лое число $\epsilon > 0$ (точность) и вычисления проводятся до тех пор, пока не будет выполнена оценка

$$||x^{(n)}-x||<\varepsilon.$$

Число итераций $n=n(\epsilon)$, которое необходимо провести для получения заданной точности ϵ (т. е. для выполнения оценки (2)), для многих методов можно найти из теоретических рассмотрений. Качество различных итерационных процессов можно сравнивать по необходимому числу итераций $n(\epsilon)$.

К решению систем линейных алгебраических уравнений сводится подавляющее большинство задач вычислительной математики. В настоящее время предложено колоссальное количество алгоритмов решения задач линейной алгебры (см. [8, 35]), большинство из которых рассчитано на матрицы А специального вида (трехдиагональные, симметричные, ленточные, большие разреженные матрицы).

Прямые методы, которые рассматриваются в гл. 1, не предполагают, что матрица А имеет какой-либо специальный вид. На практике они применяются для матриц умеренного порядка (порядка ста). Итерационные методы, рассмотренные в гл. 2, можно применять и для матриц высокого порядка, однако их сходимость не очень быстрая. Более совершенные прямые и итерационные методы, учитывающие структуру матрицы, излагаются в части III.

§ 1. Метод Гаусса численного решения систем линейных алгебраических уравнений

1. Основная идея метода. В ближайших двух главах рассматриваются численные методы решения системы линейных алгебраических уравнений

 $Ax = f, \tag{1}$

где A — вещественная квадратная матрица порядка m, а f — заданный и x — искомый векторы. Будем предполагать, что определитель матрицы A отличен от нуля. Тогда для каждого вектора f система (1) имеет единственное решение.

Запишем систему (1) в развернутом виде

Метод Гаусса решения системы (2) состоит в последовательном исключении неизвестных x_1, x_2, \ldots, x_m из этой системы. Предположим, что $a_{11} \neq 0$. Поделив первое уравнение на a_{11} , получим

$$x_1 + c_{12}x_2 + \dots + c_{1m}x_m = y_1, \tag{3}$$

где

$$c_{1j} = \frac{a_{1j}}{a_{11}}, \quad j = 2, \ldots, m, \quad y_1 = \frac{f_1}{a_{11}}.$$

Рассмотрим теперь оставшиеся уравнения системы (2):

$$a_{i_1}x_1 + a_{i_2}x_2 + \ldots + a_{i_m}x_m = f_i, \quad i = 2, 3, \ldots, m.$$
 (4)

Умножим (3) на a_{ii} и вычтем полученное уравнение из i-го уравнения системы (4), i=2, ..., m. В результате получим следующую систему уравнений:

$$x_{1} + c_{12}x_{2} + \dots + c_{1j}x_{j} + \dots + c_{1m}x_{m} = y_{1},$$

$$a_{22}^{(1)}x_{2} + \dots + a_{2j}^{(1)}x_{j} + \dots + a_{2m}^{(1)}x_{m} = f_{2}^{(1)},$$

$$\vdots$$

$$a_{m2}^{(1)}x_{2} + \dots + a_{mj}^{(1)}x_{j} + \dots + a_{mm}^{(1)}x_{m} = f_{m}^{(1)}.$$
(5)

Здесь обозначено

$$a_{ij}^{(1)} = a_{ij} - c_{1j}a_{i1}, f_i^{(1)} = f_i - y_1a_{i1}, i, j = 2, 3, ..., m.$$
 (6)

Матрица системы (5) имеет вид

$$\begin{bmatrix} 1 & c_{12} & \dots & c_{1m} \\ 0 & a_{22}^{(1)} & \dots & a_{2m}^{(1)} \\ & \ddots & & \ddots & \ddots \\ 0 & a_{m2}^{(1)} & \dots & a_{mm}^{(1)} \end{bmatrix}.$$

Матрицы такой структуры принято обозначать так:

$$\begin{bmatrix} 1 & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \ddots & \ddots & \ddots \end{bmatrix},$$

тде крестиками обозначены ненулевые элементы. В системе (5) неизвестное x_1 содержится только в первом уравнении, поэтому в дальнейшем достаточно иметь дело с укороченной системой уравнений

Тем самым мы осуществили первый шаг метода Гаусса. Если $a_{22}^{(1)} \neq 0$, то из системы (7) совершенно аналогично можно исключить неизвестное x_2 и прийти к системе, эквивалентной (2) и имеющей матрицу следующей структуры:

$$\begin{bmatrix} 1 & \times & \times & \dots & \times \\ 0 & 1 & \times & \dots & \times \\ 0 & 0 & \times & \dots & \times \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}.$$

При этом первое уравнение системы (5) остается без изменения.

Исключая таким же образом неизвестные x_3, x_4, \ldots, x_m , придем окончательно к системе уравнений вида

эквивалентной исходной системе (2).

Матрица этой системы

$$C = \begin{bmatrix} -1 & c_{12} & \dots & c_{1,m-1} & c_{1m} \\ 0 & 1 & \dots & c_{2,m-1} & c_{2m} \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & 0 & \dots & 1 & c_{m-1,m} \\ 0 & 0 & \dots & 0 & 1 \end{bmatrix}.$$
 (9).

содержит нули всюду ниже главной диагонали. Матрицы такоговида называются верхними треугольными матрицами. Нижней треугольной называется такая матрица, у которой равны нулю все-элементы, расположенные выше главной диагонали.

Получение системы (8) составляет прямой ход метода Гаусса. Обратный ход заключается в нахождении неизвестных x_1, x_2, \ldots, x_m из системы (8). Поскольку матрица системы имеет треугольный вид, можно последовательно, начиная с x_m , найти все неизвестные. Действительно, $x_m = y_m, x_{m-1} = y_{m-1} - c_{m-1} m x_m$ и т. д. Общие формулых обратного хода имеют вид

$$x_i = y_i - \sum_{j=i+1}^m c_{ij} x_j, \quad i = m-1, \ldots, 1, \quad x_m = y_m.$$
 (10)

2. Расчетные формулы. При реализации на ЭВМ прямого хода метода Гаусса нет необходимости действовать с переменными x_1, x_2, \ldots, x_m . Достаточно указать алгоритм, согласно которому исходная матрица A преобразуется к треугольному виду (9), и указать соответствующее преобразование правых частей системы. Получим эти общие формулы. Пусть осуществлены первые k-1 шагов, т. е. уже исключены переменные $x_1, x_2, \ldots, x_{k-1}$. Тогда имеем систему

Рассмотрим k-е уравнение этой системы

$$a_{kk}^{(k-1)}x_k + \ldots + a_{km}^{(k-1)}x_m = f_k^{(k-1)}$$

и предположим, что $a_{kk}^{(k-1)} \neq 0$. Поделив обе части этого уравнения на $a_{kk}^{(k-1)}$, получим

$$x_k + c_{k,k+1} x_{k+1} + \ldots + c_{km} x_m = y_k, \tag{12}$$

где

$$c_{kj} = \frac{a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}}, \quad j = k+1, k+2, \dots, m,$$

$$y_k = \frac{f_k^{(k-1)}}{a_{kk}^{(k-1)}}.$$

Далее, умножим уравнение (12) на $a_{ik}^{(k-1)}$ и вычтем полученное соотношение из i-го уравнения системы (11), где $i=k+1, k+2, \ldots, m$. В результате последняя группа уравнений системы (11) примет вид

$$x_{k} + c_{k,k+1}x_{k+1} + \dots + c_{km}x_{m} = y_{k},$$

$$a_{k+1,k+1}^{(k)}x_{k+1} + \dots + a_{k+1,m}^{(k)}x_{m} = f_{k+1}^{(k)},$$

$$a_{m,k+1}^{(k)}x_{k+1} + \dots + a_{mm}^{(k)}x_{m} = f_{m}^{(k)},$$

где

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{ik}^{(k-1)} c_{kj}, \quad i, j = k+1, k+2, \dots, m,$$

$$f_i^{(k)} = f_i^{(k-1)} - a_{ik}^{(k-1)} y_k, i = k+1, k+2, \dots, m.$$

Таким образом, в прямом ходе метода Гаусса коэффициенты уравнений преобразуются по следующему правилу:

$$a_{kj}^{(0)} = a_{kj}, \quad k, j = 1, 2, ..., m,$$

$$c_{kj} = \frac{a_{kj}^{(k-1)}}{a_{kk}^{(k-1)}}, j = k+1, k+2, ..., m, k = 1, 2, ..., m, (13)$$

$$a_{ij}^{(k)} = a_{ij}^{(k-1)} - a_{ik}^{(k-1)} c_{kj},$$

$$i, j = k+1, k+2, \dots, m, k=1, 2, \dots, m-1.$$
(14)

Вычисление правых частей системы (8) осуществляется по формулам

$$f_k^{(0)} = f_k, \quad y_k = \frac{f_k^{(k-1)}}{a_{k,k}^{(k-1)}}, \quad k = 1, 2, ..., m,$$
 (15)

$$f_i^{(k)} = f_i^{(k-1)} - a_{ik}^{(k-1)} y_k, \ i = k+1, \ k+2, \dots, m.$$
 (16)

Коэффициенты c_{ij} и правые части $y_i, i=1, 2, \ldots, m, j=i+1, i+2, \ldots$

..., m, хранятся в памяти ЭВМ и используются при осуществлении обратного хода по формулам (10).

Основным ограничением метода является предположение о том, что все элементы $a_{kk}^{(k-1)}$, на которые проводится деление, отличны от нуля. Число $a_{kk}^{(k-1)}$ называется ведущим элементом на k-м маге исключения. Даже если какой-то ведущий элемент не равен нулю, а просто близок к нему, в процессе вычислений может происходить сильное накопление погрешностей. Выход из этой ситуации состоит в том, что в качестве ведущего элемента выбирается не $a_{kk}^{(k-1)}$, а другое число (т. е. на k-м шаге исключается не x_k , а другое переменное x_j , $j \neq k$). Наиболее последовательно такая стратегия выбора ведущих элементов осуществлена в методе Гаусса с выбором главного элемента (см. § 3).

- 3. Подсчет числа действий. Подсчитаем число арифметических действий, необходимых для решения системы (2) с помощью метода Гаусса. Поскольку выполнение операций умножения и деления на ЭВМ требует гораздо больше времени, чем выполнение сложения и вычитания, ограничимся подсчетом числа умножений и делений. Читатель по аналогии может самостоятельно найти требуемое число действий сложения и вычитания.
- 1. Вычисление коэффициентов c_{kj} , k=1, 2, ..., m, j=k+1, k+2, ..., m, по формулам (13) требует

$$\sum_{k=1}^{m} (m-k) = 1 + 2 + \ldots + (m-1) = \frac{m(m-1)}{2}$$

делений.

2. Вычисление всех коэффициентов $a_{ij}^{(k)}$ по формулам (14) требует

$$\sum_{k=1}^{m-1} (m-k)^2 = 1^2 + 2^2 + \ldots + (m-1)^2 = \frac{(m-1) m (2m-1)}{6}$$

умножений.

Таким образом, вычисление ненулевых элементов c_{ij} треугольной матрицы C требует

$$\frac{m(m-1)}{2} + \frac{(m-1)m(2m-1)}{6} = \frac{(m^2-1)m}{3}$$

операций умножения и деления. При больших m это число действий равно приблизительно $m^3/3$.

3. Вычисление правых частей y_k по формулам (15) требует m делений, а нахождение $f_k^{(k)}$ по формулам (16)

$$\sum_{k=1}^{m} (m-k) = \frac{m(m-1)}{2}$$

умножений. Следовательно, вычисление правых частей преобразованной системы (8) требует

$$m + \frac{m(m-1)}{2} = \frac{m(m+1)}{2}$$

действий умножения и деления.

В итоге для осуществления прямого хода метода Гаусса необходимо выполнить

$$\frac{(m^2-1) m}{3} + \frac{m (m+1)}{2} = \frac{m (m+1) (2m+1)}{6}$$

действий, из которых основное число действий (порядка $m^3/3$) приходится на вычисление элементов матрицы C.

4. Для осуществления обратного хода метода Гаусса по формулам (10) требуется

$$\sum_{i=1}^{m-1} (m-i) = \frac{m(m-1)}{2}$$

умножений.

Итак, для реализации метода Гаусса требуется выполнить

$$\frac{m(m+1)(2m+1)}{6} + \frac{m(m-1)}{2} = \frac{m(m^2 + 3m - 1)}{3}$$

действий умножения и деления. Подчеркнем, что основное время расчета затрачивается на осуществление прямого хода. Для больших m число действий умножения и деления в методе Гаусса близко к $m^3/3$. Это означает, что на вычисление одного неизвестного тратится в среднем $m^2/3$ действий. По затратам времени и необходимой машинной памяти метод Гаусса пригоден для решения систем уравнений (2) общего вида с числом неизвестных m порядка 100.

§ 2. Условия применимости метода Гаусса

1. Связь метода Гаусса с разложением матрицы на множители. В предыдущем параграфе было показано, что метод Гаусса преобразует исходную систему уравнений

$$Ax = f \tag{1}$$

в эквивалентную систему

$$Cx = y, (2)$$

где C — верхняя треугольная матрица с единицами на главной диагонали. Выясним теперь, как связаны между собой векторы правых частей f и g. Для этого обратимся к формулам (16) из § 1, из которых последовательно получим

$$f_1 = a_{11}y_1, \quad f_2 = a_{21}y_1 + a_{22}^{(1)}y_2, \dots$$

и вообще

$$f_i = b_{i1}y_1 + b_{i2}y_2 + \dots + b_{ii}y_i, \quad i = 1, 2, \dots, m,$$
 (3)

где b_{ii} — числовые коэффициенты, причем $b_{ij} = a_{ji}^{(j-1)}$. Соотношения (3) можно записать в матричном виде

$$f = By, (4)$$

где B — нижняя треугольная матрица с элементами $a_{jj}^{(l-1)}$, $j=1,2,\ldots,m$, $(a_{11}^{(0)}=a_{11})$ на главной диагонали. Напомним, что основное допущение при формулировке метода Гаусса состояло в том, что все $a_{jj}^{(l-1)}\neq 0$. Поэтому на диагонали матрицы B стоят ненулевые элементы, и, следовательно, матрица B имеет обратную.

Подставляя в уравнение (2) выражение для y в виде $y=B^{-1}f$,

приходим к уравнению

$$Cx = B^{-1}f$$

или, что то же самое, к уравнению

$$BCx = f.$$
 (5)

Сопоставляя (5) с уравнением (1), приходим к выводу, что в результате применения метода Гаусса получено разложение исходной матрицы A в произведение A=BC, где B — нижняя треугольная матрица с ненулевыми элементами на главной диагонали и C — верхняя треугольная матрица с единичной главной диагональю.

Теперь мы имеем право трактовать метод Гаусса следующим образом. Пусть заданы матрицы A и вектор f. Сначала проводится разложение A в произведение двух треугольных матриц, A = BC. Затем последовательно решаются две системы уравнений

$$By = f, \tag{6}$$

$$Cx = y \tag{7}$$

с треугольными матрицами, откуда и находится искомый вектор x. Разложение A=BC соответствует прямому ходу метода Гаусса, а решение системы (6)-(7)— обратному ходу. Заметим, что в алгоритме, изложенном в § 1, разложение A=BC и решение системы (6) проводится одновременно.

Далее, следуя стандартным обозначениям, нижние треугольные матрицы будем обозначать буквой L (от английского lower — нижний) и верхние треугольные — буквой U (от английского upper — верхний).

2. Теорема об LU-разложении. Обозначим через Δ_j угловой минор порядка j матрицы A, τ . e.

$$\Delta_1 = a_{11}, \ \Delta_2 = \det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}, \dots, \Delta_m = \det A.$$

Теоретическое обоснование возможности разложения матрицы в произведение двух треугольных матриц содержит следующая

Теорема 1 (теорема об LU-разложении). Пусть все угловые миноры матрицы A отличны от нуля, $\Delta_i \neq 0$, $j=1, 2, \ldots, m$. Тогда

матрицу А можно представить, причем единственным образом, в виде произведения

 $A = LU, \tag{8}$

где L— нижняя треугольная матрица с ненулевыми диагональны**ми** элементами и U— верхняя треугольная матрица с единичной диагональю.

Доказательство. Докажем сформулированное утверждение сначала для матриц второго порядка. Будем искать разложение матрицы

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

в виде

$$A = \begin{bmatrix} l_{11} & 0 \\ l_{21} & l_{22} \end{bmatrix} \begin{bmatrix} 1 & u_{12} \\ 0 & 1 \end{bmatrix},$$

где l_{11} , l_{21} , l_{22} , u_{12} — неизвестные пока числа. Для их нахождения придем к системе уравнений

$$l_{11} = a_{11}, \quad l_{11}u_{12} = a_{12}, \quad l_{21} = a_{21},$$

 $l_{21}u_{12} + l_{22} = a_{22},$

которая имеет единственное решение

$$l_{11} = a_{11}, \quad u_{12} = a_{12}/a_{11}, \quad l_{21} = a_{21},$$

$$l_{22} = \frac{a_{11}a_{22} - a_{21}a_{12}}{a_{11}}.$$

По предположению теоремы $a_{11} \neq 0$, $a_{11}a_{22} \neq a_{21}a_{12}$, следовательно, элементы l_{11} и l_{22} отличны от нуля.

Дальнейшее доказательство проведем методом индукции. Пусть утверждение теоремы справедливо для матриц порядка k-1; докажем, что оно справедливо и для матриц порядка k. Представим матрицу A порядка k в виде

$$A = \begin{bmatrix} a_{11} & \dots & a_{1,k-1} \\ \vdots & \ddots & \ddots & \vdots \\ a_{k-1,1} & \dots & a_{k-1,k-1} \\ a_{b_1} & \dots & a_{b_{b-1}} \end{bmatrix} \begin{bmatrix} a_{1k} \\ \vdots \\ a_{k-1,k} \\ \vdots \\ a_{bb} \end{bmatrix}$$
 (9)

и обозначим

$$A_{k-1} = \begin{bmatrix} a_{11} & \dots & a_{1,k-1} \\ \dots & \dots & \dots \\ a_{k-1,1} & \dots & a_{k-1,k-1} \end{bmatrix}, \quad a_{k-1} = \begin{bmatrix} a_{1k} \\ \dots \\ a_{k-1,k} \end{bmatrix}, \\ b_{k-1} = (a_{k1}, \dots, a_{k,k-1}).$$

Согласно предположению индукции существует требуемое разложение матрицы A_{k-1} , т. е.

 $A_{k-1} = L_{k-1}U_{k-1},$

где L_{k-1} , U_{k-1} — соответственно нижняя и верхняя треугольные мат-

рицы, обладающие указанными в теореме свойствами. Будем искать разложение матрицы (9) в виде

$$A = \begin{bmatrix} L_{k-1} & 0 \\ l_{k-1} & l_{kk} \end{bmatrix} \begin{bmatrix} U_{k-1} & u_{k-1} \\ 0 & 1 \end{bmatrix}, \tag{10}$$

где l_{k-1} , u_{k-1} — неизвестные пока векторы,

$$l_{k-1} = (l_{k1}, l_{k2}, \ldots, l_{k,k-1}), \quad u_{k-1} = (u_{1k}, u_{2k}, \ldots, u_{k-1,k})^T.$$

Перемножая матрицы в правой части уравнения (10) и учитывая (9), приходим к системе уравнений

$$L_{k-1}u_{k-1} = a_{k-1}, (11)$$

$$l_{k-1}U_{k-1} = b_{k-1}, (12)$$

$$l_{k-1}u_{k-1} + l_{kk} = a_{kk}. (13)$$

Из предположения индукции следует существование матриц L_{k-1}^{-1} , U_{k-1}^{-1} . Поэтому из (11) и (12) получим

$$u_{k-1} = L_{k-1}^{-1} a_{k-1}, \quad l_{k-1} = b_{k-1} U_{k-1}^{-1}$$

и, далее,

$$l_{hh} = a_{hh} - l_{h-1} u_{h-1}$$

Таким образом, LU-разложение матрицы A порядка k существует. Остается доказать, что $l_{kk} \neq 0$. Рассмотрим определитель матрицы A. Из разложения (10) следует, что

$$\det A = (\det L_{k-1}) l_{kk} (\det U_{k-1}) = (\det L_{k-1}) l_{kk}.$$

По условию теоремы $\det A \neq 0$, следовательно, $l_{kk} \neq 0$. Тем самым индукция завершена и доказана возможность требуемого разложения.

Покажем теперь, что такое разложение единственно. Предположим, что матрицу A можно разложить двумя способами:

$$A = L_1 U_1 = L_2 U_2$$
.

Тогда $L_2 = L_1 U_1 U_2^{-1}$ и

$$U_1 U_2^{-1} = L_1^{-1} L_2. (14)$$

Матрица в левой части уравнения (14) является верхней треугольной, а в правой части — нижней треугольной. Такое равенство возможно лишь в случае, если матрицы $U_1U_2^{-1}$ и $L_1^{-1}L_2$ диагональные. Но на диагонали матрицы $U_1U_2^{-1}$ (а следовательно, и матрицы $L_1^{-1}L_2$) стоят единицы, следовательно, эти матрицы единичные:

$$U_1U_2^{-1} = L_1^{-1}L_2 = E$$
.

Отсюда получаем $U_1 = U_2$, $L_1 = L_2$, т. е. разложение (8) единственно. Теорема об LU-разложении полностью доказана.

Замечание. Если хотя бы один из угловых миноров матрицы A равен нулю, то указанное LU-разложение невозможно. Это легко видеть на примере матриц второго порядка.

Следствие. Метод Гаусса можно применять тогда и только тогда, когда все угловые Тиноры матрицы А отличны от нуля.

3. Элементарные треугольные матрицы. Мы уже видели, что метод Гаусса приводит к разложению исходной матрицы в произведение двух треугольных. Более детально описать структуру этих треугольных матриц можно с помощью так называемых элементарных треугольных матриц.

Матрица L; называется элементарной нижней треугольной матрицей, если она имеет вид

$$L_{j} = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & & \\ 0 & \dots & l_{jj} & & 0 & \\ 0 & \dots & l_{j+1,j} & 1 & & \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & l_{mj} & 0 & \dots & 1 \end{bmatrix}.$$

В матрице L_i все элементы главной диагонали кроме l_{ii} равны единице. Из остальных элементов отличными от нуля могут быть только элементы j-го столбца, расположенные ниже l_{ii} . Обратной к L_i является элементарная нижняя треугольная матрица

Рассмотрим для наглядности сначала систему Ax = f, состоящую из трех уравнений:

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = f_1,$$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = f_2,$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = f_3.$$
(15)

После первого шага исключения по методу Гаусса преобразованная система принимает вид

$$x_{1} + \frac{a_{12}}{a_{11}} x_{2} + \frac{a_{13}}{a_{11}} x_{3} = \frac{f_{1}}{a_{11}},$$

$$\left(a_{22} - \frac{a_{21}a_{12}}{a_{11}}\right) x_{2} + \left(a_{23} - \frac{a_{21}a_{13}}{a_{11}}\right) x_{3} = f_{2} - \frac{a_{12}}{a_{11}} f_{1},$$

$$\left(a_{32} - \frac{a_{31}a_{12}}{a_{11}}\right) x_{2} + \left(a_{33} - \frac{a_{13}a_{31}}{a_{11}}\right) x_{3} = f_{3} - \frac{a_{31}}{a_{11}} f_{1}.$$
(16)

Отсюда видно, что матрица A_i системы (16) получается из исход-

ной матрицы A путем умножения A слева на элементарную матрицу

$$L_{1} = \begin{bmatrix} 1/a_{11} & 0 & 0 \\ -a_{21}/a_{11} & 1 & 0 \\ -a_{31}/a_{11} & 0 & 1 \end{bmatrix}, \tag{17}$$

так что $A_1 = L_1 A$. При этом систему (16) можно записать в виде

$$L_1Ax = L_1f$$
.

Матрицу (17) будем называть элементарной треугольной матрицей, соответствующей первому шагу исключения метода Гаусса. Перепишем систему (16) в виде

$$x_{1} + c_{12}x_{2} + c_{13}x_{3} = y_{1},$$

$$a_{22}^{(1)}x_{2} + a_{23}^{(1)}x_{3} = f_{2}^{(1)},$$

$$a_{32}^{(1)}x_{2} + a_{33}^{(1)}x_{3} = f_{3}^{(1)}$$
(18)

и осуществим второй шаг метода Гаусса, т. е. исключим неизвестное x_2 из последнего уравнения. Тогда получим систему вида

$$x_1 + c_{12}x_2 + c_{13}x_3 = y_1,$$

$$x_2 + c_{23}x_3 = y_2,$$

$$a_{33}^{(2)}x_3 = f_3^{(2)}.$$
(19)

Нетрудно видеть, что переход от (18) к (19) осуществляется путем умножения системы (18) на элементарную треугольную матрицу

$$L_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/a_{22}^{(1)} & 0 \\ 0 & -a_{32}^{(1)}/a_{22}^{(1)} & 1 \end{bmatrix}. \tag{20}$$

Таким образом, после второго шага исключения мы приходим к системе

$$L_2L_1Ax = L_2L_1f, (21)$$

где матрицы L_1 и L_2 определены согласно (17), (20). Наконец, умножая (21) на матрицу

$$L_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/a_{33}^{(2)} \end{bmatrix},$$

получаем систему

$$L_3 L_2 L_1 A x = L_3 L_2 L_1 f, (22)$$

матрица которой $U=L_3L_2L_1A$ является верхней треугольной матрицей с единичной главной диагональю. Отсюда следует, в частности, что A=LU, где $L=L_1^{-1}L_2^{-1}L_3^{-1}$ — нижняя треугольная матрица. Таким образом, LU-разложение матрицы A может быть получено с помощью элементарных треугольных матриц: сначала строятся матрицы L_1 , L_2 , L_3 и вычисляется $U=L_3L_2L_1A$ и затем находится L=1

 $=L_1^{-1}L_2^{-1}L_3^{-1}$.Отметим, что матрицы L_k^{-1} имеют простой вид:

$$L_{1}^{-1} = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & 1 & 0 \\ a_{31} & 0 & 1 \end{bmatrix}, \quad L_{2}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & a_{22}^{(1)} & 0 \\ 0 & a_{32}^{(1)} & 1 \end{bmatrix},$$

$$L_{3}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & a_{33}^{(2)} \end{bmatrix}, \quad L = \begin{bmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22}^{(1)} & 0 \\ a_{31} & a_{32}^{(1)} & a_{33}^{(2)} \end{bmatrix},$$

причем на диагонали матрицы L расположены ведущие элементы метода исключения.

Запись метода Гаусса в виде (22) детально описывает процесс исключения.

Все сказанное выше переносится без изменения и на системы уравнений произвольного порядка (2). Процесс исключения можно записать формулой

$$L_m L_{m-1} \dots L_1 A x = L_m L_{m-1} \dots L_1 f,$$
 (23)

где элементарная нижняя треугольная матрица $L_{\scriptscriptstyle h}$ на k-м шаге исключения имеет вид

$$L_{k} = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \dots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 1/a_{kk}^{(k-1)} & 0 & \dots & 0 \\ 0 & \dots & -a_{k+1,k}^{(k-1)}/a_{kk}^{(k-1)} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & -a_{mk}^{(k-1)}/a_{kk}^{(k-1)} & 0 & \dots & 1 \end{bmatrix}.$$

Матрица L_k осуществляет исключение неизвестного x_k из уравнений с номерами $k+1, k+2, \ldots, m$. Матрицы L_k^{-1} существуют и имеют вид

$$L_k^{-1} = \begin{bmatrix} -1 & \dots & 0 & 0 & \dots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & a_{kk}^{(k-1)} & 0 & \dots & 0 \\ 0 & \dots & a_{k+1 k}^{(k-1)} & 1 & \dots & 0 \\ & \ddots & \ddots & \ddots & \ddots & \ddots \\ 0 & \dots & a_{mk}^{(k-1)} & 0 & \dots & 1 \end{bmatrix}.$$

§ 3. Метод Гаусса с выбором главного элемента

1. Основная идея метода. Может оказаться, что система

$$Ax = f \tag{1}$$

имеет единственное решение, хотя какой-либо из угловых миноров матрицы A равен нулю. Кроме того, заранее обычно неизвестно, все ли угловые миноры матрицы A отличны от нуля. В этих случа-

ях обычный метод Гаусса может оказаться непригодным. Избежать указанных трудностей позволяет метод Гаусса с выбором главного элемента. Основная идея метода состоит в том, чтобы на очередном шаге исключать не следующее по номеру неизвестное, а то неизвестное, коэффициент при котором является наибольшим по модулю. Таким образом, в качестве ведущего элемента здесь выбирается главный, τ . е. наибольший по модулю элемент. Тем самым, если $\det A \neq 0$, то в процессе вычислений не будет происходить деление на нуль.

Различные варианты метода Гаусса с выбором главного элемента проиллюстрируем на примере системы из двух уравнений

$$a_{11}x_1 + a_{12}x_2 = f_1, \quad a_{21}x_1 + a_{22}x_2 = f_2.$$
 (2)

Предположим, что $|a_{12}| > |a_{11}|$. Тогда на первом шаге будем исключать переменное x_2 . Такой прием эквивалентен тому, что система (2) переписывается в виде

$$a_{12}x_2 + a_{11}x_1 = f_1, \quad a_{22}x_2 + a_{21}x_1 = f_2$$
 (3)

и к (3) применяется первый шаг обычного метода Гаусса. Указанный способ исключения называется методом Гаусса с выбором главного элемента по строке. Он эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация переменных.

Применяется также метод Гаусса с выбором главного элемента по столбцу. Предположим, что $|a_{21}| > |a_{11}|$. Перепишем систему (2) в виде

$$a_{21}x_1 + a_{22}x_2 = f_2$$
, $a_{11}x_1 + a_{12}x_2 = f_1$

и к новой системе применим на первом шаге обычный метод Гаусса. Таким образом, метод Гаусса с выбором главного элемента по столбцу эквивалентен применению обычного метода Гаусса к системе, в которой на каждом шаге исключения проводится соответствующая перенумерация уравнений.

Иногда применяется и метод Гаусса с выбором главного элемента по всей матрице, когда в качестве ведущего выбирается максимальный по модулю элемент среди всех элементов матрицы системы.

2. Матрицы перестановок. В предыдущем параграфе было по-казано, что обычный метод Гаусса можно записать в виде

$$L_mL_{m-1}\ldots L_1Ax = L_mL_{m-1}\ldots L_1f$$
,

где L_k , $k=1, 2, \ldots, m$,— элементарные нижние треугольные матрицы. Чтобы получить аналогичную запись метода Гаусса с выбором главного элемента, нам необходимо познакомиться с матрицами перестановок.

Определение 1. *Матрицей перестановок P* называется квадратная матрица, у которой в каждой строке и в каждом столбце только один элемент отличен от нуля и равен единице.

Определение 2. Элементарной матрицей перестановок P_{kl} называется матрица, полученная из единичной матрицы перестановкой k-й и l-й строк.

Например, элементарными матрицами перестановок третьего порядка являются матрицы

$$P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad P_{13} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \quad P_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Отметим следующие свойства элементарных матриц перестановок, вытекающие непосредственно из их определения.

1°. Произведение двух (а следовательно, и любого числа) элементарных матриц перестановок является матрицей перестановок (не обязательно элементарной).

 2° . Для любой квадратной матрицы A матрица $P_{\it kl}A$ отличается

от A перестановкой k-й и l-й строк.

 3° . Для любой квадратной матрицы A матрица AP_{kl} отличается

от A перестановкой k-го и l-го столбцов.

3. Пример. Поясним применение элементарных матриц перестановок для описания метода Гаусса с выбором главного элемента по столбцу. Рассмотрим следующий пример системы третьего порядка:

$$\begin{aligned}
 x_1 + x_2 + x_3 &= f_1, \\
 2x_1 + x_3 &= f_2, \\
 5x_2 + 3x_3 &= f_3.
 \end{aligned}
 \tag{4}$$

Система имеет вид (1), где

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 1 \\ 0 & 5 & 3 \end{bmatrix}. \tag{5}$$

Максимальный элемент первого столбца матрицы A находится во второй строке. Поэтому в системе (4) надо поменять местами первую и вторую строки и перейти к эквивалентной системе

$$2x_1 + x_3 = f_2,
x_1 + x_2 + x_3 = f_1,
5x_2 + 3x_3 = f_3.$$
(6)

Систему (6) можно записать в виде

$$P_{12}Ax = P_{12}f, (7)$$

т. е. она получается из системы (4) путем умножения на матрицу перестановок

$$P_{12} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Далее, к системе (6) надо применить первый шаг обычного метода исключения Гаусса. Этот шаг, как мы видели, эквивалентен

умножению системы (7) на элементарную нижнюю треугольную матрицу (см. (17) из § 2)

$$L_1 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

В результате от (7) перейдем к системе

$$L_{1}P_{12}Ax = L_{1}P_{12}f \tag{8}$$

или, в развернутом виде,

$$x_{1} + \frac{1}{2}x_{3} = \frac{f_{2}}{2},$$

$$x_{2} + \frac{1}{2}x_{3} = f_{1} - \frac{f_{2}}{2},$$

$$5x_{2} + 3x_{3} = f_{3}.$$
(9)

 U_3 последних двух уравнений системы (9) надо теперь исключить переменное x_2 . Поскольку максимальным элементом первого столбца укороченной системы

$$x_2 + \frac{1}{2}x_3 = f_1 - \frac{f_2}{2},$$

$$5x_2 + 3x_3 = f_3$$
(10)

является элемент второй строки, делаем в (10) перестановку строк и тем самым от системы (9) переходим к эквивалентной системе

$$x_{1} + \frac{1}{2}x_{3} = \frac{f_{2}}{2},$$

$$5x_{2} + 3x_{3} = f_{3},$$

$$x_{2} + \frac{1}{2}x_{3} = f_{1} - \frac{f_{2}}{2},$$
(1 1)

которую можно записать в матричном виде как

$$P_{23}L_1P_{12}Ax = P_{23}L_1P_{12}f. (12)$$

Таким образом, система (12) получена применением элементарной матрицы перестановок

$$P_{23} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

к системе (8).

Далее, к системе (11) надо применить второй шаг исключения обычного метода Гаусса. Это эквивалентно умножению системы (11) на элементарную треугольную матрицу

$$L_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/5 & 0 \\ 0 & -1/5 & 1 \end{bmatrix}.$$

В результате получим систему

$$L_2 P_{23} L_1 P_{12} A x = L_2 P_{23} L_1 P_{12} f \tag{13}$$

₩ЛИ

$$x_{1} + \frac{1}{2}x_{3} = \frac{f_{2}}{2},$$

$$x_{2} + \frac{3}{5}x_{3} = \frac{1}{5}f_{3},$$

$$-\frac{1}{10}x_{3} = f_{1} - \frac{f_{2}}{2} - \frac{1}{5}f_{3}.$$
(14)

Заключительный шаг прямого хода метода Гаусса состоит в замене последнего уравнения системы (14) уравнением

$$x_3 = -10 \left(f_1 - \frac{f_2}{2} - \frac{1}{5} f_3 \right)$$
,

что эквивалентно умножению (13) на матрицу

$$L_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -10 \end{bmatrix}.$$

Таким образом, для рассмотренного примера процесс исключения Гаусса с выбором главного элемента по столбцу записывается в виде

$$L_3 L_2 P_{23} L_1 P_{12} A x = L_3 L_2 P_{23} L_1 P_{12} f. \tag{15}$$

По построению матрица

$$U = L_3 L_2 P_{23} L_1 P_{12} A \tag{16}$$

является верхней треугольной матрицей с единичной главной диагональю.

Отличие от обычного метода Гаусса состоит в том, что в качестве сомножителей в (16) наряду с элементарными треугольными матрицами L_k могут присутствовать элементарные матрицы перестановок P_{kl} .

Покажем еще, что из (16) следует разложение

$$PA = LU$$
, (17)

rде L — нижняя треугольная матрица, имеющая обратную, и P — матрица перестановок. Для этого найдем матрицу

$$L_1 = P_{23}L_1P_{23}. \tag{18}$$

По свойству 2° матрица $P_{23}L_1$ получается из матрицы L_1 перестановкой второй и третьей строк,

$$P_{23}L_1 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 1 \\ -1/2 & 1 & 0 \end{bmatrix}.$$

Матрица \mathcal{L}_1 согласно свойству 3° получается из $P_{23}L_1$ перестановкой второго и третьего столбцов,

$$\widetilde{L}_{1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 1 & 0 \\ -1/2 & \mathbf{0} & 1 \end{bmatrix},$$

т. е. L_1 — нижняя треугольная матрица, имеющая обратную.

Из (18), учитывая равенство $P_{23}^{-1} = P_{23}$, получим

$$L_1 P_{23} = P_{23} L_1.$$
 (19)

Отсюда и из (16) видим, что

$$U = L_3 L_2 L_1 P_{23} P_{12} A = L^{-1} P A$$
,

где обозначено $P = P_{23}P_{12}$, $L = \tilde{L}^{-1}L_2^{-1}L_3^{-1}$. Поскольку P — матрица перестановок и L — нижняя треугольная матрица, свойство (17) доказано. Оно означает, что метод Гаусса с выбором главного элемента по столбцу эквивалентен обычному методу Гаусса, примененному к матрице PA, т. е. к системе, полученной из исходной системы перестановкой некоторых уравнений.

4. Общий вывод. Результат, полученный здесь для очень частного примера, справедлив и в случае общей системы уравнений (1). А именно, метод Гаусса с выбором главного элемента по столбцу можно записать в виде

$$L_{m}L_{m-1}P_{m-1,l_{m-1}}L_{m-2} \dots L_{2}P_{2,l_{2}}L_{1}P_{1,l_{1}}Ax = L_{m}L_{m-1}P_{m-1,l_{m-1}}L_{m-2} \dots L_{2}P_{2,l_{2}}L_{1}P_{1,l_{1}}f,$$
 (20)

где P_{k,i_k} — элементарные матрицы перестановок такие, что $k \leqslant j_k \leqslant m$ и L_k — элементарные треугольные матрицы.

Отсюда, используя соотношения перестановочности, аналогичные (19), можно показать, что метод Гаусса с выбором главного элемента эквивалентен обычному методу Гаусса, примененному к системе

$$PAx = Pf$$
, (21)

где Р — некоторая матрица перестановок.

Теоретическое обоснование метода Гаусса с выбором главного элемента содержится в следующей теореме.

Теорема 1. Если $\det A \neq 0$, то существует матрица перестановок P такая, что матрица PA имеет отличные от нуля угловые миноры.

Доказательство теоремы 1 приведено в п. 5.

Следствие. Если $\det A \neq 0$, то существует матрица перестановок P такая, что справедливо разложение

$$PA = LU, \tag{22}$$

где L — нижняя треугольная матрица с отличными от нуля диагональными элементами и U — верхняя треугольная матрица с единичной главной диагональю. Следует подчеркнуть, что в методе Гаусса с выбором главного элемента матрица P не задается заранее, а строится в процессе исключения, как это было показано в примере из п. 3. Как правило, не требуется знать эту матрицу в явном виде.

5. Доказательство теоремы 1. Докажем теорему 1 индукцией по числу m — порядку матрицы A. Пусть m = 2, r. e.

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

Если $a_{11}\neq 0$, то утверждение теоремы 1 выполняется при P=E, где E- единичная матрица второго порядка. Если $a_{11}=0$, то $a_{21}\neq 0$, так как det $A\neq 0$. При этом у матрицы

$$P_{12}A = \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}$$

все угловые миноры отличны от нуля.

Пусть утверждение теоремы верно для любых квадратных матриц порядка m-1. Покажем, что оно верно и для матриц порядка m. Разобьем матрицу A порядка m на блоки

$$A = \begin{bmatrix} A_{m-1} & a_{m-1} \\ b_{m-1} & a_{mm} \end{bmatrix},$$

где

$$A_{m-1} = \begin{bmatrix} a_{11} & \dots & a_{1,m-1} \\ \dots & \dots & \dots \\ a_{m-1,1} & \dots & a_{m-1,m-1} \end{bmatrix}, \quad a_{m-1} = \begin{bmatrix} a_{1m} \\ a_{2m} \\ \dots & \vdots \\ a_{m-1,m} \end{bmatrix},$$

$$b_{m-1} = (a_{m1}, a_{m2}, \dots, a_{m,m-1}).$$

Достаточно рассмотреть два случая: det $A_{m-1} \neq 0$ и det $A_{m-1} = 0$. В первом

случае по предположению индукции существует матрица перестановок P_{m-1} порядка m-1 такая, что $P_{m-1}A_{m-1}$ имеет отличные от нуля угловые миноры. Тогда для матрицы перестановок

$$P = \begin{bmatrix} P_{m-1} & 0 \\ 0 & 1 \end{bmatrix}$$

имеем

$$PA = \begin{bmatrix} P_{m-1}A_{m-1} & P_{m-1}a_{m-1} \\ b_{m-1} & a_{mm} \end{bmatrix},$$

причем $\det(PA) = \pm \det A \neq 0$. Тем самым все угловые миноры матрицы PA отличны от нуля.

Рассмотрим второй случай, когда $\det A_{m-1}=0$. Так как $\det A\neq 0$, найдется хотя бы один отличный от нуля минор порядка m-1 матрицы A, полученный вычеркиванием последнего столбца и какой-либо строки. Пусть, например:

$$\begin{vmatrix} a_{11} & \dots & a_{1,m-1} \\ \dots & \dots & \dots \\ a_{l-1,1} & \dots & a_{l-1,m-1} \\ a_{l+1,1} & \dots & a_{l+1,m-1} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{m,m-1} \end{vmatrix} \neq 0,$$
(23)

где $l \neq m$. Переставляя в матрице A строки с номерами l и m, получим матрицу $P_{lm}A$, у которой угловой минор порядка m-1 имеет вид

и отличается от (23) только перестановкой строк. Следовательно, этот минор не равен нулю и мы приходим к рассмотренному выше случаю.

6. Вычисление определителя. В большинстве существующих стандартных программ одновременно с решением системы линейных алгебраических уравнений (1) вычисляется определитель матрицы A. Пусть в процессе исключения найдено разложение (22), т. е. построены матрицы L и U. Тогда

$$\det(PA) = \det L \det U = \det L = l_{11}l_{22} \dots l_{mm},$$

т. е. произведение диагональных элементов матрицы L равно определителю матрицы PA. Поскольку матрицы PA и A отличаются только перестановкой строк, определитель матрицы PA может отличаться от определителя матрицы A только знаком. А именно, $\det(PA) = \det A$, если число перестановок четно, и $\det(PA) = -\det A$, если число перестановок нечетно. Таким образом, для вычисления определителя необходимо знать, сколько перестановок было осуществлено в процессе исключения.

Если матрица A вырождена, то при использовании метода Гаусса с выбором главного элемента по столбцу на некотором шаге исключения k все элементы k-го столбца, находящиеся ниже главной диагонали и на ней, окажутся равными нулю.

Действительно, рассмотрим укороченную систему (см. (11) из \S 1), которая получается на k-м шаге исключения:

$$a_{kk}^{(k-1)}x_k + \dots + a_{km}^{(k-1)}x_m = f_k^{(k-1)},$$

$$a_{k+1,k}^{(k-1)}x_k + \dots + a_{k+1,m}^{(k-1)}x_m = f_{k+1}^{(k-1)},$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$a_{mk}^{(k-1)}x_k + \dots + a_{mm}^{(k-1)}x_m = f_m^{(k-1)}.$$
(24)

При решении системы (24) могут возникнуть два случая: 1) хотя бы один из коэффициентов $a_{kk}^{(k-1)}, a_{k+1,k}^{(k)}, \ldots, a_{mk}^{(k-1)}$ отличен от нуля; 2) $a_{kk}^{(k-1)} = a_{k+1,k}^{(k-1)} = \ldots = a_{mk}^{(k-1)} = 0$. Если для всех $k=1, 2, \ldots$, m реализуется первый случай, то систему (1) можно решить методом Гаусса с выбором главного элемента по столбцу, и, следовательно, $\det A \neq 0$. Если же $\det A = 0$, то при некотором k реализуется второй случай. При этом дальнейшее исключение становится невозможным и программа должна выдать информацию о том, что определитель матрицы равен нулю.