Experiência 1 – Familiarização com o Ambiente de Simulação

1.1) Objetivos

- Familiarizar o aluno com os recursos do ambiente de simulação (FALSTAD, P. Circuit Simulator https://www.falstad.com/circuit/circuitjs.html)
- Familiarizar o aluno com os conceitos de níveis lógicos, tensões e correntes que representam os níveis lógicos digitais;
- Atividade individual.

1.2) Material Necessário

Acesso ao software de simulação (https://www.falstad.com/circuit/circuitjs.html)

1.3) Apresentação do ambiente de Simulação (FALSTAD)

O simulador de circuitos FALSTAD foi desenvolvido por Paul Falstad para fins educacionais. Esse simulador aplica-se a circuitos eletrônicos de uma forma geral, entretanto, no nosso curso abordaremos basicamente os recursos de simulação de lógica digital.

O simulador pode ser acessado pode ser acessado de duas formas:

Simulador Online: https://www.falstad.com/circuit/circuitjs.html

Simulador off-line: https://www.falstad.com/circuit/circuitjs1.zip (necessita de Java instalado no computador).

Tela de Abertura:

Na página inicial do simulador é apresentado um circuito de teste composto por um resistor, capacitor, indutor (circuito RLC) ligado a uma bateria através de uma chave, conforme representado na **Figura 1**.

Figura 1: Tela de abertura do simulador FALSTAD.

Fonte: FALSTAD, 2020.

Na **Figura 1** podem ser observadas as principais características da interface do simulador:

- A cor da linha representa o valor da tensão: verde indica tensão positiva; cinza indica zero e vermelha indica tensão negativa. Os pontos amarelos em movimento indicam corrente.
- Para ligar ou desligar uma chave ou um interruptor basta clicar sobre ele;
- Ao percorrer o mouse sobre um componente é apresentada sua descrição e seu estado atual (no canto inferior direito da janela);
- Para modificar um componente (por exemplo, para alterar a tensão da bateria ou o número de entradas de uma porta lógica), mova o mouse sobre ele, clique no botão direito do mouse e selecione "Editar":
- Na parte inferior da janela podem ser apresentados diagramas de tempo (que contém gráfico como telas de osciloscópio), cada um mostrando a tensão e a corrente em um determinado componente. A tensão é mostrada em verde e a corrente é mostrada em amarelo:
- Ao mover o mouse sobre um dos diagramas de tempo o componente ao qual ele está associado é destacado (um diagrama pode ter vários gráficos, como: gráfico de tensão, gráfico de corrente, gráfico de potência);
- Para modificar ou remover um diagrama basta clicar no botão do mouse direito sobre ele e selecionar a forma de apresentação ("Mover Diagrama", "Empilhar", "Combinar") ou as escalas e base de tempo do gráfico ("Propriedades");
- Para visualizar a tensão de um componente no diagrama basta clicar no botão do mouse direito sobre um dos terminais do componente e selecionar "Visualizar na Bancada". Para ajustar a velocidade da simulação pode se utilizar um controle deslizante "Velocidade de Simulação";
- O menu "Arquivo" permite carregar ou salvar arquivos de descrição do circuito ("Arquivo/ Salvar Como"). Pode-se também imprimir ou exportar a imagem do circuito ("Arquivo/ Exportar como Imagem") ou exportar uma descrição do circuito como um link para que possa ser compartilhado;
- No canto superior direito da tela pode-se controlar a simulação: o botão "Reiniciar" redefine o circuito para um estado inicial; o botão "Continuar/Parar" permite controlar o andamento da simulação;
- O menu "Opções" permite configurar itens de apresentação, tais como: "Mostrar Corrente", "Mostrar Tensão", "Fundo Branco", "Mostrar Corrente". Permite ainda configurar atalhos ("Desvios") e intervalos de tempo entre pontos simulados ("Outras Opções/ Editar Componente").

Conecte e desconecte a chave e observe a variação da tensão nos diagramas de tempo (visualização na bancada).

Pare e continue a simulação, altere sua velocidade e observe os diagramas de tempo.

Altere valores dos componentes e verifique o efeito nos diagramas de tempo.

Inclua outros diagramas de tempo e modifique a apresentação dos mesmos ("Mover Diagrama", "Empilhar", "Combinar").

Adicionando Componentes:

Para adicionar componentes ao circuito basta clicar na tela e com o botão direito do mouse selecionar o tipo de componente. Nesta etapa o aluno deve incluir um Led (diodo emissor de luz) no circuito de teste.

- Clicar no botão direito do mouse e selecionar "Saídas e Rótulos/Inserir LED";
- O diodo Led tem polaridade, para acender a corrente deve circular no sentido da seta (a corrente deve entrar pelo "Ânodo" e sair pelo "Cátodo"). Como representado na Figura 2, o LED deve ser inserido em série com a fonte de tensão, de modo que o polo positivo da bateria (barra maior do símbolo) forneça corrente para o ânodo do Led (entrada da seta).

Figura 2: Inclusão do Led no circuito de teste.

Fonte: FALSTAD, 2020.

- Para inserir o Led no circuito deve-se abrir a conexão entre o positivo da fonte de tensão e a chave (selecionar o ponto e conexão com o mouse e arrastar o mesmo);
- Em seguida o Led deve ser posicionado de modo a permitir a conexão dos pontos entre a fonte de tensão e a chave. Para posicionar o componente deve ser selecionada no mouse a opção "Posicionar/Arrastar" e o símbolo do diodo pode ser arrastado para próximo dos pontos de conexão;
- Para conectar o componente deve ser selecionada no mouse a opção "Inserir Conexão Elétrica" (ou a tecla de atalho "w"); com o mouse deve ser clicado o ponto de conexão e, mantendo-se o botão pressionado, a linha pode ser arrastada até o outro ponto de conexão (observe que os pontos de conexão possíveis acendem quando a linha está selecionada);
- Atenção que a conexão de pontos elétricos só ocorre se elas forem realizadas nos pontos de conexão possíveis (que <u>acendem quando a linha de conexão está</u> <u>selecionada</u>), não basta apenas cruzar uma linha de conexão sobre outra que essa conexão não está garantida;
- Observar que quando um Led é inserido no circuito deve existir um resistor para limitar sua corrente direta (corrente que acende o Led). Neste circuito essa função é realizada pelo resistor de 100 ohms.

Conecte e desconecte a chave e observe a variação da tensão na saída do osciloscópio (visualização na bancada) e o acendimento do Led. Insira outro ponto de tensão para ser visualizado nas formas de onda (basta selecionar a linha e com o botão direito do mouse selecionar "Visualizar na Bancada").

Circuitos com Relé:

Os relés são dispositivos comutadores (ou chaves) eletromecânicos. A estrutura simplificada de um relé é mostrada na **Figura 3**. Nas proximidades de um eletroímã é instalada uma armadura móvel que tem por finalidade abrir ou fechar um conjunto de contatos. Quando a bobina é percorrida por uma corrente elétrica, é criado um campo magnético que atua sobre a armadura, atraindo-a. Nesta atração ocorre um movimento que conecta dois contatos (normalmente abertos) ou abre dois contatos (normalmente fechados). Isso significa que, através de uma tensão (ou corrente elétrica) aplicada à bobina do relé, podemos abrir ou fechar contatos, controlando assim as correntes que circulam por circuitos externos. Quando a corrente deixa de circular pela bobina do relé, o campo magnético criado desaparece, e com isso a armadura volta a sua posição inicial pela ação de uma mola. Dessa forma, o relé pode ser usado como uma chave, controlada por um sinal de comando, que permite ligar ou desligar um circuito externo.

Figura 3: Estrutura simplificada de um relé e sua simbologia.

Fonte: Autor.

Figura 4: Aspecto físico típico de relés industriais.

Fonte: METALTEX, 2020.

O simulador FALSTAD fornece como exemplo diversos circuitos eletrônicos didáticos, que permitem a rápida interação com o usuário. Nesta etapa vamos utilizar circuitos lógicos configurados com relés para avaliação de funções booleanas.

- No menu "Exemplo de Circuitos" selecionar "Outros Circuitos Passivos/ Relés/Relé", resultando no circuito da **Figura 5**;
- Variando a barra deslizante "Tensão da Bobina" é possível observar que os contatos do relé comutam entre duas posições, que alimentam duas resistências de carga de 100 ohms (Figura 5);

Figura 5: Circuito de teste com relé.

Fonte: FALSTAD, 2020.

- O aluno deve adicionar dois Leds a esse circuito, cada um deles em série com um dos resistores (lembrar-se de conectar o ânodo de cada Led com o contato ligado à bateria), conforme a **Figura 6**;
- Configurar o Led do contato superior para acender na cor **verde**. Para isso selecionar o componente e com o botão direito do mouse selecionar "Editar", configurando "Valor em Vermelho =0" e "Valor em Verde =1";

Figura 6: Circuito de relé com Leds.

Fonte: FALSTAD, 2020.

Observar que ao variar a "Tensão da Bobina" os Leds **verde** e **vermelho** acendem em faixas de tensões distintas, sendo que existe uma faixa de tensões na qual nenhum dos dois Leds está aceso. Esse comportamento é similar ao observado em sistemas digitais, onde cada nível lógico está associado a uma faixa de tensões.

A **Figura 7** representa a faixa de tensões válidas para um componente digital, sendo que cada nível lógico é válido apenas dentro de uma faixa de tensões específica. Neste caso, os circuitos lógicos são implementados com tecnologia TTL (*Transistor-Transistor Logic*), para a qual a tensão de alimentação é de 5 Volts.

Figura 7: Níveis lógicos para circuitos digitais com tecnologia TTL.

Fonte: Adaptado de TOCCI, 2011.

1.4) Procedimento Experimental

a) Considerar que o circuito simulado na **Figura 6** seja equivalente a um circuito lógico, comandado pela tensão da bobina, onde o nível lógico zero é representado pelo acionamento do Led **verde** e o nível lógico um é representado pelo Led **vermelho**.

Determine qual a faixa de valores da tensão de controle que define o nível lógico zero (acende o **verde**), o nível lógico um (acende o **vermelho**) ou a faixa em que o nível lógico está indefinido (nenhum Led acende). Registrar no relatório o circuito utilizado e os valores de tensão correspondente a cada faixa de nível lógico, conforme a **Tabela 1**;

Tabela 1: Faixas de Níveis Lógicos para um Circuito a Relé.

Faixa de Tensão de	Estado dos LEDs	Estado Lógico	
Controle	Verde	Vermelho	(NL0/NL1)
			NL0
			Indefinido
			NL1

b) No menu "Exemplo de Circuitos" selecionar "Outros Circuitos Passivos/ Relés/OR a Relé", resultando no circuito da Figura 8;

Arquivo Editar Desenhar Diagramas de Tempo Opções Exemplos de Circuitos

Reiniciar Parar

Velocidade de Simulação

Velocidade da Corrente

Similho

Circuito Atuat:
OR a Relé

A

Figura 8: Circuito OR com relés.

Fonte: FALSTAD, 2020.

Observar que esse circuito possui três **entradas lógicas** (**C**, **B** e **A**) para as quais podem ser definidos os níveis lógicos: baixo (**L**) e alto (**H**). Esse circuito também possui uma **saída lógica** (**S**), que mostra o estado desse ponto (**L** ou **H**). A inserção de **sinais de entrada lógica** pode ser realizada selecionando-se no menu "Desenhar" a opção "Portas Lógicas, Entrada e Saída/ Inserir Entrada Lógica" (ou tecla de atalho "i"). A inserção de **pontos de saída lógica** pode ser realizada selecionando-se no menu "Desenhar" a opção "Portas Lógicas, Entrada e Saída/ Inserir Saída Lógica" (ou tecla de atalho "o").

Inserir nos diagramas de tempo os pontos da saída lógica (terminal do resistor de saída) e um ponto de entrada lógica (por exemplo, o sinal da entrada lógica C). Observar que existe um **tempo de atraso** entre a comutação da entrada e a mudança do estado da saída.

Inserir um Led em série com a resistência de 100 ohms de modo que ele acenda quando o nível de saída for alto (H). Considerando que esse circuito tem entradas lógicas de controle C, B e A e saída lógica S (como indicado na Figura 8), comutar cada entrada entre os valores lógicos L (NL0) e H (NL1) e construir a Tabela Verdade que representa a saída S em função de todas as combinações das entradas. Registrar no relatório o circuito lógico utilizado (com o Led na saída), a Tabela Verdade da função S e a expressão booleana que relaciona S com as variáveis lógicas de entrada desse circuito;

c) No menu "Exemplo de Circuitos" selecionar "Outros Circuitos Passivos/ Relés/AND a Relé" e repetir o procedimento do item anterior com a construção da Tabela Verdade que representa a saída S em função de todas as combinações das entradas lógicas de controle C, B e A (conforme a Figura 9). Registrar no relatório o circuito lógico utilizado (com o Led na saída), a Tabela Verdade da função S e a expressão booleana que relaciona S com as variáveis lógicas de entrada desse circuito;

Figura 9: Circuito AND com relés.

Fonte: FALSTAD, 2020.

- d) No menu "Exemplo de Circuitos" selecionar "Outros Circuitos Passivos/ Relés/XOR a Relé" e repetir o procedimento do item anterior com a construção da Tabela Verdade que representa a saída S em função de todas as combinações das entradas. Registrar no relatório o circuito lógico utilizado (com o Led na saída), a Tabela Verdade da função S e a expressão booleana que relaciona S com as variáveis lógicas de entrada;
- e) No menu "Exemplo de Circuitos" selecionar "Lógica Combinacional/ Decodificador de Display de 7 Segmentos", resultando no circuito da **Figura 10**;

Figura 10: Circuito com decodificador para display Led de 7 segmentos.

Fonte: FALSTAD, 2020.

Observar que nesse circuito as quatro entradas lógicas (**D**, **C**, **B**, **A**) são representadas por números ('**0**' e '**1**') no lugar de (**L**) e (**H**). Essa configuração pode ser modificada selecionando-se com o mouse a entrada lógica e com o botão direito selecionando-se no menu "Editar" a marcação do campo "Numérico".

Alterar o estado lógico das entradas lógicas **D**, **C**, **B**, **A** entre NL0 e NL1, conforme especificado na **Tabela 2**, e preencher essa tabela para as combinações das entradas lógicas especificadas. Registrar no relatório o circuito utilizado e a **Tabela 2** completada.

Tabela 2: Valores do	Display de Sete S	legmentos para os	s códigos das entradas.

D	C	В	A	DISPLAY
NL0	NL0	NL0	NL0	
NL0	NL0	NL0	NL1	
NL0	NL0	NL1	NL0	
NL0	NL0	NL1	NL1	
NL0	NL1	NL0	NL0	
NL0	NL1	NL0	NL1	
NL0	NL1	NL1	NL0	
NL0	NL1	NL1	NL1	
NL1	NL0	NL0	NL0	
NL1	NL0	NL0	NL1	
NL1	NL0	NL1	NL0	
NL1	NL1	NL1	NL1	

f) O aluno deve verificar a existência de sinais lógicos repetitivos disponíveis no simulador, chamados de Sinais de Relógio (também conhecidos como CLOCK ou CLK). A inserção de sinais lógicos de relógio repetitivos pode ser realizada selecionando-se no menu "Desenhar" a opção "Entradas e Fontes/ Inserir Sinal de Relógio".

Substituir o sinal da entrada lógica **A** por um sinal de relógio (**CLK**) com frequência de **100 Hz** (ajustável a partir do menu "Editar"). <u>Registrar no relatório o **circuito utilizado** e comentar o que ocorre com os valores do display quando esse sinal repetitivo é inserido na entrada **A**, ou é inserido apenas na entrada **B**, ou apenas na entrada **C** ou apenas na **D**;</u>

1.5) Conclusão do Experimento

Em todo relatório experimental é obrigatória a inclusão de uma Conclusão.

Neste relatório o aluno deve discutir na conclusão, no mínimo, os seguintes aspectos:

- Existe alguma vantagem de um nível lógico poder ser definido dentro de uma faixa de valores de tensão (ao invés de ser definido por um valor de tensão específico)?
- Um circuito lógico pode produzir a mesma tensão de saída para diferentes valores de tensão de entrada?

Referências Bibliográficas

TOCCI, Ronald J; WIDMER, Neal S.; MOSS, Gregory L. **Sistemas Digitais:** Princípios e Aplicações. Revisão técnica: Renato Giacomini. Tradução: Jorge Ritter. 11. Ed. São Paulo: Pearson Prentice Hall, 2011.

FALSTAD, P. – Circuit Simulator, Version2.27js, GNU General Public License as published by the Free Software Foundation. Disponível em: ($\frac{https://www.falstad.com/circuit/circuitjs.html}{https://www.falstad.com/circuit/circuitjs.html}$). Acesso em: $\frac{04}{07}$ /2020.

METALTEX – Catálogo Técnico de Componentes - Produtos Eletrônicos Metaltex. Disponível em: (https://www.metaltex.com.br/produtos/componentes/reles-industriais). Acesso em: 04/07/2020.

CE3512- Experiência_01 - Introdução ao Ambiente de Simulação_rev0