

Building Energy and Environmental Systems Laboratory (BEESL) Department of Mechanical and Aerospace Engineering College of Engineering and Computer Science Syracuse University

Effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2

Jialei Shen¹, Zhenlei Liu¹, Meng Kong¹, Michael J. Birnkrant², Bing Dong¹ and Jensen Zhang¹

¹ Syracuse University² Carrier Global Corporation

Background

Airborne transmission of SARS-CoV-2

Infection transmission usually includes 3 routes:

- 1. Fomite route (building surface, skin...)
- 2. Droplet-borne route (medium or large droplets)
- 3. Short-range/long-range airborne route (by aerosol)

Airborne transmission of SARS-CoV-2 is supported by

- 1. Onsite virus measurements in the air or aerosols (infectious aerosols detected in hospitals)
- 2. Laboratory experiments
- 3. Animal experiments
- 4. Retrospective analysis on real outbreak events (e.g. Guangzhou restaurant, Skagit Valley Chorale, German meat processing plant, apartments in Seoul and Guangzhou, buses and coaches)

- Large droplets (>100 μm): Fast deposition due to the domination of gravitational force
- Medium droplets between 5 and 100 µm
- Small droplets or droplet nuclei, or aerosols (< 5 µm): Responsible for airborne transmission

Guangzhou restaurant case (Jan 2020)

Background

SARS-CoV-2 outbreaks in indoor environments

Indoor COVID-19 outbreaks

- Home-based outbreaks: 79.9%
- Transportation-based outbreaks: 34.0%
- → Poor ventilation indoors increase the infection risk through airborne transmission

Hotspots of indoor outbreaks

- Long-term care facilities
- K-12 schools
- Restaurants
- Retail facilities
- Offices
- ..

Control strategies for mitigating airborne risk of SARS-CoV-2

Control strategies for mitigating COVID-19 risks

Category	Strategy
PPE	Cloth mask
	Surgical mask
	N95 mask
	Face shield
	Mask fitter/sealer/brace
Ventilation	Upgrading filters of building ventilation systems (e.g. HEPA)
	Increasing outdoor air supply of ventilation systems
	Personal ventilation (for fresh air supply)
	Local air exhaust
	Displacement ventilation
	Natural ventilation
	Closing doors between rooms (blocking air flow across rooms)
Partition	Partition screens
	Cubicle workstation
	Enclosed/semi-enclosed modular office walls
Air cleaning and	Upper-room UVGI system
disinfection	Portable air cleaners
	Sunlight
Occupancy control	Occupancy density restriction
	Intermittent occupancy or staggered scheduling

IAQ control strategies

- Source control
- Ventilation
- Air cleaning

- Building scale
- Room scale
- Personal microenvironment
- Breathing zone

Effectiveness

Benefits

- IAQ improvement
- Infection risk mitigation

Costs

- Capital cost
- Energy consumption

Theoretical model

Wells-Riley model (steady-state well-mixed air)

Infection probability:

Source emission

$$P = \frac{new\ cases}{susceptible} = 1 - e^{-R_S R_I} \frac{Iqpt}{V\lambda} = 1 - e^{-\frac{(IqR_I)}{(V\lambda)}(R_S pt)} \text{ Inhalation}$$

$$\text{Dilution}$$
(ventilation or disinfection)

disinfection

removal by air cleaner

$$\lambda = \lambda_{HVAC} \varepsilon_{vent} + k_{UV} + k_{deposition} + k_{AirCleaner} + k_{inactivation}$$
equivalent fresh air supply particle deposition natural inactivation rate

$$\lambda_{HVAC} = \lambda_{outdoor} + \lambda_{recirculated} \eta_{filter}$$
outdoor air filtered recirculated air

Viral quanta generation rate model:

$$q = c_v \cdot c_i \cdot p \cdot \int\limits_0^{10 \mu m} N_d(D) \cdot dV_d(D)$$
Depends on

- viral load of sputum (10⁹ RNA copies/mL, $c_i = 0.02$),
- pulmonary rate, and
- particle number concentration and size distribution.

P: infection probability.

R: fraction of infectious particles penetrating through the mask of the susceptible (R_s) and infected (R_i).

I: initial infected patient number.

q: infectious quanta generation rate (1/h).

p: pulmonary ventilation rate of a person (m³/h).

t. exposure time (h).

V: room volume (m^3).

 λ : total effective air change rate for dilution in the space.

Calculated viral quanta generation rate:

Group	Λσο	Infectious quantum generation rate (Mean±SD) [h-1]				
	Age [years]	Sedentary or	Moderate-	High-		
	[years]	light activities	intensity	intensity		
			activities	activities		
Children	<16	58±31	251±134	492±270		
Adults	16-61	58±31	318±177	610±347		
Elders	>61	58±31	305±158	555±307		

Theoretical model

Baseline indoor environments:

Long-term care facility

Educational

K-12

Colledge

Mean processing plant

Retail

Standalone

Strip mall

Hopital

Office (medium)

Prison

Hotel

Restraunt

Religious building

Casino

Transportation

Airplane

Cruiseship

Subway

Bus

Taxi

Baselines are created based on:

- U.S. DOE and PNNL prototypes (ASHRAE 90.1 and IECC standards)
- Design guidelines or real practices
- Ventilation rate based on ASHRAE 62.1 or data from literature or typical practices

Theoretical model

Possible IAQ control strategies in different scales:

Ctrotogico	Scales					
Strategies	Building	Room	Personal	Breathing zone		
Source control	 Reducing occupants 	 Reducing occupants 	 Local air exhaust 	 Face masking 		
		Intermittent occupancy				
Ventilation	 Increased ventilation 	 Semi-open partition 	 Personal ventilation 			
	supply airflow	Displacement ventilation				
	 Elevated outdoor air 					
	fraction for ventilation					
	system					
Air cleaning	 High-efficiency filters for 	 Portable air cleaners 		 Face masking 		
	ventilation system	Upper-room UVGI				

Theoretical model

Configurations of baseline and proposed cases

Strategies		Baseline	Proposed
Ventilation	Ventilation rate (outdoor air)	Reference values (25% outdoor	Baseline supply air, 50% outdoor air
system		air)	Baseline supply air, 75% outdoor air
			Baseline supply air, 100% outdoor air
	Total supply airflow rate	Estimated based on ventilation	• 50% more supply air, 25% outdoor air
		rate and reference outdoor air fraction (25%)	Double supply air, 25% outdoor air
	Air distribution ^a	• Mixing $(\varepsilon_{vent} = 1)$	• Displacement ventilation (ε_{vent} = 1.2 to 2)
			• Partitions (semi-open space) (ε_{vent} = 2 to 3)
			• Displacement ventilation + Partitions (ε_{vent} = 14 to 100)
			• Personal ventilation (ε_{vent} = 1.4 to 10)
	Filter	• MERV 8 ^b	• MERV 13
			• HEPA
Standalone	Portable air cleaners	• None	• CADR = 12m³/(h⋅m²) × room area
devices	Upper-room UVGI system	• None	• Equivalent ACH ^c = 12h ⁻¹ (MV) or 9.6h ⁻¹ (DV)
PPE	Mask	• None	Cloth mask
			Surgical mask
			N95 mask

^a Mixing ventilation: ε_{vent} = 1; Displacement ventilation: ε_{vent} = 1.2 to 2; Semi-open space with partitions installed: ε_{vent} = 2 to 3; Displacement ventilation with partitions installed: ε_{vent} = 1.4 to 10; all assuming uniform distribution.

b HEPA filter is used in the baseline cases of hospital operating room and airplane cabin. All other spaces use MERV 8 filter as the baseline setup.

^c Equivalent ACH = 12h⁻¹ for mixing ventilation and equivalent ACH = 9.6h⁻¹ for displacement ventilation.

Baseline infection risk in different spaces

Baseline infection risk in different spaces

- Ventilation designed based on ASHRAE 62.1 may not always be sufficient for occupants, particularly considering the requirements for mitigating infection risks.
- A pathogen-source-based or health-based design criteria for indoor ventilation is probably more applicable for infection prevention.

Relationship between occupant density and designed total ventilation rate per person in different scenarios based on ASHRAE 62.1

Effectiveness of IAQ control strategies

Effectiveness = Infection risk reduction percentage (compared to the baseline case)

- Advanced air distributions (e.g. displacement ventilation + partitions) can have significant effectiveness on mitigating infection risks, but also need professional design and implementation to maximize their performance.
- Using HEPA filter has an equivalent effectiveness with using 100% outdoor air in HVAC system.
- Standalone AC and UVGI systems can be an effective solution for infection risk mitigation.
- Wearing masks is very useful for reducing infection risks.

Risk reduction distribution of the mean infection probabilities in different spaces

Effectiveness, effective scales, and costs of IAQ control strategies

Effectiveness (infection risk reduction)

Effective scales (building scales, affecting the benefitted occupant number/scale)

Costs (capital costs, including first investment and maintenance & operation costs)

An ideal strategy:

High effectiveness
Larger effective scale
Low/affordable cost

Infection risk reduction potentials and costs of control strategies in different scales

Effectiveness, effective scales, and costs of IAQ control strategies

Effectiveness of vaccination on risk mitigation (Example: K-12 Classroom and open plan office)

Room and occupant configurations

Cooporio	Room co	Room configurations		Od	ccupancy condition	S
Scenario	Area [m ²]	Height [m]	Number [#]	Activity	Group	Exposure time [h]
Classroom	125	4	70	Sitting	Children	8
Open plan office	350	3	18	Sitting	Adults	8

Vaccination facts

62.6% of people in the U.S. have been fully vaccinated (U.S. CDC)

73.3% adults

25.3% of people <18

Effectiveness of vaccine (Pfizer):

93.7% for other strains

88.0% for Delta (no sufficient data for Omicron, likely less effective)

Effectiveness on reducing new infection cases

Scenario	Classroom (childre	Classroom (children)		Open plan office (adults)	
Virus variant		Original	Delta/Omicron	Original	Delta/Omicron
Susceptible number [#]	Vaccinated	17 (25.3%) 70%	17 (25.3%) 70	<mark>%</mark> 13 (73.3%)	90% 13 (73.3%) 90%
	Unvaccinated	52	52	4	4
	Total	69	69	17	17
Infection probability [%]	Vaccinated	0.8±0.3	2.7±0.9	0.6±0.2	2.3±0.8
	Unvaccinated	12.3±4.2	22.8±7.2	10.0±3.8	18.9±6.6
	Overall	9.4	17.9	2.9	6.2
New infection case [#]	Total	6.5 2.8	12.3 5.9	0.5 0.2	1.1 0.6
	No vaccination	8.4	15.7	1.7	3.2

CFD simulations and chamber & field tests for selected strategies

Displacement ventilation + partitions in offices

CFD simulations and chamber & field tests for selected strategies

In-duct bipolar ionization technology

Chamber tests

- Pull-down test (for particle removal)
- Continuous injection test (for particle & VOC removal or byproducts)

Ozone (2B Model 202), particle (APS), VOCs (GCMS, HPLC), ion

In-duct bipolar ionizers:

Particle removal:

16.6 to 21.7 CFM CADR (vs 5.6 CFM of a MERV 8 filter)

Negligible ozone generation

No significant VOC removal or byproducts (within detection error)

Filter removed most ions (no significant ion leakage to indoor air)

Airflow

Conclusions

- Spaces in long-term care facilities, colleges, meat plants, hotels, restaurants, casinos and cruise ships are facing considerably higher infection probabilities (over 30%) and have a higher potential to result in a serious outbreak event (R0 > 10).
- Common areas with higher occupant density (e.g. dining room) face higher potentials of viral spreading.
- Ventilation designed based on ASHRAE 62.1 may not always be sufficient for occupants considering the requirements for mitigating infection risks, particularly in the spaces with higher occupant densities.
- Advanced air distributions can have significant effectiveness on mitigating infection risks, but also need professional
 design and implementation to maximize their performance.
- Using HEPA filter has an equivalent effectiveness with using 100% outdoor air in HVAC system, while it has a less cost on additional energy consumption.
- Wearing masks is very useful for reducing infection risks (particularly high-efficiency masks).
- An ideal infection risk mitigation strategy should have high effectiveness, larger effective scale, but affordable cost.
- Vaccination can provide significant protection against COVID-19 transmission
- Displacement ventilation + partitions have high potential for infection mitigation
- In-duct bipolar ionizers can provide 16.6 to 21.7 CFM CADR while no significant byproducts generated.

References & Acknowledgements

References

- 1. Wei, J.; Li, Y. 2016. https://doi.org/10.1016/j.ajic.2016.06.003.
- 2. Shen, J.; Kong, M.; Dong, B.; Birnkrant, M. J.; Zhang, J. 2021. https://doi.org/10.1080/23744731.2021.1977693.
- 3. Li, Y.; Qian, H.; Hang, J.; Chen, X.; Cheng, P.; Ling, H.; Wang, S.; Liang, P.; Li, J.; Xiao, S.; Wei, J.; Liu, L.; Cowling, B. J.; Kang, M. 2021. https://doi.org/10.1016/j.buildenv.2021.107788.
- 4. Shen, J.; Kong, M.; Dong, B.; Birnkrant, M. J.; Zhang, J. 2021. https://doi.org/10.1016/j.buildenv.2021.107926.
- 5. Blocken, B.; van Druenen, T.; van Hooff, T.; Verstappen, P. A.; Marchal, T.; Marr, L. C. 2020. https://doi.org/10.1016/j.buildenv.2020.107022.
- 6. Morawska, L.; Johnson, G. R.; Ristovski, Z. D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C. Y. H.; Li, Y.; Katoshevski, D. 2009. https://doi.org/10.1016/j.jaerosci.2008.11.002.
- 7. Rim, D.; Novoselec, A.; Morrison, G. 2009. https://doi.org/10.1111/j.1600-0668.2009.00595.x.
- 8. Rai, A. C.; Chen, Q. 2012. https://doi.org/10.1016/j.atmosenv.2012.02.010.
- 9. Qian, H.; Miao, T.; Liu, L.; Zheng, X.; Luo, D.; Li, Y. 2020. https://doi.org/10.1111/ina.12766
- 10. Stephens, B. 2013.

Acknowledgements

Syracuse University
Carrier Global Corporation

Building Energy and Environmental Systems Laboratory (BEESL) Department of Mechanical and Aerospace Engineering College of Engineering and Computer Science Syracuse University

Thank you!

Q & A

Jialei Shen

jshen20@syr.edu www.jialeishen.com