MC68705P3 Panel Controller - Complete Pinout and Port Analysis

1. MC68705P3 Package and Pin Configuration

1.1 Package Type

28-Pin Dual In-Line Package (DIP-28)

	MC68705	Р3	
Γ			٦
VBB	1	28	VDD
PC0	2	27	PC1
PC2	3	26	PC3
PC4	4	25	PC5
PC6	5	24	PC7
PB0	6	23	PA0
PB1	7	22	PA1
PB2	8	21	PA2
PB3	9	20	PA3
PB4	10	19	PA4
PB5	11	18	PA5
PB6	12	17	PA6
PB7	13	16	PA7
VSS	14	15	XTAL/EXTAL
L			_

1.2 Power Supply Pins

Name	Function	ND-120 Panel Usage
VBB	Negative Supply (-5V)	Negative voltage for EPROM programming
VSS	Ground (0V)	System ground
VDD	Positive Supply (+5V)	Main power supply
	VBB VSS	VBB Negative Supply (-5V) VSS Ground (0V)

1.3 Clock/Crystal Pins

Pir	n	Name	Function	ND-120 Panel Usage
15		XTAL/EXTAL	Crystal/External Clock	System clock input (likely 2MHz crystal)
4		•	•	•

2. Port A Configuration (PA0-PA7)

Data Direction: Input (DDRA = 0x00) **Primary Function**: Command Reception and Button Input

2.1 Port A Pinout

Pin	Signal	Direction	Function	ND-120 Panel Connection
23	PA0	Input	Serial Data Channel 1	CPU command data bit 0 (active low)
22	PA1	Input	Serial Data Channel 2	CPU command data bit 1 (active low)
21	PA2	Input	Serial Data Channel 3	CPU command data bit 2 (active low)
20	PA3	Input	Panel Lock Key Sense	Panel lock position (0=LOCK, 1=ON/STANDBY)
19	PA4	Input	Command/Button Data	Additional command or button input
18	PA5	Input	Command/Button Data	Additional command or button input
17	PA6	Input	Button Change Flag	Button state change detection (0x40 mask)
16	PA7	Input	Status/Control	Additional control or status input
4		•	•	·

2.2 Port A Usage in Firmware

```
c
// Command extraction
command = PORTA & 0x3F;
                           // Extract 6-bit command (PA5-PA0)
// Serial data reception (active low inputs)
if ((PORTA & 1) == 0) ShiftRegister1 = 0x80; // PA0 \rightarrow data channel 1
if ((PORTA & 2) == 0) ShiftRegister2 = 0x80; // PA1 \rightarrow data channel 2
if ((PORTA & 4) == 0) ShiftRegister3 |= 0x80; // PA2 \rightarrow data channel 3
// Panel lock key sensing
if ((PORTA & 8) == 0) {
                          // PA3: Panel lock position
   DisplayControlFlags = 0x60; // LOCK position
} else {
    DisplayControlFlags = 0xE0; // ON/STANDBY position
}
// Button change detection
ButtonChangeFlags = PORTA ^ PreviousButtonState;
if ((ButtonChangeFlags & 0x40) != 0) { // PA6: Button event detected
   // Process button state change
}
```

3. Port B Configuration (PB0-PB7)

Data Direction: Output (DDRB = 0xFF)

Primary Function: Display Data and CPU Response

3.1 Port B Pinout

Pin	Signal	Direction	Function	ND-120 Panel Connection
6	РВО	Output	Response Data Bit 0	CPU PANS register bit 0
7	PB1	Output	Response Data Bit 1	CPU PANS register bit 1
8	PB2	Output	Response Data Bit 2	CPU PANS register bit 2
9	PB3	Output	Response Data Bit 3	CPU PANS register bit 3
10	PB4	Output	Response Data Bit 4	CPU PANS register bit 4
11	PB5	Output	Response Data Bit 5	CPU PANS register bit 5
12	PB6	Output	Response Data Bit 6	CPU PANS register bit 6
13	PB7	Output	Response Data Bit 7	CPU PANS register bit 7
4	4 ·			

3.2 Port B Usage in Firmware

```
// Combined status + data response

PORTB = (data | DisplayControlFlags) & 0x7F; // 7-bit response + status

// Direct data output

PORTB = data; // 8-bit direct data

// Display command/data output

PORTB = display_command; // HD44100H LCD driver input

PORTB = character_code; // Character data to display

PORTB = DisplayControlFlags; // Status output to CPU
```

3.3 Port B Data Flow

To CPU (PANS Register):

- Response data from command processing
- Status information (DisplayControlFlags)
- Button state acknowledgments
- Real-time clock data

To Display System:

- Commands to HD44100H LCD driver
- Character codes for display
- Display addressing information
- Control signals for CD4035 shift registers

4. Port C Configuration (PC0-PC7)

Data Direction: Output (DDRC = 0xFF) **Primary Function**: Control Signals and Timing

4.1 Port C Pinout

Pin	Signal	Direction	Direction Function ND-120 Panel Connection		
2	PC0	Output	Display Data Strobe	HD44100H/CD4035 data valid strobe	
27	PC1	Output	Serial Clock	Serial data sampling clock	
3	PC2	Output	Display Command Mode	HD44100H command/data select	
26	PC3	Output	Display Control 1	Additional display control signal	
4	PC4	Output	Display Control 2	Additional display control signal	
25	PC5	Output	Display Control 3	Additional display control signal	
5	PC6	Output	Display Control 4	Additional display control signal	
24	PC7	Output	Display Control 5	Additional display control signal	
4	→				

4.2 Port C Usage in Firmware

PC0 - Display Data Strobe (Primary response signaling):

```
c
// Standard strobe protocol for all responses
PORTC = PORTC & OxFE; // Clear strobe (setup phase)
PORTB = data; // Set data on Port B
PORTC = PORTC | 1; // Set strobe (data valid)
```

PC1 - Serial Clock (Command reception timing):

```
c
// Serial data sampling clock
PORTC = PORTC & 0xFD; // Clear clock
PORTC = PORTC | 2; // Set clock
SerialInputData = PORTA; // Sample data on clock edge
```

PC2 - Display Command Mode (LCD driver control):

```
c

// Command mode for HD44100H

PORTC = PORTC & 0xF3;  // Clear mode bits (bits 3-2)

PORTC = PORTC | 4;  // Set command mode
```

PC3-PC7 - Additional Control (Display system control):

• Likely connected to CD4035 latch enables

- Display module selection
- LCD backlight control
- Status LED control

5. Hardware Interface Connections

5.1 CPU Interface (ND-120 Connection)

Command Input Path:

```
ND-120 CPU → PANC Register → CY7C401 FIFO → External Logic → PA0-PA2 (Serial Data) → PA3-PA7 (Control/Status)
```

Response Output Path:

```
PB0-PB7 (Data) \rightarrow External Logic \rightarrow PANS Register \rightarrow ND-120 CPU PC0 (Strobe) \rightarrow
```

Control Signals:

```
External readIRQ() signal → 68705P3 interrupt detection

External Button Matrix → PA4-PA7 inputs

Panel Lock Key → PA3 input
```

5.2 Display System Interface

HD44100H LCD Driver:

```
PB0-PB7 → HD44100H Data Input (8-bit)
PC0 → HD44100H Enable/Strobe
PC2 → HD44100H Command/Data Select
PC3-PC7 → HD44100H Additional Control
```

CD4035 Shift Register Chain:

```
PB0-PB7 → CD4035 Serial Data Input

PC0 → CD4035 Latch Enable (all registers)

PC1 → CD4035 Clock (shift register timing)
```

LCD Modules:

```
HD44100H Outputs \rightarrow LD-H7919 8-digit displays (time/date) \rightarrow LCD SX 423 M4 16-segment displays (status)
```

5.3 Button/Panel Interface

Button Matrix:

```
Button Switches → External Encoding Logic → PA4-PA7

Panel Lock Key → Direct Connection → PA3

Status LEDs → Display System Control → PC3-PC7
```

6. Signal Timing and Protocols

6.1 CPU Communication Timing

Command Reception (20ms cycle coordination):

- 1. CPU writes to PANC register (every 20ms from microprogram)
- 2. CY7C401 FIFO buffers command
- 3. readIRQ() signals data available to 68705P3
- 4. 68705P3 performs serial reception via PAO-PA2
- 5. ProcessData() executes command handler

Response Generation (immediate):

- 1. Command handler prepares response data
- PORTC bit 0 cleared (strobe setup)
- 3. PORTB set with response data
- 4. PORTC bit 0 set (strobe active)
- 5. CPU reads PANS register
- 6. Fixed delay ensures signal stability

6.2 Display System Timing

Character Output (HD44100H protocol):

- 1. PORTB set with character/command data
- 2. PC2 set/clear for command/data mode
- 3. PCO strobed for data valid
- 4. HD44100H processes and updates display

Shift Register Control (CD4035 chain):

- 1. Serial data clocked into registers via PC1
- 2. Parallel data latched via PC0
- 3. Display segments updated simultaneously

6.3 Button Processing Timing

Debouncing Sequence:

- 1. PA4-PA7 monitored for state changes
- 2. Software debouncing (5 cycles @ ButtonDebounceCounter)
- 3. Stable state detection via comparison
- 4. Button event processed as command
- 5. CPU notification via timer-coordinated interrupt

7. Power and Clock Requirements

7.1 Power Supply

Supply	Voltage	Current	Function
VDD	+5V ±5%	~50mA	Main logic power
VSS	0V	-	Ground reference
VBB	-5V	~1mA	EPROM programming (if used)
4			▶

7.2 Clock System

Crystal Oscillator (Pin 15):

• **Frequency**: Likely 2MHz (based on timing loops)

• **Type**: Parallel resonant crystal

• **Accuracy**: ±0.01% for timing-critical operations

Internal Clock Generation:

- Internal divide-by-4 → 500kHz instruction cycle
- Timer prescaling via Timer_Control_Reg (0x78)
- 20ms synchronization with CPU interrupt cycle

8. Design Considerations

8.1 Signal Integrity

Input Protection:

PA0-PA7 likely have pull-up resistors for CMOS logic levels

- Button inputs may have external debouncing capacitors
- Serial inputs (PA0-PA2) require clean signal transitions

Output Drive:

- PB0-PB7 must drive HD44100H inputs and external logic
- PC0-PC7 provide control signals with adequate current
- All outputs designed for 5V CMOS/TTL compatibility

8.2 Thermal Considerations

Heat Dissipation:

- Low power CMOS design (~250mW total)
- No heat sink required in normal operation
- Adequate PCB copper for thermal distribution

8.3 EMC/EMI Considerations

Noise Immunity:

- Critical timing signals (PC0, PC1) require clean routing
- Power supply decoupling capacitors essential
- Ground plane recommended for high-frequency noise reduction

9. Summary

The MC68705P3 in the ND-120 panel controller serves as a sophisticated interface processor with:

- 24 I/O pins (PAO-PA7, PBO-PB7, PCO-PC7) for complete system control
- **Dual-function design**: CPU communication + display management
- **Real-time operation**: 20ms synchronization with CPU interrupts
- Complex protocol handling: Serial reception, strobe signaling, status integration
- Multi-interface capability: Simultaneous CPU, display, and button processing

Each pin serves a specific, well-defined role in the overall system architecture, enabling the 68705P3 to function as an intelligent peripheral controller managing all aspects of the operator panel interface for the ND-120 minicomputer system.