Álgebra Linear

Aula 13: Método de Eliminação de Gauss

Mauro Rincon

Márcia Fampa

Considere a matriz aumentada [A|b], onde A é uma matriz triangular superior de ordem 3 dada por:

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ 0 & a_{22} & a_{23} & b_2 \\ 0 & 0 & a_{33} & b_3 \end{bmatrix}$$

que representa o seguinte sistema linear

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{33}x_3 = b_3 \end{cases}$$

Se $a_{ii} \neq 0$ então o sistema linear pode ser resolvido por retrosubstituição,

$$x_3 = b_3/a_{33}$$

 $x_2 = (b_2 - (a_{23}x_3))/a_{22}$
 $x_1 = (b_1 - (a_{12}x_2 + a_{13}x_3))/a_{11}$

De um modo geral, se a matriz quadrada \mathbf{A} é de ordem n então o algoritmo para a determinação da solução $\mathbf{x} = (x_1, \dots, x_n)$ é dado por:

Seja
$$a_{ii} \neq 0, i = 1, 2, \dots, n$$
.
Então $x_n = b_n/a_{nn}$.
Para $j = n - 1, n - 2, \dots, 2, 1$

$$x_j = \frac{b_j - \sum_{k=j+1}^n a_{jk} x_k}{a_{jj}}$$

- Seja $\mathbf{A}\mathbf{x} = \mathbf{b}$ um sistema linear. O Método de Eliminação de Gauss para resolução do sistema é dado pelas seguintes etapas:
 - **Etapa 1**: Obtenção da matriz aumentada [**A**|**b**] do sistema.
 - **Etapa 2**: Transformação da matriz aumentada [A|b] à uma matriz aumentada [A|b] onde \overline{A} é uma matriz triangular superior.
 - ─ Etapa 3: Resolver o sistema linear [A|b] da Etapa 2 por retro substituição.

Etapa 1:

Considere o sistema linear de ordem 3 dado por:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 &= b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 &= b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 &= b_3 \end{cases}$$

A matriz aumentada do sistema é

$$[\mathbf{A}|\mathbf{b}]^{(0)} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & b_1 \\ a_{21} & a_{22} & a_{23} & b_2 \\ a_{31} & a_{32} & a_{33} & b_3 \end{bmatrix}$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal. Seja $a_{11} \neq 0$, definimos os seguintes multiplicadores: $m_{21} = a_{21}/a_{11}$ e $m_{31} = a_{31}/a_{11}$ e façamos a seguinte operação: $\begin{cases} L_2^{(1)} \leftarrow L_2 - m_{21} \cdot L_1 \\ L_3^{(1)} \leftarrow L_3 - m_{31} \cdot L_1 \end{cases}$

Após as operações, obtemos:

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & b_1^{(1)} \\ 0 & a_{22}^{(1)} & a_{23}^{(1)} & b_2^{(1)} \\ 0 & a_{32}^{(1)} & a_{33}^{(1)} & b_3^{(1)} \end{bmatrix}$$

Fase 2: Zerar todos os elementos da 2^a coluna abaixo da diagonal principal. Agora o pivô é o elemento $a_{22}^{(1)}$ e linha pivô é a linha 2 de $[\mathbf{A}|\mathbf{b}]^{(1)}$. Suponha $a_{22}^{(1)} \neq 0$, definimos o multiplicador $m_{32} = a_{32}^{(1)}/a_{22}^{(1)}$ e façamos a seguinte operação: $L_3^{(2)} \leftarrow L_3^{(1)} - m_{32} \cdot L_2^{(1)}$ Após as operações obtemos:

$$[\mathbf{A}|\mathbf{b}]^{(2)} = \begin{bmatrix} a_{11}^{(2)} & a_{12}^{(2)} & a_{13}^{(2)} & b_1^{(2)} \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & b_2^{(2)} \\ 0 & 0 & a_{33}^{(2)} & b_3^{(2)} \end{bmatrix}$$

Note que $[\mathbf{A}|\mathbf{b}]^{(2)}$ é uma matriz aumentada cuja matriz é uma matriz triangular superior.

Etapa 3:

Resolução do sistema $[\mathbf{A}|\mathbf{b}]^{(2)}$ que na forma triangular superior, ou seja:

$$x_3 = b_3^{(2)}/a_{33}^{(2)}, \quad a_{33}^{(2)} \neq 0$$

 $x_2 = (b_2^{(2)} - (a_{23}^{(2)}x_3))/a_{22}^{(2)}$
 $x_1 = (b_1^{(2)} - (a_{12}^{(2)}x_2 + a_{13}^{(2)}x_3))/a_{11}^{(2)}$

Assim a solução $\{x_1, x_2, x_3\}$ de $[\mathbf{A}|\mathbf{b}]^{(2)}$ é a mesma solução de $[\mathbf{A}|\mathbf{b}]$.

Observação: Note que sendo a matriz triangular superior então

$$det(\mathbf{A}^{(2)}) = a_{11}^{(2)} \cdot a_{22}^{(2)} \cdot a_{33}^{(2)} = det(\mathbf{A})$$

Exemplo 1: Resolva o sistema linear pelo Método de Eliminação de Gauss:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 2x_1 + x_2 - x_3 = 1 \\ -2x_1 - 5x_2 + 3x_3 = 3 \end{cases}$$

Etapa 1:

A matriz aumentada do sistema é

$$[\mathbf{A}|\mathbf{b}]^{(0)} = \begin{bmatrix} 1 & -1 & 2 & 2 \\ 2 & 1 & -1 & 1 \\ -2 & -5 & 3 & 3 \end{bmatrix}$$

Etapa 2:

Fase 1: Zerar todos os elementos da primeira coluna abaixo da diagonal principal. Linha pivô = L_1 e $a_{11} = 1$ é o pivô. Multiplicadores: $m_{21} = 2$ e $m_{31} = -2$

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 3 & -5 & -3 \\ 0 & -7 & 7 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ L_2^{(1)} & \leftarrow & L_2^{(0)} - 2L_1^{(0)} \\ L_3^{(1)} & \leftarrow & L_3^{(0)} - (-2)L_1^{(0)} \end{bmatrix}$$

→ Fase 2: Zerar todos os elementos da 2^a coluna abaixo da diagonal principal.

$$a_{22}^{(1)}=3\neq 0$$
 é o elemento pivô e $L_2^{(1)}$ é a linha pivô.

Define o multiplicador:
$$m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}} = -\frac{7}{3}$$
.

Então:

$$[\mathbf{A}|\mathbf{b}]^{(2)} = \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 3 & -5 & -3 \\ 0 & 0 & -\frac{14}{3} & 0 \end{bmatrix} L_3^{(2)} \leftarrow L_3^{(1)} - \left(\frac{-7}{3}\right) L_2^{(1)}$$

Etapa 3: Resolvendo o sistema por retrosubstituição.

 $[\mathbf{A}|\mathbf{b}]^{(2)}$ representa o sistema:

$$\begin{cases} x_1 - x_2 + 2x_3 = 2 \\ 3x_2 - 5x_3 = -3 \\ - \frac{14}{3}x_3 = 0 \end{cases}$$

$$x_3 = 0$$
 \Rightarrow $x_2 = \frac{-3 - (-5x_3)}{3} = -1$

$$\mathbf{x} = (1, -1, 0)$$

$$x_1 = \frac{2 - (-x_2 + 2x_3)}{1} = 1$$

Exemplo 2:

Considere o mesmo sistema do Exemplo 1, usando $a_{22} = 2$ como coeficiente de x_2 na segunda linha. Então:

$$[\mathbf{A}|\mathbf{b}] = \begin{vmatrix} 1 & -1 & 2 & 2 \\ 2 & 2 & -1 & 0 \\ -2 & -5 & 3 & 3 \end{vmatrix}$$

Etapa 2:

 <u>Fase 1</u>: Zerar todos os elementos da primeira coluna abaixo da diagonal principal.

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 0 & -1 & -4 \\ 0 & -7 & 7 & 7 \end{bmatrix} \begin{bmatrix} 2 \\ L_2^{(1)} \leftarrow L_2^{(0)} - 2L_1^{(0)} \\ L_3^{(1)} \leftarrow L_3^{(0)} + 2L_1^{(0)} \end{bmatrix}$$

Fase 2: Zerar todos os elementos da 2^a coluna abaixo da diagonal principal. Mas nesse caso o pivô $a_{22}^{(1)} = 0$ e portanto não podemos calcular o multiplicador $m_{32} = \frac{a_{32}^{(1)}}{a_{22}^{(1)}}$.

Dessa forma <u>o algoritmo falha</u> e não podemos resolver o sistema, embora a solução do sistema seja $\mathbf{x} = (1, -1, 0)$.

O pivoteamento consiste em tomar como pivô o maior elemento em valor absoluto da coluna a ser zerada, ou seja, em cada fase o pivô será escolhido por:

$$\hat{a}_{jj} = \max |a_{jk}|, \qquad k = j, j + 1, ..., n$$

Se o maior elemento em valor absoluto pertence a linha k então troca-se as linhas, ou seja:

$$L_j \leftarrow L_k$$
 e $L_k \leftarrow L_j$

Exemplo 3: Considere a matriz aumentada do exemplo 2

$$[\mathbf{A}|\mathbf{b}] = \begin{bmatrix} 1 & -1 & 2 & 2 \\ 2 & 2 & -1 & 0 \\ -2 & -5 & 3 & 3 \end{bmatrix}$$

Pivô:

$$\hat{a}_{11} = \max\{|a_{11}|; |a_{21}|; |a_{31}|\}$$

= $\max\{1, 2, 2\} = 2$

Então podemos escolher como pivô $a_{21} = 2$ ou $a_{31} = -2$

Escolhendo $a_{21} = 2$ como pivô então:

$$L_2 \leftarrow L_1$$
 e $L_1 \leftarrow L_2$

$$L_1 \leftarrow L_2$$

Assim,

$$[\mathbf{A}|\mathbf{b}]^{(0)'} = \begin{bmatrix} 2 & 2 & -1 & 0 \\ 1 & -1 & 2 & 2 \\ -2 & -5 & 3 & 3 \end{bmatrix}$$

Aplica-se o MEG:

$$m_{21} = \frac{1}{2}$$
 e $m_{31} = \frac{-2}{2} = -1$

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} 2 & 2 & -1 & 0 \\ 0 & -2 & 5/2 & 2 \\ 0 & -3 & 2 & 3 \end{bmatrix} \frac{L_2^{(1)} \leftarrow L_2^{(0)} - \frac{1}{2}L_1^{(0)}}{L_3^{(1)} \leftarrow L_3^{(0)} + L_1^{(0)}}$$

Escolha do pivô para a fase 2:

$$a_{22}^{(1)} = \max\{|a_{22}|; |a_{32}|\}\$$

= $\max\{2, 3\} = 3$

 \longrightarrow Mas $3 \in L_3$ de $[\mathbf{A}|\mathbf{b}]^{(2)}$. Então,

$$L_2 \leftarrow L_3$$
 e $L_3 \leftarrow L_2$

$$[\mathbf{A}|\mathbf{b}]^{(1)'} = \begin{bmatrix} 2 & 2 & -1 & 0 \\ 0 & -3 & 2 & 3 \\ 0 & -2 & 5/2 & 2 \end{bmatrix}$$

<u>Fase 2</u>: Zerar os elementos da 2^a coluna abaixo da diagonal principal.

Linha pivô =
$$L_2^{(1)}$$
 e o pivô = -3

$$[\mathbf{A}|\mathbf{b}]^{(2)} = \begin{bmatrix} 2 & 2 & -1 & 0 \\ 0 & -3 & 2 & 3 \\ 0 & 0 & 7/6 & 0 \end{bmatrix} \underbrace{L_3^{(2)} \leftarrow L_3^{(1)} - \frac{2}{3}L_2^{(1)}}_{1}$$

Logo,
$$\frac{7}{6}x_3 = 0 \Rightarrow x_3 = 0$$

 $x_2 = \frac{3 - (2x_3)}{-3} = -1$
 $x_1 = \frac{0 - (2x_2 - x_3)}{2} = 1$

Solução:
$$\mathbf{x} = (1, -1, 0)$$

Observação 1: Foram trocadas duas linhas durante o processo: $L_1 \leftarrow L_2$ e $L_2 \leftarrow L_3$ Neste caso, o número de permutações é dois. Assim,

$$\det(\mathbf{A}) = \det(\mathbf{A}^2) = 2.(-3).(7/6) = -7$$

Observação 2: Quando o número de permutações

$$\begin{cases} \text{ \'e par} \Rightarrow \det(\mathbf{A}) = \det(\overline{\mathbf{A}}) \\ \text{\'e \'impar} \Rightarrow \det(\mathbf{A}) = -\det(\overline{\mathbf{A}}) \end{cases}$$

onde $\overline{\mathbf{A}}$ é a matriz triangular superior obtida pelo MEG com pivoteamento.

Observação 3: Se durante o processo de aplicação do MEG com pivoteamento o pivô

$$a_{ii}^{(j)} = \max\{|a_{ik}|\} = 0 \text{ para } k = i, i + 1, ..., n$$

então $det(\mathbf{A}) = 0 \Rightarrow \mathbf{A}$ é não invertível.

Neste caso, o sistema tem <u>infinitas soluçõe</u>s ou não tem solução.

Exemplo 4: Resolva o sistema linear pelo Método de Eliminação de Gauss com pivoteamento e calcule o determinante da matriz

$$\begin{cases} x_1 + 2x_2 - x_3 & = -4 \\ -x_2 + x_3 - x_4 & = 0 \\ -2x_1 - x_2 + 4x_3 + 2x_4 & = 7 \\ 4x_1 + 3x_2 + x_4 & = -10 \end{cases}$$

Etapa 1: Matriz aumentada

$$[\mathbf{A}|\mathbf{b}]^{(0)} = \begin{bmatrix} 1 & 2 & -1 & 0 & -4 \\ 0 & -1 & 1 & -1 & 0 \\ -2 & -1 & 4 & 2 & 7 \\ 4 & 3 & 0 & 1 & -10 \end{bmatrix}$$

→ Fase 1: Escolha do pivô na primeira coluna

$$a_{11}^{(1)} = \max\{|a_{11}|; |a_{21}|; |a_{31}|; |a_{41}|; \}$$

= $\max\{|1|; |0|; |-2|; |4|; \} = 4$

Mas
$$4 \in L_4 \Rightarrow L_1 \leftarrow L_4 \in L_4 \leftarrow L_1$$
.

Se
$$\hat{a}_{11} = 0 \Rightarrow \det(\mathbf{A}) = 0 \Rightarrow \mathbf{A}$$
 é singular.

Logo,

$$[\mathbf{A}|\mathbf{b}]^{(0)'} = \begin{bmatrix} 4 & 3 & 0 & 1 & -10 \\ 0 & -1 & 1 & -1 & 0 \\ -2 & -1 & 4 & 2 & 7 \\ 1 & 2 & -1 & 0 & -4 \end{bmatrix}$$

Zerar os elementos da 1ª coluna abaixo da diagonal principal.

Definimos os multiplicadores:

$$m_{21} = \frac{a_{21}}{a_{11}} = 0$$
 $m_{31} = \frac{a_{31}}{a_{11}} = -\frac{2}{4} = -\frac{1}{2}$
 $m_{41} = \frac{a_{41}}{a_{11}} = \frac{1}{4}$

Então,

$$[\mathbf{A}|\mathbf{b}]^{(1)} = \begin{bmatrix} 4 & 3 & 0 & 1 & -10 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 1/2 & 4 & 5/2 & 2 \\ 0 & 5/4 & -1 & 1/4 & -3/2 \end{bmatrix} \begin{bmatrix} L_2^{(1)} & \leftarrow & L_2^{(0)} \\ L_3^{(1)} & \leftarrow & L_3^{(0)} + \frac{1}{2}L_1^{(0)} \\ L_4^{(1)} & \leftarrow & L_4^{(0)} - \frac{1}{4}L_1^{(0)} \end{bmatrix}$$

— <u>Fase 2</u>: Escolha do pivô $a_{22}^{(1)}$:

$$a_{22}^{(1)} = \max\{|a_{22}^1|; |a_{32}^1|; |a_{42}^1|\}$$

= $\max\{|-1|; |1/2|; |5/4|\} = 5/4 \in L_4$

Logo, L_4 é a linha pivô e 5/4 é o pivô.

Neste caso, $L_2 \leftarrow L_4$ e $L_4 \leftarrow L_2$

$$[\mathbf{A}|\mathbf{b}]^{(1)'} = \begin{bmatrix} 4 & 3 & 0 & 1 & -10 \\ 0 & 5/4 & -1 & 1/4 & -3/2 \\ 0 & 1/2 & 4 & 5/2 & 2 \\ 0 & -1 & 1 & -1 & 0 \end{bmatrix}$$

Próximo passo: zerar os elementos que estão na 2ª coluna abaixo da diagonal principal.

Definimos os multiplicadores:

$$m_{32} = \frac{a_{32}}{a_{22}} = \frac{1/2}{5/4} = \frac{2}{5}$$
 $m_{42} = \frac{a_{42}}{a_{22}} = \frac{-1}{5/4} = \frac{-4}{5}$

$$[\mathbf{A}|\mathbf{b}]^{(2)} = \begin{bmatrix} 4 & 3 & 0 & 1 & -10 \\ 0 & 5/4 & -1 & 1/4 & -3/2 \\ 0 & 0 & 22/5 & 13/5 & 13/5 \\ 0 & 0 & 1/5 & -6/5 & -6/5 \end{bmatrix} \begin{matrix} -10 \\ -3/2 \\ 13/5 \\ L_4^{(2)} \leftarrow L_3^{(1)} - \frac{2}{5}L_2^{(1)} \\ L_4^{(2)} \leftarrow L_4^{(1)} + \frac{4}{5}L_2^{(1)} \\ \end{pmatrix}$$

→ Fase 3: Escolha do pivô na 3^a coluna.

$$\hat{a}_{33}^{(2)} = max\{|a_{33}^{(2)}|, |a_{43}^{(2)}|\} = max\{\left|\frac{22}{5}\right|, \left|\frac{1}{5}\right|\} = \frac{22}{5}.$$

Mas $\frac{22}{5} \in L_3 \Rightarrow$ não precisa trocar linhas.

Próximo Passo: Zerar os elementos da 3^a coluna abaixo da diagonal principal.

Multiplicador:
$$m_{43} = \frac{a_{43}}{a_{33}} = \frac{\frac{1}{5}}{\frac{22}{5}} = \frac{1}{22}$$

$$[\mathbf{A}|\mathbf{b}]^{3} = \begin{bmatrix} 4 & 3 & 0 & 1 & | & -10 \\ 0 & \frac{5}{4} & -1 & -\frac{1}{4} & | & -\frac{3}{2} \\ 0 & 0 & \frac{22}{5} & \frac{13}{5} & | & \frac{13}{5} \\ 0 & 0 & 0 & -\frac{29}{22} & | & -\frac{29}{22} \end{bmatrix} L_{4}^{(2)} \leftarrow L_{4}^{(1)} - \frac{1}{22}L_{3}^{(2)}$$

$$L_4^{(2)} \leftarrow L_4^{(1)} - \frac{1}{22} L_3^{(2)}$$

Etapa 3: Resolução do sistema linear $\overline{\mathbf{A}}\mathbf{x} = \overline{\mathbf{b}}$ onde $\overline{\mathbf{A}}$ é uma matriz triangular superior. Aplicando o método de Retrosubstituição obtemos:

$$x_4 = \frac{-\frac{29}{22}}{\frac{-29}{22}} = 1$$
 $x_3 = \frac{\frac{13}{5} - \left(\frac{13}{5} \cdot x_4\right)}{\frac{22}{5}} = 0$

$$x_2 = \frac{-\frac{3}{2} - \left(-x_3 - \frac{1}{4}x_4\right)}{\frac{5}{4}} = -1$$

$$x_1 = \frac{-10 - (3x_2 + 0 \cdot x_3 + 1 \cdot x_4)}{4} = -2$$

Logo a solução é $\mathbf{x} = (-2, -1, 0, 1)$.

Determinante:

$$\overline{\det(\mathbf{A}) = -\det(\mathbf{A}') = -(-\det(\mathbf{A}^{(1)'})) = \det(\mathbf{A}^{(2)}) = \det(\mathbf{A}^{(3)}) = 4 \cdot \frac{5}{4} \cdot \frac{22}{5} \cdot \frac{-29}{22} = -29$$

11.3 - Algoritmo do Método Eliminação de Gauss com Pivoteamento

Resolver o sistema linear $\mathbf{A}\mathbf{x} = \mathbf{b}$ de ordem $n \times n$, onde $1 \le i \le n$ e $1 \le j \le n$.

- Entrada de dados: (a_{ij}) , $1 \le i \le n$ e $1 \le j \le n+1$, onde estamos denotando $b_i = a_{i,n+1}$.
- → Saída de dados: solução $\mathbf{X} = (x_1, \dots, x_n)$ ou mensagem de que a matriz é singular.

11.3 - Algoritmo do Método Eliminação de Gauss com Pivoteamento

Para
$$k = 1, 2, \dots, n - 1$$

Pivoteamento

$$a_{kk}^1 = max|a_{jk}|; j = k, k+1, \cdots, n$$
 se
 $a_{kk}^1 = 0 \rightarrow \text{sistema não tem solução única}$
 cc
 $Para i = 1, 2, \cdots, n$
 $c_{ki} = a_{ki}$
 $a_{ki} = a_{ji}$
 $a_{ji} = c_{ki}$

Para
$$i = k + 1, \dots, n$$

 $m = \frac{a_{ik}}{a_{kk}}$
Para $j = k + 1, \dots, n, n + 1$
 $a_{ij} = a_{ij} - m \cdot a_{kj}$

11.3 - Algoritmo Retrosubstituição

$$x_n = a_{n,n+1}/a_{n,n} \quad (a_{n,n+1} = b_n)$$
Para $i = n - 1, \dots, 2, 1$

$$x_i = \frac{(a_{i,n+1} - \sum_{j=i+1}^n a_{ij} x_j)}{a_{ii}}$$

Exercícios

Usando o Método de Eliminação de Gauss com Pivoteamento resolva os sistemas abaixo e calcule o determinante da matriz dos coeficientes:

8a, 9b, 10a da página 55 do livro texto. 12a, 12b, 12c da página 70 do livro texto.

