第三章历年期末试题

1.		已知生产某商品 Q 单位,需求函数为 $Q = 16 - \frac{P}{3}$, 当 $P = 8$ 时,若价格				
	上涨 1%,则需求将					
	(A) 减少 0.8%	(B) 增加 0.8%	(C) 减少 0.2%	(D) 增加 0.2%		
		2				
2.	(2019年) 函数 $f(x) = \frac{x^2 - x}{x^2 - 1} \sqrt{1 + \frac{1}{x^2}}$ 的第一类间断点的个数为 ().					
	(A) 0	(B) 1	(C) 2	(D) 3		
3.	(2019 年) 设 $Q = f(p)$ 为需求函数, 其中 p 为价格 (单位: 元 / 吨), Q 为需求量 (单位: 吨)。 若价格为 100 元 / 吨时的需求弹性为 $\eta(100) = -\frac{100}{f(100)} f'(100) = 0.25$ 则当价格调整为 101 元 / 吨时,需求量将约 ().					
	(A) 增加 25%	(B) 增加 0.25%	(C) 减少 25%	(D) 减少 0.25%		
4.	4. (2018年) 函数 $y = \sin x $ 在 $x = 0$ 处是 ().					
	(A) 无定义		(B) 有定义,但不是	连续		
	(C) 连续但不可导		(D) 连续且可导			
5.	(2018 年) 设 $y = x + \sin x$, d y 是 y 在 $x = 0$ 点的微分,则当 $\Delta x \to 0$ 时,有(). (A) d y 与 Δx 相比是等价无穷小 (B) d y 与 Δx 相比是同阶 (非等价) 无穷小 (C) d y 是比 Δx 高阶的无穷小 (D) d y 是比 Δx 低阶的无穷小					
6.	(2017年) 设函数 $y = (1 + \cos x)^{\arcsin x}$, 则微分 $dy _{x=0} = ($).					
	$(\mathbf{A}) - 2 \mathrm{d} x$			(D) $\ln 2 dx$		
7.	Q约().		•	上涨 1% 时,需求量		
	(A) 水ン 1.25%	(15) - 増加 1.25%	(C) 减少 125%	(D) 增加 125%		

8. (2015年)设 $f(x)$ 的定义域为 $[0,1]$,则函数 $f\left(x+\frac{1}{4}\right)+f\left(x-\frac{1}{4}\right)$ 的定义域为 ()							
. (A) [0, 1]	$(B) \left[-\frac{1}{4}, \frac{5}{4} \right]$	$(\mathbf{C})\left[-\frac{1}{4},\frac{1}{4}\right]$	$(D) \left[\frac{1}{4}, \frac{3}{4} \right]$			
	2014 年) 设函数 <i>f</i> (A) ln3-2	$f(x) = \sin 2x + 3^x$,则导(B) $\ln 3 + 2$		(D) ln 3 + 1			
10.	(2013 年)设 $f(x)$ = (A) 3 ln 3	= $3^x + x^2 + \ln 3$,则 f' (B) $\frac{1}{3}$	(1) 等于 (). (C) $\frac{3}{\ln 3} + 2$	(D) 3 ln 3 + 2			
11.	(2012 年)设 f(x) { (A) f'(1)	在 x = 1 处可导,则 (B) 2 f'(1)	$\lim_{x \to 0} \frac{f(x+1) - f(1-1)}{x}$ (C) 0	$\frac{(x)}{(x)} = ($) (D) $f'(2)$			
12. (2012年) 某需求函数为 $Q = -100P + 3000$,那么当 $P = 20$ 时需求的价格弹性 $E_d = ($ (B) 1000 (C) -100 (D) -2							
13.		= $2^x + \ln 2$,则 $f'(1)$ 等 (B) $2 \ln 2 + \frac{1}{2}$;		(D) $\frac{2}{2 \ln 2} + \frac{1}{2}$.			
14. (2020 年) 设函数 $y = f(x)$ 由方程 $e^{2x+y} - \cos(xy) = e-1$ 所确定,则曲线 $y = f(x)$ 在 $(0,1)$ 处的切线方程为							
15 . (2020 年) 设函数 $f(x) = \frac{1}{3x+2}$, 对正整数 n ,则 $f^{(n)}(0) =$.							
16. (2020 年) 设产量为 Q , 单价为 P , 厂商成本函数为 $C(Q) = 100 + 13Q$, 需求函数为 $Q(P) = \frac{800}{P+3} - 2$,则厂商取得最大利润时的产量为							
17.	(2019 年) 设函数 j	$f(x) = (1 + \cos x)^{\frac{1}{x}}, d$	$y _{x=\frac{\pi}{2}}=\underline{\qquad}.$				
18.	(2019年)设 $\begin{cases} x = \\ y = \end{cases}$	$f'(t) \ tf'(t) - f(t)$,其中	$\mathbf{P}f(t)$ 具有二阶导数,	且 $f''(t) \neq 0$,则 $\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} =$			

第2页 共6页

- **19.** (2018年) 设函数 $f(x) = x(\sin x)^{\cos x}$, 则 $f'(\frac{\pi}{2}) =$ _____.
- **20.** (**2018**年) 设商品的需求函数为 Q = 100 5P, 其中 Q, P 分别表示需求量和价格。如果商品需求弹性的绝对值大于 1,则商品的价格的取值范围是
- **21.** (2018 年) 设曲线 $f(x) = x^n, n \in \mathbb{N}$ 在点 (1,1) 处的切线与 x 轴相交于 $(\xi_n, 0)$, 则 极根 $\lim_{n \to \infty} f(\xi_n) = \underline{\hspace{1cm}}$.
- 22. (2017 年) 由参数方程 $\begin{cases} x=2\cos t \\ y=2\sin^3 t \end{cases}$ 所确定的曲线在 $t=\frac{\pi}{4}$ 处的切线方程
- **23.** (2017年)设 $y = f(\sqrt{x})f^2(x) + f(e)$,其中 f(x)在 R上可导,则 y' =
- **24.** (2017年) 设函数 $y = xe^x$, 对正整数 n, n 阶导数 $y^{(n)} =$
- **25.** (**2016** 年) 某商品的需求函数为 Q = 400 100P ,则 P = 2 时的需求弹性为
- **26**. (**2015**年) 设函数 $y = \frac{x}{\ln x}$, 则导数 $y' = \underline{\hspace{1cm}}$
- **27**. (**2015**年) 曲线 $\begin{cases} x = \ln(1+t^2) \\ y = \arctan t \end{cases}$ 在 t = 1 的对应点处的切线方程是 ______.
- **28.** (2015 年) 设 $y = (1 + \sin x)^x$, 则 $y'|_{x=\pi} =$ _____.
- **29.** (**2015** 年) 已知某商品的需求函数为 $Q = 16 \frac{P}{3}(P)$ 为价格, Q 为需求量), 当价格 P = 8 时, 若价格上涨 1%, 则需求量将下降约
- **30.** (**2014** 年) 曲线 $y + xe^y = 1$ 在点 P(0,1) 处的切线方程是
- **31**. (**2014** 年) 已知某商品的需求函数为 Q = 3000 100P, (P 为价格,Q 为需求量),当价格 P = 20 时, 若价格上涨 1%, 则需求量将下降
- **32.** (2014年)设函数 $f(x) = xe^x$,对正整数 n,则 $f^{(n)}(0) =$ _____.

- **33.** (2014年) 设函数 $y = \frac{x \sin x}{1+x}$,则微分 dy =
- **34**. (**2013** 年) 曲线 $y = xe^x$ 在点 (0,0) 处切线的方程是 .
- **35.** (**2013** 年) 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$,则销售量 Q 为 **50** 个单位时总收益的边际收入是 .
- **36.** (**2012** 年) 设生产某产品 Q 单位的总成本为 $C(Q) = 1100 + \frac{Q^2}{1200}$,则生产 **1800** 个单位产品时的边际成本是 .
- **37**. (**2011** 年) 曲线 $y = xe^x$ 在拐点处切线的斜率是_____.
- **38.** (**2011** 年) 设某种商品的总收益 R 关于销售量 Q 的函数为 $R(Q) = 104Q 0.4Q^2$,则销售量 Q 为 **50** 个单位时总收益的边际收入是 .
- **39**. (**2020**年) 设 $y = f(\frac{1}{x})e^{-f(x)}$, 其中 f(x) 可导, 求 dy.
- **40.** (**2020** 年) 设函数 y=y(x) 由参数方程 $\begin{cases} x=t-\ln(t+1) \\ y=t^3+t^2 \end{cases}$ 所确定, 求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.
- **41**. (2019年)设 f(x)是可导函数,求函数 $y = f(\tan x) \cdot \arcsin[f(x)] + e^2$ 的导数.
- **42.** (2019年) 设函数 $f(x) = \begin{cases} \frac{\varphi(x) \cos x}{x} & x \neq 0 \\ a & x = 0 \end{cases}$, 其中 $\varphi(t)$ 具有连续的二阶导数, 且 $\varphi(0) = 1$.
 - (1) 确定 a 的值, 使 f(x) 在点 x = 0 处可导, 并求 f'(x);
 - (2) 讨论 f'(x) 在点 x = 0 处的连续性.
- - (1) k 为何值时, f(x) 有极限;
 - (2) k 为何值时, f(x) 连续;

- (3) k 为何值时, f(x) 可导.
- 44. (2018 年) 求由参数方程 $\begin{cases} x = \ln \sqrt{1+t^2} \\ y = \arctan t \end{cases}$,所确定的函数的一阶导数 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 及二阶导数 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$ 。
- **45.** (2018 年) 求由方程 $\sin(xy) + \ln(y-x) = x$ 所确定的隐函数 y 在 x = 0 处的导数 y'(0).
- **46**. (**2018**年) 已知 $y = x \ln x$, 求 $y^{(n)}$.
- 47. (2017年)(本题 10分) 设函数 $f(x) = \begin{cases} \sin(x^2) & x \le 0 \\ \frac{\ln(1+x)}{1+x} & x > 0 \end{cases}$,求 f'(x).
- **48.** (2016 年) 设 $f(x) = \begin{cases} b(1+\sin x) + a + 2 & x > 0 \\ e^{ax} 1 & x \le 0 \end{cases}$ 在 $(-\infty, +\infty)$ 上可导,求 a, b 及 f'(x)。
- **49.** (2016年) 已知函数 $\begin{cases} x = \sin t \\ y = \cos 2t \end{cases}$,求 $\frac{d^2 y}{dx^2} \bigg|_{t=\frac{\pi}{6}}$.
- **50.** (**2015** 年) 设函数 $y = f\left(\arcsin\frac{1}{x}\right) + (f(\sin x))^3$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶导数, 求 dy.
- **51.** (2015 年) 设函数 y = y(x) 由方程 $e^y + xy e^x = 0$ 确定, 试求 $\frac{dy}{dx}$ 与 y''(0).
- **52.** (2014 年) 设函数 $y = f(\sin x) + \cos(f(x))$, 其中 f(x) 在 $(-\infty, +\infty)$ 上具有一阶 导数与二阶导数,求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- 53. (2014 年) 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \arctan t \\ y = \ln(1 + t^2) \end{cases}$ 所确定, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$ 与 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}$.

- **54.** (2014年) 设 $f(x) = \begin{cases} ax + b, & x < 0 \\ e^x, & x \ge 0 \end{cases}$, 确定 a, b 的值使 f(x) 在 x = 0 处可导.
- **55.** (2013年) 已知函数 $y = x[\sin(\ln x) + \cos(\ln x)]$, 试求 dy.
- **56.** (**2013** 年) 设函数 y = y(x) 由方程 $x^2y e^{2x} = \sin y$ 所确定, 试求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **57.** (**2013** 年) 设函数 y = f(x) 由参数方程 $\begin{cases} x = 1 t^2, \\ y = t t^3 \end{cases}$ 所确定, 试求 $\frac{dy}{dx}$ 与 $\frac{d^2y}{dx^2}$.
- **58.** (2013年) 设函数 $y = (x^2 + 1)^3(x + 2)^2x^6$, 试求 y'.
- **59**. (**2012**年) 已知函数 $y = \arctan e \sqrt{x}$, 试求 dy
- **60.** (2012年) 设函数 y = y(x) 由方程 $\cos(x+y) = y$ 所确定,试求 $\frac{d^2y}{dx^2}$
- **61.** (2012年) 设函数 y = f(x) 由参数方程 $\begin{cases} x = t \ln(1+t) \\ y = t^3 + t^2 \end{cases}$ 所确定,试求 $\frac{dy}{dx}$
- **62.** (**2012** 年) 确定 a, b 的值,使得函数 $f(x) = \begin{cases} 2^x, & x \ge 0 \\ ax + b, & x < 0 \end{cases}$ 在 x = 0 处可导。
- **63.** (2011 年) 已知函数 $y = \ln(x + \sqrt{x^2 + 1})$, 试求 dy.
- **64.** (2011 年) 设函数 y = f(x) 由方程 $x y + \frac{1}{2} \sin y = 0$ 所确定, 计求 $\frac{d^2 y}{dx^2}$.
- **65.** (2011 年) 设函数 y = f(x) 由参数方程 $\begin{cases} x = \ln(1+t^2), \\ y = t \arctan t, \end{cases}$ 所确定, 试求 $\frac{d^2 y}{dx^2}$.
- **66.** (**2011** 年) 设函数 $y = \frac{(2x+1)^2\sqrt[3]{3x-2}}{\sqrt[3]{(x-3)^2}}$, 试求 $\frac{\mathrm{d}y}{\mathrm{d}x}$.
- **67.** (**2015**年) 已知函数 f(x) 在 $(-\infty, +\infty)$ 上有定义,对任意的实数 x_1, x_2 ,有 $f(x_1 + x_2) = f(x_1) f(x_2)$,且 $f(0) \neq 0$, f'(0) = 1,证明: f'(x) = f(x).