Univerzitet u Nišu Elektronski fakultet

Matrični metodi u računarstvu Projekat 1

Stefan Aleksić 16995

29. Mart, 2020. god.

Projekat br. 1

Poznata je LU dekompozicija regularne matrice $A = LU \in \mathcal{M}_{n \times n}$. Regularna matrica M ima block formu:

$$M = \begin{bmatrix} A & v \\ u^T & a \end{bmatrix},$$

gde su $u,v\in\mathbb{R}^n$ vektori i $a\in\mathbb{R}$ nenula skalar. Odrediti LU faktorizaciju matrice M u blok formi

$$M = \begin{bmatrix} L & - \\ - & - \end{bmatrix} \begin{bmatrix} U & - \\ - & - \end{bmatrix}, \quad (A = LU) \tag{1}$$

i odrediti potreban broj aritmetičkih operacija za njeno dobijanje. U izrazu (1) pozicije __ označavaju vektore i skalare koje je potrebno odrediti tako da matrica $\begin{bmatrix} L & - \\ - & - \end{bmatrix}$ bude donje trougaona, matrica $\begin{bmatrix} U & - \\ - & - \end{bmatrix}$ bude donje trougaona i važi jednakost (1).

Kako se menja broj potrebnih aritmetičkih operacija u slučaju kada su A i M simetrične matrice?

Rešenje:

Da bismo dobili LU faktorizaciju matrice M, koristimo sledeći postupak:

$$M = \begin{bmatrix} A & v \\ u^{T} & a \end{bmatrix} \xrightarrow{(-u^{T}A^{-1})*} \rightarrow L' = \begin{bmatrix} I_{n \times n} \\ u^{T}A^{-1} \end{bmatrix}, \begin{bmatrix} A & v \\ u^{T} - u^{T}A^{-1}A & a - u^{T}A^{-1}v \end{bmatrix}$$

Element $a - u^T A^{-1}v \in \mathbb{R}$ nazivamo Šurovim komplementom i označavamo: $M/A = a - u^T A^{-1}v$. LU faktoriracija matrice M sada izgleda:

$$L' = \begin{bmatrix} I_{n \times n} & \overrightarrow{0} \\ u^T A^{-1} & 1 \end{bmatrix}, \quad U' = \begin{bmatrix} A & v \\ \overrightarrow{0} & M/A \end{bmatrix}$$
 (2)

Međutim, dobijene matrice L' i U' ne odgovaraju onim koje se traže (iako A = IA, ali ova faktorizacija je trivijalna). Zato moramo pokušati da na neki drugi način dođemo do tražene faktorizacije. Eventualno da nađemo vezu između klasične LU i gore tražene faktorizacije.

1° Način:

Prvo ćemo označiti elemente blok matrica L_M i U_M .

$$M = L_M U_M = \begin{bmatrix} L & \overrightarrow{l_{11}} \\ \overrightarrow{l_{21}}^T & l_a \end{bmatrix} \begin{bmatrix} U & \overrightarrow{u_{11}} \\ \overrightarrow{u_{21}}^T & u_a \end{bmatrix}, \quad \overrightarrow{l_{11}}, \overrightarrow{l_{21}}, \overrightarrow{u_{11}}, \overrightarrow{u_{21}} \in \mathbb{R}^n, \quad l_a, u_a \in \mathbb{R}$$

S obzirom da su matrice L_M, U_M donje i gornja trogaona respektivno, odavde možemo da zaključimo da je $\overrightarrow{l_{11}} = \overrightarrow{u_{21}} = \overrightarrow{0}$. Hajmo sada da pomnožimo matrice L_M i U_M :

$$L_M U_M = \begin{bmatrix} L & \overrightarrow{0} \\ \overrightarrow{l_{21}}^T & l_a \end{bmatrix} \begin{bmatrix} U & \overrightarrow{u_{11}} \\ \overrightarrow{0}^T & u_a \end{bmatrix} = \begin{bmatrix} LU & L\overrightarrow{u_{11}} \\ \overrightarrow{l_{21}}^T U & \overrightarrow{l_{21}}^T \overrightarrow{u_{11}} + l_a u_a \end{bmatrix} = \begin{bmatrix} A & v \\ u^T & a \end{bmatrix} = M$$

Izjednačavanjem leve i desne matrice dobijamo sistem:

$$\iff \begin{cases} LU = A \\ L\overrightarrow{u_{11}} = v \implies \overrightarrow{u_{11}} = L^{-1}v \\ \overrightarrow{l_{21}}^TU = u^T \implies \overrightarrow{l_{21}}^T = u^TU^{-1} \\ \overrightarrow{l_{21}}^T\overrightarrow{u_{11}} + l_au_a = a \implies u^T(U^{-1}L^{-1})v + l_au_a = u^T(LU)^{-1}v + l_au_a = u^TA^{-1}v + l_au_a = a \end{cases}$$

Iako smo gornjim sistemom opisali skup matrica $(l_a, u_a \in \mathbb{R})$, mi možemo na svoju ruku izabrati ono rešenje koje je pogodno za računicu, odnosno ono koje bi bilo najzgodnije po konvenciji. S obzirom da se na glavnoj dijagonali matrice L_m očekuju jedinice, odnosno

$$det(L_m) = det(L)det(l_a) = 1 \implies l_a = 1 \land u_a = a - u^T A^{-1}v = M/A$$

Odavde konačno dobijamo elemente matrica L_M i U_M :

$$L_{M} = \begin{bmatrix} L & \overrightarrow{0} \\ u^{T}U^{-1} & 1 \end{bmatrix}, \quad U_{M} = \begin{bmatrix} U & L^{-1}v \\ \overrightarrow{0} & M/A \end{bmatrix}$$
 (3)

Aritmetičke operacije:

Oznaka operacije	Sabiranje/Oduzimanje	Množenje	Deljenje	Ukupno
A^{-1}	$2n^2(n-1)$	$2n^4 - 6n^3 + 5n^2 + n$	1	$O2n^4$
L^{-1}	$n^2(n-1)$	n^3	0	$\mathcal{O}n^3$
U^{-1}	$n^2(n-1)$	n^3	0	$O2n^3$
$u^T U^{-1}$	n(n-1)	n^2	0	$\mathcal{O}n^2$
$L^{-1}v$	n(n-1)	n^2	0	$\mathcal{O}n^2$
M/A	n	n	0	$\mathcal{O}n$
Ceo algoritam	$4n^3 - 2n^2 - n$	$2n^4 - 4n^3 + 7n^2 + 2n$	1	$O2n^4$

Napomene:

*Inverznu matricu tražimo preko adjungovane i računamo samo det(U), jer je:

det(A)=det(LU)=det(L)det(U)=det(U), što se svodi na množenje elemenata dijagonale. Takođe, računanje $(-1)^{i+j}$ kao ni (i+j), pri nalaženju elemenata adjungovane matrice nisam uračunavao.

*Inverzne matrice
$$L$$
 i U tražimo množenje, preko veze: $A^{-1} = L^{-1}U^{-1} \implies \begin{cases} L^{-1} = A^{-1}U \\ U^{-1} = LA^{-1} \end{cases}$

*Sve što smo jednom izračunali smatramo pribeleženim, kako se ne bi nagomilavala računanja. Ukoliko je matrica M, odnosno A simetrična, onda će:

$$M^T = M \implies A^T = A \implies (LU)^T = U^TL^T = LU \implies L^T = U \iff L = U^T$$

Tako da nema potrebe za računanjem obe LU matrice, a sve inverzne matrice se mogu dobiti preko L^{-1} . Aritmetičke operacije:

Oznaka operacije	Sabiranje/Oduzimanje	Množenje	Deljenje	Ukupno
L^{-1}	$2n^2(n-1)$	$2n^4 - 6n^3 + 5n^2$	0	$O2n^4$
$A^{-1} = L^{-1}(L^{-1})^T$	$n^2(n-1)$	n^3	0	$\mathcal{O}n^3$
$u^T(L^T)^{-1}$	n(n-1)	n^2	0	$\mathcal{O}n^2$
$L^{-1}v$	n(n-1)	n^2	0	$\mathcal{O}n^2$
M/A	n	n	0	$\mathcal{O}n$
Ceo algoritam	$3n^3 - 2n^2 - n$	$2n^4 - 5n^3 + 7n^2 + n$	0	$O2n^4$

2° Način:

Primetimo da je prelazak sa L'U' na L_MU_M faktorizaciju vrlo jednostavan.

Na osnovu već odrađene L'U' faktorizacije (2) i izraza:

$$A^{-1} = (LU)^{-1} = U^{-1}L^{-1} \implies A^{-1}L = U^{-1}L - 1L = U^{-1}$$
(4)

$$A = LU \implies L^{-1}A = L^{-1}LU = U \tag{5}$$

$$I_{L} = \begin{bmatrix} L & \overrightarrow{0} \\ \overrightarrow{0}^{T} & 1 \end{bmatrix}, \quad I_{L^{-1}} = \begin{bmatrix} L^{-1} & \overrightarrow{0} \\ \overrightarrow{0}^{T} & 1 \end{bmatrix}, \quad I_{L}I_{L^{-1}} = I_{(n+1)\times(n+1)}$$

$$(6)$$

Dobijamo:

$$M = L'U' = L'IU' = (L'I_L)(I_{L^{-1}}U') = L_M U_M$$
(7)

Odnosno u matričnom zapisu:

$$\begin{bmatrix} A & v \\ u^T & a \end{bmatrix} = \begin{bmatrix} I_{n \times n} & \overrightarrow{0} \\ u^T A^{-1} & 1 \end{bmatrix} \begin{bmatrix} I_{n \times n} & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix} \begin{bmatrix} A & v \\ \overrightarrow{0} & M/A \end{bmatrix} = \begin{bmatrix} I_{n \times n} & \overrightarrow{0} \\ u^T A^{-1} & 1 \end{bmatrix} \begin{bmatrix} LL^{-1} & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix} \begin{bmatrix} A & v \\ \overrightarrow{0} & M/A \end{bmatrix} =$$

$$= \left(\begin{bmatrix} I_{n \times n} & \overrightarrow{0} \\ u^T A^{-1} & 1 \end{bmatrix} \begin{bmatrix} L & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix} \right) \left(\begin{bmatrix} L^{-1} & \overrightarrow{0} \\ \overrightarrow{0}^T & 1 \end{bmatrix} \begin{bmatrix} A & v \\ \overrightarrow{0} & M/A \end{bmatrix} \right) = \begin{bmatrix} L & \overrightarrow{0} \\ u^T A^{-1} L & 1 \end{bmatrix} \begin{bmatrix} L^{-1}A & L^{-1}v \\ \overrightarrow{0} & M/A \end{bmatrix} =$$

$$= \begin{bmatrix} L & \overrightarrow{0} \\ u^T U^{-1} & 1 \end{bmatrix} \begin{bmatrix} U & L^{-1}v \\ \overrightarrow{0} & M/A \end{bmatrix}$$

Na osnovu urađene L'U' faktorizacije (2) i izraza (7) vrlo lako možemo preći sa klasične LU faktorizacije na onu poput gore tražene u zadatku.