If any answer contains any of the following, they will be given **0 marks** for that section of the answer:

- 1. Pictorial representation or graph of a function on \mathbb{R} or \mathbb{R}^n $(n \in \mathbb{N})$
- 2. Arithmetic operations on ∞ or $-\infty$ or similar undefined numbers on \mathbb{R} or \mathbb{R}^n $(n \in \mathbb{N})$
- 3. Converse of known theorem, that is not true
- 4. Incorrect definitions used
- 5. Integration or properties of Riemann integrable functions

Q.3) b) Can you prove $-x \le \sin x \le x$ for $x \ge 0$?

(1.5 marks)

Ans:

Desmos: Graphs of f(x) = -x, $g(x) = \sin x$ and h(x) = x

Proof 1: Let $f(y) = \sin y \ \forall \ y \in \mathbb{R}$,

For
$$x = 0$$
, $f(0) = 0$ and thus, $-2(0) \le f(0) \le -1(0)$ +0.25 marks

For $x \neq 0$, f(y) is continuous on [0, x] and differentiable on (0, x). +0.5 marks

Thus by Lagrange's Mean Value Theorem,

$$\exists \eta_x \in (0, x) \text{ such that } f'(\eta_x) = \frac{f(x) - f(0)}{x - 0} + \mathbf{0.5 \text{ marks}}$$

$$\cos(\eta_x) = f'(\eta_x) = \frac{f(x) - f(0)}{x - 0} = \frac{\sin x}{x}$$

$$\cos(\eta_x) = f'(\eta_x) = \frac{f(x) - f(0)}{x - 0} = \frac{\sin x}{x}$$

$$\implies -1 \le \frac{\sin x}{x} \le 1 \text{ (Range of } \cos x \text{ is } [-1, 1])$$

$$\implies -x \le \sin x \le x$$

$$+0.25 \text{ marks}$$

Proof 2: Let $g(x) = x - \sin x \ \forall \ x \in \mathbb{R}$ and $h(x) = x + \sin x \ \forall \ x \in \mathbb{R}$,

Both
$$g(x)$$
 and $h(x)$ are continuous and differentiable on \mathbb{R} +0.5 marks $g'(x) = 1 - \cos x \ge 0 \implies g(x)$ is an increasing function Thus, $x \ge 0 \implies g(x) \ge g(0) = 0 - \sin 0 = 0 \implies x \ge \sin x$ +0.5 marks $h'(x) = 1 + \cos x \ge 0 \implies h(x)$ is an increasing function Thus, $x \ge 0 \implies h(x) \ge h(0) = 0 + \sin 0 = 0 \implies \sin x \ge -x$ +0.5 marks

Proof 3: Let $f(x) = \sin x \ \forall \ x \in \mathbb{R}$,

For
$$x = 0$$
, $f(0) = 0$ and thus, $-2(0) \le f(0) \le -1(0)$ +0.25 marks

For $x \neq 0$, since f(x) is continuous and infinitely differentiable on \mathbb{R} with each of its m^{th} derivatives continuous on \mathbb{R} $(m \in \mathbb{N})$, we can then apply Taylor's Theorem in a neighbourhood around the point x = 0.

$$f(x) = \sin x \implies f(0) = 0$$

 $f'(x) = \cos x$ +0.25 marks

By Taylor's Theorem,
$$\exists \ \xi_x \in (0, x)$$
 where $f(x) = f(0) + f'(\xi_x) \frac{(x-0)}{1!}$ +0.25 marks $\Rightarrow f(x) = \cos(\xi_x)x \implies -x \le \sin x \le x$ (Range of $\cos x$ is $[-1, 1]$) +0.25 marks

Proof 4: Let f(x) = -x, $g(x) = \sin x$ and $h(x) = x \ \forall \ x \in \mathbb{R}$,

Since
$$f(x)$$
, $g(x)$ and $h(x)$ are differentiable on \mathbb{R} , $+0.5$ marks

$$f(0) = g(0) = h(0) = 0$$

$$f'(x) = -1$$
, $g'(x) = \cos x$ and $h'(x) = 1$

$$f'(x) \le g'(x) \le h'(x)$$
 +0.5 marks

$$\implies f(x) = -x \le g(x) = \sin x \le h(x) = x \ \forall \ x \ge 0$$
 +0.5 marks

Proof 5:

+0.5 marks for correct figure

From figure, area of $\triangle OPQ \le \text{area of } \triangledown OPQ \le \text{area of } \triangle OPS$

From figure, area of
$$\triangle OI$$
 $Q \subseteq$ area of $\vee OI$ $Q \subseteq$ area of $\triangle OI$

$$\implies \frac{1}{2}\sin\theta \le \frac{1}{2}\theta \le \frac{1}{2}\tan\theta \ (\theta \in \left[0, \frac{\pi}{2}\right])$$

$$\implies -\theta \le 0 \le \sin\theta \le \theta \ \forall \ \theta \in \left[0, \frac{\pi}{2}\right]$$

+0.5 marks

For
$$\theta \ge \frac{\pi}{2}$$
, $-\theta \le -1 \le \sin \theta \le 1 \le \theta$ +0.5 marks

Therefore, $\forall \theta \ge 0, -\theta \le \sin \theta \le \theta$

Q.4) a) What is the level curve of z = f(x, y)?

(1 mark)

Ans: Given a function z = f(x, y) and a real number c in the range of f, the set of points in the plane where a function f(x,y) has the constant value f(x,y) = c is called a level curve of f.

+1 mark Exact same or re-worded definition **0** marks Otherwise

Q.4) b) Find the maximum or the minimum values of $f(x) = (x^2 - 3)e^x$ on the interval [-2, 2](2 marks)

Ans:

Desmos: Graph of $f(x) = (x^2 - 3)e^x$

The final answer is:

Maximum value is e^2 at x = 2

+0.25 marks

Minimum value is -2e at x = 1

+0.25 marks

Since f(x) is continuous on [-2, 2] and differentiable on (-2, 2),

 $\exists a, b \in [-2, 2] \text{ such that } f(a) = \sup\{f(x) | x \in [-2, 2]\} \text{ and } f(b) = \inf\{f(x) | x \in [-2, 2]\}$

Thus, both maximum and minimum values exist in [-2, 2]

+0.25 marks

 $f'(x) = (2x - 3 + x^2)e^x$, i.e. exist $\forall x \in (-2, 2)$

 $f'(2) = \lim_{h \to 0^-} \frac{f(2+h) - f(2)}{h}$ exists and $f(-2) = \lim_{h \to 0^+} \frac{f(-2+h) - f(-2)}{h}$ exists \implies There are no critical points where the derivative is not defined +0.2

+0.25 marks

If local maxima or minima exists at $x = c \in [-2, 2]$, f'(c) = 0

Finding the roots of $f'(x) = (2x - 3 + x^2)e^x = 0$,

$$\implies 2x - 3 + x^2 = 0 \ (e^x \neq 0 \ \forall \ x \in [-2, 2])$$

$$\implies x = 1 \text{ or } x = -3 \text{ (} x = -3 \text{ is neglected as } -3 \notin [-2, 2]\text{)}$$

$$\implies x = 1$$
, i.e. $x = 1$ is a root of $f'(x) = 0$

+0.25 marks

Therefore, the only critical point is x = 1.

For
$$-2 < x < 1$$
, $f'(x) = (x+3)(x-1)e^x < 0$,

and for
$$1 < x < 2$$
, $f'(x) = (x+3)(x-1)e^x > 0$,

By 1st Derivative Test,
$$x = 1$$
 is a local minimum and $f(1) = -2e$ +0.25 marks

Since for
$$-2 \le x \le 1$$
, $f'(x) = (x+3)(x-1)e^x \le 0$,

$$\implies f(x)$$
 is decreasing on $[-2, 1]$

$$f(x) \le f(-2) = e^{-2} \ \forall \ x \in [-2, 1]$$

+0.25 marks

Since for
$$1 \le x \le 2$$
, $f'(x) = (x+3)(x-1)e^x \ge 0$,

$$\implies f(x)$$
 is increasing on [1, 2]

$$f(x) \le f(2) = e^2 \ \forall \ x \in [1, 2]$$

+0.25 marks

Therefore, the global maximum value e^2 occurs at x=2 and the global minimum value -2e occurs at x=1

Q.5) a) What is the statement of Taylor's theorem?

(1 mark)

Ans: If f and its derivative of order m are continuous and $f^{(m+1)}(x)$ exists in a neighbourhood of a. Then there exists $c_x \in (a, x)$ or $c_x \in (x, a)$ such that :

$$f(x) = f(a) + f'(a)(x-a) + f^{(2)}\frac{(x-a)^2}{2!} + \dots + f^{(m)}\frac{(x-a)^m}{m!} + R_m(x)$$

where
$$R_m(x) = f^{(m+1)}(c_x) \frac{(x-a)^{m+1}}{(m+1)!}$$

+1 mark Exact same or re-worded definition

0 marks Otherwise

Q.5) b) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function at x = c and that f(c) = 0. Show that $g(x) \coloneqq |f(x)|$ is differentiable at c iff f'(c) = 0 (2 marks)

Ans: g(x) is continuous on \mathbb{R} since it is a composition of two continuous functions on \mathbb{R} , i.e. f(x) and |x| +0.5 marks

We define $F: \mathbb{R} \to \mathbb{R}$ and $G: \mathbb{R} \to \mathbb{R}$ to be $(\eta \text{ is an arbitrary real number})$:

$$F(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} & , x \neq c \\ f'(c) & , x = c \end{cases}$$

$$G(x) = \begin{cases} \frac{g(x) - g(c)}{x - c} & , x \neq c \\ \eta & , x = c \end{cases}$$

Claim 1: If f'(c) = 0, g(x) is differentiable at x = c

Proof: By definition of differentiability, F is continuous at x = c

$$\implies \forall \ \varepsilon > 0, \ \exists \ \delta_{\varepsilon} \in \mathbb{R}^+ \text{ such that } \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}), \ |F(x) - f'(c)| < \varepsilon$$

$$\implies \left| \frac{f(x) - 0}{x - c} - 0 \right| = |F(x) - f'(c)| < \varepsilon \ \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

Proof: By definition of differentiability,
$$F$$
 is continuous at $x = c$

$$\Rightarrow \forall \varepsilon > 0, \exists \delta_{\varepsilon} \in R^{+} \text{ such that } \forall x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}), |F(x) - f'(c)| < \varepsilon$$

$$\Rightarrow \left| \frac{f(x) - 0}{x - c} - 0 \right| = |F(x) - f'(c)| < \varepsilon \ \forall x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\Rightarrow \left| \frac{|f(x)| - |f(c)|}{x - c} - 0 \right| = \left| \frac{|f(x)|}{x - c} - 0 \right| = \frac{|f(x)|}{|x - c|} < \varepsilon \ \forall x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\Rightarrow \left| \frac{g(x) - g(c)}{x - c} - 0 \right| < \varepsilon \ \forall x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\Rightarrow G \text{ is continuous at } x = c \text{ if and only if } \eta = 0$$

$$\implies \left| \frac{g(x) - g(c)}{x - c} - 0 \right| < \varepsilon \ \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\implies$$
 G is continuous at $x = c$ if and only if $\eta = 0$

$$\implies \lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$
 exists and is equal to 0

+0.5 marks

Claim 2: If g(x) is differentiable at x = c, g'(c) = 0

Proof: By definition of differentiability, G is continuous at x = c

$$\implies \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = \eta$$

$$\implies \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = \eta$$

$$\implies \lim_{x \to c^{+}} \frac{|f(x)|}{x - c} = \eta = \lim_{x \to c^{-}} \frac{|f(x)|}{x - c}$$

For
$$x > c$$
, $\frac{|f(x)|}{x-c} \ge 0 \implies \lim_{x \to c^+} \frac{|f(x)|}{x-c} \ge 0$
For $x < c$, $\frac{|f(x)|}{x-c} \le 0 \implies \lim_{x \to c^-} \frac{|f(x)|}{x-c} \le 0$
 $\implies g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x-c} = \eta = 0$

For
$$x < c$$
, $\frac{|f(x)|}{r-c} \le 0 \implies \lim_{x \to c^-} \frac{|f(x)|}{r-c} \le 0$

$$\implies g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c} = \eta = 0$$

+0.5 marks

Claim 3: If g(x) is differentiable at x = c and g'(c) = 0, f'(c) = 0

Proof:
$$\lim_{x \to c} \frac{g(x) - g(c)}{x - c}$$
 exists and is equal to 0,
 $\implies \forall \ \varepsilon > 0, \ \exists \ \delta_{\varepsilon} \in R^{+} \text{ such that } \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}), \ |G(x) - g'(c)| < \varepsilon$

$$\implies \left| \frac{|f(x)| - 0}{x - c} - 0 \right| = |G(x) - g'(c)| < \varepsilon \ \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\implies \left| \frac{|f(x)| - 0}{x - c} - 0 \right| = |G(x) - g'(c)| < \varepsilon \ \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\implies \left| \frac{f(x) - f(c)}{x - c} - 0 \right| = \left| \frac{|f(x)|}{x - c} - 0 \right| = \frac{||f(x)||}{|x - c|} < \varepsilon \ \forall \ x \in (c - \delta_{\varepsilon}, c + \delta_{\varepsilon}) \setminus \{c\}$$

$$\implies \lim_{x \to c} F(x) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = 0$$

$$\implies f'(c) = 0 \ (F \text{ is continuous at } x = c)$$

$$\implies f'(c) = 0 \ (F \text{ is continuous at } x = c)$$

+0.5 marks

Therefore, g(x) is differentiable at $x = c \Leftrightarrow f'(c) = 0$

Note: There are alternate ways of proving these claims but these claims themselves are necessary. Any valid proof for a claim gets +0.5 marks