Posterior Predictive Checking

May 7, 2025

Prof. Gwendolyn Eadie

Why posterior samples are so useful

- Model design
 - o Draw samples from the prior distribution to get a sense of what the model expects before you use the data (helpful in multidimensional problems)
- Model checking
 - o Posterior predictive checks!
- Software validation
 - Simulate data from known model
 - o Fit data to model and make sure you get the expected result
- Research design
 - With simulated observations, you ca test whether research design will be effective
- Forecasting
 - Simulate new predictions
 - What modifications to model may be needed in the future
- Scientific inference
 - Propagate uncertainty in future calculations

Posterior predictive distribution

- We can check our model with predictive checks
- The Posterior predictive distribution is given by:

$$p(y_{future}|y_{observed}) = \int p(y_{future}|\theta)p(\theta|y_{observed})d\theta$$

- Basic idea:
 - Generate mock data using the posterior distribution of the parameters
 - Compare the mock data to the real data
 - If the model is a good description of the real data, then the model should be able to generate "real" looking data.

Let's go back to our m&m's example to see how this works!

Exercise

- Perform a posterior predictive check
 - Draw random θ value from your posterior
 - Given θ , draw random y from the binomial
 - Repeat many times, to get a predictive distribution of y's
 - Predictive distribution of y's $\rightarrow p(y_{future}|y_{oberved})$
- Plot your predictive distribution of y's, compare to your neighbour's