1. R or Python?

- Large volume of statistics and charting libraries
- Similar data structure operation
- R—a popular language and environment to statistically explore datasets
- Download R 3.3.1: https://cran.cnr.berkeley.edu
- After installation, type in "search()" to see the basic packages you have installed for R. R also has a popular IDE(integrated development environment) called RStudio:

https://www.rstudio.com/products/rstudio/download/

2. R as a Calculator:

```
> 1+2
[1] 3
> 3^2
[1] 9
#Try built-in functions
> exp(2)-log(100) # Try "log(10,100)"
[1] 2.783886
# Define a compound function
> sqrt(abs(-2))
[1] 1.414214
```

```
> a<-1
         # ("=" is the same as "<-")
> b=2
> (a+b)^2
[1] 9
#Define a function z=f(x,y)
> f < -function(x, y) z < -(y^2-x^2)*pi
>print(f(1,2))
#See what variables you have
>ls()
#Remove a and b from working space
>rm(a,b) # Remove all with "rm(list=ls())"
```

3. Create Vectors in R:

Besides the Vector, R has other data types like matrix and data frame. Some other useful built-in functions: runif() and rnorm() generating random numbers conforming to uniform and normal distributions; max(), min() and range() get biggest, smallest and the range of vectors.

```
> A<-c(2,3,5,7,11)
> B<-seq(100,108, by=2) # How about "by=3"
[1] 100 102 104 106 108
> c(A,B)
[1] 2 3 5 7 11 100 102 104 106 108
> A+B
[1] 102 105 109 113 119
```

```
> airports<-c("JFK","LGA","EWR","SFO")
> length(airports)
[1] 4
> airports[4] #How about airports[-4]?
[1] "SFO"
> airports[1:3]
[1] "JFK" "LGA" "EWR"
> airports[c(2,4)]
[1] "LGA" "SFO"
```

Q1: What are the differences among vector, matrix, data frame, and factor? Your answer should provide a concrete example in codes and annotations.

4. Exploratory Analysis:

Data: similar as assignment1: sample.csv

Assumption: high winner, low error, more total point won =: win the match Plot x-axis (Winner) & y-axis(Error) statistics of each Player in last 10 years Australian open Championship match, Color the winners in Blue and losers in Orange, Size of the dots represent total points won.

year	player	victory	winner	error	total
2009	Rafael Nadal	1	50	41	173
2009	Roger Federer	0	71	64	174
2010	Roger Federer	1	46	42	116
2010	Andy Murray	0	29	36	100

Why do we need to clean messy data?

- Column headers are values, not variable names.
- Multiple variables are stored in one column.
- Variables are stored in both rows and columns.
- Multiple types of observational units are stored in the same table.
- A single observational unit is stored in multiple tables.

Wrangle data packages: reshape2, dplyr

http://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html

Popular charting packages: ggplot2 & rCharts

http://docs.ggplot2.org/current/

http://rcharts.io/gallery/

#plot all winner and error dots

p <- ggplot(sample, aes(winner, error))

p + geom point()

color data points and scale the dot size

```
p <- ggplot(sample, aes(winner, error, colour=factor(victory), size=total))
p + geom point()
# custome color palette
myPalette <- c("#FF9900", "#0099FF")
p + geom point() + scale colour manual(values=myPalette)
# add label
p <- ggplot(sample, aes(winner, error, colour=factor(victory), size=total, label=player))
p + geom point() +scale colour manual(values=myPalette) + geom text()
# jitter the label a bit
p + geom point() +scale colour manual(values=myPalette) + geom text(hjust=-0.2,
viust=1)
                                         Rafael Nadal
                                                      Novak Djokovic
                                                                      a 1
# color by match (year), change shape for victory variable
p <- ggplot(sample, aes(winner, error))
p + geom_point(aes(shape=factor(victory), size=total))+
```

geom text(aes(colour=factor(year),label=player), hjust=1.2, vjust=-1)

split by match, jitter text

p + geom_point(aes(shape=factor(victory), size=total))+ geom_text(aes(colour=factor(year),label=player), position = position_jitter(width=5, height=1.5)) + facet_grid(~year)

Now, your turn:

- 1. set figure background to white
- 2. connect each pair by year with a line
- 3. if jitter the text doesn't work, try *ggrepel* library
- 4. generate charts not by variable, by columns (hint: *facet wrap* function)

Q2: Come up with another assumption and vision the outcome may be in a similar comparative small multiples chart?

5. Deeper Analysis (Modeling)

Data: extract from assignment too: big3.csv #only look at the big 3 players p <- ggplot(big3, aes(factor(year), winner1)) $p + geom boxplot() + facet grid(\sim player1) + geom jitter(height = 0)$ # distribution and density $p + geom\ violin() + facet\ grid(\sim player1) + geom\ jitter(height = 0)$ # regression line ggplot(big3, aes(x=total1, y=winner1, size=total1, color=player1)) + geom point()+ geom smooth(method=lm, se=F) # regression + prediction

6. Interactive Visualization with R: Shiny

geom_point()+

geom smooth(method=lm)

- Zero knowledge of HTML/JS/CSS is required, but fully extensible.
- Extend Interactivity to Reactivity: **Reactive Programming!**

ggplot(big3, aes(x=total1, y=winner1, size=total1, color=player1)) +

- To build a simple Shiny application, you need:
 - a user interface file (ui.R)—define the client part with inputs and outputs;
 - o a server file (server.R)—define the task for the server part given inputs and outputs:

http://shinv.rstudio.com/tutorial/

```
# ui.R
 shinyUI(fluidPage(
  titlePanel("title panel"),
  sidebarLayout(
    sidebarPanel( "sidebar panel"),
    mainPanel("main panel")
 ))
#ui.R
library(shiny)
shinyUI (
 pageWithSidebar
       #Specify Application title
       headerPanel ("Differences Between Champions and Runnerups"),
       #Sidebar with controls to select the variable to plot against match result
       sidebarPanel
           ( selectInput ("variable", "Variable:",
```

```
list("Winner" = "winner",
                         "Error" = "error",
                         "Total" = "total")
             ),
       # Add an optional input: to specify whether outliers should be displayed
      checkboxInput ("outliers", "Show outliers", FALSE)
      ),
     #Show the caption and plot of the requested variable against match result as outputs
       mainPanel
       (h3(textOutput("caption")),
           plotOutput("tennisPlot")
      )#
     ) # pageWithSidebar end
) #UI end
#server.R
library(shiny)
shinyServer(function(input, output)
 # Construct the formula for the title of the plot
 formulaText <- reactive(</pre>
  { paste(input$variable, "against match results") }
  )
 # Return the formula text for printing as a caption
  output$caption <- renderText (</pre>
           { formulaText() }
#Generate a boxplot of requested variable against result and include outliers if requested
  output$tennisPlot <- renderPlot(
                       #Construct a formula for the plot
           boxplot(as.formula(paste(input$variable, "~victory")),
                data = sample
                outline = input$outliers,
                col="orange")
          }
  )
In R console:
> runApp()
```

* refer to rCharts http://rcharts.io for more interactive visualizations