Laboratory 3

Resistor Combinations, KCL, KVL, Voltage and Current Dividers, and Wheatstone Bridge

Objectives

- Verify KCL and KVL
- Measure the equivalent resistance of a resistive circuit
- Measure the branch currents and node voltages
- Use the Wheatstone bridge circuit to directly measure resistance

Equipment and components

- 2x Multimeter for each team
- Power supply
- One Breadboard
- variable resistor:10 kΩ
- Fixed Resistors 100 Ω , 270 Ω , 470 Ω , 680 Ω , 1k Ω , 2.2 k Ω , 3.3k Ω , 5.6k Ω , 10k Ω , 100k Ω , 4.7M Ω , 10M Ω .
- · Cables and wires as needed

Preliminary Work

- 1. Read "Electrical Measurements" uploaded in the catcourses (see folder "Labs/")
- 2. **Read** Chapter 2 of the textbook.
- 3. Complete the theoretical calculations and fill out the tables in this document before the lab.

Lab Procedure

1. Select $R_1 = 470 \ \Omega$, $R_2 = 100 \ \Omega$, and $R_3 = 100 \ k\Omega$. Construct the circuit shown below and measure the indicated quantities given in the table below.

	Theoretic	Measured
Variable	Calculation*	Value
v_{AE}		
v_{AB}		
$v_{\scriptscriptstyle BD}$		
$v_{\scriptscriptstyle DE}$		
i		

Note: voltage v_{XY} represents the voltage drop between point X and point Y. To measure v_{XY} , the red lead of the DMM (Digital Multimeter) should be at point X and the black lead at point Y of the circuit. For example, to measure v_{AE} , the red lead of the DMM should be at point X and the black lead at point Y of the circuit.)

- a. What is the sum of v_{AB} , v_{BD} and v_{DE} ? Sum = _____. Explain why.
- b. Can you explain the value of v_{BD} ?
- c. Consider the circuit shown below. The currents I_{R1} , I_{R2} and I_{R3} denote the currents flowing in each resistor (you are free to select the reference direction for the currents). Measure I_{R1} , I_{R2} and I_{R3} . Are they different from your theoretical calculations? Explain why.

	Theoretic Calculation*	Measured Value
I_{R1}		

ENGR 065 Circuit Theory: Laboratory 3

I _{R2}	
I _R 3	

2. Select $R_1 = 470 \,\Omega$, $R_2 = 680 \,\Omega$, and $R_3 = 1 \,k\Omega$. Repeat step 1 and note down the obtained results.

Variable	Theoretic Calculation*	Measured Value
v_{AE}		
v_{AB}		
v_{BD}		
v_{DE}		
i		

	Theoretic Calculation*	Measured Value
I _{R1}		
I _{R2}		
IR3		

3. A) Connect the $5.6~k\Omega$ and the $10~k\Omega$ resistors in series on the breadboard and measure the equivalent resistance of the combination. Show circuit schematic diagrams and your calculations in your report.

Circuit Schematic (Series)	

ENGR 065 Circuit Theory: Laboratory 3

Theoretical equivalent resistance*	
Measured equivalent resistance	
	I connection on the breadboard. Measure the natic diagrams and your calculations in your
Circuit Schematic (Series)	
Theoretical equivalent resistance* =	
Measured equivalent resistance	
Are the values what you expected?	
4. A) Measure the resistance of the $10~M\Omega$ multimeter to the resistor leads.	resistor by connecting the test leads of a
R=	
	or and the test leads of the multimeter together esistance. Compare the two readings. Are they

ENGR 065 Circuit Theory: Laboratory 3

C) Measure the hand-to-hand resistance of each lab partner by firmly gripping the test leads of the multimeter.

D-		
K	,	,

What are the implications with respect to making accurate measurements of high resistance resistors and circuits?

- 5. A) Pick three resistors rated at $2.2k\Omega$, $3.3k\Omega$, and $5.6k\Omega$. Use them to construct a Wheatstone bridge circuit with a variable resistor (potentiometer), rated at $10k\Omega$ on the breadboard. The Wheatstone bridge circuit is shown below, with
 - $R_1 = 3.3k\Omega$,
 - $R_2 = 2.2k\Omega$, and
 - $R_x = 5.6k\Omega$.

The resistance value of R_x is what you are supposed to find.

- B) Adjust the variable resistor until the ammeter (your multimeter is set as an ammeter) shown in the circuit below reaches zero. Record the resistance value of the **variable** resistor (______)
- C) Calculate the resistance of R_x by using the following formula,

$$R_x = \frac{R_2}{R_1} R_3 = \underline{\hspace{1cm}}$$

6. Compare and discuss the measured and rated value of the resistor R_x . Show circuit diagrams and your calculations.

Questions and conclusions

- Use tables and graphs to explain your results.
- Summarize your findings and explanations in response to the questions posed in this lab.