MA1200 Practice Exercise 1

Coordinate Geometry and Conic Section

Completing the square

(With reference to the identity $(a+b)^2 \equiv a^2 + 2ab + b^2$ and $(a-b)^2 \equiv a^2 - 2ab + b^2$.)

1. Express each of the following expression in the form $(x+a)^2 + b$ or $(y+a)^2 + b$, where a and b are constants.

(a)
$$x^2 + 12x - 3$$

(b)
$$y^2 - 18y + 5$$

(c)
$$x^2 + 6x$$

(d)
$$y^2 + 9y + 1$$

(e)
$$x^2 - 7x + 4$$

(f)
$$y^2 - 21y$$

2. Express each of the following expression in the form $(kx+a)^2 + b$ or $(ky+a)^2 + b$, where k, a and b are constants.

(a)
$$4x^2 + 24x - 9$$

(b)
$$9y^2 - 18y + 5$$

(c)
$$25x^2 + 80x + 25$$

(d)
$$3y^2 + 2\sqrt{3}y + 15$$

(e)
$$5 + 2x^2 - 6\sqrt{2}x$$

(f)
$$12\sqrt{7}y + 7y^2 + 21$$

3. Express each of the following equation of parabola to its standard form. (i.e. $(y-k)^2 = 4p(x-h)$ or $(x-h)^2 = 4p(y-k)$.) Sketch its graph.

(a)
$$y^2 - 6y - 24x + 9 = 0$$

(b)
$$x^2 + 4x - 20y + 24 = 0$$

(c)
$$x^2 - 8x - 12y + 22 = 0$$

(d)
$$y^2 - 2y + 8x + 25 = 0$$

(e)
$$2y^2 + 4y + 24x - 46 = 0$$

(f)
$$4x^2 - 4x - 48y - 47 = 0$$

4. Determine the location(s) where the parabola cuts the *x*-axis. (The formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ is useful for finding roots of the quadratic equation $ax^2 + bx + c = 0$.)

(a)
$$y = x^2 + 2x - 5$$

(b)
$$y = 4x^2 + 12x + 9$$

(c)
$$y = 3x^2 + 4x + 10$$

5. Express each of the following equation of circle to its standard form. (i.e. $(x-h)^2 + (y-k)^2 = r^2$.) Sketch its graph.

(a)
$$x^2 + y^2 - 2x + 8y + 8 = 0$$

(b)
$$x^2 + y^2 - 2\sqrt{2}x - 2\sqrt{3}y - 20 = 0$$

(c)
$$4x^2 + 4y^2 + 4x - 8y - 59 = 0$$

(d)
$$4x^2 + 4y^2 - 16x + 12y + 21 = 0$$

Polar Coordinates

- Convert each of the following points from polar coordinates to rectangular coordinates.
- $(3,120^{\circ})$
- (b) $(7.-30^{\circ})$
- (c) $(6, -135^{\circ})$
- Convert each of the following points from rectangular coordinates to polar coordinates. Express θ in the range $-180^{\circ} < \theta \le 180^{\circ}$.
- (a) $P(6, 2\sqrt{3})$
- (b) $P(-1, \sqrt{3})$ (c) $P(-4\sqrt{3}, -4)$ (d) $P(2\sqrt{3}, -2)$
- Express each of the following equation of ellipse to its standard form. (i.e. $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$ 8. or $\frac{(x-h)^2}{h^2} + \frac{(y-k)^2}{h^2} = 1$.) Sketch its graph with the coordinates of vertices clearly shown. What are the coordinates of the Foci?
- (a) $4x^2 + 36y^2 144 = 0$

- (b) $169x^2 + 25y^2 4225 = 0$
- (a) $4x^2 + 36y^2 144 = 0$ (b) $169x^2 + 25y^2 4225 = 0$ (c) $4x^2 + 9y^2 8x 36y + 4 = 0$ (d) $25x^2 + y^2 150x + 2y + 201 = 0$
- Express each of the following equation of hyperbola to standard form. (i.e. $\frac{(x-h)^2}{a^2} \frac{(y-k)^2}{a^2} = 1$ or $\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$.) Sketch its graph with the coordinates of vertices clearly shown.

- (a) $16x^2 25y^2 + 400 = 0$ (b) $9x^2 25y^2 225 = 0$ (c) $16x^2 9y^2 32x 36y 164 = 0$ (d) $5x^2 4y^2 + 10x + 8y + 21 = 0$
- 10. Classify the type of conic section described by each of the following equations using completing the squares. Write the equation in the standard form of the respective conic section.
- (a) $4x^2 + 4y^2 4x + 12y 6 = 0$
- (b) $y^2 + 4x 6y + 11 = 0$
- (c) $4x^2 y^2 + 2y 5 = 0$

- (d) $x^2 + 4y^2 2x + 24y + 33 = 0$
- 11. Write each equation in terms of a rotated x'y'-system using the angle of rotation θ . Write the equation involving x' and y' in standard form.
- (a) $x^2 4xy + y^2 3 = 0$, $\theta = 45^\circ$
- (b) $23x^2 + 26\sqrt{3}xy 3y^2 144 = 0$, $\theta = 30^\circ$
- 12. Classify the type of conic section described by each of the following equations without using completing the squares.
- (a) $4x^2 9y^2 8x 36y 68 = 0$ (b) $4x^2 + 4y^2 + 12x + 4y + 1 = 0$ (c) $x^2 + 4xy 2y^2 1 = 0$ (d) $34x^2 24xy + 41y^2 25 = 0$
- (c) $x^2 + 4xy 2y^2 1 = 0$

- (d) $34x^2 24xy + 41y^2 25 = 0$
- 13. Determine the location(s) where the two curves meet in each case.
- (a) $4x^2 + y^2 = 4$ and x + y = 3
- (b) $4x^2 + y^2 = 4$ and 2x y = 2
- (c) $x^2 + y^2 = 1$ and $x^2 + 9y^2 = 9$