

KERSEMI ELECTRONIC CO.,LTD.

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- P-Channel
- Fully Avalanche Rated

TO-220AB

Description

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Power MOSFET

 $V_{DSS} = -100V$

 $R_{DS(on)} = 0.117\Omega$

 $I_{D} = -23A$

Absolute Maximum Ratings

	Parameter	Max.	Units	
$I_D @ T_C = 25^{\circ}C$	Continuous Drain Current, V _{GS} @ -10V	-23		
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ -10V	-16	A	
I _{DM}	Pulsed Drain Current ①	-76		
P _D @T _C = 25°C	Power Dissipation	140	W	
	Linear Derating Factor	0.91	W/°C	
V_{GS}	Gate-to-Source Voltage	± 20	V	
E _{AS}	Single Pulse Avalanche Energy®	430	mJ	
I _{AR}	Avalanche Current①	-11	А	
E _{AR}	Repetitive Avalanche Energy①	14	mJ	
dv/dt	Peak Diode Recovery dv/dt ③	-5.0	V/ns	
T _J	Operating Junction and	-55 to + 175		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)		
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)		

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.1	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.50		°C/W
$R_{\theta JA}$	Junction-to-Ambient		62	

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	•	-				
	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-100			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.11		V/°C	Reference to 25°C, I _D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.117	Ω	V _{GS} = -10V, I _D = -11A ④
V _{GS(th)}	Gate Threshold Voltage	-2.0		-4.0	V	$V_{DS} = V_{GS}$, $I_D = -250\mu A$
9 _{fs}	Forward Transconductance	5.3			S	$V_{DS} = -50V, I_{D} = -11A$
I	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -100V, V_{GS} = 0V$
I _{DSS}	Brain to Godice Leakage Current			-250	μΑ	$V_{DS} = -80V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	IIA	V _{GS} = -20V
Qg	Total Gate Charge			97		I _D = -11A
Q _{gs}	Gate-to-Source Charge			15	nC	$V_{DS} = -80V$
Q _{gd}	Gate-to-Drain ("Miller") Charge			51		V_{GS} = -10V, See Fig. 6 and 13 \oplus
t _{d(on)}	Turn-On Delay Time		15			$V_{DD} = -50V$
t _r	Rise Time		67			$I_{D} = -11A$
t _{d(off)}	Turn-Off Delay Time		51		ns	$R_G = 5.1\Omega$
t _f	Fall Time		51			$R_D = 4.2\Omega$, See Fig. 10 \oplus
L _D	Internal Drain Inductance		4.5		- - nH	Between lead,
5	Internal Evan Haddaniss					6mm (0.25in.)
L _S	Internal Source Inductance		7.5			from package
						and center of die contact
C _{iss}	Input Capacitance		1300			$V_{GS} = 0V$
Coss	Output Capacitance		400		pF	$V_{DS} = -25V$
C_{rss}	Reverse Transfer Capacitance		240			f = 1.0MHz, See Fig. 5

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current	2	-23	A	MOSFET symbol	
	(Body Diode)				showing the	
I _{SM}	Pulsed Source Current			76		integral reverse
	(Body Diode) ①					p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25$ °C, $I_S = -11A$, $V_{GS} = 0V$ ④
t _{rr}	Reverse Recovery Time		150	220	ns	$T_J = 25^{\circ}C, I_F = -11A$
Q _{rr}	Reverse RecoveryCharge		830	1200	nC	di/dt = -100A/µs ④
t _{on}	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Starting $T_J = 25^{\circ}C$, L = 7.1mH $R_G = 25\Omega$, $I_{AS} = -11A$. (See Figure 12)
- $\label{eq:loss} \begin{array}{l} \text{ } \\ \text{ }$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 10a. Switching Time Test Circuit

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 13a. Basic Gate Charge Waveform

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For P-Channel HEXFETS

Package Outline

TO-220AB Outline

Dimensions are shown in millimeters (inches)

Part Marking Information

TO-220AB

