System Design

Basic Heater Control System Microcontroller Control Logic State Machine Temperature (Relay / MOSFET) Heater Control Circuit (Relay / MOSFET)

Fig: Basic heater control system without the practical usage components that provide safety, usability, expandability

Fig: Basic heater control system with the practical usage components

Explanation of Components in the Basic Heater Control System

• Temperature Sensor:

Measures the temperature of the environment or object being heated ("process"). It sends this data to the microcontroller, allowing the system to monitor real-time temperature and make control decisions.

Current Sensor (optional):

Monitors the electrical current flowing to the heater element. This is an extra safety feature: it can detect abnormal current draw, which may indicate faults like a short circuit or heater failure.

• UI (User Interface, optional):

Allows the user to set or adjust the target temperature or other parameters. This can be a simple knob, buttons, or a digital display.

• Microcontroller:

The brain of the system. It processes sensor inputs and user settings, runs the control logic (state machine and temperature control with hysteresis), and manages communication and outputs.

Control Logic:

- **State Machine:** Manages the system's operational states (e.g., idle, heating, fault).
- **Temperature Control:** Compares the measured temperature to the setpoint and decides when to turn the heater on or off.

Communication:

- **Serial Interface:** For wired communication with external devices (e.g., for debugging or monitoring).
- **BLE (optional):** For wireless communication, allowing remote monitoring or control.

• Status Indicators (LED/Buzzer):

Provide visual or audible feedback about the system status, such as power on, heating, or fault conditions.

• Safety Sensor:

A dedicated sensor (like a thermal cutoff or secondary temperature sensor) that triggers an emergency shutdown if the temperature exceeds a critical safety threshold-an essential feature for preventing overheating.

• Heater Control Circuit (Relay/MOSFET):

Acts as a switch, controlled by the microcontroller, to turn the heater element on or off based on the control logic.

• Heater Element:

The actual device that generates heat to raise the temperature of the process.

Process:

The environment or object being heated (e.g., air in a room, water in a tank). The system's goal is to maintain this at the desired temperature.

• Temperature Sensor (Feedback Loop):

Measures the process temperature and sends this information back to the microcontroller, closing the feedback loop for continuous control.

Flow Summary:

User sets a target temperature via the UI → Temperature sensor monitors the process →

Microcontroller processes inputs and runs control logic \rightarrow If heating is needed, microcontroller activates the heater via the control circuit \rightarrow Status indicators provide feedback \rightarrow Safety sensor ensures emergency shutdown if needed \rightarrow Current sensor monitors for electrical faults \rightarrow The process temperature is continually fed back for ongoing regulation.