Numerical Solutions to ODEs $\frac{dy}{dt} = g(y) + f(t) \qquad \omega (y(u) = y_0)$ Furward / Explicit Euler: Ynx = Yn + ots(yn) + ot+ f(tn) Backward / Implicit Euler: Yn+1 = Yn+ Dtg(Yn+1)+Otf(tn4) ex_1 $\frac{dy}{dy} + dy = 0$ w(y(u) = 1)Analytic: Ylt) = ae >t - y'= nae >t 7ae nt + 2ae nt = 0 = > (7+2) ae nt = 0 =) >>=-2 => y(t) = ae-2t y(0)= a=1 => y(t)=e-2t Now, Ore Furnand & Explicit Euler to get (1), exect answr is y(1)-0.1353 Furward Euler WI Dt, = 0,25 4n+1 = 4n - 2nt + 4n = 3 (1-2nt) + 4n

In general, the errors of the implicit the explicit schemes of the same order will be CG mparible, So why do implicat schemes? Stability, Agass, 1001 at dy 21=0, 1(t)=e-2t Clearly, lin y(t) = 0 Look at explicit Fuler: Inti= In-24 pt = (1-20f) 1 $A^{5} = (1-50f)A^{5} = (1-50f)_{3}A^{5}$ (Line $A^{5} = (1-50f)_{3}A^{5}$ 10 = (1-20t) 10 To han yn >>> n > 0 , then 1 1-9 pt) < 1

=> Forward Euler is Conditionally Stable, Backward Euler is Unconditionally Stable,
Formally? let dy= 7 y w/ y(0)= yo d
FURWAD: YN = (1+ x Dt) 1 /0
A= 1+> Dt = Ampl. Fication factor
Stable if IAI= 11+ x DE 1 <
=> Dt < 2
17)
Backmand: 1-20+1) = 1-20+
1A1 <1 for any nt >0 if ><0
· ·
Notes: 1) Not all implicit schemes are unconvitionally Stable. But, they are always more stable than explicit schemes.
always more stable than explicit schemes,
2) Sust because you can use large time
Steps dues nut mean you should,
2) Just because you can use large time Steps does not mean you should, Some time of is detormined by the physics of fait dynamics.

Implicit Schere Disadvantage: Cost At best, a linear system needs to be solved (i.e., ynt, = In-2pt ynt,) At worst: Solve a non-linear equation. $ex_1)$ $\frac{dy}{dy}$ + Sinh(y) = 0Juty + OF sinh (Juty) = Ju Despite this cost, implicit scheme can be cheaper overall for stiff problems ul stringent nestrictions. Exi) 7 P Dt < h A mudification instead of fully implication on non-linear system: Jemi-Implicit Scheme, Let $\frac{dy}{dt} + g(y) = 0$ g(y) = Any function. The possible, solit sly) in linear to s(y) = L(y) + M(y)dy + L(y) + M(y) =0 Then, Ynti-Yn + L(Ynti) + M(Yn) =0 They + of r(Ant) = An - of M(An) This will be less stable than
fully implicat but more stable
than explicat.

Osually much cheaper than fully implicat.

Multistage Methods, These are schemes which take multiple "mini" steps between to a to + nt = to +, to get higher onder schemes. Also called Presiden - Corrector, Focus on explicit schemes in the family called Pronge-Kutta, Focus an dy = f(t, y(t)) OCAL): let K, = f(tn, yn) < the derivative then Inti = Int Dt K, t forward Fule O(Dt2) let K,= f(tn, yn) K2=f(tn+c, nt, /n+a, nt k,) for C, ECO, 1), a, ECO, 1)

Criun yn > K, is dylst at tn.

That Derivative at some time between

then Inti=In + b, ot K, + b ot k2 = 1/1 + of (b, K, + b, K2) we new a, b, by t (2 to melie Find Intl as Taylor Series of In about to 1n+1 = 1n + pt 1n + 112 pt2 1n" $4n' = \pm(\pm n, 4n)$ In = Of = At + Ry Yn (1) => $\frac{1}{120t^2} + \frac{1}{120t^2} + \frac{1}{120t^2}$ NUL Expand Ky 1 $K_{\lambda} = f(t_{n} + c_{1} \text{ ot } , \forall_{n} + a_{1} \text{ } K_{1} \text{ ot }) = f(t_{n}, \forall_{n}) + c_{1} \text{ ot } f_{1}(t_{n}, \forall_{n}) + c_{1} \text{ ot } f_{2}(t_{n}, \forall_{n}) + c_{1} \text{ ot } f_{3}(t_{n}, \forall_{n}) + c_{1} \text{ ot } f_{3}(t_{n}, \forall_{n}) + c_{2} \text{ ot } f_{3}(t_{n}, \forall_{n}) + c_{3} \text{ ot$ Ore in Ynti=Ynt b, BEK, + b2 of K2

O(Dt): Osing Similar Taylor Series analysis, you can get Ulth -order Schemes,

The most well-thnown is simply called RKU,

dy = f(t,y), given yn a ot

14, = f(fu, yn)

K2= f(FU+119 DF) /U +119 DF K1)

K3= \$1 tn+1/2 nt, 1/n+1/2 nt k2)

ly= fltn+ot, In+ ot K3)

1n4=1n+16(K1+2K2+2K3+K4)

Creneric RX Schemes A compact way to write AK Schemes is Butcher Tables / Tableau Let a generic RK Scheme of under S 1n+1= 1n + n+ 2 b; k? K, = \$(tn, yn) 14, - f(En+C2DE, yn+ Dt 90, K1) K3= f(tn+C3 pt, yn+ pt 93, K1+ pt 932 K2) $k_{i} = f \left(t_{n} + C_{i} \otimes t_{i} + N + \otimes t_{i} \right)$ $k_{s} = - - - - - k_{s} = - - - - - -$ Write in Table form:

11141140 + 1111	Matlab	+	R /<	Scheme
-----------------	--------	---	------	--------

Matlab has many built-in
ODF solvers that need!

f(t,) [to, t final) Y(to)

Most uses: ode45 -> A O(Dts) scheme to that uses an O(Dtu) scheme to estimate error & very Dt es needed.

Others: ode 23, ode 113, 200

Stiff problems? ode 235, ode 236, ...