Definition:	When a and b are	integers and a	is nonzero, a	divides b	means there is an	integer	c such
that $b = ac$.	Symbolically, $F($	(a,b)) =	and i	s a predica	te over the domain		Other
(synonymous	s) ways to say that	F((a,b)) is true	e:				

a is a **factor** of b a is a **divisor** of b b is a **multiple** of a a|b

When a is a positive integer and b is any integer, a|b exactly when $b \mod a = 0$ When a is a positive integer and b is any integer, a|b exactly $b = a \cdot (b \operatorname{\mathbf{div}} a)$