Q1: Model (2%)

❖ Model (1%)

Describe the model architecture and how it works on text summarization.

這次作業是 fine-tune mt5-small model,使用的 pre-trained model 是 huggingface 上的 google/mt5-small,架構為 transformer 的 encoder-decoder 類型,將新聞文章做 tokenization 以及 padding 後送進 encoder,接著將 encoder 的輸出包含 <BOS> token 一同輸入到 decoder 做 conditional language modeling,過程中持續地去 predict 下一個字出現的機率,而最後 decoder 輸出的 token sequence 即是text summarization 的結果。

❖ Preprocessing (1%)

Describe your preprocessing (e.g. tokenization, data cleaning and etc.)

將新聞文章使用 T5Tokenizer 進行 tokenization,先對 maintext 做 tokenization, 設定 padding 為 max_length = 1024,再對 title 做 tokenization 時,則設定 max_length = 128。

Q2: Training (2%)

Hyperparameter (1%)

Describe your hyperparameter you use and how you decide it.

我所使用的 hyperparameter 為 batch size = 4、learning rate = 1e-4、warmup ratio 保持預設 0.1,總共訓練了 3 個 epoch,tw_rouge 得分結果如 Q3 第二題中的表格所示,紅色標示為最佳結果。

❖ Learning Curves (1%)

➤ Plot the learning curves (ROUGE versus training steps)

Rouge-1

Rouge-2

Rouge-L

Q3: Generation Strategies(6%)

❖ Stratgies (2%)

- > Describe the detail of the following generation strategies:
 - Greedy: 在每個時間點,都只選擇機率最高的 token。
 - Beam Search: 追踪前 k 個最有可能的 sequence,並選擇較好的一個,但這種方法可能需要龐大的計算量。假設用 n 個變數來生成一個 token length 為 m 的句子,它將會是 n^m之多。
 - Top-k Sampling: 此方法是用來確保可能性較小的詞被 sample 到的機率很低,並確保每次 generation 只考慮前 k 個可能的 token。
 - Top-p Sampling: 類似 Top-k Sampling,但它只關注機率總和 ≥ p 的最小詞組。
 - Temperature: Sampling with temperature 會隨機選擇字詞,並透過設定 temperature (0 < temp ≤ 1) 來強調機率高的 token,同時減少機率低的 token。

Hyperparameters (4%)

> Try at least 2 settings of each strategies and compare the result.

測試 Beam Search 並且不使用 sampling

Beam Size	Rouge-1	Rouge-2	Rouge-L
1 (Greedy)	24.3216	8.8955	21.774
4	27.1313	10.8587	24.2078

測試 top-k sampling (beam size:1; top-p: 1.0; temperature: 1.0)

top-k	Rouge-1	Rouge-2	Rouge-L
50	20.1035	6.1276	17.5443
80	19.5703	6.0945	17.2052

測試 top-p sampling (beam size:1; top-k: 50; temperature: 1.0)

top-p	Rouge-1	Rouge-2	Rouge-L
1.0	20.1035	6.1276	17.5443
0.5	24.8409	9.0044	22.0125

測試 sampling with temperature (beam size:1; top-k: 50; top-p: 1.0)

temperature	Rouge-1	Rouge-2	Rouge-L
1.0	20.1035	6.1276	17.5443
0.1	25.7875	9.6935	23.0821

➤ What is your final generation strategy? (you can combine any of them) 考量 performance 與 runtime,我最後選擇使用 Beam Search,beam size 為 4 且不使用 sampling,當我的 generation strategy。

Bonus: Applied RL on Summarization (2%)

- ❖ Algorithm (1%)
 - > Describe your RL algorithms, reward function, and hyperparameters.
- ❖ Compare to Supervised Learning (1%)
 - Solution Observe the loss, ROUGE score and output texts, what differences can you find?