UNIVERSIDADE DE SÃO PAULO – USP INSTITUTO DE CIÊNCIAS MATEMÁTICAS E DE COMPUTAÇÃO DEPARTAMENTO DE MATEMÁTICA APLICADA E ESTATÍSTICA CURSO DE ENGENHARIA DE COMPUTAÇÃO

SME0620 - Estatística I

Análise de Inferência Estatística

Professora: Amanda Morales Eudes D'Andrea

Antônio Sebastian Fernandes Rabelo - 10797781 Gabriell Tavares Luna - 10716400 Vitor Oliveira Caires - 10748027

1. Conjunto de dados

Para análise de inferência estatística do conjunto de dados simulados que foi disponibilizado, foram escolhidas 2 informações (variáveis) relacionadas a 50 equipamentos. Os dados faltantes (XX) foram preenchidos de acordo com a tabela 1, portanto todos os dados estão completos.

Tabela 1 -Dados de uma amostra de equipamentos produzidos pela fábrica X.

Identificação do equipamento	Tipo	Custo de fabricação (R\$)
1	В	153,7
2	В	163,7
3	В	140,0
4	В	155,2
5	С	155,8
6	C	162,8
7	В	154,7
8	С	149,1
9	В	169,7
10	C	161,4
11	A	142,7
12	В	149,0
13	A	152,8
14	В	151,3
15	В	139,3
16	A	165,9
17	В	154,6
18	С	138,7
19	A	166,0
20	В	156,1
21	A	151,7
22	В	153,2
23	В	163,1
24	A	141,8
25	A	140,4

26	A	132,2
27	В	152,3
28	С	131,7
29	A	173,2
30	В	145,5
31	В	158,9
32	В	157,4
33	С	165,3
34	A	143,7
35	В	157,1
36	A	138,5
37	A	163,8
38	С	153,2
39	В	145,6
40	A	150,7
41	A	133,2
42	В	154,4
43	С	144,6
44	В	139,3
45	A	147,8
46	В	165,1
47	A	135,7
48	В	151,9
49	С	146,0
50	В	153,5

2. Recursos

A análise dos dados foi feita utilizando o software R, versão 4.0.0 (2020-04-24) -- "Arbor Day". Copyright (C) 2020 The R Foundation for Statistical Computing. Platform: x86_64-w64-mingw32/x64 (64-bit).

Os comandos utilizados estão disponíveis no GitHub¹ juntamente com o conjunto de

dados formatado em tabulações. A análise foi feita com o auxílio do pacote de interface 'R

commander' (Rcmdr), que precisa ser instalado no software.

(1) Link para acessar GitHub: https://github.com/Sebastianfrabelo/Inferencia

3. Análise

A partir desse conjunto de dados faremos a inferência de dados da população por

meio do estimador pontual, estimador intervalar e do teste de hipóteses.

Na estimação pontual, o valor de alguma estatística $T(x_1, x_2,...,x_n)$ representa, ou

estima, o parâmetro desconhecido. O intervalo de confiança irá definir uma margem de erro

que contenha o verdadeiro valor do variável, de acordo com a variância e com o coeficiente

de confiança.

O teste de hipóteses é uma afirmação a ser testada sobre o(s) parâmetro(s) da

distribuição de probabilidade de uma característica (variável), de acordo com o coeficiente de

confiança e variância previamente determinados.

Definidos, para as duas análises, os níveis de significância e de confiança:

Nível de significância:

 $\alpha = 0.05$

Nível de confiança:

 $100(1 - \alpha)\% = 95\%$

Além disso, definimos o P-valor do teste: Se dá pelo percentual estatístico pelo qual

avaliamos a rejeição ou não rejeição da hipótese nula. Ele é calculado a partir dos dados

amostrais, e indica o menor nível de significância com que se rejeitaria a hipótese nula. Em

outras palavras, para valores de P calculados menores que o nível de significância fixos do

teste, devemos rejeitar tal hipótese.

3.1. "Tipo" - Variável qualitativa nominal

Sendo n = 50 > 30, aproximamos a variável analisada para uma distribuição normal,

pois o tamanho da amostra é suficientemente grande para garantir o Teorema Central do

Limite.

Analisando a tabela de frequência (Tabela 2), criada com o auxílio do software, decidimos considerar o "**Tipo B**" como "**Sucesso**" para o evento, podendo calcular sua proporção diretamente pelo software. Os tipos "A" e "B" são considerados insucesso.

Foi necessário inserir uma nova coluna no conjunto de dados para classificação de cada evento como "Sucesso (B)" ou "Insucesso (F)".

Tabela 2 - Tabela de frequência da variável "Tipo".

Tipo	$f_{\rm i}$	F_{i}	f_{r_i}	F_{r_i}
A	16	16	0,32	0,32
В	24	40	0,48	0,80
С	10	50	0,20	1
Total	50	-	1	-

 f_i : frequência absoluta do "Tipo i".

F_i: frequência acumulada para o "Tipo i".

 f_{r_i} : frequência relativa do "Tipo i".

 F_r : frequência relativa acumulada do tipo i

3.1.1. Teste de Hipóteses

Nesse primeiro teste, vamos analisar a hipótese nula de que a proporção populacional, representada pela letra "p", entre "Sucessos" e "Insucesso" seja:

$$p_0 = 0.5$$

Assim, temos duas hipóteses:

Hipótese nula: $p = p_0$

Hipótese alternativa: $p \neq p_0$

3.1.2. Resolução no software R:

Usando a mesma aproximação para uma distribuição normal, com o auxílio da interface R commander, obtém-se o comando necessário para calcular a estimação pontual, estimação intervalar e o teste de hipótese, fornecendo o nível de confiança de 95%, apresenta os resultados:

Proporção amostral de sucessos: p*

p* = 0.48

Intervalo de confiança:

 $IC \cong [0.3479714; 0.6148826]$

Teste de hipóteses:

Nível descritivo:

 $p_{value} = 0.7773$

 $p_{value} > \alpha$

Interpretando, como $p > \alpha$, e acordo com os dados, ao nível de significância de 5%, há evidências suficientes para aceitar a hipótese de que a proporção populacional é de 50%.

3.1.3. Resolução manuscrita

B: Sucesso - x - 1

n = 50

F: insucesso > X=0

D'Estimação pontual: broporção amostral de sucessos:

$$\overline{p} = \frac{\sum_{i=1}^{m} x_i}{50} = \frac{24}{50} = 0,48$$

2 Estimação Intervalar:

n = 50 > 30, então aproximames x de uma distribuição normal

$$Z = \frac{\sqrt{n'(p-p)}}{\sqrt{p(1-p)'}} \sim N(0,1)$$
, approximadamente

$$P(\bar{p}-E\leq p\leq \bar{p}+E)\cong 1-\alpha=0,95$$

$$E = Z_{\frac{\alpha}{2}} \sqrt{\frac{p(1-p)}{n}}$$

$$P(0 < Z < Z_{\underline{x}}) = \frac{1-\alpha}{2} = 0,475$$

Aplicando a abordagem otimista: $p(1-p) = \overline{p}(1-\overline{p})$

$$E = Z_{\frac{\alpha}{2}} \cdot \sqrt{\frac{p(1-p)}{n}} = 1,96.\sqrt{\frac{0,48(1-0,48)}{50}}$$

Teste de Hipóteses
$$p_0 = 0, 5$$
 $\overline{p} = 0, 48$

O SHo: $p = p_0 = 0, 5$

LH₁: $p \neq 0, 5$

1 Estatistica de teste: n=50>30, portanto:

$$Z = \sqrt{n'(\bar{p} - \rho_0)} = \sqrt{50'(\bar{p} - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

$$\sqrt{\rho_0 (1 - \rho_0)} = \sqrt{0.5(1 - 0.5)} \sim N(0, 1), \text{ approximadamente}$$

 $P(Z > Z_{\frac{\alpha}{q}}) = \frac{\alpha}{2}$

$$P(0 < Z < \frac{Z_{\alpha}}{2}) = \frac{1}{2} - \frac{\alpha}{2} = 0,445$$

$$\frac{Z_{\alpha}}{2} = 1,96$$

$$\frac{\alpha}{2} \sqrt{1-\alpha} \sqrt{\frac{\alpha}{2}}$$

$$\frac{N(0,1)}{2}$$

$$\frac{\alpha}{2}$$

(1) Secisão:
$$\overline{p}=0,48$$
: $3 = \frac{\sqrt{50}(0,48-0,5)}{\sqrt{0,5(1-0,5)}} = -0,2828$
 $3 \in \mathbb{R}_{a}$
 $3 \notin \mathbb{R}_{c}$

Ao nível de significância de 5%, não há evidência para rejeitar a hipótese nula.

3.2. "Custo de Fabricação (em reais)" - Variável quantitativa contínua

Utilizamos o mesmo de nível de confiança e significância da análise anterior (5%).

Para o caso da variância da variável ser desconhecida, utilizaremos para análise uma distribuição "t de Student" com *n-1* graus de liberdade, portanto utilizaremos o teste T:

$$T = \frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}.$$

Sendo:

 \overline{X} é a média amostral

μ é a média populacional testada (sob H₀)

s é o desvio padrão amostral

n é o tamanho da amostra

3.2.1. Teste de Hipóteses

Vamos analisar a hipótese nula de que a média populacional, representada por " μ ", seja:

$$\mu_0 = 0.5$$

Temos uma hipótese nula simples e uma hipótese alternativa composta:

Hipótese nula: $\mu = \mu_0$

Hipótese alternativa: $\mu \neq \mu_0$

3.2.2. Resolução no software R:

Com o auxílio da interface R commander, obtém-se o comando necessário para calcular a estimação pontual, estimação intervalar e o teste de hipótese, fornecendo o nível de confiança de 95%, apresenta os resultados:

Proporção amostral de sucessos: $\bar{x} = 151,466$

Intervalo de confiança: IC $(\mu, 95\%) = [148.5616; 154.3704]$

Teste de hipóteses:

Nível descritivo: $p_{value} = 0.01812$

 $p_{value} < \alpha$

Interpretando a solução, como $p_{value} < \alpha$, podemos afirmar que de acordo com a análise dos dados ao nível de significância de 5%, há evidências para rejeitar a hipótese nula H_0 , portanto não é possível afirmar que a média do "Custo de Fabricação" é igual a R\$ 155,00.

3.2.3. Resolução manuscrita

3.2.4. Observações

A discordância entre os Intervalos de Confiança obtidos pelas diferentes resoluções deve-se ao fato do software utilizar um método diferente do utilizado na resolução manuscrita.

Para a variável "Tipo" é possível observar que o Intervalo de Confiança obtido na resolução pelo software é menor e está contido no obtido na resolução manuscrita. Conferindo confiabilidade para ambas as análises.

Para a variável "Custo em reais" é possível observar que o Intervalo de Confiança obtido na resolução manuscrita é menor e está contido no obtido na resolução pelo software. Conferindo também confiabilidade para ambas as análise, pois as estatísticas **Z** e **t-student**, ainda diferem um pouco para quantidade de 50 amostras.