The Matrix of a Linear Transformation

EXAMPLE 1 The columns of $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ are $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. Suppose T is a linear transformation from \mathbb{R}^2 into \mathbb{R}^3 such that

$$T(\mathbf{e}_1) = \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix}$

With no additional information, find a formula for the image of an arbitrary \mathbf{x} in \mathbb{R}^2 .

SOLUTION Write

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 \tag{1}$$

Since T is a *linear* transformation,

$$T(\mathbf{x}) = x_1 T(\mathbf{e}_1) + x_2 T(\mathbf{e}_2) \tag{2}$$

$$= x_1 \begin{bmatrix} 5 \\ -7 \\ 2 \end{bmatrix} + x_2 \begin{bmatrix} -3 \\ 8 \\ 0 \end{bmatrix} = \begin{bmatrix} 5x_1 - 3x_2 \\ -7x_1 + 8x_2 \\ 2x_1 + 0 \end{bmatrix}$$

Let $T:\mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that

$$T(\mathbf{x}) = A\mathbf{x}$$
 for all \mathbf{x} in \mathbb{R}^n

In fact, A is the $m \times n$ matrix whose j th column is the vector $T(\mathbf{e}_j)$, where \mathbf{e}_j is the j th column of the identity matrix in \mathbb{R}^n :

$$A = \begin{bmatrix} T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_n) \end{bmatrix}$$
 (3)

PROOF Write $\mathbf{x} = I_n \mathbf{x} = [\mathbf{e}_1 \ \cdots \ \mathbf{e}_n] \mathbf{x} = x_1 \mathbf{e}_1 + \cdots + x_n \mathbf{e}_n$, and use the linearity of T to compute

$$T(\mathbf{x}) = T(x_1\mathbf{e}_1 + \dots + x_n\mathbf{e}_n) = x_1T(\mathbf{e}_1) + \dots + x_nT(\mathbf{e}_n)$$
$$= \begin{bmatrix} T(\mathbf{e}_1) & \dots & T(\mathbf{e}_n) \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = A\mathbf{x}$$

The uniqueness of A is treated in Exercise 33.

The matrix A in (3) is called the **standard matrix for the linear transformation** T.

EXAMPLE 2 Find the standard matrix A for the dilation transformation $T(\mathbf{x}) = 3\mathbf{x}$, for \mathbf{x} in \mathbb{R}^2 .

SOLUTION Write

$$T(\mathbf{e}_1) = 3\mathbf{e}_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$$
 and $T(\mathbf{e}_2) = 3\mathbf{e}_2 = \begin{bmatrix} 0 \\ 3 \end{bmatrix}$

$$A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$$

EXAMPLE 3 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be the transformation that rotates each point in \mathbb{R}^2 about the origin through an angle φ , with counterclockwise rotation for a positive angle. We could show geometrically that such a transformation is linear. (See Fig. 6 in Section 1.8.) Find the standard matrix A of this transformation.

SOLUTION
$$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 rotates into $\begin{bmatrix} \cos \varphi \\ \sin \varphi \end{bmatrix}$, and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ rotates into $\begin{bmatrix} -\sin \varphi \\ \cos \varphi \end{bmatrix}$. See Fig. 1. By Theorem 10,

$$A = \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix}$$

Example 5 in Section 1.8 is a special case of this transformation, with $\varphi = \pi/2$.

FIGURE 1 A rotation transformation.

Existence and Uniqueness Questions

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **onto** \mathbb{R}^m if each **b** in \mathbb{R}^m is the image of at least one **x** in \mathbb{R}^n .

Equivalently, T is onto \mathbb{R}^m when the range of T is all of the codomain \mathbb{R}^m . That is, T maps \mathbb{R}^n onto \mathbb{R}^m if, for each \mathbf{b} in the codomain \mathbb{R}^m , there exists at least one solution of $T(\mathbf{x}) = \mathbf{b}$. "Does T map \mathbb{R}^n onto \mathbb{R}^m ?" is an existence question. The mapping T is *not* onto when there is some \mathbf{b} in \mathbb{R}^m for which the equation $T(\mathbf{x}) = \mathbf{b}$ has no solution. See Fig. 3.

FIGURE 3 Is the range of T all of \mathbb{R}^m ?

A mapping $T: \mathbb{R}^n \to \mathbb{R}^m$ is said to be **one-to-one** if each **b** in \mathbb{R}^m is the image of *at most one* **x** in \mathbb{R}^n .

Equivalently, T is one-to-one if, for each \mathbf{b} in \mathbb{R}^m , the equation $T(\mathbf{x}) = \mathbf{b}$ has either a unique solution or none at all. "Is T one-to-one?" is a uniqueness question. The mapping T is *not* one-to-one when some \mathbf{b} in \mathbb{R}^m is the image of more than one vector in \mathbb{R}^n . If there is no such \mathbf{b} , then T is one-to-one. See Fig. 4.

FIGURE 4 Is every **b** the image of at most one vector?

EXAMPLE 4 Let T be the linear transformation whose standard matrix is

$$A = \begin{bmatrix} 1 & -4 & 8 & 1 \\ 0 & 2 & -1 & 3 \\ 0 & 0 & 0 & 5 \end{bmatrix}$$

Does T map \mathbb{R}^4 onto \mathbb{R}^3 ? Is T a one-to-one mapping?

SOLUTION Since A happens to be in echelon form, we can see at once that A has a pivot position in each row. By Theorem 4 in Section 1.4, for each \mathbf{b} in \mathbb{R}^3 , the equation $A\mathbf{x} = \mathbf{b}$ is consistent. In other words, the linear transformation T maps \mathbb{R}^4 (its domain) onto \mathbb{R}^3 . However, since the equation $A\mathbf{x} = \mathbf{b}$ has a free variable (because there are four variables and only three basic variables), each \mathbf{b} is the image of more than one \mathbf{x} . That is, T is *not* one-to-one.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then T is one-to-one if and only if the equation $T(\mathbf{x}) = \mathbf{0}$ has only the trivial solution.

PROOF Since T is linear, $T(\mathbf{0}) = \mathbf{0}$. If T is one-to-one, then the equation $T(\mathbf{x}) = \mathbf{0}$ has at most one solution and hence only the trivial solution. If T is not one-to-one, then there is a **b** that is the image of at least two different vectors in \mathbb{R}^n —say, **u** and **v**. That is, $T(\mathbf{u}) = \mathbf{b}$ and $T(\mathbf{v}) = \mathbf{b}$. But then, since T is linear,

$$T(\mathbf{u} - \mathbf{v}) = T(\mathbf{u}) - T(\mathbf{v}) = \mathbf{b} - \mathbf{b} = \mathbf{0}$$

The vector $\mathbf{u} - \mathbf{v}$ is not zero, since $\mathbf{u} \neq \mathbf{v}$. Hence the equation $T(\mathbf{x}) = \mathbf{0}$ has more than one solution. So, either the two conditions in the theorem are both true or they are both false.

Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix for T. Then:

- a. T maps \mathbb{R}^n onto \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m ;
- b. T is one-to-one if and only if the columns of A are linearly independent.

PROOF

- a. By Theorem 4 in Section 1.4, the columns of A span \mathbb{R}^m if and only if for each \mathbf{b} in \mathbb{R}^m the equation $A\mathbf{x} = \mathbf{b}$ is consistent—in other words, if and only if for every \mathbf{b} , the equation $T(\mathbf{x}) = \mathbf{b}$ has at least one solution. This is true if and only if T maps \mathbb{R}^n onto \mathbb{R}^m .
- b. The equations $T(\mathbf{x}) = \mathbf{0}$ and $A\mathbf{x} = \mathbf{0}$ are the same except for notation. So, by Theorem 11, T is one-to-one if and only if $A\mathbf{x} = \mathbf{0}$ has only the trivial solution. This happens if and only if the columns of A are linearly independent, as was already noted in the boxed statement (3) in Section 1.7.

EXAMPLE 5 Let $T(x_1, x_2) = (3x_1 + x_2, 5x_1 + 7x_2, x_1 + 3x_2)$. Show that T is a one-to-one linear transformation. Does T map \mathbb{R}^2 onto \mathbb{R}^3 ?

SOLUTION When \mathbf{x} and $T(\mathbf{x})$ are written as column vectors, you can determine the standard matrix of T by inspection, visualizing the row-vector computation of each entry in $A\mathbf{x}$.

$$T(\mathbf{x}) = \begin{bmatrix} 3x_1 + x_2 \\ 5x_1 + 7x_2 \\ x_1 + 3x_2 \end{bmatrix} = \begin{bmatrix} ? & ? \\ ? & ? \\ ? & ? \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 & 1 \\ 5 & 7 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
(4)

So T is indeed a linear transformation, with its standard matrix A shown in (4). The columns of A are linearly independent because they are not multiples. By Theorem 12(b), T is one-to-one. To decide if T is onto \mathbb{R}^3 , examine the span of the columns of A. Since A is 3×2 , the columns of A span \mathbb{R}^3 if and only if A has 3 pivot positions, by Theorem 4. This is impossible, since A has only 2 columns. So the columns of A do not span \mathbb{R}^3 , and the associated linear transformation is not onto \mathbb{R}^3 .