第十九届全国青少年信息学奥林匹克联赛初赛

提高组C语言试题

竞赛时间: 2013年10月13日14:30~16:30

选手注意:

- 试题纸共有12页,答题纸共有2页,满分100分。请在答题纸上作答,写在试题纸上 的一律无效。
- 不得使用任何电子设备(如计算器、手机、电子词典等)或查阅任何书籍资料。
- 确

	、单项 项)	i选择题(共	卡 15 長	题,每题 1.5 分,	共	计 22.5 分;	每题有_	且仅有一个正确
1.	一个:	32 位整型变量	量占用	() 个字节。				
A	A. 4		B.	8	C.	32	D.	128
2.	二进制	制数 11.01 在 ⁻	十进制	川下是()。				
A	A. 3.2	5	B.	4.125	C.	6.25	D.	11.125
3.	里有人	从前有座山,	山里有 个老和	知尚在给小和尚讲;	老和			"从前有座山,山 有座庙,庙里有个
A	4. 枚3	举	B.	递归	C.	贪心	D.	分治
A	A. 冯		hn vor	学中的熵引入信息 n Neumann))	B.	图灵(Alan	Turing)	
5.	己知-	一棵二叉树有	2013	个节点,则其中至	多有	育()个节	点有2个	子节点。
A	A. 100)6	B.	1007	C.	1023	D.	1024

6. 在一个无向图中,如果任意两点之间都存在路径相连,则称其为连通 图。右图是一个有5个顶点、8条边的连通图。若要使它不再是连通 图,至少要删去其中的()条边。

A. 2	В. 3	C. 4	D. 5
算斐波那契数 int F(int r {	(列的第 n 项,则其时间 1)		(n≥3)。如果用下面的函数计
if (n <	= 2)		
ret	urn 1;		
else			
ret	urn F(n - 1) + F(n	- 2);	
}			
A. O(1)	B. $O(n)$	C. $O(n^2)$	D. $O(F_n)$
树上所有节点	(的值。那么,二叉查找	树的()是一个有	上所有节点的值、小于其右子 百序序列。 D. 宽度优先遍历
	17)分别存储到某个地均 不会产生冲突,其中 <i>a</i> r	mod <i>b</i> 表示 <i>a</i> 除以 <i>b</i> 的 B. x ² mod 11	表中,如果哈希函数 $h(x) = 1$ 3余数。 $11, 其中 \sqrt{x} 表示 \sqrt{x} $ 下取整
C. 2		2. [vw] mee	TIV X T [VII] MAT VIII
使用()(垃地址的 IPv6 协议所取	代。	日趋枯竭。因此,它正逐渐被
A. 40	B. 48	C. 64	D. 128
	:将顶点划分成两个部分 顶点的二分图至多有(* .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	间没有边相连的简单无向图。
A. 18	B. 24	C. 36	D. 66
制编码,以满		本交换。目前它已经	言设定了统一并且唯一的二进 收录了超过十万个不同字符。 D. BIG5
13. 把 64 位非零% A. 大于原数 C. 等于原数	浮点数强制转换成 32 位	·浮点数后, <u>不可能</u> (B. 小于原数 D. 与原数符号	

14. 对一个n个顶点、m条边的带权有向简单图用 Dijkstra 算法计算单源最短路时,如果不 使用堆或其它优先队列进行优化,则其时间复杂度为()。

A.
$$O(mn + n^3)$$

B.
$$O(n^2)$$

C.
$$O((m+n) \log n)$$

D.
$$O((m+n^2)\log n)$$

15. T(n)表示某个算法输入规模为 n 时的运算次数。如果 T(1)为常数,且有递归式 T(n) = 2*T(n/2) + 2n, 那么 T(n) = () 。

A.
$$\Theta(n)$$

B.
$$\Theta(n \log n)$$

C.
$$\Theta(n^2)$$

B.
$$\Theta(n \log n)$$
 C. $\Theta(n^2)$ D. $\Theta(n^2 \log n)$

- 二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确 选项, 多选或少选均不得分)
- 1. 下列程序中, 正确计算 1.2. 100 这 100 个自然数 之和 sum(初始值为 0) 的是(

1.	「沙」作/丁丁丁,正明日昇 1, 2,, 100 & 100		然致之他 Sum (初知直力 U) 时起()。
A.	for (i = 1; i <= 100; i++)	B.	i = 1;
	sum += i;		while (i > 100) {
			sum += i;
			i++;
			}
C.	i = 1;	D.	i = 1;
	do {		do {
	sum += i;		sum += i;
	i++;		i++;
	} while (i <= 100);		} while (i > 100);

- **2.** () 的**平均**时间复杂度为 $O(n \log n)$, 其中 n 是待排序的元素个数。
 - A. 快速排序
- B. 插入排序
- C. 冒泡排序
- D. 归并排序
- 3. 以 A_0 作为起点,对下面的无向图进行**深度**优先遍历时(遍历的顺序与顶点字母的下标 无关),最后一个遍历到的顶点可能是()。

- A. A_1
- B. A_2
- D. A_4

- **4.** ()属于 NP 类问题。
 - A. 存在一个 P 类问题
 - B. 任何一个 P 类问题
 - C. 任何一个不属于 P 类的问题
 - D. 任何一个在(输入规模的)指数时间内能够解决的问题
- 5. CCF NOIP 复赛考试结束后,因()提出的申诉将不会被受理。
 - A. 源程序文件名大小写错误
 - B. 源程序保存在指定文件夹以外的位置
 - C. 输出文件的文件名错误
 - D. 只提交了可执行文件,未提交源程序

三、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部分分)

1. 某系统自称使用了一种防窃听的方式验证用户密码。密码是 n 个数 $s_1, s_2, ..., s_n$,均为 0 或 1。该系统每次随机生成 n 个数 $a_1, a_2, ..., a_n$,均为 0 或 1,请用户回答($s_1a_1 + s_2a_2 + ... + s_na_n$)除以 2 的余数。如果多次的回答总是正确,即认为掌握密码。该系统认为,即使问答的过程被泄露,也无助于破解密码——因为用户并没有直接发送密码。

然而, 事与愿违。例如, 当n=4时, 有人窃听了以下 5次问答:

_	Weight 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,								
	<i>运场</i> 40 口		系统生成	类担党和英国占领局体					
	问答编号	a_1	a_2	a_3	a_4	掌握密码的用户的回答			
	1	1	1	0	0	1			
	2	0	0	1	1	0			
	3	0	1	1	0	0			
	4	1	1	1	0	0			
	5	1	0	0	0	0			

就破解出了密码 $s_1 =$ ______, $s_2 =$ ______, $s_3 =$ ______, $s_4 =$ ______。

2. 现有一只青蛙,初始时在 n 号荷叶上。当它某一时刻在 k 号荷叶上时,下一时刻将等概率地随机跳到 1, 2, ..., k 号荷叶之一上,直至跳到 1 号荷叶为止。当 n=2 时,平均一共跳 2.5 次。则当 n=5 时,平均一共跳 次。

四、阅读程序写结果(共4题,每题8分,共计32分)

```
1. #include <stdio.h>
   #include <string.h>
   const int SIZE = 100;
   int main() {
       int n, i, isPlalindrome;
       char str[SIZE];
       scanf("%s", str);
       n = strlen(str);
       isPlalindrome = 1;
       for (i = 0; i < n/2; i++) {
           if (str[i] != str[n-i-1]) isPlalindrome = 0;
       }
       if (isPlalindrome)
           printf("Yes\n");
       else
           printf("No\n");
       return 0;
   }
   输入: abceecba
   输出: _____
2. #include <stdio.h>
   int main()
   {
       int a, b, u, v, i, num;
       scanf("%d%d%d%d", &a, &b, &u, &v);
       num = 0;
       for (i = a; i <= b; i++)
```

```
if (((i \% u) == 0) || ((i \% v) == 0))
              num++;
       printf("%d\n", num);
       return 0;
   }
   输入: 1 1000 10 15
   输出: _____
3. #include <stdio.h>
   const int SIZE = 100;
   int main()
   {
       int height[SIZE], num[SIZE], n, ans;
       int i, j;
       scanf("%d", &n);
       for (i = 0; i < n; i++) {
           scanf("%d", &height[i]);
           num[i] = 1;
           for (j = 0; j < i; j++) {
               if ((height[j] < height[i]) && (num[j] >= num[i]))
                  num[i] = num[j]+1;
           }
       }
       ans = 0;
       for (i = 0; i < n; i++) {
           if (num[i] > ans) ans = num[i];
       printf("%d\n", ans);
       return 0;
   }
   输入:
```

```
8
   3 2 5 11 12 7 4 10
   输出: _____
4. #include <stdio.h>
   #include <string.h>
   #define SIZE 100
   int n, m, p, count;
   int a[SIZE][SIZE];
   void colour(int x, int y)
   {
       count++;
       a[x][y] = 1;
       if ((x > 1) \&\& (a[x - 1][y] == 0))
           colour(x - 1, y);
       if ((y > 1) \&\& (a[x][y - 1] == 0))
           colour(x, y - 1);
       if ((x < n) \&\& (a[x + 1][y] == 0))
           colour(x + 1, y);
       if ((y < m) \&\& (a[x][y + 1] == 0))
           colour(x, y + 1);
   }
   int main()
   {
       int i, j, x, y, ans;
       memset(a, 0, sizeof(a));
       scanf("%d%d%d", &n, &m, &p);
       for (i = 1; i <= p; i++) {
           scanf("%d%d", &x, &y);
           a[x][y] = 1;
       }
       ans = 0;
```

```
for (i = 1; i <= n; i++)
       for (j = 1; j <= m; j++)
           if (a[i][j] == 0) {
               count = 0;
               colour(i, j);
               if (ans < count)</pre>
                   ans = count;
           }
   printf("%d\n", ans);
   return 0;
}
输入:
6 5 9
1 4
2 3
2 4
3 2
4 1
4 3
4 5
5 4
6 4
输出: _____
```

五、完善程序(第1题15分,第2题13分,共计28分)

1. (**序列重排**) 全局数组变量 a 定义如下:

```
#define SIZE 100
int a[SIZE], n;
它记录着一个长度为 n 的序列 a[1], a[2], ..., a[n]。
```

现在需要一个函数,以整数 $p(1 \le p \le n)$ 为参数,实现如下功能:将序列 a 的前 p 个数与后 n-p 个数对调,且不改变这 p 个数(或 n-p 个数)之间的相对位置。例如,长度为 5 的序列 1, 2, 3, 4, 5,当 p=2 时重排结果为 3, 4, 5, 1, 2。

有一种朴素的算法可以实现这一需求,其时间复杂度为O(n)、空间复杂度为O(n):

```
void swap1(int p)
{
   int i, j, b[SIZE];
   for (i = 1; i <= p; i++)
      b[ (1)] = a[i];
                                                      // (2分)
   for (i = p + 1; i <= n; i++)
      b[i - p] = a[i];
   for (i = 1; i <= n; i++)
      a[i] = b[i];
}
我们也可以用时间换空间,使用时间复杂度为 O(n^2)、空间复杂度为 O(1)的算法:
void swap2(int p)
{
   int i, j, temp;
   for (i = p + 1; i \le n; i++) {
      temp = a[i];
      for (j = i; j >= (2); j--)
                                                      // (2分)
          a[j] = a[j - 1];
       (3) = temp;
                                                      // (2分)
   }
}
事实上,还有一种更好的算法,时间复杂度为 O(n)、空间复杂度为 O(1):
void swap3(int p)
{
   int start1, end1, start2, end2, i, j, temp;
   start1 = 1;
   end1 = p;
   start2 = p + 1;
   end2 = n;
   while (true) {
```

```
i = start1;
       j = start2;
       while ((i <= end1) \&\& (j <= end2)) {
          temp = a[i];
          a[i] = a[j];
          a[j] = temp;
          i++;
          j++;
       }
       if (i \leftarrow end1)
          start1 = i;
       else if (<u>(4)</u>) {
                                                            // (3分)
           start1 = (5);
                                                            // (3分)
          end1 = (6);
                                                            // (3分)
          start2 = j;
       }
       else
          break;
   }
}
```

2. (两元序列) 试求一个整数序列中,最长的仅包含两个不同整数的连续子序列。如有多个子序列并列最长,输出任意一个即可。例如,序列"11<u>23232</u>3311131"中,有两段满足条件的最长子序列,长度均为7,分别用下划线和上划线标出。

```
#include <stdio.h>
int main()
{
    const int SIZE = 100;

    int n, i, j, a[SIZE], cur1, cur2, count1, count2,
        ans_length, ans_start, ans_end;
    //cur1, cur2 分别表示当前子序列中的两个不同整数
    //count1, count2 分别表示 cur1, cur2 在当前子序列中出现的次数
    scanf("%d", &n);
```

```
for (i = 1; i <= n; i++)
   scanf("%d", &a[i]);
i = 1;
j = 1;
//i, j 分别表示当前子序列的首尾, 并保证其中至多有两个不同整数
while ((j <= n) \&\& (a[j] == a[i]))
   j++;
cur1 = a[i];
cur2 = a[j];
count1 = \underline{(1)};
                                                   // (3分)
count2 = 1;
ans_length = j - i + 1;
while (j < n) {
   j++;
   if (a[j] == cur1)
      count1++;
   else if (a[j] == cur2)
      count2++;
   else {
      // (3分)
          while (count2 > 0) {
             if (a[i] == cur1)
                count1--;
             else
                count2--;
             i++;
          }
          cur2 = a[j];
          count2 = 1;
      }
      else {
          while (count1 > 0) {
             if (a[i] == cur1)
                 (3)
                                                   // (2分)
             else
                 (4)
                                                   // (2分)
             i++;
```

```
}
                                                             // (3分)
                   (5);
               count1 = 1;
           }
       }
       if (ans_length < j - i + 1) {
           ans_length = j - i + 1;
           ans_start = i;
           ans_end = j;
       }
   }
   for (i = ans_start; i <= ans_end; i++)</pre>
       printf("%d ", a[i]);
   return 0;
}
```

第十九届全国青少年信息学奥林匹克联赛初赛

提高组参考答案

一、单项选择题(共15题,每题1.5分,共计22.5分)

1	2	3	4	5	6	7	8
А	Α	В	D	А	В	D	В
9	10	11	12	13	14	15	
D	D	С	В	D	В	В	

二、不定项选择题(共5题,每题1.5分,共计7.5分;每题有一个或多个正确选项,没有部分分)

1	2	3	4	5
AC	AD	CD	AB	ABCD

- 三、问题求解(共2题,每题5分,共计10分;每题全部答对得5分,没有部分分)
- 1. $s_1 = 0$, $s_2 = 1$, $s_3 = 1$, $s_4 = 1$
- 2. 37/12
- 四、阅读程序写结果(共4题,每题8分,共计32分)
- 1. Yes
- 2. 133
- 3. 4
- 4. 7

五、完善程序(共计 28 分,以下各程序填空可能还有一些等价的写法,由各省赛区组织本省专家审定及上机验证,可以不上报 CCF NOI 科学委员会复核)

		Pascal 语言	C++语言	C语言	分值
1.	(1)		n - p + i		2
	(2)		i - p + 1		2
	(3)		a[i - p]		2
	(4)		j <= end2		3
	(5)	i	(或 start2,或 end1 + 1)	3
	(6)		j - 1		3
2.	(1)		j - 1		3
	(2)		cur1		3
	(3)	dec(count1) (或 count1 := count1 - 1)	count1(或 count1 = d	count1 – 1,或count1)	2
	(4)	dec(count2) (或 count2 := count2 - 1)	count2(或 count2 = c	count2 – 1,或count2)	2
	(5)	cur1 := a[j]	cur1 :	= a[j]	3