Fraudulent Claim Detection

Summary & Recommendations

Submitted by: Ketan Chincholikar, Milan Banura, Lakhan Varshney

Problem Statement

- Global Insure faces considerable financial losses dues to fraudulent claims
- Current process is time-consuming and inefficient
- Fraudulent claims are detected after the claim payment
- Global Insure wants to improve the fraud detection process using data-driven insights to classify claims as fraudulent or legitimate and minimize financial losses and optimize the overall claims handling process

Business Objective

- Build a predictive model to classify insurance claims as either fraudulent or legitimate based on historical claim details and customer profiles
- Use Logistic Regression and Random Forest models to identify the key features associated with fraudulent claims

Data Handling

- Loaded and inspected data
- Handled null values
- Removed missing and illogical values (e.g., negative losses)
- Dropped high-cardinality identifiers
- Categorical encoding and feature scaling applied using StandardScaler()
- Class imbalance resolved using RandomOverSampler

Exploratory Data Analysis – Key Insights

- Performed univariate and bivariate analysis
 - People with hobbies like chess and cross-fit show high fraud risk
 - Insured occupation like transport-moving and exec-managerial have more fraud percentage
 - Single Vehicle Collision and Multi-vehicle Collision have more chance of fraud
 - MD, PhD, JD (people with very high education level) are likely to fraud
 - Incidents occurring in Ohio has highest fraud likelihood
 - Auto make Audi, Mercedes, Ford lead in fraud
- Correlation analysis
 - Total claim amount and vehicle claim, property claim, injury claim
 - Age and month as customer
- Class Imbalance
 - Fraud reported in ~25% of cases

Feature Engineering

- Created binary indicators for risky segments
- Combined rare categories to reduce sparsity
- Applied one-hot encoding for categorical features
- Used RandomOverSampler to balance classes

Model Building

Logistic Regression

Cutoff	Accuracy	Sensitivity	Specificity	Precision	Recall	F1 Score
0.6	93.5%	0.94	0.93	0.93	0.94	0.93

Random Forest

Hyperpara	Accuracy	Sensitivity	Specificity	Precision	Recall	F1 Score
meter						
Tuning						
Yes	94.87%	0.99	0.90	0.91	0.99	0.95

Model Evaluation

Logistic Regression Model

Cutoff	Accuracy	Sensitivity	Specificity	Precision	Recall	F1 Score
0.6	79%	0.54	0.87	0.58	0.54	0.56

Random Forest Model

Hyperparameter Tuning	Accuracy	Sensitivity	Specificity	Precision	Recall	F1 Score
Yes	83.67%	0.77	0.86	0.64	0.77	0.70

Recommendations & Business Implications

- Fraudulent claims exhibit identifiable patterns linked to incident severity, customer hobbies, customer occupation types, and education making predictive modelling highly viable
- Random Forest model is recommended for operational deployment due to its superior accuracy, balanced precision and recall, and robustness after hyperparameter tuning
- Logistic Regression model showed slightly lower performance; it remains valuable for its interpretability
- Prioritize investigation for high-risk segments (e.g., major damage, unusual hobbies)
- Enhance claims triage using predictive scores

Thank you

Ketan Chincholikar Milan Banura Lakhan Varshney