CS180 - Hashing (part 2) 4/29/2011 Note Title Checkpoint due on Monday Lab tomorrow

locker # ame 26 355 Levin racy 53 201 David We want to be able to retneve a name quickly when given a locker number. -et n = # of people, a m = # of lockers WZV

ion aries sata structure which h supports void insert (keyType &k, dateType dataType find (keyType &k) thing is base - bught no room and the room into

Good hash functions: - Are fast goal: O(1) when kitkz - Don't have collisions to but h(ki)=h(kz) these are unavoidable, but we want to minimize Space (k,e) 「ハース N-1 space: O(N)

Step 1: Get a number / (* avoid collisions) Char (32-bits) -> ASCI float (64-bits) hash Code (long x) {

neturn int (unsigned long(x >> 32) + int(x));

What about strings?

(Think ASCII.)

Erin

69 + 1141 + 105 + 110 = 32 bit single representation

Coal: a single int.

But, in some cases a strategy like this can backfire. The templo and pmotel collide under simple XOR

We want to avoid collisions between "Similar" strings (or other types).

A Better Idea: Polynomial Hash Codes
Pide at 1 and split data into k 32-bit
parts: x = (xo, x, xz, xz, xz, ..., xxy) Let $p(x) = x_0 a^{k-1} + x_1 a^{k-2} + \cdots + x_{k-2} a + x_{k-1}$ p("Erin") = 69.373+114.372+105.37+110

Side Note: How long does this take?

(In terms of k = # of parts) $h(x) = x_0 a^{k-1} + x_1 a^{k-2} + \cdots + x_{k-2} a + x_{k-1}$ whit.

+ K-1 additions

Alternate idea: Horners rule: $X_{k-1} + a(x_{k-2} + a(x_{k-3} + \cdots))$ Polynomial Hashing

This strategy makes it less likely that similar wheys will collide. I works for floats, strings, etc.)

What about overflow?

truncate, XOR, ...

Cyclic shift hash codes

Alternative to polynomial hashing

Instead of multiplying by a shift each 32-bt piece by some # of boits.

Also works well in practice.

Step 2: Compression maps Now we can assume every key k an integer. Need to make it between 0 x N-1 (not 0 and 232). soal: Find a "good" map. - fast - minimize collisions

Modular compression maps Take h(k) = k mod N What does mod mean again? 50 mod 16 = 0 14 mod 10=4

kmod 11 h(k)= Example: (12,E) 0 9 10 Insert

Some Comments:

This works best if the 51ze of
the table is a prime number.

Why?

Go take number theory of

Cryptography

	Strategy 2: MAD (multply, add adivide)
	First idea: take h(k) = k mod N
	BeHer: h(k) = lak+b mod N
	where a a b are:
	ninimite - not egual - less than N - relatively prime > no common divisors
V	11 cons - relative in prime
C	DICE SOUND DIVISORS
	$\gcd(c,b)=1$
	\sim
	(Why? Go take number theory!)

h(k)= | ak+b| mod 11 a=3 $h(12) = |3\cdot12 + 5| \mod 1| = 8$ $h(21) = |3\cdot21 + 5| \mod 1| =$ insert:

This is a lot of work!

Why bother?

In practice, drastically reduces collisions.

(Here are what actually make hashing slow)

End Goal: Simple Uniform Hashing Assumption

For any ke key space,

Pr[h(k) = i] = 1

(Essentially, elements are "thrown vandomly" into buckets.)

Impossible in practice.

Collisions Can we ever totally avoid collisions? Step 3: Handle collisions (gracefully a quickly) how can we handle collisions? we have any data structures > + can store more than I element? -) data structur

Running times: کم 90->12-> 38->25-> (01

Instead of lists, if we hash to a full spot, just teap checking next spot (as long as the next spot is not empty).

14 3 X 22 20 3

I should be MAD arithmetic h(k) = k mod Example 2 10 3 Insert: 12) and (15) Ind (26) &

SSUR How can we remove here? If you remove creete "gap" that linear probing won't know was full at time of insertion. Solutions: "dirty bit":
but to mark if I've
been deleted

Running Time for Linear Probing Insert:

Remove:

Find:

Quadratic Probing

Linear probing checks A[h(k)+1 mod N]

if A[h(k) mod N] is full.

To avoid these 'primary clusters", try:

A[h(k)+j² mod N]

where j=01, 2, 3, 4, ...

h(k) = k mod 11 5 10 (12, E)(21, R)(37, I)Insert:

Issues with Quadratic Probing:	
. 10	
- Can still cause "Secondary" cluster - N really must be prime for to work	ing
- N really must be prime for	this
to work	_ · · · _
- Even with N prime, starts to when array gets half Rull	fail
array ges man	
Runtimes are ossentially the con	~
(Runhmes are essentially the son	