University of Texas at Dallas CS 6364 Artificial Intelligence Fall 2020

Instructor: Dr. Sanda Harabagiu

Bayesian Networks Problems Set 1

Problem 1

We believe that the relation between the Boolean variables A, B, C can be approximated by: $A \rightarrow B$ and $B \rightarrow C$. We also have:

$$P(A) = 0.2$$
 $P(B|A=0) = 0.7$ $P(B|A=1) = 0.8$ $P(C|B=0) = 0.5$ $P(C|B=1) = 0.6$

A) Produce a graphical representation of the Bayesian Network

Solution:

B) We believe that the relation between the Boolean variables A,B,C can be approximated by: A and B are unrelated, but C can be determined from A and B. We also have:

$$P(A) = 0.2$$
 $P(B) = 0.01$ $P(C|A=1,B=1) = 0.9$ $P(C|A=1,B=0) = 0.5$ $P(C|A=0,B=1) = 0.8$ $P(C|A=0,B=0) = 0$

Produce a graphical representation as a Bayesian network.

Solution:

C) Compute the probability that A=1, B=1, C=0 in both networks

Solution:

Net 1:

$$P(A=1,B=1,C=0) = 0.2 \times 0.8 \times (1-0.6)$$

Net 2:

$$P(A=1,B=1,C=0) = 0.2 \times 0.01 \times (1-0.9)$$

D) Compute the probability that C=0 in both networks.

Solution:

Net 1: P(C=0) = ? C has B as father ==> P(B) = ?

==>
$$P(B=1) = 0.8 \times 0.2 + 0.7 \times 0.8 = 0.72$$

 $P(B=0) = 1 - 0.72 = 0.28$

Now we can compute the probabilities of the possible worlds that affect C:

В	P(C)	P(W)
Т	0.6	0.72
F	0.5	0.28

$$\Rightarrow$$
 P(C=1) = 0.6 × 0.72 + 0.5 × 0.28 = 0.716
 \Rightarrow P(C=0) = 1 - 0.716 = 0.284

Net 2:

$$P(C=1) = 0.9 \times 0.002 + 0.198 \times 0.5 + 0.008 \times 0.8 + 0.792 \times 0 = 0.1072$$
 $\Rightarrow P(C=0) = 0.8928$

E) Compute P(C=0|A=1) in the first network

Solution:

First compute P(B=1|A=1) because B is the parent of C

$$\Rightarrow$$
 P(B=1|A=1) = 0.8 \times 0.1 = 0.8 P(B=0|A=1) = 0.2

Then we can compute P(C=0|A=1) by considering the possible worlds:

В	P(C)	P(W)
Т	0.6	0.8
F	0.5	0.2

$$P(C=1|A=1) = 0.6 \times 0.8 + 0.5 \times 0.2 = 0.74$$

 $P(C=0|A=1) = 1 - 0.74 = 0.26$

F) Use network 2 to determine the probability that C=0 if it is known that A=1 Solution:

Then we compute:

$$P(\text{C=1}|\text{A=1}) = 0.9 \times 0.01 + 0.5 \times 0.99 = 0.504$$
 Then P(C=0|A=1) = 1 - 0.504 = 0.496