Práctica 5: Tablas Hash

Estudio de funciones hash.

Manuel Germán Morales y Samuel Sánchez Carrasco

Siendo $h_1(x)$ una función cuadrática y $h_2(x)$ e $h_3(x)$ de dispersión doble, veamos su factor de carga, máximo y promedio de colisiones para cada una con una cantidad de clientes igual a 10000. En las funciones "t" es el tamaño de la tabla e "i" el intento.

$$h_1(x) = (x + i^2) \bmod t$$

$$h_2(x) = ((x \bmod t) + i(1 + (x \bmod 667))) \bmod t$$

$$h_3(x) = ((x \bmod t) + 11i((1 + x \bmod 7001))) \bmod t$$

t = 13333				
	Máximo colisiones	Promedio colisiones	Factor de carga	
$h_1(x)$	22	0.966303	0.750019	
$h_2(x)$	17	0.820018	0.750019	
$h_3(x)$	19	0.852015	0.750019	

t = 16661				
	Máximo colisiones	Promedio colisiones	Factor de carga	
$h_1(x)$	13	0.585641	0.600204	
$h_2(x)$	14	0.516948	0.600204	
$h_3(x)$	10	0.519348	0.600204	

Ambas funciones mejoran su funcionamiento si aumentamos el tamaño de la tabla, por ello, hemos visto mejor usar $h_3(x)$ en nuestra tabla ya que al crecer cambia mucho su rendimiento a mejor y al reducirse el promedio de colisiones es aceptable.