Course Notes

CSCA67 - Discrete Mathematics

Instructors:

Dr. Anna Bretscher

Email: bretscher@utsc.utoronto.ca

Office: IC493

Office Hours: Monday 12:10 - 1:30

Wednesday 1:10 - 2:00

Friday 1:10 - 2:00 (will change after week 6)

Dr. Richard Pancer

pancer@utsc.utoronto.ca

IC490

Monday 11:10 - 12:30

Friday 1:30 - 3:00

1 Propositions, Implications

Definitions:

A **proposition** is a statement that evaluates to True or False. In computer science, its often referred to as a **Boolean expression**.

A **compound roposition** is a proposition statement that involves multiple propositions joined by connectives. It takes multiple truth values as input and returns a single truth value as output.

A connective corresponds to English conjunctions such as "and", "or", "not" etc.

Basic connectives and truth tables:

Symbol	Meaning	D	Q	$P \wedge Q$	$P \lor Q$	$P \rightarrow Q$	$P \bowtie O$
$\overline{}$	"AND"	1	_			1 7 6	1 77 6
\ /	"OR"	T	T	Τ	T	T	T
V		Т	F	F	Т	F	F
\rightarrow	"IFTHEN"	177	Tr.	F	T	Tr.	F
\leftrightarrow	"IF AND ONLY IF"	Г	I	Г	1	1	r
\ /		F	\mathbf{F}	F	F	T	$^{\rm I}$
\neg	"NOT"			l '		_	I

Implication:

Different ways of writing $P \rightarrow Q$:

- 1. If P then Q
- 2. If P, Q
- 3. Q, if P
- 4. P only if Q
- 5. P is sufficient for Q
- 6. Q is necessary for P
- 7. If not Q, then not P
- 8. Not P or Q

Logical Equivalences:

Commutative	$p \wedge q \iff q \wedge p$	$p \lor q \iff q \lor p$
Associative	$(p \wedge q) \wedge r \iff p \wedge (q \wedge r)$	$(p \lor q) \lor r \iff p \lor (q \lor r)$
Distributive	$p \wedge (q \vee r) \iff (p \wedge q) \vee (p \wedge r)$	$p \lor (q \land r) \iff (p \lor q) \land (p \lor r)$
Identity	$p \wedge T \iff p$	$p \vee F \iff p$
Negation	$p \vee \neg p \iff T$	$p \wedge \neg p \iff F$
Double Negative	$\neg(\neg p) \iff p$	
Idempotent	$p \wedge p \iff p$	$p \lor p \iff p$
Universal Bound	$p \lor T \iff T$	$p \wedge F \iff F$
De Morgan's	$\neg (p \land q) \iff (\neg p) \lor (\neg q)$	$\neg (p \lor q) \iff (\neg p) \land (\neg q)$
Absorption	$p \lor (p \land q) \iff p$	$p \land (p \lor q) \iff p$
Conditional or	$(p \to q) \iff (\neg p \lor q)$	$\neg (p \to q) \iff (p \land \neg q)$
(\rightarrow) Law		
Biconditional	$ (p \leftrightarrow q) \iff (p \to q) \land (q \to p) $	

Order of Operations:

- 1. $NOT(\neg)$
- 2. AND(\wedge)
- 3. $OR(\vee)$
- 4. Quantifiers (\forall/\exists)
- 5. $(\rightarrow / \leftrightarrow)$

2 Predicates and Quantifiers

		Prove statement in the form of $\exists x \in S, \ni : P(x)$			
Forall:	\forall	We simply need to find one value of x in the set S , that makes $P(x)$ true.			
		One value is enough.			
		Example:			
Negations: $\neg \forall = \exists$	$\neg \exists = \forall$	There exists an integer n , such that n^2 is even.			
$\neg \lor = \exists$	$\neg \exists = \lor$	$\exists n \in \mathbb{Z}, \ni : n^2 \in 2\mathbb{Z}$			
		Let $n = 2$, then $(2)^2 = 4$ which is an even number			

Prove statemnet in the form of $\forall x \in S, \ni: P(x)$

This means we must use techniques such as algebraic manipulation to show that:

P(x) holds for every arbitrary $x \in S$

Example:

For all integers n, if n is odd, then n^2 is odd.

 $\forall n \in \mathbb{Z}, n \in 2\mathbb{Z} \to n^2 \in 2\mathbb{Z}$

Let $n = 2k, k \in \mathbb{Z}$

then $n^2 = (2k)^2 = 4k^2$ which is an even number

Therefore: For all integers n, if n is odd, then n^2 is odd. QED

2.1 Modulus