

Hello!

Advanced Engineering Mathematics Professor Rashed-Mohassel

Mohammad Reza Farhadi Nia

Infinite Products

History & Introductions

In <u>1831</u>, <u>Joseph Fourier</u>, in his analysis of equations <u>225</u>, mentions Viète as one of the most illustrious mathematicians, the second inventor of algebra, after <u>Al Kwarizmi</u>.

Comparison of the convergence of the Wallis product (purple asterisks) and several historical infinite series for π . S_n is the approximation after taking n terms. Each subsequent subplot magnifies the shaded area horizontally by 10 times. (Wikipedia)

$$\prod_{k=1}^{5} k^2 = 1 \cdot 4 \cdot 9 \cdot a(4)$$

- Laufvariable: k
- Startwert: 1
- Endwert: 5
- Funktion: $a(k) = k^2$
- ullet kann folgende Werte annehmen:

$$k = 1$$

$$k = 2$$

$$k = 3$$

Setze
$$k = 4$$
 es ist $a(4) = 4^2 = 16$

$$k = 5$$

Main Sections of Presentation

Infinite Products

- Convergence of Products and Series
- Conditionally Convergent Products
- Uniform Convergence of Products of Functions
- Infinite Products of Real Functions
- Infinite Product Expansions for sin x and cos x
- Abel's Limit Theorem for Infinite Products
- Weierstrass Products
- The Weierstrass Factorization Theorem
- Blaschke Products
- Double Infinite Products

Example 1

Cosider the product

$$\prod_{j=1}^{\infty} \frac{1}{2^{1/2^{j}}}$$

The partial products are given by

$$P_n = \frac{1}{2^{1/2}} \cdot \frac{1}{2^{1/4}} \cdot \cdot \cdot \frac{1}{2^{1/2^n}}$$
$$= 2^{-\sum_{j=1}^{n} (1/2)^j}$$
$$= 2^{-1+1/2^n}$$

Evidently $P_n \rightarrow 1/2$ as $n \rightarrow \infty$ and therefore the product converges.

Cosider the product

$$\prod_{j=1}^{\infty} \frac{1}{2^{j}}$$

Here,

$$P_{n} = \frac{1}{2^{1}} \cdot \frac{1}{2^{2}} \cdot \cdot \cdot \frac{1}{2^{n}}$$
$$= 2^{-(1+2+\cdots+n)}$$
$$= 2^{-\frac{n(n+1)}{2}}$$

Consequently $P_n \to 0$ as $n \to \infty$ thus the product diverge to zero.

The Gamma Function

- Representations of the Gamma Function
- Some Identities Involving the Gamma Function
- Analytic Functions Related to Gamma
- Stirling's Formula
- Applications to Products and Series
- The Beta Function

Example 2

A function f is said to be asymptotic to a function g as $x \to \infty$ if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 1$$

This relationship is denoted by

$$f \sim g$$

Ex:
$$f(x) = \log x + x^2 + e^x$$
 and $g(x) = e^x$

Stirling's Formula

$$\Gamma(x+1) \sim \sqrt{2\pi} x^{x+\frac{1}{2}} e^{-x}$$

As
$$X \rightarrow \infty$$

Prime Numbers & Partition

- Prime Numbers and Euler's Identity
- Partition Functions
- The Jacobi Triple Product Identity

Example 3

Corollary 4.2.2 For any $A \subseteq \mathbb{N}$ there exist sequences $\{a_j\}$ and $\{b_j\}$ such that

$$\prod_{j \in A} \frac{1}{1 - x^j} = \sum_{k=0}^{\infty} a_k x^k$$

and

$$\prod_{j \in A} (1 + x^j) = \sum_{k=0}^{\infty} b_k x^k$$

for all $x \in (-1, 1)$.

Theorem 4.2.3 For all x such that |x| < 1,

$$\prod_{j=0}^{\infty} \left(1 + x^{2^j} \right) = \sum_{j=0}^{\infty} x^j. \tag{4.2.3}$$

Euler function

$$\phi(q) = \prod_{k=1}^{\infty} (1 - q^k) \quad |q| < 1$$

Named after Leonhard Euler, it is a model example of a q-series, a modular form (as a function tau), and provides the prototypical example of a relation between combinatorics and complex analysis.

Modulus of ϕ on the complex plane, colored so that black = 0, red = 4

q-Pochhammer symbol

$$(z;q)_{\infty} = \prod_{n=0}^{\infty} (1-zq^n) \xrightarrow{z=q} (q;q)_{\infty} = \phi(q)$$

In <u>mathematics</u>, in the area of <u>combinatorics</u>, a *q*-Pochhammer symbol, also called a *q*-shifted factorial, is a <u>q</u>-analog of the <u>Pochhammer symbol</u> *The <u>Euler function</u> is a special case.

Annex: Walk of Fame

Euler Product

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} = \prod_{p \text{ prime}}^{\infty} \frac{1}{1 - p^{-s}}$$

In <u>number theory</u>, an **Euler product** is an expansion of a <u>Dirichlet series</u> into an <u>infinite product</u> indexed by <u>prime numbers</u>. The original such product was given for <u>the sum of all positive integers raised to a certain power</u> as proven by <u>Leonhard Euler</u>. This series and its continuation to the entire complex plane would later become known as the <u>Riemann zeta function</u>.

The Riemann zeta function $\zeta(z)$ plotted with domain coloring.^[1]

Annex: Walk of Fame

Wallis Product

$$\frac{\pi}{2} = \prod_{n=1}^{\infty} \left(\frac{2n}{2n-1} \cdot \frac{2n}{2n+1} \right) \longleftarrow \frac{\sin \pi z}{\pi z} = \prod_{n=1}^{\infty} \left(1 - \frac{z^2}{n^2} \right)$$

In mathematics, the Wallis product for $\underline{\pi}$, published in 1656 by John Wallis, [1]

Weierstrass Sigma Function

$$\sigma(z) = z \prod_{\omega \in \Lambda_*}^{\infty} (1 - \frac{z}{\omega}) e^{\frac{z^2}{2\omega} + \frac{z}{\omega}}$$

In mathematics, the Weierstrass functions are special functions of a complex variable that are auxiliary to the Weierstrass elliptic function. They are named for Karl Weierstrass. The relation between the sigma, zeta, and \wp functions is analogous to that between the sine, cotangent, and squared cosecant functions: the logarithmic derivative of the sine is the cotangent, whose derivative is negative the squared cosecant.

Plot of the <u>sigma</u> <u>function</u> using <u>Domain coloring</u>.

Reciprocal Gamma Function

$$\frac{1}{\Gamma(z)} = z \prod_{n=1}^{\infty} \frac{1 + \frac{z}{n}}{(1 + \frac{z}{n})^{z}} = \frac{i}{2\pi} \oint_{H} (-t)^{-z} e^{-t} dt$$

The reciprocal is sometimes used as a starting point for <u>numerical computation</u> of the gamma function, and a few software libraries provide it separately from the regular gamma function.

<u>Karl Weierstrass</u> called the reciprocal gamma function the "factorielle" and used it in his development of the <u>Weierstrass factorization theorem</u>.

Reciprocal gamma function $1/\Gamma(z)$ in the <u>complex plane</u>. The color of a point z encodes the value of $1/\Gamma(z)$. Strong colors denote values close to zero and hue encodes the value's <u>argument</u>.

Ramanujan Theta Function

$$f(a,b) = \prod_{n=0}^{\infty} (1 + a^{n+1}b^n)(1 + a^nb^{n+1})(1 - a^{n+1}b^{n+1})$$

An expression of the <u>Jacobi triple product</u>, also used in the expression of the Jacobi theta function

Jacobi's theta function θ_1 with nome $q = e^{i\pi\tau} = 0.1e^{0.1i\pi}$:

References and Usefull Links:

- Charles H. C. Little, Kee L. Teo, Bruce van Brunt, An Introduction to Infinite Products, Springer Nature, Switzerland, 2022.
- https://en.wikipedia.org/wiki/Infinite_product
- https://mathworld.wolfram.com/InfiniteProduct.html
- https://ckrao.wordpress.com/2011/08/05/collection-of-infinite-products-i/
- https://ckrao.wordpress.com/2011/08/09/a-collection-of-infinite-products-ii/

Any questions?

Thanks!

You can find me at:

farhadinia0@gmail.com