LECTURE 14: GRAPH NEURAL NETWORKS

Embedding Nodes

 Goal is to encode nodes so that similarity in the embedding space (e.g., dot product) approximates similarity in the original network.

Embedding Nodes

Two Key Components

Encoder maps each node to a low-dimensional vector.

 ${\rm ENC}(v) = \mathbf{z}_v \quad \text{embedding}$ node in the input graph

Similarity function specifies how relationships in vector space map to relationships in the original network.

From "Shallow" to "Deep"

So far we have focused on "shallow" encoders, i.e.
embedding lookups:

From "Shallow" to "Deep"

- Limitations of shallow encoding:
 - O(|V|) parameters are needed: there no parameter sharing and every node has its own unique embedding vector.
 - Inherently "transductive": It is impossible to generate embeddings for nodes that were not seen during training.
 - Do not incorporate node features: Many graphs have features that we can and should leverage.

From "Shallow" to "Deep"

We will now discuss "deeper" methods based on graph neural networks.

$$\mathrm{ENC}(v) = \frac{\mathrm{complex\ function\ that}}{\mathrm{depends\ on\ graph\ structure.}}$$

In general, all of these more complex encoders can be combined with the similarity functions from the previous lecture.

The Basics: Graph Neural Networks

Based on material from:

- Hamilton et al. 2017. Representation Learning on Graphs: Methods and Applications. IEEE Data Engineering Bulletin on Graph Systems.
- Scarselli et al. 2005. <u>The Graph Neural Network Model</u>. *IEEE Transactions on Neural Networks*.

Setup

- Assume we have a graph G:
 - □ V is the vertex set.
 - A is the adjacency matrix (assume binary).
 - \blacksquare X \in R^{$m \times |V|$} is a matrix of node features.
 - Categorical attributes, text, image data
 - E.g., profile information in a social network.
 - Node degrees, clustering coefficients, etc.
 - Indicator vectors (i.e., one-hot encoding of each node)

Key idea: Generate node embeddings based on local neighborhoods.

 Intuition: Nodes aggregate information from their neighbors using neural networks

Intuition: Network neighborhood defines a computation graph Every node defines a unique computation graph! **INPUT GRAPH**

- Nodes have embeddings at each layer.
- Model can be arbitrary depth.
- \square "layer-0" embedding of node u is its input feature, i.e. X_{ii} .

Neighborhood "Convolutions"

Neighborhood aggregation can be viewed as a centersurround filter.

 Mathematically related to spectral graph convolutions (see <u>Bronstein et al., 2017</u>)

□ Key distinctions are in how different approaches aggregate information across the layers.

 Basic approach: Average neighbor information and apply a neural network.

The Math: Deep Encoder

Basic approach: Average neighbor messages and apply a neural network.

How do we train the model to generate "highquality" embeddings?

Need to define a loss function on the embeddings, **L**(**z**₁₁)!

$$\mathbf{h}_{v}^{0} = \mathbf{x}_{v} \qquad \text{(i.e., what we learn)}$$

$$\mathbf{h}_{v}^{k} = \sigma \left(\mathbf{W}_{k} \sum_{u \in N(v)} \frac{\mathbf{h}_{u}^{k-1}}{|N(v)|} + \mathbf{B}_{k} \mathbf{h}_{v}^{k-1} \right), \ \forall k \in \{1, ..., K\}$$

$$\mathbf{z}_{v} = \mathbf{h}_{v}^{K}$$

- □ After K-layers of neighborhood aggregation, we get output embeddings for each node.
- We can feed these embeddings into any loss function and run stochastic gradient descent to train the aggregation parameters.

Directly train the model for a supervised task (e.g., node classification):

e.g., an online social network

Directly train the model for a supervised task (e.g., node classification):

Overview of Model Design

1) Define a neighborhood aggregation function. \mathbf{z}_A **INPUT GRAPH**

2) Define a loss function on the embeddings, L (z₁₁)

Overview of Model Design

3) Train on a set of nodes, i.e., a batch of compute graphs

Overview of Model

Inductive Capability

- The same aggregation parameters are shared for all nodes.
- The number of model parameters is sublinear in |V| and we can generalize to unseen nodes!

Inductive Capability: New Graphs

Inductive node embedding --> generalize to entirely unseen graphs

e.g., train on protein interaction graph from model organism A and generate embeddings on newly collected data about organism B

Inductive Capability: New Nodes

Many application settings constantly encounter previously unseen nodes. e.g., Reddit, YouTube, GoogleScholar,

Need to generate new embeddings "on the fly"

Quick Recap

- Recap: Generate node embeddings by aggregating neighborhood information.
 - Allows for parameter sharing in the encoder.
 - Allows for inductive learning.

Subgraph Embeddings

Based on material from:

- Duvenaud et al. 2016. <u>Convolutional Networks on Graphs for Learning Molecular Fingerprints</u>. *ICML*.
- Li et al. 2016. <u>Gated Graph Sequence Neural Networks</u>. ICLR.

(Sub)graph Embeddings

So far we have focused on node-level embeddings...

(Sub)graph Embeddings

But what about subgraph embeddings?

Approach 1

Simple idea: Just sum (or average) the node embeddings in the (sub)graph

$$\mathbf{z}_S = \sum_{v \in S} \mathbf{z}_v$$

□ Used by <u>Duvenaud et al., 2016</u> to classify molecules based on their graph structure.

Approach 2

Idea: Introduce a "virtual node" to represent the subgraph and run a standard graph neural network.

□ Proposed by <u>Li et al., 2016</u> as a general technique for subgraph embedding.