

Introduction to Quantitative Geology

Geological advection: Examples of advection in geological processes

Lecturer: David Whipp david.whipp@helsinki.fi

22.11.2021

Goals of this lecture

• Introduce the advection equation

 Discuss application of the advection equation to different geological settings

What is advection?

- Advection involves a lateral translation of some quantity
 - For example, the transfer of heat by <u>physical movement</u> of molecules or atoms within a material. A type of convection, mostly applied to heat transfer in solid materials.

Diffusion equation

$$q = -D\frac{\partial C}{\partial x}$$

$$\frac{\partial C}{\partial t} = -\frac{\partial q}{\partial x}$$

- Last week we were introduced to the diffusion equation
 - Flux (transport of mass or transfer of energy)
 proportional to a gradient
 - Conservation of mass: Any change in flux results in a change in mass/energy

Diffusion equation

Diffusion

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial x^2}$$

to get the classic diffusion equation

$$q = -D\frac{\partial C}{\partial x}$$

•
$$q = \text{flux per unit length}$$

$$D = diffusivity$$

$$x = distance$$

$$t = time$$

$$\frac{\partial C}{\partial t} = -\frac{\partial q}{\partial x}$$

Substitute the upper equation on the left into the lower

Diffusion equation (heat transfer)

Diffusion

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2}$$

- Substitute the upper equation on the left into the lower to get the classic diffusion equation
 - κ = thermal diffusivity

T = temperature

x = distance

t = time

Diffusion equation (heat transfer)

Diffusion

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2}$$

Advection

$$\frac{\partial T}{\partial t} = v_{\mathrm{z}} \frac{\partial T}{\partial z}$$

• This week we meet the advection equation

Diffusion equation (heat transfer)

Diffusion

$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial z^2}$

$$\frac{\partial T}{\partial t} = v_{\mathbf{z}} \frac{\partial T}{\partial z}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient v_z has units of [L/T], rather than $[L^2/T]$

River channel profiles

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of $\lfloor L/T \rfloor$, rather than $\lfloor L^2/T \rfloor$

Fig. 1.7, Pelletier, 2008

River channel profiles

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of $\lfloor L/T \rfloor$, rather than $\lfloor L^2/T \rfloor$

Fig. 1.7, Pelletier, 2008

River channel profiles

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of $\lfloor L/T \rfloor$, rather than $\lfloor L^2/T \rfloor$

Fig. 1.7, Pelletier, 2008

River channel profiles

Advection

Fig. 1.7, Pelletier, 2008

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of $\lfloor L/T \rfloor$, rather than $\lfloor L^2/T \rfloor$

River channel profiles

Advection

Fig. 1.7, Pelletier, 2008

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of $\lfloor L/T \rfloor$, rather than $\lfloor L^2/T \rfloor$

River channel profiles

Advection

Fig. 1.7, Pelletier, 2008

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

- This week we meet the advection equation
- Two key differences:
 - Change in mass/energy with time proportional to gradient, rather than curvature (or change in gradient)
 - Advection coefficient c has units of $\lfloor L/T \rfloor$, rather than $\lfloor L^2/T \rfloor$

River channel profiles

Advection

Fig. 1.7, Pelletier, 2008

Diffusion

$$\frac{\partial h}{\partial t} = -\kappa \frac{\partial^2 h}{\partial x^2}$$

Advection

$$\frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x}$$

Diffusion: Rate of erosion <u>depends on change</u> in hillslope gradient (curvature)

- Advection: Rate of erosion is directly proportional to hillslope gradient
 - Also, no conservation of mass (deposition)

What is the main difference between the advection and diffusion equations?

References

Pelletier, J. D. (2008). Quantitative modeling of earth surface processes (Vol. 304). Cambridge University Press.