Лабораторная работа № 7

ЧИСЛЕННОЕ РЕШЕНИЕ ЗАДАЧИ КОШИ

Цель: используя пакет **Octave**, найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения (ОДУ) первого порядка с помощью методов Эйлера, Эйлера – Коши и Рунге – Кутта четвертого порядка. Сравнить точности решений.

Задача № 1. Найти приближенное решение задачи Коши для обыкновенного дифференциального уравнения первого порядка

$$y'(t) = f(t, y(t)), t \in [t_0, T],$$

$$y(t_0) = y_0$$

и оценить погрешность решения задачи.

Порядок выполнения работы

- 1. Найти решение задачи Коши аналитически.
- 2. Написать скрипт, вычисляющий приближенное решение задачи Коши по явному методу Эйлера.
- 3. Написать скрипт, вычисляющий решение задачи Коши с шагами по методу Эйлера Коши.
- 4. Используя встроенную функцию, найти приближенное решение задачи Коши по методу Рунге Кутта четвертого порядка точности.
 - 5. На одном чертеже построить графики приближенных и точного решений.
 - 6. Оценить погрешность всех приближенных решений двумя способами:

по формуле $\mathcal{E} = \max_{0 \le i \le N} |y(t_i) - y_i|$, где $y(t_i)$ и y_i – значения точного и приближенного решений в узлах сетки t_i , i = 1,...N.

по правилу Рунге,

 $\varepsilon = max \frac{|y_{2i}^h - y_i^{2h}|}{2^{p}-1}$, $i = \overline{1,N/2}$, y_{2i}^h — приближенное решение с шагом h=0.1, y_i^{2h} — приближенное решение с шагом h=0.2, p — порядок метода, h=0.1.

Варианты заданий

N	f(t,y)	tO	T	y0	N	f(t,y)	t0	T	y0
N 1	$y/t+t^2$	1	2	0	16	-y/t+3t	1	2	1
2	$yctgt + 2t\sin t$	$\frac{\pi}{2}$	$\frac{\pi}{2}$ +1	0	17	$\frac{2ty}{1+t^2} + 1 + t^2$	1	2	3
3	$-y\cos t + \frac{\sin(2t)}{2}$	0	1	0	18	$\frac{2t-1}{t^2}y+1$	1	2	1
4	$-ytgt + \cos^2 t$	$\frac{\pi}{4}$	$\frac{\pi}{4}$ +1	0.5	19	$-\frac{3y}{t} + \frac{2}{t^3}$	1	2	1
5	$\frac{y}{t+2} + t^2 + 2t$	-1	0	1.5	20	$-2ty-2t^3$	1	2	e^{-1}
6	$\frac{y}{t+1} + e^t(t+1)$	0	1	1	21	$y/t - 2/t^2$	1	1	1
7	$y/t + t \sin t$	$\frac{\pi}{2}$	$\frac{\pi}{2}+1$	1	22	$-ty-t^3$	0	1	3
8	$-y/t + \sin t$	π	π+1	$\frac{1}{\pi}$	23	$\frac{2}{t+1}y + e^t(t+1)^2$	0	1	1
9	$-\frac{y}{2t} + t^2$	1	2	1	24	$-2ty + te^{-t^2}\sin t$	0	1	1
10	$-\frac{2t}{1+t^2}y + \frac{2t^2}{1+t^2}$	0	1	$\frac{2}{3}$	25	$\frac{2y}{t+1} + (t+1)^3$	0	1	0.5
11	$\frac{2t-5}{t^2}y+5$	2	3	4	26	$y\cos t - \sin 2t$	0	1	3
12	$-y/t + \frac{t+1}{t}e^t$	1	2	e	27	$4ty - 4t^3$	0	1	0.5
13	$y/t - 2\ln t/t$	1	2	1	28	$y/t - \ln t/t$	1	2	1
14	$y/t-12/t^3$	1	2	4	29	$3t^2y + t^2(1+t^3)/3$	0	1	0
15	$-2y/t+t^3$	1	2	$-\frac{5}{6}$	30	$y\cos t + \sin 2t$	0	1	-1