

none

none

none

© EPODOC / EPO

PN - DE 4206605 A 19930909

PD - 1993-09-09

PR - DE 19924206605 19920303

OPD - 1992-03-03

TI - Pivot grip for circular objects esp. clinical vessels of different dia. - facilitate one-handed changes requiring no adjustments

AB - A self-securing device holds cylindrical objects (12) e.g. dialysis vessels. A pivot bearing (6) bearing an angled grip (2) is located on one piece of a U-shaped frame (3) such that frame and angled grip can tilt towards each other and at least partly surround the object (12) in the secured condition. A spring-loaded lever (5) is fitted on the other section of the U-shaped frame, whose free end is pressed against the outer part of the angled grip (2); that the spring-loaded lever (5) is within one side of the pivoting section of the U-shaped frame (3), supported on the inner side by a pressure spring (8); contact with the object (12) is secured by at least three contact points (9); and the pivot angle between the angled grip (2) and the frame (3) is limited by the end-travel of the frame end and angled grip, and by the limit of travel of the inner face of the angled shape on a dampener (11) located in the vicinity of the pivot.
- USE/ADVANTAGE - The fixture secures circular objects which must be located and removed easily at any time, especially in hospital applications, such as dialysis. Round objects of different diameter can be secured and released with one hand, and independent of individual variations in manual strength.

IN - BRUNNER EBERHARD (DE)

PA - RIGGERS MEDIZINTECHNIK THALHEIM (DE)

EC - B01D61/30 ; B01D65/00 ; B25B5/06 ; B25B5/14D ; F16B2/10

IC - B01D61/30 ; B25B5/00 ; B25B5/14 ; F16B2/10
© WPI / DERWENT

TI - Pivot grip for circular objects esp. clinical vessels of different dia. - facilitate one-handed changes requiring no adjustments

PR - DE 19924206605 19920303

PN - DE 4206605 A1 19930909 DW 199337 B25B5/14 006pp

PA - (RIGG-N) RIGGERS MEDIZINTECHNIK THALHEIM GMBH

IC - B01D61/30 ; B25B5/14 ; F16B2/10

IN - BRUNNER E

AB - DE 4206605 A self-securing device holds cylindrical objects (12) e.g. dialysis vessels. A pivot bearing (6) bearing an angled grip (2) is located on one piece of a U-shaped frame (3) such that frame and angled grip can tilt towards each other and at least partly surround the object (12) in the secured condition. A spring-loaded lever (5) is fitted on the other section of the U-shaped frame, whose free end is pressed against the outer part of the angled grip (2); that the spring-loaded lever (5) is within one side of the pivoting section of the U-shaped frame (3), supported on the inner side by a pressure spring (8); contact with the object (12) is secured by at least three contact points (9); and the pivot angle between the angled grip (2) and the frame (3) is limited by the end-travel of the frame end and angled grip, and by the limit of travel of the inner face of the angled shape on a dampener (11) located in the vicinity of the pivot.
- USE/ADVANTAGE - The fixture secures circular objects which must be located and removed easily at any time, especially in hospital applications, such as dialysis. Round objects of different diameter can be secured and released with one hand, and independent of individual variations in manual strength.
- (Dwg. 1/3)

OPD - 1992-03-03

AN - 1993-289102 [37]

none

none

none

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) Offenlegungsschrift
(10) DE 42 06 605 A 1

(51) Int. Cl. 5:
B 25 B 5/14
B 25 B 5/00
F 16 B 2/10
B 01 D 61/30
// A61M 1/14

(21) Aktenzeichen: P 42 06 605.0
(22) Anmeldetag: 3. 3. 92
(43) Offenlegungstag: 9. 9. 93

(71) Anmelder:
Riggers Medizintechnik Thalheim GmbH, 09380
Thalheim, DE

(72) Erfinder:
Brunner, Eberhard, O-9166 Thalheim, DE

(54) Selbstspannende Halterung für vorzugsweise zylindrische Spannstücke, insbesondere Dialysatoren

(57) Die Erfindung betrifft eine Halterung für Spannstücke, die zeitweilig sicher fixiert werden müssen und deren Entnahme jederzeit auf einfache Weise gewährleistet sein muß.
Der Erfindung liegt das Problem zugrunde, eine Halterung zu realisieren, die eine einfache und sichere Handhabung im klinischen Routinebetrieb ermöglicht, unabhängig von individuellen Bedieneinflüssen bleibt und die Verwendung von Spannstücken mit unterschiedlichem Durchmesser zuläßt.
Das erfindungsgemäße Konstruktionsprinzip ermöglicht eine selbstspannende Halterung. Das Spannstück wird dabei zwischen einem schwenkbar gelagerten Spannbügel und einem Formteil aufgenommen. Durch ein Federelement wird eine Druckkraft zwischen Spannbügel und Formteil bewirkt, die mittels eines Hebelns so übertragen wird, daß ein Drehmoment am sich ergebenden Hebelarm zwischen dem Auflagepunkt des freien Hebelendes auf der Außenseite des Formteils und Drehpunkt des Spannbügels erzeugt wird.
Ein besonderes Anwendungsgebiet ist die Halterung von Dialysatoren in Blutdetoxikationsgeräten.

DE 42 06 605 A 1

DE 42 06 605 A 1

Beschreibung

Die Erfindung betrifft eine Halterung für Spannstücke, die zeitweilig sicher fixiert werden müssen und deren Entnahme jederzeit auf einfache Weise gewährleistet sei muß. Sie ist vorzugsweise für zylindrische Spannstücke geeignet. Ein besonderes Anwendungsgebiet ist die Halterung von Dialysatoren in Blutdetoxikationsgeräten.

Hierfür sind Halterungen mit folgenden Wirkprinzipien bekannt:

- offene Spannschellen
- umfassende Halterungen mit Andruckhebel und Spannbügel
- doppelbackige Halterungen mit nachfolgenden Ausführungsvarianten:
 - eine Backe ist fest und eine Backe über einen Hebelarm gelagert
 - beide Backen sind über Hebelarme gelagert
 - die beweglichen Backen weisen eine gemeinsame Lagerstelle oder voneinander getrennte Lagerstellen auf
 - die Spannkraft wird über eine Gewinde-
spindel oder einen Exzenter erzeugt

Halterungen gemäß obiger Wirkprinzipien gibt es als nichtselbstspannende Ausführungen und als selbstspannende Halterungen.

Bei selbst spannenden Halterungen wird das Öffnen über ein zu bedienendes Element (z. B. Exzenter) und das Spannen über die Freimachung von Federn (z. B. Entriegelung) erreicht.

Diese Halterungen erfordern eine aufwendige Handhabung der Bedienelemente. Die zeitraubende und notwendigerweise zweihändige Bedienung beim Auswechseln eines Dialysators wirkt sich im klinischen Routinebetrieb störend aus. Die anliegenden Spannkräfte und damit die Sicherheit der Halterung bleiben oftmals von individuellen Bedieneinflüssen abhängig.

Der Erfindung liegt damit das Problem zugrunde, eine Halterung für vorzugsweise zylindrische Spannstücke zu realisieren, die eine einfache und sichere Handhabung im klinischen Routinebetrieb ermöglicht, unabhängig von individuellen Bedieneinflüssen bleibt und die Verwendung von Spannstücken mit unterschiedlichem Durchmesser zuläßt, ohne dabei die sichere Fixierung des jeweiligen Spannstückes in der Halterung zu beeinträchtigen.

Das Problem wird durch die im Anspruch 1 gekennzeichnete Erfindung gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den weiteren Ansprüchen angegeben.

Das erfundengemäße Konstruktionsprinzip ermöglicht eine selbstspannende Halterung. Das Spannstück wird dabei zwischen einem schwenkbar gelagerten Spannbügel und einem Formteil aufgenommen. Durch ein Federelement wird eine Druckkraft zwischen Spannbügel und Formteil bewirkt, die mittels eines Hebels so übertragen wird, daß ein Drehmoment am sich ergebenden Hebelarm zwischen Kraftübertragungspunkt (Auflagepunkt des freien Hebelendes auf der Außenseite des Formteils) und Drehpunkt des Spannbügels erzeugt wird. Das Drehmoment ruft am Andruckpunkt des Spannbügels mittels Transformation über die als Hebelarme wirkenden Schenkel des Spannbügels die Spannkraft für das Spannstück hervor.

Der Kraftübertragungspunkt des Hebels am Formteil

kann dabei so gewählt werden, daß sich ein Optimum zwischen Hebellänge, Federweglänge des Federelements und der Spannkraft ergibt.

Das Hebellager im Spannbügel kann so angeordnet werden, daß die Spannkraft im gesamten Spannbereich gleich ist oder mit zunehmender Spannweite ansteigt. Damit kann auf einfache Weise eine Einspannung von Spannstücken mit einem Weitenverhältnis von bis zu 1 : 2 realisiert werden. Gleichzeitig ist eine hierdurch eine selbsttätige Anpassung an die bei größer dimensionierten Spannstücken im allgemeinen höher zu veranschlagenden Spannkräfte möglich.

Zum Öffnen der Halterung wird der Spannbügel gegen die Federkraft abgeschwenkt und das Spannstück ist einlegbar. Nach Kraftfreimachung des Spannbügels spannt sich die Halterung selbstständig. Die Entnahme des Spannstückes erfolgt in gleicher Weise.

Die Erfindung soll nachfolgend anhand der in den Zeichnungen wiedergegebenen Ausführungsbeispiele näher erläutert werden.

Es zeigen:

Fig. 1 einen Querschnitt durch die erfundengemäße Halterung mit einer Druckfeder als Federelement,

Fig. 2 einen Querschnitt durch die gleiche Ausführungsform bei Einsatz eines Spannstückes mit wesentlich kleinerem Durchmesser,

Fig. 3 eine weitere Ausführungsform der Erfindung mit einer Formfeder als Federelement.

Die Halterung gemäß Fig. 1 verfügt über ein Ansatzstück 1 zur festen Adaptierung an den entsprechenden Geräten, z. B. zur Blutdetoxikation. Mit dem Ansatzstück 1 verbunden ist ein greiferförmig abgewinkeltes Formteil 2, das ein gemeinsames Drehlager 6 mit einem Schenkel eines U-förmigen Spannbügels 3 aufweist. An dem anderen Schenkel des Spannbügels 3 ist ein im Hebellager 7 drehbar gelagerter Hebel 5 angeordnet, dessen freies Ende am Kraftübertragungspunkt 13 auf der Außenseite des Formteils 2 aufliegt. Zur Krafterzeugung dient eine zwischen dem als starre Stange ausgebildeten Hebel 5 und der Innenseite des U-förmigen Spannbügels 3 eingebrachte Druckfeder 8. Sowohl die Innenseite des U-förmigen Spannbügels 3 als auch die Innenseite des Formteils 2 weisen Haftnuppen 9 auf, die vorzugsweise aus Plastmaterial bestehen. Damit ist das zylindrische Spannstück 12 an mindestens drei über den Umfang des Spannstücks 12 verteilten Stellen fixiert. Sinnvollerweise wird die Haftung und somit der Festzitz des Spannstückes 12 durch weitere, nicht dargestellte Haftnuppen 9 in radialer und lateraler Richtung verstärkt. Der Drehwinkel zwischen Formteil 2 und Spannbügel 3 ist durch Anschlagen des Schenkelendes des Spannbügels 3 an der Außenseite des Formteils 2 einerseits und durch Anschlagen der Innenseite des Formteils 2 durch ein in der Nähe des Drehlagers 6 angebrachtes Dämpfungselement 11 andererseits begrenzt. Das Dämpfungselement 11 aus Plast bewirkt gleichzeitig eine Aufschlagdämpfung beim Entnehmen des Spannstückes 12. Ein Griffstück 4 dient der Bedienung der Halterung. Die beidseitig angebrachten Abdeckungen 10 bieten Schutz gegen Verletzungen bei der Handhabung.

Fig. 2 demonstriert anschaulich, wie sich die selbstspannende Halterung einem verringerten Durchmesser des Spannstückes 12 anpaßt.

In Fig. 3 ist eine weitere Ausführungsform der Erfindung dargestellt, in der Druckfeder 8 und Hebel 5 durch eine U-förmige Formfeder 14 ersetzt sind, die sich mit zwei Schenkeln an der Innenseite des Spannbügels 3

abstützt und deren freies Ende durch die eigene Vorspannung auf der Außenseite des Formteils 2 aufliegt. Das Funktionsprinzip ist das gleiche, jedoch ergeben sich fertigungstechnische Vorteile durch das Entfallen mehrerer Einzelteile.

Patentansprüche

1. Selbstspannende Halterung für vorzugsweise zylindrische Spannstücke, insbesondere Dialysatoren, dadurch gekennzeichnet, daß auf einem Schenkel eines U-förmigen Spannbügels (3) ein Drehlager (6) für ein greiferförmig abgewinkeltes Formteil (2) angeordnet ist, so daß der U-förmige Spannbügel (3) und das Formteil (2) gegeneinander schwenkbar sind und das Spannstück (12) im eingespannten Zustand gemeinsam vom Formteil (2) und dem genannten Schenkel des Spannbügels (3) zumindest teilweise umschlossen wird, und daß am anderen Schenkel des Spannbügels (3) ein federbelasteter Hebel (5) angeordnet ist, dessen freies Ende unter Vorspannung auf der Außenseite des Formteils (2) aufliegt.
2. Selbstspannende Halterung nach Anspruch 1, dadurch gekennzeichnet, daß der federbelastete Hebel (5) durch eine im Schenkel des U-förmigen Spannbügels (3) einseitig drehgelagerte starre Stange gebildet wird, die sich durch eine Druckfeder (8) gegen die Innenseite des U-förmigen Spannbügels (3) abstützt.
3. Selbstspannende Halterung nach Anspruch 1, dadurch gekennzeichnet, daß der federbelastete Hebel (5) durch eine U-förmige Formfeder (14) gebildet wird, die sich mit zwei Schenkeln an der Innenseite des U-förmigen Spannbügels (3) abstützt und deren freies Ende durch die eigene Vorspannung auf der Außenseite des Formteils (2) aufliegt.
4. Selbstspannende Halterung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß sowohl die Innenseite des Formteils (2) als auch die Innenseite des U-förmigen Spannbügels (3) Haftnuppen (9) aufweist, so daß das Spannstück (12) an mindestens drei über den Umfang des Spannstücks (12) verteilten Stellen spannend fixierbar ist.
5. Selbstspannende Halterung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß der Drehwinkel zwischen Formteil (2) und Spannbügel (3) durch Anschlagen des Schenkelendes des Spannbügels (3) an die Außenseite des Formteils (2) einerseits und durch Anschlagen der Innenseite des Formteils (2) an ein in der Nähe des Drehlagers (6) angebrachtes Dämpfungselement (11) andererseits begrenzt ist.

Hierzu 3 Seite(n) Zeichnungen

Fig. 1

Fig. 2

Fig. 3