2020

Programming Assignment

Deepak Choudhary
17CE31001

Fourier Analysis

Using Fourier analysis, plot steady state response of an un-damped SDF system subjected to a square wave excitation. Also, plot equivalent load from Fourier analysis for different value of number n.

Deepak Choudhary 17CE31001

Department of Civil
Engineering Indian
Institute of Technology
Kharagpur 721302

Code Part

(Done in Matlab R2017a. Code file is attached)

I have Used some assumption like

Mass m=1kg

Time period of Load T_0 =1sec

Spring Constant k=1000N/m

```
syms x n pi
sum=0;
\mbox{\% I} have let Time Period T=1 and spring constant k=1000N/m and mass=1kg
m=1;
k=1000;
w=sqrt(k/m);
 w0=2*pi/T;
 rn=n*w0/w
% Defining Square Wave Function
   y = piecewise(round(x) \le x, 1, round(x) > x, -1);
% Calculating a0 an bn
    a0=(1/T)*(int(1,x,0,0.5)+int(-1,x,0.5,1));
    an=(2/T)*(int(cos(n*w0*x),x,0,0.5)+int(-cos(n*w0*x),x,0.5,1));
    bn=(2/T)*(int(sin(n*w0*x),x,0,0.5)+int(-sin(n*w0*x),x,0.5,1));
    an1=subs(an,n,1:7)
    bn1=subs(bn,n,1:7)
% Plotting Square wave function with Fourier Function
% this graph is basically F(t)/F0 to t/T0 graph
An1 = an*cos(n*w0*x);
Bn1 = bn*sin(n*w0*x);
figure(1)
    fplot(y,[0,1])
    title('Load and its Fourier Series')
    xlabel('T')
```

```
ylabel('F(t)/F0')
    hold on
       hold off
grid
% Plotting Steady State respose
An2 = (an*cos(n*w0*x))/(k*(1-rn^2));
Bn2 = (bn*sin(n*w0*x))/(k*(1-rn^2));
   an2=subs (An2, n, 1:7)
   bn2=subs(Bn2,n,1:7)
figure(2)
   %fplot(y,[0,10])
   hold on
   title('Response of Undamped System')
   xlabel('T')
   ylabel('X(t)')
       % fplot(fp(3,An2,Bn2,n,a0),[0,1]) % for n=3
       fplot(fp(5,An2,Bn2,n,a0),[0,1]) % for n=5
       fplot(fp(7,An2,Bn2,n,a0),[0,1]) % for n=7
   hold off
grid
   % function to create sum for Fourier Function
   function p = fp(n1, an, bn, n, a0)
   An=subs(an,n,1:n1);
   Bn=subs(bn,n,1:n1);
   sum=a0;
    for i=1:n1
       sum=sum+An(i);
   end
    for i=1:n1
       sum=sum+Bn(i);
   end
   p = sum;
end
```

Output

 a_n and b_n Calculated for Load an1 =[0, 0, 0, 0, 0, 0, 0] bn1 = [4/pi, 0, 4/(3*pi), 0, 4/(5*pi), 0, 4/(7*pi)]

Graphs 1 Load and Equivalent Fourier series and time for n=3,5,7 Time Period For Load is supposed to be 1

Graph 2Steady State response for n=5,7
Between X(t) displacement and time t

Screenshot

