------ Linear Regression ------

Connecting with Drive

from google.colab import drive
drive.mount('/content/drive')

→ Mounted at /content/drive

Import necessary libraries

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.feature_selection import chi2
from sklearn.preprocessing import StandardScaler, LabelEncoder
import matplotlib.pyplot as plt
import seaborn as sns

dataset = pd.read_csv('_content/drive/MyDrive/ML Project/Bengaluru_House_Data.csv')
dataset.head()

₹		area_type	availability	location	size	society	total_sqft	bath	balcony	price	
	0	Super built-up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1.0	39.07	ılı
	1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3.0	120.00	
	2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3.0	62.00	
	3	Super built-up Area	Ready To Move	Lingadheeranahalli	3 BHK	Soiewre	1521	3.0	1.0	95.00	
	4	Super built-up Area	Ready To Move	Kothanur	2 BHK	NaN	1200	2.0	1.0	51.00	

Next steps:

Generate code with dataset

New interactive sheet

Data Cleaning

dataset.drop_duplicates(inplace=True)
dataset.dropna(subset=['total_sqft', 'size', 'price'], inplace=True)

dataset.head()

_		area_type	availability	location	size	society	total_sqft	bath	balcony	price	
	0	Super built-up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1.0	39.07	ıl.
	1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3.0	120.00	
	2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3.0	62.00	
	3	Super built-up Area	Ready To Move	Lingadheeranahalli	3 BHK	Soiewre	1521	3.0	1.0	95.00	
	4	Super built-up Area	Ready To Move	Kothanur	2 BHK	NaN	1200	2.0	1.0	51.00	

Next steps:

Generate code with dataset

New interactive sheet

Convert 'size' to number of bedrooms

Convert 'total_sqft' to a numeric value

```
def convert_sqft_to_num(x):
    if '-' in str(x):
        tokens = x.split('-')
        return (float(tokens[0]) + float(tokens[1])) / 2
    try:
        return float(x)
    except:
        return None

dataset['total_sqft'] = dataset['total_sqft'].apply(convert_sqft_to_num)
dataset.dropna(inplace=True)
```

Log-transform the 'price' column to reduce range

dataset['price'] = np.log1p(dataset['price'])
dataset.head()

₹	area_t	ype	availability	location	size	society	total_sqft	bath	balcony	price	
0	Super built-up A	Area	19-Dec	Electronic City Phase II	2	Coomee	1056.0	2.0	1.0	3.690628	ıl.
1	Plot A	Area	Ready To Move	Chikka Tirupathi	4	Theanmp	2600.0	5.0	3.0	4.795791	
3	Super built-up A	Area	Ready To Move	Lingadheeranahalli	3	Soiewre	1521.0	3.0	1.0	4.564348	
5	Super built-up A	Area	Ready To Move	Whitefield	2	DuenaTa	1170.0	2.0	1.0	3.663562	
11	Plot A	Area	Ready To Move	Whitefield	4	Prrry M	2785.0	5.0	3.0	5.690359	
Next st	eps: Generate	Generate code with dataset		View recommended plots		New	New interactive sheet				

Handle categorical variable 'location'

```
location\_counts = dataset['location'].value\_counts() \\ dataset['location'] = dataset['location'].apply(lambda x: x if location\_counts[x] > 10 else 'Other')
```

Check if 'location' exists, then encode it

```
label_encoder = LabelEncoder()
if 'location' in dataset.columns:
    dataset['location_encoded'] = label_encoder.fit_transform(dataset['location'])
```

dataset.head()

Double-click (or enter) to edit

Ensure only numeric columns are included for the correlation matrix

numeric_data = dataset.select_dtypes(include=[np.number])

Correlation Matrix for Numerical Features

```
plt.figure(figsize=(10, 8))
sns.heatmap(numeric_data.corr(), annot=True, cmap='coolwarm', fmt=".2f")
plt.title("Correlation Matrix with Log-Transformed Price")
plt.show()
```


Drop columns with low correlation to 'price' in the main dataset

correlation_matrix = numeric_data.corr()
low_correlation_features = correlation_matrix.index[abs(correlation_matrix['price']) < 0.1]
dataset = dataset.drop(columns=low_correlation_features)</pre>

dataset.head()

One-hot encode remaining categorical variables

dataset = pd.get_dummies(dataset, columns=['location', 'area_type', 'availability', 'society'], drop_first=True)

Define features and target variable

```
X = dataset.drop(['price'], axis=1)
y = dataset['price']
```

Standardize features

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Split data into training and testing sets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Model Training with Linear Regression

Predict on test set and convert predictions back to original scale

```
y_pred = model.predict(X_test)
y_test_exp = np.expm1(y_test)  # Convert log-transformed prices back to original scale
y_pred_exp = np.exp(y_pred)
```

Evaluate the model on the original scale

```
mae = mean_absolute_error(y_test_exp, y_pred_exp)
rmse = np.sqrt(mean_squared_error(y_test_exp, y_pred_exp))
print(f"Mean Absolute Error (MAE): {mae}")
print(f"Root Mean Squared Error (RMSE): {rmse}")

Mean Absolute Error (MAE): 18.2681967684906
Root Mean Squared Error (RMSE): 55.51325389232715
```

Plot Actual vs Predicted values on original scale

```
plt.figure(figsize=(10, 6))
plt.scatter(y_test_exp, y_pred_exp, alpha=0.7)
plt.xlabel("Actual Prices")
plt.ylabel("Predicted Prices")
plt.title("Actual vs Predicted Prices")
plt.show()
```


Actual vs Predicted Prices

