

WINE QUALITY PREDICTION

PRESENTED BY:

Yuvraj Singh Sukhmani

CONTENT

1 Overview

Dataset Description

3 Detailed Analysis

4 Classifier Models

Recommended Model

6 Key Findings and Insights

OVERVIEW

The wine industry relies heavily on accurate quality assessment for market competitiveness. Leveraging Al, this project efficiently predicts wine quality on a 1 to 10 scale. The selected model showcases superior predictive abilities, streamlining the evaluation process and minimizing errors. Al's role is pivotal, enabling data analysis for identifying key quality indicators, offering real-time insights, and ensuring consistent production standards. By automating quality control, Al detects subtle variations, maintaining product integrity. This integration not only enhances production processes and resource optimization but also ensures superior wine quality, meeting the dynamic demands of discerning consumers.

DATASET DESCRIPTION

It is related to red "vinho verde" wine samples, from the north of Portugal. The goal is to model wine quality based on physicochemical tests.

- CHARACTERISTICSMultivariate
- SUBJECT AREABusiness
- ASSOCIATED TASKSClassification, Regression
- FEATURE TYPE
 Real
- INSTANCES4898
- FEATURES11

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

FIXED ACIDITY

Most acids involved with wine or fixed or non-volatile

Continuous

VOLATILE ACIDITY

The amount of acetic acid in wine

Continuous

CITRIC ACID

Found in small quantities, can add 'freshness to wine

Continuous

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

RESIDUAL SUGAR

The amount of sugar remaining after fermentation stops

Continuous

CHLORIDES

The amount of salt in the wines

Continuous

FREE SULFUR DIOXIDE

The free form of SO2 that exists in equilibrium

Continuous

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

TOTAL SULFUR DIOXIDE

The amount of free and bound forms of SO2; in low concentrations

Continuous

DENSITY

The density of water is close to that of water depending on the % alcohol and sugar content

Continuous

PH

It describes how acidic or basic a wine is on a scale from O (very acidic) to 14 (very basic)

Continuous

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	рН	sulphates	alcohol	quality
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8	5
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8	5
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8	6
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4	5

SULPHATES

A wine additive which can contribute to sulfur dioxide gas (SO2) levels

Continuous

ALCOHOL

The percent alcohol content of the wine

Continuous

QUALITY

The output variable (based on sensory data, score between 0 and 10)

Integer

ANALYSIS

By exploring the correlations between different wine characteristics and the assigned quality ratings, the analysis aims to uncover the most significant contributors to overall wine quality.

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns):

	`	,							
#	Column	Non-Null Count	Dtype						
0	fixed acidity	1599 non-null	float64						
1	volatile acidity	1599 non-null	float64						
2	citric acid	1599 non-null	float64						
3	residual sugar	1599 non-null	float64						
4	chlorides	1599 non-null	float64						
5	free sulfur dioxide	1599 non-null	float64						
6	total sulfur dioxide	1599 non-null	float64						
7	density	1599 non-null	float64						
8	рН	1599 non-null	float64						
9	sulphates	1599 non-null	float64						
10	alcohol	1599 non-null	float64						
11	quality	1599 non-null	int64						
dtypes: float64(11), int64(1)									

There are O null values

Most of the 'quality' variable are 5 and 6

The values of the variable 'fixed_acidity' are relatively normally distributed (but a bit left skewed)

There is not correlation between 'alcohol' and 'pH' variables

There is no correlation between 'residual_sugar' and 'pH' variables

Where majority of 'chlorides' values lie near 0.1, we find some outliners too

Few of them are normally distributed where other are rightly. The range of each feature is also not huge.

fixed_acidity	1	-0.26	0.67	0.11	0.094	-0.15	-0.11	0.67	-0.68	0.18	-0.062	0.12
volatile_acidity	-0.26	1	-0.55	0.0019	0.061	-0.011	0.076	0.022	0.23	-0.26	-0.2	-0.39
citric_acid	0.67	-0.55	1	0.14	0.2	-0.061	0.036	0.36	-0.54	0.31	0.11	0.23
residual_sugar	0.11	0.0019	0.14	1	0.056	0.19	0.2	0.36	-0.086	0.0055	0.042	0.014
chlorides	0.094	0.061	0.2	0.056	1	0.0056	0.047	0.2	-0.27	0.37	-0.22	-0.13
free_sulfur_dioxide	-0.15	-0.011	-0.061	0.19	0.0056	1	0.67	-0.022	0.07	0.052	-0.069	-0.051
total_sulfur_dioxide	-0.11	0.076	0.036	0.2	0.047	0.67	1	0.071	-0.066	0.043	-0.21	-0.19
density	0.67	0.022	0.36	0.36	0.2	-0.022	0.071	1	-0.34	0.15	-0.5	-0.17
рН	-0.68	0.23	-0.54	-0.086	-0.27	0.07	-0.066	-0.34	1	-0.2	0.21	-0.058
sulphates	0.18	-0.26	0.31	0.0055	0.37	0.052	0.043	0.15	-0.2	1	0.094	0.25
alcohol	-0.062	-0.2	0.11	0.042	-0.22	-0.069	-0.21	-0.5	0.21	0.094	1	0.48
quality	0.12	-0.39	0.23	0.014	-0.13	-0.051	-0.19	-0.17	-0.058	0.25	0.48	1
	fixed_acidity	olatile_acidity	citric_acid	esidual_sugar	chlorides	sulfur_dioxide	sulfur_dioxide	density	H	sulphates	alcohol	quality

- There is relatively high (0.67, positive) correlation between 'free sulfur dioxide' and 'total_sulfur_dioxide' variables.
- There is relatively high (-0.68, negative) correlation between "pH" and "fixed_acidity" variables.
- And there is about 0.5 correlation between some of other variables.

FEATURE ENGINEERING

```
bins = (2, 6.5, 8)
group_names = ['bad', 'good']
df['quality'] = pd.cut(df['quality'], bins = bins, labels = group_names)
label_quality = LabelEncoder()
df['quality'] = label_quality.fit_transform(df['quality'])
df['quality'].value_counts()
     1382
     217
Name: quality, dtype: int64
```



```
from xgboost import XGBClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
```

```
lr = LogisticRegression()
knn5 = KNeighborsClassifier(n_neighbors = 5)
xgb = XGBClassifier()
rfc = RandomForestClassifier
SVM = SVC(kernel='rbf', random_state=0, gamma=.10, C=1.0)
sc = StandardScaler()
svc = SVC()
```

LOGISTIC REGRESSION

```
accuracy_score(y_test, y_predict)
```

KNN

```
accuracy_score(y_test, y_predict)
```

0.8875

SUPPORT VECTOR CLASSIFIER

```
param = {
    'svm__C': [0.1,0.8,0.9,1,1.1,1.2,1.3,1.4],
    'svm__kernel':['linear', 'rbf'],
    'svm__gamma' :[0.1,0.8,0.9,1,1.1,1.2,1.3,1.4]
}
grid_svc = GridSearchCV(est1, param_grid=param, scoring='accuracy', cv=10)
```

```
accuracy_score(y_test, y_predict)
```

0.878125

RANDOM FOREST CLASSIFIER

```
rfc = RandomForestClassifier(n_estimators = 200)

#Now lets try to do some evaluation for random forest model using cross validation.
rfc_eval = cross_val_score(estimator = rfc, X = X_train, y = y_train, cv = 10)
rfc_eval.mean()
```

0.91166338582677164

BETTER MODEL

Based on the statistics shown above we can clearly state that the recommended model is **Random Forest Classifier with Cross Validation** and this is due to the extraordinary performance demonstrated in the previous section

CLASSIFIER MODELS	ACCURACY
Logistic Regression	86.8%
KNN	88.7%
Support Vector Classifier	87.8%
Random Forest Classifier	91.1%

KEY FINDINGS & INSIGHTS

It is certain that further analysis and more models could be applied to this data set and maybe we can have better results. However, some of the suggestions I see for our next steps include having a GridSearchCV to try to eliminate over-fitting while further enhancing our models to choose the best hyperparameters for each of them. We can also use these models and save them using the pickle library for later use in more sophisticated models or act as a "teacher model" for data distillation

THANK YOU

LINKEDIN:

@sukhmani1303

EMAIL:

uv1303@gmail.com

WEBSITE:

linktr.ee/sukhmani1303