$[CYBER1][2024\text{-}2025] \ Partiel \ (Sujet \ B) \ (1h30)$

Architecture des C	Ordinateurs	1
--------------------	--------------------	---

NOM:	PRÉNOM:

Vous devez respecter les consignes suivantes, sous peine de 0 :

- Lisez le sujet en entier avec attention
- Répondez sur le sujet
- Ne détachez pas les agrafes du sujet
- Écrivez lisiblement vos réponses (si nécessaire en majuscules)
- Écrivez lisiblement votre nom et votre prénom sur la copie dans les champs prévus au dessus de cette consigne
- Ne trichez pas

1 Conversions Binaires d'Entiers (5 points)

1.1 (1 point) Rappelez les 14 premières puissances de 2 :

2^{0}	2^1	2^2	2^3	2^4	2^5	2^{6}	2^7	2^{8}	2^{9}	2^{10}	2^{11}	2^{12}	2^{13}

1.2 (2 points) Convertissez ces nombres vers le format décimal. Vous donnerez leur interprétation sur 12 bits en tant que nombre signé, puis non-signé.

	signé	non-signé
\$ 5E6		
\$ A 3D		

1.3 (2 points) Convertissez ces nombres décimaux en binaire sur 12 bits, puis en hexadécimal.

		hexadécimal					
1834							
-323							

2 Flottants IEEE 754 (8 points)

~ -	10	•	ъ			TDDD	,		a				
2.1	(2 n	oints)	Rann	elez le	es tormats	: IH;H;H;	754	des	flottants,	ainsi	ane	leurs	hiais:
	\ - P	OIII OD ,	TOOP	CICZ IC	ob ioiiia	,		aco	iioccarios,	CILIDI	que	ICGIS	DIGIS 6

simple précision	(bits)		
double précision	(bits)		

	biais
simple précision	
double précision	

2.2 (4 points) Reportez en binaire l'exposant biaisé trouvé dans ces flottants IEEE 754, puis cochez à quelle(s) catégorie(s) ils correspondent :

Flottant IEEE 754	Exposant biaisé	Caté	égorie(s)
\$ 8073 5E3B		\Box + Zéro \Box - Zéro	
\$ 6075 SESE		□ Normalisé□ Dénormalisé	\square Supranormalisé \square NaN
\$ 53E4 28C2		\Box + Zéro \Box - Zéro	
\$ 53E4 26C2		□ Normalisé□ Dénormalisé	\square Supranormalisé \square NaN
¢ ==00 0000		\Box + Zéro \Box - Zéro	$\begin{array}{c} \square + \infty \\ \square - \infty \end{array}$
\$ FF80 0000		□ Normalisé □ Dénormalisé	\square Supranormalisé \square NaN
A 5700 2706		\Box + Zéro \Box - Zéro	
\$ 7F83 AE86		□ Normalisé □ Dénormalisé	\square Supranormalisé \square NaN

2.3 (2 points) Convertissez ces valeurs décimales vers le format IEEE 754 simple précision tout en indiquant le signe et l'exposant biaisé en binaire :

Nombre	S	Exposant biaisé							S Exposant biaisé Hexadécimal (IEEE 754)									
-42,0625										\$								
35,09375										\$								

- 3 Circuits Logiques (7 points)
- 3.1 (1 point) Écrivez la formule associée à ce schéma :

- 3.2 (2 points) Remplissez la table de 3.3 vérité de la formule précédente :
- 3.3 (2 points) Déduisez-en la formule des mintermes, ainsi que la formule des maxtermes :

Mintermes:

 ${\bf Max termes}:$

3.4 (2 points) Remplissez le tableau de Karnaugh, formez les groupes, et déduisezen la formule réduite :

SUJET B ARCHITECTURE DES ORDINATEURS 1