UFV- CCE - DET

EST~105 – 3^a avaliação - 1^0 semestre de 2019 - 29/junho/19

Non	ne:							Matricula:
Assi	na	tura: _						Favor apresentar documento com foto
		-	es, tabela ERIR A					inas numeradas de 1 a 9, total de 40 pontos
		NÇÃO: SAPIE		(X) em qu	al t	urma e	stá matriculado (sua nota será divulgada no
								PROFESSOR
			8-10					
()	T2 3ª	10-12	$6^{\underline{a}}$	8-10]	PVB104	Carol
()	T3 3ª	14-16	$5^{\underline{a}}$	16-18]	PVB100	Camila/Carol
()	T4 2ª	14-16	4ª	16-18]	PVB107	Moysés
()	T5 4ª	18:30-	-20	:10 6ª	20	:30-22	:10 PVB204 Eduardo
()	T6 4ª	14-16	$6^{\underline{a}}$	16-18]	PVA361	CHOS - coordenador
()	T7 2ª	16-18	5ª	14-16]	PVB307	Camila
()	T8 2ª	20:30-	-22	:10 5ª	18	:30-20	:10 PVA361 Eduardo

- \bullet Interpretar corretamente as questões é parte da avaliação, portanto não é permitido questionamentos durante a prova !
- $\bullet\,$ É OBRIGATÓRIO APRESENTAR OS CÁLCULOS organizadamente, para ter direito à revisão.
- PODE UTILIZAR A CALCULADORA, porém mostre os valores utilizados na fórmula.
- BOA SORTE e BOA PROVA !!!.

FORMULÁRIO

$$f(x|y) = \frac{f(x,y)}{h(y)}, \quad h(y) = \int f(x,y) \, dx, \qquad f(y|x) = \frac{f(x,y)}{g(x)}, \quad g(x) = \int f(x,y) \, dy$$

$$P(x|y) = \frac{P(x,y)}{P(y)}, \quad P(y) = \sum_{x} P(x,y), \qquad P(y|x) = \frac{P(x,y)}{P(x)}, \quad P(x) = \sum_{y} P(x,y)$$

$$Para \quad k = 1, 2, \dots, n < \infty \qquad E(X^k) = \sum_{x} x^k P(x) \quad \text{ou} \quad E(X^k) = \int x^k f(x) dx$$

$$E(XY) = \sum_{x} \sum_{y} xy P(x,y) \quad \text{ou} \quad E(XY) = \int \int xy f(x,y) dx dy$$

$$cov(X,Y) = E(XY) - E(X)E(Y), \quad \rho_{X,Y} = \frac{cov(X,Y)}{\sqrt{V(X)V(Y)}}, \quad V(X) = E(X^2) - [E(X)]^2$$

$$X \sim N(\mu,\sigma^2), \quad E(X) = \mu \quad \text{e} \quad V(X) = \sigma^2 \quad Z = \frac{X-\mu}{\sigma}, \quad Z \sim N(0, 1)$$

$$P(x) = \binom{N}{x} p^x (1-p)^{N-x} \qquad \binom{N}{x} = \frac{N!}{x!(N-x)!} \qquad E(X) = Np \quad V(X) = Np(1-p)$$

$$P(x) = \frac{e^{-m}m^x}{x!} \qquad E(X) = V(X) = m$$

$$Z = \frac{\overline{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}}$$

$$t = \frac{(\overline{X}_A - \overline{X}_B)}{\sqrt{S^2(\bot + \bot}} \qquad S^2 = \frac{(n_A - 1)S_A^2 + (n_B - 1)S_B^2}{n_A + n_B - 2}$$

Tabela 1: Áreas de uma distribuição normal padrão entre z=0 e um valor positivo de z. As áreas para os valores de z negativos são obtidas por simetria.

ucas .	para us ve	nores u	e z neg	auros	ao obu	uas poi	SIIIICU	ia.		
\overline{z}	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	$0,\!1217$	0,1255	0,1293	0,1331	$0,\!1368$	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	$0,\!1591$	0,1628	0,1664	$0,\!1700$	$0,\!1736$	0,1772	$0,\!1808$	$0,\!1844$	$0,\!1879$
0,5	0,1915	$0,\!1950$	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	$0,\!2291$	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	$0,\!2517$	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	$0,\!2703$	$0,\!2734$	$0,\!2764$	$0,\!2794$	0,2823	0,2852
0,8	0,2881	$0,\!2910$	0,2939	$0,\!2967$	$0,\!2995$	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	$0,\!3264$	$0,\!3289$	0,3315	0,3340	$0,\!3365$	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	$0,\!3508$	$0,\!3531$	0,3554	0,3577	$0,\!3599$	0,3621
1,1	0,3643	$0,\!3665$	0,3686	$0,\!3708$	$0,\!3729$	$0,\!3749$	0,3770	$0,\!3790$	$0,\!3810$	0,3830
1,2	0,3849	$0,\!3869$	0,3888	0,3907	$0,\!3925$	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	$0,\!4115$	0,4131	$0,\!4147$	$0,\!4162$	0,4177
1,4	0,4192	$0,\!4207$	$0,\!4222$	$0,\!4236$	$0,\!4251$	$0,\!4265$	0,4279	$0,\!4292$	$0,\!4006$	0,4319
1,5	0,4332	$0,\!4345$	$0,\!4357$	$0,\!4370$	$0,\!4382$	$0,\!4394$	0,4406	0,4418	$0,\!4429$	0,4441
1,6	0,4452	$0,\!4463$	0,4474	0,4484	$0,\!4495$	$0,\!4505$	$0,\!4515$	$0,\!4525$	$0,\!4535$	0,4545
1,7	0,4554	$0,\!4564$	$0,\!4573$	$0,\!4582$	$0,\!4591$	$0,\!4599$	0,4608	$0,\!4616$	$0,\!4625$	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	$0,\!4719$	$0,\!4726$	$0,\!4732$	$0,\!4738$	$0,\!4744$	0,4750	$0,\!4756$	$0,\!4761$	$0,\!4767$
2,0	0,4772	$0,\!4778$	$0,\!4783$	$0,\!4788$	$0,\!4793$	$0,\!4798$	$0,\!4803$	$0,\!4808$	$0,\!4812$	$0,\!4817$
2,1	0,4821	$0,\!4826$	$0,\!4830$	$0,\!4834$	$0,\!4838$	$0,\!4842$	$0,\!4846$	$0,\!4850$	$0,\!4854$	$0,\!4857$
2,2	0,4861	$0,\!4864$	$0,\!4868$	$0,\!4871$	$0,\!4875$	$0,\!4878$	$0,\!4881$	$0,\!4884$	$0,\!4887$	$0,\!4890$
2,3	0,4893	$0,\!4896$	$0,\!4898$	0,4901	0,4904	$0,\!4906$	0,4909	0,4911	$0,\!4913$	0,4916
2,4	0,4918	$0,\!4920$	0,4922	0,4925	$0,\!4927$	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	$0,\!4951$	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	$0,\!4960$	0,4961	0,4962	$0,\!4963$	0,4964
2,7	0,4965	$0,\!4966$	0,4967	0,4968	$0,\!4969$	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	$0,\!4975$	0,4976	0,4977	$0,\!4977$	$0,\!4978$	0,4979	0,4979	$0,\!4980$	0,4981
2,9	0,4981	$0,\!4982$	0,4982	0,4983	$0,\!4984$	$0,\!4984$	0,4985	0,4985	$0,\!4986$	0,4986
3,0	0,4987	$0,\!4987$	0,4987	0,4988	$0,\!4988$	$0,\!4989$	0,4989	0,4989	$0,\!4990$	0,4990

Adaptada de Costa Neto, P. L. O. Estatística, Editora Edgard Blucher.

Tabela 2: Valores positivos t na distribuição t_n de Student com n graus de liberdade em níveis de 10% a 0,1% de probabilidade = $2 \times P(t_n \ge t)$, tabela bilateral.

·	nível de probabilidade bilateral							
n	10%	5%	2%	1%	0,5%	0,1%		
1	6,31	12,71	31,82	63,66	127,32	636,62		
2	2,92	4,30	6,97	9,92	14,09	31,60		
3	$2,\!35$	3,18	4,54	5,84	$7,\!45$	12,94		
4	2,13	2,78	3,75	4,60	5,60	8,61		
5	2,02	$2,\!57$	3,37	4,03	4,77	6,86		
6	1,94	2,45	3,14	3,71	$4,\!32$	5,96		
7	1,90	2,36	3,10	$3,\!50$	4,03	$5,\!41$		
8	1,86	2,31	2,90	3,36	3,83	5,04		
9	1,83	2,26	2,82	$3,\!25$	3,69	4,78		
10	1,81	2,23	2,76	3,17	$3,\!58$	4,59		
11	1,80	2,20	2,72	3,11	$3,\!50$	$4,\!44$		
12	1,78	2,18	2,68	3,06	3,43	4,32		
13	1,77	2,16	2,65	3,01	$3,\!37$	$4,\!22$		
14	1,76	2,14	2,62	2,98	3,33	4,14		
15	1,75	2,13	2,60	2,95	$3,\!29$	4,07		
16	1,75	2,12	2,58	2,92	$3,\!25$	4,02		
17	1,74	2,11	2,57	2,90	$3,\!22$	3,97		
18	1,73	2,10	2,55	2,88	3,20	3,92		
19	1,73	2,09	2,54	2,86	$3,\!17$	3,88		
20	1,73	2,09	2,53	2,84	$3,\!15$	3,85		
21	1,72	2,08	2,52	2,83	$3,\!14$	3,82		
22	1,72	2,07	2,51	2,82	3,12	3,79		
23	1,71	2,07	2,50	2,81	3,10	3,77		
24	1,71	2,06	2,49	2,80	3,09	3,75		
25	1,71	2,06	2,49	2,79	3,08	3,73		
26	1,71	2,06	2,48	2,78	3,07	3,71		
27	1,70	2,05	2,47	2,77	3,06	3,69		
28	1,70	2,05	2,47	2,76	3,05	3,67		
29	1,70	2,04	2,46	2,76	3,04	3,66		
30	1,70	2,04	2,46	2,75	3,03	3,65		
40	1,68	2,02	2,42	2,70	2,97	$3,\!55$		
60	1,67	2,00	2,39	2,66	2,92	3,46		
120	1,65	1,98	2,36	2,62	2,86	3,37		
∞	1,65	1,96	2,33	2,58	2,81	3,29		

Adaptada de Frederico Pimentel Gomes, Curso de Estatística Experimental, 12^a ed.

1.(8 pontos) Seja (X,Y) uma variável aleatória bidimensional com a seguinte distribuição conjunta de probabilidades,

X		Y				
Λ	1	3	5	P(y)		
0	0,10	0,10	0,05	0,25		
1	$0,\!20$	$0,\!20$	0,10	$0,\!50$		
2	0,10	0,10	0,05	$0,\!25$		
P(y)	0,40	0,40	0,20	1		

Seja W = 3X - 2Y + 5, aplique as propriedades e calcule:

a.(3 pts) E(W), o valor médio de W.

$$E(W) = E(3X - 2Y + 5) = E(3X) - E(2Y) + E(5)$$

= $3E(X) - 2E(Y) + 5$

como

$$E(X) = \sum_{x} xP(x) = 0 \cdot 0, 25 + 1 \cdot 0, 50 + 2 \cdot 0, 25 = 1$$

$$E(Y) = \sum_{y} yP(y) = 1 \cdot 0, 40 + 3 \cdot 0, 40 + 5 \cdot 0, 20 = 2, 6$$

$$E(W) = 3 \cdot 1 - 2 \cdot 2, 6 + 5 = 2, 8$$

b.(5 pts) V(W), a variância de W.

$$V(W) = V(3X - 2Y + 5) = V(3X - 2Y)$$

$$= V(3X) + V(2Y) - 2Cov(3X, 2Y)$$

$$= 9V(X) + 4V(Y) - 2 \times 3 \times 2Cov(X, Y)$$

$$= 9V(X) + 4V(Y) - 12Cov(X, Y)$$

como $P(x,y)=P(x)P(y), \ \forall x \ {\rm e} \ y,$ temos que X e Y são independentes e, desta forma Cov(X,Y)=0, além disso

$$E(X^{2}) = \sum_{x} x^{2} P(x) = 0^{2} \cdot 0,25 + 1^{2} \cdot 0,50 + 2^{2} \cdot 0,25 = 1,5$$

$$E(Y^{2}) = \sum_{y} y^{2} P(y) = 1^{2} \cdot 0,40 + 3^{2} \cdot 0,40 + 5^{2} \cdot 0,20 = 9$$

assim

$$V(X) = E(X^{2}) - (E(X))^{2} = 1, 5 - (1)^{2} = 0, 5$$

$$V(Y) = E(Y^{2}) - (E(Y))^{2} = 9 - (2, 6)^{2} = 2, 24$$

finalmente

$$V(W) = 9 \cdot 0, 5 + 4 \cdot 2, 24 = 13, 46$$

2.(8 pontos) Seja f(x,y) uma função densidade de probabilidade conjunta dada por,

$$f(x,y) = \begin{cases} 4xy &, & 0 \le x \le 1 \text{ e } 0 \le y \le 1 \\ 0 &, & \text{para outros valores } x, y \end{cases}$$

Verifique se X e Y são variáveis aleatórias contínuas independentes. Responda SIM ou NÃO e apresente os cálculos que justificam sua resposta.

$$g(x) = \int f(x,y) dy = \int_0^1 4xy dy = 4x \left. \frac{y^2}{2} \right|_{y=0}^1 = 2x,$$

$$h(y) = \int f(x,y) dx = \int_0^1 4xy dy = 4y \frac{x^2}{2} \Big|_{x=0}^1 = 2y.$$

Como f(x,y) = g(x) h(y) então X e Y são variáveis aleatórias independentes.

3.(8 pontos) Assuma que 2% dos fregueses desistem de fazer o pagamento das compras quando estão no caixa e são informados do valor total a pagar. Seja X a variável aleatória que represente o número de fregueses que se comportam de tal modo em uma amostra aleatória de 300 fregueses. Pede-se: Calcule $P(X \ge 3)$, a probabilidade de pelo menos 3 fregueses desistirem,

a.(4 pts) considerando-se o modelo Binomial.

$$N = 300, p = 0,02 \text{ e } P(X = x) = \binom{N}{x} p^x (1 - p)^{N - x}. \text{ Temos pelo complemento que}$$

$$P(X \ge 3) = 1 - P(X < 3) = 1 - (P(X = 0) + P(X = 1) + P(X = 2))$$

$$= 1 - \left[\binom{300}{0} \times 0,02^0 \times 0,98^{300} + \binom{300}{1} \times 0,02^1 \times 0,98^{299} \right]$$

$$+ \left(\binom{300}{2} \times 0,02^2 \times 0,98^{298} \right]$$

$$= 1 - [0,0023 + 0,0143 + 0,0436]$$

$$= 1 - 0,0602$$

$$= 0,9398 \quad (\approx 94\%)$$

b.(4 pts) Considerando-se o modelo Poisson.

$$m=Np=300\times 0,02=6$$
 e $P(X=x)=\frac{e^{-m_mx}}{x!}$. Temos pelo complemento que

$$\begin{split} P\left(X \geq 3\right) &= 1 - P\left(X < 3\right) = 1 - \left(P\left(X = 0\right) + P\left(X = 1\right) + P\left(X = 2\right)\right) \\ &= 1 - \left(\frac{e^{-6}6^{0}}{0!} + \frac{e^{-6}6^{1}}{1!} + \frac{e^{-6}6^{2}}{2!}\right) = 1 - \left(e^{-6} + 6e^{-6} + \frac{36e^{-6}}{2}\right) \\ &= 1 - 25e^{-6} = 1 - 0,062 = 0,938 \quad (\approx 94\%) \end{split}$$

De outra forma:

$$P(X \ge 2) = 1 - e^{-m} \left(\frac{m^0}{0!} + \frac{m^1}{1!} + \frac{m^2}{2!} \right)$$
$$= 1 - e^{-6} (1 + 6 + 18) = 1 - 25e^{-6}$$
$$= 1 - 0,062 = 0,938 \quad (\approx 94\%)$$

4.(8 pontos) Uma máquina está regulada para fornecer $\mu=500{\rm g}$ por pacote e seja $\sigma^2=25{\rm g}^2$. Uma amostra aleatória de tamanho n=36 pacotes forneceu peso médio $\overline{X}=501,7{\rm g},$ teste $H_0:\mu=500$ (a máquina está regulada) contra $H_1:\mu\neq500$ (a máquina está desregulada) conforme os itens a seguir.

a.(3 pts) Valor calculado.

$$z_{\text{cal}} = z_0 = \frac{\bar{X} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{501, 7 - 500}{\sqrt{\frac{25}{36}}} = \frac{1, 7}{\frac{5}{6}} = 2,04$$

b.(2 pts) Valor-p, faça um desenho ilustrativo.

Valor-p= $2 \cdot (0, 5 - 0, 4793) = 0,0414 \quad (4,14\%).$

c.(3 pts) Adote um nível de significância à sua escolha e conclua.

Se $\alpha \geq 4,14\%$ rejeita-se H_0 , ou seja, H_0 é rejeitada para, por exemplo, $\alpha = 5\%$ e não é rejeitada para $\alpha = 1\%$.

$$\alpha = 1\%, z_{\text{tabelado}} = 2,57 \text{ ou } 2,58$$

$$\alpha = 5\%, z_{\text{tabelado}} = 1,96$$

Regra geral: se valor- $p \le \alpha$ então rejeita-se H_0 .

5.(8 pontos) Acredita-se que um programa escrito em C++ deva rodar, em média, mais rapidamente do que o mesmo programa escrito em FORTRAN ($\mu_C < \mu_F$). Na tabela a seguir são apresentados os tempos (minutos) obtidos quando os programas foram aplicados em amostras representativas de tarefas bastante complexas. Adote 5% como nível de significância e responda aos itens a seguir. Note que o tempo da tarefa 5 em C++ não foi registrado.

	Tarefas						
Programa	1	2	3	4	5	6	
C++	0,8	4,4	1,3	3,9	_	5,0	
FORTRAN	3,3	7,5	1,3	6,3	8,1	5,2	

a.(1 pt) Hipóteses estatísticas:

$$\begin{cases} H_0: & \mu_C = \mu_F \\ H_1: & \mu_C < \mu_F. \end{cases}$$

b.(2 pts) Valor tabelado:

 $t_{tab} = t_{(9.5\%)} = 1,83$, deve-se olhar 10% na tabela bilateral.

c.(2 pts) Valor calculado:

$$S_c^2 = \frac{(5-1)3,617 + (6-1)6,7377}{5+6-2} = \frac{48,1565}{9} = 5,3507.$$

$$t_{\text{cal}} = \frac{3,08 - 5,2833}{\sqrt{5,3507\left(\frac{1}{5} + \frac{1}{6}\right)}} = -1,57.$$

d.(1 pt) Decisão do teste:

Como |-1,57| < 1,83, não se rejeita H_0 a 5% de significância.

 $\mathbf{e.(2\ pts)}$ Interpretação prática do resultado do teste para o problema:

Não há evidências (ou indícios) de que o programa em C++ rode mais rapidamente (em média) do que em FORTRAN.