例1 来自两个神经元 1、2 的输入信号分别为变量 x_1 、 x_2 ,权重为 w_1 、 w_2 ,神经元的阈值为 θ 。当 w_1 = 5, w_2 = 3, θ = 4 时,考察信号之和 w_1x_1 + w_2x_2 的值与表示点火与否的输出信号 y 的值。

输入 <i>x</i> ₁	输入x2	和 $w_1 x_1 + w_2 x_2$	点火	输出信号y
0	0	$5 \times 0 + 3 \times 0 = 0 < 4$	无	0
0	1	$5 \times 0 + 3 \times 1 = 3 < 4$	无	0
1	0	$5 \times 1 + 3 \times 0 = 5 \geqslant 4$	有	1
1	1	$5 \times 1 + 3 \times 1 = 8 \geqslant 4$	有	1

点火条件的图形表示

下面我们将表示点火条件的式 (2) 图形化。以神经元的输入信号之和为横轴,神经元的输出信号 y 为纵轴,将式 (2) 用图形表示出来。如下图所示,当信号之和小于 θ 时,y 取值 0,反之 y 取值 1。

将点火条件图形化。 横轴表示信号之和 $w_1x_1 + w_2x_2 + w_3x_3$ 。

如果用函数式来表示这个图形,就需要用到下面的单位阶跃函数。

$$u(z) = \begin{cases} 0 & (z < 0) \\ 1 & (z \ge 0) \end{cases}$$

单位阶跃函数的图形如下所示。

利用单位阶跃函数 u(z), 式 (2) 可以用一个式子表示如下。

点火的式子:
$$y = u(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$
 (3)

通过下表可以确认式(3)和式(2)是一样的。

у	$w_1 x_1 + w_2 x_2 + w_3 x_3$	$z = w_1 x_1 + w_2 x_2 + w_3 x_3 - \theta$	u(z)
0 (无点火)	小于θ	z < 0	0
1 (点火)	大于等于 θ	$z \geqslant 0$	1

此外,该表中的z(式(3))的阶跃函数的参数)的表达式

$$z = w_1 x_1 + w_2 x_2 + w_3 x_3 - \theta \tag{4}$$

称为该神经元的加权输入。

有的文献会像下面这样处理式(2)的不等号。

在生物上这也许是很大的差异,不过对于接下来的讨论而言是没有问题的。因为我们的主角是 Sigmoid 函数,所以不会发生这样的问题。

1-3

激活函数: 将神经元的工作一般化

1-2 节中用数学式表示了神经元的工作。本节我们试着将其在数学上一般化。

简化神经元的图形

为了更接近神经元的形象, 1-2 节中将神经元表示为了下图的样子。

神经元的示意图(3个输入、2个输出的情况)。轴突分岔为两个输出端,其输出值相同。

然而,为了画出网络,需要画很多的神经元,在这种情况下上面那样的图就不合适了。因此,我们使用如下所示的简化图,这样很容易就能画出大量的神经元。

该图是神经元的简化图。用 箭头方向区分输入和输出。 神经元的输出由两个箭头指 出,其值是相同的。

为了与生物学的神经元区分开来,我们把经过这样简化、抽象化的神经元称为神经单元(unit)。

注: 很多文献直接称为"神经元"。本书为了与生物学术语"神经元"区分,使用"神经单元"这个称呼。另外,也有文献将"神经单元"称为"人工神经元",但是由于现在也存在生物上的人工神经元,所以本书中也不使用"人工神经元"这个称呼。

激活函数

将神经元的示意图抽象化之后,对于输出信号,我们也对其生物上 的限制进行一般化。

根据点火与否,生物学上的神经元的输出 y 分别取值 1 和 0 (下图)。

然而,如果除去"生物"这个条件,这个"0和1的限制"也应该是 可以解除的。这时表示点火与否的下式(1-2节式(3))就需要修正。

点火的式子:
$$y = u(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$
 (1)

这里, u 是单位阶跃函数。我们将该式一般化, 如下所示。

$$y = a(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$
 (2)

这里的函数 a 是建模者定义的函数, 称为激活函数 (activation function)。 x_1, x_2, x_3 是模型允许的任意数值, y 是函数 a 能取到的任意数值。这个 式(2)就是今后所讲的神经网络的出发点。

注: 虽然式(2)只考虑了3个输入,但这是很容易推广的。另外,式(1)使用的单位阶 跃函数 u(z) 在数学上也是激活函数的一种。

请注意,式(2)的输出 v 的取值并不限于 0 和 1,对此并没有简单的 解释。一定要用生物学来比喻的话,可以考虑神经单元的"兴奋度""反 应度""活性度"。

我们来总结一下神经元和神经单元的不同点,如下表所示。

14 第 1章 神经网络的思想

	神经元	神经单元	
输出值y	0或1	模型允许的任意数值	
激活函数	单位阶跃函数	由分析者给出,其中著名的是Sigmoid函数(后述)	
输出的解释	点火与否	神经单元的兴奋度、反应度、活性度	

将神经元点火的式 (1) 一般化为神经单元的激活函数式 (2),要确认这样做是否有效,就要看实际做出的模型能否很好地解释现实的数据。实际上,式 (2) 表示的模型在很多模式识别问题中取得了很好的效果。

Sigmoid 函数

激活函数的代表性例子是 Sigmoid 函数 $\sigma(z)$, 其定义如下所示。

$$\sigma(z) = \frac{1}{1 + e^{-z}} \quad (e = 2.718281...)$$
 (3)

关于这个函数,我们会在后面详细讨论(2-1 节)。这里先来看看它的图形,Sigmoid 函数 $\sigma(z)$ 的输出值是大于 0 小于 1 的任意值。此外,该函数连续、光滑,也就是说可导。这两种性质使得 Sigmoid 函数很容易处理。

右图是激活函数的代表性例子 Sigmoid 函数 $\sigma(z)$ 的图形。除了原点附近的部分,其余部分与单位阶跃函数(左图)相似。Sigmoid 函数具有处处可导的性质,很容易处理。

单位阶跃函数的输出值为1或0,表示点火与否。然而,Sigmoid 函数的输出值大于0小于1,这就有点难以解释了。如果用生物学术语来解释的话,如上文中的表格所示,可以认为输出值表示神经单元的兴奋度等。输出值接近1表示兴奋度高,接近0则表示兴奋度低。

本书中将 Sigmoid 函数作为标准激活函数使用,因为它具有容易计算的漂亮性质。如果用数学上单调递增的可导函数来代替,其原理也是一样的。

偏置

再来看一下激活函数的式(2)。

$$y = a(w_1x_1 + w_2x_2 + w_3x_3 - \theta)$$
 (2)

这里的 θ 称为阈值,在生物学上是表现神经元特性的值。从直观上讲, θ 表示神经元的感受能力,如果 θ 值较大,则神经元不容易兴奋(感觉迟

16 第 1章 神经网络的思想

钝), 而如果值较小, 则神经元容易兴奋(敏感)。

然而,式(2)中只有 θ 带有负号,这看起来不漂亮。数学不喜欢不漂亮的东西。另外,负号具有容易导致计算错误的缺点,因此,我们将 $-\theta$ 替换为b。

$$y = a(w_1x_1 + w_2x_2 + w_3x_3 + b)$$
 (4)

经过这样处理,式子变漂亮了,也不容易发生计算错误。这个b称为偏置(bias)。

本书将式 (4) 作为标准使用。另外,此时的加权输入 z(1-2节) 如下所示。

$$z = w_1 x_1 + w_2 x_2 + w_3 x_3 + b (5)$$

式(4)和式(5)是今后所讲的神经网络的出发点,非常重要。

另外,生物上的权重 w_1 、 w_2 、 w_3 和阈值 θ (=-b)都不是负数,因为负数在自然现象中实际上是不会出现的。然而,在将神经元一般化的神经单元中,是允许出现负数的。

问题 右图是一个神经单元。如图所示,输入 x_1 的对应权重是 2,输入 x_2 的对应权重是 3,偏置是 -1。根据下表给出的输入,求出加权输入z和输出y。注意这里的激活函数是 Sigmoid 函数。

输入 <i>x</i> ₁	输入x2	加权输入z	输出y
0.2	0.1		
0.6	0.5		

解	结果如下表所示	(式(3)	中的e取	e = 2.7 进行计算)。
/UT	-H-1-7-1 1/2//1/1/31	(- ()	/	

输入 <i>x</i> ₁	输入x ₂	加权输入z	输出y
0.2	0.1	$2 \times 0.2 + 3 \times 0.1 - 1 = -0.3$	0.43
0.6	0.5	$2 \times 0.6 + 3 \times 0.5 - 1 = 1.7$	0.84

备注 改写式(5)

我们将式(5)像下面这样整理一下。

$$z = w_1 x_1 + w_2 x_2 + w_3 x_3 + b \times 1 \tag{6}$$

这里增加了一个虚拟的输入,可 以理解为以常数1作为输入值(右图)。 于是,加权输入z可以看作下面 两个向量的内积。

输入1. 输入 x1、 输出 y 输入 x₂. 输入 x₃

 $(w_1, w_2, w_3, b)(x_1, x_2, x_3, 1)$

计算机擅长内积的计算, 因此按照这种解释, 计算就变容易了。

什么是神经网络

神经网络作为本书的主题,它究竟是什么样的呢?下面让我们来看一下其概要。

神经网络

上一节我们考察了神经单元,它是神经元的模型化。那么,既然大脑是由神经元构成的网络,如果我们模仿着创建神经单元的网络,是不是也能产生某种"智能"呢?这自然是让人期待的。众所周知,人们的期待没有被辜负,由神经单元组成的网络在人工智能领域硕果累累。

在进入神经网络的话题之前,我们先来回顾一下上一节考察过的神 经单元的功能。

·将神经单元的多个输入 x_1, x_2, \dots, x_n 整理为加权输入z。

$$z = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + b \tag{1}$$

其中 w_1, w_2, \dots, w_n 为权重,b为偏置,n为输入的个数。

・神经单元通过激活函数 a(z), 根据加权输入 z 输出 y。

$$y = a(z) \tag{2}$$

将这样的神经单元连接为网络状,就形成了神经网络。

网络的连接方法多种多样, 本书将主要考察作为基础的阶层型神经 网络以及由其发展而来的卷积神经网络。

注: 为了与生物学上表示神经系统的神经网络区分开来,有的文献使用"人工神经网络" 这个称呼。本书中为了简便,省略了"人工"二字。

神经网络各层的职责

阶层型神经网络如下图所示,按照层(layer)划分神经单元,通过 这些神经单元处理信号,并从输出层得到结果,如下图所示。

阶层型神经网络的示例。 除了阶层型以外,还有 "互相连接型"等各种类 型的网络。

构成这个网络的各层称为输入层、隐藏层、输出层,其中隐藏层也 被称为中间层。

各层分别执行特定的信号处理操作。

输入层负责读取给予神经网络的信息。属于这个层的神经单元没有 输入箭头,它们是简单的神经单元,只是将从数据得到的值原样输出。

隐藏层的神经单元执行前面所复习过的处理操作(1)和(2)。在神经 网络中,这是实际处理信息的部分。

输出层与隐藏层一样执行信息处理操作(1)和(2),并显示神经网络 计算出的结果,也就是整个神经网络的输出。

深度学习

深度学习, 顾名思义, 是叠加了很多层的神经网络。叠加层有各种 各样的方法,其中著名的是卷积神经网络(第5章)。

考察具体的例子

从现在开始一直到第4章, 我们都将围绕着下面这个简单的例子来 考察神经网络的结构。

例题 建立一个神经网络,用来识别通过 4×3 像素的图像读取的手写 数字 0 和 1。学习数据是 64 张图像,其中像素是单色二值。

解我们来示范一下这个例题如何解答。

作为例题解答的神经网 络示例。这个示例将手 写数字1作为单色二值 图像读入。

这个解答是演示实际的神经网络如何发挥功能的最简单的神经网络