Problem 7.2

Double Error Correcting (t = 2) :

Triple Error Correcting (+3):

$$8^{(X)} = (X - \alpha)(X - \alpha^{1})(X - \alpha^{3})(X - \alpha^{4})(X - \alpha^{5})(X - \alpha^{6})$$

$$= X^{6} + \alpha^{10}X^{5} + \alpha^{9}X^{4} + \alpha^{24}X^{3} + \alpha^{16}X^{1} + \alpha^{24}X + \alpha^{21}$$

Problem 7.4

$$S_1 = r(\alpha) = \alpha^{13}$$
, $S_2 = r(\alpha^4) = \alpha^4$, $S_3 = r(\alpha^3) = \alpha^9$,
 $S_4 = r(\alpha^4) = \alpha^7$, $S_5 = r(\alpha^5) = \alpha^8$, $S_6 = r(\alpha^6) = \alpha^3$.

N	o(")(x)	dr	2,
-1	1	1	0
0	1	× 13	0
1	1+ \(\alpha \) (3 \(\text{X} \)	× 10	1 (took 9 =-1)
2	1 + «X	« T	1 (took 9=0)
3	1+ x x+ x9 x2	24	2 (took 9:0)
4	1 + «"4 X + «"2 X"	od 8	2 (+00kg=z)
5	1+ x 4 x + x x + x x 3	×7	3 (took g = 2)
6	1 + ~ 4 X 3	-	- (tock p=4)

$$Z_{0}(X) = S_{1,1} \left(S_{1} + \sigma_{1} S_{1} \right) X_{T} \left(S_{3} + \sigma_{1} S_{1} + \sigma_{2} S_{1} \right) X^{2}$$

$$= \alpha^{13} + \left(\alpha^{14} + 0 \cdot \alpha^{13} \right) X + \left(\alpha^{9} + 0 \cdot \alpha^{14} + 0 \cdot \alpha^{13} \right) X^{2}$$

$$= \alpha^{13} + \alpha^{14} X + \alpha^{9} X^{2}$$

o(X) has roots d2, d7, and d12 Hence, B= 2 = d, B= 2 = d.

and
$$\beta_3 = \alpha^{-1/2} = \alpha^3$$
.
 $\delta_k = -\frac{Z_o(\beta_{k}^{-1})}{\sigma^2(\beta_{k}^{-1})} = \frac{\alpha^{13} + \alpha^{14}\beta_{k}^{1} + \alpha^{9}\beta_{k}^{-2}}{\alpha^{9}\beta_{k}^{-2}}$

Hence, $S_1 = d^3$, $S_2 = \alpha^9$, and $S_3 = \alpha^4$.

V(X): r(X)-e(X)=0.

$$S_1 = r(\alpha^1) = \alpha^{13}$$
, $S_2 = r(\alpha^2) = \alpha^{14}$, $S_3 = r(\alpha^3) = \alpha^9$, $S_4 = r(\alpha^4) = \alpha^7$, $S_5 = r(\alpha^5) = \alpha^8$, $S_6 = r(\alpha^6) = \alpha^3$.

SIX) = 5+5x+5x+5x+5x+5x+5x+5x+4x+4x+4x+4x+4x+6x+6x+6x.

5(X)= x3 X3+ x9, Zo(X)= x3 X2+ x8 X+ x7 (Notice that o(X) and Z(X) here are the same as O(X) and Zo(X) in the Berlekamp-Massey algorithm except that they are multiplied by d9.) 6(X) has roots of, of, and old Hence, B, = of of B = of of and B = 212 = 23.

δ_k = -
$$\frac{Z_{\delta}(\beta_{k}^{-1})}{\sigma^{2}(\beta_{k}^{-1})} = \frac{\alpha^{3}\beta_{k}^{-2} + \alpha^{8}\beta_{k}^{-1} + \alpha^{7}}{\alpha^{3}\beta_{k}^{-2}}$$

Hence, S = x3, S = x9, and S = x4. e(X)= ~4 x3 + ~9 x8 + ~3 x13 V(X) = V(X) - e(X) = 0

Problem 7.6

$$S_1 = r(\alpha) = \alpha^{27}$$
, $S_2 = r(\alpha^2) = \alpha$, $S_3 = r(\alpha^3) = \alpha^{28}$, $S_4 = r(\alpha^4) = \alpha^9$, $S_5 = r(\alpha^5) = \alpha^{15}$, $S_6 = r(\alpha^6) = \alpha^8$. $S(x) = \alpha^8 x^5 + \alpha^{15} x^4 + \alpha^{24} x^3 + \alpha^{28} x^2 + \alpha^{15} x + \alpha^{27}$

$$S_1 = \alpha^2$$
, $S_2 = \alpha^7$, and $S_3 = \alpha^{21}$
 $e(X) = \alpha^2 + \alpha^2 X^{12} + \alpha^7 X^{24}$