CIRCUIT THEORY EEEN30020

REVIEW NOTES

Elementary Circuit Theory

Two-Ports

Imedance Matrix
$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} V_1 = z_{11}I_1 + z_{12}I_2$$

$$Z_{11} = \frac{V_1}{I_1} \Big|_{I_2=0} Z_{21} = \frac{V_2}{I_1} \Big|_{I_2=0}$$

$$Z_{12} = \frac{V_1}{I_2} \Big|_{I_1=0} Z_{22} = \frac{V_2}{I_2} \Big|_{I_1=0}$$

Imedance Matrix
$$\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ I_2 \end{pmatrix} V_1 = z_{11}I_1 + z_{12}I_2$$

$$\begin{pmatrix} I_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} y_{11} & y_{12} \\ y_{21} & y_{22} \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} I_1 = y_{11}V_1 + y_{12}V_2$$

$$z_{11} = \frac{V_1}{I_1} \Big|_{I_2=0}$$

$$z_{12} = \frac{V_1}{I_2} \Big|_{I_2=0}$$

$$z_{12} = \frac{V_1}{I_2} \Big|_{I_1=0}$$

$$z_{22} = \frac{V_2}{I_2} \Big|_{I_1=0}$$

$$y_{11} = \frac{I_1}{V_1} \Big|_{V_2=0}$$

$$y_{21} = \frac{I_2}{V_1} \Big|_{V_2=0}$$

$$y_{12} = \frac{I_1}{V_2} \Big|_{V_1=0}$$

$$y_{22} = \frac{I_2}{V_2} \Big|_{V_1=0}$$

Hybrid Matrix
$$\begin{pmatrix} V_1 \\ I_2 \end{pmatrix} = \begin{pmatrix} h_{11} & h_{12} \\ h_{21} & h_{22} \end{pmatrix} \begin{pmatrix} I_1 \\ V_2 \end{pmatrix} \begin{pmatrix} V_1 = h_{11}I_1 + h_{12}V_2 \\ I_2 = h_{21}I_1 + h_{22}V_2 \end{pmatrix}$$

$$h_{11} = \frac{V_1}{I_1} \Big|_{V_2=0} \qquad h_{12} = \frac{V_1}{V_2} \Big|_{I_1=0}$$

$$h_{21} = \frac{I_2}{I_1} \Big|_{V_2=0} \qquad h_{22} = \frac{I_2}{V_2} \Big|_{I_1=0}$$

Transmission Matrix
$$\begin{pmatrix} V_1 \\ I_1 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} V_2 \\ -I_2 \end{pmatrix} V_1 = AV_2 - BI_2$$

$$A = \frac{V_1}{V_2} \Big|_{I_2=0} B = -\frac{V_1}{I_2} \Big|_{V_2=0}$$

$$C = \frac{I_1}{V_2} \Big|_{I_2=0} D = -\frac{I_1}{I_2} \Big|_{V_2=0}$$

Inverse Transmission Matrix:
$$\begin{pmatrix} V_2 \\ -I_2 \end{pmatrix} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}^{-1} \begin{pmatrix} V_1 \\ I_1 \end{pmatrix}$$

Two-Port Interconnections

$$Z_{in} = \frac{V_1}{I_1} = \frac{AZ_L + B}{CZ_L + D}$$

$$H(s) = \frac{1}{A+B+C+D}$$

Circuit Simulation

system of linear equations solution to linear equations

Nodal Analysis (NA) and Modified Nodal Analysis (MNA)

- (1) Choose a voltage reference node and label the branches.
- (2) Write KCL for each node except the reference. Use the convention: if a current leaves a node, assign the plus sign to this current. If the current enters a node, assign the minus sign to this current. Rearrange the equation resulting from KCL in the form:

 Σ branch currents = Σ independent current sources

- (3) Use the branch equations to eliminate as many branch currents as possible. Any branch current not eliminated at this step remains in the equations as an additional variable.
- (4) Write the branch equations corresponding to the remaining branch currents.

In MNA:

- A branch current is always introduced as an additional variable if it flows through a voltage source (independent or controlled).
- In addition, if we are applying MNA in the sinusoidal steady state, we keep the branch current if it flows through an inductor.
- A branch current is introduced if any circuit element is controlled by that current.
- A branch current is introduced if it is requested as an output variable in a simulation environment).

The *Newton-Raphson algorithm* estimates the solution to the nonlinear equation F(v) = 0 by iterating the equation

$$v^{(k+1)} = v^{(k)} - \frac{F(v^{(k)})}{F'(v^{(k)})}$$

from an initial estimate $v^{(0)}$.

Applied to a nonlinear circuit element described by the nonlinear current-voltage characteristic

$$i = g(v)$$

the Newton-Raphson algorithm results in the *companion model* or the *linearised model* for the nonlinear resistor (diode):

where

$$G^{(k)} = g'(v^{(k)})$$
 and $I_s^{(k)} = g(v^{(k)}) - g'(v^{(k)})v^{(k)}$

The *trapezoidal rule* is a numerical integration technique:

$$x_{n+1} = x_n + \frac{1}{2}h(\dot{x}_n + \dot{x}_{n+1})$$

Applied to a capacitor

$$i = C\frac{dv}{dt}$$

it results in the *companion model* of the capacitor

$$i_{n+1} = \frac{2C}{h}v_{n+1} - \left(i_n + \frac{2C}{h}v_n\right)$$

Applied to an inductor

$$v = L \frac{di}{dt}$$

it results in the *companion model* of the capacitor

$$i_{n+1} = \frac{h}{2L}v_{n+1} + \left(i_n + \frac{h}{2L}v_n\right)$$

Laplace Transform

f(t)	F(s)	f(t)	F(s)
K (const)	K/s		
or		e^{at}	1
<i>u(t)</i> (unit step	I/s		s-a
function)			
cos wt	$\frac{s}{s^2 + \omega^2}$	sin ωt	$\frac{\omega}{s^2 + \omega^2}$
$\frac{df(t)}{dt}$	$sF(s)-f(0^-)$	$\int\limits_{0^{-}}^{\prime}f(\tau)d\tau$	$\frac{1}{s}F(s)$
$e^{-\alpha t}f(t)$	$F(s+\alpha)$	$f(t-\tau)u(t-\tau)$	$e^{-s\tau}F(s)$

Partial Fraction Expansion

$$F(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{(s - p_1)(s - p_2)...(s - p_m)} = \frac{k_1}{s - p_1} + \frac{k_2}{s - p_2} + \dots + \frac{k_m}{s - p_m}$$
where $k_i = (s - p_i) \frac{N(s)}{D(s)} \Big|_{s = p_i}$

Time domain	Frequency domain
v(t) = Ri(t) R $V(t) = Ri(t)$ R $V(t) = Ri(t)$ $V(t) = Ri(t)$	$V(s) = RI(s)$ $\downarrow I \qquad R$ $+ \qquad V \qquad -$
$i(t) = C \frac{dv(t)}{dt}$ $\downarrow i \qquad C \qquad $ $+ \qquad v \qquad -$	$I(s) = sCV(s) - CV(0^{-})$ $\downarrow 1/sC$
$v(t) = L \frac{di(t)}{dt}$ $\downarrow \qquad \qquad \downarrow \qquad $	$V(s) = sLI(s) - Li(0^{-})$ SL $Li(0^{-})$ $+ V$ $- + V$

Zero-State and Zero-Input Responses:

The *zero-input response* is due to the initial conditions acting alone, with all independent sources set to zero.

The *zero-state response* is due to the independent sources acting alone with all initial conditions set to zero.

Natural frequencies can be found:

- From the equation Det $\underline{\mathbf{M}} = \mathbf{0}$, where $\underline{\mathbf{M}}$ is the MNA matrix of the circuit
- As the poles of the transfer function H(s).

Stable circuits have natural frequencies p_i such that $Re(p_i) < 0$.

The *zero-state response* can be found from the network (transfer) function:

$$\mathcal{L}\{\text{response}\}=\text{Network Function} \cdot \mathcal{L}\{\text{input}\}$$

The Laplace Transform vs. Phasor Analysis

Phasor analysis is a particular case of the Laplace transform, and the Laplace transform is a more general technique. Use phasor analysis only if you are asked to find the *steady state response* of a stable circuit <u>and</u> the independent current and/or voltage sources driving the circuit are *sinusoidal*;

Use the Laplace transform in all other cases.

The output voltage in the time domain:

$$V_{out}(t) = H(j\omega) \cdot V_{in}(j\omega) \sin(\omega t + \angle H(j\omega) + \angle V_{in}(j\omega))$$

The **Bode plot** (or diagram) is a simple technique for obtaining an approximate plot of the magnitude and phase angle of a transfer function H(s) evaluated at $s = j\omega$. The diagram consists of two plots – a plot of the logarithm of the magnitude of $H(j\omega)$ and a plot of the phase angle of $H(j\omega)$, both plotted against (positive) frequency, with a logarithmic scale for the frequency axis. Ensure that you understand how to derive the Bode plots for simple transfer functions.

Filter Design

The nth order Butterworth low-pass magnitude response with cutoff frequency ω_c is given by the equation

$$\left|H(j\omega)\right|^2 = \frac{1}{1 + \left(\frac{\omega}{\omega_c}\right)^{2n}}$$

The Butterworth polynomials for order 1 to 6 for *active filter design* are given in the following table:

	Butterworth polynomial $D(s)$	Transfer function $ H(jw) ^2 = 1/ D(s) ^2$
1	s+1	$\frac{1}{1+\omega^2}$
2	$s^2 + 1.414s + 1$	$\frac{1}{1+\omega^4}$
3	$(s+1)(s^2+s+1)$	$\frac{1}{1+\omega^6}$
4	$(s^2 + 0.765s + 1)(s^2 + 1.848s + 1)$	$\frac{1}{1+\omega^8}$
5	$(s+1)(s^2+0.618s+1)(s^2+1.618s+1)$	$\frac{1}{1+\omega^{10}}$
6	$(s^2 + 0.518s + 1)(s^2 + 1.414s + 1)(s^2 + 1.932s + 1)$	$\frac{1}{1+\omega^{12}}$

Fist and second order transfer functions:

low-pass	$\frac{A}{s^2 + a_1 s + a_0}$	which is often written in the form	$\frac{k\omega_n^2}{s^2 + \left(\frac{\omega_n}{Q}\right)s + \omega_n^2}$
high-pass	$\frac{As^2}{s^2 + a_1 s + a_0}$	which is often written in the form	$\frac{ks^2}{s^2 + \left(\frac{\omega_n}{Q}\right)s + \omega_n^2}$
band-pass	$\frac{As}{s^2 + a_1 s + a_0}$	which is often written in the form	$\frac{k\left(\frac{\omega_n}{Q}\right)s}{s^2 + \left(\frac{\omega_n}{Q}\right)s + \omega_n^2}$

First order low-pass section	First order high-pass section	Buffer
R + + + V _i C - C -	V _i	V_{in} R_{in} R_{in} R_{in} R_{in} R_{in}
$\frac{V_o(s)}{V_i(s)} = \frac{\frac{1}{RC}}{s + \frac{1}{RC}}$	$\frac{V_o(s)}{V_i(s)} = \frac{s}{s + \frac{1}{RC}}$	$V_{out} = \left(1 + \frac{R_B}{R_A}\right) V_{in}$

