

Esercizi Soluzioni Riepilogo Voti

a (X_1,\ldots,X_n) un campione casuale (i.e. le X_i sono indipendenti ed identicamente distribuite) da una distribuzione esponenziale di parametro heta.

(1.34, 0.99, 0.1, 0.89, 0.07, 0.14, 0.14, 0.09, 0.04, 0.21, 0.14, 1.62, 1.32).

Quesiti e soluzioni

uesito 1

$$egin{align} L(x_1,x_2,\cdots,x_n; heta) &= \prod_{i=1}^n f_{X_i}(x_i; heta) \ &= \prod_{i=1}^n heta e^{- heta x_i} \ &= heta^n e^{- heta \sum_{k=1}^n x_i}. \end{gathered}$$

$$\ell(x_1,\dots,x_n; heta) = n\log heta - \sum_{k=1}^n x_i.$$

$$\hat{ heta}_{ML} = rac{n}{\sum_{k=1}^n x_i}$$

- La risposta corretta è: 1.8335684
- La risposta inserita è: 1.833568
- che corrisponde a 1.833568

uesito 2.

appiamo che il valore atteso di una v.a. esponenziale di parametro θ è $\frac{1}{\theta}$, quindi ci basta prendere il reciproco della stima precedente, ossia, la media campionaria.

- La risposta corretta è: 0.5453846
- La risposta inserita è: 0.5453846
- che corrisponde a 0.5453846

uesito 3.

sando il teorema centrale del limite, calcolare l'intervallo di confidenza (approssimato) "alla Wald" per heta a livello di confidenza del 96%, dato il campione estratto. Inserire la risposta come c(estremo_inf, estremo_sup) .

$$X_i \sim \mathcal{E}(heta)$$
, $\mathbb{E}(X_i) = rac{1}{ heta}$ e $\mathbb{V}\mathrm{ar}(X_i) = rac{1}{ heta^2}$.

$$\begin{aligned} 1 - \alpha \approx & P\left(z_{\frac{\alpha}{2}} \leq \frac{\left(\bar{X}_{n} - \frac{1}{\theta}\right)}{\frac{1}{\theta}} \sqrt{n} \leq z_{1 - \frac{\alpha}{2}}\right) = \\ & = P\left(\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}} \leq \frac{\left(\frac{1}{\hat{\theta}} - \frac{1}{\theta}\right)}{\frac{1}{\theta}} \leq \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}}\right) \\ & = P\left(\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}} \leq \frac{\theta - \hat{\theta}}{\hat{\theta}\theta}\theta \leq \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}}\right) \\ & = P\left(\frac{z_{\frac{\alpha}{2}}}{\sqrt{n}} \leq \frac{\theta}{\hat{\theta}} - 1 \leq \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}}\right) \\ & = P\left(1 + \frac{z_{\frac{\alpha}{2}}}{\sqrt{n}} \leq \frac{\theta}{\hat{\theta}} \leq 1 + \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}}\right) \\ & = P\left(\hat{\theta}\left(1 + \frac{z_{\frac{\alpha}{2}}}{\sqrt{n}}\right) \leq \theta \leq \hat{\theta}\left(1 + \frac{z_{1 - \frac{\alpha}{2}}}{\sqrt{n}}\right)\right) \end{aligned}$$

- La risposta corretta è: (0.789154160195861, 2.87798265221599)
- La risposta inserita è: c(0.7891542, 2.877983)

	Esercizi Soluzioni Riepilogo Voti
2022-06-01	Soluzione all'esercizio del 2022-05-31 creato per luigi.miazzo
2022-05-31	Sia (X_1,\ldots,X_n) un campione casuale (i.e. le X_i sono indipendenti ed identicamente distribuite) da una distribuzione esponenziale di parametro $ heta$.
2022-05-30	Sia inoltre dato il seguente campione estratto
2022-05-27	(1.34, 0.99, 0.1, 0.89, 0.07, 0.14, 0.14, 0.09,
2022-05-26	Quesiti e soluzioni
2022-05-25	Quesito 1 $X_i \sim \mathcal{E}(heta)$ per $i=1,2,\ldots,n$.
2022-05-24	Scriviamo la funzione di verosimiglianza per il campione (x_1,\ldots,x_n)
2022-05-23	$L(x_1,x_2,\cdots,x_n; heta)=\prod^n$
2022-05-20	$i{=}1$
2022-05-19	$=\prod_{i=1}^n$
2022-05-18	$= heta^n\epsilon$ Prendiamo il log della verosimiglianza
2022-05-17	$\ell(x_1,\dots,x_n;\theta)=n\log\theta$
2022-05-16	Infine deriviamo e poniamo la derivata uguale a zero, così facendo troviamo:
2022-05-13	$\hat{ heta}_{ML} = rac{n}{\sum_{k=1}^n x_i}$
2022-05-12	ossia, lo stimatore di massima verosimiglianza per il parametro dell'esponenziale è dato dal reciproco della media campionaria $\hat{ heta}_{ML}=\left(ar{X}_n ight)^{-1}$.
2022-05-11	La risposta corretta è: 1.8335684
2022-05-10	 La risposta inserita è: 1.833568 che corrisponde a 1.833568
2022-05-09	Quesito 2.
2022-05-06	Stimare la media (valore atteso) della popolazione, utilizzando il campione estratto e lo stimatore del quesito 1.
2022-05-05	Sappiamo che il valore atteso di una v.a. esponenziale di parametro θ è $\frac{1}{\theta}$, quindi ci basta prendere il reciproco della stima precedente, ossia, la media camp
2022-05-04	 La risposta corretta è: 0.5453846 La risposta inserita è: 0.5453846
2022-05-03	• che corrisponde a 0.5453846 Quesito 3.
2022-05-02	Usando il teorema centrale del limite, calcolare l'intervallo di confidenza (approssimato) "alla Wald" per $ heta$ a livello di confidenza del 96% , dato il campione es
2022-04-29	Suggerimento, usare <code>qnorm()</code> per trovare i quantili del tipo $z_{rac{lpha}{2}}, z_{1-rac{lpha}{2}}.$
2022-04-28	$X_i \sim \mathcal{E}(heta)$, $\mathbb{E}(X_i) = rac{1}{ heta}$ e $\mathbb{V}\mathrm{ar}(X_i) = rac{1}{ heta^2}$.
2022-04-27	Usando il TCL abbiamo che $Z_n=rac{\left(ar{X}_n-rac{1}{ heta} ight)}{rac{1}{ heta}}\sqrt{n} o\mathcal{N}(0,1)$ in distribuzione.
2022-04-26	Possiamo quindi utilizzare la distribuzione normale standard per stimare gli estremi dell'intervallo di confidenza, in particolare:
2022-04-22	
2022-04-21	$1-lphapprox P\left(z_{rac{lpha}{2}}\leq rac{\left(ar{X}_n-rac{1}{ heta} ight)}{rac{1}{ heta}}\sqrt{n}z_{1} ight)$
2022-04-20	$=P\left(rac{z_{rac{lpha}{2}}}{\sqrt{n}}\leqrac{\left(rac{1}{\hat{ heta}}-rac{1}{ heta} ight)}{rac{1}{ heta}}$
2022-04-19	· ·
2022-04-15	$=P\left(rac{z_{rac{lpha}{2}}}{\sqrt{n}}\leqrac{ heta-\hat{ heta}}{\hat{ heta} heta} heta\leq 2 ight)$
2022-04-10	$=P\left(rac{z_{rac{lpha}{2}}}{\sqrt{n}}\leqrac{ heta}{\hat{ heta}}-1\leqrac{z_{2}}{\sqrt{n}} ight)$
	$=P\left(1+rac{z_{rac{lpha}{2}}}{\sqrt{n}}\leqrac{ heta}{\hat{ heta}}\leq1 ight)$
2022-04-13	· · · · · ·
2022-04-12	$=P\left(\hat{ heta}\left(1+rac{z_{rac{lpha}{2}}}{\sqrt{n}} ight)\leq heta$:
2022-04-11	Da cui, ricordando che $z_{rac{lpha}{2}}=-z_{1-rac{lpha}{2}}$, ricaviamo: $\hat{ heta}\left(1\pmrac{z_{1-rac{lpha}{2}}}{\sqrt{n}} ight)$.
2022-04-08	
2022-04-07	 La risposta corretta è: (0.789154160195861, 2.87798265221599) La risposta inserita è: c(0.7891542, 2.877983)
2022-04-06	
2022-04-05	
2022-04-04	
2022-04-01	
2022-03-31	
2022-03-30	
2022-03-29	
2022-03-28	
2022-03-24	