# Paper Survey and Some Thoughts for Scene Text Recognition

Tsai-Shien Chen (陳在賢)

Wednesday, October 13, 2021

Media IC and System Lab
Graduate Institute of Electronics Engineering
National Taiwan University

#### Outline

- Introduction: Scene Text Recognition
- Introduction: Contrastive Learning
- How can Contrastive Learning help?

#### Outline

- Introduction: Scene Text Recognition
- Introduction: Contrastive Learning
- How can Contrastive Learning help?

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis, ICCV 2019 Oral (citation: 182) Scene text detection and recognition: The deep learning era, IJCV 2021 (citation: 145)

#### Task definition



More related to representation learning!! I will focus on Scene Text Recognition.

Previous pipeline (2-stage)





State-of-the-art pipeline (4-stage)



- Transformation
- Feature extraction (encoder)
- Sequence modeling
- Prediction (decoder)





Robust Scene Text Recognition with Automatic Rectification, CVPR 2016 (citation: 401)

#### Experiment environment

| _        | Model          | Vacr | Train data | IIIT | SVT         | IC   | 03   | IC   | 13   | IC          | 15          | SP          | CT          | Time     | params        |
|----------|----------------|------|------------|------|-------------|------|------|------|------|-------------|-------------|-------------|-------------|----------|---------------|
|          | Model          | Year | Train data | 3000 | 647         | 860  | 867  | 857  | 1015 | 1811        | 2077        | 645         | 288         | ms/image | $\times 10^6$ |
|          | CRNN [23]      | 2015 | MJ         | 78.2 | 80.8        | 89.4 | _    | _    | 86.7 | _           | _           | _           | _           | 160      | 8.3           |
|          | RARE [24]      | 2016 | MJ         | 81.9 | 81.9        | 90.1 | _    | 88.6 | _    | _           | _           | 71.8        | 59.2        | <2       | _             |
|          | R2AM [15]      | 2016 | MJ         | 78.4 | 80.7        | 88.7 | _    | _    | 90.0 | _           | _           | _           | _           | 2.2      | _             |
| Its      | STAR-Net [17]  | 2016 | MJ+PRI     | 83.3 | 83.6        | 89.9 | _    | _    | 89.1 | _           | _           | 73.5        | _           | _        | _             |
| results  | GRCNN [26]     | 2017 | MJ         | 80.8 | 81.5        | 91.2 | _    | _    | _    | _           | _           | _           | _           | _        | _             |
| d<br>r   | ATR [28]       | 2017 | PRI+C      | _    | _           | _    | _    | _    | _    | _           | _           | <b>75.8</b> | 69.3        | _        | _             |
| Reported | FAN [4]        | 2017 | MJ+ST+C    | 87.4 | 85.9        | _    | 94.2 | _    | 93.3 | 70.6        | _           | _           | _           | _        | _             |
|          | Char-Net [16]  | 2018 | MJ         | 83.6 | 84.4        | 91.5 | _    | 90.8 | _    | _           | 60.0        | 73.5        | _           | _        | _             |
| Re       | AON [5]        | 2018 | MJ+ST      | 87.0 | 82.8        | _    | 91.5 | _    | _    | _           | <b>68.2</b> | 73.0        | <b>76.8</b> | _        | _             |
|          | EP [2]         | 2018 | MJ+ST      | 88.3 | <b>87.5</b> | _    | 94.6 | _    | 94.4 | <b>73.9</b> | _           | _           | _           | _        | _             |
|          | Rosetta [3]    | 2018 | PRI        | _    | _           | _    | _    | _    | _    | _           | _           | _           | _           | _        | _             |
|          | SSFL [18]      | 2018 | MJ         | 89.4 | 87.1        | _    | 94.7 | 94.0 | _    | _           | _           | 73.9        | 62.5        | _        |               |
| <b>+</b> | CRNN [23]      | 2015 | MJ+ST      | 82.9 | 81.6        | 93.1 | 92.6 | 91.1 | 89.2 | 69.4        | 64.2        | 70.0        | 65.5        | 4.4      | 8.3           |
| riment   | RARE [24]      | 2016 | MJ+ST      | 86.2 | 85.8        | 93.9 | 93.7 | 92.6 | 91.1 | 74.5        | 68.9        | 76.2        | 70.4        | 23.6     | 10.8          |
| ij       | R2AM [15]      | 2016 | MJ+ST      | 83.4 | 82.4        | 92.2 | 92.0 | 90.2 | 88.1 | 68.9        | 63.6        | 72.1        | 64.9        | 24.1     | 2.9           |
| ехреі    | STAR-Net [17]  | 2016 | MJ+ST      | 87.0 | 86.9        | 94.4 | 94.0 | 92.8 | 91.5 | 76.1        | 70.3        | 77.5        | 71.7        | 10.9     | 48.7          |
| ex       | GRCNN [26]     | 2017 | MJ+ST      | 84.2 | 83.7        | 93.5 | 93.0 | 90.9 | 88.8 | 71.4        | 65.8        | 73.6        | 68.1        | 10.7     | 4.6           |
| Ĕ        | Rosetta [3]    | 2018 | MJ+ST      | 84.3 | 84.7        | 93.4 | 92.9 | 90.9 | 89.0 | 71.2        | 66.0        | 73.8        | 69.2        | 4.7      | 44.3          |
| _        | Our best model |      | MJ+ST      | 87.9 | 87.5        | 94.9 | 94.4 | 93.6 | 92.3 | 77.6        | 71.8        | 79.2        | 74.0        | 27.6     | 49.6          |

IC03

860 867

SVT

647

#### Experiment environment (training)

|                  | Model          |      | Train data | IIIT |
|------------------|----------------|------|------------|------|
|                  | Model          | Year | Train data | 3000 |
|                  | CRNN [23]      | 2015 | MJ         |      |
|                  | RARE [24]      | 2016 | MJ         |      |
|                  | R2AM [15]      | 2016 | MJ         |      |
| Its              | STAR-Net [17]  | 2016 | MJ+PRI     |      |
| Reported results | GRCNN [26]     | 2017 | MJ         |      |
| d<br>r           | ATR [28]       | 2017 | PRI+C      |      |
| te               | FAN [4]        | 2017 | MJ+ST+C    |      |
| <u> </u>         | Char-Net [16]  | 2018 | MJ         |      |
| Re               | AON [5]        | 2018 | MJ+ST      |      |
|                  | EP [2]         | 2018 | MJ+ST      |      |
|                  | Rosetta [3]    | 2018 | PRI        |      |
|                  | SSFL [18]      | 2018 | MJ         |      |
|                  | CRNN [23]      | 2015 | MJ+ST      |      |
| experiment       | RARE [24]      | 2016 | MJ+ST      |      |
| Ė                | R2AM [15]      | 2016 | MJ+ST      |      |
| be               | STAR-Net [17]  | 2016 | MJ+ST      |      |
|                  | GRCNN [26]     | 2017 | MJ+ST      |      |
| Our              | Rosetta [3]    | 2018 | MJ+ST      |      |
| _                | Our best model |      | MJ+ST      |      |

MJSynth (MJ): 8.9 M word boxes SynthText (ST): 5.5 M word boxes

IC15

857 1015 1811 2077



IC13

(a) MJSynth word boxes



CT

288

SP

645

Time

ms/image

params

 $\times 10^{6}$ 

(b) SynthText scene image

The large-scale training datasets are all synthetic...

#### Testing environment

Benchmark (regular)

Real world scene text are relatively small-scale... (Manual label annotations are too expensive...)

| Benchmark  | Description                                                         | # Train. | # Eval. |
|------------|---------------------------------------------------------------------|----------|---------|
| SVT        | from Google Street View                                             | 100      | 250     |
| IIIT5K     | from Google image searches with querying "billboards" and "posters" | 2000     | 3000    |
| ICDAR 2013 | for ICDAR 2013 competition                                          | 229      | 233 D   |

<sup>233</sup> Benchmark (irregular)







| Benchmark       | Description                                                        | # Train. | # Eval. |
|-----------------|--------------------------------------------------------------------|----------|---------|
| ICDAR 2015      | collected with Google Glass. contains perspective or blurry images | 1000     | 500     |
| SVT Perspective | collected from Google Street View contains perspective texts       | -        | 639     |
| CUTE80          | captured by digital cameras or collected from the Internet.        | -        | 80      |







- Some problems in scene text recognition...
  - Pre-training models of the encoder (ResNet) is based on ImageNet.
  - The training datasets are all synthetic.
  - The training outcome might be suboptimal to the real-world images.

- Potential Solution
  - A large-scale real-world unlabeled textual datasets
  - Self-supervised learning framework
    - SimCLR, MoCo, BYOL, ...

#### Outline

- Introduction: Scene Text Recognition
- Introduction: Contrastive Learning
- How can Contrastive Learning help?

A self-supervised learning framework which can train a good pre-training encoder without using labeled data!!

## Contrastive Learning

- A representative framework: SimCLR
  - A set of image augmentation



InfoNCE loss

$$\ell_{i,j} = -\log \frac{\exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_j)/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k\neq i]} \exp(\operatorname{sim}(\boldsymbol{z}_i, \boldsymbol{z}_k)/\tau)}$$



A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020 (citation: 2263)

## Contrastive Learning

- Disadvantage of SimCLR
  - batchsize should be large (4096) to get enough negative samples...
- Solution: momentum contrastive learning (MoCo)



Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020 (citation: 1805)

### Contrastive Learning

- Disadvantage of vanilla contrastive learning
  - No spatial information which is suboptimal for dense prediction task (e.g., semantic segmentation, object detection)
  - Features for scene text recognition also contain spatial information!!
- Solution: dense contrastive learning



Dense Contrastive Learning for Self-Supervised Visual Pre-Training, CVPR 2021 Oral (citation: 35) Media IC & System Lab

Tsai-Shien Chen (陳在賢)

across Views: Alignment the feature within different views



#### Outline

- Introduction: Scene Text Recognition
- Introduction: Contrastive Learning
- How can Contrastive Learning help?

- Contrastive learning has been applied to person re-identification
  - Maybe we can refer to their methods!! Unsupervised Pre-training for Person Re-identification, CVPR 2021
- But, first, what is re-identification?
  - Re-identification aims to give a single ID to the images of a same target.



– Straightforward Solution:



Media IC & System Lab

- Re-identification has similar problems with scene text recognition
  - Existing datasets are in limited scales due to difficult data annotations
  - ImageNet pre-training models are not optimal for target task
    - Especially, the target tasks all use person or textual images
- Solution: large-scale unlabeled dataset + contrastive learning
- We will respectively discuss it in the following!!

- Large-scale unlabeled dataset
  - Crawl YouTube video (query word: "cityname + streetview/scene") and use YOLO-v5 to crop the person images
  - Advantage:
    - Large-scale (73k videos, 4.2M images)
    - Diverse places, lighting, ethnic, pose, resolution, etc.

| Datasets     | #images   | #scene | #persons | environment | camera view | resolution | detector       | crop size       |
|--------------|-----------|--------|----------|-------------|-------------|------------|----------------|-----------------|
| VIPeR[16]    | 1,264     | 2      | 632      | -           | fixed       | fixed      | hand           | $128 \times 48$ |
| GRID[28]     | 1,275     | 8      | 1,025    | subway      | fixed       | fixed      | hand           | vary            |
| CUHK03[26]   | 14,096    | 2      | 1,467    | campus      | fixed       | fixed      | DPM[12]+hand   | vary            |
| Market[44]   | 32,668    | 6      | 1,501    | campus      | fixed       | fixed      | DPM[12]+hand   | $128 \times 64$ |
| Airport[25]  | 39,902    | 6      | 9,651    | airport     | fixed       | fixed      | ACF[11]        | $128 \times 64$ |
| DukeMTMC[47] | 36,411    | 8      | 1,852    | campus      | fixed       | fixed      | Hand           | vary            |
| MSMT17[39]   | 126,441   | 15     | 4,101    | campus      | fixed       | fixed      | FasterRCNN[32] | vary            |
| LUPerson     | 4,180,243 | 46,260 | > 200k   | vary        | dynamic     | dynamic    | YOLOv5         | vary            |



- Contrastive learning framework for re-identification
  - Similar to MoCo but they verify and change several augmentations:
  - Remove: color distortion related augmentation (channel drop, color jitter)
  - Add: RandomErasing (task-specific augmentation)
- Contrastive learning framework for scene text recognition
  - Use dense contrastive learning to preserve spatial information of features
  - Add some "task-specific augmentations" to make the model more robust
    - Random affine/TPS transformation, simulated over-explosion, ... etc.

#### Experiments

ImageNet supervised pre-training
+ state-of-the-art re-id framework

LUP unsupervised pre-training + strong re-id baseline

| Method            | CUHK03    | Market1501        | DukeMTMC  | MSMT17    |
|-------------------|-----------|-------------------|-----------|-----------|
| PCB [36] (2018)   | 57.5/63.7 | 81.6/93.8         | 69.2/83.3 | -         |
| MGN [38] (2018)   | 67.4/68.0 | 86.9/95.7         | 78.4/88.7 | -         |
| MGN*              | 70.5/71.2 | 87.5/95.1         | 79.4/89.0 | 63.7/85.1 |
| BOT [29] (2019)   | -         | 85.9/94.5         | 76.4/86.4 | -         |
| DGNet [46] (2019) | -         | 86.0/94.8         | 74.8/86.6 | 52.3/77.2 |
| IANet [23] (2019) | -         | 83.1/94.4         | 73.4/87.1 | 46.8/75.5 |
| DSA [43] (2019)   | 75.2/78.9 | 87.6/95.7         | 74.3/86.2 | -         |
| Auto [31] (2019)  | 73.0/77.9 | 85.1/94.5         | -         | 52.5/78.2 |
| ABDNet [5] (2019) | -         | 88.3/95.6         | 78.6/89.0 | 60.8/82.3 |
| OSNet [50] (2019) | 67.8/72.3 | 84.9/94.8         | 73.5/88.6 | 52.9/78.7 |
| SCAL [4] (2019)   | 72.3/74.8 | <u>89.3</u> /95.8 | 79.6/89.0 | -         |
| P2Net [18] (2019) | 73.6/78.3 | 85.6/95.2         | 73.1/86.5 | -         |
| MHN [2] (2019)    | 72.4/77.2 | 85.0/95.1         | 77.2/89.1 | -         |
| BDB [10] (2019)   | 76.7/79.4 | 86.7/95.3         | 76.0/89.0 | -         |
| SONA [41] (2019)  | 79.2/81.8 | 88.8/95.6         | 78.3/89.4 | -         |
| GCP [30] (2020)   | 75.6/77.9 | 88.9/95.2         | 78.6/87.9 | -         |
| SAN [24] (2020)   | 76.4/80.1 | 88.0/96.1         | 75.5/87.9 | 55.7/79.2 |
| ISP [51] (2020)   | 74.1/76.5 | 88.6/95.3         | 80.0/89.6 | -         |
| GASM [21] (2020)  | -         | 84.7/95.3         | 74.4/88.3 | 52.5/79.5 |
| Ours(R50)+BDB     | 79.6/81.9 | 88.1/95.3         | 77.4/88.7 | 52.5/79.1 |
| Ours(R50)+MGN     | 74.7/75.4 | 91.0/96.4         | 82.1/91.0 | 65.7/85.5 |
| MGN(R101)         | 73.5/74.6 | 89.0/95.8         | 80.9/89.8 | 66.0/85.7 |
| Ours(R101)+MGN    | 76.9/77.6 | 92.0/97.0         | 84.1/91.9 | 68.8/86.6 |

#### Experiments

Ablation study for different augmentations

| Setting | Default | +RE  | -GS  | -GB  | -CJ  | -CJ+RE |
|---------|---------|------|------|------|------|--------|
| mAP     | 73.4    | 74.2 | 73.2 | 73.3 | 74.0 | 74.7   |
| cmc1    | 74.0    | 74.8 | 73.9 | 74.1 | 74.6 | 75.4   |

| Max area | 0.0  | 0.2  | 0.4  | 0.6  | 0.8  |
|----------|------|------|------|------|------|
| mAP      | 73.2 | 74.1 | 74.4 | 74.7 | 73.3 |
| cmc1     | 73.8 | 74.3 | 75.3 | 75.4 | 73.7 |

RE: Random Erasing

GS: Grayscale

GB: Gaussian Blur

CJ: Color Jitter

Max erasing area for Random Erasing

0.4: commonly used in supervised re-ID

0.6: best for unsupervised pre-training

#### Summary

- "Dense Contrastive Pre-training on Large-scale Unlabeled Dataset for Scene Text Recognition"
- Large-scale Unlabeled Dataset
  - Diverse languages, environments (day/night/indoor/outdoor), ...
- Contrastive Learning Framework
  - Dense contrastive learning framework
  - Random spatial distortion? Random over-explosion?

- Difference with previous approach
  - Large-scale Unlabeled Dataset

| Real unlabeled data |             |      |      |      |         |
|---------------------|-------------|------|------|------|---------|
| Book32 [14]         | arXiv       | 2016 | 3.9M | 3.7M | (88.9%) |
| TextVQA [44]        | <b>CVPR</b> | 2019 | 551K | 463K |         |
| ST-VQA [3]          | ICCV        | 2019 | 79K  | 69K  |         |
| Total               | _           | _    | 4.6M | 4.2M |         |



Fig. 2: The "Biographies & Memoirs" book covers that were classified by AlexNet as "History." While misclassified, many of these books also can relate to "History" despite the ground truth.

- Still has a gap with real "scene text" dataset
- Contrastive learning framework
  - Neglect spatial information
  - No task-specific augmentation

```
""" for self supervised learning on Feature extractor (CNN part) """
if SelfSL_layer == 'CNN':
    visual_feature = visual_feature.permute(0, 2, 1)  # [b, w, c] -> [b, c, w]
    visual_feature = self.AdaptiveAvgPool_2(visual_feature) # [b, c, w] -> [b, c, 1]
```