CSE 201: DIGITAL LOGIC DESIGN

Analysis of Sequential Circuit

STATE REDUCTION AND ASSIGNMENT

MEALY AND MOORE MODEL

DESIGN OF SEQUENTIAL CIRCUIT

DESIGN OF **C**OUNTERS

Prepared By

Lec Sumaiya Afroz Mila

CSE, MIST

Analysis of Sequential Circuit

Analysis of Clocked Sequential Circuits: Terminology

STATE EQUATION: A state equation is an algebraic expression that specifies the conditions for a flip-flop state transition.

Left side of the equation denotes the next state and right side is a boolean function that specifies the present state conditions that make the next state equal to 1.

- STATE TABLE: A state table consists of 3 sections Present state, Next state and output(if there is any). [We will need the characteristics table to form state table]
- STATE DIAGRAM: The information in a state table can be represented graphically in a state diagram.

The state is represented by a circle and the transitions between states are indicated by directed lines connecting the circles.

CHARACTERISTICS TABLES

Flip-Flop Characteristic Tables

JK Flip-Flop						
J	K	Q(t +	1)			
0	0	Q(t)	No change			
0	1	0	Reset			
1	0	1	Set			
1	1	Q'(t)	Complement			

	RS Flip	o-Flop
5 R	Q(t + 1)
0 0	Q(t)	No change
0 1	0	Reset
1 0	1	Set
1 1	?	Unpredictable

D Fli	p-FI	op
-------	------	----

D	Q(t +	1)
0	0	Reset
1	1	Set

T Flip-Flop

T	Q(t+1)	
0	Q(t)	No change
1	Q'(t)	Complement

Steps for Analyzing Clocked Sequential Circuits

- 1. At first, find out the flip-flop specified in the question
- 2. Derive the input equation of the circuit
- 3. Generate the state table with the help of input equation and characteristics table of that flip-flop
- 4. Derive the state equation from the state table
- 5. Draw the state diagram from the state table

Analysis of Clocked Sequential Circuits: Example 1

You are given a circuit. Analyse it.

Analysis of Clocked Sequential Circuits: Example 1

Input Equation:

 $D_A = A(t)x(t) + B(t)x(t)$

 $D_{B} = A'(t)x(t)$

Y = [A+B] x'

State Table

Pres Sta		Input	Next State		Flip Flop Inputs		Output
\boldsymbol{A}	B	X	A_{t+1}	\boldsymbol{B}_{t+1}	D_{A}	D_R	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

Analysis of Clocked Sequential Circuits: Example 1 Cntd.

Input Equation:

 $D_A = A(t)x(t) + B(t)x(t)$ $D_B = A'(t)x(t)$

Y = [A+B] x'

State Table

	sent ate	Input	Next State		Flip Flop Inputs		Output
A	B	X	A_{t+1}	B_{t+1}	D_{A}	D_{R}	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

State Equation

A(t+1):

A B	00	01	11	10
0	0	0	1	0
1	0	1	1	0

$$A(t+1)$$
: $Bx + Ax$

B(t+1):

Analysis of Clocked Sequential Circuits: Example 1 Cntd.

Input Equation:

 $D_A = A(t)x(t) + B(t)x(t)$

 $D_{B} = A'(t)x(t)$

Y = [A+B] x'

State Table

	resent In		Next State		Flip Flop Inputs		Output
A	B	x	A_{t+1}	\boldsymbol{B}_{t+1}	D_{A}	D_R	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

Analysis of Clocked Sequential Circuits: Example 2

Input Equation:

$$JA = B$$
 $JB = x'$
 $KA = Bx'$ $KB = A'x + Ax' = A \oplus x$

You are given input equations of a circuit. Analyse it.

Analysis of Clocked Sequential Circuits: Example 2 Cntd.

Input Equation:

$$JA = B$$
 $JB = x'$
 $KA = Bx'$ $KB = A'x + Ax' = A \oplus x$

Analysis of Clocked Sequential Circuits: Example 2 Cntd.

Input Equation:

JA = B JB = x'

KA = Bx' $KB = A'x + Ax' = A \oplus x$

State Table

Present State		Input	Next State		Flip Flop Inputs			
A	B	X	A_{t+1}	B_{t+1}	$ oldsymbol{J}_{\!\scriptscriptstyle A} $	K_{A}	J_{R}	K_{R}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

A(t+1): A'B + Ax + AB'

B(t+1):

B(t+1): B'x' + A'x' + ABx

Analysis of Clocked Sequential Circuits: Example 2 Cntd.

Input Equation:

$$JA = B$$
 $JB = x'$
 $KA = Bx'$ $KB = A'x + Ax' = A \oplus x$
State Table

Pres Sta		Input	Next State		Flip Flop Inputs			uts
A	B	X	A_{t+1}	\boldsymbol{B}_{t+1}	$oldsymbol{J}_{\!\scriptscriptstyle A}$	K_{A}	$J_{_{R}}$	K_{R}
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

JK Flip-Flop

J	K	Q(t + 1)	1)
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

Analysis of Clocked Sequential Circuits: Example 3

Input Equation:

$$D_A = A \oplus x \oplus y$$
State Table

Present State	Input		Next State	Flip Flop Inputs
\boldsymbol{A}	X	y	A_{t+1}	$D_{_{A}}$
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Analysis of Clocked Sequential Circuits: Example 3 Cntd.

Input Equation:

$$D_A = A \oplus x \oplus y$$
State Table

Present State	Input		Next State	Flip Flop Inputs
A	X	y	A_{t+1}	D_{A}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	0
1	0	0	1	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

$$A(t+1)$$
: $A'x'y + A'xy' + Ax'y' + Axy$

- = A'(x'y+xy') + A(x'y'+xy)
- = A' (x xor y) + A (x xnor y)
- = A xor x xor y

Analysis of Clocked Sequential Circuits: Example 4(self study)

Input Equation:

$$T_A = Bx$$
 $T_B = x$
 $y = AB$

Try analyzing a circuit containing the above input equation

STATE REDUCTION & ASSIGNMENT

STATE REDUCTION

- State reduction is required to minimize the cost of the final circuit
- State reduction algorithms are concerned with procedures for reducing the number of states in a state table without affecting the input-output sequence
- Two circuits are said to be equivalent:
 - If identical outputs occur for all input sequences
 - Number of states is not important
- An algorithm for state reduction:
 - Two states are said to be equivalent
 - For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state.
 - One of them can be removed without altering the input output relations

- Total states : 7
- Consider an Input sequence: 0 1 0 1 0 1 1 0 1 0 0, starting with a, The complete sequence will be:

state	a	a	b	C	d	e	f	f	g	f
input	0	1	0	1	0	1	1	0	1	0
output	0	0	0	0	0	1	1	0	1	0

If we can find a circuit whose state diagram has less than 7 states, and identical outputs occur for the above input sequence and all other possible sequences, then the two circuits are said to be equivalent

- We will apply the algorithm to this state table
- Look for two present states that go to the same next state and have the same output for both input combinations
 - 1. e = g (remove g);
 - 2. Replace all g by e

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
C	a	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	8	f	0	1	
g	а	f	0	1	

• d = f (remove f);

Table 5.7 *Reducing the State Table*

	Next :	State	Output				
Present State	x = 0	x = 1	x = 0	x = 1			
а	а	b	0	0			
b	c	d	0	0			
c	a	d	0	0			
d	e	f	0	1			
e	а	f	0	1			
f	е	f	0	1			

Reduced state table

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

New output and state sequence for the previous input

sequence: 0 1 0 1 0 1 1 0 1 0 0

state	a	a	b	C	d	e	d	d	e	d	e
input	0	1	0	1	0	1	1	0	1	0	0
output	0	0	0	0	0	1	1	0	1	0	0

Previous state Sequence

state	a	a	b	c	d	e	f	f	g	f	g	a
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

New state Sequence

state	a	a	b	C	d	e	d	d	e	d	e	a
input	0	1	0	1	0	1	1	0	1	0	0	
output	0	0	0	0	0	1	1	0	1	0	0	

Reduced state Diagram

FIGURE 5.26 Reduced state diagram

Present State	Next	State	Output		
	X=0	X=1	X=0	X=1	
Α	F	В	0	0	
В	D	С	0	0	
С	F	E	0	0	
D	G	Α	1	0	
E	D	С	0	0	
F	F	В	1	1	
G	G	D	0	1	

STATE ASSIGNMENT

- Assign coded binary values to the states for physical implementation
- □ For a circuit with m states, the codes must contain n bits where $2^n >= m$
- Unused states are treated as don't care conditions during the design
 - Don't cares can help to obtain a simpler circuit
- There are many possible state assignments
 - Have large impacts on the final circuit size

POPULAR STATE ASSIGNMENT

Table 5.9 *Three Possible Binary State Assignments*

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
а	000	000	00001
b	001	001	00010
\boldsymbol{c}	010	011	00100
d	011	010	01000
e	100	110	10000

STATE ASSIGNMENT

- Any binary number assignment is satisfactory as long as each state is assigned a unique number
- Use binary assignment 1

Table 5.10 *Reduced State Table with Binary Assignment 1*

	Next	State	Out	out
Present State	x = 0	x = 1	x = 0	x = 1
000	000	001	O	0
001	010	011	0	0
010	000	011	0	0
011	100	011	0	1
100	000	011	0	1

MEALY AND MOORE MODEL

MEALY AND MOORE MODEL

- All the sequential circuits have input, output and internal states
- Sequential circuits can be divided into two types based on their characteristics:
 - Mealy Model of sequential circuits

&

- Moore Model of sequential circuits
- They differ only in the way their output is generated
 - Mealy Model: The output is a function of both the present state and the input
 - Moore Model: The output is a function of only the present state

BLOCK DIAGRAM OF MEALY AND MOORE MACHINE

Example of Mealy Machine

This circuit is an example of Mealy Machine

Present State		Input	Next State		Flip Flop Inputs		Output
\boldsymbol{A}	B	X	A_{t+1}	B_{t+1}	D_{A}	D_{R}	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

Example of Mealy Machine

- The output y is a function of both present state AB and input x.
- For present state 01
 - when input x=0; output is 1
 - when input x=1; output is 0
- For the same state, the output changes with the input

Present State		Input	Next State		Flip Flop Inputs		Output
A	B	x	A_{t+1}	\boldsymbol{B}_{t+1}	D_{A}	D_{R}	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	0	0	0	1
0	1	1	1	1	1	1	0
1	0	0	0	0	0	0	1
1	0	1	1	0	1	0	0
1	1	0	0	0	0	0	1
1	1	1	1	0	1	0	0

Example of Moore Machine

This circuit is an example of Moore Machine

Present State		Input	Next State		Flip Flop Inputs		Output
A	B	X	A_{t+1}	B_{t+1}	T_{A}	T_{R}	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

Example of Mealy Machine

- The output y is a function of only present state AB
- For present state 01
 - when input x=0; output is 0
 - when input x=1; output is 0
- This is same for all the combinations
- For the same state, the output does not change with the input

Present State		Input	Next State		Flip Flop Inputs		Output
\boldsymbol{A}	B	x	A_{t+1}	\boldsymbol{B}_{t+1}	T_{A}	T_{R}	y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0
1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	0
1	1	0	1	1	0	0	1
1	1	1	0	0	1	1	1

Design of Sequential Circuit

Steps of Design Procedure

- Derive a state diagram for the circuit
- Reduce the number of states if necessary
- Assign binary values to the states
- Obtain the binary coded state table
- Choose the type of flip flop to be used
- Derive the simplified flip flop input equation and output equation
- Draw the logic diagram

EXCITATION TABLES

TABLE 6-10 Flip-Flop Excitation Tables

O(t)	O(t+1)	5	R	Q(t)	Q(t+1)	J	K
0	0	0	X	0	0	0	X
0	1	1	0	0	1	1	X
1	0	0	1	1	0	X	l
1	1	X	0	1	1	X	0
10000 0000	(a) <i>RS</i>			-	(b) <i>JK</i>		

O(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1

7	Q(t+1)	Q(t)
C	0	0
1	1	0
1	0	1
C	1	1

(b) T

State Table for Circuit Design

Present State		Input		ext ate
\boldsymbol{A}	B	X	A_{t+1}	\boldsymbol{B}_{t+1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Let's design the circuit with JK flip flop first

Pres Sta		Input	Next	State	Flip Flop Inputs			puts
A	B	X	A_{t+1}	\boldsymbol{B}_{t+1}	$ oldsymbol{J}_{\!\scriptscriptstyle A} $	K_{A}	$J_{_{R}}$	K_{R}
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

Q(t)	Q(t + 1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

Pres Sta		Input	Next	State	Fli	p Flo	p In	puts
A	B	x	A_{t+1}	B_{t+1}	$ oldsymbol{J}_{\!\scriptscriptstyle A} $	K_{A}	$J_{_{R}}$	K_{R}
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	X	X	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

1	X	X
1	X	X

$$JB = x$$

$$KA = Bx$$

$$KB = (A \oplus x)'$$

1	X	X
1	X	X

JB = x

$$KA = Bx$$

$$KB = (A \oplus x)'$$

FIGURE 6-26

Logic diagram of sequential circuit

State Table for Circuit Design

Present State		Input	Next State	
\boldsymbol{A}	B	x	A_{t+1}	\boldsymbol{B}_{t+1}
0	0	0	0	0
0	0	1	0	1
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	1	1
1	1	0	1	1
1	1	1	0	0

Let's design the circuit with D flip flop first

Pres Sta		Input	Next	t State		Flop outs
A	B	x	A_{t+1}	\boldsymbol{B}_{t+1}	$D_{_A}$	D_R
0	0	0	0	0	0	0
0	0	1	0	1	0	1
0	1	0	1	0	1	0
0	1	1	0	1	0	1
1	0	0	1	0	1	0
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	0	0	0	0

O(t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1
	(c) D	

Pres Sta	ent te	Input	Next	State	Flip Flop Inputs		
\boldsymbol{A}	B	x	A_{t+1}	B_{t+1}	D_{A}	D_R	
0	0	0	0	0	0	0	
0	0	1	0	1	0	1	
0	1	0	1	0	1	0	
0	1	1	0	1	0	1	
1	0	0	1	0	1	0	
1	0	1	1	1	1	1	
1	1	0	1	1	1	1	
1	1	1	0	0	0	0	

$$DB = A'x + B'x + ABx'$$

DB = A'x + B'x + ABx'

Pres Sta		Input		ext ate	Output
\boldsymbol{A}	B	x	A_{t+1}	\boldsymbol{B}_{t+1}	Y
0	0	0	0	0	0
0	0	1	0	1	1
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	0
1	1	1	0	0	0

Let's design the circuit with D flip flop first

	sent ate	Input		ext ate		Flop outs	Output
\boldsymbol{A}	B	x	A_{t+1}	B_{t+1}	D_{A}	D_R	Y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	1
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	0	1	0	0
1	0	1	1	1	1	1	1
1	1	0	1	1	1	1	0
1	1	1	0	0	0	0	0

O (t)	Q(t+1)	D
0	0	0
0	1	1
1	0	0
1	1	1
	(c) D	

	sent ate	Input		ext ate		Flop outs	Output
\boldsymbol{A}	B	X	A_{t+1}	B_{t+1}	D_{A}	D_R	Y
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	1
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	0	1	0	0
1	0	1	1	1	1	1	1
1	1	0	1	1	1	1	0
1	1	1	0	0	0	0	0

$$DB = A'x + B'x + ABx'$$

$$y = B'x$$

Design of Counters

Counters

- An n-bit binary counter consists of n flip-flops
- Can count in binary from 0 to 2ⁿ-1
- Here is a state diagram of 3-bit binary counter
- Next state of the counter depends entirely on its present state
- State transition occurs every time a pulse occurs

- Design the counter with the following state diagram with T flip-flop/
- Design a 3-bit binary counter with T flip flop

Design the counter with T flip-flop

State Table for Three-Bit Counter

Pres	sent S	tate	Ne	xt Sta	ite	Flip-Flop Inputs				
A ₂	A ₁	A ₀	A ₂	<i>A</i> ₁	A ₀	T _{A2}	T _{A1}	T _{A0}		
0	0	0	0	0	1	0	0	1		
0	0	1	0	1	0	0	1	1		
0	1	0	0	1	1	0	0	1		
0	1	1	1	0	0	1	1	1		
1	0	0	1	0	1	0	0	1		
1	0	1	1	1	0	0	1	1		
1	1	0	1	1	1	0	1	1		
1	1	1	0	0	0	1	1	1		

State Table for Three-Bit Counter

Pres	sent S	tate	Ne	xt Sta	ite	Flip-Flop Inputs				
Present Stat		A ₀	A ₂	<i>A</i> ₁	A ₀	T _{A2}	T _{A1}	<i>T</i> _{A0}		
0	0	0	0	0	1	0	0	1		
0	0	1	0	1	0	0	1	1		
0	1	0	0	1	1	0	0	1		
0	1	1	1	0	0	1	1	1		
1	0	0	1	0	1	0	0	1		
1	0	1	1	1	0	0	1	1		
1	1	0	1	1	1	0	1	1		
1	1	1	0	0	0	1	1	1		

- Design the counter with the following state diagram with JK flip-flop/
- Design a 3-bit binary counter with JK flip-flop

	rese Stat		Ne	xt S	tate	Flip Flop Inputs							
A_{2}	A_{1}	A_{θ}	$A^{}_2$	A_{1}	A_{θ}	$oldsymbol{J}_{A}$	K_{A}	$J_{_{R}}$	K_{R}	J_{C}	K_{C}		
0	0	0	0	0	1	0	X	0	X	1	X		
0	0	1	0	1	0	0	X	1	X	X	1		
0	1	0	0	1	1	0	X	X	0	1	X		
0	1	1	1	0	0	1	X	X	1	X	1		
1	0	0	1	0	1	X	0	0	X	1	X		
1	0	1	1	1	0	X	0	1	X	X	1		
1	1	0	1	1	1	X	0	X	0	1	X		
1	1	1	0	0	0	X	1	X	1	X	1		

Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

	rese Stat		Nex	xt S	tate	Flip Flop Inputs						
\overline{A}_2	A_1	A_{o}	\overline{A}_2	A_{1}	A_{θ}	$oldsymbol{J}_{A}$	K_{A}	$J_{_{R}}$	K_{R}	J_{C}	K_{C}	
0	0	0	0	0	1	0	X	0	X	1	X	
0	0	1	0	1	0	0	X	1	X	X	1	
0	1	0	0	1	1	0	X	X	0	1	X	
0	1	1	1	0	0	1	X	X	1	X	1	
1	0	0	1	0	1	X	0	0	X	1	X	
1	0	1	1	1	0	X	0	1	X	X	1	
1	1	0	1	1	1	X	0	X	0	1	X	
1	1	1	0	0	0	X	1	X	1	X	1	

$$KA = A_1A_0$$

Presei State		Nex	xt S	tate	Flip Flop Inputs						
A_2A_1	A_{o}	\overline{A}_2	A_{1}	A_{ϱ}	$oldsymbol{J}_{_{oldsymbol{A}}}$	K_{A}	$J_{_{R}}$	K_{R}	J_{C}	K_{C}	
0 0	0	0	0	1	0	X	0	X	1	X	
0 0	1	0	1	0	0	X	1	X	X	1	
0 1	0	0	1	1	0	X	X	0	1	X	
0 1	1	1	0	0	1	X	X	1	X	1	
1 0	0	1	0	1	X	0	0	X	1	X	
1 0	1	1	1	0	X	0	1	X	X	1	
1 1	0	1	1	1	X	0	X	0	1	X	
1 1	1	0	0	0	X	1	X	1	X	1	

 $KB = A_0$

	rese Stat		Ne	xt S	tate	Flip Flop Inputs						
\overline{A}_2	$A_2 A_1 A_0$		\overline{A}_2	A_1	A_{o}	$oldsymbol{J}_{\!\scriptscriptstyle A}$	K_{A}	$J_{_{R}}$	K_{R}	J_{C}	K_{C}	
0	0	0	0	0	1	0	X	0	X	1	X	
0	0	1	0	1	0	0	X	1	X	X	1	
0	1	0	0	1	1	0	X	X	0	1	X	
0	1	1	1	0	0	1	X	X	1	X	1	
1	0	0	1	0	1	X	0	0	X	1	X	
1	0	1	1	1	0	X	0	1	X	X	1	
1	1	0	1	1	1	X	0	X	0	1	X	
1	1	1	0	0	0	X	1	X	1	X	1	

Functions for 3-bit binary counter with JK flip flop

$$JA = A_1A_0$$

$$KA = A_1A_0$$

$$KB = A_0$$

$$KC = 1$$