## Off-Policy Optimization and Tabular Q-Learning

Mohammad Sadegh Talebi m.shahi@di.ku.dk Department of Computer Science



## Recap



#### Recap

#### Policy Evaluation (PE):

- $\bullet$  Estimating  $V^\pi$  , in an unknown discounted MDP, using data collected according to a fixed  $\pi$
- Data could be from dataset (offline) or via interaction (online)
- TD update:

$$V(s) \leftarrow \begin{cases} V(s) + \alpha_t \Big( r_t + \gamma V(s_{t+1}) - V(s) \Big) & s = s_t \\ V(s) & \text{else.} \end{cases}$$

• If (i)  $\pi$  is exploratory enough, and (ii)  $(\alpha_t)_t$  satisfies Robbins-Monro conditions:

$$V \to_{t \to \infty} V^{\pi}$$
 almost surely



## OPE/OPO

#### Two related problems:

- Off-Policy Evaluation (OPE): Estimate  $V^{\pi}$  of a target policy  $\pi$  using data collected according to some behvaior/logging policy  $\pi_b$
- Off-Policy Optimization (OPO): Find an optimal policy  $\pi^*$  using data collected according to some behavior policy  $\pi_b$

This lecture: Two algorithms for OPO



## Off-Policy Optimization

#### Off-Policy Optimization

**Given:** Data  $\mathcal{D}$  collected under some policy  $\pi_b$  (not necessarily fixed).

Mathematically,  $\mathcal{D} = \left\{ (s_t, a_t, r_t), 1 \leq t \leq n \right\}$  where

$$a_t \sim \pi_{\mathsf{b}}(\cdot|s_t), \quad r_t \sim R(s_t, a_t), \quad s_{t+1} \sim P(\cdot|s_t, a_t)$$

**Goal:** Find an optimal policy  $\pi^*$ , or a near-optimal one.



# Action-Value Function (Q-Function)



#### Action-Value Function

The action-value function of policy  $\pi$  (or simply, Q-value of  $\pi$ ) is a mapping  $Q^{\pi}: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$  defined as (Under the bounded reward assumption)

$$Q^{\pi}(s,a) := \mathbb{E}^{\pi} \left[ \sum_{t=1}^{\infty} \gamma^{t-1} r(s_t, a_t) \middle| s_0 = s, a_0 = a \right].$$

- Intuitively,  $Q^{\pi}(s,a)$  measures the sum of future discounted rewards (in expectation) when the agent <u>starts</u> in s and <u>takes action</u> a in the first step (possibly  $a \neq \pi(s)$ ), and then <u>follows</u>  $\pi$  afterwards.
- Again, recall that we assumed bounded rewards.
- We have

$$|Q^{\pi}(s, a)| \le \frac{R_{\max}}{1 - \gamma}, \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A}$$

• For all  $s \in \mathcal{S}$ ,  $Q^{\pi}(s, \pi(s)) = V^{\pi}(s)$ .



## Bellman Optimality Equation

Recall

$$V^{\star} = \sup_{\pi \in \Pi^{\mathsf{HR}}} V^{\pi} = \max_{\pi \in \Pi^{\mathsf{SD}}} V^{\pi}$$

 $Q^*$  and  $V^*$  are related as

$$V^{\star}(s) = \max_{a \in \mathcal{A}} Q^{\star}(s, a)$$

#### **Theorem**

 $V^*$  and  $Q^*$  satisfy the optimal Bellman equation:

$$V^{\star}(s) = \max_{a \in \mathcal{A}} \Big( R(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V^{\star}(x) \Big), \quad s \in \mathcal{S}$$

$$Q^{\star}(s, a) = R(s, a) + \gamma \sum_{s \in S} P(x|s, a) \max_{b \in \mathcal{A}} Q^{\star}(x, b), \quad s \in \mathcal{S}, a \in \mathcal{A}$$



## **Optimality Theorems**

A fundamental result in the theory of discounted MDPs:

#### Theorem

A stationary deterministic policy  $\pi$  is optimal if and only if it attains the maximum in the Bellman optimality equations: For all  $s \in \mathcal{S}$ ,

$$\pi(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left( R(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) V^{\star}(x) \right)$$
 or equivalently,

$$\pi(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} \left( \underbrace{R(s, a) + \gamma \sum_{x \in \mathcal{S}} P(x|s, a) \max_{b \in \mathcal{A}} Q^{\star}(x, b)}_{=Q^{\star}(s, a)} \right).$$

In short, the optimal policy is the greedy policy w.r.t.  $Q^*$ . Hence, enough to compute/learn  $Q^*$ .



ALSO KNOW THE OPTIMAL POLICY

If I FIND A 4000 CSTIMATION OF Q\*
THAN I FIND A 4000 CSTIMATION OF Q\*
TH

## Optimal Bellman Operator

FUNCTIONS SPACE

The optimal Bellman operator is a mapping  $\mathcal{T}: \mathbb{R}^{S \times A} \to \mathbb{R}^{S \times A}$ , such that for any function  $f: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$ ,

$$\mathcal{T}f(s,a) := R(s,a) + \gamma \sum_{x \in \mathcal{S}} P(x|s,a) \max_{b \in \mathcal{A}} f(x,b), \quad s \in \mathcal{S}, a \in \mathcal{A}$$

 $\mathcal T$  applies to (or *operates on*) a function defined on  $\mathcal S$  and returns another function defined on  $\mathcal S$ .

- $Q^*$  satisfies  $\mathcal{T}Q^* = Q^*$ .
- In words,  $Q^*$  is the unique fixed-point of the operator  $\mathcal{T}^*$ .



# CE-OPO: A Model-Based Method based on Certainty Equivalence



#### Known Model

When the model (MDP) is known, we simply solve the Bellman optimality equations using, e.g., VI or QVI:

QVI is quite similar to VI. It starts from  $Q_0$  and iterates for  $n \ge 1$ :

$$Q_{n+1} = \mathcal{T}Q_n$$

I.e.,

$$Q_{n+1}(s, a) = R(s, a) + \gamma \sum_{x \in S} P(x|s, a) \max_{b \in \mathcal{A}} Q_n(x, b)$$

 $\Longrightarrow Q_n$  converges to  $Q^*$  since  $\mathcal{T}$  is contractive.



## CE-OPO: Certainty Equivalence OPO

Model (MDP) is unknown, so one cannot solve the Bellman optimality equations.

Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate  $\widehat{P}$  (of P) and  $\widehat{R}$  (of R)
- ullet Step 2: Solve the Bellman optimality equations using  $\widehat{P}$  and  $\widehat{R}$



Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate  $\widehat{P}$  (of P) and  $\widehat{R}$  (of R)
- ullet Step 2: Solve the Bellman optimality equations using  $\widehat{P}$  and  $\widehat{R}$

We introduce visit counts for various triplets (s, a, s').

Given a dataset  $\mathcal{D} = \{(s_t, a_t, r_t), 1 \leq t \leq n\}$ , define for any (s, a, s'),

$$N(s, a, s') = \sum_{t=1}^{n-1} \mathbb{I}\{s_t = s, a_t = a, s_{t+1} = s'\}$$
$$N(s, a) = \sum_{s' \in S} N(s, a, s')$$

A better choice in practice is





Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate  $\widehat{P}$  (of P) and  $\widehat{R}$  (of R)
- ullet Step 2: Solve the Bellman optimality equations using  $\widehat{P}$  and  $\widehat{R}$

#### **Smoothed Estimator for** *P*:

$$\widehat{P}(s'|s,a) = \frac{N(s,a,s') + \alpha}{N(s,a) + \alpha S}$$
 Number of states

- S denotes the number of states.
- $\alpha \geq 0$  is an arbitrary choice controlling the level of smoothing.
- $\alpha = 0$  corresponds to Maximum Likelihood Estimator (unbiased).
- $\alpha=1/S$  corresponds to Laplace Smoothed Estimator (biased, but the bias vanishes as N(s,a) increases).
- If  $\alpha = 0$ , for N(s, a) = 0, define  $\widehat{P}(s'|s, a) = 1/S$ .



Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate  $\widehat{P}$  (of P) and  $\widehat{R}$  (of R)
- $\bullet$  Step 2: Solve the Bellman optimality equations using  $\widehat{P}$  and  $\widehat{R}$

#### Smoothed Estimator for R:

$$\widehat{R}(s,a) = \frac{\alpha + \sum_{t=1}^{n-1} r_t \mathbb{I}\{s_t = s, a_t = a\}}{\alpha + N(s,a)}$$

- $\bullet$   $\alpha > 0$  is an arbitrary choice controlling the level of smoothing.
- $\alpha = 0$  corresponds to Maximum Likelihood Estimator (unbiased).



Idea: Estimate the MDP using data and apply the certainty equivalence principle.

- Step 1: Compute estimate  $\widehat{P}$  (of P) and  $\widehat{R}$  (of R)
- $\bullet$  Step 2: Solve the Bellman optimality equations using  $\widehat{P}$  and  $\widehat{R}$

Using  $\widehat{P}$  and  $\widehat{R}$ , we can solve empirical Bellman optimality equations:

$$\widehat{Q}^{\star}(s, a) = \widehat{R}(s, a) + \gamma \sum_{x \in \mathcal{S}} \widehat{P}(x|s, a) \max_{b \in \mathcal{A}} \widehat{Q}^{\star}(x, b)$$

or

$$\widehat{Q}^{\star} = \widehat{\mathcal{T}} \widehat{Q}^{\star}$$

 $\widehat{\mathcal{T}}$  is the empirical Bellman operator.

 $\widehat{Q}^{\star} = \widehat{\mathcal{T}} \widehat{Q}^{\star}$  can be solved using QVI.



## CE-OPO: Certainty Equivalence OPO

#### CE-OPO: Certainty Equivalence OPO

- input:  $\mathcal{D} = \{(s_t, a_t, r_t)\}_{1 \le t \le n}, \alpha \text{ (optional)}$
- Compute estimates  $\widehat{P}(s'|s,a)$  and  $\widehat{R}(s,a)$  for all (s,a,s')
- ullet Find  $\widehat{\pi}^{\star}$ , the optimal policy in the empirical MDP  $\widehat{M} = (\mathcal{S}, \mathcal{A}, \widehat{P}, \widehat{R})$ .
- output:  $\widehat{\pi}^*$

 $\widehat{M}$  could be solved using VI, PI, or QVI.



## CE-OPO: Asymptotic Convergence

$$\begin{split} \widehat{P}(s'|s,a) &\longrightarrow_{N(s,a) \to \infty} P(s'|s,a) \quad \text{almost surely} \\ \widehat{R}(s,a) &\longrightarrow_{N(s,a) \to \infty} R(s,a) \quad \text{almost surely} \end{split}$$

If  $\pi_b$  is exploratory enough in the sense that  $N(s,a) \to_{n\to\infty} \infty$  for all (s,a), then

 $\widehat{P}$  and  $\widehat{R}$  converge to P and R as  $n\to\infty.$  Thus, we can show

$$\widehat{\mathcal{T}} \longrightarrow_{n \to \infty} \mathcal{T} \qquad \widehat{Q}^{\star} \longrightarrow_{n \to \infty} Q^{\star} \quad \text{almost surely}$$

which guarantees

$$\widehat{\pi}^{\star} \longrightarrow_{n \to \infty} \pi^{\star}$$
 almost surely

#### Theorem

If all state-action pairs are visited infinitely often under  $\pi_b$ , then  $\widehat{Q}^*$  converges to  $Q^*$  almost surely:

$$\mathbb{P}\Big(\lim_{n\to\infty} \widehat{Q}^\star = Q^\star\Big) = 1$$
 be choose arcoddingly

Strong guarantee, but only asymptotically (unfortunately).

#### CE-OPO: Pros and Cons

#### Disadvantages of the model-based solution:

- ullet Often leads to large variance in the estimation of  $Q^{\star}$
- Computational complexity is  $O(S^3)$ , and space complexity is  $O(S^2)$ .
- May not be easily converted to an incremental procedure.



## Model-Free Method for OPO: Tabular Q-Learning (and Friends)



## Bellman Optimality Equations

Bellman optimality equations (using Q):

$$Q^{\star}(s,a) = R(s,a) + \gamma \sum_{x \in \mathcal{S}} P(x|s,a) \max_{b} Q^{\star}(x,b)$$
 
$$\mathcal{T}Q^{\star} = Q^{\star}$$
 Because  $\mathcal{T}Q^{\star} = Q^{\star}$ 

Equivalently,  $Q^*$  is the root of functional  $F(Q) = \mathcal{T}Q - Q$ , namely the solution to the nonlinear system:

$$F(Q) = \mathcal{T}Q - Q = 0$$
, where  $Q \in \mathbb{R}^{S \times A}$ 

- Known model: Find the root of F using VI (or Q-iteration).
- Unknown model: We have only samples from R and P (as in TD).

We need a root finding method from noisy measurements.



## Stochastic Approximation

Stochastic Approximation (SA) is method to find the root of an increasing function from noisy measurements.



#### The setting:

- ullet At the n-th iteration, you select  $x_n$
- You get a noisy measurement  $y_n = h(x_n) + \xi_n$
- ullet  $\xi_n$  is a noise with zero-mean but may depend on the selected point  $x_n$
- $\mathbb{E}[\xi_n|\xi_1,\ldots,\xi_{n-1}]=0$



SA proposed by Robbins & Monro in (1951)

$$x_{n+1} = x_n - \alpha_n y_n = x_n - \alpha_n (h(x_n) + \xi_n), \quad n \ge 1$$

with  $(\alpha_n)_n$  satisfying the Robbins-Monro conditions:

$$\alpha_n > 0, \quad \sum_{n=1}^{\infty} \alpha_n = \infty, \quad \text{and} \quad \sum_{n=1}^{\infty} \alpha_n^2 < \infty$$

#### Theorem

Under the following assumptions

- $\mathbb{E}[\|\xi_n\|^2|\xi_1,\dots,\xi_{n-1}] \le K(1+\|x_n\|^2)$ , almost surely for some K
- 6 h is Lipschitz
- $\sup_n \|x_n\| < \infty$ , almost surely

$$\lim x_n = x^* \qquad \text{almost surely.}$$



#### Example

Solving  $h(x) = x^2 - 1 = 0$  through noisy samples from h using SA





## SA for $F(Q) = \mathcal{T}Q - Q$

We apply SA to  $F(Q) = \mathcal{T}Q - Q$ .

- Consider a sample  $(s_t, a_t, r_t, s_{t+1})$ .
- We show that  $Y_t = r_t + \gamma \max_{a'} Q(s_{t+1}, a') Q(s_t, a_t)$ , conditioned on  $(s_t, a_t)$  and Q is an unbiased sample from  $F(Q)(s_t, a_t)$ .

$$\begin{split} \mathbb{E}[Y_t|Q,s_t,a_t] &= \mathbb{E}\Big[r_t + \gamma \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t) \Big| Q,s_t,a_t \Big] \\ &= \underbrace{\mathbb{E}\Big[r_t \Big| Q,s_t,a_t \Big]}_{=R(s_t,a_t)} + \gamma \mathbb{E}\Big[\max_{a'} Q(s_{t+1},a') \Big| Q,s_t,a_t \Big] - Q(s_t,a_t) \\ &= R(s_t,a_t) + \gamma \sum_{x \in \mathcal{S}} \underbrace{P(x|s_t,a_t)}_{a'} \max_{a'} Q(s_{t+1},a') - Q(s_t,a_t) \\ &= \mathcal{T}Q(s_t,a_t) - Q(s_t,a_t) = F(Q)(s_t,a_t) \end{split}$$

Hence,  $\mathbb{E}[Y_t|\mathcal{H}_{t-1}] = F(Q)(s_t, a_t)$ .

 The other technical conditions of SA can be verified. (Technical and tedious, so omitted here.)



SA for 
$$F(Q) = \mathcal{T}Q - Q$$

Application of SA to  $F(Q) = \mathcal{T}Q - Q$ :

The Q-Learning (QL) update rule:

$$\underbrace{Q(s_t, a_t)}_{\text{new value}} \leftarrow \underbrace{Q(s_t, a_t)}_{\text{new value}} + \underbrace{\alpha_t \Big(r_t + \gamma \max_{b \in \mathcal{A}} Q(s_{t+1}, b) - Q(s_t, a_t)\Big)}_{\text{correction}}$$

And Q(s, a) unchanged if  $(s, a) \neq (s_t, a_t)$ .



## QL: Learning Rate

To guarantee convergence, learning rates  $(\alpha_t)_{t\geq 1}$  must satisfy the *Robbins-Monro* conditions:

$$\alpha_t > 0, \qquad \sum_{t=1}^{\infty} \alpha_t = \infty, \qquad \sum_{t=1}^{\infty} \alpha_t^2 < \infty$$

(I.e., a positive sequence that is square-summable-but-not-summable.)

#### Examples:

- $\alpha_t = \frac{1}{t+1}$ ,
- $\alpha_t = \frac{c}{t^a}$  for  $a \in (\frac{1}{2}, 1]$
- $\alpha_t = \alpha_t(s,a) = \frac{1}{N_t(s,a)+1}$ , where  $N_t(s,a)$  is the number of times (s,a) is sampled in the first t-1 rounds —i.e., learning rate can be personalized to (s,a), assuming that Robbins-Monro conditions could be met.



QL

**input:** 
$$\mathcal{D} = \{(s_t, a_t, r_t)\}_{1 \le t \le n}, (\alpha_t)_{t \ge 1}$$

initialization: Select Q<sub>1</sub> arbitrarily

for t = 1, ..., n-1:

- $\bullet \ \delta_t = r_t + \gamma \max_{b \in \mathcal{A}} Q_t(s_{t+1}, b) Q_t(s_t, a_t)$
- Update:

$$Q_{t+1}(s,a) = \begin{cases} Q_t(s,a) + \alpha_t \delta_t & (s,a) = (s_t, a_t) \\ Q_t(s,a) & \text{else.} \end{cases}$$

**output:** Greedy policy w.r.t.  $Q_n$ 

•  $Q_n$  is an estimate of  $Q^*$ , giving an estimate  $\widehat{\pi^*}$  of the optimal policy:

$$\widehat{\pi^{\star}}(s) \in \operatorname*{argmax}_{a \in A} Q_n(s, a)$$



## QL: Asymptotic Convergence

#### Theorem

If all state-action pairs are visited infinitely often in  $\mathcal{D}$  and  $(\alpha_t)_{t\geq 1}$  satisfies the Robbins-Monro conditions, then  $Q_t$  converges to the true value function  $Q^*$  almost surely:

$$\mathbb{P}\left(\forall s \in \mathcal{S}, a \in \mathcal{A}, \lim_{t \to \infty} Q_t(s, a) = Q^*(s, a)\right) = 1$$

In other words, if  $\pi_b$  (used to collect  $\mathcal{D}$ ) is exploratory enough,  $Q_t$  converges to  $Q^*$ , in the following sense:

$$\mathbb{P}\left(\exists \mathcal{D}, \exists (s, a) : \lim_{t \to \infty} Q_t(s, a; \mathcal{D}) \neq Q^*(s, a)\right) = 0$$

I.e., datasets for which  $Q_{\infty} \neq Q^{\star}$  will occur with probability 0.



## On Behavior Policy

- (Asymptotic) convergence requires that state-action pairs are visited infinitely often.
- The behavior policy  $\pi_b$  could change during the learning, as long as it is kept exploratory enough.
  - E.g.,  $\varepsilon$ -greedy policy (for some  $\varepsilon > 0$ )

$$\pi_{\varepsilon\text{-greedy}}(s) = \begin{cases} \operatorname{argmax}_a Q_t(s, a) & \text{w.p. } 1 - \varepsilon \\ \text{sample uniformly at random from } \mathcal{A} & \text{w.p. } \varepsilon \end{cases}$$

Note that  $\pi_{\varepsilon\text{-greedy}}(s)$  is non-stationary.

• E.g., Boltzmann's policy (a.k.a. softmax):

at state 
$$s$$
 , select action  $a \in \mathcal{A}$  w.p. 
$$\frac{e^{\eta Q_t(s,a)}}{\sum_{b \in \mathcal{A}} e^{\eta Q_t(s,b)}}$$

where  $\eta>0$  is a parameter controlling exploration.

• Incremental QL (cf. the very last slides)



## QL: Advantages

- QL is model-free: It does not require to estimate a model of the MDP, and only relies on collected experience.
- QL can be incremental (unlike the model-based methods).
- $\bullet$  Space complexity is O(SA) and computational complexity, per round, is O(A). Much cheaper than the model-based method.



## QL: Non-Asymptotic Convergence

- Asymptotic convergence results often do not tell us much information about the speeds of convergence.
- We are interested in knowing what happens with small datasets. So we study the non-asymptotic convergence.

#### Sample complexity for OPO

Given  $\delta \in (0,1)$  and  $\varepsilon > 0$ , define the PAC off-policy sample complexity as the number  $SC(\varepsilon,\delta)$  of samples from the MDP such that for all  $n \geq SC(\varepsilon,\delta)$ ,

$$||Q^{\star} - Q_n||_{\infty} \le \varepsilon$$
, with probability  $\ge 1 - \delta$ 



#### Two Definitions

Two notions arising in sample complexity of OPO:

**Cover Time**  $t_{\text{cover}}$ . Given  $t_1>0$ , let  $t_2>t_1$  denote the first time step such that all (s,a) pairs are visited at least once with probability at least  $\frac{1}{2}$ . Then,  $t_{\text{cover}}=t_2-t_1$  defines the cover time of M.

- $t_{\mathsf{cover}} \geq SA$ .
- A quantity related to  $\pi_b$ .

**Effective Horizon.** Given  $\varepsilon > 0$ , the effective horizon is

$$H_{\mathsf{eff}} := \frac{-1}{1 - \gamma} \log(\varepsilon(1 - \gamma))$$

• Truncating  $\infty$ -horizon to  $H_{\text{eff}}$  would bring at most  $\varepsilon$  error to  $V^{\star}$ .



## QL: Non-Asymptotic Convergence

#### Theorem (Even-dar & Mansour (2003))

Let  $\delta \in (0,1)$  and  $\varepsilon \in (0,\frac{1}{1-\gamma}]$ , and assume that n satisfies:

$$n \geq c \cdot \frac{\left[t_{\mathit{cover}}\right]^{H_{\mathit{eff}}}}{\varepsilon^2 (1 - \gamma)^4} \log \left(\frac{SAn}{\delta}\right) \log \left(\frac{SA}{\varepsilon \delta (1 - \gamma)^2}\right)$$

where c is a universal constant. Then, QL with  $\alpha_t(s,a) = \frac{1}{N_t(s,a)+1}$  satisfies:

$$||Q^* - Q_n||_{\infty} \le \varepsilon$$
, with probability  $\ge 1 - \delta$ .

Essentially, it establishes a sample complexity for QL proportional to

$$\widetilde{O}\left(\frac{\left[t_{\mathsf{cover}}\right]^{H_{\mathsf{eff}}}}{\varepsilon^2(1-\gamma)^4}\right)$$

where  $\widetilde{O}(\cdot)$  hides poly-log terms.



## QL: Non-Asymptotic Convergence

#### Theorem (Li et al. (2020))

Let  $\delta \in (0,1)$  and  $\varepsilon \in (0,\frac{1}{1-\alpha}]$ , under QL one has:

$$||Q^* - Q_n||_{\infty} \le \varepsilon$$
, with probability  $\ge 1 - \delta$ .

provided that

$$\begin{split} n &\geq c \cdot \frac{t_{\text{cover}}}{\varepsilon^2 (1 - \gamma)^5} \log^2 \left( \frac{SAn}{\delta} \right) \log \left( \frac{1}{\varepsilon (1 - \gamma)^2} \right) \\ \alpha_t &= \frac{c'}{\log(SAn/\delta)} \min \left( \frac{(1 - \gamma)^4 \varepsilon^2}{\gamma^2}, 1 \right) \end{split}$$

where c, c' are universal constants.

Essentially, it establishes a sample complexity for QL proportional to

$$\widetilde{O}\!\left(rac{t_{\mathsf{cover}}}{arepsilon^2(1-\gamma)^5}
ight)$$



#### QL: Overestimation Bias

QL could exhibit weak empirical performance due overestimation bias.

Overestimation bias stems from the term

$$\max_{b \in \mathcal{A}} Q_t(s_{t+1}, b)$$

to approximate  $\max_{b \in \mathcal{A}} Q^{\star}(s_{t+1}, b)$  in the update equation of QL.

• It is one major reason behind slow convergence of QL in practice.

Could we update  $Q_t$  in a wiser way?

**Idea:**  $\max_{b \in \mathcal{A}} Q^*(s_{t+1}, b)$  is related to the classical problem of Estimating the Maximum Expected Value. So let's use a wiser such estimate.



## Estimating the Maximum Expected Value

Consider r.v.'s  $X_1, \ldots, X_m$  with  $\mathbb{E}[X_i] = \mu_i$ .

- We wish to estimate  $\mu_{\star} = \max_{i} \mathbb{E}[X_{i}]$ .
- Distributions of  $X_i, \ldots, X_m$  unknown.
- We have a set  $S_i$  of i.i.d. samples from each  $X_i$ .

Maximum Estimator (ME): We construct  $\widehat{\mu}_i := \widehat{\mu}_i(S_i) = \frac{1}{|S_i|} \sum_{x \in S_i} x$ , and set

$$\widehat{\mu}_{\star}^{\mathsf{ME}} := \max_{i} \widehat{\mu}_{i}.$$

 $\widehat{\mu}_{\star}^{\mathsf{ME}} \text{ is positively biased since: } \mathbb{E}[\widehat{\mu}_{\star}^{\mathsf{ME}}] = \mathbb{E}[\max_{i}\widehat{\mu}_{i}] \geq \max_{i}\mathbb{E}[\widehat{\mu}_{i}] = \max_{i}\mu_{i} = \mu_{\star}$ 

**Double Estimator (DE):** Randomly partition each sample set as  $S_i = S_i^A \cup S_i^B$ .

$$\bar{i} \in \operatorname{argmax}_{\bar{i}} \widehat{\mu}_i(S^A_i) \qquad \text{Then} \qquad \widehat{\mu}_{\star}^{\text{DE}} := \widehat{\mu}_{\bar{i}}(S^B_{\bar{i}}).$$

It can be shown that  $\widehat{\mu}_{\star}^{\rm DE}$  is negatively biased.



#### Combining Double Estimator with QL

The Double Estimator could be incorporated into QL:

- Let's maintain two estimates of Q-values  $Q^A$  and  $Q^B$ , each updates using half of the samples from  $\mathcal{D}$ :
- Update for  $Q^A$

$$Q_{t+1}^A(s,a) = \begin{cases} Q_t^A(s,a) + \alpha_t \Big( r_t + \gamma Q_t^B(s_{t+1}, \overline{\mathbf{a}}) - Q_t^A(s,a) \Big) & (s,a) = (s_t, a_t) \\ Q_t^A(s,a) & \text{else.} \end{cases}$$

with  $\overline{a} = \operatorname{argmax}_b Q_t^A(s_{t+1}, b)$ .

• A similar update will be made for  $Q^B$ 

The corresponding algorithm is called Double QL (van Hasselt, 2010).



#### Double QL

input:  $\mathcal{D} = \{(s_t, a_t, r_t)\}_{1 \leq t \leq n}, (\alpha_t)_{t \geq 1}$ initialization: Select  $Q_1^A, Q_1^B$  arbitrarily

for t = 1, ..., n-1:

- $\bullet$  Set update-A = True w.p. 0.5
- if update-A:

$$\begin{split} & - \overline{a} = \operatorname{argmax}_a Q_t^A(s_{t+1}, a) \\ & - \delta_t = r_t + \gamma Q_t^B(s_{t+1}, \overline{a}) - Q_t^A(s_t, a_t) \\ & - \text{Update: } Q_{t+1}^A(s, a) = \begin{cases} Q_t^A(s, a) + \alpha_t \delta_t & (s, a) = (s_t, a_t) \\ Q_t^A(s, a) & \text{else.} \end{cases} \end{split}$$

else:

$$\begin{split} & - \overline{a} = \operatorname{argmax}_a Q_t^B(s_{t+1}, a) \\ & - \delta_t = r_t + \gamma Q_t^A(s_{t+1}, \overline{a}) - Q_t^B(s_t, a_t) \\ & - \text{ Update: } Q_{t+1}^B(s, a) = \begin{cases} Q_t^B(s, a) + \alpha_t \delta_t & (s, a) = (s_t, a_t) \\ Q_t^B(s, a) & \text{else.} \end{cases} \end{split}$$

**output:** Policy greedy w.r.t.  $Q_n^A + Q_n^B$ 



•  $Q_n$  is an estimate of  $Q^*$ , giving an estimate  $\widehat{\pi^*}$  of the optimal policy:

$$\widehat{\pi^{\star}}(s) \in \operatorname*{argmax}_{a \in \mathcal{A}} Q_n^A(s, a) + Q_n^B(s, a)$$

Double QL vs. QL

Double QL vs. QL in a simple MDP(Source: Sutton & Barto):



- ullet 4 states: A,B and two terminal states denoted by  $\Box$
- At A: Two actions ('left' and 'right'), each with r=0
- At B: Multiple actions, each with  $r \sim \mathcal{N}(-0.1, 1)$
- $\bullet \Longrightarrow \pi^{\star}(A) = \mathsf{right}$

However, OPO methods may choose 'left' since maximization bias making B appear to have a positive value.



#### Double QL vs. QL

Double QL vs. QL in a simple MDP (Source: Sutton & Barto): Averaged over 10000 runs.  $\pi_{\rm b}$ , is  $\varepsilon$ -greedy with  $\varepsilon=0.1$ .



- QL initially learns 'left' much more often than 'right'
- In contrast, Double QL is less affected by maximization bias.



## Off-Policy vs. Offline

#### Off-Policy Learning/Optimization \( \neq \) Offline RL

- In offline RL, the goal is to learn an optimal policy (or a near-optimal one) from a dataset we're offline; no further exploration.
- Offline RL ⊂ OPO
- Note that OPO could take place in an online fashion (but behavior must be generated off-the-target-policy)



#### Historical Account

- Christopher Watkins presented QL in 1989 in his PhD thesis.
- In 1994, Tsitsiklis established the almost sure convergence of QL by showing its relation to SA. See the paper for a detailed proof of asymptotic convergence guarantee and verification of SA conditions (Tsitsiklis, 1994).
- Non-asymptotic convergence of QL was done in (Even-dar & Mansour, 2003).
   State-of-the-art is (Li et al., 2020).
- Double QL is presented in (van Hasselt, 2010).
- Research on improved sample complexity of QL as well as improved variants is ongoing.



#### References

- ① C. Watkins. Learning from delayed rewards. PhD thesis at King's College, 1989.
- Q H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statistics, 1951.
- 3 J. Tsitsiklis. Asynchronous stochastic approximation and Q-learning. Machine Learning, 1994.
- E. Even-Dar and Y. Mansour. Learning rates for Q-learning. Journal of machine learning Research, 2003.
- G. Li, Y. Wei, Y. Chi, Y. Gu, and Y. Chen. Sample complexity of asynchronous Q-learning: Sharper analysis and variance reduction. Advances in Neural Information Processing Systems, 2020.
- 6 H. van Hasselt. Double Q-learning. Advances in Neural Information Processing Systems, 2010.

