Supplementary material for: Multiresolution dictionary learning for conditional distributions

Anonymous Author(s)

Affiliation Address email

1 Partition Tree Schematic

Figure 1: (i) Multiscale partition of the data. (ii) Path through the tree for $x_i \in \mathbb{R}^p$. (iii) Conditional density of y_i given x_i defined as a convex combination of densities along the path.

2 Predictions

Consider the case we want to predict the response y^* for a future observation based on predictors x^* and previous observations $(x^{(n)}, y^{(n)})$ with $x^{(n)} = (x_1, \ldots, x_n)$ and $y^{(n)} = (y_1, \ldots, y_n)$. Because the partitioning strategy that we adopted lacks an elegant out-of-sample embedding function (unlike other paritioning strategies), we adopt a Voronoi expansion procedure by which the new predictors x^* are allocated to $C_{j,k}$'s having the closest centers with respect to ρ_W (we considered the Euclidean distance). Summaries of the predictive density of y^* will be computed as follows:

- (i) allocate predictors x^* to $C_{i,k}$'s having the closest centers with respect to ρ_W
- (ii) run the Gibbs sampler for S iterations, and at the sth iteration:
- a) sample parameters $\{\sigma_{j,k_i}^{(s)},\mu_{j,k_i}^{(s)},\pi_{j,k_i}^{(s)}\}_{j\in\mathbb{Z},k_j\in\mathcal{K}_j}$ from the posterior, i.e. $p(.|x^{(n)},y^{(n)})$
- b) sample \hat{y}_s^* from

$$\sum_{j \in \mathbb{Z}} \pi_{j,k_j(x^*)}^{(s)} \mathcal{N}\left(\mu_{j,k_j(x^*)}^{(s)}, \sigma_{j,k_j(x^*)}^{(s)}\right)$$

(iii) given the sequence $\{\hat{y}_s^*\}_{s=1}^S$, summaries of the predictive density such as mean, variance and quantiles can be computed.

Table 1: Linear subspace: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for sample size 50 and 100 for different simulation scenarios.

				d = 5		d = 10)
p	n		MSB	CART	LASSO	MSB	CART	LASSO
50k	50	MSE STD	0.18 0.32	0.31 0.30	0.25 0.42	0.22 0.24	0.58 0.54	0.22 0.30
3011	30	TIME	3	2	1	3	3	1
		MSE	0.18	0.27	0.26	0.20	0.41	0.52
50k	100	STD	0.26	0.42	0.46	0.23	0.46	0.78
		TIME	5	5	2	5	5	1
		MSE	0.35	0.45	0.89	0.16	0.33	0.20
100k	50	STD	0.53	0.77	1.04	0.21	0.46	0.31
		TIME	3	25	2	3	27	2
		MSE	0.43	0.88	0.52	0.17	0.50	0.31
100k	100	STD	0.59	1.29	0.70	0.24	0.75	0.49
		TIME	7	50	5	7	51	5
		MSE	0.11	0.16	0.15	0.83	2.26	0.92
500k	50	STD	0.15	0.24	0.19	1.01	2.60	3.69
		TIME	5	90	11	5	121	10
		MSE	0.003	0.17	0.08	0.13	1.37	1.06
500k	100	STD	0.16	0.23	0.13	1.12	1.81	1.50
		TIME	10	214	43	8	227	42
		MSE	1.70	1.48	1.47	0.66	1.65	1.07
700k	50	STD	2.18	2.47	1.63	0.87	1.49	0.95
		TIME	6	121	12	7	151	13
		MSE	0.69	1.36	0.82	0.78	1.52	1.43
700k	100	STD	0.94	1.47	1.28	1.03	1.34	2.11
		TIME	13	321	41	12	325	44

3 Synthetic examples

3.1 Competitor Algorithms

As we are unaware of other methods, even frequentist, that estimate posteriors with such high-dimensional predictors, we compare point estimates of our approach with other moderately regression algorithms. In particular, we elected to compare against lasso, classification and regression trees (CART), Random Forest (RF) and principal component (PC) regression. The lasso regularization parameter and the number of principal components for PC regression were chosen based on the Akaike information criterion (AIC). For all algorithms, standard Matlab packages were utilized.

3.2 Additional results

Tables 1, 2 and 3 show results concerning example 2, 3, and 4 in section 4.4. Each table reports mean squared errors and the mean of amount of time necessary to obtain one point predictions. In particular, table 1 shows results concerning example 3 (linear subspace) for different number of factors (d=5,10), table 2 shows results concerning example 4 (union of linear subspaces) for different number of mixture components (G=5,10), while table 3 shows results for example 2 (swissroll). As shown, in almost all data scenario, our model is able to perform as well as or better than the model associated to the lowest mean squared error and can scale substantially better than others to high dimensional predictors.

Table 2: Union of linear subspaces: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for different sample sizes for different simulations sampled from a mixture of factor analyzers

				G=10)	G = 5		
p	n	SIM	MSB	CART	LASSO	MSB	CART	LASSO
		MSE	0.23	0.42	0.36	0.17	0.43	0.22
50k	100	STD	0.34	0.59	0.43	0.18	0.69	0.23
00.0	100	TIME	5	24	3	7	27	3
		Mar	0.22	0.42	0.27	0.17	0.22	0.20
F01	200	MSE	0.23	0.42	0.27	0.17	0.22	0.20
50k	200	STD	0.33	0.56	0.23	0.19	0.38	0.25
		TIME	10	51	8	12	56	7
		MSE	0.67	1.35	1.32	0.15	0.17	0.22
100k	100	STD	1.04	2.26	1.36	0.23	0.19	0.23
		TIME	9	47	6	6	44	5
		MSE	0.64	1.37	0.85	0.15	0.26	0.15
100k	200	STD	0.95	1.77	1.29	0.24	0.42	0.24
10010	200	TIME	15	99	15	11	89	15
		MSE	0.26	0.39	0.31	0.63	1.40	1.01
300k	100	STD	0.39	0.51	0.52	0.80	1.24	1.46
		TIME	9.28	125	18	9	145	17
		MSE	0.25	0.47	0.26	0.63	1.17	0.92
300k	200	STD	0.36	0.88	0.43	0.80	2.11	1.04
		TIME	15	262	40	13	283	43
						0.12		
0001	• • • •	MSE	0.25	0.30	0.30	0.62	1.42	0.70
300k	300	STD	0.36	0.41	0.48	0.89	1.85	0.94
		TIME	15	463	73	16	465	89

Table 3: Swissroll: Mean and standard deviations of squared errors under multiscale stick-breaking (MSB), CART and Lasso for different sample sizes for different simulation scenarios.

p	n		MSB	CART	LASSO
		MSE	0.24	0.44	0.25
100k	50	STD	0.24	0.42	0.29
		TIME	3	22	2
		MSE	0.24	0.43	0.17
100k	100	STD	0.26	0.55	0.22
		TIME	6	48	7
		MSE	0.24	0.67	0.29
200k	50	STD	0.23	0.50	0.29
		TIME	4	38	5
		MSE	0.25	0.78	0.33
200k	100	STD	0.26	0.74	0.36
		TIME	6	96	13
		MSE	0.17	0.47	0.23
500k	50	STD	0.23	0.43	0.22
		TIME	5	126	10
		MSE	0.17	0.33	0.19
500k	100	STD	0.21	0.46	0.23
		TIME	11	230	25
-					