

Measles virus fusion (F) gene TaqMan (no longer in regular use; see Guidelines)

Michael Lyon, Judy Northill, Ian Mackay

Abstract

This was a past assay that we no longer in use. For our favoured Measles TaqMan test, please refer to the MeV N TaqMan protocol.

The protocol aims to amplify measles virus (MeV) strains and not other viruses.

Michael Lyon designed the original version of this unpublished in-house assay in 1999. It was superseded in 2003 but occassionally brought out as needed for troubelshooting. The superseding test was a first generation MGB-TaqMan protocol called *Measles MGB* TaqMan *FAST*.

The assay targets the fusion (F) gene region and is designed as a qualitative test for investigating MeV infection of humans.

Citation: Michael Lyon, Judy Northill, Ian Mackay Measles virus fusion (F) gene TaqMan (no longer in regular use; see

Guidelines). protocols.io

dx.doi.org/10.17504/protocols.io.rs7d6hn

Published: 23 Aug 2018

Before start

- If using a different brand or model of real-time thermocycler, check the concentration of ROX is adequate.
- Method assumes the user is familiar with the thermocycler and software used to run the protocol and with PCR in general.

Protocol

Oligonucleotide sequences

Step 1.

Name	Sequence 5'-3'
Measles FP	CGGATAACTCACGTCGACACA
Measles RP	CTCTAGCCGGTGGACAATCAC
Measles Fusion probe	FAM - AGCCTATCCGACGCTGTCCGAGATTAA - BHQ1

Reagents

Step 2.

SuperScript™ III Platinum™ One-Step qRT-PCR Kit <u>11732088</u>by <u>Life Technologies</u>

Reaction set-up

Step 3.

The assay has been used on both a Rotor-Gene 6000 and a Rotor-Gene Q real-time thermocycler

Prepare sufficient mix for the number of reactions.

Include a suitable 'dead volume' as necessary if using a robotic dispenser.

MIX PREPARATION

Reagent	Volume (µl) x1	Final reaction concentration
Nuclease-free water	4.47	N/A
Measles FP 200pmol/μl	0.03	300nM
Measles RP 200pmol/μl	0.03	300nM
Measles Fusion probe 100pmol/μl	0.03	150nM
2X Reaction Mix ¹	10	1X
SuperScript® III/Platinum® <i>Taq</i> Mix ¹	0.4	1X
ROX Reference Dye (25μM)	0.04	0.05μΜ
Template	5	N/A
TOTAL	20	

¹Superscript[™]III Platinum[™] One-step qRT-PCR kit

- Dispense 15µL to each reaction well.
- Add 5µL of template (extracted RNA, controls or NTC [nuclease-free water]).
- Total reaction volume is 20µL

Amplification

Step 4.

CYCLING CONDITIONS

50°C	5min	1X
95°C	2min	1X
95°C	3sec	40X
60°C	30sec ¹	

¹Fluorescence acquisition step

Result Analysis

Step 5.

The definition used for a satisfactory positive result from a real-time fluorogenic PCR should include each of the following:

- 1. A **sigmoidal curve** the trace travels horizontally, curves upward, continues in an exponential rise and followed by a curve towards a horizontal plateau phase
- 2. A **suitable level of fluorescence** intensity as measured in comparison to a positive control (y-axis)
- 3. A **defined threshold (C_T) value** which the fluorescent curve has clearly exceeded (Fig.1 arrow), which sits early in the log-linear phase and is <40 cycles
- 4. A flat or non-sigmoidal curve or a curve that crosses the threshold with a $C_T > 40$ cycles is considered a negative result.
- 5. NTCs should not produce a curve

Figure 1. Examples of satisfactory sigmoidal amplification curve shape when considering an assay's fluorescent signal output. The crossing point or threshold cycle (C_T) is indicated (yellow arrow); it is the value at which fluorescence levels surpass a predefined (usually set during validation, or arbitrary) threshold level as shown in this normalized linear scale depiction. LP-log-linear phase of signal generated during the exponential part of the PCR amplification; TP-a slowing of the amplification and accompanying fluorescence signal marks the transition phase; PP-the plateau phase is reached when there is little or no increase in fluorescent signal despite continued cycling.