Задание 1

Введём модель случайного множества N(n,p) как случайное множество чисел от 1 до n, где каждое число независимо включается в множество с вероятностью p.

По аналогии со случайными графами назовём семейство множеств свойством случайного множества.

Порогом свойства называется функция t(n), такая что если p(n) = o(t(n)), то N(n, p(n)) а.п.н. не обладает заданным свойством, а если $p(n) = \omega(t(n))$, то N(n, p(n)) а.п.н. обладает заданным свойством.

По аналогии со случайными графами можно показать, что для любого монотонного свойства случайных множеств найдётся порог.

Вариант А

Найдите порог, что случайное множество содержит степень двойки.

Вариант В

Найдите порог, что случайное множество содержит чётное число.

Вариант С

Найдите порог, что случайное множество содержит полный квадрат.

Вариант D

Найдите порог, что случайное множество содержит полный куб.

Вариант Е

Найдите порог, что случайное множество содержит тройку чисел x, y, z, что $x+y=z\pmod{n}$.

Вариант F

Найдите порог, что случайное множество содержит тройку чисел x, y, z, что x+y=z.

Вариант G

Найдите порог, что случайное множество содержит тройку различных чисел x, y, z, что z - y = y - x.

Задание 2

Вариант Н

Докажите, что если $p(n) = \frac{d}{n}$, то в G(n,p) существует независимое множество размера $\Omega(n)$, то есть для некоторого c>0 а.п.н. $\alpha(G(n,p)) \geq cn$.

Вариант I

Докажите, что если $p(n) = 1 - \frac{c}{n}$, то в G(n, p) существует клика размера $\Omega(n)$, то есть для некоторого $\alpha > 0$ а.п.н. $\omega(G(n, p)) \ge \alpha n$.

Вариант J

Найдите пороговую вероятность p = t(n) того, что случайный граф G(n,p) является планарным. (a) Докажите, что для p = o(t(n)) граф G(n,p) а.п.н. является планарным. (б) Докажите, что для $p = \omega(t(n))$ граф G(n,p) а.п.н. не является планарным.

Вариант К

Найдите пороговую вероятность p = t(n) наличия в случайном двудольном графе G(n,n,p) подграфа $K_{2,3}$. (a) Докажите, что для p = o(t(n)) в G(n,n,p) а.п.н. нет подграфа $K_{2,3}$. (б) Докажите, что для $p = \omega(t(n))$ в G(n,n,p) а.п.н. есть подграф $K_{2,3}$.

Вариант L

Найдите пороговую вероятность p = t(n) наличия в случайном двудольном графе G(n,n,p) лап $K_{1,3}$. (a) Докажите, что для p = o(t(n)) в G(n,n,p) а.п.н. нет лап $K_{1,3}$. (б) Докажите, что для $p = \omega(t(n))$ в G(n,n,p) а.п.н. есть лапа $K_{1,3}$.

Задание 3

Вариант М

Турниром называется ориентированный граф, у которого между любой парой различных вершин есть ровно одно направленное ребро. Докажите, что существует турнир, в котором как минимум $\frac{n!}{2^{n-1}}$ гамильтоновых путей.

Вариант N

Рассмотрим квадратную сетку $n \times n$. Для каждого из 2n(n-1) ребер независимо принимается решение: оно присутствует с вероятностью p и отсутствует с вероятностью 1-p. Рассмотрим свойство: «на сетке есть путь от левого нижнего угла до верхнего правого, идущий только вправо вверх».

Докажите, что если $p \le 1/2$, то а.п.н. такого пути нет.

Вариант О

Пусть ξ_n — семейство случайных величин, принимающих только положительные значения. Докажите, что если $E\xi_n \to +\infty$, а $D\xi_n/(E\xi_n)^2 \to 0$, то для любой константы k>0 выполнено $P(\xi_n \leq k) \to 0$.

Задание 4

Вариант Р

Пусть k — константа, и p(n) = c — константа. Докажите, что G(n,p) а.п.н. рёберно k-связен. Указание, рассматривайте пути длины 2.