LIE GROUPS 2013 FALL PROBLEM SET 1

- (1) For i = 1, 2, let M_i, N_i be smooth manifolds, $f_i : M_i \to N_i$ be smooth maps, and $p_i \in M_i$ be points.
 - (a) Prove: $M_1 \times M_2$ is still a smooth manifold.
 - (b) Prove: $T_{(p_1,p_2)}(M_1 \times M_2) \simeq T_{p_1}M_1 \oplus T_{p_2}M_2$.
 - (c) Find the relation between $d(f_1 \times f_2)_{(p_1,p_2)}$ and $(df_i)_{p_i}$, i=1,2.
- (2) (a) Let $f, g \in C^{\infty}(M), X, Y \in \Gamma^{\infty}(TM)$. Show

$$[fX, gY] = fg[X, Y] + f(Xg)Y - g(Yf)X.$$

- (b) Prove: Any one dimensional distribution is involutive.
- (3) Let $X_1 = y^2 \frac{\partial}{\partial x}$ and $X_2 = x^2 \frac{\partial}{\partial y}$ be two vector fields on \mathbb{R}^2 .
 - (a) Prove: X_1 and X_2 are complete.
 - (b) Prove: $X_1 + X_2$ is not complete. [Hint: Consider the integral curve starting at some point (c,c).]
- (4) Recall that $GL(n,\mathbb{R})$ is an n^2 dimensional smooth manifold.
 - (a) Show that $\det: \operatorname{GL}(n,\mathbb{R}) \to \mathbb{R}$ is a smooth function.
 - (b) Show that $d(\det)_A(B) = (\det A)\operatorname{tr}(A^{-1}B)$. (Hint: $d(\det)_A(B) = \frac{d}{dt}|_{t=0}\det(A+tB)$.)
 - (c) Prove: For any $a \neq 0$, the set $S_a = \{A \in GL(n, \mathbb{R}) \mid \det A = a\}$ is a smooth submanifold of $GL(n, \mathbb{R})$.
- (5) Let $M(n, \mathbb{R})$ be the set of all $n \times n$ real matrices, and $Sym(n, \mathbb{R})$ the set of all $n \times n$ real symmetric matrices. Consider the map

$$f: \mathcal{M}(n,\mathbb{R}) \to \mathcal{Sym}(n,\mathbb{R}), \quad A \mapsto f(A) = A^T A$$

- (a) Since both $M(n, \mathbb{R})$ and $Sym(n, \mathbb{R})$ are linear spaces, we can identify $T_AM(n, \mathbb{R})$ with $M(n, \mathbb{R})$, and $T_{f(A)}Sym(n, \mathbb{R})$ with $Sym(n, \mathbb{R})$. Prove: $df_A(B) = A^TB + B^TA$.
- (b) Prove: O(n) is a $\frac{n(n-1)}{2}$ dimensional submanifold of $GL(n, \mathbb{R})$.
- (6) Prove: any left invariant vector field on a Lie group is complete.
- (7) Let G be a Lie group and $i: G \to G$ be the inversion map $i(a) = a^{-1}$. For any $X_a \in T_aG$, express $di_a(X_a)$ in terms of the differential of the left and right multiplications.
- (8) Let G be a connected Lie group. Prove:
 - (a) For any open neighborhood U of e in G, $G = \bigcup_{n=1}^{\infty} U^n$.
 - (b) Any Lie group homomorphism $\varphi: G \to H$ is determined by the induced Lie algebra homomorphism $d\varphi: \mathfrak{g} \to \mathfrak{h}$.