Then on = Ju(Go o(on))

Each o(m) is a maximal ideal Astinct from
on (by Stab(n) = {ex hypothesis), so on \$000),
and by prime avoidance, we must have 9155,
50 of = J. Thus, we can write
n= (fx, -, ft) with or(fi) &n for each oxe, each i.
Then $g_{\bar{i}} = \overline{\tau}_{\bar{i}} = \overline{\sigma}(f_{\bar{i}}) \notin \mathfrak{N}$, so $g_{\bar{i}}$ are units in $\Re n$. Thus, $g_{\bar{i}} = (g_{\bar{i}}f_{\bar{i}}, \dots, g_{\bar{i}}f_{\bar{i}})$, and each $g_{\bar{i}}f_{\bar{i}} \in R^{\sigma} \cap \mathfrak{N} = \mathfrak{M}$
Thus, on = (gifi,, gift), and each gift ERONN=M
faffilling the chain. [Exercise: The equality on R= Tes o(n) holds in this setting.
Polan Rann
Gestfilling the claim. Texercise: The equality on R= Feb o(n) holds in this setting. Now the map . is module-finite (Re target
Beven. Finate beigh) so the coternal
Beven. Finate length) so the cothernel M=Ron(im(Ro)+9nn) is as well. But MmM = Ron(im(Ro)+nn) ~0, 90 M=0 by NAt. Thus the map is surjective.
~ 0, go M=0 by NAK. Thus the map is surjective.
For injectivity, will need to show that n' 126 cm.
Note that if I=(as,, as) = R and f \in I/R, we
have $f = \sum_{i=1}^{n} a_i r_i \sim f = \sigma(f) = \sum_{i=1}^{n} \sigma(a_i) \sigma(r_i) \in \sigma(I)$ for $\sigma \in \mathcal{O}$
This, ann Ra & For Tan = IT Jan (by Chinege Reminden)
= IT sign) = (IT sign) = (TEG sign) = (mR) =
The same of the same of the same of the same of
= mnR, 58 mn/26 = mnR nR6=mn,
Since Ro B a street summand at R. 12
10+ T = (1700) + + (190) 40 + 65)
(moto Who to see ment

There is a natural map ROPEPER ~ ROKRA DRIK, SINCE SPOK (ROKR) = DRIK. Prop: Let ME Max(R) be 3.1. Stab (an) = Se3, and tet an = anne hun prf: Forst, we cheek surjectivity. Note hat dn: Ran Open Proulk -Pralk & finitely generated, go by WAK, it suffices to see that Pralk = im(dn) + M Pralk. But,

Prank = Korn Rank = Ran - Ran - Ran Prank

M Prank = Korn Prank - gull - mull - mull n (Randra Prank), resifying surjectivity.

To see injectivity, note that Polk is local unit maximal ideal (NOI+1091):

Spec (RARA) = Spec (Range Ran) = Spec (Range Unit is local;

Similarly, Range Prolk is local w/max ideal (MOI+1091).

Set & be the wap Range Pronk — Prank — Prank (MOI+1091). An element in Ron Open Pronik is in ker(of) (=> its image is in ker(ot) for each t, Since (nto1+10nt) = 1 (n01+20n) = 0, by krull-1. But the Boundryham Pout = Reyat induces isomorphisms of for every t. Thus, $zer(2) \le f(100) + 1000 = 0$ In is also injective. [2] Home (-, R), & induces a map -> Home (Reported, R) = Home (Prok, R) Home (Pak, R) Drojk (ROK) Exercise: B B just the restriction map. It follows that Bon is an isomorphism for all methants) with trivial stabilizer.

N-Horal to

dogwood Let 066. Consider Max_k(R) = kⁿ to

injunity be the maximal items of R with residue field 2t;

these are all of the form

m_k = (x₁ - x₂, - . . , x_n - d_n), for x ∈ kⁿ.

Let Fix_k(T) = F₁x_k(T) (x - x) = (\sigma(x) - x) (x - \sigma(x)) conx,

go Fix_k(T) = V(x₁ - T(x₂), . . . , x_n - O(x_n)) \ Max_k(R),

which is a linear subspace of Max_k(R) = kⁿ of

cosimension exal to the rank of (id-or) as

a linear transformation on [R]₄.

Def: We say that \(\sigma(x) \in \sigma(x) \in \text{Max_k}(R) = kⁿ

has cosimention one.