

ENGINEERING CHEMISTRY HANDBOOK

ENGINEERING CHEMISTRY HANDBOOK

I / II Semester BE Program

Effective from the academic year 2022 - 2023

- > Sensor: A chemical sensor is device it is capable of giving real time analytical information about a test sample.
- ► Electro chemical sensor of DO, $M^{n+} + O_2 + H_2O \rightarrow M(OH)_2$
- ➤ Li-Ion Batteries

{(Li / Li⁺, C / LiPF₆ in ethylene carbonate / Li⁺ - MO₂/ Li-MO₂)}

Types of Electrodes

- 1. Cu|CuSO4, Zn|ZnSO2023
- 2. Hydrogen electrode
- 3. Hg|Hg2Cl2|Cl⁻
- 4. Glass electrode
- 5. $Pb-Hg/Pb^{2+}$)
- 6. Nernst Equation

$$E = E^{0} + \frac{0.0591}{n} \log_{10} [M^{n+}]$$

Where, n = no of electrons

7. Concentration cell

$$E = \frac{0.0591}{n} \log_{10} \frac{\text{[cathode]}}{\text{[anode]}}$$

Where, n = no of electrons

8. Glass Electrode

$$E_G = E^0_G - 0.0591 pH$$

9. Determination of p^H using the Glass Electrode

$$p^{H} = \frac{E_{G}^{0} - E_{cell} - E_{SCE}}{0.0591}$$

10. Organic/ Polymer Electronic devices

11. Organic memory materials

12.

(i) Number average molecular mass (\overline{M}_N) :

$$\begin{split} \overline{M}_{N} &= \frac{N_{1}M_{1} + N_{2}M_{2} + N_{3}M_{3} + \dots}{N_{1} + N_{2} + N_{3} \dots} \\ \overline{M}_{N} &= \frac{\sum N_{i}M_{i}}{\sum N_{i}} \end{split}$$

Where N_i is the number of molecules of the *i*th type with molecular mass M_i .

(ii) Weight average molecular mass (\overline{M}_w) :

$$\overline{M}_W = \frac{m_1 M_1 + m_2 M_2 + m_3 M_3 \dots}{m_1 + m_2 + m_3 + \dots} \quad \text{or} \quad = \frac{\sum m_i M_i}{\sum m_i}$$

But
$$m_i = N_i M_i$$
, so that $\overline{M}_W = \frac{\sum N_i M_i^2}{\sum N_i M_i}$

Where N_i is the number of molecules of mass M_i .

13. Corrosion

$$4Fe (OH)2 + O2 + 2H2O \longrightarrow 2 [Fe2O3.3H2O]$$
(Rust)

14. Anodization
$$2 \text{ Al} + 3\text{H}_2\text{O} \longrightarrow \text{Al}_2\text{O}_3 + 3\text{H}_2$$

15. Corrosion Penetration Ratio,

$$CPR = \frac{k \times W}{D(\rho) \times A \times T}$$

Where,

W- is weight loss after exposure time.

T- is exposure time in corrosive medium.

D- is the density of metal.

A -is surface area of exposed specimen.

K - is constant.

Where 1mile is equal to 0.001inch

	CPR in mpy	CPR in mmpy
K	534	87.6
W (wt loss)	mg	Mg
(D)ρ	g/cm ³	g/cm ³
A	inch ²	cm ²
t	hrs	Hrs

16. Gross Calorific value

$$GCV = \frac{(W + w) X (\Delta t) X s}{m} kJ/Kg$$

$$NCV = \frac{(W + w) X (\Delta t) X s}{m} - (0.09 X \% H_2 X L) kJ/Kg$$

17. Faraday's First Law of Electrolysis

$$\mathbf{m} \propto \mathbf{Q}$$
 (1)

Where: m = mass of a substance (in grams) deposited or liberated at an electrode.

Q = amount of charge (in coulombs) or electricity passed through it

On removing the proportionality in above equation (1)

$$m=ZQ$$

Where Z is the proportionality constant, Its unit is grams per coulomb (g/C). It is also called the electrochemical equivalent. Z is the mass of a substance deposited at electrodes during electrolysis by passing 1 coulomb of charge.

Faraday's Second Law of Electrolysis

Where w = mass of the substance

E = equivalent weight of the substance

It can also be expressed as, $w_1/w_2=E_1/E_2$

The equivalent weight or chemical equivalent of a substance can be defined as the ratio of its atomic weight and valency

One **mole** of electrons is required for the reduction of one mole of ions. As we know, the Charge on one electron is equal to, 1.6021×10^{-19}

18. Throwing Power

% of throwing power =
$$\frac{100 (A - B)}{A + B - 2}$$

Where $A = d_1/d_2$ (where $d_1>d_2$) and $B = w_2/w_1$

19.

Electrochemical Series:

Standard reduction electrode potential VALUES

M ⁿ⁺ /M	$E^{O}(V)$
Li ⁺ /Li	-3.05
Mg^{2+}/Mg	-2.37
Zn^{2+}/Zn	-0.76
Fe ²⁺ /Fe	-0.44
Cd ²⁺ /Cd	-0.40
Mn ⁺⁺ /Mn	$E^{O}(V)$
H^+/H_2	00
Cu ²⁺ /Cu	0.34
Ag^+/Ag	0.8
Pt ²⁺ /Pt	1.20
Au ³⁺ /Au	1.38

20. Galvanic Series

Mg	
Mg alloys	
Zn	
Al	
Cd	
Al alloys	В
Mild steel	Base metals
Cast steel	Ħ
Pb	eta
Sn	S
Brass	
Cu	
Ni	
Stainless steel (18% Cr &	
8% Ni)	
Ag	- _
Ti	Noble metals
Au	ble als
Pt	V 2 ···

21. [-NH-(CH₂)₆-NH-CO-(CH₂)₄-CO-]_n + nH₂O **Nylon 6,6**

22. **Ziegler–Natta catalyst** - such as Et₃Al/Ti (OC₃H₇)₄.

23.

For	Anod	Cathod	Electrolyte
electroplati	e	e	
ng			
With copper	Си	Object	$CuSO_4$ + dilute H_2SO_4
With silver	Ag	Object	$K[Ag(CN)_2]$
With nickel	Ni	Object	Nickel
			ammonium
			sulphate
With gold	Au	Object	$K[Au(CN)_2]$
With zinc	Zn	Iron	ZnSO ₄
		objects	
With tin	Sn	Iron	SnSO 4
		objects	

24. Molar conductivity,

$$\Lambda = \frac{\kappa}{M}$$

where, M is the molar concentration.

If M is in the units of molarity i.e., moles per litre (mol L^{-1}), the Λ may be expressed as,

$$\Lambda = \frac{\kappa \times 1000}{M}$$

26. Various Types of Half - cells

Type	Example	Half – cell reaction	Q =	Reversibl	Electrode Potential
				e to	(oxidn), E =
Gas ion half - cell	$Pt(H_2) H^+(aq)$	$\frac{1}{2}H_2(g) \to H^+(aq) + e^-$	$[H^+]$	H^+	$E^0 - 0.0591 \log[H^+]$
	$Pt(Cl_2) Cl^-(aq)$		1	Cl^-	$E^0 + 0.0591 \log[Cl^-]$
		$Cl^{-}(aq) \rightarrow \frac{1}{2}Cl_{2}(g) + e^{-}$	$[Cl^-]$		
Metal – metal ion	$Ag \mid Ag^+(aq)$	$Ag(s) \rightarrow Ag^{+}(aq) + e^{-}$	$[Ag^+]$	Ag^+	$E^0 - 0.0591 \log[Ag^+]$
half – cell					
Metal insoluble	$Ag, AgCl \mid Cl^{-}(aq)$	$Ag(s) + Cl^{-}(aq) \rightarrow AgCl(s) + e^{-}$	1	Cl^-	$E^0 + 0.0591 \log[Cl^-]$
salt anion half –			$[Cl^-]$		
cell					
Calomel electrode	$Hg, Hg_2Cl_2 \mid Cl^-(aq)$	$2Hg(l) + 2Cl^{-}(aq) \rightarrow$	$\frac{1}{[Cl^-]^2}$	Cl^-	$E^0 + 0.0591 \log[Cl^-]$
		$Hg_2Cl_2(s) + 2e^-$	[Cl]		
Metal – metal	$Hg, HgO \mid OH^{-}(aq)$	$Hg(l) + 2OH^{-}(aq) \rightarrow$	1	OH -	$E^0 + 0.0591 \log[OH^-]$
oxide hydroxide		$HgO(s) + H_2O(l) + 2e^-$	$[OH^-]^2$		
half - cell					
Oxidation –	$Pt Fe^{2+}_{(aq)}, Fe^{3+}_{(aq)}$	$Fe^{2+}(aq) \rightarrow Fe^{3+}(aq) + e^{-}$	$\frac{[Fe^{3+}]}{1-2+5}$	Fe^{2+}, Fe^{3+}	$E^0 - 0.0591 \log \frac{[Fe^{3+}]}{[Fe^{2+}]}$
reduction half –	(-1)		$\overline{[Fe^{2+}]}$		$[Fe^{z+}]$
cell					

27. Cell EMF and the spontaneity of the reaction:

Nature of reaction	ΔG (or ΔG^{o})	E _{cell} (or E ^o _{cell})
Spontaneous	1	+

Equilibrium	0	0
Non –	+	_
spontaneous		

28. Electro Chemical Series

	Element	Electrode Reaction (Reduction	Standard Electrode Reduction potential E^0 , volt
Li	<u> </u>	Li++ e− = Li	-3.05
K		K++ e− = K	-2.925
Ва		$Ba^{++} + 2e = Ba$	-2.90
Sr		$Sr^{++} + 2e = Sr$	− 2.89
Са	as L	$Ca^{2+} + 2e^- = Ca$	-2.87
Na	Increasing tendency to accept electrons Increasing strength as oxidising agent	$Na^+ + e^- = Na$	-2.714
Mg	asings	$Na^{+} + e^{-} = Na$ $Mg^{2+} + 2e^{-} = Mg$ $Al^{3+} + 3e^{-} = Al$ $Mn^{++} + 2e = Mn$ $Zn^{2+} + 2e^{-} = Zn$ $Cr^{3+} + 3e^{-} = Cr$ $Fe^{2+} + 2e^{-} = Fe$ $Cd^{2+} + 2e^{-} = Cd$ $Co^{++} + 2e^{-} = Cd$ $Sn^{2+} + 2e^{-} = Ni$ $Sn^{2+} + 2e^{-} = Sn$ $Cn^{2+} + 2e^{-} = Ni$	-2.37
Al	s Incre	$Al^{3+} + 3e^- = Al$	-1.66
Mn	tron	$Mn^{++} + 2e = Mn$	-1.18
Zn	t elec	Zn²++2e⁻=Zn	-0.7628
Cr	accept electror oxidising agent	$Zn^{2+} + 2e^- = Zn$ $Sn^{2+} + 3e^- = Cr$ $Sn^{2+} + 3e^- = Fe$ $Sn^{2+} + 2e^- = Fe$	-0.74
Fe	to a	Fe ²⁺ + 2e ⁻ = Fe	-0.44
Cd	ency	$Cd^{2+}+2e^-=Cd$	-0.403
Со	tend	Co+++ 2e = Co	-0.27
Ni	asing	Ni²++2e⁻ = Ni	-0.25
Sn	ncres	$Sn^{2+}+2e^-=Sn$	-0.14
Pb		Pb ⁺⁺ + 2e = Pb	-0.12
H ₂		2H++2e- = H2	0.00
Cu		$Cu^{2+} + 2e^- = Cu$	+0.337
<i>I</i> ₂		I ₂ +2e ⁻ = 2I ⁻	+0.535
Hg		$Hg^{2+}+2e^-=Hg$	+0.885
Ag	V	$Ag^++e^-=Ag$	+0.799
Br_2		$Br_2 + 2e^- = 2Br^-$	+1.08
Pt		Pt**+ 2e = Pt	+1.20
CI ₂		$Cl_2+2e^-=2Cl^-$	+1.36
Au		$Au^{3+}+3e^{-}=Au$	+1.50
F_2		$F_2 + 2e^- = 2F^-$	+2.87

29. Seven basic S.I. units

Length	Mass	Time	Temperature	Electric Current	Luminous Intensity	Amount of substance
metre (m)	Kilogram (kg)	Second (s)	Kelvin (K)	Ampere (A)	Candela (Cd)	Mole (mol)

30. Derived Units

Physical quantity	Unit	Symbol
Area	square metre	m^2
Volume	cubic metre	m^3
Velocity	metre per second	ms^{-1}
Acceleration	metre per second square	ms^{-2}
Density	kilogram per cubic metre	$kg m^{-3}$
Molar mass	kilogram per mole	kg mol ⁻¹
Molar volume	cubic metre per mole	$m^3 mol^{-1}$
Molar concentration	mole per cubic metre	mol m ⁻³
Force	newton (N)	kg m s ⁻²
Pressure	pascal (Pa)	$N m^{-2}$
Energy work	joule (J)	$kg m^2 s^{-2}, Nm$

31. Standard prefixes use to reduce the basic units

Multiple	Prefix	Symbol	Submultiple	Prefix	Symbol
10 ²⁴	yotta	Y	10-1	deci	d
10 ²¹	zetta	Z	10-2	centi	С
10 ¹⁸	exa	Е	10 ⁻³	milli	m
1015	peta	P	10 ⁻⁶	micro	μ
10 ¹²	tera	T	10 ⁻⁹	nano	n
109	giga	G	10 ⁻¹²	pico	p
106	mega	M	10 ⁻¹⁵	femto	f
10 ³	kilo	k	10 ⁻¹⁸	atto	a

10 ²	hecto	h	10 ⁻²¹	zeto	Z
10^{1}	deca	da	10 ⁻²⁴	yocto	у

32. Conversion factors

1 m = 39.37 inch	1 cal = 4.184 J	1 e.s.u. = 3.3356×10^{-10} C	1 mole of a gas = 22.4 L at STP
1 inch = 2.54 cm	$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	1 dyne = 10 ⁻⁵ N	1 mole a substance = N_0 molecules
1 litre = 1000 mL	1 eV/atom =96.5 kJ mol ⁻¹	1 atm = 101325 Pa	1 g atom = N_0 atoms
1 gallon (US) = 3.79 L	1 amu = 931.5016 MeV	1 bar = $1 \times 10^5 \text{ N m}^{-2}$	$t (^{\circ}F) = 9/5 t (^{\circ}C) + 32$
1 lb = 453.59237 g	1 kilo watt hour = 3600 kJ	1 litre atm = 101.3 J	1 g cm ⁻³ = 1000 kg m ⁻³
1 newton =1 kg m s ⁻²	1 horse power = 746 watt	1 year = 3.1536×10^7 s	$1\mathring{A} = 10^{-10} \text{m}$
1 J = 1 Nm =1 kg m ² s ⁻²	1 joule = 10^7 erg	1 debye (D) = 1×10^{-18} esu cm	$1 \text{nm} = 10^{-9} \text{ m}$

33. Molecular mass

$$\[\text{Molecular mass} = \frac{\text{Mass of one molecule of the substance}}{1/12 \times \text{Mass of one atom of C-12}} \]$$

34.

Normality $[= x \times \text{No. of millimoles}]$

$$= x \times \text{Molarity} = \frac{\text{Strength in } gm \ litre^{-1}}{\text{Eq. wt.}}$$

- 35. Normality formula, $N_1V_1 = N_2V_2$
- 36. Comparison of mass, charge and specific charge of electron, proton and neutron

Name of constant	Unit	Electron(e ⁻)	Proton(p+)	Neutron(n)
	Amu	0.000546	1.00728	1.00899
Mass (<i>m</i>)	Kg	9.109×10^{-31}	1.673×10^{-27}	1.675×10^{-27}
	Relative	1/1837	1	1

	Coulomb (C)	-1.602×10^{-19}	$+1.602 \times 10^{-19}$	Zero
Charge(e)	Esu	-4.8×10^{-10}	$+4.8 \times 10^{-10}$	Zero
	Relative	– 1	+1	Zero
Specific charge (e/m)	C/g	1.76×10^{8}	9.58×10^{4}	Zero
Density	Gram / cc	2.17×10^{-17}	1.114 × 10 ¹⁴	1.5×10^{-14}

37. Standard ambient temperature and pressure

Condition	Т	P	V_m (Molar volume)
S.T.P./N.T.P	273.15 K	1 atm	22.414 L
•			
S.A.T.P*.	298.15 K	1 bar	24.800 L

38. Chemical Equilibrium

39. PH Scale

	$[H^+]$	$[OH^-]$	pН	рОН
Acidic solution	$> 10^{-7}$	$< 10^{-7}$	< 7	> 7
Neutral solution	10^{-7}	10^{-7}	7	7
Basic solution	$< 10^{-7}$	$> 10^{-7}$	> 7	< 7

pH of some materials

Material	рН	Material	pН
Gastric juice	1.4	Rain water	6.5
Lemon juice	2.1	Pure water	7.0
Vinegar	2.9	Human saliva	7.0
Soft drinks	3.0	Blood plasma	7.4
Beer	4.5	Tears	7.4

Black coffee	5.0	Egg	7.8
Cow's milk	6.5	Household	11.9
		ammonia	

40. Thermodynamics

$$E_2 - E_1 =$$

$$\Delta E = q + w$$

41.

 $13.7 \, Kcal \, / mol = 57 \, KJ \, / mol$ (because of $1 \, cal = 4.2 \, Joule$)

 \mathbf{z} Enthalpy of fusion of ice per mole is 6KJ.

 \varnothing Order of bond energy in halogen $Cl_2 > Br_2 > F_2 > I_2$.

42. Equivalent weight of few oxidising/reducing agents

Agents	O. N.	Produc t	O. N.	Change in O. N. per atom	Total Change in O. N. per mole	Eq. wt.
Cr ₂ O ₇ ²⁻	+ 6	Cr 3+	+ 3	3	$3 \times 2 = 6$	Mol. wt./6
$C_2O_4^{\ 2-}$	+ 3	CO_2	+ 4	1	$1 \times 2 = 2$	Mol. wt./2
$S_2O_3^{\ 2-}$	+ 2	$S_4 O_6^{2-}$	+ 2.5	0.5	$0.5 \times 2 = 1$	Mol. wt./1
H_2O_2	- 1	H_2O	– 2	1	$1 \times 2 = 2$	Mol. wt./2
H_2O_2	- 1	O_2	0	1	$1 \times 2 = 2$	Mol. wt./2
MnO ₄ ⁻ (Acidic medium)	+ 7	Mn^{2+}	+ 2	5	5 × 1 = 5	Mol. wt./5
MnO ₄ (Neutral medium)	+ 7	MnO_2	+ 4	3	3 × 1 = 3	Mol. wt./3
MnO 4 (Alkaline medium)	+ 7	MnO_4^{2-}	+ 6	1	$1 \times 1 = 1$	Mol. wt./1

43. Products of electrolysis of some electrolytes

Electrolyte	Electrode	Product at cathode	Product at anode
Aqueous NaOH	Pt or Graphite	$2H^+ + 2e^- \rightarrow H_2$	$2OH^{-} \rightarrow \frac{1}{2}O_{2} + H_{2}O + 2e^{-}$
Fused NaOH	Pt or Graphite	$Na^+ + e^- \rightarrow Na$	$2OH^- \rightarrow \frac{1}{2}O_2 + H_2O + 2e^-$
Aqueous NaCl	Pt or Graphite	$2H^+ + 2e^- \rightarrow H_2$	$2Cl^- \rightarrow Cl_2 + 2e^-$
Fused NaCl	Pt or Graphite	$Na^+ + e^- \rightarrow Na$	$2Cl^- \rightarrow Cl_2 + 2e^-$
Aqueous CuSO ₄	Pt or Graphite	$Cu^{2+} + 2e^- \to Cu$	$2OH^- \rightarrow \frac{1}{2}O_2 + H_2O + 2e^-$
Aqueous CuSO ₄	Cu electrode	$Cu^{2+} + 2e^- \rightarrow Cu$	Cu oxidised to Cu^{2+} ions
Dilute H ₂ SO ₄	Pt electrode	$2H^+ + 2e^- \rightarrow H_2$	$2OH^{-} \rightarrow \frac{1}{2}O_{2} + H_{2}O + 2e^{-}$
Conc. H ₂ SO ₄	Pt electrode	$2H^+ + 2e^- \rightarrow H_2$	Peroxodisulphuric acid $(H_2S_2O_8)$
Aqueous AgNO ₃	Pt electrode	$Ag^+ + e^- \rightarrow Ag$	$2OH^- \to \frac{1}{2}O_2 + H_2O + 2e^-$
Aqueous AgNO ₃	Ag electrode	$Ag^+ + e^- \rightarrow Ag$	Ag oxidised to Ag^+ ions

44. Ohm's law

$$I = \frac{V}{R}$$
 or $V = IR$

45. Electro chemical series

