AD-A277 103

DESTRIBUTION STATEMENT

Approved for public releases Distribution Unlimited

UNITED STATES AIR FORCE LIMENDORF AIR FORCE BASE, ALASKA

ENVIRONMENTAL RESTORATION PROGRAM

OPERABLE UNIT 5
REMEDIAL INVESTIGATION/FEASIBILITY STUDY

VOLUME 2 - TEXT AND APPENDICES A - J

FINAL

Col D

MARCH 1994

94 3 14 02

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY AVAILABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

UNITED STATES AIR FORCE ELMENDORF AIR FORCE BASE, ALASKA

ENVIRONMENTAL RESTORATION PROGRAM

OPERABLE UNIT 5
REMEDIAL INVESTIGATION/FEASIBILITY STUDY

VOLUME 2 - TEXT AND APPENDICES A - J

FINAL

MARCH 1994

	REPO	Form Approved OMB No. 0704-0188								
•	: reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching esseting data sources, gathering and maintaining the data needed, and completing and every the collection of information. Send comments regarding this burden estimate or enty other sepect of the collection of information, including suggestions for reducing this burden, to Washington Needquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Devise Highway, State 1204, Artington, VA. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503									
1.	AGENCY USE ONLY (Leave blank	k)	2. REPORT DAT 4 March 19	i	3. REPORT	TYPE AND DATES COVERED				
4.	TITLE AND SUBTITLE					5. FUNDING NUMBERS				
	Remedial Investigation/Feasibility Study, Operable Unit 5 Elmendorf AFB, Anchorage, Alaska Vol 2 TEXT, APPS A - J					C-F33615-90-D-4013-0017				
6.	AUTHOR(S)									
	Radian Corporation									
7.	PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)					8. PERFORMING ORGANIZATION				
	Radian Corporation P.O. Box 201088 8501 N. Mopac Boulevard Austin, Texas, 78759					REPORT NUMBER				
9.	SPONSORING/MONITORING AG		10. SPONSORING/MONITORING							
	AFCEE/ESRT	AGENCY REPORT NUMBER								
	Building 624 West	•								
	Brooks AFB, TX 78235-500 SUPPLEMENTARY NOTES	0			· · · · · · · · · · · · · · · · · · ·					
12	12s. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE									
	Unclassified/Unlimited									
13. ABSTRACT (Maximum 200 words)										
This Final Report for Operable Unit 5 (OU 5) is provided per the statement of work for the Remedial Investigation/Feasibility Study for (RI/FS) OU 5. The RI portion of the report covers the site background, field investigations, nature and extent of contamination, conceptual model, and baseline risk assessment. The purpose of the RI is to define the contamination at OU 5 and the effects of the contamination on human health and the environment. The FS covers: 1) remedial action objectives, 2) an identification and screening of potentially applicable technologies, 3) a development and screening of alternatives which combine these technologies, and 4) a detailed analysis of the most applicable alternatives. The analysis considers the nine CERCLA evaluation criteria. The alternatives are evaluated according to their combined effectiveness, implementability, and cost scores. Based on the analysis, the most cost-effective alternatives are identified.										
14	. SUBJECT TERMS					15. NUMBER OF PAGES 2,322				
	Remedial Action Objectives, ARARs, Detailed Analysis of Alternatives, Operable Unit 5, Remedial Investigation/Feasibility Study, Elmendorf AFB, Alaska					16. PRICE CODE				
17	SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY COOR THIS PAGE Unclassified	GE	19. SECURITY CLASS OF ABSTRACT Unclassified	SIFICATION	20. LIMITATION OF ABSTRACT Unlimited				

WORK PLAN DISCLAIMER

NOTICE

This report has been prepared for the United States Air Force for the purpose of aiding in the implementation of a final remedial action plan under the Air Force Installation Restoration Program (IRP). As the report relates to actual or possible releases of potentially hazardous substances, its releases prior to an Air Force final decision on remedial action may be in the public's interest. The limited objectives of this report and the ongoing nature of the IRP, along with evolving knowledge of site conditions and chemical effects on the environment and health, must be considered when evaluating this report, since subsequent facts may become known which may make this report premature or inaccurate. Acceptance of this report in performance of the contract under which it is prepared does not mean that the Air Force adopts the conclusions, recommendations, or other views expressed herein, which are those of the contractor only and do not necessarily reflect the official position of the United States Air Force.

Copies of this report may be purchased from:

Government agencies and their contractors registered with the Defense Technical Information Center (DTIC) should direct requests for copies of this report to: Defense Technical Information Center, Cameron Station, Alexandria, VA 22304-6145.

Non-Government agencies may purchase copies of this document from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161.

Accession For	
NTIS GRANI	V
DTIC TAB	
Unannolaiced	
Justification	
Ву	
Distribut on/	
. Availability	Corios
Section 1	/ur
Dist Secure	i)
11/11	
r	

TABLE OF CONTENTS

			Page
10.0	DEV	ELOPMENT AND SCREENING OF MEDIA-SPECIFIC	
	ALTE	ERNATIVES	. 10-1
	10.1	Alternatives for Water	. 10-4
		10.1.1 Natural Attenuation	. 10-4
		10.1.2 Institutional Action	. 10-7
		10.1.3 Containment	
		10.1.4 Passive Extraction, Treatment Using Constructed Wetlands, and	
		Discharge	10-10
		10.1.5 Active Extraction, Treatment Using Constructed Wetlands, and	
		Discharge	10-12
		10.1.6 Passive Extraction, Treatment by Activated Carbon and	
		Discharge	10-14
		10.1.7 Active Extraction, Treatment Using Air Stripping and Activated	
		Carbon, and Discharge	10-15
		10.1.8 Permeable Treatment Beds	
		10.1.9 Air Sparging Combined With Soil Vapor Extraction	10-18
	10.2	Remedial Alternatives For Soil	
		10.2.1 Natural Degradation	10-20
		10.2.2 Institutional Action	10-21
		10.2.3 Containment	10-23
		10.2.4 Excavation and Disposal	10-24
		10.2.5 Excavation, Biopiling, and Backfill	
		10.2.6 Soil Vapor Extraction/Soil Venting	10-28
		10.2.7 Bioventing	10-30
	10.3	Alternatives Recommended for Detailed Analysis	10-31
		10.3.1 Rationale for Retained Water Alternatives	10-32
		10.3.2 Rationale for Eliminated Water Alternatives	10-34
		10.3.3 Rationale for Retained Soil Alternatives	10-36
		10.3.4 Rationale for Eliminated Soil Alternatives	10-37

10.0 DEVELOPMENT AND SCREENING OF MEDIA-SPECIFIC ALTERNATIVES

Remedial action alternatives were developed using the potentially acceptable technologies and representative process options identified in Section 9.0. The potential pathways that are addressed in this feasibility study (FS) are as follows:

- Groundwater;
- Seep discharges;
- Soil, and
- Sediment and surface water in the Snowmelt Pond.

The goal of the FS is to evaluate multi-media alternatives (i.e., grouping of actions that, together, address the three pathways). Even with only a small number of actions that address each pathway, the number of combinations that would address multi-media impacts in different parts of the OU would be very large. Therefore, media-specific alternatives are screened in this section and evaluated in detail in Section 11.0. Multi-media alternatives are developed in the comparative analysis section of Section 11.0. Since the Snowmelt Pond has a presumptive remedy of constructed wetlands, the pond is discussed in detail in Section 11.0.

A building block approach was taken to develop alternatives. Process options were combined into a limited number of alternatives that, based on professional judgement, are most applicable to the setting and contaminants at OU 5. The five basic general response actions for water and soil are shown below, with the process options identified for each action. The alternatives were assembled using different combinations of these process options.

Each alternative was evaluated for effectiveness, implementability, and cost, in a process similar to the evaluation of process options, but evaluating the entire alternative. Alternatives that passed this screening are analyzed in more detail in Section 11.0 (i.e., that analysis evaluates the synergy between the combination of different process options).

Process Options for Water

Process Options for Soil

The definition of each evaluation criterion used in this screening is discussed below.

Effectiveness — The ability of the alternative to protect human health and the environment. "Effectiveness" includes the amount of hazardous material treated and/or destroyed; the amount remaining on site; the degree of expected reduction in mobility, toxicity, or volume of contaminants; the short-term reductions of risk during construction and implementation; and the long-term reduction of risk once the remedial actions are completed. Alternatives that have been shown to achieve remedial action objectives similar to those at Elmendorf AFB are considered effective unless the uncertainty involved calls that effectiveness into question. The judgment of effectiveness is based on literature evaluations of the alternatives at similar sites and on the technical understanding of the type of contamination (chemicals, concentrations, and phase), migration routes, and the geologic/physical setting of OU 5). The alternatives should also protect human health and the environment without compromising the bluff stability and wetlands environment. The alternative should not create a potential environmental impact greater than the potential risks if no action were taken.

Implementability — The technical and administrative feasibility of the alternative, as well as the availability of the various services and materials that would be required. Technical feasibility generally refers to the ability to construct and reliably operate the process until the remedial goal is achieved. The administrative criteria include the ability to secure necessary approvals from the regulating agencies for construction, operation, and disposal of residuals generated by the alternative. Administrative feasibility also considers the availability of treatment, storage and disposal facilities, technical specialists, and any special equipment that may be required. If an alternative requires significant space, piping, or manpower to implement, its implementability is considered marginal. If significant permitting or waivers from potential ARARs are needed, the implementability is further reduced because of the anticipated difficulty or time required to acquire approvals and obtain waivers. For CERCLA projects, permitting is typically not required as long as substantive requirements are met. The evaluation of implementability is based on the current state of the technology

development (obtained from literature sources), and the physical/hydrogeologic setting of OU 5. The most important factors are the groundwater flow direction and rate, the geologic stability of the OU, and the space available to implement an alternative. Of equal importance is the permitting required to dispose of waste generated by an alternative.

Cost — Capital and/or lease costs, miscellaneous costs, and annual operations and maintenance (O&M) costs are considered. These costs are broad, order of magnitude estimates obtained from literature and from experience with similar alternatives. The costs are accurate to within 50% less and 100% more than actual costs and are for comparative purposes only. More detailed costs, based on CORA and RACER computer-based estimates, are provided in the detailed analysis (Section 11.0). Cost details are provided in Appendix T.

10.1 Alternatives for Water

The alternatives for water are described and evaluated below. Rationale for both retaining and dropping alternatives is discussed in Section 10.3.

10.1.1 Natural Attenuation

Natural Attenuation

Description — Natural attenuation would take no action at the site and would leave basewide groundwater, seeps and surface water in their current state. Dilution, adsorption, volatilization, and biological breakdown of the contaminant concentration would occur in seeps, natural wetlands, and in the groundwater. In seeps, volatilization and biological breakdown are the primary mechanisms reducing concentrations of organic contaminants. Natural wetlands possess aerobic, anaerobic, and eutrophication environments capable of breaking down aromatic and chlorinated hydrocarbons, and precipitating metals. This alternative would use natural processes to treat seep water and groundwater discharges to the wetlands. In groundwater, natural attenuation occurs through adsorption, biological breakdown, volatilization, dispersion, and dilution. Natural attenuation would allow these processes to continue. This alternative provides a baseline for comparing other alternatives.

Monitoring would include groundwater, seep water, and the wetlands.

Effectiveness — The effectiveness of the natural attenuation alternative depends on the contaminant removal rate of the physical, chemical, and biological processes that are currently occurring. Breakdown rates depend on the temperature, water and soil chemistry, nutrient supply, flow rate, bacterial colonies/populations, and food supply (contaminant concentrations). The rate is generally faster at high concentrations because increased substrate allows for a higher rate of utilization by organisms. Breakdown rates are slower at low concentration, lower temperatures, and low organic content of the soil can also slow natural attenuation. The rate of natural attenuation cannot be accurately predicted at Elmendorf AFB.

Dispersion may have the greatest effect on the concentrations of COCs in groundwater; however, adsorption (often referred to as retardation) and biological breakdown are important factors. It is very difficult to develop any meaningful estimate of the contribution of each component of natural attenuation to the concentrations of organics currently seen in the groundwater and predicted for the future. For these reasons, natural attenuation is best quantified by evaluating concentrations at source areas and the

concentrations of contaminants at downgradient receptors. This approach considers all natural attenuation processes affecting groundwater quality.

For groundwater that is expressed as seeps in OU 5, prior natural attenuation processes may have already occurred within the bluff. Even though natural attenuation likely has occurred to COCs within the bluff, once seeps express themselves into the wetlands as surface water, further degradation is likely since the natural attenuation processes are much different, e.g., effect of plant uptake, more available oxygen, light, etc.

Although natural degradation rates are difficult to predict, recent studies of the Beaver Pond area (see Appendix R) indicate that natural attenuation can be effective in the wetlands environment of OU 5. The Beaver Pond study revealed that the environmental impacts at the pond are minimal and that Ship Creek is not being affected.

The wetland areas in the western half of OU 5 (in the seep areas) are much smaller than Beaver Pond. These other wetland areas may not have the water retention time needed to naturally treat seep water before natural discharge to surface water in drainage ditches occurs. Environmental impacts at the seeps would not be effectively remediated in the short term by this alternative.

Without combining this alternative with monitoring of groundwater, seeps, and surface water, there would be no measure of the success of the natural processes on the contaminant concentrations. To provide this measure, a monitoring program has been made a part of the natural attenuation alternative. The monitoring would allow for observation of the effectiveness of natural attenuation. If, because of changes in temperature, flow rate, contaminant load, or the other factors described above, the effectiveness is not demonstrated, additional remedial action can be taken.

This alternative would produce no cross-media benefit on soil contamination. Since no access restrictions would be implemented, human and environmental exposures

would not be prevented during the time period when contaminant concentrations exceed the clean-up criteria.

Implementability — This alternative is readily implemented. The processes for approving natural attenuation are defined and have been implemented at contaminated sites. For the portion of OU 5 near Beaver Pond, this alternative can be implemented. However, an potential ARAR variance for water quality in the wetland may be needed so it can be used to degrade contaminants.

Cost — The monitoring costs associated with natural attenuation would range from \$5,000,000 to \$6,000,000 (present value for 30 years of monitoring).

10.1.2 Institutional Action

Institutional Action

Description — This alternative would implement land use restrictions into the Elmendorf AFB land use plan. City and county land use plans would have to be consulted and potentially, restrictions placed on land not owned by Elmendorf AFB. These restrictions would include prohibiting the extraction and use of groundwater and prohibiting the building of residences in areas affected by contamination. The alternative would include a ground-

water and surface water monitoring program. The water samples would be collected periodically and analyzed for the contaminants of concern. Plants and animals would be observed for signs of impact. The data generated would be used to monitor degradation and provide an early indication of possible impact, allowing for a remedial response to mitigate the impact.

Effectiveness — Institutional actions would protect human health and the environment by monitoring the environment and controlling the potential for exposure to contaminated water. The access restrictions would help prevent potential human exposures to contaminated groundwater, seeps, and springs, but they would not reduce exposures to small terrestrial and burrov animals. The natural contaminant reduction processes present in the no action alternative would continue to operate with implementation of institutional controls. However, the groundwater and surface water monitoring implemented with this alternative would allow tracking of contaminant reduction rates and concentrations.

Implementability — This alternative is implementable and would cause little environmental disruption to the existing ecosystem of the proposed alternatives. The processes for acquiring deed restrictions and restricting groundwater use are defined. Institutional controls have been implemented at contaminated sites.

Cost — The present value of institutional controls, including monitoring, would range from \$5,000,000 to \$6,500,000. Approximately \$100,000 of this cost is for actions such as deed restrictions. The remainder is for monitoring of groundwater, seeps and surface water.

10.1.3 Containment

Containment

Description — Containment could be partially achieved through the use of a vertical slurry wall barrier that would be keyed into the Bootlegger Cove formation to prevent horizontal migration of contaminated groundwater. The slurry wall would be a mixture of cement and bentonite. Seep water would be contained by installing pavement or Gunite® in the seep areas. The monitoring of groundwater, seeps, and surface water would be needed to document containment of the plume.

Effectiveness — Containment would protect human health and the environment by reducing the migration of contamination. OU 5 is the area of discharge for basewide groundwater. Containing groundwater at the point of discharge is only temporarily effective because groundwater would build up behind the barrier system and eventually bypass the slurry wall. The pavement over the seep areas is also not likely to be effective in the long term since water would eventually bypass the barrier. Constructing the barrier could cause environmental impacts by backing up groundwater and causing flow of impacted water from the bluff at locations that could not be predicted. Wetlands could be dewatered. Also, the increase in the water table could create pond pressures that could affect the stability of the bluff. There would be no cross-media benefit affecting soil contamination.

Implementability — This alternative is not implementable at OU 5. Containing the large amount of groundwater present at OU 5 would be difficult, because of the access difficulties in constructing a slurry wall and the difficulty in containing large volumes of water with these barriers. The railroad, roads, and buildings in the industrial area all make implementing this alternative difficult.

Cost — The cost of this alternative is estimated to be approximately \$9,000,000 to \$12,000,000. Approximately \$4,000,000 is for groundwater, seeps, and surface water monitoring.

10.1.4 Passive Extraction, Treatment Using Constructed Wetlands, and Discharge

Passive Extraction, Treatment Using Constructed Wetlands, and Discharge

Description — Groundwater and seepage water would be extracted using passive horizontal drains and collection trenches installed in areas of identified seeps. All collected water would be directed toward the constructed wetland built at the Snowmelt Pond. Degradation of organic compounds should occur in the aerobic environment near the root zones, and the anaerobic environment in the eutrophication zones of the wetland system. Metals should be precipitated as insoluble salts (typically sulfides) in the eutrophication

zones. The effluent would be discharged to the existing drainage ditch leading from the Snowmelt Pond. Monitoring of the wetland would be required to document that clean-up levels are being attained. Ongoing monitoring of groundwater and surface water would be needed to monitor the possible reductions in impact from treating seep water, and to monitor the natural attenuation of these pathways.

Effectiveness — This alternative protects human health and the environment by eliminating potential for exposures in seep areas, and collects and treats contaminated water from the seeps. Passive extraction of groundwater would only remove water from the top of the aquifer near the water table. Therefore, for the bulk of groundwater flow below the water table this alternative is not effective. However, the alternative would have no negative impact on the environment if implemented and very little impact on bluff stability due to installation of passive drains.

The cold climate may limit the effectiveness of the treatment component of this alternative to the summer months only. Lower temperatures slow biological processes and will slow the degradation rate of organic contaminants. There would be no cross-media benefit affecting soil contamination by implementing this alternative.

Implementability — The alternative is implementable. Passive extraction of groundwater would produce relatively low flows. For the water to be retained in the wetlands system long enough for degradation to occur, 10 to 15 acres of land would be needed. This land would have to be located relatively near the seeps so long pumping distances would not be needed. Since most of the land at the bottom of the bluff south of the seeps is not owned by the Air Force, the constructed wetlands would have to be located on top of the bluff.

Cost — The cost estimates for this alternative range from \$6,000,000 to \$8,000,000. This includes approximately \$4,000,000 for groundwater, seep, and surface

water monitoring. This assumes no cost for the land since the Air Force maintains ownership.

10.1.5 Active Extraction, Treatment Using Constructed Wetlands, and Discharge

Active Extraction, Treatment Using Constructed Wetlands, and Discharge

Description — Extraction wells would be installed in areas of identified seeps and in areas where the risk caused by exposure exceeds 1 x 10⁻⁶. Collection trenches would be used to supplement the wells in some areas. All collected water would be pumped to the constructed wetlands at the top of the bluff. Degradation of organic compounds should occur in the aerobic environment near the root zones, and the anaerobic environment in the eutrophication zones of the wetland system. Metals should be precipitated as insoluble salts (typically sulfides) in the eutrophication zones. The effluent would be discharged to a reinjection well system in the eastern portion of OU 5. Monitoring of groundwater and surface water would be required to document that clean-up levels are being attained. The only difference between this alternative and the previous one is that substantially more water would be treated.

Effectiveness — This alternative protects human health and the environment by reducing potential for exposures in seep areas, and collects and treats contaminated groundwater. The cold climate may reduce the effectiveness of this alternative in the winter months only because cold ambient temperatures reduce degradation rates. There would be no cross-media benefit affecting soil contamination by implementing this alternative. The pumping would have a very minor impact on the stability of the bluff; however, the hydrology of wetlands could be negatively affected because of the large volumes of groundwater extracted; groundwater that would normally discharge into the Beaver Pond.

Implementability — The alternative is implementable on a small scale (i.e., treating only water from the seeps), but difficult on a large scale because of the extensive land requirements. Pumping groundwater would result in large flows (2,400 to 3,400 gpm). From 100 to 250 acres would be needed to treat this flow. With limited land at the top of the bluff the flow through the wetland would have to be relatively small, making this alternative not implementable for these large flows because of space limitations at the Snowmelt Pond.

Cost — The cost estimates for this alternative range from \$15,000,000 to \$18,000,000. This cost is for a wetland on top of the bluff since use of the Snowmelt Pond would not be feasible. Monitoring costs of \$4,000,000 are included for monitoring of groundwater, seeps, and surface water.

10.1.6 Passive Extraction, Treatment by Activated Carbon and Discharge

Passive Extraction, Treatment by Activated Carbon, and Discharge

Description — Groundwater and seepage water would be extracted by passive horizontal drains installed in areas of identified seeps. Water would be passively collected and drained to an aqueous activated carbon system at the bottom of the bluff. The activated carbon would remove the contaminants. The water would then be reinjected in the eastern portion of OU 5. Monitoring would be needed for groundwater and treatment effluent to demonstrate that the treatment is effective.

Effectiveness — This alternative protects human health and the environment by reducing the potential for exposure in seep areas by removing and treating contaminated water. Only shallow groundwater near the water table would be removed using horizontal drains. Deeper groundwater would not be captured by a passive system. This alternative would have a very minor, if any, impact on the stability of the bluff and no impact on the hydrology of wetlands.

Implementability — The alternative is implementable; the technology is proven and available. There is sufficient land for this alternative at the bottom of the bluff.

Cost — The cost estimates for this alternative range from \$7,000,000 to \$8,000,000. The monitoring component for groundwater, seeps, and surface water is estimated to be \$4,000,000.

10.1.7 Active Extraction, Treatment Using Air Stripping and Activated Carbon, and Discharge

Active Extraction, Treatment Using Air Stripping and Activated Carbon, and Discharge

Description — This alternative is applicable to groundwater and seeps. Impacted groundwater would be extracted with wells installed in areas of identified seeps and where cancer risks posed by exposure to groundwater exceed 1 x 10⁶. The collected water would be stripped of volatiles with an air stripper, and the effluent would be discharged via a reinjection well system as with previous alternatives. Volatiles from the air stripper would be captured and treated with activated carbon. Monitoring would be needed for groundwater, surface water, effluent from the treatment system, and air to demonstrate that the treatment is effective.

Effectiveness — This alternative protects human health and the environment by reducing the potential for exposure in seep areas by removing and treating contaminated

groundwater. A system could be designed to control the migration of impacted groundwater. By controlling the migration, capturing groundwater, and drying up seeps, potential threats to Ship Creek, human receptors, and the environment are eliminated. Implementing this alternative would have an indirect benefit on surface water quality by preventing contaminated groundwater discharge into the surface water systems. However, decreased volume of water flow to the wetlands could upset the ecology of the system. There would be no negative impact on the stability of the bluff.

Implementability — The alternative is implementable; the technology is proven and available. There is sufficient land for this alternative and systems for controlling emissions are available.

Cost — The cost estimates for this alternative range from \$25,000,000 to \$30,000,000. Monitoring costs of approximately \$4,000,000 are included in this estimate.

10.1.8 Permeable Treatment Beds

Permeable Treatment Beds

Description — This alternative is applicable to groundwater. Seeps could not be controlled by surface treatment beds, since seeps discharge as surface water. A subsur-

face flow-through treatment medium would be constructed to treat groundwater in situ. Treatment beds would be installed through a trench excavated into the saturated zone to intercept shallow groundwater. The trench would be backfilled with granular activated carbon (GAC) to just below the water table, and then the backfill completed with clay to the land surface. The GAC would adsorb any dissolved constituents, and the clay layer should effectively filter or block any floating product from flowing past the trench. Once the adsorptive capacity of the bed has been exhausted, the trench could be re-excavated to remove the spent carbon and any accumulated floating product. The spent GAC could be regenerated off-site at a carbon regeneration facility and the desorbed contaminants could be thermally destroyed. The trench could then be re-installed as before with new or regenerated GAC. Monitoring of groundwater on both the upgradient and downgradient side of the trench would be needed to document its effectiveness.

Effectiveness — This alternative would protect human health and the environment by intercepting and treating contaminated groundwater. The potential for affecting Ship Creek would be reduced. Activated carbon would adsorb most contaminants. Regeneration of the carbon would destroy the contaminants. This alternative would have no negative impact on the stability of the bluff, but could negatively affect wildlife habitat and wetlands (see Implementability).

Implementability — Implementing this alternative would be difficult. The need to remove and replace the activated carbon periodically would result in this alternative being implemented more than once over the life of the project. The multiple implementation could result in damage to the ecology. All flora and fauna and related habitats within the area treated would be detrimentally affected. The railroad, Post Road, and industrial buildings would make installation of a continuous trench very difficult. Excavation and reconstruction will also result in a period of time when groundwater would not be treated. The space available for construction is limited due to the railroad tracks in the western and the wetlands in the eastern part of OU 5.

Cost — The estimated cost for this alternative is estimated to range from \$10,000,000, to \$15,000,000 per implementation, including excavation, carbon, and monitoring costs.

10.1.9 Air Sparging Combined With Soil Vapor Extraction

Air Sparging Combined with Soil Vapor Extraction

Description — This alternative would both volatilize and degrade organic compounds by injecting air into the contaminated groundwater to increase the oxygen content, and thus accelerate the natural degradation processes. Volatized compounds would enter the vadose zone where they would be removed using soil vapor extraction and treated using activated carbon. Aromatic contaminants not volatilized would be broken down by the increase in microbial activity caused by the increased oxygen content of the water. Monitoring of the groundwater, seeps, and surface water would be needed to document the effectiveness of this alternative. Activated carbon would be used to control emissions from the soil vapor extraction wells.

This alternative is generally applicable to groundwater and could have beneficial effects on subsurface soil contamination. Its affect on seeps would be less since the small size of the seeps would make it difficult to accurately target the same area for both seeps and groundwater.

Effectiveness — This alternative would protect human health and the environment by removing volatile contaminants from the groundwater and accelerating the degradation process. The migration of the contaminants remaining in the groundwater is not reduced, so the effectiveness depends upon the distance between the point of sparging and the point of potential exposure. The degradation process would require an unknown period of time and may not be complete by the time impacted water with unstripped contamination reaches potential points of exposure. The lithology of the subsurface would effect system performance as varying migration patterns of air and contaminants in the subsurface could result in uneven performance.

There is a potential for negative influence on surface water quality caused by discharging oxygenated water into the wetlands. The extra oxygen could affect the ecology of the wetland by upsetting the balance between aerobic and anaerobic conditions. This could change the types and population of organisms in the wetlands. There would be no impact on the stability of the bluff.

Implementability — This alternative can be implemented. The technology is proven effective in many environments. Sufficient space is available for air sparging wells. Sparging wells and the geologic formation can be fouled by bacterial action and chemical precipitation. This is especially true in waters with high iron content, such as those in OU 5. Fouled wells may have to be abandoned and new wells constructed.

Cost — The cost is estimated to range from \$25,000,000 to \$30,000,000. The monitoring of groundwater, surface water, and seeps accounts for approximately \$4,000,000 of this estimate.

10.2 Remedial Alternatives For Soil

The remedial alternatives for soil are described and evaluated below. Rationale for both retaining and dropping alternatives is discussed in Section 10.3.

10.2.1 Natural Degradation

Natural Degradation

Description — The natural degradation alternative relies upon natural physical, chemical, and biological processes to reduce contaminant concentrations until cleanup levels are met in soil. Aromatic hydrocarbons are a common food source for naturally occurring bacteria. The bacteria break down the organics to carbon dioxide and water. Hydrocarbons also are adsorbed to organic and clay minerals in soil. These natural processes would act slowly, resulting in a remediation time frame whose length is difficult to predict. A site-specific modeling program would be needed to define degradation rates of contaminants and estimate the time required to naturally achieve cleanup levels. An ongoing soil monitoring program, where soil samples are collected periodically, would be required to confirm predicted degradation rates. This alternative provides a baseline for comparing other alternatives.

Effectiveness — Natural degradation does not result in any immediate reduction in risk; however, the risks associated with exposure to soil are low since the contaminated soils are below the surface and not accessible to direct contact. The speed of remediation depends upon many factors, including temperature, nutrient levels, moisture content, oxygen content, and bacterial activity. The breakdown rate is not known. The modeling program could also estimate the reduction in risk over time. There would be no impact on the stability of the bluff; however, wetlands could be affected in the short term by discharges of groundwater flowing through impacted soil.

Implementability — The alternative is implementable. The processes for implementing natural degradation are known and have been used at other waste sites. Public and regulatory acceptance also must be achieved for this alternative to be implementable.

Cost — The monitoring cost (present value based on 30 years of monitoring) associated with this alternative would range from \$1,000,000 to \$1,500,000.

10.2.2 Institutional Action

Institutional Action

Description — This alternative would involve monitoring soil impacts and would add land use restrictions to the Elmendorf AFB land use plan. The monitoring program would be the same as described under the natural degradation alternative. These restrictions would limit access and prohibit the building of residences and excavations in areas with contamination exceeding cleanup levels. The restrictions would be included on the deed for the property and would be incorporated in the Base Comprehensive Use Plan. The use restriction would be factored into any future decisions to dispose of the property. Monitoring of the soil would be needed to track the natural degradation of the contaminants over time. Any future uses of the impacted areas must be evaluated to make certain that the risk due to these future uses does not exceed acceptable levels.

Effectiveness — This alternative would minimize exposures that could occur from digging in contaminated soil. Risk from exposure to soil would be reduced since the chances for human contact would be reduced. Risks to the environment would not be controlled at seep sites. Animals and vegetation would not be protected by the institutional actions. This alternative is unlikely to affect the stability of the bluff.

Implementability — This alternative is implementable and would cause little environmental disruption to the existing ecosystem of the proposed alternatives. Fences could be easily constructed and maintained without disruption of the environment or operations at Elmendorf AFB. The processes for acquiring deed restrictions and restricting groundwater use are defined. Public and regulatory acceptance would be required for the alternative to be implementable.

Cost — The present value cost would range from \$1,000,000 to \$1,500,000. This cost includes an estimated cost of \$100,000 to implement deed/access restrictions.

10.2.3 Containment

Containment

Description — This alternative includes a bentonite and soil cap and sediment control barriers to contain areas of known surface soil contamination. Capping would also be applied to soil contaminated by seeps. A 2-foot thick bentonite and soil cap with a vegetative cover would be constructed over approximately 3.5 acres on top of the bluff. This design should be adequate to prevent dermal contact with contaminated surface soils and infiltration of water through contaminated vadose zone soil. The cap in the seep areas would be small (approximately 0.1 acres each). Silt fences across known drainage ditches would be constructed to prevent contaminated sediments from washing out into surface water. Periodic monitoring of soil pore water, using suction-type lysimeters, would be needed to document the effectiveness of the cap.

Effectiveness — This alternative would be effective in reducing risk from dermal contact with contaminated soil. However, the risk is currently low. There would be a cross-media benefit on groundwater water and, indirectly, on surface water by reducing migration of contaminants through the soil and into groundwater. Reducing the contaminant load on groundwater will indirectly benefit surface water at the point of discharge. Caps in seep areas would not be effective, even with the attempt at water extraction, because of

hydraulic pressure that would build up behind the cap and either rupture the cap or eventually cause water to bypass the cap and contaminate other areas, including surface water and wetlands. Back pressures caused by a cap could lead to instability of the bluff.

Implementability — Capping has limited implementability. The topography of the bluff would not allow for construction of a stable cap, so any capping would be limited to the flat areas at the top of the bluff. The area that would be capped is small, so the loss of use of the capped area should not have an impact on operations at Elmendorf AFB. Public and regulatory acceptance must also be achieved for this alternative to be implementable. The technology is proven and available.

Cost — The cost is estimated to range from \$1,000,000 to \$2,000,000.

10.2.4 Excavation and Disposal

Excavation and Disposal

Description — This alternative would be applied only in the areas where soil contamination exceeds clean up levels for total fuel hydrocarbons (TFH). Natural degradation would continue to be applied to soils with less than the TFH clean-up levels. A backhoe or front-end loader would be used to excavate overburden with contamination below

clean-up levels. Approximately a 4 foot x 10 foot x 10 foot portion of soi! would be excavated for disposal (1,500 cubic yards) in each of the two areas being evaluated in this FS (3,000 cubic yards total). These contaminated soil areas are at depths of approximately 10-12 feet in the western area and 0-2 feet in the central area. The soil would be temporarily placed on plastic, and samples would be collected to determine the concentration of TFH in the excavated soil. These data would be used to obtain authorization to dispose of the soil at an industrial landfill. Samples also would be collected of the sidewall and bottom soil in the excavation to confirm that the soil with a TFH concentration greater than clean-up levels was removed. The depth of the contamination will depend upon the depth of contamination and the technical ability to excavate. The sidewalls would have to be laid back to permit safe entry into the excavation. Roads, utilities, and buildings would limit the size of the excavation, since they could interfere with the excavation residuals. The excavated soil would be transported to an off-site permitted industrial waste landfill. Clean fill would be imported to the site and the excavation backfilled.

Effectiveness — The potential for dermal exposure to contaminated soil is eliminated, and the alternative is permanent. There would be a limited cross-media benefit on groundwater by the removal of near-surface soil with the highest contaminant concentrations. The Air Force would maintain environmental liability after disposal of the soil, since treatment would not have occurred, even if the soil is disposed at a permitted facility. If the facility became a CERCLA site, the Air Force could become a responsible party. This alternative could affect the stability of the bluff if deep excavations were made. Shoring can minimize this impact. No threat to wetlands or other ecological receptors is expected by implementing this alternative.

Implementability — The alternative may not be implementable. Air Force policy is to not select excavation and off-site disposal as the preferred alternative for CERCLA soils. The excavation techniques are available and proven. However, this alternative is limited only to shallow soil (generally less than 10-15 feet). Deeper soil could only be safely obtained by shoring excavations or using caisson excavation methods.

Disposal of contaminated soil may be difficult. If the soil is hazardous, an out-of-state RCRA landfill would have to be used, and transport of the soil would be difficult. The waste characterization (hazardous/nonhazardous) would have to be determined during a pilot excavation. All current data indicate that the soil would not be hazardous. Public and regulatory acceptance would also be required for this alterative to be implementable.

Cost — Assuming an industrial waste landfill could be used, the cost for this alternative would range from \$800,000 to \$1,200,000.

10.2.5 Excavation, Biopiling, and Backfill

Excavation, Biopiling, and Backfill

Description — A backhoe or front-end loader would be used to excavate soil from the areas of OU 5 where soil contamination exceeds clean-up levels for TFH. The volume of soil to be treated is estimated to be 3,000 cubic yards. The excavated soil would be stockpiled and transferred to the Elmendorf AFB biopile cell for treatment. The existing biopiling area is located at the eastern end of Elmendorf AFB. Clean fill from on base would be used as backfill in excavated areas. Degradation in the biopile occurs because oxidation of the soil stimulates microbial activity, which breaks down the contaminants into carbon dioxide and water. Some volatilization also occurs.

Soil in the biopile would be monitored for temperature, soil pH, nutrient, and contaminant concentrations. Operations would be adjusted for climate to maintain optimal degradation. Soil samples would be collected from sampling points in the center of the biopile and analyzed to determine that the contaminated soil had been treated to acceptable levels.

When cleanup objectives are met, the treated soil would be used on-base as fill.

Effectiveness — The potential for dermal exposure to contaminated soil is eliminated. There may be a limited cross-media benefit on groundwater by the removal of near-surface soil with the highest contaminant concentrations. The effectiveness may be slowed in the winter when degradation rates decrease. The bacterial activity is most effective in warm ambient temperatures. As with the excavation and disposal alternative, this alternative is limited only to shallow soil. Deeper soil could only safely be excavated by shoring excavations or using caisson excavation methods. This alternative creates the same potential impacts to bluff stability and wetlands as the excavation and disposal alternative.

Implementability — The alternative can be implemented but may be restricted to the summer months because of the cold winter climate. The excavation and biopiling techniques are available and a treatability study at Elmendorf AFB is ongoing. Excavation in the western area may be difficult since the depths of contamination (10-12 feet) approach the 15 foot depth limit for excavation without complex methods. The biopiling could be coordinated with the existing biopiling study. The land commitment for the duration of treatment would not affect operations at Elmendorf AFB. Public and regulatory acceptance are required for this alternate to be implemented. Contaminated soil on the side of the bluff in the western portion of the OU will be difficult to reach.

Cost — The estimated cost range for this alternative is \$150,000 to \$300,000. This includes \$30,000 for sampling of soil to document remediation of the soil. Also

included is excavation and transport to the biopile and backfill (costing in the range of \$15 to \$20/cy [\$45,000 to \$60,000]). The remaining cost is for the biopiling effort.

10.2.6 Soil Vapor Extraction/Soil Venting

Soil Vapor Extraction/Soil Venting

Description — Soil vapor extraction (SVE) wells would be installed in the vadose zone and screened in a narrow interval below the soil contamination. The wells would be connected to a vacuum blower via a common header so that a negative pressure would induce air flow through the contaminated soil into the SVE wells. Volatile compounds would partition into the vapor phase where they could be collected by the wells. Activated carbon would be used to adsorb the contaminants from the vapor phase. Periodic regeneration of the carbon would destroy the contaminants. Vapor vacuum monitoring wells would be used to document the radius of influence of the SVE wells. The concentration of organic vapor in the extraction and monitoring wells would be measured periodically to document vapor extraction rates. Soil borings would be drilled to sample the affected soil to confirm that cleanup levels have been achieved.

Effectiveness — This alternative protects human health and the environment by reducing the volatile contaminant concentrations in soil. There is a cross-media benefit

on groundwater by the reduction of contaminants in the soil. Also some induced volatilization from the groundwater could occur as a result of the reduced pressure in the vadose zone.

Soil vapor extraction would not be highly effective on the low volatility contaminants such as diesel and jet fuel. Since these compounds have low volatility, the relative vapor phase equilibrium concentration between the vapor and adsorbed/liquid phase is low. Also, SVE wells would not be highly effective near the bluff face because the vacuum would be lost as fresh air was drawn in through the bluff, thereby reducing the vacuum induced in the vadose zone. The radius of influence (and thus the effectiveness) of the wells will depend upon the permeability of the formation. Radius of influence also affects the number of wells needed to be effective. The formation is predominantly sand and gravel so the effectiveness of each well to extract soil vapor is expected to be high. However, heterogeneity in the lithology and channeling of air could cause this alternative to be less effective in some areas. This alternative would not affect the stability of the bluff or affect wetlands.

Implementability — This alternative can be implemented. There is sufficient land available to install the wells, header system, and treatment systems. The SVE technology is proven and is available; soil vapor treatment with activated carbon is proven and available. Approvals from regulatory agencies would be needed to discharge treated offgas.

Cost — The estimated cost range would be \$1,000,000 to \$2,000,000.

10.2.7 Bioventing

Bioventing

Description — Bioventing treats organic contaminants by oxygenating the vadose zone, increasing microbial activity and increasing microbial breakdown of the contaminants. Air injection wells would be installed in areas where concentrations of soil contaminants exceed clean-up levels for TFH. The wells would be screened in the vadose zone in a narrow interval within and below the soil contamination. A blower would be connected to the wells via a common header so that a positive pressure would induce air flow into the contaminated soil. The increased amount of oxygen available in the vadose zone would enhance the aerobic biodegradation of organic contaminants by indigenous microorganisms. In addition to oxygen, macronutrients such as nitrogen and phosphorus, in an atomized phase, could be added to stimulate microbial population growth and contaminant destruction. Soil sampling would be needed to document that cleanup levels were being achieved.

Effectiveness — This alternative protects human health and the environment by reducing the contaminant concentrations in soil. It is effective on aromatic compounds and TFH, but is less effective on chlorinated compounds that break down faster in anaerobic environments. There is a cross-media benefit on groundwater and, indirectly, on surface

water, by the reduction of the contaminant concentration in the soil. The effectiveness would depend upon the ambient temperature, moisture content, natural microbial populations, and the permeability of the soil. Bioventing tests in arctic climates have shown that ambient temperatures would be increased by the heat of compression of the inlet air. Bioventing can dry the formation reducing the effectiveness; however, moisture could be added to the inlet air to counteract this negative effect. Effectiveness would also be negatively affected by heterogeneity in lithology and channeling effects. This alternative would not affect the stability of the bluff or wetlands.

Implementability — This alternative can be implemented. The technology is available, and the space needed for bioventing wells is available. However, the rate of breakdown caused by bioventing in cold climates is not fully documented. Bioventing tests are being currently performed at Elmendorf AFB. The results of these tests will demonstrate the effectiveness of bioventing in cold climates and will provide the data needed. Because the soil in the bluff is composed mostly of interbedded sands and gravel with some thin, discontinuous silty zones, the vapors should travel well through the media.

Cost — The estimated cost range would be \$150,000 to \$300,000.

10.3 Alternatives Recommended for Detailed Analysis

Based on the evaluation of alternatives for water and soil, the more promising alternatives were selected for detailed analysis (Section 11). The alternatives selected are shown unshaded below.

Selected Remedial Alternatives for Water

The next four subsections (Section 10.3.1 through 10.3.4) discuss the respective rationales for the alternatives that are both retained and eliminated.

10.3.1 Rationale for Retained Water Alternatives

Natural Attenuation

This alternative was retained for both seeps and groundwater as a baseline, for comparison to other alternatives. It is applicable to all areas of OU 5, but is more effective for the main body of groundwater not being expressed as seeps. Natural attenuation can be combined with other alternatives to form cost-effective multi-media alternatives for the different impacted areas of OU 5.

Institutional Action

Institutional action can help prevent exposure for both seeps and groundwater by limiting access to pathways. The monitoring aspects of institutional actions should be combined with any alternative that achieves cleanup levels over a period of time to document the effectiveness of each remedial action.

Passive Extraction With Constructed Wetland Treatment

This alternative was kept for the seeps, but eliminated for groundwater. The alternative can reduce exposures from the seeps and treat contaminants at reasonable costs. Snowmelt Pond would be converted into a constructed wetlands under the presumptive remedy for PCB and sheen contamination. The passive nature of both the extraction and treatment system is beneficial in that the chance of process upsets due to equipment failure is minimized. However, treatment of all groundwater by this method is not practical because the size of the constructed wetlands required to provide adequate retention time for the extremely large volumes of groundwater that would be extracted would not be implementable.

Passive Extraction With Activated Carbon Treatment

This alternative was kept for the seeps, but eliminated for groundwater. Activated carbon is a well-demonstrated technology that can successfully reduce contaminant levels to below clean-up levels. Exposures during both extraction and treatment would be minimal, and contaminants would be removed by the carbon for eventual destruction off site when the carbon is regenerated. The technology can be carried out on minimal space and would be relatively easy to operate. However, treatment of all groundwater by this method is not possible because passive extraction methods cannot remove water below the surface.

Active Extraction With Air Stripping and Activated Carbon Treatment

This alternative was kept for both seeps and groundwater because it involves a well-understood treatment technology that can effectively treat the contaminants of concern. The active extraction, while adding cost, has the added advantage over passive extraction of increasing the amount of contaminated water that can be treated. Contaminants are treated by the carbon and eventually destroyed during carbon regeneration. Chances for exposures are minimal during operation.

Air Sparging With Soil Vapor Extraction

This alternative was kept for the groundwater, but not for the seeps. Air sparging can effectively remove contaminants from the groundwater and treat them with carbon. The technology can also enhance biodegradation and limit plume migration. Both air sparging and soil vapor extraction are well understood technologies and would minimize exposures during treatment. However, this alternative is ineffective on seeps since this water is already at the surface.

10.3.2 Rationale for Eliminated Water Alternatives

Containment

Containment was eliminated because of the difficulty of containing all affected groundwater over the long term. This alternative is only effective in the short-term in preventing exposure by groundwater capture. In the long term, groundwater would bypass any containment structure. Basewide groundwater discharges to OU 5 would eventually overcome any attempt at containment. The environmental costs in the form of damage to the wetlands and bluffs could outweigh the environmental benefits.

Active Extraction With Constructed Wetlands Treatment

Active extraction was eliminated because of the difficulty in implementing a high flow constructed wetlands. The 100 to 250 acres required to construct a high flow wetlands could affect base operations. Also, the wetland would be more complex, require more operations and maintenance, and would produce more water than a smaller scale system.

Permeable Treatment Beds

Because of the need to periodically replace the treatment medium in a permeable, in-situ treatment system, this alternative was eliminated from further consideration. Periodic replacement of the medium would repeatedly disrupt the land, potentially causing slope stability problems in an area where there is little access for the construction equipment (between the bluff and the railroad tracks). The lack of available land owned by the Air Force also makes this alternative undesirable.

The period of treatment would be open-ended because of the potentially large volume of water that flows through OU 5. The number of replacement episodes cannot be predicted because the contaminant load that will pass through the treatment bed at any location can not be predicted. Breakthrough could happen in some areas of the bed and not at others. This would require either partial replacement or a wider trench with more carbon where contaminant loads may be higher. The difficulty in ensuring equal effectiveness across the bed makes this alternative undesirable.

10.3.3 Rationale for Retained Soil Alternatives

Natural Degradation

Natural degradation processes are effective on the type of contaminants found in the soil, i.e., fuel hydrocarbons. While degradation rates must be established by modeling and monitoring programs, and eventual achievement of cleanup levels is not guaranteed, the alternative has the advantage of not exposing surface receptors to contaminated soils and treating soil in place.

Institutional Action

Institutional actions would help reduce exposures to people by reducing potential present and future exposure to impacted soil. This alternative would not be highly effective on protecting the environment because animals and vegetation are not protected. However, institutional controls can be combined with other actions to form multi-media alternatives that would be effective in some areas of OU 5.

Excavation and Treatment With Biopiling

Biopiling is being tested in a treatability study at Elmendorf AFB. The technology is proven in other climates, and the treatability study will define the treatment period needed to achieve cleanup objectives for the contaminants in the soil. Biopiling permanently destroys contaminants, and minimal chances of exposures during treatment are expected. Excavation depths (10-12 feet in the western area and 0-2 feet in the central area) should be shallow enough for excavation to be employed without the use of complex methods required for depths exceeding 15 feet.

Bioventing

Bioventing has been demonstrated to achieve cleanup levels for similar contaminants at other sites. Permanent destruction of contaminants is achieved and minimum chances of exposure during treatment are expected. Sufficient space exists at OU 5 to implement the alternative and vendors are available to supply the needed equipment.

10.3.4 Rationale for Eliminated Soil Alternatives

Containment

Capping would be effective on a small scale at the top of the bluff. However, caps could not be constructed on the face of the bluff because of slope stability problems and the hydraulic buildup that would occur under the cap. The greatest potential for exposure to contaminated soil is near seeps on the bluff, where a cap would be least effective. Therefore, this alternative was eliminated in favor of the in-situ alternatives and ex-situ treatment.

Soil Vapor Extraction and Soil Venting

This alternative was eliminated because soil vapor extraction is not as effective on contaminants which have low volatility. Contaminants at OU 5 such as diesel and jet fuel have low vapor phase equilibrium concentrations which do not allow for effective removal under a vacuum. In addition, much of the vacuum induced by the blower equipment could be lost in the area of the bluff as fresh air from alongside the bluff could be drawn into the extraction zone.

Excavation and Disposal

This alternative was eliminated because it is in conflict with Air Force policy that off-site disposal of excavated CERCLA soils is not a preferred remediation technology.

Additionally, this alternative merely moves the contaminants from Elmendorf AFB to a landfill, which forces the base to maintain liability and does not achieve the remedial action objective of treating contaminants, where possible.

TABLE OF CONTENTS

			P	age
11.0	DETA	ILED ANALYSIS OF REM	MEDIAL ACTION ALTERNATIVES 1	.1-1
	11.1	Assumptions		1-2
			idient Groundwater Impacts/Affected Media 1	
			nse Actions	
			frame/Short-Term Effectiveness 1	
			ted Water	
		11.1.5 Presumptive Reme	edy for Snowmelt Pond	1-5
	11.2		etailed Analysis	
			Analysis of Multi-Media Alternatives 1	
			a and Scoring System	
	11.3			
		11.3.1 Detailed Assessmen	ent of Remedial Alternatives for Water 11	-12
		11.3.2 Detailed Assessment	ent of Soil Remedial Alternatives 11	-45
		11.3.3 Constructed Wetla	and at Snowmelt Pond	-63
	11.4	Sensitivity Analysis		-70
			% Increase in Volume to be Treated 11	
		11.4.2 Order of Magnitud	de Increase in TFH Concentrations 11	-75
		11.4.3 Order of Magn	itude Increase in the Concentration of	
		Chlorinated Comp	ounds	-75
		11.4.4 Change Significan	t Risk Level from 10-6 to 10-5 11	-76
		11.4.5 Change Significan	t Risk Level from 1 x 10 ⁻⁶ to 10 ⁻⁴ 11	-78
		11.4.6 Change Implemen	tation Time From 30 to 5 Years 11	-78
		11.4.7 Change Implemen	tation Time From 30 to 10 Years 11	-79
	11.5	Comparative Analysis		-79
		11.5.1 Geographic Areas	of OU 5	-79
		11.5.2 Multi-Media Alter	natives Development	-82
			ysis	
			mparative Analysis	
		11.5.5 Conclusion of Con	mparative Analysis	-92

LIST OF FIGURES

		Page
11-1	Natural Attenuation Alternative (Elevation View)	11-13
11-2	Natural Attenuation Alternative	11-14
11-3	Institutional Control Alternative (Elevation View)	11-19
11-4	Institutional Control Alternative	11-20
11-5	Passive Extraction with Constructed Wetland Treatment Alternative (Elevation View)	11-24
11-6	Passive Extraction with Constructed Wetland Treatment Alternative	11-25
11-7	Passive Extraction with Carbon Treatment Alternative (Elevation View)	11-29
11-8	Passive Extraction with Activated Carbon Treatment Alternative	11-30
11-9	Air Sparging with SVE and Activated Carbon Treatment Alternative (Elevation View)	11-34
11-10	Air Sparging with SVE and Activated Carbon Treatment Alternative	11-35
11-11	Active Extraction, Air Stripping, and Activated Carbon Treatment Alternative (Elevation View)	11-40
11-12	Active Extraction, Air Stripping, and Activated Carbon Treatment Alternative	11-41
11-13	Natural Degradation of Contamination in Soil (Elevation View)	11-46
11-14	Natural Degradation of Contamination in Soil	11-47
11-15	Institutional Controls Alternative (Elevation View)	11-50
11-16	Institutional Controls	11-51
11-17	Excavation, Biopiling, Backfill Alternative (Elevation View)	11-54
11-18	Excavation, Biopiling, Backfill	11-55

LIST OF FIGURES (CONTINUED)

		Page
11-19	Soil Bioventing Alternative (Elevation View)	11-60
11-20	Soil Bioventing Alternative	11-61
11-21	Areas Requiring Remediation, Assuming 1 x 10 ⁻⁵ Risk	11-77
11-22	Geographical Areas of OU 5	11-80

LIST OF TABLES

		Page
11-1	Media-Specific and Applicable Pathway Remedial Action Alternatives for OU 5	. 11-6
11-2	Remedial Alternative Evaluation Criteria	. 11-9
11-3	Remedial Alternative Evaluation Criteria Rating System	11-11
11-4	Sensitivity Analysis of Remedial Action Alternatives (By Medium)	11-71
11-5	Multi-Media Alternatives	11-83
11-6	Comparative Analysis for Media-Specific Remedial Alternatives	11-85
11-7	Comparative Analysis for Multi-Media Remedial Alternatives	11-86

11.0 DETAILED ANALYSIS OF REMEDIAL ACTION ALTERNATIVES

The objective of the detailed analysis is to identify the best possible remedial alternatives for the Elmendorf OU 5 site using Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) remedial action alternative evaluation criteria. The comparative analysis evaluates the alternatives according to their cost effectiveness. An alternative is selected in the Record of Decision (ROD) after agency and community acceptance are evaluated.

To complete the detailed analysis, several important technical assumptions had to be made; these assumptions are discussed in Section 11.1. Three potential pathways had to be evaluated at OU 5: seeps, the main body of groundwater, and soil. Even with a small number of media-based alternatives, the number of plausible multi-media alternatives is large. The technical approach taken to streamline the analysis, and still evaluate a large number of multi-media alternatives according to the nine CERCLA criteria, is discussed in Section 11.2. The body of the detailed analysis is provided in Section 11.3.

Section 11.5 provides a comparative analysis of multi-media alternatives; this analysis relies on the detailed single-media analysis in Section 11.3. These subjective analyses separate the better alternative combinations from those that are likely to be less successful using the CERCLA criteria. However, the results of the comparisons are limited by the analysis's assumptions discussed in Section 11.1, the subjective nature of the analyses, and other factors discussed in Section 11.5. A precise, objective ranking of multi-media alternatives cannot be determined from the analyses. The "best" alternative may be one that does not receive the highest score when the input from regulatory agencies and the public are incorporated into the selection process.

Since some of the assumptions made in the detailed analysis could affect the effectiveness, implementability, and cost of the alternatives, a sensitivity analysis that varied several parameters was performed (Section 11.4). This analysis identified those evaluation

criteria that will be most affected for each alternative by changes in the assumed quantities of water and soil potentially requiring remediation, or the level or type of contamination present, and the use of different human health risk objectives.

11.1 Assumptions

Throughout the detailed analysis, it was necessary to make several assumptions about the effects of future contamination on response action, the time it will take to remediate contamination, and the discharge of treated water. The fundamental assumptions that shaped the approach to this analysis are discussed below.

11.1.1 Presence of Upgradient Groundwater Impacts/Affected Media

Investigations of upgradient groundwater contaminant sources and levels of contamination are still ongoing. Therefore, the assumption was made that future or continued upgradient contaminant discharge at OU 5 will occur in the same locations where current groundwater impacts are found and at the concentrations currently found. It was also assumed that the chemicals of concern (COCs) would not change and that there would be no phase change (no soil gas, volatilization/air emissions, free product, or surface water requiring remediation).

11.1.2 Upgradient Response Actions

It was assumed that any upgradient response actions in other OUs would have a beneficial affect on remediation at OU 5. However, the cost reduction that would be associated with any upgradient remedial actions cannot be estimated at this time and was not included in alternative cost estimates. The primary benefit of those actions would be to shorten the time required to achieve remedial action objectives.

11.1.3 Remediation Timeframe/Short-Term Effectiveness

An assumption was made about the estimation of remediation times and the evaluation of an alternative's potential for complying with the chemical-specific ARARs. The assumption has three component factors. First, CERCLA maximum allowable period for remediation of groundwater (30 years) was used because the period of remediation for groundwater cannot be determined as part of this effort. Groundwater from throughout most of Elmendorf AFB will be remediated at OU 5, and the total mass of contaminants to be removed and their rate of migration to OU 5 are not known at this time. For soil, estimates of the time to achieve remediation were made based on the volume or contaminant load.

The second component factor concerns short-term effectiveness. The short-term effectiveness of an alternative depends upon several factors, the three most important of which are as follows:

- The alternative does not create a secondary hazard during implementation;
- An environmental benefit and a reduction in risk are realized during implementation; and
- The remedial action objectives are achieved quickly.

The speed at which remedial action objectives are attained depends upon the mass of contamination to be removed. Since basewide groundwater is to be managed at OU 5, the timeframe for groundwater remediation is assumed to be 30 years. Given a 30-year window for remediation, all groundwater alternatives would receive a low ranking for short-term effectiveness, when timeframe alone is considered. Because the timeframe is equal for all groundwater alternatives, it was not considered in the detailed analysis. The other two factors of short-term effectiveness are the differentiating factors.

Depending on findings and selected remediation strategies at OU 5 and upgradient operable units, groundwater remediation may be achieved in less than 30 years. A cost sensitivity analysis of shorter remediation timeframes is discussed in Section 11.4.

The third component factor relates to the timeframe in which potential exposures are possible. Remedial response actions that require a long time to achieve remedial action objectives are generally considered to have less short-term effectiveness than alternatives that achieve objectives quickly. This is because the period of potential exposure to humans and the environment is longer with alternatives that require more time. This negative aspect can be offset if the alternative eliminates the exposure potential during remediation.

11.1.4 Discharge of Treated Water

The discharge options for treated water include discharge to Ship Creek, discharge to wetlands, and reinjection. The alternatives involving extraction assumed discharge of groundwater via reinjection. This process option was selected as being representative in lieu of site-specific treatability studies that could show direct discharge is possible to surface water bodies. In actuality, the appropriate discharge method is often dictated by the effectiveness of the treatment and the ability to obtain permits. Reinjection is also preferable to discharge to surface water because several of the key remedial action objectives stress the importance of protecting the water quality of the wetlands areas and Ship Creek. Some discharge of treated water to the beaver pond may be beneficial, to maintain a constant water level.

Treatability studies would be needed to determine achievable cleanup levels for each alternative. If it were determined that an on-site treatment system could be designed to reduce contaminant concentrations to levels allowing direct discharge to Ship Creek or the wetlands, then the costs for alternatives with a discharge component would be reduced.

11.1.5 Presumptive Remedy for Snowmelt Pond

As discussed in Section 9.0, converting Snowmelt Pond into a constructed wetland is the presumptive remedy for sediment contamination and surface sheens. The presumptive remedy is considered an element of every multi-media alternative, not just the one involving constructed wetlands. Its cost are included in the total costs that appear in Section 11.5.

11.2 Technical Approach for Detailed Analysis

The first part of this section describes the approach taken to develop and evaluate multi-media alternatives for OU 5. The criteria and the numerical weighting system used to evaluate the alternatives is discussed in the second part of the section.

11.2.1 Development and Analysis of Multi-Media Alternatives

The six water and four soil remedial action alternatives selected for detailed analysis are shown on Table 11-1. However, any remedial action alternative evaluated in the Feasibility Study (FS) must address all of the contamination in the operable unit. In the case of OU 5, that means developing multi-media alternatives that each address the main body of impacted groundwater, seeps, and soil. Seeps include the discharges of impacted groundwater along the bluff. Small surface water channels and ditches along the bluff are not considered as part of the seeps because, if the seeps are remediated, there will be no impact to these face features. As conditions exist now, the main body of groundwater refers to the groundwater flowing under OU 5 that does not discharge as seeps. This includes all groundwater that discharges into the wetlands and Ship Creek. Even with only a few remedial alternatives for each medium, the potential plausible combinations of multi-media alternatives is very large. Examples of two assembled multi-media alternatives are:

Table 11-1

Media-Specific and Applicable Pathway
Remedial Action Alternatives for OU 5

		Groundwater		
WATER TREATM	WATER TREATMENT ALTERNATIVES			SOIL TREATMENT ALTERNATIVES
Alternative #1 —	Natural Attenuation	1	1	Alternative #7 — Natural Degradation
Alternative #2 -	Institutional Controls	•		Alternative #8 — Institutional Controls
Alternative #3 —	Passive Extraction with Constructed Wetlands Treatment		•	Alternative #9 — Excavation, Biopiling and Backfilling
Alternative #4 —	Passive Extraction with Carbon Treatment		•	Alternative #10 Bioventing
Alternative #5 —	Air Sparging with Soil Vapor Extraction	•	•	
Alternative #6 —	Active Extraction with Air Stripping and Carbon Treatment		•	

Multi-Media Alternative #1

MEDIUM ALTERNATIVE

Groundwater Natural attenuation combined with institutional controls

Seeps Passive extraction with activated carbon treatment

Soil Natural degradation combined with institutional controls

Multi-Media Alternative #2

MEDIUM ALTERNATIVE

Groundwater Natural attenuation combined with institutional controls

Seeps Passive extraction with activated carbon treatment

Soil Bioventing

As can be seen, the differences between alternatives can be subtle and descriptions of the multi-media alternatives would be very repetitive. It is important to evaluate all realistic combinations of the 10 media-specific alternatives for different areas within OU 5. To reduce the number of repetitive alternative descriptions, an approach was developed where the media-based alternatives were evaluated individually according to the mine CERCLA criteria using a numerical scoring system. Multi-media alternatives were then developed; the multi-media scores for each CERCLA criterion were calculated from the individual component scores for a total comparative score.

Each media-specific alternative was first individually subjected to detailed analysis before plausible multi-media combinations were defined and analyzed. The protection provided to human health and the environment, compliance with the remedial action objectives and potential ARARs, the effectiveness, and the implementability of each media-specific alternative were evaluated in detail. This way, only 10 alternative descriptions were needed. Multi-media alternatives were then developed. The scores for each CERCLA criterion for each component of the alternative was averaged, for a total comparative score. The relative synergy achieved by different combinations of seep, groundwater, and soil alternatives is not accounted for by averaging the individual component scores. However,

synergistic affects are expected to be minimal because the primary contaminants vary between media, e.g., groundwater with VOCs, soil with relatively nonvolatile total fuel hydrocarbons (TFH). For example, a combined multi-media alternative might be:

- Passive extraction and activated carbon treatment for seeps;
- Bioventing for soil; and
- Natural attenuation with institutional controls for groundwater.

If the long-term effectiveness scores for these components are 4, 5, and 3 the average score for the long-term effectiveness of this multi-media alternative would be 4 ($12 \div 3$). The average scores for the multi-media alternatives are evaluated in the comparative analysis section of this report. This approach streamlines the detailed analysis effort by not creating repetitive analyses for similar combinations of alternatives.

11.2.2 Evaluation Criteria and Scoring System

Criteria

The evaluation criteria used in the detailed analysis are divided into three categories: threshold factors, balancing factors, and modifying considerations. Threshold factors are those conditions that must be met for the alternative to be viable and relate directly to statutory findings that will be made in the Record of Decision (ROD); these criteria must be met. Balancing factors are the conditions that are the primary basis for comparing alternatives; these criteria relate the alternative to the site-specific conditions. Modifying considerations factor in agency and community concerns: an alternative could be effective and technically implementable, but not viable based on these considerations. The nine evaluation criteria used in the detailed analyses, and brief definitions of each are shown on Table 11-2. The detailed evaluations focus on the threshold and balancing factors. Cost depends upon the assembly of media-specific alternatives; therefore, cost is evaluated in the comparative analysis portion of the detailed analysis, where multi-media alternatives are

Table 11-2

Remedial Alternative Evaluation Criteria

Criterion Type	Evaluation Criterion	Definition
Threshold Factors	Protective of human health and the environment	Protection of both human health and the environment is achieved through the elimination, reduction, or control of contaminated media. All migration pathways must be addressed.
	Compliance with appropriate ARARs	Complies with applicable or relevant and appropriate requirements of RCRA, CWA, SDWA, TSCA, state and local regulations and codes, and TBCs.
Balancing Factors	Long-term effectiveness and permanence	Protects human health and the environment after the remedial objectives have been met.
	Reduction in toxicity, mobility, and volume through treatment*	Treats the media and reduces the toxicity, mobility, and/or volume of the contaminated media.
	Short-term effectiveness	Protects human health and the environment during construction and implementation. Degree of threat and the time period to achieve remedial action objectives are also considered.
	Implementability	There are no administrative barriers (no permits, zoning limitations). The availability of materials and personnel, site features such as available space and topography, and impacts upon on-going operations are considered. The technical status of alternatives is also considered; theoretical technologies with only limited bench-scale evaluation are considered less implementable than fully proven processes.
	Cost	Costs include design, construction, start-up, monitoring, and maintenance. Accuracy to within -30% and +50%.
Modifying Considerations	State acceptance	The state's (or other regulatory agency's) preference among or concern about alternatives.
	Community acceptance	The community's apparent preferences among or concerns about alternatives.

^a Effectiveness criteria used to determine the effectiveness-to-cost quotient.

developed and compared. Costs are calculated to an accuracy of -30% to +50%. Modifying considerations (agency and community acceptance) will be evaluated in the Proposed Plan.

Scoring System

To measure the degree that the alternatives fulfill each evaluation criterion, a relative numerical rating system was used (see Table 11-3). The numerical values reflect the relative completeness that a criterion is fulfilled by the alternative. As shown, the rating can be one of three possibilities: the criterion is fully met, partially met, or is not met. Table 11-3 describes subjective factors used to evaluate how well the evaluation criteria are met by the alternatives. The number assigned (5, 3, or 0) does not necessarily reflect the degree of meeting the criterion. For example, an alternative which scores a "3" on "implementability" is not necessarily 60% as implementable as an alternative that scores a "5." However, the assigning of these numerical rankings can serve to provide a preliminary ranking of sites that can be used in the comparative analysis. It is difficult to always fully meet a criterion. For the cost criterion, one of four scores was selected, depending on the total present worth of costs associated with the alternative. The selection of an alternative in the ROD is based on an evaluation of the trade-offs between the costs, benefits, and impacts of any remedial response. The scoring system is designed to numerically represent the trade-offs between the different alternatives. Another assumption is that this rating system assumes that each of the CERCLA criteria are equally important, since each are numerically weighted the same. Again, this is not always representative in that certain criteria can have more importance, depending on circumstances. For example, threshold factors must be achieved and therefore might be seen as more important than a balancing factor, such as implementability, that might be of less importance. This scoring system was selected as a reasonable compromise to reflect the inclusion of all applicable CERCLA criteria.

Table 11-3

Remedial Alternative Evaluation Criteria Rating System

Evaluation Criterion	Condition	Value
Protective of Human Health and	Is protective	5
the Environment	Potentially or contingent protection	3
	Is not protective	0
Compliance with appropriate	Complies with appropriate ARARs	5
ARARs	Complies with most appropriate ARARs or waivers needed	3
	Does not comply	0
Long-Term Effectiveness and	Once cleanup is completed, there is no recurrence potential	5
Permanence	Contaminants transferred, future re-release possible	3
	Contaminants not removed or destroyed	0
Reduction in Toxicity, Mobility,	Eliminates toxicity, mobility, and volume	5
and Volume through Treatment	Reduces toxicity, mobility, and volume	3
	No reduction or no treatment	0
Short-Term Effectiveness	Short-term environmental improvement protects human health and the environment. Minimal risks created by implementation	5
	Limited short-term improvement in environment. Limited risks created by implementation of alternative	3
	No short-term environment improvement. Risks created by implementation	0
Implementability	Alternative proven, all materials and personnel available, permitting available or in place, little effect on operations in OU 5 or surrounding area	5
	Alternative requires significant space, some action-specific ARAR compliance issues, some effect on operations in OU 5 or surrounding area, or slope stability may limit application.	3
	Uncertain permitting, major impact on operations in OU 5 or surrounding area	0
Cost	<\$1.5 million	5
	\$1.5 to 5 million	3
	\$5 to 10 million	1
	>\$10 million	-1
State Acceptance ^a	To be determined	NA
Community Acceptance To be determined		NA

These final two criteria are typically evaluated following comment on the RI/FS report and the proposed plan. They will be addressed when the Record of Decision (ROD) is prepared.

11.3 Detailed Evaluation

11.3.1 Detailed Assessment of Remedial Alternatives for Water

Alternative #1 — Natural Attenuation

For the natural attenuation alternative, the water medium was divided into the seeps along the bluff north of Ship Creek (seeps) and the bulk of the groundwater above the Bootlegger Cove formation (groundwater). The effectiveness of this alternative depends on whether seeps or groundwater are being evaluated.

Description — Natural attenuation uses natural processes to treat contaminant concentrations to cleanup levels. Schematic representations of this alternative in elevation and plan view are shown on Figures 11-1 and 11-2. Natural attenuation would occur in wetland areas, within the groundwater body, and as seeps are exposed to the atmosphere. Wetlands commonly are anaerobic with aerobic environments in the root zone. In wetlands, natural attenuation consists of volatilization and the indigenous breaking down of contaminants by microbial species and common chemical mechanisms. Adsorption of fuel hydrocarbons, halogenated solvents, and metals also occurs. Filtration, dispersion, and dilution also are important mechanisms of natural attenuation in wetland environments.

In groundwater, the primary natural attenuation processes are adsorption/ retardation, dispersion, microbial breakdown, dilution, and volatilization. This option would continue to use these processes for groundwater. Organic constituents have been shown to naturally attenuate in groundwater. Factors affecting the rate of natural attenuation include the groundwater discharge/recharge balance, flow rate, temperature, areas of recharge, the mineralogy of the soil (silt and clay soil having greater adsorption and retardation effects), the concentration of the contaminants, and the type of contaminants. Metals and aromatic hydrocarbons tend to adsorb relatively quickly, and aromatics are typically broken down by microbial action relatively fast. Chlorinated organics are more mobile and adsorb to a lesser

Figure 11-1. Natural Attenuation Alternative (Elevation View)

degree. They also are broken down biologically at a slower rate than aromatic hydrocarbons.

Natural attenuation processes in seeps include volatilization, oxidation, and microbial breakdown. Groundwater discharging as seeps becomes oxygenated when exposed to the atmosphere. The microbial activity would increase degradation of the aromatic hydrocarbons. Exposure to the atmosphere and sunlight would increase the volatilization of aromatic and halogenated hydrocarbons.

The effectiveness of natural attenuation would be monitored by collecting and analyzing samples of groundwater and seep water on a regular basis. Monitoring may include sampling the outfalls from the wetlands into Ship Creek, and continued evaluation of stressed vegetation and monitoring of terrestrial and aquatic wildlife.

Effectiveness

CERCLA CRITERIA SCORING RESULTS NATURAL ATTENUATION

Criterion	Sceps	Groundwater
Protection of Human Health and the Environment	0	3
Compliance with appropriate ARARs	3	3
Long-Term Effectiveness and Permanence	3	3
Reduction in Toxicity, Mobility, and Volume through Treatment	0	0
Short-Term Effectiveness	0	3
Implementability	5	5

Protection of Human Health and the Environment. This alternative is considered partially protective of human health and the environment. While there is no current threat and natural attenuation to date has been effective, the potential exists for impacts to occur if current conditions change. If groundwater use changed or there were an unattenuated discharge to a human receptor pathway, this alternative could not be adjusted to provide

protection of human health and the environment under the changing conditions. Currently, there is no potential for human exposure to groundwater because all known wells in the upper aquifer have been capped. Animal and plant life are not currently exposed to groundwater. The monitoring will provide a mechanism to ensure that action can be taken before potential impacts to human health and the environment occur from changes in conditions.

For seeps, natural attenuation does not reduce the risk to environmental receptors (there are no known current human receptors). Vegetation is stressed and the potential for impact to surface and aquatic animals exist from the seeps. Natural attenuation of the seeps, once the water is discharged, will not protect environmental receptors. Since this is the "no action" alternative, no comparison between the health and environmental risks is necessary if no action were taken and no potential impacts were caused by response actions.

Compliance with Appropriate ARARs. This alternative does not presently comply with potential contaminant-specific ARARs, including Maximum Contaminant Levels (MCLs) (for benzene and TCE) and the Alaska Surface Water Quality Standard of no visible oil sheens. Potential action-specific ARARs are not applicable since no action is taken. The potential location-specific ARAR for wetlands is not achieved since contaminated groundwater naturally discharges into Beaver Pond. However, current chemical analysis of outflow from the wetlands indicate that water quality standards are being met, so this potential location-specific ARAR is partially met. In the long term, contaminant concentrations should decline and, potentially, MCLs or other potential water quality standard ARARs could be achieved. More ling of the breakdown rate, taking into account site-specific and upgradient conditions, would be needed to determine if potential ARARs could be achieved in the 30-year time period for remediation.

It may be necessary to obtain a waiver from the National Primary Drinking Water Regulations and the Alaska State Drinking Water Standards to permit natural attenuation of the groundwater to continue.

Long-Term Effectiveness and Permanence. This alternative is considered to be partially effective in the long term given the uncertainty of achieving cleanup levels. For groundwater, indigenous aerobic and anaerobic organisms usually break down organic species and naturally occurring geochemical reactions typically degrade organic constituents. The time required to attenuate contaminant concentrations naturally and to achieve final concentrations are not known (for the 30-year period). The monitoring component of the alternative is designed to determine the effectiveness. The monitoring would provide a measure of protection of human health and the environment, allowing action to be taken if conditions change or if cleanup levels are not being achieved.

Reduction in Toxicity, Mobility, and Volume Through Treatment. There is no active treatment performed; therefore, according to the CERCLA guidance, the toxicity, mobility, and volume of organic contamination in groundwater and seepage are not reduced.

Short-Term Effectiveness. This alternative would be effective for groundwater in the short term if the following conditions remain:

- No use of the shallow aquifer;
- No increase in migration rate; and
- No significant increase in contaminant concentrations.

Because of the conditional nature of the effectiveness a score of partially effective was assigned.

For seeps, this alternative is not effective in the short term since there is no action taken to restore stressed vegetation and restrict access and contact with contamination by humans and animals.

Implementability. This alternative is implementable for both seeps and groundwater and will not affect operations at Elmendorf AFB. However, administrative implementability may be complicated by the need to obtain potential ARAR waivers.

Alternative #2 — Institutional Controls

This alternative involves access controls in the areas where groundwater discharges (the Beaver Pond) and in the seep areas, and groundwater use restrictions.

Description — Access restrictions could include fences with notices posted indicating potentially hazardous contaminants. Deed restrictions may include prohibition of the use of shallow groundwater for domestic purposes (drinking, bathing, cooking etc.) and restrictions on the use of the land. Restrictions on the use of groundwater will eliminate one potential pathway of potential exposure. Restrictions on land use would be needed to ensure that exposure to groundwater did not occur during excavation or construction projects. Construction projects could require dewatering local areas within the lower bluff area. Disposal of the discharged water would have to be controlled so inadvertent discharge to surface water or ditches did not occur.

The monitoring of water and seeps would be performed as part of this alternative. An elevation and plan schematic of this alternative is shown on Figures 11-3 and 11-4.

Figure 11-3. Institutional Control Alternative (Elevation View)

Effectiveness

CERCLA CRITERIA SCORING RESULTS INSTITUTIONAL CONTROLS

Criterion	Groundvater
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	3
Reduction in Toxicity, Mobility, and Volume through Treatment	0
Short-Term Effectiveness	3
Implementability	5

Protection of Human Health and the Environment. This alternative was considered partially protective of human health and the environment because of the potential for environmental impact. The environment is not fully protected because institutional controls will not prevent the stressed vegetation in the seep areas (there are no known current human receptors). Also, access restriction would not prevent small terrestrial animals and birds from coming in contact with the seep water. However, this alternative is protective of human health because potential exposure pathways are removed and monitored.

This alternative will not prevent exposures to groundwater; animal and plant life are not currently exposed to groundwater. Overall, the risk to human health is small because major exposure is unlikely. This alternative achieves minor reductions in human health risk while potentially restricting access of some wildlife to wetlands habitat. Bluff stability is unlikely to be compromised by this alternative.

Compliance with Appropriate ARARs. By removing groundwater as a potential drinking water supply, this alternative will comply with water quality potential ARARs. Potential action-specific ARARs protecting workers during construction of fences would apply.

Long-Term Effectiveness and Permanence. This alternative was given a score of partially effective for this criterion because of the conditional nature of the effectiveness. If conditions remain constant, the institutional controls will be effective in the long term for protecting human health. Since the Air Force is a branch of the federal government, the permanence of maintaining institutional controls is assumed (compared to a relatively small commercial operation that may move or go out of business). Institutional controls are not effective in the long term for the environment since the environment has been affected in the seep areas, and little environmental protection is provided by institutional controls in these areas.

Reduction in Toxicity, Mobility, and Volume Through Treatment. There is no active treatment performed; therefore, according to the CERCLA guidance, the toxicity, mobility, and volume of organic contamination in groundwater and seepage are not reduced.

Short-Term Effectiveness. This alternative was given a score of being partially effective for this criterion. The short-term effectiveness analysis is similar to the long term analysis. This alternative is effective in the short term since institutional controls remove the groundwater from the exposure pathways, thereby protecting human health. However, little environmental protection is provided.

Implementability. Institutional controls can be easily implemented at OU 5. There are no current uses of shallow groundwater so implementing groundwater use restrictions would not require finding alternative water sources. Deed restrictions can be prepared and enforced. If Elmendorf AFB were to close, Air Force policy requires that seconded parcels be remediated to cleanup levels appropriate for intended future use. Any deed restrictions would be considered when planning reuse of the parcels.

Implementing access controls would not be significantly affected by topography or physical access to the seep or Beaver Pond area. There are no known mission-related obstacles related to restricting access to these areas.

Alternative #3 — Passive Extraction with Constructed Wetlands

This alternative would consist of eliminating the seeps by intercepting the groundwater before it emerges on the face of the bluff and treating the diverted flow in a constructed wetland. Constructed wetlands use the same mechanisms as natural wetlands to reduce contamination. The difference is the parameters affecting treatment can be more effectively controlled within a constructed wetland. This alternative is only applicable to seeps since passive extraction would capture a much smaller percentage of the overall groundwater flow. The bulk of the groundwater would continue to be affected by natural attenuation (Alternative #1).

Description — Water would be collected in horizontal drains installed in the face of the bluff and pumped into the constructed wetland. Schematics of the alternative in elevation and plan view are provided on Figures 11-5 and 11-6. Wetlands are commonly anaerobic environments with an aerobic environment near the root zone. The constructed wetland would contain both anaerobic and aerobic zones to mimic the natural wetland environment. The constructed wetland may have to be covered with netting to prevent wildlife from entering. The Snowmelt Pond area is proposed as the location for the constructed wetlands. A detailed analysis of the wetland treatment portion of this alternative is provided in Section 11.3.3.

SOUTH

Effectiveness

CERCLA CRITERIA SCORING RESULTS PASSIVE EXTRACTION WITH CONSTRUCTED WETLANDS TREATMENT

Criterian	Seegus
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	5
Short-Term Effectiveness	5
Implementability	3

Protection of Human Health and the Environment. This alternative is protective of human health and the environment by eliminating the seeps, thereby eliminating the potential for human, animal, and plant exposure. The installation of the drains would eliminate the exposure routes for the seeps to animal and plant receptors.

The bulk of the groundwater would continue to be affected by natural attenuation. Groundwater, which would not be treated, is not currently a route for exposure to plants, animals, or human receptors. The system can be installed without damaging the wetland environment and with only minor damage to the bluff stability. However, damage to bluff stability is more than offset by the overall risk reduction resulting from this alternative.

Compliance with Appropriate ARARs. This alternative complies with potential chemical- and location-specific ARARs for the seepage. Potential action-specific ARARs may result in the need for a permit or approval for discharge from the wetlands, depending upon the attainable cleanup levels. An NPDES permit or waivers may be needed, depending on the level of residual contaminants in the effluent. Currently, it is assumed that waivers will not be needed and approvals can be obtained. This assumption is based on the low concentrations of COCs expected in the treated effluent. A treatability study would be needed to confirm this assumption. Potential action-specific ARARs designed to protect workers

drilling the extraction wells and operating the wetland would have to be complied with.

Some volatilization of organics would occur, and they would enter the atmosphere. Volatile loading would be very small, so emissions should be low. A treatability study would be needed to see if potential air quality ARARs apply.

Long-Term Effectiveness and Permanence. This approach would reduce contaminant levels in the seepage. Once all contamination is removed, seepage concerns should be permanently eliminated. The time required for treatment cannot be determined, but was assumed to be 30 years. When the treatment is complete, there would be no threat to either human health or the environment from the seeps.

Reduction in Toxicity, Mobility, and Volume Through Treatment. For seeps, the toxicity and volume of contamination are reduced by treatment in the constructed wetland. There is no active treatment of the groundwater, so there is no reduction in these parameters.

Short-Term Effectiveness. This alternative is effective in the short term. All seeping groundwater would be collected, removing any short-term exposure concerns. To document the effectiveness of the treatment system, monitoring of the effluent would be performed.

Emissions to the air are expected to be small, posing little risk to workers near the wetland or pedestrians. A treatability study would be necessary to confirm this assumption.

The potential occupational exposure to workers constructing the wells in the seep area is expected to be small. Risks can be managed by taking appropriate health and safety measures.

Implementability. Though this alternative is implementable, treatability tests would be required to determine biological and physical requirements and the effects of winter climate. However, in the eastern area, it would be difficult to install passive extraction systems because the pond is located close to the bluff. Access for equipment will also be limited. This difficulty in the eastern area will be considered when evaluating preferred multimedia alternatives for that area.

Alternative #4 — Passive Extraction with Activated Carbon Treatment

This alternative uses passive horizontal drains and pumps the extracted water to an activated carbon treatment system. Effluent from the treatment facility would be reinjected into the shallow aquifer upgradient from Ship Creek. The fuel hydrocarbons or VOCs are adsorbed onto the carbon and destroyed during regeneration of the carbon. Schematics of this alternative in elevation and plan view are shown on Figures 11-7 and 11-8. This alternative will not affect the bulk of the groundwater flow, which will continue to be affected by natural attenuation.

Description — Passive drains would be installed into the bluff where there are seeps. The seep water would be drained by gravity from the bluff into a flow control holding tank. A particulate filter would prevent sediment accumulation in the tank. The water would be treated using aqueous-phase carbon adsorption. A single treatment system was used as the basis for evaluation of this alternative (see Figure 11-8). The effluent would be discharged to a flow control tank and into a reinjection system. In general, iron and manganese concentrations are low and unlikely to cause significant fouling of the carbon system. However, if periodic monitoring of the treatment system suggests metals would reduce the efficiency of the carbon system, some method of pretreatment could be considered, depending on the additional costs versus higher carbon replacement rates. The determining variable is the average concentration of iron and manganese in the seep water before carbon treatment. The extraction wells would be monitored to determine the extent of mineral precipitation in the extraction system.

Figure 11-7. Passive Extraction with Carbon Treatment Alternative (Elevation View)

Effectiveness

CERCLA CRITERIA SCORING RESULTS PASSIVE EXTRACTION WITH CARBON TREATMENT

Criterios	Seepe
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	5
Short-Term Effectiveness	5
Implementability	5

Protection of Human Health and the Environment. This alternative is protective because it eliminates potential exposure to contamination. The installation of the drains and treatment system would eliminate the exposure routes for the seeps to animal and plant receptors. The seepage would be fully contained until contamination is removed. There would be no exposures to either humans or wildlife. The bulk of the groundwater would continue to be affected by natural attenuation; however, there is currently not an exposure pathway for groundwater to human, plant, or animal receptors. Installing the passive extraction wells could cause some slope instability. Overall, the risk to human health and the environment from seeps would be eliminated with minor, if any, damage to the environment.

Compliance with Appropriate ARARs. This alternative complies with potential ARARs for the seeps. Treatment with activated carbon can remove all the contaminants detected in OU 5 groundwater to levels below those listed in the National and Alaska State Drinking Water Standards. Compliance with potential ARARs for effluent disposal will be dependent on locating suitable reinjection well sites. Carbon regeneration facilities are not available in the Anchorage area. Therefore, spent carbon would be transported out of state for regeneration. Analysis of the spent carbon would be required before shipment to determine manifest requirements.

Long-Term Effectiveness and Permanence. This alternative is effective for seeps because contaminants are removed and destroyed. The timeframe for remediation cannot be determined, but is assumed to be 30 years. Once remediation goals are achieved there would be no threat to human health and the environment from seeps.

Reduction in Toxicity, Mobility, and Volume Through Treatment. The activated carbon treatment will reduce the toxicity, mobility, and volume of contaminant concentrations in seeps, by adsorption onto activated carbon. Contaminants would later be destroyed by thermal regeneration of the carbon.

Short-Term Effectiveness. This alternative is effective in the short term. All seeping groundwater would be collected, removing any short-term exposure concerns. To document the effectiveness of the treatment system, monitoring of the effluent would be performed.

Operation of the treatment system should pose little risk to human health and the environment. The treatment system should have no by-product that could affect people or wildlife. The potential occupational exposure to workers installing the drains and treatment system is expected to be small. Risks can be managed by taking appropriate health and safety measures.

During operation, the carbon would have to be changed out approximately once a year. The facility would be taken off line for no more than eight hours during changeout, so there would be little down time.

Implementability. Activated carbon treatment of seepage is both technically and administratively feasible. The system would have to be designed to handle seasonal variation in flows as well as winter conditions. Activated carbon has been used extensively in similar applications and has achieved the necessary cleanup levels. The treatment system would require little space (approximately 400 square feet, depending upon flow and contami-

nant loading). The small land commitment should not interfere with operations at Elmendorf AFB. If care is taken when installing the extraction wells, slope stability will not be compromised. However, in the eastern area installation of passive extraction systems may be difficult in that area as discussed under Alternative #3.

Alternative #5 — Air Sparging and Soil Vapor Extraction (SVE)

In this alternative, compressed air would be injected into the subsurface to strip contaminants from soil and groundwater. The resulting vapor would be extracted and treated prior to discharge to the atmosphere. When air is injected below the surface of contaminated groundwater (air sparging), it strips VOCs from the water and the adsorbed contaminants from the soil by volatilization. The volatilized compounds are carried up into the unsaturated soil where they can be captured by soil vapor extraction. In addition, the air supplies oxygen to indigenous microbes in the saturated and vadose zones, resulting in increased biological degradation of groundwater and soil contaminants. From the injection point the air tends to move upward and outward, and influences a large area. The combination of SVE and air sparging can provide several advantages over air sparging or SVE alone, including the ability to act as a barrier to limit plume migration, enhanced biodegradation, better control of air flow through the soil resulting in more concentrated offgas for treatment, and reduced remediation time.

Description — At OU 5 several air sparging and SVE wells would be installed in the areas where the excess cancer risk from exposure to groundwater is greater than 1 x 10⁻⁶. The wells would be horizontal to maximize their effectiveness. Horizontal wells have been shown to be more effective than vertical wells because of the greater screen surface area per horizontal well and the resulting influence in the subsurface soils and groundwater. A schematic of the alternative in elevation and plan view is shown on Figures 11-9 and 11-10.

The sparging wells would be connected to a blower, capable of injecting air into the aquifer. The SVE wells would be connected to a vacuum pump that discharges vapor to activated carbon canisters to remove contaminants prior to discharge to the atmosphere. Pilot testing would be needed to determine design flows, determine radius of influence, and to size carbon canisters.

Effectiveness

CERCLA CRITERIA SCORING RESULTS AIR SPARGING WITH SOIL VAPOR EXTRACTION

Criterion	Groundwater	Seeps
Protection of Human Health and the Environment	5	5
Compliance with appropriate ARARs	5	5
Long-Term Effectiveness and Permanence	5	5
Reduction in Toxicity, Mobility, and Volume	5	5
Short-Term Effectiveness	3	3
Implementability	3	3

Protection of Human Health and the Environment. This alternative is protective of both human health and the environment for all groundwater. Stripping volatiles would remove both aromatic and chlorinated compounds from the shallow groundwater, including water that is discharged as seepage along the bluff. Therefore, clean water would be discharged in the seeps, which would protect the plants and animals that are exposed to these seeps.

Groundwater deeper in the shallow aquifer would also be treated; however, groundwater is currently not a pathway for human, plant, or animal contact. The units can be installed in a variety of sites below the bluff with a minimum disruption of the environment. They can be installed above the bluff without compromising slope stability.

Overall, there is little potential for additional damage to the environment that would offset this alternative's risk reduction.

Compliance with Appropriate ARARs. Air sparging in conjunction with soil vapor extraction and activated carbon treatment would be in compliance with potential ARARs. Air sparging in conjunction with soil vapor extraction has been proven effective in the removal of volatile organics from groundwater and enhancing biodegradation of fuel hydrocarbons and VOCs, thus complying with potential chemical-specific ARARs. Potential action-specific ARARs include control of air emissions and waste disposal. Potential ARARs for air emissions would be met by activated carbon treatment of extracted vapor. Carbon regeneration off site would require a manifest.

Long-Term Effectiveness and Permanence. This alternative would be effective in treating the groundwater over the long term. Contaminants would be removed from the groundwater and soil, and then would be destroyed during regeneration of the activated carbon. The timeframe for remediation is not known, but is assumed to be 30 years.

Reduction in Toxicity, Mobility, and Volume Through Treatment.

Reduction in the toxicity, mobility, and volume of contaminants in the groundwater would be achieved. This alternative would also aid in reducing VOC and fuel hydrocarbon contamination in the vadose zone through increased biodegradation and soil vapor extraction.

Short-Term Effectiveness. This alternative would be effective in the short term for treating groundwater in the upper bluff area. The effectiveness of SVE may be limited in the lower bluff area. The shallow groundwater (<10 feet) could result in breakthrough of the vacuum from the land surface, requiring a large number of closely spaced vapor extraction wells. Incomplete capture of contaminants stripped from the groundwater could result in a short-term increase in fugitive VOC emissions.

Problems with preferential air pathways, biofouling of wells, and mineral precipitation have been encountered during sparging tests at other sites both in Alaska and the continental United States. Preferential air pathways could lessen the effectiveness of this alternative by allowing the possibility that groundwater might pass by the sparging well untreated or contaminated air may not be captured by the SVE extraction well(s). Both biofouling and mineral precipitation could lead to inefficient system operation, which would also lessen the effectiveness of this alternative. Efficient system operation is dependent on the performance of routine maintenance of the air sparging, soil vapor extraction, and carbon treatment systems, including regeneration of the carbon. Periodic monitoring of the groundwater and carbon treatment system effluent would be necessary to determine system efficiency and effectiveness.

Oxygenation of groundwater could affect biosystems in wetland areas that receive groundwater discharge. The effect an increase in oxygen would have on the current habitat balance in the wetland is not known. Increased oxygen in the water could shift the wetland environment away from an anaerobic environment towards an increased aerobic environment. Relatively small increases in oxygen could influence the wetland by creating more plant/animal diversity that could increase the effectiveness of the systems that naturally attenuate groundwater impacts in area of the wetland. If there were large changes in the nutrient balance, excessive plant growth could occur, potentially impacting the environment.

Implementability. This alternative can be easily implemented in the upper bluff area at OU 5. Because the soil in the bluff is composed mostly of interbedded sands and gravel with some thin, discontinuous silty zones, the vapors should travel well through the media. The alluvial deposits should serve as an adequate medium for this alternative. In the lower bluff area, the implementability is reduced because some of the land is not owned by the Air Force and barriers to siting wells. Constructing the additional wells would be affected by existing buildings, roads, utilities, and wetlands in the lower bluff area. Also, because of potential vacuum breakthrough, SVE well placement would need to be evaluated to assure capture of sparged vapors.

More than one system would be needed for OU 5 to reduce the amount of piping that would be required. Additional equipment or chemical additives may be necessary to ensure that biofouling or mineral precipitation does not occur. A treatability study is recommended before implementation to determine viability of this technology and if the increased oxygen content in the groundwater due to air sparging would have an adverse effect on down gradient ecology.

Alternative #6 — Active Extraction with Air Stripping and Carbon Treatment

This alternative would involve installation of groundwater extraction wells and construction of an air stripper with activated carbon treating the off gases. Figures 11-11 and 11-12 show a schematic of this alternative in elevation and plan view.

Description — The evaluation of this alternative is based on three extraction and treatment systems. Three systems are considered because the groundwater plume areas where the contaminant concentrations pose an excess lifetime cancer risk of greater than 1 x 10⁻⁶ are located in three areas approximately 2,500 feet apart. Five wells with a combined flow of 400 to 1,000 gallons per minute (gpm) are estimated to be needed in the western portion of the OU. Four wells with a combined flow of 1,900 to 2,300 gpm would be needed in the eastern portion of the OU. Three additional extraction wells with a combined flow of 80 to 100 gpm and a low flow (50 to 100 gpm) extraction system would be located in the center of OU 5 (Figure 11-12). The low flow extraction system would be located near seeps that are not associated with a groundwater impact with an excess cancer risk of 1 x 10⁻⁶. These flow rates have been assumed (based on preliminary calculations) to capture the entire leading edge of the plumes and to drain the seeps. Contaminated groundwater which has already passed the bluff area would not be captured in this alternative.

Figure 11-11. Active Extraction, Air Stripping, and Activated Carbon Treatment Alternative (Elevation View)

In each of the plume areas, groundwater would be pumped from the wells and fed, through a header system, to a flow control holding tank. From the tank the water would be pumped through an air stripper. Volatiles would be stripped from groundwater and the effluent would be discharged to horizontal reinjection wells located at the base of the bluff. Because the groundwater is shallow in the reinjection area (<10 feet), there is little vadose zone storage capacity. Therefore, horizontal reinjection wells are best suited for this alternative. A hydrogeologic model would be needed to locate reinjection wells followed by close flow monitoring to ensure that there is no adverse effect.

Offgases from the stripper would be treated with activated carbon. At least two canisters would be used so one could be changed out without shutting down the system.

Effectiveness

CERCLA CRITERIA SCORING RESULTS ACTIVE EXTRACTION WITH AIR STRIPPING AND CARBON TREATMENT

Criterion	Groundwater	Seepe
Protection of Human Health and the Environment	3	3
Compliance with appropriate ARARs	5	5
Long-Term Effectiveness and Permanence	5	5
Reduction in Toxicity, Mobility, and Volume	5	5
Short-Term Effectiveness	3	3
Implementability	3	3

Protection of Human Health and the Environment. This alternative protects human health and the environment from exposure to groundwater impacts. Migration of the plumes is stopped, preventing additional groundwater impact in the lower bluff area (the cancer risk in the lower bluff area is currently less that 1×10^6). The seeps would be stopped, depressing the groundwater below their exit points to the surface. Removal of the seeps would protect receptors.

In the eastern portion of OU 5, the removal of the seeps and possible local lowering of the water table could upset the hydrology of the wetlands environment. In the west and central portions of OU 5, the effect of drying up the seeps would be small because there are fewer wetlands environments. Water for the wetlands in OU 5 comes from a combination of precipitation, runoff, seeps, and groundwater. Compared to the "no action" alternative, this alternative imposes significant environmental costs to achieve risk reduction in some portions of OU 5.

Compliance with Appropriate ARARs. This alternative meets potential chemical-specific ARARs. Potential action-specific ARARs affect air emissions and the discharge of treated water. The alternative complies with potential emission-related ARARs by treating the offgases. Compliance with potential ARARs for reinjection is dependent on the treatment system efficiency and identification of an appropriate reinjection site. A treatability study would be needed to determine organic concentrations in the effluent. Groundwater modelling would be needed to locate the reinjection sites.

Long-Term Effectiveness and Permanence. Groundwater extraction and treatment is an effective long-term solution to groundwater contamination. The timeframe for treatment is not known. It was assumed to be 30 years. Once cleanup levels have been achieved at OU 5 and upgradient, the remediation is permanent. Contaminants are destroyed when the carbon is regenerated. This alternative will not produce toxic by-products.

Reduction in Toxicity, Mobility, and Volume Through Treatment. Reduction in the toxicity, mobility, and volume of contaminants in the groundwater would be achieved with this alternative. The contaminants would be removed from the groundwater through the air stripper and carbon adsorption units and destroyed during carbon regeneration.

Short-Term Effectiveness. This type of system would be effective in the short term. Efficient operation is dependent on the performance of routine maintenance,

including the regeneration of the activated carbon. Monitoring of the groundwater would be necessary to determine the systems efficiency and effectiveness.

Possible adverse effects on the natural ecology may result downstream from the reinjection wells due to increased oxygen content in the water. The Beaver Pond is fed by water from Ship Creek and groundwater. Extracting up to 2,300 gallons per minute upgradient from the Beaver Pond area could affect the water balance in the pond. However, this balance would be restored by the reinjection of treated water. Additionally, the treated water would be oxygenated. As with the other alternatives that potentially aerate the groundwater, reinjection may alter the natural ecology where groundwater discharges into wetlands. Modelling would be needed to determine if the water balance in the wetlands is adversely affected.

Implementability. This alternative can be implemented. The technology is proven for the contaminants found in the groundwater at OU 5 and the necessary equipment is readily available. The pipes leading from the seeps in the center of OU 5 to the treatment system at the top of the bluff would be required. This is also true for the pipes leading from the air stripper to the reinjection system. The slopes of the bluff have shown signs of failure in the past, and are considered unstable. Slope failure in the future could sever pipes. Special engineering would be needed to ensure system shutdown in the event of a pipeline failure.

The implementability score was reduced because reinjection of 2,500 to 3,500 gpm into the aquifer in the lower bluff area would be difficult. The shallow aquifer allows for little vadose zone storage capacity. Therefore, reinjection would have to be done over a wide area to accommodate the flow. Constructing such a large injection system would be complicated by roads, utilities, and buildings. Also, the current and future use of the land may be limited, because of the reinjection system. Nothing could be constructed that would interfere with the flow (large buildings requiring deep foundations etc.).

11.3.2 Detailed Assessment of Soil Remedial Alternatives

Alternative #7 — Natural Degradation

Description — This alternative provides a baseline for comparing other alternatives. Natural degradation relies upon natural physical, chemical, and biological processes to reduce contaminant concentrations to cleanup levels. The remediation time is not known. A site-specific modeling program would be needed to define degradation rates and estimate the time required to achieve cleanup levels. Monitoring of the soil, vegetation, and animals affected by contamination of soil in the seep areas would be part of this alternative. A schematic of this alternative in elevation and plan view is shown on Figures 11-13 and 11-14.

Effectiveness

CERCLA CRITERIA SCORING RESULTS NATURAL DEGRADATION

Criterien	Sall
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	3
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	0
Short-Term Effectiveness	0
Implementability	5

Protection of Human Health and the Environment. This alternative is considered to be partially protective of human health and the environment. Currently, there are no known human impacts from soil contamination, so this alternative is protective of human health in the short-term. For most of OU 5, natural degradation is also protective of the environment; however, surface contamination is present in two isolated areas in the seep zones. It is thought that the contamination is from the seeps. In these areas, vegetation is

Figure 11-13. Natural Degradation of Contamination in Soil (Elevation View)

stressed and human and animal exposure to soil contamination is possible. Natural degradation may ultimately provide protection to receptors, but only if the degradation processes can be proven to be effective. Since this is the no action alternative, no comparison between the health and environmental risks is necessary if no action were taken and no potential impacts were caused by response actions.

Compliance with Appropriate ARARs. This alternative may not comply with potential ARARs if soil cleanup levels cannot be achieved. Also, soil contamination could contribute to groundwater contamination. While the contaminants of concern from the sites with OU 5 (mainly diesel and jet fuel) are known to degrade naturally over time; the achievable cleanup levels via natural degradation are not known. Monitoring of the soil in the seep areas would help establish a degradation rate and achievable cleanup levels could be estimated.

Long-Term Effectiveness and Permanence. This alternative may be effective in the long term. Natural degradation processes are known to effectively reduce fuel hydrocarbon contamination over time; however, the length of time required to comply with potential ARARs has not been determined. Eventually, the contaminants would break down and the remediation would be permanent.

Reduction in Toxicity, Mobility, and Volume through Treatment. This alternative does not achieve any reduction in toxicity, mobility, and volume through treatment. However, some reduction in toxicity and volume through natural biological degradation is provided. CERCLA does not consider natural reduction to fulfill this criterion.

Short-Term Effectiveness. This alternative is not effective in the short term. The exposure of vegetation and animals to the contaminated soil in the seep areas would continue in the short term. Although no additional risk of exposure will occur as a result of implementation, the contaminated soil near the water table could serve as a source of ground-water contamination.

Implementability. This alternative is implementable. The processes for implementing natural degradation are known and have been used at other sites. A waiver of some potential ARARs may be required for implementation. The implementability may be complicated by the need to acquire waivers and may negatively affect the implementability of this alternative.

Alternative #8 — Institutional Controls

Institutional controls including fencing, administrative, limiting access, and deed restrictions would be implemented.

Description — Cyclone fencing, a minimum of 6 feet high with locked gates, would be installed around areas with contaminated surface soils. Signs would be posted to alert personnel of threats to their health and safety and to the environment. In addition, administrative controls would limit access to these sites to authorized personnel only. Deed restrictions would limit future development including excavation and earthwork. A schematic of this alternative is shown on Figures 11-15 and 11-16.

Effectiveness

CERCLA CRITERIA SCORING RESULTS INSTITUTIONAL CONTROLS

Criterion	Sol
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	3
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	0
Short-Term Effectiveness	3
Implementability	3

Elmondorf AFB OU 5 RI/FS Report

Protection of Human Health and the Environment. Because of the potential for environmental impact this alternative was considered partially protective of human health and the environment. This alternative is partially protective of human health because direct potential exposure pathways are removed and monitored. However, migration of contaminants to groundwater may occur, which could impact human and environmental pathways. Additionally, the environment is not fully protected because institutional controls will not prevent the stressed vegetation in the seep areas. Also, access restriction would not prevent small terrestrial animals and birds from coming in contact with soil in the seep areas. The only potential environmental damage associated with this alternative would be minor potential for slope stability problems when fencing is installed on the bluff face. Overall, risk reduction is achieved with little offsetting impacts on the environment.

Compliance with Appropriate ARARs. This alternative may not comply with soils clean-up levels for hydrocarbons. The only potential action-related ARAR would be worker health and safety for the construction of the fences.

Long-Term Effectiveness and Permanence. The long-term effectiveness of institutional controls depends upon conditions not changing. If conditions do not change, the institutional controls will be effective in the long term for protecting human health. Since the Air Force is a branch of the federal government, the permanence of maintaining institutional controls is assumed (compared to a relatively small commercial operation that may move or go out of business). Institutional controls are not effective in the long term for the environment since vegetation and animal impacts from exposure to soil in the seep areas is not eliminated by institutional controls. Because of the conditional nature of the effectiveness, this alternative was given a score of being partially effective for this criterion.

Reduction in Toxicity, Mobility, and Volume Through Treatment. There is no active treatment performed; therefore, by the CERCLA guidance, the toxicity, mobility, and volume of organic contamination in soil is not reduced.

Short-Term Effectiveness. This alternative was given a score of being partially effective for this criterion. The analysis of short-term effectiveness is similar to the long-term analysis. This alternative is effective in the short term since institutional controls remove pathways thereby protecting human health. However, little environmental protection is provided.

Implementability. Institutional controls can be easily implemented at OU 5, but only if the base maintains control over land use. Contaminated soil is close to base property boundaries. Implementation of off-base institutional controls will require coordination with private parties and legal issues could be involved. Although this requirement could be met, it reduces the implementability of this alternative. If Elmendorf AFB were to close, Air Force policy requires that parcels that are to be sold or otherwise divided be remediated to cleanup levels appropriate for intended future use. Any deed restrictions would be considered when planning reuse of the parcels.

Implementing access controls would not be significantly affected by topography. There are no known mission related obstacles related to restricting access to these areas.

Alternative #9 — Excavation, Biopiling, and Backfilling

This alternative would be applied to areas where contamination in shallow soils exceeded clean-up levels for hydrocarbons. This alternative would not be applicable to soils that could not be easily excavated, i.e., below depths of 10-12 feet. This is not a problem for the presently identified soil area in the central area, which is very close to the surface, but may be a problem in the soil identified in the western area, which, at 10-12 feet below the surface, may be difficult to excavate. A schematic of this alternative in elevation and plan view is shown on Figure 11-17 and 11-18.

Figure 11-17. Excavation, Biopiling, Backfill Alternative (Elevation View)

Description — A backhoe, front-end loader, or other equipment would be used to excavate soils. Each of the two soil volumes to be remediated are estimated to have dimensions of 100 feet by 100 feet by 4 feet deep, for a volume of 1,500 cubic yards each. The excavated areas would be backfilled with treated soil or available clean soil from on base. The excavated soil would be transported to an existing biopiling area at the eastern end of Elmendorf AFB. A new biopiling system would be constructed, consisting of two lifts of 4 feet each, over a 100-square-foot area. Each lift would have piping to supply air and any required nutrients. The soil would be stockpiled until it can be transferred to the treatment cells. Degradation of contaminants would be monitored to document the breakdown rate and confirm that clean-up levels are being met. Monitored parameters would include temperature, soil, pH, nutrients, and contaminant concentrations. The treated soil would be used on base for fill after clean-up levels are achieved.

Effectiveness

CERCLA CRITERIA SCORING RESULTS EXCAVATION, BIOPILING, AND BACKFILLING

Criterios	Soil
Protection of Human Health and the Environment	3
Compliance with appropriate ARARs	3
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	3
Short-Term Effectiveness	3
Implementability	3

Protection of Human Health and the Environment. This alternative is partially protective of the human health and the environment for shallow soil. This alternative will reduce surface contamination to less than the remedial action objectives and the risk of exposure to contaminated soil where surface contamination is present. However, this alternative does not address contaminated soil near the water table which will remain and continue to pose a risk to downgradient environmental receptors via groundwater flow and

seeps. Removal of these deep soils may be difficult because of the need to excavate on the bluff in the western area, which may require expensive shoring to prevent slope failure. Small land animals and birds could be exposed to contamination in the soil. Furthermore, the risk of slope stability problems while excavating along the bluff face may be greater than the risks associated with the "no action" alternative.

Compliance with Appropriate ARARs. This alternative has been given a score of partially compliant. It will likely comply with clean-up levels for hydrocarbons for the soil excavated for treatment. The only potential action-specific ARARs are for worker protection and air emissions. Worker protection can be provided by accepted health and safety practices. Air emissions are expected to be low because the principal contaminants, diesel and jet fuel, are not highly volatile. The rate of treatment can be varied to minimize volatilization, so potential air-related ARARs are complied with.

Long-Term Effectiveness and Permanence. This alternative is considered effective and permanent in the long term for the soils that are excavated and treated because contaminants are destroyed. For the deep contamination near the seeps, the potential exists for media cross contamination between the soil and groundwater. Therefore, to be effective in the long term, this alternative will have to be combined with a seep remediation alternative. While this alternative is not effective in the long term, the potential impacts are considered to be low. In the long term, the contaminants should degrade naturally; however, the time required to meet cleanup goals is not known.

Reduction in Toxicity, Mobility, and Volume Through Treatment. This alternative reduces the toxicity, mobility, and volume of contaminants through treatment for the excavated soil. In this alternative, un-excavated soils are not affected by this treatment. However, natural degradation should reduce the toxicity and volume of the unexcavated contamination.

Short-Term Effectiveness. This alternative is partially effective in the short-term. Technologies for safely excavating and handling hydrocarbon contaminated soils are well established and result in minimal exposure risk during implementation. Potential impacts for the biopiling can be managed by using liners and controlling emissions and surface water drainage from the pile. The alternative would only be at maximum effectiveness in the summer months. Cold temperatures will reduce the effectiveness in the winter by reducing the biological activity.

Excavation of the shallow soil is quick so the potential window for exposure is very short. The alternative does not address contaminated soil near the water table, which will continue to serve as a source of groundwater contamination in the short term.

Implementability. This alternative is partially implementable. The excavation and soil handling techniques required are available and proven. The land commitment is small and should not affect base operations. Processes for implementing biopiling of contaminated soil are known and have been used at Elmendorf AFB and other sites. However, the alternative would be limited to shallow soils, and slope stability concerns in the vicinity of the bluff may reduce the overall quantity of soil which can be excavated. In addition, the treatment would be limited to the summer months because of the cold winter climate, which would increase the implementation period. Care must be taken when excavating soils near the groundwater table since excavation could cause releases to the groundwater. A waiver of some potential ARARs may be required for those soils which remain in place.

Alternative #10 — Bioventing

Description — Bioventing adds oxygen to the soil pore space, enhancing the growth of natural microbial populations and increasing the breakdown rate of organic contaminants. Air injection wells would be installed in areas where concentration of soil contaminants are above clean-up levels. The wells would be screened in the vadose zone in a narrow interval below the soil contamination. A blower would be connected to the wells

via a common header so that a positive pressure would induce air flow into the contaminated soil. The increased amount of oxygen available in the vadose zone would enhance the aerobic biodegradation of organic contaminants by indigenous microorganisms. In addition to oxygen, macronutrients, such as nitrogen and phosphorus, could be added in an atomized phase to stimulate population growth and contaminant destruction or nutrients and water could be added at the surface and allowed to percolate down to the contaminated soil. Soil sampling would be needed to document that cleanup levels were being achieved. Schematics of this alternative in elevation and plan view are shown in Figures 11-19 and 11-20.

Effectiveness

CERCLA CRITERIA SCORING RESULTS BIOVENTING

Criterion	Soll
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	5
Reduction in Toxicity, Mobility, and Volume through Treatment	5
Short-Term Effectiveness	3
Implementability	3

Protection of Human Health and the Environment. The alternative is protective of human health and the environment by reducing the contaminant concentrations in both surface and deep soils. By treating surface soil, the potential exposures to animals, plants, and humans through direct contact are eliminated. Vegetation and animal impacts from soil in the seep areas would be eliminated. Deep soil would be treated, eliminating the potential for future migration of VOCs to the groundwater and the seeps. These seeps could impact receptors, such as plants and small animals. Short-term effectiveness may be limited until the system can be properly adjusted for the climate and media. This alternative

Figure 11-19. Soil Bioventing Afternative (Elevation View)

achieves major risk reduction when compared to the "no action" alternative without adding major risk of slope instability and damage to the wetlands.

Compliance with Appropriate ARARs. This alternative will comply with potential contaminant-specific ARARs for soil and protect groundwater where soil contamination is present. The only potential action-specific ARARs would affect workers installing the bioventing wells. Accepted health and safety practices can be followed to comply with this potential action-specific ARAR.

Long-Term Effectiveness and Permanence. Bioventing has been shown to reduce contaminants to clean-up levels. The remediation is permanent.

Reduction in Toxicity, Mobility, and Volume Through Treatment. This alternative will reduce the toxicity, mobility, and volume through treatment. The technology reduces the toxicity and volume of contamination by enhancing the biodegradation of the contaminants by aerobic soil microorganisms. With proper implementation of this alternative, the mobility of contaminants will also be reduced. However, while the byproducts of microbial degradation may be more mobile than the original hydrocarbons; their toxicity will be reduced and should not represent a risk to human health or the environment.

Short-Term Effectiveness. This alternative was considered partially effective. Bioventing will not result in an adverse short-term impact because the technology will not result in increased emissions of contaminated dust, fugitive volatile emissions, and transfer of contaminants to the groundwater. There will be very limited exposure to construction workers during well installation.

However, in the short term, the contaminants break down effectiveness is not fully demonstrated for cold climates. The effectiveness depends upon the temperature and site-specific conditions such as microbial population, moisture content, and available nutrients. Field tests of bioventing have been done in Alaska, and the technology looks promising. The

heat of compression of the inlet air does help offset the cold ambient temperatures in the soil. Treatability tests are being done at Elmendorf AFB to determine the effectiveness of this technology. The data generated will help determine if this alternative will be effective at OU 5.

Implementability. This technology can be implemented. The procedures for implementing bioventing are known and the technology has been implemented at other sites. There is sufficient space available to implement the technology and equipment is available from several vendors. Inlet air heating may be required to sustain bioventing during winter months. The air should travel well through the soil to the contaminants because the bluff is composed mostly of gravels and embedded sands. Implementation may not be possible for some soils below the water table without first dewatering those zones. This alternative can be implemented without endangering slope stability because the wells would be placed at the top of the bluff.

11.3.3 Constructed Wetland at Snowmelt Pond

Description — This alternative would isolate PCB sediment from potential receptors by adding a layer of gravel across the bottom of the pond. The water level would be controlled to allow growth of wetland vegetation across the whole Snowmelt Pond area. The wetland would be channelized to ensure retention time and to allow for monitoring effectiveness across the wetland.

The location for the proposed wetland system includes Snowmelt Pond and the adjoining marsh area. The seeps would be intercepted and contained at their point of occurrence by a passive collection system and conveyed to the inlet of the treatment system. A wetland treatment system will use physical, chemical, and biological mechanisms to degrade hydrocarbons dissolved in the seep flow.

The wetland would be used to treat seep water collected in the passive extraction alternative. An inlet would be constructed somewhere along the bluff. The inlet would also be of wetland-type construction with gravel and wetland vegetation. Cascades and pools may be needed to increase treatment and retention time. Discharge from the wetland would enter existing drainage ditches.

The constructed wetland is a single presumptive remedy for PCBs in the Snowmelt Pond and would clearly be effective in isolating the sediment. However, the wetland is also to be used to possibly treat seep water. The treatment of seep water by a wetland is not fully proven for this application in the Anchorage climate; therefore, an evaluation of its technical effectiveness was done. The Snowmelt Pond area is appropriate for a constructed wetland due its location, site hydrology, and proven ability to support aquatic plants and a wetland environment. The location of the proposed wetland system includes roughly 1.5 acres of open water and 1 acre of marsh, and is relatively secluded from other Base activities. This would allow the wetland system to develop and treat water without being disturbed or interfering with other land uses. The site is close to many of the contaminated seeps, which allows conveyance of seep water to the treatment system. The lowlying site and existing open water appear to indicate a high water table that is capable of maintaining hydric soils and moist conditions necessary for wetland development. The existing topography and availability of a receiving stream make the discharge of treated effluent possible. The emergent vegetation suggests the presence of sufficient soil nutrients and climate conditions to support aquatic plants that are typical to a wetland environment.

Wetlands often act as sediment sinks. Wetland plants tend to filter out sediment, and the relatively low flow velocities through wetlands allow suspended particles to settle out. As new sediments are deposited, they will bury and stabilize the existing contamination. Additionally, aquatic plants often have an extensive root system that can also stabilize the sediments.

Aerobic and anaerobic zones exist in wetland soils, providing areas for the potential degradation of hydrocarbon-contaminated sediments. The rhizomes, or roots, of wetland plants transmit oxygen to the root tips. This oxygen can be used by aerobic bacteria for degradational processes. Anaerobic zones create reducing conditions that have a tendency to facilitate sorption reactions and thus stabilize contaminants. Additionally, anaerobic bacteria are capable of hydrocarbon degradation.

The analysis of constructed wetland treatment capacity is based on work performed by Gelb, 1992. Gelb studied an overland flow and wetland system used for the treatment of oilfield-produced water. The overland flow component consisted of a treatment cell 50 feet wide by 100 feet long, excavated to a 3% grade, covered with 1 to 3 inches of gravel, and included four 12-inch high cascades. The wetland component followed the overland flow cell and covered approximately 0.75 acres. Flow channels were approximately 35 feet wide and included sedges, rushes, and cattails.

Gelb examined the removal of many produced water compounds. Those examined in this report include BTEX and total phenolics. Influent flow rates to the overland flow/wetland system ranged from 29 to 232 GPM. Influent concentrations averaged 28.5 μ g/L benzene, 48.2 μ g/L toluene, 17.5 μ g/L ethylbenzene, 36.0 μ g/L xylenes, and 0.131 mg/L total phenolics. Gelb observed 68 to 100% removal of all BTEX compounds in the overland flow cell and 100% BTEX removal in the wetland.

Total phenolics concentrations were measured through the system to model the removal of more persistent hydrocarbons. Zero to 15% of the total phenolics were removed in the overland flow cell and 9 to 100% were removed in the wetland. The average removal through the wetland was 40% and the average wetland influent concentration was 0.079 mg/L. Phenolics mass removal through the wetland ranged from 6.4 to 47.7 g/day.

Gelb developed a treatment system design method based on the results of his study. The method determines the system area required for a desired contaminant

concentration reduction, given a flow rate and influent contaminant concentration. The design method includes a procedure for total phenolics treatment, and is used here to conservatively model BTEX and TCE removal from seep flows. No design method was available for BTEX compounds.

The following assumptions were used to perform design calculations and estimate the effectiveness of the system:

- A single wetland component was selected as the system type;
- The area available for the system is 2 acres or 87,120 ft²;
- The influent flow rates considered are 10, 50, and 100 GPM; and
- The contaminant concentrations considered are 0.01, 0.1, and 1.0 mg/L.

The design method was applied in two ways. First, the area required for 100% contaminant removal at the three flow rates specified was determined. The second approach predicted the percent contaminant removed when the treatment system area was conservatively estimated to be 2 acres. The first application of the design method yielded a required system area of 1.6 acres at an influent flow rate of 10 GPM, 7.7 acres at 50 GPM, and 15.7 acres at 100 GPM. The areas calculated were the same for all three influent concentrations examined. The results of the second design approach, assuming a 2-acre system, indicate 90% contaminant removal at 10 GPM, 40% removal at 50 GPM, and 28% removal at 100 GPM.

These results indicate that substantial contaminant removal can result from a constructed wetland of modest size. Since the design method was performed for total phenolics, the results should be viewed as conservative for less persistent hydrocarbons. As explained by Gelb, treatment of BTEX compounds using a system designed with total phenolics data would result in substantially greater contaminant removal. Also, the design

evaluated here considered only wetland treatment. Gelb observed greater contaminant removal when both overland flow and wetland treatment components were applied together.

Many system features and configurations may be used to enhance treatment system performance. Systems can be designed with open water surface flow, subsurface flow, or a combination of both. The particular strategy used will depend on whether aerobic or anaerobic reactions will facilitate the greatest contaminant removal.

Flow conditions through the system can be manipulated by the excavation of the site. Excavated baffles and wide channels cause flow to move in a sinuous pattern at low velocity, thus increasing hydraulic residence time. Narrow, rock-lined channels cause high flow velocities and turbulent mixing for gas transfer and contaminant stripping.

An overland flow component can be included to increase the dissolved oxygen content of the water or air strip volatile contaminants. The overland flow might take place upstream of the wetland to potentially remove toxic compounds, in the middle of the wetland to boost depleted dissolved oxygen levels, or prior to discharge to polish the effluent.

Soil amendments can be added at the time of construction to supplement deficient nutrients or encourage particular chemical reactions. Native plant species, appropriate for the regional climate and providing the best treatment environment, should be used to establish the wetland vegetation. Beaver Pond and the marsh area at Snowmelt Pond may be potential sources for acclimated transplants.

Based on site conditions and expected treatment performance, a constructed wetland is a feasible alternative for the treatment of hydrocarbon contamination present in the groundwater seeps of OU 5 and would be effective if the flow were limited. The exact flow and the number of seeps that could be effectively treated could only be estimated based on a treatability study.

Further evaluation of the seeps and the Snowmelt Pond site are recommended to better understand the application of this treatment method. The flow rates and contaminant concentrations of the seeps must be identified. Potential climate effects on a constructed wetland could be monitored at Beaver Pond. The particular plant species and microbes best suited for this application should be determined. Regulatory concerns and applicable permitting requirements for this site should be investigated. Additional work should be performed to evaluate the feasibility of intercepting and transporting seep flow to the treatment system.

Effectiveness

CERCLA CRITERIA SCORING RESULTS CONSTRUCTED WETLANDS AT SNOWMELT POND

Criterion	Soli
Protection of Human Health and the Environment	5
Compliance with appropriate ARARs	5
Long-Term Effectiveness and Permanence	3
Reduction in Toxicity, Mobility, and Volume through Treatment	3
Short-Term Effectiveness	3
Implementability	5

Protection of Human Health and the Environment. This alternative would be protective of human health and the environment. Seep water would be collected, thus reducing the potential for ecological impacts, and PCBs are isolated, which reduces the potential for exposure. Implementing this alternative would not impact the bluff stability. Some natural wetland in Snowmelt Pond would be dedicated to treat seep water. Fencing and netting may be needed to keep animals out of the wetland's treatment area.

Compliance with Appropriate ARARs. This alternative will comply with potential contaminant and action-specific ARARs. An NPDES permit to discharge water from the wetland may be needed.

Long-Term Effectiveness and Permanence. For seep water, this alternative would be effective. However, the PCBs would be degraded very slowly by this alternative. The alternative would only be effective if the sediments always remained covered.

Reduction in Toxicity, Mobility, and Volume Through Treatment. This alternative would not actively treat the PCBs. However, the sheens would be actively treated in the wetland.

Short-Term Effectiveness. The treatment rates would be slower in the winter; otherwise, this alternative would be effective in the short term. There would be no secondary impacts from implementing this alternative.

Implementability. The only difficulty in implementation is that the Snowmelt Pond is not on Air Force property. An agreement will have to be reached with the railroad to allow access to construct and operate the wetland.

The site proposed is suitable for a constructed wetland. The land is available, is near the contaminated seeps and a receiving stream, and should remain undisturbed by other land use activities. The hydrologic setting appears to support hydric soil conditions and aquatic vegetation. Beaver Pond and the Snowmelt Pond marsh area provide two potential areas for vegetation transplants. The reported success of the ecosystem at Beaver Pond indicates that a wetland environment can survive and prosper in this climate and geographical location.

11.4 Sensitivity Analysis

The scores for the evaluation criteria assigned to each remedial action alternative are based on assumptions regarding the volume of contaminated soil and water to be managed, the anticipated type and concentration of contaminants to be controlled or treated, and the length of time required to implement the alternatives. The actual circumstances of the remediation can only be determined after treatability studies and pilot systems are constructed. The ranking of alternatives could change depending upon how sensitive the alternative is to changes in the assumptions made. This sensitivity analysis identifies how the effectiveness, implementability, and cost of each alternative is affected by the following changes:

- 50% increase in volume of soil or water to be treated;
- Order of magnitude increase in TFH concentrations in the soil or water;
- Order of magnitude increase in the concentration of chlorinated compounds in the water;
- Change the significant risk level from 10⁻⁶ to 10⁻⁵;
- Change the significant risk level from 10⁻⁶ to 10⁻⁴;
- Change the time required to implement the alternative from 30 years to 5 years; and
- Change the time required to implement the alternative from 30 years to 10 years.

The sensitivity of the alternatives to these factors is shown on Table 11-4. A discussion of the sensitivity is provided below.

Table 11-4

Sensitivity Analysis of Remedial Action Alternatives (By Medium)

		nee in Extraction/Volume	(Yokane	Order of h	Order of Magnitude Increme is TTH Concrete adon	HE 4.	Order of Concentration	Order of Magnitude frames in Concentration of Other Local Company	1
Albertades	100 E		Car		Implement tability	3	Effective	Implement tability	Cost
Natural Attenuation	No change	No change	No change	Reduced	No change	No change	Retinant	No change	No change
Institutional Controls	No change	No change	No change	No change	No change	No change	No change	No change	No change
Passive Extraction Constructed Wetland Treatment	No change	Roctuoed implement tability	11 % cost horsest	Return	Rethered Implementability	59% cost increase	No longer affective	Rechard Implemen- sability	NA
Passive Extraction Activated Carbon Treatment	No change	No change	21.5 cost because	No change	No change	2418 004	No change	No change	44.6% cost thorsase
Active Extraction, Air Stripping, Activated Carbon Treatment	No change	Retneed implemen- tability	300 X ()4	No change	No change	400 to 000 in the contract of	No change	No change	25% cost increase
Air Sparging and SVE/Activated Carbon	No change	No change	36.5 cont Protesse	Rethood effectiveness	No change	120 % over	No change	No change	19% conf
SOIL									
Natural Degradation	No change	No change	No change	Rechassed Effectives page	No change	No change	٧N	NA	NA
Institutional Controls	No change	No change	No change	Reduced Effectiveness	No change	No change	NA	NA	NA.
Excavation, Biopiling, Backfill	No change	Rectuend implement- shilling	19.5 cost harman	No change	No change	No change	٧٧	NA	NA
Bioventing	No change	No change	G/S cost increase	No change	No change	No change	٧٧	٧٧	٧٧

Table 11-4 (Continued)

		Base on 10° Ekk			Base on 10" Risk	
Alternative	Effectiveness	Implementability	Cost	Effectiveness	Implementability	Cost
WATER						
Natural Attenuation	No change	No change	No change	No change	No change	No change
Institutional Controls	No change	No change	No change	No change	No change	No change
Passive Extraction Constructed Welland Treatment	No change	No change	No change	No change	No change	No change
Passive Extraction Activated Carbon Treatment	No change	No change	No change	No change	No change	No change
Active Extraction, Air Stripping, Activated Carbon Treatment	Returni effective-	Increased implementability	13% cost reduction	Reduced offsetive-	Increased implement- ability	100% decrease
Air Sparging and SVE/Activated Carbon	Roturni effective-	liscressed suplementability	7% cost reduction	Reduced effective	Increased implements ability	100% decrease
SOIL						
Natural Degradation	No change	No change	No change	No change	No change	No change
Institutional Controls	No change	No change	No change	No change	No change	No change
Excavation, Biopiling, Backfill	No change	No change	No change	No change	No change	No change
Bioventing	No change	No change	No change	No change	No change	No change

Table 11-4

(Continued)

	5.Ye	S.Vor. Implementation Period	ertod	91	16-Year Implementation Period	Period
Atternative	Effectiones	Implementability	Cost	Effectiveness	Implementability	Cont
WATER						
Natural Attenuation	No change	No change	68.6 cost reduction	No change	No change	65% ord reduction
Institutional Controls	No change	No change	63% one reduction	No change	No change	42.5 cost reduction
Passive Extraction Constructed Wetland Treatment	No change	No change	51 & cost reduction	No change	No change	23 K cook padariba
Passive Extraction Activated Carbon Treatment	No change	No change	365 cost rediretion	No change	No change	37% cost meduction
Active Extraction, Air Stripping, Activated Carbon Treatment	No change	No change	61% cost probacilos	No change	No change	39% com reduction
Air Sparging and SVE/Activated Carbon	No change	No change	60% one returine	No change	No change	39 % com reclaration
TIOS						
Natural Degradation	No change	No change	67% one reduction	No change	No change	43 & cont rectivation
Institutional Controls	No change	No change	65 & cost reduction	No change	No change	42.6 over nedwation
Excavation, Biopiling, Backfill	No change	No change	49% and reduction	No change	No change	32% cost reduction
Bioventing	No change	No change	SY S and Industry	No change	No change	36% over reduction

Indicates alternative sensitive to the variable.Not applicable. ž

11.4.1 Sensitivity to a 50% Increase in Volume to be Treated

An increase in the groundwater and seep extraction rates will affect the treatment and effluent management requirements of alternatives with an extraction component. Generally, the effectiveness of the alternatives are not affected because the treatment technologies can be sized for the increased flow. However, implementability of extraction alternatives is affected because effluent management becomes more difficult with increased flows. The implementability of treatment with constructed wetlands is reduced because approximately 50% more land area would be needed to construct wetlands, and there may already be insufficient land space available for the anticipated flow. The implementability of the active extraction alternative is reduced because of the large volume of water that must be discharged. Reinjection of treated water is also less feasible with larger volumes because the shallow depth to groundwater downgradient of OU 5 provides little storage capacity in the vadose zone. Therefore, reinjection would have to be done over a large area south of OU 5. The adverse environmental impacts on existing wetlands from increased groundwater pumping will be increased because less flow will enter these wetlands.

An increase in the volume of contaminated soil should not affect the effectiveness of the remedial alternatives. An increase in soil volume will generally affect the
implementability of the biopiling alternative because more widespread and potentially deeper
excavation is required. As shown in Sections 9.0 and 10.0, the implementability of the excavation alternative will be affected by slope stability concerns and the potential that buildings,
roads, and utilities will limit the extent of excavations. The implementability of in situ treatment options should not be affected.

Any increase in extraction rate and volume will increase costs for all alternatives other than the natural attenuation/degradation alternatives (it is assured that increased monitoring will not be required). The active extraction and excavation alternatives are most sensitive to volume changes because of the large treatment/disposal component of the alternatives.

11.4.2 Order of Magnitude Increase in TFH Concentrations

Increasing the TFH concentration of the soil or water reduces the effectiveness of the natural attenuation/degradation alternatives and the constructed wetland treatment alternative. The natural processes used by these alternatives will be less likely to reduce contaminant transport to human and environmental receptors. The natural attenuation and degradation processes will also require more time to achieve cleanup objectives; therefore, short-term effectiveness is reduced because the time for potential exposure is increased. The effectiveness of those alternatives that have an active treatment component should not be affected because the treatment systems can be designed for the higher concentrations. The exception is air sparging with SVE, which may not be able to reduce the TFH concentrations to acceptable levels because of the increase in nonvolatile components.

Only the implementability of the constructed wetland treatment alternatives is reduced due to an increase in TFH concentration. More land area would be needed for the constructed wetlands because an increase in the retention time of the water in the wetland system would be required to achieve the cleanup goals.

An increase in TFH concentrations increases the cost of all alternatives except the natural attenuation/degradation alternatives. The cost increase is due either to increased carbon use or longer treatment times required to achieve cleanup levels. The active extraction alternatives are affected the most by an increase in TFH because of the higher extraction and treatment volumes.

11.4.3 Order of Magnitude Increase in the Concentration of Chlorinated Compounds

Chlorinated compounds are not contaminants of concern for the soil and increases in groundwater concentrations should not affect the soil alternatives.

An increase in the concentration of chlorinated compounds in the groundwater or seeps will decrease the effectiveness of the alternatives where biological processes reduce the concentration of the contaminants of concern. Because chlorinated compounds are broken down slowly by biological processes. The constructed wetlands alternative will no longer be effective since these high levels of chlorinated compounds do not allow the treatment biota to survive.

The effectiveness of air sparging alternative will not be affected because these compounds will remain at relatively low concentrations and the physical processes used to remove the compounds from the water will not be rate limited.

The implementability of the constructed wetlands alternative is reduced because larger wetlands would be needed for the increased retention time necessary to break down the higher concentrations of chlorinated compounds. Locating larger wetlands would be difficult since any constructed wetland must not interfere with the operations of the Air Force Base, and there is limited area available near the bluff area.

An increase in the concentration of chlorinated compounds increases the cost of all alternatives except for the natural attenuation alternative. The active extraction and air sparging with SVE alternatives are affected the most because of their high flow rates and the large percentage of the total cost that is represented by carbon costs.

11.4.4 Change Significant Risk Level from 10-5 to 10-5

The acceptable CERCLA range of risk is 1×10^4 to 1×10^6 . If the less conservative value of 10^5 is used instead of 10^6 , the volume of groundwater required to be remediated will decrease, since fewer areas have contamination that drive a 10^{-5} risk. Figure 11-21 indicates how the plume would shrink to represent 1×10^{-5} risk. The main change is that groundwater in central OU 5 would not be remediated because risk is at an acceptable (1×10^{-5}) level. The only remedial alternatives affected are active extraction and air sparging

of groundwater. All other alternatives remediate either seeps or soil, neither of which would not be affected by the change from 1 x 10⁻⁶ to 1 x 10⁻⁵. Total air sparging costs for 1 x 10⁻⁵ would drop 7%. Active extraction costs would drop 13%. The only other change would be a slight decrease in effectiveness and increase in implementability, since the remediation would be a smaller system that would have less effect.

11.4.5 Change Significant Risk Level from 1 x 10⁻⁶ to 10⁻⁴

The change here has the same effect as 1 x 10⁻⁵ except that in this case no groundwater would require treatment, since no area of groundwater drives a 1 x 10⁻⁴ risk. This would eliminate all costs of treating groundwater under the air sparging and active extraction alternative. Seeps would still have to be treated since these seeps cause ecological risks (e.g., visible sheens) that would not be affected by this change in health risk.

11.4.6 Change Implementation Time From 30 to 5 Years

In the alternatives analysis, it was generally assumed that a 30-year period would be required to achieve remediation objectives when implementation of each alternative began. Thirty years is commonly used in feasibility studies to compare alternatives. The actual time to achieve clean-up levels can vary, depending on the success of the treatment method employed. This analysis assumed that all remedial objectives can be achieved in five years. This assumes that no additional COCs in groundwater upgradient from OU 5 require treatment after the five-year period. This analysis also assumes no further need to monitor soil and groundwater after the five years. The analysis concluded a cost reduction of 49 to 68% for the alternatives. The savings is from reduced long-term monitoring costs. Also, alternatives with expensive O&M (active extraction) also have larger cost savings. Low monitoring and O&M alternatives have smaller cost savings.

11.4.7 Change Implementation Time From 30 to 10 Years

This analysis is the same as above except that 10 years instead of 5 years is selected for the treatment period. The cost reductions range from 32 to 45%. The relationship to monitoring and O&M are the same as above.

11.5 <u>Comparative Analysis</u>

The comparative analysis was performed in a three-step process:

- To help address the affected areas of impact at OU 5, the OU was divided into three geographic areas;
- The multi-media alternatives were developed for each area; and
- The multi-alternatives were evaluated and compared to each other using the CERCLA criteria.

While most multi-media alternatives are applicable to all three areas, some alternatives are not applicable to specific areas; and the cost for each alternative varies by area. Brief descriptions of the geographic areas are provided below.

11.5.1 Geographic Areas of OU 5

Evaluating the effectiveness, implementability, and cost of remedial alternatives depends upon the type and the physical setting of the contaminated media (soil, groundwater, or seeps) within the different geographic areas of OU 5. The OU can be roughly divided into three geographic areas, labeled Western, Central, and Eastern, as shown on Figure 11-22. Each of these areas are discussed below. While each of the geographic areas had soil, groundwater, and seep water to be remediated, the volumes and locations of the contaminated media are different within each area.

Western Area

The physical aspects of the Western Area include a steep bluff leading to a flat area just north of a railroad. The bluff shows signs of slope failure in the past. The industrial area is located immediately to the south of the railroad tracks. Ship Creek is located over 600 feet south of this area.

Groundwater impacts in this area result in an excess lifetime cancer risk of greater than 1×10^{-6} with the plume estimated to exceed 1,000 feet in width. There is also an area where hydrocarbons exceed soil clean-up levels, and where there are numerous seeps along the face of the bluff. Soil contamination exists at the 10- to 12-foot depth below the surface. The soil and groundwater contamination are collocated within the Western Area.

Central Area

Central OU 5 has features similar to the Western Area: a steep bluff with railroad tracks at the toe of the slope. The bluff shows signs of slope failure in the past. A snowmelt water retention pond is located in this area. Ship Creek is located approximately 250 feet south of the central part of the Central Area.

There are some seeps along the face of the bluff in the central part of this area (see Figure 11-22). A relatively small area of TFH contamination is found near the seeps. There are also two groundwater contaminant plumes with excess lifetime cancer risk greater than 1×10^{-6} within the Central Area. The groundwater contaminant plumes are relatively narrow compared to the Western Area and appear physically separated from the areas of soil contamination.

Eastern Area

Eastern OU 5 includes the beaver pond. The bluff in this area is more gently sloping than in the other areas. The area at the toe of the bluff is a wetland consisting of cascading ponds in the beaver pond area. Ship Creek is located approximately 50 feet south of the beaver pond.

In the Eastern Area, there are no areas where the TFH contamination in soil exceeds soil clean-up levels. Northeast of the beaver pond is an area where the groundwater contamination results in an excess lifetime cancer risk of greater than 1 x 10⁶. The plume is estimated to be in excess of 1,000 feet in width. There are also seeps at three locations along the bluff.

11.5.2 Multi-Media Alternatives Development

The water and soil alternatives have been combined into multi-media alternatives as shown in Table 11-5. This table was developed taking into consideration which individual alternatives would be applicable for each geographic area.

Western Area

All multi-media combinations, except one, are applicable to the Western Area, which has contaminant concerns for seeps, groundwater, and soil (10-to 12-foot depth). Air Sparging with Soil Vapor Extraction and Bioventing are not combined in the Western Area because the soil and groundwater contamination are collocated in this area. Air sparging provides the moisture and oxygen required by bioventing without additional cost or facilities, and vapor extraction will remove volatile contaminants from the soil before significant biological degradation can occur.

Table 11-5 Multi-Media Alternatives

Water A	lternatives			Soil Alternativ	/ C6	
Seepe	Groundwater	No Action	Natural Degradation	Natural Degradation with Institutional Controls	Excavation, Biopiling, and Backfilling	Bioventing
Natural Attenuation	Natural Attenuation	E	Baseline W,C	W,C	W,C	W,C
	Natural Attenuation with Institu- tional Controls	E	w,c	w,c	w,c	W,C
Passive Extraction with Wetlands Trestment Passive Extraction, Activated	Natural Attenuation	E	w,c	W,C	W,C	W,C
	Natural Attenuation with Institu- tional Controls	E	w,c	w,c	w,c	w,c
	Natural Attenuation	E	W,C	W,C	W,C	W,C
Activated Carbon Treat- ment	Natural Attenuation with Institu- tional Controls	Е	W,C	W,C	w,c	W,C
Air Sparging w Extraction and Treatment	ith Soil Vapor Activated Carbon	E	W,C	W,C	W,C	С
Extraction with and Activated C	Air Stripping Carbon Treatment	E	W,C	W,C	w,c	W,C

W = Western Area

C = Central Area
B = Eastern Area

Central Area

All multi-media combinations are applicable to the Central Area, which has contamination concerns for seeps, groundwater, and shallow soil (<10 feet BGS).

Eastern Area

Soil contamination was not identified as a contaminant concern in the Eastern Area; therefore, soil treatment alternatives are not applicable to this area.

11.5.3 Comparative Analysis

A comparative analysis of the media-specific alternatives is shown in Table 11-6. The relative numerical values for each of the first six criteria are shown; the seventh criterion, cost, expressed in millions of dollars, is shown separately for each geographic area. The numerical values were developed in Sections 11.3 which discussed the strengths and weaknesses of each alternative for remediation of water and soil.

Table 11-7 shows the comparison of all possible combinations of multi-media alternatives for each geographic area. As shown, the alternatives for seeps and groundwater apply to all three areas of OU 5. The soil alternatives only apply to the western and central areas. However, for comparative purposes, the analysis was performed for the eastern area using "no action" for the soils. The relative numerical values given for each of the seven criteria (except cost) are an average of the media-specific alternative values which have been combined. For instance, in Table 11-7, the score for protection of human health and the environment for the natural attenuation/degradation for seeps, groundwater, and soil (2) is an average of the seep (0), groundwater (3) and soil (3) scores. For costs, the total cost of the multi-media alternative was used to determine the ranking. The absolute value of cost (to within \$100,000) is shown next to each cost score.

Comparative Analysis for Media-Specific Remedial Alternatives **Table 11-6**

Execution Exec				Effectivenes Criteria				3	Cost (\$ Milker	3
1	Promise Absorber	Protection of Human House and the Environment	Complement with ARABA	Leaghter Minchines and Personnes	Token, Name,	Short-term Effectivement		Western	Control	Are
1	Groundwater, Seeps, Surface Water Alternatives									
1	Natural Attenuation									
ted 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- Soeps - Groundwater	0 m	en en	en en	00	0 m	vs vs	\$0.5	\$0.5	\$0.5 4.12
ted 5 5 5 5 5 5 80.7 total 3 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6	Natural Attenuation with Institutional Controls for Groundwater	e.	· S	· 6	0	æ	. v s	\$1.5	\$1.5	\$11.5
1	Passive Extraction with Constructed Wetlands	8	8	v s	v	۰,	м	20.7	\$0.7	20.7
4 3 5 5 3 \$10.4 3 3 5 5 3 \$8.7 3 3 5 6 0 5 \$8.9 ional 3 5 0 5 \$8.9 5 5 5 3 \$1.1 5 5 5 3 \$1.1 5 5 5 3 \$1.1	Passive Extraction and Treatment Using Activated Carbon Treatment	v,	×	8	S	S	s	\$0.9	6.0\$	\$0.9
ional 3 5 5 5 3 3 \$8.7 3 3 3 5 0 0 0 5 \$0.9 3 3 5 0 3 3 \$0.9 3 3 5 5 5 5 5 5 5 5 5 1.1	Air Sparging with Soil Vapor Extraction/Activated Carbon Treatment	v n	8	×	ν.	æ	es es	\$10.4	\$5.4	\$7.4
3 3 5 0 0 5 \$0.9 ional 3 5 0 3 3 \$0.9 3 3 \$1.1 3 3 \$1.1 5 5 5 5 3 3 \$1.1	Extraction/Air Stripping/Activated Carbon Treatment	3	~	\$	\$	3	3	28.7	\$3.9	\$14.4
3 3 5 0 0 5 \$0.9 ional 3 5 0 3 3 \$0.9 3 3 5 5 5 5 5 3 3 \$1.1	Soil Alternatives									
ional 3 5 0 3 3 \$0.9	Natural Degradation	e	m	\$	0	0	∽	\$0.9	\$0.3	× ×
3 3 \$ 1.1 5 5 5 5 3 3 \$1.1	Natural Degradation with Institutional Controls	m	м	×	0	е	m	\$0.9	\$0.3	×Z
5 5 5 3 3 \$1.1	Excavation/Biopiling/Backfilling	М	m	~	æ	8	6	\$1.1	\$0.5	ž
	Bioverting	5	\$	\$	\$	3	3	\$1.1	\$0.5	Y.

Criteria for Agency and Community Acceptance have not been evaluated at this time. These criteria will be evaluated in the Record of Decision. Notes:

Criteria Except Cost
5 = Meeta or exce
3 = Partially meet
0 = Does not mee **K**ey:

Meets or exceeds definition/intent of criteria.
 Partially meets definition/intent of criteria.
 Does not meet definition/intent of criteria.

Table 11-7 Comparative Analysis for Multi-Media Remedial Alternatives

Nat Air Nat Air Nat Deg (W+C) 2 3 3.7 0 1.5 4 3 W = 3 2.8 11.7 3.5 Nat Air Nat Air Nat Deg (W+C) 2 3 3.7 1 2 4.3 W = 3 2.8 11.7 3.5 Nat Air Nat Air Nat Deg (W+C) 2 3 3.7 1 1 2 4.3 W = 3 2.8 11.7 3.5 Nat Air Nat Air Nat Deg (W+C) 2 3 3.7 1 1 2 4.3 W = 3 2.8 11.7 3.5 Nat Air Nat Air Nat Deg (W+C) 2 3 3.7 1 1 2 4.3 W = 3 2.8 11.7 3.5 Nat Air Nat Air Nat Air Nat Air Nat Deg (W+C) 2 3.7 3.7 1 1 2 4.3 W = 3 2.8 11.7 3.5 Nat Air Nat Air Nat Deg (W+C) 2 3.7 3.7 1 1 2 4.3 W = 3 3.0 19.0 3.9 Nat Air Nat Air Nat Deg (W+C) 2 3.7 3.7 1.7 2 4.3 W = 3 2.9 18.4 3.6 Nat Air Na		Remedial Alternative	sagae		¥a [Effectiveness Criteria	ritoria			Z Control			
Nat Att Nat Deg (W+C) 2 3 37 0 1.5 5 C = 3 2.8 17.7 Nat Att Nat Att Nat Deg (W+C) 2 3 3.7 0 2 4.3 W = 3 2.8 17.7 Nat Att Biopiling 2 3 3.7 1 2 4.3 W = 3 2.8 18.0 Nat Att Bioventing 2.7 3.7 3.7 1.7 2 4.3 W = 3 2.4 19.0 Nat Att Biopiling 2.7 3.7 3.7 1.7 2 4.3 W = 3 2.4 19.0 Nat Att Biopiling 2.7 3.7 3.7 1.7 2 4.3 W = 3 2.9 18.7 Inst Cont Inst Cont Inst Cont Biopiling 2 3.7 1.7 2 4.3 W = 3 2.9 18.7 Nat Att Biopiling 2 3.7 3.7 1 2 <	ediaco	Crossedwater	les:	bas diesit asmult		Effectiveness and	Toxicky, Mobility, and Volume		Implementability	Score	\$ (Millibous)	Total Score	
Nat Att Bioventing 2 3.7 0 2 4.3 W = 3 2.8 18.0 Nat Att Bioventing 2.7 3.7 1.7 2 4.3 W = 3 2.8 18.0 Nat Att Bioventing 2.7 3.7 1.7 2 4.3 W = 3 2.4 19.0 Nat Att Nat Att Nat Deg 2.7 3.7 1.7 2 4.3 W = 3 2.4 19.0 Nat Att Nat Deg 1.5 4 3.7 1.7 2 4.3 W = 3 2.4 19.1 Nat Att Nat Att Biopiling 2 3.7 3.7 1 2 4.3 W = 3 2.9 18.4 Nat Att Biopiling 2 3.7 3.7 1 2 4.3 W = 3 2.3 18.7 Nat Att Bioventing 2 3.7 1 2 4.3 W = 3 3.1 19.7 Binst Co	Nat Att	Nat Att	Nat Deg (W+C) No Action (E)	1.5	e e	3.7	00	1.5	8 8	W = 3	2.8 2.2 1.9	17.7 17.7 17.0	3.5 4.4 4.7
Nat Att Bioventing 2.7 3.7 1.7 2 4.3 W = 3 (C = 3) (C =	Nat Att	Nat Att	Nat Deg, Inst Cont	2	က	3.7	0	6	4.3	W = 3 C = 3 E = NA	2.2	18.0	3.8 9.9
Nat Att Bioventing 2.7 3.7 1.7 2 4.3 W = 3 (c = 3) (c =	Nat Att	Nat Att	Biopiling	6	m	3.7	1	8	4.3	W = 3 C = 3 E = NA	3.0	19.0 19.0	3.9 9.9
Nat Att Nat Deg (W+C) 2 3.7 3.7 0 1 5 W = 3 2.9 18.4 Inst Cont No Action (E) 1.5 4 3.7 0 1.5 5 C = 3 2.3 18.4 Nat Att Nat Att Biopiling 2 3.7 3.7 0 2 4.3 W = 3 2.9 18.7 Nat Att Biopiling 2 3.7 3.7 1 2 4.3 W = 3 3.1 19.7 Inst Cont Bioventing 2.7 4.3 3.7 1.7 2 4.3 W = 3 3.1 21.7 Inst Cont Bioventing 2.7 4.3 3.7 1.7 2 4.3 W = 3 3.1 21.7 R = NA E = NA	Nat Att	Nat Att	Bioventing	2.7	3.7	3.7	1.7	7	6.3	W = 3 C = 3 E = NA	3.0	21.1	4. 8. 8.
Nat Att Nat Att Bioptiting 2 3.7 3.7 0 2 4.3 W = 3 (3.7) 18.7 Nat Att Bioptifing 2 3.7 3.7 1 2 4.3 W = 3 (3.7) 19.7 Nat Att Bioventing 2.7 4.3 3.7 1.7 2 4.3 W = 3 (3.7) 19.7 Inst Cont C = 3 2.7 4.3 3.7 1.7 2 4.3 W = 3 (3.7) 21.7 Inst Cont E = NA E = NA E = NA 21.7	Net Att	Nat Att Inst Cont	Nat Deg (W+C) No Action (E)	2 1.5	3.7	3.7	00	1.5	8 8	W = 3	2.9	18.4	3.6 4.5 5.0
Nat Att Biopiling 2 3.7 3.7 1 2 4.3 W = 3 3.1 19.7 C = 3 2.5 19.7 E = NA Nat Att Bioventing 2.7 4.3 3.7 1.7 2 4.3 W = 3 3.1 21.7 C = 3 2.5 11.7 Inst Cont $C = 3 2.5 19.7 \\ C = 3 2.5 21.7 \\ C = 3 2.5 21.7 \\ E = NA$	Nat Att	Nat Att Inst Cont	Nat Deg Inst Cont	6	3.7	3.7	•	6	4.3	V = 3 C = 3 E = NA	2.3	18.7 18.7	3.9 5.0
Nat Att Bioventing 2.7 4.3 3.7 1.7 2 4.3 W = 3 3.1 21.7 Inst Cont $C = 3$ 2.5 21.7 $E = NA$	Nat Att	Nat Att Inst Cont	Biopiling	7	3.7	3.7	~	8	£.	W = 3 C = 3 E = NA	3.1	19.7 19.7	4.0 5.0
	Nat Att	Nat Att Inst Cont	Bioventing	2.7	4.3	3.7	1.7	6	4.3	W = 3 C = 3 E = NA	3.1	21.7 21.7	4. 8. 8. 8.

Table 11-7 (Continued)

Remodial Alternative		Effectiveness Criteria				2			
	Hones Health and the Eavironment Compliance with ARARs	Long-term Effectiveness and Permanence	Reduction in Toxicity, Mobility, and Volume through Trestment	Short-term Effectiveness	Taplementability	Score	(Fuoilions)	Four Score	Effectiveness to Cost Quotient
4.4	3.7	4.3 4.3	1.7 2.5	2.7	رد در در	W = 3 C = 3 E = 3	3.0 2.4 2.1	24.1 24.1 26.5	5.4 6.7 8.8
3.7	3.7	4.3	1.7	3.7	3.7	W = 3 C = 3 E = NA	3.0	23.8 23.8	5.7
3.7	3.7	4 .3	2.7	3.7	3.7	W = 3 C = 3 E = NA	3.2	24.8 24.8	5.7
£	£. 4	4.3	3.3	3.7	3.7	W = 3 C = 3 E = NA	3.2	26.6 26.6	6.2
3.7	£.3 S	4.3	1.7	2.7	4.3	W = 3 C = 3	3.1 2.5 2.2	24.0 24.0 26.5	5.4 6.7 8.9
3.7	4.3	4.3	1.7	3.7	3.7	W = 3 C = 3 E = NA	3.1	24.4 24.4	5.7
3.7	4.3	4.3	2.7	3.7	3.7	W = 3 C = 3 E = NA	3.3	25.4	5.7 6.9
6.3	8	4.3	3.3	3.7	3.7	K = 3 C = 3 NA	3.3	27.3 27.3	6.3

Table 11-7 (Continued)

	Effectiveness to Cost Quotient	5.0 6.2 8.0	5.3 6.6	5.3 6.5	5.9	5.1 6.2 8.1	5.4 6.6	5.3 6.4	5.9	1.7 3.3 3.1
	STORE STORE	24.1 24.1 26.5	24.4 24.4	25.4 25.4	27.2	24.7 24.7 27.5	25.0 25.0	26.0 26.1	27.9	21.6 23.6 27.0
	(saoillilvi) \$	3.2 2.6 2.3	3.2	3.4 8.	3.4	3.3 2.7 2.4	3.3	3.5	3.5	11.3 5.7 7.4
Cost	sim2	K = 3 = 3 = 3	W = 3 C = 3 E = NA	W = 3 C = 3 E = NA	W = 3 C = 3 E = NA	E = 3	W = 3 C = 3 E = NA	W = 3 C = 3 E = NA	W = 3 C = 3 E = NA	W = -1 C = 1 E = 1
	Implementability	8 8	£.3	£.3	4 .3	8 8	4.3	4.3	4.3	3.7
	Short-term Effectiveness	2.7	3.7	3.7	3.7	2.7	3.7	3.7	3.7	3
iteria	Reduction in Toxicity, Mobility, and Volume through Treatment	1.7 2.5	1.7	2.7	3.3	2.5	1.7	2.7	3.3	3.3 5
Effectiveness Criteria	Long-term Effectiveness and Permanence	4.3	4.3	4.3	4.3	4.3	4.3	4.3	£.3	5
Effe	Complishes with	3.7	3.7	3.7	4.3	4.3 5	4.3	4.3	۸,	4.3 5
	Protection of Human Health and the Environment	3.7	3.7	3.7	4.3	3.7	3.7	3.7	4.3	4.3 5
atire	Bes	Nat Deg (W+C) No Action (E)	Nat Deg (W+C) No Action (E) Inst Cont	Biopiling	Bioventing	Nat Deg (W+C) No Action (E)	Nat Deg (W+C) No Action (E) Inst Cont	Biopiling	Bioventing	Activ Carb Trt Nat Deg (W+C) No Action (E)
Remedial Alternative	Groundwater	Nat Att	Nat Att	Nat Att	Nat Att	Nat Att Inst Cont	Nat Att Inst Cont	Nat Att Inst Cont	Nat Att Inst Cont	Activ Carb Trt
	sdang	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Pass Extrac Activ Carb	Air Sparg Soil Vap Ext

Table 11-7

(Continued)

	Remedial Akernative	ative		EAC	Effectiveness Criteria	iloti			Coat	7		
disc	эдемринозэ	llos	Protection of Human Health and the Environment	Compliance with	Long-term Effectiveness and Permanence	Reduction in Toxicity, Mobility, and Volume through Treatment	Short-term Effectiveness	Implementability	Score	(enoilliM) \$	Total Score	Effectiveness to Cost Quotient
Air Sparg Soil Vap Ext	Activ Carb Trt	Activ Carb Trt Nat Deg (W+C) No Action (E) Inst Cont	4.3	4.3	'n	3.3	ေ	9	W = -1 C = 1 R = NA	11.3 5.7	21.9	1.8 3.5
Air Sparg Soil Vap Ext	Activ Carb Trt	Biopiling	6.3	£.3	٧n	4.3	m	м	W = -1 C = 1 E = NA	5.9	22.9	1.8 3.5
Air Sparg Soil Vap Ext	Activ Carb Trt	Bioventing	v 1	8	٧n	٧,	m	m	W = NA C = 1 E = NA	8.9 6.8	NA 27.0	3.9 A
Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Nat Deg (W+C) No Action (E)	e e	5.3	w w	3.3	3 5	3.7	W = 1 C = 3 E = -1	9.6 4.2 14.4	22.3 24.3 23.0	1.8 4.2 1.5
Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Nat Deg (W+C) No Action (E) Inst Cont	e	4.3	4 ε:	3.3	m	m	W = 1 C = 3 E = NA	9.6 2.2	21.9	1.9 4.3
Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Biopiling	၈	6.3	8	4.3	m	м	W = 1 C = 3 E = NA	0, 4 ∞ 4.	23.6 25.6	2.0 4.5
Extract Air Strip Activ Carb	Extract Air Strip Activ Carb	Bioventing	3.7	5	8	\$	3	3	W = 1 C = 3 E = NA	9.8 4.4	25.7 27.7	2.2 4.9

Criteria for Agency and Community Acceptance have not been evaluated at this time. These criteria will be evaluated in the Record of Decision. Notes:

The total score is the sum of the seven effectiveness, implementability and cost scores.

The Effectiveness/Cost Quotient provides an indication of the benefit provided in relation to the cost of each alternative. The effectiveness numerator is the sum of the five effectiveness scores. The cost denominator is the total estimated cost of each alternative, in \$ million.

The four top scores for effectiveness/cost quotient, for each area, have been highlighted along with the corresponding remedial alternative. 288

Table 11-7 (Continued)

Cost 5 = <\$1.5 million 3 = \$1.5 to 5 million 1 = \$5 to 10 million -1 = >\$10 million		
zia Except Cost = Mects or exceeds definition/intent of criteria. = Partially meets definition/intent of criteria. = Doses do not meet definition/intent of criteria.	W = Western Area C = Central Area E = Bastern Area Nat Att = Natural Attenuation Nat Deg = Natural Degradation Inst Cont = Institutional Controls Pass Ext = Passive Extraction Const Wets = Constructed Wetlands Activ Carb = Activated Carbon Air Sparg = Air Sparging Soil Vap Ext = Soil Vapor Extraction Air Strip = Air Stripping Extract = Extraction NA = Not Applicable	•
Criteria Except Cost 5 = Meets or exc 1-4 = Partially mee 0 = Doses do not	W C C E Nat Att Nat Deg Inst Cont Pass Ext Const Wets Activ Carb Air Sparg Soil Vap Ext Air Strip Extract NA	
Key:		

To aid in comparing alternatives, Table 11-7 also includes the total score and effectiveness to cost quotients for each multimedia alternative. The total score is the sum of the seven criteria scores. The effectiveness-to-cost quotient is the sum of the five effectiveness criteria divided by the total cost (in million dollars). The higher the cost quotient, the more cost effective the alternative. To assist in identifying preferred alternatives, effectiveness-to-cost quotients provide a qualitative comparison of the ability of the alternative to provide remediation versus the cost required to achieve the remedial goals. Although Protectiveness of Human Health and the Environment is a summary of long-term effectiveness, short-term effectiveness, and compliance with ARARs, it is used as a separate factor to emphasize the importance of the three individual factors. The EPA CERCLA Manual indicates that all nine criteria should be separately evaluated.

The multi-media alternatives (Table 11-7) are typically grouped into sets of four alternatives to aid in review of the information presented. Each grouping has a consistent set of seep and groundwater alternatives; only the soil alternative varies within the group.

11.5.4 Limitations of Comparative Analysis

The comparative analysis is limited by several assumptions. First, it assumes that all three pathways are of equal importance. Similarly, it assigns equal importance to each CERCLA criteria over another rather than trying to rank one above another. The analysis also does not quantify synergistic effects between combinations of soil, seep, and groundwater alternatives. Finally, the comparative analysis relies on the five subjective, not objective, scores for the balancing factors for each media-specific alternative.

The best overall remedial approach for OU 5 may not necessarily include the "best" or highest scoring remedial alternative for all three geographical areas. Ultimately, the Air Force, regulatory agencies, and the community must determine which alternative, or

set of alternatives, is most desirable based on effectiveness, implementability, acceptability, and cost.

11.5.5 Conclusion of Comparative Analysis

Below is provided a summary discussion of how each of the various alternatives rate for criteria, as well as for the "total score" and "effectiveness to cost quotients."

Protection of Human Health and the Environment. An important consideration for this criterion is that there are no current receptors exposed to groundwater. Notwithstanding this current setting, protection of human health and the environment scores are higher for alternatives that actively treat the water. Alternatives that do not provide for treatment of either seeps or groundwater score lowest because they do not provide protection from contact with seep contamination and because of the potential for discharge of contaminants from both seeps and groundwater to natural wetlands and Ship Creek. The use of institutional controls does not provide additional protection of human health and the environment. The use of passive extraction to collect seep water for treatment improves protection, although the method of treatment, wetlands versus activated carbon, does not effect protectiveness. Active groundwater treatment alternatives (i.e., air sparging with soil vapor extraction and extraction with air stripping) provide the highest levels of protection because they provide protection through interception and treatment of contaminants in both the seeps and groundwater. Similarly, the use of bioventing to treat all soil improves protection over the use of natural degradation or biopiling alternatives because bioventing should reduce contamination in all soil (both shallow and deep) to levels considered protective.

Compliance with Appropriate ARARs. Potential ARARs scores are higher for alternatives that either actively treat groundwater (and therefore seeps) or which provide institutional controls that limit use of groundwater. Alternatives that actively treat the groundwater, such as air sparging or extraction with air stripping, or that provide passive

extraction of seeps and institutional controls to limit use of the groundwater, provide the highest level of compliance with potential ARARs. Some level of compliance with potential ARARs is achieved for those alternatives that treat seeps (e.g., passive extraction) but do not provide institutional controls for groundwater; these alternatives will reduce contaminant levels in seeps to acceptable levels. Similarly, those alternatives that do not treat seeps, but which provide institutional controls for groundwater, provide some level of compliance with potential ARARs because they limit use of the groundwater. Bioventing of soil improves compliance with potential ARARs for all alternatives because it should reduce contaminants in all soil to acceptable levels.

Long-Term Effectiveness and Permanence. These scores are all relatively similar, since all alternatives should be substantially effective in the long term. None of the alternatives is expected to produce toxic by-products, assuming carbon treatment alternatives use thermal regeneration to destroy contaminants collected by the carbon. Alternatives relying solely on natural attenuation and degradation processes may be the least effective because there may be insufficient residence time to successfully degrade the contaminants before discharge to natural wetlands and Ship Creek. The highest level of long-term effectiveness and permanence is achieved by those alternatives that actively extract and treat both groundwater and seeps.

Reduction in Toxicity, Mobility, and Volume through Treatment. Those alternatives that provide for active treatment of the groundwater and soil provide the greatest reductions in toxicity, mobility, and volume because all contaminant sources are treated; these alternatives will by their nature also treat the seeps. Those alternatives that only provide for treatment of seeps and soil are less effective at reducing the toxicity, mobility, and volume of the contaminants because contaminants in the groundwater are not actively treated. Alternatives that treat only seeps or soil, but not both, provide little reduction; while alternatives that rely on natural attenuation and degradation for all media, by definition, provide no reduction through treatment.

Short-Term Effectiveness. Short-term effectiveness is primarily affected by whether water treatment is provided. Those alternatives that treat either the seeps or ground-water are effective in the short term because they will immediately begin to reduce the potential for contact with contaminated water. Providing either institutional controls or treatment for soil increases the short-term effectiveness. Alternatives that rely solely on natural attenuation and degradation for the water and soil are the least effective in the short-term because the potential for contact with contaminated media will remain.

Implementability. All alternatives should be implementable. Some reduction in implementability may occur for biopiling, bioventing, and wetlands treatment alternatives because the cold climate may reduce the ability to implement these alternatives during winter months. Alternatives that actively treat the groundwater may be difficult to implement due to reinjection system limitations.

Cost. Cost estimates are primarily affected by selection of water treatment alternative. Soil alternative treatment costs are negligible, compared to soil monitoring costs, since volumes are small. Alternatives that rely on natural attenuation for the seeps and groundwater are the least expensive; they are estimated from \$2.8 to \$3.0 million in the Western Area, and from \$1.9 to \$2.4 million in the Central and Eastern Areas. The use of passive extraction and activated carbon to treat seeps is estimated to increase costs by approximately \$0.4 million over the baseline cost in all areas; the additional costs are for construction of the extraction system and carbon usage. The use of passive extraction and constructed wetlands to treat seeps is estimated to increase costs by approximately \$0.2 million over the baseline cost in all areas; the additional costs are for construction of the extraction system and wetlands. This alternative has a major benefit in that the constructed wetlands already planned as the presumptive remedy for the Snowmelt Pond also serves as the remedy for treating all water from seeps. Since the Snowmelt Pond-constructed wetlands are included as a cost in every alternative, this greatly reduces overall costs for the constructed wetlands alternative. Alternatives that actively treat all groundwater are substantially more expensive, especially in the Western and Eastern Areas, because of the

larger volumes of water handled. Active extraction with air stripping and carbon treatment is estimated to increase costs over the baseline by \$6.8 million in the Western Area, \$12.5 million in the Eastern Area, and \$2.0 million in the Central Area. Air sparging with soil vapor extraction and activated carbon treatment is estimated to increase costs over the baseline by \$8.5 million in the Western Area, \$3.5 million in the Central Area, and \$5.5 million in the Eastern Area. The use of biopiling and bioventing to treat surface soil increases cost only slightly (<\$200,000) over the baseline of \$2.8 million in the Western Area and \$2.2 million in the Central Area.

Total Score. Total scores are primarily affected by the level of treatment provided and cost. Alternatives providing treatment of seeps and/or groundwater score higher than those which use natural attenuation; however, the higher cost of actively treating all groundwater tends to off-set the increased effectiveness of these alternatives. The use of bioventing to treat all soil also increases the total score substantially over natural degradation or biopiling alternatives because of increased effectiveness. The use of institutional controls for groundwater and soil, as well as biopiling of soil, provide only a marginal increase in total score.

Cost-Effectiveness. The effectiveness-to-cost quotients are primarily affected by increased effectiveness for treatment of seeps over natural attenuation, the difference in cost between activated carbon (cheaper) and constructed wetlands (more expensive) for treatment of seeps, and high costs for active treatment of groundwater; soil alternatives have less effect on the overall effectiveness-to-cost quotient. The highest quotients in all three areas of OU 5 are for alternatives that treat seeps using activated carbon. The increased effectiveness of treating seeps, using constructed wetlands over the use of natural attenuation, is partially offset by the increased cost. The high cost for active groundwater treatment alternatives in the Western and Eastern Areas, where there are large groundwater contaminant plumes, reduces the cost effectiveness of these alternatives when compared with all other alternatives. The Central Area has smaller groundwater plumes which require less cost to treat, resulting in active treatment being more cost effective than natural attenuation, but

less cost effective than passive extraction of seeps. When selecting preferred alternatives, consideration should be given to including institutional controls. For groundwater, the use of institutional controls when selecting natural attenuation of the groundwater increases the cost effectiveness of all alternatives using natural attenuation or passive extraction of seeps. However, it is difficult to fully evaluate the cost for institutional controls. Currently the water is not used; providing a replacement water source should a future user arise could increase costs.

As with water alternatives, the use of institutional controls for soil provides an increase in the effectiveness-to-cost quotient because of the low estimated cost. The use of bioventing and biopiling appears to have a positive effect on the effectiveness-to-cost quotient since only a small area of soil contamination requires remediation.

Summary

While the purpose of this FS is not to recommend the "best" remedial alternative, an analysis of effectiveness/cost quotient can give an indication of the most promising alternatives. Below are indicated the four alternatives that sco.ed highest for each area, with their attendant effectiveness/cost quotients.

Western Area

Effectiveness/Cost Quotient

- 1) 6.3 Passive extraction with constructed wetlands for seeps/natural attenuation with institutional controls for groundwater/bioventing for soils.
- 2) 6.2 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater/bioventing for soils.
- 3) 5.9 Passive extraction with activated carbon for seeps/natural attenuation with institutional controls for groundwater/bioventing for soils.

5.9 Passive extraction/activated carbon treatment for seeps, natural attenuation with institutional controls for groundwater, and bioventing for soil.

Central Area

Effectiveness/Cost Ouotient

- 1) 7.7 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater/bioventing for soils.
- 2) 7.6 Passive extraction with constructed wetlands for seeps/natural attenuation with institutional controls for groundwater/bioventing for soils.
- 7.1 Four multimedia options tied, all of which include passive extraction with either constructed wetlands or activated carbon.

Eastern Area

Effectiveness/Cost Ouotient

- 1) 8.9 Passive extraction with constructed wetlands for seeps/natural attenuation with institutional controls for groundwater.
- 2) 8.8 Passive extraction with constructed wetlands for seeps/natural attenuation for groundwater.
- 3) 8.1 Passive extraction with activated carbon for seeps/natural attenuation with institutional controls for groundwater.
- 4) 8.0 Passive extraction with activated carbon for seeps/natural attenuation for groundwater.

In all three areas, the alternative using passive extraction of seeps with treatment by constructed wetlands scored highest. Constructed wetlands scored highest because the sunk cost of the presumptive remedy for the Snowmelt Pond (also a constructed wetlands), which is included as an element of each alternative, does not have to be included twice in this alternative. The use of institutional controls or natural attenuation for the

groundwater and bioventing for the soil is also frequently indicated as a component of these higher ranking alternatives. These consistent approaches result because the current threats to human health and the environment are limited in OU 5 and because of assumptions used in the analysis of alternatives. Both groundwater and soil are not considered significant threats to human health because the groundwater is not currently used and because there is limited potential for contact with contaminated soil on base. In addition, the soil contamination is primarily a concern for groundwater contamination rather than a toxic threat to humans. Therefore, it is assumed that using institutional controls to prevent future uses of the groundwater and soil will provide the necessary protection and compliance with potential ARARs for these pathways. On the other hand, seeps pose a potential threat to vegetation on the bluffs, the wetlands south of OU 5, and serves as a potential pathway for human contact. This results in the selection of alternatives which treat seeps in order to be effective solutions.

Treatment of soil by either bioventing or biopiling (which scored just behind bioventing) is indicated as preferable to natural degradation or institutional controls for the Western and Central Areas. The relatively small volumes of soil make treatment costs low, compared to the high costs of on-going monitoring. The soil in the Central Area is likely more effectively treated by biopiling, since it is very close to the surface and easily excavated. The soil in the Western Area is deeper (10 to 12 feet deep) and may be more effectively biovented. A depth of 10–12 feet is borderline for easy excavation, especially in a bluff area. This may make excavation of the Western Area soils for biopiling difficult to implement.

Natural attenuation of seeps in the eastern area is preferable over constructed wetlands alternatives because of the demonstrated natural attenuation ability of the Beaver Pond. Also, though passive extraction is an implementable option in OU 5, it would be less implementable in the eastern area because of the close proximity of the Beaver Pond to the bluff. The scoring approach was based on applying the alternatives across the entire OU, so

this localized difficulty of implementing passive extraction in the Beaver Pond is not totally reflected in the effectiveness to cost quotient.

As stated earlier, the evaluation of alternatives by using effectiveness/cost quotients cannot be relied on to select the "best" alternative due to the numerous assumptions made (e.g., assigning equal weight to each criteria). However, it can provide a useful cut of the more preferable alternatives. The remainder of the CERCLA process (i.e., Proposed Plan, agency/public input, and Record of Decision) will determine the preferred alternative.

12.0 REFERENCES AND BIBLIOGRAPHY

References

- 18 AAC 70. 1991. "Water Quality Standards." Alaska Administrative Code. Juneau, Alaska.
- 40 CFR 261. 1992. U.S. Environmental Protection Agency, "Identification and Listing of Hazardous Wastes: Subpart C—Characteristics of Hazardous Wastes." U.S. Code of Federal Regulations.
- 36 FR 22384. November 25, 1971. National Primary and Secondary Ambient Air Quality Standards. Federal Register.
- 45 FR 79318. November 28, 1980. Water Quality Criteria; Availability of Documents. Federal Register.
- 49 FR 5831. February 15, 1984. Water Quality Criteria; Availability of Documents. Federal Register.
- 50 FR 30784. July 29, 1985. Water Quality Criteria; Availability of Documents. Federal Register.
- 51 FR 22978. June 24, 1986. Water Quality Criteria; Extension of Public Comment Period. Federal Register.
- 51 FR 43665. December 3, 1986. Availability of Quality Criteria for Water 1986. Federal Register.
- 52 FR 6213. March 2, 1987. Water Quality Criteria; Availability of Documents. Federal Register.
- 53 FR 177. January 5, 1988. Water Quality Criteria; Availability of Documents. Federal Register.
- 53 FR 19028. May 26, 1988. Water Quality Criteria; Availability of Documents. Federal Register.
- 53 FR 33177. August 30, 1988. Water Quality Criteria; Request for Comments. Federal Register.
- 55 FR 19986. May 14, 1990. Ambient Water Quality Criteria. EPA. Federal Register.

Alaska Department of Environmental Conservation (ADEC). 1991. Interim Guidance for Non-UST Contaminated Soil Cleanup Levels. Guidance Number 001; Revision Number 1. ADEC, Juneau, Alaska.

Albers, P. H. 1991. Oil spills and the environment: A review of chemical fate and biological effects of petroleum. Pages 1-11. White, J.W., ed. *The Effects of Oil on Wildlife*. Sheridan Press, Hanover, Pennsylvania.

Albers, P. H., and M. L. Gay. 1982. Unweathered and Weathered Aviation Kerosene: Chemical Characterization and Effects on Hatching Success of Duck Eggs. Bull. Environ. Contam. Toxicol. 28:430-434.

Ambrose, A. M., P. S. Larson, and J. F. Borzelleca. 1976. Long-Term Toxicologic Assessment of Nickel in Rats and Dogs. J. Food Sci. Technol. 13:181-187.

Aughey, E., L. Grant, and B. I. Furman. 1977. The Effects of Oral Zinc Supplementation in the Mouse. J. Comp. Pathol. 87:1-14.

Azar, A., H. J. Trochimowicz, and M. E. Maxfield. 1973. Review of Lead Studies in Animals Carried Out at Haskell Laboratory: Two-Year Feeding Study and Response to Hemorrhage Study. In: Barth, D., A. Berline, and R. Engel (eds). Environmental Health Aspects of Lead: Proceedings, International Symposium. October 1972. Amsterdam, The Netherlands. Luxembourg: Commission of the European Communities. Pp. 199-210.

BEIA. 1989. The Installation Restoration Program Toxicology Guide. Volumes I-IV. BEIA Health and Safety Research Division, Oak Ridge National Laboratory.

Biomedical and Environmental Information Analysis. 1989. The Installation Restoration Program Toxicology Guide, Vol. 1, 2, 3, and 4. Oak Ridge National Laboratory. Prepared for Harry G. Armstrong Aerospace Medical Research Laboratory, Aerospace Medical Division, Air Force Systems Command, Wright-Patterson AFB, Ohio.

Black & Veatch. 1990. Installation Restoration Program, Stage 3, Remedial Investigation/ Feasibility Study, Elmendorf AFB, Alaska, Volumes 1 through 6. Prepared for Headquarters Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Blaylock, A. D., V. D. Jolley, J. C. Brown, T. D. Davis, and R. H. Walser. 1985. Iron-stress Response Mechanism and Iron Uptake in Iron-efficient and -Deficient Tomatoes and Soybeans Treated with Cobalt. J. Plant Nutr. 8:163-176.

Bodek, I., et al. (ed.). 1988. Environmental Inorganic Chemistry. Pergamon Press, New York.

Bouwer, H. 1989. "The Bouwer and Rice Slug Test—An Update," Ground Water, Vol. 17, No. 3, pp. 304-309.

Bouwer, H. and R. C. Rice. 1976. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells. *Water Resources Research*. Vol. 12, pp. 423-428.

Byron, W. R., G. W. Bierbower, and J. B. Brouwer. 1967. Pathological Changes in Rats and Dogs from Two-Year Feeding of Sodium Arsenite or Sodium Arsenate. Toxicol. Appl. Pharmacol. 10:132-147.

Canadian Council of Ministers of the Environment (CCME). 1991. Interim Canadian Environmental Quality Criteria for Contaminated Sites. Water Quality Branch, Environment Canada, Ottawa, Ontario.

Carey, A. E., and E. L. R. Barrett. 1990. A Summary of Background Concentrations for 17 Elements in North American Soils. Prepared for the Forest Service, U.S. Department of Agriculture. February.

Cederstrom, D. J., F. W. Trainer, and R. M. Waller. 1964. Geology and Groundwater Resources of the Anchorage Area, Alaska. U.S. Geological Survey Water Supply Paper 1773.

CH2M HILL. 1992a. Elmendorf Air Force Base, Alaska, Basewide Background Sampling Report. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1992b. Elmendorf Air Force Base, Alaska, Basewide Investigation Work Plan. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1992c. Elmendorf Air Force Base, Alaska, Ecological Survey. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska.

CH2M HILL. 1992d. Elmendorf Air Force Base, Alaska, Management Plan Operable Unit 5. Prepared for U.S. Air Force, 3 SPTG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1992e. Elmendorf Air Force Base, Alaska, Final Operable Unit 4 LFI Report. Prepared for U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

CH2M HILL. 1991. "Standard Procedures for Logging of Soil Borings." Section 3 in *Technical Guidelines for the Geosciences*, Vol. 1.

Clarkson, T. W. 1979. Effects—General Principles Underlying the Toxic Action of Metals. Pages 99-117. Handbook on Toxicology of Metals. L. Friberg et al., ed. Elsevier/North-Holland Biomedical Press, New York.

Cousins, R. J., A. K. Barber, and J. R. Trout. 1973. Cadmium Toxicity in Growing Swine. J. Nutr. 103:964-972.

Dames & Moore. 1986. Installation Restoration Program, Phase II, Confirmation/ Quantification, Stage 1, Elmendorf Air Force Base, Alaska. Prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Dames & Moore. 1988. Installation Restoration Program, Phase II, Confirmation/Quantification, Stage 2, Elmendorf AFB, Alaska. Final Report prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska, and Battelle EMO, Richland, Washington.

Dearborn, L., and G. Freethey. 1974. Water Table Contour Map, Anchorage Area, Alaska. U.S. Geological Survey Open-File Report. Anchorage, Alaska.

Department of Defense. 1991. User's Manual for the Defense Priority Model. Prepared by the Earth Technology Corporation. 1991.

Department of Environmental Conservation. (DEC). 1991. Alaska Water Quality Standards Workbook. DEC Water quality Management. Juneau, Alaska.

Dobrovolny, E. and R. D. Miller. 1950. Descriptive Geology of Anchorage and Vicinity, Alaska. U.S. Geological Survey Open-File Report.

Dobrovolny, E., and H. R. Schmoll. 1974. Slope Stability Map of Anchorage and Vicinity, Alaska. U.S. Geological Survey, Miscellaneous Investigations Map I-787E.

Dollarhide, J. S. 1992. Memorandum to Carol Sweeney, U.S. EPA Region 10, Subject: Oral reference doses and oral slope factors for JP-4 (CAS No. not identified), JP-5 (CAS No. not identified; similar to Kerosene, CAS No. 8008-20-6), diesel fuel (CAS No. 68334-30-5), and gasoline (CAS No. 8006-61-9) (AVGAS) (McChord AFB [Wash Rack/Treatment]/Tacoma, Washington), dated March 24. U.S. EPA Environmental Criteria and Assessment Office, Cincinnati, Ohio.

Doyle, J. J., W. H. Pfander, S. E. Grebing, and J. O. Pierce II. 1974. Cadmium Absorption and Cadmium Tissue Levels in Growing Lambs. J. Nutr. 104:160-166.

Drinker, K. R., P. K. Thompson, and M. Marsh. 1927. An Investigation of the Effect Upon Rats of Long-Continued Ingestion of Zinc Compounds, with Special Reference to the Relation of Zinc Excretion to Zinc Intake. Amer. J. Physiol. 81:284-306.

Earth Technology Corporation, The. 1991. User's Manual for the Defense Priority Model. For the Department of Defense, Washington, D.C.

Eisler, R. 1988a. Arsenic Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.12), Washington, D.C.

Eisler, R. 1988b. Lead Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.14), Washington, D.C.

Eisler, R. 1987a. Mercury Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.10), Washington, D.C.

Eisler, R. 1987b. Polycyclic Aromatic Hydrocarbon Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.11), Washington, D.C.

Eisler, R. 1986. Chromium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.6), Washington, D.C. Eisler, R. 1985a. Cadmium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.2), Washington, D.C.

Eisler, R. 1985b. Selenium Hazards to Fish, Wildlife, and Invertebrates: A Synoptic Review. U.S. Fish and Wildlife Service Biological Report 85 (1.5), Washington, D.C.

Engineering-Science. 1983. Installation Restoration Program, Phase I Records Search, Elmendorf AFB, Alaska. Prepared for the U.S. Air Force, AFESC/DEV, Tyndall Air Force Base, Florida; and Alaskan Air Command, Elmendorf Air Force Base, Alaska.

Environmental Science & Engineering, Inc.; Harland Bartholomew & Associates, Inc.; and Aeromap US, Incorporated. 1991. *Elmendorf Air Force Base Comprehensive Plan*. Prepared for U.S. Air Force. F65501-86-C0089.

EPA (See U.S. Environmental Protection Agency.)

Erkama, J. 1950. Trace Elements in Plant Physiology. The Chronica Botanica Co. Waltham, Massachusetts.

Freethey, G. W., et al. 1976. Preliminary Report on Water Availability in the Lower Ship Creek Basin, Anchorage, Alaska. U.S. Geological Survey, Water Resources Division. Anchorage, Alaska.

Friberg, L. G., F. Nordberg, and V. B. Vouk. 1979. Handbook on the Toxicology of Metals. Elsevier/North-Holland Biomedical Press, New York.

Fry, D. M., R. Boekelheide, J. Swenson, A. Kang, J. Young, and C. R. Grau. 1985. "Long-term Responses of Breeding Seabirds to Oil Exposure." *Pacific Seabird Group Bulletin* 12:22.

- Fry, D. M., J. Swenson, L. A. Addiego, C. R. Grau, and A. Kang. 1986. "Reduced Reproduction of Wedge-tailed Shearwaters Exposed to Weathered Santa Barbara Crude Oil." *Arch. Environ. Contam. Toxicol.* 15:453-463.
- Fry, D. M., And L. J. Lowenstine. 1982. "Insults to alcids: Injuries Caused by Food, by Burrowing, and by Oil Contamination." Pacific Seabird Group Bulletin 9:78-79.
- Fry, D. M., and L. J. Lowenstine. 1985. "Pathology of Common Murres and Cassin's Auklets Exposed to Oil. Arch. Environ. Contam. Toxicol. 14:725-737.
- Gelb, D. (1992) "Oilfield Produced Water Treatment Using Constructed Surface Flow and Wetland Systems." Master of Science thesis: Colorado School of Mines, 1992.
- Ghosh, A. K., A. K. Shrivastava, K. Singh, and Y. R. Saxena. 1987. Iron Uptake and its Partitioning in Sugarcane as Affected by Manganese Concentrations. J. Nuclear Agric. Biol. 16: 73-77.
- Gough, L. P., H. T. Shacklette, and A. A. Case. 1979. Element Concentrations Toxic to Plants, Animals, and Man. U.S. Geological Survey Bulletin 1466, Washington, D.C.
- Grau, C. R., T. Roudybush, J. Dobbs, and J. Wathen. 1977. "Altered Egg Yolk Structure and Reduced Hatchability of Eggs From Birds Fed Single Doses of Petroleum Oils." *Science* 195:779-781.
- Harding Lawson Associates. 1988a. Installation Restoration Program, Integrated Remedial Investigation/Feasibility Study, Quality Assurance Project Plan for Elmendorf AFB, Alaska. Prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska.
- Harding Lawson Associates. 1988b. Installation Restoration Program, Integrated Remedial Investigation/Feasibility Study, Work Plan for Elmendorf AFB, Alaska. Prepared for Alaskan Air Command, Elmendorf Air Force Base, Alaska.
- Hedtke, S. F., and F. A. Puglisi. 1982. Short-term Toxicity of Five Oils to Four Freshwater Species. Arch. Environ. Contam. Toxicol. 11:425-430.
- Hejtmancik, M. A., A. C. Peters, and J. D. Toft. 1987a. The Chronic Study of Manganese Sulfate Monohydrate in F344 Rats. Report to National Toxicology Program, Research Triangle Park, North Carolina by Batelle Columbus Laboratories, Columbus, Ohio.
- Hejtmancik, et al. 1987b. The Chronic Study of Manganese Sulfate Monohydrate in B6C3F1 Mice. Report to National Toxicology Program, Research Triangle Park, North Carolina by Batelle Columbus Laboratories, Columbus, Ohio.
- Hue, N. V., R. I. Fox, and W. W. McCall. 1988. Chlorosis in Macadamia as Affected by Phosphate Fertilization and Soil Properties. J. Plant Nutr. 11: 161-173.

Ingles, L. G. 1965. Mammals of the Pacific States. Stanford University Press, Stanford, California.

Jacobs Engineering Group, Inc. 1992a. Operable Unit 1 Management Plan. Prepared for 3rd Wing/Environmental Management. Elmendorf Air Force Base, Alaska.

Jacobs Engineering Group, Inc. 1992b. Operable Unit 2 Management Plan. Prepared for 3rd Wing/Environmental Management. Elmendorf Air Force Base, Alaska.

Jacobs Engineering Group, Inc. In Association with Harding Lawson Associates. 1991. Installation Restoration Program (IRP), Stage 4, Sampling and Analysis Plan. Revision 1. Prepared for Headquarters, 11th Air Force, Elmendorf Air Force Base, Alaska. July.

James Montgomery Consulting Engineers, Inc., and Harza Environmental Services, Inc. 1988. Elmendorf AFB Restoration Project, Remedial Investigation: Field Activities and Data Analysis.

Volumes I and II. September.

Kabata-Pendias, A. and H. Pendias. 1992. Trace Elements in Soils and Plants. 2nd ed. CRC Press, Boca Raton, Florida.

Kapustka, L.A. and M. Reporter. 1991. "Evaluating Exposure and Ecological Effects with Terrestrial Plants. Proceedings of a Workshop for the U.S. Environmental Protection Agency Exposure Assessment Group, EPA Region 10, Seattle, Washington.

Klaassen, C. D., M. O. Amdur, and J. Doull, eds. 1991. Casarett and Doull's Toxicology: The Basic Science of Poisons. 4th ed. Pergamon Press, New York.

Kopp, S. J., T. Glonek, and H. M. Perry. 1982. Cardiovascular Actions of Cadmium at Environmental Exposure Levels. Science 217:837-839.

Kowalski, M. 1988. The Effect of Vanadium on Lung Collagen Content and Composition in Two Successive Generations of Rats. Toxicol. Lett. 41:203-208.

Krasovskii, G. N., and S. A. Fridlyand. 1971. Experimental Data for the Validation of the Maximum Permissible Concentration of Cobalt in Water Bodies. Hygiene Sanit. 36:277-279.

Larsson, P. 1984. "Transport of PCBs from Aquatic to Terrestrial Environments by Emerging Chironomids." *Environmental Pollution* (Series A) 34:283-289.

Leslie, L. D. 1989. "A Compilation of Long-Term Means and Extremes at 478 Alaskan Stations." Alaska Climate Summaries. Alaska Technical Note No. 5, 2nd ed., Arctic Environmental Information and Data Center, University of Alaska.

Lewis. R. J. Sr. 1992. Sax's Dangerous Properties of Industrial Materials. Eighth Edition. Van Nostrand Reinhold, New York.

Little, Arthur D., Inc. June 1987. The Installation Restoration Program Toxicology Guide. Vol. 3. Cambridge, Massachusetts.

Luckey, T. D., and B. Venugopal. 1977. Metal Toxicity in Mammals, Vol. 1. Plenum Press, New York.

Mackenzie, K. M. and D. M. Angevine. 1981. Infertility in Mice Exposed in Utero to benzo(a)pyrene. Biol. Reprod. 24:183-191.

Massie, H. R., and V. R. Aiello. 1984. Excessive Intake of Copper: Influence on Longevity and Cadmium Accumulation in Mice. Mech. Aging Dev. 26:195-203.

McFarland, H. N., et al. 1984. A Chronic Inhalation Study with Unleaded Gasoline Vapor. J. Amer. Coll. Toxicol. 3:231-248.

McGrath, E. A., and M. M. Alexander. 1979. Observations on the Exposure of Larval Bullfrogs to Fuel Oil. Pages 45-51. Transactions of the Northeast Section of the Wildlife Society.

McGrath, S. P., and S. Smith. 1990. "Chromium and Nickel." In *Heavy metals in Soils*, ed. B. J. Alloway. pp. 125-150. J. Wiley and Sons, Inc.

Miller, J. F. 1963. Probable Maximum Pracipitation and Rainfall-Frequency Data for Alaska. U.S. Department of Commerce. Technical Paper 47.

Miller, R. D., and E. Dobrovolny. 1959. Surficial Geology of Anchorage and Vicinity, Alaska. U.S. Geological Survey Bulletin 1093.

Murphy R. L., S. Lal, and D. K. Saxena. 1981. Effect of Manganese and Copper Interaction on Behavior and Biogenic Amines in Rats Fed a 10 Percent Casein Diet. Chemical Biological Interaction 37:299-308.

National Academy of Sciences (NAS). 1980. Mineral Tolerance of Domestic Animals. Committee on Animal Nutrition, National Research Council, National Academy of Sciences, Washington, D.C.

National Oceanic and Atmospheric Administration (NOAA). 1990. Preliminary Natural Resource Survey Findings of Fact, Elmendorf Air Force Base, Alaska.

Nelson, G. L. 1982. Vertical Movement of Ground Water Under the Merrill Field Landfill, Anchorage, Alaska. USGS Open File Report 82-1016. U.S. Geological Survey, Anchorage.

Nomiyama, K., C. Sato, and A. Yamamoto. 1973. Early Signs of Cadmium Intoxication in Rabbits. Toxicol. Appl. Pharmacol. 24:624-635.

Norton, G. A., E. L. DeKalb, and K. L. Malaby. 1986. "Elemental Composition of Suspended Particulate Matter from the Combustion of Coal and Coal/Refuse Mixtures." Environmental Science Technology Vol. 20(b):604-609.

O'Hara, P., V. Cole, and P. Willingham. 1985. Knik, Matanuska, Susitna: A Visual History of the Valleys.

Ohlendorf, H. M. 1989. Bioaccumulation and Effects of Selenium in Wildlife. Selenium in Agriculture and the Environment. L. W. Jacobs, ed. SSSA Special Publication No. 23, American Society of Agronomy and Soil Science Society of America, Madison, Wisconsin.

O'Neill, P. 1990. "Arsenic." In *Heavy Metals in Soils*, ed. J. J. Alloway. pp. 83-99. J. Wiley and Sons, Inc.

Patrick, L. D. et al. 1989. Simulation of Ground-Water Flow at Anchorage, Alaska, 1955-1983. USGS Water-Resource Investigation Report 88-4139.

Paustenbach, D. P., H. P. Shu, and F. J. Murray. 1986. A Critical Examination of Assumptions Used in Risk Assessment of Dioxin Contaminated Soil. Regl. Toxical. Pharmacol. 6:284-307.

Perry, H. M., M. W. Erlanger, and E. F. Perry. 1988. Increase in the Blood Pressure of Rats Chronically Fed Low Levels of Lead. Environ. Health Perspect. 78:107-111.

Plaskin, et al. 1989. Rapid Bioassessment Protocols (RBP) for Use in Streams and Rivers.

Poschentieder, C., M. D. Vazquez, A. Bonet, and J. Barcelo. 1991. Chromium III-Iron Interaction in Iron Sufficient and Iron Deficient Bean Plants. II. Ultrastructural Aspects. J. Plant Nutr. 14: 415-428.

Power, T., K. L. Clark, A. Harfenist, and D. B. Peakall. 1989. A Review and Evaluation of the Amphibian Toxicological Literature. Technical Report No. 61, Canadian Wildlife Service Headquarters.

Reimer, D. N. 1984. *Introduction to Freshwater Vegetation*. Department of Soils and Crops, Rutgers University, New Brunswick, New Jersey.

Robbins, C. T. 1983. Wildlife Feeding and Nutrition. Academic Press, New York.

Romanoff, A. L. 1972. Pathogenesis of the Avian Embryo. Wiley-Interscience, John Wiley & Sons, Inc., New York.

Rothe, T. C., et al. 1983. Natural Resource Inventory of Elmendorf AFB, Alaska. Prepared by the U.S. Fish and Wildlife Service for the U.S. Air Force, 21 CSG/DEEV, Elmendorf Air Force Base, Alaska.

Sax, N. I. 1984. Dangerous Properties of Industrial Materials.

Scheuhammer, A. M. 1987. The Chronic Toxicity of Aluminium, Cadmium, Mercury, and Lead in Birds: A Review. *Environ. Pollut.* 46:263-295.

Schmoll, H. R. and E. Dobrovolny. 1972a. Generalized Geologic Map of Anchorage and Vicinity, Alaska. U.S. Geological Survey Miscellaneous Investigations Map I-787-A. Washington, D.C.

Schmoll, H. R. and E. Dobrovolny. 1972b. Generalized Slope Map of Anchorage and Vicinity, Alaska. U.S. Geological Survey Miscellaneous Investigations Map I-787-B.

Schroeder, H. A., J. J. Balassa, and W. H. Vinton, Jr. 1965. Chromium, Cadmium, and Lead in Rats: Effects on Life Span Tumors and Tissue Levels. J. Nutrit. 86:51-66.

Schroeder, H. A., and M. Mitchener. 1975a. Life-Term Effects of Mercury, Methyl Mercury, and Nine Other Trace Elements on Mice. J. Nutr. 105:452-458.

Schroeder, H. A., and M. Mitchener. 1975b. Life-Term Studies in Rats: Effects of Aluminum, Barium, Beryllium, and Tungsten. J. Nutr. 105:421-427.

Schroeder, H. A., M. Mitchener, and A. P. Nason. 1970. Zirconium, Niobium, Antimony, Vanadium and Lead in Rats Life-Term Studies. J. Nutrit. 100:59-68.

Selkregg, L. L. et al. 1972. Alaska Regional Profiles, Southern Region. University of Alaska Arctic Environmental Information and Data Center, Anchorage, Alaska.

Society of Environmental Toxicology and Chemistry (SETAC). November 3, 1991. Short course on Soil and Plant Toxicity Assessment. Seattle, Washington.

Sommers, D. A. and M. V. Mardner. 1965. Water Resources Appraisal of the Anchorage Area, Alaska. U. S. Geological Survey Open-file Report.

Thornwaite. 1968. Potential Evaporation and Climate in Alaska. For the U.S. Department of Agriculture.

Ulery, C. A., and R. G. Updike. 1983. Subsurface Structure of the Cohesive Faces of the Bootlegger Cove Formation, Southwest Anchorage, Alaska. Alaska Division of Geological and Geophysical Surveys Professional Report 84, 5 p.

USKH. June 12, 1992. Repair Underground Storage Tanks, Project Definition Phase, Elmendorf AFB. Prepared for U.S. Army Corps of Engineers, Alaska District, Anchorage, Alaska.

Underwood, E. J. 1977. Trace Elements in Human and Animal Nutrition, 4th ed. Academic Press, New York.

- U.S. Air Force (USAF). 1991. Handbook to Support the Installation Restoration Program (IRP) Statements of Work. Volume I—Remedial Investigation/Feasibility Studies (RI/FS). Prepared by IRP Division Staff, Human Systems Division, Brooks Air Force Base, Texas.
- U.S. Army Corps of Engineers. 1991. Groundwater Monitoring Network, Fort Richardson, Alaska.
- U.S. Army Corps of Engineers. 1979. Soils of the Anchorage Area, Alaska. Vol. 7. Metropolitan Anchorage Urban Study. Anchorage, Alaska.
- U.S. Department of Commerce. 1963. Probable Maximum Precipitation and Rainfall Frequency Data for Alaska. Technical Paper 47.
- U.S. Department of the Interior (USDI). June 13, 1990. Letter from Jonathan P. Deason, Director, Office of Environmental Affairs, to Michael Slater, Regional Project Officer, EPA Region 10, concerning Preliminary Natural Resources Survey of Elmendorf Air Force Base. Office of the Secretary, Washington, D.C.
- U.S. Environmental Protection Agency (EPA). 1992a. Dermal Exposure Assessment: Principles and Applications, Interim Report. EPA/600/8-91/011B.
- EPA. 1992b. Framework for Ecological Risk Assessment. Risk Assessment Forum, USEPA, Washington, D.C. EPA/630/R-92/001.
- EPA. 1992c. Guidance on Risk Characterization for Risk Managers and Risk Assessors. Memorandum from F. Henry Habicht II, February 26, 1992.
- EPA. 1992d. Health Effects Assessment Summary Tables: Annual Update 1992. Office of Emergency and Remedial Response.
- EPA. 1992e. Integrated Risk Information System. Office of Research and Development. Cincinnati, Ohio.
- EPA. 1992f. Supplemental Guidance to RAGS: Calculating the Concentration Term. Office of Solid Waste and Emergency Response. Publication 9285.7-081. Washington, D.C.

EPA. 1991a. Human Health Evaluation Manual, Part B: "Development of Risk-Based Preliminary Remedial Goals." Office of Solid Waste and Emergency Response. OSWER Directive 9285.7-01B.

EPA. 1991b. Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors. OSWER Directive No. 9285.6-03.

EPA. 1991c. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive No. 9355.0-30.

EPA. 1991d. Supplemental Guidance for Superfund Risk Assessments in Region 10. USEPA, Seattle, Washington, August 23, 1991.

EPA. 1991e. Update on OSWER Soil Lead Cleanup Guidance. Memorandum from Don R. Clay.

EPA. 1991f. Health Effects Assessment Summary Tables. Annual Update. Office of Emergency and Remedial Response.

EPA. 1990. 40 CFR Part 300: National Oil and Hazardous Substances Pollution Contingency Plan, Proposed Role.

EPA. 1989a. Exposure Factors Handbook. Office of Health and Environmental Assessment. EPA/600/8-89/043.

EPA. 1989b. Risk Assessment Guidance for Superfund: Volume 1, Human Health Evaluation Manual, Part A, Interim Final. Office of Solid Waste and Emergency Response. EPA/540/1-89/002.

EPA. 1989c. Risk Assessment Guidance for Superfund: Volume II, Environmental Evaluation Manual. Office of Emergency and Remedial Response, EPA, Washington, D.C. EPA/540/1-89-001.

EPA. 1988a. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, Interim Final.

EPA. 1988b. Draft Laboratory Data Validation Functional Guideline for Evaluating Inorganics Analyses.

EPA. 1988c. Draft Laboratory Data Validation Functional Guideline for Evaluating Organics Analyses.

EPA. 1988d. Interim Sediment Values for Non-Polar Hydrophobic Organic Contaminants. U.S. EPA Office of Regulations and Standards, Criteria and Standards Division, Washington, D.C. SCD No. 17.

EPA. 1988e. Thirteen-week Mouse Oral Subchronic Toxicity Study. Prepared by Toxicity Research Laboratories, Ltd., Muskegon, MI for the Office of Emergency and Remedial Response, EPA, Washington, D.C.

EPA. 1987a. Data Quality Objectives for Remedial Response Activities, Developmental Process. EPA/540/G-87/003.

EPA. 1987b Health Assessment Document for Beryllium. Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office. Research Triangle Park, North Carolina. EPA-600/8-84-026F.

EPA. 1986a. "Guidelines for Carcinogen Risk Assessment." Federal Register, Vol. 51 33992-34013.

EPA. 1986b. "Guidelines for Estimating Exposure." Federal Register, Vol. 51 34042-34005.

EPA. 1986c. "Guidelines for the Health Risk Assessment of Chemical Mixtures." Federal Register, Vol. 51 34014-34041.

EPA. 1986d. Quality Criteria for Water 1986. Office of Water Regulations and Standards. EPA/440/5-86-001.

EPA. 1986e. Superfund Public Health Evaluation Manual. Office of Emergency and Remedial Response. EPA/540/1-86/060. OSWER Directive 9285.4-1.

U.S. Geological Survey (USGS). 1981. Water Resources Data for Alaska Water Year 1980. USGS Water Data Report. AK-80-1. Anchorage, Alaska.

USGS. 1976. Water Resources Data for Alaska Water Year 1975. USGS Water Data Report. AK-75-1. Anchorage, Alaska.

Venugopal, B. and T. D. Luckey. 1978. *Metal Toxicity in Mammals*, Vol. II. Plenum Press, New York.

Verschueren, K. 1983. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, New York.

Wahrhaftig, C. 1965. Physiographic Divisions of Alaska. U.S. Geological Survey Professional Paper 482.

Waller, R. M. 1964. Hydrology and the Effects of Increased Ground-Water Pumping in the Anchorage Area, Alaska. Prepared in cooperation with the Alaska Department of Health and Welfare and the City of Anchorage. U.S. Geological Survey Water-Supply Paper 1779-D.

Weeks, J. B. 1970. The Relationship Between Surface Water and Groundwater in Ship Creek Near Anchorage, Alaska. U.S. Geological Survey Professional Paper 700-B, pp. B224-B226.

Wetzel, R. G. 1975. Limnology. Saunders College Publishing. Philadelphia, Pennsylvania.

Whitaker, J. O., Jr. 1980. The Audubon Society Field Guide to North American Mammals. Alfred A. Knopf, New York.

Wolfe, J. L., and R. J. Esher. 1981. Effects of Crude Oil on Swimming Behavior and Survival in the Rice Rat. Environ. Res. 26:486-489.

World Health Organization (WHO). 1989. Environmental Health Criteria 85: Lead-Environmental Aspects. World Health Organization. Geneva. 106 pages.

Yehle, L.A., and H. R. Schmoll. 1987a. Surficial Geological Map of the Anchorage B-7 NE Quadrangle, Alaska. U.S. Geological Survey Open-File Report 87-416.

Yehle, L. A., and H. R. Schmoll. 1987b. Surficial Geological Map of the Anchorage B-7 NW Quadrangle, Alaska. U.S. Geological Survey Open-File Report 87-168.

Yehle, L. A., and H. R. Schmoll. 1988. Surficial Geological Map of the Anchorage B-7 SE Quadrangle, Alaska. U.S. Geological Survey Open-File Report 88-381.

Yehle, L. A., and H. R. Schmoll. 1989. Surficial Geological Map of the Anchorage B-7 SW Quadrangle, Alaska. U.S. Geological Survey Open-File Report 89-318.

Yehle, L. A., H. R. Schmoll, and E. Dobrovolny. 1990. Geological Map of the Anchorage B-8 SE and Part of the Anchorage B-8 NE Quadrangles, Alaska. U.S. Geological Survey Open-File Report 90-238.

Yehle, L. A., H. R. Schmoll, and E. Dobrovolny. 1991. Geological Map of the Anchorage B-8 SW Quadrangle, Alaska. U.S. Geological Survey Open-File Report 91-143.

Bibliography

Edmisten, G. E. and J. A. Bantle. 1982. Bull. Environ. Contam. Toxicol. 29:392-399.

Hardin. B. D., et al. 1981. Testing of Selected Workplace Chemicals for Teratogenic Potential. Scand. J. Work Environ. Health. 7(suppl. 4):66-75.

National Library of Medicine. November 1992. Hazardous Substance Databank (CD-ROM Version). Micromedex, Inc., Denver, Colorado.

National Technical Information Services (NTIS). December 1990. Toxicological Profile for Total Xylenes. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia. PB91-181552.

National Technical Information Services (NTIS). May 1989. Toxicological Profile for Benzene. Agency for Toxic Substances and Disease Registry, Atlanta, Georgia. PB89-209464.

National Institute for Occupational Safety and Health (NIOSH). 1973. Criteria for a Recommended Standard...Occupational Exposure to Toluene. DHEW Publication No. (HSM) 73-11023.

Prendergast, J. A., et al. 1967. Toxicol. Appl. Pharmacol. 10(2):270-289. As cited in TOXNET, Hazardous Substance Data Base.

Siegel, J. 1971. Toxicol. Appl. Pharmacol. 18:168-174. As cited in TOXNET, Hazardous Substance Data Base.

Syed, I. B., and F. Hosain. 1972. "Toxicity of Lesser-Known Metals to Laboratory Animals." *Journal* 22:150-152.

Appendix A

LABORATORY RESULTS ON POTABLE WATER SUPPLY FOR EQUIPMENT DECONTAMINATION

ROY F. WESTON INC.

INORGANICS DATA SUMMARY REPORT 08/21/92

CLIENT: ELMENDORF AFB 0U1 WORK ORDER: 0000-00-00-0000

WESTON BATCH #: 92085517

SAMPLE -001	SITE ID HYDRANT#1	Silver, Total Aluminum, Total Arsenic, Total Barium, Total Beryllium, Total Calcium, Total Cadmium, Total Cobalt, Total Chromium, Total Chromium, Total Chromium, Total Iron, Total Mercury, Total Mercury, Total Magnesium, Total Magnesium, Total Manganese, Total Molybdenum, Total Sodium, Total Nickel, Total Lead, Total Antimony, Total Selenium, Total Thallium, Total Vanadium, Total Zinc, Total	RESULT 0.010 0.28 0.30 0.10 0.0050 19.6 0.0050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.050 0.060 0.050 0.050 0.050 0.060 0.050 0.066	u u u	UNITS MG/L MG/L MG/L MG/L MG/L MG/L MG/L MG/L	REPORTING LIMIT 0.010 0.20 0.30 0.10 0.0050 1.0 0.050 0.050 0.050 0.050 0.050 0.015 0.10 1.0 0.040 0.050 0.050 0.050 0.050 0.050
----------------	-------------------	--	--	-------------	---	---

Note: Laboratory results for potable water supply used for equipment decontamination. HYDRANT #1 is the Elmendorf AFB fire hydrant located at intersection of Cedar and Prune Sts. Sampling was performed by Jacobs Engineering in August, 1992.

TEL:

ROY F. WESTON INC.

INORGANICS DATA SUMMARY REPORT 08/21/92

CLIENT: ELMENDORF AFB OUL

WESTON BATCH #: 92085517

WORK ORDER: 0000-00-00-0000

SAMPLE SITE ID ANALYTE RESULT UNITS LIMIT
-001 HYDRANT#1 Petroleum Hydrocarbons 1.1 u MG/L 1.1

REW Lch Number: 92085517	517	Ser Client: ELM	Semivolations by ELMENDORF	by GC/MS, HSL List OUI Work	List Report Date: 000/13:00 Hork Order: 0000-00-00-000	
)	Cust 10:	HYDRAGIT#1	SBLK	SBLK BS		
Sample Information	RFWE: Matrix: D.F.: Units:	001 KATER 1.00 ug/L	92 SE1009-MB1 VATER 1.00 ug/L	92SE1009-MB1 WATER 1.00 ug/L		
2,4,6	Nitrobenzene-d5 2-Fluorobiphenyl Terphenyl-d14 Phenol-d5 2-Fluorophenol	C 28 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	52 52 53 54 54 55 55 55 55 55 55 55 55 55 55 55	92 m 398		TEL:
Phenol bis(2-Chloroethyl)ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether	ther			55 10 10 10 0 10 0 10 0		
N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid bis(2-Chloroethoxy)methane	l l l l l l l l l l l l l l l l l l l		20222222 202222222			Sep 01 92
2,4-Dichlorophenoi 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenoi 2-Methylnaphthalene Hexachlorocyclopentadiene	ine 1 imits.			57 100 69 100 100 100 100 100 100 100 100 100 10		16:00 No.004 P.03

richlorophenol antiline antiline thylene thylene antiline thylene titrotoluene if troduene	92SE1009-MB1	0101) = 	> = • §	32	2	2	200	64 %	3	53	0	_	9 ;	9:)	2 2	2	9	2) 	2 2	2 2	75 %	ភ ខ	ລ : ຊ ;		_	10 U	_	2 : E :		22	10 U Advisory limits.
Phenol 10 10 10 10 10 10 10 1	(> : 0 (3	? ?	25	200	100	200	20 0	n 01	20 C	20 N	10) 0			_									-				_		_	25	22	10 U Outside of
phenol lene te te te phenol ol o	_	10 0) = 	2 2)	n 01) ()	20 U	n 01		_	_					200						_		n 01	20 °	20) (C	10	2 2) 	_	_	10 U ylamine. **
	RFW#:																											•						from Dipheny
2,4,6-17 2-6,4,5-17 2-6,5-17 2-6-10-17 3-6-10-17 3-8-17-18 3-8-17-18 3-8-18-18-18-18-18-18-18-18-18-18-18-18-1		9	3-iricaloropaenoi	troantline	thylohthalate	aphthylene	.6-Dinttrotoluene	-Nitroaniline	Acenaphthene	4-Dinitrophenol	-Nitrophenol	Dibenzofuran	4-Dinitrotoluene	iny iphthalate	paenyı	Dinitro-2-methylpheno	-Nitrosodiphenylamine (1)	nyleti	Hexachlorobenzene	Pentachlorophenol	Phenanthrene	at	<u>;</u>	ene	Butylbenzylphthalate	-Dichlorobenzidine	benzo(a) antintacene Chrysene	hyThexyl) pyre	(1,t, (2,h)a	Benzo(g,h;i)perylene

91		24	20	34	-	>	>	
Page .	VBLKA177 BS	925HA177-H	95	105	S	w	ഹ	
000-00-00	VBLKA177	925KA177-NB2 925KA177-NB2	0 8	5	>	S	2	
k Order: 0000-	I BASE TRIPPI VBLKAITT	004 NSD	101	113 %	>	2	S	
Yor	BASE TRIPAL	004 MS	93 %	102 %	2	2	3	
MENDORF AFB OUT	BASE TRIPE!	808	5 U	2 C	2	2 8	2	
Client: EL	Cust ID: HYDRANT#1	001	0 8	2	S	S	3	
RFW Batch Number: 92085517	Cust ID:	RFW#:		nzene	zene		Xylene (total)	to of Advicory limits
RFW Batch			Toluene	Chlorobenzene	Ethylbenzene	Styrene	Xylene (t	A. Autein

TEL:

lst | Report Date: 08/21/9. | Nork Order: 0000-00-00-000 Roy F. Weston, Inc. Stockton Laboratory Volatiles by GC/MS, HSL List Client: ELMENDORF AFB OUT RFW Batch Number: 92085517

	Cust (D:	HYDRAKT#1	BASE TRIPFI	BASE TRIPPI	BASE TRIPOL	VBLKA177	VELKA17
Sample Information	RFW#: Matrix:	001 WATER 1.00 ug/L	004 WATER 1.00 ug/L	004 MS WATER 1.00 ug/L	004 NSD WATER 1.00 ug/L	925HA177-NB2 WATER 1.00 ug/L	92 SMA177-NB2 WATER 1.00 ug/L
	Toluene-d8 Bromofluorobenzene 1,2-Dichloroethane-d4	111 × 106 × 112 ×	100 % 102 % 115 %	103 101 108 108	109 % 103 % 112 %	102 103 101 101	102 % 102 % 102 %
				10 U			n 0!
Bromomethane Vinyl Chloride		22	2 2 2 2		> >		9 9
Chloroethane Methylone Chloride		D 20	9 2 2 3	10 U	5 6	01 ⊃ €	10 C
Acetone		2	2	:C	25	2	2
1,1-Dichloroethene		n so	⊃ ⊃ 0 ¥0	103	112 %	n Nu	106 %
1,1-Dichloroethane 2-Chloroethylvinylether	.	> > • • • • • • • • • • • • • • • • • • •	3 3	ა მ	2 2 2	> >	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Chloroform		50 20 20	5 5	9	5 = 0	3 = 3	> =
2-Butanone			70	20	î Q) () ()
l,l,l-Trichloroethane Carbon Tetrachloride					3 3	.	
Vinyl Acetate		2	ŭ.) (1)	5.) 	25
1,2-Dichloropropane		. C)) ()))) 	2 23 :
cis-I,3-Dichloropropene Trichloroethene	ə	w w	⊃ S * I	2 L	75 C	⊃ ⊃	20°
Dibromochloromethane		 	.v. v.	Ω K	 	∵	5 5
Benzene)) ; (a)	991	16	, 00°)) (, 16 , 4
trans-1,3-Dichloropropene Bromoform	ene	 	w w	.	2 ⊃		-
4-Nethyl-2-pentanone		0.5	25	9:	200	25	25
Z-nexanune Tetrachloroethene			200	900		2 S	3 w
1,1,2,2-Tetrachloroethane - Outside of Advisory limits.	ine limits.	.	D	> ^	-	>	· (

Appendix B
SOIL BORING LOGS

PROJECT NUMBER

ANC31026.H3.60

BORING NUMBER

0U5SB-18

SHEET 1 OF 2

PROJEC	CT Elme	endorf A	FB - 0	U5	LOCATION S.E.	Corner of Corps Building/EAFB
ELEVA		7			DRILLING CONTRACTOR Denali	
					1 Mobile Driff Rig. 4.25" ID Augers	20.1000
		34.2' SAMPLE			START 8/12/92 0815 FINISH 8/12/9	
9T	 	JAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6* -6* -6* -6*	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	•	1-GRAB		NA	ORGANIC MATERIAL (PT), to 2.0',SILI, (ML),light brown, dry, soft to firm, no dry strength, non plastic; ocassionally organics including rootlets, debris-filled cavities.	Note: No product odor from 0 to 35'. Strong product odor at 35'. HNu=190 ppm Cuttings collected and inspected from flights from 0 to 5'.
_	5.0				- -	
5.0 —	7.0	2-SH	2.0	7-24-14-23 (38)	From 5.0 to 11.1' <u>POORLY GRADED GRAVEL WITH SAND</u> , (GP), brown, dry becoming moist at 3.2', medium dense, subrounded gravel to 3" diameter	_
-					with fine to medium subangular sand, trace nonplastic silt and occasional subrounded cobble and occasional organic layers to "	
	10.0				1	-
10.0	12.0	3-SH	1.8	34-26-20-22 (46)	From 11.1 to 16.0' POORLY GRADED SAND, (SP), brown, moist, medium dense, fine to coarse subangular sand with trace nonplastic silt.	5SB18-10A is field duplicate of 5SB18-10.
						·
15.0 —	15.0					-
_	17.0	4-SH	2.0	14-46-55-72 (101)	From 16.0' POORLY GRADED GRAVEL WITH SAND. (GP), brown, moist, very dense, subrounded	Increasing gravel fraction.
					gravel to 2" diameter, fine to medium subangular sand with trace non plastic silt, occasional coal seams to 2" thick.	-
	20.0				Ī	1
20.0 —		5-SH	2.0	10-25-35-40 (60)	POORLY GRADED GRAVEL WITH SAND. (GP), same as above.	-
_	22.0				-	-
25.0 —	25.0					-
_	27.0	6-SH	2.0	23-44-63-69 (107)	POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	
Ī]	
	30.0				7	-

BORING NUMBER

0U5SB-18

SHEET 2 OF 2

PROJEC	T Elme	ndorf A	FB - 01	J5	LOCATION S.E	. Corner of Corps Building/EAFB
ELEVAT					DRILLING CONTRACTOR Denali	
					1 Mobile Drill Rig. 4.25" ID Augers	
WATER					START 8/12/92 0815 FINISH 8/12/9	· · · · · · · · · · · · · · · · · · ·
8E		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6° -6° -6° -6 (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	30.0 31.5	7-SH	1.5	62-90-100/6"	POORLY GRADED GRAYEL WITH SAND, (GP), same as above with occasional subround cobble to 4" diameter.	
-					-	Split-spoon refusal encountered at 31.5', augered through it.
35.0 —	35.0				Becomes wet at 34.2 '	Freewater encountered at 34.2'
-		8-SH	2.0	32-53-43-33 (96)	POORLY GRADED GRAVEL WITH SAND, (GP), same as above, gray, wet, hydrocarbon stain and sheen on gravel	Strong odor from 35.0' to 37.0'. HNu reads 190 ppm.
	37.0			(90)	END OF BORING AT 36.0'	Boring sealed using cement/bentonite grout mixed at a ratio of 0.5gal H2O/18b. cement/.05lb. bentonite.
_	•				SH=2.5" sampler.	ORS oil/water interface probe usedno - free product.
					-	
40.0 —					_	
-					-	
					_	
45.0 —					<u> </u>	_
_					-	
_					-	
-					-	
500					-	-
50.0 —					_	
-					_	
_					-	_
-					-	-
55.0 —					_	_
-					-	
-					· .	
-					-	
-					-	1

BORING NUMBER

0U5SB-19

SHEET 1 OF 2

SOIL BORING LOG

PROJECT Elmendorf AFB - 0U5

ELEVATION _______ DRILLING CONTRACTOR Denali

DRILLING METHOD AND EQUIPMENT HSA. B61 Mobile Drill Rig. 4.25" ID Augers

					1 Mobile Drill Rig, 4.25" ID Augers	
WATER	LEVELS	39.0	on 8/16	0/92	START 8/10/92 1015 FINISH 8/11/93	2 1815 LOGGER Rob Crotty
aE.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	JNTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	7EST RESULTS 6°-6°-6°-6°	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
_	2.5	1-55	2.4	12-17-24-41 (41)	ORGANIC MATERIAL. (PT), to 0.1' From 0.1 to 2.0' SANDY SILT. (ML), light brown, dry, dense, nonplastic silt with very fine to medium sand; trace organics including rootlets and cavities throughout.	HNu background=2 ppm Note: No product odor, HNu=1ppm, LEL=0%
5.0 —	5.0	2-SH	2.5	24-67-73-65 (140)	From 2.0 to 7.0' SILTY GRAVEL WITH SAND. (GM), light brown, dry becoming moist, dense to very dense; subrounded gravel to 2.0" diameter	Increasing gravel fraction in cuttings. Note: Additional 0.5' material collected in sampler after driving and counting
3.0 -	7.5	3-SH	2.4	6-29-37-51 (66)	with nonplastic silt and very fine to medium subangular sand; trace organics including rootlets and cavities from 2.0 to 3.5 ft. From 7.0' to 12.5' POORLY GRADED GRAVEL WITH SAND. (GP).	required 2.0 ft. therefore, each sampler is driven 2.5".
-	7.5	4-SH	2.5	15-27-35-40 (62)	brown, moist dense; subround gravel to 3.0" diameter with fine to coarse subangular sand and trace nonplastic silt. POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	Slight weathered hydrocarbon odor from 7.3 to 15.0°. HNu reads 12.0 ppm.
10.0 —	10.0				POORLY GRADED GRAVEL WITH SAND. (GP).	Charles 202) veis expelle ESB10-10 takes
-		5-SH	2.5	4-36-89-100 (125)	same as above.	Chemical analysis sample 5SB19-10 taken from 10.0"-12.5" in 5-SH.
_	12.5 13.0	6-SH	0.5	100/6"	From 12.5 to 13.0'	Sampler refusal at 6" interval from 12.5
-	15.0		4.5		POORLY GRADED GRAVEL WITH SAND, (GP), same as above with occasional subround cobble to 4" diameter.	to 15.0. HNu reads 3.0 ppm at 12.5' to 15.0'.
15.0 —	15.0	7-SH	0.7	6-14-50-100 (64)	From 15.0' to 17.5' POORLY GRADED GRAVEL WITH SAND, (GP), same as above	HNu reads 20.0 ppm at 15.0' to 17.0'
-					No sample taken in 17.5' to 20.0' interval.	Poor recovery from 15.0 to 17.5. Chasing a large cobble that is affecting recovery; therefore, 1. drill to 20.0' and begin drive, 2. Log cuttings from 17.5 to 20.0'.
20.0 —	20.0	8-SH	2.5	17-59-62-51 (121)	From 20.0' to 25.5' POORLY GRADED SAND WITH GRAVEL, (SP), brown, moist, very dense, medium to coarse subangular sand with subrounded gravel to 2" diameter, 1" coal lens at 21.2'.	20.0
25.0	25.0	9-SH	2.5	16-29-31-50 (60)		
-	27.5	10-SH	2.5	7-25-36-39 (61)	From 25.5' to 41.0 WELL GRADED SAND, (SW), brown, moist, medium dense, medium subangular sand with occasional subrounded gravet to 0.2" diameter and 1-2" coal lens.	
-	30.0	11-SH	2.5	23-36-33-56 (69)		HNu reads 42.0 ppm at 27.5'to 30 0' Note. "Hit" could be due to coal.

BORING NUMBER

0U5SB-19

SHEET 2 OF 2

PROJECT Elmendorf AFB - OUS	· · · · · · · · · · · · · · · · · · ·	LOCATION EAFB		
ELEVATION	DRILLING CONTRACTOR	Denali	·	
DRILLING METHOD AND EQUIPMENT HSA. BE				
	8/10/02 1015	8/11/02 1915	Bob Crotty	

DRILLI	NG MET	HOD AND	EQUIF	PMENT HSA. B6	Mobile Drill Rig, 4.25" ID Augers	
WATER	LEVELS	39.0	on 8/1	0/92	START 8/10/92 1015 FINISH 8/11/9	92 1815 LOGGER Rob Crotty
æE.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6' -6' -6' -6' (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	30.0	12-SH	2.5	6-16-32-50 (48)	WELL GRADED SAND, (SW), same as above.	
-	35.0	13-SH	2.5	12-13-32-56 (45)	W <u>ELL GRADED SAND</u> , (SW), same as above.	-
35.0 — -	37.5	14-SH	2.5	12-16-16-22 (32)	WELL GRADED SAND, (SW), same as above.	Note: Change to 300 lb. hammer drive SH sampler at 35.0'.
-	40.0	15-SH	2.5	10-12-12-20 (24)	WELL GRADED SAND, (SW), same as above, becomes wet at 39.0°.	Free water encountered at 39.0
40.0 — - -	42.5	16-SH	2.5	7-10-11-17 (21)	From 41.0' to 45.0' POORLY GRADED SAND WITH GRAVEL, (SP), brown, wet, medium dense, medium to coarse subround sand with subangular gravel to 0.4" diameter, occasional	
- 45.0 —	45.0	17-SH	2.5	13-26-27-39 (53)	fractured coal particles throughout.	Potable water added to HSA center rod annulus to counteract heave for 17-SH.
-	47.5	18-SH	2.5	6-13-24-32 (37)	From 45.0' to 51.5' POORLY GRADED SAND WITH GRAVEL, (SP). brown, wet, medium dense, medium to coarse subangular sand with trace subround gravel to 0.3" diameter, occasional subangular coal particles	Again, potable water added to HSA/center rod annulus to counter heave in 18–SH.
- 50.0	50.0	19-SH	2.5	16-20-37-30 (57)	throughout.	
-	52.5	20-SH	2.5	8-10-12-16 (22)	From 51.5' to 52.5' SILTY CLAY, (CL/ML), olive gray, dry to wet, fat clay with slightly plastic silt, thixotropic.	Bootlegger cove formation. Sample 5SB19-52 collected 51.5 to 52.5'.
- - 55.0 —					END OF BORING AT 52.5'	End of boring at 52.5' Grouted back 8/12/92.
-						
						4

BORING NUMBER

0U5SB-20

SHEET 1 OF 2

PROJECT Elmendorf AFB - 0U5	L	OCATION Operable Unit 5 E	AFB
ELEVATION	DRILLING CONTRACTOR Dena	ali	
DRILLING METHOD AND EQUIPMENT HSA, B61 Mol	bile Drill Rig.4.25" ID Augers		
25 2 1 2 (2 (2 2			

					Mobile Drill Rig.4.25" ID Augers	2 1750 LOGGER ROD Crotty
		SAMPLE		STANDARD	START 8/6/92 0956 FINISH 8/6/9	2 1750 LOGGER Rob Crotty COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6' -6' -6' -6'	SOIL DESCRIPTION SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
- -	2.0	1-55		4-6-18-26 (24)	ORGANIC MATERIAL AND PEAT, (PT), to 0.4'. From 0.4' to 20.0' SILT, (ML), light brownish buff, dry, medium stiff, nonplastic.	HNu background = 2ppm
-	5.0					Drilling action becomes harder. Gravel in cuttings.
5.0	7.0	2-55		24-24-36-17 (60)	From 5.0' to 7.0' SILTY GRAYEL WITH SAND, (GM), dark brown, moist, medium dense to dense, subround gravel to 3.0" diameter with medium to coarse subangular sand, trace	
-					nonplastic silt.	
10.0 — -	12.0	3-SH	0	10-15-i6-17 (31)	From 10.0' to 12.0' POORLY GRADED GRAVEL WITH SAND. (GP), dark brown, moist, medium dense to dense, subround gravel to 3.0" diameter with	
-	13.0	4-SH	1.0	20-26-107/0"	medium to coarse subangular sand, trace nonplastic silt. From 12.0' to 13.0' POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	OVM reads 5.0 ppm at 12.0° to 14.0°.
- 15.0 -	15.0	5-SH		36-24-27-28	From 15.0' to 17.0' POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	
-	17.0			(51)	-	
- 20.0 —	20.0				From 20.0' to 21.0'	HNu = 1 ppm at 1130
-	22.0	6-SH	2.0	4-47-49-54 (96)	POORLY GRADED SAND, (GP), same as above. From 21.0' to 22.0' POORLY GRADED SAND, (SP), brown, moist.	OVM reads 2.0 ppm at 20.0' to 22.0'
-					very dense, medium to coarse subsubangular sand with occasional subangular gravel to 0.4" diameter. Coal seam from 20.5' to 20.8'.	
25.0 — -	25.0	7-SH		20-70-77-84	From 25.0' to 27.0' POORLY GRADED SAND, (SP), same as above.	OVM reads 2.0 ppm at 25.0' to 27.0'
-	29.0	8-SH		72-89-77-80 (166)	From 27.5' to 29.0' POORLY GRADED SAND WITH GRAVEL, (SP), brown, moist, dense becoming very dense, medium to coarse subround sand with	
	1				subround gravel to 2" diameter, coal seam at 28.7" to 29.0".	

50.0 -

55.0

PROJECT NUMBER ANC31026.H3.60 BORING NUMBER

0U5SB-20

SHEET 2 OF 2

PROJECT Elmendorf AFB - 0U5 ELEVATION									
				PMENT HSA, B6	Mobile Drill Rig.4.25" ID Augers				
		35.2			START 8/6/92 0956 FINISH 8/6/92	2 1750 LOGGER Rob Crotty			
₃£ l		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS			
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	PENETRATION TEST RESULTS 6' -6' -6' -6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION			
-			-						
35.0 —	35.0				From 35.0' to 37.0'	5			
-	37.0	9-SH	2.0	35-40-50-57 (90)	POORLY GRADED SAND WITH GRAVEL, (SP), same as above, becomes wet at 35.2'.	Freewater encountered at 35.2'.			
-	•				END OF BORING AT 37.0'	Boring Grouted			
40.0					_				
_					_				
7					-				
45.0 —									
					-				
- -					-				
_									

BORING NUMBER

0U5SB-21

SHEET 1 OF 2

PROJECT Elmendorf AFB - 0U5		LOCATION SH of EAFB P	ower Plant	
ELEVATION	DRILLING CONTRACTOR _)enali		
DRILLING METHOD AND EQUIPMENT HSA, BE	31 Mobile Drill Rig, 4.25" ID Augers			
WATER EVELS 33.8 ' on 8/12/92	START 8/12/92 1700	ETNIEL 8/13/92 1705	LOGGED ROD Crotty	

WATER	LEVELS	33.8	on 8/1	92 1705 LOGGER Rob Crotty		
SE.		SAMPLE		STANDARD PENETRATION	SCIL DESCRIPTION	COMMENTS
38	VAL		ERY	TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	(N) 6666.	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
_	2.5	1-SH	1.9	12-23-30-32 (53)	ORGANIC MATERIAL, (PT), to 0.2'. From 0.2 to 8.2 POORLY GRADED GRAYEL WITH SAND, (GP), brown, moist, medium dense, subrounded grayel to 2" diameter with fine to medium subangular sand and trace nonplastic silt.	Additional 0.5' collected in drive after driving and counting blows for 2.0'. Each sampler contains a 2.5 foot drive.
- 5.0 —	5.0	2-SH	1.8	48-32-34-30 (66)		
-		3-SH	1.6	39-22-22-18 (44)		OVM reads 3.0 ppm at 5.0' to 7.5'
	7.5					OVM reads 10.0 ppm at 7.5' to 10.0'
10.0 —	10.0	4-SH	2.0	8-15-16-20 (31)	From 8.2' to 11.0' POORLY GRADED GRAVEL WITH SILT AND SAND, (GP-GM), brown, moist, mediuim dense, subrounded gravel to 3" diameter with fine to medium subangular sand and	-
-	12.5	5-SH	2.0	11-12-11-10 (23)	nonplastic silt. From 11.0' to 16.0' <u>SILT WITH GRAVEL</u> , (ML), brown, dry to moist, very stiff, low to no dry strength,	
- -		6-Ѕн	2.0	3-8-9-0 (17)	nonplastic, occasional subangular grävel to 0.1" diameter, loess.	OVM reads 30.0 ppm at 12.5° to 15.0°
15.0 —	15.0			 	-	OVM reads 3.0 ppm at 15.0' to 17.5'
-	17.5	7-SH	0.7	6-8-10-12	From 16.0' to 18.0' SILTY GRAYEL, (GM), brown, moist, subround gravel to 0.5" diameter with low dry strength, nonplastic sit.	-
- 	20.0	8-SH	2.0	12-22-26-21 (49)	From 18.0' to 25.5' POORLY GRADED GRAVEL WITH SAND. (GP). brown, moist, medium dense, subangular to round gravel to 2" diameter with medium	
20.0 -	22.5	9-SH	1.5	17-28-33-40 (61)	subangular sand and trace nonplastic silt, occasional coal seam to 2" thick.	OVM reads 7.0 ppmat 20.0° to 22.5° Note: High OVM reading at 20.0° to 22.5° possibly due to coal.
25.0 —	25.0	10-SH	1.3	33-32-53-43 (85)		-
20.U	27.5	11-SH	2.0	12-26-50-52 (76)	From 25.5' to 30.5' POORLY GRADED SAND, (SP), light brown, moist, dense, uniform medium subangular sand, occasional coal lens to 0.5" thick.	- - - -
-	30.0	12-SH	2.0	11-35-52-56 (87)		-

BORING NUMBER 0U5SB-21

SHEET 2 OF 2

PROJECT Elmendorf AFB - 005	LOCATION SW of EAFB Power Plant	
ELEVATION	DRILLING CONTRACTOR Denali	
DRILLING METHOD AND EQUIPMENT HSA.	861 Mobile Drill Rig, 4:25" ID Augers	
	9/19/199 1700	

	33.8 SAMPLE	on 8/1		START 8/12/92 1700 FINISH 8/13/9	22 1705 LOGGER Rob Crotty
	SAMPLE				
ایر			STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6' -6' -6' -6'	SOIL NAME, USCS GROUP SYMBOL, COLOR. MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
32.5	13-SH	2.0	12-35-50-57 (85)	From 30.5'to 33.8' Interlayered <u>POORLY GRADED SAND WITH</u> <u>GRAYEL</u> , (SP), brown, moist, very dense, uniform medium subangular sand, gravel is subround to 2" diameter.	-
35.0	14-SH	2.0	15-23-30-31 (53)	From 33.8' to 36.0 POORLY GRADED SAND WITH GRAVEL. (SP) same as above, except becomes wet at	Freewater encountered at 33.8'.
37.5	15-SH	2.0	30-25-30-40 (55)	From 36.3' to 46.0' POORLY GRADED SAND, (SP), brown, wet, dense, medium to coarse subangular sand.	-
40.0	16-SH	2.0	43-31-50-51 (81)	- -	OVM reads 9.0 ppm at 40.0' to 42.5'.
42.5	17-SH	2.0	23-30-33-35 (63)	- -	
45.0	18-SH	2.0	3-38-30-47 (68)	- -	OVM reads 10.0 ppm at 42.5' to 45.0'.
46.0	19-SH	1.0	24-100/6"	From 47.5' to 48.0'	Split-spoon sampler refusal at 46.0'. OVM reads 3.0 ppm at 45.0' to 46.0'. Bootlegger cove formation.
	20-SH	2.0	26-40-55-100 (95)	From 48.0° to 50.0° SILTY CLAY (CL), olive gray, moist to wet, hard.	No free product encountered.
30.0				END OF BORING AT 50'	-
				- -	
				-	
,				- -	
	30.0 32.5 35.0 37.5 40.0	30.0 13-SH 32.5 14-SH 35.0 16-SH 40.0 17-SH 42.5 18-SH 45.0 46.0 19-SH 47.5	30.0 13-SH 2.0 32.5 14-SH 2.0 35.0 15-SH 2.0 37.5 16-SH 2.0 40.0 17-SH 2.0 42.5 18-SH 2.0 45.0 46.0 19-SH 1.0 47.5	30.0 13-SH 2.0 12-35-50-57 32.5 14-SH 2.0 15-23-30-31 (53) 35.0 15-SH 2.0 30-25-30-40 (55) 40.0 17-SH 2.0 43-31-50-51 (81) 42.5 18-SH 2.0 23-30-33-35 (63) 42.5 18-SH 2.0 3-38-30-47 (68) 45.0 46.0 19-SH 1.0 24-100/6" 47.5	30.0 13-SH 2.0 12-35-50-57 (85) 32.5 14-SH 2.0 15-23-30-31 (53) 35.0 15-SH 2.0 30-25-30-40 (55) 37.5 16-SH 2.0 43-31-50-51 (81) 40.0 17-SH 2.0 23-30-33-35 (63) 18-SH 2.0 3-38-30-47 (68) 45.0 47.5 20-SH 2.0 26-40-55-100 (95) From 33.5' to 33.8' Interlayered POORLY GRADED SAND WITH GRAYEL (SP) same as above, except becomes wet at 33.8'. From 33.8' to 36.: POORLY GRADED SAND WITH GRAYEL (SP) same as above, except becomes wet at 33.8'. From 36.3' to 46.0' POORLY GRADED SAND (SP), brown, wet, dense, medium to coarse subangular sand. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 47.5' to 48.0' POORLY GRADED SAND, (SP) same as above. From 48.0' to 50.0' SILTY CLAY (CL), olive gray, moist to wet, hard.

PROJECT NUMBER	BORING NUMBER	· · · · · · · · · · · · · · · · · · ·			
NIC 21026 H3 60	0U5SB-22	SHEET	1	Œ	

SOIL BORING LOG

PROJECT	ELMENDORF	AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION ___

__ DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT MOBILE DRILL 8-61, TRUCK MOUNT, 4.25-INCH ID AUGER

WATER LEVELS 31.5 ft bgs. on 8/28/92 START 8/28/92 FINISH 8/28/92 LOGGER D. KUNKEL

WATER	IATER LEVELS 31.5 ft bgs. on 8/28/92			n 6/26/92	START 8/28/92FINISH 8/28/	92 LOGGER D. KUNKEL
₽₽		SAMPLE		[SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	8° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	-	F 2	a.		-	
5.0 -	5.0	5822 <i>-</i> 5	1.2	19-32-18-25	From 5.0 to 7.0 ft. <u>POORLY GRADED SAND</u> <u>WITH GRAVEL</u> (SP) poorly-graded sand with gravel, gray-brown, dry, dense, fine	-
-	7.0				to medium sand with subangular to subrounded gravel, and minor amounts of non-plastic silt. Some cobble fragments.	
10.0 —	10.0	SB22-10	1.3	12-17-17-18	From 10.0 to 12.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL, (SP) As above.	-
-	12.0				- -	
5.0 —	15.0	6B22-15	1.1	10-18-28-29	From 15.0 to 17.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL, (SP) As above.	
- -	17.0				<u>-</u>	
20.0 —	20.0	\$B22-20		12-25-20-33	From 20.0 to 22.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL. (SP) As above.	
-	22.0	5622-20	1.3		-	
25.0 —	25.0			15, 26, 31, 35	From 25.0 to 27.0 ft. <u>POORLY GRADED</u> SAND WITH GRAVEL. (SP) As above.	
-	27 0	SB22-2	1.3	15-26-31-35	SAND WITH GRAVEL (SF) AS BOOVE.	
30.0 —	30.0				From 30.0 to 32.0 ft. <u>POORLY GRADED</u>	
-	32.0	B22-30	1.3	10-25-28-23	SAND WITH GRAVEL (SP) As above Free water encountered at 31.5 ft. bgs. No discernible floating product.	
- - 36.0	35.0					
-	37.0	SB22-3!	1.4	12-19-21-20	SAND WITH GRAVEL (SP) As above	
-						
35.0 - - - -	35.0	\$B22-3	5 1.4	12-19-21-20	- - From 35 0 to 37 0 ft. <u>POORLY GRADED</u>	

BORING NUMBER

OU5SB-23

SHEET 1 OF 2

PROJECT Elmendorf AFB - 0U5 LOCATION Operable Unit 5 EAFB								
ELEVA					DRILLING CONTRACTOR Denali	·		
					Mobile Drill Rig. 4.25" ID Augers			
WATER	LEVELS	40.5	on 8/18/	/92	START 8/18/92 1035 FINISH	8/21/92 1432 LOGGER Rob Crotty		
æĒ		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS		
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION		
	0.3				From 0.0' to 0.3' ORGANIC MATERIAL. (PT)	*Surface sample S5B23-0 taken from Sample 1-SH from 0 to 0.5'.		
-	2.5	1-Sh	2.0		From 0.3 to 2.5' SILI (ML), brown, dry to moist, firm, nonplastic with trace very fine sand, organics, rootlets and cavities throughout.	*Additional 0.5 material collected in each drive, therefore total drive is 2.5'.		
-	5.0				From 5.0' to 7.0' POORLY GRADED GRAVEL WITH SILT AND	Silt appears to be loess, edian deposition.		
5.0 —	7.0	2-SH	2.0	45-26-37-38 (63)	SAND, (GP-GM), light brown to brown, dry becoming moist at 3.0', subround gravel to 3" diameter with very fine to medium subangular sand and nonplastic silt, trace organics.	•		
-	9.5	3-SH		10-11-29-40 (40)	From 7.0 to 14.0' Interbedded <u>POORLY GRADED SAND.</u> (SP) and <u>POORLY GRADED SAND WITH GRAVEL</u> , (SP), brown, moist, medium dense sand layers consist of uniform coarse			
10.0 —	10.0				subround sand, gravelly sand layers consist of medium to coarse sand with	S5B23-10 collected from 10.0' to 12.5'.		
-	12.5	4-SH	2.0	12- 3 0-39-45 (69)	subround gravel to 1" diameter, sand and gravelly sand beds range to 1" in thickness.			
15.0	15.0	5-SH	2.0	27-40-45-68 (85)	From 14.0 to 20.0' POORLY GRADED GRAVEL WITH SAND, (GF	P), _		
13.0	17.5	6-SH	2.0	62-60-60-30 (123)	brown, moist, dense, subround gravel to 2-inch diameter with medium to coarse subround sand, occasional coal seam to 3".	-		
	20.0	7-SH	2.0	4-17-21-30 (35)				
20.0 —	22.5	8-SH	2.0	13-37-67-100	From 20.0 to 32.0 Interbedded <u>POORLY GRADED SAND.</u> (SP) and <u>POORLY GRADED GRAVEL WITH SAND.</u> (GP), brown, moist, medium dense, fine to coarse grained sand in beds 2' thick, subround gravel with medium to).		
	25.0	9-SH	2.0	22-33-44-38	coarse subangular sand in beds to 1'thick Occasional cobbles to 4" diameter with			
25.0 —		10-SH	21	21-49-99-90 (148,		S5B23-25 collected from 25.0 to 27 5'.		
	30.0	11-SH	2.0	16-49-79-72	Interbedded POORLY GRADED SAND, (SP and POORLY GRADED GRAVEL WITH SAND, (GP), same as the above, dense.	1.		

BORING NUMBER

OU5SB-23

SHEET 2 OF 2

PROJECT Elmendorf AFB - 0U5		LOCATION Operable Unit	5 EAFB	
ELEVATION	DRILLING CONTRACTOR _	Denali		
DRILLING METHOD AND EQUIPMENT HSA BE	31 Mobile Drill Rig, 4.25" ID Augers			
HATER (EVELS 40.5 on 8/18/92	START 8/18/92 1035	574704 8/21/92 1432	. seems Rob Crotty	

WATER	LEVELS	40.5	on 8/18	/92	START 8/18/92 1035 FINISH 8/21/	92 1432 LOGGER Rob Crotty
$\overline{}$		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	IVAL	ANO	/ERY	PENETRATION TEST RESULTS	MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE
DEPTI- SURF	INTERVAL (FT)	TYPE NUMBE	RECOVERY (FT)	(N) 6eee.	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	30.0	12-SH	2.0	16-40-45-60 (85)	From 32.0 to 40.5'	
- - 35.0	32.5 35.0	13-SH	2.0	20-21-48-59 (69)	POORLY GRADED SAND, (SP), brown, moist, medium dense, uniform medium subangular sand, occasional subround gravel lenses and coal lenses to 3".	_
35.0	37.5	14-SH	2.0	12-27-77-58 (64)	- -	
- - 40.0 —	40.0	15-SH	2.0	26-31-41-67 (72)	- -	Free water encountered at 40.5' at 1655 on 8/18/92.
-	42.5	16-SH	2.0	33-41-42-34 (83)	POORLY GRADED SAND, (SP), same as above, wet at 40.5".	-
- - 45.0 —	45.0	17-SH	2.0	9-22-22-29 (44)	From 42.5 to 47.5' POORLY GRADED GRAVEL WITH SAND, (GP), brown, moist, medium dense, medium to coarse grained sand with subround gravel to 3" diameter with occasional coal seams to 1".	HNu= 39 ppm at 42.5 to 45.0' End drilling on 8/18/92 Begin at 42.5 on 8/21/92. Change to 300lb. hammer at 42.5'.
-	47.5	18-SH	2.0	9-22-33-41 (55)		HNu= 32 ppm at 45.0' to 47.5' HNu background for 8/21/92 is 0 ppm.
- - 50.0	50.0	19-5H	_ 2.0	12-22-32-35 (54)	From 47.5 to 57.8' POORLY GRADED SAND, (SP), brown, wet, dense, medium to coarse subangular sand, occasional gravel lenses to 0.4' with occasional coal lenses to 2".	-
-	52.5	20~SH	2.0	7-7-15-20 (22)		-
- - 55.0 —	55.0	21-SH	2.0	12-27-37-33 (64)		-
-	57.5	22-SH	20	23-50-60-43 (110)		
-	60.0	23-5н	2.0	7-7-10-17 (17)	From 57.8 to 60.0' SILTY CLAY, (CL), olive gray, moist, stiff, thixotropic. END OF BORING AT 60.0'	End of boring at 60.0° Bootlegger cover formation. No floating product

BORING NUMBER

0U5SB-24

SHEET 1 OF 2

PROJEC	T Elme	ndorf A	FB - 0	U5	LOCATION Ope	rable Unit 5 EAFB		
ELEVAT	TION _				DRILLING CONTRACTOR Denali	DRILLING CONTRACTOR Denali		
					Mobile Drill Rig, 4.25" ID Augers			
WATER	LEVELS	29.1 0	n 8/23/	/92	START 8/23/92 1050 FINISH 8/23/9	92 1230 LOGGER Rob Crotty		
₹F		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS		
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6° -6' -6' -6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION		
_	0.3	-GRAB	NA		From 0.0' to 0.3' ORGANIC MATERIAL, (PT)	HNu background <1.0 ppm on August 23, 1992 at 0U5SB-24.		
-					From 0.3 to 5.0' POORLY GRADED GRAVEL WITH SILT AND SAND, (GP-GM), brown, moist, loose becoming medium dense, subround gravel to 2" diameter with nonplastic silt and fine to medium sand, trace organics from 0.2 to 4.0'.	Soil description based on soil cuttings and drilling action from 1.5 to 5.0'.		
5.0	5.0				5 50 4- 00'			
-		2-SH	2.0	6-8-12-18 (20)	From 5.0 to 9.0' POORLY GRADED GRAVEL WITH SAND, (GP), brown, moist, loose, subround gravel to 1" diameter with medium subangular sand, trace silt and occasional coal lens to 3".	Soil description based on soil cuttings and drilling action from 7.0 to 10.0'. decreasing gravel fraction, increasing drilling rate.		
	9.0				5	drining rate.		
10.0 —	12.0	3-SH	2.0	6-12-16-15 (28)	From 9.0 to 12.0' POORLY GRADED SAND, (SP), brown, medium dense, medium to coarse subround gravel to 1" diameter trace nonplastic silt and occasional coal lenses.			
	12.0				1	Soil description based on soil cuttings and drilling action from 12.0 to 15.0'.		
15.0	15.0							
10.0		4-SH	2.0	6-18-12-20	From 15.0' to 17.0' POORLY GRADED SAND, (SP), same as above.			
	17.0	, J.,	2.0	(30)	above.			
-						Soil description based on soil cuttings and drilling action from 17.0 to 20.0		
20.0	20.0				From 20.0' to 22.0'	-		
-	22.0	5-SH	1.8	9-12-20-22 (32)	POORLY GRADED SAND, (SP), same as above.	-		
					_	Soil description based on soil cuttings and on drilling action from 22.0° to 25.0°.		
25.0 —	25.0				-	Increase in gravel fraction at 24.0°. Decrease in drilling rate.		
-	27.0	6-SH	2.0	8-18-19-20 (37)	From 25.0' to 27.0' POORLY GRADED GRAVEL WITH SAND (GP), brown, moist, medium dense, subround gravel to 2" diameter with medium to coarse subangular sand, trace nonplastic			
	i				silt and occasional coal lens.	Soil description based on drilling action from 24.0 to 30.0'.		
						Francistas appointment of 2011 of 1220 C		
	30.0					Freewater encountered at 29.1° at 1220 on 23 August, 1992.		

BORING NUMBER

0U5SB-24

SHEET 2 OF 2

PROJECT	Elmendorf AFB -	005	LOCATION Operable Unit 5 EAFB	
ELEVATIO	ON NC		DRILLING CONTRACTOR Denail	
DRILLING	METHOD AND EQ	UIPMENT HSA B61 Mot	bile Drill Rig, 4.25" ID Augers	
WATER LE	VELS 29.1 on 8/	23/92	START 8/23/92 1050 FINISH 8/23/92 1230 LOGGER ROD Crotty	
₹Ē.	SAMPLE	STANDARD	SOIL DESCRIPTION COMMENTS	

	LEVELS				The state of the s	92 1230 LOGGER Rob Crotty
¥Ē.	<u> </u>	SAMPLE		STANDARD PENETRATION TEST RESULTS	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 8° -6' -6' -6' (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE ORILLING FLUID LOSS TESTS AND INSTRUMENTATION
	30.0	7-SH	2.0	9-16-18-36 (34)	POORLY GRADED GRAVEL WITH SAND, (GP), same as above, wet.	
-					END OF BORING AT 32.0'	No discernible floating product.
5.0 —					- -	
-					- -	
-					-	
(0.0 -					-	
-					-	
					- -	
45.0 —						
					- -	
50.0 —					-	
JU.U				-	-	
-	1				- -	
- 55.0 –					- -	
					-	
					_	
•	-				-	

BORING NUMBER

OU5SB-25

SHEET 1 OF 1

PROJEC	T Elme	ndorf A	FB - 0L	J <u>5</u>	LOCATION 5SB	25
ELEVA					DRILLING CONTRACTOR Denali	
					Mobile Drill Rig, 4.25" ID Augers	
WATER	LEVELS	8.6' B	GS on 8	3/18/92	START 8/18/92 0800 FINISH 8/18/9	92 0920 LOGGER Rob Crotty
æF.		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6" -6" -6" -6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	0.4				ORGANIC MATERIAL AND PEAL (PT), to	Logged by cuttings and drilling action to 5.0.
1	1.5				From 0.4' to 1.5' SILT. (ML), brown, dry, becoming moist, stiff, nonplastic with trace very fine grained sand, rootlets and cavities throughout, occasional subangular gravel to 0.5" diameter.	Silt deposit possibly of eolian origin, loess
_	4.7				From 1.5' to 4.7' POORLY GRADED GRAVEL WITH SILT AND	
5.0 —	7.0	1-SH	2.0	98-36-23-39 (59)	SAND, (GP-GM), light brown, moist, medium	
-	•				From 4.7' to 7.0' POORLY GRADED GRAVEL WITH SAND. (GP), brown, moist, medium dense, subround gravel to 3" diameter with fine to medium subangular sand, trace silt and organics with occasional subround cobble to 5"	Free water encountered at 8.6° at 0850.
10.0 —	10.0				diameter	
-	12.0	2-SH	1.5	32-30-31-40 (61)	From 10.0 to 12.0 POORLY GRADED GRAVEL WITH SAND. (GP), same as above, except becomes wet at 8.6°.	No discernible floating product.
- 15.0 — - - -					END OF BORING AT 12.0'.	
20.0 -						
25.0 — - -						
1 .	1		1			1

BORING NUMBER

0U5SB-26

SHEET 1 OF 1

PROJEC	T Elme	ndorf A	FB - 01	U5	LOCATION OUS	
ELEVA					DRILLING CONTRACTOR Denale	
DRILLI	NG MET	HOD AN	D EQUIF	MENT HSA B61	Mobile Drill Rig. 4.25" ID Augers	
WATER	LEVELS	Not e	ncounte	ered	START 8/28/92 0940 FINISH 8/28/9	2 1315 LOGGER Rob Crotty
H T)		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6" -6" -6" -6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
	0.2	\-GRAB			ORGANIC MATERIAL (PT), to 0.2'.	OVM BG: 1 ppm
-					SILTY GRAVEL. (GM), light brown, dry becoming moist at 1.3', loose, subround gravel to 3" diameter with nonplastic silt, trace organics throughout.	Note 1: Soil description derived from drilling action and soil cuttings (from 0.65').
-					From 2.5' SILT WITH GRAVEL, (ML), brown, moist, loose, nonplastic loess with subround gravel to 1" diameter.	4
5.0 —	5.0				_	
-	7.0	2-SH	1.0	5-7-9-13 (16)	From 5.5' to 7.0' ORGANIC SILT WITH GRAVEL, (OL), dark brown, moist, firm, low plasticity with subround gravel to 1" diameter.	
-	•				-	Same as Note 1 applies from 7'.0 to 10'.
10.0 —	10.0				From 10.0' to 12.0' POORLY GRADED GRAVEL WITH SAND, (GP).	_
-	12.0	3-SH		10-15-10-13 (25)	brown, moist, medium dense, subround gravel to 3" diameter with medium to coarse subangular sand, occasional cobble to 4" diameter.	
-						Note 1 applies from 12 to 15'.
	15.0					
15.0 —	17.0	4-SH		4-15-21-20 (36)	From 15.0' to 17.0' POORLY GRADED SAND WITH GRAVEL (SP), brown, moist, medium dense, medium to - coarse grained sand with subround gravel to 3" diameter, occasional subround	Note 1 applies from 17 to 20'.
-					cobble to 4" diameter, occasional coal lenses.	-
20.0 —	20.0				From 20.0 to 22.0	Weathered hydrocarbon odor. OVM
-	22.0	5-SH		6-12-13-16 (25)	POORLY GRADED SAND, (SP), dark mottled brown becoming olive gray at 21.5', moist, medium dense, medium to coarse grained sand with occasional coal lens and	reads 57 ppm from 20.0' to 22.0'.
					occasional subround gravel.	Note 1 applies from 22.0 to 25.0'
-						Weathered hydrocarbon sheen and odor from 23°.
25.0 —	25.0				From 25 0' to 27.0'	Weathered hydrocarbon odor from 25.0'
7	27.0	6-SH		Not recorded	POORLY GRADED SAND, (SP), same as above.	to 27.0'. OVM malfunction so no reading taken. Sheen on gravel fraction and on sampler.
-					END OF BORING AT 27.0'	No discernible floating product, but sheen present in sample at 25.0°.

BORING NUMBER

OU5SB-27

SHEET 1 OF 2

 -						
PROJECT Elmendorf AFB - OUS					LOCATION OUS	
ELEVAT					ORILLING CONTRACTOR Denale	
					Mobile Drill Rig, 4.25" ID Augers	
T			365 on	8/27/92	START 8/27/92 0830 FINISH 8/27/	92 1020 LOGGER ROD Crotty
₩.		SAMPLE		STANDARD PENETRATION TEST	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	RESULTS 6' -6' -6' -6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
		-GRAB			ORGANIC MATERIAL, (PT)	OVM background: 0.0 ppm
-					From 1.0' to 6.0' ORGANIC SILT, (OL), dark brown, dry becoming moist at 2.5', low plasticity, organics include twigs, rootlets and decayed matter.	Note t: Soil description based on drilling action and soil cuttings from 0 to 5.0°.
	5.0					
5.0	7.0	2-SH	1.2	5-6-12-15 (18)	From 6.0' to 7.0' POORLY GRADED GRAVEL WITH SAND AND SILI. (GP-GM), brown, moist, medium dense,	Note 1 applies from 7.0 to 10.0°.
-	•				subround gravel to 2" diameter with fine to coarse grained sand and nonplastic silt, trace organics.	
10.0	10.0					
	12.0	3-SH	1.1	9-17-15-16 (32)	From 10.5' to 12.0' POORLY GRADED GRAVEL WITH SAND, (GP), brown, moist, medium dense, subround gravel to 2" diameter with medium to	Note 2 applies from 12.0 to 15.0°.
					coarse gra:ned subangular sand, trace silt.	Note 2 applies Nolli 12.0 to 15.0
15.0	15.0				_	
-	17.0	4-SH	2.0	20-22-21-30 (43)	From 15.0° to 17.0° POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	Note 1 applies from 17.0 to 20.0'
4						Note rappies from it. 0 to 20.0
m c	20.0					
20.0	22.0	5-SH	2.0	10-20-20-25	From 20.0' to 22.0' POORLY GRADED GRAVEL WITH SAND, (GP), same as above.	No. 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
						Note 1 applies from 22.0 to 25.0'.
25.5	25.0					
25.0	27.0	6-SH	2.6	9-20 - 25-40 (45)	From 25.0' to 27.0' POORLY GRADED GRAVEL WITH SAND, (GP), same as above except becomes wet at 26.4'.	Sample 5SB27-25A is a duplicate of 5SB27-25. Freewater encountered at 26.4'.
-					- -	Note 1 applies from 27.0 to 30.0

PROJECT	NUMBER
ANC31026	8.H3.60

BORING NUMBER

0U5\$B-27

SHEET 2 OF 2

PROJECT Elmendorf AFB - OUS	LOCATION OUS	•
ELEVATION	DRILLING CONTRACTOR Denali	_
DRILLING METHOD AND EQUIPMENT HSA B61 Mobile		
WATER LEVELS 26.4' BGS on 8/27/92	START 8/27/92 0830 FINISH 8/27/92 1020 LOGGER Rob Crotty	

MATER	LEVELS	20.4	862 on	8/27/92	START <u>8/27/92 0830</u> FINISH <u>8/27/</u>	92 1020 LOGGER Rob Crotty
3 F		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	STANDARD PENETRATION TEST RESULTS 6°-6'-6'-6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
1	30.0 32.0	7-SH		18-15-17-25 (32)	From 30.0' to 32.0' POORLY GRADED SAND, (SP), brown, wet, medium dense, medium to coarse grained subangular sand.	5SB27-30 collected at 30.0 to 32.0'.
1					END OF BORING AT 32.0 FEET.	Note 2: Original 5SB27 abandoned after hitting abandoned paper sheathed copper wire telephone cable at 4.2'. Boring moved. No discernible floating product.
5.0 —					- -	No discernible floating product.
1					<u>-</u>	
-	•				· .	
.0 —					- -	
-	:				-	
— 0.					· -	
-						
-						
0 —					_	
-						
-						
0						
-						
_						

PROJECT NUMBER ANC31026.H3.60

BORING NUMBER

0U5SB-28

SHEET 1 OF 3

SOIL BORING LOG

PROJECT Elmendorf AFB - 0U5 _LOCATION DUS DRILLING CONTRACTOR Denali ELEVATION ___ DRILLING METHOD AND EQUIPMENT HSA B61 Mobile Drill Rig. 4.25" ID Augers

WATER	LEVELS	36.5	BGS on	8/24/92	START 8/24/92 1035 FINISH 8/25	/92 1601 LOGGER Rob Crotty
æĒ		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	TEST RESULTS 6'-6'-6'-6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
-	2.5	1-SH	2.0	7-9-7-10 (16)	ORGANIC MATERIAL, (PT) to 0.3'. From 0.3' to 1.5' SILT WITH SAND AND GRAVEL. (ML), light brown, dry, medium dense, nonplastic silt with fine to medium plastic and subround	HNu background is <1 ppm.
-	5.0	2-SH	2.0	7-7-20-15 (27)	gravel to 2" diameter, organics throughout. From 1.5 to 27.5 POORLY GRADED GRAVEL WITH SAND, (GP),	Additional 0.5 material collected in sampler by advancing additional 0.5', therefore each drive is 2.5'.
5.0 —	7.5	3-SH	2.0	6-9-15-17 (24)	moist, medium dense, subround gravel to 2" — diameter with fine to coarse grained sand, trace nonplastic sitt.	
-	10.0	4-SH	1.0	7-9-18-20 (27)		5SB28-0 collected from 0 to 0.5' for
10.0 —	12.5	5-SH	2.0	6-18-21-22 (39)	- - -	chemical analysis 5SB28-10 collected from 10.0 to 12.5 feet for chemical analysis.
-	15.0	6-SH	2.0	12-21-43-49 (64)		
15.0 — - -	17.5	7-SH	2.0	6-12-18-21 (30)	From 17.0' to 27.5'	
-	20.0	8-SH	2.0	7-20-43-41 (63)	POORLY GRADED GRAVEL WITH SAND, (GP), same as above except occasional subround cobble to 4" diameter.	
20.0 — - -	22.5	9-SH	2.0	12-28-25-26 (53)	- -	
-	25.0	10-SH	1.0	9-13-21-23 (34)		
25.0 — -	27.5	11-SH	2.0	13-23-28-43 (51)		5SB28-25 collected from 25.0 to 27.5 for chemical analysis
-	30.0	12-SH	2.0	11-19-20-22	From 27.5 to 30.0 <u>POORLY GRADED SAND</u> , (SP), brown, moist, medium dense, fine to medium subangular sand, some subround gravel with occasional cobble.	-

BORING NUMBER

OU55B-28

SHEET 2 OF 3

PROJECT Elmendorf AFB - 0U5	LOCATION OUS	
ELEVATION	DRILLING CONTRACTOR Denali	
DRILLING METHOD AND EQUIPMENT HSA BOLL	Mobile Drill Rig, 4.25" ID Augers	· · · · · · · · · · · · · · · · · · ·

				8/24/92	START 8/24/92 1035 FINISH 8/25/9	92 1601 LOGGER Rob Crotty
z ₽		SAMPLE		STANDARD	SOIL DESCRIPTION	COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RF::OVERY (F1)	PENETRATION TEST RESULTS 6'-6'-6'-6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
8 %	30.0	13-SH	2.0	23-30-70-38 (100)	From 30.0' to 32.5' POORLY GRADED SAND, (SP), same as above, except dense.	
-	32.5 35.0	14-SH	2.0	7-32-43-37 (75)	From 32.5' to 35.0' <u>POORLY GRADED</u> <u>SAND</u> , (SP), same as above, except occasional coal lens to 1" thick.	Increasing gravel fraction.
35.0	37.5	15-SH	2.0	2-13-33-22 (46)	From 35.0 to 40.2 POORLY GRADED SAND, (SP), same as above, except wet at 36.4'.	Decreasing gravel fraction. Free water encountered at 36.5'.
· -	40.0	16-SH	2.0	6-15-18-22 (33)		5SB28-38 collected for chemical analysis from 37.5 to 40.0°.
40.0	42.5	17-SH	2.0	5-13-22-35 (35)	From 40.2' to 60.0 POORLY GRADED SAND WITH GRAVEL. (SP), brown, wet, medium dense, medium to coarse grained subangular sand with subround gravel to 2" diameter, occasional coal lenses to 1".	End drilling at 40.0' for 8/24/92. Begin drilling at 40.0' on 8/25/92.
45.0	45.0	18-SH	2.0	20-22-25-32 (47)	Codi lenses (OT)	_
-	47.5	19-SH	2.0	22-26-32-38 (58)	- -	
50.0	50.0	20-SH	2.0	6-25-35-16 (60)	- -	-
- -	52.5	21-SH	2.0	20-15-33-50	-	
- 55.0 —	55.0	22-SH	2.0	16-24-56-70 (80)	- -	_
-	57.5	23-SH	2.0	9-22-38-56 (60)	<u>-</u>	
-	60.0	24-SH	2.0	32-35-33-65 (68)		

BORING NUMBER

0U5SB-28

SHEET 3 OF 3

PROJECT Elmendorf AFB - OUS	LOCATION OUS	
ELEVATION	DRILLING CONTRACTOR Denali	
DRILLING METHOD AND EQUIPMENT HSA B61 Mode	le Drill Rig, 4.25" ID Augers	
WATER LEVELS 36.5' BGS on 8/24/92	START 8/24/92 1035 FINISH 8/25/92 1601 LOGGER ROD Crotty	

				8/24/92	START 8/24/92 1035 FINISH 8/25/9	
ş£		SAMPLE		STANDARD PENETRATION	SOIL DESCRIPTION	COMMENTS
当 数 数 数 数	VAL	Q &	ERY	TEST RESULTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	DEPTH OF CASING, DRILLING RATE
SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	(N) 6666.	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DRILLING FLUID LOSS TESTS AND INSTRUMENTATION
_	60.0 62.5	25~SH	2.0	14-22-70-77 (92)	From 60.0 to 67.5 POORLY GRADED SAND, (SP), brown, wet, dense to very dense, uniform medium subangular sand, occasional subround gravel in 4" layers along with coal in 1" lenses.	
	65.0	26-SH	2.0	9-13-22-48 (35)		
.0 -		27-SH	2.0	30-32-30-70 (62)	-	
_	67.5					Description from 67.5 to 70.0' based of drilling action.
.o —	70.0				5 70 0' 42 70 5'	1
.5		28-SH	2.0	9-20-22-32	From 70.0' to 72.5' POORLY GRADED SAND. (SP), same as above.	
	72.5					Description from 72.5 to 75.0° based of drilling action.
. 1	75.0				1	
.0 -		29-SH	2.0	9-23-23-30 (46)	From 75.0' to 76.5' POORLY GRADED SAND. (SP), same as above.	
1	77.5				From 76.0' to 77.0' CLAY. (CL), olive gray, moist, stiff, lean, occasional SILTY SAND. (SM), lens to 1".	Bootlegger cove formation. No discernible floating product.
.0 —					END OF BORING AT 79.5 FEET	
-						
i.0 —						ı
1						•

BORING NUMBER

0U5SB-29

SHEET 1 OF 1

		INGOLL A	FB - U	05	LOCATION UUS	
ELEVA"				UCA DE	DRILLING CONTRACTOR Denali	
				8/7/92	Mobile Drill Rig. 4.25" ID Augers START 8/7/92 0817 FINISH 8/7/9	2 LOGGER Rob Crotty
		SAMPLE				COMMENTS
DEPTH BELOW SURFACE (FT)	INTERVAL (FT)	TYPE AND NUMBER	RECOVERY (FT)	STANDARD PENETRATION TEST RESULTS 6°-6'-6'-6'	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	DEPTH OF CASING, DRILLING RATE DRILLING FLUID LOSS TESTS AND INSTRUMEN. ATION
	0.6	1-SH	1.0	8-13-77-17	From 0.0'to 0.6' ORGANIC MATERIAL AND	HNu background=1 ppm.
-	2.0				PEAT (PT) to 0.3' grading into SILTY SAND (SM), dark brown, moist, rootlets and organic debris, very fine to medium sand with nonplastic silt to 0.6.	-
-	4.0	2-SH	0.2	8-11-7-7 (18)	· -	Poor recovery.
5.0 —	6.0	3-SH	.04	8-9-10-7 (19)	From 0.6' to 4.0' At 0.6' becomes <u>SILTY GRAVEL WITH</u> <u>SAND.</u> (GM), dark brown becoming brown, moist, loose, subround gravel to 1.5." diameter with very fine to medium sand	Free water encountered at 3.91' at 0920 Free water at 3.11' at 0920
_					and nonplastic silt. Occasional subround cobbles to 3" diameter	Additional drive at 4-6' required to collect enough material for representative sampling. Slight hydrocarbon odor at 4.0 to 6.0'. HNu reads 4.0pm.
_	10.0				From 4.0° to 6.0° <u>SILTY GRAVEL WITH SAND</u> , (GM), same as above except becomes wet, trace of silty clay.	-
10.0	12.0	4-SH	0.8	4-3-7-7	From 10.0' to 12.0' SILTY GRAVEL WITH SAND, (GM), same as above except slight sheen in gravel fraction.	Heave occurring in hole. Strong hydrocarbon at 10.0° to 12.0°. HNu reads 50 ppm.
_	45.0				- -	
15.0	15.0	5-SH	0.4	5-7-8-7 (15)	From 15.0' to 17.0' SILTY GRAVEL WITH S&YD, (GM), same as above.	Strong hydrocarbon odor at 15.0' to 17.0'. HNu reads 600 ppm.
-	17.0				- -	
20.0 —	20.0				- -	"Sleeved" SH in plastic bag to avoid contamination when sampling below the water table.
-	22.0	6-SH		•	_	
-					END OF BORING AT 22.0'	Note at 1200: Boring and site currently shut down. Sample 6-SH from 20.0' to 22.0' not taken. See field log notebook SB002.
25.0 —					_	_
					-	
-					_	
-	1			!	•	1

Appendix C MONITORING WELL BORING AND CONSTRUCTION LOG

BORING NUMBER

ANC31026.H3.60

OUSMW-01 SHEET I OF 1

WELL COMPLETION LOG

LOCATION ANCHORAGE, ALASKA PROJECT ELMENDORF AFB IRP OUS DRILLING CONTRACTOR DENALI DRILLING ELEVATION ____ DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

MATER	LEVEL	35.5	t. bgs		START 8-13-92 FINISH 8-13	-92 LOGGER D. KUNKEL
TE		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELOW SURFACE (FT)	VAL	AND	ERY	BLOW COUNTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	
SURFA	INTERVAL	TYPE AN	RECOVERY (FT.)	(N) 8666.	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap
						6-inch diameter steel surface casing
-						3 ft x 3 ft concrete pad
-	5.0	!				Cement/bentonite grout
10 – -	7.0	B01-5	1.2	7-18-27 (45)	From 5.0 to 6.0 ft <u>SILT WITH GRAVEL</u> . (ML) tan to yellowish brown, dry, hard,	2-inch diam. Sch 40
-	7.5			(43)	powdery silt with subangular to subrounded gravel, up to 2.5 inches in diameter.	flush-threaded, PVC casing with 0-ring
	10.0				From 6.0 to 7.0 ft WELL-GRADED SAND	3 10 0
	12.0	B01-10	1.3	7-22-26-32 (48)	WITH GRAVEL. (SW) brown to dark brown, moist, dense, well-graded brown sand with subangular to subrounded gravel, 2-inch	Centralizer, joint @ 10.0
-	12.0			(40)	diameter maximum, minor amounts of brown non-plastic silt.	100
- 60 -	15.0				From 10.0 to 12.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) As above.	1 10 10
- 0.0	17.0	B01-15	1.7	9-12-21-25 (33)	From 15.0 to 17.0 ft POORLY-GRADED	7 N N
-				(33)	SAND WITH GRAVEL, (SP) Brown, moist to wet, dense, fine to medium-grained sand with subangular to subrounded gravel and	100
	20.0				non-plastic silt.	1 1 2 2 2 2 2 2
0.0 – -	22.0	B01-20	1.8	7-13-27-26 (40)	From 21.0 to 22.0 ft <u>POORLY-GRADED</u> <u>SAND</u> . (SP) rust-brown moist, dense.	Joint @ 20.0
-	22.0	 		(40)	medium-grained sand with subangular to subrounded gravel up to 3/4 inches in diameter, trace of brown to rust-brown	100
-	25.0				silt.	
5.0 — -	27.0	B01-25	1.7	13-17-24-33	From 27.0 to 27.0 ft <u>POORLY-GRADED</u> SAND, (SP) As above.	3/8-inch hydrated
-	27.0			. (30		bentonite chips
-	30.0					CSSI 16-40 sand pack Centralizer, joint @ 30.0
0.0 – -	32.0	B01-30	1.7	12-18-22-32	From 30.0 to 32.0 ft <u>POORLY-GRADED</u> <u>SAND</u> . (SP) As above.	Centralizer, joint e 30.0
-	32.0		<u> </u>	(40)		
	35.0					Joint @ 35.0
6.0 - -	37.0	B01-35	1.8	10-16-28-32	From 35.0 to 37.0 ft <u>POORLY-GRADED</u> SAND, (SP) As above. Free water	8/13/92
-	37.0			(447)	encountered at 35.5 ft. bgs. No discernible free product.	
-	40.0					→ 8~inch diameter borehole
10.0 — -	42.0	B01-40	2.0	45-22-28-29 (50)	From 40.0 to 42.0 ft <u>POORLY-GRADED</u> SAND, (SP) As above.	2-inch diam. Sch 40 PVC machine-cut well screen,
-	72.0			(30)		10-slot
						Centralizer, joint @ 45.0
15.0 -]				End of boring at 45 ft. bgs.	Flush-threaded PVC end cap with 0-ring
-	1					1
-	1		1			4

ANC31026.H3.60

BORING NUMBER

0U5MW-02 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP 0U5

LOCATION ANCHORAGE, ALASKA

ELEVATION ____

DRILLING CONTRACTOR DENALI DRILLING

HOLLOW STEM ALIGER MOBILE DRILL B-61 TRUCK MOUNT

MATER	LEVELS	31.5 ft	. bgs		START 8-23-92 FINISH 8-23	-92 LOGGER D. KUNKEL
∓ £		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap
£0 -	5.0 7.0	B02-5	1.2	12-14-10-12 (24)	From 0 to 21.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) brown, moist, medium dense, well-graded sand with subrounded gravel up to 3-inches in diameter in sampler, non-plastic silt.	8-inch diameter steel surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentonite chips
15.0	12.0	B02-10	1.0	12-26-31-42 (57)	From 10.0 to 12.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL, (SW) As above.	Joint @ 15.0
-	17.0	B02-15	1.2	10-44-50/4" (95)	From 15.0 to 17.0 ft <u>WELL -GRADED SAND</u> <u>WITH GRAVEL</u> (SW) As above.	Solit e 15.0
20.0 - - -	7	B02-20	1.3	13-32-35-50 (67)	From 20.0 to 22.0 ft <u>POORLY-GRADED</u> <u>SAND WITH GRAVEL</u> (SP) brown to rust brown, moist, very dense, medium and fine sand, subrounded gravel, and brown non-plastic silt.	CSSI 16-40 sand pack
25.0 - - - -	1	B02-25	1.3	3-16-20-50/5 (36)	From 25.0 to 27.0 ft <u>POORLY-GRADED</u> SAND WITH GRAVEL. (SP) As above, some charcoal.	
30.0 — - - -	32:0	B02-30		18-32-31-25 (63) 14-30-30-26	From 30.0 to 32.0 ft POORLY-GRADED SAND WITH GRAVEL (SP) As above, charcoal in 3-inch layer. Tree water encountered at 31.8 ft. bgs.	Joint € 30.0 ▼ 8/23/92
- 36.0 - -	34.5 37.5	B02-33	1.3	(60)	No discernible free product. 32.5-34.5 ft. <u>POORLY-GRADED SAND WITH</u> <u>GRAVEL</u> (SP) As above.	
40.0 — 	39.5	B02-38	1.3	23-35-38-41 (73)		2-inch diam. Sch 40 PV machine-cut well screen 10-slot
46.0 - - -					End of boring at 45 ft. bgs.	Flush-threaced PVC en cap with 0-ring

BORING NUMBER

ANC31026.H3.60

0U5MW-03

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP 0U5

LOCATION ANCHORAGE, ALASKA

ELEVATION _____ DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

PART OF THE PROJECT OF THE P

***		LS 31.5 ft. bgs START 8-17-92 FINISH 8-17-92 LOGGER D. KUNKEL				
Ţ		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	(N) 6° -6° -6° -6° BLOW COUNTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	6-inch diameter steel surface casing 2-inch Sch 40 PVC vented slip cap
5 1111111	5.0 7.0	B03-5	1.3	16-22-25-24 (47)	From 5.0-7.0 ft <u>WELL-GRADED SAND WITH</u> <u>GRAVEL</u> (SW) brown to rusty-brown, dry to moist, dense, fine to coarse-grained sand with subangular to subrounded gravel	3 ft x 3 ft concrete particles 3 ft x 3 ft concrete particles 3 ft x 3 ft concrete particles 4 ft x 3 ft x 3 ft concrete particles 4 ft x 3 ft x 3 ft concrete particles 4 ft x 3 ft x 3 ft concrete particles 4 ft x 3 ft x 3 ft concrete particles 4 ft x 3 ft x 3 ft x 3 ft x 3 ft concrete particles 4 ft x 3 f
10 – 1 1	10.0	B03-10	1.5	6-8-15-22 (23)	up to 2.5 inches in diameter and rusty-brown silt, silt occurs as slightly plastic clumps. From 10.0 to 12.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) brown to tan-brown, moist, medium dense, well-graded sand with subangular to subrounded gravel, and minor amounts of silt. A 4-inch layer of	Cement/bentonite grou
- م	15.0	B03-15	1.3	6-21-23-25	charcoal at 10.5 bgs. From 15.0 to 17.0 ft WELL-GRADED SAND WITH GRAYEL. (SW) As above.	
	20.0	B03-20	1.5	10-23-24-27	From 20.0 to 22.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL (SW) As above.	
- - -	25.0 27.0	B03-25	1.5	20-27-28-42 (55)	From 25.0 to 27.0 ft WELL-GRADED SAND WITH GRAYEL, (SW) As above.	CSSI 16-40 sand pack 2-inch diam. Sch 40 P machine-cut well screen
- 0. -	30.0 32.0	803-30	1.3	12-35-32-22 (67)	From 30.0 to 32.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) As above. Free water encountered at 31.5 ft. bgs. No discernible free product.	Joint @ 30.0 ▼ 8/17/92
0	35.0 37.0	B03-35	1.7	13-17-23-26 (40)	From 35.0 to 37.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) gray to gray-brown, wet, dense, well-graded sand with gravel, subangular to subrounded, some cobbles,	<──8-inch diameter boreh
	40.0 42.0	B03-40	1.5	10-36-24-25	gray silt. From 40.0 to 42.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL. (SW) As above.	Joint @ 40.0
۔ - م					End of boring at 45 ft. bgs.	Flush-threaded PVC e cap with 0-ring

BORING NUMBER

ANC31026.H3.60

0U5MW-04

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP 0U5

LOCATION ANCHORAGE, ALASKA

ELEVATION — DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND FOLITIMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

DRILLING NETHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT WATER LEVELS 29.5 ft. bgs START 8-18-92 FINISH 8-18-92 LOGGER D. KUNKEL SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM **5** £ BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH BEL SURFACE (TYPE AND NUMBER RECOVERY (FT.) NTERVAL MOISTURE CONTENT, RELATIVE DENSITY 6' -6' -6' -6' 2-inch Sch 40 PVC OR CONSISTENCY, SOIL STRUCTURE, vented slip cap (N) MINERALOGY -6-inch diameter steel surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentanite chios 5.0 50 From 5.0 to 6.0 ft POORLY GRADED SAND 9-5-2-2 WITH GRAVEL. (SP) brown, dry to moist. B04-5 0.7 7.0 2-inch diam. Sch 40 loose. flush-threaded From 6.0 to 7.0 SILT WITH GRAVEL (ML) moist, soft, orange-brown to rust-brown. Silt is plastic. 10.0 100 9-23-27-31 From 10.0 to 12.0 ft WELL-GRADED SAND Cement/bentonite grout B04-10 1.5 WITH GRAVEL. (SW) some rust-brown (50)12.0 layers, dry to moist, dense, well-graded sand with well-graded subangular to subrounded gravel and non-plastic brown to rust-brown silt. 15.0 16.0 From 15.0 to 17.0 ft WELL-GRADED SAND 4-14-18-19 **B**04-15 1.5 WITH GRAVEL (SW) As above. 17.0 (32)20.0 20.0 From 20.0 to 22.0 ft WELL-GRADED SAND 11-19-28-34 WITH GRAVEL (SW) As above. B04-20 1.5 22.0 (47)-CSSI 16-40 sand pack 25.0 25.0 From 25.0 to 27.0 ft POORLY-GRADED 13-29-38-40 SAND WITH GRAVEL. (SP) brown, wet, very dense, fine to medium sand with B04-25 1.3 27.0 (67)subrounded gravel up to 1-inch in Joint @ 30.0 diameter, minor amounts of silt. 30.0 8/18/92 Free water encountered at 29.5 bgs. No 30.0 discernible free product. 44-21-23-21 B04-3d 1.4 (44) 32.0 From 30.0 to 32.0 ft WELL-GRADED GRAVEL WITH SAND, (GW) brown, wet, dense, subangular to subrounded gravel, -2-inch diam. Sch 40 PVCmachine-cut well screen, well-graded sand and brown, non-plastic 10-slot 35.0 36.0 8-inch diameter borehole From 35.0 to 37.0 ft <u>WELL-GRADED</u> GRAVEL WITH SAND. (GW) brown, wet 10-29-19-23 1.3 B04-35 37.0 (48)very dense, decreasing gravel at 37 ft bgs, sand content increasing, heaving Bottom of screen formation. 40.0 40.0 8-24-33-24 B04-40 42.0 (57) Flush-threaded PVC cap with 0-ring 45.0 End of boring at 45 ft. bgs.

BORING NUMBER

ANC 31026.H3.60

OU5MW-05

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP 0US

LOCATION ANCHORAGE, ALASKA

ELEVATION — DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

WATER LEVELS 24.0 ft. bgs START 8-24-92 FINISH 8-24-92 LOGGER D. KUNKEL SAMPLE SOIL DESCRIPTION **WELL COMPLETION DIAGRAM** 3 6 BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, DEPTH BELL SURFACE (TYPE AND NUMBER RECOVERY (FT.) NTERVAL MOISTURE CONTENT, RELATIVE DENSITY 2-inch Sch 40 PVC 6' -6' -6' -6' OR CONSISTENCY, SOIL STRUCTURE. vented slip cap MINERALOGY (N) 6-inch diameter steel surface casing 3 ft x 3 ft concrete pad 3/8-inch hydrated bentonite chips 5.0 60 From 5.0 to 7.0 ft WELL-GRADED GRAVEL WITH SAND. (GW) grey-brown, dry to moist, loose, well-graded subrounded to subangular gravel, up to 3-inches in diameter with well-graded sand, minor mounts of brown sit 5-3-2-3 B05-5 0.7 (5) -2-inch diam. Sch 40 7.0 flush-threaded Joint @ 8.0 amounts of brown silt. Cement/bentonite grout 10.0 10.0 From 10.0 to 12.0 ft WELL-GRADED GRAVEL WITH SAND, (GW) As above. 3-6-10-15 B05-10 1.0 Medium dense. (16)12.0 3/8-inch hydrated 15.0 60 From 15.0 to 17.0 ft <u>WELL-GRADED GRAVEL WITH SAND.</u> (GW) As above. Increased gravel fraction, very dense. bentonite chips 10-30-27-34 B05-15 10 (57)17.0 Joint @ 18.0 20.0 20.0 From 20.0 to 22.0 ft WELL-GRADED 10-23-33-30 GRAVEL WITH SAND, (GW) As above. B05-20 1.3 (56)22.0 Joint @ 23.0 Ţ 8/24/92 Free water enountered at 24.0 ft bgs. No 25.0 discernible free product. 25.0 From 25.0 to 27.0 ft <u>WELL-GRADED</u> GRAVEL WITH SAND, (GW) As above. Wet, 9-16-24-29 B05-25 1.3 (40)2-inch diam. Sch 40 PVC 27.0 dense. machine-cut 8-inch diameter borehole 30.0 30.0 From 30.0 to 32.0 ft WELL-GRADED GRAVEL WITH SAND, (GW) As above. 9-17-25-25 B05-3d 1.3 (42)32.0 -CSSI 16-40 sand pack 35.0 35.0 From 35.0 to 37.0 ft WELL-GRADED 10-28-28-21 GRAVEL WITH SAND, (GW) As above. Very B05-35 1.3 (56)dense. 37.0 Flush-threaded PVC end End of boring at 38 ft. bgs. cap with 0-ring

BORING NUMBER

ANC31026.H3.60

OU5MW-06 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS LOCATION ANCHORAGE, ALASKA ELEVATION ____ DRILLING CONTRACTOR DENALI DRILLING

DRILLI		HOD AN	D EQUI	MENT HOLLOW	STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT	
		34.7 1			START <u>8-27-92</u> FINISH <u>8-27-</u>	-92 LOGGER D. KUNKEL
₹£		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
BELC FE	Y	9 2	ERY	BLOW COUNTS	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY	
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	(N) 6666.	OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel
-	5.0				From 0.0 to 7.0 ft POORLY-GRADED SAND WITH GRAVEL, (SP) brown to rust-brown, dry, medium, dense, fine to medium sand with subangular to subrounded gravel up to 3-inches in diameter. Minor amounts of non-plastic brown silt.	surface casing 3 ft x 3 ft concrete pad 3/8-inch hydrated bentonite chips
6.0 — -	7.0	B06-5	1.3	10-17-22-22 (29)		2-inch diam. Sch 40 flush-threaded
10.0 -	10.0				- From 10.0 to 12.0 <u>ft POORLY-GRADED</u> —	Cement/bentonite grout
- -	12.0	B06-10	1.3	10-20-26-46 (46)	SAND WITH GRAVEL, (SP) As above.	
16.0 —	15.0 17.0	B06-15	1.3	14-28-23-25 (51)	From 15.0 to 17.0 ft <u>POORLY-GRADED</u> SAND WITH GRAYEL (SP) As above with	
- - - 20.0 —	20.0			(5))	pieces of charcoal.	
- - -	22.0	306-20	1.3	10-16-21-25 (37)	From 20.0 to 25.0 ft WELL-GRADED SAND WITH SILT AND GRAYEL. (SW-SM), brown to gray brown, well-graded sand with subangular to subrounded gravel and brown non-plastic silt.	
25.0 — -	25.0 26.5	B06-25	0.7	10-24-70/5" (94)	From 25.0 to 26.5 ft <u>WELL-GRADED SAND</u> WITH SILT AND GRAYEL, (SW-SM), Jark brown, wet, very dense, well-graded sand	
- - 30.0 —	30.0				with subangular to subrounded gravel, some cobbles, dark brown non-plastic silt. From 30.0 to 32.0 ft WELL-GRADED SAND	← 8-inch diameter borehole
- - -	32.0	B06-30	1.2	10-22-25-28 (47)	WITH GRAVEL, (SW) gray-brown, some rusty-brown areas, moist, dense, well-graded sand with subrounded gravel, minor amounts of non-plastic silt.	Joint @ 33.0
- - 0.86 -	35.0 37.0	B06-35	1.0	13-25-27-24 (52)	Free water encountered at 34.0 ft bgs. No discernible free product. From 35.0 to 37.0 ft WELL-GRADED SAND	¥ 8/27/92 _
-	40.0			(32)	WITH GRAVEL (SW) As above.	2-inch diam. Sch 40 PVC machine-cut well screen.
40.0 - -		306-40	1.3	16-26-19-21 (45)	From 40.0 to 42.0 ft WELL-GRADED SAND WITH SILT AND GRAVEL. (SW-SM) dark brown, wet, dense, well-graded sand with subrounded gravel, up to 2-inches in	10-slot CSSI 16-40 sand pack
- 45.0 — -			:		diameter and dark brown silt, cohesive when silty, sandy portions are looser. —	
-					End of boring at 48 ft. bgs.	Flush-threaded PVC end cap with 0-ring

BORING NUMBER

ANC31026.H3.60

0U5MW-07 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS LOCATION ANCHORAGE, ALASKA ELEVATION ____ DRILLING CONTRACTOR DENALI DRILLING DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

		35.5 f			START 8-26-92 FINISH 8-26-92 LOGGER D. KUNKEL					
∓F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM				
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6"	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE,	2-inch Sch 40 PVC				
	Ä	T Y D	REC (FT	(N)	MINERALOGY	vented slip cap 6-inch diameter steel				
1 1	5.0				- - -	surface casing 3 ft x 3 ft concrete pace 3/8-inch hydrated bentonite chips				
ស - -	7.0	B07-5	1.3	13-13-16-21 (29)	From 1.5-11.0 ft <u>POORLY-GRADED SAND</u> WITH GRAVEL. (SP) brown to gray-brown, moist, medium dense, fine to medium sand	2-inch diam. Sch 40				
- 10.0 —	10.0				with subangular to subrounded gravel, up to 3-inches in diameter, some brown, non-plastic silt.	flush-threaded Cement/bentonite grout Joint @ 10.0				
1	12.0	B07-10	1.3	10-14-25-27 (39)	From 11.0-30.0 ft POORLY-GRADED SAND WITH GRAVEL. (SP) gray to rust-brown, moist to wet, dense, fine to medium sand with subangular to subrounded gravel,					
6.0 -	15.0	B07-15	1.2	3-14-18-12	some brown non-plastic silt.					
1	17.0	30, 13	1.2	(14)	- -					
0.0	20.0	B07-20	1.3	6-1-8-16-23 (15)	<u>-</u> -	Joint @ 20.0				
5.0	25.0			12-34-36-38	- -	3/8-inch hydrated				
-	27.0	B07-25	1.5	(70)		bentonite chips ← 8-inch diameter boreho				
10.0 — - -	30.0	B07-30	1.5	10-23-29-25 (52)	From 30.0 to 50.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) rust-brown, wet, very dense, well-graded sand with subangular gravel, some cobbles, some brown,	CSSI 16-40 sand pack				
)5.0 — -	35.0 37.0	B07-35	1.3	10-24-33-28 (57)	non-plastic silt, some denser lenses of increased silt content. Free water encountered at 35.5 ft. bgs. No discernible free product.	₹ 8/26/92				
	40.0				-	2-inch diam. Sch 40 PN machine-cut well screen				
-	42.0	B07-40	1.3	15-17-33-40 (50)	-	10-slot				
5.0					<u>-</u>	Top of sump				
io.o —					End of boring at 50 ft. bgs.	Flush-threaded PVC en cap with 0-ring				

BORING NUMBER

ANC31026.H3.60

OU5MW-C3

SHEET 1 OF 1

WELL COMPLETION LOG

DRILLING NETHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT WATER LEVELS Approx. 10 ft. bgs START 8-11-92 LOGGER D. KUNKEL FINISH 8-11-92 SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM ₹<u>E</u> BLOW SOIL NAME, USCS GROUP SYMBOL, COLOR, 2-inch Sch 40 PVC DEPTH BELL SURFACE (RECOVERY (FT.) TYPE AND NUMBER INTERVAL vented slip cap MOISTURE CONTENT, RELATIVE DENSITY 6-inch diameter steel 8' -6' -6' -6' OR CONSISTENCY, SOIL STRUCTURE. surface casing (N) MINERALOGY 3 ft x 3 ft concrete pad_ From 0.0 to 3.0 ft WELL-GRADED GRAVEL WITH SILT AND SAND, (GW-GM) dark brown, dry to moist, loose, well-graded Cement/bentonite grout subrounded to subangular gravel up to 8-inches in diameter with well-graded sand and brown, non-plastic silt. Very difficult drilling due to cobbles. 3.0 2-inch diam. Sch 40 5.0 flush-threaded 50 From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> (SW) brown, moist to wet, medium dense, well-graded sand with 8-13-12-9 B08-5 0.9 subrounded to rounded gravel up to (25)4-inches in diameter, minor amounts of 7.0 brown, non-plastic silt. 3/8-inch hydrated bentonite chips 10.0 1010 From 10.0 to 12.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) brown, wet, medium 2-inch diam. Sch 40 PVC dense, well-graded sand with subrounded 4-10-16-24 B08-10 1.3 machine-cut well screen, to rounded gravel up to 4-inches in (26)10-slot diameter, minor amounts of brown. 12.0 non-plastic silt. 14.0 From 14.0 to 16.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u>, (SW) brown, wet, medium 8/11/92 dense, well-graded sand with subrounded 7-12-16-20 15.0 B08-14 1.4 (28) to rounded gravel up to 4-inches in diameter, minor amounts of brown, 8-inch diameter borehole 16.0 non-plastic silt. Free water encountered at 14.3 ft. bgs. -CSSI 16-40 sand pack 20.0 Flush-threaded PVC end-20.0 cap with 0-ring 9-15-18-28 B08-20 1.4 (33)22.0 End of boring at 22 ft. bgs.

BORING NUMBER

ANC31026.H3.60

OU5MW-09 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP		LOCATION ANCHORAG	E. ALASKA	
ELEVATION	DRILLING CONTRACTOR	DENALI DRILLING		
DRILLING METHOD AND EQUIPMENT HOLE			·	
MATER LEVELS 1.7 ft. bgs 8/10/92	CTART 8-10-92	ETNICH 8-10-92	I CORER D. KUNKEL	

ATER	LEVEL	s <u>1.7 ft.</u>	bgs 8/	10/92	START 8-10-92 FINISH 8-10-9	D. KUNKEL
ı F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ft x 3 ft concrete page
	2.5	B09-3	0.9	5-5-4-4 (9)	Free water encountered at 1.7 ft. bgs. From 2.5 to 5.5 ft WELL-GRADED SAND WITH GRAVEL, (SW) brown, wet, loose, fine to coarse sand with subrounded to rounded gravel up to 1.5-inches in diameter, minor amounts of brown silt.	8/10/92 3/8-inch hydrated bentonite chips 2-inch diam. Sch 40 flush-threaded 2-inch diam. Sch 40 Plush-threaded machine-cut well screen 10-slot
	7.5	B09-8	1.0	18-16-18-16 (34)	From 7.5 to 9.5 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> , (SW) brown, wet, dense, fine to coarse sand with subrounded to rounded gravel up to 1.5-inches in	CSSI 16-40 sand pack 8-inch diameter boreho Flush-threaded PVC en cap with 0-ring
0.0 — 	9.5				diameter, minor amounts of brown silt. End of boring at 9.5 ft. bgs.	
ω –						
- a.c						
1					•	

ANC31026.H3.60

BORING NUMBER

0U5MW-10

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP

LOCATION ANCHORAGE, ALASKA

ELEVATION -- ORILLING CONTRACTOR DENALI DRILLING

DRILLING WETHER AND SOURCE HOLLOW STEM AUGER MOBILE DRILL R-61 TRUCK MOUNT

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL 8-61, TRUCK MOUNT WATER LEVELS 2.0 ft bgs 8/10/92 START 8-10-92 FINISH 8-10-92 LOGGER D. KUNKEL SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM SE. BLOW 2-inch Sch 40 PVC SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, DEPTH BEL SURFACE TYPE AND NUMBER RECOVERY (FT.) INTERVAL vented slip cap 6-inch diameter steel 6. -6. -6. -6. MINERALOGY surface casing (N) 3 ft x 3 ft concrete pad. 0.5 From 0.0 to 0.5 ft TOPSOIL, brown, moist, loose, some fine gravel. 3/8-inch hydrated Free water encountered at 2.0 ft. bgs. bentonite chips No discernible free product. 8/10/92 1-2-inch diam. Sch 40 flush-threaded 2-inch diam. Sch 40 PVC machine-cut well screen, 5.0 10-slot 6.0 From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u>. (SW) brown to gray brown, moist, wet at 2 ft bgs, medium dense, fine 6-6-5-5 B10-5 1.0 -CSSI i6-40 sand pack to coarse sand with subrounded to rounded gravel up to 2.5-inches in 7.0 diameter, some brown silt. 8-inch diameter borg Flush-threaded PVC & cap with 0-ring 9.0 From 9.0 to 11.0 ft WELL-GRADED SAND WITH GRAVEL (SW) grayish brown, wet, medium dense, fine to coarse sand with rounded gravel up to 2.5-inches in diameter, some brown silt washed out of 7-6-5-5 B10-9 10.0 0.6 (11) 11.0 sampler. End of boring at 11.0 ft. bgs. 15.0 20.0

BORING NUMBER

ANC31026.H3.60

OU5MW-11

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION ____

DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT

WATER	LEVEL	36.5	t. bgs		START 8-21-92 FINISH 8-21-	92 LOGGER D. KUNKEL
₽ F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	COUNTS 6' -6' -6' -6' (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel
						surface casing 3 ft x 3 ft concrete pad -3/8-inch hydrated bentonite chips
60 -	7.0	B11-5	1.4	33-13-15-17 (28)	From 5.0 to 7.0 ft <u>WELL-GRADED SAND</u> <u>WITH GRAVEL</u> , (SW) brown to rusty-brown, dry to moist, medium dense, fine to coarse	2-inch diam. Sch 40 flush-threaded
10.0 -	10.0	B11-10	1.2	20-17-16-18 (33)	sand with subangular to subrounded gravel up to 2.5-inches in diameter and rusty-brown silt. Silt occurs as slightly plastic clumps. From 10.0 to 12.0 ft WELL-GRADED SAND WITH GRAVEL, (SW) As above.	Joint @ 10.0
16.0 -	15.0	B11-15	1.2	17-14-18-18 (32)	From 15.0 to 17.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL (SW) As above	
20.0	20.0	B11-20	1.3	5-12-18-19 (30)	From 20.0 to 22.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL (SW) As above.	Joint @ 20.0
25.0 -	25.0 27.0	B11-25	1.3	12-16-18-21 (34)	From 25.0 to 27.0 ft <u>WELL-GRADED SAND</u> <u>WTIH GRAVEL</u> , (SW) As above. Wet at 31.5 - ft. bgs.	3/8-inch hydrated
30.0 -	30.0	B11-30	1.3	12-29-34-29 (63)	Free water encountered at 31.5 ft. bgs. No discernible free product.	bentonite chips 8/21/92
35.0	35.0 37.0	B11-35	1.3	18-13-20-19 (43)	From 35.0 to 37.0 ft WELL-GRADED SAND WITH GRAVEL, (SW) As above.	Joint @ 35.0 − S-inch diameter borehole
40.0 -	40.0 42.0	B11-40	1.3	18-20-18-17 (38)	From 40.0 to 42.0 ft <u>WELL-GRADED SAND</u> WITH GRAVEL (SW) As above.	2-inch diam. Sch 40 PVC- machine-cut well screen, 10-slot
45.0 -					- - -	CSSI 16-40 sand pack Top of sump
50.0 -						PVC sump Flush-threaded PVC end- cap with 0-ring
	}				End of boring at 52 ft. bgs.	

BORING NUMBER

ANC31026.H3.60

WELL COMPLETION LOG

LOCATION ANCHORAGE, ALASKA PROJECT ELMENDORF AFB IRP DRILLING CONTRACTOR DENALI DRILLING ELEVATION ____

ATER	LEVEL	3			START 8-25-92 FINISH 8-25	-92 LOGGER D. KUNKEL
×F		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELOW SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6° -6° -6° -6° (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	vented slip cap (3.5 ft above ground surface) ← 6-inch diameter steel surface casing
<u>ප ශ</u>	=	i- ž	2 3	(14)	HIRENACOOT	3 ft x 3 ft concrete pad
-	2.5	\			From 0.0 to 7.0 ft POORLY-GRADED SAND WITH GRAYEL. (SP) brown, moist, fine to medium sand, subangular and subrounded gravel to 3 inches in diameter and trace silt.	2-inch diam. Sch 40 flush-threaded 3/8-inch hydrated
-	4.5 5.0	B12-3	1.2	11-15-19-21 (34)		bentonite chips
€0 -	7.C	B12-5	1,1	11-11-14-18 (25)	_	machine-cut well screen, 10-slot 8-inch diameter borehole
-	7.50	B12-8	1.1	11-19-19-16	Free water encountered at 7.5 ft. bgs. No discernible free product. From 7.0 to 9.5 ft WELL-GRADED GRAVEL WITH SAND, (GW) gray-brown, wet, loose,	\$ 8/25/92 CSSI 16-40 sand pack
	9.50 10.0				subrounded gravel, some fine to coarse sand and trace silt.	Shark Akanadad DWG
10.0 —	12.0	B12-10	0.5	10-10 -10 -9 (20)	- -	Flush-threaded PVC end cap with 0-ring
-					End of boring at 12 ft.	
F.O					- -	
-					- -	
-					- -	
– 0.0 -						-
-					_	
-						

BORING NUMBER

ANC31026.H3.60

OU5MW-13 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS		LOCATION ANCHORAGE	, ALASKA	
ELEVATION	DRILLING CONTRACTOR	DENALI DRILLING		
DRILLING METHOD AND EQUIPMENT HOLLOW	STEM AUGER, MOBILE DRILL B	-61, TRUCK MOUNT		
MATER (EVEL e. 1.4 ft. bgs 8/14/92	CTART 8-14-92	ETHICH 8-14-92	D. KUNKEL	

ATER!	LEVEL	s <u>1.4 ft.</u>	bgs 8/	14/92	START 8-14-92 FINISH 8-14	-92 LOGGER D. KUNKEL
EF		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ft x 3 ft concrete pa
	2.5	B13-3	1.0	2-6-6-10	From 0.0 to 0.5 ft <u>TOPSOIL</u> , (ML) soft, brown non-plastic silt, moist soft, fine to medium sand with trace subrounded gravel. Free water encountered at 1.4 ft. bgs. From 2.5 to 4.5 ft <u>SILTY CLAYEY GRAVEL WITH SAND</u> , (GC-GM) blue-gray to	3/8-inch hydrated bentonite chips 8/14/92 2-inch diam. Sch 40 flush-threaded
- - - - -	4.5			(12)	brownish gray, wet, medium dense subangular and subrounded gravel, with fine to coarse sand, some gray plastic silt and clay.	CSSI 16-40 sand pack 8-inch diameter boreh
1	7.5 9.5	B13-8	1.3	5-6-6-6 (12)	From 7.5 to 9.5 ft <u>LEAN CLAY</u> , (CL) blue-gray, moist to wet, medium dense bootlegger cove formation, clay with some silt, plastic, product odor.	machine-cut well scre 10-slot Flush-threaded PVC e cap with 0-ring
0 -					End of boring at 9.5 ft. bgs.	
0 					<u>-</u>	-
- 0					-	

BORING NUMBER

ANC31026.H3.60

0U5MW-14

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS

LOCATION ANCHORAGE, ALASKA

ELEVATION ____

__ DRILLING CONTRACTOR DENALI DRILLING

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT LOGGER D. KUNKEL WATER LEVELS 8.7 ft bgs 8/13/92 START 8-13-92 FINISH 8-13-92 SOIL DESCRIPTION WELL COMPLETION DIAGRAM SAMPLE 3 5 BLOW DEPTH BELC SURFACE (F 2-inch Sch 40 PVC SOIL NAME, USCS GROUP SYMBOL, COLOR, RECOVERY (FT.) TYPE AND NUMBER INTERVAL vented slip cap MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE. 6-inch diameter steel 6" -6" -6" -6" surface casing **MINERALOGY** (N) 3 ft x 3 ft concrete pad. From 0.0 to 1.0 ft <u>IOPSOIL</u>, (ML) brown, dry to moist, loose, sandy silt, brown, 1.0 non-plastic silt with fine sand. 2-inch diam. Sch 40 flush-threaded 3/8-inch hydrated bentonite chips 5.0 5.0 From 5.0 to 7.0 ft WELL-GRADED GRAVEL WITH SAND (GW) light brown, moist, medium dense, subrounded to rounded gravel, 9-10-12-15 B14-5 1.3 CSSI 16-40 sand pack well-graded sand and some brown, (22) non-plastic silt with gravel up to 7.0 1.5-inches in diameter. 7.5 2-inch diam. Sch 40 From 7.5 to 9.5 ft WELL-GRADED GRAVEL machine-cut well scre WITH SAND (GW) light brown, moist to wet. 10-slot 9-12-17-23 medium dense subrounded to rounded B14-8 8.0 gravel up to 1.5-inches in diameter, with 8/13/92 (29)well-graded sand and some brown, 9.5 non-plastic sitt. 10.0 **M** Free water encountered at 8.7 ft. bgs. 8-inch diameter borehole From 10.0 to 12.0 ft WELL-GRADED GRAVEL WITH SAND (GW) light brown, wet, medium dense subrounded to rounded 5-9-10-18 B14-10 11 (19) gravel up to 1.5-inches in diameter, with 12.0 Flush-threaded PVC end well-graded sand and some brown, noncap with 0-ring plastic silt. End of boring at 12.0 ft. bgs. 16.0 20.0

ANC31026.H3.60

BORING NUMBER

0U5MW-15

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP	LOCATION ANCHORAGE, ALASKA
ELEVATION	DRILLING CONTRACTOR DENALI DRILLING
	TEM AUGER, MOBILE DRILL B-61. TRUCK MOUNT

WATER LEVELS 9.5 ft bgs 8/7/92 LOGGER D. KUNKEL START 8-7-92 FINISH 8-7-92 WELL COMPLETION DIAGRAM SAMPLE SOIL DESCRIPTION ₹£ BLOW 2-inch Sch 40 PVC DEPTH BELL SURFACE (RECOVERY (FT.) SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, TYPE AND NUMBER NTERVAL vented slip cap 6. -9. -9. -9. 6-inch diameter steel MINERALOGY surface casing 3 ft x 3 ft concrete pad. 2-inch diam. Sch 40 flush-threaded -3/8-inch hydrated bentonite chips 5.0 5.5 From 5.5 to 7.5 ft <u>SILTY CLAY</u> (CL-ML) mottled gray-rust silty clay, moist, very soft gray clay with fine silt. Slightly -CSSI 16-40 sand pack 1-1-1-1 B15-5 1.2 plastic in some portions, most portions (2) crumbly when manipulated. Increasing 7.5 plasticity with moisture content. From 7.5 to 9.5 ft WELL-GRADED SAND WITH GRAVEL (SW) blue-gray, moist, wet at 9 ft bgs, medium dense, fine to coarse 4-5-6-10 B15-7 2-inch diam. Sch 40 PVC 1.2 (11) machine-cut well screen, sand with subrounded gravel up to 9.5 10-slot 3-inches in diameter, minor amounts of 8/7/92 10.0 Free water encountered at 9.5 ft bgs. Product sheen detected on water. 8-inch diameter borehole -Flush-threaded PVC end 12.5 cap with 0-ring From 12.5 to 14.5 ft WELL-GRADED GRAVEL WITH SILT AND SAND (GW-GM) 8-10-20-28 tan-brown, wet, medium dense gravel up to B15-12 1.2 3-inches in diameter with fine to coarse sand, minor amounts of light brown silt. 14.5 Sheen on water, petroleum odor in sampler. 15.0 20.0

ANC31026 H3 60

BORING NUMBER

OU5MW-16

SHEET 1 OF 1

WELL COMPLETION LOG

_
NKEL
DIAGRAM
ch 40 PVC lip cap iameter steel casing ft concrete pad_
hydrated e chips iam. Sch 40 PVC lush-threaded
ng
iam. Sch 40 PVC -cut well sc
-
40 sand pack
readed PVC end O-ring
- ····g
i - i -

ANC31026.H3.60

BORING NUMBER QU5MW-16A

SHEET 1 OF 1

					WELL COMPLE	ETION LOG
PROJEC	T ELM	ENDORF	AFB IF	RP OUS	LOCATION AND	HORAGE, ALASKA
ELEVA"					ORILLING CONTRACTOR DENALI DRILLING	
					STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT	
WATER	LEVEL	Appro	x. 10 ft	. bgs	START 8-25-92 FINISH 8-26-	-92 LOGGER D. KUNKEL
æF		SAMPLE	, , ,		SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	6666. 810M	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ft x 3 ft concrete pad_
					From 2.5 to 4.0 ft SILTY SAND WITH GRAVEL. (SM) brown, moist, very loose, fine to medium sand with subrounded to rounded gravel, up to 1.5 inches in diameter, and non-plastic silt, few chunks of gray clay in 2.5-4.0 ft interval. From 4.0 to 4.5 ft PEAI. (PT) brown, moist, very soft, dark reddish brown, some product odor. From 5.0 to 5.5 ft PEAI. (PT) brown, moist, soft, dark reddish brown, some product	2-inch diam. Sch 40 flush-threaded
10.0 —					odor. From 5.5 to 7.0 ft GRAVELLY LEAN CLAY WITH SAND, (CL) light grayish-brown, moist, medium dense and cohesive lean clay with subrounded to rounded gravel, silt and fine sand. Poorty graded. From 7.5 to 9.5 ft WELL-GRADED SAND WITH GRAVEL. (SW) gray to blue-gray, moist, very stiff, mostly non-plastic silt with fine to medium sand, and subrounded gravel up to 2-inches in diameter. Free water encountered at 10 ft. bgs. From 10.0 to 12.0 ft WELL-GRADED GRAVEL WITH SILT AND SAND, (GW-GM) gray to blue-gray, wet, dense, well-graded subangular to subrounded gravel with fine to coarse sand and silt.	2-inch diam. Sch 40 PVC machine-cut well screen, 10-slot 8-inch diameter borehole 8/25/92 CSSI 16-40 sand pack Flush-threaded PVC end cap with 0-ring
5.0					End of boring at 13 ft. bgs. Note: Soil description is taken from log for OUSMW-16, which was drilled approximately 10 ft. from OUSMW-16A.	- -
_					- -	-

BORING NUMBER

ANC 31026.H3.60

0U5MW~17

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP OUS LOCATION ANCHORAGE, ALASKA DRILLING CONTRACTOR DENALI DRILLING ELEVATION _____

DRILLING METHOD AND EQUIPMENT HOLLOW STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT WATER LEVELS 9.5 ft. bgs 8/12/92 START 8-12-92 FINISH 8-12-92 LOGGER D. KUNKEL SAMPLE SOIL DESCRIPTION WELL COMPLETION DIAGRAM 3 [BLOW -2-inch Sch 40 PVC DEPTH BELL SURFACE (SOIL NAME, USCS GROUP SYMBOL, COLOR, TYPE AND NUMBER RECOVERY (FT.) NTERVAL vented slip cap MOISTURE CONTENT, RELATIVE DENSITY 6-inch diameter steel 6' -6' -6' -6' OR CONSISTENCY, SOIL STRUCTURE. surface casing **MINERALOGY** (N) 3 ft x 3 ft concrete pad_ From 0.0 to 1.0 ft TOPSOIL, (ML) brown, moist, loose, some large gravel, mostly silt 1.0 and fine sand. 3/8-inch hydrated bentonite chips 2-inch diam. Sch 40 5.0 flush-threaded 5.0 From 5.0 to 7.0 ft WELL-GRADED SAND WITH GRAVEL. (SW) rust-brown, moist, medium dense. A few small, wet, thin silty 11-12-18-23 B17-5 1.7 zones. Well-graded sand with fine to medium gravel, minor amounts of silt. (30)7.0 7.5 7.5-9.C ft <u>WELL-GRADED SAND WITH</u> <u>GRAVEL</u>, (SW) rust-brown, moist, medium dense. A few small, wet, thin silty zones. Fine to coarse sand with fine to medium 8-inch diameter bore 4-7-20-15 B17-8 1.3 9.0 (27) gravel, some silt. 9.5 8/12/92 Free water encountered at 9.5 ft. bgs. 7-8-6-5 10.0 B17-9.5 1.2 No discernible free product. (14) From 9.0 to 11.0 ft <u>SILTY SAND</u>, (SM) light -2-inch diam. Sch 40 PVC 11.0 brown, fine sand with brown, non-plastic machine-cut well screen, silt, trace of clay, dense, somewhat 10-slot sticky. Flush-threaded PVC end cap with 0-ring From 14.0 to 16.0 ft LEAN CLAY, (CL) 14.5 blue-gray, 100% clay, bootlegger cove formation, plastic, sticky. 15.0 -CSSI 16-40 sand pack End of boring at 15 ft. bgs. 1-1-2-2 B17-15 2.0 (3)16.5 End of sampling at 16.5 ft. bgs. 20.0

ANC31026.H3.60

BORING NUMBER

OU5MW-30

SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP	LOCATION ANCHORAGE, ALASKA	
ELEVATION	DRILLING CONTRACTOR DENALI DRILLING	
DRILLING METHOD AND EQUIPMENT	HOLLOW STEM AUGER, MOBILE ORILL B-61, TRUCK MOUNT	_
WATER LEVELS	START 8-11-92 FINISH 8-11-92 LOGGER	

WATER	LEVEL	s <u> </u>			START 8-11-92 FINISH 8-11-	-92 LOGGER
-£		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6° -6° -6° -6°	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	vented slip cap (3.5 ft above ground surface) 8-inch diameter steel surface casing
-		B030-0		4-15-24-24 (39)	From 0.0 to 0.5 ft <u>TOPSOIL</u> , brown, moist, organic rich, mostly silt, some fine sand. From 0.5 to 2.0 ft <u>WELL-GRADED GRAYEL WITH SILT</u> (GW-GM) brown fill material, moist, dense, looks like pit run, cobbles up to 1 ft in diameter in a silt matrix, well-graded gravel, difficult drilling due to cobbles.	3 ft x 3 ft concrete pad
5.0 —	5.0 7.0	B030-5	1.0	5-8-10-12 (18)	Free water encountered at 4.5 ft. bgs. No discernible free product. From 5.0 to 7.0 ft WELL-GRADED GRAVEL WITH SILT. (GW-GM) brown fill material, wet, medium dense, loose like pit run, cobbles up to 1 ft in diameter in a silt	8/11/92 2-inch diam. Sch 40 PVC machine-cut well screen, 10-slot
10.0 —	10.0	B030-10	1.2	7-11-19-39 (30)	matrix, well-graded gravel, difficult drilling due to cobbles. From 10.0 to 12.0 ft WELL-GRADED SAND WITH GRAYEL. (SW) brown, wet, medium dense, fine to coarse sand with subrounded gravel up to 15-inches in diameter, minor amounts of non-plastic silt. No cobbles.	8-inch diameter borehole Flush-threaded PVC end cap with 0-ring CSSI 16-40 sand pack
15.0 —	12.0				End of boring at 12.0 ft. bgs.	
20.0						
-						

BORING NUMBER

ANC 31026 H3 60

OUSMW-31 SHEET 1 OF 1

WELL COMPLETION LOG

PROJECT ELMENDORF AFB IRP LOCATION ANCHORAGE, ALASKA ORTILING CONTRACTOR DENALI DRILLING
HOLLOW STEM AUGER, MOBILE DRILL R-61 TRUCK MOUNT ELEVATION ____

DRILLI	NG MET	HOD AN	D EQUI	MENT HOLLOW	STEM AUGER, MOBILE DRILL B-61, TRUCK MOUNT	
WATER	LEVEL	3.5 ft	. bgs		START 8-20-92 FINISH 8-20-9	D. KUNKEL
æ£		SAMPLE			SOIL DESCRIPTION	WELL COMPLETION DIAGRAM
DEPTH BELON SURFACE (FT)	INTERVAL	TYPE AND NUMBER	RECOVERY (FT.)	BLOW COUNTS 6" -6" -6" -6" (N)	SOIL NAME, USCS GROUP SYMBOL, COLOR, MOISTURE CONTENT, RELATIVE DENSITY OR CONSISTENCY, SOIL STRUCTURE, MINERALOGY	2-inch Sch 40 PVC vented slip cap 6-inch diameter steel surface casing 3 ft x 3 ft concrete pad
5.0 -	2.5 4.5 7.5	B31-3	1.1	3-2-4-7 (6) 7-7-8-16 (15) 8-5-7-12 (12)	From 2.5 to 3.0 ft SILT WITH SAND. (ML) brown to dark brown, moist, firm, non-plastic silt with subangular gravel and well-graded sand From 3.0 to 4.5 ft WELL-GRADED GRAVEL WITH SAND. (GW) brown, wet, loose, well-graded gravel up to 3-inches in diameter with well-graded sand and non-plastic silt. Free water encountered at 3.5 ft. bgs. No discernible free product. From 7.5 to 9.5 ft WELL-GRADED GRAVEL WITH SAND. (GW) As above. From 9.5 to 11.5 ft WELL-GRADED GRAVEL WITH SAND. (GW) As above.	3/8-inch hydrated bentonite chips 8/20/92 2-inch diam. Sch 40 flush-threaded 2-inch diam. Sch 40 PVC machine-cut well screen, 10-slot Flush-threaded PVC cap with 0-ring CSSI 16-40 sand pack 8-inch diameter borehole
20.0					End of Borning at 18.5 ft. Ogs.	

Appendix D WELL PURGING AND DEVELOPMENT FIELD DATA SHEETS

GROUNDWATER SAMPLING FIELD DATA SHEET

			FIELD TEAM		•
SITE Elmende			Jo	IB NUMBER	ANCS1026. H3.60
FIELD CONDITION	15 Cool (50°)	Overo	ust, ruinin	بر	
				- 	<u> </u>
FIELD MEASU		MAKE.	_ ∕MODELS	ERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER				-) ¹	
CONDUCTIVITY M	ETER	Sec	page 1	//	
THERMOMETER					
WATER LEVEL IN	NDICATOR				,
BAILER/PUMP					
DECONTAMINA	TION				
•	7			¥	
		<u>:</u>			
PURGE INFOR	RMATION				
DATE 25 - 26	0 07			_	
	and 1c	STA	RT TIME 25 Aug	<u> 17:30 </u>	END TIME 26 Aug 09:3
INITIAL DEPTH T	U WATER 37.27	STA TOC L_VELL	RT TIME 25 Aug T DEPTH 46.9	<u>:92 17:30</u> :0 c _EST. WELI	END TIME 26Aug 09:3
FINAL DEPTH TO	WATER 37.23	TOTAL	VOL. PURGED 4	40 gabisc	HARGE RATE 5.5 gon
	WATER 37.23	TOTAL	VOL. PURGED 4	40 gabisc	END TIME 26Aug 09:3 BORE VOL 9.7 HARGE RATE 5.5 gon to 46.9 ' TOC
FINAL DEPTH TO	WATER 37.23	TOTAL	VOL. PURGED 4	40 gabisc	HARGE RATE 5.5 gon
FINAL DEPTH TO	WATER <u>.37.23</u>	TOTAL	VOL. PURGED 4	40 gabisc	HARGE RATE 5.5gm
FINAL DEPTH TO METHOD Pumpe VOLUME PURGED	VATER .37.23	PH	VOL. PURGED 4 PUMP DEPTH 4 CONDUCTIVITY	40 gabisci 1°52 37.22	HARGE RATE 5.5 gm. to 46.9 ' TOC APPEARANCE
FINAL DEPTH TO METHOD Pumpe VOLUME PURGED	VATER .37.23 L TEMPERATURE	pH 6.82	VOL. PURGED 4 PUMP DEPTH 4 CONDUCTIVITY	40 gabisci 1 52 37.22 muddy Turbid	HARGE RATE 5.5 gen to 46.9 Toc APPEARANCE
FINAL DEPTH TO	VATER .37.23 LEMPERATURE 11.4°C 10.9	pH 6.82 669	VOL. PURGED 4 PUMP DEPTH 4 CONDUCTIVITY 600 525	40 gabisci 1 52 37.22 muddy Turbid	HARGE RATE 5.5 gen to 46.9 Toc APPEARANCE brown brown
FINAL DEPTH TO METHOD Pumper VOLUME PURGED O 55 gallons 220 gallons	VATER .37.23 L TEMPERATURE 11.4°C 10.9 11.4	pH 6.82 6.69	VOL. PURGED 4 PUMP DEPTH 4 CONDUCTIVITY 600 525 557)	40 gabisc 1 se 37.22 muddy Turbid Slightly	HARGE RATE 5.5 gen to 46.9 Toc APPEARANCE brown brown
FINAL DEPTH TO METHOD Pumper VOLUME PURGED O 55 gallons 220 gallons	VATER .37.23 L TEMPERATURE 11.4°C 10.9 11.4	pH 6.82 6.69	VOL. PURGED 4 PUMP DEPTH 4 CONDUCTIVITY 600 525 557)	40 gabisc 1 se 37.22 muddy Turbid Slightly	HARGE RATE 5.5 gen to 46.9 Toc APPEARANCE brown brown
FINAL DEPTH TO METHOD Pumper VOLUME PURGED O 55 gallons 220 gallons	VATER .37.23. TEMPERATURE 11.4°C 10.9 11.4 10.4	pH 6.82 6.69	VOL. PURGED 4 PUMP DEPTH 4 CONDUCTIVITY 600 525 557)	40 gabisc 1 se 37.22 muddy Turbid Slightly	HARGE RATE 5.5 gen to 46.9 Toc APPEARANCE brown brown
FINAL DEPTH TO METHOD Pumper VOLUME PURGED 0 55 gallons 220 gallons 420 SAMPLING IN	TEMPERATURE 11. 4°C 10.9 11.4 10.4	pH 6.82 6.69 6.82 6.72	PUMP DEPTH A CONDUCTIVITY 600 525 550	40 gabisc 1 52 37.22 muddy Turbid Slightly Clear	HARGE RATE 5.5 gm to 46.9' TOC APPEARANCE brown brown Turbid brown Calactess
FINAL DEPTH TO METHOD Pumper VOLUME PURGED 0 55 gallons 220 gallons 420 SAMPLING IN	VATER 37.23 TEMPERATURE 11.4°C 10.9 11.4 10.4 FORMATION 92	pH 6.82 6.69 6.72	PUMP DEPTH ACONDUCTIVITY CONDUCTIVITY S25 S570 STO	40 gabisc 1 se 37.22 muddy Turbid Slightly Cleur	HARGE RATE 5.5 gen to 46.9 Toc APPEARANCE brown brown

GROUNDWATER SAMPLING FIELD DATA SHEET

GROUNDWATER SAMPLING FIELD DATA SHEET

WELL NUMBER 5MWO!	FIELI	TEAM (INITIALS)	KBL/ RC
SITE JOB NUMBER			
FIELD CONDITIONS CHERCAST, O'F, WINDSCAM			
FIFI D MEVOLIDENERA	.1		
FIELD MEASUREMENT COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER	ORION 250A	2882	4 3 of all brains lag
CONDUCTIVITY METER	YS1 33	1820	See calibration log
THERMOMETER	ORION 250A	2882	See calibration log
WATER LEVEL INDICATOR	SLOPE 51453	19566	de water both
BAILER/PUMP	GRUNDFOS MPL	056208	
BRILLERY I ONI			
DECONTAMINATION STEAM CLEAN-ALCONOX-JAP-DI RIUSE			
FOR PUMP. ALL OTHERS FOLLOW OUS MANAGEMENT PLAN			
PURGE INFORMATION			
DATE 12/16/92 START TIME 1530 END TIME			
INITIAL DEPTH TO WATER 36.73 WELL DEPTH 46.65 EST. WELLBORE VOL			
FINAL DEPTH TO WATER 50-75 WELL DEPTH 70-00 EST. WELLBORE VOL.			
METHOD GRUNFOS VARIABLE FLOW PUMP DEPTH DISCHARGE RATE 2917			
6. 8			
VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE			
Klgal 8:1'6		mhos Slightly	chudy
50al 8.60		mhos clan	
150/A) 7.00	6.8 400r	nho clan	
30 gal 7.0°C		mhos den	,
* Measured from Top of Cosing			
SAMPLING INFORMATION (4.22			
DATE 16-DEC-92 START, TIME 1630 END TIME 1633			
METHOD GRUNFOS Vanable Flow and I will better in discound			
INITIAL DEPTH TO WATER	36.73* DEF	TH TO WATER AF	TER SAMPLING 37*

(69)

TIELD MEASU COLLECTION	EQUIP.	MAKE	/MODEL	SERIAL/ID NO.	CALIBRATION/
H METER	_	RION 230			SEE CALIBRATION LE
CONDUCTIVITY M	ETER 1	(Si/SCT	HAZC	od 2170	
HERMOMETER	• ·				
VATER LEVEL I	NDICATOR _				
BAILER/PUMP	-				
DECONTAMINA	ATION S	TEAM CLE	AN, LIBUTNOX	HZO, TAF	H20 DJ H-2
	<u> </u>				
NITIAL DEPTH TO	TO WATER 3	3 2 5 ' WELL	DEPTH 46.35	_EST. WELL DISCH	BORE VOL
#E1 NUD					
VOLUME PURGED		URE pH	CONDUCTIVITY		APPEARANCE
			CONDUCTIVITY 430	DARK BRO	wa /mood
VOLUME PURGED	TEMPERAT		430	DARK BRO	wa /mood
VOLUME PURGED	TEMPERATI	7.19	430	DARK BRO BROWN /	

			DAIA		-	1.	
WELL NUMBER SHWOZ			FIELD TE	EAM ((SJAITIN	RCK	BL
SITE		·		JOE	NUMBER	ANC31026	H360
FIELD CONDITIONS	STATE	51 ~ O.	-10°F with	5K	not weed	N-S.	
FIELD MEASUREMENT	,			_			
COLLECTION EQUIP.		MAKE	/MODEL	SE	RIAL/ID NO.		BRATION/ MENTS
PH METER	ORI	ON 25	OA	2.8	.81	See-Co	Llogs
CONDUCTIVITY METER	451	33		18	310		·
THERMOMETER	DR'	10N1 25	AOA		38L		
WATER LEVEL INDICATOR	20	82. 51L	153	(9	Show		
BAILER/PUMP	_ GR	MOER	MP1	75	6208	`	<u>V</u>
DECONTAMINATION	<u>_</u>	A. A. C:O	5MW01	~			
DECOM: WATHAU LICH			<u></u>				
		· · · · · · · · · · · · · · · · · · ·	*				
			 			······································	
PURGE INFORMATION	-						
DATE 17-DEC-92		STA	RT TIME	420		END TIME	1775
INITIAL DEPTH TO WATER	<u> 32.99</u>	_ WELL	DEPTH 46	7D.	EST. WEL	LBORE VO	43
FINAL DEPTH TO WATER						_	TE ~ 29~
METHOD GRUNFOS MPS	<u> </u>		PUMP DEP	тн	34.5	*	
VOLUME PURGED TEMPERA	TURE	pН	CUNDUCTIV	/ITY		APPEARA	NCE
<1901 G	8'C	6.98	300 mH	105	Slightly	closely	
13991 8	9'6	6.91	300 ~		clem		
200,01 8	,9°C	6.93	300,		lear	•	
	.9'c	6.93	300 m		Olen		
+ 100 ac car mile							
+ 10P OF COGNIV						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SAMPLING INFORMAT	ION			ILILI	۲		
SAMPLING INFORMAT	<u> </u>	STA	ART TIME _	144.	5	. END TIM	1450
SAMPLING INFORMAT	10N 12 Fos	STA	ART TIME _	/44, there	5 applied	END TIM	1450

WELL NUMBER	•		FIELD TEAM (
SITE Elmender	- · · · · · · · · · · · · · · · · · · ·			B NUMBER E	NC31026.H360
FIELD CONDITIONS	s Cool, ove	rcust	5		1
					•
FIELD MEASU		MAKE	∕MODEL S	ERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER					
CONDUCTIVITY ME	TER	- PA	32 1		
THERMOMETER	Se				
WATER LEVEL IN	DICATOR				
BAILER/PUMP					
DECONTAMINA	TION		· · · · · · · · · · · · · · · · · · ·		
the second secon	Se	e Page	<u>ک</u>		
		- ·			
PURGE INFOR	MATION				
DATE 27 Aug	92	STA	ART TIME 26 Au	4 92 11:30 E	END TIME 27 Aug 92 (2:34)
INITIAL DEPTH T	U WATER 34.2	VELL	DEPTH <u>47.3</u>	EST. WELLE	30RE VOL. 15.3
FINAL DEPTH TO	WATER 34.2	TOTAL	VOL. PURGED \$2	5 gal DISCH	ARGE RATE 9 gpm
METHOD pumper	<u> L</u>		PUMP DEPTH	40'-	
VOLUME PURGED	TEMPERATURE	рН	CONDUCTIVITY		APPEARANCE
O galling	7.5°C	7.20	420	mudd.	
165 "	8.1°C	7.03	420	Turbid	
200 gallons	9.2°C	6.86	440	Turbid	
715	8.5°C	6.93	425	Slightly	Turbid
825	8.5°C	7.0	450	Cleur C	polocless
SAMPLING THE					_
SAMPLING IN					
DATE 27 Av	g Th		ART TIME	1 - 1	END TIME
METHODWell	1 Sampled	_	ng 2" Stain		R SAMPLING 4.0
	U WATER _34.	O	NEDTH TR 1	ATED ACTE	

SITE Elmondoet AFB FIELD CONDITIONS OVER	IRP	JOB NUMBER A	mc31026.H3.60
FIELD MEASUREMENT/ COLLECTION EQUIP.	MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER			COPPLIA
CONDUCTIVITY METER	Refer TO Pa	g # 51	
THERMOMETER			
WATER LEVEL INDICATOR			••••
BAILER/PUMP		<u> </u>	
DECONTAMINATION			
	4		
PURGE INFORMATION / DATE	START TIMEWELL DEPTH 40	EST. WELL	ARGE RATE
VOLUME PURGED TEMPERATUR	•	VITY	APPEARANCE
5 1	- (1) - ha Vi//.		·
Susar Repholo Denati Drilling	THE M ALCO	12792	
Den Hi Drilling	Developed 8	5/21/1-	
SAMPLING INFORMATION DATE \$\frac{8}{27/9} \frac{2}{55} \text{Bailer} INITIAL DEPTH TO WATER 3	START TIME _	1545 TO WATER AFTE	

WELL NUMBER	<i>^ -</i>		FIELD TEA	. (SJAITINI) MA	SK
SITE Elmene				. JOB NUMBER 4	<u> ANC31076. H3.60</u>
FIELD CONDITION	s Cool, ou	1es cus	<u>t </u>		
					<u></u>
FIELD MEASU		MAKE	/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER			T		
CONDUCTIVITY M	ETER	ser pay	12		
THERMOMETER		:er 1			
WATER LEVEL IN					
BAILER/PUMP					
DECONTAMINA	TION	٠ ١			·
		pays			
	see				
PURGE INFOR	MATION				
DATE 25 Aug	92	STA	RT TIME	1:20	END TIME <u>18:00</u>
					END TIME <u>18:00</u> BORE VOL 12:22
FINAL DEPTH TO	WATER 33.08	TUTAL	VOL. PURGEI	DISCH مر DISCH	IARGE RATE 9gpm
METHOD Submer					
VOLUME PURGED	TEMPERATURE	рH	CONDUCTIVI	TY	APPEARANCE
0	9.9℃	7.03	410	mude	1
110	8.40€	7.00	385	Turb	.)
165	8.7°C	6.99	390	Turbie	,
230	8.7°C	7.04	360		ly Turbid
715	8.5°C	6.94	380	8	Clorless
			,		
SAME TO THE	PP8				
SAMPLING IN					_ (
DATE 28 Aug	,		RT TIME 18	1.35	END TIME <u>18:45</u>
	Stainless S		Buile		:
INITIAL DEPTH T	U WATER3	3.08	DEPTH T	U WATER AFTE	R SAMPLING 3308

WELL NUMBER	5 MW5 2 F AFB	f	FIELD TEAM (INITIALS) _	<u>5 Kepto</u> ANC31026 H3 Lo
CIE D COUNTY	cool	Claud	JUI	est	ANC31026 H3.60
FIETH CONDITION	s)	100000	<u>~</u>	
•					
FIELD MEASU		MAKE/MO		RIAL/ID	CALIBRATION/ COMMENTS
PH METER					
CONDUCTIVITY ME	ETER		4/1	/	
THERMOMETER		sel (2005		
WATER LEVEL IN	IDICATOR	Sel			
BAILER/PUMP	**************************************				
DECONTAMINA	TION	1 Paye	1		·
	Gl	163			
2.12.5					
PURGE INFOR	MATIUN	•			
~~^			14		
DATE 28 Aug	12	START	TIME 16:0	٥	END TIME 31 9-4 10:30
INITIAL DEPTH T	U WATER 38.3	EVELL DE	PTH <u>52.38</u>	EST. WELL	BORE VOL
INITIAL DEPTH TO	U WATER 38.3	EVELL DE	PTH <u>52.3%</u> L. PURGED 6	EST. WELL	END TIME 31 Aug 10:30 BORE VOL
INITIAL DEPTH T	U WATER 38.3	EVELL DE	PTH <u>52.38</u>	EST. WELL	BORE VOL
INITIAL DEPTH TO	72 TO WATER 38.3 WATER 38.3	£VELL DE TOTAL VO PL	PTH <u>52.3%</u> L. PURGED 6	EST. WELL:	BORE VOL
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP	72 TO WATER 38.3 WATER 38.3	£VELL DE TOTAL VO PL	EPTH <u>52,3%</u> L. PURGED <u>6</u> IMP DEPTH	EST. WELL:	BORE VOL
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED	VATER 38.3 WATER 38.3 TEMPERATURE	TOTAL VO	EPTH <u>52.3%</u> L. PURGED 6.0 IMP DEPTH INDUCTIVITY	EST. WELL GO DISCH	BORE VOL
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED	VATER 38.3 WATER 38.3 TEMPERATURE 8.8°C	TOTAL VO	EPTH <u>52.3%</u> L. PURGED 6.0 IMP DEPTH INDUCTIVITY 3.85	Mule Turbic	APPEARANCE
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80	TEMPERATURE 8.8°C 9.9°C	TOTAL VO	EPTH <u>52.3%</u> L. PURGED 4.1 IMP DEPTH INDUCTIVITY 385 360	Mule Turbic	APPEARANCE
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80 220	TEMPERATURE 8.8°C 9.9°C 9.0°C	PH CD 7.00 7.04 6.98	EPTH <u>52.3%</u> L. PURGED 66 IMP DEPTH INDUCTIVITY 3.85 360 400	mula Turbic Slight	BORE VOL. HARGE RATE 99000 APPEARANCE
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80 220 440	TEMPERATURE 8.8°C 9.9°C 9.8°C	PH CD 7.00 7.07 6.98 6.98	EPTH <u>52.3%</u> L. PURGED 4.1 IMP DEPTH INDUCTIVITY 3 8 5 3%0 400 375	mula Turbic Slight	APPEARANCE J J J J J J J J J J J J J
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80 220 440	TEMPERATURE 8.8°C 9.9°C 9.8°C	PH CD 7.00 7.07 6.98 6.98	EPTH <u>52.3%</u> L. PURGED 4.1 IMP DEPTH INDUCTIVITY 3 8 5 3%0 400 375	mula Turbic Slight	APPEARANCE J J J J J J J J J J J J J
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80 220 440 660 SAMPLING IN	TEMPERATURE 8.8°C 9.9°C 9.0°C 9.0°C 9.0°C	PH CD 7.00 7.04 6.98 6.6	EPTH <u>52.3%</u> L. PURGED 6.0 IMP DEPTH INDUCTIVITY 3.85 380 400 375 420	mule Turbic Slight	APPEARANCE Ly Ly Ly Ly Ly Ly Ly Ly Ly L
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80 220 440 660 SAMPLING IN	TEMPERATURE 8.8°C 9.9°C 9.0°C 9.0°C 9.0°C	PH CD 7.00 7.04 6.98 6.6	EPTH <u>52.3%</u> L. PURGED 6.0 IMP DEPTH INDUCTIVITY 3.85 380 400 375 420	mule Turbic Slight	APPEARANCE Ly Ly Ly Ly Ly Ly Ly Ly Ly L
INITIAL DEPTH TO FINAL DEPTH TO METHOD PAMP VOLUME PURGED 0 80 220 440 660 SAMPLING IN	TEMPERATURE 8.8°C 9.9°C 9.0°C 9.0°C 9.0°C	PH CD 7.00 7.04 6.98 6.6	EPTH <u>52.3%</u> L. PURGED 6.0 IMP DEPTH INDUCTIVITY 3.85 380 400 375 420	mule Turbic Slight	APPEARANCE J J J J J J J J J J J J J

6)

WELL NUMBER			•		
SITE EL MENDORF	AFB OUT			_ JOB NUMBER	ANC 31024, 43.60
FIELD CONDITIONS.	CLEAR S	<u>(5</u> °			
			···		
FIELD MEASUR		MAKE.	/MODEL		CALIBRATION/ COMMENTS
pH METER	ORION	230 A		H+ 20 + 2017	SE CALIBRATION LOG
CONDUCTIVITY MET			1	H20047170	u • 1 • 4
THERMOMETER					
WATER LEVEL IND	ICATOR				
BAILER/PUMP					
	TON C				
DECONTAMINAT				W 7 / W 20 W 10	4P 420,
TAP HZO, D	L HZC RI	107E			
	-	 :	· · · · · · · · · · · · · · · · · · ·		
PURGE INFORM	MITAI		3507	~	14507.60
DATE 2 SEPT 72	15EPT - 25EPT 9	STA	ART TIME	75 '	END TIME 1415
INITIAL DEPTH TO	マ 35.43 ** WATER <u>- ララ:セラ</u>	VELL	JD: 05 TEPTH ∰	EST. WELI	END TIME 14/5 BORE VOL
	29() +30	Tィフモ	~	- 31. / /	HARGE RATE
METHOD GRUNDEOS					
car.	·c				ABBEABANCE
VOLUME PURGED	7.6°C		310	*	BROWN
165 GAL.	7.7 °C	6.97	300	"	132022
111605		6.79		,,	′1
440 - 3 15	7.6 °C	6.84	300		
330 465 GAL. 330 ⁹⁵ (1 440 ⁶⁰⁵ (1 550 (1) 145 ⁸⁰ GAL	7.6°C	6.80	300		TURBID
THE GAL	7.7 °C	6.88	310	LIGHT TA	N/ SLIBIT TURBID

SAMPL	LING	INF	ORMA	NDIT

DATE 3 Sept 92	START TIME 12:00 END TIME 12:20
METHOD bailed	
INITIAL DEPTH TIT WATER 35.8	O DEPTH TO WATER AFTER SAMPLING 35 8

65

WELL NUMBER	5mw 7	- 40		FIELD 1	TEAM (I	(ZJAITIN	76.	, 5R
SITE ELMENDO	RF AF	BIRP	٥0,5	<u> </u>	JOE	NUMBER	ANK 3K	76.13.60
FIELD CONDITION	SRAIN	<u> 55</u>	•		<u> </u>			····
· •				·		·	•	
FIELD MEASL	REMENT	/		•	CE.	R[AL/ID	C A	LIBOATIONA
COLLECTION	EQUIP.			MODEL		NO.		LIBRATION/ COMMENTS
PH METER		ORION		<u>م</u> ر	CHLMH	111 2682	Ste o	CALIBRATION LO
CONDUCTIVITY M	ETER	451/56	7		HAZCO	# 2170	"	·/
THERMOMETER					<u> </u>			
WATER LEVEL IN	DICATOR		-	. <u>-</u>		· · · · · · · · · · · · · · · · · · ·	<u> </u>	·
BAILER/PUMP	•		-					
DECONTAMINA	TION	stean	. (1	ean		nox, to	Λ r.	
DI Rinse	7.20.1				CIGOID	107, 10	1	<u> </u>
							······································	7
	_		-					
PURGE INFOR		• •					** 1	1355
DATE ISEPT A-		,				_		
INITIAL DEPTH T			•					
FINAL DEPTH TO							CHARGE	RATE 36PM
METHOD 2" VARIA	HOLE SPEED	> SUBMER	SABLE	PUMP DEF	PTH	/5 :		
VOLUME PURGED			эн "	CONDUCTI	VITY		APPEA	RANCE
550 - 6AL	6.4	C 6.	93	330		TURBIZ	BROG	N/TAN
715	6.6	6.	82	390		TURBID,	LIGHT	TAN
770	7.2	6.	91	330		TURBID(S	.16Hr.4)	LIGHT TAN
625	6.5	6.	81	330		CLEAR		
							-	
				· · · · · · · · · · · · · · · · · · ·				
SAMPLING IN						_		
DATEISEFT			ATZ.	RT TIME_	164	'5	END T	IME 1730
METHOD 55	BAILER							
								1PL ING 3 4.50

**************************************	nw-8		_ FIELD TE	EAM (II	(ZJAITII	B1,16	(
SITE E) mud				J@B	NUMBER	Anc 31026-4360	<u>, </u>
FIELD CONDITIONS	Rain, C	ool, L	16°F				
		 _				<u> </u>	
FIELD MEASU		MAKE	/MODEL		RIAL/ID NO.	CALIBRATI COMMENT:	
PH METER				<u> </u>			
CONDUCTIVITY ME	TER	-	<u> </u>				
THERMOMETER		166	fer to	Vag	e # 4	3	
WATER LEVEL IN	DICATOR						
BAILER/PUMP							
DECONTAMINA	TTIN						
<u> </u>				1			
		· · · · · · · · · · · · · · · · · · ·	****************	V			
PURGE INFOR DATE 8 25 INITIAL DEPTH TO METHOD WATER VOLUME PURGED	9 2 0 WATER /6.62	STA , WELL	RT TIME DEPTH <u>21</u>	94' 670 94' ED /65 Block TH	ST. WEL	END TIME 230 LBORE VOL 7.33 CHARGE RATE APPEARANCE	7ge_
O GAL	9.5°c	6.02	- 0		Oran	1	
55	8.2%	6.42			11		
110	8.5%	6.45			SUGATTU	dois/onage	
140	8.5%	6.44			Clour		
160	8.7℃	4.58				Cloupy	
after suple	9.6°C	6.46			Clear		
SAMPLING IN DATE 8/25/9 METHOD Water	2	STA	ART TIME _	1315 Tub	3	_ END TIME <u>[3]</u>	0
INITIAL DEPTH T	U WATER		DEPTH	TO WA	TER AFT	TER SAMPLING_	

SITE EMEN	DORF AFB	IR	P		Anc 3 1026. HS. 60
FIELD MEASU	REMENT/ EQUIP.	MAKE	/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER	ORio	r 2	30A	HAZLO 2017	4.0,7.01,10.21
CONDUCTIVITY ME	TER YST	33		HAZCO 2170	750 Wrood EIVE
THERMOMETER					
WATER LEVEL IN	DICATOR				
BAILER/PUMP					
DECONTAMINA Tap Rins	TION Sto	an C	lean, L Pinse	-19 winex	wash,
INITIAL DEPTH TO Water METHOD Parasto	WATER 3.79° WATER 3.75° Sunga Black His Pump	TOTAL	DEPTH LO VOL. PURGI	.32 EST. WEL	END TIME 300 LBORE VOL 5.9594
VOLUME PURGED	9.5°C			/ITY	APPEARANCE
O GAL	9.1°C	7.20	4781		SILTY BROWN
110 GAL	9.5°C	7.22		Juebio Semi-7	
	9.400	7.24			
165 GAL	9.1%	7,17		Cloud	
220 GAZ	9.5°C	694		Semi/C Clean	
Afric Sayle SAMPLING IN	·	STA	ואטדן	\sim each	

WELL NUMBER MW10 FIELD TEAM (INITIALS) BT, JG							
SITE Elmendorf AFB IRP JOB NUMBER ANC 31026. H3. 60	_[
FIELD CONDITIONS OUP & CAST 155°F	_!						
FIELD MEASUREMENT/ SERIAL/ID CALIBRATION	V						
COLLECTION EQUIP. MAKE/MODEL NO. COMMENTS							
PH METER ORION HAZCO 1875 790 W 1000 Unios							
CONDUCTIVITY METER 4ST 33 HAZIO 2170 1900 41900 6 159	- Y						
THERMOMETER							
WATER LEVEL INDICATOR							
BAILER/PUMP							
DECONTAMINATION Steam Clean, Liquinor WASH, Tapilie	آے						
PI whee Riase							
PURCE INFERMATION / David and west							
DATE 8/24/92 START TIME 10:15 END TIME 125	n j						
INITIAL DEPTH TO WATER 2.96' WELL DEPTH 10.30' EST. WELLBORE VOL 6.67							
FINAL DEPTH TO WATER 2.92' TOTAL VOL. PURGED 2251ALDISCHARGE RATE							
METHOD Water A HOLE TWO PURCH DEPTH							
METHOD DOWNER, POTE TAKET SHEE WPUMP DEPTH							
VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE							
- O GAL 12.5°C 6.23 445×1 Cloudy							
49 55 GAL 10.2°C 691 440x1 Tradio, Squaly - DARK							
4P 110 are 10.0°C 7.18 435x1 Cloudy							
165 GAL 10.9°C 7.38 440x1 Cloudy							
P 200 GAL 10.2°C 6.91 435x1 Semi Cloudy							
P 220 GAL 10.4°C (1.92 430x) Schi/Clear Astronomic 10:2°C - 25 440x1 11 11							
1138 14011							
SAMPLING INFORMATION	_						
DATE 8 24 92 START TIME 1300 END TIME 315							
METHOD Waters, HIPE Tubes Valatile Souple Tube							

	5mw11		D TEAM (INITIALS					
SITE Elmen		B		ANC31026 H3.60				
FIELD CONDITIONS Cool, overcost								
FIELD MEASU		MAKE/MODEL	SERIAL/ID	CALIBRATION/ COMMENTS				
pH METER								
CONDUCTIVITY ME	ETER	e (
THERMOMETER		- pus						
WATER LEVEL IN	DICATOR	sel						
BAILER/PUMP								
DECONTAMINA	TION							
		pars						
	· · · · · · · · · · · · · · · · · · ·	<u> </u>						
PURGE INFOR	MATION							
DATE 28 Aug 9	2	START TIN	1E 09:30	_ END TIME /3:/5				
INITIAL DEPTH TO WATER 38.3 TOTAL VOIL PURSER 460; DISCHARGE RATE 900;								
METHOD Submerside pump PUMP DEPTH 40'								
FINAL DEPTH TO								
	ersible pur	PUMP		APPEARANCE				
METHOD Subme	reside pur	PUMP	DEPTH 40'	!				
METHOD Subme	ersible pur	PUMP PH CONDL	DEPTH 40' DETIVITY Tu	APPEARANCE				
METHOD Subme VOLUME PURGED Wgalest-IR 220	TEMPERATURE 9.9°C	pH CONDL	DEPTH 40' DETIVITY Tu Tur	APPEARANCE - b. d				
VOLUME PURGED	rside pur TEMPERATURE 9.9°C 9.0°C	PUMP pH CONDL 7.04 384 6.98 40	DEPTH 40' DETIVITY Tu Tur S war	APPEARANCE 6. d				
METHOD Subme VOLUME PURGED WOGALOTTE 220 330	TEMPERATURE 9.9°C 9.0°C 10.3°C	PUMP PH CONDL 7.04 38 6.98 40 6.97 38	DEPTH 40' DETIVITY Tu Tur S war	APPEARANCE - b. d - b. d - Slightly Turb.d				
METHOD Subme VOLUME PURGED WOGALOTTE 220 330	TEMPERATURE 9.9°C 9.0°C 10.3°C	PUMP PH CONDL 7.04 38 6.98 40 6.97 38	DEPTH 40' DETIVITY Tu Tur S war	APPEARANCE - b. d - b. d - Slightly Turb.d				
METHOD Subme VOLUME PURGED Wgal St. 1P 220 330 460	TEMPERATURE 9.9°C 9.0°C 10.3°C 9.8°C	PUMP PH CONDL 7.04 38 6.98 40 6.97 38	DEPTH 40' DETIVITY Tu Tur S war	APPEARANCE - b. d - b. d - Slightly Turb.d				
METHOD Subme VOLUME PURGED Wald + 1P 220 330 460 SAMPLING IN	TEMPERATURE 9.9°C 9.0°C 10.3°C 9.8°C	PUMP PH CONDL 7.04 38 6.98 40 6.97 38 6.98 37	DEPTH 40' DETIVITY Tu Tur 5 war Cleu	APPEARANCE Lo. d Slightly Inchid Colorless				
METHOD Subme VOLUME PURGED Wald + 1P 220 330 460 SAMPLING IN	TEMPERATURE 9.9°C 9.0°C 10.3°C 9.8°C	PUMP PH CONDL 7.04 38 6.98 40 6.97 38 6.98 37	DEPTH 40' DETIVITY Tu Tur 5 war Cleu	APPEARANCE Lo. d Slightly Inchid Colorless				
METHOD Subme VOLUME PURGED Walletter 220 330 460 SAMPLING IN DATE 28 Aug METHOD buil	TEMPERATURE 9.9°C 9.0°C 10.3°C 9.8°C FURMATION 92	PUMP PH CONDL 7.04 38 6.98 40 6.97 38 6.98 37 START TIL " Stain less	DEPTH40' DEPTH40' DEPTH40' Tur S	APPEARANCE - b. d - b. d - Slightly Turb.d				

WELL NUMBER	MWIZ	<u></u>	_ FIELD TE	EAM ((SJAITIN	BT,59
SITE Flue	ndons AF		4 ^			Anc3 1026.115,60
FIELD CONDITION	s Partly	Sun				
						·
FIELD MEASU		MAKE	/MODEL_	SE	RIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER						
CONDUCTIVITY ME	TER	$\Omega_{\mathbf{A}}$	Don 70	0	se #	55
THERMOMETER		166	700 10		<i>y y</i>	
WATER LEVEL IN	DICATOR					
BAILER/PUMP		··				
DECONTAMINA	TION					
						
PURGE INFOR	MATION ! De	vela	ope we	W	-	END TIME 1715
DATE 8/28/	72	AT2	RT TIME	1510		END TIME 1736
INITIAL DEPTH T	U WATER 8.39	, STOC	DEPTH 11.	68'	BTOC EST. WEL	LBORE VOL 2.999
FINAL DEPTH TO	WATER 8,24"	TOTAL	VOL. PURGI	En / 4	5 godDISC	CHARGE RATE
FINAL DEPTH TO	Tube, Suese 1	Stode	PUMP DEP	te fu	1	0'
	TEMPERATURE	pH	CONDUCTIV	/114	. 00	APPEARANCE
O GAL	15.3°C	7.26	485x1		maddy	
55	14,3°C	7.15	450x1		Semi	Cloury/Tuebio
110	14.700	7.08			Cloud	·
offersuple	14.9%	7.18			Clea	<u>n</u>
ostersup le	14,50	7.11	450x)		Politide	Clean
•						
CAMOLING IN						
SAMPLING IN			ı	77	0	<i>א</i> כדו
DATE 8/28/92	- 	STA	ART TIME _	<u> </u>	-	END TIME 1730
/ P	T. MA 1 1 1		_ / / // 7	7. II.O)	

INITIAL DEPTH TO WATER ___

DEPTH TO WATER AFTER SAMPLING 8,24

WELL NUMBER MW 13 FIELD TEAM (INITIALS) B1, JG SITE Elmenber AFB IRP JUB NUMBER ANC 3/026. H3.	
STIE JUB NUMBER	0
FIELD CONDITIONS Ovencist, DR122/c, 50°F	•
	,
FIELD MEASUREMENT/ COLLECTION EQUIP. MAKE/MODEL NO. COMMENT	
PH METER ORION 230A 1875 HALLO 10-12, 11-0-	2.
CONDUCTIVITY METER 48133 2170 HARLO TODO 01900 019	14
THERMOMETER WATER LEVEL INDICATOR 3 ORS 1792 HAZEO	
OIL/WATER LEVEL INDICATOR DIL/WATER LEVEL DILWATER LEVEL DILWATER	4.
	:
DECONTAMINATION Steam Clear, Liquidok WHSH, Tar Ris	36
DI Ringe	
PURGE INFORMATION / DEVELOPEMENT	•
DATE 8 23 92 START TIME 0940 END TIME 13	30
INITIAL DEPTH TO WATER 3.62 WELL DEPTH 7.5 EST. WELLBORE VOL 4.1	
FINAL DEPTH TO WATER 3,69 TOTAL VOL. PURGED 22091 DISCHARGE RATE	7.5
METHOD WATER AND TOTAL VOL. PURGED - PUMP DEPTH 2.5 -> 7.5' B6S	:
METHOD WATCHE, PUMP DEPTH 20 -7 1.5 DOS	
VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE	<u></u>
O GAL 11.6°C 6.83 478×1 Tuchio/shem/ODE	
95 9.5°C 7.15 450x1 """	
110 9.3°C 7.21 475X1 Seni-Tuebio/000R 180 9.4°C 7.19 450X)	
110 9.3°C 7.21 475X1 Seni-Tuebio ODOR 180 9.4°C 7.19 450X) 1' 1' 200 9.4°C 6.60 440X1 Seni/Clear 1.000R	
110 9.3°C 7.21 475X1 Seni-Tuebio/000R 180 9.4°C 7.19 450X)	
110 9.3°C 7.21 475X1 Seni-Tuebis ODOR 180 9.4°C 7.19 450X) 1111 200 9.4°C 6.60 440X1 Seni-Clear 1,000R	
110 9.3°C 7.21 475X1 Seni-Tuebis ODOR 180 9.4°C 7.19 450X) 1111 200 9.4°C 6.60 440X1 Seni-Clear 1,000R	
10 9.3°C 7.21 475X1 Seni-Tuebis ODOR 180 9.4°C 7.19 450X) 1 1 1 1 1 1 1 1 1	
10 9.3°C 7.21 475X1 Seni-Tuebis ODOR 180 9.4°C 7.19 450X) 1 1 1 1 1 1 1 1 1	

WELL NUMBER	MWIS		_ FIELD TEAM	(INITIALS	BIS
_	en Dout AF	ß		IOB NUMBER	17463126H360
FIELD CONDITION	s Overc				
5151 D 1454 041					
FIELD MEASU		MAKE/	MODEL	SERIAL/ID	CALIBRATION/ COMMENTS
pH METER		n 230 A		1975	7.02, 4.00
CONDUCTIVITY M		0	To David	# 43	
THERMOMETER		Kerc	210 19		
WATER LEVEL IN					÷
BAILER/PUMP	DICHTOR				
DECONTAMINA	TION	 			
					
PURGE INFOR	MATION				
DATE 8 26 6	i E	STAF	T TIME 174	5	_ END TIME (805
INITIAL DEPTH T	U WATER 3,5	6' WELL	DEPTH 7.5'	EST. WEI	END TIME 1805
FINAL DEPTH TO					
METHOD 55 Ba	•		PUMP DEPTH _		
				,	
VOLUME PURGED	11.3	5.96	CONDUCTIVITY		APPEARANCE
0 GAL 5.58 Gal	10.0	6.06	470		r Sheen
11.0 Gal	9.5	0.16	450	Slightla	
	<u>.</u>		450	Cloudy	, Sheen
16.5	9.3	6.24	445	11	· · · · · · · · · · · · · · · · · · ·
Post Sample	7. 1	6.30	450		
SAMPLING IN	FURMATION				
DATE 0/26/9					1010
DATE	₹	STAF	RT TIME 180	, <u> </u>	_ END TIME (8(0
661	3017				
METHOD 55 (Sail th				TER SAMPLING

WELL NUMBER OUS MU		EAM (INITIALS)	S Reptio
SITE Elmenduf AFB		_ JOB NUMBER	ANC 31026. H3.
FIELD CONDITIONS Cool	50°F) Overcust	raining (light to
mo des	uti)		
FIELD MEASUREMENT	<u>/</u> MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER		2882	
CONDUCTIVITY METER		1820	
THERMOMETER		2882	
WATER LEVEL INDICATOR			
BAILER/PUMP			<u> </u>
DECONTAMINATION Tinse with Tap	Wash with alco	nox and	tap watu
Tinse with Tap	water then	HPLC (orga	nic-Free)
derorized water	· · · · · · · · · · · · · · · · · · ·		
PURGE INFORMATION	-		
DATE 23 Aug 92	START TIME		END TIME
INITIAL DEPTH TO WATER	10.88 WELL DEPTH 15	EST. WEL	LBORE VOL 5.3 gal
FINAL DEPTH TO WATER _	O. TOTAL VOL. PURG	EDDISC	HARGE RATE ~/gpm
METHOD bailed	PUMP DEP	TH	
VOLUME PURGED TEMPERA	TURE PH CUNDUCTIV	VITY	APPEARANCE
SAMPLING INFORMAT	ION		
DATE			END TIME
METHOD			
INITIAL DEPTH TO WATER	DEPTH	TO WATER AFT	ER SAMPLING

WELL NUMBER O	50 mw-	.14	_ FIELD T	EAM (INITIALS)	5(2
SITE Elmen du	<u>, ξ</u>			JOB NUMBER	
FIELD CONDITIONS.	Sin	y Cral.			
FIELD MEASUR	EMENT/ QUIP.	MAKE/	'MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER	ك -	OCION		2882	See Cal. brution
CONDUCTIVITY MET	ER (UST #3	3	1820	Lug book
THERMOMETER	_	7000		2882	
WATER LEVEL IND	ICATOR				
BAILER/PUMP		Stunless St Gruntus uc	eel (<u> </u>
DECONTAMINAT		_		rs	- water
		inge with	o organ	c free D	- water
			J		
PURGE INFORM	ATION				
DATE 25 Aug 9	12	STAI	RT TIME 2	3 Auy 92 09:30	END TIME _/5:30
INITIAL DEPTH TO	WATER _	0.88 VELL	ور (مدر) 15 DEPTH	20 EST. WELI	END TIME <u>15:30</u> LBORE VOL. 5:3
					HARGE RATE ~/0gpm
METHOD _ gum Pa					
VOLUME PURGED 1	TEMPERATU	JRE pH	CUNDUCTIV	/ITY	APPEARANCE .
5.5	11.8	684	376		ess, slightly Cloudy
11.0	11. 7	6.91	395		
16.0	11.7	690	390		
SAMOLING THE		364			_
SAMPLING INFI					
DATE 25 Any			RT TIME	(; 00_	END TIME 16:30
METHOD <u>stainles</u>			· · · · · · · · · · · · · · · · · · ·		
INITIAL DEPTH TO	WATER _		DEPTH	TO WATER AFT	ER SAMPLING

FIELD CONDITION	12	, anu				
FIELD MEASU		/ MAKE/	MODEL	SERIAL/ID NO.	CALIBRATION COMMENTS	• •
PH METER	•	Orion Hodel 242	DA S	5/N 002151	Cal 404.0~17.0	_
CONDUCTIVITY M	ETER .	YSI Model 33	: 5	N J8016848		_
THERMOMETER					·	_
WATER LEVEL IN	NDICATOR .	Slope Metal 51	453 - 5	19566 SHYS Alm	2	
BAILER/PUMP					<u> </u>	
DECONTAMINA	TION	Alimor M	title att	mar DI un	ater Consid	
		111001-1		, ,		
	· ·			······································		_
DATE 9169	۷		RT TIME 1		END TIME	
DATE SILG INITIAL DEPTH TO FINAL DEPTH TO	Z VATER !	O.17 BTC WELL	DEPTH <u>14.3</u>	Sorac EST. WEL	END TIME LBORE VOL 3900C	
INITIAL DEPTH TO SISS VOLUME PURGED	VATER L WATER _ Bailer TEMPERAT	O.17'MC WELL TOTAL \ TURE PH	DEPTH <u>/4.3</u> /OL. PURGET PUMP DEPTH CONDUCTIVI	Sérec EST. WEL 9 Sellem DISC NA.	CHARGE RATE	
DATE 9169 INITIAL DEPTH TO FINAL DEPTH TO METHOD 3'SS VOLUME PURGED GAL	VATER L WATER _ Bailer TEMPERAT	O.17'ATC WELL TOTAL V TURE PH C 7.41	DEPTH 14.3 OL. PURGET PUMP DEPTH CONDUCTIVE 340 pumbo/cm	Sorcest. WELDISC NA. TY Clou	CHARGE RATE	
DATE 9169 INITIAL DEPTH TO FINAL DEPTH TO METHOD 3'55 VOLUME PURGED	VATER L WATER L Bailer TEMPERAT 9.70 9.40	0.17 MC WELL TOTAL TURE PH C 7.41 C 7.41	DEPTH 14.3 OL. PURGET PUMP DEPTH CONDUCTIVE 340 punho/cm	Séracest. WELDISC AA. TY Clou Clou Clou	LBORE VOL 3400C	
DATE 9169 INITIAL DEPTH TO METHOD 3'SS VOLUME PURGED GAL	VATER L WATER L Bailer TEMPERAT 9.70 9.40 8.9°C	0.17 ME WELL TOTAL TURE PH C 7.41 C 7.42	DEPTH 14.3 VOL. PURGET PUMP DEPTH CONDUCTIVI 340 punks/cm 375 punks/cm 347 punks/cm	Séracest. WELDISC AA. TY Clou Clou Clou	LBORE VOL 3400C	
DATE 9169 INITIAL DEPTH TO FINAL DEPTH TO METHOD 3'SS VOLUME PURGED GAL	VATER L WATER L Bailer TEMPERAT 9.70 9.40	0.17 MC WELL TOTAL TURE PH C 7.41 C 7.41	DEPTH 14.3 OL. PURGET PUMP DEPTH CONDUCTIVE 340 punho/cm	Sorcest. WELDISC NA. TY Clou Cloub promy c	LBORE VOL 3400C	
DATE 9169 INITIAL DEPTH TO METHOD 3'SS VOLUME PURGED GAL	VATER L WATER L Bailer TEMPERAT 9.70 9.40 8.9°C	0.17 ME WELL TOTAL TURE PH C 7.41 C 7.42	DEPTH 14.3 VOL. PURGET PUMP DEPTH CONDUCTIVI 340 punks/cm 375 punks/cm 347 punks/cm	Séracest. WELDISC AA. TY Clou Clou Clou	LBORE VOL 3400C	
DATE 9169 INITIAL DEPTH TO FINAL DEPTH TO METHOD 3'SS VOLUME PURGED GAL	VATER L WATER L Bailer TEMPERAT 9.70 9.40 8.9°C	0.17 ME WELL TOTAL TURE PH C 7.41 C 7.42	DEPTH 14.3 VOL. PURGET PUMP DEPTH CONDUCTIVI 340 punks/cm 375 punks/cm 347 punks/cm	Séracest. WELDISC AA. TY Clou Clou Clou	LBORE VOL 3400C	
DATE 9169 INITIAL DEPTH TO FINAL DEPTH TO METHOD 3'55 VOLUME PURGED O GAL 3 506 9	VATER L WATER L Bailer TEMPERAT 9.70 9.40 8.900 8.900	O.17 BTC WELL TOTAL TURE PH C 7.41 C 7.41 7.42 7.50	DEPTH 14.3 VOL. PURGET PUMP DEPTH CONDUCTIVI 340 punks/cm 375 punks/cm 347 punks/cm	Séracest. WELDISC AA. TY Clou Clou Clou	LBORE VOL 3400C	
DATE 9169 INITIAL DEPTH TO FINAL DEPTH TO METHOD 3'SS VOLUME PURGED GAL	VATER L WATER _ BaileK TEMPERAT 9.70 9.40 8.900 8.900	0.17 BTC WELL TOTAL TURE PH C 7.41 7.42 7.50	DEPTH 14.3 VOL. PURGET PUMP DEPTH CONDUCTIVI 340 punks/cm 375 punks/cm 347 punks/cm 347 punks/cm	Sérac EST. WELL 9 gall DISC NA. TY Clou Cloub prohyc putyc	LBORE VOL 3400C	

WELL NUMBER	Sum L.)		_ FIELD TO	EAM (INITIALS)	NC R
SITE EAFB	045			JOB NUMBER	ANC 3/024. H3.65
FIELD CONDITION	S QUECA	57,13°F,	calm wi	NDS, SON	י אים
ETE: B 145.61	inchent d	,			
FIELD MEASU		-	/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER		RION ZTO		2882	See CAL logs
CONDUCTIVITY M		YSI 33		1820	
THERMOMETER	<u> </u>	Kion 25	OA	2883	
WATER LEVEL IN	NDICATOR _	Slope HI	543	19566	
BAILER/PUMP		rubtes [036268	V
·	TIDAL	_	A	4	
DECONTAMINA	I I I I I I	SAME	As 5m	WOL	
			····		
					
PURGE INFOR	MATION				
DATE 18-1	DEC-92	STA	RT TIME	1310	END TIME 1320
INITIAL DEPTH T					
				_	HARGE RATE 3900
METHOD GRUND					
VOLUME PURGED	`	•		/ITY	APPEARANCE
/ GAI	1.6°C	7.20	29074		
7 GA1	1.9	7.15	312	11	•
10 CA	1. 6	7.15		•• ••	
1300)	1.8	7.17	320	- ,	
	1.8	7.16		-	a a
16 Gal	1. 7.	1,010	310		
SAMPLING IN	FORMATII	JN .			
	-92_			1945	END TIME 1350
	NES MP1	STA	AKI TIME		END TIME
				_	UKI
INITIAL DEPTH 1	O WATER _	1. 27	DEPTH	TO WATER AFT	ER SAMPLING 4.56

FIELD MEASU					RIAL/ID		ALIBRATIO	-
PH METER		RION :	/MODEL		NO. 2017	4.0,7.	COMMENTS 05/10/2	
CONDUCTIVITY ME			_	1	2170	790	w/1000 120	<u></u>
THERMOMETER						1		T
WATER LEVEL IN	IDICATOR							
BAILER/PUMP	. **	•	•					-1
ΠΕ ΓΠΝΤ ΑΜΙΝΔ	TION S	Low C	. دمعا	1	ه دول مده	. A e 11	773.40	
RINGE, D	I WAS H	t Carrie	reap 1	Light	wx v	/ (2) }/	, 100	
								1
•				-	_			1 1
PURGE INFOR	MATION	•		•			•	Sec. 1
		STA	ART TIME S	7900		END	TIME <u>//S</u> 0	
		STA O STOC	ART TIME S	7900 5,30' _E	<i>Вт</i> € ST. WEL	END LBORE	TIME <u>//50</u>	,
DATE \$ 3193 INITIAL DEPTH TO	WATER //. G	O TOTAL	VOL. PURC	ED 100	TAL DISC	HARGE	TIME <u>//50</u> VOL 3.37 E RATE	-
DATE \$ 3192 INITIAL DEPTH T	WATER //. G	O TOTAL	VOL. PURC	ED 100	TAL DISC	HARGE	TIME <u>//50</u> VOL <u>3.37</u> E RATE	26
DATE \$ 3193 INITIAL DEPTH TO	U WATER/// WATER // G	O TOTAL Gol, Page	VOL. PURC	TH	Tal DISC	HARGE	TIME	-
DATE \$ 3192 INITIAL DEPTH TO FINAL DEPTH TO METHOD Waters To	U WATER/// WATER // G	O TOTAL	VOL., PURC FUMP DEF	SED 100	Tal DISC	HARGE	RATE	#
INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER TO VOLUME PURGED	VATER//. U VATER //. G VATER //. G VATER //. G TEMPERATUR 12.2°C 11.9°C	O TOTAL LOL, PALA E PH 6.36	PUMP DEF	VITY	Tal disc	HARGE	ARANCE	#
INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER TO VOLUME PURGED O GAL	WATER/// WATER // G	6.36 6.82	PUMP DEF	VITY	Tabe Tibe SIITY, GA	APPE	ARANCE	#
INITIAL DEPTH TO FINAL DEPTH TO METHODIAL COM TO VOLUME PURGED O GAL HO75GAL 95 GAL	VATER/// WATER //. G WATER //. G We, Suage B TEMPERATUR 12.2°C 1/.9°C 1/.7°C	0 TOTAL 6.36 6.82 7.03	PUMP DEF	VITY	Tabe	APPE	ARANCE	#
INITIAL DEPTH TO FINAL DEPTH TO METHODIAL PURGED VOLUME PURGED GAL 50 GAL H075GAC	VATER/// WATER // G WATER // G We, Swage B TEMPERATUR 12,2°C 11,9°C	0 TOTAL 6.36 6.82 7.03	PUMP DEF	VITY	The DISC The SILTY, GA	APPE	ARANCE	
INITIAL DEPTH TO FINAL DEPTH TO METHODIAL COM TO VOLUME PURGED O GAL HO75GAL 95 GAL	VATER/// WATER //. G WATER //. G We, Suage B TEMPERATUR 12.2°C 1/.9°C 1/.7°C	0 TOTAL 6.1 PH 6.36 6.82 7.03	PUMP DEF	VITY	Tibe Tibe Tilty, Ga Clear Cloud Clear	APPE	ARANCE	#

	6A FIELD T						
SITE OUS SNOW		JOB NUMBER	\$3102 H360				
FIELD CONDITIONS SNOW	01NG ~ 5°F						
	· · · · · · · · · · · · · · · · · · ·	·	· · · · · · · · · · · · · · · · · · ·				
FIELD MEASUREMENT	<i>'</i>	050111 (17					
COLLECTION EQUIP.		SERIAL/ID NO.	CALIBRATION/ COMMENTS				
pH METER	ORION 250A	2882	see alles				
CONDUCTIVITY METER YS1 33 / 1820							
THERMOMETER CORING 150A 2582							
WATER LEVEL INDICATOR	SWPE41943	19366	:				
BAILER/PUMP	GRUNDFA MP1	056208	V				
DECONTAMINATION	Sum on SMU	NA 2					
DECONTRIBINATION		<u> </u>					
							
PURGE INFORMATION	-						
DATE	START TIME		END TIME				
INITIAL DEPTH TO WATER	0.53 VELL BERTH /	.77 cst veri	لق. ٨ ـ ٨				
INITIAL DEPTH TO WATER 10.83 WELL DEPTH 15.25 EST. WELLBORE VOIZER							
FINAL DEPTH TO WATER _			• !				
	TOTAL VOL. PURG	EDDISC	HARGE RATE				
FINAL DEPTH TO WATER _	TOTAL VOL. PURG	EDDISC	HARGE RATE				
FINAL DEPTH TO WATER _	TOTAL VOL. PURG	EDDISCH TH VITY	HARGE RATE				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG	EDDISCH	HARGE RATE				
FINAL DEPTH TO WATER	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIV 1	EDDISCH	HARGE RATE				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIVE 1 7.03 390 m 1 7.04 400 m 1 7.03 395 m	DISCHED DISCHED TH VITY LOS Sightly LOS Slightly Sos Slightly	HARGE RATE				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIV 1 7.2 -100 mh 2 7.03 390 m	DISCHED DISCHED TH VITY LOS Sightly LOS Slightly Sos Slightly	HARGE RATE				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIVE 1 7.03 390 m 1 7.04 400 m 1 7.03 395 m	DISCHED DISCHED TH VITY LOS Sightly LOS Slightly Sos Slightly	HARGE RATE				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIVE 1 7.03 390 m 1 7.04 400 m 1 7.03 395 m	DISCHED DISCHED TH VITY LOS Sightly LOS Slightly Sos Slightly	HARGE RATE				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIVE 1 7.03 396 m 1 7.04 400 m 1 7.03 395 m 1 7.03 395 m 1 7.03 315 m	ED DISCH	APPEARANCE Cloudy cloudy y cloudy				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIV 1 7.03 390 m 1 7.04 400 m 1 7.03 395 m 1 7.03 395 m 1 7.03 315 m	ED DISCH	APPEARANCE Cloudy cloudy y cloudy				
FINAL DEPTH TO WATER _ METHOD	TOTAL VOL. PURG PUMP DEP TURE PH CONDUCTIVE 1 7.03 396 m 1 7.04 400 m 1 7.03 395 m 1 7.03 395 m 1 7.03 315 m	EDDISCHETH	APPEARANCE Cloudy cloudy cloudy y cloudy				

WELL NUMBER			_ FIELD T				
SITE Elmendorf AFB IKP JOB NUMBER ANC 31026-18365							
FIELD CONDITIONS	s Rain, 51	5°F					
			· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	
FIELD MEASU		MAKE	/MODEL	SE	RIAL/ID NO.	CALIBRATION/ COMMENTS	
PH METER	ORI	on 2	30 A	Huzeo	1475	19.9°C 5	
CONDUCTIVITY ME	TER 757	33		HAZCO	2170	Two willows @ 14.9%.	
THERMOMETER							
WATER LEVEL IN OIL WAR & TIME BAILER/PUMP	DICATOR 2 0	RS		Hmzco	1792		
DECONTAMINA	TION 540	an C	lear, L.	g mw	e Wash	Tap Rinse,	
DI Ringe				<i>y</i>	-	1	
						.1	
PURGE INFOR							
DATE \$ 2192		STA	RT TIME	100	o olales	END TIME /010	
INITIAL DEPTH T	0 WATER 2.10	WELL	DEPTH _	3.00	EST. WEL	LBORE VOL 3.3794L	
FINAL DEPTH TO			VOL. PURG	ED	DIZ	CHARGE RATE	
METHOD Waters	HOIE Tubic		PUMP DEP	'TH	14.5		
VOLUME PURGED	TEMPERATURE	pН	CONDUCTI	VITY		APPEARANCE	
O GAL	9,3°C	6.05	81110		Cloudy)	GROUT COLOR	
3.4	% .2°C	4.09	78×10		11	''	
6.8	7.6°C	4.25	78×10		1 '	l t	
10.2	7.900	4.28	78×10		/ 1		
after Souple	7.8°C	6.61	78×10		11	(1	
,							
SAMPLING IN							
						END TIME (020	
METHOD WAREA			•				
INITIAL DEPTH 1	U WATER		DEPTH	TO W	ATER AF	TER SAMPLING	

WELL NUMBER	MW 30		FIELD TEAM	(INITIALS)	Bras
	dout AFB I				AMC 31026, H3.60
FIELD CONDITI	ons over 457	- 52•	F		
FIELD MEAS		MAKE	/MODEL S	ER[AL/ID NO.	CALIBRATION/ COMMENTS
PH METER					(0·1) 1·0)1·0 (C 2°C
CONDUCTIVITY	METER	Refe	n TV Page#	43	1,000 1000 116
THERMOMETER					
WATER LEVEL	INDICATOR				
BAILER/PUMP					
DECONTAMIN	NATION				
					
-			<u> </u>		<u></u>
INITIAL DEPTH	TO WATER 5.69	WELL	DEPTH 10.321	EST. WEL	LBORE VOL 6.58 1 94. CHARGE RATE
VOLUME PURGE	D TEMPERATURE	. рН	CONDUCTIVITY	•	APPEARANCE
10 GAL	- 14.1°C	6.69	430x1	BROWNIS	h or
6 GAL	12.20	7.12	500x1	Tuaba/	
14 GAL	12.0%	7.30	425x1	l\	• /
55 GAL	12.0°C	7,33	420x1	SLIGHT TO	ubio/samor
'C GAL	12.4°C	7.43	430x1	Cloudy-	Sleghtzy
office Saple	/30°C	7.38	425x1	1,	11
	NFORMATION				
DATE SIZ	92 8/26/92 20, HDIETube,	STA	ART TIME V330	<u> </u>	END TIME
METHOD Wata	ra, HDPETube,	Volat	the Sample	Tabo	
	TO WATER				ER SAMPLING

(55)

FIELD MEASU	QUIP.		MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
PH METER		RIUN Z	•	1440 2017	780 W 1000 @/420
CONDUCTIVITY ME	TER Y	5T 33	<u> </u>	MAZLO ZI10	7500 w 10,000
THERMOMETER					
WATER LEVEL IN	DICATOR				
BAILER/PUMP					
DECONTAMINA Tap Ring	TION S	tcam (Rinse	Yean,	Liguiner	WASH,
PURGE INFOR	MATION /	Doilela	mont	•	
PURGE INFOR DATE & 28 C INITIAL DEPTH TO FINAL DEPTH TO METHOD WERE TO	WATER 4.4	10' STOC WELL	DEPTH 9.7	4 BTOC EST. WEL ED /5044 DIS	END TIME 13/5 LPDRE VOL 4.8664 CHARGE RATE
INITIAL DEPTH TO FINAL DEPTH TO METHOD Like To	WATER 4.4 WATER 43 WATER 46 Y TEMPERATUR	10' WELL 8' TOTAL Slock, Par	DEPTH 9.7 VOL. PURGE PUMP, DEPT CONDUCTIV	EST. WELL DIST OFF (ITY	CHARGE RATE
INITIAL DEPTH TO FINAL DEPTH TO METHOD WARRATA VOLUME PURGED O GAL	VATER 4.4 VATER 4.3 VATER 4.5 VATER	10' WELL 8' TOTAL Slock, Par	DEPTH 9.7 VOL. PURGE PUMP, DEPT	EST. WELL DEST. WELL D	CHARGE RATE APPEARANCE BROWN
INITIAL DEPTH TO FINAL DEPTH TO METHOD LAKERA TA VOLUME PURGED O GAL SS	VATER 4.4 VATER 4.4 VATER 4.4 TEMPERATURE 13.3°C 9.8°C	BO WELL BOCK, PAR E PH 7.04	DEPTH 9.7 VOL. PURGE PUMP. DEPT CONDUCTIVE 330 X	EST. WELL ED /SCHIL DIS INF (ITY SILTY/ TURBIO	CHARGE RATE APPEARANCE BROWN BROWN
INITIAL DEPTH TO FINAL DEPTH TO METHOD LAXERA TO VOLUME PURGED O GAL 55 110	VATER 4.4 VATER 4.5 VATER 4.5 VATER 4.5 TEMPERATUR 13.3°C 9.8°C 9.8°C	BOCK, Par Block, Par E PH 7.04 7.11	DEPTH 9.7 VOL. PURGE PUMP, DEPT CONDUCTIV 330X1 285X1	EST. WELL ED /SCHIL DIS ONE (ITY SILTY/ Turbin SCMI	CHARGE RATE APPEARANCE BROWN INDOOR
INITIAL DEPTH TO FINAL DEPTH TO METHOD LAXERATION VOLUME PURGED SS 110	VATER 4.4 VATER 4.5 VATER 4.5 VATER 4.5 TEMPERATUR 13.3°C 9.8°C 9.8°C	8 TOTAL Slock, Par 10 TOTAL Slock, Par 12 PH 12	DEPTH 9.7 VOL. PURGE PUMP. DEPT CONDUCTIV 330 X 1 285 X 1 290 X 1	EST. WELL ED /SCHIL DIS INF (ITY SILTY/ Turbin SCMI Clea	CHARGE RATE APPEARANCE BROWN IBROWN TURLID
INITIAL DEPTH TO FINAL DEPTH TO METHOD LACKATA VOLUME PURGED O GAL SS	VATER 4.4 VATER 4.4 VATER 4.4 TEMPERATURE 13.3°C 9.8°C	8 TOTAL Slock, Par 10 TOTAL Slock, Par 12 PH 12	DEPTH 9.7 VOL. PURGE PUMP, DEPT CONDUCTIV 330X1 285X1	EST. WELL ED /SCHIL DIS ONE (ITY SILTY/ Turbin SCMI	CHARGE RATE APPEARANCE BROWN IBROWN TURLID

FIELD MEASUR		•	:/MODEL	SERIAL NO.	_/ID		RATION/ ZTM
OH METER	(RION SA	230A	1875 H	PSCO	10.02, 4.	
CONDUCTIVITY MET	ER _	45I 33	\$	2170 H	47/0	400 m 004	المالم
CHERMOMETER	_			-			
VATER LEVEL INDI	CATOR	ORS	·	1792 H	1210		
BAILER/PUMP	- Test	•	·				
	TUNI (Steam (^1			-	
TECHNITAMINAT							
DECUNTAMINAT	TOIA _	JICAM	27(31)				
DECUNTAMINAT	IUN _	JICA M					
DECUNTAMINAT	ILLIN _	J.Ca.w.					
PURGE INFORM	ATION						
PURGE INFORM	ATION			11:15	-	END TIME	1200
PURGE INFORM	ATION	STZ	ART TIME _				
PURGE INFORMA DATE SIO192 INITIAL DEPTH TO	ATION WATER	STA	ART TIME <u>-</u> Depth 2 0	0.0' EST.	WELL	BORE VOL	13.859
PURGE INFORMO DATE SJIOJ9Z INITIAL DEPTH TO FINAL DEPTH TO W	ATION WATER WATER	.32_WELL	ART TIME <u>-</u> DEPTH <u>20</u> VOL. PURG	0.0' EST. ED 4344 0	WELL DISC	BORE VOL	13.859
PURGE INFORMATE SION PORTON SINCE SION PORTON SION PORTON SINCE SION PORTON SION PORTON SION PORTON SION SION SION SION SION SION SION SI	ATION WATER VATER 4 HDPE	STA 32 VELL TOTAL	ART TIME DEPTH 20 VOL. PURG PUMP DEP	D.O'_EST. ED 43440 TH 14.0	WELL DISC	.BORE VOL	13.85 <u>9.</u>
PURGE INFORMATE SION PORTON SION PORTON SION PORTON SION PURGED TO SURFICE SURFICE SION PURGED TO SURFICE SION PURGED TO SURFICE SION PURGED TO SURFICE SURFICE SION PURGED TO SURFICE SURFI	ATION WATER VATER ATER THOPE EMPERATE	STA 32 WELL TOTAL Tubing URE pH	ART TIME DEPTH 20 VOL. PURG PUMP DEP	D.O' EST. ED 43440 TH 14.0	WELL DISC	BORE VOL	13.859.
PURGE INFORMATE SION PORTE SION PORTE SION PORTE SION PORTE SION PORTE SION PURGED TO CALL	ATION WATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER	STA 32 WELL TUTAL TUDING URE PH C 6,22	DEPTH 20 VOL. PURG PUMP DEP CONDUCTIV	2.0' EST. ED 434A TH 14. 0 VITY Close	WELL DISC	.BORE VOL	13.85 <u>9.</u>
PURGE INFORMATE SILO 972 NITIAL DEPTH TO WATELA VOLUME PURGED TO CAL 3.85	ATION WATER VATER ATER THOPE EMPERATE	STA 32 WELL TOTAL Tubing URE pH C 6,22 6,19	PUMP DEP CONDUCTIV 450X1 410X	2.0' EST. ED 434A TH 14. 0 VITY Close	WELL DISCI	.BORE VOL	13.859.
PURGE INFORMATE SILONG TO SET	ATION WATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER	STA 32 WELL TOTAL Tubing URE pH C 6,22 6,19 6,29	PUMP DEP CONDUCTIV 450X1 402X1	P.O' EST. ED 434A TH 14. VITY Clo	WELL DISCI	BORE VOLHARGE RAT	13.859. E
PURGE INFORMATE SILO POR TO SET SILO PURGED TO SET	ATION WATER WATER ATION WATER ATION WATER WATER ATION WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER WATER	57/ .32 WELL TOTAL Tubing URE pH C 6.22 6.19 6.39	PUMP DEP CONDUCTIV 450X1 402X1	P.O' EST. ED 434A TH 14. VITY Clo	WELL DISC DISC DISC DISC DISC DISC DISC DISC	BORE VOLHARGE RAT	13.859. E
PURGE INFORMATE SILO SILO SILO SILO SILO SILO SILO SILO	ATION WATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER ATER	57/ 32 WELL TOTAL Tubing URE pH 6,22 6,19 6,39	PUMP DEP CONDUCTIV 450X1 402X1	D.O' EST. ED 43440 TH 14.0 VITY Close	WELL DISC DISC DISC DISC DISC DISC DISC DISC	APPEARAN	13.859. E

WELL NUMBER	10-19k			FIELD TE	EAM ((2JALTIP)	KBL
SITE EAFB					JOF	W NUMBER .	
FIELD CONDITIONS	S ONER	CAST,	-20	F, WIN	عصد	CAIM	
							<u>.</u>
FIELD MEASU	REMENT	./				TOTAL ATP	CAL IBRATION
COLLECTION	EQUIP.		MAKE/		St	ERIAL/ID NO.	COMMENTS 1
PH METER			N 2	50 A	८६	82	See CAI logs
CONDUCTIVITY ME	TER	421	<u> </u>		18	20	f
THERMOMETER		Cal	on 2	.50A	28	87	
WATER LEVEL IN	DICATOR	Stop	E 415	743	193	66	
BAILER/PUMP			udros		056	,208	
DECONTAMINA	TION	CAM	ነሮ ል	5 SMW	01		
DECONTRIBUTION	<u> </u>		<u> ~;</u>	ي جي الم	<u> </u>		
RURGE INFOR						·	_
DATE 1249	7		ATS	RT TIME _	1150	}	END TIME 1155
							LBORE VOLE 1
FINAL DEPTH TO	WATER -	1.33	TOTAL	VOL. PURG	ED Z	DISC DISC	HARGE RATE 39pm
METHOD Grunds	as Pur	<u>~e</u>		PUMP DEP	тн	7.76	
VOLUME PURGED			рΗ	CUNDUCTIV			APPEARANCE
< 1961	5.B°	<u>' C </u>	652	400 mha	4	Slightly	cloody
864	5.0	۲.	6.65	400 mho	<u> </u>	. 6	
15acl	4.9	<u>'C</u>	6.73	400 mass	<u></u>		
1894	36	2	6.86	4/60 m	ks		
2594/	3.6	<u>'C</u>	6.73	400 m	45		+
4 70P d	(AS IN	76	6.41	L 400 n	Nos	Slig	ally cloudy
SAMPLING THE	FORMAT	C .TUN	- , , ,	-		•	
20.5	TELLAR	TUIN			115	6	1155
DATE	Maria San		STA	ART TIME _	44	<u> </u>	END TIME
METHOD SKUN	A MINE ES.	VA					••
INITIAL DEPTH 1	IVANIA	P1	364				ER, SAMPLING 4.1

רובו ח	TEAM (TN	(2 IATT	KLIKDL	
^				
NG OF 10 F 2 Kg	t wood N	ר־יו		
MAKE/MODEL				
SRION 250A	288	2	se calla	3
YS1 33	/31	0		
ORION 250A	238	L	}	
	195	66		
			1	
17 OCTL				
SAME A	<u> </u>	שטע		
	·			
	10.1	0	17:	740
START TIME	154	0	END TIME 16	00
OS WELL DEPTHS	<u>9754</u>	ST. WELL	BORE VOLS	5
OS WELL DEPTHS	<u>9754</u>	ST. WELL	BORE VOLS	5
OS WELL DEPTHS	<u>9754</u>	ST. WELL	BORE VOLS	5
TOTAL VOL. PUR PUMP DE	975 E GED <u>2</u> 5 PTH	ST. WELL	HARGE RATE	5
E PH CONDUCT	975 & GED 25 PTH	ST. WELL 19 DISCH 36.5	HARGE RATE	5
TOTAL VOL. PUR PUMP DE	975 & GED 25 PTH IVITY	ST. WELL SG DISCH 36.5	HARGE RATE	~2qpa
PUMP DE PH CONDUCT 7.11 210 -	PTH IVITY	ST. WELL SG. DISCH 36, 5 Clary skyl	HARGE RATE	~2qpa
PUMP DE PH CONDUCT 7.11 210 - 7.07 220 m	PTH IVITY	ST. WELL SG. DISCH 36, 5 Clar Clar	HARGE RATE	~2qpa
PUMP DE PH CONDUCT 7.11 210 = 7.12 220 m 7.11 320 m 7.11 320 m	PTH	ST. WELL SG. DISCH 36, 5 Clar Clar Clar	HARGE RATE	~2qpa
PUMP DE PH CONDUCT 7.11 210 = 7.12 220 m 7.11 320 m 7.11 320 m	PTH IVITY	ST. WELL SG. DISCH 36, 5 Clar Clar	HARGE RATE	~2qpa
PUMP DE PH CONDUCT 7.11 320 M C 7.11 M	PTH	ST. WELL SG. DISCH 36. 5 Clary skyl Clary clary	HARGE RATE	~290=
7.11 210 - 7.11 320 A 7.11 320 A 7.11 320	PTH	ST. WELL SG. DISCH 36. 5 Clary skyl Clary clary	HARGE RATE	~290=
7.11 320 m 7.11 320 m 3 20 m 3	PTH	ST. WELL Sq. DISCH 36, 5 Clar Clear Clear	APPEARANCE	~2gpa
7.11 320 A 7.11 320 A 32	9.75 & GED 25 PTH	ST. WELL Sq. DISCH 36, 5 Clar Clear Clear	APPEARANCE	~2gps
7.11 320 m 7.11 320 m 3 20 m 3	9.75 & GED 25 PTH	ST. WELL Sq. DISCH 36, 5 Clar Clear Clear	APPEARANCE	~2gps
	MAKE/MODEL MAKE/M	S JOB NG, 0 to 10°F, 5 Knt wood N MAKE/MODEL SER MAKE/MODEL N ORION 250A 288 181 ORION 250A 288 SLOPE HISH3 (95) SLOPE HISH3 OSG2 1800TR	S JOB NUMBER . NG, 0 to 10°F, 5 Knt word N-5 MAKE/MODEL SERIAL/ID NO. SPRION 250A 2882 YS1 33 /810 ORION 250A 2882 SLOPE HIS43 /9566 SLOPE HIS43 /9566 SLOPE GRUDOWNO 056208	JOB NUMBER JOB NUMBER JOB NUMBER JOB NUMBER JOB NO. CALIBRAT COMMEN' COMMEN' COMMEN' COMMEN' COMMEN' COMMEN' CALIBRAT COMMEN' COMEN' COMMEN' C

FIELD CONDITIONS	Overca	sr	1 f	OUB MUMBERY	PNC31026.H3.60
		-			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FIELD MEASUREN		MAKE	/MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER	. —				
CONDUCTIVITY METER	· <u>/</u>	ede	K TO		<u> </u>
THERMOMETER	**************************************		Pa	5e 4.	
WATER LEVEL INDICA	ATOR	· <u>·</u>	• •		
BAILER/PUMP		-			
•	•	~ *•. ⊲			
DECONTAMINATIO	<u> </u>				
					
			1		
PURGE INFORMAT	TION				
DATE \$10/92	•	ΛΤΘ	RT TIME 150	0	END TIME /600
, , ,		3 IM	KI IIME	(
INITIAL DEDTH TO W	ATER 3462	\	DEDTU 50'		
			DEPTH 50'	EST. WELL	BORE VOL 17.36 (A)
FINAL DEPTH TO WA	TERT	DTAL	DEPTH <u>50'</u>	EST. WELL	BORE VOL 17.36 (A)
FINAL DEPTH TO VA	TERT HDPE Tub	DTAL	DEPTH <u>50'</u>	EST. WELL	BORE VOL 17.36 (A)
FINAL DEPTH TO WAS METHOD WATER &	TERT HDPE Tub MPERATURE	DTAL PH	DEPTH <u>SO'</u> VOL. PURGED : PUMP DEPTH _ CONDUCTIVITY	EST. WELL: 5890 DISCH	BORE VOL 17.36 100
METHOD WATERS 4 VOLUME PURGED TEN O GAC 10	TERT HDPE Tub MPERATURE	DTAL PH	DEPTH <u>SO'</u> VOL. PURGED :	EST. WELL: 5890 DISCH	BORE VOL. 17.36 PAR ARGE RATE
FINAL DEPTH TO WAS METHOD WATER 4 VOLUME PURGED TEN O GAC 10 17.36 10	TERT HDPE Tub MPERATURE	DTAL PH	DEPTH <u>SO'</u> VOL. PURGED : PUMP DEPTH _ CONDUCTIVITY 459x	_est. well: 58 pl disch 43	BORE VOL. 17.36 PAR ARGE RATE
FINAL DEPTH TO WAS METHOD WATERS 4 VOLUME PURGED TEN O GAC /0 17.36 /0 34.72 9	HDPE Tub MPERATURE 7,4°C 1.1°C	pH	DEPTH SO' VOL. PURGED S PUMP DEPTH CONDUCTIVITY 459x 422x	EST. WELL 5894 DISCH 43 Tuebio	BORE VOL. 17.36 PAR ARGE RATE
FINAL DEPTH TO WAS METHOD WATERS 4 VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9	HPPE Tub MPERATURE 7,4°C 1.1°C 9°C	pH 6.74	DEPTH SO' VOL. PURGED PUMP DEPTH CONDUCTIVITY 459x 422x 432x	Tuebio Tuebio	BORE VOL. 17.36 PAR ARGE RATE
FINAL DEPTH TO WAS METHOD WATER 4 VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9 52.08 9	HPPE Tub MPERATURE 9,4°C 1.1°C .9°C	pH 6.74/6.79	DEPTH SO' VOL. PURGED S PUMP DEPTH CONDUCTIVITY 459x 422x 432x 432x	Tuebio Tuebio	BORE VOL. 17.36 PAR ARGE RATE
FINAL DEPTH TO WAS METHOD WATER 4 VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9 52.08 9	HDPE Tub MPERATURE 1.1°C 1.9°C	DTAL DH 6.74/ 6.79 6.83 6.85	DEPTH SO' VOL. PURGED PUMP DEPTH CONDUCTIVITY 459x 422x 432x 432x	Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio	BORE VOL. 17.36 PAR ARGE RATE
FINAL DEPTH TO WAS METHOD WATER 4 VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9 52.08 9	HDPE Tub MPERATURE 1.1°C 1.9°C	DTAL 14 16.74 16.79 16.83 16.85	DEPTH SO' VOL. PURGED PUMP DEPTH CONDUCTIVITY 459x 422x 432x 432x	Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio	BORE VOL. 17.36 PAR ARGE RATE
METHOD WATERS & VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9 52.08 9 OTHE Suple 10 SAMPLING INFOR	MPERATURE 1.1°C 1.9°C 1.3°C 1.7°C 1.7°C	pH 6.74 6.79 6.83 6.85	DEPTH SO' VOL. PURGED PUMP DEPTH CONDUCTIVITY 459x 422x 432x 432x 432x 4432x	Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio	APPEARANCE
METHOD WATERS & VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9 52.08 9 OTHE Suple 10 SAMPLING INFOR	MPERATURE 1.1°C 1.9°C 1.3°C 1.7°C 1.7°C	pH 6.74 6.79 6.83 6.85	DEPTH SO' VOL. PURGED PUMP DEPTH CONDUCTIVITY 459x 422x 432x 432x 432x 4432x	Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio	APPEARANCE
METHOD WATERS 4 VOLUME PURGED TEN O GAC 10 17.36 10 34.72 9 52.08 9 other Suple 10	MPERATURE 1.1°C 1.9°C 1.3°C 1.7°C 1.7°C	pH 6.74 6.79 6.83 6.85	DEPTH SO' VOL. PURGED PUMP DEPTH CONDUCTIVITY 459x 422x 432x 432x 432x 4432x	Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio Tuebio	APPEARANCE

(5)

GROUNDWATER SAMPLING FIELD DATA SHEET

E EAFE			6000	JUB?	NUMBER	ANC31026.43.6
ELD CONDITIONS.	Over	msI,	78 C		<u></u>	
•						
IELD MEASUR OLLECTION E	EMENT/ QUIP.	MAKE/	MODEL		RIAL/ID	CALIBRATION COMMENTS
H METER	01	RION Z	30A	HAZCO	1875	C17°C
INDUCTIVITY MET	ER K	SI 33	<u> </u>	HAZCO	2170	9,000 W/10,000 & ale
HERMOMETER		· ·	· ·	<u> </u>		
,-	ICATOR -	ORS		HAZCO	1792	
ATER LEVEL IND MYWATTE THE AILER/PUMP	eface	*	-	<u> </u>		
• • •			•	,		
一つついす 4 147114 デ	ארוז:		1000	1 . 44 14 4	wx h	UMSH, Tap K
		JAM C	· Icar	- 7		
		JCAM C	1000			
		JCAM C	1000			
DI WARK	Ringe		· lear-			
DI WARK PURGE INFORM	R.~se					
PURGE INFORM	RINGE MATION	AT2	ADT TIME	1015		FND TIME 1115
URGE INFORMATE SILIPE	ATION WATER 40.	STA	ART TIME _	/015 45 ° 6	ST. WEI	_ END TIME 1115
URGE INFORMATE SILIPE	ATION WATER 40.	STA	ART TIME _	/015 45 ° 6	ST. WEI	_ END TIME 1115
URGE INFORMATE SILIPE NITIAL DEPTH TO	ATION WATER 40.	STA	RT TIME _ DEPTH_C	/0/5 45 '8	5 ST. VEI	END TIME 1115 LLBORE VOL 6.44 CHARGE RATE
URGE INFORMATE SILIPE NITIAL DEPTH TO	ATION WATER 40.	STA	RT TIME _ DEPTH_ VOL. PURI	/0/5 45 '6 GED 21 PTH	5 ST. VEI	END TIME 1115 LLBURE VOL. 6.44 CHARGE RATE
PURGE INFORM OURGE INFORM OU	ATION WATER 40: WATER 40: WATER 1: WAT	STA 21' WELL TOTAL Tubing RE PH	DEPTH L VOL. PURI PUMP DEI CONDUCTI	/0/5 45 ° 6 GED 21 PTH	.0' dis	END TIME 1115 LLBURE VOL 6.44 CHARGE RATE 4
URGE INFORMATE SILLIPE NITIAL DEPTH TO INAL DEPTH TO ETHOD WATER OBLUME PURGED O GAL	ATION WATER 40. WATER 40. WATER 40. TEMPERATURE BA C	STA 21' VELL TOTAL Tubing	DEPTH VOL. PURP DEI	/0/5 45 '6 GED 21 PTH	5. VEI .0' DIS 43'	END TIME 1115 LLBURE VOL. G. 44 CHARGE RATE APPEARANCE TRESM)
URGE INFORMATE SILLIPZ NITIAL DEPTH TO INAL	ATION WATER 40: WATER 40: WATER 1: WAT	STA 21' WELL TOTAL Tubing RE PH	DEPTH L VOL. PURI PUMP DEI CONDUCTI	/0/5 45 '6 GED 21 PTH	5. VEI .0' DIS 43'	END TIME 1115 LLBURE VOL 6.44 CHARGE RATE 4
URGE INFORMATE SILLIPE NITIAL DEPTH TO SINAL DEPTH TO SETHOD WATER OULUME PURGED OF GREEN	ATION WATER 40. WATER 40. WATER 40. TEMPERATURE BA C	STA 21' WELL Tubing RE PH 6.20	DEPTH VOL. PURP DEI	/0/5 45 6 GED 21 PTH — IVITY	Musor Cloupy	END TIME 1115 LLBURE VOL. G. 44 CHARGE RATE APPEARANCE TRESM)
URGE INFORMATE SILLIPZ NITIAL DEPTH TO INAL DEPTH TO INAL DEPTH TO INATTE IN INDICATE IN	ATION WATER 40. WATE	STA 21' WELL Tubing RE PH 6.20 6.66	DEPTH LOUD PUMP DEI CONDUCT 412-X 422-X	/0/5 45 6 GED 21 PTH	Musor Cloupy	END TIME 1115 LLBURE VOL. G. 44 CHARGE RATE APPEARANCE TRESM) (Brownsh
URGE INFORMATE SILLIPZ NITIAL DEPTH TO INAL DEPTH TO INAL DEPTH TO INATTED OLUME PURGED OGGE GOL	VATER 40.	Tubing RE PH 6.20 6.66	PUMP DEI CONDUCT: 412X 398X 405X	/0/5 45 6 GED 21 PTH	Musey Cloury Slyhry	END TIME 1115 LLBURE VOL. 44 CHARGE RATE APPEARANCE TRESM) (Brownsh

DATE 8/14/92 START TIME 1115 END TIME 1150
METHOD WARRA, HDPE Tubing, Volatile Sample Tube

INITIAL DEPTH TO WATER -

DEPTH TO WATER AFTER SAMPLING

		-		M (CNITIALS)	
SITE EAFB				้ มนั้น BER.	9 NC 31026. H3.60
FIELD CONDITIONS	OVERCA	IST, 60	o°F		
		·	, :	<u> </u>	
FIELD MEASU	DEMENT/				
COLLECTION (EQUIP.	MAKE/	MODEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER .					
CONDUCTIVITY ME	TER :	1 exer	>		
THERMOMETER			Pa	2	· · · · · · · · · · · · · · · · · · ·
WATER LEVEL IN	DICATOR			#5	•
BAILER/PUMP					· · · ·
	TION	••••	- 1		
DECONTAMINA	IIUN			· · · · · · · · · · · · · · · · · · ·	
					
	<u> </u>	······································			
• •				1400	END TIME 1445
FINAL DEPTH TO METHOD Watera	WATER	TOTAL \	DEPTH <u>45</u> /OL. PURGEI	EST. WELL	BORE VOL 9-71
FINAL DEPTH TO	WATER 3(.9) WATER HOPE TU TEMPERATURE	TOTAL V	DEPTH 45 OL. PURGET PUMP DEPTH CONDUCTIVI	EST. WELL DDISC! H	BORE VOL 9-71
FINAL DEPTH TO METHOD WATERA VOLUME PURGED O GAL	VATER 3(.9 VATER + HDPE Tu	PH 7.04	DEPTH 45 VOL. PURGET PUMP DEPTH CONDUCTIVE \$\frac{1}{2}\left(0\chi) \text{10}\chi)	EST. WELL DISCH	BORE VOL 9-7/
FINAL DEPTH TO METHOD WATERA VOLUME PURGED O GAL 9.7	VATER 3(.9 VATER HDPE Tu TEMPERATURE 12.3C 8.7°C	Diag pH	DEPTH 45 VOL. PURGET PUMP DEPTH CONDUCTIVE \$10 x 1 \$92x!	EST. WELL DISCI	BORE VOL 9-7/
FINAL DEPTH TO METHOD WATERA VÕLUME PURGED 9.7 19.4	VATER 3(.9 VATER HOPE TU TEMPERATURE 12.3C	PH 7.04	DEPTH 45 JUL. PURGET PUMP DEPTH CONDUCTIVE 410 x 1 392x 1 398x1	EST. WELL DISCI	BORE VOL 9-7/
FINAL DEPTH TO METHOD WATERA VOLUME PURGED O GAL 9.7	VATER 3(.9 VATER 4 HDPE Tu TEMPERATURE 12.3°C 9.0°C 9.2°C	PH 7.04	DEPTH 45 JUL. PURGET PUMP DEPTH CONDUCTIVE 410 X 1 392 X 1 398 X 1 400 X 1	EST. WELL DISCI	BORE VOL 9-7/
FINAL DEPTH TO METHOD WATERA VÕLUME PURGED 9.7 19.4	VATER 3(.9 VATER 4 HDPE TU TEMPERATURE 12.3°C 8.7°C 9.0°C	PH 7.04 6.95	DEPTH 45 JUL. PURGET PUMP DEPTH CONDUCTIVE 410 x 1 392x 1 398x1	EST. WELL DISCI	BORE VOL 9.71 HARGE RATE
FINAL DEPTH TO METHOD WATERA VOLUME PURGED O GAL 9.7 19.4 29.1	VATER 3(.9 VATER 4 HDPE Tu TEMPERATURE 12.3°C 9.0°C 9.2°C 11.4°C	pH 7.04 6.95 7.03 7.00	DEPTH 45 VOL. PURGET PUMP DEPTH CONDUCTIVE \$10 X 1 \$92 X 1 \$95 X 1 400 X 1 425 X 1	EST. WELL DISCI	BORE VOL 9.71 HARGE RATE

WELL NUMBER SP2 6-	03 FIELD T	EAM (INITIALS)	131,09
SITE PAPB OUS	<u> </u>		ANC 310 26. H3.60
FIELD CONDITIONS SUN	ny 62°F		
	-		
FIELD MEASUREMENT.	<u>/</u> MAKE/MODEL	SERIAL/ID NO.	CALIBRATION/
pH METER			
CONDUCTIVITY METER			
THERMOMETER	Refer TO F	AGR. 11	: :
WATER LEVEL INDICATOR		1 7	'
BAILER/PUMP	,		
DECONTAMINATION	-		
	•	4	
PURGE INFORMATION			
DATE 8 13 92 INITIAL DEPTH TO WATER	START TIME	15 30	END TIME /625
1 4 - 1			- CITE 1411C games
INITIAL DEPTH TO WATER	37.23' WELL BEPTH 5	EST. WEL	LBORE VOL 13.79
INITIAL DEPTH TO WATER _			•
FINAL DEPTH TO WATER _	TOTAL VOL. PURG	DISC	•
FINAL DEPTH TO WATER _ METHOD WATERA, H)	PPF TWE PUMP DEP	етн <u>43</u> 1	•
FINAL DEPTH TO WATER _ METHOD WATERA, H VOLUME PURGED TEMPERA	TOTAL VOL. PURG OPF TWE PUMP DEP	ер biso тн <u>43'</u> vity	APPEARANCE
FINAL DEPTH TO WATER _ METHOD WATERA, H) VOLUME PURGED TEMPERA O GAL 13-5	TOTAL VOL. PURG PPF TWE PUMP DEP TURE - PH CONDUCTIVE 658 158 × 10	oth 43'	APPEARANCE
FINAL DEPTH TO WATER _ METHOD WATERA, H) VOLUME PURGED TEMPERA 13.79 GAL 9.2	TOTAL VOL. PURG PPF TWE PUMP DEP TURE PH CONDUCTIVE C 658 158 × 10 C 6.77 68 X 1	VITY Sandy	APPEARANCE
FINAL DEPTH TO WATER _ METHOD WATERA, H VOLUME PURGED TEMPERA 13.79 GAL 9.2 27.58 GAL 9.0	TOTAL VOL. PURG PPF TWE PUMP DEP TURE - PH CONDUCTION C 658 158 × 10 C 6.77 68 X / 10 C 6.84 90 X / 10	VITY Sandy	APPEARANCE 4 Mddy MUDY
FINAL DEPTH TO WATER _ METHOD WATERA, HY VOLUME PURGED TEMPERA 13.79 GAL 9.2 21.58 GAL 9.0 41.37 GAL 8.5	TOTAL VOL. PURG PPF TWE PUMP DEP TURE - PH CONDUCTIVE C 6.58 158 × 10 C 6.77 68 X / C 6.84 90 X / C C 6.87 70 X / C	VITY Sandy O Graysh	APPEARANCE
FINAL DEPTH TO WATER _ METHOD WATERA, H) VOLUME PURGED TEMPERA 13.79 GAL 9.2 27.58 GAL 9.0 41.37 GAL 8.5 55.0 GAL 9.3 60.0 GAL 8.5	TOTAL VOL. PURG OPF TWE PUMP DEP TURE - PH CONDUCTIVE C 658 158 × 10 C 6.77 68 X / C 6.87 70 X / C 6.87 70 X / C 7.18 70 X / C 7.18 80 X /	VITY Sandy O Gayish O 11	APPEARANCE APPEARANCE Muddy Muspy M Beam Tucking M M M M M M M M M M M M M
FINAL DEPTH TO WATER	TOTAL VOL. PURG OPF TWE PUMP DEP TURE - PH CONDUCTIVE C 658 158 × 10 C 6.77 68 X / C 6.87 70 X / C 6.87 70 X / C 7.18 70 X / C 7.18 80 X /	VITY Disconsidered Sandy O Gayish O 11	APPEARANCE APPEARANCE Mulpy Mulpy
FINAL DEPTH TO WATER _ METHOD WATERA, H) VOLUME PURGED TEMPERA 13.79 GAL 9.2 27.58 GAL 9.0 41.37 GAL 8.5 55.0 GAL 9.3 60.0 GAL 8.5	TOTAL VOL. PURG PPF TWE PUMP DEP TURE - PH CONDUCTIVE C 6.58 158 × 10 C 6.77 68 X / C 6.87 70 X / C 6.87 70 X / C 7.18 80 X / C 7.18 80 X / C 7.19 110 X /	VITY Disconsidered Sandy O Gayish O 11	APPEARANCE APPEARANCE Muddy Muspy M Beam Tucking M M M M M M M M M M M M M
FINAL DEPTH TO WATER _ METHOD WATERA, H) VOLUME PURGED TEMPERA 13.79 GAL 9.2 27.58 GAL 9.0 41.37 GAL 8.5 55.0 GAL 9.3 60.0 GAL 9.3 SAMPLING INFORMAT	TOTAL VOL. PURG PPF TWE PUMP DEP TURE - PH CONDUCTIVE C 6.58 158 × 10 C 6.77 68 X / C 6.84 90 X / C 6.87 70 X / C 7.18 70 X / C 7.18 80 X / C 7.19 110 X / 10 N	VITY Sandy O Gayish O U	APPEARANCE APPEARANCE Mully Mully
FINAL DEPTH TO WATER	TOTAL VOL. PURG PPF TWE PUMP DEP TURE - PH CONDUCTIVE C 6.58 158 × 10 C 6.77 68 X / C 6.84 90 X / C 6.87 70 X / C 7.18 70 X / C 7.18 80 X / C 7.19 110 X / 10 N	VITY Sandy O Gayish O U	APPEARANCE APPEARANCE Mully Mully
FINAL DEPTH TO WATER _ METHOD WATERA, H) VOLUME PURGED TEMPERA 13.79 GAL 9.2 27.58 GAL 9.0 41.37 GAL 8.5 55.0 GAL 9.3 60.0 GAL 9.3 SAMPLING INFORMAT	TOTAL VOL. PURG OPF TWO PUMP DEP TURE - PH CONDUCTIVE C 658 158 × 10 C 6.77 68 X / C 6.87 70 X / C 6.87 70 X / C 7.18 70 X / C 7.18 80 X / C 7.19 110 X / START TIME -	VITY Orange O Sandy O Greysh O II O II III	APPEARANCE APPEARANCE AUDY M Beam Tucking II II II II END TIME 1675

WELL NUMBER	2PZ/6-04		FIELD TEAM	4 (INITIALS)	BT, JG
SITE EAFR					mc 31026 H360
FIELD CONDITIONS					
f Aboto w www					
FIELD MEASU		MAKE/	/MUDE!	SERIAL/ID NO.	, CALIBRATION/ COMMENTS
DH METER		Parisa.	MUDLL		GUFFIGURE
CONDUCTIVITY ME	ereo (),	De	P		
	IER II		VER 12	n_	1
THERMOMETER			- '	Page # 17	
WATER LEVEL IN	DICATUR	-		1/1	
BAILER/PUMP	··· -				
DECONTAMINA	TION		· · · · ·		
				~	a,
	<u> </u>		<u>Y</u>		
PURGE INFOR	MAATIINI .		~		
		~~ ^	17	725	- 1410
DATE 8 13 9			ART TIME		
INITIAL DEPTH T	O WATER -	WELL	DEPTH	EST. WELL	BORE VOL.
FINAL DEPTH TO					HARGE RATE
METHOD Watera	, HOPE Jubi	4	PUMP DEPTH	035 7	4
VOLUME PURGED	······································	pH	CONDUCTIVIT	Ύ	APPEARANCE
O GAL	10.2°C	6.63	380X)	ORamoliji	BROWN
18.79 13.27	7.90	6.78	365X1		h]Tukbio
137.58 26.54	3. Y°C	6.62		Greyish	•
9:50-37 39.81	7.50	6.58		" "	11
after Sample		6.38	 	Cloudy	
					
			•		
SAMPLING IN					
DATE \$ 13 92)	STA	ART TIME 14	120	END TIME 1425
METHOD WATER	A. HDPE Tubi	n la	latile San	se Tube	
INITIAL DEPTH T					ER SAMPLING
	-	<u>-</u>		_	

WELL NUMBER S			_ FIELD T	EAM (II	VITIALS)	BTIG	
SITE FAFY						AMC 3102	6 H360
FIELD CONDITIONS	Overch	ST, R	ain, S	15.88°			
FIELD MEASU	REMENT/			% E:	RIAL/ID	CAL TRE	RATION
COLLECTION E		MAKE	MODEL	·	NO.	COMM	ENTS
PH METER	OR	210r 2	30 A	HAZIO	1875	850 w 1000	
CONDUCTIVITY ME	TER 4	ST 3	33	HAZCO	2170	8000 W 10,00	ounder "
THERMOMETER				ļ			
WATER LEVEL IN	DICATOR	ORS		Hazco	1792		
OIL Water In BAILER/PUMP	REFACE.		•	<u> </u>			· · · · · · · · · · · · · · · · · · ·
DECONTAMINA	TION S	tom C	Iran. 1	\ 6 7 (M)		ASH. D	. Rive
DIWATER		<u>Carr</u>	11 - 1	· V			
DI WILL		·.				······································	
							
PURGE INFOR			⊈ .		•.		
DATE 8 12	92	STA	RT TIME _	1020	<u> </u>	END TIME	1115
INITIAL DEPTH T							
FINAL DEPTH TO						CHARGE RAT	E
METHOD WATTA	A, HDPE T	ubing	PUMP DEF	тн <u></u>	0		
VOLUME PURGED	TEMPERATURE	рН	CONDUCTI	VITY		APPEARAN	ICE
O GAL	8.4°C	6.24	422x1		Mudd	y, Sheer, a	DOR
15.7	7.6℃	6.37	395 ×	-1	_	Sheen.	
31.4	7.3°C	4.58	395 X	(1)	clanda	, Sleen,	odor
46.1	7.48	6.66	390X	1		ODOR,	^
after Suph	8,4%	6.74	3981	/	/1	li '	• j
SAMPLING IN	FORMATION						4
DATE 8 12 9	2	ST	ART TIME	1120)	_ END TIME	1125
METHOD WASER	a, HOPE To	abing,	VOLATI	15	anyde	Tubes	
	' ATER		חבטבר	; 1 TD \/	ATED AE	TED SAMPII	

WELL NUMBER	W-16		FIELD T	EAM ((SLAITIALS)	BT, JG
SITE OUS	EAFB			ia	B NUMBER	ANC 31026. 43.60
FIELD CONDITION	s Rain,	OVER	CAST, 6	20° F	-	
FIELD MEASU		MAKE	/MODEL	S	ERIAL/ID NO. s	CALIBRATION/ COMMENTS
pH METER	·				*	
CONDUCTIVITY M	ETER	0			· · · · · · · · · · · · · · · · · · ·	
THERMOMETER		6	Car			
WATER LEVEL IN	IDICATOR			Pa	ge /	
BAILER/PUMP		 			-0 44 /	3
DECONTAMINA	TION	-	-			
					 ::	
	• :			V		
PURGE INFOR		AT?	: ART TIME	151:	5 -2 1	END TIME 1640
						BORE VOL 23.4
FINAL DEPTH TO						_
METHOD WATER		•			.46	
VOLUME PURGED					. •	ABBEABANCE
O GAL	10.8°C	677	4wx1	7111	Clarak	APPEARANCE
23.4	8.90	6.94	390x1		Silty/Gi	•
46.3	8.0°c	6.99	385 X	/	5.14	Great
70.2	8.2°c	7.02			11)	11
after sample	8.99	7.11	390x1		Gregish	Gloudy
	0.70	1-				
SAMPLING IN	FORMATION					
DATE 8 12	9.2	STA	ART TIME	1650	<u> </u>	END TIME 1700
METHOD WATER	a, HOPE Tu	bing,	Velativ		ample -	Tube
INITIAL DEPTH 1						ER SAMPLING
						·

WELL NUMBER GW-6A. FIELD TEAM (INITIALS) BT, JG									
SITE EAFB OUS JOB NUMBER AM 31026.113.60									
FIELD CONDITIONS Sunay 60°F									
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
FIELD MEASUREM	ENT/		SECIAL /ID	CALIBRATION					
COLLECTION EQUI		AKE/MODEL	SERIAL/ID NO.	COMMENTS					
PH METER -	ORION	230 A -	Hazeo 1875	18.12, 4.0, 7.02 @ 15,3°C					
CONDUCTIVITY METER	4SI	33	Hazro 2170	Ross Williams Mayor					
THERMOMETER	•		ļ						
WATER LEVEL INDICA	TOR A OX	2.	1792 Hz	1792 Hazar					
OIL WARE INTERFA BAILER/PUMP	· · · · · · · · · · · · · · · · · · ·		<u> </u>						
DECONTAMINATION	V Steam	· Clara /	LES MAINE Y SALA	KH Tan Ruice.					
QI Ringe	<u>Jean</u>	· Crar ; h	(4)	-					
V V V I I I I				·· ·					
PURGE INFORMAT									
DATE 8 13 92 START TIME 1120 END TIME 1/55									
DHIE									
INITIAL DEPTH TO WA	TER 31.23	VELL DEPTH _	10 EST. WE	LLBORE VOL					
INITIAL DEPTH TO WAT	TER 31.23	TAL VOL. PUR	GED 3010L DIS	LLBORE VOL					
INITIAL DEPTH TO WA	TER 31.23	TAL VOL. PUR	GED 3010L DIS	LLBORE VOL					
INITIAL DEPTH TO WAT	TER 31.23 \ ERTO DIE TUIL	TAL VOL. PUR	10 EST. WE GED 309AL DIS PTH 38	LLBORE VOL					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD LUATION H VOLUME PURGED TEM	TER 31.23 VERTO	TAL VOL. PUR	10 EST. WE GED 309AL DIS PTH 38 IVITY X1 Braun, 1	APPEARANCE Moddy, Shen, Sdor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER HETHOD TEM	TER 31.23 IN TOPE TUDIO	TAL VOL. PUR PUMP DE	10 EST. WE GED 309AL DIS PTH 38 IVITY X1 Braun, 1	APPEARANCE Moddy, Shen, Sdor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER H VOLUME PURGED TEM C GAL	TER 31.23 FER TO TO PERATURE 10.70 6.2°C 6.2°C	TAL VOL. PUR PUMP DEI PH CONDUCT:	10 EST. WE GED 309AL DIS PTH 38 IVITY X Brown, 1	CHARGE RATE					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER H VOLUME PURGED TEM O GAL 9-69 19-38	PERATURE 10.70 6 8.2°C 6 6.1°C 5	TAL VOL. PUR PUMP DEI PH CONDUCT 7. 1/2 1/30 7. 58 3927	10 EST. WE GED 309AL DIS PTH 38' IVITY X Brown, X Erown,	APPEARANCE Moddy, Shen, Sdor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER H VOLUME PURGED TEM O GAL 9-69 19-38	TER 31.23 TERTO TOPE TUDIO PERATURE 10.70 6 8.2°C 6 6.1°C 5	TAL VOL. PURP PUMP DEI PH CONDUCT: 9.42 430 9.58 392 9.66 395	10 EST. WE GED 309AL DIS PTH 38' IVITY XI Brown, 1 XI Brown, 1	APPEARANCE Muddy, Sheen, Sdor muddy, Sheen, Cdor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER, H VOLUME PURGED TEM CO GAL 9-69 19-38 28-17	TER 31.23 TERTO TOPE TUDIO PERATURE 10.70 6 8.2°C 6 6.1°C 5	TAL VOL. PURPOSE PUMP DE PUM	10 EST. WE GED 309AL DIS PTH 38' IVITY XI Brown, 1 XI Brown, 1	APPEARANCE Moddy, Sheen, Sdor moddy, Sheen, Cdor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER H VOLUME PURGED TEM O GAL 9-69 19-38	TER 31.23 TERTO TOPE TUDIO PERATURE 10.70 6 8.2°C 6 6.1°C 5	TAL VOL. PURPOSE PUMP DE PUM	10 EST. WE GED 309AL DIS PTH 38' IVITY XI Brown, 1 XI Brown, 1	APPEARANCE Moddy, Sheen, Sdor moddy, Sheen, Cdor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER, H VOLUME PURGED TEM O GAL 9-69 19.38 28.17 GHEL Sample SAMPLING INFOR	PERATURE 10.76 6.1°C 7.6°C MATION	TAL VOL. PURP PUMP DEI PH CONDUCT: 9.42 430 9.58 3928 9.66 3958 169 3908	10 EST. WE GED 30 9AL DIS PTH 38' IVITY X Brown, X	APPEARANCE Moddy, Sheen, Odor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATER, H VOLUME PURGED TEM O GAL 9-69 19.36 28.17 GHEL Saple SAMPLING INFOR	PERATURE 10.76 6.1°C 7.6°C MATION	TAL VOL. PURP PUMP DEI PH CONDUCT: 9.42 430 9.58 3928 9.66 3958 169 3908	10 EST. WE GED 30 9AL DIS PTH 38' IVITY X Brown, X	APPEARANCE Moddy, Sheen, Odor					
INITIAL DEPTH TO WAT FINAL DEPTH TO WAT METHOD WATERA, H VOLUME PURGED TEM CO GAL 9.69 19.38 28.17 Gfter Sample	PERATURE 10.76 6.1°C 7.6°C MATION	TAL VOL. PURP PUMP DEI PH CONDUCT: 9.42 430 9.58 3928 9.66 3958 169 3908	10 EST. WE GED 30 9AL DIS PTH 38' IVITY X Brown, X	APPEARANCE Moddy, Sheen, Odor					

(47)

WELL NUMBER	574-01		_ FIELD TE	EAM (IN	(ZJALT)	B1190				
SITE Elmendort AFB IRP JOB NUMBER ACC 31026-43.60										
FIELD CONDITIONS Dusty (ASH) Overcost, Calm, 55°F										
-										
FIELD MEASU		MAKE	MODEL		[AL/ID IO.	COMMENTS :				
pH METER	ORI	ON 23	OA	HAZLO	1875	1434.0,7.0				
CONDUCTIVITY ME	TER 451 33			HAZCO	2170	7900 / 100 10 10 100 PC				
THERMOMETER										
WATER LEVEL IN OIL/WHIE J. BAILER/PUMP	NDICATOR ORS			HAZLO 1792						
DECONTAMINATION Steam Clear, Linux was Tap Rive										
DI WATER RINGE										
PURGE INFORMATION DATE 8/20/92 START TIME 0945 END TIME 1045										
INITIAL DEPTH TO WATER 5.39' WELL BEPTH 24' EST. WELLBORE VOL 19.27 M										
FINAL DEPTH TO WATERTOTAL VOL. PURGED 5991 DISCHARGE RATE										
METHOD Watera, HOTE Tubing PUMP DEPTH 18"										
VOLUME PURGED		•	CONDUCTIV			APPEARANCE				
O GAL	9.2°C				1 Par					
19.27	7.6°C	6.02	290X1			Claure				
38.54	7.7°C	6.34	290x1		11	u				
57.81	8.4°C	6.45	295X1		4	10				
atter sample	8.1°C	6.74	295X1		11	¢(
•										
SAMPLING INFORMATION										
METHOD Liketora, HOPE Tubing, Dolatile Soupling Take										
METHOD Listers, HOPE Tubing, Dolatile Souply Table										
INITIAL DEPTH TO WATERDEPTH TO WATER AFTER SAMPLING										

	Q.		WATER SA D DATA SI		
WELL NUMBER 5	P4/1-0				BT. 56
SITE EAFS					17NC 316 X.H3.CC
FIELD CONDITIONS				JUB HOMBEN	·
1100 0000111000	·				
STEL B. ME A OLIV					
FIELD MEASUR		MAKE	/MODEL	SERIAL/ID	COMMENTS
pH METER		210~ 230	A 41	Azio 1575	10:14,4.9 5:95 2 12:42
CONDUCTIVITY ME	TER Y	SI 33		A200 2178	750 w 1000 Unios 7500 w 1000 & 12.8°C.
THERMOMETER					
WATER LEVEL IN	DICATUR	025	H.	AXO 1792	
BAILER/PUMP	uface _				
DECUNTAMINA	110N ~	ر م			- Day Wiles
DECONTAMINATION DE L'UNIONE LE		nanco	an, ciqu	Max With	, las les E
JI WOLL	<u> </u>			···	
PURGE INFOR			-	•	201
					_ END TIME 0945
					LLBORE VOL19.239
					CHARGE RATE
METHOD WATER	24, 171111	= Tube	PUMP DEPTH	1 13	
VOLUME PURGED	TEMPERATU	RE pH	CONDUCTIVI	TY	APPEARANCE
C) CAL	9.300	6.64	265×1	Cle	9,4
19.27	6.1°C	4.51	248×1	BROWNIS	h/Tuebig
38.54	6.5°C	6.67	240×1		h/Turbig 50mi-Turbig
57.81	6.400	6.72	24011		
Asta Sple	6.5%	6.90	245X1	/	<u> </u>
•					

SAMPLING INFORMATION		
DATE S 92	START TIME 1000	END TIME 1005
METHOD WATERS, HOPE Tube,	Volatile Samole	Tube!
INITIAL DEPTH TO WATER	·	•

FIELD MEASU	DEMENT/						
COLLECTION E		MAKE	/MODEL	SE	RIAL/ID NO.	CALIBRA COMME	
PH METER							
CONDUCTIVITY ME	TER	~ f	-	<u></u>			·
THERMOMETER		12ex	n 10	Pa	go #3	39	<u> </u>
WATER LEVEL IN	DICATOR	·		!			
BAILER/PUMP				4		<u> </u>	
DECONTAMINA	TION			1			-
				1			· · · · · · · · · · · · · · · · · · ·
				•			
DATE 8/24/9	2.					END TIME 16	
DATE 8/24/9° INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER	VATER 39.3 WATER	8' WELL TOTAL Tube	DEPTH S	5' ED 5 PTH _	est. Wel Dis	LBORE VOLZ	9pn
PURGE INFORDATE SIZU 9 INITIAL DEPTH TO METHOD WELLOW PURGED	VATER 37.3 WATER WATER TEMPERATURE	8' WELL TOTAL Tube	DEPTH S VOL. PURC PUMP DEF	5' ED 5 PTH _	est. Wel Dis	LBORE VOLZO CHARGE RATE APPEARANCE	9pn
DATE 8/24/9' INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER VOLUME PURGED O GAL	VATER 37.3 WATER WATER A, HOPE TEMPERATURE 12.1°C	8' WELL TOTAL Tube pH	DEPTH S VOL. PURC PUMP DEF CONDUCTI 37571	5' ED 5 PTH _	est. Wel Dis	CHARGE RATE APPEARANCE Sussianted in	19pn
DATE 8/24/9' INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER VOLUME PURGED O GAL '6.56 GAL	VATER 37.3 WATER WATER TEMPERATURE 12.1°C 7.5°C	8' WELL TOTAL Tube pH 1.51 7.51	DEPTH SOLL. PURCE PUMP DEF CONDUCTI 37581 35001	5' ED 5 PTH _	est. Wel Dis	LBORE VOLZO CHARGE RATE APPEARANCE	9pn
DATE 8 24 9 INITIAL DEPTH TO METHOD WATER VOLUME PURGED O GAL '6.56 GAL 33 11	VATER 37.3 WATER A, HOPE TEMPERATURE 12.1°C 7.5°C 7.4°C	8' WELL TOTAL Tube PH 7.51 7.51	DEPTH S VOL. PURC PUMP DEF CONDUCTI 37571 3500	5' ED 5 PTH _	Clear Brown' Medum Claud	CHARGE RATE APPEARANCE Sussioned in	gpn gpn shet
DATE 8/24/9' INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER VOLUME PURGED O GAL '6.56 GAL 33 "	VATER 37.3 WATER WATER TEMPERATURE 12.1°C 7.5°C	8' WELL TOTAL Tube pH 1.51 7.51	DEPTH SOLL. PURCE PUMP DEF CONDUCTI 37581 35001	5' ED 5 PTH _	Clear Brown' Medum Claud	CHARGE RATE APPEARANCE Sussional Laborator Tachio	gpn gpn shet
DATE 8/24/9° INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER VOLUME PURGED O GAL '6.56 GAL 33 11	VATER 37.3 WATER A, HOPE TEMPERATURE 12.1°C 7.5°C 7.4°C	8' WELL TOTAL Tube PH 7.51 7.51	DEPTH S VOL. PURC PUMP DEF CONDUCTI 37571 3500	5' ED 5 PTH _	Clear Brown' Medum Claud	CHARGE RATE APPEARANCE Sussional Laborator Tachio	gpn gpn she mar.
DATE 8/24/9' INITIAL DEPTH TO FINAL DEPTH TO METHOD WATER VOLUME PURGED O GAL '6.56 GAL 33 "	VATER 37.3 WATER A, HOPE TEMPERATURE 12.1°C 7.5°C 7.4°C	8' WELL TOTAL Tube PH 7.51 7.51	DEPTH S VOL. PURC PUMP DEF CONDUCTI 37571 3500	5' ED 5 PTH _	Clear Brown' Medum Claud	CHARGE RATE APPEARANCE Sussional Laborator Tachio	gen gen she

D WEAC	NIOCACNIT /					
TELD MEAS		MAKE/	MODEL	ERIAL/ID NO.	CALIBRATION/ COMMENTS	
H METER						_
ONDUCTIVITY	METER	PER	to Pore	73)		-
HERMOMETER		<u> </u>				
ATER LEVEL	INDICATOR					
AILER/PUMP	·					_
ECUNTAMIN	IATION					
			\V	•		
ATE 9/17	8692 F	STA	RT TIME 66	SEST. WELL	END TIME '7/0	90
ATE 9/17/ NITIAL DEPTH	8692 F	TOTAL	RT TIME 62.2. DEPTH 12:2. VOL. PURGED 6 PUMP DEPTH	SEST. WELL	END TIME '7/0 BORE VOL.	-6 9a
NITIAL DEPTH TINAL DEPTH TETHED 3'55	8292 F TO WATER 4.	TOTAL	VOL. PURGED	SEST. WELL	END TIME 17/0 BORE VOL. 18	 90
NITIAL DEPTH TINAL DEPTH TETHOD 3'55	TO WATER 4. TO WATER	TOTAL '	VOL. PURGED A	SAL DISCH	APPEARANCE	
NITIAL DEPTH TINAL DEPTH THE THOO 3'55	TO WATER 4. TO WATER 4. Bailer TO TEMPERATURE	TOTAL '	VOL. PURGED A PUMP DEPTH CONDUCTIVITY	SAL DISCH	HARGE RATE	
NITIAL DEPTH TINAL DEPTH TETHOD 3'55 VOLUME PURGE	TO WATER 4. TO WATER 4. Bailer TO TEMPERATURE	TOTAL '	PUMP DEPTH _ CONDUCTIVITY	CLOU	APPEARANCE	
INAL DEPTH THE STATE OF CALLONE PURGE	TO WATER 4. TO WATER 4. Bailer TO TEMPERATURE	TOTAL '	PUMP DEPTH _ CONDUCTIVITY 210 www	CLOU	APPEARANCE DY COOR W/S AME	
NITIAL DEPTH TINAL DEPTH TINA	TO WATER 4. TO WATER 4. TO WATER 4. TO WATER 6.9° C. G.9° C. G.9° C. G.9° C.	TUTAL E pH -7,06 -7,07 -7,11	PUMP DEPTH CONDUCTIVITY 210 Wh 2/0	CLOU	APPEARANCE DY COOR W/S AME	
NITIAL DEPTH INAL DEPT	TO WATER 4. TO WATER 4. TO WATER 6. BAILER G.9° C G.9° C G.9° C G.7° C G.7° C	TOTAL E pH -7,06 7.07 7.11	PUMP DEPTH _ CONDUCTIVITY 210 www 210 white	CLOU	APPEARANCE DY COOR W/S AME	
NITIAL DEPTH PINAL DEPTH PINA	TO WATER 4. TO WATER 4. TO WATER 4. TO WATER 6.9° C. G.9° C. G.9° C. G.9° C.	7.06 7.06 7.07 7.11 7.20	PUMP DEPTH _ CONDUCTIVITY 210 www 210 white	CLOU	APPEARANCE DY COOR W/S AME	

FIELD CONDITIONS	Paining,	upper 45.5			
FIELD MEASUR	REMENT/	MAKE/MO	DEL	SERIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER	OR	ON 250	A 2	882	4.05, 7.01 , 10.0 21.50
CONDUCTIVITY MET	TER YS	C 33	160	8	960 w/ 1000 unlos @ 21.58
THERMOMETER				· · · · · · · · · · · · · · · · · · ·	
WATER LEVEL IND	ICATOR Solo	nst	CHSVIH	UPAD. 1673	NA
BAILER/PUMP			·		
<u>DECONTAMINAT</u>		Dunk,	12P, 16	2157116	d Rinse Twice
PURCE INFERM	AATION	<u> </u>			
FINAL DEPTH TO	Z. WATER 3.25	STECWELL DE	EPTH <u>23.0 8700</u> L. PURGED _	EST. WEI	END TIME 1015 LBORE VOL 14.59AL CHARGE RATE NA
DATE 9 18 9 INITIAL DEPTH TO	VATER 3.250 WATER WATER TEMPERATURE	TOTAL VO	L. PURGED L	EST. WEI 14gel DIS	CHARGE RATE NA
INITIAL DEPTH TO FINAL DEPTH TO METHOD HOPE TO VOLUME PURGED O GAL	VATER 3.250 WATER WATER TEMPERATURE 7. G.4°C	TOTAL VO	L. PURGED L	LEST. WEI 14gel DIS 144 OT	CHARGE RATE NA 10' BTOC APPEARANCE
INITIAL DEPTH TO FINAL DEPTH TO METHOD HOPE TO VOLUME PURGED O GAL 14.5	VATER 3.25 WATER	TOTAL VO	EPTH 23.0 870C L. PURGED UMP DEPTH UNDUCTIVITY US X US X	LEST. WEI 14gel DIS 144 OT	CHARGE RATE NA 10' BTOC APPEARANCE
INITIAL DEPTH TO FINAL DEPTH TO METHOD HOPE TO VOLUME PURGED O GAL 14.5 24.0	VATER 3.25 VATER	7.61 2	EPTH 23.0'870C L. PURGED _ UMP DEPTH _ UNDUCTIVITY US X US X US X US X US X US X	LEST. WEI 14gel DIS 144 OT	CHARGE RATE NA 10' BTOC APPEARANCE
INITIAL DEPTH TO FINAL DEPTH TO METHOD HOPE TO VOLUME PURGED O GAL 14.5	VATER 3.25 WATER	7.61 2	EPTH 23.0 870C L. PURGED UMP DEPTH UNDUCTIVITY US X US X	LEST. WEI 14gel DIS 144 OT	CHARGE RATE NA APPEARANCE

			_ FIELD 1	TEAM ((SJAITIN	BING
SITE Elmen	doet AFB	IRP		וםע	B NUMBER	ANC 31026.H360
FIELD CONDITION						
ETEL D. MEASU	DEMENT					
FIELD MEASU		MAKE	/MODEL	25	RIAL/ID NO.	CALIBRATION/ COMMENTS
pH METER						
CONDUCTIVITY, ME	ETER	0 0		Dan	4	
THERMOMETER	•	Ket	ento		29	
WATER LEVEL IN	IDICATOR	•		1		
BAILER/PUMP				\coprod		<u> </u>
•	TICAL					
DECONTAMINA	TIUN					
• · · · · · · · · · · · · · · · · · · ·		 		\		
,						
PURGE INFOR						
DATE 8/20/9	٧	AT2	RT TIME_	12	30	END TIME 1300
INITIAL DEPTH T	T WATER 5.24					
						BORE VOL 19.5492
FINAL DEPTH TO	WATER	TOTAL	VOL. PUR	GED S S	god Disc	BORE VOL 19.5492
METHOD (LANGERA)	WATER	TOTAL	VOL. PUR	GED S S	god Disc	HARGE RATE
METHOD (LANGERA	WATER	TOTAL	VOL. PUR	GED 5 9 PTH <u> </u>	gal disc	BORE VOL 19.5492
METHOD LUSSEE VOLUME PURGED	WATER	TOTAL	VOL. PUR	GED SS PTH IVITY	gal disc	HARGE RATE
VOLUME PURGED '9,5	WATER	PH	PUMP DEI	GED S S PTH <u> </u>	gal disc	HARGE RATE
VOLUME PURGED '9,5	HOPE Tuber TEMPERATURE 10.5°C	pH (-)4 (-71	PUMP DEI CONDUCTI 287X)	GED S S PTH <u> </u>	Gousy	HARGE RATE APPEARANCE Sandy
VOLUME PURGED '9,5 39.0	VATER	pH (.)4	PUMP DEI CONDUCTI 287X) 275X	GED S S PTH <u> </u>	Gover Turbio	HARGE RATE APPEARANCE Sandy Brownish
VOLUME PURGED '9,5 39.0 57.5	VATER	PH 6.74 6.71	PUMP DEI CONDUCTI 287x 1 275x 1	GED S S PTH <u> </u>	Cloudy Tukbio	HARGE RATE APPEARANCE Sandy Brown: 56
VOLUME PURGED '9,5 39.0	VATER HOPE TUBE TEMPERATURE 10.5°C 8.8°C 8.4°C 6.4	pH G.74 G.74 G.84	VOL. PURI PUMP DEI CONDUCTI 287X1 275X1 275X1	GED S S PTH <u> </u>	Cloudy TukBid	HARGE RATE APPEARANCE Sandy Brown: 54
VOLUME PURGED '9,5 39.0 57.5	VATER HOPE TUBE TEMPERATURE 10.5°C 8.8°C 8.4°C 6.4	pH G.74 G.74 G.84	VOL. PURI PUMP DEI CONDUCTI 287X1 275X1 275X1	GED S S PTH <u> </u>	Cloudy TukBid	HARGE RATE APPEARANCE Sandy Brown: 54
VOLUME PURGED O GAL '9,5 39.0 57.5 "YR Supple	VATER , HOPE Tub TEMPERATURE 10.5°C 8.8°C 8.4°C 6.4 9.3°C FORMATION	PH (-)4 (-71 (-74 (-78	VOL. PURI PUMP DEI CONDUCTI 287X1 275X1 275X1 275X1 280X1	GED SS	Cloudy TukBio	HARGE RATE APPEARANCE GRANGE BROWN:56 11
VOLUME PURGED GAL '9,5 39.0 57.5 "YR Supple SAMPLING IN DATE 8/20/92	WATER , HOPE Tub TEMPERATURE 10.5°C 8.8°C 8.4°C 6.4 9.3°C FORMATION	PH (-74 6.74 6.79 6.88 6.78	PUMP DEI CONDUCTI 287X) 275X) 275X) 275X) 275X)	GED 54 PTH IVITY	Cloudy Tukbio	HARGE RATE APPEARANCE GRANGE BROWN:56 11
VOLUME PURGED O GAL '9,5 39.0 57.5 "YR Supple	WATER , HOPE Tub TEMPERATURE 10.5°C 8.8°C 8.4°C 6.4 9.3°C FORMATION	PH (-74 6.74 6.79 6.88 6.78	PUMP DEI CONDUCTI 287X) 275X) 275X) 275X) 275X)	GED 54 PTH IVITY	Cloudy Tukbio	HARGE RATE APPEARANCE Sandy Brown: 54

WELL NUMBER	53-06		FIELD T	ream (CZJAITINI	101, 10
SITE EAFB	<u>OU5</u>					ANC 31026.43.60
FIELD CONDITIONS_	Overcas	<u> </u>	48°F			Ý
		/				•
FIELD MEASURE		MAKE	/MODEL	SI	ERIAL/ID NO.	CALIBRATION/
pH METER			230 A	HAZCI	0 1875	(0112, 4.0,).0) (215, 3°C
CONDUCTIVITY MET	Y (7	[33			w 2170	7500 w/10,000 a 15.36
THERMOMETER	LR		· · · ·	1	· · · · · · · · · · · · · · · · · · ·	1 Do will pro-
-		RS	•	LAZC	0 1792	† · · · · · · · · · · · · · · · · · · ·
WATER LEVEL INDI OIL WATER TIME BAILER/PUMP		<u></u>				
•		-		4		
DECONTAMINAT	ION STA	m (Jean, L	19) u	wax lux	Ast, Tap Ringe
DI RINSE						
PURGE INFORM						
DATE 8 14/92						END TIME 1015
INITIAL DEPTH TO	WATER 25,01	_WELL	. DEPTH	181	EST. WEL	LBORE VOL17.63; AC
FINAL DEPTH TO W			. \			•
METHOD 2"SS V			PUMP DEP		_ ,	
VOLUME PURGED T	TEMPERATURE	Hq	CONDUCTI	•	•	APPEARANCE
O GAL	7.5°C	,	430X		Theready	
17.63	7.6°C	 	475x1		MUDDY	
35.26	7.7°C		48011	-	† <u>-</u>	
52.89	8,1°C	6,71	1111		MUDDY	
After Sumple	8.400		500 ×		muss	<u> </u>
Wester James -		<u></u>	1500		,,	
SAMPLING INFI	ПРМАТІПИ					
		- and .	= == · ·	1226	A	IAYO
DATE 8/14/92 METHOD SS VE	<u> </u>	AT2	ART TIME L	<u>0 00</u>		_ END TIME 1040
METHOD 32	Daller	· ·				
INITIAL DEPTH TO	WATER		DEPTH	I TO V	ATER AFT	TER SAMPLING

(6)

FIELD MEAS COLLECTION			KE/MODEL	SERIAL/ID NO.	CALIBRATI COMMENT	
PH METER	-					1.2
CONDUCTIVITY	METER			9-1-92		
THERMOMETER			5/06	7		6
WATER LEVEL	INDICATOR					
BAILER/PUMP	_					
DECONTAMIN	ATION	Bottles	Pilled dira	setly from for	mulest.	
						\$157
						187
				0035		
PURGE INFO	12					
DATE 9-1-9	72 TD WATER	NA VE	u " nen tu <i>N</i>	A EST VEL	DOOG VOL NA	4
DATE 9-1-9	72 TD WATER	NA VE	u " nen tu <i>N</i>	A EST VEL	DOOG VOL NA	4
DATE 9-1-9	72 TD WATER	NA VE	u " nen tu <i>N</i>	A EST VEL	DOOG VOL NA	4
DATE 9-1-9	TO WATER. O WATER _ Let water fail discharge ra	NA TOTA LET FULL RWTZ 1/2 TUPE DH	L. VOL. PURGE PUMP DEPT Renbucker	ED DISC TH _unknown	DOOG VOL NA	4
DATE 9-1-9 INITIAL DEPTH FINAL DEPTH T METHOD open co	TO WATER. O WATER _ Let water fail discharge ra	NA TOTA LET FULL RWTZ 1/2 TUPE DH	L. VOL. PURGE PUMP DEPT Renbucker	ED DISC TH _unknown	LBORE VOL. X/CHARGE RATE	4
DATE 9-1-9 INITIAL DEPTH FINAL DEPTH T METHOD open co	TO WATER. O WATER _ Let water fail discharge ra	NA TOTA LET FULL RWTZ 1/2 TUPE DH	L. VOL. PURGE PUMP DEPT Renbucker	ED DISC TH _unknown	LBORE VOL. X/CHARGE RATE	4
DATE 9-1-9 INITIAL DEPTH FINAL DEPTH T METHOD open co	TO WATER. O WATER _ Let water fail discharge ra	NA TOTA LET FULL RWTZ 1/2 TUPE DH	LL DEPTH MALL VOL. PURGE	ED DISC TH _unknown	LBORE VOL. X/CHARGE RATE	4
DATE 9-1-9 INITIAL DEPTH FINAL DEPTH T METHOD open co	TO WATER. O WATER _ Let water fail discharge ra	NA TOTA LET FULL RWTZ 1/2 TUPE DH	L. VOL. PURGE PUMP DEPT Renbucker	ED DISC TH _unknown	LBORE VOL. X/CHARGE RATE	4
DATE 9-1-9 INITIAL DEPTH FINAL DEPTH T METHOD open co	TO WATER. O WATER _ Let water fail discharge ra	NA TOTA LET FULL RWTZ 1/2 TUPE DH	L. VOL. PURGE PUMP DEPT Renbucker	ED DISC TH _unknown	LBORE VOL. X/CHARGE RATE	4

WELL NUMBER _5WSOZ	FIELD TEAM (INIT	IALS) WWW, MLP	
SITE INLET COMPRONY	JOB NU	IMBER ANY 31026 . 113. A	>
FIELD CONDITIONS Filled direct	the for fances	in buthroom	
- - - 		•	
FIELD MEASUREMENT/ COLLECTION EQUIP. MAKE	SERIA E/MODEL NO,		
pH METER	92	<u> </u>	
CONDUCTIVITY METER	5200		.*
THERMOMETER			•
WATER LEVEL INDICATOR			• · ·
BAILER/PUMP			
DECONTAMINATION Bother	felled directly	for fauct	-
			;
DATE 1 SEPT 92 ST INITIAL DEPTH TO WATER NA WEL FINAL DEPTH TO WATER NA TOTAL METHOD Open cold make full in both on	L DEPTH // / EST /SCFF 9 EST VOL. PURGED	. WELLBORE VOL	lı sa
VOLUME PURGED TEMPERATURE pH	CONDUCTIVITY	APPEARANCE	."
	92	Cken	
sep			
			•
9:00			
SAMPLING INFORMATION	27		4
METHOD Circly filled hatter INITIAL DEPTH TO WATER NA	TART TIME	END TIME	,
METHOD Circuly filled hottler	from bathour such		
INITIAL DEPTH TO WATER	DEPTH TO WATE	R AFTER SAMPLING XA	

WELL NUMBER FIELD	TEAM (INITIALS) 13	1,75
SITE Elmenbort AFB	JOB NUMBER	C31026.H360
FIELD CONDITIONS Rain, 45F, Volcan	ic ash	
	·	
ETEL D. MEASUREMENT /		
FIELD MEASUREMENT/ COLLECTION EQUIP. MAKE/MODEL	SERIAL/ID ND.	CALIBRATION/ COMMENTS
pH METER		COMMENTS
CONDUCTIVITY METER Refer TO	Page # 7.3	
THERMOMETER	1	
WATER LEVEL INDICATOR	./	· · · · · · · · · · · · · · · · · · ·
BAILER/PUMP		
DECONTAMINATION		
		
	V	
PURGE INFORMATION / START WP		
PATE 9/17/9Z	1546	1400
DATE START TIME		//a/9//
7	EN EN	D TIME / (600
DATE 9/17/9Z START TIME		
FINAL DEPTH TO VATERTOTAL VOL. PUR	GED /2,000 DISCHAF	
	GED /2,000 DISCHAF	
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBING PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED <u> 2,000</u> DISCHAF PTH	RGE RATE 8007
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	RGE RATE 8007
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	RGE RATE 8007
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	RGE RATE 8007
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	RGE RATE 8007
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	RGE RATE 8007
FINAL DEPTH TO VATER TOTAL VOL. PURP METHOD TURBON PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCTS	GED / <mark>2,000</mark> DISCHAR PTHAF	RGE RATE 8007
FINAL DEPTH TO, VATER TOTAL VOL. PURP METHOD TURBING PUMP PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCT: 12,000 9AL 5.1°C 8.01 /30 SAMPLING INFORMATION	GED /2,000 DISCHAR	PPEARANCE
FINAL DEPTH TO, VATER TOTAL VOL. PURP METHOD TURBING PUMP PUMP DEI VOLUME PURGED TEMPERATURE PH CONDUCT: 12,000 9AL 5.1°C 8.01 /30 SAMPLING INFORMATION	GED /2,000 DISCHAR	PPEARANCE
FINAL DEPTH TO, VATER TOTAL VOL. PURP METHOD TURBON PUMP PUMP DEI VOLUME PURGED TEMPERATURE pH CONDUCTS 12,000 9.00 5.1°C 8.01 /30	GED /2,000 DISCHAR	PPEARANCE

SITE FINAL AFR JOB NUMBER (2020-H3.60) FIELD CONDITIONS Rain, 45°F, Valcanic AS H FIELD MEASUREMENT/ COLLECTION EQUIP. MAKE/MODEL SERIAL/ID CALIBRATION/ COMMENTS PH METER ORION 250A OO2[5] 460 647.02 an.79 VSI Model 33 18010848 POO W/MARC AMARC A. 18°C THERMOMETER VATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION Lymnex, Tap, DI Rinsc Tunice PURGE INFORMATION Runs on Demand DATE 4/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO VATER VELL DEPTH EST. WELLBORE VOL/COMMENTED HOSE FINAL DEPTH TO WATER TOTAL VOL. PURGED 15044 DISCHARGE RATE 1060M NETHOD Spigol Typer Table; HOSE PUMP DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE 100 GAL 5.8°C 8.29 168X1 Clear
FIELD MEASUREMENT/ COLLECTION EQUIP. MAKE/MODEL SERIAL/ID COMMENTS PH METER CONDUCTIVITY METER CONDUCTIVITY METER THERMOMETER VATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION DATE 9/17/92 START TIME 1445 FINAL DEPTH TO WATER TOTAL VOL. PURGED 15044 DISCHARGE RATE 106PM METHOD Spigot Type Tabe; Hose PURGE INFORMATOR VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
COLLECTION EQUIP. MAKE/MODEL NO. COMMENTS PH METER ORION 250 A CO2/51 4/60 64/7.0 ante YSI Pluble 33 180/0848 900 w/reac connect THERMOMETER WATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION Light Tap; DI Rinse Twice PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER WELL DEPTH EST. WELLBORE VOL/001AL FINAL DEPTH TO WATER TOTAL VOL. PURGED 150/AL DISCHARGE RATE 106PM METHOD Spigot Type Tabe; Hose Pump DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
COLLECTION EQUIP. MAKE/MODEL NO. COMMENTS PH METER ORION 250 A CO2/51 4/60 647.02 and the conductivity meter THERMOMETER WATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION Ligner, Tap; DI Rinse Twice PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER WELL DEPTH EST. WELLBORE VOL/001AL FINAL DEPTH TO WATER TOTAL VOL. PURGED 150AL DISCHARGE RATE 106PM METHOD Spigot Type Tabe; Hose Pump DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
PH METER CONDUCTIVITY METER THERMOMETER WATER LEVEL INDICATOR BAILER/PUMP DECONTAMINATION PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER WELL DEPTH EST. WELLBORE VOL/COOPLE FINAL DEPTH TO WATER TOTAL VOL. PURGED 1504L DISCHARGE RATE 106PM METHOD Sprant Time 145C PUMP DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
THERMOMETER WATER LEVEL INDICATOR Stope Model 5/43 1966 BAILER/PUMP DECONTAMINATION Ligner, Tap, DI Rinse Tunce PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO VATER VELL DEPTH EST. WELLBORE VOL/001AL FINAL DEPTH TO VATER TOTAL VOL. PURGED 150AL DISCHARGE RATE 106PM METHOD Spranting Tune, Hose Pump Depth VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
THERMOMETER WATER LEVEL INDICATOR Stope Mobil 5/43 19566 BAILER/PUMP DECONTAMINATION Liquiex, Tap, DI Rinse Time PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER WELL DEPTH EST. WELLBORE VOL/COUNT FINAL DEPTH TO WATER TOTAL VOL. PURGED 1504 DISCHARGE RATE 106PM METHOD Spigot Type Tabe, Hose PUMP DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER WELL BEPTH EST. WELLBORE VOLLOGEN METHOD Sprant Taylor Tabe; Hose Pump Depth VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
DECONTAMINATION Liquiex, Tap, DI Rinse Times PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL/001AL FINAL DEPTH TO WATER TOTAL VOL. PURGED 150AL DISCHARGE RATE 106PM METHOD Spigot Type Time, Hose Pump DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
DECONTAMINATION Liquex, Tap, DI Rinse Truce PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER WELL DEPTH EST. WELLBORE VOL/2011AL FINAL DEPTH TO WATER TOTAL VOL. PURGED 1504 DISCHARGE RATE 106PM METHOD Spigot Type Table, Hose Pump DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL/001AL FINAL DEPTH TO WATER TOTAL VOL. PURGED 1504 DISCHARGE RATE 106PM METHOD 591407 1770 Tabe, Hose Pump DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
PURGE INFORMATION Runs on Demand DATE 9/17/92 START TIME 1445 END TIME 1500 INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL/001AL FINAL DEPTH TO WATER TOTAL VOL. PURGED 1504 DISCHARGE RATE 106PM METHOD 591407 1770 Tabe, Hose Pump DEPTH VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL OF THE FINAL DEPTH TO WATER TOTAL VOL. PURGED SOLD DISCHARGE RATE OF METHOD SOLD TEMPERATURE PH CONDUCTIVITY APPEARANCE
INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL OF THE FINAL DEPTH TO WATER TOTAL VOL. PURGED SOLD DISCHARGE RATE OF METHOD SOLD TEMPERATURE PH CONDUCTIVITY APPEARANCE
INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL OF THE FINAL DEPTH TO WATER TOTAL VOL. PURGED SOLD DISCHARGE RATE OF METHOD SOLD TEMPERATURE PH CONDUCTIVITY APPEARANCE
INITIAL DEPTH TO WATER VELL DEPTH EST. WELLBORE VOL OF THE FINAL DEPTH TO WATER TOTAL VOL. PURGED SOLD DISCHARGE RATE OF METHOD SOLD TEMPERATURE PH CONDUCTIVITY APPEARANCE
METHOD Spigot Type Tabe; Hose Pump DEPTH
METHOD Spigot Total Hose PUMP DEPTH
VOLUME PURGED TEMPERATURE PH CONDUCTIVITY APPEARANCE
100 GAL 5.8°C 8.29 168×1 Clear
SAMPLING INFORMATION
110
DATE 4/17/92 START TIME 17/7 END TIME
METHOD Spiget & Tygon Tubing START TIME 1515 END TIME

Appendix E WATER LEVEL MONITORING DATA

Station	Date	Time	•	Top of PVC Casing Elevation	Groundwater Elevation	Top of Steel Casing Elevation	Ground Surface Elevation	Estimated Hydraulic Conductivity	Estimated Hydraulic Conductivit
			(ft)	(ft)	(ft)	(ft)	(ft)	(ft/min)	(cm/sec)
GW 4A	8/5/92	1510	6.6	134.79	128.19	135.32	132.9		
GW 4A	8/27/92	1842	6.46						
GW 4A	9/25/92	1500	4	134.79					
GW 4A	10/29/92	1059	3.935	134.79	130.855	135.32	132.9		
GW 6A	8/5/92	1410	31.2	137.62	106.42	137.74	135.6		
GW 6A	8/27/92	1720	31.26	137.62		137.74			
GW 6A	9/25/92	1602	31.06	137.62	106.56	137.74	135.6		
GW 6A	8/5/92	1610	31.075	137.62		137.74	135.6		
NS3-02	8/5/92	1800	5.02	117.98	112.96	118.44	115.3		
NS3-02	8/27/92	1625	5.21	117.98	112.77	118.44	115.3		
NS3-02	9/25/92	1506	5.33	117.98	112.65	118.44	115.3		
NS3-02	10/29/92	1310	5.47	117.98	112.51	118.44	115.3		
NS3-03	8/5/92	1450	3.82	109.13	105.31	109.17	106.2		
NS3-03	8/28/92	845	3.97	109.13			106.2		
NS3-03	9/25/92	1512	4.01	109.13	105.12	109.17	106.2		
NS3-03	10/30/92	1109	4.14	109.13	104.99	109.17	106.2		
NS3-06	8/6/92	800	27.92	NS		146.84	152		
NS3-06	8/28/92	815	28.02	NS		146.84	152		
NS3-06	9/25/92	1530	27.9	NS		146.84	152		
NS3-06	10/30/92 NI	М	NM	NM		146.84	152		
OU5MW-01	8/27/92	1735	36.5	136.41	99.91	136.82	134.1	0.05	0.025
OU5MW-01	9/25/92	1536	36.77	136.41	99.64	136.82	134.1		
OU5MW-01	10/28/92	1523	36.89	136.41	99.52	136.82	134.1		
OU5MW-02	8/28/92	900	33.36	140.95	107.59	141.67	139.2		
OU5MW-02	9/25/92	1610	33.06	140.95	107.89	141.67	139.2		
OU5MW-02	10/28/92	1203	33.165	140.95	107.785	141.67	139.2		
OU5MW-03	8/27/92	1720	33.33	147.58	114.25	148.11	145.7	0.032	0.016
OU5MW-03	9/25/92	1612	33.02	147.58	114.56	148.11	145.7		
OU5MW-03	10/28/92	1337	33.07	147.58	114.51	148.11	145.7		
OU4MW-04	8/28/92	905	32.38	157.09	124.71	157.46	154.8		
OU4MW-04	9/25/92	1621	32.51	157.09					
OU4MW-04	10/28/92	1457	32.51	157.09	124.58	157.46	154.8		

OU5MW-05	9/25/92	1624	25.3	157.29	131.99	157.82	155.3	0.037	0.019
OU5MW-05	10/30/92	1225	25.335	157.29	131.955	157.82	155.3		
OU5MW-06	8/28/92	920	35.86	173.99	138.13	174.54	172.4		
OU5MW-06	9/25/92	1521	35.73	173.99	138.26	174.54	172.4		
OU5MW-06	10/30/92	1325	35.81	173.99	138.18	174.54	172.4		
OU5MW-07	8/28/92	915	34.19	179.42	145.23	179.97	177.4		
OU5MW-07	9/25/92	1515	34.08	179.42	145.34	179.97	177.4		
OU5MW-07	10/30/92	1405	34.25	179.42	145.17	179.97	177.4		
OU5MW-08	8/27/92	1631	16.16	153.5	137.34	153.88	151.1	0.045	0.023
OU5MW-08	9/25/92	1455	16.1	153.5	137.4	153.88	151.1		
OU5MW-08	10/29/92	947	16.14	153.5	137.36	153.88	151.1		
01151111		4500				448.44	444		
OU5MW-09	8/27/92	1520	3.74	113.02	109.28	113.62	111		
OU5MW-09	9/25/92	1510	3.81	113.02	109.21	113.62	111		
OU5MW-09	10/29/92	1330	3.92	113.02	109.1	113.62	111		
OUELMAI 40	00700	4 4 4 5	0.00	405.05	100.00	100.00	100 5	0.000	0.005
OU5MW-10	8/27/92	1445	2.89	105.25	102.36	106.08	103.5	0.068	0.035
OU5MW-10	9/25/92	1450	2.97	105.25	102.28	106.08	103.5		
OU5MW-10	10/29/92	1349	3.05	105.25	102.2	106.08	103.5		
OU5MW-11	8/28/92	935	38.24	152.95	114.71	153.5	151.9		
OU5MW-11	9/25/92	1617	37.99	152.95	114.96	153.5	151.9		
OU5MW-11	10/28/92	1415	38.01	152.95	114.94	153.5	151.9		
COMMITT	TOTEGISE	1410	00.01	I Office O'O	114.54	100.0	101.5		
OU5MW-12	8/27/92	1623	8.4	96.01	87.61	96.89	94.1	0.076	0.039
OU5MW-12	9/25/92	1445	7.94	96.01	88.07	96.89	94.1	0.07 0	0.000
OU5MW-12	10/28/92	1504	8.49	96.01	87.52	96.89	94.1		
				55.51	37.32				
OU5MW-13	8/27/92	1619	3.68	90.81	87.13	91.39	88.6	0.062	0.032
OU5MW-13	9/25/92	1437	3.61	90.81	87.2	91.39	88.6		
OU5MW-13	10/28/92	1514	4.38	90.81	86.43	91.39	88.6		
OU5MW-14	8/27/92	1615	10.28	84.97	74.69	85.52	83	0.258	0.131
OU5MW-14	9/25/92	1435	10.2	84.97	74.77	85.52	83		
OU5MW-14	10/28/92	1529	10.11	84.97	74.86	85.52	83		
OU5MW-15	8/27/92	1603	10.4	81.56	71.16	82	79.6	0.042	0.021
OU5MW-15	9/25/92	1425	10.07	81.56	71.49	82	79.6		
OU5MW-15	10/29/92	1620	9.87	81.56	71.69	82	79.6		
OU5MW-16	8/27/92	1558	11.64	77.29	65.65	77.98	75.4	0.005	0.003

OU5MW-16	9/25/92	1427	11.25	77.29	66.04	77.98	75.4		
OU5MW-16	10/29/92	1613	10.8	77.29	66.49	77.98	75.4		
OU5MW-17	8/27/92	1610	11.98	65.99	54.01	66.38	63.1		
OU5MW-17	9/25/92	1430	11.56	65.99	54.43	66.38	63.1		
OU5MW-17	10/29/92	1600	11.7	65.99	54.29	66.38	63.1		
OU5MW-30	8/27/92	1530	5.71	117.29	111.58	117.6	114.7		
OU5MW-30	9/25/92	1508	5.75	117.29	111.54	117.6	114.7		
OU5MW-30	10/29/92	1320	5.74	117.29	111.55	117.6	114.7		
OU5MW-31	8/27/92	1535	4.39	125.16	120.77	125.73	123.5	0.022	0.011
OU5MW-31	9/25/92	1504	4.44	125.16	120.72	125.73	123.5	0.000	0.011
OU5MW-31	10/29/92	1420	4.45	125.16	120.71	125.73	123.5		
	70720702		7. 70	120.10	120.77	,20.,0	140.0		
SP1-01	8/5/92	1325	8.22	97.91	89.6 9	98.2	94.8		
SP1-01	8/27/92	1645	8.59	97.91	89.32	98.2	94.8		
SP1-01	9/25/92	1552	8.47	97.91	89.44	98.2	94.8		
SP1-01	10/28/92	1110	8.405	97.91	89.505	98.2	94.8		
SP1-02	8/5/92	1335	34.56	135.55	100.99	135.9	132.5		
SP1-02	8/27/92	1655	35.66	135.55	99.89	135.9	132.5		
SP1-02	9/25/92	1555	35.14	135.55	100.41	135.9	132.5		
SP1-02	10/28/92	1015	35.75	135.55	99.8	135.9	132.5		
SP2/6-01	8/5/92	1405	40.17	152.75	112.58	153.05	150.4		
SP2/6-01	8/27/92	1700	40.17	152.75	112.47	153.05	150.4		
SP2/6-01	9/25/92	1615	40.01	152.75	112.74	153.05	150.4		
SP2/6-01	10/28/92	1433	40.04	152.75	112.71	153.05	150.4		
0, 200,	10/20/02	1100	40.04	102.70	11667	100,00	150.4		
SP2/6-02	8/5/92	1420	31.92	144.19	112.27	144.31	141.3		
SP2/6-02	8/27/92	1740	32.02	144.19	112.17	144.31	141.3		
SP2/6-02	9/25/92	1607	31.78	144.19	112.41	144.31	141.3		
SP2/6-02	10/30/92	1023	31.81	144.19	112.38	144.31	141.3		
0000000	0/5/00	4440	07.0	444.00	404.40	444.05	100.4		
SP2/6-03	8/5/92	1440	37.2	141.63	104.43	141.85	139.1		
SP2/6-03	8/27/92	1730	37.54	141.63	104.09	141.85	139.1		
SP2/6-03	9/25/92	1605	37.08	141.63	104.55	141.85	139.1		
SP2/6-03	10/30/92	1053	37.08	141.63	104.55	141.85	139.1		
SP2/6-04	8/5/92	1415	37.85	140.44	102.59	140.49	137.9		
SP2/6-04	8/27/92	1725	37.83	140.44	102.61	140.49	137.9		
SP2/6-04	9/25/92	1603	37.82	140.44	102.62	140.49	137.9		
SP2/6-04	10/28/92	1038	37.8	140.44	102.64	140.49	137.9		
_									

SP2/6-05	8/5/92	1350	32.14	135.81	103.67	136.03	133.1
SP2/6-05	8/27/92	1710	32.12	135.81	103.69	136.03	133.1
SP2/6-05	9/25/92	1558	32.02	135.81	103.79	136.03	133.1
SP2/6-05	10/28/92	1553	29.995	135.81	105.815	136.03	133.1
SP4-02	8/5/92	1530	5.84	128.13	122.29	128.45	125.3
SP4-02	9/25/92	1503	5.8	128.13	122.33	128.45	125.3
SP4-02	10/28/92	1210	5.8	128.13	122.33	128.45	125.3
SP4/11-01	8/5/92	1505	5.45	134.3	128.85	134.58	131.3
SP4/11-01	8/27/92	1634	5.34	134.3	128.96	134.58	131.3
SP4/11-01	9/25/92	1502	5.28	134.3	129.02	134.58	131.3
SP4/11-01	10/28/92	1144	5.245	134.3	129.055	134.58	131.3
SP4/11-03	8/5/92	1545	39.4	171.06	131.66	171.65	168.5
SP4/11-03	8/27/92	825	39.38	171.06	131.68	171.65	168.5
SP4/11-03	9/25/92	1525	39.27	171.06	131.79	171.65	168.5
SP4/11-03	10/28/92	1304	39.295	171.06	131.765	171.65	168.5
W -14	8/5/92	1520	3.52	135.16	131.64	135.35	133.7
W-14	8/27/92	1640	3.38	135.16	131.78	135.35	133.7
W-14	9/25/92	1457	3.19	135.16	131.97	135.35	133.7
W-14	10/29/92	1107	3.09	135.16	132.07	135.35	133.7
W-16	8/5/92	1358	31.6	138.18	106.58	138.48	137
W-16	8/27/92	1715	31.64	138.18	106.54	138.48	137
W-16	9/25/92	1600	31.45	138.18	106.73	138.48	137
W-16	10/30/92	1004	31.47	138.18	106.71	138.48	137
OU5GW-25	8/6/92	1515	4	114.2	110.2	117.05	
OU5GW-25	9/23/92	1630	3.86	114.2	110.34	117.05	
OU5GW-25	10/29/92	1408	3.865	114.2	110.335	117.05	
OU5GW-27	8/6/92	1215	4.39	130.9	126.51	133.71	
OU5GW-27	8/27/92	1740	4.1	130.9	126.8	133.71	
OU5GW-27	9/23/92	1506	3.88	130.9	127.02	133.71	
OU5GW-27	10/29/92	1034	3.77	130.9	127.13	133.71	
OU5GW-28	8/6/92	1145	4.48	133	128.52	136.54	
OU5GW-28	8/27/92	1746	4.36	133	128.64	136.54	
OU5GW-28	9/23/92	1502	3.75	133	129.25	136.54	
OU5GW-28	10/29/92	1013	4.265	133	128.735	136.54	
OU5GW-29	8/6/92	1220	6.49	123.54	117.05	127.12	
OU5GW-29	9/23/92	1513	4.79	123.54	118.75	127.12	

OU5GW-29	10/30/92	1248	4.61	123.54	118.93	127.12
OU5GW-34	8/6/92	1525	3.64	98.8	95.16	102.53
OU5GW-34	8/27/92	1637	3.78	98.8	95.02	102.53
OU5GW-34	9/23/92	1542	3.7	98.8	95.1	102.53
OU5GW-34	10/29/92	1428	4.86	98.8	93.94	102.53
000011-04	TOLESIGE	1420	4.00	30.0	JU.J V	702.50
OU5GW-40	8/6/92	1155	4.44	134.6	130.16	138.01
OU5GW-40	8/27/92	1800	4.3	134.6	130.3	138.01
OU5GW-40	9/25/92	1417	4.14	134.6	130.46	138.01
OU5GW-40	10/29/92	1003	4.18	134.6	130.42	138.01
OU5GW-41	8/6/92	1140	5.72	129	123.28	132.96
OU5GW-41	9/25/92	1424	5.85	129	123.15	132.96
OU5GW-41	10/29/92	933	5.81	129	123.19	132.96
000011 41	10/20/02	555	 .	,		
OU5GW-42	8/6/92	1135	3.37	123.7	120.33	126.26
OU5GW-42	9/25/92	1436	3.85	123.7	119.85	126.26
OU5GW-42	10/29/92	911	4.015	123.7	119.685	126.26
OU5GW-44	8/6/92	1128	3.59	121.3	117.71	124.86
OU5GW-44	9/25/92	1431	4	121.3	117.3	124.86
OU5GW-44	10/29/92	903	4.135	121.3	117.165	124.86
003011-44	10/23/32	303	4.100	121.0	117.100	124.00
OU5GW-46	8/6/92 N	A	1.93	99.1	97.17	101.83
OU5GW-46	8/27/92	1649	1.92	99.1	97.18	101.83
OU5GW-46	9/23/92	1545	1.85	99.1	97.25	101.83
OU5GW-46	10/29/92	1436	1.805	99.1	97.295	101.83
OU5GW-50	8/6/92	1506	3.79	112.9	109.11	116.14
OU5GW-50		1650	3.75 3.75	112.9	109.11	116.14
	9/25/92				109.185	116.14
OU5GW-50	10/30/92	1205	3.715	1129	109.100	110.14
OU5GW-51	8/6/92	1150	5.52	93	87.48	96.74
OU5GW-51	8/27/92	1655	5.46	93	87.54	96.74
OU5GW-51	9/25/92	1358	5.3	93	87.7	96.74
OU5GW-51	10/29/92	1454	5.395	93	87.605	96.74
OU5GW-55	8/6/92	1615	3.7	54.6	50.9	58.2
OU5GW-55	8/28/92	957	3.7 4.06	54.6	50.54	58.2
				54.6	50.54 50.5	58.2
OU5GW-55	9/24/92	1633	4.1		50.275	58.2 58.2
OU5GW-55	10/30/92	1128	4.325	54.6	3 0.273	~ 30.4
OU5GW-58	8/28/92	953	3	55.1	52.1	58.61
OU5GW-58	9/24/92	1643	2.9	55.1	52.2	58.61

OU5GW-58	10/30/92	2	1135	2.89	55.1	52.21	58 .61
OU5GW-63	8/6/92	,	1420	3.47	129.8	126.33	133
OU5GW-63	9/23/92		1420	3.44	129.8	126.36	133
OU5GW-63	10/29/92		1135	2.41	129.8	127.39	133
003011-03	10/23/32	•	1133	2.41	129.0	127.39	133
						=	
OU5SL-07	8/6/92		1650	4.36	80.7	76.34	84.77
OU5SL-07	9/25/92	?	1533	4.35	80.7	76.35	84.77
OUSSL-07	10/29/92	2	1629	4.25	80.7	76.45	84.77
OU5SL-10	9/25/92	?	1505	2	93.6	91.6	96.78
OU5SL-10	10/28/92	?	1535	2.66	93.6	90.94	96.78
OU5SL-12	8/6/92	2	1540		3.35	3.35	107.04
OU5SL-12	8/27/92		1703		4.02	4.02	107.04
OU5SL-12	9/23/92		1600		3.95	3.95	107.04
OU5SL-12	10/29/92		1448		3.9	3.9	107.04
00000 12	10/25/52	•	1110		0.5	0.5	107.04
OU5SL-18	8/6/92	?	1455	3.66	107.3	103.64	110.78
OU5SL-18	8/27/92	?	1631	3.7	107.3	103.6	110.78
OU5SL-18	9/23/92		1620	3.44	107.3	103.86	110.78
OU5SL-18	10/29/92	2	1400	3.465	107.3	103.835	110.78
OU5SL-20	9/23/92	,	1650	4.4	110.4	106	114.87
OU5SL-20	10/30/92	_	1155		110.4		114.87
00000 20	10/00/52	•	1100	IOL	110.4		114.07
OU5SL-22	8/6/92	?	1440	4.73	129.9	125.17	134.29
OU5SL-22	9/23/92	?	1425	4.65	129.9	125.25	134.29
OU5SL-22	10/29/92	2	1150	4.635	129.9	125.265	134.29
OU5SL-23	8/6/92	•	1415	4.27	132.1	127.83	136.4
OU5SL-23	9/23/92		1415	4.08	132.1	128.02	136.4
OU5SL-23	10/29/92		1123	4.09	132.1	128.01	136.4
00001 10	10/25/52			4.00	1021	120.01	100.4
OU5SL-25	8/6/92	?	1515	4	105.7	101.7	109.21
OU5SL-25	9/23/92	2	1630	3.86	105.7	101.84	109.21
OU5SL-25	10/29/92	2	1408	3.865	105.7	101.835	109.21
BW-40	NM	NM		NM	171.6	0	173.86
BW-50	NM	NM		NM	200.2	0	200.43
BW-52	NM	NM		NM	106.1		108.01

NS = Not Surveyed

NM = Not Measured

NA = Not Available

^{*} These samples are labeled SP4-01 on the data sheets.

SE1000C Environmental Logger 09/02 07:36

Unit# 00856 Test 2

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference	0.0	000
Linearity	0.0	000
Scale factor	10.0	10
Offset	-0.1	130
Delay mSEC	50.0	000

Step	0	09/01	14:48:4	8
Elaps	ed	Time	INPUT	1
	000 000 001 001 001 002 002 002 002	00 13 66 00 33 66 00 33	0.02 0.06 0.01 0.02 0.02 0.02 0.04 0.01	6 8 2 5 5 2 7 8 9
	. 036 . 046 . 046 . 056 . 056 . 066 . 076 . 077 . 077	33 56 50 33 56 50 33 56 50 33 66 60 33 66 60 33	4.08 0.63 1.50 1.49 1.29 1.15 1.01 0.89 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.78 0.69 0.78 0.69 0.78 0.69 0.78	308 318 318 318 318 318 318 318 318 318 31
0 0 0	.10 .11 .11 .11	00 33 66	0.10 0.11 0.11 0.11	51 35 25

SE1000C Environmental Logger 09/02 07:33

nit# 00856 Test 1

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F
Reference Linearity Scale factor Offset Delay mSEC	• • •	130
		_

Step 0	09/01	14:41:05	Ō
--------	-------	----------	---

Step	0	09/01	14:41:	05
Elaps	sed	Time	INPUT	1
0	.000	00	0.0	40
	.00		0.0	
	.000		0.0	
	.010		0.0	
	.01		0.0	
	.01		0.0	
_	.02		0.0	
_	.02		0.0	
	.03		0.0	
	.03		0.0	40
	.03		0.0	
	.04		0.0	
	.04		0.0	
	.04		0.0 4.6	
	.05		2.0	
	.05		0.5	
	.06		1.6	
0	.06	33	1.4	
	.06		1.2	
	.07		1.0	
	.07		0.9	
	.07		0.8	
	.08		0.6	
	.08		0.5	
	.09		0.5	513
0	.09	33	0.4	
	.09		0.4	
	.10			365
).10)33		327 295
).10).13	00		295 267
).13			242
).]]			220
	1.12			204

0.2600 0.069	0.2633 0.056 0.2666 0.050 0.2700 0.053 0.2733 0.047 0.2766 0.050 0.2800 0.059	0.2666 0.050 0.2700 0.053 0.2733 0.047	0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2233 0.2266 0.2200 0.2233 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2466 0.2500 0.2533 0.2566 0.2500 0.2533 0.2566 0.2500	0.185 0.173 0.160 0.148 0.135 0.129 0.122 0.100 0.094 0.081 0.072 0.075 0.063 0.063 0.063 0.063 0.053 0.056 0.059 0.059 0.059 0.059 0.059 0.056 0.059 0.059 0.059 0.059 0.059 0.059 0.059 0.063
	0.2633 0.056 0.2666 0.050 0.2700 0.053 0.2733 0.047 0.2766 0.050	0.2633 0.056 0.2666 0.050 0.2700 0.053 0.2733 0.047 0.2766 0.050 0.2830 0.059 0.2833 0.047 0.2866 0.056 0.2900 0.040 0.2933 0.050 0.2966 0.059 0.3000 0.047 0.3033 0.059	0.2433 0.2466 0.2500 0.2533 0.2566	0.059 0.063 0.059 0.047 0.056

0.3233	0.053
0.3266	0.059
0.3300	0.050
0.3333	0.059
0.3500	0.059
0.3666	0.066
0.3833	0.085
0.4000	0.063
0.4166	0.053
0.4333	0.053
0.4500	0.050
0.4666	0.050
0.4833	0.037
0.5000	0.056
0.5166	0.050
0.5333	0.050
0.5500	0.050
0.5666	0.047
0.5833	0.050
0.6000	0.047
0.6166	0.047
0.6333	0.050
0.6500	0.047
0.6666	0.047
0.6833	0.047
0.7000	0.047
0.7166	0.047
0.7333	0.047
0.7500	0.044
0.7666	0.047
0.7833	0.047
0.8000	0.047
0.8166	0.047
0.8333	0.037
0.8500	0.075
0.8666	0.053
0.8833	0.050
0.9000	0.047
0.9166	0.047
0.9333	0.047
0.9500	0.047
0.9666	0.047
0.9833	0.047
1.0000	0.047
1.2000	0.044
1.4000	0.044
1.6000	0.044

.

AQTESOLV RESULTS Version 1.10

09/24/92

15:07:27

TEST DESCRIPTION

Data set..... 0901n-1.in

Data set title.... EAFB - Monitoring Well 10, Test 1

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.498

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 5.2445E-003 $y_0 = 1.6970E-155$

TYPE CURVE DATA

K = 7.90226E-002y0 = 3.25741E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	3.257E+000	1.000E-001	1.844E-002		

Hydraulic Conductivity Estimates Based on Slug Test Data

				based on Sing Test Data	iesi Data			
		Geometric						
Well No.	. Aquifer Type	Mean	K (feet/min)		K (cm/sec)		Calculated	Curve
			Curve	Corrected	Curve	Corrected	Yo (feet)	Yo (feet)
MW14	Well graded gravel w/sand		2.8E-01	1.5E+00	1.4E-01	7.8E-01	1.3	8.8
	,		2.0E-01	1.1E+00	1.0E-01	5.6E-01		0.2
			2.9E-01	1.6E+00	1.5E-01	8.0E-01		14.4
			2.8E-01	1.5E+00	1.4E-01	7.7E-01	6.0	8.9
			2.4E-01	1.3E+00	1.2E-01	6.6E-01		2.6
		Mean	2 6F-01	1.45±00	1 35.01	7 15-01		
MW12	Well graded gravel w/sand		7.6E-02	4.1E-01	3.9E-02	2.1E-01	9.0	1.9
			7.6E-02	4.1E-01	3.9E-02	2.1E-01		2.0
		Mean	7.6E-02	4.1E-01	3.9E-02	2.1E-01		
MW10	Well graded sand w/gravel		7.9E-02	A/V*	4.0E-02	4 /X*	3.3	3.4
	,		5.8E-02	W/A	3.0E-02	*N/¥		2.7
		Mean	6.8E-02	#N/A	3.5E-02	#N/A		
			20		20 20 0			
MW13	Clayey gravel w/sand & clay		6.2E-02	∀ /2#	3.2E-02	Y/X *	·-	7.7
			0.ZE-02	¥/Z#	3.22-02	V Z*		3.0
		Mean	6.2E-02	#N/A	3.2E-02	¥/N#		
MW	Poorly graded sand w/gravel		4.9E-02	2.6E-01	2.5E-02	1.4E-01	2.0	6.3
			5.1E-02	2.8E-01	2.6E-02	1.4E-01		9.5
		Mean	5.0E-02	2.7E-01	2.5E-02	1.4E-01		
WW	Well graded gravel w/sand		4.6E-02	2.5E-01	2.3E-02	1.2E-01	1.2	3.7
			4.4E-02	2.4E-01	2.2E-02	1.2E-01		1.8
		Mean	4.5E-02	2.4E-01	2.2E-02	1.2E-01		

MW15	Well graded gravel w/sand			4.5E-02	2.4E-01	2.3E-02	1.2E-01	0.1	2.0
				3.9E-02	2.1E-01	2.0E-02	1.1E-01		1.5
		Mean	Ц	4.2E-02	2.3E-01	2.1E-02	1.2E-01		
MW5	Well graded gravel w/sand			3.7E-02	2.0E-01	1.9E-02	1.0E-01	2.7	9.7
				3.8E-02	2.1E-01	1.9E-02	1.0E-01		8.2
		Меал		3.7E-02	2.0E-01	1.9E-02	1.0E-01		
MW3	Poorly graded sand &			3.3E-02	1.8E-01	1.7E-02	9.2E-02	5.6	7.1
	gravelly sand			3.2E-02	1.7E-01	1.6E-02	8.6E-02		6.7
		Mean	Ц	3.2E-02	1.8E-01	1.6E-02	8.9E-02		
MW31	Well graded gravel w/sand			2.2E-02	#N/A	1,1E-02	*N/A	1.1	2.2
				2.2E-02	*N/A	1.1E-02	#N/A		2.0
		Mean		2.2E-02	A/V*	1.1E-02	*N/A		
MW16	Well graded sand w/gravel &			5.0E-03	2.7E-02	3.0E-03	1.6E-02	0.7	1.3
	well graded gravel w/silt &			5.0E-03	2.7E-02	3.0E-03	1.6E-02		1.2
	Duss	Mean		5.0E-03	2.7E-02	3.0E-03	1.6E-02		

Note 1: Corrected K values account for effective contribution from gravel pack (see text).

PREPARED FOR: Mike Singer

PREPARED BY: Kirk Creswick

DATE: September 29, 1992

SUBJECT: Elmendorf Air Force Base Slug Testing

PROJECT: ANC31026.H4.10

This memorandum presents results from analysis of slug test data collected from Elmendorf Air Force Base, Alaska, during the 1st and 2nd of September, 1991.

The aquifer is a shallow unconfined glacio-fluvial aquifer consisting of mixtures of gravels and sands with occasional sits and clays.

The data are a record of the rising head after the removal of solid slug. Two slug sizes were used for the testing: a 1.5-inch-diameter, 10-foot-long slug, and a 1-inch-diameter, 10.6-foot-long slug. Both slugs produced good results. The slug was partially submerged in the majority of the tests.

Data were analyzed using the AQTESOLV algorithm for the Bouwer and Rice (1976) solution for unconfined aquifers. This method proved appropriate for the data and produced consistent results with excellent repeatability.

Water levels in nine of the tested wells intersected the well screen during the tests, requiring that a correction factor be applied to the well casing radius to account for the thickness and porosity of the gravel pack (Bouwer and Rice, 1976). The following formula is used to calculate the corrected well casing radius:

$$r_{cor} = [(1-n)r_c^2 + nr_w^2]0.5$$

Where:

 r_{corr} = corrected casing radius, in feet

n = porosity of gravel pack

r_c = measured casing radius, in feet

r_w = radius of borehole, in feet

The tested wells have a casing radius of 1 inch (0.083 feet), a borehole radius of 4 inches (0.333 feet), and an assumed gravel pack porosity of 30 percent. These measurements resulted in a computed value for r_{corr} of 2.3 inches (0.192 feet).

The hydraulic conductivities were first computed using the actual casing diameter of 1 inch. For the affected wells, a correction factor based on the value for r_{cor} was then applied to the hydraulic conductivity value. The hydraulic conductivity value computed using the Bouwer and Rice (1979) solution is directly proportional to the square of the r_{c} . The correction factor (cf) was computed as follows:

$$cf = r_{corr}^2 / r_c^2$$

Technical Memorandum ANC31026.H4.10 September 29, 1992 Page 2

For the affected wells, the computed correction factor was 5.3. The corrected hydraulic conductivity was computed by multiplying the computed value by 5.3. The corrected values are shown in the table below.

As described by Bouwer (1989), the drawdown data generally exhibit characteristic curves with a distinctive straight-line segment. On some plots (for example, Well 16, test 8), a minor amount of deviation occurs. The plotted lines were fitted visually; deviations within the range of data observed on the plots do not result in significant variations in estimated hydraulic conductivity. For some tests (for example, Well 14, test 12), the water levels changed quickly after the removal of the slug. For these tests, only the first few data points were used for the analyses. However, even for these wells the results exhibited good repeatability between tests.

Resulting hydraulic conductivities in the wells ranged from 1.6 ft/min (0.8 cm/s) to 0.027 ft/min (0.016 cm/s). The geometric mean of the test results was 0.4 ft/min (0.2 cm/sec). These values are appropriate for sand and gravel aquifers and represent highly conductive materials. K values of individual tests at any particular well were very similar (see table).

Initial drawdown values, y_o computed by the algorithm were consistently higher than values calculated for displacement by the slug. This is likely due to the very fast response of the aquifer. The first second or two of data often show erratic readings which are caused by the shock of the slug removal. The data being fitted consists of the first 6 to 12 seconds of the record. This means that slug removal is slightly less than instantaneous and thereby causes an offset in the time axis which in turn causes the y intercept to be higher. However, after the initial noise has dissipated, the first good data have y values reasonably close to y_o and therefor provide for a valid solution. The effective radius of these tests appears to be about 1.2 to 3.7 feet from the center of the well.

Overall, the resulting K values appear to be good and consistent indicators of the hydraulic conductivities of these aquifer materials.

Appendix F
SLUG TEST DATA

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2133 0.2166 0.2100 0.2133 0.2166 0.2200 0.2233 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2466 0.2500 0.2533 0.2566 0.2500 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766	0.107 0.100 0.094 0.088 0.072 0.072 0.072 0.069 0.063 0.059 0.056 0.055 0.050 0.050 0.050 0.047 0.047 0.044 0.044 0.044 0.044 0.044 0.040 0.040 0.037 0.037 0.037 0.037 0.037 0.034 0.034 0.034 0.034
0.2600 0.2633 0.2666 0.2700 0.2733	0.037 0.034 0.034 0.034

0.3233 0.3266 0.3300 0.3333 0.3500 0.3666 0.3833 0.4000 0.4166 0.4333 0.4500 0.4666 0.4833 0.5000 0.5166 0.5333 0.5500 0.5666 0.5833 0.6000 0.6166 0.6333 0.7000 0.7166 0.7333 0.7500 0.7666 0.7333 0.7500 0.7666 0.7833 0.7500 0.7666 0.7833 0.7500 0.7666 0.7833 0.7500 0.7666 0.7833 0.8500 0.8166 0.8333 0.8500 0.8166 0.8333 0.9000 0.9166 0.9333 0.9500 0.9666 0.9833 1.0000	0.031 0.034 0.031 0.031 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.025
0.9500	0.025
0.9666	0.025
0.9833	0.022
1.4000	0.022
1.6000	0.018
1.8000	0.022
2.0000	0.022
2.2000	0.022
2.4000	0.025
2.6000	0.022
2.8000	0.022

AQTESOLV RESULTS Version 1.10

09/24/92

15:43:23

TEST DESCRIPTION

Data set..... 0901n-2.in

Data set title.... EAFB - Monitoring Well 10, Test 2

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.498

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVONT of water in well..... 7.4

A, B, C..... 0.000, 0.000, 1.498

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

AQTESOLV RESULTS Version 1.10

09/25/92

09:56:31

TEST DESCRIPTION

Data set..... mwl4t3.in

Data set title.... EAFB - Monitoring Well 14, Test 3

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.436

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.8279E-001y0 = 2.3474E-022

TYPE CURVE DATA

K = 2.82790E-001y0 = 8.74994E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0 000E+000	8.750E+000	4.000E-002	3 946F-003		

SE1000C Environmental Logger 09/02 10:28

nit# 00856 Test 0

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC		130

Step 0	09/02	10:01:29
--------	-------	----------

areb	U	03/02	10.01.	
Elaps	sed	Time	INPUT	1
0	. 00	00	0.0	06
	.00		0.0	
	.00		0.0	
	.01		0.0	
	.01		0.0	
	.01		14.0	
	.02		7.8	
	.02		1.0	
	.02		-1.0	
	.03		2.2	
	.03		3.1	
	.03		2.9	
0	.04	00	2.4	56
0	.04	33	1.3	25
0	.04	66	2.4	46
0	.05	00	2.0	81
0	.05	33	1.8	64
0	.05	66	1.6	
0	.06	00	1.5	
0	.06	33	1.3	50
0	.06	66	1.1	
0	.07	00	1.0	
	.07		0.9	
	.07		0.8	
	.08		0.7	
	.08		0.7	
	.08		0.6	
	.09		0.5	
	.09		0.5	
0	. 09	66	0.4	
0	.10	100	0.4	
	.10		0.3	
	.10			330
	.13			302
	1.11			273
).11			248
C).12	200	0.3	226

0.2666 0.050 0.2700 0.047

0 2222	0.040
0.3233 0.3266	0.037
0.3200	0.037
0.3333	0.037
0.3500	0.034
0.3500 0.3666	0.037
0.3833	0.034
0.4000	0.034
0.4166	0.034
0.4333	0.034
0.4500	0.034
0.4666	0.034
0.4833	0.034
0.5000	0.031
0.5166	0.031 0.031
0.5333 0.5500	0.031
0.5666	0.031
0.5833	0.031
0.6000	0.028
0.6166	0.028
0.6333	0.028
0.6500	0.028
0.6666	0.028
0.6833	0.028
0.7000	0.037
0.7166	0.040
0.7333 0.7500	0.040 0.028
0.7666	0.028
0.7833	0.037
0.8000	0.031
0.8166	0.031
0.8333	0.034
0.8500	0.031
0.8666	0.040
0.8833	0.034
0.9000	0.031
0.9166	0.031
0.9333	0.031
0.9500	0.031 0.028
0.9666 0.9833	0.028
1.0000	0.034
1.2000	0.031
1.2000	0.031

AQTESOLV RESULTS Version 1.10

09/28/92

15:35:43

TEST DESCRIPTION

Data set..... mw3t0.in

Data set title.... EAFB - Monitoring Well 3, Test 0

Knowns and Constants:

Radius of well casing..... 0.08333 Radius of well............ 0.3333 Aquifer saturated thickness..... 8.3 Well screen length..... 8.3

Static height of water in well..... 8.3

A, B, C..... 0.000, 0.000, 1.810

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

1.0645E-001 v0 =3.7552E+232

TYPE CURVE DATA

K = 3.34412E-002y0 = 7.09170E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	7.092E+000	2.000E-001	9.338E-003		

SE1000C Environmental Logger 09/03 09:26

Unit# 00856 Test 1

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000

Step 0 09/02 10:08:30

Elapsed Time	INPUT 1
0.0000	0.003
0.0033	0.003
0.0066	0.003
0.0100	0.003
0.0133	0.003
0.0166	0.000
0.0200	12.195
0.0233	9.033
0.0266	6.738
0.0300	1.848
0.0333	2.575
0.0366	1.451
0.0400	1.923
0.0433	2.437
0.0466	2.279
0.0500	2.056
0.0533	1.854
0.0566	1.640
0.0600	1.448
0.0633	1.275
0.0666	1.177
0.0700	1.061
0.0733	0.950
0.0766	0.865
0.0800	0.758
0.0833	0.714 0.639
0.0866	0.579
0.0900 0.0933	0.525
0.0933	0.475
0.1000	0.473
0.1033	0.390
0.1066	0.355
0.1100	0.321
0.1133	0.296
0.1166	0.274
0.1200	0.236
0.1200	0.230

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2233 0.2266 0.2300 0.2233 0.2266 0.2300 0.2233 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2666 0.2500 0.2533 0.2666 0.2700 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2800 0.2733 0.2766 0.2900 0.2933 0.2966 0.3000 0.3033 0.3066	0.226 0.211 0.195 0.185 0.154 0.148 0.141 0.135 0.129 0.122 0.110 0.107 0.100 0.107 0.097 0.091 0.085 0.097 0.094 0.091 0.085 0.072 0.063 0.072 0.063 0.050 0.050 0.050 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056 0.056
0.2966	0.053
0.3000	0.056
0.3033	0.053

0 2222	0.052
0.3233	0.053
0.3266	0.053
0.3300	0.050
0.3333	0.053
0.3500	0.050
0.3666	0.047
0.3833	0.047
0.4000	0.050
0.4166	0.047
0.4333	0.047
0.4500	0.044
0.4666	0.044
0.4833	
	0.044
0.5000	0.044
0.5166	0.044
0.5333	0.041
0.5500	0.044
0.5666	0.044
0.5833	0.044
0.6000	0.044
0.6166	0.041
0.6333	0.044
0.6500	0.044
0.6666	0.044
0.6833	0.044
0.7000	
0.7166	0.041
	0.050
0.7333	0.041
0.7500	0.041
0.7666	0.041
0.7833	0.041
0.8000	0.041
0.8166	0.041
0.8333	0.041
0.8500	0.041
0.8666	0.041
0.8833	0.041
0.9000	0.041
0.9166	0.041
0.9333	0.041
0.9500	0.041
0.9666	0.041
0.9833	0.031
1.0000	0.034

AQTESOLV RESULTS Version 1.10

19/28/92

16:05:16

TEST DESCRIPTION

Data set..... a:\mw3t1.in

Data set title.... EAFB - Monitor Well 3, Test 1

Knowns and Constants:

No. of data points..... 139

Radius of well casing..... 0.08333

Radius of well...... 0.3333

Aquifer saturated thickness..... 8.3

Well screen length..... 8.3

Static height of water in well..... 8.3 Log(Re/Rw)........... 2.41

A, B, C..... 0.000, 0.000, 1.810

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 1.5349E-002

 $y0 = .^{\circ} \ddot{A} \cdot \dot{E} + \hat{I} \cdot 06$

TYPE CURVE DATA

K = 3.14906E-002

y0 = 9.57249E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	9.572E+000	2.000E-001	1.856E-002		

SE1000C Environmental Logger 09/02 11:42

nit# 00856 Test 2

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 10.0 -0.1 50.0	000 010 130

Step 0 09/02 11:21:14

Elapsed Time	INPUT :	1
0.0000	0.028	3
0.0033	0.062	2
0.0066	-0.037	7
0.0100	0.018	В
0.0133	5.00	
0.0166	2.88	
0.0200	2.54	
0.0233	1.80	
0.0266	1.26	
0.0300	1.76	
0.0333	1.77: 1.54	
0.0366 0.0400	1.31	
0.0433	1.11	
0.0466	0.92	
0.0500	0.77	
0.0533	0.64	
0.0566	0.53	
0.0600	0.45	
0.0633	0.37	4
0.0666	0.31	
0.0700	0.26	4
0.0733	0.22	
0.0766	0.18	
0.0800	0.15	
0.0833	0.13	5
0.0866	0.11	.3
0.0900	0.10 0.08	
0.0933 0.0966	0.08	
0.1000	0.06	
0.1033	0.05	
0.1066	0.05	
0.1100	0.04	
0.1133	0.04	
0.1166	0.04	
0.1200	0.03	7

0.1233	0.034
0.1266	0.034
0.1300	0.028 0.028
0.1333 0.1366	0.028
0.1400	0.028
0.1433 0.1466	0.025 0.025
0.1500	0.025
0.1533	0.025
0.1566 0.1600	0.025 0.025
0.1633	0.025
0.1666 0.1700	0.025 0.022
0.1733	0.022
0.1766	0.022
0.1800 0.1833	0.022 0.022
0.1866	0.022
0.1900	0.025 0.022
0.1933 0.1966	0.022
0.2000	0.022
0.2033 0.2066	0.025 0.025
0.2100	0.022
0.2133 0.2166	0.025 0.022
0.2200	0.025
0.2233	0.022
0.2266 0.2300	0.025 0.022
0.2333	0.025
0.2366 0.2400	0.025 0.022
0.2433	0.025
0.2466	0.025
0.2500 0.2533	0.025 0.025
0.2566	0.025
0.2600 0.2633	0.025 0.025
0.2666	0.025
0.2700	0.025
0.2733 0.2766	0.025 0.025
0.2800	0.025
0.2833 0.2866	0.025 0.025
0.2900	0.025
0.2933	0.025
0.2966 0.3000	0.025 0.025
0.3033	0.025
0.3066 0.3100	0.025 0.025
0.3100	0.025
0.3166	0.025
0.3200	0.025

0.3233	0.022
0.3266	0.025
0.3300	0.025
0.3333	0.025
0.3500	0.025
0.3500 0.3666	0.022
0.3833	0.025
0.4000	0.025
0.4166	0.025
0.4333	0.025
0.4500	0.025
0.4666	0.022
0.4833	0.022
0.5000	0.022
0.5166	0.022
0.5333	0.022
0.5500	0.022
0.5666	0.022
0.5833	0.022
0.6000	0.022
0.6166	0.022
0.6333	0.022
0.6500	0.022
0.6666	0.022
0.6833	0.022
0.7000	0.022
0.7166	0.025
0.7333	0.022
0.7500	0.028

AQTESOLV RESULTS Version 1.10

13:56:25

09/25/92

TEST DESCRIPTION

Data set..... a:\mw1t2.in

Data set title.... EAFB - Monitoring Well 1, Test 2

Knowns and Constants:

Log (Re/Rw) 2.536

A, B, C..... 0.000, 0.000, 1.931

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.8760E-002y0 = 5.2140E-303

TYPE CURVE DATA

K = 4.87601E-002y0 = 6.30642E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	6.306E+000	2.000E-001	1.519E-004		

SE1000C Environmental Logger 09/02 11:46

Unit# 00856 Test 3

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC		130

Step 0 09/02 11:25:14

•	
Elapsed Time	INPUT 1
	^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^
0.0000	0.031
0.0033	0.018
0.0066	-0.031
0.0100	-0.091
0.0133	3.772
0.0166	3.082
0.0200	2.701
0.0233	1.772
0.0266	1.394 1.882
0.0300	1.753
0.0333	1.473
0.0366	1.262
0.0400	1.057
0.0433 0.0466	0.878
0.0500	0.733
0.0533	0.610
0.0566	0.510
0.0600	0.415
0.0633	0.346
0.0666	0.286
0.0700	0.236
0.0733	0.198
0.0766	0.163
0.0800	0.138
0.0833	0.113
0.0866	0.094
0.0900	0.075
0.0933	0.078
0.0966	0.056
0.1000	0.044
0.1033	0.040
0.1066	0.034
0.1100	0.028
0.1133	0.018
0.1166	0.018
0.1200	0.018
*	

•	
0.1233 0.1266 0.1300 0.1333 0.1366	0.012 0.012 0.009 0.009 0.009
0.1400 0.1433 0.1466 0.1500 0.1533 0.1566	0.009 0.009 0.006 0.009 0.003 0.006
0.1600 0.1633 0.1666 0.1700 0.1733	0.006 0.009 0.009 0.006 0.000
0.1766 0.1800 0.1833 0.1866 0.1900	0.006 0.006 0.006 0.006
0.1933 0.1966 0.2000 0.2033 0.2066	0.009 0.006 0.006 0.003 0.006
0.2100 0.2133 0.2166 0.2200 0.2233 0.2266	0.006 0.006 0.006 0.006 0.006
0.2200 0.2300 0.2333 0.2366 0.2400 0.2433	0.006 0.006 0.006 0.006 0.006
0.2466 0.2500 0.2533 0.2566 0.2600	0.006 0.006 0.006 0.006 0.006
0.2633 0.2666 0.2700 0.2733 0.2766	0.006 0.006 0.006 0.006
0.2800 0.2833 0.2866 0.2900 0.2933	0.006 0.006 0.006 0.006
0.2966 0.3000 0.3033 0.3066 0.3100	0.006 0.006 0.006 0.006
0.3133 0.3166 0.3200	0.003 0.006 0.003

0.3233 0.3266	0.006 0.003
0.3300	0.003
0.3333	0.006
0.3500	0.003
0.3666	0.003
0.3833	0.003
0.4000	0.003
0.4166	0.003
0.4333	0.006
0.4500	0.003
0.4666	0.003
0.4833	0.003
0.5000	0.003
0.5166	0.000
0.5333	0.000
0.5500	0.003
0.5666	0.003
0.5833	0.003
0.6000	0.003
0.6166	0.003
0.6333	0.003
0.6500	0.003
0.6666	0.003
0.6833	0.003
0.7000	0.003
0.7166	0.003
0.7333	0.003
0.7500	0.003
0.7666	0.003
0.7833	0.003
0.8000	0.003
0.8166	0.003
0.8333	0.000
0.8500	0.003
0.8666	0.000
0.8833	0.003
0.9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.003

AQTESOLV RESULTS Version 1.10

09/25/92

14:07:19

TEST DESCRIPTION

Data set..... a:\mw1t3.in

Data set title.... EAFB - Monitoring Well 1, Test 3

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.931

ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.0944E-002y0 = 5.2140E-303

TYPE CURVE DATA

K = 5.06885E-002y0 = 9.52796E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
		~~~~~			
0.000E+000	9.528E+000	1.200E-001	1.255E-002		



## SE1000C Environmental Logger 09/02 13:52

Jnit# 00856 Test 4

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000

Step 0 09/02 12:50:11

Elapsed	Time	INPUT	1
0.000	00	0.0	00
0.003		-0.0	
0.00		1.5	311
0.010	00	3.8	
0.013		1.0	
0.01		2.0	
0.02		1.6	
0.023		1.4	
0.02		1.3	
0.03			212 057
0.03 0.03			982
0.03			922
0.04			793
0.04			689
0.05			613
0.05			544
0.05			472
0.06			418
0.06	33		371
0.06			330
0.07			295
0.07			264
0.07			229
0.08			201
0.08			176
0.08			157 138
0.09 0.09			122
0.09			110
0.09			097
0.10			085
0.10			075
0.11			069
0.11			059
0.11			056
0.12		0.	050

0.1233	0.047
0.1266	0.040
0.1300 0.1333	0.031 0.028
0.1366	0.025
0.1400	0.022
0.1433	0.022
0.1466 0.1500	0.018 0.015
0.1533	0.012
0.1566	0.012
0.1600	0.009
0.1633 0.1666	0.009 0.009
0.1700	0.006
0.1733	0.009
0.1766	0.009 0.009
0.1800 0.1833	0.009
0.1866	0.012
0.1900	0.012
0.1933 0.1966	0.006 0.006
0.2000	0.006
0.2033	0.003
0.2066	0.006
0.2100 0.2133	0.009 0.012
0.2166	0.009
0.2200	0.009
0.2233 0.2266	0.015 0.015
0.2300	0.013
0.2333	0.012
0.2366	0.012
0.2400 0.2433	0.012 0.012
0.2466	0.012
0.2500	0.012
0.2533	0.012 0.009
0.2566 0.2600	0.009
0.2633	0.009
0.2666	0.012
0.2700 0.2733	0.012 0.009
0.2766	0.009
0.2800	0.009
0.2833	0.012
0.2866 0.2900	0.009 0.009
0.2933	0.009
0.2966	0.009
0.3000 0.3033	0.006 0.006
0.3033	0.006
0.3100	0.006
0.3133	0.009
0.3166 0.3200	0.009 0.009
0.3200	0.009

	0 000
0.3233	0.003
0.3266	0.003
0.3300	0.003
0.3333	0.003
0.3500	0.000
0.3666	
0.3666	0.003
0.3833	0.003
0.4000	0.000
0.4166	0.000
0.4333	0.000
0.4500	0.000
0.4666	0.003
0.4833	0.003
0.5000	0.000
0.5166	0.000
0.5333	0.000
	0.000
0.5500	
0.5666	0.000
0.5833	0.000
0.6000	0.000
0.6166	0.000
0.6333	-0.006
0.6500	-0.006
0.6666	-0.018
	0.000
0.6833	
0.7000	0.015
0.7166	0.018
0.7333	0.015
0.7500	0.015
0.7666	0.015
0.7833	0.015
0.8000	0.015
0.8166	0.015
0.8333	0.015
0.8500	0.015
0.8666	0.015
0.8833	0.015
0.9000	0.015
0.9166	0.015
0.9333	0.015
0.9500	0.015
0.9666	0.018
0.9833	0.015
1.0000	0.015
1.2000	0.012
1.4000	-0.006
1.6000	0.012

## AQTESOLV RESULTS Version 1.10

14:21:49

09/25/92

TEST DESCRIPTION

1101	DESCRIPT.

Data set..... a:\mw8t4.in

Data set title.... EAFB - Monitoring Well 8, Test 4

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.576

## ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

## VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 3.2469E-003y0 = 5.2140E-303

## TYPE CURVE DATA

K = 4.60367E-002y0 = 3.73594E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	3.736E+000	2.000E-001	2.534E-003		



SE1000C Environmental Logger 09/02 13:57

## Unit# 00856 Test 5

Unit#	00856	Test	5
Setups:		INPUT	1
Type Mode		Level	(F)
I.D.		00000	
Referenc	e	0.0	000
Linearit	:v	0.0	000
Scale fa		10.0	010
Offset		-0.	
Delay ms	SEC	50.	
Step 0	09/02	12:55	:50
Elapsed	Time	INPUT	1
0.000	00	-0.	
0.003	33		034
0.000	56	0.	031
0.010	00	0.	566
0.013	33	5.	003

0.0000	-0.006
0.0033	0.034
0.0066	0.031
0.0100	0.566
0.0133	5.003
0.0166	-0.349
0.0200	1.974
0.0233	1.539
0.0266	1.394
0.0300	1.294
0.0333	1.155
0.0366	1.045
0.0400	0.932
0.0433	0.853
0.0466	0.733
0.0500	0.673
0.0533	0.591
0.0566	0.522
0.0600	0.453
0.0633	0.393
0.0666	0.352
0.0700	0.318
0.0733	0.289
0.0766	0.261
0.0800	0.236
0.0833	0.204
0.0866	0.188 0.166
0.0900	0.148
0.0933 0.0966	0.132
0.1000	0.110
0.1000	0.097
0.1033	0.085
0.1000	0.005
0.1133	0.066
0.1133	0.056
0.1200	0.050
0.1200	0.050

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.2066 0.2100 0.2133 0.2166 0.2200 0.2133 0.2266 0.2200 0.2333 0.2266 0.2300 0.2333 0.2466 0.2500 0.2333 0.2466 0.2500 0.2533 0.2466 0.2500 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2900 0.2933 0.2666 0.2900 0.2933 0.2966	0.044 0.040 0.031 0.028 0.025 0.022 0.018 0.015 0.015 0.012 0.009 0.009 0.009 0.006 0.006 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0000
0.2833	0.000
0.2866	0.000
0.2900	0.003
0.2933	0.000

0.3233	0.000
0.3266	0.000
0.3300	0.000
0.3333	0.000
0.3500	0.003
0.3666	0.003
0.3833	-0.003
0.4000	-0.003
0.4166	0.003
0.4333	0.003
0.4500	0.003
0.4666	0.003
0.4833	0.000
0.5000	0.003
0.5166	0.003

## AQTESOLV RESULTS Version 1.10

09/25/92

14:39:47

#### TEST DESCRIPTION

Data set..... a:\mw8t5.in

Data set title.... EAFB - Monitoring Well 8, Test 5

Knowns and Constants:

Aquifer saturated thickness..... 5.77 Well screen length..... 5.77

Static height of water in well..... 5.77

A, B, C..... 0.000, 0.000, 1.576

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

## RESULTS FROM VISUAL CURVE MATCHING

## VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.4200E-002v0 = 0.0000E+000

## TYPE CURVE DATA

K = 4.42004E-002y0 = 1.75198E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.752E+000	1.500E-001	9.160E-003		



## SE1000C Environmental Logger 09/02 14:00

nit# 00856 Test 6

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	• • •	130

Step 0 09/02 13:23:23

Scep c	09/02	13.23.23
Elapse	ed Time	INPUT 1
0.0	0000	0.012
	0033	0.009
	066	0.012
	0100	0.012
	0133	0.009
	0166	0.012
	200	0.012
0.0	233	0.006
0.0	0266	0.103
0.0	0300	5.119
0.0	0333	0.919
0.0	0366	1.898
0.0	0400	1.826
0.6	0433	1.694
0.0	0466	1.605
	0500	1.546
	0533	1.435
	0566	1.376
	0600	1.303
	0633	1.234
	0666	1.171
	0700	1.111
	0733	1.051
	0766	0.998
	0800	0.947
	0833	0.897
	0866	0.853 0.806
	0900	0.765
	0933 0966	0.727
	1000	0.689
	1033	0.654
	1066	0.623
	1100	0.591
	1133	0.560
	1166	0.532
	1200	0.503
٠.	~200	2.000

0.2433       0.094         0.2466       0.091         0.2500       0.088         0.2533       0.085         0.2566       0.081         0.2600       0.078         0.2633       0.075	0.2466       0.091         0.2500       0.088         0.2533       0.085         0.2566       0.081	0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2233 0.2266 0.2300 0.2333 0.2366 0.2400	0.481 0.456 0.434 0.412 0.393 0.371 0.355 0.340 0.321 0.308 0.292 0.280 0.267 0.255 0.242 0.233 0.220 0.210 0.210 0.176 0.176 0.176 0.170 0.160 0.154 0.147 0.141 0.135 0.129 0.125 0.129 0.125 0.129 0.125 0.129 0.125 0.110 0.101 0.101 0.101 0.107 0.103 0.097
0 2622 0 07h	0.2666       0.072         0.2700       0.072         0.2733       0.069         0.2766       0.066         0.2800       0.062         0.2833       0.062         0.2966       0.059         0.2933       0.053         0.2966       0.053	0.2333 0.2366 0.2400 0.2433 0.2466 0.2500 0.2533 0.2566 0.2600	0.107 0.103 0.097 0.094 0.091 0.088 0.085 0.081

0.3233	0.040
0.3266	0.040
0.3300	0.040
0.3333	0.040
0.3500	0.034
0.3666	0.031
0.3833	0.028
0.4000	0.025
0.4166	0.025
0.4333	0.022
0.4500	0.018
0.4666	0.018
0.4833	0.015
0.5000	0.018
0.5166	0.018
0.5333	0.018
0.5500	0.015
0.5666	0.015
0.5833	0.015
0.6000	0.015
0.6166	0.015
0.6333	0.015
0.6500	0.015
0.6666	0.015
0.6833	0.015
0.7000	0.015
0.7166	0.015
0.7333	0.015
0.7500	0.015
0.7666	0.015
0.7833	0.015
0.8000	0.015
0.8166	0.015
0.8333	0.015
0.8500	0.015
0.8666	0.015
0.8833	0.015
0.9000	0.015
0.9166	0.015
0.9333	0.015
0.9500	0.015
0.9666	0.015
0.9833	0.012
1.0000	0.012
1.0000	J. VIE

## AQTESOLV RESULTS Version 1.10

15:05:42

09/25/92

_____

#### TEST DESCRIPTION

Data set..... a:\mw31t6.in

Data set title.... EAFB - Monitoring Well 31, Test 6

Knowns and Constants:

Well screen length..... 5

Static height of water in well..... 5.42 Log(Re/Rw)......... 2.023

A, B, C..... 0.000, 0.000, 1.498

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

## VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.2983E-002y0 = 0.0000E+000

## TYPE CURVE DATA

K = 2.29830E-002

y0 = 2.27856E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.279E+000 4.000E-001 3.278E-003

#### TYPE CURVE DATA

K = 2.22808E-002

y0 = 2.19072E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.191E+000 4.000E-001 3.849E-003



## SE1000C Environmental Logger 09/02 14:02

onit# 00856 Test 7

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC		130

Step 0 09/02 13:28:51

Elapsed Time	INPUT 1
0.0000	-0.012
0.0000	-0.015
0.0055	-0.018
0.0100	-0.015
0.0133	-0.166
0.0166	6.769
0.0200	0.355
0.0233	2.071
0.0266	1.549
0.0300	1.476
0.0333	1.457
0.0366	1.372
0.0400	1.300
0.0433	1.212
0.0466	1.171
0.0500	1.111
0.0533	1.051
0.0566	0.998
0.0600	0.938
0.0633	0.887
0.0666	0.850
0.0700	0.802
0.0733	0.749
0.0766	0.714
0.0800	0.692
0.0833	0.645
0.0866	0.610
0.0900	0.579
0.0933	0.547
0.0966	0.519
0.1000	0.491 0.466
0.1033	0.443
0.1066	0.443
0.1100	0.399
0.1133	0.381
0.1166	0.358
0.1200	0.720

0.2033       0.107         0.2066       0.100         0.2100       0.097         0.2133       0.091         0.2166       0.088         0.2200       0.085         0.2233       0.081         0.2266       0.075         0.2300       0.072         0.2333       0.072         0.2366       0.069         0.2400       0.066         0.2433       0.062         0.2500       0.056         0.2533       0.053         0.2566       0.053         0.2633       0.047         0.2666       0.047         0.2700       0.044         0.2766       0.040         0.2800       0.037         0.2833       0.037         0.2866       0.037         0.2900       0.034	0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000	0.340 0.324 0.308 0.292 0.280 0.264 0.251 0.239 0.217 0.204 0.195 0.188 0.179 0.170 0.160 0.154 0.141 0.132 0.129 0.122 0.116 0.110
0.2966 0.031 0.3000 0.031 0.3033 0.028 0.3066 0.028	0.2100 0.2133 0.2166 0.2200 0.2233 0.2266 0.2300 0.2333 0.2366 0.2400 0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2733 0.2766 0.2800 0.2733 0.2766 0.2800 0.2933 0.2966 0.2900 0.2933 0.2966 0.3000 0.3033	0.097 0.091 0.088 0.085 0.081 0.075 0.072 0.072 0.069 0.066 0.059 0.056 0.053 0.053 0.053 0.050 0.047 0.047 0.044 0.044 0.040 0.037 0.037 0.037 0.031 0.031 0.028

0.3233 0.3266	0.028
0.3300	0.022
0.3333	0.022
0.3500	0.018
0.3666	0.015
0.3833	0.012
0.4000 0.4166	0.012
0.4333 0.4500	0.009
0.4666	0.009
0.4833	0.006
0.5000	0.006
0.5166	0.006
0.5333	0.006
0.5500	0.006
0.5666 0.5833	0.006
0.6000	0.003
0.6166	0.006
0.6333	0.003
0.6500	0.003
0.6666	0.003
0.6833 0.7000	0.003
0.7166 0.7333	0.003
0.7500	0.003
0.7666	0.003
0.7833 0.8000	0.003
0.8166 0.8333	0.003
0.8500	0.003
0.8666	0.003
0.8833	0.003
0.9000 0.9166	0.003
0.9333	0.003
0.9500	0.003
0.9666	0.003
0.9833	0.003
1.0000	0.003
1.4000	-0.003
1.6000	-0.006

### AQTESOLV RESULTS Version 1.10

09/25/92

15:20:24

### TEST DESCRIPTION

Data set..... a:\mw31t7.in

Data set title.... EAFB - Monitoring Well 31, Test 7

Knowns and Constants:

No. of data points..... 136

Radius of well casing..... 0.08333
Radius of well..... 0.3333

Aquifer saturated thickness..... 5.42

Well screen length..... 5

Static height of water in well..... 5.42 Log(Re/Rw).......... 2.023

A, B, C..... 0.000, 0.000, 1.498

### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 9.9244E-003

y0 = 0.0000E+000

TYPE CURVE DATA

K = 2.21737E-002

y0 = 1.95754E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.958E+000	4.000E-001	3.546E-003		



### SE1000C Environmental Logger 09/02 18:49

## Unit# 00856 Test 8

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 10.0 -0.1	000

Step 0 09/02 14:57:32

•	
Elapsed Time	INPUT 1
0.0000	-0.056
0.0033	3.167
0.0066	0.072
0.0100	1.605
0.0133	1.228
0.0166	1.212
0.0200	1.240
0.0233	1.202
0.0266	1.190
0.0300	1.180
0.0333	1.168
0.0366	1.155
0.0400	1.136
0.0433	1.136
0.0466	1.124
0.0500	1.130
0.0533	1.095
0.0566	1.089
0.0600	1.073
0.0633	1.064
0.0666	1.051
0.0700	1.042
0.0733	1.029
0.0766	1.017
0.0800	1.007
0.0833	0.991
0.0866	0.988
0.0900	0.976
0.0933	0.969
0.0966	0.957
0.1000	0.947
0.1033	0.938
0.1066	0.928
0.1100	0.919
0.1133	0.910
0.1166	0.900
0.1200	0.894

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166	0.869 0.865 0.856 0.847 0.837 0.828 0.821 0.812 0.793 0.777 0.771 0.762 0.752 0.746 0.739 0.739 0.730 0.724 0.714 0.708 0.699 0.692 0.686 0.677 0.664 0.654 0.648
0.2200 0.2233 0.2266 0.2300 0.2333 0.2366 0.2400 0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2733 0.2766 0.2800 0.2833 0.2866 0.2900 0.2833 0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200	0.642 0.636 0.629 0.623 0.617 0.610 0.598 0.591 0.582 0.576 0.569 0.563 0.560 0.554 0.547 0.547 0.535 0.529 0.522 0.516 0.513 0.506 0.494 0.488 0.481 0.478 0.472 0.466 0.459

0.3233	0.456
0.3266	0.450
0.3300	0.447
0.3333	0.440
0.3500	0.412
0.3666	0.390
0.3833	0.365
0.4000	0.343
0.4166	0.321 0.302
0.4333 0.4500	0.302
0.4666	0.264
0.4833	0.245
0.5000	0.233
0.5166	0.217
0.5333	0.204
0.5500	0.192
0.5666	0.179
0.5833	0.166
0.6000	0.157 0.148
0.6166 0.6333	0.148
0.6500	0.138
0.6666	0.119
0.6833	0.113
0.7000	0.107
0.7166	0.100
0.7333	0.094
0.7500	0.088
0.7666	0.081
0.7833	0.078 0.072
0.8000 0.8166	0.072
0.8333	0.066
0.8500	0.059
0.8666	0.056
0.8833	0.053
0.9000	0.053
0.9166	0.050
0.9333	0.047
0.9500	0.044
0.9666	0.040
0.9833 1.0000	0.040 0.037
1.2000	0.012
1.4000	0.000
1.6000	-0.006
1.8000	-0.009
2.0000	-0.012
2.2000	-0.015
2.4000	-0.018



SE1000C Environmental Logger 09/02 18:52

# Unit# 00856 Test 9

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 10.0 -0.3 50.0	000 010 L30

Step 0 09/02 15:05:40

Step 0	09/02	15:05:4	10
Elapsed	Time	INPUT	1
0.00	00	0.0	00
0.00		-0.00	
0.00	66	0.0	03
0.01	.00	2.83	
0.01		-1.79	
0.01		1.4	
0.02		1.2	
0.02		1.19	
0.02		1.1	
0.03		1.1	
0.03		1.1	
0.03		1.1	
0.04		1.0	
0.04		1.0	
0.04		1.0	
0.05 0.05		1.0	
0.05		1.0	
0.06		1.0	
0.06		1.0	
0.06		0.9	
0.07		0.9	
0.07		0.9	
0.07		0.9	
0.08		0.9	
0.08		0.9	
0.08	366	0.9	28
0.09	900	0.9	
0.09	33	0.9	
0.09		0.9	
0.10		0.8	
0.10		0.8	
0.10		0.8	
0.13		0.8	
0.13		0.8	
0.13		0.8	
0.12	200	0.8	34

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2333 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2666 0.2500 0.2533 0.2666 0.2500 0.2533 0.2666 0.2500 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2900 0.2933	0.828 0.818 0.790 0.790 0.774 0.774 0.7748 0.7743 0.7727 0.7718 0.702 0.6689 0.6673 0.6658 0.6581 0.6639 0.6610 0.698 0.5582 0.5583 0.5583 0.5583 0.5583 0.5583 0.5583 0.513 0.484 0.485 0.485 0.4869
0.2766 0.2800 0.2833 0.2866	0.497 0.491 0.484 0.481 0.475

0.3233	0.421
0.3266	0.418
0.3300	0.412
0.3333	0.409
0.3500	0.384
0.3666	0.358
0.3833	0.333
0.4000	0.314
0.4166	0.292
0.4333	0.273
0.4500	0.258
0.4666	0.242
0.4833 0.5000	0.223 0.210 0.198
0.5166	0.198
0.5333	0.185
0.5500	0.173
0.5666	0.163
0.5833	0.151
0.6000	0.144
0.6166	0.135
0.6333	0.125
0.6500	0.119
0.6666	0.113
0.6833	0.107
0.7000	0.100
0.7166	0.094
0.7100 0.7333 0.7500	0.088
0.7666	0.078
0.7833	0.075
0.8000	0.072
0.8166	0.069
0.8333	0.066
0.8500	0.062
0.8666	0.059
0.8833	0.056
0.9000	0.053
0.9166	0.053
0.9333	0.050
0.9500	0.047
0.9666	0.047
0.9833	0.044
1.0000	0.040
1.2000	0.022
1.4000	0.012
1.6000 1.8000	0.006
2.0000	0.000
2.2000	0.000
2.4000	-0.003
2.6000	-0.003
2.8000	-0.003
3.0000	-0.006
3.2000	-0.006
3.4000	-0.009
3.6000	-0.006
3.8000	-0.006

### AQTESOLV RESULTS Version 1.10

09/25/92

16:24:39

### TEST DESCRIPTION

Data set..... a:\mw16t9.in

Data set title.... EAFB - Monitoring Well 16, Test 9

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.348

### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

### RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 6.2772E-003y0 = -5.5992E-282

### TYPE CURVE DATA

K = 5.49911E-003y0 = 1.19822E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.198E+000	2.000E+000	1.295E-003		



### MW15 TEST1

# SE1000C Environmental Logger 09/02 18:34

nit# 00856 Test 10

Setups:	INPUT	1
Type	Level	(F)
Mode	TOC	
I.D.	00000	
Reference	0.0	000
Linearity	0.0	000
Scale factor	10.0	010
Offset	-0.3	130
Delay mSEC	50.	000

Step 0 09/02 15:27:52

o cop	05, 02		
Elapsed	Time	INPUT	1
0.00	00	-0.0	72
0.00		-0.0	
0.00		2.9	
		0.3	
0.01		1.5	
0.01		1.1	
_ 0.02		1.1	
0.02		0.9	
0.02		0.8	
0.03		0.8	
0.03		0.7	
0.03		0.6	
0.04		0.6	
0.04		0.5	
0.04		0.5	
0.05		0.4	
0.05		0.4	
0.05		0.3	
0.06		0.3	33
0.06	33	0.2	95
0.06	66	0.2	67
0.07	00	0.2	70
0.07	33	0.2	210
0.07	66	0.1	95
0.08	00	0.1	L79
0.08	33	0.1	<b>L63</b>
0.08	66	0.1	<b>L54</b>
0.09	00	0.1	
0.09	33	0.1	
0.09		0.1	
0.10		0.1	
0.10	133	0.0	
0.10			085
0.11			081
0.11			075
0.11			066
0.12	200	0.0	059

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2133 0.2166 0.2100 0.2133 0.2166 0.2200 0.2333 0.2166 0.2200 0.2333 0.2666 0.2400 0.2333 0.2666 0.2400 0.2433 0.2466 0.2500 0.2533 0.2666 0.2500 0.2533 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2666 0.2700 0.2633 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2800 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2833 0.2866 0.2900 0.2835 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800	0.056 0.053 0.050 0.047 0.047 0.044 0.037 0.034 0.028 0.025 0.028 0.022 0.022 0.022 0.022 0.012 0.012 0.015 0.015 0.015 0.015 0.015 0.015 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.2733	0.009
0.2766	0.003
0.2800	0.006
0.2833	0.006
0.2866	0.003

0.3233	0 006
	0.006
0.3266	0.000
0.3300	-0.003
0.3333	0.003
0.3500	0.003
0.3666	0.003
0.3000	
0.3833	0.000
0.4000	0.003
0.4166	0.003
0.4333	0.003
0.4500	0.000
0.4666	0.000
0.4833	-0.003
0.5000	0.000
0.5166	0.003
0.5333	0.000
0.5500	
	0.003
0.5666	0.000
0.5833	0.003
0.6000	-0.003
0.6166	0.000
0.6333	0.003
0.6500	0.000
0.6666	0.000
0.6833	-0.003
0.7000	0.000
0.7166	-0.003
0.7333	-0.003
0.7500	0.000
0.7666	-0.003
0.7833	0.000
0.8000	-0.003
0.8166	-0.003
0.8333	-0.003
0.8500	0.003
0.8666	0.000
0.8833	0.000
0.9000	-0.003
0.9166	0.000
0.9333	-0.009
0.9500	0.000
0.9666	0.000
	-0.003
0.9833	
1.0000	-0.009
1.2000	-0.003
1.4000	0.003
1.6000	-0.012
1.0000	J. U.L

### AQTESOLV RESULTS Version 1.10

09/28/92

09:18:22

### TEST DESCRIPTION

Data set..... a:\mw15t10.in

Data set title.... EAFB - Monitoring Well 15, Test 10

Knowns and Constants:

Radius of well ........... 0.08333

Aquifer saturated thickness..... 4.22

Well screen length...... 4.22 Static height of water in well..... 4.22

A, B, C..... 0.000, 0.000, 1.409

### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

### RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 6.3189E-002

y0 = 7.7468E-304

### TYPE CURVE DATA

K = 6.31889E-002

y0 = 2.61070E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.611E+000 2.000E-001 6.077E-004

### TYPE CURVE DATA

K = 4.52290E-002

y0 = 2.02127E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.021E+000 2.000E-001 5.072E-003



# MW15 TEST2

# SE1000C

Environmental Logger 09/02 18:55

nit# 00856 Test 11

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 10.0 -0.1 50.0	000 010 L30

Step 0	09/02	15:32:43
--------	-------	----------

Step	0	09/02	15:32:	13
Elaps	sed	Time	INPUT	1
0.	. 000	00	-0.0	03
	00:		-0.0	
	.006		-0.0	
	. 010		0.1	
0.	.013	33	2.7	
	.016		-1.0	
	.020		1.5	
•	.023		1.1	
	.026		1.1	
	.030		1.0	
	.033		0.8	
	.036		0.8	
	.040		0.7	
	.043		0.7	
	.04		0.6	
	.050 .053		0.5° 0.5	
	. 05.		0.3	
	.060		0.4	
	.063		0.3	
	.06		0.3	14
	.07		0.3	
	.07		0.2	
	.07		0.2	
0	.080	00	0.2	29
0	.08	2.3	0.2	
0	.08	66	0.1	88
	.09		0.1	
	.09		0.1	
	.09		0.1	
	.10		0.1	
	.10		0.1	
	.10		0.1	
	.11		0.1	
	.11		0.0	
	.11		0.0	
U	.12	UU	0.0	01

0.1233	0.078
0.1266	0.072
0.1300 0.1333	0.069 0.062
0.1366	0.059
0.1400	0.056
0.1433	0.053
0.1466	0.050
0.1500	0.047
0.1533	0.044
0.1566	0.040
0.1600	0.040
0.1633 0.1666	0.037 0.034
0.1700	0.034
0.1733	0.034
0.1766	0.034
0.1800	0.031
0.1833	0.028
0.1866	0.031
0.1900	0.028
0.1933	0.028
0.1966	0.028
0.2000 0.2033	0.025 0.025
0.2066	0.025
0.2100	0.025
0.2133	0.025
0.2166	0.025
0.2200	0.022
0.2233	0.022
0.2266	0.022
0.2300 0.2333	0.022 0.022
0.2366	0.022
0.2400	0.022
0.2433	0.018
0.2466	0.018
0.2500	0.018
0.2533	0.018
0.2566	0.018
0.2600	0.018
∩.2633 J.2666	0.018 0.015
0.2700	0.018
0.2733	0.018
0.2766	0.018
0.2800	0.015
0.2833	0.015
0.2866	0.015
0.2900	0.015
0.2933 0.2966	0.015 0.015
0.3000	0.015
0.3033	0.015
0.3066	0.015
0.3100	0.015
0.3133	0.015
0.3166	0.015
0.3200	0.015

0.3233	0.012	
0.3266	0.015	
0.3300	0.015	
_ 0.3333	0.012	
0.3500	0.012	
0.3666	0.012	
0.3833	0.012	
0.4000	0.012	
0.4166	0.009	
0.4333	0.012	
0.4500	0.012	
0.4666	0.012	
0.4833	0.012	
0.5000	0.009	
0.5166	0.009	
0.5333	0.012	
0.5500	0.009	
0.5666	0.009 0.009	
0.5833 0.6000	0.009	
0.6166	0.009	
0.6333	0.009	
0.6500	0.009	
0.6666	0.009	
0.6833	0.009	
0.7000	0.009	
0.7166	0.009	
0.7333	0.009	
0.7500	0.009	
0.7666	0.009	
0.7833	0.009	
0.8000	0.009	
0.8166	0.009	
0.8333	0.009	
0.8500	0.009 0.009	
0.8666	0.009	
0.8833	0.009	
0.9000 0.9166	0.009	
0.9333	0.009	
0.9500	0.005	
0.9666	0.009	
0.9833	0.009	
1.0000	0.012	
1.2000	0.006	
1.4000	0.006	
1.6000	0.003	
1.8000	0.006	
2.0000	0.003	

### AQTESOLV RESULTS Version 1.10

09:38:32

09/28/92

#### TEST DESCRIPTION

Data set..... mw15t11.in

Data set title.... EAFB - Monitoring Well 15, Test 11

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.409

### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

### RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

**Estimate** 

K = 3.9245E-002y0 = 6.6365E+265

### TYPE CURVE DATA

K = 3.92448E-002y0 = 1.50384E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.504E+000	2.000E-001	8.333E-003		



# MW14 TEST 1 SE1000C Environmental Logger 09/03 07:28

Unit# 00856 Test 12

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 10.0 -0.1 50.0	000 010 L30

Step 0 09/02 16:05:31

Step U	09/02	16:05:	) T
Elapse	d Time	INPUT	1
0.0	000	-0.0	06
0.0		1.9	
0.0		1.6	
0.0	100	0.9	91
0.0	133	0.6	73
0.0		0.3	
0.0		0.1	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	
0.0		0.0	12
0.0	833	0.0	12
0.0		0.0	
0.0	900	0.0	
0.0	933	0.0	
	966	0.0	
	.000	0.0	
	.033	0.0	
	.066	0.0	
	.100	0.0	
	.133	0.0	
	166	0.0	
0.1	.200	0.0	09

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2233 0.2266 0.2200 0.2233 0.2266 0.2300 0.2233 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2566 0.2500 0.2533 0.2566 0.2500 0.2533 0.2566 0.2700 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2800 0.2733 0.2766 0.2800 0.2733 0.2766 0.2900 0.2933 0.2766 0.2900 0.2933 0.2966	0.009 0.009 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
0.2933 0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200	

0.3233       0.003         0.3266       0.003         0.3300       0.000         0.3333       0.000         0.3666       0.000         0.3833       0.000         0.4000       -0.003         0.4166       -0.003         0.4500       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6500       -0.003         0.6666       -0.003         0.7000       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8500       -0.003         0.8666       -0.003         0.9900       -0.006         0.9333       -0.003         0.9666       -0.003         0.9666       -0.003         0.9666       -0.003		
0.3300       0.000         0.3333       0.003         0.3500       0.000         0.3666       0.000         0.3833       0.000         0.4000       -0.003         0.4166       -0.003         0.4500       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.7000       0.000         0.7333       -0.003         0.7500       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.003         0.8333       -0.003         0.8666       -0.003         0.9900       -0.006         0.9333       -0.003         0.9666       -0.003	0.3233	
0.3300       0.000         0.3333       0.003         0.3666       0.000         0.3833       0.000         0.4000       -0.003         0.4166       -0.003         0.4500       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.7000       0.000         0.7333       -0.003         0.7500       0.000         0.7833       -0.003         0.7666       0.000         0.7833       -0.003         0.8666       -0.003         0.8500       -0.003         0.8666       -0.003         0.9900       -0.006         0.9333       -0.003         0.9666       -0.003	0.3266	0.003
0.3333       0.003         0.3500       0.000         0.3666       0.000         0.4000       -0.003         0.4166       -0.003         0.4333       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.7000       0.000         0.7333       -0.003         0.7500       0.000         0.7833       -0.003         0.7666       0.000         0.7833       -0.003         0.8500       -0.003         0.8666       -0.003         0.9900       -0.006         0.9333       -0.003         0.9666       -0.003         0.9666       -0.003		0.000
0.3500       0.000         0.3666       0.000         0.3833       0.000         0.4000       -0.003         0.4166       -0.003         0.4500       0.000         0.4666       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.5833       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6566       0.000         0.6333       -0.003         0.6666       -0.003         0.7000       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.99333       -0.003         0.9666       -0.003		
0.3666       0.000         0.3833       0.000         0.4000       -0.003         0.4166       -0.003         0.4500       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6500       -0.003         0.6666       -0.003         0.7000       0.000         0.7333       -0.003         0.7500       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8500       -0.003         0.8666       -0.003         0.9000       -0.006         0.9166       -0.003         0.9666       -0.003		
0.3833       0.000         0.4000       -0.003         0.4166       -0.003         0.4333       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6566       0.000         0.6333       -0.003         0.6666       -0.003         0.6883       -0.003         0.7500       0.000         0.77500       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8500       -0.003         0.8666       -0.003         0.9006       -0.003         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.4000       -0.003         0.4166       -0.003         0.4333       0.000         0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8500       -0.003         0.8500       -0.003         0.8666       -0.003         0.9006       -0.003         0.9166       -0.003         0.9666       -0.003		
0.4166       -0.003         0.4333       0.000         0.4500       0.000         0.4666       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9333       -0.003         0.9666       -0.003	0.3833	0.000
0.4166       -0.003         0.4333       0.000         0.4500       0.000         0.4666       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8500       -0.003         0.8666       -0.003         0.9000       -0.006         0.9333       -0.003         0.9666       -0.003	0.4000	-0.003
0.4333       0.000         0.4500       0.000         0.4666       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.55500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6333       -0.003         0.6500       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8500       -0.003         0.8666       -0.006         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		-0.003
0.4500       0.000         0.4666       -0.003         0.4833       -0.000         0.5000       0.000         0.5166       0.000         0.55333       0.000         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7833       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.4666       -0.003         0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.55333       0.000         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9333       -0.003         0.9666       -0.003		
0.4833       -0.003         0.5000       0.000         0.5166       0.000         0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9333       -0.003         0.9666       -0.003		
0.5000       0.000         0.5166       0.000         0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6500       -0.003         0.6666       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.5166       0.000         0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.68833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.003         0.7500       0.003         0.7666       0.000         0.7833       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9000       -0.003         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9333       -0.003         0.9666       -0.003	0.5000	0.000
0.5333       0.000         0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.003         0.8500       -0.003         0.8666       -0.003         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003	0.5166	0.000
0.5500       -0.003         0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8666       -0.006         0.9166       -0.003         0.9000       -0.003         0.9500       -0.003         0.9666       -0.003		0.000
0.5666       0.000         0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6500       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8666       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.5833       -0.003         0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8666       -0.006         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.6000       -0.003         0.6166       0.000         0.6333       -0.003         0.6500       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8666       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.6166       0.000         0.6333       -0.003         0.6500       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.6333       -0.003         0.6500       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.6500       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003	0.6166	0.000
0.6500       -0.003         0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003	0.6333	-0.003
0.6666       -0.003         0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9333       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		-0.003
0.6833       -0.003         0.7000       0.000         0.7166       0.000         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9166       -0.003         0.9000       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.7000       0.000         0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.7166       0.000         0.7333       -0.003         0.7500       0.000         0.7666       0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.7333       -0.003         0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.003         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.7500       0.000         0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9000       -0.003         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.7666       0.000         0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.7833       -0.003         0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.9000       -0.003         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003	0.7500	
0.8000       -0.003         0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003	0.7666	0.000
0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003	0.7833	-0.003
0.8166       -0.006         0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003	0.8000	-0.003
0.8333       -0.003         0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.8500       -0.003         0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9500       -0.003         0.9666       -0.003		
0.8666       -0.006         0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.8833       -0.003         0.9000       -0.006         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.9000       -0.006         0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.9166       -0.003         0.9333       -0.003         0.9500       -0.003         0.9666       -0.003		
0.9333 -0.003 0.9500 -0.003 0.9666 -0.003		
0.9333 -0.003 0.9500 -0.003 0.9666 -0.003	0.9166	
0.9500 -0.003 0.9666 -0.003		-0.003
0.9666 -0.003		
		-0.003
	0.9833	
1.0000 -0.003	1.0000	-0.003

### AQTESOLV RESULTS Version 1.10

09/28/92 09:52:13

### TEST DESCRIPTION

Data set..... a:\mw14t12.in

Data set title.... EAFB - Monitoring Well 14, Test 12

Knowns and Constants:

No. of data points..... 95

Radius of well casing...... 0.08333
Radius of well..... 0.3333
Aquifer saturated thickness..... 4.6

Well screen length..... 4.6 Static height of water in well..... 4.6

A, B, C..... 0.000, 0.000, 1.454

#### ANALYTICAL METHOD

**Pouwer and Rice (unconfined aquifer slug test)** 

# RESULTS FROM VISUAL CURVE MATCHING

### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.8162E-001

y0 = 6.6365E+265

### TYPE CURVE DATA

K = 2.81619E-001

y0 = 8.89135E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 8.891E+000 5.000E-002 5.009E-004



# .MW 14 TEST2 SE1000C Environmental Logger 09/03 07:31

hit# 00856 Test 13

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000

# Step 0 09/02 16:11:14

JJJP J	,	
Elapsed	Time	INPUT 1
0.000	10	0.059
0.003		1.564
0.00		0.727
0.010		0.406
0.01		0.406
0.01		0.245
0.01		0.129
0.02		0.129
0.02		0.050
0.03		0.056
0.03		0.040
0.03		0.047
0.04		0.059
0.04		0.066
0.04		0.066
0.05		0.040
0.05		0.034
0.05		0.031
0.06		0.034
0.06		0.031
0.06		0.031
0.07		0.031
0.07	33	0.031
0.07		0.028
0.08	00	0.028
0.08	33	0.028
0.08	66	0.028
0.09	00	0.028
0.09	33	0.028
0.09	66	0.028
0.10	00	0.028
0.10	33	0.025
0.10	66	0.025
0.11	00	J.025
0.11	33	0.025
0.11		0.025
0.12	00	0.025

0.1233	0.025
0.1266	0.025
0.1300	0.025
0.1333	0.022
0.1366	0.022
0.1400	0.025
0.1433	0.022
0.1466	0.022
0.1500	0.022
0.1533	0.022
0.1566	0.022
0.1600	0.022
0.1633	0.022
0.1666	0.022
0.1700	0.022
0.1733	0.022
0.1766	0.022
0.1800	0.022
0.1833	0.022
0.1866	0.022
0.1900	0.018
0.1933	0.022
0.1966	0.022
0.2000	0.018
0.2033	0.018
0.2066	0.018
0.2100	0.018 0.018
0.2133 0.2166	0.018
0.2200	0.018
₁.2233	0.018
0.2266	0.018
0.2300	0.018
0.2333	0.018
0.2366	0.018
0.2400	0.018
0.2433	0.018
0.2466	0.018
0.2500	0.018
0.2533	0.015
0.2566	0.018
0.2600	0.018
0.2633	0.015
0.2666	0.015
0.2700	0.018
0.2733	0.018
0.2766	0.015
0.2800	0.018
0.2833	0.018
0.2866	0.018
0.2900	0.018 0.018
0.2933 0.2966	0.018
0.3000	0.015
0.3033	0.015
0.3055	0.015
0.3100	0.015
0.3133	0.015
0.3166	0.015
0.3200	0.015

0.3233	0.015
0.3266	0.015
0.3300	0.015
0.3333	0.015
0.3500	0.015
0.3666	0.015
0.3833	0.015
0.4000	0.015
0.4166	0.015
0.4333	
	0.015 0.012
0.4500	
0.4666	0.012
0.4833	0.015
0.5000	0.015
0.5166	0.012
0.5333	0.012
0.5500	0.012
0.5666	0.012
0.5833	0.012
0.6000	0.012
0.6166	0.012
0.6333	0.012
0.6500	0.012
0.6666	0.012
0.6833	0.012
0.7000	0.012
0.7166	0.012
0.7333	0.012
0.7500	0.009
0.7666	0.012
0.7833	0.009
0.8000	0.009
0.8166	0.012
0.8333	0.012
0.8500	0.009
0.8666	0.012
0.8833	0.012
0.9000	0.003
0.9166	0.012
0.9333	0.009
0.9500	0.012
0.9666	0.012
0.9833	0.009
1.0000	0.009

### AQTESOLV RESULTS Version 1.10

09/28/92

10:04:19

### TEST DESCRIPTION

Data set..... a:\mw14t13.in

Data set title.... EAFB - Monitoring Well 14, Test 13

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.454

### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 2.3967E-001y0 = 6.6365E+265

TYPE CURVE DATA

K = 2.39667E-001y0 = 2.61401E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.614E+000 3.000E-002 1.768E-002



# MW 12 TEST1 SE1000C Environmental Logger 09/03 07:37

Unit# 00856 Test 14

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC		L30

Step 0 09/02 16:27:47

Elapsed Time	INPUT 1
0.0000	-0.025
0.0033	2.122
0.0066	0.601
0.0100	1.335
0.0133	1.023
0.0166	0.859
0.0200	0.774
0.0233	0.661
0.0266	0.576
0.0300	0.519
0.0333	0.453
0.0366	0.393
0.0400	0.340
0.0433	0.292
0.0466	0.248
0.0500	0.214
0.0533	0.179
0.0566	0.151
0.0600	0.125
0.0633	0.103
0.0666	0.085
0.0700	0.069
0.0733	0.056
0.0766	0.044 0.034
0.0800	0.034
0.0833 0.0866	0.028
0.0900	0.022
0.0933	0.013
0.0966	0.009
0.1000	0.006
0.1033	0.006
0.1066	0.003
0.1100	0.000
0.1133	0.003
0.1166	0.000
0.1200	0.000

0.1233	0.000
0.1266	0.000
0.1300	-0.003
0.1333	-0.003
0.1366	-0.003
0.1400	-0.003
0.1433	-0.003
0.1466	-0.003
0.1500	-0.003
0.1533	-0.003
0.1566	-0.003
	-0.003
0.1600	
0.1633	-0.003
0.1666	-0.006
0.1700	-0.006
0.1733	-0.006
0.1766	-0.006
0.1800	-0.006
0.1833	-0.006
0.1866	-0.006
	-0.006
0.1900	
0.1933	-0.006
	-0.006
0.1966	
0.2000	-0.006
0.2033	-0.006
0.2066	-0.006
0.2100	-0.006
0.2133	-0.006
0.2166	-0.006
0.2200	-0.006
0.2233	-0.006
•	-0.006
0.2266	
0.2300	-0.006
0.2333	-0.006
0.2366	-0.006
0.2400	-0.006
0.2433	-0.006
0.2466	-0.006
0.2500	-0.006
0.2533	-0.006
0.2566	-0.009
0.2600	-0.006
0.2633	-0.006
0.2666	-0.006
0.2700	-0.006
0.2733	-0.006
0.2766	-0.006
0.2800	-0.006
0.2833	-0.009
	-0.006
0.2866	
0.2900	-0.006
0.2933	-0.006
0.2966	-0.009
0.3000	-0.006
0.3033	-0.009
0.3066	-0.006
0.3100	-0.009
0.3133	-0.006
0.3166	-0.009
0.3200	-0.009
0.3200	0.003

0.3233	-0.006
0.3266	-0.009
0.3300	-0.009
0.3333	-0.006
0.3500	-0.006
0.3666	-0.009
0.3833	-0.009
0.4000	-0.009
0.4166	-0.009
	-0.009
0.4333	-0.009
0.4500	-0.009
0.4666	-0.009
0.4833	-0.009
0.5000	
0.5166	-0.009
0.5333	-0.009
0.5500	-0.009
0.5666	-0.009
0.5833	-0.009
0.6000	-0.009
0.6166	-0.009
0.6333	-0.012
0.6500	-0.009
0.6666	-0.009
0.6833	-0.009
0.7000	-0.009
0.7166	-0.009
0.7333	-0.009
0.7500	-0.009
0.7666	-0.009
0.7833	-0.009
0.8000	-0.009
0.8166	-0.009
0.8333	-0.009
0.8500	-0.009
0.8666	-0.009
0.8833	-0.009
0.9000	-0.012
0.9166	-0.012
0.9333	-0.009
0.9500	-0.009
0.9666	-0.012
0.9833	-0.012
1.0000	-0.012 -0.012_
1.0000	-0.012_

### AQTESOLV RESULTS Version 1.10

09/28/92

10:19:08

#### TEST DESCRIPTION

Data set..... a:\mw12t14.in

Data set title.... EAFB - Monitoring Well 12, Test 14

Knowns and Constants:

Radius of well casing.......... 0.08333
Radius of well........... 0.3333
Aquifer saturated thickness...... 3.5

A, B, C..... 0.000, 0.000, 1.309

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

# RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 7.5740E-002V0 = 6.6365E+265

#### TYPE CURVE DATA

K = 7.57398E-002y0 = 1.86601E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.866E+000	1.200E-001	8.193E-003		



# MW12 TEST2

# SE1000C Environmental Logger 09/03 07:47

nit# 00856 Test 15

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000

Step 0 09/02 16:33:03

Scep o	09/02	10.33.0	,,
Elapsed	Time	INPUT	1
0.000	00	-0.0	12
0.003		0.3	
0.00		2.3	
0.01		-0.1	63
0.01	33	1.1	36
0.01		0.9	
0.02		0.8	
0.02		0.7	
C.02		0.6	
0.03		0.5	
0.03		0.5	
0.03		0.4	
0.04		0.3	
0.04		0.3	
0.04		0.2 0.2	
0.05 0.05		0.2	
0.05		0.1	
0.05		0.1	
0.06		0.1	
0.06		0.1	
0.07		0.0	
0.07		0.0	
0.07		0.0	59
0.08		0.0	50
0.08	33	0.0	40
0.08		0.0	
0.09		0.0	
0.09		0.0	
0.09		0.0	
0.10		0.0	
0.10		0.0	
0.10		0.0	
0.11		0.0	
0.11		0.0	
0.11		0.0	
0.12	.00	0.0	, U 3

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2233 0.2266 0.2300 0.2233 0.2266 0.2300 0.2333 0.2466 0.2500 0.2533 0.2466 0.2500 0.2533 0.2566 0.2500 0.2533 0.2666 0.2700 0.2533 0.2666 0.2700 0.2733 0.2666 0.2700 0.2733 0.2766 0.2800 0.2733 0.2766 0.2900 0.2733 0.2766 0.2900 0.2733 0.2766 0.2900 0.2733 0.2766 0.2900 0.2933 0.2666 0.2700 0.2733 0.2766 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.2900 0.2933 0.2966 0.3000 0.3033	0.009 0.009 0.009 0.009 0.009 0.009 0.006 0.006 0.006 0.006 0.006 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003
0.2933	0.003
0.2966	0.003
0.3000	0.003

0.3233 0.3266	0.000
0.3300	0.003
0.3333	0.003
0.3500	0.003
0.3666	0.000
0.3833	0.000
0.4000	0.003
0.4166	0.000
0.4333	0.000 0.000
0.4500 0.4666	0.000
0.4833	0.000
0.5000	0.000
0.5166	0.000
0.5333	0.000
0.5500	0.000
0.5666	0.000
0.5833	0.000
0.6000	0.000
0.6166	0.000
0.6333	0.000
0.6500 0.6666	0.000 0.000
0.6833	0.000
0.7000	0.000
0.7166	0.000
0.7333	0.000
0.7500	0.000
0.7666	0.000
0.7833	0.000
0.8000	0.000
0.8166	0.000
0.8333 0.8500	0.000
0.8666	0.000
0.8833	0.000
0.9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.000
0.9833	0.000
1.0000	0.000
1.2000	-0.003

#### AQTESOLV RESULTS Version 1.10

10:27:49

09/28/92

_____

#### TEST DESCRIPTION

Data set..... a:\mw12t15.in

Data set title.... EAFB - Monitoring Well 12, Test 15

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.309

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 7.5600E-002V0 = 6.6365E+265

# TYPE CURVE DATA

K = 7.55995E-002y0 = 1.97242E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	1.972E+000	1.400E-001	3.546E-003		



# SE1000C Environmental Logger 09/03 07:51

Unit#	00856	Test 1	6
-------	-------	--------	---

Setups:	INPUT 1
Type Mode I.D.	Level (F) TOC 00000
Reference Linearity Scale factor Offset	0.000 0.000 10.010 -0.130 50.000
Delay mSEC	50.000

# Step 0 09/02 17:08:01

Elapsed Time	INPUT 1
0.0000	0.018
0.0033	6.911
0.0066	4.823
0.0100	5.324
0.0133	2.566
0.0166	2.651
0.0200	1.536
0.0233	1.586
0.0266	1.268
0.0300	1.731
0.0333	1.662
0.0366	1.432
0.0400	1.146
0.0433	0.976
0.0466	0.831
0.0500	0.686
0.0533	0.582
0.0566	0.484
0.0600	0.402
0.0633	0.336
0.0666	0.286
0.0700	0.239
0.0733	0.201
0.0766	0.173
0.0800	0.141
0.0833	0.119
0.0866	0.103 0.085
0.0900	0.085
0.0933	0.069
0.0966	0.066
0.1000	0.059
0.1033 0.1066	0.059
0.1100	0.056
0.1100	0.047
0.1133	0.047
0.1156	0.044
0.1200	0.040

= 0902-16.DAT

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1733 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200 0.2233 0.2266 0.2300 0.2333 0.2466 0.2400 0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666	0.040 0.040 0.037 0.034 0.037 0.034 0.031 0.031 0.031 0.031 0.031 0.025 0.031 0.031 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.028 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031
0.2700 0.2733	0.031
0.2766 0.2800	0.034
0.2833	0.031
0.2866 0.2900	0.031
0.2933 0.2966	0.031 0.031
0.3000 0.3033	0.031 0.031
0.3066	0.031
0.3133	0.028
0.3166 0.3200	0.031 0.031

```
0.3233
                 0.031
  0.3266
                 0.031
  0.3300
                 0.031
  0.3333
                 0.031
  0.3500
                 0.031
  0.3666
                 0.028
  0.3833
                 0.031
  0.4000
                 0.031
  0.4166
                 0.031
                 0.028
  0.4333
                 0.028
  0.4500
                 0.028
  0.4666
  0.4833
                 0.031
                 0.031
  0.5000
  0.5166
                 0.031
  0.5333
                 0.031
  0.5500
                 0.031
  0.5666
                 0.028
                 0.031
  0.5833
  0.6000
                 0.028
                 0.031
  0.6166
                 0.031
  0.6333
                 0.031
  0.6500
  0.6666
                 0.031
  0.6833
                 0.031
                 0.031
  0.7000
                 0.031
  0.7166
                 0.031
  0.7333
                 0.031
  0.7500
  0.7666
                 0.028
  0.7833
                 0.028
  0.8000
                 0.031
  0.8166
                 0.031
                 0.031
  0.8333
  0.8500
                 0.034
                 0.028
  0.8666
  0.8833
                 0.028
  0.9000
                 0.028
  0.9166
                 0.028
  0.9333
                 0.034
  0.9500
                 0.028
  0.9666
                 0.031
                 0.028
  0.9833
  1.0000
                 0.028
                 0.028
  1.2000
  1.4000
                  0.028
  1.6000
                  0.028
                  0.028
  1.8000
                  0.028
  2.0000
                  0.028
   2.2000
  2.4000
                  0.028
  2.6000
                  0.028
   2.8000
                  0.028
   3.0000
                  0.025
   3.2000
                  0.028
```

#### AQTESOLV RESULTS Version 1.10

09/28/92

10:40:07

#### TEST DESCRIPTION

Data set..... a:\mw5t16.in

Data set title.... EAFB - Monitoring Well 5, Test 16

Knowns and Constants:

A, B, C..... 0.000, 0.000, 2.400

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 4.0123E-002v0 = 6.6365E+265

TYPE CURVE DATA

K = 3.68784E-002y0 = 9.72246E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 9.722E+000 1.200E-001 1.670E-002



K = 3.68784E-002

y0 = 9.72246E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	9.722E+000	1.200E-001	1.670E-002		



# SE1000C Environmental Logger 09/03 07:54

Unit# 00856 Test 17

Setups:	INPUT	1
Type Mode I.D.	Level TOC 00000	(F)
Reference Linearity Scale factor Offset Delay mSEC	0.0 0.0 10.0 -0.1 50.0	000 010 L30

Step 0 09/02 17:17:31

scep	U	09/02	1/:1/:3	, т
Elaps	sed	Time	INPUT	1
0.	. 000	00	3.58	36
	003		7.31	
	.006		6.63	
	.010		4.14	13
0.	.013	33	2.97	
	.01		2.17	
	. 020		1.68	
	. 02:		1.29	
	.026		1.60	
	. 030		1.5	
	.03		1.33	
	.03		1.09 0.93	
	.040 .040		0.7	
	.04		0.6	
	. 05		0.5	
	.05		0.4	
	.05		0.3	
	.06		0.3	
	.06		0.2	
0	.06	66	0.2	
0	.07	00	0.1	
	.07		0.1	
	.07		0.1	
	.08		0.1	
	.08		0.0	
	.08		0.0	
	.09		0.0	
	.09		0.0	
	.09		0.0	
	.10		0.0	
	.10		0.0	
	.11		0.0	
	.11		0.0	
	.11		0.0	
	.12		0.0	
•				

0.1233	0.025
0.1266	0.022
0.1300	0.018
0.1333	0.015
0.1366	0.022
0.1400	0.018
0.1433	0.031
0.1466	0.031
0.1500	0.018
0.1533	0.022
0.1566	0.025
0.1600	0.018
0.1633	0.018
0.1666	0.018
0.1700	0.018
0.1733	0.015
0.1766	0.018
0.1800 0.1833	0.018 0.018 0.018
0.1866	0.018
0.1900	0.018
0.1933	0.018
0.1966	0.015
0.2000	0.015
0.2033	0.015
0.2066	0.015
0.2100	0.015
0.2133	0.015
0.2166	0.015
0.2200	0.015
0.2233	0.012
0.2266	0.012
0.2300	0.012
0.2333	0.015
0.2366	0.015
0.2400	0.015
0.2433	0.015
0.2466	0.015
0.2500	0.012
0.2533	0.015
0.2566	0.015
0.2600	0.015
0.2633	0.015
0.2666	0.015
0.2700	0.015
0.2733	0.015
0.2766	0.015
0.2800	0.015
0.2833	0.015
0.2866	0.015
0.2900	0.012
0.2933	0.012
0.2966	0.012
0.3000	0.015
0.3033	0.012
0.3066	0.012
0.3100	0.012
0.3133	0.012
0.3166	0.012
0.3200	0.012
0.0200	0.025

0.012 0.012 0.015 0.015 0.015 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015
-0.006 0.015 0.015

## AQTESOLV RESULTS Version 1.10

09/28/92

11:05:39

#### TEST DESCRIPTION

Data set..... mw5t17.in

Data set title.... EAFB - Monitoring Well 5, Test 17

Knowns and Constants:

A, B, C..... 0.000, 0.000, 2.400

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

# RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 6.3745E-002

y0 = 0.0000E + 000

#### TYPE CURVE DATA

K = 3.76168E-002y0 = 8.18465E+000

Time	Drawdown	Time	Drawdown	Time	Drawdown
0.000E+000	8.185E+000	1,200E-001	1.237E-002		



# SE1000C Environmental Logger 09/03 07:59

nit# 00856 Test 18

Setups:	INPUT 1
Type	Level (F)
Mode	TOC
I.D.	00000
Reference	0.000
Linearity	0.000
Scale factor	10.010
Offset	-0.130
Delay mSEC	50.000

Step	0	09/02	17:57:	23
Elaps	sed	Time	INPUT	1
0.	000	00	1.1	
0.	.003	<b>3</b> .2	3.9	
	.006		1.9	
	.010		0.5	
	.013		1.6	
	.016		1.3	
	.020 .023		1.2	
	.023		0.9	
	.030		0.8	
	.033		0.7	
	.036		0.6	
	.040		0.5	
	. 043		0.4	
0	.046	56	0.4	21
	.050		0.3	
	.053		0.3	
	.056		0.2	
	.060		0.2	
	.063		0.2	
	.060		0.1	
	.070		0.1	
	.07		0.1	
	.086		0.1	
	.083		0.1	
	.08		0.1	
	.09		0.0	
	.09		0.0	
	.09		0.0	
0	.10	00	0.0	72
	.10		0.0	
0	.10	66	0.0	
	.11		0.0	
	.11		0.0	
	.11		0.0	
0	.12	00	0.0	)40

0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2133 0.2166 0.2200 0.2133 0.2166 0.2200 0.2233 0.2266 0.2333 0.2266 0.2333 0.2366 0.2400 0.2433 0.2466	0.040 0.037 0.034 0.031 0.028 0.028 0.025 0.025 0.025 0.022 0.022 0.022 0.022 0.022 0.018 0.018 0.018 0.015 0.015 0.015 0.015 0.015 0.012 0.012 0.012 0.012 0.012 0.012 0.012
0.2366 0.2400 0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2733 0.2766 0.2800 0.2833	0.009 0.012 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009
0.2866 0.2900 0.2933 0.2966 0.3000 0.3033 0.3066 0.3100 0.3133 0.3166 0.3200	0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

0.3233	0.006
0.3266	0.006
0.3200	0.006
0.3333	0.006
0.3500	0.006
0.3666	0.003
0.3833	0.003
0.4000	0.003
0.4166	0.006
0.4333	0.003
0.4500	0.003
0.4666	0.000
0.4833	0.003
0.5000	0.003
0.5166	0.003
0.5333	0.003
0.5500	0.003
0.5666	0.003
0.5833	0.003
0.6000	0.000
0.6166	0.000
0.6333	0.003
0.6500	0.000
0.6666	0.003
0.6833	0.000
0.7000	0.000
0.7166	0.000
0.7333	0.000
0.7500	0.000
0.7666	0.000
0.7833	0.000
0.8000	0.000
0.8166	0.000
0.8333	0.000
0.8500	0.003
0.8666	0.000
0.8833	0.000
0.9000	0.000
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.000
0.9833	0.000
1.0000	0.003
1.2000	-0.003
1.4000	-0.003

## AQTESOLV RESULTS Version 1.10

09/28/92

11:16:54

#### TEST DESCRIPTION

Data set..... a:\mw13t18.in

Data set title.... EAFB - Monitoring Well 13, Test 18

Knowns and Constants:

A, B, C..... 0.000, 0.000, 1.498

# ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

#### RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 7.6591E-002y0 = 0.0000E+000

______

#### TYPE CURVE DATA

K = 6.60952E-002y0 = 2.98187E+000

Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.982E+000 2.000E-001 5.131E-004

#### TYPE CURVE DATA

K = 6.24777E-002y0 = 2.74037E+000 Time Drawdown Time Drawdown Time Drawdown
0.000E+000 2.740E+000 2.000E-001 7.577E-004



# SE1000C Environmental Logger 09/03 08:02

Unit# 00856 Test 19

Setups:	INPUT 1	
Type Mode I.D.	Level (F)	)
Reference Linearity Scale factor Offset Delay mSEC	0.000 0.000 10.010 -0.130 50.000	

**step** 0 09/02 18:03:55

Elapsed T	ime INPUT	1
0.0000 0.0033 0.0066 0.0100 0.0133 0.0166 0.0200 0.0233 0.0266 0.0300 0.0333 0.0366 0.0400 0.0433 0.0466 0.0500 0.0533 0.0566 0.0600 0.0633	-0.0 0.3 3.0 0.1 1.1 1.1 0.0 0.0 0.0	006 982 662 721 599 530 328 130 007 881 768 673 586 450 3946 305 267
0.0600		267
0.1166 0.1200		047

0.2233       0.012         0.2266       0.009         0.2300       0.012         0.2333       0.012         0.2366       0.012         0.2400       0.012         0.2433       0.009         0.2500       0.012         0.2533       0.009         0.2566       0.009         0.2633       0.009         0.2666       0.009         0.2700       0.009         0.2733       0.009         0.2766       0.006         0.2800       0.009	0.1233 0.1266 0.1300 0.1333 0.1366 0.1400 0.1433 0.1466 0.1500 0.1533 0.1566 0.1600 0.1633 0.1666 0.1700 0.1733 0.1766 0.1800 0.1833 0.1866 0.1900 0.1833 0.1866 0.1900 0.1933 0.1966 0.2000 0.2033 0.2066 0.2100 0.2133 0.2166 0.2200	0.044 0.037 0.037 0.034 0.031 0.028 0.025 0.025 0.025 0.025 0.025 0.022 0.018 0.018 0.018 0.018 0.018 0.015 0.015 0.015 0.015 0.015 0.015 0.015
11 11/12	0.2433 0.2466 0.2500 0.2533 0.2566 0.2600 0.2633 0.2666 0.2700 0.2733	0.009 0.009 0.012 0.009 0.009 0.009 0.009 0.009

0.3233	0 006
0.3266	0.006
	0.006
0.3300	0.006
0.3333	0.006
0.3500	0.006
0.3666	0.006
0.3833	0.006
0.4000	0.003
0.4166	0.003
0.4333	0.003
0.4500	0.003
0.4666	0.003
0.4833	0.003
0.5000	0.003
0.5166	0.003
0.5333	0.003
0.5500	
	0.003
0.5666	0.003
0.5833	0.003
0.6000	0.003
0.6166	0.000
0.6333	0.000
0.6500	0.003
0.6666	0.003
0.6833	0.000
0.7000	0.000
0.7166	0.000
0.7333	0.000
0.7500	0.000
0.7666	0.000
0.7833	0.003
0.8000	0.000
0.8166	0.000
0.8333	0.000
0.8500	0.000
0.8666	
0.8833	0.000
	0.000
0.9000	0.003
0.9166	0.000
0.9333	0.000
0.9500	0.000
0.9666	0.000
0.9833	0.000
1.0000	0.000

## AQTESOLV RESULTS Version 1.10

11:40:21

09/28/92

#### TEST DESCRIPTION

Data set..... a:\mw18t19.in

Data set title.... EAFB - Monitoring Well 13, Test 19

Knowns and Constants:

No. of data points..... 120 Radius of well casing..... 0.08333 Radius of well................ 0.3333 Aquifer saturated thickness..... 7.36 Well screen length..... 5 Static height of water in well..... 7.36

A, B, C..... 0.000, 0.000, 1.498

#### ANALYTICAL METHOD

Bouwer and Rice (unconfined aquifer slug test)

# RESULTS FROM VISUAL CURVE MATCHING

#### VISUAL MATCH PARAMETER ESTIMATES

Estimate

K = 6.3222E-002 v0 =0.0000E+000

TYPE CURVE DATA

K = 6.19572E-002y0 = 2.98538E+000

Time Drawdown Time Drawdown Time Drawdown 0.000E+000 2.985E+000 2.000E-001 8.838E-004



# Appendix G CIVIL SURVEYING DATA

	-∔			Top of Steel	Top of PVC	Ground
Designation	++	Northing	Easting	Casing (cap	Casing (cap	Surface next
	+			removed)	removed)	to Well
GW 4A	ft	2644454.49	1674775.40	135.32	134.79	132.9
GW 4A	m	806031.341	510472.562	41.246	41.084	40.51
GW 6A	ft	2642648.49	1670730.39	137.74	137.62	135.6
GW 6A	m	805480.871	509239.641	41.983	41.947	41.33
NS3-02	ft	2643600.36	1673577.61	118.44	117.98	115.3
NS3-02	m	805771.001	510107.476	36.101	35.960	35.14
NS3-03	ft	2643144.74	1672285.55	109.17	109.13	106.2
NS3-03	m	805632.128	509713.655	33.275	33.263	32.37
1105 05	+	003032.120	3037.13.033		33.203	323
NS3-06	ft	2644144.97	1672841.54	146.84		146.8
NS3-06	m	805936.999	509883.121	44.757		44.74
OU5MW-01	ft	2641440.14	1667083.49	136.82	136.41	134.1
OUSMW-01	m	805112.565	508128.064	41.703	41.578	40.87
003.11 11 01	<del>                                      </del>	005112.500	330120.001	41.703	41.576	40.07
OU5MW-02	ft	2642493.14	1668573.89	141.67	140.95	139.2
OU5MW-02	m	805433.520	50×582.339	43.181	42.962	42.43
OU5MW-03	ft	2643187.22	1669747.10	148.11	147.58	145.7
OUSMW-03	m	805645.076	508939.934	45.144	44.982	44,41
003	1	005015.0.0	300333331	13.114	44.702	
OU4MW-04	ft	2644187.86	1671146.14	157.46	157.09	154.8
OU4MW-04	m	805950.072	509366.362	47.994	47.881	47.18
OU5MW-05	ft	2644958.94	1672552.29	157.82	157.29	155.3
OU4MW-05	m	806185.097	509794,958	48.104	47.942	47.34
OU5MW-06	ft	2645199.58	1674566.13	174.54	173.99	172.4
OU5MW-06	m	806258.445	510408.777	53.200	53.032	52.55
OU5MW-07	ft	2645421.29	1675634.89	179.97	179.42	177.4
OU5MW-07	m	806326.022	510734.536	54.855	54.687	54.07
OU5MW-08	ft	2644734.62	1675474.37	153.88	153.50	151.1
OU5MW-08	m	806116.724	510685.609	46.903	46.787	46.06
OU5MW-09	ft	2643498.85	1672675.46	113.62	113.02	111.0
OU5MW-09	m	805740.061	509832.500	34.631	34,449	33.83
			30,302,200	303.	34.775	33.03
OU5MW-10	ft	2642902.03	1672025.94	106.08	105.25	103.5
OU5MW-10	m	805558.150	509634.526	32.333	32.080	31.55
OU5MW-11	ft	2643322.68	1670837.17	153.50	152.95	151.9
OU5MW-11	m	805686.364	509272.188	46.787	46.619	46.30
	$\prod$					
OU5MW-12	ft	2641969.40	1670451.81	96.89	96.01	94.1
OU5MW-12	m	805273.884	509154.730	29.532	29.264	28.68
OU5MW-13	ft	2641783.28	1669909.23	91.39	90.81	88.6
OU5MW-13	m	805217.154	508989.351	27.856	27.679	
CO2141 44-12	+**+	WJ217.137	555707.551	27.030	27.079	27.01

Elmendorf AFB - Operable Unit 5 - Monitoring Wells

	++			Top of Steel	Top of PVC	Ground
Designation	++	Northing	Easting	Casing (cap	Casing (cap	Surface next
	+-			removed)	removed)	to Well
OU5MW-14	ft	2641283.98	1669070.86	85.52	84.97	83.0
OU5MW-14	m	805064.967	508733.816	26.067	25.899	25.30
OU5MW-15	ft	2640954.48	1668159.38	82.00	81.56	79.6
OU5MW-15	m	804964.535	508455.996	24.994	24.860	24.26
OU5MW-16	ft	2640657.86	1667569.69	77.98	77.29	75.4
OU5MW-16	m	804874.125	508276.258	23.768	23.558	22.98
OU5MW-17	ft	2640111.83	1666837.83	66.38	65.99	62.1
OU5MW-17	m	804707.695	508053.187	20.233	20.114	63.1 19.23
OOSIN W-17	+	304707.095	300033.107	20.233	20.114	17.2.
OU5MW-30	ft	2643719.87	1673208.63	117.60	117.29	114.7
OU5MW-30	m	805807.428	509995.010	35.845	35.750	34.90
OUSMW-31	ft	2644051.90	1674322.56	125.73	125.16	123.5
OU5MW-31	m	805908.631	510334.537	38.323	38.149	37.64
				30000		31.0
SP1-01	ft	2640815.84	1667437.25	98.20	97.91	94.8
SP1-01	m	804922.278	508235.890	29.931	29.843	28.89
CD1 00	6	2641264.69	1669240 57	135.00	125.55	1:10.4
SP1-02 SP1-02	ft m	2641264.68 805059.085	1668249.57 508483,486	135.90 41.422	135.55 41.316	132.5
511-02	111	003037.003	300403.400	41.422	41.510	40.5
SP2/6-01	ft	2643026.15	1670418.50	153.05	152.75	150.4
SP2/6-01	m	805595.982	509144.577	46.650	46.558	45.84
SP2/6-02	ft	2643046.73 805602.255	1670706.58	144.31	144.19	141.3
SP2/6-02	m.	803602.233	509232.384	43.986	43.949	43.0
SP2/6-03	ft	2642951.72	1671070.88	141.85	141.63	139.1
SP2/6-03	m	805573.295	509343.423	43.236	43.169	42.40
SP2/6-04	ft	2642799.59	1670895.12	140.49	140.44	127 (
SP2/6-04	m	805526.926	509289.851	42.821	42.806	137.9 42.03
0.2,0 0.		003320.720	307207.031	42.021	72.000	72.0.
SP2/6-05	ft	2642393.82	1670442.28	136.03	135.81	133.1
SP2/6-05	m ·	805403.247	509151.825	41.462	41.395	
SD4 00	6	2644119 12	1674412.00	100.45	100 10	105
SP4-02 SP4-02	ft m	2644118.12 805928.815	1674413.02 510362.109	128.45 39.152	128.13 39.054	125.3
31 4-02	111	803928.813	310302.109	39.132	39.034	38.19
SP4/11-01	ft	2644372.91	1674636.15	134.58	134.30	131.3
SP4/11-01	m	806006.475	510430.119	41.020	40.935	40.02
CD4/11 02	6.	2644727.02	1674000 07	171 /5	171.04	100
SP4/11-03 SP4/11-03	ft m	2644727.92 806114.682	1674238.07 510308.784	171.65 52.319	171.06 52.139	168.5 51.36
J. 7/11-0J	***	000114.002	310300.704	36319	34.139	31.30
W-14	ft	78.29 د 2644	1675043.47	135.35	135.16	133.
W-14	m	806069.075	510554.271	41.255	41.197	40.7:
W 16	6.	2642644.26	1670567 61	120 40	120 10	107
W-16 W-16	ft m	2642644.26 805479.581	1670567.61 509190.026	138.48 42.209	138.18 42.117	137.0 41.70

	!		<u> </u>	Top of Steel	
Designation	<del>-</del>	Northing	Easting	Pipe (cap	Ground
	<del>  -</del>			removed)	Surface
OUECIV 25	-	2642626.04	1600166 25	119.05	
OUSGW-25	ft	2643635.94	1673456.25	117.05	114.2
OU5GW-25	m	805781.846	510070.486	35.677	34.81
OU5GW-27	ft	2644303.85	1674882.70	133.71	130.9
OU5GW-27	m	805985.425	510505.268	40.755	39.90
			1		
OU5GW-28	ft	2644379.37	1675291.12	136.54	133.0
OU5GW-28	m.	806008.444	510629.755	41.617	40.54
OU5GW-29	ft	2644121.22	1674165.03	127.12	123.54
OUSGW-29	m	805929.760	510286.521	38.746	37.66
OU5GW-34	ft	2642593.39	1671126.84	102.53	00.0
OU5GW-34	m	805464.076	509360.479	31,251	98.8 30.11
0030 W-34	+***	803404.070	309300.479	31.231	30.11
OU5GW-40	ft	2644431.24	1675424.27	138.01	134.6
OU5GW-40	m	806024.253	510670.339	42.066	41.03
OU5GW-41	ft	2643660.91	1675645.34	132.96	129.0
OU5GW-41	m	805789.456	510737.720	40.526	39.32
	<u> </u>				
OU5GW-42	ft	2643676.09	1675132.72	126.26	123.7
OU5GW-42	m	805794.084	510581.475	38.484	37.70
OU5GW-44	ft	2643775.97	1674666.37	124.96	121.2
OU5GW-44	m	805824.528	510439.330	124.86 38.057	121.3 36.97
003011-44	1111	003024.320	310439.330	36.037	30.97
OU5GW-46	ft	2642275.23	1670616.14	101.83	99.1
OU5GW-46	m	805367.101	509204.818		30.21
	1				
OU5GW-50	ft	2643474.43	1671992.91	116.14	112.9
OU5GW-50	m	805732.616	509624.458	35.399	34.41
	<u> </u>				
OU5GW-51	ft	2642037.23	1670309.83	96.74	93.0
OU5GW-51	m	805294.558	509111.454	29.486	28.35
OU5GW-55	ft	2640021.46	1667822.47	60.20	51.6
OU5GW-55	m	804680.151	508353.306	17.739	54.6 16.64
0030 #-33	1111	804080.131	306333.300	17.739	10.04
OU5GW-58	ft	2640171.51	1668016.26	58.67	55.1
OU5GW-58	m	804725.884	508412.373	17.882	16.79
	-				
OU5GW-63	ft	2644562.42	1674467.19	133.00	129.8
OU5GW-63	m	806064.237	510378.620	40.538	39.56
	<u> </u>				
OUSSL-07	ft	2641199.85	1668391.08	84.77	80.7
OUSSL-07	m	805039.323	508526.617	25.838	24.59
OU5SL-10	ft	2641653.82	1669256.27	06 70	02.6
OU5SL-10	m	805177.694	508790.328	96.78 29.499	93.6 28.53
C033E-10	1	003177.034	300730.328	27.477	20.33
OUSSL-12	ft	2642359.48	1670514.23	107.04	103.1
OU5SL-12	m	805392.782	509173.757	32.626	31.42
	1		1 +		

# Elmendorf AFB - Operable Unit 5 - Piezometers

	ī			Top of Steel		
Designation		Northing	Easting	Pipe (cap	Ground	
	T.			removed)	Surface	
OU5SL-18	ft	2643014.36	1671648.26	110.78	107.3	
OU5SL-18	m	805592.389	509519.409	33.766	32.71	
OU5SL-20	ft	2643425.54	1672211.50	114.87	110.4	
OU5SL-20	m	805717.717	509691.083	35.012	33.65	
OUSSL-22	ft	2644571.92	1674234.19	134.29	129.9	
OU5SL-22	m	806067.135	510307.603	40.932	39.59	
OU5SL-23	ft	2644634.05	1674661.20	136.40	132.1	
OU5SL-23	m	806086.069	510437.753	41.575	40.26	
OU5SL-25	ft	2642987.35	1671468.82	109.21	105.7	
OUSSL-25	m	805584.155	509464.714	33.287	32.22	

	1			Ground	_ <del> </del>	ļ	
Designation		Northing	Easting	Surface	References		<del></del>
<del></del>	++-				<del></del>	<del> </del>	
Olican 10	<del>- - -</del>	3 641 000 74	1 667 694 22	122.0	597°E 47 8 David	lex Nail in Power Po	
OUSSB-18	ft	2,641,072.74	1,667,584.32 508,280.716			plex Nail in 5" Asp	
OU55B-18	m	805,000.582	308,280.716	40.34		plex Nail in Power	
	++	·	<del></del>		1100 11, 70.5-00		
OU55B-19	ft	2,640,845.87	1,666,934.38	131.0	N80°W, 76.9-Du	plex Nail in Power	Pole
OUSSB-19	m	804.931.430	508,082.615			lex Nail in Power P	
	1	33.775				dex Nail in Power P	
	11						
OUSSB-20	n	2,640,961.98	1,667,210.23			uplex Nail in 8" Asy	
OUSSB-20	m	804,966.823	508,166.695	40.14	N72°W, 50.6-Da	plex Nail in 6° Birc	<u>h</u>
	$\neg \neg$				N54°E, 87.5-Day	dex Nail in Power F	ole
OUSSB-21	ft	2,641,498.02	1,668,728.49			plex Nail in 12" Co	
OUSSB-21	m	805,130.207	508,629.460	40.68		lex Nail in 6" Aspe	
	$\perp \downarrow \downarrow$				N77°W, 75.1-Da	plex Nail in Power	Pole
				<del></del>			
OUSSB-22	R	2,642,501.39	1,669,897.62			plex Nail in Wood S	
OUSSB-22	- Im	805,436.035	508,985.812	42.18		eed Limit Sign Post	
<u> </u>	<del></del>	<del></del>	<del></del>		N44 E. 24.0-DE	plex Neil in 3" Aspe	
OUSSB-23	ft	2,642,590.12	1,670,419.70	147 1	\$62°F \$9.7-Day	Nex Nail in Power P	lole
OU5SB-23	m	805,463.078	509,144,942			plex Nail in Wood S	
00338-23	<del> *** </del>	005,405.070	303,244.5			w/climbing arms	1
			<del></del>	<u> </u>	N26°W, 29.6-D	plex Nail in Southe	ast corner of
	_			<del></del>		Building #22-007	
	$\dashv$						
OUSSB-24	ft	2,643,055.28	1,670,720.22	141.1	S66'W, 16.6-Ce	nter of MW SP2/6-0	n
OU5SB-24	m	805,604.859	509,236.540	43.01		plex Nail in 3" Asp	
	$-\Box$				N72'E, 87.5-So	uthwest corner of Q	uanset Hut
				<u></u>		<u>.l</u>	
OU5SB-25	ft	2,643,696.35	1,672,308.11			plex Nail in 8" Asp	
OU5SB-25	m	805,800.259	509,720.531	37.10		plex Nail in Power I	
<u> </u>					570°E, 44.0-Duy	plex Nail in 8" Aspe	<u> </u>
-		2 5 1 1 1 2 2 5 2	1 (70 507 00	1494	1026W 69 5 Mar	ant Linha Bala	<del> </del>
OUSSB-26	ft	2,644,420.58	1,672,587.92		S36°E, 68.5-Me	enterline of Manhol	Course
OUSSB-26	m	806,021.005	509,805.819	43.0		X-ing Sign Post	Cover
<del></del>	-++	<del></del>			144 5 107-104	A-ung Sign Fost	<del> </del>
OUSSB-27	ft	2,644,526.12	1,672,976.71	152 (	S18 E. 148.2-To	etem Pole	<u> </u>
OU5SB-27	m	806,053.173	509,924.320			ortheast corner of Co	oncrete Structure
00338-27	<del>-  '** </del>	000,003.173	303,324.323			for Steam Pipes	T
					N10°W, 22.3-FI	agged RR Spike ins	ide of S. Rail
OUSSB-27A	ft	2,644,519.25	1,673,109.92			ged RR Spike insid	
OUSSB-27A	m	806,051.078	509,964.925	49.1	3 West, 1826-No	rtheast corner of Co	ncrete Steam Vau
	_				S36'W, 153.3-1	Totem Pole	
							<u> </u>
OU5SB-28	ft	2,644,649.57	1,673,626.25			uplex Nail in 5" Asy	
OUSSB-28	m	806,090.802	510,122.301	49.8		plex Nail in 2° Asp	<u> </u>
	$\Box$	I				C Mon. "TTAN-7"	<u> </u>
	$\bot$ $\Box$				N12°W, 20.3-F	agged RR Spike ins	nde of S. Rail
	$\Box$			ļ	<del>                                     </del>	<del></del>	<del></del>
OUSSB-29	ft	2,640,824.12	1,667,448.99			plex Neil in 8" Cott	ouwood
OUSSB-29	m	804,924.800	508,239.468	29.0	5 S53'W, 13.5-C		
i		1		L	N20'E, 32.2-Do	plex Nail in 6" Cot	KOD WOOD

Elmendorf AFB - Operable Unit 5 - Water Supply Wells

				Top of	Ground	
Designation		Northing	Easting	Plange	Surface	
	+					
BW-40	ft	2,646,694.13	1,673,691.11	173.86	171.6	
BW-40	m	806,713.985	510,142.070	52.993	52.30	
BW-SO	ft	2,642,551.36	1,680,511.10	200.43	200.2	•
BW-50	m	805,451.264	512,220.807	61.091	61.02	
BW-52	ft	2,642,921.89	1,672,341.57	108.01	106.1	
BW-52	m	805,564.204	509,730.729	32.922	32.34	
	+	*Finish Floor Next t	o Casing at BW-50			

				Top of Steel
Designation	H	Northing	Easting	Rod
Gauging Station at	ft	2,644,191.91	1,679,417.31	175.89
Davis Highway	m	805,951.306	511,887.421	53.611
Gauging Station Dam	ft	2,642,020.14	1,671,096.71	98.70
	m	805,289.349	509,351.295	30.084

# **Beaver Ponds**

Water surface levels were taken at two locations on October 28, 1992.

Surface of pond just east of OU5SL-10 = 87.50 feet (26.670 meters) Project Book 4, Page 6 9:50 AM

Surface of pond 100' west of NS3-02 = 113.42 feet (34.570 meters) Project Book 4, Page 7 12:40 PM

# Appendix H

# **DATA VALIDATION**

Review of QA/QC Data For Close Support Laboratory Analyses at Elmendorf AFB OU 5

Review of QA/QC Data For Offsite Laboratory Analyses at Elmendorf AFB OU 5

**Field Duplicate Results** 

**Data Validation Summaries** 

REVIEW OF QA/QC DATA FOR OFFSITE LABORATORY ANALYSES
AT ELMENDORF AFB OU 5

REVIEW OF QA/QC DATA FOR CLOSE SUPPORT LABORATORY ANALYSES AT ELMENDORF AFB OU 5



TO:

Win Westervelt/ANC

COPIES:

Susan Schrader/ANC

FROM:

Donna Morgans/CVO

DATE:

November 24, 1992

SUBJECT: Review of Quality Assurance/Quality Control (QA/QC) Data for Close

Support Laboratory Analyses at Elmendorf Air Force Base (AFB).

Operable Unit 5

**PROJECT:** ANC31026.H3.80

# Summary

Overall, the data have met the acceptance criteria as outlined in the Elmendorf AFB Operable Unit 5 (OU-5) Remedial Investigation (RI) Work Plan and are usable for the purposes outlined in the context of the data quality objectives. Minor nonconformances with project data quality objectives or QA/QC criteria are thoroughly discussed, identified, and qualified in this report. The following is a brief summary of the overall quality of the sample results.

The majority of the JP-4/diesel range organics (DRO), gasoline range organics (GRO), and volatile organic compound (VOC) results met all QA/QC criteria for the selected QC parameters. Some minor deviations from the QA/QC criteria were observed as follows:

- 5SB04-25 exceeded the GRO analysis holding time and was qualified as an estimate and flagged with a "J" for positive results, or a "UJ" for nondetected results.
- Twenty-four different samples had compounds qualified as estimates and flagged with a "J" because continuing calibration verification did not meet QC acceptance criteria.
- Six JP-4/DRO results and one GRO result were qualified as estimates and flagged with a "J" because surrogate spike recoveries did not meet QC acceptance criteria.
- 1,1,1-Trichloroethane, trichloroethene, and tetrachloroethene did not meet the completeness objective of 80 percent usable data based on

Page 2 November 24, 1992

meeting precision and accuracy criteria. However, all qualified data are considered usable for the purposes outlined in the RI work plan.

Overall, the completeness criterion of 80 percent was met by all data.

## Introduction

A review has been conducted on data submitted for the Close Support Laboratory (CSL) for the OU-5 Remedial Investigation (RI) at Elmendorf Air Force Base, Alaska. This report summarizes the results of the review of QA/QC data associated with the analysis of JP-4 (jet fuel), DRO, GRO, and nine VOCs. The following VOCs were analyzed by gas chromatography (GC) using a hall electrolytic conductivity detector (ECD): trans-1,2 dichloroethene, 1,1,1-trichloroethane, trichloroethene, tetrachloroethene. The following VOCs were analyzed by GC using a photoionization detector (PID): benzene, toluene, ethylbenzene, and meta, para, and ortho-xylenes. Soil and water samples were collected between August 6 and August 28, 1992. The intent of this review is to assess the appropriate use or "usability" of the analytical data for RI purposes based on the QA/QC data collected by the laboratory.

The usability review focuses on criteria for the following QA/QC parameters and their overall effect on the data.

- Holding times
- Calibration Verification Checks
- Method blanks
- Surrogate spikes
- Matrix spike/matrix spike duplicates
- Field QA/QC (Field blanks and duplicates)

Soil samples were collected from 31 different soil borings from OU-5 and from one soil boring from OU-7. Laboratory QA/QC data were evaluated from analyses associated with this investigation and include the following:

 Seventy-eight soil samples were analyzed for nine halogenated VOCs according to EPA Modified Methods 8010/8020 and gasoline range organics (GRO) according to the State of Alaska Department of Environmental Conservation (ADEC) Modified Method 8015.

Page 3 November 24, 1992

- Seventy-eight soil samples were analyzed for JP-4 and DRO according to the ADEC Modified Method 8100.
- Twelve water blanks were analyzed for nine halogenated VOCs according to EPA Modified Methods 8010/8020 and GRO according to the ADEC Modified Method 8015.
- Four water blanks were analyzed for JP-4 and DRO according to the ADEC Modified Method 8100.

All analyses were performed by the Close Support Laboratory (CSL) in the CH2M HILL Applied Science and Technology Laboratory in Corvallis, Oregon.

Soil and water samples were analyzed for VOCs using methods and QA/QC criteria procedures derived from the U.S. EPA SW-846 *Test Methods for Evaluating Solid Waste*, September 1986, Third Edition. Soil and water samples were analyzed for GRO and JP-4/DRO using methods and QA/QC procedures derived from the State of Alaska Department of Environmental Conservation.

A data package similar to that of the EPA Contract Laboratory Program (CLP) was generated for each batch of samples submitted to the CSL. These data packages consisted of modified Forms 1 through 8 derived from the current version of the CLP Statement of Work for Organics Analysis. Two data packages (approximately 20 percent) were reviewed following the *U.S. EPA Functional Guidelines for Evaluating Organics Analyses*, where possible, reviewing all QA/QC data and validating all of the raw data. Because the completeness criteria of 80 percent was met, the remaining data packages were reviewed for all QA/QC data, but validating only 5 percent of the raw data.

# **Holding Times**

Except for two soil samples, all samples were analyzed between one and seven days after collection. Soil samples 5SB22-30 and 5SB04-25 were analyzed for VOCs and GRO 14 and 17 days after collection, respectively. Except for 5SB04-25, all samples were analyzed within their 14-day holding time requirement.

5SB04-25 was qualified as an estimate and flagged with a "J" for positive results, or a "UJ" for nondetected results.

Page 4 November 24, 1992

# **Continuing Calibration Verification**

Continuing calibration verification standards monitor instrument performance and reference values used for quantitation of sample concentrations.

Calibration verification checks were required to be performed for each analytical method on a daily basis. Calibrations were verified by analyzing a mid-level concentration standard. Calibration verification results should be within  $\pm$  25 percent of the initial calibration concentration to meet QC acceptance criteria.

For JP-4/DRO analyses, a continuing calibration was performed on a daily basis. All continuing calibrations were performed using a 200 mg/l standard. All calibration verification results met QC acceptance criteria.

For VOC/GRO analyses, a continuing calibration was performed on a daily basis. All continuing calibrations were performed using a 20  $\mu$ g/l standard. Except for samples analyzed on August 14, 20, and 27, 1992, all calibration verifications met QC acceptance criteria. Except for trans-1,2-dichloroethene (t-1,2-DCE), all VOC compounds exceeded the QC acceptance criteria on August 14, 1992. Except for benzene, toluene, ethylbenzene, and xylenes (BTEX), all compounds met QC acceptance criteria on August 20, 1992. Except for t-1,2-DCE, 1,1,1-trichloroethane (1,1,1-TCA), trichloroethene (TCE), and tetrachloroethene, all compounds met QC acceptance criteria on August 27, 1992. All samples associated with continuing calibrations that did not meet QC acceptance criteria were qualified as estimates and flagged with a "J" for positive results. Nondetect results were not qualified. The following six samples analyzed on August 14 had all VOC results, except t-1,2-DCE, qualified as estimates:

- 5SB08-14
- 5SB08-20B
- 5SB08-20B TB-01
- 5SB08-20C
- 5SB30-1
- 5SB30-5

The following eight samples analyzed on August 20 had BTEX qualified as estimates:

- 5SB03-10
- 5SB03-25
- 5SB03-30

²age 5 November 24, 1992

- 5SB03-30D
- 5SB13-3
- 7SB01-10
- 7SB01-25
- 7SB01-40

The following 18 samples analyzed on August 27 had t-1,2-DCA, 1,1,1-TCA, TCE, and tetrachloroethene qualified as estimates:

- 5SB02-10
- 5SB02-25
- 5SB02-33
- 5SB05-10
- 5SB11-10
- 5SB11-25
- 5SB11-35
- 5SB11-35D
- 5SB05-25
- 5SB05-25D
- 5SB23-0
- 5SB23-58
- 5SB24-25
- 5SB24-30
- 5SB28-0
- 5SB28-10
- 5SB28-25
- 5SB28-38

# **Standard Reference Material**

In addition to calibration verification checks, an standard reference material (SRM) standard was analyzed for each method. The SRM was analyzed once at the beginning of the RI to verify that instruments were correctly identifying and quantifying target compounds. Recoveries for all SRMs should be between 70 and 130 percent to meet QC acceptance criteria. All SRM recoveries met QC acceptance criteria.

Page 6 November 24, 1992

# **Blanks**

Blanks monitor potential laboratory contamination that may result in reporting false positive sample results.

Method blanks were required to be performed for each analytical method on a daily basis. A method blank verifies the analytical system is free of contamination under conditions of the analysis. Except for one VOC method blank, all method blanks were free from contamination, therefore meeting QC acceptance criteria. The method blank analyzed on August 16, 1992, contained 1.6  $\mu$ g/l of tetrachloroethene. However, sample qualification was not required because tetrachloroethene was not detected in any of the samples associated with this blank.

# Sensitivity

Sensitivity criteria monitor achievement of detection limits.

The detection limit achieved for JP-4/DRO analyses was 5 mg/l for waters and 50 mg/kg for soils. The detection limit achieved for VOC analyses was 1  $\mu$ g/l for waters and 0.05 mg/kg for soils. The detection limits achieved for GRO analyses was 1.0 mg/l for waters and 50 mg/kg for soils. Therefore, all method detection limits met QC acceptance criteria. All soil sample results were reported on an "as received" basis.

All soil samples analyzed for JP-4/DRO achieved the target detection limits. Except for four soil samples analyzed for VOCs/GRO, all soil samples achieved the target detection limits. Soil sample 5SB15-07 required a 2-fold dilution, 5SB18-35 required a 10-fold dilution, 5SB29-10 required a 20-fold dilution, and 5SB01-40 required a 40-fold dilution to bring high concentrations of target compounds into the linear range of the instrument. All results and detection limits were correctly multiplied by the dilution factor.

# **Surrogate Spike Recovery**

Surrogate spike recovery criteria monitor instrument performance and matrix effects on accuracy measurements. For JP4/DRO and GRO analyses, surrogate spike recovery should fall within the QC control limits of 50 to 150 percent for accuracy to meet QC acceptance criteria. For halogenated VOC analyses,

Page 7 November 24, 1992

surrogate spike recovery should fall within the QC control limits of 60 to 140 percent for accuracy to meet QC acceptance criteria.

Samples analyzed for JP-4/DRO were spiked with o-terphenyl as a surrogate spike compound. Samples analyzed for VOC compounds detected by the ECD were spiked with 1,2-dichloroethane-d4 (1,2-DCA). Samples analyzed for VOC compounds detected by the PID were spiked with trifluorotoluene. Samples analyzed for GRO were spiked with 4-bromofluorobenzene. Samples submitted between August 6 and 13, 1992, for GRO analyses were not spiked with the GRO surrogate compound because this analysis was not originally requested on the chain of custody.

Except for six JP-4/DRO surrogate recoveries, all surrogate spike recoveries for JP-4/DRO analyses met QC acceptance criteria. The following samples (surrogate recoveries) exceeded the QC acceptance limits. These were qualified as estimates and flagged with a "J" for positive results.

- 5SB09-3 (41%)
- 5SB10-5 (44%)
- 5SB12-8C (154%)
- 5SB19-0 (40%)
- 5SB23-25 (226%)
- 5SB25-05 (44%)

Except for one GRO surrogate recovery, all surrogate spike recoveries for GRO analyses met QC acceptance criteria. The surrogate recovery for 7SB01-40 (0%) was below the QC acceptance limit. 7SB01-40 was qualified as estimate and flagged with a "J" for positive results.

# **Precision and Accuracy**

Precision criteria monitor analytical reproducibility as determined by duplicate analyses and accuracy criteria monitor agreement with "true values" as determined by analytical spike recovery.

# Matrix Spike/Matrix Spike Duplicates

For JP4/DRO analyses, matrix spike recoveries should fall within the QC control limits of 60 to 120 percent for accuracy and  $\pm$  50 relative percent difference (RPD) for precision to meet QC acceptance criteria. For GRO analyses, matrix spike

Page 8 November 24, 1992

recoveries should fall within the QC control units of 50 to 100 percent for accuracy and  $\pm$  50 RPD for precision to meet QC acceptance criteria. For VOC analyses, matrix spike recoveries should fall within the QC control limits of 60 to 140 percent for accuracy and  $\pm$  20 RPD for precision to meet QC acceptance criteria. A matrix spike/matrix spike duplicate (MS/MSD) should be analyzed at a 5 percent frequency, or once per batch, whichever is more frequent to meet QC acceptance criteria.

One water (25 percent frequency) and nine soil (12 percent frequency) MS/MSDs were performed with the JP-4/DRO analyses. Frequency QC acceptance criteria for analysis of MS/MSDs were met for both matrices.

Except for recoveries from one soil MS/MSD, all water and soil MS/MSDs met QC acceptance criteria for accuracy and precision. For soil sample 5SB21-10, the MS/MSD spike recoveries for JP-4 were 41 percent and 60 percent, respectively. No samples were qualified as a result of low spike recoveries. Low recoveries can mostly likely be attributed to interferences from the sample matrix.

Two GRO (2.5 percent frequency) and nine VOC (12 percent frequency) MS/MSDs were performed with soil analyses. Except for GRO analyses, frequency criteria for analysis of MS/MSDs were met for soils. Additional water samples were not submitted to perform MS/MSDs.

Except for recoveries from one soil MS/MSD, all soil MS/MSDs met QC acceptance criteria for accuracy and precision. For soil sample 5SB26-25, the MS/MSD spike recoveries for t-1,2-DCE were 35 percent and 49 percent, respectively and the RPD for the same compound was 33 percent. For the same sample, MS/MSD recoveries for m,p-xylenes were 175 percent and 168 percent recovery, respectively. No samples were qualified as a result of matrix spike recoveries or RPDs outside QC acceptance criteria. Recoveries outside QC acceptance criteria can mostly likely be attributed to interferences within the sample matrix.

# Field QA/QC

# Rinsate, Field, and Travel Blanks

Rinsate blanks monitor for potential contamination from inadequate decontamination procedures between sample grabs or from other sample handling procedures. Field blanks are used primarily to indicate if contamination has occurred as a result of ambient air conditions. Travel blanks are useful in determining possible

Page 9 November 24, 1992

contamination occurring during packaging, shipping, and handling. However, rinsate, field, and travel blanks are not totally representative of field conditions, since laboratory contamination can be introduced as well.

A total of four rinsate blanks (5 percent frequency), four field blanks (5 percent frequency), and 16 travel blanks, were submitted as blind samples to the CSL. Field and rinsate blanks were submitted at the minimum frequency of five percent to meet QC acceptance criteria. A travel blank was submitted with every container containing VOC samples. Except for one travel blank, all travel blanks were analyzed for VOCs and GRO only. Travel blank (5SB08-20D) was analyzed for JP-4, DRO, GRO, and VOCs. Except for one field blank, all field blanks were analyzed for VOCs and GRO only. Field blank (5SB08-20B) was analyzed for JP-4, DRO, GRO, and VOCs. All rinsate blanks were analyzed for JP-4, DRO, GRO, and VOCs.

All rinsate, field, and travel blanks met frequency criteria and were free from contamination. Therefore, decontamination procedures, ambient air, or shipping and handling procedures did not attribute to concentrations detected in field samples.

# **Field Duplicates**

Field duplicates are another measure of reproducibility by duplicate analysis. There are no generally accepted QC acceptance criteria or control limits for RPD of field duplicates; therefore, laboratory duplicate criteria were applied. Project QA goals allow control limits of  $\pm$  100 percent RPD with the provisional control limit of plus or minus the CRDL when concentrations are less than five times the method detection limit. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria.

A total of four soil samples were submitted as blind field duplicates (5.1 percent frequency). Soil samples 5SB07-25, 5SB18-10, 5SB26-10, and 5SB27-25A were submitted in duplicate. No target compounds were detected in any of the field duplicates. Therefore, field duplicates could not be evaluated for sampling and analytical precision.

# **Completeness**

Completeness is defined as the percentage of measurements made that are judged to be valid or useable compared to the expected total amount of

Page 10 November 24, 1992

measurements. The overall completeness objective or QC acceptance criteria was set at 80 percent for this RI.

Except for 1,1,1-TCA, TCE, and tetrachloroethene, the completeness objective was met for all compounds based on precision and accuracy. The completeness for 1,1,1-TCA, TCE, and tetrachloroethene was 77 percent; this was slightly lower than the objective because sample results were qualified as estimates.

As noted, certain continuing calibration verifications or surrogate spike recoveries did not meet the completeness QC acceptance criteria. However, these data are considered usable for purposes outlined in the RI work plan.

TO:

Win Westervelt/CH2M HILL/ANC

COPY:

Susan Schrader/CH2M HILL/ANC

FROM:

Donna Morgans/CH2M HILL/CVO

DATE:

February 11, 1993

SUBJECT:

Review of Quality Assurance/Quality Control (QA/QC) Data for Elmendorf Air Force

Base (AFB) Operable Unit 5 (OU-5) Groundwater and Flyash Sample Analyses

PROJECT:

ANC31026.H3.80

# Summary

Overall, the data have met the acceptance criteria as outlined in the Elmendorf AFB OU-5 Quality Assurance Project Plan and are usable for the purposes outlined in the context of the data quality objectives. Minor nonconformances of the data are thoroughly discussed, identified, and qualified in this memorandum. The following is a brief summary of the overall quality of the sample results.

The majority of metal results met all QA/QC criteria for the selected QC parameters and the completeness criterion of 80 percent was met by all data. Some minor deviations from the QA/QC criteria were observed as follows:

- One iron and eight zinc results were qualified as nondetects and flagged with a
   "U" because of preparation blank contamination.
- Two iron, one lead, seven selenium, and three zinc results were qualified as nondetects and flagged with a "U" because of rinsate blank contamination.
- Five arsenic results were qualified as biased high and flagged with a "K" because analytical spike recoveries were above QC acceptance criteria.
- Six selenium results were qualified as biased low and flagged with a "L" because analytical spike recoveries were below QC acceptance criteria.
- Seventeen barium, three copper, and three zinc results were qualified as estimates and flagged with a "J" because ICP serial dilutions did not meet QC acceptance criteria.

# Introduction

A review has been conducted on data submitted for groundwater samples collected for the OU-5 remedial investigation (RI) at Elmendorf AFB, Alaska. This report summarizes the results of the QA/QC data associated with the analysis of total, soluble, and Extraction Procedure for Toxicity (EPTOX) metal analyses performed on samples collected between December 16 and 21, 1992. The intent of this review is to assess the appropriate use or "usability" of the analytical data for remediation purposes based on the QA/QC data submitted by the laboratory.

Page 2 February 11, 1993

The usability review focuses on criteria for the following QA/QC parameters and their overall effect on the data.

- Holding times
- Initial and continuing calibrations
- Preparation blanks
- Interference check sample
- Laboratory control sample
- Duplicate sample analysis
- Matrix spike sample analysis
- Furnace atomic absorption QC
- ICP Serial dilution

Seven groundwater samples collected from MW01-37, 5MW01-37A (field duplicate), 5MW02-33, 5MW15-10, 5MW16-11, SP101-9, and SP102-36 and three rinsate blanks collected from 5FA01-02C, 5MW02-33C, and 5MW02-33CS were analyzed for total and/or soluble metals. Two flyash samples collected from 5FA01-02 and 5FA02-02 were analyzed for total and EPTOX metals. Laboratory QA/QC data were evaluated from analyses associated with this RI. The following summarizes the number of samples analyzed and the analytical methods:

- Fourteen groundwater and two rinsate blank samples were analyzed for 23 total
  and soluble target analyte list (TAL) metals by Inductively Coupled Plasma (ICP)
  Method, graphite furnace atomic absorption (GFAA), or cold vapor atomic
  absorption (EPA Methods 6010/7000 series)
- Two flyash and one rinsate blank sample were analyzed for 23 total TAL metals by ICP, GFAA, or CVAA (EPA Methods 6010/7000 series)
- Two fly ash samples were EPTOX extracted using deionized water as the extraction solution according to EPA Method 1310 and analyzed for 23 metals by ICP, GFAA, and CVAA (EPA Method 6010/7471)

All analyses were performed by the CH2M HILL Quality Analytical Laboratory in Redding, California.

Groundwater samples analyzed for metals were analyzed in accordance with, and QA/QC criteria were taken from, the U.S. EPA *Test Methods for Evaluating Solid Waste*, September 1986, Third Edition.

A CLP-like data package was provided with each batch of samples submitted to the laboratory for analysis. Data packages for all analyses included Forms 1 through 14 from the Contract Laboratory Program (CLP) Statement of Work for Inorganics Analysis and all raw data. All samples were reviewed according to the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses and all raw data were validated. The completeness criterion of 80 percent was met by all data.

Page 3

February 11, 1993

# **Holding Times**

Holding time criteria monitor sample integrity that may be compromised over time.

Except for mercury, all metals have a holding time requirement of 6 months. Mercury has a holding time requirement of 28 days.

All samples were analyzed within the required holding times. Therefore, holding time QC acceptance criteria were met for all samples.

# Initial and Continuing Calibrations

An initial calibration should be performed on a daily basis and continuing calibrations should be performed at a frequency of 10 percent. Initial and continuing calibration recoveries should be within the control limits of 90 to 110 percent recovery.

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries met QC acceptance criteria.

# **Preparation Blanks**

Blank criteria monitor sample contamination through carry-over and instrument sensitivity.

Preparation blanks should be performed at a five percent frequency or once per batch, whichever is more frequent. Blanks should be contamination-free to meet QC acceptance criteria.

Preparation blanks contained concentrations of barium, calcium, iron, selenium, sodium, thallium, or zinc below the contract required detection limit (CRDL).

According to the CLP functional guidelines, when a preparation blank contains an analyte from the target analyte list (TAL), positive results should not be reported unless the concentration found in the sample exceeds five times the concentration found in the blank. Sample results with concentrations of contaminants greater than five times the concentration detected in the preparation blank were considered positive hits. Sample concentrations less than five times the contaminant concentration were considered nondetected results and a "U" qualifier was assigned.

Except for one iron and eight zinc results, groundwater and flyash samples did not require qualification due to preparation blank contamination. The following sample results were qualified as nondetects and flagged with a "U":

3

Iron results for:

5MW02-33S (5.1 U)

Zinc results for:

- 5MW01-37 (6.6 U)
- 5MW01-37A (6.7 U)

1001123b.anc

Page 4 February 11, 1993

- 5MW01-37S (9.7 U)
- 5MW02-33 (14.4 U)
- 5MW02-33\$ (12.7 U)
- 5MW16-11 (9.7 U)
- SP102-36 (13.1 U)
- SP102-36S (10.7 U)

# Interference Check Sample

Interference check samples monitor the laboratory's interelement and background correction factors.

An inference check sample should be analyzed at the beginning and end of each analytical batch and check sample recoveries should be within the control limits of 80 to 120 percent.

All interference check samples met frequency and recovery QC acceptance criteria.

# **Laboratory Control Sample**

Laboratory control samples (LCSs) monitor the laboratory's overall performance including sample preparation when analyzing a standard from an independent source.

An LCS should be analyzed with each analytical batch and recoveries should be within the control limits of 80 to 120 percent.

All LCSs met frequency and recovery QC acceptance criteria.

# **Duplicate Sample Analysis**

Precision criteria monitor analytical reproducibility.

A duplicate sample should be analyzed with each analytical batch and relative percent difference (RPD) results should be within the control limits of  $\pm 20$  or within the provisional criteria of plus or minus the CRDL when the sample concentration is less than five times the CRDL to meet precision criteria.

All laboratory duplicates met frequency and precision QC acceptance criteria.

# Matrix Spike Sample Analysis

Accuracy criteria monitor agreement with "true values" as determined by matrix spike recovery.

A matrix spike sample should be analyzed with each analytical batch and recoveries should be within the control limits of 75 to 125 percent recovery.

All matrix spike recoveries met frequency and accuracy QC acceptance criteria.

1001123b.anc 4

Page 5 February 11, 1993

# **Furnace Atomic Absorption QC**

Analytical spikes monitor the accuracy of individual analyses based on the bias contributed by the instrument and the digested sample matrix.

Analytical spikes should be analyzed with every sample requiring graphite furnace atomic absorption (GFAA) analysis and recoveries should be within the QC control limits of 85 to 115 percent.

According to the CLP functional guidelines, sample results associated with each analytical spike recoveries below the QC control limits should be qualified as biased low and flagged with an "L" for positive results, a "UL" for nondetected results. Analytical spike recoveries above the QC control limits should be qualified as biased high and flagged with a "K" for positive results.

Except for five arsenic and six selenium analytical spike recoveries, all analytical spike recoveries met QC acceptance criteria. The following arsenic results were qualified as biased high and flagged with a "K":

- 5MW15-10
- 5MW16-11
- 5MW16-11S
- SP101-9
- SP102-36

The following selenium results were qualified as biased low and flagged with an "L":

- 5MW01-37A
- 5MW02-33S
- 5MW15-10S
- 5MW16-11S
- SP101-9
- SP102-36

#### ICP Serial Dilution

ICP serial dilution analyses determine if significant physical or chemical interferences exist due to the sample matrix.

One ICP serial dilution should be analyzed with each analytical batch and percent difference results should be within the control limits of  $\pm 10$  percent.

Except for one barium, one copper, and one zinc percent difference result, all ICP serial dilution results met the QC acceptance criteria. According to CLP functional guidelines, all samples analyzed with the ICP serial dilution outside the QC acceptance limits were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

Page 6

February 11, 1993

Barium results for the following 17 samples were qualified as estimates and flagged with a "J":

- 5FA01-2C
- 5MW01-37
- 5MW01-37A
- 5MW01-37AS
- 5MW01-37S
- 5MW02-33
- 5MW02-33C
- 5MW02-33CS
- 5MW02-33S
- 5MW15-10
- 5MW15-10S
- 5MW16-11
- 5MW16-11S
- SP101-9
- SP101-9S
- SP102-36
- SP102-36S

Copper and zinc results for the following samples were qualified as estimates and flagged with a "J":

- 5FA01-02
- 5FA02-02
- 5FA02-02A

# Completeness

Completeness is defined as the percentage of measurements made that are judged to be valid compared to the expected total amount of measurements. The overall completeness objective for acceptable analytical data was set at 80 percent based on precision and accuracy.

All metals met the completeness objective based on precision and accuracy.

# Field QA/QC

#### Rinsate Blanks

Rinsate blanks monitor for potential contamination from inadequate decontamination procedures between sample grabs or from other sample handling procedures. However, rinsate blanks are not totally representative of field conditions, since laboratory contamination can be introduced as well. Rinsate blanks should be collected at a frequency of five percent.

Three rinsate blanks were submitted as a blind samples. Two rinsate blanks (5MW02-33C and 5FA01-02C) were analyzed for total metals (16 percent frequency) and one rinsate blank (5MW02-33CS) was analyzed for soluble metals (14 percent frequency), therefore meeting frequency QC acceptance criteria.

1001123b.anc 6

Page 7 February 11, 1993

Calcium (104  $\mu$ g/l), iron (2.7  $\mu$ g/l), selenium (1.7  $\mu$ g/l), sodium (42.9  $\mu$ g/l), and zinc (3.8  $\mu$ g/l) were detected in 5MW02-33C; calcium (148  $\mu$ g/l), iron (12.0  $\mu$ g/l), lead (1.3  $\mu$ g/l), manganese (1.0  $\mu$ g/l), selenium (1.8  $\mu$ g/l), sodium (48.2  $\mu$ g/l), and zinc (4.4  $\mu$ g/l) were detected in 5FA01-02C; and calcium (111  $\mu$ g/l), iron (13.9  $\mu$ g/l), sodium (54.8  $\mu$ g/l), and zinc (4.4  $\mu$ g/l) were detected in 5MW02-33C. Except for two iron, one lead, seven selenium, and three zinc results, groundwater and flyash samples did not require qualification due to rinsate blank contamination. The following metal results were qualified as nondetects and flagged with a "U" as a result of rinsate blank contamination.

#### Iron results for:

- 5MW01-37AS (14.2 U)
- 5MW15-10S (20.9 U)

#### Lead results for:

SP101-9 (3.2 U)

#### Selenium results for:

- 5MW01-37A (0.64 U)
- 5MW02-33 (0.64 U)
- 5MW15-10 (1.0 U)
- 5MW16-11 (0.93 U)
- SP101-9 (0.68 U)
- SP101-9S (1.1 U)
- SP102-36 (2.0 U)

#### Zinc results for:

- 5MW15-10S (21.3 U)
- 5MW16-11S (16.7 U)
- SP101-9S (11.7 U)

## Field Duplicates

Field duplicate results are used to determine the precision of field sampling and laboratory techniques.

Project QA control limits for field duplicates allow ±100 RPD for water samples with the provisional control limit of plus or minus the CRDL when concentrations are less than five times the CRDL. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria. Field duplicates should be collected at a minimum frequency of five percent.

One groundwater (5MW01-37) (7.1 percent frequency) was collected as a blind duplicate and analyzed for total and soluble metals. One fly ash sample (5FA02-02A) (50 percent frequency) was collected as a blind field duplicate and analyzed for total metals. Therefore, frequency QC acceptance criteria was met for field duplicate analysis. Tables 1 through 3 show field duplicate RPD results for metal analyses. Field duplicate results are summarized below.

7

Page 8 February 11, 1993

- Table 1 summarizes the hits for the groundwater sample field duplicates collected at 5MW01-37 that were analyzed for total metals. Ten metals were detected in one or both samples analyzed. RPDs for metals detected in both samples ranged between 0.6 and 42.0 percent, therefore field duplicate QC acceptance criteria was met by all metals detected in both samples. Lead was detected in only one sample, therefore an RPD could not be calculated.
- Table 2 summarizes the hits for groundwater sample field duplicates collected at 5MW01-37S that were analyzed for soluble metals. Twelve metals were detected in one or both samples analyzed. RPDs for metals detected in both samples ranged between 0.9 and 73.9 percent, therefore field duplicate QC acceptance criteria was met by all metals detected in both samples. Lead, nickel, selenium, and zinc were detected in only one sample, therefore RPDs could not be calculated.
- Table 3 summarizes the hits for flyash sample field duplicates collected at 5FA02-02 that were analyzed for total metals. Twenty metals were detected in one or both samples analyzed. RPDs for metals detected in both samples ranged between zero and 57.8 percent, therefore field duplicate QC acceptance criteria was met by all metals detected in both samples. Mercury was detected in only one sample, therefore an RPD could not be calculated.

#### Total and Soluble Metals

5MW01-37, 5MW01-37A (field duplicate), 5MW02-33, 5MW02-33C (rinsate blank), 5MW15-10, 5MW16-11, SP101-9, and SP102-36 were analyzed for total and soluble metals. Groundwater samples analyzed for total metals were preserved with nitric acid upon collection. Groundwater samples analyzed for soluble metals were filtered upon collection with a 0.45µ filter and then preserved with nitric acid. Soluble metal concentrations should be less than or equal to total metal concentrations.

In all cases, aluminum concentrations showed a significant reduction in concentration as a result of sample filtration; therefore indicating that aluminum was primarily associated with sample particulate. The remaining metals detected in each sample showed a small concentration reduction or no concentration change as a result of sample filtration; therefore indicating that these metals are primarily dissolved in both sample fractions. Tables 4 through 11 show total and soluble metal concentration percent differences. The following paragraphs discuss each metal and concentrations trends as a result of sample filtration.

Aluminum was detected in 5MW02-33, 5MW16-11, SP101-9, and SP102-36 and each sample showed a significant concentration reduction as a result of filtration.

Calcium and sodium were detected in all samples analyzed. Except for equipment blanks, barium, magnesium, manganese, and potassium were detected in all samples analyzed. Each of these metals showed a small concentration reduction or no concentration change as a result of filtration.

Except for equipment blanks, copper was detected in all samples analyzed. For 5MW01-37, 5MW01-37A, 5MW02-33, JMW15-10, and SP102-36 there was a small concentration reduction or

Page 9 February 11, 1993

no concentration change as a result of filtration. Copper was not detected in the soluble fraction of 5MW16-11 and SP101-9.

Except for equipment blanks, vanadium was detected in all samples analyzed. There was a significant concentration reduction following filtration for SP101-9. For 5MW01-37, 5MW01-37A, 5MW02-33, 5MW15-10, 5MW16-11, and SP102-36 there was a small concentration reduction or no concentration change as a result of filtration.

Iron was detected in all samples analyzed. There was a significant concentration reduction of iron following filtration for SP102-36. Iron was detected in 5MW02-33C, 5MW16-11, and SP101-9, however there was only a small concentration reduction or no concentration change as a result of filtration. Iron was not detected in the soluble fraction of 5MW01-37, 5MW01-37A, 5MW02-33, and 5MW15-10.

Arsenic was detected in five samples analyzed. Arsenic was detected in 5MW15-10, 5MW16-11, and SP101-9, however there was only a small concentration reduction or no concentration change as a result of filtration. Arsenic was not detected in the soluble fraction of 5MW02-33 and SP102-36.

Selenium was detected in five samples analyzed. Selenium was detected in 5MW16-11, however there was no concentration change as a result of filtration. Selenium was only detected the soluble fraction of 5MW01-37A, 5MW02-33, and 5MW15-10 and was not detected in the soluble fraction of 5MW02-33C.

Lead was detected in three samples analyzed. Lead was not detected in the soluble fraction of 5MW01-37 and SP102-36 and was only detected in the soluble fraction of 5MW01-37A.

Nickel was detected in three samples analyzed. Nickel was not detected in the soluble fraction of SP101-9 and SP102-36 and nickel was only detected in the soluble fraction of 5MW01-37A.

Zinc was detected in three samples analyzed. Zinc was detected in 5MW02-33C, however there was no concentration change as a result of filtration. Zinc was not detected in the soluble fraction of 5MW15-10 and SP101-9 and zinc was only detected in the soluble fraction of 5MW01-37A.

Thallium was detected in two samples analyzed. Thallium was only detected in the soluble fraction of 5MW15-10 and was not detected in the soluble fraction of 5MW02-33.

Chromium was detected in SP101-9 only and was not detected in the soluble fraction.

# TABLE 1 ELMENDORF AFB OPERABLE UNIT 5 SAMPLE AND DUPLICATE SAMPLE RESULTS FOR TOTAL METALS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW01-37 (Total Metals)										
Analyte	Sample Results	С	Q	Duplicate Sample Results	С	Q	Relative % Difference			
Aluminum, Al	31.0			31.0			N/C			
Antimony, Sb	12.1			12.1			N/C			
Arsenic, As	0.70	_		0.70			N/C			
Barium, Ba	15.2		EJ	14.8		EJ	2.67			
Beryllium, Be	0.50	J		0.50	ح		NC			
Cadmium, Cd	1.2	J		1.2	٦		N/C			
Calcium, Ca	90,100			87,300			3.16			
Chromium, Cr	3.7	J		3.7	J		N/C			
Cobalt, Co	5.8	U		5.8	J		N/C			
Copper, Cu	3.7	В		3.3	В		11.4			
Iron, Fe	41.5	В		27.1	В		42.0			
Lead, Pb	0.90	В		0.60	U		N/C			
Magnesium, Mg	24,100			23,500			2.52			
Manganese, Mn	329			321			2.46			
Mercury, Hg	0.10	J		0.10	U		N/C			
Nickel, Ni	7.7	U		7.7			N/C			
Potassium, K	1,800	В		1,790	В		0.56			
Selenium, Se	0.50			0.64	U	WL.	NC			
Silver, Ag	2.1	Ū		2.1			N/C			
Sodium, Na	11,500			11,400			0.87			
Thallium, TI	0.70			0.70	_		N/C			
Vanadium, Vn	1.9		<u> </u>	2.7			-34.8			
Zinc, Zn	6.6	_		6.7			N/C			

# C (Concentration) Qualifier

*B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

# **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

# Q Data Validation Qualifier

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## Relative % Difference

[&]quot;U" = Analyte not detected.

# TABLE 2 ELMENDORF AFB OPERABLE UNIT 5 SAMPLE AND DUPLICATE SAMPLE RESULTS FOR SOLUBLE METALS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW01-37S (Soluble Metals)										
Analyte	Sample Results	С	Q	Duplicate Sample Results	С	Q	Relative % Difference			
Analyte	Sample Results	<u>                                     </u>	<u> </u>	Cample results	-	-	/6 Dilletelice			
Aluminum, Al	31.0	U		31.0	U		N/C			
Antimony, Sb	12.1			12.1	U		N/C			
Arsenic, As	0.70	U		0.70	U		N/C			
Barium, Ba	14.6	В	EJ	15.1	В	EJ	-3.37			
Beryllium, Be	0.50	U		0.50	U		N/C			
Cadmium, Cd	1.2	U		1.2	U		N/C			
Calcium, Ca	87,200			89,000			-2.04			
Chromium, Cr	3.7	U		3.7	U		N/C			
Cobalt, Co	5.8	U		5.8	U		N/C			
Copper, Cu	2.9	В		6.3	В		-73.9			
Iron, Fe	2.3	U		14.2	U		N/C			
Lead, Pb	0.60	U		0.80	В		N/C			
Magnesium, Mg	23,400			23,800			-1.69			
Manganese, Mn	317			323			-1.88			
Mercury, Hg	0.10	U		0.10	U		N/C			
Nickel, Ni	7.7	υ		9.4	В		N/C			
Potassium, K	1,790	В		2,040	В		-13.05			
Selenium, Se	0.50	U		0.68	В		N/C			
Silver, Ag	2.1	U		2.1	U		N/C			
Sodium, Na	11,400			11,500			-0.87			
Thallium, TI	0.70	U		0.70	U		N/C			
Vanadium, Vn	2.3	В		3.0	В		-26.4			
Zinc, Zn	9.7	U		24.5			N/C			

# C (Concentration) Qualifier

- "B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.
- "U" = Analyte not detected.

## **Q** Laboratory Qualifier

- "E" = Analyte is estimated because of interference.
- "W" = Analytical spike recovery was outside QC control limits.

# Q Data Validation Qualifier

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### Relative % Difference

# TABLE 3 ELMENDORF AFB OPERABLE UNIT 5 SAMPLE AND DUPLICATE SAMPLE RESULTS FOR TOTAL METALS UNITS = mg/kg ANC31026.H3.80

Field Sample ID 5FA02-02									
Analyte	Sample Results	С	Q	Duplicate Sample Results	С	Q	Relative % Difference		
Aluminum, Al	6,770	$\vdash$		6,900	-		-1.90		
Antimony, Sb	3.6	U		3.6	υ	-	N/C		
Arsenic, As	3.5			4.0			-13.3		
Barium, Ba	1,600			1,300			20.7		
Beryllium, Be	0.58	В		0.32	В		57.8		
Cadmium, Cd	1.1	В		0.68	В		47.2		
Calcium, Ca	5,090			5,610			-9.72		
Chromium, Cr	9.8			12.0			-20.2		
Cobalt, Co	10.4	В		9.8	В		5.94		
Copper, Cu	19.9		EJ	23.0		EJ	-14.5		
Iron, Fe	5,360			6,660			-21.6		
Lead, Pb	10.1			13.5			-28.8		
Magnesium, Mg	1,280	В		1,530			-17.8		
Manganese, Mn	63.4			91.4			-36.2		
Mercury, Hg	0.05	В		0.04	U		NC		
Nickel, Ni	22.2			20.4			8.45		
Potassium, K_	876	В		838	В		4.43		
Selenium, Se	0.15			0.15			N/C		
Silver, Ag	0.62			0.62			N/C		
Sodium, Na	531			526			0.95		
Thallium, TI	0.21			0.21	В		0.00		
Vanadium, Vn	79.9			71.1			11.7		
Zinc, Zn	22.1		EJ	27.4		ß	-21.4		

# C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

# **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q Data Validation Qualifier**

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### Relative % Difference

[&]quot;U" = Analyte not detected.

# TABLE 4 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

	Field	i Sa	mple I	D 5MW01-37			
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference
Aluminum, Al	31.0	U		31.0	U		N/C
Antimony, Sb	12.1			12.1			N/C
Arsenic, As	0.70	U		0.70	U		N/C
Barium, Ba	15.2	В	EJ	14.6	В	EJ	-3.95
Beryllium, Be	0.50	U		0.50			NC
Cadmium, Cd	1.2	U		1.2	U		N/C
Calcium, Ca	90,100			87,200			-3.22
Chromium, Cr	3.7	U		3.7			N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	3.7	В		2.9	В		-21.6
Iron, Fe	41.5	В		2.3	C		N/C
Lead, Pb	0.90			0.60	C		N/C
Magnesium, Mg	24,100			23,400			-2.90
Manganese, Mn	329			317			-3.65
Mercury, Hg	0.10	J		0.10	C		N/C
Nickel, Ni	7.7	U		7.7	U		NC
Potassium, K	1,800	В		1,790	В		-0.56
Selenium, Se	0.50	U		0.50	υ		N/C
Silver, Ag	2.1	U		2.1	U		NC
Sodium, Na	11,500			11,400			-0.87
Thallium, TI	0.70	U		0.70	J		N/C
Vanadium, Vn	1.9	В		2.3	В		21.1
Zinc, Zn	6.6			9.7	U		N/C

# C (Concentration) Qualifier

# **Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### Q Data Validation Qualifier

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## % Difference

[&]quot;B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

[&]quot;U" = Analyte not detected.

# TABLE 5 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW01-37A										
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference			
Aluminum, Al	31.0	U		31.0	υ		NC			
Antimony, Sb	12.1	U		12.1	U		N/C			
Arsenic, As	0.70	U		0.70	C		NC			
Barium, Ba	14.8	В	EJ	15.1	В	EJ	2.03			
Beryllium, Be	0.50			0.50	5		N/C			
Cadmium, Cd	1.2	C		1.2	C		N/C			
Calcium, Ca	87,300			89,000			1.95			
Chromium, Cr	3.7	U		3.7	حا		N/C			
Cobalt, Co	5.8	C		5.8	U		N/C			
Copper, Cu	3.3	В		6.3	В		90.9			
Iron, Fe	27.1	В		14.2	C		N/C			
Lead, Pb	0.60	C		0.80	В		N/C			
Magnesium, Mg	23,500			23,800			1.28			
Manganese, Mn	321			323			0.62			
Mercury, Hg	0.10	C		0.10	U		N/C			
Nickel, Ni	7.7	C		9.4			N/C			
Potassium, K	1,790	В		2,040	В		14.0			
Selenium, Se	0.64	C	WL	0.68	В		NC			
Silver, Ag	2.1			2.1			N/C			
Sodium, Na	11,400			11,500			0.88			
Thallium, TI	0.70	U		0.70	U		N/C			
Vanadium, Vn	2.7	В		3.0	В		11.1			
Zinc, Zn	6.7	U		24.5			N/C			

## C (Concentration) Qualifier

## **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## Q Data Validation Qualifier

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## % Difference

[&]quot;B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

[&]quot;U" = Analyte not detected.

# TABLE 6 EILMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS - ug/I ANC31026.H3.80

Field Sample ID 5MW02-33										
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference			
Aluminum, Al	58.1	В		31.0	U		N/C			
Antimony, Sb	14.4	_		12.1			NC			
Arsenic, As	1.8	В		0.70	U		NC			
Barium, Ba	16.3		EJ	15.2	В	EJ	-6.75			
Beryllium, Be	0.50			0.50	U		N/C			
Cadmium, Cd	1.2	U		1.2	U		NC			
Calcium, Ca	84,400			83,300			-1.30			
Chromium, Cr	3.7	U		3.7	U		N/C			
Cobalt, Co	5.8	U		5.8	U		N/C			
Copper, Cu	2.7	В		1.1	В		-59.3			
Iron, Fe	184			5.1	J		NC			
Lead, Pb	0.60	U		0.60	ט		NC			
Magnesium, Mg	14,600			14,400			-1.37			
Manganese, Mn	27.1			3.9	В		-85.6			
Mercury, Hg	0.10	U		0.10			NC			
Nickel, Ni	7.7	U		7.7	ح		NC			
Potassium, K	1,430	В		1,520	В		6.29			
Selenium, Se	0.64	υ		1.9	В		NC			
Silver, Ag	2.1	U		2.1	כ		NC			
Sodium, Na	7,820			7,900			1.02			
Thallium, TI	1.2	В		0.70	U		NC			
Vanadium, Vn	3.0	В		1.9	В		-36.7			
Zinc, Zn	14.4	U		12.7	U		N/C			

## C (Concentration) Qualifier

# **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

## **Q Data Validation Qualifier**

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

# % Difference

[&]quot;B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

[&]quot;U" = Analyte not detected.

# TABLE 7 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

Field Sample ID 5MW02-33C										
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference			
Aluminum, Al	31.0	U		31.0	U		N/C			
Antimony, Sb	12.1	حا		12.1	C		N/C			
Arsenic, As	0.70	حا		0.70	U		NC			
Barium, Ba	0.10	J	EJ	0.10	C	EJ	N/C			
Beryllium, Be	0.50	حا		0.50	U		N/C			
Cadmium, Cd	1.2	U		1.2	U		N/C			
Calcium, Ca	104	В		111	В		6.73			
Chromium, Cr	3.7	ح		3.7	U		N/C			
Cobalt, Co	5.8	U		5.8	U		NC			
Copper, Cu	0.90	C		0.90	U		N/C			
Iron, Fe	2.7	В		13.9	В		414.81			
Lead, Pb	0.60	حا		0.60	U		N/C			
Magnesium, Mg	14.3	د		14.3	C		NC			
Manganese, Mn	0.80	C		0.80	C		N/C			
Mercury, Hg	0.10	U		0.10	C		NC			
Nickel, Ni	7.7	C		7.7	U		NC			
Potassium, K	191	U		191	Ü		N/C			
Selenium, Se	1.7	В		0.50	U		N/C			
Silver, Ag	2.1	U		2.1	U		N/C			
Sodium, Na	42.9	В		54.8	В		27.74			
Thallium, TI	0.70	U		0.70	J		N/C			
Vanadium, Vn	1.9	U		1.9	U		N/C			
Zinc, Zn	3.8	В		4.4	В		15.79			

## C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

# **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

# **Q Data Validation Qualifier**

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## % Difference

[&]quot;U" = Analyte not detected.

# TABLE 8 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

	Field	San	nple ID	5MW15-10			
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference
Aluminum, Al	31.0	U		31.0	U	$\vdash$	N/C
Antimony, Sb	12.1	_		12.1			NC
Arsenic, As	0.80		WK	0.90			12.5
Barium, Ba	16.8		EJ	16.5		EJ	-1.79
Beryllium, Be	0.50			0.50	_		N/C
Cadmium, Cd	1.2			1.2			NC
Calcium, Ca	86,600			88,900			2.66
Chromium, Cr	3.7	U		3.7	U		N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	2.5	В		2.3	В		-8.00
Iron, Fe	57.0	В		20.9			N/C
Lead, Pb	0.60	U		0.60	Ū		N/C
Magnesium, Mg	14,400			14,300			-0.69
Manganese, Mn	99.0			94.1			-4.95
Mercury, Hg	0.10	U		0.10	υ		NC
Nickel, Ni	7.7	U		7.7	U		NC
Potassium, K	1,090	В		1,130	В		3.67
Selenium, Se	1.0	υ		2.2	В	WL	NC
Silver, Ag	2.1	U		2.1	U		NC
Sodium, Na	6,970			7,020			0.72
Thallium, TI	0.70	U		0.70	В		NC
Vanadium, Vn	3.4	В		4.1	В		20.6
Zinc, Zn	32.8			21.3	U		N/C

#### C (Concentration) Qualifier

- "B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.
- "U" = Analyte not detected.

## **Q Laboratory Qualifier**

- "E" = Analyte is estimated because of interference.
- "W" = Analytical spike recovery was outside QC control limits.

### **Q Data Validation Qualifier**

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference

# TABLE 9 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

	Field	San	pie ID	5MW16-11			
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference
Aluminum, Al	392	$\vdash$		67.8	В		-82.7
Antimony, Sb	12.1			12.1		1	N/C
Arsenic, As	2.2		WK	3.0		WK	36.4
Barium, Ba	116		EJ	103		EJ	-11.2
Beryllium, Be	0.50			0.50			N/C
Cadmium, Cd	1.2	U		1.2	دا		NC
Calcium, Ca	93,700			94,700			1.07
Chromium, Cr	3.7	U		3.7	υ		N/C
Cobalt, Co	5.8	U		5.8	U		N/C
Copper, Cu	1.7	В		0.90	U		N/C
Iron, Fe	6,160			5,230			-15.1
Lead, Pb	0.60	U		0.60	U		N/C
Magnesium, Mg	20,000			18,800			-6.00
Manganese, Mn	1,940			1,630			-16.0
Mercury, Hg	0.10	C		0.10	J		N/C
Nickel, Ni	7.7	U		7.7	Ų		N/C
Potassium, K	2,130	В		1,960	В		-7.98
Selenium, Se	0.93	В		2.5	B		169
Silver, Ag	2.1	U		2.1	رد		N/C
Sodium, Na	10,000			9,570			-4.30
Thallium, Ti	0.70	U		0.70			N/C
Vanadium, Vn	6.9	В		5.0			-27.5
Zinc, Zn	9.7	U		16.7	U		N/C

#### C (Concentration) Qualifier

#### **Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### **Q** Data Validation Qualifier

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## % Difference

[&]quot;B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

[&]quot;U" = Analyte not detected.

# TABLE 10 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

	Fie	ld S	ample	ID SP101-9			
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference
Aluminum, Al	7,840			43.9	В		-99.44
Antimony, Sb	12.1			12.1			NC
Arsenic, As	5.4	В	WK	3.2	_	WK	-40.74
Barium, Ba	110	В	EJ	61.6		EJ	-44.00
Beryllium, Be	0.50			0.50			N/C
Cadmium, Cd	1.2	C		1.2	J		N/C
Calcium, Ca	77,600			77,800			0.26
Chromium, Cr	12.5			3.7	5		N/C
Cobalt, Co	5.8	C		5.8	c		N/C
Copper, Cu	9.9	В		0.90	C		N/C
Iron, Fe	19,300	В		12,600			-34.72
Lead, Pb	3.20	J		0.60	رح		NC
Magnesium, Mg	20,200			18,300			-9.41
Manganese, Mn	4,440			4280			-3.60
Mercury, Hg	0.10	U		0.10			NC
Nickel, Ni	20.8	В		7.7	حا		N/C
Potassium, K	2,150	В		2,070	В		-3.72
Selenium, Se	0.68	ט	W	1.1	U		N/C
Silver, Ag	2.1	U		2.1	J		NC
Sodium, Na	6,900			6,790			-1.59
Thallium, TI	0.70	U		0.70	U		N/C
Vanadium, Vn	18.7	В		3.0	В		-84.0
Zinc, Zn	34.1			11.7	J		N/C

#### C (Concentration) Qualifier

#### **Q** Laboratory Qualifier

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### **Q** Data Validation Qualifier

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

#### % Difference

[&]quot;B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

[&]quot;U" = Analyte not detected.

# TABLE 11 ELMENDORF AFB OPERABLE UNIT 5 TOTAL AND SOLUBLE METAL RESULTS UNITS = ug/l ANC31026.H3.80

	Field Sample ID SP102-36						
Analyte	Total Metals	С	Q	Soluble Metals	С	Q	% Difference
Aluminum, Al	1,090			31.0	U		N/C
Antimony, Sb	12.1	U		12.1	U		N/C
Arsenic, As	1.7	В	WK	0.70	υ	W	N/C
Barium, Ba	25.9	В	EJ	18.9	В	EJ	-27.0
Beryllium, Be	0.50	U		0.50	U		N/C
Cadmium, Cd	1.2	U		1.2	U		N/C
Calcium, Ca	87,500			84,800			-3.09
Chromium, Cr	3.7	U		3.7	U		N/C
Cobalt, Co	5.8	U		5.8	U	}	N/C
Copper, Cu	5.9	В		2.3	В		-61.0
Iron, Fe	1,840			78.3	B		-95.7
Lead, Pb	0.70	В		0.60	د		N/C
Magnesium, Mg	19,000			18,300			-3.68
Manganese, Mn	1,450			1,380			-4.83
Mercury, Hg	0.10	U		0.10			NC
Nickel, Ni	11.5	В		7.7	J		· N/C
Potassium, K	1,330	В		1,350	В		1.50
Selenium, Se	2.0	U	WL	0.50	כ		N/C
Silver, Ag	2.1	U		2.1	U		NC
Sodium, Na	6,980			7,120			2.01
Thallium, Ti	0.70	U		0.70	U		NC
Vanadium, Vn	6.1	В		2.3	В		-62.3
Zinc, Zn	13.1	U		10.7	U		N/C

#### C (Concentration) Qualifier

"B" = Analyte concentration is between the instrument detection limit (IDL) and the method detection limit.

## **Q Laboratory Qualifier**

"E" = Analyte is estimated because of interference.

"W" = Analytical spike recovery was outside QC control limits.

#### **Q Data Validation Qualifier**

- "J" = Analyte concentrations is considered estimate because a direction of bias could not be determined.
- "K" = Analyte concentrations is biased high, the expected concentration is expected to be lower.
- "L" = Analyte concentrations is biased low, the expected concentration is expected to be higher.

## % Difference

[&]quot;U" = Analyte not detected.

TO:

Win Westervelt/CH2M HILL/ANC

COPIES:

Artemis Antipas/CH2M HILL/SEA Susan Schrader/CH2M HILL/ANC

FROM:

Page Birmingham/CH2M HILL/CVO

Donna Morgans/CH2M HILL/CVO

DATE:

November 23, 1992

SUBJECT:

Review of Quality Assurance/Quality Control (QA/QC) Data for Offsite

Laboratory Analyses at Elmendorf Air Force Base (AFB), Operable

Unit 5 (OU-5)

**PROJECT:** ANC31026.H3.80

A data review has been conducted on data submitted for groundwater, surface water, sediment, and soil samples collected for the Operable Unit five (OU-5) remedial investigation at Elmendorf Air Force Base, Alaska. Samples for this field program were collected between May 28 and September 18, 1992.

Approximately 10 to 20 percent of the organic, inorganic, and conventional analyses were reviewed following the U.S. EPA Functional Guidelines for Evaluating Organics and Inorganics Analyses, where possible, reviewing all quality assurance/quality control (QA/QC) data and validating all of the raw data.

QA/QC data from groundwater, surface water, soil, sediment, travel blanks, rinsate blanks, and field blanks were reviewed. The following table lists the type of analyses performed, together with the respective number and type of sample for each analysis.

Page 2 November 23, 1992

Number of Samples	VOC Analysis EPA Method 8010	Number of Samples	Purgeable VOC Analysis EPA Method 524.2
7 9 2 2 6	Groundwater samples Soil samples Field blanks Rinsate blanks Travel blanks	6	Groundwater samples
Number of Samples	Semivolatile Analysis EPA Method 8270	Number of Samples	PCB Analysis EPA Method 8080
9 11 2	Groundwater samples Soil samples Rinsate blanks	4	Soil Samples
Number of Samples	TMBE/BTEX/Gas Analysis EPA Modified Method 8015/8020/ADEC AK 101	Number of Samples	TFH Gasoline Analysis EPA Modified Method 8015/ ADEC AK 102
9 7 1 1 5	Groundwater samples Soil samples Field blanks Rinsate blanks Travel blanks	3	Groundwater Samples
Number of Samples	TFH Diesel and JP-4 Analysis EPA Modified Method 8015	Number of Samples	Total Metals Analysis EPA Method 6010/7000 Series
9 8 1	Groundwater samples Soil samples Rinsate blanks	12 10 2	Groundwater samples Soil samples Rinsate blanks
Number of Samples	Alkalinity Analysis EPA Method 310.1	Number of Samples	Anion Analysis* EPA Method 300.0 and 310.1
2 1	Groundwater samples Rinsate blank	3	Groundwater samples
Number of Samples	TOC Analysis EPA Method 9060		
3	Soil samples		

Overall, the data have met the acceptance criteria as outlined in the Elmendorf AFB OU-5 Quality Assurance Project Plan (QAPP) and have also met the QC acceptance criteria as outlined in the U.S. EPA Functional Guidelines for Evaluating

Page 3 November 23, 1992

Organics and Inorganics Analyses. All data are considered usable for the purposes outlined in the context of the data quality objectives.

The following summarizes the overall results of the data review for each organic analytical method and each QC parameter evaluated.

## **Organic Analyses**

## **Holding Times**

For Method 8270 analyses, except for 5SE09RX, 5SE09ARX, and 5SE10RX, all samples were analyzed within their respective holding time requirements. Sample results for 5SE09RX, 5SE09ARX, and 5SE10RX were qualified as estimates and flagged with a "J" for positive results, or a "UJ" for nondetected results.

## **GC/MS Tuning**

For Methods 524.2 and 8270 analyses, a GC/MS tune was reported for each 12-hour tuning period and ion abundances met QC acceptance criteria.

## **Initial Calibration**

For each analytical method, all target compounds met initial calibration QC acceptance criteria.

# **Continuing Calibration**

Except for several Method 8010 and Method 8270 target compounds, all target compound calibration curves met continuing calibration QC acceptance criteria.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

#### **Blanks**

Except for the analyses listed below, all method, travel, field, and rinsate blanks were contamination-free. Samples containing contaminants were qualified as non-detects and flagged with a "U".

Page 4

November 23, 1992

## Method 8010 analyses:

Tetrachloroethene result for OU5SE-08 (1,400U)

## Method 524.2 analyses:

 Methylene chloride results for 5SW01 (1.4U), 5SW01A (1.6U), and 5SW02 (1.1U)

## Method 8270 analyses:

- N-nitrosodiphenylamine results for OU5SW-07 (10U), OU5SW-08 (10U), and OU5SE-07 (540U)
- Diethylphthalate result for 5WS02 (10U)
- Di-n-butylphthalate results for 5SE09RX (420UJ) and 5SE09ARX (420UJ)

## **System Monitoring Compounds**

Except for the analyses listed below, all surrogate spike recoveries met QC acceptance criteria. Analyses not meeting QC acceptance criteria were qualified as estimates and flagged with a "J" for positive results, or a "UJ" for nondetected results.

- Method 8010 (OU5SE-07)
- Method 8080 (5SE05, 5SE04, and 5SE04A)
- Method 8015/8020 (BTEX/TFH gasoline) (5MW5-30)
- Method 8015 (TFH diesel/JP-4) (5SE10, 5SW11, and 5SE11)

# Matrix Spike/Matrix Spike Duplicates

Except for several matrix spike recoveries and relative percent difference results, all MS/MSDs met QC acceptance criteria. Samples are not qualified on the basis of MS/MSD results.

#### Internal Standards

All area counts and retention times met QC acceptance criteria.

Page 5 November 23, 1992

## **Target Compound Identification**

For Method 8010 analyses, except for OU5SW-07D, all compounds detected in samples were verified by a second column confirmation analysis. The tetrachloro-ethene result for OU5SW-07D was qualified as an estimate and flagged with a "J".

# **Compound Quantitation and Reported Detection Limits**

The samples listed below required dilution to bring high concentrations of target compounds into the linear range of the instrument. The following samples required dilution and detection limits were increased. Except for VOC, BTEX/TFH gasoline, and TFH diesel/JP-4 results for 5SE09, 5SE09A, and 5SE10, all soil results were correctly adjusted for percent moisture.

Method 8270 analyses:

OU5SE-08 (20-fold dilution)

Method 8080 analyses:

OU5SE-07 (2-fold dilution)

Method 8015/8020 (BTEX/TFH gasoline) analyses:

• OU5SE-08 (5-fold dilution)

Method 8015 (JP-4) analyses:

• OU5SE-07 (2-fold dilution)

Method 8015 (TFH diesel) analyses:

- OU5SE-07 (5-fold dilution)
- OU5SE-08 (5-fold dilution)
- 5SE09A (detection limit raised from 1  $\mu$ g/kg to 3  $\mu$ g/kg)

Original TFH gasoline analyses were performed by all laboratories according to modified EPA method 8015/8020. Following sample analysis and reporting, it was noticed that the TFH gasoline analyses should have been performed according to method AK 101. The two analytical methods differ based on the type of calibration standard used. Method 8015/8020 uses a 5-point calibration using a commercially

Page 6 November 23, 1992

prepared gasoline standard; the ADEC AK 101 method uses a 5-point calibration using a 10-component mix standard. The overall effect is that a larger retention time window was used that covered the major range of gasoline peaks.

Sample results were then recalculated using a newly established retention time window. Recalculation only affects sample results reported above the detection limit. Only results reported by CH2M HILL were recalculated. It is considered that the technique used for recalculating the TFH gasoline results is highly reliable; therefore, sample qualification was not required. The following 13 samples analyzed by CH2M HILL required TFH gasoline recalculation, and amended results were reported by the laboratory:

- OU5SW-05
- OU5SW-08
- OU5SE-04
- OU5SE-05
- OU5SE-06
- OU5SE-08
- OU5SB11-10
- 5SB29-04
- SP10114
- SP01118
- GW-6A38
- OU5-MW13S
- 5MW3-40

TFH gasoline results reported by the ENSECO laboratory did not require qualification because there was no TFH gasoline reported above the detection limit. TFH gasoline results reported by Superior Analytical could not be recalculated; therefore, the following sample results, which were reported above the detection limit, were qualified as estimates and flagged with a "J":

- SL04S12A
- SL04S12AA
- SL04S12A
- SL16S12N
- SL16S24N

Original TFH diesel analyses were performed by all laboratories according to modified EPA method 8015. Following sample analysis and reporting, it was noticed that the TFH diesel analyses should have been performed according to ADEC

Page 7

November 23, 1992

method AK 102. The two analytical methods differ based on the type of calibration standard used. Method 8015 uses a 5-point calibration using a commercially prepared gasoline standard; the ADEC AK 102 method uses a 5-point calibration using a 10-component mix standard. The overall effect of using method 8015 instead of the ADEC method is that significant peaks were present outside the retention time window used in the original analysis, but within the ADEC-defined retention time window.

TFH diesel results reported by CH2M HILL, ENSECO, and Superior Analytical could not be recalculated because the chromatographic peaks of the commercial diesel standard did not match the peaks of the 10-component mix standard; consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time window, it is expected that the TFH diesel results are biased low. The following samples analyzed by the CH2M HILL laboratory are considered biased low and flagged with a "J":

- OU5SE-04
- OU5SE-06
- OU5SE-08
- GW-6A38
- SP2/60540
- 5SB29-0
- SP10114
- 5SB29-04
- 5MW09-7
- 5MW4-35
- 5SE-05

The following samples analyzed by the ENSECO laboratory are considered biased low and flagged with a "J":

- 5SE-09A
- 5SE-11

The following samples analyzed by Superior Analytical are considered biased low and flagged with an "L":

- SL04S12A
- SL04S12AA
- SL04S12N

Page 8

November 23, 1992

- SL04S12NA
- SL04S12ND
- SL04S12A
- SL04S12N
- SL20S24A
- SL19S12A
- SL29S12N
- SL16S12N
- SL16S24N
- SL19S12N

# **Tentative Identified Compounds (TICs)**

All sample TICs met QC acceptance criteria. Samples OU5SE-07, OU5SE-08, 5SB19-10, 5SB19-52, 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, 5WS01, 5WS01A, 5WS02, 5MW16A-14, 5MW5-30, 5SE09ARX, 5SE09RX, and 5SE10RX each contained TICs that were detected in the method blank as well as the sample; these TIC results were rejected and flagged with an "R". All TICs detected are considered estimate concentrations and flagged with a "JN".

# **System Performance**

Chromatograms and instrument performance for each sample analysis were considered acceptable.

# **Inorganic and Conventional Parameter Analyses**

The following summarizes the overall results of the data review for each inorganic analytical method and each QC parameter evaluated. All sample results were qualified in accordance with the criteria outlined in the functional guidelines.

# **Holding Times**

For metals and conventional parameters, all samples were analyzed within their respective holding time requirements. Therefore, all samples met holding time QC acceptance criteria.

Page 9 November 23, 1992

## **Calibration Check**

All initial and continuing calibrations met QC acceptance criteria.

## **Blanks**

Except for three aluminum, two iron, three mercury, five potassium, four selenium, and two zinc results, samples did not require qualification as a result of blank contamination. The following sample results were qualified as nondetects and flagged with a "U" as a result of preparation blank contamination.

#### Aluminum results:

- 5SW03 (67.4U)
- 5SW02 (109U)
- 5SW03A (59.8U)

#### Iron results:

- 5SW03A-S (10.7U)
- 5SW03-S (12.6U)

## Mercury results:

- 5SB21-10 (0.09U)
- 5SB21-25 (0.07U)
- 5SB21-48 (0.08U)

## Potassium results:

- 5SW03-S (571U)
- 5SW03 (47.0U)
- 5SW03A (509U)
- 5SW02 (376U)
- 5SW03A-S (454U)

Page 10 November 23, 1992

#### Selenium results:

- OU5SE-07 (0.22U)
- OU5SE-08 (0.25U)
- 5SW03 (0.78U)
- 5SW02 (0.69U)

## Zinc results:

- 5SW03-S (12.4U)
- 5SW03A-S (4.6U)

# **ICP Interference Check Samples**

All ICP interference check sample recoveries met QC acceptance criteria.

# **Laboratory Control Samples (LCS)**

All LCS recoveries met QC acceptance criteria.

# **Laboratory Duplicates**

All duplicate results met QC acceptance criteria.

# **Matrix Spikes**

Except for one lead and two manganese matrix spike recoveries, all matrix spike recoveries met QC acceptance criteria. The lead results for OU5SE-07 and OU5SE-08 and the manganese results for 5SB01-25, 5SB21-10, 5SB21-25, 5SB21-35, and 5SB21-48 were qualified as biased low and flagged with an "L". The manganese results for OU5SE-07 and OU5SE-08 were qualified as biased high and flagged with a "K".

# **Analytical Spike Recoveries**

Except for four selenium and three thallium analytical spike recoveries, all analytical spike recoveries met QC acceptance criteria. The selenium results for 5SB21-10, 5SB21-25, 5SB21-35, and 5SB21-48 and the thallium results for OU5SE-07, OU5SE-08, and 5SB21-48 were qualified as biased low and flagged with an "L".

Page 11

November 23, 1992

## **ICP Serial Dilution**

Except for three barium, one calcium, and two zinc, all serial dilutions met QC acceptance criteria. The following sample results not meeting QC acceptance criteria were qualified as estimates and flagged with a "J" for positive results.

#### Barium results:

- OU5SW-07
- OU5SW-07S
- OU5SW-08
- OU5SW-08C
- OU5SW-08S
- 5SB12-8C
- 5SW03
- 5SW03-S
- '5SW03A
- 5SW03A-S
- 5SW02

#### Calcium results:

- OU5SE-07
- OU5SE-08

#### Zinc results:

- OU5SE-07
- OU5SE-08
- 5SB01-25
- 5SB21-10
- 5SB21-25
- 5SB21-35
- 5SB21-48

# **Sample Result Verification**

All sample results and detection limits were calculated correctly. All soil results were correctly adjusted for percent moisture.

Page 12 November 23, 1992

The attached sections provide complete validation results on a batch basis, for each medium.



## Field Duplicate Results

Seven water samples (12 percent frequency) and six soil samples (9 percent frequency) were collected and analyzed as blind field duplicates. Project quality assurance (QA) control limits for field duplicates allow  $\pm 100$  relative percent difference (RPD) for water and soil samples with the provisional control limit of plus or minus the contract-required detection limit (CRDL) when concentrations are less than five times the CRDL. There are no specific review criteria used to compare field sample result comparability. Field duplicate results are used to determine the precision of field sampling and laboratory techniques. Qualifiers are not assigned when field duplicate results do not meet QC acceptance criteria.

Field duplicates 5SW03, 5WS01, 5SE03, 5SE04, and 5SB29-0 were analyzed for the full suite of analytical parameters. 5MW7-40, 5MW6-35, and 5SE09 were analyzed for organic parameters. NS30215 was analyzed for BTEX, TFH gasoline, TFH diesel, and JP-4. 5GW4A-5 was analyzed for semivolatile organic compounds. SL04S12A and SL04S12N were analyzed for metals and conventional parameters. Tables 1 through 11 show field duplicate RPD results for organic, metal, and conventional parameters that were detected in one or both of the samples analyzed.

Field duplicate results for samples collected are summarized below.

- Table 1 summarizes the hits for the surface water sample field duplicates collected at 5SW03. Twelve total metals, eight dissolved metals, and alkalinity were detected in one or both samples. RPDs for metals detected in both samples ranged between 0.5 and 128 percent. Except for alkalinity and manganese, all metals met the project quality control (QC) acceptance criteria of ±100 RPD for field precision. The manganese RPD met the provisional QC acceptance criteria of plus or minus the CRDL. The RPD for alkalinity was 130 percent, which exceeded the QC acceptance criteria. All total metals concentrations were greater than dissolved metals concentrations.
- Table 2 summarizes the hits for the surface water sample field duplicates collected at 5SW03. Seven total metals, seven dissolved metals, and alkalinity were detected in one or both samples. RPDs for metals detected in both samples and alkalinity ranged between 0.7 and 11.6 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision. All total metals concentrations were the same or slightly greater than dissolved metals concentrations.
- Table 3 summarizes the hits for the groundwater sample field duplicates collected at 5WS01. Five total metals, alkalinity, bicarbonate, carbonate, chloride, and sulfate were detected in one or both samples. RPDs for metals and conventional parameters detected in both samples ranged between zero and 10.9 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 4 summarizes the hits for the soil sample field duplicates collected at SE03.
   Bis(2-ethylhexyl)phthalate and 20 total metals were detected in one or both samples.
   RPDs for metals detected in both samples ranged between 0.7 and 28.9 percent; therefore, all parameters detected met the project QC acceptance criteria

- of  $\pm 100$  RPD for field precision. Bis(2-ethylhexyl)phthalate was detected in only one sample; therefore, RPD could not calculated.
- Table 5 summarizes the hits for the soil sample field duplicates collected at 5SE04.
   Bis(2-ethylhexyl)phthalate and 19 total metals were detected in one or both samples. RPDs for metals detected in both samples ranged between zero and 36.2 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 6 summarizes the hits for the soil sample field duplicates collected at 5SB29-0. Nineteen semivolatile organic compounds, TFH diesel, and 20 total metals were detected in one or both samples. RPDs for semivolatiles and metals detected in both samples ranged between 4.6 and 182 percent. Except for bis(2-ethylhexyl)phthalate, all semivolatiles (phenanthrene, fluoranthene, and pyrene) detected exceeded the project QC acceptance criteria of ±100 RPD for field precision. Except for lead, all metals detected met the QC acceptance criteria for ±100 percent for field precision. TFH diesel was detected in only one sample; therefore, an RPD could not be calculated.
- Table 7 summarizes the hits for the groundwater sample field duplicates collected at 5MW7-40. Trichloroethene and 1,1,2,2-tetrachloroethane were detected in both samples. RPDs for these VOCs ranged between 2.5 and 14.3 percent; therefore, both VOCs detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 8 summarizes the hits for the groundwater sample field duplicates collected at 5MW6-35. Trichloroethene, toluene, ethylbenzene, total xylenes, and bis(2ethylhexyl)phthalate were detected in one or both samples. RPDs for these parameters ranged between 3.3 and 25.0 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 9 summarizes the hits for the soil sample field duplicates collected at SL04S12A. Eighteen total metals, three water soluble metals, four ammonium acetate extractable metals, phosphate, TKN, conductivity, and TOC were detected in one or both samples. RPDs for all parameters detected in both samples ranged between zero and 40 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 10 summarizes the hits for the soil sample field duplicates collected at SL04S12N. Seventeen total metals, three water soluble metals, four ammonium acetate extractable metals, phosphate, TKN, conductivity, and TOC were detected in one or both samples. RPDs for all parameters detected in both samples ranged between zero and 78.9 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision.
- Table 11 summarizes the hits for the soil sample field duplicates collected at 5SE09. Phenol and JP-4 were detected in one or both samples. The RPD for phenol was 32.3 percent; therefore, all parameters detected met the project QC acceptance criteria of ±100 RPD for field precision. JP-4 was detected in only one sample; therefore, an RPD could not be calculated.

TABLE 1. Field Duplicate Results for 5SW03 on 30 May 92				
Compounds	Sample Result	Duplicate Result (µg/l)	Relative Percent Difference	
Total Metals				
Aluminum	315	557	55.5	
Arsenic	0.70	0.80	13.3	
Barium	16.2	13.0	21.9	
Calcium	27,400	18,300	39.8	
Copper	1.4	1.6	13.3	
Iron	562	835	39.1	
Lead	0.70	0.60 U	N/C	
Magnesium	4,010	2,920	31.5	
Manganese	189	90.1	70.6	
Potassium	559	468	17.7	
Sodium	2,170	2,160	0.46	
Vanadium	2.0	2.8	33.3	
Dissolved Metals				
Barium	4.0	3.8	5.1	
Calcium	14,500	19,300	28.4	
Iron	26.4	54.3	69.1	
Magnesium	2,250	2,890	24.9	
Manganese	16.2	73.9	128	
Potassium	391	285	31.4	
Sodium	1,580	2,180	31.9	
Vanadium	1.3	1.3 U	N/C	
Akalinity (mg/l)	138	40	110	

N/C = Not Calculable

U = Nondetected result

Compounds	Sample Result	Duplicate Result (µg/l)	Relative Percent Difference
Total Metals			
Barium	9.0	9.3	3.3
Calcium	24,400	24,700	1.2
Copper	1.0U	130	N/C
Magnesium	3,600	3,660	1.7
Manganese	47.9	48.2	0.62
Sodium	2,360	2,390	1.3
Zinc	2.2U	79.9	N/C
Dissolved Metals			
Barium	8.8	8.8	0.0
Calcium	24,600	24,400	0.82
Copper	1.7	0. <b>90U</b>	N/C
Magnesium	3,640	3,620	0.55
Manganese	44.1	43.8	0.68
Sodium	2,650	2,360	11.6
Akalinity (mg/l)	60	57	5.1

TABLE 3. Field Duplicate Results for 5WS01 on 1 Sep 92				
Compounds	Sample Result	Duplicate Result (µg/l)	Relative Percent Difference	
Total Metals				
Calcium Iron Magnesium Potassium Sodium	10,500 118 6,330 1,990 41,900	10,400 129 6,300 1,800 41,600	0.96 8.9 0.48 10.0 0.72	
Conventional Parameters (n	ng/l)			
Alkalinity Bicarbonate Carbonate Cloride Sulfate	141 165 3.6 3.63 13.7	127 148 3.6 3.64 13.7	10.4 10.9 0.0 0.28 0.0	
N/C = Not Calculable U = Nondetected result				

TABLE 4. Field Duplicate Results for 5SE03 on 30 May 92				
Compounds	Sample Result	Duplicate Result (µg/kg)	Relative Percent Difference	
Semivolatile Organic Compou	ınds			
bis(2-Ethylhexyl)phthalate	57	520U	N/C	
Total Metals (mg/kg)				
Aluminum	18,000	16,500	8.7	
Arsenic	5.6	5.8	1.8	
Barium	90.3	80.4	11.6	
Beryllium	0.73	0.64	13.1	
Cadmium	1.8	1.9	5.4	
Calcium	7,510	5,930	23.5	
Chromium	40	38.2	4.6	
Cobalt	13.3	11.8	12.0	
Copper	29.4	27.7	6.0	
Iron	33,100	32,400	2.1	
Lead	5.8	6.1	5.0	
Magnesium	10,100	10,200	1.0	
Manganese	787	710	10.3	
Nickel	40.9	40.6	0.74	
Potassium	1,080	808	28.9	
Selenium	0.22	0.12 U	N/C	
Silver	0.84	1.6	62.3	
Sodium	433	364	17.3	
Vanadium	70.5	60.5	15.3	
Zinc	79.1	76.3	3.6	

Compounds	Sample Result (µg/kg)	Duplicate Result (µg/kg)	Relative Percent Difference
Semivolatile Organic Compou	unds		
Bis(2-ethylhexyl)phthalate	1,300U	210	N/C
Total Metals (mg/kg)			
Aluminum	9,580	13,400	33.2
Arsenic	38.1	29.4	25.8
Barium	441	366	18.6
Cadmium	1.7	2.4	34.1
Calcium	12,000	12,000	0.0
Chromium	23.5	28.6	19.6
Cobalt	23.7	22.4	5.6
Copper	26.3	27.6	4.8
Iron	69,300	67,200	3.1
Lead	24.5	22.9	6.8
Magnesium	5,390	7,050	26.7
Manganese	37,900	29,300	25.6
Mercury	0.11U	0.10	N/C
Nickel	71.5	61.5	15.0
Potassium	634	914	36.2
Silver	5.6	4.7	17.5
Sodium	609	521	15.6
Vanadium	39.5	54.5	31.9
Zinc	108	102	5.7

TABLE 6. Field Duplicate Results for 5SB29-0 on 4 Sep 92					
Compounds	Sample Result ( <i>µ</i> g/kg)	Duplicate Result (سو/kg)	Relative Percent Difference		
		(pg/kg)	Dilloronos		
Semivolatile Organic Compo	unds		<b>,</b>		
Napthalene	380U	110	N/C		
2-Methylnaphthalene	380U	50	N/C		
Acenaphthene	380U	120	N/C		
Dibenzofuran	380U	93	N/C		
Fluorene	380U	140	N/C		
Phenanthrene	39	830	182		
Anthracene	380U	150	N/C		
Carbazole	380U	83	N/C		
Fluoranthene	63	840	172		
Pyrene	67	820	170		
Benzo(a)anthracene	380U	350	N/C		
Chrysene	380U	410	N/C		
Bis(2-ethylhexyl)phthalate	49	39	22.7		
Benzo(b)fluoranthene	380U	260	N/C		
Benzo(k)fluoranthene	43	310	151		
Benzo(a)pyrene	380U	330	N/C		
ldeno(1,2,3-cd)pyrene	380U	160	N/C		
Dibenz(a,h)anthracene	380U	40	N/C		
Benzo(g,h,i)perylene	380U	330	N/C		
TFH Diesel (mg/kg)	6.1	4.6U	N/C		
Metals (mg/kg)					
Aluminum	16,000	9,360	52.4		
Arsenic	6.3	5.2	19.1		
Barium	125	283	77.5		
Cadmium	1.5	1.3	14.3		
Calcium	6,770	4,850	33.0		
Chromium	29.0	23.4	21.4		
Cobalt	11.6	7.3	45.5		
Copper	33.3	22.3	39.6		
Iron	30,900	17,300	56.4		
Lead	23.9	193	156		
Magnesium	9,080	5,340	51.9		
Manganese	612	400	41.9		
mercury	0.05	0.06	18.2		
Nickel	31.2	24.9	22.5		
Potassium	662	468	34.3		
Selenium	0.11U	0.16	N/C		
Silver	0.60	0.48U	N/C		
Sodium	259	22	15.4		
Vanadium	83.3	37.2	76.5		
	63.5	66.5	4.6		

Compounds	Sample Result	Duplicate Result (µg/I)	Relative Percent Difference
VOCs			
Trichloroethene 1,1,2,2-tetrachloroethane	13 8.0	15 8.2	14.3 2.5

TABLE 8. Field Duplicate Results for 5MW6-35 on 3 Sep 92			
Compounds	Sample Result (سع/ا)	Duplicate Result ( <i>µ</i> g/l)	Relative Percent Difference
Purgeable VOCs			
Trichloroethene Toluene Ethylbenzene Total Xylenes	52 1.4 0.67 2.7	54 1.2 0.60 2.1	3.8 15.4 11.0 25.0
Semivolatile Organic Compounds			
Bis(2-ethylhexyl)phthalate	10U	1	N/C
TFH gasoline (mg/l)	92	89	3.3
N/C = Not Calculable U = Nondetected result			

H-9

10010f27.anc

Sample Result (mg/kg)  200  3,100  310  83  14,000  7.4  75.6  1.5  5,400  24.9	Duplicate Result (mg/kg) 390 8,400 670 151 11,800 8.1 89.9 1.5	Relative Percent Difference 64.4 92.2 73.5 58.1	
3,100 310 83 14,000 7.4 75.6 1.5 5,400 24.9	8,400 670 151 11,800 8.1 89.9	92.2 73.5 58.1 17.1 9.0	
310 83 14,000 7.4 75.6 1.5 5,400 24.9	670 151 11,800 8.1 89.9	73.5 58.1 17.1 9.0	
14,000 7.4 75.6 1.5 5,400 24.9	151 11,800 8.1 89.9	58.1 17.1 9.0	
14,000 7.4 75.6 1.5 5,400 24.9	11,800 8.1 89.9	17.1 9.0	
7.4 75.6 1.5 5,400 24.9	8.1 89.9	9.0	
7.4 75.6 1.5 5,400 24.9	8.1 89.9	9.0	
5,400 24.9	1.5	17.3	
	5,760 22.0	0.0 6.5 12.4	
9.8 21.7 29,300 23.0	9.4 21.3 27,900 27.3	4.2 1.9 4.9 17.1	
6,840 2,240 0.09	5,550 3,190 0.06	20.8 35.0 40.0	
25.7 536 0.76	24.9 361 0.68	3.2 39.0 11.1	
44.8 53.9	38.0 49.4	16.4 8.7	
00g)		•	
0.28 0.12 0.06	0.26 0.11 0.05	7.4 8.7 18.2	
Ammonium Acetate Extractable Metals (meq/100g)			
10.3 1.42 0.14 0.27	8.9 1.21 0.12 0.24	14.6 16.0 15.4 11.8	
Conventional Parameters			
0.73	0.65	11.6	
16 1,900 9.04	17 1,770 11.8	6.1 7.1 26.5	
35,300	44,100	22.2	
	536 0.76 44.8 53.9 00g) 0.28 0.12 0.06 ele Metals (meq/100 10.3 1.42 0.14 0.27 0.73 16 1,900 9.04	536 361 0.76 0.68 44.8 38.0 53.9 49.4 00g)  0.28 0.26 0.12 0.11 0.06 0.05  Die Metals (meq/100g)  10.3 8.9 1.42 1.21 0.14 0.12 0.27 0.24  0.73 0.65  16 17 1,900 1,770 9.04 11.8	

Compounds	Sample Result (mg/kg)	Duplicate Result (mg/kg)	Relative Percent Difference
TFH Diesel	10	9	10.5
Metals			
Aluminum	18,400	16,700	9.7
Barium	87.1	84.2	3.4
Cadmium	1.6	1.5	6.5
Calcium	6,800	4,420	42.4
Chromium	35.4	31.9	10.4
Cobalt	12.5	10.8	14.6
Copper	26.6	24.1	9.9
Iron	27,900	26,300	5.9
Lead	10.2	8.0	24.2
Magnesium	8,850	8,200	7.6
Manganese	444	430	3.2
Mercury	0.04	0.05	22.2
Nickel	34.1	35.5	4.0
Potassium	720	565	24.1
Silver	0.49	0.70	35.3
Vanadium	66.4	55.4	18.1
Zinc	56.9	54.6	4.1
Water Soluble Metals (meq/100	Dg)		
Calcium	0.04	0.04	0.0
Magnesium	0.02	0.02	0.0
Sodium	0.02	0.02	0.0
Ammonium Extractable Metals	(meq/100g)		
Calcium	2.5	2.7	7.7
Magnesium	0.61	0.66	7.9
Potassium	0.12	0.13	0.1
Sodium	0.17	0.17	0.0
Conventional Parameters			
Electrical conductivity (mmhos/cm)	0.24	0.28	15.4
Phosphate	7.6	3.3	78.9
Total kjeidahl nitrogen	857	829	3.3
Ammonia	6.62	5.63	16.2
Total organic carbon	14,400	15,400	6.7

H-11 10010f27.anc

TABLE 11. Field Duplicate Results for 5SE09 on 3 Sep 92				
Compounds	Sample Result (µg/kg)	Duplicate Result (µg/kg)	Relative Percent Difference	
Semivolatile Organic Compounds				
Phenol	52	72	32.3	
JP-4 (mg/kg)	1.0U	1.1	N/C	



# Volatile Organic Compounds (EPA Method 8010) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SW07D, 5SE08, 5SE08C, and 5SW08 were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

Five-point calibration curves were generated for all target compounds. The correlation determination factor (R²) for this calibration curve was within the QC control limit of 0.9025. Therefore, the target compound calibration curve met initial calibration QC acceptance criteria.

# IV. Continuing Calibration

Except for several target compounds, the percent difference for all compounds were within the QC control limits of 20 percent or the method specified limit, thereby meeting continuing calibration QC acceptance criteria. Target compounds that did not meet QC acceptance criteria are listed in Table 1.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

#### V. Blanks

Except for chloroform and tetrachloroethene, the method, travel, and rinsate blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria. Chloroform was detected in rinsate blank, 5SE08C, at a concentration of 52  $\mu$ g/L. No samples were qualified as a result of chloroform contamination. Tetrachloroethene was detected in travel blank, 5SW07D, at a concentration of 6.2  $\mu$ g/L. The tetrachloroethene result for 5SE08 (1,400 U) was qualified as a nondetect and flagged with a "U."

Table 1			
Compound	Percent Difference		
Continuing Calibration (6/16/92 1345 GC-2 HECD)			
chloromethane	-75.21		
Continuing Calibration (6/17/92 1605 GC-2 HECD)			
chloromethane	-85.86		
Continuing Calibration (6/18/92 0638 GC-1 HECD)			
tetrachlorothene	+25.47		
chloroethane	+26.01		
methylene chloride	+25.36		
chloroform	+31.76		
1,1,1-trichloroethane	+31.35		
1,2-dichloropropane	+26.09		
bromodichloromethane	-32.95		
1,1,2-trichloroethane	+22.18		
Continuing Calibration (6/18/92 1346 GC-1 HECD)			
bromodichloromethane	-41.22		
Continuing Calibration (6/18/92 0918 GC-2 HECD)			
chloromethane	-85.78		
1,1-dichloroethene	+23.66		
tetrachloroethene	+32.31		

# VI. System Monitoring Compounds (Surrogates)

Except for 5SE07, all surrogate spike recoveries were within QC control limits of 60 to 130 percent for water samples and 80 to 130 percent for sediment samples, thereby meeting QC acceptance criteria. Because holding times were exceeded, this sample was not reanalyzed to verify the surrogate recovery. Therefore, all results for 5SE07 were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

# XI. Target Compound Identification

Except for compounds detected in 5SW07D, all compounds detected in samples were verified with a second column confirmation analysis. Therefore, target compound identification QC acceptance criteria were met for the majority of samples. Target compounds were reported only when retention times were within their specified windows. For 5SW07D, tetrachloroethene was qualified as an estimate and flagged with a "J."

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture and dilution factors. Sample 5SE08 required a 500-fold dilution and sample 5SE08C required a 10-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

# XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Semivolatile Organic Compounds (EPA Method 8270) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SW07, 5SE07, 5SW08, 5SE08, 5SE08C, 5SW07 MS/MSD, and 5SE07 MS/MSD were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All water samples were extracted within 7 days; all sediment samples were extracted within 14 days. All samples were analyzed within 40 days. Therefore, all samples met extraction and analys.s holding time QC acceptance criteria.

## II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

## III. Initial Calibration

All initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

# IV. Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 2.

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed; therefore, no samples were qualified.

Table 2		
Compound	Percent Difference	
Continuing Calibration (7/4/92 1239)		
4-chloroaniline	+37.8	
3-nitroaniline	+52.1	
2,4-dinitrophenol	+46.9	
4-nitrophenol	+39.3	
4-nitroaniline	+51.2	
hexachlorobenzene	-30.7	
pyrene	-39.3	
di-n-octylphthalate	-34.0	
benzo(k)fluoranthene	-28.2	
Continuing Calibration (7/8/92 1054)		
4-chloroaniline	+49.9	
3-nitroaniline	+42.1	
2,4-dinitrophenol	+52.6	
4-nitroaniline	+42.0	
4,6-dinitro-2-methylphenol	+36.2	
Continuing Calibration (7/12/92 1109)		
3-nitroaniline	-51.4	
4-nitrophenol	<i>-</i> 29.7	
Carbazole	-26.1	
Di-n-octyphthalate	-30.4	
2,4,6-tribromophenol	-28.2	
Continuing Calibration (7/13/92 0626)		
2,4-dichlorophenol	+29.9	
4-chloroaniline	+32.8	
4-methylnapithalene	+28.5	
3-nitroaniline	+26.1	
2,4-dinitrophenol	+28.5	
4-nitrophenol	+41.0	
pentachlorophenol	+37.8	
3,3'-dichlorobenzidine	+33.2	

## V. Blanks

Except for n-nitrosodiphenylamine, the method and rinsate blanks associated with this analytical batch were contamination free. N-nitrosodiphenylamine was detected in two method blanks and one rinsate blank associated with these samples. N-nitrosodiphenylamine was detected in SBLKW (June 11) at a concentration of 2  $\mu$ g/L; SBLKS (June 13) at a concentration of 71  $\mu$ g/kg; and rinsate blank (5SE08C) at a concentration of 2  $\mu$ g/L. N-nitrosodiphenylamine results for the following samples were qualified as nondetected and flagged with "U":

- 5SW07 (10U)
- 5SW08 (10U)
- 5SE07 (540U)

# VI. System Monitoring Compounds (Surrogates)

Except for 5SE06 and 5SW02, all surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria. Sample 5SE06 contained 2,4,6-tribromophenol above QC control limits and 5SW02 contained 1,2-dichlorobenzene-d4 above QC control limits. According to the CLP functional guidelines, samples are qualified when two or more surrogate spike recoveries are outside QC control limits. Therefore, no sample results were qualified.

# VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria for accuracy. Except for one RPD, all RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for precision. For 5SE07 MS/MSD, the acenaphthene RPD (24 percent) was outside the RPD control limit of 19 percent. According to the CLP functional guidelines, samples are not qualified on the basis of MS/MSD results.

## X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

# XI. Target Compound Identification

All target compound RRTs were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture and dilution factors. Sample 5SE08 required a 20-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

## XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample results reported on Form I. Sample mass spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SE07 and 5SE08 contained three TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

#### XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# Polychlorinated Biphenyls (EPA Method 8080) Sediment Samples Batch 33061

Sediment sample 5SE07 was validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

This sample was extracted within 14 days and analyzed within 40 days, thereby meeting extraction and analysis holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limits of ±30 percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

All percent differences were within the control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All samples were spiked with tetrachloro-m-xylene and decachlorobiphenyl as surrogate compounds prior to analysis. All surrogate spike recoveries were within QC control limits of 60 to 150 percent, thereby meeting QC acceptance criteria.

# XI. Target Compound Identification

The presence of Aroclor 1260 was verified by a second column confirmation analysis and by comparing the sample chromatogram with a standard chromatogram of Aroclor 1260. Therefore, this sample met target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and correctly adjusted for percent moisture and dilution factors. Sample 5SE07 required a 2-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# BTEX and TFH Gasoline (EPA Modified Method 8015/8020/ADEC AK 101) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SW07D, 5SE08, 5SE08C, and 5SW08 were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All water samples were analyzed within 14 days. All sediment samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method, rinsate, and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# XI. Target Compound Identification

For BTEX analyses, compounds detected were verified by a second column confirmation analysis. Therefore, BTEX analyses met target compound identification QC acceptance criteria. TFH gasoline analyses do not require second column confirmation.

#### XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture and dilution factors. Sample 5SE08 required a 5-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. the retention time window and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only. Only OU5SE-08 was recalculated from this analytical batch using the new retention time window. No sample results required qualification based on recalculation.

#### XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SE08, 5SW08, 5SW08C, 5SE07 MS/MSD, and 5SW07 MS/MSD were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 50 to 150 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

For JP-4 analyses, MS/MSD recoveries and RPD for sediment analyses could not be determined because spiking compounds were diluted from the matrix. MS/MSD recoveries for water analysis of JP-4 were below the QC acceptance criteria of 60 to 120 percent recovery. The RPD for water analysis of JP-4 met the QC acceptance criteria of  $\pm 20$  RPD.

For diesel analyses, MS/MSD recovery for sediment analyses met the QC acceptance criteria of 60 to 120 percent. The RPD for sediment analyses exceeded the QC acceptance criteria of ±20 RPD. The MS/MSD recoveries for water analysis of diesel was below the QC acceptance criteria of 60 to 120 percent recovery. The RPD for water analyses of diesel exceeded the QC acceptance criteria of ±20 RPD.

According to the CLP functional guidelines, samples are not qualified on the basis of MS/MSD results, therefore no samples were qualified.

#### XI. Target Compound Identification

Target compounds were reported when retention times were within the specified windows and when chromatograms matched standard fingerprint pattern associated with diesel or JP-4. Therefore, all JP-4 analyses met target compound identification QC acceptance criteria.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time window and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match; consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit. Therefore, OU5SE-08 was qualified as biased low and flagged with a "J".

# XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture and dilution factors. Diesel results for samples 5SE07 and 5SE08 required a 5-fold dilution and JP-4 results for sample 5SE07 required a 2-fold dilution to bring high concentrations of target compounds into the linear range of the instrument.

# XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.

# Metals (EPA Methods 6010 and 7000 Series) Surface Water/Sediment Batch 33061

Surface water and sediment samples 5SE07, 5SW07, 5SW07S, 5SE08, 5SW08, 5SW08C, and 5SW08S were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

#### I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

#### II. Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### III. Preparation and Rinsate Blanks

Twelve different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Seven different elements were detected in the rinsate blank associated with these samples. However, contaminant concentrations were below CRDL.

Except for two selenium results, no samples required qualification as a result of blank contamination. The following selenium results were qualified as nondetected and flagged with a "U" as a result of preparation blank contamination:

- 5SE07 (0.22U)
- 5SE08 (0.25U)

# IV. ICP Interference Check Samples

All ICP interference check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD for water samples and  $\pm 35$  RPD for sediment samples, thereby meeting QC acceptance criteria.

#### VII. Matrix Spike Sample Analysis

For water samples, matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria. For sediment samples, except for lead and manganese, all matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria. The matrix spike recovery for lead (54.0 percent) was below the QC control limits, therefore lead results were qualified as biased low and flagged with an "L":

- 5SE07 (10.8L)
- 5SE08 (22.9L)

The matrix spike recovery for manganese (154.5 percent) was above the QC control limits, therefore manganese results were qualified as biased high and flagged with a "K":

- 5SE07 (905K)
- 5SE08 (650K)

## VIII. Furnace Atomic Absorption QC (Analytical Spikes)

Except for two thallium spike recoveries, all furnace analytical spike recoveries were within the QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria. Thallium analytical spike recoveries for 5SE07 (81.4 percent) and 5SE08 (83.5 percent) were below QC acceptance criteria. Thallium results for 5SE07 (0.26BL) and 5SE08 (0.23UL) were qualified as biased low and flagged with an "L" for detected results, a "UL" for nondetected results.

#### IX. ICP Serial Dilution

For water analyses, except for barium, all serial dilutions met QC acceptance criteria. The following barium results were qualified as estimates and flagged with a "J" for positive results:

- 5SW07 (200BJ)
- 5SW07S (160BJ)
- 5SW08 (123BJ)
- 5SW08C (0.65BJ)
- 5SW08S (28.0BJ)

For sediment analyses, except for calcium and zinc, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. The following calcium results were qualified as estimates and flagged with a "J" for positive results:

- 5SE07 (6340J)
- 5SE08 (5140J)

The following zinc results were qualified as estimates and flagged with a "J":

- 5SE07 (36.8J)
- 5SE08 (77.2J)

# X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture.

## General Chemistry-Alkalinity (EPA Method 310.1) Surface Water/Sediment Batch 33061

Surface water samples 5SW07, 5SW08, and sediment sample 5SE08C were validated from analytical batch 33061, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

#### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

## II. Initial and Continuing Calibration

All initial and continuing calibration recoveries were within QC control limits of 80 to 120 percent, described meeting QC acceptance criteria.

#### V. Laboratory Control Sample

LCS results were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

## Semivolatile Organic Compounds (EPA Method 8270) Soil and Groundwater Batch 33605

Soil and water samples 5SB19-52, 5SB19-10, and 5SB08-20C were validated from analytical batch 33605, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All water samples were extracted within 7 days; all soil samples were extracted within 14 days. All samples were analyzed within 40 days. Therefore, all samples met extraction and analysis holding time QC acceptance criteria.

#### II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

#### III. Initial Calibration

All initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

# IV. Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 3.

Table 3				
Compound	Percent Difference			
Continuing Calibration (8/21/92 1534)				
naphthalene	-30.8			
hexachlorocyclopentadiene	e -39.3			
acenaphthylene	-25.1			
3-nitroaniline	-54.5			
4-nitrophenol	-43.1			
pentachlorophenol	+36.0			
3,31-dichlorobenzidine	-44.4			
Continuing Calibration (8/24/92 1432)				
hexachlorobutadiene	-37.5			
hexachlorocyclopentadiene	<b>-42.1</b>			
4-chlorophenyl-phenylether	-32.2			

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed, therefore no samples were qualified.

#### V. Blanks

All method and rinsate blanks associated with these samples were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

#### X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

# XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

#### XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture.

#### XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SB19-10 and 5SB19-52 contained TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

#### XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# Volatile Organic Compounds (EPA Method 8010) Soil Batch 33632

Soil samples 5SB01-10, 5SB01-45D, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent relative standard deviations (RSDs) were within the QC control limits of ±30 percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

Except for several target compounds, the continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria. Target compounds that did not meet QC acceptance criteria are listed in Table 4.

Table 4			
Compound	Concentration	QC Control Limits	
Continuing Calibration (8/26/92 0951)			
chloromethane	7.8	11.9-28.1	
Continuing Calibration (8/26/92 2048)			
chloromethane	6.8	11.9-28.1	
Continuing Calibration (8/27/92 0815)	,		
chloromethane	6.6	11.9-28.1	
dichloromethane	15.4	· 15.5-24.5	
bromoform	13.3	14.7-25.3	

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 130, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries were within the method specified QC control limits, thereby meeting QC acceptance criteria for accuracy. Except for one RPD, all RPDs were within the QC control limits of ±30, thereby meeting QC acceptance criteria for precision. The RPD for 1,1,2,2-tetrachlorethane (31.9 percent) was outside the control limit of 30 percent. According to the CLP functions guidelines, samples are not qualified on the basis of MS/MSD results; therefore, no sample results were qualified.

#### XI. Target Compound Identification

No target compounds were detected above the method detection limit (MDL).

## XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## Semivolatile Organic Compounds (EPA Method 8270) Soil Batch 33632

Soil samples 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were extracted within 14 days and analyzed within 40 days. Therefore, all samples met extraction and analysis holding time QC acceptance criteria.

#### II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

#### III. Initial Calibration

All initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

# IV. Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 5.

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed, therefore no samples were qualified.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

Table 5					
Compound	Percent Difference				
Continuing Calibration (8/29/92 0809)					
napthalene acenaphthylene	-29.1 -25.7				
Continuing Calibration (8/31/92 1649)					
4-chloroaniline 3-nitroaniline 2,4-dinitrophenol 4-nitroaniline 4,6-dinitro-2-methylphenol 3,3'-dichlorobenzidine	+40.2 +42.8 +41.4 +27.6 +27.2 +25.9				
Continuing Calibration (9/1/92 0459)					
4-chloroaniline 3-nitroaniline 2,4-dinitrophenol 4-nitroaniline	+49.1 +56.9 +30.2 +27.6				

## VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries and RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

#### X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

# XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

#### XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture.

#### XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SB01-10, 5SB21-25, and 5SB21-48 contained TICs that were also detected in the method blank; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

#### XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# TBME, BTEX, and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Soil Batch 33632

Soil samples 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All soil samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limits of 80 to 120 percent and RPDs were within QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

## XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.

# TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Soil Batch 33632

Soil samples 5SB01-10, 5SB21-10, 5SB21-25, 5SB21-48, and 5SB21-25 MS/MSD were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 50 to 150 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

The MS/MSD recoveries were within the QC control limits of 60 to 120 percent and RPDs were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

## XI. Target Compound Identification

No target compounds were detected above the reporting limits.

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit; therefore, no sample results from this analytical batch were qualified.

## XV. System Performance

Chromatograms for each sample analysis and, therefore, instrument performance were considered acceptable.

# Metals (EPA Methods 6010 and 7000 Series) Soil Batch 33632

Soil samples 5SB01-25, 5SB21-10, 5SB21-25, 5SB21-35, and 5SB21-48 were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

#### I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

#### II. Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### III. Preparation Blanks

Seven different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Except for three mercury results, no samples required qualification as a result of blank contamination. The following mercury results were qualified as nondetected and flagged with a "U":

- 5SB21-10 (0.09U)
- 5SB21-25 (0.07U)
- 5SB21-48 (0.08U)

# IV. ICP Interference Check Samples

All ICP interference check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 35$  RPD for soil samples, thereby meeting QC acceptance criteria.

#### VII. Matrix Spike Sample Analysis

Except for manganese, all matrix spike recoveries were within QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

The matrix spike recovery for manganese (68.0 percent) was below the QC control limits, therefore the sample results were qualified as biased low and flagged with an "L":

- 5SB01-25 (410L)
- 5SB21-10 (551L)
- 5SB21-25 (413L)
- 5SB21-35 (490L)
- 5SB21-48 (658L)

# VIII. Furnace Atomic Absorption QC (Analytical Spikes)

Except for four selenium spike recoveries and one thallium spike recovery, all furnace analytical spike recoveries were within QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria. Selenium and thallium analytical spikes were below QC acceptance criteria, therefore, sample results were qualified as biased low and flagged with an "L" for positive results, a "UL" for nondetected results:

•	5SB21-10	selenium	(0.11UL)
•	5SB21-25	selenium	(0.15BL)
•	5SB21-35	selenium	(0.11UL)
•	5SB21-48	selenium	(0.24BL)
•	5SB21-48	thallium	(0.17UL)

#### IX. ICP Serial Dilution

Except for zinc, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. The following zinc results were qualified as estimates and flagged with a "J" for positive results:

- 5SB01-25 (47.1J)
- 5SB21-10 (62.9J)
- 5SB21-25 (48.8J)
- 5SB21-35 (45.3J)
- 5SB21-48 (81.3J)

## X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture.

### General Chemistry Total Organic Carbon (EPA Method 415.1) Soil Batch 33632

Soil samples 5SB01-5, 5SB01-15, and 5SB21-28 were validated from analytical batch 33632, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

## I. Holding Times

All samples were analyzed within 28 days, therefore meeting holding time QC acceptance criteria.

## II. Initial and Continuing Calibration

All initial and continuing calibration recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### III. Blanks

Method blanks were free of contamination, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample

All LCS results were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria.

# VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

10010DC4.ANC 33

## Volatile Organic Compounds (EPA Method 8010) Soil Batch 33744

Soil samples 5SB12-8D, 5SB16-0B, and 5SB12-8C were validated from analytical batch 33744, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent relative standard deviations (RPDs) were within the QC control limits of ±30 percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

Except for several target compounds, the continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria. Compounds that did not meet QC acceptance criteria are listed in Table 6.

Table 6			
Compound	Concentration	QC Control Limits	
Continuing Calibration (9/2/92 0913)			
dichlorodifluoromethane	3.7	15.0-25.0	
chloromethane	6.0	11.9-28.1	
vinyl chloride	12.1	13.7-26.3	
bromoform	10.6	14.7-25.3	
Continuing Calibration (9/3/92 0118)			
dichlorodifluoromethane	4.0	15.0-25.0	
chloromethane	5.1	11.9-28.1	
chloromethane	15.1	15.4-24.6	
bromoform	13.8	14.7-25.3	

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

#### V. Blanks

All method, travel, rinsate, and field banks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

### VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries for these samples were within QC control limits, thereby meeting QC acceptance criteria.

## XI. Target Compound Identification

No target compounds were detected above the method detection limit (MDL).

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Metals (EPA Methods 6010 and 7000) Groundwater Batch 33744

Water sample 5SB12-8C was validated from analytical batch 33744, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

#### I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, the sample met holding time QC acceptance criteria.

#### II. Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### III. Preparation and Rinsate Blanks

Eleven different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Seven different elements were detected in the rinsate blank. However, contaminant concentrations were below the CRDL. No samples required qualification as a result of blank contamination.

## IV. ICP Interference Check Samples

All ICP interference check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS recoveries were within the QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

### VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

# VIII. Furnace Atomic Absorption QC (Analytical Spikes)

All furnace analytical spike recoveries were within the QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria.

#### IX. ICP Serial Dilution

Except for barium, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. For sample 5SB12-8C the barium result was qualified as an estimate and flagged with a "UJ" for the nondetected result.

#### X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria.

# TBME, BTEX, and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Groundwater Batch 33756

Water samples 5SW03, 5SW03A, 5SW02D, 5SW02, and 5SW02 MS/MSD were validated from analytical batch 33756, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

#### I. Holding Times

All samples were analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

#### IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method and travel blank associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limits of 80 to 120 percent and RPDs were within QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

#### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. All detection limits were reported correctly.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

#### XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Metals (EPA Methods 6010 and 7000 Series) Surface Water Batch 33756

Water samples 5SW02, 5SW02-S, 5SW03, 5SW03-S, 5SW03A, and 5SW03A-S were validated from analytical batch 33756, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

#### I. Holding Times

Mercury analyses were performed within 28 days and all other metals were performed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

#### II. Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within the QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

#### III. Preparation Blanks

Eleven different elements were detected in the preparation blank. However, blank contaminant concentrations were below the contract required detection limit (CRDL).

Except for three aluminum, two iron, five potassium, two selenium, and two zinc results, no samples required qualification as a result of blank contamination.

The following aluminum results were qualified as nondetected and flagged with a "U":

- 5SW03 (67.4U)
- 5SW02 (109U)
- 5SW03A (59.8U)

The following iron results were qualified as nondetected and flagged with a "U":

- 5SW03A-S (10.7U)
- 5SW03-S (12.6U)

The following potassium results were qualified as nondetected and flagged with a "U":

- 5SW03-S (571U)
- 5SW03 (47.0U)
- 5SW03A (509U)
- 5SW02 (376U)
- 5SW03A-S (454U)

The following selenium results were qualified as nondetected and flagged with a "U":

- 5SW03 (0.78U)
- 5SW02 (0.69U)

The following zinc results were qualified as nondetected and flagged with a "U":

- 5SW03-S (12.4U)
- 5SW03A-S (4.6U)

## IV. ICP Interference Check Samples

All ICP interferences check sample recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

## VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

## VIII. Furnace Atomic Absorption QC (Analytical Spikes)

All furnace analytical spike recoveries were within the QC control limits of 85 to 115 percent, thereby meeting QC acceptance criteria.

#### IX. ICP Serial Dilution

Except for barium, all serial dilutions met the QC acceptance criteria of  $\pm 10$  percent difference. The following barium results were qualified as estimates and flagged with a "J" for positive results:

5SW03 (9.0BJ)
5SW03-S (8.8BJ)
5SW03A (9.3BJ)
5SW03A-S (8.8BJ)
5SW02 (9.5BJ)

#### X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria.

# Polychlorinated Biphenyls (EPA Method 8080) Sediment Batch 33781

Sediment samples 5SE05, 5SE04, 5SE04A, and 5SE05 MS/MSD were validated from analytical batch 33781, using the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted within 14 days and analyzed within 40 days, thereby meeting extraction and analysis holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All samples were spiked with tetrachloro-m-xylene and decachlorobiphenyl as surrogate compounds prior to analysis. All tetrachloro-m-xylene surrogate spike recoveries were within QC control limits of 60 to 150 percent, thereby meeting QC acceptance criteria. All decachlorobiphenyl surrogate spike recoveries were below the QC control limits. Therefore, all sample results were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

# VII. Matrix Spike/Matrix Spike Duplicates

All matrix spike recoveries were within the QC control limits of 50 to 150 and RPDs were within QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

10010DC4.ANC 43

## XI. Target Compound Identification

No target compounds were detected above the reporting limits.

# XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. Detection limits were reported correctly and all results were correctly adjusted for percent moisture.

# XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Volatile Organic Compounds (EPA Method 8010) Groundwater Batch 33799

Water samples 5MW5-30, 5MW5030D, 5MW16A-14, 5MW16A-14D, and 5CF02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent relative standard deviations (RPDs) were within the QC control limits of ±30 percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

Except for dichlorodifluoromethane, the continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria. For the continuing calibration performed on September 14, the dichlorodifluoromethane continuing concentration was 9.16; below the method specified limits of 15.0 to 25.0. Dichlorodifluoromethane was not detected in any of the samples. Therefore, no samples were qualified as a result of continuing calibration criterias.

#### V. Blanks

The method and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 130, thereby meeting QC acceptance criteria.

# XI. Target Compound Identification

No target compounds were detected above the method detection level (MDL).

# XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly.

# XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

## Purgeable Volatile Organic Compounds (EPA Method 524.2) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, 5WS02, 5WS01B, 5WS01D, 5WS02D, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

## II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

### III. Initial Calibration

All average relative response factors (RRFs) met QC acceptance criteria. Except for methylene chloride, the percent relative standard deviations (RSDs) were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria. Methylene chloride had a RSD of 60.3 percent.

According to the CLP functional guidelines, all compounds with RSDs greater than 30 percent should be qualified as estimates and positive results flagged with a "J." Methylene chloride was not detected in these samples, therefore qualification was not required.

# IV. Continuing Calibration

All continuing calibration RRFs met QC acceptance criteria. Except for methylene chloride, all percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria. Methylene chloride had a percent difference of 54.4 percent. According to the CLP functional guidelines, all compounds with continuing calibration percent differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Methylene chloride was not detected in these samples, therefore qualification was not required.

#### V. Blanks

Methylene chloride was detected in the method blank associated with this analytical batch. Methylene chloride was detected in SBLKW (September 11), at a concentration of 1.2  $\mu$ g/L. Methylene chloride results for the following samples were qualified as nondetected and flagged with a "U":

- 5WS01 (1.4U)
- 5WS01A (1.6U)
- 5WS02 (1.1U)

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries for these samples were within QC control limits of 70 to 130 percent, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicates

MS/MSD recoveries were within the QC control limits of 60 to 140 percent and relative percent differences (RPDs) were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

#### X. Internal Standards

All area counts and retention times were within the method specified QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

## XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 RRT units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

## XII. Compound Quantitation and Reported Detection Limits

All sample results were correctly calculated, thereby meeting compound quantitation acceptance criteria. All detection limits were reported correctly.

## XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# Semivolatile Organic Compounds (EPA Method 8270) Groundwater Batch 33799

Water samples 5MW5-30, 5MW16A-14, 5WS01, 5WS01A, 5WS02, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All water samples were extracted within 7 days and analyzed within 40 days. Therefore, all samples met extraction and analysis holding time QC acceptance criteria.

## II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

#### III. Initial Calibration

All initial calibration average RRFs and percent RSDs met QC acceptance criteria. Therefore, all initial calibration met QC acceptance criteria.

# IV. Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. The compounds that did not meet QC acceptance criteria are listed in Table 7.

Table 7		
Compound	Percent Difference	
Continuing Calibration (9/14/92 1009)		
4-chloroaniline hexachlorobutadiene hexachlorocyclopentadiene bis (2-ethylhexyl) phthalate	+41.6 -26.9 -28.4 -29.9	
Continuing Calibration (9/15/92 1529)		
4-chloroaniline 3-nitroaniline 4-nitroaniline	+55.7 +31.2 +43.9	

According to the CLP functional guidelines, all compounds with continuing calibration percentage differences greater than 25 percent should be qualified as estimates and positive results flagged with a "J." Compounds that exceeded calibration criteria were not detected in any of the samples analyzed, therefore no samples were qualified.

#### V. Blanks

Except for diethylphthalate, the method blank associated with this analytical batch was contamination free. Diethylphthalate was detected in method blank SBLKW1 (September 5) at a concentration of 2  $\mu$ g/L. The diethylphthalate result for 5WS02 (10 U) was qualified as nondetected and flagged with a "U."

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries and RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

### X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards.

## XI. Target Compound Identification

All target compound RRTs were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra and met QC acceptance criteria. Therefore, all samples met target compound identification QC acceptance criteria.

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and relative response factor. Therefore, all samples met compound quantitation QC acceptance criteria. All detection limits were reported correctly.

# XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample mass spectra for each TIC identi-

fied matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5WS02, 5WS01, 5WS01A, 5MW16A-14, and 5MW5-30 contained TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

## XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# TBME, BTEX, and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Groundwater Batch 33799

Water samples 5MW5-30, 5MW5-30D, 5MW16A-14, 5MW16A-14D, and 5CF02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RGDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method and travel blank associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

Except for 5MW5-30, all surrogate spike recoveries were within QC control limits of 80 to 120 percent. Therefore, the majority surrogate spike recoveries met QC acceptance criteria. All results for 5MW5-30 were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

## XI. Target Compound Identification

For BTEX analyses, compounds detected were verified by a second column confirmation analysis. Therefore, BTEX analyses met target compound identification QC acceptance criteria. TBME and TFH gasoline analyses do not require second column confirmation.

## XII. Compound Quantitation and Reported Detection Limits

Sample results were correctly calculated, thereby meeting compound quantitation acceptance criteria. All detection limits were reported correctly.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# TFH Gasoline (EPA Modified Method 8015/ADEC Method AK 102) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, 5WS02, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blanks associated with these analytical batches were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

The MS/MSD recoveries were within the QC control limits of 80 to 120 percent and RPD were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the reporting limits.

### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above reporting limits. Detection limits were reported correctly.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Groundwater Batch 33799

Water samples 5MW5-30, 5MW16A-14, 5WS01, 5WS01A, 5WS02, and 5WS02 MS/MSD were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 50 to 150 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

For JP-4 analyses, MS/MSD recoveries were below the QC acceptance criteria of 60 to 120 percent. The RPD for this analysis met the QC acceptance criteria of ±20 RPD. According to the functional guidelines, samples are not qualified on the basis of MS/MSD results. For diesel analyses, MS/MSD recoveries were within the QC control limits of 60 to 120 percent and RPDs were within the QC control limits of ±20, thereby meeting QC acceptance criteria.

## XI. Target Compound Identification

No target compounds were detected above the reporting limit.

### XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limit. Detection limits were reported correctly.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit; therefore, no sample results from this analytical batch were qualified.

## XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.

# Cations (EPA Methods 6010 and 7000) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, and 5WS02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

All samples were analyzed for the following cations by Inductively Coupled Plasma (ICP) method; calcium, iron, magnesium, potassium, and sodium.

## I. Holding Times

All metal analyses were analyzed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

#### II. Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

## III. Preparation Blanks

Two different elements were detected in at least one of the preparation blanks. However, blank contaminant concentrations were below the CRDL.

No samples required qualification as a result of blank contamination.

## IV. ICP Interference Check Samples

All ICP interference check sample recoveries were within the QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# V. Laboratory Control Sample (LCS)

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

## VII. Matrix Spike Sample Analysis

All matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

#### IX. ICP Serial Dilution

All serial dilutions met the QC control acceptance criteria of  $\pm 10$  percent difference.

# X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria.

## General Chemistry-Conventional Parameters (EPA Method 310.1/300.0) Groundwater Batch 33799

Water samples 5WS01, 5WS01A, and 5WS02 were validated from analytical batch 33799, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses.

All samples were analyzed for alkalinity, bicarbonate, carbonate, chloride, nitrate, and sulfate.

### I. Holding Times

All nitrate analyses were performed within 2 days; all alkalinity, bicarbonate, and carbonate analyses were performed within 14 days, and all chloride and sulfate analyses were performed within 28 days, therefore all samples met holding time QC acceptance criteria.

## II. Initial and Continuing Calibration

All initial and continuing calibration recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

#### III. Blanks

Methods blanks were free of contamination, thereby meeting QC acceptance criteria.

## V. Laboratory Control Sample

All LCS recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

## VI. Duplicates

All duplicate results were within the QC control limits of  $\pm 20$  RPD, thereby meeting QC acceptance criteria.

## VIII. Matrix Spike Recovery

Chloride, nitrate, and sulfate matrix spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria. Matrix spikes are not performed with alkalinity, bicarbonate, and carbonate analyses.

# Volatile Organic Compounds (EPA Method 8010) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09B, 5SW09, 5SW09D, 5SW10, 5SE09, 59SE09A, 5SE10, 5SW10 MS/MSD, and 5SE10 MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent relative standard errors (RSEs) were within the QC control limits of ±30 percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

Except for several target compounds, the percent difference for all compounds were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria. Target compounds that did not meet QC acceptance criteria are listed in Table 8.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

#### V. Blanks

The method and travel blanks associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 60 to 130 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the method specified QC control limits and relative percent differences (RPDs) were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

Table 8		
Compound	Percent Difference	
Continuing Calibration (9/15/92 FA RTX-1)		
chloromethane vinyl chloride 1,1-dichloroethene tetrachloroethene	34.6 22.2 19.4 22.8	
Continuing Calibration (9/16/92 GC3A RTX-1)		
chloromethane vinyl chloride bromomethane chloroethane 1,1-dichloroethene chlorobenzene	31.4 24.4 17.0 19.7 17.5 18.0	
Continuing Calibration (9/16/92 GC3C RESTEK 502.2)		
bromomethane/chloromethane 1,1-dichloroethene methylene chloride trans-1,2-dichloroethene 1,1-dichlorethane cis-1,2-dichloroethene chloroform 1,2-dichloroethane carbon tetrachloride 1,2-dichloropropene bromodichloromethane	23.0 29.8 38.5 21.1 23.1 20.4 21.4 23.7 19.6 17.1 18.5	
trichloroethene cis-1,3-dichloropropene 1,1,2-trichloroethane dibromochloromethane 1,2-dibromoethane bromoform 1,1,2,2-tetrachloroethene	17.8 19.7 18.7 22.9 26.9 20.7 15.7	

# XI. Target Compound Identification

Compounds detected in samples were verified by a second column confirmation analysis, thereby meeting target compound identification QC acceptance criteria.

# XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. For water samples, all detection limits were reported correctly. For soil samples, detection limits and results were reported without adjustment for percent moisture.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# Semivolatile Organic Compounds (EPA Method 8270) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09, 5SW10, 5SE09RX, 5SE09ARX, 5SE10R, 5SW10 MS/MSD, and 5SE10RX MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All water samples were extracted within 7 days and analyzed within 40 days. Therefore, all water samples met extraction and analysis holding time QC acceptance criteria. All soil samples exceeded the 14-day extraction holding time requirement and were analyzed within 40 days. Therefore, all soil sample results were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

## II. GC/MS Tuning

GC/MS tuning was performed for every 12-hour period. Each GC/MS tune met ion abundance QC acceptance criteria.

#### III. Initial Calibration

Except for 2,4-dinitrophenol, all initial calibration average relative response factors (RRFs) and percent relative standard deviations (RSDs) met QC acceptance criteria. Therefore, the majority of initial calibration results met QC acceptance criteria. The percent RSD for 2,4-dinitrophenol was 31.6, which was outside the QC control limit of  $\pm 30$  percent RSD. 2,4-Dinitrophenol was not detected in any of the samples analyzed, therefore no samples were qualified.

## IV. Continuing Calibration

Except for several target compounds, all continuing calibration RRFs and percent differences met continuing calibration QC acceptance criteria. The compounds that did not meet QC acceptance criteria are listed in Table 9.

Where continuing calibrations exceeded QC acceptance criteria, no target compounds were detected in the samples. Therefore, no samples were qualified as a result of continuing calibrations.

Table 9		
Compound	Percent Difference	
Continuing Calibration (10/5/92 948)		
2,4-dinitrophenol 4-nitroaniline 4,6-dinitro-2-methylphenol	72.9 43.4 26.4	
Continuing Calibration (10/5/92 1005)		
nitrobenzene isophorone bis (2-chloroethoxy)methane 4-chloro-3-methylphenol 4-nitroaniline	36.7 31.0 25.4 31.4 37.5	
Continuing Calibration (10/22/92 2121)		
3,3'-dichlorobenzedine	+27.2	

#### V. Blanks

Except for di-n-buytlphthalate, method blanks associated with this analytical batch were contamination free. Di-n-buytlphthalate was detected in SBLK4RX (October 19) at a concentraion of 39  $\mu$ g/kg. Di-n-buytlphthalate results for 5SE09RX (420UJ) and 5SE09ARX (420UJ) were qualified as nondetected and flagged with a "U" as a result of method blank contamination.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the CLP QC control limits, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicate

Except for two MSD recoveries and nine RSDs, all MS/MSD recoveries and RPDs were within the CLP QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision. According to the CLP functional guidelines, samples are not qualified on the basis of MS/MSD results, therefore no sample results were qualified.

#### X. Internal Standards

All area counts and retention times were within the CLP QC control limits. Therefore, all samples met QC acceptance criteria for internal standards. Sample reten-

tion times were not reported by the laboratory on computer printouts. Therefore, it was not possible to verify if retention times were reported correctly.

## XI. Target Compound Identification

All target compound relative retention times (RRTs) were within 0.06 units of the standard RRT. All target compound mass spectra matched standard mass spectra. Therefore, all samples met target compound identification QC acceptance criteria.

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated using the correct internal standard, quantitation ion, and RRF. Therefore, all samples met compound quantitation QC acceptance criteria. For water samples, all detection limits were reported correctly. For soil samples, all detection limits were correctly adjusted for percent moisture.

# XIII. Tentatively Identified Compounds (TICs)

All sample TICs met QC acceptance criteria. A library search was conducted for each sample result reported on Form I. Sample mass spectra for each TIC identified matched standard mass spectra. When sample mass spectra did not match standard mass spectra, the TIC was designated as an "unknown." Samples 5SE09ARX, 5SE09RX, and 5SE10RX contained TICs that were also detected in the method blanks; these TICs were rejected and flagged with an "R." All TICs detected are considered estimated concentrations and flagged with a "JN."

# XV. System Performance

Chromatograms and mass spectra from each sample analysis and instrument performance were considered acceptable.

# BTEX and TFH Gasoline (EPA Modified Method 8015/8020/ADEC Method AK 101) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09B, 5SW09D, 5SW09D, 5SW10, 5SE09, 5SE09A, 5SE10, 5SW10 MS/MSD, and 5SE10 MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

### I. Holding Times

All water samples were analyzed within 14 days. All soil samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

For TFH gasoline analyses, all percent RSDs were within the QC control limit of  $\pm 30$  percent. For BTEX analyses, percent RSEs were within the QC control limits of  $\pm 30$  percent. Therefore, all compounds met initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the QC control limit of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method and travel blank associated with this analytical batch were free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limits of 60 to 120 percent and all RPDs were within the QC control limits of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

## XI. Target Compound Identification

No target compounds were detected above the reporting limits.

## XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the reporting limits. For water samples, detection limits were reported correctly. For soil samples, detection limits and results were reported without adjustment for percent moisture.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for Method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window was established that included peaks similar to standards used for both methods. TFH-gasoline recalculations affected results reported above the detection limit only; therefore, no sample results were recalculated from this analytical batch.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Surface Water/Sediment Batch 33862

Surface water and sediment samples 5SW09, 5SW10, 5SE09, 5SE09A, 5SW10 MS/MSD, and 5SE10 MS/MSD were validated from analytical batch 33862, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSEs were within the QC control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All continuing calibration compound recoveries were within the QC control limit of 85 to 115 percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

Except for 5SE10 (48 percent), 5SW11 (209 percent), and 5SE11 (38 percent), all surrogate spike recoveries were within the QC control limits of 50 to 150 percent. Therefore, the majority of surrogate spike recoveries met QC acceptance criteria.

Sample results were qualified as estimates and flagged with a "J" for positive results, a "UJ" for nondetected results.

# VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries were within the QC control limit of 60 to 120 percent and all RPDs were within the QC control limit of  $\pm 20$ , thereby meeting QC acceptance criteria for both accuracy and precision.

## XI. Target Compound Identification

Target compounds were reported when retention times were within the specified windows and when the chromatograms matched standard fingerprint pattern associated with diesel or JP-4. Therefore, all samples met target compound identification QC acceptance criteria.

All TFH diesel analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit. Therefore, OU5SE-09A was qualified as biased low and flagged with a "J".

## XII. Compound Quantitation and Reported Detection Limits

Sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. For soil samples, detection limits and results were reported without adjustment for percent moisture. For 5SE09A, the detection limit for TFH diesel was raised from 1  $\mu$ g/kg to 3  $\mu$ g/kg. Due to the presence of JP-4 and unknown hydrocarbons in the sample, it was not possible to confidently identify peaks found in the diesel range, therefore the TFH diesel detection limit was raised.

# XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.

# Metals (EPA Methods 6010 and 200.7) Soil Batch 33822

Soil samples SL19HA, SL19HN, and SL20FA were validated from analytical batch 33822, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Inorganic Analyses. Samples were analyzed for 17 metals by ICP.

## I. Holding Times

All metals were analyzed within 6 months. Therefore, all samples met holding time QC acceptance criteria.

### II. Calibration Check

Each instrument was calibrated at the correct frequency and with the proper number of blanks and standards for each element. All initial and continuing calibration recoveries were within QC control limits of 90 to 110 percent. Therefore, all calibrations met QC acceptance criteria.

## III. Preparation Blanks

Three different elements were detected in the preparation blank. No samples required qualification as a result of blank contamination.

# IV. ICP Interference Check Samples

All ICP interference check samples recoveries were within QC control limits of 80 to 120 percent, thereby meeting QC acceptance criteria.

# V. Laboratory Control Sample (LCS)

All LCS results were within QC control limits, thereby meeting QC acceptance criteria.

# VI. Duplicates

All duplicate results were within the QC control limit of  $\pm 35$  RPD, thereby meeting QC acceptance criteria.

## VII. Matrix Spike Sample Analysis

Post-digestion matrix spikes were performed instead of predigestion matrix spikes. All post-digestion matrix spike recoveries were within the QC control limits of 75 to 125 percent, thereby meeting QC acceptance criteria.

#### IX. ICP Serial Dilution

A serial dilutions was not performed with this analytical batch.

# X. Sample Result Verification

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were correctly adjusted for percent moisture.

# Volatile Organic Compounds (EPA Method 8010) Soil Batch 55500

Water and soil samples SL04S12ND, SL04S12A, SL04S12AA, and SL04S12N were validated from analytical batch 55500, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were analyzed within 14 days, therefore all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent relative standard deviations (RSDs) were within the QC control limits of ±30 percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

The continuing calibration concentration for all compounds were within the method specified QC control limits, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within QC control limits of 71 to 121 for water samples and 52 to 129 for soil samples, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicate

All MS/MSD recoveries and RPDs were within the method specified QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

No target compounds were detected above the method detection limit (MDL).

# XII. Compound Quantitation and Reported Detection Limits

No target compounds were detected above the MDL. All detection limits were reported correctly and all results were correctly adjusted for percent moisture.

## XV. System Performance

Chromatograms from each sample analysis and instrument performance were considered acceptable.

# BTEX and TFH Gasoline (EPA Modified Method 8015/8020/ADEC AK 101) Soil Batch 55500

Soil samples SL04S12A, SL04S12AA, and SL04S12N were validated from analytical batch 55500, following the criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All soil samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the control limit of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

# VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 50 to 120 percent, thereby meeting QC acceptance criteria.

## VII. Matrix Spike/Matrix Spike Duplicates

All MS/MSD recoveries and RPDs were within the method specified QC control limits, thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

Target compounds were reported only when retention times were within their specified windows. Therefore, target compound identification QC acceptance criteria were met for all samples.

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results and detection limits were reported correctly and all results were correctly adjusted for percent moisture. Samples SL04S12A and SL04S12AA required a medium-level (tenfold dilution) analysis to bring high concentrations of target compounds into the linear range of the instrument.

All TFH gasoline analyses were calculated incorrectly because Method 8015/8020 was used instead of ADEC Method AK 101. The retention time windows and type of calibration standard used for method 8015/8020 differed when compared to the ADEC method. The retention time window was larger for the EPA method and included the major range of gasoline peaks when compared to the ADEC standards. A new retention time window could not be established for samples analyzed by Superior Analytical, and results reported above the detection limit could not be recalculated. Therefore, TFH-gasoline results for SL04S12A and SL04S12AA are considered estimates and flagged with a "J".

## XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.

# TFH Diesel and JP-4 (EPA Modified Method 8015/ADEC Method AK 102) Soil Batch 55500

Water and soil samples SL04S12ND, SL04S12A, SL04S12AA, SL04S12N, and SL04S12NA were validated from analytical batch 55500, following criteria outlined in the U.S. EPA Functional Guidelines for Evaluating Organic Analyses.

## I. Holding Times

All samples were extracted and analyzed within 14 days. Therefore, all samples met holding time QC acceptance criteria.

#### III. Initial Calibration

All percent RSDs were within the QC control limits of  $\pm 30$  percent, thereby meeting initial calibration QC acceptance criteria.

## IV. Continuing Calibration

All percent differences were within the QC control limits of  $\pm 15$  percent, thereby meeting continuing calibration QC acceptance criteria.

#### V. Blanks

The method blank associated with this analytical batch was free of contaminants, thereby meeting QC acceptance criteria.

## VI. System Monitoring Compounds (Surrogates)

All surrogate spike recoveries were within the QC control limits of 50 to 120 percent, thereby meeting QC acceptance criteria.

# VII. Matrix Spike/Matrix Spike Duplicates

The MS/MSD recoveries were within the QC control limits of 61 to 145 percent and RPDs were within the QC control limits of  $\pm 14$ , thereby meeting QC acceptance criteria for both accuracy and precision.

# XI. Target Compound Identification

Target compounds were reported only when retention times were within their specified windows. JP-4 results for samples SL04S12A, SL04S12AA, and SL04S12N

were flagged with an "X" because sample JP-4 chromatograms did not match standard JP-4 chromatograms. JP-4 results for these samples were qualified as non-detects and the original "X" qualifier was replaced with a "J".

## XII. Compound Quantitation and Reported Detection Limits

All sample results were calculated correctly, thereby meeting compound quantitation acceptance criteria. All sample results were reported correctly and all results were correctly adjusted for percent moisture. Detection limits were raised for samples SL04S12A (108-fold), SL04S12AA (143-fold), and SL04S12N (4-fold) due to the presence of interferents in the samples.

All TFH gasoline analyses were calculated incorrectly because Method 8015 was used instead of ADEC Method AK 102. The retention time windows and type of calibration standards used differed when compared to the ADEC method. TFH diesel results could not be recalculated because the chromatographic peaks from Method 8015 and the ADEC method did not match. Consequently, a new retention time window could not be established. Because the ADEC-defined retention time window is larger than the original retention time, it is expected that TFH diesel results are biased low. This only affects results reported above the detection limit. Therefore, SL04S12A, SL04S12AA, SL04S12N, SL04S12NA, and SL04S12ND were qualified as biased low and flagged with an "L".

# XV. System Performance

Chromatograms for each sample analysis and instrument performance were considered acceptable.



## Appendix J

## **AQUATIC SURVEY DATA**

Maps of Sampling Locations
Field Survey Data
Quantitative Results For Macroinvertebrate Surveys
Rapid Bioassessment Protocol 1 Data—Spring 1992
Rapid Bioassessment Protocol 1 Data—Late Summer 1992



















rendorl ous					
*= SiU sauple	- pent				
*= 5pd 111	voitts				
	3				
	<u> </u>			<b>₩</b>	
		<u></u>		, <u>k</u>	
	<b></b>	<u> </u>			
5 SW/SE 09				( <del>V</del>	
LOWER BLUFF		!		, <del>\</del>	
DEMINAGE DIEN					
				<b>.</b>	
			<b>—</b>		
<u> </u>		:	×		
		: 	×		
<del></del>			×		
			* *		·
			*	1	
<b>\</b>				<del>.</del>	
		<u> </u>		#** 1 <b>*</b>	
		3	*	<del>,</del>	
		77.5			
		7 7		> •	
		3		· 	
				·	<del></del> .
· · · · · · · · · · · · · · · · · · ·					
				<u> </u>	
				<b>6</b> ·	
				• · · · · · · · · · · · · · · · · · · ·	
				•	
			[[	,	
	,				

FIELD SURVEY DATA

TABLE J.1. Phy	Physical Measurements Observed in Ship Creek-1992 (Spring and Fall)	ts Observed In Sh	p Creek-1992 (Spr	ing and Fall)	
			Stations		
	5 MI01	5 MI02	5 MIO3	5 MI11	5 MI12
Riparian Zone/Water					
Predominant Surrounding Land Use	Forest/Wetland	Commercial	Commercial	Industrial	Commercial
High Water Mark (m)	0.5-1	0.5-1	0.5-1	1	0.5-1
Canopy Cover	Open	Open	Open	Open	
River Width (m)	39	30	25	10	23
River Depth (m)	0.5 (avg)	0.5 (avg)	0.5 (avg)	0.5 (avg)	0.5 (avg)
Undercut Banks	Present	Present	Present	Present	Present
Sediment/Substrate					
Sediment Odors	Normal	Normal	Normal	Normal	Normal
Sediment Oils	Absent	Absent	Absent	Absent	Absent
Sediment Deposits	Some sand	Some sand	Some sand	Some sand	Some sand
Inorganic Substrate Components (%) Cobble Gravel Sand Silt	10 80 <10 1 >	5 80 <15 <1	10 80 <10 <1	10 80 10 0	70 25 5 0
Organic Substrate Components (%) Detritus (CPOM) Muck-Mud (FPOM)	> 90 > 10	100	100 0	100	100

TABLE	J.2. Water Qualit	y Measurements	in Situ) Take	n in Ship Creek-1	1992
Station	Sampling Period	DO (mg/L)	Temp (*C)	Cond (umhos/cm)	pH
5 MI01	Spring	12.8	5.6	58	6.4
	Fall	11.1	8.5	89	7.4
5 MI02	Spring	12.8	7.3 _.	70	6.6
	Fall	10.2	10.0	109	7.1
5 MI03	Spring	12.8	7.2	99	6.7
	Fall	8.7	8.7	110	7.1
5 MI11	Spring	NS	NS	NS	NS
	Fall	8.9	9.0	390	7.7
5 MI12	Spring	NS	NS	NS	NS
	Fall	11.1	8.3	101	7.3

TABLE J.	3. Habita	Assessm	ent, Ship (	Creek-S	itation	5 MI01		
				Categ	ory			-
Habitat Parameter	Exce	ellent (F)	Goo S	d (F)	s	Fair (F)	s	Poor (F)
Substrate								
Bottom substrate/available cover		(18)	15				_	
Embeddedness		(18)	15					
Flow/velocity	20	(18)						
Channel Morophology								
Channel alteration	14	(12)						
Bottom scouring and deposition			10	(10)				
Pool/riffle, run/bend ratio	12	(15)						
Bank Structure								
Bank stability		(9)	8					
Bank vegetation	9	(10)						
Streamside cover			8			(5)		-
Column totals	55	(100)	56	(10)				
Total Score 111	(115)	S (F)	= Spring = Fall					

TABLE J.3. (Cont'd) Habitat Assessment, Ship Creek-Station 5 MI02								
		Category						
Mahitat Dayamatan	Excell S		Good		F S	air (5)		oor (5)
Habitat Parameter	3	(F)	S	(F)		(F)	S	(F)
Substrate								
Bottom substrate/available cover	18	(16)						
Embeddedness			13	(13)				
Flow/velocity	17	(15)						
Channel Morophology								
Channel afteration	13	(13)	•					_
Bottom scouring and deposition		(13)	9					
Pool/riffle, run/bend ratio			10	(11)				
Bank Structure								
Bank stability			7	(8)				
Bank vegetation			7	(8)				
Streamside cover			7			(5)		
Column totals	48	(57)	53	(40)		(5)		
Total Score 101	(102)	S (F)	= Spring = Fall					

Hat	TABLE J.3. (Cont'd) Habitat Assessment, Ship Creek-Station 5 Mi03							
				Categ	ory			
Habitat Parameter	Excelle S		Good		S	air (5)	Poor S (F)	
		(F)	3	(F)	3	(F)	S (F)	
Substrate								
Bottom substrate/available cover	16			(15)				
Embeddedness	16			(15)				
Flow/velocity	18	(16)						
Channel Morophology		-						
Channel alteration	13	(13)						
Bottom scouring and deposition			8	(11)				
Pool/riffle, run/bend ratio			9	(10)				
Bank Structure								
Bank stability				(8)	5			
Bank vegetation			8	(8)				
Streamside cover			8			(4)		
Column totals	63	(29)	33	(67)	5	(4)		
Total Score 101	(100)	S (F)	= Spring = Fall					

Hat		J.3. (Cont'd) Ship Creek-Station	5 <b>M</b> i11	
		Categ	Jory	
Habitat Parameter	Excellent S (F)	Good S (F)	Fair S (F)	Poor S (F)
nabitat Parameter	S (F)	S (F)	S (F)	S (F)
Substrate				
Bottom substrate/available cover		(11)		
Embeddedness			(10)	
Flow/velocity			(10)	
Channel Morophology			<u> </u>	
Channel alteration			(7)	
Bottom scouring and deposition		(11)		
Pool/riffle, run/bend ratio		(10)		
Bank Structure		•		
Bank stability			(5)	
Bank vegetation			(5)	
Streamside cover			(5)	
Column totals		(32)	(42)	
Total Score (74)	S = Sp (F) = Fall	ring (no assessmen	it)	

Hab	TABLE J. Itat Assessment, S	3. (Cont'd) hip Creek-Station	5 MI12	
		Cateç	jory	
Habitat Parameter	Excellent S (F)	Good S (F)	Fair S (F)	Poor S (F)
	S (F)	S (F)	S (F)	S (F)
Substrate				
Bottom substrate/available cover		(15)		
Embeddedness		(15)		
Flow/velocity	(15)			
Channel Morophology				
Channel alteration	(14)	•		
Bottom scouring and deposition		(11)		
Pool/riffle, run/bend ratio		(11)		
Bank Structure				
Bank stability		(8)		
Bank vegetation	(9)			
Streamside cover		(6)		
Column totals	(38)	(66)		
Total Score (104)	S = Spri (F) = Fall	ng (no assessmen	nt)	

TABLE J.4. Physical Charact	teristics, Beaver Pond-1	992
	Sta	tions
	5 MI04	5 MI05
Riparian Zone/Water	-	
Predominant Surrounding Land Uses	Commercial ¹	Commercial ¹
Dam Present (Beaver)	Yes	Yes
Canopy Cover	Open	Open
Sediment/Substrate		
Sediment Odors	Normal	Petroleum
Sediment Oils	Slight	Moderate
Sediment Deposits	None	Detritus/sand
Inorganic Substrate Components (%) Gravel · Sand Silt Clay	20 50 20 10	10 90
Organic Substrate Components (%) Detritus (CPOM) ² Muck-Mud (FPOM) ³	20 80	80 20

¹Railroad grade to the north; golf course to the south ²Coarse particulate organic matter ³Fine particulate organic matter

TABLE J.5. Physical	Characteristics, S	eeps and Pools-19	92
		Stations	<u> </u>
	5 MI06	5 MI07	5 MI08
Riparian Zone / Water			
Predominant Surrounding Land Uses	Commercial ¹	Commercial ¹	Commercial ¹
Canopy Cover	Shaded	Open	Shaded
Sediment / Substrate			
Sediment Odors	Petroleum	None	Petroleum
Sediment Oils	None	. None	None
Sediment Deposits	Iron bacteria	None	Detritus
Inorganic Substrate Components (%) ² Gravel Sand	10	10 80	
Silt Clay	80 10	10	90 10
Organic Substrate Components (%)2			
Detritus (CPOM) ² Muck-Mud (FPOM) ³	80 20	10 90 ³	90 10

¹Alaskan Railroad tracks and yard to south of these sites; Air Force to the north

²Qualitative assessment ³Very little organic material present; that present was FPOM

TABLE J.6. Water Quality Measurements and Qualitative Assessments Seeps and Pools—1992							
	Samulina		Stations				
Parameters	Sampling Period	5 MI06	5 MI07	5 MI08			
D.O. (mg/L)	Spring	4.5	9.6	2.8			
Temperature (°C)	Spring	10.0	14.0	12.5			
Conductivity (umhoes/cm)	Spring	382	425	435			
pH	Spring	6.9	7.1	7.0			
Water odors		Petroleum	None	Petroleum			
Water surface oils		Sheen	None	None			



## 1. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force 5/28/92

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta	_			_
Lumbriculidae	4		1	5
Kincaidiana hexatheca				
Lumbriculus sp. Niadidae				
Nais sp.	2	18	21	41
Nais communis	4	10	21	<b>4.</b>
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.	1	2	1	4
Ephemerellidae				
Drunella doddsi	1		1	2
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.			1	1
Epeorus sp.	4	1		5
Stenonema sp.				

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
Plecoptera				
Choroperlidae				
Suwallia sp.	3		3	6
Nemouridae				
Zapada sp.				
Perlodidae				
Isoperla sp.				
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.				
Hydropsychidae				
Cheumatopsyche sp.				
Limnephilidae				
Ecclisomyia sp.				
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.			1	1
Diptera			-	_
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.	1			1
Chironomidae	8	11		19
Brillia sp.	0			
Cardiocladius sp.				
Chaetocladius sp. Chironominae A				
Chironomus sp.	5	8	1	14
Cricotopus sp.	3	1	4	5
Diamesa sp.		-	-	3
Dicrotendipes sp.				
Diplocladius cultriger Eukiefferiella sp.				
Eukiefferiella				
cf. claripennis sp.gp.	1	2	2	5
Eukiefferiella gracei sp.gp.	7	2	4	,
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B	2	3		5
Orthocladius sp.	2 2	.3		2
Pagastia sp.	2			2
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.				
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum				
Potthastia sp.				
Procladius sp.				
Prodiamesa sp.				

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.				
Synorthocladius semivirens				
Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.	1			1
Empididae				
Chelifera sp.				
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.			1	1
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae			1	1
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	35	46	38	119
		•		4.0
TOTAL NUMBER OF SPECIES	13	8	12	18

Table 2. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force Base, 9/01/92.

SPECIES	STA 1 REP1	STA 1 REP2	STA 1 REP3	STA 1 TOTAL	
NEMATODA					
ANNELIDA					
Oligochaeta					
Lumbriculidae	18	1	7	26	
Kincaidiana hexatheca	1			1	
Lumbriculus sp.					
Niadidae	2	•			
Nais sp. Nais communis	2	2		4	
Nais cf.simplex					
Pristinella sp.					
Slavina appendiculata					
Stylaria lacustris					
Tubificidae w.h.c.					
Tubificidae w.o.h.c.	1		2	3	
Limnodrilus sp.	_			_	
Limnodrilus cf. hoffmeisteri					
Rhyacodrilus montana					
PLATYHELMINTHES					
Turbellaria					
Tricladida			1	1	
ARTHOPODA					
Arachnoidea					
Hydracarina	1	1	1	3	
Crustacea					
Amphipoda					
Talitridae					
Hyalella azteca					
Cladocera					
Daphnidae					
Daphnia cf. pulex					
Cupepoda Cyclopoida					
Ostracoda					
osciacoda					
Insecta					
Ephemeroptera					
Baetidae			_	_	
Baetis sp.			3	3	
Ephemerellidae			2.4	200	
Drunella doddsi	99	69	34	202	
Ephemerella inermis			6	6	
Heptageniidae	13	9	6	28	
Cinygmula sp. Epeorus sp.	13 42	23	26	28 91	
Epecrus sp. Stenonema sp.	44	23	20	31	
Plecoptera					
Choroperlidae					
Suwallia sp.					
vanacea up:					

Table 2. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force Base, 9/01/92.

Nemouridae				
Zapada sp.				
Perlodidae			_	_
Isoperla sp.			1	1
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.	21	12	23	56
Hydropsychidae	_			_
Cheumatopsyche sp.	1			1
Limnephilidae	á			•
Ecclisomyia sp.	1			1
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.	1	-		1
Chironomidae	3	1		4
Brillia sp.	_			4
Cardiocladius sp.	1			1
Chaetocladius sp.				
Chironominae A				
Chironomus sp.				
Cricotopus sp.				
Diamesa sp.				
Dicrotendipes sp.				
Diplocladius cultriger	1			1
Eukiefferiella sp. Eukiefferiella	<b>+</b>			1
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.				
Glyptotendipes sp. Orthocladiinae A				
Orthocladinae B				
Orthocladius sp. Pagastia sp.	2		5	7
Pagastiella sp.	2		3	,
Paramerina sp.				
Paracladopelma sp.				
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum				
Potthastia sp.				
Procladius sp.				
Prodiamesa sp.				
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.				
Synorthocladius semivirens				
Plust Curerage Delitations				

Table 2. Aquatic Benthic Macroinvertebrates from Station 1, Elmendorf Air Force Base, 9/01/92.

_				
Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.				
Empididae				
Chelifera sp.			1	1
Muscidae		1		1
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.	4	1	3	8
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	212	120	119	451
TOTAL NUMBER OF SPECIES	17	10	14	23

Table 3. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 5/29/92.

SPECIES	STA 2 REP1	STA 2 REP2	STA 2 REP3	STA 2 TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae	1	10	4	15
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae	_			
Nais sp.	2	23	22	47
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris Tubificidae w.h.c.				
Tubificidae w.n.c. Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus sp. Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
Miyacodillus moncana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina			2	2
ny aracarina			-	-
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera Ephemeroptera				
Baetidae				
Baetis sp.		3	7	10
Ephemerellidae		-	•	
Drunella doddsi	1		5	6
Ephemerella inermis	-		-	-
Heptageniidae				
Cinygmula sp.			2	2
Epeorus sp.		2	_	2
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.			1	1
•				

Table 3. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 5/29/92.

Wamana					
Nemouridae					
Zapada sp.					
Perlodidae					
Isoperla sp.					
Heteroptera Corixidae					
Arctocorisa sp.					
Corisella sp.					
Trichoptera					
Glossosomatidae					
Glossosoma sp.					
Hydropsychidae					
Cheumatopsyche sp. Limnephilidae					
Ecclisomyia sp.					
Nemotaulius hostilis					
Rhyacophilidae					
Rhyacophila sp.					
Diptera					
Ceratopogonidae					
Bezzia/Palpomyia sp. gp.		2		2	
Chironomidae	5	4	10	19	
Brillia sp.	1	-		1	
Cardiocladius sp.	~			-	
Chaetocladius sp.					
Chironominae A					
Chironomus sp.					
Cricotopus sp.	1	5	7	13	
Diamesa sp.	_	2	7	9	
Dicrotendipes sp.					
Diplocladius cultriger					
Eukiefferiella sp.					
Eukiefferiella					
cf. claripennis sp.gp.					
Eukiefferiella gracei sp.gp.	2	5	22	29	
Glyptotendipes sp.					
Orthocladiinae A					
Orthocladiinae B					
Orthocladius sp.			2	2	
Pagastia sp.			1	1	
Pagastiella sp.					
Paramerina sp.					
Paracladopelma sp.					
Parakiefferiella bathophila					
Paratanytarsus sp.					
Phaenopsectra sp.	1			1	
Polypedilum sp.					
Polypedilum cf. convictum					
Potthastia sp.					
Procladius sp.					
Prodiamesa sp.					
Psectrocladius sp.					
Psectrotanypus sp.					
Rheocricotopus sp.					
Rheotanytarsus sp.					
Synorthocladius semivirens			1	1	

Table 3. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 5/29/92.

Tanypus sp.				
Tanytarsus sp.				
Tvetenia bavarica sp.gp.		5	1	6
Empididae				
Chelifera sp.		3		3
Muscidae				
Limnophora sp.				
Psychodidae				
Pericoma sp.				
Simuliidae				
Cnephia sp.			1	1
Tipulidae				
Dicranota sp.	2		1	3
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	16	64	96	176
TOTAL NUMBER OF SPECIES	9	11	17	22

Table 4. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 9/01/92.

SPECIES	STA 2 REP1	STA 2 REP2	STA 2 REP3	STA 2 TOTAL	
NEMATODA					
ANNELIDA Oligochaeta Lumbriculidae Kincaidiana hexatheca Lumbriculus sp.					
Niadidae Nais sp. Nais communis	24	16		40	
Nais cf.simplex Pristinella sp. Slavina appendiculata Stylaria lacustris	1			1	
Tubificidae w.h.c. Tubificidae w.o.h.c. Limnodrilus sp. Limnodrilus cf. hoffmeisteri		2		2	
Rhyacodrilus montana					
PLATYHELMINTHES Turbellaria Tricladida					
ARTHOPODA Arachnoidea Hydracarina					
Crustacea Amphipoda Talitridae Hyalella azteca Cladocera Daphnidae Daphnia cf. pulex Copepoda					
Cyclopoida Ostracoda					
Insecta Ephemeroptera Baetidae Baetis sp.					
Ephemerellidae Drunella doddsi Ephemerella inermis Heptageniidae	35	27	13	75	
Cinygmula sp. Epeorus sp. Stenonema sp. Plecoptera Choroperlidae Suwallia sp.	5	5	1	11	

Table 4. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 9/01/92.

Nemouridae				
Zapada sp.	2	1		3
Perlodidae	-	*		•
Isoperla sp.				
Heteroptera				
Corixidae				
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae				
Glossosoma sp.	45	37	37	119
Hydropsychidae				
Cheumatopsyche sp.				
Limnephilidae				
Ecclisomyia sp.	3			3
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.				
Chironomidae	2	6	3	11
Brillia sp.				
Cardioc. us sp.				
Chaetocladius sp.				
Chironominae A				
Chironomus sp.	_			
Cricotopus sp.	5	18		23
Diamesa sp.				
Dicrotendipes sp.				
Diplocladius cultriger				
Eukiefferiella sp.				
Eukiefferiella				
cf. claripennis sp.gp.				-
Eukiefferiella gracei sp.gp.		4	1	5
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.	8	3		11
Pagastialla en	0	3		11
Pagastiella sp. Paramerina sp.				
Paracladopelma sp.				
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum				
Potthastia sp.		1		1
Procladius sp.		-		-
Prodiamesa sp.				
Psectrocladius sp.				
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.				
Synorthocladius semivirens				
-110201100244240 001111121210				

Table 4. Aquatic Benthic Macroinvertebrates from Station 2, Elmendorf Air Force Base, 9/01/92.

Tanypus sp. Tanytarsus sp. Tvetenia bavarica sp.gp. Empididae Chelifera sp. Muscidae					
Limnophora sp.					
Psychodidae					
Pericoma sp.					
Simuliidae			1	1	
Cnephia sp.		1		1	
Tipulidae					
Dicranota sp.	2			2	
Ormosia sp.					
Coleoptera					
Dytiscidae					
Acililus sp.					
Dytiscus sp.					
MOLLUSCA					
Gastropoda					
Planorbidae					
Gyraulus (Torquis ) sp.					
Pelecypoda					
Sphaeriidae					
Pisidium milium					
TOTAL NUMBER OF ORGANISMS	132	121	56	309	
TOTAL NUMBER OF SPECIES	11	12	6	16	

Table 5. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 5/30/92.

SPECIES	STA 3	STA 3	STA 3	STA 3
	REP1	REP2	REP3	TOTAL
			· · · · · <del></del>	
NEMATODA				· · · · · · · · · · · · · · · · · · ·
			T	· · · · · · · · · · · · · · · · · · ·
ANNELIDA	<del> </del>	<del></del>		
Oligochaeta				
Lumbriculidae	8	9	11	28
Kincaidiana hexatheca		<del></del>		
Lumbriculus sp.	<del> </del>			
Niadidae				
Nais sp.	50	25	35	110
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris		<del></del>		
Tubificidae w.h.c.			1	1
Tubificidae w.o.h.c.			<del>                                     </del>	<del></del>
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				·
Baetidae				
Baetis sp.	5		2	7
Ephemerellidae	ļ <del>-                                   </del>			
Drunella doddsi	11		3	4
Ephemerella inermis				<u> </u>
Heptageniidae				
Cinygmula sp.		<u> </u>		
Epeorus sp.				
Stenonema sp.	<b></b>	<del> </del>		
Plecoptera				<u> </u>
Choroperlidae				
Suwallia sp.			4	4

Table 5. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 5/30/92.

Nemouridae	<del></del>		Ī	
Zapada sp.	1		· · · -	1
Perlodidae	<b>∮</b>	<del> </del>		·
Isoperla sp.	<u></u>	<del> </del>		1
	<del> </del>			<b>-</b>
Heteroptera	<del> </del>	<del> </del>	ļ	<del></del>
Corixidae	ļ	<del> </del>	<del></del>	<del></del>
Arctocorisa sp.	ļ		<del></del>	
Corisella sp.	<b></b>	<b></b>	<del> </del>	ļ
Trichoptera	<b></b>			
Glossosomatidae	ļ		<u> </u>	ļ
Glossosoma sp.	<u> </u>		<u> </u>	
Hydropsychidae			J	
Cheumatopsyche sp.				<u> </u>
Limnephilidae	<u></u>	L		
Ecclisomyia sp.				
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.			3	3
Chironomidae	11	3	12	26
Brillia sp.	<del> </del>	<del> </del>	<del> </del>	<del>   </del>
Cardiocladius sp.			<del> </del>	
Chaetocladius sp.		<del>                                     </del>	<del> </del>	<del>                                     </del>
Chironominae A	<del> </del>	<del>                                     </del>	<del> </del>	+
Chironomus sp.	<del> </del>	<del> </del>	+	<del> </del>
Cricotopus sp.	9	5	38	52
Diamesa sp.	5	4	12	21
Dicrotendipes sp.	<del>                                     </del>	4	12	<del> </del>
	<del> </del>		<del></del>	<del></del>
Diplocladius cultriger Eukiefferiella sp.	<b>-</b>	<del> </del>	<del></del>	<del>-</del>
	<del> </del>	<del> </del>	<del>- </del> -	<del> </del>
Eukiefferiella	<del> </del>	<del> </del>	<del> </del>	<del>                                     </del>
cf. claripennis sp.gp.			<del>                                     </del>	<del> </del>
Eukiefferiella gracei sp.gp.	23	<del> </del>	13	36
Glyptotendipes sp.	ļ	ļ	ļ	<del> </del>
Orthocladiinae A	<b></b>	<del> </del>	<b>_</b>	<b>↓</b>
Orthocladiinae B	<u> </u>	ļ	<b></b>	<u> </u>
Orthocladius sp.		5	4	9
Pagastia sp.	3	ļ	ļ	3
Pagastiella sp.		<b></b>	<u> </u>	
Paramerina sp.		L		ļ
Paracladopelma sp.			<u></u>	
Parakiefferiella bathophila				
Paratanytarsus sp.				
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum				
Potthastia sp.				
Procladius sp.				
Prodiamesa sp.	1	<u> </u>	<del> </del>	<u> </u>
Psectrocladius sp.	<del> </del>	<del> </del>	1	<del>                                     </del>
Psectrotanypus sp.		<del> </del>	<del> </del>	<del>   </del>
Rheocricotopus sp.		1	<del> </del>	1
		<del> </del>	<del> </del>	<del> </del>
Rheotanytarsus sp.	<u> </u>		<del> </del>	<del> </del>
Synorthocladius semivirens	<u> </u>	<u> </u>	<u> </u>	

Table 5. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 5/30/92.

Tanypus sp. Tanytarsus sp. 1 1 1 Tvetenia bavarica sp.gp. 4 2 16 Empididae Chelifera sp. 6 Muscidae Limnophora sp. Psychodidae Pericoma sp. 1 Simuliidae Cnephia sp. 3 Tipulidae Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae Pisidium milium	2 22 6 1 3 5
Tanytarsus sp. 1 1 1 1 1	6 1 3
Empididae Chelifera sp. 6 Muscidae Limnophora sp. Psychodidae Pericoma sp. 1 Simuliidae Cnephia sp. 3 Tipulidae Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	1 3
Empididae Chelifera sp. 6 Muscidae Limnophora sp. Psychodidae Pericoma sp. 1 Simuliidae Cnephia sp. 3 Tipulidae Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	1
Muscidae Limnophora sp. Psychodidae Pericoma sp. Simuliidae Cnephia sp. Tipulidae Dicranota sp. Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	1
Limnophora sp. Psychodidae Pericoma sp. 1 Simuliidae Cnephia sp. 3 Tipulidae Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	3
Psychodidae     Pericoma sp.	3
Psychodidae Pericoma sp. 1 Simuliidae Cnephia sp. 3 Tipulidae Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	3
Pericoma sp. 1 Simuliidae Cnephia sp. 3 Tipulidae Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	3
Cnephia sp.   3   3   1   1   3   1   1   3   1   1	
Tipulidae  Dicranota sp. 1 3 1  Ormosia sp. Coleoptera  Dytiscidae  Acililus sp. Dytiscus sp.  MOLLUSCA  Gastropoda Planorbidae  Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Dicranota sp. 1 3 1 Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	5
Ormosia sp. Coleoptera Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	5
Coleoptera  Dytiscidae  Acililus sp.  Dytiscus sp.  MOLLUSCA  Gastropoda  Planorbidae  Gyraulus (Torquis ) sp.  Pelecypoda  Sphaeriidae	
Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Dytiscidae Acililus sp. Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Dytiscus sp.  MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
MOLLUSCA Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Gastropoda Planorbidae Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Planorbidae  Gyraulus (Torquis ) sp.  Pelecypoda  Sphaeriidae	
Gyraulus (Torquis ) sp. Pelecypoda Sphaeriidae	
Pelecypoda Sphaeriidae	
Sphaeriidae	
Pisidium milium	
<u> </u>	
TOTAL NUMBER OF ORGANISMS 126 57 163	346
TOTAL NUMBER OF SPECIES 15 9 17	22

Table 6. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 8/30/92.

SPECIES	STA 3	STA 3	STA 3	STA 3
	REP1	REP2	REP3	TOTAL
	ļ			
NEMATODA	<u> </u>			
ANNELIDA				
Oligochaeta	<del> </del>			
Lumbriculidae		3		3
Kincaidiana hexatheca		†		
Lumbriculus sp.				
Niadidae				
Nais sp.	2	10	26	38
Nais communis				
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
		ļ		
ARTHOPODA				
Arachnoidea				
Hydracarina		-		
Crustacea			<del></del>	
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda	<del></del>	·		<del></del>
Cyclopoida				
Ostracoda				
OSCI GOOG				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.			1	1
Ephemerellidae				
Drunella doddsi	15	33	33	81
Ephemerella inermis		<del> </del>		<del></del>
Heptageniidae				
Cinygmula sp.	<del></del>			
Epeorus sp.	8	8	1	17
Stenonema sp.	<u> </u>		<del></del>	<del>_</del>
Plecoptera				
Choroperlidae				
Suwallia sp.		<u> </u>		· - · ·

Table 6. Aquatic Benthic Macroinvertebrates from Station 3, Elmendorf Air Force Base, 8/30/92.

Nemouridae	<u> </u>	T	<del>1</del>	<del>,</del>
Zapada sp.		1		+ <u>-</u>
		<del> </del>	·	<del> </del> <del>1</del>
Perlodidae		<del> </del>	····	· · · · · · · · · · · · · · · · · · ·
Isoperla sp.		<del> </del>	ļ	<b> </b>
Heteroptera		<del></del>	ļ	<del> </del>
Corixidae		<u> </u>	L	ļ
Arctocorisa sp.			<u> </u>	ļ
Corisella sp.		<u> </u>		
Trichoptera			<u> </u>	
Glossosomatidae		<u> </u>		
Glossosoma sp.	12	28	14	54
Hydropsychidae				
Cheumatopsyche sp.	-			
Limnephilidae				
Ecclisomyia sp.			1	1
Nemotaulius hostilis				
Rhyacophilidae		<del> </del>	<del> </del>	<u> </u>
Rhyacophila sp.		+	<del> </del>	<del>                                     </del>
Diptera		<del> </del>	<del> </del>	<del> </del>
Ceratopogonidae		<del> </del>	<del> </del>	<del> </del>
			<del>                                     </del>	<del>                                     </del>
Bezzia/Palpomyia sp. gp.		5	5	10
Chironomidae	გ	<del>                                     </del>		18
Brillia sp.		<del> </del>	<del> </del>	
Cardiocladius sp.		<del> </del>	ļ	
Chaetocladius sp.		<del> </del>	ļ	ļ
Chironominae A	<del></del>	· <b>.</b>	<b></b>	<del> </del>
Chironomus sp.		ļ	<u> </u>	<u> </u>
Cricotopus sp.	7	11		18
Diamesa sp.				
Dicrotendipes sp.				
Diplocladius cultriger				
Eukiefferiella sp.				
Eukiefferiella				
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.	10	37	42	89
Glyptotendipes sp.				
Orthocladiinae A			1	
Orthocladiinae B		†	· · · · · · · · · · · · · · · · · · ·	†
Orthocladius sp.	2	<del>                                     </del>	56	58
Pagastia sp.	1	4	8	13
		<del> </del>	<del> </del>	<del>  1</del>
Pagastiella sp.		<del></del>		
Paramerina sp.		<del> </del>	<del> </del>	<del> </del>
Paracladopelma sp.				ļ <u>-</u>
Parakiefferiella bathophila		ļ	<b> </b>	<del> </del>
Paratanytarsus sp.		<del> </del>	<b></b>	<del> </del>
Phaenopsectra sp.		<del> </del>	ļ	<b></b>
Polypedilum sp.		1		<u> </u>
Polypedilum cf. convictum				
Potthastia sp.				
Procladius sp.				
Prodiamesa sp.				
Psectrocladius sp.			1	
Psectrotanypus sp.		1	1	<del>                                     </del>
Rheocricotopus sp.		†	<del> </del>	<del> </del>
Rheotanytarsus sp.		<del> </del>	<del> </del>	<del>                                     </del>
		+	<del> </del>	<del> </del>
Synorthocladius semivirens				<u> </u>

Table 6. Aquatic Benthic Macroinvertebrates from Station 3. Elmendorf Air Force Base, 8/30/92.

Tanypus sp.			1	
Tanypus sp. Tanytarsus sp.		<del></del>		
Tvetenia bavarica sp.gp.		<del></del>	· · ·	- <del> </del>
Panididae				-
Chelifera sp.			· · · · ·	1
Muscidae		<del></del>		+ <b>1</b>
Limnophora sp.		<del></del>	<del></del>	<del> </del>
Psychodidae		<del> </del>	<del></del>	<del> </del>
Pericoma sp.			<del> </del>	<del> </del>
Simuliidae			<del> </del>	+
Cnephia sp.	4	2	5	11
	4		<del> </del>	+
Tipulidae		<del></del>	+	<del>                                     </del>
Dicranota sp.			<del> </del>	<del> </del>
Ormosia sp.	<del></del>	<del></del>	<del> </del> -	<del> </del>
Coleoptera		<del></del>	<del> </del>	<del>  </del>
Dytiscidae			<del> </del>	<del>                                     </del>
Acililus sp.		<del> </del>	<del> </del>	ļ
Dytiscus sp.	<del></del>			
\			<b>-</b>	<del>                                     </del>
MOLLUSCA				<del>                                     </del>
Gastropoda		<del></del>	<del> </del>	<del> </del>
Planorbidae		<del>_</del>	<del>                                     </del>	<del> </del>
Gyraulus (Torquis ) sp.		<del> </del>	<del> </del>	<del> </del>
Pelecypoda		<del></del>	<del> </del>	<del> </del>
Sphaeriidae Pisidium milium		<del></del>	+	<del> </del>
Pisidium millum		<del></del>	<del></del>	<del> </del>
MOMAL ARROWD OF ODGANITORS	69	142	192	403
TOTAL NUMBER OF ORGANISMS	- 69	142	192	403
MOMAL AND OR CREATER	10	11	11	14
TOTAL NUMBER OF SPECIES	10	11	+ ++	14
			<del> </del>	<del> </del>
		-+	<del> </del>	<del></del>
		<del> </del>	+	<del> </del>
			<del></del>	+
	+		+	<del> </del>
		<del></del>	<del> </del>	+
		<del> </del>		<del> </del>
	<del></del>	<del> </del>	<del> </del>	<del> </del>
	_	<del> </del>	<del> </del>	<del> </del>
			<del> </del>	<del> </del>

Table 7. Aquatic Benthic Macroinvertebrates from Station 11, Elmendorf Air Force Base, 9/04/92.

3 51	3 25	REP3	TOTAL 6
			6
			6
			6
			6
			6
51	25		
51	25		
51	25		1
			76
	<del> </del>		
	1		
· · · · · · · · · · · · · · · · · · ·	† · · · · · · · · · · · · · · · · · · ·		
	3	22	25
	1	6	7
			i
			<u> </u>
	2		2
			ļ
			<u> </u>
			<u> </u>
			<u> </u>
<u></u>			<u> </u>
	<b></b>		· 
			<del></del>
			<del></del>
	ļ	j=	
			-
· · · · · ·	<del>                                     </del>	<b></b>	
		<b> </b>	<del> </del> -
- · · · · · · · · · · · · · · · · · · ·	-		ļ
	<del>                                     </del>		
			4
	1	<b></b>	1
	<del>                                     </del>	<b></b>	i
<del></del>			·
	<del>                                     </del>		
	<u> </u>	<del></del>	
	<del> </del>	<u> </u>	
	<del> </del>		·
			2

Table 7. Aquatic Benthic Macroinvertebrates from Station 11, Elmendorf Air Force Base, 9/04/92.

Nemouridae		<del></del>	<u> </u>	1
	<del></del> -		<del>}</del>	
Zapada sp. Perlodidae	<del> </del>	11	•	1
	<del> </del>		†	
Isoperla sp.	<del></del>	<del></del>	<u> </u>	-•
Heteroptera			<del> </del>	· <del>†</del>
Corixidae		<del></del>	\ <del> </del>	<del>-</del>
Arctocorisa sp.				
Corisella sp.				
Trichoptera				
Glossosomatidae		1		
Glossosoma sp.		26		26
Hydropsychidae				
Cheumatopsyche sp.				
Limnephilidae				
Ecclisomyia sp.		2		2
Nemotaulius hostilis	1			1
Rhyacophilidae		<b>†</b>		
Rhyacophila sp.		·		
Diptera	<del>                                     </del>	<del>                                     </del>		1
Ceratopogonidae	<del> </del>	<del> </del>		<del>                                     </del>
Bezzia/Palpomyia sp. gp.	<del>                                     </del>	<del></del>	<del> </del>	<del> </del>
Chironomidae	7	4	<del>                                     </del>	11
Brillia sp.	<del>'</del> 2 —	<del></del>	<del>                                     </del>	2
	<del></del>	+	<del> </del>	4
Cardiocladius sp.	ļ	<del></del>	<del> </del>	<u> </u>
Chaetocladius sp.	ļ	<del> </del>	ļ	
Chironominae A	ļ		ļ	
Chironomus sp.		<del></del>	<del> </del>	
Cricotopus sp.	19			19
Diamesa sp.			<u> </u>	
Dicrotendipes sp.				1
Diplocladius cultriger			!	
Eukiefferiella sp.			1	
Eukiefferiella			1	<u> </u>
cf. claripennis sp.gp.	6			6
Eukiefferiella gracei sp.gp.		19		19
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.		24	4	28
Pagastia sp.		5	1	6
Pagastiella sp.		+	<del></del>	†
Paramerina sp.		<b>†</b>	<del> </del>	<del></del>
Paracladopelma sp.	<del> </del>	<del> </del>	<del> </del>	<del></del>
Parakiefferiella bathophila		<del></del>	<del> </del>	<del></del>
	ļ	<del> </del>	<del> </del>	<del></del>
Paratanytarsus sp.	<del> </del>	+	<del> </del>	
Phaenopsectra sp.	<del> </del>	<del> </del>	-	<u>-i</u>
Polypedilum sp.	ļ	<del> </del>	<del></del>	<del>-</del>
Polypedilum cf. convictum		<del></del>	<del></del>	<u> </u>
Potthastia sp.		1	ļ	
Procladius sp.		<u> </u>	1	
Prodiamesa sp.		<u> </u>	<u></u>	
Psectrocladius sp.		L_		
Psectrotanypus sp.			1	
Rheocricotopus sp.			1	
Rheotanytarsus sp.		·	1	
Synorthocladius semivirens		1		:
	<del></del>		<u> </u>	لـــــــــــــــــــــــــــــــــــــ

Table 7. Aquatic Benthic Macroinvertebrates from Station 11, Elmendorf Air Force Base, 9/04/92.

Tanypus sp.				
Tanytarsus sp.			†	
Tvetenia bavarica sp.gp.			<del> </del>	
Empididae		<del></del>	<del> </del>	† ·· <b>-</b> [
Chelifera sp.			<del> </del>	
Muscidae			<del></del>	
Limnophora sp.		3	<del> </del>	3
Psychodidae		<del> </del>	<b>_</b>	r— ———
Pericoma sp.				
Simuliidae			<del> </del>	<b> </b>
Cnephia sp.				
Tipulidae	<u> </u>	-	<del> </del>	
Dicranota sp.				
Ormosia sp.	1	4		5
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	90	126	34	250
			ļ	
TOTAL NUMBER OF SPECIES	8	16	5	20
			ļ	ļ
		ļ	· · · · · · · · · · · · · · · · · · ·	ļ
		<del> </del>		<b> </b>
			-	
			ļ-	
		<del> </del>		
		<del></del>		
		<b></b>		
		<del> </del>		<u> </u>
		-		
			<u> </u>	1

Table 8. Aquatic Benthic Macroinvertebrates from Station 12, Elmendorf Air Force Base, 9/05/92.

SPECIES	STA 12	STA 12	STA 12	STA 12
	REP1	REP2	REP3	TOTAL
	REFI	REF2	, ALES	10170
NEMATODA	1			1
NEW TODA	<del></del>			
ANNELIDA	·			
Oligochaeta	<del> </del>		<b></b>	
Lumbriculidae	15	3		18
Kincaidiana hexatheca	1-1		<del> </del>	
Lumbriculus sp.	<del> </del>			
Niadidae	<del> </del>			
			<del></del>	
Nais sp.	5		<del> </del>	5
Nais communis	<del> </del>			
Nais cf.simplex	1			
Pristinella sp.			<b></b>	
Slavina appendiculata	<del> </del>		ļ	
Stylaria lacustris	-			ļ
Tubificidae w.h.c.	-			
Tubificidae w.o.h.c.	-		ļ	
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina				
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae	1	<del></del>		
Baetis sp.	<b>†</b>			
Ephemerellidae	<u> </u>			
Drunella doddsi	12	6	4	22
Ephemerella inermis	† <del></del> -	<del></del>	<u> </u>	
Heptageniidae	<b>†</b>			
Cinygmula sp.	<del> </del>			· · · · · · · · · · · · · · · · · · ·
	2	6	1	9
Epeorus sp.	- <del></del>	<u> </u>	<u> </u>	<del>-</del>
Stenonema sp.	<del> </del>	<del></del>	<del>                                     </del>	
Plecoptera			<del></del>	<u></u>
Choroperlidae	<b> </b>		ļ	
Suwallia sp.	l	<u></u>	L	<u> </u>

Table 8. Aquatic Benthic Macroinvertebrates from Station 12, Elmendorf Air Force Base, 9/05/92.

Nemouridae	T	<del></del>		<del></del> 1
Zapada sp.	<del> </del>			
Perlodidae	<del> </del>	·		
		· · ·		
Isoperla sp.				
Heteroptera	}			
Corixidae	ļ · · ·			
Arctocorisa sp.		<del></del>		
Corisella sp.				
Trichoptera	ļ			
Glossosomatidae		<u> </u>		
Glossosoma sp.	1	47	8	56
Hydropsychidae			<u> </u>	
Cheumatopsyche sp.				
Limnephilidae			1	1
Ecclisomyia sp.			1	1
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.		<u> </u>		
Diptera		<del></del>		
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.				
Chironomidae	6		1	7
Brillia sp.		<del> </del>	<u> </u>	<u>'</u>
Cardiocladius sp.	7	<del></del>		7
Chaetocladius sp.		+		<b></b>
	<u> </u>	<del></del>		
Chironominae A		<del> </del>		
Chironomus sp.				
Cricotopus sp.	18	1	1	19
Diamesa sp.		<del></del>	<u> </u>	
Dicrotendipes sp.		<del> </del>		
Diplocladius cultriger		_ <del> </del>	ļ	
Eukiefferiella sp.		<del></del>		
Eukiefferiella				
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.			1	1
Glyptotendipes sp.				
Orthocladiinae A		1		
Orthocladiinae B				
Orthocladius sp.				
Pagastia sp.		1	1	2
Pagastiella sp.				
Paramerina sp.				
Paracladopelma sp.		1		
Parakiefferiella bathophila				
Paratanytarsus sp.			<u> </u>	
Phaenopsectra sp.		<del> </del>	<b> </b>	
Polypedilum sp.	<del></del>	+	<del> </del>	<b>-</b>
Polypedilum cf. convictum				
	<del> </del>	+	<del> </del>	<b></b>
Potthastia sp.		+	<del></del>	ļ <b>.</b>
Procladius sp.		<del></del>	<del> </del>	ļ <b>-</b>
Prodiamesa sp.		ļ	ļ	
Psectrocladius sp.			ļ	
Psectrotanypus sp.		1		l
Rheocricotopus sp.		.ļ		
Rheotanytarsus sp.				
Synorthocladius semivirens				

Table 8. Aquatic Benthic Macroinvertebrates from Station 12, Elmendorf Air Force Base, 9/05/92.

Tanypus sp.			;	[
Tanytarsus sp.		-	<u> </u>	
Tvetenia bavarica sp.gp.	1	<del> </del>	•	1
Empididae	· · · · · · · · · · · · · · · · · · ·	+- · ·	:	
Chelifera sp.		<del> </del>		
Muscidae			<u> </u>	
Limnophora sp.			·	
Psychodidae		<del></del>	<del></del>	
Pericoma sp.		<del> </del>	<del> </del>	
Simuliidae			<del> </del>	
Cnephia sp.	1 1	2	2	5
Tipulidae			<del>                                     </del>	
Dicranota sp.		<del>                                     </del>	<del> </del>	
Ormosia sp.	-	<del> </del>	<del>                                     </del>	
Coleoptera		<del> </del>		
Dytiscidae		<del> </del>	-	
Acililus sp.			<del> </del>	
Dytiscus sp.				
MOLLUSCA				
Gastropoda		<del> </del>		
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	69	65	21	155
			!	
TOTAL NUMBER OF SPECIES	11	6	10	15
			1	
			1	
			:	
		<u></u>	<u> </u>	
			!	
			<u> </u>	
			<b>.</b>	
			1	

Table 9. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 6/03/92.

SPECIES	STA 4	STA 4	STA 4	STA 4
-	REP1	REP2	REP3	TOTAL
The second secon				
NEMATODA		<del></del>	· · · · · · · · · · · · · · · · · ·	
ANNELIDA			,	
Oligochaeta				
Lumbriculidae			44	44
Kincaidiana hexatheca			13	13
Lumbriculus sp.	1	3		4
Niadidae			8	8
Nais sp.		1		1
Nais communis			12	12
Nais cf.simplex				
Pristinella sp.				
Slavina appendiculata			4	4
Stylaria lacustris			4	4
Tubificidae w.h.c.				
Tubificidae w.o.h.c.			4	4
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri	1			1
Rhyacodrilus montana	7	1		8
PLATYHELMINTHES				
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea			<u> </u>	
Hydracarina				
Crustacea				
Amphipoda			!	
Talitridae				
Hyalella azteca			11	1
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
<b>*</b>				
Insecta	ļ — — — — — — — — — — — — — — — — — — —	<b> </b>		
Ephemeroptera			<del> </del>	
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi		<del></del>		
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.				
Epeorus sp.		ļ	<del> </del>	
Stenonema sp.		1		1
Plecoptera			ļ	
Choroperlidae		<b> </b>		
Suwallia sp.		<u></u>	L	L

Table 9. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 6/03/92.

	<del></del>			т
Nemouridae	<b></b>			
Zapada sp.				J
Perlodidae				1
Isoperla sp.				
Heteroptera				-
	+		+	1
Corixidae	<del></del>			
Arctocorisa sp.	<u> </u>			<u> </u>
Corisella sp.	1.			
Trichoptera				
Glossosomatidae				
Glossosoma sp.	<del> </del>	<del> </del>		1
	<del> </del>	<del></del>	+	<del>                                     </del>
Hydropsychidae	<del> </del>	<b>-</b>	<del></del>	<del></del>
Cheumatopsyche sp.				<b></b>
Limnephilidae				
Ecclisomyia sp.	1	i		]
Nemotaulius hostilis				
Rhyacophilidae		T	· · · · · · · · · · · · · · · · · · ·	1
Rhyacophila sp.	<b>†</b>	+	<u> </u>	<b>†</b>
	<del> </del>	+	+	<del></del>
Diptera	<del> </del>		<del> </del>	<del> </del>
Ceratopogonidae	<del></del>		<b>_</b>	<del></del>
Bezzia/Palpomyia sp. gp.	1	<u> </u>	1	2
Chironomidae		9	36	45
B lia sp.				
Cardiocladius sp.				
Chaetocladius sp.	<del> </del>	<del> </del>		
Chironominae A	<del></del>	<del> </del>	+	+
		<del></del>		<del></del>
Chironomus sp.		<b></b>		
Cricotopus sp.	<u> </u>		59	59
Diamesa sp.				
Dicrotendipes sp.	l		<b> </b>	
Diplocladius cultriger			Ī	
Eukiefferiella sp.				
Eukiefferiella	<del> </del>		+	
cf. claripennis sp.gp.	<del> </del>	<del> </del>	<del> </del>	<del></del>
Cr. Claripennis sp.gp.	<del> </del>	<del></del>	<del></del>	<del></del>
Eukiefferiella gracei sp.gp.	ļ		<del> </del>	<b></b>
Glyptotendipes sp.	ļ			J
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.		1		
Pagastia sp.		1	1	
Pagastiella sp.	<del> </del>	+	+	<del>                                     </del>
	<del></del>	+	+	<del> </del>
Paramerina sp.	<del> </del>	<del></del>	<del> </del>	<del> </del>
Paracladopelma sp.	<b></b>	<b>_</b>	5	5
Parakiefferiella bathophila	<u> </u>		<u> </u>	
Paratanytarsus sp.	1		39	39
Phaenopsectra sp.				
Polypedilum sp.				
Polypedilum cf. convictum	<del> </del>	<del>                                     </del>	5	5
	<del> </del>	+	<del>-</del> -	+
Potthastia sp.	+	<del> </del>	<del> </del>	+
Procladius sp.	1	23	20	44
Prodiamesa sp.				
Psectrocladius sp.		8	25	33
Psectrotanypus sp.	T			
Rheocricotopus sp.	<del>                                     </del>	<del>-  </del>	+	<del>                                     </del>
	+			+
Rheotanytarsus sp.	<del> </del>	4	<del> </del>	4
Synorthocladius semivirens	<u></u>			<u>L </u>

Table 9. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 6/03/92.

Tanypus sp.				
Tanytarsus sp.	40	333	356	729
Tvetenia bavarica sp.gp.			1	
Empididae Chelifera sp.	1		1	
Chelifera sp.				
Muscidae	1	<u> </u>	†	
Limnophora sp.			1	
Psychodidae		†	<b>†</b>	
Pericoma sp.		<u> </u>	<del>                                     </del>	
Simuliidae			1	
Cnephia sp.				
Tipulidae			1	
Dicranota sp.		1		
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda				
Planorbidae		1	1	
Gyraulus (Torquis ) sp.			4	4
Pelecypoda				
Sphaeriidae				
Pisidium milium	1	2	3	6
TOTAL NUMBER OF ORGANISMS	52	385	643	1080
TOTAL NUMBER OF SPECIES	7	10	19	25
		<u> </u>		
		1	1	
			ļ	
			<u> </u>	
				<u> </u>
		<u> </u>		
			1	<u> </u>

Table 10. Aquatic Benthic Macroinvertebrates from Station 4, Duplicate Samples, Elmendorf Air Force Base, 6/03/92.

SPECIES	STA 4D	STA 4D	STA 4D	STA 4D
	REP4	REP5	REP6	TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae				
Kincaidiana hexatheca	11		2	3
Lumbriculus sp.	11		2	13
Niadidae	<del> </del>			
Nais sp.		1		1
Nais communis	<del>                                     </del>			
Nais cf.simplex	3			3
Pristinella sp.				
Slavina appendiculata	<b></b>			
Stylaria lacustris				
Tubificidae w.h.c.	<del> </del>	1	4	5
Tubificidae w.o.h.c.		2	5	7
Limnodrilus sp.	<del>                                     </del>			
Limnodrilus cf. hoffmeisteri	<b></b>			,,
Rhyacodrilus montana	1			
DI AMAINI WILMING	<del> </del>			
PLATYHELMINTHES	ļ			
Turbellaria	<del> </del>		· · · · · · · · · · · · · · · · · · ·	
Tricladida	<del> </del>	<del></del>		
ARTHOPODA				
Arachnoidea				
Hydracarina				
nyuracarina	<del> </del>			
Crustacea	<del> </del>			
Amphipoda	<del> </del>			
Talitridae	<del> </del>			
Hyalella azteca	4			4
Cladocera	†			
Daphnidae	†		<del> </del>	
Daphnia cf. pulex	<del>                                     </del>			
Copepoda				
Cyclopoida	4		·	4
Ostracoda	†			
	<del> </del>			<del></del>
Insecta				
Ephemeroptera				
Baetidae	<b>†</b>			
Baetis sp.			<u> </u>	
Ephemerellidae				
Drunella doddsi	<u>†</u>			
Ephemerella inermis				
Heptageniidae		· · · · · · · · · · · · · · · · · · ·		
Cinygmula sp.				
Epeorus sp.	1			
Stenonema sp.	<del> </del>			
Plecoptera				
Choroperlidae	<b>†</b>		<del></del>	
Suwallia sp.				

Table 10. Aquatic Benthic Macroinvertebrates from Station 4, Duplicate Samples, Elmendorf Air Force Base, 6/03/92.

Namanaida	7	<del></del>	<del></del>	<del></del>
Nemouridae	_ <del>                                    </del>	<del></del>	ļ	- <del>-</del>
Zapada sp.		<del> </del>	ļ	·
Perlodidae	_	<b></b>		
Isoperla sp.			<u> </u>	ļ
Heteroptera				
Corixidae	3			3
Arctocorisa sp.				
Corisella sp.	1			1
Trichoptera		<del></del>	† <del>-</del>	
Glossosomatidae		<b></b>	<del>                                     </del>	<b>†</b>
Glossosoma sp.	<del>-</del>	<del></del>	<del> </del>	<b>+</b>
Hydropsychidae	<del> </del>	<del></del>		
	<del></del>		<del> </del>	<del> </del>
Cheumatopsyche sp.	<del></del>	<del></del>	<b>_</b>	<del></del>
Limnephilidae		<del></del>		<del>                                     </del>
Ecclisomyia sp.	<b>-</b>	<del> </del>	<b> </b>	<del>-</del>
Nemotaulius hostilis	<b></b>		ļ	ļ
Rhyacophilidae			<u> </u>	
Rhyacophila sp.				
Diptera				
Ceratopogonidae		1		
Bezzia/Palpomyia sp. gp.	8	5	1	14
Chironomidae	37	10		47
Brillia sp.	1	<del>                                     </del>		
Cardiocladius sp.	+	<del> </del>	<u> </u>	
Chaetocladius sp.	5		<del>                                     </del>	5
Chironominae A	<del> </del>	†	<del> </del>	<del> </del>
Chironomus sp.	<del></del>		<del> </del>	<del> </del>
Cricotopus sp.	+	<del></del>	<del></del>	<del>                                     </del>
	<del> </del>	<del></del>	<del> </del>	<del> </del>
Diamesa sp.	<del> </del>	<del></del>	<del> </del>	<del> </del>
Dicrotendipes sp.	<del> </del>		ļ	<del>                                     </del>
Diplocladius cultriger	2		<b></b>	2
Eukiefferiella sp.				
Eukiefferiella			<u> </u>	<u> </u>
cf. claripennis sp.gp.			<u> </u>	
Eukiefferiella gracei sp.gp.				
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.		T	T	
Pagastia sp.	<del> </del>	<del></del>	<del>                                     </del>	
Pagastiella sp.	2	1	<del> </del>	2
Paramerina sp.	<del></del>	<del> </del>	<del>                                     </del>	+
Paracladopelma sp.	2	<del> </del>	<del> </del> -	2
		+	<del> </del>	4
Parakiefferiella bathophila	<del> </del>	<del> </del>	<b></b>	<del> </del>
Paratanytarsus sp.	1	<del></del>	<del> </del>	
Phaenopsectra sp.	<del></del>	<del>                                     </del>	<b></b>	-
Polypedilum sp.	ļ		<u> </u>	
Polypedilum cf. convictum	ļ	<u> </u>		
Potthastia sp.		1		
Procladius sp.	7	21		28
Prodiamesa sp.				
Psectrocladius sp.	17	7		24
Psectrotanypus sp.	† <del></del>	3	<del> </del>	3
Rheocricotopus sp.	<del> </del>	<del>                                     </del>	<del> </del>	<del>                                     </del>
Rheotanytarsus sp.	21	<del> </del>	<del> </del>	21
	<del>  "1</del>	+	<del> </del>	4.1
Synorthocladius semivirens		<del></del>	ــــــــــــــــــــــــــــــــــــــ	_L ,

Table 10. Aquatic Benthic Macroinvertebrates from Station 4, Duplicate Samples, Elmendorf Air Force Base, 6/03/92.

Tanypus sp.				1
	172	317	E	494
Tanytarsus sp.	1/2	31/		
Tvetenia bavarica sp.gp. Empididae		<del></del>	-}	
Chelifera sp.		<del>                                     </del>		<del> </del>
		<del></del>		+
Muscidae		<del> </del>	<del> </del>	<del> </del>
Limnophora sp.		<b>—</b>	<del> </del>	<del></del>
Psychodidae		<b>_</b>	<del>-</del>	<del></del>
Pericoma sp.			<del> </del>	<del>                                     </del>
Simuliidae			<del> </del>	<del>                                     </del>
Cnephia sp.		<del> </del>	<b>1</b>	<b>_</b>
Tipulidae				<b></b>
Dicranota sp.				ļ
Ormosia sp.			<u> </u>	
Coleoptera			<u> </u>	<u> </u>
Dytiscidae				
Acililus sp.	1	1	<u> </u>	1
Dytiscus sp.				
		<u> </u>		
MOLLUSCA			<u> </u>	
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium			<u> </u>	
TOTAL NUMBER OF ORGANISMS	301	367	19	687
			<u> </u>	
TOTAL NUMBER OF SPECIES	18	9	6	22
			L	
			<u> </u>	
<del></del>				

Table 11. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 8/31/92.

SPECIES	STA 4	STA 4	STA 4	STA 4
	REP1	REP2	REP3	TOTAL
NEMATODA				
ANNELIDA	ļ			
Oligochaeta				<del> </del>
Lumbriculidae	117	<del></del>		120
Kincaidiana hexatheca	11/	5	2	7
Lumbriculus sp.	<del> </del>	J	5	5
Niadidae	<del> </del>			<del></del>
Nais sp.	<del> </del>		10	10
Nais communis	<u> </u>			
Nais cf.simplex	<del> </del>			
Pristinella sp.			7	7
Slavina appendiculata	<del></del>		<b></b>	<del> '</del>
Stylaria lacustris	<del>}</del>			<b>-</b>
Tubificidae w.h.c.	<del>                                     </del>		7	7
Tubificidae w.o.h.c.			<del></del> -	<b>'</b>
Limnodrilus sp.	<b> </b>	<del> </del>		<del> </del>
Limnodrilus cf. hoffmeisteri	<del> </del>			<b></b>
Rhyacodrilus montana	<del>                                     </del>			<del> </del>
10.74004121400110414				
PLATYHELMINTHES	·			
Turbellaria	<del> </del>			
Tricladida				<u> </u>
ARTHOPODA	1			
Arachnoidea				
Hydracarina		1	1	2
Crustacea				
Amphipoda	L			
Talitridae				
Hyalella azteca	14		1	15
Cladocera				
Daphnidae				
Daphnia cf. pulex			3	3
Copepoda				
Cyclopoida				
Ostracoda			1	1
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.	11			11
Ephemerellidae	L			
Drunella doddsi	<b></b>			
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.				
Epeorus sp.	L			
Stenonema sp.				l
Plecoptera				
Choroperlidae	ļ			
Suwallia sp.		<u></u>		L

Table 11. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 8/31/92.

Nemouridae	i	<del></del>	T	Γ
Zapada sp.	<del>i</del>	<b>-</b>	<del></del>	
Perlodidae	<del> </del>	+	<del> </del>	·
Control of the Contro	<del> </del>	· <del> </del>	<del> </del>	<del> </del>
Isoperla sp.	<b></b>	+	<del>+</del>	<del> </del>
Heteroptera	<del> </del>		<del>                                     </del>	·
Corixidae	ļ		<del></del>	
Arctocorisa sp.			<u> </u>	<b></b>
Corisella sp.		<u> </u>		
Trichoptera			<u> </u>	
Glossosomatidae			1	
Glossosoma sp.				
Hydropsychidae				
Cheumatopsyche sp.				
Limnephilidae			1	
Ecclisomyia sp.	<u> </u>	<u> </u>	1	
Nemotaulius hostilis		<b>+</b>	<del>                                     </del>	t
Rhyacophilidae		<del>                                     </del>	1	1
Rhyacophila sp.		<del> </del>	<del>                                     </del>	<del> </del>
Diptera	<del> </del>	+	<del></del>	<del>                                     </del>
Ceratopogonidae	<del> </del>	<del> </del>	<del> </del>	<del> </del>
Bezzia/Palpomyia sp. gp.	2	1	2	5
Chironomidae	5	3	1	9
Brillia sp.	3	+ 3	+	
	ļ	<del> </del>	<del> </del>	
Cardiocladius sp.		<del> </del>	<del> </del>	<del>                                     </del>
Chaetocladius sp.		<del> </del>	<del> </del>	
Chironominae A		<del> </del>	<del> </del>	
Chironomus sp.		<del></del>	<del> </del>	ļ <u>.</u>
Cricotopus sp.		<del></del>	1	1
Diamesa sp.		<u> </u>		ļ
Dicrotendipes sp.		11		11
Diplocladius cultriger			<u> </u>	
Eukiefferiella sp.				
Eukiefferiella				
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.				
Glyptotendipes sp.	1			1
Orthocladiinae A				
Orthocladiinae B	·			
Orthocladius sp.		<del>                                     </del>		
Pagastia sp.	<del></del>			
Pagastiella sp.		1	<del> </del>	1
Paramerina sp.		+		
Paracladopelma sp.	<del>  -</del>	+	<del> </del>	<del> </del>
Parakiefferiella bathophila	<del> </del>	+	<del>                                     </del>	<del> </del>
Paratanytarsus sp.	<del> </del>	+	+	
Phaenopsectra sp.	<del> </del>	<del> </del>	<del> </del>	<del> </del>
	<u> </u>	+	<del> </del>	<del> </del>
Polypedilum sp.	<del> </del>	+	<del></del>	
Polypedilum cf. convictum		<del>                                     </del>	<del> </del>	1-30
Potthastia sp.	3	35	<del> </del>	38
Procladius sp.	23	<del></del>	6	29
Prodiamesa sp.	L	<del></del>	<b></b>	
Psectrocladius sp.	1	3	7	11
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.		3		3
Synorthocladius semivirens				

Table 11. Aquatic Benthic Macroinvertebrates from Station 4, Elmendorf Air Force Base, 8/31/92.

Tanypus sp.	<del></del>	Τ	T	
Tanytarsus sp.	13	216	6	235
Tvetenia bavarica sp.gp.				
Empididae			<del> </del>	+
Chelifera sp.	<del></del>	<del> </del>	1	1 1
Muscidae	<del></del>	<del></del>	}	<del>-</del>
Limnophora sp.	<del>-  </del>	<del> </del>	<del> </del>	
Psychodidae		1	<del> </del>	<b></b>
Pericoma sp.		<del></del>	<del> </del>	
Simuliidae			<del>                                     </del>	· · · · · · · · · · · · · · · · · · ·
Cnephia sp.		+	<del> </del>	1
Tipulidae	<del></del>	<del> </del>	<del> </del>	<del> </del>
Dicranota sp.		<del></del>	<del> </del>	1
Ormosia sp.		<del>}</del>	<del> </del>	
Coleoptera	<del></del>	<del></del>	<del> </del>	
Dytiscidae	<del></del>	<del> </del>		+
Acililus sp.	<del></del>	<del></del>	<del>                                     </del>	
Dytiscus sp.		<del> </del> -		<del> </del>
Dyciscus sp.	<del></del>	<del> </del>		+
MOLLUSCA	<del></del>	<del> </del>	<del></del>	<del>                                     </del>
Gastropoda		<del> </del>	<del> </del>	<del>                                     </del>
Planorbidae	<del>-  </del>	<b>+</b>	<del> </del>	+
Gyraulus (Torquis ) sp.	<del></del>	<del></del>	<del>                                     </del>	
Pelecypoda	<del></del>	+	<del>}</del>	
Sphaeriidae	<del></del>	<del> </del>	<del> </del>	
Pisidium milium		20		20
FISIQIAN MILITAN	<del></del>	1 20		1
TOTAL NUMBER OF ORGANISMS	180	301	61	542
TOTAL MODELLA OF CAGALIZOTIS		+ 302	<del></del>	<del>                                     </del>
TOTAL NUMBER OF SPECIES	10	11	16	23
TOTAL NOTIBLE OF CIRCUIT		<del> </del>	<del>                                     </del>	1
			<del>                                     </del>	
	<del></del>	+	<del>                                     </del>	<b>+</b>
		<del>                                     </del>	<del>                                     </del>	<u> </u>
	<del></del>	1		
		<del> </del>	<u> </u>	<u> </u>
	<del> </del>	<del>                                     </del>	<del> </del>	<del> </del>
				†
	<del></del>	<del> </del>	<del> </del>	-
	<del></del>	+		<del>                                     </del>
	<del></del>	<del>                                     </del>	<del>                                     </del>	<del> </del>

Table 12. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 6/02/92.

SPECIES	STA 5	STA 5	STA 5	STA 5
	REP1	REP2	REP3	TOTAL
			I	
NEMATODA	1			1
ANNELIDA		-		
Oligochaeta		<del> </del>		
Lumbriculidae	<del> </del>	<u> </u>	11	1
Kincaidiana hexatheca				
Lumbriculus sp.	·	<b>}</b>		
Niadidae		ļ		
Nais sp.				
Nais communis	<del></del>	ļ	<del> </del>	
Nais cf.simplex		ļ		
Pristinella sp.				
Slavina appendiculata				
Stylaria lacustris		<del> </del>	ļ	
Tubificidae w.h.c. Tubificidae w.o.h.c.		ļ	<del> </del>	
Limnodrilus sp.		<del> </del>		
Limmodrilus sp. Limmodrilus cf. hoffmeisteri		-	<del>                                     </del>	
Rhyacodrilus montana		-	<del></del>	
Riyacodriius montana				
PLATYHELMINTHES		<del>}</del>	<del>                                     </del>	
Turbellaria				
Tricladida		<del> </del>		
IIICIaulua			<del> </del>	
ARTHOPODA	<del></del>	<del> </del>	<del>                                     </del>	
Arachnoidea			<del> </del>	
Hydracarina		<del> </del>	<del> </del>	
,				
Crustacea	<del></del>		<del></del>	
Amphipoda				
Talitridae				
Hyalella azteca	<del></del>		<del> </del>	
Cladocera		1	<del> </del>	
Daphnidae				
Daphnia cf. pulex	11	1	<del> </del>	12
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi				
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.				
Epeorus sp.				
Stenonema sp.				
Plecoptera				
Choroperlidae				
Suwallia sp.				

Table 12. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 6/02/92.

Nomouridae			T	
Nemouridae	<b></b>		<del></del>	
Zapada sp.	ļ	_		
Perlodidae	<u> </u>	_	<del> </del>	J =
Isoperla sp.		<b></b> .		
Heteroptera	l			
Corixidae				
Arctocorisa sp.	1			1 1
Corisella sp.			<u> </u>	
Trichoptera			<del></del>	
Glossosomatidae	<b>†</b>		<del> </del>	+
Glossosoma sp.	<del> </del>	<del></del>	<del> </del>	+
	<del> </del>		<del> </del>	
Hydropsychidae	<del> </del>		<del></del>	- <del></del>
Cheumatopsyche sp.		<del></del>	<del> </del>	
Limnephilidae		<del></del>	<b></b>	
Ecclisomyia sp.				
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.				
Diptera			1	
Ceratopogonidae				1
Bezzia/Palpomyia sp. gp.	1		<del> </del>	<del></del>
Chironomidae	3	1	2	6
Brillia sp.	<del>                                     </del>	<del>-</del>	<del> </del>	<del>                                     </del>
	<del> </del>	<del></del>	<del> </del>	<del>- </del>
Cardiocladius sp.	<del>                                     </del>			
Chaetocladius sp.	<b> </b>	<del>-  </del>		ļ
Chironominae A	<b> </b>		<b></b>	ļ
Chironomus sp.	ļ	_	3	3
Cricotopus sp.	<b>.</b>			
Diamesa sp.				
Dicrotendipes sp.				
Diplocladius cultriger				
Eukiefferiella sp.				
Eukiefferiella			1	†
cf. claripennis sp.gp.			<b>+</b>	
Eukiefferiella gracei sp.gp.	<del> </del>		<del> </del>	<del></del>
Glyptotendipes sp.	1		2	3
Orthocladiinae A				
	<del> </del>			·
Orthocladiinae B	<b>-</b>	<del></del>		<del>                                     </del>
Orthocladius sp.	<del> </del>			
Pagastia sp.				ļ
Pagastiella sp.	L			
Paramerina sp.			1	
Paracladopelma sp.				
Parakiefferiella bathophila			2	2
Paratanytarsus sp.			10	10
Phaenopsectra sp.	<u> </u>	1	2	3
Polypedilum sp.	<del> </del>	<del>-</del>	<del>                                     </del>	<del>                                     </del>
	<del> </del>	-	+	<del> </del>
Polypedilum cf. convictum	<del> </del> -		+	<del>- </del>
Potthastia sp.	<del> </del>		<del></del>	- <del> </del>
Procladius sp.	<b></b>	<del>                                     </del>	3	3
Prodiamesa sp.			ļ	
Psectrocladius sp.		2		2
Psectrotanypus sp.				
Rheocricotopus sp.				
Rheotanytarsus sp.		2	13	15
Synorthocladius semivirens		<u> </u>	<del> </del>	- <del></del>
DAMOTOMOCIONIOS SEMITATIONS	L		.1	

Table 12. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 6/02/92.

Tanypus sp.		T	1	
Tanytarsus sp.	5	11	132	148
Tvetenia bavarica sp.gp.		+		· -==:**
Empididae			- <del> </del>	
Chelifera sp.		<del></del>		1
Muscidae	-		† <del></del>	+ · ·
Limnophora sp.		<del> </del>	<u> </u>	
Psychodidae		†	<del> </del>	
Pericoma sp.			<del>                                     </del>	<del> </del>
Simuliidae		†		1
Cnephia sp.		<del> </del>	<del>                                     </del>	
Tipulidae				
Dicranota sp.		<del>                                     </del>		
Ormosia sp.		<del> </del>	<del>                                     </del>	†
Coleoptera		†	1	
Dytiscidae		<b> </b>		
Acililus sp.		1		
Dytiscus sp.	1	1		2
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				
TOTAL NUMBER OF ORGANISMS	23	19	170	212
TOTAL NUMBER OF SPECIES	7	7	10	15
		ļ		
		<u> </u>		ļ
		<b></b>	ļ	ļ
		<u> </u>	-	ļ <b>!</b>
		<b></b>	-	ļ
		<b></b>	<b></b>	
		<b></b>	<b></b>	
		<b></b>	1	
	l	<u> L</u>	<u> </u>	l

Table 13. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 8/31/92.

SPECIES	STA 5	STA 5	STA 5	STA 5
	REP1	REP2	REP3	TOTAL
NEMATODA				
ANNELIDA				
Oligochaeta				
Lumbriculidae	4			4
Kincaidiana hexatheca				
Lumbriculus sp.				
Niadidae				
Nais sp.	4		8	12
Nais communis				
Nais cf.simplex				
Pristinella sp.		1		1
Slavina appendiculata				
Stylaria lacustris				
Tubificidae w.h.c.				
Tubificidae w.o.h.c.				
Limnodrilus sp.				
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
PLATYHELMINTHES				
Turbellaria	<u> </u>		<del> </del>	
Tricladida			<b>_</b>	
Triciadida		<del> </del>	<del></del>	
ARTHOPODA		<u> </u>		
Arachnoidea				
Hydracarina				
nyuracarina				<u> </u>
Crustacea				
Amphipoda	· · · · · · · · · · · · · · · · · · ·			
Talitridae				
Hyalella azteca				
Cladocera		<del></del>		
Daphnidae				
Daphnia cf. pulex	1	3		4
Copepoda				<del>-</del>
Cyclopoida			-	
Ostracoda	1	1		2
	<del></del>		<del></del>	<del></del>
Insecta				
Ephemeroptera	<del></del>			
Baetidae	<del></del>			
Baetis sp.				
Ephemerellidae				
Drunella doddsi				<del></del>
Ephemerella inermis				
Heptageniidae		<u> </u>		
Cinygmula sp.		<u> </u>		
Epeorus sp.			<b></b>	
Stenonema sp.			<del> </del>	
Plecoptera		<del> </del>	<del> </del>	<del> </del>
Choroperlidae		<del> </del>	<del> </del>	<del> </del>
Suwallia sp.	· · · · · · · · · · · · · · · · · · ·	<del></del>	<del> </del>	

Table 13. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 8/31/92.

	<del></del>	<del></del>	1	
Nemouridae		<u> </u>		
Zapada sp.		ļ	<u></u>	
Perlodidae			· i	
Isoperla sp.		<u> </u>		
Heteroptera	1			
Corixidae		T		
Arctocorisa sp.		<u> </u>		
Corisella sp.		†	<u> </u>	<b>†</b>
Trichoptera	+	<del> </del>	<del></del>	
Glossosomatidae	†	<del> </del>	<del>                                     </del>	t
Glossosoma sp.	<del> </del>	<del> </del>	<del></del>	ł
	<del></del>	<del>                                     </del>	<del> </del>	<del>                                     </del>
Hydropsychidae	<del></del>	<b></b>	<del></del>	<u> </u>
Cheumatopsyche sp.	<u> </u>	<del> </del>		
Limnephilidae	ļ	ļ	<del> </del>	ļi
Ecclisomyia sp.	<b></b>		<del></del>	
Nemotaulius hostilis				
Rhyacophilidae	L	L		
Rhyacophila sp.				
Diptera				
Ceratopogonidae				
Bezzia/Palpomyia sp. gp.				
Chironomidae	<del> </del>		1	1
Brillia sp.	<del> </del>	<del>                                     </del>	† <del>-</del>	† · · · · †
Cardiocladius sp.	<del> </del>	<del> </del>	<del> </del>	
Chaetocladius sp.	<del> </del>	<del> </del>		<del> </del>
Chironominae A	<del> </del>	<del> </del> -	<del></del>	
	1	<del> </del>	<del>                                     </del>	<del> </del>
Chironomus sp.	<del> </del>	<del> </del>	5	6
Cricotopus sp.	<del> </del>	<del> </del>	<del> </del>	<u> </u>
Diamesa sp.	1	<del> </del>	<del></del>	
Dicrotendipes sp.	2	<u> </u>		2
Diplocladius cultriger	1			1
Eukiefferiella sp.	<u> </u>			
Eukiefferiella		<u> </u>		
cf. claripennis sp.gp.				
Eukiefferiella gracei sp.gp.				
Glyptotendipes sp.				
Orthocladiinae A				
Orthocladiinae B				
Orthocladius sp.	·			
Pagastia sp.	†	<del> </del>		
Pagastiella sp.	<del>                                     </del>			
Paramerina sp.	<del> </del>	<del>                                     </del>	1	1
Paracladopelma sp.	+	<del> </del>	<del>-</del>	<del>                                     </del>
	<del> </del>	-	+	<del> </del>
Parakiefferiella bathophila	<del> </del>	<del> </del>	<del></del>	<del> </del>
Paratanytarsus sp.	<del>  </del>	<del> </del>	+	ļ —
Phaenopsectra sp.	12	27	7	46
Polypedilum sp.	<b>_</b>			ļ
Polypedilum cf. convictum	<u> </u>		<u> </u>	
Potthastia sp.	<u> </u>			
Procladius sp.	22	15	3	40
Prodiamesa sp.				
Psectrocladius sp.	1		1	<u> </u>
Psectrotanypus sp.	52	34	31	117
Rheocricotopus sp.			<del></del>	<del>                                     </del>
	1	1	6	7
Rheotanytarsus sp.	<del> </del>	<del> </del>	0	<del> '</del>
Synorthocladius semivirens	<u> </u>	<u> </u>		<u> </u>

Table 13. Aquatic Benthic Macroinvertebrates from Station 5, Elmendorf Air Force Base, 8/31/92.

Tanypus sp.		5		5
Tanytarsus sp.	7	12	13	32
Tvetenia bavarica sp.gp.	<del></del>		† <del></del>	
Empididae		<u> </u>	<del></del>	
Chelifera sp.		1	1	
Muscidae		†···	† <del></del>	
Limnophora sp.		1	1	
Psychodidae		1	<del> </del>	
Pericoma sp.			1	
Simuliidae		†	1	
Cnephia sp.				
Tipulidae				
Dicranota sp.				
Ormosia sp.				
Coleoptera				
Dytiscidae				
Acililus sp.				
Dytiscus sp.				
MOLLUSCA				
Gastropoda			1	
Planorbidae			<u> </u>	
Gyraulus (Torquis ) sp.		<u> </u>	<del></del>	
Pelecypoda		<u> </u>	<del></del>	
Sphaeriidae		<u> </u>		
Pisidium milium		1		
		<del> </del>	<del></del>	1
TOTAL NUMBER OF ORGANISMS	107	99	76	282
TOTAL NUMBER OF SPECIES	11	9	10	17
TOTAL NORDER OF SPECIES		<del>                                     </del>	10	<del>                                     </del>
		<del>                                     </del>	<del> </del>	
			1	<del> </del>
		1	1	1
I	<del></del>	†	<u> </u>	
		<u> </u>		
		1	<u> </u>	
		<del> </del>	†	
		<del> </del>	<del> </del>	
		<del> </del>	1	
		<del>                                     </del>	<del> </del>	†
<del></del>		·	<del></del>	

Table 14. Aquatic Benthic Macroinvertebrates from Station 6, Elmendorf Air Force Base, 6/03/92.

SPECIES	STA 6	STA 6	STA 6	STA 6
	REP1	REP2	REP3	TOTAL
NEMATODA		<u> </u>		·
ANNELIDA				
Oligochaeta				
Lumbriculidae		25	31	56
Kincaidiana hexatheca	2	10	10	22
Lumbriculus sp.				
Niadidae				
Nais sp.		<u> </u>	<del></del>	<del></del>
Nais communis		<b> </b>		
Nais cf.simplex		1		· · · · · · · · · · · · · · · · · · ·
Pristinella sp.				
Slavina appendiculata			· · · · · · · · · · · · · · · · · · ·	
Stylaria lacustris				
Tubificidae w.h.c.	1	5		6
Tubificidae w.o.h.c.	1	2	31	34
Limnodrilus sp.		5	135	140
Limnodrilus cf. hoffmeisteri				
Rhyacodrilus montana				
, 400411245				
PLATYHELMINTHES		<u> </u>		
Turbellaria				
Tricladida				
ARTHOPODA				
Arachnoidea				
Hydracarina		<u> </u>		
Crustacea				
Amphipoda				
Talitridae				
Hyalella azteca				
Cladocera				
Daphnidae				
Daphnia cf. pulex				
Copepoda				
Cyclopoida				
Ostracoda				
Insecta				
Ephemeroptera				
Baetidae				
Baetis sp.				
Ephemerellidae				
Drunella doddsi				
Ephemerella inermis				
Heptageniidae				
Cinygmula sp.		<u> </u>		
Epeorus sp.			-	
Stenonema sp.		-	<u> </u>	
Plecoptera		<del> </del>		
Choroperlidae		<del>                                     </del>		
Suwallia sp.		<del>                                     </del>		<u> </u>

Table 14. Aquatic Benthic Macroinvertebrates from Station 6, Elmendorf Air Force Base, 6/03/92.

Namaunidaa	_	T	т	
Nemouridae	·	<del></del>		
Zapada sp.	ļ	<u> </u>		ļ
Perlodidae				
Isoperla sp.	İ		1	<u> </u>
Heteroptera				
Corixidae				
Arctocorisa sp.	1			
Corisella sp.	1		<del> </del>	
Trichoptera	<del> </del>	<del> </del>		<del> </del>
Glossosomatidae	<del> -</del>	<del></del>	<del> </del>	<del> </del>
	<del> </del>	<del>                                     </del>	<del></del>	<del> </del>
Glossosoma sp.	<del>                                     </del>	<b>↓</b>		
Hydropsychidae	<del> </del>	<b></b>		
Cheumatopsyche sp.				
Limnephilidae		1		
Ecclisomyia sp.	<u> </u>		_	
Nemotaulius hostilis				
Rhyacophilidae				
Rhyacophila sp.	1		T	1
Diptera	<del>                                     </del>	1	1	<del>                                     </del>
Ceratopogonidae		<u> </u>	†	<del> </del>
Bezzia/Palpomyia sp. gp.	<del>                                     </del>	<del>                                     </del>	4	4
Chironomidae	<del>                                     </del>	<del></del>	1 1	1
	ļ	<del> </del>	<del></del>	<del>├</del> -
Brillia sp.	<del> </del>	<del></del>		
Cardiocladius sp.	ļ <u>.</u>	<del></del>	<del></del>	<u> </u>
Chaetocladius sp.	1	11	61	63
Chironominae A	1	11		2
Chironomus sp.	8		12	20
Cricotopus sp.	2		6	8
Diamesa sp.				
Dicrotendipes sp.				
Diplocladius cultriger				
Eukiefferiella sp.	† <del></del>	1		†
Eukiefferiella	<del>                                     </del>		<b>-</b>	
cf. claripennis sp.gp.	<del>                                     </del>	<del></del>	<del>+</del>	
Eukiefferiella gracei sp.gp.	<del> </del>	<del>-</del>	<del></del>	<del> </del>
	<del>                                     </del>		+	
Glyptotendipes sp.	10	<del> </del>		10
Orthocladiinae A	10			10
Orthocladiinae B	1	11	<del> </del>	2
Orthocladius sp.	2	<b>_</b>	37	39
Pagastia sp.	1			1
Pagasti <b>ella sp</b> .				<u> </u>
Paramerina sp.	4	4		8
Paracladopelma sp.				
Parakiefferiella bathophila		†	1	<b>†</b>
Paratanytarsus sp.	<del></del>	<del>                                     </del>	1	
Phaenopsectra sp.	65	2	485	552
	<del>                                     </del>	1	+ 403	1
Polypedilum sp.	<del> </del>	+	<b></b>	<u> </u>
Polypedilum cf. convictum	<del> </del>			<del> </del>
Potthastia sp.	<u> </u>	<u> </u>	<b></b>	<b></b>
Procladius sp.		1		ļ
Prodiamesa sp.	1	1		1
Psectrocladius sp.		1	12	12
Psectrotanypus sp.	<u> </u>	<b>T</b>	1	
Rheocricotopus sp.	<del> </del>		<del>-  </del>	
Rheotanytarsus sp.	<del> </del>	<del> </del>	<del> </del>	<del> </del>
	<del> </del>	<del> </del>	<del></del>	<del> </del>
Synorthocladius semivirens				<u> </u>

Table 14. Aquatic Benthic Macroinvertebrates from Station 6, Elmendorf Air Force Base, 6/03/92.

Tanypus sp.		T		
Tanytarsus sp.		5	<del> </del>	5
Tvetenia bavarica sp.gp.		<del> </del>	<del> </del>	<del> </del>
Empididae		<del>                                     </del>	<del> </del>	<del> </del>
Chelifera sp.		<del> </del> -	<del> </del>	†
Muscidae		<del>†</del>	<del> </del>	
Limnophora sp.		<b></b>	<del> </del>	
Psychodidae			<b> </b>	
Pericoma sp.		<u> </u>	<del> </del>	
Simuliidae				
Cnephia sp.		1		
Tipulidae				
Dicranota sp.		1		1
Ormosia sp.		1		
Coleoptera				
Dytiscidae			1	1
Acililus sp.				
Dytiscus sp.				
		1		
MOLLUSCA				
Gastropoda				
Planorbidae				
Gyraulus (Torquis ) sp.				
Pelecypoda				
Sphaeriidae				
Pisidium milium				L
		<u> </u>		
TOTAL NUMBER OF ORGANISMS	100	62	826	988
TOTAL NUMBER OF SPECIES	14	12	13	22
			ļ	<del>  </del>
	<b>_</b>	ļ		ļ
				ļl
			<del> </del>	<del> </del>
	<del></del>		<del> </del>	<b>├</b>
		<del> </del>	<del> </del>	<del> </del>
	<del></del>	1	<del> </del>	<del>   </del>
			<del> </del>	ļ
	<del></del>			<del> </del>
	<del></del>	<del> </del>	<del> </del>	<del> </del>
L		<u> </u>	<u> </u>	

Table 15. Percent Similarity between invertebrate communities within each habitat -1992.

				Ship	Creek			
	5MI01-M	5MI01-S	5MI02-M	5MI02-S	5MI03-M	5MI03-S	5MI11-S	5MI12-S
5MI01-M	1	15.6	67.4	31.1	72.8	34.5	55.3	31.3
5MI01-S	15.6		16.1	44.8	11.8	43	19.7	43.5
5MI02-M	67.4	16.1		30.9	77.2	42.7	53.2	30.6
5MI02-S	31.1	44.8	30.9		28.8	60.2	42.5	71
5MI03-M	72.8	11.8	77.2	28.8		35.5	58.8	32.3
5M103-S	34.5	43	42.7	60.2	35.5		52.7	49.6
5MI11-S	55.3	19.7	53.2	42.5	58.8	52.7		32.2
5M112-S	31.3	43.5	30.6	71	32.3	49.6	32.2	
!		Beave	Pond/We	tland Pond	d			
	5MI04-J	5MI04-A	5M105-J	5M105-A	5MI006-J	•		
5MI04-J		82.3	77.1	18	8.5			
5MI04-A	82.3		78.5	19.1	6.9			
5M105-J	77.1	78.5		20.3	4.9			
5M105-A	18	19.1	20.3		21.1			
5M106-J	8.5	6.9	4.9	21.1				
!								

Percent Similarity = SUM of (lowest percentage for each taxa)

Within each community taxa abundance is tabulated as a percentage. For each taxa, the lowest percentage between any two communities is summed to calculate the Percent Similarity

M = May, S = September, J = June, A = August



Document #1-MI

Mile modul

## PHYSICAL CHARACTERIZATION/WATER QUALITY

FIELD DA	ATA SHEET		
PHYSICAL CHARACTERIZATION			
RIPARIAN ZONE/WATER			
Predominant Surrounding Land Use:			_
	ommercial Industrial		•
High Water Mark / (m) Velocity / Cla Dam Present	: Yes No 💥 ·	Channelized: Yes ?	No <b></b>
Canopy Cover: Open Partly Open Partly Shaded Sh	aded		
SEDIMENT/SUBSTRATE:			
Sediment Odors: Normal Sewage Petroleum Chemical Ad	naerobic None	Other	
Sediment Oils: Absent Slight Moderate Profuse			
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Re	dict Shells No4E	Other	
Are the undersides of stones which are not deeply embedded black?	s No_X		
Inorganic Substrate Components	Org	anic Substrate Components	s
Percent Composition Substrate Type Diameter in Sampling Area	Substrate Type	Characteristic	Percent Composition in Sampling Area
Bedrock	Detritus	Sticks, Wood.	90
>256mm (10 in.)		Coarse Plant Materials (CPOM)	•
Cobble 64-256mm (2.5-10 in.) 16 20 A.	1		
Cobble 64-256mm (2.5-10 in.) 46 20 A Gravel . 2-64mm (0.1-2.5 in.) 20 40 M	Muck-Mud	Black, Very Fine	10
Sand 0.06-2.00mm (gritty) 40		Organic (FPOM)	-
Silt 0.00406mm	Mart	Grey, Shell	
Clay <0.004mm (slick)	<u></u> _	Fragments	
WATER QUALITY			
Stream Type: Coldwater Warmwater			
Water Odors: Normal Sewage Petroleum Chemical N	one Other		
Water Surface Oils: Slick Sheen Globs Flecks None			
Turbidity: Clear Slightly Turbid Opaque W	ater Color		
Some sedement transport (fine) in	, water colum	n cousing a	- slight
tuslishing > Ph =	Moders 6.34 (Teny S.L°C 12.50 58 junhs	)7	
Water temp 6.9°C ( DO:	2.80	water -	
Coad 58 um has Juster Chim Condi	58 unha	CKM OF 0192	
- V 1 06 16 07	-		
People	I D	C	riffle Acus
Jeps 1	et River Average	ed Chate Views in	FINAL MEN

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

MI= MACroin ucrtebrates

Width - Approx 5000 60 Pt

Document of 2-MI

W.M.

Page 2.62. Mil. Aright

	•		7106416D		
	Mabitat Parameter	EXCellent	Poop	F416	100 <b>6</b>
4	Sottom substrated	Greater than 50% cubble, gravel, submerged logs. undercut banks, or other stable habitat.	10-50% rubble, gravel or other stable Abbitst. Adequate habitst. 11-(5)	10-101 cubble, gravel of other stable habitar. Mabitar availability less than desirable.	Gess than 104 rubble gravel of other stable habitet. Lack of habitet is obvious.
~	Embeddedness (b)	Gravel, cobble, and boulder particles are between 0 and 25 the burrounded by fine aediment 16-20	Grevel. cobble, and boulder perticies are between 25 and 50 t sufferended by fine	Gravel, nobble, and betteen Seriticies are betteen Se and 75 v autrounded by fine	Potential of the particular of
<u>ن</u>	10.15 cms (Sefs) - Ploy1, at rep. lou	Cold >0.05 cms (2 cfs) Warm >0.15 cms (5 cfs) 10-20	0.03-0.03 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) (0.01 0.03-0.05 cms (1-2 cfs) (0.03 6-10	(0.01 cms (.5 cfs) (0.01 cms (1 cfs)
	10.15 cm (5cfs) • Velocity/depth	8100 ((0.) m/s), doop (10.5 m); alou, shallou ((0.5 m); fest (10.1 m/s), doop; fast, shallow habitets all present.	Only 3 of the 4 hebitat categories present (missing riffles or runs receive laver score than missing pools).	Only 2 of the 4 habitat categories present (missing tiffles/runs receive lower score).	Dominated by en- velocity/depth category (uscally poell.
1 -	· Channel alteration ^(a)	Little or no enlargement of laised or point bars, end/or no channelization.	Some new increase in bar formation, mostly from costne gravel! and/er some channelisation present.	Mederate deposition of now gravel, coarse sand on old and new bers; pools partially filled w/silk; and/or embank- ments on both banks.	Heavy deposits of fine material, increased bar development; most pools filled w/silt; end/or extensive channelisation
٠	000 000 000 000 000 000 000 000 000 00	Leas than 50 of the bottom affected by scouting and deposition.	5-10% affected. Scourst constrictions and where grades steepen. Some deposition in pools.	10-504 affected. Deposite and accor at abstructions, con- atticitions and bends. Sene falling of peels.	Morron than 90% of the borron changing Pools almost lang. Pools almost absent day of the co deposition. Only large recks.

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

HABITAT ASSESSMENT FIELD DATA SHEET ICONE. !

=	Habitat Parameter	Encellent	poog	Pair	Poor
<b>:</b>	Pool/fifflo. run/bond ratio (distanto beteson rifflos divided by arress vidth)	5-7. Variety of habitat. Deep riffles and pools.	7-15. Adequate depth in poels and ciffies. Bends provide habitat. 8-11	15-25. Occasional riffle or bond. Source contours provide source habitet.	135. Essentially a straight stress. Generally all flat tester or shallow riefly. Peer
<u> </u>	7. Sank stability ^(a)	Stable. Re evidence of eresion or Side slopes gener- ally 100%. Little problem: A for furre	Mederately attable. Infraquent, small areas of creation mently healed to to to no one shows up to percential in entress floods.	Modernto ly unapply since the control of the contro	Unscable. Many elected arces. Bide alones 5601 connect. Bide arces frogen and bends arreid frogen and bends.
<u>.</u>	Bank vegeffilve stability	streambank auriaces streambank auriaces covered by vegetation or boulders and cobbie:	50-79% of the streembank surfaces covered by vegetation, gravel or larger paterial.	25-49% of the atreambank surfaces covered by vegetation, gravel, or larger material.	Less than 25t of the streambank surfaces covered by vegetation. gravel, or larger material.
÷	Streamside cover ^(b)	Doninant vegetation is shrub.	Doninant vegetetion is of tree form.	Desinant vegetation is grass or forbes.	Over 500 of the stream- bank has no vegetation and desimant actorial is sell, reck, bridge accordis, culverts, or sine tailings.
100	Column Tetals	111	3		

Page 1 of 1 Document #3-MI

	F	Rapid Bioassess	ment Protoc	ol I	
		Biosurvey Fiel	d Data Sheet		
RELATIVE ABUNDANCE	E OF AQUATIC	BIOTA			
Periphyton Filementous Algae Macrophytes		3 4	Slimes Macroinvert Flah	(a) 1 (a) 1 (a) 1	
0 = Absent/Not Observe	rd 1	=Rere 2=	Common	3 = Abundant	4 - Dominant
MACROBENTHOS QUA	LITATIVE SAM	PLE LIST@ndicate Relati	ve Abundance R = Re	un, C - Common, A - Ab	undark, 0 = Cominant)
Portfera	R	Anisoptera	R	Chironomidee	A
Hydrozoe	Ž	Zygoptera	R	Piecopters	A
Platyhelminthes	2	Hemiptera	2	Ephemeropters	Ā
Turbellaria	P	Coleoptera	R	Trichoptera	2
Hirudines	R	Lepidopters	Ŕ	Other	
Oligocheets	2	Slafidae	R		
Isopoda	L	Corydalidae	Ł		
Amphipoda	R	Tipulidae	R		
Decapoda	R	Empididae	2		
Gastropoda	R	Simulidae	R		
Bivatvia	R	Tabanidae	R		
		Culicidae			
Rare < 3	Common 3	-9 /	Noundant > 10	Domir	rent >50 (Estimate)
Observations Kick Samples Jame Caralia Lealiz Cart La	(100 100 100 100 100	Count) Amo word sca grade	sely stong	the ment	but climal exteric of

Biosurvey Field Data Sheet for use with Rapid Bioassessment Protocol I.

Many Services of the Control of the

IMPAIRMENT ASSESSMENT SHEET  1. Detection of impairment: Impairment detected (Complete items 2-6)  2. Biological impairment indicator:  Benthic macroinvertebrates Other aquatic communities		Page 1 Document
IMPAIRMENT ASSESSMENT SHEET  1. Detection of impairment: Impairment detected (Complete items 2-6)  2. Biological impairment indicator:  Benthic macroinvertebrates  absence of EPT taxa  — Periphyton  dominance of tolerant groups — ilamentous — other  low taxa richness — Macrophytes — other  Slimes — Fish  3. Brief description of problem:  Year and date of previous surveys:  Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  — point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown	1 045-MI-01 25 44.11.	Occument
IMPAIRMENT ASSESSMENT SHEET  1. Detection of impairment: Impairment detected (Complete items 2-6)  2. Biological impairment indicator:  Benthic macroinvertebrates  absence of EPT taxa dominance of tolerant groups filamentous low benthic abundance low taxa richness other Slimes Fish  3. Brief description of problem:	_	
IMPAIRMENT ASSESSMENT SHEET  1. Detection of impairment: Impairment detected (Complete items 2-6)  2. Biological impairment indicator:  Benthic macroinvertebrates Other aquatic communities  absence of EPT taxa Periphyton  dominance of tolerant groups filamentous  lov benthic abundance other  lov taxa richness Macrophytes  other Slimes  Fish  3. Brief description of problem:  Year and date of previous surveys:  Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flothabitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  point source discharge (name, type of facility, location) combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown	mach	
1. Detection of impairment: Impairment detected (Complete items 2-6)  2. Biological impairment indicator:  Benthic macroinvertebrates		ESSMENT SHEET
2. Biological impairment indicator:  Benthic macroinvertebrates	_	
Benthic macroinvertebrates Other aquatic communities absence of EPT taxa		te items 2-6) detected
absence of EPT taxa	2. Biological impairment indicator:	
dominance of tolerant groups filamentous  low benthic abundance other  low taxa richness Hacrophytes  other Slimes  Fish  3. Brief description of problem:  Year and date of previous surveys: Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown		•
low benthic abundance		<del></del>
low taxa richness		
		· — —
Fish  3. Brief description of problem: Year and date of previous surveys: Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  6. Suspected source(s) of problem:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff ground water other unknown	<del></del>	<del></del>
Year and date of previous surveys:  Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  6. Suspected source(s) of problem:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown	- Company of the Comp	<del></del>
Year and date of previous surveys:  Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  6. Suspected source(s) of problem:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknown		
Survey data available in:  4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  6. Suspected source(s) of problem:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknown		
4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  6. Suspected source(s) of problem:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown		
habitat limitations other  5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:  6. Suspected source(s) of problem:  point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown		
5. Estimated areal extent of problem (m²) and length of stream reach affected (m), where applicable:	4. Cause: (indicate major cause) 0	rganic enrichment toxicants flov
affected (m), where applicable:		
point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown	•	
point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknown	affected (m), where applicable: _	
construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknown	6. Suspected source(s) of problem:	
combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknovn	point source discharge (nam	e, type of facility, location)
silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknovn		
agricultural runoff urban runoff ground vater other unknown	silviculture runoff	
urban runoff ground vater other unknovn		
other unknown	urban runoff	
unknovn		
Briefly explain:		
	Briefly explain:	

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

95%

PHYSICAL CHARACTE FIELD	RIZATION/WATER QUALITY DATA SHEET
PHYSICAL CHARACTERIZATION	
RIPARIAN ZONE/WATER	
Predominant Surrounding Land Use:	
Forest Field/Pasture Agricultural Residential	Commercial Industrial Other Golf Course
High Water Mark 1 (m) Velocity > 1 fps (1-5) Dam Prese	nt: Yes No Channelized: Yes X No
	Shaded Sample Area
SEDIMENT/SUBSTRATE:	•
Sediment Odors: Normal Sewage Petroleum Chemical	Anacrobic None Other
Sediment Oils: Absent Slight Moderate Profuse	<del>-</del>
Sediment Deposits: Sludge Sawdust Paper Fiber Sand	Relict Shells Note. Other
Are the undersides of stones which are not deeply embedded black?	10 X No_ Some stones dot were duply
Inorganic Substrate Components	Organic Substrate Components
Percent Composition	Percent Composition
Substrate Type Diameter in Sampling Area	Substrate Type Characteristic in Sampling Area
Bedrock	Detritus Sticks, Wood.
Boulder >256mm (10 in.)	Coarse Plant 5% Materials (CPOM)
Cobble 64-256mm (2.5-10 in.) 5 %	(5. 5.1.)

Muck-Mud

Black, Very Fine

Organic (FPOM)

Silu	0.00406mm	5%	Mari	Grey, Shell	$\sim$
Clay	<0.004mm (slick)			Fragments	
WATER QUA	LITY				
Stream Type:	Coldwater Warm	water			
Water Odors:	Normal Sewage Petro	leum Chemical No	Other		
Water Surface (	Oils: Slick Sheen Globs	Flecks None			
Turbidity:	Clear Slightly Turbid	Turbid Opaque Wa	iter Color		
	croinvertebrate So	•			
* Doly a	xirse spokeom.		1 0	1 -1.	
Input of	rom Beaver para	(system) also	AL OVE	6 sends mile , Sample station.	Part 75 mes
Creek wid	It in Danplery	sua 28 16 30		, sample states.	Linga 15 year
101-657	17.3℃) / ~	Able			
Card: 701	my/L JOGG	14 01	_		`
D.o. = 12.8	my/L ) occ	DIGE MAP	OF INU	et. Souple husti	ر کمر
			( c	106'E)	

70%

2570

5%

2-64mm (0.1-2.5 in.)

0.06-2.00mm (gritty)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

ATLR28/066.51

Gravel

Sand

045-MI -02-S



HABITAT ASSESSMENT FIELD DATA SHEET

Page 1 of 2

٦	Habitat Parameter	Excellent	Poop	J10J	1004
1	Portion substrated	Greater than 50% rubble, gravel, submerged logs, undercut banks, or other stable habitat.	10-50% rubble, gravel of other stable habitat. Adequate habitat.	10-10t rubble, graval or other stable habitat. Rabitat availability less than desirable. 6-10	Less than 10% cubble gravel or other stable habitet. Lack of habitet is obvious.
ļ ⁻	Embeddedness (b)	Gravel, cobble, and boulder perticles are between 0 and 25 t surreunded by fine sediment 16-20	Gravel, cobble, and boulder perticles are between 25 and 50 t surrounded by fine 13215	Gravel. Cobble, and betteen Spartinies are between Spartinies are unfecteded by fine follows:	Dravel, cobble, and boulder perficies are ever 79 % surrecanded by fine sediment
<b>J</b>	10.15' cms (5 cfs) + *Ployalat rep. lou floutalat rep. lou	(Cold ) 0.03 cms (2 cfs) Watm > 0.13 cms (5 cfs)	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	(0.01 cms (.5 cfs)
	Volocity/depth	slow (cd.) m/s), deap (sd.5 m); slow, shallow (cd.5 m); fast (sd.) m/s), deep; fast, shallow hebitats all present.	Only 3 of the 4 habitat categories present (missing riffles or runs receive lover score than missing pools:	only 2 of the 4 habitet categories present (missing riffles/runs receive lover score).	Dominated by one velocity/depth category (ustally pool).
<u>.</u>	* Channel alteration (4)	Little or no enlarge- ment of islands or point bars, and/or no channelization.	Some net increase in bar formation, moally from coarse gravel; and/or some channelisation present.	Nederate deposition of new gravel, cease and on old and new bars; pools pertially filled v/silt; and/or embent- ments on beth beats.	Heavy deposits of fine material, increased bar development; most pools filled w/silt; and/or extensive channelization
1	deposition the and	Loss than 3t of the bottom affected by scouting and deposition.	5-100 affected. Scour at constrictions and where grades scopes. Some deposition in poels.	Dopost affects and series and ser	Morro than 30% of the berton changing mostly year lang. People almost absent the control of the

(a) From Ball 1902. (b) From Platts ot al. 1983. Moto: " m Mabitat parameters not currently incorporated into Blos Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

045-MI-02

HABITAT ASSESSMENT FIELD DATA SHEET (CORE.)

:	Habitat Parameter	Excellent	poog	Fair	Poor
<b>.</b>	Pool/fiffle, fun/bend ratio (distance between riffles divided by stream width)	5-7. Variety of habitat. Deep riffles and pools.	7-15. Adequate depth in poels and riffles. Bends provide habitat.  10	15-25. Occassional riffle or bend. Bettes concours provide seas habitet.	135. Essentially satisfied the forest of shell of the fifthe. Seer habited.
14	7. Bank stability (a)	Stable. No evidence of eresion no evidence side alopes general perential for future problem.	Noderately stable. Infrequent, small access of eresion mostly healed over. Side slapes up to 40% on one bank. Silght potential in extreme	Moderate Progressy and estable.  Moderate Grequency and estable of erosional areas.  Side slopes up to 60% en some benks. Might erosion petential during extreme high flow.	Unstable. Namy ereded area. Side alopes of the common. That's areas frequent along attaight sections and bends.
1 -	Benk vegeraters stability	Over 80% of the streambank surfaces covered by vegetation or boulders and cobble.	50-79% of the atreabank surfaces covered by vegetation, gravel or larger material.	25-49% of the atream- bank surfaces covered by vegetation, gravel, or larger material.	Less than 294 of the streethan 294 of the covered by vegetation. gravel, or larger 0-2
١٠	9. Streeside cover (b)	Dominant vegetation ts shrub.	Dominant vegetation is of tree form.	Deminant vegetation is grass or forbes.	Door 50% of the streem- bank has no vectation and deminant material is soil, rest, bridge materials, culverts, or mine tailings.
18	Column fotals	107	E4	0	Ol

(Cont.).

0u5-	MI	-02
1500 H	2S	

X

Document # B-MI M.M. 052892

### Rapid Bioassessment Protocol I

### **Biosurvey Field Data Sheet**

Periphyton	<b>©</b>	1	2	3	4	Silmes	<b>6</b> 1	2 3
Filementous Algee	0	<b>(</b> )	2	3	4	Macroinvert	ebrates 0 1	· 2 · 3
Macrophytes	<b>©</b>	1	2	3	4	Fish	0 (Tx	2 3
6 = Absent/Not Obe	erved		1-	Rere		2 - Common	3 - Abundant	4 = Dom
MACROBENTHOS (	QUALITA	TIVE S	MPL	E LIST(	Indicate	Relative Abundance R - Re	ra, C - Common, A - Abu	ndent, D = Dem
Portfera			R	Anisop	tera	P	Chironomidae	
Hydrozoe		1	2	Zygopt	9/8	R	Piecopters	
Platyhelminthes		R		Hemipt	era		Epheriteroptera	C
Turbellaria		R		Coleop	tere	R	Trichoptera	R
Hirudinea		R		Lepido	ptera	R	Other	
Oligochaeta		R		Slalidad	•	R		
Isopoda		P		Coryda	lidae	R		
Amphipoda		R		Tipulid	••			
Decapoda		R		Empidi	dae			
Gastropoda		R		Simuliik	dae	P		
Bivatvia		R		Tabanic	lae			
				Culicida	80	R		
Rare < 3	C	ommo	n 3-1	)		Abundant > 10	Domine	ent > 50 (Estin
Observations pulide, se preflex (se	veral	2	ily	pal	g ,	Magfleis (£	Portei, Lype	gsllebe
Lulains			•	•				

Biosurvey Field Data Sheet for use with Rapid Bioassessment Protocol 1.

	Document # 8-1
	Brike Brischel
-	
	IMPAIRMENT ASSESSMENT SHEET
1.	Detection of impairment: Impairment detected (Complete items 2-6)  No impairment detected (Stop here)
2.	Biological impairment indicator:
	Benthic macroinvertebrates Other aquatic communities absence of EPT taxaPeriphytondominance of tolerant groupsfilamentous
	low benthic abundanceother low taxa richness Hacrophytes
	other Slimes Fish
3.	Brief description of problem:  Year and date of previous surveys:  Survey data available in:
4.	Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other
5.	Estimated areal extent of problem (m ² ) and length of stream reach affected (m), where applicable:
6.	Suspected source(s) of problem:
	point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown
Br	iefly explain:

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

Bedrock   Boulder   >256mm (10 in.)   5%   Coarse Plant   Materials (CPOM)   5%	R3045	.:	A I A	· ) / ******
PHYSICAL CHARACTERIZATION  RIPARIAN ZONE/WATER  Prodominant Surrounding Land Use:  Forest Field/Pasture Agricultural Residential Commercial Industrial Other	245-03 Document	49-MI	Mile Mes	chil
PHYSICAL CHARACTERIZATION RIPARIAN ZONE/WATER Predominant Surrounding Land Use: Forest Field/Pasture Agricultural Residential Commercial Industrial Other High Water Mark (m) Velocity 2 2 fps Dam Present: Yes X No Channelized: Yes No X Canopy Cover: Open Partly Open Partly Shaded Shaded  SEDIMENT/SUBSTRATE: Sediment Odors: Normal Sewage Petroleum Chemical Anaerobic None Other Sediment Oils: Absent Slight Moderate Profuse Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other South Sight Moderate Profuse Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other South Sight Moderate Profuse Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other South Sight Moderate Profuse Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other South Sight Moderate Profuse  Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other South Sight Moderate Profuse  Deposition in Sampling Area  Percent Composition Inorganic Substrate Components  Percent Composition In Sampling Area  Detritus Sicks, Wood, Coarse Plant Materials (CPOM)  Gravet 2-54mm (10 in.)  Gravet 2-54mm (25-10 in.) 5-70  Muck-Mud Black, Very Fine Organic (FPOM)  Silt 0.004-06mm SSO Martl Grey, Shell Fragments  One Coarse Plant Organic (FPOM)			JITY	
Predominant Surrounding Land Use:  Forest Field/Pasture Agricultural Residential Commercial Industrial Other  High Water Mark (m) Velocity > 2 fps				
Forest Field/Pasture Agricultural Residential Commercial Industrial Other High Water Mark S (m) Velocity 22 Cps Dam Present: Yes X No Channelized: Yes No X Canopy Cover: Open Partly Open Partly Shaded Shaded  SEDIMENT/SUBSTRATE: Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other Sediment Olis: Absent Slight Moderate Profuse Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other Some Sediment Deposits: Studge Sawdust Paper Fiber Sand Relict Shells Other Some Substrate Components  Inorganic Substrate Components  Organic Substrate Components  Organic Substrate Components  Percent Composition in Sampling Area Substrate Type Characteristic Industrial Other  Percent Composition in Sampling Area Substrate Type Characteristic Industrial Other  Percent Composition in Sampling Area Substrate Type Characteristic Industrial Other  Organic Substrate Components  Organic Substrate Type Characteristic Industrial Other  Percent Composition in Sampling Area Substrate Type Characteristic Industrial Other  Organic Substrate Components  Organic Substrate Components  Organic Substrate Components  Organic Substrate Components  Organic Substrate Type Characteristic Industrial Other  Organic Substrate Type Characteristic Industrial Other  Organic Substrate Type Industrate Composition Industrial Other  Organic Substrate Type Industrial Other  Organic Substrat	RIPARIAN ZONE/WATER			
High Water Mark (m) Velocity > 2 fps Dam Present: Yes No Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Shaded SEDIMENT/SUBSTRATE:  Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other Sediment Olis: Absent Slight Moderate Profuse Sediment Obpositis: Studge Sawdust Paper Fiber Sand Relict Shells Other No	Predominant Surrounding Land Use:			
High Water Mark (m) Velocity > 2 fps Dam Present: Yes No Channelized: Yes No Canopy Cover: Open Partly Open Partly Shaded Shaded Shaded SEDIMENT/SUBSTRATE:  Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other Sediment Olis: Absent Slight Moderate Profuse Sediment Obpositis: Studge Sawdust Paper Fiber Sand Relict Shells Other No	Forest Field/Pasture Agricultural Residential	mmercial Industri	al Other	
SEDIMENT/SUBSTRATE:  Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other  Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other  Sediment Odors: Absent Slight Moderate Profuse  Sediment Deposits: Sludge Sawdust Paper Fiber Sand Relict Shells Other Solid Side Are the undersides of stones which are not deeply embedded black? Yes No X  Inorganic Substrate Components  Percent Composition In Sampling Area  Substrate Type Diameter In Sampling Area  Bedrock  Boulder > 256mm (10 in.)  Cobble 64-256mm (25-10 in.)  Gravel 2-64mm (0.1-2.5 in.) 70.25  Sand 0.06-2.00mm (gritty) 2.0.7c  Silt 0.00406mm 5.90  Mart Grey, Shell Fragments  Other Solid None Othe				
Sediment Odors: Normal Sewage Petroleum Chemical Anacrobic None Other  Sediment Odis: Absent Slight Moderate Profuse  Sediment Deposits: Sludge Sawdust Paper Fiber Sand Relict Shells Other Some Site  Are the undersides of stones which are not deeply embedded black? Yes No X  Inorganic Substrate Components  Percent Composition in Sampling Area  Bedrock  Boulder > 256mm (10 in.)  Cobble 64-256mm (25-10 in.) 5 %  Gravel 2-64mm (0.1-2.5 in.) 70%  Sand 0.06-2.00mm (gritty) 2 2 3 %  Silt 0.004-06mm 5 %  Marl Grey, Shell Fragments  Other Some Other Other Silt None  Other Some Silt Silt Silt Silt Silt Silt Silt Silt	Canopy Cover: Open Partly Open Partly Shaded Sh	nded		<del></del>
Sediment Oils: Absent Slight Moderate Profuse  Sediment Deposits: Sludge Sawdust Paper Fiber Sand Relict Shells Other Some Sixty  Are the undersides of stones which are not deeply embedded black? Yes No _X  Inorganic Substrate Components  Organic Substrate Components  Organic Substrate Components  Percent Composition in Sampling Area  Bedrock  Boulder >256mm (10 in.)  Cobble 64-256mm (2.5-10 in.)  Gravel 2-64mm (0.1-2.5 in.) 7025  Sand 0.06-2.00mm (gritty) 2.0.26  Silt 0.004-06mm  Sight Moderate Profuse  Sand Relict Shells  Other Some Sixty	SEDIMENTAUBSTRATE:			
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Relict Shells Other Some Sixten Are the undersides of stones which are not deeply embedded black? Yes No X  Inorganic Substrate Components  Percent Composition in Sampling Area  Bedrock  Boulder > 256mm (10 in.)  Cobble 64-256mm (25-10 in.)  Gravel 2-64mm (0.1-2.5 in.) 703 Muck-Mud Black, Very Fine Organic (FPOM)  Silt 0.004-06mm 590 Marl Grey, Shell Fragments  Other Some Sixten Other Some Sixten Shells (Clay < 0.004mm (slick)	Sediment Odors: Normal Sewage Petroleum Chemical An	acrobic None	Other	
Are the undersides of stones which are not deeply embedded black? Yes No X  Inorganic Substrate Components  Organic Substrate Components  Organic Substrate Components  Percent Composition in Sampling Area  Substrate Type Characteristic in Sampling Area  Bedrock  Boulder > 256mm (10 in.)  Cobble 64-256mm (2.5-10 in.)  Gravel 2-64mm (0.1-2.5 in.) 7020  Sand 0.06-2.00mm (gritty) 2020  Silt 0.004-06mm 550  Marl Grey, Shell Fragments  Organic Substrate Components  Percent Composition in Sampling Area  Substrate Type Characteristic in Sampling Area  Composition in Sampling Area  Substrate Type Characteristic in Sampling Area  No X  Percent Composition  In Substrate Type Characteristic in Sampling Area  Substrate Type Characteristic in Sampling Area  Substrate Type Characteristic in Sampling Area  No X  Percent Composition  In Sampling Area  Substrate Type Characteristic Organic Characteristic  Substrate Type Characteristic  Organic Substrate Components  Percent Composition  in Sampling Area  Substrate Type Characteristic  Organic Substrate Components  Percent Composition  in Sampling Area  Substrate Type Characteristic  Organic Substrate Components  Percent Composition  In Sampling Area  Substrate Type Characteristic  Organic Substrate Components  Percent Composition  In Sampling Area  Substrate Type Characteristic  Organic Substrate Components	sediment Oik: Absent Slight Moderate Profuse			
Inorganic Substrate Components   Organic Substrate Components	ediment Deposits: Sludge Sawdust Paper Fiber Sand Re	lict Shells	Other Some Site	<u></u>
Percent Composition in Sampling Area  Substrate Type  Bedrock  Boulder >256mm (10 in.)  Cobble 64-256mm (25-10 in.)  Gravel 2-64mm (0.1-2.5 in.) 703  Sand 0.06-2.00mm (gritty)  Silt 0.004-06mm  Composition in Sampling Area  Substrate Type Characteristic in Sampling Area	We the undersides of stones which are not deeply embedded black? Yes	No_X		
Substrate Type  Diameter  Detritus  Substrate Type  Detritus  Sticks, Wood, Coarse Plant Materials (CPOM)  Cobble  64-256mm (2.5-10 in.)  Gravel  Sand  Detritus  Sticks, Wood, Coarse Plant Materials (CPOM)  Muck-Mud  Black, Very Fine Organic (FPOM)  Silt  Detritus  Silt  O.004-06mm  Sompling Area  Detritus  Substrate Type  Detritus  Sticks, Wood, Coarse Plant Materials (CPOM)  Muck-Mud  Black, Very Fine Organic (FPOM)  Organic (FPOM)  Clay  Clay  Composition in Sampling Area  Detritus  Silcks, Wood, Coarse Plant Materials (CPOM)  Silt  O.004-256mm (0.1-2.5 in.)  Mari  Grey, Shell Fragments	Inorganic Substrate Components	0	ganic Substrate Component	s
Substrate Type  Diameter  Detritus  Substrate Type  Detritus  Sticks, Wood, Coarse Plant Materials (CPOM)  Cobble  64-256mm (2.5-10 in.)  Gravel  Sand  Detritus  Sticks, Wood, Coarse Plant Materials (CPOM)  Muck-Mud  Black, Very Fine Organic (FPOM)  Silt  Detritus  Silt  O.004-06mm  Sompling Area  Detritus  Substrate Type  Detritus  Sticks, Wood, Coarse Plant Materials (CPOM)  Muck-Mud  Black, Very Fine Organic (FPOM)  Organic (FPOM)  Clay  Clay  Composition in Sampling Area  Detritus  Silcks, Wood, Coarse Plant Materials (CPOM)  Silt  O.004-256mm (0.1-2.5 in.)  Mari  Grey, Shell Fragments	_		·	_
Bedrock   Detritus   Sticks, Wood, Coarse Plant Materials (CPOM)   S %	Composition			
Boulder   >256mm (10 in.)   5%   Coarse Plant   5%		Substrate Type	Characteristic	in Sampling Area
Cobble 64-256mm (2.5-10 in.) 5 % Materials (CPOM)  Gravel 2-64mm (0.1-2.5 in.) 70% Muck-Mud Black, Very Fine Organic (FPOM)  Sand 0.06-2.00mm (gritty) 20% Marl Grey, Shell Fragments		Detritus	• • • • • • • • • • • • • • • • • • • •	<i>-</i> 9.
Gravel   2-64mm (0.1-2.5 in.)   70%   Muck-Mud   Black, Very Fine   90%	7-9	•	- · · · · · - · · · · · ·	5 76
Sand   0.06-2.00mm (gritty)   20%	57-250mm (25-10 m.)			
Silt 0.004-06mm 5% Marl Grey, Shell Fragments	(0.5 20 1) [0.20	Muck-Mud		90%
Clay <0.004mm (slick)	(5)		Organic (CCOM)	
Cusy <0.004mm (stick)		Mari	_ *	0
WATER OHAL FTV	lay <0.004mm (slick)		· ragincino	
water douritt	VATER QUALITY			
Stream Type: Coldwater Warmwater	tream Type: Coldwater Warmwater			
Water Odors: Normal Sewage Petroleum Chemical None Other	Vater Odors: Normal Sewage Petroleum Chemical Nor	Other		
Water Surface Oils: Slick Sheen Globs Flecks None	Vater Surface Oils: Slick Sheen Globs Flecks None			
Turbidity: Clear Elightly Turbid Opaque Water Color				
* Sample area just below input culpert from peop and chaining in vicining OUS-9-16 danation of Solmon Run Park Tiel Hatacley of ABFG volyacut to peti, above Dam.  ** Above Dam.	Sample area just below input culvert OUS-SI-16 dansteam of Solmon Run Park Deti, above Dam.	from sey an	drainge in lay of ABFG of	vicinity of
Ph = 6.72 (7.2 °c) Menosured on Coid = 99, mhrs /cm² 600192	\(\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.



053012 045-03

4 5 ハイ (

Aile hich

4	l
$\sim$	ı
7	
ı	
$\neg$	
( )	
¥	
H	
,	
1.	
7	
è	
٤	
₹	
J	
d	
$\neg$	
_	
ı	
. 1	

HABITAT ASSESSMENT FIELD DATA SMEET

* Bottom					
	Politica side contractions of the contraction of th	Greater than 501 tubble, gravel, subserved logs, undercut banks, or ether stable habitat.  (6)	10-50% cubble, gravel or other stable habitet. Adequate habitet.	MO-MON CORPIO, Graveller of the corpies of the corp	Coss than 10% subble gravel or ether atable habitet. Lack of habitet is ebvious.
2. Enbedde	Enbeddedness (b)	Gravel, cobble, and boulder pertiries are between 0 and 25 to surreunded by fine sediment // 16-20	Gravel, cobble, and boulder particles are between 25 and 50 t sufrounded by fine sediment	Gravel. cobble, and bettern particles are between 50 and 75 1 secretated by fine 4-diment	Markel, Applied and according to the property of the section of the property of the section of t
3. 40.15 cms *Floya.at flow	50.15' cms (5 cfs) + *Ploy*st rep. lov flow*at rep. lov	Warm 18.15 cms 12 cfs) Warm 18.15 cms 15 cfs)	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) c0.01 0.03-0.05 cms (1-2 cfs) c0.03 6-10	(0.01 cms (.5 cfs)
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00.13 cms (Sefs) • Velocity/depth	Slow ((0.3 m/s), deep (>0.5 m); slow, shallow ((0.5 m); fast (>0.3 m/s), deep; fast, shallow habitats all present.	Only 3 of the 4 habitet categories présent [missing rifles et runs receive louer score than missing pools].	Only 2 of the 4 habitet categories present (missing tiffles/runs receive lever score).	Desinated by en- velocity/depth category (usually pool).
· Chan	· Channel alteration (a)	Little or no enlargement of islands or point bers, and/or no channelization.  13	Some new increase in bar formation, mostly from coorse gravel; and/or some channelisation prosent.	Mederate deposition of now gravel, coarse sand pools partially filling v/silt; and/or embark- sents on both banks.	Meavy deposits of fine material, increased bar development; mest peels filled w/silt; and/or estensive channelisation
2 d d d d d d d d d d d d d d d d d d d	deposition and and deposition	Less then 5% of the bottom affected by accuring and deposition.	5-101 affected. Scour at constrictions and where grades steepen. Some deposition in poels.	Jo-50t affected. Deposite and accurate betrictions, con- strictions and bends. Sene filling of pools.	Morrow than 304 of the most to what the most to what the most to man the most to most

Habitat Assessment Field Data Sheet for use with all Rapid Bioassessment Protocols.

HABITAT ASSESSMENT FIELD DATA SHEET (cont.)

9	Habitat Peremeter	Excellent	0000	7.67	P001
<b>.</b>	Pool/fiffle, run/bend ratio (distance between riffles divided by atteam width)	5-7. Variety of habitat. Deep ciffles and pools.	7-15. Adequate depth in poels and riffles. Bends provide habitet.	15-25. Occasional riffic or bond. Betton contours provide seme habitat.	125. Essentially a straight stream. Generally all flat vator or shallow fiffle. Peer
1.	Bank stability (a)	Stable. No evidence of eresion or benk failure. Side slopes gener- ally 4304. Eittle prebles. for future	Anderstely stable. Infrequent, small areas over stable areas over stable areas to ension mestry healed to ension one bank slight perpetal in extreme	Moderately unateable mid of colons o	Unitable. Many orocat access. Side common for the c
1 :	B	Over 80% of the streembank surfaces coered by vegetation or boulders and cobble.	50-79% of the streament surfaces covered by vegetation, gravel or larger material.	25-49% of the attentable of the control of larger macerial.	Loss than 294 of the attroopublish suffices covered by vegetation. gravel, or larger material.
l <u>:</u>	Streamside cover (b)	Deminant vegetation is shrub.	Dominant vapotation is of tree form.	Dominant vegetation is grass or forbes.	Over 50% of the streambank has no vegetation and deminant paterial is sell, reck, bridge materials, culerts, or sine tailings.
	Column Totals	101 84	ল	<b>7</b>	

(Cont.).

### Rapid Bioassessment Protocol I

### **Biosurvey Field Data Sheet**

RELATIVE ABUNDA	MUE U			3			Slimes				•	•	•	
Periphyton Filamentous Algee	0	Ж	2	3	-		Macroir	werk	ebestes	9	1	2	க்	4
Macrophytes	Ö	æ	2	3	4		Fish			•	1	2	3	4
0 - Absent/Not Obe	erved		1 -	- Rare		2 = Com	non		3 - At	under	l	4	Domi	neni
MACROBENTHOS C	WALIT/	TIVE S	AMP	LE LIST	findlest	Rolative Ab	ındence F	i - Ro	m, C - C	mmen,	A - Abu	ndent, (	D - Demi	
Portiera			R	Aniso	otora			R	Chiron	omide	•		1	<u>_</u>
Hydrozoa			2	Zygop	lora			R	Plecor	plore			C	1
Platyhelminthes	-	·	Ŕ	Hemip	tora			<u>P</u>	Ephen	neropte	•		A	7_
Turbellaria	<del></del>		R	Coleo	otera			2	Tricho	ptera	•		E	2_
Hirudinea			P	Lepido	ptera	•		R	Other	Age	ANA		2	
Oligochaeta			R	Sielide				è						
Isopoda			P	Coryda	nlidae			2	<u> </u>					_
Amphipoda			P	Tipulio	lae			1						
Decapoda			9	Empid	idae	·	1	2						_
Gastropoda	• • • • • • • • • • • • • • • • • • • •	- 1	2	Simulii	idae _	oted		>						
Bivelvia				Tabani	•			2						_
				Culicid	lae									_
Rare < 3		Comm	on 3-	•		Abun	dent > 10	)	*		Domina	int > 5	) (Estim	vete)
Observations Colemannet Many diff Difference Dery small	face l	dur to	Le	las lica	ا ا مار مار	s Ba	iti	lon	inat Lat	tie	مد	ny	le	

Biosurvey Field Data Sheet for use with Rapid Bioassessment Protocol 1.

053292 045-03 Document # 12-MI INPAIRMENT ASSESSMENT SHEET 1. Detection of impairment: Impairment detected No impairment (Complete items 2-6) detected (Stop here) 2. Biological impairment indicacor: Benthic macroinvertebrates Other aquatic communities ____ absence of EPT taxa ____ Periphyton ____ filamentous _ dominance of tolerant groups ___ low benthic abundance ___ other ____ Macrophytes lov taxa richness __ other ___ Slimes Fish 3. Brief description of problem: Year and date of previous surveys: _ Survey data available in: _ 4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other _ 5. Estimated areal extent of problem (m2) and length of stream reach affected (m), where applicable: 6. Suspected source(s) of problem: point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknovn Briefly explain:

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

060392 OUS-MI-04	Document # 13	3-MI mie Miel
Qualitative Assessment Bener Pard Station + Surt 10:28 EUD: 11:05	£	Jule Misely
* F	Rapid Bioassessment <b>Emite</b>	<del>SI+</del>
	Biosurvey Field Data Sheet	
Mecrophyles (0) 1 2	BIOTA 2 3 4 Slimes 2 3 4 Macroinvert 3 4 Fish 3 = Rare 2 = Common	1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 3 - Abundant 4 - Dominant
MACROBENTHOS QUALITATIVE SAM	PLE LIST@redicate Relative Abundance R = R	J
Porifera C	Anieoptera C	Chironomidee
Hydrozoa	2ygoptera	Plecopters O
Platyhelminthes C	Coleopters	Ephemeropters C
Turbellaria C	Coleopters (2)	Other
Oligochaeta	Sielidee O	
Isopoda	Conydelidee	
Amphipoda A	Tipulidae	
Decapoda C	Empididae O	
Gastropoda	Simuliidae	
Bivalvia ()	Tabanidae C	
	Culicidae C	
Rare < 3 Common 3	-9 Abundant > 10	Dominant > 50 (Estimate)
Sumple site B (P2	Organisms. Cliq Woter bendman (Dophus, Cydloph) 1-P4) Abachotton re 1-P5) More self, leso	mest dannoch Scuds, pockocke present, Scuds, proplement in water colored density of many take density of much clay, especial, should be colored soul, "Ceverging soul, grand.
Geralitatui Danples	Field Data Sheet for use with Ray were about y M	enning a dip met alway wetr

Column, and heek net skim Map Cuer Lotten.
* No RBP for Pands

**A-7** 

P1-3 = Regular Soupe P4-6 = QA/QC Souple Q = Qualitative Souple



060	292	- (1)			- A P - S
OU S	5-111105	<u>, CX</u>	Do	cument #1	4-MI Prite Mischel
BAN	er Pone "	Station	1		İ
				يؤ	
		F	Papid Bisas	scenat	i
			•	ESIMENT Protoc	<del>or i</del>
			Biosurvey I	Field Deta Sheet	i
	RELATIVE ABUNDAN				
	Periphyton Filementous Algee	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Macroinver	0 1 2 3 4 tebrates 0 1 2 5 4
· <b>N</b>	Macrophytes 2	0 1 2	3 4	Fish	(b) 1 2 3 4
	Abaaat/Nat Obaaa		Sec.	<b>3</b> _0	3 - Abrondont A - Deminant
<b>.</b>	) = Absent/Not Obser	<b>~</b> ••□ 1	= Rare	2 = Common	3 = Abundent 4 = Dominant
					·
_					
	MACROBENTHOS QU	ALITATIVE SAME	LE LISTANDON R	Hethye Abundance R - R	ere, C - Common, A - Abundant, D - Dominant)
_	Porifera	<u>, R</u>	Anleoptera	None	Chironomidae
-	tydrozoa	<u>Voue</u>	Zygoptera	None_	Plecopters R
		ivne	Hemiptera		Epherneropters P
_	fi	Jone	Coleopters	NOAR	
_	Nigochaeta	1046 D 3	Lepidoptera Siatidae	<u> </u>	
-		ene	Conydalidae	NOAR	Subs play surface butter
	Imphipoda	A	Tipulidae	None	Sales Blong surine was
_		Jone	Empididae	None	
-		June	Simuliidae	None	
8	livalvia	NIAR	Tabanidae	None	
-			Culicidae	С	
	lare < 3	Common 3		Abundant > 10	Dominant > 50 (Estimate)
o	Deservations & Q	pritative	Collection	'' ''	be invertible. Souds and
×	Caphrice in s	Le water	I near	cle surface	sedenants. O de organismo
1	midges were	anate	neter ( O	Jacarali Y n	respecto lance (culcillas),
		1. Meller			/ // //
P	Dophnes en s midges were report were	- William	nistra)	Jelgas Bry	mano, mayfy
'a	nter broken		14.	hill soil	unit over graturel except
(L)	rater bash	on mai	revil was	light sed	and over gather except
(L)	rater bash	on mai	revil was	light sed	and over gather except
(L)	rater bash	on mai	revil was	light sed	spill. This area
hote 5	reter boarder the man a lite	on mai	revil was	light sed	spill. This area
hote &	rea the man a lite	on mai	revil was	light sed	and over gather except
hote &	rea the man a lite	on ma put ava sident	de de const	light sed Lealah huel selan a l	spill. This area water a land ilmige material  Mag of Somple (Over)
hote &	reter book rear the en of a lite	en ma put ava sedent	rever was	light sed Lealet feel when a d	spill. This area water a land ilmige material  Mag of Somple (Over)
hote &	rea the man a lite	en ma put ava sedent	rever was	light sed Lealet feel when a d	spill. This area water a land ilmige material  Mag of Somple (Over)
hote of ho	reter books rear the english a lite of 3.70	en ma put ava sedent	rever was	light sed Lealet feel when a d	spill. This area water a land ilmige material  Mag of Somple (Over)
hote &	reter book rear the en of a lite	Biosurvey	rever was	light sed Lealet feel when a d	spill. This area water a land ilmige material  Mag of Somple (Over)

A-7

Proposed Sums

Q: Qual Caline Collection

a) dip net in water column

b) Kicknet Along the Surface of

the bottom

D.T. Dead Tree



C6.0392				$i \in \{i, j\}$
OUS-MI-06		Documo	4 4 15-1	II Trucke Principal
QUS-MI-06 Cruplitative Assa	er next		70	
D I A D I	77 7 (			
Panding Area Below Start 7500 END 1	21 24			
SEAR TS GO END 1	1,500		4	
	Ra	pid Bioassess	A Sment <del>Drotoe</del> r	4-4
	• • • • • • • • • • • • • • • • • • • •	hid Diodocos	ment <del>Trouc</del> t	<del>14. 1</del>
		Biosurvey Fie	ld Data Sheet	
RELATIVE ABUNDANCE (Periphyton C) Filamentous Alger (1)	1 2	SIOTA 3 4 3 4	Silmes Macroinverte	0 1 2 3 4 brates 0 1 2 3 4
Macrophytes 0	1 2	3 4	Fish	<b>1</b> 2 3 4
0 = Absent/Not Observed	1-	Rare 2 -	Common	3 = Abundant 4 = Dominant
MACRORENTINOS OHALI	ATIVE CAMO	E I STRANGANA SAIN	ha Abuadana B - Ba	s, C - Common, A - Abundant, D - Dominant)
Portiera Portiera				
	<u> </u>	Anisopters		Chironomidae
Hydrozoa		Zygoptera	0	Plecoptera
Platyhelminthes		Hemiptera		Ephemeropters 6
Turbellaria	ဂ္	Coleoptera		Trichoptera R
Hirudinea	0	Lepidoptera		Other Zooplanktons (Many
Oligochaeta	c ?	Sialidae		Could be Cyclipe)
isopoda	0	Corydalidae		
Amphipoda	0	Tipulidae	0	
Decapoda	0	Empididae	0	
Gastropoda	0	Simuliidae	0	
Bivalvia	0	Tabanidae	0	
		Culicidae	C	
Rare < 3	Common 3-	····	Abundant > 10	Dominant > 50 (Estimate)
Dayloneds) Arhably	yplaps (C	te C Sy C Totale ).	Sememble Many or	. One tructopteran rail youplantus (rol clem ph= 6.86
PI - Smelled (very s	my) of	desil for	l	Cons. = 382 Mahus/ent
P3 - J	J			Waln temp: 10.0°C
	1.0 0	Le sunde	cres and	Acticleun Alsen
a les quen bacter	Biosurvey F	ield Data Sheet f	or use with Repi	d Bioassessment Protocol I.
IL 112 RBP for You	197		·	

Map (OUER)



060492 But husby Snow Mell Pand Document #16-MI * * Rapid Bioassessment Protocol-I-**Biosurvey Field Data Sheet** RELATIVE ABUNDANCE OF AQUATIC BIOTA **Periphyton** Macrophytes 0 = Absent/Not Observed 2 = Common MACROBENTHOS QUALITATIVE SAMPLE LIST (Indicate Pointive Abundance R = Nara, C = Common, A = Abundant, D = Dr **Portfera** Anisopters Chironomidae Hydrozoe Zygoptera Piecoptera **Platyhelminthes** Hemiptera Ephemeroptera Turbellaria Coleoptera Trichoptera Hirudinee Lepidoptera Other Oligochaeta Sielidae Corydalidae Isopoda

Decapoda

Emplidae

Gastropoda

Simutildae

Bivatria

Taberidae

Cuticidae

Rare < 3

Common 3-9

Abundant > 10

Dominant > 50 (Estimate)

Observations:

Jornale taken for macroinertehole, was preserved, but not

field prehed. Suphanea present in under column, michas and

mosquito lorum present in botton seriface sediment

mosquito lorum present in botton seriface sediment

Jediment companie of Coarse sond and grand material wich

le fine selt layer over the top. her others noted in

padener.

* No RISP for SNOW Melt Poud

Biosurvey Field Data Sheet for use with Rapid Bioassessment Protocol I.

0492											.9	· 11.
5-MI-08-	· (s)				De	scument #	17 -	ΜI	-		1/2	ich.
SLES 5	<u> </u>											
			Ra	ıpid B	ioas	ੀਂ sessment <del>Protoc</del>	<del>ol l</del>					
				Bio	surve	/ Field Data Sheet						
RELATIVE ABUNDAI	NCE Q	F AQU	NTIC B	HOTA								
Periphyton	0	1	2	3	4	Silmes		0		2		4
Flementous Algae Macrophytes	0	1	2	3 3		Macroinvert Fish	iebrates	0	1	2	3	4
	-	·	-	-				_		_		•
0 = Absent/Not Obse	rved		1 -	Rare		2 = Common	3 - Ab	unden	ı	4	- Domi	nent
MACROBENTHOS O		ATIVE S	AMPL	E LISTA		Relative Abundance R - Re	C-C-		A - Abu	ndeed (	0-0	
Porifera				Anteop			Chiron					
Hydrozoa				Zygopt			Plecop	Lera				
Platyheiminthes				Hemipt	era	<del> </del>	Ephem	eropte	ra .			<del></del>
Turbellaria				Coleop	lera		Trichop	tera				
Hirudines				Lepido	otera		Other					
Oligochaeta				Slalidad	•							
Isopoda				Coryda	lidae							
Amphipoda	·		_	Tipulida	10			_				
Decapoda				Empidie	iae							
Gastropoda				Simuliid	100		<u> </u>					<del></del>
Bivalvia				Tabanid			ļ					
<del></del>				Culicida	10		<u> </u>					
Rare < 3	_	Commo				Abundant > 10	<del>-</del>		Domini	mt > 50	(Estim	ate)
Observations & Culculation of Outer one Lands, tweys.	lue C	Vial ye	any	les selin	Je Je	water Domer och and love fresend-kon wil smelled net overlage	sk of	Sin Si	San River	ent ma ff.	ledy let	So . Goton George
* No Re	sP	for	Pa	nds								

Biosurvey Field Data Sheet for use with Rapid Bioassessment Protocol I.

RAPID BIOASSESSMENT PROTOCOL 1 DATA— LATE SUMMER 1992 RAPID BIOASSESS. ; PROTOCOL

# Biosurvey Fleid Data Sheet

Date 9-1-92			Location	Ship Creek	
Time //35			* eldus	S. MJ. 01-0	
Project # ADC 31826. H2. 28			Biologist//	Biologist/Asst. M. Mischuk / S. Hepe	
Relative Abundance of Aquatic Blota					
Periphyton (0) 1 2	60 60	4	Silmes	0 1 2 3 4	
Filamentous Algae 0 1 2	60 60	4	MacroInvertebrates	rtebrates 0 1 2 3 (4)	
Macrophytes 0 1 2	8		Fish	(d) 1 2 3 4	
0 = Absent/Not Observed 1 = Rare	_	2 = Common 3	3 = Abundant	4 = Dominant	
MACROBENTHOS QUALITATIVE SAMPLE LI		cate Relative Abundance R	- Rare, C - Common,	ST(Indicate Relative Abundance R = Rare, C = Common, A = Abundant, D = Dominant)	
Portiera	R	Anisoptera		dae	
Hydrozoa	6	Zygoptera	8	Plecopters C	
Platyhelminthes	R	Hemiptera	<u></u>	Ephemeropters D	
Turbellaria	R	Coleoptera	P	Trichoptera C.	
Hirudines	8	Lepidoptera	ø	Other	
Oligochaeta	8	Sialidae	Α		
lsopods.	کا	Corydalidae	۷		
Amphipoda	4	Tipulidae	Q.		
Decopoda	R	Empididae	4		
Gastropoda	R	Simulidae	ບ		
Bivaivia	R	Tabanidae	R		
		Culicidae	J		
Rare < 3 Common 3 - 9		Abundant > 10	nt > 10	Dominant > 50 (Estimate)	
Observationss  Observations organisms present in	- Cure	1. Sample (Kich net	Collection) was mo	Deservationss Dominat Organisms present in Qual. Sample (Kich net collection) was mayslis (Exhonerlids, Keet and the	
Pleopters present, Simuliss, In	schopee.	a (kionaphilids, Brad	practicles), A few	Chitoconide	

RAPID BIOASSESS. PROTOCOL

# Biosurvey Field Data Sheet

Date 9-1-92			1	Location Sample	Location Ship Coak Sample # C-01-02-0	20-8				1
Project # Auc 21026. H2. 20	42.2¢			Biologist	Biologist/Asst. M. M. Schul	17		2 Heps		
Relative Abundance of Aquatic Blota	ic Biota									
Periphyton	9	က	4	Simes		<b>(</b>	_	8	က	4
Flamentous Algae	1 2	8	4	Macrolm	Macrolmertebrates	0	-	8	က	•
Macrophytes (	0 1 2	6	4	Fish		0	-	N	က	4
0 = Absent/Not Observed	1 = Rare		2 - Common	3 = Abundant	4 = Dominant					
MACBOBENTHOS QUALITATIVE SAMPLE L	TIVE SAMPLE I	1ST(Ind)	cate Relative Abund	ST(Indicate Relative Abundance R = Rare, C = Common, A = Abundant, D = Dominant)	1, A - Abund	E, O	Pod	nart)		
Portfera		8	R Anisoptera	<b>d</b>	Chironomida	e p				4
Hydrozos		~	Zygoptera	y	? Plecopters	_				مإ
Platyhelminthes		~	Hemiptera	7	Ephemeroptera	ptera				4
Turbellaria		-	Coleoptera	•	Trichoptera					V
Hirudines		٥	Lepidoptera	d	Other					
Oligochaeta		d	Slalidae	<b>S</b>						
Isopoda		6	Corydalidae	7						
Amphipoda		K	Tipulidae	R						
Decopoda		γ	Empididae				ĺ		l	I
Gastropoda		7	Simulidae	K						
Bivatvia		R	Tabanidae	م						
			Culicidae	R						
Rare < 3	Common 3 - 9		1	Abundant > 10		Dominant > 50 (Estimate)	V FIE	50 (Es	E E	
ione										

nest #2

Ephonompton dominant (Ephonerellidue, Ephonomidue), Chironomidue prevalent, more so then 5-net-62, Coddis-Ay ropresont Leptocaidue and possibly 6 lossosomids o Limnephilids), Starflies also prosont

RAPID BIOASSESS. , PROTOCOL

Biosurvey Field Data Sheet

Date 8-34-92 Time   444						3 &	Location Ship Creek Sample # 5- MT- Ø3- Q	Cre	9			
Project # ANC 310/26. 42.20	. 42	27				BK	Biologist/Asst. M. M.: Schak S. Hupe	1:36	77	र प	X	
Relative Abundance of Aquatic Blota	atic Bio	25										
Periphyton	0	<b>O</b>	Ø	60	4	<b>3</b> 5	Slimes	<b>(</b>	-	84	က	*
Flamentous Algae		Θ	~	က	4	Ma	Macroinvertebrates	0	-	8	က	•
Macrophytes	ଚ	-	8	6	<b>4</b>	Fish	£	0	0	~	က	4
0 = Absent/Not Observed	-	1 = Rare	9		2 = Common	3 = Abundant	4 - Dominant	Tent				

orifera	R	K Anisopters	R Chironomidae	,
lydrozoa	2	Zygoptera	R Plecopters	
latyholminthes	8	Hemiptera		
urbellaria	R C	Coleoptera	R Trichoptera	
lindines	<u>بر</u>	Lepidoptera	R Other	
Digochaeta	مر مر	Sialidae	¥	
sopoda	م	Corydalidae	\ \ \	
Amphipoda	ما	Tipulidae	R	
)ecopoda	م	Empididae	ר	
Sastropoda	4	Simulidae	R	
Sivalvia	R	Tabanidae	R	
		Culicidae	ر د	

Addition / 10 Commission / October / Commission / Commission / October / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission / Commission	Observations ? Chironamidae very sobundant, mostly small, probably orthoglads. Many Ephaneuptern cither Chironamidae very sobundant, mostly small probably orthograms - probably Brahembers.
	very abundant, mostly saids / Echanopolids. Some wook
	Observations &

RAPID BIOASSESS. , PROTOCOL

# **Biosurvey Field Data Sheet**

Nate 8-31-92. Sime 1700 Project # ΔΔΣ 51@26. H2.2¢	6. H2.20					- W B	Location Beaver Pond Sample # S-MI-04 @ Biologist/Asst. M. Mischul S. Hope	Sylva Sylva Seelen	S			
Relative Abundance of Aquatic Biota	Aquatic Bic	ž.										
eriphyton	<b>©</b>	-	8	က	4	0,	Slimes	0	( <del>)</del>	8	က	4
Flamentous Algae	<b>©</b>	-	N	က	4		Macroinvertebrates	0	-	81	က	•
Macrophytes	<b>©</b>	-	N	က	÷	<b>-</b>	Fish	<u>(</u>	-	~	က	4
0 = Absent/Not Observed	p ₀	1 - Rare	976		2 = Common	3 = Abundant	4 = Dominant	<b>Parit</b>				

MACROBENTHOS	ACROBENTHOS QUALITATIVE SAMPLE LIST (Indic	ST(Indicate Relative Abundance R = Rare, C = Common, A = Abundant, D = Dominant)	1, A = Abundant, D = Dominant)
Portfera	4	Anisoptera	Chironomidae
Hydrozoa	<b>d</b>	Zygoptera	Piecoptera
Platyhelminthes	7	Hemiptera P	Ephemeroptera
Turbellaria	~	Coleoptera	Trichoptera
Hirudines	7	Lepidoptera	Other
Oligochaeta	υ	Sialidae	
spodosi	8	Corydalidae	
Amphipoda	ひ	Tipulidae	,
Decopoda	3	Empididae (	
Gastropoda	R	Simulidae	
Bivalvia	3	Tabanidae	
		Culicidae	
0000	Courses 9	Abundant 40	(stational of the final of

Abundant > 10

Observations E

Oual. samples dominated by Chironumids, oligochaetes commy panticularly tebificiles Soute,

Oual. samples dominated by Chironumids, oligochaetes commy panticularly tebificiles Soute,

Japhnids, Jungen Flics, watermites present. Presented Bramples no 5-MT-164-Q (Richal) + (Augusthal)

RAPID BIOASSESS. , PROTOCOL

# Biosurvey Field Data Sheet

Date 9-31-92				ļ	Location	Bearer Pond	900				1
	H2. 29				Sample # S- Biologist/Asst.	Asst. M. Mische	ल-प्रत जन्म	k/s.	Hupe		1.1
Relative Abundance of Aquatic Blota	c Blota										
Periphyton	6	81	က	4	4 Silmes		0	-	°	€ •	
Filamentous Algae	-	84	က	*	Macroirvertebrates	ertebrates	•	-	<b>6</b> 9	<del>م</del>	
Macrophytes	<b>-</b>	8	က	÷	Fish		9	-	~	₩	
0 = Absent/Not Observed	-	1 = Rare		2 = Common	3 - Abundant	4 = Dominant	ant				
MACROBENTHOS QUALITATIVE SAMPLE L	TVE SAN	PLEUS	3T (Indic	ST (Indicate Relative Abundance R	ICE R = Rare, C = Common, A	A = Abundant, D = Dominant)	D,	Domin	namt)		П
Portiera			20	Zvgootera		Plecopters					<b>ام</b>
Platyheiminthes			1	Hemiptera	P	Ephemeropt	ptera			,	لہا
Turbellaria			م	Coleoptera	<b>6</b>	Trichoptera	-			¥	له
Hindines		7	Pre	Lepidoptera	R	Other					1
Oligochaeta			ચ	Sialidae	4						١
Isopoda			7	Corydalidae	24					Ì	1
Amphipoda			ર્ય	Tipulidae							١
Decopoda			4	Empididae							ı
Gastropoda			4	Tehenidee	4						1
			4	Culicidae	2	-					1
Rare < 3	Common 3 - 9	3.0			Abundant > 10		Domi	uant > 6	Dominant > 50 (Estimate	nete)	
ions was was midae most as also as led	surfactive or seconds		Ount on the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back of the back o	Marie Pires	resent where seem entering as 32 common seem solution. It waste column shoot	terry els fend Service Sediment su	ert o	breson w frace	tour present, olyschueth	igo chu	\$

Decument # 5

RAPID BIOASSESS. 'PROTOCOL

### Biosurvey Field Data Sheet

Date 9-4-92 Time 153¢ Cenoleted Project ★ AUC 3/626 H2.2⊄	6. H					Location Sample # Biologist/A	Location Ship Crek Sample # S-mi-11-0 Biologist/Asst. M. Mischek C. Heps	X 8 3	3	343	
Relative Abundance of Aquatic Biota	atic Bio	5									
Periphyton	9	-	81	က	4	Simes	•	-	8	60	•
Filementous Algae	6	-	N	9	4	Macrolinvertebrates	rtebrates 0	_	N	<b>ම</b>	•
Macrophytes	<b>©</b>	-	N	9		Fish	•	<b>9</b> 0	2 2 3 seufples	e •	•
0 = Absent/Not Observed		1 - Rare	<b>2</b>		2 = Common	3 - Abundant	4 = Dominant				

MACACAENTHOS	ACRORENTHOS QUALITATIVE SAMPLE LIST (In	IST findicate Relative Abundance R = Rare, C = Common, A = Abundant, D = Dominant)	, A = Abundant, D = Dominant)
Portfera		P Anisoptem	Chironomidae A
Hydrozoe			A Piecoptera
Platyhelminthes			c.e.
Turbellaria		Coleoptera	Trichopters @
Hrudines	7	Lepidoptera	Other
Oligochaeta		Sialidae	
spodos	3	Corydalidae	
Amphipoda		Tipulidae	
Decopoda		Empididae C	
Gastropoda		8 Simulidae	
Bivaivie	2	Tabanidae	
		Culicidae	
Rare < 3	Common 3 - 9	Abundant > 10	Dominant > 50 (Estimate)

Oligochooles the most dominant group (Tubiticisms), followed by chitonomishs (Crimbons 19.2), Sound Chisc bilding CaldisClies, Ephemonolish, Ephemonollish, Liberty, Indonesia, Souples worked the Souples worked the standard from standard the SO worke from shown going from standard to Ship Greek and along a true truek that directed the SO worke from moin chains? Observations 2

nest #6

RAPID BIOASSESS. . PROTOCOL

# **Biosurvey Field Data Sheet**

Date 9-5-92 Time     Ø T   Project # ANC 31026. H2.20	6. H2	22				_ <del></del>	Sample # S-MI-12-0 Blologist/Asst. M. M. Schak	277	1 1 3	S. Hope	N N	
Relative Abundance of Aquatic Blota	atic Bio	쳞										
Periphyton	0	-	<b>(%)</b>	က	4		Silmes	<b>©</b>	-	~	က	<b>4</b>
Flamentous Agae	<b>©</b>	-	84	က	4	-	Macroinvertebrates	0	<b>-</b>	8	<b>©</b>	•
Macrophytes	<u>©</u>	-	84	က	<b>4</b>	_	Fish	0	Θ	84	60	•
0 = Absent/Not Observed		1 = Rare	<b>1.0</b>	•4	2 = Common	3 = Abundant	4 = Dominant	ant				

Abundant > 10	Common 3 - 9	Rare < 3
Culicidae		
7 Tabanidae	R	Bivalvia
Simulidae	K	Gastropoda
Empididae		Decopoda
Tipulidae	<b>y</b>	Amphipoda
Corydalidae	8	sopoda
Slaidae	J	Oligochaeta
Lepidoptera	<b>y</b>	Hirudines
Coleoptera	)	Turbellaria
> Hemiptera	7	<b>Platyhelminthes</b>
Zygoptera		Hydrozoe
Anisoptera		Porifera
151 (Indicate negative Abundance R = Rare, C = Common, A = Abundant, D = Dominant)		

Ephomeropten very abundant (Hoptogen iidae, Bookidae, Ephemorellidae), Plee-ptera prosect (Filipalpiana), Pricepten abundant (Bradycentrida haptocerida?) Chimmanidae (Crimpleoper a): Sound, and longer forus), Oligocharte (Tubiticida), Kichmet Samples were taken timm Righte (SI) and en/1256 ('s1,53) prox.

Dxwwent #7

Harry I was	
	_

Decument # 8			
9-7-92 PHYSICAL CHARACTERIZ	ATION/WATER QUALI		ĺ
M. Mischek / S. Hype FIELD DAT	TA SHEET	5-mI-ál	
PHYSICAL CHARACTERIZATION		1255 M3	
RIPARIAN ZONE/WATER			
Predominant Surrounding Land Use:	AFB+ A-	y Bome	
Forest Field/Pasture Agricultural Residential Con	nmercial Industria		
High Water Mark 2 (iii) Velocity 5.2 ft. 2 Dam Present:	Yes No <u>X</u> _	Channelized: Yes No X	
Canopy Cover: Open Partly Open Partly Shaded Sha	ded		į
SEDIMENT/SUBSTRATE:			
Sediment Odors: Normal Sewage Petroleum Chemical And	serobic None	Other	!
Sediment Oils: Absent Slight Moderate Profuse			i
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Rel	lict Shelts	Other None - some sund at	, [
Are the undersides of stones which are not deeply embedded black? Yes	No <u>X</u>	end of gravel land	Ì
Inorganic Substrate Components	Or	ganic Substrate Components	
			_
Percent		Percent Composition	Ì
Composition Substrate Type Diameter in Sampling Area	Substrate Type	Characteristic in Sampling Are	
Bedrock	Detritus	Sticks, Wood.	_
Boulder >256mm (10 in.)		Coarse Plant Materials (CPOM)	
Cobble 64-256mm (2.5-10 in.) / 2		Maiciels (Crom)	
Gravel 2-64mm (0.1-2.5 in.) 80%	Muck-Mud	Black, Very Fine	
Sand 0.06-2.00mm (gritty) (07a		Organic (FPOM) < 10%	
Silt 0.00406mm	Mari	Grey. Shell	
Clay <0.004mm (slick)		Fragments	
Stream Type: Coldwater Warmwater			
"	out Oak of		
Water Odors: Normal Sewage Petroleum Chemical No	one Other		
Water Surface Oils: Slick Sheen Globs Flecks (None)			
Turbidity: Clear Slightly Turbid Turbid Opaque Wi		To Deale Hall Land	
Many o: Afle + pod press. Riskles very shallo			•
places. Chutes 2 to 3' in depth	p.o. 0.o. Te	- 1/.1 mg/L - 8.22	
High water mand at 2 ft above surface of water Velocity measured by floating stick methodesity	J pH		
Velocity measured by Traveling	ρμ Te	- 7.4 - 8.32	
	• •	binty - 87 unhalos	,
(MAP ON BACK)		laisly Trap 8.52	

Figure 5.1-1: Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.



Document # 10	<u> </u>		
PHYSICAL CHARACTERIZATION  PHYSICAL CHARACTERIZATION  PHYSICAL CHARACTERIZATION		TY Ship Creek 5-mI-Ø2 M.Mischuk	S. Hope
RIPARIAN ZONEWATER			
Predominant Surrounding Land Use:	Galf Cours	•	
Forest Field/Pasture Agricultural Residential Co	mmercial Industrial		
High Water Mark 2 (m) Velocity 7.7 fes Dam Present	Yes K No	Channelized: Yes N	0 <u>X</u>
	Downstream ided		•
SEDIMENT/SUBSTRATE:			
	aerobic None	Other	
Sediment Oils: Absent Slight Moderate Profuse			
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Re	dict Shells	Other fine sand of Bank and at	posite cut
Are the undersides of stones which are not deeply embedded black? Ye	8 No <u>X</u>	gravel lama	
Inorganic Substrate Components	Οη	ganic Substrate Components	· · · · · · · · · · · · · · · · · · ·
Percent Composition Substrate Type Diameter in Sampling Area	Substrate Type	Characteristic	Percent Composition in Sampling Area
Bedrock	Detritus	Sticks, Wood.	100%
Boulder >256mm (10 in.)		Coarse Plant Materials (CPOM)	(very little
Cobble 64-256mm (2.5-10 in.)		, ,	
Gravel 2-64mm (0.1-2.5 in.)	Muck-Mud	Black, Very Fine	mus -
Sand 0.06-2.00mm (gritty) 5%		Organic (FPOM)	
Silt 0.00406mm 4 5 %	Mari	Grey, Shell	une
Clay <0.004mm (slick)		Fragments	
WATER QUALITY			
Stream Type: Coldwater Warmwater			
"	one Other		
Water Surface Oils: Slick Sheen Globs Flecks None	VIII		
Turbidity: Clear Slightly Turbid Turbid Opaque W	Iner Color		
* Stream velocity based on floating stick at	surface		
D.O 10.2 mg/L			
D.o. Temp 100 %			
PH - 6-7			
PH Temp 9.8°C			
Cond 109 manhoes/em		,	- 18
Conductivity Temp 100°		(MAP A	a Back)

Figure 5.1-1: Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

Decument #12			····
8-39-92 / 1509  PHYSICAL CHARACTERIZ  FIELD DA	<del> </del>		
PHYSICAL CHARACTERIZATION		m. mischek,	/s.Hope
RIPARIAN ZONE/WATER		f c if forms.	Salma kan
Predominant Surrounding Land Use:	Downstream Park, Adia	of Gulf Counce, ont so tish hotele	7
Forest Field/Pasture Agricultural Residential Con	mmercial Industrial	Other	<del></del>
High Water Mark(m) Velocity Dam Present:	Yes X No C	hannelized: Yes No	X
Canopy Cover: Open Partly Open Partly Shaded Shu	nded		
SEDIMENT/SUBSTRATE:			
Sediment Odors: Normal Sewage Petroleum Chemical An	aerobic None O	ther	·
Sediment Oils: Absent Slight Moderate Profuse	_		
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Re	lict Shells	ther	
Are the undersides of stones which are not deeply embedded black? Ye	s No <u>X</u>		
Inorganic Substrate Components	Organ	ic Substrate Components	
Percent Composition	•		Percent Composition
Substrate Type Diameter in Sampling Area	Substrate Type	Characteristic	in Sampling Area
Bedrock		icks, Wood. oarse Plant	(very little
Boulder >256mm (10 in.)	_	laterials (CPOM)	Actually Present
Cobble 64-256mm (2.5-10 in.) /0 %			
Gravel . 2-64mm (0.1-2.5 in.) 80%	1	lack, Very Fine Organic (FPOM)	None
Sand 0.06-2.00mm (gritty) 10 %	1	, Build (1 1 2 113)	
Silt 0.004-06mm		irey, Shell Fragments	Non C
Clay <0.004mm (slick)			
WATER QUALITY			
Stream Type: Coldwater Warmwater			
Water Odors: Normal Sewage Petroleum Chemical N	one Other	<del></del>	
Water Surface Oils: Slick Sheen Globs Flecks None			
Turbidity: Clear Slightly Turbid Turbid Opaque W	/ater Color		
D.O 8.7 mg/L			
D.o. Temp 9.5°C			
Conductivity - 110 jumbors lem			
Conductivity Temp 9.0°C			
pH - 7.1			
pf Temp 9.0°C	•	(MAP at	( لمسى

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

Document # 13 7-35 12 142 5 2 74 14. 26 rough more day a second or a second or a second Qual. Kiel Net Itt I Willi Qual Kich web. Qual unbout Bank+ Log(Sticks) Hatchery Brive Pord in 424 DAM

	Document # 14			
PRYSICAL CHARACTERIZATION  RIPARIAN JOSEPHATER  Predominant Surrounding Land Use:  Forest Field/Pasture Agricultural Residential Commercial Industrial Other	8-31-12 PHYSICAL CHARAC		ANC BLOSE. H	2.25
Precominant Surrounding Land Use:  Forest Field/Pasture Agricultural Residential Commercial Industrial Other	PHYSICAL CHARACTERIZATION		5-mi-04	
Forest Field/Pasture Agricultural Residential Commercial Industrial Other	RIPARIAN ZONE/WATER			
High Water Mark D/A (m) Volocity D/A Dam Present: Yes No Channelized: Yes No SEDIMENT/SUBSTRATE  Sediment Odor: Normal Sewage Petroleum Chemical Anaerobic None Other Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Sediment Olic: Absent Slight Moderate Profuse  Percent Composition  In Sampling Area Substrate Type Characteristic Composition  In Sampling Area Substrate Type Characteristic Composition  In Sampling Area Substrate Type Characteristic Course Plant  Mater Substrate Type One Plant  Several Plant  Course Plant  Mater Substrate Type One Plant  Several Type Characteristic Course  Water Odors: Mormal Several Profuse  Water Odor	Predominant Surrounding Land Use:			
Canopy Cover: Open Partly Open Partly Shaded Shaded  SEDIMENT/SUBSTRATE:  Sediment Odor: Normal Sewage Petroleum Chemical Anaerobic None Other	Forest Field/Pasture Agricultural Residential	Commercial Industria	al Other	
Canopy Cover: Open   Parily Open   Parily Shaded   Shaded	High Water Mark <u>D/A</u> (m) Velocity <u>D/A</u> Dam		Channelized: Yes	. No
Sediment Odor: Normal Sewage Petroleum Chemical Anaerobic None Other	Canopy Cover: Open Partly Open Partly Shaded	Shaded		
Sediment Oils: Absent Slight Moderate Profuse  Sediment Deposits: Sludge Sandual Paper Fiber Sand Relict Shelts Other	SEDIMENT/SUBSTRATE:	•		
Sediment Depositix: Sludge Sawdust Paper Fiber Sand Relict Shells Other	Sediment Odors: Normal Sewage Petroleum Chemical	Anaerobic None	Other	
Are the undersides of stones which are not deeply embedded black? Marian Substrate Components    Percent Composition in Sampling Area   Substrate Type	Sediment Oils: Absent Slight Moderate Profuse			
Inorganic Substrate Components    Diameter	Sediment Deposits: Studge Sawdust Paper Fiber Sand	Relict Shells	Other	
Substrate Type Diameter in Sampling Area  Bedrock  Boulder >256mm (10 in.)  Cobble 64-256mm (2.5-10 in.)  Gravel 264mm (0.1-25 in.)  Sand 0.06-2.00mm (gritty)  Sit 0.004-06mm 2070 Marl Grey, Shell Fragments  WATER QUALITY  Soldwater Warmwater  Water Color: Wormal Shwage Petroleum Chemical None Other  Turbidity: Clear Slightly Turbid Opaque Water Color  D. O. Cond. C	Are the undersides of stones which are not deeply embedded black?	W/DYes No		
Substrate Type  Diameter  Detritus  Substrate Type  Characteristic  Detritus  Sticks, Wood.  Coarse Plant Materials (CPOM)  Diameter  Detritus  Sick Stocks, Wood.  Coarse Plant Materials (CPOM)  Diameter  Detritus  Sick Stocks, Wood.  Detritus  Sick Stocks, Wood.  Detritus  Sick Stocks, Wood.  Detritus  Sick Stocks, Wood.  Diameter  Diameter  Detritus  Sick Stocks, Wood.  Diameter  Diameter  Diameter  Diameter  Detritus  Sick Stocks, Wood.  Diameter  Diameter  Diameter  Diameter  Detritus  Sick Stocks, Wood.  Diameter  D	Inorganic Substrate Components	O	rganic Substrate Compone	mis
Substrate Type  Diameter  Detritus  Substrate Type  Characteristic  Detritus  Sticks, Wood.  Coarse Plant Materials (CPOM)  Diameter  Detritus  Sick Stocks, Wood.  Coarse Plant Materials (CPOM)  Diameter  Detritus  Sick Stocks, Wood.  Detritus  Sick Stocks, Wood.  Detritus  Sick Stocks, Wood.  Detritus  Sick Stocks, Wood.  Diameter  Diameter  Detritus  Sick Stocks, Wood.  Diameter  Diameter  Diameter  Diameter  Detritus  Sick Stocks, Wood.  Diameter  Diameter  Diameter  Diameter  Detritus  Sick Stocks, Wood.  Diameter  D				
Substrate Type  Diameter  in Sampling Area  Substrate Type  Characteristic  in Sampling Area  Detritus  Sticks, Wood. Coarse Plant Materials (CPOM)  Cobble  64-256mm (25-10 in.)  Gravel  2-64mm (0.1-25 in.)  Sand  0.06-2.00mm (gritty)  Solvater  Silt  0.004-06mm  2070  Marl  Grey, Shell Fragments  WATER QUALITY Park Sirvan Type:  Water Odors:  Water Odors:  Water Surface Oils: Slick  Sheen  Globs  Flecks  None  Turbidity:  Clear  Slightly Turbid  Turbid  Opaque  Water Color  D-0-  7-  8-2 ang/h  D-0-  7-  7-  7-  7-  7-  7-  7-  7-  7-				
Boulder >256mm (10 in.)  Cobble 64-256mm (25-10 in.)  Gravel 2-64mm (0.1-25 in.) 20-75  Sand 0.06-2.00mm (gritty) 50.72  Silt 0.004-06mm 20-75  Mari Grey, Shell Fragments  WATER QUALITY  And Surman Type: Quality Warmwater  Water Odors: Normal Swage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Qear Slighty Turbid Turbid Opaque Water Color  D 8-2 mg/L  D-0. Tenp - 10.2 °C  Cond - 28? name was fema			Characteristic	• • • • • • • • • • • • • • • • • • •
Boulder >256mm (10 in.)  Cobble 64-256mm (2.5-10 in.)  Gravel 2-64mm (0.1-2.5 in.) 20.75  Sand 0.06-2.00mm (gritty) 50.76  Silt 0.004-06mm 20.70  WATER QUALITY  Part  Surman Type: Coldwater Warmwater  Water Odors: Normal Shwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D. 0. Temp - 10.2 °C  Cond. Temp - 10.1 °C	Bedrock	Detritus	<del>-</del>	207
Gravel 2-64mm (0.1-25 in.) 2025 Muck-Mud Black, Very Fine Organic (FPOM) 8070  Silt 0.004-06mm 2020 Marl Grey, Shell Fragments  WATER QUALITY  Pold Stram Type: Coldwater Warmwater  Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Gear Slightly Turbid Turbid Opaque Water Color  D.O. Temp - 10.2 °C  Cond. Temp: - 10-1 °C	Boulder >256mm (10 in.)			2018
Sand  0.06-2.00mm (gritty)  Silt  0.004-06mm  2070  Marl  Grey, Shell Fragments  WATER QUALITY  Pool  Surman Type: Coldwater  Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.O. Tenf) - 10.2 °C  Cond. Tenf - 10.1 °C	Cobble 64-256mm (2.5-10 in.)			
Sand  0.06-2.00mm (gritty)  Silt  0.004-06mm  2070  Marl  Grey, Shell Fragments  WATER QUALITY  Pool Strang Type: Oldwater  Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Gear Slightly Turbid Turbid Opaque Water Color  D 8.2 mg/L  O-0. Tenf - 10.2 °C  Cond. Tenf - 10.1 °C	Gravel . 2-64mm (0.1-25 in.) 202	Muck-Mud	•	80%
WATER QUALITY  Pond Surman Type: Coldwater Warmwater  Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.O. Temp - 10.2 °C  Cand. Temp - 10.1 °C	Sand 0.06-2.00mm (gritty) 50%	,	Organic (FPOM)	00.20
WATER QUALITY  Pond Stragg Type: Coldwater Warmwater  Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.O. Temps - 10.2 °C  Cand. Temps - 10.1 °C	Silt 0.00406mm 2.57c	Mari	Grey, Shell	
Street Type: Coldwater Warmwater  Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.O. Temp - 10.2 °C  Cond. Temp - 10.1 °C	Clay <0.004mm (slick) 10%		Fragments	
Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.o. Temp - 10.2 °C  Cond. Temp - 10.1 °C	WATER QUALITY			
Water Odors: Normal Stwage Petroleum Chemical None Other  Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.o. Temp - 10.2 °C  Cond. Temp - 10.1 °C	Stram Type: Coldwater Warmwater			
Water Surface Oils: Slick Sheen Globs Flecks None  Turbidity: Clear Slightly Turbid Turbid Opaque Water Color  D.o 8.2 mg/h  D.o. Ten/s - 10.2 °C  Cond 289 manhors/cm  Cond. Tenp: - 10.1 °C		None Other		
Turbidity: Clear Slightly Turbid Opaque Water Color  D.O 8.2 mg/h  D.O. Tenp - 10.2 °C  Cond 289 menhase fem  Cond. Temp - 10.1 °C		)		
D.o 8.2 mg/h D.o. Tenp - 10.2 °C Cond 289 markons/em Cond. Temp 10.1 °C		iue Water Color		
0-0. Tens - 10.2 °C Cond 289 markons fem Cond. Tens 10.1 °C				
Cond 289 junkous fem cond. Temp 10.1 °C	D-0. Temp - 10.2 °C			
cond. Temp 10.1 °C	Cond 289 menhors fem			
pH Temp 10.2°c	Cond. Temp 10.1 °C			
PH Temp 10.2°C	PH - 7.09			
	pH Temp 10.2°c			
(MAP on Back)	<u>'</u>	•	( M A D	, a., b)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.



Pared at 1	

Document #16					
8-31-92 1366	PHYSICAL CI	HARACTERIZ FIELD DA	ATION/WATER QUALI TA SHEET	ANC SIPIL.	H2. Z#
PHYSICAL CHARACTERIZ	ZATION			5-MI- Ø5	
RIPARIAN ZONE/WATER					
Predominant Surrounding Las	nd Use:				
Forest Field/Pasture	Agricultural Residenti	ial Co	mmercial Industria	Other	
High Water Mark 2/A (m)	Velocity	Dam Present:	Yes X No	Channelized: Yes N	lo <u>X</u>
Canopy Cover: Open	Partly Open Partly Sh	aded Sha	Beautr		
SEDIMENT/SUBSTRATE:		·			
Sediment Odors: · Normal	Sewage Petroleum Che	mical An	nerobic None	Other	<del></del>
Sediment Oils: Absent	Slight Moderate Profus	e			
Sediment Deposits: Sludge	Sawdust Paper Fiber	Sand Rei	lict Shells	Other Veritable de	tribe, leaves,
Are the undersides of stones	which are not deeply embedded	black? //Yes	No	841cks	
Inorganie	Substrate Components		Or	ganic Substrate Components	
		ercent position			Percent Composition
Substrate Type		pling Area	Substrate Type	Characteristic	in Sampling Area
Bedrock			Detritus	Sticks, Wood.	80%
Boulder >25	56mm (10 in.)			Coarse Plant Materials (CPOM)	00 70
Cobble 64-2	256mm (2.5-10 in.)			•	- •
Gravel . 2-64	4mm (0.1-2.5 in.)		Muck-Mud	Black, Very Fine	20%
Sand 0.06	5-2.00mm (gritty) 10	7.5		Organic (FPOM)	70%
Silt . 0.00	0406mm 96	70	Mari	Grey, Shell	
Clay <0.	.004mm (slick)			Fragments	
WATER QUALITY					
Stream Type: Coldwall	Warmwater				
-	Sewage (Petroleum) Chem	nical No	ne Other		
Water Surface Oils: Slick (					
	Slightly Turbid Turbid	Opaque Wa	nter Color		
	-3 mm	Operation			
D.o. Temp 10	ع 1.1		•		
	Oumhan /em				
Cond. Temp 10					
PH - 7.					
PH Temp - 9.1	i <b>°</b> .				
				Con	e ou Book)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

195 . 27. . 45. 25. 25. 248 S. 3 . TW. ونسي بخياف وأوفيه فعوم الاصحاء Shilkew 4020 P = pelike Ponar Q = Qualitative Collection a) kicknet fulled accossed sur b) rinsing off of woody debris ( Sticks , tomother , Liquis Ti 5 3.4

<u> 19 ५</u>६-छ

Document # 17

Document # 18	
9-4-12 ANC 3/626. H2.26 PHYSICAL CHARACTERIZ FIELD DA	TA SHEET 6-MI-II-Q
PHYSICAL CHARACTERIZATION	m. Mischek /S. Hype
RIPARIAN ZONE/WATER	
Predominant Surrounding Land Use:	Creek were along junk york
Forest Field/Pasture Agricultural Residential Con	amercial Industrial Other
High Water Mark 3 (pr) Velocity 4.3 Sps Moda Sto Dam Present:	Yes No X Channelized: Yes No X
Canopy Cover: Open Partly Open Partly Shaded Sha	ded
SEDIMENT/SUBSTRATE:	·
Sediment Odors: Normal Sewage Petroleum Chemical And	nerobic None Other
Sediment Oils: Absent Slight Moderate Profuse	
Sediment Deposits: Sludge Sawdust Paper Fiber Sand Re	ict Shells Other
Are the undersides of stones which are not deeply embedded black? Yes	No sit observed
Inorganic Substrate Components	Organic Substrate Components
Percent Composition Substrate Type Diameter in Sampling Area	Percent Composition Substrate Type Characteristic in Sampling Area
Bedrock	Detritus Sticks, Wood.
Boulder >256mm (10 in.)	Coarse Plant Materials (CPOM)
Cobble 64-256mm (2.5-10 in.) 10%	
Gravei . 2-64mm (0.1-2.5 in.) 80%	Muck-Mud Black, Very Fine
Sand 0.06-2.00mm (gritty) 10%	Organic (FPOM)
Silt 0.00406mm	Muck-Mud  Black, Very Fine Organic (FPOM)  Marl  Grey, Shell Framents  Pone
Clay <0.004mm (slick)	Fragments
WATER QUALITY	
Stream Type: Coldwater Warmwater	
	one Other
Water Surface Oils: Slick Sheen Globs Flecks None	ne model at time of sampling
Turbidity: Clear Slightly Turbid Turbid Opaque W	
River to kes a shorp bend to the left. Ripling	along vight side of book thelp stabilize.
Should in acception enters viver from the	right (Lading Jamestran). Small Chancel
evided this line between Stemm drain (50)	and main thou or lime. Flow them ere of
I in alimned by so has set the extension to the	week.
Water Chemistry of out fluw (tooken At Do 8.9 mg/L Cond. Tong	. 9.02 flue from 50 to creak Approx 1.15
D.o. Temp 9.02 AN	. 1.71
Cond 390 unhas/can OH Tens.	9.0° (MAD on BACK)

Figure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.

Document # 19 ANS 31/26. HZ.26 0.4.314.3 M. 17:13- Aud 15. 1. De Gravel which it carister of our flow ( toich at 1855 they Deel

Document # 20	M. M.
9-5-12 / 1/3 PHYSICAL CHARACTER ANC 31926. H2.29 FIELD D	Ship Creek SATA SHEET  M. Miochal / S. Hope
PHYSICAL CHARACTERIZATION	· · · · · · · · · · · · · · · · · · ·
RIPARIAN ZONE/WATER	manufacture, some
Predominant Surrounding Land Use:	biconf to what produce place Junk yound below saugh area
Forest Field/Pasture Agricultural Residential	Commercial Industrial Other
High Water Mark 2 (pl) Velocity 4 0 Sps Dam Prese	nt: Yes <u>K</u> No Channelized: Yes No <u>X</u>
Canopy Cover: Open Partly Open Partly Shaded	Shaded
SEDIMENT/SUBSTRATE:	
Sediment Odors: Normal Sewage Petroleum Chemical	Anaerobic None Other
Sediment Oils: Absent Slight Moderate Profuse	and head
· · · · · · · · · · · · · · · · · · ·	Relict Shells Other
Are the undersides of stones which are not deeply embedded black?	Yes No <u>X</u>
Inorganic Substrate Components	Organic Substrate Components
Percent Composition Substrate Type Diameter in Sampling Area	Percent Composition Substrate Type Characteristic in Sampling Area
Bedrock	Coarse Plant 100%
Boulder >256mm (10 in.)	Materials (CPOM) (State very little
Cobble 64-256mm (2.5-10 in.) 70%	presmt)
Gravel 2-64mm (0.1-2.5 in.) 2 5 %	Muck-Mud Black, Very Fine Organic (FPOM)
Sand 0.06-2.00mm (gritty) 5 %	
Silt 0.00406mm	Mari Grey, Shell Fragments
Clay <0.004mm (slick)	
WATER QUALITY Stream Type: Coldwater Warmwater	
Water Odors: Normal Sewage Petroleum Chemical	None Other
Water Surface Oils: Slick Sheen Globs Flecks None	
Turbidity: Clear Slightly Turbid Turbid Opaque	Water Color
Sample area just downstrom of bridge and or	et fall area of State fiels that chery. In site water
Guality Mensus amounts	,
D.o. '	
0.0. Temp 8.5%	
Conductivity - 18 1 pentonem	
Conductivity Temp 8.8°C	
PH - 7.34 PH Temp 8.19	(Mag on Back)

Eigure 5.1-1. Physical Characterization/Water Quality Field Data Sheet for use with all Rapid Bioassessment Protocols.



HABITAT ASSESSMENT FIELD DATA SHEET

٩	Habitat Parameter	Excellent	poop	Falt	Poor
Ī	*Bottom substrated	Greater than 50% rubble, gravel, submerged logs, undercut banks, or other stable habitat.	10-50% tubble, gravel or other stable habitet. Adequate habitet. II-15	10-30% rubble, gravel or other stable habitat. Mabitat availability less than desirable. 6-10	Coss than 10% rubble gravel or other stable habitet. Lack of habitet is obvious.
<b> </b>	Embeddedness (b)	Gravel, cobble, and boulder particles are between 0 and 25 t aurrounded by fine addison (% 16-20	Gravel, cobbie, and boulder perticles are between 25 and 50 t surrounded by fine sediment	Gravel, cobble, and boulder particles are between 50 and 75 % surrounded by fineelo	Gravel, cobble, and beulder perticles are ever 75 % surreinded by fine sediment
l	10.15 cms (5cfs) - Flows at rep. loc	Cold >0.05 cms (2 cfs) Warm >0.15 cms (5 cfs) (65 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	(0.01 cms (.5 cfs) (0.01 cms (1 cfs)
	00.15 cms (Sefs) • Velocity/depth	Slow (<0.3 m/s), deep (>0.5 m); slow, shallow (<0.5 m); fast (>0.3 m/s), deep; fast, shallow habitats all present.	Only 3 of the 4 habitat categories present (missing tiffles of tuns receive lower score than missing pools!	only 2 of the 4 habitatestepories present (missing tiffles/tuns receive lower score).	Dominated by one velocity/depth category (ustally pool).
1	· Channel alteration (a)	Little or no enlite- ment of islands or point bars, and/or no channelization.	Some new increase in ber formation, mostly from coarse gravel; end/er some channelisation present.	Rederate deposition of new gravel, coarse sand on old and new bars; pools partially filled v/silt; and/or embar- aents on both banks.	Heavy deposits of fine material, increased ber development; mest pools filled w/silt; and/or extensive channelisation
1	deposition (1) and	Less than 5% of the bottom affected by accuring and deposition.	5-101 affected. Scour at contrictions and where grades steepen. Sone deposition in pools.	30-50% affected. Deposits and accur at obstructions, con- attitions and beads. Some filling of pools.	More than 50% of the bottom changing meatly year long. Pools almost absent due to deposition. Only large focks. In fifth exposed.

(a) From Ball 1982. (b) From Platts et al. 1983. Note: " - Nabitat parameters not currently incorporated into \$105

Page 1 + 2

Document # 22

		Catagory		
Habitat Parameter	Excellent	роод	Fear	Poor
Pool/Figfle, run/bend ratio   (distance between riffles divided by stream width)	habitat. Deep tiffles and pools.	7-15. Adequate depth in pools and riffles. Bends provide habitat.	15-25. Occasional riffla or band. Sortom contours provide some habitat.	office the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the street of the stree
Bank stability (s)	Stable. Ho evidence of ecosion or bank failure. side slopes gener- ally 430%. Little problem.	Moderately stable. Infrequent, small areas of eresion mostly healed over. Side slopes up to 40% on one bank. Sight floods.	Moderate frequency and size of erosional areas. Side alopes up to 604 on some banks. Migh erosion potential flour	Unstable. Many steded areas. Side slopes to the slope areas frequent along attraight sections and bends.
0 > 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0	over 40% of the attendent surfaces covered by vegetation or boulders and cobble. 10 9-10	50-79% of the streambank surfaces covered by vegetation, gravel or larger material.	25-49% of the stream- bank surfaces covered by vegetation, gravel, or larger meterial.	Less then 194 of the streembank authores Covered by vegetation, gracel, or lerger material.
. Streamside cover (b)	Dominant vegetation is shrub.	Dominant vegetation is of tree form.	Dominant vegetation is grass or forbos.	Over 50% of the stream- bank has no vegetation and dominant neterial is soil, reck, bridge materials, culverts, or mine tailings.
Column fotals	\$11s	pt 1	<b>'</b>	

Document # 22 (Conc.).

Elmenduf AFB ous AUC 31026. HZ.20

9-1-82 m. misdal S. Hupe

S.MI-66 1700 hs

HABITAT ASSESSMENT FIELD DATA SHEET

انا	·Bottom substrated	Greater than 50% rubble, gravel, submerqed logs, undercut banks, or ether stable habitat.	10-50% rubble, gravel or other stable habitat. Adequate habitat.	10-101 rubble, gravel or other stable habitat. Habitat availability less than desirable.	Less than 10% cubble gravel or other stable habitat. Lack of habitat is obvious.
l <b>∴</b>	Embeddedness (b)	Gravel, cobble, and boulder particles are between 0 and 25 % surreunded by fine sediment 16-20	Gravel, cobbie, and boulder particist are between 25 and 50 to 30	Gravel. cobble, and boulder particles are between 50 and 75 the surrounded by line	Gravel, cobble, and boulder perticles are over 75 % surreunded by fine sediment
1 -	\$0.15 cms (Sefs) . *Flow at rep. loc flow	Cold >0.05 cms (2 cfs) Warm >0.15 cms (5 cfs)	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	(0.01 cms (.5 cfs) (0.03 cms (1 cfs)
	velocaty/depth	Slow (co. 3 m/s), deep (50.5 m); slow, shallow (co.5 m); fast (50.3 m/s), deep; fast, shallow habitats all present.	only 3 of the 4 habitat categories present (missing talties or runs receive lever score than missing poels).	only 2 of the 4 habitat categories present imissing riffles/runs receive lower score).	Dominated by one velocity/depth category (ustally poel).
1:	· Channel alteration (a)	Little or no enlarge- ment of islands or point bars, and/or no channelization.	Sone med increase in ber formation, mostly from tobuse gravel; end/or sone channelisation present.	Moderate deposition of new gravel, ceases and on old and new bess; pools pertially filled w/silt; and/or embark- ments on both banks.	Meavy deposits of fine material, increased ber development; most pools filled w/silt; and/or extensive channelization
ا ا	deposition scoupping and	Less than 30 of the botton affected by accuring and deposition.	5-10% affected. Scour at constrictions and where grades steepen. Some deposition in pools.	Jo-50t affected. Deposite and accur at obstructions con- attrictions and bends. Some filling of peels.	More than 50% of the botton changing meatly year long. Prois almost absent due to deposition. Only large rocks in riftle exposed. 0-3

Document #23

Page 1052

7	Mabitat Parameter	Excellent	Poog	Fair	Poor
<b>.</b>	Pool/Fiffle, run/bend ratio (dastance between riffles divided by stress width)	5-7. Variety of habitat. Deep ciffles and pools.	7-15. Adequate depth in pools and tiffles. Bends provide habitat.	15-25. Occasional riffle or bend. Bottom contours provide some habitat.	> 25. Essentially a straight stream. Generally all flot vator or shallou fiffle. Peer habitat.
1 •	Benk stability (a)	Stable. Mo evidence of erosion or benk failure. Side slopes gener- ally 430%. Little potential for future problem.	Moderately stable. Infrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods.	Moderate by unatable. Moderate frequency and size of encitable areas. Side alopes the following encitable following extreme high flow.	Unstable, Many eroded areas. Side slopes 160 to common. Law. areas frequent along straight sections and bends.
1 .	Bank veget & sive	Over 80% of the streambank surfaces covered by vegetation or boulders and cobble: 9-10	50-794 of the attembent autfaces covered by vegeration, gravel of larger material.	25-49% of the stream- bank suctaces covered by vegetation, gravel, or larger material.	Less than 25% of the attrambank authors covered by vegetation. gravel, or larger material.
12	Streamside cover [b]	Dominant vegetation is abrub.	Dominant Vegetation is of tree form.	Dominant vegetation is grass or forbes.	Over 50% of the stream- bank has no vectation and demant ascertal is soil, reck, bridge materials, culverts, or size tailings.
1.2	Column Totals	son 16/2	dis	<b>\</b>	6

Document # 23 (Cont.).

Age 2052

Ž	Kabitat Parameter	Excellent	0000	•	1004
ن ا	*Bottom substrates available cover	Greater than 50% rubble, gravel, submerged logs, undercut banks, or ether stable habitat.	10-50% rubble, gravel or other stable habitat. Adequate habitat.	10-10t rubble, gravel or other stable habitat. Habitat availability less than desirable.	Less than 10% rubble gravel or other stable habitat. Lack of habitat is obvious.
1.	Embeddedness (b)	Gravel, cobble, and boulder partirles are between 0 and 25 % surrounded by fine sediment 16-20	Gravel, cobble, and boulder particles are between 25 and 50 t surrounded by fine sediment [5] 11-15	Gravel. cobble, and boulder particles are between 50 and 75 % surrounded by fine redisent 6-10	Gravel, cobble, and boulder perticles are ever 75 % surreunded by fine sediment
_:	40.15'cms (5cfs) - *Ploy _{k)} at rep. lou	Cold >0.05 cms (2 cfs) Warm >0.15 cms (5 cfs) 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) 0.03-0.05 cms (1-2 cfs) 6-10	(0.01 cms (.5 cfs) (0.03 cms (1 cfs)
	of (Sefs) • Velocity/depth	slow ((0.3 m/s), deep (>0.5 m); slow, shallow ((0.5 m); fast (>0.3 m/s), deep; fast, shallow hebitats all present.	only 3 of the, 4 habitat categories present (missing riffles or runs receive lower score than missing pools).	only 2 of the 4 habitat categories present (eissing riffles/runs receive lever score).	Dominated by enevalocity/dapth category (ustally pool).
į.	· Channel alteration (a)	Little or no enlarge- ment of islands or point bars, and/or no channelization.	some new increase in ber formation, mestly from coerse gravel; and/or some channelization present.	Moderate deposition of new gravel, coarse sand on old and new bars; pools partially filled v/silt; and/or sabank- sents on both banks.	Meavy deposits of fine material, increased bar development; most pools filled w/silt; and/or extensive channelization.
يا ا	Botton scouging and deposition	Less than 5% of the bottom affected by scouring and deposition.	5-101 affected. Scour at constrictions and where grades steepes. Some deposition in poels.	10-50% affected. Deposite and accur at obstructions con- attictions and bends. Some filling of pools.	More than 50% of the bottom changing nearly year long. Pools aloast absent due to deposition. Only large rocks in riffle exposed.

m. mischak S. Abec

Ship Creek 5-mI-ps

HABITAT ASSESSMENT FIELD DATA SHEET

8-34-92/1588 MAS 24

Document #24

ā	Mabitat Perameter	Cacellent	poog	Fait	Poor
[.	Pool/[iffle, run/bend ratio (distance between riffles divided by stream width)	9-7. Variety of habitat. Deep riffles and pools.	7-15. Adequate depth in pools and riffles. Rends provide habitat.	15-25. Occasional riffle or bend. Bottom concours provide some habitat.	>25. Essentially a straight stress. Generally all flat water or shallow riffle. Poor habitat.
1.	Bank stability (a)	stable. Mo evidence of ercaton or bank failure. side alopes gener- ally 130%. Little potential for future problem.	Anderstely stable. Infrequent, small areas of erosion mostly healed over. Side slopes up to 40% on one bank. Slight potential in extreme floods.	Moderate It unatable. Moderate frequency and size of eresional areas. Side slopes up to 604 on some banks. Migh erosion perential during extress high	Ungtable. Many eroded areas. Bide slopes s 50t common. fau' areas grequent along straight sections and bends.
1.	Bank veget Bares stability	Over 80% of the streembank surfaces covered by vegetation or boulders and cobble.	50-794 of the streambank aurescent covered by vegetation, gravel or larger material.	25-49% of the streambank surfaces covered by vegetation, gravel, or larger material.	Less than 25% of the streambank surfaces covered by vegetation. gracel, or larger material.
ن ا	Streamside cover (b)	Dominant vegetation is shrub.	Dominant vegetation is of tree form.	Dominant vogstation is grass or forbes.	Over 50% of the atream- bank has no vegetation and desinent asterial is soil, rock, bridge materials, culverts. or mine tailings.
3	Column fotals	29 see 100	77	7	

Document # 29 (Cont.)

į.

Page 2012

Elmendont AFB aus-

Ship Crek Ship Crek 5-MI-11-9 m.m.sehuk / S.H.pe

			21064167		
H 4 b 1.	Habitat Pacameter	Excellent	Cood	falt	Poor
] <u>.</u>	*Bottom substrafa(	Greater than 50% rubble, gravel, submerged logs, undercut banks, or ether stable habitat.	10-501 rubble, gravel or other stable habitat. Adequate habitat.	10-10t cubble, gravel or other stable habitat. Mabitat availability less them desirable.	Less them 10% cubble gravel or other stable habitat. Lack of habitat is obvious.
<del>-</del>	Embeddedness (b)	Gravel, cobble, and boulder particles are between 0 and 25 % surreunded by fine sediment	Gravel, cobble, and boulder particles are between 25 and 50 t surrounded by fine sediment	boulder perticies are between 50 and 75 the surremanded by fine 4-10	Gravel, cabble, and boulder particles are ever 75 % surressed by fine sediment
	fo.15 cms (Sefs) + Floyd, at rep. low	Cold 10.05 cms (2 cfs) Warm 10.15 cms (5 cfs) 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) (0.03 cms (.5 cfs) 0.03-0.05 cms (1-2 cfs) (0.03 cms (1 cfs) 6-10	(0.0) chs (.5 cfs)
-	or (Scfs) *	Slow (.6.3 m/s), deep (20.5 m); slow, shallow (.0.5 m); fast (20.3 m/s), deep; fast, shallow habitats all present.	only 3 of the, 4 habitat categories present (missing riffles or runs receive lover score than missing prols!	Only 2 of the 4 habitat categoties present (missing tiffles/runs receive lover score).	Dominated by one velocity/depth category (ustally post).
:	· Channel alteration (a)	Little or no enlarge- ment of islands or point bars, and/or no channelication.	Some new increase in ber formation, mostly from coarse gravel; and/or some channelisation present.	Rederate deposition of new gravel, coarse sand on old and new bers; pools partially filled v/sill; and/or obbent- sents on both banks.	Meavy deposits of fine material, incressed bar development; most pools filled w/silt; and/or axtensive channelisation
-	Botton scouting and deposition	Leas than 5% of the bottom affected by scouring and deposition.	5-101 offected. Scour at constrictions and where grades steepen. Sone deposition in pools.	10-50% affected. Deposite and scour at obstructions, con- strictions and bonds. some filling of pools.	More than 50% of the bettem changing mearly year long. Pools almost obsert on only large cechs in rifle expessed.

Document # 25

Vocument #25 (Com.).

1
-
넴
9
1 100
+
비
핆
D DATA
ā
اه
ü
=
SMENT FIELD DATA SHEET
3
3
8
3
ASSES
Ţ
3
-
-
1

4	Habitat Perameter	Excellent	Poop	Faic	1001
1 .	Pool/fiffle, run/bend ratio (distance between riffles divided by stress width)	5-7. Variety of habitat. Deep riffles and pools.	7-15. Adequate depth in pools and ciffles. Sends provide habitet.	15-25. Occassional riffle or bend. Bottom contours provide some habitat.	125. Essentially a straight stream. Generally all flat uster or shallow riffle. Poor habitat.
1 •	Benk stability (a)	Stable. Mo evidence of areaton or bank failure. Side alopes generally 196. Little potential for future problem.	Moderately stable. Infrequent, small aceas of erosion mestly healed over. Side slopes up to dot on one bank. Slight potential in extreme	Moderate frequency and size of rectional areas. Side alopes up to 60 on some banks. Migh errors of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first of the first	Unstable. Many eroded areas. Bide areas soft comen. Tada areas frequent along attaight sections and bends.
1 :	Bank vegefbarve stability	Over 80% of the streambank surfaces covered by vegetation or boulders and cobble 9-10	50-79% of the streambank surfaces covered by vegetation, gravel or larger material.	25-491 of the streambank surfaces covered by vegetation, gravel, or larger material.	Loss than 25% of the streambank surfaces covered by vegetation, quarel, or larger material.
1 :	Streamside cover (b)	Dominant vegetation is shrub.	Dominant vegetation is of tree form.	Dominant vegetation is grass or forbes.	Over 50% of the stream- bank has no vegetation and deminant neterial is soil, reck, bridge materials, culverts, or aime tailings. 0-2
1.2	Column Totals	A 14 ms	72	롸	

4-5-92 / 1136 AUC 31626. HJ. 29

Elmendut AFB CUS

Ship Greak S-MI-12 M. Mizehuk / S. Hope

HABITAT ASSESSMENT FIELD DATA SNEET

ã	Habitat Parameter	Excellent	poog	Fair	Poor
1	*Bottom substrated	Greater than 50% rubble, gravel, submerged logs, undercut banks, or ether stable habitet.	30-501 rubble, gravel or other stable habitat. Adequate habitat.	10-30% rubble, gravel or other stable habitat. Habitet availability less than desirable.	gravel or other stable habitet. Lack of habitet is obvious.
<i>i</i>	[p] sequedquess [p]	Gravel, cobble, and boulder particles are between 0 and 25 % surrounded by fine sediment 16-20	Graval, cobble, and boulder perticles are between 25 and 50 t autrounded by line sediment \$\begin{array}{c} \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \langle \l	Gravel, cobble, and boulder perticles are between 50 and 75 t surrounded by fine .ediment	Gravel, cobble, and berider particles are ever 75 % surreunded by fine sediment
	\$0.15 cms (5 cfs) + *flow\all fep. low flow	Cold 30.05 cms (2 cfs) Marm 20.15 cms (5 cfs) 10-20	0.03-0.05 cms (1-2 cfs) 0.05-0.15 cms (2-5 cfs) 11-15	0.01-0.03 cms (.5-1 cfs) (0.01 cms (.5 cfs) 0.03-0.05 cms (1-2 cfs) (0.03 cms (1 cfs) 6-10	(0.03 cms (1.5 cfs)
	oc 10.15 cms (5cfs) + Velocity/depth	Slow ((0.3 m/s), deep (>0.5 m); slow, shallow ((0.5 m); feat, (>0.3 m/s), deep; feat, shallow habitets all present.	Cotogories present (atagories present (atasing fattles or runs receive lower score than missing pools).	Only 2 of the 4 habitat categories present (sissing riffles/runs receive lewer score).	Doginated by energical category (ustably poel).
		07-91	23-11		
	· Channel alteration (a)	Little or no enlargement of islands or point bars, and/or no channelization.	some new increase in bar formation, mostly from coerse gravel; end/or some channelization present.	Mederate deposition of new gravel, coerce sand pools and new bars; pools pertially (illed v/silt; and/or embank- sents on both banks.	Meavy deposits of fine material, increased ber development: most pools (1)10 d W. M. M. M. most pools extensive channelization.
ن ا	sortos scouring and deposition	Less than \$1 of the bottom affected by accuring and deposition.	5-101 affected. Scour at contrictions and where grades steepen. Some deposition in peels.	10-50% affected. Deposits and acour at obstructions, con- strictions and boats. Sone filling of peels.	Mere than 50% of the better charges and the terms of the control of the terms of the control of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of

(b) prom plates of al. 1983. Mote: * a Habitat pacameters not currently incorporated into 8105

Document #26

Aze 2012

Ì	Pool/giffle, run/bend ratio distance between riffles divided by atream width)	5-7. Variety of habitat. Deep riffles and pools.	7-15. Adequate depth in pools and rigiles. Bends provide habitat.  ### ################################	19-15. Occasional riffle or bend. Bottos contours provide seme habitat.	V15. Essentially a straight stress. Generally all flac Vator or shallou riffle. Peer habitat.
· •	Bank stability ⁽⁸⁾	stable. No evidence bank failure. Sade slopes gener- ally 1904. Little potential for future probles.	Moderately stable.  Enfrequent, small areas of eresion mostly hasled over. Slade slopes up to 40% on one bank. Slight potential in extreme Eloods.	Moderate frequency and size of residently and size of residently and on some banks. Migh erosion petential during extress high	Unstable. Many eroded area. Side slapes 168. Camon. Side areas frequent along straight sections and bends.
	s rada rada rada rada rada rada rada rad	over 40% of the streambank surfaces covered by vegetation or boulders and cobble: 9 9-10	50-79% of the streambank surfaces covered by vegstation, gravel or larger material.	25-49% of the atreambank surfaces covered by vegetation, gravel, or larger material.	Leas then 25% of the streambank surfaces covered by vegetation. gravel, or larger material.
.	Streamside cover (b)	Dominant vegetation is shrub.	Dominant vegetation is of tree form.	boninant vegetation is grass or forbes.	Over 50% of the stress- bank has no vestation and deminant ascertal is set, rock, bridge paterials, culvers, or pine tailings.
200	Column Totals	163	4	<b>'</b>	<del>4</del> .

Decement # 26 (Conc.).

Parc Lufz

•

- 9Z	#27 L/S. Hope 1255 Hrs
3/026	6. H2.2/5
1.E-PS(	•
	IMPAIRMENT ASSESSMENT SHEET
	1. Detection of impairment: Impairment detected (Complete items 2-6)  No impairment detected (Stop here)
	2. Biological impairment indicator:
	Benthic macroinvertebrates Other aquatic communities
	absence of EPT taxa Periphyton
	dominance of tolerant groups filamentous
	low benthic abundance other
	low taxa richness Macrophytes
	otherSlimes
	Fish
	3. Brief description of problem:
	Year and date of previous surveys:
	Survey data available in:
	4. Cause: (indicate major cause) organic enrichment toxicants flov
	habitat limitations other
	5. Estimated areal extent of problem (m ² ) and length of stream reach
	affected (m), where applicable:
	6. Suspected source(s) of problem:
	point source discharge (name, type of facility, location)
	construction site runoff
	combined sever outfall silviculture runoff
	animal feedlot
	agricultural runoff urban runoff
	ground water
	other unknown
	Briefly explain:

sendors	AF	iB Dod		
-82/1	26.r ~~	12.29		
-8211	7 <b>77</b>	2 NA 1		
MI-PS				
1 i schu	, <b>la/</b>	S. Hope		
		IMPAIRMENT ASS	E22HFML 28FF1	
	1.	Detection of impairment: Impairm (Comple	ment detected ate items 2-6)	No impairment detected (Stop here)
	2.	Biological impairment indicator:		
		Benthic macroinvertebrates	Other aquati	ic communities
		absence of EPT taxa	Periphy	
		dominance of tolerant groups	filas	nen tous
		low benthic abundance	other	
		lov taxa richness	Macroph	
		other	Slimes	
			Fish	
	,	Brief description of problem:		
	٦.	Year and date of previous surveys		
		Survey data available in:	·	
		· · · · · · · · · · · · · · · · · · ·		41
	4.	Cause: (indicate major cause) o	rganic enrichme	ent toxicants flow
		habitat limitations other _		
	5.	Estimated areal extent of problem	$\mathbf{a}$ ( $\mathbf{m}^2$ ) and leng	th of stream reach
		affected (m), where applicable:		
		5		
	6.	Suspected source(s) of problem:		
		point source discharge (name	me, type of fac	ility, location)
		combined sever outfall		
		silviculture runoff animal feedlot		
		agricultural runoff		
		urban runoff ground vater		
		other unknovn		
	Br	eiefly explain:		

Decument # 29 8-3\$ -92/13\$ Hrs 5-MI-#3 ANE 31026.42.25 Ship CHEK m. mischak/ S. Hope IMPAIRMENT ASSESSMENT SHEET 1. Detection of impairment: Impairment detected No impairment detected (Complete items 2-6) (Stop here) 2. Biological impairment indicator: Benthic macroinvertebrates Other aquatic communities ____ Periphyton ___ absence of EPT taxa ____ filamentous ____ dominance of tolerant groups ___ low benthic abundance ____ other lov taxa richness Macrophytes ___ Slimes ___ other ___ Fish 3. Brief description of problem: _ Year and date of previous surveys: ___ Survey data available in: 4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other 5. Estimated areal extent of problem (m2) and length of stream reach affected (m), where applicable: ___ 6. Suspected source(s) of problem: point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground vater other unknovn

Impairment Assessment Sheet for use with macroinvertebrate Rapid Bioassessment Protocols.

Briefly explain:

- 92 - 3026.H2	2.29	5-MI-11-A M. Mischak / S. Hype
or Creek	APB ous	
	IMPAIRMENT AS	SESSHENT SHEET
1.	Detection of impairment: <u>Impair</u> (Compl	ment detected No impairment detected (Stop here)
2.	Biological impairment indicator:	
	Benthic macroinvertebrates  absence of EPT taxa  Mominance of tolerant group  low benthic abundance  low taxa richness	Other aquatic communities  Periphyton s filamentous other Macrophytes
	other	Slimes Fish
3.		acrossed # of Tubified worms
	Survey data available in:	5:
4.	Survey data available in:  Cause: (indicate major cause)	
	Survey data available in:  Cause: (indicate major cause)	organic enrichment toxicants flow  Chald be seval of the above  m (m ² ) and length of stream reach
5.	Survey data available in:  Cause: (indicate major cause)  habitat limitations other  Estimated areal extent of proble	organic enrichment toxicants flow  Chald be sevel of the above  m (m ² ) and length of stream reach
5.	Survey data available in:  Cause: (indicate major cause)  habitat limitations other  Estimated areal extent of proble affected (m), where applicable: (	organic enrichment toxicants flow  Chald be sevel of the above  m (m ² ) and length of stream reach
5. 6.	Survey data available in:  Cause: (indicate major cause)  habitat limitations other  Estimated areal extent of proble affected (m), where applicable: (magnetic construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the construction in the constr	organic enrichment toxicants flow  Chald be seval of the above  m (m ² ) and length of stream reach  Ho m ² me, type of facility, location)
5. 6.	Survey data available in:  Cause: (indicate major cause)  habitat limitations other  Estimated areal extent of proble affected (m), where applicable: (mostruction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban runoff ground water other unknown  riefly explain:	organic enrichment toxicants flow  Chald be sevel of the above  m (m ² ) and length of stream reach  1-2 m ²

5-MI-12 ANC 31826. Hz.zer Ship Crek m. mischel S. Hype IMPAIRMENT ASSESSMENT SHEET 1. Detection of impairment: Impairment detected No impairment (Complete items 2-6) detected... (Stop here) 2. Biological impairment indicator: Benthic macroinvertebrates Other aquatic communities ____ Periphyton ____ absence of EPT taxa ____ filamentous ___ dominance of tolerant groups ___ other low benthic abundance ___low taxa richness ___ Macrophytes ___ Slimes ___ other ___ Fish 3. Brief description of problem: Year and date of previous surveys: Survey data available in: 4. Cause: (indicate major cause) organic enrichment toxicants flow habitat limitations other 5. Estimated areal extent of problem (m2) and length of stream reach affected (m), where applicable: ____ 6. Suspected source(s) of problem: _ point source discharge (name, type of facility, location) construction site runoff combined sever outfall silviculture runoff animal feedlot agricultural runoff urban unoff ground vater other unknovn Briefly explain: