

: 3

Credit

ERODE SENGUNTHAR ENGINEERING COLLEGE

(An Autonomous Institution, Affiliated to Anna University)
Thudupathi, Perundurai, Erode - 638057

Maximum Marks : 100

III YEAR B.TECH INFORMATION TECHNOLOGY

MODEL EXAMINATION - SET 2

Course Code : 19IT601 Date : 14.05.2025

Course Name: MACHINE LEARNING: 3h

Q.No			Bloom's Level	COs		
1	Identify the kind of	learning algorithm for "f	acial identities for facia	al expressions".	UN	CO1
	a) Prediction	b) Recognition Patterns	c) Recognizing Anomalies	d) Generating Patterns		
2	Identify the type of	1.	UN	CO1		
	a) Semi Unsupervised Learning	b) Supervised Learning	c) Reinforcement Learning	d) Unsupervised Learning		
3	Among the followin	g options identify the or	ne which is false regre	ssion. ?	RE	CO2
	^{a)} It is used for prediction	b) It is used for Interpretation	c) It relates input to output	d) It discovers Casual Relationship		
4	Analysis of ML algorithm needs					CO2
	a) Statistical Learning Theory	b) Computational Learning Theory	c) Both a & b	d) Does not require any theory		
5	Why is the Viterbi algorithm used in HMMs?					CO3
	a) To estimate the transition probabilities	b) To determine the most probable sequence of hidden states	c) To calculate the likelihood of an observed sequence	d) To train a deep learning model		
6	You are comparing the next step in mo	lidation set. What is	EV	CO3		
	a) Choose the model with the simplest architecture	b) Test both models on a separate test set to evaluate their true performance	c) Select the model with the highest number of parameters	d) Ignore the test set and choose the model based on training performance		
7	When would you us	se Ridge Regression in	stead of Linear Regres	ssion?	AP	CO4

	a) When the target variable is categorical	b) When there are many multicollinear features in the dataset	c) When the model needs to be interpretable	d) When you want to use non-linear relationships between features and target		
8	You have two regre validation accuracy	EV	CO4			
	a) Model A, because training accuracy is more important	b) Model B, because it generalizes better to unseen data	c) Model A, because validation accuracy is not relevant	d) Both are equally good as long as they make predictions		
9		4 clusters. Which of ality of the clusters?	AP	CO5		
	^{a)} The F1-score	b) The silhouette score	c) The root mean squared error	d) The mean squared error		
10	Which of the follow recommendation sy	g latent factors in a	UN	CO5		
	a) K-means clustering	b) Principal Component Analysis (PCA)	c) Singular Value Decomposition (SVD)	d) Naive Bayes classification		
Q.No			Bloom's Level	COs		
11	Differentiate superv		UN	CO1		
12	Give the significant	ce of 'Training set' and '	Testing Set'.		UN	CO1
13	Analyse why we ne		AN	CO2		
14	Analyse Why do we		AN	CO2		
15	In spam detection, a Naïve Bayes classifier assigns a high probability to an email being spam. What action should be taken?					CO3
16	A speech recognition system using an HMM struggles to correctly classify words. What could improve its performance?					CO3
17	You are using linear randomly distribute		AN	CO4		
1	You observe that y	AP	CO4			
18	-	an you take to reduce o	verfitting?		/ "	

20	If a recomi strategies		CR	CO5		
Q.No		Marks	Bloom's Level	COs		
21	a) List all to in Checke Experience	14	AP	CO1		
		or				
	b) Explain Mathemati Consider S					
		ear Advertisement in expenses sales 017 90 1000				
	1 1 2017				1	
	2018	120	1300			
		120 150		14	AP	CO1
	2018		1300	14	АР	CO1
	2018	150	1300	14	АР	CO1

	lots of informa	egarding their purchasing through Online Shopping. The dataset contains ots of information but the Estimated Salary and Age is considered as the independent variables and the Purchased variable is for the dependent variable.							
	User ID	Gender	age	Estimated s	salary	purchased			
	15265410	male	25	82000		0			
	15265411	male	32	52000		0			
	15265412	male	45	19000		0	14	AP	CO2
	15265413	male	46	15000		0			
	15265414	male	48	14000		0			
	15265415	female	25	12000		0			
	15265416	female	27	18000		1			
	15265417	female	28	16000		0			
	15265418	female	29	17000		1			
				or					
	b) Define KNN algorithm. How does it Works? Consider we have height, weight and T-shirt size of some customers and we need to predict the T-shirt size of a new customer given only height and weight information we have. Data including height, weight and T-shirt size information is shown below								
	height (cm)	weight(kg)	Tshirt size	height (cm)	weight (kg)	T shirt size			
	158	58	М	165	45	L			
	158	59	М	165	52	L	14	AP	CO2
	160	61	М	165	65	L			
	160	52	М	165	55	L			
	163	54	М	165	55	L			
- 1	163	55	М	165	59	L			

23	a) Design an HMM for a complex task, such as recognizing actions in video sequences. What states, observations, and transition/emission probabilities would you define? Explain how you would train this model and validate its performance.	14	CR	CO3
	or			
	b) Provide an example of how HMFs can be applied in a real-world scenario, such as speech recognition or time-series analysis. Demonstrate how HMFs handle sequential data with spatial or temporal dependencies.	14	AP	СОЗ
24	a) Evaluate model selection strategies and explain the criteria for selecting the right model.	14	EV	CO4
	or			
	b) After applying regularization techniques like L2 regularization and reducing the number of latent factors, you still face issues with generalization. What additional strategies could you use to address overfitting and improve the performance of your recommendation system?	14	AP	CO4
25	a) Design a method to detect fraudulent behavior in a financial transaction network using graph-based approaches. Justify your design using graph properties such as centrality or connectivity.	14	CR	CO5
	or			
	b) A retail chain wants to segment its stores based on sales performance. You are provided with the following dataset, where each point represents a store with two features: X: Average monthly footfall (in thousands) Y: Average monthly revenue (in lakhs) Data points: Store 1: (1, 4), Store 2: (1, 3), Store 3: (5, 8), Store 4: (6, 9), Store 5: (7, 5), Store 6: (8, 6) The company decides to use k = 2 for clustering and chooses these initial centroids: Centroid A: (1, 4) Centroid B: (7, 5) find out i) Assign each store to the nearest centroid using Euclidean distance. ii) Calculate the new centroids after the first iteration of k-means	14	АР	CO5

Course Outcomes					
CO1	Explore the acquired knowledge on recalling the applications of machine learning.	34			
CO2	Understand the concepts behind different types of learning and their appropriateness.	34			
CO3	Choose and apply appropriate learning technique for a given real world problem.	34			
CO4	Analyze the observations for a given set of data.	34			
CO5	Evaluate the effectiveness of different learning techniques for different kinds of data and applications	34			

Blooms Level	UN	RE	AN	AP	EV	CR	Total
Marks	7	2	6	104	19	32	170

Prepared By	Scrutinized By	Verified By
SIVASANKARI S	Dr.THIRUVENKATASURESH M (Prof. /	Dr.THIRUVENKATASURESH M (Prof. /
(AP / IT)	IT)	IT)
[12-05-2025]	[13-05-2025]	[13-05-2025]