CSCI4333 Database Design & Implement

Lecture Twenty-four: Normalization

Instructor: Dr. Yifeng Gao

Reasoning About FDs

- Given some FDs, we can usually infer additional FDs:
 - $-ssn \rightarrow did$, $did \rightarrow lot$ implies $ssn \rightarrow lot$
 - $-A \rightarrow BC \text{ implies } A \rightarrow B$
- An FD f is <u>logically implied by</u> a set of FDs F if f holds whenever all FDs in F hold.
 - $F^{+} = closure \ of \ F$ is the set of all FDs that are implied by F.

Reasoning about FDs

- How do we get all the FDs that are logically implied by a given set of FDs?
- Armstrong's Axioms (X, Y, Z are sets of attributes):
 - <u>Reflexivity</u>:
 - If $X \supseteq Y$, then $X \to Y$
 - Augmentation:
 - If $X \to Y$, then $XZ \to YZ$ for any Z
 - <u>Transitivity</u>:
 - If $X \to Y$ and $Y \to Z$, then $X \to Z$

A	В	С
1	1	2
2	1	3
2	1	3
1	1	2

Armstrong's axioms

- Armstrong's axioms are *sound* and *complete* inference rules for FDs!
 - Sound: all the derived FDs (by using the axioms) are those logically implied by the given set
 - Complete: all the logically implied (by the given set) FDs can be derived by using the axioms.

Example of using Armstrong's Axioms

- Couple of additional rules (that follow from AA):
 - *Union*: If $X \to Y$ and $X \to Z$, then $X \to YZ$
 - *Decomposition*: If $X \to YZ$, then $X \to Y$ and $X \to Z$
- Derive the above two by using Armstrong's axioms!

Derive Union

Show that

If
$$X \to Y$$
 and $X \to Z$, then $X \to YZ$

- *Reflexivity*:
 - If $X \supseteq Y$, then $X \to Y$
- Augmentation:
 - If $X \to Y$, then $XZ \to YZ$ for any Z
- *Transitivity*:
 - If $X \to Y$ and $Y \to Z$, then $X \to Z$

Derive Union

Show that

```
If X \to Y and X \to Z, then X \to YZ
```

- $X \rightarrow YX$ (augment) // Append X on both sides of X->Y
- $YX \rightarrow YZ$ (augment) // Append Y on both sides of X->Z
- Thus $X \to YZ$ (transitive)

Derivation Example

- R = (A, B, C, G, H, I) $F = \{A \to B; A \to C; CG \to H; CG \to I; B \to H\}$
- some members of F^+ (how to derive them?)
 - $-A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $-AG \rightarrow I$
 - by augmenting $A \to C$ with G, to get $AG \to CG$
 - $-CG \rightarrow HI$
 - by augmenting $CG \rightarrow I$ to infer $CG \rightarrow CGI$,
 - and augmenting of $CG \rightarrow H$ to infer $CGI \rightarrow HI$,
 - and then transitivity

Procedure for Computing F⁺

- $F^+ = closure \ of \ F$ is the set of all FDs that are implied by F.
- To compute the closure of a set of functional dependencies F:

```
repeat

for each functional dependency f in F^+

apply reflexivity and augmentation rules on f

add the resulting functional dependencies to F^+

for each pair of functional dependencies f_1 and f_2 in F^+

if f_1 and f_2 can be combined using transitivity

then add the resulting functional dependency to F^+

until F^+ does not change any further
```

NOTE: We shall see an alternative procedure for this task later

Example on Computing F+

- $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$
- Step 1: For each f in F, apply reflexivity rule
 - We get: CD → C; CD \rightarrow D
 - Add them to F:
 - $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E; CD \rightarrow C; CD \rightarrow D\}$
- Step 2: For each f in F, apply augmentation rule
 - From A → B we get: A → AB; AC → BC; AD → BD; ABC →BC; ABD → BD; ACD →BCD
 - From B \rightarrow C we get:
- Step 3: Apply transitivity on pairs of f's
- Keep repeating... You get the idea

Attribute Closure

- A short cut: Attribute Closure
 - Compute <u>attribute closure</u> of X (denoted X⁺) wrt F

Intuition of Attribute Closure:

Given an attribute set $X, X^+ = Z$ if all the FDs implied by $X: \{X \to Y\}$ satisfies the condition: $Y \subseteq Z$

- An efficient check for $X \to Y$:
 - Given an attribute closure X^+ , if $Y \subseteq X^+$, then **FD** is hold
- Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\} \text{ imply } A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

- Input F (a set of FDs), and X (a set of attributes)
- Output: Result=X⁺ (under F)
- Method:
 - Step 1: Result :=X;
 - Step 2: Take $Y \rightarrow Z$ in F, **and** Y is in Result, do: Result := Result $\cup Z$
 - Repeat step 2 until Result cannot be changed and then output Result.
- Easy! Hard to make mistake!

Example of Attribute Closure X⁺

- Does $F = \{A \rightarrow B, B \rightarrow C, CD \rightarrow E\}$ imply $A \rightarrow E$?
 - i.e, is $A \rightarrow E$ in the closure F^+ ? Equivalently, is E in A^+ ?

```
Step 1: Result = A
```

Step 2: Consider $A \rightarrow B$, Result = AB Consider $B \rightarrow C$, Result = ABC Consider $CD \rightarrow E$, CD is not in ABC, so stop

Ans:
$$A^+ = \{ABC\}$$

E is NOT in A^+ , so $A \rightarrow E$ is NOT in F^+

Example of computing X⁺

$$F = \{A \rightarrow B, AC \rightarrow D, AB \rightarrow C\}$$
?

What is A^+ ? (i.e. what is the attribute closure for A?)

Answer: $A^+ = ABCD$

• Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	A	В	С	AB	AC	BC	ABC
A							
В							
С							
AB							
AC							
BC							
ABC							

Step 2: Compute the attribute closures for all attribute/combination of attributes

Attribute closure
A ⁺ =?
B+=?
C+=?
AB ⁺ =?
AC+=?
BC ⁺ =?
ABC ⁺ =?

Step 3: Fill in the matrix using the results from Step 2

• Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	A	В	С	AB	AC	BC	ABC
A	>	>	>	>	>	7	>
В							
С							
:							

Step 3: Fill in the matrix using the results from Step 2. We have $A^+=ABC$. Now fill in the row for A. Consider the first column. Is A part of A^+ ? Yes, so check it. Is B part of A^+ ? Yes, so check it... and so on.

Step 2: Compute the attribute closures for all attribute/combination of attributes

Attribute closure	
$A^{+}=ABC$	
B+=?	
C+=?	
$AB^+=?$	
AC+=?	
BC+=?	
ABC ⁺ =?	40

• Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

Step 1: Construct an empty matrix, with all Possible combinations of attributes in the rows And columns

	A	В	C	AB	AC	BC	ABC
A			V				
В							
С							
:							

Step 3: Fill in the matrix using the results from Step 2. We have $A^+=ABC$. Now fill in the row for A. Consider the first column. Is A part of A^+ ? Yes, so check it. Is B part of A^+ ? Yes, so check it... and so on.

Step 2: Compute the attribute closures for all attribute/combination of attributes

Attribute closure	
$A^+=ABC$	
B+=?	
C+=?	
$AB^+=?$	
AC+=?	
BC ⁺ =?	
ABC ⁺ =?	41

• Given $F=\{A \rightarrow B, B \rightarrow C\}$. Compute F^+ (with attributes A, B, C).

	A	В	C	AB	AC	BC	ABC
A		1	1		1	1	
В		1	1			1	
С			1				
AB	V	1	1	V	V	1	√
AC	V	1	1	V	√	1	√
BC		1	V			1	
ABC	√ √	1	V	V	V	1	V

Attribute closure
A+=ABC
$B^+=BC$
$C_{+}=C$
AB ⁺ =ABC
AC+=ABC
BC+=BC
ABC+=ABC

- An entry with $\sqrt{\text{means FD}}$ (the row) \rightarrow (the column) is in F⁺.
- An entry gets $\sqrt{\text{when (the column)}}$ is in (the row)⁺

Step 4: Derive rules.

	A	В	С	AB	AC	BC	ABC
A		1	1	V	V	V	V
В		1					
С							
AB	V	1	1	V	V	1	V
AC	V	1	1	V	V	1	V
BC		1	1			1	
ABC	V	V	V	V	V	V	√

٨	\ PC
H-	\rightarrow DC

Attribute closure
$A^{+}=ABC$
B+=BC
$C_{+}=C$
AB ⁺ =ABC
$AC^{+}=ABC$
BC+=BC
ABC ⁺ =ABC

- An entry with $\sqrt{\text{means FD}}$ (the row) \rightarrow (the column) is in F⁺.
- An entry gets $\sqrt{\text{when (the column)}}$ is in (the row)⁺

Decomposition Example

S	N	L	R	W	Н
123-22-3666	Attishoo	48	8	10	40
231-31-5368	Smiley	22	8	10	30
131-24-3650	Smethurst	35	5	7	30
434-26-3751	Guldu	35	5	7	32
612-67-4134	Madayan	35	8	10	40

S	N	L	R	Н
123-22-3666	Attishoo	48	8	40
231-31-5368	Smiley	22	8	30
131-24-3650	Smethurst	35	5	30
434-26-3751	Guldu	35	5	32
612-67-4134	Madayan	35	8	40

R	W
8	10
5	7

Decomposition Example 2

Student_ID	Name	Dcode	Cno	Grade
123-22-3666	Attishoo	INFS	501	A
231-31-5368	Guldu	CS	102	В
131-24-3650	Smethurst	INFS	614	В
434-26-3751	Guldu	INFS	614	A
434-26-3751	Guldu	INFS	612	C

Name	Dcode	Cno	Grade
Attishoo	INFS	501	A
Guldu	CS	102	В
Smethurst	INFS	614	В
Guldu	INFS	614	A
Guldu	INFS	612	C

Student_ID	Name
123-22-3666	Attishoo
231-31-5368	Guldu
131-24-3650	Smethurst
434-26-3751	Guldu