			-								
*	King S	King Saud University					College of Computer and Information Sciences				
0							Department of Computer Science				
	Data Structures CSC 212					al Exam		19			
	Date: 21/12/2019					Du	ration: 3	hours			
Guid	elines: No	o calculat	ors or a	any other	electroni	c devi	ces are all	owed in t	this exam.		
Stude	ent ID:					Na	me:				
Section	on:					Ins	structor:				
1.1	1.2	2	3	4	5	6	7	8	Total		
		Choose t	he run	time fron	n A to D	for eac	h of the f	ollowing			
1	1. The wo	orst case	of Doubl	eLinkedLi	ist.remove		7. The 1	best case	of LinkedPQ.enqueue		
2	1. The worst case of DoubleLinkedList.remove 7. The best case of LinkedPQ.enqueue 8. The worst case of AVL.find										
3	3. The wo	orst case	of BST.i	nsert	_		9. The worst case of ArrayStack.pop				
4	4. The be	est case o	f Double	LinkedLis	t.remove.	_	10. The	worst cas	e of Heap.insert		
	5. The be	est case o	f Heap.i	nsert			11. The	worst cas	e of Heap sort		
6	6. The wo	orst case	of Array	List.find	iNext		12. The l	best case	of Heap.remove		
(b) (8	points)	Choose th	he most	appropr	riate data	struct	ure for ea	ch of the	following tasks.		
	A.	LinkedLi	ist.	B. Arr	ayList.	C. I	OoubleLin	kedList.	D. LinkedQueue.		
	E.	LinkedPo	Queue.	F. Link	kedStack.	G. I	G. BT.		H. BST.		
	I. 1	AVL.		J. BPh	usTree.	K. I	HeapPQue	eue.	L. Graph.		
3	the use 2. An algomeanin to fly fi 3. An algomeanin	r computer computer or computer is computed as the	es one of ads the sa flighten city ell-checo	of the folder list of fit between to anoth	lowing: so lights open the two er using of ser input l	erated cities. conly the	oduct, mi by an air The algo e flights o aparing th	in, max of this conference input t	nen depending on an input from or average of the numbers pany in the form $(City_i, City_j)$, ust check whether its is possible mpany ext to a set of pre-stored words.		
4						; list in the emergency service. Cases with the same level					
	of severity are treated according to the order of arrival										

(a) (6 points) Fill each entry of the table below by T (for true) or F (for false).

	Time (worst case): $O(n \log n)$	Comparison-based	In-place	Stable
Merge sort				
Quick sort				
Radix sort				

- (b) (6 points) Consider the following array where keys are integer and data is of type string: $A = \{(3, B), (5, D), (3, A), (2, E), (7, E), (5, B), (1, F)\}$. We want to sort this array in increasing order. Choose the result produced by the given algorithm from the following options:
 - (A) {(1, F), (2, E), (3, B), (3, A), (5, D), (5, B), (7, E)}
 - $(B) \{(1,F),(2,E),(3,A),(3,B),(5,B),(5,D),(7,E)\}$
 - \bigcirc {(1, F), (2, E), (3, A), (3, B), (5, D), (5, B), (7, E)}
 - (1, F), (2, E), (3, B), (3, A), (5, B), (5, D), (7, E)
 - (E) None of the above.
 - 1. Heap sort (in sift-down, swap left if children are equal): (A) (B) (C)
 - 2. Bubble sort: A B C D E

(a) Write the method private boolean f(BTNode<T> t, T e, int k), member of BT, which return true if e appears in t at a depth that is equal or greater than k (assume that t is at depth 0).

```
private boolean f(BTNode<T> t, T e, int k) {
   if (...)
   ...;
   if (...)
   ...;
   return ...;
}
```

- Line 2:
 - (A) if (e.equals(t.data))
 - B) if (t==null)
 - (C) if (t.left==null && t.right==null)
 - (D) if (k > 0)
 - (E) None
- Line 3:
 - A return true;
 - B) return k;

- (C) return false;
- (D) return k == e.data;
- (E) None
- Line 4:
 - (A) if (k>0 || e.equald(t.data))
 - B) if (k<=0 && e.equald(t.data))
 - (C) if (k>0 && e.equald(t.data))
 - (D) if (k<0 && e.equald(t.data))
 - (E) None

(E)

(D)

- Line 5:
 - (A) return k>0;
 - (B) return false;
 - (C) return e.equald(t.data);
 - (D) return true;
 - (E) None

- Line 6:
 - (A) return f(t.left,e,k-1)&&f(t.right,e,k-1);
 - (B) return f(t.left,e,k)&&f(t.right,e,k);
 - (C) return f(t.left,e,k) | | f(t.right,e,k);
 - (D) return f(t.left,e,k-1)||f(t.right,e,k-1);
 - (E) None
- (b) Repeat the same questions as above, but this time as a user.

```
public static <T> boolean f(BT<T> bt, Te, int k) {
      if (...)
        return ...;
      ...;
 5
      return ...;
 6
   private static <T> int rf(BT<T> bt, Te, int k) {
 8
9
        return ...;
10
      if (...) {
       if (...)
11
12
         return ...;
13
14
     if (...) {
15
16
        if (...)
         return ...;
17
18
19
20
     return ...;
```

- Line 2:
 - (A) if (bt.empty())
 - (B) if (k == 0)
 - (C) if (bt.full())
 - (D) if (!bt.full())
 - (E) None
- Line 3:
 - (A) return false;
 - (B) return true;
 - (C) return e.equals(bt.retrieve());
 - (D) return k == 0;
 - (E) None
- Line 4:
 - (A) bt.find(relative.LeftChild);
 - (B) bt.find(relative.Parent);
 - (C) bt.find(relative.RightChild);

- (D) bt.find(relative.Parent);
- (E) None
- Line 5:
 - (A) return rf(bt,e,k);
 - (B) return rf(bt.left,e,k) | |rf(bt.right,e,k);
 - (C) return rf(bt,e,k-1);
 - (D) return rf(bt,e,k+1);
 - (E) None
- Line 8:
 - (A) if $(k \le 0)$
 - (B) if (k<0 && e.equals(bt.retrieve()))
 - (C) if (k<=0 && e.equals(bt.retrieve()))
 - (D) if (k==0 || e.equals(bt.retrieve()))

 - (E) None
- Line 9:
 - (A) return true;

(B) return $k < 0$;	(A) if (bt.find(Relative.RightChild)) {
C return e.equals(bt.retrieve());	B if (bt.find(Relative.Root)){
D return false;	if (bt.find(Relative.RightChild)!=nulll){
© None	(D) if (bt.find(Relative.Parent)){
• Line 10:	© None
<pre>A if (bt.find(Relative.Parent)){</pre>	• Line 16:
<pre>B if (bt.find(Relative.Root)){</pre>	A if (rf(bt,e,2*k+1))
(C) if (bt.find(Relative.LeftChild)){	B if (rf(bt,e,k+1))
(D) if (bt.find(Relative.LeftChild)!=nulll){	(if (rf(bt,e,k-1))
© None	D if (rf(bt,e,k))
• Line 11:	© None
(A) if (rf(bt,e,k-1))	• Line 17:
B if (rf(bt,e,k))	A return k<=0;
(C) if (rf(bt,e,k+1))	B return false;
D if (rf(bt,e,2*k))	© return true;
E None	D return k>0;
• Line 12:	© None
A return k>0;	• Line 18:
B return true;	A bt.find(Relative.RightChild);
C return k<=0;	B bt.find(Relative.LeftChild);
D return false;	© bt.find(Relative.Parent);
© None	D bt.find(Relative.Root);
• Line 13:	E None
<pre>A bt.find(Relative.Root);</pre>	• Line 20:
B bt.find(Relative.Parent);	A return k<=0;
C bt.find(Relative.LeftChild);	B return false;
D bt.find(Relative.RightChild);	© return k>=0;
© None	D return k==0;
• Line 15:	© None
nestion 4	
Question 4	14 points
(a) (4 points) Choose the most appropriate answer.	
1. In a min heap:	
\bigcirc All keys at level k are smaller than all key	s in level $k+1$. B The largest key is always at
the last level. The key of the left child of	any node is smaller than the key of its right child.
D All of the above. (E) None of the above	that the key of its right child.

- 2. The worst case run time for bottom-up heap construction is:
 - (A) O(1).

- (B) $O(\log n)$. (C) O(n). (D) $O(n \log n)$ (E) $O(n^2)$.
- (b) (10 points) Consider the following heap represented as an array: 20, 18, 12, 10, 11, 5, 2, 6, 4, 3. Choose the correct answer for every operation (all operations are done on the above heap).
 - 1. Heap after inserting 19:
 - (A) 20, 19, 12, 10, 18, 5, 2, 6, 4, 3, 11 (B) 20, 19, 12, 11, 18, 5, 2, 6, 4, 11, 3
- (C) 20, 18, 12, 10,

- 11, 5, 2, 6, 4, 3, 19 (D) 20, 18, 12, 10, 19, 5, 2, 6, 4, 3,11 (E) None
- 2. Heap after inserting 1 then 23: (A) 20,18, 23, 10, 11, 12, 2, 6, 4, 3, 1, 5 (B) 20, 18, 12, 10, 11, 5, 2, 6, 4, 3, 1, 23 (C) 23, 18, 20, 10, 11, 12, 2, 6, 4, 3, 1, 5 (D) 23, 20, 18, 10, 11, 12, 2, 6, 4, 3, 1, 5 (E) None
- (B) 3, 18, 12, 10, 11, 5, 2, 6, 4 3. Heap after deleting one key: (A) 20, 18, 12, 10, 11, 5, 2, 6, 4 (C) 12, 18, 5, 10, 11, 3, 2, 6, 4 (D) 18, 11, 12, 10, 3, 5, 2, 6, 4 (E) None
- (B) 18, 11, 12, 10, 4, 5, 2, 6 4. Heap after deleting two keys: (A) 4, 18, 12, 10, 11, 5, 2, 6 (C) 12, 4, 5, 10, 11, 3, 2, 6 (D) 12, 11, 4, 10, 3, 5, 2, 6 (E) None

(a) (4 points)

Remark 1. In what follows the depth of tree is the number of levels in the tree from the root to a leaf (counting number of nodes not edges). Hence, tree with 1 node has depth 0.

Choose the most appropriate answer:

- 1. The maximum depth of an AVL tree with 8 nodes is:
 - (A) 1.
- (B) 2.
- (C) 3.
- (D) 4.
- 2. The minimum number of rotations caused by an insert in an AVL tree with n nodes and height h is (a single rotation is counted 1; a double rotation is counted 2):
- (B) 1.
- (C) 2.
- \bigcirc h \bigcirc n.
- (b) (10 points) Choose the correct result in each of the following cases (follow the the convention of replacing with the smallest key in the right sub-tree when necessary):
 - 1. After inserting the key 9 in the AVL 5

, the tree becomes:

2. After inserting the key 1 in the AVL 4

, the tree becomes:

- (a) (4 points) Choose the most appropriate answer:
 - 1. The insert operation in a hash table using external chaining has a best case run time:

- \bigcirc A) O(1) \bigcirc B) $O(\log n)$ \bigcirc C) O(n) \bigcirc D) $O(n \log n)$ \bigcirc None
- 2. How many keys can a hash table that uses folding on a single digit store if the key contains 3 digits?
 - (A) 4
- B 8 C 26 D 27 E 28
- (b) (10 points) Use the hash function H(key) = key%5 to store the sequence of keys 25, 13, 14, 23, 16 in a hash table of size 5. Use the following collision resolution strategies:
 - 1. Linear rehashing (c=1):

Key	25	13	14	23	16
Position					
Number of probes					

2. External chaining:

Key	25	13	14	23	16
Index of the list					

3. Coalesced chaining with cellar size 2 and address region size 5 (put -1 if there is no next element):

Key	25	13	14	23	16
Position					
Index of next element					

CSC 212 Page 7 of 8 (a) (4 points) Remark 2. In what follows, a tree with 1 node has depth 1 and height 1. Recall also that a B+ tree has two parameters, m: the maximum number of children and l: the maximum number of elements in a leaf node. Choose the most appropriate answer: 1. The minimum number of children of a root node in a B+ tree is: 2. The maximum number of data elements in a B+ tree with m = l and height h is: (b) (10 points) Choose the correct result in each of the following cases (when possible, always borrow and transfer to the left): 1 2 3 5 6 7 1. After inserting the key 4 in the B+ tree , the root becomes: (E) None 1 2 3 5 6 7 8 9 2. After inserting the key 10 in the B+ tree , the root becomes: (E) None 3. After deleting the key 2 from the B+ tree 5 6 7 , the root becomes: (E) None

4. After deleting the key 5 from the B+ tree

, the root becomes:

- (a) (2 points) Choose the most appropriate answer:
 - 1. Adjacency matrix takes $O(n^2)$ memory space, when is it appropriate to use it instead of adjacency
 - (A) The graph is sparse. (B) The graph is dense. (C) The graph is unweighted (D) The number of edges is less than the number of nodes. (E) None.
 - 2. You apply DFS from a given node and you find out that all nodes were visited. This means:
 - (A) The graph is directed. (B) Some nodes have no edges. (C) The graph is connected.
 - (D) The graph contains cycles. (E) None.
- (b) (4 points) Given the following graph adjacency matrix, answer the questions below.

	A	В	С	D	Е	F
A		3	3			5
В	3		1	5		
C	3	1				
D		5				2
E						
F	5			2		

- 1. Which of the following sequences are simple paths in this graph? Answer by T (true) or F (false).
 - (a) (C, B, D, E,)
 - (b) (C, B, A) ____
 - (c) (C, A, F, D, B) ____
 - (d) (B, A, F, D, B, C)
- 2. Answer by T (true) or F (false).
 - (a) The graph is connected.

- (b) The number of edges in the graph is 6.
- (c) (A, B, D, F, A) is a cycle.
- (d) The shortest path from F to B is (F, A, B).
- 3. The BFS traversal of this graph starting from A is (insert neighbors in the data structure in increasing alphabetic order):

 - \bigcirc A, B, C, F, D.
- \bigcirc A, F, B, C, D.
- (E) A, C, B, F, D.
- 4. The DFS traversal of this graph starting from A is (insert neighbors in the data structure in increasing alphabetic order):
 - \bigcirc A, F, D, C, B.
- (B) A, F, C, D, B.
- \bigcirc A, B, C, F, D.
- \bigcirc A, F, B, C, D.
- (E) A, C, B, F, D.