ⁱ Front side

Emnekode: DAT320

Emnenavn: Operativsystemer og systemprogrammering

År og semester: 2022 Høst - konte

Eksamensdato: 09.03.2023

Klokkeslett: 09:00-13:00

Tillate hjelpemidler: Kalkulator

Faglærer: Robert Ewald - 51875111

¹ return-from-trap

○ Changes the CPU mode	
Allocates memory	
starts a system call	
O Updates the trap table	
Select one alternative:	

² Process list

		Maximum marks: 1
○ list-processes		
○ Isproc		
○ proclist		
O ps		
Which shell command is use Select one alternative:	d to list the processes?	

³ Address translation

N	laximum marks: 1
Page Table Converter	
Memory Management Unit	
Virtual Frame Translator	
O Address Bus	
Translation Look-aside Buffer	
Which device is responsible for address translation? Select one alternative:	

4 exec()

Which statements about the exec() (specifically execvp()) call are true and false?

Please match the values:

False	True	
0		execvp() loads a program from disk.
0		execvp() is used to create a child process
0		execvp() changes the current process.
1	0	

⁵ Process

Which statements are true or false about the Process Abstraction.

Please match the values:

	_	
	True	False I
A process can access the memory of another process		
A process has a state.	0	0
A process has a list of file descriptors.	0	0
A process is a virtualization of the disk.		0
A process has an identifier		
		-

⁶ Parent child

Maximum mark	(s· 2
■ Alternative 3	
Alternative 2	
Alternative 1	
☐ Alternative 4	
vivilien output(s) of the program is/are possible? To get points all answers must be correct. Select one or more alternatives:	

⁷ Parent Child 2

hich output(s) of the program is/are possible? To get points all answers must be correct. elect one or more alternatives:	
Alternative 1	
Alternative 3	
Alternative 4	
Alternative 2	
Maximum marl	ks: 2

⁸ Memory virtualization

Virtualization of the whole memory is described by which term? Select one alternative:	
O Virtual addressing	
Base and bounds	
 Segmentation 	
O Address space	
	Maximum marks: 1

9 System call

Which statements are true about system calls?

Please match the values:

	True	False
Executed in user mode	0	\circ
Can run restricted operations		\circ
Can be changed by the user		
Executed using a trap (software interrupt)	0	0

¹⁰ Documentation

Which shell command is used to show documentation about a system call? Select one alternative:	
○ help	
○ doc	
○ man	
	Maximum marks: 1

¹¹ Memory types

This is a memory type is part of a process. True or false?

	True	False
Random access memory		0
Stack		0
Read only memory		0
Неар	0	

¹² Memory accesses

N	1aximı	ım marks:	1
How many memory accesses are necessary to load a value from an address:			
Consider paging without caching.			

¹³ PFN size

	Maximum marks:
bits	
Given a page	e size of 2KB and a 32 bit architecture. How many bits are used for the PFN?

¹⁴ Kopi av TLB

	Maximum marks: 1
A cache for main memory	
Memory for page tables	
A cache for page tables	
a buffer for translated instructions	
What is the translation look-aside buffer? Select one alternative:	

¹⁵ Allocation

Consider the code in the attached document.

Mark the statements as true or false

	False	True
Memory space for r is allocated on the stack	0	
Memory space for r is allocated in ROM		
The function "some_function()" returns a pointer		
The memory of r cannot be accessed after the function "some_function()" has returned		
Memory space for r is allocated on the heap	0	

¹⁶ Address Resolution 1

Given a 16 bit architecture and a page size of 256 bytes.

Pag	e 1	Гah	le
ı ay	•	un	ı

PFN	Р	U/S	R/W	V
a1	1	0	1	1
b2	1	1	0	1
c4	1	0	1	1
		250 items omitted		
01	1	0	1	1
02	1	0	1	0
03	1	0	0	0

What is the physical address for virtual address feab ? Enter the address in hex:
What is the physical address for virtual address ff01 ? Enter the address in hex:
What is the physical address for virtual address 0101 ? Enter the address in hex:
What is the physical address for virtual address 02fe ? Enter the address in hex:

¹⁷ Address Resolution 2

PFN

3ff

003

2c4

Given a 24 bit architecture and a page size of 1024 bytes.

Ρ

1

1

1

Page Table		
U/S	R/W	V
0	1	1
1	0	1
0	1	1
6270 itams amitt	- d	

16378 items omitted				
101	1	0	1	1
000	1	0	1	0
001	1	0	0	0

What is the physical address for virtual address ffffff? Enter the	ne address in hex:
What is the physical address for virtual address ff8001? Enter	the address in hex:
What is the physical address for virtual address 007ffe ? Enter	the address in hex:
What is the physical address for virtual address 003fff ? Enter	the address in hex:
All addresses should be entered in hexadecimal notation. Each	h address has 6 characters.

¹⁸ Critical section

	Maximum marks: 2
After which line must the mutex be unlocked? Enter the line number here:	
After which line must the mutex be locked? Enter the line number here:	

19 Trace

Fill out the trace table for the segmentation fault case. Assume a single CPU.

Thread 1	Thread 2		
Select alternative (b, a, not running, c)	Select alternative (c, a, b, not running)		
Select alternative (c, not running, a, b)	Select alternative (a, not running, c, b)		
Select alternative (b, a, c, not running)	Select alternative (not running, b, a, c)		

²⁰ Deadlock

Which conditions need to be present to cause a deadlock?

Please match the values:

	required	not required
limited memory		0
no preemption		0
circular wait		
multiple CPUs		
I/O operations		0
mutual exclusion		0
hold-and-wait	0	

²¹ Lock primitive

M	aximum marks: 1
○ compare-and-swap	
O load-or-store	
increment-by-one	
O fetch-and-load	
Which primitive CPU instruction can be used to build a lock? Select one alternative:	

²² Thread signaling

	Maximum marks: 1
○ flag	
○ mutex	
○ condition variable	
Which construct should be used to signal between threads Select one alternative:	

23 Round Robin

Consider these statements about round-robin scheduling. Which are true/false? **Please match the values:**

	True	False
RR takes into account I/O	0	0
RR is fair		0
RR enables low response time	0	0
RR enables low turnaround time		0

²⁴ Multi-level feedback queue

Which rules apply for multi-level feedback queues to avoid causing starvation? **Please match the values:**

	applies	does not apply
Once a job uses up its time allotment at a given level its priority is reduced		
After some time period S, move all the jobs in the system to the topmost queue		
If a job gives up CPU before the time slice is up, it stays at the same priority level		0
If priority(A) > priority(B): A runs		0
When a job enters the system it is placed at the lowest priority	0	0
If priority(A) = Priority(B): A & B run in RR		0

²⁵ Process Priority

М	aximum marks: 1
○ chgpri	
O nice	
○ yield	
priority	
Which shell command is used to change the priority of a process Select one alternative:	

²⁶ Response Time

What is the response time of job C the following schedule?

Enter the response time of job C in seconds:

JOB	Arrival Time	First run time	Completion time
Α	0	0	100
В	10	10	20
С	10	20	30

²⁷ Page access cache

Consider a newly-created process that has been allocated a cache size of 5 pages, and then generates the following page accesses:

ACEFDBABFFDCCGAGCEFDGEBDGG

How many cache misses are observed for this access stream when using of the FIFO page replacement algorithm?
What is its hit rate in percent? Hit rate %
How many cache misses are observed for this access stream when using of the FIFO page replacement algorithm and a cache size of 6?
The cache algorithm is replaced with the least frequently used algorithm. The cache size remains at 6. How many cache misses can be observed?
Maximum marks: 12

²⁸ Locality

Which properties of the access pattern enable a cache to perform well?

Please match the values:

	Does not enable	Does enable
Process locality		0
Remote locality		
Spatial locality	0	0
Address locality		0
Temporal locality		

²⁹ Disk environment

Which environmental factors increase latency of a harddisk with rotating disks? Select one alternative:	
Clight	
○ Airpressure	
○ vibrations	
Max	ximum marks: 1

30 Harddisk performance

Given the	followir	ng specifications of 2	2 harddis	sks, what is	the Random	I/O Rate in	MB/s of the
Cheetah:		vs. the Barracuda					

	Cheetah 15K	Barracuda
Capacity	300GB	1TB
RPM	15000	7200
Average Seek	4 ms	9 ms
Max Transfer	125 MB/s	105 MB/s
Platters	4	4
Cache	16 MB	16/32MB
Connection	SCSI	SATA

Question 15

Attached

Consider the following code.

```
1 #include <stdio.h>
2 #include <stdlib.h>
3 int *some_function() {
4   int *r = malloc(sizeof(int));
5   *r = 1;
6   return r;
7 };
8
9 int main(int argc, char *argv[])
10 {
11   printf("%d", *some_function());
12 }
```

Question 18

Attached

Consider the following code. The function queue_enqueue can be called by multiple threads. Identify the critical section in this function.

```
typedef struct __node_t {
 2
      int value;
      struct __node_t *next;
 4 } node_t;
 6
   typedef struct __queue_t {
 7
     node_t *head;
      node_t *tail;
 8
     pthread_mutex_t lock;
10
   } queue_t;
11
12
   void queue_enqueue(queue_t *q, int value) {
13
     node_t *tmp = malloc(sizeof(node_t));
      assert(tmp != NULL);
14
      tmp->value = value;
15
16
      tmp->next = NULL;
17
      q->tail->next = tmp;
18
      q->tail = tmp;
19
   }
20
21
   void queue_init(queue_t *q) {
22
      node_t *tmp = malloc(sizeof(node_t));
23
      tmp->next = NULL;
      q->head = q->tail = tmp;
24
25
      pthread_mutex_init(&q->lock0, NULL);
26 }
```

Question 19

Attached

1 Trace

Consider the following code. This code sometimes fails with a Segmentation fault. Fill out the trace table for this case. Assume a single CPU.

```
#include <pthread.h>
 1
 2
 3
    typedef struct __info {
      int counter = 0;
 5
    } __info_t;
7
    __info_t *info;
8
9
    void *count() {
10
      if (info) { // a
        info->counter = info->counter + 11; // b
11
      }
12
    }
13
14
15
    void *ended() {
      info = NULL; // c
16
17
    }
18
19
    int main(int argc, *char[] argv) {
20
      info = malloc(sizeof(__info_t));
21
      assert(info != NULL);
22
      pthread_t thread_1, thread_2;
23
      phtread_create(&t1, NULL, count);
24
      pthread_create(&t2, NULL, ended);
25 }
```

Question 6

Attached

Which outputs of this program are possible?

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <unistd.h>
 4 int main(int argc, char *argv[]) {
     printf("hello world (pid:%d)\n", (int) getpid());
 5
     fflush(stdout);
 6
 7
     int rc = fork();
 8
      if (rc < 0) {
                            // fork failed; exit
        fprintf(stderr, "fork failed\n");
 9
10
        exit(1);
11
      } else if (rc == 0) {
12
        printf("hello, I am child (pid:%d)\n", (int) getpid());
13
      } else {
        int rc_wait = wait(NULL);
14
15
        printf("hello, I am parent of %d (rc_wait:%d) (pid:%d)\n",
16
        rc, rc_wait, (int) getpid());
17
      printf("goodbye world (pid:%d)\n", (int) getpid());
18
19
      return 0;
20 }
  • Alternative 1
    hello world (pid:83485)
    hello, I am parent of 83486 (rc_wait:83486) (pid:83485)
     goodbye world (pid:83485)
    hello, I am child (pid:83486)
     goodbye world (pid:83486)
   • Alternative 2
    hello world (pid:83485)
     hello, I am child (pid:83486)
     goodbye world (pid:83486)
     hello, I am parent of 83486 (rc_wait:83486) (pid:83485)
     goodbye world (pid:83485)
```

• Alternative 3

```
hello world (pid:83486)
hello world (pid:83485)
hello, I am parent of 83486 (rc_wait:83486) (pid:83485)
goodbye world (pid:83485)
hello, I am child (pid:83486)
goodbye world (pid:83486)
```

• Alternative 4

```
hello world (pid:83485)
hello, I am parent of 83486 (rc_wait:83486) (pid:83485)
goodbye world (pid:83485)
hello world (pid:83486)
hello, I am child (pid:83486)
```

Question 7

Attached

Consider the program carefully. Which outputs of this program are possible?

```
1 #include <stdio.h>
 2 #include <stdlib.h>
 3 #include <unistd.h>
 4 int main(int argc, char *argv[]) {
     printf("hello world (pid:%d)\n", (int) getpid());
 5
 6
      fflush(stdout);
 7
     int rc = fork();
      if (rc < 0) {
 8
                            // fork failed; exit
 9
        fprintf(stderr, "fork failed\n");
10
       exit(1);
      } else if (rc == 0) {
11
12
        printf("hello, I am child (pid:%d)\n", (int) getpid());
13
      } else {
        printf("hello, I am parent of %d (pid:%d)\n",
14
        rc, (int) getpid());
15
      }
16
17
      return 0;
18 }
   • Alternative 1
    hello world (pid:83655)
    hello, I am child (pid:83656)
    hello, I am parent of 83656 (pid:83655)
   • Alternative 2
    hello world (pid:83655)
    hello, I am parent of 83656 (pid:83655)
    hello, I am child (pid:83656)
   • Alternative 3
    hello world (pid:83655)
    hello world (pid:83655)
    hello, I am child (pid:83656)
    hello, I am parent of 83656 (pid:83655)
```

• Alternative 4

hello world (pid:83655) hello, I am child (pid:83656) hello world (pid:83655) hello, I am parent of 83656 (pid:83655)