### 0.1 Internetarchitekturen

Die allgemeine Architektur des Internets ist gegeben durch die Vernetzung der Systeme auf unterschiedlichen Ebenen. Nutzer knnen ber Internet Exchange Points ("Internetknoten", IX or IXP, auch Network Access Point) verschiedenste Daten austauschen und generell werden diese von Providern (ISPs) zur Nutzung dargeboten.

Die meisten ISPs nutzen IX als Schnittstellen zwischen Rechnernetzwerken, wobei der gesamte Verbund aller autonomen Systeme das Internet bilden. Weltweit existieren ca. 340 IXPs, wobei kleinere Knotenpunkte als Uplink zu den 'Carriern', den ISPs, dienen. Die Vorteile mehrerer IX sind primr Effizienz und Ausfallsicherheit bei Datentransfer, wobei die Kosten fr den Betrieb eines IX von den dazugehrigen ISPs geteilt werden. Die Gebhren berechnen sich pro genutzten Port per eigenen IXP. Die Kosten fr den jeweiligen Port sind abhngig von dessen Transferrate - derzeit zwischen 10Mbps und 100 Gbps.

Bei den einzelnen ISPs unterscheidet man zwischen mehreren Kategorien (Tiers):

- Tier 1.: National & oftmals International, die grten Betreiber.
  z.B.: Deutsche Telekom, KPN, AT&T, Verizon, NTT, Telecom Italia,...
- Tier 2.: Transit Provider. Nehmen Downstream von Tier 1 in Anspruch und bieten Upstream fr Tier 3.
   z.B.: Vodafone, Tele2, Comcast
- Tier 3.: Lokale Provider. Sie verkaufen Transitmglichkeiten an Nutzer.

Es bleibt jedoch zu beachten dass die Kategorisierung regelrecht schwammig gefhrt wird.

Weiters ist das Internet noch durch Protokolle untersttzt, um fehlerfreien Austausch zu garantieren, oft beschrieben mithilfe des ISO/OSI-Referenzmodells (siehe 2.3).

# 0.2 Netzwerktypen

### 0.2.1 Leitungsvermittelnde Netzwerke

Leitungsvermittelnde Netzwerke, oder Circuit-Switch Networks, sind vergleichbar mit Telefonanrufen oder einem Schienennetz. Ein exklusiver logischer oder physikalischer Pfad wird zwischen Sender und Empfnger designiert, vergleichbar mit einer Krititschen Zone. Genutzte Ressourcen, benutzt oder nicht, stehen in dieser Zeit anderen Usern nicht zur Verfgung.



## 0.2.2 Paketvermittelnde Netzwerke

Paketvermittelnde Netzwerke, oder Packet-Switching Networks, sind charakteristisch gesehen wie E-Mails. Daten werden Bufferhnlich zu einem greren Datensatz zusammengeschrieben, welches das Datenpaket ausmacht. Diese werden vollstndig gesendet & vollstndig empfangen, wobei die Pakete ber dynamisch bestehende Pfade via Nodes verschickt wird. Dies ermglicht parallelen Transfer zwischen mehreren Usern und erhht die Ausfallsicherheit, da die Zielpfade der Pakete zur Laufzeit vernderbar sind.



# 0.3 ISO-OSI Referenzmodel



Das ISO-OSI Referenzmodell besteht aus verschiedenen Anwendungsschichten:

### 1. Physical Layer

Dieser Layer beschreibt die fundamentale Netzwerkkommunikation. Datentransfer via physischem Layer sind reine Bitstreams.

### 2. Data Link Layer

Der Datenlink nutzt Frames zur bertragung von Datenstzen. Frames bestehen aus einer gewissen Anzahl an Bit-Blcken und einer Prfsumme, welche die korrekte Datenflussbertragung gewhrleistet. Fehlerbehafte Frames knnen anhand dieser Summe erkannt werden und der DLL kann das jeweilige Paket verwerfen oder sogar korrigieren. Im Falle des Verwerfens ist es allerdings nicht vorgesehen das jeweilige Frame neu anzufordern.

Mithilfe der 'Data Flow Control' kann man die Dynamik der Framebertragung steuern, etwa wie schnell Bleke verschickt werden.

#### Genutzte Hardware:

Bridge & Switch: Arbeiten via Media Access Control(Mac) oder Logical Link Control(LLC).

Die MAC-Bridge schtzt gegen Kollisionen via Aufteilung des Netzes in verschiedene Kollisionsdomnen, d.H. ein Paket geht nur in das Netz, in welchem sich der tatschliche Empfnger befindet.

Die LLC-Bridge dient der Koppelung zweier Teilnetze mithilfe verschiedener Zugriffsverfahren, wie Token-Passing (Tokens werden zwischen Sendern gewechselt und dementsprechend startet Datenverkehr) oder Carrier Sense Multiple Access/Collision Detection (CSMA/CD; Typischer Router mit x-Medien).



Schemata of Bridge/Switch inside a Network<sup>1</sup>

Protokolle: HDLC, SDLC, DDCMP, Shortest Path Bridging Normen: IEEE, FDDI

- 3. Network Layer
- 4. Transport Layer
- 5. Session Layer
- 6. Presentation Layer
- 7. Application Layer

 $<sup>^1</sup>$ By Crvincenzi - MS Powerpoint, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25610536