Função Real

Seja uma função f:A o B, então:

- O conjunto A é o **domínio**. Representa os valores que a variável independente (x) assume.
- O conjunto B é o **contradomínio**. Representa os valores que a variável dependente (y) pode assumir.
- O subconjunto B dado por todos os valores produzidos pela associação é a **imagem**. Representa os valores que a variável dependente (y) assume.

In []:

Seja a função f(x)=x+1, e os conjuntos $A=\{0,1,2,3\}$ e $B=\{1,2,3,4,5\}$, então:

$$f(0) = 0 + 1 = 1$$

$$f(1) = 1 + 1 = 2$$

$$f(2) = 2 + 1 = 3$$

$$f(3) = 3 + 1 = 4$$

$$D(f) = \{0, 1, 2, 3\}$$

$$CD(f) = \{1, 2, 3, 4, 5\}$$

$$Im(f) = \{1,2,3,4\}$$

Domínio de uma Função Real

$$\frac{f(x) = \sqrt{3x - 12}}{x - 4}$$

Condições:

$$3x - 12 \ge 0$$

$$x-4
eq 4$$

Logo:
$$D(f)=\{x\in\mathbb{R}|x>4\}$$

Função Polinominal

Uma função polinomial de grau n pode ser escrita como $f(x)=a_nx^n+a_{n-1}x^{n-1}\ldots+a_2x^2+a_1x+a_x$

Nome	Forma	Grau
	a ()	
Função zero	f(x) = 0	Indefinido

|Função Constante |

$$f(x) = k, k \neq 0$$

| 0 | Função Identidade |

$$f(x) = x$$

| 1 | Função linear |

$$f(x) = ax, a \neq 0$$

| 1 | Função de Primeiro Grau |

$$f(x) = ax + b, a \neq 0$$

| 1 | Função de Segundo Grau |

$$f(x) = ax^2 + bx + c, a \neq 0$$

| 2 |... | ... | ...

Função Ímpar

Definição: Seja $f:\mathbb{R} o\mathbb{R}$. Diremos que f é impar se para todo x, f(-x)=-f(x).

Considere a função $f(x)=x^3$

x f(x)

-2 | -8 -1 | -1 0 | 0 1 | 1 2 | 8

In []:

Função Constante

Toda função $f:\mathbb{R} o\mathbb{R}$ na forma f(x)=K, com $K\in\mathbb{R}$, é uma função constante.

$$f(x) = 2$$

$$f(x) = -4$$

In []:

Função Linear

Toda função $f:\mathbb{R} o \mathbb{R}$ na forma f(x)=ax, com a
eq 0, é uma função linear.

$$f(x) = 2x$$

$$f(x) = -2x$$

Função Identidade

Toda função $f:\mathbb{R} o \mathbb{R}$ na forma f(x)=x, é uma função identidade.

In []:

Função do Primeiro Grau ou Função Afim

Toda função $f:\mathbb{R} \to \mathbb{R}$ na forma f(x)=ax+b, com $b \neq 0$, é uma **função do primeiro grau ou função afim.**

 $\operatorname{Em} f(x) = ax + b$:

- a é o coeficiente angular, e representa a variação de y correspondente a um aumento do valor de x igual a 1. Quando a>0, a função é crescente e quando a<0, a função é decrescente.
- b é o coeficiente linear, e representa a ordenada do ponto de intersecção da reta com o eixo y no ponto (0,b).
- A raiz da função é obtida fazendo y = 0 em y = ax + b.

$$0 = ax + b$$

$$ax = -b$$

$$x = \frac{-b}{a}$$

In []:

$$f(x) = 2x + 1$$

In []:

Função Quadrática ou Função do Segundo Grau

Toda função $f:\mathbb{R} o \mathbb{R}$ na forma $f(x)=ax^2+bx+c$, é uma função do segundo grau ou função quadrática.

O gráfico da função quadrática é uma parábola, de concavidade voltada para cima quando a>0 e voltada para baixo quando a<0, e que intercepta o euixo y no ponto (0,c).

As raízes da função quadrática são obtidas fazendo y=0 em $y=ax^2+bx+c$.

O vértice está localizado no ponto: $V(x_v,Y_v)=\left(-rac{b}{2a},-rac{\Delta}{4a}
ight)$

Quando o discriminante $\Delta > 0$ a parábola intercepta em dois pontos do eixo x.

Quando o discriminante $\Delta=0$ a parábola intercepta em apenas um ponto do eixo x.

Quando o discriminante $\Delta < 0$ não há raiz real e a parábola não intercepta o eixo x.

$$f(x) = 2x^2 + 2x + 3$$

In []:

Função par

Definição: Seja $f:\mathbb{R} o\mathbb{R}$. Dizemos que f é par se pra todo x, f(-x)=f(x).

$$f(x) = x^2 - 1$$

In []:

Função Potência

Toda função $f:\mathbb{R}\to\mathbb{R}$ na forma $f(x)=kx^n$, é uma **função potência**, em que k e n são constantes diferentes de zero; k é a constante de proporção e n é a potência. Os gráficos da função pontência podem apresentar quatro formas possíveis:

ullet Quando k>0, o gráfico está no primeiro quadrante.

ullet Quando k<0, o gráfico está no quarto quadrante.

Função Exponencial

Toda função $f: \mathbb{R} \to \mathbb{R}$, na forma $f(x) = a^x$, em que a é uma constante positiva e x é o expoente variável, é uma **função exponencial**.

$$D(f) = \mathbb{R}$$

$$Im(f)=(0,+\infty)$$

O gráfico da função exponencial pode ter três formas diferentes:

- Se a > 1, a^x cresce com x crescente.
- se 0 < a < 1, a^x decresce com x crescente.
- Se a=1, a^x é constante.

In []:

Função Logarítmica

Toda função $f:\mathbb{R} \to \mathbb{R}$, na forma $f(x)=log_a x$, em que a é uma constante positiva e $a \neq 1$ é uma **função logarítmica**.

$$D(f) = (0, +\infty)$$

$$Im(f) = \mathbb{R}$$

Se a>0 e $a\neq 1$, temos que a função $f(x)=log_ax$ é a inversa da função exponencial, uma vez que a definição de logarítmos nos diz que $log_ax=y\leftrightarrow a^y=x$

Funções Trigonométricas

Função Seno

Toda função $f:\mathbb{R} o \mathbb{R}$ na forma f(x) = senx é uma **função seno**.

A função seno é uma função ímpar, contínua, períodica e limitada.

O domínio da função é $D(f)=\mathbb{R}$ e a imagem é $Im(f)=\{y\in R|-1\leq y\leq 1\}$

Função coseno

Toda função $f:\mathbb{R}\to\mathbb{R}$ na forma f(x)=cosenox é uma **função coseno**. A função coseno é unma função par, contínua, períodica e limitada.

O domínio da função é $D(f)=\mathbb{R}$ e a imagem é $Im(f)=\{y\in\mathbb{R}|-1\leq y\leq 1\}$

In []: