Nullstellensatz and Boolean Satisfiability Application of Gröbner Bases for SAT

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

October 8, 20, 2014

Agenda

- Application of Gröbner Bases to Boolean SAT
 - Based on Hilbert's Weak Nullstellensatz result
- Interesting application of algebraic geometry over Boolean rings $\mathbb{F}_2 = \mathbb{Z}_2$
- Main References: [1] [2]

Recall the SAT problem

- Given a CNF formula $f(x_1, \ldots, x_n) = C_1 \wedge C_2 \wedge \cdots \wedge C_s$
 - Each C_i is a clause, i.e. a disjunction of literals
- Find an assignment to variables x_1, \ldots, x_n , s.t. f = true
- ullet We can formulate this problem over the (Boolean) ring $\mathbb{Z}_2[x_1,\ldots,x_n]$
- ullet Model clauses as polynomials $f_1,\ldots,f_s\in\mathbb{Z}_2[x_1,\ldots,x_n]$
- Apply Gröbner basis concepts to reason about SAT/UNSAT (think varieties!)

From Boolean \mathbb{B} to \mathbb{Z}_2

• Boolean AND-OR-NOT can be mapped to $+, \cdot \pmod{2}$

$$\mathbb{B} \to \mathbb{F}_2$$
:

$$\neg a \rightarrow a+1 \pmod{2}$$

$$a \lor b \rightarrow a+b+a \cdot b \pmod{2}$$

$$a \land b \rightarrow a \cdot b \pmod{2}$$

$$a \oplus b \rightarrow a+b \pmod{2}$$
(1)

where $a, b \in \mathbb{F}_2 = \{0, 1\}.$

Be careful about problem formulation

In the SAT world, formula SAT means:

$$C_1 = 1$$
 $C_2 = 1$
 \vdots
 $C_s = 1$

In the polynomial world, solving means:

$$f_1 = 0$$
 $f_2 = 0$
 \vdots
 $f_{n-1} = 0$

Be careful about problem formulation

In the SAT world, formula SAT means:

$$C_1 = 1$$
 $C_2 = 1$
 \vdots
 $C_s = 1$

In the polynomial world, solving means:

$$f_1 = 0$$

$$f_2 = 0$$

$$\vdots$$

$$f_s = 0$$

$$(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)$$

Be careful about problem formulation

In the SAT world, formula SAT means:

$$C_1 = 1$$
 $C_2 = 1$
 \vdots
 $C_s = 1$

In the polynomial world, solving means:

$$f_1 = 0$$

$$f_2 = 0$$

$$\vdots$$

$$f_n = 0$$

$$(C_i = 1) \iff (\overline{C_i} = 0) \iff (C_i \oplus 1 = 0)$$

Translate: $(C_i \oplus 1 = 0)$ as $f_i + 1 = 0$ over \mathbb{Z}_2

Example

•
$$f(a,b) = \underbrace{(a \lor \neg b)}_{C_1} \land \underbrace{(\neg a \lor b)}_{C_2} \land \underbrace{(a \lor b)}_{C_3} \land \underbrace{(\neg a \lor \neg b)}_{C_3}$$

- Convert each C_i from \mathbb{B} to \mathbb{Z}_2
- Consider $C_1:(a \vee \neg b)$
 - $C_1:(a\vee(1\oplus b))=a\oplus(a\oplus b)\oplus a(1\oplus b)=1\oplus b\oplus ab$
 - Here $\oplus = XOR = + \pmod{2}$
 - Over \mathbb{Z}_2 , + (mod 2) is implicit, so we write: $C_1: 1+b+ab$
- Similarly: $C_2: 1+a+ab$; $C_3: a+b+ab$; $C_4: 1+ab$

However: this still corresponds to $C_i=1$, whereas we need $C_i+1=0$ over \mathbb{Z}_2

Example

In the SAT world:

$$C_1: (a \lor \neg b) = 1$$
 $f_1: b + ab = 0$
 $C_2: (\neg a \lor b) = 1$ $f_2: a + ab = 0$
 $C_3: (a \lor b) = 1$ $f_3: a + b + ab + 1 = 0$
 $C_4: (\neg a \lor \neg b) = 1$ $f_4: ab = 0$

- Now $J = \langle f_1, \dots, f_s \rangle$ generates an ideal in $\mathbb{Z}_2[a,b]$
- ullet We need to analyze $V_{\mathbb{Z}_2}(J)$

Weak Nullstellensatz

 The Weak Nullstellensatz reasons about the presence or absence of solutions to an ideal – over algebraically closed fields!

Theorem (Weak NullStellensatz)

Let $\overline{\mathbb{F}}$ be an algebraically closed field. Given ideal $J \subset \overline{\mathbb{F}}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff J = \overline{\mathbb{F}}[x_1, \dots, x_n].$

Theorem

Based on the above notation, $J = \overline{\mathbb{F}}[x_1, \dots, x_n] \iff 1 \in J$.

Theorem

Let G be a reduced Gröbner basis of J. Then $1 \in J \iff G = \{1\}$. Therefore, $V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff G = \{1\}$.

Weak Nullstellensatz when ${\mathbb F}$ is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subset \mathbb{F}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff reducedGB(J) = \{1\}.$

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J!$

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, ..., f_s) = GB(J)$ and see if $G = \{1\}$.

Weak Nullstellensatz when ${\mathbb F}$ is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let \mathbb{F} be a field and $\overline{\mathbb{F}}$ be its algebraic closure. Given ideal $J \subset \mathbb{F}[x_1, \dots, x_n], V_{\overline{\mathbb{F}}}(J) = \emptyset \iff 1 \in J \iff reducedGB(J) = \{1\}.$

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J!$

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, ..., f_s) = GB(J)$ and see if $G = \{1\}$.

But, what if $G \neq 1$?

Weak Nullstellensatz when ${\mathbb F}$ is not Algebraically Closed

Theorem (Weak Nullstellensatz)

Let $\mathbb F$ be a field and $\overline{\mathbb F}$ be its algebraic closure. Given ideal $J \subset \mathbb F[x_1,\ldots,x_n], V_{\overline{\mathbb F}}(J) = \emptyset \iff 1 \in J \iff reducedGB(J) = \{1\}.$

There is no solution over the closure $\overline{\mathbb{F}}$ iff $1 \in J!$

No solution over the closure $\overline{\mathbb{F}}$ implies no solution over \mathbb{F} itself.

SAT/UNSAT Checking

Compute reduced $G = GB(f_1, ..., f_s) = GB(J)$ and see if $G = \{1\}$.

But, what if $G \neq 1$? Where are the solutions? Somewhere in the closure.... [We don't know where]

◆ロト 4回 ト 4 直 ト 4 直 ・ り Q (*)

Weak Nullstellensatz

Apply Nullstellensatz to Boolean rings $\mathbb{Z}_2[x_1,\ldots,x_n]$

Boolean rings: Rings with indempotence $a \wedge a = a$ or $a^2 = a$

- Consider the ideal of vanishing polynomials
 - In \mathbb{Z}_p , $x^p = x \pmod{p}$, or $x^p x = 0$
 - In $\mathbb{Z}_2: x^2 x$ vanishes on $\{0,1\}$: vanishing polynomial
- Let $J_0 = \langle x_1^2 x_1, x_2^2 x_2, \dots, x_n^2 x_n \rangle$ denote the ideal of all vanishing polynomials
- ullet $V_{\mathbb{Z}_2}(J_0)=(\mathbb{Z}_2)^n$ (the *n*-dimensional space over \mathbb{Z}_2)
- ullet Variety of J_0 doesn't change over the closure: $V_{\overline{\mathbb{Z}_2}}(J)=(\mathbb{Z}_2)^n$
- ullet These vanishing polynomial restrict the solutions to only over \mathbb{Z}_2
- So compute $G = GB(J + J_0) = GB(f_1, \dots, f_s, x_1^2 x_1, x_2^2 x_2, \dots, x_n^2 x_n)$
- ullet If $G
 eq \{1\}$ then definitely there is a SAT solution within \mathbb{Z}_2

Weak Nullstellensatz over $\mathbb{F}_2 = \mathbb{Z}_2$

Theorem (Weak Nullstellensatz over Boolean Rings)

Let ideal
$$J = \langle f_1, \dots, f_s \rangle \subset \mathbb{Z}_2[x_1, \dots, x_n]$$
 and let $J_0 = \langle x_1^2 - x_1, \dots, x_n^2 - x_n \rangle$. Then $V_{\mathbb{Z}_2}(J) = \emptyset \iff$ the reduced $GB(J + J_0) = GB(f_1, \dots, f_s, x_1^2 - x_1, \dots, x_n^2 - x_n) = \{1\}.$

If $GB(J + J_0) = \{1\}$ then the problem is UNSAT.

If $GB(J+J_0) \neq \{1\}$ then there is definitely a solution in \mathbb{Z}_2 .

Notation for Sum of Ideals: If $J_1=\langle f_1,\ldots,f_s\rangle$ and $J_2=\langle g_1,\ldots,g_t\rangle$, then $J_1+J_2=\langle f_1,\ldots,f_s,\ g_1,\ldots,g_t\rangle$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Weak Nullstellensatz to Equivalence Checking

Demonstrate the difference between GB(J) versus $GB(J + J_0)$ over \mathbb{Z}_2 :

Spec: $x_1 = a \lor (\neg a \land b)$

Implementation: $y_1 = a \lor b$

Miter gate: $x_1 \oplus y_1$

Prove Equivalence using Nullstellensatz

Equivalence Check using Nullstellensatz

Ideal J:

$$x_1 = a \lor (\neg a \land b) \mapsto x_1 + a + b \cdot (a + 1) + a \cdot b \cdot (a + 1) \pmod{2}$$

 $y_1 = a \lor b \mapsto y_1 + a + b + a \cdot b \pmod{2}$
 $x_1 \ne y_1 \mapsto x_1 + y_1 + 1 \pmod{2}$

Compute G = GB(J) over \mathbb{Z}_2 w.r.t. LEX $x_1 > y_1 > a > b$:

$$a^{2} \cdot b + a \cdot b + 1$$
$$y_{1} + a \cdot b + a + b$$
$$x_{1} + a \cdot b + a + b + 1$$

 $G \neq 1$, but $V(G) = \emptyset$ over \mathbb{Z}_2 ! Which means that there are solutions over the closure, so the bug = a don't care condition.

Correct formulation: Compute $G = GB(J + J_0) = \{1\}$; where $J_0 = \{x_1^2 - x_1, y_1^2 - y_1, a^2 - a, b^2 - b\}$.

<□ ▶ ◆□ ▶ ◆ Ē ▶ ◆ Ē ▶ ■ ● 9 Q @

Weak Nullstellensatz over Boolean: Conclusion

Theorem (Weak Nullstellensatz over Boolean Rings)

Let ideal
$$J = \langle f_1, \dots, f_s \rangle \subset \mathbb{Z}_2[x_1, \dots, x_n]$$
 and let $J_0 = \langle x_1^2 - x_1, \dots, x_n^2 - x_n \rangle$. Then $V_{\mathbb{Z}_2}(J) = \emptyset \iff$ the reduced $GB(J + J_0) = GB(f_1, \dots, f_s, x_1^2 - x_1, \dots, x_n^2 - x_n) = \{1\}.$

- [1] M. Clegg, J. Edmonds, and R. Impagliazzo, "Using the Gröbner Basis Algorithm to Find Proofs of Unsatisfiability," in *ACM Symposium on Theory of Computing*, 1996, pp. 174–183.
- [2] C. Condrat and P. Kalla, "A Gröbner Basis Approach to CNF formulae Preprocessing," in *International Conference on Tools and Algorithms for the Construction and Analysis of Systems*, 2007, pp. 618–631.