Hexapod kinematics

Nicolas Jeanmonod, May 2019

The coordinates of the platform joints at home position are called $P0_i$.

Note that $P0z_i = 0$ and i = motor index = 0..5.

$$P0_i = \{P0x_i, P0y_i, 0, 1\}$$

The platform has six degrees of freedom, three rotations and three translations with the following transformation matrices:

$$Rx = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(A) & \sin(A) & 0 \\ 0 & -\sin(A) & \cos(A) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} Ry = \begin{pmatrix} \cos(B) & 0 & -\sin(B) & 0 \\ 0 & 1 & 0 & 0 \\ \sin(B) & 0 & \cos(B) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$Rz = \begin{pmatrix} \cos(C) & \sin(C) & 0 & 0 \\ -\sin(C) & \cos(C) & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \qquad Txyz = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ Tx & Ty & Tz & 1 \end{pmatrix}$$

The coordinates of the platform joints after movement are called $P1_i$ and can be found by calculating the following dot product :

$$P1_i = (P0_i \cdot Rx \cdot Ry \cdot Rz \cdot Txyz) =$$

$$\begin{pmatrix} P1x_i \\ P1y_i \\ P1z_i \\ 1 \end{pmatrix}^T = \begin{pmatrix} P0x_i \cos B \cos C + P0y_i (\sin A \sin B \cos C - \cos A \sin C) + Tx \\ P0x_i \cos B \sin C + P0y_i (\cos A \cos C + \sin A \sin B \sin C) + Ty \\ -P0x_i \sin B + \sin A \cos By + Tz \\ 1 \end{pmatrix}^T$$

We can now calculate the distances between the servo pivots $B_{\it i}$ and the platform joints $P1_{\it i}$:

$$dPB_i = (P1_i - B_i) = (P1_i - \{Bx_i, By_i, -Z_{home}, 1\}) =$$

$$\begin{pmatrix} dPBx_i \\ dPBy_i \\ dPBz_i \\ 1 \end{pmatrix}^T = \begin{pmatrix} P0x_i \cos B \cos C + P0y_i (\sin A \sin B \cos C - \cos A \sin C) + Tx - Bx_i \\ P0x_i \cos B \sin C + P0y_i (\cos A \cos C + \sin A \sin B \sin C) + Ty - By_i \\ -P0x_i \sin B + \sin A \cos By + Tz + Z_{home} \\ 1 \end{pmatrix}^T$$
(eq 1)

And the squares of the length of the vectors are:

$$d_i^2 = dDPx_i^2 + dDPy_i^2 + dDPz_i^2 \text{ (eq 2)}$$

For a platform using linear motors, the calculation can be done with eq 1 and eq 2. In our case we have rotational motors so we need to continue. Note that it is not a good idea to compute the square root of d_i^2 because it is a computer intensive operation and we don't need the value of d.

Now, we need to check if the arm of length a and the rod of length s are long enoug to actually go to the target position :

$$d_i^2 \le (a+s)^2 \text{ (eq 3)}$$

TO BE CONTINUED...