Connecting Kani's Lemma and the Bruhat-Tits tree to compute endomorphism rings of supersingular elliptic curves

```
Gabrielle Scullard (Penn State)
joint with Kirsten Eisenträger (Penn State)
```

March 26, 2024

Problem: Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.

- **Problem:** Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.
 - Means: compute a basis for End(E).

- **Problem:** Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.
 - \blacktriangleright Means: compute a basis for End(E).
- Usually two steps:

- **Problem:** Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.
 - ightharpoonup Means: compute a basis for End(E).
- Usually two steps:
 - ▶ Step 1: Compute a basis for a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$.

- **Problem:** Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.
 - ightharpoonup Means: compute a basis for End(E).
- Usually two steps:
 - ▶ Step 1: Compute a basis for a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$.
 - ▶ Step 2: From a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$, compute $\operatorname{End}(E)$.

- **Problem:** Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.
 - ightharpoonup Means: compute a basis for End(E).
- Usually two steps:
 - ▶ Step 1: Compute a basis for a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$.
 - ▶ Step 2: From a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$, compute $\operatorname{End}(E)$.
- Our work gives a polynomial-time algorithm for Step 2, using repeated applications of Kani's lemma to compute End(E) locally on the Bruhat-Tits tree.

- **Problem:** Given a supersingular elliptic curve E defined over \mathbb{F}_{p^2} , compute its endomorphism ring $\operatorname{End}(E)$.
 - ightharpoonup Means: compute a basis for End(E).
- Usually two steps:
 - ▶ Step 1: Compute a basis for a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$.
 - ▶ Step 2: From a full-rank subring $\mathcal{O}_0 \subset \operatorname{End}(E)$, compute $\operatorname{End}(E)$.
- Our work gives a polynomial-time algorithm for Step 2, using repeated applications of Kani's lemma to compute End(E) locally on the Bruhat-Tits tree.

Outline

- 1. Kani's Lemma
- 2. Quaternion algebras and the Bruhat-Tits tree
- 3. Describe the algorithm (simplest case)

Kani's Lemma

Let $f = f_1' \circ f_1 = f_2' \circ f_2$ such that $\deg(f_1) = \deg(f_2') = d_1$, $\deg(f_2) = \deg(f_1') = d_2$, and $(d_1, d_2) = 1$.

$$f_2$$
, f_1' d_2 -isogeny $A \xrightarrow{f_1} A_1$

$$\downarrow f_2 \downarrow f_1' \downarrow f_1' \downarrow A_2 \xrightarrow{f_2'} B$$

Then
$$F = \begin{pmatrix} f_1 & \tilde{f}_1' \\ -f_2 & f_2' \end{pmatrix}$$
 is d -isogeny $F : A \times B \to A_1 \times A_2$ with $d = d_1 + d_2$ and kernel $\text{Ker } F = \{(\tilde{f}_1(P), f_1'(P)) : P \in A_1[d]\}.$

Application

Algorithm 1 ([Rob23b]; [HLMW23])

Input: $\beta \in \text{End}(E)$, $n \in \mathbb{Z}$

Output: TRUE if $\frac{\beta}{n} \in \text{End}(E)$, FALSE if $\frac{\beta}{n} \not\in \text{End}(E)$

- ► Algorithm 1 runs in polynomial time (see Theorem 4.16 of [HLMW23] for more details)
- Uses Kani's Lemma with the following diagram, where α is an a-isogeny such that $\deg(\beta)/n^2 + a$ is powersmooth and coprime to $\deg(\beta)$.

Applications of Algorithm 1

▶ Robert ([Rob23b]) first described Algorithm 1 to compute endomorphism rings of ordinary elliptic curves.

Applications of Algorithm 1

- ▶ Robert ([Rob23b]) first described Algorithm 1 to compute endomorphism rings of ordinary elliptic curves.
- ► Also used in work relating endomorphism ring computation and knowledge of a single non-scalar endomorphism ([HLMW23] [PW23])

▶ **Global test:** Given $\mathcal{O} \subset \operatorname{End}(E) \otimes \mathbb{Q}$ (specified by basis elements of the form $\frac{\beta}{p}$ with $\beta \in \operatorname{End}(E)$), we can efficiently determine if $\mathcal{O} \subset \operatorname{End}(E)$.

- ▶ **Global test:** Given $\mathcal{O} \subset \operatorname{End}(E) \otimes \mathbb{Q}$ (specified by basis elements of the form $\frac{\beta}{n}$ with $\beta \in \operatorname{End}(E)$), we can efficiently determine if $\mathcal{O} \subset \operatorname{End}(E)$.
 - Test each basis element.

- ▶ **Global test:** Given $\mathcal{O} \subset \operatorname{End}(E) \otimes \mathbb{Q}$ (specified by basis elements of the form $\frac{\beta}{n}$ with $\beta \in \operatorname{End}(E)$), we can efficiently determine if $\mathcal{O} \subset \operatorname{End}(E)$.
 - Test each basis element.
- ▶ **Local test:** Let q be prime. Given $\Lambda \subset \operatorname{End}(E) \otimes \mathbb{Q}_q$, we can efficiently determine if $\Lambda \subset \operatorname{End}(E) \otimes \mathbb{Z}_q$.

$$\Rightarrow \frac{\beta}{q_{e_1}}, \frac{\beta_1}{q_{e_2}}, \frac{\beta_3}{q_{e_3}}, \frac{\beta_4}{q_{e_4}}$$

- ▶ **Global test:** Given $\mathcal{O} \subset \operatorname{End}(E) \otimes \mathbb{Q}$ (specified by basis elements of the form $\frac{\beta}{n}$ with $\beta \in \operatorname{End}(E)$), we can efficiently determine if $\mathcal{O} \subset \operatorname{End}(E)$.
 - Test each basis element.
- ▶ **Local test:** Let q be prime. Given $\Lambda \subset \operatorname{End}(E) \otimes \mathbb{Q}_q$, we can efficiently determine if $\Lambda \subset \operatorname{End}(E) \otimes \mathbb{Z}_q$.
 - Use global test for an appropriate global order.

We set some notation:

 $ightharpoonup B_{p,\infty}=$ the quaternion algebra over $\mathbb Q$ ramified at p and ∞

- ▶ $B_{p,\infty}$ = the quaternion algebra over $\mathbb Q$ ramified at p and ∞
 - ► Noncommutative rank 4 algebra over ℚ

- $ightharpoonup B_{p,\infty}=$ the quaternion algebra over $\mathbb Q$ ramified at p and ∞
 - ► Noncommutative rank 4 algebra over ℚ
- From now on, assume we are given:

- $ightharpoonup B_{p,\infty}=$ the quaternion algebra over $\mathbb Q$ ramified at p and ∞
 - Noncommutative rank 4 algebra over Q
- From now on, assume we are given:
 - $ightharpoonup \mathcal{O}_0 \subset \operatorname{End}(E)$

- $ightharpoonup B_{p,\infty}=$ the quaternion algebra over $\mathbb Q$ ramified at p and ∞
 - Noncommutative rank 4 algebra over Q
- From now on, assume we are given:
 - $ightharpoonup \mathcal{O}_0 \subset \operatorname{End}(E)$
 - ▶ a factorization for the quantity $D = \operatorname{discrd}(\mathcal{O}_0)$ (this can be computed from the basis)

Structure of the endomorphism ring

ightharpoonup End(E) is isomorphic to a maximal order in $B_{p,\infty}$

Structure of the endomorphism ring

- ightharpoonup End(E) is isomorphic to a maximal order in $B_{p,\infty}$
- ▶ End(E) is equal to a maximal order in $\mathcal{O}_0 \otimes \mathbb{Q}$ which also contains \mathcal{O}_0 .

Structure of the endomorphism ring

- ightharpoonup End(E) is isomorphic to a maximal order in $B_{p,\infty}$
- ▶ End(E) is equal to a maximal order in $\mathcal{O}_0 \otimes \mathbb{Q}$ which also contains \mathcal{O}_0 .
- ▶ [EHL⁺20]: Compute End(E) by computing all maximal orders containing \mathcal{O}_0 and testing each one
 - ▶ But they require some restrictions on \mathcal{O}_0 so that there are not exponentially many orders to test.
 - Computed all local maximal orders confaining

▶ Local-global principle: A global order \mathcal{O} in a quaternion algebra is determined by its completions $\mathcal{O} \otimes \mathbb{Z}_q$ at each prime q.

- ▶ Local-global principle: A global order \mathcal{O} in a quaternion algebra is determined by its completions $\mathcal{O} \otimes \mathbb{Z}_q$ at each prime q.
- ▶ To compute End(E), we compute End(E) $\otimes \mathbb{Z}_q$ for each prime q.

- ▶ Local-global principle: A global order \mathcal{O} in a quaternion algebra is determined by its completions $\mathcal{O} \otimes \mathbb{Z}_q$ at each prime q.
- ▶ To compute End(E), we compute End(E) $\otimes \mathbb{Z}_q$ for each prime q.
- Maximality is a local property: For every prime q, $\operatorname{End}(E) \otimes \mathbb{Z}_q$ is a maximal order containing $\mathcal{O}_0 \otimes \mathbb{Z}_q$.

- ▶ Local-global principle: A global order \mathcal{O} in a quaternion algebra is determined by its completions $\mathcal{O} \otimes \mathbb{Z}_q$ at each prime q.
- ▶ To compute End(E), we compute End(E) $\otimes \mathbb{Z}_q$ for each prime q.
- Maximality is a local property: For every prime q, $\operatorname{End}(E)\otimes \mathbb{Z}_q$ is a maximal order containing $\mathcal{O}_0\otimes \mathbb{Z}_q$.
 - $holdsymbol{ ilde{O}}_0\otimes \mathbb{Z}_q$ is already maximal at all primes except those dividing D/p.

- ▶ Local-global principle: A global order \mathcal{O} in a quaternion algebra is determined by its completions $\mathcal{O} \otimes \mathbb{Z}_q$ at each prime q.
- ▶ To compute End(E), we compute End(E) $\otimes \mathbb{Z}_q$ for each prime q.
- Maximality is a local property: For every prime q, $\operatorname{End}(E) \otimes \mathbb{Z}_q$ is a maximal order containing $\mathcal{O}_0 \otimes \mathbb{Z}_q$.
 - $ho O_0 \otimes \mathbb{Z}_q$ is already maximal at all primes except those dividing D/p.
 - ightharpoonup There is only one maximal order in $B_{p,\infty}\otimes \mathbb{Q}_p$.

- ▶ Local-global principle: A global order \mathcal{O} in a quaternion algebra is determined by its completions $\mathcal{O} \otimes \mathbb{Z}_q$ at each prime q.
- ▶ To compute End(E), we compute End(E) $\otimes \mathbb{Z}_q$ for each prime q.
- Maximality is a local property: For every prime q, $\operatorname{End}(E)\otimes \mathbb{Z}_q$ is a maximal order containing $\mathcal{O}_0\otimes \mathbb{Z}_q$.
 - $ho O_0 \otimes \mathbb{Z}_q$ is already maximal at all primes except those dividing D/p.
 - ▶ There is only one maximal order in $B_{p,\infty} \otimes \mathbb{Q}_p$.
 - lnteresting case: $q \neq p$

Assume $q \neq p$.

▶ Fact: $B_{p,\infty} \otimes \mathbb{Q}_q \cong M_2(\mathbb{Q}_q)$.

- ▶ Fact: $B_{p,\infty} \otimes \mathbb{Q}_q \cong M_2(\mathbb{Q}_q)$.
- ▶ **Fact:** All maximal orders of $M_2(\mathbb{Q}_q)$ are conjugate to $M_2(\mathbb{Z}_q)$.

- ▶ Fact: $B_{p,\infty} \otimes \mathbb{Q}_q \cong M_2(\mathbb{Q}_q)$.
- ▶ **Fact:** All maximal orders of $M_2(\mathbb{Q}_q)$ are conjugate to $M_2(\mathbb{Z}_q)$.
- From now on, assume we have computed an isomorphism

$$f:\mathcal{O}_0\otimes\mathbb{Q}_q o M_2(\mathbb{Q}_q)$$
 such that $f(\mathcal{O}_0)\subset M_2(\mathbb{Z}_q)$

- ▶ Fact: $B_{p,\infty} \otimes \mathbb{Q}_q \cong M_2(\mathbb{Q}_q)$.
- ▶ **Fact:** All maximal orders of $M_2(\mathbb{Q}_q)$ are conjugate to $M_2(\mathbb{Z}_q)$.
- From now on, assume we have computed an isomorphism

$$f:\mathcal{O}_0\otimes\mathbb{Q}_q o M_2(\mathbb{Q}_q)$$
 such that $f(\mathcal{O}_0)\subset M_2(\mathbb{Z}_q)$

$$ightharpoonup \Lambda_0 := f(\mathcal{O}_0 \otimes \mathbb{Z}_a)$$

- ▶ Fact: $B_{p,\infty} \otimes \mathbb{Q}_q \cong M_2(\mathbb{Q}_q)$.
- ▶ **Fact:** All maximal orders of $M_2(\mathbb{Q}_q)$ are conjugate to $M_2(\mathbb{Z}_q)$.
- From now on, assume we have computed an isomorphism

$$f:\mathcal{O}_0\otimes\mathbb{Q}_q o M_2(\mathbb{Q}_q)$$
 such that $f(\mathcal{O}_0)\subset M_2(\mathbb{Z}_q)$

- $ightharpoonup \Lambda_E := f(\operatorname{End}(E) \otimes \mathbb{Z}_q)$

Switch to Local

Assume $q \neq p$.

- ▶ Fact: $B_{p,\infty} \otimes \mathbb{Q}_q \cong M_2(\mathbb{Q}_q)$.
- ▶ **Fact:** All maximal orders of $M_2(\mathbb{Q}_q)$ are conjugate to $M_2(\mathbb{Z}_q)$.
- From now on, assume we have computed an isomorphism $f: \mathcal{O}_0 \otimes \mathbb{Q}_q \to M_2(\mathbb{Q}_q)$ such that $f(\mathcal{O}_0) \subset M_2(\mathbb{Z}_q)$
 - ho $\Lambda_0 := f(\mathcal{O}_0 \otimes \mathbb{Z}_q)$
 - $ightharpoonup \Lambda_E := f(\operatorname{End}(E) \otimes \mathbb{Z}_q)$
 - ▶ Any orders we refer to will be orders in $M_2(\mathbb{Q}_q)$

Bruhat-Tits tree

The Bruhat-Tits tree is a graph which organizes the maximal orders of $M_2(\mathbb{Q}_q)$.

Bruhat-Tits tree

The Bruhat-Tits tree is a graph which organizes the maximal orders of $M_2(\mathbb{Q}_q)$.

- ▶ Vertices = {maximal orders $\Lambda \subset M_2(\mathbb{Q}_q)$ }
- Edges = $\{(\Lambda, \Lambda') | [\Lambda : \Lambda \cap \Lambda'] = q \}$

ightharpoonup (q+1)-regular tree

- ightharpoonup (q+1)-regular tree
- ► The **distance** between Λ and Λ' is the length of the unique path between them, denoted $d(\Lambda, \Lambda')$

- ightharpoonup (q+1)-regular tree
- ► The **distance** between Λ and Λ' is the length of the unique path between them, denoted $d(\Lambda, \Lambda')$
- Every maximal order Λ can be written as $\gamma^{-1}M_2(\mathbb{Z}_q)\gamma$, where γ is a product of matrices which encodes the steps of the path between the vertices $M_2(\mathbb{Z}_q)$ and Λ .

- ightharpoonup (q+1)-regular tree
- ► The **distance** between Λ and Λ' is the length of the unique path between them, denoted $d(\Lambda, \Lambda')$
- Every maximal order Λ can be written as $\gamma^{-1}M_2(\mathbb{Z}_q)\gamma$, where γ is a product of matrices which encodes the steps of the path between the vertices $M_2(\mathbb{Z}_q)$ and Λ .
- ► The set of maximal orders containing a (full-rank) order is a (finite) subtree.

Truncated Bruhat-Tits tree for q=3. The vertex labels are products of matrices $\gamma_0, \gamma_1, \gamma_2, \gamma_\infty$. The vertex labelled γ corresponds to the order $\gamma^{-1}M_2(\mathbb{Z}_q)\gamma$.

Moral: Maximal orders can be represented explicitly in terms of where they are located on the tree.

Intersections of two maximal orders

▶ If Λ_1 , Λ_2 , and Λ are maximal orders, then

 $\Lambda \supset \Lambda_1 \cap \Lambda_2 \iff \Lambda$ lies on the path between Λ_1 and Λ_2 .

Intersection of three maximal orders

More complicated statement for intersections of three maximal orders.

Intersection of three maximal orders

More complicated statement for intersections of three maximal orders.

► Every finite intersection of maximal orders is an intersection of at most three maximal orders. ([Tu11])

Intersection of three maximal orders

More complicated statement for intersections of three maximal orders.

- ► Every finite intersection of maximal orders is an intersection of at most three maximal orders. ([Tu11])
- Corresponds to a neighborhood of a path (with respect to earlier-defined distance).

- If the subtree of orders containing Λ_0 is a path, generate a list of orders containing Λ_0 and perform a binary search to find Λ_E .
- ▶ Length of the path is at most $v_q(D) + 1$.

Example: The tree of maximal orders containing Λ_0 is the path between Λ_1 and Λ_7 .

 $\Rightarrow \Lambda_E$ is one of the Λ_i on this path.

Example: The tree of maximal orders containing Λ_0 is the path between Λ_1 and Λ_7 .

 $\Rightarrow \Lambda_E$ is one of the Λ_i on this path.

Example: The tree of maximal orders containing Λ_0 is the path between Λ_1 and Λ_7 .

 $\Rightarrow \Lambda_E$ is one of the Λ_i on this path.

Either $\Lambda_E \supset \Lambda_1 \cap \Lambda_4$ or $\Lambda_E \supset \Lambda_5 \cap \Lambda_7$.

Example: The tree of maximal orders containing Λ_0 is the path between Λ_1 and Λ_7 .

 $\Rightarrow \Lambda_E$ is one of the Λ_i on this path.

Either $\Lambda_E \supset \Lambda_1 \cap \Lambda_4$ or $\Lambda_E \supset \Lambda_5 \cap \Lambda_7$.

Local Test: $\Lambda_1 \cap \Lambda_4 \subset \Lambda_E$

 $\Rightarrow \Lambda_E$ is one of $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$

 $\Rightarrow \Lambda_E$ is one of $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$

 $\Rightarrow \Lambda_E$ is one of $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$

Either $\Lambda_E \supset \Lambda_1 \cap \Lambda_2$ or $\Lambda_E \supset \Lambda_3 \cap \Lambda_4$.

 $\Rightarrow \Lambda_E$ is one of $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$

Either $\Lambda_E \supset \Lambda_1 \cap \Lambda_2$ or $\Lambda_E \supset \Lambda_3 \cap \Lambda_4$.

Local Test: $\Lambda_1 \cap \Lambda_2 \not\subset \Lambda_E$

 $\Rightarrow \Lambda_E$ is one of $\Lambda_1, \Lambda_2, \Lambda_3, \Lambda_4$

Either $\Lambda_E \supset \Lambda_1 \cap \Lambda_2$ or $\Lambda_E \supset \Lambda_3 \cap \Lambda_4$.

Local Test: $\Lambda_1 \cap \Lambda_2 \not\subset \Lambda_E$

 $\Rightarrow \Lambda_E$ is one of Λ_3 or Λ_4

 $\Rightarrow \Lambda_E$ is one of Λ_3 or Λ_4

 $\Rightarrow \Lambda_E$ is one of Λ_3 or Λ_4

Either $\Lambda_E \supset \Lambda_3$ or $\Lambda_E \supset \Lambda_4$.

 $\Rightarrow \Lambda_E$ is one of Λ_3 or Λ_4

Either $\Lambda_E \supset \Lambda_3$ or $\Lambda_E \supset \Lambda_4$.

Local Test: $\Lambda_3 \not\subset \Lambda_E \Rightarrow \boxed{\Lambda_E = \Lambda_4}$

In general, not efficient to generate a list of all orders containing Λ_0 .

- In general, not efficient to generate a list of all orders containing Λ_0 .
 - ▶ But Λ_E is at most $v_q(D)$ steps from $M_2(\mathbb{Z}_q)$.

- In general, not efficient to generate a list of all orders containing Λ_0 .
 - ▶ But Λ_E is at most $v_q(D)$ steps from $M_2(\mathbb{Z}_q)$.
- ▶ Use local containment testing for specially-chosen orders to deduce information about Λ_E .

- In general, not efficient to generate a list of all orders containing Λ_0 .
 - ▶ But Λ_E is at most $v_q(D)$ steps from $M_2(\mathbb{Z}_q)$.
- ▶ Use local containment testing for specially-chosen orders to deduce information about Λ_F .
 - ► Replaces intersections of two orders in the special case with intersections of three orders.

- In general, not efficient to generate a list of all orders containing Λ_0 .
 - ▶ But Λ_E is at most $v_q(D)$ steps from $M_2(\mathbb{Z}_q)$.
- ▶ Use local containment testing for specially-chosen orders to deduce information about Λ_F .
 - Replaces intersections of two orders in the special case with intersections of three orders.
 - Many more details in the paper! [ES24]

- ▶ Step 1: Compute the distance between $M_2(\mathbb{Z}_q)$ and Λ_E .
 - At most $v_q(D)$ orders for local containment testing.
- Step 2: Construct the path from $M_2(\mathbb{Z}_q)$ to Λ_E , one step at a time. (More (ostly)
 - There are q + 1 choices for the first step: we can test each choice until we find the correct one.
 - There are q choices for all subsequent steps.

Example: $v_q(D) = 4$, $d(M_2(\mathbb{Z}_q), \Lambda_E) \leq 4$

Local containment test: $d(M_2(\mathbb{Z}_q), \Lambda_E) > 2 \Rightarrow d(M_2(\mathbb{Z}_q), \Lambda_E) = 3$

 $\Rightarrow \Lambda_E$ is one of the blue, pink, or yellow orders.

Check q+1 possibilities: $\Rightarrow \Lambda_E$ is one of the pink orders (determines the first step in the path).

Check q possibilities: determines the next step in the path.

Check q possibilities: determines the next step in the path.

Found $\Lambda_E!$

Conclusion

- \blacktriangleright Kani's lemma can be used to test containment of local orders in the local endomorphism ring Λ_E
- \triangleright Local containment testing can be used to find Λ_E
 - $ightharpoonup \approx v_q(D)q$ steps to rule out exponentially many orders

Questions?

:)

References I

- Kirsten Eisenträger, Sean Hallgren, Chris Leonardi, Travis Morrison, and Jennifer Park, Computing endomorphism rings of supersingular elliptic curves and connections to path-finding in isogeny graphs, ANTS XIV—Proceedings of the Fourteenth Algorithmic Number Theory Symposium, Open Book Ser., vol. 4, Math. Sci. Publ., Berkeley, CA, 2020, pp. 215–232. MR 4235115
- Kirsten Eisentraeger and Gabrielle Scullard, Connecting kani's lemma and path-finding in the bruhat-tits tree to compute supersingular endomorphism rings, 2024, https://arxiv.org/pdf/2402.05059.pdf.
- Arthur Herlédan Le Merdy and Benjamin Wesolowski, *The supersingular endomorphism ring problem given one endomorphism*, Cryptology ePrint Archive, Paper 2023/1448, 2023, https://eprint.iacr.org/2023/1448.

References II

- Ernst Kani, *The number of curves of genus two with elliptic differentials*, J. Reine Angew. Math. **485** (1997), 93–121. MR 1442190
- Aurel Page and Benjamin Wesolowski, *The supersingular endomorphism ring and one endomorphism problems are equivalent*, Cryptology ePrint Archive, Paper 2023/1399, 2023, https://eprint.iacr.org/2023/1399.
- Damien Robert, *Breaking SIDH in polynomial time*, Advances in cryptology—EUROCRYPT 2023. Part V, Lecture Notes in Comput. Sci., vol. 14008, Springer, Cham, [2023] © 2023, pp. 472–503. MR 4591005
- Damien Robert, Some applications of higher dimensional isogenies to elliptic curves, Preprint, 2023, https://www.normalesup.org/~robert/pro/publications/articles/isogenies_applications.pdf.

References III

Fang-Ting Tu, On orders of M(2, K) over a non-Archimedean local field, Int. J. Number Theory **7** (2011), no. 5, 1137–1149. MR 2825964