CS3211 project 1 - Image processing: implementation and analysis

Tan Soon Jin

February 13, 2017

Contents

1	TODO Part 1				
	1.1	Hardware	2		
		1.1.1 Find out hardwares used in lab and Tembusu clusters	2		
		1.1.2 How the hardware contributes to the result	2		
	1.2	Speedup	2		
		1.2.1 Tabulate result from Lab01 Task 3 & $4 \dots \dots$	2		
		1.2.2 Interpret the result based on	2		
	1.3	Memory Effects	4		
		1.3.1 Tabulate result from Lab01 Task 6	4		
		1.3.2 What is causing the behaviour?	4		
	1.4	Accuracy	4		
		1.4.1 Tabulate result from Lab02 Task 1-4	4		
		1.4.2 What is causing the behaviour?	4		
	1.5	Communication. speedup	4		
		1.5.1 Tabulate result from Lab02 Task 7	4		
		1.5.2 What is causing the behaviour?	4		
		1.5.3 How does openMPI implementation scale when run on			
		multiple processors?	4		
2	тоі	00 Part 2 Demo	4		
	2.1	Develop as many image processing functions implemented on			
		GPU.js.	4		
		2.1.1 Input: animation or movie file	4		
	2.2	Users should be able to see CPU vs GPU comparisons clearly			
		for each functions	4		
	2.3	Focus on parallelized components	4		

	2.4	Gettin	ng started with GPU.js	4
	2.5	Criter	ias to be judged	4
		2.5.1	Anything special for accuracy? speedup? workload	
			reduction?	4
		2.5.2	Anything to improve the system?	4
		2.5.3	Adjusting parameters to specify different methods of	
		2 - 1	operation	4
		2.5.4	Implementing camera motion/fly-through technique	4
		2.5.5	Implement other animations and background not provided	4
		2.5.6	Provide evidence of testing	4
	2.6	Tabula	ate result and discuss	4
1	3.2 T		Part 1	
1.	1 F	Iardw	are	
1.	1.1	Find o	out hardwares used in lab and Tembusu clusters	
1.	1.2	Uom t	the hardware contributes to the result	
	1.4	HOW U	ane nardware contributes to the result	
1.		peedu		
		peedu		
1.	2 S	peedu Tabula	ıp	
1.	2 S 2.1 2.2	peedu Tabula	ate result from Lab 01 Task $3\ \&\ 4$ oret the result based on	

- 1.3 Memory Effects
- 1.3.1 Tabulate result from Lab01 Task 6
- 1.3.2 What is causing the behaviour?
- 1.4 Accuracy
- 1.4.1 Tabulate result from Lab02 Task 1-4
- 1.4.2 What is causing the behaviour?
- 1.5 Communication. speedup
- 1.5.1 Tabulate result from Lab02 Task 7
- 1.5.2 What is causing the behaviour?
- 1.5.3 How does openMPI implementation scale when run on multiple processors?

2 TODO Part 2 Demo

- 2.1 Develop as many image processing functions implemented on GPU.js.
- 2.1.1 Input: animation or movie file
- 2.2 Users should be able to see CPU vs GPU comparisons clearly for each functions
- 2.3 Focus on parallelized components
- 2.4 Getting started with GPU.js
- 2.5 Criterias to be judged
- 2.5.1 Anything special for accuracy? speedup? workload reduction?
- 2.5.2 Anything to improve the system?
- 2.5.3 Adjusting parameters to specify different methods of operation
- 2.5.4 Implementing camera motion/fly-through technique
- 2.5.5 Implement other animations and background not provided
- 2.5.6 Provide evidence of testing
- 2.6 Tabulate result and discuss
- 3 Output
- 3.1 A0112213.zip
- 3.2 Hardcopy