IOI Training Camp 2011 - Final 1, 21 June, 2011

Problem 3 Segment flip

You are given N numbers a_1, a_2, \ldots, a_N . In a segment flip, you pick a contiguous segment $a_i, a_{i+1}, \ldots, a_j$ of these numbers, where $i \leq j$, and negate all the numbers in this segment.

You are permitted at most K segment flips overall. Also, no two segments that you flip can overlap. That is, if you flip a_i, \ldots, a_j and a_k, \ldots, a_ℓ then either j < k or $\ell < i$.

Your aim is to maximize the sum of all the numbers in the sequence by applying appropriate segment flips meeting these constraints.

For instance, suppose the sequence is -5, 2, -3 and you are allowed a single segment flip. The best sum you can achieve is 6, by flipping all three numbers as a single segment to 5, -2, 3.

Input format

The first line contains two integers N and K. The next line contains N integers, the initial values of a_1, a_2, \ldots, a_N .

Output format

A single integer denoting the maximum possible sum of the final array.

Test Data

In all subtasks, $0 \le K \le N$ and for each $i \in \{1, 2, \dots, N\}, -10^4 \le a_i \le 10^4$.

- Subtask 1 (20 marks): 1 < N < 300.
- Subtask 2 (40 marks): $1 \le N \le 3000$.
- Subtask 3 (40 marks): $1 < N < 10^5$.

Sample input

Sample output

6

Time and memory limits

The time limit for this task is 1 second. The memory limit is 128 MB.