Applied Machine Learning Lecture 14-2: Semi-supervised learning, multi-view learning

Selpi (selpi@chalmers.se)

The slides are further development of Richard Johansson's slides

March 10, 2020

Overview

Semi-supervised Learning

Review of this lecture

Semi-supervised learning

- Learns from both labelled and unlabelled data
- Main approaches:
 - ► To add new features
 - To train the system to label new instances automatically

adding new features

example (text processing)

Derive word clusters; most NLP now uses word embeddings that are pre-trained on a large volume of text.

cluster 1000010010111: cluster 101111111100011:

time-consuming	225	maine	1758
repugnant	234	turkey	1796
unnerving	240	manhattan	1860
objectionable	243	boston	3704
anticlimactic	244	florida	3764
reprehensible	258	chicago	4535
anti-climactic	270	london	8383
deceiving	289	paris	6329
disrespectful	299	heaven	5864
dissapointing	308	california	7094

generalizing from instances

Bootstrapping methods

A widely used SSL bootstrapping algorithm: **self-training**

Self-training

• Input: labeled data $\{(\mathbf{x}_i,y_i)\}_{i=1}^l$, unlabeled data $\{\mathbf{x}_j\}_{j=l+1}^{l+u}$.

labeled data

• Procedure:

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$
- 2. Repeat:
- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.

Self-training

Procedure:

- 1. Initially, let $L = \{(\mathbf{x}_i, y_i)\}_{i=1}^l$ and $U = \{\mathbf{x}_j\}_{j=l+1}^{l+u}$.
- 2. Repeat:
- 3. Train f from L using supervised learning.
- 4. Apply f to the unlabeled instances in U.
- 5. Remove a subset S from U; add $\{(\mathbf{x}, f(\mathbf{x})) | \mathbf{x} \in S\}$ to L.
- Parameters, e.g., iterations, pool/growth size, select

Questions:

- Q1: This is called a wrapper method. Why?
- Q2: Why might this help to build a better system?
- Q3: What might go wrong?

Self-training: Summary

Q1: Wrapper? choice of f left open

Q2: Works when? broad margin, expected low error

Q3: Limitations? errors get reinforced

Variants? Yes, many, e.g., delible self-training, weigh instances,...

Another way of doing self-training

- Use a weighted multi-objective function
 - ► Train on both labelled and unlabelled data
 - Use lower weight for the unlabelled data that are labelled by the trained model

Co-training

- Different than self-training
- Two different views of the data are used to build the model
- Two different feature sets that provide different complementary information about the instance are needed

more exotic types of supervision

- in the real world, getting useful training data is often a major bottleneck
- any way to use the data we can get our hands on is welcome

distant supervision

- use an automatic procedure to generate "proxy" training data that resembles our real task
- for instance, for sentiment analysis in Twitter, people have used the presence of emoticons as a proxy task
 - ▶ presence of :) :-) :D ... ⇒ positive
 - ▶ presence of :(:/ :-(... ⇒ negative

multitask learning

source

Overview

Semi-supervised Learning

Review of this lecture

Review of this lecture

- Explain the motivation of semi-supervised learning!
- Could we augment our labelled data using semi-supervised approach? What are the pros and cons of doing this?

Next lecture

▶ Recap of some concepts from all lectures to reinforce learning