New literature for real-time AI-empowered echocardiography

Miguel Xochicale, Ph.D.

November 1, 2021

Contents

1	Introduction	1
2	Methods and materials	1

1 Introduction

In the last decades the use of echocardiography is crucial in Intensive Care Units (ICU) advances of smaller US clinical devices, US image quality and functions and its real-time capabilities to access cardiac anatomy and functions [3, 9, 8, 1]. However, despite the previous advances there is still challenges on finding standard views from experienced sonograpehrs that sometimes such quantifications are qualitative and subjective [3].

Assessing left ventricular ejection fraction (LVEF) is done at the point of care by clinicians with different expertise which is impacted on the rhythm and structural variations [7]. However, automatic quantification of LVEF is still challenging at the point of care due to variation of protocols, skills levels [4] and the nature of proving feedback on real-time [7].

2 Methods and materials

Rank-2 non-negative matrix factorization [10] and recently Robust Non-negative Matrix Factorization [2] are low-computation cost algorithms to automatic segment mitral valve. Clustering techniques [11] [5]. Laumer et al. proposed a novel autoencoder-based framework to learn human interpretable representation of cardiac cycles from cardiac ultrasound data [6],

References

[1] S. J. Campbell, R. Bechara, and S. Islam. Point-of-care ultrasound in the intensive care unit. Clinics in Chest Medicine, 39(1):79-97, 2018. ISSN 0272-5231. doi: https://doi.org/10.1016/j.ccm.2017.11.005. URL https://www.sciencedirect.com/science/article/pii/S0272523117301168. Interventional Pulmonology: An Update.

- [2] Y. Dukler, Y. Ge, Y. Qian, S. Yamamoto, B. Yuan, L. Zhao, A. L. Bertozzi, B. Hunter, R. Llerena, and J. T. Yen. Automatic valve segmentation in cardiac ultrasound time series data. In E. D. Angelini and B. A. Landman, editors, *Medical Imaging 2018: Image Processing*, volume 10574, pages 493 504. International Society for Optics and Photonics, SPIE, 2018. URL https://doi.org/10.1117/12.2293255.
- [3] H. Feigenbaum. Evolution of echocardiography. *Circulation*, 93(7):1321-1327, 1996. doi: 10.1161/01.CIR.93.7.1321. URL https://www.ahajournals.org/doi/abs/10.1161/01.CIR.93.7.1321.
- [4] L. C. Field, G. J. Guldan, and A. C. Finley. Echocardiography in the intensive care unit. Seminars in Cardiothoracic and Vascular Anesthesia, 15(1-2):25-39, 2011. doi: 10.1177/1089253211411734. URL https://doi.org/10.1177/1089253211411734. PMID: 21719547.
- [5] K. Kusunose. Steps to use artificial intelligence in echocardiography. *Journal of Echocardiography*, 19(1):21–27, Mar 2021. ISSN 1880-344X. doi: 10.1007/s12574-020-00496-4. URL https://doi.org/10.1007/s12574-020-00496-4.
- [6] F. Laumer, G. Fringeli, A. Dubatovka, L. Manduchi, and J. M. Buhmann. Deepheartbeat: Latent trajectory learning of cardiac cycles using cardiac ultrasounds. In E. Alsentzer, M. B. A. McDermott, F. Falck, S. K. Sarkar, S. Roy, and S. L. Hyland, editors, Proceedings of the Machine Learning for Health NeurIPS Workshop, volume 136 of Proceedings of Machine Learning Research, pages 194–212. PMLR, 11 Dec 2020. URL https://proceedings.mlr.press/v136/laumer20a.html.
- [7] X. Liu, Y. Fan, S. Li, M. Chen, M. Li, W. K. Hau, H. Zhang, L. Xu, and A. P.-W. Lee. Deep learning-based automated left ventricular ejection fraction assessment using 2-d echocardiography. *American Journal of Physiology-Heart and Circulatory Physiology*, 321(2):H390–H399, 2021. doi: 10.1152/ajpheart.00416.2020. URL https://doi.org/10.1152/ajpheart.00416.2020. PMID: 34170197.
- [8] S. Singh and A. Goyal. The origin of echocardiography: a tribute to inge edler. *Texas Heart Institute journal*, 34(4):431–438, 2007. ISSN 0730-2347. URL https://pubmed.ncbi.nlm.nih.gov/18172524. 18172524[pmid].
- [9] A. Vieillard-Baron, M. Slama, B. Cholley, G. Janvier, and P. Vignon. Echocardio-graphy in the intensive care unit: from evolution to revolution? *Intensive Care Medicine*, 34(2):243–249, Feb 2008. ISSN 1432-1238. doi: 10.1007/s00134-007-0923-5. URL https://doi.org/10.1007/s00134-007-0923-5.
- [10] B. Yuan, S. R. Chitturi, G. Iyer, N. Li, X. Xu, R. Zhan, R. Llerena, J. T. Yen, and A. L. Bertozzi. Machine learning for cardiac ultrasound time series data. In A. Krol and B. Gimi, editors, *Medical Imaging 2017: Biomedical Applications in Molecular, Structural, and Functional Imaging*, volume 10137, pages 617 624. International Society for Optics and Photonics, SPIE, 2017. URL https://doi.org/10.1117/12.2254704.
- [11] J. Zhang, S. Gajjala, P. Agrawal, G. H. Tison, L. A. Hallock, L. Beussink-Nelson, M. H. Lassen, E. Fan, M. A. Aras, C. Jordan, K. E. Fleischmann, M. Melisko, A. Qasim, S. J. Shah, R. Bajcsy, and R. C. Deo. Fully automated echocardiogram interpretation in clinical practice. *Circulation*, 138

 $(16): 1623-1635, \quad 2018. \quad doi: \quad 10.1161/CIRCULATIONAHA. \\ 118.034338. \quad URL \\ \text{https://www.ahajournals.org/doi/abs/10.1161/CIRCULATIONAHA.} \\ 118.034338.$