# 25 数据应用

### Selected Use Cases of Data

将线性代数工具用于数据科学和机器学习实践



琴弦的低吟浅唱中易闻几何;

天体的星罗棋布上足见音律。

There is geometry in the humming of the strings. There is music in the spacing of the spheres.

—— 毕达哥拉斯 (Pythagoras) | 古希腊哲学家、数学家和音乐理论家 | 570 ~ 495 BC



- statsmodels.api.add constant() 线性回归增加一列常数 1
- statsmodels.api.OLS() 最小二乘法函数
- numpy.linalg.eig() 特征值分解
- numpy.linalg.svd() 奇异值分解
- sklearn.decomposition.PCA() 主成分分析函数



本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

## 25.1 从线性代数到机器学习

本书第 23、24 章,即"数据三部曲"前两章,分别从空间、矩阵分解两个角度总结了本书之前介绍的重要线性代数工具。我们寻找向量空间、完成矩阵分解,并不仅仅因为它们有趣。实际上,本书中介绍的线性代数工具有助于我们用样本数据搭建数据科学、机器学习模型。

在前两章的基础上,本章一方面引出《概率统计》有关多元统计内容,另一方面预告本书线性代数工具在《数据科学》和《机器学习》中几个应用场景。

#### 机器学习

本章首先聊一聊, 什么是机器学习?

根据维基百科定义,机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。

机器学习处理的问题有如下特征: (a) 基于数据,模型需要通过样本数据训练; (b) 黑箱或复杂系统,难以找到**控制方程** (governing equations)。控制方程指的是能够比较准确、完整描述某一现象或规律的数学方程,比如用  $y = ax^2 + bx + c$  描述抛物线轨迹。

而机器学习处理的数据通常为多特征数据,这就是为什么任何机器学习算法离不开线性代数 工具。

#### 有标签数据、无标签数据

根据输出值有无标签,如图 1 所示,数据可以分为**有标签数据** (labelled data) 和**无标签数据** (unlabelled data)。



图 1. 根据有无标签分类数据

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

显然, 鸢尾花数据集是有标签数据, 因为数据的每一行代表一朵花, 而每一朵花都对应一个特定的鸢尾花类别(图2最后一列), 这个类别就是标签。

| Index | Sepal length | Sepal width | Petal length | Petal width | Species      |  |
|-------|--------------|-------------|--------------|-------------|--------------|--|
| macx  | $X_1$        | $X_2$       | $X_3$        | $X_4$       | C            |  |
| 1     | 5.1          | 3.5         | 1.4          | 0.2         |              |  |
| 2     | 4.9          | 3           | 1.4          | 0.2         |              |  |
| 3     | 4.7          | 3.2         | 1.3          | 0.2         | C-4          |  |
|       |              |             |              |             | Setosa $C_1$ |  |
| 49    | 5.3          | 3.7         | 1.5          | 0.2         | Cl           |  |
| 50    | 5            | 3.3         | 1.4          | 0.2         |              |  |
| 51    | 7            | 3.2         | 4.7          | 1.4         |              |  |
| 52    | 6.4          | 3.2         | 4.5          | 1.5         |              |  |
| 53    | 6.9          | 3.1         | 4.9          | 1.5         |              |  |
|       |              |             |              |             | Versicolor   |  |
| 99    | 5.1          | 2.5         | 3            | 1.1         | $C_2$        |  |
| 100   | 5.7          | 2.8         | 4.1          | 1.3         |              |  |
| 101   | 6.3          | 3.3         | 6            | 2.5         |              |  |
| 102   | 5.8          | 2.7         | 5.1          | 1.9         |              |  |
| 103   | 7.1          | 3           | 5.9          | 2.1         | Virginica    |  |
| •••   |              |             |              |             | $C_3$        |  |
| 149   | 6.2          | 3.4         | 5.4          | 2.3         | C3           |  |
| 150   | 5.9          | 3           | 5.1          | 1.8         |              |  |

图 2. 鸢尾花数据表格, 单位为厘米 (cm)

很多场景, 样本数据并没有标签。举个例子, 图 3 所示为 2020 年度中 9 支股票的每个营业日股价数据。图 3 中数据共有 253 行, 每行代表一个日期几只股票股价水平。

列方向来看,表格共有10列,第1列为营业日日期,其余9列每列为股价数据。从时间序列 (timeseries)角度来看,图3中第一列时间点起到一个时间先后排序作用。图3数据显然没有类似图2标签。

此外,本书很多应用场景中,我们并不考虑鸢尾花数据的标签;也就是说,我们将鸢尾花标签一列删除,得到无标签数据矩阵  $X_{150\times4}$ 。

| Date        | TSLA   | TSM    | COST   | NVDA   | FB     | AMZN    | AAPL   | NFLX   | GOOGL   |
|-------------|--------|--------|--------|--------|--------|---------|--------|--------|---------|
| 2-Jan-2020  | 86.05  | 58.26  | 281.10 | 239.51 | 209.78 | 1898.01 | 74.33  | 329.81 | 1368.68 |
| 3-Jan-2020  | 88.60  | 56.34  | 281.33 | 235.68 | 208.67 | 1874.97 | 73.61  | 325.90 | 1361.52 |
| 6-Jan-2020  | 90.31  | 55.69  | 281.41 | 236.67 | 212.60 | 1902.88 | 74.20  | 335.83 | 1397.81 |
| 7-Jan-2020  | 93.81  | 56.60  | 280.97 | 239.53 | 213.06 | 1906.86 | 73.85  | 330.75 | 1395.11 |
| 8-Jan-2020  | 98.43  | 57.01  | 284.19 | 239.98 | 215.22 | 1891.97 | 75.04  | 339.26 | 1405.04 |
| 9-Jan-2020  | 96.27  | 57.48  | 288.75 | 242.62 | 218.30 | 1901.05 | 76.63  | 335.66 | 1419.79 |
|             |        |        |        |        |        |         |        |        |         |
| 30-Dec-2020 | 694.78 | 108.49 | 373.71 | 525.83 | 271.87 | 3285.85 | 133.52 | 524.59 | 1736.25 |
| 31-Dec-2020 | 705.67 | 108.63 | 376.04 | 522.20 | 273.16 | 3256.93 | 132.49 | 540.73 | 1752.64 |

图 3. 股票收盘股价数据

有标签数据: 分类、连续

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

有标签数据中,标签数值可以是分类 (categorical),也可以是连续 (continuous)。

分类标签很好理解,比如鸢尾花数据的标签有三类 setosa、virginica、versicolor。它们可以用数字 0.1.2 来代表。

而有些数据的标签是连续的。本系列丛书《数学要素》一册中鸡兔同笼的回归问题中,鸡兔数量就是个好例子。横轴鸡的数量是回归问题的自变量;纵轴的兔子数量是因变量,就是连续标签。

再举个例子,用图 3 中 9 只股价来构造一个投资组合,目标是跟踪标普 500 涨跌;这时,标普 500 同时期的数据就是连续标签,显然这个标签对应的数据为连续数值。

#### 有监督学习、无监督学习

根据数据是否有标签, 机器学习可以分为两大类:

- ◀ 有监督学习 (supervised learning) 训练有标签值样本数据并得到模型,通过模型对新样本数据标签进行标签推断。
- ▼ 无监督学习 (unsupervised learning) 训练没有标签值的数据,并发现样本数据的结构。

#### 四大类

如图4所示,根据标签类型,机器学习还可进一步细分成四大类问题。



图 4. 根据数据是否有标签、标签类型细分机器学习算法

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

有监督学习中,如果标签为连续数据,对应的问题为回归(regression),如图4(a)。如果标签 为分类数据,对应的的问题则是分类(classification),如图4(c)。

无监督学习中,样本数据没有标签。如果目标是寻找规律、简化数据,这类问题叫做<mark>降维</mark> (dimension reduction), 比如主成分分析目的之一就是找到数据中占据主导地位的成分, 如图 4 (b)。如果模型的目标是根据数据特征将样本数据分成不同的组别,这种问题叫做**聚类** (clustering), 如图 4 (b)。

实际上,数据科学和机器学习本来不分家,但是为了方便大家学习,作者根据图4所示规律 将内容分成《数据科学》和《机器学习》两册。

《数据科学》主要解决图 4 (a) 和 (b) 两图对应的回归以及降维问题。

《机器学习》则关注图 4 (c) 和 (d) 所示分类和聚类问题, 难度有所提高。

本系列丛书《数学要素》、《矩阵力量》、《概率统计》这三册为《数据科学》和《机器学 习》提供了数学工具。特别地,本册《矩阵力量》提供的线性代数工具,是所有数学工具从一元 到多元的推手,比如多元微积分、多元概率统计、多元优化等等。

本章下文就试图把几何、线性代数、概率统计、机器学习应用这几个元素串起来,让大家领 略线性代数工具无处不在的力量。

## 25.2 从随机变量的线性变换说起

本节介绍随机变量的线性变换。这一节内容相对来说有一定难度,但是极其重要。本节是多 元统计的理论基础。



#### 线性变换

如果 X 为一个随机变量,对 X 进行函数变换,可以得到其他的随机变量 Y:

$$Y = h(X) \tag{1}$$

特别地,如果h()为线性函数,则X到Y进行的就是线性变换,比如:

$$Y = h(X) = aX + b \tag{2}$$

其中,a 和 b 为常数。这相当于几何中的缩放、平移两步操作。在线性代数中,上式相当于仿射 变换。

(2) 中, Y的期望和 X的期望之间关系:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$E(Y) = aE(X) + b \tag{3}$$

(2) 中, Y和 X 方差之间关系:

$$var(Y) = var(aX + b) = a^{2} var(X)$$
(4)

#### 二元随机变量

如果 Y和二元随机变量  $(X_1, X_2)$  存在如下关系:

$$Y = aX_1 + bX_2 \tag{5}$$

(5) 可以写成:

$$Y = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \tag{6}$$

相信大家已经在上式中看到了本书反复讨论的线性映射关系。

Y和二元随机变量  $(X_1, X_2)$  期望值之间存在如下关系:

$$E(Y) = E(aX_1 + bX_2) = aE(X_1) + bE(X_2)$$
 (7)

(7) 可以写成如下矩阵运算形式:

$$E(Y) = \begin{bmatrix} a & b \end{bmatrix} \begin{bmatrix} E(X_1) \\ E(X_2) \end{bmatrix}$$
 (8)

Y和二元随机变量  $(X_1, X_2)$  方差、协方差存在如下关系:

$$var(Y) = var(aX_1 + bX_2) = a^2 var(X_1) + b^2 var(X_2) + 2ab cov(X_1, X_2)$$
(9)

(9) 可以写成:

$$\operatorname{var}(Y) = \begin{bmatrix} a & b \end{bmatrix} \underbrace{\begin{bmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) \\ \operatorname{cov}(X_1, X_2) & \operatorname{var}(X_2) \end{bmatrix}}_{F} \begin{bmatrix} a \\ b \end{bmatrix}$$
 (10)

相信大家已经在上式中看到了如下协方差矩阵:

$$\Sigma = \begin{bmatrix} \operatorname{var}(X_1) & \operatorname{cov}(X_1, X_2) \\ \operatorname{cov}(X_1, X_2) & \operatorname{var}(X_2) \end{bmatrix}$$
 (11)

也就是说, (10) 可以写成:

$$\operatorname{var}(Y) = \begin{bmatrix} a & b \end{bmatrix} \Sigma \begin{bmatrix} a \\ b \end{bmatrix} \tag{12}$$

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### D 维随机变量

如果 D 维随机变量  $\zeta = [Z_1, Z_2, ..., Z_D]^T$  服从多元高斯分布 N(0, I),即均值为 0,协方差矩阵为单位矩阵:

$$\boldsymbol{\zeta} = \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_D \end{bmatrix}, \quad \boldsymbol{\mu}_{\zeta} = \mathbf{E}(\boldsymbol{\zeta})^{\mathrm{T}} = \boldsymbol{\theta} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad \operatorname{var}(\boldsymbol{\zeta}) = \boldsymbol{I}_{D \times D} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$$
(13)

其中,希腊字母 $\zeta$ 读作 zeta。

而 D 维随机变量  $\chi = [X_1, X_2, ..., X_D]^T$  和  $\zeta$  存在如下线性关系:

$$\chi = \begin{bmatrix} X_1 \\ X_2 \\ \vdots \\ X_D \end{bmatrix} = V^{\mathrm{T}} \zeta + \mu = V^{\mathrm{T}} \begin{bmatrix} Z_1 \\ Z_2 \\ \vdots \\ Z_D \end{bmatrix} + \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_D \end{bmatrix}$$
(14)

χ的期望值(即质心)为:

$$\mu_{\chi} = \mathbf{E}(\chi)^{\mathrm{T}} = \mu \tag{15}$$

χ的协方差为:

$$\operatorname{var}(\chi) = \Sigma_{\chi} = \frac{(\chi - \mu)(\chi - \mu)^{\mathrm{T}}}{n} = V^{\mathrm{T}} \frac{\zeta \zeta^{\mathrm{T}}}{n} V = V^{\mathrm{T}} I_{D \times D} V = V^{\mathrm{T}} V$$
(16)

也就是说  $\chi$  服从  $N(\mu, VV)$ 。

 $\triangle$  注意,(16) 计算总体方差,因此分母为n。此外注意 $\mathcal{C}^{\mathsf{T}}$  转置 $^{\mathsf{T}}$  所在位置,有别于本书前文计算数据矩阵X的协方差矩阵时遇到的 $X^{\mathsf{T}}X$ 。

如果 $\chi$ 和 $\gamma = [Y_1, Y_2, ..., Y_D]^T$ 满足如下线性映射关系:

$$\gamma = A\chi \tag{17}$$

γ的期望值(即质心)为:

$$\boldsymbol{\mu}_{\gamma} = \mathbf{E}(\boldsymbol{\gamma})^{\mathrm{T}} = A\boldsymbol{\mu} \tag{18}$$

γ的协方差为:

$$var(\gamma) = \Sigma_{\gamma} = A\Sigma_{\chi}A^{T}$$
(19)

也就是说  $\gamma$  服从  $N(A\mu, A\Sigma_{\chi}A)$ 。

相信很多读者对本节内容已经感到云里雾里,下面几节展开讲解本节内容。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

## 25.3 **单方向映射**

#### 随机变量视角

D个随机变量,  $X_1 \, X_2 \, ... \, X_D$ , 通过如下组合构造随机变量 Y:

$$Y = v_1 X_1 + v_2 X_2 + \dots + v_D X_D \tag{20}$$

举个例子,制作八宝粥时,用到如下八种谷物——大米  $(X_1)$ 、小米  $(X_2)$ 、糯米  $(X_3)$ 、紫米  $(X_4)$ 、绿豆  $(X_5)$ 、红枣  $(X_6)$ 、花生  $(X_7)$ 、莲子  $(X_8)$ 。 $v_1$ 、 $v_2$  …  $v_D$  相当于八种谷物的配比。

#### 向量视角

从向量角度看 (20):

$$\hat{\boldsymbol{y}} = v_1 \boldsymbol{x}_1 + v_2 \boldsymbol{x}_2 + \dots + v_D \boldsymbol{x}_D \tag{21}$$

(21) 中 $\hat{y}$  头上"戴帽子"为了呼应下一节的线性回归,避免混淆。如图 5 所示,(21) 就是线性组合。



图  $5.x_1, x_2...x_D$ 线性组合

令  $X = [x_1, x_2, ..., x_D]$ , (21) 相当于  $X \cap v$  向量映射, 得到列向量  $\hat{y}$ :

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\hat{\mathbf{y}} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_D \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \vdots \\ \mathbf{v}_D \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_D \end{bmatrix} \mathbf{v} = \mathbf{X}\mathbf{v}$$
 (22)

特别地,如果 v 为单位向量,上式就是正交投影。

#### 空间视角

如图 6 所示,从空间角度, $span(x_1, x_2, ..., x_D)$  张成超平面 H,而  $\hat{y}$  在超平面 H中。  $\hat{y}$  的坐标就是  $(v_1, v_2, ..., v_D)$ 。



图 6.  $\hat{y}$  在超平面 H 中

#### 行向量视角

本章前文说的是列向量视角,我们下面再看行向量视角。数据矩阵 X 中的每一行对应行向量  $x^{(i)}$ ,  $x^{(i)}v = \hat{y}^{(i)}$  相当于 D 维坐标映射到  $\mathrm{span}(v)$  得到一个点。

→请大家回忆本书第10章讲过的用张量积完成"二次投影"。



图 7. 数据矩阵  $X \cap v$  映射的行向量视角

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 期望值

下面用具体数据举例说明如何计算  $\hat{y}$  的期望值。图 8 所示热图对应数据矩阵 X 向 v 映射运算过程。



图 8. 矩阵 X 向 v 映射热图

根据上一节内容,列向量 $\hat{y}$ 期望值E(y)和矩阵X期望值E(X)关系为:

$$E(\hat{y}) = E(Xv) = E(X)v \tag{23}$$

其中, E(X) 为行向量:

$$\mathbf{E}(\mathbf{X}) = \begin{bmatrix} \mathbf{E}(\mathbf{x}_1) & \mathbf{E}(\mathbf{x}_2) & \cdots & \mathbf{E}(\mathbf{x}_D) \end{bmatrix}$$
 (24)

计算 E(ŷ) 过程热图如图9所示。



图 9. 计算 E(ŷ) 矩阵运算热图

#### 方差

方差  $var(\hat{y})$  和数据矩阵 X 协方差矩阵  $\Sigma x$  关系为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\operatorname{var}(\hat{y}) = \frac{(\hat{y} - \operatorname{E}(\hat{y}))^{\mathsf{T}} (\hat{y} - \operatorname{E}(\hat{y}))}{n - 1}$$

$$= \frac{(Xv - \operatorname{E}(X)v)^{\mathsf{T}} (Xv - \operatorname{E}(X)v)}{n - 1}$$

$$= v^{\mathsf{T}} \frac{(X - \operatorname{E}(X))^{\mathsf{T}} (X - \operatorname{E}(X))}{\frac{n - 1}{\operatorname{\Sigma}_{X}}} v$$

$$= v^{\mathsf{T}} \Sigma_{X} v$$
(25)

图 10 所示为计算 var(ŷ) 矩阵热图。



图 10. 计算 var(ŷ) 矩阵运算热图

#### 几何视角

图 11 所示为几何视角下的上述映射过程。注意,图 11 假设样本数据矩阵 X 服从二元高斯分布  $N(\mu_X, \Sigma)$ ,因此我们用椭圆代表它的分布。



图 11. 服从二元高斯分布的数据矩阵 X 向  $\nu$  映射得到  $\hat{y}$ 

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

## 25.4 **线性回归**

**线性回归** (linear regression) 是最为常用的回归算法。这种模型利用线性关系建立因变量与一个或多个自变量之间的联系。

**简单线性回归** (Simple Linear Regression, SLR) 为一元线性回归模型,是指模型中只含有一个自变量 (x) 和一个因变量 (y),即  $y = b_0 + b_1 x_1 + \varepsilon$ 。

**多元线性回归** (multivariate regression) 模型则引入多个自变量  $(x_1, x_2, ..., x_D)$ ,即回归分析中引入多个因子解释因变量 (y)。多元线性回归模型的数学表达式如下:

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_D x_D + \varepsilon$$
 (26)

其中, $b_0$  为截距项;  $b_1, b_2, ..., b_D$  代表自变量系数;  $\varepsilon$  为残差项; D 为自变量个数。

用向量代表具体值, (26) 可以写成:

$$\mathbf{y} = \underbrace{b_0 \mathbf{1} + b_1 \mathbf{x}_1 + b_2 \mathbf{x}_2 + \dots + b_D \mathbf{x}_D}_{\hat{\mathbf{y}}} + \boldsymbol{\varepsilon}$$
 (27)

▲注意,全1列向量也代表一个方向。而y代表监督学习中的连续标签。

换一种方式表达 (27):

$$y = Xb + \varepsilon \tag{28}$$

其中,

$$\boldsymbol{X}_{n\times(D+1)} = \begin{bmatrix} \boldsymbol{I} & \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{D} \end{bmatrix} = \begin{bmatrix} 1 & \boldsymbol{x}_{1,1} & \cdots & \boldsymbol{x}_{1,D} \\ 1 & \boldsymbol{x}_{2,1} & \cdots & \boldsymbol{x}_{2,D} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \boldsymbol{x}_{n,1} & \cdots & \boldsymbol{x}_{n,D} \end{bmatrix}_{n\times(D+1)}, \quad \boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}_{1} \\ \boldsymbol{y}_{2} \\ \vdots \\ \boldsymbol{y}_{n} \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} \boldsymbol{b}_{0} \\ \boldsymbol{b}_{1} \\ \vdots \\ \boldsymbol{b}_{D} \end{bmatrix}, \quad \boldsymbol{\varepsilon} = \begin{bmatrix} \boldsymbol{\varepsilon}^{(1)} \\ \boldsymbol{\varepsilon}^{(2)} \\ \vdots \\ \boldsymbol{\varepsilon}^{(n)} \end{bmatrix}$$
(29)

▲ 注意, (29) 中设计矩阵 X包含全 I 列向量, 也就是说这个 X 有 D+1 列。

#### 线性组合

图 12 所示为多元 OLS 线性回归数据关系,图中 y 就是连续标签构成的列向量。



图 12. 多元 OLS 线性回归数据关系

#### 投影视角

预测值构成的列向量 ŷ, 通过下式计算得到:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{b} \tag{30}$$

 $\triangle$  注意,这里我们用了"戴帽子"的 $\hat{y}$ ,它代表对y的估计。y和 $\hat{y}$ 形状相同,两者之差为残差。

预测值向量 $\hat{y}$ 是自变量向量 $I, x_1, x_2, ..., x_D$ 的线性组合。从空间角度来看, $[I, x_1, x_2, ..., x_D]$ 构成一个超平面 $H = \text{span}(I, x_1, x_2, ..., x_D)$ 。 $\hat{y}$ 是y在超平面H上的投影。



图 13. 几何角度解释多元 OLS 线性回归

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

而 y 和  $\hat{y}$  的差对应残差项 ε:

$$\varepsilon = y - \hat{y} = y - Xb \tag{31}$$

如图 13 所示,残差向量  $\varepsilon$  垂直于 span( $I, x_1, x_2, ..., x_D$ ):

$$\boldsymbol{\varepsilon} \perp \boldsymbol{X} \quad \Rightarrow \quad \boldsymbol{X}^{\mathrm{T}} \boldsymbol{\varepsilon} = \boldsymbol{0} \tag{32}$$

将(31)代入(32)得到:

$$\boldsymbol{X}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{b}) = 0 \quad \Rightarrow \quad \boldsymbol{X}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{b} = \boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} \tag{33}$$

求解得到 b:

$$\boldsymbol{b} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} \tag{34}$$

本书中,我们已经不止一起提到 (34)。请大家注意从数据、向量、几何、空间、优化等视角理解 (34)。此外, $\left(X^{\mathsf{T}}X\right)^{\mathsf{-1}}X^{\mathsf{T}}$  叫做 X 的广义逆,或伪逆。还请大家注意,只有 X 为列满秩时, $X^{\mathsf{T}}X$  才存在逆。

#### QR 分解

利用 QR 分解结果求解 b。把 X = QR 代入 (34) 得到:

$$b = \left( \left( \mathbf{Q} \mathbf{R} \right)^{\mathrm{T}} \mathbf{Q} \mathbf{R} \right)^{-1} \left( \mathbf{Q} \mathbf{R} \right)^{\mathrm{T}} \mathbf{y} = \left( \mathbf{R}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}} \mathbf{Q} \mathbf{R} \right)^{-1} \mathbf{R}^{\mathrm{T}} \mathbf{Q}^{\mathrm{T}} \mathbf{y}$$

$$= \mathbf{R}^{-1} \underbrace{\left( \mathbf{R}^{\mathrm{T}} \right)^{-1} \mathbf{R}^{\mathrm{T}}}_{I} \mathbf{Q}^{\mathrm{T}} \mathbf{y} = \mathbf{R}^{-1} \mathbf{Q}^{\mathrm{T}} \mathbf{y}$$
(35)

#### 奇异值分解

类似地,利用 SVD 分解结果, $X = USV^{T}$ ,b 可以整理为:

$$\boldsymbol{b} = \left( \left( \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{-1} \left( \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \boldsymbol{y} = \left( \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{-1} \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$$

$$= \left( \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{-1} \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$$

$$= \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{-1} \underbrace{\left( \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}} \right)^{-1} \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{\mathrm{T}}}_{I} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y} = \left( \boldsymbol{S} \boldsymbol{V}^{\mathrm{T}} \right)^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$$

$$(36)$$

也就是说,对比 SVD 分解  $(X = USV^T)$  和 QR 分解 (X = QR),U 可以视作 Q,因为两者都是正交矩阵;而  $SV^T$  可以视作 R。

虽然 U 和 Q 都是正交矩阵,两者从本质上是不同的。请大家自行回忆上一章内容,对比两种分解。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 优化视角

下面以本节多元线性回归为例,介绍如何利用最**小二乘法** (Ordinary Least Squares, OLS),即最小化误差的平方和,寻找最佳参数  $\boldsymbol{b}$ 。

残差项平方和可以写成:

$$\sum_{i=1}^{n} \boldsymbol{\varepsilon}_{i}^{2} = \boldsymbol{\varepsilon}^{\mathsf{T}} \boldsymbol{\varepsilon} \tag{37}$$

将(31)带入(37),展开得到:

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = (\mathbf{y} - \mathbf{X}\mathbf{b})^{\mathrm{T}} (\mathbf{y} - \mathbf{X}\mathbf{b}) = (\mathbf{y}^{\mathrm{T}} - \mathbf{b}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}}) (\mathbf{y} - \mathbf{X}\mathbf{b}) = \mathbf{y}^{\mathrm{T}} \mathbf{y} - \mathbf{y}^{\mathrm{T}} \mathbf{X}\mathbf{b} - \mathbf{b}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{y} + \mathbf{b}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X}\mathbf{b}$$
(38)

上式,  $y^{\mathsf{T}}Xb$  和  $b^{\mathsf{T}}X^{\mathsf{T}}y$  都是标量, 转置不影响结果:

$$\boldsymbol{b}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y} = \left(\boldsymbol{b}^{\mathrm{T}}\boldsymbol{X}^{\mathrm{T}}\boldsymbol{y}\right)^{\mathrm{T}} = \boldsymbol{y}^{\mathrm{T}}\boldsymbol{X}\boldsymbol{b} \tag{39}$$

因此 (38) 可以写成:

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \mathbf{y}^{\mathrm{T}} \mathbf{y} - 2 \mathbf{y}^{\mathrm{T}} \mathbf{X} \mathbf{b} + \mathbf{b}^{\mathrm{T}} \mathbf{X}^{\mathrm{T}} \mathbf{X} \mathbf{b}$$

$$\tag{40}$$

构造最小化问题, 令目标函数 f(b) 为:

$$f(\boldsymbol{b}) = \boldsymbol{y}^{\mathrm{T}} \boldsymbol{y} - 2 \boldsymbol{y}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{b} + \boldsymbol{b}^{\mathrm{T}} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{X} \boldsymbol{b}$$
 (41)

f(b) 对向量 b 求一阶导为 0 得到如下等式:

$$\frac{\partial f(\boldsymbol{b})}{\partial \boldsymbol{b}} = -2\boldsymbol{y}^{\mathsf{T}}\boldsymbol{X} + 2\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{b} = \boldsymbol{0}$$
(42)

整理 (42), 得到:

$$\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X}\boldsymbol{b} = \boldsymbol{y}^{\mathsf{T}}\boldsymbol{X} \tag{43}$$

通过优化视角, 我们也得到了(33)。

此外, f(b) 对向量 b 求二阶导得到黑塞矩阵:

$$\frac{\partial^2 f(\boldsymbol{b})}{\partial \boldsymbol{b} \partial \boldsymbol{b}^{\mathsf{T}}} = 2\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} \tag{44}$$

如果 X 列满秩,它的格拉姆矩阵  $X^TX$  正定。因此,满足 (43) 的鞍点 b 为极小值点。进一步,f(b) 为二次型,可以判定 b 为最小值点。

本系列丛书《概率统计》一册将介绍多元线性回归和条件概率之间关系。

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

## 25.5 **多方向映射**

矩阵 X 向  $v_1$  和  $v_2$  两个不同方向投影:

$$\mathbf{y}_{1} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{D} \end{bmatrix} \begin{bmatrix} v_{1,1} \\ v_{2,1} \\ \vdots \\ v_{D,1} \end{bmatrix} = \mathbf{X}\mathbf{v}_{1}, \quad \mathbf{y}_{2} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{D} \end{bmatrix} \begin{bmatrix} v_{1,2} \\ v_{2,2} \\ \vdots \\ v_{D,2} \end{bmatrix} = \mathbf{X}\mathbf{v}_{2}$$
(45)

还是用八宝粥的例子, (45) 相当于两个不同配方的八宝粥。

合并(45)中两个等式,得到:

$$\mathbf{Y}_{n \times 2} = \begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_D \end{bmatrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} \\
= \mathbf{X}_{n \times D} \mathbf{V}_{D \times 2} \tag{46}$$

图 14 所示为上述矩阵运算示意图。请大家自行从向量空间视角分析上式。



图 14. 数据朝两个方向映射

图 15 所示为数据 X 朝两个方向映射对应的运算热图。



图 15. 数据 X 朝两个方向映射对应的运算热图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

#### 期望值

期望值  $[E(y_1), E(y_2)]$  和期望值向量 E(X) 关系为:

$$\begin{bmatrix} \mathbf{E}(\mathbf{y}_{1}) & \mathbf{E}(\mathbf{y}_{2}) \end{bmatrix} = \begin{bmatrix} \mathbf{E}(\mathbf{X})\mathbf{v}_{1} & \mathbf{E}(\mathbf{X})\mathbf{v}_{2} \end{bmatrix} = \mathbf{E}(\mathbf{X})\mathbf{V} \tag{47}$$

比较 (18) 和 (47),两个等式不同点在于转置。(18) 中随机变量向量为列向量,而上式中 E(X) 为行向量。

图 16 所示为计算期望值向量  $[E(y_1), E(y_2)]$  的热图。



图 16. 计算期望值 [E(y1), E(y2)] 矩阵运算热图

#### 协方差

[y1, y2] 协方差为:

$$\boldsymbol{\Sigma}_{\mathbf{y}} = \begin{bmatrix} \boldsymbol{\sigma}_{\mathbf{y}_{1}}^{2} & \boldsymbol{\rho}_{\mathbf{y}_{1},\mathbf{y}_{2}} \boldsymbol{\sigma}_{\mathbf{y}_{1}} \boldsymbol{\sigma}_{\mathbf{y}_{2}} \\ \boldsymbol{\rho}_{\mathbf{y}_{1},\mathbf{y}_{2}} \boldsymbol{\sigma}_{\mathbf{y}_{1}} \boldsymbol{\sigma}_{\mathbf{y}_{2}} & \boldsymbol{\sigma}_{\mathbf{y}_{2}}^{2} \end{bmatrix} = \begin{bmatrix} \boldsymbol{v}_{1}^{\mathsf{T}} \\ \boldsymbol{v}_{2}^{\mathsf{T}} \end{bmatrix} \boldsymbol{\Sigma}_{x} \begin{bmatrix} \boldsymbol{v}_{1} & \boldsymbol{v}_{2} \end{bmatrix} = \boldsymbol{V}^{\mathsf{T}} \boldsymbol{\Sigma}_{x} \boldsymbol{V}$$
(48)

(19) 和 (48) 也差在转置运算。注意,上式中 V 并非方阵。



图 17. 计算  $[y_1, y_2]$  协方差矩阵运算热图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

## 25.6 主成分分析

**主成分分析** (principal component analysis, PCA) 最初由**卡尔·皮尔逊** (Karl Pearson) 在 1901 提出。主成分分析就是多方向映射。

通过线性变换,PCA 将多维数据投影到一个新的正交坐标系,把原始数据中的最大方差成分提取出来。PCA 也是数据降维的重要方法之一。

如图 18 所示, PCA 的一般步骤如下:

- 对原始数据  $X_{n\times D}$  作标准化 (normalization) 处理,得到 z 分数;
- 计算z分数协方差矩阵,即原始数据X的相关性系数矩阵P;
- **◄** 计算 P 特征值  $\lambda_i$  与特征向量矩阵  $V_{D\times D}$ ;
- 对特征值  $\lambda_i$ 从大到小排序,选择其中特征值最大的 p 个特征向量作为主成分方向;
- 将标准化数据投影到规范正交基  $[\nu_1, \nu_2, ..., \nu_p]$  构建的新空间中,得到  $Y_{n \times p}$ 。

上述 PCA 流程仅仅是众多技术路线之一,本节最后会列出六种常用 PCA 技术路线。



图 18. 主成分分析过程, 基于特征值分解

数据标准化中包括去均值,这样新数据每个特征的均值为 0。这相当于把数据的质心移到原点。而标准化还包括用均方差完成"缩放",以防止不同特征上方差差异过大。

原始数据各个特征方差差别不大时,不需要对 $X_{n\times D}$ 标准化,只需要中心化即可。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML 本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466 欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

作为重要的降维工具、PCA 可以显著减少数据的维数、同时保留数据中对方差贡献最大的成 分。另外对于多维数据、PCA 可以作为一种数据可视化的工具。PCA 结果还可以用来构造回归模 型。本系列丛书《数据科学》将深入介绍这些话题。

#### 线性组合

如图 19 所示,主成分分析过程本质上上也是线性组合,即  $X_{n\times D}$ 线性组合组合得到  $Y_{n\times D}$ 列向 量,并选取结果中1~p列列向量作为主成分。



#### 六条技术路线

表1总结了 PCA 六条主要技术路线,其中用到了奇异值分解、特征值分解两种矩阵分解工 具。矩阵分解的对象对应六种不同矩阵,这六种矩阵都衍生自原始数据矩阵 X。

表 1还通过颜色告诉我们,这六条技术路线本质上就是三种路线。比如,对原始数据 X奇异 值分解,等价于对其格拉姆矩阵 G 特征值分解。



本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

| 对象                                                     | 方法    | 结果                                                                                                                              |
|--------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|
| 原始数据矩阵 X                                               | 奇异值分解 | $\boldsymbol{X} = \boldsymbol{U}_{\boldsymbol{X}} \boldsymbol{S}_{\boldsymbol{X}} \boldsymbol{V}_{\boldsymbol{X}}^{\mathrm{T}}$ |
| 格拉姆矩阵 $G = X^T X$                                      | 特征值分解 | $G = V_{X} \Lambda_{X} V_{X}^{\mathrm{T}}$                                                                                      |
| 中心化数据矩阵 $X_c = X - E(X)$                               | 奇异值分解 | $oldsymbol{X}_c = oldsymbol{U}_c oldsymbol{S}_c oldsymbol{V}_c^{	ext{T}}$                                                       |
| 协方差矩阵 $\Sigma = \frac{(X - E(X))^{T} (X - E(X))}{n-1}$ | 特征值分解 | $\Sigma = \mathbf{V}_{e} A_{e} \mathbf{V}_{e}^{T}$                                                                              |
| $\mathbf{Z}_{X} = (X - \mathbf{E}(X))\mathbf{S}^{-1}$  | 奇异值分解 | $Z_X = U_Z S_Z V_Z^{\mathrm{T}}$                                                                                                |

特征值分解

表 1. 六条 PCA 技术路线



 $P = V_z \Lambda_z V_z^T$ 

本章是"数据三部曲"的最后一章,也是本书的最后一章。

 $S = \operatorname{diag}(\operatorname{diag}(\Sigma))^{\frac{1}{2}}$ 

 $P = S^{-1} \Sigma S^{-1}$ 

 $S = \operatorname{diag}(\operatorname{diag}(\Sigma))^{\frac{1}{2}}$ 

通过这一章内容,作者希望能给大家提供一个更高的视角,让大家看到代数、线性代数、几何、概率统计、微积分、优化问题之间的联系,也同时展望线性代数工具在数据科学、机器学习 领域的应用。

作者希望大家看完本册后,能对线性代数的印象彻底改观。

向量、矩阵、矩阵乘法、矩阵分解、向量空间等等不再是不知所云的线性代数概念,它们是 解决实际问题无坚不摧的刀枪剑戟。

最后希望大家能够记住这几句话:

有数据的地方,就有矩阵!

标准化数据(z分数)

相关性系数矩阵

有矩阵的地方,就有向量!

有向量的地方,就有几何!

有向量的地方,就有空间!

有数据的地方,肯定有统计!

让我们在《概率统计》一册, 不见不散!