Lecture 02 Bits, Bytes and Integers – part 2

Euhyun Moon, Ph.D.

Machine Learning Systems (MLSys) Lab
Computer Science and Engineering
Sogang University

Slides adapted from Randy Bryant and Dave O'Hallaron: Introduction to Computer Systems, CMU

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called modular addition: result is sum modulo 2^w

4-bit Examples:

Why Does Two's Complement Work?

• For all representable positive integers x, we want:

```
bit representation of x
+ bit representation of -x
0 (ignoring the carry-out bit)
```

What are the 8-bit negative encodings for the following?

Why Does Two's Complement Work?

• For all representable positive integers x, we want:

```
bit representation of x
+ bit representation of -x
0 (ignoring the carry-out bit)
```

What are the 8-bit negative encodings for the following?

These are the bitwise complement plus 1!

$$-x == -x + 1$$

Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations

Signed/Unsigned Conversion Visualized

Two's Complement → Unsigned

Values To Remember

Unsigned Values

• UMax =
$$0b11...1$$

= $2^{w} - 1$

Two's Complement Values

• TMin =
$$0b10...0$$

= -2^{w-1}

• TMax =
$$0b01...1$$

= $2^{w-1}-1$

•
$$-1$$
 = 0b11...1

• **Example:** Values for w = 64

	Decimal	Hex							
UMax	18,446,744,073,709,551,615	FF	FF	FF	FF	FF	FF	FF	FF
TMax	9,223,372,036,854,775,807	7 E	FF						
TMin	-9,223,372,036,854,775,808	80	00	00	00	00	00	00	00
-1	-1	FF	FF	FF	FF	FF	FF	FF	FF
0	0	00	00	00	00	00	00	00	00

In C: Signed vs. Unsigned

- Casting
 - Bits are unchanged, just interpreted differently!
 - int tx, ty;
 - unsigned int ux, uy;
 - Explicit casting
 - tx = (int) ux;
 - uy = (unsigned int) ty;
 - Implicit casting can occur during assignments or function calls
 - tx = ux;
 - uy = ty;

Casting Surprises!

- Integer literals (constants)
 - By default, integer constants are considered signed integers
 - Hex constants already have an explicit binary representation
 - Use "U" (or "u") suffix to explicitly force unsigned
 - Examples: 0U, 4294967259u
- Expression Evaluation
 - When you mixed unsigned and signed in a single expression, then signed values are implicitly cast to <u>unsigned</u>
 - Including comparison operators <, >, ==, <=, >=

Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations

Sign Extension

- What happens if you convert a signed integral data type to a larger one?
 - e.g. char \rightarrow short \rightarrow int \rightarrow long
- 4-bit → 8-bit Example:
 - Positive Case

✓ • Add 0's?

4-bit:

0010 = +2

8-bit:

00000010 =

Negative Case?

Sign Extension

- **Task:** Given a w-bit signed integer X, convert it to w+k-bit signed integer X' with the same value
- Rule: Add k copies of sign bit
 - Let x_i be the *i*-th digit of X in binary

•
$$X' = x_{w-1}, \dots, x_{w-1}, x_{w-1}, x_{w-2}, \dots, x_1, x_0$$
 k copies of MSB original X

Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```
short int x = 12345;
int     ix = (int) x;
short int y = -12345;
int     iy = (int) y;
```

.

Var	Decimal	Hex	Binary
X	12345	30 39	00110000 00111001
ix	12345	00 00 30 39	00000000 00000000 00110000 00111001
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	11111111 11111111 11001111 11000111

Arithmetic Overflow

Bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- When a calculation produces a result that can't be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions
- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

Overflow: Unsigned

• Addition: drop carry bit (-2^N)

• **Subtraction:** borrow (+2^N)

±2^N because of modular arithmetic

Overflow: Two's Complement

• Addition: (+) + (+) = (-) result?

• Subtraction: (-) + (-) = (+)?

$$\begin{array}{rrr}
-7 & 1001 \\
-3 & -0011 \\
\hline
-10 & 0110
\end{array}$$

For signed: overflow if operands have same sign and result's sign is different

Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Sign extension, overflow
- Shifting and arithmetic operations

Shift Operations

- Throw away (drop) extra bits that "fall off" the end
- Left shift (x<<n) bit vector x by n positions
 - Fill with 0's on right
- Right shift (x>>n) bit-vector x by n positions
 - Logical shift (for unsigned values)
 - Fill with 0's on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left (maintains sign of x)

Shift Operations

- Left shift (x<<n)
 - Fill with 0's on right

X	0010	0010
x<<3	0001	0000
x>>2	0000	1000
x>>2	0000	1000

logical:

arithmetic:

arithmetic

- Right shift (x>>n)
 - Logical shift (for unsigned values)
 - Fill with 0's on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left

	X	1010	0010
	x<<3	0001	0000
logical:	x>>2	0010	1000
hmetic:	x>>2	11 10	1000

- Notes:
 - Shifts by n<0 or $n\geq w$ (w is bit width of x) are undefined
 - In C: behavior of >> is determined by compiler
 - In gcc / C lang, depends on data type of x (signed/unsigned)
 - In Java: logical shift is >>> and arithmetic shift is >>>

Shifting Arithmetic?

- What are the following computing?
 - x>>n
 - 0b 0100 >> 1 = 0b 0010
 - 0b 0100 >> 2 = 0b 0001
 - Divide by 2ⁿ
 - x<<n
 - 0b 0001 << 1 = 0b 0010
 - 0b 0001 << 2 = 0b 0100
 - Multiply by 2ⁿ

Shifting is faster than general multiply and divide operations!

Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: x*2n?

Signed Unsigned
$$x = 25$$
; $00011001 = 25$ 25 $L1=x<<2$; $0001100100 = 100$ 100 $L2=x<<3$; $00011001000 = -56$ 200 signed overflow $L3=x<<4$; $000110010000 = -112$ 144 unsigned overflow

Right Shifting Arithmetic 8-bit Examples

- Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values
 - Logical Shift: x/2ⁿ?

```
xu = 240u; 11110000 = 240

R1u=xu>>3; 00011110000 = 30

R2u=xu>>5; 0000011110000 = 7
```

Right Shifting Arithmetic 8-bit Examples

- Reminder: C operator >> does logical shift on unsigned values and arithmetic shift on signed values
 - Arithmetic Shift: x/2ⁿ?

$$xs = -16;$$
 11110000 = -16
 $R1s=xs>>3;$ 11111110000 = -2
 $R2s=xs>>5;$ 1111111110000 = -1

Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just interpreted differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)
- We can only represent so many numbers in w bits
 - When we exceed the limits, arithmetic overflow occurs
 - Sign extension tries to preserve value when expanding
- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking