as.matrix(X, ncol=12)</pre>
y <- as.factor(dfLog$TARGET_FLAG)</pre>
fit = glmnet(X, y, family = "binomial")
library(ROCR)
aucDF <- X
lasso.model = cv.glmnet(X, y, family = "binomial", type.measure = 'class')
aucDF$lasso.prob <- predict(lasso.model, type="response", newx = X, s = 'lambda.1se')</pre>
pred <- prediction(aucDF$lasso.prob, y)</pre>
cvfit = cv.glmnet(X, y, family = "binomial", type.measure = "class")
plot(cvfit)
coef(cvfit, s = "lambda.1se")
# theoDF <- dfLog %>% select(TARGET_FLAG, KIDSDRIV, AGE, OLDCLAIM, REVOKED, RED_CAR,)
# modTheo <- glm(TARGET_FLAG~., data = theoDF)</pre>
# summary(modTheo) %>% xtable()
regressionDiagnostic <- function(fit){</pre>
 ## https://www.statmethods.net/stats/rdiagnostics.html
 library(car) # Required
 print(outlierTest(fit))
 qqPlot(fit, main = 'QQ Plot')
 #av.Plots(fit)
 cutoff <- 4/((nrow(dfCont)-length(fit$coefficients)-2))</pre>
 plot(fit, which=4, cook.levels=cutoff)
  # Influence Plot
 influencePlot(fit,
                      id.method="identify", main="Influence Plot",
                sub="Circle size is proportial to Cook's Distance" )
 library(MASS)
 sresid <- studres(fit)</pre>
 hist(sresid, freq=FALSE,
       main="Distribution of Studentized Residuals")
 xfit<-seq(min(sresid), max(sresid), length=40)</pre>
 yfit<-dnorm(xfit)</pre>
  lines(xfit, yfit)
 print(ncvTest(fit))
 # plot studentized residuals vs. fitted values
 spreadLevelPlot(fit)
 print(durbinWatsonTest(fit))
regressionDiagnostic(mod1)
regressionDiagnostic(mod2)
regressionDiagnostic(bcTrans)
AUC <- function(df, mod, modelName){
 library(plotROC)
 library(pROC)
  prob = predict(mod, type = c("response"))
 dfLog$prob=prob
 p = ggplot(dfLog, aes(d = TARGET_FLAG, m = prob)) +
   geom_roc(n.cuts = 0) +
    ggtitle(paste('AUC Graph for', modelName)) +
    xlab("False Positive Fraction") +
    ylab('True Positive Fraction') +
    geom_abline(linetype = 'dashed') +
    theme_tufte()
```

```
g <- roc(TARGET_FLAG ~ prob, data = dfLog)
 return(list(p, g$auc))
AUC(select(testDF, -TARGET_AMT), logMod1, 'Baisic GLM Model')
#AUC(select(testDF, -TARGET_AMT), modTheo, 'Theoretical Model')
fittedGLMcv <- predict(cvfit, X, s = "lambda.1se", type = "class")</pre>
perf <- performance(pred,"tpr","fpr")
auc <- performance(pred,"auc") # shows calculated AUC for model</pre>
auc <- auc@y.values
roc.data <- data.frame(fpr=unlist(perf@x.values),</pre>
                       tpr=unlist(perf@y.values))
ggplot(roc.data, aes(x=fpr, ymin=0, ymax=tpr)) +  
    #geom_ribbon(alpha=0.2) +
    geom_line(aes(y=tpr)) +
    geom_abline(slope=1, intercept=0, linetype='dashed') +
    ggtitle("ROC Curve") +
    ylab('True Positive Rate') +
    xlab('False Positive Rate') + theme_tufte()
auc
#evalDF <- evalDF %>% select(-CONTAINS_NA)
predict(mod2, newdata = evalDF) %>% head()
predict(logMod1, newdata = evalDF) %>% head()
```