# Assignment 1 | FPGA Lab

### Robin Singh

#### January 2022

## 1 Question

A training institute intends to give scholarships to its students as per the criteria given below :

• The student has excellent academic record but is financially weak.

OR

• The student does not have an excellent academic record and belongs to a backward class.

OR

• The student does not have an excellent academic record and is physically impaired.

The inputs are:

**INPUTS** 

A: Has excellent academic record

F: Financially sound

C: Belongs to a backward class

I: Is physically impaired (In all the above cases 1 indicates yes and 0 indicates no).

Output: X [1 indicates yes, 0 indicates no for all cases]

Draw the truth table for the inputs and outputs given above and write the SOP expression for X(A,F,C,I).

# 2 Solution

### 2.1 Truth Table

| A                          | F | C                                                | Ι           | X                               |
|----------------------------|---|--------------------------------------------------|-------------|---------------------------------|
| 0                          | 0 | 0                                                | 0           | 0                               |
| 0<br>0<br>0<br>0<br>0<br>0 | 0 | 0                                                | 1           | 1                               |
| 0                          | 0 | 1                                                | 0           | 1                               |
| 0                          | 0 | 1                                                |             | 1                               |
| 0                          | 1 | $\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$ | 1 0         | 1<br>1<br>1<br>0<br>1           |
| 0                          | 1 | 0                                                | 1           | 1                               |
| 0                          | 1 | 1                                                | 0           | 1                               |
| 0                          | 1 | 1                                                | 1<br>0<br>1 | 1                               |
| 1                          | 0 | 0                                                | 0           | 1                               |
| 1<br>1                     | 0 | 0                                                | 1           | 1                               |
| 1                          | 0 | 1                                                | 1<br>0      | 1                               |
| 1                          | 0 | 1                                                | 1           | 1                               |
| 1                          | 1 | 0                                                | 0           | 0                               |
| 1                          | 1 | 1<br>1<br>0<br>0<br>1<br>1<br>0<br>0             | 1           | 1<br>1<br>1<br>1<br>0<br>0<br>0 |
| 1                          | 1 | 1                                                | 1<br>0      | 0                               |
| 1                          | 1 | 1                                                | 1           | 0                               |

## 2.2 Karnaugh Map for given truth table



Figure 2.1: Karnaugh-Map

#### 2.3 SOP EXPRESSION

$$X=A.F' +A'.C +A'.I$$

To implement it using NAND Logic, we convert the simplified SOP expression to suite the NAND logic, which gives :

$$F = \overline{\overline{A.\overline{F}}.\overline{\overline{A}.C}.\overline{\overline{A}.I}}.$$