Le lemme

Soit X une variable aléatoire discrète intégrable sur l'univers Ω .

Question 0 Montrer qu'il existe $x \geq \mathbb{E}X$ tel que $x \in X(\Omega)$.

Un peu de chauffe

Soit G = (S, A) avec n := |S|, m := |A| et $m \ge 4n$. On note $\operatorname{cr}(\overline{G})$ le nombre de croisements d'une représentation planaire \overline{G} de G. Alors on définit $\operatorname{cr}(G) := \min \operatorname{cr}(\overline{G})$.

D'après *la formule d'Euler*, pour tout graphe H, $cr(H) \ge m(H) - 3n(H)$.

On note $S^{\dagger} \subset S$ une partie aléatoire de S où chaque sommet est choisi avec une probabilité p. On note ensuite $H := G[S^{\dagger}]$ et $\overline{H} := \overline{G}[S^{\dagger}]$.

- **Question 1** Montrer que $\operatorname{cr}(\overline{H}) \geq m(H) 3n(H)$.
- **Question 2** Déterminer $\mathbb{E}[m(H)]$ et $\mathbb{E}[n(H)]$.
- \bigcap Question 3 Exprimer $\mathbb{E}\left[\operatorname{cr}\left(\overline{H}\right)\right]$ en fonction de $\operatorname{cr}(G)$.
- Question 4 Démontrer

$$\operatorname{cr}(G) \ge \frac{1}{64} \frac{m^3}{n^2}$$

Une question d'originalité

Soit $M \in \mathcal{M}_n(\mathbb{N})$ telle que tout $k \in [1, n]$ apparaît exactement n fois dans M.

Question 5 Montrer qu'il existe une ligne ou une colonne contenant au moins \sqrt{n} valeurs distinctes.

De la géométrie

Soit $a \in \mathbb{C}^{10}$. On dira que $p \in \mathbb{C}^{10}$

• couvre a si

• est sans superposition si

$${m a}\subset\bigcup_{x\in{m p}}\overline{\mathcal B}(x,1)$$

$$a \subset \bigcup_{x \in \mathbf{p}} \overline{\mathcal{B}}(x,1) \qquad \forall x, y \in \mathbf{p}, x \neq y \Rightarrow \overline{\mathcal{B}}(x,1) \cap \overline{\mathcal{B}}(y,1) = \emptyset$$

Question 6 Montrer qu'il existe $p \in \mathbb{C}^{10}$ couvrant a sans superposition.

Ind:
$$\frac{\pi\sqrt{3}}{6}\approx 0.907$$

Du rab

Soit $k \in \mathbb{N}$.

La propriété à laquelle on s'intéresse ici est la propriété de distance

$$\mathcal{D}(a_1...a_k) \coloneqq \left(\forall i,j, |a_i - a_j| \leq 2\right) \vee \left(\forall i,j, |a_i - a_j| \geq 1\right)$$

On pose enfin $\mathcal{P}(n) := \forall A \in \mathfrak{P}(\mathbb{C}), |A| \Longrightarrow (\exists \{a_1...a_k\} \subset A, \mathcal{D}(a_1...a_k))$

U Question 7 Montrer $\forall n, \mathcal{P}(n)$.