NMB - Oefenzitting 1: QR-factorisatie en kleinste kwadratenproblemen

Hendrik Speleers

Overzicht

Definities

Householdertransformatie

Givenstransformatie

QR-factorisatie

Kleinste kwadratenproblemen

Snelle Givenstransformatie

Nota's
vota 3

Nota's

Definities

▶ Projectie $P^2 = P$

ightharpoonup Complementaire projectie I-P

▶ Orthogonale projectie $P = P^T$

▶ Orthogonale matrix $Q^TQ = I$

• Projectie op range (\hat{Q}) : $P = \hat{Q}\hat{Q}^T$

▶ Rang 1 orthogonale projectie $P = qq^T$

Householdertransformatie

- ► Doel : nullen introduceren in kolom via orthogonale transformatie
- ► Voorstelling :

$$F = I - 2 \frac{vv^T}{v^T v}$$
$$v = x \pm ||x||_2 e_1$$
$$Fx = \mp ||x||_2 e_1$$

- ► Grafisch
- ► Keuze teken
- ▶ Toepassen : nooit matrix F vormen

$$FA = A - vw^T$$
, $w = \beta A^T v$, $\beta = 2/(v^T v)$

Nota's			
Nota's			

Householdertransformatie

Rekenkost :

$$2mn^2 - \frac{2}{3}n^3$$

► Eigenschappen :

►
$$Fv = v - 2v \frac{v^T v}{v^T v} = v - 2v = -v$$

► $Fy = y - 2v \frac{v^T y}{v^T v} = y$ $\forall y : v^T y = 0$
► $F = F^T, F^{-1} = F^T$

$$\blacktriangleright$$
 $Fy = y - 2v \frac{v^T y}{v^T y} = y \forall y : v^T y = 0$

$$F = F^T, F^{-1} = F^T$$

▶
$$\lambda_1 = -1, \ \lambda_i = 1, \quad i \neq 1$$

•
$$\det F = \prod \lambda_i = -1$$

$$\sigma_i = 1$$

Givenstransformatie

- ▶ Doel : nul introduceren via orthogonale transformatie
- ▶ Voorstelling : $c = \cos(\theta)$, $s = \sin(\theta)$

- ▶ Rekenkost : $3mn^2 n^3$
- ► Selectiever, maar duurder dan Householder (factor 3/2)

Nota's			
lota's			
iota s			

QR-factorisatie

▶ Definitie A = QR, Q orthogonaal, R bovendriehoeks

▶ Bestaat en is 'enig' (op teken na)

► Triangulaire orthogonalisatie

► Klassieke Gram-Schmidt

► Gewijzigde Gram-Schmidt (2mn²)

► Orthogonale triangularisatie

▶ Householder QR $(2mn^2 - 2/3n^3)$

• Givens QR $(3mn^2 - n^3)$

Kleinste kwadratenproblemen

▶ Definitie : x zodat $||b - Ax||_2$ minimaal (m > n)

Grafisch

ightharpoonup Normaalvergelijkingen : $n \times n$ stelsel oplossen met Cholesky

$$A^T A x = A^T b$$

• QR : $A = \hat{Q}\hat{R}$, driehoekig stelsel oplossen

$$\hat{R}x = \hat{Q}^Tb$$

ightharpoonup SWO : $A=\hat{U}\hat{\Sigma}V^{T}$, diagonaal stelsel oplossen

$$\hat{\Sigma}w = \hat{U}^T b, \qquad x = Vw$$

11014 5			
N I			
Nota's			

Nota's

Snelle Givenstransformatie

Variant op Givenstransformatie

► Slimme voorstelling van *Q* :

•
$$Q = MD^{-1/2}$$

•
$$M^T M = D = \text{diag}(d_i), d_i > 0$$

$$P Q^T Q = (MD^{-1/2})^T MD^{-1/2} = I$$

▶ Herhalen : stel $M = N_1 N_2 \cdots N_k$

• kies N_1 zodat $N_1^T N_1 = D_1$ diagonaal

• kies N_2 zodat $N_2^T D_1 N_2 = D_2$ diagonaal

• kies N_k zodat $N_k^T D_{k-1} N_k = D_k$ diagonaal

 \blacktriangleright dan $M^TM = D_k$

 \triangleright bovendien nullen introduceren met N_i

Snelle Givenstransformatie: Type 1

Type 1:
$$M_1 = \left[\begin{array}{cc} eta_1 & 1 \\ 1 & lpha_1 \end{array} \right]$$

lacktriangledown gegeven $x=\left[egin{array}{cc} x_1 & x_2 \end{array}
ight]^T$, $D={
m diag}(d_1,d_2)$

lacktriangle als $x_2
eq 0$ neem $lpha_1 = -x_1/x_2$ en $eta_1 = -lpha_1 d_2/d_1$

$$M_1^T x = \begin{bmatrix} x_2(1+\gamma_1) \\ 0 \end{bmatrix}$$

$$M_1^T D M_1 = \begin{bmatrix} d_2(1+\gamma_1) & 0 \\ 0 & d_1(1+\gamma_1) \end{bmatrix} =: D_1$$

• met $\gamma_1 = -\alpha_1 \beta_1 = (d_2/d_1)(x_1/x_2)^2$

Nota's			
Nota's			

Snelle Givenstransformatie: Type 2

Type 2:
$$M_2 = \begin{bmatrix} 1 & \alpha_2 \\ \beta_2 & 1 \end{bmatrix}$$

- gegeven $x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$, $D = \text{diag}(d_1, d_2)$
- ▶ als $x_1 \neq 0$ neem $\alpha_2 = -x_2/x_1$ en $\beta_2 = -\alpha_2 d_1/d_2$

$$egin{aligned} M_2^{\mathsf{T}} x &= \left[egin{array}{c} x_1(1+\gamma_2) \ 0 \end{array}
ight] \ M_2^{\mathsf{T}} D M_2 &= \left[egin{array}{c} d_1(1+\gamma_2) & 0 \ 0 & d_2(1+\gamma_2) \end{array}
ight] =: D_2 \end{aligned}$$

• met $\gamma_2 = -\alpha_2 \beta_2 = (d_1/d_2)(x_2/x_1)^2$

Snelle Givenstransformatie

- Groeifactoren $1 + \gamma_i$
- $ightharpoonup \gamma_1 \gamma_2 = 1$
- ▶ Kies type zodat $1 + \gamma_i \le 2$
- ► Groeifactor beperken tot 2

Nota's			
lota's			

Snelle Givens QR

- ► Gegeven *A*
- ▶ Bereken (M, D) met M niet-singulier, D diagonaal zodat $M^TA = T$ bovendriehoeks en $M^TM = D$
- ► $Q = MD^{-1/2}$ orthogonaal en $Q^T A = D^{-1/2} T \equiv R$ bovendriehoeks
- ► Analoog aan Givens QR (selectie van nullen)
- ▶ Rekenkost : $2n^2(m n/3)$ flops
- ► Rekening houden met overflow
- ▶ Erg interessant voor ijle matrices

Snelle Givens kleinste kwadraten

$$M^T A = \begin{bmatrix} T_1 \\ 0 \end{bmatrix}, \qquad M^T b = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} \quad \begin{cases} n \\ m-n \end{cases}$$

$$||Ax - b||_2 = ||Q^T (Ax - b)||_2$$

$$= ||D^{-1/2} M^T (Ax - b)||_2$$

$$= ||D^{-1/2} \left(\left[\begin{array}{c} T_1 \\ 0 \end{array} \right] x - \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] \right) ||_2$$

$$T_1x=c_1 \rightarrow x_{KK}$$

Nota's			
lota's			