

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

Turing Machines

Exercise

Describe the action of the Turing machine

$$\delta(q_0, a) = (q_0, a, R), \qquad \delta(q_0, \square) = (q_1, \square, L),$$

 $\delta(q_1, a) = (q_1, a, L), \qquad \delta(q_1, \square) = (q_0, \square, R)$

if it starts in state q_0 and input is $w = a^n$.

Exercise

Design a standard Turing machine that accepts $L = \{(ab)^n, n \geq 1\}$.

Turing Machines

■ Exercise: Construct a Turing machine to compute the function $f(w) = w^R$, where $w \in \{0, 1\}^+$.

Turing Thesis

- □ Any computation that can be carried out by mechanical means can be performed by some Turing machine
 - 1. Anything that can be done on any existing digital computer can also be done by a Turing machine
 - 2. No one has yet been able to suggest a problem, solvable by an algorithm, for which a Turing machine program cannot be written
 - 3. Alternative models have been proposed for mechanical computation, but none of them is more powerful than the Turing machine model
 - Turing's thesis is still an assumption

Two automata are equivalent if they accept the same language. Consider two classes of automata C_1 and C_2 . If for every automaton M_1 in C_1 there is an automaton M_2 in C_2 such that

$$L\left(M_{1}\right) =L\left(M_{2}\right) ,$$

we say that C_2 is at least as powerful as C_1 . If the converse also holds and for every M_2 in C_2 there is an M_1 in C_1 such that $L(M_1) = L(M_2)$, we say that C_1 and C_2 are equivalent.

□ Turing Machines with a Stay-Option

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

$$\delta(q_i, a) = (q_j, b, S)$$

$$\widehat{\delta}(\widehat{q}_i, a) = (\widehat{q}_{js}, b, R)$$

$$\widehat{\delta}(\widehat{q}_{is}, c) = (\widehat{q}_j, c, L)$$

The class of Turing machines with a stay-option is equivalent to the class of standard Turing machines.

☐ The Off-Line Turing Machine

> The class of off-line Turing machines is equivalent to the class of standard Turing machines.

Multitape Turing Machines

> The class of multitape Turing machines is equivalent to the class of standard Turing machines.

- Multidimensional Turing Machines
 - > The formal definition of a two-dimensional Turing machine

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, U, D\}$$

> The class of multidimensional Turing machines is equivalent to the class of standard Turing machines.