SUICIDAL TENDENCIES DETECTION USING CNN AND RANDOM FOREST ALGORITHM

Major project submitted in partial fulfillment of the requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

IN

COMPUTER SCIENCE AND ENGINEERING

Under the esteemed guidance of

Mrs. V. Sravanthi Sr. Assistant Professor

By

Lavudya Revanth (21R11A05H4) Sende Sai Kumar (21R11A05K6) Gujja Mokshith (21R11A05G5)

Department of Computer Science and Engineering

Geethanjali College of Engineering and Technology (Autonomous)

Accredited by NAAC with A⁺ **Grade: B.Tech. CSE, EEE, ECE accredited by NBA** Sy. No: 33 & 34, Cheeryal (V), Keesara (M), Medchal District, Telangana – 501301

MAY - 2025

Geethanjali College of Engineering and Technology (Autonomous)

Accredited by NAAC with A+Grade: B.Tech. CSE, EEE, ECE accredited by NBA Sy. No: 33 & 34, Cheeryal (V), Keesara (M), Medchal District, Telangana – 501301

Department of Computer Science and Engineering

Certificate

This is to certify that the B.Tech Major Project report entitled "SUICIDAL TENDENCIES DETECTION USING CNN AND RANDOM FOREST ALGORITHM" is a bonafide work done by Lavudya Revanth (21R11A05H4), Sende Sai Kumar (21R11A05K6), Gujja Mokshith (21R11A05G5), in partial fulfillment of the requirement of the award for the degree of Bachelor of Technology in "Computer Science and Engineering" from Jawaharlal Nehru Technological University, Hyderabad during the year 2024-2025.

Internal GuideHoD – CSEMrs V. SravanthiDr. E. RavindraSr. Assistant ProfessorProfessor

External Examiner

Geethanjali College of Engineering and Technology (Autonomous)

Accredited by NAAC with A+Grade: B.Tech. CSE, EEE, ECE accredited by NBA Sy. No: 33 & 34, Cheeryal (V), Keesara (M), Medchal District, Telangana – 501301

Department of Computer Science and Engineering

DECLARATION BY THE CANDIDATE

We, Lavudya Revanth, Sende Sai Kumar, Gujja Mokshith bearing Roll Nos. 21R11A05H4, 21R11A05K6, 21R11A05G5, hereby declare that the project report entitled "SUICIDAL TENDENCIES DETECTION USING CNN AND RANDOM FOREST ALGORITHM" is done under the guidance of Mrs. V. Sravanthi, Sr. Assistant Professor, Department of Computer Science and Engineering, Geethanjali College of Engineering and Technology, is submitted in partial fulfillment of the requirements for the award of the degree of Bachelor of Technology in Computer Science and Engineering.

This is a record of bonafide work carried out by us and the results embodied in this project have not been reproduced or copied from any source. The results embodied in this project report have not been submitted to any other University or Institute for the award of any other degree or diploma.

Lavudya Revanth (21R11A05H4), Sende Sai Kumar (21R11A05K6), Gujja Mokshith(21R11A05G5), Department of CSE, Geethanjali College of Engineering and Technology, Cheeryal.

ACKNOWLEDGEMENT

It is with profound gratitude and sincere appreciation that we extend our heartfelt thanks to all those who have played a significant role in the successful completion of this undergraduate project.

First and foremost, We express our deep sense of respect and gratitude to our **Honourable Chairman, Mr. G. R. Ravinder Reddy**, for his constant encouragement and for nurturing a culture of academic excellence and innovation within the institution.

We would also like to express our sincere thanks to **Dr. S. Udaya Kumar**, **Director**, for his visionary leadership and continued support, which have provided the ideal environment and motivation for academic pursuits such as this project.

Our heartfelt appreciation goes to **Dr. S. Sagar**, **Principal**, for his steadfast guidance, infrastructural support, and encouragement that have helped bring this project to successful fruition.

We are deeply grateful to **Dr. E. Ravindra**, **Head of the Department of Computer Science and Engineering**, for his academic leadership, valuable feedback, and continuous support throughout the duration of this project.

We extend our sincere thanks to our **Project Coordinators**, **Dr. R. V. Sudhakar**, **Associate Professor**, and **Mr. M. Srinivas**, **Assistant Professor**, for their meticulous planning, timely evaluations, and constant coordination that ensured a smooth and structured project development process.

A special note of gratitude is reserved for our project guide, **Mrs. V. Sravanthi, Sr. Assistant Professor**, whose expert supervision, insightful suggestions, and dedicated mentorship have been instrumental in shaping the direction and outcome of this work.

Lastly, We are ever grateful to our **parents and family** for their unconditional love, encouragement, and moral support. Their faith in us has been our greatest strength throughout this journey.

With genuine appreciation, We acknowledge every individual who has, in one way or another, contributed to the successful completion of this project.

With warm regards, Lavudya Revanth (21R11A05H4), Sende Sai Kumar (21R11A05K6), Gujja Mokshith(21R11A05G5), Department of Computer Science and Engineering Geethanjali College of Engineering and Technology

ABSTRACT

This project presents a multifaceted approach to detecting suicidal tendencies by integrating Human-Computer Interaction, Natural Language Processing, and voice pattern analysis. The system captures and analyzes facial gestures, speech patterns, and messaging behaviours to identify early signs of suicidal intent. By employing machine learning techniques such as Convolutional Neural Networks (CNN) and Random Forest, the model processes data from various sources, including social media and messaging platforms. The use of a correlation ensures reliable predictions across multiple data types, significantly improving detection accuracy compared to existing single-method approaches. This system aims to provide timely alerts to family and healthcare professionals, potentially preventing suicidal actions.

LIST OF FIGURES

S.no	Fig.no	Title	Pg.no
1	4.1	System Architecture	15
2	4.2	Workflow	17
3	4.3.1	Activity Diagram	19
4	4.3.2	Class Diagram	21
5	4.3.3	Use Case Diagram	22
6	4.3.4	Sequence Diagram	23
7	4.4	User Interface Design	24
8	7.1.1	Running the Application	38
9	7.1.2	Flask Application	38
10	7.1.3	Emotion Analysis Web Interface	39
11	7.1.4	Audio File Selection for Sentiment Analysis	40
12	7.1.5	Image File Selection for Emotion Recognition	41
13	7.1.6	Media Files Uploaded for Analysis	42
14	7.1.7	Full Input Ready for Analysis	43
15	7.1.8	Final Analysis Results	44
16	7.2.1	Class Distribution of Suicide vs Non- Suicide Samples	45
17	7.2.2	Model Accuracy and Loss	46
18	7.2.3	Confusion Matrix for Facial Emotion Classification	47
19	7.2.4	Waveform of Audio File	48
20	7.2.5	Spectrogram of Audio File	49

21	7.2.6	Confusion Matrix for Audio Emotion	50
		Classification	
22	10.2	Plagiarism Report	59
23	10.5	Paper Submission Acknowledgment	64

LIST OF TABLES

S.no	Table.no	Title	Pg.no
1	2.4	Comparative Study	8
2	4.5	Design Standards Followed	25
3	6.5	Test Cases and Results	36
4	10.3.5	Result Interpretation	63
5	10.3.6	Troubleshooting	63

LIST OF ABBREVIATIONS

Abbreviation	Full Form
WHO	World Health Organization
NLP	Natural language processing
FER	Facial Expression Recognition
MFCC	Mel Frequency Cepstral Coefficients
RGB	Red Green Blue
LSTM	Long Short-Term Memory
SDLC	Software Development Life Cycle
HCI	Human-Computer Interaction
JSON	JavaScript Object Notation
PC	Personal Computer
GPU	Graphics Processing Unit
SRS	Software Requirements Specification
GB	Gigabyte
RAM	Random Access Memory
UML	Unified Modelling Language
OMG	Object Management Group
API	Application Programming Interface
UI	User Interface
HTML	Hyper Text Markup Language
kHz	Kilohertz
IEEE	Institute of Electrical and Electronics Engineers
OWASP	Open Web Application Security Project
IEC	International Electrotechnical Commission

ISO	International Organization for Standardization
DFD	Data Flow Diagrams
ERD	Entity-Relationship Diagrams

Table of Contents

S.No	Content	Page No.
1.	Title Page	i
2.	Certificate	ii
3.	Declaration	iii
4.	Acknowledgement	iv
5.	Abstract	V
6.	List of figures/diagrams/graphs/Screen shots	vi
7.	List of Tables	viii
8.	List of abbreviations	ix
9.	Table of Contents	xi
Chap	oter 1: Introduction	
1.1	Overview of the Project	1
1.2	Problem Statement	3
1.3	Objectives of the Project	3
1.4	Scope of the Project	4
1.5	Methodology / SDLC Model Adopted	5
Chap	oter 2: Literature Survey	
2.1	Review of Existing System	7
2.2	Limitations of Existing Approaches	7
2.3	Need for the Proposed System	8
2.4	Comparative Study	8
2.5	Summary	9

Chapter 3: System Analysis

3.1	Feasibility Study	10
	 Technical Feasibility 	
	 Economic Feasibility 	
	 Operational Feasibility 	
	• Time & Cost Estimation	
3.2	Software Requirements Specification (SRS)	12
3.3	Functional and Non-Functional Requirements	13
Cha	pter 4: System Design	
4.1	System Architecture	15
4.2	Workflow	17
4.3	UML Diagrams (Use Case, Class, Sequence, Activity)	18
4.4	User Interface Design	24
4.5	Design Standards Followed (IEEE, ISO, etc.)	25
4.6	Safety & Risk Mitigation Measures	26
Cha	pter 5: Implementation	
5.1	Technology Stack	27
5.2	Module-wise Implementation	27
5.3	Code Integration Strategy	29
5.4	Sample Code Snippets	30
Cha	pter 6: Testing	
6.1	Testing Strategy	33
6.2	Unit Testing	33
6.3	Integration Testing	34
6.4	System Testing	35

6.5	Test Cases and Results	35
6.6	Bug Reporting and Tracking	37
Cha	pter 7: Results and Discussion	
7.1	Output Screenshots	38
7.2	Results Interpretation	45
7.3	Performance Evaluation	51
7.4	Comparative Results	51
Cha	pter 8: Conclusion and Future Scope	
8.1	Summary of Work Done	52
8.2	Limitations	53
8.3	Challenges Faced	54
8.4	Future Enhancements	55
Cha	pter 9: References	
9.1	Technical Publications	56
9.2	Websites and forums details	57
Cha	pter 10: Appendices	
10.1	SDLC Forms	58
10.2	Plagiarism Report	59
10.3	Source Code Repository	60
10.4	User Manual	60
10.5	Journal / Conference paper published on project	64