## Assignment 6

I have use pandas libraries to import the dataframe used dataframe with heading 'from' and 'to' to make connections between marvel characters



Here we try to make adjacency list a type of dictionary for marvel characters and there is total 6421 characters.

```
1 from collections import defaultdict
 3 # create an undirected graph (adjacency list) for use with BFS
 4 # this does not show edge weights (no count of edges between characters)
 5 undir_hero_map = defaultdict(set)
 7 for row in hero_network_df.index:
 8
      hero1 = hero_network_df["hero1"][row]
       hero2 = hero_network_df["hero2"][row]
9
10
11
       undir_hero_map[hero1].add(hero2)
12
       undir_hero_map[hero2].add(hero1)
13
14 print("There are {} Marvel characters in the dataset".format(len(undir_hero_map.keys())))
15 # undir_hero_map
```

There are 6421 Marvel characters in the dataset

We order the dictionary in descending order and it shows that Captain America and Spider Man as expected are the characters with most interactions.



Using breadth first search we run through the dictionary o find connections between character for example between iron man and empress and find that a connection is there with fury in between.

```
def hero_BFS(hero1, hero2, graph_map):
                queue = deque()
         6
                queue.append((hero1, [hero1]))
                seen = set([hero1])
        8
               while(len(queue) > 0):
         9
        10
                    curr_hero, hero_chain = queue.popleft()
        11
                    # if curr_hero is hero2, end loop
                   if(curr_hero == hero2):
                        return hero_chain
        15
        16
                    # otherwise, add all unseen heroes to queue, with chain
                    for new_hero in graph_map[curr_hero]:
   if(new_hero not in seen):
        17
        18
                            new_hero_chain = hero_chain.copy()
        19
        20
                            new_hero_chain.append(new_hero)
        21
        22
                            queue.append((new hero, new hero chain))
                             seen.add(new_hero)
        25
                  print(seen)
        26
                return ["Not connected!"]
        28
           # test
        29 hero_BFS('IRON MAN/TONY STARK', "EMPRESS S'BYLL [SKRU", undir_hero_map)
rt[9]: ['IRON MAN/TONY STARK', 'FURY, COL. NICHOLAS', "EMPRESS S'BYLL [SKRU"]
```

Here we find the interactions between character and how many times they have occurred (weights.

```
M = Df[Df['from'].isin(common_heroes)]
2 M_df = M[M['to '].isin(common_heroes)]
3 M_df = M_df.reset_index().drop(['index'],axis=1)
4 M_df.sort_values(by='weight', ascending= False)
```

31]:
from to weight

|       | from                 | to                   | weight |
|-------|----------------------|----------------------|--------|
| 48446 | THING/BENJAMIN J. GR | HUMAN TORCH/JOHNNY S | 382    |
| 21132 | HUMAN TORCH/JOHNNY S | MR. FANTASTIC/REED R | 366    |
| 48535 | THING/BENJAMIN J. GR | MR. FANTASTIC/REED R | 365    |
| 21249 | HUMAN TORCH/JOHNNY S | THING/BENJAMIN J. GR | 362    |
| 31851 | MR. FANTASTIC/REED R | HUMAN TORCH/JOHNNY S | 347    |
|       |                      |                      |        |
| 35717 | PHOENIX III/RACHEL S | ANGEL/WARREN KENNETH | 1      |
| 35716 | PHOENIX III/RACHEL S | ABSORBING MAN/CARL C | 1      |
| 35715 | PHOENIX III/RACHEL S | ABOMINATION/EMIL BLO | 1      |
| 35714 | PHOENIX II           | YASHIDA, MARIKO      | 1      |
| 40140 | ROGUE /              | PATHWAY/LAURA DEAN   | 1      |

Here we find the closeness centrality using the centrality library.

## b) Closeness Centrality

```
In [37]:
                  closeness_vec = closeness_centrality(g1)
                  closeness_df = pd.DataFrame([closeness_vec]).transpose()
In [38]:
                  closeness df
   Out[38]:
                                            0
                 ABOMINATION/EMIL BLO 0.540062
              ANGEL/WARREN KENNETH 0.708081
                  ANT-MAN/DR. HENRY J. 0.703815
                            ATALANTA 0.508339
                 BANNER, BETTY ROSS T 0.560800
                            WU, LEIKO 0.487144
                         SHALLA BAL II 0.477846
                KILLRAVEN/JONATHAN R 0.430854
                         ZAPPER, DAN 0.437851
                WALTERS, SHERIFF MOR 0.458170
```

Here is the graph showing a lot characters are located in between 0.5 and 0.6 range.

Here we find the betweenness centrality using the centrality library.

## c) Betweenness Centrality

```
between vec = betweenness_centrality(g1)
In [40]:
                  between df = pd.DataFrame([between vec]).transpose()
In [41]:
                  between df
   Out[41]:
                 ABOMINATION/EMIL BLO 0.000423
               ANGEL/WARREN KENNETH 0.013641
                  ANT-MAN/DR. HENRY J. 0.014591
                            ATALANTA 0.000021
                 BANNER, BETTY ROSS T 0.001020
                            WU, LEIKO 0.000472
                         SHALLA BAL II 0.000002
                KILLRAVEN/JONATHAN R 0.000000
                         ZAPPER, DAN 0.000004
                WALTERS, SHERIFF MOR 0.000007
```

Here is the graph showing a lot characters are located in between 0.0 and 0.01 range.

```
1 sns.histplot(between_df, x= between_df[0],y = nxdeg.index)
In [42]:
   Out[42]: <AxesSubplot:xlabel='0'>
               700
               600
               500
               400
               300
               200
               100
                 0
                                                0.03
                    0.00
                             0.01
                                       0.02
                                                          0.04
```

Here we find try find the communities the marvel character has built and they have made 3 communities which means in each communities the characters have more likely chance to meet its own community member and if a member meets another community member it would be crossover.

| 76]: ► □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | 1 community_df |                      |                      |                      |  |
|--------------------------------------------|----------------|----------------------|----------------------|----------------------|--|
|                                            |                | community0           | community1           | community2           |  |
|                                            | 0              | MACHINE MAN/X-51     | THUNDERBIRD II/JAMES | HAMMER, JUSTIN       |  |
|                                            | 1              | BLACK PANTHER/T'CHAL | WIDGET               | ELEKTRA/ELEKTRA NATC |  |
|                                            | 2              | ANT-MAN II/SCOTT HAR | FERAL/MARIA CALLASAN | JACKSON, STEVE       |  |
|                                            | 3              | THUNDERBALL/DR. ELIO | COLOSSUS II/PETER RA | TOWER, BLAKE         |  |
|                                            | 4              | MASTERSON, KEVIN     | MOLECULE MAN/OWEN RE | CUSHING, KATE        |  |
|                                            |                |                      |                      |                      |  |
|                                            | 347            | ATALANTA             | None                 | None                 |  |
|                                            | 348            | MAD DOG/COLONEL BUZZ | None                 | None                 |  |
|                                            | 349            | HOGAN, VIRGINIA PEPP | None                 | None                 |  |
|                                            | 350            | FORGOTTEN ONE/GILGAM | None                 | None                 |  |
|                                            | 351            | SWORDSMAN III/PHILIP | None                 | None                 |  |
|                                            |                |                      |                      |                      |  |

352 rows × 3 columns