

Leistungselektronik Cheat Sheet

1. Allgemeines

Allgemeines

Tastverhältnis: $D = \frac{\tau_i}{T}$

Funktion einer Sinusspannung: $u(t) = \hat{U}_s \cdot \sin(\omega t)$

Physikalische Größen

Un: Gleichspannung

û: Scheitelwert

u(t): zeitabhängige Spannung

T: Periodendauer

 t_i : Impulszeit

 \overline{U} : Arithmetischer Mittelwert

2. Mathematische Verfahren

2.1. Mittel- & Effektivwert

Arith. Mittelwert einer Mischspannung: $\bar{u}_{di} = U_{di} = \frac{1}{T} \int u_d(t) dt$

Effektivwert einer diskreten Spannung

- 1. Spannung in Spannungen mit gleichem \hat{U} aufteilen.
- 2. Effektivwerte der Einzelspannungen berechnen: $U_{xRMS} = \sqrt{D}\hat{U}$.
- 3. Quadratische Summe aller U_{xRMS} berechnen: $U_{RMS} = \sqrt{U_{xRMs}^2 + U_{x+1RMs}^2}$

2.2. Welligkeit, Klirr und Formfaktor

Welligkeit (Ripple)

Welligkeit reiner Gleichgrößen: w = 0. Welligkeit reiner Wechselgrößen: w = sehr groß.

Klirrfaktor (THD)

 $K_U = \frac{U_{RMSOS}}{U_{RMS}}$

Formfaktor $F = \frac{U_{d RMS}}{U_{di}}$

3. Leistungsberechnung

3.1. Leistungsarten

 $S = U_{0RMS} \cdot I_{ORMS}$

Für rein sinusförmige Verläufe gilt:

 $\lambda = \frac{P}{S} = \cos \phi$ $S = \sqrt{P^2 + Q^2}$

 $Q = \sin(\phi)$

3.2. Betriebsquadranten

4. Wärmemanagement

4.1. Verlustleistung

Thermische Energie: Q Momentanleistung am PN Übergang: $p_v = u \cdot i$

Bauelement	Kennbuchstabe	Temperatur
Siliziumkristall - Junction	J	ϑ_J
Gehäuse - case	С	ϑ_C
Kühlkörper - heatsink	K	ϑ_K
Kühlmedien - ambient	A	ϑ_A

5. Mittelpunktschaltungen

5.1. Nomenklatur

id ud: Zeitverläufe von Strom und Spannung

 $I_d U_d$: In den Zeitverläufen von i_d und u_d enthaltene Mittelwerte

u_T: Zeitlicher Verlauf der Spannung an einem Thyristor

us: Zeitlicher Verlauf der Netzspannung

 U_S : Effektivwert der Netzspannung

 U_N : Effektivwert der verketteten Spannung

d: Ausgangsgröße

T: Transistor

S: Strang

N: verkettet Größe

5.2. Welligkeit

$$v_U = \sqrt{\frac{U_{RMS}^2}{U_d^2} - 1}$$

5.3. Einphasige Mittelpunktschaltung M1

5.3.1. Aufbau und Funktion

5.3.2. Steuergesetz

Rein ohmsche Last: $U_{di\alpha} = \frac{\hat{U}_{S}}{2\pi} \cdot (1 + \cos \alpha)$

5.4. Zweiphasige Mittelpunktschaltung M2C

 $u_{s12} = u_{s1} - u_{s2} = u_N \cdot \frac{N_2}{N_1}$

5.4.2. Steuergesetz Bei nicht lückendem Betrieb ergibt sich für U_{dia}

 $U_{di\alpha} = \frac{1}{2\pi} \int_{\alpha}^{2\pi + \alpha} u_d(\omega t) d(\omega t) = \frac{2 \cdot \sqrt{2}}{\pi} \cdot \hat{U}_S \cdot \cos \alpha$

5.5. Dreiphasige Mittelpunktschaltung M3C

6. Gleichstromsteller im Einquadrantenbetrieb

Grundschaltung Tiefsetzsteller

$$u_{SZ}(t) = \frac{U_{SZ}}{T_{S}} \cdot t = U_{Stee}$$

$$\frac{\sigma_{SZ}}{T_S} \cdot t_{ein} = U_{Steue}$$

$$_{in} = \frac{OSteuer}{\hat{U}_{SZ}} \cdot T$$

Tastgrad: $D = \frac{t_{Ein}}{T_c}$

Schaltbedingung:

 $u_{Komp} > 0 \Rightarrow MOSFET$ eingeschaltet $u_0(t) = U_d$ $u_{Komp} < 0 \Rightarrow MOSFET$ ausgeschaltet $u_0(t) = 0$

Mittelwert der Ausgangsspannung: $U_0 = \frac{t_{ein}}{T_a} \cdot U_d = D \cdot U_d$

$$T_S = \frac{1}{f_S}$$

$$t_{Ein} = \frac{U_{Steuer}}{\hat{U}_{SZ}} \cdot T_S$$