## WELTORGANISATION FUR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 6:

C07D 209/34, A61K 31/40, C07D 401/12, 403/12, 413/12

(11) Internationale Veröffentlichungsnummer:

(43) Internationales Veröffentlichungsdatum:

21. Oktober 1999 (21.10.99)

**WO 99/52869** 

(21) Internationales Aktenzeichen:

PCT/EP99/02436

A1

(22) Internationales Anmeldedatum:

10. April 1999 (10.04.99)

(30) Prioritätsdaten:

198 16 624.9

15. April 1998 (15.04.98)

DE

(71) Anmelder: BOEHRINGER INGELHEIM PHARMA KG [DE/DE]; Binger Strasse 173, D-55216 Ingelheim (DE).

(72) Erfinder: HECKEL, Armin; Geschwister-Scholl-Strasse 71, D-88400 Biberach (DE). WALTER, Rainer, Probststrasse 3, D-88400 Biberach (DE). GRELL, Wolfgang; Geschwister-Scholl-Strasse 18, D-88400 Biberach (DE). MEEL, Jacobus, C., A.; Schubertweg 4, D-88441 Mittelbiberach (DE). REDEMANN, Robert; Köhlesrain 48, D-88400 Biberach (DE).

(74) Anwalt: LAUDIEN, Dieter; Boehringer Ingelheim GmbH, Patentabteilung, D-55216 Ingelheim (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

#### Veröffentlicht

Mit internationalem Recherchenbericht.

Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.

(54) Title: SUBSTITUTED INDOLINONES HAVING AN INHIBITING EFFECT ON KINASES AND CYCLINE/CDK COMPLEXES

(54) Bezeichnung: SUBSTTTUIERTE INDOLINONE MIT INHIBIERENDER WIRKUNG AUF KINASEN CLIN/CDK-KOMPLEXE

$$R_{2} \xrightarrow{R_{3}} N \xrightarrow{R_{4}} R_{5} \qquad (I)$$

#### (57) Abstract

The invention relates to substituted indolinones of general formula (I), wherein R<sub>1</sub> to R<sub>5</sub> and X have the meanings given in claim 1, to their isomers and to their salts, especially their physiologically compatible salts. The inventive compounds have valuable pharmacological properties, especially an inhibitory effect on various kinases and cycline/CDK complexes, and on the proliferation of various tumour cells. The invention also relates to medicaments containing these compounds, to their use and to methods for producing them.

#### (57) Zusammenfassung

Die vorliegende Erfindung betrifft substituierte Indolinone der allgemeinen Formel (I), in der R1 bis R5 und X wie im Anspruch 1 definiert sind, deren Isomere und deren Salze, insbesondere deren physiologisch verträgliche Salze, welche wertvolle pharmakologische Eigenschaften aufweisen, insbesondere eine inhibierende Wirkung auf verschiedene Kinasen und Cyclin/CDK-Komplexe sowie auf die Proliferation verschiedener Tumorzellen, diese Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung.

### LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

| AL | Albanien                     | ES | Spanien                     | LS | Lesotho                     | SI | Slowenien              |
|----|------------------------------|----|-----------------------------|----|-----------------------------|----|------------------------|
| AM | Armenien                     | FI | Finnland                    | LT | Litauen                     | SK | Slowakei               |
| AT | Österreich                   | FR | Frankreich                  | LU | Luxemburg                   | SN | Senegal                |
| ΑU | Australien                   | GA | Gabun                       | LV | Lettland                    | SZ | Swasiland              |
| ΑZ | Aserbaidschan                | GB | Vereinigtes Königreich      | MC | Monaco                      | TD | Tschad                 |
| BA | Bosnien-Herzegowina          | GE | Georgien                    | MD | Republik Moldau             | TG | Togo                   |
| BB | Barbados                     | GH | Ghana                       | MG | Madagaskar                  | TJ | Tadschikistan          |
| BE | Belgien                      | GN | Guinea                      | MK | Die ehemalige jugoslawische | TM | Turkmenistan           |
| BF | Burkina Faso                 | GR | Griechenland                |    | Republik Mazedonien         | TR | Türkei                 |
| BG | Bulgarien                    | HU | Ungam                       | ML | Mali                        | TT | Trinidad und Tobago    |
| BJ | Benin                        | IE | Irland                      | MN | Mongolei                    | UA | Ukraine                |
| BR | Brasilien                    | IL | Israel                      | MR | Mauretanien                 | UG | Uganda                 |
| BY | Belarus                      | 15 | Island                      | MW | Malawi                      | US | Vereinigte Staaten von |
| CA | Kanada                       | IT | Italien                     | MX | Mexiko                      |    | Amerika                |
| CF | Zentralafrikanische Republik | JP | Japan                       | NE | Niger                       | UZ | Usbekistan             |
| CG | Kongo                        | KE | Kenia                       | NL | Niederlande                 | VN | Vietnam                |
| CH | Schweiz                      | KG | Kirgisistan                 | NO | Norwegen                    | YU | Jugoslawien            |
| CI | Côte d'Ivoire                | KP | Demokratische Volksrepublik | NZ | Neuseeland                  | ZW | Zimbabwe               |
| CM | Kamerun                      |    | Korea                       | PL | Polen                       |    |                        |
| CN | China                        | KR | Republik Korea              | PT | Portugal Portugal           |    |                        |
| CU | Kuba                         | ΚZ | Kasachstan                  | RO | Rumānien                    |    |                        |
| CZ | Tschechische Republik        | LC | St. Lucia                   | RU | Russische Föderation        |    |                        |
| DE | Deutschland                  | LI | Liechtenstein               | SD | Sudan                       |    |                        |
| DK | Dänemark                     | LK | Sri Lanka                   | SE | Schweden                    |    |                        |
| BE | Estland                      | LR | Liberia                     | SG | Singapur                    |    |                        |

WO 99/52869 PCT/EP99/02436

# SUBSTITUIERTE INDOLINONE MIT INHIBIERENDER WIRKUNG AUF KINASEN UND CYCLIN/CDK-KOMPLEXE

Die vorliegende Erfindung betrifft neue substituierte Indolinone der allgemeinen Formel

$$R_2$$
 $R_3$ 
 $R_4$ 
 $R_5$ 
 $R_5$ 
 $R_1$ 

deren Isomere, deren Salze, insbesondere deren physiologisch verträgliche Salze, welche wertvolle Eigenschaften aufweisen.

Die obigen Verbindungen der allgemeinen Formel I, in der R<sub>1</sub> ein Wasserstoffatom oder einen Prodrugrest darstellt, weisen wertvolle pharmakologische Eigenschaften auf, insbesondere eine inhibierende Wirkung auf verschiedene Kinasen, vor allem auf Komplexe von CDK's (CDK1, CDK2, CDK3, CDK4, CDK6, CDK7, CDK8 und CDK9) mit ihren spezifischen Cyclinen (A, B1, B2, C, D1, D2, D3, E, F, G1, G2, H, I und K) und auf virales Cyclin (siehe L. Mengtao in J. Virology 71(3), 1984-1991 (1997)), und die übrigen Verbindungen der obigen allgemeinen Formel I, in der R<sub>1</sub> kein Wasserstoffatom und keinen Prodrugrest darstellt, stellen wertvolle Zwischenprodukte zur Herstellung der vorstehend erwähnten Verbindungen dar.

Gegenstand der vorliegenden Erfindung sind somit die obigen Verbindungen der allgemeinen Formel I, wobei die Verbindungen, in denen R, ein Wasserstoffatom oder einen Prodrugrest dar-

stellt, wertvolle pharmakologische Eigenschaften aufweisen, die die pharmakologisch wirksamen Verbindungen enthaltende Arzneimittel, deren Verwendung und Verfahren zu ihrer Herstellung.

In der obigen allgemeinen Formel I bedeuten

X ein Sauerstoff- oder Schwefelatom,

R. ein Wasserstoffatom, eine  $C_{1-4}$ -Alkoxy-carbonyl- oder  $C_{2-4}$ -Alkoxylgruppe,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxy-carbonyl- oder Aminocarbonyl- gruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkyl-gruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

 $R_3$  eine Phenyl- oder Naphthylgruppe, die durch Fluor-, Chloroder Bromatome, durch  $C_{1-3}$ -Alkyl-,  $C_{1-3}$ -Alkoxy-, Cyano-, Trifluormethyl-, Nitro-, Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -alkyl)-amino-,  $C_{2-4}$ -Alkanoyl-amino-, N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-, N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-,  $C_{1-3}$ -Alkylsulfonylamino-, Amino- $C_{1-3}$ -alkyl-,  $C_{1-3}$ -Alkylamino- $C_{1-3}$ -alkyl-, Di- $(C_{1-3}$ -Alkyl)-amino- $C_{1-3}$ -alkyl-, N- $(C_{2-4}$ -Alkanoyl)-amino- $C_{1-3}$ -alkyl- oder N- $(C_{2-4}$ -Alkanoyl)- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppen substituiert und die Substituenten gleich oder verschieden sein können,

 $R_4$  ein Wasserstoffatom oder eine  $C_{1-3}$ -Alkylgruppe und

Rs ein Wasserstoffatom,

eine gegebenenfalls durch eine Phenyl-, Carboxy- oder  $C_{1-3}$ -Alk-oxy-carbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substitierte  $C_{3-7}$ -Cycloalkylgruppe,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Indanylgruppe,

eine 5-gliedrige Heteroarylgruppe, die eine gegebenenfalls durch eine  $C_{1\cdot3}$ -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine  $C_{1\cdot3}$ -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff-, Schwefel- oder Stickstoffatom oder zwei Stickstoffatome enthält oder eine 6-gliedrige Hereroarylgruppe, die 1 bis 3 Stickstoffatome enthält, wobei über zwei benachbarte Kohlenstoffatome oder über ein Kohlenstoffatom und eine benachbarte Iminogruppe der vorstehend erwähnten 5- und 6-gliedrigen Heteroarylgruppen zusätzlich eine 1,3-Butadienylenbrücke angefügt sein kann und das Kohlenstoffgerüst der vorstehend erwähnten mono- und bicyclischen Ringe durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1\cdot5}$ -Alkyl- oder Cyanogruppen mono- oder disubstituiert und die Substituenten gleich oder verschieden sein können,

eine über ein Kohlenstoffatom verknüpfte Pyrrolidinyl- oder Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sein kann,

eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1-5}$ -Alkyl-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminosulfonyl-, Nitro- oder Cyanogruppen disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine Phenyl-, Pyridyl-, Pyrimidyl- oder Thienylgruppe, die jeweils

durch eine Trifluormethoxygruppe, durch ein ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine  $C_{1-3}$ -Alkoxygruppe, die in 2- oder 3-Stellung durch eine Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Phenyl-

 $C_{1-3}$ -alkylamino-, N- $(C_{1-3}$ -Alkyl)-phenyl- $C_{1-3}$ -alkylamino-, Pyrrolidino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1\cdot3}$ -alkylamino- $C_{1\cdot3}$ -alkylgruppe, die im Phenylkern durch eine Trifluormethylgruppe, durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1\cdot5}$ -Alkyl- oder  $C_{1\cdot3}$ -Alk-oxygruppen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und zusätzlich am Aminstickstoffatom durch eine  $C_{1\cdot3}$ -Alkylgruppe, in der die Wasserstoffatome ab Position 2 ganz oder teilweise durch Fluoratome ersetzt sein können,

durch eine C<sub>1-5</sub>-Alkyl-, Phenyl-, Imidazolyl-, C<sub>3-7</sub>-Cycloalkyl-, C<sub>1-3</sub>-Alkoxy-C<sub>1-3</sub>-alkoxy-, Phenyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-al-kyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Aminocarbonyl-, C<sub>1-3</sub>-Alkylaminocarbonyl-, Di-(C<sub>1-3</sub>-Alkyl)-aminocarbonyl-, Phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, Piperazinocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-piperazinocarbonyl-, Nitro-, Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Benzoylamino- oder N-(C<sub>1-3</sub>-Alkyl)-benzoylaminogruppe,

durch eine N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylaminogruppe, die im Alkylteil zusätzlich durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituiert ist,

durch eine  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, in denen ein Alkylteil zusätzlich durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert ist, oder

durch eine N- $(C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkylsulfonylamino- oder N- $(C_{1-3}$ -Alkyl)-phenylsulfonylaminogruppe, in denen der Alkylteil zusätzlich durch eine Cyano-, Carboxy-,  $C_{1-3}$ -Alkoxy-carbonyl-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl)-

aminocarbonyl-, Piperidinocarbonyl- oder 2- $[Di-(C_{1-3}-Alkylami-no)]$ -ethylaminocarbonylgruppe substituiert sein kann, substituiert sind,

eine durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Phenyl- oder Thienylgruppe, in der der Alkylteil durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Amino-, C<sub>1-5</sub>-Alkylamino-, Di-(C<sub>1-5</sub>-Alkyl)-amino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 3-Hydroxypipe-ridino-, 4-Hydroxypiperidino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4-(C<sub>1-3</sub>-Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4-(C<sub>2-4</sub>-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe,  $C_{1-5}$ -Alkylamino- oder Di- $(C_{1-5}$ -Alkyl)-aminogruppen zusätzlich durch eine oder zwei  $C_{1-5}$ -Alkylgruppen, durch eine  $C_{3-7}$ -Cycloalkyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alk-oxycarbonyl-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1-3}$ -Alkyl- oder Cyanogruppen mono- oder disubstituierte Phenyl- $C_{1-3}$ -alkyl- oder Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, substituiert sein können

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalkyleniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei C<sub>1-3</sub>-Alkoxygruppen substituierter Phenylring ankondensiert sein kann.

Die bei der Definition der vorstehend erwähnten Resten erwähnten Carboxygruppen können außerdem durch eine in-vivo in eine Carboxygruppe überführbare Gruppe ersetzt sein sowie

die bei der Definition der vorstehend erwähnten Resten erwähnten Amino- und Iminogruppen können außerdem durch einen in vivo abspaltbaren Rest substituiert sein.

Desweiteren schließen die bei der Definition der vorstehend erwähnten gesättigten Alkyl- und Alkoxyteile, die mehr als 2 Kohlenstoffatome enthalten, auch deren verzweigte Isomere wie beispielsweise die Isopropyl-, tert.Butyl-, Isobutylgruppe etc. ein.

Bevorzugte Verbindungen der allgemeinen Formel I sind diejenigen, in denen

X ein Sauerstoff- oder Schwefelatom,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-4}$ -Alkoxy-carbonyl- oder  $C_{2-4}$ -Alkanoylgruppe,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxy-carbonyl- oder Aminocarbonyl- gruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkyl-gruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

R<sub>3</sub> eine Phenyl- oder Naphthylgruppe, die durch Fluor-, Chloroder Bromatome, durch C<sub>1-3</sub>-Alkyl-, C<sub>1-3</sub>-Alkoxy-, Cyano-, Trifluormethyl-, Nitro-, Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-alkyl)-amino-, C<sub>2-4</sub>-Alkanoyl-amino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, C<sub>1-3</sub>-Alkylsulfonylamino-, Amino-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkylamino-C<sub>1-3</sub>-alkyl-, Di-(C<sub>1-3</sub>-Alkyl)-amino-C<sub>1-3</sub>-alkyl-, N-(C<sub>2-4</sub>-Alkanoyl)-amino-C<sub>1-3</sub>-alkyl- oder

 $N-(C_{2-4}-Alkanoyl)-C_{1-3}-alkylamino-C_{1-3}-alkylgruppen$  substituiert und die Substituenten gleich oder verschieden sein können,

 $R_4$  ein Wasserstoffatom oder eine  $C_{1-3}$ -Alkylgruppe und

R, ein Wasserstoffatom,

eine gegebenenfalls durch eine Phenyl-, Carboxy- oder  $C_{1-3}$ -Alk-oxy-carbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substitierte  $C_{3-7}$ -Cycloalkylgruppe,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Indanylgruppe,

eine 5-gliedrige Heteroarylgruppe, die eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Iminogruppe und ein Sauerstoff-, Schwefel- oder Stickstoffatom oder zwei Stickstoffatome enthält oder eine 6-gliedrige Hereroarylgruppe, die 1 bis 3 Stickstoffatome enthält, wobei über zwei benachbarte Kohlenstoffatome oder über ein Kohlenstoffatom und eine benachbarte Iminogruppe der vorstehend erwähnten 5- und 6-gliedrigen Heteroarylgruppen zusätzlich eine 1,3-Butadienylenbrücke angefügt sein kann und das Kohlenstoffgerüst der vorstehend erwähnten mono- und bicyclischen Ringe durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1-5}$ -Alkyl- oder Cyanogruppen mono- oder disubstituiert und die Substituenten gleich oder verschieden sein können,

eine über ein Kohlenstoffatom verknüpfte Pyrrolidinyl- oder Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sein kann,

eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C<sub>1-5</sub>-Alkyl- oder Cyanogruppen mono- oder disubstituiert Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können,

eine Phenyl-, Pyridyl-, Pyrimidyl- oder Thienylgruppe, die jeweils durch eine C<sub>3-7</sub>-Cycloalkyl-, C<sub>1-3</sub>-Alkoxy-, Phenyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxy-carbonyl-C<sub>1-3</sub>-alkyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Aminocarbonyl-, C<sub>1-3</sub>-Alkylamino-carbonyl-, Di-(C<sub>1-3</sub>-Alkyl)-aminocarbonyl-, Nitro-, Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-alkyl)-amino-, C<sub>2-4</sub>-Alkanoyl-amino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino- oder N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylaminogruppe, durch eine C<sub>1-3</sub>-Alkylaminocarbonylgruppe, in der der Alkylteil zusätzlich durch eine Di-(C<sub>1-3</sub>-Alkyl)-aminogruppe substituiert ist, oder durch eine N-(C<sub>1-3</sub>-Alkyl)-C<sub>1-3</sub>-alkylsulfonylaminogruppe, in der der Alkylteil zusätzlich durch eine Cyano-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, C<sub>1-3</sub>-Alkylamino-oder Di-(C<sub>1-3</sub>-Alkyl)-aminogruppe substituiert sein kann, substituiert sind,

eine durch eine C1-3-Alkylgruppe substituierte Phenyl- oder Thienylgruppe, in der der Alkylteil durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Amino-,  $C_{1-5}$ -Alkylamino-, Di- $(C_{1-5}$ -Alkyl)-amino-,  $C_{2-4}$ -Alkanoylamino-,  $N-(C_{1-3}-Alkyl)-C_{2-4}-alkanoylamino-, Pyrrolidino-, Piperidino-,$ Hexamethylenimino-, Morpholino-, Piperazino-, 4-(C1-3-Alkyl)piperazino-, 4-(C2-4-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist, wobei die vorstehend erwähnten Cycloalkyleniminoringe,  $C_{1-5}$ -Alkylamino- oder Di-(C<sub>1-5</sub>-Alkyl)-aminogruppen zusätzlich durch eine C<sub>1-5</sub>-Alkyl-,  $C_{3-7}$ -Cycloalkyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminocarbonyl-, C1-3-Alkylaminocarbonyl- oder Di- $(C_{1-3}\text{-Alkyl})$  -aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch C1-3-Alkyl- oder Cyanogruppen mono- oder disubstituierte Phenyl-C,,-alkyl- oder Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, substituiert sein können oder

eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosustituierten Phenylgruppe zusätzlich durch ein Fluor-, Chlor- oder Bromatom oder durch eine Methylgruppe substituiert sein können, bedeuten,

insbsondere diejenigen Verbindungen der allgemeinen Formel I, in denen

X ein Sauerstoffatom,

R. ein Wasserstoffatom oder eine  $C_{1-4}$ -Alkoxy-carbonylgruppe,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxy-carbonyl- oder Aminocarbonyl- gruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkyl-gruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

R<sub>3</sub> eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl-, Cyano- oder Aminomethylgruppe substituierte Phenylgruppe,

R, ein Wasserstofatom oder eine Methylgruppe und

R<sub>5</sub> ein Wasserstofatom,

eine gegebenenfalls durch eine Carboxy- oder  $C_{1-3}$ -Alkoxy-carbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe oder eine Benzylgruppe,

eine gegebenenfalls durch eine Methylgruppe substitierte  $C_{1,2}$ -Cycloalkylgruppe,

eine gegebenenfalls durch eine Methylgruppe substituierte Indanyl-, Pyridyl-, Oxazolyl-, Thiazolyl- oder Imidazolylgruppe,

an die jeweils zusätzlich über zwei benachbarte Kohlenstoffatome ein Phenylring ankondensiert sein kann,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methoxy-, Carboxy-,  $C_{1-3}$ -Alkyloxycarbonyl-, Nitro- oder Aminosulfonylgruppe substituierte Methylphenylgruppe oder eine Dimethoxyphenylgrruppe,

eine über ein Kohlenstoffatom verknüpfte Pyrrolidinyl- oder Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sind,

eine Phenylgruppe, die

durch eine Trifluormethoxygruppe, durch ein ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine  $C_{1-3}$ -Alkoxygruppe, die in 2- oder 3-Stellung durch eine Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Phenyl- $C_{1-3}$ -alkylamino-, N- $(C_{1-3}$ -Alkyl)-phenyl- $C_{1-3}$ -alkylamino-, Pyrrolidino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1.3}$ -alkylamino- $C_{1.3}$ -alkylgruppe, die im Phenylkern durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1.5}$ -Alkyl-,  $C_{1.3}$ -Alkoxy- oder Trifluormethylgruppe und zusätzlich am Aminstickstoffatom durch eine  $C_{1.3}$ -Alkyl-gruppe, in der die Wasserstoffatome ab Position 2 ganz oder teilweise durch Fluoratome ersetzt sein können,

durch eine C<sub>1-5</sub>-Alkyl-, Phenyl-, Imidazolyl-, C<sub>3-7</sub>-Cycloalkyl-, C<sub>1-3</sub>-Alkoxy-C<sub>1-3</sub>-alkoxy-, Phenyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-al-kyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkyl-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Aminocarbonyl-, C<sub>1-3</sub>-Alkylaminocarbonyl-, Di-(C<sub>1-3</sub>-Alkyl)-aminocarbonyl-, Phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, Piperazinocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-piperazinocarbonyl-, Nitro-, Amino-,

 $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -alkyl)-amino-, Pyrrolidino-, Pi-peridino-, Morpholino-,  $C_{2-4}$ -Alkanoylamino-, N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-, Benzoylamino- oder N- $(C_{1-3}$ -Alkyl)-benzoylaminogruppe,

durch eine  $N-(C_{1-3}-Alkyl)-C_{2-4}-alkanoylaminogruppe,$  die im Alkylteil zusätzlich durch eine Carboxy- oder  $C_{1-3}-Alkoxycar-bonylgruppe$  substituiert ist,

durch eine  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, in denen ein Alkylteil zusätzlich durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert ist, oder

durch eine N- $(C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkylsulfonylamino- oder N- $(C_{1-3}$ -Alkyl)-phenylsulfonylaminogruppe, in denen der Alkylteil zusätzlich durch eine Cyano-, Carboxy-,  $C_{1-3}$ -Alkoxy-carbonyl-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Amino-carbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl)-aminocarbonyl-, Piperidinocarbonyl- oder 2- $[Di-(C_{1-3}$ -Alkylamino)]-ethylaminocarbonylgruppe substituiert sein kann, substituiert ist,

eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Phenylgruppe, in der der Alkylteil durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Amino-, C<sub>1-5</sub>-Alkylamino-, Di-(C<sub>1-5</sub>-Alkyl)-amino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 3-Hydroxypiperidino-, 4-Hydroxypiperidino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4-(C<sub>1-3</sub>-Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4-(C<sub>2-4</sub>-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe,  $C_{1-5}$ -Alkylamino- oder Di- $(C_{1-5}$ -Alkyl)-aminogruppen zusätzlich durch eine oder zwei  $C_{1-5}$ -Alkylgruppen, durch eine  $C_{3-7}$ -Cycloalkyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1\cdot3}$ -Alkylaminocarbonyl- oder  $Di-(C_{1\cdot3}-Alkyl)$ -aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1\cdot3}$ -Alkyl- oder Cyanogruppen mono- oder disubstituierte Phenyl- $C_{1\cdot3}$ -alkyl- oder Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, substituiert sein können

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalkyleniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

bedeuten, deren Isomere und deren Salze.

Besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

X ein Sauerstoffatom,

R, ein Wasserstoffatom,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxycarbonyl- oder Aminocarbonylgruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkylgruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

 $R_3$  eine gegebenenfalls durch eine Methylgruppe substituierte Phenylgruppe,

R, ein Wasserstoffatom oder eine Methylgruppe und

R<sub>s</sub> ein Wasserstoffatom,

eine  $C_{1-3}$ -Alkylgruppe, eine Benylgruppe oder eine durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte Methyloder Ethylgruppe,

eine gegebenenfalls durch eine Methylgruppe substitierte C1.2-Cycloalkylgruppe,

eine gegebenenfalls durch eine Methylgruppe substituierte Indanyl-, Pyridyl-, Oxazolyl-, Thiazolyl- oder Imidazolylgruppe, an die jeweils zusätzlich über zwei benachbarte Kohlenstoff-atome ein Phenylring ankondensiert sein kann,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methoxy-, Carboxy-, C<sub>1-3</sub>-Alkyloxycarbonyl-, Nitro- oder Aminosulfonylgruppe substituierte Methylphenylgruppe oder eine Dimethoxyphenylgrruppe,

eine 3-Pyrrolidinyl- oder 4-Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sind,

eine Phenylgruppe, die

durch eine Trifluormethoxy-, Benzyloxy-, Cyano- oder Nitrogruppe, durch ein ein Fluor-, Chlor- oder Bromatom,

durch eine  $C_{1-3}$ -Alkoxygruppe, wobei die Ethoxy- und n-Propoxygruppe jeweils endständig durch eine Dimethylamino-, Diethylamino-, N-Ethyl-methylamino-, N-Benzyl-methylamino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppe, die im Phenylkern durch ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine Methyl-, Methoxy- oder Trifluormethylgruppe und zusätzlich am Aminstickstoffatom durch eine  $C_{1-5}$ -Alkyl- oder 2,2,2-Trifluorethylgruppe substituiert sein kann,

durch eine  $C_{1:4}$ -Alkyl-, Phenyl-, Imidazolyl-, Cyclohexyl-, Methoxymethyl-, Carboxymethyl-,  $C_{1:3}$ -Alkoxycarbonyl-methyl-, Carboxy-,  $C_{1:3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1:3}$ -Alkyl-aminocarbonyl-, Di- $(C_{1:3}$ -Alkyl)-aminocarbonyl-, Phenyl- $C_{1:3}$ -alkylaminocarbonyl-, N- $(C_{1:3}$ -Alkyl)-phenyl- $C_{1:3}$ -alkylaminocarbonyl-, Piperazinocarbonyl-, N- $(C_{1:3}$ -Alkyl)-piperazinocarbonyl-, Amino-,  $C_{1:3}$ -Alkylamino-, Di- $(C_{1:3}$ -alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino-,  $C_{2:4}$ -Alkanoylamino-, N- $(C_{1:3}$ -Alkyl)- $C_{2:4}$ -alkanoylamino-, Benzoylamino- oder N- $(C_{1:3}$ -Alkyl)-benzoylaminogruppe,

durch eine  $N-(C_{1-3}-Alkyl)-C_{2-4}-alkanoylaminogruppe, die im Alkylteil zusätzlich durch eine Carboxy- oder <math>C_{1-3}-Alkoxycarbonylgruppe$  substituiert ist,

durch eine  $C_{1:3}$ -Alkylaminocarbonyl- oder Di- $(C_{1:3}$ -Alkyl)-aminocarbonylgruppe, in denen ein Alkylteil zusätzlich durch eine Di- $(C_{1:3}$ -Alkyl)-aminogruppe substituiert ist, oder

durch eine N- $(C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkylsulfonylamino- oder N- $(C_{1-3}$ -Alkyl)-phenylsulfonylaminogruppe, in denen der Alkylteil zusätzlich durch eine Cyano-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Amino-carbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl)-amino-carbonyl-, Piperidinocarbonyl- oder 2- $[Di-(C_{1-3}$ -Alkylamino)]-ethylaminocarbonylgruppe substituiert sein kann, substituiert ist,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Phenylgruppe, in der die Alkylgruppe durch eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Amino-,  $C_{1-5}$ -Alkylamino-,  $Di-(C_{1-5}$ -Alkyl)-amino-,  $C_{2-4}$ -Alkanoylamino-,  $N-(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-, Pyrrolidino-, Dehydro-

pyrrolidino-, Piperidino-, Dehydropiperidino-, 4-Hydroxypi-peridino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-,  $4-(C_{1-3}-Alkyl)$ -piperazino-, 4-Phenyl-piperazino-,  $4-(C_{2-4}-Alkanoyl)$ -piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe zusätzlich durch eine Phenylgruppe oder durch eine oder zwei Methylgruppen,

die vorstehend erwähnten  $C_{1-5}$ -Alkylamino- und Di- $(C_{1-5}$ -Alkyl)- aminogruppen zusätzlich durch eine oder zwei  $C_{1-3}$ -Alkylgruppen, durch eine Cyclohexyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl- oder Cyanogruppe substituierte Phenyl- $C_{1-3}$ -alkyl- oder Phenylgruppe substituiert sein kann,

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalky-leniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

- bedeuten, deren Isomere und deren Salze.

Ganz besonders bevorzugte Verbindungen der obigen allgemeinen Formel I sind diejenigen, in denen

X ein Sauerstoffatom,

R. ein Wasserstoffatom,

 $R_{1}$  eine Carboxy- oder Aminocarbonylgruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkylgruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

 $R_{1}$  eine gegebenenfalls durch eine Methylgruppe substituierte Phenylgruppe,

R, ein Wasserstoffatom und

R<sub>s</sub> ein Wasserstoffatom,

eine 3-Pyrrolidinyl- oder 4-Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sind,

eine Phenylgruppe, die

durch eine  $C_{1-3}$ -Alkoxygruppe, wobei die Ethoxy- und n-Propoxygruppe jeweils endständig durch eine Dimethylamino-, Diethylamino-, N-Ethyl-methylamino-, N-Benzyl-methylamino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppe, die im Phenylkern durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl-, Methoxy- oder Trifluormethylgruppe und zusätzlich am Aminstickstoffatom durch eine  $C_{1-5}$ -Alkyl- oder 2,2,2-Trifluorethylgruppe substituiert sein kann, substituiert ist,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Phenylgruppe, in der die Alkylgruppe durch eine Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Amino-,  $C_{1-5}$ -Alkylamino-, Di- $(C_{1-5}$ -Alkyl)-amino-,  $C_{2-4}$ -Alkanoylamino-,

N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 4-Hydroxy-piperidino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4- $(C_{1-3}$ -Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4- $(C_{2-4}$ -Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe zusätzlich durch eine Phenylgruppe oder durch eine oder zwei Methylgruppen,

die vorstehend erwännten  $C_{1-5}$ -Alkylamino- und Di- $(C_{1-5}$ -Alkyl)- aminogruppen zusätzlich durch eine oder zwei  $C_{1-3}$ -Alkylgruppen, durch eine Cyclohexyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl- oder Cyanogruppe substituierte Phenyl- $C_{1,3}$ -alkyl- oder Phenylgruppe substituiert sein kann,

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalkyleniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

bedeuten, deren Isomere und deren Salze.

Besonders bevorzugt sind die vorstehend erwähnten Verbindungen, in denen der Rest  $R_2$  in 5-Stellung steht, insbsondere die folgenden Verbindungen:

- (a) 3-Z-[1-(4-Aminomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (b) 3-Z-[1-Phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (c) 3-Z-[1-(4-Brom-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (d) 3-Z-[1-(4-Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (e) 3-Z-[1-(4-Pyrrolidinomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (f) 3-Z-[1-(4-Piperidinomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (g) 3-Z-[1-(4-Hexamethyleniminomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (h) 3-Z-[1-(4-(4-Benzyl-piperidino)-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (i) 3-Z-[1-(4-(N-Butyl-aminomethyl)-phenylamino)-1-phenyl-me-thylen]-5-amido-2-indolinon,
- (j) 3-Z-[1-(4-(N-(Phenyl-methyl)-aminomethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (k) 3-Z-[1-(4-(N-Methyl-N-benzyl-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,

(1) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-dimethylcarbamoyl-2-indolinon,

(m) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-diethylcarbamoyl-2-indolinon,

(n) 3-Z-[1-(4-(3-Diethylamino-propoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

und deren Salze.

Erfindungsgemäß erhält man die neuen Verbindungen beispielsweise nach folgenden im Prinzip literaturbekannten Verfahren:

a. Umsetzung einer Verbindung der allgemeinen Formel

$$\mathbb{R}_{2} \xrightarrow{\mathbb{R}_{3}} \mathbb{Z}_{1}$$

$$\mathbb{R}_{2} \xrightarrow{\mathbb{R}_{6}} \mathbb{R}_{6}$$

$$(II),$$

in der

 $\rm X$ ,  $\rm R_2$  und  $\rm R_3$  wie eingangs erwähnt definiert sind,  $\rm R_6$  ein Wasserstoffatom, eine Schutzgruppe für das Stickstoffatom der Lactamgruppe oder eine Bindung an eine Festphase und

Z<sub>1</sub> ein Halogenatom, eine Hydroxy-, Alkoxy- oder Aralkoxygruppe,
z.B. ein Chlor- oder Bromatom, eine Methoxy-, Ethoxy- oder
Benzyloxygruppe, bedeuten,

mit einem Amin der allgemeinen Formel



in der

 $R_4$  und  $R_5$  wie eingangs erwähnt definiert sind, und erforderlichenfalls anschließende Abspaltung einer verwendeten Schutzgruppe für das Stickstoffatom der Lactamgruppe oder von einer Festphase.

Als Schutzgruppe für das Stickstoffatom der Lactamgruppe kommt beispielsweise eine Acetyl-, Benzoyl-, Ethoxycarbonyl-, tert.-Butyloxycarbonyl- oder Benzyloxycarbonylgruppe und

als Festphase ein Rink- oder Sieber-Harz Betracht.

Die Umsetzung wird zweckmäßigerweise in einem Lösungsmittel wie Dimethylformamid, Toluol, Acetonitril, Tetrahydrofuran, Dimethylsulfoxid, Methylenchlorid oder deren Gemischen gegebenenalls in Gegenwart einer inerten Base wie Triethylamin, N-Ethyldiisopropylamin oder Natriumhydrogencarbonat bei Temperaturen zwischen 20 und 175°C durchgeführt, wobei eine verwendete Schutzgruppe infolge Umamidierung gleichzeitig abgespalten werden kann.

Bedeutet  $Z_1$  in einer Verbindung der allgemeinen Formel II ein Halogenatom, dann wird die Umsetzung vorzugsweise in Gegenwart einer inerten Base bei Temperaturen zwischen 20 und 120°C, durchgeführt.

Bedeutet  $Z_1$  in einer Verbindung der allgemeinen Formel II eine Hydroxy-, Alkoxy- oder Aralkoxygruppe, dann wird die Umsetzung vorzugsweise bei Temperaturen zwischen 20 und 200°C, durchgeführt.

Die gegebenenfalls erforderliche anschließende Abspaltung einer verwendeten Schutzgruppe wird zweckmäßigerweise entweder hydrolytisch in einem wäßrigen oder alkoholischen Lösungsmittel, z.B. in Methanol/Wasser, Ethanol/Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser, Dioxan/Wasser, Dimethylformamid/Wasser, Methanol oder Ethanol in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C,

oder vorteilhafterweise durch Umamidierung mit einer primären oder sekundären organischen Base wie Ammoniak, Methylamin, Butylamin, Dimethylamin oder Piperidin in einem Lösungsmittel wie Methanol, Ethanol, Dimethylformamid und deren Gemischen oder in einem Überschuß des eingesetzten Amins bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C, durchgeführt.

Die Abspaltung von einer verwendeten Festphase erfolgt vorzugsweise mittels Trifluoressigsäure und Wasser in Gegenwart von einem Dialkylsulfid wie Dimethylsulfid bei Temperaturen zwischen 0 und 35°C, vorzugsweise bei Raumtemperatur.

b. Zur Herstellung einer Verbindung der allgemeinen Formel I, die eine Aminomethylgruppe enthält und X ein Sauerstoffatom darstellt:

Reduktion einer Verbindung der allgemeinen Formel

$$R_2$$
 $R_3$ 
 $R_4$ 
 $R_7$ 
 $R_{1}$ 
 $R_{1}$ 
 $R_{2}$ 
 $R_{3}$ 
 $R_{4}$ 
 $R_{7}$ 
 $R_{7}$ 

in der

 $R_1$  bis  $R_4$  wie eingangs erwähnt definiert sind und  $R_7$  mit der Maßgabe die für  $R_5$  eingangs erwähnten Bedeutungen aufweist, daß  $R_5$  eine Cyanogruppe enthält.

Die Reduktion wird vorzugsweise mittels katalytischer Hydrierung mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle oder Platin in einem Lösungsmittel wie Methanol, Ethanol, Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton oder Eisessig gegebenenfalls unter Zusatz einer Säure wie Salzsäure bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5 bar.

Erhält man erfindungsgemäß eine Verbindung der allgemeinen Formel I, die eine Alkoxycarbonylgruppe enthält, so kann diese mittels Hydrolyse in eine entsprechende Carboxyverbindung übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine Amino- oder Alkylaminogruppe enthält, so kann diese mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylamino- oder Dialkylaminoverbindung übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine Amino- oder Alkylaminogruppe enthält, so kann diese mittels Acylierung in eine entsprechende Acylverbindung übergeführt werden, oder

eine Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, so kann diese mittels Veresterung oder Amidierung in eine entsprechende Ester- oder Aminocarbonylverbindung übergeführt werden.

Die anschließende Hydrolyse erfolgt vorzugsweise in einem wäßrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer

Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C.

Die anschließende reduktive Alkylierung wird vorzugsweise in einem geeigneten Lösungsmittel wie Methanol, Methanol/Wasser, Methanol/Wasser/Ammoniak, Ethanol, Ether, Tetrahydrofuran, Dioxan oder Dimethylformamid gegebenenfalls unter Zusatz einer Säure wie Salzsäure in Gegenwart von katalytisch angeregtem Wasserstoff, z.B. von Wasserstoff in Gegenwart von Raney-Nickel, Platin oder Palladium/Kohle, oder in Gegenwart eines Metallhydrids wie Natriumborhydrid, Lithiumborhydrid oder Lithiumaluminiumhydrid bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 20 und 80°C, durchgeführt.

Die anschließende Alkylierung wird mit eimem Alkylierungsmittel wie eimem Alkylhalogenid oder Dialkylsulfat wie Methyljodid, Dimethylsulfat oder Propylbromid vorzugsweise in einem Lösungsmittel wie Methanol, Ethanol, Methylenchlorid, Tetrahydrofuran, Toluol, Dioxan, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base wie Triethylamin, N-Ethyl-diisopropylamin oder Dimethylaminopyridin, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt.

Die anschließende Acylierung wird vorzugsweise in einem Lösungsmittel wie Methylenchlorid, Diethylether, Tetrahydrofuran, Toluol, Dioxan, Acetonitril, Dimethylsulfoxid oder Dimethylformamid gegebenenfalls in Gegenwart einer anorganischen oder einer tertiären organischen Base, vorzugsweise bei Temperaturen zwischen 20°C und der Siedetemperatur des verwendeten Lösungsmittel, durchgeführt. Hierbei wird die Acylierung mit einer entsprechenden Säure vorzugsweise in Gegenwart eines wasserentziehenden Mittels, z.B. in Gegenwart

von Chlorameisensäureisobutylester, Orthokohlensäuretetraethylester, Orthoessigsäuretrimethylester, 2,2-Dimethoxypropan, Tetramethoxysilan, Thionylchlorid, Trimethylchlorsilan, Phosphortrichlorid, Phosphorpentoxid, N,N'-Dicyclohexylcarbodiimid, N,N'-Dicyclohexylcarbodiimid/N-Hydroxysuccinimid, N, N'-Dicyclohexylcarbodiimid/1-Hydroxy-benztriazol, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat, 2-(1H-Benzotriazol-1-yl)-1,1,3,3-tetramethyluronium-tetrafluorborat/1-Hydroxy-benztriazol, N,N'-Carbonyldiimidazol oder Triphenylphosphin/Tetrachlorkohlenstoff, und gegebenenfalls unter Zusatz einer Base wie Pyridin, 4-Dimethylamino-pyridin, N-Methyl-morpholin oder Triethylamin zweckmäßigerweise bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 0 und 100°C, und die Acylierung mit einer entsprechenden reaktionsfähigen Verbindung wie deren Anhydrid, Ester, Imidazolide oder Halogenide gegebenenfalls in Gegenwart einer tertiären organischen Base wie Triethylamin, N-Ethyldiisopropylamin oder N-Methyl-morpholin bei Temperaturen zwischen 0 und 150°C, vorzugsweise bei Temperaturen zwischen 50 und 100°C, durchgeführt.

Die anschließende Veresterung oder Amidierung wird zweckmäßigerweise durch Umsetzung eines reaktionsfähigen entsprechenden Carbonsäurederivates mit einem entsprechenden Alkohol oder Amin wie vorstehend beschrieben durchgeführt.

Bei den vorstehend beschriebenen Umsetzungen können gegebenenfalls vorhandene reaktive Gruppen wie Carboxy-, Amino-, Alkylamino- oder Iminogruppen während der Umsetzung durch übliche Schutzgruppen geschützt werden, welche nach der Umsetzung wieder abgespalten werden.

Beispielsweise kommt als Schutzrest für eine Carboxylgruppe die Trimethylsilyl-, Methyl-, Ethyl-, tert.Butyl-, Benzyl- oder Tetrahydropyranylgruppe und als Schutzrest für eine Amino-, Alkylamino- oder Iminogruppe die Acetyl-, Trifluoracetyl-, Benzoyl-, Ethoxycarbonyl-, tert.Butoxycarbonyl-, Benzyloxycarbonyl-, Benzyl-, Methoxybenzyl- oder 2,4-Dimethoxybenzyl-gruppe und für die Aminogruppe zusätzlich die Phthalyl-gruppe in Betracht.

Die gegebenenfalls anschließende Abspaltung eines verwendeten Schutzrestes erfolgt beispielsweise hydrolytisch in einem wäßrigen Lösungsmittel, z.B. in Wasser, Isopropanol/Wasser, Tetrahydrofuran/Wasser oder Dioxan/Wasser, in Gegenwart einer Säure wie Trifluoressigsäure, Salzsäure oder Schwefelsäure oder in Gegenwart einer Alkalibase wie Lithiumhydroxid, Natriumhydroxid oder Kaliumhydroxid bei Temperaturen zwischen 0 und 100°C, vorzugsweise bei Temperaturen zwischen 10 und 50°C.

Die Abspaltung eines Benzyl-, Methoxybenzyl- oder Benzyloxycarbonylrestes erfolgt jedoch beispielsweise hydrogenolytisch,
z.B. mit Wasserstoff in Gegenwart eines Katalysators wie Palladium/Kohle in einem Lösungsmittel wie Methanol, Ethanol,
Essigsäureethylester, Dimethylformamid, Dimethylformamid/Aceton
oder Eisessig gegebenenfalls unter Zusatz einer Säure wie
Salzsäure oder Eisessig bei Temperaturen zwischen 0 und 50°C,
vorzugsweise jedoch bei Raumtemperatur, und bei einem Wasserstoffdruck von 1 bis 7 bar, vorzugsweise jedoch von 3 bis 5
bar.

Die Abspaltung einer Methoxybenzylgruppe kann auch in Gegenwart eines Oxidationsmittels wie Cer(IV)ammoniumnitrat in einem Lösungsmittel wie Methylenchlorid, Acetonitril oder Acetonitril/Wasser bei Temperaturen zwischen 0 und 50°C, vorzugsweise jedoch bei Raumtemperatur, erfolgen.

Die Abspaltung eines 2,4-Dimethoxybenzylrestes erfolgt jedoch vorzugsweise in Trifluoressigsäure in Gegenwart von Anisol.

Die Abspaltung eines tert.Butyl- oder tert.Butyloxycarbonylrestes erfolgt vorzugsweise durch Behandlung mit einer Säure wie Trifluoressigsäure oder Salzsäure gegebenenfalls unter Verwendung eines Lösungsmittels wie Methylenchlorid, Dioxan, Essigester oder Ether.

Die Abspaltung eines Phthalylrestes erfolgt vorzugsweise in Gegenwart von Hydrazin oder eines primären Amins wie Methylamin, Ethylamin oder n-Butylamin in einem Lösungsmittel wie Methanol, Ethanol, Isopropanol, Toluol/Wasser oder Dioxan bei Temperaturen zwischen 20 und 50°C.

Ferner können erhaltene chirale Verbindungen der allgemeinen Formel I in ihre Enantiomeren und/oder Diastereomeren aufgetrennt werden.

So lassen sich beispielsweise die erhaltenen Verbindungen der allgemeinen Formel I, welche in Racematen auftreten, nach an sich bekannten Methoden (siehe Allinger N. L. und Eliel E. L. in "Topics in Stereochemistry", Vol. 6, Wiley Interscience, 1971) in ihre optischen Antipoden und Verbindungen der allgemeinen Formel I mit mindestes 2 asymmetrischen Kohlenstoffatomen auf Grund ihrer physikalisch-chemischen Unterschiede nach an sich bekannten Methoden, z.B. durch Chromatographie und/oder fraktionierte Kristallisation, in ihre Diastereomeren auftrennen, die, falls sie in racemischer Form anfallen, anschließend wie oben erwähnt in die Enantiomeren getrennt werden können.

Die Enantiomerentrennung erfolgt vorzugsweise durch Säulentrennung an chiralen Phasen oder durch Umkristallisieren aus einem optisch aktiven Lösungsmittel oder durch Umsetzen mit einer, mit der racemischen Verbindung Salze oder Derivate wie z.B. Ester oder Amide bildenden optisch aktiven Substanz, insbesondere Säuren und ihre aktivierten Derivate oder Alkohole, und Trennen des auf diese Weise erhaltenen Gemisches diastereomerer Salze oder Derivate, z.B. auf Grund von verschiedenen Löslichkeiten, wobei aus den reinen diastereomeren Salzen oder Derivaten die freien Antipoden durch Einwirkung geeigneter

Mittel freigesetzt werden können. Besonders gebräuchliche, optisch aktive Säuren sind z.B. die D- und L-Formen von Weinsäure, Dibenzoylweinsäure, Di-o-Tolylweinsäure, Apfelsäure, Mandelsäure, Camphersulfonsäure, Glutaminsäure, N-Acetylglutaminsäure, Asparaginsäure, N-Acetylasparaginsäure oder Chinasäure. Als optisch aktiver Alkohol kommt beispielsweise (+)- oder (-)-Men-thol und als optisch aktiver Acylrest in Amiden beispielsweise der (+)- oder (-)-Menthyloxycarbonylrest in Betracht.

Desweiteren können die erhaltenen Verbindungen der Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit anorganischen oder organischen Säuren, übergeführt werden. Als Säuren kommen hierfür beispielsweise Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Fumarsäure, Bernsteinsäure, Milchsäure, Zitronensäure, Weinsäure, Maleinsäure oder Methansulfonsäure in Betracht.

Außerdem lassen sich die so erhaltenen neuen Verbindungen der Formel I, falls diese eine Carboxygruppe enthalten, gewünschtenfalls anschließend in ihre Salze mit anorganischen oder organischen Basen, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze, überführen. Als Basen kommen hierbei beispielsweise Natriumhydroxid, Kaliumhydroxid, Cyclohexylamin, Ethanolamin, Diethanolamin und Triethanolamin in Betracht.

Die als Ausgangsprodukte verwendeten Verbindungen der allgemeinen Formeln I bis VIII sind teilweise literaturbekannt oder man erhält diese nach literaturbekannten Verfahren oder werden in den Beispielen beschrieben.

Wie bereits eingangs erwähnt, weisen die neuen Verbindungen der allgemeinen Formel I, in der  $R_1$  ein Wasserstofatom oder einen Prodrugrest darstellt, wertvolle pharmakologische Eigenschaften auf, insbesondere inhibierende Wirkungen auf verschiedene

Kinasen und Cyclin/CDK-Komplexe, auf die Proliferation kultivierter humaner Tumor-Zellen sowie nach oraler Gabe auf das Wachstum von Tumoren in Nacktmäusen, die mit humanen Tumorzellen infiziert worden waren.

Beispielsweise wurden die in Tabelle 1 aufgeführten Verbindungen auf ihre biologischen Eigenschaften wie folgt geprüft:

#### Test 1

Inhibierung von Cyclin/CDK-Enzym.-Aktivität in vitro
High Five<sup>TM</sup> Insekten-Zellen (BTI-TN-5B1-4), die mit einem honen
Titer an rekombinantem Baculovirus infiziert waren, wurden für
die Produktion von aktiven humanen Cyclin/CDK Holoenzymen benutzt. Durch die Verwendung eines Baculovirus-Vektors, der zwei
Promoter enthielt (polyhedrin enhancer promoter, P10-enhancer
promoter), wurden GST-tagged Cycline (z.B. Cyclin D1 oder Cyclin D3) mit der entsprechenden His6-tagged CDK-Untereinheit
(z.B. für CDK4 oder CDK6) in derselben Zelle exprimiert. Das
aktive Holoenzym wurde durch Affinitäts-Chromatographie an
Glutathion-Sepharose isoliert. Rekombinantes GST-tagged pRB (aa
379-928) wurde in E. coli produziert und durch AffinitätsChromatographie an Glutathion-Sepharose gereinigt.

Die Substrate, die für die Kinase-Assays verwendet wurden, hingen von den spezifischen Kinasen ab. Histone H1 (Sigma) wurde verwendet als Substrat für Cyclin E/CDK2, Cyclin A/CDK2, Cyclin B/CDK1 und für v-Cyclin/CDK6. GST-tagged pRB (aa 379-928) wurde verwendet als Substrat für Cyclin D1/CDK4, Cyclin D3/CDK4, Cyclin D1/CDK6 und für Cyclin D3/CDK6.

Lysate der mit rekombinanten Baculovirus-infizierten Insekten-Zellen oder auch rekombinante Kinasen (erhalten aus den Lysaten durch Reinigung) wurden zusammen mit radioaktiv markiertem ATP in Gegenwart eines geeigneten Substrates mit verschiedenen Konzentrationen des Inhibitors in einer 1%igen DMSO-Lösung (Dimethylsulfoxid) 45 Minuten lang bei 30°C inkubiert. Die Substrat Proteine mit assoziierter Radioaktivität wurden mit 5%iger TCA (Trichloressigsäure) in hydrophoben PVDF multi-well Mikrotiter Platten (Millipore) oder mit 0.5%iger Phosphorsäure-Lösung auf Whatman P81 Filtern ausgefällt. Nach Zugabe von Scintillations-Flüssigkeit wurde die Radioaktivität in einem Wallace 1450 Microbeta Flüssig-Scintillations-Zähler gemessen. Pro Konzentration der Substanz wurden Doppel-Messungen durchgeführt; IC50-Werte für die Enzym-Inhibition wurden berechnet.

#### Test\_2

Inhibierung der Profileration von kultivierten humanen Tumorzellen

Zellen der Leiomyosarcoma Tumorzell-Linie SK-UT-1B (erhalten von der American Type Culture Collection (ATCC)) wurden in Minimum Essential Medium mit nicht-essentiellen Aminosäuren (Gibco), ergänzt mit Natrium-Pyruvat (1 mMol), Glutamin (2 mMol) und 10% fötalem Rinderserum (Gibco) kultiviert und in der log-Wachstumsphase geerntet. Anschließend wurden die SK-UT-1B-Zellen in Cytostar® multi-well Platten (Amersham) mit einer Dichte von 4000 cells per well eingebracht und über Nacht in einem Inkubator inkubiert. Verschiedene Konzentrationen der Verbindungen (gelöst in DMSO; Endkonzentration: <1%) wurden zu den Zellen zugegeben. Nach 48 Stunden Inkubation wurde 14C-Thymidin (Amersham) zu jedem well zugesetzt, und es wurde weitere 24 Stunden inkubiert. Die Menge an  $^{14}\mathrm{C} ext{-}\mathrm{Thymidin}$ , die in Gegenwart des Inhibitors in die Tumorzellen eingebaut wurde und die die Zahl der Zellen in der S-Phase repräsentiert, wurde in einem Wallace 1450 Microbeta Flüssig Scintillations Zähler gemessen. IC50-Werte für die Inhibierung der Proliferation (= Inhibierung von eingebautem 14C-Thymidin) wurden - unter Korrektur für die Hintergrundstrahlung - berechnet. Alle Messungen wurden zweifach ausgeführt.

#### Test 3

### In vivo Effekte an Tumor-tragenden Nacktmäusen

106 Zellen [SK-UT-1B, oder non-small cell Lungen-Tumor NCI-H460 (erhalten von ATCC)] in einem Volumen von 0.1 ml wurden in männliche und/oder weibliche Nacktmäuse (NMRI nu/nu; 25-35 g; N = 10-20) subkutan injiziert; alternativ wurden kleine Stückchen von SK-UT-1B- oder NCI-H460-Zellklumpen subkutan implantiert. Eine bis drei Wochen nach Injektion bzw. Implantation wurde ein Kinase-Inhibitor täglich für die Dauer von 2 bis 4 Wochen oral (per Schlundsonde) appliziert. Die Tumor-Größe wurde dreimal pro Woche mit einer digitalen Schieblehre gemessen. Der Effekt eines Kinase-Hemmers auf das Tumor-Wachstum wurde als Prozentinhibierung im Vergleich zu einer mit Placebo behandelten Kontroll-Gruppe bestimmt.

Die nachfolgende Tabelle enthält die gefundenen Ergebnisse des in vitro-Tests 2:

| Verbindung     | Hemmung der SKUT-     |
|----------------|-----------------------|
| (Beispiel Nr.) | 1B-Proliferation      |
|                | IC <sub>50</sub> [μM] |
| 4 (2)          | 0.17                  |
| 4 ( 14)        | 0.18                  |
| 4 (62)         | 0.05                  |
| 4 (53)         | 0.01                  |
| 4 ( 54)        | 0.03                  |
| 4 ( 60)        | 0.03                  |
| 4 (120)        | 0.04                  |
| 4 (122)        | 0.04                  |
| 4 ( 94)        | 0.03                  |
| 3 ( 3)         | 0.01                  |
| 3 (7)          | 0.01                  |
| 4 (129)        | 0.04                  |
|                | <u> </u>              |

Auf Grund ihrer biologischen Eigenschaften eignen sich die neuen Verbindungen der allgemeinen Formel I, deren Isomere und deren physiologisch verträgliche Salze zur Behandlung von Erkrankungen, die durch exzessive oder anomale Zellproliferation charakterisiert sind.

Zu solchen Erkrankungen gehören (ohne Anspruch auf Vollständigkeit): Virale Infektionen (z.B. HIV und Kaposi Sarkoma); Entzündung und Autoimmun-Erkrankungen (z.B. Colitis, Arthritis, Alzheimer Erkrankung, Glomerulonephritis und Wund-Heilung); bakterielle, fungale und/oder parasitäre Infektionen; Leukämien, Lymphoma und solide Tumore; Haut-Erkrankungen (z.B. Psoriasis); Knochen-Erkrankungen; kardiovaskuläre Erkrankungen (z.B. Restenose und Hypertrophie). Ferner sind sie nützlich als Schutz von proliferierenden Zellen (z.B. Haar-, Intestinal-, Blut- und Progenitor-Zellen) gegen DNA-Schädigung durch Strahlung, UV-Behandlung und/oder zytostatischer Behandlung.

Die neuen Verbindungen können zur Kurz- oder Langzeitbehandlung der vorstehend erwähnten Krankheiten auch gegebenenfalls in Kombination mit anderen "State-of-art" Verbindungen wie anderen Cytostatika verwendet werden.

Die zur Erzielung einer entsprechenden Wirkung erforderliche Dosierung beträgt zweckmäßigerweise bei intravenöser Gabe 0,1 bis 30 mg/kg, vorzugsweise 0,3 bis 10 mg/kg, und bei oraler Gabe 0,1 bis 100 mg/kg, vorzugsweise 0,3 bis 30 mg/kg, jeweils 1 bis 4 x täglich. Hierzu lassen sich die erfindungsgemäß hergestellten Verbindungen der Formel I, gegebenenfalls in Kombination mit anderen Wirksubstanzen, zusammen mit einem oder mehreren inerten üblichen Trägerstoffen und/oder Verdünnungsmitteln, z.B. mit Maisstärke, Milchzucker, Rohrzucker, mikrokristalliner Zellulose, Magnesiumstearat, Polyvinylpyrrolidon, Zitronensäure, Weinsäure, Wasser, Wasser/Ethanol, Wasser/Glycerin, Wasser/Sorbit, Wasser/Polyethylenglykol, Propylenglykol, Cetylstearylalkohol, Carboxymethylcellulose oder fetthaltigen Substanzen wie Hartfett oder deren geeigneten Ge

- 32 -

mischen, in übliche galenische Zubereitungen wie Tabletten, Dragées, Kapseln, Pulver, Suspensionen, Zäpfchen oder als Lösungen für Injektionen oder Infusionen einarbeiten.

Die nachfolgenden Beispiele sollen die Erfindung näher erläutern:

#### Beispiel I

### 1-Acetyl-2-indolinon-5-carbonsäuremethylester

10,5 g 2-Indolinon-5-carbonsäuremethylester (Hergestellt analog Ogawa et al. Chem.Pharm.Bull 36, 2253-2258 (1988)) werden in 30 ml Acetanhydrid 4 Stunden bei 140°C gerührt. Anschließend läßt man abkühlen, gießt auf Eiswasser und saugt den Niederschlag ab. Das Produkt wird nochmals mit Wasser gewaschen, dann in Methylenchlorid aufgenommen, über Natriumsulfat getrocknet und eingeengt.

Ausbeute: 11 q (86 % der Theorie),

Rf-Wert: 0,63 (Kieselgel; Methylenchlorid/Methanol = 50:1)

#### Beispiel II

1-Acetyl-3-(1-ethoxy-1-phenyl-methylen)-2-indolinon-5-carbon-säuremethylester

11 g 1-Acetyl-2-indolinon-5-carbonsäuremethylester werden in 110 ml Acetanhydrid und 30 ml Orthobenzoesäuretriethylester 2 Stunden bei 100°C gerührt. Anschließend wird einrotiert, der Rückstand mit Ether gewaschen und abgesaugt.

Ausbeute: 11,5 g (67 % der Theorie),

Rf-Wert: 0,55 (Kieselgel, Methylenchlorid/Petrolether/Essigester = 4:5:1)

#### Beispiel III

28,0 g Rink-Harz (MBHA-Harz, Firma Novobiochem) läßt man in 330 ml Dimethylformamid quellen. Anschließend gibt man 330 ml 30 % Piperidin in Dimethylformamid zu und schüttelt 7 Minuten, um die FMOC-Schutzgruppe abzuspalten. Dann wird das Harz mehrmals mit Dimethylformamid gewaschen. Schließlich gibt man 7,3 g 2-Indolinon-5-carbonsäure, 5,6 g Hydroxybenzotriazol, 13,3 g O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyl-uronium-tetrafluorborat und 5,7 ml N-Ethyl-diisopropylamin in 300 ml Dimethylformamid zu und schüttelt 1 Stunde. Nun wird die Lösung abgesaugt und das Harz fünfmal mit 300 ml Dimethylformamid und

dreimal mit 300 ml Methylenchlorid gewaschen. Zum Trocknen wird Stickstoff durch das Harz geblasen.

Ausbeute: 28 g beladenes Harz

#### Beispiel IV

5 g des gemäß Beispiel III hergesetellten belegten Harzes werden mit 15 ml Acetanhydrid bei 80°C 1 Stunde gerührt. Dann gibt man 15 ml Orthobenzoesäuretriethylester zu und schüttelt weitere 3 Stunde bei 110°C. Danach wird das Harz abgesaugt und mit Dimethylformamid, Methanol und schließlich mit Methylenchlorid gewaschen.

Ausbeute: 7 g feuchtes Harz

### Beispiel V

### 4-(Ethylamino-methyl)-nitrobenzol

6 g 4-Nitrobenzylbromid werden in 25 ml Ethanol gelöst, mit 25 ml 10%iger ethanolischer Ethylaminlösung versetzt und 2 Stunden am Rückfluß erhitzt. Dann wird die Lösung einrotiert, der Rückstand mit Methylenchlorid aufgenommen und mit verdünnter Natronlauge gewaschen. Schließlich wird die organische Phase eingeengt.

Ausbeute: 2.3 g (46 % der Theorie),

Rf-Wert: 0,2 (Kieselgel; Methylenchlorid/Methanol = 9:1)

### Analog werden hergestellt:

- 4-[N-(4-Chlorphenyl-methyl)-amino-methyl]-nitrobenzol
- 4-(N-Cyclohexyl-amino-methyl)-nitrobenzol
- 4-(N-Isopropyl-amino-methyl)-nitrobenzol
- 4-(N-Butyl-amino-methyl)-nitrobenzol

- 4-(N-Methoxycarbonyl-methyl-amino-methyl)-nitrobenzol
- 4-(N-(Phenyl-methyl)-amino-methyl)-nitrobenzol
- 4-(Pyrrolidino-methyl)-nitrobenzol
- 4-(Morpholino-methyl)-nitrobenzol
- 4-(Piperidino-methyl)-nitrobenzol
- 4-(Hexamethylenimino)-nitrobenzol
- 4-(4-Hydroxy-piperidino-methyl)-nitrobenzol
- 4-(4-Methyl-piperidino-methyl)-nitrobenzol
- 4-(4-Ethyl-piperidino-methyl)-nitrobenzol
- 4-(4-Isopropyl-piperidino-methyl)-nitrobenzol
- 4-(4-Phenyl-piperidino-methyl)-nitrobenzol
- 4-(4-Benzyl-piperidino-methyl)-nitrobenzol
- 4-(4-Ethoxycarbonyl-piperidino-methyl)-nitrobenzol.
- 4-(Dimethylamino-methyl)-nitrobenzol
- 4-(Dipropylamino-methyl)-nitrobenzol
- 4-(4-tert.Butyloxycarbonyl-piperazino-methyl)-nitrobenzol
- 3-(Dimethylamino-methyl)-nitrobenzol
- 4-(2-Diethylamino-ethyl)-nitrobenzol

- 4-(2-Morpholinyl-ethyl)-nitrobenzol
- 4-(2-Pyrrolidinyl-ethyl)-nitrobenzol
- 4-(2-Piperidinyl-ethyl)-nitrobenzol
- 4-(N-Ethyl-N-benzyl-amino-methyl)-nitrobenzol
- 4-(N-Propyl-N-benzyl-amino-methyl)-nitrobenzol
- 4-[N-Methyl-N-(4-chlorphenylmethyl)-amino-methyl])-nitrobenzol
- 4-[N-Methyl-N-(4-bromphenylmethyl)-amino-methyl]-nitrobenzol
- 4-[N-Methyl-N-(3-chlorphenylmethyl)-amino-methyl]-nitrobenzol
- 4-[N-Methyl-N-(3,4-dimethoxyphenylmethyl)-amino-methyl]-nitrobenzol
- 4-[N-Methyl-N-(4-methoxyphenylmethyl)-amino-methyl]-nitrobenzol
- 4-[N-2,2,2-Trifluorethyl-N-(phenylmethyl)-amino-methyl]-nitrobenzol
- 4-[N-2,2,2-Trifluorethyl-N-(4-chlorphenylmethyl)-amino-methyl]-nitrobenzol

### Beispiel VI

4-(N-Ethyl-N-tert butoxycarbonyl-amino-methyl)-nitrobenzol
2,2 g 4-(Ethylamino-methyl)-nitrobenzol werden in 50 ml Essigester gelöst und mit 2,6 g Di-tert-butyl-dicarbonat 30 Minuten
bei Raumtemperatur gerührt. Anschließend wird die Lösung mit
Wasser gewaschen und eingeengt.

Ausbeute: 3,4 q,

Rf-Wert: 0,9 (Kieselgel, Methylenchlorid/Methanol = 9:1)

# Analog werden hergestellt:

4-[N-(4-Chlorphenyl-methyl)-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol

4-(N-Cyclohexyl-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol

4-(N-Isopropyl-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol

4-(N-Butyl-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol

4-(N-Methoxycarbonyl-methyl-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol

4-(N-(Phenyl-methyl)-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol

### Beispiel VII

4-(N-Ethyl-N-tert.butoxycarbonyl-amino-methyl)-anilin 6,4 g 4-(N-Ethyl-N-tert.butoxycarbonyl-amino-methyl)-nitrobenzol werden in 60 ml Methanol gelöst und mit 1,5 g Raney-Nickel bei Raumtemperatur und 3 bar hydriert. Anschließend wird der Katalysator abfiltriert und die Lösung eingeengt.

Ausbeute: 4,78 q,

Rf-Wert: 0,7 (Kieselgel, Methylenchlorid/Methanol 50:1)

### Analog werden hergestellt:

4-[N-(4-Chlorphenyl-methyl)-N-tert.butoxycarbonyl-amino-me-thyl]-anilin

4-(N-Cyclohexyl-N-tert.butoxycarbonyl-amino-methyl)-anilin

- 4-(N-Isopropyl-N-tert.butoxycarbonyl-amino-methyl)-anilin
- 4-(N-Butyl-N-tert.butoxycarbonyl-amino-methyl)-anilin
- 4-(N-Methoxycarbonyl-methyl-N-tert.butoxycarbonyl-amino-methyl)-anilin
- 4-(N-(Phenyl-methyl)-N-tert.butoxycarbonyl-amino-methyl)-anilin
- 4-(Pyrrolidino-methyl)-anilin
- 4-(Morpholino-methyl)-anilin
- 4-(Piperidino-methyl)-anilin
- 4-(Hexamethylenimino-methyl)-anilin
- 4-(4-Hydroxy-piperidino-methyl)-anilin
- 4-(4-Methyl-piperidino-methyl)-anilin
- 4-(4-Ethyl-piperidino-methyl)-anilin
- 4-(4-Isopropyl-piperidino-methyl)-anilin
- 4-(4-Phenyl-piperidino-methyl)-anilin
- 4-(4-Benzyl-piperidino-methyl)-anilin
- 4-(4-Ethoxycarbonyl-piperidino-methyl)-anilin
- 4-(2-Morpholinyl-ethyl)-anilin
- 4-(2-Pyrrolidinyl-ethyl)-anilin
- 4-(2-Piperidinyl-ethyl)-anilin

- 4-(N-Ethyl-N-benzyl-amino-methyl)-anilin
- 4-(N-Propyl-N-benzyl-amino-methyl)-anilin
- .4-[N-Methyl-N-(4-chlorphenylmethyl)-amino-methyl]-anilin
  - 4-[N-Methyl-N-(4-bromphenylmethyl)-amino-methyl]-anilin
  - 4-[N-Methyl-N-(3-chlorphenylmethyl)-amino-methyl]-anilin
  - 4-[N-Methyl-N-(3,4-dimethoxyphenylmethyl)-amino-methyl]-anilin
  - 4-[N-Methyl-N-(4-methoxyphenylmethyl)-amino-methyl]-anilin
  - 4-[N-2,2,2-Trifluorethyl-N-(phenylmethyl)-amino-methyl]-anilin
  - 4-[N-2,2,2-Trifluorethyl-N-(4-chlorphenylmethyl)-amino-methyl]-anilin

Herstellung der Endprodukte:

### Beispiel 1

3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]-2-in-dolinon-5-carbonsäuremethylester

11,5 g 1-Acetyl-3-(1-ethoxy-1-phenyl-methylen)-2-indolinon-5-carbonsäuremethylester werden in 115 ml Methylenchlorid gelöst und mit 10,8 g 4-Amino-N-methylpiperidin 5 Stunden bei Raumtemperatur gerührt. Anschließend gibt man 20 ml methanolischen Ammoniak zu und läßt über Nacht stehen. Die Lösung wird eingedampft und der Rückstand mit Ether gewaschen.

Ausbeute: 11,9 g (97 % der Theorie),

Rf-Wert: 0,20 (Kieselgel; Methylenchlorid/Methanol = 9:1)

 $C_{23}H_{25}N_3O_3$ 

Massenspektrum:  $m/z = 391 (M^*)$ 

Analog werden hergestellt:

- (1) 3-Z-[1-(4-(Piperidino-methyl)-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäuremethylester $<math>R_f$ -Wert: 0,4 (Kieselgel, Methylenchlorid/Methanol = 9:1)  $C_{29}H_{29}N_3O_3$  Massenspektrum: m/z=467 (M<sup>+</sup>)
- (2) 3-Z-[1-(4-(N-Phenylmethyl-N-methylamino-methyl)-phenyl-amino)-1-phenyl-methylen]-2-indolinon-5-carbonsäuremethylester  $C_{32}H_{29}N_3O_3$  Massenspektrum: m/z = 503 (M\*)
- (3) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäuremethylester  $C_{26}H_{25}N_3O_3$

Massenspektrum:  $m/z = 427 (M^{*})$ 

(4) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäuremethylester  $C_{26}H_{25}N_3O_3$ 

Massenspektrum:  $m/z = 427 (M^{*})$ 

- (5) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-2-indoli-non-5-carbonsäuremethylester
- (6) 3-Z-(1-Phenylamino-1-phenyl-methylen)-2-indolinon-5-carbon-säuremethylester

## Beispiel 2

3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]-2-in-dolinon-5-carbonsäure

11,9 g 3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]-2-indolinon-5-carbonsäuremethylester werden in 300 ml Methanol und 150 ml 1N Natronlauge 4 Stunden am Rückfluß erhitzt. Anschließend neutralisiert man mit 150 ml 1N Salzsäure und engt zur Trockene ein. Der Rückstand wird mehrmals mit Wasser gewaschen und getrocknet.

Ausbeute: 86 % der Theorie,

 $R_f$ -Wert: 0,17 (Kieselgel; Methylenchlorid/Methanol = 4:1)  $C_{22}H_{23}N_3O_3$ 

Massenspektrum:  $m/z = 377 (M^*)$ 

## Analog werden hergestellt:

(1) 3-Z-[1-(4-(Piperidino-methyl)-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäure

 $R_{f}$ -Wert: 0,15 (Kieselgel, Methylenchlorid/Methanol = 9:1)  $C_{28}H_{27}N_{1}O_{3}$ 

Massenspektrum:  $m/z = 453 (M^{+})$ 

(2) 3-Z-[1-(4-(N-Phenylmethyl-N-methylamino-methyl)-phenyl-amino)-1-phenyl-methylen)-2-indolinon-5-carbonsäure

 $C_{31}H_{27}N_3O_3$ Massenspektrum: m/z = 489 (M<sup>+</sup>)

(3) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino)-l-phenyl-methylen]-2-indolinon-5-carbonsäure  $C_{25}H_{23}N_3O_3$ 

Massenspektrum: m/z = 413 (M<sup>+</sup>)

(4) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen)-2-indolinon-5-carbonsäure  $C_{25}H_{23}N_3O_3$ 

Massenspektrum:  $m/z = 413 (M^*)$ 

- (5) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-2-indoli-non-5-carbonsäure
- (6) 3-Z-[1-Phenylamino-1-phenyl-methylen)-2-indolinon-5-carbon-säure

### Beispiel 3

3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]-5-dimethylcarbamoyl-2-indolinon

2 g 3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]2-indolinon-5-carbonsäure werden mit 5 ml Thionylchlorid
2 Stunden am Rückfluß erhitzt. Anschließend wird einrotiert und der Rückstand mit Ether gewaschen. 0,5 g dieses Säurechlorides werden ohne weitere Reinigung in 5 ml Methylenchlorid aufgenommen und mit 0,5 ml Dimethylamin in 5 ml Methylenchlorid versetzt und über Nacht bei Raumtemperatur gerührt. Das Produkt wird über eine Kieselgelsäule mit Methylenchlorid/Methanol/Ammoniak (4:1:0.1) chromatographiert.

Ausbeute: 50 % der Theorie,

 $R_f$ -Wert: 0,14 (Kieselgel: Methylenchlorid/Methanol = 9:1)  $C_{24}H_{28}N_4O_2$ 

Massenspektrum:  $m/z = 404 (M^*)$ 

Analog werden folgende Verbindungen hergestellt:

(1) 3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]-5-methylcarbamoyl-2-indolinon 
Ausbeute: 49 % der Theorie, 
Rf-Wert: 0,19 (Kieselgel; Methylenchlorid/Methanol = 4:1).

 $C_{23}H_{26}N_4O_2$ Massenspektrum:  $m/z = 390 (M^*)$ 

(2) 3-Z-[1-(1-Methyl-piperidin-4-yl-amino)-1-phenyl-methylen]-5-carbamoyl-2-indolinon

Ausbeute: 58 % der Theorie,

Rf-Wert: 0,15 (Kieselgel; Methylenchlorid/Methanol = 4:1)

 $C_{22}H_{24}N_4O_2$ 

Massenspektrum:  $m/z = 376 (M^{+})$ 

(3) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-dimethylcarbamoyl-2-indolinon

Hergestellt aus 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäure und Dimethylamin oder

es werden 0,64 g Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäure, 0.34 g Dimethylaminhydrochlorid, 0.9 g O-Benzotriazol-1-yl-N,N,N,N,-tetramethyluro-nium-tetrafluoroborat), 0.4 g 1-Hydroxy-1H-benztriazol und

2,9 g Diisopropylethylamin werden in 20 ml Dimethylformamid 20 Stunden bei Raumtemperatur gerührt. Anschließend wird eingeengt und der Rückstand in Wasser suspendiert. Der Niederschlag wird abgesaugt.

Ausbeute: 600 mg (88% der Theorie),  $R_f\text{-Wert: 0,2 (Kieselgel, Methylenchlorid/Ethanol = 9:1)} \\ C_{30}H_{32}N_4O_2 \\ Massenspektrum: m/z = 481 (M+H)^+$ 

(4) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-methylcarbamoyl-2-indolinon

Hergestellt aus 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäure und Methylamin analog Beispiel 3(3).

 $R_f$ -Wert: 0,2 (Kieselgel, Methylenchlorid/Ethanol = 9:1)  $C_{29}H_{30}N_4O_2$ 

Massenspektrum:  $m/z = 467 (M+H)^{+}$ 

(5) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-methylethylcarbamoyl-2-indolinon Hergestellt aus 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäure und Methylethylamin analog Beispiel 3(3).  $R_{f}\text{-Wert: 0,55 (Kieselgel, Methylenchlorid/Ethanol = 9:1)} \\ C_{31}H_{34}N_{4}O_{2}$ 

(6) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-propylcarbamoyl-2-indolinon

Hergestellt aus 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-2-indolinon-5-carbonsäure und Propylamin analog

Beispiel 3(3).

 $R_{f}$ -Wert: 0,31 (Kieselgel, Methylenchlorid/Ethanol = 9:1)  $C_{31}H_{34}N_{4}O_{2}$ 

Massenspektrum:  $m/z = 495 (M+H)^{+}$ 

Massenspektrum:  $m/z = 495 (M+H)^{+}$ 

(7) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-diethylcarbamoyl-2-indolinon

Hergestellt aus 3-Z-[1-(4-Piperidino-methyl-phenylamino)1-phenyl-methylen]-2-indolinon-5-carbonsäure und Diethylamin anlog Beispiel 3(3).

 $R_f$ -Wert: 0,55 (Kieselgel, Methylenchlorid/Ethanol = 9:1)  $C_{32}H_{36}N_4O_2$ 

Massenspektrum:  $m/z = 509 (M+H)^{2}$ 

(8) 3-Z-[1-(4-(N-Phenylmethyl-N-methyl-aminomethyl)-phenylamino)-1-phenyl-methylen]-5-methylcarbamoyl-2-indolinon

- (9) 3-Z-[1-(4-(N-Phenylmethyl-N-methyl-aminomethyl)-phenyl-amino)-1-phenyl-methylen]-5-dimethylcarbamoyl-2-indolinon
- (10) 3-Z-[1-(4-(N-Phenylmethyl-N-methyl-aminomethyl)-phenyl-amino)-1-phenyl-methylen]-5-diethylcarbamoyl-2-indolinon
- (11) 3-Z-[1-(4-(N-Phenylmethyl-N-methyl-aminomethyl)-phenyl-amino)-1-phenyl-methylen]-5-propylcarbamoyl-2-indolinon
- (12) 3-Z-[1-(4-(N-Phenylmethyl-N-methyl-aminomethyl)-phenyl-amino)-1-phenyl-methylen]-5-dipropylcarbamoyl-2-indolinon
- (13) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-5-methylcarbamoyl-2-indolinon
- (14) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino)-1-phenyl-me-thylen]-5-dimethylcarbamoyl-2-indolinon
- (15) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino-1-phenyl-methylen]-5-diethylcarbamoyl-2-indolinon
- (16) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino)-1-phenyl-me-thylen]-5-propylcarbamoyl-2-indolinon
- (17) 3-Z-[1-(4-(Dimethylamino-methyl)-phenylamino)-1-phenyl-me-thylen]-5-dipropylcarbamoyl-2-indolinon
- (18) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-me-thylen]-5-methylcarbamoyl-2-indolinon
- (19) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-me-thylen]-5-dimethylcarbamoyl-2-indolinon
- (20) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-5-diethylcarbamoyl-2-indolinon

- (21) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-me-thylen]-5-propylcarbamoyl-2-indolinon
- (22) 3-Z-[1-(3-(Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-5-dipropylcarbamoyl-2-indolinon
- (23) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-5-methyl-carbamoyl-2-indolinon
- (24) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-5-dimethylcarbamoyl-2-indolinon
- (25) 3-Z-[1-(4-Chlor-phenylamino-1-phenyl-methylen]-5-diethyl-carbamoyl-2-indolinon
- (26) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-5-propyl-carbamoyl-2-indolinon
- (27) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-5-diprocylcarbamoyl-2-indolinon
- (28) 3-Z-(1-Phenylamino-1-phenyl-methylen)-5-methylcarbamoyl-2-indolinon
- (29) 3-Z-(1-Phenylamino-1-phenyl-methylen)-5-dimethylcarbamoyl-2-indolinon
- (30) 3-Z-(1-Phenylamino-1-phenyl-methylen)-5-diethylcarbamoyl-2-indolinon
- (31) 3-Z-(1-Phenylamino-1-phenyl-methylen)-5-propylcarbamoyl-2-indolinon
- (32) 3-Z-(1-Phenylamino-1-phenyl-methylen)-5-dipropylcarbamoyl-2-indolinon

### Beispiel 4

3-Z-[1-(4-Amino-phenylamino)-1-phenyl-methylen]-5-amido-2-in-dolinon

800 mg gemäß Beispiel IV hergestelltes Harz werden in 4 ml Methylenchlorid suspendiert und mit 0,8 g 1,4-Phenylendiamin 16 Stunden bei Raumtemperatur geschüttelt. Es wird abfiltriert und das Harz mehrmals mit Methylenchlorid, Methanol und Dimethylformamid gewaschen. Anschließend gibt man für 2 Stunden 3 ml methanolischen Ammoniak zu, um die Acetylgruppe zu entfernen. Schließlich gibt man nach weiterem Waschen 4 ml 10%ige Trifluoressigsäure in Methylenchlorid während 90 Minuten zu, trennt das Harz ab und engt die Lösung ein. Der Rückstand wird mit wenig 1N Natronlauge aufgenommen und mit Methylenchlorid extrahiert. Die organische Phase wird über Natriumsulfat getrocknet und einrotiert.

Ausbeute: 45 mg (30 % der Theorie über alle Stufen),

Rf-Wert: 0,26 (Kieselgel; Methylenchlorid/Methanol = 9:1)

 $C_{22}H_{18}N_4O_2$ 

Massenspektrum:  $m/z = 370 (M^{+})$ 

Analog werden folgende Verbindungen hergestellt:

(1) 3-Z-[1-(3-Amino-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

Ausbeute: 24 % der Theorie,

Rf-Wert: 0,44 (Kieselgel; Methylenchlorid/Methanol = 9:1)

 $C_{22}H_{18}N_4O_2$ 

Massenspektrum:  $m/z = 370 (M^*)$ 

(2) 3-Z-(1-Phenylamino-1-phenyl-methylen)-5-amido-2-indolinon Ausbeute: 27 % der Theorie,

Rf-Wert: 0,53 (Kieselgel; Methylenchlorid/Methanol = 9:1)

 $C_{22}H_{17}N_3O_2$ 

Massenspektrum:  $m/z = 355 (M^{\dagger})$ 

dolinon

```
(3) 3-Z-[1-(4-Acetylamino-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 28 % der Theorie,
Rf-Wert: 0,35 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{24}H_{20}N_4O_3
Massenspektrum: m/z = 412 (M^{+})
(4) 3-Z-[1-(4-Acetyl-N-methyl-amino-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon
Ausbeute: 15 % der Theorie,
Rf-Wert: 0,36 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{25}H_{22}N_4O_3
Massenspektrum: m/z = 426 (M^{*})
(5) 3-Z-[1-(4-(2-Amino-ethyl)-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 30 % der Theorie,
Rf-Wert: 0,04 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{24}H_{22}N_4O_2
Massenspektrum: m/z = 398 (M^{+})
(6) 3-Z-[1-(4-Methoxy-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 32 % der Theorie,
Rf-Wert: 0,48 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{19}N_{3}O_{3}
Massenspektrum: m/z = 385 (M^{+})
(7) 3-Z-[1-(4-Biphenylamino)-1-phenyl-methylen]-5-amido-2-in-
dolinon
Ausbeute: 22 % der Theorie,
Rf-Wert: 0,51 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{28}H_{21}N_3O_2
Massenspektrum: m/z = 431 (M^{+})
 (8) 3-Z-[1-(3-Pyridylamino)-1-phenyl-methylen]-5-amido-2-in-
```

```
Ausbeute: 35 % der Theorie,
Rf-Wert: 0,41 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{21}H_{16}N_4O_2
Massenspektrum: m/z = 356 (M^{+})
(9) 3-Z-[1-(4-Dimethylamino-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 19 % der Theorie,
Rf-Wert: 0,49 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{24}H_{22}N_4O_2
Massenspektrum: m/z = 398 (M^{+})
(10) 3-Z-[1-(4-Morpholino-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 42 % der Theorie,
Rf-Wert: 0,48 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C26H24N4O3
Massenspektrum: m/z = 440 \, (M^{\dagger})
(11) 3-Z-[1-(4-tert.Butyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 32 % der Theorie,
Rf-Wert: 0,48 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C25H25N3O2
Massenspektrum: m/z = 411 (M^{+})
(12) 3-Z-[1-(2-Amino-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 28 % der Theorie,
Rf-Wert: 0,52 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{22}H_{18}N_4O_2
Massenspektrum: m/z = 370 (M^{+})
 (13) 3-Z-[1-(4-Benzyloxy-phenylamino)-1-phenyl-methylen]-5-ami-
do-2-indolinon
Ausbeute: 40 % der Theorie,
```

```
R_{f}-Wert: 0,4 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{29}H_{23}N_3O_3
Massenspektrum: m/z = 461 (M^{*})
(14) 3-Z-[1-(4-Brom-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 35 % der Theorie,
Rf-Wert: 0,46 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{22}H_{16}BrN_3O_2
Massenspektrum: m/z = 433/435 (M<sup>+</sup>)
(15) 3-Z-[1-(4-Methoxycarbonyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 34 % der Theorie,
Rf-Wert: 0,36 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C24H, N3O4
Massenspektrum: m/z = 413 (M^*)
(16) 3-Z-[1-(3-Amido-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 32 % der Theorie,
Rf-Wert: 0,32 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{18}N_4O_3
Massenspektrum: m/z = 398 (M<sup>+</sup>)
(17) 3-Z-[1-(3-Methyl-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 12 % der Theorie,
Rf-Wert: 0,5 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{19}N_{3}O_{2}
Massenspektrum: m/z = 369 (M^{*})
 (18) 3-Z-[1-(2-Methyl-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 21 % der Theorie,
Rf-Wert: 0,5 (Kieselgel; Methylenchlorid/Methanol = 9:1)
```

```
C_{23}H_{19}N_{3}O_{2}
Massenspektrum: m/z = 369 (M^{*})
(19) 3-Z-[1-(3-Methoxy-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Rf-Wert: 0,49 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{19}N_3O_3
Massenspektrum: m/z = 385 (M^{+})
(20) 3-Z-[1-(3-Ethoxycarbonyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
R_{f}-Wert: 0,48 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{25}H_{21}N_3O_4
Massenspektrum: m/z = 427 (M^{-})
(21) 3-Z-[1-(3-Nitro-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 32 % der Theorie,
Rf-Wert: 0,56 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{22}H_{16}N_4O_4
Massenspektrum: m/z = 400 (M^{+})
(22) 3-Z-[1-(4-Amido-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 26 % der Theorie,
Rf-Wert: 0,47 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{18}N_4O_3
Massenspektrum: m/z = 398 (M^{\dagger})
 (23) 3-Z-[1-(4-Pyridylamino)-1-phenyl-methylen]-5-amido-2-in-
dolinon
Ausbeute: 15 % der Theorie,
Rf-Wert: 0,42 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{21}H_{16}N_{4}O_{2}
Massenspektrum: m/z = 356 (M^*)
```

```
(24) 3-Z-[1-(4-Methyl-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 45 % der Theorie,
Rf-Wert: 0,54 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C23H,9N3O2
Massenspektrum: m/z = 369 (M^*)
(25) 3-Z-[1-(4-Ethoxy-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 40 % der Theorie,
Rf-Wert: 0,51 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{24}H_{21}N_3O_3
Massenspektrum: m/z = 399 (M^{+})
(26) 3-Z-[1-(3-Brom-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 41 % der Theorie,
Rf-Wert: 0,53 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{22}H_{16}BrN_3O_2
Massenspektrum: m/z = 433/435 (M<sup>+</sup>)
(27) 3-Z-[1-(4-Chlor-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
Ausbeute: 50 % der Theorie,
Rf-Wert: 0,49 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{22}H_{16}ClN_3O_2
Massenspektrum: m/z = 389/391 (M<sup>+</sup>)
(28) 3-Z-[1-(4-Isopropyl-phenylamino)-1-phenyl-methylen]-5-ami-
do-2-indolinon
Ausbeute: 48 % der Theorie,
Rf-Wert: 0,65 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{25}H_{23}N_3O_2
 Massenspektrum: m/z = 397 (M^*)
```

```
(29) 3-Z-[1-(2-Fluorenylamino)-1-phenyl-methylen]-5-amido-2-in-
dolinon
Ausbeute: 43 % der Theorie,
Rf-Wert: 0,58 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{29}H_{21}N_3O_2
Massenspektrum: m/z = 443 (M^{+})
(30) 3-Z-[1-(4-(2-Hydroxyethyl)-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
Ausbeute: 22 % der Theorie,
Rf-Wert: 0,37 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{24}H_{2}, N_{3}O_{3}
Massenspektrum: m/z = 398 (M-H)
(31) 3-Z-[1-(4-(4-Imidazolyl)-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 23 % der Theorie,
R_{f}-Wert: 0,5 (Kieselgel; Methylenchlorid/Methanol = 9:1)
 C_{25}H_{19}N_5O_2
 Massenspektrum: m/z = 421 (M^{*})
 (32) 3-Z-[1-(4-Ethoxycarbonylmethyl-phenylamino)-1-phenyl-me-
 thylen]-5-amido-2-indolinon
 C26H23N3O4
 Massenspektrum: m/z = 442 (M+H)^{+}
 (33) 3-Z-[1-(4-Brom-3-methyl-phenylamino)-1-phenyl-methylen]-
 5-amido-2-indolinon
 C, H, BrN, O,
 Massenspektrum: m/z = 447/449 (M<sup>+</sup>)
 (34) 3-Z-[1-(4-Cyclohexyl-phenylamino)-1-phenyl-methylen]-
 5-amido-2-indolinon
 C_{28}H_{27}N_3O_2
 Massenspektrum: m/z = 437 (M^{+})
```

```
(35) 3-Z-[1-(4-Brom-2-methyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
C_2, H_{18}BrN_3O_2
Massenspektrum: m/z = 447/449 (M<sup>+</sup>)
(36) 3-Z-[1-Amino-1-phenyl-methylen]-5-amido-2-indolinon
Rf-Wert: 0,3 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{16}H_{13}N_3O_2
Massenspektrum: m/z = 279 (M^{*})
(37) 3-Z-[1-Cyclohexylamino-1-phenyl-methylen]-5-amido-2-indo-
linon
Rf-Wert: 0,55 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C22H23N3O2
Massenspektrum: m/z = 361 (M^{+})
(38) 3-Z-[1-Cyclopentylamino-1-phenyl-methylen]-5-amido-2-indo-
linon
Rf-Wert: 0,53 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{21}H_{21}N_3O_2
Massenspektrum: m/z = 347 (M^{+})
(39) 3-Z-[1-Methylamino-1-phenyl-methylen]-5-amido-2-indolinon
R_f-Wert: 0,5 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C, 7H, 5N, O2
Massenspektrum: m/z = 293 (M<sup>+</sup>)
 (40) 3-Z-[1-Ethylamino-1-phenyl-methylen]-5-amido-2-indolinon
Rf-Wert: 0,52 (Kieselgel; Methylenchlorid/Methanol = 9:1)
 C_{18}H_{17}N_3O_2
 Massenspektrum: m/z = 307 (M^*)
 (41) 3-Z-[1-Isopropylamino-1-phenyl-methylen]-5-amido-2-indo-
 Rf-Wert: 0,44 (Kieselgel; Methylenchlorid/Methanol = 9:1)
 C, 9H, 9N, O2
 Massenspektrum: m/z = 321 (M^*)
```

```
(42) 3-Z-[1-Dimethylamino-1-phenyl-methylen]-5-amido-2-indo-
linon
Rf-Wert: 0,39 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C, H, N,O,
Massenspektrum: m/z = 307 (M^{+})
(43) 3-Z-[1-Cyclopropylamino-1-phenyl-methylen]-5-amido-2-in-
dolinon
R_{f}-Wert: 0,47 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{19}H_{17}N_3O_2
Massenspektrum: m/z = 319 (M^{*})
(44) 3-Z-[1-Cycloheptylamino-1-phenyl-methylen]-5-amido-2-in-
dolinon
Rf-Wert: 0,58 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{25}N_3O_2
Massenspektrum: m/z = 375 (M^*)
(45) 3-Z-[1-Cyclobutylamino-1-phenyl-methylen]-5-amido-2-indo-
linon
R_{f}-Wert: 0,49 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C,0H,9N,O2
Massenspektrum: m/z = 333 (M^{+})
 (46) 3-Z-[1-(4-Methylcyclohexylamino)-1-phenyl-methylen]-5-ami-
 do-2-indolinon
Rf-Wert: 0,67 (Kieselgel; Methylenchlorid/Methanol = 9:1)
 C_{23}H_{25}N_3O_2
 Massenspektrum: m/z = 375 (M<sup>+</sup>)
 (47) 3-Z-[1-(1-(R,S)-Indanylamino)-1-phenyl-methylen]-5-amido-
 2-indolinon
 Rf-Wert: 0,59 (Kieselgel; Methylenchlorid/Methanol = 9:1)
 C_{25}H_{21}N_{3}O_{2}
 Massenspektrum: m/z = 395 (M^*)
```

```
(48) 3-Z-[1-(Methoxycarbonylmethylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Rf-Wert: 0,46 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{19}H_{17}N_3O_4
Massenspektrum: m/z = 351 (M^{*})
(49) 3-Z-[1-((2-Methoxycarbonyl-ethyl)-amino)-1-phenyl-methy-
len]-5-amido-2-indolinon
Rf-Wert: 0,45 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{20}H_{19}N_3O_4
Massenspektrum: m/z = 365 (M^{+})
(50) 3-Z-[1-(4-Aminomethyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 32 % der Theorie,
R_{f}-Wert: 0,46 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{20}N_4O_2
Massenspektrum: m/z = 384 (M^{+})
(51) 3-Z-[1-(4-Pyrrolidinomethyl-phenylamino)-1-phenyl-methy-
len] -5-amido-2-indolinon-trifluoracetat
Ausbeute: 60 % der Theorie,
Rf-Wert: 0,07 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{27}H_{26}N_4O_2
Massenspektrum: m/z = 438 (M^{+})
(52) 3-Z-[1-(4-Morpholinomethyl-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
Ausbeute: 65 % der Theorie,
Rf-Wert: 0,46 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C27H26N4O3
Massenspektrum: m/z = 454 (M^{\circ})
 (53) 3-Z-[1-(4-Piperidinomethyl-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon-trifluoracetat
Ausbeute: 60 % der Theorie,
```

```
R_{f}-Wert: 0,08 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{28}H_{28}N_4O_2
Massenspektrum: m/z = 452 (M^{\dagger})
(54) 3-Z-[1-(4-Hexamethyleniminomethyl-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon-trifluoracetat
C_{29}H_{30}N_4O_2
Massenspektrum: m/z = 466 (M^{+})
(55) 3-Z-[1-(4-(4-Hydoxy-piperidinomethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon
C_{28}H_{28}N_4O_3
Massenspektrum: m/z = 468 (M^*)
(56) 3-Z-[1-(4-(4-Methyl-piperidinomethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon
C_{29}H_{30}N_4O_2
Massenspektrum: m/z = 466 (M^{\dagger})
(57) 3-Z-[1-(4-(4-Ethyl-piperidinomethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon
C_{30}H_{32}N_4O_2
Massenspektrum: m/z = 480 (M^{*})
(58) 3-Z-[1-(4-(4-Isopropyl-piperidinomethyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon
C_{32}H_{34}N_{4}O_{2}
Massenspektrum: m/z = 494 (M<sup>+</sup>)
 (59) 3-Z-[1-(4-(4-Phenyl-piperidinomethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon
C_{34}H_{32}N_4O_2
Massenspektrum: m/z = 528 (M^{*})
 (60) 3-Z-[1-(4-(4-Benzyl-piperidinomethyl)-phenylamino)-1-phe-
 nyl-methylen]-5-amido-2-indolinon
```

```
C_{35}H_{34}N_4O_2
Massenspektrum: m/z = 542 (M^*)
(61) 3-Z-[1-(4-(4-Ethoxycarbonyl-piperidinomethyl)-phenylami-
no) -1-phenyl-methylen] -5-amido-2-indolinon
C31H32N4O4
Massenspektrum: m/z = 524 (M^{+})
(62) 3-Z-[1-(4-Dimethylaminomethyl-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
C_{25}H_{24}N_4O_2
Massenspektrum: m/z = 412 (M^{+})
(63) 3-Z-[1-(4-Dipropylaminomethyl-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
C_{29}H_{32}N_4O_2
Massenspektrum: m/z = 468 (M^{+})
(64) 3-Z-[1-(4-Piperazinylmethyl-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
C_{27}H_{27}N_5O_2
Massenspektrum: m/z = 453 (M^{*})
(65) 3-Z-[1-(3-Dimethylaminomethyl-phenylamino)-1-phenyl-methy-
len] -5-amido-2-indolinon
C_{25}H_{24}N_4O_2
Massenspektrum: m/z = 412 (M^{+})
(66) 3-Z-[1-(4-(2-Diethylamino-ethyl)-phenylamino)-1-phenyl-me-
thylen]-5-amido-2-indolinon
C_{28}H_{30}N_{4}O_{2}
Massenspektrum: m/z = 454 (M^*)
 (67) 3-Z-[1-(4-(2-Morpholino-ethyl)-phenylamino)-1-phenyl-me-
thylen]-5-amido-2-indolinon
C_{28}H_{28}N_4O_3
Massenspektrum: m/z = 468 (M^{*})
```

```
(68) 3-Z-[1-(4-(2-Pyrrolidinyl-ethyl)-phenylamino)-1-phenyl-me-
thylen]-5-amido-2-indolinon
C_{28}H_{28}N_4O_2
Massenspektrum: m/z = 452 (M^*)
(69) 3-Z-[1-(4-(2-Piperidinyl-ethyl)-phenylamino)-1-phenyl-me-
thylen]-5-amido-2-indolinon
C_{29}H_{30}N_4O_2
Massenspektrum: m/z = 466 (M^{+})
(70) 3-Z-[1-(2-Thiazolylamino)-1-phenyl-methylen]-5-amido-2-in-
dolinon
Ausbeute: 30 % der Theorie,
Rf-Wert: 0,48 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C, 9H, 4N, O2S
Massenspektrum: m/z = 362 (M^*)
(71) 3-Z-[1-(Benzimidazol-2-ylamino)-1-phenyl-methylen]-5-ami-
do-2-indolinon
Ausbeute: 29 % der Theorie,
Rf-Wert: 0,44 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{17}N_{5}O_{2}
Massenspektrum: m/z = 395 (M^{\dagger})
(72) 3-Z-[1-(5-Methyl-isoxazol-3-yl-amino)-1-phenyl-methylen]-
5-amido-2-indolinon
Ausbeute: 39 % der Theorie,
Rf-Wert: 0,43 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{21}H_{18}N_4O_3
Massenspektrum: m/z = 374 (M^{+})
(73) 3-Z-[1-Benzylamino-1-phenyl-methylen]-5-amido-2-indolinon
Rf-Wert: 0,63 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{23}H_{19}N_3O_2
Massenspektrum: m/z = 369 (M^{*})
```

```
(74) 3-Z-[1-(4-(1-Imidazolyl-methyl)-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon
Rf-Wert: 0,45 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{25}H_{2}, N_{5}O_{2}
Massenspektrum: m/z = 436 (M+H)^{+}
(75) 3-Z-[1-(4-((2-Diethylamino-ethyl)-aminocarbonyl)-phenyl-
amino) - 1 - phenyl - methylen] - 5 - amido - 2 - indolinon - trifluoracetat
Ausbeute: 27 % der Theorie,
R<sub>f</sub>-Wert: 0,05 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{29}H_{31}N_5O_3
Massenspektrum: m/z = 497 (M^{*})
(76) 3-Z-[1-(4-Acetylaminomethyl-phenylamino)-1-phenyl-methy-
len] -5-amido-2-indolinon
Rf-Wert: 0,4 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{25}H_{22}N_4O_3
Massenspektrum: m/z = 426 (M^{+})
(77) 3-Z-[1-(4-((2-Dimethylaminoethyl)-N-methansulfonyl-amino)-
phenylamino) -1-phenyl-methylen] -5-amido-2-indolinon
Rf-Wert: 0,1 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{27}H_{29}N_5O_4S
Massenspektrum: m/z = 519 (M^{\dagger})
(78) 3-Z-[1-(4-(N-(Ethoxycarbonylmethyl)-N-methansulfonyl-ami-
no)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
R_f-Wert: 0,57 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{27}H_{26}N_4O_6
Massenspektrum: m/z = 534 (M^{+})
(79) 3-Z-[1-(4-(N-(Cyanomethyl)-N-methansulfonyl-amino)-phenyl-
amino) -1-phenyl-methylen] -5-amido-2-indolinon
Rf-Wert: 0,49 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C_{25}H_{21}N_5O_4S
Massenspektrum: m/z = 487 (M^{+})
```

```
(80) 3-Z-[1-(4-(N-Methyl-N-methansulfonyl-amino)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon
R_{f}-Wert: 0,46 (Kieselgel; Methylenchlorid/Methanol = 9:1)
C,4H,,N,O,S
Massenspektrum: m/z = 462 (M^{\dagger})
(81) 3-Z-[1-(4-(2-0xo-pyrrolidin-1-yl-methyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon
C_{27}H_{24}N_4O_3
Massenspektrum: m/z = 452 (M^{*})
(82) 3-Z-[1-(4-(2-Oxo-piperidin-1-yl-methyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon
C_{28}H_{26}N_4O_3
Massenspektrum: m/z = 466 (M^{*})
(83) 3-Z-[1-(4-(4-Cyclohexyl-piperidino-methyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{34}H_{38}N_4O_2
Massenspektrum: m/z = 534 (M^*)
(84) 3-Z-[1-(4-(2,6-Dimethyl-piperidino-methyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{30}H_{32}N_4O_2
Massenspektrum: m/z: 480 (M<sup>+</sup>)
(85) 3-Z-[1-(4-(4-Phenyl-4-hydroxy-piperidino-methyl)-phenyl-
amino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{14}H_{12}N_4O_3
Massenspektrum: m/z = 545 (M^*)
Rf-Wert: 0,66 (Kieselgel, Methylenchlorid/Methanol = 4:1)
 (86) 3-Z-[1-(4-(2-Methoxycarbonyl-pyrrolidino-methyl)-phenyl-
amino) -1-phenyl-methylen] -5-amido-2-indolinon-trifluoracetat
C_{29}H_{28}N_4O_4
Massenspektrum: m/z = 497 (M+H)^{+}
Rf-Wert: 0,65 (Kieselgel, Methylenchlorid/Methanol = 4:1)
```

```
(87) 3-Z-[1-(4-(1-0xo-thiomorpholin-4-ylmethyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C-2H25N4O3S
Massenspektrum: m/z = 487 (M+H)^{+}
Rf-Wert: 0,68 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(88) 3-Z-[1-(4-(3,6-Dihydro-2H-pyridin-1-ylmethyl)-phenyl-
amino) -1-phenyl-methylen] -5-amido-2-indolinon-trifluoracetat
C_{20}H_{26}N_{2}O_{2}
Massenspektrum: m/z = 451 (M+H)^{+}
(89) 3-Z-[1-(4-(2,5-Dihydro-pyrrol-1-ylmethyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{27}H_{24}N_4O_2
Massenspektrum: m/z = 437 (M+H)^{+}
Rf-Wert: 0,49 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(90) 3-Z-[1-(4-(Thiomorpholin-4-ylmethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon-trifluoracetat
C,7H,6N,02S
Massenspektrum: m/z = 471 (M+H)^{\dagger}
R_f-Wert: 0,78 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(91) 3-Z-[1-(4-(6,7-Dimethoxy-tetrahydroisochinolin-2-ylme-
thyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-
trifluoracetat
C_{34}H_{32}N_4O_4
Massenspektrum: m/z = 561 (M+H)^{\dagger}
Rf-Wert: 0,8 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(92) 3-Z-[1-(4-(4-Phenyl-piperazin-1-ylmethyl))-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{33}H_{3}, N_5O_2
Massenspektrum: m/z = 530 (M+H)^{+}
Rf-Wert: 0,78 (Kieselgel, Methylenchlorid/Methanol = 4:1)
```

```
(93) 3-Z-[1-(4-(3,5-Dimethyl-piperidino-methyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{30}H_{32}N_4O_2
Massenspektrum: m/z = 480 (M^{+})
Rf-Wert: 0,54 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(94) 3-Z-[1-(4-(N-Methyl-N-benzyl-amino-methyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C,H,N,O,
Massenspektrum: m/z = 488 (M^{*})
(95) 3-Z-[1-(3,4-Dimethoxy-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
C24H21N3O4
Massenspektrum: m/z = 415 (M^*)
Rf-Wert: 0,5 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(96) 3-Z-[1-(4-Trifluormethoxy-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
C_{23}H_{16}F_3N_3O_3
Massenspektrum: m/z = 439 (M^{+})
R_{f}-Wert: 0,5 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 (97) 3-Z-[1-(3-Ethoxycarbonyl-phenylamino)-1-phenyl-methylen]-
 5-amido-2-indolinon
 C25H21N3O4
 Massenspektrum: m/z = 427 (M^{+})
 R_{f}-Wert: 0,52 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 (98) 3-Z-[1-(3-Carboxy-phenylamino)-1-phenyl-methylen]-5-amido-
 2-indolinon
 C_{23}H_{17}N_3O_4
 Massenspektrum: m/z = 399 (M^*)
 Rf-Wert: 0,14 (Kieselgel, Methylenchlorid/Methanol = 9:1)
```

```
(99) 3-Z-[1-(3-Diethylcarbamoyl-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
C_{27}H_{26}N_4O_3
Massenspektrum: m/z = 454 (M^{+})
Rf-Wert: 0,48 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(100) 3-Z-[1-(3-Ethylcarbamoyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
C25H22N4O3
Massenspektrum: m/z = 426 (M^{+})
Rf-Wert: 0,42 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(101) 3-Z-[1-(3-Trifluormethoxy-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
C23H16F3N3O3
Massenspektrum: m/z = 439 (M^*)
Rf-Wert: 0,5 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(102) 3-Z-[1-(3-Ethoxy-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
C_{24}H_{21}N_3O_3
Massenspektrum: m/z = 399 (M^*)
Rf-Wert: 0,49 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(103) 3-Z-[1-(4-Methoxymethyl-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
C_{24}H_{21}N_{3}O_{3}
Massenspektrum: m/z = 399 (M^{+})
Rf-Wert: 0,4 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(104) 3-Z-[1-(4-Ethyl-phenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
C_{24}H_{21}N_3O_2
Massenspektrum: m/z = 383 (M^{+})
Rf-Wert: 0,52 (Kieselgel, Methylenchlorid/Methanol = 4:1)
```

```
(105) 3-Z-[1-(4-Methyl-3-nitro-phenylamino)-1-phenyl-methylen]-
5-amido-2-indolinon
C_{23}H_{18}N_4O_4
Massenspektrum: m/z = 414 (M^{+})
(106) 3-Z-[1-(4-Methyl-3-methoxy-phenylamino)-1-phenyl-methy-
len]-5-amido-2-indolinon
C24H21N3O3
Massenspektrum: m/z = 399 (M^{+})
(107) 3-Z-[1-(4-(4-Aminophenyl-methyl)-phenylamino)-l-phenyl-
methylen]-5-amido-2-indolinon-trifluoracetat
C_{29}H_{24}N_4O_2
Massenspektrum: m/z = 460 (M^{+})
(108) 3-Z-[1-(4-Methoxycarbonyl-3-methyl-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon
C,5H2,N3O4
Massenspektrum: m/z = 427 (M^{+})
Rf-Wert: 0,56 (Kieselgel, Methylenchlorid/Methanol = 4:1)
(109) 3-Z-[1-(4-Cyanophenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
C_{23}H_{16}N_4O_2
Massenspektrum: m/z = 380 (M^{+})
R_{f}-Wert: 0,65 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 (110) 3-Z-[1-(5-Methyl-pyridin-2-yl-amino)-1-phenyl-methylen]-
5-amido-2-indolinon
Rf-Wert: 0,6 (Kieselgel, Methylenchlorid/Methanol = 9:1)
C,,H,,N,O,
Massenspektrum: m/z = 370 (M^{+})
 (111) 3-Z-[1-(5-Brom-pyridin-2-yl-amino)-1-phenyl-methylen]-
 5-amido-2-indolinon
 Rf-Wert: 0,65 (Kieselgel, Methylenchlorid/Methanol = 9:1)
```

```
C, H, BrN, O,
Massenspektrum: m/z = 434/436 (M<sup>+</sup>)
(112) 3-Z-[1-(2-Chlor-pyridin-5-yl-amino)-1-phenyl-methylen]-
5-amido-2-indolinon
Rf-Wert: 0,49 (Kieselgel, Methylenchlorid/Methanol = 9:1)
C_2, H_1, ClN_4O_2
Massenspektrum: m/z = 390/392 (M<sup>+</sup>)
(113) 3-Z-[1-(3-Cyanophenylamino)-1-phenyl-methylen]-5-amido-
2-indolinon
C_{23}H_{16}N_4O_2
Massenspektrum: m/z = 380 (M^{+})
Rf-Wert: 0,57 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(114) 3-Z-[1-(4-(N-Phenyl-amino-methyl)-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon
C,,H,,N,O,
Massenspektrum: m/z = 460 (M^{+})
R_{f}-Wert: 0,74 (Kieselgel, Methylenchlorid/Methanol = 9:1)
(115) 3-Z-[1-(4-(N-Methyl-N-phenyl-aminomethyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon
C30H36N4O3
Massenspektrum: m/z = 474 (M^{+})
R_{f}-Wert: 0,75 (Kieselgel, Methylenchlorid/Methanol = 9:1)
 (116) 3-Z-[1-(4-(N-Ethyl-aminomethyl)-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon-trifluoracetat
C_{25}H_{24}N_4O_2
Massenspektrum: m/z = 412 (M^*)
 (117) 3-Z-[1-(4-(N-(4-Chlorphenyl-methyl)-aminomethyl)-phenyl-
 amino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
 C,0H,5ClN4O,
 Massenspektrum: m/z = 508/510 (M<sup>+</sup>)
```

C, H, N, O, S

Massenspektrum:  $m/z = 448 \, (M^{*})$ 

```
(118) 3-Z-[1-(4-(N-Cyclohexyl-aminomethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{29}H_{30}N_4O_2
Massenspektrum: m/z = 466 (M^{+})
(119) 3-Z-[1-(4-(N-Isopropyl-aminomethyl)-phenylamino)-1-phe-
nyl-methylen]-5-amido-2-indolinon-trifluoracetat
C25H25N4O2
Massenspektrum: m/z = 426 (M^{*})
(120) 3-Z-[1-(4-(N-Butyl-aminomethyl)-phenylamino)-1-phenyl-
methylen]-5-amido-2-indolinon-trifluoracetat
C,,H,,N,O,
Massenspektrum: m/z = 440 \text{ (M}^{+})
(121) 3-Z-[1-(4-(N-Methoxycarbonyl-methylamino-methyl)-phenyl-
amino) -1-phenyl-methylen] -5-amido-2-indolinon-trifluoracetat
C25H24N4O4
Massenspektrum: m/z = 456 (M<sup>+</sup>)
 (122) 3-Z-[1-(4-(N-(Phenyl-methyl)-aminomethyl)-phenylamino)-
1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat
C_{30}H_{26}N_4O_2
Massenspektrum: m/z = 464 (M^*)
 (123) 3-Z-[1-(4-(N-Acetyl-N-ethoxycarbonylmethyl-amino)-phenyl-
 amino)-1-phenyl-methylen]-5-amido-2-indolinon
 C, H, N, O,
 Massenspektrum: m/z = 498 (M^{+})
 (124) 3-Z-[1-(4-Methyl-3-sulfamoyl-phenylamino)-1-phenyl-methy-
 len]-5-amido-2-indolinon
```

(125) 3-Z-[1-(4-(N-Methansulfonyl-N-(methylcarbamoylmethyl)-amino)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon  $C_{26}H_{25}N_5O_5S$  Massenspektrum:  $m/z=519~(M^*)$  (126) 3-Z-[1-(4-(N-Methansulfonyl-N-(piperidin-carbonyl-me-

(126) 3-Z-[1-(4-(N-Methansulfonyl-N-(piperidin-Carbonyl-Methyl) amino) -phenylamino) -1-phenyl-methylen] -5-amido-2-indolinon C<sub>30</sub>H<sub>31</sub>N<sub>5</sub>O<sub>5</sub>S

Massenspektrum:  $m/z = 573 (M^{\circ})$ 

(127) 3-Z-[1-(4-Carboxy-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

C, H, N,O,

Massenspektrum:  $m/z = 398 (M-H^{+})$ 

(128) 3-Z-[1-(4-Carboxy-3-methyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

 $C_{24}H, _{9}N_{3}O_{4}$ 

Massenspektrum:  $m/z = 412 (M-H^{+})$ 

(129) 3-Z-[1-(4-(3-Diethylamino-propoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $C_{29}H_{32}N_4O_3$ 

Massenspektrum:  $m/z = 484 (M^{\dagger})$ 

(130) 3-Z-[1-(4-(2-Piperidino-ethoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $C_{29}H_{30}N_4O_3$ 

Massenspektrum:  $m/z = 483 (M+H)^{+}$ 

(131) 3-Z-[1-(4-(3-Piperidino-propoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $C_{30}H_{32}N_4O_3$ 

Massenspektrum:  $m/z = 496 (M^{+})$ 

(132) 3-Z-[1-(4-(3-Dimethylamino-propoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $C_{27}H_{28}N_4O_3$ 

Massenspektrum:  $m/z = 457 (M+H)^{+}$ 

(133) 3-Z-[1-(4-(3-N-Methyl-N-benzylamino-propoxy)-phenylami-no)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $C_{33}H_{32}N_4O_3$ 

Massenspektrum:  $m/z = 533 (M+H)^{+}$ 

(134) 3-Z-[1-(4-(2-Dimethylamino-ethoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $C_{26}H_{26}N_4O_3 \qquad .$ 

Massenspektrum:  $m/z = 443 (M+H)^{+}$ 

- (135) 3-Z-[1-(4-(N-Ethyl-N-benzyl-aminomethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
- (136) 3-Z-[1-(4-(N-Propyl-N-benzyl-aminomethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
- (137) 3-Z-[1-(4-(N-Methyl-N-(4-chlorphenyl-methyl)-aminome-thyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
- (138) 3-Z-[1-(4-(N-Methyl-N-(4-bromphenyl-methyl)-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
- (139) 3-Z-[1-(4-(N-Methyl-N-(3-chlorphenyl-methyl)-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
- (140) 3-Z-[1-(4-(N-Methyl-N-(3,4-dimethoxyphenyl-methyl)-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon
- (141) 3-Z-[1-(4-(N-Methyl-N-(4-methoxyphenyl-methyl)-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

(142) 3-Z-[1-(4-(N-Trifluorethyl-N-(phenyl-methyl)-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

(143) 3-Z-[1-(4-(N-Trifluorethyl-N-(4-chlorphenyl-methyl)-ami-nomethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

## Beispiel 5

3-Z-[1-(4-(4-Acetyl-piperazinylmethyl)-phenylamino)-1-phenyl-methylenl-5-amido-2-indolinon

25 mg 3-Z-[1-(4-(Piperazinylmethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon und 0,02 g Triethylamin werden in 10 ml Methylenchlorid gelöst und mit 5 mg Acetylchlorid versetzt und die Lösung 16 Stunden bei Raumtemperatur gerührt. Anschließend wird mit Wasser gewaschen und dann die organische Phase einrotiert.

Ausbeute: 15 mg g (68 % der Theorie),

 $C_{29}H_{29}N_5O_3$ 

Massenspektrum: m/z = 495 (M<sup>+</sup>)

Analog wird folgende Verbindung hergestellt:

(1) 3-Z-[1-(4-(4-Benzoyl-piperazinylmethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

Hergestellt aus 3-Z-[1-(4-(Piperazinyl-methyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon und Benzoylchlorid.

Ausbeute: 91 % der Theorie,

 $C_{34}H_{31}N_5O_3$ 

Massenspektrum:  $m/z = 557 (M^{\dagger})$ 

#### Beispiel 6

3-Z-[1-(4-Diethylcarbamoyl-phenylamino-1-phenyl-methylen]-5-amido-2-indolinon

7 g Harz aus Stufe IV werden analog Beispiel 4 mit 4-Aminobenzoesäureethylester umgesetzt. Das feuchte beladene Harz wird in 30 ml Dioxan und 30 ml Methanol suspendiert und mit 25 ml 1 N Natronlauge 40 Stunden gerührt. Anschließend wird mit verdünnter Salzsäure neutralisiert und mit Methylenchlorid, Methanol und Dimethylformamid gewaschen. Anschließend werden 300 mg des Harzes in 3 ml Dimethylformamid suspendiert, mit 0,2 ml Diethylamin, 0,5 g O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium-tetrafluorborat und 0,8 ml Ethyldiisopropylamin 60 Stunden bei Raumtemperatur stehen gelassen. Schließlich spaltet man das Produkt wie in Beispiel 4 beschrieben vom Harz.

Ausbeute: 29 mg,

 $R_{f}$ -Wert: 0,46 (Kieselgel, Methylenchlorid/Methanol = 9:1)

 $C_{27}H_{26}N_4O_3$ 

Massenspektrum: m/z = 454 (M<sup>+</sup>)

Analog werden hergestellt:

(1) 3-Z-[1-(4-(Piperidinocarbonyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

 $R_{f}$ -Wert: 0,43 (Kieselgel, Methylenchlorid/Methanol = 9:1)  $C_{28}H_{26}N_{4}O_{3}$ 

Massenspektrum:  $m/z = 466 (M^{*})$ 

- (2) 3-Z-[1-(4-(4-Methylpiperazinocarbonyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluoracetat  $R_f$ -Wert: 0,84 (Kieselgel, Methylenchlorid/Methanol = 4:1)  $C_{28}H_{27}N_5O_3$  Massenspektrum: m/z = 481 ( $M^+$ )
- (3) 3-Z-[1-(4-(N-(2-Dimethylamino-ethyl)-N-methyl-carbamoyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon-trifluor-acetat

 $R_f$ -Wert: 0,25 (Kieselgel, Methylenchlorid/Methanol = 9:1)  $C_{28}H_{29}N_5O_3$ 

Massenspektrum:  $m/z = 484 (M+H)^{+}$ 

(4) 3-Z-[1-(4-(N-Methoxycarbonylmethyl-carbamoyl)-phenylamino)1-phenyl-methylen]-5-amido-2-indolinon
Rf-Wert: 0,4 (Kieselgel, Methylenchlorid/Methanol = 9:1)

 $C_{26}H_{22}N_4O_5$ 

Massenspektrum:  $m/z = 470 (M^{+})$ 

(5) 3-Z-[1-(4-Benzylcarbamoyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

 $R_{f}$ -Wert: 0,48 (Kieselgel, Methylenchlorid/Methanol = 9:1)

C30H24N4O3

Massenspektrum:  $m/z = 488 (M^{+})$ 

#### Beispiel 7

3-Z-[1-(4-(N-Methyl-benzoylamino)-phenylamino)-1-phenyl-methylenl-5-amido-2-indolinon

4,5 g Harz aus Stufe IV werden analog Beispiel 4 mit 3,4 g 4-(9H-Fluoren-9-ylmethoxycarbonyl)-methyl-amino)-anilin in Dimethylformamid umgesetzt. Anschließend wird die 9H-Fluorenschutzgruppe mit 4 ml 30%igem Piperidin in Dimethylformamid abgespalten und das Harz mehrfach gewaschen. Anschließend werden 400 mg des Harzes in 4 ml Dimethylformamid und 0,3 ml Triethylamin suspendiert und mit 0,3 ml Benzoylchlorid eine Stunde bei Raumtemperatur umgesetzt. Schließlich spaltet man das Produkt wie in Beispiel 4 beschrieben vom Harz.

Ausbeute: 33 mg.

 $R_{f}$ -Wert: 0,45 (Kieselgel, Methylenchlorid/Methanol = 9:1)

 $C_{30}H_{24}N_4O_3$ 

Massenspektrum:  $m/z = 488 (M^{+})$ 

Analog werden hergestellt:

(1) 3-Z-[1-(4-(N-Methyl-propionylamino)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

 $R_f$ -Wert: 0,42 (Kieselgel, Methylenchlorid/Methanol = 9:1)  $C_{26}H_{24}N_4O_3$ 

Massenspektrum:  $m/z = 440 (M^{*})$ 

(2) 3-Z-[1-(4-(N-Methyl-butyrylamino)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon  $R_f\text{-Wert: 0,44 (Kieselgel, Methylenchlorid/Methanol = 9:1)} \\ C_{27}H_{26}N_4O_3\\ Massenspektrum: m/z = 453 (M-H^+)$ 

(3) 3-Z-[1-(4-(N-Methyl-ethylsulfonylamino)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon  $R_f\text{-Wert: 0,42 (Kieselgel, Methylenchlorid/Methanol = 9:1)}$   $C_{25}H_{24}N_4O_4S$  Massenspektrum: m/z = 475 (M-H<sup>+</sup>)

(4) 3-Z-[1-(4-(N-Methyl-propylsulfonylamino)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon  $R_f\text{-Wert: 0,44 (Kieselgel, Methylenchlorid/Methanol = 9:1)}$   $C_{25}H_{26}N_4O_4S$  Massenspektrum: m/z = 491 (M+H)<sup>+</sup>

(5) 3-Z-[1-(4-(N-Methyl-phenylsulfonylamino)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinonRf-Wert: 0,53 (Kieselgel, Methylenchlorid/Methanol = 9:1)C<sub>29</sub>H<sub>24</sub>N<sub>4</sub>O<sub>4</sub>SMassenspektrum: <math>m/z = 524 (M<sup>\*</sup>)

#### Beispiel 8

Trockenampulle mit 75 mg Wirkstoff pro 10 ml

#### Zusammensetzung:

Wirkstoff 75,0 mg
Mannitol 50,0 mg
Wasser für Injektionszwecke ad 10,0 ml

#### Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet. Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

#### Beispiel 9

Trockenampulle mit 35 mg Wirkstoff pro 2 ml

#### Zusammensetzung:

Wirkstoff

35,0 mg

Mannitol

100,0 mg

Wasser für Injektionszwecke

ad 2,0 ml

# Herstellung:

Wirkstoff und Mannitol werden in Wasser gelöst. Nach Abfüllung wird gefriergetrocknet.

Die Auflösung zur gebrauchsfertigen Lösung erfolgt mit Wasser für Injektionszwecke.

### Beispiel 10

Tablette mit 50 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff           | 50,0 mg  |
|-----|---------------------|----------|
| (2) | Milchzucker         | 98,0 mg  |
| (3) | Maisstärke          | 50,0 mg  |
| (4) | Polyvinylpyrrolidon | 15,0 mg  |
| (5) | Magnesiumstearat    | 2.0 mg   |
|     |                     | 215,0 mg |

#### Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugemischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe.

Durchmesser der Tabletten: 9 mm.

## Beispiel 11

Tablette mit 350 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff           | 350,0 | mg |
|-----|---------------------|-------|----|
| (2) | Milchzucker         | 136,0 | mg |
| (3) | Maisstärke          | 80,0  | mg |
| (4) | Polyvinylpyrrolidon | 30,0  | mg |
| (5) | Magnesiumstearat    | 4.0   | mg |
|     |                     | 600,0 | mq |

#### Herstellung:

(1), (2) und (3) werden gemischt und mit einer wäßrigen Lösung von (4) granuliert. Dem getrockneten Granulat wird (5) zugemischt. Aus dieser Mischung werden Tabletten gepreßt, biplan mit beidseitiger Facette und einseitiger Teilkerbe.

Durchmesser der Tabletten: 12 mm.

#### Beispiel 12

Kapseln mit 50 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff                | 50,0  | mg |
|-----|--------------------------|-------|----|
| (2) | Maisstärke getrocknet    | 58,0  | mg |
| (3) | Milchzucker pulverisiert | 50,0  | mg |
| (4) | Magnesiumstearat         | 2.0   | mg |
|     |                          | 16Ò,0 | mg |

#### Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Größe 3 abgefüllt.

#### Beispiel 13

Kapseln mit 350 mg Wirkstoff

#### Zusammensetzung:

| (1) | Wirkstoff                | 350,0 | mg |
|-----|--------------------------|-------|----|
| (2) | Maisstärke getrocknet    | 46,0  | mg |
| (3) | Milchzucker pulverisiert | 30,0  | mg |
| (4) | Magnesiumstearat         | 4.0   | mg |
|     |                          | 430,0 | mg |

## Herstellung:

(1) wird mit (3) verrieben. Diese Verreibung wird der Mischung aus (2) und (4) unter intensiver Mischung zugegeben.

Diese Pulvermischung wird auf einer Kapselabfüllmaschine in Hartgelatine-Steckkapseln Gr6Be 0 abgefüllt.

#### Beispiel 14

## Suppositorien mit 100 mg Wirkstoff

| 1 Zäpfchen ent | :h | ıä. | Lt | : |
|----------------|----|-----|----|---|
|----------------|----|-----|----|---|

| Wirkstoff                      | 100,0 m   | g |
|--------------------------------|-----------|---|
| Polyethylenglykol (M.G. 1500)  | 600,0 m   | g |
| Polyethylenglykol (M.G. 6000)  | 460,0 m   | g |
| Polyethylensorbitanmonostearat | 840.0 m   | g |
|                                | 2 000,0 m | g |

#### Herstellung:

Das Polyethylenglykol wird zusammen mit Polyethylensorbitanmonostearat geschmolzen. Bei 40°C wird die gemahlene Wirksubstanz in der Schmelze homogen dispergiert. Es wird auf 38°C abgekühlt und in schwach vorgekühlte Suppositorienformen ausgegossen.

#### Patentansprüche

# 1. Substituierte Indolinone der allgemeinen Formel

$$R_{2} \xrightarrow{R_{3}} R_{4}$$

$$R_{5} \qquad (I),$$

in der

X ein Sauerstoff- oder Schwefelatom,

 $R_1$  ein Wasserstoffatom, eine  $C_{1-4}$ -Alkoxy-carbonyl- oder  $C_{2-4}$ -Alkanoylgruppe,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxy-carbonyl- oder Aminocarbonyl- gruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkyl-gruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

R<sub>3</sub> eine Phenyl- oder Naphthylgruppe, die durch Fluor-, Chloroder Bromatome, durch  $C_{1-3}$ -Alkyl-,  $C_{1-3}$ -Alkoxy-, Cyano-, Trifluormethyl-, Nitro-, Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -alkyl)-amino-,  $C_{2-4}$ -Alkanoyl-amino-, N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-, N- $(C_{1-3}$ -Alkyl)- $C_{2-4}$ -alkanoylamino-, Amino- $C_{1-3}$ -alkyl-,  $C_{1-3}$ -Alkylamino- $C_{1-3}$ -alkyl-, Di- $(C_{1-3}$ -Alkyl)-amino- $C_{1-3}$ -alkyl-, N- $(C_{2-4}$ -Alkanoyl)-amino- $C_{1-3}$ -alkyl- oder N- $(C_{2-4}$ -Alkanoyl)- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppen substituiert und die Substituenten gleich oder verschieden sein können,

 $R_4$  ein Wasserstoffatom oder eine  $C_{1-3}$ -Alkylgruppe und

R<sub>s</sub> ein Wasserstoffatom,

eine gegebenenfalls durch eine Phenyl-, Carboxy- oder  $C_{1-3}$ -Alk-oxy-carbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substitierte  $C_{1-7}$ -Cycloalkylgruppe,

eine gegebenenfalls durch eine  $C_{1-3}$ -Alkylgruppe substituierte Indanylgruppe,

eine 5-gliedrige Heteroarylgruppe, die eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Iminogruppe, ein Sauerstoff- oder Schwefelatom oder eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Iminogruppe und ein Sauerstoff-, Schwefel- oder Stickstoffatom oder zwei Stickstoffatome enthält oder eine 6-gliedrige Hereroarylgruppe, die 1 bis 3 Stickstoffatome enthält, wobei über zwei benachbarte Kohlenstoffatome oder über ein Kohlenstoffatom und eine benachbarte Iminogruppe der vorstehend erwähnten 5- und 6-gliedrigen Heteroarylgruppen zusätzlich eine 1,3-Butadienylenbrücke angefügt sein kann und das Kohlenstoffgerüst der vorstehend erwähnten mono- und bicyclischen Ringe durch Fluor-, Chlor-, Brom- oder Jodatome, durch C<sub>1-5</sub>-Alkyl- oder Cyanogruppen mono- oder disubstituiert und die Substituenten gleich oder verschieden sein können,

eine über ein Kohlenstoffatom verknüpfte Pyrrolidinyl- oder Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sein kann,

eine gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1-5}$ -Alkyl-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminosulfonyl-, Nitro- oder Cyanogruppen disubstituierte Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können.

eine Phenyl-, Pyridyl-, Pyrimidyl- oder Thienylgruppe, die jeweils

durch eine Trifluormethoxygruppe, durch ein ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine  $C_{1-3}$ -Alkoxygruppe, die in 2- oder 3-Stellung durch eine Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Phenyl- $C_{1-3}$ -alkylamino-, N- $(C_{1-3}$ -Alkyl)-phenyl- $C_{1-3}$ -alkylamino-, Pyrrolidino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1\cdot3}$ -alkylamino- $C_{1\cdot3}$ -alkylgruppe, die im Phenylkern durch eine Trifluormethylgruppe, durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1\cdot5}$ -Alkyl- oder  $C_{1\cdot3}$ -Alk-oxygruppen mono- oder disubstituiert sein kann, wobei die Substituenten gleich oder verschieden sein können, und zusätzlich am Aminstickstoffatom durch eine  $C_{1\cdot3}$ -Alkylgruppe, in der die Wasserstoffatome ab Position 2 ganz oder teilweise durch Fluoratome ersetzt sein können,

durch eine C<sub>1-5</sub>-Alkyl-, Phenyl-, Imidazolyl-, C<sub>3-7</sub>-Cycloalkyl-, C<sub>1-3</sub>-Alkoxy-C<sub>1-3</sub>-alkoxy-, Phenyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Aminocarbonyl-, C<sub>1-3</sub>-Alkylaminocarbonyl-, Di-(C<sub>1-3</sub>-Alkyl)-aminocarbonyl-, Phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, Piperazinocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-piperazinocarbonyl-, Nitro-, Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-benzoyl-aminoqruppe,

durch eine  $N-(C_{1-3}-Alkyl)-C_{2-4}-alkanoylaminogruppe,$  die im Alkylteil zusätzlich durch eine Carboxy- oder  $C_{1-3}-Alkoxycarbonylgruppe$  substituiert ist,

- 81 -

durch eine  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, in denen ein Alkylteil zusätzlich durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert ist, oder

durch eine N- $(C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkylsulfonylamino- oder N- $(C_{1-3}$ -Alkyl)-phenylsulfonylaminogruppe, in denen der Alkylteil zusätzlich durch eine Cyano-, Carboxy-,  $C_{1-3}$ -Alkoxy-carbonyl-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Amino-carbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl)-aminocarbonyl-, Piperidinocarbonyl- oder 2- $[Di-(C_{1-3}$ -Alkylamino)]-ethylaminocarbonylgruppe substituiert sein kann, substituiert sind,

eine durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Phenyl- oder Thienylgruppe, in der der Alkylteil durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Amino-, C<sub>1-5</sub>-Alkylamino-, Di-(C<sub>1-5</sub>-Alkyl)-amino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 3-Hydroxypi-peridino-, 4-Hydroxypiperidino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4-(C<sub>1-3</sub>-Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4-(C<sub>2-4</sub>-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe,  $C_{1.5}$ -Alkylamino- oder Di- $(C_{1.5}$ -Alkyl)-aminogruppen zusätzlich durch eine oder zwei  $C_{1.5}$ -Alkylgruppen, durch eine  $C_{3.7}$ -Cycloalkyl-, Hydroxy-,  $C_{1.3}$ -Alkoxy-, Carboxy-,  $C_{1.3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1.3}$ -Alkylaminocarbonyl-oder Di- $(C_{1.3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1.3}$ -Alkyl- oder Cyanogruppen mono- oder disubstituierte Phenyl- $C_{1.3}$ -alkyl- oder Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, substituiert sein können

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalky-leniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

wobei die bei der Definition der vorstehend erwähnten Resten erwähnten Carboxygruppen zusätzlich durch eine in-vivo in eine Carboxygruppe überführbare Gruppe ersetzt sein und

die bei der Definition der vorstehend erwähnten Resten erwähnten Amino- und Iminogruppen zusätzlich durch einen in vivo abspaltbaren Rest substituiert sein können, bedeuten,

deren Isomere und deren Salze.

2. Substituierte Indolinone der allgemeinen Formel I gemäß Anspruch 1, in denen

X ein Sauerstoffatom,

 $R_1$  ein Wasserstoffatom oder eine  $C_{1-4}$ -Alkoxy-carbonylgruppe,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxy-carbonyl- oder Aminocarbonyl- gruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkyl-gruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

R, eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methyl-, Cyano- oder Aminomethylgruppe substituierte Phenylgruppe,

R, ein Wasserstofatom oder eine Methylgruppe und

R, ein Wasserstofatom,

eine gegebenenfalls durch eine Carboxy- oder  $C_{1-3}$ -Alkoxy-carbonylgruppe substituierte  $C_{1-5}$ -Alkylgruppe oder eine Benzylgruppe,

eine gegebenenfalls durch eine Methylgruppe substitierte  $C_{1,2}$ -Cycloalkylgruppe,

eine gegebenenfalls durch eine Methylgruppe substituierte Indanyl-, Pyridyl-, Oxazolyl-, Thiazolyl- oder Imidazolylgruppe, an die jeweils zusätzlich über zwei benachbarte Kohlenstoff- atome ein Phenylring ankondensiert sein kann,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methoxy-, Carboxy-, C<sub>1-3</sub>-Alkyloxycarbonyl-, Nitro- oder Aminosulfonylgruppe substituierte Methylphenylgruppe oder eine Dimethoxyphenylgruppe,

eine über ein Kohlenstoffatom verknüpfte Pyrrolidinyl- oder Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sind,

eine Phenylgruppe, die

durch eine Trifluormethoxygruppe, durch ein ein Fluor-, Chlor-, Brom- oder Jodatom,

durch eine  $C_{1-3}$ -Alkoxygruppe, die in 2- oder 3-Stellung durch eine Amino-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Phenyl-

 $C_{1-3}$ -alkylamino-, N- $(C_{1-3}$ -Alkyl)-phenyl- $C_{1-3}$ -alkylamino-, Pyrrolidino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppe, die im Phenylkern durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine  $C_{1-5}$ -Alkyl-,  $C_{1-3}$ -Alkoxy- oder Trifluormethylgruppe und zusätzlich am Aminstickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe, in der die Wasserstoffatome ab Position 2 ganz oder teilweise durch Fluoratome ersetzt sein können,

durch eine C<sub>1-5</sub>-Alkyl-, Phenyl-, Imidazolyl-, C<sub>3-7</sub>-Cycloalkyl-, C<sub>1-3</sub>-Alkoxy-C<sub>1-3</sub>-alkoxy-, Phenyl-C<sub>1-3</sub>-alkoxy-, Carboxy-C<sub>1-3</sub>-alkyl-, C<sub>1-3</sub>-Alkoxycarbonyl-C<sub>1-3</sub>-alkyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Aminocarbonyl-, C<sub>1-3</sub>-Alkylaminocarbonyl-, Di-(C<sub>1-3</sub>-Alkyl)-aminocarbonyl-, Phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, Piperazinocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-piperazinocarbonyl-, Nitro-, Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Benzoylamino- oder N-(C<sub>1-3</sub>-Alkyl)-benzoylaminogruppe,

durch eine  $N-(C_{1-3}-Alkyl)-C_{2-4}-alkanoylaminogruppe,$  die im Alkylteil zusätzlich durch eine Carboxy- oder  $C_{1-3}-Alkoxycar-bonylgruppe$  substituiert ist,

durch eine  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, in denen ein Alkylteil zusätzlich durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert ist, oder

durch eine N- $(C_{1-3}$ -Alkyl)- $C_{1-3}$ -alkylsulfonylamino- oder N- $(C_{1-3}$ -Alkyl)-phenylsulfonylaminogruppe, in denen der Alkylteil zusätzlich durch eine Cyano-, Carboxy-,  $C_{1-3}$ -Alkoxy-carbonyl-,  $C_{1-3}$ -Alkylamino-, Di- $(C_{1-3}$ -Alkyl)-amino-, Amino-carbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl-, Di- $(C_{1-3}$ -Alkyl)-amino-carbonyl-, Piperidinocarbonyl- oder 2- $[Di-(C_{1-3}$ -Alkylamino)]-

ethylaminocarbonylgruppe substituiert sein kann, substituiert ist,

eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Phenylgruppe, in der der Alkylteil durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxy-carbonyl-, Amino-, C<sub>1-5</sub>-Alkylamino-, Di-(C<sub>1-5</sub>-Alkyl)-amino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 3-Hydroxypiperidino-, 4-Hydroxypiperidino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4-(C<sub>1-3</sub>-Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4-(C<sub>2-4</sub>-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe,  $C_{1-5}$ -Alkylamino- oder Di- $(C_{1-5}$ -Alkyl)-aminogruppen zusätzlich durch eine oder zwei  $C_{1-5}$ -Alkylgruppen, durch eine  $C_{3-7}$ -Cycloalkyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxy-carbonyl-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch Fluor-, Chlor-, Brom- oder Jodatome, durch  $C_{1-3}$ -Alkyl- oder Cyanogruppen mono- oder disubstituierte Phenyl- $C_{1-3}$ -alkyl- oder Phenylgruppe, wobei die Substituenten gleich oder verschieden sein können, substituiert sein können

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalky-leniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

bedeuten, deren Isomere und deren Salze.

3. Substituierte Indolinone der allgemeinen Formel I gemäß Anspruch 1, in denen

X ein Sauerstoffatom,

R, ein Wasserstoffatom,

 $R_2$  eine Carboxy-,  $C_{1-4}$ -Alkoxycarbonyl- oder Aminocarbonylgruppe, in der der Aminoteil durch eine oder zwei  $C_{1-3}$ -Alkylgruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

R, eine gegebenenfalls durch eine Methylgruppe substituierte Phenylgruppe,

R4 ein Wasserstoffatom oder eine Methylgruppe und

R, ein Wasserstoffatom,

eine  $C_{1-3}$ -Alkylgruppe, eine Benylgruppe oder eine durch eine Carboxy- oder  $C_{1-3}$ -Alkoxycarbonylgruppe substituierte Methyloder Ethylgruppe,

eine gegebenenfalls durch eine Methylgruppe substitierte  $C_{3-7}$ -Cycloalkylgruppe,

eine gegebenenfalls durch eine Methylgruppe substituierte Indanyl-, Pyridyl-, Oxazolyl-, Thiazolyl- oder Imidazolylgruppe, an die jeweils zusätzlich über zwei benachbarte Kohlenstoff-atome ein Phenylring ankondensiert sein kann,

eine gegebenenfalls durch ein Fluor-, Chlor- oder Bromatom, durch eine Methoxy-, Carboxy-, C<sub>1-3</sub>-Alkyloxycarbonyl-, Nitro-

oder Aminosulfonylgruppe substituierte Methylphenylgruppe oder eine Dimethoxyphenylgrruppe,

eine 3-Pyrrolidinyl- oder 4-Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sind,

eine Phenylgruppe, die

durch eine Trifluormethoxy-, Benzyloxy-, Cyano- oder Nitrogruppe, durch ein ein Fluor-, Chlor- oder Bromatom,

durch eine  $C_{1-3}$ -Alkoxygruppe, wobei die Ethoxy- und n-Propoxygruppe jeweils endständig durch eine Dimethylamino-, Diethylamino-, N-Ethyl-methylamino-, N-Benzyl-methylamino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppe, die im Phenylkern durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl-, Methoxy- oder Trifluormethylgruppe und zusätzlich am Aminstickstoffatom durch eine  $C_{1-5}$ -Alkyl- oder 2,2,2-Trifluorethylgruppe substituiert sein kann,

durch eine C<sub>1-4</sub>-Alkyl-, Phenyl-, Imidazolyl-, Cyclohexyl-, Methoxymethyl-, Carboxymethyl-, C<sub>1-3</sub>-Alkoxycarbonyl-methyl-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Aminocarbonyl-, C<sub>1-3</sub>-Alkylami-nocarbonyl-, Di-(C<sub>1-3</sub>-Alkyl)-aminocarbonyl-, Phenyl-C<sub>1-3</sub>-alkyl-aminocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-phenyl-C<sub>1-3</sub>-alkylaminocarbonyl-, Piperazinocarbonyl-, N-(C<sub>1-3</sub>-Alkyl)-piperazinocarbonyl-, Amino-, C<sub>1-3</sub>-Alkylamino-, Di-(C<sub>1-3</sub>-alkyl)-amino-, Pyrrolidino-, Piperidino-, Morpholino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-c<sub>2-4</sub>-alkanoylamino-, Benzoylamino- oder N-(C<sub>1-3</sub>-Alkyl)-benzoyl-aminogruppe,

durch eine  $N-(C_{1-3}-Alkyl)-C_{2-4}-alkanoylaminogruppe, die im Alkylteil zusätzlich durch eine Carboxy- oder <math>C_{1-3}-Alkoxycar-bonylgruppe$  substituiert ist,

durch eine  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, in denen ein Alkylteil zusätzlich durch eine Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert ist, oder

durch eine  $N-(C_{1\cdot3}-Alkyl)-C_{1\cdot3}-alkylsulfonylamino-$  oder  $N-(C_{1\cdot3}-Alkyl)$ -phenylsulfonylaminogruppe, in denen der Alkylteil zusätzlich durch eine Cyano-, Carboxy-,  $C_{1\cdot3}-Alkoxycar-$ bonyl-,  $C_{1\cdot3}-Alkylamino-$ ,  $Di-(C_{1\cdot3}-Alkyl)$ -amino-, Amino-carbonyl-,  $C_{1\cdot3}-Alkylaminocarbonyl-$ ,  $Di-(C_{1\cdot3}-Alkyl)$ -amino-carbonyl-, Piperidinocarbonyl- oder  $2-[Di-(C_{1\cdot3}-Alkylamino)]$ - ethylaminocarbonylgruppe substituiert sein kann, substituiert ist,

eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Phenylgruppe, in der die Alkylgruppe durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Amino-, C<sub>1-5</sub>-Alkylamino-, Di-(C<sub>1-5</sub>-Alkyl)-amino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 4-Hydroxypipe-ridino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4-(C<sub>1-3</sub>-Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4-(C<sub>2-4</sub>-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe zusätzlich durch eine Phenylgruppe oder durch eine oder zwei Methylgruppen,

die vorstehend erwähnten  $C_{1-5}$ -Alkylamino- und Di- $(C_{1-5}$ -Alkyl)- aminogruppen zusätzlich durch eine oder zwei  $C_{1-3}$ -Alkylgruppen, durch eine Cyclohexyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl- oder Cyanogruppe substituierte Phenyl- $C_{1-3}$ -alkyl- oder Phenylgruppe substituiert sein kann,

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalky-leniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1\cdot 3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

bedeuten, deren Isomere und deren Salze.

4. Substituierte Indolinone der allgemeinen Formel I gemäß Anspruch 1, in denen

X ein Sauerstoffatom,

R, ein Wasserstoffatom,

 $R_2$  eine Carboxy- oder Aminocarbonylgruppe, in der der Aminoteil durch eine oder zwei  $C_{1\cdot 3}$ -Alkylgruppen substituiert sein kann und die Substituenten gleich oder verschieden sein können,

R, eine gegebenenfalls durch eine Methylgruppe substituierte Phenylgruppe,

R4 ein Wasserstoffatom und

R<sub>s</sub> ein Wasserstoffatom,

eine 3-Pyrrolidinyl- oder 4-Piperidinylgruppe, die jeweils am Stickstoffatom durch eine  $C_{1-3}$ -Alkylgruppe substituiert sind,

eine Phenylgruppe, die

durch eine  $C_{1-3}$ -Alkoxygruppe, wobei die Ethoxy- und n-Propoxygruppe jeweils endständig durch eine Dimethylamino-, Diethylamino-, N-Ethyl-methylamino-, N-Benzyl-methylamino- oder Piperidinogruppe substituiert sein kann,

durch eine Phenyl- $C_{1-3}$ -alkylamino- $C_{1-3}$ -alkylgruppe, die im Phenylkern durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl-, Methoxy- oder Trifluormethylgruppe und zusätzlich am Aminstickstoffatom durch eine  $C_{1-5}$ -Alkyl- oder 2,2,2-Trifluorethylgruppe substituiert sein kann, substituiert ist,

eine gegebenenfalls durch eine C<sub>1-3</sub>-Alkylgruppe substituierte Phenylgruppe, in der die Alkylgruppe durch eine Hydroxy-, C<sub>1-3</sub>-Alkoxy-, Carboxy-, C<sub>1-3</sub>-Alkoxycarbonyl-, Amino-, C<sub>1-5</sub>-Alkylamino-, Di-(C<sub>1-5</sub>-Alkyl)-amino-, C<sub>2-4</sub>-Alkanoylamino-, N-(C<sub>1-3</sub>-Alkyl)-C<sub>2-4</sub>-alkanoylamino-, Pyrrolidino-, Dehydro-pyrrolidino-, Piperidino-, Dehydropiperidino-, 4-Hydroxy-piperidino-, Hexamethylenimino-, Morpholino-, Thiomorpholino-, Piperazino-, 4-(C<sub>1-3</sub>-Alkyl)-piperazino-, 4-Phenyl-piperazino-, 4-(C<sub>2-4</sub>-Alkanoyl)-piperazino-, 4-Benzoyl-piperazino- oder Imidazolylgruppe substituiert ist,

wobei die vorstehend erwähnten gesättigten Cycloalkyleniminoringe zusätzlich durch eine Phenylgruppe oder durch eine oder zwei Methylgruppen,

die vorstehend erwähnten  $C_{1-5}$ -Alkylamino- und Di- $(C_{1-5}$ -Alkyl)- aminogruppen zusätzlich durch eine oder zwei  $C_{1-3}$ -Alkylgruppen, durch eine Cyclohexyl-, Hydroxy-,  $C_{1-3}$ -Alkoxy-, Carboxy-,  $C_{1-3}$ -Alkoxycarbonyl-, Aminocarbonyl-,  $C_{1-3}$ -Alkylaminocarbonyl- oder Di- $(C_{1-3}$ -Alkyl)-aminocarbonylgruppe, durch eine im Phenylkern gegebenenfalls durch ein Fluor-, Chlor-, Brom- oder Jodatom, durch eine Methyl- oder Cyanogruppe substituierte Phenyl- $C_{1-3}$ -alkyl- oder Phenylgruppe substituiert sein kann,

oder eine zu dem Stickstoffatom benachbarte Methylengruppe in den vorstehend erwähnten Cycloalkyleniminoringe durch eine Carbonyl- oder Sulfonylgruppe ersetzt sein kann, und die vorstehend erwähnten monosubstituierten Phenylgruppen zusätzlich durch ein Fluor-, Chlor- oder Bromatom, eine Methyl-, Amino-,  $C_{1-3}$ -Alkylamino- oder Di- $(C_{1-3}$ -Alkyl)-aminogruppe substituiert sein können, oder

an einen der vorstehend erwähnten unsubstituierten Cycloalky-leniminoringe über zwei benachbarte Kohlenstoffatome ein gegebenenfalls durch eine oder zwei  $C_{1-3}$ -Alkoxygruppen substituierter Phenylring ankondensiert sein kann,

bedeuten, deren Isomere und deren Salze.

5. Substituierte Indolinone der allgemeinen Formel I nach mindestens einem der Ansprüch 1 bis 4, in denen

der Rest R2 in 5-Stellung steht.

- 6. Folgende substituierte Indolinone der allgemeinen Formel I gemäß Anspruch 1:
- (a) 3-Z-[1-(4-Aminomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (b) 3-Z-[1-Phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (c) 3-Z-[1-(4-Brom-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon;
- (d) 3-Z-[1-(4-Dimethylamino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (e) 3-Z-[1-(4-Pyrrolidinomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,

- (f) 3-Z-[1-(4-Piperidinomethyl-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (g) 3-Z-[1-(4-Hexamethyleniminomethyl-phenylamino)-1-phenyl-me-thylen]-5-amido-2-indolinon,
- (h) 3-Z-[1-(4-(4-Benzyl-piperidino)-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (i) 3-Z-[1-(4-(N-Butyl-aminomethyl)-phenylamino)-1-phenyl-me-thylen]-5-amido-2-indolinon,
- (j) 3-Z-[1-(4-(N-(Phenyl-methyl)-aminomethyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (k) 3-Z-[1-(4-(N-Methyl-N-benzyl-amino-methyl)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon,
- (1) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-dimethylcarbamoyl-2-indolinon,
- (m) 3-Z-[1-(4-Piperidino-methyl-phenylamino)-1-phenyl-methylen]-5-diethylcarbamoyl-2-indolinon,
- (n) 3-Z-[1-(4-(3-Diethylamino-propoxy)-phenylamino)-1-phenyl-methylen]-5-amido-2-indolinon

und deren Salze.

- 7. Physiologisch verträgliche Salze der Verbindungen gemäß den Ansprüchen 1 bis 6.
- 8. Arzneimittel, enthaltend eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein Salz gemäß Ansprüch 7 neben gegebenenfalls einem oder mehreren inerten Trägerstoffen und/oder Verdünnungsmitteln.

- 9. Verwendung einer Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein Salz gemäß Anspruch 7 zur Herstellung eines Arzneimittels, welches zur Behandlung von exzessiven oder anomalen Zellproliferationen geeignet ist.
- 10. Verfahren zur Herstellung eines Arzneimittels gemäß Anspruch 8, dadurch gekennzeichnet, daß auf nichtchemischem Wege eine Verbindung nach mindestens einem der Ansprüche 1 bis 6 oder ein Salz gemäß Anspruch 7 in einen oder mehrere inerte Trägerstoffe und/oder Verdünnungsmittel eingearbeitet wird.
- 11. Verfahren zur Herstellung der Verbindungen gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß
- a. eine Verbindung der allgemeinen Formel

$$\begin{array}{c|c}
R_3 \\
 & Z_1 \\
 & R_6
\end{array}$$
(II),

in der

X,  $R_2$  und  $R_3$  wie in den Ansprüchen 1 bis 6 erwähnt definiert sind,

R<sub>6</sub> ein Wasserstoffatom, eine Schutzgruppe für das Stickstoffatom der Lactamgruppe oder eine Bindung an eine Festphase und

 $\mathbf{Z}_1$  ein Halogenatom, eine Hydroxy-, Alkoxy- oder Aralkoxygruppe bedeuten,

mit einem Amin der allgemeinen Formel

$$R_5$$
 (III),

in der

 $R_4$  und  $R_5$  wie in den Ansprüchen 1 bis 6 erwähnt definiert sind, umgesetzt und erforderlichenfalls anschließend ein verwendeter Schutzgruppe für das Stickstoffatom der Lactamgruppe oder eine so erhaltene Verbindung von einer Festphase abgespalten wird oder

b. zur Herstellung einer Verbindung der allgemeinen Formel I, die eine Aminomethylgruppe enthält und X ein Sauerstoffatom darstellt, eine Verbindung der allgemeinen Formel

$$R_{2} \xrightarrow{R_{3}} N$$

$$R_{7} \qquad (IV),$$

$$R_{1}$$

in der

 $R_1$  bis  $R_4$  wie in den Ansprüchen 1 bis 6 erwähnt definiert sind und

 $R_7$  mit der Maßgabe die für  $R_5$  in den Ansprüchen 1 bis 6 erwähnten Bedeutungen aufweist, daß  $R_5$  eine Cyanogruppe enthält, reduziert wird und

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I, die eine Alkoxycarbonylgruppe enthält, mittels Hydrolyse in eine entsprechende Carboxyverbindung übergeführt wird oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino- oder Alkylaminogruppe enthält, mittels Alkylierung oder reduktiver Alkylierung in eine entsprechende Alkylamino- oder Dialkylaminoverbindung übergeführt wird oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Amino- oder Alkylaminogruppe enthält, mittels Acylierung in eine entsprechende Acylverbindung übergeführt wird oder

eine so erhaltene Verbindung der allgemeinen Formel I, die eine Carboxygruppe enthält, mittels Veresterung oder Amidierung in eine entsprechende Ester- oder Aminocarbonylverbindung übergeführt wird oder

erforderlichenfalls ein während den Umsetzungen zum Schutze von reaktiven Gruppen verwendeter Schutzrest abgespalten wird oder

gewünschtenfalls anschließend eine so erhaltene Verbindung der allgemeinen Formel I in ihre Stereoisomere aufgetrennt wird oder

eine so erhaltene Verbindung der allgemeinen Formel I in ihre Salze, insbesondere für die pharmazeutische Anwendung in ihre physiologisch verträglichen Salze mit einer anorganischen oder organischen Säure oder Base, übergeführt wird.

# INTERNATIONAL SEARCH REPORT



Int tional Application No PCT/EP 99/02436

| A. CLASSIF<br>IPC 6                                                         | CO7D209/34 A61K31/40 CO7D4                                                                                                                                                                                                                                                                    | 01/12 C07D403/12 C07D413/12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| According to                                                                | International Patent Classification (IPC) or to both national class                                                                                                                                                                                                                           | ssification and IPC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B. FIELDS                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Minimum do                                                                  | cumentation searched (classification system followed by classic ${\tt C07D-A61K}$                                                                                                                                                                                                             | fication symbols)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             | ion searched other than minimum documentation to the extent (                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Electronic da                                                               | ata base consulted during the international search (name of da                                                                                                                                                                                                                                | ta base and, where practical, search terms used)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| C. DOCUM                                                                    | ENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Category 3                                                                  | Citation of document, with indication, where appropriate, of the                                                                                                                                                                                                                              | he relevant passages Relevant to claim No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| A                                                                           | WO 96 40116 A (SUGEN, INC.)<br>19 December 1996 (1996-12-19)<br>claims                                                                                                                                                                                                                        | 1,8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A                                                                           | WO 96 22976 A (PHARMACIA S.P.A<br>1 August 1996 (1996-08-01)<br>claims                                                                                                                                                                                                                        | 1,8,9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                             |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Fun                                                                         | ther documents are tisted in the continuation of box C.                                                                                                                                                                                                                                       | Patent family members are listed in annex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| "A" docum consi "E" earlier filling "L" docum which citatic "O" docum other | ent which may throw doubts on priority claim(s) or<br>n is cited to establish the publication date of another<br>on or other special reason (as specified)<br>nent referring to an oral disclosure, use, exhibition or<br>means<br>nent published prior to the international filling date but | "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention  "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone  "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. |
|                                                                             | than the priority date claimed  actual completion of the international search                                                                                                                                                                                                                 | *&* document member of the same patent family  Date of mailing of the international search report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                             | 27 August 1999                                                                                                                                                                                                                                                                                | 09/09/1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Name and                                                                    | mailing address of the ISA  European Patent Office, P.B. 5818 Patentlaan 2  NL - 2280 HV Rijswijk  Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3018                                                                                                                          | Authorized officer  Van Bijlen, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# INTERNATIONAL SEARCH REPORT

information on patent family members

Inte onal Application No PCT/EP 99/02436

| Patent document<br>cited in search report | :     | Publication<br>date |    | Patent family<br>member(s) | Publication date |
|-------------------------------------------|-------|---------------------|----|----------------------------|------------------|
| WO 9640116                                | A     | 19-12-1996          | US | 5880141 A                  | 09-03-1999       |
|                                           |       |                     | AU | 706597 B                   | 17-06-1999       |
|                                           |       |                     | AU | 6044196 A                  | 30-12-1996       |
|                                           |       |                     | BR | 9606410 A                  | 30-12-1997       |
|                                           |       |                     | CA | 2192797 A                  | 19-12-1996       |
|                                           |       |                     | EP | 0769947 A                  | 02-05-1997       |
|                                           |       |                     | EP | 0934931 A                  | 11-08-1999       |
|                                           |       |                     | HU | 9701694 A                  | 28-06-1999       |
|                                           |       |                     | JP | 10504323 T                 | 28-04-1998       |
|                                           |       |                     | NO | 965377 A                   | 12-02-1997       |
|                                           |       |                     | NZ | 310109 A                   | 28-01-1999       |
|                                           |       |                     | US | 5792783 A                  | 11-08-1998       |
|                                           |       |                     | US | 5883116 A                  | 16-03-1999       |
|                                           |       |                     | US | 5834504 A                  | 10-11-1998       |
|                                           |       |                     | US | 5886020 A                  | 23-03-1999       |
|                                           |       |                     | US | 5883113 A                  | 16-03-1999       |
| WO 9622976                                | <br>А | 01-08-1996          | AU | 697673 B                   | 15-10-1998       |
|                                           | - '   |                     | AU | 4436396 A                  | 14-08-1996       |
|                                           |       |                     | CA | 2186508 A                  | 01-08-1996       |
|                                           |       |                     | EP | 0752985 A                  | 15-01-1997       |
|                                           |       |                     | JP | 9510993 T                  | 04-11-1997       |
|                                           |       |                     | US | 5840745 A                  | 24-11-1998       |

# INTERNATIONALER RECHERCHENBERICHT

Int tionales Aktenzeichen PCT/EP 99/02436

|                        |                                                                                                                                                                                                     |                                                                                                                          | <u> </u>                            |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| A. KLASSIF<br>IPK 6    | FIZIERUNG DES ANMELDUNGSGEGENSTANDES<br>CO7D209/34 A61K31/40 CO7D401/                                                                                                                               | 12 CO7D403/12 CO7                                                                                                        | D413/12                             |
| Nach der Int           | ernationalen Patentklassifikation (IPK) oder nach der nationalen Klas                                                                                                                               | sifikation und der IPK                                                                                                   |                                     |
|                        | RCHIERTE GEBIETE                                                                                                                                                                                    |                                                                                                                          |                                     |
| Recherchier<br>IPK 6   | ter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbol C07D A61K                                                                                                                     | e )                                                                                                                      |                                     |
| Recherchier            | te aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, so                                                                                                                                 | veit diese unter die recherchierten Gebie                                                                                | ote fallen                          |
| Während de             | r internationalen Recherche konsultierte elektronische Datenbank (Na                                                                                                                                | ame der Datenbank und evtl. verwendet                                                                                    | e Suchbegriffe)                     |
| C. ALS WE              | SENTLICH ANGESEHENE UNTERLAGEN                                                                                                                                                                      |                                                                                                                          |                                     |
| Kategorie <sup>:</sup> | Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe                                                                                                                                  | der in Betracht kommenden Teile                                                                                          | Betr. Anspruch Nr.                  |
| A                      | WO 96 40116 A (SUGEN, INC.)<br>19. Dezember 1996 (1996-12-19)<br>Ansprüche                                                                                                                          |                                                                                                                          | 1,8,9                               |
| Α                      | WO 96 22976 A (PHARMACIA S.P.A.) 1. August 1996 (1996-08-01) Ansprüche                                                                                                                              |                                                                                                                          | 1,8,9                               |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        | ·                                                                                                                                                                                                   |                                                                                                                          |                                     |
|                        |                                                                                                                                                                                                     |                                                                                                                          |                                     |
|                        | tere Veröffentlichungen sind der Fortsetzung von Feld C zu                                                                                                                                          | Y Siehe Anhang Patentfamilie                                                                                             |                                     |
| entr                   | nehmen                                                                                                                                                                                              | <u> </u>                                                                                                                 | A contract of the second            |
| "A" Veröffe            | intlichung, die den allgemeinen Stand der Technik definiert,                                                                                                                                        | "T" Spätere Veröffentlichung, die nach d<br>oder dem Prioritätsdatum veröffentli<br>Anmeldung nicht kollidiert, sondern  | icht worden ist und mit der         |
| "E" älteres            | nicht als besonders bedeutsam anzusehen ist<br>Dokument, das jedoch erst am oder inach dem internationalen                                                                                          | Erlindung zugrundeliegenden Prinz<br>Theorie angegeben ist                                                               | ips oder der ihr zugrundeliegenden  |
| "L" Veroffe            | idedatum veröffentlicht worden ist<br>ntlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er-                                                                                         | "X" Veröffentlichung von besonderer Be-<br>kann allein aufgrund dieser Veröffer<br>erfinderischer Tätigkeit beruhend be- | ntlichung nicht als neu oder auf    |
| ander                  | nen zu lassen, oder durch die das Veröffentlichungsdatum einer<br>en im Recherchenbericht genannten Veröffentlichung belegt werden<br>der die aus einem anderen besonderen Grund angegeben ist (wie | "Y" Veröffentlichung von besonderer Be-<br>kann nicht als auf erfinderischer Täl                                         | deutung; die beanspruchte Erfindung |
| ausge<br>"O" Veroffe   | oführt)<br>antlichung, die sich auf eine mündliche Offenbarung,                                                                                                                                     | werden, wenn die Veröffentlichung<br>Veröffentlichungen dieser Kategorie                                                 | mit einer oder mehreren anderen     |
| "P" Veröffe            | Jenutzung, eine Ausstellung oder andere Maßnahmen bezieht<br>entlichung, die vor dem internationalen Anmeldedatum, aber nach<br>beanspruchten Prioritätsdatum veröffentlicht worden ist             | diese Verbindung für einen Fachma "&" Veröffentlichung, die Mitglied dersell                                             |                                     |
|                        | Abschlusses der internationalen Recherche                                                                                                                                                           | Absendedatum des internationalen                                                                                         | Recherchenberichts                  |
| 2                      | 7. August 1999                                                                                                                                                                                      | 09/09/1999                                                                                                               |                                     |
| Name und               | Postanschnft der Internationalen Recherchenbehörde<br>Europäisches Patentamt, P.B. 5818 Patentlaan 2                                                                                                | Bevollmächtigter Bediensteter                                                                                            |                                     |
|                        | NL - 2280 HV Rijswijk<br>Tel. (+31-70) 340-2040, Tx. 31 651 epo ⊓l.                                                                                                                                 | Van Riilen H                                                                                                             |                                     |

# INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichurigen, die zur selben Patentfamilie gehören

Int ionales Aktenzeichen PCT/EP 99/02436

| Im Recherchenbericht angeführtes Patentdokument | Datum der<br>Veröffentlichung | Mitglied(er) der<br>Patentfamilie |            | Datum der<br>Veröffentlichung |
|-------------------------------------------------|-------------------------------|-----------------------------------|------------|-------------------------------|
| WO 9640116 A                                    | 19-12-1996                    | US 5880141 A                      |            | 09-03-1999                    |
|                                                 |                               | AU                                | 706597 B   | 17-06-1999                    |
|                                                 |                               | AU                                | 6044196 A  | 30-12-1996                    |
|                                                 | •                             | BR                                | 9606410 A  | 30-12-1997                    |
|                                                 |                               | CA                                | 2192797 A  | 19-12-1996                    |
|                                                 |                               | EP                                | 0769947 A  | 02-05-1997                    |
|                                                 |                               | EP                                | 0934931 A  | 11-08-1999                    |
|                                                 |                               | HU                                | 9701694 A  | 28-06-1999                    |
|                                                 |                               | JP                                | 10504323 T | 28-04-1998                    |
|                                                 |                               | NO                                | 965377 A   | 12-02-1997                    |
|                                                 |                               | NZ                                | 310109 A   | 28-01-1999                    |
|                                                 |                               | US                                | 5792783 A  | 11-08-1998                    |
|                                                 |                               | US                                | 5883116 A  | 16-03-1999                    |
|                                                 |                               | US                                | 5834504 A  | 10 <b>-</b> 11-1998           |
|                                                 |                               | US                                | 5886020 A  | 23-03-1999                    |
|                                                 |                               | US                                | 5883113 A  | 16-03-1999                    |
| WO 9622976 A                                    | 01-08-1996                    | <b></b><br>AU                     | 697673 B   | 15-10-1998                    |
|                                                 |                               | AU                                | 4436396 A  | 14-08-1996                    |
|                                                 |                               | CA                                | 2186508 A  | 01-08-1996                    |
|                                                 |                               | EP                                | 0752985 A  | 15-01-1997                    |
|                                                 |                               | JP                                | 9510993 T  | 04-11-1997                    |
|                                                 |                               | US                                | 5840745 A  | 24-11-1998                    |