WorkShop No. 1 — The Old Times

Members:

Andrés Felipe Salazar Malagón – 20202020043

Teacher:

Carlos Andrés Sierra Virguez

Universidad Distrital Francisco José de Caldas
Faculty of Engineering
Computer Science III
Bogotá, 2024

Exercices:

1. For each of the following languages, define the corresponding finite-state machine:

(i)
$$\Sigma = \{0,\,1,\,2\}.$$

 L = (01*2 \cup 2102)*101(01 \cup 12 \cup 20)* .

(ii) $\Sigma = \{a, b, c\}$. $L = (abc \cup bca \cup cab)(abc \cup bca \cup cab) *$.

(iii) $\Sigma = \{a, b, c\}$. $L = (abc \cup bca \cup cab) * (abc \cup bca \cup cab)$.

(iv) $\Sigma = \{0, 1, 2\}$. L = $(01*2 \cup 10*2 \cup 21*0)*(01 \cup 12 \cup 20)*101$.

- 2. For each one of the following finite-state machines, define the corresponding regular expression and a generative grammar:
 - (i) $\Sigma = \{0, 1\}.$

3. For each of the following regular expressions, define the corresponding generative grammar (all over the alphabet $\Sigma = \{a, b, c, d\}$):

(i)
$$\{a \ i \ b \ j \ c \ jd \ i : i, j \ge 1\}.$$

(ii) $\{a \ i \ b \ i \ c \ jd \ j : i, j \ge 1\}.$

 $(iii) \; \{a\; i\; b\; j\; c\; jd\; i: i,j\geq 1\} \; \cup \; \{a\; i\; b\; i\; c\; jd\; j: i,j\geq 1\}.$

(iv) $\{a \ i \ b \ j \ c \ i+j : i \ge 0, j \ge 1\}.$

4. Be G a context-free grammar with the following productions:

$$G = \left\{ \begin{array}{l} S \rightarrow ABC \mid BaC \mid aB \\ A \rightarrow Aa \mid a \\ B \rightarrow BAB \mid bab \\ C \rightarrow cC \mid \lambda \end{array} \right.$$

Found derivation trees for the following strings:

(i)
$$w1 = abab$$
.

(ii) w2 = babacc.

(iii) w3 = ababababc.

5. As follows there is a context-free grammar to generate real numbers without sign, the alphabet is $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ., +, -, E\}$:

$$< real > \to < digits > < decimal > < exp > < digits > \to < digits > < digits > | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 < decimal > \to < digits > | \lambda$$

$$< exp > \to E < digits > | E + < digits > | E - < digits > | \lambda$$

Define the derivation tree for the following strings:

(i)
$$w1 = 47.236$$

(ii) w2 = 321.25E + 35

(iii) w3 = 0.8E9

(iv) w4 = 0.8E + 9

6. As follows there is a context-free grammar to generate identifiers, identifiers are strings of letters and digits, starting with a letter:

Define the derivation tree for the following names:

(i) w1 = MyVariable

(iii) w3 = string2int

(iv) w4 = 2NotAVariable

	w4=2Not												
identific	50>												
V													
(dig: +>0													
8	letter>51												
(9)	le Terzel	sas											
6	D V	Her> as											
	1	it as ciso	(2)										
	- X	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2010										
		- Sell	HYCOD.										
		(£)		(char)									
			J	1									
			A	Slette	vi) (Isds)								
				1	4								
				V	2)ett	(1) (150)	33						
					U	V							
					0	Litette	r)×(bds)						
							Clett	ecolosis	>				
							X	V					
							(1)	<1et+	175/30	(5)			
								V	V				
								0	CARTH	englad	53		
									(3)	11			
										<16116	1) (1sds)		
										0	W.	1100	1 3
										W	< let	14150	1505
											e		8