STA 141C - Big Data & High Performance Statistical Computing

Spring 2022

Lecture 6: Cholesky decomposition (cont'd) and QR factorization

Lecturer: Bo Y.-C. Ning January 25, 2022

Disclaimer: My notes may contain errors, distribution outside this class is allowed only with the permission of the Instructor.

Announcement

- hw1 due tomorrow
- Group members list due this Sunday
 - Please send your members' name and email address to my email

Last time

- Partial pivoting for LU
- Cholesky decomposition

Today

- Examples using Cholesky decomposition
- QR factorization

1 Examples using Cholesky decomposition

1.1 Evaluating a multivariate normal log-likelihood function

Consider the multivariate normal density you learned in statistical methods course

$$y \sim \mathcal{N}(\mu, \Sigma), \quad \mu \in \mathbb{R}^n, \quad \Sigma \in \mathbb{R}^{n \times n}$$

Assuming Σ is p.d., the log-likelihood function is given by

$$-\frac{n}{2}\log(2\pi) - \frac{\log(\det(\Sigma))}{2} - \frac{1}{2}(y-\mu)'\Sigma^{-1}(y-\mu).$$

Here are some questions to consider:

• Suppose we know μ and Σ , how do you evaluate the red part? (thinking about taking inverse?) Whenever we see matrix inverse, we should think in terms of solving linear equations. Consider using Cholesky decomposition.

• How about the blue part? Using the fact $\log(\det(\Sigma)) = 2\sum_{k=1}^{n} \log L_{kk}$, why?

Therefore, consider Method 1 (for someone does not take this class): Compute $\Sigma^{-1} \to \text{Compute quadratic}$ form $\to \text{Compute determinant}$

Consider Method 2 using Cholesky: 1) Do Cholesky decomposition $\Sigma = LL'$, 2) solve $x : Lx = y - \mu$ by forward substitution, 3) compute quadratic form x'x; 4) Compute determinant from Cholesky factor. How many flops for Method 1 & 2?

- Method 1: 1) $2n^3/3$ flops; 2) $O(n^2)$ flops; 3) $2n^3/3 + O(n^2)$ flops $4n^3/3 + O(n^2) = \mathcal{O}(4n^3/3)$
- Method 2: 1) $n^3/3$ flops; 2) n^2 flops; 3) O(n) flops; 4) O(n) flops $n^3/3 + n^2 + O(n) = \mathcal{O}(n^3/3)$

1.2 Linear regression by Cholesky

The goal is to solve

$$X'X\beta = X'y$$

Assume $X \in \mathbb{R}^{n \times p}$ is a full column rank matrix. It is easy to work with the **augmented matrix**

$$\begin{pmatrix} X'X & X'y \\ y'X & y'y \end{pmatrix} = \begin{pmatrix} L & 0 \\ \ell' & d \end{pmatrix} \times \begin{pmatrix} L' & \ell \\ 0' & d \end{pmatrix} = \begin{pmatrix} LL' & L\ell \\ \ell'L' & \ell'\ell+d \end{pmatrix}$$

By Cholesky, $X'X\beta = LL'\beta = X'y = L\ell$ and $L'\beta = \ell$. This solves β in p^2 flops.

Next, since $\ell = L^{-1}X'y$, we have

$$\ell'\ell = yX(LL')^{-1}X'y = y'X(X'X)^{-1}X'y = y'P_xy = y'P_xP_xy = \hat{y}'\hat{y}$$

and

$$d^{2} = y'y - \ell'\ell = y'(I - P_{x})y = (y - \hat{y})'(y - \hat{y}) = SSE$$

We thus solved β , \hat{y} , and SSE all altogether. In R: chol2inv() and in python: cho_solve()

Some notes: We only do inversion if standard errors are needed, $(X'X)^{-1} = (LL')^{-1} = (L^{-1})'L^{-1}$

To summarize, how many flops for using Cholesky to solve linear regression?

- Form the lower triangular part of (X,y)'(X,y): $n(p+1)^2/2$ flops (why?)
- Cholesky decomposition of the augmented matrix, $(p+1)^3/3$ flops
- Solve $L'\beta = l$ for $\hat{\beta}$: p^2 flops
- If need the standard error, estimate $\hat{\sigma} = d^2/(n-p)$ and compute $\hat{\sigma}^2(X'X)^{-1} = \hat{\sigma}^2(LL')^{-1}$: $2p^3/3$ flops

When n, p are large, total cost is $O(p^3/3) + O(np^2/2)$ flops (without s.e.) and $O(p^3) + O(np^2/2)$ flops (with s.e.).

What about using LU? The total flops is $2p^3/3 + p^2 + np^2/2$ (without s.e.) and $> 2p^3 + np^2/2$ (with s.e.)

2 QR factorization

For $A \in \mathbb{R}^{n \times p}$, an *n*-by-*p* rectangle matrix,

$$A = QR$$

where $Q \in \mathbb{R}^{n \times n}$, $Q'Q = I_n$, and $R \in \mathbb{R}^{n \times p}$.

Usually, we use the thin QR, $A = Q_1 R_1$, $Q_1 \in \mathbb{R}^{n \times p}$, $Q_1' Q_1 = I_p$ and $R_1 \in \mathbb{R}^{p \times p}$, where Q_1 has orthogonal columns and R_1 is an invertible upper triangular matrix with positive diagonal entries.

Theorem 6.1 If $A \in \mathbb{R}^{n \times p}$, then there exists a matrix $Q \in \mathbb{R}^{n \times p}$ has orthogonal columns and $R \in \mathbb{R}^{p \times p}$ is upper triangular matrix. In particular, R = G', where G is the lower triangular Cholesky factor of A'A.

2.1 Linear regression with thin QR

Our goal is to solve β , \hat{y} , SSE from $X'X\beta = X'y$. Let's consider the augmented matrix:

$$(X \quad y) = (Q \quad q) \begin{pmatrix} R & r \\ 0'_p & d \end{pmatrix} = (QR \quad Qr + dq)$$

Thus, $X'X\beta = X'y$ implies $R\beta = R^{-1'}X'y = R^{-1'}R'Q'y = Q'y = r$, $\hat{y} = X\hat{\beta} = QRR^{-1}r = Qr$, $\hat{e} = y - X\hat{\beta} = y - Qr = dq$, and $SSE = d^2$.

3 Numerical methods to solve QR:

Two things one may want to consider:

- Is QR faster than LU or Cholesky?
- Why QR?

Today and the next lecture, we introduce three popular numerical methods to solve QR:

- Gram-Schmidt and modified Gram-Schmidt
- Householder transformation
- Givens transformation

3.1 Gram-Schmidt method

Assume $A = (a_1, \ldots, a_p) \in \mathbb{R}^{n \times p}$ has full column rank

Consider a matrix $A = (a_1, \dots, a_n)$, the steps of the Gram-Schmidt algorithm is given as follows:

- 1) $u_1 = a_1$, $e_1 = u_1/\|u_1\|$
- 2) $u_2 = a_2 \langle a_2, e_1 \rangle e_1, \quad e_2 = u_2 / ||u_2||$

. . .

k)
$$u_k = a_k - \langle a_k, e_1 \rangle e_1 - \dots - \langle a_k, e_{k-1} \rangle e_{k-1}, \quad e_k = u_k / ||u_k||$$

Then,

$$A = (a_1, \dots, a_n) = (e_1, \dots, e_n) \begin{pmatrix} \langle a_1, e_1 \rangle & \langle a_2, e_1 \rangle & \cdots & \langle a_n, e_1 \rangle \\ 0 & \langle a_2, e_2 \rangle & \cdots & \langle a_n, e_2 \rangle \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \langle a_n, e_n \rangle \end{pmatrix} = QR$$

Example:

Consider the matrix $A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

• What e_1, e_2, e_3 ?

Step 1
$$u_1 = a_1 = (1, 1, 0)', e_1 = u_1/\|u_1\| = (1, 1, 0)'/\sqrt{2} = (1/\sqrt{2}, 1/\sqrt{2}, 0)'$$

Step 2 $u_2 = a_2 - \langle a_2, e_1 \rangle e_1 = (1, 0, 1)' - \frac{1}{\sqrt{2}} (1/\sqrt{2}, 1/\sqrt{2}, 0)' = (1/2, -1/2, 1)$
 $e_2 = u_2/\|u_2\| = (1/\sqrt{6}, -1/\sqrt{6}, 2/\sqrt{6})'.$
Step 3 $u_3 = (-1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})'$ and $e_3 = (-1/\sqrt{3}, 1/\sqrt{3}, 1/\sqrt{3})'$

Thus,

$$Q = (e_1, e_2, e_3), \quad R = \begin{pmatrix} \sqrt{2} & 1/\sqrt{2} & 1/\sqrt{2} \\ 0 & 3/\sqrt{6} & 1/\sqrt{6} \\ 0 & 0 & 2/\sqrt{3} \end{pmatrix}$$

Classical	Modified
for $k=1:n$,	for $k=1:n$,
$w = a_k$	$w = a_k$
for $j = 1:k-1$,	for $j=1:k-1$,
$r_{jk} = q_j^T w$	
end	$r_{jk}=q_j^Tw$
for $j = 1:k-1$,	$w = w - r_{jk}q_j$
$w = w - r_{jk}q_j$	
end	end
$r_{kk} = \ w\ _2$	$r_{kk} = \ w\ _2$
$q_k = w/r_{kk}$	$q_k = w/r_{kk}$
end	end

Figure 6.1: Comparing G-S and modified G-S algorithms. To compare with the notations in Section 3.1, w is u, q_j is e_j and $r_{jk} = \langle a_k, e_j \rangle$.

[Source: https://arnold.hosted.uark.edu/NLA/Pages/CGSMGS.pdf]

4 The G-S and Modified G-S algorithms

The regular G-S is unstable (as one may loose orthogonality due to roundoff errors) when columns of A are collinear. The modified G-S comes to the rescue. The figure below highlight the difference between G-S and modified G-S.

Flop counts for both GS and MGS are $\sum_{k=1}^{p} 2n(k-1) \approx np^2$.

More things to read:

- Difference between GS and MGS: click here
- MGS method with sample code: click here
- See why MGS is more stable than GS: click here