titanic_cardinality

April 13, 2025

```
[1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

[2]: with open("./Zbiór danych Titanic.arff", "r") as f:
    headers = f.read()

columns = [header.split()[1].strip("'") for header in headers.split("\n") if_
    header.lower().startswith("@attribute")]
    titanic_df = pd.read_csv('./Zbiór danych Titanic.arff', skiprows=17)
    titanic_df.columns = columns
    titanic_df = titanic_df.replace("?", np.nan)

0.1 1.

[3]: cats = ['pclass', 'survived', 'name', 'sex', 'ticket', 'cabin', 'embarked', ...
```

```
[3]: cats = ['pclass', 'survived', 'name', 'sex', 'ticket', 'cabin', 'embarked', user' boat', 'home.dest']
cardinality = pd.DataFrame(columns=['len'])

for col in cats:
    cardinality.loc[col] = len(titanic_df[col].unique())

for col in cardinality.sort_values(by='len', ascending=False).index:
    print('Liczba etykiet zmiennej {}: {}'.format(col, cardinality.loc[col, user']))
```

```
Liczba etykiet zmiennej name: 1306

Liczba etykiet zmiennej ticket: 929

Liczba etykiet zmiennej home.dest: 370

Liczba etykiet zmiennej cabin: 187

Liczba etykiet zmiennej boat: 28

Liczba etykiet zmiennej embarked: 4

Liczba etykiet zmiennej pclass: 3

Liczba etykiet zmiennej sex: 2

Liczba etykiet zmiennej survived: 2
```

0.2 2.

```
[4]: print("Liczba wszystkich pasażerów {}".format(len(titanic_df)))
```

Liczba wszystkich pasażerów 1308

0.3 3.

0.3.1 Mała moc zbioru

Zmienne survived, sex mają dwie różne wartości (takie dane reprezentują). Zmienna embarked ma 3 wartości, ponieważ Titanic odbijał od tylko trzech portów. Zmienna boat ma tylko 28 wartości, ponieważ uznano taką ilość za odpowiednią (nie było). Zmienna pclass ma 3 różne wartości, ponieważ przedstawia 3 klasy.

0.3.2 Duża moc zbioru

Zmienne name, ticket, cabin, home.dest mają dużą moc, gdyż są one różne dla prawie każdego pasażera.

0.4 4.

```
[5]: len(titanic_df['cabin'].dropna().unique())
```

[5]: 186

0.5 5.

```
[6]: titanic_df['CabinReduced'] = titanic_df['cabin'].dropna().astype(str).str[0] titanic_df[['cabin', 'CabinReduced']].head(20)
```

```
[6]:
            cabin CabinReduced
     0
          C22 C26
                                С
                                С
          C22 C26
     1
                                С
     2
          C22 C26
          C22 C26
                                С
     3
                                Ε
     4
              E12
     5
               D7
                                D
     6
              A36
                                Α
     7
             C101
                                С
     8
              NaN
                              NaN
                                С
     9
          C62 C64
     10
          C62 C64
                                С
                                В
     11
              B35
     12
              NaN
                              NaN
     13
              A23
                                Α
     14
              NaN
                              NaN
     15
          B58 B60
                                В
     16
          B58 B60
                                В
     17
                                D
              D15
```

```
18 C6 C
19 D35 D
```

0.6 6.

```
Liczba etykiet zmiennej cabin: 187
Liczba etykiet zmiennej CabinReduced: 9
Kardynalność zredukowano o 95.19%
```

0.7 7.

0.7.1 Dlaczego dokonuję redukcji akurat zmiennej cabin?

- 1) Zwiększa sie przejrzystość danych, gdyż cabin ma wysoką kardynalność (zamiast 187 etykiet zostaje nam 9)
- 2) Takie było polecenie nr 5, czyli mam obowiązek zrealizować to polecenie

Wpływ

 Zamiast kilkuset kabin mamy kilka kategorii, co zwiększa przejrzystość danych, dzięki czemu można się skupić an istotnych cechach

Negatywne skutki:

• Utrata szczegółowych informacji o kabinach, co może zmniejszyć dokładność, co może doprowadzić do zniknięcia drobnych wzorców (np. odległość kabiny od łodzi ratunkowej)