Date of Completion:....

Government College of Engineering, Jalgaon (An Autonomous Institute of Govt. of Maharashtra) Name of Student: PRN: Course Teacher: Sharayu Bonde

Experiment No. B: 01

Date of Performance:....

Title: Write a C program to implement operator precedence parsing

Theory:

A grammar that is generated to define the mathematical operators is called operator grammar with some restrictions on grammar. An operator precedence grammar is a context-free grammar that has the property that no production has either an empty right-hand side (null productions) or two adjacent non-terminals in its right-hand side

Operator precedence grammar is kinds of shift reduce parsing method. It is applied to a small class of operator grammars.

- 1. A grammar is said to be operator precedence grammar if it has two properties:
- 2. No R.H.S. of any production has $a \in$.
- 3. No two non-terminals are adjacent.
- 4. Operator precedence can only established between the terminals of the grammar. It ignores the non-terminal.

There are the three operator precedence relations:

- a > b means that terminal "a" has the higher precedence than terminal "b".
- $a \le b$ means that terminal "a" has the lower precedence than terminal "b".
- a = b means that the terminal "a" and "b" both have same precedence.

Precedence table:

	+	*	()	id	\$
+	> .	<	<	⊳	< -	⊳
*	⊳	⊳	<	⊳	< -	⊳
(<	<	≪	=	< -	X
)	⊳	⊳	X	⊳	X	⊳
id	>	>	X	⊳	X	>
\$	< -	< -	< -	X	< -	X

Parsing Action

- Both end of the given input string, add the \$ symbol.
- Now scan the input string from left right until the > is encountered.
- Scan towards left over all the equal precedence until the first left most ≤ is encountered.
- Everything between left most \leq and right most \geq is a handle.
- \$ on \$ means parsing is successful.

Example

Grammar:

 $E \rightarrow E+T/T$

 $T \to T^*F/F$

 $F \to id$

Given string:

w = id + id * id

Let us consider a parse tree for it as follows:

On the basis of above tree, we can design following operator precedence table:

	E	T	F	id	+	*	\$
E	X	X	X	X	±	X	>
T	X	X	X	X	⊳	=	⊳
F	X	X	X	X	≥	>	>
id	X	X	X	X	⊳	≥	D
+	X	±	<	<	X	X	X
*	X	X	=	<	X	X	X
\$	<	4	<	<	X	X	X

Now let us process the string with the help of the above precedence table:

$$4 \le id1 > + id2 * id3$$

$$4 \le F \ge + id2 * id3$$

$$4 < T > + id2 * id3$$

$$\$ \lessdot E \doteq + \lessdot id2 > * id3 \$$$

$$4 \le E \doteq + \le F > * id3$$

$$\$ \lessdot E \doteq + \lessdot T \doteq * \lessdot id3 > \$$$

$$\$ \lessdot E \doteq + \lessdot T \doteq * \doteq F > \$$$

$$\$ \lessdot E \doteq + \doteq T > \$$$

$$\$ \lessdot E \doteq + \doteq T > \$$$

Accept.

.

Sharayu Nivrutti Bonde Course Teacher