

Projet d'Ouverture Technologique

ARTIFICAL INTELLIGENCE IN ORDER TO IMPROVE INTRUSION DETECTION

Réalisé par :

SAMAOUI Khalid

DRISSI EL-BOUZAIDI

Mouna

Encadré par :

Prof. IDRISSI

HAMZA Kamal

Résumé

Récemment, les énormes quantités de données et leur augmentation progressive ont changé l'importance de la sécurité de l'information et des systèmes d'analyse des données pour le Big Data.

Le système de détection d'intrusion (IDS) est un système qui surveille et analyse les données pour détecter toute intrusion dans le système ou le réseau. Le volume, la variété et la vitesse élevés des données générées dans le réseau ont rendu très difficile le processus d'analyse des données pour détecter les attaques par des techniques traditionnelles.

Dans ce projet, on a utilisé des techniques de Big Data, à savoir le Machine Learning et le Deep Learning, dans les IDS pour traiter les Big Data afin d'obtenir un processus d'analyse des données précis et efficace.

Remerciements

Avant tout développement sur ce projet, il apparait opportun de commencer notre rapport par un remerciement à **M. IDRISSI HAMZA Kamal** de nous avoir aidé à réaliser ce projet et d'avoir sacrifié beaucoup de temps pour le rendre très profitable. Nous le remercions aussi pour ses conseils et ses remarques pertinentes.

Un grand merci à nos professeurs et toute l'équipe pédagogique de l'Institut National des Postes et Télécommunications pour leurs efforts durant ces deux dernières années qui nous ont été nécessaires à la compréhension des fondements théoriques utilisées pour réaliser un tel travail.

Table des matières

1	Intr	oduction	1					
2	Application des Algorithmes de l'IA							
	2.1	Pre-processing	. 2					
	2.2	Supervised Learning	. 4					
	2.2	Unsupervised Learning	10					
	2.3	Deep Learning	12					
3	Con	clusion	15					

Introduction

La dataset choisie est **CICIDS2017** [1]. Elle contient les attaques courantes les plus récentes qui ressemblent aux véritables données du monde réel (*PCAP*). Elle comprend des flux étiquetés en fonction de l'horodatage, des IP source et destination, des ports source et destination, des protocoles et des attaques (fichiers *CSV*).

La période de capture des données a commencé à 9 heures, le lundi 3 juillet 2017 et s'est terminée à 17 heures, le vendredi 7 juillet 2017, soit un total de 5 jours. Les attaques mises en œuvre comprennent la force brute FTP, la force brute SSH, DoS, Heartbleed, l'attaque Web, l'infiltration, le botnet et le DDoS. Elles ont été exécutées le matin et l'après-midi des mardi, mercredi, jeudi et vendredi.

En raison de simplification et vu la grande taille de la Dataset, on a choisi de travailler sur la capture réalisée pendant le jeudi et uniquement sur l'attaque Web [2].

Application des Algorithmes de l'IA

2.1 Pre-processing

La première phase est le nettoyage des données, elle comprend :

- Suppression des lignes identiques ;
- Suppression des champs vides ;
- Remplacement des valeurs non numériques par des valeurs numériques ;
- Remplacement des valeurs NaN et les valeurs infinies par
 -1;
- Conversion des caractères de chaîne en nombres.

```
[ ] # Lecture de la dataset

df = pd.read_csv('Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv', encoding='cp1252')

/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:2882: DtypeMarning: Columns (0,1,3,6,84) have mixed types.Specify dtype option on import or set low_memory=False.

exec(code_obj, self.user_global_ns, self.user_ns)

[ ] # Suppression des lignes identiques

df.columns = df.columns.str.strip()

df = df.drop(columns=['Fwd Header Length.1'])
```

```
[ ] # Suppression des champs vides
df = df.drop(df[pd.isnull(df['Flow ID'])].index)

[ ] # Remplacement des valeurs non numériques par des valeurs numériques
df.replace('Infinity', -1, inplace=True)
df[("Flow Bytes/s", "Flow Packets/s"]] = df[("Flow Bytes/s", "Flow Packets/s"]].apply(pd.to_numeric)

[ ] # Remplacement des valeurs NaN et les valeurs infinies par -1
df.replace(([np.inf, -np.inf, np.nan], -1, inplace=True)

[ ] # Conversion des caractères de chaîne en nombres
string_features = list(df.select_dtypes(include=['object']).columns)
string_features.remove('Label')
string_features.remove('Label')
[ 'Flow ID', 'Source IP', 'Destination IP', 'Timestamp']
```

Les données sont maintenant normalisées. Cependant, elles sont non équilibrées : les attaques ne présentent que 2180 sur la totalité 170366 des enregistrements. Pour cela, nous allons recourir à un sous-échantillonnage : les enregistrements contenant les attaques seront copiés à la nouvelle dataset et le nombre total des enregistrement « normaux » ne dépassera pas 5087.

Maintenant on va préparer les données pour l'entraînement. On va coder les données comme suit :

Normal (BENIGN) =
$$0$$
, Attaque = 1

On va aussi exclure les caractéristiques inutiles.

```
[ ] # Normal (BENIGN) = 0, Attaque = 1
df['tabel'] = df['tabel'].apply(lambda x: 0 if x == 'BENIGN' else 1)

[] # Exclusion des caractéristiques inutiles
excluded = ['Flow ID', 'Source IP', 'Source Port', 'Destination IP', 'Destination Port', 'Protocol', 'Timestamp']
df = df.drop(columns-excluded, errors-'ignore')
df.shape

(7267, 77)
```

2.2 Supervised Learning

Les modèles de l'apprentissage supervisé appliqués sur la dataset qu'on a sont : *Naive Bayes*, *Decision Tree*, *Linear SVC*, *SVC*, *KNN*, *Logistic Regression*, *Random Forest* et le *Gradient Boosting Classifier*. On a ensuite affiché le rapport de classification et la matrice de confusion de chacun d'eux.

Pré-acquis:

Naive Bayes Classifier:

Naive Bayes Classifier est un algorithme populaire en Machine Learning. C'est un algorithme du *Supervised Learning* utilisé pour la classification. Il est particulièrement utile pour les problématiques de classification de texte. Un exemple d'utilisation du *Naive Bayes* est celui du filtre anti-spam.

Le *Naive Bayes Classifier* se base sur le théorème de Bayes. Ce dernier est un classique de la théorie des probabilités. Ce théorème est fondé sur les probabilités conditionnelles. [4]

Decision Tree / Random Forest:

Un arbre de décision est une structure de type organigramme dans laquelle chaque nœud interne représente un "test" sur un attribut, chaque branche représente le résultat du test et chaque nœud feuille représente une étiquette de classe. [5]

Les forêts aléatoires ou forêts de décision aléatoires sont une méthode d'apprentissage d'ensemble pour la classification, la régression et d'autres tâches qui fonctionne en construisant une multitude d'arbres de décision au moment de la formation.

SVC / Linear SVC:

La méthode SVC (Support Vector Classifier) linéaire applique une fonction noyau linéaire pour effectuer la classification et elle est performante avec un grand nombre d'échantillons. Si nous le comparons au modèle SVC, le SVC linéaire possède des paramètres supplémentaires. [6]

Logistic Regression:

La régression logistique est un processus de modélisation de la probabilité d'un résultat discret en fonction d'une variable d'entrée. [7]

Gradient Boosting Classifier:

Les classificateurs par boosting de gradient sont un groupe d'algorithmes d'apprentissage automatique qui combinent plusieurs modèles d'apprentissage faibles pour créer un modèle prédictif fort. Les arbres de décision sont généralement utilisés dans le cadre du gradient boosting.

Résultats:

```
-----Classification report for naive bayes -
            precision recall f1-score support
               1.000.750.860.631.000.78
         0
                                          1010
                                           444
   accuracy
                                 0.82
                                          1454
                0.82 0.87
  macro avg
                                 0.82
                                         1454
                                          1454
weighted avg
                0.89
                        0.82
                                 0.83
            -----Confusion Matrix for naive_bayes -----
[[755 255]
 [ 1 443]]
          ------Classification report for DecisionTree ------
            precision recall f1-score support
               0.98 0.96
                                  0.97
                                          1010
                0.92
                        0.96
                                 0.94
                                           444
                                 0.96
   accuracy
             0.95 0.96
0.96 0.96
  macro avg
                                 0.96
                                          1454
weighted avg
                        0.96
                                0.96
                                          1454
            -----Confusion Matrix for DecisionTree ------
[[973 37]
 [ 17 427]]
```

			report for		
	precision	recarr	f1-score	Support	
0	0.95	0.94	0.95	1010	
1	0.87	0.89	0.88	444	
accuracy			0.93	1454	
-	0.91	0.92			
weighted avg			0.93		
 [[950 60] [49 395]]	Conf	usion Matr	ix for Line	arsvc	
	Clas	sification	report for	KNN	
	precision	recall	f1-score	support	
0	0.99	0.98	0.98	1010	
1	0.95	0.98	0.96	444	
accuracy			0.98	1454	
	0.97	0.98			
weighted avg			0.98		
 [[988 22] [11 433]]	Conf	usion Matr	ix for KNN		

	Class	ification	report for	SVC	
	precision		f1-score	support	
0	0.97	0.97	0.97	1010	
1	0.92	0.93	0.92	444	
accuracy			0.95	1454	
macro avg	0.94	0.95	0.94	1454	
weighted avg	0.95	0.95	0.95	1454	
	Confu	sion Matr	ix for SVC		
[[975 35]					
[33 411]]	61	: C:			Di
				_	Regression
	precision	recarr	11-2001-6	Support	
0	0 07	0.98	0.98	1010	
1	0.96			444	
_	0.50	0.55	0.55		
accuracy			0.97	1454	
•	0.97	0.96	0.96	1454	
weighted avg				1454	
	Confu	sion Matr	ix for Logi	sticRegre	ssion
[[994 16]					
[31 413]]					

	Class	ification	roport for	RandomForest	
	precision				
	precision	Lecari	f1-score	support	
	0.00	0.00	0.00	4040	
0	0.99			1010	
1	0.97	0.98	0.98	444	
accuracy			0.98	1454	
macro avg	0.98	0.98	0.98	1454	
weighted avg	0.98	0.98	0.98	1454	
	Confu	sion Matr	ix for Rand	omForest	
[[998 12]					
[10 434]]					
	Class	ification	report for	GradientBoost	tingClassifier
					0
	precision	recall	†1-score	Support	
	precision	recall	†1-score	support	
0					
Ø 1	0.99	0.99	0.99	1010	
0 1	0.99		0.99		
1	0.99	0.99	0.99 0.98	1010 444	
1 accuracy	0.99 0.97	0.99 0.98	0.99 0.98 0.98	1010 444 1454	
accuracy macro avg	0.99 0.97 0.98	0.99 0.98 0.98	0.99 0.98 0.98 0.98	1010 444 1454 1454	
1 accuracy	0.99 0.97 0.98	0.99 0.98 0.98	0.99 0.98 0.98 0.98	1010 444 1454 1454	
accuracy macro avg	0.99 0.97 0.98 0.98	0.99 0.98 0.98 0.98	0.99 0.98 0.98 0.98 0.98	1010 444 1454 1454 1454	
accuracy macro avg weighted avg	0.99 0.97 0.98 0.98	0.99 0.98 0.98 0.98	0.99 0.98 0.98 0.98 0.98	1010 444 1454 1454 1454	lassifier
accuracy macro avg	0.99 0.97 0.98 0.98	0.99 0.98 0.98 0.98	0.99 0.98 0.98 0.98 0.98	1010 444 1454 1454 1454	lassifier

Interprétation:

Pour tous les algorithmes utilisés, on remarque que la diagonale de la matrice de confusion comporte des nombres très élevées, ce qui veut dire que tous les modèles sont plus ou moins bons pour le traitement de ces données vu leur bonne interprétation.

Concernant le F1-score, qui prend normalement en considération tous les autres paramètres, il a été très élevé pour le « *Gradient Boosting Classifier* » ce qui veut dire que de manière passive, sans tenir compte de notre préférence, cet algorithme reste le plus fort.

De même, si on prend en considération juste l'« accuracy », l'algorithme « Gradient Boosting Classifier » sera le plus efficace. En revanche, ce qui nous intéresse dans la détection des intrusions c'est de capturer le maximum des True Positif, dans ce cas on va travailler avec le modèle « Naive Bayes » surtout si on utilise un IDS passif, sinon on va miser plus sur la précision pour ne pas réagir à de fausses alertes.

2.2 Unsupervised Learning

Le modèle de l'apprentissage non supervisé appliqué sur la dataset est le *K-Means*.

Pré-acquis:

K-Means:

K-means est un algorithme non supervisé de clustering non hiérarchique. Il permet de regrouper en K clusters distincts les observations du data set. Ainsi les données similaires se retrouveront dans un même cluster. [8]

Résultats:

Interprétation:

Etant donné que TP = 0, ce modèle semble être inutile vu qu'il ne détecte aucune attaque. Cela revient au fait qu'on a cinq classes mais on a fait la classification seulement sur deux. L'algorithme n'a donc pas pu trouver les similitudes entre les différentes classes d'attaques.

2.3 Deep Learning

On a travaillé avec le CNN (Convolutional Neural Network).

Pré-acquis:

CNN:

Les CNN sont également connus sous le nom de réseaux de neurones artificiels invariants en translation ou invariants dans l'espace (SIANN), en raison de l'architecture à poids partagé des noyaux ou filtres de convolution qui glissent le long des caractéristiques d'entrée et fournissent des réponses équivariantes en translation, appelées cartes de caractéristiques.

Normalisation:

Cette phase comprend:

- Transformation des données en format numérique et leurs normalisations entre 0 et 1 ;
- Normalisation des valeurs entre 0 et 255 ;
- Sélection des données liées aux trafics "normaux";
- Sélection les données liées aux trafics malicieux. [9]

```
[ ] # Import os import andh import manth import random import shutil from skloarn.preprocessing import QuantileTransformer from PLL import Image import warnings warnings.filterwarnings("ignore")

[ ] # Transformation des données en format numérique et leurs normalisation entre 0 et 1 numeric_features = df.dtypes[df.dtypes != 'object'].index scaler = QuantileTransformer() df[numeric_features] = df[numeric_features] = df[numeric_features] = df[numeric_features] |

[ ] # Normalisation des valeurs entre 0 et 255 df[numeric_features] = df[numeric_features] |

[ ] # Solectionner les données liées aux trafics "normaux" df-odf[df[tabel']-a0].drop(['tabel'], axis=1) df0 |

[ ] # Selectionner les données liées aux trafics "normaux" df-odf[df[tabel']-a0].drop(['tabel'], axis=1) df0 |
```

	Flow Duration	Total Fwd Packets	Total Backward Packets	Total Length of Fwd Packets	Total Length of Bwd Packets	Fwd Packet Length Max	Fwd Packet Length Min	Fwd Packet Length Mean	Fwd Packet Length Std	Bwd Packet Length Max	act_data_pkt_fwd	min_seg_size_forward	Active Mean	Active Std	Active Max
402	162.597264	217.094595	223.093093	235.141574	224.437736	223.343584		243.768769	235.653424	223,139390	212.500000	174.594595			
403	152.611119	226.411411	223.093093	228.198198	244.493447	225.791506	0.0	228.882324	231.280652	253.213213	201.906907	174.594595	0.0	0.0	0.0
410	27.184685	0.000000	83.978979	0.000000	0.000000	0.000000		0.000000	0.000000	0.000000	0.000000	174.594595			
411	169.020639	217.094595	217.477477	234.080952	221.589556	238.755357	0.0	242.568961	243.872299	223.336774	201.906907	174.594595	0.0		0.0
414	149.767194	217.094595	212.244745	234.139141	221.589556	238.933770		242.613313	244.022398	223.336774	201.906907	174.594595			0.0
5276	148.280232	212.244745	207.267267	222.837838	223.416918	240.450450		240.434840	247.199899	245.300300	161.576577	174.594595			
5280	149.428947	212.244745	217.477477	222.837838	231.788951	240.450450	0.0	240.434840	247.199899	247.351041	161.576577	174.594595	0.0	0.0	0.0
5289	148.624806	204.969970	212.244745	222.837838	223.416918	240.450450		244.495927	248.082489	245.300300	161.576577	174.594595			
5290	24.759760	0.000000	83.978979	0.000000	0.000000	0.000000		0.000000	0.000000	0.000000	0.000000	174.594595	0.0	0.0	0.0
5291	30.885886	0.000000	83.978979	0.000000	0.000000	0.000000		0.000000	0.000000	0.000000	0.000000	174.594595			

Visualisation:

Création du model:

Résultats:

```
CNN accuracy: 1.0
precision: 1.0
recall: 1.0
f1: 1.0
[[10 0]
[0 9]]
            precision recall f1-score
                                         support
          1 1.00
                        1.00
                                   1.00
                                              10
                1.00
                          1.00
                                   1.00
                                              9
                                   1.00
                                              19
   accuracy
  macro avg
                 1.00
                          1.00
                                   1.00
                                              19
weighted avg
                 1.00
                                   1.00
                          1.00
                                              19
```

Interprétation:

Les résultats sont satisfaisants mais la dataset n'a pas été trop large, on ne peut donc pas miser sur ce modèle.

Conclusion

D'après les résultats obtenus, les résultats de l'apprentissage supervisé semblent être les plus efficace et qui aboutissent aux résultats qu'on cherche.

Pour l'apprentissage non supervisé, les résultats obtenus n'ont pas été bien traité vu qu'il a fallu changer les paramètres d'initialisation pour que le modèle fonctionne correctement.

Par contre, dans le Deep Learning, les résultats ont été parfaits. On risque que le modèle apprenne par cœur exactement ces données de test et pas autres, et nous sera donc pas efficace dans les prochains traitements de données qui vont contenir de nouvelles datasets.

Bibliographie

- [1] https://www.unb.ca/cic/datasets/ids-2017.html
- [2] https://github.com/fisher85/mlcybersecurity/blob/master/python-web-attackdetection/datasets/Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv.zip?raw=true
- [3] https://colab.research.google.com/github/fisher85/ml-cybersecurity/blob/master/python-web-attack-detection/web-attack-detection.ipynb#scrollTo=5PElFLh5oYzU
- [4] https://mrmint.fr/naive-bayes-classifier

[5]

https://en.wikipedia.org/wiki/Decision_tree#:~:text=A%20dec ision%20tree%20is%20a%20flowchart%2Dlike%20structure %20in%20which,taken%20after%20computing%20all%20attributes).

- [6] https://www.datatechnotes.com/2020/07/classification-example-with-linearsvm-in-python.html
- [7] https://www.sciencedirect.com/topics/computer-science/logistic-regression#:~:text=Logistic%20regression%20is%20a%20process,%2Fno%2C%20and%20so%20on.
- [8] https://mrmint.fr/algorithme-k-means
- [9] https://github.com/Western-OC2-Lab/Intrusion-Detection-System-Using-CNN-and-Transfer-Learning