Metodi di Monte Carlo Applicati Alla Computer Grafica

Tesi in Calcolo Numerico

Presentata da: Tanzi Alessio

Relatore: Prof.ssa Marina Popolizio

Anno Accademico 2022/2023

Abstract

${\bf Acknowledgements}$

Contents

Ι	For	damenti fisici e presentazione del problema	1
1	Rich	iami sull'elettromagnetismo e Radiometria	2
	1.1	Radiazione Elettromagnetica	2
	1.2	Dualità onda-particella	5
	1.3	Introduzione all'assorbimento di radiazione	6
	1.4	Radiometria	7
		1.4.1 Proprietà Particolari	11
		1.4.2 Radianza incidente ed uscente	13
	1.5	Radiazione di Corpo Nero	14
2	Foto	metria, Colore e Camera	15
	2.1	Fotometria	15
		2.1.1 fotometria e sistemi di rendering	16
	2.2	Colorimetria	16
		2.2.1 xy chromaticity diagram	19
		2.2.2 sRGB color space	21
		2.2.3 Conversione da XYZ o RGB a SPD	22
	2.3	camera	26
		2.3.1 pinhole camera model	26
		2.3.2 filtrare image samples	29
3	Mod	elli di Fonti Luminose e Superfici	31
	3.1	Modellazione di Superfici	31
		3.1.1 Proprietà ottiche delle interfacce	37
		3.1.2 BRDF e BSSRDF	41
		3.1.3 Modelli di BRDF	44
		3.1.4 Modelli di superficie secondo Microfacet Theory	49
	3.2	Sorgenti Luminose	64
		3.2.1 Modelli di sorgenti luminose	65
		3.2.2 Light Sampling	71

CONTENTS

II	Metodi di Monte Carlo	73
4	Integrazione di Monte Carlo 4.1 Preliminari	74 74 76
5	Campionamento e Ricostruzione con Quasirandom Number Generation	79
II	I Applicazione	80
6	Light Transport Modello e Surface Reflection	81
IV	7 Appendici	82
A	Numeri Pseudocasuali e Algoritmi Vari A.1 Metodo di Gauss-Newton	83 83 83
Bi	bliography	84
Gl	ossary	86

Part I

Fondamenti fisici e presentazione del problema

Chapter 1

Richiami sull'elettromagnetismo e Radiometria

1.1 Radiazione Elettromagnetica

La luce è un fenomeno fisico che si propaga come un'onda elettromagnetica ed interagisce con le altre sostanze come una particella. Dal punto di vista ondulatorio, una onda elettromagnetica si propaga nel vuoto a velocità costante c, la quale è correlata alla permeabilità magnetica nel vuoto μ_0 [H/m] e costante dielettrica nel vuoto ϵ_0 [F/m]

$$\epsilon_0 = \frac{1}{\mu_0 c^2}$$

mentre la Velocità di fase v [m/s] è similmente legata alla permittività dielettrica del mezzo ϵ e permeabilità magnetica nel mezzo

$$\epsilon = \frac{1}{\mu v^2}$$

il rapporto tra le costanti nel mezzo e le costanti nel vuoto definiscono permittività relativa ϵ_r e permeabilità relativa μ_r

Come osservi in figura ??, un'onda monocromatica è caratterizzata da

frequenza di oscillazione
$$\nu$$
 [Hz] e periodo T [s]
$$\nu = \frac{1}{T} \qquad (1.1)$$

frequenza angolare
$$\omega$$
 [rd/s]
$$\omega = 2\pi\nu = \frac{2\pi}{T} \qquad (1.2)$$

lunghezza d'onda
$$\lambda$$
 [m], nel vuoto e nel mezzo $\lambda_0 = cT = \frac{c}{\ni}$ (1.3)

$$\lambda = vT = \frac{v}{\nu} \tag{1.4}$$

CHAPTER 1. RICHIAMI SULL'ELETTROMAGNETISMO E RADIOMETRIA

La luce visibile all' $occhio\ umano\ corrisponde\ al\ sottoinsieme\ dello\ spettro\ [383,783]\ THz,$ equivalentemente [783,383] nm

Inoltre si definisce numero d'onda angolare [rd/m]

nel vuoto
$$k_0 = \frac{2\pi}{\lambda_0} = \frac{2\pi}{c}\nu = \frac{\omega}{c}$$
 (1.5)

nel mezzo
$$k = \frac{2\pi}{\lambda} = \frac{2\pi}{v}\nu = \frac{\omega}{v}$$
 (1.6)

che rappresenta lo shift di fase dell'onda. Assieme alla direzione di propagazione \hat{k} definiscono il $vettore~d'onda~\vec{k}=k\hat{k}$

Le proprietà dell'onda in un mezzo relative alle proprietà dell'onda nel vuoto sono determinate dall'*indice di rifrazione* (IOR), dipendente dalla lunghezza d'onda

$$\eta = \sqrt{\mu_r \epsilon_r} = \sqrt{\frac{\mu \epsilon}{\mu_0 \epsilon_0}} = \frac{c}{v} = \frac{k}{k_0}$$

radiazione elettromagnetica è composta da campo elettrico \vec{E} ed un campo magnetico \vec{B} oscillanti in fase, perpendicolari tra loro e alla direzione di propagazione \hat{k} (Figura ??). Le proprietà di tali campi sono descritti in funzione della posizione

 \vec{r} e tempo tdalle Equazioni di Maxwell 1 [Peg16]:

$$\nabla \cdot \vec{E}(\vec{r}, t) = \frac{\rho}{\epsilon_0} \tag{1.7}$$

$$\nabla \cdot \vec{B}(\vec{r}, t) = 0 \tag{1.8}$$

$$\nabla \times \vec{E}(\vec{r}, t) = -\frac{\partial \vec{B}(\vec{r}, t)}{\partial t}$$
 (1.9)

$$\nabla \times \vec{B}(\vec{r}, t) = \mu_0 \left(\epsilon_0 \frac{\partial \vec{E}(\vec{r}, t)}{\partial t} + \vec{J}(\vec{r}, t) \right)$$
 (1.10)

dove ρ è la densità di carica totale e \vec{J} la densità di corrente.

Tali equazioni, date le condizioni a contorno e condizioni iniziali, portano ad una equazione differenziale parziale detta equazione d'onda, che per assenza di cariche $\rho = 0$, assenza di corrente $\vec{J}(\vec{r},t) = \vec{0}$, e propagazione nel vuoto porta a

$$\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)\vec{x} = 0$$

la cui soluzione è una qualsiasi funzione differenziabile due volte della forma

$$\overrightarrow{E}(\overrightarrow{r},t) = f(\widehat{k} \cdot \overrightarrow{r} - ct) = f\left(\frac{\overrightarrow{k} \cdot \overrightarrow{r} - ct}{k}\right)$$

Proprietà importante per un'onda elettromagnetica è la sua polarizzazione, la quale specifica l'orientemento nello spazio del campo elettrico (per convenzione) nella propagazione nello spazio dell'onda. Il campo elettrico può avere direzione fissa o essere rotante in base ad una data funzione [[McC14]]. Esso è importante per le proprietà ottiche dei materiali, discussi in seguito. Gli stati di polarizzazione fondamentali che citiamo sono polarizzatione lineare, nella quale il campo elettromagnetico è confinato in un piano dello spazio, polarizzazione circolare, nella quale il vettore campo elettrico descrive una circonferenza nella sua rotazione con velocità angolare costante, polarizzazione ellittica, la quale è una combinazione tra polarizzazioni circolari e planari. Con il termine polarizzazione casuale ci riferiamo invece a luce con polarizzazione ellittica, le cui caratteristiche (eccentricità, velocita angolare) sono casuali, diverso da luce non polarizzata nella quale le caratteristiche (modulo e orientamento) del campo elettrico sono casuali. Un raggio luminoso può essere costituito dalla sovrapposizione di più radiazioni aventi differente stato di polarizzazione. Ci sono diversi metodi per scomporre tali componenti e analizzarle [Hec02].

 \vec{x} è sostituibile sia con \vec{E} che con \vec{B}

¹qui mostrate le equazioni per propagazione nel vuoto

Una delle proprietà ottiche cangianti con lo stato di polarizzazione è la Riflettanza, la quale ha espressioni note differenti per radiazione linearmente polarizzata con piano di vibrazione \parallel e \perp al piano di incidenza.

Tratteremo principalmente luce non polarizzata, la quale è una buona approssimazione considerando che la luce del cielo, che si propaga nell' atmosfera, è parzialmente polarizzata.

1.2 Dualità onda-particella

Una radiazione elettromagnetica mostra sia aspetti ondulatori che aspetti particellari. Tale fenomeno è detto dualità onda-particella. La luce è assorbita ed emessa in pacchetti discreti di energia elettromagnetica chiamati fotoni. Dunque il campo elettromagnetico ² è quantizzato. Ciascuna delle sue particelle elementari costituenti ha energia definita dall' equazione di Planck-Einstein

$$\xi = h\nu$$

dove h costante di Plank. Si osservi come l'energia di un singolo fotone è dipendente dallalunghezza d'onda.

Il modello fornito dall'elettrodinamica quantistica è stato citato in quanto esso ci suggerisce un nuovo modello operativo della luce, orientato alla misurazione piuttosto che alla formulazione da primi principi, nel quale ci disinteressiamo

²inteso come spostamento di energia

Materiale	$\lambda \text{ [nm]}$	$\kappa_a \; [\mathrm{cm}^{-1}]$	Osservazioni
Vapore Acqueo	$10.6 \cdot 10^3$ (infrarossi)	1.5	Ogni centimetro la luce che passa per vapore acqueo l'1.5% dell'en- ergia è assorbita
Vetro	550 (verde)	0.1	Così basso che è praticamente trascurabile. Il vetro è praticamente trasparente alla luce
Ferro	400 (violetto)	$2.5 \cdot 10^4$	Assorbe fortemente la luce vio- letta, motivo per cui appare gri- gio scuro
Clorofilla	680 (rosso)	10^{5}	Assorbe fortemente luce rossa, motivo per cui appare verde
Diossido di Carbonio	$4.3 \cdot 10^3$ (infrarossi)	7	Assorbe fortemente radiazione in- frarossa, motivo per cui con- tribuisce al riscaldamento globale

Table 1.1: Esempi di coefficiente di assorbimento per alcuni materiali a date lunghezze d'onda

dell'origine fisica della luce e misuriamo l'energia aggregata trasportata dai fotoni contenuti in una radiazione. Tale scienza è la *Radiometria* (sezione Radiometria)

1.3 Introduzione all'assorbimento di radiazione

Quando la luce passa per un mezzo, parte di essa viene rifratta e riflessa (capitolo 3). In alcuni materiali³, quando la luce passa attraverso il mezzo è assorbita, e il wavelength-dependent coefficiente di assorbimento κ_a [m⁻¹], il quale indica la percentuale di energia di onda elettromagnetica assorbita, per una data lunghezza d'onda, nella propagazione nel materiale. Alcuni esempi di coefficiente di assorbimento sono mostrati in Tabella Introduzione all'assorbimento di radiazione

Dall'coefficiente di assorbimento, caratterizzante il decadimento della energia nella propagazione dell'onda, e il numero d'onda, caratterizzante lo shift di fase dell'onda stessa, si definisce il numero d'onda complesso

$$\underline{k} = k + i \frac{\kappa_a}{2}$$

³come i metalli

CHAPTER 1. RICHIAMI SULL'ELETTROMAGNETISMO E RADIOMETRIA

Ricordiamo l'equazione di un'onda elettromagnetica linearmente polarizzata, in assenza di assorbimento

$$\overrightarrow{E}(\overrightarrow{r},t)=\Re\left(\overrightarrow{E}_{0}e^{i(\overrightarrow{k}\cdot\overrightarrow{r}-\omega t)}\right)$$

Introducendo un coefficiente di assorbimento non-nullo, e supponendo propagazione nell'asse z, $\hat{k} = [0,0,1]^T$

$$\overrightarrow{E}(z,t) = \Re\left(\overrightarrow{E}_0 e^{i(\underline{k}\cdot z - \omega t)}\right) = \Re\left(e^{-\frac{\kappa_a}{2}z} \overrightarrow{E}_0 e^{i(kz - \omega t)}\right)$$

Da cui l' $intensità^4$ dell'onda (potenza media nel periodo trasferita per unità di superficie) [W/m²] diventa [Peg16]

$$I(z) = \frac{1}{T} \int_{T} |\vec{E}_0 e^{i(\underline{k}z - \omega t)}|^2 dt = \frac{1}{T} |e^{-\frac{\kappa_a}{2}z} \vec{E}_0 e^{i(kz - \omega t)}|$$

$$(1.11)$$

$$= |e^{-\frac{\kappa_a}{2}z}| \frac{1}{T} \int_T |\vec{E}_0 e^{-i(kz - \omega t)}|^2 dt = e^{-\kappa_a z} I_0$$
 (1.12)

dove I_0 è l'intensità in assenza di assorbimento. La distanza alla quale l'intensità si riduce di un fattore e^{-1} , $(z = \kappa_a^{-1})$, è detta profondità di penetrazione

Altro coefficiente caratterizzante il materiale e la sua interazione con radiazione incidente, contando anche l'assorbimento, è l' indice di rifrazione complesso

$$\underline{\eta} = \frac{k}{k_0} + i \frac{\kappa_a}{2k_0} = \eta + i\kappa$$

dove $\kappa = \frac{\kappa_a}{2k_0}$ è l'*indice di assorbimento* della superficie

1.4 Radiometria

Branche dell'ottica prese come riferimento dal physically based rendering sono la *Radiometria* e *Radiative Transfer*. La *Radiometria* è il modello matematico per studiare e misurare la propagazione delle radiazioni elettromagnetiche. In tale modello, ci disinteressiamo degli aspetti ondulatori delle onde elettromagnetiche e guardiamo la radiazione come energia fluente nello spazio. Ciò suggerisce che la Radiometria opera a livello dell'ottica geometrica, assumendo dunque

⁴In fotometria e radiometria *intensità* ha un altro significato: essa è la potenza radiante o luminosa per unità di angolo solido. In Ottica e Termodinamica, *intensità* essa è associata alla potenza media nel periodo per unità di superficie, come in questo caso, altre volte all'intensità radiante o luminosa, oppure all'irradianza o alla radianza. Per Radiometria, vedi Radiometria

propagazione rettilinea della luce e trascurando fenomeni dovuti alla natura ondulatoria della radiazione. Si considerado solamente gli effetti della riflessione, trasmissione, scattering ed assorbimento. In particolare, le assunzioni fatte sono le seguenti[[PJH23]]:

La combinazione lineare di più input ad un sis-

tema ottico è pari alla combinazione lineare degli

effetti dei singoli input

Conservazione dell'energia: Quando una fonte di radiazioni scatters da una

superficie o mezzo trasmissivo, gli scattering events [[Peg16]], non possono produrre più energia di

quella iniziale

No polarizzazione: Ignoriamo la polarizzazione del campo elettro-

magnetico di una radiazione, rendendo l'unica proprietà rilevante di una radiazione la sua *Distribuzione*

Spettrale [Radiazione di Corpo Nero]

No fluorescenza o fosforescenza: Il comportamento della radiazione ad una lunghezza

d'onda è indipendente dal comportamento della

radiazione ad altre lunghezze d'onda

A regime: Il Light Field (Radiometria) nell'ambiente è as-

sunto a regime, indipendente dal tempo. Nota che la fosforescenza viola anche questo presup-

posto

Il Radiative Transfer, qui solo accennato, è lo studio dei fenomeni legati al trasferimento di energia radiante, basato sulla radiometria, ed utilizzato nella computer grafica per introdurre fenomeni legati all'ottica fisica e modellare la propagazione in un mezzo diverso dal vuoto.

Le unità fondamentali della radiometria sono riassunte nella tabella 1.2

Def. 1.4.1. — L'*Energia Radiante Q_e* è l'energia aggregata di tutti i fotoni, ognuno ad una particolare lunghezza d'onda con contributo energetico diverso, verso/attraverso/da una superficie in un dato intervallo di tempo

Ciascuno di questi fotoni trasporta energia pari all'Equazione di plank-Einstein $Q_{\lambda}=\frac{hc}{\lambda}1.2$

Def. 1.4.2. — L'*Energia Radiante Spettrale* $Q_{e,\lambda}^{5}$ è il contributo di una singola lunghezza d'onda all'energia radiante complessiva

$$Q_{e,\lambda} = \frac{\partial Q_e}{\partial \lambda}$$

CHAPTER 1. RICHIAMI SULL'ELETTROMAGNETISMO E RADIOMETRIA

Quantità	Simbolo	unità S.I.	Note
Energia Radiante	Q_e	J	Energia aggregata di tutti i
			fotoni in una radiazione
Flusso Radiante	Φ_e	W	elettromagnetica Energia Radiante <i>emessa</i> ,
Trabbo Teachanne	+ e	**	riflessa, trasmessa, incidente,
			per unità di tempo
Intensità Radiante	$I_{e,\Omega}$	W/sr	Flusso Radiante emesso,
			riflesso, trasmesso, per unià di angolo solido
Irradianza	E_e	$ m W/m^2$	Flusso Radiante incidente per
		. 0	unità di area
Emittanza Radiante	M_e	$ m W/m^2$	Flusso Radiante emesso per
Radiosità	J_e	$ m W/m^2$	unità di area Flusso Radiante <i>uscente</i>
Hadiosita	σ_e	VV / III	(emesso, riflesso e trasmesso)
			per unita di area
Radianza	$L_{e,\Omega}$	$W/(sr \cdot m^2)$	Flusso Radiante emesso,
			riflesso, trasmesso, incidente
			da/su una superficie, per
			unità di angolo solido per
			unita di area proiettata

Table 1.2: nomenclatura e misure delle quantità radiometriche per noi rilevanti

Data l'assunzione di sistema a regime, siamo interessati a misurare l'energia radiante in un istante piuttosto che per un periodo definito di tempo. Dunque definiamo

Def. 1.4.3. — Il Flusso Radiante Φ_e è la quantità di energia radiante passante attraverso una superficie per unità di tempo

$$\Phi_e = \frac{\partial Q_e}{\partial t}$$

La cui derivata rispetto alle frequenze fornisce il Flusso Radiante Spettrale

$$\Phi_{e,\lambda} = \frac{\partial \Phi_e}{\partial \lambda}$$

 $^{^5 {\}rm Le}$ grandezze spettrali possono essere espresse in funzione della lunghezza d'onda (e.g. $Q_{e,\lambda}$) o del suo inverso, la frequenza (e.g. $Q_{e,\nu}$)

Ogni misurazione di un flusso richiede un area ben definita per attribuirle senso. Nei sistemi di rendering, non è insolito invece compiere delle misure "puntuali" di un flusso radiante, cioè flusso radiante per unità di area.

Def. 1.4.4. — La densità superficiale del flusso radiante (energia per unità di tempo, per unità di superficie) è detta *Irradianza* E_e se tale flusso è entrante la superficie, *Emittanza Radiante* M_e se emesso dalla superficie, *Radiosità* J_e se uscente (emesso, riflesso o trasmesso) dalla superficie

$$E_e|J_e|M_e = \frac{\partial \Phi_e}{\partial A}$$

La cui derivata rispetto alle frequenze fornisce la rispettiva grandezza spettrale

$$E_{e,\lambda}|J_{e,\lambda}|M_{e,\lambda} = \frac{\partial E_e|J_e|M_e}{\partial \lambda}$$

Si noti infine che l'Irradianza, per definizione, è pari alla media temporale in un periodo del vettore di Pointing perpendicolare alla superficie

$$E_e = \langle |\vec{S}| \rangle$$

Piuttosto che concentrarci su un unico punto della superficie, possiamo concentrarci su una singola direzione, considerando il flusso radiante per unitá di angolo solido.

Def. 1.4.5. — La *Intensità Radiante* $I_{e,\Omega}$ è la densità angolare del flusso radiante emesso, riflesso, trasmesso o incidente da/verso un punto dello spazio e propagante lungo una direzione specificati

$$I_{e,\Omega} = \frac{\partial \Phi_e}{\partial \Omega}$$

L'*Intensità (Radiante) Spettrale* è l'intensità radiante per unità di lunghezza d'onda

$$I_{e,\Omega,\lambda} = \frac{\partial I_{e,\Omega}}{\partial \lambda}$$

Tale grandezza è utile per la modellazione, ad esempio, delle sorgenti luminose puntuali omnidirezionali, le quali distribuiscono il loro flusso radiante emesso, inversamente proporzionale al quadrato della distanza dalla sorgente, in modo uniforme il ogni direzione $I_{e,\Omega} = \frac{\Phi_e}{4\pi}$.

La descrizione più granulare dell'energia emessa da un'onda elettromagnetica è fornita dalla *Radianza*, definita come

CHAPTER 1. RICHIAMI SULL'ELETTROMAGNETISMO E RADIOMETRIA

Def. 1.4.6. — La $Radianza\ L_{e,\Omega}$ è definita come flusso radiante emesso, riflesso, trasmesso o incidente da/su una dato punto della superficie, da/verso una data direzione, dunque per unità di angolo solido per unità di area proiettata

$$L_{e,\Omega} = \frac{\partial^2 \Phi_e}{\partial \Omega \partial (A \cos \theta)}$$

dove θ angolo tra la direzione perpendicolare alla superficie sul punto considerato e la direzione del flusso

Significativa ai nostri fini è la relazione inversa che sussiste tra Irradianza e Radianza, che sfrutteremo per definire l'equazione del rendering

$$E_{e}(\vec{p}) = \int_{\Omega} L_{e,\Omega}(\vec{p},\hat{\omega}) \cos\theta d\hat{\omega}^{6} = \int_{\theta_{1}}^{\theta_{2}} \int_{\varphi_{1}}^{\varphi_{2}} L_{e,\Omega}(\vec{p},\theta,\varphi) \cos\theta \sin\theta d\theta d\varphi \quad (1.13)$$

1.4.1 Proprietà Particolari

Ciascuna di queste grandezze assume il suo ruolo in un sistema di rendering e possiede proprietà particolari. Ad esempio, il *Flusso Radiante* può essere utilizzato al fine di poter campionare una fonte luminosa con probabilità proporzionale alla potenza emessa dalla sua superficie.

Relazione significativa che coinvolge l'Irradianza è la $Legge\ del\ coseno\ di\ Lambert$

Def. 1.4.7. — La Legge del coseno di Lambert afferma che L'Intensità Radiante⁷ osservata da un Radiatore Lambertiano/verso una Superficie Lambertiana è direttamente proporzionale all'angolo θ tra l'osservatore e la normale alla superficie

$$I = I_0 \cos \theta$$

8

 $^{^6}$ Si noti la distinzione tra $\hat{\omega}$ e d $\hat{\omega}$. Il primo è un vettore unitario dal punto \vec{p} ad un punto della porzione di sfera unitaria costituente il dominio di integrazione, il secondo è un elemento di angolo angolo solido. Un angolo solido è un numero adimensionale rappresentante la porzione di area di sfera coperta, nell'intervallo $[0,4\pi]$. Il suo differenziale rappresenta un piccolo quadratino della superficie della sfera, spesso approssimato ad un quadrato ai fini di dimostrazioni geometriche

⁷o Intensità Luminosa

⁸da cui $E = E_0 \cos \theta$

Dove per *Radiatore Lambertiano* si intende ogni superficie radiante la cui radianza emessa è indipendente dalla direzione considerata, mentre per *Superficie Lambertiana* si intende ogni superficie che obbedisce alla legge del coseno, e riflette radianza incidente in tutte le direzioni in modo uniforme, e tale tipologia di riflessione è detta *Riflessione diffusa*, che riprendiamo in seguito.

La Radiosità, la quale può essere scomposta in

$$J_e(\vec{p}) = \frac{\partial \Phi_e}{\partial A} = M_e(\vec{p}) + J_{e,r}(\vec{p}) + J_{e,t}(\vec{p})$$

dove

- M_e Emittanza Radiante dalla superficie nel punto \vec{p} , componente emessa della radiosità
- $J_{e,r}$ Componente riflessa della radiosità
- $J_{e,t}$ Componente trasmessa della radiosità, nullo per superfici opache è la grandezza protagonista dell'algoritmo di rendering deterministico che porta il suo nome, $Metodo\ della\ radiosità$, nel quale è possibile, mediante la risoluzione di un sistema di equazioni, renderizzare un scena contenenti superfici caratterizzate da riflessione diffusa.

Definiamo brevemente *Etendùe*

Def. 1.4.8. — *Etendue* è una proprietà geometrica di un sistema ottico che quantifica quanto spazio la luce occupa in termini di area e angolari. Essa quantifica dunque il throughput di una sorgente luminosa. Matematicamente, essa è pari al prodotto tra l'area della sorgente/osservatore e l'angolo solido della sorgente/osservatore che tale area sottende, tenendo conto del mezzo in cui la luce si propaga (indice di rifrazione)

$$\mathrm{d}G = \eta^2 \langle \hat{n_s}, \hat{\omega} \rangle \mathrm{d}A(\vec{p}) \mathrm{d}\hat{\omega}$$

Considerando una sorgente luminosa Σ , e un osservatore S, entrambi superfici separate da un mezzo con indice di rifrazione η , omogeneo, isotropico, senza perdite (cioè in assenza di scattering⁹ e assorbimento) e distanti d, l'etendue è dato da

$$dG_{\Sigma} = \eta^2 d\Sigma \cos \theta_{\Sigma} d\omega_{\Sigma} = \eta^2 d\Sigma \cos \theta_{\Sigma} \frac{dS \cos \theta_{S}}{d^2}$$

per ogni punto della superficie della sorgente. Im modo simile, l'etendue da un particolare punto della superficie di osservazione (e.g. una lente, o un camera film) è dato da

$$dG_S = \eta^2 dS \cos \theta_S d\omega_S = \eta^2 dS \cos \theta_S \frac{d\Sigma \cos \theta_\Sigma}{d^2}$$

⁹anche detto mezzo trasparente

CHAPTER 1. RICHIAMI SULL'ELETTROMAGNETISMO E RADIOMETRIA

Da cui si osserva che d $G_{\Sigma}=\mathrm{d}G_{S},$ cioè che L'etendue, il throughput di una sorgente, si conserva.

Dalla conservazione dell'etendue segue la Conservazione della radianza di base, in quanto, dalla definizione di Radianza

$$L_{e,\Omega}(\vec{p},\hat{\omega}) = \frac{\partial^2 \Phi_e}{\langle \hat{n}, \hat{\omega} \rangle \partial A(\vec{p}) \partial \hat{\omega}} = \eta^2 \frac{\partial^2 \Phi_e}{\mathrm{d}G(\vec{p}, \hat{w})}$$
(1.14)

$$\frac{L_{e,\Omega}(\vec{p},\hat{\omega})}{\eta^2} = \frac{\partial^2 \Phi_e}{\mathrm{d}G(\vec{p},\hat{w})} = \frac{\partial^2 \Phi_e}{\mathrm{d}G(\vec{q},-\hat{w})} = \frac{L_{e,\Omega}(\vec{q},-\hat{\omega})}{\eta^2} \tag{1.15}$$

In quanto la potenza e l'etendue si conservano, anche il rapporto tra radianza e indice di rifrazione, detto radianza di base, si conserva nella propagazione in un mezzo ideale.

1.4.2 Radianza incidente ed uscente

La radianza L è generalmente una funzione discontinua sulle superfici di separazione tra due mezzi, dette interfacce.

$$L^{+} = \lim_{t \to 0^{+}} L(\vec{p} + t\hat{n}, \hat{\omega})$$
 (1.16)

$$L^{-} = \lim_{t \to 0^{-}} L(\vec{p} + t\hat{n}, \hat{\omega})$$
 (1.17)

dunque, piuttosto che lavorare con un unica funzione discontinua, si preferisce distinguere tra radianza incidente L_i e radianza uscente¹⁰.

$$\begin{split} L_i(\vec{p},\hat{\omega}) &= \begin{cases} L^+(\vec{p},-\hat{w}), \ \langle \omega,\hat{n}\rangle > 0 \\ L^-(\vec{p},-\hat{w}), \ \langle \omega,\hat{n}\rangle < 0 \end{cases} \\ L_o(\vec{p},\hat{\omega}) &= \begin{cases} L^+(\vec{p},\hat{w}), \ \langle \omega,\hat{n}\rangle > 0 \\ L^-(\vec{p},\hat{w}), \ \langle \omega,\hat{n}\rangle < 0 \end{cases} \end{aligned} \tag{1.18}$$

$$L_o(\vec{p}, \hat{\omega}) = \begin{cases} L^+(\vec{p}, \hat{w}), & \langle \omega, \hat{n} \rangle > 0 \\ L^-(\vec{p}, \hat{w}), & \langle \omega, \hat{n} \rangle < 0 \end{cases}$$
 (1.19)

Si noti che in punti dello spazio non giacenti su una superficie, la radianza è invece continua, $L^+ = L^-$, da cui

$$L_o(\vec{p},\hat{\omega}) = L_i(\vec{p}, -\hat{\omega}) \tag{1.20}$$

Si può riscrivere la conservazione della radiaza di base in termini della radianza incidente e radianza uscente

$$\underline{\frac{L_o(\vec{p},\hat{\omega})}{\eta_1^2}} = \frac{L_i(\vec{q},\hat{\omega})}{\eta_2^2} \tag{1.21}$$

¹⁰emessa, riflessa, trasmessa

 $^{^{11}}$ Si noti come per convenzione, la radianza incidente la direzione $\hat{\omega}$ sia uscente dal punto vecp, nonostante il flusso radiante abbia direzione opposta. In altre parole, la radianza incidente ha come argomento la direzione di provenienza del flusso

1.5 Radiazione di Corpo Nero

Tutti i corpi con temperatura superiore allo zero assoluto emettono radiazione, in quantità proporzionale alla temperatura assoulta in quanto essa corrisponde allo stato di agitazione delle molecole, causando accelerazione di elettroni e protoni degli atomi costituenti, portando all'emissione di campo elettromagnetico secondo le equazioni di Maxwell. Tale flusso radiante spettrale emesso costituisce una Spectral Power Distribution (SPD).

Un *Corpo Nero* corpo ideale che assorbe ogni tipo di radiazione incidente, indipendentemente da frequenza o angolo di incidenza. In equilibrio termico, esso emette radiazioni che seguono la *Legge di Planck*1.24. Esso è un *Radiatore Ideale e diffusore*, cioè emette radiazioni uniformemente in tutte le direzioni (superficie lambertiana).

per tali corpi neri, l'Emittanza radiante M_{bb} dalla superficie obbedisce alla Legge di Stefan-Boltzmann

$$M_{bb} = \sigma T^4 \tag{1.22}$$

dove $\sigma = 5.67032 \cdot 10^{-8} \mathrm{W/(m^2 K^4)}$ costante di Stefan-Boltzmann

Dunque tale corpo nero è una superficie opaca (trasmittanza nulla), perfettamente assorbente (absorptance unitaria) che non riflette alcuna radiazione incidente (riflettanza nulla). Ciò vuol dire che emette tutta la radiazione che assorbe (A+R+T=1).

Essendo una superficie lambertiana, anche la radianza emessa deve essere constante. Sapendo che un emisfera unitaria ha integrale pari a π ,

$$M_{bb\lambda} = \pi L_{bb\lambda} \tag{1.23}$$

In equilibrio termico, tale radianza ha espressione detta Legge di Planck

$$L_{bb\lambda}(T,\lambda) = \frac{2hc^2}{\lambda^5 \left(e^{\frac{hc}{\lambda kT}} - 1\right)}$$
 (1.24)

dove

 $h = 6.626176 \cdot 10^{-34} \text{J/s}$ costante di Planck $k = 1.380662 \cdot 10^{-23} \text{J/K}$ costante di Boltzmann (1.25)

È facile dimostrare come, integrando nell'emisfera unitaria, si ottiene un emittanza radiante corrispondente alla legge di Stefan-Boltzmann

Tali corpi neri si dimostrano utili non solo come modelli per parametrizzare, tramite temperatura, una sorgente luminosa, ma risultano rilevanti anche per la colorimetria, in quanto costituenti il luogo plankiano.

Chapter 2

Fotometria, Colore e Camera

2.1 Fotometria

L'occhio umano non è equamente sensibile a tutte le lunghezza d'onda della luce visibile, la quale è un sottoinsieme dello spettro elettromagnetico corrispondente all'intervallo [360,830]sinm, come accennato nel primo capitolo I. Dunque, si introduce

Def. 2.1.1. — La *Fotometria* è la scienza che studia la misurazione della luce in termini della *intensità percepita* dall'occhio umano.

Tale definizione permette di capire che la fotometria si distingue dalla radiometria in quanto, data una sorgente luminosa Σ con una certa SPD, lo scopo è pesarne il contributo di ciascuna lunghezza d'onda secondo la percezione umana.

L'occhio umano possiede due tipi di fotorecettori: coni e bastoncini

I coni sono responsabili per la percezione in ambienti illuminati, detta $visione\ fotopica$

I bastoncini sono responsabili per la percezione in ambienti bui, detta $visione\ scotopica$

A seguito di esperimenti condotti nel 1931 dalla CIE, è stato associato un modello di risposta spettrale standard, e sono chiamate Efficacia Luminosa Spettrale Fotopica $V_p(\lambda)$ e Efficacia Luminosa Spettrale Scotopica $V_s(\lambda)$.

Tali funzioni, in ciascuna lunghezza d'onda, rappresentano un peso $\in [0,1]$, il quale può essere integrato con una grandezza radiometrica spettrale per ottenere

l'analoga grandezza fotometrica.¹

Energia Luminosa
$$Q_v = K \int_{\Lambda} Q_{e,\lambda}(\lambda) V(\lambda) d\lambda$$
 (2.1)

Flusso Luminoso
$$\Phi_v = K \int_{\Lambda} \Phi_{e,\lambda}(t,\lambda) V(\lambda) d\lambda$$
 (2.2)

Illuminanza
|Emittanza Luminosa
$$E_v|M_v=K\int_{\Lambda}E_{e,\lambda}|M_{e,\lambda}(\vec{p},\lambda)V(\lambda)\mathrm{d}\lambda$$
 (2.3)

Intensità Luminosa
$$I_v = K \int_{\Lambda} I_{e,\Omega,\lambda}(\hat{\omega},\lambda) V(\lambda) d\lambda$$
 (2.4)

Luminanza²
$$Y = K \int_{\Lambda} L_{e,\Omega,\lambda}(\vec{p},\hat{\omega},\lambda) V(\lambda) d\lambda$$
 (2.5)

dove $\Lambda = [380, 830]$ nm, cioè intervallo nel quale le funzioni $V(\lambda) \neq 0$

Nota che non si è indicato quale funzione di efficacia luminosa si sta utilizzando, in quanto le formule sono universalmente valide. Le costanti, invece, che rappresentano l'Efficacia Luminosa di una radiazione cambiano valore:

 $K = 683.002 \,\mathrm{lm/W}$ Efficacia luminosa fotopica

 $K\approx 1700\,\mathrm{lm/W}$ Efficacia luminosa scotopica

Tali costanti rappresentano l'efficacia luminosa, cioè il fattore di conversione $W \to lm$ per una radiazione monocromatica a lunghezza d'onda 555nm.

2.1.1 fotometria e sistemi di rendering

La fotometria, nel contesto di Physically based Rendering, è utile per la modellazione di sorgenti luminose, per specificare parametri come intensità luminosa, light falloff, e così via.

Includendo parametri fotometrici si può ottenere una descrizione più vicina all'uomo della percezione della luce mantenendone il rigore fisico.

2.2 Colorimetria

Il colore è un fenomeno la cui origine è sia fisica, determinato dalla distribuzione nelle lunghezze d'onda della radianza spettrale, sia psicobiologica, in quanto la sua

¹Si noti che tutte le formule viste finora per le grandezze radiometriche, come la relazione tra radianza e etendue 1.14, o le relazioni tra grandezze radiometriche

 $^{^2}$ Nota come piuttosto che seguire la nomenclatura ISO per la Luminanza L_v si è scelto di adottare Y. I motivi appariranno chiari nei cenni sulla colorimetria 2.2

Figure 2.1: A destra, Sensibilità spettrali per i tre tipi di coni dell'occhio umano. A sinistra, color matching functions del CIE 1931 RGB Color Space

percezione è artefatto dell'interpretazione di tali lunghezze d'onda nella corteccia cerebrale posteriore.

Ciò suggerisce che il colore *non è una proprietà degli oggetti*, ma della luce da essi riflessa e dunque dipendente alle lunghezze d'onda contenute nella radiazione incidente.

Nonostante specificare un colore sottoforma di spettro di frequenza del flusso radiante sia la modalità più fedele e ottimale, essa

- Non è una interfaccia human-friendly e orientata alla percezione
- Non corrisponde alla rappresentazione utilizzata dai display odierni

Dunque, nel fornire un'interfaccia per un sistema di rendering, bisogna implementare la possibilità di specificare colore in modo intuitivo, convertire tale specifica in uno spettro di frequenze per effettuare la computazione, e convertire nella rappresentazione nativa per mostrare a schermo i risultati.

Def. 2.2.1. — Risulta dunque conveniente specificare delle *funzioni di base* per poter costituire uno spazio vettoriale tramite il quale, specificandone i componenti, si specifica un determinato colore. Tale spazio vettoriale è chiamato *Color Space*.

Un color stimulus può essere ricostruito dalla combinazione lineare da tre stimoli (distribuzioni spettrali) di base indipendenti [[Sch07]], in quanto dei fotorecettori umani che distinguono il colore, i coni, ce ne sono di tre tipi (vedi figura ??). Tale mappa da SPD a tristimulus values non è biunivoca, infatti, nei diversi color spaces che definiamo, esistono valori tristimolo che possono risultare dalla scomposizione di diverse SPDs. Tali colori sono detti metameri.

Dunque l'obiettivo è quello di ottenere distribuzioni spettrali $\langle R \rangle, \langle G \rangle, \langle B \rangle$

tali che ogni colore possa essere rappresentato come

$$C = R\langle R \rangle + G\langle G \rangle + B\langle B \rangle \tag{2.6}$$

tale compito non è scontato in quanto, da come si osserva in figura $\ref{squartor}$, quasi tutte le lunghezza d'onda stimolano con diversa intensità almeno due tipi di coni. Dunque, nel 1931, fu derivato il CIE 1931 RGB Trichromatic system, cioè una terna di color matching functions $\bar{r}(\lambda)$, $\bar{g}(\lambda)$, $\bar{b}(\lambda)$, derivate compiendo dei test con un osservatore standard colorimetrico, cioè limitando il field of view dei soggetti testati a 2^o dentro la fovea, per eliminare la variabilità di percezione causata dal field of view dell'osservatore. Tali soggetti sono stati esposti a luci monocromatiche, i.e. i colori primari scelti, alle frequenze $700\,\mathrm{nm}$ (rosso), $546.1\,\mathrm{nm}$ (verde), $435.8\,\mathrm{nm}$ (blu). L'intensità di queste tre sorgenti primarie erano tali che, se addizionate, restituiscono uno spettro costante la cui intensità è pari alla Luminanza della sorgente complessiva

$$R = \int_{\Lambda} \bar{r}(\lambda) L_{e,\Omega,\lambda}(\lambda) d\lambda \tag{2.7}$$

$$G = \int_{\Lambda} \bar{g}(\lambda) L_{e,\Omega,\lambda}(\lambda) d\lambda$$
 (2.8)

$$B = \int_{\Lambda} \bar{b}(\lambda) L_{e,\Omega,\lambda}(\lambda) d\lambda \tag{2.9}$$

$$L_v = 1.0000R + 4.5907G + 0.0601B [cd/m^2]$$
 (2.10)

Le tre color matching functions (CMFs) così ottenute sono mostrate in figura ??.

Ai tempi della standardizzazione di un sistema tricromatico, in assenza di computers, risultava complicato fare calcoli con queste tre CMFs per via dei lobi negativi. Dunque, sempre nel 1931, fu standardizzato il CIE 1931 XYZ Color System, nel quale sono stati scelti tre primari immaginari³ a partire dai primari del sistema CIE RGB 1931 in modo tale che

- uno spettro costante dia luogo a componenti X = Y = Z
- la componente Y sia la luminanza della radiazione $Y=L_v$
- la CMF \bar{y} sia uguale alla funzione di efficacia luminosa fotopica $\bar{y}(\lambda) = V_n(\lambda)$
- Z è quasi uguale al blu di CIE RGB
- X è un mix delle tre CMFs di CIE RGB

Dai requisiti la seguente trasformazione lineare CIE RGB 1931 \rightarrow CIE XYZ 1931 è stata ricavata

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 2.768892 & 1.751748 & 1.130160 \\ 1.000000 & 4.590700 & 0.060100 \\ 0 & 0.056508 & 5.594292 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$
(2.11)

³non percepibili all'occhio umano

La quale è anche valida per trasformare una CMF del sistema CIE RGB in una CMF del sistema CIE XYZ 1931.

Per passare da radianza spettrale ai tristimulus values, distinguiamo il caso in cui si sta analizzando una radiazione/superficie emissiva

$$X = K \int_{\Lambda} L_{e,\Omega,\lambda}(\lambda) \bar{x}(\lambda) d\lambda$$
 (2.12)

$$Y = K \int_{\Lambda} L_{e,\Omega,\lambda}(\lambda) \bar{y}(\lambda) d\lambda$$
 (2.13)

$$Z = K \int_{\Lambda} L_{e,\Omega,\lambda}(\lambda) \bar{z}(\lambda) d\lambda$$
 (2.14)

Ed il caso in cui si sta analizzando un colore di una radiazione riflessa o trasmessa (fonti luminose secondarie)

$$X = \frac{1}{\int_{\Lambda} L_{e,\Omega,\lambda}(\lambda) \bar{y}(\lambda) d\lambda} \int_{\Lambda} S(\lambda) L_{e,\Omega,\lambda}(\lambda) \bar{x}(\lambda) d\lambda$$
 (2.15)

$$Y = \frac{1}{\int_{\Lambda} L_{e,\Omega,\lambda}(\lambda) \bar{y}(\lambda) d\lambda} \int_{\Lambda} S(\lambda) L_{e,\Omega,\lambda}(\lambda) \bar{y}(\lambda) d\lambda$$
 (2.16)

$$Z = \frac{1}{\int_{\Lambda} L_{e,\Omega,\lambda}(\lambda) \bar{y}(\lambda) d\lambda} \int_{\Lambda} S(\lambda) L_{e,\Omega,\lambda}(\lambda) \bar{z}(\lambda) d\lambda$$
 (2.17)

(2.18)

dove

$$S(\lambda) = \begin{cases} R(\lambda) \text{ se riflessione} \\ T(\lambda) \text{ se trasmissione} \end{cases}$$
 (2.19)

2.2.1xy chromaticity diagram

Spesso si preferisce normalizzare i valori tristimolo per ottenere le coordinate di cromaticità

$$x = \frac{X}{X + Y + Z} \tag{2.20}$$

$$x = \frac{X}{X + Y + Z}$$

$$y = \frac{Y}{X + Y + Z}$$
(2.20)

$$z = \frac{Z}{X + Y + Z} \tag{2.22}$$

Figure 2.2: xy Chromaticity Diagram del sistema tricromatico CIE XYZ 1931

dove, in quanto x + y + z = 1, soltanto le coordinate xy sono necessarie per una completa descrizione del colore.

Il diagramma di cromaticità è riportato in figura \ref{span} . Il contorno curvo rappresenta l'insieme di punti nel diagramma corrispondente alle radiazioni monocromatiche, mentre la curva evidenziata rappresenta il Luogo~Planckiano, insieme di punti corrispondenti ad uno spettro di emissione di un corpo nero plankiano (formula 1.24), con temperatura da $[1000,\infty]$ K. Parametro utile per descrivere ciascun punto del diagramma, in particolare quelli legati alle sorgenti luminose, è quello di

Def. 2.2.2. — La *Temperatura di colore Correlata*(CCT) T_{cp} è definita come temperatura del radiatore planckiano il cui colore percepito si avvicina di più allo stimolo dato nelle stesse condizioni di osservazione.

Nome CIE 1931 2° xy CCT K		CCT K	Sorgente modellata
A	0.4476, 0.4075	2856	Filamento di tungsteno incandescente
D50	0.3457, 0.3585	5003	Luce diurna all'orizzonte
${ m E}$	$\frac{1}{3}, \frac{1}{3}$	5454	SPD equienergia
D55	0.3324, 0.3474	5503	Luce diurna mattina/pomeriggio
D65	0.3127, 0.3290	6504	Luce diurna mezzogiorno

Table 2.1: Illuminanti standard CIE

Cromaticità	Rosso	Verde	Blu	White point(D65)	
$x \\ y$	$0.64 \\ 0.33$	$0.30 \\ 0.60$	$0.15 \\ 0.06$	$0.3127 \\ 0.329$	
$\overset{\circ}{Y}$		0.7152	0.0722	1	

Table 2.2: Coordinate degli stimoli primari e del white point del sRGB color space

Ciò si traduce nel trovare il punto nel luogo planckiano con distanza minima al punto di cromaticità dato

Altrettanto importanti nella specifica del diagramma di cromaticità sono gli *Illuminanti Standard*, sorgenti luminose teoriche con SPD e coordinate di cromaticità note che approssimano determinate sorgenti luminose reali.

2.2.2 sRGB color space

Mentre per memorizzare image data un qualsiasi color space può essere utilizzato (infatti, si possono memorizzare anche dati relativi allo spettro direttamente [[al21]]), per mostrare colore a schermo si preferisce scegliere 3 primari ed un punto bianco, punto nel quale i 3 primari danno contributo massimo. La scelta dei primari è guidata dalla percentuale di gamut che si desidera coprire con tutte le combinazioni lineari dei tre primari scelti e limitazioni fisiche. Lo standard adottato per monitors e World Wide Web nel 1996 da IEC è sRGB. Esso è un color space additivo basato sui tre primari rosso, verde, blu, e white point, le cui coordinate di cromaticità sono riportate in tabella ??.

Altro componente per la specifica di un color space per un display è la funzione di trasferimento del display, in particolare

Def. 2.2.3. — La electro-optical transfer function (EOTF) è un funzione di

trasferimento che converte un segnale immagine in input in intensità luminosa in output. Essa non è lineare

Tale funzione di trasferimento non è lineare per l'operazione di gamma correction compiuta dai displays, la quale include sempre un elevamento a potenza $v_{in} = Av_{out}^{\gamma}$ (di solito $\gamma = 2.2$). Tale operazione è compiuta per ottimizzare l'uso dei bits nella codifica dell immagine, dando più importanza ai toni più scuri, in accordo con la percezione umana in grado di apprezzarli con più sensibilità.

Dunque se l'output finale del sistema di rendering è un colore sRGB, dobbiamo essere capaci di convertire a/da un colore in sRGB color space da/a un colore in XYZ color space. Sia $C_{srgb} = R_{srgb} |G_{srgb}| B_{srgb} \in [0,1]$ componenti del colore nello spazio sRGB gamma encoded. Simile definizione per il colore nello spazio sRGB gamma corrected C_{linear} ed il colore $[X,Y,Z]^T$ nello spazio XYZ.

$$\text{Applica gamma expansion}^4 \colon C_{linear} = \begin{cases} \frac{C_{srgb}}{12.92}, & C_{srgb} \leq 0.04045 \\ \left(\frac{C_{srgb} + 0.055}{1.055}\right)^{2.4}, & C_{srgb} > 0.04045 \end{cases}$$

$$\begin{array}{l} \text{Applica trasformazione lineare}^5\colon \begin{bmatrix} X_{D65} \\ Y_{D65} \\ Z_{D65} \end{bmatrix} = \begin{bmatrix} 0.4124 & 0.3576 & 0.1805 \\ 0.2126 & 0.7152 & 0.0722 \\ 0.0193 & 0.1192 & 0.9505 \end{bmatrix} \begin{bmatrix} R_{linear} \\ G_{linear} \\ B_{linear} \end{bmatrix} \end{aligned}$$

2.2.3 Conversione da XYZ o RGB a SPD

I color spaces sono spazi vettoriali, per i quali sono definite le operazioni di addizione tra colori (vettori) e moltiplicazione scalare colore. La moltiplicazione tra più colori non è un operazione ben definita. Nel trasporto della luce, la moltiplicazione tra due SPD è una operazione fondamentale. Si potrebbe pensare di definire arbitrariamente una operazione analoga in uno spazio RGB qualsiasi e definire la moltiplicazione tra due colori come prodotto di Hadamard ⊙.

⁴la semplice funzione potenza viene modificata secondo standards, come ITU-R per poter evitare problematiche. Per esempio, per evitare di avere derivata infinita nello zero, si definisce la funzione di gamma expansion per valori piccoli come divisione per una costante definita dallo standard

 $^{^5}$ i valori tristimolo X,Y,Z qui utilizzati/ottenuti sono scalati in modo tale che l'illuminante standard D65 abbia luminanza unitaria, cioè moltiplicate per ≈ 3.039513678

Figure 2.3: comparazione tra i diversi colorspaces, ed i colori percepibili che riescono a rappresentare. Notiamo che sRGB copre all'incirca 35% del color gamut

Tale operazione risulta problematica perchè essa non è consistente tra color spaces, producendo risultati differenti (a volte al di fuori del color gamut, producendo un colore impossibile, si veda in figura ?? ProPhoto RGB), ma più importante, produce colori eccessivamente più scuri e saturati.

Si giustifica dunque l'affermazione precedente di dover interpretare i colori in input negli arbitrari formati/color spaces supportati in uno spettro, eseguire la computazione, ed infine convertire il risultato per ogni pixel in sRGB per display. Mentre la conversione color space \rightarrow SPD è ben definita (vedi 2.19 e 2.12), non vale lo stesso per l'operazione inversa ed è ad oggi oggetto di ricerca [[al22]]. Ciò che complica tale compito sono i requisiti di

Identità La conversione da RGB a spettro, seguita dalla ben definita operazione inversa, deve restituire lo stesso risultato

Smoothness Lo spettro ottenuto deve essere derivabile con continuità affinchè, sotto nessune condizioni di luce, uno spettro di riflessione presenti seams visibili

Conservazione dell'energia Lo spettro ottenuto deve avere integrale $\in [0,1]$

Figure 2.4: esempio di $S(\lambda)$ con $c_0 = -0.000073447, \ c_1 = 0.035354, \ c_2 = -2.607$

se
$$[R, G, B]^T \in [0, 1]^3$$

L'approccio qui seguito è quello proposto da [[PJH23]] e [[Wen19]], il quale consiste nel ricostruire un valore RGB utilizzando una parabola parametrizzata da tre coefficienti c_0, c_1, c_2 , la quale è prima resa limitata da una funzione sigmoide per poter ottenere un risultato limitato in [0,1]. Vedi figura 2.4.

$$S(\lambda) = s(c_0\lambda^2 + c_1\lambda + c_2) \tag{2.25}$$

$$s(x) = \frac{1}{2} + \frac{x}{2\sqrt{1+x^2}} \tag{2.26}$$

Tali coefficienti sono calcolati a partire da un colore nell'sRGB color space, il quale è formulato come problema di ottimizzazione con scopo la minimzzazione della metrica di residuo seguente

$$\begin{bmatrix} c_0^* \\ c_1^* \\ c_2^* \end{bmatrix} = \underset{c_0, c_1, c_2}{\operatorname{arg\,min}} \begin{bmatrix} r \\ g \\ b \end{bmatrix} - \int_{\Lambda} \begin{bmatrix} R(\lambda) \\ G(\lambda) \\ B(\lambda) \end{bmatrix} S(\lambda, c_0, c_1, c_2) W_{D_{65}}(\lambda) \mathrm{d}\lambda$$
 (2.27)

dove $\|\cdot\|$ è la CIE76 ΔE color distance⁶

$$\Delta E = \sqrt{(L_2^* - L_1^*)^2 + (a_2^* - a_1^*)^2 + (b_2^* - b_1^*)^2}$$
 dove
$$f(x) = \begin{cases} \sqrt[3]{t} & \text{se } \frac{Y}{Y_n} > \left(\frac{6}{29}\right)^3 \\ \frac{1}{3} \left(\frac{29}{6}\right)^2 t + \frac{4}{29} & \text{altrimenti} \end{cases}$$

$$L^* = 16f\left(\frac{Y}{Y_n}\right)$$

$$a^* = 500 \left(f\left(\frac{X}{X_n}\right) - f\left(\frac{Y}{Y_n}\right)\right)$$

$$b^* = 200 \left(f\left(\frac{Y}{Y_n}\right) - f\left(\frac{Z}{Z_n}\right)\right)$$

$$\begin{array}{c} \text{con } X_n = 0.950489 \; Y_n = 1 \; Z_n = 1.08884 \\ \text{se il bianco di riferimento è assunto come} \; Y_{white} = 1 \end{array}$$

Tale problema di ottimizzazione è risolto con il metodo di Gauss-Newton (vedi A.1).

Se questa operazione fosse eseguita per ogni colore sRGB nel processo di rendering, le performance ne risentirebbero. Dunque una lookup table 5D viene precomputata. La struttura di tale tabella è dovuta al fatto che il gamut del sRGB color space è suddiviso in tre quadrilateri, tali che ciascuno di essi contenga rispettivamente

- punti in cui $R = \max\{R, G, B\}$, corrispondente a indice 0 nella prima dimensione della LUT
- punti in cui $G = \max\{R, G, B\}$, corrispondente a indice 1 nella prima dimensione della LUT
- punti in cui $B = \max\{R, G, B\}$, corrispondente a indice 2 nella prima dimensione della LUT

Ciascuno di questi quadrilateri mappa a 4 cubi nello spazio RGB. Tali sottospazi sono campionati con una griglia uniforme $64 \times 64 \times 64$ (le tre dimensioni delle 3

⁶Tale metrica richiede la conversione ad un color space uniforme, cioè dove la distanza fra colori è proporzionale alla differenza percepita dall'occhio umano. Il color space utilizzato nella metrica sopracitata è il CIE 1976 L*a*b*

griglie costituiscono $2^a, 3^a, 4^a$ dimensioni della LUT). Per ciascuno di questi vengono calcolati i coefficienti del polinomio desiderati (i quali costituiscono l'ultima dimensione della LUT).

Nota aggiuntiva: spettri di illuminanti o di coefficienti che descrivono il mezzo trasmissivo tendono ad avere valori spettrali > 1, il che significa che bisogna gestire anche la conversione per coordinate RGB > 1. Tali coordinate vengono normalizzate a 1 o 0.5 (a seconda della saturazione), affinchè si possa ottenere una migliore curva spettrale, e si memorizza un coefficiente di scala da utilizzare in seguito.

2.3 camera

Affinchè si possa associare ad ogni punto 2D nell'*color buffer* che conterrà eventualmente l'immagine output uno o più coppie $(\vec{p_0}, \hat{\omega_0})$ punto e direzione di partenza, necessitiamo di un *camera model*

Def. 2.3.1. — Un *camera model* descrive la relazione matematica tra le coordinate 3D di un punto nella scena dal quale la luce proviene e le coordinate 2D della sua proiezione nel *film plane*⁷ [[Ike14]]

2.3.1 pinhole camera model

Modello di camera ideale secondo la quale la scena è osservata attraverso una apertura infinitesima. Tale modello genera immagini con messa a fuoco nitida ovunque, trascurando tutte le distorsioni geometriche e effetti di aberrazione tipici delle lenti finite.⁸

Considerazioni Geometriche:

Origine: punto \vec{o} , nel quale è posizionata l'apertura della

camera

Film plane: posizionato a distanza n (f in figura), distanza

focale della camera, dall'origine \vec{o} . Definisce il field of view. Anche chiamato image plane o

near plane

⁷ film è il termine che utilizziamo per il piano dell'immagine finale [[PJH23]]

 $^{^{8}}$ descrivere ed implementare modelli di camera realistici è fuori dallo scope

Figure 2.5: A sinistra, diagramma del pinhole camera model. A destra, geometria del pinhole camera model con un sistema di riferimento left-handed. Di solito l'asse z punta verso la camera, risiedente in z=0

Punti: $\vec{p} \in \vec{q}$, rispettivamente punto da proiettare, "trasportante

radianza", e punto $\vec{q},$ proiezione del punto \vec{p} sul

film plane

Definiamo inoltre dei Coordinate Spaces:

Object Space: spazio tridimensionale in cui è definito ciascun oggetto

World Space: spazio tridimensionale utilizzato dalla scena

Camera Space: spazio tridimensionale avente come origine il punto di

apertura della camera, asse x e y direzioni parallele al film plane, e z direzione perpendicolare al film plane

Rendering Space: spazio tridimensionale avente come origine il punto di

apertura della camera, ma preservante le direzioni del world space. Lo utilizziamo negli algoritmi basati su ray tracing in quanto, fa in modo che gli oggetti vicini alla camera abbiano posizioni rappresentati da numeri piccoli, dunque sfruttanti precisione floating point maggiore, mentre le direzioni preservate permettono un migliore test di intersezione mediante Axis Aliqued Bounding Boxes

Image Space: spazio bidimensionale corrispondente a coordinate in [-1, 1]

nel film plane, con origine il centro, e assi x, y paralleli

alle direzioni x,y del Camera Space

(a) Geometria del pinhole camera model (b) Mostra la mappa nonlineare della visto dall'asse x depth^9

Figure 2.6: proiezione prospettica su pinhole camera model

Le formule che seguono utilizzano, per comodità, il Camera Space.

La mappa $\vec{q} = [y_1, y_2]^T$ da $\vec{p} = [x_1, x_2, x_3]^T$. Siano l, r, b, t, n, f rispettivamente left, right, bottom, top, near, far.

Possiamo ricavare una proiezione prospettica¹⁰ esprimendo il punto \vec{p} in coordinate omogenee e concatenando una trasformazione di shearing¹¹ per sovrapporre far plane $[l,r] \times [b,t]$ con il near plane, seguito da una scala affinchè i due piani sovrapposti abbiano dimensione tale da ottenere un angolo di visione 90°.

$$\begin{bmatrix} \frac{2n}{r-l} & 0 & 0 & 0\\ 0 & \frac{2n}{t-b} & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & -\frac{r+l}{2n} & 0\\ 0 & 1 & -\frac{t+b}{2n} & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0\\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.28)

che mappa

$$[l, b, n, 1]^T \mapsto [-n, -n, n, 1]^T$$
$$[r, f, n, 1]^T \mapsto [n, n, n, 1]^T$$

Dunque il prossimo step è la normalizzazione delle tre coordinate spaziali, cioè la divisione di tutte le tre coordinate per la coordinata z, affinchè più lontano sia un oggetto e più piccolo esso appare (step detto perspective divide) il che è ottenuto

 $^{^9}$ Immagine da http://learnwebgl.brown37.net/08_projections/projections_perspective.html

¹⁰Weak perspective projection

¹¹https://en.wikipedia.org/wiki/Shear mapping

ponendo un coefficiente non nullo nell'elemento di indice (4,3) nella matrice di trasformazione. A seguire, centriamo la media armonica $\frac{2fn}{f+n}$ nell'origine e normalizziamo l'intervallo delle distanze, in modo tale che la mappa $[-n, f] \mapsto [-1, 1]$ sia nonlineare, dando più importanza ai valori vicini alla camera. Vedi figura 2.6 a

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{f+n}{2} & -fn \\ 0 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.29)

Combinando 2.29 e 2.28 si ottiene una trasformazione che mappa il view frustum, piramide retta a base piramidale con dimensioni arbitrarie, ad un cubo $[-1,1]^3$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{2n}{r-l} & 0 & -\frac{r+l}{r-l} & 0 \\ 0 & \frac{2n}{t-b} & -\frac{t+b}{t-b} & 0 \\ 0 & 0 & \frac{f+n}{f-n} & -\frac{2fn}{f-n} \\ 0 & 0 & 1 & 0 \end{bmatrix}$$
(2.30)

2.3.2 filtrare image samples

Dopo il campionamento di un pixel, e il calcolo della radianza spettrale in ogni pixel sample, bisogna aggregare tutti i contributi di ogni campione. Tutti i contributi dovrebbero avere un peso inversamente proporzionale alla distanza dal centro. Ciò suggerisce l'uso di un filtro passa basso f(x-x',y-y'), dove (x,y) coordinate in cui si calcola la filtered image function $r_f(x,y)$ e (x',y') displacement.

Idealmente, per ottenere la migliore stima possibile, si dovrebbero estrarre ∞ samples ed integrarli nella pixel cell area A_{px}

$$r_f(x,y) = \int_{A_{px}} f(x-x',y-y') r(x',y') \mathrm{d}A \tag{2.31}$$

Come meglio trattato in capitolo 4, lo *stimatore* di monte carlo ci permette di stimare tale integrale come

$$r_f(x,y) \approx \frac{1}{n} \sum_{i=1}^n \frac{f(x-x_i, y-y_i)r(x_i, y_i)}{p(x_i, y_i)}$$
 (2.32)

se consideriamo il sample point come vettore aleatorio con distribuzione uniforme,

allora l'equazione diventa

$$r_f(x,y) \approx \frac{\|A_{px}\|}{n} \sum_{i=1}^n f(x - x_i, y - y_i) r(x_i, y_i)$$
 (2.33)

Equazione 2.33 può essere migliorata in termini di varianza pesando ciascun campione affinchè la somma dei valori filtrati sia pari a 1 anche con campioni finiti (la sua aspettazione è 1). Tale stimatore è detto weighted importance sampling Monte Carlo estimator

$$r_f(x,y) \approx \frac{\sum_{i=1}^n f(x-x_i,y-y_i)r(x_i,y_i)}{\sum_{i=1}^n f(x-x_i,y-y_i)} \tag{2.34}$$

Tali formule hanno il difetto di richiedere tutti i campioni nel film plane per stimare la radianza spettrale in un singolo pixel. La soluzione consiste nel scegliere opportunamente un filtro che lascia passare solo i campioni all'interno del pixel stesso, e campionare la distribuzione di samples con una distribuzione simile alla filter function. Tale approccio è nominato filter importance sampling (vedi 4).

$$\begin{split} r_f(x,y) &\approx \frac{1}{n} \sum_{i=1}^n \left(\frac{f(x-x_i,y-y_i)}{p(x_i,y_i)} r(x_i,y_i) \right) \\ &= \frac{\left(\int_{\mathbb{R}^2} |f(x',y')| \mathrm{d}A \right)}{n} \sum_{i=1}^n \mathrm{sgn}(f(x-x_i,y-y_i)) r(x_i,y_i) \end{split}$$

Combinando tale approccio con weighted importance sampling

$$r_f(x,y) \approx \frac{\sum_{i=1}^n w(x-x_i,y-y_i) r(x_i,y_i)}{\sum_{i=1}^n w(x-x_i,y-y_i)} \tag{2.35}$$

con

$$w = \frac{f(x,y)}{p(x,y)}$$

Con il primo approccio, 2.34, il vantaggio è quello di calcolare una stima per ogni pixel basata su un numero maggiore di campioni distribuiti su tutto il film plane. Tale approccio ha i suoi svantaggi nella performance, e nel fatto che se i campioni sono ben distribuiti una tale ricostruzione non è necessaria, rendendo 2.35 un buon approccio in questo caso.

Chapter 3

Modelli di Fonti Luminose e Superfici

3.1 Modellazione di Superfici

Quando un flusso radiante incide su una superficie, i tre processi che avvengono sono riflessione, trasmissione, assorbimento, oltre all'emissione per tutti i materiali al di sopra dello zero assoluto. In particolare, durante la propagazione di un flusso radiante in un mezzo, parte della sua energia viene assorbita o deviata dal mezzo¹. Quando la luce incontra un oggetto, in particolare la sua superficie esterna, detta interfaccia, tale flusso radiante può essere trasmesso e/o riflesso in diverse direzioni e con diversa intensità.

Per il principio di conservazione dell'energia, all'interfaccia deve valere la proprietà 2

$$\bar{\rho} + \bar{\tau} = 1 \tag{3.1}$$

²notazione introdotta in seguito

Figure 3.1: tipi di riflessione e trasmissione. Immagine da [Jam09]

¹d'ora in poi in questo capitolo si trascura la propagazione nel mezzo e si considera propagazione nel vuoto

Si noti l'assenza del coefficiente di assorbimento, in quanto esso non è rilevante nell'interazione luce-interfaccia, ma partecipa in processi che coinvolgono la propagazione all'interno del volume del materiale, nel quale vale, per ogni lunghezza d'onda, in ogni istante, in ogni punto dello spazio, ancora la conservazione dell'energia

$$\alpha + \rho + \tau = 1 \tag{3.2}$$

Le proprietà ottiche che coinvolgono tali processi sono suddivise in spettrali e non, ed in estrinseche (suffisso "-ance") ed intrinseche (suffisso "-ivity"), queste ultime caratterizzanti il materiale ed utilizzate esclusivamente per materiali puri. In particolare seguono le definizioni del CIE Lighting Vocabulary

Reflectance: Per una data radiazione con data SPD, polarizzazione,

geometria: Rapporto tra flusso radiante o luminoso riflesso e flusso radiante o riflesso incidente. Nel primo caso, le grandezze possono essere spettrali o

cumulative. Misura adimensionale. Simbolo ρ

Trasmittance: Per una data radiazione con data SPD, polarizzazione,

geometria: Rapporto tra flusso radiante o luminoso trasmesso e flusso radiante o riflesso incidente, nelle date condizioni (come la lunghezza del percorso della radiazione nell mezzo che si considera). Nel primo caso, le grandezze possono essere spettrali o cumula-

tive. Misura adimensionale. Simbolo τ

Absorptance: Rapporto tra flusso radiante o luminoso assorbito

e flusso radiante o luminoso incidente in date condizioni (come la lunghezza del percorso nel mezzo

considerato). Simbolo α

Reflectivity: (Spectral) Reflectance di uno strato del materiale

con spessore tale che non c'è cambiamento in Reflectance. Cioè spessore tendente all'infinito (halfspace bulk material, materiale semi-infinito). Simbolo ρ_{∞}

Trasmissivity: Per un materiale assorbente: (spectral) Transmit-

tance interna di uno strato di materiale tale che il percorso della radiazione all'interno del mezzo sia di lunghezza unitaria, senza incontrare ostacoli. Per "interna" si intende non riferita alla sola interfaccia.

Simbolo τ_{u}

Absorptivity:

Per un materiale assorbente: (spectral) Absorptance di uno strato di materiale tale che il percorso della radiazione all'interno del mezzo sia di lunghezza unitaria, senza incontrare ostacoli.. Simbolo α_n

Si noti che nelle definizioni di Reflectivity e Transmissivity si contano anche i contributi aggiunti (nel primo caso) / tolti (nel secondo caso) per via del fenomeno di subsurface scattering³, dunque talvolta si considerano soltanto gli effetti di riflessione e trasmissione all'interfaccia, simboli $\bar{\rho}, \bar{\tau}$, il cui valore per i vari materiali è governato dalle Equazioni di Fresnel (vedi 3.1.1) Nota dalla tabella ?? come tali coefficienti dipendano dagli angoli solidi considerati per il calcolo del flusso incidente e riflesso/trasmesso. Distinguere tale computazione in categorie è più significativo per la reflectance (vedi 3.2).

Per caratterizzare macroscopicamente le proprietà di riflessione e trasmissione del materiale utilizziamo un approccio probabilistico, utilizzando una distribuzione⁴ che trasforma Irradianza incidente in Radianza riflessa o trasmessa. Nel caso della riflessione, non tutta la luce riflessa proviene dalla riflessione della luce incidente, ma può essere l'aggregato di contributi di riflessioni multiple in un materiale di spessore finito, oppure radianza "riemersa" durante la propagazione all'interno del materiale per via di scattering multiplo. Nel caso di un materiale generico tale sarebbe eccessivamente dispendiosa. Nell'ipotesi che il materiale sia a regime, senza effetti di fosforescenza e fluorescenza (restringendoci all'ottica geometrica⁵), possiamo modellare il materiale con una densità di distribuzione che tiene conto della possibilità di subsurface scattering nella superficie, approssimando il problema assumendo che la luce fuoriesca dal materiale soltanto in un punto, in un unica direzione. Tale densità di distribuzione è detta Bidirectional Scattering-Surface Reflectance Distribution Function(BSSRDF)

Def. 3.1.1. — La Bidirectional Scattering-Surface Reflectance Distribution Function(BSSRDF) $S(\vec{p}_o, \hat{\omega_o}, \vec{p}_i, \hat{\omega_i})$ Esprime la proporzione tra flusso radiante (spettrale) riflesso da \vec{p}_o in direzione $\hat{\omega_o}$ e il flusso radiante (spettrale) incidente in \vec{p}_i dalla direzione $\hat{\omega_i}$. Misurata in Wm⁻²sr⁻¹

$$S(\vec{p_o}, \hat{\omega_o}, \vec{p_i}, \hat{\omega_i}) = \frac{\mathrm{d}L_o(\vec{p_o}, \hat{\omega_o})}{\mathrm{d}\Phi_i(\vec{p_i}, \hat{\omega_i})} \tag{3.3}$$

Approssimando ulteriormente il comportamento della luce, trascurando il fenomeno di subsurface scattering e supponendo che essa fuoriesca esclusiamente dal punto

 $^{^3}$ fuori scope

Coefficiente	Formula
Spectral Reflectance	$\rho_{\lambda}(\lambda) = \frac{\Phi^{r}_{e,\lambda}(\lambda)}{\Phi^{i}_{e,\lambda}(\lambda)}$
Reflectance	$\rho = \frac{\Phi_e^r}{\Phi_e^i} = \frac{\int_0^\infty \rho_\lambda(\lambda) \Phi_{e,\lambda}^i \mathrm{d}\lambda}{\int_0^\infty \Phi_{e,\lambda}^i \mathrm{d}\lambda} \neq \int_0^\infty \rho_\lambda(\lambda) \mathrm{d}\lambda$
Spectral Transmittance	$\rho_{\lambda}(\lambda) = \frac{\Phi^{r}_{e,\lambda}(\lambda)}{\Phi^{i}_{e,\lambda}(\lambda)}$
Trasmittance	$\tau = \frac{\Phi_e^t}{\Phi_e^i} = \frac{\int_0^\infty \tau_\lambda(\lambda) \Phi_{e,\lambda}^i \mathrm{d}\lambda}{\int_0^\infty \Phi_{e,\lambda}^i \mathrm{d}\lambda} \neq \int_0^\infty \tau_\lambda(\lambda) \mathrm{d}\lambda$
Spectral Absorptance	$\alpha_{\lambda}(\lambda) = \frac{\Phi^{a}_{e,\lambda}(\lambda)}{\Phi^{i}_{e,\lambda}(\lambda)}$
Absorptance	$\alpha = \frac{\Phi_e^a}{\Phi_e^i} = \frac{\int_0^\infty \rho_\lambda(\lambda) \Phi_{e,\lambda}^i \mathrm{d}\lambda}{\int_0^\infty \Phi_{e,\lambda}^i \mathrm{d}\lambda} \neq \int_0^\infty \alpha_\lambda(\lambda) \mathrm{d}\lambda$

Table 3.1: formule per le definizioni 3.1

di incidenza (dunque soffermandoci soltanto sui fenomeni a livello dell'interfaccia), possiamo semplificare nella Bidirectional Reflectance Distribution Function(BRDF)

Def. 3.1.2. — La Bidirectional Reflectance Distribution Function(BRDF) $f_r(\vec{p},\hat{\omega_o},\hat{\omega_i})$ Esprime la proporzione tra irradianza (spettrale) incidente nel punto \vec{p} da un angolo solido centrato in $\hat{\omega_i}$ e radianza (spettrale) riflessa in direzione $\hat{\omega_o}$. Misurata in sr⁻¹

$$f_r(\vec{p}, \hat{\omega_o}, \hat{\omega_i}) = \frac{\mathrm{d}L_r(\vec{p}, \hat{\omega}_o)}{\mathrm{d}E_i(\vec{p}, \hat{\omega}_i)} = \frac{\mathrm{d}L_r(\vec{p}, \hat{\omega}_o)}{L_i(\vec{p}, \hat{\omega}_i)\langle \hat{n}, \hat{\omega}_i \rangle \mathrm{d}\hat{\omega}_i}$$
(3.4)

Le proprietà e casi d'uso di entrambe queste due distribuzioni saranno definite in seguito.

Riconosciamo, a seconda della distribuzione spaziale della BRDF/BSSRDF, quattro tipologie di riflessione fondamentali, in particolare

Diffuse Reflection la superficie si comporta come lambertiana rispetto alla riflessione, cioè distribuisce equamente tutta⁶ il flusso incidente

 $Glossy\ Specular\ Reflection$ la superficie predilige un sottoinsieme di direzioni per la riflessione

Perfectly Specular Reflection la superficie riflette secondo la legge della riflessione per le superfici otticamente lisce

Retroreflective Material la superficie riflette gran parte del flusso nelle direzioni vicine a quella di incidenza

Si noti che la trasmissione, modellata con una funzione analoga alla BRDF, la BTDF, è categorizzata in tre tipologie analoghe alle prime tre sopraindicate per la riflessione. Vedi figura 3.1.

Come precedentemente accennato, per il calcolo della reflectance, vengono presi diversi angoli solidi come riferimento, vedi Tabella 3.2.

Table 3.2: Tipi di reflectance proposti da [al77]. Nota che di solito il coseno dell'angolo rispetto allo zenith della direzione incidente non è preso con valore assoluto, in quanto si assume \hat{n} come la normale che forma un angolo acuto con $\hat{\omega}_i$. Seguendo la convenzione di [PJH23], qui invece la normale è assunta sempre uscente dalla superficie.

Coefficiente Formula

Bidirectional Reflectance

$$\mathrm{d}\rho(\vec{p},\hat{\omega}_o,\hat{\omega}_i) = f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) |\langle \hat{n},\hat{\omega}_o \rangle| \mathrm{d}\hat{\omega}_o$$

Directional-Conical Reflectance

⁵Non propriamente una PDF, perchè non ha integrale unitario

⁵In quanto le distribuzioni qui definite, nell'ipotesi di ottica geometrica, non cambiano la lunghezza d'onda della radiazione incidente, la dipendenza di radianza, irradianza, flusso, con la lunghezza d'onda è omessa per comodità

⁶Senza contare assorbimento

$$\rho(\vec{p}, \hat{\omega}_o, \hat{\omega}_i; \Omega) = \int_{\Omega} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_o \rangle| \mathrm{d}\hat{\omega}_o$$

Directional-Hemispherical Reflectance

$$\rho(\vec{p}, \hat{\omega}_i) = \int_{\mathcal{H}^2(\hat{n})} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_o \rangle| \mathrm{d}\hat{\omega}_o$$

Conical-Directional Reflectance

$$\mathrm{d}\rho(\vec{p},\hat{\omega}_o,\hat{\omega}_i;\Omega) = \frac{|\langle \hat{n},\hat{\omega}_o\rangle|\mathrm{d}\hat{\omega}_o}{\int_{\mathcal{H}^2(\hat{n})}|\langle \hat{n},\hat{\omega}_i\rangle|\mathrm{d}\hat{\omega}_i} \int_{\Omega} f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i)|\langle \hat{n},\hat{\omega}_i\rangle|\mathrm{d}\hat{\omega}_i$$

Biconical Reflectance

$$\rho(\vec{p}, \hat{\omega}_o, \hat{\omega}_i; \Omega_i, \Omega_o) = \frac{1}{\int_{\mathcal{H}^2(\hat{n})} |\langle \hat{n}, \hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i} \int_{\Omega_o} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_o \mathrm{d}\hat{\omega}_i$$

Conical-Hemispherical Reflectance

$$\rho(\vec{p}, \hat{\omega}_i; \Omega) = \frac{1}{\int_{\mathcal{H}^2(\hat{n})} |\langle \hat{n}, \hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i} \int_{\Omega} \int_{\mathcal{H}^2(\hat{n})} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_o \mathrm{d}\hat{\omega}_i$$

Hemispherical-Directional Reflectance

$$\mathrm{d}\rho(\vec{p},\hat{\omega}_o) = \frac{|\langle \hat{n},\hat{\omega}_o \rangle| \mathrm{d}\hat{\omega}_o}{\pi} \int_{\mathcal{H}^2(\hat{n})} f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) |\langle \hat{n},\hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i$$

Hemispherical-Directional Reflectance $(alt)^7$

$$\rho(\vec{p}, \hat{\omega}_o) = \int_{\mathcal{H}^2(\hat{n})} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i$$
 (3.5)

Hemispherical-Conical Reflectance

Figure 3.2: Illustrazione geometrica riflessione e rifrazione speculare

$$\rho(\vec{p},\hat{\omega}_o;\Omega) = \frac{1}{\pi} \int_{\mathcal{H}^2(\hat{n})} \int_{\Omega} f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) |\langle \hat{n},\hat{\omega}_o \rangle \langle \hat{n},\hat{\omega}_i \rangle |\mathrm{d}\hat{\omega}_o \mathrm{d}\hat{\omega}_i$$

Bi-Hemispherical Reflectance

$$\rho(\vec{p}) = \frac{1}{\pi} \int_{\mathcal{H}^2(\hat{n}_i)} \int_{\mathcal{H}^2(\hat{n}_o)} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle | \mathrm{d}\hat{\omega}_o \mathrm{d}\hat{\omega}_i \qquad (3.6)$$

3.1.1 Proprietà ottiche delle interfacce

Trascurando i fenomeni di scattering e assorbimento che avvengono all'interno del materiale, e concentrandoci solo sulle interazioni a livello di interfaccia. Partiamo analizzando con queste convenzioni le superfici perfettamente speculari, la cui propagazione delle radiazioni, con assunzione di ottica geometrica, è interamente governata dalle

Legge della riflessione
$$\theta_i = \theta_r$$
Legge di Snell⁸ $\eta_i \sin \theta_i = \eta_t \sin \theta_t$

$$\left. \begin{cases} \varphi_o = \varphi_i + \pi \end{cases} \right. \tag{3.7}$$

⁷La utilizziamo in seguito, per convenzione, senza normalizzazione e notazione differenziale. In tale contesto essa la chiamiamo "albedo"

Ricordiamo che le implementazioni per la Legge di Snell devono tener conto della possibilità di riflessione interna totale, nel caso in cui $\eta_t < \eta_i$ e $\theta_i \ge \theta_c = \arcsin(\eta_i/\eta_t)$.

Le direzioni di riflessione e rifrazione sono computate mediante osservazioni geometriche (Figura 3.2)

$$\hat{\omega}_r = \tau_r(\hat{n}, \hat{\omega}_i) = -(\hat{\omega}_i - 2\langle \hat{n}, \hat{\omega}_i \rangle) = 2\langle \hat{n}, \hat{\omega}_i \rangle - \hat{\omega}_i$$
 (3.8)

Mentre, per la trasmissione, sapendo che geometricamente

$$\sin \theta_i \hat{x} = \cos \theta_i \hat{n} - \hat{\omega}_i \tag{3.9}$$

e che per la legge di Snell

$$cos\theta_{t} = \sqrt{1 - \sin^{2}\theta_{t}} = \sqrt{1 - \frac{\eta_{i}^{2}}{\eta_{t}^{2}}\sin^{2}\theta_{i}} = \sqrt{1 - \frac{\eta_{i}^{2}}{\eta_{t}^{2}}(1 - \cos^{2}\theta_{i})}$$
 (3.10)

allora la direzione di trasmissione

$$\begin{split} \hat{\omega}_t &= \tau_t(\hat{n}, \hat{\omega}_i) = \sin \theta_t \hat{x} - \cos \theta_t \hat{n} \\ &= \frac{\sin \theta_t}{\sin \theta_i} (\cos \theta_i \hat{n} - \hat{\omega}_i) - \cos \theta_t \hat{n} \\ &\stackrel{(3.7)}{=} \left(\frac{\eta_i}{\eta_t} \cos \theta_i - \cos \theta_t \right) \hat{n} - \frac{\eta_i}{\eta_t} \hat{\omega}_i \\ &\stackrel{(3.10)}{=} \frac{\eta_i}{\eta_t} \left(\left(\cos \theta_i - \frac{\eta_t}{\eta_i} \sqrt{1 - \frac{\eta_i^2}{\eta_t^2} (1 - \cos^2 \theta_i)} \right) \hat{n} - \hat{\omega}_i \right) \\ &= \frac{\eta_i}{\eta_t} \left(\left(\cos \theta_i - \sqrt{\frac{\eta_t^2}{\eta_i^2} - 1 + \cos^2 \theta_i} \right) \hat{n} - \hat{\omega}_i \right) \\ &= \frac{\eta_i}{\eta_t} \left(\left(\langle \hat{n}, \hat{\omega}_i \rangle - \sqrt{\frac{\eta_t^2}{\eta_i^2} - 1 + \langle \hat{n}, \hat{\omega}_i \rangle^2} \right) \hat{n} - \hat{\omega}_i \right) \end{split}$$
(3.12)

Anche le frazioni di radiazione incidente trasmessa e riflessa dipendono dall'indice di rifrazione, secondo le *Equazioni di Fresnel*, che forniscono le relazioni per il rapporto tra rispettivamente campo elettrico riflesso e campo elettrico incidente, e campo elettrico trasmesso e campo elettrico incidente, per ognuna delle due

 $^{^8}$ Nota come i contributi delle varie lunghezze d'onda della radiazione incidente sono trasmessi ad angoli rispetto alla normale θ_t differenti, effetto noto come $\it Dispersione$. Ciò vuol dire che per ogni lunghezza d'onda campionata bisogna generare un nuovo raggio

componenti di polarizzazione⁹. Tali equazioni possono essere anche espresse per relazionare i rapporti tra potenza riflessa e incidente, e potenza trasmessa e incidente¹⁰.

$$\bar{\rho}_{\perp}(\mu) = \frac{(a-\mu)^2 + b^2}{(a+\mu)^2 + b^2} \in [0,1]$$
(3.13)

$$\bar{\rho}_{\parallel}(\mu) = \frac{(a-\mu)^2 + b^2}{(a+\mu)^2 + b^2} \frac{(a - \frac{1-\mu^2}{\mu})^2 + b^2}{(a - \frac{1+\mu^2}{\mu})^2 + b^2} \in [0, 1]$$
(3.14)

$$\bar{\tau}_{\perp}(\mu) = 1 - \bar{\rho}_{\perp} \tag{3.15}$$

$$\bar{\tau}_{\parallel}(\mu) = 1 - \bar{\rho}_{\parallel} \tag{3.16}$$

 $dove^{11}$

$$\begin{split} a &= \sqrt{\frac{\sqrt{c^2 + 4\eta\kappa} + c}{2}} \quad \mu = \cos\theta_i = \langle \hat{n}, \hat{\omega}_i \rangle \\ b &= \sqrt{\frac{\sqrt{c^2 + 4\eta\kappa} - c}{2}} \quad \eta = \frac{\eta_i \eta_t + \kappa_t \kappa_i}{\eta_i^2 + \kappa_i^2} \\ c &= \eta^2 - \kappa^2 - (1 - \mu^2) \quad \kappa = \frac{\kappa_t \eta_i - \eta_t \kappa_i}{\eta_i^2 + \kappa_i^2} \end{split}$$

Per luce non polarizzata tali coefficienti sono pari alla media tra i coefficienti per polarizzazione-s e polarizzazione-p. Di seguito la formula per la riflessione.¹²

$$F_r(\mu) = \frac{\bar{\rho}_{\perp}(\mu) + \bar{\rho}_{\parallel}(\mu)}{2}$$
 (3.17)

Si noti che la reazione di una interfaccia ad una radiazione incidente varia considerevolmente con il variare dell'indice di rifrazione complesso, il quale ricordiamo varia con la lunghezza d'onda considerata, a tal punto che si distinguono due classi di materiali

 $^{^9}polarizzazione\ s$ (simbolo \bot), che indica che il campo elettrico oscilla con polarizzazione planare perpendicolarmente al piano di incidenza, e $polarizzazione\ p$ (simbolo \parallel), che indica che il campo elettrico oscilla con polarizzazione planare parallelamente al piano di incidenza

 $^{^{10}}$ Come prima detto, per la conservazione dell'energia, tali coefficienti devono sommarsi a 1, il che accade solo se si trascura il coefficiente di assorbimento α , il che è un ipotesi per l'analisi della sola interfaccia.

 $^{^{11}\}eta$ e κ si dicono rispettivamente Indice relativo di rifrazione e Indice relativo di absorption 12 Si precisa nuovamente che tale formula è accurata soltanto per interfacce e half space materials (vedi 3.1, reflectivity), ciò che attuiamo è una approssimazione. Inoltre si trascura la polarizzazione-s della luce riflessa che si verifica per angolo di incidenza pari all'Angolo di Brewster

Figure 3.3: Coefficiente di Riflessione di Fresnel per una interfaccia al variare dell'indice di rifrazione complesso.

Conduttori:

Caratterizzati da alto indice di assorbimento κ_a e basso indice di rifrazione reale η , il che determina una reflectance considerevole, ma al contempo altamente variabile con la lunghezza d'onda (vedi Figura 3.3). Si spiega la tinta tipica di molti metalli. La restante parte che viene trasmessa viene rapidamente assorbita, rendendola trascurabile

Semiconduttori:

Li trascuriamo

Dielettrici:

Essi non conducono elettricità, hanno indice di rifrazione reale, con κ_a trascurabile, il che significa che, durante la trasmissione al loro interno, la radianza è in quota parte assorbita, ma non del tutto. A livello dell'interfaccia, le caratteristiche sopracitate determinano una reflectance considerabile pressochè costante con l'angolo di incidenza θ_i (vedi Figura 3.3)

Approssimazioni delle equazioni di Fresnel, per abbattere il costo computazionale,

includono l'approssimazione di Lazányi [LS05]

$$F_r(\mu) \approx \frac{(\eta - 1)^2 + \kappa^2 + 4\eta(1 - \mu)^5}{(\eta + 1)^2 + \kappa^2}$$
 (3.18)

e, per i dielettrici, l'approssimazione di Schlick [Sch94], che richiede la conoscenza della reflectance per incidenza normale F_0

$$F_r(\mu) \approx F_0 + (1 - F_0)(1 - \mu)^5$$
 con (3.19)

$$F_0 = \frac{(\eta - 1)^2 + \kappa^2}{(\eta + 1)^2 + \kappa^2} \stackrel{\kappa \approx 0}{=} \left(\frac{\eta - 1}{\eta + 1}\right)^2$$

Inoltre, per la categoria dei dielettrici, si possono utilizzare delle formule semplificate

$$\bar{\rho}_{\perp} = \left(\frac{\eta \cos \theta_t - \cos \theta_i}{\eta \cos \theta_t + \cos \theta_i}\right)^2 \tag{3.20}$$

$$\bar{\rho}_{\parallel} = \left(\frac{\cos\theta_t - \eta\cos\theta_i}{\cos\theta_t + \eta\cos\theta_i}\right)^2 \tag{3.21}$$

3.1.2 BRDF e BSSRDF

Come già definito prima, la Bidirectional Reflectance Distribution Function¹³ esprime la densita di distribuzione emisferica di radianza incidente all'occorenza di un evento di scattering dalla superficie

$$f_r(\vec{p},\hat{\omega_o},\hat{\omega_i}) = \frac{\mathrm{d}L_r(\vec{p},\hat{\omega}_o)}{\mathrm{d}E_i(\vec{p},\hat{\omega}_i)} = \frac{\mathrm{d}L_r(\vec{p},\hat{\omega}_o)}{L_i(\vec{p},\hat{\omega}_i)\langle\hat{n},\hat{\omega}_i\rangle\mathrm{d}\hat{\omega}_i}$$

Tale che l'integrale nel suo dominio sia pari all'albedo della superficie

$$\frac{1}{\bar{\rho}(\vec{p},\hat{\omega}_o)}\int_{\mathcal{H}^2(\hat{n})} f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) \langle \hat{n},\hat{\omega}_i \rangle \mathrm{d}\hat{\omega}_i = 1$$

Affinchè sia fisicamente plausibile, inoltre, deve obbedire alle tre proprietà di

Non Negatività
$$\begin{aligned} f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) &\geq 0 \\ \text{Conservazione Energia} & \frac{\int_{\mathcal{H}^2(\hat{n})} L_i(\vec{p},\hat{\omega}_i)\bar{\rho}(\vec{p},\hat{\omega}_i)\langle \hat{n},\hat{\omega}_i\rangle \mathrm{d}\hat{\omega}_i}{\int_{\mathcal{H}^2(\hat{n})} L_i(\vec{p},\hat{\omega}_i)\langle \hat{n},\hat{\omega}_i\rangle \mathrm{d}\hat{\omega}_i} &\leq 1 \\ \text{Helmontz Reciprocity} & f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) &= f_r(\vec{p},\hat{\omega}_i,\hat{\omega}_o) \end{aligned}$$

 $^{^{13}\}mathrm{implementare}$ una BSSRDF è fuori scope

Densità di Distribuzione analoga è la BTDF $f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i)$, la quale è non nulla per superfici non opache, e gode di tutte le proprietà sopracitate, ma la reversibilità del cammino ottico viene generalizzata come¹⁴

$$\frac{f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i)}{\eta_o^2} = \frac{f_s(\vec{p}, \hat{\omega}_i, \hat{\omega}_o)}{\eta_i^2}$$
(3.23)

Dalle definizioni di BRDF e BTDF (3.4), possiamo ricavare una equazione integrale che esprime la radianza riflessa e trasmessa al punto \vec{p} , la cui valenza è ristretta nell'assunzione di trascurare i processi di assorbimento e scattering che avvengono all'interno del materiale, dette reflectance equation e transmittance equation

$$L_r(\vec{p}, \hat{\omega}_o) = \int_{\mathcal{H}^2(\hat{n})} L_i(\vec{p}, \hat{\omega}_i) f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i$$
 (3.24)

$$L_t(\vec{p}, \hat{\omega}_o) = \int_{\mathcal{H}^2(-\hat{n})} L_i(\vec{p}, \hat{\omega}_i) f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, -\hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i \tag{3.25}$$

Le quali, definendo la distribuzione Bidirectional Scattering Distribution Function (BSDF), possiamo riunire le due densità di distribuzione $f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) + f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i)$, dove

$$f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = 0, \quad \text{se } \langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle \leq 0 \tag{3.26}$$

$$f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = 0, \text{ se } \langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle \ge 0$$
 (3.27)

per la quale possiamo aggregare i due integrali nella $Scattered\ Radiance^{15}$

$$L_s(\vec{p}, \hat{\omega}_o) = \int_{S^2} L_i(\vec{p}, \hat{\omega}_i) f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i$$
 (3.28)

Dove, aggiungendo l'eventuale radianza emessa dalla superficie, otteniamo un'equazione nota come *Rendering Equation*, la quale ci proponiamo di risolvere numericamente

$$L_o(\vec{p}, \hat{\omega}_o) = L_e(\vec{p}, \hat{\omega}_o) + \int_{\mathcal{S}^2} L_i(\vec{p}, \hat{\omega}_i) f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i$$
(3.29)

Assumiamo propagazione nel vuoto, affinchè la radianza si conservi nel suo percorso. Si noti la natura ricorsiva della equazione soprascritta. La radianza incidente su una superficie L_i risulta essere a sua volta radianza osservata uscente da

 $^{^{14}}$ quando usiamo f_s , ci riferiamo a entrambe BRDF e BTDF, [Peg16]

¹⁵considerazioni sul campionamento della funzione integranda saranno fatte in seguito

Figure 3.4: Illustrazione dell'angolo (a sinistra) e angolo solido (a destra) sottesi da un punto dalla superficie visibile di un oggetto arbitrario. Immagine da [Peg16]

un'altra superficie o fonte luminosa della scena, tale che, se definiamo la $t(\vec{p}, \hat{\omega})$ ray casting function, la quale, dato un punto \vec{p} e una direzione $\hat{\omega}$, restituisce il primo punto di intersezione che una semiretta definita da tale punto e direzione incontra. ¹⁶

$$L_i(\vec{p},\hat{\omega}) = L_o(t(\vec{p}, -\hat{\omega})) \tag{3.30}$$

Da cui riscriviamo la Rendering Equation

$$L_o(\vec{p}, \hat{\omega}_o) = L_e(\vec{p}, \hat{\omega}_o) + \int_{\mathcal{S}^2} L_o(t(\vec{p}, \hat{\omega}_i), -\hat{\omega}_i) f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i$$
 (3.31)

Come meglio spiegato in seguito (Capitolo 6), Equazione 3.31 è complessa anche perchè la relazione tra gli oggetti nella scena è implicita, incapsulata nella ray tracing function $t(\vec{p},\hat{\omega})$. Una forma più trattabile di tale equazione integrale la si può trovare trasformando l'integrale su un angolo solido in un integrale su un area (vedi Figura 3.4). L'angolo solido sotteso da un oggetto ad un punto \vec{p} è una misura di area proiettata, di una superficie parte di un oggetto visibile da \vec{p} , sulla sfera unitaria centrata in \vec{p} , ed è funzione sia dell'orientamento della normale della superficie osservata \hat{n}_q ad ogni punto $\vec{q} = \vec{p} + \|\vec{q} - \vec{p}\|\hat{\omega} = t((\vec{p}, \hat{\omega}_i), -\hat{\omega}_i)$, tale che $\hat{pq} = \hat{\omega}$, e sia della sua distanza da \vec{p} . Per esprimere tale relazione per

¹⁶tale semiretta è definita come "raggio", per come essa è implementata in codice: si fa avanzare un punto lungo tale retta a piccoli incrementi, e ad ogni step si controlla per intersezione con un oggetto della scena

ogni direzione dello spazio, definiamo $V(\vec{p},\vec{q})$ funzione di visibilità binaria tra \vec{p} e \vec{q} , tale che $V(\vec{p},\vec{q})=1$ se \vec{q} appartiene all'insieme di superfici visibili da \vec{p} , e $V(\vec{p},\vec{q})=0$ se \vec{p} e \vec{q} sono mutualmente occlusi. Calcolare tale area proiettata consiste nel proiettare ciascun elemento di superficie su una sfera di raggio $\|\vec{q}-\vec{p}\|$ moltiplicando per il coseno dell'angolo formato tra la congiungente \vec{p} a \vec{q} , e la normale \hat{n}_q , e dividere per il quadrato dell'area della sfera, in accordo con la definizione di angolo solido

$$d\hat{\omega} = \frac{V(\vec{p}, \vec{q})}{\|\vec{p} - \vec{q}\|^2} \langle \hat{n}_q, -\hat{pq} \rangle dA(\vec{q})$$
(3.32)

Tale relazione ricavata consiste nel jacobiano da utilizzare nell'integrale 3.31 per la sostituzione delle variabili. Inoltre, definiamo il Termine Geometrico $G(\vec{p},\vec{q})$, aggiungendo ai fattori della precedente formula il coseno dell'angolo tra direzione congiungente e \hat{n}_p , effettivamente proiettando angolo solido d $\hat{\omega}$ sul piano equatoriale della sfera unitaria centrata in \vec{p}

$$G(\vec{p}, \vec{q}) = \langle \hat{n}_p, \hat{pq} \rangle \frac{V(\vec{p}, \vec{q})}{\|\vec{p} - \vec{q}\|^2} \langle \hat{n}_q, -\hat{pq} \rangle$$

$$(3.33)$$

tale che

$$\langle \hat{n}_p, \hat{\omega} \rangle \mathrm{d}\hat{\omega} = \langle \hat{n}_p, \hat{pq} \rangle \frac{V(\vec{p}, \vec{q})}{\|\vec{p} - \vec{q}\|^2} \langle \hat{n}_q, -\hat{pq} \rangle = G(\vec{p}, \vec{q}) \mathrm{d}A(\vec{q}) \tag{3.34}$$

Possiamo dunque riformulare la Rendering Equation per essere un integrale nell'area dell'unione di tutte le superfici visibili dal punto \vec{p}

$$L_o(\vec{p}, \hat{pq}) = L_e(\vec{p}, \hat{pq}) + \int_A f_s(\vec{p}, \hat{\omega}_o, \hat{pq}) G(\vec{p}, \vec{q}) L_o(\vec{q}, -\hat{pq}) \mathrm{d}A(\vec{q}) \tag{3.35}$$

Torneremo in seguito su tale argomento.

3.1.3 Modelli di BRDF

Modelli di BRDFs derivano da diverse fonti, in particolare possono essere da dati misurati in laboratorio, da una simulazione di particelle, o da modelli analitici. Concentrandoci su questi ultimi, riusciamo ad individuare ulteriori suddivisioni basate sui fondamenti fisici di tali modelli

- *Modelli Fenomenologici*: Equazioni che cercano di mimare determinati effetti osservabili senza alcun fondamento fisico preciso
- Turbid Models: Equazioni che partono dal presupposto che tutti i fenomeni di subsurface light transport avvengano in scala microscopica, e applicano le equaizoni di Radiative Transfer Theory per derivare BRDF

- *Modelli a Microcilindri*: Equazioni che modellano una superficie come composta da una collezione di cavità cilindriche
- Modelli a Microgeometry: Equazioni che modellano una superficie come composta da una collezione di facce planari microscopiche. Ci concentriamo su quest'ultima categoria

Come si osserva dall'Equazione 3.28, necessitiamo di strategie per campionare punti della funzione integranda per date direzioni $\hat{\omega}_i$, affinchè si assicuri una buona convergenza allo Stimatore di Monte Carlo per integrale¹⁷. Una delle strategie proposte ed approfondite in seguito, è quella di campionare la funzione integranda con densità di probabilità p proporzionale alla BRDF

$$p(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = \frac{f_s(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle|}{\bar{\rho}(\vec{p}, \hat{\omega}_o)}$$
(3.36)

Dunque, assumendo di poter campionare da una distribuzione uniforme una osservazione della variabile aleatoria $\xi \sim \mathcal{U}(0,1)$, la cui implementazione si rimanda a Appendice A, analizziamo come poter trasformare tale variabile aleatoria per poter campionare con PDF proporzionale alla BRDF.

Analizziamo dunque due modelli fenomenologici, per poi passare a quelli basati su microgeometry

Lambertian BRDF

Ricordando l'equazione per *Hemispherical-Directional Reflectance* (Equazione 3.5), supponiamo che la BRDF sia costante nel dominio di integrazione, ovvero che la superficie sia lambertiana rispetto alla riflessione e opaca¹⁸, producendo riflessione diffusa perfetta.

$$\rho(\vec{p}, \hat{\omega}_o) = f_r(\vec{p}) \int_{\mathcal{H}^2(\hat{n})} |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i = f_r(\vec{p}) \pi = \rho(\vec{p})$$
 (3.37)

da cui

$$f_r(\vec{p}) = \frac{\rho(\vec{p})}{\pi} \tag{3.38}$$

Il campionamento di tale BRDF può essere compiuto estraendo una direzione casuale nell'emisfera proiettata (vedi Figura 3.5). Tale proiezione è compiuta in quanto la BRDF è semplice, ed è moltiplicata per tale coseno. La PDF in questione è la seguente: Siano $\hat{\omega}_z$ direzione dello zenith, $\hat{\omega}_i$ direzione incidente, la

¹⁷Tecnica nota come *Importance Sampling*, approfondita in seguito

 $^{^{18}}$ Inoltre, come sempre, ci limitiamo a considerare, con l'ottica geometrica, superfici solamente a livello dell'interfaccia

Figure 3.5: Illustrazione dell'area proiettata dell'emisfera secondo l'equazione $d\hat{\omega}_{\perp} = \langle \hat{n}, \hat{\omega} \rangle d\hat{\omega}$. Figura da [Peg16]

 $Cosine\mbox{-lobe}$ distribution centrata attorno alla direzione dello zenith, con ripidità n, è

$$c_n(\omega_z) = \frac{n+1}{2\pi} \langle \hat{\omega}_z, \hat{\omega}_i \rangle^n \tag{3.39}$$

Applichiamo la tecnica di *Inverse Transform Sampling*, che, come approfondito in seguito (Capitolo 4), permette di trasformare una realizzazione campionata con una data PDF (nel nostro caso, $\mathcal{U}(0,1)$) ad una arbitraria, per la quale bisogna però essere in grado di calcolare analiticamente la CDF ed invertirla. Per distribuzioni multivariate, tale tecnica è applicabile esclusivamente se la CDF è separabile.

L'integrale in un angolo solido Ω_i per la $Cosine\text{-}Lobe\ Distribution$ risulta essere separabile nella forma

$$\begin{split} \int_{\Omega_i} c_n(\hat{\omega}_z, \hat{\omega}_i) \mathrm{d}\hat{\omega}_i &= \int_0^{\varphi_i} \frac{1}{2\pi} \mathrm{d}\varphi \int_{\cos\theta_i}^1 (n+1) \mu^n \mathrm{d}\mu \\ &= \left[\frac{\varphi_i}{2\pi}\right]_{\varphi=0}^{\varphi_i} \left[\mu^{n+1}\right]_{\mu=\cos\theta_i}^1 \\ &= \frac{\varphi_i}{2\pi} \left(1 - \cos^{n+1}\theta_i\right) \end{split} \tag{3.40}$$

Applicando Inverse Transform Sampling permette di compiere Importance Sampling come

$$\xi_{\varphi} = \frac{\varphi_i}{2\pi} \longrightarrow \varphi_i = 2\pi \xi_{\varphi} \tag{3.41}$$

$$\xi_{\theta} = 1 - \cos^{n+1} \theta_i \longrightarrow \theta_i = \arccos\left(\sqrt[n+1]{1 - \xi_{\theta}}\right)$$
 (3.42)

Il che permette di ottenere le coordinate sferiche della direzione campionata. Dunque, nel caso della Lambertian BRDF, campioniamo secondo la PDF

$$p(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = c_1(\hat{n}, \hat{\omega}_i) \tag{3.43}$$

Specular BDRF

Possiamo derivare una BRDF per una superficie che mostra riflessione speculare imponendo la condizione¹⁹

$$L_o(\vec{p}, \hat{\omega}_o) = \int_{\mathcal{H}^2(\hat{n})} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) L_i(\vec{p}, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| d\hat{\omega}_i$$
 (3.44)

$$= \begin{cases} F_r(\cos\theta_r)L_i(\vec{p},\hat{\omega}_r) & \text{se } \hat{\omega}_o = \tau_r(\hat{n},\hat{\omega}_r) \\ 0 & \text{altrimenti} \end{cases}$$
(3.45)

La quale risulta essere evidente come una Distribuzione di dirac moltiplicata per un opportuno fattore 20

$$f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = F_r(\langle \hat{n}, \hat{\omega}_o \rangle) \frac{\delta(\hat{\omega}_i - \hat{\omega}_r)}{|\langle \hat{n}, \hat{\omega}_i \rangle|} \tag{3.46}$$

dove $\hat{\omega}_r = \tau_r(\hat{n}, \omega_s)$

Similmente, usando la legge di Snell, possiamo ricavare una specular BTDF, ricordando che per la conservazione dell'energia

$$\frac{\mathrm{d}^2 \Phi_t(\vec{p}, \hat{\omega}_t)}{\mathrm{d}^2 \Phi_i(\vec{p}, \hat{\omega}_i)} = \frac{L_t(\vec{p}, \hat{\omega}_t) \mathrm{d}A(\vec{p}) \langle \hat{n}, \hat{\omega}_t \rangle \mathrm{d}\hat{\omega}_t}{L_i(\vec{p}, \hat{\omega}_i) \mathrm{d}A(\vec{p}) \langle \hat{n}, \hat{\omega}_i \rangle \mathrm{d}\hat{\omega}_i}$$
(3.47)

Possiamo calcolare il jacobiano $\mathrm{d}\hat{\omega}_t/\mathrm{d}\hat{\omega}_i$ mediante osservazioni geometriche e la

 $^{^{19}{\}rm Si}$ noti che $F_r(\langle \hat{n},\hat{\omega}_i\rangle)=F_r(\langle \hat{n},\hat{\omega}_o\rangle)=$

²⁰Le distribuzioni di Dirac, sia per le superfici che per le sorgenti luminose, devono essere riconosciute e trattate in maniera differente nelle routines di sampling

legge di Snell

$$\frac{\mathrm{d}\hat{\omega}_{t}}{\mathrm{d}\hat{\omega}_{i}} = \frac{\sin\theta_{t} \,\mathrm{d}\theta_{t} \,\mathrm{d}\varphi_{t}}{\sin\theta_{t} \,\mathrm{d}\theta_{i} \,\mathrm{d}\varphi_{i}}$$

$$= \frac{\sin\theta_{t}}{\sin\theta_{i}} \frac{\mathrm{d}\arcsin\left(\frac{\eta_{i}}{\eta_{t}}\sin\theta_{i}\right)}{\mathrm{d}\theta_{t}}$$

$$= \frac{\eta_{i}}{\eta_{t}} \frac{\frac{\eta_{i}}{\eta_{t}}\cos\theta_{i}}{\sqrt{1 - \frac{\eta_{i}^{2}}{\eta_{t}^{2}}\sin^{2}\theta_{t}}}$$

$$= \frac{\eta_{i}^{2}}{\eta_{t}^{2}} \frac{\cos\theta_{i}}{\sqrt{1 - \sin^{2}\theta_{t}}}$$

$$= \frac{\eta_{i}^{2}}{\eta_{t}^{2}} \frac{\cos\theta_{i}}{\cos\theta_{t}}$$
(3.48)

da cui

$$\frac{L_t(\vec{p}, \hat{\omega}_t) dA(\vec{p}) \langle \hat{n}, \hat{\omega}_t \rangle d\hat{\omega}_t}{L_i(\vec{p}, \hat{\omega}_i) dA(\vec{p}) \langle \hat{n}, \hat{\omega}_i \rangle d\hat{\omega}_i} = \frac{L_t(\vec{p}, \hat{\omega}_t) \eta_i^2}{L_i(\vec{p}, \hat{\omega}_i) \eta_t^2} = T_{\frac{\eta_t}{\eta_i}}(\cos \theta_i)$$
(3.49)

Da quest'ultima relazione si può ricavare che la transmittance $\eta_i \to \eta_t$, notazione $T_{\frac{\eta_t}{\eta_i}}$, calcolata in $\cos\theta_i^{\ 21}$, è uguale alla transmittance $T_{\frac{\eta_i}{\eta_t}}$ calcolata in $\cos\theta_o$ Dunque la condizione

$$L_{o}(\vec{p}, \hat{\omega}_{o}) = \int_{\mathcal{H}^{2}(-\hat{n})} f_{t}(\vec{p}, \hat{\omega}_{o}, \hat{\omega}_{i}) L_{i}(\vec{p}, \hat{\omega}_{i}) |\langle \hat{n}, -\hat{\omega}_{i} \rangle| d\hat{\omega}_{i}$$

$$= \begin{cases} \frac{\eta_{t}^{2}}{\eta_{i}^{2}} T_{\frac{\eta_{i}}{\eta_{t}}} (\langle \hat{n}, \hat{\omega}_{o} \rangle) L_{i}(\vec{p}, \hat{\omega}_{t}) & \text{se } \hat{\omega}_{o} = \tau_{t}(\hat{n}, \hat{\omega}_{t}) \\ 0 & \text{altrimenti} \end{cases}$$

$$(3.50)$$

dove $T_{\frac{\eta_i}{\eta_t}}(\langle \hat{n}, \hat{\omega}_o \rangle) = T_{\frac{\eta_t}{\eta_i}}(\langle \hat{n}, \hat{\omega}_i \rangle) = 1 - F_r(\langle \hat{n}, \hat{\omega}_i \rangle) = 1 - F_r(\langle \hat{n}, \hat{\omega}_o \rangle)$ Da cui, con ragionamento analogo al precedente, si può ricavare la BTDF come delta di Dirac

$$f_t(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = \frac{\delta(\hat{\omega}_i - \hat{\omega}_t)}{-|\langle \hat{n}, \hat{\omega}_i \rangle|} T_{\frac{\eta_i}{\eta_t}}(|\langle \hat{n}, \hat{\omega}_o \rangle|) \frac{\eta_t^2}{\eta_i^2} \tag{3.52}$$

dove $\hat{\omega}_t = \tau(\hat{n}, \hat{\omega}_o)$

Il campionamento di tali BSDFs è gestito in modo speciale, in quanto solo se la PDF di campionamento è anch'essa una distribuzione di Dirac, con picco nella stessa posizione, allora la sampling routine ritorna un valore non nullo.

 $^{^{21} {\}cos \theta_i} = {\cos \theta_t}$ se la condizione del delta di Dirac è soddisfatta

Figure 3.6: Illustrazione dei tre effetti di interazione tra microfacets e radiazione incidente. A sinistra, *Shadowing*, per il quale alcuni microfacets sono occlusi rispetto alla luce incidente da altri microfacets. Al centro, l'effetto complementare, *Masking*, per il quale alcuni microfacets sono occlusi rispetto all'osservatore da un altri microfacets. A destra, *Interreflection*, per il quale luce incidente può "rimbalzare" su diversi microfacets prima di raggiungere l'osservatore. Questi tre effetti complicano la definizione di una BRDF. Immagine da [AHH18]

3.1.4 Modelli di superficie secondo Microfacet Theory

La *Microfacet Theory* è un approccio basato sull'ottica geometrica che modella una superficie, come una collezione di facce planari microscopiche, tipicamente con riflessione/trasmissione speculare (eccetto per il modello di Oren-Nayar, come si vedrà tra poco).

Affinchè l'assunzione di ottica geometrica sia valida, queste micro asperità sono assunte molto più piccole (o molto più grandi) di una lunghezza d'onda. Una BRDF ricavata con tale teoria è un modello modellante lo scattering della luce in una grande collezione di microfacets con un approccio probabilistico. Tale caratterizzazione è compicata dalle interazioni tra i microfacets illustrate in Figura 3.6

Un elemento di area della superficie dA è composto da un gran numero di microfacets, ciascuno di essi con la propria normale \hat{m} . Possiamo caratterizzare tali normali come distribuite secondo una PDF proporzionale alla cosiddetta Normal Distribution Function (NDF) $D(\vec{p}, \hat{m}) \geq 0$. Maggiore è la varianza di tale distribuzione più la superficie è "rough". Per l'interazione dell' Interreflection, la luce può rimbalzare diverse volte prima di giungere all'osservatore, e tale contributo assume significatività diversa a seconda della categoria del materiale [AHH18]

- Dielettrici: Contributi da riflessioni multiple sono man mano meno significativi per via del loro medio/basso Fresnel factor (reflectance)
- Conduttori: Il colore mostra i suoi maggior contributi nei rimbalzi successivi, in quanto alta reflectance e alto coefficiente di assorbimento wavelength-selective fa si che nei rimbalzi multipli la luce assume una polarizzazione e shift del colore più significativi

Figure 3.7: Illustrazione del significato della Normal Distribution Function. Nota a destra, che nell'integrale della NDF proiettato, i contributi occlusi si presentano sempre in coppia, uguali e con segno opposto, dunque non contribuiscono all'integrale. Immagine da [AHH18]

Inoltre, ciascun materiale reagisce differentemente alla penetrazione da parte della luce nella superficie dando luogo a *subsurface scattering* di diversa intensità. Nel caso in cui i microfacets sono molto più piccoli della lunghezza d'onda, possiamo approssimare affermando che la luce è uscita tutta nello stesso punto da cui è entrata, assunzione non precisa ma necessaria per usufruire del nostro modello di BRDF.

Ogni microfacet di normale \hat{m} , possiede anche una sua Micro BRDF $f_{\mu}(\hat{m}, \hat{\omega}_o, \hat{\omega}_i)$, i cui contributi sono cumulati per ottenere la BRDF.

La *Normal Distribution Function*, per convenzione, ha integrale pari al rapporto tra area della microsuperficie e macrosuperficie

$$\int_{S^2} D(\vec{p}, \hat{m}) \mathrm{d}\hat{m} = \frac{A_m}{A_n} \ge 1 \tag{3.53}$$

Inoltre, nel caso tipico in cui la NDF sia un Height Field, cioè

$$D(\vec{p}, \hat{m}) = 0, \quad \forall \hat{m} \mid \langle \hat{n}, \hat{m} \rangle \le 0 \tag{3.54}$$

Allora l'area proiettata sulla macrosuperficie è unitaria

$$\int_{\mathcal{H}^2(\hat{n})} D(\vec{p}, \hat{m}) \langle \hat{n}, \hat{m} \rangle d\hat{m} = 1$$
 (3.55)

Più in generale, l'area della microsuperficie proiettata su un piano perpendicolare ad una direzione $\hat{\omega}$ (tipicamente quella dell'osservatore), pari all'area con segno

della microsuperficie (Figura 3.7) diviso l'area della macrosuperficie, è pari al coseno dell'angolo tra direzione e normale della macrosuperficie

$$\int_{\mathcal{H}^2(\hat{n})} D(\vec{p}, \hat{m}) \langle \hat{\omega}, \hat{m} \rangle d\hat{m} = \langle \hat{n}, \hat{\omega} \rangle$$
(3.56)

I Masked microfacets sono contributi che si semplificano nell'integrale, dunque esso è pari all'integrale dei microfacets visibili. Possiamo modellare ciò matematicamente definendo una Masking Function o Mono-Static Visibility Function (MVF), la quale, data normale microscopica \hat{m} e direzione $\hat{\omega}$, definisce la percentuale aggregata di area di tutti i microfacets con normale \hat{m} , visibile da $\hat{\omega}$, fratto l'area aggregata totale di tutti i microfacets con normale \hat{m} . Essa rappresenta dunque la probabilità di un microfacet con normale \hat{m} di essere visibile da $\hat{\omega}$,

$$G_1(\vec{p}, \hat{m}, \hat{\omega}) = \Pr(\hat{\omega}) \tag{3.57}$$

Tale funzione $\in [0,1]$ e $G_1(\vec{p},\hat{m},\hat{\omega}) = 0$, se $\langle \hat{n},\hat{\omega} \rangle \langle \hat{m},\hat{\omega} \rangle \leq 0$

Dunque, per definizione, $G_1(\vec p,\hat m,\hat\omega_o)D(\vec p,\hat\omega_o)$ è la distribuzione dei microfacets visibili, tale che

$$\int_{\mathcal{H}^2(\hat{n})} G_1(\vec{p}, \hat{m}, \hat{\omega}_o) D(\vec{p}, \hat{m}) \langle \hat{m}, \hat{\omega}_o \rangle^+ d\hat{m} = \langle \hat{n}, \hat{\omega}_o \rangle$$
 (3.58)

 $dove x^+ = \max(0, x)$

Anche la funzione per modellare lo shadowing è una Mono-Static Visibility Function, infatti gode delle stesse proprietà della Masking Function, sostituendo $\hat{\omega}_i$ ad $\hat{\omega}_o$. Queste due funzioni sono combinate in qualche modo per ottenere la cosiddetta Joint Shadowing-Masking Function o Bi-Static Visibility Function (BVF) G_2 , definita come percentuale di area aggregata di microfacets con normale \hat{m} simultaneamente visibile dalle due direzioni $\hat{\omega}_o$ e $\hat{\omega}_i$, fratto l'area totale di tutti i microfacets con normale \hat{m} . In termini di probabilità,

$$G_2(\vec{p}, \hat{m}, \hat{\omega}_o, \hat{\omega}_i) = \Pr(\hat{\omega}_o \cap \hat{\omega}_i)$$
(3.59)

Se si assume che shadowing e masking sono incorrelati, il che può essere buona approssimazione solo per direzioni con differenza di angolo azimuthale considerevole, allora

$$G_2(\vec{p},\hat{m},\hat{\omega}_o,\hat{\omega}_i) = \Pr(\hat{\omega}_o)\Pr(\hat{\omega}_i) = G_1(\vec{p},\hat{m},\hat{\omega}_o)G_1(\vec{p},\hat{m},\hat{\omega}_i) \tag{3.60}$$

il che tende a provocare over darkening della superficie 22 Per essere fisicamente plausibile, la probabilità per un microfacet di essere visibile da due direzioni è

²²infatti se $\hat{\omega}_o = \hat{\omega}_i$, allora dovremmo ottenere G_1 . Invece, con tale metodo, otteniamo G_1^2

Figure 3.8: Illustrazione della geometria delle V-Cavities. Immagine da [Peg16]

minore, al più uguale se l'angolo azimuthale tra $\hat{\omega}_i$ e $\hat{\omega}_o$ è zero, a quella di essere visibile da una singola direzione

$$G_2(\vec{p}, \hat{m}, \hat{\omega}_o, \hat{\omega}_i) \in [0, \min(G_1(\vec{p}, \hat{m}, \hat{\omega}_o), G_1(\vec{p}, \hat{m}, \hat{\omega}_i))]$$
 (3.61)

Inoltre la microstruttura è visibile solo dalla emisfera la cui normale macroscopica forma un angolo acuto, da entrambe le direzioni

$$G_2(\vec{p},\hat{m},\hat{\omega}_o,\hat{\omega}_i) = 0, \ \ \operatorname{se} \langle \hat{n},\hat{\omega}_o \rangle \langle \hat{m},\hat{\omega}_o \rangle \leq 0 \langle \hat{n},\hat{\omega}_i \rangle \langle \hat{m},\hat{\omega}_i \rangle \leq 0 \eqno(3.62)$$

Infine soddisfa la proprietà di reciprocità $G_2(\vec{p},\hat{m},\hat{\omega}_o,\hat{\omega}_i) = G_2(\vec{p},\hat{m},\hat{\omega}_i,\hat{\omega}_o)$.

Analizziamo brevemente due modelli di visibilità, la cui dimostrazione completa si rimanda a [Peg16]: V-Cavity Function e Smith's Visibility Function.

V-Cavity Function

Assumiamo che le micro strutture si arrangino parallele le une alle altre in due direzioni \hat{m}_{\backslash} e $\hat{m}_{/}$. La Mono-Static Visibility v è espressa in termini di rapporto tra lunghezza visibile e lunghezza totale dei lati della cavità

$$v(\vec{p}, \hat{m}, \hat{\omega}) = \frac{v}{l} = \frac{d}{l} \frac{\sin \theta'}{\sin(\pi - \theta_m - \theta')}$$
$$= \frac{2\langle \hat{n}, \hat{m} \rangle \langle \hat{n}, \hat{\omega} \rangle}{\langle \hat{m}, \hat{\omega} \rangle}$$
(3.63)

La quale, per soddisfare tutte le proprietà di una MVF, si definisce

$$V(\vec{p}, \hat{m}, \hat{\omega}) = \min\{1, H(\langle \hat{n}, \hat{\omega} \rangle \langle \hat{m}, \hat{\omega} \rangle) v(\vec{p}, \hat{m}, \hat{\omega})\}$$
(3.64)

 $^{^{23} {\}rm Legge}$ dei seni

E si definisce un metodo per combinare shadowing e masking supponendo masking e shadowing perfettamente correlati, il che è buona approssimazione per differenza tra angoli azimuthali di direzione entrante e uscente piccola, nella Bi-Static Visibility 24

$$\begin{split} &\frac{G(\vec{p},\hat{m},\hat{\omega}_{o},\hat{\omega}_{i})}{4\langle\hat{n},\hat{\omega}_{o}\rangle\langle\hat{n},\hat{\omega}_{i}\rangle} = \\ &\min\left\{\frac{1}{4\langle\hat{n},\hat{\omega}_{o}\rangle\langle\hat{n},\hat{\omega}_{i}\rangle}, \frac{H(\langle\hat{n},\hat{\omega}_{o}\rangle\langle\hat{m},\hat{\omega}_{o}\rangle)2\langle\hat{n},\hat{m}\rangle}{4\langle\hat{m},\hat{\omega}_{o}\rangle\langle\hat{n},\hat{\omega}_{i}\rangle}, \frac{H(\langle\hat{n},\hat{\omega}_{i}\rangle\langle\hat{n},\hat{\omega}_{i}\rangle)2\langle\hat{n},\hat{m}\rangle}{4\langle\hat{m},\hat{\omega}_{o}\rangle\langle\hat{n},\hat{\omega}_{i}\rangle}, \frac{H(\langle\hat{n},\hat{\omega}_{i}\rangle\langle\hat{n},\hat{\omega}_{i}\rangle)2\langle\hat{n},\hat{m}\rangle}{4\langle\hat{m},\hat{\omega}_{o}\rangle\langle\hat{n},\hat{\omega}_{o}\rangle}\right\} \end{split} \tag{3.65}$$

Dove, se $\hat{m} = \hat{h}_r$ (vedi in seguito Jacobiano riflessione speculare)

$$\frac{G(\vec{p}, \hat{h}_r, \hat{\omega}_o, \hat{\omega}_i)}{4\langle \hat{n}, \hat{\omega}_o \rangle \langle \hat{n}, \hat{\omega}_i \rangle} = \min \left\{ \frac{1}{4\cos\theta_o\cos\theta_i}, \frac{2\cos\theta_h}{4\cos\theta_d\cos\theta_i}, \frac{2\cos\theta_h}{4\cos\theta_d\cos\theta_o} \right\} \quad (3.67)$$

dove $\cos \theta_d$ coseno dell'angolo formato tra $\hat{\omega}_{o/i}$ e \hat{h}_r , vedi Figura 3.10.

Smith's Visibility Function

Si lascia la sua analisi in [Peg16], utilizziamo i risultati: Tale modello definisce un Mono-Static Visibility

$$G_1(\vec{p},\hat{\omega}) = \frac{1}{\Lambda(s(\hat{\omega})) + 1} \tag{3.68}$$

Dove

$$s(\hat{\omega}) = \left|\frac{1}{\alpha \tan \theta}\right| = \left|\frac{\cos \theta}{\alpha \sin \theta}\right| = \frac{|\langle \hat{n}, \hat{\omega} \rangle|}{\alpha \sqrt{1 - \langle \hat{n}, \hat{\omega} \rangle^2}}$$

Dove α roughness della NDF scelta.

Indica il coefficiente angolare della direzione $\hat{\omega}$, e Λ , detta Funzione Ausiliaria, rappresenta la probabilità che un punto della superficie, ad una data altezza rispetto all'origine del raggio con direzione $\hat{\omega}$, sia occluso, ed è definita come funzione integrale dipendente dalla NDF scelta per modellare la superficie. Citeremo le funzioni Λ per le distribuzioni in seguito definite.

Infine, per combinare Masking e Shadowing nella Bi-Static Visibility function, si può optare per assumere shadowing e masking sempre incorrelate, e porla pari

²⁴Si veda il modello di Cook-Torrance per capire il perchè è stata espressa così

al prodotto di Masking e Shadowing function, come citato prima, oppure supporre, come già fatto con la V-Cavity, supporre sempre correlazione totale (il che sovrastima effetti di occlusione)

$$\begin{split} G_2(\vec{p},\hat{m},\hat{\omega}_o,\hat{\omega}_i) &= \min\{G_1(\vec{p},\hat{m},\hat{\omega}_o),G_1(\vec{p},\hat{m},\hat{\omega}_i)\} \\ &= \frac{H(\langle \hat{n},\hat{\omega}_o \rangle \langle \hat{m},\hat{\omega}_o \rangle) H(\langle \hat{n},\hat{\omega}_i \rangle \langle \hat{m},\hat{\omega}_i \rangle)}{\max\{\Lambda(s(\hat{\omega}_o)),\Lambda(s(\hat{\omega}_i))\} + 1} \end{split} \tag{3.69}$$

Ci sono altre formule alternative per combinare le due Mono-Static Visibilities, come considerare correlazione parziale con l'altezza del microfacet, in quanto più elevato più probabile di essere visibile. Per considerare entrambe height correlation e shadowing-masking correlation si ricorre ad una formula più complessa, qui non citata. Oppure, si può optare, arbitrariamente, di effettuare una interpolazione lineare tra la soluzione incorrelata e con correlazione massima tra shadowing e masking, pesata su un coefficiente calcolato in base alla differenza tra gli angoli azimuthali tra direzione incidente e uscente [AHH18]

$$\begin{split} G_2(\vec{p},\hat{m},\hat{\omega}_o,\hat{\omega}_i) \\ &= \lambda(\varphi)G_1(\vec{p},\hat{m},\hat{\omega}_i)G_1(\vec{p},\hat{m},\hat{\omega}_o) + (1-\lambda(\varphi))\min\{G_1(\vec{p},\hat{m},\hat{\omega}_o),G_1(\vec{p},\hat{m},\hat{\omega}_i)\} \\ &\qquad \qquad (3.70) \end{split}$$

Dove $\lambda(\varphi) \in [0, 1]$, e aumenta all'aumentare di φ . Esempi:

Lambda Function di Ashikhmin
$$\lambda(\varphi) = 1 - e^{-7.3\varphi^2}$$
 (3.71)

Lambda Function di Van Ginneken
$$\lambda(\varphi) = \frac{4.41\varphi}{4.41\varphi + 1}$$
 (3.72)

BRDF: Modello di Cook-Torrance

Riflessione: Assumendo che i microfacets siano superfici perfettamente speculari, i contributi che arrivano all'osservatore sono quelli dei microfacets che hanno come normale \hat{m} il versore "a metà strada" tra $\hat{\omega}_o$ e $\hat{\omega}_i$

$$\hat{h}_r = \frac{\hat{\omega}_o + \hat{\omega}_i}{\|\hat{\omega}_o + \hat{\omega}_i\|} \tag{3.73}$$

affinch
è
$$\hat{\omega}_o=\mathbf{t}_r(\hat{h}_r,\hat{\omega}_i),\,\hat{\omega}_i=\mathbf{t}_r(\hat{h}_r,\hat{\omega}_o)$$

Inoltre, supponendo che tutti i punti di tutte le microsuperfici abbiano identica micro-BRDF/BTDF, si può dimostrare che la BRDF/BTDF macroscopica è pari

Figure 3.9: Illustrazione della costruzione dei Jacobiani per trasformazioni in seguito a riflessione e trasmissione. Immagine da [Peg16]

a [Peg16]
$$f_{r|t}(\vec{p}, \hat{\omega}_{o}, \hat{\omega}_{i}) = \qquad (3.74)$$

$$\frac{1}{|\langle \hat{n}, \hat{\omega}_{o} \rangle \langle \hat{n}, \hat{\omega}_{i} \rangle|} \int_{\mathcal{H}^{2}(\hat{n})} D(\vec{p}, \hat{m}) G(\vec{p}, \hat{m}, \hat{\omega}_{o}, \hat{\omega}_{i}) f_{\mu}(\hat{m}, \hat{\omega}_{o}, \hat{\omega}_{i}) |\langle \hat{m}, \hat{\omega}_{o} \rangle \langle \hat{m}, \hat{\omega}_{i} \rangle |d\hat{m}$$

$$(3.75)$$

Dove, per le nostre assunzioni, la micro-BRDF è quella delle superfici speculari

$$f_{\mu}(\hat{m}, \hat{\omega}_{o}, \hat{\omega}_{i}) = \frac{\delta(\hat{\omega}_{i} - \tau_{r}(\hat{m}, \hat{\omega}_{o}))}{\langle \hat{m}, \hat{\omega}_{i} \rangle} F_{r}(\langle \hat{m}, \hat{\omega_{o}} \rangle)$$
 (3.76)

Figure 3.10: Illustrazione della parametrizzazione della BRDF in termini di angoli. Immagine da [Peg16]

In tale densità di probabilità vogliamo esplicitare il legame tra l'half vector \hat{h}_r e \hat{m} . Lo possiamo fare considerando una proprietà delle PDFs, ovvero che la probabilità contenuta in un'area differenziale di due PDFs $f_y(y)$ e $f_x(x)$ deve essere uguale

$$|f_Y(y)dy| = |f_X(x)dx| \longrightarrow f_Y(y) = \left|\frac{\mathrm{d}x}{\mathrm{d}y}\right| f_X(x)$$

dove $y=g(x),\ g:\mathbb{R}\to\mathbb{R}$ monotonica e invertibile. Tale relazione vale anche per campi vettoriali, con la sostituzione della derivata con il jacobiano, dunque²⁵,

$$\begin{split} \delta(\hat{\omega}_i - \mathbf{\tau}_r(\hat{m}, \hat{\omega}_o)) &= \delta(\mathbf{\tau}_r(\hat{h}_r, \hat{\omega}_o) - \mathbf{\tau}_r(\hat{m}, \hat{\omega}_o)) \\ &\stackrel{26}{=} \delta(\mathbf{\tau}_r((\hat{h}_r - \hat{m}), \hat{\omega}_o)) \\ &= \delta(\hat{h}_r - \hat{m}) \left| \frac{\mathrm{d}\hat{h}_r}{\mathrm{d}\hat{\omega}_i} \right| \end{split} \tag{3.77}$$

Si può dimostrare (vedi [Peg16] e Figura 3.9) che tale jacobiano è pari a

$$\frac{\mathrm{d}\hat{h}_r}{\mathrm{d}\hat{\omega}_i} = \frac{1}{4\cos\theta_h} = \frac{1}{4\langle\hat{h}_r, \hat{\omega}_i\rangle} = \frac{1}{4|\langle\hat{h}_r, \hat{\omega}_o\rangle|}$$
(3.78)

La micro-BRDF diventa dunque

$$f_{\mu} = \frac{\delta(\hat{h}_r - \hat{m})}{\langle \hat{m}, \hat{\omega}_i \rangle} \frac{F_r(\langle \hat{m}, \hat{\omega}_o \rangle)}{4\langle \hat{h}_r, \hat{\omega}_o \rangle}$$
(3.79)

Da cui possiamo risolvere l'integrale in Equazione 3.74 con la sampling property del delta di Dirac

$$\begin{split} f_r(\vec{p},\hat{\omega}_o,\hat{\omega}_i) &= \frac{1}{|\langle \hat{n},\hat{\omega}_o \rangle \langle \hat{n},\hat{\omega}_i \rangle|} \int_{\mathcal{H}^2(\hat{n})} D(\vec{p},\hat{m}) G(\vec{p},\hat{m},\hat{\omega}_o,\hat{\omega}_i) \\ &\times \frac{\delta(\hat{h}_r - \hat{m})}{\langle \hat{m},\hat{\omega}_i \rangle} \frac{F_r(\langle \hat{m},\hat{\omega}_o \rangle)}{4|\langle \hat{h}_r,\hat{\omega}_o \rangle|} |\langle \hat{m},\hat{\omega}_o \rangle \langle \hat{m},\hat{\omega}_i \rangle| \mathrm{d}\hat{m} \\ &= \frac{D(\vec{p},\hat{h}_r) G(\vec{p},\hat{h}_r,\hat{\omega}_o,\hat{\omega}_i)}{|\langle \hat{n},\hat{\omega}_o \rangle \langle \hat{n},\hat{\omega}_i \rangle|} \frac{F_r(\langle \hat{h}_r,\hat{\omega}_o \rangle)}{4} \end{split} \tag{3.80}$$

Tale risultato fondamentale ottenuto, diffuso nelle implementazioni, è la Cook- $Torrance\ BRDF$

²⁵Tale proprietà vale anche per il delta di Dirac, distribuzione

²⁶proprietà prodotto scalare

 $\it Trasmissione$: applicando lo stesso procedimento per ricavare la BTDF, la micro-BTDF

$$\begin{split} f_{\mu}(\hat{m}, \hat{\omega}_{o}, \hat{\omega}_{i}) &= \frac{\delta(\tau_{t}(\hat{h}_{t} - \hat{m}, \hat{\omega}_{o}))}{-|\langle \hat{m}, \hat{\omega}_{i} \rangle|} T_{\frac{\eta_{i}}{\eta_{t}}}(\langle \hat{m}, \hat{\omega}_{o} \rangle) \frac{\eta_{t}^{2}}{\eta_{i}^{2}} \\ &= \frac{\delta(\hat{h}_{t} - \hat{m})}{-\langle \hat{m}, \hat{\omega}_{i} \rangle} \left| \frac{\mathrm{d}\hat{h}_{t}}{\mathrm{d}\hat{\omega}_{i}} \right| T_{\frac{\eta_{i}}{\eta_{t}}}(\langle \hat{m}, \hat{\omega}_{o} \rangle) \frac{\eta_{t}^{2}}{\eta_{i}^{2}} \end{split} \tag{3.81}$$

Inoltre si può dimostrare che il jacobiano è

$$\frac{\mathrm{d}\hat{h}_t}{\mathrm{d}\hat{\omega}_i} = \frac{\eta_i^2 \langle \hat{h}_t, \hat{\omega}_i \rangle^2}{(\eta_t \langle \hat{h}_t, \hat{\omega}_o \rangle + \eta_i \langle \hat{h}_t, \hat{\omega}_i \rangle)^2 \langle \hat{h}_t, \hat{\omega}_i \rangle}$$
(3.82)

Da cui la micro-BTDF diventa

$$f_{\mu} = \frac{\delta(\hat{h}_{t} - \hat{m})}{-\langle \hat{m}, \hat{\omega}_{i} \rangle} \frac{-\eta_{t}^{2} \langle \hat{h}_{t}, \hat{\omega}_{i} \rangle T_{\frac{\eta_{i}}{\eta_{t}}}(\langle \hat{m}, \hat{\omega}_{o} \rangle)}{(\eta_{t} \langle \hat{h}_{t}, \hat{\omega}_{o} \rangle + \eta_{i} \langle \hat{h}_{t}, \hat{\omega}_{i} \rangle)^{2}}$$
(3.83)

E la BTDF microscopica risulta

$$f_{t}(\vec{p},\hat{\omega}_{o},\hat{\omega}_{i}) = \frac{1}{|\langle \hat{n},\hat{\omega}_{o}\rangle\langle \hat{n},\hat{\omega}_{i}\rangle|} \int_{\mathcal{H}^{2}(\hat{n})} D(\vec{p},\hat{m})G(\vec{p},\hat{m},\hat{\omega}_{o},\hat{\omega}_{i})$$

$$\times \frac{\delta(\hat{h}_{t} - \hat{m})}{-\langle \hat{m},\hat{\omega}_{i}\rangle} \frac{-\eta_{t}^{2}\langle \hat{h}_{t},\hat{\omega}_{i}\rangle T_{\frac{\eta_{i}}{\eta_{t}}}(\langle \hat{m},\hat{\omega}_{o}\rangle)}{(\eta_{t}\langle \hat{h}_{t},\hat{\omega}_{o}\rangle + \eta_{i}\langle \hat{h}_{t},\hat{\omega}_{i}\rangle)^{2}} |\langle \hat{m},\hat{\omega}_{o}\rangle\langle \hat{m},\hat{\omega}_{i}\rangle| d\hat{m}$$

$$= \frac{D(\vec{p},\hat{h}_{t})G(\vec{p},\hat{h}_{t},\hat{\omega}_{o},\hat{\omega}_{i})}{|\langle \hat{n},\hat{\omega}_{o}\rangle\langle \hat{n},\hat{\omega}_{i}\rangle|} \frac{-\eta_{t}^{2}\langle \hat{h}_{t},\hat{\omega}_{i}\rangle T_{\frac{\eta_{i}}{\eta_{t}}}(\langle \hat{h}_{t},\hat{\omega}_{o}\rangle)}{(\eta_{t}\langle \hat{h}_{t},\hat{\omega}_{o}\rangle + \eta_{i}\langle \hat{h}_{t},\hat{\omega}_{i}\rangle)^{2}}$$
(3.84)

Analizziamo due alternative di NDF, anello mancante del modello presentato, assieme alle loro Auxiliary Functions per la Smith's Visibility Function: Beckmann NDF e Trowbridge-Reitz NDF.

Beckmann NDF

Una densità di distribuzione di normali utilizzata è una guassiana bidimensionale isotropica modificata, chiamata Beckmann-Spizzichino NDF ed è definita come

$$D(\vec{p}, \hat{m}) = \frac{e^{-\frac{\tan^2 \theta_m}{\alpha_b^2}}}{\pi \alpha_b^2 \cos^4 \theta_m} = \frac{e^{-\frac{1 - \langle \hat{n}, \hat{m} \rangle^2}{\alpha_b^2 \langle \hat{n}, \hat{m} \rangle}}}{\pi \alpha_b^2 \langle \hat{n}, \hat{m} \rangle^4}$$
(3.85)

Figure 3.11: Confronto tra NDFs anisotropiche (progressivamente verso destra) e isotropiche, dove riga in alto usa la Beckmann NDF e riga in basso la Trowbridge-Reitz NDF. Immagine da [AHH18].

dove α_b parametro che controlla la roughness della superficie. Tale NDF è isotropica, cioè non dipendente dall'angolo azimuthale di \hat{m} , e dunque rotazionalmente simmetrica (vedi Figura 3.11).

Per campionare secondo la densità di distribuzione, ottenuta dalla NDF cosine weighted²⁷, tramite Inverse Transform Sampling, sia $\mu = \langle \hat{n}, \hat{m} \rangle$

$$\int_{\Omega_{m}} D(\vec{p}, \hat{m}) \langle \hat{n}, \hat{m} \rangle d\hat{m} = \int_{0}^{\varphi_{m}} \frac{1}{2\pi} d\varphi \int_{\cos \theta_{m}}^{1} 2 \frac{e^{\frac{1-\mu^{2}}{\alpha_{b}^{2}\mu^{2}}}}{\alpha_{b}^{2}\mu^{3}} d\mu$$

$$= \left[\frac{\varphi}{2\pi}\right]_{\varphi=0}^{\varphi_{m}} \left[e^{-\frac{1-\mu^{2}}{\alpha_{b}^{2}\mu^{2}}}\right]_{\cos \theta_{m}}^{1}$$

$$= \frac{\varphi_{m}}{2\pi} \left(1 - e^{-\frac{1-\cos^{2}\theta_{m}}{\alpha_{b}^{2}\cos^{2}\theta_{m}}}\right) \tag{3.86}$$

siano $\xi_{\varphi}, \xi_{\theta} \sim \mathcal{U}(0,1)$, allora Inverse Transform Sampling che permette Importance Sampling rispetto alla NDF è

$$\xi_{\varphi} = \frac{\varphi_m}{2\pi} \longrightarrow \varphi_m = 2\pi \xi_{\varphi} \tag{3.87}$$

$$\xi_{\theta} = 1 - e^{-\frac{1 - \cos^2 \theta_m}{\alpha_b^2 \cos^2 \theta_m}} \longrightarrow \theta_m = \arccos\left(\frac{1}{\sqrt{1 - \alpha_b^2 \ln(1 - \xi_{\theta})}}\right)$$
(3.88)

 $^{^{27}\}mathrm{Come}$ detto prima, la NDF, pesata per il coseno tra normale microscopica e normale macroscopica, ha massa unitaria. Equazione 3.55

Si può dimostrare che la Lambda $\Lambda(s(\omega)),$ per la Isotropic Beckmann NDF è pari a

$$\Lambda(s) = \frac{\text{erf}(s-1)}{2} + \frac{1}{2s\sqrt{\pi}}e^{-\frac{s^2}{\alpha_b^2}}$$
 (3.89)

La generalizzazione anisotropica della Beckmann NDF, anche chiamata Ward NDF,

$$D(\vec{p}, \hat{m}) = \frac{e^{-\tan^2 \theta_m \left(\frac{\cos^2 \theta_m}{\alpha_u^2} + \frac{\sin^2 \theta_m}{\alpha_v^2}\right)}}{\pi \alpha_u \alpha_v \cos^4 \theta_m}$$
(3.90)

dove α_u roughness nella direzione tangente, α_v roughness nella direzione bitangente. Definendo PDF da cui campionare per applicare Importance Sampling usando la NDF, $p_m(\vec{p},\hat{m}) = D(\vec{p},\hat{m})\langle \hat{n},\hat{m}\rangle$, che questa volta non è separabile, dunque campioniamo la coordinata sferica φ_m secondo la sua CDF marginale, per poi campionare θ_m con la CDF condizionale dato il valore φ_m estratto. Sia $a = \frac{\cos^2\varphi}{\alpha_u^2} + \frac{\sin^2\varphi}{\alpha_v^2}$

$$\int_{\Omega_m} D(\vec{p}, \hat{m}) d\hat{m} = \int_0^{\varphi_m} \int_{\cos \theta_m}^1 \frac{e^{-\frac{1-\mu^2}{\mu}a}}{\pi \alpha_u \alpha_v \mu^3} d\mu d\varphi$$

$$= \int_0^{\varphi_m} \frac{1}{\pi \alpha_u \alpha_v} \left[\frac{e^{-\frac{1-\mu^2}{\mu^2}a}}{2a} \right]_{\mu = \cos \theta_m}^1 d\varphi$$

$$:= \int_0^{\varphi_m} p(\varphi, \theta_m) d\varphi \tag{3.91}$$

La PDF marginale di φ_m

$$p(\varphi, \pi/2) = \frac{1}{2\pi\alpha_{\cdot\cdot}\alpha_{\cdot\cdot}a} \tag{3.92}$$

Dunque la CDF marginale di φ_m

$$\begin{split} \int_{0}^{\varphi_{m}} p(\varphi, \pi/2) \mathrm{d}\varphi &= \int_{0}^{\varphi_{m}} \frac{1}{2\pi\alpha_{u}\alpha_{v}} \frac{1}{\frac{\cos^{2}\varphi}{\alpha_{u}^{2}} + \frac{\sin^{2}\varphi}{\alpha_{v}^{2}}} \mathrm{d}\varphi \\ &= \frac{1}{2\pi\alpha_{u}\alpha_{v}} \left[\alpha_{u}\alpha_{v} \arctan\left(\frac{\alpha_{u}}{\alpha_{v}} \tan\varphi\right) \right]_{\varphi=0}^{\varphi_{m}} \\ &= \frac{1}{2\pi} \arctan\left(\frac{\alpha_{u}}{\alpha_{v}} \tan\varphi_{m}\right) \end{split} \tag{3.93}$$

Mentre la CDF condizionale di φ_m dato θ_m

$$\frac{p(\varphi, \theta_m)}{p(\varphi, \pi/2)} = 1 - e^{-\frac{1 - \cos^2 \theta_m}{\cos^2 \theta_m} \left(\frac{\cos^2 \varphi}{\alpha_u^2} + \frac{\sin^2 \varphi}{\alpha_v^2}\right)}$$
(3.94)

Dunque Importance Sampling mediante Inverse Transform Sampling della NDF normalizzata, dati $\xi_{\theta}, \xi_{\varphi} \sim \mathcal{U}(0, 1)$

$$\xi_{\varphi} = \frac{1}{2\pi} \arctan \left(\frac{\alpha_u}{\alpha_v} \tan \varphi_m \right) \longrightarrow \varphi_m = \arctan 2(\alpha_v \sin \left(2\pi \xi_{\varphi} \right), \alpha_u \cos \left(2\pi \xi_{\varphi} \right))$$

(3.95)

$$\xi_{\theta} = 1 - e^{-\frac{1 - \cos^2 \theta_m}{\cos^2 \theta_m} \left(\frac{\cos^2 \varphi}{\alpha_u^2} + \frac{\sin^2 \varphi}{\alpha_v^2}\right)} \longrightarrow \theta_m = \arctan\left(\sqrt{\frac{-\ln(1 - \xi_{\theta})}{\frac{\cos^2 \varphi_m}{\alpha_u^2} + \frac{\sin^2 \varphi_m}{\alpha_v^2}}}\right) \tag{3.96}$$

La Auxiliary Λ Function per Smith's G_2 è la stessa della la isotropic Beckmann NDF, con la differenza che la pendenza, passata come argomento a tale funzione, è calcolata in modo differente. (Ciò vale anche per le altre generalizzazioni a anisotropic NDF, come Trowbridge-Reitz)

$$s = \frac{|\langle \hat{n}, \hat{\omega} \rangle|}{\sqrt{\alpha_u^2 \langle \hat{u}, \hat{\omega} \rangle^2 + \alpha_v^2 \langle \hat{v}, \hat{\omega} \rangle^2}}$$
(3.97)

Trowbridge-Reitz NDF

La Trowbridge-Reitz NDF, anche detta GGX NDF, è una NDF isotropica che modella la superficie microscopica come composta da un gran numero di dossi elissoidali, con espressione

$$D(\vec{p}, \hat{m}) = \frac{\alpha_g^2}{\pi (\alpha_g^2 + \tan^2 \theta_m)^2 \cos^4 \theta_m} = \frac{\alpha_g}{\pi (1 + (\alpha_g^2 - 1)\langle \hat{n}, \hat{m} \rangle^2)^2}$$
(3.98)

Per la quale la sua PDF normalizzata può essere integrata ed espressa in forma separabile. (sia $\mu = \cos \theta_m = \langle \hat{n}, \hat{m} \rangle$)

$$\int_{\Omega_{m}} D(\vec{p}, \hat{m}) = \int_{0}^{\varphi_{m}} \frac{1}{2\pi} d\varphi \int_{\cos \theta_{m}}^{1} \frac{2\alpha_{g}^{2}}{(1 + (\alpha_{g}^{2} - 1)\mu)^{2}} \mu d\mu$$

$$= \left[\frac{\varphi}{2\pi} \right]_{0}^{\varphi_{m}} \left[\frac{\alpha_{g}^{2}}{\alpha_{g}^{2} - 1} \frac{-1}{1 + (\alpha_{g}^{2} - 1)\mu^{2}} \right]_{\cos \theta_{m}}^{1}$$

$$= \frac{\varphi_{m}}{2\pi} \frac{1}{\alpha_{g}^{2} - 1} \left(\frac{\alpha_{g}^{2}}{1 + (\alpha_{g}^{2} - 1)\mu^{2}} - 1 \right)$$

$$= \frac{\varphi_{m}}{2\pi} \frac{1}{\alpha_{g}^{2} - 1} \frac{\alpha_{g}^{2} - 1 - (\alpha_{g}^{2} - 1)\cos^{2}\theta_{m}}{1 + (\alpha_{g}^{2} - 1)\cos^{2}\theta_{m}}$$

$$= \frac{\varphi_{m}}{2\pi} \frac{1 - \cos^{2}\theta_{m}}{1 + (\alpha_{g}^{2} - 1)\cos^{2}\theta_{m}}$$
(3.99)

Dunque applicando Inverse Transform Sampling per poter campionare la BRDF secondo direzioni con probabilità proporzionali alla NDF (Importance Sampling)

$$\xi_{\varphi} = \frac{\varphi_m}{2\pi} \longrightarrow \varphi_m = 2\pi \xi_{\varphi} \tag{3.100}$$

$$\xi_{\theta} = \frac{1 - \cos^2 \theta_m}{1 + (\alpha_g^2 - 1) \cos^2 \theta_m} \longrightarrow \theta_m = \arccos\left(\sqrt{\frac{1 - \xi_{\theta}}{1 - \xi_{\theta} + \xi_{\theta} \alpha_g^2}}\right) \tag{3.101}$$

La Auxiliary Λ Fuction per calcolare la Smith's Visibility Function risulta essere pari a

$$\Lambda(s) = \frac{-1 + \sqrt{1 + \frac{1}{\alpha_g^2}}}{2} \tag{3.102}$$

La generalizzazione anisotropica della Trowbridge-Reitz NDF, anche chiamata $ATR\ NDF$, ha espressione

$$D(\vec{p}, \hat{m}) = \frac{1}{\pi \alpha_u \alpha_v \left(\cos^2 \theta_m + \frac{\sin^2 \theta_m \cos^2 \varphi_m}{\alpha_u^2} \frac{\sin^2 \theta_m \sin^2 \varphi_m}{\alpha_v^2}\right)^2}$$
(3.103)

Il campionamento secondo la PDF $D(\vec{p}, \hat{m})\langle \hat{n}, \hat{m} \rangle$ procede in modo analogo a Ward NDF. Sia $a = \frac{\cos^2 \varphi}{\alpha_u^2} + \frac{\sin^2 \varphi}{\alpha_v^2}$

$$\begin{split} \int_{\Omega_m} D(\vec{p}, \hat{m}) \langle \hat{n}, \hat{m} \rangle \mathrm{d}\hat{m} &= \int_0^{\varphi_m} \int_{\cos \theta_m}^1 \frac{\mu}{\pi \alpha_u \alpha_v (\mu^2 + (1 - \mu^2) a)^2} \mathrm{d}\mu \mathrm{d}\varphi \\ &= \int_0^{\varphi_m} \frac{1}{\pi \alpha_u \alpha_v} \left[\frac{1}{2(a - 1)(a - \mu^2 a + \mu^2)} \right]_{\cos \theta_m}^1 \mathrm{d}\varphi \\ &= \int_0^{\varphi_m} \frac{1}{2\pi \alpha_u \alpha_v} \left(\frac{1 - \cos^2 \theta_m}{a - \cos^2 \theta_m a + \cos^2 \theta_m} \right) \mathrm{d}\varphi \\ &\coloneqq p(\varphi, \theta_m) \end{split}$$
(3.104)

Da cui la PDF marginale di φ_m è

$$p(\varphi, \pi/2) = \frac{1}{2\pi\alpha_u \alpha_u a} \tag{3.105}$$

Da cui segue la sua CDF marginale

$$\begin{split} \int_{o}^{\varphi_{m}} p(\varphi, \pi/2) \mathrm{d}\varphi &= \int_{0}^{\varphi_{m}} \frac{1}{2\pi \alpha_{u} \alpha_{v}} \frac{1}{\frac{\cos^{2} \varphi}{\alpha_{u}^{2}} + \frac{\sin^{2} \varphi}{\alpha_{v}^{2}}} \mathrm{d}\varphi \\ &= \frac{1}{2\pi \alpha_{u} \alpha_{v}} \left[\alpha_{u} \alpha_{v} \arctan\left(\frac{\alpha_{u}}{\alpha_{v}} \tan \varphi\right) \right]_{\varphi=0}^{\varphi_{m}} \\ &= \frac{1}{2\pi} \arctan\left(\frac{\alpha_{u}}{\alpha_{v}} \tan \varphi_{m}\right) \end{split} \tag{3.106}$$

Da cui la CDF condizionale di θ_m dato φ_m è pari a

$$\frac{p(\varphi, \theta_m)}{p(\varphi, \pi/2)} = \frac{1}{1 + \frac{\cos^2 \theta_m}{(1 - \cos^2 \theta_m) \left(\frac{\cos^2 \varphi}{\alpha_u^2} + \frac{\sin^2 \varphi}{\alpha_v^2}\right)}}$$
(3.107)

Da cui Inverse Transform Sampling può essere effettuato per eseguire Importance Sampling della BRDF secondo la NDF tramite

$$\begin{split} \xi_{\varphi} &= \frac{1}{2\pi} \arctan\left(\frac{\alpha_{u}}{\alpha_{v}} \tan \varphi_{m}\right) \\ &\longrightarrow \varphi_{m} = \arctan(\alpha_{v} \sin(2\pi \xi_{\varphi}), \alpha_{u} \cos(2\pi \xi_{\varphi})) \\ \xi_{\theta} &= \frac{p(\varphi, \theta_{m})}{p(\varphi, \pi/2)} = \frac{1}{1 + \frac{\cos^{2} \theta_{m}}{(1 - \cos^{2} \theta_{m})\left(\frac{\cos^{2} \varphi}{\alpha_{u}^{2}} + \frac{\sin^{2} \varphi}{\alpha_{v}^{2}}\right)} \\ &\longrightarrow \theta_{m} = \arctan\left(\sqrt{\frac{\xi_{\theta}}{(1 - \xi_{\theta})\left(\frac{\cos^{2} \varphi}{\alpha_{u}^{2}} + \frac{\sin^{2} \varphi}{\alpha_{v}^{2}}\right)}\right) \end{split} \tag{3.109}$$

Come nota Finale per i modelli basati su microfacet theory seguenti il Cook-Torrance BRDF model, l'importance sampling guidato dalla NDF normalizzata è sicuramente meno efficace del campionamento della distribuzione di normali visibili [PJH23]. Qui ci limitiamo a campionare in modo proporzionale alla NDF per semplicità.

Oren-Nayar BRDF

Piuttosto che considerare la microgeometry come composta da facce perfettamente speculari, la Oren-Nayar BRDF assume microstrutture Lambertiane affinchè possa modellare materiali che presentano riflessione diffusa con back-scattering (sabbia, carta, plastica, ...). Dunque $f_{\mu}(\hat{m}, \hat{\omega}_o, \hat{\omega}_i) = 1/\pi$ Modellando la distribuzione di microstrutture come una Gaussiana, ed utilizzando la V-Cavity Function, si ottiene un integrale che, approssimato per tener conto solo degli scattering events di primo e secondo ordine, si può dimostrare che si ottengono le seguenti BRDF, che descrivono rispettivamente scattering events di primo e secondo ordine

$$f_r^1 = \frac{1}{\pi} \left(1 - c_1 + c_2 c_2' \tan \beta + c_3 c_3' \tan \left(\frac{\alpha + \beta}{2} \right) \right)$$
 (3.110)

$$f_r^2 = \frac{1}{\pi} c_4 \left(1 - \gamma \left(\frac{2\beta}{\pi} \right)^2 \right) \tag{3.111}$$

dove, sia σ parametro di roughness della superficie, [Peg16]

$$\begin{array}{lll} \alpha &= \max\{\theta_{o}, \theta_{i}\} & c_{2}' &= \gamma \times \begin{cases} \sin \alpha & \text{se } \gamma \geq 0 \\ c_{2}'' & \text{altrimenti} \end{cases} \\ \beta &= \min\{\theta_{o}, \theta_{i}\} & c_{3}' &= (1 - |\gamma|) \left(\frac{4\alpha\beta}{\pi^{2}}\right)^{2} \\ \gamma &= \cos(\varphi_{o} - \varphi_{i}) & c_{2}'' = \sin \alpha - \left(\frac{2\beta}{\pi}\right)^{3} \\ c_{1} &= \frac{0.5\sigma^{2}}{\sigma^{2} + 0.33} & c_{2} &= \frac{0.45\sigma^{2}}{\sigma^{2} + 0.09} \\ c_{3} &= \frac{0.125\sigma^{2}}{\sigma^{2} + 0.09} & c_{4} &= \frac{0.17\sigma^{2}}{\sigma^{2} + 0.13} \end{cases}$$

$$(3.112)$$

Il modello è infine definito come combinazione lineare delle distribuzioni di primo e secondo ordine pesate sul parametro albedo ρ

$$f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) = \rho f_r^1(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) + \rho^2 f_r^2(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) \tag{3.113}$$

Il suo campionamento può far uso della stessa metodologia utilizzata per la Lambertian BRDF

3.2 Sorgenti Luminose

Gli oggetti presenti della scena sono illuminati da sorgenti luminose, che le rende visibili. In quanto ci si è prefissati come obiettivo Physically Based Rendering, i modelli che analizziamo sono specificati attraverso la radiometria (o fotometria). Ad esempio, una sorgente potrebbe essere specificata attraverso uno spettro di emissione, oppure da una temperatura, se si assume che tale sorgente sia un corpo nero, (Equazione 1.24). Si noti che tali modelli non permettono il pieno controllo artistico della scena come modificare il falloff rate, oppure posizionare una sorgente che non proietti ombre, per il principio di conservazione dell'energia.

In scene con molte sorgenti luminose, non possiamo tener conto di tutti i loro contributi, e utilizziamo un approccio stocastico, secondo il quale dati opportuni pesi, possiamo considerarne soltanto un piccolo sottoinsieme, rappresentante le sorgenti più significative, campionate con una PMF uniforme, oppure proporzionale al flusso radiante emesso dalla sorgente²⁸.

Tipi differenti di sorgenti luminose devono essere gestite in modo differente, in modo tale che il campionamento di una direzione per la Rendering Equation (Equazione 3.31) sia gestito in modo appropriato. [PJH23] riconosce quattro tipi principali di sorgenti luminose

 $^{^{28}}$ altri metodi non citati includono il campionamento delle sorgenti luminose secondo la loro visibilità tramite strutture dati spaziali come una BVH (Bounding Volume Hierarchy) [PJH23], oppure tramite la tecnica di Portal Culling [AHH18]

- DeltaPosition: Sorgenti luminose occupanti un solo punto nello spazio. Ciò significa che ogni altro punto dello spazio è illuminato da una sola direzione da tali sorgenti, e dunque sono descrivibili da una Distribuzione di Dirac
- *DeltaDirection*: Sorgenti luminose che emettono radianza lungo un unica direzione²⁹.
- Area: Sorgenti luminose che emettono radianza da una superficie geometrica
- Infinite: Sorgenti luminose all'infinito, che non possiedono geometria ad esse associata e forniscono radianza ai raggi che fuggono dalla scena

³⁰Nota che una sorgente luminosa del tipo DeltaDirection può anche essere contemporaneamente del tipo DeltaPosition. Si pensi ad un raggio collimato Talvolta, campionare una direzione secondo la distribuzione della sorgente luminosa considerata può essere più efficace per ottenere un tasso di convergenza più rapido, in quanto, data una BSDF, eg. Lambertiana, soltanto un piccolo cono di essa potrebbe essere illuminato da sorgenti luminose e dunque contribuire in modo significativo alla radianza computata. Vedi Capitolo 4 per Multiple Importance Sampling (Importance Sampling in cui i pesi sono spatially varying, e il campionamento è effettuato secondo multiple PDF, eg, BSDF e Light Directional Distribution).

Dunque, per ciascuna sorgente luminosa, specifichiamo anche la PDF proporzionale al suo spettro di emissione.

Infine, ci sono casi particolari da gestire che dipendono dal tipo di luce, ad esempio

- Se un raggio interseca una sorgente luminosa del tipo Area, la radianza uscente deve essere calcolata esclusivamente in base ai parametri della sorgente
- Per i raggi che fuggono dalla scena, tutte³¹ le sorgenti del tipo Infinite devono essere considerate per potervi calcolare la radianza totale emessa data la direzione di provenienza del raggio

Si noti infine, che le luci di seguito specificate sono analizzate in un sistema di cordinate il quale posiziona la sorgente luminosa nell'origine con un orientamento particolare. Tale sistema di coordinate è ricavato dalla matrice di trasformazione fornita come parametro nella specifica della sorgente, in seguito tipicamente invertita per poter applicare i calcoli eseguiti nel Render Space.

3.2.1 Modelli di sorgenti luminose

Le sorgenti luminose analizzate sono:

• DeltaPosition: Point Omni Lights, Spotlights

³¹o le più significative, come detto prima

Figure 3.12: Confronto tra Normale Inverse Square Law e Formula con ϵ aggiunto e moltiplicazione per windowing function

• DeltaDirection: Directional Lights

• Area: Diffuse Area Lights

• Infinite: Infinite Uniform Lights

Point Omni Lights

Una Point Omni Light, o Isotropic Point Light, è una sorgente luminosa puntuale che emette radiazioni con intensità radiante I_e costante in tutte le direzioni. La radianza in questo caso non è appropriata per descrivere la sorgente luminosa, in quanto essa descrive flusso radiante per unità di angolo solido per unità di area. Ma tale luce puntuale non possiede area. Trascuriamo, per agio di implementazione, tale dettaglio fisico e lavoriamo con la radianza, la quale, data una isotropic point light in posizione \vec{p} , può essere calcolata come

$$L_e = \frac{I_e}{\|\vec{q} - \vec{p}\|^2} = \frac{I_e}{r^2}$$
 (3.114)

Tale formula possiede due problemi, oltre all'inaccuratezza fisica citata prima: ha una singolarità in zero, e tende a zero per $r \to \infty$ [AHH18]. Il primo problema può essere risolto aggiungendo un ϵ piccolo, arbitrario, a denominatore, mentre il secondo può essere risolto moltiplicando l'equazione risultante per una windowing

function. Vedi Figura 3.12

$$f_{win}(r) = \left(1 - \left(\frac{r}{r_{max}}\right)^4\right)^{+2}$$
 (3.115)

dove +2 significa $(\max(0, x))^2$

Se tale sorgente luminosa è campionata tramite PMF, la direzione che essa restituisce, in modo deterministico, in campionamento per la Rendering Equation è la direzione che punta verso la sua posizione, in quanto essa è di tipo DeltaPosition. Campionamento di direzione in ogni altro modo ritorna zero per via della distribuzione di Dirac [PJH23].

Al fine del campionamento delle sorgenti proporzionale alla potenza emessa, il flusso radiante emesso è pari a

$$\Phi_e = \int_{\mathcal{S}^2} I_e d\hat{\omega} = 4\pi I_e \tag{3.116}$$

Spotlight

Variazione di Point Lights (tipo DeltaPosition) le quali emettono radiazione in un cono di direzioni. Il loro Light Space possiede come origine il vertice del cono, e l'asse +z come direzione dell'asse. In particolare, una Spotlight è specificata geometricamente da due coni. Oggetti dentro il cono interno ricevono illuminazione massima, proporzionale al quadrato della distanza con stessi accorgimenti specificati per la Isotropic Point Light, oggetti al di fuori del cono più ampio non ricevono alcuna illuminazione, e oggetti nel volume tra i due coni ricevono illuminazione progressivamente minore man mano che ci si avvicina all'esterno del cono maggiore.

Tale coppia di coni è definita dagli angoli θ_p (detto penumbra angle o falloff start) e θ_u (detto umbra angle o falloff end).

In quanto della stessa categoria delle Isotropic Point Light, la loro densità di distribuzione di direzioni è una distribuzione di Dirac, dunque segue la stessa logica citata in precedenza.

Al fine di calcolare la radianza per la spotlight, si segue lo stesso procedimento precedente, con la differenza che l'intensità radiante non è più costante, in particolare

$$I_{e}(\hat{\omega}) = \begin{cases} I_{e0} & \text{se } \langle \hat{\omega}, \hat{z} \rangle \geq \cos \theta_{p} \\ \text{smoothstep}(\langle \hat{\omega}, \hat{z} \rangle, \cos \theta_{u}, \cos \theta_{p}) & \text{se } \langle \hat{\omega}, \hat{z} \rangle \in (\cos \theta_{u}, \cos \theta_{p}) \\ 0 & \text{se } \langle \hat{\omega}, \hat{z} \rangle \leq \cos \theta_{u} \end{cases}$$

$$(3.117)$$

Dove una funzione smoothstep è una famiglia di funzioni atta a compiere interpolazione sigmoid-like tra 0 e 1, dipendente dai parametri input x, left edge a, right edge b. Di seguito è mostrata una funzione smoothstep implementata con interpolazione di Hermite cubica (vedi A.2)

smoothstep
$$(x, a, b) =$$

$$\begin{cases}
0 & \text{se } x \le a \\
y^2(3 - 2y) & \text{se } x \in (a, b), \text{ con } y = \frac{x - a}{b - a} \\
1 & \text{se } x \ge b
\end{cases}$$
(3.118)

Il calcolo della potenza emessa dalla sorgente, integriamo l'intensità radiante nel dominio con contributi non nulli. Si supponga $I_{e0}=1\mathrm{W/sr}$

$$\begin{split} &\Phi_e = \int_{\Omega} I_e(\hat{\omega}) \mathrm{d}\hat{\omega} \\ &= \int_{0}^{2\pi} \mathrm{d}\varphi \left(\int_{0}^{\theta_p} \sin\theta \mathrm{d}\theta - \int_{\theta_p}^{\theta_u} \mathrm{smoothstep}(\cos\theta, \cos\theta_u, \cos\theta_p) \sin\theta \mathrm{d}\theta \right) \\ &= 2\pi \left(1 - \cos\theta_p + \frac{\cos\theta_p - \cos\theta_u}{2} \right) \end{split} \tag{3.119}$$

Directional Light

Modella una point light posizionata all'infinito, dunque illuminante ogni punto della scena da una direzione prefissata. La radianza incidente in un punto \vec{p} per via di una directional light può essere descritta dalla distribuzione di Dirac

$$L_i(\vec{p},\hat{\omega}) = L_e \delta(\hat{\omega} - \hat{\omega}_l) \tag{3.120}$$

dove $\hat{\omega}_l$ direzione della luce.

Tale sorgente luminosa emette flusso radiante proporzionale alle dimensioni della scena. Dunque, sia la scena racchiusa da una sfera di raggio R, e sia la radianza emessa dalla sorgente luminosa L_e , la potenza emessa Φ_e è pari a alla potenza irradiata nel disco di raggo R, superficie perpendicolare irradiata dalla luce emessa

$$\Phi_e = \int_A \int_{\Omega} L_e \delta(\hat{\omega} - \hat{\omega}_l) d\hat{\omega} dA = \pi R^2 L_e$$
 (3.121)

Diffuse Area Light

Sorgente Luminosa definita da una superficie ed una distribuzione di direzioni in cui essa emette radianza. Il calcolo della radianza emessa generalmente il calcolo

di un integrale su un angolo solido di direzioni rispetto al punto di osservazione, il quale spesso non può essere risolto in modo analitico, dovendo dunque ricorre al Metodo di Monte Carlo.

Assumo che la distribuzione di direzioni in cui la sorgente luminosa emette sia uniforme nella emisfera, per ogni punto della superficie.

Ciò vuol dire che, dato un punto di riferimento da cui la sorgente luminosa è osservata, la superficie luminosa sarà visibile solo da un cono di direzioni. Una direzione è campionata con distribuzione uniforme da tale cono, e la radianza emessa è stimata come essere pari alla radianza definita per il punto di intersezione tra direzione campionata e superficie, lungo la direzione campionata.

La PDF per ogni data direzione in cui la luce è incontrata è pari, supponendo sorgente luminosa circolare, all'inverso dell'area del disco

Supponendo radianza costante in ogni punto della superficie per ogni direzione dell'emisfera, la potenza emessa dalla sorgente luminosa può essere computata come

$$\Phi_e = \pi A L_e \tag{3.122}$$

Infinite Area Light

Una volta che un raggio fugge dalla scena e "raggiunge l' ∞ ", bisogna contare i contributi di tutte le sorgenti luminose all'infinito, che contribuiscono a definire il colore di background. Dunque ciò che si modella è una area light sferica (o cubica) il cui raggio tende all' ∞ , la quale emette radianza all'interno della sfera da tutte le direzioni, secondo una densità di distribuzione che può essere uniforme o variabile, nell'ultimo caso guidata da un'immagine fornita in input, la quale è poi proiettata sulla sfera o cubo (esempi: Equi-Rectangular Map, Cube Map).

Supponendo invece radianza emessa costante da tutte le direzioni $L_e(\vec{p},\hat{\omega})=L_e$, ciò significa che il Direct Lighting Integral³²

$$\begin{split} L_o(\vec{p}, \hat{\omega}_o) &= \int_{\mathcal{S}^2} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) L_i(\vec{p}, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i \\ &= L_e \int_{\mathcal{S}^2} f_r(\vec{p}, \hat{\omega}_o, \hat{\omega}_i) |\langle \hat{n}, \hat{\omega}_i \rangle| \mathrm{d}\hat{\omega}_i \end{split}$$

Dunque il campionamento di tale sorgente luminosa non è efficace per Multiple Importance Sampling, in quanto in questo caso la cosine-weighted BSDF è il termine che determina se il contributo della funzione integranda in un dato punto del dominio è significativo o meno.

³²Reflectance Equation della superficie per la quale si incontra, al campionamento di un nuovo raggio, una sorgente luminosa

Figure 3.13: Illustrazione dei termini geometrici per parametrizzare la sfera. Immagine da [Peg16]

Se risulta necessario campionare in ogni caso tale sorgente, ciò può essere compiuto campionando uniformemente una direzione dalla sfera unitaria di direzioni (vedi Figura 3.13): Sia $A = r^2(\varphi_h - \varphi_l)(\cos\theta_l - \cos\theta_h)$ area della porzione di sfera definita da $[\theta_l, \theta_h] \times [\varphi_l, \varphi_h]$, in cui ciascun punto ha PDF $p(\theta, \varphi)=1/A$. Inverse Transform Sampling può essere compiuto considerando che la CDF così ottenuta è separabile

$$P(\theta_{s}, \varphi_{s}) = \int_{\varphi_{l}}^{\varphi_{s}} \int_{\theta_{l}}^{\theta_{s}} \frac{1}{r^{2}(\varphi_{h} - \varphi_{l})(\cos\theta_{l} - \cos\theta_{h})} r^{2} \sin\theta d\theta d\varphi$$

$$= \int_{\varphi_{l}}^{\varphi_{s}} \frac{1}{\varphi_{h} - \varphi_{l}} d\varphi \int_{\theta_{l}}^{\theta_{s}} \frac{\sin\theta}{\cos\theta_{l} - \cos\theta_{h}} d\theta$$

$$= \left[\frac{\varphi}{\varphi_{h} - \varphi_{l}} \right]_{\varphi = \varphi_{l}}^{\varphi_{s}} \left[\frac{-\cos\theta}{\cos\theta_{l} - \cos\theta_{h}} \right]_{\theta = \theta_{l}}^{\theta_{s}}$$

$$= \frac{\varphi_{s} - \varphi_{l}}{\varphi_{h} - \varphi_{l}} \frac{\cos\theta_{l} - \cos\theta_{s}}{\cos\theta_{l} - \cos\theta_{h}}$$
(3.123)

Da cui

$$\xi_{\varphi} = \frac{\varphi_s - \varphi_l}{\varphi_h - \varphi_l} \longrightarrow \varphi_s = \operatorname{lerp}(\xi_{\varphi}, \varphi_l, \varphi_h)$$
(3.124)

$$\xi_{\theta} = \frac{\cos \theta_{l} - \cos \theta_{s}}{\cos \theta_{l} - \cos \theta_{h}} \longrightarrow \theta_{s} = \arccos(\operatorname{lerp}(\xi_{\theta}, \cos \theta_{l}, \cos \theta_{h}))$$
(3.125)

con lerp(x,a,b)=(1-x)a+xb. Ponendo $\varphi_l=0, \varphi_h=2\pi, \theta_l=0, \theta_h=\pi,$ la direzione è campionata nell'intera sfera unitaria.

La potenza totale da una Infinite Light può essere trovata integrando la radianza emessa in tutte le direzioni e nell'area della sfera che racchiude la scena.³³

$$\Phi_e = L_e \int_{\mathcal{S}^2} \mathrm{d}\hat{\omega} \int_A \mathrm{d}A = 4\pi^2 R^2 L_e \tag{3.126}$$

3.2.2 Light Sampling

Per via dell'assunzione di linearità della Radiometria, l'illuminazione in un punto in una scena con multiple sorgenti luminose può essere calcolata sommando contributi indipendenti di ogni sorgente luminosa. In scene con migliaia di sorgenti luminose, considerarle tutte comporta un costo eccessivo. Dunque possiamo applicare un metodo stocastico corrispondente all'analogo dell'integrazione di Monte Carlo nel discreto [PJH23]

$$\sum_{i}^{n} f_i \approx \frac{f_j}{p(j)} \tag{3.127}$$

dove stiamo rimpiazzando la somma dei contributi di tutte le sorgenti luminose con una o un sottoinsieme limitato di esse, con p(j) PMF di una distribuzione \mathcal{P} , e $j \sim \mathcal{P}$.

Ciascuna contributo di ogni sorgente luminosa scelta è pesato nel MIS con la probabilità di essere selezionata.

Il campionamento di sorgenti luminose ideale è quello che tiene conto della potenza emessa dalle sorgenti luminose, la loro distanza dal punto di osservazione, se sono occluse o meno, la normale alla superficie³⁴, la BSDF, tutti i fattori che contribuiscono a sottrarre importanza ad una sorgente.

Le due strategie qui analizzate sono Campionamento Uniforme e Campionamento proporzionale alla potenza emessa

Campionamento Uniforme di Sorgenti Luminose

Strategia più semplice: campiona ogni sorgente luminosa con equa probabilità, dunque sia n_l numero di luci presenti nella scena

$$p(j) = \frac{1}{n_l} {(3.128)}$$

 $^{^{33}}$ Nota come nella Equazione 3.126 non è presente il termine coseno per proiettare la radianza sull' area effettivamente irradiata. Questo perchè in quanto la sfera è all' ∞ , si approssima il suo centro al punto \vec{p} della superficie

³⁴Si veda la legge del coseno di Lambert

Campionamento proporzionale alla Potenza di Sorgenti Luminose

La probabilità di campionare una particolare sorgente luminosa è proporzionale alla potenza emessa. Tale approccio risulta essere più efficace del campionamento uniforme, ma non considera la posizione dello spazio della luce rispetto al punto in cui si stima la radianza uscente, limitandone l'efficacia. La potenza emessa considerata è la media nello spettro delle lunghezza d'onda visibili del flusso radiante spettrale, campionato in un prefissate lunghezza d'onda

$$p(j) = \frac{\bar{\Phi}_e^j}{\sum_{i=1}^{n_l} \bar{\Phi}_e^i}$$
 (3.129)

Part II Metodi di Monte Carlo

Chapter 4

Integrazione di Monte Carlo

Il Rendering è fondato su equazioni integrali, le quali, non possiedono una forma chiusa generale, per metodi numerici come regola del trapezoide possiedono convergenza lenta per integrali multidimensionali e discontinui, oltre a richiedere un gran numero di sample points, crescente esponenzialmente con la dimensionalità del problema (*Curse of Dimensionality*).

Dunque, per risolvere tali problemi, si opta ad un approccio non deterministico, Monte Carlo Integration, il quale ci permette di stimare il valore di un integrale $\int f(x) dx$ arbitrario con il solo prerequisito di poter calcolare la funzione integranda in determinati punti.

Si noti che gli algoritmi di Monte Carlo, in quanto basano la scelta dei punti del dominio in cui valutare la funzione integranda casualmente, forniscono diversi risultati in ogni esecuzione, dato lo stesso input, ma fornisce un risultato che statisticamente, in media, è vicino alla soluzione corretta¹.

4.1 Preliminari

Introduciamo il concetto statistico di Stimatore

Def. 4.1.1. — Si supponga S sia un parametro (di un campione o di una distribuzione) da calcolare, detto Stimando. Uno $Stimatore \, \tilde{S}_n$ è una funzione di una collezione di variabili aleatorie X_i che mappa lo spazio campionario a una Stima. Tale $Stimatore \,$ è dunque una variabile casuale del tipo

$$\tilde{S}_n = f(X_1, X_2, \dots, X_n) \tag{4.1}$$

 $^{^1\}mathrm{Per}$ essere più precisi, si dovrebbe affermare che il risultato fornito converge~in~probabilitàalla soluzione

La convergenza di uno Stimatore è qualificata a seconda di quanto "forte e stringente" tale convergenza è. In particolare, data una sequenza di variabili aleatorie X_n , ci sono tre modi in cui essa può convergere ad una variabile aleatoria X

Convergenza in Distribuzione: le CDF di X_n , F_{X_n} convergono puntualmente² alla CDF di X, F_X in tutti i punti in cui essa è definita e continua.

$$X_n \stackrel{d}{\to} X \text{ iff } \lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$
 (4.2)

Si noti che è la tipologia di convergenza più debole in quanto non restringe in alcun modo le osservazioni estratte da ciascuna delle variabili aleatorie

Convergenza in Probabilità: La probabilità di vicinanza arbitraria tra le osservazioni di X_n e X cresce man mano che si prosegue nella sequenza

$$X_n \overset{p}{\to} X \text{ iff } \lim_{n \to \infty} \Pr(|X_n - X| \ge \varepsilon) = 0 \ \forall \varepsilon > 0 \tag{4.3}$$

Si noti che ciò non assicura la correttezza di alcuna osservazione della sequenza, soltanto che è molto improbabile discostarsi di molto dal valore esatto per n sufficientemente grande

Convergenza Quasi Certa:

Il sottoinsieme $\bar{\Omega}$ nel quale le osservazioni della sequenza si discostano dal valore vero è finito. Ciò vuol dire che, al limite, la convergenza è assicurata, con esattezza quasi certa, per via dell'esistenza di finiti valori errati nelle osservazioni della sequenza

$$X_n \overset{a.s.}{\to} X \text{ iff } \Pr \left(\left\{ \omega \in \Omega \, : \, \lim_{n \to \infty} X_n(\omega) = X(\omega) \right\} \right) = 1 \tag{4.4}$$

Maggiore è il "grado di convergenza", e maggiore è la frequenza in cui lo stimatore ci restituisce un risultato quasi esatto. Dunque si dice *Debolmente Consistente* uno Stimatore che converge in probabilità allo stimando, e *Fortemente Consistente* uno Stimatore che converge quasi certamente allo stimando.

²Vedi convergenza di sequenza di funzioni A.3

Si ricordi che la aspettazione di una variabile aleatoria X, la cui PDF p_X definita in un dominio D è pari a $E[X] = \int_D x p_X(x) dx$, per la quale vale la proprietà già sfruttata in Capitolo 3: sia y = f(x)

$$E[f(X)] = \int_{\Omega_y} y p_Y(y) \mathrm{d}y = \int_{\Omega_x} f(x) p_y(f(x)) \left| \det \left(J_f(x) \right) \right| \mathrm{d}x = \int_{\Omega_x} f(x) p_X(x) \mathrm{d}x$$

Tale parametro può essere stimato con lo stimatore *Media Campionaria*, il quale è definito come

$$\tilde{E}_n[X] = \frac{1}{n} \sum_{i=1}^n x_i$$
 (4.5)

dove $\{x_1,\ldots,x_n\}$ campione estratto casualmente da un insieme di n variabili aleatorie indipendenti e identicamente distribuite (i.i.d.) X_i . Tale stima può essere incrementalmente raffinata come

$$\tilde{E}_{i}[X] = \frac{(i-1)\tilde{E}_{i-1}[X] + x_{i}}{i}$$
(4.6)

Si dimostra, rispettivamente, tramite la WLLN (Legge dei grandi numeri debole) che lo stimatore media campionaria è debolmente consistente, e tramite la SLLN (Legge dei grandi numeri forte) che lo stimatore media campionaria è fortemente consistente. Ciò, assieme al fatto che tale stimatore altro non fa che stimare un integrale, rende la media campionaria ottimo candidato per formulare lo stimatore di Monte Carlo.

4.2 Monte Carlo Integration

Assumendo una densità di probabilità uniforme, ricavare una versione semplice di uno stimatore per un integrale, osserviamo che l'aspettazione si riduce alla media della funzione nel dominio

$$E[f(X)] = \int_{\mathcal{D}} f(x)p_X(x)dx = \frac{1}{\|\mathcal{D}\|} \int_{\mathcal{D}} f(x)dx$$
 (4.7)

Dunque, moltiplicando tale valore, e sostituendo l'aspettazione con la media campionaria, otteniamo uno stimatore $unbiased^3$ per l'integrale

$$\tilde{F}_n = \|\mathcal{D}\|\tilde{E}_n[f(X)] = \frac{\|\mathcal{D}\|}{n} \sum_{i=1}^n f(X_i)$$
 (4.8)

Figure 4.1: Illustrazione della varianza in una immagine renderizzata. Immagine da [PJH23]

Una misura di accuratezza di tale stimatore è la sua varianza, la quale si traduce, nell'immagine renderizzata, in variazioni brusche tra pixel adiacenti, come mostrato in Figura 4.1. Tale varianza⁴, per lo stimatore in Equazione 4.8

$$V[\tilde{F}_n] = V\left[\|\mathcal{D}\|\tilde{E}_n[f(X)]\right] = \|\mathcal{D}\|^2 V\left[\tilde{E}_n[f(X)]\right] = \frac{\|\mathcal{D}\|^2}{n} V[f(X)]$$

$$= \frac{\|\mathcal{D}\|^2}{n} \frac{1}{\|\mathcal{D}\|} \int_{\mathcal{D}} (f(x) - \bar{f})^2 dx = \frac{\|\mathcal{D}\|}{n} \int_{\mathcal{D}} f(x)^2 dx - \bar{f}^2$$

$$(4.9)$$

Da cui la deviazione standard, la quale rappresenta l'errore dello stimatore di monte carlo, è pari a

$$\sigma[\tilde{F}_n] = \sqrt{V[\tilde{F}_n]} = \sqrt{\frac{\|\mathcal{D}\|^2}{n}V[f(X)]} = \frac{\|\mathcal{D}\|}{n^{\frac{1}{2}}}\sigma[f(X)] \tag{4.10}$$

Essa diminuisce come $\mathcal{O}\left(n^{\frac{1}{2}}\right)$, Il che dimostra che il rateo di convergenza dello stimatore è 1/2. Esso è chiamato "diminishing return" dal fatto che per abbattere l'errore atteso di un fattore 1/n bisogna campionare un numero di campioni pari a n^2 volte. Si noti che tecniche di quadratura convergono più velocemente per integrali 1D, ma appena si passa a integrali multidimensionali il loro costo e convergenza peggiorano considerevolmente, mentre la accuratezza di Monte Carlo non dipende dalla dimensionalità, rendendolo l'unica alternativa. Altre carat-

³vedi sezioni seguenti

⁴Ricordiamo che $V[aX+b]=a^2V[X]$ e che, se le variabili $\{X_i\}_{i=1}^n$ sono incorrelate, $V\big[\tilde{E}_n[f(X)]\big]=V[X]/n$

teristiche dello stimatore sono efficienza, bias, mse

Bias:

Aspettazione della differenza tra il valore stimato e lo stimando

$$\beta = E[\tilde{F}_n(X)] - \int_{\mathcal{D}} f(x) dx \qquad (4.11)$$

Nonostante sembrino sconvenienti, in quanto non tendono al valore desiderato, possono comunque risultare vantaggiosi nel caso si desideri uno stimatore con varianza minore. Per esempio, lo stimatore biased per la aspettazione

$$\frac{1}{2} \max\{X_1, X_2, \dots, X_n\} \tag{4.12}$$

ha deviazione standard che segue $\mathcal{O}\left(n^{-1}\right)$

Efficienza:

Parametro che permette di stimare la bontà di uno stimatore in relazione alla varianza ottenuta V[X] e al suo running time T[X], pari a

$$\epsilon[\tilde{F}_n] = \frac{1}{V[\tilde{F}_n]T[\tilde{F}_n]} \tag{4.13}$$

MSE:

Chapter 5

Campionamento e Ricostruzione con Quasirandom Number Generation

Part III Applicazione

Chapter 6

Light Transport Modello e Surface Reflection

Part IV Appendici

Appendix A

Numeri Pseudocasuali e Algoritmi Vari

- A.1 Metodo di Gauss-Newton
- A.2 Interpolazione di Hermite
- A.3 Convergenza di Sequenza di Funzioni

Bibliography

- [al77] Nicodemus F. E. et al. Geometrical considerations and nomenclature for reflectance. Tech. rep. Final Report National Bureau of Standards, Washington, DC. Inst. for Basic Standards, 1977.
- [Sch94] Christophe Schlick. "An Inexpensive BRDF Model for Physically-Based Rendering". In: *Proceedings of Eurographics*. 1994.
- [Hec02] Eugene Hecht. Optics. Addison Wesley, 2002.
- [LS05] István Lazányi and László Szirmay-Kalos. "Fresnel Term Approximation for Metals". In: *Proceedings of WSCG*. 2005.
- [Sch07] Janos Schanda. Colorimetry. Understanding The CIE System. Wiley Interscience, 2007.
- [Jam09] Barbara G. Grant James M. Palmer. *The Art of Radiometry*. SPIE Press, 2009.
- [Ike14] Katsushi Ikeuchi. Computer Vision. 1st ed. Springer New York, NY, 2014.
- [McC14] Ross McCluney. Introduction to Radiometry and Photometry. 2nd ed. Artech House Publishers, 2014.
- [Peg16] Vincent Pegoraro. Handbook of Digital Image Synthesis: Scientific Foundations of Rendering. 1st ed. A K Peters/CRC Press, 2016.
- [AHH18] Tomas Akenine-Möller, Eric Haines, and Naty Hoffman. *Real-Time Rendering, Fourth Edition*. 4th ed. A K Peters/CRC Press, 2018.
- [Wen19] Johannes Hanika et al. Wenzel Jakob. "A Low-Dimensional Function Space for Efficient Spectral Upsampling". In: *Eurographics Symposium on Rendering 2019*. 2019.
- [al21] Alban Fichet et al. "An OpenEXR Layout for Spectral Images". In: Journal of Computer Graphics Techniques 10.3 (2021).

BIBLIOGRAPHY

- [al22] Jingang Zhang et al. "A survey on computational spectral reconstruction methods from RGB to hyperspectral imaging". In: *Science Reports* 12 (2022).
- [PJH23] Matt Pharr, Wenzel Jakob, and Greg Humphreys. *Physically Based Rendering: From Theory to Implementation*. 4th ed. Morgan Kaufmann, 2023.

Glossary

- Absorptance Rapporto tra flusso radiante o luminoso assorbito e flusso radiante o luminoso incidente in date condizioni (come la lunghezza del percorso nel mezzo considerato). 32
- Absorptivity Per un materiale assorbente: (spectral) Absorptance di uno strato di materiale tale che il percorso della radiazione all'interno del mezzo sia di lunghezza unitaria, senza incontrare ostacoli.. 33
- Bidirectional Reflectance Distribution Function Esprime la proporzione tra irradianza (spettrale) incidente nel punto \vec{p} da un angolo solido centrato in $\hat{\omega_i}$ e radianza (spettrale) riflessa in direzione $\hat{\omega_o}$. Misurata in sr⁻¹. 34, 41
- Bidirectional Scattering-Surface Reflectance Distribution Function Esprime la proporzione tra flusso radiante (spettrale) riflesso da $\vec{p_o}$ in direzione $\hat{\omega_o}$ e il flusso radiante (spettrale) incidente in $\vec{p_i}$ dalla direzione $\hat{\omega_i}$. Misurata in Wm⁻²sr⁻¹. 33
- **Emittanza Luminosa** Flusso luminoso emesso da una superficie per unità di area, emittanza radiante spettrale pesata sulla percezione umana. Si misura in lx. 16
- **Emittanza Radiante** Flusso Radiante emesso per unità di area. Misurata in W/m^2 . 9
- **Energia Luminosa** Energia trasportata dalla luce percepita da un osservatore umano. Misurata in $\text{lm} \cdot \text{s.} 16$
- **Energia Radiante** Energia aggregata di tutti i fotoni in una radiazione elettromagnetica. Misurata in J. 9
- **Flusso Luminoso** Misura la potenza della luce percepita da un osservatore umano. Misurata in lm. 16

- **Flusso Radiante** Energia Radiante *emessa, riflessa, trasmessa, incidente*, per unit'a di tempo. Misurata in W. 9
- Illuminanza Flusso luminoso incidente una superficie per unità di area, irradianza spettrale pesata sulla percezione umana. Si misura in lx. 16
- **Intensità Luminosa** Misura della intensità radiante spettrale pesata sulla percezione umana. Misurata in cd. 16
- Intensità Radiante Flusso Radiante emesso, riflesso, trasmesso, per unità di angolo solido. Misurata in W/sr. 9
- Irradianza Flusso Radiante incidente per unità di area. Misurata in W/m². 9
- **Luminanza** misura dell'intensità luminosa per unita di area di luce che è emessa, incidente, trasmessa, riflessa, passa attraverso una particolare direzione. Misurata in cd/m^2 . 16
- **Radianza** Flusso Radiante emesso, riflesso, trasmesso, incidente da/su una superficie, per unità di angolo solido per unità di area proiettata. Misurata in $W/(m^2 \cdot sr)$. 9, 13
- **Radiosità** Flusso Radiante *uscente* (emesso, riflesso e trasmesso) per unità di area. Misurata in W/m^2 . 9
- **Reflectance** Per una data radiazione con data SPD, polarizzazione, geometria: Rapporto tra flusso radiante o luminoso riflesso e flusso radiante o riflesso incidente. Nel primo caso, le grandezze possono essere spettrali o cumulative. Misura adimensionale. 32
- **Reflectivity** (spectral) Reflectance di uno strato del materiale con spessore tale che non c'è cambiamento in Reflectance. Cioè spessore tendente all'infinito (halfspace bulk material, materiale semi-infinito). 32
- **Trasmissivity** Per un materiale assorbente: (spectral) Transmittance interna di uno strato di materiale tale che il percorso della radiazione all'interno del mezzo sia di lunghezza unitaria, senza incontrare ostacoli. Per "interna" si intende non riferita alla sola interfaccia. 32
- **Trasmittance** Per una data radiazione con data SPD, polarizzazione, geometria: Rapporto tra flusso radiante o luminoso trasmesso e flusso radiante o riflesso

incidente, nelle date condizioni (come la lunghezza del percorso della radiazione nell mezzo che si considera). Nel primo caso, le grandezze possono essere spettrali o cumulative. Misura adimensionale. 32