WYZNACZANIE SZEROKOŚCI PRZERWY ZABRONIONEJ PÓŁPRZEWODNIKÓW METODĄ OPTYCZNĄ

Opis układu pomiarowego

Schemat układu pomiarowego pokazany jest na rysunku. Źródłem promieniowania (Zr) jest specjalna lampa (oświetlacz) zasilana z zasilacza (Z). Pomiary natężenia promieniowania po przejściu przez absorbent (próbką półprzewodnika) prowadzone są techniką zmiennoprądową. W tym celu strumień promieniowania jest przerywany przez modulator (Mod) z pewną stałą częstotliwością, do której musi być dostrojony nanowoltomierz selektywny (NS). Monochromator (Mon) służy do wyodrębnienia z widma promieniowania wąskiego przedziału długości fali. Wiązkę promieniowania wychodzącą z monochromatora uważamy za monochromatyczną i przypisujemy jej długość fali odczytaną ze skali przyrządu. Jako element rozszczepiający promieniowanie zastosowano pryzmat z NaCl. Obracając go można zmieniać długość fali promieniowania padającego na próbkę.

Badanymi próbkami są bardzo cienkie płytki półprzewodnikowe o następujących grubościach: próbka z krzemu d = $210~\mu m$, próbka z germanu d = $290~\mu m$. Płytki te są umieszczone w specjalnym zmieniaczu próbek (Zm Pr), który umożliwia szybkie, wymienne wstawianie w wiązkę promieniowania okienek z próbkami lub pustego okienka, dla dokonania pomiaru natężenia wiązki padającej I_o . Detektorem promieniowania jest termoelement próżniowy (termopara) z okienkiem z NaCl. Jego czułość jest niezależna od długości fali w zakresie od 0,4 μ m do 16 μ m.

Przeprowadzenie pomiarów

1. Zaznajomić się z przeznaczeniem poszczególnych elementów układu, w tym z budową i obsługą monochromatora SPM2. Na jego płycie czołowej występują: 1 - pokrętło ustawiania szerokości szczeliny, 2 - pokrętło zmiany długości fali, 3 - wyłącznik sieci, 4 - lampka kontrolna, 5 - przycisk włączający oświetlenie skali, 6 - przełącznik pryzmatów, 7 - skala długości fali.

- 2.Ustawić pokrętłem (2) monochromatora długości fali padającego promieniowania $\lambda = 1,2\,\mu\,m$. Ponieważ prawo Bouguera Lamberta stosuje się tylko do promieniowania monochromatycznego padającego prostopadle na powierzchnię badanego kryształu nie doznającego odbicia, pokrętłem (1) ustawić możliwie małą, w granicach 0,1 0,3 mm szerokość szczeliny monochromatora.
- 3.Ustawić w zmieniaczu próbek puste okienko i dostroić częstotliwościowo nanowoltomierz selektywny na maksimum wychylenia.
- 4.Dla obu próbek oraz przy ustawieniu w zmieniaczu próbek pustego okienka zmierzyć zależność sygnału detektora od długości fali w przedziale od 0,8 do 2,1 μ m. Wstawienie pustego okienka umożliwia pomiar natężenia promieniowania padającego na próbki I_o . Pomiary należy przeprowadzać równolegle dla wyżej wymienionych trzech przypadków, tzn. w następującej kolejności:
- a) ustawić na monochromatorze żadana długość fali,
- b)zmieniaczem ustawić w wiązkę promieniowania puste okienko,
- c)odczytać na monochromatorze wielkość sygnału detektora (w μ V) która odpowiada wartości natężenia I_o ,
- d)zmieniaczem ustawić w wiązkę promieniowania pierwszą próbkę,
- e)dokonać odczytu wielkości sygnału jak w punkcie c (uzyskana wartość odpowiada natężeniu wiązki transmisyjnej I_p dla pierwszej próbki),

f)zmieniaczem ustawić w wiązce promieniowania druga próbkę i powtórzyć dla niej operacje (d) i (e),

g)ustawić na monochromatorze następną długość fali,

h)powtarzać operacje od (b) do (f) dla wszystkich długości fali z całego badanego przedziału długości fal.

Uwaga: Punkty pomiarowe rozmieścić tak gęsto, na ile pozwala nieliniowa skala długości fali monochromatora (7).

5. Wyniki pomiarów wpisywać do tabeli:

	puste okno	krzem Si	german Ge
λ	I_o	I_p	I_p
[\(\mu \)]	[µ V]	[µ V]	[μ <i>V</i>]
0,8			
2,1			

6.Oszacować niepewności pomiarów.

Opracowanie wyników pomiarów

1.Z danych pomiarowych dla obu próbek dla każdej zmierzonej długości fali wyznaczyć wartość współczynnika absorpcji A = 1 - T = $\frac{I_o$ - $I_p}{I_o}$ \cdot 100% .

2.Z danych pomiarowych dla obu próbek dla każdej zmierzonej długości fali wyznaczyć współczynnik pochłaniania α z zależności $\ln \frac{I_p}{I_o}$ = - α · d.

3. Wykreślić zależność $A(\lambda)$ dla obu badanych próbek. Z wykresów graficznie, jak pokazano

na rysunku wyznaczyć krawędzie absorpcji λ g dla obu próbek. Widmo pochłaniania promieniowania elektromagnetycznego przez półprzewodnik:

- a) absorpcja międzypasmowa (zachodzi dla $\lambda < \lambda_g$),
- b) absorpcja na swobodnych
 nośnikach ładunków (tzw. ogon
 λ [μm] absorpcji).

4.Ze znajomości krawędzi absorpcji $^{\lambda}g$ obliczyć szerokość przerwy zabronionej badanych półprzewodników E_g = $\frac{h\cdot c}{^{\lambda}g}$. Energie E_g wyrazić w jednostkach eV (elektronowolty).

5. Na podstawie utworzonego wykresu $A(\lambda)$ oszacować niepewność maksymalną wyznaczenia długości fali odpowiadającej krawędzi absorpcji, a następnie opierając się na

wzorze
$$u_{c,r}(y) = \frac{u_c(y)}{y} = \frac{1}{\sqrt{3}} \sqrt{\left(n_i \cdot \frac{\Delta x_i}{x_i}\right)^2}$$
 obliczyć niepewność złożoną względną i

bezwzględną szerokości przerwy energetycznej E_{g} .

6. Wyznaczyć zgodnie z zależnością $U(x) = k \cdot u(x)$ niepewność rozszerzoną dla szerokości przerwy energetycznej przyjmując do obliczeń współczynnik rozszerzenia k=2. Sprawdzić zgodność uzyskanych wartości z wartościami tabelarycznymi.

7. Wykreślić zależność α (λ) dla obu próbek półprzewodników.

Zestawić wyniki, przeanalizować uzyskane rezultaty (także wykresy), wyciągnąć wnioski. Stwierdzić czy cele ćwiczenia:

- •wyznaczenie szerokości przerwy zabronionej germanu,
- •wyznaczenie szerokości przerwy zabronionej krzemu, zostały osiągnięte.