Vorlesungszusammenfassung

Schematheorie

erstellt von

Stefan Hackenberg

Maximilian Huber

gelesen im WS 2012/2013 und SS 2013 von

Prof. Dr. Marco Hien

Stand **28. März 2013**

SHI 7

Inhaltsverzeichnis

1	Lok	Lokal geringte Räume				
	1.1	Garben	4			
	1.2	Lokal geringte Räume	7			
2 Affine Schemata		ne Schemata	1(
	2.1	Spec A als topologischer Raum	10			

1

Lokal geringte Räume

1.1 Garben

Definition 1.1 (Prägarbe). -

Sei X ein topologischer Raum. Eine Prägarbe \mathcal{F} auf X ist eine Zuordnung

$$\mathcal{F}: U \mapsto \mathcal{F}(U)$$
,

die jedem offenen $U\subset X$ eine abelsche Gruppe $\mathcal{F}(U)$ zuordnet, zusammen mit Homomorphismen

$$\rho_{UV}: \mathcal{F}(U) \to \mathcal{F}(V)$$

für jedes Paar $V \subset U$, so dass

Bei mir steht hier im Skript $s \big|_{U}$. Offenbar ein Fehler!?

kommutiert.

Wir nennen ρ_{UV} Restriktion, schreiben meist $s|_{V} := \rho_{UV}(s)$.

Man nennt $s \in \mathcal{F}(U)$ auch Schnitt über U.

Beispiel 1.1.

$$\mathcal{C}_X^{\circ}: U \mapsto \mathcal{C}_X^{\circ}(U) := \{f: U \to \mathbb{R} \mid f \text{ stetig}\}$$

 $\mathrm{mit}\ \rho_{VU}:\mathcal{C}_X^\circ(V)\mapsto\mathcal{C}_X^\circ(U),\, f\mapsto f\big|_U.$

Bemerkung 1.2. Ist Ab die Kategorie der abelschen Gruppen und

$$\mathbf{Top}_X := \begin{cases} \mathrm{Obj} : U \subset X \text{ offen} \\ \mathrm{Morph} : \mathrm{Hom}(U, V) = \begin{cases} \emptyset & U \not\subset V, \\ U \to V & U \subset V, \end{cases}$$

dann ist eine Prägarbe gerade ein kontravarianter Funktor

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (U \to V) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)) \end{array}$$

Oder anders ausgedrückt: Es ist

$$\begin{array}{cccc} \mathcal{F}: & \mathbf{Top}_X^{\mathrm{op}} & \to & \mathbf{Ab} \\ & U & \mapsto & \mathcal{F}(U) \\ & (V \to U) & \mapsto & (\mathcal{F}(V) \to \mathcal{F}(U)). \end{array}$$

ein kovarianter Funktor.

Definition 1.2 (Morphismus von Prägarben).

Ein Morphismus von Prägarben $\mathcal{F} \xrightarrow{\phi} \mathcal{G}$ auf X ist eine natürliche Transformation der Funktoren \mathcal{F} und \mathcal{G} , d.h. für alle $U \subset X$ offen gibt es einen Morphismus $\mathcal{F}(U) \xrightarrow{\phi_U} \mathcal{G}(U)$, so dass für $U \subset V$

$$\mathcal{F}(U) \xrightarrow{\phi_U} \mathcal{G}(U)$$

$$\uparrow \qquad \uparrow$$

$$\mathcal{F}(V) \xrightarrow{\phi_U} \mathcal{G}(V)$$

kommutiert.

Definition 1.3 (Garbe). -

Eine Prägarbe \mathcal{F} auf X heißt Garbe, falls gilt: Ist $U \subset X$ offen und $U = \bigcup_{i \in I} U_i$ für offene $U_i \subset X$, so gilt

- 1. Ist $s \in \mathcal{F}(U)$ und $s|_{U_i} = 0$ für alle $i \in I$, so ist $s = 0 \in \mathcal{F}(U)$.
- 2. Sind $s_i \in \mathcal{F}(U_i)$ gegeben, mit

$$s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j} \quad \forall i, j,$$

so existiert ein $s \in \mathcal{F}(U)$ mit

$$s_i = s|_{U_i} \quad \forall i.$$

Bemerkung 1.3. \mathcal{F} ist eine Garbe, genau dann, wenn die folgende Sequenz abelscher Gruppen exakt ist:

$$0 \longrightarrow \mathcal{F}(U) \longrightarrow \prod_{i \in I} \mathcal{F}(U_i) \longrightarrow \prod_{(i,j) \in I^2} \mathcal{F}(U_i \cap U_j)$$

$$s \longmapsto \left(s|_{U_i}\right)_{i \in I}$$

$$(s_i)_{i \in I} \longmapsto \left(s_i|_{U_i \cap U_j} - s_j|_{U_i \cap U_j}\right)_{(i,j) \in I^2}$$

Exaktheit an dieser Stelle ist äquivalent zu Eigenschaft 1. Exaktheit hier zu Eigenschaft 2.

Beispiel 1.4. Sei M eine C^{∞} Mannigfaltigkeit, so ist

$$\mathcal{C}_M^{\infty}: U \mapsto \mathcal{C}_M^{\infty}(U) := \{ f: U \to \mathbb{R} \mid f \in \mathcal{C}^{\infty}(U) \}$$

eine Garbe.

Beispiel 1.5. Sei M eine \mathbb{C} Mannigfaltigkeit, so ist

$$\mathcal{O}_M: U \mapsto \mathcal{O}_M(U) := \{ f: U \to \mathbb{C} \mid f \text{ holomorph} \}$$

eine Garbe. Für $M=\mathbb{C}$ haben wir zusätzlich die Garbe

$$\mathcal{O}_{\mathbb{C}}^{\times}: U \mapsto \mathcal{O}_{\mathbb{C}}^{\times}(U) := \{f: U \to \mathbb{C}^{\times} \mid f \text{ holomorph}\},\$$

(wobei die Gruppenverknüpfung multiplikativ zu lesen ist). Dies liefert uns einen Morphismus von (Prä)garben

$$\mathcal{O} \to \mathcal{O}_C^{\times}, \ f \mapsto \exp(f).$$

Betrachte nun die Prägarbe

Warum steht hier

$$\mathcal{H} := \operatorname{im}^{\operatorname{naiv}}(\exp) : U \mapsto \operatorname{im}(\exp_U) = \{ \exp \circ f : U \to \mathbb{C} \mid f : U \to \mathbb{C} \text{ holomorph} \}.$$

Dies ist keine Garbe: Betrachte die Scheibe

$$U = \{ z \in \mathbb{C} \mid \frac{1}{2} < |z| < \frac{3}{2} \}$$

zerlegt in die beiden offenen Teilmengen

$$U_1 = \{ z \in U \mid \Re z > -\varepsilon \}$$

$$U_2 = \{ z \in U \mid \Re z < \varepsilon \}$$

mit $U = U_1 \cup U_2$ für ein $\varepsilon > 0$ beliebig. Für i = 1, 2 ist $(z : U_i \to \mathbb{C}, z \mapsto z) \in \mathcal{H}(U_i)$, da sich der komplexe Logarithmus auf beiden U_i problemlos definieren lässt. Ferner ist auch

$$(z:U_1\to\mathbb{C})\big|_{U_1\cap U_2}=(z:U_2\to\mathbb{C})\big|_{U_1\cap U_2},$$

erfüllt, jedoch kommen diese nicht von einem gemeinsamen Schnitt da

$$(z:U\to\mathbb{C})\notin\mathcal{H}(U).$$

Definition 1.4.

Für einen topologischen Raum X bezeichne

 $\mathbf{PSh}_X := \text{die Kategorie der Prägarben auf } X,$

 $\mathbf{Sh}_X := \mathrm{die} \ \mathrm{Kategorie} \ \mathrm{der} \ \mathrm{Garben} \ \mathrm{auf} \ X, \ \mathrm{wobei} \ \mathrm{Hom}_{\mathbf{Sh}_X}(\mathcal{F}, \mathcal{G}) := \mathrm{Hom}_{\mathbf{PSh}_X}(\mathcal{F}, \mathcal{G})$

Bemerkung 1.6. Man hat den Inklusionsfunktor

$$\iota: \mathbf{Sh}_X \to \mathbf{PSh}_X, \ \mathcal{F} \mapsto \mathcal{F}$$

Definition 1.5 (Halm).

Ist \mathcal{F} eine (Prä)Garbe auf X und $x_0 \in X$, so heißt

$$\mathcal{F}_{x_0} := \varinjlim_{x_0 \in U \subset X} \inf_{\text{offen}} \mathcal{F}(U) = \coprod_{U \subset X \text{ offen}} \mathcal{F}(U) / \sim$$

mit

$$s \sim t : \Leftrightarrow \exists W \subset X \text{ offen}: x_0 \in W \subset U \cap U' \text{ und } s|_W = t|_W$$

für $s \in \mathcal{F}(U)$, $t \in \mathcal{F}(U')$ der Halm von \mathcal{F} bei x_0 .

Die Elemente $[s] \in \mathcal{F}_{x_0}$ heißen Keime von Schnitten bei x_0 .

 $\textbf{Beispiel 1.7.} \ \ (\mathcal{C}_{M}^{\infty})_{x_{0}} = \{[f:U \xrightarrow{C^{\infty}} \mathbb{R}] \mid f \sim g \Leftrightarrow \exists W \subset M \text{ offen}, x_{0} \in W \text{ mit } f\big|_{W} = g\big|_{W}\}$

Beispiel 1.8.

$$O_{\mathbb{C},x_0} = \{ [f : U \xrightarrow{\text{hol}} \mathbb{C}] \mid x_0 \in U \}$$

$$= \{ \sum_{n=0}^{\infty} a_n (x - x_0)^n \mid \text{Reihe hat positiven Konvergenz radius} \}$$

$$:= \mathbb{C} \{ x - x_0 \}$$

Definition 1.6 (push-forward). –

Ist $f: X \to Y$ stetig und \mathcal{F} eine Garbe auf X, so ist durch

$$f_*\mathcal{F}:V\mapsto \mathcal{F}(f^{-1}(V))$$

für $V \subset Y$ offen eine Garbe definiert, der push-forward von \mathcal{F} .

1.2 Lokal geringte Räume

Betrachte nun

Ring := Kategorie der kommuativen Ringe mit 1

und entsprechend Garben

$$\mathcal{F}: \mathbf{Top}_X^{\mathrm{op}} o \mathbf{Ring}.$$

Definition 1.7 (lokaler Ring). -

Sei R ein Ring. Dann heißt R lokal, wenn R genau ein maximales Ideal besitzt.

Beispiel 1.9. $\mathbb{Z}_{(p)}:=\{rac{a}{b}\in\mathbb{Q}\mid p\nmid b\}$

Bemerkung 1.10. Ist R lokaler Ring und $\mathfrak{m} \triangleleft R$ das maximale Ideal, so ist $R \setminus \mathfrak{m} = R^{\times}$.

Beispiel 1.11. Sei M eine C^{∞} Mannigfaltigkeit und $x_0 \in M$. Dann ist $\mathcal{C}^{\infty}_{M,x_0}$ ein lokaler Ring, denn

$$C_{M,x_0}^{\infty} \setminus (C_{M,x_0}^{\infty})^{\times} = \{ [f: U \xrightarrow{C^{\infty}} \mathbb{R}] \mid x_0 \in U \text{ mit } f(x_0) = 0 \} =: \mathfrak{m},$$

da [f] eine Einheit ist, genau dann, wenn $f(x_0) \neq 0$: Ist $f: U \xrightarrow{C^{\infty}} \mathbb{R}$ mit $f(x_0) \neq 0$, so existiert $W \subset U$ offen, $x_0 \in W$ mit $f(x) \neq 0$ für alle $x \in W$. Damit folgt

$$\left[\frac{1}{f}:W\to\mathbb{R},\ x\mapsto\frac{1}{f(x)}\right]\in\mathcal{C}_{M,x_0}^{\infty}$$

ist Inverses zu [f]. Zudem ist \mathfrak{m} ein Ideal.

Definition 1.8 (lokal geringter Raum).

Ein lokal geringter Raum ist ein Paar (X, \mathcal{O}_X) bestehend aus:

- \bullet einem topologischen Raum X und
- einer Garbe \mathcal{O}_X auf X von Ringen,

so dass \mathcal{O}_{X,x_0} für alle $x_0 \in X$ ein lokaler Ring ist.

Man nennt \mathcal{O}_X die Strukturgarbe von (X, \mathcal{O}_X) . Ist $x_0 \in X$, so hat man das maximale Ideal $\mathfrak{m}_{x_0} \triangleleft \mathcal{O}_{X,x_0}$.

Der Körper

$$\kappa(x_0) := \mathcal{O}_{X,x_0}/\mathfrak{m}_{x_0}$$

heißt Restklassenkörper von x_0 in (X, \mathcal{O}_X) .

Beispiel 1.12. Sei M eine C^{∞} -Mannigfaltigkeit und $x_0 \in M$, so ist $\kappa(x_0) = \mathbb{R}$.

Definition 1.9 (lokale Ringhomomorphismen). -

Sind R, S lokale Ringe mit den maximalen Idealen $\mathfrak{m}_R \triangleleft R$, $\mathfrak{m}_S \triangleleft S$, so heißt der Ringhomomorphismus $\varphi: R \to S$ lokal, falls

$$\varphi^{-1}(\mathfrak{m}_S)=\mathfrak{m}_R.$$

Äquivalent lässt sich fordern, dass

$$\varphi(\mathfrak{m}_R)\subset\mathfrak{m}_S.$$

Definition 1.10 (Morphismus lokal geringter Räume). -

Ein Morphismus $f:(X,\mathcal{O}_X)\to (Y,\mathcal{O}_Y)$ lokal geringter Räume ist ein Paar $(f,f^\#)$ bestehend aus

$$f: X \to Y$$
 stetig,

 $f^{\#}: \mathcal{O}_{Y} \to f_{*}\mathcal{O}_{X}$ Morphismus von Garben auf Y,

so dass der von $f^{\#}$ induzierte Ringhomomorphismus für $x_0 \in X,\, y_0 := f(x_0) \in Y$

$$f_{x_0}^\#: \mathcal{O}_{Y,y_0} \to \mathcal{O}_{X,x_0}$$

 $[s] \mapsto [f_U^\#(s)]$

für $s \in \mathcal{O}_Y(U)$ und $y_0 \in U$ ein lokaler Ringhomomorphismus ist.

Bemerkung 1.13. In Definition 1.10 ist $f_{x_0}^{\#}$ wohldefiniert:

Sei $[s] = [t] \in \mathcal{O}_{Y,y_0}$, d.h. es existiert $W \subset Y$ offen mit $y_0 \in W$ und $s|_W = t|_W \in \mathcal{O}_Y(W)$. Betrachte nun $f_U^\#(s) \in \mathcal{O}_X(f^{-1}(U))$ für $s \in \mathcal{O}_Y(U)$, $U \subset Y$, $y_0 \in U$ und analog $f_V^\#(t) \in \mathcal{O}_X(f^{-1}(V))$ für $t \in \mathcal{O}_Y(V)$, $V \subset Y$, $y_0 \in V$. Da $f^\#$ ein Garbenmorphismus ist, kommutiert damit folgendes

Diagramm:

Affine Schemata

2

2.1 Spec A als topologischer Raum

Sei im Folgenden A ein kommu
ativer Ring mit 1 und Spec $A := \{ \mathfrak{p} \triangleleft A \mid \mathfrak{p} \text{ Primideal} \}.$

Definition 2.1 (Zariski Topologie). -

Ist $\mathfrak{a} \triangleleft A$, ein Ideal, setze

$$V(\mathfrak{a}) := \{ \mathfrak{p} \in \operatorname{Spec} A \mid \mathfrak{a} \subseteq \mathfrak{p} \} \subseteq \operatorname{Spec} A$$
.

Dann ist durch

$$\mathcal{T} := \{ U \subseteq \operatorname{Spec} A \mid \exists \ \mathfrak{a} \triangleleft A : \ U = \operatorname{Spec} A \setminus V(\mathfrak{a}) \}$$

eine Topologie auf Spec A definiert. Sie heißt Zariski-Topologie.

Bemerkung 2.1. Die abgeschlossenen Teilmengen $M \subset \operatorname{Spec} A$ sind genau die $M = V(\mathfrak{a})$ für ein $\mathfrak{a} \triangleleft A$.