МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО "ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. П.О. СУХОГО"

Кафедра "Электроснабжение"

ЛАБОРАТОРНАЯ РАБОТА №7	
ЦИФРО-АНАЛОГОВЫЕ И АНАЛОГОВО-ЦИФРОВЫЕ ПРЕОБРАЗОВА	АТЕЛИ

Выполнил: студент гр.

Руководитель:

1 Изучение работы ЦАП

Цель работы: изучить принципы работы цифро-аналоговых (ЦАП), собрать схему ЦАП, записать значения выходного напряжения и произвести необходимые вычисления и сравнить полученные данные.

На рисунке 1 приведена схема для изучения ЦАП.

Рисунок 1 – Схема для изучения ЦАП

В результате работы была собрана схема ЦАП, установили произвольное напряжение 2,24В. Записали значения входного двоичного кода (по светодиодам) как в двоичной, так и в десятичной системах счисления, а также значения выходного напряжения в таблицу каждые 32 импульса. Всего было подано 1023 импульса.

Расчет выходного напряжения осуществляется по формуле:

$$U_{ebix.pac4} = \frac{U_{on} \cdot N_{ex}}{2^n - 1},$$

где $U_{\text{on}}-$ опорное напряжение;

 $N_{\rm BX}$ – входной двоичный код;

n – разрядность.

$$U_{\text{вых.расч}} = \frac{2,24 \cdot 2^5}{2^{10} - 1} = 0,070 \text{ B}$$

Результаты измерений и расчетов приведены в таблице 1.

Таблица 1 – Результаты измерений и расчетов ЦАП

N _{IIII}	N _{BX.bin}	N _{Bx.dec.}	U _{вых.изм.} , В	U _{вых.расч.} , В
1	000000000	0	0,002	0
	0000100000	32	0,074	0,070
3	0001000000	64	0,143	0,140
4	0001100000	96	0,213	0,210
5	0010000000	128	0,283	0,280
6	0010100000	160	0,348	0,350
7	0011000000	192	0,418	0,420
8	0011100000	224	0,485	0,490
9	0100000000	256	0,558	0,560
10	0100100000	288	0,624	0,630
11	0101000000	320	0,700	0,700
12	0101100000	352	0,765	0,770
13	0110000000	384	0,835	0,840
14	0110100000	416	0,905	0,910
15	0111000000	448	0,970	0,980
16	0111100000	480	1,038	1,051
17	1000000000	512	1,116	1,121
18	1000100000	544	1,184	1,191
19	1001000000	576	1,256	1,261
20	1001100000	608	1,323	1,331
21	1010000000	640	1,397	1,401
22	1010100000	672	1,463	1,471
23	1011000000	704	1,534	1,541
24	1011100000	732	1,600	1,602
25	1100000000	768	1,677	1,681
26	1100100000	800	1,742	1,751
27	1101000000	832	1,812	1,821
28	1101100000	864	1,877	1,891
29	1110000000	896	1,955	1,961
30	1110100001	929	2,016	2,034
31	1111000001	961	2,086	2,104
32	1111100001	993	2,149	2,174
33	1111111111	1023	2,203	2,240

По полученным данным составим передаточную характеристику измеренного и расчетного напряжения, которая представлена на рисунке 2.

Опираясь на график и на таблицу 1, определим интересующие нас погрешности.

$$\Delta U_{\scriptscriptstyle H,ll} = 0.033$$
 $\Delta U_{\scriptscriptstyle CM} = 0.004$
 $\Delta U_{\scriptscriptstyle KG} = 1.78$

Рисунок 2 – Передаточная характеристика ЦАП

Вывод: Хоть и измеренные и расчетные напряжения практически идентичные, расчетный является более точным, т.к на 1023 импульсе расчетное напряжение совпадает с напряжением опорным.

2 Изучение работы АЦП

Цель работы: изучить принципы работы аналогово-цифрового преобразователя (АЦП), собрать схему АЦП, записать значения выходного напряжения и произвести необходимые вычисления и сравнить полученные данные.

На рисунке 3 приведена схема для изучения АЦП.

Рисунок 3 – Схема для изучения АЦП

В результате работы была собрана схема АЦП, установили произвольное опроное напряжение 4,005 В. Произвели проверку работоспособности схемы: с установленным входным напряжением 3,526 В запустили 4 раза АЦП, среднее время обработки двоичного кода на данном напряжении вышло 12,995 секунд. Далее будем изменять опорное напряжение от 0,005 В до значения опорного напряжения, при этом фиксируя результаты выходного двоичного кода (как в двоичном, так и в десятичном виде).

Расчет выходного двоичного кода осуществляется по формуле:

$$N_{\text{вых.расч}} = \frac{U_{\text{ex}} \cdot (2^n - 1)}{U_{\text{on}}},$$

где $U_{\text{вх}}$ – входное напряжение;

U_{оп} – опорное напряжение;

n – разрядность.

$$N_{eax.pac^{q}} = \frac{0.265 \cdot (2^{10} - 1)}{4.005} = 67.7$$

Результаты измерений и расчетов приведены в таблице 2.

Таблица 2 – Результаты измерений и расчетов АЦП

N _{пп}	$U_{\text{\tiny BX}}, B$	N _{вых.bin.измер}	N _{вых.dec.измер}	N _{вых.dec.pacч}
1	0,005	000000001	1	1
2	0,265	0001000010	66	67,7
3	0,524	0010000101	133	133,8
4	0,755	0011000000	192	192,8
5	1,015	0100000011	259	259,2
6	1,236	0100111101	317	315,7
7	1,528	0110000100	388	390,3
8	1,736	0110111110	446	443,42
9	2,027	100000101	517	517,75
10	2,278	1001000110	582	581,87
11	2,541	1010000001	641	649,04
12	2,744	1010111010	698	700
13	3,061	1100000101	773	781,87
14	3,288	1101000000	832	839,85
15	3,988	1111111101	1021	1018,65

По полученным данным составим передаточную характеристику измеренного и расчетного двоичного кода, которая представлена на рисунке 4.

Также опираясь на график и на таблицу 2, определим интересующие нас погрешности.

$$\Delta U_{_{HI}} = 8,87$$
 $\Delta U_{_{CM}} = 0,005$
 $\Delta U_{_{KG}} = 0,700$

Вывод: Судя по графику измеренные и расчетные двоичные коды практически идентичные, но в некоторых местах расчетный двоичный код заметно "скачет" как в положительную, так и в отрицательную сторону.