```
In [82]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import plotly
   import random
   from gcmap import GCMapper, Gradient
   from matplotlib.colors import Normalize, LinearSegmentedColormap, PowerNorm
   from mpl_toolkits.basemap import Basemap
```

```
In [83]: # Prints all of dataframe (may take a while)
    pd.options.display.max_columns = None
    pd.options.display.max_rows = None
```

```
In [84]: # Read in Data for Domestic Flights
    flight_data = pd.read_csv("Domestic_Flights_MarApr2019.csv")
    flight_data.head()
```

Out[84]:

DEST_C	ORIGIN_STATE_NM	ORIGIN_STATE_ABR	ORIGIN_CITY_NAME	DISTANCE	PASSENGERS	
	Alabama	AL	Birmingham, AL	134	1	0
На	Alabama	AL	Birmingham, AL	826	1	1
Ro	Alabama	AL	Birmingham, AL	822	1	2
Midlaı	Alabama	AL	Birmingham, AL	906	2	3
San ,	Alabama	AL	Birmingham, AL	744	2	4

```
In [85]: def flights(numberOfPassengers, dailyAvgNOP, totalDailyPassengers, origin s
              for index, row in flight_data.iterrows():
                  stateIndex = 0
                 while(stateIndex < 100):</pre>
                      state = origin state[int(stateIndex/2)]
                      if((row["ORIGIN STATE ABR"] == state or row["DEST STATE ABR"] =
                          numberOfPassengers[stateIndex] += row["PASSENGERS"]
                      stateIndex += 1
                      if((row["ORIGIN STATE ABR"] == state or row["DEST STATE ABR"] =
                          numberOfPassengers[stateIndex] += row["PASSENGERS"]
                      stateIndex += 1
             #Average Daily Passengers leaving/entering each state (31 days in March
             for i in range(len(numberOfPassengers)):
                  if (i % 2 == 0):
                     dailyAvgNOP[i] = numberOfPassengers[i]/31
                  if (i % 2 != 0):
                      dailyAvgNOP[i] = numberOfPassengers[i]/30
             #Total Number of Passengers travelling each day (March and April)
             for i in range(len(numberOfPassengers)):
                  if (i % 2 == 0):
                     totalDailyPassengers[0] += dailyAvgNOP[i]
                 if (i % 2 != 0):
                      totalDailyPassengers[1] += dailyAvgNOP[i]
             return(numberOfPassengers, dailyAvgNOP, totalDailyPassengers)
```

```
In [107]: US_Infection = pd.read_csv("us-states.csv")
US_Infection
```

Out[107]:

	Date	State	cases	Population	PercentInfected
0	3/19/20	AL	78	4903185	0.000016
1	3/19/20	AK	12	731545	0.000016
2	3/19/20	AZ	47	7278717	0.000006
3	3/19/20	AR	62	3017804	0.000021
4	3/19/20	CA	1067	39512223	0.000027
5	3/19/20	CO	278	5758736	0.000048
6	3/19/20	CT	159	3565287	0.000045
7	3/19/20	DE	30	973764	0.000031
8	3/19/20	FL	434	21477737	0.000020
9	3/19/20	GA	282	10617423	0.000027
10	3/19/20	HI	26	1415872	0.000018

```
In [109]: # Drop row for Deleware
    US_Infection.drop(US_Infection[US_Infection['State'] == "DE"].index, inplac
    US_Infection.reset_index(inplace=True)
    US_Infection.drop(['index'], axis=1,inplace=True)
    US_Infection
```

Out[109]:

	Date	State	cases	Population	PercentInfected
0	3/19/20	AL	78	4903185	0.000016
1	3/19/20	AK	12	731545	0.000016
2	3/19/20	AZ	47	7278717	0.000006
3	3/19/20	AR	62	3017804	0.000021
4	3/19/20	CA	1067	39512223	0.000027
5	3/19/20	CO	278	5758736	0.000048
6	3/19/20	CT	159	3565287	0.000045
7	3/19/20	FL	434	21477737	0.000020
8	3/19/20	GA	282	10617423	0.000027
9	3/19/20	HI	26	1415872	0.000018
10	3/19/20	ID	23	1787065	0.000013

```
In [87]: # Using Domestic Flight Data, calculate number of passengers flying between
def detailedFlights(states):
```

return(detailed flightsMarch, detailed flightsApril)

```
In [111]: def simulation(detailed_flightsMarch, states):
              #Initialize key variables
              percentInfected = US_Infection['PercentInfected']
              state_Populations = US_Infection['Population']
              state Infections = US Infection['cases']
              #Store the initial number of infections in eac state
              original_StateInfections = state_Infections
              #Create a dictionary that will store the infected travelers for each de
              infectedTravelers_Collection = {}
              # Infected Travelers = daily passengers flying between each state * per
              # is infected
              infectedTravelers = detailed flightsMarch.multiply(percentInfected.sque
              # update number of infected citizens of each state
              for i in range(13):
                  #Add the number of infected people leavijng the state from state in
                  state_Infections = -1*state_Infections.rsub(infectedTravelers.sum(a
                  #Add the number of infected people entering the state to state infe
                  state Infections = state Infections.add(infectedTravelers.sum(axis=
                  percentNotInfected = 1 - (state Infections/state Populations)
                  # Each person is likely to infect between 2 and 2.5 people
                  state Infections = state Infections * random.uniform(2.0,2.5) * per
                  percentInfected = state Infections/state Populations
                  infectedTravelers_Collection[i] = pd.DataFrame(infectedTravelers.sq
                  infectedTravelers = detailed flightsMarch.multiply(percentInfected.
              # transform into arrays so that they can later be stored into dataframe
              Original StateInfections = original StateInfections.squeeze().values
              state Infections = state Infections.squeeze().values
              # initialize and fill indataframe where we will store initial and final
              original StateInfectionsDF = pd.DataFrame(0, index = states, columns =
              state InfectionsDF = pd.DataFrame(0, index = states, columns = ["# of I
              for i in range(49):
                  original_StateInfectionsDF.iat[i,0] = original_StateInfections[i]
                  state InfectionsDF.iat[i,0] = state Infections[i]
              # change in infected citizens over the course of the 13 days
              changeInInfectedCitizens = original StateInfectionsDF.rsub(state Infect
              changeInInfectedCitizens.columns = ['Change in # of Infected Citizens']
              state InfectionsDF.columns = ['# of Infected Citizens March 31st']
              original StateInfectionsDF.columns = ['# of Infected Citizens March 19t
```

return(changeInInfectedCitizens, state_InfectionsDF, original_StateInfe

```
In [89]: #Read in Data for Stay-at-Home Order Dates+Times
    stayAtHome_Dates = pd.read_csv("StayAtHome_Dates.csv")
    stayAtHome_Dates
```

Out[89]:

	States	State_Number	StayAtHome_Date	DaysAfterFirst	Time
0	AL	0	4/4/20	16.0	17.0
1	AK	2	3/28/20	9.0	17.0
2	AZ	4	3/31/20	12.0	17.0
3	AR	6	NaN	NaN	NaN
4	CA	8	3/19/20	0.0	0.0
5	CO	10	3/26/20	7.0	6.0
6	CT	12	3/23/20	4.0	20.0
7	DE	14	3/24/20	5.0	8.0
8	FL	16	4/3/20	15.0	0.0
9	GA	18	4/3/20	15.0	0.0
10	HI	20	3/25/20	6.0	0.0

```
In [90]: # Drop row for Deleware
    stayAtHome_Dates.drop(stayAtHome_Dates[stayAtHome_Dates['States'] == "DE"].
    stayAtHome_Dates.reset_index(inplace=True)
    stayAtHome_Dates.drop(['index'], axis=1,inplace=True)
    stayAtHome_Dates
```

Out[90]:

	States	State_Number	StayAtHome_Date	DaysAfterFirst	Time
0	AL	0	4/4/20	16.0	17.0
1	AK	2	3/28/20	9.0	17.0
2	AZ	4	3/31/20	12.0	17.0
3	AR	6	NaN	NaN	NaN
4	CA	8	3/19/20	0.0	0.0
5	CO	10	3/26/20	7.0	6.0
6	CT	12	3/23/20	4.0	20.0
7	FL	16	4/3/20	15.0	0.0
8	GA	18	4/3/20	15.0	0.0
9	HI	20	3/25/20	6.0	0.0
10	ID	22	3/25/20	6.0	13.5

```
In [91]: def effectOnAirlines(dailyAvgNOP_state):
              latestOrder = 0
              for index, row in stayAtHome_Dates.iterrows():
                  if(row["DaysAfterFirst"] > latestOrder):
                      latestOrder = row["DaysAfterFirst"]
              lossOfPassengersMarch = np.zeros(13)
             lossOfPassengersApril = np.zeros(int(latestOrder-12))
             totalPassengersLostMarch = 0
             totalPassengersLostApril = 0
             for i in range(int(latestOrder+1)):
                      for index, row in stayAtHome_Dates.iterrows():
                          if(i <= 12 and row["DaysAfterFirst"] == i):</pre>
                              totalPassengersLostMarch += dailyAvgNOP state[row["Stat
                              totalPassengersLostApril += dailyAvgNOP_state[row["Stat
                              lossOfPassengersMarch[i] = totalPassengersLostMarch
                          if(i > 12 and row["DaysAfterFirst"] == i):
                              totalPassengersLostApril += dailyAvgNOP_state[row["Stat
                              lossOfPassengersApril[i-13] = totalPassengersLostApril
                          if (i <= 12):
                              lossOfPassengersMarch[i] = totalPassengersLostMarch
                          if (i > 12):
                              lossOfPassengersApril[i-13] = totalPassengersLostApril
             return(lossOfPassengersMarch, lossOfPassengersApril)
```

Part 1:

Calculating average daily passengers by state, total daily passengers across the US and total number of passengers by state for the months of March and April

```
In [92]: numberOfPassengers_state = np.zeros(100)
    dailyAvgNOP_state = np.zeros(100)
    totalDailyPassengers = np.zeros(2)
    origin_state = flight_data.ORIGIN_STATE_ABR.unique().tolist()
    origin_state.sort()
    numberOfPassengers_state, dailyAvgNOP_state, totalDailyPassengers = flights
```

Estimation of loss of domestic flights as a function of days since the first state, California, released stay-at-home order

```
In [141]:
          lossOfPassengersMarch, lossOfPassengersApril = effectOnAirlines(dailyAvgNOF
          lossOfPassengers = list(lossOfPassengersMarch) + list(lossOfPassengersApril
          totalDailyPassengersMarchCOVID = np.zeros(13)
          totalDailyPassengersAprilCOVID = np.zeros(7)
          for i in range(13):
              totalDailyPassengersMarchCOVID[i] = totalDailyPassengers[0] - lossOfPas
          for i in range(7):
              totalDailyPassengersAprilCOVID[i] = totalDailyPassengers[1] - lossOfPas
          totalDailyPassengersCOVID = list(totalDailyPassengersMarchCOVID) + list(tot
          x = list(range(19,32))
          x += list(range(1,8))
          data = {'Total Airline Passengers':totalDailyPassengersCOVID,'DailyLoss':le
          df = pd.DataFrame(data)
          df['Month'] = ['Mar' if x >= 19 else 'Apr' for x in df['Date']]
          df['Date'] = df['Date'].apply(str)
          df['Date and Month'] = df[['Date', 'Month']].apply(lambda x: ''.join(x), ax
          plt.title('Total Domestic Flight Passengers')
          chart = sns.barplot(x='Date and Month',y='Total Airline Passengers',data=df
          chart.set xticklabels(chart.get xticklabels(), rotation=45)
          plt.savefig('TotalDomseticFlightPassengers.png')
          plt.show()
          plt.title("Estimated # of Domestic Flight Passengers Lost 2020")
          chart2 = sns.barplot(x='Date and Month', y='DailyLoss', data=df, palette='summ'
          chart2.set xticklabels(chart2.get xticklabels(), rotation=45)
          plt.savefig('Estimated#ofDomesticFlightPassengersLost.png')
          plt.show()
```


Part 3:

Dataframe of daily number of passengers travelling between each of the 50 states (March and April)

In [94]: detailed_flightsMarch, detailed_flightsApril = detailedFlights(origin_state

In [95]: detailed_flightsMarch

Out[95]:

	AK	AL	AR	AZ	CA	СО	СТ	DE	FL	GA	н	IA	ID	IL	
AK	6367	0	0	98	145	134	0	0	0	0	273	0	0	31	
AL	0	0	1	6	8	315	0	0	611	2708	0	0	0	494	
AR	0	0	0	103	111	252	0	0	168	1117	0	0	0	530	
AZ	102	5	95	2081	16698	4717	0	0	2293	2147	1231	832	497	5074	
CA	137	2	117	17064	64979	12754	68	0	7291	7220	12981	4	1353	12429	
CO	132	317	282	4850	13237	3534	252	0	6044	2955	774	631	732	4550	
СТ	0	0	0	1	76	239	0	0	2965	841	0	0	0	760	
DE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
FL	0	616	169	2138	7066	5900	3061	0	10766	27330	0	630	0	16363	3
GA	0	2687	1134	2105	7244	2828	874	0	27441	4426	280	548	0	4053	2
НІ	294	0	0	1229	12613	746	0	0	0	304	17941	0	0	728	

In [96]: detailed_flightsApril

Out[96]:

	AK	AL	AR	AZ	CA	СО	СТ	DE	FL	GA	HI	IA	ID	IL	
AK	6498	0	0	69	125	96	0	0	0	0	142	0	0	127	
AL	0	0	0	0	3	324	0	0	524	2708	0	0	0	499	
AR	0	0	0	83	131	276	0	0	143	1151	0	0	0	623	
ΑZ	89	1	72	2199	16526	4470	0	0	2057	2037	780	615	469	4570	
CA	131	2	148	15642	68870	13034	22	0	6760	7374	12854	4	1188	12966	
CO	109	323	272	4310	13169	2974	349	0	4786	2367	864	619	743	3994	
CT	0	3	0	12	10	326	0	0	2999	915	0	0	0	1041	
DE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
FL	0	521	141	2003	6872	5042	3154	0	9840	26953	0	356	0	14263	3
GA	0	2668	1134	1945	7412	2364	918	0	25054	4893	243	585	0	4449	2
HI	186	0	0	843	13898	917	0	0	0	262	17156	0	0	534	

```
In [97]: columns = ['Airport Name', 'City', 'State', 'Latitude', 'Longitude']
    airports = pd.read_csv('airports.csv', names=columns)
    airports
```

Out[97]:

	Airport Name	City	State	Latitude	Longitude
0	Ted Stevens Anchorage International Airport	ANC	AK	61.174400	-149.996002
1	Birmingham-Shuttlesworth International Airport	ВНМ	AL	33.562901	-86.753502
2	Bill & Hillary Clinton National Airport/Adams	LIT	AR	34.729401	-92.224297
3	Phoenix Sky Harbor International Airport	PHX	AZ	33.434299	-112.012001
4	Los Angeles International Airport	LAX	CA	33.942501	-118.407997
5	Denver International Airport	DEN	CO	39.861698	-104.672996
6	Bradley International Airport	BDL	CT	41.938900	-72.683197
7	Orlando International Airport	MCO	FL	28.429399	-81.308998
8	Hartsfield Jackson Atlanta International Airport	ATL	GA	33.636700	-84.428101
9	Daniel K Inouye International Airport	HNL	HI	21.320620	-157.924228
10	Des Moines International Airport	DSM	IA	41.534000	-93.663101

```
In [98]: columns = ['dep_lat', 'dep_lon', 'arr_lat', 'arr_lon', 'nb_passengers']
    index = range(1,2450)
    origin_state = flight_data.ORIGIN_STATE_ABR.unique().tolist()
    origin_state.sort()
    origin_state.pop(7)

map_visualization = pd.DataFrame(0.0, index = index, columns = columns)
```

```
In [99]: for i in range (49):
    for j in range(49):
        map_visualization.iat[(i*50)+j,0] = float(airports['Latitude'][i])
        map_visualization.iat[(i*50)+j,1] = airports['Longitude'][i]
        map_visualization.iat[(i*50)+j,2] = airports['Latitude'][j]
        map_visualization.iat[(i*50)+j,3] = airports['Longitude'][j]
        map_visualization.iat[(i*50)+j,4] = detailed_flightsMarch.iat[i,j]

map_visualization
```

Out[99]:

	dep_lat	dep_lon	arr_lat	arr_lon	nb_passengers
1	61.174400	-149.996002	61.174400	-149.996002	6367.0
2	61.174400	-149.996002	33.562901	-86.753502	0.0
3	61.174400	-149.996002	34.729401	-92.224297	0.0
4	61.174400	-149.996002	33.434299	-112.012001	98.0
5	61.174400	-149.996002	33.942501	-118.407997	145.0
6	61.174400	-149.996002	39.861698	-104.672996	134.0
7	61.174400	-149.996002	41.938900	-72.683197	0.0
8	61.174400	-149.996002	28.429399	-81.308998	0.0
9	61.174400	-149.996002	33.636700	-84.428101	0.0
10	61.174400	-149.996002	21.320620	-157.924228	0.0
11	61.174400	-149.996002	41.534000	-93.663101	273.0

```
In [139]: # create gradient to color the routes according to the number of flights
          grad = Gradient(((0, 0, 0, 0), (0.5, 204, 0, 153), (1, 255, 204, 230)))
          # initialize GCMapper and set data
          gcm = GCMapper(cols=grad, height=2000, width=4000)
          gcm.set_data(map_visualization['dep_lon'], map_visualization['dep_lat'], ma
                       map visualization['arr lat'], map visualization['nb passengers
          img = gcm.draw()
          img.save('flights map gcmap.png')
          order State = []
          for i in range(49):
              for index, row in stayAtHome Dates.iterrows():
                  if(row["DaysAfterFirst"] == i):
                      order_State.append(row["States"])
          order Latitude = []
          for i in range(len(order State)):
              for index, row in airports.iterrows():
                  if(row["State"] == order State[i]):
                      order_Latitude.append(row["Latitude"])
          df_filtered = map_visualization
          for i in range(len(order_Latitude)):
              df filteredTemp = df filtered[df filtered['dep lat'] != order Latitude[
              df filteredTemp2 = df filteredTemp[df filteredTemp['arr lat'] != order
              df filtered = df filteredTemp2
              # create gradient to color the routes according to the number of flight
              grad = Gradient(((0, 0, 0, 0), (0.5, 204, 0, 153), (1, 255, 204, 230)))
              # initialize GCMapper and set data
              gcm = GCMapper(cols=grad, height=2000, width=4000)
              gcm.set data(df filtered['dep lon'], df filtered['dep lat'], df filtere
                       df_filtered['arr_lat'], df_filtered['nb_passengers'])
              img = gcm.draw()
              img.save('flights_map_gcmap' + str(i) + ".png")
```

Part 4:

Spread of the Virus if none of the states had gone on lockdown (March19 - March31)

Number of Infections in Each State March 19th

In [105]: detailed_flightsMarch.drop("DE",axis=0,inplace = True)
 detailed_flightsMarch.drop(['DE'],axis=1,inplace = True)
 detailed_flightsMarch

Out[105]:

	AK	AL	AR	AZ	CA	СО	СТ	FL	GA	HI	IA	ID	IL	IN
AK	6367	0	0	98	145	134	0	0	0	273	0	0	31	0
AL	0	0	1	6	8	315	0	611	2708	0	0	0	494	0
AR	0	0	0	103	111	252	0	168	1117	0	0	0	530	0
AZ	102	5	95	2081	16698	4717	0	2293	2147	1231	832	497	5074	632
CA	137	2	117	17064	64979	12754	68	7291	7220	12981	4	1353	12429	700
CO	132	317	282	4850	13237	3534	252	6044	2955	774	631	732	4550	626
CT	0	0	0	1	76	239	0	2965	841	0	0	0	760	3
FL	0	616	169	2138	7066	5900	3061	10766	27330	0	630	0	16363	3667
GA	0	2687	1134	2105	7244	2828	874	27441	4426	280	548	0	4053	2057
HI	294	0	0	1229	12613	746	0	0	304	17941	0	0	728	0
IA	0	0	0	782	1	613	0	612	520	0	6	0	1231	4

Out[112]:

	# of Infected Citizens March 19th
AK	78
AL	12
AR	47
ΑZ	62
CA	1067
CO	278
СТ	159
FL	434
GA	282
HI	26
IA	23

Number of Infections in Each State March 31st

In [113]: state_InfectionsDF

Out[113]:

	# of Infected Citizens March 31st
AK	1790050
AL	277619
AR	1459944
ΑZ	1211909
CA	19213019
CO	3203592
СТ	1955830
FL	9300274
GA	5195839
HI	494077
IA	593392

Change in Number of Infections in Each State

In [114]: changeInInfectedCitizens

Out[114]:

	Change in # of Infected Citizens
AK	1789972
AL	277607
AR	1459897
ΑZ	1211847
CA	19211952
СО	3203314
CT	1955671
FL	9299840
GA	5195557
HI	494051
IA	593369

```
In [115]: print("Dataframes of Infected Travelers Traveling Between States")
    for i in range(13):
        print("March", i+19)
        print(infectedTravelers_Collection[i])
        print("")
```

```
Dataframes of Infected Travelers Traveling Between States
March 19
                     AL
                               AR
                                          AZ
                                                    CA
                                                               CO
                                                                          СТ
          ΑK
\
ΑK
    0.101286
              0.000000
                         0.000000
                                    0.002013
                                              0.003916
                                                         0.006469
                                                                   0.00000
              0.00000
AL
    0.00000
                         0.00006
                                   0.000123
                                              0.000216
                                                         0.015206
                                                                   0.00000
AR
    0.00000
              0.000000
                         0.000000
                                    0.002116
                                              0.002997
                                                         0.012165
                                                                   0.00000
              0.000082
AZ
    0.001623
                         0.000613
                                    0.042754
                                              0.450918
                                                         0.227711
                                                                   0.00000
CA
    0.002179
              0.000033
                         0.000755
                                    0.350575
                                              1.754712
                                                         0.615693
                                                                   0.003033
    0.002100
              0.005200
                         0.001821
CO
                                    0.099642
                                              0.357456
                                                         0.170602
                                                                   0.011238
CT
    0.00000
              0.00000
                         0.000000
                                    0.000021
                                              0.002052
                                                         0.011538
                                                                   0.00000
FL
    0.00000
              0.010105
                         0.001091
                                    0.043925
                                              0.190812
                                                         0.284820
                                                                   0.136510
GΑ
    0.00000
              0.044076
                         0.007322
                                    0.043247
                                              0.195619
                                                         0.136520
                                                                   0.038978
    0.004677
ΗI
              0.00000
                         0.00000
                                    0.025249
                                              0.340605
                                                         0.036013
                                                                   0.00000
ΙA
    0.00000
              0.00000
                         0.00000
                                    0.016066
                                              0.000027
                                                         0.029592
                                                                   0.00000
```

0.010190

0.102436

0.014196

0.003431

0.037023

0.333368

0.019308

0.000081

0.036930

0.219842

0.030896

0.015400

0.00000

0.033135

0.00000

0.00000

Dataframes of Infected Travelers Traveling Between States

0.00000

0.003377

0.00000

0.00000

0.00000

0.008251

0.00000

0.00000

0.00000

0.000620

0.00000

0.00000

ID

IL

IN

KS

```
In [116]: for i in range(13):
    print("March", i+19)
    print(infectedTravelers_Collection[i])
    print("")
```

March 19									
	AK	\mathtt{AL}	AR	AZ	CA	CO	CT		
\									
AK	0.101286	0.000000	0.000000	0.002013	0.003916	0.006469	0.000000		
AL	0.00000	0.000000	0.000006	0.000123	0.000216	0.015206	0.00000		
AR	0.00000	0.000000	0.00000	0.002116	0.002997	0.012165	0.00000		
ΑZ	0.001623	0.000082	0.000613	0.042754	0.450918	0.227711	0.00000		
CA	0.002179	0.000033	0.000755	0.350575	1.754712	0.615693	0.003033		
CO	0.002100	0.005200	0.001821	0.099642	0.357456	0.170602	0.011238		
CT	0.00000	0.000000	0.00000	0.000021	0.002052	0.011538	0.00000		
FL	0.00000	0.010105	0.001091	0.043925	0.190812	0.284820	0.136510		
GA	0.00000	0.044076	0.007322	0.043247	0.195619	0.136520	0.038978		
ΗI	0.004677	0.000000	0.00000	0.025249	0.340605	0.036013	0.00000		
IA	0.00000	0.000000	0.00000	0.016066	0.000027	0.029592	0.00000		
ID	0.00000	0.000000	0.00000	0.010190	0.037023	0.036930	0.00000		
$_{ m IL}$	0.000620	0.008251	0.003377	0.102436	0.333368	0.219842	0.033135		
IN	0.00000	0.000000	0.00000	0.014196	0.019308	0.030896	0.00000		
KS	0.00000	0.000000	0.00000	0.003431	0.000081	0.015400	0.00000		
KY	0.000000	0.000000	0.000000	0.011176	0.017094	0.040068	0.001561		
	^ ^^^^			^ ^^4^^=	^ ^ 4 4 7 7 7 9	^ ^ 4 ^ 7 ^ 2			