

Tutorial 3

Biological Data Analysis Spring 2023

Outline

- Plug-in principle
- Biased / unbiased estimator
- Sample size significance
- Bootstrap:
 - parametric
 - non-parametric/regular
 - paired/unpaired
- Visualization

Plugin principle

Applying the same method/rule on sample and on population.

Statistic value is calculated on a sample using the same formula as population parameter.

Population and sample

Good estimator

Small bias and small variance

Bias

Unbiased estimator

$$E \lceil \hat{\theta} \rceil = \theta$$

expected value of the statistic =

expected value of the population

Biased estimator

- does not meet the condition

$$E[\hat{\theta}] = \theta$$

Example – mean of samples

Example – range of samples

Biased and non-biased statistics

Mean – unbiased estimator to the population mean also: not plug-in variance and standard deviation

Range – biased estimator to the population range also: maximum, minimum, plug-in variance and standard deviation

Parameter vs statistic

Parameter	Statistic
$\mu = E(X)$	$\overline{X} = \frac{\sum_{i=1}^{N} x_i}{N}$
$\sigma^2 = E(X^2) - E(X)^2$	$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{X})^{2}$
$\sigma = \sqrt{\sigma^2}$	$s = \sqrt{s^2}$

Variance and standard deviation

Population variance

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \overline{X})^{2}$$

Plug-in estimator is biased

$$S^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{X})^{2} \qquad E(S^{2}) \neq \sigma^{2}$$

Estimator unbiased

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{X})^{2}$$

Standard deviation

$$s = \sqrt{s^2}$$

Variance and Standard Deviation

Variance biased

$$\sigma^{2} = \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{X})^{2}$$

Variance unbiased

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \overline{X})^{2}$$

Effect of sample size on mean estimation

Effect of sample size on variance estimation

Effect of sample size on maximum estimation

Simulation conclusions

- All estimators get closer to the population parameter value as the sample size gets bigger:
- Including the biased estimators of SD. But the value is always smaller the that of the unbiased

Variance of the estimators gets smaller as the sample size get larger

Bootstrap

Creating new samples using existing sample

- Parametric: assume the sample data comes from a known distribution and the sample represents the population
 - estimate the distribution parameters from sample
 - generate new samples from the distribution using the calculated parameters
- Non-parametric (regular): assume the populations has the same distribution as the sample
 - generate new samples from the sample data

Example1

We recorded activity of one neuron and counted a number of spikes (action potentials) per second

We want distribution of mean estimator (lambda of Poisson distribution)


```
numSpikes
0 1
1 1
2 0
3 3
4 1
... 115
116 2
117 3
118 7
119 0
```

[120 rows x 1 columns]

Example1

Histogram of original data

Data mean = 3.01

Non-parametric Bootstrap

Sample from data with repetitions: 2000 samples of 200

Parametric Bootstrap

Sample from distribution: 2000 samples of 200

Parametric Bootstrap wrong distribution

Exercise 2 Bootstrap Paired and Unpaired

We want to measure the difference in verbal comprehension in children aged 3 and 5.

We are given a table with comprehension scores of two groups of children: 30 – aged 3, 30 - aged 5

comprehension = [[5,6,8,12,11,9,7,6,8,7,8,12,5,6,7,8,11,7,7,5,3,4,10,6,6,5,7,6,5,6],[6,7,9,13,12,10,11,8,10,9,8,13,6,14,6,11,12,10,9,4,5,12,11,2,7,8,7,6,6,7]]

Exercise 2

Unmatched pairs: different children in two groups

Exercise 2 Unmatched pairs

Regular bootstrap: sample from group 1 sample from group 2 calculate differences of means

Exercise 2

Matched pairs: same children in both groups

Exercise 3 Matched pairs

Regular bootstrap: calculate differences sample from group of differences calculate means of sampled differences

Visualization

Different ways of plotting data

- Plot all the data points
- Cumulative frequency plots
- Histogram ...

Example dataset

Two groups – musicians and non-musicians – reacted to two types of stimuli – visual and auditory. After seeing or hearing a stimulus they had to press a button. We have the file with the reaction time.

36 subjects: 13 musicians and 23 non-musicians

72 measurements: 36 auditory and 36 visual

Group	Stimulus	ResponseTime	Subject	Meas	
NonMusician	auditory	226.27	s1	1	0
NonMusician	auditory	187.52	s2	2	1
NonMusician	auditory	279.77	s3	3	2
NonMusician	auditory	233.83	s4	4	3
NonMusician	auditory	180.83	s5	5	4
Musician	visual	239.00	s32	68	67
Musician	visual	194.93	s33	69	68
Musician	visual	224.60	s34	70	69
Musician	visual	240.93	s35	71	70
Musician	visual	234.95	s36	72	71

plot all data: scatter

plot all data: cumulative plot

plot all data: histogram

plot all data: combination

plot data by group: scatter

plot data by group: cumulative

plot data by group: histogram

plot data by group: boxplot

plot data by group: violin plot

plot data by group: bar+errorbar

plot data by group: swarmplot

