CS110: Principles of Computer Systems

Autumn 2021 Jerry Cain PDF

- There are two major design principles relevant to our discussion of filesystems.
 - Modularity and Layering
 - Subdivision of a larger system into a collection of smaller subsystems, which themselves may be further subdivided into even smaller sub-subsystems.
 - Example: **filesystems**, which use a form of modularity called **layering**, which is the organization of several modules that interact in some hierarchical manner, where each layer typically only opens its interface to the module above it.
 - symbolic link layer
 - absolute path name layer
 - o path name layer
 - file name layer
 - inode number layer
 - file layer
 - block layer

- There are two major design principles relevant to our discussion of filesystems.
 - Modularity and Layering
 - Subdivision of a larger system into a collection of smaller subsystems, which themselves may be further subdivided into even smaller sub-subsystems.
 - Example: **g++**, which chains together a series of components in a pipeline (which is another form of layering).
 - the **preprocessor**, which manages **#include**s, **#define**s, and other preprocessor directives to build a translation unit that is fed to...
 - the **lexer**, which reduces the translation unit down to a stream of tokens fed in sequence to...
 - the **parser**, which groups tokens into syntactically valid constructs then semantically verified by...
 - the **semantic analyzer**, which confirms that the syntactically valid constructs make sense and respect C++'s type system, so that x86 instructions can be emitted by...
 - the **code generator**, which translate your C++ code into equivalent machine code.

- There are two major design principles relevant to our discussion of filesystems.
 - Modularity and Layering
 - Subdivision of a larger system into a collection of smaller subsystems, which themselves may be further subdivided into even smaller sub-subsystems.
 - Example: **computer networks**, which rely on a programming model known as TCP/IP, so named because its two most important protocols (TCP for Transmission Control Protocol, IP for Internet Protocol) were the first to be included in the standard.
 - TCP/IP specifies how data should be packaged, transmitted, routed, and received.
 - The network stack implementation is distributed down through four different layers:
 - application layer (the highest layer in the stack)
 - transport layer
 - network layer
 - link layer (the lowest layer in the stack)
 - We learn application-layer networking in CS110 around Week 7.
 - CS144 teaches all four layers in detail and how each layer interacts with the one beneath it.

- There are two major design principles relevant to our discussion of filesystems.
 - Modularity and Layering
 - Naming and Name Resolution
 - Names provide a way to refer to system resources, and name resolution is a means for converting between human-readable names and machine-friendly ones.
 - Examples:
 - Humans prefer absolute and relative pathnames to identify files, and computers work better with inode and block numbers. You'll spend a good amount of energy with Assignment 2 managing the discovery of inode numbers and file block contents given a file's name.
 - Humans prefer names like www.google.com, but computers prefer numbers like
 <u>74.125.239.51</u>. The Domain Name System—you might know it as DNS—is a distributed
 database that maps every domain name to one or more associated IP addresses.

