Differential Equations Plus (Math 286)

- **H68** Find the following convolutions and their Laplace transforms (three answers suffice):
 - a) $t^2 * t^3$:
- b) $J_0 * J_0$;
- c) $\sin t * \cos(2t)$;
- d) u(t-1) * t.
- **H69** Suppose $F(s) = \mathcal{L}\{f(t)\}$ is defined for Re(s) > a, $a \in [-\infty, \infty)$. Show that $\lim_{s \to +\infty} F(s) = 0$; cp. Exercise 24 in [BDM17], Ch. 6.1.

Hint: Use the uniform convergence of $\int_0^\infty f(t) e^{-st}$ on $\text{Re}(s) \ge a+1$ (resp., for $a=-\infty$ on $\text{Re}(s) \ge 0$).

- H70 Solve the following IVP's with the Laplace transform:
 - a) $y'' + y' + y = u_{\pi}(t) u_{2\pi}(t)$, y(0) = 1, y'(0) = 0;

b)
$$y'' + 2y' + y = \begin{cases} \sin(2t) & \text{if } 0 \le t \le \pi/2, \\ 0 & \text{if } t > \pi/2, \end{cases}$$
 $y(0) = 1, \ y'(0) = 0.$

- H71 Do Exercise 18 in [BDM17], Ch. 6.5.
- **H72** Optional Exercise

Repeat Exercises 20, 21 in [BDM17], Ch. 6.6, for the integro-differential equation

$$\phi'(t) = \sin t + \int_0^t \phi(t - \xi) \cos \xi \,d\xi, \quad \phi(0) = 2.$$

Hint: It may be helpful to use the commutativity of the convolution product.

- H73 Do Exercises 11 and 20 in [BDM17], Ch. 7.1.
- **H74** Find **S** such that $D = S^{-1}AS$ is a diagonal matrix for

$$\mathbf{A} = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right).$$

Show that $\mathbf{A}^k = \mathbf{S}\mathbf{D}^k\mathbf{S}^{-1}$ for $k \in \mathbb{N}$, and use this to obtain explicit formulas for the entries of \mathbf{A}^k .

- H75 Optional Exercise
 - a) Show that $\int_0^\infty \ln t \, \mathrm{e}^{-t} \, \mathrm{d}t = -\gamma = -0.577\dots$ For this recall that the Euler-Mascheroni constant γ was defined as $\gamma = \lim_{n \to \infty} \left(1 + \frac{1}{2} + \dots + \frac{1}{n} \ln n\right)$ Hint: Relate the integral to the Gamma function. Gauss's formula

$$\Gamma(x) = \lim_{n \to \infty} \frac{n! \, n^x}{x(x+1)\cdots(x+n)} \qquad (x \neq 0, -1, -2, \dots),$$

which you don't need to prove, may help.

b) Use a) to find the Laplace transform of $t \mapsto \ln t$ and the inverse Laplace transform of $s \mapsto \frac{\ln s}{s}$ (Re s > 0).

H76 Optional Exercise

Suppose V is a vector space over a field F.

a) Using the vector space axioms, prove the scalar zero law

$$0_F v = 0_V$$
 for all $v \in V$.

b) Similarly, prove the vector zero law

$$a \, 0_V = 0_V$$
 for all $a \in F$.

c) Prove that (-1)x = -x for all $x \in V$.

H77 Optional Exercise

In each of the following cases, let S be the set of vectors $(\alpha, \beta, \gamma) \in \mathbb{C}^3$ satisfying the given condition. Decide whether S is a subspace of \mathbb{C}^3/\mathbb{C} and, if so, determine the dimension of S.

a) $\alpha = 0$;

b) $\alpha\beta = 0$;

d) $\alpha + \beta = 0$;

c) $\alpha + \beta = 1;$ e) $\alpha = 3\beta \wedge \beta = (2 - i)\gamma;$

f) $\alpha \in \mathbb{R}$.

H78 Optional Exercise

Let P_3 be the vector space (over \mathbb{R}) of polynomials $p(X) \in \mathbb{R}[X]$ of degree at most 3. Repeat the previous exercise for the sets $S \subseteq P_3$ defined by each of the following conditions:

a) p(X) has degree 3;

c) $p(t) \ge 0 \text{ for } 0 \le t \le 1;$

b) 2p(0) = p(1);d) p(t) = p(1-t) for all $t \in \mathbb{R}$.

H79 Optional Exercise

- a) Write down the linear system of equations satisfied by a classical 3×3 magic square and transform this system into row-echelon form. (What is the magic number in this case?)
- b) Use the equations in a) to show that up to obvious symmetries there exists exactly one classical 3×3 magic square.

Due on Thu Dec 16, 7:30 pm

The optional exercises can be handed in until Wed Dec 22, 6 pm.