

Universidade Federal de São Paulo

Variáveis aleatórias bidimensionais

Professor Julio Cezar

AULA DE HOJE

- Função massa de probabilidade conjunta para duas variáveis aleatórias discretas;
- Funções massa de probabilidade marginais;
- Função densidade de probabilidade conjunta para duas variáveis aleatórias contínuas;
- Funções densidade de probabilidade marginais;
- Função massa de probabilidade condicional;
- Função densidade de probabilidade condicional;
- Variáveis Aleatórias Independentes;
- Covariância e Correlação.

Muitas vezes é interesse estudar mais de um resultado de um experimento aleatório, ou seja, há várias situações experimentais em que mais de uma variável aleatória será de interesse do investigador.

Exemplos: o peso e a altura de um recém nascido; o tempo até que um servidor de computador se conecte com sua máquina (em milissegundos) e o tempo até que o servidor autorize você como um usuário válido (em milissegundos), etc.

	-	3		
(8/4)8/8	ANTHEA	1000	Autura	(SERIE)
	Helling.	(1850)	(MATURE)	19-010
DELLE	50 ani	3(44)(1)	49(em	3 (0)(3)
2 Mastes	56(em)	5,600 kg	58 em	5,200 kg
U Alestes	(35)5m)	939939	(49) em)	3,55029
e Medeal	66 em	7 850 kg	Eben)	7,260 kg
B Wastes	70 an	(37/01013)	420 4000	300039
(OVERES)	72 em	9,450 kg	7flem	8,800 kg
No Western	250.500	10)((0)(0)	(MEREN)	9(50)
BIMESES	B2 cm	11,770 kg	B0 cm	11,140 kg
9-20095	27/em	1902030	Eben	12,250 kg
S ANOS	95 cm	14,870 kg	95 cm	14,680 kg
S ALLES	101an	(6)650 kg	(Helen)	16,590 kg
SIANOS	107 cm	18,670 kg	108 cm	18,560 kg
DIAMES .	050.600	241,020 kg	(HOm)	20,670 kg
7/ANOS	120 cm	23,600 kg	119 cm	22,900 kg
49-24214949	Halam	26 (00)(6)	1/25(+iii)	25,200 kg

Definição: Sejam E um experimento e Ω um espaço amostral associado a E. Sejam X=X(ω)

e Y=Y(ω) duas funções, cada uma associando um número real a cada resultado $\omega \in \Omega$.

Denomina-se (X, Y) uma variável aleatória (va) bidimensional.

Principal objetivo da análise de variáveis aleatórias bidimensionais: avaliar simultaneamente dois resultados de uma situação associando as probabilidades individuais e conjuntas. É possível consideraremos as distribuições de probabilidade conjunta para duas variáveis aleatórias discretas, ou para duas variáveis aleatórias contínuas. Vamos, então, definir probabilidades ou distribuições conjuntas e marginais.

- *Distribuição conjunta:* é a distribuição simultânea das duas variáveis, ou seja, a intersecção das variáveis.
- Distribuições marginais: são as distribuições isoladas de cada variável.

Função massa de probabilidade conjunta para duas variáveis aleatórias discretas

A função massa de probabilidade (fmp) de uma única v.a. discreta X especifica quanta massa de probabilidade é colocada em cada valor X possível. A fmp conjunta de duas v.a. discretas X e Y descreve quanta massa de probabilidade é colocada em cada par de valores possível (x, y).

Valores de X: $x_1, x_2, ..., x_k$

Valores de Y: $x_1, x_2, ..., x_n$

Temos $k \times n$ pares de valores para (x_i, y_j) e a $p(x_i, y_j)$ é a probabilidade que $X \in Y$ assumam simultaneamente os valores de x_i e y_i respectivamente, isto é,

$$p(x_i, y_j) = P(X = x_i, Y = y_j)$$

Função massa de probabilidade conjunta para duas variáveis aleatórias discretas

Definição: Sejam X e Y duas v.a. discretas definidas no espaço amostral S de um experimento. A **fmp conjunta** $p(x_i, y_j)$ é definida para cada par de números (x_i, y_j) por:

1)
$$p(x_i, y_j) = P(X = x_i, Y = y_j) \ge 0$$

2)
$$\sum_{i=1}^{k} \sum_{j=1}^{n} P(X=x_i, Y=y_j) = 1$$

Obs: p(x,y) representa a probabilidade de (X,Y) ser igual a (x,y)

Exemplo: Uma grande agência de seguros presta serviços a diversos clientes que compraram uma apólice residencial e outra de automóvel da mesma seguradora. Para cada tipo, deve ser especificado um valor dedutível. Para uma apólice de automóvel as opções são US\$ 100 e US\$ 250, enquanto, para uma apólice residencial, as opções são 0, US\$ 100 e US\$ 200. Suponha que um indivíduo com os dois referidos tipos seja selecionado aleatoriamente nos arquivos da seguradora. Sejam X v.a. que representa o valor dedutível na apólice de automóvel e Y representando o valor dedutível na apólice residencial.

Continuação do exemplo: Os pares (X, Y) possíveis são (100, 0), (100, 100), (100, 200), (250, 0), (250, 100) e (250, 200); a fmp conjunta especifica a probabilidade associada a cada um desses pares, com qualquer outro par de probabilidade zero. Suponha que a fmp conjunta seja dada na tabela de probabilidade conjunta a seguir:

P(X=x, Y=y)	У					
		0	100	200		
X	100	0,20	0,10	0,20		
	250	0,05	0,15	0,30		

Fonte: Devore e Cordeiro, 2014.

- a) Qual a probabilidade de P(X = 100, Y = 100)?
- b) Qual a $P(Y \ge 100)$?

Funções massa de probabilidade marginais

A fmp de apenas uma das variáveis é obtida pela soma de p(x, y) em relação aos valores da outra variável. O resultado é denominado fmp marginal porque, quando os valores p(x, y) são exibidos em uma tabela retangular, as somas são apenas totais marginais (linha ou coluna).

Funções massa de probabilidade marginais

Definição: As **funções massa de probabilidade marginais** de X e de Y, representadas respectivamente por $p_x(x)$ e $p_y(y)$, são dadas por:

$$p_X(x) = P(X = x) = \sum_{j=1}^{n} P(X = x, Y = y_j)$$

$$p_{Y}(y) = P(Y = y) = \sum_{i=1}^{k} P(X=x_{i}, Y = y)$$

Exemplo: Ainda com relação ao exemplo anterior.

a) Qual a $p_X(100)$, $p_X(250)$ e $p_X(x)$?

b) Qual a $p_Y(0)$, $p_Y(100)$, $p_Y(200)$ e $p_Y(y)$?

c) Qual a $P(Y \ge 100)$?

P(X=x, Y=y)	У						
		0	100	200			
X	100	0,20	0,10	0,20			
	250	0,05	0,15	0,30			

Fonte: Devore e Cordeiro, 2014.

Função densidade de probabilidade conjunta para duas variáveis aleatórias contínuas

A probabilidade de o valor observado de uma v.a. contínua X estar em um conjunto unidimensional A (como um intervalo) é obtida integrando-se a função densidade probabilidade (fdp) f(x) em relação ao conjunto A. De forma similar, a probabilidade de o par (X, Y) de v.a. contínuas estar em um conjunto bidimensional A (como um retângulo) é **obtida pela integração de uma função denominada fdp conjunta**.

$$P[(X, Y) \in A] = \int \int f(x, y) dx dy$$

Função densidade de probabilidade conjunta para duas variáveis aleatórias contínuas

Seja X e Y v.a. contínuas. Então, f(x, y) é a **fdp conjunta** de X e Y se, para qualquer conjunto bidimensional satisfazer:

1) $f(x,y) \ge 0$ para todo para (x,y);

2)
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1;$$

3)
$$P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x, y) dy dx$$
.

Exemplo: Um banco opera tanto uma instalação de drive-through como em guichê de atendimento. Em um dia selecionado aleatoriamente, assuma X sendo a proporção de tempo em que a instalação de drive-through está em uso (ao menos um cliente está sendo atendido ou esperando para ser atendido) e Y sendo a proporção de tempo em que o guichê de atendimento está em uso. O conjunto de valores possíveis de (X, Y) é, então, o retângulo $D = \{(x,y): 0 \le X \le 1, 0 \le Y \le 1\}$. Suponha que a fdp conjunta de (X, Y) seja dada por:

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 1, 0 \le y \le 1; \\ 0 & \text{caso contrário} \end{cases}$$

Continuação do exemplo:

- a) Prove que essa fdp é verdadeira?
- b) Qual a probabilidade de nenhuma das instalações estar ocupada em mais de um

quarto do tempo?

Funções densidade de probabilidade marginais

Definição: As **funções de densidade de probabilidade marginais** de X e Y, representadas respectivamente

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy - \infty \le x \le +\infty$$

$$f_{Y}(y) = \int_{-\infty}^{+\infty} f(x, y) dx - \infty \le y \le +\infty$$

Exemplo: Ainda com relação ao exemplo anterior.

- a) Determine a fdp marginal de X e a fdp marginal de Y.
- b) Qual a $P\left(\frac{1}{3} \le Y \le \frac{3}{4}\right)$?

Função massa de probabilidade condicional

Definição: Sejam X e Y duas **v.a. discretas** com fmp conjunta P(X = x, Y = y) e fmp marginal de X, P(X = x). Então, para qualquer valor x de X para o qual P(X = x) > 0, a **fmp condicional de Y dado que X** = x é

$$P(Y = y|X = x) = \frac{P(X = x, Y = y)}{P(X = x)},$$
 se $P(X = x) > 0$

Obs: Caso P(X = x) = 0, a probabilidade condicional pode ser definida como P(Y = y | X = x) = P(Y = y).

Exemplo: Sejam Y o número de pessoas que está na fila de uma Agência dos Correios em um dado minuto, e X o número de pessoas na fila que irá postar uma encomenda expressa. A distribuição de probabilidade conjunta de X e Y é dada na tabela:

P(X=>	c, Y=t)	Υ								
		- 1	2	3	4	5	6	7	8	P(X=x)
	0	0,024	0,029	0,030	0,026	0,017	0,009	0,003	0,000	0,138
	1	0,016	0,038	0,060	0,070	0,057	0,037	0,013	0,002	0,293
	2	0	0,013	0,040	0,068	0,076	0,063	0,026	0,004	0,290
X	3	0	0	0,010	0,031	0,051	0,055	0,029	0,006	0,182
	4	0	0	0	0,005	0,017	0,028	0,019	0,005	0,074
	5	0	0	0	0	0,002	0,007	0,008	0,002	0,019
	6	0	0	0	0	0	0,001	0,002	0,001	0,004
	7	0	0	0	0	0	0	0,000	0,000	0,000
	8	0	0	0	0	0	0	0,000	0,000	0,000
P(Y	=y)	0,040	0,080	0,140	0,200	0,220	0,200	0,100	0,020	

Fonte: ENADE 2009

Em certo minuto, dado que há seis clientes na fila, a probabilidade de que quatro deles postem uma encomenda expressa é?

Função densidade de probabilidade condicional

Definição: Sejam X e Y duas **v.a. contínuas** com fdp conjunta f(x, y) e fdp marginal de X, $f_x(x)$. Então, para qualquer valor x de X para o qual $f_x(x) > 0$, a **fdp condicional de Y dado que X** = x é

$$f_{Y|X}(y|x) = \frac{f(x, y)}{f_X(x)}, \quad -\infty < y < +\infty$$

Exemplo: Seja X uma variável aleatória que denota o tempo (em milissegundos) até um servidor de computador se conectar à sua máquina, e seja Y o tempo (em milissegundos) até o servidor autorizá-lo como um usuário válido. Cada uma dessas variáveis aleatórias mede a espera a partir de um tempo inicial comum e X < Y. Considere que a função densidade de probabilidade conjunta para X e Y seja

$$f(x,y) = 6 \times 10^{-6} \exp(-0.001x - 0.002y)$$
 para $x < y$

Determine a função densidade de probabilidade condicional para Y, dado que X = x.

Variáveis Aleatórias Independentes

Definição: As variáveis aleatórias X e Y, assumindo os valores $x_1, x_2, ...$ e $y_1, y_2, ...$, respectivamente, são independentes se, e somente se, para todo par de valores (x_i, y_j) de X e Y, tivermos que

Se X e Y discretas:

$$P(X = x_i, Y = y_j) = P_X(X = x_i). P_Y(Y = y_j)$$

Basta que a equação acima não se verifique para **um par** (x_i, y_j) , para que X e Y não sejam independentes. Nesse caso, diremos que X e Y são dependentes.

Exemplo: Com base em resultados do posto de saúde do bairro, estabeleceu-se a função de probabilidade conjunta entre os números diários de crianças atendidas com alergia (**X**) e com pneumonia (**Y**). Na tabela abaixo, apresentamos a conjunta e as marginais para essas variáveis.

X\Y	0	1	2	P(X=x)
0	1/16	1/16	1/8	1/4
1	1/8	1/8	0	1/4
2	1/16	1/8	1/8	5/16
3	0	1/8	1/16	3/16
P(Y=y)	1/4	7/16	5/16	1

Fonte: Magalhães, 2006.

Exemplo: Com base em resultados do posto de saúde do bairro, estabeleceu-se a função de probabilidade conjunta entre os números diários de crianças atendidas com alergia (X) e com pneumonia (Y). Na tabela abaixo, apresentamos a conjunta e as marginais para essas variáveis.

X\Y	0	1	2	P(X=x)
0	1/16	1/16	1/8	1/4
1	1/8	1/8	0	1/4
2	1/16	1/8	1/8	5/16
3	0	1/8	1/16	3/16
P(Y=y)	1/4	7/16	5/16	1

Fonte: Magalhães, 2006.

a) As variáveis X e Y são independentes? Justifique.

Exemplo: Com base em resultados do posto de saúde do bairro, estabeleceu-se a função de probabilidade conjunta entre os números diários de crianças atendidas com alergia (X) e com pneumonia (Y). Na tabela abaixo, apresentamos a conjunta e as marginais para essas variáveis.

X\Y	0	1	2	P(X=x)
0	1/16	1/16	1/8	1/4
1	1/8	1/8	0	1/4
2	1/16	1/8	1/8	5/16
3	0	1/8	1/16	3/16
P(Y=y)	1/4	7/16	5/16	1

Fonte: Magalhães, 2006.

a) As variáveis X e Y são independentes? Justifique.

número de crianças alérgicas?

Variáveis Aleatórias Independentes

Definição: As variáveis aleatórias X e Y, assumindo os valores $x_1, x_2, ...$ e $y_1, y_2, ...$, respectivamente, são independentes se, e somente se, para todo par de valores (x_i, y_j) de X e Y, tivermos que

Se X e Y contínuas:

$$f(x, y) = f_X(x).f_Y(y)$$

Novamente, basta que a equação acima não se verifique para $\operatorname{um}\operatorname{par}(x,y)$, para que X e Y não sejam independentes. Nesse caso, diremos que X e Y são dependentes.

Exemplo: As vidas úteis de dois componentes são representados por duas variáveis aleatórias em que, X_1 (vida útil do primeiro componente) e X_2 (vida útil do segundo componente). Tem-se que, X_1 tem distribuição exponencial com parâmetro λ_1 e X_2 tem distribuição exponencial com parâmetro λ_2 . A fdp conjunta é dada por:

$$f(x_1, x_2) = \begin{cases} \lambda_1 \lambda_2 e^{-\lambda_1 x_1 - \lambda_2 x_2}, & x_1 > 0, x_2 > 0 \\ 0 & \text{caso contrário} \end{cases}$$

Verifique se as vidas úteis dos dois componentes são independentes uma da outra.

Propriedades de Valor Esperado e Variância

Sejam X e Y duas v.a. conjuntamente distribuídas. Então:

$$i) E(X + Y) = E(X) + E(Y)$$

ii)
$$E(X + Y)^2 = E(X^2) + E(Y^2) + 2.E(XY)$$

iii)
$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2.Cov(X, Y)$$
 (Tem-se que, a $Cov(X, Y) = E[(X + Y) + Var(Y) \pm 2.Cov(X, Y)]$

$$-\mathbf{E}(\mathbf{X})$$
. $(\mathbf{Y} - \mathbf{E}(\mathbf{Y}))$

Propriedades de Valor Esperado e Variância

Sejam X e Y duas v.a. conjuntamente distribuídas. Então:

$$i) E(X + Y) = E(X) + E(Y)$$

ii)
$$E(X + Y)^2 = E(X^2) + E(Y^2) + 2.E(XY)$$

iii)
$$Var(X \pm Y) = Var(X) + Var(Y) \pm 2.Cov(X,Y)$$
 (Tem-se que, a $Cov(X,Y) = E[(X + Y) + Var(Y) \pm 2.Cov(X,Y)]$

$$-\mathbf{E}(\mathbf{X})$$
). $(\mathbf{Y} - \mathbf{E}(\mathbf{Y}))$]

Se X e Y forem v.a. independentes, temos que:

i)
$$E(XY) = E(X).E(Y)$$

ii)
$$Var(X + Y) = Var(X) + Var(Y)$$

Exemplo: A quantidade de dinheiro que Roberto ganha anualmente tem valor esperado \$ 30.000 e desvio padrão \$ 3000. A quantidade de dinheiro que sua esposa Sandra ganha tem valor esperado \$ 32.000 e desvio padrão \$ 5000. Determinar o (a) O valor esperado (b) Desvio Padrão do lucro anual total da família. Ao responder a parte (b), suponha que os ganhos de Roberto e de Sandra são independentes.

Exemplo: A quantidade de dinheiro que Roberto ganha anualmente tem valor esperado \$ 30.000 e desvio padrão \$ 3000. A quantidade de dinheiro que sua esposa Sandra ganha tem valor esperado \$ 32.000 e desvio padrão \$ 5000. Determinar o (a) O valor esperado (b) Desvio Padrão do lucro anual total da família. Ao responder a parte (b), suponha que os ganhos de Roberto e de Sandra são independentes.

(a) Sejam X e Y as variáveis aleatórias que representam os ganhos anuais de Roberto e Sandra, respectivamente.

Defina a variável aleatória ganho total Z = X + Y

Temos
$$E(Z) = E(X + Y) = E(X) + E(Y) = 30000 + 32000 = 62000$$

(b) Como as variáveis aleatórias X e Y, representando os ganhos de cada membro do casal

SÃO INDEPENDENTES, temos que:

$$Var(Z) = Var(X + Y) = Var(X) + Var(Y) = (3000)^{2} + (5000)^{2} = 340000000$$

e o desvio - padrão :
$$\sigma(Z) = \sqrt{Var(Z)} = \sqrt{34000000} = 5830,95$$

Covariância e Correlação

Quando duas ou mais variáveis aleatórias são definidas em um espaço probabilístico, é útil descrever como elas variam conjuntamente; ou seja, é útil medir a relação entre as variáveis.

Covariância e Correlação

Quando duas ou mais variáveis aleatórias são definidas em um espaço probabilístico, é útil descrever como elas variam conjuntamente; ou seja, é útil medir a relação entre as variáveis. Uma medida comum da relação entre duas variáveis aleatórias é a **covariância**. De modo a definir a **covariância**, necessitamos descrever o valor esperado de uma função de duas variáveis aleatórias h(X, Y).

Covariância e Correlação

Quando duas ou mais variáveis aleatórias são definidas em um espaço probabilístico, é útil descrever como elas variam conjuntamente; ou seja, é útil medir a relação entre as variáveis. Uma medida comum da relação entre duas variáveis aleatórias é a **covariância**. De modo a definir a **covariância**, necessitamos descrever o valor esperado de uma função de duas variáveis aleatórias h(X,Y). A definição simplesmente é uma extensão daquela usada para uma função de uma variável aleatória simples.

Valor esperado e variância de uma função de duas variáveis aleatórias

Seja (X,Y) uma variável aleatória bidimensional e h(X,Y) uma função real de (X,Y), então temos que:

1) Se (X,Y) for uma variável aleatória discreta com função massa de probabilidade conjunta $p(x_i, y_j) = P(X = x_i, Y = y_j)$ (i,j = 1,2,...):

$$E[h(X,Y)] = \sum_{i} \sum_{j} h(x_i, y_j). p(x_i, y_j)$$

- Variável Aleatória Bidimensional -

Exemplo:

X: número de moradores

Y: números de televisores

Seja a função massa de probabilidade conjunta de X e Y dada pela tabela a seguir:

P(X=x, Y=y)					
		1	2	3	P(Y=y)
Y	0	0,02	0,00	0,00	0,02
	1	0,20	0,08	0,05	0,33
	2	0,10	0,20	0,15	0,45
	3	0,00	0,10	0,10	0,20
	P(X=x)	0,32	0,38	0,30	1,00

Qual o valor esperado de $\frac{Y}{X}$?

Valor esperado e variância de uma função de duas variáveis aleatórias

Seja (X,Y) uma variável aleatória bidimensional e h(X,Y) uma função real de (X,Y), então temos que:

2) Se (X,Y) for uma variável aleatória contínua com função densidade de probabilidade conjunta f(x, y):

$$E[h(X,Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y). f(x,y) dxdy$$

Voltando ao exemplo: Um banco opera tanto uma instalação de drive-through como em guichê de atendimento. Em um dia selecionado aleatoriamente, assuma X sendo a proporção de tempo em que a instalação de drive-through está em uso... Suponha que a fdp conjunta de (X, Y) seja dada por:

$$f(x,y) = \begin{cases} \frac{6}{5}(x+y^2) & 0 \le x \le 1, 0 \le y \le 1; \\ 0 & \text{caso contrário} \end{cases}$$

Qual o valor esperado de X^2Y ?

- Variável Aleatória Bidimensional -

Como já mencionado:

$$Cov(X,Y) = E[(X - E(X)).(Y - E(Y))]$$

E pode ser escrita como:

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Variáveis aleatórias discretas:

Cov(X, Y) =
$$\sum_{i} \sum_{j} (x_{i-}\mu_{X}). (y_{i-}\mu_{Y}). p(x_{i}, y_{j})$$

Variáveis aleatórias contínuas:

Cov(X, Y) =
$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x_{-}\mu_{X}) \cdot (y_{-}\mu_{Y}) \cdot f(x, y) dxdy$$

- Variável Aleatória Bidimensional -

Exemplo:

X: número de moradores

Y: números de televisores

Seja a função massa de probabilidade conjunta dada pela tabela a seguir:

P(X=x, Y=y)					
		1	2	3	P(Y=y)
Y	0	0,02	0,00	0,00	0,02
	1	0,20	0,08	0,05	0,33
	2	0,10	0,20	0,15	0,45
	3	0,00	0,10	0,10	0,20
	P(X=x)	0,32	0,38	0,30	1,00

Qual a covariância de (X, Y)?

Exemplo: Considere as intensidades elétricas de duas componentes de um sistema eletrônico, X e Y, que são v.a. A função densidade de probabilidade conjunta de Xe Y é dado por

$$f(x,y) = \begin{cases} x + \frac{y}{2} + xy, & 0 \le x \le 1, 0 \le y \le 1; \\ 0, & \text{caso contrário} \end{cases}$$

Qual a covariância de (X, Y)?

A covariância é portanto uma medida da distribuição conjunta dos valores de X e Y, em termos dos desvios em relação às respectivas médias.

A covariância é portanto uma medida da distribuição conjunta dos valores de X e Y, em termos dos desvios em relação às respectivas médias. A Cov(X,Y) descreve, a relação linear entre duas variáveis e a sua mútua dependência.

A covariância é portanto uma medida da distribuição conjunta dos valores de X e Y, em termos dos desvios em relação às respectivas médias. A Cov(X,Y) descreve, a relação linear entre duas variáveis e a sua mútua dependência. Uma covariância positiva implica que, quando uma das variáveis se desvia significativamente do seu valor esperado, a outra tenderá a desviar-se no mesmo sentido.

A covariância é portanto uma medida da distribuição conjunta dos valores de X e Y, em termos dos desvios em relação às respectivas médias. A Cov(X,Y) descreve, a relação linear entre duas variáveis e a sua mútua dependência. Uma covariância positiva implica que, quando uma das variáveis se desvia significativamente do seu valor esperado, a outra tenderá a desviar-se no mesmo sentido. Isso implicará um aumento da dispersão da soma das variáveis X e Y.

- Variável Aleatória Bidimensional -

A covariância é portanto uma medida da distribuição conjunta dos valores de X e Y, em termos dos desvios em relação às respectivas médias. A Cov(X,Y) descreve, a relação linear entre duas variáveis e a sua mútua dependência. Uma covariância positiva implica que, quando uma das variáveis se desvia significativamente do seu valor esperado, a outra tenderá a desviar-se no mesmo sentido. Isso implicará um aumento da dispersão da soma das variáveis X e Y. Se a covariância for negativa, os desvios das duas variáveis tenderão a ser de sentido contrário, implicando uma diminuição da variância da soma.

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) $E(XY) = E(X) \cdot E(Y)$ (Isso é um teorema).

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) E(XY) = E(X). E(Y) (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) $E(XY) = E(X) \cdot E(Y)$ (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Demonstração:

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) E(XY) = E(X).E(Y) (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Demonstração: Temos que,

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) E(XY) = E(X).E(Y) (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Demonstração: Temos que,

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Como X e Y são independetes, então

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) E(XY) = E(X).E(Y) (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Demonstração: Temos que,

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Como X e Y são independetes, então

$$E(XY) = E(X).E(Y)$$

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) $E(XY) = E(X) \cdot E(Y)$ (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Demonstração: Temos que,

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Como X e Y são independetes, então

$$E(XY) = E(X).E(Y)$$

Assim, Cov(X, Y) = E(X).E(Y) - E(X)E(Y)

Já foi mencionado que:

Se X e Y forem v.a. independentes, temos que:

i) $E(XY) = E(X) \cdot E(Y)$ (Isso é um teorema).

Corolário: Se X e Y forem v.a. independentes, então

$$Cov(X, Y) = 0$$

Demonstração: Temos que,

$$Cov(X, Y) = E(XY) - E(X)E(Y)$$

Como X e Y são independetes, então

$$E(XY) = E(X).E(Y)$$

Assim, Cov(X, Y) = E(X).E(Y) - E(X)E(Y) = 0

– Variável Aleatória Bidimensional –

Se a Cov(X, Y)=0, então X e Y são independentes?

Vamos ver um exemplo para responder.

P(X=x, Y=y)					
Y		0	1	2	P(Y=y)
	1	3/20	3/20	2/20	8/20
	2	1/20	1/20	2/20	4/20
	3	4/20	1/20	3/20	8/20
	P(X=x)	8/20	5/20	7/20	1,00

· Variável Aleatória Bidimensional –

A covariância é expressa nas unidades de X e nas de Y, simultaneamente, o que introduz algumas dificuldades quando se pretende fazer comparações. Para ultrapassar este inconveniente, pode calcular-se o coeficiente de correlação linear (ρ_{XY}):

$$\rho_{XY} = \frac{\text{Cov}(X,Y)}{\sqrt{\text{Var}(X).\text{Var}(Y)}} = \frac{\text{E}[(X - \mu_X).(Y - \mu_Y)]}{\sqrt{\text{Var}(X).\text{Var}(Y)}} = \frac{\sigma_{XY}}{\sigma_X \sigma_Y}$$

O coeficiente de correlação linear toma valores no seguinte intervalo:

$$-1 \le \rho_{XY} \le 1$$

AULA DE HOJE

- Função massa de probabilidade conjunta para duas variáveis aleatórias discretas;
- Funções massa de probabilidade marginais;
- Função densidade de probabilidade conjunta para duas variáveis aleatórias contínuas;
- Funções densidade de probabilidade marginais;
- Função massa de probabilidade condicional;
- Função densidade de probabilidade condicional;
- Variáveis Aleatórias Independentes;
- Covariância e Correlação.

REFERÊNCIAS.

DEVORE, J. L.; CORDEIRO, M. T. A. **Probabilidade e estatística: para engenharia e ciências**. Cengage Learning Edições Ltda., 2014.

MAGALHÃES, M. N. Probabilidade e variáveis aleatórias. Edusp, 2006.

MONTGOMERY, D. C.; RUNGER, G. C. Estatística aplicada e probabilidade para engenheiros. 6 ed. Rio de Janeiro: LTC, 2018. 628p.

MORETTIN, P. A.; BUSSAB, W. O. **Estatística básica**. 9 ed. São Paulo: Sarairo 2017 554p.

CLASS FINISHED

