Hazard Analysis Software Engineering

Team 21, Alkalytics Sumanya Gulati Kate Min Jennifer Ye Jason Tran

Table 1: Revision History

Tubio 1. Ite vibroit illiptory				
Date	Developer(s)	Change		
25 October 2024	Kate Min	Add sections 2 and 7		
25 October 2024	Jason Tran	Add sections 5 and 6		
25 October 2024	Jennifer Ye	Add sections 1 and 4		
26 October 2024	Sumanya Gulati	Add sections 3 and Appendix - Reflection		
25 November 2024	Jennifer Ye	Updated section 4 to adhere to 107, 108, 109.		
29 December 2024	Kate Min	Updated section 2 to adhere to 157.		
25 March 2025	Jason Tran	Updated section 5 to adhere to 111, 158.		
1 April 2025	Kate Min	Updated section 6 to adhere to 156.		

Contents

1	Introduction	1
2	Scope and Purpose of Hazard Analysis	1
3	System Boundaries and Components	1
4	Critical Assumptions	2
5	Failure Mode and Effect Analysis	3
6	Safety and Security Requirements 6.1 Access Requirements 6.2 Integrity Requirements 6.3 Privacy Requirements 6.4 Audit Requirements 6.5 Immunity Requirements	7
7	Roadmap	8

1 Introduction

A hazard is any property or condition that has the potential to cause harm. This document serves as a hazard analysis for the application revolving around the capstone project "Alkalytics". This project aims to aids in the data management and analysis of an ocean alkalinity enhancement experiment. This document identifies the components of the system, and then the possible software hazards in these components, as well as ways to mitigate the risks they impose.

2 Scope and Purpose of Hazard Analysis

The purpose of the hazard analysis is to identify potential hazards and its causes, assess the effects, and set mitigation strategies to eliminate or lessen the risk of the hazard. This analysis aims to address all relevant hazards within the system boundaries and components defined in Section 3, ensuring the application's functionality, reliability, security, and performance. The hazard analysis will focus on identifying hazards that may lead to the following:

- Data loss: Unintentional loss, deletion, or corruption of data.
- Data integrity: Incomplete, inaccurate, and/or incorrect data, which can lead to computational errors.
- System availability: Users unable to access the system due to factors such as server downtime or system overload.
- Security: Unauthorized access to the data or user information due to insufficient authentication measures.

In addition to these areas, the analysis will also consider hazards that may impact overall user experience, specifically addressing hazards related to usability, accessibility, and system interaction. The analysis will not consider hazards that may be associated with hardware failures or other external dependencies beyond the control of the application unless they directly impact the operation of the application.

3 System Boundaries and Components

The system boundaries are used to define what is within the scope of the hazard analysis, in essence, where the system interacts with external systems, users and hardware. Some key boundaries for Alkalytics include:

• User Interaction Boundaries:

- Interactions happen through the frontend interface, where users authenticate, input data, and retrieve visualizations and analytics.
- 2. Limit interactions in terms of user access levels, as only authenticated and authorized users are allowed to view or modify certain data.

• Data Boundaries:

- 1. Alkalytics handles data import (CSV files), processing, analysis, and export, requiring clear boundaries on data validity and format conformity.
- 2. The system is also bounded by its data storage capabilities, including access controls, data integrity safeguards, and secure handling of sensitive information.

• Network and External Connectivity Boundaries:

- 1. External connections, like internet-based server access and database queries, form a boundary where system security, speed, and availability must be managed.
- 2. Network performance, internet stability, and server downtime impact the accessibility and reliability of the system.

The system can be broken down into the following major components:

- 1. **Authentication System**: Ensures that only authorized users can access the Alkalytics platform and limits actions based on user permissions.
- 2. Comma-Separated Values (CSV) Data Migration Module: Handles the import of data from CSV files into the database, including checks for data format, completeness, and correctness.
- 3. **Data Visualization Module**: Generates graphs and visual representations of data, requiring accuracy in rendering and efficient performance.
- 4. Query Functionality: Processes user queries to retrieve data from the database, ensuring that correct data is returned promptly.
- 5. **Data Export Module**: Allows users to export data in CSV for external use, requiring accuracy and completeness.
- 6. Backend Database: Stores and retrieves all user and application data, requiring reliable connection management, data integrity, and sufficient storage.
- 7. Frontend Interface: Provides users with access to Alkalytics' functionalities through a web-based UI, handling data input validation and responsiveness.
- 8. Error Tracking System: Logs and categorizes system errors for troubleshooting and performance monitoring.
- 9. Machine Learning Analysis Module: Processes data to provide predictive insights or data analyses, requiring well-trained models and accurate data handling.

4 Critical Assumptions

The following are assumptions made about the software of the system.

- The user of this application is not intentionally trying to misuse it
 - This assumption mitigates the risk of someone intentionally damaging the system

- Local server infrastructure will always be available, and will not suddenly go down and compromise the system
 - This assumption mitigates the risk of local server connections interrupting the system as there can be immidate resolutions and issues will only affect one user uniquely
- Users using this application understand how to use the application, whether through documentation or a tutorial
 - This assumptions ensures that user errors caused by lack of knowledge do not occur
- The system is regularly maintained for security and bug fixes
 - This assumption prevents any threats to the system due to poor maintenance

5 Failure Mode and Effect Analysis

Table 2 outlines the Failure Modes and Effects Analysis (FMEA) for each component of the Alkalytics system.

+

Table 2: Failure Mode and Effect Analysis.

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Action	SR	Ref
Authentication	Unauthorized user access	Data breach, loss of data	Weak security protocols,	Strengthen authentication	SR-1,	H1-1
		integrity	poor session management	mechanisms, enforce MFA	SR-2	
	User unable to log in	Loss of productivity for	System downtime, creden-	Ensure high system up-	FR-14,	H1-2
		affected users, potential	tial errors, incorrect pass-	time, implement account	SR-1,	
		lockout during critical op-	word policy	recovery options	SR-4	
		erations				
CSV Data Mi-	Data not uploaded to the	Loss of data availability,	Incorrect file format,	Validate file format, en-	FR-3,	H2-1
gration	database	missing records in reports	server issue, unsupported	coding, and ensure server	FR-4,	
			encoding	uptime	SR-9	
	Data partially uploaded	Incomplete data leads to	Timeout during upload,	Implement transaction	FR-3,	H2-2
		incorrect reports, poten-	corrupted file, network	rollback for partial up-	FR-2	
		tial duplication on retry	disconnect	loads, retry logic for		
				failures	an i	770.0
	Duplicate data entries	Conflicting results in anal-	No validation for dupli-	Add duplicate detection	SR-5,	H2-3
		ysis, redundant storage	cates, improper indexing	and rejection logic before	FR-4,	
D . III 1		usage		insertion	SR-7	TTO 4
Data Visualiza-	Incorrect graph rendering	Misleading insights, incor-	Inaccurate parameter	Improve input validation,	FR-8,	H3-1
tion		rect decision-making	selection, incorrect data	enable real-time data ver-	FR-9	
			mapping	ification	DD *	110.0
	Slow graph rendering	Delayed analysis, poor	Large dataset, inefficient	Optimize graph rendering	PR-5,	H3-2
		user experience	plotting algorithm, mem-	with efficient algorithms	PR-2	
Query Function-	Data not returned or de-	Users unable to retrieve	ory leaks Database connection is-	Optimize indexing,	FR-5,	H4-1
ality	layed	necessary data, system	sues, poorly optimized	caching, and error han-	FR-6,	П4-1
anty	layed	bottlenecks	queries optimized	dling in query execution	PR-2	
	Incorrect data returned	Misleading results, incor-	Misconfigured query logic,	Validate query logic, im-	PR-6,	H4-2
	incorrect data returned	rect decisions	incorrect joins or filters	plement automated query	FR-5	114-2
		rect decisions	incorrect joins of inters	testing	1.11-0	
	Query results outdated	Users work with old data,	Lack of data refresh, stale	Implement scheduled data	PR-14,	H4-3
	Query results outdated	impacting real-time deci-	cache	refresh and cache invalida-	FR-6	114-9
		sions	Cacife	tion	1100	
Data Export	CSV export generates cor-	Data cannot be processed	Incorrect formatting logic,	Implement robust export	FR-15,	H5-1
2p 0.10	rupted files	by external systems	encoding issues	validation, include file in-	PR-6,	-10 1
				tegrity checks	SR-3	
	Export missing data	Incomplete reports, mis-	Timeout during export,	Ensure export process	FR-15,	H5-2
	r	leading analysis	data truncation, incorrect	handles large data, imple-	PR-8	
			filtering	ment chunked exports		

Component	Failure Modes	Effects of Failure	Causes of Failure	Recommended Action	SR	Ref
	Session timeout too short	Frequent logouts, user	Misconfigured session set-	Adjust session timeout	FR-14,	H5-3
		frustration	tings, premature session	dynamically based on user	SR-16,	
			expiry	activity	SR-4	
Backend	Database connection lost	System downtime, inabil-	Network failure, server	Implement database re-	PR-9,	H6-1
Database		ity to retrieve or update	crash	dundancy, failover mecha-	PR-10	
		data		nisms		
	Data corruption during	Loss of data integrity, in-	Faulty write operations,	Implement checksums, en-	SR-6,	H6-2
	storage	correct analysis	hardware failure	able automated backups	SR-7	
	Insufficient storage space	System crashes, inability	Poor storage manage-	Increase storage capac-	PR-12,	H6-3
		to store new data	ment, lack of monitoring	ity, implement monitoring	PR-13	
				alerts		
Frontend Inter-	UI unresponsive	Users unable to complete	JavaScript errors, re-	Debug UI, optimize re-	FR-7,	H7-1
face		tasks, frustration	source overload	source management	PR-3	
	Elements not displayed	Confusion, incorrect user	Browser compatibil-	Test compatibility across	LFR-1,	H7-2
	correctly	actions	ity issues, incorrect	different browsers	OER-3	
			CSS/HTML structure			
	Data input fields allow in-	Corrupts stored data,	No input validation, im-	Enforce strict input vali-	FR-1,	H7-3
	valid entries	leading to incorrect	proper form handling	dation rules	FR-4,	
		operations			SR-7	
Performance	Slow page load times	User frustration, reduced	Unoptimized fron-	Optimize assets, use lazy	PR-3,	H8-1
		efficiency	tend/backend code,	loading, improve database	PR-5	
			large assets	indexing		
	High CPU/memory usage	System instability, crashes	Inefficient data process-	Implement garbage collec-	PR-4,	H8-2
			ing, memory leaks	tion, optimize memory us-	PR-2	
				age		
Error Tracking	Errors not logged	Hard to diagnose issues,	Lack of proper error han-	Implement centralized er-	FR-12,	H9-1
		delayed troubleshooting	dling in code	ror logging	FR-13	
	Logged errors not dis-	Users unaware of system	Incomplete UI error han-	Display meaningful error	MSR-5,	H9-2
	played to user	issues, lack of feedback	dling	messages to users	PR-9	
	Errors logged but not cat-	Troubleshooting complex-	Poor error categorization	Implement structured er-	MSR-5,	H9-3
	egorized	ity, inefficient debugging	strategy	ror categorization	FR-12	
Machine Learn-	Incorrect predictions	Misleading trends, faulty	Poor training data, over-	Improve training data	FR-11	H10-1
ing Analysis	_	decisions	fitting	quality, implement cross-		
v				validation		
	Model training incomplete	Model unable to make	Insufficient training data,	Ensure sufficient, clean	FR-11,	H10-2
		predictions	process failure	training data, handle in-	PR-8	
			_	terruptions		
	Overfitting of training	Model provides unreliable	Training data too specific,	Implement regularization,	FR-11	H10-3
						1

6 Safety and Security Requirements

New safety and security requirements have been discovered and will be integrated within the SRS document. Note that the entire requirement codes have been changed with the new additions having expanded information, and the previous requirements displaying new codes.

6.1 Access Requirements

- **SR-1.** Access to the application must be restricted to authorized personnel, with an authentication mechanism.
- **SR-2.** Only authenticated users should have the ability to query or modify the data, and each user's access must be limited to their capabilities within the application.
- **SR-3.** The application must restrict sensitive operations (e.g., data export) to authorized personnel only.
 - Rationale: Prevents unauthorized users from exporting or sharing sensitive data, protecting data integrity.
 - Fit Criterion: Only authorized users must be able to perform sensitive operations like data export.
 - Traceability: FR-15, SR-2.
- **SR-4.** The application must enforce session timeout and automatic logouts after a period of inactivity.
 - Rationale: Protects the application from unauthorized access if users leave their session unattended.
 - Fit Criterion: Sessions must time out and log users off automatically after a specified inactivity period.
 - Traceability: FR-14, SR-1, SR-4.

6.2 Integrity Requirements

- **SR-5.** The application must validate data inputs to ensure they conform to expected formats and values before they are processed.
- SR-6. The application must not modify the data unnecessarily through its transfer process.
- **SR-7.** The application must ensure that any data processed or transferred is free from duplication or inconsistencies.
- **SR-8.** The application must have safeguards in place to maintain the accuracy of the transferred data.

- **SR-9.** The application must validate CSV data thoroughly before upload to prevent corrupted or incomplete data entries.
 - Rationale: Ensures that only valid, complete, and accurate data enters the application to prevent faulty analysis.
 - Fit Criterion: The application shall reject any data that does not meet the validation criteria.
 - Traceability: FR-3, FR-4.

6.3 Privacy Requirements

- **SR-10.** All personal information related to experimental participants or stakeholders, if applicable, must be anonymized and handled in accordance with relevant privacy laws and regulations.
- **SR-11.** The application must restrict data sharing with external parties unless expressly authorized by stakeholders, and users must be fully informed about the privacy policies.
- **SR-12.** The application must monitor database storage capacity and alert administrators when thresholds are reached to prevent application crashes.
 - Rationale: Ensures the application continues operating smoothly by addressing storage limits proactively.
 - Fit Criterion: The application shall send alerts when storage capacity exceeds 80% usage.
 - Traceability: PR-12, PR-13.

6.4 Audit Requirements

- **SR-13.** The application must maintain a comprehensive audit trail, logging all access and modification events, including timestamps and identities of users performing actions.
- SR-14. Audit logs must be securely stored and accessible only by authorized personnel.
- **SR-15.** The application must display real-time error logs to users to enhance troubleshooting when applicable.
 - Rationale: Ensures users are informed about application issues and can take corrective action promptly.
 - Fit Criterion: All errors must be logged and displayed clearly to users in real-time.
 - Traceability: FR-12, MSR-5.

6.5 Immunity Requirements

SR-16. The application must have proactive measures to detect and mitigate suspicious activities, such as repeated unauthorized access attempts, ensuring the application remains secure at all times.

SR-17. Real-time monitoring and optimization of application resources must be implemented to avoid crashes due to resource overload.

- Rationale: Prevents application downtime by ensuring efficient use of CPU and memory.
- Fit Criterion: The application must manage memory and CPU usage dynamically to avoid overloads.
- Traceability: PR-4, PR-9.

7 Roadmap

Table 3 outlines a proposed roadmap of when each safety requirement will be implemented within the capstone timeline and justifications.

Stage	Req. Category	Req. ID(s)	Rationale	
PoC Demo	Access	N/A	The PoC plan will not consider user	
(Nov 11)		IV/A	access features at this time.	
	Integrity	SR-5, SR-6, SR-	The database must adhere to these re-	
		7, SR-8, SR-9	quirements for a successful PoC.	
	Privacy	N/A	Since the PoC plan will only have the	
	Audit	N/A	database, these requirements are not	
	Immunity	N/A	applicable.	
Rev0 Demo	Access	SR-1	User authentication should be imple-	
(Feb 3)	71CCC55	SIC 1	mented during front-end development.	
			The crucial integrity requirements will	
	Integrity	N/A	have already been implemented by the	
			PoC demo.	
			At this point there will be user access,	
	Privacy	SR-10, SR-11	thus these requirements must be im-	
			plemented.	
	Audit	N/A	These requirements are not high-	
		,	priority.	
	Immunity	N/A		
Rev1 Final			User access must be extended to per-	
Demo (Mar	Access	SR-2, SR-3	missions and capabilities prior to re-	
24)			lease.	
		27/4	The crucial integrity requirements will	
	Integrity	N/A	have already been implemented by the	
			PoC demo.	
	<u></u>	GD 40	This requirement is necessary for sys-	
	Privacy	SR-12	tem availability and robustness to ex-	
			tend past capstone.	

Stage	Req. Category	Req. ID(s)	Rationale		
	Audit	SR-15	Client and users must be informed about system issues and be able to troubleshoot even without the original development team.		
	Immunity	SR-17	This requirement is necessary for system availability and robustness to extend past capstone.		
Future considerations	Access	SR-4	This requirement is out of scope for the project timeline.		
	Integrity	SR-11	This requirement is out of scope for the project timeline.		
	Privacy	N/A	All privacy requirements have been covered.		
	Audit	SR-13, SR-14	These requirements would be nice-to-haves but are not essential for the project.		
	Immunity	SR-16	This requirement is out of scope for the project timeline.		

Table 3: Roadmap of the implementation of the safety and security requirements.

Appendix — Reflection

1. What went well while writing this deliverable?

Writing a comprehensive Software Requirements Specification (SRS) right before this milestone helped tremendously because as a team, we had been nudged into considering multiple aspects of the project we had not thought of earlier. All this research and decision-making ensured that coming into this milestone, we had most of the relevant things figured out prior to writing this documentation.

2. What pain points did you experience during this deliverable, and how did you resolve them?

One major pain point we experienced was the lack of time we could dedicate to this milestone as a team. Since this milestone was due the week after reading week when most of us had 2 or more than 2 midterms along with multiple other assignment deadlines during the same week, it was harder to coordinate times to meet up and get a lot of the work done a couple of days before the deadline, which is what we ideally like to do. As an instance, due to the time constraints, we did not have enough time to get our Pull Requests (PRs) reviewed and approved by all the team members before merging.

Additionally, since most of the sections are a lot more interwoven as compared to prior milestones (which although connected, could be written somewhat independently), it was harder to divide the sections. This ties back to the aforementioned time-contraints and we believe that if we had more time to meet up as a team, the division of tasks would have been easier to manage. We resolved this by effectively communicating with each other over text instead.

3. Which of your listed risks had your team thought of before this deliverable, and which did you think of while doing this deliverable? For the latter ones (ones you thought of while doing the Hazard Analysis), how did they come about?

Our team had thought of a majority of the risks before this deliverable. The ones that we had not considered include unresponsiveness of the frontend, performance related failures and error tracking related hazards. These came about after we had identified all the system boundaries and when we focused on the frontend, performance as well as error tracking components in particular and tried to consider all the potential ways these component can fail.

4. Other than the risk of physical harm (some projects may not have any appreciable risks of this form), list at least 2 other types of risk in software products. Why are they important to consider?

Beyond the risk of physical harm, software products may have the following types of risks:

(a) **Security Risks**: These involve vulnerabilities that can be exploited, leading to unauthorized access, data breaches or malicious attacks. For projects that are data centric like ours, these risks are critical because they can lead to the loss of sensitive information.

(b) **Operational Risks**: These risks arise from failures in the software's functionality, reliability, or performance under real-world conditions. Operational risks are important to consider because any failure in the software's expected behavior can disrupt business operations, cause customer dissatisfaction, lead to unexpected maintenance costs, or more.