

Introducción

DESARROLLO DE APLICACIONES MÓVILES

- Existen tres formas (básicas) de crear una aplicación:
 - Web Apps: sitios web diseñados para verse en pantallas de móviles (HTML5, JavaScript, CSS3)
 - Native Apps: se escriben en el propio lenguaje de la plataforma. Tienen acceso completo al HW
 - Aplicaciones nativas multiplataforma: Frameworks en los que se programa una vez, pero genera aplicaciones nativas para cada plataforma (Ej.: Xamarin)
 - Hybrid Apps: son Web apps empaquetadas para parecer una app nativa, con extensiones que proporcionan acceso a algunas funcionalidades del HW

DESARROLLO DE APLICACIONES MÓVILES

Hybrid apps

- Ventajas:
 - Se reutiliza el código de la aplicación web
 - Adaptación a diferentes plataformas: sólo la funcionalidad extra
 - Costes muy bajos.
- Desventajas:
 - Necesidad de complementos para las funcionalidades extra
 - Las apps nativas siempre aprovechan mejor los recursos.

DESARROLLO DE APLICACIONES MÓVILES

- Web apps
 - Ventajas:
 - o Ofrecer también la funcionalidad en una web
 - Desventajas:
 - Funcionalidad muy limitada
- Native apps
 - Ventajas:
 - Tienen mejor rendimiento.
 - Aprovechan mejor las posibilidades del HW.
 - Las más fiables
 - Desventajas:
 - Hay que aprender el lenguaje de cada plataforma
 - Son las más caras de desarrollar

¿Qué es Android?

- Es un sistema operativo inicialmente pensado para dispositivos móviles.
- Desarrollado por Google
- Lanzado en 2008
- Actualmente se usa en otros dispositivos como televisores, coches, relojes, etc.

VERSIONES DE ANDROID

- o Hasta la versión 9, nombres de repostería
 - 1.0 → A: **Apple Pie**
 - 1.1 → B: **Banana Bread**
 - 1.5 → C: **Cupcake**
 - 1.6 → D: **Donut**
 - 2.0 → E: Éclair
 - 2.2 → F: **Froyo**
 - 2.3 → G: Gingerbread
 - 3.0 → H: **Honeycomb**

- 4.0 → I: Ice Cream Sandwich
- 4.1 → J: Jelly Bean
- 4.4 → K: **KitKat**
- 5.0 → L: **Lollipop**
- 6.0 → M: **Marshmallow**
- 7.0 \rightarrow N: **Nougat**
- 8.0 → O: *Oreo*
- 9.0 → P: **Pie**
- La última versión es Android 15 (API 35 Vanilla Ice Cream)
 - Android 16 (versión Beta)

¿Qué es Android?

- Mercado Diciembre 2023:
 - 70.48% Android 28.8% iOS 0.72% Resto

Mobile Operating System Market Share Worldwide 2012 - 2023

Edit Chart Data

- El desarrollo del S.O. es independiente de los dispositivos (excepto los propios de Google)
- El hardware se queda obsoleto muy pronto y no soporta las nuevas versiones del S.O. (incluso el hardware "propio" de Google)
- Las aplicaciones desarrolladas para una versión, no tienen por qué ser compatibles con la anterior, ni con la siguiente

ANDROID PLATFORM VERSION	API LEVEL	CUMULATIVE DISTRIBUTION	
4.0 Ice Cream Sandwich	15		
4.1 Jelly Bean	16	99,8%	
4.2 Jelly Bean	17	99,1%	
4.3 Jelly Bean	18	98,2%	
4.4 KitKat	19	97,9%	
5.0 Lollipop	21	93,4%	
5.1 Lollipop	22	91,4%	
6.0 Marshmallow	23	83,3%	
7.0 Nougat	24	71,0%	
7.1 Nougat	25	62,8%	
8.0 Oreo	26	56,9%	
8.1 Oreo	27	49,1%	
9.0 Pie	28	34,8%	
10. Q	29	2,8%	

- Múltiples fabricantes de hardware
- Cada uno decide tamaño y densidad de pantalla
 - Tamaño: se mide la diagonal de la pantalla en pulgadas (inches). 1pulgada= 2,54 cm
 - Densidad: cantidad de puntos (píxeles) en una pulgada (dots per inch - dpi)

Mismo tamaño, distinta densidad

Categorías aproximadas (establecidas por Google)

Categoría	Nombre	dpi (aprox.)
ldpi	Baja	120
mdpi	Media (densidad de referencia)	160
hdpi	Alta	240
xhdpi	Muy alta	320
xxhdpi	Muy, muy alta	480
xxxhdpi	Extremadamente alta	640

Múltiples combinaciones

	ldpi	mdpi	tvdpi	hdpi	xhdpi	xxhdpi	Total
Small	0.1%				0.1%		0.2%
Normal		0.4%	0.3%	17.0%	41.1%	25.9%	84.7%
Large		1.8%	2.0%	0.7%	2.6%	2.1%	9.2%
Xlarge		3.5%		1.9%	0.5%		5.9%
Total	0.1%	5.7%	2.3%	19.6%	44.3%	28.0%	

 Algunos ejemplos de dispositivos y densidades de pantalla:

Туре	Device	Platform	Screen dimensions in cm	Aspect Ratio	Width × Height dp	Width × Height px	Density
	Android One	Android	4.5 in 2.2 × 3.9 in	16 : 9	320 × 569 dp	480 × 854 px	1.5 hdpi
•	Asus Zen Watch	Android	1.6 in 1.2 × 1.2 in	1:1	213 × 213 dp	320 × 320 px	1.5 hdpi
	Dell Venue 8	Android	8.4 in 4.5 × 7.1 in	16 : 10	800 × 1280 dp	1600 × 2560 px	2.0 xhdpi
	Google Pixel	Android	5.0 in 2.5 × 4.4 in	16 : 9	411 × 731 dp	1080 × 1920 px	2.6 xxhdpi
	Google Pixel XL	Android	5.5 in 2.7 × 4.8 in	16 : 9	411 × 731 dp	1440 × 2560 px	3.5 xxxhdpi
	HTC One M8	Android	5.0 in 2.5 × 4.4 in	16 : 9	360 × 640 dp	1080 × 1920 px	3.0 xxhdpi
	HTC One M9	Android	5.0 in 2.5 × 4.4 in	16 : 9	360 × 640 dp	1080 × 1920 px	3.0 xxhdpi
	Nexus 7 ('13)	Android	7.0 in 3.7 × 6.0 in	16 : 10	600 × 960 dp	1200 × 1920 px	2.0 xhdpi
	Nexus 9	Android	8.9 in 7.1 × 5.3 in	4:3	1024 × 768 dp	2048 × 1536 px	2.0 xhdpi

 Hay que evitar indicar tamaños usando píxeles como unidad

> Ancho: 2px Alto: 2 px

- o Usaremos como unidad píxeles independientes de la densidad (dp o dip)
 - Equivale a un píxel en una pantalla de 160dpi
 - Android escalará automáticamente el tamaño a la densidad correspondiente

- Al desarrollar una aplicación hay que tener en cuenta
 - Que funcione para la mayor cantidad de versiones del S.O. posibles
 - Que se pueda adaptar a distintos tamaños y resoluciones de pantalla
 - http://developer.android.com/guide/practices/screens_support.html

En Agosto de 2015 existían más de 24.000 tipos de dispositivos Android distintos producidos por 1300 marcas

Android tiene una arquitectura por capas

- Android usa un Kernel de Linux
 - Desde la versión 1.5 Cupcake
- o Permite abstraer el software del hardware
- o Gestiona:
 - La seguridad
 - La memoria
 - Los procesos
 - Red y modelo de drivers

Cada fabricante lo adapta y compila para su hardware

- Capa de abstracción de hardware
 - Ofrece interfaces para trabajar con el hardware del dispositivo
 - Evita tener que trabajar a bajo nivel
 - Cada módulo trabaja con un componente concreto del hardware
 - Cada fabricante adapta esos módulos a su hardware para que la interfaz funcione independientemente del hardware que se use

- Conjunto de librerías (C & C++) usadas por componentes del sistema
 - Surface Manager: Gestión del acceso a la pantalla.
 - Media Framework: Reproducción multimedia.
 - SQLite: Base de Datos.
 - WebKit: Navegador (Browser) optimizado.
 - SGL: Gráficos 2D.
 - Open GL | ES: Librerías 3D.
 - FreeType: Renderizado vectorial y fuentes bitmap.
 - SSL: Encriptación Secure Socket Layer
 - libc: todas las funciones de C

- Las Core Libraries son una implementación libre de Java (actualmente todo Java 7 y parte de Java 8)
- El Android RunTime (ART) es el entorno donde se ejecutan las aplicaciones
 - Cada aplicación en una instancia distinta
 - Seguridad
 - Resistencia a fallos
 - Al instalar la aplicación, la compila y almacena esa compilación (Ahead-of-Time, AOT) para su ejecución

- Hasta Android 5, el entorno de ejecución era la Máquina Virtual Dalvik
 - Compilaba cada aplicación sobre la marcha, según se vaya usando la aplicación (Just-in-Time, JIT)
- ART vs Dalvik
 - La instalación es más lenta
 - El arranque de las aplicaciones es más rápido
 - Gasta menos energía
 - Ocupan un poco más de espacio

ART y DVM no son compatibles 100%

- El JAVA API Framework es el conjunto de herramientas para el desarrollo de aplicaciones
 - Managers: APIs que gestionan los componentes de las aplicaciones y los servicios que ofrece el sistema
 - Content Providers: APIs que permiten el acceso a datos como la agenda, el correo, etc.
 - *View System*: Contiene los elementos para construir interfaces gráficas: botones, etiquetas, etc.

- En esta capa se encuentran todas las aplicaciones del dispositivo
 - Las nativas
 - Las instaladas por el usuario
 - La principal del sistema: launcher
 - Permite lanzar otras aplicaciones
 - Muestra distintos escritorios
 - Permite poner widgets en los escritorios

24

APLICACIONES PARA ANDROID

- Se distribuyen en formato .apk (Application PacKage File)
 - Es una variante de .jar
 - Se pueden examinar usando un software de descompresión
- Se pueden instalar directamente desde la tienda de aplicaciones oficial
 - Play Store: http://play.google.com

APLICACIONES PARA ANDROID

- Se puede configurar el dispositivo para que permita instalar los ficheros .apk sin pasar por la tienda oficial
 - En versiones anteriores a Oreo (Android 8)
 - Ajustes→Seguridad→Origen desconocido (activar)
 - En Oreo y superiores
 - Hay que dar permiso para instalar aplicaciones a la aplicación que acceda al .apk
 - Por ejemplo
 - Descargamos un .apk desde el navegador
 - En Ajustes activamos la opción de "Autorizar descargas de esta fuente"

Chrome

Por motivos de seguridad, tu teléfono no puede

instalar aplicaciones desconocidas de esta fuente.

CANCELAR

AJUSTES

HERRAMIENTAS DE DESARROLLO

- JDK (Java Development Kit)
- Android SDK (Software Development Kit)
 - Conjunto de herramientas de desarrollo
 - Incluye
 - Las herramientas de depuración y pruebas (SDK Tools)
 - o Imágenes para los emuladores
 - Las API de Google
 - Documentación
 - Ejemplos
 - **o**

HERRAMIENTAS DE DESARROLLO

- Android Studio (Google)
 - Es el entorno de desarrollo oficial
 - Usa una herramienta de automatización de tareas (Gradle) para cosas como
 - Compilación
 - Despliegue
 - Admite trabajar con Java, Kotlin y otros lenguajes

KOTLIN

- Es un lenguaje de programación estáticamente tipado, diseñado para ser interoperable con Java
- Creado por JetBrains
- o Corre sobre la máquina virtual de Java
- Historia con Google:
 - Desde octubre 2017 disponible en Android Studio
 - Desde mayo 2019 es considerado "de primer nivel"
- No lo veremos en esta asignatura

KOTLIN

- Ejemplo:
 - Java:

```
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
    setContentView(R.layout.activity_main);
}
```

Kotlin:

```
class MainActivity : AppCompatActivity() {
override fun onCreate(savedInstanceState: Bundle?) {
    super.onCreate(savedInstanceState)
    setContentView(R.layout.activity_main)
}
```

 Los ejemplos de la documentación oficial de Android están en Java y Kotlin

EN EL DISPOSITIVO

- Activar las opciones de desarrollo
 - Ajustes → Información del teléfono → Número de compilación (*)
 - Hay que pulsarlo 7 veces seguidas
 - En el menú de Ajustes aparecerá una nueva opción "Opciones de desarrollo"
 - Activar la opción "Depuración de Android"
 - Más información:
 - https://developer.android.com/studio/debug/dev-options#enable

