GCN 在 SRL 中的应用

1. Introduction

1.1 **SRL**

Semantic role labeling 是用来发觉一个句子中的语义关系的. 简单来说就是将句子转换为逻辑形式. 如下图:

Figure 1: An example sentence annotated with semantic (top) and syntactic dependencies (bottom).

主要功能有:

- 检测谓词项
- 从一个词汇的多词义中选择一个进行标注, 如 make.01
- 找到谓词的参数信息. 比如 Segua 就是 make.01 的主语, 是一个参数

IE 和 QA 是他的 downstream 任务.

1.2 Motivation

如今做SRL大致有两种方法

- 基于语法树分析的, 因为语法树解析本身和这个就是大同小异
- 基于 sequential neural model (LSTM), 没有使用语法树信息, 这个最新的模型获得了SoTA.

但是之所以 LSTM 没有用语法信息, 是因为其无法处理树结构信息. 这个就是本文的出发点.

题外话, 利用树状甚至图状 LSTM 的论文也有不少, 详情见

- .
- •

1.3 本文贡献

1) 关于使用网络模型的改进

这里使用的是 GCN (Graph neural network), 就是 GNN 的一种特殊模式, 是如今被证明最有效的 GNN 模型之一. (基本现在提到 GNN 都是用这个.)

- 以往的多是用于 无label无向图, 这里将其拓展到 有label有向图.
- 在 LSTM 层上 stack 一个 GCN 层后, 得到了一个特别好的效果.
- 相比于 recursive neural networks 而言, GCN 没有将将结构限制到树上, 因此可以将多个句子 甚至文档的信息进行enconder.

2) 本文贡献

- show(并非证明) GCN 在 NLP 中有用.
- 设计了一系列可用于编码 word level 的语义信息的 GCN 模型.
- 利用 GCN-based SRL 模型获得 SoTA.
- show LSTMs 和 GCNs 有互补能力 (这一点看起来挺有意思)

2. Graph Convolutional Networks

这个GCN模型的原论文笔记见:[论文笔记]: Graph Convolutional Networks

尽管原论文出自 ICLR 看起来很厉害(因为我现在还没有具体看). 但是这篇文章中介绍的方法是相当简单的.

2.1 模型简介

这里的模型的输入是一个语义结构树,或者是这里的SRL 结构.

这里只考虑一个两层的结构:

• 第一层:与node 1相连的点假设有 (2, 2). 这三个点的向量分别设为 x_1^0, x_2^0, x_3^0 .那么,将 (a1, a2)的初始向量各自经过一个该层的非线性转换,并且这个非线性变换层是和这相邻点之间的关系决定的,例如 subi 关系的两个点,用的就是 subj 特定的一个线性转换层:

$$h_v = ReLU\left(\sum_{u \in \mathcal{N}(v)} (Wx_u + b)\right)$$

这样就得到了新的向量, x_1^1, x_2^1, x_3^1

• 第二层和第一层处理关系是一模一样的, 仅仅是输入和参数进行了变换. 得到 x_1^2, x_2^2, x_3^2 .

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W^{(k)} h_u^{(k)} + b^{(k)}\right)$$

详见下图:

Figure 2: A simplified syntactic GCN (bias terms and gates are omitted); the syntactic graph of the sentence is shown with dashed lines at the bottom. Parameter matrices are sub-indexed with syntactic functions, and apostrophes (e.g., *subj'*) signify that information flows in the direction opposite of the dependency arcs (i.e., from dependents to heads).

2.2 GCN 和 GNN 的区别

这个模型和 GNN 没什么本质的区别. 上一个我画的图:

就是从外向里利用邻接节点的信息, 不停地聚集信息, 向外扩的层数就是用 GNN 的距离参数.

但是在这里有一个特点是,一个点所在层数是固定的,也就是说以目标节点为中心,与其相距n距离的节点也只是在第n层的信息传递中被利用了而已.而 GCN 是不一样的,图示已经在2.1介绍过了.

可以看到这个模型中, Lane和disputed 相连的信息不仅仅在第一层被利用到, 在第二层中也被利用到了.

3. Syntactic GCNs

3.1 Incorporating directions and labels

这一节就是说怎么将句法树的结构引入GCN, 我估计这个作者之前看的是关于 图像 的GCN 的论文. 但是实际上, 在GNN对于知识图谱的应用中, 这是很基本的一项, 根本不能称得上是改进. 反正就是说:

- 对边赋予方向后, 一个节点对互有关系, 例如上面的例子中, (Sequa, makes)既有关系, (makes, Sequa)也有关系.
- 关系是有label的. (Sequa, makes) 的 label 是 subj, (makes, Sequa) 的 label 是 subj'

那么

$$h_v^{(k+1)} = ReLU\left(\sum_{u \in \mathcal{N}(v)} W_{L(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)}\right)$$

不过这个只是 GCN 中信息传递的基本模型. 下面还有进行一个改进.

3.2 Edge-wise gating

我们刚才的分析全部是基于依存语法树, 但是现在依存关系的解析也还远远不是完美的. 更别说是在 其他的训练任务集上.

因此这里使用了一个将这种误差降低的方法 - 加权, 这个权重为:

$$g_{u,v}^{(k)} = \sigma \left(h_u^{(k)} \cdot \hat{v}_{dir(u,v)}^{(k)} + \hat{b}_{L(u,v)}^{(k)} \right)$$

这里的根据是:

Aäron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Koray Kavukcuoglu, Oriol Vinyals, and Alex Graves. 2016. **Conditional image generation with PixelCNN decoders**. In Proceedings of NIPS.

Yann N. Dauphin, Angela Fan, Michael Auli, and David Grangier. 2016. **Language modeling with gated convolutional networks**.

最后的结果就是:

$$\begin{split} h_v^{(k+1)} &= ReLU(\\ &\sum_{u \in \mathcal{N}(v)} g_{v,u}^{(k)}(V_{dir(u,v)}^{(k)} h_u^{(k)} + b_{L(u,v)}^{(k)})). \end{split}$$

3.3 Complementarity of GCNs and LSTMs

GCNs 和 LSTMs 的相互补充

1) 需要解决问题

只有 GCNs 的话, 会出现无法爬取长距离关系的问题. 因为有很多 SRL 的关系是需要长依存距离去识别的. 因此需要一种可以引进长距离的编码方式.

2) 解决方法

将上面的输入从单词向量换为经过 LSTMs 处理的输出向量. 结构如下, 也很简单:

Figure 3: Predicting an argument and its label with an LSTM + GCN encoder.

3) 分析

为什么这样能行呢?

LSTM对于很远距离的关系的获取并不好, 这里给出的一个分界线是 5. 但是我不知道他是怎么得到这个的. 但是这里提到了一个论文, 这里嵌入一个子论文笔记, 见论文笔记: [论文笔记]LSTMs学习语法能力的分析

总而言之, 这里需要知道的就是, 长度越长, 其效果越差.

这里给的数据是, 20%en,30%ch的SRL关系都是远于5的, 但是在上面加一层GCN后, 这个比例将会 shrink到9%en,13%ch. 因此, GCN可以帮助进行这种距离的减缩.

4. Syntax-Aware Neural SRL Encoder

模型细节

4.0 Disambiguation

先对谓词进行标注:

make -> make.01

4.1 Word representations

由四部分组成:

- random部分 (fine-tuned)
- pre-train部分 (fixed)
- 词性部分 (fine-tuned)
- 词元(lemma)部分 (fine-tuned)

$$x = x^{re} \circ x^{pe} \circ x^{pos} \circ x^{le}$$

4.2/3/4 BiLSTM+GCN+classifier

这里使用的是, 2017年在SRL上的SoTA., 不详细介绍了

回归是简单的逻辑回归:

$$p(r|t_i, t_p, l) \propto \exp(W_{l,r}(t_i \circ t_p)),$$

- t_i 是经过全部编码后的目标词汇embedding.
- t_p 是经过全部编码后谓词词元(lemma) 的embedding.

5. Experiment

System (Chinese)	P	R	F_1
LSTMs	78.3	72.3	75.2
LSTMs + GCNs (K=1)	79.9	74.4	77.1
LSTMs + GCNs (K=2)	78.7	74.0	76.2
LSTMs + GCNs (K=1), no gates	78.2	74.8	76.5
GCNs (no LSTMs), K=1	78.7	58.5	67.1
GCNs (no LSTMs), K=2	79.7	62.7	70.1
GCNs (no LSTMs), K=3	76.8	66.8	71.4
GCNs (no LSTMs), K=4	79.1	63.5	70.4

Table 2: SRL results without predicate disambiguation on the Chinese development set.

System	P	R	F_1
Zhao et al. (2009) (global)	80.4	75.2	77.7
Björkelund et al. (2009) (global)	82.4	75.1	78.6
Roth and Lapata (2016) (global)	83.2	75.9	79.4
Ours (local)	84.6	80.4	82.5

Table 4: Results on the Chinese test set.