Chapter 4: Correlation and regression

- 4.1 a) Two variables can either be positively related, not related, or negatively related. The most logical relationship is that the distance a customer lives from the store is negatively related to how many times they visit the store.
- 4.1 b)

i	x_i	y_i	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$
1	4.87	2.90	1.868	-1.09	-2.053
2	3.04	4.50	0.038	0.501	0.0194
3	1.65	4.94	-1.351	0.941	-1.272
4	2.88	3.28	-0.121	-0.718	0.087
5	2.31	4.73	0.691	0.731	-0.505
6	3.96	2.64	0.958	-1.358	-1.303
7	2.70	3.70	-0.301	-0.298	0.089
8	2.60	5.30	-0.401	1.301	-0.522

$$\bar{x} = 3.001$$

$$\bar{x} = 3.001$$
 $\sum (x_i - \bar{x})(y_i - \bar{y}) = -5.458$

$$\bar{y} = 3.998$$

$$n - 1 = 7$$

$$s_{xy} = -0.779$$

- 4.1 c) The covariance is negative. A negative covariance indicates that that as one variable deviates from the mean, the other variable deviates in the other direction. This means that, when a customer's distance from the store in kilometers is higher than the mean, their average visits per week will likely be lower than the mean.
- $4.1 \ d$) The disadvantage of using the covariance as a measure for the strength of this relationship is that it depends on the measurement unit (kilometers vs. meters) that the co-worker asks the questions in. If the co-worker would have asked the question in meters the covariance would have increased by a 1000 times, namely -779.84.

4.1 e)
$$s_x = \sqrt{\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}} = \sqrt{\frac{6.977}{7}} = 0.998$$
 $s_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}} = \sqrt{\frac{7}{7}} = 1$

$$s_y = \sqrt{\frac{\sum_{i=1}^n (y_i - \bar{y})^2}{n-1}} = \sqrt{\frac{7}{7}} = 1$$

4.1 f)
$$r_{xy} = \frac{s_{xy}}{s_x \times s_y} = \frac{-0.779}{0.998 \times 1} = -0.779$$

4.1 g) The coefficient is -0.779, which represents is a relatively strong negative relationship.

4.2 a)
$$H_0: \rho_{xy} \geq 0$$

$$H_1: \rho_{xy} < 0$$

4.2 b)
$$N = \text{unknown}$$

 $n = 8$

$$r_{xy} = -0.779$$

$$\rho_{xy} = \text{unknown}$$

- 4.2 c) $z_{0.05} = -1.645$
- 4.2 d) $z_r = \frac{1}{2} \times log_e(\frac{1+r}{1-r}) = \frac{1}{2} \times log_e(\frac{1-0.779}{1+0.779}) = -1.043$

$$SE_r = \frac{1}{\sqrt{n-3}} = \frac{1}{\sqrt{8-3}} = 0.447$$

$$z_{xy} = \frac{z_r}{SE_r} = \frac{-1.043}{0.447} = -2.33$$

- 4.2 e) The observed z-value is more extreme (lower) than the critical z-value. H_0 is rejected with 95% confidence. You can be 95% confident that ρ_{xy} is negative in the population. There is a 5% change of a type-I error.
- # Be sure to set your working directory when providing a relative path dataset6 <- read.csv('localSupermarket.csv')
- 4.3 b) Covariance: -0.30 Correlation: -0.30

```
cov(dataset6$Distance, dataset6$AvgVisits) # Covariance -0.3000603
cor(dataset6$Distance, dataset6$AvgVisits) # Correlation: -0.3000382
```

- 4.3 c) cor.test(dataset6\$Distance, dataset6\$AvgVisits, alternative = 'less')
 # Correlation: -0.30
 # t-value: -9.936
 # p-value: < 2.2e-16
- 4.3 d) The black line represents the normal distribution. The red line represents the t-distribution. The difference between the two distributions, in terms of their shape, is that the t-distribution has slightly thicker tails. When you increase the degrees of freedom of the t-distribution, it will start to look more like the normal distribution.

```
curve(dnorm(x, mean = 0, sd = 1), from = -3, to = 3, ylab = 'Density')
curve(dt(x, df = 3), from = -3, to = 3, add = TRUE, col = 'red')
```

4.3 e) df = 998

```
t_{xy} = -9.936
```

```
n <- nrow(dataset6)
dft <- n - 2 # 998

r <- cor(dataset6$Distance, dataset6$AvgVisits)
tscore <- r * sqrt(n - 2) / sqrt(1 - r^2)
# t-score: -9.936 so you can confirm the value in 4.3c</pre>
```

- $4.3\ f)$ You can find the t-value in the bottom line of the output in the console.
- 4.3 g) The p-value is < 2.2e-16, which is lower than the significance level of 5%. This means that H_0 can be rejected with 95% confidence.
- # Be sure to set your working directory when providing a relative path dataset7 <- read.csv('nationalSupermarket.csv')

```
4.4 b)
plot(x = dataset7$Price,
    y = dataset7$AvgWasted,
    main = 'Scatter plot of Price vs. AvgWasted',
    ylab = 'Average number of cartons wasted',
    xlab = 'Price of a carton of milk',
    las = 1,
    col = 'orange',
    pch = 19,
    bty = 'n')
```

4.4 c) AvgWasted = $\beta_0 + \beta_1 \times \text{Price}$

```
4.4 d) lmfit <- lm(formula = AvgWasted ~ Price, data = dataset7)
```

4.4 e) AvgWasted = $0.236 + 2.995 \times \text{Price}$

```
summary(lmfit)
# b0 = 0.236
# b1 = 2.995
# R-squared: 0.64
```

```
4.4 f) abline(lmfit)
```

4.4 g) $R^2 = 0.64$

Interpretation: The multiple \mathbb{R}^2 is 0.64, meaning that 64% of the variation in the number of milk cartons that are thrown away each day can be explained by the price of the milk cartons.

- 4.4 h) H_0 : $\beta_1 \leq 0$ H_1 : $\beta_1 > 0$
- 4.4 i) The p-value for the regression coefficient is < 2e-16, which is lower than the significance level of 5%. H_0 can be rejected with 95% confidence. You can be 95% sure that β_1 is positive in the population. The price contributes significantly to the average number of milk cartons thrown away. There is a 5% risk of a type-I error.
- 4.5 a)
 newdata <- data.frame(Price = 0.70)</pre>
- 4.5 b) Predicted value: 2.33

```
predict(object = lmfit,
    newdata = newdata) # Prediction: 2.33
```

- 4.5 c) Predicted value: $0.236 + 2.995 \times 0.70 = 2.33$
- 4.5 e) The supermarket will throw away fewer cartons of milk.

 $\overline{\text{Explanation}}$: The current number of milk cartons thrown away (4) lies outside the bounds of the 90% confidence interval for the prediction.