GDG for ML Newcastle

25th Oct. OPEN LAB

What is expected?

- Basic theory of machine learning
- Simple code implementation
- Small tricks in training a model

Machine learning is easy and funny.

Machine learning is the science of getting computers to act without being explicitly programmed.

— Stanford

Machine learning is the science of getting computers to act without being explicitly programmed. But instead letting them learn a few tricks on their own.

Stanford, Max-Planck Institute.

Machine learning is the science of getting computers to act without being explicitly programmed. But instead letting them learn a few tricks on their own.

Stanford, Max-Planck Institute.

https://developers.google.com/machine-learning/crash-course/

Build a Model

- Representation
 - LBP, SIFT.
- Modelling
 - Classification: Cross entropy
- Optimisation
 - Gradient Decent, Expectation Maximisation

DRAW A HORSE

BY VAN OKTOP

- 1 DRAW 2 CIRCLES
- DRAW THE LEGS

DRAW THE HAIR

DRAW A HORSE

BY VAN OKTOP

DRAW THE HAIR

0							_	_	
0		$\boldsymbol{\mathcal{A}}$	3	4	5	6	7	8	9
0	1	2	3	4	S	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	2	3	4	5	6	7	8	9
0	1	ጔ	3	4	5	6	7	8	9
0		a	3	4	5	6	7	E	9
0	1	7.	3	4	.5	6	7	ප	9

						18	18	18	126	136	175	26	166	255	247	127
	30	36	94	154	170	253	253	253	253	253	225	172	253	242	195	64
49	238	253	253	253	253	253	253	253	253	251	93	82	82	56	39	
18	219	253	253	253	253	253	198	182	247	241						
	80	156	107	253	253	205	11	0	43	154						
		14		154	253	90										
				139	253	190	2									
				11	190	253	70									
					35	241	225	160	108							
						81	240	253	253	119	25					
							45	186	253	253	150	27				
								16	93	252	253	187				
										249	253	249	64			

How does it work?

- Neurons: Placeholders that take the input.
- Connections: Parameters/Weights of the network.

Connections: Parameters/Weights of the network.

- Neurone: Placeholder that takes the numbers.
- Connections: Parameters/Weights of the network.

$$(c_0, c_1, ..., c_9) = f(x_1, x_2, ...x_{784})$$

Install Python (Anaconda)

Install Keras (Tensorflow)

Download the dataset

Build the model and training

https://developers.google.com/machine-learning/crash-course/

bingzhang.hu@ncl.ac.uk

github.com/u112358

