# Focal length calculations:



$$f = \sqrt{d_1 d_2 - d_3^2} imes rac{ ext{pixel width}}{ ext{measured width}}$$

Alternative method:

Denote two vanishing points coordinates  $(u_0,v_0,w_0)$  and  $(u_1,v_1,w_1)$  with the orthocenter as origin. Then  $\frac{(u_1u_2+v_1v_2)}{f^2}+w_1w_2=0, f=\sqrt{\frac{-w_1w_2}{u_1u_2+v_1v_2}}$ 

#### Localization:

• How to check if a transformation is a projective transformation:

H is a transformation from  $\mathbb{P}^2$  to  $\mathbb{P}^2$ :

$$H \sim K \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}$$

Is it a projective transformation? Let us inspect its determinant:

$$\det \begin{pmatrix} r_1 & r_2 & T \end{pmatrix} = T^T(r_1 \times r_2)$$

which vanishes only if the camera lies in the ground plane Z=0. In this case all points would project on a line.

Since  $det(K) = f^2$ , H is invertible iff

$$T^T(r_1 \times r_2) \neq 0$$

- Explain how you can find the pose R, T of a camera given the projection of four coplanar points whose coordinates are known in the world.
  - 1. Find H up to a scale factor from the point coorrespondences
  - 2. Compute  $H' = K^{-1}H$ . Let H''s columns be  $\begin{pmatrix} a & b & c \end{pmatrix}$
  - 3. Minimize

$$\|\begin{pmatrix} a & b & c \end{pmatrix} - \lambda \begin{pmatrix} r_1 & r_2 & T \end{pmatrix}\|_F$$

w.r.t. 
$$\lambda \in \mathbb{R}, r_1, r_2, T \in \mathbb{R}^3$$
  
s.t.  $r_1^T r_2 = 0$  and  $||r_1|| = ||r_2|| = 1$ 

Let

$$\begin{pmatrix} a & b & c \end{pmatrix} = U_{3x2} \begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix} V_{2x2}^T.$$

Then

$$\begin{pmatrix} r_1 & r_2 \end{pmatrix} = U_{3x2}V_{2x2}^T$$
 and  $\lambda = \frac{s_1 + s_2}{2}$ 

- 4.  $T = c/\lambda$  and  $R = \begin{pmatrix} r_1 & r_2 & r_1 \times r_2 \end{pmatrix}$ . Make R to have determinant.
- PNP problem with 3 points:



$$d_i^2 + d_j^2 - 2d_i d_j \cos \delta_{ij} = d_{ij}^2$$

# Procrustes

Returning to the Procrustes problem (6.4.1), if  $Q \in \mathbb{R}^{p \times p}$  is orthogonal, then

$$\begin{split} \parallel A - BQ \parallel_F^2 &= \sum_{k=1}^p \parallel A(:,k) - B \cdot Q(:,k) \parallel_2^2 \\ &= \sum_{k=1}^p \parallel A(:,k) \parallel_2^2 + \parallel BQ(:,k) \parallel_2^2 - 2Q(:,k)^T B^T A(:,k) \\ &= \parallel A \parallel_F^2 + \parallel BQ \parallel_F^2 - 2 \sum_{k=1}^p \left[ Q^T (B^T A) \right]_{kk} \\ &= \parallel A \parallel_F^2 + \parallel B \parallel_F^2 - 2 \mathrm{tr}(Q^T (B^T A)). \end{split}$$

Thus, (6.4.1) is equivalent to the problem

$$\max_{Q^TQ=I_p} \operatorname{tr}(Q^TB^TA) .$$

If  $U^T(B^TA)V=\Sigma=\mathrm{diag}(\sigma_1,\ldots,\sigma_p)$  is the SVD of  $B^TA$  and we define the orthogonal matrix Z by  $Z=V^TQ^TU$ , then by using (6.4.2) we have

$$\operatorname{tr}(Q^TB^TA) \ = \ \operatorname{tr}(Q^TU\Sigma V^T) \ = \ \operatorname{tr}(Z\Sigma) \ = \ \sum_{i=1}^p z_{ii}\sigma_i \ \le \ \sum_{i=1}^p \sigma_i \, .$$

The upper bound is clearly attained by setting  $Z = I_p$ , i.e.,  $Q = UV^T$ .

#### When to use PnP vs Procrustes

- These two methods are used for localization and both use point-to-point correspondences
- PNP
  - For PNP problem we are given N correspondence (Xi,Yi,Zi,xi,yi); i.e. world coordinates and the corresponding ray direction in the camera system
- Procrustes
  - For procrustes problems the n-dimension correspondences are already given, for example, in 3d, the correspondences are (X1i,Y1i,Z1i,X2i,Y2i,Z2i); i.e. world coordinates and corresponding camera coordinates
  - For the ray direction, you don't know the depth, so there would be an unknown λ.

### **Distance Transfer and Cross Ratios**

How can it be used for metrology?



**Goal Directed Video Metrology**