Probability in Computing

LECTURE 6: BINS AND BALLS,

APPLICATIONS: HASHING & BLOOM FILTERS

Agenda

- Review: the problem of bins and ba
- Poisson distribution
- Hashing
- Bloom Filters

Balls into Bins

- We have m balls that are thrown into n bi with the location of each ball chosen independently and uniformly at random from possibilities.
- What does the distribution of the balls into bins look like
 - "Birthday paradox" question: is there a bin wit least 2 balls
 - How many of the bins are empty?
 - How many balls are in the fullest bin?

Answers to these questions give solutions to many problems in the design and analysis algorithms

The maximum load

- ◆ When n balls are thrown independently and unif random into n bins, the probability that the maxiload is more than 3 lnn/lnlnn is at most 1/n for n sufficiently large.
 - By Union bound, Pr [bin 1 receives \geq M balls] $\leq \binom{n}{M}$
 - Note that:

$$\binom{n}{M} \left(\frac{1}{n}\right)^M \le \frac{1}{M!} \le \left(\frac{e}{M}\right)^M$$
.

■ Now, using Union bound again, Pr [any ball receives ≥ is at most

$$n\left(\frac{\mathrm{e}}{M}\right)^M \le n\left(\frac{\mathrm{e}\ln\ln n}{3\ln n}\right)^{3\ln n/\ln\ln n}$$

which is $\leq 1/n$

Application: Bucket Sort

- A sorting algorithm that breaks the Ω(nlogn) lower bound under certain input assumption
- Bucket sort works as follows:
 - Set up an array of initially empty "buckets."
 - Scatter: Go over the original array, putting each object in its bucket.
 - Sort each non-empty bucket.
 - Gather: Visit the buckets in order and put all elements back into the original array.

- A set of $n = 2^m$ intrandomly chosen $[0,2^k),k\ge m$, can be in expected time (
 - Why: will analyz

The Poisson Distribution

- Consider m balls, n bins
 Pr [a given bin is empty] = $\left(1 \frac{1}{n}\right)^m \approx e^{-m/n}$;
 - Let X_i is a indicator r.v. that is 1 if bin j empty, 0 otherw
 - Let X be a r.v. that represents # empty bins

$$\mathbf{E}[X] = \mathbf{E}\left[\sum_{i=1}^{n} X_i\right] = \sum_{i=1}^{n} \mathbf{E}[X_i] = n\left(1 - \frac{1}{n}\right)^m \approx ne^{-m/n}$$

Generalizing this argument, Pr [a given bin has r balls] :

$$\binom{m}{r}\left(\frac{1}{n}\right)^r\left(1-\frac{1}{n}\right)^{m-r}=\frac{1}{r!}\frac{m(m-1)\cdots(m-r+1)}{n^r}\left(1-\frac{1}{n}\right)^{m-r}$$

- Approximately, $p_r \approx \frac{\mathrm{e}^{-m/n}(m/n)^r}{r!}$
- So Definition 5.1: A discrete Poisson random variable X with parameter following probability distribution on j = 0, 1, 2, ...:

$$\Pr(X=j) = \frac{e^{-\mu}\mu^j}{j!}.$$

Limit of the Binomial Distributio

We have shown that, when throwing m balls randomly into b bins, the probability that a bin has r balls is approximately the Poisson distribution with mean m/b. In g eral, the Poisson distribution is the limit distribution of the binomial distribution g parameters g and g, when g is large and g is small. More precisely, we have the lowing limit result.

Theorem 5.5: Let X_n be a binomial random variable with parameters n and p, when p is a function of n and $\lim_{n\to\infty} np = \lambda$ is a constant that is independent of n. The for any fixed k,

$$\lim_{n\to\infty} \Pr(X_n = k) = \frac{e^{-\lambda}\lambda^k}{k!}.$$

This theorem directly applies to the balls-and-bins scenario. Consider the situat where there are m balls and b bins, where m is a function of b and $\lim_{n\to\infty} m/b = \text{Let } X_n$ be the number of balls in a specific bin. Then X_n is a binomial random varia with parameters m and 1/b. Theorem 5.5 thus applies and says that

$$\lim_{n\to\infty} \Pr(X_n = r) = \frac{e^{-m/n} (m/n)^r}{r!},$$

Probability for Computing

Application: Hashing

- The balls-and-bins model is good to model hashi
- Example: password checker
 - Goal: prevent people from choosing common, easily crapasswords
 - Keeping a dictionary of unacceptable passwords and checeptated password against this dictionary.
- Initial approach: Sorting this dictionary and do bir search on it when checking a password
 - Would require $\Omega(\log m)$ time for m words in the dictional
- New approach: chain hashing
 - Place the words into bins and search appropriate bin for
 - The worlds in a bin: implemented as a linked list
 - The placement of words into bins is done by using a has

Chain hashing

- Hash table
 - A hash function f: U → [0,n-1] is a way of placing items universe U into n bins
 - Here, U consists of all possible password strings
 - The collection of bins called hash table
 - Chain hashing: items that fall into the same bin are chair together in a linked list
- Using a hash table turns the dictionary problem in balls-and-bins problem
 - m words, hashing range [0..n-1] → m balls, n bins
 - Making assumption: we can design perfect hash function words into bins uniformly random
 - A given word could be mapped into any bin with the same

Search time in chain hashing

- To search for an item
 - First hash it to find the corresponding bin then it in the bin: sequential search through the link list
 - The expected # balls in a bin is about m/n → expected time for the search is Θ(m/n)
 - If we chose m=n then a search takes expected constant time
- Worst case
 - maximum # balls in a bin: $\Theta(\ln n/\ln n)$ if choose
 - Another disadvantage: wasting a lot of space i empty bins

Hashing: bit strings

- ♦ In chain hashing, n balls n bins, we waste a lot empty bins → should have m/n >>1
- Hashing using sort fingerprints will help
 - Suppose: passwords are 8-char, i.e. 64 bits
 - We use a hash function that maps each pwd into a 32string, i.e. a fingerprint
 - We store the dictionary of fingerprints of the unaccept passwords
 - When checking a password, compute its fingerprint the check it against the dictionary: if found then reject this password
- But it is possible that our password checker may give the correct answer!

False positives

- This hashing scheme gives a false pos when it rejects a good password
 - The fingerprint of this password accidental matches that of an unacceptable password
 - For our password checker application this conservative approach is, however, accept the probability of making a false positive is too high

False positive probability

- How many bits should we use to create fingerprints?
 - We want reasonably small probability of a fals positive match
 - Prob [the fingerprint of a given good pwd ≠ ar unacceptable fingerprint] = 1- ¹/₂b; here b # k
 - Thus for m unacceptable pwd, prob [false pos occurs on a given good pwd] = $1-(1-\frac{1}{2b})^m \ge$
 - Easy to see that: to make this prob less than a small constant, we need b = Ω(log n)
 - If use b=2logm bits → Prob [a false positive] = 1-(
 - Dictionary of 2¹⁶ words using 32-bit fingerprint → fa¹/_{65,536}

An approximate set membership problem

- Suppose we have a set S = {s₁, s₂, s₃, ... s_m} of m elements from a large universe to U. We would like to represent the element S in such a way so that
 - We can quickly answer the queries of form "I an element of S?"
 - We want the representation take as little space possible
- For saving space we can accept occasion mistakes in form of false positives
 - E.g. in our password checker application

Bloom filters

- A Bloom filter: a data structure for this approximate set membership problem
 - By generalizing these mentioned hashing idea achieve more interesting trade-off between required space and the false positive probabil
 - Consists of an array of n bits, A[0] to A[n-1], initially set to 0
 - Uses k independent hash functions h₁, h₂, ..., with range {0,...n-1}; all these are uniformly random
 - Represent an element s∈S by setting A[h_i(s)] i=1,..k

- Checking: For any value x, to see if x∈S simply check if A[h_i(x)] =1 for all i=1,..k
 - If not, clearly x is not a member of S
 - If right, we assume that x is in S but we could be wrong! → false positive

Start with an array of 0s.

Each element of S is hashed k time hash gives an array location to set t

To check if y is in S, check the k ha locations. If a 0 appears, y is not in

If only 1s appear, conclude that y is This may yield false positives.

False positive probability

- The probability of a false positive for an element the set
 - After all m elements of S are hashed into Bloom filter, P give bit =0] = $(1-\frac{1}{n})^{km} \approx e^{-km/n}$. Let $p=e^{-km/n}$.
 - Prob [a false positive] = $(1-(1-1/_n)^{km})^k \approx (1-e^{-km/n})^k = (1-e^{-km/n})^k$ Let $f = (1-p)^k$.
 - Given m, n what is the optimum k to minimize f?
 - Note that a higher k gives us more chance to find a 0-bit f element not in S, but using fewer h-functions increases th of 0-bit in the array.
 - Optimal $k = \ln 2.^n/_m$ which reaches minimum $f = \frac{1}{2}k$ $\approx (0.6185)^{n/m}$
 - Thus Bloom filters allow a small probability of a false powhile keep the number of storage bit per item a constar
 - Note in previous consideration of fingerprints we need $\Omega(I)$ per items

Bloom filters: applications

- Discovering DoS attack attempt
 - Computing the difference between SYN and FIN packets
 - Matching between SYN and FIN packets by tuples of addresses (source and destination por
- Many, many other applications

Application of hashing: breaking symmetry

- Suppose that n users want a unique resource (processes demand CPU time) how can we decide permutation quickly and fairly?
 - Hashing the User ID into 2^b bits then sort the resulting in
 - That is, smallest hash will go first
 - How to avoid two users being hashed to the same value?
- If b large enough we can avoid such collisions as birthday paradox analysis
 - Fix an user. Prob [another user has the same hash] = $1 \frac{1}{2b}$ $n-1 \le \frac{(n-1)}{2b}$
 - By union bound, prob [two users have the same hash] :
 - Thus, choosing b = 3logn guarantees success with probabi
 - Leader election

SYN FLOOD DEFENSE SOLUTIONS

TCP SYN-Flooding Attack

- TCP services are often susceptible to vari types of DoS attacks
 - SYN flood: external hosts attempt to overwhe server machine by sending a constant stream connection requests
 - Streaming spoofed TCP SYNs
 - Forcing the server to allocate resources for each new con until all resources are exhausted
 - 90% of DoS attacks use TCP SYN floods
 - Takes advantage of three way handshake
 - Server start "half-open" connections
 - These build up... until queue is full and all additional required blocked

TCP: Overview

2581

- point-to-point:
 - one sender, one receiver
- reliable, in-order byte steam:
 - no "message boundaries"
- pipelined:
 - TCP congestion and flow control set window size
- send & receive buffers

RFCs: 793, 1122, 1323, 20

- full duplex data:
 - bi-directional datasame connection
 - MSS: maximum seç size
- connection-oriente
 - handshaking (exchange) init's sender, receiver state
 before data exchange
- flow controlled:

socket door sender will not ove receiver

© 2010, Van Nguyen

TCP segment structure

URG: urgent data (generally not used)

ACK: ACK #

valid

PSH: push data now (generally not used)

RST, SYN, FIN: connection estab (setup, teardown commands) Internet checksum (as in UDP) source port # dest port #
sequence number
acknowledgement number
head not len used UAPRSFReceive window
checksum Urg data pnter
Options (variable length)

application

data

(variable length)

count by by of da (not :

> # | `rcv to

Attack Mechanism

- Transmission Control Block (TCB) is reserved
- TCP SYN-RECEIVED state: connection is half-opened
 - Up on receiving SYN, segment TCB
 - Transited to ESTABLI SHED until last ACK

Attack Mechanism

- ◆ attacker sends a
 flood of SYNs → too
 manyTCB → host is
 exhauted in memory.
- To avoid this, OS only allows a fixed maximum number of TCBs in SYN-RECEI VED
- If this threshold is reached, new coming SYN will be rejected

SYN Flooding

Implementation Method

How to create a successful flood

- Making drops of incomplete connection (IC)
 - Standard TCP: a connection times out only after some retranmisstion
 - Assuming 1024 ICs are allowed per socket→ 2 connection attempts pe exhaust all allocated resources.
 - Note that existing ICs are dropped when a new SYN request is received
- ◆ If an ACK arrives at the server but does not find a correspor state → the server fail to establish such required connection
 - Round trip time (RTT): time required for the server to have the client r
 - Forcing the server to drop IC state at a rate larger than the RTT, → not are able to complete → success in attack!
- The goal of attack is to recycle every connection before the RTT
 - For a listen queue size of 1024, and a 100 millisecond RTT → need 10 per second.
 - A minimal size TCP packet is 64 bytes, so the total bandwidth used is €
 4Mb/second → practical!

Flood Detection System (FE

- Stateless, simple, edge (leaf) routers
- Utilize SYN-FIN pair behavior
- ◆ Include (SYNACK FIN) so client or server
- However, RST violates SYN-FIN behav
- Placement: First/last mile leaf routers
 - First mile detect large DoS attacker
 - Last mile detect DDoS attacks that first would miss

SYN – FIN Behavior

SYN - FIN Behavior

Generally every SYN has a FIN

SFD-Method

- 1- Classification of packets
- 2-Computing the # of SYN and FIN packet going through
- 3-Using algorithm CUSUM to analyze the (SYN-FIN) pair behaviour

SFD-BF Method

- Improvement on previous SFD:
 - Compute the difference between #SYN an #FIN when the packets are matched on th tuple:
 - When a SYN packet comes, determine the corresponding 4-tuple and insert this into I I ncrease the counter specified by this 4 tuple.
 - When a FI N/RST packet comes: determ the 4-tuples and find it's hash in BF to decrease the corresponding counter

Intentional Dropping Scheme SYN Flooding Mitigation

<u>I dea</u>

- Normally, if it does not receive a SYN-ACK aft sending a SYN for a certain time a client mac then would resend another SYN until it gets connected to the wanted server.
- The idea of this method is to drop all the first from all the source machine, which would hel reduce SYN flood which is usually first SYNs v spoofed addresses

Method

- The solution is to propose using 3 different B
 - BF1: stores the 4-tuple address of the firs
 SYN coming from a given source
 - BF2: stores the 4-tupple of all SYNs, with which the 3-way handshake is already completed
 - BF-3: Store the 4-tupple of other SYNs.

Method

Once a SYN arrives, its 4-tuple address is checked at the 3 BFs, where occurs 1 of the 3 following cases

- ◆ 1. Not in any BF→ This is the first SYN the be dropped, also insert the 4-tuple into BF1
- ◆ 2. If found in BF-1→ this is a second SYN w just move the 4-tuple from BF1 to BF3
- ◆ 3. If in BF-2 → Let it go through.
- ◆ 4. If in BF-3 → let it goes through with probability p=1/n, where n is the value of corresponding counter in BF-3

Method

When an ACK comes, its 4-tupple address is che against the BFs, which may results in 1 of 3 following cases"

- 1. Not in any BF → drop the packet
- 2. If it matches one in BF-2 → let it through
- 3. If in BF-3 → the connection is completed move the 4-tuple address from BF3 to BF-2

Result

- First SYN from any source will be dropp
- The second SYN from the same source \(\)
 go through
- If this same source continue sending SY the probability that the SYN numbered allowed to go through is 1/n
- → Thus, the SYN flood caused by an attacki source will be mitigated.