\mathbf{C}	ontents	9 String 19	
2	Basic 1.1 Default Code 1.2 .vimrc 1.3 Fast IO 1.4 Random 1.5 Checker Data Structure 2.1 Heavy-Light Decomposition	1 1 2 2 2 2 2 2	9.1 Rolling Hash 19 9.2 KMP Algorithm 19 9.3 Manacher Algorithm 20 9.4 MCP 20 9.5 Suffix Array 20 9.6 Suffix Automaton 20 9.7 Z-value Algorithm 21 9.8 Main Lorentz 21 9.9 AC Automaton 21
	2.2 Link Cut Tree	2 3	10 Formula 22 10.1 Recurrences 22 10.2 G 22
	Flow Matching 3.1 Bounded Flow 3.2 Dinic 3.3 Gomory Hu 3.4 Hungarian Algorithm 3.5 ISAP Algorithm 3.6 Bipartite Matching 3.7 Max Simple Graph Matching 3.8 MCMF 3.9 Min Cost Circulation 3.10 SW Mincut	4 4 5 5 5 6 6 7 7	10.2 Geometry 22 10.2.1 Rotation Matrix 22 10.2.2 Triangles 22 10.2.3 Quadrilaterals 22 10.2.4 Spherical coordinates 22 10.2.5 Green's Theorem 22 10.2.6 Point-Line Duality 22 10.3 Trigonometry 22 10.4 Derivatives/Integrals 23 10.5 Sums 23 10.6 Series 23 10.7 Probability theory 23
	Geometry 4.1 Geometry Template 4.2 Convex Hull 4.3 Minimum Enclosing Circle 4.4 Minkowski Sum 4.5 Polar Angle Comparator 4.6 Half Plane Intersection 4.7 Dynamic Convex Hull 4.8 3D Point 4.9 ConvexHull3D 4.10 Circle Operations 4.11 Delaunay Triangulation 4.12 Voronoi Diagram	8 8 8 8 8 8 9 9 9 10 11 11 11	10.7.1 Discrete distributions 23 10.7.2 Continuous distributions 23 10.8 Markov chains 24 1 Basic 1.1 Default Code //Challenge: Accepted //#pragma GCC optimize("Ofast") #include <bits stdc++.h=""> using namespace std;</bits>
	Graph 5.1 Block Cut Tree 5.2 2-SAT 5.3 Dominator Tree 5.4 Virtual Tree 5.4 Virtual Tree 5.5 Directed Minimum Spanning Tree 5.6 Vizing 5.7 Maximum Clique	12 13 13 13 14 14 14	<pre>#define io ios_base::sync_with_stdio(0);cin.tie(0);cerr.tie</pre>
	Math 6.1 Extended Euclidean Algorithm 6.2 Floor & Ceil 6.3 Legendre 6.4 Simplex 6.5 Floor Sum 6.6 Miller Rabin & Pollard Rho 6.7 XOR Basis	15 15 15 15 15 16 16	<pre>using ll = long long; using pii = pair<int, int="">; using pll = pair<ll, ll="">; #ifdef zisk void debug(){cerr << "\n";} template<class class="" t,="" u=""> void debug(T a, U b){cerr << a << " ", debug(b);} template<class t=""> void pary(T 1, T r){</class></class></ll,></int,></pre>
	Misc 7.1 Fraction	17 17 17	<pre>while (l != r) cerr << *l << " ", l++; cerr << "\n"; } #else</pre>
	Polynomial 8.1 FFT 8.2 NTT 8.3 Polynomial Operation 8.4 Generating Function 8.4.1 Ordinary Generating Function 8.4.2 Exponential Generating Function	17 17 17 18 19 19	<pre>#else #define debug() void() #define pary() void() #endif template<class a,="" b="" class=""> ostream& operator<<(ostream& o, pair<a,b> p) { return o << '(' << p.ff << ',' << p.ss << ')'; } int main(){ io; }</a,b></class></pre>

1.2 .vimrc

1.3 Fast IO

```
// from JAW
inline int my_getchar() {
 const int N = 1 << 20;
  static char buf[N];
 static char *p = buf , *end = buf;
 if(p == end) {
    if((end = buf + fread(buf , 1 , N , stdin)) == buf)
        return EOF;
   p = buf;
 }
 return *p++;
}
inline int readint(int &x) {
 static char c , neg;
 while((c = my_getchar()) < '-') {</pre>
    if(c == EOF) return 0;
 neg = (c == '-') ? -1 : 1;
 x = (neg == 1) ? c - '0' : 0;
 while((c = my_getchar()) >= '0') x = (x << 3) + (x << 1)
     + (c - '0');
 x *= neg;
 return 1;
const int kBufSize = 524288;
char inbuf[kBufSize];
char buf_[kBufSize]; size_t size_;
inline void Flush_() { write(1, buf_, size_); size_ = 0; }
inline void CheckFlush_(size_t sz) { if (sz + size_ >
    kBufSize) Flush_(); }
inline void PutInt(int a) {
  static char tmp[22] = "01234567890123456789\n";
 CheckFlush_(10);
  if(a < 0){
    *(buf_ + size_) = '-';
    a = ~a + 1;
    size_++;
 int tail = 20;
 if (!a) {
    tmp[--tail] = '0';
  } else {
    for (; a; a /= 10) tmp[--tail] = (a % 10) ^ '0';
 memcpy(buf_ + size_, tmp + tail, 21 - tail);
 size_ += 21 - tail;
int main(){
 Flush_();
  return 0;
```

1.4 Random

1.5 Checker

```
#!/usr/bin/env bash
set -e
while :; do
    python3 gen.py > test.txt
    diff <(./a.exe < test.txt) <(./b.exe < test.txt)
done</pre>
```

2 Data Structure

2.1 Heavy-Light Decomposition

```
struct Heavy_light_Decomposition { // 1-base
  int n, up[maxn], dep[maxn], to[maxn], siz[maxn], pa[maxn
      ];
  int C, ti[maxn], ord[maxn], wdown[maxn], edge[maxn], et =
       0;
  vector<pii> G[maxn];
  void init(int _n) {
    n = _n, C = 0, et = 1;
    for (int i = 1;i <= n;i++)</pre>
      G[i].clear(), to[i] = 0;
  void add_edge(int a, int b, int w) {
    G[a].push_back(pii(b, et)), G[b].push_back(pii(a, et));
    edge[et++] = w;
  void dfs(int u, int f, int d) {
    siz[u] = 1, pa[u] = f, dep[u] = d;
    for (auto &v: G[u])
      if (v.ff != f) {
        dfs(v.ff, u, d+1), siz[u] += siz[v];
        if (siz[to[u]] < siz[v]) to[u] = v;
  void cut(int u, int link) {
    ti[u] = C;
    ord[C++] = u, up[u] = link;
    if (!to[u]) return;
    cut(to[u], link);
    for (auto v:G[u]) {
      if (v.ff != pa[u] && v.ff != to[u]) cut(v.ff, v.ff);
  void build() { dfs(1, 1, 1), cut(1, 1); }
  int query(int a, int b) {
    int ta = up[a], tb = up[b], re = 0;
    while (ta != tb)
      if (dep[ta] < dep[tb])</pre>
        /*query*/, tb = up[b = pa[tb]];
      else /*query*/, ta = up[a = pa[ta]];
    if (a == b) return re;
    if (ti[a] > ti[b]) swap(a, b);
    /*query*/
    return re:
  }
};
```

2.2 Link Cut Tree

```
struct Splay { // subtree-sum, path-max
    static Splay nil;
    Splay *ch[2], *f;
    int val, rev, size, vir, id, type;
    pii ma;
    Splay(int _val = 0, int _id = 0)
        : val(_val), rev(0), size(0), vir(0), id(_id) {
            ma = make_pair(val, id);
            f = ch[0] = ch[1] = &nil;
            type = 0;
        }
    bool isr() { //is root
        return f->ch[0] != this && f->ch[1] != this;
```

```
int dir() { return f->ch[0] == this ? 0 : 1; }
  void setCh(Splay *c, int d) {
    ch[d] = c;
    if (c != &nil) c->f = this;
    pull();
  void push() {
    if (!rev) return;
    swap(ch[0], ch[1]);
    if (ch[0] != &nil) ch[0]->rev ^= 1;
    if (ch[1] != &nil) ch[1]->rev ^= 1;
  void pull() {
    // take care of the nil!
    size = ch[0]->size + ch[1]->size + vir + type;
    ma = max(make_pair(val, id), max(ch[0]->ma, ch[1]->ma))
    if (ch[0] != &nil) ch[0]->f = this;
    if (ch[1] != &nil) ch[1]->f = this;
} Splay::nil;
Splay *nil = &Splay::nil;
void rotate(Splay *x) {
  Splay *p = x->f;
  int d = x->dir();
  if (!p->isr()) p->f->setCh(x, p->dir());
  else x \rightarrow f = p \rightarrow f;
  p->setCh(x->ch[!d], d);
  x->setCh(p, !d);
  p->pull(), x->pull();
void splay(Splay *x) {
  vector<Splay *> splayVec;
  for (Splay *q = x;; q = q \rightarrow f) {
    splayVec.pb(q);
    if (q->isr()) break;
  reverse(iter(splayVec));
  for (auto it : splayVec) it->push();
  while (!x->isr()) {
    if (x->f->isr()) rotate(x);
    else if (x->dir() == x->f->dir())
      rotate(x->f), rotate(x);
    else rotate(x), rotate(x);
  }
Splay *access(Splay *x) {
  Splay *q = nil;
  for (; x != nil; x = x->f){
    splay(x);
    x \rightarrow vir -= q \rightarrow size; x \rightarrow vir += x \rightarrow ch[1] \rightarrow size;
   x->setCh(q, 1); x->pull();
    q = x;
  }
  return q;
void root_path(Splay *x) { access(x), splay(x); }
void chroot(Splay *x) {
  root_path(x), x->rev ^= 1;
  x->push(), x->pull();
void split(Splay *x, Splay *y) {
  chroot(x), root_path(y);
void link(Splay *x, Splay *y) {
  chroot(x), root_path(y);
  x\rightarrow f = y; y\rightarrow vir += x\rightarrow size;
void cut(Splay *x, Splay *y) {
  split(x, y);
  y->push();
  y - ch[0] = y - ch[0] - f = nil;
 y->pull();
Splay *get_root(Splay *x) {
```

```
for (root_path(x); x->ch[0] != nil; x = x->ch[0])
    x->push();
  splay(x);
  return x;
bool conn(Splay *x, Splay *y) {
  return get_root(x) == get_root(y);
Splay *lca(Splay *x, Splay *y) {
  access(x), root_path(y);
  if (y->f == nil) return y;
  return y->f;
void change(Splay *x, int val) {
  splay(x), x->val = val, x->pull();
pii query(Splay *x, Splay *y) {
  split(x, y);
  return y->ma;
2.3
      Treap
struct node {
  int data, sz;
  node *1, *r;
  node(int k) : data(k), sz(1), l(0), r(0) {}
  void up() {
    sz = 1;
    if (1) sz += 1->sz;
    if (r) sz += r->sz;
  void down() {}
int sz(node *a) { return a ? a->sz : 0; }
node *merge(node *a, node *b) {
  if (!a || !b) return a ? a : b;
  if (rand() \% (sz(a) + sz(b)) < sz(a))
    return a->down(), a->r = merge(a->r, b), a->up(),
  return b->down(), b->l = merge(a, b->l), b->up(), b;
void split(node *o, node *&a, node *&b, int k) {
  if (!o) return a = b = 0, void();
  o->down();
  if (o->data <= k)
    a = o, split(o->r, a->r, b, k), a->up();
  else b = o, split(o->1, a, b->1, k), b->up();
void split2(node *o, node *&a, node *&b, int k) {
  if (sz(o) <= k) return a = o, b = 0, void();</pre>
  o->down();
  if (sz(o->1) + 1 <= k)
    a = o, split2(o->r, a->r, b, k - <math>sz(o->l) - 1);
  else b = o, split2(o \rightarrow 1, a, b \rightarrow 1, k);
  o->up();
node *kth(node *o, int k) {
  if (k <= sz(o->1)) return kth(o->1, k);
  if (k == sz(o\rightarrow 1) + 1) return o;
  return kth(o\rightarrow r, k - sz(o\rightarrow l) - 1);
int Rank(node *o, int key) {
  if (!o) return 0;
  if (o->data < key)</pre>
    return sz(o->1) + 1 + Rank(o->r, key);
  else return Rank(o->1, key);
bool erase(node *&o, int k) {
  if (!o) return 0;
  if (o\rightarrow data == k) {
    node *t = o;
    o->down(), o = merge(o->1, o->r);
    delete t;
    return 1;
  }
```

3 Flow Matching

3.1 Bounded Flow

```
struct Dinic { // 1-base
  struct edge {
    int to, cap, flow, rev;
 vector<edge> g[maxN];
 int n, s, t, dis[maxN], ind[maxN], cnt[maxN];
  const int inf = 1e9;
 void init(int _n) {
   n = _n + 2;
    s = _n + 1, t = _n + 2;
    for (int i = 0; i <= n; ++i) g[i].clear(), cnt[i] = 0;</pre>
 void reset() {
    for (int i = 0; i <= n; ++i)</pre>
      for (auto &j : g[i]) j.flow = 0;
 void add_edge(int u, int v, int lcap, int rcap) {
    cnt[u] -= lcap, cnt[v] += lcap;
    g[u].pb(edge{v, rcap, lcap, (int)g[v].size()});
    g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
 void add_edge(int u, int v, int cap) {
    g[u].pb(edge{v, cap, 0, (int)g[v].size()});
g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
    //change g[v] to cap for undirected graphs
 bool bfs() {
    fill(dis, dis+n+1, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int cur = q.front(); q.pop();
      for (auto &e : g[cur]) {
        if (dis[e.to] == -1 && e.flow != e.cap) {
          q.push(e.to);
          dis[e.to] = dis[cur] + 1;
     }
    }
    return dis[t] != -1;
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
    for (int &i = ind[u]; i < (int)g[u].size(); ++i) {</pre>
      edge &e = g[u][i];
      if (dis[e.to] == dis[u] + 1 \&\& e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          g[e.to][e.rev].flow -= df;
          return df;
     }
    dis[u] = -1;
```

```
return 0;
  int maxflow(int _s, int _t) {
    s = _s, t = _t;
    int \overline{flow} = 0, df;
    while (bfs()) {
      fill(ind, ind+n+1, 0);
      while ((df = dfs(s, inf))) flow += df;
    return flow:
  bool feasible() {
    int sum = 0;
    for (int i = 1; i <= n - 2; ++i)
      if (cnt[i] > 0)
        add_edge(n - 1, i, cnt[i]), sum += cnt[i];
      else if (cnt[i] < 0) add_edge(i, n, -cnt[i]);</pre>
    if (sum != maxflow(n - 1, n)) sum = -1;
    for (int i = 1; i <= n - 2; ++i)</pre>
      if (cnt[i] > 0)
        g[n - 1].pop_back(), g[i].pop_back();
      else if (cnt[i] < 0)</pre>
        g[i].pop_back(), g[n].pop_back();
    return sum != -1;
  int boundedflow(int _s, int _t) {
    add_edge(_t, _s, inf);
    if (!feasible()) return -1; // infeasible flow
    int x = g[_t].back().flow;
    g[_t].pop_back(), g[_s].pop_back();
    int y = maxflow(_t, _s);
    return x-y;
};
3.2 Dinic
struct MaxFlow { // 1-base
  struct edge {
    int to, cap, flow, rev;
  vector<edge> g[maxn];
  int s, t, dis[maxn], ind[maxn], n;
  void init(int _n) {
    n = _n + 2;
    s = _n + 1, t = _n + 2;
    for (int i = 0; i <= n; ++i) g[i].clear();</pre>
  void reset() {
    for (int i = 0; i <= n; ++i)
      for (auto &j : g[i]) j.flow = 0;
  void add_edge(int u, int v, int cap) {
    g[u].pb(edge{v, cap, 0, (int)g[v].size()});
    g[v].pb(edge{u, 0, 0, (int)g[u].size() - 1});
    //change g[v] to cap for undirected graphs
  bool bfs() {
    fill(dis, dis+n+1, -1);
    queue<int> q;
    q.push(s), dis[s] = 0;
    while (!q.empty()) {
      int cur = q.front(); q.pop();
      for (auto &e : g[cur]) {
        if (dis[e.to] == -1 && e.flow != e.cap) {
          q.push(e.to);
          dis[e.to] = dis[cur] + 1;
      }
    return dis[t] != -1;
  int dfs(int u, int cap) {
    if (u == t || !cap) return cap;
```

}

```
for (int &i = ind[u]; i < (int)g[u].size(); ++i) {</pre>
      edge &e = g[u][i];
      if (dis[e.to] == dis[u] + 1 && e.flow != e.cap) {
        int df = dfs(e.to, min(e.cap - e.flow, cap));
        if (df) {
          e.flow += df;
          g[e.to][e.rev].flow -= df;
          return df;
     }
   }
   dis[u] = -1;
   return 0;
 int maxflow() {
   int flow = 0, df;
   while (bfs()) {
      fill(ind, ind+n+1, 0);
      while ((df = dfs(s, inf))) flow += df;
   return flow;
}flow;
```

3.3 Gomory Hu

```
MaxFlow Dinic;
int g[MAXN];
void GomoryHu(int n) { // 0-base
  fill_n(g, n, 0);
  for (int i = 1; i < n; ++i) {
    Dinic.reset();
    add_edge(i, g[i], Dinic.maxflow(i, g[i]));
    for (int j = i + 1; j <= n; ++j)
        if (g[j] == g[i] && ~Dinic.dis[j])
        g[j] = i;
  }
}</pre>
```

3.4 Hungarian Algorithm

```
int c[maxn][maxn]; //hungarian algorithm in O(n^3)
                   //1 base
int lx[maxn], ly[maxn], mx[maxn], my[maxn];
bool vx[maxn], vy[maxn];
int slack[maxn];
int tot:
bool dfs(int n, bool ch) {
 if (vx[n]) return false;
 vx[n] = 1;
 for (int v = 1; v \leftarrow tot; v++) {
   slack[v] = min(slack[v], lx[n] + ly[v] - c[n][v]);
   if (lx[n] + ly[v] - c[n][v] > 0) continue;
   vy[v] = 1;
   if (!my[v] || dfs(my[v], ch)) {
      if (ch) mx[n] = v, my[v] = n;
      return true;
   }
 }
 return false;
int main() {
 for (int i = 1;i <= n;i++) {
   for (int j = 1; j \le n; j++) vx[j] = vy[j] = 0;
    for (int j = 1;j <= n;j++) slack[j] = 1<<30;</pre>
   if (dfs(i, 1)) continue;
   bool aug = 0;
   while (!aug) {
      for (int j = 1; j <= n; j++) {
        if (!vy[j] && slack[j] == 0) {
          vy[j] = 1;
          if (dfs(my[j], 0)) {
            aug = 1;
            break;
```

```
}
if (aug) break;
int delta = 1<<30;
for (int j = 1; j <= n; j++) {
   if (!vy[j]) delta = min(delta, slack[j]);
}
for (int j = 1; j <= n; j++) {
   if (vx[j]) lx[j] -= delta;
   if (vy[j]) ly[j] += delta;
   else {
      slack[j] -= delta;
      if (slack[j] == 0 && !my[j]) aug = 1;
   }
}
for (int j = 1; j <= n; j++) vx[j] = vy[j] = 0;
dfs(i, 1);
}
</pre>
```

3.5 ISAP Algorithm

```
struct Maxflow { //to be modified
  static const int MAXV = 20010;
  static const int INF = 1000000;
  struct Edge {
    int v, c, r;
    Edge(int _v, int _c, int _r)
      : v(_v), c(_c), r(_r) {}
  int s, t;
  vector<Edge> G[MAXV * 2];
  int iter[MAXV * 2], d[MAXV * 2], gap[MAXV * 2], tot;
  void init(int x) {
    tot = x + 2;
    s = x + 1, t = x + 2;
    for (int i = 0; i <= tot; i++) {</pre>
      G[i].clear();
      iter[i] = d[i] = gap[i] = 0;
    }
  void addEdge(int u, int v, int c) {
    G[u].push_back(Edge(v, c, SZ(G[v])));
    G[v].push_back(Edge(u, 0, SZ(G[u]) - 1));
  int dfs(int p, int flow) {
    if (p == t) return flow;
    for (int &i = iter[p]; i < SZ(G[p]); i++) {</pre>
      Edge &e = G[p][i];
      if (e.c > 0 \&\& d[p] == d[e.v] + 1) {
        int f = dfs(e.v, min(flow, e.c));
        if (f) {
          e.c -= f;
          G[e.v][e.r].c += f;
          return f;
        }
      }
    if ((--gap[d[p]]) == 0) d[s] = tot;
    else {
      d[p]++;
      iter[p] = 0;
      ++gap[d[p]];
    return 0;
  int solve() {
    int res = 0;
    gap[0] = tot;
    for (res = 0; d[s] < tot; res += dfs(s, INF))
    return res;
} flow;
```

3.6 Bipartite Matching

```
//min vertex cover: take unmatched vertex in L and find
    alternating tree,
//ans is not reached in L + reached in R
// O(VE)
int n, m; //1-base, max matching
int mx[maxn], my[maxn];
bool adj[maxn][maxn], vis[maxn];
bool dfs(int n) {
  if (vis[n]) return false;
  vis[n] = 1;
  for (int v = 1; v <= n; v++) {
    if (!adj[n][v]) continue;
    if (!my[v] || (my[v] && dfs(my[v]))) {
      mx[n] = v, my[v] = n;
      return true;
    }
  }
  return false;
// O(E sqrt(V)), O(E log V) for random sparse graphs
struct Bipartite_Matching { // 0-base
  int 1, r;
  int mp[maxn], mq[maxn];
  int dis[maxn], cur[maxn];
  vector<int> G[maxn];
  bool dfs(int u) {
    for (int &i = cur[u]; i < SZ(G[u]); ++i) {</pre>
      int e = G[u][i];
      if (!\sim mq[e] \mid | (dis[mq[e]] == dis[u] + 1 \&\& dfs(mq[e])
          1)))
        return mp[mq[e] = u] = e, 1;
    dis[u] = -1;
    return 0;
  bool bfs() {
    int rt = 0;
    queue<int> q;
    fill_n(dis, 1, -1);
    for (int i = 0; i < 1; ++i)
      if (!~mp[i])
        q.push(i), dis[i] = 0;
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      for (int e : G[u])
        if (!~mq[e])
          rt = 1;
        else if (!~dis[mq[e]]) {
          q.push(mq[e]);
          dis[mq[e]] = dis[u] + 1;
    return rt;
  int matching() {
    int rt = 0;
    fill_n(mp, 1, -1);
    fill_n(mq, r, -1);
    while (bfs()) {
      fill_n(cur, 1, 0);
for (int i = 0; i < 1; ++i)
        if (!~mp[i] && dfs(i))
          ++rt;
    }
    return rt;
  void add_edge(int s, int t) {
    G[s].pb(t);
  void init(int _l, int _r) {
    1 = _1, r = _r;
    for (int i = 0; i < 1; ++i)
      G[i].clear();
```

} match;

3.7 Max Simple Graph Matching

```
struct GenMatch { // 1-base
  int V, pr[N];
  bool el[N][N], inq[N], inp[N], inb[N];
  int st, ed, nb, bk[N], djs[N], ans;
  void init(int _V) {
   V = _V;
for (int i = 0; i <= V; ++i) {
  for (int j = 0; j <= V; ++j) el[i][j] = 0;</pre>
      pr[i] = bk[i] = djs[i] = 0;
      inq[i] = inp[i] = inb[i] = 0;
    }
  void add_edge(int u, int v) {
    el[u][v] = el[v][u] = 1;
  int lca(int u, int v) {
    fill_n(inp, V + 1, 0);
    while (1)
      if (u = djs[u], inp[u] = true, u == st) break;
      else u = bk[pr[u]];
    while (1)
      if (v = djs[v], inp[v]) return v;
      else v = bk[pr[v]];
    return v;
  void upd(int u) {
    for (int v; djs[u] != nb;) {
      v = pr[u], inb[djs[u]] = inb[djs[v]] = true;
      u = bk[v];
      if (djs[u] != nb) bk[u] = v;
    }
  void blo(int u, int v, queue<int> &qe) {
    nb = lca(u, v), fill_n(inb, V + 1, 0);
    upd(u), upd(v);
    if (djs[u] != nb) bk[u] = v;
    if (djs[v] != nb) bk[v] = u;
    for (int tu = 1; tu <= V; ++tu)</pre>
      if (inb[djs[tu]])
        if (djs[tu] = nb, !inq[tu])
          qe.push(tu), inq[tu] = 1;
  void flow() {
    fill_n(inq + 1, V, 0), fill_n(bk + 1, V, 0);
    iota(djs + 1, djs + V + 1, 1);
    queue<int> qe;
    qe.push(st), inq[st] = 1, ed = 0;
    while (!qe.empty()) {
      int u = qe.front();
      qe.pop();
      for (int v = 1; v <= V; ++v)
        if (el[u][v] && djs[u] != djs[v] &&
            pr[u] != v) {
          if ((v == st) ||
               (pr[v] > 0 \&\& bk[pr[v]] > 0)) {
            blo(u, v, qe);
          } else if (!bk[v]) {
            if (bk[v] = u, pr[v] > 0) {
              if (!inq[pr[v]]) qe.push(pr[v]);
            } else {
               return ed = v, void();
          }
        }
    }
  void aug() {
    for (int u = ed, v, w; u > 0;)
      v = bk[u], w = pr[v], pr[v] = u, pr[u] = v,
  int solve() {
```

```
fill_n(pr, V + 1, 0), ans = 0;
                                                                          pv[e.to] = j, ed[e.to] = idx;
    for (int u = 1; u <= V; ++u)</pre>
                                                                          if (i == n) {
      if (!pr[u])
        if (st = u, flow(), ed > 0) aug(), ++ans;
    return ans;
};
                                                                          }
     MCMF
                                                                     }
3.8
                                                                   }
                                                                 }
struct MCMF { // 0-base
 struct edge {
    11 from, to, cap, flow, cost, rev;
  } * past[maxn];
  vector <edge> G[maxn];
 bitset <maxn> inq;
  11 dis[maxn], up[maxn], s, t, mx, n;
 bool BellmanFord(ll &flow, ll &cost) {
    fill(dis, dis + n, inf);
    queue<11> q;
    q.push(s), inq.reset(), inq[s] = 1;
    up[s] = mx - flow, past[s] = 0, dis[s] = 0;
    while (!q.empty()) {
      11 u = q.front();
      q.pop(), inq[u] = 0;
      if (!up[u]) continue;
      for (auto &e : G[u])
        if (e.flow != e.cap &&
            dis[e.to] > dis[u] + e.cost) {
          dis[e.to] = dis[u] + e.cost, past[e.to] = &e;
          up[e.to] = min(up[u], e.cap - e.flow);
          if (!inq[e.to]) inq[e.to] = 1, q.push(e.to);
        }
                                                                   }
    if (dis[t] == inf) return 0;
                                                                 }
    flow += up[t], cost += up[t] * dis[t];
    for (ll i = t; past[i]; i = past[i]->from) {
      auto &e = *past[i];
      e.flow += up[t], G[e.to][e.rev].flow -= up[t];
    }
    return 1;
  11 MinCostMaxFlow(ll _s, ll _t, ll &cost) {
    s = _s, t = _t, cost = 0;
    11 flow = 0;
    while (BellmanFord(flow, cost));
    return flow;
 void init(ll _n, ll _mx) {
                                                                   n = _n;
   n = n, mx = mx;
    for (int i = 0; i < n; ++i) G[i].clear();</pre>
 void add_edge(ll a, ll b, ll cap, ll cost) {
    G[a].pb(edge{a, b, cap, 0, cost, G[b].size()});
    G[b].pb(edge{b, a, 0, 0, -cost, G[a].size() - 1});
};
      Min Cost Circulation
3.9
//to be modified
struct Edge { int to, cap, rev, cost; };
vector<Edge> g[kN];
int dist[kN], pv[kN], ed[kN];
bool mark[kN];
int NegativeCycle(int n) {
  memset(mark, false, sizeof(mark));
  memset(dist, 0, sizeof(dist));
                                                                   }
  int upd = -1;
                                                                 }
  for (int i = 0; i <= n; ++i) {
    for (int j = 0; j < n; ++j) {
      int idx = 0;
      for (auto &e : g[j]) {
```

if (e.cap > 0 && dist[e.to] > dist[j] + e.cost) {

dist[e.to] = dist[j] + e.cost;

```
upd = j;
            while (!mark[upd]) mark[upd] = true, upd = pv[
                upd];
            return upd;
        idx++;
  return -1;
int Solve(int n) {
  int rt = -1, ans = 0;
  while ((rt = NegativeCycle(n)) >= 0) {
    memset(mark, false, sizeof(mark));
    vector<pair<int, int>> cyc;
    while (!mark[rt]) {
      cyc.emplace_back(pv[rt], ed[rt]);
      mark[rt] = true;
      rt = pv[rt];
    reverse(cyc.begin(), cyc.end());
    int cap = kInf;
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      cap = min(cap, e.cap);
    for (auto &i : cyc) {
      auto &e = g[i.first][i.second];
      e.cap -= cap;
      g[e.to][e.rev].cap += cap;
      ans += e.cost * cap;
  return ans;
3.10 SW Mincut
// stoer wagner algorithm: global min cut
const int maxn = 505;
struct SW { // O(V^3) 0-based
  int n, vis[maxn], del[maxn];
  int edge[maxn][maxn], wei[maxn];
  void init(int _n) {
    fill(del, del+n, 0);
    for (int i = 0;i < n;i++) fill(edge[i], edge[i] + n, 0)</pre>
  void addEdge(int u, int v, int w) {
    edge[u][v] += w, edge[v][u] += w;
  void search(int &s, int &t) {
    fill(vis, vis+n, 0);
    fill(wei, wei+n, 0);
    s = t = -1;
    while (1) {}
      int ma = -1, cur = 0;
      for (int i = 0; i < n; ++i)
        if (!del[i] && !vis[i] && ma < wei[i])</pre>
          cur = i, ma = wei[i];
      if (mx == -1) break;
      vis[cur] = 1, s = t, t = cur;
      for (int i = 0; i < n; ++i)</pre>
        if (!vis[i] && !del[i]) wei[i] += edge[cur][i];
  int solve() {
    int ret = INF;
    for (int i = 0, x=0, y=0; i < n-1; ++i) {
      search(x, y), ret = min(res, wei[y]), del[y] = 1;
      for (int j = 0; j < n; ++j)
```

```
edge[x][j] = (edge[j][x] += edge[y][j]);
    return ret;
};
```

Geometry

Geometry Template

```
using ld = ll;
using pdd = pair<ld, ld>;
using Line = pair<pdd, pdd>;
#define X first
#define Y second
// ld eps = 1e-7;
pdd operator+(pdd a, pdd b)
{ return {a.X + b.X, a.Y + b.Y}; }
pdd operator-(pdd a, pdd b)
{ return {a.X - b.X, a.Y - b.Y}; }
pdd operator*(ld i, pdd v)
{ return {i * v.X, i * v.Y}; }
pdd operator*(pdd v, ld i)
{ return {i * v.X, i * v.Y}; }
pdd operator/(pdd v, ld i)
{ return {v.X / i, v.Y / i}; }
ld dot(pdd a, pdd b)
{ return a.X * b.X + a.Y * b.Y; }
ld cross(pdd a, pdd b)
{ return a.X * b.Y - a.Y * b.X; }
ld abs2(pdd v)
{ return v.X * v.X + v.Y * v.Y; };
ld abs(pdd v)
{ return sqrt(abs2(v)); };
int sgn(ld v)
{ return v > 0 ? 1 : (v < 0 ? -1 : 0); }
// int sgn(ld v){ return v > eps ? 1 : ( v < -eps ? -1 : 0)
int ori(pdd a, pdd b, pdd c)
{ return sgn(cross(b - a, c - a)); }
bool collinearity(pdd a, pdd b, pdd c)
{ return ori(a, b, c) == 0; }
bool btw(pdd p, pdd a, pdd b)
{ return collinearity(p, a, b) && sgn(dot(a - p, b - p)) <=
bool seg_intersect(Line a, Line b){
 pdd p1, p2, p3, p4;
  tie(p1, p2) = a; tie(p3, p4) = b;
  if(btw(p1, p3, p4) \mid\mid btw(p2, p3, p4) \mid\mid btw(p3, p1, p2)
      || btw(p4, p1, p2))
    return true;
  return ori(p1, p2, p3) * ori(p1, p2, p4) < 0 &&
    ori(p3, p4, p1) * ori(p3, p4, p2) < 0;
pdd intersect(Line a, Line b){
 pdd p1, p2, p3, p4;
 tie(p1, p2) = a; tie(p3, p4) = b;
 1d a123 = cross(p2 - p1, p3 - p1);
 ld a124 = cross(p2 - p1, p4 - p1);
return (p4 * a123 - p3 * a124) / (a123 - a124);
pdd perp(pdd p1)
{ return pdd(-p1.Y, p1.X); }
pdd projection(pdd p1, pdd p2, pdd p3)
{return p1 + (p2 - p1) * dot(p3 - p1, p2 - p1) / abs2(p2 - p1) }
     p1); }
```

Convex Hull

```
vector<int> getConvexHull(vector<pdd>& pts){
 vector<int> id(SZ(pts));
  iota(iter(id), 0);
```

```
sort(iter(id), [&](int x, int y){ return pts[x] < pts[y];</pre>
  vector<int> hull;
  for(int tt = 0; tt < 2; tt++){
    int sz = SZ(hull);
    for(int j : id){
      pdd p = pts[j];
      while(SZ(hull) - sz >= 2 &&
          cross(pts[hull.back()] - pts[hull[SZ(hull) - 2]],
            p - pts[hull[SZ(hull) - 2]]) <= 0)</pre>
        hull.pop_back();
      hull.pb(j);
   hull.pop_back();
   reverse(iter(id));
  return hull:
      Minimum Enclosing Circle
using ld = long double;
```

```
pair<pdd, ld> circumcenter(pdd a, pdd b, pdd c);
pair<pdd, ld> MinimumEnclosingCircle(vector<pdd> &pts){
  random_shuffle(iter(pts));
  pdd c = pts[0];
  1d r = 0;
  for(int i = 1; i < SZ(pts); i++){</pre>
    if(abs(pts[i] - c) <= r) continue;</pre>
    c = pts[i]; r = 0;
    for(int j = 0; j < i; j++){}
      if(abs(pts[j] - c) <= r) continue;</pre>
      c = (pts[i] + pts[j]) / 2;
      r = abs(pts[i] - c);
      for(int k = 0; k < j; k++){
        if(abs(pts[k] - c) > r)
           tie(c, r) = circumcenter(pts[i], pts[j], pts[k]);
    }
  return {c, r};
```

4.4Minkowski Sum

```
void reorder_poly(vector<pdd>& pnts){
  int mn = 0;
  for(int i = 1; i < (int)pnts.size(); i++)</pre>
    if(pnts[i].Y < pnts[mn].Y || (pnts[i].Y == pnts[mn].Y</pre>
        && pnts[i].X < pnts[mn].X))
  rotate(pnts.begin(), pnts.begin() + mn, pnts.end());
vector<pdd> minkowski(vector<pdd> P, vector<pdd> Q){
  reorder_poly(P);
  reorder_poly(Q);
  int psz = P.size();
  int qsz = Q.size();
  P.pb(P[0]); P.pb(P[1]); Q.pb(Q[0]); Q.pb(Q[1]);
  vector<pdd> ans;
  int i = 0, j = 0;
  while(i < psz \mid \mid j < qsz){
    ans.pb(P[i] + Q[j]);
    int t = sgn(cross(P[i + 1] - P[i], Q[j + 1] - Q[j]));
    if(t >= 0) i++;
    if(t <= 0) j++;
  return ans;
```

Polar Angle Comparator

```
// -1: a // b (if same), 0/1: a < b
int cmp(pll a, pll b, bool same = true){
#define is_neg(k) (sgn(k.Y) < 0 \mid \mid (sgn(k.Y) == 0 && sgn(k.
  int A = is_neg(a), B = is_neg(b);
  if(A != B)
    return A < B;
  if(sgn(cross(a, b)) == 0)
    return same ? abs2(a) < abs2(b) : -1;</pre>
  return sgn(cross(a, b)) > 0;
4.6 Half Plane Intersection
// from 8BQube
pll area_pair(Line a, Line b)
{ return pll(cross(a.Y - a.X, b.X - a.X), cross(a.Y - a.X,
    b.Y - a.X)); }
bool isin(Line 10, Line 11, Line 12) {
 // Check inter(l1, l2) strictly in l0
  auto [a02X, a02Y] = area_pair(10, 12);
 auto [a12X, a12Y] = area_pair(l1, l2);
 if (a12X - a12Y < 0) a12X *= -1, a12Y *= -1;</pre>
  return (__int128) a02Y * a12X - (__int128) a02X * a12Y >
      0; // C^4
/* Having solution, check size > 2 */
/* --^-- Line.X --^-- Line.Y --^-- */
vector<Line> halfPlaneInter(vector<Line> arr) {
  sort(iter(arr), [&](Line a, Line b) -> int {
    if (cmp(a.Y - a.X, b.Y - b.X, 0) != -1)
      return cmp(a.Y - a.X, b.Y - b.X, 0);
    return ori(a.X, a.Y, b.Y) < 0;</pre>
  });
  deque<Line> dq(1, arr[0]);
 for (auto p : arr) {
    if (cmp(dq.back().Y - dq.back().X, p.Y - p.X, 0) == -1)
      continue;
    while (SZ(dq) >= 2 \&\& !isin(p, dq[SZ(dq) - 2], dq.back
      dq.pop_back();
    while (SZ(dq) >= 2 \&\& !isin(p, dq[0], dq[1]))
      dq.pop_front();
    dq.pb(p);
 while (SZ(dq) >= 3 \&\& !isin(dq[0], dq[SZ(dq) - 2], dq.
      back()))
    dq.pop_back();
  while (SZ(dq) >= 3 \&\& !isin(dq.back(), dq[0], dq[1]))
    dq.pop_front();
  return vector<Line>(iter(dq));
      Dynamic Convex Hull
struct Line{
 11 a, b, 1 = MIN, r = MAX;
  Line(ll a, ll b): a(a), b(b) {}
  11 operator()(11 x) const{
    return a * x + b;
 bool operator<(Line b) const{</pre>
    return a < b.a;</pre>
 bool operator<(ll b) const{</pre>
    return r < b;
```

```
ll iceil(ll a, ll b){
 if(b < 0) a *= -1, b *= -1;
 if(a > 0) return (a + b - 1) / b;
 else return a / b;
```

```
11 intersect(Line a, Line b){
  return iceil(a.b - b.b, b.a - a.a);
struct DynamicConvexHull{
  multiset<Line, less<>> ch;
  void add(Line ln){
    auto it = ch.lower_bound(ln);
    while(it != ch.end()){
      Line tl = *it;
      if(tl(tl.r) <= ln(tl.r)){
        it = ch.erase(it);
      else break;
    auto it2 = ch.lower_bound(ln);
    while(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.1) <= ln(tl.1)){</pre>
        it2 = ch.erase(prev(it2));
      else break;
    }
    it = ch.lower bound(ln);
    if(it != ch.end()){
      Line tl = *it;
      if(tl(tl.1) >= ln(tl.1)) ln.r = tl.1 - 1;
      else{
        11 pos = intersect(ln, tl);
        t1.1 = pos;
        ln.r = pos - 1;
        ch.erase(it);
        ch.insert(tl);
    }
    it2 = ch.lower_bound(ln);
    if(it2 != ch.begin()){
      Line tl = *prev(it2);
      if(tl(tl.r) >= ln(tl.r)) ln.l = tl.r + 1;
      else{
        11 pos = intersect(tl, ln);
        tl.r = pos - 1;
        ln.1 = pos;
        ch.erase(prev(it2));
        ch.insert(t1);
    if(ln.1 <= ln.r) ch.insert(ln);</pre>
  11 query(11 pos){
    auto it = ch.lower_bound(pos);
    if(it == ch.end()) return 0;
    return (*it)(pos);
  }
};
      3D Point
4.8
// Copy from 8BQube
struct Point {
  double x, y, z;
  Point(double _x = 0, double _y = 0, double _z = 0): x(_x)
       y(_y), z(_z){}
  Point(pdd p) { x = p.X, y = p.Y, z = abs2(p); }
Point operator-(const Point &p1, const Point &p2)
{ return Point(p1.x - p2.x, p1.y - p2.y, p1.z - p2.z); }
Point cross(const Point &p1, const Point &p2)
{ return Point(p1.y * p2.z - p1.z * p2.y, p1.z * p2.x - p1.
    x * p2.z, p1.x * p2.y - p1.y * p2.x); }
double dot(const Point &p1, const Point &p2)
{ return p1.x * p2.x + p1.y * p2.y + p1.z * p2.z; }
double abs(const Point &a)
{ return sqrt(dot(a, a)); }
```

```
National Taiwan University
Point cross3(const Point &a, const Point &b, const Point &c
{ return cross(b - a, c - a); }
double area(Point a, Point b, Point c)
{ return abs(cross3(a, b, c)); }
double volume(Point a, Point b, Point c, Point d)
{ return dot(cross3(a, b, c), d - a); }
pdd proj(Point a, Point b, Point c, Point u) {
// proj. u to the plane of a, b, and c
 Point e1 = b - a;
 Point e2 = c - a;
 e1 = e1 / abs(e1);
 e2 = e2 - e1 * dot(e2, e1);
 e2 = e2 / abs(e2);
 Point p = u - a;
 return pdd(dot(p, e1), dot(p, e2));
     ConvexHull3D
// Copy from 8BQube
struct CH3D {
 struct face{int a, b, c; bool ok;} F[8 * N];
 double dblcmp(Point &p,face &f)
 {return dot(cross3(P[f.a], P[f.b], P[f.c]), p - P[f.a]);}
 int g[N][N], num, n;
 Point P[N];
 void deal(int p,int a,int b) {
   int f = g[a][b];
   face add;
   if (F[f].ok) {
     if (dblcmp(P[p],F[f]) > eps) dfs(p,f);
        add.a = b, add.b = a, add.c = p, add.ok = 1, g[p][b]
            ] = g[a][p] = g[b][a] = num, F[num++]=add;
 void dfs(int p, int now) {
   F[now].ok = 0;
   deal(p, F[now].b, F[now].a), deal(p, F[now].c, F[now].b
        ), deal(p, F[now].a, F[now].c);
 bool same(int s,int t){
   Point &a = P[F[s].a];
    Point &b = P[F[s].b];
   Point &c = P[F[s].c];
   return fabs(volume(a, b, c, P[F[t].a])) < eps && fabs(</pre>
        volume(a, b, c, P[F[t].b])) < eps && fabs(volume(a,</pre>
         b, c, P[F[t].c])) < eps;
 void init(int _n){n = _n, num = 0;}
 void solve() {
```

```
face add;
num = 0;
if(n < 4) return;</pre>
if([&](){
    for (int i = 1; i < n; ++i)
    if (abs(P[0] - P[i]) > eps)
    return swap(P[1], P[i]), 0;
    return 1;
    }() || [&](){
    for (int i = 2; i < n; ++i)</pre>
    if (abs(cross3(P[i], P[0], P[1])) > eps)
    return swap(P[2], P[i]), 0;
    return 1;
    }() || [&](){
    for (int i = 3; i < n; ++i)</pre>
    if (fabs(dot(cross(P[0] - P[1], P[1] - P[2]), P[0]
         - P[i])) > eps)
    return swap(P[3], P[i]), 0;
    return 1:
    }())return;
for (int i = 0; i < 4; ++i) {
  add.a = (i + 1) % 4, add.b = (i + 2) % 4, add.c = (i
      + 3) % 4, add.ok = true;
  if (dblcmp(P[i],add) > 0) swap(add.b, add.c);
```

```
g[add.a][add.b] = g[add.b][add.c] = g[add.c][add.a] =
      F[num++] = add;
    for (int i = 4; i < n; ++i)
      for (int j = 0; j < num; ++j)
        if (F[j].ok && dblcmp(P[i],F[j]) > eps) {
          dfs(i, j);
          break;
    for (int tmp = num, i = (num = 0); i < tmp; ++i)</pre>
      if (F[i].ok) F[num++] = F[i];
  double get_area() {
    double res = 0.0;
    if (n == 3)
      return abs(cross3(P[0], P[1], P[2])) / 2.0;
    for (int i = 0; i < num; ++i)</pre>
      res += area(P[F[i].a], P[F[i].b], P[F[i].c]);
    return res / 2.0;
  double get_volume() {
    double res = 0.0;
    for (int i = 0; i < num; ++i)</pre>
      res += volume(Point(0, 0, 0), P[F[i].a], P[F[i].b], P
          [F[i].c]);
    return fabs(res / 6.0);
  int triangle() {return num;}
  int polygon() {
    int res = 0;
    for (int i = 0, flag = 1; i < num; ++i, res += flag,</pre>
        flag = 1)
      for (int j = 0; j < i && flag; ++j)</pre>
        flag &= !same(i,j);
    return res;
  Point getcent(){
    Point ans(0, 0, 0), temp = P[F[0].a];
    double v = 0.0, t2;
    for (int i = 0; i < num; ++i)</pre>
      if (F[i].ok == true) {
        Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].c
            ];
        t2 = volume(temp, p1, p2, p3) / 6.0;
        if (t2>0)
          ans.x += (p1.x + p2.x + p3.x + temp.x) * t2, ans.
              y += (p1.y + p2.y + p3.y + temp.y) * t2, ans.
               z += (p1.z + p2.z + p3.z + temp.z) * t2, v +=
               t2;
    ans.x /= (4 * v), ans.y /= (4 * v), ans.z /= (4 * v);
    return ans;
  double pointmindis(Point p) {
    double rt = 99999999;
    for(int i = 0; i < num; ++i)</pre>
      if(F[i].ok == true) {
        Point p1 = P[F[i].a], p2 = P[F[i].b], p3 = P[F[i].c
        double a = (p2.y - p1.y) * (p3.z - p1.z) - (p2.z - p1.z)
            p1.z) * (p3.y - p1.y);
        double b = (p2.z - p1.z) * (p3.x - p1.x) - (p2.x - p1.x)
            p1.x) * (p3.z - p1.z);
        double c = (p2.x - p1.x) * (p3.y - p1.y) - (p2.y - p1.y)
            p1.y) * (p3.x - p1.x);
        double d = 0 - (a * p1.x + b * p1.y + c * p1.z);
        double temp = fabs(a * p.x + b * p.y + c * p.z + d)
              / sqrt(a * a + b * b + c * c);
        rt = min(rt, temp);
    return rt;
  }
};
```

// from 8BQube

}

4.10 Circle Operations

```
const double PI=acos(-1);
vector<pdd> circleLineIntersection(pdd c, double r, pdd a,
 pdd p = a + (b - a) * dot(c - a, b - a) / abs2(b - a);
 double s = cross(b - a, c - a), h2 = r * r - s * s / abs2
      (b - a);
  if (h2 < 0) return {};</pre>
 if (h2 == 0) return {p};
 pdd h = (b - a) / abs(b - a) * sqrt(h2);
 return {p - h, p + h};
double _area(pdd pa, pdd pb, double r){
 if(abs(pa)<abs(pb)) swap(pa, pb);</pre>
  if(abs(pb)<eps) return 0;</pre>
 double S, h, theta;
 double a=abs(pb),b=abs(pa),c=abs(pb-pa);
 double cosB = dot(pb,pb-pa) / a / c, B = acos(cosB);
 double cosC = dot(pa,pb) / a / b, C = acos(cosC);
  if(a > r){
    S = (C/2)*r*r;
    h = a*b*sin(C)/c;
    if (h < r \&\& B < PI/2) S -= (acos(h/r)*r*r - h*sqrt(r*r)
        -h*h));
 else if(b > r){
    theta = PI - B - asin(sin(B)/r*a);
    S = .5*a*r*sin(theta) + (C-theta)/2*r*r;
 else S = .5*sin(C)*a*b;
 return S;
double areaPolyCircle(const vector<pdd> poly,const pdd &O,
    const double r){
  double S=0;
 for(int i=0;i<SZ(poly);++i)</pre>
    S+=\_area(poly[i]-0,poly[(i+1)\%SZ(poly)]-0,r)*ori(0,poly)
        [i],poly[(i+1)%SZ(poly)]);
 return fabs(S);
bool CCinter(Cir &a, Cir &b, pdd &p1, pdd &p2) {
 pdd o1 = a.0, o2 = b.0;
 double r1 = a.R, r2 = b.R, d2 = abs2(o1 - o2), d = sqrt(
 if(d < max(r1, r2) - min(r1, r2) | | d > r1 + r2) return
      0;
 pdd u = (o1 + o2) * 0.5 + (o1 - o2) * ((r2 * r2 - r1 * r1))
      ) / (2 * d2));
  double A = sqrt((r1 + r2 + d) * (r1 - r2 + d) * (r1 + r2)
      - d) * (-r1 + r2 + d));
  pdd v = pdd(o1.Y - o2.Y, -o1.X + o2.X) * A / (2 * d2);
 p1 = u + v, p2 = u - v;
 return 1;
vector<Line> CCtang( const Cir& c1 , const Cir& c2 , int
    sign1 ){
  vector<Line> ret;
 double d_sq = abs2( c1.0 - c2.0 );
  if (sgn(d_sq) == 0) return ret;
 double d = sqrt(d_sq);
 pdd v = (c2.0 - c1.0) / d;
 double c = (c1.R - sign1 * c2.R) / d; // cos t
 if (c * c > 1) return ret;
 double h = sqrt(max( 0.0, 1.0 - c * c)); // sin t
 for (int sign2 = 1; sign2 >= -1; sign2 -= 2) {
  pdd n = pdd(v.X * c - sign2 * h * v.Y,
        v.Y * c + sign2 * h * v.X);
    pdd p1 = c1.0 + n * c1.R;
    pdd p2 = c2.0 + n * (c2.R * sign1);
    if (sgn(p1.X - p2.X) == 0 and
        sgn(p1.Y - p2.Y) == 0)
      p2 = p1 + perp(c2.0 - c1.0);
    ret.pb(Line(p1, p2));
  return ret;
```

4.11 Delaunay Triangulation

```
// from 8BQube
/* Delaunay Triangulation:
Given a sets of points on 2D plane, find a
triangulation such that no points will strictly
inside circumcircle of any triangle.
find : return a triangle contain given point
add_point : add a point into triangulation
A Triangle is in triangulation iff. its has_chd is 0.
Region of triangle u: iterate each u.edge[i].tri,
each points are u.p[(i+1)\%3], u.p[(i+2)\%3]
Voronoi diagram: for each triangle in triangulation,
the bisector of all its edges will split the region.
nearest point will belong to the triangle containing it
const ll inf = MAXC * MAXC * 100; // Lower_bound unknown
struct Tri:
struct Edge {
 Tri* tri; int side;
  Edge(): tri(0), side(0){}
  Edge(Tri* _tri, int _side): tri(_tri), side(_side){}
struct Tri {
  pll p[3];
  Edge edge[3];
  Tri* chd[3];
  Tri() {}
  Tri(const pll& p0, const pll& p1, const pll& p2) {
    p[0] = p0; p[1] = p1; p[2] = p2;
    chd[0] = chd[1] = chd[2] = 0;
  bool has_chd() const { return chd[0] != 0; }
  int num_chd() const {
    return !!chd[0] + !!chd[1] + !!chd[2];
  bool contains(pll const& q) const {
    for (int i = 0; i < 3; ++i)
      if (ori(p[i], p[(i + 1) % 3], q) < 0)</pre>
        return 0:
    return 1;
} pool[N * 10], *tris;
void edge(Edge a, Edge b) {
  if(a.tri) a.tri->edge[a.side] = b;
  if(b.tri) b.tri->edge[b.side] = a;
struct Trig { // Triangulation
  Trig() {
    the root = // Tri should at least contain all points
      new(tris++) Tri(pll(-inf, -inf), pll(inf + inf, -inf)
          , pll(-inf, inf + inf));
  Tri* find(pll p) { return find(the_root, p); }
  void add_point(const pll &p) { add_point(find(the_root, p
      ), p); }
  Tri* the root;
  static Tri* find(Tri* root, const pll &p) {
    while (1) {
      if (!root->has_chd())
        return root;
      for (int i = 0; i < 3 && root->chd[i]; ++i)
        if (root->chd[i]->contains(p)) {
          root = root->chd[i];
          break;
        }
    assert(0); // "point not found"
  void add_point(Tri* root, pll const& p) {
    Tri* t[3];
     /* split it into three triangles */
    for (int i = 0; i < 3; ++i)
```

```
t[i] = new(tris++) Tri(root->p[i], root->p[(i + 1) %
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 0), Edge(t[(i + 1) % 3], 1));
    for (int i = 0; i < 3; ++i)
      edge(Edge(t[i], 2), root->edge[(i + 2) % 3]);
    for (int i = 0; i < 3; ++i)
      root->chd[i] = t[i];
    for (int i = 0; i < 3; ++i)
      flip(t[i], 2);
  void flip(Tri* tri, int pi) {
    Tri* trj = tri->edge[pi].tri;
    int pj = tri->edge[pi].side;
    if (!trj) return;
    if (!in_cc(tri->p[0], tri->p[1], tri->p[2], trj->p[pj])
        ) return;
    /* flip edge between tri,trj */
    Tri* trk = new(tris++) Tri(tri->p[(pi + 1) % 3], trj->p
        [pj], tri->p[pi]);
    Tri* trl = new(tris++) Tri(trj->p[(pj + 1) % 3], tri->p
        [pi], trj->p[pj]);
    edge(Edge(trk, 0), Edge(trl, 0));
edge(Edge(trk, 1), tri->edge[(pi + 2) % 3]);
    edge(Edge(trk, 2), trj->edge[(pj + 1) % 3]);
    edge(Edge(trl, 1), trj->edge[(pj + 2) % 3]);
    edge(Edge(trl, 2), tri->edge[(pi + 1) % 3]);
    tri->chd[0] = trk; tri->chd[1] = trl; tri->chd[2] = 0;
    trj->chd[0] = trk; trj->chd[1] = trl; trj->chd[2] = 0;
    flip(trk, 1); flip(trk, 2);
    flip(trl, 1); flip(trl, 2);
 }
};
vector<Tri*> triang; // vector of all triangle
set<Tri*> vst;
void go(Tri* now) { // store all tri into triang
 if (vst.find(now) != vst.end())
    return;
  vst.insert(now);
  if (!now->has_chd())
    return triang.pb(now);
  for (int i = 0; i < now->num_chd(); ++i)
    go(now->chd[i]);
void build(int n, pll* ps) { // build triangulation
 tris = pool; triang.clear(); vst.clear();
  random_shuffle(ps, ps + n);
 Trig tri; // the triangulation structure
  for (int i = 0; i < n; ++i)
    tri.add_point(ps[i]);
  go(tri.the_root);
```

4.12 Voronoi Diagram

```
// from 8BQube
vector<Line> ls[N];
pll arr[N];
Line make_line(pdd p, Line l) {
 pdd d = 1.Y - 1.X; d = perp(d);
 pdd m = (1.X + 1.Y) / 2;
 l = Line(m, m + d);
 if (ori(1.X, 1.Y, p) < 0)
   l = Line(m + d, m);
 return 1;
double calc_area(int id) {
 // use to calculate the area of point "strictly in the
      convex hull"
 vector<Line> hpi = halfPlaneInter(ls[id]);
 vector<pdd> ps;
 for (int i = 0; i < SZ(hpi); ++i)</pre>
   ps.pb(intersect(hpi[i].X, hpi[i].Y, hpi[(i + 1) % SZ(
        hpi)].X, hpi[(i + 1) % SZ(hpi)].Y));
 double rt = 0;
 for (int i = 0; i < SZ(ps); ++i)</pre>
```

```
rt += cross(ps[i], ps[(i + 1) % SZ(ps)]);
  return fabs(rt) / 2;
void solve(int n, pii *oarr) {
  map<pll, int> mp;
  for (int i = 0; i < n; ++i)</pre>
    arr[i] = pll(oarr[i].X, oarr[i].Y), mp[arr[i]] = i;
  build(n, arr); // Triangulation
  for (auto *t : triang) {
    vector<int> p;
    for (int i = 0; i < 3; ++i)
      if (mp.find(t->p[i]) != mp.end())
        p.pb(mp[t->p[i]]);
    for (int i = 0; i < SZ(p); ++i)
      for (int j = i + 1; j < SZ(p); ++j) {
        Line l(oarr[p[i]], oarr[p[j]]);
        ls[p[i]].pb(make_line(oarr[p[i]], 1));
        ls[p[j]].pb(make_line(oarr[p[j]], 1));
  }
}
```

5 Graph

```
5.1
     Block Cut Tree
struct BlockCutTree{
  vector<vector<int>> tree; // 1-based
  vector<int> node;
  vector<int> type; // 0:square, 1:circle
 bool iscut(int v){
    return type[node[v]] == 1;
  vector<int> getbcc(int v){
    if(!iscut(v)) return {node[v]};
    vector<int> ans;
    for(int i : tree[node[v]])
      ans.pb(i);
    return ans;
  void build(int n, vector<vector<int>>& g){
    tree.resize(2 * n + 1);
    type.resize(2 * n + 1);
    node.resize(n + 1, -1);
    vector<int> in(n + 1);
    vector<int> low(n + 1);
    stack<int> st;
    int ts = 1;
    int bcc = 1;
    auto addv = [&](int id, int v){
      if(node[v] == -1){
        node[v] = id;
        return;
      if(type[node[v]] == 0){
        int o = node[v];
        node[v] = bcc++;
        type[node[v]] = 1;
        tree[o].pb(node[v]);
        tree[node[v]].pb(o);
     tree[id].pb(node[v]);
     tree[node[v]].pb(id);
    function < void(int, int) > dfs = [&](int now, int p){
      in[now] = low[now] = ts++;
      st.push(now);
      int child = 0;
      for(int i : g[now]){
        if(i == p) continue;
        if(in[i]){
```

```
low[now] = min(low[now], in[i]);
          continue;
        }
        child++;
        dfs(i, now);
        low[now] = min(low[now], low[i]);
        if(low[i] >= in[now]){
          int nowid = bcc++;
          while(true){
            int x = st.top();
            st.pop();
            addv(nowid, x);
            if(x == i) break;
          addv(nowid, now);
        }
      if(child == 0 && now == p) addv(bcc++, now);
    };
    dfs(1, 1);
};
5.2 2-SAT
struct SAT{ // 0-based, [n, 2n) is neg of [0, n)
 vector<vector<int>> g, rg;
 bool ok = true:
 vector<bool> ans;
 void init(int _n){
    n = _n;
    g.resize(2 * n);
    rg.resize(2 * n);
    ans.resize(n);
  int neg(int v){
    return v < n ? v + n : v - n;
 void addEdge(int u, int v){
    g[u].pb(v);
    rg[v].pb(u);
 void addClause(int a, int b){
    addEdge(neg(a), b);
    addEdge(neg(b), a);
 void build(){
    vector<bool> vst(2 * n, false);
    vector<int> tmp, scc(2 * n, -1);
    int cnt = 1;
    function < void(int) > dfs = [&](int now){
      vst[now] = true;
for(int i : rg[now]){
        if(vst[i]) continue;
        dfs(i);
      }
      tmp.pb(now);
    for(int i = 0; i < 2 * n; i++){
      if(!vst[i]) dfs(i);
    reverse(all(tmp));
    function<void(int, int)> dfs2 = [&](int now, int id){
      scc[now] = id;
      for(int i : g[now]){
        if(scc[i] != -1) continue;
        dfs2(i, id);
      }
    for(int i : tmp){
      if(scc[i] == -1) dfs2(i, cnt++);
    debug(scc);
```

```
for(int i = 0; i < n; i++){
      if(scc[i] == scc[neg(i)]){
        ok = false;
        return;
      if(scc[i] < scc[neg(i)]) ans[i] = true;</pre>
      else ans[i] = false;
  }
};
5.3
      Dominator Tree
// copy from 8BQube
struct dominator_tree { // 1-base
  vector<int> G[N], rG[N];
  int n, pa[N], dfn[N], id[N], Time;
  int semi[N], idom[N], best[N];
  vector<int> tree[N]; // dominator_tree
  void init(int _n) {
    n = _n;
    for (int i = 1; i <= n; ++i)
      G[i].clear(), rG[i].clear();
  void add_edge(int u, int v) {
    G[u].pb(v), rG[v].pb(u);
  void dfs(int u) {
    id[dfn[u] = ++Time] = u;
    for (auto v : G[u])
      if (!dfn[v]) dfs(v), pa[dfn[v]] = dfn[u];
  int find(int y, int x) {
    if (y <= x) return y;</pre>
    int tmp = find(pa[y], x);
    if (semi[best[y]] > semi[best[pa[y]]])
      best[y] = best[pa[y]];
    return pa[y] = tmp;
  void tarjan(int root) {
    Time = 0;
    for (int i = 1; i <= n; ++i) {
      dfn[i] = idom[i] = 0;
      tree[i].clear();
      best[i] = semi[i] = i;
    dfs(root);
    for (int i = Time; i > 1; --i) {
      int u = id[i];
      for (auto v : rG[u])
        if (v = dfn[v]) {
          find(v, i);
          semi[i] = min(semi[i], semi[best[v]]);
      tree[semi[i]].pb(i);
      for (auto v : tree[pa[i]]) {
        find(v, pa[i]);
        idom[v] =
          semi[best[v]] == pa[i] ? pa[i] : best[v];
      tree[pa[i]].clear();
    for (int i = 2; i \leftarrow Time; ++i) {
      if (idom[i] != semi[i]) idom[i] = idom[idom[i]];
      tree[id[idom[i]]].pb(id[i]);
  }
};
     Virtual Tree
5.4
```

// copy from 8BQube
vector<int> vG[N];

int top, st[N];

```
void insert(int u) {
  if (top == -1) return st[++top] = u, void();
 int p = LCA(st[top], u);
 if (p == st[top]) return st[++top] = u, void();
 while (top >= 1 \&\& dep[st[top - 1]] >= dep[p])
   vG[st[top - 1]].pb(st[top]), --top;
  if (st[top] != p)
   vG[p].pb(st[top]), --top, st[++top] = p;
  st[++top] = u;
void reset(int u) {
 for (int i : vG[u]) reset(i);
 vG[u].clear();
void solve(vector<int> &v) {
 top = -1;
 sort(ALL(v),
      [&](int a, int b) { return dfn[a] < dfn[b]; });
 for (int i : v) insert(i);
 while (top > 0) vG[st[top - 1]].pb(st[top]), --top;
 // do somethina
 reset(v[0]);
    Directed Minimum Spanning Tree
const 11 INF = LLONG_MAX;
struct edge{
```

```
int u = -1, v = -1;
  11 w = INF;
 int id = -1;
};
// 0-based, E[i].id = i
bool DMST(int n, vector<edge> &E, int root, vector<edge> &
    sol){
  vector<int> id(n), vis(n);
 vector<edge> in(n);
 for(edge e : E)
    if(e.u != e.v && e.w < in[e.v].w && e.v != root)</pre>
      in[e.v] = e;
  for(int i = 0; i < n; i++)</pre>
    if(i != root && in[i].u == -1) return false; // no sol
  int cnt = 0;
  fill(iter(id), -1); fill(iter(vis), -1);
 for(int u = 0; u < n; u++){</pre>
    int v = u;
    while(vis[v] != u && id[v] == -1 && in[v].u != -1)
      vis[v] = u, v = in[v].u;
    if(v != root && id[v] == -1){}
      for(int x = in[v].u; x != v; x = in[x].u)
        id[x] = cnt;
      id[v] = cnt++;
  if(!cnt) return sol = in, true; // no cycle
 for(int u = 0; u < n; u++)</pre>
    if(id[u] == -1) id[u] = cnt++;
  vector<edge> nE;
 for(int i = 0; i < SZ(E); i++){
    edge tmp = E[i];
    tmp.u = id[tmp.u], tmp.v = id[tmp.v];
    if(in[E[i].v].w != INF) tmp.w -= in[E[i].v].w;
    nE.pb(tmp);
  }
 vector<edge> tsol;
 if(!DMST(cnt, nE, id[root], tsol)) return false;
  sol.resize(n);
  for(int i = 0; i < cnt; i++){</pre>
    if(i == id[root]) continue;
    int t = tsol[i].id;
    sol[E[t].v] = E[t];
```

```
for(int i = 0; i < n; i++)</pre>
    if(sol[i].id == -1) sol[i] = in[i];
  return true;
5.6
     Vizing
// find D+1 edge coloring of a graph with max deg D
struct vizing { // returns edge coloring in adjacent matrix
     G. 1 - based
  const int N = 105;
  int C[N][N], G[N][N], X[N], vst[N], n; // ans: G[i][j]
  void init(int _n) { n = _n; // n = |V|+1
    for (int i = 0; i <= n; ++i)
      for (int j = 0; j <= n; ++j)
        C[i][j] = G[i][j] = 0;
  void solve(vector<pii> &E) {
    auto update = [&](int u)
    { for (X[u] = 1; C[u][X[u]]; ++X[u]); };
    auto color = [&](int u, int v, int c) {
      int p = G[u][v];
      G[u][v] = G[v][u] = c;
      C[u][c] = v, C[v][c] = u;
      C[u][p] = C[v][p] = 0;
      if (p) X[u] = X[v] = p;
      else update(u), update(v);
      return p;
    };
    auto flip = [&](int u, int c1, int c2) {
      int p = C[u][c1];
      swap(C[u][c1], C[u][c2]);
      if (p) G[u][p] = G[p][u] = c2;
      if (!C[u][c1]) X[u] = c1;
      if (!C[u][c2]) X[u] = c2;
      return p;
    };
    fill_n(X + 1, n, 1);
    for (int t = 0; t < SZ(E); ++t) {
      int u = E[t].X, v0 = E[t].Y, v = v0, c0 = X[u], c =
          c0, d;
      vector<pii> L;
      fill_n(vst + 1, n, 0);
      while (!G[u][v0]) {
        L.emplace_back(v, d = X[v]);
        if (!C[v][c]) for (int a = SZ(L) - 1; a >= 0; --a)
            c = color(u, L[a].X, c);
        else if (!C[u][d]) for (int a = SZ(L) - 1; a >= 0;
             --a) color(u, L[a].X, L[a].Y);
        else if (vst[d]) break;
        else vst[d] = 1, v = C[u][d];
      if (!G[u][v0]) {
        for (; v; v = flip(v, c, d), swap(c, d));
        if (int a; C[u][c0]) {
          for (a = SZ(L) - 2; a >= 0 && L[a].Y != c; --a);
          for (; a >= 0; --a) color(u, L[a].X, L[a].Y);
        else --t;
      }
    }
  }
};
      Maximum Clique
  bst N[MAXN], empty;
```

```
const int MAXN = 40;
typedef bitset<MAXN> bst;
struct Maximum_Clique {
 int p[MAXN], n;
  bst ans:
  // find all maximal clique
  void BronKerbosch2(bst R, bst P, bst X) {
    if (P == empty \&\& X == empty){}
```

```
if(ans.count() < R.count()) ans = R;</pre>
      return;
    bst tmp = P \mid X;
    int u;
    if ((R | P | X).count() <= ans.count()) return;</pre>
    for (int uu = 0; uu < n; ++uu) {</pre>
      u = p[uu];
      if (tmp[u] == 1) break;
    // if (double(clock())/CLOCKS_PER_SEC > .999)
    // return;
    bst now2 = P \& \sim N[u];
    for (int vv = 0; vv < n; ++vv) {
      int v = p[vv];
      if (now2[v] == 1) {
        R[v] = 1:
        BronKerbosch2(R, P & N[v], X & N[v]);
        R[v] = 0, P[v] = 0, X[v] = 1;
      }
    }
  void init(int _n) {
    n = n:
    for (int i = 0; i < n; ++i) N[i].reset();</pre>
  void add_edge(int u, int v) {
    N[u][v] = N[v][u] = 1;
  void complement(){
    for(int i = 0; i < n; i++)
      for(int j = 0; j < n; j++)</pre>
        if(i != j) N[i][j] = !N[i][j];
  void solve() {
    bst R, P, X;
    ans = 0, P.flip();
    for (int i = 0; i < n; ++i) p[i] = i;
    mt19937 rng(123123);
    shuffle(p, p + n, rng), BronKerbosch2(R, P, X);
};
```

6 Math

6.1 Extended Euclidean Algorithm

```
// ax+ny = 1, ax+ny == ax == 1 (mod n)
void extgcd(l1 x,l1 y,l1 &g,l1 &a,l1 &b) {
  if (y == 0) g=x,a=1,b=0;
  else extgcd(y,x%y,g,b,a),b-=(x/y)*a;
}
```

6.2 Floor & Ceil

```
int floor_div(int a,int b){
  return a/b-(a%b&&a<0^b<0);
}
int ceil_div(int a,int b){
  return a/b+(a%b&&a<0^b>0);
}
```

6.3 Legendre

```
// the Jacobi symbol is a generalization of the Legendre
    symbol,
// such that the bottom doesn't need to be prime.
// (n|p) -> same as Legendre
// (n|ab) = (n|a)(n|b)
// work with long long
int Jacobi(int a, int m) {
  int s = 1;
```

```
for (; m > 1; ) {
    a %= m;
    if (a == 0) return 0;
    const int r = __builtin_ctz(a);
   if ((r \& 1) \&\& ((m + 2) \& 4)) s = -s;
    a >>= r;
   if (a \& m \& 2) s = -s;
   swap(a, m);
  return s;
// 0: a == 0
// -1: a isn't a quad res of p
// else: return X with X^2 \% p == a
// doesn't work with long long
int QuadraticResidue(int a, int p) {
 if (p == 2) return a & 1;
  const int jc = Jacobi(a, p);
 if (jc == 0) return 0;
 if (jc == -1) return -1;
 int b, d;
  for (; ; ) {
   b = rand() % p;
    d = (1LL * b * b + p - a) % p;
   if (Jacobi(d, p) == -1) break;
  int f0 = b, f1 = 1, g0 = 1, g1 = 0, tmp;
  for (int e = (1LL + p) >> 1; e; e >>= 1) {
    if (e & 1) {
      tmp = (1LL * g0 * f0 + 1LL * d * (1LL * g1 * f1 % p))
           % p;
      g1 = (1LL * g0 * f1 + 1LL * g1 * f0) % p;
      g0 = tmp;
    tmp = (1LL * f0 * f0 + 1LL * d * (1LL * f1 * f1 % p)) %
    f1 = (2LL * f0 * f1) % p;
    f0 = tmp;
 }
  return g0;
```

6.4 Simplex

```
#pragma once
typedef double T; // long double, Rational, double + mod<P
typedef vector<T> vd;
typedef vector<vd> vvd;
const T eps = 1e-8, inf = 1/.0;
#define MP make pair
#define ltj(X) if(s == -1 || MP(X[j],N[j]) < MP(X[s],N[s]))
struct LPSolver {
 int m, n;
  vi N, B;
 vvd D;
  LPSolver(const vvd& A, const vd& b, const vd& c) :
   m(sz(b)), n(sz(c)), N(n+1), B(m), D(m+2, vd(n+2)) {
      rep(i,0,m) \ rep(j,0,n) \ D[i][j] = A[i][j];
      rep(i,0,m) { B[i] = n+i; D[i][n] = -1; D[i][n+1] = b[
          i];}
     rep(j,0,n) \{ N[j] = j; D[m][j] = -c[j]; \}
     N[n] = -1; D[m+1][n] = 1;
  void pivot(int r, int s) {
   T *a = D[r].data(), inv = 1 / a[s];
    rep(i,0,m+2) if (i != r && abs(D[i][s]) > eps) {
     T *b = D[i].data(), inv2 = b[s] * inv;
```

rep(j,0,n+2) b[j] -= a[j] * inv2;

```
b[s] = a[s] * inv2;
    rep(j,0,n+2) if (j != s) D[r][j] *= inv;
    rep(i,0,m+2) if (i != r) D[i][s] *= -inv;
    D[r][s] = inv;
    swap(B[r], N[s]);
  bool simplex(int phase) {
    int x = m + phase - 1;
    for (;;) {
      int s = -1;
      rep(j,0,n+1) if (N[j] != -phase) ltj(D[x]);
      if (D[x][s] >= -eps) return true;
      rep(i,0,m) {
        if (D[i][s] <= eps) continue;
if (r == -1 || MP(D[i][n+1] / D[i][s], B[i])</pre>
             < MP(D[r][n+1] / D[r][s], B[r])) r = i;
      if (r == -1) return false;
      pivot(r, s);
  T solve(vd &x) {
    int r = 0;
    rep(i,1,m) if (D[i][n+1] < D[r][n+1]) r = i;
    if (D[r][n+1] < -eps) {
      pivot(r, n);
      if (!simplex(2) || D[m+1][n+1] < -eps) return -inf;</pre>
      rep(i,0,m) if (B[i] == -1) {
        int s = 0;
        rep(j,1,n+1) ltj(D[i]);
        pivot(i, s);
      }
    bool ok = simplex(1); x = vd(n);
    rep(i,0,m) if (B[i] < n) x[B[i]] = D[i][n+1];
    return ok ? D[m][n+1] : inf;
};
```

6.5 Floor Sum

```
// from 8BQube
ll floor_sum(ll n, ll m, ll a, ll b) {
    ll ans = 0;
    if (a >= m)
        ans += (n - 1) * n * (a / m) / 2, a %= m;
    if (b >= m)
        ans += n * (b / m), b %= m;
    ll y_max = (a * n + b) / m, x_max = (y_max * m - b);
    if (y_max == 0) return ans;
    ans += (n - (x_max + a - 1) / a) * y_max;
    ans += floor_sum(y_max, a, m, (a - x_max % a) % a);
    return ans;
}// sum^{n-1}_0 floor((a * i + b) / m) in log(n + m + a + b)
}
```

6.6 Miller Rabin & Pollard Rho

```
for (; tmp; tmp >>= 1, a = mul(a, a, n))
    if (tmp & 1) x = mul(x, a, n);
  if (x == 1 || x == n - 1) return 1;
  while (--t)
    if ((x = mul(x, x, n)) == n - 1) return 1;
  return 0;
bool prime(ll n){
  vector<11> tmp = {2, 325, 9375, 28178, 450775, 9780504,
      1795265022};
  for(ll i : tmp)
    if(!Miller_Rabin(i, n)) return false;
  return true;
map<ll, int> cnt;
void PollardRho(ll n) {
  if (n == 1) return;
  if (prime(n)) return ++cnt[n], void();
  if (n % 2 == 0) return PollardRho(n / 2), ++cnt[2], void
  11 x = 2, y = 2, d = 1, p = 1;
#define f(x, n, p) ((mul(x, x, n) + p) % n)
  while (true) {
    if (d != n && d != 1) {
      PollardRho(n / d);
      PollardRho(d);
      return;
    if (d == n) ++p;
    x = f(x, n, p), y = f(f(y, n, p), n, p);
    d = gcd(abs(x - y), n);
}
      XOR Basis
6.7
const int digit = 60; // [0, 2^digit)
struct Basis{
  int total = 0, rank = 0;
  vector<ll> b;
  Basis(): b(digit) {}
  bool add(ll v){ // Gauss Jordan Elimination
    for(int i = digit - 1; i >= 0; i--){
      if(!(1LL << i & v)) continue;</pre>
      if(b[i] != 0){
        v ^= b[i];
        continue;
      for(int j = 0; j < i; j++)
        if(1LL << j & v) v ^= b[j];</pre>
      for(int j = i + 1; j < digit; j++)</pre>
        if(1LL << i & b[j]) b[j] ^= v;</pre>
      b[i] = v;
      rank++;
      return true;
    return false;
  11 \text{ getmax}(11 \text{ x} = 0){
    for(ll i : b) x = max(x, x ^ i);
    return x;
  11 \text{ getmin}(11 \text{ x} = 0)
    for(ll i : b) x = min(x, x ^ i);
    return x;
  bool can(11 x){
    return getmin(x) == 0;
  11 kth(11 k){ // kth smallest, 0-indexed
    vector<ll> tmp;
    for(ll i : b) if(i) tmp.pb(i);
    for(int i = 0; i < SZ(tmp); i++)</pre>
```

if(1LL << i & k) ans ^= tmp[i];</pre>

```
return ans;
}
};
```

$7 \quad Misc$

7.1 Fraction

7.2 Matroid

我們稱一個二元組 $M=(E,\mathcal{I})$ 為一個擬陣,其中 $\mathcal{I}\subseteq 2^E$ 為 E 的子集所形成的 **非空**集合,若:

- 若 $S \in \mathcal{I}$ 以及 $S' \subseteq S$, 則 $S' \in \mathcal{I}$
- 對於 $S_1, S_2 \in \mathcal{I}$ 滿足 $|S_1| < |S_2|$,存在 $e \in S_2 \setminus S_1$ 使得 $S_1 \cup \{e\} \in \mathcal{I}$

除此之外,我們有以下的定義:

- 位於 $\mathcal I$ 中的集合我們稱之為獨立集(independent set),反之不在 $\mathcal I$ 中的 我們稱為相依集(dependent set)
- 極大的獨立集為基底(base)、極小的相依集為迴路(circuit)
- 一個集合 Y 的秩 (rank) r(Y) 為該集合中最大的獨立子集,也就是 $r(Y) = \max\{|X| \mid X \subseteq Y \ \exists X \in \mathcal{I}\}$

性質:

- 1. $X \subseteq Y \land Y \in \mathcal{I} \implies X \in \mathcal{I}$
- $2. \ X \subseteq Y \wedge X \not \in \mathcal{I} \implies Y \not \in \mathcal{I}$
- 3. 若 B 與 B' 皆是基底且 $B \subseteq B'$,則 B = B' 若 C 與 C' 皆是迴路且 $C \subseteq C'$,則 C = C'
- 4. $e \in E \land X \subseteq E \implies r(X) \le r(X \cup \{e\}) \le r(X) + 1$ i.e. 加入一個元素 後秩不會降底,最多增加 1
- 5. $\forall Y \subseteq E, \exists X \subseteq Y, r(X) = |X| = r(Y)$

一些等價的性質:

- 1. 對於所有 $X \subseteq E$, X 的極大獨立子集都有相同的大小
- 2. 對於 $B_1, B_2 \in \mathcal{B} \wedge B_1 \neq B_2$,對於所有 $e_1 \in B_1 \setminus B_2$,存在 $e_2 \in B_2 \setminus B_1$ 使得 $(B_1 \setminus \{e_1\}) \cup \{e_2\} \in \mathcal{B}$
- 3. 對於 $X,Y \in \mathcal{I}$ 且 |X| < |Y|,存在 $e \in Y \setminus X$ 使得 $X \cup \{e\} \in \mathcal{B}$
- 4. 如果 $r(X \cup \{e_1\}) = r(X \cup \{e_2\}) = r(X)$,則 $r(X \cup \{e_1, e_2\}) = r(X)$ 。 如果 $r(X \cup \{e\}) = r(X)$ 對於所有 $e \in E'$ 都成立,則 $r(X \cup E') = r(X)$ 。

据陆六

```
疑陣父
Data: 兩個擬陣 M_1=(E,\mathcal{I}_1) 以及 M_2=(E,\mathcal{I}_2) Result: I 為最大的位於 \mathcal{I}_1\cap\mathcal{I}_2 中的獨立集 I\leftarrow\emptyset X_1\leftarrow\{e\in E\setminus I\mid I\cup\{e\}\in\mathcal{I}_1\} X_2\leftarrow\{e\in E\setminus I\mid I\cup\{e\}\in\mathcal{I}_2\} while X_1\neq\emptyset 且 X_2\neq\emptyset do if e\in X_1\cap X_2 then I\leftarrow I\cup\{e\} else 構造交換圖 \mathcal{D}_{M_1,M_2}(I) 在交換圖上找到一條 X_1 到 X_2 且沒有捷徑的路徑 P I\leftarrow I\triangle P
```

```
\begin{array}{l} \textbf{end if} \\ X_1 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_1\} \\ X_2 \leftarrow \{e \in E \setminus I \mid I \cup \{e\} \in \mathcal{I}_2\} \\ \textbf{end while} \end{array}
```

8 Polynomial

8.1 FFT

```
using val t = complex<double>;
template<int MAXN>
struct FFT {
  const double PI = acos(-1);
  val_t w[MAXN];
  FFT() {
    for (int i = 0; i < MAXN; ++i) {
      double arg = 2 * PI * i / MAXN;
      w[i] = val_t(cos(arg), sin(arg));
   }
  void bitrev(vector<val_t> &a, int n) //same as NTT
  void trans(vector<val_t> &a, int n, bool inv = false) {
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) {
          val_t = a[j + dl] * (inv ? conj(w[x]) : w[x])
          a[j + dl] = a[j] - tmp;
          a[j] += tmp;
        }
     }
    if (inv) {
      for (int i = 0; i < n; ++i) a[i] /= n;</pre>
  //multiplying two polynomials A * B:
  //fft.trans(A, siz, 0), fft.trans(B, siz, 0):
  //A[i] *= B[i], fft.trans(A, siz, 1);
```

8.2 NTT

```
//(2^16)+1, 65537, 3
//7*17*(2^23)+1, 998244353, 3
//1255*(2^20)+1, 1315962881, 3
//51*(2^25)+1, 1711276033, 29
template<int MAXN, 11 P, 11 RT> //MAXN must be 2^k
struct NTT {
  11 w[MAXN];
  11 mpow(ll a, ll n);
  11 minv(ll a) { return mpow(a, P - 2); }
  NTT() {
   ll dw = mpow(RT, (P - 1) / MAXN);
    w[0] = 1;
    for (int i = 1; i < MAXN; ++i) w[i] = w[i - 1] * dw % P
  void bitrev(vector<ll> &a, int n) {
    int i = 0;
    for (int j = 1; j < n - 1; ++j)
      for (int k = n >> 1; (i ^= k) < k; k >>= 1);
      if (j < i) swap(a[i], a[j]);</pre>
   }
  void operator()(vector<ll> &a, int n, bool inv = false) {
       //0 <= a[i] < P
    bitrev(a, n);
    for (int L = 2; L <= n; L <<= 1) {
      int dx = MAXN / L, dl = L >> 1;
      for (int i = 0; i < n; i += L) {</pre>
        for (int j = i, x = 0; j < i + dl; ++j, x += dx) {
```

```
ll tmp = a[j + dl] * w[x] % P;
    if ((a[j + dl] = a[j] - tmp) < 0) a[j + dl] += P;
    if ((a[j] += tmp) >= P) a[j] -= P;
    }
}
if (inv) {
    reverse(a.begin()+1, a.begin()+n);
    ll invn = minv(n);
    for (int i = 0; i < n; ++i) a[i] = a[i] * invn % P;
}
}
</pre>
```

8.3 Polynomial Operation

```
// Copy from 8BQube
#define fi(s, n) for (int i = (int)(s); i < (int)(n); ++i)
template<int MAXN, 11 P, 11 RT> // MAXN = 2^k
struct Poly : vector<ll> { // coefficients in [0, P)
 using vector<ll>::vector;
  static NTT<MAXN, P, RT> ntt;
 int n() const { return (int)size(); } // n() >= 1
 Poly(const Poly &p, int m) : vector<ll>(m) {
    copy_n(p.data(), min(p.n(), m), data());
 Poly& irev() { return reverse(data(), data() + n()), *
      this; }
 Poly& isz(int m) { return resize(m), *this; }
 Poly& iadd(const Poly &rhs) { // n() == rhs.n()
   fi(0, n()) if (((*this)[i] += rhs[i]) >= P) (*this)[i]
        -= P:
    return *this;
  Poly& imul(ll k) {
    fi(0, n()) (*this)[i] = (*this)[i] * k % P;
    return *this;
  Poly Mul(const Poly &rhs) const {
    int m = 1;
    while (m < n() + rhs.n() - 1) m <<= 1;</pre>
    Poly X(*this, m), Y(rhs, m);
    ntt(X, m), ntt(Y, m);
    fi(0, m) X[i] = X[i] * Y[i] % P;
    ntt(X, m, true);
    return X.isz(n() + rhs.n() - 1);
  Poly Inv() const { // (*this)[0] != 0, 1e5/95ms
    if (n() == 1) return {ntt.minv((*this)[0])};
    int m = 1:
    while (m < n() * 2) m <<= 1;
    Poly Xi = Poly(*this, (n() + 1) / 2).Inv().isz(m);
    Poly Y(*this, m);
    ntt(Xi, m), ntt(Y, m);
    fi(0, m) {
      Xi[i] *= (2 - Xi[i] * Y[i]) % P;
      if ((Xi[i] %= P) < 0) Xi[i] += P;</pre>
    ntt(Xi, m, true);
    return Xi.isz(n());
  Poly& shift_inplace(const 11 &c) { //to be tested
    int n = this->n();
    vector<ll> fc(n), ifc(n);
    fc[0] = ifc[0] = 1;
    for (int i = 1; i < n; i++){
      fc[i] = fc[i-1] * i % P;
      ifc[i] = minv(fc[i]);
    for (int i = 0; i < n; i++) (*this)[i] = (*this)[i] *
        fc[i] % P;
    Poly g(n);
    11 cp = 1;
    for (int i = 0; i < n; i++) g[i] = cp * ifc[i] % P, cp</pre>
        = cp * c % P;
    *this = (*this).irev().Mul(g).isz(n).irev();
```

```
for (int i = 0; i < n; i++) (*this)[i] = (*this)[i] *
      ifc[i] % P;
 return *this;
Poly shift(const 11 &c) const { return Poly(*this).
    shift_inplace(c); }
Poly Sqrt() const { // Jacobi((*this)[0], P) = 1, 1e5/235
  if (n() == 1) return {QuadraticResidue((*this)[0], P)};
 Poly X = Poly(*this, (n() + 1) / 2).Sqrt().isz(n());
  return X.iadd(Mul(X.Inv()).isz(n())).imul(P / 2 + 1);
pair<Poly, Poly> DivMod(const Poly &rhs) const { // (rhs
    .)back() != 0
  if (n() < rhs.n()) return {{0}, *this};</pre>
  const int m = n() - rhs.n() + 1;
  Poly X(rhs); X.irev().isz(m);
  Poly Y(*this); Y.irev().isz(m);
  Poly Q = Y.Mul(X.Inv()).isz(m).irev();
  X = rhs.Mul(Q), Y = *this;
  fi(0, n()) if ((Y[i] -= X[i]) < 0) Y[i] += P;
 return {Q, Y.isz(max(1, rhs.n() - 1))};
Poly Dx() const {
  Poly ret(n() - 1);
  fi(0, ret.n()) ret[i] = (i + 1) * (*this)[i + 1] % P;
  return ret.isz(max(1, ret.n()));
Poly Sx() const {
  Poly ret(n() + 1);
  fi(0, n()) ret[i + 1] = ntt.minv(i + 1) * (*this)[i] %
  return ret;
Poly _tmul(int nn, const Poly &rhs) const {
 Poly Y = Mul(rhs).isz(n() + nn - 1);
 return Poly(Y.data() + n() - 1, Y.data() + Y.n());
vector<ll> _eval(const vector<ll> &x, const vector<Poly>
    &up) const {
  const int m = (int)x.size();
 if (!m) return {};
 vector<Poly> down(m * 2);
 // down[1] = DivMod(up[1]).second;
  // fi(2, m * 2) down[i] = down[i / 2].DivMod(up[i]).
      second:
  down[1] = Poly(up[1]).irev().isz(n()).Inv().irev().
      _tmul(m, *this);
  fi(2, m * 2) down[i] = up[i ^ 1]._tmul(up[i].n() - 1,
      down[i / 2]);
  vector<11> y(m);
  fi(0, m) y[i] = down[m + i][0];
 return y;
static vector<Poly> _tree1(const vector<11> &x) {
 const int m = (int)x.size();
  vector<Poly> up(m * 2);
  fi(0, m) up[m + i] = \{(x[i] ? P - x[i] : 0), 1\};
  for (int i = m - 1; i > 0; --i) up[i] = up[i * 2].Mul(
      up[i * 2 + 1]);
 return up;
vector<ll> Eval(const vector<ll> &x) const { // 1e5, 1s
 auto up = _tree1(x); return _eval(x, up);
static Poly Interpolate(const vector<11> &x, const vector
    <11> &y) { // 1e5, 1.4s
  const int m = (int)x.size();
  vector<Poly> up = _tree1(x), down(m * 2);
 vector<ll> z = up[1].Dx()._eval(x, up);
  fi(0, m) z[i] = y[i] * ntt.minv(z[i]) % P;
 fi(0, m) down[m + i] = {z[i]};
  for (int i = m - 1; i > 0; --i) down[i] = down[i * 2].
      Mul(up[i * 2 + 1]).iadd(down[i * 2 + 1].Mul(up[i *
      2]));
  return down[1];
```

```
Poly Ln() const { // (*this)[0] == 1, 1e5/170ms
   return Dx().Mul(Inv()).Sx().isz(n());
 Poly Exp() const { // (*this)[0] == 0, 1e5/360ms
   if (n() == 1) return {1};
   Poly X = Poly(*this, (n() + 1) / 2).Exp().isz(n());
   Poly Y = X.Ln(); Y[0] = P - 1;
   fi(0, n()) if ((Y[i] = (*this)[i] - Y[i]) < 0) Y[i] +=
    return X.Mul(Y).isz(n());
 // M := P(P - 1). If k >= M, k := k % M + M.
 Poly Pow(ll k) const {
   int nz = 0;
   while (nz < n() && !(*this)[nz]) ++nz;</pre>
   if (nz * min(k, (11)n()) >= n()) return Poly(n());
   if (!k) return Poly(Poly {1}, n());
   Poly X(data() + nz, data() + nz + n() - nz * k);
   const ll c = ntt.mpow(X[0], k % (P - 1));
    return X.Ln().imul(k % P).Exp().imul(c).irev().isz(n())
        .irev();
  static ll LinearRecursion(const vector<ll> &a, const
      vector<ll> &coef, ll n) { // a_n = \sum c_j a_(n-j)
    const int k = (int)a.size();
    assert((int)coef.size() == k + 1);
   Poly C(k + 1), W(Poly \{1\}, k), M = \{0, 1\};
    fi(1, k + 1) C[k - i] = coef[i] ? P - coef[i] : 0;
   C[k] = 1;
    while (n) {
      if (n % 2) W = W.Mul(M).DivMod(C).second;
      n /= 2, M = M.Mul(M).DivMod(C).second;
   11 \text{ ret = 0};
    fi(0, k) ret = (ret + W[i] * a[i]) % P;
   return ret;
#undef fi
using Poly_t = Poly<131072 * 2, 998244353, 3>;
template<> decltype(Poly_t::ntt) Poly_t::ntt = {};
```

8.4 Generating Function

8.4.1 Ordinary Generating Function

- C(x) = A(rx): $c_n = r^n a_n$ 的一般生成函數。
- C(x) = A(x) + B(x): $c_n = a_n + b_n$ 的一般生成函數。
- C(x) = A(x)B(x): $c_n = \sum_{i=0}^n a_i b_{n-i}$ 的一般生成函數。
- $C(x) = A(x)^k$: $c_n = \sum_{i_1+i_2+...+i_k=n} a_{i_1} a_{i_2} ... a_{i_k}$ 的一般生成函數。
- C(x) = xA(x)': $c_n = na_n$ 的一般生成函數。
- $C(x) = \frac{A(x)}{1-x}$: $c_n = \sum_{i=0}^{n} a_i$ 的一般生成函數。
- $C(x) = A(1) + x \frac{A(1) A(x)}{1 x}$: $c_n = \sum_{i=n}^{\infty} a_i$ 的一般生成函數。

常用展開式

- $\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \ldots$
- $(1+x)^a = \sum_{n=0}^{\infty} {a \choose n} x^n$, ${a \choose n} = \frac{a(a-1)(a-2)...(a-n+1)}{n!}$.

常見生函

• 卡特蘭數: $f(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$

8.4.2 Exponential Generating Function

 a_0, a_1, \ldots 的指數生成函數:

$$\hat{A}(x) = \sum_{i=0}^{\infty} \frac{a_i}{i!} = a_0 + a_1 x + \frac{a_2}{2!} x^2 + \frac{a_3}{3!} x^3 + \dots$$

• $\hat{C}(x) = \hat{A}(x) + \hat{B}(x)$: $c_n = a_n + b_n$ 的指數生成函數

- $\hat{C}(x) = \hat{A}^{(k)}(x)$: $c_n = a_{n+k}$ 的指數生成函數
- $\hat{C}(x) = x\hat{A}(x)$: $c_n = na_n$ 的指數生成函數
- $\hat{C}(x) = \hat{A}(x)\hat{B}(x)$: $c_n = \sum_{k=0}^n \binom{n}{i} a_k b_{n-k}$ 的指數生成函數
- $\hat{C}(x)=\hat{A}(x)^k$: $\sum_{i_1+i_2+\dots+i_k=n}\binom{n}{i_1,i_2,\dots,i_k}a_ia_{i_2}\dots a_{i_k}$ 的指數生成函數
- $\hat{C}(x) = \exp(A(x))$: 假設 A(x) 是一個分量 (component) 的生成函數,那 $\hat{C}(x)$ 是將 n 個有編號的東西分成若干個分量的指數生成函數

9 String

9.1 Rolling Hash

```
int n;
string s;
vector<ll> h, rh;
vector<ll> kp;
const 11 K = 26, MOD = 1000000007;
void topos(ll &a){
  a = (a \% MOD + MOD) \% MOD;
int ord(char c){
  return c - 'a';
pll geth(int 1, int r){
  if(1 > r) return mp(0, 0);
  ll ans = h[r] - h[l - 1] * kp[r - l + 1];
  topos(ans);
  return mp(ans, r - l + 1);
pll getrh(int 1, int r){
  if(1 > r) return mp(0, 0);
  l = n - l + 1;
  r = n - r + 1;
  swap(l, r);
  ll \ ans = rh[r] - rh[l - 1] * kp[r - l + 1];
  topos(ans);
  return mp(ans, r - l + 1);
pll concat(pll a, pll b){
  11 ans = a.F * kp[b.S] + b.F;
  ans %= MOD;
  return mp(ans, a.S + b.S);
void build(){
  n = s.size();
s = " " + s;
  h.resize(n + 1);
  rh.resize(n + 1);
  kp.resize(n + 1);
  kp[0] = 1;
  for(int i = 1; i <= n; i++){</pre>
    kp[i] = kp[i - 1] * K % MOD;
  for(int i = 1; i <= n; i++){</pre>
    h[i] = h[i - 1] * K % MOD + ord(s[i]);
    h[i] %= MOD;
    rh[i] = rh[i - 1] * K % MOD + ord(s[n - i + 1]);
    rh[i] %= MOD;
}
```

9.2 KMP Algorithm

```
void kmp(string s){
  int siz = s.size();
```

```
vector<int> f(siz, 0);
f[0] = 0;
for (int i = 1; i < siz; i++) {
  f[i] = f[i-1];
  bool zero = 0;
  while (s[f[i]] != s[i]) {
    if (f[i] == 0) {
      zero = 1;
      break;
    f[i] = f[f[i]-1];
  if (!zero) f[i]++;
```

Manacher Algorithm

```
vector<int> manacher(string s) {
 int n = s.size();
 vector<int> v(n);
 int pnt = -1, len = 1;
 for (int i = 0;i < n;i++) {</pre>
   int cor = 2 * pnt - i;
   if (cor >= 0) v[i] = min(v[cor], cor - pnt + len);
   while (i+v[i] < n \&\& i-v[i] >= 0 \&\& s[i+v[i]] == s[i-v[
        i]]) v[i]++;
   if (i + v[i] >= pnt + len) pnt = i, len = v[i];
 for (int i = 0; i < n; i++) v[i] = 2 * v[i] - 1;
 return v;
```

9.4 MCP

```
string mcp(string s) { //Duval algorithm for Lyndon
   factorization
  s += s;
 int n = s.size(), i = 0, ans = 0;
 while (i < n/2) {
   ans = i;
   int j = i+1, k=i;
   while (j < n \&\& s[k] <= s[j]) {
      if (s[k] < s[j]) k = i;
      else k++;
      j++;
   }
   while (i <= k) i += j - k;
 return s.substr(ans, n/2);
```

9.5 Suffix Array

```
struct SuffixArray { //tested
 vector<int> sa, lcp, rank; //lcp[i] is lcp of sa[i] and
      sa[i-1]
 SuffixArray(string& s, int lim=256) { // or basic_string<
      int>
   int n = s.size() + 1, k = 0, a, b;
   vector<int> x(n, 0), y(n), ws(max(n, lim));
   rank.resize(n):
    for (int i = 0; i < n-1; i++) x[i] = (int)s[i];
    sa = lcp = y, iota(sa.begin(), sa.end(), 0);
    for (int j = 0, p = 0; p < n; j = max(1, j * 2), lim =
        p) {
      p = j, iota(y.begin(), y.end(), n - j);
      for (int i = 0; i < n; i++) if (sa[i] >= j) y[p++] = sa
          [i] - j;
      for (int \&i : ws) i = 0;
      for (int i = 0; i < n; i++) ws[x[i]]++;
      for (int i = 1;i < lim;i++) ws[i] += ws[i - 1];</pre>
      for (int i = n; i--;) sa[--ws[x[y[i]]]] = y[i];
```

```
swap(x, y), p = 1, x[sa[0]] = 0;
      for(int i = 1; i < n; i++) a = sa[i - 1], b = sa[i], x[
        (y[a] == y[b] && y[a + j] == y[b + j]) ? p - 1 : p
    for (int i = 1;i < n;i++) rank[sa[i]] = i;</pre>
    for (int i = 0, j; i < n - 1; lcp[rank[i++]] = k)
      for (k \&\& k--, j = sa[rank[i] - 1];
          s[i + k] == s[j + k]; k++);
  }
};
```

Suffix Automaton 9.6

```
// from 8BQube
// at most 2n-1 states, 3n-4 edges
// to find longest common substring for multiple strings
    S_1, \ldots, S_k
// assign a special (distinct) character D_i to each string
// let T = S_1 D_1 ... S_k D_k, then build SAM of T
// answer is state with max length reachable to all D i
const int maxn = 1000010;
struct SAM { //1 base
  vector<int> adj[maxn];
  int tot, root, lst, par[maxn], mx[maxn], fi[maxn], iter;
  //mx:maxlen of node, mx[par[i]]+1:minlen of node
  //fi: first endpos
  //corresponding substring of node can be found by fi and
  int nxt[maxn][33];
  int newNode() {
    int res = ++tot;
    fill(nxt[res], nxt[res] + 33, 0);
    par[res] = mx[res] = 0;
    fi[res] = iter;
    return res;
  void init() {
   tot = 0;
    iter = 0;
    root = newNode();
    par[root] = 0, mx[root] = 0;
    lst = root;
 void push(int c) {
    int p = lst;
    int np = newNode();
    mx[np] = mx[p] + 1;
    for (; p && nxt[p][c] == 0; p = par[p])
     nxt[p][c] = np;
    if (p == 0) par[np] = root;
    else {
      int q = nxt[p][c];
      if (mx[p] + 1 == mx[q]) par[np] = q;
      else {
        int nq = newNode();
        mx[nq] = mx[p] + 1;
        for (int i = 0; i < 33; i++)
         nxt[nq][i] = nxt[q][i];
        par[nq] = par[q];
        fi[nq] = fi[q];
        par[q] = nq;
        par[np] = nq;
        for (; p && nxt[p][c] == q; p = par[p])
          nxt[p][c] = nq;
     }
    lst = np;
  void push(string str) {
    for (int i = 0; str[i]; i++) {
     iter++:
      push(str[i] - 'a' + 1);
```

}

```
}
  11 get diff strings(){
    11 tot = 0;
    for(int i = 1; i <= tot; i++) tot += mx[i] - mx[par[i</pre>
        11;
    return tot;
 bool in[maxn];
 int cnt[maxn]; //cnt is number of occurences of node
  void count() {
    for (int i = 1; i <= tot; ++i)</pre>
      ++in[par[i]];
    queue<int> q;
    for (int i = 1; i <= tot; ++i)</pre>
      if (!in[i]) q.push(i);
    while (!q.empty()) {
      int u = q.front();
      q.pop();
      cnt[par[u]] += cnt[u];
      if (!--in[par[u]])
        q.push(par[u]);
 }
} sam;
      Z-value Algorithm
vector<int> z_function(string const& s) {
  int n = s.size();
```

```
vector<int> z(n);
for (int i = 1, l = 0, r = 0; i < n; i++) {
  if (i <= r) z[i] = min(r-i+1, z[i-1]);</pre>
  while (i + z[i] < n \&\& s[z[i]] == s[i+z[i]])
    z[i]++;
  if (i + z[i] - 1 > r)
    l = i, r = i + z[i] - 1;
return z;
```

9.8Main Lorentz

```
vector<int> z_function(string const& s);
int get_z(vector<int> const& z, int i) {
 return (0 <= i && i < SZ(z)) ? z[i] : 0;
vector<pair<int, int>> rep;
void convert_to_rep(int shift, bool left, int cntr, int 1,
    int k1, int k2) {
  int lef = max(1, 1-k2), rig = min(1, k1);
  int minl, maxl;
 if (left) {
    rig = min(rig, l-1);
    minl = shift + cntr - rig, maxl = shift+cntr-lef;
  } else {
    minl = shift + cntr - l - rig + 1, maxl = shift + cntr
        - l - lef + 1;
 //left endpoint: [minl, maxl], length: 2*l
void find_rep(string s, int shift = 0) {
  int n = s.size();
 if (n == 1) return;
 int nu = n / 2;
  int nv = n - nu;
  string u = s.substr(0, nu);
 string v = s.substr(nu);
 string ru(u.rbegin(), u.rend());
 string rv(v.rbegin(), v.rend());
 find_rep(u, shift);
```

```
find_rep(v, shift + nu);
vector<int> z1 = z_function(ru);
vector<int> z2 = z_function(v + '#' + u);
vector<int> z3 = z_function(ru + '#' + rv);
vector<int> z4 = z_function(v);
for (int cntr = 0; cntr < n; cntr++) {</pre>
  int 1, k1, k2;
  if (cntr < nu) {</pre>
    1 = nu - cntr;
    k1 = get_z(z1, nu - cntr);
    k2 = get_z(z2, nv + 1 + cntr);
  } else {
    l = cntr - nu + 1;
    k1 = get_z(z3, nu + 1 + nv - 1 - (cntr - nu));
    k2 = get_z(z4, (cntr - nu) + 1);
  if (k1 + k2 >= 1)
    convert_to_rep(shift, cntr < nu, cntr, 1, k1, k2);</pre>
}
```

AC Automaton 9.9

```
// copy from nontoi
struct AhoCorasick {
  enum { P = 26, st = 'a'};
  struct node { // zero-based
    array<int, P> ch = {0};
    int fail = 0, cnt = 0, dep = 0;
  int cnt:
  vector<node> v;
  vector<int> ans;
  void init_(int mx) {
    v.clear();
    cnt = 1, v.resize(mx);
    v[0].fail = 0;
  void insert(string s) {
    int p = 0, dep = 1;
    for(auto i : s) {
      int c = i - st;
      if(!v[p].ch[c]) {
        v[cnt].dep = dep;
        v[p].ch[c] = cnt ++;
      p = v[p].ch[c], dep ++;
    v[p].cnt ++;
  void build(vector<string> s) {
    for(auto i : s) insert(i);
    queue<int> q;
    for(int i = 0; i < P; i ++) {
      if(v[0].ch[i]) q.push(v[0].ch[i]);
    while(q.size()) {
      int p = q.front();
      q.pop();
      for(int i = 0; i < P; i ++) if(v[p].ch[i]) {</pre>
        int to = v[p].ch[i], cur = v[p].fail;
        while(cur && !v[cur].ch[i]) cur = v[cur].fail;
        if(v[cur].ch[i]) cur = v[cur].ch[i];
        v[to].fail = cur;
        v[to].cnt += v[cur].cnt;
        q.push(to);
    }
  void traverse(string s) {
    int p = 0;
    ans.assign(cnt, 0);
    for(auto i : s) {
      int c = i - st;
```

```
while(p && !v[p].ch[c]) p = v[p].fail;
      if(v[p].ch[c]) {
        p = v[p].ch[c];
        ans[p] ++, v[p].cnt;
      }
    vector<int> ord(cnt, 0);
    iota(all(ord), 0);
    sort(all(ord), [&](int a, int b) { return v[a].dep > v[
        b].dep; });
    for(auto i : ord) ans[v[i].fail] += ans[i];
    return;
  int go(string s) {
    int p = 0;
    for(auto i : s) {
      int c = i - st;
      assert(v[p].ch[c]);
      p = v[p].ch[c];
    return ans[p];
};
```

Formula 10

Recurrences

If $a_n = c_1 a_{n-1} + \dots + c_k a_{n-k}$, and r_1, \dots, r_k are distinct roots of $x^k + c_1 x^{k-1} + \dots$ $\cdots + c_k$, there are d_1, \ldots, d_k s.t.

$$a_n = d_1 r_1^n + \dots + d_k r_k^n.$$

Non-distinct roots r become polynomial factors, e.g. $a_n = (d_1n + d_2)r^n$.

10.2Geometry

10.2.1 Rotation Matrix

$$\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

10.2.2 Triangles

Side lengths:
$$a,b,c$$

Semiperimeter: $p = \frac{a+b+c}{2}$
Area: $A = \sqrt{p(p-a)(p-b)(p-c)}$
Circumradius: $R = \frac{abc}{4A}$

Inradius:
$$r = \frac{A}{n}$$

Length of median (divides triangle into two equal-area triangles): $m_a =$ $\frac{1}{2}\sqrt{2b^2+2c^2-a^2}$

Length of bisector (divides angles in two):
$$s_a = \sqrt{bc\left(1 - \left(\frac{a}{b+c}\right)^2\right)}$$

Law of cosines:
$$a^2 = b^2 + c^2 - 2bc \cos \frac{\alpha + \beta}{2}$$

Law of tangents: $\frac{a+b}{a-b} = \frac{\tan \frac{\alpha + \beta}{2}}{\tan \frac{\alpha - \beta}{2}}$
Incenter:

Incenter:
$$\begin{split} &P_1 = \underbrace{(x_1,y_1)}_{P_1}, P_2 = \underbrace{(x_2,y_2)}_{P_3}, P_3 = \underbrace{(x_3,y_3)}_{S_1 = P_2 P_3}, s_2 = \underbrace{P_1 P_3}_{P_1 P_3}, s_3 = \underbrace{P_1 P_2}_{P_1 P_2} \\ &\frac{s_1 P_1 + s_2 P_2 + s_3 P_3}{s_1 + s_2 + s_3} \\ &\text{Circumcenter:} \\ &P_0 = (0,0), P_1 = (x_1,y_1), P_2 = (x_2,y_2) \\ &x_c = \frac{1}{2} \times \frac{y_2 (x_1^2 + y_1^2) - y_1 (x_2^2 + y_2^2)}{-x_2 y_1 + x_1 y_2} \\ &y_c = \frac{1}{2} \times \frac{x_2 (x_1^2 + y_1^2) - x_1 (x_2^2 + y_2^2)}{-x_1 y_2 + x_2 y_1} \end{split}$$

Check if (x_0, y_0) is in the circumcircle:

$$\begin{vmatrix} x_1 - x_0 & y_1 - y_0 & (x_1^2 + y_1^2) - (x_0^2 + y_0^2) \\ x_2 - x_0 & y_2 - y_0 & (x_2^2 + y_2^2) - (x_0^2 + y_0^2) \\ x_3 - x_0 & y_3 - y_0 & (x_3^2 + y_3^2) - (x_0^2 + y_0^2) \end{vmatrix}$$

0: on edge, > 0: inside, < 0: outside

10.2.3 Quadrilaterals

With side lengths a, b, c, d, diagonals e, f, diagonals angle θ , area A and magic flux $F = b^2 + d^2 - a^2 - c^2$:

$$4A = 2ef \cdot \sin \theta = F \tan \theta = \sqrt{4e^2f^2 - F^2}$$

For cyclic quadrilaterals the sum of opposite angles is 180° , ef = ac + bd, and $A = \sqrt{(p-a)(p-b)(p-c)(p-d)}.$

10.2.4 Spherical coordinates

$$x = r \sin \theta \cos \phi \qquad r = \sqrt{x^2 + y^2 + z^2}$$

$$y = r \sin \theta \sin \phi \qquad \theta = a\cos(z/\sqrt{x^2 + y^2 + z^2})$$

$$z = r \cos \theta \qquad \phi = a\tan(2y, x)$$

10.2.5 Green's Theorem

$$\iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \oint_{L^{+}} (Pdx + Qdy)$$

$$Area = \frac{1}{2} \oint_{L} x \ dy - y \ dx$$

Circular sector:

$$x = x_0 + r \cos \theta$$

$$y = y_0 + r \sin \theta$$

$$A = r \int_{\alpha}^{\beta} (x_0 + \cos \theta) \cos \theta + (y_0 + \sin \theta) \sin \theta \ d\theta$$

$$= r(r\theta + x_0 \sin \theta - y_0 \cos \theta)|_{\alpha}^{\beta}$$

10.2.6 Point-Line Duality

$$p = (a, b) \leftrightarrow p^* : y = ax - b$$

- $p \in l \iff l^* \in p^*$
- p_1, p_2, p_3 are collinear $\iff p_1^*, p_2^*, p_3^*$ intersect at a point
- p lies above $l \iff l^*$ lies above p^*
- lower convex hull \leftrightarrow upper envelope

10.3Trigonometry

$$\sinh x = \frac{1}{2}(e^x - e^{-x}) \qquad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\sin n\pi = 0 \qquad \cos n\pi = (-1)^n$$

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\sin(2\alpha) = 2\cos \alpha \sin \alpha$$

$$\cos(2\alpha) = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1$$

 $=1-2\sin^2\alpha$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$$

$$\sin \alpha \cos \beta = \frac{1}{2} (\sin(\alpha + \beta) + \sin(\alpha - \beta))$$

$$\cos \alpha \sin \beta = \frac{1}{2} (\sin(\alpha + \beta) - \sin(\alpha - \beta))$$

$$\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$$

$$(V + W) \tan(\alpha - \beta)/2 = (V - W) \tan(\alpha + \beta)/2$$
elengths of sides opposite angles α, β .

where V, W are lengths of sides opposite angles α, β .

$$a\cos x + b\sin x = r\cos(x - \phi)$$

$$a\sin x + b\cos x = r\sin(x+\phi)$$

where $r = \sqrt{a^2 + b^2}$, $\phi = \operatorname{atan2}(b, a)$.

10.4 Derivatives/Integrals

Integration by parts:

$$\int_{a}^{b} f(x)g(x)dx = [F(x)g(x)]_{a}^{b} - \int_{a}^{b} F(x)g'(x)dx$$

$$\frac{d}{dx} \arcsin x = \frac{1}{\sqrt{1 - x^{2}}} \qquad \frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$\frac{d}{dx} \tan x = 1 + \tan^{2} x \qquad \frac{d}{dx} \arctan x = \frac{1}{1 + x^{2}}$$

$$\int \tan ax = -\frac{\ln|\cos ax|}{a} \qquad \int x \sin ax = \frac{\sin ax - ax \cos ax}{a^{2}}$$

$$\int e^{-x^{2}} = \frac{\sqrt{\pi}}{2} \operatorname{erf}(x) \qquad \int xe^{ax} = \frac{e^{ax}}{a^{2}} (ax - 1)$$

$$\int \sin^{2}(x) = \frac{x}{2} - \frac{1}{4} \sin 2x \qquad \int \sin^{3} x = \frac{1}{12} \cos 3x - \frac{3}{4} \cos x$$

$$\int \cos^{2}(x) = \frac{x}{2} + \frac{1}{4} \sin 2x \qquad \int \cos^{3} x = \frac{1}{12} \sin 3x + \frac{3}{4} \sin x$$

$$\int x \sin x = \sin x - x \cos x \qquad \int x \cos x = \cos x + x \sin x$$

$$\int xe^{x} = e^{x}(x - 1) \qquad \int x^{2}e^{x} = e^{x}(x^{2} - 2x + 2)$$

$$\int x^2 \sin x = 2x \sin x - (x^2 - 2) \cos x$$

$$\int x^2 \cos x = 2x \cos x + (x^2 - 2) \sin x$$

$$\int e^x \sin x = \frac{1}{2} e^x (\sin x - \cos x)$$

$$\int e^x \cos x = \frac{1}{2} e^x (\sin x + \cos x)$$

$$\int x e^x \sin x = \frac{1}{2} e^x (x \sin x - x \cos x + \cos x)$$

$$\int x e^x \cos x = \frac{1}{2} e^x (x \sin x + x \cos x - \sin x)$$

10.5Sums

$$c^{a} + c^{a+1} + \dots + c^{b} = \frac{c^{b+1} - c^{a}}{c - 1}, c \neq 1$$

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(2n+1)(n+1)}{6}$$

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

$$1^{4} + 2^{4} + 3^{4} + \dots + n^{4} = \frac{n(n+1)(2n+1)(3n^{2} + 3n - 1)}{30}$$

10.6Series

$$\begin{split} e^x &= 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots, \, (-\infty < x < \infty) \\ \ln(1+x) &= x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots, \, (-1 < x \le 1) \\ \sqrt{1+x} &= 1 + \frac{x}{2} - \frac{x^2}{8} + \frac{2x^3}{32} - \frac{5x^4}{128} + \dots, \, (-1 \le x \le 1) \\ \sin x &= x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots, \, (-\infty < x < \infty) \\ \cos x &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots, \, (-\infty < x < \infty) \end{split}$$

10.7Probability theory

Let X be a discrete random variable with probability $p_X(x)$ of assuming the value x. It will then have an expected value (mean) $\mu = \mathbb{E}(X) = \sum_{x} x p_X(x)$ and variance $\sigma^2 = V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2 = \sum_x (x - \mathbb{E}(X))^2 p_X(x)$ where σ is the standard deviation. If X is instead continuous it will have a probability density function $f_X(x)$ and the sums above will instead be integrals with $p_X(x)$ replaced by $f_X(x)$.

Expectation is linear:

$$\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$$

For independent X and Y,

$$V(aX + bY) = a^2V(X) + b^2V(Y).$$

10.7.1 Discrete distributions

Binomial distribution The number of successes in n independent yes/no experiments, each which yields success with probability p is Bin(n, p), n = $1, 2, \ldots, 0 \le p \le 1.$

$$p(k) = {n \choose k} p^k (1-p)^{n-k}$$
$$\mu = np, \ \sigma^2 = np(1-p)$$

Bin(n, p) is approximately Po(np) for small p.

First success distribution The number of trials needed to get the first success in independent yes/no experiments, each wich yields success with probability p is Fs(p), $0 \le p \le 1$.

$$p(k) = p(1-p)^{k-1}, k = 1, 2, \dots$$

$$\mu = \frac{1}{p}, \sigma^2 = \frac{1-p}{p^2}$$

Poisson distribution The number of events occurring in a fixed period of time t if these events occur with a known average rate κ and independently of the time since the last event is $Po(\lambda)$, $\lambda = t\kappa$.

$$p(k) = e^{-\lambda} \frac{\lambda^k}{k!}, k = 0, 1, 2, \dots$$
$$\mu = \lambda, \sigma^2 = \lambda$$

10.7.2 Continuous distributions

Uniform distribution If the probability density function is constant between a and b and 0 elsewhere it is U(a, b), a < b.

$$f(x) = \begin{cases} \frac{1}{b-a} & a < x < b \\ 0 & \text{otherwise} \end{cases}$$

$$\mu = \frac{a+b}{2}, \ \sigma^2 = \frac{(b-a)^2}{12}$$

Exponential distribution The time between events in a Poisson process is $\text{Exp}(\lambda)$, $\lambda > 0$.

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0\\ 0 & x < 0 \end{cases}$$
$$\mu = \frac{1}{\lambda}, \, \sigma^2 = \frac{1}{\lambda^2}$$

Normal distribution Most real random values with mean μ and variance σ^2 are well described by $\mathcal{N}(\mu, \sigma^2)$, $\sigma > 0$.

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ then

$$aX_1 + bX_2 + c \sim \mathcal{N}(\mu_1 + \mu_2 + c, a^2\sigma_1^2 + b^2\sigma_2^2)$$

10.8 Markov chains

A Markov chain is a discrete random process with the property that the next state depends only on the current state. Let X_1, X_2, \ldots be a sequence of random variables generated by the Markov process. Then there is a transition matrix $\mathbf{P} = (p_{ij})$, with $p_{ij} = \Pr(X_n = i | X_{n-1} = j)$, and $\mathbf{p}^{(n)} = \mathbf{P}^n \mathbf{p}^{(0)}$ is the probability distribution for X_n (i.e., $p_i^{(n)} = \Pr(X_n = i)$), where $\mathbf{p}^{(0)}$ is the initial distribution

 π is a stationary distribution if $\pi = \pi \mathbf{P}$. If the Markov chain is *irreducible* (it is possible to get to any state from any state), then $\pi_i = \frac{1}{\mathbb{E}(T_i)}$ where $\mathbb{E}(T_i)$ is the expected time between two visits in state i. π_j/π_i is the expected number of visits in state j between two visits in state i.

For a connected, undirected and non-bipartite graph, where the transition probability is uniform among all neighbors, π_i is proportional to node i's degree.

A Markov chain is *ergodic* if the asymptotic distribution is independent of the initial distribution. A finite Markov chain is ergodic iff it is irreducible and *aperiodic* (i.e., the gcd of cycle lengths is 1). $\lim_{k\to\infty} \mathbf{P}^k = \mathbf{1}\pi$.

A Markov chain is an A-chain if the states can be partitioned into two sets **A** and **G**, such that all states in **A** are absorbing $(p_{ii}=1)$, and all states in **G** leads to an absorbing state in **A**. The probability for absorption in state $i \in \mathbf{A}$, when the initial state is j, is $a_{ij}=p_{ij}+\sum_{k\in\mathbf{G}}a_{ik}p_{kj}$. The expected time until absorption, when the initial state is i, is $t_i=1+\sum_{k\in\mathbf{G}}p_{ki}t_k$.

		ı		ı	ı	ı	ı		ı		1	1	
	1	1	1	1		1	1						