Einführung in die Komplexe Analysis Blatt 9

Jendrik Stelzner

15. Juni 2014

Aufgabe 1 (Stammgebiete und Stammfunktionen)

1.

 $\mathbb C$ ist ein konvexes Gebiet. Daher besitzt, wie auf dem letzten Zettel gezeigt, jede ganze Funktion eine Stammfunktion. Also ist $\mathbb C$ ein Stammgebiet.

 $\mathbb{C} \setminus \{i\}$ ist kein Stammgebiet, denn

$$f: \mathbb{C} \setminus \{i\} \to \mathbb{C}^*, z \mapsto \frac{1}{z-i}$$

ist holomorph auf $\mathbb{C} \setminus \{i\}$, aber da

$$\int_{\partial D_1(i)} f(z) \, \mathrm{d}z = \int_{\partial D_1(i)} \frac{1}{z - i} \, \mathrm{d}z = \int_{\partial D_1(0)} \frac{1}{z} \, \mathrm{d}z = 2\pi i \neq 0$$

besitzt f auf $\mathbb{C} \setminus \{i\}$ keine Stammfunktion.

2

Da S_1 und S_2 offen sind, ist auch $S_1 \cup S_2$ offen. Es sei $f: S_1 \cup S_2 \to \mathbb{C}$ holomorph. Da S_1 ein Stammgebiet ist, besitzt $f_{|S_1}: S_1 \to \mathbb{C}$ eine Stammfunktion $F_1: S_1 \to \mathbb{C}$. Da S_2 ein Stammgebiet ist, besitzt $f_{|S_2}: S_2 \to \mathbb{C}$ eine Stammfunktion $F_2: S_2 \to \mathbb{C}$. Da

$$F'_{1|S_1 \cap S_2} = f_{|S_1 \cap S_2} = F'_{2|S_1 \cap S_2}$$

und $S_1 \cap S_2$ zusammenhängend ist, gibt es ein $c \in \mathbb{C}$ mit

$$F_1(z) = F_2(z)$$
 für alle $z \in S_1 \cap S_2$.

Es ist daher

$$F: S_1 \cup S_2 \to \mathbb{C}, z \mapsto \begin{cases} F_1(z) & \text{falls } z \in S_1 \\ F_2(z) + c & \text{falls } z \in S_2 \end{cases}$$

eine Stammfunktion von f auf $S_1 \cup S_2$.

Es besitzt also jede auf $S_1 \cup S_2$ holomorphe Funkion dort auch eine Stammfunktion. Ist zusätzlich $S_1 \cap S_2 \neq \emptyset$, so ist $S_1 \cup S_2$ auch zusammenhängend und daher ein Stammgebiet.

Wir betrachten weiter die Gebiete

$$\begin{split} R^+ &:= \{z \in \mathbb{C} \mid \Re(z) > 0\}, \\ R^- &:= \{z \in \mathbb{C} \mid \Re(z) < 0\}, \\ I^+ &:= \{z \in \mathbb{C} \mid \Im(z) > 0\} \text{ und } \\ I^- &:= \{z \in \mathbb{C} \mid \Im(z) < 0\}. \end{split}$$

Diese sind konvex und somit Stammgebiete. Da

$$R^+ \cap R^- = \{ z \in \mathbb{C} \mid \Re(z) > 0 \text{ oder } \Im(z) > 0 \} \text{ und } I^+ \cap I^- = \{ z \in \mathbb{C} \mid \Re(z) < 0 \text{ oder } \Im(z) < 0 \}$$

nichtleer und zusammenhängend sind, sind $R^+ \cup I^+$ und $R^- \cup I^-$ Stammgebiete. Es ist jedoch

$$(R^+ \cup I^+) \cap (R^- \cap I^-)$$

= $\{z \in \mathbb{C} \mid \Re(z) > 0, \Im(z) < 0 \text{ oder } \Re(z) < 0, \Im(z) > 0\}$

nicht zusammenhängend und das Gebiet

$$(R^+ \cup I^+) \cup (R^- \cup I^-) = \mathbb{C}^*$$

ist kein Stammgebiet. (Denn die Funktion

$$f: \mathbb{C}^* \to \mathbb{C}^*, z \mapsto \frac{1}{z}$$

ist auf \mathbb{C}^* holomorph, besitzt wegen

$$\int_{\partial D_1(0)} f(z) \, \mathrm{d}z = \int_{\partial D_1(0)} \frac{1}{z} \, \mathrm{d}z = 2\pi i$$

keine Stammfunktion auf \mathbb{C}^* .)

Aufgabe 2 (Weierstraßscher Konvergenzsatz)

Lemma 1. Sei $U\subseteq\mathbb{C}$ offen, $\alpha:[0,1]\to U$ eine stückweise stetig differenzierbare Kurve. Es sei $f_n:|\alpha|\to\mathbb{C}$ eine Folge stetiger Funktionen, die auf $|\alpha|$ lokal gleichmäßig gegen $f:|\alpha|\to\mathbb{C}$ konvergiert. Dann ist

$$\int_{\Omega} f(z) dz = \lim_{n \to \infty} \int_{\Omega} f_n(z) dz.$$

Beweis. Wir betrachten zunächst den Fall, dass α stetig differenzierbar ist und f_n auf $|\alpha|$ gleichmäßig gegen f konvergiert. Da α stetig differenzierbar ist, gibt es wegen der Kompaktheit von [0,1] ein C>0 mit $|\alpha'(t)|< C$ für alle $t\in [0,1]$. Sei $\varepsilon>0$ beliebig aber fest. Da f_n auf $|\alpha|$ gleichmäßig gegen f konvergiert, gibt es $N\in\mathbb{N}$ mit

$$|f(z)-f_n(z)|\leq \frac{\varepsilon}{C} \text{ für alle } n\geq N, z\in |\alpha|.$$

Daher ist

$$|f(\alpha(t))\alpha'(t) - f_n(\alpha(t))\alpha'(t)| \le \varepsilon$$
 für alle $n \ge N, t \in [0, 1]$.

Das zeigt, dass $(f_n \circ \alpha)\alpha'$ auf [0,1] gleichmäßig gegen $(f \circ \alpha)\alpha'$ konvergiert. Daher ist

$$\int_{\alpha} f(z) dz = \int_{0}^{1} f(\alpha(t))\alpha'(t) dt = \int_{0}^{1} \lim_{n \to \infty} f_{n}(\alpha(t))\alpha'(t) dt$$
$$= \lim_{n \to \infty} \int_{0}^{1} f_{n}(\alpha(t))\alpha'(t) dt = \lim_{n \to \infty} \int_{\alpha} f_{n}(z) dz.$$

Wir betrachten nun den Fall, dass α stetig differenzierbar ist, und f_n auf $|\alpha|$ lokal gleichmäßig gegen f konvergiert. Dann gibt es für jeden Punkt $z \in |\alpha|$ eine offene Umgebung $U_z \subseteq U$ von z, so dass f_n auf $U_z \cap |\alpha|$ gleichmäßig gegen f konvergiert. Wegen der Kompaktkeit von $|\alpha|$ hat die offene Überdeckung $\{U_z \mid z \in |\alpha|\}$ von $|\alpha|$ eine endliche Teilüberdeckung. Es gibt also $V_1, \ldots, V_n \in \{U_z \mid z \in |\alpha|\}$, so dass

$$|\alpha| \subseteq V_1 \cup \ldots \cup V_n$$
.

und f_n für alle $k=1,\ldots,n$ auf $V_k\cap |\alpha|$ gleichmäßig gegen f konvergiert. Wegen der Endlichkeit dieser Überdeckung konvergiert f_n auch auf

$$(V_1 \cap |\alpha|) \cup \ldots \cup (V_n \cap |\alpha|) = (V_1 \cup \ldots \cup V_n) \cap |\alpha| = |\alpha|$$

gleichmäßig gegen f. Die Aussage ergibt sich daher aus dem vorherigen Fall.

Zuletzt betrachten wir den Fall, dass α stückweise stetig differenzierbar ist und f_n auf $|\alpha|$ lokal gleichmäßig gegen f konvergiert. Dann gibt es stetig differenzierbare Wege $\beta_1,\ldots,\beta_m:[0,1]\to\mathbb{C}$, so dass $\alpha=\beta_1+\ldots+\beta_m$. Da (f_n) auf $|\alpha|$ lokal gleichmäßig gegen f konvergiert, konvergiert (f_n) für alle $k=1,\ldots,m$ auch auf $|\beta_k|$ lokal gleichmäßig gegen f. Daher ist nach dem vorherigen Fall

$$\int_{\alpha} f(z) dz = \sum_{k=1}^{m} \int_{\beta_{k}} f(z) dz = \sum_{k=1}^{m} \lim_{n \to \infty} \int_{\beta_{k}} f_{n}(z) dz$$
$$= \lim_{n \to \infty} \sum_{k=1}^{m} \int_{\beta_{k}} f_{n}(z) dz = \lim_{n \to \infty} \int_{\alpha} f_{n}(z) dz.$$

Sei $\Delta \subseteq U$ ein abgeschlossenes Dreieck. Da die f_n alle holomorph sind ist nach dem Lemma von Goursat

$$\int_{\partial \Delta} f_n(z) \, \mathrm{d}z = 0 \text{ für alle } n \in \mathbb{N}.$$

Daher ist nach Lemma Aufgabe 2 auch

$$\int_{\partial \Delta} f(z) \, \mathrm{d}z = \lim_{n \to \infty} \int_{\partial \Delta} f(z) \, \mathrm{d}z = 0.$$

Wegen der Beliebigkeit von Δ ist f nach dem Satz von Morera holomorph.

Aufgabe 3 (Holomorphe Fortsetzungen)

Sei $\Delta\subseteq U$ ein abgeschlossenes Dreiecks. Nach der verschärften Version des Lemmas von Goursat ist

 $\int_{\partial \Delta} f(z) \, \mathrm{d}z = 0.$

Wegen der Beliebigkeit von Δ ist f nach dem Satz von Morera holomorph.

Aufgabe 4 (Identitätssatz für holomorphe Funktionen)

1.

Es ergibt sich induktiv, dass

$$f^{(n)}(0) = a^n f(0)$$
 für alle $n \in \mathbb{N}$.

Für die ganze Funktion

$$q: \mathbb{C} \to \mathbb{C}, z \mapsto f(0)e^{az}$$

mit g(0) = f(0) ist daher

$$g^{(n)}(0) = a^n g(0) = a^n f(0) = f^{(n)}(0) \text{ für alle } n \in \mathbb{N}.$$

Nach dem Identitätssatz ist daher bereits f = g.

2.

Wir zeigen zuerst die Existenz und dann die Eindeutigkeit einer entsprechenden Abbildung.

Für alle $m \in \mathbb{N}$ definieren wir rekursiv

$$b_{n+1+m} := \sum_{k=0}^{n} a_k b_{k+m},$$

wobe
i b_0,\dots,b_n bereits gegeben sind, und für alle
 $m\in\mathbb{N}$ setzen wir

$$c_m := \frac{b_m}{m!}.$$

Wir setzen

$$M_a := \max\{|a_0|, \dots, |a_n|, 1\} \text{ und } M_b := \max\{|b_0|, \dots, |b_n|, 1\}.$$

Induktiv erhalten wir, dass

$$|b_k| \le (n+1)^k M_a^k M_b.$$

Für $k=0,\ldots,n$ ist die Aussage klar. Gilt die Aussage für $b_0,\ldots,b_n,b_{n+1},\ldots,b_{n+m},$ so ist

$$\begin{aligned} |b_{n+1+m}| &= \left| \sum_{k=0}^{n} a_k b_{k+m} \right| \le \sum_{k=0}^{n} |a_k| |b_{k+m}| \\ &\le M_a \sum_{k=0}^{n} |b_{k+m}| \le M_a \sum_{k=0}^{n} (n+1)^{k+m} M_a^{k+m} M_b \\ &\le M_a \cdot (n+1)(n+1)^{n+m} M_a^{n+m} M_b \\ &= (n+1)^{n+1+m} M_a^{n+1+m} M_b. \end{aligned}$$

Da damit

$$\begin{split} \limsup_{k \to \infty} |c_k|^{1/k} &= \limsup_{k \to \infty} \frac{|b_k|^{1/k}}{(k!)^{1/k}} \\ &\leq \limsup_{k \to \infty} \frac{(n+1)M_a M_b^{1/(n+1+k)}}{((n+1+k)!)^{1/(n+1+k)}} = 0, \end{split}$$

ist lim $\sup_{k\to\infty}|c_k|^{1/k}=0$. Deshalb konvergiert die Potenzreihe $\sum_{k=0}^\infty c_kz^k$ auf ganz $\mathbb C$, die Funktion

$$f: \mathbb{C} \to \mathbb{C}, z \mapsto \sum_{k=0}^{\infty} c_k z^k$$

ist als ganz. Es ist klar, dass

$$f^{(k)}(0) = b_k$$
 für alle $k \in \mathbb{N}$.

Für die ganze Funktion $g:\mathbb{C} \to \mathbb{C}$ definiert als

$$g := f^{(n+1)} - \sum_{k=0}^{n} a_k f^{(k)}$$

ist daher für alle $m \in \mathbb{N}$

$$g^{(m)}(0) = f^{(n+1+m)}(0) - \sum_{k=0}^{n} a_k f^{(k+m)}(0) = b_{n+1+m} - \sum_{k=0}^{n} a_k b_{k+m} = 0.$$

Nach dem Identitätssatz ist daher g=0, also

$$f^{(n+1)} = \sum_{k=0}^{n} a_k f^{(k)}$$

Dies zeigt die Existenz einer entsprechenden Abbildung.

Zum Beweis der Eindeutigkeit sei $\tilde{f}:\mathbb{C}\to\mathbb{C}$ eine weitere ganze Funktion mit $\tilde{f}^{(k)}=b_k$ für alle $k=0,\dots,n$ und

$$\tilde{f}^{(n+1)} = \sum_{k=0}^{n} a_k \tilde{f}^{(k)}.$$

Da damit für alle $m \in \mathbb{N}$

$$\tilde{f}^{(n+1+m)} = \sum_{k=0}^{n} a_k \tilde{f}^{(k+m)}$$

ergibt sich induktiv, dass $\tilde{f}^{(k)}(0) = f^{(k)}(0)$ für alle $k \in \mathbb{N}$. Wegen des Identitätssatzes folgt daraus, dass $\tilde{f} = f$.

3.

Die Funktion

$$f^*:\mathbb{C}\to\mathbb{C},z\mapsto\overline{f(\overline{z})}$$

ist ganz, da für alle $z\in\mathbb{C}$

$$\lim_{h \to 0} \frac{f^*(z+h) - f^*(z)}{h} = \lim_{h \to 0} \frac{\overline{f(\overline{z} + \overline{h}) - f(\overline{z})}}{h}$$
$$= \lim_{h \to 0} \frac{\overline{f(\overline{z} + \overline{h}) - f(\overline{z})}}{\overline{h}} = \overline{f'(\overline{z})}.$$

Da $f^*(x)=\overline{f(\overline{x})}=f(x)$ für alle $x\in\mathbb{R}$, und \mathbb{R} nicht diskret ist, ist nach dem Identitätssatz bereits $f^*=f$, und deshalb

$$f(\overline{z}) = \overline{f(z)}$$
 für alle $z \in \mathbb{C}$.