A Practical Introduction

Instructor: Mark Kramer

Outline

A (very) practical introduction to linear regression

Main idea: model data as a line.

Here is my data

Here is my model

$$y = mx + b$$

Data

Task performance (y)

Brain activity (x)

[Kwon et al, bioRxiv, 2024]

[Kim et al, Nature, 2023]

Plot it ...

Python

Visual inspection:

Compute a statistic?

Correlation x_n and y_n : data at index n

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$
number of data points
$$\text{standard deviation of } x$$

$$\text{standard deviation of } y$$

$$\text{sum from indices 1 to N}$$

mean of
$$x$$
 $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$

mean of x $\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_n$ sum the values of x for all n indices, then divide by the total sum the values of x for all n number of points summed (N)

Compute a statistic?

Correlation x_n and y_n : data at index n

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$
number of data points
$$\text{standard deviation of } x$$

$$\text{standard deviation of } y$$

$$\text{sum from indices 1 to N}$$

$$\sigma_x^2 = \frac{1}{N} \sum_{n=1}^N (x_n - \overline{x})^2$$

variance of x $\sigma_x^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$ characterizes the extent of fluctuations about the mean

standard deviation of x $\sigma_x = \sqrt{\sigma_x^2}$

$$\sigma_{x} = \sqrt{\sigma_{x}^{2}}$$

Compute a statistic? <u>Correlation</u>

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$

sum from indices 1 to N

then sum & scale =
$$C_{xy}$$

Intuition

Correlation

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$

Assume $\bar{x} = \bar{y} = 0$

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} x_n y_n$$

$$\sigma_x^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \bar{x})^2$$

Reminder:

$$\sigma_x^2 = \frac{1}{N} \sum_{n=1}^{N} (x_n - \overline{x})^2$$

What if x and y match?

What if x equals -y?

What if *x* and *y* are random?

Compute a statistic? <u>Correlation</u>

$$C_{xy} = \frac{1}{N} \frac{1}{\sigma_x} \frac{1}{\sigma_y} \sum_{n=1}^{N} (x_n - \bar{x})(y_n - \bar{y})$$

Python

$$C_{xy} =$$

Conclusion:

Analyze the data (3): Regression

Motivation: Characterize relationships in the data.

To do so: build a statistical model containing

• systematic effects: things we know/observe that can explain the data

• random effects: unknown / haphazard variations that we make no attempt to model or predict

Goal: describe succinctly the systematic variations in the data, in a way that's generalizable to other related observations (e.g., by another experimenter, at another time, in another place).

random effects we don't model

Model

$$y = \alpha + \beta x$$
 + noise

y

outcome of measured system

(behavior)

predictor of measured system (firing rate)

 α, β

parameters

Note: linear relationship

Note: we cannot observe y exactly ... measurement error

We observe approximately linear relationship (corrupted by noise).

Challenge: Choose values (a, b) for parameter (α, β) in our model that "best describe" the data.

We observe y_1, y_2, y_3, \dots and x_1, x_2, x_3, \dots and fit our model

$$y = \alpha + \beta x$$

to choose the values (a, b) for parameter (α, β)

If we have (a, b), then we can compute <u>model predictions</u>:

$$\hat{y}_1 = a + bx_1$$

$$\hat{y}_2 = a + bx_2$$

Choose (a, b) to make model predictions $\hat{y}_1, \hat{y}_2, \dots$ close to the observed outcomes y_1, y_2, \dots

Note: Model predictions $\hat{y}_1, \hat{y}_2, \dots$ do **not** reproduce exactly the observed outcomes y_1, y_2, \dots

?

Choose (a, b) to make model predictions $\hat{y}_1, \hat{y}_2, \dots$ close to the observed outcomes y_1, y_2, \dots

Q: "close"?

A: A measure of discrepancy or distance

$$S_2(y, \hat{y}) = \sum_i (y_i - \hat{y}_i)^2$$
 "least squares"

Choose (a, b) to minimize $S_2(y, \hat{y})$

to minimize the discrepancy between y and \hat{y}

Minimize
$$S_2(y, \hat{y}) = \sum_i (y_i - \hat{y}_i)^2$$
 assumes

- 1. All observation on the same physical scale (e.g., # vs % correct)
- 2. Observations are independent or "exchangeable"
- 3. Deviations $(y_i \hat{y}_i)$ similar for different values of y

(variability independent of mean)

Regression: estimate it

Estimate the model in Python

$$y = \alpha + \beta x$$

Task performance =
$$\alpha + \beta$$
 (firing rate)
intercept
slope

Python

Regression: estimate it

Estimate the model in Python

Intercept

15.0190

0.0158

Interpret parameters ...

 Omnibus:	4.793	Durbin-Watson:
Prob(Omnibus):	0.091	Jarque-Bera (JB):
Skew:	0.459	<pre>Prob(JB):</pre>
Kurtosis:	2.153	Cond. No.
	=======================================	:======================================

4.037

0.404

3.720

0.039

0.001

0.969

Regression: plot it

Python

Intercept: $\alpha = 15.02$

• when firing rate (x) is 0, the task performance is ≈ 15

Slope:
$$\beta = 0.016$$

• for each one-unit increase in firing rate, the task performance increases by 0.016.

Q: Evidence of a linear relationship between task performance and firing rate?

Q: Evidence of a linear relationship between task performance and firing rate?

A: Examine the <u>p values</u>

p-value: how much evidence we have to reject the null hypothesis (H_0)

Here,
$$H_0$$
 is that $\alpha = 0$, $\beta = 0$

Typically, we reject H_0 if p < 0.05

The probability of observing the data, or something more extreme, under the null hypothesis is less than 5%.

The observed data is <u>unlikely</u> to have occurred by random chance alone, assuming the null hypothesis is true.

Q: Evidence of a linear relationship between task performance and firing rate?

A: Examine the <u>p values</u>

Intercept: $\alpha = 15.02, p = 0.001$

• Reject H_0 that intercept = 0

Slope: $\beta = 0.016, p = 0.969$

	OLS Regression Results				
Dep. Variable:		y R-squared:			
Model:	0L	S Adj. R-squared:			
Method:	Least Square	F-statistic:			
Date:	Mon, 07 Oct 202	4 Prob (F-statistic):			
Time:	12:40:5	6 Log-Likelihood:			
No. Observations:	5	0 AIC:			
Df Residuals:	4	8 BIC:			
Df Model:		1			
Covariance Type:	nonrobus	t			
=======================================					
CO	ef std err	t P> t			

4.037

3.720

0.039

0.001

0.969

15.0190

• No evidence to reject H_0 that slope = 0.

Note: Never accept H_0 . We cannot conclude slope = 0

Instead: "We fail to reject the null hypothesis that slope = 0."

Intercept

Regression: conclusion (for now)

We considered this model:

Task performance = $\alpha + \beta$ (firing rate)

We found no evidence to reject the null hypothesis that $\beta = 0$.

We conclude that, in this model, we have no evidence of a relationship between task performance and firing rate.

Now what?

Now what?

Give up:

- we tested a hypothesis and it failed.

Confirmatory

Keep exploring:

- fishing expedition

Exploratory

Exploratory versus Confirmatory

Example

Insert tiny electrodes in the rat brain
See what happens when the rat walks, eats, drinks, grooms, sleeps, ...
Collect data from 76 cells, then chose 8 to analyze.

Exploratory?

Brain Research

Volume 34, Issue 1, 12 November 1971, Pages 171-175

The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat

Nobel Prize in Physiology or Medicine 2014

Regression: continued

Q: Now what?

A: Look for confounds.

We learn that <u>age</u> impacts task performance

New variables:

y task performance x_1 firing rate x_2 age

Plot it task performance versus age

Visual inspection:

Compute the correlation between task performance and age.

$$C_{xy} =$$

Conclusion:

Analyze the data (3): Regression

Model
$$y = \alpha + \beta_1 x_1 + \beta_2 x_2$$

Task performance =
$$\alpha + \beta_1$$
 (firing rate) + β_2 (age)

parameter of interest

confound

Q: What is the relationship between task performance (y) and firing rate (x_1) after accounting for the confound of age (x_2) ?

Analyze the data (3): Regression

Python

$$\alpha = p =$$

$$p =$$

Slope (firing rate):
$$\beta_1 = p =$$

Slope (age):
$$\beta_2 = p =$$

$$\beta_2 =$$

Regression: Plot the model

Python

Regression: conclusion (modified)

We considered the <u>updated model</u>:

Task performance = $\alpha + \beta_1$ (firing rate) + β_2 (age)

We found

We conclude that

What is a "good model"?

A: A model that makes predictions \hat{y} very close to y.

To do so, add more predictors (and parameters) to the model.

$$y = \alpha + \beta x_1 + \beta x_2 + \beta x_3 + \beta x_4 + \beta x_5 + \dots$$

No reduction in complexity.

We want a simple theoretical pattern (e.g., line) for our ragged data

parsimony of parameters (only include what we need)

What is a "good model"?

Parsimonious model

- easier to think about
- probably makes better prediction

no formal procedure, requires imagination Modeling is an art All models are wrong but some are useful." [George Box] eternal truth not within our grasp

use those

look at errors or deviations $(y_i - \hat{y}_i)$ Check your model important but not covered here

What is a model?

In MA665:

What is computational neuroscience?

Mathematics:

$$C \ \frac{dV}{dt} = I_{\rm input}(t) - \bar{g}_{\rm K} n^4 (V - V_{\rm K}) - \bar{g}_{\rm Na} m^3 h (V - V_{\rm Na}) - \bar{g}_{\rm L} (V - V_{\rm L})$$

$$\frac{dn}{dt} = -\frac{n - n_{\infty}(V)}{\tau_n(V)} \qquad \begin{array}{c} \text{OLS Regression Results} \\ \frac{dm}{dt} = -\frac{m - m_{\infty}(V)}{\tau_m(V)} & \begin{array}{c} \text{Dep. Variable:} & \text{y R-squared:} & 0.000 \\ \text{Model:} & \text{OLS Adj. R-squared:} & -0.021 \\ \text{Method:} & \text{Least Squares} & \text{F-statistic:} & 0.001521 \\ \text{Date:} & \text{Mon, 07 Oct 2024} & \text{Prob (F-statistic):} & 0.965 \\ \text{Date:} & \text{Mon, 07 Oct 2024} & \text{Prob (F-statistic):} & 0.965 \\ \text{No. Observations:} & 50 & \text{AIC:} & 242.1 \\ \text{Of Residuals:} & 48 & \text{BIC:} & 245.9 \\ \text{Df Model:} & 1 & \text{Covariance Type:} & \text{nonrobust} \\ \end{array}$$

Statistics:

Data:

	3.720 0.039	0.001 0.969	6.901 -0.797	23.137		
=====	======			=======		
.793	Durbi	n-Watson:		1.865		
.091	Jarque	e-Bera (JB):		3.249		
.459	Prob(JB):		0.197		
.153	Cond.	No.		108.		
=======================================						

Aside: C4R

Home About Us v Resources v

Blog Contact Join

Community for Rigor

Better Science Every Day

Welcome to the Community for Rigor! We are a free, open resource to help researchers of all kinds learn, practice, and promote scientific rigor.

https://mark-kramer.github.io/METER-Units/

BU METER

Sample Size - How much data is enough for your experiment?

Interactive notebook

Evaluate your evaluation methods! A key to meaningful inference.

Interactive notebook

Putting the p-value in context: p<0.05, but what does it REALLY mean?

Static <u>notebook</u>

Reproducible exploratory analysis: Mitigating multiplicity when mining data

Static notebook

Q: Is there a relationship between x and lifespan?

A1: Do an experiment with sample size N.

A2: Fit a line...

$$lifespan = \beta_0 + \beta_1 x$$

$$\beta_1 =$$

$$p =$$

Conclusion:

Q: Now what?

A: Maybe we failed to collect enough data to detect a relationship.

Idea:

- -Reuse the data & model
- See how sample size (N) impacts conclusions.

Consider biomarker x

Approximately normal

We can draw <u>random values of x</u> from this normal distribution

Draw 10 or 100 or 1000 or 10,000 values for x ...

Consider model: $lifespan = \beta_0 + \beta_1 x$

$$\beta_0 = 73.65 \text{ (intercept)}$$

 $\beta_1 = 0.91 \text{ (slope)}$

There's error in our model

Normally distributed: mean ≈ 0 stand. dev. ≈ 7

To simulate <u>new</u> lifespans:

- Ask the model
- Include the error

new lifespan =
$$\beta_0 + \beta_1 x + \text{error}$$

Create new data:

- Pick new sample size N*
- Draw new biomarkers x
- Draw new lifespans new lifespan = $\beta_0 + \beta_1 x + \text{error}$

Key insight: Is there a relationship between x & lifespan in the new data?

Fit a (new) model: new lifespan = $\beta_0^* + \beta_1^*$ new x

Q: At what new sample size N* do you reliably detect a relationship?

... is p < 0.05 reliably.