Note: Mid Term Exam

Type: Lecture Reviewed: No

Data Science for workflow

- 1. Data Collection and Storage -> Collect, Storage.
- 2. Data Preparation -> Cleaning, Organized, Reformat.
- 3. Exploration & Visualization -> Image, Graph.
- 4. Experimentation & Prediction -> Estimate, Forecast.

What do we need for machine learning?

- 1. A well-defined question.
- 2. A set of example data.
- 3. A new set of data to use our algorithm on.

Traditional machine learning -> Prediction, Cluster.

IOT -> Physical device.

Deep learning -> Image recognition, Language.

Data Engineer -> Data Collection and Storage.

- Build data flow, pipeline, storage system.
- SQL, Python, Java.

 ${\rm Data~Analyst} \mathrel{->} \mathbf{Data~Preparation~and~Exploration~\&~Visualization}.$

• SQL, Excel.

Data Scientist -> Experimentation & Prediction and Data Preparation.

- Statistical, traditional machine learning.
- Python, R.

Machine Learning Scientist -> Prediction and Data Preparation.

- Deep Learning, Prediction, Classification.
- Python, R.

Open data -> API, Government data, Public.

• Free data.

Company data -> Survey, customer data, logistics data, web events.

• data-driven decisions, not open data.

Quantitative data -> counted, measured, and numbers.

Qualitative data -> observed but not measured.

Unstructured -> text, video and audio files that are stored in database.

Structured -> Relational database such as MySQL.

Data Type	Query Language	
Document Database	NoSQL	
Relational Database	SQL	

Data pipelines -> Transform & Load.

- How de we keep it organized and easy to use?
 - Joining data sources into one data set.
 - Converting data structures to fit database schemas.
 - Removing irrelevant data.

Why prepare data?

• Real data is messy(Tidiness), Missing data, and Remove duplicates

Exploratory Data Analysis

• formulating hypotheses and assessing its main characteristics, with a strong emphasis on visualization.

What are experiments in data science?

- Experiments help drive decisions and draw conclusions.
- 1. Form a question
- 2. Form a hypothesis
- 3. Collect data
- 4. Test the hypothesis with statistical test
- 5. Interpret results

What is A/B Testing?

• Testing A case and B case and see which one produce better result.

Time series data

• Stock, gas price | Unemployment, heart, inflation rate | temperature | Height.

Forecasting time series will tell us about

- How much rainfall will we get next month?, Will traffic ease up in the next half hour?
- How will the stock market move in the next six hours?, What will be earth's population in 20 years?

How do we know the model is good?

• Data has features and labels.

What is supervised machine learning?

- Predictions from data with labels and features.
- Recommendation systems.
- Recognizing hand-written digits

Unsupervised machine learning -> $\mathbf{Clustering}$

- Clustering is a set of machine learning algorithms that divide data into categories, called clusters.
- Clustering can help us see patterns in messy datasets.
- Machine Learning Scientists use clustering to divide customers into segments, images into categories, or behaviors into typical and anomalous.

Histogram plot -> distribution Scatter plot -> see two correlation between 2 subject Line plot -> see the trend of 2 subject

plt.hist(life_exp, bins=5) # for histogram plot with bins

```
plt.plot(x=, y=) # for line plot
# .loc[Start row: Stop row, Start column: Stop column]
brics.loc['BR':'CH','country':'area']
# .iloc use index instead of string to specify row and column
brics.iloc[0:4,0:2]
plt.xscale("log")
plt.xlabel("")
plt.ylabel("")
plt.title("")
xtick_val = [1000, 10000, 100000] # for actual value
xtick_lab = ["1k", "10k", "100k"] # for text
plt.xticks(xtick_val, xtick_lab)
plt.yticks()
more_than_200 = brics['population']>=200 # output set of booleans
brics[more_than_200][['country', 'population']] # more than 2000 and showing only country as
brics[(brics['population']>1000) | (brics['area'] < 8)][['capital']] # doing comparison and</pre>
```

	cars_per_cap	country	drives_right
US	809	United States	True
AUS	731	Australia	False
JAP	588	Japan	False
IN	18	India	False
RU	200	Russia	True
MOR	70	Morocco	True
EG	45	Egypt	True
for lab,	.7		

```
print(lab + ": " + str(row['cars_per_cap']))
   # lab -> index
Output:
 US: 809
 AUS: 731
 JAP: 588
 IN: 18
 RU: 200
 MOR: 70
 EG: 45
# Adding new row to data frame
for lab,row in cars.iterrows():
   cars.loc[lab, "COUNTRY"] = row['country'].upper()
   # "COUNTRY" -> name setting for row
OR
cars['COUNTRY'] = cars['country'].apply(str.upper)
cars['name_length'] = cars['country'].apply(len)
```

netflix_df.query('type == "Movie"')
netflix_df_movies_only[(netflix_df_movies_only["country"] == "United States")]

long_genre = netflix_us_only.groupby("genre")[["release_year", "duration"]].mean() # mean o

release_year duration

genre

3		
Action	2008.922449	108.428571
Children	2011.917241	79.441379
Classic Movies	1968.404762	103.880952
Comedies	2012.445122	96.576220
Cult Movies	1990.111111	97.888889
Documentaries	2016.128463	81.372796
Dramas	2012.984085	104.965517
Horror Movies	2014.414414	92.117117
Independent Movies	2016.000000	98.000000
Music	2016.600000	85.000000
Romantic Movies	2017.500000	83.000000
Sci-Fi	2011.833333	109.833333
Stand-Up	2014.449275	67.256039
Thrillers	2013.300000	97.775000

x = long_genre.index # need index for plotting
plt.barh(x, long_genre.duration) # horizontal bar

plt.scatter(long_genre.duration, x) # index on y-axis on scatter

release_year.groupby('country').count()

```
# ascending = True -> low to high -> ascending order
# ascending = False -> high to low -> descending order
```

release_year.groupby('country').count().sort_values(by=['title'], ascending=False).head(10)

```
# must be number for each variable
india = count.iloc[1][0]
uk = count.iloc[2][0]
canada = count.iloc[3][0]
y = np.array([india, canada, uk])
labels = ["India", "Canada", "United Kingdom"]
plt.pie(y, labels=labels)
a = []
b = \prod
for lab, row in count.iterrows():
    a.append(row['title']) # number
    b.append(lab) # index
plt.figure(figsize=(15, 15))
def func(pct, allvals):
    absolute = int(np.round(pct / 100.0 * np.sum(allvals)))
   return f"{pct:.1f}%\n({absolute:d})"
# Pie Chart
plt.pie(a, labels=b, autopct=lambda x: func(x, a), pctdistance=0.85, startangle=90)
# draw circle
centre_circle = plt.Circle((0, 0), 0.50, fc='white')
fig = plt.gcf()
# Adding Circle in Pie chart
fig.gca().add_artist(centre_circle)
plt.title('Number of titles released by top 10 countries')
# sorting many column
homelessness.sort_values(by=["region", "family_members"], ascending=[True, False])
mojave_state = ['Arizona', 'California', 'Nevada', "Utah"]
mojave_homelessness = homelessness[homelessness['state'].isin(mojave_state)]
homelessness['individuals'] + homelessness['family_members']
# Dropping values
store_types = sales.drop_duplicates(subset=["store", "type"])
sales[sales['is holiday'] == True]
holiday_dates.drop_duplicates(subset=["date"])
```

```
store_types["type"].value_counts()
store_types["type"].value_counts(normalize=True) # show in percentage of data in the data for
store_depts["department"].value_counts(sort=True) # sort=True make into descending
temperature.set_index(["country", "city"])
temperature.reset_index() # index 0, 1, 2, n
# index two value while "country" and "city" are index
row_to_keep = [("Brazil", "Rio De Janeiro"), ("Pakistan", "Lahore")]
temperature_ind.loc[row_to_keep]
sns.histplot(data=unemployment, x="2011", bins=20)
unemployment['2012'].min(), unemployment['2012'].max()
sns.boxplot(data=unemployment, x=unemployment['2012'], y=unemployment['continent'])
unemployment[["2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", \
"2018", "2019", "2020", "2021"] ].agg(["mean", "std"])
unemployment.groupby('continent')[["2010", "2011", "2012", "2013", "2014", \
"2015", "2016", "2017", "2018", "2019", "2020", "2021", ]].agg(["mean", "std"])
      2010
                  2011
                             2012
                                                    2014
                                         2013
                                                                            2018
 continent
  Africa 9.343585 7.411259 9.369245 7.401556 9.240755 7.264542 9.13245 7.309285 9.121321 7.291359 ... 9.284528 7.407620 9.237925 7.358425
   Asia 6.240638 5.146175 5.942128 4.779575 5.835319 4.756904 5.852128 4.668405 5.853191 4.681301 ... 6.171277 5.277201 6.090213 5.409128
 Europe 11.008205 6.392063 10.947949 6.539538 11.325641 7.003527 11.466667 6.969209 10.971282 6.759765 ... 8.359744 5.177845 7.427436 4.738206
 North America A.663333 5.115805 8.563333 5.377041 8.448889 5.495819 8.840556 6.081829 8.51222 5.801927 .... 7.391111 5.25446 7.281111 5.253180
 Oceania 3.62250 2.054721 3.647500 2.008466 4.103750 2.723118 3.980000 2.640119 3.976250 2.659205 ... 3.872500 2.492834 3.851250 2.455893
 South America 6.87083 2.807058 6.51833 2.801577 6.41083 2.936508 6.33500 2.806780 6.347500 2.834332 ... 7.281667 3.398994 7.496667 3.408856
unemployment.groupby("continent").agg(
     mean_rate_2021 = ("2021", "mean"),
     std_rate_2021= ("2021", "std")
)
```

mean_rate_2021 std_rate_2021

8.131636

5.414745

10.473585

6.906170

continent

Africa

Asia

	Asia	0.900170	5.414745	
	Europe	7.414872	3.947825	
	North America	9.155000	5.076482	
	Oceania	4.280000	2.671522	
	South America	9.924167	3.611624	
<pre>sns.barplot(data=unemployment, x="continent", y="2021")</pre>				
ai	airline.isna().sum() # print number of missing values.			
<pre>threshold = len(airline) * 0.05 col_to_drop = airline.columns[airline.isna().sum() <= threshold] airline.dropna(subset=col_to_drop, inplace=True)</pre>				
airline.groupby("Airline")["Price"].median().to_dict() # output: {'Air Asia': 5192.0, 'Air airline["Price"] = airline["Price"].fillna(airline["Airline"].map(a)) # fillna on price by its airline airline["Airline"].map(a) # fillna on price by its airline airline["Airline"].map(a)				
<pre># Filter the DataFrame for object columns non_numeric = airline.select_dtypes("object") # Index(['Airline', 'Date_of_Journey', 'Source', 'Destination', 'Route', 'Dep_Time', # 'Arrival_Time', 'Duration', 'Total_Stops', 'Additional_Info'], dtype='object')</pre>				
<pre>for col in non_numeric.columns: print(f"Number of unique values in {col} column: ", non_numeric[col].nunique())</pre>				
sh me	<pre>tration_category = ["Short" tort_flights = "0h 1h 2h 3h edium_flights = "5h 6h 7h 8] ong_flights = "10h 11h 12h onditions = [</pre>	4h" h 9h"] # For labe	el in the data frame

 $(\verb|airline| ["Duration"].str.contains(short_flights)), \# \mathit{Short}$ (airline["Duration"].str.contains(medium_flights)), # Medium (airline["Duration"].str.contains(long_flights)), # Long

```
# Duration_Category output: Medium 5000, Short 1000
airline["Duration_Category"] = np.select(
    conditions, duration_category, default="Extreme Duration"
)
# y-axis -> will be the count of occurrence; by just mentioning x-axis
sns.countplot(data=airline, x=airline["Duration_Category"])
airline["Duration"] = airline["Duration"].str.replace("h", ".")
airline["Duration"] = airline["Duration"].astype(float) # change type
# x.mean(), x.median()
airline.groupby("Airline")["Price"].transform(lambda x: x.std())
price_seventy_fifth = airline["Price"].quantile(0.75)
price_twenty_fifth = airline["Price"].quantile(0.25)
price_iqr = price_seventy_fifth - price_twenty_fifth
upper = price_seventy_fifth + (1.5 * price_iqr)
lower = price_twenty_fifth - (1.5 * price_iqr)
airline[(airline["Price"] < lower) | (airline["Price"] > upper)] # outlier
no_outlier = airline[(airline["Price"] > lower) & (airline["Price"] < upper)]</pre>
no_outlier["Price"].describe()
divorce.dtypes # check types
pd.read_csv("data/h.csv", parse_dates=["date_of_response"],)
divorce["marriage_date"] = pd.to_datetime(divorce["marriage_date"]) # convert into date type
divorce["marriage_date"].dt.month # get month; dt.weekday, dt.year
sns.lineplot(
    data=divorce, x=divorce["marriage_month"], y=divorce["marriage_duration"]
)
sns.pairplot(data=divorce) # many plot
```


sns.kdeplot(data=divorce, x="marriage_duration", hue="education_man") # cut=0, cumulative=Texts.

sns.pairplot(data=divorce, vars=["income_woman", "marriage_duration"])

salary_rupee_usd["Job_Category"].value_counts()

Job_Category	
Data Science	113
Data Engineering	111
Data Analytics	92
Machine Learning	49
Other	28
Managerial	14
Name: count, dtype:	int64

check correlation between

pd.crosstab(salary_rupee_usd["Job_Category"], salary_rupee_usd["Company_Size"])

Company_Size	L	М	s
Job_Category			
Data Analytics	23	61	8
Data Engineering	28	72	11
Data Science	38	59	16
Machine Learning	17	19	13
Managerial	5	8	1
Other	13	9	6

Company_Size

pd.crosstab(salary_rupee_usd["Job_Category"], salary_rupee_usd["Company_Size"],
values=salary_rupee_usd["Salary_USD"], aggfunc="mean") # check by salary(mean)

S

Job_Category			
Data Analytics	112851.749217	95912.685246	53741.877000
Data Engineering	118939.035000	121287.060500	86927.136000
Data Science	96489.520105	116044.455864	62241.749250
Machine Learning	140779.491529	100794.236842	78812.586462
Managerial	190551.448800	150713.628000	31484.700000
Other	92873.911385	89750.578667	69871.248000


```
twenty_fifth = salaries["Salary_USD"].quantile(0.25)
salaries_median = salaries["Salary_USD"].median()
seventy_fifth = salaries["Salary_USD"].quantile(0.75)
largest = salaries["Salary_USD"].max()

salary_labels = ["entry", "mid", "senior", "exec"]
salary_ranges = [0, twenty_fifth, salaries_median, seventy_fifth, largest]
# bins -> find the range and labels -> labels it with salary_labels
salaries["salary_level"] = pd.cut(
    salaries["Salary_USD"], bins=salary_ranges, labels=salary_labels
)
sns.countplot(data=salaries, x="Company_Size", hue="salary_level")
```


usa_and_gb = salaries[salaries["Employee_Location"].isin(["US", "GB"])]
sns.barplot(data=usa_and_gb, x="Employee_Location", y="Salary_USD")
data = salaries[salaries["Employee_Location"].isin(["US", "GB"])]
sns.barplot(data=data, x="Employee_Location", y="Salary_USD")


```
usa_and_gb = salaries["Employee_Location"].isin(["US", "GB"])
sns.barplot(
   data=salaries, x="Company_Size", y="Salary_USD", hue="Employment_Status")
```



```
np.logical_and(brics['area']>8, brics['area']<10)
np.logical_or(brics['population']>1000, brics['area']<3)

# find highest average temperature
temperature[temperature["avg_temp_c"] == temperature["avg_temp_c"].max()]

during_year_thailand = thailand[
         (thailand["date"] >= "2005-01-01") & (thailand["date"] <= "2010-01-01")

]
print(
         f"The avg. temp of Thailand during 2005-2010 is {round(during_year_thailand['avg_temp_c')</pre>
```