

Mini-Tarea 1

Profesor:
Pablo Guerrero

Auxiliar

Pablo Polanco

Alumno:

Gabriel Azócar C.

Fecha:

13 de Septiembre de 2016

Tabla de verdad obtenida en la P1

A continuación se presenta la tabla de verdad obtenida desde el circuito descrito en la pregunta uno de esta mini tarea.

Tabla 1: Tabla de verdad obtenida del circuito de la P1

x0	x1	x2	у
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Simplificación del circuito

Primero, construiremos la tabla de Karnaugh asociada a la tabla de verdad previamente mostrada.

Tabla 2: Tabla de Karnaugh obtenida

x_2/x_1x_0	00	01	11	10
0	1	1	1	0
1	0	1	1	0

Para obtener el circuito simplificado, obtenemos los valores de "los cuadrados con valores uno". En este caso, tendremos el rectángulo de las casillas 000 y 001; y el cuadrado de las casillas 001, 011, 101 y 111. Luego las ecuaciones nos quedan:

1. $\neg x_2 \neg x_1 \neg x_0 + \neg x_2 \neg x_1 x_0$ Luego esto es igual a $\neg x_2 \neg x_1$ por la simplificación $vw + \neg vw = w$

2.
$$\neg x_2 \neg x_1 x_0 + \neg x_2 x_1 x_0 + x_2 \neg x_1 x_0 + x_2 x_1 x_0$$

= $\neg x_2 x_0 + x_2 x_0$
= x_0 (por la misma simplicacion $vw + \neg vw = w$)

Finalmente, el circuito simplificado es $\neg x_2 \neg x_1 + x_0$.

Luego, el circuito queda de la siguiente forma, donde también se puede apreciar que es completamente idéntico (en entradas y salidas) al primer circuito descrito:

Figura 0.0.1: Circuito original y simplificado contrapuestos