Complements

July 7, 2019

Al problems

- ▶ We will finish by discussing some issues regarding AI problems
 - Optimization and gradient descent
 - Multivariate analysis
 - Overfitting

Overview

Optimization and gradient descent
Setting the problem
Measuring the quality of a model
The gradient algorithm

Multivariate analysis Correlation

Overfitting

Example situation

Let's say we have some data (x_1, \ldots, x_n) , for instance representing the heights of n a trees from some species.

Figure: Amandier

▶ For instance $x_1 = 5m$, $x_{10} = 10.5m$,

Example situation

Let's say we have some data $(x_1, ..., x_n)$, for instance representing the heights of n a trees from some species.

Figure: Amandier

- ▶ For instance $x_1 = 5m$, $x_{10} = 10.5m$,
- ► We would like to analyze the distribution of the random variable *x*.

Tree heights

Let's look at the data

▶ We have 10000 samples.

- -Optimization and gradient descent
 - Setting the problem

Tree heights

A histogram is better :

- Optimization and gradient descent
 - Setting the problem

Tree heights

► A histogram is better :

What distribution would you use to fit the data?

- Optimization and gradient descent
 - Setting the problem

Figure: Bad model

Figure: Better model

Figure: Good model

Summary

- ▶ In this situation, it was easy to know if our model was good or not by just sampling from our model and then looking at the histograms.
- In one dimension, we have visual feedack.

Real life problems.

- In this situation, it was easy to know if our model was good or not by just sampling from our model and then looking at the histograms.
- ▶ In one dimension, we have visual feedack.
- However, in most cases, it won't be that straightforward to fit a distribution.

Real life problems.

- In this situation, it was easy to know if our model was good or not by just sampling from our model and then looking at the histograms.
- In one dimension, we have visual feedack.
- However, in most cases, it won't be that straightforward to fit a distribution.
 - ▶ the dimensionality can be higher.
 - what distribution do we want to use ?
 - even if we know the right shape of the distribution, how to choose the parameters ?

Measuring the quality of a model

▶ We need tools to **quantify** the quality of our model.

Kullbach-Leibler

- ▶ The Kullbach-Leibler divergence is such a tool.
- It comes from information theory.

Kullbach-Leibler Divergence

$$\mathcal{D}[p||q] = \mathbb{E}_{\sim p}[\log(\frac{p}{q})] \tag{1}$$

For discrete variables

$$\mathcal{D}[p||q] = \sum_{i} p(i) \log \frac{p(i)}{q(i)}$$
 (2)

for continuous variables

$$\mathcal{D}[p||q] = \int_{X} p(x) \log \frac{p(x)}{q(x)} dx \tag{3}$$

Measuring the quality of a model

Figure: Better model: KL divergence of 0.19

Measuring the quality of a model

Figure: Good model: KL divergence of 0.01

Maximum Likelihood

The **Maximum Likelihood** method is a famous method used in Machine Learning.

Say you have a dataset $(x_1, ..., x_n)$.

Measuring the quality of a model

Maximum Likelihood

The **Maximum Likelihood** method is one example method used in Machine Learning.

Say you have a dataset $(x_1, ..., x_n)$.

You first need to choose a **model** (which is the distribution) of your dataset, p.

Measuring the quality of a model

Maximum Likelihood

The **Maximum Likelihood** method is the one used in Machine Learning.

Say you have a dataset $(x_1, ..., x_n)$.

You first need to choose a **model** (which is the distribution) of your dataset, p.

Then, you must optimize the **parameters of this model**, noted θ .

Optimization and gradient descent

Measuring the quality of a model

Maximum Likelihood

The Likelihood of your model is

$$L(\theta) = \prod_{i=1}^{n} p(x_i | \theta)$$
 (4)

Maximum Likelihood

The Likelihood of your model is

$$L(\theta) = \prod_{i=1}^{n} \rho(x_i | \theta)$$
 (5)

This is the function that you want to maximise.

☐ Measuring the quality of a model

Maximum Likelihood

Most of the time it's written this way : "minimise $-logL(\theta)$ " Why ?

Measuring the quality of a model

Maximum Likelihood

Most of the time it's written this way : "minimise $-logL(\theta)$ " Because the log **transforms the product into a sum**, which is easier to **derivate**.

Optimization and gradient descent

Measuring the quality of a model

Maximum Likelihood

$$-logL(\theta) = -\sum_{i=1}^{n} \log(p(x_i|\theta))$$
 (6)

Max Likelihood

So how can we minimise $-logL(\theta)$? In the case of very large datasets, and large numbers of parameters (tens, hundredths, more), most of the time an **analytic solution** is not available. So people use **gradient descent**.

The gradient descent

We want x to **minimise** f. We perform, until some criteria is satisfied :

$$x \leftarrow x - \alpha \nabla_f(x) \tag{7}$$

Use the file "gradient_algo.py" and implement the gradient algorithm on a simple example.

I inserted two errors in the code.

The gradient descent

$$x \leftarrow x - \alpha \nabla_f(x) \tag{8}$$

The gradient descent

Experiment with it, try to change all the parameters and to break it again. Is it stable ?

The gradient descent

Let's try with a different function

The gradient descent

Let's try with a different function that has **several local minima**.

Multidimensional vectors

We can consider data that live in higher dimensional spaces than 2.

Multidimensional vectors

We can consider data that live in higher dimensional spaces than 2. Examples ?

Multidimensional vectors

We can consider data that live in higher dimensional spaces than

- 2. Examples ?
 - images
 - sensor that receives multimodal information

Correlation

Sometimes the components of a multidimensonial vector $(x_1,...,x_n)$ are not independent.

Correlation

Sometimes the components of a multidimensonial vector $(x_1,...,x_n)$ are not independent.

To study this, we can use the **covariance** of the two components, or the **correlation** which is actually clearer.

Correlation, expected value

Let us introduce these two important quantities (backboard).

Example

Look at the data contained in **mysterious_distro_3.csv**They contain a random variable with 5 dimensions. Some of these dimensions are correlated.

Think for instance to physics: temperature and pressure, etc. If you have measurements of temperature and pressure, the two would probably be **correlated**.

Covariance matrix

Figure: Covariance matrix for the distribution

Correlation matrix

Figure: Correlation matrix for the distribution

Generation of the data

▶ Generation of the data

We will learn a **model** of the following data, in a **supervised learning** context.

Our **model** should allow us to predict the **output** for new **inputs**. For instance what should be predicted fot an input of -48?

We need to choose:

- ► A class of model.
- A relevant complexity once the class is chosen.

► What could be the drawbacks of using a very simple model (very few parameters) ?

- ► What could be the drawbacks of using a very simple model (very few parameters)
 - ► Weak expressive power

- What could be the drawbacks of using a very simple model (very few parameters)
 - Weak expressive power
- What could be the drawbacks of having a very complex model (that contains a very large number of parameters, e.g. millions as in a very deep neural network) ie a very high expressive power?

- What could be the drawbacks of using a very simple model (very few parameters)
 - Weak expressive power
- What could be the drawbacks of having a very complex model (that contains a very large number of parameters, e.g. millions as in a very deep neural network) ie a very high expressive power?
 - Harder to optimize
 - Harder to interpret
 - Can overfit

We want to perform supervised learning in order to be able to predict the output y for a new sample x.

▶ We want to perform supervised learning in order to be able to predict the output *y* for a new sample *x*.

➤ To illustrate the problem of overfitting, we will use polynoms as models.

We will divide the dataset into two subsets :

- ▶ a training set : used to learn the most relevant polynom once the degree is chosen
- ▶ a **test set** : used to evaluate overfitting

- cd overfitting. Use the dataset contained in linear_noisy_data.csv, load it from fit_data.py in order to assess the impact of the degree of the polynom on overfitting.
- ▶ You need to edit the loop at the end of the file.

► The higher the degree of the polynom, the more parameters it has and the better it can fit the training points :

Figure: degree 2

► The higher the degree of the polynom, the more parameters it has and the better it can fit the training points :

Figure: degree 9

► The higher the degree of the polynom, the more parameters it has and the better it can fit the training points :

Figure: degree 19

 However, the error on the test set increases and the model looses signification

Figure: Useless solution

In that situation, what degree should we use?

Trying to prevent overfit

- ► The problem of overfitting is linked to that of **generalisation** : to what extent are we allowed to extrapolate the knowledge obtained on the training samples to new samples ?
- ▶ To improve generalisation, one can use :
 - a validation set
 - regularization

Regularization methods

- ▶ Penalize the magnitude of the weight in a neural network
- Remove neurons in a neural network (pruning)
- use smooth functions (continuous)