

1stNorth African Olympiad in Informatics 2025

Target Rotation

Time limit: 1.5 seconds Memory limit: 256 MB

In the city of **Djelfa**, players **Ahmad Karawita** and **Hamoud Habibi Hamoud** love playing with a unique puzzle consisting of **concentric circular discs**. There are n discs, named d_1, d_2, \ldots, d_n , where d_i represents the disc of radius i. Each disc d_i contains digits $0, 1, \ldots, 9$ sorted and written in **counterclockwise order**, starting from the rightmost point of the disc. The number of occurrences of each digit j on disc d_i is given by $a_{j,i}$, and the total number of digits on any disc is guaranteed to be even.

The discs are stacked concentrically, with d_1 on top and d_n on the bottom. Players can rotate each disc independently by one position in either the **clockwise** or **counterclockwise** direction any number of times.

The **goal** is to align the digits on the middle horizontal line, as shown in the figure. The middle horizontal line consists of exactly 2n digits: one digit from each disc on the left and right side.

Task

Given q target strings x_1, x_2, \ldots, x_q , each of length 2n, determine the **minimum number of rotations** required to align the middle horizontal line to exactly match each target string. If aligning a target string is **impossible**, output -1. The queries are independent from each other, in other words, for each query we start from the same initial configuration described in the first paragraph.

Input

- 1. An integer n $(1 \le n \le 10^5)$: the number of discs.
- 2. A $10 \times n$ grid of integers, where the entry $a_{j,i} \leq 10^9$ ($0 \leq j \leq 9$, $1 \leq i \leq n$) specifies the number of times digit j appears on disc d_i . it is guaranteed that each disc has an even number of digits.
- 3. An integer q ($1 \le q \le 2 \times 10^6$): the number of target strings.
- 4. q strings x_1, x_2, \ldots, x_q , each of length 2n: the target strings.
- It is guaranteed that $nq \le 7 \times 10^6$

Output

For each target string x_k $(1 \le k \le q)$, output:

- On the first line, output POSSIBLE if one can align the middle line to x_k .
- On the second line, the **minimum number of rotations** required to align the middle line to x_k , or -1 if it is impossible.

If the first line of output is correct while the second is not, half of the mark is given

Constraints

- $1 \le n \le 10^5$
- $0 \le a_{j,i} \le 10^9$
- $1 \le q \le 2 \times 10^6$
- $nq < 7 \times 10^6$

Subtasks

Subtask	Score	Constraints
1	6	n = q = 1
2	6	Each disk has only one number on it
3	10	For all $i, \sum_{j=0}^{9} a_{j,i} \le 2$
4	8	n = 1
5	20	For all $i, j, x, y : a_{i,j} = a_{x,y}$
6	30	$nq \le 10^5$
7	20	No further conditions

Examples

Input

```
4
0 3 1 2 0 0 0 0 0 0
0 0 0 4 2 3 0 1 0
0 2 0 0 4 1 3 1 0 1
0 2 0 0 4 1 3 1 0 5
4
65521411
65521419
75521410
```

Note: This is the example shown in the figure of the 1st page.

Output

```
POSSIBLE
0
POSSIBLE
1
POSSIBLE
2
IMPOSSIBLE
-1
```

Input

```
1
4 3 2 3 1 1 4 3 9 2
1
71
```

Output

```
POSSIBLE 4
```