Virtualização

Sistemas Operacionais Prof. MSc. Rodrigo D. Malara

Sistemas de Computadores

- Os sistemas de computadores são projetados com basicamente 3 componentes:
 - -hardware
 - -sistema operacional
 - –aplicações

Sistemas de Computadores

Aplicações

Sistema Operacional

Hardware

Plataformas diferentes

Incompatibilidade

Virtualização - Introdução

- Introduzido nos anos 60 em Mainframes
- Em 1980 os microcomputadores e PC's ganharam em eficiência
- Depois de 1990, a virtualização volta a ser estudada
- Virtualização hoje, está em primeiro plano

Virtualização - Introdução

 Virtualização é uma camada entre o hardware e o sistema operacional

Virtualização - Introdução

- Permitir que mais de um Sistemas
 Operacional funcione em um mesmo
 hardware, em um mesmo instante
- Cada máquina virtual funciona isoladamente do sistema operacional hospedeiro e de outras máquinas virtuais.
- Cada máquina virtual possui o seu próprio hardware virtual (como RAM, CPU, Placa de Rede, etc)

Definição de Máquina Virtual

- "Uma duplicata eficiente e isolada de uma máquina real"
- A IBM define uma máquina virtual como uma cópia totalmente protegida e isolada de um sistema físico
- Na década de 60, uma abstração de software que enxerga um sistema físico (máquina real)

Máquina Virtual

Diferentes tipos

Consolidação

Virtualização - Funcionamento

 Novos processadores da Intel já vem com instruções para virtualização,

exemplo:

VMXONVMLAUNCHVMXOFF

Intel Virtualization Technology

http://images.anandtech.com/reviews/tradeshows/IDF/2005/Spring/Day1/Wrapup/VT.jpg

Tipos de virtualização

 Emulador - é o oposto da máquina real

- Implementa todas as instruções realizadas pela máquina real em um ambiente abstrato de software
- "Engana", fazendo com que todas as operações da máquina real sejam implementadas em um software
- Interpreta um código desenvolvido para outra plataforma.

Emulador vs Máquina Virtual

 A funcionalidade e o nível de abstração de uma máquina virtual encontra-se em uma posição intermediária entre uma máquina real e um emulador, na forma em que os recursos de hardware e de controle são abstraídos e usados pelas aplicações.

Tipos de virtualização

VMM – Virtual Machine Monitor

- Conhecida como Hypervisor
- Fornece uma interface (através da multiplexação do hardware) que é idêntica ao hardware subjacente e controla uma ou mais máquinas virtuais
- Pode ser implementado entre o hardware e o SO hospedeiro ou como um processo do SO hospedeiro
- O monitor pode criar uma ou mais máquinas virtuais sobre uma única máquina real.

Técnicas de virtualização

1. Virtualização total

- Uma estrutura completa de hardware é virtualizada
- Sistema convidado não precisa sofrer qualquer tipo de alteração
- Pode requerer tradução de arquivos executáveis em tempo real
- Grande compatibilidade
- Perda de velocidade
- Ex: VMWare, Oracle Virtual Box, Microsoft

Técnicas de virtualização

2. Paravirtualização

- O sistema que vai ser virtualizado (convidado) sofre modificações para que a interação com o monitor de máquinas virtuais (VMM) seja mais eficiente
 - Execução direta de instruções na CPU sem passar pelo VMM
 - Provê aos sistemas hóspedes acesso aos recursos de hardware a partir dos drivers instalados no próprio hipervisor
 - Perda de compatibilidade e portabilidade
 - Alguns SOs não possuem versões paravirtualizadas

Técnicas de virtualização

3. Virtualização assistida por hardware

- Suportado por fabricantes de hardware
 Ex: Intel VT-x e AMD-V
- Permite que VMM rode em modo ultra-privilegiado de captura de interrupções, eliminando necessidade de paravirtualização e tradução de binários
- O estado de execução do SO convidado é armazenado em no Virtual Machine Control Structures (VT-x) ou Virtual Machine Control Blocks (AMD-V).
- Permite bom desempenho sem os pontos negativos das técnicas anteriores

Níveis de Virtualização

- Virtualização do hardware
- Virtualização do sistema operacional
- Virtualização de linguagens de programação

Virtualização do Hardware

- Exporta o sistema físico como uma abstração do hardware;
- Qualquer software escrito para a arquitetura (x86, por exemplo) irá funcionar.
- Ex: Oracle Virtual Box, VMWare wokstation, MS Virtual PC

Virtualização do Hardware

Aplicação Aplicação

Sistema Operacional (Linux, Windows, Unix)

cpu, ram, dispositivos de E/S - Virtual

Máquina Virtual

Sistema Operacional (Linux, Windows, Unix)

cpu, ram, dispositivos de E/S - Real

Virtualização do sistema operacional

- Exporta um sistema operacional como abstração de um sistema específico;
- A máquina virtual roda aplicações ou um conjunto de aplicações – de um sistema operacional específico.
- Exemplos: Docker, Core OS rkt, OCI

Virtualização do sistema operacional

Aplicação Aplicação

Sistema Operacional (Linux, Windows, Unix) - Virtual

Máquina Virtual

Sistema Operacional (Linux, Windows, Unix)

cpu, ram, dispositivos de E/S - Real

Virtualização de linguagens de programação

- Cria uma aplicação no topo do sistema operacional;
- São desenvolvidas para computadores fictícios projetados para uma finalidade específica;
- A camada exporta uma abstração para a execução de programas escritos para esta virtualização.

Virtualização de linguagens de programação

Aplicação

Máquina Virtual

Sistema Operacional (Linux, Windows, Unix)

cpu, ram, dispositivos de E/S - Real

Poder da Virtualização

- O uso das máquinas virtuais e emuladores possibilitam:
 - Executar um sistema operacional (e suas aplicações) sobre outro;
 - Utilizar uma aplicação de outra plataforma operacional;
 - Executar múltiplos sistemas operacionais;
 - -Flexibilizar uma plataforma complexa de trabalho.

Poder da Virtualização

Poder da Virtualização

Propriedades de monitores de máquinas virtuais

- Isolamento
- Inspeção
- Interposição
- Eficiência
- Gerenciabilidade
- Compatibilidade do software
- Encapsulamento
- Desempenho

Isolamento

 Um software em execução em uma máquina virtual não acessa ou modifica outro software em execução no monitor ou em outra máquina virtual.

Isolamento

- Máquinas virtuais são completamente isoladas da máquina hospedeira e de outras máquinas virtuais. Se uma máquina virtual tem problemas, todas as outras não são afetadas.
- Dados não vazam entre máquinas virtuais e aplicativos podem somente se comunicar em conexões de rede configuradas.

Inspeção

 O monitor tem acesso e controle sobre todas as informações do estado da máquina virtual, como estado da CPU, conteúdo de memória, eventos, etc.

Interposição

 O monitor pode intercalar ou acrescentar instruções em certas operações de uma máquina virtual, como por exemplo, quando da execução de instruções privilegiadas por parte da máquina virtual.

Eficiência

 Instruções inofensivas podem ser executadas diretamente no hardware, pois não irão afetar outras máquinas virtuais ou aplicações.

Gerenciabilidade

 Como cada máquina virtual é uma entidade independente das demais, a administração das diversas instâncias é simplificada e centralizada.

Gerenciabilidade

- Múltiplas aplicações e sistemas operacionais podem ser executados em um único sistema físico.
- Servidores podem ser consolidados em máquinas virtuais, escalando arquiteturas.
- Recursos computacionais são tratados em uma política uniforme para que sejam alocadas máquinas virtuais de maneira controlada.

Compatibilidade do software

- A máquina virtual fornece uma abstração compatível de modo que todo o software escrito para ela funcione.
 - Garantir a portabilidade das aplicações legadas (que executariam sobre uma maquina virtual simulando o sistema operacional original);
 - Desenvolvimento de novas aplicações para diversas plataformas, garantindo a portabilidade destas aplicações;

Encapsulamento

- Esta camada pode ser usada para manipular e controlar a execução do software na máquina virtual.
- Pode também usar esta ação indireta para dar prioridade ao software ou fornecer um ambiente melhor para

Encapsulamento

- Um completo ambiente de máquina virtual é salvo em um simples arquivo, fácil de fazer backup, de ser movido e copiado.
- Padronização de hardware virtualizado é fornecida para a aplicação, garantindo compatibilidade.
- Prover um serviço dedicado para um cliente específico com segurança e confiabilidade

Desempenho

 Adicionar uma camada de software a um sistema pode afetar o desempenho do software que funciona na máquina virtual, mas os benefícios proporcionados pelo uso de sistemas virtuais compensam a perda de desempenho.

Virtualização - Benefício

Simulação:

- Facilitar o aperfeiçoamento e testes de novos sistemas operacionais;
- Simular configurações e situações diferentes do mundo real, como por exemplo, mais memória disponível ou a presença de outros dispositivos de E/S;
- Simular alterações e falhas no hardware para testes ou re-configuração de um sistema operacional, provendo confiabilidade e escalabilidade para as aplicações
- Padronização de hardware virtualizado é
 fornecida para a aplicação, garantindo

Virtualização - Conclusão

- Virtualização é uma quebra de paradigma
- Cada Virtual Machine (VM) roda em sua própria partição
- Partições separadas isolam falhas ou ataques de software
- Pode aumentar a utilização de hardware
- Muda a idéia de população e gerenciamento de data centers
- Pode ser utilizados diferentes sistemas operacionais "simultâneamente" em um único hardware