CDB Basics

Oracle Database 19c Multitenant Architecture

Objectives

- After completing this lesson, you should be able to:
 - Describe the multitenant architecture
 - Describe the CDB root and pluggable database containers
 - Differentiate the CDB root from a pluggable database
 - Explain the terminology of commonality
 - List impacts in various areas

Challenges

- Many Oracle customers have large numbers of "departmental" applications built on Oracle RDBMS that:
 - Do NOT use a significant percentage of the hardware on which they are deployed
 - Have instance and storage overhead preventing large numbers of "departmental" databases from being placed on the same physical and storage server
 - Are NOT sufficiently complex to require 100 percent of the attention of a full-time administrator
 - Do require significant time to patch or upgrade all applications

Non-CDB Architecture

- Multiple non-CDBs share nothing:
 - Too many background processes
 - High shared/process memory
 - Many copies of Oracle metadata

Multitenant Architecture: Benefits

- Operates multiple databases in a centrally managed platform to lower costs:
 - Less instance overhead
 - Less storage cost
- Reduces DBA resources costs and maintains security
 - No application changes
 - Fast and easy provisioning
 - Time saving for patching and upgrade
 - **Separation of duties** between:
 - Different application administrators
 - Application administrators and DBA
 - Users within application
- Provides isolation

Other Benefits of Multitenant Architecture

- Ensures full backward-compatibility with non-CDBs
- Fully operates with Oracle Real Application Cluster (Oracle RAC) and Data Guard
- Is supported by Oracle Enterprise Manager
- Is integrated with Resource Manager
- Allows central management and administration of multiple databases
 - Backups or disaster recovery
 - Patching and upgrades

Oracle Multitenant Container Database

Configurations

Database Objects in a non-CDB

• After the initial database creation, the only objects are Oracle-supplied objects.

Oracle System data

User-Added Objects to a non-CDB

• In a non-CDB, user data is added: The metadata is mixed with the Oracle-supplied data in the data dictionary.

Oracle System data mixed with User metadata

User Data

SYSTEM Objects in the USER Container

Provisioning a Pluggable Database

Different methods:

- Create new PDB from CDB seed pluggable database.
- Plug or clone a non-CDB as a PDB into a CDB.
- Clone or relocate a PDB from another PDB into the same or another CDB.
- Plug an unplugged PDB into the same or another CDB.
- Create a PDB as a proxy PDB.

Multitenant Container Database Architecture

Containers

- Types of containers in V\$CONTAINERS:
 - CDB root
 - The first mandatory container created at CDB creation
 - Oracle system–supplied common objects and metadata
 - Oracle system–supplied common users and roles
 - Pluggable database (PDBs)
 - Tablespaces (permanent and temporary)
 - Schemas / Objects / Privileges
 - Created / cloned / unplugged / plugged / proxied
 - Particular PDB: CDB seed (PDB\$SEED) used for fast provisioning of a new PDB

Tools

	SQL*Plus	OUI	DBCA	EM Cloud Control	EM Database Express	SQL Developer	DBUA
Create a new CDB or PDB	Yes	Yes	Yes	Yes (PDB only)	Yes (PDB only)	Yes (PDB only)	
Explore CDB instance, architecture, and PDBs	Yes			Yes	Yes	Yes	
Upgrade a 12c CDB to 19c CDB				Yes			Yes

Data Dictionary and Dynamic Views

```
All objects in the multitenant container database across all PDBs

DBA_xxx All of the objects in a container or pluggable database

ALL_xxx Objects accessible by the current user

USER_xxx Objects owned by the current user
```

- CDB pdbs: All PDBS within CDB
- CDB tablespaces: All tablespaces within CDB
- CDB users: All users within CDB (common and local)

```
SQL> select OBJECT_ID, ORACLE_USERNAME, LOCKED_MODE, CON_ID from V$LOCKED_OBJECT;

OBJECT_ID ORACLE_USERNAME LOCKED_MODE CON_ID

83711 SYS

3 3 PDB1

83710 DOM

3 4 PDB2
```

Terminology

- DBA, CDB_DBA, and PDB_DBA (roles assigned to administrators at different levels)
- Common vs Local:
 - Users
 - Privileges / Roles
 - Objects
 - Profiles
- CDB vs PDB level:
 - CDB Resource Manager plan vs PDB RM plan
 - Unified audit policies at CDB or PDB level
 - Encryption master keys at CDB and PDB level
 - Database Vault realms and command rules at CDB or PDB level
 - XStream at CDB or PDB level

Impacts

- Define a character set for the CDB and per PDB.
- Define PDB initialization parameters in a single SPFILE.
- Do not use PDB-qualified database object names. Instead use database links.

SQL> SELECT * FROM HR.apps tab1; SQL> SELECT

SQL> SELECT * FROM apps.tab1@HR;

- Implement subset standbys at the PDB level.
- Configure Oracle Database Vault per PDB and on common objects.
- Create one TDE master encryption key per PDB to encrypt PDB data.
- Configure unified audit at CDB and PDB level.
- Benefit from Heat Maps and Automatic Data Optimization.
- Use Logminer for objects at all levels.
- Configure replication at PDB and application level with XStream and Oracle GoldenGate.

Summary

- In this lesson, you should have learned how to:
 - Describe the multitenant architecture
 - Describe the CDB root and pluggable database containers
 - Differentiate the CDB root from a pluggable database
 - Explain the concept of commonality
 - List impacts in various areas

Practices Environment – 1

Each student has two virtual machines (VM1 and VM2) to use during class.

• On VM1:

- Oracle Database 19c installed:
 - With one CDB named ORCL and one PDB named PDB1. The CDB has been set up for you in advance so that you can explore an existing configuration.
 - You will create another CDB, CDB18, and its PDB, PDB18.
- Oracle Database 12.2 installed:
 - With one CDB named CDB12 and one PDB named PDB12 to perform upgrade operations to Oracle Database 19c.
 - With a non-CDB named NONCDB to perform plugging or cloning operations into one of the Oracle Database 19c CDBs. This shows you how to migrate a non-CDB into a CDB.

• On VM2:

- Enterprise Manager 13c deployed to monitor Oracle Database 19c targets.
- Oracle Database 12.1 installed with one CDB named cdbem and one PDB named PDBEM used as the Oracle Management Repository (OMR).

Practices Environment - 2

- Pre-created databases and instances with their respective PDBs:
 - Datafiles in /u02/app/oracle/oradata/
 - CDB root datafiles in /u02/app/oracle/oradata/<db_name>
 - PDB datafiles in /u02/app/oracle/oradata/<db name>/<pdb name>
 - Control files in /u02/app/oracle/oradata/<db_name>
 and /u03/app/oracle/fast_recovery_area/<db_name>
 - All redo log files in /u04/app/oracle/redo/<db_name>
 - All backup files in /u03/app/oracle/fast_recovery_area/<db_name>
 - Password and init files in \$ORACLE_HOME/dbs
 - Diagnostics files in /u01/app/oracle/diag/rdbms/orcl/ORCL/...
 - TDE wallet in /u01/app/oracle/admin/<db_name>/tde_wallet
 - Net files in \$ORACLE_HOME/network/admin

Practice 1: Overview

- 1-1: Discovering practices environment
- 1-2: Adding a CDB as a new target in Enterprise Manager Cloud Control
- 1-3: Checking named credentials
- 1-4: Using Enterprise Manager Express

• Note:

- In most of the practices, you will have to execute setup and cleanup shell scripts and SQL scripts. The scripts may generate false errors in the following occurrences:
 - A tablespace dropped because the tablespace was not created
 - A pluggable database dropped because the pluggable database was not created
 - A directory creation dropped because the directory already exists Do not pay attention to the errors.

Multitenant Architecture Poster

Listener