Itasca's IB Fabric

1074 nodes

8536 cores

25.1 TB memory

140 TB storage

How is it all connected? Scalability and performance?

Itasca's Deep IB Hierarchy

- 8 cores per node
 - 2x Nehalem processors, 4 cores per proc.
 - 24 GB GB shared memory
- 16 nodes per "leaf switch"
 - QDR IB to each node
- 68 leaf switches connect to 2 directors
 - 4x QDR between each leaf and director switch

Compute & Storage Switches

Leaf & Director Switches

IB Performance Test

- Ping-pong between random pairs of MPI ranks
 - Measure time to do many (100) ping-pongs
 - Use large messages to measure bandwidth
 - Use blocking mpi_send & mpi_recv
- Bandwidth = total data per node / total time
- Collect & report timing data on rank 0

Within a Node No IB Contention

Message size: 1MB

of Iterations: 100

MPI ranks: 256

MPI ranks per node: 8

Max	Average	Min	[MB/sec]
3773.94	482.49	390.49	0verall

3773.94	3426.51	2644.41	Same Node
783.64	489.96	424.83	Same Leaf
934.82	454.64	390.49	Diff Leafs

Does not use IB

Between Nodes 8:1 contention

Message size: 1MB

of Iterations: 100

MPI ranks: 256

MPI ranks per node: 8

Max	Average	Min	[MB/sec]
3773.94	482.49	390.49	Overall
3773.94	3426.51	2644.41	Same Node
3773.94 783.64	3426.51 489.96	2644.41 424.83	Same Node Same Leaf

As much as 8 fold contention

Between Switches 8 ports:16 nodes

Message size: 1MB

of Iterations: 100

MPI ranks: 256

MPI ranks per node: 8

Max	Average	Min	[MB/sec]
3773.94	482.49	390.49	Overall
3773.94	3426.51	2644.41	Same Node
783.64	489.96	424.83	Same Leaf
934.82	454.64	390.49	Diff Leafs

Extreme variability due to random set of pairs.

Numbers are typical

Random Pairs, 8 Ranks per Node

Random Pairs: 1 Rank per Node

Driven to DiscoverSM

for Advanced Computational Research

Director Switch Contention

QDR: 4 GB/s $@75\% \rightarrow 3071$ MB/s

Same leaf with 1 rank per node

Max Average Min

3085.28 3077.87 2984.23 [MB/s] **OK**

Different leafs with up to 16 nodes using 4+4 ports

Max Average Min

3071.21 1225.99 588.25 [MB/s] **Expected ~1500 MB/s**

Expected no more that 2:1 contention from leaf to director switch

Leaf to Leaf Bandwidth Test

- 1 MPI rank per node
- 8 nodes per leaf: on for each director port
 - Static routing: 1st 8 nodes evenly distributed
- Select offset between leafs
 - N-th node on one leaf only talks to N-th node on any other leaf.
 - Offset of 1: leafs 1-2, 3-4, 5-6, 7-8 ...
 - Offset of 2: leafs 1-3, 2-4, 5-7, 6-8, ...
 - Offset of 4: leafs 1-5, 2-6,3-7,4-8, 9-13....

for

for

for

for

All Pairs: Max Bandwidths

- Range of bandwidths: Max: 3035 MB/s
 Min: 1826 MB/s
- Shown here: Max bandwidth out of the 8 nodes on one leaf talking to 8 node on a different leaf

Surprising amount of variation

All Pairs: Average Bandwidths

- Range of bandwidths: Max: 3035 MB/s
 Min: 1826 MB/s
- Shown here: Average bandwidth out of the 8 nodes on one leaf talking to 8 node on a different leaf
- Contiguous set of leafs show good communication.

A pattern emerges

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute for Advanced Computational Research

University of Minnesota

Driven to DiscoverSM

All Pairs: Min Bandwidths

- Range of bandwidths: Max: 3035 MB/s
 - Min: 1826 MB/s
- 8 nodes on a leaf
- 8 QDR ports to director switches
- Should have been NO contention.

Expected: ~3000 MB/s

Need to understand director switches

© 2009 Regents of the University of Minnesota. All rights reserved.

Supercomputing Institute for Advanced Computational Research

University of Minnesota

Driven to DiscoverSM

Director Switch: Top Level

Top: T1 T2 T3 T9

- Top level switches: 36 QDR ports each
- •All 36 ports point "down to mid level switches
- Total of 9 top level switches
- •18 of the 36 ports point to top level switches

(Each line here represents a pair of 2 QDR lines)

- •Mid level switches: 36 QDR ports each (same as top level)
- •Each line here represents 2 QDR lines
- •18 of the 36 ports point to top level switches

- •Mid level switches: 36 QDR ports each (same as top level)
- •Each line here represents 2 QDR lines
- •18 of the 36 ports point to top level switches
- Every mid level switch has 2 QDR lines to every top level

- •Mid level switches: 36 QDR ports each (same as top level)
- •Each line here represents 2 QDR lines
- •18 of the 36 ports point to top level switches
- Every mid level switch has 2 QDR lines to every top level

- •Mid level switches: 36 QDR ports each (same as top level)
- Each line here represents 2 QDR lines
- •18 of the 36 ports point to top level switches
- Every mid level switch has 2 QDR lines to every top level

- •Mid level switches: 36 QDR ports each (same as top level)
- •Each line here represents 2 QDR lines
- •18 of the 36 ports point to top level switches
- Every mid level switch has 2 QDR lines to every top level

- •Mid level switches: 36 QDR ports each (same as top level)
- •Each line here represents 2 QDR lines
- •18 of the 36 ports point to top level switches
- Every mid level switch has 2 QDR lines to every top level
- •A total of 18 mid level switches: 18*18 = 324 = 9*36

Itasca Director Switch

324 QDR ports
18 ports from each mid level switch
Each line here represents 2 ports or 2 QDR lines

Itasca has two of these director switches Each director switch is a "Fat Tree"

Itasca Leaf Switches

67 leaf switches – 16 compute nodes per leaf switch

Leaf to Director Connection

Each leaf switch has 2 QDR lines to each of 2 mid level switches

Leaf to Director Connection

Sets of 9 leafs connected to same 2 mid level switches
© 2009 Regents of the University of Minnesota. All rights reserved.

Leaf to Director Connection

"Near" sets of 9 leafs connected to same 2 mid level switches

All Pairs: Min Bandwidths

- Range of bandwidths: Max: 3035 MB/s
 Min: 1826 MB/s
- Blocks of 3000 MB/s align with sets of 9 "near" leafs.
- All "far" leafs (not in set of 9 "near") can have an extra factor of 2 contention

Fat Tree is not the same as Full Crossbar

© 2009 Regents of the University of Minnesota. All rights reserved

Supercomputing Institute for Advanced Computational Research

University of Minnesota

Driven to DiscoverSM

Comparison with Blade and Calhoun

- Random pairs
- •1 rank per node
- Message size=1 MB
- Bandwidths [MB/s]

	Max	Average	Min	# Nodes in Test
Blade	920	767	661	4
Calhoun	1005	844	611	64
Itasca	3085	1236	588	1024

STATIC ROUTINING in Itasca's IB switches In principle 16 nodes could all go through one QDR link. More testing/tuning of director switches is needed.

Applications Can Scale Well On Itasca

Test code: Isothermal MHD using TVD scheme

- Uniform mesh
- •3D domain decomposition
- Nearest neighbor communication
- Communication overlapped with computation

Scaling tests from 16 to 8192 compute ranks

- •Weak scaling: problem size grows with number of ranks
- Strong scaling: problem size fixed

Weak Scaling

Extreme Strong Scaling

Factors For Scaling & Performance

Within your code

- Avoid global barriers, especially mpi_alltoallv
- Use non-blocking sends & receives (mpi_isend, mpi_irecv)
- Overlap communication and computation

MPI Rank Placement

- Can shuffle host list with PMPI
- Place IO ranks on separate nodes
- Place ranks that need to communicate near each other

PBS Script & Hostfile

#!/bin/bash
#PBS -I nodes=1024:ppn=8,pmem=2gb,walltime=00:20:00
#PBS -joe
cd <your working directory>
mpirun _np 8192 -hostfile \$PBS_NODEFILE ./a.out

Rank	\$PBS_NODEFILE	Comments
0	node1078	Node repeated 8 times
1	Node1078	
2	Node1078	
8	 node1077	Consecutive decreasing
O		nodes, if available
16	node1076	
		© 2009 Regents of the University of Minnesota. All rights reser

, ,

PBS Script & Hostfile

```
#!/bin/bash
#PBS -I nodes=128:ppn=8,pmem=2gb,walltime=00:20:00
#PBS -joe
cd <your working directory>
permute.exe < $PBS_NODEFILE > newhostfile
mpirun -np 1024-hostfile newhostfile ./a.out
```

Script of program: "permute.exe"

- Custom for each application
- Shuffle host list to minimize communication across higher tiers of fiber fabric
- Place IO ranks on separate nodes

Using >1024 Ranks: PMPI

```
#!/bin/bash
#PBS -I nodes=1024:ppn=8,pmem=2gb,walltime=00:20:00
#PBS –joe
```

```
module load pmpi/intel
export MPI_MAX_REMSH=16
export MPI_MAX_MPID_WAITING=64
```

```
cd <your working directory>
permute.exe < $PBS_NODEFILE > newhostfile
mpirun –np 8192-hostfile newhostfile ./a.out
```


Considerations For Scaling & Performance

Job scheduling vs. job size

- Be aware of IB fabric hierarchy
- Schedule jobs to fit in the hierarchy
- Avoid fragmentation of nodes

Cores	Level of Hierarchy	Average Connectivity
8	8 cores per node	Local Memory
128	16 nodes per leaf	1 QDR per node
1152	9 "near" leafs	0.5 QDR per node
8536	68 "far" leafs	0.1-0.5 QDR per node

Conclusions For Scaling & Performance

[1-128] ranks

- Should port extremely well onto Itasca
- Will typically fit within a leaf switch

[129-1152] ranks

- Should scale at least as well as on Blade or Calhoun
- Will typically fit on "near" set of 9 leaf switches

[1153-8563] ranks

- Some applications already scale extremely well to 8192
- Currently need to be aware of IB fabric hierarchy
- MSI staff is working with vendors to improve IB performance
- Dynamic routing may be needed

Thank You

 $\ensuremath{\texttt{©}}$ 2009 Regents of the University of Minnesota. All rights reserved.

