PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISH	HED U	JNDER THE PATENT COOPERATIO	N TREATY (PCT)
(51) International Patent Classification 6:		(11) International Publication Number:	WO 96/19585
C12Q 1/68	A1	(43) International Publication Date:	27 June 1996 (27.06.96)
(21) International Application Number: PCT/AU (22) International Filing Date: 20 December 1994 (22)		CH, DE, DK, ES, FR, GB, GR,	
(71) Applicant (for all designated States except US): HEIDI REPATRIATION HOSPITAL [AU/AU]; Banksi Heidelberg West, VIC 3081 (AU).			
(72) Inventor; and (75) Inventor/Applicant (for US only): GÜRTLER, [AU/AU]; 6 Madden Street, Maidstone, VIC 3012		ег	
(74) Agent: SANTER, Vivien; Griffith Hack & Co., 509 S Road, Melbourne, VIC 3004 (AU).	St. Kild	da e e e e e e e e e e e e e e e e e e e	
(54) Title: TYPING OF MICROORGANISMS			
(57) Abstract			
The invention relates to a method of detecting, identithis method. In particular, the method relates to the typing allelic subtypes. The method uses amplification of the 16S-23S rRNA spacer region, and/or a highly conserve	of spe S-23S r	cific isolates of microorganisms, and discriming RNA spacer region using a highly conserved to the spacer region and the spacer region and the spacer region are region as the spacer region and the spacer region are region as the spacer region and the spacer region are region as the spacer region and the spacer region are region as the spacer region and the spacer region and the spacer region are region as the spacer region and the spacer region are region as the spacer region and the spacer region and the spacer region are region as the spacer region and the spacer region are region as the spacer region and the spacer region are region as the spacer region and the spacer region are region and the spacer region are region and the spacer region and the spacer region are region as the spacer region and the spacer region are region.	nation between strains and region from the 3' end of

tracing of specific microorganism subtypes. Preferred primers are disclosed and claimed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑÜ	Australia	GE	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE.	
BE	Belgium	GR	Greece	NL	Niger
BF	Burkina Faso	HU	Hungary	NO NO	Netherlands
BG	Bulgaria	IE	ireland		Norway
B↓	Benin	ſΤ	Italy	NZ	New Zealand
3K	Brazil	JР	Japan	PL	Poland
₽¥	Belarus	KE	Kenya	PT	Portugal
CA	Canada	KG	Kyrgystan	RO	Romania
CF	Central African Republic	KP		RU	Russian Federation
CG	Congo	N.	Democratic People's Republic of Korea	SD	Sudan
СН	Switzerland	KR		SE	Sweden
CI	Côte d'Ivoire	KZ	Republic of Korea	SI	Slovenia
СМ	Cameroon	ᄔ	Kazakhstan	SK	Slovakia
CN	China	LK	Liechtenstein	SN	Senegal
cs	Czechoslovakia	LU	Sri Lanka	TD	Chad
CZ	Czech Republic	LV	Luxembourg	TG	Togo
DE	Germany		Larvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
ES	Spain	MD	Republic of Moldova	UA	Ukraine
FI	Finland	MG	Madagascar	US	United States of Americ
R	France	ML	Mali	UZ	Uzbekistan
GA	Gabon	MN	Mongolia	VN	Viet Nam

- 1 -

TYPING OF MICROORGANISMS

This invention relates to a method of detecting, identifying and quantitating microorganisms, and to oligonucleotide probes for use in this method. In particular, the method relates to the typing of specific isolates of microorganisms, and discrimination between strains and allelic subtypes.

Background and Prior Art

5

20

25

vital part of microbiological practice, and is a prerequisite for selecting the most suitable form of treatment of disease, for prevention of contamination of foods, and for prevention of cross-infection. In many cases it is important not only to identify the species of organism, but also to determine the strain and serotype, or even an allelic subtype. Such identification at subspecies level is particularly important in epidemiological tracing, for example in establishing the origin of hospital-acquired (nosocomial) infection.

Disease caused by Staphylococcus aureus is most often the result of hospital-acquired infections. Strains of S. aureus that are resistant to the penicillinase-resistant antibiotic methicillin are now common, the first major nosocomial epidemic of a methicillin-resistant strain of S. aureus (MRSA) having been described by Stewart and Holt (1963). The determination of whether or not isolates of S. aureus represent a single strain is of considerable epidemiological value in a hospital setting.

identification require culturing of microbiological

identification require culturing of microorganisms in a suitable growth medium, and this entails a delay of at least 24 hours, and often much longer. The methods utilised are completely manual, and rely very heavily on the experience and skill of the microbiologist. Such methods do not lend themselves to automation.

- 2 -

The only alternative presently widely used is immunological identification, which usually requires the use of monoclonal antibodies. A prerequisite for such immunological identification is that the species of the organism in question be known, or at least strongly suspected. Some antibodies of broad specificity are available for use in preliminary screening. While immunological methods can be automated, they are time consuming and expensive.

Other typing methods, which can be used for certain species only, include toxin detection, isolation of plasmids, bacteriophage, bacteriophage/bacteriocin typing systems, antibiotic susceptibility testing, protein typing by SDS-polyacrylamide gene electrophoresis, pulsed-field gel electrophoresis, immunoblotting, and restriction endonuclease analysis.

The availability of molecular biological methods, including oligonucleotide probing and polymerase chain reaction (PCR), offers a means of more accurate, and more rapid and precise identification. It also permits the identification of previously unknown organisms. Techniques based on analysis of DNA are more discriminating than traditional methods, and overcome the variability inherent in discriminating between strains by assays which rely upon the phenotype of the target organism.

The rRNA operon, rrn, is present in varying copy number in all bacteria, with some regions highly conserved and others highly variable (Neefs et al, 1990).

Consequently, when genomic DNA digested with a restriction enzyme is hybridized to rRNA operons, several bands are detected (Garnier et al, 1991). The Southern hybridization of rRNA operons (ribotyping) to detect restriction fragment length polymorphisms (RFLPs) between strains has been reported in many bacterial species, including Salmonella typhi strains (Altwegg et al, 1989), E. coli strains (LiPuma et al, 1989), Xanthomonas maltophilia (Bingen et al, 1991), Legionella pneumophila strains (Harrison et al,

5

10

15

20

25

30

10

1992), and Staphylococcus species and subspecies, including MRSA strains (Blumberg et al, 1992; Monzon et al, 1991; Preheim et al, 1991; DeBuyser et al, 1992). However, Southern hybridization is slow and labour intensive.

Although the rRNA operon has a very high genetic stability and the length of the 16S rRNA gene is constant in all eubacteria (Neefs et al, 1990), the number of rRNA operons has been completely analyzed by Southern hybridization or PCR of the rDNA in only a few eubacteria, including Escherichia coli, demonstrating 7 operons (Morgan et al, 1977), Bacillus subtilis, 10 operons (Loughney et al, 1982), Clostridium perfringens, 10 operons (Garnier et al, 1991), C. difficile, 10 operons (Gürtler, 1993) and Mycobacterium species (Bercovier et al, 1986) and Mycoplasma species (Amikam et al, 1984) 1 or 2 operons

Mycoplasma species (Amikam et al, 1984) 1 or 2 operons respectively. The reports describing sequence data for the 16S-23S spacer region all include only a part of the total number of rRNA operons per genome, including E. coli demonstrating 5 spacers (Harvey et al, 1988), B. subtilis,

20 2 spacers (Loughney et al, 1982), Pleisomonas shigelloides, 3 spacers (East et al, 1992), Aeromonas hydrophila, 3 spacers (East & Collins, 1993), Caulobacter crescentus (Feingold et al, 1985), Acholeplasma laidlawii (Nakagawa et al, 1992) and Enterococcus hirae, (Sechi & Daneo-Moore, 1993) 2 spacers respectively.

International Patent Publication No. WO 91/16454 by N.B. Innogenetics S.A. describes use of hybridization probes consisting of at least 15 nucleotides from the spacer region between rRNA genes of non-viral organisms for detection of non-viral microorganisms, particularly bacteria. The probes are species-specific, and are preferably 15 to 100 nucleotides of the spacer region between the 16S and 23S rRNA genes. A separate oligonucleotide probe is required for each microorganism species.

U.S. Patent No. 5,288,611 by Kohne describes methods and probes for identification and quantification of

30

- 4 -

any organism or group of organisms containing rRNA, including previously unknown organisms. Probes specific for individual species and for groups of related species, and Probes hybridizing to rRNA or to tRNA are described.

U.S. Patent No. 5,292,874 by Milliman discloses hybridization probes specific for Staphylococcus aureus probes, which detect a unique rRNA sequence in the 23S rRNA gene.

Japanese Patent Publication No. 6090793 by Takara Shuzo Co. Ltd. describes methods for detection of bacteria of the genus Lactobacillus, by detection of a sequence in the spacer region between the gene encoding 16S rRNA and the gene encoding 23S rRNA.

The disclosure of each of these patent ...5° specifications is incorporated herein by reference. each case sequences within the spacer region were selected on the basis of specificity for the organism from which they were isolated, and used in hybridization assays or polymerase chain reaction (PCR) for specific identification 20 of an organism. Each of U.S. Patent No. 5,288,611, U.S. Patent No. 5,292,874 and Japanese Patent Publication No. 6090793 requires a separate oligonucleotide for each species of organism. None of these specifications mentions the existence or number of rrn alleles, or describes a method permitting differentiation of strains within a 25 species, or of allelic variations.

International Patent Publication No. WO 93/11264 by E.I. Du Pont De Nemours & Company, the contents of which are incorporated herein by reference, discloses a method for identification of microorganisms by amplification of hypervariable spacer regions between highly conserved sequences encoding rRNA. These spacer region sequences are amplified, using primer sequences; the same pair of primers is used for all species of microorganisms; the sequences of these primers are highly conserved among prokaryotic organisms. The products of amplification are characteristic of a given species. A further amplification

30

35

- 5 -

step using arbitrarily primed polymerase chain reaction (AP-PCR; also known as randomly amplified polymorphic DNA; RAPD) is described as being able to differentiate serotype or strains within a species. However, it is evident that this method did not always enable differentiation between strains, and even if this differentiation was achieved, the patterns were not always clear. The conserved regions used as primers in WO 93/11264 are designated E and A herein, as described below. These findings have also been published elsewhere (Jensen et al, 1993; Jensen & Straus, 1993). The contents of these publications are also incorporated herein by reference.

PCR analysis of the 16S rRNA gene has been used to demonstrate species-specific differences (Gürtler et al, 1991) and strain differences (Vaneechoutte et al, 1992 in various bacterial species. Allelic species-specific differences within the 16S rRNA gene have been demonstrated in clostridia (Gürtler et al, 1991). The rRNA alleles of E. coli (Brosius et al, 1981) and B. subtilis (Loughney et al, 1982) have been shown to have variable length 16S-23S rRNA spacer regions.

We have now surprisingly found that the presence or absence of specific variable length rDNA spacer regions varies between strains within a given microorganism species. By using different specific conserved regions of the rRNA operon, designated C and D herein (see Figure 1 below), as primers for polymerase chain reaction, and by using modified PCR conditions, we can achieve amplification of all alleles present in a microorganism sample, and thus we can differentiate between strains in any bacterial species, without the need for any further steps. The patterns obtained were stable within strains on repeated testing, using passaging either in vitro or in vivo, permitting discrimination within and between species, and designation of specific types within strains.

5

10

15

20

25

30

10

15

Brief Description of the Drawings

Figure 1 shows the position of the oligonucleotide primers (A, B, C, D, E) used in the prior art and in the present invention. The abbreviations ile and ala refer to the respective genes-encoding tRNA for isoleucine and alanine. Primers A and E are as disclosed in WO 93/11264.

Figure 2 illustrates the approaches used for the detection of rRNA alleles in *C. difficile* by Southern hybridization and PCR. The hatched bars (A, B, C and D) show positions of the respective PCR products (Table 3), the shaded bar denotes the 16S rRNA gene, the solid bar denotes the 23S rRNA gene, and the line joining the 16S and 23S gene depicts the spacer regions. The *HindIII* site is at position 975 of the 16S rRNA gene (Gürtler et al, 1991).

Figure 3 shows hybridization of PCR product B to Group II bands in genomic DNA isolated from C. difficile and C. bifermentans strains.

Lanes 1-10, C. difficile strains H13, H15, H16,
H17, H18, H19, H20, H23, 9689 and 9689, respectively;
Lanes 11-13, C. bifermentans strains AM312,
AM360, and AM818, respectively;

Lane 14, pBR328 DNA digested with BgII and HinfI, labelled with photodigoxigenin;

Y indicates the position of an extra band visible in C. bifermentans products.

Figure 4 illustrates the hybridization of PCR product A to Group I and II bands in genomic DNA isolated from C. difficile strains.

Lane 1, pBR328 DNA digested with BglI and HinfI, labelled with photodigoxigenin;

Lanes 2-11, H24, H25, H26, H27, H28, H29, H30, H31, H32 and H33, respectively.

Figure 5 shows the detection of rRNA alleles in

C. difficile strains by Southern hybridization. The
symbols, box shadings and the position of the HindIII site
are described in the legend to Figure 2. Bands depicted as

10

20

25

- 7 -

Group I (Figures 3 and 4) correspond to fragments 5' of the HindIII site and Group II bands (Figures 4 and 5) correspond to fragments 3' of the HindIII site. * refers to bands which are not present in all strains.

Figure 6 shows the constant and variable length regions within PCR product C amplified from C. difficile strains, as demonstrated by agarose gel electrophoresis of undigested (lanes 2-7) and HindIII-digested (lanes 10-15) PCR product C.

Lane 1, pBR328 DNA digest with HinfI and BglI; Lanes 2-7, H15, H24, H28, H30, H31 and H33, respectively;

Lane 8, no DNA control;

Lane 9, pBR328 DNA digested with Hinfl and Bgll;

Lanes 10-15, h13, H14, H17, H19, H23 and 630, respectively.

The standards are 2176, 1766, 1230, 1033, 653, 517, 453, 394, 298, 234 and 220 bp respectively.

C_d, constant HindIII-digested;

 $egin{aligned} V_u, & ext{variable undigested}; & ext{and} \ V_d, & ext{variable } \textit{HindIII-digested}. \end{aligned}$

Figure 7 shows denaturing PAGE of PCR product C amplified from strains of C. difficile.

Lanes 1-8, H17, H15, H14, H13,, 6989, 630 H23 and H19, respectively;

Lane 9, no DNA PCR control

Lanes 10-19, H33, H32, H31, H30, H29, H28, H27,
H26, H25 and H24, respectively.

The sizes of the respective alleles are shown on the left [mean ± SEM (number of determinations)]. The molecular mass markers used (not shown) were λ DNA digested with HindIII and EcoRI (947 and 831 bp bands only) and SPPI DNA digested with EcoRI (1150 and 1000 bp bands only).

Figure 8 is a dendrogram showing the

relationships of *C. difficile* ribotypes. Using maximum parsimony, 50 equally parsimonious trees were found, one of which is shown. The same ribotypes were found in each of

10

15

20

the circled branches (a, b, c) for all 50 trees. The root of the tree $(C.\ bifermentans)$ had no bands in common with any of the ribotypes.

Figure 9 shows the distribution of rRNA genes and restriction sites in the region of interest in Staphylococcus aureus. The solid line joining these genes can vary in length in the same strain or in different strains (Figure 12b). At the bottom of the diagram, the dashed lines show positions of the PCR products C, I & J, which were obtained using the primers R1392F and LR488, SP1F and SP2R and SP1F and LR20F respectively (Table 8). The dotted lines show the origins of HpaII fragments (E, F, G and H) obtained from PCR product C. The locations of other primer binding regions that were used to sequence HpaII fragment E are also shown.

Figure 10 illustrates denaturing PAGE of PCR products amplified from strains of S. aureus.

- (a) Methicillin resistant S. aureus (MRSA) ribotype A, (lanes 1-3), and ribotype B (lanes 4-8). The sizes of the respective alleles are shown on the right [mean ± SEM (number of determinations)].
- (b) All MRSA ribotypes A-I (excluding C) and penicillin-sensitive ribotype Pa (ATCC 9144).
- (c) Penicillin and methicillin sensitive S. aureus strains.

Lanes 1-6: Ribotypes Pi, Pj, PF A(strain H11); Lanes 9-16: B, Mi, Mh, Mi, Pi, Mh and Mj.

The sizes of the respective alleles are shown on the right [mean ± SEM (number of determinations)]. The molecular mass markers (lanes 7 & 8) used were λ DNA digested with HindIII and EcoRI (1375 and 947 bp bands only) and SPP1 DNA digested with EcoRl (1150 and 1000 bp respectively).

Figure 11 shows the alignments of 16S-23S spacer sequences from S. aureus. PCR product C from S. aureus strains (Table 9) was cloned into M13mp18RF and sequenced with the primers listed in Table 8 and Figure 9. The

sequences were derived from the clones and isolates listed in Table 7. The sequences SA16S and SA223S were taken from Ludwig et al (1992). The alignment of rrn alleles with SA16S (a), rrnC, E, F, G, H, J, K & L (b) and rrn alleles SA23S (c) is shown. The symbols refer to an identical base (.), and absent base (-), † = (rrnA, E, J, L, F),

= (clones 4, V17, V32) and S = (clones 4, V4, V8, V32, V43).

relationships between the 16S-23S alleles using the data in Figure 13b or Table 7. The same tree was obtained using either sets of data. One parsimonious tree was obtained with the program DNA PENNY from the PHYLIP package. Then, using MACCLADE, of the 16 possible rerootings, the tree shown was selected because it was drawn using the longest allele (rrnA) as the root. The numerals indicate the numbers of changes/branch. The dotted lines show the clades which contain alleles without tRNA genes, and the solid lines show the clades which contain alleles which contain alleles with tRNA genes.

Summary of the Invention

The method of the invention avoids cumbersome steps required by previously available methods, and is suitable for testing large numbers of samples; it is also amenable to automation.

The method of the invention is particularly suitable for epidemiological studies, for example identifying the source of hospital outbreaks of antibiotic-resistant microorganisms, or tracing the source of microorganisms causing contamination of foodstuffs.

According to a first aspect, the invention provides a method of identification of microorganisms, comprising the steps of extracting and purifying DNA from a sample suspected to contain bacteria, and subjecting the 16S-23S rRNA spacer region of said DNA to amplification, using a first primer comprising a sequence from the 5' end

25

30

35

- 10 -

of the 16S rRNA gene, and a second primer comprising a sequence from the 3' end of the 23S rRNA gene, thereby producing fragments having detectable differences in size and number, and separating the amplified fragments.

Because the amplified fragments produced in the method of the invention are of variable length, they can be analysed directly, for example by electrophoresis; no other experimental step, such as hybridzation, is necessary in order to demonstrate differences between strains, although in some situations a hybridization step could be advantageous.

The amplified products may be separated by any method which provides sufficient resolution. We have found that small conventional polyacrylamide gels have somewhat poor resolution, and our studies have used long denaturing polyacrylamide gels. However, the person skilled in the art will be aware that other separation methods, such as capillary electrophoresis or high performance liquid chromatography, may be used.

Similarly, the studies described herein have employed amplification of DNA sequences by polymerase chain reaction. However, the skilled person will be aware that other amplification methods are known, and may also be used. For example, ligase chain reaction, 3SR amplification, strand displacement amplification, Qβ replicase reaction, or branched DNA signal amplification are available (see Wolcott, 1992 for review). The skilled person will readily be able to test these alternative methods for suitability for use in the invention.

Optionally additional probes may be used, for example comprising the sequence encoding tRNA^{11e} and/or the sequence encoding tRNA^{21a}.

The sample will usually be a clinical sample such as blood, tissue, urine, faeces, sputum etc., a food sample, or an environmental sample such as a water sample or a soil sample. Other types of samples may be used, depending on the circumstances.

5

10

15

30

- 11 -

The DNA may be extracted by any suitable method, but preferably the method is a rapid one. Extraction with guanidine hydrochloride or by boiling water followed by column purification are both suitable. In some cases, particularly where clinical specimens are used, it may be advantageous to effect a preliminary purification of the sample following DNA extraction. If the nature of the bacteria sought to be tested is known, this may be carried out using monoclonal antibody methods, such as those using monoclonal antibody conjugated to magnetic beads. Some broad spectrum antibodies are also available for this purpose.

While the method of the invention is specifically described with reference to Clostridium difficile and to Staphylococcus aureus, it will be clearly understood that the invention is not limited to these organisms, and is applicable to any microorganism for which the sequences of the 16S rRNA gene and the 23S rRNA gene are known. These sequences enable suitable probes to be designed.

Preferably the primers used correspond to a highly conserved region from the 3' end of the spacer region, and to a highly conserved region from the 5' end of the spacer region respectively.

According to a second aspect, the invention 25 provides amplification primers for use in the method of the invention. As described above, these primers correspond to highly conserved regions from the 3' end of the 16S-23S rRNA sacer region and the 5' end of the 169-235 rRNA spacer region respectively. Preferably they 30 correspond to regions from the 5' end of the 16S rRNA gene and to a region from the 3' end of the 23S rRNA gene respectively. Preferably the primers are 15 to 20 nucleotides long, since 15 nucleotides is generally considered to be a minimum length of primer for PCR, but 35 conservation is generally lost at greater than 20 nucleotides.

5

10

15

- 12 -

In a preferred embodiment the primers are R1391F and LR488 or LR194F as herein defined. Most preferably LR488 is 15 to 19 nucleotides long, and R1391F is 15 to 18 nucleotides long. Primer C (LR488) is particularly preferred, because it is more highly conserved than primer A.

We have found that in fact there are three regions in the first 520 base pairs of the 23S rRNA gene which are highly conserved through a wide variety of species of bacteria and fungi, and which are useful as amplification probes in the present invention. These are summarised in Table 1.

.1

Table 1 Conserved regions in the first 520bp of the 23S rRNA gene

A-CGGTGGATGCCTGGCA T-GCCACCTACGCACCGT G-T T G T-CACCTACGCACCGT T-CACCTACGCACCGT T-CACCTACGCACCGT T-CACCTACGCACCGT T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T-T	(0) 8007 01 00	1 Collidar 188 to 2088 (B) Position 456 to 474§ (C)
and T-GCCACCTACGGACCGT G-T T G T G-T T G T G T G T G T		
G-TTTGTTTT	AACATCTAAGTACC	CAGTACCGTGAGGGAAAGG
US T T G - T	FIGTAGATTCATGG	GTCATGGCACTCCCTTTCC
USTTTTTTT		
US	. A	•
LUS		• • • • • • • • • • • • • • • • • • • •
Lus	E	
CA. C. T		
CA. C		
-CACTTT		
	.9	
	C	
.TTTA	•	• • • • • • • • • • • • • • • • • • • •
ulata	£ 0	· · · · · · · · · · · · · · · · · · ·
Ulata T-TTA		
T-T		
Ę.,	• • • • • • • • • • • • • • • • • • • •	
		
	0	· · · · · · · · · · · · · · · · · · ·

§ Numbering of nucleotides based on the *E. coli* 23S rRNA gene {Brosius, 1980 #126} (.) refers to nucleotide identical to plus strand of *E. coli*.

- 14 -

Detailed Description of the Invention

The invention will now be described by way of reference only to the following non-limiting examples, and to the drawings referred to above

5 Bacterial strains and their Cultivation

Bacterial strains used herein are listed in Tables 2 and 3.

The identity of all strains of Clostridium difficile was determined by biochemical tests (Cato et al, 1986) and confirmed by gas-liquid chromatography (Sutter et al, 1985). Purified stocks were stored in cooked-meat broth at room temperature or in glycerol broth at -20°C. All strains were grown in brain heart infusion broth (BHI, Gibco). The stability of ribotype patterns was tested by passaging single colonies from horse blood agar plates every 2-3 days over a 5 week period. Toxin B production by C. difficile strains was detected by the method of Boondeekhun et al (1993).

The identity of all S. aureus strains was

determined by biochemical tests (Kloos & Schleifer, 1986),
and antibiotic sensitivity tests were assessed by the agar
dilution method (break points were determined according to
NCCLS guidelines, Vol 13 No. 25, 1993). Purified stocks
were stored in glycerol broth at -70°C. All strains were

grown in trypticase soya broth (TSB,Oxoid). The stability
of ribotype patterns was tested by passaging single
colonies from sheep blood agar plates five times a week for
six weeks.

- 15 -

Table 2

	Strain	T	RT	Plasmid	Year of isolation	Source
	C. difficil	•				
	H17,H18	+	G	-	1990	
5	H23	+	P	-	1990	
	H24	+	J	ND	1990	
	H25	+	D	ND	1990	
	H26	-	K	ND	1991	
	H27	+	G	ND	1990	Heidelberg Repatriation
)	H28	+	L	ND	1990	Hospital, Melbourne, Australia
	H29	+	H	ND	1991	Adactatia
	H30	+	M	ND	1991	
	H31	+	D	ND	1991	
	H33	+	N	ND	1991	
;	273	+	E	ND	1991	
	J14,H16,H20	+	E	+ (A)	1990	
	H13	-	0	-	1990	
	H14	-	P	+ (B)	1990	
	H15	+	D	-	1990	
	6390	+	Ħ	ND	1993	
	6048	+	G	ND	1993	
	AM690	ND	Q	ND	1982	St Vincent's Hospital, Melbourne, Australia
	ATCC 9689	+	R	-		American Type Culture Collection
	630	+	P	+ (C)	1987	H. Hächler, Switzerland
	C. biferment	ans				
	ATCC 638					American Type Culture Collection
	AM312 AM360					Dr R. Wilkinson, University of Melbourne, Australia
	Abbreviations	!	T	Toxin pro	duction	
		1	RT	PCR-ribot	imo of C	iifficile strains

(Table 5)

The plasmid types are designated:

- none detected
- + extrachromosomal bands detected (A, B and C are the different sized band paters obtained)
 - ND not determined.

- 16 -

Table 3
S. aureus strains

	Location	Year	Number of Isolates
	Methicillin-resistant		
5	Guildford, NCTC 10442	1960	1
	New York, ATCC 33952	1981	1
	Melbourne, RMH†	1982	10
	UK, NCTC 11940	1982	1
	UK, NCTC11939	1982	1
10	Melbourne, HRH	1982	6+
	Ireland	1982-83	9
	London, RFH	1983	8
	London, NCTC 12232	1986	1
	Melbourne, HRH	1988-89	7
15	Melbourne, HRH	1992-93	226 §
	Melbourne, RCH	1993	3
	Penicillin-sensitive		
	HRH	1992-94	14
	Oxford, UK, ATCC 9144	1944	1
20	Bundaberg, Australia, NCTC 2669	1928	1
	UK, NCTC 8532	1953	1
	Methicillin-sensitive		
	HRH	1992-93	31

The numbers of strains isolated from various
locations at various times are shown. The strains from
Ireland are listed in Townsend et al (1987) as WG1761-3
(plus 6 other strains) while those from RFH are listed in
Townsend et al (1984) as WG2710, 2715, 2720 and 2724 and in
Townsend et al (1987) as WG2716 (plus 3 other strains)

30 NCTC National Collection of Type Cultures, UK ATCC American Type Culture Collection

- 17 -

	HRH	Heidelberg Repatriation Hospital
	RMH	Royal Melbourne Hospital
	RCH	Royal Children's Hospital, Melbourne
	RFC	Royal Free Hospital, London
5	•	including H11, H12, H14
	S	including D46
	†	including H21

DNA isolation and amplification

protocol of Gürtler et al (1991), except that the cell walls of S. aureus were disrupted by incubating the strain with 200 g lysostaphin ml⁻¹ at 37°C for 5-10 min. DNA regions (Figures 1 and 9) were amplified by the protocol of Gürtler (1991), except that the reaction volume and amount of DNA were halved, and 1.25 units Taq polymerase (Boehringer) were used. The primers used are shown in Tables 4 and 7 below. For the amplification of M13 clone inserts in S. aureus, 50-100ng of single stranded M13 clone DNA was added to PCR mixtures using primers M13F and R.

20 Restriction enzyme analysis

For C. difficile, purified PCR products
R907-LR507 and R1391-LR507 were digested singly or doubly
with 10-15 units HindIII and CfoI, as instructed by the
manufacturer (Boehringer). Genomic DNA was digested with
30 units HindIII. The digested and undigested PCR products
were resolved on 2% (w/v) low-gelling-temperature plus
2% (w/v) 'AR' agarose gels. The HindIII-digested genomic
DNA was resolved on 1% (w/v) 'AR' agaorse gels.

For S. aureus, PCR product M13F-M13R was digested with 10-15 units DraI or HinfI, as instructed by the manufacturer (Boehringer). Genomic DNA was digested with 20 units HpaII. The digested PCR products and genomic DNA were resolved on 2% w/v low-gelling-temperature plus 2% (w/v) 'AR' agarose gels.

- 18 -

Southern hybridization

The protocol of Gürtler et al (1991) was followed. PCR products were labelled with digoxigenin.

Denaturing PAGE

5 The amplification protocol described above was followed with some modifications. The reaction volume was decreased by a factor of two and 2 μCi [α-32P]dATP (DuPont or Amersham) was added. The reduction of the unlabelled dNTPs by a factor of four increased the yield of labelled product. Radiolabelled DNA fragments were separated on a 0.4 mm thick, 38 cm wide and 50 cm high (Bio-Rad), 3.5% (w/v) polyacrylamide gel containing 7 M-urea (Sambrook et al, 1989). Gels were dried in a vacuum slab gel drier (Bio-Rad) for 2 h at 80°C. Autoradiographic exposure was 18-96 h.

DNA sequencing

Sequencing was performed by the dideoxynucleotide method of Sanger et al (1977) using the Bst DNA sequencing kit (BioRad). 7-Deaza-2'-deoxyguanosine triphosphate was used to minimize band compression due to GC-rich regions. The primers used for sequencing are listed in Table 8 below and in Figure 9.

Data analysis

20

DNA sequences were processed and analysed by the

following methods. The DNASIS program (version 6;
Pharmacia) was used to orient, join and edit DNA sequences.
The orientation of inserts was deduced by alignment with
the 16S or 23S rDNA sequences from B. subtilis (Green et al,
1985) or S. aureus (Ludwig et al, 1992). The 17 sequences

(fragment E, Figure 1) were aligned using CLUSTAL V
(Higgins et al, 1992) and were aligned to the 16S and 23S
rDNA sequences from S. aureus (Ludwig et al, 1992).
Further modifications to the alignment were done using
MACCLADE software (Maddison & Maddison, 1992).

15

25

30

Phylogenetic analysis was done with the software package PHYLIP using DNAPENNY (Felsenstein, 1993). The resulting treefile was then imported into MACCLADE for further analysis and presentation.

5 The presence or absence of PCR product C bands was analysed as follows:

- (1) The presence or absence of bands (corresponding to region R1391-LR507) on autoradiograms was analysed by using the program BioImage (Millipore). The average sizes of the 16 alleles (rrnA-P) were calculated from five separate gels ranging from 1-51 determinations for the respective alleles. Using these sizes as internal standards, molecular masses were assigned to respective bands from the different strains. Twenty-four strains from four gels were then compared at once. Presence or absence of bands was scored by a 1 or 0, respectively.
- (2) The resulting data matrix prepared from four gels was analysed by maximum parsimony (Swofford, 1985).
- Intense bands were reported as positive; when the faint bands were also reported as positive the results did not change. The resulting data matrix was analysed using MIX and DOLLOP in the program PHYLIP.

Example 1 Ribotyping of Strains of Clostridium difficile

The DNA typing approaches used are shown in Figure 2 and Table 4. Products A and B were hybridized to HindIII-digested genemic DNA isolated from C. difficile and C. bifermentans strains. Differences in HindIII sites on both flanking sides of the 16S rRNA gene were sought within and between strains. Products C and D were amplified from C. difficile strains in an attempt to find differences in the length of the 16S-23S spacer region within and between strains.

Q.

20 -

Table 4

aaccccctctaatcaccc AAACTCAAATGAATTGACGG CCTTTCCCTCACGGTACTG TTGTACACCGCCGTC CCTTTCCCTCACGGTACTG AATCCTGGCTCAG GACGGGCGGTGTGTACAA Sequence Regions of the rRNA operon amplified and their corresponding primers 15-27(F) 1408-1391(R) 907-926(F) 1408-1391(R) Position and direction 1391-1408(F) 488-507(R) 907-926 (F) 488-607 (R) Primer R1391F*(D) LR488 (C) Primer code R907 LR488 (C) R015 R1391* R907 R1391* 168-238 Spacer 907(8)-1408(8) 15(8)-1408(8) 1392(S)- 507(L) 907(S)- 507(L) Region amplified 16s and 23s 16S and 23S Gene 163 product

Д

Ö

Ω

PCR

- 21 -

The products amplified cover the regions shown where S=16S rRNA gene and L=23S rRNA gene. The sense of the primers used is shown by R=reverse, F=forward and *=identical region, with R1391 being the complement of R1391F. The positions of all the primers are in regions which are highly conserved in eubacteria (Neefs et al, 1990; Guttell & Fox, 1988). The nucleotide numbering system is that of E. coli operon (Brosius et al, 1978). The positions of each product are schematically represented in Figure 2.

The bands detected by Southern hybridization (ribotyping) have been divided into Groups I and II, showing numerous Group II differences between strains and fewer Group I differences. Ribotyping of 21 isolates of C. difficile from the Heidelberg Repatriation Hospital and one from St Vincent's Hospital, Melbourne, Australia, produced 14 restriction fragment length polymorphism (RFLP) types, 10 of which are shown in Figure 4. There were 10 group I bands, demonstrating 10 rRNA alleles in C. difficile.

Products A and B consist only of parts of the 16S rRNA gene (Table 4). We have shown previously that the 16S rRNA gene is of constant length between alleles and strains of C. difficile (Gürtler et al, 1991). When PCR product B was hybridized to C. difficile genomic DNA, Group 25 II bands hybridized predominantly (Figure 3), the Group I bands hybridized faintly, because product B included 62 bp 5' of the HindIII site (1/10 of product B). When product B was hybridized to C. bifermentans genomic DNA digested with HindIII (Figure 3), no Group I bands hybridized and an 30 extra band appeared (Y) due to an extra HindIII site at position 675 of the 16S rRNA gene (Gürtler et al, 1991). When PCR product A was used as a probe (Figure 4), the Group I and II bands hybridized with equal intensity. The orientation of the Group I and II bands is as shown in 35 Figure 5 because product B hybridized predominantly to Group II bands and because the HindIII site lies 62 bp

5

10

15

- 22 -

downstream from the 5' end of product B (Gürtler et al, 1991).

Example 2 Identification of a Variable Length Region Between the 16S and 23S rRNA Gene of Clostridium difficile

From Figures 3, 4 and 5 it can be seen that the Group II bands consist of the spacer region and part of the 23S rRNA gene. These Group II bands were of variable length, which could be explained by the presence of either a variable HindIII site or of an insertion within the 10 spacer or the beginning of the 23S rRNA gene. To determine which possibility was correct, we amplified PCR products C and D, both of which include the spacer regions (Table 4). When the product C primer combinations of Table 4 were used, several bands $(V_{\rm u})$ of varying molecular masses were 15 obtained from each C. difficile strain, as shown in Figure 6. The presence of bands varied from strain to strain. When $V_{\rm u}$ bands were digested with HindIII, a band appeared at 430 bp (C_d) ; this was of higher intensity than the digested variable length bands, V_d . Band C_d appeared 20 in all the strains listed in Table 2 (results not shown). When the product D primer combination was used, the same $\mathit{Hin} dIII$ band (C_d) was present, demonstrating that this band contains the 23S rRNA gene from position 80-507 (Table 5). The demonstration of band C_d shows that this region is of 25 constant length between alleles. Taken with the Southern hybridization data of Figures 3 and 4, these results show that the variable length regions lie between the 16S and 23S rRNA genes. The exact base pair location of the spacer regions can only be determined when the separate alleles 30 have been sequenced.

Variable 16S-23S rRNA spacer regions in C. difficile strains

Allele	enzyme site						C. 41	ffici	le rik	C. difficile ribotype							,
	(position, bp)	aн	귀~	Ωe	M 4	ם מ	z -	0 -	Pa C	0.	Δ,	K	=	×	1	Band Frequency	
								•	- 1	1	4	-	7	1	-	•	
						9	(168 rRNA)	Constant region (168 rRNA)	ជ								ı
A 11	Hindii (1010)	+	+	+	+	+	+	+	+	4	4						
A 11	CfoI (1100†)	+	+	+	+	+	+	+	•		٠ .	• -	+ •	+	+		
					_	Variable region (168-238 spacer region)	1able	Variable region	្រ (៤ ១ <u>។</u>)		•	•	•	+	+		
rrnA		ı	,	,	1	•	' •										
rrnB		ı	•	+	+	4	4			ı	•	•	+			8.3	-
rrnc		•	,		. (•	•	+	+	+		+	+	+	+	87.5	23
rrnD		+	•	4				+		r			+		•	16.7	_
rrnB		•	. ,	٠ ،	۱ ۱	• 1	+	+	+	+	+	+	+	+	+	100	
rrnF		+	+		• •			1		ı	+		•			4.2	
rrng		•		,	۱ ٠	۱ ٠	• 1	ı		•			,	+	1	33.3	
rrnH		•		•	,	•			+	+	•	+		•	•	16.7	
rrnI		+		+	•	•		1				+	•			4.2	
rrnJ		+	+	•	•	ı) (ŀ	•						,	16.7	
rrnK		ı		•	•	•				+	•	+			1	29.3	
rrnL		+	+	+	+	+	•	۱ ۹	.					•	1	8.3	
rrnM		+					.		+	+	+	+	+	+	+	100	
							ı	+	+	+	+	+	+	1	,	ď	

O L D B J N G F O P K H M R R F H H M R F H H H H H H H H H H H H H H H H H H	Allele	Restriction enzyme site						C.	C. difficile ribotype	10 ril	otype						
- + + + + + + + + + + + + + + + + + + +		(position, bp)	Øн	러	Q m	MA	5 H	2	0 4	B4 0	0-	۵,	K.	#	×	æ	- Band Frequency
HindIII (80) + + + + + + + + + + + + + + + + + + +	rrnN			•	-	.				•	•	4	4	7		-	
HindIII (80) + + + + + + + + + + + + + + + + + + +			ł	•	٠	+	+	+	•	•		+	+	ı	•	•	50
Constant region (238 FRNA) HindIII (80) + + + + + + + + + + + + + + + + + + +	200		+	+	+	•	1	•	+	+	•	4	ı	•			•
Constant region (238 rRNA) HindIII (80) + + + + + + + + + + + + + + + + + + +	rrnP		•	+	+	,	4		•		•	٠	1	+	•	+	70.8
Hindii (80) + + + + + + + + + + + + + + + + + + +							٠	٠	+		+	+	+	+	+	+	70.8
+ + + + + + + + + + + + + + + + + + +							ပိ	nstant (238 1	: regio	ជ							
+ + +	A11	Hindili (80)	+	+	+	+	+	+	•	4	4		,				
											١	٠	+	+	+	+	

Calculated by dividing the number of isolates with allele rrn by the total number of isolates Enzyme site reported preivously (Gürtler et al, 1991).

10

20

25

Example 3 Improving Resolution of Bands

The resolution of the variable length bands was low, as can be seen in Figure 6, and so it was decided to increase the resolution with long denaturing polyacrylamide gels. When this was done, the same amplification products, designated V_u in Figure 6 separated into between 5 and 9 bands per strain, with the presence of bands variable between strains. These results are shown in Figure 7. Each band was assigned as an allele, resulting in a total of 16 alleles (A-P) of variable length. The constant length regions within the 16S and 23S genes were partially characterized, and the results are summarized in Table 5. The variability in length was due to variable length 16S-23S spacer regions between alleles.

15 PCR product C was amplified from various C. difficile strains and separated by denaturing PAGE (Figure 7). The presence of variable length alleles (rrnA-P) is shown. The size of each allele is shown in Figure 7. The outer limits of the constant regions are depicted by restriction enzyme-cut sites (see Figures 5 and 6). strain numbers corresponding to the ribotype are listed in Table 2. The number of isolates in each ribotype is listed below each letter. Th constant length regions were collated from results obtained in Figures 3, 4 and 6 and Gürtler et al (1991). The variable length regions wree collated using BioImage software from Figure 7 and three other denaturing polyacrylamide gels.

Example 4 Relationship Between Ribotypes of Clostridium difficile

30 When all of the C. difficile strains listed in Table 2 were analysed, 24 strains were divided into 14 ribotypes, which are also shown in Table 5. The dendrogram depicted in Figure 8 shows that 3 clusters (a, b, c) are found in all trees analysed. Within ribotype G, 2 isolates 35 were cultured from one patient at different times; within ribotype E, 3 isolates were cultured from one patient at

- 26 -

different times. All other isolates which had identical patterns (ribotypes D, E, F, G and H) were from different patients.

Example 5 Stability of Band Patterns in Clostridium difficile

The stability of band V_o sizes and patterns was investigated in detail by passaging five strains over a 5 week period. The alleles were scored as positive or negative by appearing visually identical and by having similar calculated molecular masses. The results, illustrated in Figure 7 and Table 5, show that both the band sizes and patterns were highly reproducible in five C. difficile strains. The band sizes and patterns of strains H23 and 630 were reproducibly identical.

15 Product C was amplified from various C. difficile strains and separated by denaturing PAGE. Accumulated values (mean±SEM) taken from five separate electrophoresis runs are shown. The data include runs (PCR, DNA preparations and electrophoresis) done over a 9 month period, as well as a stability testing experiment with the number of single colony passages per strain shown.

5

Table 6
Stability of product C bands from C. difficile strains

- 27 -

Alleles			Strain	_	
	630	9689	H14 (type E)	H15 (type D)	H23 (type F
rrna	1166±3	1163±4	1164±4	1163±5	1161±4
rrnB	1108±2	1100±4	1106±3	1108±4	1106±3
rrnD					
rrnE			1068±2		
rrnF					1052±2
rrnG	1050±2				
rrnH					
rrnI				1008±2	
rrnJ				992±2	
rrnK	978±2				975±1
rrnL	945±3	937±2	948±3	943±3	938±2
rrnM	928±3	•			922±2
rrnN			908±3	906±3	
rrno	890±3	884±1		887±3	885±1
rrnP		851±1		853±3	
Statistics					
ם	14	8	11	9	9
DNA preparations	5	5	4	4	5
Passages	14	14	10	10	14
PCR runs	10	5	4	4	6

The main finding of the present study was that the presence or absence of specific variable length rDNA spacer regions varied between C. difficile strains. The patterns obtained were stable within strains upon repeated testing after passaging in vitro and in vivo, allowed the designation of strains to specific types, enabled discrimination within and between species, and allowed for the easy testing of large numbers of strains. Thus the novel molecular typing method of the invention may be applied to epidemiological studies of C. difficile.

- 28 -

Since 500 bp of the 5' end of the 23S gene was amplified, it was possible that the observed heterogeneity of PCR products was due to an insertion within the first 500 bp of the 23S gene. This possibility is supported by several findings. At least one extra cleavage site has been reported in the large rRNA subunit of Leptospira interrogans (Hsu et al, 1990) and Salmonella species (Hsu et al, 1992), producing several fragments smaller than 23S and a 90 bp intervening sequence has been shown to be excised during large subunit rRNA maturation (Burgin et al, 1990). The results presented in this specification show that in C. difficile, 430 bp 3' from position 507 of the 23S rRNA gene was of constant length and the 16S-23S spacer DNA was of variable length between alleles.

The 16S-23S spacer regions of B. subtilis (Vold, 1985) and E. coli (Fournier & Ozeki, 1985) contain tRNA genes which vary in length from 75-90 bp. Of the 7 rrn operons in E. coli, all contain from 1-3 tRNA genes (Brosius et al, 1981), while in B. subtilis operons, two out of the three analysed sets of the 10 rrn have been shown to contain tRNA genes (Loughney et al, 1982). It is possible that the 16S-23S spacer regions in C. difficile characterized herein may contain tRNA genes.

Example 6 Ribotyping of Strains of Staphylococcus aureus

Genomic DNA was isolated from S. aureus as described above, and amplified using the primers described in Table 6 and Figure 9.

5

10

Table

Sequencing primers

• poo	Region	Position	Direction (sense)	Sequence
R1391PH#	168	1440-14179	P (+)	OGCCGGTTGTACACCCCCCCTTC
R1391P* (D)	168	1440-14179	P (+)	TTGTACACGCCCGTC
SPIF	168-238 spacer	51-70+	P (+)	ATTGTATTCAGTTTTGAATG
SP1R	168-238 spacer	51-70†	R(-)	TTACTTATCTAGTTT
TRNAP	t RNA ¹¹ •	100-120+	P (+)	ATAGCTCAGCTGGTTAGAGC
TRNAR	t RNA ¹¹ •	100-1201	R(-)	GCTCTAACCAGCTGAGCTAT
SP2F	168-238 spacer	281-300†	P(+)	AAAACGAGATAAGTAA
SP2R	16S-23S spacer	281-300†	R(-)	GTGGATGCCTTGGCACTAG
SP3F	16S-23S spacer	390-410+	P(+)	CACTCACAAGATTAATAACG
SP3R	168-238 spacer	390-410+	R(-)	CGTTATTAATCTTGTGAGTG
LR20R	238	24-42*	P (+)	GTGGATGCCTTGGCACTAG
LR20F	238	24-42*	R(-)	CTAGTGCCAAGGCATCCAC
LR194F (B)	238	194-214*	R(-)	CTTTCTCTTCTCGGGTACTI
LR488 (C)	23S	502-520*	R(-)	CCTTTCCCTCACGGTACTG
LR488H\$	238	502-520*	R(-)	AACCGGCCTTTCCCTCACGGTACTG
M13R	Phage M13	6205-62218	P (+)	CAGGAAACAGCTATGAC
MI3F	Phage M13	6291-6307\$	R(-)	GTTTCCCAGTCACGAC

Numbering according to;

- *, the published 23S rRNA sequence from S. aureus (Ludwig et al, 1992);
- t, the aligned spacer sequence for S. aureus (Fig. 3);
- 5 ¶, the published 16S rRNA sequence from S. aureus (Ludwig et al, 1992);
 - \$, the published sequence for bacteriophage M13;
 - , sequence obtained by the present inventor;
 - ‡, addition of Hpa II sites (underlined) at 5' end of R1391F & LR488.

Letters in brackets indicate the designations of primers as given in Figure 1. As stated above, primers A and E are as disclosed in WO 93/11264.

Using the DNA typing approach described above and the primers LR1391F, LR1392F and LR488 as shown in Figure 15 9, PCR product C was amplified from the S. aureus strains listed in Table 3. These included 281 MRSA from four geographically distinct clinical sources and 48 penicillin or methicillin sensitive strains from a single Melbourne source; several methicillin-resistant or sensitive strains 20 from type culture collections were also used. strains yielded various amplified products, of which only the most intense bands were considered to be alleles. total, 15 alleles, designated rrnA to rrnO, were 25 recognised, with 14 varying in length from 935 to 1223 bp, as shown in Figure 10. rrnO was 906 bp in length (results not shown).

From Figure 10A, it can be seen that among the strains, two ribotypes, A and B, that were highly reproducible in individual isolates were obtained, with 104 and 174 strains respectively (including 5 type strains). An additional 7 ribotypes were found among the remaining 9 MRSA strains; Figure 10b shows 8 MRSA ribotypes. Ribotype A was the major ribotype found between 1960 and 1989 in Melbourne (19/22 strains), Singapore (7/9 strains), Ireland (9/9 strains), New York (1/1 strain) and UK (12/12

- 31 -

strains). After 1989, ribotype B was the major ribotype found at the Heidelberg Repatriation Hospital; 176 were ribotype B and 57 were ribotype A.

In contrast to the MRSA strains, the sensitive strains showed considerably more variation in the presence or absence of bands, yielding an additional 26 ribotypes from the 48 strains studied. Figure 10c shows some of these strains. The MRSA ribotypes A, B and I included some of the penicillin or methicillin sensitive strains. The occurrence of the alleles in the various ribotype classes is summarized in Table 8.

PCR product C was amplified from various S. aureus strains and separated by denaturing PAGE (Figure 10). The presence of variable length alleles (rrnA-0) is shown. The size of each allele is shown in Figure 10. The data were collated (using BioImage Software) from Figure 10 and four other denaturing polyacrylamide gels.

5

10

- 32 -

Table 8

Distribution of alleles in S. aureus ribotypes

ł	type					Al	lele	(1	rn)						No. of
	A	В	С	D	Е	F	G	Н	I	J	ĸ	I.	м	N (Isolati O
Meth	icillin	se	ensit	ive										., ,	
Ma	+	-	+		_		+		_						
Mb	-	-	+					٠.		_	•	:	•	- +	2
Mc	-	•	+				+ .			•	•	+	•		ı
Md	+	•	•			٠.				_	_	_	•		1
Me	-	-	+	+ +	٠ .	٠.		٠.			Ι.	_	•	• •	I ·
Mſ	-	-	+	+ +	- 4	٠.		٠.	_	•		_		• •	1
Mg	-	•	+	+ +		4	+ 4							•	1
Mh	-	+	+ -	+ +		٠.	4		+		٠.			•	2 2
Mi	+	-	+ •	+ -	-	+	- +		_					-	2
Mj	-	•	+ -	٠.	+	+	+	+	+		٠.		_	_	2
Mk	•	•	+ -	•	+	-	+		-						2
MI	+	•	- -	•	+	-	-	-	+	-	+				1
⁄Im	-	•	+ -	+	+	-	+		-	-	-			-	1
An .	+	+		•	+	-	-	+	+	-	+		-		i
1 60	+	-	+ -	-	+	•	-	+	+		+	_			ì
1 p	+	-	+ -	-	-	-	+		-	-	+		_		2
1 q	+	•	+ +	-	+	+	-	+			-				1
PRICII	1.5														
enicil a	lin S	ensi	(ive												
a		ensi + +	+ +		+		+	-	•	-	-	-			2
a C			(1ve + + + +	. +	+	-	+	-	•		-	-			2 6
a c d			+ +	+ +	+ +	+	+ +		+						
a c d			+ +		+ + - + .	+	•		+						6
a c d			+ +		+ + - + +		+ - + - + .		- - + +						6 1
a c d			+ +		+ + - + + +	+	++		•		- - + +				6 1 1
a c d e			+ +	+ - -	++-+++	+ +	++++		· · + + · +		+ + - +	- - - -			6 1 1 1 1
a c d e f			+ +		++-+++	+	++		•						6 1 1 1 1 1 2
a c d e f			+ +	+ - -	+ + + + + +	+ +	++++		•		+				6 1 1 1 1
a c d e f S n			+ +	+ - -	+ + + + + +	+ +	++++		•						6 1 1 1 1 1 1 2 1
a c d e f g			+ +	+ - -	+ + + + + +	+ +	++++	· · · · · · · · · · · · · · · · · · ·	+		· · · · · · · · · · · · · · · · · · ·				6 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
a c d e f S n			+ +	+ - -	+ + + + + + + + + + + + + + + + + + + +	+ +	++++	· · · · · · · · · · · · · · · · · · ·	•						6 1 1 1 1 1 1 2 1
a c d e f S n			+ +	+ - -	+ + - + + + +	+ +	++++	· · · · · · · · · · · · · · · · · · ·	+						6 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1
a c d e f S n			+ +	+ - -	++++++	+ +	++++	· · · · · · · · · · · · · · · · · · ·	+						6 1 1 1 1 1 1 2 1 1 7 8 3 1
a c d e f S n			+ +	+ - -	++++++	+ +	++++	· · · · · · · · · · · · · · · · · · ·	+						6 1 1 1 1 1 2 1 1 7 8 3 1 1
a c d e f S n			+ +	+ - -	++++++	+ +	++++	· · · · · · · · · · · · · · · · · · ·	+						6 1 1 1 1 1 1 2 1 1 7 8 3 1
a c d e f S			+ +	+ - -		+ +	++++	+ +	+	· · · · · · · · · · · · · · · · · · ·	+				6 1 1 1 1 1 2 1 1 7 8 3 1 1

- 33 -

- † including H11; one isolate was penicillin-sensitive and another was methicillin-sensitive;
- \$ including D46 and H12; one isolate was methicillinsensitive;
- 5 ¶ five isolates were methicillin-sensitive;
 - * including H14;
 - ‡ including H21.

Example 7 Stability of Ribotypes of Staphylococcus aureus

The stability of ribotypes A, B, C, D and Pa was 10 investigated by 30 serial passages of strains 9144, H11, H12, H14 and H21 over a six-week period. The ribotype was assessed after every fifth passage by visual comparison with reference patterns, and was found to be stable except for strains H12 and H21. Strain H12 was identified as 15 ribotype B at all passages except the fifth, where rrnL appeared, making it ribotype A. Strain H21 was originally found to be ribotype D; however during the stability experiment it was found to be ribotype A at all passages 20 subsequently investigated (the colonies from which the DNA prepared were used completely). After plating out colonies from the original frozen stock, genomic DNA was prepared from 10 separate colonies of strain H21: in all cases the ribotype was found to be A. The instability of strains H12 25 and H21 could be explained by a contaminant or by the rearrangement, duplication or deletion of an rrn operon to yield rrnL or rrnM respectively. This instability did not affect the typing of S. aureus strains significantly, since it was an infrequent event.

The instability of rrn operons has been reported in B. subtilis (Widom et al, 1988) and E. coli (Hill & Harnish, 1982). These reports show evidence for the loss of an rrn operon, and there is also evidence for recombination leading to chromosomal rearrangement of rrn operons (Hill & Harnish, 1982). The instability of ribotype D (strain H21) could be explained by the loss of

30

- 34 -

rrnM giving rise to the stable ribotype A. The relative instability of ribotype B in the present study was due to the loss of rrnL. The frequency of such events is low [~10⁻⁴; (Hill & Harnish, 1982)] and thus will have little practical effect on this method.

Example 8 Sequencing of Variable Length 16S-23S rRNA Alleles

In order to isolate and compare the variable length sequences of the 16S-23S rRNA alleles, PCR product C from strains D46 (ribotype B), H11 and ATCC33952 (both 10 ribotype A) was cleaved with HpaII and the resulting fragments cloned into M13 vectors. PCR product C (Figure 1) was amplified as described above from S. aureus genomic DNA from strains D46, H11, and 33952 using primers R1391F and LR488, R1391FH and LR488H or R1391F and LR194F 15 (Table 7) . For each strain, ten equivalent reactions were pooled, precipitated with 26% w/v polyethylene glycol in 20mM MgCl₂ (Paithankar & Prasad, 1991) and digested with HpaII. For D46, 1 g of the HpaII digested products were end repaired with 4 units of T4 DNA polymerase 20 (Boehringer), 200µM dNTPs, 33mM Tris-acetate (pH 8.0), 66mM potassium acetate, 10mm magnesium acetate, 0.5 mm dithiothreitol, 0.1mg bovine serum albumin ml-1 and incubated at 11°C for 30 minutes. For 33952 and H11 the HpaII digested products (1-25ng) were ligated directly into 25 AccI digested M13mp19RF (50ng: in a total of $10\mu l$) and the end repaired HpaII digested products (1-25ng) from strain D46 were ligated into Smal digested M13mp19RF (50ng: in a total of 10 μ l) with 1 unit T4 DNA ligase (Boehringer), 66mM Tris-HCl (pH 7.5), 5mM MgCl2, 1mM dithiothreitol, 30 1mM ATP and incubated at room temperature overnight. The competent JM109 E. coli cells (50 μ l; Promega) were transformed with 2-3 μ 1 of the ligation mixtures according to the protocol described in Sambrook et al (1989). After plates were incubated overnight at 37°C, bacteriophage M13 35 plaques were either picked off and grown in Luria Broth

(LB) or colony hybridizations (Sambrook et al, 1989) to HpaII digested PCR product C labelled with digoxigenin were performed. Positive plaques were then picked off and grown in LB (Sambrook et al, 1989). Single stranded bacteriophage M13 DNA was then prepared from all the positive clones (Sambrook et al, 1989). To determine the presence and size of the inserts, the single stranded DNA from the M13 clones was used as a template in the PCR using M13F and R primers which flank the Smal and Accl restriction sites (Yanisch-Perron et al, 1985). Four 10 clones were isolated from D46, one containing insert E, one containing insert F, one containing insert G and one containing insert H. Sixteen clones, designated V2-V17 were isolated from H11; seven contained insert E, four contained insert H, four contained insert G and one 15 contained insert F. With the sequence information of insert (H), primer LR194F was designed so as to contain a HpaII site. For strain 33952, primers LR194F and R1391F were used to obtain a mixture of PCR products, which were digested with HpaII to yield predominantly product E and 20 cloned into M13mp19; clones V18-V47 were isolated, and of these 9 contained insert E. These results are summarized in Table 9.

The presence or absence of sequences within the nine (rrnA,C, E,F,G,H,J,K & L)

16S-23S spacer alleles sequenced

<u></u>	S	_		_		_			_	_	_				_	_						
Base	pair	,			na	na			u	ာ			2	!	na	4	•	Da	ر د)	na	
VSB			547	550		•				ı			+		+	+		+	+		+	4
cS3			538	546	+	+			4	-			+		+	+		+	+		+	æ
VS7			S	537									+		+	+		+	+			8
VS6			55	25/												+						-
VS5			416-	-									+		+	+		+	· +			53
CS2		5	271-	0	+ •	+			+				+		+	+		· +				준 (
VS4		- 1	248	2/2	+																. 8	3
VS3			232	1	, -	+							+						•			8
th ANA		- [176 270	1		1									•	•		•			6 ء	1
VS2		ı	, 2 2 2 3 3 4 3 4 5 4 7 7										•		,	•	_		т	•	100	ı
VS1		;	- 4 -	1	- 4	-			•				· -					_	•	,	3.	1
IBNA Ile			93- 175									•		•	•		•	ŗ	•	•		
CS1 II		173			•				+			•		+	٠ ٦	٠	•	+	۲	+	83	
ပ		-	<u>.</u>	+	+	•			+			+	•	+	+	-	+	- +	۲	+	73	
L dq				981	994			1012				1039	1041	1050	1134		1142	1152		1227		
‡å				9	616			83				199	88	672	756		%	774	•	849		
අ				303	319			338				362		382	460		469	473		551		
GenBank no.§				U11775	U11785	U11773	U11783	U11776	U11789	U11780	U11787	U11778	U11788	U11777	U11779	U11782	J11774	J11781	J11786	J11784		
Strain isolated				Ξ		046																
Clone				V13	۷41	4.	<u>.</u> 44	V17.	V8.	V32.	V43	V27	^	۸5	V30	V38	V12	<u> </u>	V42	۸40		
Allele				Ę	Ę			Ē				TU.		ппG	rnF		E E	J L		Æ	Length	

- 36 -

- 37 -

It was confirmed that the inserts were of variable length when amplified by PCR and then digested with DraI or HinfI (results not shown; restriction enzyme cleavage sites are indicated in Figure 1). It was determined from the first insert sequenced (clone 4) that HinfI digested at the and of the tRNA^{11e} gene (Figures 1, 11b). All the PCR products which were digested with HinfI contained a tRNA^{11e} gene, and this was subsequently confirmed by DNA sequencing, as shown in Figure 11b.

The 16S-23S rDNA spacer sequences of 9 rrn operons were determined from 3 methicillin resistant S. aureus strains. The variation in 16S-23S spacer length (303 bp to 551 bp) was accounted for by the type (tRNA^{ala} or tRNA^{ile}) and number (one, both or none) of tRNA genes, and by the presence or absence of other sequences of unknown function.

Example 9 Designation of Alleles

The designation of alleles set out in Table 9 was made by direct correlation with fragment C molecular 20 weights (Figure 10A). The length of the spacer varied from 303 bp to 551 bp. The fragment E insert sequences were aligned to the 16S, 23S and 16S-23S spacer rDNA sequences, as shown in Figures 11a, 11c and 11b respectively. were only 4 base pair differences in the 16S rDNA 25 sequences, in contrast to 71 base pair differences in the 23S rDNA sequences. In the 16S-23S spacer rDNA (Figure 11b and Table 9) there were no differences in CS1 and CS2; however, there were striking gaps between alleles in regions VS2, tRNA^{ala}, VS3, VS4, VS5, VS6, VS7, and VS8. The tRNA^{ile} gene was present in rrnJ,G,F,C and A, while the 30 tRNA^{ala} gene was only present in rrnA and C. The number of base pair differences between clones judged to be the same allele was 5 for rrnJ (from strains H11, D46 and 33952, isolated in 1982, 1992 and 1981 respectively), 2 for rrnH 35 (from strains 33952 and H11), 4 for rrnF (strain 33952) and 5 for rrnC (33952).

5

10

15

Using phylogenetic analysis, the rrn alleles were divided into 3 distinct groups, which are shown in Figure 12; "a" contains tRNA^{ile} and tRNA^{ala}, "b" contains tRNA^{ile} only and "c" contains no tRNA genes.

To confirm the presence of variable length
16S-23S spacer regions in genomic DNA, PCR products I and J
were hybridized to genomic DNA isolated from S. aureus
isolates. Between 4 and 7 bands ranging from ~600 bp to
~850 bp were obtained for all strains, with variation
between strains. The results are in close agreement with
the results obtained with PCR-ribotyping (Figure 10) and
DNA sequencing (Figure 11 and Table 9).

The type of tRNA gene found in the 16S-23S spacer varies in number (0, 1 or 2) and combination between operon and between species; A. hydrophila (East & Collins, 1993) 15 and E. coli (Morgan et al, 1977) have tRNA ala, tRNA and tRNAglu; B. subtilis (Loughney et al, 1982) and C. crescentus (Feingold et al, 1985) have tRNAile and tRNA ala; P. shigelloides (East et al, 1992) has tRNA glu; Methanococcus vanielli (Jarsch & Böck, 1983) and 20 Enterococcus hirae (Sechi & Daneo-Moore, 1993) have tRNA ala; and Mycobacterium bovis has no tRNA genes (Suzuki et al, 1987). The length of the spacer varies from 156 bp for M. vanielli (Jarsch & Böck, 1983) to 551 bp (present specification). We have now found that there is 25 intraspacer and interspacer variation of other sequences besides tRNA genes.

Our results show that variable length 16S-23S spacer regions occur in genomic DNA whose size range is similar to the results obtained with PCR-ribotyping (Figure 10) and DNA sequencing (Table 9). The majority of strains presented in this study were from the Heidelberg Repatriation Hospital (274 strains of a total of 322). Among the MRSA strains, two ribotypes (A and B) that were highly reproducible in individual isolates were obtained (Figure 10a), with 101 and 180 strains respectively (including 5 type strains). An additional 7 ribotypes were

10

15

20

25

found among the remaining 9 MRSA strains (Figure 10b shows 8 MRSA ribotypes). Ribotype A was the major ribotype found (ribotype A/total no of strains in location) between 1960 and 1989 in Melbourne (19/22), Ireland (9/9), New York (1/1) and UK (12/12). After 1989, ribotype B was the major ribotype found at the HRH (176 were ribotype B and 57 were ribotype A). In contrast to the MRSA strains, the sensitive strains showed considerably more variation in the presence or absence of bands, yielding an additional 26 ribotypes from the 48 strains studied (Figure 10c shows some of these strains). The MRSA ribotypes A, B and I included some of the penicillin or methicillin sensitive strains. The occurrence of the alleles in the various ribotype classes is summarized in Table 7.

Thus we have shown that the presence or absence of specific variable length rDNA spacer regions varies between S. aureus strains. The patterns obtained were mostly stable within strains upon repeated testing, allowed the designation of strains to specific types, discriminated within the species S. aureus, and allowed for the easy testing of large numbers of strains. With these criteria met, the molecular typing method described here is useful for epidemiological studies of S. aureus.

The variation in length and sequence of the 16S-23S spacer makes it an ideal candidate for typing of strains and species identification which can potentially be applied to any species of the bacterial kingdom. Our method permits reliable, rapid identification and typing on this basis.

30 The sequence information presented in Figure 11 is tabulated to show from which S. aureus strains the original PCR product was isolated, which clones were characterized, the size of the 16S-23S spacer (*), the size of the HpaII insert (fragment E: ‡), the presence or absence of sequences, with positions and lengths shown according to numbering in Figure 13), the base pair differences between clones for the 13 regions (CS=conserved)

- 40 -

sequence, VS=variable sequence) and the GenBank accession numbers §. The size (base pairs, bp) of fragment C (¶) can be obtained by adding 331bp (HpaII² to LR520) and 47bp (R1392 to HpaII¹) to fragment E (‡).

5 Whereas the bacteriophage typing system was formerly the standard method for S. aureus (Williams et al, 1953), many current MRSA strains are not typable by the International Set of Phages (Richardson et al, 1988), requiring the addition of further experimental phages. RFLP analysis by pulsed-field-gel electrophoresis has been 10 shown to be more discriminating than phage typing (Schlichting et al, 1993). However, RFLP analysis relies on the stability of restriction enzyme recognition sites such that a point mutation within a site will result in a 15 different RFLP. The sequence conservation of the rrn operons (Woese, 1987) argues for the use of the 165-235 spacer region as a more stable and direct indicator of the evolutionary divergence of S. aureus strains, and is a valuable addition to the large number of typing methods 20 available.

It will be apparent to the person skilled in the art that while the invention has been described in some detail for the purposes of clarity and understanding, various modifications and alterations to the embodiments and methods described herein may be made without departing from the scope of the inventive concept disclosed in this specification.

References cited herein are listed on the following pages, and are incorporated herein by this reference.

25

REFERENCES

Altwegg, M., Hickmann-Brenner, F.W. & Farmer, J.J. III Journal of Infectious Diseases, 1989 160 145-149

Amikam, D., Glaser, G. & Razin, S.

5 J. Bacteriol., 1984 158 376-378

Bercovier, H., Kafri, O., & Sela, S. Biochem. Biophys. Res. Commun., 1986 136 1136-41

Bingen, E.H., Denamur, E. Lambert-Zechvosky, N.Y., Bourdois, A., Mariani-Kurkdjian, P., Cezard, J-P.,

10 Navarro, J. & Elion, J.

J. Clin. Microbiol., 1991 29 1348-1350

Boondeekhun, H.S., Gürtler, V., Odd, M.L. Wilson, V.A. & Mayall, B.C.

J. Med. Microbiol., 1993 38 384-387

Blumberg, H.M., Rimland, D., Kiehlbauch, J.A., Terry, P.M., & Wachsmuth, I.K.

J. Clin. Microbiol., 1992 30 362-9

Brosius, J., Palmer, M.L., Kennedy, P.J. & Noller, H.F. Proc. Natl. Acad. Sci. USA., 1978 72 4801-4805

20 Brosius, J., Dull, T.J., Sleeter, D.D. & Noller, H.F. J. Molecular Biology, 1981 <u>148</u> 107-127

Burgin, A.B., Parodos, K., Lane. D.J. & Pace, N.R. Cell, 1990 60 405-414

Cato, E.P., George, W.L. & Finegold, S.M

Bergey's manual of Systematic Bacteriology, 1986 <u>2</u> 1141-1200, Edited by P.H.A. Sneth, N.S. Mair, M.E. Sharpe & J.G. Holt. Baltimore: Williams & Wilkins

- 42 -

De Buyser, M-L., Morvan, A., Aubert, S., Dilasser, F. & el, S.N.

J. Gen. Microbiol., 1992 138 889-99

East, A.K., Allaway, D. & Collins, M.D.

5 FEMS Microbiol. Lett., 1992 74 57-62

East, A.K. & Collins, M.D. FEMS Microbiol. Lett., 1993 106 129-33

Feingold, J., Bellofatto, V., Shapiro, L., & Amemiya, K. J. Bacteriol., 1985 163 155-66

10 Felsenstein, J.

PHYLIP (Phylogeny Inference Package) Version 3.5p. University of Washington, 1993

Fournier, M.J. & Ozeki, H. Microbiological Reviews, 1985 49 379-397

15 Garnier, T., Canard, B., & Cole, S.T.J. Bacteriol., 1991 173 5431-8

Green, C.J., Stewart, G.C., Hollis, M.A., Vold, B.S., & Bott, K.F.

Gene, 1985 37 261-6

20 Gürtler, V.

J. Gen. Microbiol., 1993 139 3089-97

Gürtler, V., Wilson, V.A., & Mayall, B.C. J. Gen. Microbiol., 1991 137 2673-9

Guttell, R.R. & Fox, G.E.

25 Nucleic Acids Research, 1988 <u>16</u> r175-r269

- 43 -

Harrison, T.G., Saunders, N.A., Haththoutuwa, A., Doshi, N. & Taylor, N.G.

J. Med. Microbiol., 1992 37 155-161

Harvey, S., Hill, C.W., Squires, C. & Squires, C.L.

5 J. Bacteriol., 1988 170 1235-1238

Higgins, D.G., Bleasby, A.J., & Fuchs, R. Comput. Appl. Biosci., 1992 8 189-191

Hill, C.W. & Harnish, B.W. J. Bacteriol., 1982 149 449-457

Hsu, D., Pan, M-J., Zee, Y.C. & Le Febvre, R.B.
 J. Bacteriology 1990 172 3478-3480

Hsu, D., Zee, Y.C., Ingraham, J. & Shh, L-M. J. Gen. Microbiol., 1992 138 199-203

Jarsch, M. & Böck, A.

15 Nucleic Acids Res., 1983 11 7537-44

Jensen, M.A. & Straus, N. PCR Methods and Applications, 1993 3 186-194

Jensen, M.A., Webster, J.A. & Straus, N. Appl. Environ. Microbiol., 1993 59 945-52

20 Kloos, W.E. & Schleifer, K.H.

Bergey's Manual of Systematic Bacteriology, 1986 2

1013-1035 Ed. N.S. Mair P.H.A. Sneath M.E. Sharpe and J.G.

Holt. Baltimore, Williams and Wilkins, 1986

LiPuma, J.J., Stull, T.L., Dasen, S.E., Pidcock, K.A.,

25 Kaye, D. & Korzeniowski, O.M.J. Infect. Disease, 1989 <u>159</u> 526-532

- 44 -

Loughney, K., Lund, E. & Dahlberg, J.E. Nucleic Acids Res., 1982 10 1607-24

Loughney, K., Lund, E. & Dahlberg, J.E. J. Bacteriol., 1983 <u>154</u> 529-532

- Ludwig, W., Kirchof, G., Klugbauer, N., Weizenegger, N., Betzl, D., Ehrmann, M., Hertel, C., Jilg, S., Tatzel, R., Zitzelsberger, H., Liebl, S., Hochberger, M., Shah, J., Lane, D. & Wallnoef, P.R. Syst. Appl. Microbiol., 1992 15 487-501
- Maddison, W.P. & Maddison, D.R.

 MacClade, Analysis of phylogeny and character evolution.

 Version 3.0. Sunderland, Massachusetts: Sinauer Associates,

 1992

Monzon, M.C., Aubert, S., Morvan, A. & Solh, N.E.

15 J. Med. Microbiol., 1991 35 80-8

Morgan, E.A., Ikemura, T. & Nomura, M. Proc. Natl. Acad. Sci. USA., 1977 74 2710-4

Nakagawa, T., Uemori, T., Asada, K., Kato, I. & Harasawa, R.

20 J. Bacteriol., 1992 174 8163-8165

Neefs, J-M., Van de Peer, Y., Hendriks, L. & De Wachter, R. Nucleic Acids Research, 1990 18 r2237-2317

Paithankar, K.R. & Prasad, K.S.N. Nuc. Acids Res., 1991 19 1346

Preheim, L., Pitcher, D., Owen, R. & Cookson, B.
Eur. J. Clin. Microbiol. Infect. Dis., 1991 10 428-36

- 45 -

Richardson, J.F., Chittasobhon, N. & Marples, R.R. J. Med. Microbiol., 1988 25 67-74

Sambrook, J., Fritsch, E.F. & Maniatis, T.

Molecular Cloning, a Laboratory Manual, 2nd edn. Cold

Spring Harbor Laboratory. Cold Spring Harbor, NY: Cold

Spring Harbor Laboratory, 1989

Sanger, F., Nicklen, S. & Coulsen, A.R. Proc. Natl. Acad. Sci. USA, 1977 74 5463-5467

Schlichting, C., Branger, C., Fournier, J.M., Witte, W.,

Boutonnier, A., Wolz, C., Goullet, P. & Doring, G.

J. Clin. Microbiol., 1993 31 227-32

Sechi, L.A. & Daneo-Moore, L. J. Bacteriol., 1993 175 3213-9

Stewart, G.T. & Holt, R.J.

15 Br. Med. J., 1963 <u>1</u> 308-311

Sutter, V.L., Citron, D.M., Edelstein, M.A.C. & Finegold, S.M.
Wadsworth Anaerobic Bacteriology manual, 4th Ed., Belmont, California: Star Publishing Company, 1985

20 Suzuki, Y., Yoshinaga, R., Ono, Y., Nagata, A. & Yamada, T.
J. Bacteriol., 1987 <u>169</u> 839-43

Swofford, D.L. (PAUP) version 2.4, University of Illinois, 1985

Townsend, D.E., Ashdown, N., Bolton, S., Bradley, J.,
Duckworth, G., Moorhouse, E.C. & Grubb, W.B.
J. Hosp. Infect., 1987 9 60-71

- 46 -

Townsend, D.E., Ashdown, N., Bradley, J.M., Pearman, J.W. & Grubb, W.B. Med. J. Aust., 1984 141 339-340

Vaneechoutte, M., Roussau, R., De Vos, P., Gillis, M.,

Janssens, D., Paepe, N., De Rouck, A., Fiers, T.,

Clayes, G. & Kersters, K.

FEMS Microbiology Letters, 1992 93 227-234

Vold, B.S. Microbiological Reviews, 1985 49 71-80

10 Widom, R.L., Jarvis, E.D., LaFauci, G. & Rudner, R.
J. Bacteriol., 1988 <u>170</u> 605-610

Williams, R.E.O., Rippon, J.E. & Downsett, L.M. Lancet, 1953 <u>i</u> 510-514

Woese, C.R.

15 Microbiol. Rev., 1987 <u>51</u> 221-271

Wolcott, M.J. Clin. Microbiol. Rev., 1992 <u>5</u> 270-386

Yanisch-Perron, C., Vieira, J. & Messing, J. Gene, 1985 33 103-119

5

10

CLAIMS:

- 1. A method of identification of microorganisms, comprising the steps of extracting and purifying DNA from a sample suspected to contain bacteria, and subjecting the 16S-23S rRNA spacer region of said DNA to amplification, comprising a highly conserved region from the 3' end of the 16S-23S rRNA spacer region, and/or a highly conserved region from the 5' end of said region. thereby producing fragments having detectable differences in size and number, and separating the amplified fragments.
 - 2. A method according to Claim 1, wherein the primers used correspond to a highly conserved region from the 3' end of the spacer region, and to a highly conserved region from the 5' end of the spacer region respectively.
- 3. A method according to Claim 1 or Claims 2, wherein the primers comprise a sequence corresponding to a region from the 5' end of the 16S rRNA gene and/or to a region from the 3' end of the 23S rRNA gene.
- 4. A method according to any one of Claims 1 to 3,
 20 using a first primer comprising a sequence from the 5' end
 of the 16S rRNA gene, and a second primer comprising a
 sequence from the 3' end of the 23S rRNA gene.
 - 5. A method according to any one of Claims 1 to 4, wherein the primers are 15 to 20 nucleotides long.
- 25 6. A method according to Claim 5, wherein the primers are respectively R1391F and selected from the group consisting of LR488 and LR194F, said primers being as herein defined.
- 7. A method according to Claim 6, wherein LR488 is 15 to 19 nucleotides long, and R1391F is 15 to 18 nucleotides long.
 - 8. A method according to any one of Claims 1 to 7, wherein one or more additional probes are used.
- A method according to Claim 8, wherein the
 additional probe is the sequence encoding tRNA^{11e} and/or the sequence encoding tRNA^{ala}.

- 10. A method according to any one of Claims 1 to 9, wherein the amplification is performed by a method selected from the group consisting of polymerase chain reaction, ligase chain reaction, 3SR amplification, strand displacement amplification. OB replicase reaction
- displacement amplification, $Q\beta$ replicase reaction, and branched DNA signal amplification.
 - 11. A method according to any one of Claims 1 to 9, wherein the amplified fragments are separated by a method selected from the group consisting of denaturing
- polyacrylamide gel electrophoresis, capillary electrophoresis, and high performance liquid chromatography.
 - 12. A method according to any one of Claims 1 to 11, wherein the sample is a clinical or environmental sample.
- 13. A method according to any one of Claims 1 to 11, wherein the microorganism is a Clostridium or a Staphylococcus.
- 14. An amplification primer reagent for use in a method according to any one of Claims 1 to 13, comprising a highly conserved region from the 3' end of the 16s-23s rRNA spacer region, and/or a highly conserved region from the 5' end of said region.
 - 15. An amplification primer reagent according to Claim 14, comprising a sequence corresponding to a region
- from the 5' end of the 16S rRNA gene and/or to a region from the 3' end of the 23S rRNA gene.
 - 16. An amplification primer reagent according to Claim 15, comprising a region from the 5' end of the 16s rRNA gene and a region from the 3' end of the 23s rRNA gene.
 - 17. An amplification primer reagent according to any one of Claims 14 to 17, wherein the primers are 15 to 20 nucleotides long.
- 18. An amplification primer reagent according to

 Claim 16, wherein the primers are respectively R1391F and selected from the group consisting of LR488 and LR194F, said primers being as herein defined.

30

- 49 -

19. An amplification primer reagent according to Claim 18, wherein LR488 is 15 to 19 nucleotides long, and R1391F is 15 to 18 nucleotides long.

1/14

FIGURE 3
SUBSTITUTE SHEET (RULE 26)

5/14

FIGURE 6
SUBSTITUTE SHEET (Rule 26)

9/14

FIGURE 10 SUBSTITUTE SHEET (RULE 26)

	1400	1466	1400	1486	1496	,		,
SA16S		ACCTTTTAGG	CGGTGGAGTA ACCTTTAGG AGCTAGCCGT CGAAGGTGGG ACAAATGATT GGGGTGAA-G TCGTAACAAG GTAGCCGTAA	CGAAGGTGGG	ACANATGATT	GGGGTGAA-G	TCGTAACAAG	1526
ייייייייייייייייייייייייייייייייייייייי	rrnc vad	•	TV1000000 000000000000000000000000000000	:				
rrnc	rrnc v42				•	:	•	
rrnt		•						
Harr	rrnH v7	•		•		64		
rrnk				•	•			
		•		•	•	:	•	
SAI6S		1536 CGGAAGGTGC	1536 1546 1550 CGGAAGGTGC GGCTGGATCA CCTCCTTTCT	6 1556 CCTCCTTTCT	4			
rrag	rrnE rrnE							

FIGURE 11a

			0 2	0 3	0 4	0 9	50 6	0 7	0 80
	D J D G	AAGGATATA	T TCGGAACAT		A GRIGGGGRA	T BECOTORCE	17 1 77 781		
	B C	~~~~~~~~~	1 TUGURACAT	C TECTECIAL	A GATGCGGAA	T AACGTGACI	T 1 TTCT 1 TTC		
	B A	AAGGATATA	T TOGGARCAT	C TTCTTCAGA	A GATGCGGAA	T AACOTGAC	T ATTGTATTC	y CLILLGYY	TITGITC
FFI		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	T TUGGARCET	C TTCTTCAGA		T	T 1		
FFT	e Z	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 ILGUARCET		A GATGCGGAA	T BECOTORCE	T 1 TT		
	g H								
FFE									
rri	a L	AAGGATATA	T TCGGAACAT	C TTCTTCAGA	A GATGCGGAA	T AATGTGACA	T ATTGTATTC	A GTTTTGAATG	TTTATTTAAC
		9() 10	00 1:	10 1:	20 1	30 1.	40 15	
FFE	J	ATTCAAAAA	A ATGG-GCCT	A TA-GCTCAG	C TGGTTAGAG	CCACGCCTG	A TAACCORCA		160
FFE									
FFD									
FFD									
FFD		ATTCAAATA	TTTTTGGTT	AA-GTGATA	TOGTTAGAGG	CACGCCTG	A TAAGCGTGAG	CITTITAAAG	CGAGTCCAC-
rrn		ATTCAAATA:	TTTTTGGTT	AA-GTGATA	TGCTTAT-G	. GAGCGCTIG	A CAATC-TAT	CTTTTTAAAG	ANAGCGGTTG
FFD		WITCHWITK.	r rrrrogrry	L AACGTGATA!	TGCTTAT-G-				
FED	L	ATTCAAATA:	TTTTTGGTTA	AAG-TGATA1	TGCTTAT-G-				
		17							
FFD	J		CATTA		20	0 2	10 22	231	0 240
FFD		TTAGGCCCAC	CATTA						
IID		TTAGGCCCA	CATTAATTTA	ATACCTATT	· CCCCCCCTTT C	CTC BOCTOC			
FFB		* ******		ATACCTATT	· GGGGGGGTTA		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
FFD			· ~~114						
FFD								ATTTTTG	
FFD	_								-aaataag
IID	L						·		-alatabag
				_					
FFD	.7	25	26	27	0 28	0 29	0 30	0 310	320
IID					TTGTACATTG	AAAACTAGAT	AAGTAAGTAA	O 310 AATATAGATT	TTACCAAGCA
FFD								AATATAGATT AATATAGATT AATATAGATT	
FFD	A								
110									
ш	_								
III III									
FEB								AATATAGATT AATATAGATT AATATAGATT	
				~~~	TIGIACATIG	AAAACTAGAT	AAGTAAGTAA	AATATAGATT	TTACCAAGCA
	_	330		350	360	37	0 380	390	400
FFE		AAACCGAGTG	AATAAAGAGT	TTTAAATAAG	CTTGAATTCA	TAAGAAATAA	ECCCET CECE		
III	-		AAIAAMAUT	TTTAAATAAR	Cardinal of Column 2	#11011n			
113		ANACCGAGTG	AATAAAGAGT	TTTAAATAAG	CTTGAATTCA	TAAGAAATAA	TCGCTAGTGT	TCGAAAGAAC TCGAAAGAAC	ACTCACAAGA
FFR	7	war-care 1 a	AAIAAAMAUT	TTTAAATAAG	Calculate Williams	T117111			
FFE	_								
110									
FFD FFD		-marcoard 7 A	~~*	I-I-I-AAATAAG	CTTGAAATTY	TINGSINGS			
	•	MUNICIPALITY	ANTANGAGT	TTTAAATAAG	CTTGAATTCA	TAAGAAATAA	TCGCTAGTGT	TCGAAAGAAC	ACTCACAAGA
	_	410			440	450	460	470	444
FFD		TTAATAACGC	GIII						480
FEE		TTAATAACGC	GTTTAAATCT	TTTTATAAAA	GAACGTAACT	TCATGTTAA-			
IIB			CITIAAATCT	TITITATAAAA	GAACGTAACT	ጥሮ እ ጥርተም እ እ			
111		TTANTANCGC	GTTTAAATCT	TTTTATAAAA	CAAAACCOTTT	AGCAGACAAT	GA-GTTAAAT	TATTTTAAAG (	CAGGAGTTTA
IID	E	TTANTANCGC	GITTAAATCT	TTTTATAAAA	GAACGTAACT	TCATCETAL -	GAAGTTAAAT	TATTITAAAG (	CAG-AGTTTA
rrn .	E	******	GITTAAATCT	TITIAAAA	GAACGTAACT	TCATCTTAA -			
IID.			4111						
rrn	L	TTAATAACGC	GTTT						
		490		510	520	634			
rrn .	J							550 TAGGAT	559
rro	-								
FFD	-								
rrn :			· over TITV	AAAIAAIGAA	AACGAAGCCG	<b>アルサにかにょこと</b>		<b>811112222</b> -	
IID :			1 CONTRACT LINE	AAATAATGAA	AACGAAGCCC	T1 TCTC 1 CCC			
TTE !				~~~~~~~			THE CLOSE !	TAXAAATGGT G TAXAAATGGT G	
rrn								<b>m</b>	
rrn :	L						CCTG	TAGGAT G	WAAACATA WAAACATA

SA235	GATTAAGTTA	TTAAGGCGC	ACGGTGGA	TGCCTTOOCA	CTAGAAOCCG	ATGAAGGACG	TTACTAACGA	CGATATGCTT
rrpd:					•			
rrnJ-V4			GA		•		•	
rraJ-V8			:::::::::::::::::::::::::::::::::::::::				• • • • • • • • • • • • • • • • • • • •	
rrbJ-V43					: : : : : : : : : : : : : : : : : : : :		• • • • • • • • • • • • • • • • • • • •	
rrnE		•						
				• • • • • • • • • • • • • • • • • • • •				
		•		• • • • • • • • • • • • • • • • • • • •	: : : : : : : : : : : : : : : : : : : :			
# K C 4677								
			1					
1 1 11			· · · · · · · · · · · · · · · · · · ·					
rrat			:		£ · · · · · · · ·	TT		
	0.6	001	0		•			•
SA235	TOGGGAGOTG	DAK-TOKK-T		071	130	140	150	160
1000		1000	C1116A1CCA	CACATTTCCG	AATGGGGAAA	CCC-AGCATG	AGTTATGTCA	TGTTATCGAT
/TA-Call								
rrne-V12			:::::::::::::::::::::::::::::::::::::::	• • • • • • • • • • • • • • • • • • • •				· · · · · · · · · · · · · · · · · · ·
rrnE-V2							•	
rraf-V30				•				
rrpF-V38		£-		• • • • • • • • • • • • • • • • • • • •				
Juli				• • • • • • • • • • • • • • • • • • • •		<b>A</b> c		
				• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•	
511			: : : : : : : : : : : : : : : : : : : :					
rrnB			:		•			: : : : : : : : : : : : : : : : : : : :
rrpk								
rrol						• • • • • • • • • • • • • • • • • • • •		
			•	•	•		c.	
		170	180	100				
SA23S		ATGTG-AAT-	COCCAC ACCACA TATACACACACACACACACACACACACA					
rrnJ-4		•	444	4	9000			
11 V V V V V V V V V V V V V V V V V V	7 7 17			:::::::::::::::::::::::::::::::::::::::	:::::::::::::::::::::::::::::::::::::::			
NATIONAL NAT			: (					
					• • • • • • • • • • • • • • • • • • • •			
111111111111111111111111111111111111111		F			: : : : : : : : : : : : : : : : : : : :			
11 11 11		TY			• • • • • • • • • • • • • • • • • • • •			
Frac- V2		TY.			:::::::::::::::::::::::::::::::::::::::			
rrpr-v30		AT						
rrnr-V38		A TG . AT						
<b>***</b>		TY						
rrac								
rrnB-v7		AT	•					
rraß-V27		TAT	•		•			
rrnK-V41		TG. AT			•			•
rral-V1		CTG.AT			· · · · · · · · · · · · · · · · · · ·			

# FIGURE 11c SUBSTITUTE SHEET (RULE 26)

14/14



				101/80 94/00/8
A. Int. Cl. 6 C According to	CLASSIFICATION OF SUBJECT MATTER 12Q 1/68 o International Patent Classification (IPC) or to be		ition and IPC	
B.	FIELDS SEARCHED			
Minimum de WPAT, Ch	ocumentation searched (classification system follo temical Abstracts. Keywords below.	wed by classification	ı symbols)	
Documentati Biotechnolo	ion searched other than minimum documentation to ogy database. Keywords below.	to the extent that suc	h documents are included	in the fields searched
WPAT key G01N or C Chem Abs and (16s or	ata base consulted during the international search words: (ribosomal(w)RNA or ribosomal(w)ril2N) & BIOT keywords: (ribosomal(w)RNA or ribosomal(w)RNA or ribosomal(w)RNA or ribosomal(w)RNA or ribosomal(w) chain or lcr or ligase(w)chain or amplif: (w) chain or lcr or ligase(w)chain or amplif: (w)	bonucleic or rRNA posomal(w)ribonuc or RNA); (ident: o	A or r(w)RNA or r(w)ri leic or rRNA or r(w)Rl	ibonucleic) and (C12Q or NA or r(w)ribonucleic)
C.	DOCUMENTS CONSIDERED TO BE RELEV	VANT		
Category*	Citation of document, with indication, where	appropriate, of the	relevant passages	Relevant to Claim No.
<u>X</u> Y	C M Bacot & R H K eves: "Novel tRNA (Intergenic Spacer of the Streptococcus pnet of Bacteriology, vol 173, no. 3, pp 4234-4  T Barry et al: "The 16s/23s Ribosomal Spato Identify Eubacteria". PCR Methods and	umoniae rRNA Ger 236, July 1991. Se acer Region as a Ta	ne Cluster". Journal see entire document.	1-3,14-16 4,8,9 1-5,10,11, 13-17
* Specia "A" docum	rither documents are listed in the continuation of l	"T"	See patent family annex later document publishe filing date or priority da with the application but principle or theory unde	d after the international te and not in conflict cited to understand the rlying the invention
"L" docum or whi anothe "O" docum exhibit "P" docum but late	document but published on or after the titional filing date ent which may throw doubts on priority claim(s) ch is cited to establish the publication date of r citation or other special reason (as specified) ent referring to an oral disclosure, use, ion or other means ent published prior to the international filing date or than the priority date claimed	"X" "Y" "&"	document of particular r invention cannot be con- considered to involve an document is taken alone document of particular r invention cannot be con- inventive step when the with one or more other;	refevance; the claimed sidered novel or cannot be a inventive step when the elevance; the claimed sidered to involve an document is combined such documents, such ous to a person skilled in
Date of the act 7 April 1995	ual completion of the international search (07.04.95)	l ^	the international search r	ероп
	ling address of the ISA/AU	13 NPRIL Authorized officer	1995 (18 0	4.95
	INDUSTRIAL PROPERTY ORGANISATION	ROBYN PORTI	DPorter.	

Telephone No. (06) 2832318

Facsimile No. 06 2853929



ategory	Citation of document, with indication, where appropriate of the relevant passages	Relevant to Claim No
	See abstract; p 51 column 3 lines 9-26; p 52 column 1 lines 2-4 and 15 - column 2 line 21, column 3 line 7; p 53 column 1 section on "PCR Amplification of the 16s/23s Spacer Sequences"; column 2 lines 8-16 and 45 - page 54 column 1 line 8; p 54 column 1 line 14 - column 3 line 8; p 55 column 1 lines 13-22; p 56 column 1 lines 4-26.	
x	EP, A1, 452 596 (N V INNOGENETICS S A) 23 October 1991 (23.10.91), priority date 18 April 1990 (18.10.90), Int Cl ⁵ C12Q 1/68, C07H 21/04. See p 2 lines 1-3, p 3 lines 26-44, p 5 lines 39-45 and lines 52 to p 6 line 5, lines 51-53, p 10 lines 41-52, p 11 lines 1-48, p 14 lines 5-8, 13-17, 20-28, p 15 lines 1-13, p 16 lines 5-15, 33-36, p 18 lines 54-p 19 line 9, abstract, claims and examples.	1-5,10,
X	A K East et al: "Analysis of DNA encoding 23s rRNA and 16s-23s rRNA intergenic spacer regions from <u>Plesiomonas shigelloides</u> ". FEMS Microbiology Letters, vol 95, pp 57-62 (1992). See entire document, esp. p 57 summary, p 58 section 3.2.	1,3,5, 15,17
X	T UEMORI et al: "Amplification of the 16s-23s Spacer region in rRNA Operons of Mycoplasmas by the Polymerase Chain Reaction". System. Appl. Microbiol. vol 15, pp 181-186 (1992). See Summary, p 181 column 1 last sentence, column 2 first sentence, p 182, column 1 "3. PCR", "6. Primer preparation", Results, section 1 on "Amplification of sequences", p 185 column 1 lines 6-12, column 2 lines 3-11.	1-5,10, 14-17
- 1	T Nakagawa et al: "Acholeplasma laidlawii Has tRNA Genes in the 16s-23s Spacer of the rRNA Operon". Journal of Bacteriology, vol 174, no 24, pp 8163-8165 (1992). See entire document.	1,8-10
	B Sagredo et al: "Organization of the 16s-23s Intergenic Spacer Region of the Two rRNA Operons from Thiobacillus ferrooxidans". Geomicrobiology Journal, vol 10, pp 239-247 (1992).  See abstract, p 239 lines 5-15, p 240 lines 1-4, 12-15, p 241 lines 8-12, 15-18, 28-29, p 244 lines 4-8.	1-5,8-11, 14-17
S	R Harasawa et al: "Detection and tentative identifaction of dominant mycoplasma species in cell cultures by restriction analysis of the 16s-23s r RNA intergenic spacer regions".  Res. Microbiol. vol 144, pp 489-493 (1993). See p 490-p 491 lines 1-8.	1,2,5,8,10, 11,14,17
1   V	V Gurtler: "Typing of Clostridium difficile strains by PCR-amplification of variable length 16s-23s rDNA spacer regions". Journal of General Microbiology, vol 139, pp 3089-3097 (1993). See entire document.	<u>1-7,10-19</u> 8,9
r r		<u>1-3,10,14,15</u> 4,8,9,16
0	Wada et al: "Molecular Cloning and Mapping of 16s-23s rRNA Gene Complexes f Staphylococcus aureus". Journal of Bacteriology, vol 175, no 22, pp 7483-7487 1993). See p 7483, column 1 line 15-18, 30-38; p 7486, column 2 line 56-61.	1,13,14

ategory*	Citation of document, with indication, where appropriate of the relevant passages	Relevant to Claim No.
х	L M C Hall: "Are point mutations or DNA rearrangements responsible for the restriction fragment length polymorphisms that are used to type bacteria?" Microbiology, vol 140, pp 197-204 (1994). See p 198, column 1 lines 19-21 and 29-31, p 199, column 1 lines 9-12, p 201, column 2 lines 3-10, p 202, column 1 lines 1-22, column 2 last paragraph, p 203 column 1 last 2 lines - line 1 of column 2.	1-4,8-12, 14-16
х	M F Minnick et al: "Characterization of the 16s-23s rRNA intergenic spacer of Bartonella bacilliformis". Gene, vol 143, pp 149-150 (1994). See entire document especially p 150.	1,2,8-10,
X	S Gill et al: "Identification of variability of ribosomal DNA spacer from Pseudomonas soil isolates". Can. J. Microbiol., vol 40, pp 541-547 (1994).  See p 542, column 1 last 10 lines - column 2 line 8, p 543, column 1 sections on "Oligodeoxynucleotide primers" and "Cloning and DNA sequence"; column 2 last 6 lines to p 544 column 1 line 2, column 2 lines 2-24, p 546, column 2 lines 4-19.	1-3,10-15
X	L Dolzani et al: "Typing of Staphylococcus aureus by amplification of the 16s-23s rRNA intergenic spacer sequences". FEMS Microbiology Letters vol 119, pp 167-174 (1994). See abstract, p 168, column 1 lines 28-33, column 2 last 2 lines, p 169, column 1 lines 1-3, column 2 first sentence of results, p 171, column 2 "Discussion" lines 1-9, p 172, column 1 lines 22-28.	1,3-5, 10-13,15-17
<u>X</u> Y	N W Kim & V L Chan: "Isolation and Characterization of the Ribosomal RNA Genes of <u>Campylobacter jejuni</u> ". Current Microbiology, vol 19, pp 247-252 (1989). See entire document.	14
X Y	G de Lanversin & D T N Pillay: "Primary structure and sequence organization of the 16s-23s spacer in the ribosomal operon of soybean (Glycine max L) chloroplast DNA". Theor. Appl. Genet., vol 76, pp 443-448 (1988). See summary, p 443 column 1 last 3 lines to column 2 line 5, p 445, Table 1, column 1 line 7 - column 2 line 14, p 448, column 1 lines 6-11.	14-16 1-4,8-11
Y	O Massenet et al: "Sequence organization of the chloroplast ribosomal of <u>Spinacia oleracea</u> including the 3' end of the 16s rRNA and the 5' end of the 23s rRNA". Plant Molecular Biology, vol 10, pp 53-63 (1987). See p 53, sentence spanning columns 1 and 2, p 54 column 2 lines 6-10 of "Results and discussion", p 55, column 1, lines 5-8 and 12-19, Figures 2 and 3.	14-16 1-4,8-11
Y	M Zacharias & R Wagner: "Functional characterization of a putative inernal promoter sequence between the 16s and the 23s RNA genes within the <u>Escherichia coli rrnB</u> operon". Molecular Microbiology, vol 3 number 3, pp 405-410 (1989). See p 405, column 2 lines 29-32 and 35-39, p 408, column 1, "Discussion" lines 4-9 and 14-18.	<u>14-16</u> 1-4
1:	G de Lanversin et al: "Sequence studies on the soybean chloroplast 16s-23s rDNA spacer region". Plant Molecular Biology, vol 10, pp 65-82 (1987). See entire document.	1-4,8-11,14-16
	D J Lane: "16s/23s rRNA sequencing". Nucleic Acid Techniques in Bacterial Systematics, pp 115-175 (1991). See entire chapter.	3-5,15-17

PCT/AU 94/00781

(Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
ategory •	Citation of document, with indication, where appropriate of the relevant passages	Relevant to Claim No
Y	M J Wolcott: "Advances in Nucleic Acid-Based Detection Methods". Clinical Microbiology Reviews, vol 5 no 4, pp 370-386 (1992). See entire document.	10
Y	E Edmond et al: "A Ribosomal DNA Fragment of <u>Listeria monocytogenes</u> and Its Use as a Genus-Specific Probe in an Aqueous-Phase Hybridization Assay". Applied & Environmental Microbiology, vol 59, no 8, pp 2690-2697 (1993). See entire document.	1-4,14-16
Y	M Y L de Wit & P R Klatser: "Mycobacterium leprae isolates from different sources have identical sequences of the spacer region between the 16s and 23s ribosomal RNA genes". Microbiology, vol 140, pp 1983-1987 (1994). See p 1984, column 1 1st paragraph of "PCR", column 2, 1st paragraph of "SSCP", p 1986, column 1 lines 14-19.	1,10,11

### INTERNATIONAL SEARCH RE ORT

This Annex lists the known "A" publication level patent family members relating to the patent documents cited in the above-mentioned international search report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

	Patent Document Cited in Search Report				Patent Family	Member	
EP	452596	AU HU	77550/91 63463	CA JP	2080812 5504889	EP WO	525095 9116454
					7.		END OF ANNEX