Appunti di ANALISI COMPLESSA

Roberto Bonciani*

Dipartimento di Fisica, Università di Roma "La Sapienza" e INFN Sezione di Roma,
Piazzale Aldo Moro 2,
00185 Roma

Corso di Modelli e Metodi Matematici della Fisica

Università degli Studi di Roma "La Sapienza" Dipartimento di Fisica

Anni Accademici 2017/2018 — 2021/2022

*Email: roberto.bonciani@roma1.infn.it

Indice

1	App	unti sui NUMERI COMPLESSI	5
	1.1	$Introduzione \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	5
	1.2	Numeri Complessi	7
		1.2.1 Radice Quadrata	11
		1.2.2 Rappresentazione geometrica dei Complessi	12
		1.2.3 Rppresentazione Polare	13
		1.2.4 Potenza n —esima	16
		1.2.5 Radice n -esima	16
		1.2.6 Radici dell'unità	18
	1.3	Disuguaglianze	18
	1.4	Alcuni Esercizi	19
		1.4.1 Esercizio	19
		1.4.2 Esercizio	19
		1.4.3 Esercizio	20
		1.4.4 Esercizio	21
		1.4.5 Esercizio	21
		1.4.6 Esercizio	22
		1.4.7 Esercizio	22
		1.4.8 Esercizio	22
2	Δnr	unti sulle FUNZIONI DI UNA VARIABILE COMPLESSA	24
_	2.1	Introduzione	
	2.2	Dominio	
	2.3	Funzioni di una variabile complessa	
	2.4	Limiti e continuità	
	$\frac{2.1}{2.5}$	Funzioni analitiche	
	2.0	2.5.1 Funzioni analitiche e condizioni di Cauchy-Riemann	
		2.5.2 Zeri di una funzione analitica	
		2.5.3 Singolarità isolate di una funzione analitica	
		2.5.4 Funzioni analitiche e campi irrotazionali e solenoidali	
		2.5.5 Funzioni analitiche e funzioni armoniche	
	2.6	Funzioni Analitiche e Trasformazioni Conformi	38
	2.0	2.6.1 Funzioni analitiche come trasformazioni del piano	39
		2.6.2 Punti con derivata nulla	$\frac{39}{42}$
		2.6.3 Trasformazioni di Möbius	$\frac{42}{42}$
		2.6.4 Esempi di trasformazioni conformi	
	2.7	Alcuni Esercizi	45 45
	4.1	AICUIII ESCICIZI	40

		2.7.1 Esercizio				45
		2.7.2 Esercizio				46
		2.7.3 Esercizio	•			47
3	App	ounti sulle SERIE DI POTENZE				48
	3.1	Successioni			•	48
	3.2	Successioni di funzioni			•	49
	3.3	Serie di funzioni				50
		3.3.1 Serie di potenze			•	51
4	App	ounti sulle FUNZIONI ANALITICHE ELEMENTARI				57
	4.1	Esponenziale complesso				57
	4.2	Funzioni trigonometriche			•	59
	4.3	Funzioni iperboliche			•	63
	4.4	Funzioni inverse e polidromia				64
		4.4.1 Logaritmo complesso				65
	4.5	Radice n -esima				68
	4.6	Punti di diramazione multipli				70
	4.7	Funzioni trigonometriche inverse				76
	4.8	Funzioni iperboliche inverse				78
	4.9	Potenza complessa				78
	4.10	Alcuni Esercizi				79
		4.10.1 Esercizio				79
		4.10.2 Esercizio				80
		4.10.3 Esercizio				80
		4.10.4 Esercizio			•	81
5	App	ounti sull'INTEGRAZIONE NEI COMPLESSI				82
	5.1	Curve in \mathbb{C}				83
		5.1.1 Omotopia				85
	5.2	Integrali				85
		5.2.1 Esempi				88
	5.3	Teorema di Cauchy (forma debole)				91
		5.3.1 Una conseguenza del Teorema di Cauchy: primitiva				98
		5.3.2 Domini multiplamente connessi				
		5.3.3 Principio di deformazione dei cammini			. 1	01
		5.3.4 Formula integrale di Cauchy				
	5.4	Serie di Taylor				
		5.4.1 Esempi				
	5.5	Altri risultati importanti				
	5.6	Funzioni analitiche monodrome con singolarità isolate: serie di Laurent .				
	5.7	Esempi				
	5.8	Serie di Laurent e Serie di Fourier				
	5.9	Teorema dei residui				
		5.9.1 Residuo nel caso di singolarità polare di ordine m				
		5.9.2 Residuo nel caso di polo singolo				
	5.10	Esempi				

5.11	Lemma di Jordan e lemma degli archi infinitesimi	127
5.12	Integrazione con i residui di funzioni razionali trigonometriche nei reali	130
5.13	Integrali di Fourier	132
5.14	Integrali di Fresnel	136
5.15	Integrali con esponenziali	137
5.16	Teorema dei residui con singolarità esterne alla curva di integrazione	140
	5.16.1 Esempio	143
	5.16.2 Esempio	144
	5.16.3 Esempio	145
	5.16.4 Esempio	146
5.17	Integrali impropri e Valor Principale di Cauchy	147
	5.17.1 Valore Principale di Cauchy	148
5.18	Integrali di funzioni polidrome	151
	5.18.1 Esempio	152
	5.18.2 Esempio	153
	5.18.3 Esempio	155
	5.18.4 Esempio	156
	5.18.5 Esempio	157
5.19	Prolungamento analitico nel piano complesso	160
	5.19.1 Funzione $\Gamma(z)$ di Eulero	164
	5.19.2 Principio di riflessione di Schwartz	166
	5.19.3 Continuazione alla Borel	166

Questi appunti non vogliono essere una trattazione esaustiva dell'analisi complessa, ma soltanto una schematica presentazione di ciò che è stato trattato a lezione.

Capitolo 1

Appunti sui NUMERI COMPLESSI

In questo capitolo introduciamo i numeri complessi.

1.1 Introduzione

Storicamente i numeri complessi vengono introdotti nel XVI secolo da alcuni matematici italiani impegnati nella ricerca della formula risolutrice delle equazioni di terzo grado.

Si può pensare all'introduzione di numeri complessi coinvolgendo la chiusura di un certo insieme sotto particolari operazioni. La mancanza di tale chiusura può essere risolta allargando l'insieme. Per esempio, I numeri naturali sono chiusi rispetto alla somma di due numeri. Infatti. se $n_1, n_2 \in \mathbb{N}$, si ha che

$$n = n_1 + n_2 \in \mathbb{N} \,. \tag{1.1}$$

Invece, se consideriamo la differenza di due numeri naturali,

$$n = n_1 - n_2 \,, \tag{1.2}$$

questa è ancora nell'insieme soltanto se $n_1 > n_2$. Altrimenti ho bisgno di un allargamento dell'insieme. Si deve passare ai numeri interi per poter avere chiusura anche rispetto alla differenza.

La stessa cosa viene fuori se consideriamo l'insieme dei numeri interi, \mathbb{Z} , e si vuole considerare la chiusura rispetto al quoziente. In generale, se $z_1, z_2 \in \mathbb{Z}$,

$$z = \frac{z_1}{z_2} \notin \mathbb{Z} \,. \tag{1.3}$$

Allargando \mathbb{Z} ai numeri razionali, \mathbb{Q} , si fa sì che z sia un razionale.

Analogamente potremmo cercare una chiusura rispetto all'estrazione della radice quadrata e dovremmo introdurre l'insieme dei numeri reali, \mathbb{R} .

Infine, se vogliamo estrarre la radice quadrata di un numero negativo, dobbiamo allargare ulteriormente all'insieme dei complessi, \mathbb{C} .

Un altro modo di dire la stessa cosa e rifarsi alla soluzione di un'equazione algebrica su un certo insieme (corpo). Se consideriamo per esempio l'equazione

$$2x + 3 = 0 ag{1.4}$$

e la vogliamo risolvere negli interi \mathbb{Z} , l'equazione non avrà soluzioni. Se invece allarghiamo gli interi ai razionali, \mathbb{Q} , allora l'Eq. (2.64) avrà una soluzione

$$x = -\frac{2}{3}. (1.5)$$

La stessa cosa se consideriamo l'equazione di secondo grado

$$x^2 + 1 = 0. (1.6)$$

Nei reali, l'Eq. (1.6) non ha soluzioni, ma se introduciamo i numeri complessi, \mathbb{C} , allora possiamo definire l'unità immaginaria

$$i = \sqrt{-1}, \tag{1.7}$$

e l'Eq. (1.6) ha due soluzioni:

$$x = \pm i. ag{1.8}$$

L'Eq. (1.6) può derivare per esempio da un problema fisico, come lo studio delle soluzioni dell'equazione del moto armonico

$$y'' + y = 0. (1.9)$$

Se cerchiamo una soluzione del tipo esponenziale

$$y(t) \sim e^{\alpha t} \,, \tag{1.10}$$

troviamo un'equazione indiciale del tipo (1.6). Ovvero

$$\alpha_{1,2} = \pm i$$
. (1.11)

Quindi una soluzione generale dell'equazione differenziale può essere scritta nella forma seguente

$$y(t) = \tilde{A}e^{it} + \tilde{B}e^{-it}. \tag{1.12}$$

D'altra parte si vede immediatamente che due soluzioni indipendenti reali (e la soluzione finale deve essere reale poiché y(t) rappresenta per esempio la coordinata del punto materiale soggetto alla forza di richiamo elastico) della (1.9) sono

$$y_1(t) = \sin t, \quad y_2(t) = \cos t,$$
 (1.13)

ovvero la soluzione generale dell'equazione differenziale è

$$y(t) = A\sin t + B\cos t. \tag{1.14}$$

Se ne deduce che \tilde{A} e \tilde{B} dovranno essere dei numeri complessi (in maniera tale da far venire l'espressione (1.12) reale) e che l'esponenziale $e^{\pm it}$ ha a che fare con le funzioni seno e coseno ... Vedremo che ciò è corretto, introducendo la formula di Eulero.

1.2 Numeri Complessi

Definizione 1.2.1 L'insieme dei numeri complessi \mathbb{C} è l'insieme delle coppie ordinate (x, y) con $x, y \in \mathbb{R}$.

Con questa definizione è immediato capire che c'e' una corrispondenza biunivoca fra \mathbb{C} e $\mathbb{R} \times \mathbb{R}$, cioè \mathbb{C} è isomorfo al prodotto cartesiano di \mathbb{R} con sé stesso.

Un elemento di $\mathbb{C},\,z\in\mathbb{C},$ si può rappresentare usando l'unità immaginaria nel seguente modo

$$z = x + iy. (1.15)$$

La x e la y vengono dette $parte\ reale$ e $parte\ immaginaria$ del numero complesso z e si indicano con

$$x = \Re(z), \tag{1.16}$$

$$y = \Im(z). \tag{1.17}$$

La rappresentazione (1.15) è unica, cioè il numero z è individuato da una sola $\Re(z)$ e da una sola $\Im(z)$. Se così non fosse si avrebbe

$$z = x + iy = x' + iy' (1.18)$$

e quindi

$$(x - x') = i(y' - y), (1.19)$$

che è verificata soltanto se x = x' e y = y'.

Definito l'insieme abbiamo bisogno di definirci sopra una struttura, cioè delle operarazioni rispetto alle quali l'insieme è chiuso e che ci permettano di lavorare con gli $z \in \mathbb{C}$.

Definizione 1.2.2 Detti z_1 e z_2 due numeri complessi, si ha

- 1. $z_1 = z_2$ se e solo se $\Re(z_1) = \Re(z_2)$ e $\Im(z_1) = \Im(z_2)$.
- 2. Si definisce la somma. Per $\forall z_1, z_2 \in \mathbb{C}$

$$z = z_1 + z_2 = (x_1 + iy_1) + (x_2 + iy_2) = (x_1 + x_2) + i(y_1 + y_2) \in \mathbb{C}.$$
 (1.20)

3. Si definisce il **prodotto**. Per $\forall z_1, z_2 \in \mathbb{C}$

$$z = z_1 z_2 = (x_1 + iy_1)(x_2 + iy_2) = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1) \in \mathbb{C}.$$
 (1.21)

NB. Valgono le usuali regole dell'aritmetica dei numeri reali con l'aggiunta della regola $i^2 = -1$.

Proprietà 1.2.3 Per somma e prodotto valgono le seguenti proprietà (che seguono banalmente dalle analoghe proprietà dei reali):

1. (Commutativa): $per \forall z_1, z_2 \in \mathbb{C} \ si \ ha$

$$z_1 + z_2 = z_2 + z_1 \,, \tag{1.22}$$

$$z_1 z_2 = z_2 z_1 \,. \tag{1.23}$$

2. (Associativa): per $\forall z_1, z_2, z_3 \in \mathbb{C}$ si ha

$$(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3) = \dots (1.24)$$

$$(z_1 z_2) z_3 = z_1(z_2 z_3) = \dots (1.25)$$

3. (Distributiva): per $\forall z_1, z_2, z_3 \in \mathbb{C}$ si ha che

$$z_1(z_2 + z_3) = z_1 z_2 + z_1 z_3. (1.26)$$

4. (Elemento neutro della somma): $\forall z \in \mathbb{C}$, $\exists ! 0$ tale che

$$z + 0 = 0 + z = z. (1.27)$$

5. (Elemento neutro del prodotto): $\forall z \in \mathbb{C}$, $\exists ! 1$ tale che

$$z \cdot 1 = 1 \cdot z = z \,. \tag{1.28}$$

 $si \ avrà \ 0 = (0,0) \ e \ 1 = (1,0).$

6. (Inverso della somma): $\forall z \in \mathbb{C}$, $\exists ! -z$ tale che

$$z + (-z) = (-z) + z = 0. (1.29)$$

7. (Reciproco del prodotto): $\forall z \in \mathbb{C} \text{ con } z \neq 0, \exists ! z^{-1} \text{ tale che}$

$$zz^{-1} = z^{-1}z = 1. (1.30)$$

L'inverso sarà il numero complesso z'=-z con $\Re(z')=-\Re(z)$ e $\Im(z')=-\Im(z)$

$$z' = -z = -x - iy = (-x, -y)$$
(1.31)

Da qui si può definire la differenza di z_1 da z_2 come la somma di z_1 e dell'inverso di z_2 .

Il reciproco, invece, è leggermente più complicato. Infatti, dalla definizione abbiamo che z'=1/z deve essere tale che zz'=1. Allora possiamo cercare la sua parte reale e parte immaginaria in termini della parte reale e immaginaria di z risolvendo un sistema:

$$zz' = (xx' - yy') + i(x'y + xy') = 1, (1.32)$$

ovvero

$$xx' - yy' = 1 (1.33)$$

$$x'y + xy' = 0. (1.34)$$

La soluzione del sistema dà

$$x' = \frac{x}{x^2 + y^2}, (1.35)$$

$$y' = -\frac{y}{x^2 + y^2}. (1.36)$$

Se consideriamo $z_1,z_2\in\mathbb{C}$, il rapporto z_1/z_2 potrà essere visto come il prodotto di z_1 per il reciproco di z_2 e quindi

$$z = \frac{z_1}{z_2} = x + iy, (1.37)$$

tale che

$$x = x_1 \frac{x_2}{x_2^2 + y_2^2} - y_1 \left(-\frac{y_2}{x_2^2 + y_2^2} \right) = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}, \tag{1.38}$$

$$y = x_1 \left(-\frac{y_2}{x_2^2 + y_2^2} \right) + y_1 \frac{x_2}{x_2^2 + y_2^2} = \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}. \tag{1.39}$$

NB. Regola semplice:

$$\frac{1}{z} = \frac{1}{x+iy} = \frac{1}{x+iy} \frac{x-iy}{x-iy} = \frac{x-iy}{x^2+y^2} = \frac{\overline{z}}{|z|^2}.$$
 (1.40)

Definizione 1.2.4 Si dice modulo di $z \in \mathbb{C}$, e si indica con |z|, il seguente numero reale

$$|z| = \sqrt{x^2 + y^2} \in \mathbb{R}. \tag{1.41}$$

Si ha che |z| = 0 se e solo se z = 0.

Definizione 1.2.5 Si dice **coniugato** di $z \in \mathbb{C}$, e si indica con \overline{z} , il seguente numero complesso

$$\overline{z} = x - iy, \qquad (1.42)$$

ovvero il numero complesso che abbia la stessa parte reale e l'inversa della parte immaginaria di z.

Proprietà 1.2.6 Si possono verificare facilmente le sequenti proprietà:

$$|z| = \sqrt{z\overline{z}},\tag{1.43}$$

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}, \quad \forall z \neq 0, \tag{1.44}$$

$$\Re(z) = \frac{z + \overline{z}}{2},\tag{1.45}$$

$$\Im(z) = \frac{z - \overline{z}}{2i},\tag{1.46}$$

$$\overline{z_1 \pm z_2} = \overline{z_1} \pm \overline{z_2}, \tag{1.47}$$

$$\overline{z_1 z_2} = \overline{z_1} \, \overline{z_2} \,, \tag{1.48}$$

$$\overline{\left(\frac{z_1}{z_2}\right)} = \frac{\overline{z_1}}{\overline{z_2}}, \quad z_2 \neq 0,$$
(1.49)

$$\overline{\overline{z}} = z. \tag{1.50}$$

Si ha anche

Proprietà 1.2.7

$$|\overline{z}| = |z|, \tag{1.51}$$

$$|z_1 z_2|^2 = (z_1 z_2) \overline{(z_1 z_2)} = z_1 \overline{z_1} z_2 \overline{z_2} = |z_1|^2 |z_2|^2 \implies |z_1 z_2| = |z_1||z_2|, \qquad (1.52)$$

$$|z_1 z_2 ... z_n| = |z_1||z_2|...|z_n|, (1.53)$$

$$\left|\frac{z_1}{z_2}\right| = \frac{|z_1|}{|z_2|},\tag{1.54}$$

$$|z_{1} + z_{2}|^{2} = (z_{1} + z_{2})\overline{(z_{1} + z_{2})} = (z_{1} + z_{2})(\overline{z_{1}} + \overline{z_{2}})$$

$$= z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + \overline{z_{1}}z_{2} + z_{2}\overline{z_{2}}$$

$$= poich\acute{e} \quad \overline{z_{1}}z_{2} = \overline{z_{1}}\overline{z_{2}},$$

$$= z_{1}\overline{z_{1}} + z_{1}\overline{z_{2}} + \overline{z_{1}}\overline{z_{2}} + z_{2}\overline{z_{2}}$$

$$= |z_{1}|^{2} + 2\Re(z_{1}\overline{z_{2}}) + |z_{2}|^{2},$$

$$(1.55)$$

$$|z_1 - z_2|^2 = \dots = |z_1|^2 - 2\Re(z_1\overline{z_2}) + |z_2|^2,$$
 (1.56)

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2). (1.57)$$

Proprietà 1.2.8 L'insieme dei numeri complessi, \mathbb{C} , con le operazioni di somma e prodotto discusse sopra, è un campo (o corpo).

NB. \mathbb{C} NON è un insieme ordinato, a differenza di \mathbb{R} .

Utilizzando le regole che abbiamo derivato possiamo dimostrare per esempio che, se

$$\sum_{i=0}^{N} a_i z^i = 0 (1.58)$$

è un'equazione a coefficienti reali, $a_i \in \mathbb{R}$ (cioè $\overline{a_i} = a_i$), allora il fatto che z_0 sia una radice complessa di (1.58) implica che anche $\overline{z_0}$ lo sia.

Infatti, se z_0 è radice di (1.58), vuol dire che $\sum_{i=0}^{N} a_i z_0^i = 0$. Ma allora

$$0 = \sum_{i=0}^{N} a_i z_0^i = \sum_{i=0}^{N} \overline{a_i z_0^i} = \sum_{i=0}^{N} \overline{a_i z_0^i} = \sum_{i=0}^{N} a_i \overline{z_0}^i,$$
 (1.59)

quindi $\overline{z_0}$ è soluzione della stessa equazione.

Definizione 1.2.9 Si dice potenza n-esima di $z \in \mathbb{C}$ $(n \in \mathbb{N})$

$$z^n = z z z \dots z \quad n \quad volte \tag{1.60}$$

Se $z \neq 0$ si ha

$$z^{-n} = \frac{1}{z^n} = \frac{1}{z} \dots \frac{1}{z} \frac{1}{z} \quad n \quad volte$$
 (1.61)

Inoltre si ha $z^0 = 1$.

1.2.1 Radice Quadrata

Definiamo adesso la radice quadrata di un numero complesso. Questa sarà un numero complesso

$$w = \sqrt{z} = \alpha + i\beta \,, \tag{1.62}$$

tale che

$$(\alpha + i\beta)^2 = z = x + iy. \tag{1.63}$$

La relazione (1.63) equivale al seguente sistema

$$\alpha^2 - \beta^2 = x \,, \tag{1.64}$$

$$2 \alpha \beta = y. \tag{1.65}$$

Se sommiamo i quadrati delle due equazioni otteniamo

$$(\alpha^2 - \beta^2)^2 + 4\alpha^2\beta^2 = (\alpha^2 + \beta^2)^2 = x^2 + y^2, \tag{1.66}$$

da cui

$$|w|^2 = \alpha^2 + \beta^2 = \sqrt{x^2 + y^2}. \tag{1.67}$$

Sommando o sottraendo la (1.67) dalla (1.64) si ottiene

$$\alpha^2 = \frac{1}{2}(x + \sqrt{x^2 + y^2}), \qquad (1.68)$$

$$\beta^2 = \frac{1}{2}(-x + \sqrt{x^2 + y^2}). \tag{1.69}$$

Quindi

$$\alpha = \pm \sqrt{\frac{1}{2}(x + \sqrt{x^2 + y^2})},$$
(1.70)

$$\beta = \pm \sqrt{\frac{1}{2}(-x + \sqrt{x^2 + y^2})}. \tag{1.71}$$

Da notare che gli argomenti delle radici sono positivi indipendentemente dai segni di x e y. Sembrano esserci quattro combinazioni. In realtà non abbiamo ancora utilizzato da sola l'Eq. (1.65), che ci dice che α e β devono essere tali che il loro prodotto deve avere lo stesso segno di y. Quindi per y>0 α e β dovranno essere concordi e per y<0 discordi. Possiamo quindi selezionare due possibilità, sintetizzabili nella formula che segue

$$\sqrt{x+iy} = \pm \left(\sqrt{\frac{1}{2}(x+\sqrt{x^2+y^2})} + i\frac{y}{|y|}\sqrt{\frac{1}{2}(-x+\sqrt{x^2+y^2})}\right), \qquad (1.72)$$

con $y \neq 0$.

Se y = 0, si ha

$$\sqrt{z} = \pm \sqrt{x} \quad \text{se} \quad x \ge 0 \,, \tag{1.73}$$

$$\sqrt{z} = \pm i\sqrt{-x} \quad \text{se} \quad x < 0. \tag{1.74}$$

Quindi, la radice quadrata di un numero complesso ha due valori opposti che coincidono solo se z=0. Se y=0 e $x\geq 0$ i due valori sono reali, se y=0 e x<0 sono immaginari puri.

1.2.2 Rappresentazione geometrica dei Complessi

La rappresentazione geometrica dei numeri complessi sfrutta l'isomorfismo fra \mathbb{C} e $\mathbb{R} \times \mathbb{R}$ e associa a z = x + iy la coppia di valori (x, y) in \mathbb{R}^2 :

Si può pensare a z come ad un vettore in \mathbb{R}^2 e di conseguenza possiamo rappresentare sul piano di Argand-Gauss le operazioni che abbiamo introdotto: somma, coniugazione, moltiplicazione per un numero reale o per l'unità immaginaria ... prodotto di due numeri complessi. Questo ultimo però si capirà meglio dopo l'introduzione della rappresentazione polare.

Rppresentazione Polare 1.2.3

Andando avanti con l'analogia fra \mathbb{C} e piano cartesiano, possiamo rappresentare $z \in \mathbb{C}$ tramite la rappresentazione polare del piano.

Avremo $r = |z| = \sqrt{x^2 + y^2}$ e

$$x = r\cos\theta, \tag{1.75}$$

$$y = r \sin \theta. \tag{1.76}$$

Allora

$$z = x + iy = r(\cos\theta + i\sin\theta), \qquad (1.77)$$

con

$$r = |z| \ge 0, \qquad (1.78)$$

$$\theta = \arg(z). \qquad (1.79)$$

$$\theta = \arg(z). \tag{1.79}$$

L'argomento di $z,\, \theta=\arg(z),$ è in realtà definito a meno di $2k\pi,$ con $k\in\mathbb{Z}.$

Definizione 1.2.10 Si definisce l'Argomento Principale di z, Arg(z), tale che

$$-\pi < \operatorname{Arg}(z) \le \pi. \tag{1.80}$$

Si ha

$$arg(z) = Arg(z) + 2k\pi, \quad k \in \mathbb{Z}.$$
 (1.81)

Come si fa a trovare r e Arg(z) sapendo la parte reale e la parte immaginaria di z (cioè x e y)? Dobbiamo ricorrere alla formula inversa delle coordinate polari

$$r = \sqrt{x^2 + y^2}, (1.82)$$

$$\theta = \arctan\left(\frac{y}{x}\right), \tag{1.83}$$

tenendo conto del fatto che l'arcotangente ha come codominio l'intervallo $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ e non $\left(-\pi, \pi\right)$. Quindi per raggiungere tutti i quadranti del piano, dovremo aggiungere (o levare) a mano π .

Infatti, se x e y sono concordi, y/x>0 e quindi l'argomento di un punto nel primo quadrante $(0<\operatorname{Arg}(z)<\pi/2)$ o del terzo quadrante $(x<0,\ y<0)$ vengono mappati dall'arcotangente nello stesso valore. L'argomento del punto nel terzo quadrante sarà però dato da arctan $y/x-\pi$. Così come nel caso x e y siano discordi, l'argomento di un punto nel secondo quadrante sarà dato da arctan $y/x+\pi$.

$$\operatorname{Arg}(z) = \begin{cases} \arctan\left(\frac{y}{x}\right) + \pi & x < 0, y > 0\\ \arctan\left(\frac{y}{x}\right) & x \ge 0, (x, y) \ne 0\\ \arctan\left(\frac{y}{x}\right) - \pi & x < 0, y < 0 \end{cases}$$
(1.84)

Se z = 0 l'argomento di z non è definito.

Prodotto

Alla luce della rappresentazione polare, riprendiamo in considerazione il prodotto fra due numeri complessi. Se

$$z_1 = r_1(\cos\theta_1 + i\sin\theta_1), \qquad (1.85)$$

$$z_2 = r_2(\cos\theta_2 + i\sin\theta_2), \qquad (1.86)$$

si avrà

$$z_1 z_2 = r_1 r_2 \left[\left(\cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2 \right) + i \left(\cos \theta_1 \sin \theta_2 + \cos \theta_2 \sin \theta_1 \right) \right], \qquad (1.87)$$

$$= r_1 r_2 (\cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2)), \qquad (1.88)$$

ovvero, $z=z_1z_2$ ha come modulo il prodotto dei moduli e come argomento la somma degli argomenti:

$$|z| = r = r_1 r_2 = |z_1||z_2|, (1.89)$$

$$\arg(z) = \theta_1 + \theta_2 = \arg(z_1) + \arg(z_2).$$
 (1.90)

Da notare che la regola vale per l'argomento e non per l'argomento principale. Infatti, la somma può eccedere 2π .

Questa regola si può generalizzare al prodotto di n numeri complessi. Se

$$z = z_1 z_2 ... z_n \,, \tag{1.91}$$

allora si ha:

$$|z| = |z_1||z_2|...|z_n|,$$
 (1.92)

$$\arg(z) = \sum_{i} \arg(z_i). \tag{1.93}$$

L'argomento principale del prodotto si può trovare prendendo $\sum_i \arg(z_i)$ modulo 2π .

Così si capisce bene la rappresentazione d prodotto di due (o più) numeri complessi nel piano di Argand-Gauss:

Inverso

Dato z = x + iy, si ha:

$$\frac{1}{z} = \frac{x}{x^2 + y^2} - i\frac{y}{x^2 + y^2},\tag{1.94}$$

da cui

$$\left|\frac{1}{z}\right| = \frac{1}{|z|},\tag{1.95}$$

$$\operatorname{arg}\left(\frac{1}{z}\right) = \arctan\left(-\frac{y}{x}\right) = -\arctan\left(\frac{y}{x}\right) = -\arg(z).$$
 (1.96)

Da cui il rapporto di due numeri complessi si può trovare facilmente come

$$z = \frac{z_1}{z_2},$$
 (1.97)

$$|z| = \frac{|z_1|}{|z_2|}, (1.98)$$

$$\arg(z) = \arg(z_1) - \arg(z_2).$$
 (1.99)

Formula di Eulero

Nel 1740 Eulero dà la sua formula esponenziale per rappresentare i numeri complessi. Si ha

$$z = r(\cos\theta + i\sin\theta) = re^{i\theta}. \tag{1.100}$$

Per avere una dimostrazione di tale formula rimandiamo al capitolo sulle funzioni analitiche. Per il momento possiamo dare una giustificazione della (1.100) come segue.

Per l'esponenziale reale, e^x , si ha

$$\frac{d}{dx}e^{ax} = a e^{ax}. (1.101)$$

Supponiamo che questa regola di derivazione sia valida anche nel caso complesso e che in particolare valga anche per a=i, con $i^2=-1$. Allora

$$\frac{d}{d\theta}e^{i\theta} = ie^{i\theta}, \qquad \frac{d^2}{d\theta^2}e^{i\theta} = -e^{i\theta}, \dots$$
 (1.102)

Sviluppiamo l'esponenziale in serie di Taylor. Avremo

$$re^{i\theta} = r\left(1 + i\theta - \frac{\theta^2}{2!} - i\frac{\theta^3}{3!} + \dots\right),$$
 (1.103)

$$= r \left[\left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} + \dots \right) + i \left(\theta - \frac{\theta^3}{3!} + \dots \right) \right]. \tag{1.104}$$

La prima serie è quella che individua il $\cos \theta$, mentre la seconda il $\sin \theta$, provando \cos la (1.100).

1.2.4 Potenza n-esima

Utilizzando la formula di Eulero, si avrà

$$z^{n} = \left(re^{i\theta}\right)^{n} = r^{n}(\cos\left(n\theta\right) + i\sin\left(n\theta\right)), \qquad (1.105)$$

che per r=1 dà la cosiddetta formula di de Moivre

$$(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)). \tag{1.106}$$

1.2.5 Radice n-esima

Per $\forall z \in \mathbb{C}$ si dice radice n-esima di z il numero complesso $w \in \mathbb{C}$, tale che

$$w^n = z. (1.107)$$

Se $w = \rho e^{i\phi}$ si deve quindi avere

$$\rho^n = |z|, \tag{1.108}$$

$$n\phi = \operatorname{Arg}(z) + 2k\pi. \tag{1.109}$$

Quindi

$$w = \sqrt[n]{|z|}e^{i\left(\frac{\text{Arg}(z)+2k\pi}{n}\right)}, \quad k = 0, 1, ..., n-1$$
 (1.110)

Come si vede, la $\sqrt[n]{z}$ ha n soluzioni distinte, con lo stesso modulo, $\sqrt[n]{|z|}$, e argomenti distinti fin quando k = n. Da questo valore in poi si riottengono gli stessi argomenti.

Esempio: radice quadrata

Dato $z = \rho e^{i\theta}$ si trova

$$\sqrt{z} = \sqrt{\rho}e^{i\frac{\theta + 2k\pi}{2}} = \sqrt{\rho}e^{i\frac{\theta}{2}}e^{ik\pi}. \tag{1.111}$$

 $e^{ik\pi}$ vale 1 per k=0 e -1 per k=1. Da k=2 in poi si riottengono gli stessi valori, +1 e -1. Quindi le due radici distinte sono

$$(\sqrt{z})_1 = \sqrt{\rho}e^{i\frac{\theta}{2}}, \tag{1.112}$$

$$(\sqrt{z})_2 = \sqrt{\rho}e^{i\frac{\theta}{2} + i\pi} = -\sqrt{\rho}e^{i\frac{\theta}{2}}, \qquad (1.113)$$

che si possono rappresentare sul piano complesso come segue:

Esempio: radice cubica

Dato $z = \rho e^{i\theta}$ si trova

$$\sqrt[3]{z} = \sqrt[3]{\rho} e^{i\frac{\theta + 2k\pi}{3}} = \sqrt[3]{\rho} e^{i\frac{\theta}{3}} e^{i\frac{2}{3}k\pi}. \tag{1.114}$$

In questo caso la radice ha 3 valori distinti, per k = 0, 1, 2. Da k = 3 si riottengono gli stessi valori. Queste tre radici hanno lo stesso modulo, $\sqrt[3]{\rho}$, e argomenti intervallati di $2/3k\pi$. Si avrà

$$(\sqrt[3]{z})_1 = \sqrt[3]{\rho}e^{i\frac{\theta}{3}}, \qquad (1.115)$$

$$(\sqrt[3]{z})_2 = \sqrt[3]{\rho}e^{i\left(\frac{\theta}{3} + \frac{2}{3}\pi\right)}, \tag{1.116}$$

$$(\sqrt[3]{z})_2 = \sqrt[3]{\rho}e^{i\left(\frac{\theta}{3} + \frac{2}{3}\pi\right)}, \qquad (1.116)$$

$$(\sqrt[3]{z})_3 = \sqrt[3]{\rho}e^{i\left(\frac{\theta}{3} + \frac{4}{3}\pi\right)}, \qquad (1.117)$$

Le tre radici si dispongono, quindi, su una circonferenza di raggio $\sqrt[3]{\rho}$ e formano i tre vertici di un triangolo equilatero

Le radici n-esime, si disporranno quindi su una circonferenza di raggio $\sqrt[n]{|z|}$ e occuperanno i vertici di un poligono regolare di n lati inscritto nella circonferenza.

1.2.6 Radici dell'unità

Di notevole importanza sono le radici n—esime dell'unità, $\sqrt[n]{1}$. Si ha

$$z = 1 = e^{i2k\pi}, (1.118)$$

da cui

$$z_k = \sqrt[n]{1} = e^{i\frac{2k\pi}{n}}, \quad k = 0, 1, ..., n - 1.$$
 (1.119)

Quindi per esempio le radici seste dell'unità sono

$$z_k = e^{i\frac{k\pi}{3}}, \quad k = 0, 1, ..., 5,$$
 (1.120)

ovvero

$$z_k = \left\{ 1, \frac{1 + i\sqrt{3}}{2}, -\frac{1 - i\sqrt{3}}{2}, -1, -\frac{1 + i\sqrt{3}}{2}, \frac{1 - i\sqrt{3}}{2} \right\},$$
 (1.121)

vertici di un esagono regolare inscritto in una circonferenza di raggio unitario.

1.3 Disuguaglianze

Per le dimostrazioni che seguiranno, abbiamo bisogno della disuguaglianza triangolare. Supponiamo che

$$|z|^2 = \Re(z)^2 + \Im(z)^2$$
, con $|z|$, $\Re(z)$, $\Im(z) \in \mathbb{R}$. (1.122)

Siccome \mathbb{R} è un insieme ordinato, si può scrivere che

$$|\Re(z)| \le |z|\,,\tag{1.123}$$

$$|\Im(z)| \le |z| \,. \tag{1.124}$$

Allora

$$|z_1 + z_2|^2 = (z_1 + z_2)\overline{(z_1 + z_2)} = (z_1 + z_2)(\overline{z_1} + \overline{z_2}),$$
 (1.125)

$$= |z_z|^2 + 2\Re(z_1\overline{z_2}) + |z_2|^2, \qquad (1.126)$$

$$\leq |z_1|^2 + 2|z_1\overline{z_2}| + |z_2|^2,$$
 (1.127)

$$= |z_1|^2 + 2|z_1||z_2| + |z_2|^2, (1.128)$$

$$= (|z_1| + |z_2|)^2, (1.129)$$

da cui segue che

$$|z_1 + z_2| \le |z_1| + |z_2|, \tag{1.130}$$

la disuguaglianza triangolare (nel triangolo, un lato è minore o uguale alla somma degli altri due).

La disuguaglianza triangolare si può estendere alla somma di n numeri complessi

$$|z_1 + z_2 + \dots + z_n| \le |z_1| + |z_2| + \dots + |z_n|$$
 (1.131)

Dalla disuguaglianza triangolare seguono altre disuguaglianze. Si ha

$$|z_1| = |z_1 - z_2 + z_2| \le |z_1 - z_2| + |z_2|, \tag{1.132}$$

da cui

$$|z_1| - |z_2| \le |z_1 - z_2|. (1.133)$$

Analogamente si ha anche

$$|z_2| = |z_2 - z_1 + z_1| \le |z_2 - z_1| + |z_1| = |z_1 - z_2| + |z_2|,$$
 (1.134)

da cui

$$|z_2| - |z_1| \le |z_1 - z_2|. (1.135)$$

Dalle (1.133) e (1.135) si evince che

$$|z_1 - z_2| \ge ||z_1| - |z_2||. (1.136)$$

1.4 Alcuni Esercizi

1.4.1 Esercizio

Porre in forma "canonica" (x+iy) i seguenti numeri complessi:

$$\frac{1}{-1+3i}, \quad \frac{2+i}{2-i}, \quad \frac{i}{2-3i}.$$
 (1.137)

Basta moltiplicare e dividere per il complesso coniugato del denominatore:

$$\frac{1}{-1+3i} = \frac{1}{-1+3i} \frac{1+3i}{1+3i} = -\frac{1+3i}{10}.$$
 (1.138)

$$\frac{2+i}{2-i} = \frac{2+i}{2-i} \frac{2+i}{2+i} = \frac{(2+i)^2}{5} = \frac{3+4i}{5}.$$
 (1.139)

$$\frac{i}{2-3i} = \frac{i}{2-3i} \frac{2+3i}{2+3i} = -\frac{3-2i}{13}.$$
 (1.140)

1.4.2 Esercizio

Calcolare le seguenti radici di numeri complessi:

$$\sqrt{i}, \quad \sqrt{-i}, \quad \sqrt{1+i}, \quad \sqrt[4]{-1}, \quad \sqrt[4]{i}, \quad \sqrt[4]{-i}.$$
 (1.141)

Per calcolare le radici complesse conviene metere il numero in forma polare.

1. \sqrt{i} .

$$\sqrt{i} = \sqrt{e^{i\frac{\pi}{2} + 2k\pi i}} = e^{i\frac{\pi}{4} + k\pi i},$$
 (1.142)

quindi si hanno due soluzioni distinte, per esempio con k = 0, 1, ovvero

$$z_1 = e^{i\frac{\pi}{4}}, \qquad z_2 = e^{i\frac{5\pi}{4}}.$$
 (1.143)

Se vogliamo rimanere con argomento compreso fra $-\pi$ e π , possiamo riscrivere la seconda radice come

$$z_2 = e^{-i\frac{3\pi}{4}}. (1.144)$$

 $2. \sqrt{-i}.$

$$\sqrt{-i} = \sqrt{e^{-i\frac{\pi}{2} + 2k\pi i}} = e^{-i\frac{\pi}{4} + k\pi i}, \qquad (1.145)$$

quindi si hanno due soluzioni distinte, per esempio con k = 0, 1, ovvero

$$z_1 = e^{-i\frac{\pi}{4}}, \qquad z_2 = e^{i\frac{3\pi}{4}}.$$
 (1.146)

3. $\sqrt{1+i}$. Si ha che

$$1 + i = \sqrt{2}e^{i\arctan(y/x)} = \sqrt{2}e^{i\frac{\pi}{4}}.$$
 (1.147)

Quindi

$$\sqrt{1+i} = \sqrt[4]{2}e^{i\frac{\pi}{8} + k\pi i}, \qquad (1.148)$$

quindi si hanno due soluzioni distinte, per esempio con k = 0, 1, ovvero

$$z_1 = \sqrt[4]{2}e^{-i\frac{\pi}{8}}, \qquad z_2 = \sqrt[4]{2}e^{i\frac{9\pi}{8}}.$$
 (1.149)

Se vogliamo rimanere con argomento compreso fra $-\pi$ e π , possiamo riscrivere la seconda radice come

$$z_2 = \sqrt[4]{2}e^{-i\frac{7\pi}{8}}. (1.150)$$

4.

1.4.3 Esercizio

Mettere in forma polare i seguenti numeri complessi:

$$1+i, \quad \frac{1+i\sqrt{3}}{2}, \quad \frac{1-i\sqrt{3}}{2}, \quad -\frac{1+i\sqrt{3}}{2}.$$
 (1.151)

Per fare ciò ci rifacciamo alla definizione

$$z = x + iy = |z|e^{i\phi}, \quad \phi = \arctan\left(\frac{y}{x}\right).$$
 (1.152)

Quindi

1. 1 + i.

$$|z| = \sqrt{2}, \quad \phi = \arctan(1) = \frac{\pi}{4} \implies 1 + i = \sqrt{2}e^{i\frac{\pi}{4}}.$$
 (1.153)

2. $\frac{1-i\sqrt{3}}{2}$.

$$|z| = \sqrt{\frac{1}{4} + \frac{3}{4}} = 1$$
, $\phi = -\arctan\sqrt{3} = -\frac{\pi}{3} \implies \frac{1 - i\sqrt{3}}{2} = e^{-i\frac{\pi}{3}}$. (1.154)

3.

1.4.4 Esercizio

Esprimere $\cos(3\phi)$ in termini di $\sin(\phi)$ e $\cos(\phi)$.

Ovviamente si possono utilizzare le formule trigonometriche trovando:

$$\cos(3\phi) = \cos(\phi + 2\phi) = \cos(\phi)\cos(2\phi) - \sin(\phi)\sin(2\phi), \qquad (1.155)$$

$$= \cos(\phi) \left(\cos^2(\phi) - \sin^2(\phi)\right) - \sin(\phi) \left(2\sin(\phi)\cos(\phi)\right), \qquad (1.156)$$

$$= \cos^{3}(\phi) - 3\sin^{2}(\phi)\cos(\phi). \tag{1.157}$$

Alternativamente possiamo utilizzare la formula di De Moivre e ottenere in un colpo solo anche il $\sin (3\phi)$:

$$\cos(3\phi) + i\sin(3\phi) = (\cos(\phi) + i\sin(\phi))^{3},$$

= $\cos^{3}(\phi) + 3i\cos^{2}(\phi)\sin(\phi) - 3\sin^{2}(\phi)\cos(\phi) - i\sin^{3}(\phi), (1.158)$

da cui

$$\cos(3\phi) = \cos^{3}(\phi) - 3\sin^{2}(\phi)\cos(\phi), \qquad (1.159)$$

$$\sin(3\phi) = -\sin^3(\phi) + 3\cos^2(\phi)\sin(\phi).$$
 (1.160)

1.4.5 Esercizio

Mostrare che $\forall z$ tale che |z|=1 può esser messo nella forma

$$z = \frac{1+it}{1-it}, \qquad t \in \mathbb{R}. \tag{1.161}$$

Se |z| = 1 si ha che $z = e^{i\phi}$ e, se $z, \overline{z} \neq 1$

$$z = \frac{z+1}{\overline{z}+1}$$
 (baste moltiplicare a dx e sx per $\overline{z}+1$), (1.162)

$$= \frac{1 + e^{i\phi}}{1 + e^{-i\phi}} = \frac{1 + \cos\phi + i\sin\phi}{1 + \cos\phi - i\sin\phi},$$
(1.163)

$$= \frac{1 + i \frac{\sin \phi}{1 + \cos \phi}}{1 - i \frac{\sin \phi}{1 + \cos \phi}}.$$
 (1.164)

Ponendo

$$t = \frac{\sin \phi}{1 + \cos \phi}, \quad \text{con } t \in \mathbb{R}, \tag{1.165}$$

si ha l'assunto.

In generale, quindi, un numero sul cerchio unitario può anche essere scritto come rapporto di un numero complesso e del suo complesso coniugato

$$z = \frac{a}{\overline{a}} = \frac{x + iy}{x - iy} = \frac{|a|e^{i\theta}}{|\overline{a}|e^{-i\theta}} = \frac{e^{i\theta}}{e^{-i\theta}} = e^{2i\theta}, \qquad (1.166)$$

dove a = x + iy e $\theta = \arctan(y/x)$.

1.4.6 Esercizio

Calcolare il seguente numero complesso:

$$\sum_{k=1}^{19} (1+i)^k \,. \tag{1.167}$$

Utilizziamo la somma della progressione geometrica

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z},$$
(1.168)

che può essere provata semplicemente moltiplicando ambo i membri della (1.168) per 1-z. Quindi si ha

$$\sum_{k=1}^{19} (1+i)^k = -1 + \frac{1 - (1+i)^{20}}{1 - 1 - i} = -1 + \sum_{k=0}^{19} (1+i)^k = -1 + i \left[1 - \left(\sqrt{2}e^{i\frac{\pi}{4}} \right)^{20} \right] = \dots = -1 + i1025.$$
(1.169)

1.4.7 Esercizio

Calcolare il |z| dove

$$z = \frac{ie^{-1-5i}(1+i)^3}{1+3i}. (1.170)$$

Utilizzando le proprietà dei numeri complessi si può arrivare rapidamente alla soluzione

$$|z| = \left| \frac{ie^{-1-5i}(1+i)^3}{1+3i} \right| = \frac{|ie^{-1-5i}(1+i)^3|}{|1+3i|} = \frac{|i||e^{-1}||e^{-5i}||(1+i)|^3}{|1+3i|} = \frac{e^{-1}2\sqrt{2}}{\sqrt{10}} = \frac{2}{\sqrt{5}e}. \quad (1.171)$$

1.4.8 Esercizio

Provare che

$$\left| \frac{a-b}{1-\bar{a}b} \right| = 1, \tag{1.172}$$

(con $\bar{a}b \neq 1$) se |a| = 1 o |b| = 1. E che

$$\left| \frac{a-b}{1-\bar{a}b} \right| < 1, \tag{1.173}$$

se |a| < 1 e |b| < 1. Se |a| = 1 si ha

$$\left| \frac{a-b}{1-\bar{a}b} \right| = \frac{|a| \left| 1 - \frac{b}{\bar{a}} \right|}{|1-\bar{a}b|} = \frac{|a| \left| 1 - \frac{\bar{a}b}{\bar{a}a} \right|}{|1-\bar{a}b|} = \frac{|a| \left| 1 - \bar{a}b \right|}{|1-\bar{a}b|} = |a| = 1. \tag{1.174}$$

Se |b| = 1 si ha

$$\left| \frac{a-b}{1-\bar{a}b} \right| = \frac{|b| \left| \frac{a}{\bar{b}} - 1 \right|}{|1-\bar{a}b|} = \frac{|b| \left| 1 - \frac{\bar{b}a}{\bar{b}b} \right|}{|1-\bar{a}b|} = \frac{|b| \left| 1 - \bar{b}a \right|}{|1-\bar{a}b|} = \frac{|b| \left| 1 - \bar{a}b \right|}{|1-\bar{a}b|} = |b| = 1. \tag{1.175}$$

Supponiamo ora che |a| < 1 e |b| < 1. Allora

$$\frac{|a-b|}{|1-\bar{a}b|} < 1 \tag{1.176}$$

implica che

$$\frac{|a-b|^2}{|1-\bar{a}b|^2} = \frac{(a-b)(\bar{a}-\bar{b})}{(1-\bar{a}b)(1-a\bar{b})} < 1,$$
(1.177)

ovvero

$$(a-b)(\bar{a}-\bar{b}) < (1-\bar{a}b)(1-a\bar{b}). \tag{1.178}$$

Sviluppando:

$$|a|^2 - a\bar{b} - b\bar{a} + |b|^2 < 1 - a\bar{b} - b\bar{a} + |a|^2|b|^2, \tag{1.179}$$

ovvero

$$|a|^2 + |b|^2 < 1 + |a|^2 |b|^2, (1.180)$$

Se $|\boldsymbol{a}|<1$ e $|\boldsymbol{b}|<1$ si ha per esempio che

$$|a|^2(|a|^2+|b|^2) < |a|^2+|b|^2 < 1+|a|^2|b|^2,$$
 (1.181)

ovvero

$$|a|^4 < 1\,, (1.182)$$

che è verificata. Oppure

$$|b|^2(|a|^2+|b|^2) < |a|^2+|b|^2 < 1+|a|^2|b|^2,$$
 (1.183)

ovvero

$$|b|^4 < 1, (1.184)$$

anch'essa verificata.

Capitolo 2

Appunti sulle FUNZIONI DI UNA VARIABILE COMPLESSA

In questo capitolo definiamo e studiamo le funzioni di una variabile complessa.

2.1 Introduzione

Per introdurre la teoria delle funzioni di una variabile complessa, dobbiamo definire "trasportando" ai complessi una serie di concetti che abbiamo definito a suo tempo per lo studio delle funzioni di variabile reale. In particolare dobbiamo specificare il dominio e il codominio di tali funzioni e poi riportare ai complessi il concetto di limite, continuità e derivabilità.

2.2 Dominio ...

Se vogliamo definire il dominio di una funzione di variabile complessa, ma anche il concetto di limite, dobbiamo introdurre il concetto di spazio metrico (in realtà per alcune cose basta utilizzare uno spazio topologico ...).

Definizione 2.2.1 Si dice spazio metrico la coppia (S,d) dove S è un insieme e d un'applicazione $d: S \times S \to \mathbb{R}$, da S cartesiano S nei reali, detta distanza, tale che se $x_i \in S$ si abbia:

- 1. $d(x_i, x_j) \ge 0$ e = 0 se e solo se $x_i = x_j$;
- 2. $d(x_i, x_i) = d(x_i, x_i)$;
- 3. $d(x_1, x_3) \le d(x_1, x_2) + d(x_2, x_3)$ (disuguaglianza triangolare)

Proprietà 2.2.2 (\mathbb{C},d) , dove \mathbb{C} è l'insieme dei numeri complessi e d la distanza Euclidea

$$d(z,z') = |z - z'| = \sqrt{(Re(z) - Re(z'))^2 + (Im(z) - Im(z'))^2},$$
(2.1)

con $z, z' \in \mathbb{C}$, è uno spazio metrico.

Vogliamo adesso arrivare alla definizione si sottoinsiemi aperti e chiusi di \mathbb{C} . Per far questo, definiamo un disco aperto e un disco chiuso (utilizzando la metrica) e poi usiamo il disco aperto per definire un sottoinsieme di \mathbb{C} che sia aperto.

Definizione 2.2.3 Sia $z_0 \in \mathbb{C}$ e $r \in \mathbb{R}$ con r > 0. Si dice **disco aperto** centrato in z_0 l'insieme degli $z \in \mathbb{C}$ tali che

$$|z - z_0| < r \tag{2.2}$$

e si indica con $D(z_0, r)$. Si dice invece disco chiuso centrato in z_0 l'insieme degli $z \in \mathbb{C}$ tali che

$$|z - z_0| \le r \tag{2.3}$$

e si indica con $\overline{D}(z_0, r)$.

Allora

Definizione 2.2.4 se $U \subset \mathbb{C}$ si dice che U è aperto se per $\forall z \in U \ \exists \epsilon > 0$ tale che il disco aperto centrato in z di raggio ϵ è contenuto in U, $D(z, \epsilon) \subset U$.

Allora si può dimostrare che

Teorema 2.2.5 L'unione di più aperti è un aperto. L'intersezione di più aperti è un aperto.

Definizione 2.2.6 $U \subset \mathbb{C}$ si dice chiuso se il suo complemento, $U^c = \mathbb{C} - U$, è aperto in \mathbb{C} .

Definizione 2.2.7 Si dice che z_0 è un punto di frontiera di $U \subset \mathbb{C}$, se $\forall D(z_0, r)$ con r > 0 contiene sia punti di U che punti non appartenenti ad U. L'insieme dei punti di frontiera di U si intica con ∂U .

Definizione 2.2.8 Si dice che z_0 è un punto interno di U se $\exists D(z_0, \epsilon)$, con $\epsilon > 0$, tale che $D(z_0, \epsilon) \subset U$.

Definizione 2.2.9 Si dice chiusura di U, e si indica con \overline{U} , l'unione di U e della sua frontiera

$$\overline{U} = U \cup \partial U. \tag{2.4}$$

Allora U è chiuso se contiene tutti i suoi punti di frontiera. Si può dimostrare che

Teorema 2.2.10 L'unione di più chiusi è un chiuso. L'intersezione di più chiusi è un chiuso.

Definizione 2.2.11 Si dice che $S \subset \mathbb{C}$ è **limitato** se \exists un c > 0 reale, tale che |z| < c per $\forall z \in S$ (ovvero se tutto S è incluso in un disco di raggio c).

Definizione 2.2.12 Siano $z, w \in \mathbb{C}$. Se $t \in R$, con $0 \le t \le 1$ si indichi il segmento di retta che congiunge z a w come

$${z + t(w - z), 0 \le t \le 1} = [z, w].$$
 (2.5)

Allora si dice poligonale da z a w l'insieme $P = \bigcup_{k=1}^{n} [z_k, z_{k+1}]$ con $z_n \in \mathbb{C}$, $k = 1, \dots, n, \in \mathbb{N}$ e $z_1 = z$, $z_n = w$.

Allora

Definizione 2.2.13 Un insieme aperto si dice **connesso** se per $\forall z, w \in S$, $\exists P$ (poligonale) che connette z a w e che è interamente contenuta in S.

Esempio 1. Un disco U = D(0, r) con r > 0, per esempio $U = \{z \in \mathbb{C} \ t.c. \ |z| < 1\}$, è aperto e connesso.

Esempio 2. Una corona circolare, $U = \{z \in \mathbb{C} \ t.c. \ 1 < |z| < 2\}$ è un aperto connesso.

Esempio 3. L'unione di più aperti non è detto che sia connesso. Per esempio $A = \bigcup A_n$ con $A_n = \{z \in \mathbb{C} \ t.c. \ |z-n| < 1/3\}$, con $n \in \mathbb{Z}$, è aperto ma non connesso.

Normalmente, quando parleremo di "dominio" della funzione f(z) ci riferiremo ad un aperto connesso.

2.3 Funzioni di una variabile complessa

Sia $U \subset \mathbb{C}$ un aperto e connesso e sia f una funzione da U in \mathbb{C}

$$f: U \longrightarrow \mathbb{C},$$
 (2.6)

tale che per $\forall z \in U$ si abbia $f(z) = w \in D \subset \mathbb{C}$. La f(z) è una funzione di una variabile complessa. U sarà il dominio di f, mentre D = f(U) sarà l'immagine di U rispetto ad f.

Siccome $w \in D \subset \mathbb{C}$, possiamo esplicitare la parte reale e la parte immaginaria di f(z) come segue:

$$f(z) = u(x, y) + iv(x, y),$$
 (2.7)

tale che

$$u(x,y) = \Re f(z), \tag{2.8}$$

$$v(x,y) = \Im f(z). \tag{2.9}$$

Parte reale e parte immaginaria di f(z) sono funzioni da $U \in \mathbb{C}$ in \mathbb{R} .

Esempio 1. $f(z) = \overline{z}$ ha le seguenti parti reale e immaginaria

$$u(x,y) = x, (2.10)$$

$$v(x,y) = -y (2.11)$$

e si tratta della funzione che prende z e ne fa lo speculare rispetto all'asse dei reali, $\Re z$.

Esempio 2. Se definiamo

$$u(x,y) = -y, (2.12)$$

$$v(x,y) = x, (2.13)$$

si vede che

$$f(z) = -y + ix = i(x + iy) = e^{i\frac{\pi}{2}}(x + iy), \qquad (2.14)$$

che corrisponde alla rotazione in senso antiorario di $\pi/2$ del punto z.

Esempio 3. Se definiamo

$$u(x,y) = x^2 + y^2, (2.15)$$

$$v(x,y) = 2xy, (2.16)$$

si ha

$$f(z) = x^2 + y^2 + i2xy, (2.17)$$

che, utilizzando le relazioni $x^2+y^2=|z|^2=z\overline{z},$ $2x=z+\overline{z}$ e $2iy=z-\overline{z},$ puo' essere riscritta in funzione di z e \overline{z} come segue:

$$f(z) = z\overline{z} + 2i\frac{(z+\overline{z})}{2}\frac{(z-\overline{z})}{2i} = z\overline{z} + \frac{(z^2-\overline{z}^2)}{2}.$$
 (2.18)

Esempio 4. Se consideriamo

$$u(x,y) = x^2 - y^2, (2.19)$$

$$v(x,y) = 2xy, (2.20)$$

si ha

$$f(z) = x^2 - y^2 + i2xy = z^2. (2.21)$$

In generale $f:U\longrightarrow\mathbb{C}$ può essere funzione di z e \overline{z} . Vedramo fra poco che le funzioni della sola variabile z rivestono un ruolo particolarmente iimportante nell'analisi complessa.

2.4 Limiti e continuità

Cominciamo con la definizionee di limite.

Definizione 2.4.1 Limite. Sia $f: U \longrightarrow W$ una funzione di variabile complessa e sia $z_0 \in U$ e $w \in \mathbb{C}$. Allora si dice che w è il limite di f(z) per z che tende a z_0 e si scrive

$$\lim_{z \to z_0} f(z) = w \,, \tag{2.22}$$

se dato un $\epsilon \in \mathbb{R}$ con $\epsilon > 0$, $\exists \delta(\epsilon) > 0$ tale che se $z \in U$ e $|z - z_0| < \delta$ allora $|f(z) - w| < \epsilon$.

Ovviamente non è detto che $z_0 \in U$ e $w \in W$. Basta che z_0 sia un punto di accumulazione per U e w per W.

Teorema 2.4.2 Sia $f: U \to \mathbb{C}$ $e z_0, w \in \mathbb{C}$. Allora

$$\lim_{z \to z_0} f(z) = w \,, \tag{2.23}$$

se e solo se

$$\lim_{z \to z_0} \Re f(z) = \Re w, \qquad (2.24)$$

$$\lim_{z \to z_0} \Im f(z) = \Im w. \tag{2.25}$$

Dimostrazione. Supponiamo che $\lim_{z\to z_0} f(z) = w$. Allora, dato $\epsilon > 0$, $\exists \delta$ tale che $|f(z)-w| < \epsilon$ se $|z-z_0| < \delta$. Ma

$$|\Re f(z) - \Re w| = |\Re (f(z) - w)| \le |f(z) - w| < \epsilon.$$
 (2.26)

Quindi

$$\lim_{z \to z_0} f(z) = w \quad \Longrightarrow \quad \lim_{z \to z_0} \Re f(z) = \Re w. \tag{2.27}$$

Lo stesso vale per $\Im f(z)$. Viceversa, supponiamo che

$$\lim_{z \to z_0} \Re f(z) = \Re w \,, \tag{2.28}$$

$$\lim_{z \to z_0} \Im f(z) = \Im w, \qquad (2.29)$$

allora $|\Re f(z) - \Re w| < \epsilon_1$ e $|\Im f(z) - \Im w| < \epsilon_2$, ma

$$|f(z) - w| = |\Re(f(z) - w) + i\Im(f(z) - w)| \le |\Re(f(z) - w)| + |\Im(f(z) - w)| < \epsilon, \quad (2.30)$$

dove si è preso $\epsilon = \epsilon_1 + \epsilon_2$. Quindi $\lim_{z \to z_0} f(z) = w$.

Teorema 2.4.3 Siano f e g due funzioni di variabile complessa, $f, g: U \to \mathbb{C}$. Sia $z_0 \in U$ e $w_f, w_g \in \mathbb{C}$. Se $\lim_{z \to z_0} f(z) = w_f$ e $\lim_{z \to z_0} g(z) = w_g$, allora

$$\lim_{z \to z_0} (f(z) \pm g(z)) = w_f \pm w_g, \qquad (2.31)$$

$$\lim_{z \to z_0} f(z)g(z) = w_f w_g \,, \tag{2.32}$$

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = \frac{w_f}{w_g}, \quad se \quad w_f \neq 0.$$
 (2.33)

Dimostrazione. Si utilizza sempre la disuguaglianza triangolare. Per esempio, sia $\lim_{z\to z_0} f(z) = w_f$ e $\lim_{z\to z_0} g(z) = w_q$. Allora

$$|(f(z)+g(z))-(w_f+w_g)| = |(f(z)-w_f)+(g(z)-w_g)| \le |(f(z)-w_f)|+|(g(z)-w_g)| < \epsilon_1+\epsilon_2 = \epsilon.$$
(2.34)

La stessa cosa vale per la differenza.

Per il prodotto si può avere

$$|f(z)g(z) - w_f w_g| = |(f - w_f)(g - w_g) + f w_g + g w_f - 2w_f w_g|,$$

$$\leq |(f - w_f)(g - w_g) + (f - w_f)w_g + (g - w_g)w_f|,$$

$$\leq |(f - w_f)(g - w_g)| + |(f - w_f)w_g| + |(g - w_g)w_f|, \qquad (2.35)$$

$$< \epsilon_1 \epsilon_2 + \epsilon_1 w_g + \epsilon_2 w_f < \epsilon. \qquad (2.36)$$

La stessa cosa vale per il rapporto.

Definizione 2.4.4 Continuità. Sia $f: U \longrightarrow \mathbb{C}$. Si dice che f(z) è continua in $z_0 \in U$ se $\lim_{z \to z_0} f(z) = f(z_0)$. f è continua in U se è continua per $\forall z \in U$.

Allora valgono i seguenti risultati.

Teorema 2.4.5 Sia $f: S_1 \to S_2$, continua in S_1 e $g: S_2 \to S_3$ continua in S_2 . Allora $g \circ f = g(f(z)): S_1 \to S_3$ è continua.

Dimostrazione. Basta tener conto della definizione di continuità e mettere insieme i limiti della funzione composta.

Teorema 2.4.6 Siano $f: U \to \mathbb{C}$ e $g: U \to \mathbb{C}$ continue in U. Allora f+g e fg sono continue in U. Inoltre, f/g è continua per $\forall z \in U$ per cui $g(z) \neq 0$.

Dimostrazione. Per la dimostrazione basta sfruttare la definizione di limite.

Teorema 2.4.7 Sia $f: U \to \mathbb{C}$ e $z_0 \in U$. La f è continua in z_0 se e solo se $\Re f$ e $\Im f$ sono continue in z_0 .

Dimostrazione. Sfruttare lo stesso ragionamento dei limiti usando la definizione di continuità.

2.5 Funzioni analitiche

Abbiamo visto come una funzione di variabile complessa dipenda in generale da x e y tramite le sue parti reale e immaginaria. Di conseguenza, f potrà essere espressa in funzione di z e \overline{z} (vedi esempi nella sezione precedente). C'è però una classe di funzioni di variabile complessa molto importanti per le quali la dipendenza si riduce alla sola z = x + iy. Queste funzioni sono le funzioni analitiche, per le quali si estende a \mathbb{C} il concetto di derivabilità.

Definizione 2.5.1 Sia $f: U \to \mathbb{C}$. Si dice che f è derivabile in $z_0 \in U$ se \exists il limite

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0), \qquad (2.37)$$

 $con h \in \mathbb{C}$.

NB. Questo limite del rapporto incrementale è genuinamente in \mathbb{C} ! Cioè stiamo richiedendo che ci si possa avvicinare a 0 da qualunque direzione in \mathbb{C} . Ciò ha delle conseguenze molto importanti e come vedremo subito pone dei vincoli stringenti sulla parte reale e sulla parte immaginaria di f(z).

Teorema 2.5.2 Se $f: U \to \mathbb{C}$ è derivabile in $z_0 \in U$, allora è anche continua in z_0 .

(Il viceversa ovviamente non è vero).

Dimostrazione. Se f(z) è derivabile in z_0 si ha

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0), \qquad (2.38)$$

ma allora, siccome il limite del prodotto è il prodotto dei limiti si ha anche

$$0 = \lim_{h \to 0} \left(\frac{f(z_0 + h) - f(z_0)}{h} \right) \lim_{h \to 0} h = \lim_{h \to 0} \left(\frac{f(z_0 + h) - f(z_0)}{h} h \right) = \lim_{h \to 0} (f(z_0 + h) - f(z_0)).$$
(2.39)

Quindi f(z) è continua in z_0 .

Teorema 2.5.3 Se $f, g: U \to \mathbb{C}$ sono derivabili in $z_0 \in U$, allora:

- 1. (f+g)(z) è derivabile in z_0 e si ha $(f+g)'(z_0) = f'(z_0) + g'(z_0)$;
- 2. (fg)(z) è derivabile in z_0 e si ha $(fg)'(z_0) = (f'g)(z_0) + (fg')(z_0)$;
- 3. (f/g)(z) è discrivabile se $g(z_0) \neq 0$ e si ha $(f/g)'(z_0) = (f'g fg')(z_0)/g^2(z_0)$.

Dimostrazione.

1. Sfruttando le proprietà dei limiti si ha:

$$(f+g)'(z_0) = \lim_{z \to z_0} \frac{(f+g)(z) - (f+g)(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{(f(z) - f(z_0)) + (g(z) - g(z_0))}{z - z_0},$$

$$= \lim_{z \to z_0} \left(\frac{(f(z) - f(z_0))}{z - z_0} + \frac{(g(z) - g(z_0))}{z - z_0} \right) = f'(z_0) + g'(z_0).$$
 (2.40)

2. Si ha

$$(fg)'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h)g(z_0 + h) - f(z_0)g(z_0)}{h},$$

$$= \lim_{h \to 0} \frac{f(z_0 + h)g(z_0 + h) - f(z_0)g(z_0 + h) + f(z_0)g(z_0 + h) - f(z_0)g(z_0)}{h},$$

$$= \lim_{h \to 0} \left(\frac{f(z_0 + h) - f(z_0)}{h}g(z_0 + h) + f(z_0)\frac{g(z_0 + h) - g(z_0)}{h}\right),$$

$$= f'(z_0)g(z_0) + f(z_0)g'(z_0). \tag{2.41}$$

3. Partiamo con la derivata dell'inverso della funzione. Sfruttando le proprietà dei limiti si ha

$$\left(\frac{1}{g}\right)'(z_0) = \lim_{h \to 0} \frac{\frac{1}{g(z_0 + h)} - \frac{1}{g(z_0)}}{h},$$

$$= \lim_{h \to 0} \left(-\frac{g(z_0 + h) - g(z_0)}{h} \frac{1}{g(z_0 + h)g(z_0)}\right) = -\frac{g'(z_0)}{g^2(z_0)}. \quad (2.42)$$

Allora

$$(f/g)'(z_0) = \left(f\frac{1}{g}\right)'(z_0) = f'(z_0)\left(\frac{1}{g(z_0)}\right) + f(z_0)\left(\frac{1}{g}\right)'(z_0) = \frac{(f'g - fg')(z_0)}{g^2(z_0)}. \quad (2.43)$$

Teorema 2.5.4 Se $f: U \to V$ e $g: V \to \mathbb{C}$ e inoltre f(z) è derivabile in $z_0 \in U$ e g(z) è derivabile in $f(z_0)$, allora $g(f(z)) = (g \circ f)$ è derivabile in z_0 e si ha $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$.

Dimostrazione. Possiamo riscrivere il limite del rapporto incrementale come segue:

$$\lim_{h \to 0} \frac{g(f(z_0 + h)) - g(f(z_0))}{h} = \lim_{h \to 0} \frac{g(f(z_0 + h)) - g(f(z_0))}{f(z_0 + h) - f(z_0)} \frac{f(z_0 + h) - f(z_0)}{h}.$$
 (2.44)

Sappiamo che

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = f'(z_0), \qquad (2.45)$$

ovvero $f(z_0 + h) - f(z_0)$ è un infinitesimo del primo ordine in h che possiamo scrivere come

$$f(z_0 + h) - f(z_0) \simeq f'(z_0)h = k,$$
 (2.46)

o anche, ponendo $f(z_0) = y_0$, come

$$f(z_0 + h) \simeq y_0 + k$$
. (2.47)

Quando $h \to 0$ anche $k \to 0$ e $f(z+h) \to f(z)$ essendo f derivabile e quindi continua in z. Allora

$$\lim_{h \to 0} \frac{g(f(z_0 + h)) - g(f(z_0))}{f(z_0 + h) - f(z_0)} \frac{f(z_0 + h) - f(z_0)}{h},$$

$$= \lim_{h \to 0} \frac{g(f(z_0 + h)) - g(f(z_0))}{f(z_0 + h) - f(z_0)} \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h},$$

$$= \lim_{k \to 0} \frac{g(y_0 + k) - g(y_0)}{k} \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = g'(f(z_0))f'(z_0). \quad (2.48)$$

Teorema 2.5.5 Sia $f: D \to V$ con D e V aperti e connessi di \mathbb{C} . Sia w = f(z) e f biunivoca con funzione inversa $f^{-1}(w) = z$ continua in V = f(U). Allora se f è derivabile in $z \in D$ e $f'(z) \neq 0$, f^{-1} è derivabile in w = f(z) e ;a sua derivata è

$$\frac{d}{dw}f^{-1}(w)\Big|_{w=f(z)} = \frac{1}{f'(z)}.$$
(2.49)

Dimostrazione. f è biunivoca. Quindi w = f(z) e w' = f(z') sono due numeri complessi diversi se $z \neq z'$. Allora

$$\frac{f^{-1}(w') - f^{-1}(w)}{w' - w} = \frac{z' - z}{f(z') - f(z)} = \frac{1}{\frac{f(z') - f(z)}{z' - z}}.$$
 (2.50)

Poiché f^{-1} è continua in V = f(D), si ha che

$$\lim_{w' \to w = f(z)} f^{-1}(w') = f^{-1}(w) = f^{-1}(f(z)), \qquad (2.51)$$

cioè quando $w' \to w = f(z)$ in V, si ha che $z' \to z$ in D. Allora

$$\frac{d}{dw}f^{-1}(w)\Big|_{w=f(z)} = \lim_{w'\to w} \frac{f^{-1}(w') - f^{-1}(w)}{w' - w} = \lim_{z'\to z} \frac{1}{\frac{f(z') - f(z)}{z' - z}} = \frac{1}{f'(z)}.$$
(2.52)

Definizione 2.5.6 Una funzione f(z) sul dominio U è detta **analitica** (o **olomorfa**) in U se è derivabile (nel senso della derivata complessa definita in questa sezione) in $\forall z \in U$. Si dice che la funzione f(z) è analitica nel punto z_0 , se è derivabile in un intorno di z_0 . (NB. L'analiticità ha bisogno di derivabilità in un intorno ...).

2.5.1 Funzioni analitiche e condizioni di Cauchy-Riemann

Riprendiamo adesso la definizione di derivabilità in \mathbb{C} . Abbiamo definito la derivata con il seguente limite del rapporto incrementale

$$f'(z_0) = \lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h}.$$
 (2.53)

Questa definizione è abbastanza restrittiva. Infatti, stiamo dicendo che la derivabilità nel punto z_0 viene fatta con un h che può tendere a 0 in qualsiasi modo, da qualsiasi direzione nel piano $\mathbb{C}!!$ Potremo quindi scegliere per esempio due "percorsi" lungo i quali $h \to 0$ e le derivate trovate in entrambi i casi dovranno essere uguali.

Per capire quali conseguenze abbia questa definizione sulla struttura di f(z) consideriamo due casi particolari. Nel primo caso h tende a 0 sulla reta dei reali, $h = (x - x_0) + iy_0$ per $x \to x_0$. Nel secondo caso invece h tende a zero dall'asse immaginario, $h = x_0 + i(y - y_0)$ per $y \to y_0$.

Nel primo caso si ha:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{[u(x, y_0) - u(x_0, y_0)] + i[v(x, y_0) - v(x_0, y_0)]}{x - x_0}.$$
 (2.54)

Facendo il limite per $z \to z_0$ si ottiene

$$f'(z_0) = \frac{\partial u}{\partial x}(z_0) + i \frac{\partial v}{\partial x}(z_0). \tag{2.55}$$

Nel secondo caso si ha:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{[u(x_0, y) - u(x_0, y_0)] + i[v(x_0, y) - v(x_0, y_0)]}{i(y - y_0)},$$

$$= \frac{[v(x_0, y) - v(x_0, y_0)]}{(y - y_0)} - i\frac{[u(x_0, y) - u(x_0, y_0)]}{(y - y_0)}.$$
(2.56)

Facendo il limite per $z \to z_0$ si ottiene

$$f'(z_0) = \frac{\partial v}{\partial y}(z_0) - i\frac{\partial u}{\partial y}(z_0).$$
 (2.57)

Siccome le due espressioni devono essere uguali, si hanno le cosiddette **equazioni di** Cauchy-Riemann:

$$\frac{\partial u}{\partial x}(z_0) = \frac{\partial v}{\partial y}(z_0), \qquad (2.58)$$

$$\frac{\partial v}{\partial x}(z_0) = -\frac{\partial u}{\partial y}(z_0). \tag{2.59}$$

Quindi, se f(z) è analitica (e quindi derivabile) in z_0 la sua parte reale e la sua parte immaginaria devono soddisfare le equazioni di Cauchy-Riemann in z_0 .

Si può dimostrare anche il viceversa, sotto l'aggiuntiva ipotesi che le derivate parziali di u(x,y) e v(x,y) siano continue in z_0 , ovvero che se u(x,y) e v(x,y) sono differenziabili in z_0 , con derivate continue e valgono le condizioni di Cauchy-Riemann allora f(z) = u + iv è derivabile in z_0 (nel senso della (2.53)). Infatti, se u(x,y) e v(x,y) sono differenziabili in z_0 possiamo scrivere

$$u(x_0 + h, y_0 + k) - u(x_0, y_0) = \frac{\partial u}{\partial x} h + \frac{\partial u}{\partial y} k + \epsilon_1, \qquad (2.60)$$

$$v(x_0 + h, y_0 + k) - v(x_0, y_0) = \frac{\partial v}{\partial x} h + \frac{\partial v}{\partial y} k + \epsilon_2, \qquad (2.61)$$

 $con \xi = h + ik e$

$$\lim_{\xi \to 0} \frac{\epsilon_1}{\xi} = \lim_{\xi \to 0} \frac{\epsilon_2}{\xi} = 0. \tag{2.62}$$

Allora

$$\frac{f(z_0 + \xi) - f(z_0)}{\xi} = \frac{\left(\frac{\partial u}{\partial x}h + \frac{\partial u}{\partial y}k + \epsilon_1\right) + i\left(\frac{\partial v}{\partial x}h + \frac{\partial v}{\partial y}k + \epsilon_2\right)}{h + ik}, \tag{2.63}$$

$$= \frac{\frac{\partial u}{\partial x}(h+ik) + i\frac{\partial v}{\partial x}(h+ik)}{h+ik} + \frac{\epsilon_i}{h+ik}, \qquad (2.64)$$

dove abbiamo utilizzato le equazioni di CR, raccogliendo a fattore $\frac{\partial u}{\partial x}$ e $\frac{\partial v}{\partial x}$. Prendendo il limite $\xi \to 0$ della Eq. (2.64) otteniamo:

$$f'(z_0) = \frac{\partial u}{\partial x}(z_0) + i\frac{\partial v}{\partial x}(z_0) = \frac{\partial}{\partial x}f(z_0).$$
 (2.65)

Per cui $\exists f'(z_0)$ e f(z) è derivabile in z_0 .

Analogamente, raccogliendo in Eq. (2.64) $\frac{\partial u}{\partial y}$ e $\frac{\partial v}{\partial y}$ si ottiene anche la

$$f'(z_0) = \frac{\partial v}{\partial y}(z_0) - i\frac{\partial u}{\partial y}(z_0) = -i\frac{\partial}{\partial y}f(z_0).$$
 (2.66)

Siccome la derivata deve essere la stessa, si deve avere

$$\frac{\partial f}{\partial x} = -i\frac{\partial f}{\partial y},\tag{2.67}$$

ovvero

$$\left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f(z_0) = 0.$$
 (2.68)

Vediamo a cosa corrisponde la relazione (2.68). Avendo z=x+iy e $\overline{z}=x-iy$ si possono invertire queste relazioni trovando

$$x = \frac{z + \overline{z}}{2}, \quad y = \frac{z - \overline{z}}{2i}. \tag{2.69}$$

Di conseguenza, possiamo riesprimere le derivate in x e y in termini di derivate in z e \overline{z} :

$$\frac{\partial}{\partial x} = \frac{\partial}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial}{\partial \overline{z}} \frac{\partial \overline{z}}{\partial x} = \frac{\partial}{\partial z} + \frac{\partial}{\partial \overline{z}}, \qquad (2.70)$$

$$\frac{\partial}{\partial y} = \frac{\partial}{\partial z} \frac{\partial z}{\partial y} + \frac{\partial}{\partial \overline{z}} \frac{\partial \overline{z}}{\partial y} = i \frac{\partial}{\partial z} - i \frac{\partial}{\partial \overline{z}}.$$
 (2.71)

Quindi:

$$0 = \left(\frac{\partial}{\partial x} + i\frac{\partial}{\partial y}\right) f(z_0) = 2\frac{\partial}{\partial \overline{z}} f(z_0). \tag{2.72}$$

La richiesta che f(z) sia analitica è equivalente ad affermare che f non deve dipendere da \overline{z} , ma soltanto da z, nel dominio di analiticità.

Abbiamo quindi dimostrato il seguente teorema.

Teorema 2.5.7 Condizione necessaria e sufficiente affinché f(z) sia analitica in $D \subset \mathbb{C}$ è che u(x,y) e v(x,y) siano differenziabili con continuità in $\forall z \in D$ e che valgano le condizioni di Cauchy-Riemann in D.

Definizione 2.5.8 Se una funzione f(z) è analitica in tutto $\mathbb{C} - \{\infty\}$, si dice intera.

Teorema 2.5.9 Sia $f: D \to \mathbb{C}$ analitica in D e sia f'(z) = 0 per $\forall z \in D$. Allora f è costante in D.

Dimostrazione. Siccome f è analitica in D, in ogni suo punto esiste la derivata e si dovrà avere

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = 0 \implies \frac{\partial u}{\partial x}, \quad e \quad \frac{\partial v}{\partial x} = 0,$$
 (2.73)

e anche

$$f'(z) = \frac{\partial v}{\partial y} - i\frac{\partial u}{\partial y} = 0 \implies \frac{\partial u}{\partial y}, \quad e \quad \frac{\partial v}{\partial y} = 0.$$
 (2.74)

Quindi per $\forall z \in D$ si ha

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x} = \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} = 0 \tag{2.75}$$

Siccome D è connesso, possiamo trovare due punti, $z_1 = x_1 + iy_1$ e $z_2 = x_2 + iy_2$ in D, tali che siano collegati da una retta in \mathbb{C} : $\{z_1 + t(z_2 - z_1), 0 \le t \le 1\}$ con t parametro reale.

La differenza di $f(z_2) - f(z_1)$ avrà le seguenti parte reale e parte immaginaria:

$$u(x_2, y_2) - u(x_1, y_1) = \int_0^1 \frac{du}{dt} dt, \qquad (2.76)$$

$$v(x_2, y_2) - v(x_1, y_1) = \int_0^1 \frac{dv}{dt} dt, \qquad (2.77)$$

con u(t)=u(x(t),y(t))e v(t)=v(x(t),y(t)). Si ha

$$\frac{du}{dt} = \frac{\partial u}{\partial x}\dot{x} + \frac{\partial u}{\partial y}\dot{y} = 0, \qquad (2.78)$$

$$\frac{dv}{dt} = \frac{\partial v}{\partial x}\dot{x} + \frac{\partial v}{\partial y}\dot{y} = 0, \qquad (2.79)$$

dove abbiamo sfruttato le (2.75). Quindi

$$u(x_2, y_2) = u(x_1, y_1)$$
 e $v(x_2, y_2) = v(x_1, y_1)$. (2.80)

Siccome questo ragionamento lo possiamo estendere a coppia a coppia ad ogni $z \in D$, f(z) è costante in D.

Esempio. La potenza di un numero complesso

$$f(z) = z^n, (2.81)$$

con $n \in \mathbb{N}$, è una funzione analitica per $\forall n \in \mathbb{N}$ e $z \in \mathbb{C}$. Infatti

$$f'(z) = \lim_{h \to 0} \frac{(z+h)^n - z^n}{h} = \lim_{h \to 0} \frac{(z^n + nz^{n-1}h + \dots) - z^n}{h},$$
 (2.82)

$$= \lim_{h \to 0} \left[n z^{n-1} + \frac{n(n-1)}{2} z^{n-2} h + \dots \right] = n z^{n-1}, \qquad (2.83)$$

quindi la derivata esiste $\forall n \in \mathbb{N} \ e \ z \in \mathbb{C}$.

Esempio. Siccome la somma di funzioni analitiche è analitica, un polinomio di grado n

$$P_n(z) = \sum_{k=0}^{n} c_k z^k \,, \tag{2.84}$$

con $c_k \in \mathbb{C}$, è una funzione analitica. Per il teorema fondamentale dell'algebra, possiamo scrivere il polinomio esplicitandone gli zeri

$$P_n(z) = a_n(z - \alpha_1)^{k_1} ... (z - \alpha_i)^{k_i}, \qquad (2.85)$$

dove si può considerare in generale il fatto che la *i*-esima radice abbia molteplicità k_i (cioè le n radici possono non essere tutte diverse). Si avrà $P_n(z) \neq 0$ trenne che per $z \in \{\alpha_1, ... \alpha_i\}$.

Esempio. Una funzione razionale è un rapporto di polinomi

$$R(z) = \frac{P(z)}{Q(z)}. (2.86)$$

Allora R(z) è analitica tranne negli zeri di Q(z).

2.5.2 Zeri di una funzione analitica

Se $z_0 \in D$ è tale che data $f: D \to \mathbb{C}$ si abbia $f(z_0) = 0$ allorta z_0 è detto zero di f.

Definizione 2.5.10 Si dice che z_0 è uno zero di ordine n per f(z) se f(z) e le sue prime n-1 derivate si annullano in z_0 :

$$f(z_0) = f'(z_0) = \dots = f^{n-1}(z_0) = 0.$$
 (2.87)

Una funzione analitica in D con uno zero di ordine n in $z=z_0$ si potrà scrivere come

$$f(z) = (z - z_0)^n \phi(z), \qquad (2.88)$$

dove $\phi(z)$ è necessariamente analitica e $\phi(z) \neq 0$ in $z = z_0$.

Teorema 2.5.11 Gli zeri di una funzione analitica sono punti isolati.

Dimostrazione. Infatti, data la forma in Eq. (2.88), la funzione $\phi(z)$ essendo analitica e diversa da zero in $z=z_0$, sarà $\neq 0$ in un intorno di z_0 . Di conseguenza anche f(z) sarà $\neq 0$ in quell'intorno e z_0 sarà quindi uno zero isolato.

2.5.3 Singolarità isolate di una funzione analitica

I punti di non analiticità di una funzione f(z) in \mathbb{C} sono detti singolarità per la funzione stessa. Tali singolarità possono essere di vario tipo. Come prima distinzione possiamo parlare di singolarità isolate e non isolate.

Definizione 2.5.12 Si dice che $z = z_0$ è una singolarità isolata per f(z) se esiste un intorno di z_0 in cui f(z) è analitica per $z \neq z_0$.

Se così non è, ovvero se non è possibile trovare un intorno (per quanto piccolo) di z_0 in cui z_0 sia l'unica singolarità, allora z_0 e non isolato. Si può pensare per esempio ad un punto di accumulazione di singolarità.

Concentriamoci adesso sulle singolarità isolate. In particolare ci riferiamo allo studio di funzioni monodrome. Le funzioni polidrome, i punti di diramazione e i tagli verranno trattati più avanti nel corso.

Un punto di singolarità isolato di una funzione monodroma può essere di tre tipi:

1. z_0 è un punto di singolarità **eliminabile** per f(z) se f(z) non è analitica in z_0 , ma \exists finito il seguente limite:

$$\lim_{z \to z_0} f(z) = c. \tag{2.89}$$

Allora, definendo $f(z_0) = c$ la f(z) diventa analitica in tutto D, incluso il punto $z = z_0$.

2. z_0 è un **polo** per f(z) se

$$\lim_{z \to z_0} |f(z)| = \infty. \tag{2.90}$$

In particolare z_0 è un **polo di ordine k** se \exists finito ($e \neq 0$) il seguente limite:

$$\lim_{z \to z_0} (z - z_0)^k f(z) \neq 0.$$
 (2.91)

3. z_0 è una singolarità essenziale se non è né eliminabile né polare. In particolare per esempio se il limite della funzione non esiste in z_0 .

Esempio. La funzione

$$f(z) = \frac{\sin(z)}{z}, \qquad (2.92)$$

ha una singolarità eliminabile in z = 0. Infatti, la funzione non è definita in z = 0, ma il suo limite sì ed è pari a

$$\lim_{z \to 0} \frac{\sin(z)}{z} = 1. \tag{2.93}$$

Allora, definendo la funzione come

$$f(z) = \begin{cases} \frac{\sin(z)}{z} & \text{se } z \neq 0, \\ 1 & \text{se } z = 0, \end{cases}$$
 (2.94)

abbiamo una funzione analitica anche in z = 0.

Esempio. La funzione

$$f(z) = \frac{3z - 2}{(z - 1)^2(z + 1)},$$
(2.95)

ha un polo doppio in z = 1 e un polo singolo in z = -1.

Esempio. La funzione

$$f(z) = e^{\frac{1}{z}}, \tag{2.96}$$

ha una singolarità essenziale in z=0.

Teorema 2.5.13 Condizione necessaria e sufficiente affinché f(z) abbia un polo di ordine n in z_0 è che g(z) = 1/f(z) abbia uno zero di ordine n in z_0 .

Dimostrazione. Se f(z) ha un polo di ordine n in z_0

$$\phi(z) = (z - z_0)^n f(z) \tag{2.97}$$

è analitica $e \neq 0$ in un intorno di z_0 (e in z_0). Anche la sua reciproca

$$\psi(z) = \frac{1}{\phi(z)} \tag{2.98}$$

sarà analitica $e \neq 0$ in un intorno di z_0 (e in z_0). Allora

$$g(z) = \frac{1}{f(z)} = (z - z_0)^n \psi(z)$$
(2.99)

ha uno zero di ordine n in $z=z_0$.

Viceversa, se z_0 è uno zero di ordine n di g(z) la f(z) = 1/g(z) sarà analitica in un intorno di z_0 ma divergerà in $z = z_0$ come segue:

$$f(z) = \frac{1}{q(z)} = \frac{1}{(z - z_0)^n} \phi(z), \qquad (2.100)$$

quindi un polo di ordine n.

Definizione 2.5.14 Una funzione analitica monodroma le cui uniche singolarità al finito siano dei poli si dice **meromorfa**.

2.5.4 Funzioni analitiche e campi irrotazionali e solenoidali

Le funzioni analitiche di una variabile complessa sono legate alla descrizione di campi solenoidali irrotazionali in due dimensioni.

2.5.5 Funzioni analitiche e funzioni armoniche

Assumiamo per il momento (lo dimostreremo in seguito) che se f(z) è analitica in D, anche f'(z) sia a sua volta derivabile con continuità per $\forall z \in D$. Allora possiamo derivare due volte u(x,y) e v(x,y) rispetto a x, per esempio, ottenendo:

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) = \frac{\partial}{\partial x} \left(\frac{\partial v}{\partial y} \right) = \frac{\partial}{\partial y} \left(\frac{\partial v}{\partial x} \right) = -\frac{\partial^2 u}{\partial y^2}. \tag{2.101}$$

Quindi

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) u(x, y) = 0.$$
 (2.102)

Analogamente troviamo che

$$\frac{\partial^2 v}{\partial y^2} = \frac{\partial}{\partial y} \frac{\partial u}{\partial x} = \frac{\partial}{\partial x} \frac{\partial u}{\partial y} = -\frac{\partial^2 v}{\partial x^2}, \qquad (2.103)$$

ovvero:

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)v(x,y) = 0.$$
 (2.104)

Quindi, se f(z) è analitica in $D \subset \mathbb{C}$, la sua parte reale e la sua parte immaginaria sono funzioni armoniche, ovvero soddisfano all'equazione di Laplace

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0. \tag{2.105}$$

Supponiamo adesso che sia data una funzione armonica in un dominio D. Questa può essere interpretata come la parte reale di una funzione analitica. È possibile "ricostruire" la parte immaginaria di tale funzione? Cioè, sapendo che $u(x,y) = \Re f$ è possibile trovare $v(x,y) = \Im f$? La risposta è: sì, ma a meno di una costante indeterminata, che va fissata con delle condizioni iniziali.

Cerchiamo v(x,y) tale che valgano le condizioni di Cauchy-Riemann:

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}, \qquad \frac{\partial v}{\partial y} = \frac{\partial u}{\partial x}.$$
 (2.106)

Allora, la forma differenziale

$$dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy, \qquad (2.107)$$

può essere scritta anche nel seguente modo:

$$dv = -\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy. {(2.108)}$$

Siccome u(x,y) è nota, la sua derivata rispetto ad x e quella rispetto ad y sono ugualmente note. Possiamo sfruttare l'Eq. (2.108) per integrare dv e trovare la funzione v(x,y). Integriamo

dv lungo un cammino opportuno in D. Prendiamo una spezzata formata da un segmento fra (x_0, y_0) e (x, y_0) seguito da un segmento da (x, y_0) a (x, y). Allora avremo

$$v(x,y) - v(x_0, y_0) = \int_{z_0, \gamma}^{z} dv, \qquad (2.109)$$

$$= \int_{x_0}^x dx' \left(\frac{\partial v}{\partial x}\right) (x', y_0) + \int_{y_0}^y dy' \left(\frac{\partial v}{\partial y}\right) (x, y'), \qquad (2.110)$$

$$= \int_{x_0}^x dx' \left(-\frac{\partial u}{\partial y} \right) (x', y_0) + \int_{y_0}^y dy' \left(\frac{\partial u}{\partial x} \right) (x, y'). \tag{2.111}$$

La conoscenza di u(x,y) determina v(x,y) a meno della costante $v(x_0,y_0)$.

Ovviamente, conoscendo v(x, y) si può determinare u(x, y) a meno della costante $u(x_0, y_0)$ con lo stesso procedimento.

2.6 Funzioni Analitiche e Trasformazioni Conformi

Un problema importante in fisica matematiche è quello di trovare una funzione armonica (soluzione dell'equazione di Laplace) in un certo dominio, che prenda dei valori dati sul bordo di questo dominio: problema di Dirichlet. In due dimensioni spaziali questo problema soddisfa un'importante proprietà, ovvero supponiamo che V(x,y) sia una soluzione dell'equazione di Laplace

$$\Delta V(x,y) = 0 \tag{2.112}$$

e supponiamo che u(x,y) e v(x,y) costituiscano una trasformazione del piano in sé stesso, $(x,y) \to (u(x,y),v(x,y))$, tale che $u_x = v_y$ e $u_y = -v_x$ (cioè u(x,y) e v(x,y) sono parte reale e parte immaginaria di una funzione analitica in un certo dominio di \mathbb{C}). Allora il problema di Dirichlet in (x,y) corrisponde ad un nuovo problema di Dirichlet nelle nuove variabili (u,v).

Infatti, si ha

$$\frac{\partial V}{\partial x} = \frac{\partial V}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial V}{\partial v} \frac{\partial v}{\partial x}, \qquad (2.113)$$

$$\frac{\partial^2 V}{\partial x^2} = \frac{\partial^2 V}{\partial u^2} \left(\frac{\partial u}{\partial x}\right)^2 + 2 \frac{\partial^2 V}{\partial u \partial v} \frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial^2 V}{\partial v^2} \left(\frac{\partial v}{\partial x}\right)^2 + \frac{\partial V}{\partial u} \frac{\partial^2 u}{\partial x^2} + \frac{\partial V}{\partial v} \frac{\partial^2 v}{\partial x^2}, \quad (2.114)$$

$$\frac{\partial V}{\partial u} = \frac{\partial V}{\partial u} \frac{\partial u}{\partial v} + \frac{\partial V}{\partial v} \frac{\partial v}{\partial u}, \qquad (2.115)$$

$$\frac{\partial^2 V}{\partial y^2} = \frac{\partial^2 V}{\partial u^2} \left(\frac{\partial u}{\partial y}\right)^2 + 2 \frac{\partial^2 V}{\partial u \partial v} \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} + \frac{\partial^2 V}{\partial v^2} \left(\frac{\partial v}{\partial y}\right)^2 + \frac{\partial V}{\partial u} \frac{\partial^2 u}{\partial y^2} + \frac{\partial V}{\partial v} \frac{\partial^2 v}{\partial y^2}. \quad (2.116)$$

Siccome la trasformazione

$$\begin{cases} u = u(x, y) \\ v = v(x, y) \end{cases}$$
 (2.117)

è tale che

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \qquad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x},$$
 (2.118)

e le u(x,y) e v(x,y) quindi sono armoniche esse stesse, si ha anche

$$\frac{\partial u}{\partial x}\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y}\frac{\partial v}{\partial y},\qquad(2.119)$$

e

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2}.$$
 (2.120)

Quindi, dalle (2.114,2.116), sfruttando le condizioni di Cauchy-Riemann (e quindi le (2.118,2.119,2.120)), si ha

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \left(\frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial v^2}\right) \left\{ \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 \right\}. \tag{2.121}$$

Vediamo a cosa corrisponde l'espressione in parentesi graffa. Siccome la u(x, y) e la v(x, y) sono rispettivamente parte reale e parte immaginaria di una funzione analitica, possiamo esprimere la sua derivata come segue

$$f'(z) = \frac{\partial}{\partial x}f(z) = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y},$$
 (2.122)

da cui

$$\left\{ \left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right\} = |f'(z)|^2. \tag{2.123}$$

Allora la (2.121) si può riscrivere come

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = \left(\frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial v^2}\right) |f'(z)|^2 \tag{2.124}$$

e si vede che là dove $|f'(z)|^2 \neq 0$ si ha

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0 \qquad \Longleftrightarrow \qquad \frac{\partial^2 V}{\partial u^2} + \frac{\partial^2 V}{\partial v^2} = 0. \tag{2.125}$$

Al problema di Dirichlet in (x, y) corrisponde il problema di Dirichlet in (u, v), ovvero, se abbiamo risolto uno dei due problemi (quindi con certe condizioni al contorno nel primo piano), abbiamo risolto anche il secondo, trasformato secondo la f(z) = u(x, y) + i(v(x, y)). La funzione analitica f(z) mappa il dominio di (x, y) in cui la V(x, y) è armonica, in un dominio in (u, v), in cui la V(u, v) è sempre armonica, e il bordo del dominio in (x, y), curva regolare, nel bordo del dominio in (u, v), altra curva regolare. Quindi possiamo guardare alla trasformazione f(z) come quella trasformazione che trasforma il dominio $D \subset \mathbb{C}$ con bordo ∂D nel dominio $D' \subset \mathbb{C}$ con bordo $\partial D'$, tali che se V(x, y) è soluzione dell'equazione di Laplace in (x, y) con condizioni su ∂D , V(u, v) è soluzione dell'equazione di Laplace in (u, v) con condizioni su $\partial D'$ (e viceversa).

Siccome problemi di Dirichlet su domini "simmetrici" hanno soluzione più semplice (e nota), si può impostare il problema di Dirichlet in un certo dominio andando a cercare la funzione analitica che mi trasformi questo dominio in un dominio dato, per esempio un cerchio di raggio dato. Così facendo tale trasformazione trasporta automaticamente la soluzione nota per esempio in un cerchio nella soluzione nel nuovo dominio.

2.6.1 Funzioni analitiche come trasformazioni del piano

Consideriamo adesso la funzione f(z) come una trasformazione geometrica del piano \mathbb{C} in sé stesso e cerchiamo di individuarne le caratteristiche peculiari. Per far ciò, consideriamo una curva con traccia in un certo dominio $D \subset \mathbb{C}$ (vedi Paragrafo 5.1)

$$\gamma(t) = x(t) + iy(t), \qquad t \in [a, b] \tag{2.126}$$

e supponiamo che $\gamma(t)$ sia continua e derivabile per $\forall t \in [a, b]$. La sua derivata in $t_0 \in [a, b]$ è un numero complesso, definito come segue

$$\gamma'(t_0) = \lim_{t \to t_0} \frac{\gamma(t) - \gamma(t_0)}{t - t_0}.$$
 (2.127)

Se $\gamma'(t_0) \neq 0$, possiamo definire la tangente alla curva $\gamma(t)$ in $\gamma(t_0)$ che avrà come coefficiente angolare l'argomento del numero complesso $\gamma'(t_0)$, che possiamo visualizzare come in figura:

Consideriamo adesso una funzione f(z) analitica in un dominio $D \subset \mathbb{C}$ tale che $\{\gamma\} \subset D$. Allora, tale funzione w = f(z) mappa la curva $\gamma(t)$ in una curva nel piano (u, v), parte reale e parte immaginaria di f(z), data da

$$\Gamma(t) = u(x(t), y(t)) + iv(x(t), y(t)) = f(\gamma(t)).$$
 (2.128)

Se la curva $\gamma(t)$ passa dal punto $z_0 = \gamma(t_0)$, con $t_0 \in [a, b]$, la curva $\Gamma(t) = f(\gamma(t))$ passerà dal punto $w_0 = f(z_0) = f(\gamma(t_0))$ del piano (u, v). Allora:

Teorema 2.6.1 Se f(z) è derivabile in z_0 e $f'(z_0) \neq 0$, la tangente in w_0 alla curva $\Gamma(t)$ eccede l'inclinazione $\theta = Arg(\gamma'(t_0))$ della tangente in z_0 alla curva $\gamma(t)$ di un angolo pari a $Arg(f'(z_0))$.

Dimostrazione. Infatti, se $\gamma'(t_0) \neq 0$, si ha

$$\Theta = \operatorname{Arg}(\Gamma'(t_0)) = \operatorname{Arg}\left\{\lim_{t \to t_0} \frac{\Gamma(t) - \Gamma(t_0)}{t - t_0}\right\}, \qquad (2.129)$$

$$= \operatorname{Arg} \left\{ \lim_{t \to t_0} \frac{\Gamma(t) - \Gamma(t_0)}{\gamma(t) - \gamma(t_0)} \frac{\gamma(t) - \gamma(t_0)}{t - t_0} \right\} = \operatorname{Arg} \left\{ f'(z_0) \gamma'(t_o) \right\}, \qquad (2.130)$$

$$= \operatorname{Arg} \{ f'(z_0) \} + \operatorname{Arg} \{ \gamma'(t_o) \} , \qquad (2.131)$$

$$= \theta + \operatorname{Arg} \{ f'(z_0) \}$$
 (2.132)

Supponiamo adesso di avere due curve, $\gamma_1(t)$ e $\gamma_2(t)$, che si intersechino in $z_0 = \gamma_1(t_0) = \gamma_2(t_0)$. L'angolo fra le tangenti in $z = z_0$ sarà

$$\Delta \theta = \operatorname{Arg}(\gamma_1'(t_0)) - \operatorname{Arg}(\gamma_2'(t_0)) = \theta_1 - \theta_2. \tag{2.133}$$

Consideriamo adesso l'angolo fra le tangenti in $w_0 = f(z_0)$ delle curve trasformate (tramite la f(z), Γ_1 e Γ_2 . Si avrà per il teorema 2.6.1

$$\Delta\Theta = \Theta_1 - \Theta_2 = [\theta_1 + \text{Arg}\{f'(z_0)\}] - [\theta_2 + \text{Arg}\{f'(z_0)\}] = \theta_1 - \theta_2 = \Delta\theta, \qquad (2.134)$$

ovvero, se f(z) è analitica l'angolo fra le curve nel piano (x,y) viene preservato dalla trasformazione alle relative curve in (u,v) ovunque sia $f'(z_0) \neq 0$. È da notare che anche l'orientazione dell'angolo viene preservata, ovvero che $\Delta\theta$ è l'angolo fra la tangente a γ_2 e quella a γ_1 preso in senso antiorario, nel piano (u,v) questo corrisponde all'angolo fra la tangente a Γ_2 e quella a Γ_1 ed è ancora in senso antiorario. Si dice che la trasformazione è conforme in z_0 . Se la trasformazione invece preserva l'ampiezza dell'angono ma non l'orientamento si dice isogona. Si ha il seguente teorema (già dimostrato nei punti precedenti):

Teorema 2.6.2 Sia f(z) analitica in $D \subset \mathbb{C}$. Allora f(z) è una trasformazione conforme in tutti i punti per cui $f'(z) \neq 0$.

Una trasformazione isogona, ma non conforme, si ha per esempio quando si considera il coniugato di una trasformazione conforme. Se consideriamo per esempio $f(z) = \overline{z}$, che non è analitica e che è il complesso coniugato della f(z) = z, si avrà una riflessione rispetto all'asse reale. Quindi, se consideriamo le due curve γ_1 e γ_2 , queste saranno trasformate in due curve speculari rispetto all'asse $\Re(z)$. Nell'operazione di coniugazione gli argomenti cambiano di segno. Quindi se fra la γ_1 e la γ_2 in z_0 c'e' un angolo $\Delta\theta$, fra la Γ_1 e la Γ_2 in w_0 ci sarà un angolo $-\Delta\theta$, cioè un angolo della stessa ampiezza, ma orientato in senso orario, là dove $\Delta\theta$ era orientato in senso antiorario.

Oltre all'argomento della derivata c'è anche un'altra quantità importante nella comprensione delle trasformazioni conformi: il modulo della derivata

$$|f'(z)| = \lim_{t \to t_0} \frac{|f(z) - f(z_0)|}{|z - z_0|}.$$
 (2.135)

 $|z-z_0|$ è la distanza fra i due punti z e z_0 , nel piano (x,y), mentre $|f(z)-f(z_0)|$ è la distanza fra i due punti trasformati, corrispondenti a z e z_0 , nel piano (u,v).

Quindi possiamo interpretare |f'(z)| come un'amplificazione lineare nel punto z tramite la f(z). Ogni punto w = f(z) avrà in generale un'amplificazione diversa e quindi le figure geometriche in (x,y) verranno distorte in (u,v), ma saranno tali che gli angoli della figura rimangano uguali.

2.6.2 Punti con derivata nulla

2.6.3 Trasformazioni di Möbius

Le trasformazioni bilineari, o *Trasformazioni di Möbius*, sono trasformazioni conformi in tutto il piano complesso esteso, caratterizzate dall'essere invertibili (con inversa monodroma) e tali da trasformare cerchi finiti in cerchi finiti.

Una generica trasformazione di Móbius è data dalla seguente funzione

$$f(z) = w = \frac{az+b}{cz+d}, \qquad \text{con } a, b, c, d \in \mathbb{C},$$
 (2.136)

che ha un polo singolo in z = -d/c (punto di non analiticità della trasformazione). Eseguendo la divisione fra polinomi, si può anche riscrivere come

$$w = \frac{a}{c} + \frac{cb - ad}{c^2} \frac{1}{z + \frac{d}{c}}.$$
 (2.137)

Affinché la trasformazione (2.137) sia non banale, bisogna imporre

$$ad - cb \neq 0. (2.138)$$

Se ad-cb=0, la trasformazione trasforma il piano complesso in un punto, w=a/c. D'altronde la derivata della f(z) è

$$f'(z) = \frac{ad - cb}{(cz + d)^2}$$
 (2.139)

e affinché sia $\neq 0$ si deve avere la relazione (2.138). Inoltre la derivata non esiste in z = -d/c e si annulla nel punto all'infinito. Infatti

$$f\left(\frac{1}{\zeta}\right) = \frac{(ad - cb)\zeta^2}{(c + d\zeta)^2} \to 0 \tag{2.140}$$

se $\zeta \to 0$. Quindi nei due punti z = -d/c e $z = \infty$ la trasformazione in generale non è conforme (in realtà si può dimostrare che una trasformazione di Möbius è conforme anche in questi due punti e quindi è conforme in tutto $\overline{\mathbb{C}}$).

Possiamo pensare alla trasformazione (2.137) come la composizione di tre trasformazioni elementari:

1. La prima trasformazione è una traslazione:

$$z \to \xi = z + \frac{d}{c} \,. \tag{2.141}$$

2. La traslazione viene seguita da un'inversione

$$\xi \to \eta = \frac{1}{\xi} \,. \tag{2.142}$$

3. La terza trasformazione è la moltiplicazione per un numero complesso

$$\eta \to \alpha \eta$$
, $\operatorname{con} \alpha \in \mathbb{C}$. (2.143)

4. Infine si ripete la traslazione

Quindi ogni trasformazione di Möbius è una sequenza di queste tre trasformazioni di base. Vediamo come sono caratterizzate queste tre trasformazioni, a partire dalla terza.

Moltiplicazione per un numero complesso

Consideriamo quindi la trasformazione $z \to w = az$ dove in generale $a \in \mathbb{C}$. Supponiamo prima che a sia reale. Se così è, si ha |f'(z)| = |a| e arg(f'(z)) = 0. Quindi abbiamo un fattore di amplificazione costante (uguale in tutto \mathbb{C}) e nessuna rotazione, poiché l'argomento della derivata è sempre nullo. Ciò vuol dire che una figura geometrica finita nel piano z verrà trasformata nella stessa figura amplificata, ma NON distorta (né ruotata).

Se invece $a \in \mathbb{C}$, avremo $a = |a|e^{iarg(a)}$. Quindi |f'(z)| = |a| e arg(f'(z)) = arg(a). Ne consegue che tutte le distanze trasformate sono amplificate di |a| e tutte le linee sono ruotate di arg(a).

Ancora una volta non si ha distorsione della figura trasformata (le figure prima e dopo la trasformazione sono congruenti).

Traslazione

Consideriamo ora la trasformazione $z \to w = z + a$ dove $a \in \mathbb{C}$. Questa trasformazione equivale ad una ridefinizione dell'origine degli assi. Quindi la figura finita verrà solo traslata ma NON distorta. Inoltre siccome |f'(z)| = 1 non abbiamo amplificazione.

Inversione

L'inversione manda z in w=1/z. Mappa i punti dentro la circonferenza di raggio unitario nei punti esterni alla stessa e vice versa. I punti sulla circonferenza unitaria rimangono sulla circonferenza unitaria, ma l'argomento va in meno l'argomento (si identifica la semi-circonferenza nel primo e secondo quadrante con quella nel terzo e quarto quandrante). Siccome $|f'(z)| = 1/|z|^2$, il fattore di amplificazione dipende dal punto e quindi abbiamo una distorsione delle figure. Inoltre |f'(z)| = 1 sulla circonferenza unitaria (i punti della circonferenza unitaria non hanno fattore di amplificazione), ma è >1 per i punti immagine dei punti interni alla circonferenza unitaria e <1 per gli esterni. Per esempio se prendiamo la circonferenza

$$\gamma(t) = \frac{1}{2} + \frac{1}{4}e^{it}, \qquad 0 \le t \le 2\pi, \tag{2.144}$$

questa verrà trasformata, tramite la $z \to 1/z$, nella circonferenza

$$\Gamma(t') = \frac{1}{\frac{1}{2} + \frac{1}{4}e^{it}} = \frac{8}{3} + \frac{4}{3}e^{it'}$$
(2.145)

come in figura:

Inversa di una trasformazione di Möbius

L'inversa di una trasformazione di Möbius è ancora una trasformazione di Möbius. Infatti, prendendo la (2.136) e risolvendo in z si ottiene

$$z = \frac{-dw + b}{cw - a},\tag{2.146}$$

per la quale dobbiamo ancora avere $(-a)(-d) - bc = ad - bc \neq 0$, relazione che sussiste già per la trasformazione diretta.

Inoltre la composizione di due trasformazioni di Möbius è ancora una trasformazione di Möbius. Se consideriamo, infine, che l'unità è una trasformazione di Möbius (banale), si vede come le trasformazioni di Möbius formino un Gruppo.

2.6.4 Esempi di trasformazioni conformi

2.7 Alcuni Esercizi

2.7.1 Esercizio

Indicare quali delle seguenti funzioni siano funzioni analitiche:

$$f(z) = x^{2} + y^{2} + i2xy, \ f(z) = x^{2} - y^{2} + i2xy, \ f(z) = x^{2} + y^{2},$$

$$f(z) = \frac{1}{z^{4}}, \ f(z) = \frac{(3z^{2} - \overline{z}^{2})\overline{z}}{2}.$$
(2.147)

1. $f(z) = x^2 + y^2 + i2xy$. Avendo in maniera esplicita la parte reale e la parte immaginaria

$$\begin{cases} u(x,y) = x^2 + y^2, \\ v(x,y) = 2xy, \end{cases}$$
 (2.148)

che sono due funzioni continue e derivabili con continuità in \mathbb{R}^2 , bisogna verificare che soddisfino le condizioni di Cauchy-Riemann (CR). Si ha

$$\begin{cases} \frac{\partial u}{\partial x} = 2x \,, & \frac{\partial u}{\partial y} = 2y \,, \\ \frac{\partial v}{\partial x} = 2y \,, & \frac{\partial v}{\partial y} = 2x \,, \end{cases} \tag{2.149}$$

ovvero

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial u},\tag{2.150}$$

ma anche

$$\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x},\tag{2.151}$$

laddove ci vorrebbe un segno meno. Quindi le CR non sono verificate che non per y = 0 (asse dei reali). La funzione è derivabile sull'asse dei reali, ma non è analitica da nessuna parte in \mathbb{C} , richiedendo, l'analiticità, la derivabilità in un intorno del punto di derivabilità.

Si poteva ottenere lo stesso risultato utilizzando direttamente la

$$0 = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 4iy. \tag{2.152}$$

In ultima analisi, riportando la funzione in termini di $z \in \overline{z}$ si vede che

$$f(z) = z\overline{z} + \frac{z^2 - \overline{z}^2}{2}.$$
 (2.153)

Siccome

$$\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = \frac{\partial f}{\partial \overline{z}}, \qquad (2.154)$$

е

$$\frac{\partial f}{\partial \overline{z}} = z - \overline{z}, \qquad (2.155)$$

si vede che le CR valgono solo sull'asse dei reali e quindi la f(z) non è analitica in \mathbb{C} .

2. $f(z) = x^2 - y^2 + i2xy$. Si ha

$$\begin{cases} \frac{\partial u}{\partial x} = 2x \,, & \frac{\partial u}{\partial y} = -2y \,, \\ \frac{\partial v}{\partial x} = 2y \,, & \frac{\partial v}{\partial y} = 2x \,, \end{cases}$$
 (2.156)

ovvero

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad e \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}, \quad \forall x, y \in \mathbb{R}.$$
 (2.157)

La f(z) è analitica in tutto \mathbb{C} . D'altra parte si ha

$$f(z) = z^2 \,, \tag{2.158}$$

quindi

$$\frac{\partial f}{\partial \overline{z}} = 0 \,, \quad \forall z \in \mathbb{C} \,. \tag{2.159}$$

3.

2.7.2 Esercizio

Sia data u(x,y) = 2xy. Trovare la funzione analitica f(z) che abbia u(x,y) come parte reale. Intanto verifichiamo che u(x,y) sia una funzione armonica. Si ha

$$\frac{\partial u}{\partial x} = 2y, \quad \frac{\partial u}{\partial y} = 2x,$$
 (2.160)

per cui, banalmente

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0, \qquad (2.161)$$

essendo entrambe le derivate seconde nulle.

Per risalire alla parte immaginaria scriviamo il differenziale di v(x,y) e utilizziamo le CR:

$$dv = \frac{\partial v}{\partial x}dx + \frac{\partial v}{\partial y}dy = -\frac{\partial u}{\partial y}dx + \frac{\partial u}{\partial x}dy = -2x dx + 2y dy.$$
 (2.162)

Integrando su una spezzata da (0,0) a (x,y) avremo

$$v(x,y) - v(0,0) = \int_0^x (-2x)dx + \int_0^y 2ydy = -x^2 + y^2.$$
 (2.163)

Quindi, posto $v(0,0) = v_0$, si ha

$$f(z) = 2xy + i(v_0 - x^2 + y^2). (2.164)$$

Altro modo di fare esattamente la stessa cosa:

$$\frac{\partial v}{\partial x} = -2x \implies v(x,y) = -x^2 + \phi(y), \qquad (2.165)$$

$$\frac{\partial v}{\partial y} = 2y \implies v(x,y) = y^2 + \phi(x)$$
. (2.166)

Allora, per le CR si ha

$$x^{2} + \phi(x) = -y^{2} + \phi(y), \qquad (2.167)$$

che è verificata soltanto se

$$x^{2} + \phi(x) = -y^{2} + \phi(y) = k.$$
(2.168)

Quindi $\phi(x) = -x^2 + k$ oppure $\phi(y) = y^2 + k$. In entrambi i casi si ritrova la (2.164).

2.7.3 Esercizio

Sia data $u(x,y) = x^3 - 3xy^2$. Trovare la funzione analitica f(z) che abbia u(x,y) come parte reale.

Si ha:

$$\frac{\partial u}{\partial x} = 3x^2 - 3y^2, \quad \frac{\partial u}{\partial y} = -6xy, \\ \frac{\partial^2 u}{\partial x^2} = 6x, \quad \frac{\partial^2 u}{\partial y^2} = -6x.$$
 (2.169)

Quindi

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0. {(2.170)}$$

La u(x,y) è armonica e quindi può essere la parte reale di una funzione analitica. Si ha:

$$\frac{\partial v}{\partial x} = 6xy \implies v(x,y) = 3x^2y + \phi(y),$$
 (2.171)

$$\frac{\partial v}{\partial y} = 3x^2 - 3y^2 \implies v(x, y) = 3x^2y - y^3 + \phi(x),$$
 (2.172)

per cui

$$\phi(x) = \phi(y) + y^3 = k. \tag{2.173}$$

Da cui si ricava

$$f(z) = x^3 - 3xy^2 + i(3x^2y - y^3 + k). (2.174)$$

Altro modo, assolutamente identico:

$$\frac{\partial v}{\partial y} = 3x^2 - 3y^2 \implies v(x, y) = 3x^2y - y^3 + \phi(x),$$
 (2.175)

quindi

$$6xy = -\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} = \frac{\partial}{\partial x} \left(3x^2y - y^3 + \phi(x) \right) = 6xy + \phi'(x). \tag{2.176}$$

Si ricava un'equazione differenziale banale per determinare $\phi(x)$:

$$\phi'(x) = 0, (2.177)$$

ovvero

$$\phi(x) = k, \qquad (2.178)$$

costante.

Capitolo 3

Appunti sulle SERIE DI POTENZE

Finora abbiamo visto polimoni e funzioni razionali come esempio di funzioni analitiche. Adesso vogliamo estendere lo studio a funzioni più complicate, come per esempio l'esponenziale complesso, le funzioni trigonometriche, iperboliche e infine alle funzioni inverse, il logaritmo e la radice.

Per introdurre l'esaponenziale studieremo alcune proprietà delle serie di potenze. Faremo vedere che una serie di potenze uniformemente convergente in un certo aperto e connesso converge ad una funzione analitica, la cui derivata può essere ottenuta derivando la serie termine a termine. La funzione analitica così ottenuta è infinitamente derivabile nel dominio di convergenza della serie. Con questo bagaglio, studieremo la serie $\sum_{n=0}^{\infty} \frac{z^n}{n!}$. Questa converge ad una funzione intera, che sarà l'esponenziale complesso e dalle proprietà della serie deriveremo tutte le propietà dell'esponenziale.

Per svolgere questo programma, in questo capitolo riassumiamo alcune importanti proprietà di successioni e serie di funzioni.

3.1 Successioni

Cominciamo con le successioni poiché la somma di una serie non è altro che il limite della successione delle somme parziali ...

Consideriamo la successione $a_n, n = 1, ..., \infty$ e $a_n \in \mathbb{C}$.

Definizione 3.1.1 La successione a_n ha limite A se per $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}$ tale che per $n \geq n_0$ si abbia $|a_n - A| < \epsilon$.

Una successione che ha limite finito è detta covergente, altrimenti è detta divergente. Un concetto importante è quello di successione di Cauchy.

Definizione 3.1.2 Una successione a_n è detta di Cauchy se per $\forall \epsilon > 0$ exists $n_0 \in \mathbb{N}$ tale che $|a_n - a_m| < \epsilon$ non appena $n, m \ge n_0$.

Allora si ha il seguente teorema

Teorema 3.1.3 Una successione $a_n \in \mathbb{C}$ è convergente se e solo se è di Cauchy.

Dimostrazione. Se la successione è convergente allora per $\forall \epsilon > 0$ si può trovare un n_0 tale che $|a_n - A| < \epsilon/2$ se $ngeqn_0$. Prendiamo anche un $m \in \mathbb{N}$, tale che $mgeqn_0$. Avremo

$$|a_n - a_m| = |a_n - A - (a_m - A)| \le |a_n - A| + |a_m - A| < \epsilon \tag{3.1}$$

e quindi se a_n è convergente essa è di Cauchy.

Per dimostrare il viceversa notiamo che la parte reale e la parte immaginaria di una successione di Cauchy sono successioni di Cauchy nei reali. Se convergono, convergerà anche la successione di partenza. Quindi possiamo limitarci a dimostrare che una successione reale di Cauchy è convergente.

Prima di tutto, facciamo vedere che se a_n è di Cauchy allora è limitata. Infatti, se è di Cauchy si ha che per $\forall \epsilon > 0 \ \exists N(\epsilon) \in \mathbb{N}$ tale che per $n,m \geq N$ si abbia $|a_n - a_m| < \epsilon$. Prendiamo $\epsilon = 1$ e in corrispondenza di questo ϵ esiterà un N_1 tale che per $\forall n.m > N_1$ si abbia $|a_n - a_m| < 1$.

D'altra parte

$$|a_n| - |a_m| \le |a_n - a_m| < 1. (3.2)$$

Poniamo $m = N_1 + 1$. Allora

$$|a_n| - |a_{N_1+1}| < 1 (3.3)$$

e quindi

$$|a_n| < 1 + |a_{N_1+1}|, (3.4)$$

per $\forall n > N_1$ e quindi è limitata.

Se è limitata in \mathbb{R} , per il teorema di Bolzano-Weierstrass ammette una sottosuccessione convergente. Sia tale sottosuccessione la a_{n_k} e si abbia

$$\lim_{k \to \infty} a_{n_k} = a. (3.5)$$

Quindi per $\forall \epsilon > 0 \ \exists N \in \mathbb{N}$ tale che per $\forall k > N$ si abbia $|a_{n_k} - a| < \epsilon$. Ma a_n è di Cauchy e quindi $\exists N_1 \in \mathbb{N}$ tale che per $\forall n, m > N_1$ si abbia $|a_n - a_m| < \epsilon$. Allora

$$|a_n - a| = |a_n - a_{n_k} + a_{n_k} - a| \le |a_n - a_{n_k}| + |a_{n_k} - a| < \epsilon = 2\epsilon,$$
(3.6)

se $n, k > max\{N, N_1\}$. Ne consegue che a_n converge. &

3.2 Successioni di funzioni

Sia $z \in \mathbb{C}$. Consideriamo una successione $f_n(z)$ di funzioni, tali che $\forall n \in \mathbb{N}, f_n : U \to \mathbb{C}$ con $U \subset \mathbb{C}$.

Definizione 3.2.1 Si dice che f_n converge "puntualmente" a f e si scrive $\lim_{n\to\infty} f_n(z) = f(z)$ se per $\forall z \in U$ e per $\forall \epsilon > 0$, $\exists N(\epsilon, z)$, naturale, tale che $|f_n(z) - f(z)| < \epsilon$ per $\forall n > N$.

NB. La scelta dell'N dipende anche dal punto z, non solo dall' ϵ .

Definizione 3.2.2 Si dice che f_n converge "uniformemente" a f se per $\forall z \in U$ e per $\forall \epsilon > 0$, $\exists N(\epsilon)$, naturale, tale che $|f_n - f| < \epsilon$ per $\forall n > N$.

NB. Qui l'N dipende solo dall' ϵ e quindi è lo stesso per ogni $z \in U$. Sussiste il seguente teorema.

Teorema 3.2.3 Sia f_n una successione di funzioni continue in $U \subset \mathbb{C}$, uniformemente convergente a f. Allora f è anch'essa continua.

Dimostrazione. Supponiamo quindi che le f_n siano continue e tendano uniformemente a f. Allora, per $\forall \epsilon > 0 \ \exists N(\epsilon)$ tale che $|f_n(z) - f(z)| < \epsilon \ \forall n \geq N$ e per ogni $z \in U$. D'altra parte le f_n sono continue, per cui se $z_0 \in U$ si può scegliere un $\delta > 0$ e un $\epsilon > 0$ tali che se $|z - z_0| < \delta$ allora $|f_n(z) - f_n(z_0)| < \epsilon$. Ma in corrispondenza di questo δ avremo anche

$$|f(z) - f(z_0)| = |f(z) - f_n(z) + f_n(z) - f_n(z_0) + f_n(z_0) - f(z_0)|,$$
(3.7)

$$\leq |f(z) - f_n(z)| + |f_n(z) - f_n(z_0)| + |f_n(z_0) - f(z_0)|, \qquad (3.8)$$

$$< \epsilon' = 3\epsilon$$
. (3.9)

Infatti, il primo e l'ultimo modulo sono entrambi $< \epsilon$ (indipendentemente dallo z) per l'uniforme convergenza, mentre il secondo modulo è $< \epsilon$ per la continuità delle f_n .

Ne concludiamo che anche f(z) è continua in z_0 .

3.3 Serie di funzioni

Definizione 3.3.1 Sia $f_n(z)$ una successione di funzioni in $U \subset \mathbb{C}$. Si dice serie di funzioni la somma

$$\sum_{n=0}^{\infty} f_n(z) = \lim_{N \to \infty} \sum_{n=0}^{N} f_n(z).$$
 (3.10)

Definizione 3.3.2 La serie $\sum_{n=0}^{\infty} f_n(z)$ si dice convergente (puntualmente) a s(z), se la successione $s_n(z) = \sum_{k=0}^n f_k(z)$ delle somme parziali converge (puntualmente) a s(z).

Analogamente,

Definizione 3.3.3 la serie $\sum_{n=0}^{\infty} f_n(z)$ si dice convergente uniformemente a s(z), se la successione $s_n(z) = \sum_{k=0}^n f_k(z)$ delle somme parziali converge uniformemente a s(z).

Definizione 3.3.4 La serie $\sum_{n=0}^{\infty} f_n(z)$ converge "assolutamente" se converge la serie $\sum_{n=0}^{\infty} |f_n(z)|$, per $\forall z \in U$..

Sussistono i due seguenti importanti risultati.

Teorema 3.3.5 Sia $f_n(z)$ una successione di funzioni di $U \subset \mathbb{C}$ in \mathbb{C} . Se $\sum_{n=0}^{\infty} f_n(z)$ converge assolutamente in U allora converge (puntualmente) in U.

Dimostrazione. Se la somma converge assolutamente, vuol dire che $\tilde{s}_N(z) = \sum_{n=0}^N |f_n(z)|$ è di Cauchy. Quindi, per $\forall \epsilon > 0$, $\exists N$ tale che per $\forall n, m > N$ si abbia

$$|\tilde{s}_n - \tilde{s}_m| = ||f_{m+1}| + |f_{m+2}| + \dots + |f_n|| < \epsilon.$$
 (3.11)

D'altra parte si ha anche

$$||f_{m+1}| + |f_{m+2}| + \dots + |f_n||| = |f_{m+1}| + |f_{m+2}| + \dots + |f_n|,$$
 (3.12)

quindi

$$|f_{m+1}| + |f_{m+2}| + \dots + |f_n| < \epsilon.$$
 (3.13)

Consideriamo adesso $s_N(z) = \sum_{n=0}^N f_n(z)$. Se $\tilde{s}_N(z)$ è di Cauchy, anche $s_N(z)$ è di Cauchy (per ogni $z \in U$). Infatti

$$|s_n - s_m| = |f_{m+1} + f_{m+2} + \dots + f_n| \le |f_{m+1}| + |f_{m+2}| + \dots + |f_n| < \epsilon.$$
 (3.14)

Essendo di Cauchy, per ogni $z \in U$, $s_N(z) = \sum_{n=0}^N f_n(z)$ è convergente (puntualmente) in U.

Teorema 3.3.6 M-test di Weierstrass. Sia $f_n(z)$ una successione di funzioni da $U \subset \mathbb{C}$ in \mathbb{C} . Se $\forall n \in \mathbb{N} \ \exists M_n > 0$ tale che $|f_n(z)| < M_n$ per $\forall z \in U$ e $\sum_{k=0}^{\infty} M_k < \infty$, allora $\sum_{k=0}^{\infty} f_k(z)$ converge uniformemente in U.

Dimostrazione. Consideriamo $s_N(z) = \sum_{n=0}^N f_n(z)$. Si ha

$$|s_n - s_m| = |f_{m+1} + f_{m+2} + \dots + f_n| \le |f_{m+1}| + |f_{m+2}| + \dots + |f_n| \le M_{m+1} + M_{m+2} + \dots + M_n$$
. (3.15)

Siccome $\sum_{k=0}^{\infty} M_k < \infty$, vuol dire che M_k è di Cauchy e quindi per $\forall \epsilon > 0$, $\exists n_0(\epsilon) \in \mathbb{N}$ (che non dipende da z) tale che per $\forall n, m > n_0$ si abbia

$$|M_n - M_m| = M_{m+1} + M_{m+2} + \dots + M_n < \epsilon \tag{3.16}$$

е

$$|s_n - s_m| \le \epsilon \,, \tag{3.17}$$

per $\forall z \in U$. La serie $\sum_{k=0}^{\infty} f_k(z)$ quindi è uniformemente convergente.

L'uniforme convergenza implica la convergenza puntuale, ma non è vero il viceversa.

3.3.1 Serie di potenze

Una serie di potenze è una particolare serie di funzioni, data dalla somma

$$\sum_{n=0}^{\infty} a_n z^n = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n + \dots$$
(3.18)

con $a_n, z \in \mathbb{C}$.

Associata alla serie abbiamo la successione delle somme parziali

$$s_n = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n. (3.19)$$

Se s_n ha un limite, questo è la somma della serie.

La serie di potenze è convergente se e solo se la successione delle somme parziali è di Cauchy, ovvero se e solo se per $\forall \epsilon > 0 \ \exists n_0 \in \mathbb{N}$ tale che per $\forall n, m \geq n_0$ si abbia

$$|s_n - s_m| = |a_{m+1}z^{m+1} + a_{m+2}z^{m+2} + \dots + a_nz^n| < \epsilon.$$
(3.20)

Se scelgo n = m + 1 si avrà

$$|a_m z^m| < \epsilon. (3.21)$$

Quindi

Proprietà 3.3.7 Il termine n-esimo di una serie convergente deve tendere a 0.

Esempio: la serie geometrica

Consideriamo la seguente serie

$$1 + z + z^{2} + \dots + z^{n} + \dots = \sum_{n=0}^{\infty} z^{n}.$$
 (3.22)

La successione delle somme parziali ha il seguente termine n-esimo:

$$s_n = 1 + z + z^2 + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}.$$
 (3.23)

Allora

$$\sum_{n=0}^{\infty} z^n = \lim_{n \to \infty} s_n = \lim_{n \to \infty} \frac{1 - z^{n+1}}{1 - z}.$$
 (3.24)

La serie $\sum_{n=0}^{\infty}|z^n|$ è convergente se |z|<1. Infatti, con |z|<1, si ha

$$\sum_{n=0}^{\infty} |z^n| = \lim_{n \to \infty} \frac{1 - |z|^{n+1}}{1 - |z|} = \frac{1}{1 - |z|},$$
(3.25)

poiché $\lim_{n\to\infty} |z|^n = 0$ se |z| < 1. Quindi la $\sum_{n=0}^{\infty} z^n$ è assolutamente convergente (e quindi convergente puntualmente) in |z| < 1. Inoltre, $\sum_{n=0}^{\infty} z^n$ è uniformemente convergente in |z| < q < 1 e la somma vale

$$\sum_{n=0}^{\infty} z^n = \lim_{n \to \infty} s_n = \frac{1}{1-z}.$$
 (3.26)

Per far vedere questo, consideriamo che la successione delle somme parziali tende uniformemente a 1/(1-z). Infatti

$$\left| \frac{1 - z^{n+1}}{1 - z} - \frac{1}{1 - z} \right| = \left| \frac{z^{n+1}}{1 - z} \right| \le \left| \frac{q^{n+1}}{1 - q} \right| , \tag{3.27}$$

dove |z| < q < 1. Quindi per $\forall \epsilon > 0$ possiamo definire un $n_0(\epsilon)$ (quindi indipendente da z) tale che per $\forall n > n_0$ si abbia

$$\left| \frac{q^{n+1}}{1-q} \right| < \epsilon \tag{3.28}$$

e quindi, sempre per $n > n_0(\epsilon)$

$$\left| \frac{1 - z^{n+1}}{1 - z} - \frac{1}{1 - z} \right| < \epsilon. \tag{3.29}$$

Ovvero la $\sum_{n=0}^{\infty} z^n$ converge uniformemente a 1/(1-z).

Una serie di potenze converge banalmente per z=0. Per $z=z_0\neq 0$ si ha il seguente importante risultato.

Teorema 3.3.8 i) $Se \sum_{n=0}^{\infty} a_n z^n$ converge per $z_0 \neq 0$, allora converge assolutamente per qualsiasi valore di z tale che $|z| < \rho < |z_0|$, con $\rho > 0$, ovvero in tutti i punti interni al cerchio centrato in z = 0 di raggio $|z_0|$. ii) Se per $z = z_0$ la serie non converge, allora non converge per $\forall z$ con $|z| > |z_0|$, cioè in tutti i punti esterni al cerchio di raggio $|z_0|$.

Dimostrazione.~i) Poiché $\sum_{n=0}^{\infty}a_nz^n$ in $z_0,$ si avrà

$$\lim_{n \to \infty} |a_n z^n| = 0. \tag{3.30}$$

Ma allora esisterà un numero reale positivo, g, tale che dato un $n_0 \in \mathbb{N}$ si abbia che per $\forall n \in \mathbb{N}$

$$|a_n z_0^n| < g. (3.31)$$

Allora

$$\sum_{n=0}^{\infty} |a_n z^n| = \sum_{n=0}^{\infty} |a_n z_0^n| \left| \frac{z^n}{z_0^n} \right| \le g \sum_{n=0}^{\infty} \left| \frac{z^n}{z_0^n} \right| = g \sum_{n=0}^{\infty} \left| \frac{z}{z_0} \right|^n.$$
 (3.32)

Se $|z| < \rho < |z_0|$, la serie $\sum_{n=0}^{\infty} |a_n z^n|$ è quindi maggiorata dalla serie geometrica $\sum_{n=0}^{\infty} g \rho^n / |z_0|$ che è convergente. Ne consegue che $\sum_{n=0}^{\infty} a_n z^n$ è uniformemente convergente in $|z| < \rho < |z_0|$ (per l'M-test di Weierstrass).

ii). Il secondo punto è dimostrabile banalmente per assurdo. Infatti, supponiamo che $\sum_{n=0}^{\infty} |a_n z^n|$ diverga per un certo z_0 . Se convergesse per uno z tale che $|z| > |z_0|$ allora per il punto precedente convergerebbe uniformemente per $|z| < |z_0|$, contro l'ipotesi.

Indicando con R il sup dei valori di |z| per i quali $\sum_{n=0}^{\infty} a_n z^n$ converge, abbiamo che $\sum_{n=0}^{\infty} a_n z^n$ converge uniformemente nel disco aperto centrato in z=0, di raggio R, D(0,R) (o meglio in ogni chiuso di raggio $\rho < R$ contenuto nell'aperto di raggio R). Allora R viene detto raggio di convergenza. Se $\sum_{n=0}^{\infty} a_n z^n$ converge solo per z=0 allora R=0. Se $\sum_{n=0}^{\infty} a_n z^n$ converge per $\forall z \in \mathbb{C}$, $R=\infty$ e $\sum_{n=0}^{\infty} a_n z^n$ è detta trascendente intera.

Teorema 3.3.9 di Cauchy-Hadamard. Data la serie $\sum_{n=0}^{\infty} a_n z^n$, si consideri la successione $\sqrt[n]{|a_n|}$ e sia

$$\alpha = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}. \tag{3.33}$$

Allora il raggio di convergenza della serie è $R = \frac{1}{\alpha}$.

Dimostrazione. Ricordiamo che il lim sup di una successione esiste sempre, anche quando la successione non ha limite (e quindi il lim sup non coincide col liminf). Inoltre, se a_n è una successione di numeri reali, $\lim_{n\to\infty} sup\{a_n\} = a$ implica che $\forall \epsilon > 0, \ \exists N(\epsilon) \in \mathbb{N}$ tale che $a_n < a + \epsilon$ per $\forall n \geq N$ e inoltre ci sono infiniti valori di n per i quali $a_n > a - \epsilon$. Infatti se $\lim_{n\to\infty} sup\{a_n\} = a$ vuol dire che $\forall \epsilon > 0, \ \exists N(\epsilon) \in \mathbb{N}$ tale che se $n \geq N$ si abbia $|a - sup_{n\geq N}\{a_n\}| < \epsilon$, ovvero

$$a - \epsilon < \sup_{n \ge N} \{a_n\} < a + \epsilon \tag{3.34}$$

e se il $\sup_{n \geq N} \{a_n\} < a + \epsilon$ vuol dire che $a_n < a + \epsilon$. Se il $\sup_{n \geq N} \{a_n\} > a - \epsilon$ vuol dire che ci sono infiniti valori di n per i quali $a_n > a - \epsilon$.

Detto questo passiamo alla dimostrazione vera e propria.

Sia $\alpha \neq 0$ e finito. Se z è tale che $|z| < \frac{1}{\alpha}$ si ha $\alpha |z| < 1$ (strettamente minore di 1). Allora si può sempre trovare un $\epsilon > 0$ tale che si abbia anche $(\alpha + \epsilon)|z| < 1$. Chiamiamo $(\alpha + \epsilon)|z| = q$ (quindi q < 1). Se $\alpha = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$ si ha che, in corrispondenza di quell' ϵ , $\exists n_0 \in \mathbb{N}$ tale che per $n > n_0$

$$\sqrt[n]{|a_n|} < \alpha + \epsilon. \tag{3.35}$$

Quindi

$$|z|\sqrt[n]{|a_n|} < (\alpha + \epsilon)|z| = q \tag{3.36}$$

e infine

$$|a_n||z|^n = |a_n z^n| < q^n. (3.37)$$

Allora la serie $\sum |a_n z^n|$ è maggiorata dalla serie geometrica che è convergente e quindi è a sua volta convergente (uniformemente, per l'M-test di Weierstrass), per quel valore di z.

Se $|z| > \frac{1}{\alpha}$, invece, si ha $\alpha |z| > 1$ e possiamo prendere un ϵ tale che si abbia $(\alpha - \epsilon)|z| > 1$. Chiamiamo $(\alpha - \epsilon)|z| = q$ (quindi adesso è q > 1. Allora $\exists n_0 \in \mathbb{N}$ tale che per $n > n_0$ infiniti punti della successione $\sqrt[n]{|a_n|}$ sono

$$\sqrt[n]{|a_n|} > \alpha - \epsilon \tag{3.38}$$

e quindi

$$|z|\sqrt[n]{|a_n|} > (\alpha - \epsilon)|z| = q. \tag{3.39}$$

Si ha dunque $|a_n z^n| > q^n$ con q > 1, per cui la serie $\sum a_n z^n$ non converge per quei valori di z. Se $\alpha = 0$ si ha $R = \infty$. Infatti, $\forall z$ si può sempre scegliere un ϵ tale che $\epsilon |z| = q < 1$. Allora $\exists n_0 \in \mathbb{N}$ tale che per $n > n_0$ si abbia $\sqrt[n]{|a_n|} < \epsilon$ e quindi $\sqrt[n]{|a_n|}|z| < \epsilon |z| = q < 1$ e la serie è convergente (uniformemente) per $\forall z$.

Se $\alpha = \infty$ si ha R = 0.

Teorema 3.3.10 Se esiste il limite

$$\lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = R, \tag{3.40}$$

questo è il raggio di convergenza della serie di potenze $\sum_{n=0}^{\infty} a_n z^n$.

Dimostrazione.

Aggiungiamo due importantissimi risultati.

Teorema 3.3.11 Le due serie $\sum_{n=0}^{\infty} a_n z^n$ e $\sum_{n=1}^{\infty} n a_n z^{n-1}$, se convergenti, hanno lo stesso raggio di convergenza.

Dimostrazione. Sia $\alpha = \lim_{n\to\infty} \sup \sqrt[n]{|a_n|}$. Consideriamo la somma

$$\sum_{n=1}^{\infty} n a_n z^{n-1} = \sum_{k=0}^{\infty} (k+1) a_{k+1} z^k , \qquad (3.41)$$

dove abbiamo posto k = n - 1. Allora si ha

$$\lim_{k \to \infty} \sup \sqrt[k]{(k+1)|a_{k+1}|} = \lim_{k \to \infty} \sup \sqrt[k]{(k+1)} \sqrt[k]{|a_{k+1}|} = \lim_{k \to \infty} \sup \sqrt[k]{|a_k|} = \alpha, \qquad (3.42)$$

visto che $\lim_{k\to\infty} \sup \sqrt[k]{(k+1)} = \lim_{k\to\infty} \sqrt[k]{(k+1)} = 1$ e $\lim_{k\to\infty} \sup \sqrt[k]{|a_{k+1}|} = \lim_{k\to\infty} \sup \sqrt[k]{|a_k|}$. Quindi $\sum_{n=0}^{\infty} a_n z^n$ e $\sum_{n=1}^{\infty} n a_n z^{n-1}$ convergono uniformemente per gli stessi valori di z.

Teorema 3.3.12 Se $\sum_{n=0}^{\infty} a_n z^n = f(z)$ ha per raggio di convergenza R, per $\forall z$ tale che |z| < R si ha

$$f'(z) = \sum_{n=1}^{\infty} n a_n z^{n-1} , \qquad (3.43)$$

ovvero la f(z) è analitica in D(0,R) e la sua derivata prima coincide con la derivata termine a termine della serie $\sum_{n=0}^{\infty} a_n z^n$.

Dimostrazione. Sia z_0 tale che $|z_0| < R$ e $\delta > 0$ tale che $|h| < \delta$ e $|z_0 + h| < \rho < R$, con $\rho > 0$. Si ha

$$\frac{f(z_0+h)-f(z_0)}{h} = \frac{1}{h} \left(\sum_{n=0}^{\infty} a_n (z_0+h)^n - \sum_{n=0}^{\infty} a_n z_0^n \right) = \sum_{n=1}^{\infty} a_n \frac{(z_0+h)^n - z_0^n}{h}.$$
 (3.44)

Vediamo come possiamo riscrivere il termine ennesimo della serie:

$$\frac{(z_0+h)^n - z_0^n}{h} = (z_0+h)^{n-1} \frac{\left[(z_0+h) - \frac{z_0^n}{(z_0+h)^{n-1}} \right]}{h}, \tag{3.45}$$

$$= (z_0 + h)^{n-1} \frac{\left[1 - \left(\frac{z_0}{(z_0 + h)}\right)^n\right]}{\frac{h}{z_0 + h}},$$
(3.46)

$$= (z_0 + h)^{n-1} \frac{\left[1 - \left(\frac{z_0}{(z_0 + h)}\right)^n\right]}{1 - \frac{z_0}{z_0 + h}}, \tag{3.47}$$

$$= (z_0 + h)^{n-1} \left[1 + \frac{z_0}{z_0 + h} + \dots + \left(\frac{z_0}{z_0 + h} \right)^{n-1} \right], \tag{3.48}$$

$$= (z_0 + h)^{n-1} + (z_0 + h)^{n-2} z_0 + \dots + z_0^{n-1}.$$
(3.49)

Quindi

$$\left| \frac{(z_0 + h)^n - z_0^n}{h} \right| = \left| (z_0 + h)^{n-1} + (z_0 + h)^{n-2} z_0 + \dots + z_0^{n-1} \right| < \rho^{n-1} + \rho^{n-2} \rho + \dots + \rho^{n-1} = n\rho^{n-1}$$
(3.50)

e si trova che, per $|h| < \delta$, i termini della serie

$$\sum_{n=1}^{\infty} a_n \frac{(z_0 + h)^n - z_0^n}{h} \tag{3.51}$$

sono maggiorati dai corrispondenti termini della serie $\sum_{n=1}^{\infty} n a_n \rho^{n-1}$ e siccome la serie $\sum_{n=0}^{\infty} a_n \rho^n$ converge, anche la $\sum_{n=1}^{\infty} n a_n \rho^{n-1}$ convergerà con lo stesso raggio di convergenza R. Allora la (3.51) converge uniformemente per $|z| < \rho < R$ e quindi si ha

$$\lim_{h \to 0} \frac{f(z_0 + h) - f(z_0)}{h} = \lim_{h \to 0} \sum_{n=1}^{\infty} a_n \frac{(z_0 + h)^n - z_0^n}{h} = \sum_{n=1}^{\infty} \lim_{h \to 0} \frac{(z_0 + h)^n - z_0^n}{h} = \sum_{n=1}^{\infty} n a_n z_0^{n-1}.$$
(3.52)

Quindi, abbiamo dimostrato che se $\sum_n a_n z^n$ è convergente la sua somma è una funzione analitica tale che la sua derivata coincida con la serie delle derivate termine a termine della serie di partenza.

Ma se così è, il ragionamento può essere ripetuto e quindi si trova che una serie di potenze con raggio di convergenza R ha derivate di ogni ordine date dalla serie delle derivate termine a termine:

$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots$$

$$f'(z) = a_1 + 2a_2 z + 3a_3 z^2 + \dots$$

$$f''(z) = 2a_2 + 6a_3 z + \dots$$

$$f^k(z) = k! a_k + \dots$$
(3.53)

In particolare quindi:

$$f(z) = f(0) + f'(0)z + \frac{f''(0)}{2!}z^2 + \dots + \frac{f^n(0)}{n!}z^n + \dots$$
 (3.54)

cioè se f(z) è una serie di potenze vale la formula di Taylor. Il viceversa ha bisogno del teorema di Cauchy.

Capitolo 4

Appunti sulle FUNZIONI ANALITICHE ELEMENTARI

Utilizzando lo studio delle serie di potenze che abbiamo effettuato nel capitolo precedente passiamo allo studio delle funzioni elementari, che saranno definite proprio grazie alle serie di potenze.

4.1 Esponenziale complesso

Consideriamo la seguente serie di potenze

$$\sum_{n=0}^{\infty} \frac{z^n}{n!} \,. \tag{4.1}$$

Il coefficiente n-esimo è pari a

$$a_n = \frac{1}{n!} \,. \tag{4.2}$$

Usando il criterio del rapporto, troviamo il raggio di convergenza della serie:

$$R = \lim_{n \to \infty} \frac{|a_n|}{|a_{n+1}|} = \lim_{n \to \infty} \frac{(n+1)!}{n!} = \lim_{n \to \infty} (n+1) = \infty.$$
 (4.3)

Per cui la serie converge in tutto il piano complesso.

Per analogia con l'esponenziale reale, che era dato da

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \,, \tag{4.4}$$

si pone

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!} \,. \tag{4.5}$$

La funzione e^z è analitica in tutto \mathbb{C} , ovvero è intera.

La derivata si può ottenere dalla derivata termine a termine della serie

$$\frac{d}{dz}e^z = \sum_{n=1}^{\infty} \frac{n}{n!} z^{n-1} = \sum_{k=0}^{\infty} \frac{k+1}{(k+1)!} z^k = \sum_{k=0}^{\infty} \frac{z^k}{k!} = e^z.$$
 (4.6)

L'esponenziale così definito ha le usuali proprietà dell'esponenziale reale. In particolare

$$e^{z_1}e^{z_2} = e^{z_1 + z_2}. (4.7)$$

Infatti, prendiamo $e^z e^{c-z}$ con $c \in \mathbb{C}$ costante. Abbiamo

$$\frac{d}{dz}(e^z e^{c-z}) = e^z e^{c-z} + e^z (-e^{c-z}) = 0,$$
(4.8)

per cui

$$e^z e^{c-z} = \cos t \,. \tag{4.9}$$

Per determinare la costante poniamo z = 0, trovando

$$cost = e^c, (4.10)$$

da cui

$$e^z e^{c-z} = e^c \tag{4.11}$$

e ponendo $z = z_1$ e $c = z_1 + z_2$ si ha l'assunto.

Se $z_1 = x$ e $z_2 = iy$ si ha

$$e^{x+iy} = e^x e^{iy} = e^x \left(1 + iy - \frac{y^2}{2} - \frac{iy^3}{3!} + \dots\right),$$
 (4.12)

$$= e^{x} \left[\left(1 - \frac{y^{2}}{2!} + \frac{y^{4}}{4!} \right) + i \left(y - \frac{y^{3}}{3!} + \frac{y^{5}}{5!} + \dots \right) \right], \tag{4.13}$$

$$= e^x(\cos y + i\sin y). \tag{4.14}$$

In particolare, abbiamo così provato la formula di Eulero.

La funzione e^z è una funzione dai complessi nei complessi. Vediamo come sono fatti il suo modulo e il suo argomento. Abbiamo

$$e^z = e^{x+iy} = e^x e^{iy} \,, \tag{4.15}$$

per cui

$$\begin{cases} |e^z| = e^x, \\ arg(e^z) = y + 2k\pi, \end{cases}$$

$$\tag{4.16}$$

quindi e^z è una funzione periodica, di periodo $2\pi i$:

$$e^z = e^{z+2k\pi i}, (4.17)$$

con $k \in \mathbb{Z}$. Inoltre

$$e^z \neq 0, \quad \forall z \in \mathbb{C},$$
 (4.18)

cioè lo zero non fa parte del codominio.

Quando nel piano \mathbb{C} del dominio di e^z , il punto z varia la sua parte reale, $x=\Re(z)$, su \mathbb{R} , il modulo del numero complesso e^z nel codominio va da 0 (escluso) all'infinito. Di pari passo, quando la parte immaginaria di $z, y=\Im(z)$ varia per esempio da $-\pi$ a π , $-\pi < y \leq \pi$, l'argomento di e^z varia da $-\pi$ a π . Quindi, la striscia T_0 parallela all'asse reale come in figura,

viene mappata da e^z in una copia del piano \mathbb{C} . Siccome e^z è periodico, anche la striscia T_1 viene analogamente mappata in un'altra copia di \mathbb{C} e così ogni striscia T_k con $k \in \mathbb{Z}$.

La funzione e^z può essere resa biunivoca se ci si restringe a considerare un solo ramo, ovvero una funzione che agisce da una fascia T_k del dominio, in una copia di \mathbb{C} , in cui l'argomento di $w = e^z$ sia compreso fra $-\pi$ e π . Siccome passando alla fascia T_{k+1} si otterrebbe un numero w con argomento che eccede π (in pratica si farebbe un altro giro intorno all'origine nel piano \mathbb{C} del codominio), per limitarsi ad un ramo, si mette un "taglio" al piano \mathbb{C} del codominio fra l'origine e il punto all'infinito. Nella configurazione considerata in figura, il taglio viene posto sulla semiretta reale negativa.

Questa "necessità" di definire una funzione biunivoca deriva dalla possibilità di invertire la funzione e^z e definire il logaritmo complesso. Siccome e^z è una funzione periodica, la funzione inversa sarà una funzione polidroma e per poterla definire senza ambiguità dobbiamo scegliere un ramo, ovvero ridurre lo studio al ramo k-esimo della funzione

$$e^z: T_k \to \mathbb{C} - \{x \le 0\}. \tag{4.19}$$

4.2 Funzioni trigonometriche

Per la formula di Eulero, abbiamo per $x \in \mathbb{R}$

$$e^{ix} = \cos x + i \sin x$$
, $e^{-ix} = \cos x - i \sin x$, (4.20)

ovvero:

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} = 1 - \frac{y}{2!} + \frac{y^2}{4!} + \dots, \tag{4.21}$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} = y - \frac{y^3}{3!} + \frac{y^5}{5!} + \dots$$
 (4.22)

Allora, sfruttando l'analogia con la serie di potenze $\sum \frac{z^n}{n!}$, che abbiamo posto uguale all'esponenziale complesso, definiamo

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, (4.23)$$

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}. {(4.24)}$$

Troviamo le proprietà di $\sin z$ e $\cos z$ e mostriamo che sono del tutto analoghe a quelle del seno e coseno reali.

- 1. Siccome e^{iz} e e^{-iz} sono funzioni intere, anche $\sin z$ e $\cos z$ lo sono.
- 2. Si ha:

$$\frac{d}{dz}\sin z = \frac{1}{2i}\left(\frac{d}{dz}e^{iz} - \frac{d}{dz}e^{-iz}\right) = \frac{e^{iz} + e^{-iz}}{2} = \cos z,$$
(4.25)

$$\frac{d}{dz}\cos z = \frac{1}{2}\left(\frac{d}{dz}e^{iz} + \frac{d}{dz}e^{-iz}\right) = -\frac{e^{iz} - e^{-iz}}{2i} = -\sin z. \tag{4.26}$$

3. Si ha

$$\sin(-z) = \frac{e^{-iz} - e^{+iz}}{2i} = -\sin z,$$
 (4.27)

$$\cos(-z) = \frac{e^{-iz} + e^{iz}}{2} = \cos z.$$
 (4.28)

4. Siccome $e^z = \sum \frac{z^n}{n!}$ si ha

$$\cos z = \frac{1}{2} \left[1 + iz + \frac{(iz)^2}{2!} + \dots + 1 - iz + \frac{(-iz)^2}{2!} + \dots \right] = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}, (4.29)$$

$$\sin z = \frac{1}{2i} \left[\left(1 + iz + \frac{(iz)^2}{2!} + \dots \right) - \left(1 - iz + \frac{(-iz)^2}{2!} + \dots \right) \right]$$
(4.30)

$$= \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!} \,. \tag{4.31}$$

5. Si ha

$$\sin^2 z + \cos^2 z = \left(\frac{e^{iz} - e^{-iz}}{2i}\right)^2 + \left(\frac{e^{iz} + e^{-iz}}{2}\right)^2 = 1.$$
 (4.32)

6. Si ha

$$\cos(z_1 + z_2) = \frac{e^{i(z_1 + z_2)} + e^{-i(z_1 + z_2)}}{2} = \frac{e^{iz_1}e^{iz_2} + e^{-iz_1}e^{-iz_2}}{2},$$

$$= \frac{(\cos z_1 + i\sin z_1)(\cos z_2 + i\sin z_2)}{2}$$
(4.33)

$$+\frac{(\cos z_1 - i\sin z_1)(\cos z_2 - i\sin z_2)}{2}, \qquad (4.34)$$

$$= \dots, \tag{4.35}$$

$$= \cos z_1 \cos z_2 - \sin z_1 \sin z_2, \qquad (4.36)$$

$$\cos(z_1 - z_2) = \cos z_1 \cos z_2 + \sin z_1 \sin z_2, \qquad (4.37)$$

$$\sin(z_1 + z_2) = \sin z_1 \cos z_2 + \cos z_1 \sin z_2,$$
 (4.38)

$$\sin(z_1 - z_2) = \sin z_1 \cos z_2 - \cos z_1 \sin z_2. \tag{4.39}$$

7. Si ha

$$\sin(iy) = \frac{e^{-y} - e^y}{2i} = i\frac{e^y - e^{-y}}{2} = i\sinh y,$$
 (4.40)

$$\cos(iy) = \frac{e^{-y} + e^y}{2} = \cosh y.$$
 (4.41)

8. Quindi

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \frac{e^{-y}e^{ix} + e^{y}e^{-ix}}{2}, \tag{4.42}$$

$$= \frac{e^{-y}(\cos x + i\sin x) + e^{y}(\cos x - i\sin x)}{2}, \qquad (4.43)$$

$$= \cos x \frac{e^{-y} + e^y}{2} + i \sin x \frac{e^{-y} - e^y}{2}, \qquad (4.44)$$

$$= \cos x \cosh y - i \sin x \sinh y, \qquad (4.45)$$

$$\sin z = \sin x \cosh(y) + i \cos x \sinh y, \qquad (4.46)$$

ovvero

$$\Re(\sin z) = \sin x \cosh y, \qquad \Im(\sin z) = \cos x \sinh y, \qquad (4.47)$$

$$\Re(\cos z) = \cos x \cosh y, \qquad \Im(\sin z) = -\sin x \sinh y. \tag{4.48}$$

9. Troviamo gli zeri delle funzioni $\sin z$ e $\cos z$, che serviranno per capire il dominio di analiticità della tangente e della cotangente.

$$\cos z = 0, \tag{4.49}$$

siccome sia la parte reale che la parte immaginaria si devono annullare contemporaneamente, implica il seguente sistema:

$$\begin{cases}
\cos x \cosh y &= 0, \\
\sin x \sinh y &= 0.
\end{cases} \tag{4.50}$$

Il cosh y non si annulla mai; quindi la prima equazione ha come soluzioni

$$\cos x = 0, \qquad \Longrightarrow \qquad x = \frac{\pi}{2} + k\pi, \quad \text{con} \quad k \in \mathbb{Z}.$$
 (4.51)

Per questi valori di x, il $\sin x \neq 0$. Quindi la seconda equazione impone

$$\sinh y = 0, \qquad \Longrightarrow \qquad y = 0. \tag{4.52}$$

In totale, il $\cos z$ si annulla per

$$z = \frac{\pi}{2} + k\pi, \quad \text{con} \quad k \in \mathbb{Z}, \tag{4.53}$$

quindi, solo parte reale.

Per il $\sin z$ si può fare la stessa considerazione. Abbiamo

$$\begin{cases} \sin x \cosh y = 0, \\ \cos x \sinh y = 0. \end{cases}$$
(4.54)

La prima equazione, siccome $\cosh y \neq 0$ per $\forall y \in \mathbb{R}$, impone $\sin x = 0$, che è verificata per $x = k\pi$. Per questi valori di x si ha $\cos x \neq 0$, ma $\sinh y = 0$ è verificata per y = 0. In totale, $\sin z = 0$ in

$$z = k\pi$$
, con $k \in \mathbb{Z}$. (4.55)

10. Siccome e^z è periodico di periodo $2\pi i$, anche sin z e cos z sono periodiche. Infatti si ha:

$$\sin(z + 2k\pi) = \frac{e^{i(z+2k\pi)} - e^{-i(z+2k\pi)}}{2i} = \frac{e^{iz}e^{i2k\pi} - e^{-iz}e^{-i2k\pi}}{2i}, \quad (4.56)$$

$$= \frac{e^{iz} - e^{-iz}}{2i} = \sin z \,, \tag{4.57}$$

$$\cos\left(z + 2k\pi\right) = \cos z \,. \tag{4.58}$$

Quindi, le fasce di periodicità sono verticali, parallele all'asse immaginario

11. Ricordando che $\cosh^2 y - \sinh^2 y = 1$, si ha

$$|\sin z|^2 = \sin^2 x \cosh^2 y + \cos^2 x \sinh^2 y = \sin^2 x + \sin^2 x \sinh^2 y + \cos^2 x \sinh^2 y$$
4.59)

$$= \sin^2 x + \sinh^2 y, \tag{4.60}$$

$$|\cos z|^2 = \cos^2 x + \sinh^2 y$$
. (4.61)

Dall'espressione del modulo quadro si capisce che in $\mathbb C$ le due funzioni non sono limitate!

Dati $\sin z = \cos z$ si possono studiare i loro rapporti.

La tangente è definita come segue:

$$\tan z = \frac{\sin z}{\cos z} \,. \tag{4.62}$$

Quindi la tangente è una funzione analitica in $\mathbb{C} - \{\frac{\pi}{2} + k\pi\}$. Si ha

$$\frac{d}{dz}\tan z = \frac{\cos^2 z + \sin^2 z}{\cos^2 z} = \frac{1}{\cos^2 z}.$$
 (4.63)

Nei punti singolari, $\tan z$ ha poli del primo ordine:

$$\tan z \stackrel{z \simeq \frac{\pi}{2}}{\simeq} \frac{1}{z - \frac{\pi}{2}}.$$
 (4.64)

La cotangente è definita come segue:

$$\cot z = \frac{\cos z}{\sin z} \,. \tag{4.65}$$

Quindi la cotangente è una funzione analitica in $\mathbb{C} - \{k\pi\}$. Si ha

$$\frac{d}{dz}\cot z = \frac{-\cos^2 z - \sin^2 z}{\sin^2 z} = -\frac{1}{\sin^2 z}.$$
 (4.66)

Nei punti singolari, $\cot z$ ha poli del primo ordine:

$$\cot z \stackrel{z \simeq 0}{\simeq} \frac{1}{z} \,. \tag{4.67}$$

4.3 Funzioni iperboliche

Definiamo seno e coseno iperbolico come segue:

$$\sinh z = \frac{e^z - e^{-z}}{2}, \tag{4.68}$$

$$cosh z = \frac{e^z + e^{-z}}{2}.$$
(4.69)

In quanto combinazioni lineari di funzioni intere, sono anch'esse funzioni intere. Le loro proprietà derivano dalle proprietà dell'esponenziale.

1. Si ha

$$\frac{d}{dz}\sinh z = \frac{e^z + e^{-z}}{2} = \cosh z, \qquad (4.70)$$

$$\frac{d}{dz}\cosh z = \frac{e^z - e^{-z}}{2} = \sinh z. \tag{4.71}$$

2. Sempre dalla definizione deriva che

$$\sinh -z = \frac{e^{-z} - e^z}{2} = -\sinh z,$$
(4.72)

$$\cosh -z = \frac{e^{-z} + e^z}{2} = \cosh z.$$
(4.73)

3. Dalla periodicità dell'esponenziale deriva la periodicità di sinh z e cosh z:

$$\sinh(z + 2\pi i) = \frac{e^{(z+2\pi i)} - e^{-(z+2\pi i)}}{2} = \frac{e^z - e^{-z}}{2} = \sinh z, \qquad (4.74)$$

$$\cosh(z + 2\pi i) = \frac{e^{(z+2\pi i)} + e^{-(z+2\pi i)}}{2} = \frac{e^z + e^{-z}}{2} = \cosh z.$$
 (4.75)

4. Si ha

$$\cosh^2 z - \sinh^2 z = 1, \tag{4.76}$$

$$\sinh(z_1 \pm z_2) = \sinh z_1 \cosh z_2 \pm \cosh z_1 \sinh z_2, \qquad (4.77)$$

$$\cosh(z_1 \pm z_2) = \cosh z_1 \cosh z_2 \pm \sinh z_1 \sinh z_2. \tag{4.78}$$

5. Esplicitando parte reale e parte immaginaria dell'esponenziale si ottiene

$$\sinh z = \sinh x \cos y + i \cosh x \sin y, \qquad (4.79)$$

$$\cosh z = \cosh x \cos y + i \sinh x \sin y.$$
(4.80)

6. Gli zeri delle due funzioni sono determinati dai seguenti sistemi.

Per $\sinh z = 0$ abbiamo

$$\begin{cases} \sinh x \cos y = 0, \\ \cosh x \sin y = 0, \end{cases} \tag{4.81}$$

che sono verificate per x=0 e $y=k\pi$, quindi $z=k\pi i$.

Per $\cosh z = 0$ abbiamo

$$\begin{cases}
\cosh x \cos y &= 0, \\
\sinh x \sin y &= 0,
\end{cases} \tag{4.82}$$

che sono verificate per x=0 e $y=\frac{\pi}{2}+k\pi$, quindi $z=i\left(\frac{\pi}{2}+k\pi\right)$.

Così come abbiamo fatto per le funzioni trigonometriche, possiamo definire e studiare la tangente e la cotangente iperbolica dal rapporto di seno e coseno o coseno e seno. Si ha

$$tanh z = \frac{\sinh z}{\cosh z}, \tag{4.83}$$

analitica in $\mathbb{C} - \{\frac{\pi}{2} + k\pi\}$. Nei punti di non analiticità, ha dei poli semplici.

Si ha anche

$$coth z = \frac{\cosh z}{\sinh z},$$
(4.84)

analitica in $\mathbb{C} - \{k\pi\}$. Nei punti di non analiticità, ha dei poli semplici.

4.4 Funzioni inverse e polidromia

Abbiamo visto diversi casi di funzioni analitiche

$$f(z): D \to D' \subset \mathbb{C},$$
 (4.85)

non biunivoche. Per esempio $f(z) = e^z$ oppure $f(z) = z^n$, o $f(z) = \sin z$.

La funzione inversa di tali funzioni,

$$f^{-1}: D' \to D,$$
 (4.86)

sarà **polidroma**, ovvero assocerà ad un valore di $w \in D'$ nel dominio, diversi possibili valori z_k nel codominio D.

Per poter definire in maniera univoca la funzione inversa $z = f^{-1}(w)$, ci dobbiamo limitare a considerare un sottodominio $D_k \subset D$, tale che, se $z \in D_k$, la $f: z \to w = f_k(z)$ sia biunivoca e quindi abbia l'inversa $f_k^{-1}(w)$. Si dice che abbiamo identificato un ramo monodromo della funzione polidroma.

4.4.1 Logaritmo complesso

Il logaritmo è la funzione inversa dell'esponenziale. Si definisce **logaritmo** di z, $\ln z$, l'esponente da dare ad e affinché si ottenga z:

$$z = e^{\ln z} \,. \tag{4.87}$$

Siccome $z = |z|e^{i\theta}$, con $\theta = Arg(z)$, $-\pi < \theta < \pi$, si ha

$$e^{\ln z} = z = |z|e^{i\theta} = e^{\ln|z|}e^{i\theta} = e^{\ln|z|+i\theta},$$
 (4.88)

da cui

$$ln z = ln |z| + i\theta,$$
(4.89)

con $z \neq 0$. Questo è il **ramo principale** del logaritmo. In generale, siccome $arg(z) = Arg(z) + 2k\pi$, si avrà

$$\ln z = \ln |z| + i(\theta + 2k\pi), \qquad k \in \mathbb{Z}. \tag{4.90}$$

A seconda del valore di $k \in \mathbb{Z}$, si definisce un ramo del logaritmo. Ogni ramo va dal piano \mathbb{C} tagliato ($\mathbb{C} - \{x \leq 0\}$) in una striscia (vedi dominio dell'esponenziale) $T_k : (2k-1)\pi < \Im(\ln z) \leq (2k+1)\pi$.

- 1. Siccome $e^z \neq 0$ sempre, z = 0 non appartiene al dominio del $\ln z$.
- 2. Il logaritmo e l'esponenziale sono l'una la funzione inversa dell'altra, ma il logaritmo è una funzione polidroma. Ne deriva che $e^{\ln z} \neq \ln e^z$. Infatti

$$e^{\ln z} = e^{\ln|z| + i\theta + i2k\pi} = |z|e^{i\theta + i2k\pi} = z$$
. (4.91)

Invece

$$\ln e^z = \ln \left(e^x e^{iy + 2k\pi i} \right) = z + 2k\pi i \,, \tag{4.92}$$

che rende manifesta la natura polidroma della funzione inversa.

3. Se z = x > 0, $x \in \mathbb{R}$, allora

$$ln z = ln x,$$
(4.93)

logaritmo naturale nei reali. Ma in $\mathbb C$ si può prendere anche x<0. In particolare, se x=-1 $(z=e^{i\pi})$ si ha

$$\ln(-1) = \ln|1| + i\pi + 2k\pi i = i\pi + 2k\pi i. \tag{4.94}$$

- 4. Se fissiamo per z_0 un valore del $\ln z_0$ e prendiamo poi con continuità i valori di $\ln z$ su un circuito chiuso γ , abbiamo due possibilità:
 - se γ non include l'origine, una volta tornati allo stesso punto z_0 , il $\log z$ torna ad assumere lo stesso valore iniziale $\ln z_0$;
 - se γ include l'origine, invece, tornando allo stesso punto z_0 dopo aver chiuso il circuito, il $\ln z$ diventerà $\ln z_0 + 2\pi i$. Cioè tornando al piunto iniziale, il $\ln z_0$ avrà aumentato la sua parte immaginaria di $2\pi i$.

Per avere una funzione ad un sol valore (biunivoca) si deve "impedire" di fare un giro completo intorno a z=0. Per questo si introduce un "taglio" da z=0 a $-\infty$ sull'asse reale. Il punto z=0 viene detto **punto di diramazione**.

Impedendo di oltrepassare il taglio, abbiamo individuato un ramo monodromo del logaritmo, che mappa una copia di \mathbb{C} in una striscia T_k del codominio.

Oltrepassare il taglio, fa passare ad un altro ramo monodromo del logaritmo.

Se con continuità si continua a fare il giro intorno a z=0 in senso antiorario, il $\ln z$ aumenta la sua parte immaginaria di $2\pi i$ ogni passaggio, passando quindi da una fascia T_k alla T_{k+1} nel codominio.

Invece di limitarci ad una copia di \mathbb{C} e mettere un taglio per individuare un ramo monodromo del logaritmo, possiamo considerare un dominio allargato ad infinite copie di \mathbb{C} . Ogni copia è tale che il lembo superiore del taglio (per esempio quello a $\theta = \pi$ dell'intervallo $-\pi < \theta \leq \pi$) viene "incollato" al lembo inferiore della copia successiva di \mathbb{C} . Il dominio allargato, viene quindi ad essere identificato con una "scala a chiocciola" ogni piano della quale è una copia di \mathbb{C} . La "scala" è una superficie di Riemann. Il punto di diramazione z = 0 è detto di **ordine infinito**, poiché girando infinite volte attorno ad esso si accede a valori del logaritmo sempre diversi.

5. Ogni ramo del $\ln z$ così identificato è analitico ovunque tranne che sul taglio (e in z=0 che non appartiene al dominio) e vale la

$$\frac{d}{dz}\ln z = \frac{1}{z}. (4.95)$$

Infatti, se prendiamo un solo ramo di

$$z \to e^z = w : T_k \to \mathbb{C} - \{x \le 0\},$$
 (4.96)

la funzione è biunivoca e analitica con

$$\frac{d}{dz}e^z \neq 0 \tag{4.97}$$

in tutto il dominio. Allora

$$\frac{d}{dw}f^{-1}(w) = \frac{1}{f'(z)}\Big|_{z=f^{-1}(w)} = \frac{1}{e^z}\Big|_{z=\ln w} = \frac{1}{w}.$$
 (4.98)

Per verificare l'analiticità possiamo provare la validità delle condizioni di Cauchy-Riemann. Facciamolo sia in coordinate cartesiane che polari.

In coordinate cartesiane abbiamo:

$$\ln z = \ln |z| + i\theta = \ln \sqrt{x^2 + y^2} + i \arctan \left(\frac{y}{x}\right). \tag{4.99}$$

Abbiamo

$$\frac{\partial u}{\partial x} = \frac{x}{x^2 + y^2}, \qquad \frac{\partial u}{\partial y} = \frac{y}{x^2 + y^2}, \tag{4.100}$$

$$\frac{\partial v}{\partial x} = -\frac{y}{x^2 + y^2}, \qquad \frac{\partial v}{\partial y} = \frac{x}{x^2 + y^2}, \tag{4.101}$$

che quindi sono verificate.

Siccome il logaritmo è più naturalmente esprimibile in coordinate polari, con $z=re^{i\theta}$,

$$ln z = ln r + i\theta,$$
(4.102)

possiamo controllare la validità delle condizioni di Cauchy-Riemann direttamente in coordinate polari. Abbiamo

$$\frac{\partial}{\partial r} = \frac{\partial x}{\partial r} \frac{\partial}{\partial x} + \frac{\partial y}{\partial r} \frac{\partial}{\partial y} = \cos \theta \frac{\partial}{\partial x} + \sin \theta \frac{\partial}{\partial y}, \qquad (4.103)$$

$$\frac{\partial}{\partial \theta} = -r \sin \theta \frac{\partial}{\partial x} + r \cos \theta \frac{\partial}{\partial y}. \tag{4.104}$$

Allora

$$\frac{\partial u}{\partial r} = \cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y} = \cos \theta \frac{\partial v}{\partial y} - \sin \theta \frac{\partial v}{\partial x} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \tag{4.105}$$

$$\frac{\partial u}{\partial \theta} = -r \sin \theta \frac{\partial u}{\partial x} + r \cos \theta \frac{\partial u}{\partial y} = -r \sin \theta \frac{\partial v}{\partial y} - r \cos \theta \frac{\partial v}{\partial y} = -r \frac{\partial v}{\partial r}. \quad (4.106)$$

Quindi, essendo $\Re \ln z = \ln r$ e $\Im \ln z = \theta,$ si ha

$$\frac{\partial u}{\partial r} = \frac{1}{r} = \frac{1}{r} \frac{\partial v}{\partial \theta},\tag{4.107}$$

$$\frac{\partial u}{\partial \theta} = 0 = \frac{\partial v}{\partial r} \tag{4.108}$$

e quindi sono verificate.

6. Consideriamo adesso l'andamento del logaritmo nel punto all'infinito. Studiamo quindi in $\omega = 0$ il $\ln\left(\frac{1}{\omega}\right)$. Infatti

$$z \to \frac{1}{\omega}$$
, $\ln z = -\ln \omega$, (4.109)

che in $\omega = 0$ ha un punto di diramazione di ordine infinito. Quindi, il logaritmo ha due punti di diramazione, uno in z = 0 e l'altro nel punto all'infinito e sono uniti dal taglio.

4.5 Radice *n*-esima

La radice n-esima è la funzione inversa della potenza ennesima e quindi è una funzione polidroma.

Prendiamo la potenza n-esima:

$$f(z) = z^n, \quad n \in \mathbb{N}. \tag{4.110}$$

Siccome

$$z^{n} = |z|^{n} e^{in(\arg(z))}, (4.111)$$

tutti gli z che abbiano l'argomento dato da

$$\arg(z) + \frac{2k\pi}{n}, \quad k \in \mathbb{Z}$$
 (4.112)

sono mappati nello stesso f(z). Infatti

$$z^{n} = |z|^{n} e^{in\left(\arg(z) + \frac{2k\pi}{n}\right)} = |z|^{n} e^{in\arg(z)} e^{2k\pi i} = |z|^{n} e^{in\arg(z)}. \tag{4.113}$$

Allora, la potenza n-esima è caratterizzata da n domini di monodromia, che sono degli spicchi di ampiezza $2\pi/n$:

$$D_k = \left\{ \frac{(2k-1)\pi}{n} < \arg(z) \le \frac{(2k+1)\pi}{n} \right\}, \quad k = 0, ..., n-1,$$
 (4.114)

con

$$f(z) = z^n : D_k \to \mathbb{C} - \{x \le 0\}.$$
 (4.115)

Il codominio di ognuno di questi spicchi è il piano $\mathbb C$ tagliato.

La radice n-esima è allora definita come segue:

$$z = w^{\frac{1}{n}} = \sqrt[n]{|w|} e^{i\frac{\arg(w) + 2k\pi}{n}}.$$
 (4.116)

Il ramo principale si ottiene con k = 0:

$$z = w^{\frac{1}{n}} = \sqrt[n]{|w|} e^{i\frac{\arg(w)}{n}}.$$
 (4.117)

I $w \in \mathbb{C} - \{x \leq 0\}$ sono trasformati nello spicchio con $-\frac{\pi}{n} < \arg(z) \leq \frac{\pi}{n}$.

Ogni ramo è analitico, ad eccezione che sul taglio. Infatti le equazioni di Cauchy-Riemann danno, per $r \neq 0$,

$$\left(\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right)r^{\frac{1}{n}}e^{i\frac{\theta}{n}} = \frac{1}{n}r^{\frac{1}{n}-1}e^{i\frac{\theta}{n}} + \frac{i}{r}r^{\frac{1}{n}}\frac{i}{n}e^{i\frac{\theta}{n}} = \frac{1}{n}r^{\frac{1}{n}-1}e^{i\frac{\theta}{n}} - \frac{1}{n}r^{\frac{1}{n}-1}e^{i\frac{\theta}{n}} = 0,$$
(4.118)

Quando arg w passa il taglio in π , si accede al secondo foglio di Riemann, in cui π arg $(w) \le 3\pi$... e così via. Dall'n-esimo foglio di Riemann si ritorna al primo, in quanto per k=0,1,...,n-1 i valori della radice n-esima sono tutti distinti, mentre per k=n si riottiene il primo valore. La superficie di Riemann della radice n-esima ha n fogli, ognuno dei quali è collegato al successivo, incollando il "lembo" del taglio in $(2k+1)\pi$ con quello in $(2k-1)\pi$ della copia successiva di $\mathbb C$. L'ultimo foglio ha il taglio superiore incollato col primo lembo del taglio del primo foglio. Quindi la superficie in questo caso è chiusa.

Per fare un esempio specifico, prendiamo la radice quadrata:

$$z = \sqrt{w} = \sqrt{|w|}e^{i\left(\frac{\arg(w) + 2k\pi}{2}\right)}. \tag{4.119}$$

Per k=0,1 abbiamo i due rami della radice quadrata. Prendendo $-\pi \arg(w) \leq \pi$ sul primo foglio di Riemann, abbiamo il codominio che è rappresentato dai numeri complessi z con argomento $-\frac{\pi}{2} < \arg(z) \leq \frac{pi}{2}$ (semipiano D_1 in figura). Se, passando il taglio, l'argomento di w è $\pi \arg(w) \leq 3\pi$, quindi sul secondo foglio di Riemann (la seconda copia di $\mathbb C$ che dà luogo a valori distinti della funzione polidroma), abbiamo il codominio che è rappresentato dai numeri complessi z con argomento $\frac{\pi}{2} < \arg(z) \leq \frac{3\pi}{2}$ (semipiano D_2 in figura).

Il punto w=0 è un punto di diramazione di ordine 2, ovvero dopo due giri intorno a w=0, la \sqrt{w} riprende i valori iniziali (corrispondenti al primo giro).

Il taglio nel piano complesso, dominio del ramo monodromo di \sqrt{w} , parte dal punto di diramazione, w = 0 e va al punto all'infinito, essendo anch'esso un punto di diramazione. Infatti, studiando il comportamento di \sqrt{w} nel punto all'infinito, otteniamo:

$$\sqrt{w} \to \sqrt{\frac{1}{w'}},\tag{4.120}$$

che quando $w' \to 0$ ha un punto di diramazione di ordine 2.

Nel caso della radice n-esima, il punto di diramazione è un punto del dominio (al contrario di quanto succedeva per il logaritmo) ed inoltre in w=0 la radice è nulla. Non è però analitica, né in w=0 né in tutti i punti del taglio.

Punti di diramazione multipli 4.6

Se la radice \sqrt{z} ha un punto di diramazione in z=0 e uno nel punto all'infinito, andiamo a vedere cosa possiamo dire di una radice del tipo

$$f(z) = \sqrt{(z-a)(z-b)}.$$
 (4.121)

Per semplicità consideriamo $a, b \in \mathbb{R}$, ma potrebbero essere tranquillamente due numeri complessi qualunque e il ragionamento non cambierebbe.

La funzione f(z) è il prodotto di due radici quadrate, $\sqrt{z-a}$ e $\sqrt{z-b}$. Pertanto è una funzione polidroma. I due punti z = a e z = b sono due punti di diramazione per le due radici, vediamo perché.

Poniamo

$$z - a = \rho_1 e^{i\theta_1},$$
 (4.122)
 $z - b = \rho_2 e^{i\theta_2},$ (4.123)

$$z - b = \rho_2 e^{i\theta_2}, (4.123)$$

come in figura.

$$f(z) = \sqrt{\rho_1 \rho_2} e^{i\left[\frac{\theta_1 + \theta_1}{2} + (k_1 + k_2)\pi\right]}, \tag{4.124}$$

con θ_1 e θ_2 dipendenti dal punto z e $k_1, k_2 \in \mathbb{Z}$. Vediamo come variano k_1 e k_2 al variare di z, cercando quindi di individuare il ruolo di z = a e z = b come punti di diramazione e i due rami della funzione f(z) (f(z) è una radice quadrata ed ha quindi due rami).

Supponiamo che z vari con continuità sulla curva chiusa γ_b in figura, che include il punto di diramazione:

Facendo z il giro su γ_2 e tornando al punto di partenza, ciò che si ottiene è che θ_1 varia fra un massimo e un minimo, ma comunque rimane nell'intervallo $[0, 2\pi]$. Viceversa, $theta_2$ fa un giro di 2π . Ritornando al punto di partenza, quindi, l'argomento di (z-b) varia di 2π , ovvero finito il giro k_2 diventa $k_2=1$. Si ha

$$f(z) = \sqrt{\rho_1 \rho_2} e^{i\left(\frac{\theta_1 + \theta_2}{2} + \pi\right)} = -\sqrt{\rho_1 \rho_2} e^{i\left(\frac{\theta_1 + \theta_2}{2}\right)}. \tag{4.125}$$

Quindi, se si fa un giro completo intorno a b, si cambia ramo della radice (b è un punto di diramazione).

La stessa cosa succede se facciamo un giro completo intorno a z=a. Analogamente a quanto discusso per b, l'argomento θ_2 varia all'interno dell'ointervallo $[0,2\pi]$, toccando un massimo e un minimo, ma non facendo un giro. Mentre invece l'argomento θ_1 fa un giro di 2π e quindi alla fine del giro abbiamo $k_1=1$ e

$$f(z) = \sqrt{\rho_1 \rho_2} e^{i(\frac{\theta_1 + \theta_2}{2} + \pi)} = -\sqrt{\rho_1 \rho_2} e^{i(\frac{\theta_1 + \theta_2}{2})},$$
 (4.126)

che indica il cambiamento del ramo della radice (a è un punto di diramazione).

Vediamo adesso cosa sucede se giriamo contemporaneamente intorno a d a e b facendo un giro completo, lungo la curva chiusa γ , come in figura:

Sia $theta_1$ che θ_2 , adesso, fanno un giro di 2π e quindi si ha $k_1=k_2=1$. Ne deriva che, dopo un giro su γ si abbia

$$f(z) = \sqrt{\rho_1 \rho_2} e^{i\left(\frac{\theta_1 + \theta_2}{2} + \pi + \pi\right)} = \sqrt{\rho_1 \rho_2} e^{i\left(\frac{\theta_1 + \theta_2}{2}\right)} e^{2\pi i} = \sqrt{\rho_1 \rho_2} e^{i\left(\frac{\theta_1 + \theta_2}{2}\right)}. \tag{4.127}$$

In giro intorno ad entrambi i punti di diramazione fa rimanere, quindi, sullo stesso ramo della funzione.

La scelta del taglio viene fatta per evitare di far girare attorno ad un solo punto di diramazione e poter rimanere, quindi, sullo stesso ramo della funzione f(z). La scelta immediata è quella di congiungere col taglio i due punti di diramazione a e b:

Andiamo a vedere il comportamento della funzione nel punto all'infinito. Sostituendo z con $\frac{1}{w}$ abbiamo

$$\sqrt{(z-a)(z-b)} \to \sqrt{\left(\frac{1}{w}-a\right)\left(\frac{1}{w}-b\right)} = \frac{\sqrt{(1-wa)(1-wb)}}{w} \sim \frac{1}{w}.$$
 (4.128)

Quindi la funzione f(z) ha una singolarità isolata di tipo polare (un polo semplice) nel punto all'infinito e questo non costituisce un punto di diramazione. Gli unici punti di diramazione sono al finito e sono z = a e z = b. Il taglio quindi può unicamente unire a con b.

C'è un altro modo di unire a con b che non sia il segmento sull'asse reale da a b. Possiamo unirli tramite il punto all'infinito:

Ovvero ponendo il taglio da a sull'asse reale fino a $-\infty$ e da b fino a $+\infty$.

Sulla sfera di Riemann, questa seconda scelta consiste nell'unire i due punti che corrispondono ad a e b, tramite proiezione stereografica, per mezzo di due meridiani: dal punto corrispondente ad a al polo Nord e dal Polo Nord al punto corrispondente a b. La prima scelta corrisponde, invece, all'unione dei punti immagine di a e b sulla sfera di Riemann tramite una curva che non passa dal polo Nord.

Un altro esempio di quanto detto per $\sqrt{(z-a)(z-b)}$ è quello di

$$f(z) = \sqrt{(z^2 + 1)(z^2 + 4)}. \tag{4.129}$$

La funzione è una radice quadrata e quindi ha due rami possibili e due fogli di Riemann. Per capire la distribuzione dei tagli consideriamo i vari punti di diramazione:

$$f(z) = \sqrt{(z^2 + 1)(z^2 + 4)} = \sqrt{(z + i)(z - i)(z + 2i)(z - 2i)}.$$
 (4.130)

Si hanno quindi quattro punti di diramazione, $z=\pm i$ e $z=\pm 2i$. Ripercorrendo il ragionamento fatto per $\sqrt{(z-a)(z-b)}$ ci si può convincere del fatto che, passando singolarmente intorno ad uno dei 4 punti di diramazione, la radice cambia di segno, passando quindi al secondo ramo. Se giariamo intorno a due punti di diramazione contemporaneamente, gli argomenti interessati sviluppano un fattore $e^{2\pi i} = 1$, che quindi indica il fatto che il ramo della radice rimane lo stesso. Girando intorno a tre punti di diramazione contemporaneamente si trova ancora un cambio di ramo, mentre girando intorno a tutti e 4 i punti di diramazione si rimane sullo stesso ramo. Allora la scelta dei tagli deve essere tale da far sì che si possa girare intorno a 2 o 4 punti di diramazione, ma non ad 1 o 3. Una scelta naturale è quella di unire a due a due i punti di diramazione con un taglio. Un'altra scelta è quella di unire due punti tramite il punto all'infinito (che è un polo doppio per la funzione f(z) e NON un punto di diramazione) e di unire gli altri due fra loro al finito.

Due possibilità sono rappresentate nella figura seguente:

Consideriamo adesso la funzione

$$f(z) = \sqrt{(z-a)(z-b)(z-c)}.$$
 (4.131)

Come nel caso precedente, abbiamo tre punti di diramazione al finito, che sono z=a,b,c. Passando singolarmente intorno ad ogniuno di essi, abbiamo accesso al secondo ramo della radice. Se passiamo intorno a due di questi punti, invece, rimaniamo sul primo ramo. Passando intorno a tutti e tre, ci rendiamo conto che stiamo cambiando ramo di nuovo. Ciò avviene sempre per il fatto che la periodicità dell'esponente dell'esponenziale è tale che si abbia un termine $3\pi i$ che quindi dà un segno negativo davanti a tutto. Utilizzando la notazione per la quale si ha

$$(z-a) = \rho_1 e^{i\theta_1}, \quad (z-b) = \rho_2 e^{i\theta_2}, \quad (z-c) = \rho_3 e^{i\theta_3},$$
 (4.132)

otteniamo

$$f(z) = \sqrt{\rho_1 \rho_2 \rho_3} e^{i\left(\frac{\theta_1}{2} + \frac{\theta_2}{2} + \frac{\theta_3}{2}\right)} e^{i(k_1 + k_2 + k_3)\pi}. \tag{4.133}$$

Quindi, se $k_1 = k_2 = k_3 = 1$ (dopo un giro completo intyorno ai tre punti di diramazione), si ha $e^{i(k_1+k_2+k_3)\pi} = e^{i3\pi} = -1$. Questo fa capire come ci debba essere un altro punto di diramazione. Il giro intorno ai tre punti equivale ad un giro intorno al punto all'infinito. Quindi ci aspettiamo che il punto all'infinito sia punto di diramazione, sempre di ordine due. Infatti, se consideriamo $z \to \frac{1}{k_1}$ e studiamo il limite $\omega \to 0$, si vede che

$$\sqrt{(z-a)(z-b)(z-c)} \to \sqrt{\left(\frac{1}{\omega}-a\right)\left(\frac{1}{\omega}-b\right)\left(\frac{1}{\omega}-c\right)} \sim \frac{\sqrt{\omega}}{\omega^2},$$
 (4.134)

cioè $\omega \to 0$ è un punto di diramazione e girando intorno al punto all'infinito effettivamente accediamo al secondo ramo della funzione.

La disposizione dei tagli dovrà quindi essere tale da non permettere di girare intorno ad un punto di diramazione singolarmente e neppure a tre punti, ma solo ad un numero pari di punti. Due esempi sono riportati in figura (dove abbiamo posto per semplicità a, b e c sull'asse reale)

Consideriamo adesso la funzione

$$f(z) = \sqrt{(z-a)}\sqrt[3]{(z-b)}.$$
(4.135)

La f(z) ha due punti di diramazione in z = -1 e z = i. Se poniamo

$$(z+1) = \rho_1 e^{i\theta_1}, \quad (z-i) = \rho_2 e^{i\theta_2},$$
 (4.136)

possiamo scrivere

$$f(z) = \sqrt{\rho_1} \sqrt[3]{\rho_2} e^{i\frac{\theta_1}{2}} e^{i\frac{\theta_2}{3}} e^{ik_1\pi} e^{i\frac{2k_2\pi}{3}}.$$
 (4.137)

Si vede che facendo un giro intorno al solo punto di diramazione z=-1 si passa sul secondo ramo della radice quadrata. Allo stesso modo, passando intorno a z=i passiamo sul secondo ramo della radice cubica. Passando intorno ai due punti non otteniamo lo stesso effetto dei casi precedenti (studiati sopra). Infatti, mentre z=-1 è un punto di diramazione di ordine 2, z=i è un punto di diramazione di ordine 3, quindi mentre dopo due giri intorno a z=-1 si riottiene il primo ramo della radice quadrata, ci vogliono tre giri intorno a z=i per riottenere il primo ramo della radice cubica. Passando intorno ai due punti otteniamo un fattore $e^{i\frac{5k_2\pi}{3}}$ che evidentemente è $\neq 1$. Si capisce quindi che il punto all'infinito è anch'esso un punto di diramazione. Infatti, se mandiamo $z \to \frac{1}{\omega}$ e studiamo $f(1/\omega)$ in $\omega \to 0$, si trova

$$f\left(\frac{1}{\omega}\right) = \sqrt{\frac{1+\omega}{\omega}}\sqrt[3]{\frac{1-i\omega}{\omega}}.$$
 (4.138)

Il punto all'infinito è un punto di diramazione per la radice quadrata e per la radice cubica. Quindi la disposizione dei tagli (per determinare il ramo monodromo principale della funzione) deve essere tale da impedire di girare intorno a z=-1, z=i e anche a $z=\infty$.

Funzioni trigonometriche inverse 4.7

L'arcoseno

Consideriamo

$$w = \sin z = \frac{e^{iz} - e^{-iz}}{2i} \tag{4.139}$$

e cerchiamo una rappresentazione per la funzione inversa

$$z = \arcsin w. \tag{4.140}$$

Si ha

$$2wi = e^{iz} - e^{-iz}, (4.141)$$

ovvero, moltiplicando ambo i membri per e^{iz}

$$e^{2iz} - 2iwe^{iz} - 1 = 0, (4.142)$$

che risolta in e^{iz} dà

$$e^{iz} = iw \pm \sqrt{1 - w^2} \tag{4.143}$$

e infine

$$z = -i\ln\left(iw \pm \sqrt{1 - w^2}\right). \tag{4.144}$$

La (4.144) costituisce una rappresentazione per l'arcoseno. Se consideriamo il fatto che la radice è comunque una funzione polidroma e quindi prende sia il valore positivo che negativo a seconda del ramo, possiamo limitarci al segno positivo nell'argomento del logaritmo e definire

$$\arcsin w = -i \ln (iw + \sqrt{1 - w^2}). \tag{4.145}$$

L'arcoseno è una funzione polidroma. Il ramo principale viene scelto scegliendo il ramo principale per la radice $\sqrt{1-w^2}$ e del logaritmo ln $(iw+\sqrt{1-w^2})$. Il ramo principale di $\sqrt{1-w^2}$ è tale che $1-w^2$ non stia sul semiasse reale negativo, ovvero

$$1 - w^2 \neq -t$$
, $t \in [0, \infty)$. (4.146)

Si ha quindi

$$w \neq \pm \sqrt{1+t} \,, \tag{4.147}$$

che corrisponde ad un taglio che va da -1 a $-\infty$ e da 1 a ∞ .

Il ramo principale del logaritmo impone che

$$iw + \sqrt{1 - w^2} \neq -t$$
, $t \in [0, \infty]$. (4.148)

Ora, se $t \in [0, \infty)$ e se per $\sqrt{1-w^2}$ prendiamo il ramo principale, si ha automaticamente che $iw + \sqrt{1-w^2} \neq -t$. Infatti, se ciò non fosse vero dovremmo avere $iw + \sqrt{1-w^2} = -t$. Intanto vediamo che $iw + \sqrt{1-w^2}$ non si annulla mai (quindi non c'e' punto di diramazione per il logaritmo al finito). Inoltre, $iw + \sqrt{1-w^2} = -t$ implica che $\sqrt{1-w^2} = -(t+iw)$ e quindi, quadrando ambo i membri dell'equazione, si ha

$$w = i\frac{t^2 - 1}{2t} \,. \tag{4.149}$$

Il primo membro dell'equazione è quindi sempre positivo per $t \in [0, \infty)$

$$\sqrt{1-w^2} = \sqrt{1 + \frac{(t^2 - 1)^2}{4t^2}} = \sqrt{\frac{(t^2 + 1)^2}{4t^2}} > 0, \qquad (4.150)$$

mentre il secondo membro è sempre negativo per $t \in [0, \infty)$

$$-(t+iw) = -\left(t - \frac{t^2 - 1}{2t}\right) = -\frac{(t^2 + 1)}{2t} < 0, \tag{4.151}$$

contraddicendo l'ipotesi.

In sintesi, l'unico vincolo che abbiamo è costituito dal taglio della radice, ovvero fra -1 e $-\infty$ e fra 1 e ∞ , dove prendendo il ramo principale della radice, prendiamo anche il ramo principale dell'arcoseno.

Nella regione di analiticità, la derivata dell'arcoseno vale

$$\frac{d}{dz}\arcsin z = \frac{1}{f'(w)}\Big|_{w=f^{-1}(z)} = \frac{1}{\frac{d}{dw}\sin w}\Big|_{w=\arcsin z} = \frac{1}{\sqrt{1-\sin^2(\arcsin z)}},$$

$$= \frac{1}{\sqrt{1-z^2}}.$$
(4.152)

L'arcocoseno

Per l'arcocoseno il ragionamento è lo stesso. Si ha

$$w = \cos z = \frac{e^{iz} + e^{-iz}}{2}, \tag{4.153}$$

da cui si ottiene

$$\arccos w = -i \ln (w + i\sqrt{1 - w^2}).$$
 (4.154)

Il taglio è definito dal taglio della radice quadrata interna al logaritmo e pertanto riproduce il taglio dell'arcoseno.

Nella regione di analiticità la derivata dell'arcocoseno è

$$\frac{d}{dz}\arccos z = \frac{1}{f'(w)}\Big|_{w=f^{-1}(z)} = \frac{1}{\frac{d}{dw}\cos w}\Big|_{w=\arccos z} = -\frac{1}{\sqrt{1-\cos^2(\arccos z)}},$$

$$= -\frac{1}{\sqrt{1-z^2}}.$$
(4.155)

L'arcotangente

Per la definizione dell'arcotangente si ha

$$w = \tan z = -i \left(\frac{e^{iz} - e^{-iz}}{e^{iz} + e^{-iz}} \right) , \tag{4.156}$$

da cui

$$\arctan w = -\frac{i}{2} \ln \left(\frac{1+iw}{1-iw} \right). \tag{4.157}$$

Il ramo principale è dato dal ramo principale del logaritmo, ovvero

$$\frac{1+iw}{1-iw} \neq -t, \qquad t \in [0,\infty), \tag{4.158}$$

la cui soluzione è

$$w \neq i \frac{1-t}{1+t} \,. \tag{4.159}$$

Il taglio è sull'asse immaginario e va da i a $i\infty$ e da -i a $-i\infty$.

All'interno del dominio di analiticità si ha

$$\frac{d}{dz}\arctan z = \frac{1}{f'(w)}\Big|_{w=f^{-1}(z)} = \frac{1}{\frac{d}{dw}\tan w}\Big|_{w=\arctan z} = \frac{1}{1+\tan^2(\arctan z)},$$

$$= \frac{1}{1+z^2}.$$
(4.160)

4.8 Funzioni iperboliche inverse

Allo stesso modo delle funzioni trigonometriche inverse si trovano

$$\operatorname{arcsinh}(z) = \ln(z + \sqrt{z^2 + 1}), \qquad (4.161)$$

$$\operatorname{arccosh}(z) = \ln\left(z + \sqrt{z^2 - 1}\right), \tag{4.162}$$

$$\operatorname{arctanh}(z) = \frac{1}{2} \ln \left(\frac{1+z}{1-z} \right). \tag{4.163}$$

4.9 Potenza complessa

Vogliamo definire la funzione

$$f(z) = z^c, \quad z, c \in \mathbb{C}. \tag{4.164}$$

Lo facciamo attraverso il logaritmo come segue

$$f(z) = z^c = e^{c \ln(z)}$$
. (4.165)

In questo modo, quando c assume valori particolari (per esempio è un intero, oppure un razionale) si riottengono le proprietà già studiate delle potenze o delle radici.

La f(z) così definita è una funzione polidroma. La superficie di Riemann è quella del logaritmo, quindi con infiniti fogli:

$$z^c = e^{c(\ln|z| + i\theta + i2k\pi)}. (4.166)$$

Il ramo principale si ha per k = 0 ed è quindi dato da

$$z^c = e^{c(\ln|z| + i\theta)}, \tag{4.167}$$

 $\cos -\pi < \theta \le \pi$ (taglio da z=0 al punto all'infinito sull'asse reale negativo). La discontinuità sul taglio vale

$$|z|^c (e^{i\pi c} - e^{-i\pi c}) = 2i |z|^c \sin(c\pi).$$
 (4.168)

I rami successivi della funzione sono dati da

$$z^{c} = e^{i2k\pi c}e^{c(\ln|z| + i\theta)}. (4.169)$$

Là dove la funzione è monodroma, si può derivare e si ottiene

$$\frac{d}{dz}z^{c} = \frac{d}{dz}e^{c\ln(z)} = \frac{c}{z}e^{c\ln(z)} = ce^{-\ln(z)}e^{c\ln(z)} = ce^{(c-1)\ln(z)} = cz^{c-1}.$$
 (4.170)

Se ora consideriamo dei valori particolari di c ritroviamo la potenza e la radice che abbiamo già studiato. Infatti, supponiamo che $c \in \mathbb{Z}$. Allora, si ha $\sin(c\pi) = 0$ e quindi la discontinuità sparisce. La funzione diventa monodroma e z = 0 non è più un punto di diramazione, ma al massimo una divergenza di tipo polare. Se consideriamo c = m/n con $m, n \in \mathbb{N}$, si ha

$$z^{c} = |z|^{\frac{m}{n}} e^{m\left(\frac{i\theta + i2k\pi}{n}\right)} \tag{4.171}$$

e quindi z = 0 diventa un punto di diramazione di ordine n.

4.10 Alcuni Esercizi

4.10.1 Esercizio

Studiare il dominio di analiticità di

$$f(z) = \log(1+z). \tag{4.172}$$

Come abbiamo visto, il logaritmo ha un punto di diramazione dove si annulla il suo argomento. Il ramo principale è definito imponendo un taglio da questo punto al punto all'infinito lungo il semi-asse negativo dei reali. In questo caso quindi si ha quindi

$$1 + z \neq -t$$
, $t \in [0, \infty)$, (4.173)

ovvero

$$z \neq -1 - t. \tag{4.174}$$

Il taglio parte da z=-1 e si estende al punto all'infinito dove c'è un taglio logaritmico, come si può vedere mandando z in $1/\omega$ e studiando in $\omega=0$ il $\ln(1/\omega)$:

$$z \to \frac{1}{\omega}$$
, $\ln(1+z) \to \ln\left(\frac{1+\omega}{\omega}\right)$. (4.175)

4.10.2 Esercizio

Studiare il dominio di analiticità della funzione

$$f(z) = \ln\left(\frac{z+1}{z-1}\right). \tag{4.176}$$

La funzione ha due punti di diramazione, in z = 1 e z = -1 (questi due punti non appartengono al dominio di f(z)). Il ramo principale del logaritmo è dato per argomento diverso dal taglio, che poniamo fra 0 e il punto all'infinito, sul semiasse reale negativo. Allora abbiamo

$$\frac{z+1}{z-1} \neq -t \,, \quad t \in (0,\infty) \,, \tag{4.177}$$

ovvero, risolvendo per z:

$$z \neq \frac{t-1}{t+1} \,. \tag{4.178}$$

Questa relazione individua il segmento fra z=-1 e z=1. Questa è sicuramente una possibilità per mettere il taglio. L'altra possibilità è unire z=-1 e z=1 tramite il punto all'infinito, considerando però che il punto all'infinito non è punto di diramazione per la f(z). Infatti, ponendo $z \to \frac{1}{u}$ si ha

$$\ln\left(\frac{z+1}{z-1}\right) \to \ln\left(\frac{1+\omega}{1-\omega}\right),\tag{4.179}$$

che, per $\omega \to 0$, non ha punti di diramazione.

Girando intorno a z=-1 o z=1 singolarmente, si accede agli altri rami della funzione. Infatti, ponendo

$$z + 1 = \rho_1 e^{i\theta_1}, \quad z - 1 = \rho_2 e^{i\theta_2},$$
 (4.180)

si può scrivere

$$\ln\left(\frac{z+1}{z-1}\right) = \ln\left(\frac{\rho_1}{\rho_2}\right) + i(\theta_1 - \theta_2) + 2\pi i(k_1 - k_2). \tag{4.181}$$

Girando intorno ai due punti, si ha $k_1 = k_2$ e quindi si rimane sul ramo principale della funzione

$$\ln\left(\frac{z+1}{z-1}\right) = \ln\left(\frac{\rho_1}{\rho_2}\right) + i(\theta_1 - \theta_2). \tag{4.182}$$

Se invece si gira una volta intorno a z=-1 si avrà $k_1=1$ e $k_2=0$ e quindi f(z) cambia di ramo e il logaritmo prende una parte immaginaria $2\pi i$. Così per un giro intorno a z=1. Girando più volte intorno a z=-1 o z=1 si accede agli altri rami.

4.10.3 Esercizio

Studiare il dominio di analiticità della funzione

$$f(z) = \ln(z^2)$$
. (4.183)

Dobbiamo trovare il taglio e il ramo principale della funzione. Si deve imporre

$$z^2 \neq -t, \quad t \in (0, \infty), \tag{4.184}$$

ovvero

$$z \neq \pm i\sqrt{t}\,,\tag{4.185}$$

che coincide con tutto l'asse immaginario (escluso z = 0 che non appartiene al dominio).

Studiando il punto all'infinito si trova, ancora una volta, un punto di diramazione analogo a z=0. Infatti

$$z \to \frac{1}{\omega}, \qquad \ln(z^2) \to -\ln(\omega^2)$$
 (4.186)

e quindi, come da z=0 partono due tagli per il punto all'infinito, nel punto all'infinito arrivano i due tagli.

Se escludiamo l'asse immaginario, che è costuitito da punti di non analiticità, nel resto del piano complesso la funzione è analitica e si ha

$$\left(\frac{\partial}{\partial r} + \frac{i}{r}\frac{\partial}{\partial \theta}\right)\ln\left(z^2\right) = \frac{2}{r} + \frac{i}{r}(2i) = 0. \tag{4.187}$$

Cioè valgono le condizioni di Cauchy-Riemann.

Per capire quale sia il ramo principale della funzione, consideriamo il fatto che la funzione diretta, che ha per funzione inversa la f(z) è

$$\sqrt{e^w} = z. (4.188)$$

Questa mi dà

$$z = \sqrt{e^x} \, e^{i\frac{y}{2}} \,. \tag{4.189}$$

Quindi, il codominio della funzione diretta è formato da una copia di $\mathbb C$ quando, per ogni x, la y sta in una fascia di 4π . Per esempio, la fascia con $-2\pi < y < 2\pi$ viene mappata in $-\pi < \arg(z) < \pi$, con il taglio a $\arg(z) = -\pi/2$ e $\arg(z) = \pi/2$.

Infatti, si può scrivere

$$\ln(z^2) = 2\ln|z| + i2\arg(z), \qquad (4.190)$$

quindi quando l'argomento di z sta fra $-\pi$ e π , il $\ln(z^2)$ ha una parte immaginaria che sta fra -2π e 2π , cioè in una fascia di 4π .

4.10.4 Esercizio

Studiare il dominio di analiticità della funzione

$$f(z) = \ln(z^3). (4.191)$$

Stessa considerazioni si possono fare per questo caso. I tagli sono dati dalla

$$z^3 \neq t, \quad t \in (0, \infty),$$
 (4.192)

ovvero

$$z \neq \sqrt{t}e^{i\frac{\pi}{3} + i\frac{2k\pi}{3}}. (4.193)$$

Da z=0 quindi partono tre tagli, con inclinazione $\pi/3$, π e $-\pi/3$, che si ricongiungono nel punto all'infinito, che è anch'esso un punto di diramazione dello stesso tipo.

Adesso le fascie di monodromia della funzione diretta sono costituite da fascie di 6π nella parte immaginaria. Infatti

$$\ln(z^3) = 3\ln|z| + i3\arg(z). \tag{4.194}$$

Quando $-\pi < \arg(z) < \pi$ il dominio della funzione diretta $(\sqrt[3]{e^w})$ spanna una fascia $-3\pi < \Im(\ln{(z^3)}) < 3\pi$.

Capitolo 5

Appunti sull'INTEGRAZIONE NEI COMPLESSI

In questo capitolo affrontiamo lo studio dell'integrazione nei complessi. Oltre ad essere parte integrante dello studio delle proprietà analitiche delle funzioni di z, ci permette di dimostrare importantissime proprietà, come per esempio l'infinita derivabilità di una funzione analitica. Ciò non vuol dire che certe propietà non si possano dimostrare senza l'integrazione, ma utilizzando i risultati dell'integrazione nei complessi la dimostrazione risulta più semplice ed immediata (inoltre storicamente è stato seguito questo cammino).

Se nei reali abbiamo

$$\int_{a}^{b} f(x) dx, \qquad (5.1)$$

in cui la variabile di integrazione si "muove" lungo il segmento [a, b], la generalizzazione ai complessi sarà data da un integrale lungo un cammino in \mathbb{C} :

$$\int_{\gamma} f(z) \, dz \,, \tag{5.2}$$

dove γ rappresenta tale cammino e f(z) sarà una funzione definita sui punti di tale curva, con certe proprietà.

5.1 Curve in \mathbb{C}

Cominciamo con la definizione di cosa intendiamo per curva.

Definizione 5.1.1 Una curva (o cammino) in \mathbb{C} è un'applicazione

$$\gamma : [a, b] \rightarrow \mathbb{C}$$

$$t \rightarrow \gamma(t) = x(t) + iy(t), \qquad (5.3)$$

con $a, b \in \mathbb{R}$, tale che $x(t) = \Re(\gamma)$ e $y(t) = \Im(\gamma)$ siano funzioni reali di variabile reale continue. $\gamma(a)$ è il punto iniziale e $\gamma(b)$ è il punto finale della curva.

Definizione 5.1.2 La curva γ è detta semplice se è iniettiva in [a,b], cioè se $\gamma(t_1) \neq \gamma(t_2)$ per $\forall t_1 \neq t_2$ in [a,b].

Definizione 5.1.3 La curva γ è detta chiusa se $\gamma(a) = \gamma(b)$.

NB. La "curva" è l'applicazione, non il luogo dei punti $z \in \mathbb{C}$ tali che $z = \gamma(t)$. Questo luogo geometrico è detto traccia ed è l'immagine di [a, b] tramite γ . La traccia si indicherà con $\{\gamma\}$, o con $R(\gamma)$. A due curve diverse può corrispondere la stessa traccia.

La curva è una funzione complessa di variabile reale. Per essa, si possono definire tutte le proprietà che abbiamo già introdotto per funzioni complesse di variabile complessa, come per esempio la derivabilità:

Proprietà 5.1.4 Una funzione $f:[a,b] \to \mathbb{C}$ con $[a,b] \in \mathbb{R}$ e a < b è derivabile in $t \in [a,b]$, se esiste finito il

$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = f'(t). \tag{5.4}$$

Teorema 5.1.5 La funzione $f:[a,b]\to\mathbb{C}$ è derivabile in $t\in[a,b]$ se e solo se $\Re(f),\Im(f):[a,b]\to\mathbb{R}$ sono derivabili in t.

La dimostrazione è identica al caso di funzione complessa di variabile complessa.

Teorema 5.1.6 Se $f:[a,b]\to\mathbb{C}$ è derivabile in [a,b] e f'(t)=0 per $\forall t\in[a,b]$, allora f è costante.

Definizione 5.1.7 Si dice che la curva γ è regolare se $\Re(\gamma)$ e $\Im(\gamma)$ cono C^1 . Si dice che γ è regolare a tratti se \exists una partizione di [a,b] tale che γ sia regolare in ogni tratto della partizione.

Si dice *lunghezza* della curva il numero reale

$$L_{\gamma} = \int_{a}^{b} |\gamma'(t)| dt, \qquad (5.5)$$

dove $|\gamma'(t)|$ è la velocità della curva

$$|\gamma'(t)| = \sqrt{(\Re(\gamma))^{2}(t) + (\Im(\gamma))^{2}(t)}. \tag{5.6}$$

Per una curva regolare a tratti si ha

$$L_{\gamma} = \sum_{i} L_{\gamma_i} \,. \tag{5.7}$$

Un concetto importante è quello di equivalenza fra curve.

Definizione 5.1.8 Due curve $\gamma:[a,b] \to \mathbb{C}$, $t \to \gamma(t)$ e $\eta:[c,d] \to \mathbb{C}$, $\tau \to \eta(\tau)$, sono equivalenti se \exists una funzione $\phi:[c,d] \to [a,b]$ monotona, continua e strettamente crescente, con $\phi(c) = a$ e $\phi(d) = b$ tale che $\eta = \gamma \circ \phi$. La $\phi(\tau)$ è detta riparametrizzazione della curva.

Quindi, se $\eta = \eta(\tau)$ e $\gamma = \gamma(t)$, si ha che $\eta \sim \gamma$ se $\eta(\tau) = \gamma(\phi(\tau))$. Essendo $\phi(\tau)$ monotona, è invertibile. Quindi si ha $\gamma(t) = \eta(\phi^{-1}(t))$.

NB. Curve equivalenti formano una classe di equivalenza. Per *curva* d'ora in avanti intenderemo la classe, indipendentemente dall'applicazione che la rappresenta. Infatti, le proprietà importanti degli integrali che studieremo non dipendono dalla rappresentazione della curva.

Un esempio di invarianza per riparametrizzazione è costituito dalla lunghezza della curva. Infatti, se

$$\eta(\tau) = \gamma(t(\tau)), \qquad (5.8)$$

si ha

$$\eta'(\tau) = \gamma'(t(\tau)) t'(\tau). \tag{5.9}$$

Allora

$$L_{\gamma} = \int_{c}^{d} |\eta'(\tau)| d\tau = \int_{c}^{d} |\gamma'(t(\tau))| |t'(\tau)| d\tau,$$

= $\int_{a}^{b} |\gamma'(t)| dt.$ (5.10)

Definizione 5.1.9 Se $\gamma:[a,b]\to\mathbb{C}$, si dice cammino inverso $\gamma^-:[b,a]\to\mathbb{C}$

Enunciamo soltanto il seguente teorema.

Teorema 5.1.10 della curva di Jordan. Sia γ una curva chiusa semplice in \mathbb{C} . Allora, il complemento di $\{\gamma\}$, traccia di γ , è l'unione di due aperti connessi: $Int\{\gamma\} \cup Ext\{\gamma\}$, di cui $Int\{\gamma\}$ è limitato e $Ext\{\gamma\}$ illimitato.

Definizione 5.1.11 Diremo che la curva chiusa γ è orientata positivamente, se percorrendo la curva Int $\{\gamma\}$ sta alla sinistra della curva.

5.1.1 Omotopia

Consideriamo un dominio $D \subset \mathbb{C}$ e due curve con traccia contenuta in $D, \gamma_1 \in \gamma_2$.

Definizione 5.1.12 Si dice che γ_1 e γ_2 sono omotope se \exists una trasformazione continua che connette γ_1 a γ_2 come in figura. Ovvero se \exists

$$\gamma : [a, b] \times [0, 1] \to D, \tag{5.11}$$

tale che $\gamma(t, u) \in D$ per $\forall t \in [a, b]$ e $u \in [0, 1]$ e

$$\gamma(t,0) = \gamma_1(t), \qquad (5.12)$$

$$\gamma(t,1) = \gamma_2(t), \qquad (5.13)$$

$$\gamma(a, u) = \gamma_1(a) = \gamma_2(a), \qquad (5.14)$$

$$\gamma(b, u) = \gamma_1(b) = \gamma_2(b). \tag{5.15}$$

L'idea è che si passi alla curva γ_2 deformando con continuità la curva γ_1 .

NB. Si ha omotopia anche fra curve chiuse. In particolare, una curva γ chiusa che per esempio abbia traccia in un disco aperto, è omotopa ad un punto. Si dice che è "omotopa a zero". Questa proprietà dipende da come è fatto il dominio dove è definita la traccia di γ . Nel disco aperto, ogni curva chiusa semplice è omotopa a zero. Cosa che non succede per esempio in un settore circolare (disco forato). Un dominio in cui ogni curva chiusa semplice è omotopa a zero si dice semplicemente connesso. Il settore circolare è un dominio connesso, ma non semplicemente connesso.

5.2 Integrali

Sia $\gamma:[a,b]\to\mathbb{C}$ una curva regolare (o regolare a tratti) e $f:\{\gamma\}\to\mathbb{C}$ una funzione continua su $D\supset\{\gamma\}$. Allora si dice integrale di f(z) lungo γ il seguente numero complesso

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t))\gamma'(t) dt$$
 (5.16)

La parte di destra della (5.16) deriva da un procedimento di limite, simile a quello utilizzato nella definizione dell'integrale di una funzione di variabile reale. Infatti possiamo approssimare la curva γ (regolare) con una poligonale e poi mandare il passo della poligonale a zero e il numero di segmenti all'infinito. Possiamo costruire la seguente somma:

$$\sum_{k=1}^{n} f(\xi_k)(z_k - z_{k-1}), \qquad (5.17)$$

dove ξ_k è un punto dell'arco k-esimo della curva γ da z_{k-1} a z_k e $(z_k - z_{k-1})$ è il segmento che unisce $z_{k-1} = \gamma(t_{k-1})$ a $z_k = \gamma(t_k)$. Si ha, per la continuità della γ ,

$$(z_k - z_{k-1}) = (t_k - t_{k-1})\gamma'(t_k'), \qquad (5.18)$$

con $t'_k \in [t_{k-1}, t_k]$. Allora scelto un $\epsilon > 0$, $\exists \delta > 0$ tale che, se $(t_k - t_{k-1}) < \delta$, $\forall k = 1, ..., n$, si abbia

$$\left| \sum_{k=1}^{n} f(\xi_{k})(z_{k} - z_{k-1}) - \int_{a}^{b} f(\gamma(t))\gamma'(t) dt \right|$$

$$= \left| \sum_{k=1}^{n} f(\gamma(t'_{k}))\gamma'(t'_{k})(t_{k} - t_{k-1}) - \int_{a}^{b} f(\gamma(t))\gamma'(t) dt \right| < \epsilon.$$
 (5.19)

L'integrale (5.16) è invariante per riparametrizzazione della curva. Infatti, se $t=t(\tau)$ e $\gamma_1(t(\tau))=\gamma_2(\tau)$, allora

$$\int_{\gamma_1} f(z) dz = \int_a^b f(\gamma_1(t)) \gamma_1'(t) dt = \int_c^d f(\gamma_1(t(\tau))) \gamma_1'(t(\tau)) t'(\tau) d\tau = \int_c^d f(\gamma_2(\tau) \gamma_2'(\tau) d\tau.$$
(5.20)

Se $\gamma = \gamma_1 + \gamma_2$, allora

$$\int_{\gamma} f(z) \, dz = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \,. \tag{5.21}$$

NB. Ovviamente, se f(z) è una funzione di variabile complessa "qualunque", l'integrale su γ dipende da γ .

Esempio. Come esempio di ciò possiamo prendere $f(z) = |z|^2 = z\overline{z}$ e considerare il suo integrale su tre curve diverse:

$$\gamma_1(t) = e^{it} \quad 0 \le t \le \frac{\pi}{2}, \tag{5.22}$$

$$\gamma_2(t) = 1 + (i-1)t, \quad 0 \le t \le 1,$$
 (5.23)

$$\gamma_3(t) = \gamma_{31} + \gamma_{32} \,,$$

$$\gamma_{31}(t) = 1 + it, \quad 0 \le t \le 1,$$
(5.24)

$$\gamma_{32}(t) = (1-t) + i, \quad 0 \le t \le 1.$$
(5.25)

Si ha

$$\gamma_i(a) = 1, \qquad \gamma_i(b) = i, \quad i = 1, 2, 3.$$
 (5.26)

Avremo:

1. Integrale sulla prima curva:

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_1} |z|^2 dz = \int_0^{\frac{\pi}{2}} |e^{it}|^2 i e^{it} dt = \int_0^{\frac{\pi}{2}} i e^{it} dt = e^{it} \Big|_0^{\frac{\pi}{2}} = i - 1.$$
 (5.27)

2. Integrale sulla seconda curva:

$$\int_{\gamma_2} |z|^2 dz = \int_0^1 [(1-t)^2 + t^2](i-1)dt = (i-1)\int_0^1 (1-2t+2t^2) dt = \frac{2}{3}(i-1). \quad (5.28)$$

3. Integrale sulla terza curva:

$$\int_{\gamma_3} |z|^2 dz = \int_0^1 (1+t^2)i dt + \int_0^1 [(1-t)^2 + 1](-1) dt = \frac{4}{3}(i-1).$$
 (5.29)

Da notare che la funzione che abbiamo integrato NON è una funzione analitica. Come vedremo più avanti, per una funzione analitica l'integrale non dipende dal cammino.

Proprietà 5.2.1 Sia $\gamma:[a,b]\to\mathbb{C}$ una curva semplice regolare (o regolare a tratti) e siano f(z) e g(z) due funzioni continue su $D\supset \{\gamma\}$ e $\omega\in\mathbb{C}$. Allora si hanno le seguenti proprietà:

$$\int_{\gamma} \omega f(z) dz = \omega \int_{\gamma} f(z) dz, \qquad (5.30)$$

$$\int_{\gamma} [f(z) + g(z)] dz = \int_{\gamma} f(z) dz + \int_{\gamma} g(z) dz, \qquad (5.31)$$

$$\int_{\gamma^{-}} f(z) \, dz = -\int_{\gamma} f(z) \, dz \,. \tag{5.32}$$

Teorema 5.2.2 (di Darboux). Sia $\gamma:[a,b]\to\mathbb{C}$ una curva semplice regolare (o regolare a tratti) di lunghezza L_{γ} e f(z) una funzione continua su $D\supset \{\gamma\}$. Allora

$$\left| \int_{\gamma} f(z) \, dz \right| \le L_{\gamma} \sup_{z \in \{\gamma\}} |f(z)| . \tag{5.33}$$

Dimostrazione. Infatti

$$\left| \int_{\gamma} f(z) dz \right| = \left| \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt \right| \leq \int_{a}^{b} |f(\gamma(t)) \gamma'(t)| dt,$$

$$\leq \sup_{z \in \{\gamma\}} |f(z)| \int_{a}^{b} |\gamma'(t)| dt = L_{\gamma} \sup_{z \in \{\gamma\}} |f(z)|. \tag{5.34}$$

Consideriamo adesso successioni e serie di funzioni. Si hanno i seguenti due risultati.

Teorema 5.2.3 Sia $\gamma:[a,b]\to\mathbb{C}$ una curva semplice regolare (o regolare a tratti) e f_n una successione di funzioni continue su $D\supset \{\gamma\}$, uniformemente convergente a f. Allora

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} f(z) dz.$$
 (5.35)

Dimostrazione. Siccome f_n converge uniformemente ad f, anche f è continua e $\int_{\gamma} f(z) dz$ è ben definita. Se f_n converge uniformemente a f, preso un $\epsilon > 0$, $\exists n_0(\epsilon)$ tale che

$$|f_n(z) - f(z)| \le \frac{\epsilon}{L_\gamma}, \tag{5.36}$$

per $n > n_0$ e per $\forall z \in \{\gamma\}$. Allora, per il th
m di Darboux, si ha

$$\left| \int_{\gamma} f_n(z) dz - \int_{\gamma} f(z) dz \right| = \left| \int_{\gamma} [f_n(z) - f(z)] dz \right| \le \int_{\gamma} |f_n(z) - f(z)| dz,$$

$$\le L_{\gamma} \sup_{z \in \{\gamma\}} |f_n(z) - f(z)| = \epsilon, \tag{5.37}$$

dove abbiamo utilizzato la (5.36).

Corollario 5.2.4 Sia $\sum_{n=0}^{\infty} f_n(z)$ una serie di funzioni continue su $D \supset \{\gamma\}$, uniformemente convergente ad f(z). Allora

$$\sum_{n=0}^{\infty} \int_{\gamma} f_n(z) dz = \int_{\gamma} f(z) dz.$$
 (5.38)

Dimostrazione. Considerato che la serie è il limite della successione delle somme parziali, questo risultato deriva direttamente dal teorema precedente.

5.2.1 Esempi

Vediamo alcuni esempi di integrali su una curva chiusa e cerchiamo di capire come si comportano

Esempio 1. Prima di tutto riprendiamo l'ultimo esempio fatto e calcoliamo l'integrale di $f(z) = |z|^2$ sulla curva chiusa

$$\gamma_4 = \gamma_{31} + \gamma_{32} + \gamma_{33} + \gamma_{34} \,, \tag{5.39}$$

$$\begin{cases} \gamma_{31} = 1 + it, \\ \gamma_{32} = (1 - t) + i, \\ \gamma_{33} = (1 - t)i, \end{cases} \quad 0 \le t \le 1$$

$$\gamma_{34} = t, \tag{5.40}$$

Si ha

$$\int_{\gamma_4} |z|^2 dz = \int_0^1 (1+t^2)i dt + \int_0^1 [(1-t)^2 + 1](-1) dt + \int_0^1 (1-t)^2 (-i) dt + \int_0^1 t^2 dt,$$

$$= \frac{4}{3}i - \frac{4}{3} - i\left(t - t^2 + \frac{t^3}{3}\right)_0^1 + \frac{1}{3},$$

$$= i - 1.$$
(5.41)

Quindi l'integrale sulla curva chiusa di $f(z) = |z|^2$ è diverso da zero!!

Esempio 2. Facciamo adesso l'integrale su una curva chiusa di una funzione analitica. Prendiamo per esempio $f(z) = z^2$, che è addirittura intera. Per curva prendiamo la circonferenza di raggio R.

$$f(z) = z^2, (5.42)$$

$$\gamma: t \in [0, 2\pi] \to Re^{it}. \tag{5.43}$$

Allora:

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} R^{2} e^{2it} iRe^{it} dt = iR^{3} \int_{0}^{2\pi} e^{3it} dt,$$

$$= \frac{R^{3}}{3} e^{3it} \Big|_{0}^{2\pi} = 0.$$
(5.44)

Ciò deriva dal fatto che l'esponenziale valutato in 0 o in 2π dà lo stesso risultato.

Esempio 3. Lo stesso risultato si ottiene considerando f(z) = z, altra funzione intera. Si ha

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} Re^{it} iRe^{it} dt = iR^{2} \int_{0}^{2\pi} e^{2it} dt,$$

$$= \frac{R^{2}}{2} e^{2it} \Big|_{0}^{2\pi} = 0.$$
(5.45)

Esempio 4. ... e così anche per f(z) = c costante:

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} c i R e^{it} dt = i R c \int_{0}^{2\pi} e^{it} dt,$$

$$= R c e^{it} \Big|_{0}^{2\pi} = 0.$$
(5.46)

Esempio 5. Consideriamo adesso una potenza inversa. Prendiamo

$$f(z) = \frac{1}{z}. ag{5.47}$$

Si ha

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} R^{-1} e^{-it} iRe^{it} dt = i \int_{0}^{2\pi} dt = 2\pi i$$
 (5.48)

e questo risultato è indipendente dal raggio della circonferenza γ .

Esempio 6. Prendiamo adesso

$$f(z) = \frac{1}{z^2} \,. \tag{5.49}$$

Si ha

$$\int_{\gamma} f(z) dz = \int_{0}^{2\pi} R^{-2} e^{-2it} iRe^{it} dt = \frac{i}{R} \int_{0}^{2\pi} e^{-it} dt = 0.$$
 (5.50)

E così per le altre potenze negative di z.

Questi esempi si riassumono andando a considerare $f(z) = z^n$, $n \in \mathbb{Z}$. Infatti

$$\int_{\gamma} z^n dz = \int_0^{2\pi} R^n e^{int} iRe^{it} dt = iR^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt.$$
 (5.51)

Quindi l'integrale è nullo per $\forall n \in \mathbb{Z} - \{-1\}$, cioè tranne che per n = -1 per cui l'integrale vale $2\pi i$.

NB. Riassumiamo cosa abbiamo imparato da questo tipo di integrali. Per il momento possiamo soltanto trarre delle conseguenze legate ancora al tipo di funzione e alla curva; poi vedremo che col teorema di Cauchy potremo generalizzare. Integrando su una circonferenza (curva chiusa) una potenza intera di z otteniamo che l'integrale è nullo tranne quando la funzione considerata ha un polo semplice interno alla circonferenza. Da notare che anche le funzioni con poli superiori al primo danno integrale nullo, anche se la singolarità è comunque interna alla circonferenza ...

Prima di tutto vediamo che anche un altro tipo di curva chiusa dà lo stesso risultato. Per fare il calcolo in maniera semplice, prendiamo per esempio f(z) = z e f(z) = 1/z sul perimetro di un quadrato:

$$\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4,$$

$$\begin{cases}
\gamma_1 = 1 + (-1 + t)i, \\
\gamma_2 = (1 - t) + i, \\
\gamma_3 = -1 + (1 - t)i, \\
\gamma_4 = (t - 1) - i,
\end{cases}$$
(5.52)

Quindi abbiamo:

$$\int_{\gamma} z \, dz = \int_{0}^{2} [1 + (-1 + t)i]i \, dt + \int_{0}^{2} [(1 - t) + i](-1) \, dt + \int_{0}^{2} [-1 + (1 - t)i](-i) \, dt ,
+ \int_{0}^{2} [(t - 1) - i] \, dt ,$$

$$= i \left[(1 - i)t + i\frac{t^{2}}{2} \right]_{0}^{2} - \left[(1 + i)t - \frac{t^{2}}{2} \right]_{0}^{2} - i \left[(-1 + i)t - i\frac{t^{2}}{2} \right]_{0}^{2} + \left[-(1 + i)t + \frac{t^{2}}{2} \right]_{0}^{2} ,
= 0$$
(5.55)

e

$$\int_{\gamma} \frac{dz}{z} \ = \ \int_{0}^{2} \frac{idt}{[1+(-1+t)i]} - \int_{0}^{2} \frac{dt}{[(1-t)+i]} - \int_{0}^{2} \frac{idt}{[-1+(1-t)i]} + \int_{0}^{2} \frac{dt}{[(t-1)-i]} \, ,$$

$$= \ln(-1 - i + t)_0^2 + \ln(1 + i - t)_0^2 + \ln(1 + i - t)_0^2 + \ln(-1 - i + t)_0^2,$$
 (5.56)

$$= 2\ln(1-i) + 2\ln(-1+i) - 2\ln(-1-i) - 2\ln(1+i), \qquad (5.57)$$

$$= 2\left(-\frac{1}{4}\pi\right) + 2\left(\frac{3}{4}\pi\right) - 2\left(-\frac{3}{4}\pi\right) - 2\left(\frac{1}{4}\pi\right) = 2\pi i. \tag{5.58}$$

Quindi le proprietà che abbiamo elencato qui sopra non sembrano dipendere dal fatto che avessimo scelto una circonferenza, ma piuttosto dal fatto che la curva è chiusa. Inoltre, il polo semplice deve essere interno alla curva chiusa. Infatti, se il polo semplice della funzione f(z) = 1/z si trova al di fuori della curva chiusa abbiamo il seguente risultato. Consideriamo

$$\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4,$$

$$\begin{cases}
\gamma_1 = 1 + t, \\
\gamma_2 = 2 + it, \\
\gamma_3 = (2 - t) + i,
\end{cases}$$

$$\gamma_4 = 1 + (1 - t)i$$
(5.59)

Allora

$$\int_{\gamma} f(z) dz = \int_{0}^{1} \frac{dt}{1+t} + \int_{0}^{1} \frac{idt}{2+it} - \int_{0}^{1} \frac{dt}{(21-t)+i} - \int_{0}^{1} \frac{idt}{1+(1-t)i},$$

$$= \ln(2) + \ln(2+it)_{0}^{1} + \ln(2-t+i)_{0}^{1} + \ln(1+(1-t)i)_{0}^{1},$$

$$= 0.$$
(5.61)

5.3 Teorema di Cauchy (forma debole)

Sia γ una curva semplice, regolare e chiusa e sia f(z) = u(x,y) + i v(x,y) una funzione di variabile complessa sul dominio $D \supset \{\gamma\}$. L'integrale di f(z) su γ è dato da

$$\int_{\gamma} f(z) dz = \int_{\gamma} [u(x,y) + i v(x,y)] (dx + i dy),$$

$$= \int_{\gamma} \{ [u(x,y) dx - v(x,y) dy] + i [v(x,y) dx + u(x,y) dy] \}.$$
(5.62)

Si tratta quindi di due integrali di forme differenziali, sulla curva parametrizzata da x(t) e y(t). Se γ individua un dominio $Int(\gamma)$ regolare, limitato e semplicemente connesso, possiamo applicare il teorema di Stokes (o meglio le formule di Gauss-Green)¹ all'integrale (5.62), ottenendo

$$\int_{\gamma} f(z) dz = \int_{\gamma} \{ [u(x,y)dx - v(x,y)dy] + i [v(x,y)dx + u(x,y)dy] \}, \qquad (5.65)$$

$$\omega = A(x, y)dx + B(x, y)dy \tag{5.63}$$

una forma differenziale su un insieme aperto $\Omega \supset \overline{D}$ dove A(x,y) e B(x,y) sono differenziabili con continuità, allora

$$\oint_{\partial D^{+}} \omega = \int_{D} \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) dx dy.$$
 (5.64)

¹Se D è un dominio regolare, limitato e semplicemente connesso di \mathbb{R}^2 , di frontiera ∂D , curva semplice, chiusa, regolare e orientata positivamente e

$$= \int_{\operatorname{Int}(\gamma)} \left(-\frac{\partial u}{\partial y} - \frac{\partial v}{\partial x} \right) dx dy + i \int_{\operatorname{Int}(\gamma)} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dx dy.$$
 (5.66)

Se f(z) è analitica in $D \supset \{\gamma\}$ e $u_x(x,y)$, $u_y(x,y)$, $v_x(x,y)$ e $v_y(x,y)$ sono continue, valendo le condizioni di Cauchy-Riemann si ha che l'integrale in (5.66) diventa

$$\int_{\gamma} f(z) dz = 0. \tag{5.67}$$

Abbiamo allora dimostrato il

Teorema 5.3.1 di Cauchy (forma debole). Sia f(z) analitica con derivata prima continua e derivabile (ancora più "debole", sia f(z) olomorfa) in un dominio semplicemente connesso D del piano complesso. Sia γ una curva semplice, regolare, chiusa con traccia in D. Allora

$$\int_{\gamma} f(z) dz = 0. \tag{5.68}$$

NB. La "debolezza" di questa formulazione del teorema di Cauchy sta nel fatto che vogliamo che valgano le formule di Gauss-Green e quindi f deve essere derivabile con derivata continua. In realtà il teorema di Cauchy si può utilizzare per dimostrare che se una funzione è analitica, allora è olomorfa, ovvero se è derivabile una volta in un certo dominio, è ivi derivabile infinite volte. Si può abbandonare l'ipotesi che f'(z) sia continua, utilizzando una dimostrazione semplice ed elegante del teorema di Cauchy sul rettangolo, dovuta a Goursat.

Teorema 5.3.2 di Cauchy-Goursat. Sia f(z) definita su un dominio $D \subset \mathbb{C}$ e sia R un rettangolo (quindi un insieme chiuso) contenuto in \mathring{D} (punti interni di D). Se f(z) è analitica su R, allora

$$\int_{\partial R} f(z) \, dz = 0 \,, \tag{5.69}$$

dove ∂R è il perimetro di R.

Dimostrazione. Dividiamo R in 4 rettangoli congruenti: R_1 , R_2 , R_3 e R_4 . Possiamo scrivere

$$\int_{\partial R} f(z) dz = \sum_{k=1}^{4} \int_{\partial R_k} f(z) dz, \qquad (5.70)$$

in quanto l'integrale di f(z) sui segmenti fra i vari rettangoli dà contributo nullo, visto che questi sono percorsi una volta in un senso e la seconda volta nell'altro.

Dalla disuguaglianza triangolare segue che:

$$\left| \int_{\partial R} f(z) \, dz \right| \le \left| \int_{\partial R_1} f(z) \, dz \right| + \left| \int_{\partial R_2} f(z) \, dz \right| + \left| \int_{\partial R_3} f(z) \, dz \right| + \left| \int_{\partial R_4} f(z) \, dz \right|. \tag{5.71}$$

Ci sarà almeno uno dei quattro rettangoli per il quale il contributo alla somma di destra è massima. Diciamo che si tratti del rettangolo *i*-esimo. Allora potremo scrivere

$$\left| \int_{\partial R} f(z) \, dz \right| \le 4 \left| \int_{\partial R_i} f(z) \, dz \right| . \tag{5.72}$$

(Se ci dovessero essere più rettangoli che danno lo stesso contributo, potremmo comunque individuare un algoritmo che permette di sceglierne uno e il ragionamento rimane lo stesso).

Ripetiamo lo stesso ragionamento, dividendo il rettangolo *i*-esimo in 4 e scegliendo il rettangolo che massimizza il contributo alla somma dei moduli. All'*n*-esimo passaggio avremo

$$\left| \int_{\partial R} f(z) \, dz \right| \le 4^n \left| \int_{\partial R_n} f(z) \, dz \right| \,, \tag{5.73}$$

dove $R \supset R_1 \supset R_2 \supset ... \supset R_n$.

Consideriamo i centri dei rettangoli R_n . Questi hanno un punto di accumulazione, z_0 , che sarà per costruzione nel rettangolo R, $z_0 \in R$. Quindi f(z) è analitica in un intorno di z_0 (ciò vale anche se $z_0 \in \partial R$). Quindi, scelto un $\epsilon > 0$, $\exists \delta > 0$ tale che se $|z - z_0| < \delta$ (e questo succederà per n sufficientemente grande) si abbia

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| < \epsilon, \tag{5.74}$$

ovvero

$$|f(z) - f(z_0) - f'(z_0)(z - z_0)| < \epsilon |z - z_0| < \epsilon d_n,$$
 (5.75)

dove d_n è la diagonale dell'*n*-esimo rettangolino della serie.

Sappiamo (lo abbiamo dimostrato con un calcolo diretto) che

$$\int_{\partial B_n} dz = 0, \qquad (5.76)$$

$$\int_{\partial R_n} z \, dz = 0. \tag{5.77}$$

Allora

$$\int_{\partial R_n} \left[f(z_0) + f'(z_0)(z - z_0) \right] dz = 0.$$
 (5.78)

Quindi:

$$\left| \int_{\partial R_n} f(z) \, dz \right| = \left| \int_{\partial R_n} \left[f(z) - f(z_0) - f'(z_0)(z - z_0) \right] \, dz \right|, \tag{5.79}$$

$$\leq L_{\partial R_n} \sup_{z \in R_n} |f(z) - f(z_0) - f'(z_0)(z - z_0)|,$$
 (5.80)

$$\leq L_{\partial R_n} \epsilon \, d_n \,, \tag{5.81}$$

$$= \frac{L}{2^n} \epsilon \frac{d}{2^n}, \qquad (5.82)$$

$$= \epsilon \frac{dL}{4^n}, \tag{5.83}$$

dove la prima uguaglianza segue dal fatto che valga la (5.78) e che quindi abbiamo aggiunto uno zero; poi passando da (5.79) a (5.80) abbiamo usato il teorema di Darboux; da (5.80) a (5.81) abbiamo usato la (5.75) e infine, dalla (5.81) alla (5.82) abbiamo usato il fatto che il perimetro dell'n-esimo rettangolo è dato dal perimetro del rettangolo R, L, diviso per 2^n e così la sua diagonale.

Sostituendo infine la (5.83) nella (5.73) si ha

$$\left| \int_{\partial R} f(z) \, dz \right| \le 4^n \left| \int_{\partial R_n} f(z) \, dz \right| \le d \, L \, \epsilon \,, \tag{5.84}$$

che per l'arbitrarietà dell' ϵ dimostra l'assunto.

NB. La stessa identica dimostrazione si trova a volte riferita ad un triangolo isoscele, invece che al rettangolo. Infatti se prendiamo la figura qui di seguito

possiamo ripetere esattamente gli stessi passaggi della dimostrazione precedente e concludere che anche in questo caso si ha

$$\int_{\partial T} f(z) dz = 0. (5.85)$$

Il teorema di Goursat può essere dimostrato anche con ipotesi meno restrittive. Per esempio, f(z) può essere analitica tranne un certo numero (finito) di singolarità eliminabili (come dimostreremo qui sotto) e addirittura f(z) può essere analitica in $Int\{\gamma\}$ ma solo continua su $\{\gamma\}$ (ma non lo dimostreremo).

Teorema 5.3.3 di Cauchy-Goursat modificato. Sia f(z) definita su un dominio $D \subset \mathbb{C}$ e sia R un rettangolo (quindi un insieme chiuso) contenuto in \mathring{D} (punti interni di D). Sia f(z) analitica su R, tranne nei punti $\{z_1, ..., z_n\} \in \mathring{R}$ in cui f(z) abbia singolarità eliminabili. Allora

$$\int_{\partial R} f(z) dz = 0. \tag{5.86}$$

(La stessa cosa vale per il triangolo ...)

Dimostrazione. Dividiamo il rettangolo R in m rettangolini (m > n) contenuti in R tali che n di questi abbiano ognuno una delle z_n singolarità al centro, R_k , k = 1, ..., n. Avremo

$$\int_{\partial R} f(z) dz = \sum_{k=1}^{n} \int_{\partial R_k} f(z) dz + \sum_{i=n+1}^{n+m} \int_{\partial R_i} f(z) dz = \sum_{k=1}^{n} \int_{\partial R_k} f(z) dz, \qquad (5.87)$$

poiché per i rettangoli che non contengono una singolarità interna sappiamo già che vale il teorema di Cauchy-Goursat e quindi

$$\int_{\partial R_i} f(z) = 0, \qquad i = n + 1, ... + m.$$
 (5.88)

Basta quindi concentrarsi sui rettangolini con al centro una singolarità. Per semplicità consideriamone uno, il k-esimo. Inoltre, senza perdere in generalità consideriamo un quadrato invece di un rettangolo.

Poiché la singolarità in $z = z_k$ è rimovibile, si ha

$$\lim_{z \to z_k} (z - z_k) f(z) = 0, \qquad (5.89)$$

cioè preso un $\epsilon > 0$, $\exists \delta > 0$ tale che

$$|(z - z_k)f(z)| < \epsilon, \qquad \forall z \in D(z_k, \delta). \tag{5.90}$$

Se dividiamo il quadrato con z_k al centro in n quadrati di cui uno con z_k al centro e gli altri senza singolarità (per i quali l'integrale è nullo) si arriverà ad una partizione tale che il k-esimo quadrato Q_k con al centro z_k sia tutto contenuto in $D(z_k, \delta)$, $Q_k \subset D(z_k, \delta)$. Se l_k è la lunghezza del quadrato Q_k si ha che per $z \in \partial Q_k$

$$|z - z_k| \ge \frac{l_k}{2} \qquad \forall z \in \partial Q_k \,.$$
 (5.91)

Siccome

$$|f(z)(z-z_k)| < \epsilon, \tag{5.92}$$

si ha anche che

$$|f(z)| < \frac{\epsilon}{|z - z_k|} < \frac{2\epsilon}{l_k}, \quad \forall z \in \partial Q_k.$$
 (5.93)

Allora, per il teorema di Darboux

$$\left| \int_{\partial Q_k} f(z) \, dz \right| \le 4l_k \sup_{z \in \partial Q_k} |f(z)| < 4l_k \frac{2\epsilon}{l_k} = 8\epsilon. \tag{5.94}$$

Per l'arbitrarietà dell' ϵ si ha l'assunto.

Abbiamo dimostrato il teorema di Cauchy per una curva geometrica particolare (perimetro del rettangolo o del triangolo). Sfruttando la definizione di integrale sulla curva γ possiamo generalizzare il teorema ad una curva chiusa semplice e regolare qualsiasi.

Teorema 5.3.4 di Cauchy (sul disco). Sia f(z) definita su un dominio $D \subset \mathbb{C}$ e sia B un disco (aperto e semplicemente connesso) contenuto in \mathring{D} . Se f(z) è analitica su D, allora per $\forall \gamma$ cammino semplice, regolare e chiuso in B si ha

$$\int_{\gamma} f(z) dz = 0. \tag{5.95}$$

Dimostrazione. È facile capire come il teorema di Cauchy-Goursat valga per una poligonale chiusa. Prendiamo una poligonale inscritta nella curva γ . Per definizione di integrale si avrà

$$\left| \int_{\gamma} f(z) \, dz - \sum_{k=1}^{n} (z_k - z_{z-1}) f(z_k) \right| < \epsilon \,, \tag{5.96}$$

che si può anche scrivere come

$$\left| \int_{\gamma} f(z) \, dz - \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} f(z_k) dz \right| < \epsilon \,, \tag{5.97}$$

poiché $\int_{z_{k-1}}^{z_k} f(z_k) dz = (z_k - z_{z-1}) f(z_k).$

Per il teorema di Cauchy-Goursat abbiamo anche

$$\sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} f(z)dz = 0.$$
 (5.98)

Ma allora

$$\left| \int_{\gamma} f(z) dz - \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} f(z_k) dz + \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} f(z) dz \right|,$$

$$= \left| \int_{\gamma} f(z) dz - \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} (f(z_k) - f(z)) dz \right| < \epsilon.$$
(5.99)

Usando le proprietà dei numeri complessi, possiamo scrivere

$$\left| \int_{\gamma} f(z) \, dz \right| - \left| \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} (f(z_k) - f(z)) dz \right| \le \left| \int_{\gamma} f(z) \, dz - \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} (f(z_k) - f(z)) dz \right|$$
 (5.100)

e quindi

$$\left| \int_{\gamma} f(z) \, dz \right| - \left| \sum_{k=1}^{n} \int_{z_{k-1}}^{z_k} (f(z_k) - f(z)) dz \right| < \epsilon.$$
 (5.101)

Ne segue che

$$\left| \int_{\gamma} f(z) dz \right| < \epsilon + \left| \sum_{k=1}^{n} \int_{z_{k-1}}^{z_{k}} (f(z_{k}) - f(z)) dz \right|,$$

$$< \epsilon + \sum_{k=1}^{n} \left| \int_{z_{k-1}}^{z_{k}} (f(z_{k}) - f(z)) dz \right|,$$

$$< \epsilon + L_{polig} \sup_{polig} |f(z_k) - f(z)|$$
 (5.102)

Per la continuità di f(z) (è analitica e quindi è continua) si ha che s $up_{polig}|f(z_k) - f(z)| < \epsilon'$ non appena $|z - z_k| < \delta$ scelto in corrispondenza dell' ϵ' . Per l'arbitrarietà dell' ϵ si ha l'assunto.

Altra Dimostrazione. Possiamo dimostrare il Teorema di Chauchy nel disco anche utilizzando la primitiva della f(z). Infatti, sia z_0 il centro del disco in considerazione, $D(z_0, R)$. Prendiamo uno $z \in D$. Potremo collegare z a z_0 tramite due cammini che formano un rettangolo (o al massimo con una spezzata), come in figura:

Per ogni cammino possiamo definire una funzione $F_i(z)$ come segue

$$F_1(z) = \int_{\gamma_1} f(z)dz,$$
 (5.103)

$$F_2(z) = \int_{\gamma_2} f(z)dz. \qquad (5.104)$$

Per il teorema di Goursat, si ha

$$F_1(z) = F_2(z) = F(z),$$
 (5.105)

per $\forall z \in D$ (nota che ciò vale per ogni coppia di spezzate che congiungano z_0 a z). Facciamo vedere che F(z) così definite è analitica e inoltre si ha F'(z) = f(z), ovvero la F(z) è la primitiva di f(z). Abbiamo

$$F(z) = \int_{z_0}^{z} f(z)dz = \int_{z_0}^{z_1} f(z)dz + \int_{z_1}^{z} f(z)dz = F(z_1) + \int_{z_1}^{z} f(z)dz, \qquad (5.106)$$

questo per $\forall z_1 \in D$. In Eq. (5.106) abbiamo omesso la curva specifica poiché qualunque spezzata dà lo stesso integrale. Allora, dalla (5.106) si ha

$$\frac{F(z) - F(z_1)}{z - z_1} - f(z_1) = \frac{1}{z - z_1} \int_{z_1}^{z} f(z) dz - f(z_1) = \frac{1}{z - z_1} \int_{z_1}^{z} (f(z) - f(z_1)) dz, \quad (5.107)$$

poiché

$$\frac{1}{z-z_1} \int_{z_1}^{z} f(z_1) dz = f(z_1) \frac{1}{z-z_1} \int_{z_1}^{z} dz = f(z_1).$$
 (5.108)

Ma allora

$$\left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| = \frac{1}{|z - z_1|} \left| \int_{z_1}^{z} (f(z) - f(z_1)) dz \right| \le \frac{1}{|z - z_1|} L_{\gamma} \sup_{z \in \{\gamma\}} |f(z) - f(z_1)|$$
(5.109)

per il teorema di Darboux. Nota che $L_{\gamma} = |z - z_1|$ (o comunque dello stesso ordine). Siccome f(z) è analitica, è anche continua. Quindi dato un $\epsilon > 0$ esiste un $\delta > 0$ tale che se $|z - z_1| < \delta$ si abbia che $|f(z) - f(z_1)| < \epsilon$. In corrispondenza di questo ϵ , la (5.109) diventa allora

$$\left| \frac{F(z) - F(z_1)}{z - z_1} - f(z_1) \right| \le \epsilon.$$
 (5.110)

Ovvero, abbiamo dimostrato che esiste il limite $z \to z_1$ del primo membro e questo è pari a zero. La F(z) risulta quindi derivabile e

$$F'(z_1) = f(z_1), (5.111)$$

cioè la F(z) è la primitiva di f(z). Allora, per una qualunque curva regolare (o regolare a tratti) $\gamma: [a,b] \to \mathbb{C}$ tale che $\{\gamma\} \in D(z_0,R)$ si ha

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} F'(\gamma(t))\gamma'(t)dt = F(\gamma(a)) - F(\gamma(b))$$
 (5.112)

e quindi per una curva chiusa, tale che $\gamma(a) = \gamma(b)$, si ha l'assunto:

$$\int_{\gamma} f(z)dz = 0. \tag{5.113}$$

Allo stesso modo si può dimostrare il teorema di Cauchy nel caso in cui la funzione f(z) abbia in $\mathrm{Int}\{\gamma\}$ un certo numero di singolarità rimovibili.

Teorema 5.3.5 di Cauchy (sul disco) modificato. Sia f(z) definita su un dominio $D \subset \mathbb{C}$ e sia B un disco (aperto e semplicemente connesso) contenuto in \mathring{D} . Se f(z) è analitica su D, tranne un numero finito di singolarità rimovibili $\{z_1,...,z_k\}$, allora per $\forall \gamma$ cammino semplice, regolare e chiuso in B, tale che $z_i \notin \{\gamma\}$, si ha

$$\int_{\gamma} f(z) \, dz = 0 \,. \tag{5.114}$$

(Cioè le singolarità non devono essere sulla curva di integrazione γ .)

5.3.1 Una conseguenza del Teorema di Cauchy: primitiva

L'immediata conseguenza del teorema di Cauchy è l'esistenza della primitiva di f(z). Infatti, se f(z) è analitica in D si ha

$$\int_{\gamma} f(z) dz = 0, \qquad (5.115)$$

²Qui adottiamo il punto di vista " dimostrato il teorema di Cauchy, questo si utilizza per dimostrare che esiste la primitiva". Nella seconda dimostrazione del teorema, invece, abbiamo dimostrato il teorema dimostrando che esiste la primitiva.

per ogni γ la cui traccia sia inclusa in D. Ma allora, possiamo spezzare il cammino chiuso in due cammini

$$\gamma = \gamma_1 + \gamma_2 \,, \tag{5.116}$$

tali che

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2} f(z) dz = 0.$$
 (5.117)

Quindi, siccome

$$\int_{\gamma_2} f(z) dz = -\int_{\gamma_2^-} f(z) dz, \qquad (5.118)$$

si ha

$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2^-} f(z) dz, \qquad (5.119)$$

per $\forall \gamma_1, \gamma_2 \text{ con } \gamma_1(a) = \gamma_2^-(a)$ e $\gamma_1(b) = \gamma_2^-(b)$. Allora l'integrale di f(z) dipende solo dal punto iniziale e dal punto finale, ma non dalla cirva su cui si integra. Potremo scrivere

$$F(z) = F(z_0) + \int_{z_0}^{z} f(z) dz, \qquad (5.120)$$

senza specificare ulteriormente il γ di integrazione, poiché il risultato dipende solo da z_0 e z. Si ha

Teorema 5.3.6 La funzione F(z) è analitica e si ha

$$F'(z) = f(z),$$
 (5.121)

cioè F(z) è la primitiva di f(z).

Dimostrazione. Per provare che F'(z) = f(z) costruiamo il rapporto incrementale di F(z) e dimostriamo che il suo limite esiste ed è proprio f(z).

Prendiamo $z_1 \in D$ e costruiamo

$$\Delta = \frac{F(z_1) - F(z)}{z_1 - z}, \tag{5.122}$$

$$= \frac{1}{z_1 - z} \left(\int_{z_0}^{z_1} f(z) dz - \int_{z_0}^{z} f(z) dz \right), \qquad (5.123)$$

$$= \frac{1}{z_1 - z} \left(\int_{z_0}^z f(z) \, dz + \int_z^{z_1} f(z) \, dz - \int_{z_0}^z f(z) \, dz \right), \tag{5.124}$$

$$= \frac{1}{z_1 - z} \int_{z}^{z_1} f(z) dz. \tag{5.125}$$

Siccome

$$f(z_1) = \frac{1}{z_1 - z} \int_{z}^{z_1} f(z_1) dz, \qquad (5.126)$$

si ha

$$\Delta = \frac{1}{z_1 - z} \int_z^{z_1} f(z) dz + f(z_1) - f(z_1) = f(z_1) + \frac{1}{z_1 - z} \int_z^{z_1} [f(z) - f(z_1)] dz, \quad (5.127)$$

ovvero

$$\frac{F(z_1) - F(z)}{z_1 - z} - f(z_1) = \frac{1}{z_1 - z} \int_{z}^{z_1} \left[f(z) - f(z_1) \right] dz. \tag{5.128}$$

Ora ricordiamoci che f(z), essendo analitica in tutto D, è anche continua. Allora, scelto un $\epsilon > 0$, $\exists \delta > 0$ tale che per $|z_1 - z| < \delta$ risulti

$$|f(z) - f(z_1)| < \epsilon. \tag{5.129}$$

Ma allora

$$\left| \frac{F(z_1) - F(z)}{z_1 - z} - f(z_1) \right| = \left| \frac{1}{z_1 - z} \right| \left| \int_z^{z_1} \left[f(z) - f(z_1) \right] dz \right|, \tag{5.130}$$

$$\leq \frac{1}{|z_1 - z|} L_{\gamma_{z_1 z}} \sup_{z \in D} |f(z) - f(z_1)|, \qquad (5.131)$$

$$\leq \epsilon,$$
 (5.132)

dove per passare da (5.130) a (5.131) abbiamo utilizzato il teorema di Darboux e per arrivare alla (5.131) abbiamo usato il fatto che $L_{\gamma_{z_1z}}=|z_1-z|$ e la (5.129).

Quindi abbiamo dimostrato che

$$\lim_{z \to z_1} \frac{F(z_1) - F(z)}{z_1 - z} = F'(z_1) = f(z_1), \tag{5.133}$$

cioè F(z) è analitica e la sua derivata coincide con f(z).

5.3.2 Domini multiplamente connessi

Abbiamo per adesso parlato del teorema di Cauchy in un dominio semplicemente connesso. Supponiamo invece di considerare un dominio multiplamente connesso $D = D_1 - D_2 - D_3$ entro cui la funzione f(z) sia analitica e lo sia anche sulla frontiera ∂D di tale dominio. Allora si avrà

$$\int_{\partial D} f(z) dz = 0, \qquad (5.134)$$

dove $\partial D = \partial D_1 + \partial D_2^- + \partial D_3^-$, è dato dalla somma delle curve in figura.

Il cammino ∂D si ottiene nel seguente modo: partendo da un qualunque punto sulla parte superiore di ∂D_1 , si procede in senso positivo (antiorario); arrivati al primo cammino γ_2 si procede verso D_2 e si percorre, questa volta in senso orario, il cammino ∂D_2 fino a quando, tramite il secondo cammino γ_2 si torna a percorrere ∂D_1 ; si procede in senso antiorrio fino a γ_3 e si ripete quanto detto per γ_2 , ovvero si procede verso D_3 , si percorre ∂D_3 in senso orario e poi, tramite il sercondo cammino γ_3 si ritorna su ∂D_1 , concludendo il giro. La

curva così ottenuta, ∂D , è omotopa a zero nella regione di analiticità della f(z) e pertanto vale la (5.134). Quando i due cammini γ_2 si sovrappongono, diventano lo stesso cammino percorso

una volta in un senso e una nell'altro. Il contributo all'integrale (5.134) di questi due pezzetti, è nullo. Così avviene per i cammini contrassegnati in figura con γ_3 . Quindi alla fine otteniamo che

$$0 = \int_{\partial D} f(z) dz = \int_{\partial D_1} f(z) dz + \int_{\partial D_2^-} f(z) dz + \int_{\partial D_3^-} f(z) dz.$$
 (5.135)

Siccome

$$\int_{\gamma^{-}} f(z) dz = -\int_{\gamma} f(z) dz, \qquad (5.136)$$

si ha infine

$$\int_{\partial D_1} f(z) \, dz = \int_{\partial D_2} f(z) \, dz + \int_{\partial D_3} f(z) \, dz \,. \tag{5.137}$$

Consideriamo sempre un dominio multiplamente connesso D, come in figura.

Se la f(z) è analitica in D e consideriamo le due curve γ e γ_1 con traccia in D, si avrà

$$\int_{\gamma_1} f(z) \, dz = 0 \,, \tag{5.138}$$

per il teorema di Cauchy (γ_1 è omotopa a zero nella regione di analiticità di f(z)), mentre invece sarà

$$\int_{\gamma} f(z) \, dz \neq 0 \,, \tag{5.139}$$

poiché γ non è omotopa a zero e non vale il teorema di Cauchy.

5.3.3 Principio di deformazione dei cammini

Consideriamo sempre una funzione f(z) analitica su $D \in \mathbb{C}$. Indipendentemente dal fatto che D sia semplicemente connesso o no, possiamo considerare il cammino γ in figura, dato da γ_1 percorso in senso antiorario fino al primo segmento che lo collega a γ_2 , che viene percorso in senso orario e ricollegato a γ_1 tramite il secondo segmento. se sovrapponiamo i due segmenti, avremo solo γ_1 e γ_2 e un segmento che verrà percorso una volta in un

senso e la seconda volta nell'altro. Se consideriamo l'integrale di f(z) su γ , per il teorema

di Cauchy questo sarà nullo. D'altra parte, l'integrale su γ sarà dato dalla somma dell'integrale su γ_1 , di quello su γ_2 e dall'integrale sul primo e sul secondo segmento. Questi due, però danno contributo nullo. Quindi avremo

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz + \int_{\gamma_2^-} f(z) dz = 0.$$
 (5.140)

Siccome

$$\int_{\gamma^{-}} f(z) dz = -\int_{\gamma} f(z) dz, \qquad (5.141)$$

avremo infine

$$\int_{\gamma_1} f(z) \, dz = \int_{\gamma_2} f(z) \, dz \,. \tag{5.142}$$

Quindi, purché fra γ_1 e γ_2 non ci siano divergenze di f(z), l'integrale di f(z) su γ_1 è lo stesso dell'integrale su γ_2 . Questo è noto come "Principio di deformazione dei cammini", poiché si può passare da γ_1 al cammino omotopo γ_2 (deformare γ_1 su γ_2) e l'integrale non cambia.

Esempio

Come esempio, consideriamo la funzione

$$f(z) = \frac{1}{z - a},\tag{5.143}$$

dove $a \in \mathbb{C}$. La f(z) è analitica in tutto \mathbb{C} tranne nel punto z = a in cui ha un polo semplice. Abbiamo visto per integrazion e diretta che se consideriamo l'integrale di f(z) su una circonferenza centrata in a si ha

$$\int_{\alpha} \frac{dz}{z-a} = 2\pi i \,, \tag{5.144}$$

$$\gamma(t) = a + Re^{it}, \quad t \in [0, 2\pi].$$
 (5.145)

Questo risultato deriva dal fatto che la primitiva di f(z) è un logaritmo e quindi una funzione polidroma. Siccome z = a è un punto di diramazione del logaritmo, facendo un giro intorno ad a e tornando allo stesso punto di partenza si trova la discontinuità e quindi $2\pi i$.

Per il principio di deformazione dei cammini, $2\pi i$ sarà anche il risultato dell'integrale di f(z) su un qualsiasi cammino Γ che giri intorno a z=a.

Infatti, considerando la figura, si ha che per il teorema di Cauchy l'integrale di f(z) sulla curva chiusa costituita da $C = \Gamma + eta + \gamma^- + \eta^-$

$$\int_{C} \frac{dz}{z-a} = \int_{\Gamma} \frac{dz}{z-a} + \int_{\eta} \frac{dz}{z-a} + \int_{\gamma^{-}} \frac{dz}{z-a} + \int_{\eta^{-}} \frac{dz}{z-a} = 0.$$
 (5.146)

Ma i due contributi su η e η^- si annullano e siccome $\int_{\gamma^-} = -\int_{\gamma}$ si ha infine

$$\int_{\Gamma} \frac{dz}{z-a} = \int_{\gamma} \frac{dz}{z-a} = 2\pi i \,, \tag{5.147}$$

per $\forall \Gamma$ semplice, regolare (o regolare a tratti) e chiusa, che contenga z = a.

5.3.4 Formula integrale di Cauchy

Un'importantissima conseguenza del teorema di Cauchy è la formula integrale, che collega le proprietà locali della funziona analitica con un suo integrale lungo una curva chiusa.

Cominciamo col definire l'indice di un punto rispetto ad una curva.

Definizione 5.3.7 Dato un cammino chiuso γ e dato un punto $a \in \mathbb{C}$ ma $a \notin \{\gamma\}$, si dice "indice" di a rispetto a γ il numero così definito:

$$n(\gamma, a) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \,. \tag{5.148}$$

Teorema 5.3.8 $n(\gamma, a)$ è quindi (per quando visto nel paragrafo precedente) un'applicazione da $\mathbb{C} - \{\gamma\} \to \mathbb{C}$ a valori interi, costanti su ogni componente connessa di $\mathbb{C} - \{\gamma\}$ e $n(\gamma, a) = 0$ sulla componente illimitata.

Dimostrazione. Nel caso di una curva semplice, si ha che $n(\gamma, a) = 1$ e la dimostrazione segue da quanto detto nel paragrafo precedente (per integrazione diretta). In generale, si ha quanto segue. Sia $\gamma(t)$ con $\alpha \leq t \leq \beta$, una curva regolare chiusa. Consideriamo la funzione

$$h(t) = \int_{\alpha}^{t} \frac{\gamma'(t_1)}{\gamma(t_1) - a} dt_1, \qquad (5.149)$$

con $a \in \mathbb{C}$ tale che $a \notin \{\gamma\}$. h(t) è definita e continua nell'intervallo chiuso $t \in [\alpha, \beta]$ e tale che

$$h'(t) = \frac{\gamma'(t)}{\gamma(t) - a}.$$
(5.150)

Ne segue che la funzione

$$f(t) = e^{-h(t)} (\gamma(t) - a)$$
(5.151)

sia derivabile e che valga

$$f'(t) = -h'(t)e^{-h(t)}(\gamma(t) - a) + e^{-h(t)}\gamma'(t), \qquad (5.152)$$

$$= -e^{-h(t)}\gamma'(t) + e^{-h(t)}\gamma'(t) = 0, \qquad (5.153)$$

per $\forall t \in [\alpha, \beta]$. Siccome f(t) è continua, ne segue che è costante in $[\alpha, \beta]$.

Si ha $h(\alpha) = 0$ e quindi $f(\alpha) = \gamma(\alpha) - a$ e siccome $f(t) = \cos t$, dovrà essere ovunque uguale a $f(\alpha)$. Quindi

$$e^{-h(t)}\left(\gamma(t) - a\right) = \gamma(\alpha) - a, \qquad (5.154)$$

cioè

$$e^{h(t)} = \frac{\gamma(t) - a}{\gamma(\alpha) - a}.$$
(5.155)

Se $\gamma(t)$ è una curva chiusa, si ha $\gamma(\beta) = \gamma(\alpha)$ e quindi

$$e^{h(\beta)} = 1$$
. (5.156)

Ne segue che $h(\beta)$ deve essere un multiplo di $2\pi i$ ovvero

$$n(\gamma, a) = k \in \mathbb{Z}. \tag{5.157}$$

Consideriamo adesso la componente illimitata. Prendiamo a con |a| grande a piacere. Allora, preso un $\epsilon > 0$ e a tale che $|\gamma(t) - a| > 1/\epsilon$ per $\forall t \in [\alpha, \beta]$, si ha

$$|n(\gamma, a)| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - a} \right| \le \frac{L_{\gamma}}{2\pi} \sup_{z \in \{\gamma\}} \left| \frac{1}{z - a} \right|, \tag{5.158}$$

$$\leq \frac{L_{\gamma}}{2\pi} \epsilon. \tag{5.159}$$

Per l'arbitrarietà dell' ϵ e per il fatto che $n(\gamma, a)$ è a valori interi segue che $n(\gamma, a) = 0$.

Teorema 5.3.9 (formula integrale di Cauchy) Sia f(z) definita ed analitica su un disco D (aperto e semplicemente connesso). Allora, $\forall z \in D$ e per $\forall \gamma$ regolare e chiusa in D, con $z \notin \{\gamma\}$, si ha

$$n(\gamma, z) f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw.$$
 (5.160)

Dimostrazione. Consideriamo

$$F(w) = \frac{f(w) - f(z)}{w - z},$$
(5.161)

che è una funzione analitica in D tranne per w=z dove F(w) ha una singolarità eliminabile

$$\lim_{w \to z} (w - z) F(w) = 0.$$
 (5.162)

Allora, per il teorema di Cauchy applicato alla F(w) si ha

$$\int_{\gamma} F(w) \, dw = \int_{\gamma} \frac{f(w) - f(z)}{w - z} \, dw = 0 \tag{5.163}$$

e quindi

$$\int_{\gamma} \frac{f(w)}{w - z} dw = f(z) \int_{\gamma} \frac{dw}{w - z} = 2\pi i \, n(\gamma, z) \, f(z) \,, \tag{5.164}$$

da cui l'assunto.

Teorema 5.3.10 (formula integrale di Cauchy per la derivata prima) $Sia\ f(z)$ definita ed analitica su un disco D (aperto e semplicemente connesso). Allora, $\forall z \in D$ e per $\forall \gamma$ regolare e chiusa in D, con $z \notin \{\gamma\}$, si ha

$$n(\gamma, z) f'(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)^2} dw.$$
 (5.165)

Dimostrazione. Costruiamoci il rapporto incrementale per f(z). Utilizzando la formula integrale di Cauchy si ha

$$n(\gamma, z')f(z') - n(\gamma, z)f(z) = \frac{1}{2\pi i} \left\{ \int_{\gamma} \frac{f(w)}{w - z'} dw - \int_{\gamma} \frac{f(w)}{w - z} dw \right\} = \frac{1}{2\pi i} \int_{\gamma} \frac{(z' - z)f(w)}{(w - z')(w - z)} dw.$$
(5.166)

Siccome $z, z' \in Int\{\gamma\}$, si ha che $n(\gamma, z') = n(\gamma, z)$ e quindi

$$n(\gamma, z) \frac{f(z') - f(z)}{z' - z} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z')(w - z)} dw.$$
 (5.167)

Notiamo che il limite $z' \to z$ sotto il segno di integrale nella parte destra dell'equazione porterebbe esattamente a

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^2} \, dw \,, \tag{5.168}$$

mentre lo stesso limite a sinistra darebbe esattamente la derivata prima della f(z). Bisogna quindi dimostrare che il limite dell'integrale è uguale all'integrale del limite, ovvero che

$$\lim_{z' \to z} \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z')(w - z)} dw = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)^2} dw.$$
 (5.169)

Per far ciò utilizziamo la definizione di limite. Dato un $\epsilon > 0$ deve esistere un $\delta(\epsilon)$ tale che per $|z' - z| < \delta$ si abbia

$$\left| \frac{1}{2\pi i} \left(\int_{\gamma} \frac{f(w)}{(w-z')(w-z)} dw - \int_{\gamma} \frac{f(w)}{(w-z)^2} dw \right) \right| < \epsilon. \tag{5.170}$$

Infatti

$$\Delta = \left| \frac{1}{2\pi i} \left(\int_{\gamma} \frac{f(w)}{(w - z')(w - z)} dw - \int_{\gamma} \frac{f(w)}{(w - z)^{2}} dw \right) \right| = \left| \frac{z' - z}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z')(w - z)^{2}} dw \right|,$$

$$= \left| \frac{z' - z}{2\pi i} \right| \left| \int_{\gamma} \frac{f(w)}{(w - z')(w - z)^{2}} dw \right| \le \sup_{w \in \{\gamma\}} \left| \frac{f(w)}{(w - z')(w - z)^{2}} \right| L_{\gamma} \frac{|z' - z|}{2\pi},$$

$$< \frac{M}{d^{3}} L_{\gamma} |z' - z|, \qquad (5.171)$$

dove abbiamo utilizzato il teorema di Darboux e dove d è la distanza minima fra w e z o z', L_{γ} è la lunghezza della curva γ e M è il sup della funzione sulla curva.

Se scegliamo
$$\delta = \epsilon d^3/(ML_\gamma), |z'-z| < \delta \text{ implica } \Delta < \epsilon.$$

Abbiamo dimostrato che f'(z) esiste, ma abbiamo anche dimostrato che è pari alla derivazione sotto il segno di integrale. Possiamo dimosrare questo risultato in maniera generale (che ci serve anche per dimostrare la formula integrale di Cauchy per la derivata n-esima).

Teorema 5.3.11 Sia f(z,a) una funzione continua di z e a quando z varia su una curva regolare γ e a in una regione U delimitata da uno o più circuiti. Inoltre, $\forall z \in \{\gamma\}$, f(z,a) sia analitica in $a \in U$. Allora l'integrale

$$J(a) = \int_{\gamma} f(z, a) dz \tag{5.172}$$

è una funzione analitica di a in U e

$$J'(a) = \int_{\gamma} \frac{\partial f}{\partial a}(z, a) dz.$$
 (5.173)

Dimostrazione. Siano $a, b \in U$. Costruiamoci il rapporto incrementale per J(a). Si ha

$$\frac{J(b) - J(a)}{b - a} = \int_{\gamma} \frac{f(z, b) - f(z, a)}{b - a} dz.$$
 (5.174)

Siccome f(z, a) è analitica in a, si ha

$$H(z,b) = \frac{f(z,b) - f(z,a)}{b - a} = \frac{1}{b - a} \left(\frac{1}{2\pi i} \int_{\gamma'} \frac{f(z,w)}{w - b} dw - \frac{1}{2\pi i} \int_{\gamma'} \frac{f(z,w)}{w - a} dw \right),$$

$$= \frac{1}{2\pi i} \int_{\gamma'} \frac{f(z,w)}{(w - a)(w - b)},$$
(5.175)

con $a, b \in Int\{\gamma'\}$. La funzione H(z, b) è tale che

$$\frac{J(b) - J(a)}{b - a} = \int_{\gamma} H(z, b) \, dz \tag{5.176}$$

e dobbiamo dimostrare quindi che

$$\lim_{b \to a} \int_{\gamma} H(z,b) dz = \int_{\gamma} H(z,a) dz. \tag{5.177}$$

Si ha:

$$\Delta = \left| \int_{\gamma} (H(z,b) - H(z,a)) \, dz \right| = \left| \int_{\gamma} \frac{1}{2\pi i} \int_{\gamma'} \left(\frac{f(z,w)}{(w-a)(w-b)} - \frac{f(z,w)}{(w-a)^2} \right) \, dw \, dz \right|,$$

$$= \left| (b-a) \int_{\gamma} \frac{1}{2\pi i} \int_{\gamma'} \frac{f(z,w)}{(w-a)^2 (w-b)} \, dw \, dz \right|,$$

$$< \frac{|b-a|}{2\pi} L_{\gamma} L_{\gamma'} \sup \left| \frac{f(z,w)}{(w-a)^2 (w-b)} \right|,$$

$$= \frac{|b-a|}{2\pi} L_{\gamma} L_{\gamma'} \frac{M}{d^3} \tag{5.178}$$

dove L_{γ} e $L_{\gamma'}$ sono rispettivamente la lunghezza delle curve γ e γ' , M è l'estremo superiore della funzione f(z,w) quando $z \in \gamma$ e $w \in \gamma'$, e $d = \min\{|w-a|, |w-b|\}$. Se prendiamo $|b-a| < \delta$ con $\delta = 2\pi d^3 \epsilon/(M L_{\gamma} L_{\gamma'})$ si ha $\Delta < \epsilon$ e quindi l'assunto.

Teorema 5.3.12 (formula integrale di Cauchy per la derivata n-esima) Sia f(z) definita ed analitica su un disco D (aperto e semplicemente connesso). Allora, $\forall z \in D$ e per $\forall \gamma$ regolare e chiusa in D, con $z \notin \{\gamma\}$, si ha

$$n(\gamma, z) f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)^{n+1}} dw.$$
 (5.179)

Dimostrazione. La dimostrazione si fa per induzione. La formula è valida per n = 1. Facciamo vedere che n implica n + 1.

$$n(\gamma, z) f^{(n+1)}(z) = n(\gamma, z) \frac{d}{dz} f^{(n)}(z) = \frac{n!}{2\pi i} \frac{d}{dz} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw, \qquad (5.180)$$

$$= \frac{n!}{2\pi i} \int_{\gamma} \frac{d}{dz} \frac{f(w)}{(w-z)^{n+1}} dw, \qquad (5.181)$$

$$= \frac{(n+1)!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{n+2}}.$$
 (5.182)

5.4 Serie di Taylor

Dimostriamo adesso un risultato molto importante, ovvero facciamo vedere che se f(z) è analitica in un certo dominio D, in ognu punto di D può essere espressa come serie di potenze, la serie di Taylor.

Sia quindi f(z) analitica in $D \subset \mathbb{C}$ e sia $\gamma \subset D$ un cammino chiuso e regolare. Abbiamo visto che per la formula integrale di Cauchy, f(z) e le sue derivate n-esime possono essere espresse come segue

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw, \qquad (5.183)$$

$$f^{(n)}(z) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(w)}{(w-z)^{n+1}} dw, \qquad (5.184)$$

per $\forall z \in Int\{\gamma\}$.

Prendiamo $z_0 \in Int\{\gamma\}$ e prendiamo un disco aperto centrato in z_0 di raggio ρ , $D(z_0, \rho)$, tutto contenuto in $Int\{\gamma\}$, come in figura.

Prendiamo uno $z \in D(z_0, \rho)$. Allora z sarà anche interno alla curva γ . In z varranno le (5.183, 5.184).

Per $\forall w \in \{\gamma\}$ e $z \in D(z_0, \rho)$, si avrà

$$\left| \frac{z - z_0}{w - z_0} \right| = \frac{|z - z_0|}{|w - z_0|} < 1, \tag{5.185}$$

poiché $|z - z_0| < \rho \in |w - z_0| > \rho$. Quindi

$$\sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n \tag{5.186}$$

è una serie geometrica di ragione < 1 e quindi converge uniformemente, per $w \in \{\gamma\}$, a

$$\sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - z_0} \right)^n = \frac{1}{1 - \frac{z - z_0}{w - z_0}} = \frac{w - z_0}{w - z}.$$
 (5.187)

Si trova quindi che

$$\frac{1}{w-z} = \frac{1}{w-z_0} \sum_{n=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^n = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}.$$
 (5.188)

Sostituendo nella formula integrale per f(z), si ha

$$f(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{w - z} dw,$$

$$= \frac{1}{2\pi i} \int_{\gamma} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(w - z_0)^{n+1}} f(w) dw,$$

$$= \sum_{n=0}^{\infty} (z - z_0)^n \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} f(w) dw,$$

$$= \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n,$$
(5.189)

dove per passare da (5.189) a (5.189) abbiamo usato il fatto che la serie è uniformemente convergente.

Abbiamo trovato quindi che la f(z) ammette una espansione in serie di Taylor.

NOTA. Notiamo che

- La serie così ottenuta è uniformemente convergente a condizione che f(z) sia analitica in z_0 e che z sia definita entro un cerchio centrato in z_0 all'interno del quale per tutti gli z f(z) sia analitica.
- La convergenza è per cerchi intorno allo z_0 dell'espansione. Si potrà "estendere" il cerchio di convergenza fino a dove non incontrerà una singolarità. Quindi, sia z_S un punto di singolarità per la f(z). Lo sviluppo di Taylor in z_0 per la f(z) convergerà in $D(z_0, d)$ dove $d = |z_S z_0|$, che è detto raggio di convergenza.
- Se f(z) è intera, il suo sviluppo convergerà in tutto \mathbb{C} .

• Lo sviluppo ottenuto è unico, ovvero se per $z \in D(z_0, d)$ vale la

$$f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n, \qquad (5.190)$$

si ha necessariamente $c_n = f^{(n)}(z_0)/n!$. Infatti, ponendo $z = z_0$ in (5.190) si ha $c_0 = f(z_0)$. Essendo poi la serie uniformemente convergente, possiamo derivare termine a termine la (5.190) e porre $z = z_0$, ottenendo via via $f'(z_0) = c_1$, $f^{(2)}(z_0) = 2c_2$... etc.

5.4.1 Esempi

Esempio 1. Considertiamo la seguente funzione

$$f(z) = \sin(z). \tag{5.191}$$

La f(z) è intera e si ha

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} \,. \tag{5.192}$$

Sfruttando la serie dell'esponenziale, si trova

$$\sin(z) = \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right),$$

$$= \frac{1}{2i} \sum_{n=0}^{\infty} (1 - (-1)^n) \frac{(iz)^n}{n!} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{(2k+1)},$$
(5.193)

che converge in tutto \mathbb{C} .

Esempio 2. Considertiamo la seguente funzione

$$f(z) = \log(1+z) \tag{5.194}$$

e cerchiamo il suo sviluppo di Taylor in z=0. Poniamo $\xi=1+z$. Il ramo principale di $\log{(\xi)}$ è definito e analitico in $\mathbb{C}-\{\Re(\xi)\leq 0\}$. Quindi in z si ha

$$1 + z \neq -t, \tag{5.195}$$

con $t \in [0, \infty)$. Ovvero $z \neq -1 - t$. Quindi poniamo il taglio su $\Re(z) \leq -1$, come in figura.

Se centriamo la serie di Taylor in z = 0, allora il raggio di convergenza sarà r = 1, ovvero la distanza da 0 alla prima singolarità che si incontra (punto di diramazione in z = -1).

Si avrà

$$\frac{d}{dz}\log(1+z) = \frac{1}{1+z}, \dots, \frac{d^n}{dz^n}\log(1+z) = (-1)^{(n-1)}\frac{(n-1)!}{(1+z)^n},$$
 (5.196)

ovvero

$$\log(1+z) = \sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{(n-1)!}{n!} z^n = \sum_{n=1}^{\infty} (-1)^{(n-1)} \frac{z^n}{n}.$$
 (5.197)

Esempio 3. In generale consideriamo il ramo principale del logaritmo

$$f(z) = \log(z) \tag{5.198}$$

e cerchiamo l'espansione di Taylor là dove il logaritmo è analitico (cioè al di fuori del taglio). Consideriamo il punto $z=z_0$, con $z_0 \notin -t$, $t \in (0, \infty)$.

Quindi possiamo scrivere

$$\ln(z) = \ln(z_0) + \int_{z_0}^{z} \frac{d\omega}{\omega} = \ln(z_0) + \int_{z_0}^{z} \frac{d\omega}{z_0 + \omega - z_0}, \qquad (5.199)$$

$$= \ln(z_0) + \frac{1}{z_0} \int_{z_0}^{z} \frac{1}{1 - \left(-\frac{\omega - z_0}{z_0}\right)} d\omega.$$
 (5.200)

Là dove si abbia

$$\left| \frac{\omega - z_0}{z_0} \right| < 1, \tag{5.201}$$

ovvero là dove ω , che sta su una qualsiasi curva che unisce z_0 a z, è contenuto, insieme a z, nel disco centrato in z_0 di raggio $|z_0|$, possiamo usare la convergenza uniforme della serie geometrica e scrivere

$$\ln(z) = \ln(z_0) + \frac{1}{z_0} \int_{z_0}^{z} \frac{1}{1 - \left(-\frac{\omega - z_0}{z_0}\right)} d\omega, \qquad (5.202)$$

$$= \ln(z_0) + \frac{1}{z_0} \int_{z_0}^{z} \sum_{n=0}^{\infty} (-1)^n \left(\frac{\omega - z_0}{z_0}\right)^n d\omega, \qquad (5.203)$$

$$= \ln(z_0) + \sum_{n=0}^{\infty} (-1)^n \frac{1}{z_0} \int_{z_0}^z \left(\frac{\omega - z_0}{z_0}\right)^n d\omega, \qquad (5.204)$$

$$= \ln(z_0) + \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} \left(\frac{z-z_0}{z_0}\right)^{n+1}.$$
 (5.205)

Il raggio di convergenza della serie è dato da

$$R = \lim_{n \to \infty} \left| \frac{(-1)^n}{(n+1)z_0^{n+1}} \right| \left| \frac{(n+2)z_0^{n+2}}{(-1)^{n+1}} \right| = |z_0|.$$
 (5.206)

Si riottiene il risultato dell'Esempio 2 ponendo

$$z \rightarrow z' + 1,$$

 $z_0 \rightarrow z'_0 + 1,$ (5.207)

con $z_0' = 0$.

Esempio 4. Consideriamo lo sviluppo dell'esponenziale (che già sappiamo). L'esponenziale è una funzione intera, derivabile infinite volte in tutto \mathbb{C} e si ha

$$\frac{d^n}{dz^n}e^z = e^z\,, (5.208)$$

da cui

$$e^z = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n = \sum_{n=0}^{\infty} \frac{z^n}{n!},$$
 (5.209)

che converge uniformemente con raggio di convergenza

$$R = \lim_{n \to \infty} \left| \frac{(n+1)!}{n!} \right| = \infty. \tag{5.210}$$

Esempio 5. Siccome il seno è esprimibile in termini dell'esponenziale, si può trovare subito la sua espansione di Taylor in z = 0:

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i} = \frac{1}{2i} \left(\sum_{n=0}^{\infty} \frac{(iz)^n}{n!} - \sum_{n=0}^{\infty} \frac{(-iz)^n}{n!} \right), \tag{5.211}$$

$$= \frac{1}{2i} \sum_{n=0}^{\infty} \frac{(1 - (-1)^n)}{n!} i^n z^n, \qquad (5.212)$$

$$= \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{(2k+1)}, \qquad (5.213)$$

che ha raggio di convergenza

$$R = \lim_{n \to \infty} \left| \frac{(-1)^k}{(2k+1)!} \frac{(2k+3)!}{(-1)^{k+1}} \right| = \infty.$$
 (5.214)

La (5.213) si può anche trovare sapendo che

$$\frac{d}{dz}\sin(z) = \cos(z), \qquad e \quad \frac{d}{dz}\cos(z) = -\sin(z). \tag{5.215}$$

Esempio 6. Per il coseno, siccome abbiamo

$$\cos(z) = \frac{d}{dz}\sin(z), \qquad (5.216)$$

possiamo derivare la (5.213) termine a termine:

$$\cos(z) = \frac{d}{dz} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{(2k+1)} = \sum_{k=0}^{\infty} \frac{(-1)^k (2k+1)}{(2k+1)!} z^{2k} = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} z^{2k}, \qquad (5.217)$$

con raggio di convergenza infinito.

Esempio 7. La stessa cosa si trova per seno iperbolico e coseno iperbolico:

$$\cosh(z) = \frac{e^z + e^{-z}}{2} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{(1 + (-1)^n)}{n!} z^n = \sum_{n=0}^{\infty} \frac{z^{2n}}{(2n)!},$$
 (5.218)

$$\sinh(z) = \frac{d}{dz}\cosh(z) = \sum_{n=0}^{\infty} \frac{z^{2n+1}}{(2n+1)!}.$$
 (5.219)

Entrambi hanno raggio di convergenza $R = \infty$.

Esempio 8. Troviamo l'espansione di Taylor di

$$f(z) = \sqrt{z+a}, \quad a \in \mathbb{C}.$$
 (5.220)

in z = 0. La funzione è polidroma. Scegliamo il ramo principale e poniamo il taglio da z = -a al punto all'infinito, che è punto di diramazione (per esempio con un taglio parallelo all'asse reale negativa, come in figura).

In un intorno di z=0 allora la funzione è ad un sol valore ed è analitica. In z=-a invece la funzione non è analitica, visto che questo è un punto di diramazione. Siccome

$$f'(z) = \frac{d}{dz}(z-a)^{\frac{1}{2}} = \frac{1}{2}(z-a)^{\frac{1}{2}-1}, \qquad (5.221)$$

$$f^{(2)}(z) = \frac{1}{2} \left(\frac{1}{2} - 1 \right) (z - a)^{\frac{1}{2} - 2}, \tag{5.222}$$

$$f^{(3)}(z) = \frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right) (z - a)^{\frac{1}{2} - 3}, \qquad (5.223)$$

•

$$f^{(n)}(z) = \frac{1}{2} \left(\frac{1}{2} - 1 \right) \left(\frac{1}{2} - 2 \right) \dots \left(\frac{1}{2} - n + 1 \right) (z - a)^{\frac{1}{2} - n}, \tag{5.224}$$

per cui si ha

$$f^{(n)}(0) = {1 \choose 2 \choose n} n! a^{\frac{1}{2}-n}$$
 (5.225)

e la serie può essere scritta come segue

$$\sqrt{z+a} = \sum_{n=0}^{\infty} {1 \choose 2 \choose n} a^{\frac{1}{2}-n} z^n.$$
 (5.226)

Il raggio di convergenza della serie si trova come segue

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|, \tag{5.227}$$

$$= \lim_{n \to \infty} \left| \frac{\frac{1}{2} \left(\frac{1}{2} - 1 \right) \dots \left(\frac{1}{2} - n + 1 \right) a^{\frac{1}{2} - n}}{n!} \frac{(n+1)!}{\frac{1}{2} \left(\frac{1}{2} - 1 \right) \dots \left(\frac{1}{2} - n \right) a^{-\frac{1}{2} - n}} \right|, \qquad (5.228)$$

$$= \lim_{n \to \infty} \left| \frac{(n+1) a}{(\frac{1}{2} - n)} \right| = |a|. \tag{5.229}$$

Quindi la serie converge uniformemente nel disco di raggio R = |a|, ovvero la distanza di a da z = 0.

5.5 Altri risultati importanti

Enunciamo qui due teoremi che servono a caratterizzare ulteriormente le funzioni analitiche.

Teorema 5.5.1 (di Morera) Sia f(z) una funzione continua della variabile complessa $z \in D$, dominio (aperto e connesso) in \mathbb{C} e sia

$$\int_{\gamma} f(z) dz = 0, \qquad (5.230)$$

per ogni γ regolare chiusa con $\{\gamma\} \subset D$. Allora f(z) è analitica in D.

Dimostrazione. Se $\int_{\gamma} f(z) dz = 0$ per $\forall \gamma$ in D, possiamo considerare $z_0, z \in \{\gamma\}$ tali che la curva γ rimanga divisa in due: γ_1 che coincide con la parte di γ che collega in senso antiorario z_0 a z e γ_2^- che coincide con la parte di γ che collega in senso antiorario z a z_0 . Allora si avrà

$$\int_{z_0 \gamma_1}^{z} f(z) dz = -\int_{z\gamma_2^{-}}^{z_0} f(z) dz = \int_{z\gamma_2}^{z_0} f(z) dz$$
 (5.231)

e questo per $\forall \gamma_1, \gamma_2 \subset D$. Allora possiamo definire una funzione

$$F(z) = F(z_0) + \int_{z_0}^{z} f(z) dz, \qquad (5.232)$$

che è la primitiva di f(z), ovvero tale che

$$F'(z) = f(z). (5.233)$$

Questo l'abbiamo già dimostrato nel paragrafo 5.3.1. Allora, F(z) è analitica in D e se è analitica anche la sua derivata lo è. Quindi f(z) è analitica in D.

Teorema 5.5.2 (di Liouville) Se una funzione f(z) è analitica in tutto \mathbb{C} ed è limitata in modulo in tutto $\overline{\mathbb{C}}$, allora è necessariamente una costante.

Dimostrazione. Segue dalla formula integrale per la derivata che

$$n(\gamma, z) f'(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)^2} dw, \qquad (5.234)$$

essendo γ una curva regolare che circonda z. Per ipotesi esiste un reale positivo, $M \in \mathbb{R}^+$ tale che

$$|f(z)| < M, \tag{5.235}$$

per $\forall z \in \mathbb{C}$. Allora

$$|n(\gamma, z) f'(z)| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z)^2} dw \right| \le \frac{1}{2\pi} L_{\gamma} \sup_{w \in \{\gamma\}} \left| \frac{f(w)}{(w - z)^2} \right|.$$
 (5.236)

Se consideriamo come γ una circonferenza di raggio r (per avere una formula pulita, ovviamente γ può essere qualsiasi curva e otteniamo lo stesso risultato) abbiamo $L_{\gamma} = 2\pi r$ e |w - z| = r. Quindi

$$|n(\gamma, z) f'(z)| < \frac{M}{r}, \qquad (5.237)$$

che vale per $\forall r > 0$, che si può prendere arbitrariamente grande. Quindi f'(z) = 0 ed f(z) è costante.

Questo risultato mi permette di dire che se f(z) è intera ed è limitata per ogni z al "finito", deve in qualche modo divergere in modulo per $z \to \infty$, cioè nel punto all'infinito.

Una conseguenza del teorema di Liouville è una dimostrazion e del teorema generale dell'Algebra.

Teorema 5.5.3 Sia $P_n(z) = a_0 + a_1 z + + a_n z^n$, con $a_i, z \in \mathbb{C}$ e $a_n \neq 0$. Allora esiste almeno un punto $z_0 \in \mathbb{C}$ tale che $P_n(z_0) = 0$.

Dimostrazione. Supponiamo per assurdo che ciò non sia vero, ovvero che $P_n(z) \neq 0$ per $\forall z \in \mathbb{C}$. Allora

$$f(z) = \frac{1}{P_n(z)},$$
 (5.238)

è una funzione intera e limitata in modulo in tutto $\bar{\mathbb{C}}$. Cioè dato un $\epsilon > 0$ piccolo a piacere, $\exists R > 0$ tale che $\forall z$ tali che |z| > R si abbia $|f(z)| < \epsilon$. Per il teorema di Liouville vuol dire che f(z) = cost, cosa banalmente falza. Quindi $P_n(z)$ deve avere almeno uno zero.

Se z_0 è una radice di $P_n(z)$ si può scrivere

$$P_n(z) = (z - z_0)P_{n-1}(z), (5.239)$$

con $P_{n-1}(z)$ polinomio di grado n-1 in z. Ripetendo lo stesso rtagionamento per $P_{n-1}(z)$ si ottiene

$$P_n(z) = (z - z_0)(z - z_1)P_{n-2}(z), (5.240)$$

e così via, finché non si sia espresso il poliunomio P_n come prodotto di, al più, n radici distinte.

5.6 Funzioni analitiche monodrome con singolarità isolate: serie di Laurent

Consideriamo f(z) analitica in un disco, $D(z_0, R)$, escluso il punto z_0 dove f(z) ha una singolarità isolata. Prendiamo un punto $z \in D(z_0, R)$ con $z \neq z_0$ e consideriamo il percorso $C = C_3 + r_1 + C_2 + r_2 + C_1 + r_3 + C_2' + r_4$ in D che escluda z_0 e z, come in figura:

Consideriamo la funzione

$$F(w,z) = \frac{f(w)}{w - z}$$
 (5.241)

e l'integrale

$$\int_{C} \frac{f(w)}{w - z} \, dw \,. \tag{5.242}$$

La funzione F(w,z) è analitica in z quando $w \in C$. Allora, per il teorema di Cauchy, si avrà

$$\int_{C} \frac{f(w)}{w - z} \, dw = 0. \tag{5.243}$$

Considerando il cammino C come in figura e facendo sì che i segmenti r_1 e r_4 vadano a sovrapporsi e così per r_2 e r_3 , si ha

$$\int_{C_3} \frac{f(w)}{w - z} dw + \int_{C_2} \frac{f(w)}{w - z} dw + \int_{C_1} \frac{f(w)}{w - z} dw = 0.$$
 (5.244)

I cammini C_1 e C_2 sono percorsi in senso orario, per cui, se invertiamo il senso di percorrenza, si avrà

$$\int_{C_3} \frac{f(w)}{w - z} dw - \int_{C_2^-} \frac{f(w)}{w - z} dw - \int_{C_1^-} \frac{f(w)}{w - z} dw = 0$$
 (5.245)

e quindi, dato che per la formula integrale di Cauchy si ha

$$\int_{C_2^-} \frac{f(w)}{w - z} dw = 2\pi i f(z), \qquad (5.246)$$

possiamo scrivere

$$f(z) = \frac{1}{2\pi i} \int_{C_2} \frac{f(w)}{w - z} dw - \frac{1}{2\pi i} \int_{C_2^-} \frac{f(w)}{w - z} dw.$$
 (5.247)

Se definiamo $\rho=|z-z_0|$, distanza di z da $z_0,\, \rho_1$ raggio di C_1 e ρ_2 raggio di C_2 , allora si avrà

$$\rho_1 < \rho < \rho_3 \,. \tag{5.248}$$

Consideriamo $w \in C_3$. Si avrà

$$|w - z_0| > |z - z_0|,$$
 (5.249)

poiché $\rho < \rho_3$. Allora possiamo formare una serie geometrica uniformemente convergente all'interno del cerchio di raggio ρ_3 tale che

$$\sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^n} = \frac{1}{1-\frac{z-z_0}{w-z}} = \frac{w-z_0}{w-z},$$
(5.250)

da cui

$$\frac{1}{w-z} = \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(w-z_0)^{n+1}}.$$
 (5.251)

Sostituendo nel primo integrale si ha

$$\int_{C_3} \frac{f(w)}{w - z} dw = \int_{C_3} \sum_{n=0}^{\infty} \frac{(z - z_0)^n}{(w - z_0)^{n+1}} f(w) dw = \sum_{n=0}^{\infty} (z - z_0)^n \int_{C_3} \frac{f(w)}{(w - z_0)^{n+1}} dw, \quad (5.252)$$

dove abbiamo scambiato l'integrazione con la somma perché uniformemente convergente.

NB Nonostante la forma del coefficienti della serie ricordi quella della derivata n-esima di f(z) in $z=z_0$, non si tratta della derivata, poiché la f(z) NON è analitica in $z=z_0$.

Consideriamo adesso $w \in C_1$. Si avrà

$$|w - z_0| < |z - z_0|, (5.253)$$

poiché $\rho > \rho_1$. Allora possiamo formare una serie geometrica uniformemente convergente all'esterno del cerchio di raggio ρ_1 tale che

$$\sum_{n=0}^{\infty} \frac{(w-z_0)^n}{(z-z_0)^n} = \frac{1}{1-\frac{w-z_0}{z-z_0}} = \frac{z-z_0}{z-w} = -\frac{z-z_0}{w-z},$$
(5.254)

da cui

$$\frac{1}{w-z} = -\sum_{n=0}^{\infty} \frac{(w-z_0)^n}{(z-z_0)^{n+1}}.$$
 (5.255)

Sostituendo nel secondo integrale si ha

$$\int_{C_1^-} \frac{f(w)}{w - z} dw = -\int_{C_1^-} \sum_{n=0}^{\infty} \frac{(w - z_0)^n}{(z - z_0)^{n+1}} f(w) dw, \qquad (5.256)$$

$$= -\sum_{n=0}^{\infty} \frac{1}{(z-z_0)^{n+1}} \int_{C_1^-} f(w)(w-z_0)^n dw, \qquad (5.257)$$

dove abbiamo scambiato l'integrazione con la somma perché uniformemente convergente. Riscaliamo adesso l'indice di somma, ponendo n + 1 = m e rinominiamo m = -n, avremo

$$\sum_{n=0}^{\infty} \frac{1}{(z-z_0)^{n+1}} \int_{C_1^-} f(w)(w-z_0)^n dw = \sum_{m=1}^{\infty} \frac{1}{(z-z_0)^m} \int_{C_1^-} \frac{f(w)}{(w-z_0)^{1-m}} dw, (5.258)$$

$$= \sum_{n=0}^{-1} (z-z_0)^n \int_{C_1^-} \frac{f(w)}{(w-z_0)^{n+1}} dw. (5.259)$$

Definendo

$$c_n = \frac{1}{2\pi i} \int_{C_2} \frac{f(w)}{(w - z_0)^{n+1}} dw, \qquad n = 0, 1, 2, 3, \dots,$$
 (5.260)

$$c_n = \frac{1}{2\pi i} \int_{C_1^-} \frac{f(w)}{(w - z_0)^{n+1}} dw, \qquad n = -1, -2, -3, \dots,$$
 (5.261)

possiamo scrivere

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n, \qquad (5.262)$$

che è assolutamnte convergente nel settore circolare fra C_1^- e C_3 . Siccome in questo settore circolare non ci sono punti di singolarità per la f(w)/(w-z), che risulta ivi essere analitica, possiamo utilizzare il principio di deformazione del cammino mandando l'integrazione di C_1^- in quella su C_3 o viceversa e l'integrale che definisce i coefficienti non cambia. Allora se prendiamo

un γ cammino chiuso che abbracci z_0 , definito nell'anello $A(\rho_1, \rho_3)$ posso ridefinire i coefficienti della serie come

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw, \qquad n = 0, \pm 1, \pm 2, \pm 3, \dots$$
 (5.263)

La formula (5.262) si dice serie di Laurent della funzione f(z). Abbiamo dimostrato il seguente teorema:

Teorema 5.6.1 (di Laurent) Sia f(z) monodroma e analitica in un disco di raggio R centrato in $z = z_0$, tranne che in z_0 dove f(z) ha una singolarità isolata. Allora, all'interno dell'anello centrato in z_0 ri raggi $0 < \rho_1 < \rho_2 < R$ vale il seguente sviluppo in serie di Laurent

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n, \qquad (5.264)$$

con

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw, \qquad n = 0, \pm 1, \pm 2, \dots$$
 (5.265)

 $e \{\gamma\}$ cammino intorno a z_0 , nell'anello. La serie converge uniformemente nell'anello.

NOTA. Notiamo che:

• La serie generalizzata di Laurent è la somma di due serie

$$\sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n (z - z_0)^n + \sum_{n=1}^{\infty} \frac{c_{-n}}{(z - z_0)^n}.$$
 (5.266)

La prima serie, a potenze positive di $(z-z_0)$, è la parte analitica dello sviluppo di Laurent. Converge uniformemente all'interno del cerchio di raggio maggiore. La seconda serie, a potenze negative di $(z-z_0)$, è detta parte principale di Laurent e converge uniformemente all'esterno al cerchio di raggio minore. La somma delle due converge nell'anello compreso fra i due raggi di convergenza.

- Per il principio di deformazione dei cammini, nella nostra dimostrazione possiamo pensare di stringere il cammino C_1 intorno a z_0 , con ρ_1 che tende a zero, ma che ovviamente non può essere identicamente nullo, poiché z_0 è un punto di non analiticità della f(z). D'altra parte, anche C_3 può essere esteso, aumentando ρ_3 fino al limite del dominio di analiticità della f(z), per esempio fino ad un'altra singolarità isolata della f(z). Quindi la convergenza della serie di Laurent nel caso specifico sopra indicato è da considerarsi nell'anello $A(z_0, 0, R)$, ovvero nell'anello con raggi $0 < \rho_1 < \rho_2 < R$.
- Non è detto che z_0 debba necessariamente essere un punto di non analiticità della f(z). Basta che si richieda l'espansione in serie di una funzione in un disco, ovvero in un dominio non semplicemente connesso, con un "buco". Supponiamo che in z=0 la f(z) sia analitica ma che abbia una singolarità isolata in z=1 e un'altra in z=2. Allora possiamo cercare una rappresentazione per serie della f(z) nell'anello centrato in z=0 di raggi $\rho_1=1$ e $\rho_2=2$, A(0,1,2). Questo si risolve necessariamente in uno sviluppo in serie generalizzata. La presenza della serie con i termini a potenza negativa interviene poiché non conosciamo la f(z) all'interno del cerchio di raggio $\rho_1=1$ essendo presente sulla frontiera di tale cerchio una singolarità della f(z).

• La serie generalizzata "comprende" il caso in cui z_0 , che abbiamo considerato come unica singolarità isolata nel dominio di analiticità $D(z_0, R)$, sia in realtà un punto di analiticità della f(z). Infatti, in questo caso la "parte analitica" della serie di Laurent continua ad essere valida e in questo caso i coefficienti c_n sono effettivamente dati dalla derivata ennesima di f(z) diviso n! (adesso f(z) è analitica in z_0 e quindi vale la formula integrale di Cauchy per f(z) e per le sue derivate). Invece, la parte principale di Laurent ha

$$c_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(w)}{(w - z_0)^{n+1}} dw, \qquad n = -1, -2, \dots$$
 (5.267)

ma essendo adesso z_0 un punto di analiticità della f(z) si ha $c_n = 0$ per $\forall n = -1, -2, ...$ il teorema di Cauchy. Si ritrova quindi lo sviluppo di Taylor per la f(z).

• Siccome la $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ è uniformemente convergente nell'anello $A(z_0, 0, R)$, per qualunque γ cammino regolare NON chiuso nell'anello, possiamo integrare la f(z) integrando termine a termine i menbri della serie

$$\int_{a\gamma}^{b} f(z) dz = \int_{a\gamma}^{b} \sum_{n=-\infty}^{\infty} c_n (z - z_0)^n = \sum_{n=0}^{\infty} c_n \int_{a\gamma}^{b} (z - z_0)^n dz + \sum_{n=1}^{\infty} c_{-n} \int_{a\gamma}^{b} \frac{dz}{(z - z_0)^n}.$$
(5.268)

Analogamente, la derivata di f(z) per $\forall z \in A(z_0, 0, R)$ si può eseguire derivando termine a termine gli elementi della serie

$$f'(z) = \sum_{n = -\infty}^{\infty} n c_n (z - z_0)^{n-1}.$$
 (5.269)

• Lo sviluppo di Laurent della f(z) è unico. Ovvero, se $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ allora i c_n sono univocamente definiti dalla (5.265). Infatti, sia $f(z) = \sum_{n=-\infty}^{\infty} c_n (z-z_0)^n$ nell'anello $A(z_0, 0, R)$. Scegliamo un cammino γ regolare chiuso che includa z_0 , appartenente al disco. Per tutti i punti di γ la serie è convergente. Scegliamo un intero m, moltiplichiamo entrambi i membri della (5.264) per $(z-z_0)^{-m-1}$ e integriamo su γ . Avremo

$$\int_{\gamma} \frac{f(z)}{(z-z_0)^{m+1}} dz = \sum_{n=-\infty}^{\infty} c_n \int_{\gamma} (z-z_0)^{n-m-1} dz.$$
 (5.270)

Ma gli integrali a secondo membro sono tutti nulli tranne che per n-m-1=-1, ovvero per n=m. In tal caso l'integrale dà $2\pi i$. Quindi si ha

$$\int_{\gamma} \frac{f(z)}{(z - z_0)^{m+1}} dz = 2\pi i c_m.$$
 (5.271)

5.7 Esempi

Esempio 1. Consideriamo la seguente funzione

$$f(z) = \frac{12}{z(z+1)(2-z)}. (5.272)$$

La f(z) è analitica in \mathbb{C} escluso i punti in cui si annulla il denominatore, ovvero z = 0, -1, 2, in cui ha delle singolarità isolate (poli di ordine 1).

Potremo quindi espandere la f(z) in serie di Laurent in diversi anelli di convergenza, delimitati dalle singolarità della funzione. Se consideriamo l'espansione centrata in z=0 si avrà la situazione riportata nella figura sotto.

Gli anelli di convergenza sono dati da

$$0 < |z| < 1, \qquad 1 < |z| < 2, \qquad |z| > 2.$$
 (5.273)

Nel punto all'infinito si ha

$$z \rightarrow \frac{1}{\zeta},$$

$$f\left(\frac{1}{\zeta}\right) = \frac{12\zeta^3}{(1+\zeta)(2\zeta-1)} \stackrel{\zeta \to 0}{\to} 0.$$
(5.274)

Quindi il punto all'infinito è uno zero di ordine 3 per la f(z). Ciò ci permette di capire immediatamente che nella regione esterna alla circonferenza di raggio $\rho = 2$ la serie di Laurent della f(z) sarà formata dai soli termini della parte principale e inoltre tale serie dovrà cominciare da $1/z^3$...

Regione 0 < |z| < 1 Per dare l'espressione della serie di Laurent della f(z) in questa regione ci conviene riscriverla come segue:

$$f(z) = \frac{4}{z(z+1)} + \frac{4}{z(2-z)}.$$
 (5.275)

Siccome |z| < 1, possiamo riscrivere i termini 1/(z+1) e 1/(2-z) come somma di una serie geometrica. Rispettivamente:

$$\frac{1}{(1+z)} = \sum_{n=0}^{\infty} (-1)^n z^n , \qquad (5.276)$$

$$\frac{1}{(2-z)} = \frac{1}{2\left(1-\frac{z}{2}\right)} = \frac{1}{2} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n. \tag{5.277}$$

Quindi in totale

$$f(z) = \frac{4}{z} \sum_{n=0}^{\infty} (-1)^n z^n + \frac{2}{z} \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n, \qquad (5.278)$$

$$= \sum_{n=0}^{\infty} \left[4(-1)^n + \frac{1}{2^{n-1}} \right] z^{n-1} \simeq \frac{6}{z} - 3 + \frac{9}{2}z + \dots$$
 (5.279)

Quindi la forma della serie di Laurent ci dice che la f(z) ha un polo semplice in z=0 (parte principale di Laurent con un solo termine) e una parte analitica con infiniti termini.

Possiamo controllare che la convergenza della serie arrivi effettivamente a R=1 studiando il termine ennesimo col criterio del rapporto.

Riscriviamo le serie come segue:

$$f(z) = \sum_{m=-1}^{\infty} \left[4(-1)^{m+1} + \frac{1}{2^m} \right] z^m = \frac{6}{z} + \sum_{m=0}^{\infty} \left[4(-1)^{m+1} + \frac{1}{2^m} \right] z^m.$$
 (5.280)

La parte analitica ha come coefficiente m-esimo

$$c_m = \left[4(-1)^{m+1} + \frac{1}{2^m} \right] = \frac{4(-1)^{m+1}2^m + 1}{2^m}.$$
 (5.281)

Quindi si ha anche

$$c_{m+1} = \frac{4(-1)^{m+2}2^{m+1} + 1}{2^{m+1}}. (5.282)$$

Infine, applicando il criterio del rapporto si trova

$$R = \lim_{m \to \infty} \frac{|c_m|}{|c_{m+1}|} = 1. {(5.283)}$$

Regione 1 < |z| < 2 Adesso |z| > 1 (e < 2), quindi la serie che avevamo scritto per il termine 1/(z+1) non va più bene. Dovremo considerare la seguente espressione

$$\frac{1}{z+1} = \frac{1}{z\left(1+\frac{1}{z}\right)} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{(-1)^n}{z^n},$$
 (5.284)

dove adesso

$$\left|\frac{1}{z}\right| < 1. \tag{5.285}$$

Allora

$$f(z) = \frac{4}{z^2 \left(1 + \frac{1}{z}\right)} + \frac{4}{z(2-z)}, \qquad (5.286)$$

$$= 4\sum_{n=0}^{\infty} \frac{(-1)^n}{z^{n+2}} + \sum_{n=0}^{\infty} \frac{z^{n-1}}{2^{n-1}}, \qquad (5.287)$$

$$= \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n + \frac{2}{z} + 4\sum_{n=1}^{\infty} \frac{(-1)^n}{z^{n+1}}, \qquad (5.288)$$

$$= \sum_{n=0}^{\infty} \left(\frac{z}{2}\right)^n + \frac{2}{z} + 4\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{z^n}.$$
 (5.289)

Questa volta abbiamo una parte principale con infiniti termini.

Regione |z| > 2 In questa regione anche la somma per il termine 1/(2-z) va aggiornata. Si ha

$$\frac{1}{2-z} = -\frac{1}{z\left(1-\frac{2}{z}\right)} = -\frac{1}{z}\sum_{n=0}^{\infty} \frac{2^n}{z^n} = -\sum_{n=0}^{\infty} \frac{2^n}{z^{n+1}},$$
(5.290)

poiché adesso è

$$\left|\frac{2}{z}\right| < 1. \tag{5.291}$$

In totale

$$f(z) = \frac{4}{z^2 \left(1 + \frac{1}{z}\right)} - \frac{4}{z^2 \left(1 - \frac{2}{z}\right)}, \tag{5.292}$$

$$= 4\sum_{n=0}^{\infty} \frac{(-1)^n}{z^{n+2}} - 4\sum_{n=0}^{\infty} \frac{2^n}{z^{n+2}} = 4\sum_{n=0}^{\infty} \frac{(-1)^n - 2^n}{z^{n+2}},$$
 (5.293)

$$\simeq -\frac{12}{z^3} - \frac{12}{z^4} + \dots$$
 (5.294)

Come si vede, la f(z) ha soltanto la parte principale di Laurent e questa comincia con $1/z^3$. Questo è effettivamente l'andamento che ci aspettavamo, in quanto, come abbiamo già commentato all'inizio, la f(z) ha uno zero di ordine 3 nel punto all'infinito.

La serie (5.293) converge effettivamente per |z| > 2. Lo possiamo controllare andando ad utilizzare il criterio del rapporto:

$$c_n = (-1)^n - 2^n, c_{n+1} = -(-1)^n - 2^n 2, (5.295)$$

quindi

$$\lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|} = \frac{1}{2}.$$
 (5.296)

Quindi la serie converge uniformemente per

$$\left|\frac{1}{z}\right| < \frac{1}{2},\tag{5.297}$$

ovvero

$$|z| > 2$$
. (5.298)

Esempio 2. Consideriamo la funzione

$$f(z) = e^{\frac{1}{z}}. (5.299)$$

La f(z) è analitica ovunque tranne in z=0 dove ha una singolarità (isolata) essenziale. Nel punto all'infinito la funzione è regolare ed ha limite 1. Possiamo sviluppare la f(z) in serie di Laurent in z=0 e la serie convergerà nell'anello $A(0,0,\infty)$ (centrato in z=0 di raggi $0 \in \infty$), ovvero per |z|>0.

Per trovare l'espressione della serie, ci ricordiamo che

$$e^w = \sum_{n=0}^{\infty} \frac{w^n}{n!} \,, \tag{5.300}$$

che converge uniformemente per $|w| < \infty$ e si pone $w = \frac{1}{z}$:

$$e^{\frac{1}{z}} = \sum_{n=0}^{\infty} \frac{1}{n! z^n} \,. \tag{5.301}$$

Si vede che questa serie ha le caratteristiche giuste. Converge uniformemente per

$$\left|\frac{1}{z}\right| < \infty \implies |z| > 0. \tag{5.302}$$

È formata solo dalla parte principale di Laurent (infatti la serie esterna a z = 0 "vede" il punto all'infinito, che è regolare e in cui la f(z) ha limite 1.

Si può ovviamente anche "dimostrare" che la serie appena scritta sia la serie giusta. Il coefficiente m-esimo della parte principale di Laurent, $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n + \sum_{m=1}^{\infty} \frac{c_m}{(z-z_0)^m}$ è dato da

$$c_m = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\omega)}{(\omega - z_0)^{1-m}} d\omega = \frac{1}{2\pi i} \int_{\gamma} \frac{e^{\frac{1}{\omega}}}{\omega^{1-m}} d\omega.$$
 (5.303)

Questo integrale può essere fatto utilizzando il teorema dei residui col residuo all'infinito (vedi dopo) e ci si può rendere conto che si ha esattamente

$$c_m = \frac{1}{m!} \,. \tag{5.304}$$

5.8 Serie di Laurent e Serie di Fourier

5.9 Teorema dei residui

Supponiamo che f(z) sia definita ed analitica in un aperto connesso $U \subset \mathbb{C}$ tranne in un punto z=a in cui f(z) abbia una singolarità isolata. Consideriamo una curva semplice regolare, γ , tale che $\{\gamma\} \subset U$ e $n(\gamma,a)=1, a \notin \{\gamma\}$. Allora

Definizione 5.9.1 Si dice "residuo" di f(z) in a il seguente numero complesso:

$$\operatorname{Res}(f, a) = \frac{1}{2\pi i} \int_{\gamma} f(z) \, dz \,. \tag{5.305}$$

Nella regione in questione la f(z) ammette una rappresentazione in serie di Laurent, quindi sarà

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - a)^n.$$
 (5.306)

Sostituendo nella (5.305) si ha

$$\operatorname{Res}(f, a) = \frac{1}{2\pi i} \int_{\gamma} \sum_{n = -\infty}^{\infty} c_n (z - a)^n dz = \sum_{n = -\infty}^{\infty} \frac{c_n}{2\pi i} \int_{\gamma} (z - a)^n dz = c_{-1},$$
 (5.307)

visto che gli integrali

$$\int_{\gamma} (z-a)^n \, dz \tag{5.308}$$

sono tutti nulli tranne quello con n = -1, che dà $2\pi i$. Quindi per calcolare il residuo della funzione in un punto singolare bisogna trovare il coefficiente del polo singolo dell'espansione della stessa in serie di Laurent.

Questo risultato può essere utilizzato per semplificare il calcolo di integrali che possono essere complicati tramite il teorema dei residui.

Teorema 5.9.2 (dei residui). Sia f(z) analitica in un aperto connesso $U \subset \mathbb{C}$ tranne in un numero finito n di punti, $\{a_1, a_2, ..., a_n\}$, in cui f(z) abbia delle singolarità isolate. Sia γ una curva chiusa semplice e regolare in U e sia $\{a_1, a_2, ..., a_n\} \in Int\{\gamma\}$ (cioè gli n punti di singolarità sono interni alla curva γ). Allora si ha

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{i=1}^{n} \operatorname{Res}(f, a_i).$$
(5.309)

Dimostrazione. Nella regione che esclude le singolarità $\{a_1, a_2, ..., a_n\}$ la f(z) è analitica. Quindi se prendiamo un cammino come in figura, in cui $\Gamma = \gamma + \gamma_1^- + ... + \gamma_n^-$, possiamo utilizzare il teorema di Cauchy.

Allora

$$0 = \int_{\Gamma} f(z) dz = \int_{\gamma} f(z) dz + \sum_{i=1}^{n} \int_{\gamma_{i}^{-}} f(z) dz,$$
$$= \int_{\gamma} f(z) dz - \sum_{i=1}^{n} \int_{\gamma_{i}} f(z) dz.$$
 (5.310)

Inoltre

$$\int_{\gamma_i} f(z) dz = 2\pi i \operatorname{Res}(f, a_i), \qquad (5.311)$$

da cui l'assunto.

NB L'importanza del teorema dei residui sta nel fatto che si riporta l'integrale della f(z) su γ , che potrebbe essere di difficile soluzione, al calcolo dei residui della f(z) nei punti di divergenza interni alla curva su cui integriamo e questo si riduce a calcolare il coefficiente del polo singolo nella serie di Laurent. Spesso ciò costituisce una semplificazione importante.

Il calcolo dei residui di una funzione può essere complicato, ma soprattutto nel caso di singolarità di tipo polare ci sono dei risultati che possono aiutare.

5.9.1 Residuo nel caso di singolarità polare di ordine m

Supponiamo che f(z) abbia un polo di ordine m in z=a. Allora per il teorema di Laurent si avrà

$$f(z) = \frac{c_{-m}}{(z-a)^m} + \frac{c_{-m+1}}{(z-a)^{m-1}} + \dots + \frac{c_{-1}}{(z-a)} + \sum_{n=0}^{\infty} c_n (z-a)^n.$$
 (5.312)

Ser moltiplichiamo ambo i membri della (5.312) per $(z-a)^m$ avremo

$$(z-a)^m f(z) = c_{-m} + c_{-m+1}(z-a) + \dots + c_{-1}(z-a)^{m-1} + \sum_{n=0}^{\infty} c_n(z-a)^{n+m}$$
 (5.313)

e derivando adesso m-1 volte e prendendo il limite per $z \to a$

$$\lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z - a)^m f(z) \right) = (m-1)! c_{-1}, \tag{5.314}$$

da cui

$$\operatorname{Res}(f, a) = c_{-1} = \frac{1}{(m-1)!} \lim_{z \to a} \frac{d^{m-1}}{dz^{m-1}} \left((z-a)^m f(z) \right) . \tag{5.315}$$

5.9.2 Residuo nel caso di polo singolo

Supponiamo che la f(z) sia della forma

$$f(z) = \frac{Q(z)}{P(z)},\tag{5.316}$$

con Q(z) e P(z) analitiche in z=a, con $Q(a)\neq 0$ e P(a)=0, ma $P'(a)\neq 0$. Allora z=a è un polo semplice per f(z) e si ha

$$\operatorname{Res}(f, a) = \lim_{z \to a} \frac{Q(z)}{P'(z)}.$$
 (5.317)

Infatti, se $P'(a) \neq 0$ si può scrivere

$$P(z) = p(z)(z - a),$$
 (5.318)

con p(z) analitica in $a \in p(a) \neq 0$. Quindi

$$f(z) = \frac{Q(z)}{p(z)(z-a)} = \frac{F(z)}{(z-a)}$$
 (5.319)

e Res(f, a) = F(a). Ma

$$F(a) = \frac{Q(a)}{p(a)} = \frac{Q(a)}{P'(a)}.$$
 (5.320)

Nel caso di polo singolo si ha anche che

$$\operatorname{Res}(f, a) = \frac{1}{\left(\frac{1}{f(z)}\right)'\Big|_{z=a}}.$$
(5.321)

Infatti si deve avere

$$f(z) = \frac{g(z)}{(z-a)} \tag{5.322}$$

e g(a) = Res(f, a). Ma

$$\left(\frac{1}{f(z)}\right)' = \frac{d}{dz} \left(\frac{z-a}{g(z)}\right) = \frac{g(z) - g'(z)(z-a)}{g^2(z)}$$
(5.323)

e quindi

$$\lim_{z \to a} \left(\frac{1}{f(z)} \right)' = \frac{1}{g(a)} = \frac{1}{\text{Res}(f, a)}.$$
 (5.324)

5.10 Esempi

Esempio 1. Calcoliamo il seguente integrale

$$\int_{\gamma} \sin\left(\frac{1}{z}\right) dz \,, \tag{5.325}$$

dove $\gamma = e^{it}$ con $0 \le t < 2\pi$.

La funzione

$$f(z) = \sin\left(\frac{1}{z}\right) \tag{5.326}$$

è analitica in tutto \mathbb{C} tranne in z=0 dove ha una singolarità isolata, essenziale. Per applicare il teorema dei residui dobbiamo trovare il residuo della f(z) in z=0, ovvero il coefficiente del polo singolo della sua espressione in serie di Laurent. Tale serie convergerà uniformemente nell'anello $A(0,0,\infty)$ ed è data da

$$\sin\left(\frac{1}{z}\right) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \left(\frac{1}{z}\right)^{2k+1} = \frac{1}{z} - \frac{1}{6z^3} + \dots$$
 (5.327)

Per cui il residuo è $c_{-1} = 1$ e

$$\int_{\gamma} \sin\left(\frac{1}{z}\right) dz = 2\pi i. \tag{5.328}$$

Esempio 2. Calcoliamo il seguente integrale

$$\int_{\gamma} \frac{e^z \sin(z)}{z(1 - \cos(z))} dz, \qquad (5.329)$$

dove $\gamma = Re^{it}$ con $0 \le t < 2\pi$.

Consideriamo la funzione integranda:

$$f(z) = \frac{e^z \sin(z)}{z(1 - \cos(z))}.$$
 (5.330)

Si vede subito che ha un polo di ordine 3 in z=0, unica singolarità della funzione. Siccome ci interessa il coefficiente del polo singolo, per applikcare il teorema dei residui, possiamo ricavarcelo da alcuni passaggi approssimati. Si ha

$$f(z) = \frac{e^z \sin(z)}{z(1 - \cos(z))} = \frac{\left(1 + z + \frac{z^2}{2} + \dots\right) \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots\right)}{z \left[1 - \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} + \dots\right)\right]},$$
 (5.331)

$$= \frac{2}{z^2} \frac{\left(1 + z + \frac{z^2}{3} + \dots\right)}{\left(1 - \frac{z^2}{12} + \dots\right)} \simeq \frac{2}{z^2} \left(1 + z + \frac{z^2}{3} + \dots\right) \left(1 + \frac{z^2}{12} + \dots\right) \simeq \frac{2}{z^2} + \frac{2}{z} + (5.332)$$

Quindi

$$Res(f,0) = 2 \tag{5.333}$$

e l'integrale vale

$$\int_{\gamma} \frac{e^z \sin(z)}{z(1 - \cos(z))} dz = 4\pi i.$$
 (5.334)

Si può anche applicare direttamente la (5.315) ottenendo

$$\operatorname{Res}(f,0) = \lim_{z \to 0} \frac{d}{dz} \left(\frac{ze^z \sin(z)}{1 - \cos(z)} \right) = \dots = 2.$$
 (5.335)

Esempio 3. Calcoliamo il seguente integrale

$$\int_{\gamma} \frac{\sinh(z)}{z^4} dz \,, \tag{5.336}$$

dove $\gamma = Re^{it}$ con $0 \le t < 2\pi$.

La funzione integranda ha un polo di ordine 3 in z=0 ed è analitica nel resto di $\mathbb C$. Si avrà

$$f(z) = \frac{1}{z^4} \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} z^{2k+1} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} z^{2k-3} = \frac{1}{z^3} + \frac{1}{6z} + \dots$$
 (5.337)

Quindi

$$Res(f,0) = \frac{1}{6} \tag{5.338}$$

e l'integrale vale

$$\int_{\mathcal{Z}} \frac{\sinh(z)}{z^4} dz = \frac{\pi}{3}i. \tag{5.339}$$

Anche in questo caso si poteva usare la (5.315) ottenendo

$$\operatorname{Res}(f,0) = \frac{1}{2} \lim_{z \to 0} \frac{d^2}{dz^2} \left(\frac{\sinh(z)}{z} \right) = \dots = \frac{1}{6}.$$
 (5.340)

5.11 Lemma di Jordan e lemma degli archi infinitesimi

Il teorema dei residui ci permette di calcolare degli integrali nei complessi andando semplicemente ad individuare i residui della funzione integranda all'interno del cammino di integrazione. Questa tecnica è molto potente e permette di risolvere anche integrali nei reali, passando ad integrali nei complessi.

Per sfruttare nei reali le potenzialità dell'integrazione con i residui, abbiamo bisogno di alcuni risultati importanti che riguardano il calcolo di integrali su archi di circonferenza, infiniti o infinitesimi.

Lemma 5.11.1 (di Jordan) Sia γ_k una successione di archi di circonferenza di raggio R_k (come in figura) e sia $\lim_{k\to\infty} R_k = \infty$. Sia f(z) una funzione continua su $\{\gamma_k\}$, per $\forall k \in \mathbb{N}$, e, posto $M_k = \sup_{z \in \{\gamma_k\}} |f(z)|$, sia $\lim_{k\to\infty} M_k = 0$. Allora, per $\forall \lambda > 0$, $\lambda \in \mathbb{R}$, si ha

$$\lim_{k \to \infty} \int_{\gamma_k} f(z)e^{i\lambda z} dz = 0.$$
 (5.341)

Dimostrazione. Riferendoci alla figura, abbiamo

$$\theta_k = \arcsin\left(\frac{a}{R_k}\right) \tag{5.342}$$

dove $a \in \mathbb{R}$ e a > 0. Inoltre l'arco di circonferenza γ_k è tale che

$$\gamma_k: \quad [-\theta_k, \pi + \theta_k] \to \mathbb{C},$$

$$t \to R_k e^{it}. \quad (5.343)$$

Dimostriamo l'assunto, procedendo separatamente con i quattro archi $\widehat{A_k B_k}$, $\widehat{B_k C_k}$, $\widehat{C_k D_k}$, $\widehat{D_k E_k}$.

 $\widehat{A_k B_k}$ Quando $z \in \widehat{A_k B_k}$ si ha

$$\sup_{z \in \widehat{A_k B_k}} |f(z)e^{i\lambda z}| = \sup_{z \in \widehat{A_k B_k}} |f(z)| |e^{-\lambda R_k \sin(t)}e^{i\lambda R_k \cos(t)}| = \sup_{z \in \widehat{A_k B_k}} |f(z)| |e^{-\lambda R_k \sin(t)}|,$$

$$= M_k e^{\lambda a}, \qquad (5.344)$$

dove abbiamo usato il fatto che $z = R_k(\cos(t) + i\sin(t))$ e che $-a < R_k\sin(t) < 0$ per $-\theta_k \le t \le 0$. Quindi

$$\left| \int_{\widehat{A_k B_k}} f(z) e^{i\lambda z} dz \right| < L_{\widehat{A_k B_k}} \sup_{z \in \widehat{A_k B_k}} |f(z)| = R_k \theta_k M_k e^{\lambda a}.$$
 (5.345)

Ma $R_k \theta_k$ è limitato per $k \to \infty$ e quindi, siccome $M_k \to 0$ si ha

$$\lim_{k \to \infty} \int_{\widehat{A_k B_k}} f(z)e^{i\lambda z} dz = 0.$$
 (5.346)

 $\widehat{B_k C_k}$ Quando $z \in \widehat{B_k C_k}$ si ha

$$\left| \int_{\widehat{B_k C_k}} f(z) e^{i\lambda z} dz \right| = \left| \int_0^{\frac{\pi}{2}} f(R_k e^{it}) e^{i\lambda R_k (\cos t + i\sin t)} iR_k e^{it} dt \right|, \qquad (5.347)$$

$$\leq \int_0^{\frac{\pi}{2}} \left| f(R_k e^{it}) e^{i\lambda R_k(\cos t + i\sin t)} i R_k e^{it} \right| dt, \qquad (5.348)$$

$$\leq M_k R_k \int_0^{\frac{\pi}{2}} e^{-\lambda R_k \sin t} dt. \tag{5.349}$$

Se $0 < t < \pi/2$, si ha che $\sin t > \frac{2}{\pi}t$, per cui

$$\int_0^{\frac{\pi}{2}} e^{-\lambda R_k \sin t} dt \le \int_0^{\frac{\pi}{2}} e^{-\lambda R_k \frac{2}{\pi} t} dt = \left. \frac{e^{-\frac{2}{\pi} \lambda R_k t}}{-\frac{2}{\pi} \lambda R_k} \right|_0^{\frac{\pi}{2}} = \frac{\pi}{2\lambda R_k} (1 - e^{-\lambda R_k}), \tag{5.350}$$

che, per $R_k \to \infty$ va a zero come $1/R_k$. Allora si ha

$$\left| \int_{\widehat{B_k C_k}} f(z) e^{i\lambda z} dz \right| < M_k R_k \frac{\pi}{2\lambda R_k} (1 - e^{-\lambda R_k}) = M_k \frac{\pi}{2\lambda} (1 - e^{-\lambda R_k}) \stackrel{k \to \infty}{\to} 0, \tag{5.351}$$

poiché $M_k \to 0$ per $k \to \infty$. Quindi

$$\lim_{k \to \infty} \int_{\widehat{B_k C_k}} f(z)e^{i\lambda z} dz = 0.$$
 (5.352)

 $\widehat{C_kD_k}$ Quando $z\in\widehat{C_kD_k}$ si ha $\frac{\pi}{2}<\theta_k<\pi$. In questo intervallo si ha

$$\sin t > 2 - \frac{2}{\pi}t\tag{5.353}$$

e quindi

$$\int_{\frac{\pi}{2}}^{\pi} e^{-\lambda R_k \sin t} dt \le e^{-2\lambda R_k} \int_{\frac{\pi}{2}}^{\pi} e^{\lambda R_k \frac{2}{\pi} t} dt = \left. \frac{e^{\frac{2}{\pi} \lambda R_k t - 2\lambda R_k}}{\frac{2}{\pi} \lambda R_k} \right|_{\frac{\pi}{2}}^{\pi} = \frac{\pi}{2\lambda R_k} (1 - e^{-\lambda R_k}). \tag{5.354}$$

Per cui, come sull'arco $\widehat{B_kC_k}$, anche sul $\widehat{B_kC_k}$ si ha

$$\lim_{k \to \infty} \int_{\widehat{C_k D_k}} f(z)e^{i\lambda z} dz = 0.$$
 (5.355)

 $\widehat{D_k E_k}$ Quando $z \in \widehat{D_k E_k}$ si ha esattamente lo stesso risultato che per $\widehat{A_k B_k}$ e quindi

$$\lim_{k \to \infty} \int_{\widehat{D_k E_k}} f(z)e^{i\lambda z} dz = 0.$$
 (5.356)

In totale si ha l'assunto.

Teorema 5.11.2 (della media di Gauss) Sia f(z) analitica e non costante in $D \subset \mathbb{C}$, aperto e connesso e sia $\gamma = z_0 + \rho e^{it}$ con $0 \le t < 2\pi$ una circonferenza centrata in $z = z_0$ con $z_0 \in D$. Allora si ha

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt, \qquad (5.357)$$

ovvero che il valore di f(z) in z_0 è dato dalla media dei valori che f(z) assume sulla circonferenza che circonda z_0 .

Dimostrazione. In $z=z_0$ la f(z) è analitica, per cui vale la formula integrale di Cauchy:

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = \frac{1}{2\pi i} \int_0^{2\pi} \frac{f(z_0 + \rho e^{it})}{\rho e^{it}} \rho i e^{it} dt = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + \rho e^{it}) dt.$$
 (5.358)

Lemma 5.11.3 (degli archi infinitesimi) Sia z = a un polo singolo per f(z) definita ed analitica in $D \subset \mathbb{C}$ tranne in z = a, con $a \in D$. Sia $\gamma_r : [c,d] \to \mathbb{C}$ un arco di circonferenza con centro in z = a e raggio r e tale che arg $\gamma_r(c) = \theta$ e arg $\gamma_r(d) = \theta + \alpha$. Allora si ha

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = i\alpha \operatorname{Res}(f, a). \tag{5.359}$$

Dimostrazione. Se f(z) ha un polo semplice in z = a sarà esprimibile come

$$f(z) = \frac{c_{-1}}{z - a} + g(z),$$
 (5.360)

dove g(z) è analitica in z = a. Integriamo su γ . Avremo

$$\int_{\gamma_r} f(z) dz = \int_{\gamma_r} \frac{c_{-1}}{z - a} dz + \int_{\gamma_r} g(z) dz, \qquad (5.361)$$

$$= c_{-1} \int_{\theta}^{\theta + \alpha} \frac{1}{re^{it}} i r e^{it} dt + \int_{\gamma_r} g(z) dz, \qquad (5.362)$$

$$= c_{-1} i \alpha + \int_{\gamma_r} g(z) dz.$$
 (5.363)

Prendendo ora il limite $\lim_{r\to 0}$ si ha

$$\lim_{r \to 0} \int_{\gamma_r} f(z) dz = i\alpha \operatorname{Res}(f, a) + \lim_{r \to 0} \int_{\gamma_r} g(z) dz.$$
 (5.364)

Dobbiamo dimostrare che $\lim_{r\to 0} \int_{\gamma_r} g(z) dz = 0$. Si ha

$$\left| \int_{\gamma_r} g(z) dz \right| \le L_{\gamma_r} \sup_{z \in \{\gamma_r\}} |g(z)| = \alpha r \sup_{z \in \{\gamma_r\}} |g(z)|. \tag{5.365}$$

g(z) è analitica in tutto il dominio e quindi anche continua e limitata. Per cui, se prendiamo il limite $r \to 0$ abbiamo l'assunto.

5.12 Integrazione con i residui di funzioni razionali trigonometriche nei reali

Vediamo adesso come sfruttare il teorema dei residui per calcolare integrali nei reali. Ci sono diverse "classi" di integrali che si possono risolvere con questa tecnica.

Una prima classe consiste in integrali del tipo

$$I = \int_0^{2\pi} R(\cos \theta, \sin \theta) \, d\theta \,, \tag{5.366}$$

con $R(\cos \theta, \sin \theta)$ una funzione razionale di seni e coseni, che sia finita per tutti i valori di $\theta \in [0, 2\pi]$.

Si interpreta l'integrale (5.366) come un integrale nei complessi sulla circonferenza di raggio $1, \gamma: \theta \to e^{i\theta}$ con $\theta \in [0, 2\pi]$, facendo le seguenti sostituzioni:

$$z = e^{i\theta}$$
, (sulla circonferenza unitaria) (5.367)

$$dz = ie^{i\theta} d\theta = iz d\theta \Longrightarrow d\theta = -i\frac{dz}{z}, \qquad (5.368)$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right) ,$$
 (5.369)

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i} \left(z - \frac{1}{z} \right). \tag{5.370}$$

Allora

$$R(\cos\theta, \sin\theta) \to W(z) = R\left(\frac{1}{2}\left(z + \frac{1}{z}\right), \frac{1}{2i}\left(z - \frac{1}{z}\right)\right)$$
 (5.371)

e

$$I = \int_0^{2\pi} R(\cos\theta, \sin\theta) d\theta \to -i \int_{\gamma} \frac{W(z)}{z} dz.$$
 (5.372)

W(z)/z sarà una funzione razionale

$$\frac{W(z)}{z} = \frac{Q(z)}{P(z)},\tag{5.373}$$

quindi si potrà calcolare l'integrale calcolando i residui della funzione interni a $\{\gamma\}$.

Esempio.

Calcolare il seguente integrale

$$I = \int_0^{2\pi} \frac{d\theta}{1 + a \cos \theta}, \qquad a \in \mathbb{R}, -1 < a < 1.$$
 (5.374)

Riportiamoci ad un integrale nei complessi sulla circonferenza di raggio unitario. Si ha

$$d\theta = -i\frac{dz}{z}, (5.375)$$

$$\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left(z + \frac{1}{z} \right) ,$$
 (5.376)

$$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i} \left(z - \frac{1}{z} \right). \tag{5.377}$$

Per cui

$$I = -i \int_{\gamma} \frac{1}{1 + \frac{a}{2} \left(z + \frac{1}{z}\right)} \frac{dz}{z} = \frac{2}{ia} \int_{\gamma} \frac{1}{z^2 + \frac{2}{a}z + 1} dz.$$
 (5.378)

Per calcolare questo integrale cerchiamo i residui della funzione

$$f(z) = \frac{1}{z^2 + \frac{2}{a}z + 1} \tag{5.379}$$

nei punti di singolarità interni a γ . Si ha

$$z^{2} + \frac{2}{a}z + 1 = 0 \quad \to \quad z_{\pm} = \frac{-1 \pm \sqrt{1 - a^{2}}}{a},$$
 (5.380)

con $|z_+||z_-|=1$, per cui siccome $|z_-|>1$ si ha $|z_+|<1$. Quindi

$$f(z) = \frac{1}{(z - z_{+})(z - z_{-})},$$
(5.381)

dove $z=z_+$ è un polo interno alla circonferenza $\gamma,$ mentre $z=z_-$ è un polo esterno. Allora si avrà

$$I = \frac{2}{ia} \int_{\gamma} \frac{1}{z^2 + \frac{2}{a}z + 1} dz = \frac{2}{ia} 2\pi i \operatorname{Res}(f, z_+) , \qquad (5.382)$$

dove

$$\operatorname{Res}(f, z_{+}) = \lim_{z \to z_{+}} (z - z_{+}) f(z) = \lim_{z \to z_{+}} \frac{1}{(z - z_{-})} = \frac{1}{(z_{+} - z_{-})} = \frac{a}{2\sqrt{1 - a^{2}}}.$$
 (5.383)

In totale

$$I = \frac{2\pi}{\sqrt{1 - a^2}} \,. \tag{5.384}$$

NB L'integrale di partenza è un integrale reale e quindi bisogna ottenere, alla fine, un risultato reale. Anche risolvendolo passando ai complessi, bisogna che alla fine le parti immaginarie si cancellino. Questo è un buon check che il calcolo sia stato eseguito correttamente. O meglio: se il risultato venisse com plesso, sarebbe indice immediato di un errore in qualche passaggio!!!

5.13 Integrali di Fourier

Un'altra classe di integrali che si risolvono facilmente passando ai complessi sono integrali del tipo

$$I = \int_{-\infty}^{\infty} f(x) dx, \qquad (5.385)$$

in cui f(x) ammetta prolungamento analitico in \mathbb{C} a una f(z) tale che f(z) si riduca a f(x) quando $\Im(z) \to 0$ (sull'asse dei reali). Inoltre f(z) deve avere un numero finito di singolarità al finito e esser tale da poter sfruttare il Lemma di Jordan.

Esempio.

Un esempio classico è costituito da una trasformata di Fourier come la seguente:

$$I = \int_{-\infty}^{\infty} \frac{e^{-ikx}}{x^2 + 1} \, dx \,. \tag{5.386}$$

Per calcolare l'integrale I passiamo ai complessi e cerchiamo di sfruttare il teorema dei residui. La funzione da integrare è costituita da una funzione fratta che moltiplica un esponenziale e quindi la situazione ricorda il lemma di Jordan ... L'idea è quella di trovare una funzione f(z) che sull'asse delle x si riduca alla $f(x) = \frac{e^{-ikx}}{x^2+1}$ e che sia integrata su un cammino opportuno tale da farci calcolare l'integrale I facendo solo il calcolo di residui.

Consideriamo quindi la seguente funzione dei complessi:

$$f(z) = \frac{e^{-ikz}}{z^2 + 1}. (5.387)$$

La f(z) è analitica in \mathbb{C} tranne che nei due punti in cui si annulla il denominatore

$$z^2 + 1 = 0$$
, $z_{\pm} = \pm i$, (5.388)

dove la f(z) ha due poli singoli. Possiamo riscrivere esplicitamente

$$f(z) = \frac{e^{-ikz}}{(z-i)(z+i)}.$$
 (5.389)

Scegliamo un cammino γ nei complessi che può essere identificato con la curva $\gamma_+ = \gamma$ +

 γ_{R+} , data da $\gamma = t$, -R < t < R, e $\gamma_{R+} = Re^{it}$, $0 \le t \le \pi$ o con la $\gamma_{-} = \gamma + \gamma_{R-}$, data da $\gamma = t$, -R < t < R, e $\gamma_{R-} = Re^{it}$, $0 \le t \le -\pi$ (vedi figura).

Consideriamo l'integrazione su γ_+ . Per il teorema dei residui avremo

$$\lim_{R \to \infty} \int_{\gamma_{+}} \frac{e^{-ikz}}{z^{2} + 1} dz = 2\pi i \operatorname{Res}(f, i) = 2\pi i \lim_{z \to i} (z - i) f(z) = 2\pi i \lim_{z \to i} \frac{e^{-ikz}}{z + i} = \pi e^{k}.$$
 (5.390)

D'altra parte

$$\lim_{R \to \infty} \int_{\gamma_{+}} \frac{e^{-ikz}}{z^{2} + 1} dz = I + \lim_{R \to \infty} \int_{\gamma_{R+}} \frac{e^{-ikz}}{z^{2} + 1} dz = I + \lim_{R \to \infty} \int_{0}^{\pi} \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^{2}e^{2i\theta} + 1} iRe^{i\theta} d\theta . \quad (5.391)$$

Per cui si ha

$$I = \pi e^k - \lim_{R \to \infty} \int_0^{\pi} \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^2 e^{2i\theta} + 1} iRe^{i\theta} d\theta.$$
 (5.392)

Si può dimostrare che

$$\lim_{R \to \infty} \int_0^{\pi} \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^2 e^{2i\theta} + 1} iRe^{i\theta} d\theta = 0, \qquad (5.393)$$

se k < 0. Infatti

$$\left| \int_0^\pi \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^2 e^{2i\theta} + 1} iRe^{i\theta} d\theta \right| < \int_0^\pi \frac{e^{kR\sin\theta}}{|R^2 e^{2i\theta} + 1|} R d\theta \tag{5.394}$$

e siccome in $[0, 2\pi]$ il $\sin \theta$ è positivo, si ha che se k < 0

$$\int_0^{\pi} \frac{e^{kR\sin\theta}}{|R^2 e^{2i\theta} + 1|} R d\theta \stackrel{R \to \infty}{\to} 0.$$
 (5.395)

Se k > 0 non possiamo integrare su γ_{R+} , altrimenti l'integrale sulla semicirconferenza diverge. Guardiamom allora cosa succederebbe se integrassimo su γ_{R-} . Prima di tutto dovremmo considerare il fatto che l'integrale è adesso calcolato percorrendo la curva intorno al polo in z = -i in senso antiorario. Quindi il teorema dei residui dà

$$\lim_{R \to \infty} \int_{\gamma_{-}} \frac{e^{-ikz}}{z^{2} + 1} dz = -2\pi i \operatorname{Res}(f, i) = -2\pi i \lim_{z \to -i} (z + i) f(z) = -2\pi i \lim_{z \to -i} \frac{e^{-ikz}}{z - i} = \pi e^{-k} .$$
(5.396)

D'altra parte

$$\lim_{R \to \infty} \int_{\gamma_{-}} \frac{e^{-ikz}}{z^{2} + 1} dz = I + \lim_{R \to \infty} \int_{\gamma_{R-}} \frac{e^{-ikz}}{z^{2} + 1} dz = I + \lim_{R \to \infty} \int_{0}^{-\pi} \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^{2}e^{2i\theta} + 1} iRe^{i\theta} d\theta . \quad (5.397)$$

Questa volta abbiamo

$$\lim_{R \to \infty} \int_0^{-\pi} \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^2 e^{2i\theta} + 1} iRe^{i\theta} d\theta = 0, \qquad (5.398)$$

se k > 0. Infatti

$$\left| \int_0^{-\pi} \frac{e^{-ikR(\cos\theta + i\sin\theta)}}{R^2 e^{2i\theta} + 1} iRe^{i\theta} d\theta \right| < \int_0^{-\pi} \frac{e^{kR\sin\theta}}{|R^2 e^{2i\theta} + 1|} R d\theta$$
 (5.399)

ma il $\sin \theta$ ora è negativo, visto che $\theta \in [0, -\pi]$. Quindi

$$\int_0^{-\pi} \frac{e^{kR\sin\theta}}{|R^2 e^{2i\theta} + 1|} R d\theta \stackrel{R \to \infty}{\to} 0, \qquad (5.400)$$

se k > 0.

In totale si ha

$$\int_{-\infty}^{\infty} \frac{e^{-ikx}}{x^2 + 1} \, dx = \pi \, e^{-|k|} \,. \tag{5.401}$$

Il risultato (5.401) è valido anche per k=0. Per vederlo potremmo applicare la stessa tecnica all'integrale

$$I = \int_{-\infty}^{\infty} \frac{dx}{x^2 + 1} \tag{5.402}$$

e troveremmo $I = \pi$.

Esempio.

Un altro esempio è costituito dalla trasformata di Fourier della gaussiana:

$$I = \int_{-\infty}^{\infty} e^{-ax^2 - ipx} \, dx \,. \tag{5.403}$$

Supponiamo di conoscere il seguente integrale

$$\int_{-\infty}^{\infty} e^{-ax^2} \, dx = \sqrt{\frac{\pi}{a}} \,. \tag{5.404}$$

Per calcolare I consideriamo la seguente funzione

$$f(z) = e^{-az^2} \,, \tag{5.405}$$

che è intera. Se valutiamo la f(z) sull'asse dei reali otteniamo e^{-ax^2} che sappiamo integrare (come in (5.404)). Se valutiamo f(z) su z = x + ik, con k costante, abbiamo

$$e^{-az^2} = e^{-a(x+ik)^2} = e^{-a(x^2-k^2+2ikx)} = e^{ak^2}e^{-ax^2} - 2akxi$$
. (5.406)

Se poniamo $k = \frac{p}{2a}$ otteniamo

$$e^{-az^2} = e^{\frac{p^2}{4a}} e^{-ax^2 - ipx},$$
 (5.407)

ovvero la funzione che volevamo integrare inizialmente, moltiplicata per $e^{\frac{p^2}{4a}}$.

Allora prendiamo il cammino in figura, $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$, sul quale si ha per il teorema di Cauchy

$$0 = \lim_{b \to \infty} \int_{\gamma} e^{-az^{2}} dz = \lim_{b \to \infty} \left[\int_{\gamma_{1}} e^{-az^{2}} dz + \int_{\gamma_{2}} e^{-az^{2}} dz + \int_{\gamma_{3}} e^{-az^{2}} dz + \int_{\gamma_{4}} e^{-az^{2}} dz \right],$$

$$= \lim_{b \to \infty} e^{\frac{p^{2}}{4a}} \int_{-b}^{b} e^{-ax^{2} - ipx} dx - \lim_{b \to \infty} \int_{0}^{\frac{p}{2a}} e^{-a(b+iy)^{2}} idy - \lim_{b \to \infty} \int_{-b}^{b} e^{-ax^{2}} dx$$

$$+ \lim_{b \to \infty} \int_0^{\frac{p}{2a}} e^{-a(-b+iy)^2} i dy,$$

$$= e^{\frac{p^2}{4a}} I - \sqrt{\frac{\pi}{a}} - \lim_{b \to \infty} \int_0^{\frac{p}{2a}} e^{-a(b+iy)^2} i dy + \lim_{b \to \infty} \int_0^{\frac{p}{2a}} e^{-a(-b+iy)^2} i dy.$$
(5.408)

Si ha

$$\left| \int_0^{\frac{p}{2a}} e^{-a(\pm b + iy)^2} i dy \right| = \left| e^{-ab^2} \int_0^{\frac{p}{2a}} e^{ay^2} e^{\mp 2abiy} i dy \right|, \tag{5.409}$$

$$< e^{-ab^2} \int_0^{\frac{p}{2a}} e^{ay^2} dy = e^{-ab^2} \frac{1}{2} \sqrt{\frac{\pi}{a}} \operatorname{Erf}\left(\frac{p}{2\sqrt{a}}\right).$$
 (5.410)

Quindi

$$\lim_{b \to \infty} \int_0^{\frac{p}{2a}} e^{-a(\pm b + iy)^2} i dy = 0.$$
 (5.411)

Infine

$$\int_{-\infty}^{\infty} e^{-ax^2 - ipx} \, dx = \sqrt{\frac{\pi}{a}} \, e^{-\frac{p^2}{4a}} \,. \tag{5.412}$$

Esempio.

Ci si può riportare ad integrali di tipo Fourier anche nel seguente caso

$$I = \int_{-\infty}^{\infty} \frac{\sin(x)}{x^2 - x + 1} dx.$$
 (5.413)

Infatti, notiamo che il sin (x) è la parte immaginaria di e^{ix} e quindi

$$J = \int_{-\infty}^{\infty} \frac{e^{ix}}{x^2 - x + 1} dx = \int_{-\infty}^{\infty} \frac{\cos(x)}{x^2 - x + 1} dx + i I.$$
 (5.414)

Calcoliamo J e poi prendiamone la parte immaginaria, per ottenere I. Per calcolare J consideriamo la funzione di variabile complessa

$$f(z) = \frac{e^{iz}}{z^2 - z + 1}, \qquad (5.415)$$

che è analitica in \mathbb{C} tranne nei punti in cui si annulla il denominatore, ovvero

$$z_{\pm} = \frac{1 \pm i\sqrt{3}}{2} \,. \tag{5.416}$$

Allora possiamo sfruttare il teorema dei residui e il lemma di Jordan per calc olare I. Integriamo la f(z) sulla curva in figura, $\Gamma = \gamma + \gamma_{R^+}$. Si avrà

$$\lim_{R \to \infty} \int_{\Gamma} f(z) dz = 2\pi i \operatorname{Res}(f, z_{+}), \qquad (5.417)$$

dove

$$\operatorname{Res}(f, z_{+}) = \lim_{z \to z_{+}} (z - z_{+}) f(z) = \frac{e^{iz_{+}}}{(z_{+} - z_{-})} = \left(\frac{e^{-\frac{\sqrt{3}}{2}} e^{\frac{i}{2}}}{i\sqrt{3}}\right).$$
 (5.418)

D'altra parte

$$\lim_{R \to \infty} \int_{\Gamma} f(z) dz = J + \lim_{R \to \infty} \int_{\gamma_{R^+}} f(z) dz = J, \qquad (5.419)$$

poiché per il lemma di Jordan si ha

$$\lim_{R \to \infty} \int_{\gamma_{P^+}} f(z) \, dz = 0 \,. \tag{5.420}$$

In totale quindi

$$J = \frac{2\pi e^{-\frac{\sqrt{3}}{2}}}{\sqrt{3}} \left(\cos\left(\frac{1}{2}\right) + i\sin\left(\frac{1}{2}\right)\right) \tag{5.421}$$

е

$$I = \int_{-\infty}^{\infty} \frac{\sin(x)}{x^2 - x + 1} dx = \Im(J) = \frac{2\pi e^{-\frac{\sqrt{3}}{2}}}{\sqrt{3}} \sin\left(\frac{1}{2}\right). \tag{5.422}$$

5.14 Integrali di Fresnel

Consideriamo i due seguenti integrali

$$I_1 = \int_0^\infty \sin(x^2) dx$$
, $I_2 = \int_0^\infty \cos(x^2) dx$. (5.423)

Un modo per valutarli entrambi è quello di usare la formula di Eulero:

$$\int_{0}^{\infty} \left[\cos(x^{2}) + i \sin(x^{2}) \right] dx = \int_{0}^{\infty} e^{ix^{2}} dx.$$
 (5.424)

Una volta valutato

$$I = \int_0^\infty e^{ix^2} \, dx \,, \tag{5.425}$$

avremo direttamente I_1 come parte immaginaria di I e I_2 come sua parte reale. Sfruttiamo, anche in questo caso, la conoscenza del risultato

$$\int_0^\infty e^{-x^2} dx = \frac{\sqrt{\pi}}{2} \,. \tag{5.426}$$

Consideriamo la funzione

$$f(z) = e^{iz^2} \,. \tag{5.427}$$

continuazione analitica della $f(x) = e^{ix^2}$ al piano complesso. La f(z) quindi si riduce alla f(x) quando siamo sull'asse reale. Inoltre è intera, quindi dovremo sfruttare il teorema di Cauchy.

Integriamo sul cammino in figura: $\gamma = \gamma_1 + \gamma_2 + \gamma_3$. Si avrà

$$0 = \lim_{k \to \infty} \int_{\gamma} e^{iz^2} dz = I + \lim_{k \to \infty} \int_{\gamma_2} e^{iz^2} dz - \lim_{k \to \infty} \int_{\gamma_3^-} e^{iz^2} dz.$$
 (5.428)

Si ha che $\gamma_3^- = te^{i\frac{\pi}{4}}$ con $0 \le t \le k$ (parametrizzazione della semiretta che parte dall'origine ed è inclinata di $\pi/4$). Allora

$$\lim_{k \to \infty} \int_{\gamma_3^-} e^{iz^2} dz = \lim_{k \to \infty} \int_0^k e^{it^2 e^{i\frac{\pi}{2}}} e^{i\frac{\pi}{4}} dt = e^{i\frac{\pi}{4}} \lim_{k \to \infty} \int_0^k e^{-t^2} dt = e^{i\frac{\pi}{4}} \frac{\sqrt{\pi}}{2}.$$
 (5.429)

Sul cammino γ_2 si ha:

$$\lim_{k \to \infty} \int_{\gamma_2} e^{iz^2} dz = \lim_{k \to \infty} \int_0^{\frac{\pi}{4}} e^{ik^2(\cos 2\theta + i\sin 2\theta)} ike^{i\theta} d\theta.$$
 (5.430)

Siccome

$$\left| \int_{\gamma_2} e^{iz^2} dz \right| \leq \int_0^{\frac{\pi}{4}} \left| e^{ik^2(\cos 2\theta + i\sin 2\theta)} ik e^{i\theta} \right| d\theta = \frac{k}{2} \int_0^{\frac{\pi}{2}} e^{-k^2 \sin \phi} d\phi < \frac{k}{2} \int_0^{\frac{\pi}{2}} e^{-\frac{2}{\pi}k^2 \phi} d\phi,$$

$$= \frac{\pi}{4} \frac{1 - e^{-k^2}}{k}, \qquad (5.431)$$

si ha

$$\lim_{k \to \infty} \int_{\gamma_2} e^{iz^2} dz = 0. \tag{5.432}$$

Infine

$$I = \frac{\sqrt{\pi}}{2}e^{i\frac{\pi}{4}} = \frac{1}{2}\sqrt{\frac{\pi}{2}} + i\frac{1}{2}\sqrt{\frac{\pi}{2}}.$$
 (5.433)

Ovvero

$$\int_0^\infty \sin(x^2) \, dx = \int_0^\infty \cos(x^2) \, dx = \frac{1}{2} \sqrt{\frac{\pi}{2}} \,. \tag{5.434}$$

5.15 Integrali con esponenziali

Consideriamo il seguente integrale reale

$$I = \int_{-\infty}^{\infty} \frac{e^{ax}}{1 + e^x} dx, \qquad a \in \mathbb{R}, \quad 0 < a < 1.$$
 (5.435)

Il fatto che la funzione integranda sia costituita da esponenziali, che quando passiamo ai complessi sono funzioni periodiche, non mi permette di chiudere il cammino di integrazione con una semicirconferenza, come vedremo.

Consideriamo la funzione dei complessi continuazione analitica dell'integranda f(x):

$$f(z) = \frac{e^{az}}{1 + e^z},\tag{5.436}$$

che si riduce alla f(x) quando siamo sull'asse dei reali. La f(z) è analitica tranne nei punti in cui si annulla il denominatore, ovvero

$$e^z + 1 = 0 \Leftrightarrow e^z = -1 = e^{i\pi + 2k\pi i},$$
 (5.437)

cioè in

$$z = i\pi + 2k\pi i, \quad k \in \mathbb{Z}. \tag{5.438}$$

In questi punti la funzione ha dei poli singoli, come si vede sviluppando il denominatore. Quindi la f(z) ha un'infinità numerabile di poli singoli sull'asse immaginario e questo fatto fa sì che si debba scegliere un cammino di tipo rettangolare, $\gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$, come in figura.

Possiamo utilizzare il teorema dei residui:

$$2\pi i \operatorname{Res}(f, i\pi) = \int_{\gamma} f(z) dz,$$

$$= \lim_{b \to \infty} \int_{-b}^{b} \frac{e^{ax}}{1 + e^{x}} dx + \lim_{b \to \infty} \int_{0}^{2\pi} \frac{e^{a(b+iy)}}{1 + e^{b+iy}} i dy - \lim_{b \to \infty} \int_{-b}^{b} \frac{e^{a(x+2\pi i)}}{1 + e^{x+2\pi i}} dx,$$

$$- \lim_{b \to \infty} \int_{0}^{2\pi} \frac{e^{a(-b+iy)}}{1 + e^{-b+iy}} i dy,$$

$$= I - e^{2\pi a i} I + \lim_{b \to \infty} \int_{0}^{2\pi} \frac{e^{a(b+iy)}}{1 + e^{b+iy}} i dy - \lim_{b \to \infty} \int_{0}^{2\pi} \frac{e^{a(-b+iy)}}{1 + e^{-b+iy}} i dy,$$
(5.440)

dove abbiamo usato il fatto che $e^{2\pi i}=1$. Inoltre abbiamo

$$\lim_{b \to \infty} \int_0^{2\pi} \frac{e^{a(b+iy)}}{1 + e^{b+iy}} i dy = 0, \qquad (5.441)$$

poiché 0 < a < 1 (l'integrando va quindi come $e^{(a-1)b}$ per $b \to \infty$ e quindi va a 0), e

$$\lim_{b \to \infty} \int_0^{2\pi} \frac{e^{a(-b+iy)}}{1 + e^{-b+iy}} i dy = 0.$$
 (5.442)

Calcoliamo il residuo della funzione in $i\pi$. Si ha, per esempio

$$\operatorname{Res}(f, i\pi) = \frac{1}{\left(\frac{1}{f(z)}\right)'\Big|_{z=i\pi}} = \frac{1}{\frac{d}{dz} \left(\frac{1+e^z}{e^{az}}\right)\Big|_{z=i\pi}} = \dots = -e^{\pi ai}.$$
 (5.443)

Infine

$$I = -\frac{2\pi i \, e^{\pi a i}}{1 - e^{2\pi a i}} = \frac{2\pi i}{e^{\pi a i} - e^{-\pi a i}} = \frac{\pi}{\sin(\pi a)}.$$
 (5.444)

Esempio.

Un altro esempio simile, che si può risolvere ricorrendo ad integrali di esponenziali, è il seguente integrale:

$$I = \int_0^\infty \frac{\sin(ax)}{e^{2\pi x} - 1} dx, \qquad a \in \mathbb{R}, \quad a \neq 0.$$
 (5.445)

Consideriamo il fatto che I è la parte immaginaria di

$$J = \int_0^\infty \frac{e^{iax}}{e^{2\pi x} - 1} dx, \qquad a \in \mathbb{R}, \quad a \neq 0$$
 (5.446)

e quindi risolviamo J. Passando ai complessi, si può considerare la funzione

$$f(z) = \frac{e^{iaz}}{e^{2\pi z} - 1},$$
 (5.447)

analitica in \mathbb{C} tranne che nei punti in cui si annulla il denominatore

$$e^{2\pi z} = 1, (5.448)$$

 γ_1

 γ_2

 $\Re(z)$

ovvero $z = ki \text{ con } k \in \mathbb{Z}$.

Allora, possiamo sfruttare il teorema di Cauchy ed integrare sul cammino in figura, $\Gamma = \sum_{i=1}^{6} \gamma_i$. Per cui

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\Gamma} f(z)dz = 0.$$
 (5.449)

D'altra parte, si ha

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\Gamma} f(z)dz = \lim_{\substack{b \to \infty \\ r \to 0}} \sum_{i=1}^{6} \int_{\gamma_i} f(z)dz \quad (5.450)$$

dove

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\gamma_1} f(z) dz = \lim_{\substack{b \to \infty \\ r \to 0}} \int_r^b \frac{e^{iax}}{e^{2\pi x} - 1} dx = J,$$
 (5.451)

 $\Im(z)$

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\gamma_2} f(z) dz = \lim_{\substack{b \to \infty}} \int_0^1 \frac{e^{ia(b+iy)}}{e^{2\pi(b+iy)} - 1} i \, dy = 0,$$
 (5.452)

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\gamma_3} f(z)dz = \lim_{\substack{b \to \infty \\ r \to 0}} \int_b^r \frac{e^{ia(x+i)}}{e^{2\pi x} - 1} dx = -e^{-a}J, \qquad (5.453)$$

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\gamma_4} f(z)dz = -i\frac{\pi}{2} \operatorname{Res}(f, i), \qquad (5.454)$$

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\gamma_5} f(z)dz = -\lim_{r \to 0} \int_r^{1-r} \frac{e^{-ay}}{e^{2\pi iy} - 1} i \, dy, \qquad (5.455)$$

$$\lim_{\substack{b \to \infty \\ r \to 0}} \int_{\gamma_6} f(z)dz = -i\frac{\pi}{2} \operatorname{Res}(f,0), \qquad (5.456)$$

e dove

$$\operatorname{Res}(f,i) = \frac{e^{-a}}{2\pi} \tag{5.457}$$

$$\operatorname{Res}(f,0) = \frac{1}{2\pi}.$$
 (5.458)

Concentriamoci sull'integrale su γ_5 . Si ha

$$\lim_{r \to 0} \int_{r}^{1-r} \frac{e^{-ay}}{e^{2\pi iy} - 1} i \, dy = \lim_{r \to 0} \int_{r}^{1-r} \frac{e^{-ay}e^{-\pi yi}}{e^{\pi iy} - e^{-\pi iy}} i \, dy \,, \tag{5.459}$$

$$= \lim_{r \to 0} \int_{r}^{1-r} \frac{e^{-ay}(\cos(\pi y) + i\sin(\pi y))}{2\sin(\pi y)} dy, \qquad (5.460)$$

$$= \lim_{r \to 0} \int_{r}^{1-r} \frac{e^{-ay} \cos(\pi y)}{2 \sin(\pi y)} dy - \frac{i}{2} \int_{0}^{1} e^{-ay} dy, \qquad (5.461)$$

$$= K + \frac{i}{2a}(e^{-a} - 1), \qquad (5.462)$$

dove abbiamo posto

$$K = \lim_{r \to 0} \int_{r}^{1-r} \frac{e^{-ay} \cos(\pi y)}{2 \sin(\pi y)} dy, \qquad (5.463)$$

che è sicuramente reale.

In totale si ha

$$Y(1 - e^{-a}) - K - \frac{i}{2a}(e^{-a} - 1) - \frac{i}{4}(1 + e^{-a}) = 0,$$
 (5.464)

ovvero

$$I = \frac{1}{4} \left(\frac{1 + e^{-a}}{1 - e^{-a}} \right) - \frac{1}{2a} \,. \tag{5.465}$$

5.16 Teorema dei residui con singolarità esterne alla curva di integrazione

Consideriamo una funzione f(z) definita ed analitica all'esterno di un disco di raggio r, D(0,r), tranne al più un numero finito di singolarità e il punto all'infinito (che al massimo deve essere una singolarità comunque isolata). Consideriamo una cinconferenza di raggio R, tale da includere tutte le singolarità al finito di f(z). Rimarrà fuori solo l'eventuale singolarità nel punto all'infinito. Allora prendiamo γ cammino interno all'anello $A(0,R,\infty)$.

Definizione 5.16.1 (residuo nel punto all'infinito) Si definisce residuo di f(z) nel punto all'infinito il seguente numero complesso:

$$\int_{\gamma^{-}} f(z) dz = 2\pi i \operatorname{Res}(f, \infty), \qquad (5.466)$$

dove la curva su cui si integra è γ ma percorsa in senso orario.

Il fatto che per definire il residuo nel punto all'infinito dobbiamo integrare su γ^- è legato al fatto che quando giriamo intorno ad una singolarità, questa deve rimanere sulla sinistra della curva che stiamo percorrendo. Per avere "sulla sinistra" il punto all'infinito, quindi, dobbiamo girare in senso orario.

Allora

$$\operatorname{Res}(f, \infty) = \frac{1}{2\pi i} \int_{\gamma^{-}} f(z) \, dz = -\frac{1}{2\pi i} \int_{\gamma} f(z) \, dz \,. \tag{5.467}$$

Per studiare cosa succede nel punto all'infinito si fa la sostituzione $z \to 1/\zeta$ e si studia cosa succede in $\zeta \to 0$. Se $\gamma = Re^{it}$, con $t \in [0, 2\pi]$, andiamo a riscrivere l'integrale su gamma di f(z) in termini dell'integrale su una nuova circonferenza, $\tilde{\gamma}$, che si otterrà dalla prima mediante l'inversione $z \to 1/\zeta$, della funzione valutata in $z \to 1/\zeta$. Si avrà

$$\gamma = Re^{it} \to \tilde{\gamma}^- = \frac{1}{R}e^{-it}, \qquad (5.468)$$

ovvero la nuova circonferenza ha un raggio R'=1/R, che quindi va a zero quando $R\to\infty$. Inoltre è percorsa in senso inverso alla γ . Quindi se la γ

Allora si avrà

$$\int_{\gamma} f(z) dz = \int_{\tilde{\gamma}^{-}} f\left(\frac{1}{\zeta}\right) d\left(\frac{1}{\zeta}\right) = -\int_{\tilde{\gamma}} f\left(\frac{1}{\zeta}\right) d\left(\frac{1}{\zeta}\right) = -\int_{\tilde{\gamma}} \left[-\frac{1}{\zeta^{2}} f\left(\frac{1}{\zeta}\right)\right] d\zeta \tag{5.469}$$

$$= \int_{\tilde{\gamma}} \frac{1}{\zeta^{2}} f\left(\frac{1}{\zeta}\right) d\zeta \tag{5.470}$$

che quindi è il residuo (moltiplicato per $2\pi i$) in $\zeta = 0$ di

$$\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right) \,. \tag{5.471}$$

Allora

$$\int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}\left(\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right), 0\right)$$
 (5.472)

e quindi

$$\operatorname{Res}(f, \infty) = -\operatorname{Res}\left(\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right), 0\right) = \operatorname{Res}\left(-\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right), 0\right). \tag{5.473}$$

La relazione (5.473) si può vedere anche in altro modo.

Sia f(z) analitica in $A(0, R, \infty)$ e sia γ_0 tale che $\{\gamma_0\} \subset A$. In A la f(z) può essere espressa da una serie generalizzata di Laurent:

$$f(z) = \sum_{n=-\infty}^{\infty} c_n z^n, \qquad c_n = \frac{1}{2\pi i} \int_{\gamma_0} \frac{f(z)}{z^{n+1}} dz.$$
 (5.474)

Integriamo adesso la f(z) su un cammino γ , con $\{\gamma\} \subset A$. Si avrà

$$\int_{\gamma} f(z) dz = \int_{\gamma} \sum_{n=-\infty}^{\infty} c_n z^n dz = 2\pi i c_{-1}, \qquad (5.475)$$

poiché tutti gli integrali di z^n con $n \geq 0$ e $n \leq -2$ sono nulli.

Partendo dall'espressione di f(z) in $R < |z| < \infty$, prendiamo adesso $z \to 1/\zeta$ e scriviamoci un'espressione di $f(z) = f\left(\frac{1}{\zeta}\right)$ valida in $0 < |\zeta| < 1/R$. Abbiamo

$$\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right) = \frac{1}{\zeta^2} \sum_{n=-\infty}^{\infty} c_n \left(\frac{1}{\zeta}\right)^n = \sum_{n=-\infty}^{\infty} c_n \frac{1}{\zeta^{n+2}}.$$
 (5.476)

Il coefficiente del polo singolo di questa funzione si avrà per n+2=1, ovvero n=-1, cioè corrisponde effettivamente a c_{-1} . Quindi il residuo di $\frac{1}{\zeta^2}f\left(\frac{1}{\zeta}\right)$ in $\zeta=0$ é dato da

$$\operatorname{Res}\left(\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right), 0\right) = \frac{1}{2\pi i} \int_{\gamma} f(z) dz.$$
 (5.477)

NB Il residuo all'infinito è dato dal residuo in $\zeta = 0$ della $\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right)$. Ammettendo anche che la f(z) non sia singolare nel punto all'infinito, può comunque darsi che il residuo all'infinito sia non nullo. Ciò è dovuto alla presenza dell'extra-fattore $1/\zeta^2$ che moltiplica la f. Quindi se f(z) è regolare all'infinito, o addirittura ha ivi uno zero di ordine 1, il suo residuo all'infinito è non nullo.

L'inclusione del punto all'infinito nella trattazione dei residui permette di estendere la validità del teorema dei residui alle singolarità esterne ad un certo cammino γ .

Teorema 5.16.2 (dei residui nelle singolarità esterne ad una curva) $Sia\ f(z)$ analitica in $\mathbb C$ tranne un insieme finito di punti $\{z_1,...,z_k\}$ in cui f(z) abbia delle singolarità isolate. $Sia\ \Gamma$ un cammino semplice, regolare, chiuso percorso in senso antiorario, non passante per nessuna delle singolarità $\{z_1,...,z_k\}$. $Siano\ \tilde{z}_n$, n delle k singolarità isolate e cadano al di fuori della curva Γ . Allora si ha

$$\int_{\Gamma} f(z) dz = -2\pi i \left(\operatorname{Res}(f, \infty) + \sum_{j=1}^{n} \operatorname{Res}(f, \tilde{z}_{j}) \right). \tag{5.478}$$

Dimostrazione. Per dimostrare il teorema si consideri il cammino in figura.

Se integriamo la f(z) sul cammino chiuso C composto dalle curve Γ , γ , γ_j e dai segmenti che uniscono la γ e la Γ alle γ_j , si ottiene per il teorema di Cauchy

$$\int_{C} f(z) \, dz = 0 \,, \tag{5.479}$$

D'altra parte, facendo sì che i segmenti vadano a coincidere (e quindi il contributo dell'integrale su un segmento si elide con il contributo dell'integrale sullo stesso segmento percorso in senso opposto) si ha

$$\int_{C} f(z) dz = \int_{\Gamma} f(z) dz + \sum_{j=1}^{n} \int_{\gamma_{j}} f(z) dz + \int_{\gamma} f(z) dz = 0, \qquad (5.480)$$

e siccome

$$\int_{\gamma_j} f(z) dz = 2\pi i \operatorname{Res}(f, \tilde{z}_j), \qquad (5.481)$$

$$\int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}(f, \infty), \qquad (5.482)$$

ne segue l'assunto.

Corollario 5.16.3 Se la f(z) ha al più anche k singolarità isolate dentro al cammino Γ , si ha

$$\int_{\Gamma} f(z) dz = 2\pi i \sum_{j=1}^{k} \operatorname{Res}(f, z_j), \qquad (5.483)$$

e quindi se ne deduce che

$$\sum_{j=1}^{k} \text{Res}(f, z_j) + \text{Res}(f, \infty) + \sum_{j=1}^{n} \text{Res}(f, \tilde{z}_j) = 0,$$
 (5.484)

ovvero che la somma di tutti i residui della funzione f(z), che abbia soltanto delle singolarità isolate in \mathbb{C} , deve essere nulla.

5.16.1 Esempio

Calcoliamo il seguente integrale

$$I = \int_{\gamma} \sin\left(\frac{1}{z}\right) dz, \qquad \gamma: t \to e^{it}, \quad t \in [0, 2\pi].$$
 (5.485)

La funzione sin $\left(\frac{1}{z}\right)$ ha in z=0 una singolarità isolata essenziale. Infatti, si avrà il seguente sviluppo di Laurent centrato in z=0:

$$\sin\left(\frac{1}{z}\right) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} \frac{1}{z^{2n+1}} = \frac{1}{z} - \frac{1}{6z^2} + \dots$$
 (5.486)

Nel punto all'infinito, invece, la funzione è regolare. In particolare ha uno zero del primo ordine. Infatti

$$z \rightarrow \frac{1}{\zeta}, \tag{5.487}$$

$$\sin\left(\frac{1}{z}\right) \rightarrow \sin\left(\zeta\right) = \zeta + \dots$$
 (5.488)

Si può risolvere l'integrale I considerando la singolarità interna alla curva γ , utilizzando il teorema dei residui:

$$\int_{\gamma} \sin\left(\frac{1}{z}\right) dz = 2\pi i \operatorname{Res}(f,0) = 2\pi i, \qquad (5.489)$$

poiché Res(f,0) = 1.

Si può però anche utilizzare il residuo esterno. Infatti, nel punto all'infinito la funzione integranda è regolare, ma il suo residuo è non nullo:

$$\operatorname{Res}(f, \infty) = \operatorname{Res}\left(-\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right), 0\right) \tag{5.490}$$

е

$$\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right) = \frac{1}{\zeta} + \dots \tag{5.491}$$

Quindi

$$Res(f, \infty) = -1, \tag{5.492}$$

e in totale

$$\int_{\gamma} \sin\left(\frac{1}{z}\right) dz = -2\pi i \operatorname{Res}(f, \infty) = 2\pi i.$$
 (5.493)

Inoltre, si vede esplicitamente che $Res(f, 0) + Res(f, \infty) = 0$.

5.16.2 Esempio

Calcoliamo il seguente integrale

$$I = \int_{\gamma} \frac{1}{\sin\left(\frac{1}{z}\right)} dz, \qquad \gamma: t \to e^{it}, \quad t \in [0, 2\pi].$$
 (5.494)

Questa volta la funzione $\frac{1}{\sin\left(\frac{1}{z}\right)}$ non ha una singolarità isolata in z=0. Infatti, la

$$f(z) = \frac{1}{\sin\left(\frac{1}{z}\right)} \tag{5.495}$$

è analitica tranne dove si annulla il denominatore, ovvero in

$$\frac{1}{z} = k\pi \implies z = \frac{1}{k\pi}, \quad k \in \mathbb{Z} - \{0\}. \tag{5.496}$$

Allora per $k=\pm 1,\pm 2,\pm 3,...$ i punti di singolarità si accumulano intorno a z=0, che non è quindi un punto di singolarità isolata. La f(z) ha infinite singolarità contenute nel cerchio di raggio $R=1/\pi$

k=0 corrisponde al punto all'infinito, per il quale

$$f\left(\frac{1}{\zeta}\right) = \frac{1}{\sin\zeta} = \frac{1}{\zeta} + \dots \tag{5.497}$$

che è quindi una singolarità polare di ordine 1. Sicccome il punto all'infinito è una singolarità isolata della funzione integranda, possiamo applicare il teorema dei residui per questa singolarità esterna al cammino d'integrazione, ottenendo

$$\int_{\gamma} \frac{1}{\sin\left(\frac{1}{z}\right)} dz = 2\pi i \operatorname{Res}\left(\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right), 0\right), \qquad (5.498)$$

dove

$$\frac{1}{\zeta^2} f\left(\frac{1}{\zeta}\right) = \frac{1}{\zeta^2 \sin \zeta} = \frac{1}{\zeta^3} + \frac{1}{3! \zeta} + \dots$$
 (5.499)

Quindi

$$\operatorname{Res}\left(\frac{1}{\zeta^2}f\left(\frac{1}{\zeta}\right),0\right) = \frac{1}{6} \tag{5.500}$$

e

$$\int_{\gamma} \frac{1}{\sin\left(\frac{1}{z}\right)} dz = \frac{\pi}{3} i. \tag{5.501}$$

5.16.3 Esempio

Consideriamo il seguente integrale

$$I = \int_{\gamma} \frac{1}{\sqrt{z^2 - 1}} dz, \quad \gamma : t \to 2e^{it}, \quad 0 \le t \le 2\pi.$$
 (5.502)

La funzione da integrare è polidroma. In $z=\pm 1$ ha due punti di diramazione, mentre il punto all'infinito è regolare:

$$f\left(\frac{1}{\omega}\right) = \frac{\omega}{\sqrt{1-\omega^2}} \stackrel{\omega \to 0}{\to} 0 . \tag{5.503}$$

Possiamo quindi porre il taglio della radice fra z=1 e z=-1 (segmento dell'asse reale), che così è completamente contenuto nella traccia di γ , su cui dobbiamo integrare.

Siccome non abbiamo singolarità isolate interne alla curva su cui integriamo, ma un taglio, non possiamo utilizzare il teorema dei residui (con residui interni alla curva). Nella regione esterna alla curva non ci sono singolarità. Potremmo quindi utilizzare il teorema dei residui esterni alla curva γ , andando a calcalare il residui ell'infinite della funzione della curva il residui ell'infinite della funzione della curva residui ell'infinite della curva residui ell'infinite della curva residui ella curva

calcolare il residui all'infinito della funzione f(z). Si ha

$$\operatorname{Res}(f, \infty) = \operatorname{Res}\left(-\frac{1}{\omega^2} f\left(\frac{1}{\omega}\right), 0\right) = \operatorname{Res}\left(-\frac{1}{\omega\sqrt{1-\omega^2}}, 0\right) = -1.$$
 (5.504)

In totale quindi si ha

$$I = \int_{\gamma} \frac{1}{\sqrt{z^2 - 1}} dz = -2\pi i \operatorname{Res}(f, \infty) = 2\pi i.$$
 (5.505)

In questo caso l'integrale potrebbe essere risolto anche per altra via. Siccome gli unici punti di non analiticità sono sul taglio, il cammino γ può essere ristretto in maniera continua fino a che non si riduce ad un cammino che prevede il segmento da z=1 a z=-1 sopra il taglio, chiuso dal segmento fra z=-1 e z=1 sotto al taglio (principio di deformazione dei cammini) e l'integrale non cambia. Dobbiamo quindi valutare la funzione f(z) sopra al taglio e sotto il taglio ed integrare la prima sul segmento [1,-1] e la seconda sul segmento [-1,1].

Sul taglio "da sopra" la funzione vale

$$f(z) = \frac{1}{i\sqrt{1-x^2}},\tag{5.506}$$

mentre sul taglio da sotto troviamo

$$f(z) = \frac{1}{-i\sqrt{1-x^2}}. (5.507)$$

L'integrale si riduce quindi a

$$I = \int_{1}^{-1} \frac{1}{i\sqrt{1-x^{2}}} dx + \int_{-1}^{1} \frac{1}{-i\sqrt{1-x^{2}}} dx = 2i \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} dx, \qquad (5.508)$$

$$= 2i \arcsin(x)|_{-1}^{1} = 2\pi i.$$
 (5.509)

5.16.4 Esempio

Calcoliamo, usando tecniche di variabile complessa, il seguente integrale

$$I = \int_{-1}^{1} \frac{1}{\sqrt[3]{(x+1)^2(1-x)}} dx.$$
 (5.510)

Consideriamo la seguente funzione di variabile complessa

$$f(z) = \frac{1}{\sqrt[3]{(z+1)^2(z-1)}},$$
(5.511)

che è polidroma e ha due punti di diramazione al finito, in $z=\pm 1$. Il punto all'infinito non è un punto di diramazione ed inoltre è un punto regolare. Quindi possiamo pensare di mettere il taglio da z=-1 a z=1 e sfruttare il taglio per fare l'integrale reale.

Integriamo la f(z) su un cammino come per esempio la circonferenza γ in figura:

$$\gamma: t \to Re^{it}, \quad 0 \le t \le 2\pi, \qquad R > 1.$$
 (5.512)

Per il teorema dei residui si ha

$$\int_{\gamma} f(z) dz = -2\pi i \operatorname{Res} (f, \infty) ,$$

$$= 2\pi i \operatorname{Res} \left(\frac{1}{\zeta^2} f \left(\frac{1}{\zeta} \right), 0 \right) ,$$

dove

$$\operatorname{Res}\left(\frac{1}{\zeta^2}f\left(\frac{1}{\zeta}\right),0\right) = \operatorname{Res}\left(\frac{1}{\zeta}\frac{1}{\sqrt[3]{(\zeta+1)^2(1-\zeta)}},0\right) = 1.$$
 (5.513)

D'altra parte, per il principio di deformazione dei cammini, siccome non ci sono divergenze fra γ e il segmento $-1 \le x \le 1$, si può deformare la γ al percorso da x = 1 - r a x = -1 + r sopra il taglio, più il percorso formato dalla circonferenza centrata in x = -1 di raggio r (con $r \to 0$, più il percorso da x = -1 + r a x = 1 - r sotto il taglio, più il percorso formato dalla circonferenza centrata in x = 1 di raggio r (con $r \to 0$). Gli integrali sulle due circonferenze sono tali che

$$\lim_{r \to 0} \int_0^{2\pi} \frac{1}{\sqrt[3]{(re^{i\theta})^2 (re^{i\theta} - 2)}} r \, ie^{i\theta} \, d\theta = 0 \,, \tag{5.514}$$

$$\lim_{r \to 0} \int_{-\pi}^{\pi} \frac{1}{\sqrt[3]{(re^{i\theta} + 2)^2 (re^{i\theta})}} r \, ie^{i\theta} \, d\theta = 0.$$
 (5.515)

Inoltre, si ha:

$$\sqrt[3]{(z+1)^2(z-1)} = |z+1|^{\frac{2}{3}}|z-1|^{\frac{1}{3}}e^{i\frac{2}{3}\theta_1 + i\frac{4}{3}\pi k_1}e^{i\frac{1}{3}\theta_2 + i\frac{2}{3}\pi k_2},$$
 (5.516)

dove, per esempio, $0 \le \theta_1 \le 2\pi$ e $0 \le \theta_2 \le 2\pi$.

Sul taglio da sopra, si ha $\theta_1 = 0$ e $\theta_2 = \pi$ (con $k_1 = k_2 = 0$ perché si sceglie il ramo principale della f(z)). Quindi

$$\sqrt[3]{(z+1)^2(z-1)} = e^{i\frac{\pi}{3}} \sqrt[3]{(x+1)^2(1-x)}.$$
 (5.517)

Sul taglio da sotto, si ha $\theta_1=0$ e $\theta_2=\pi$, ma $k_1=1$ e $k_2=0$. Quindi

$$\sqrt[3]{(z+1)^2(z-1)} = e^{i\frac{4\pi}{3}}e^{i\frac{\pi}{3}}\sqrt[3]{(x+1)^2(1-x)} = e^{i\frac{5\pi}{3}}\sqrt[3]{(x+1)^2(1-x)}.$$
 (5.518)

Allora:

$$2\pi i = \int_{\gamma} f(z) dz = \int_{1}^{-1} e^{-i\frac{\pi}{3}} \frac{1}{\sqrt[3]{(x+1)^{2}(1-x)}} + \int_{-1}^{1} e^{-i\frac{5\pi}{3}} \frac{1}{\sqrt[3]{(x+1)^{2}(1-x)}}, \quad (5.519)$$

ovvero

$$-e^{-i\frac{\pi}{3}}I + e^{-i\frac{5\pi}{3}}I = i\sqrt{3}I = 2\pi i.$$
 (5.520)

Infine

$$I = \frac{2\pi}{\sqrt{3}} \,. \tag{5.521}$$

5.17 Integrali impropri e Valor Principale di Cauchy

Finora abbiamo calcolato integrali per i quali le eventuali singolarità della funzione integranda non giacessero sul cammino di integrazione. In questo paragrafo considereremo anche questa possibilità.

In analisi reale si definisce integrale improprio un integrale per il quale

- 1. l'ingtervallo di integrazione diventa infinito ,
- 2. la funzione integranda presenta delle singolarità all'interno dell'intervallo di integrazione.

L'integrale improprio si definisce attraverso un procedimento di limite. Per esempio

$$\int_{a}^{\infty} f(x) dx = \lim_{R \to \infty} \int_{a}^{R} f(x) dx, \qquad (5.522)$$

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{\substack{R_1 \to \infty \\ R_2 \to \infty}} \int_{-R_1}^{R_2} f(x) dx, \qquad (5.523)$$

oppure, se

$$\lim_{x \to b^-} |f| = \infty \,, \tag{5.524}$$

si ha

$$\int_{a}^{b} f(x) dx = \lim_{r \to 0^{+}} \int_{a}^{b-r} f(x) dx.$$
 (5.525)

Infine, se

$$\lim_{x \to c} |f| = \infty, \quad c \in [a, b], \tag{5.526}$$

si ha

$$\int_{a}^{b} f(x) dx = \lim_{\substack{r_1 \to 0^{+} \\ r_2 \to 0^{+}}} \left(\int_{a}^{c-r_1} f(x) dx + \int_{c+r_2}^{b} f(x) dx \right).$$
 (5.527)

Se i limiti esistono, finiti, allora la f(x) è detta integrabile in senso improprio e l'integrale è definito dal limite.

Nota I limiti destro e sinistro sono in generale diversi. Ci si avvicina all'eventuale discontinuità della f(x) in maniera indipendente, da destra e da sinistra.

5.17.1 Valore Principale di Cauchy

Si dice valore principale di Cauchy di un integrale improprio in cui l'intervallo di integrazione sia infinito oppure su un intervallo finito all'interno del quale, in x = c, la f(x) diverga, il limite

$$PV \int_{-\infty}^{\infty} f(x) dx = \lim_{R \to \infty} f(x) dx, \qquad (5.528)$$

$$PV \int_{a}^{b} f(x) dx = \lim_{\epsilon \to 0^{+}} \left(\int_{a}^{c-\epsilon} f(x) dx + \int_{c+\epsilon}^{b} f(x) dx \right). \tag{5.529}$$

Se esiste il limite, allora si dice che l'integrale converge secondo il valor principale di Cauchy. **Nota** Questa volta i limiti destro e sinistro sono uguali. Ci si avvicina all'eventuale singolarità allo stesso modo da una parte e dall'altra.

Ovviamente se un integrale improprio è convergente, lo è anche in valor principale di Cauchy. Il viceversa non è vero.

Esempio

Si calcoli il seguente integrale

$$I = PV \int_{-\infty}^{\infty} \frac{x}{x^3 - 1} dx.$$
 (5.530)

L'integrale è improprio, ma a $\pm \infty$ non ha problemi di convergenza. Il problema viene dalla divergenza in x=1, sull'asse dei reali, che fa sì che il corrispondente integrale improprio non converga. Se utilizziamo il valore principale, invece, l'integrale è convergente. Lo si può capire considerando che la funzione quando $x \to 1^-$ tende a $-\infty$ mentre per $x \to 1^+$ tende a $+\infty$. Se regolarizziamo l'infinito con un parametro unico a sinistra e a destra della divergenza, sommando i due contributi il parametro della regolarizzazione sparirà. Nel caso di integrale improprio, invece, i due parametri che regolarizzano la divergenza da sinistra e da destra sono diversi, quindi a seconda di come si manda il parametro a zero, potremo avere $+\infty$ o $-\infty$ (e l'integrale non converge).

Consideriamo la funzione

$$f(z) = \frac{z}{z^3 - 1} \,. \tag{5.531}$$

Questa si riduce alla f(x) sull'asse reale. È analitica in tutto \mathbb{C} tranne in $z^3 - 1 = 0$, ovvero

$$z = \sqrt[3]{1} = e^{\frac{2}{3}k\pi i},\tag{5.532}$$

che indichiamo con

$$z_0 = 1, \quad z_1 = e^{\frac{2}{3}\pi i} = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \qquad z_2 = e^{\frac{4}{3}\pi i} = -\frac{1}{2} - i\frac{\sqrt{3}}{2}.$$
 (5.533)

Tutti e tre i punti sono dei poli singoli. $z_0=1$ è sul cammino d'integrazione. Quindi per valutare l'integrale scegliamo il cammino in figura in cui $\gamma=\gamma_1+\gamma_R+\gamma_2+\gamma_\epsilon$.

Per il teorema dei residui abbiamo

$$\lim_{\substack{R \to \infty \\ \epsilon \to 0}} \int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}(f, z_{1}),$$

$$= 2\pi i \lim_{z \to z_{1}} (z - z_{1}) f(z),$$

$$= 2\pi i \left(-\frac{1 + i\sqrt{3}}{6} \right).$$
(5.534)

D'altra parte

$$\lim_{\substack{R \to \infty \\ \epsilon \to 0}} \int_{\gamma} f(z) dz = \lim_{\substack{R \to \infty \\ \epsilon \to 0}} \left[\int_{\gamma_1} f(z) dz + \int_{\gamma_R} f(z) dz + \int_{\gamma_2} f(z) dz + \int_{\gamma_\epsilon} f(z) dz \right], \quad (5.535)$$

dove

$$\lim_{\substack{R \to \infty \\ \epsilon \to 0}} \left[\int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \right] = I, \qquad (5.536)$$

$$\lim_{R \to \infty} \int_{\gamma_R} f(z) \, dz = \lim_{R \to \infty} \int_0^{\pi} \frac{Re^{i\theta}}{R^3 e^{i3\theta} - 1} \, iRe^{i\theta} \, d\theta = \lim_{R \to \infty} i \int_0^{\pi} \frac{R^2 e^{i2\theta}}{R^3 e^{i3\theta} - 1} = 0 \,, \, (5.537)$$

$$\lim_{\epsilon \to 0} \int_{\gamma_R} f(z) \, dz = -\pi i \operatorname{Res}(f, z_0) = -\frac{\pi}{3} i.$$
 (5.538)

In totale:

$$PV \int_{-\infty}^{\infty} \frac{x}{x^3 - 1} dx = -\frac{\pi}{3} i(1 + i\sqrt{3}) + \frac{\pi}{3} i = \frac{\pi}{\sqrt{3}}.$$
 (5.539)

Esempio.

Si calcoli il seguente integrale

$$I = \int_0^\infty \frac{\sin x}{x} dx \,. \tag{5.540}$$

Notiamo che la funzione $\frac{\sin x}{x}$ è pari. Quindi consideriamo il seguente integrale J tale che

$$I = \int_0^\infty \frac{\sin x}{x} dx = \frac{1}{2} \int_{-\infty}^\infty \frac{\sin x}{x} dx = \frac{1}{2} J.$$
 (5.541)

Per calcolare J conssideriamo il fatto che J è la parte immaginaria di

$$I' = PV \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx, \qquad (5.542)$$

dove abvbiamo aggiunto il "PV" poiché la parte reale ha un coseno a numeratore, che in x=0 vale 1 e quindi ha una divergenza polare sul cammino d'integrazione. L'integrale non converge se non in valor principale. Consideriamo la funzione di variabile complessa

$$f(z) = \frac{e^{iz}}{z},\tag{5.543}$$

che è analitica in tutto $\mathbb C$ tranne z=0, dove ha un polo semplice. Integriamo la f(z) sul cammino chiuso in figura, in cui $\gamma=\gamma_1+\gamma_R+\gamma_2+\gamma_\epsilon$. Per il teorema di Cauchy si ha

$$0 = \lim_{\substack{R \to \infty \\ \epsilon \to 0}} \int_{\gamma} f(z) dz = \lim_{\substack{R \to \infty \\ \epsilon \to 0}} \left[\int_{\gamma_1} f(z) dz + \int_{\gamma_R} f(z) dz + \int_{\gamma_2} f(z) dz + \int_{\gamma_\epsilon} f(z) dz \right]. \quad (5.544)$$

D'altra parte si ha

$$\lim_{\substack{R \to \infty \\ \epsilon \to 0}} \left[\int_{\gamma_1} f(z) \, dz + \int_{\gamma_2} f(z) \, dz \right] = I', \tag{5.545}$$

$$\lim_{R \to \infty} \int_{\gamma_R} f(z) dz = 0 \quad \text{(per il lemma di Jordan)}, \tag{5.546}$$

$$\lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} f(z) dz = -i\pi \operatorname{Res}(f, 0) = -i\pi.$$
 (5.547)

Quindi in totale

$$i\pi = PV \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = PV \int_{-\infty}^{\infty} \frac{\cos x}{x} dx + i \int_{-\infty}^{\infty} \frac{\sin x}{x} dx, \qquad (5.548)$$

da cui

$$PV \int_{-\infty}^{\infty} \frac{\cos x}{x} dx = 0 \quad \text{(infatti la funzione è dispari)}, \tag{5.549}$$

$$\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi. \tag{5.550}$$

Quindi l'integrale di partenza è

$$\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2} \,. \tag{5.551}$$

NOTA Avremmo potuto chiudere il cammino in un altro modo. In particolare, avremmo potuto chiudere γ_{ϵ} da sotto, come in figura. A questo punto però il cammino chiuso γ include la singolarità in z=0 e quindi dobbiamo utilizzare il teorema dei residui

$$\lim_{\substack{R \to \infty \\ \epsilon \to 0}} \int_{\gamma} f(z) dz = 2\pi i \operatorname{Res}(f, 0) = 2\pi i.$$
(5.552)

D'altra parte

$$\lim_{\substack{R \to \infty \\ \epsilon \to 0}} \int_{\gamma} f(z) dz = PV \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx + \lim_{\epsilon \to 0} \int_{\gamma_{\epsilon}} f(z) dz = PV \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx + \pi i \operatorname{Res}(f, 0),$$

$$= PV \int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx + \pi i.$$
(5.553)

Quindi alla fine, ovviamente, il risultato è lo stesso.

5.18 Integrali di funzioni polidrome

Consideriamo adesso integrali di funzioni che abbiano un taglio nel piano complesso. Molto spesso il taglio può essere utilizzato per fare l'integrale stesso, posizionandolo sul cammino d'integrazione.

Un esempio classico è il seguente

$$I = \int_0^\infty x^{a-1} f(x) dx, \quad a \in \mathbb{R}, \quad 0 < a < 1,$$
 (5.554)

con f(x) razionale, senza singolarità sulla semiretta reale $[0,\infty)$ e tale che se integriamo la corrispondente funzione complessa sulla circonferenza di raggio R e mandiamo $R \to \infty$, si abbia che l'integrale si annulla.

Se consideriamo la funzione

$$g(z) = z^{a-1} f(z), (5.555)$$

questa sarà polidroma (a causa della potenza complessa):

$$z^{a-1} = e^{(a-1)\log z} \,. \tag{5.556}$$

Scegliamo il ramo principale della funzione, prendendo il ramo principale del logaritmo. Inoltre, poniamo il taglio del logaritmo sul semiasse reale positivo, tale che

$$\log z = \log |z| + i\theta$$
, $0 < \theta < 2\pi$. (5.557)

Possiamo integrare la g(z) sul cammino chiuso in figura, $\gamma = \gamma_1 + \gamma_R + \gamma_2 + \gamma_r$, considerando

che in $Int\{\gamma\}$ ci possano essere delle singolarità, $\{z_1, ..., z_k, ...\}$. Per il teorema dei residui si ha

$$2\pi i \sum_{k} \operatorname{Res}(z^{a-1}f(z), z_{k}) = \int_{\gamma} z^{a-1}f(z) dz,$$

$$= \int_{\gamma_{1}} z^{a-1}f(z) dz + \int_{\gamma_{R}} z^{a-1}f(z) dz,$$

$$+ \int_{\gamma_{2}} z^{a-1}f(z) dz + \int_{\gamma_{r}} z^{a-1}f(z) dz. \qquad (5.558)$$

L'integrale su γ_1 è un'integrazione della funzione sul taglio "da sopra", per il quale si abbia $z = \lim_{\eta \to 0^+} x e^{i\eta}$. Mentre l'integrale su γ_2 è un'integrazione della funzione sul taglio "da sotto", per il quale $z = \lim_{\eta \to 0^+} x e^{i(2\pi - \eta)}$. Consideriamo il caso in cui

$$\lim_{r \to 0} \int_{\gamma_r} z^{a-1} f(z) dz = 0, \qquad (5.559)$$

$$\lim_{R \to \infty} \int_{\gamma_R} z^{a-1} f(z) \, dz = 0. \tag{5.560}$$

Inoltre si avrà:

$$\lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_{\gamma_1} z^{a-1} f(z) \, dz = \int_0^\infty x^{a-1} f(x) \, dx \,, \tag{5.561}$$

$$\lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_{\gamma_2} z^{a-1} f(z) \, dz = \lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_R^r x^{a-1} e^{i(2\pi - \eta)(a-1)} f(x e^{i(2\pi - \eta)}) \, dx \,,$$

$$= \lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_R^r x^{a-1} e^{i(2\pi - \eta)(a-1)} f(x e^{i(2\pi - \eta)}) \, dx \,, = -e^{i2\pi a} \lim_{\substack{R \to \infty \\ r \to 0}} \int_R^R x^{a-1} f(x) \, dx \,,$$

$$= -e^{i2\pi a} \int_0^\infty x^{a-1} f(x) dx, \qquad (5.562)$$

da cui si ha

$$(1 - e^{i2\pi a}) I = 2\pi i \sum_{k} \operatorname{Res}(z^{a-1} f(z), z_k), \qquad (5.563)$$

ovvero

$$I = \frac{2\pi i}{(1 - e^{i2\pi a})} \sum_{k} \text{Res}(z^{a-1} f(z), z_k).$$
 (5.564)

5.18.1 Esempio

Consideriamo il seguente integrale

$$I = \int_0^\infty \frac{x^{a-1}}{x+1} \, dx \,, \quad a \in \mathbb{R} \,, \quad 0 < a < 1 \,. \tag{5.565}$$

Consideriamo la funzione di variabile complessa

$$f(z) = \frac{z^{a-1}}{z+1}, \qquad (5.566)$$

che ha un punto di diramazione in z=0 e un polo singolo in z=-1. Consideriamo il cammino chiuso $\gamma=\gamma_1+\gamma_R+\gamma_2+\gamma_r$ in figura, che include il polo della funzione. Si avrà, per il teorema dei residui

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma} \frac{z^{a-1}}{z+1} dz = 2\pi i \operatorname{Res}(f(z), -1),$$

$$= 2\pi i (-1)^{a-1} = 2\pi i e^{i\pi(a-1)},$$

$$= -2\pi i e^{i\pi a}.$$
 (5.567)

Avremo inoltre

$$\lim_{r \to 0} \int_{\gamma_r} \frac{z^{a-1}}{z+1} dz = -\lim_{r \to 0} \int_0^{2\pi} \frac{r^{a-1}e^{i\theta(a-1)}}{re^{i\theta}+1} ire^{i\theta} d\theta = -\int_0^{2\pi} \lim_{r \to 0} \frac{r^a}{re^{i\theta}+1} e^{i\theta a} d\theta = 0,$$
poiché $a > 0$, (5.568)

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{z^{a-1}}{z+1} dz = \int_0^{2\pi} \lim_{R \to \infty} \frac{R^a}{Re^{i\theta} + 1} e^{i\theta a} d\theta = 0, \quad \text{poiché } a < 1,$$
 (5.569)

$$\lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_{\gamma_1} \frac{z^{a-1}}{z+1} dz = \lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_r^R \frac{x^{a-1} e^{i\eta(a-1)}}{x e^{i\eta} + 1} e^{i\eta} dx = I,$$
(5.570)

$$\lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_{\gamma_2} \frac{z^{a-1}}{z+1} dz = \lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_R^r \frac{x^{a-1} e^{i(2\pi-\eta)(a-1)}}{x e^{i(2\pi-\eta)} + 1} e^{i(2\pi-\eta)} dx = -e^{i2\pi a} \lim_{\substack{R \to \infty \\ r \to 0 \\ \eta \to 0}} \int_r^R \frac{x^{a-1}}{x+1} dx,$$

$$= -e^{i2\pi a} I. \tag{5.571}$$

In totale

$$I = -2\pi i \frac{e^{i\pi a}}{1 - e^{i2\pi a}} = \frac{\pi}{\sin(\pi a)}.$$
 (5.572)

5.18.2 Esempio

Consideriamo il seguente integrale:

$$I = \int_0^\infty \frac{\sqrt{x}}{x^2 + 1} \, dx \,. \tag{5.573}$$

Consideriamo la funzione

$$f(z) = \frac{\sqrt{z}}{z^2 + 1} = \frac{\sqrt{z}}{(z+i)(z-i)},$$
(5.574)

polidroma (con un taglio che collega z=0 al punto all'infinito) e con due singolarità isolate di tipo polare in $z=\pm i$.

In questo caso, possiamo scegliere diversi cammini di integrazione, che ci permettano di ottenere la soluzione dell'integrale I.

Consideriamo per esempio il cammino in figura.

Ovvero poniamo il taglio per esempio sul semiasse immaginario negativo e chiudiamo l'integrazione nel semipiano immaginario positivo (potremmo anche mettere il taglio sul semi-asse dei reali positivi o negativi: così i due cammini γ_1 o γ_2 sarebbero valutati sul taglio, da sopra). La curva chiusa su cui si integra è $\Gamma = \gamma_1 + \gamma_R + \gamma_2 + \gamma_r$. Utilizzando il teorema dei residui, abbiamo

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\Gamma} \frac{\sqrt{z}}{z^2 + 1} dz = 2\pi i \operatorname{Res}(f(z), i),$$

$$= 2\pi i \lim_{z \to i} (z - i) \frac{\sqrt{z}}{(z + i)(z - i)} = \pi e^{i\frac{\pi}{4}},$$

$$= \frac{\pi}{\sqrt{2}} (1 + i).$$
(5.575)

Avremo inoltre

$$\lim_{r \to 0} \int_{\gamma_r} \frac{\sqrt{z}}{z^2 + 1} dz = -\lim_{r \to 0} \int_0^{\pi} \frac{\sqrt{r}e^{i\frac{\theta}{2}}}{r^2 e^{i2\theta} + 1} ire^{i\theta} d\theta = 0, \qquad (5.576)$$

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{\sqrt{z}}{z^2 + 1} dz = -\lim_{R \to \infty} \int_0^{2\pi} \frac{\sqrt{R} e^{i\frac{\theta}{2}}}{R^2 e^{i2\theta} + 1} iRe^{i\theta a} d\theta = 0, \qquad (5.577)$$

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_1} \frac{\sqrt{z}}{z^2 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_r^R \frac{\sqrt{x}}{x^2 + 1} dx = I,$$
 (5.578)

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_2} \frac{\sqrt{z}}{z^2 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_R^r \frac{\sqrt{x} e^{i\frac{\pi}{2}}}{x^2 + 1} e^{i\pi} dx = iI.$$
 (5.579)

Quindi, in totale si ha

$$I(1+i) = \frac{\pi}{\sqrt{2}}(1+i), \qquad (5.580)$$

ovvero

$$I = \frac{\pi}{\sqrt{2}}.\tag{5.581}$$

Si poteva utilizzare anche il cammino in figura. Si avrà

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\Gamma} \frac{\sqrt{z}}{z^2 + 1} dz = 2\pi i \left[\operatorname{Res}(f, i) + \operatorname{Res}(f, -i) \right],$$

$$= 2\pi i \left(\frac{e^{i\frac{\pi}{4}}}{2i} - \frac{e^{i\frac{3\pi}{4}}}{2i} \right),$$

$$= \frac{\pi}{\sqrt{2}} (1 + i + 1 - i) = \frac{2\pi}{\sqrt{2}}.$$

Gli integrali su γ_R e γ_r , nel limite $R \to \infty$ e $r \to 0$, vanno a zero. L'integrale su γ_1

riproduce I, mentre per l'integrale su γ_2 si ha:

$$\lim_{\substack{R\to\infty\\r\to 0}}\int_{\gamma_2}\frac{\sqrt{z}}{z^2+1}\,dz=\lim_{\substack{R\to\infty\\r\to 0}}\int_R^r\frac{\sqrt{x}e^{i\pi}}{x^2+1}\,e^{2\pi i}dx=I\,.$$

In totale

$$2I = \frac{2\pi}{\sqrt{2}}\,, (5.582)$$

ovvero il risultato (5.581).

5.18.3 Esempio

Consideriamo adesso una "piccola" variante, ovvero integriamo una funzione che abbia un polo sul cammino d'integrazione:

$$I = PV \int_0^\infty \frac{\sqrt{x}}{x^2 - 4} \, dx \,. \tag{5.583}$$

Per calcolare l'integrale consideriamo la seguente funzione

$$f(z) = \frac{\sqrt{z}}{z^2 - 4} \,. \tag{5.584}$$

f(z) ha un taglio dovuto alla radice e due poli semplici in

$$z = \pm 2$$
. (5.585)

Il polo z=2 giace sul cammino d'integrazione. Poniamo il taglio della radice sul cammino d'integrazione e consideriamo il cammino in figura.

Facendo l'integrale su $\Gamma = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4 + \gamma_5 + \gamma_6 + \gamma_7 + \gamma_8$, si può applicare il teorema dei residui:

$$\int_{\Gamma} f(z)dz = 2\pi i \operatorname{Res}(f, -2) = 2\pi i \left(-\frac{\sqrt{2}}{4}i\right) = \frac{\sqrt{2}}{2}\pi.$$
 (5.586)

Per l'integrale su Γ si ha:

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_1 + \gamma_3} f(z) = PV \int_0^\infty \frac{\sqrt{x}}{x^2 - 4} dx, \qquad (5.587)$$

$$\lim_{r \to 0} \int_{\gamma_2} f(z) = -i\pi \text{Res}(f, 2) = -i\pi \frac{\sqrt{2}}{4}, \qquad (5.588)$$

$$\lim_{R \to \infty} \int_{\gamma_4} f(z) = \lim_{R \to \infty} \int_0^{2\pi} \frac{\sqrt{R} e^{i\frac{\theta}{2}}}{R^2 e^{i2\theta} - 4} i R e^{i\theta} d\theta = 0, \qquad (5.589)$$

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_5 + \gamma_6} f(z) = PV \int_{\infty}^{0} \left(-\frac{\sqrt{x}}{x^2 - 4} \right) dx = PV \int_{0}^{\infty} \frac{\sqrt{x}}{x^2 - 4} dx, \qquad (5.590)$$

$$\lim_{r \to 0} \int_{\gamma_e} f(z) = -i\pi \text{Res}(\tilde{f}, 2) = i\pi \frac{\sqrt{2}}{4}, \qquad (5.591)$$

$$\lim_{r \to 0} \int_{\gamma_8} f(z) = \lim_{r \to 0} \int_0^{2\pi} \frac{\sqrt{r} e^{i\frac{\theta}{2}}}{r^2 e^{i2\theta} - 4} i r e^{i\theta} d\theta = 0.$$
 (5.592)

La funzione \tilde{f} in Eq. (5.591) è la f(z) valutata sul taglio da sotto e quindi è

$$\tilde{f}(x) = -\frac{\sqrt{x}}{x^2 - 4} \,. \tag{5.593}$$

In totale, quindi, i contributi in z=2 si annullano e otteniamo

$$2\,PV\,\int_0^\infty \frac{\sqrt{x}}{x^2 - 4} dx = \frac{\sqrt{2}}{2}\pi\,,\tag{5.594}$$

ovvero

$$PV \int_0^\infty \frac{\sqrt{x}}{x^2 - 4} dx = \frac{\sqrt{2}}{4} \pi. \tag{5.595}$$

5.18.4 Esempio

Calcoliamo il seguente integrale

$$I = \int_0^\infty \frac{\ln(x)}{x^2 + 1} \, dx \,. \tag{5.596}$$

Consideriamo la funzione

$$f(z) = \frac{\ln(z)}{z^2 + 1} = \frac{\ln(z)}{(z+i)(z-i)},$$
(5.597)

polidroma (con un taglio che collega z=0 al punto all'infinito) e con due singolarità isolate di tipo polare in $z=\pm i$.

156

In questo caso, scegliamo il cammino in figura.

Ovvero poniamo il taglio per esempio sul semiasse immaginario negativo e chiudiamo l'integrazione nel semipiano immaginario positivo (potremmo anche mettere il taglio sul semi-asse dei reali positivi o negativi: così i

due cammini γ_1 o γ_2 sarebbero valutati sul taglio, da sopra). La curva chiusa su cui si integra è $\Gamma = \gamma_1 + \gamma_R + \gamma_2 + \gamma_r$. Utilizzando il teorema dei residui, abbiamo

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\Gamma} \frac{\sqrt{z}}{z^2 + 1} dz = 2\pi i \operatorname{Res}(f(z), i),$$

$$= 2\pi i \lim_{z \to i} (z - i) \frac{\ln(z)}{(z + i)(z - i)} = i \frac{\pi^2}{2}.$$
(5.598)

Avremo inoltre

$$\lim_{r \to 0} \int_{\gamma_r} \frac{\ln(z)}{z^2 + 1} dz = -\lim_{r \to 0} \int_0^{\pi} \frac{\ln r + i\theta}{r^2 e^{i2\theta} + 1} i r e^{i\theta} d\theta = 0,$$
 (5.599)

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{\ln(z)}{z^2 + 1} dz = \lim_{R \to \infty} \int_0^{\pi} \frac{\ln(R) + i\theta}{R^2 e^{i2\theta} + 1} iRe^{i\theta a} d\theta = 0,$$
 (5.600)

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_1} \frac{\ln(z)}{z^2 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_r^R \frac{\ln(x)}{x^2 + 1} dx = I,$$
 (5.601)

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_2} \frac{\ln(z)}{z^2 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_R^r \frac{\ln(x) + i\pi}{x^2 + 1} e^{i\pi} dx = I + i\pi \int_0^\infty \frac{1}{x^2 + 1} dx. \quad (5.602)$$

In totale abbiamo

$$2I + i\pi \int_0^\infty \frac{1}{x^2 + 1} dx = i\frac{\pi^2}{2}, \qquad (5.603)$$

ovvero

$$\int_0^\infty \frac{\ln(x)}{x^2 + 1} \, dx = 0 \,, \tag{5.604}$$

$$\int_0^\infty \frac{1}{x^2 + 1} dx = \frac{\pi}{2}. \tag{5.605}$$

NB In questo caso non avremmo potuto integrare su un cammino circolare (cone nell'esempio 5.18.2) la f(z) perché avremmo perso l'integrale stesso nella valutazione su γ_2 e γ_2 . Eventualmente avremmo potuto trovare la soluzione integrando invece del $\ln(z)$ il $\ln^2(z)$, come nel prossimo esempio.

5.18.5 Esempio

Calcoliamo il seguente integrale

$$I = \int_0^\infty \frac{\ln(x)}{x^3 + 1} \, dx \,. \tag{5.606}$$

Risolviamo l'integrale in due modi diversi.

Come prima cosa, consideriamo la funzione

$$f(z) = \frac{\ln^2(z)}{z^3 + 1} = \frac{\ln^2(z)}{(z - z_0)(z - z_1)(z - z_2)},$$
(5.607)

polidroma (con un taglio che collega z=0 al punto all'infinito) e con tre singolarità isolate di tipo polare in:

$$z = z_0 = -1,$$

 $z = z_1 = \frac{1}{2} + i \frac{\sqrt{3}}{2},$
 $z = z_2 = \frac{1}{2} - i \frac{\sqrt{3}}{2}.$

Utilizziamo il cammino in figura.

Si avrà

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\Gamma} \frac{\ln^2(z)}{z^3 + 1} dz = 2\pi i \sum_{i=0}^2 \text{Res}(f, z_i),$$

con

 $\Im(z)$

 z_1

 z_2

 γ_1

 γ_2

R

 $\Re(z)$

 γ_r

 z_0

$$\operatorname{Res}(f, z_1) = \operatorname{Res}(f, e^{i\frac{\pi}{3}}) = \frac{\pi^2}{27} \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right),$$
 (5.609)

$$\operatorname{Res}(f, z_2) = \operatorname{Res}(f, e^{i\frac{5\pi}{3}}) = -\frac{25\pi^2}{27} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right),$$
 (5.610)

dove abbiamo sfruttato il fatto che il taglio sull'asse dei reali positivi fa sì che $0 \le Arg(z) < 2\pi$, e quindi che $z_2 = e^{i\frac{5\pi}{3}}$. Sui vari cammini si avrà:

$$\lim_{r \to 0} \int_{\gamma_r} \frac{\ln^2(z)}{z^3 + 1} dz = -\lim_{r \to 0} \int_0^{2\pi} \frac{(\ln r + i\theta)^2}{r^3 e^{i3\theta} + 1} i r e^{i\theta} d\theta = 0,$$
 (5.611)

$$\lim_{R \to \infty} \int_{\gamma_R} \frac{\ln^2(z)}{z^3 + 1} dz = \lim_{R \to \infty} \int_0^{2\pi} \frac{(\ln(R) + i\theta)^2}{R^3 e^{i3\theta} + 1} iRe^{i\theta} d\theta = 0,$$
 (5.612)

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_1} \frac{\ln^2(z)}{z^3 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_r^R \frac{\ln^2(x)}{x^3 + 1} dx = J,$$
 (5.613)

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_2} \frac{\ln^2(z)}{z^3 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_R^r \frac{(\ln(x) + 2\pi i)^2}{x^3 + 1} dx, \qquad (5.614)$$

$$= -J - 4\pi i \int_0^\infty \frac{\ln(x)}{x^3 + 1} dx + 4\pi^2 \int_0^\infty \frac{1}{x^3 + 1} dx.$$
 (5.615)

Si vede che nella somma l'integrale da cui eravamo partiti, J, si cancella. Rimaniamo quindi con una relazione che coinvolge l'integrale che volevamo calcolare, ovvero I, che riemerge dal doppio prodotto proveniente dal quadrato del logaritmo valutato su γ_2 . In totale quindi si ha

$$-4\pi i \int_0^\infty \frac{\ln(x)}{x^3 + 1} dx + 4\pi^2 \int_0^\infty \frac{1}{x^3 + 1} dx = 2\pi i \left(\frac{4\pi^2}{27} - \frac{12\sqrt{3}\pi^2 i}{27} \right), \tag{5.616}$$

ovvero

$$\int_0^\infty \frac{\ln(x)}{x^3 + 1} dx = -\frac{2}{27} \pi^2, \qquad (5.617)$$

$$\int_0^\infty \frac{1}{x^3 + 1} dx = \frac{2\sqrt{3}}{9} \pi. \tag{5.618}$$

Si può risolvere l'integrale ${\cal I}$ utilizzando la funzione

$$f(z) = \frac{\ln(z)}{z^3 + 1} = \frac{\ln(z)}{(z - z_0)(z - z_1)(z - z_2)},$$
(5.619)

ingtegrandola su un altro cammino d'integrazione. Infatti consideriamo il cammino in figura. Si avrà

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\Gamma} \frac{\ln(z)}{z^3 + 1} dz = 2\pi i \operatorname{Res}(f, z_1)$$

$$= 2\pi i \left[-\frac{i\pi}{9} \left(\frac{1}{2} + i \frac{\sqrt{3}}{2} \right) \right]$$

$$= \frac{\pi^2}{9} + i\sqrt{3} \frac{\pi^2}{9}, \quad (5.620)$$

Mentre gli integrali su γ_R e γ_r , nei rispettivi limiti, vanno comunque a zero, e l'integrale su γ_1 riproduce l'integrale che vogliamo valutare, adesso bisogna discutere l'integrale su γ_2 , che è la semiretta

$$\gamma_2: t \to t e^{i\frac{2}{3}\pi}. \tag{5.621}$$

Avremo, per esempio che z^3 valutato su γ_2 dà $t^3 \left(e^{i\frac{2}{3}\pi}\right)^3 = t^3$ e quindi il denominatore dell'integrando riproduce quello dell'integrale da valutare.

Quindi

$$\lim_{\substack{R \to \infty \\ r \to 0}} \int_{\gamma_2} \frac{\ln(z)}{z^3 + 1} dz = \lim_{\substack{R \to \infty \\ r \to 0}} \int_R^r \frac{\ln(t) + i\frac{2}{3}\pi}{t^3 + 1} e^{i\frac{2}{3}\pi} dt = \int_{\infty}^0 \frac{\ln(t) + i\frac{2}{3}\pi}{t^3 + 1} \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2} \right) dt,$$

$$= \frac{1}{2} I + \frac{\sqrt{3}}{3}\pi \int_0^\infty \frac{1}{t^3 + 1} dt + i\frac{\pi}{3} \int_0^\infty \frac{1}{t^3 + 1} dt - i\frac{\sqrt{3}}{2} I.$$
 (5.622)

Quindi, ponendo

$$I' = \int_0^\infty \frac{1}{t^3 + 1} dt \,, \tag{5.623}$$

in totale si ha

$$\frac{3}{2}I + \frac{\sqrt{3}}{3}\pi I' + i\frac{\pi}{3}I' - i\frac{\sqrt{3}}{2}I = \frac{\pi^2}{9} + i\sqrt{3}\frac{\pi^2}{9},$$
 (5.624)

che equivale al sistema

$$\begin{cases} \frac{3}{2}I + \frac{\sqrt{3}}{3}\pi I' = \frac{\pi^2}{9} \\ -\frac{\sqrt{3}}{2}I + \frac{\pi}{3}I' = \sqrt{3}\frac{\pi^2}{9} \end{cases}$$
 (5.625)

Risolvendo il sistema si ottiene

$$I = -\frac{2}{27}\pi^2. (5.626)$$

5.19 Prolungamento analitico nel piano complesso

Supponiamo di avere una rappresentazione di una funzione analitica f(z) in un certo dominio dei complessi. Per esempio possiamo pensare ad una serie di potenze, che converge uniformemente in un disco di raggio R. Oppure, f(z) potrebbe essere nota come rappresentazione integrale e l'integrale potrebbe essere definito e convergente in una certa regione di \mathbb{C} (per esempio in un semipiano ...). Ci si chiede³:

- 1. Se sia possibile (e come) estendere il dominio di validità/analiticità in cui è definita la "forma iniziale" della f(z);
- 2. che libertà abbiamo di fare un'operazione del genere. Ovvero: se si riuscisse a trovare una "estensione" della f(z) ad un dominio più esteso, questa sarebbe unica?

Cominciamo col ribadire il fatto che gli zeri di una funzione analitica sono "zeri isolati". Infatti, se f(z) è analitica in D, è sviluppabile in serie di Taylor per $\forall z \in D$. Supponiamo che z_0 sia uno zero di f(z) e che in particolare sia uno zero di ordine m. Allora si avrà

$$f(z) = (z - z_0)^m (c_m + c_{m+1}(z - z_0) + \dots) = (z - z_0)^m g(z),$$
(5.627)

con g(z) analitica e $\neq 0$ in $z = z_0$. Ma allora in un intorno di z_0 non ci sono altri zeri (soltanto z_0) e non appena $z \neq z_0$, la f(z) è subito $\neq 0$.

Si ha il seguente teorema.

Teorema 5.19.1 Sia f(z) una funzione analitica all'interno di un dominio D. Se f(z) si annulla in $D_1 \subset D$, allora si annulla in tutto D.

Dimostrazione. Ragioniamo per assurdo. Supponiamo che $f(z) \neq 0$ in $D - D_1$. Allora se $z_0 \in D_1$ e $z_1 \in D - D_1$, congiungendo z_0 a z_1 con un segmento dovrà esistere uno z tale che nel tratto $\overline{z_0z}$ tutti i punti siano degli zeri di f(z) e nel tratto $\overline{zz_1}$ invece $f(z) \neq 0$. Ma allora z è una radice di f(z) non isolata e questo contraddice l'ipotesi che f(z) sia analitica in D.

Il teorema è vero anche sotto ipotesi meno restrittive. Basta, per esempio, che f(z) sia nulla su tutta una curva contenuta in D oppure che le radici in D abbiano un punto di accumulazione, o, infine, che f(z) si annulli in uno z_0 con tutte le sue derivate. Allora, se f(z) è analitica in D, si deve annullare in tutto D.

Corollario 5.19.2 Supponiamo che $f_1(z)$ e $f_2(z)$ siano analitiche in D e che coincidano in $D_1 \subset D$. Allora $f_1(z) = f_2(z)$ su tutto D.

Dimostrazione. Segue direttamente dal teorema di cui sopra applicato alla funzione $F(z) = f_1(z) - f_2(z)$.

Le due funzioni coincidono in tutto D anche se sono uguali su una curva in D, oppure se coincidono in $z_0 \in D$ con tutte le loro derivate.

Allora, supponiamo di avere una certa rappresentazione di una funzione analitica $f_1(z)$ in un certo dominio di \mathbb{C} , D_1 , e un'altra rappresentazione $f_2(z)$ in D_2 , con $D_{12} = D_1 \cap D_2$ non

³Ovviamente, se la f(z) è espressa in forma chiusa in termini di funzioni elementari, abbiamo già la "continuazione massimale". Cioè sappiamo studiare la regione di analiticit^ía della f(z) in tutto \mathbb{C} .

vuoto. Supponiamo inoltre che $f_1(z) = f_2(z)$ in D_{12} . Allora $f_2(z)$ è il "prolungamento analitico" di $f_1(z)$ a D_2 tramite D_{12} e la funzione

$$F(z) = \begin{cases} f_1(z) & z \in D_1 \\ f_2(z) & z \in D_2 \end{cases}$$
 (5.628)

è analitica in $D_1 \cup D_2$.

Il prolungamento analitico è unico. Infatti se esistesse una \overline{f}_2 tale che anche \overline{f}_2 coincida con f_1 in D_{12} , essa dovrebbe coincidere anche con $f_2(z)$ e così sarebbe in tutto D_2 .

Supponendo di avere una catena di domini $D_1, D_2, ..., D_n$ con intersezioni $D_{12} = D_1 \cap D_2$, ..., $D_{ij} = D_i \cap D_j$ diverse dall'insieme vuoto e con $f_1(z)$ analitica in D_1 e $f_i(z)$ analitica in D_i , tali che $f_i(z) = f_j(z)$ su D_{ij} , la funzione $F(z) = f_i(z)$, con $z \in D_i$, è analitica e costituisce il prolungamento analitico di $f_1(z)$ a $D = D_1 \cup D_2 \cup ... \cup D_n$.

Prolungamento alla Weierstrass

Supponiamo adesso che le singole $f_i(z)$ dell'esempio precedente siano date in forma di serie di Taylor (serie di potenze). Avremo

$$f_0(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n , \qquad (5.629)$$

uniformemente convergente in un disco $D_0(z_0, R)$, centrato in z_0 con un certo raggio di convergenza R. Supponiamo che $R < \infty$. Ciò vuol dire che la funzione analitica alla quale la serie converge in D_0 avrà una divergenza in $z = z_S$ a distanza $|z_s - z_0| = R$ da z_0 . Supponiamo che z_S sia l'unica divergenza della funzione, analitica nel resto di \mathbb{C} . Se la serie converge uniformemente in tutto $D_0(z_0, R)$, potremo scrivere una serie di Taylor in $z = z_1 \in D$ e $z_1 \neq z_0$, che riproduca la $f_0(z)$ e tutte le sue derivate in z_1 . Questa nuova serie centrata ora in z_1 , individuerà una funzione analitica $f_1(z)$ e avrà un suo raggio di convergenza, R_1 , che sarà dato dalla distanza di z_1 da z_S , $R_1 = |z_1 - z_S|$. Sarà quindi uniformemente convergente a $f_1(z)$ nel disco $D_1(z_1, R_1)$ e tale che $f_0(z) = f_1(z)$ in $D_0 \cap D_1$. Quindi la $f_1(z)$ è il prolungamento analitico della $f_0(z)$ a $D = D_0 \cup D_1$.

Se la $f_0(z)$ è data dalla (5.629), la $f_1(z)$ sarà tale che

$$f_1(z) = \sum_{n=0}^{\infty} d_n (z - z_1)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_1)}{n!} (z - z_1)^n,$$
 (5.630)

dove i coefficienti della nuova serie si possono calcolare utilizzando la (5.629):

$$d_n = \frac{f^{(n)}(z_1)}{n!} = \frac{1}{n!} \left. \frac{d^n}{dz^n} \sum_{k=0}^{\infty} c_k (z - z_0)^k \right|_{z_1}, \tag{5.631}$$

$$= \sum_{k=n}^{\infty} \frac{k(k-1)(k-2)...(k-n+1)}{n!} c_k (z_1 - z_0)^{k-n}, \qquad (5.632)$$

$$= |k-n=j|$$

$$= \sum_{j=0}^{\infty} \frac{(j+n)(j+n-1)(j+n-2)...(j+1)}{n!} c_{j+n} (z_1 - z_0)^j, \qquad (5.633)$$

$$= \sum_{j=0}^{\infty} {n+j \choose n} c_{j+n} (z_1 - z_0)^j.$$
 (5.634)

Possiamo proseguire il ragionamento e scrivere una nuova serie di Taylor in $z_2 \in D_1$, ma con $z_2 \notin D_0$. La nuova serie convergerà ad una $f_2(z)$ in $D_2(z_2, R_2)$, tale che $f_2(z) = f_1(z)$ in $D_1 \cap D_2$. Muovendosi in questo modo, possiamo coprire il piano complesso aggirando il punto di discontinuità z_S e mappando per dischi la funzione analitica che verrà rappresentata da una serie di Taylor in ogni disco.

Esempio

Per capire meglio l'algoritmo di cui nel paragrafo precedente, consideriamo la serie centrata in z=0

$$\sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} \,. \tag{5.635}$$

Questa serie ha raggio di convergenza

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|} = \lim_{n \to \infty} \frac{2^{n+2}}{2^{n+1}} = 2.$$
 (5.636)

Quindi la serie converge uniformemente nel disco |z| < 2. Ciò mi dice anche che a distanza 2 dal punto z = 0 la funzione analitica a cui la serie converge avrà una divergenza. In questo caso è semplice capire che effettivamente è così in quanto la serie può essere banalmente risommata per trovare la seguente f(z):

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{2^{n+1}} = \frac{1}{2} \sum_{n=0}^{\infty} \frac{z^n}{2^n} = \frac{1}{2} \left(\frac{1}{1 - \frac{z}{2}} \right) = \frac{1}{2 - z}.$$
 (5.637)

Siccome la (5.635) converge nel disco di raggio 2, convergerà anche in z = i, punto interno al disco. Possiamo allora contruire un prolungamento analitico della (5.635) con una serie centrata in z = i:

$$\sum_{n=0}^{\infty} d_n (z-i)^n \,, \tag{5.638}$$

dove

$$d_n = \frac{1}{n!} \frac{d^n}{dz^n} \sum_{k=0}^{\infty} \frac{z^k}{2^{k+1}} \bigg|_{z=i},$$
 (5.639)

$$= \sum_{k=n}^{\infty} \frac{k(k-1)(k-2)...(k-n+1)}{n! \, 2^{k+1}} i^{k-n}, \qquad (5.640)$$

$$= \sum_{j=0}^{\infty} \frac{(n+j)(n+j-1)(n+j-2)...(j+1)}{n! \, 2^{n+j+1}} i^j, \qquad (5.641)$$

$$= \frac{1}{2^{n+1}} \sum_{j=0}^{\infty} \frac{(n+j)(n+j-1)(n+j-2)...(j+1)}{n!} \left(\frac{i}{2}\right)^{j}, \qquad (5.642)$$

$$= \frac{1}{2^{n+1}} \sum_{j=0}^{\infty} \binom{n+j}{n} \left(\frac{i}{2}\right)^j , \qquad (5.643)$$

$$= \frac{1}{2^{n+1}} \sum_{j=0}^{\infty} \binom{n+j}{j} \left(\frac{i}{2}\right)^j , \qquad (5.644)$$

$$= \frac{1}{2^{n+1}} \sum_{j=0}^{\infty} {\binom{-n-1}{j}} \left(-\frac{i}{2}\right)^j, \qquad (5.645)$$

$$= \frac{1}{2^{n+1}} \frac{1}{\left(1 - \frac{i}{2}\right)^{n+1}}, \tag{5.646}$$

$$= \frac{1}{(2-i)^{n+1}}. (5.647)$$

Quindi la nuova serie si scrive come segue

$$\sum_{n=0}^{\infty} \frac{(z-i)^n}{(2-i)^{n+1}} \tag{5.648}$$

e rappresenta la continuazione analitica della (5.635) al disco centrato in z = i con raggio

$$R = \lim_{n \to \infty} \frac{|2 - i|^{n+2}}{|2 - i|^{n+1}} = |2 - i| = \sqrt{5}.$$
 (5.649)

In questyo semplice esempio si capisce subito come la nuova serie sia un'altra rappresentazione della stessa funzione analitica (5.637). Infatti in |z - i| < |2 - i| si ha

$$\sum_{n=0}^{\infty} \frac{(z-i)^n}{(2-i)^{n+1}} = \frac{1}{2-i} \sum_{n=0}^{\infty} \frac{(z-i)^n}{(2-i)^n} = \frac{1}{2-i} \frac{1}{1-\frac{z-i}{2-i}} = \frac{1}{2-z}.$$
 (5.650)

Esempio: rappresentazione integrale

Un altro modo di trovare il prolungamento analitico di una funzione analitica, data per esempio in forma di serie di potenze, è attraverso il passaggio ad una rappresentazione integrale.

Supponiamo di avere la seguente serie

$$f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n+1} \,. \tag{5.651}$$

Il raggio di convergenza è

$$R = \lim_{n \to \infty} \frac{|c_n|}{|c_{n+1}|} = \lim_{n \to \infty} \frac{n+1}{n+2} = 1.$$
 (5.652)

Si può estendere il dominio di convergenza della f(z) passando ad una rappresentazione integrale, come segue. Poniamo

$$\frac{1}{n+1} = \int_0^1 t^n \, dt \,. \tag{5.653}$$

Allora

$$f(z) = \sum_{n=0}^{\infty} \int_0^1 (tz)^n dt = \int_0^1 \sum_{n=0}^{\infty} (tz)^n dt = |\text{per} |z| < 1| = \int_0^1 \frac{1}{1 - tz} dt.$$
 (5.654)

La rappresentazione integrale (5.654) ha un dominio di definizione che va ben oltre il disco centrato in z=0 di raggio R=1. Infatti, la f(z) così definita è analitica tranne dove si annulla il denominatore della funzione integranda, ovvero $z \neq \frac{1}{t}$ con $t \in [0,1]$ ovvero sull'asse reale con $z \in [1,\infty)$. Ciò ci dice che la f(z) avrà un taglio da z=1 al punto all'infinito.

In questo semplice caso si capisce cos'è successo, integrando direttamente la (5.654), trovando

$$f(z) = -\frac{1}{z} \ln(1-z), \qquad (5.655)$$

che quindi è una funzione polidroma con taglio del $\ln (1-z)$ (nel resto di $\mathbb C$ è analitica).

5.19.1 Funzione $\Gamma(z)$ di Eulero

Una possibile rappresentazione dell'integrale di Eulero di seconda specie è la seguente

$$\Gamma(z) = \int_0^\infty e^{-t} t^{z-1} dt, \qquad t \in \mathbb{R} \quad z \in \mathbb{C}.$$
 (5.656)

Questo integrale non ha problemi per $t\to\infty$ dove l'integrale converge senza problemi. Intorno a t=0 invece si ha

$$e^{-t}t^{z-1} \sim t^{z-1} \tag{5.657}$$

e

$$\int_0^x t^{\alpha} \sim \frac{1}{\alpha + 1} t^{\alpha + 1} \Big|_0^x \,, \tag{5.658}$$

che in 0 converge solo se $\alpha > -1$, ovvero, per l'integrale (5.656), $\Re(z-1) > -1$ e quindi $\Re(z) > 0$. Cioè la rappresentazione integrale (5.656) drfinisce una funzione analitica nel semipiano $\Re(z) > 0$. È però possibile trovare una continuazione analitica della $\Gamma(z)$ a tutto \mathbb{C} considerando che

$$\int_0^\infty e^{-t}t^{z-1}dt = \int_0^1 e^{-t}t^{z-1}dt + \int_1^\infty e^{-t}t^{z-1}dt.$$
 (5.659)

Il secondo integrle è analitico in z in tutto \mathbb{C} . Il primo integrale, invece, è quello che dà l'andamento in 0 "problematico". Però possiamo scrivere l'esponenziale in serie di potenze

$$e^{-t} = \sum_{n=0}^{\infty} (-1)^n \frac{t^n}{n!}.$$
 (5.660)

Quindi

$$\int_0^1 e^{-t} t^{z-1} dt = \int_0^1 \sum_{n=0}^\infty \frac{(-1)^n}{n!} t^{n+z-1} = \sum_{n=0}^\infty \frac{(-1)^n}{n!} \int_0^1 t^{n+z-1}, \qquad (5.661)$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \frac{1}{z+n} t^{z+n} \Big|_0^1, \qquad (5.662)$$

$$= |\operatorname{siccome} \Re(z) > 0|$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(z+n)}.$$
 (5.663)

Si può dimostrare che questa serie è uniformemente convergente in tutto \mathbb{C} , tranne per z=-n in cui si hanno dei poli singoli. Il residuo dell'*n*-esimo polo è $(-1)^n/n!$.

Quindi

$$\Gamma(z) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!(z+n)} + \int_1^{\infty} e^{-t} t^{z-1} dt$$
 (5.664)

è il prolungamento analitico della (5.656) a tutto \mathbb{C} .

La $\Gamma(z)$ è la "generalizzazione" del fattoriale a tutto \mathbb{C} . Infatti, si ha

$$\Gamma(1) = \int_0^\infty e^{-t} dt = 1, \qquad (5.665)$$

e, per $n \in \mathbb{N}$

$$\Gamma(n+1) = \int_0^\infty e^{-t} t^n dt, \qquad (5.666)$$

= |integrando per parti|

$$= -e^{-t}t^n\big|_0^\infty + \int_0^\infty ne^{-t}t^{n-1}dt, \qquad (5.667)$$

= |integrando per parti|

$$= n \left[-e^{-t}t^{n-1} \Big|_{0}^{\infty} + (n-1) \int_{0}^{\infty} e^{-t}t^{n-2}dt \right], \qquad (5.668)$$

$$= n(n-1) \int_0^\infty e^{-t} t^{n-2} dt, \qquad (5.669)$$

= | integrando per parti n volte |

$$= n! (5.670)$$

Una proprietà fondamentale è la seguente:

$$\Gamma(z+1) = \int_0^\infty ne^{-t}t^z dt = -e^{-t}t^z\Big|_0^\infty + z \int_0^\infty e^{-t}t^{z-1} dt = z\Gamma(z), \qquad (5.671)$$

formula molto utile per estrarre i poli della Γ .

5.19.2 Principio di riflessione di Schwartz

5.19.3 Continuazione alla Borel

Supponiamo che $f_1(z)$ sia analitica in $D_1 \subset \mathbb{C}$ dove

$$f_1(z) = \sum_{k=0}^{\infty} a_k z^k \tag{5.672}$$

e $D_1 = D(0, R)$ dove R è il raggio di convergenza, finito, della serie.

Poniamo

$$f_2(z) = \int_0^\infty e^{-t} h(zt) dt, \qquad (5.673)$$

dove

$$h(zt) = \sum_{k=0}^{\infty} \frac{a_k}{k!} (zt)^k$$
 (5.674)

è detta funzione di Borel della $f_1(z)$. Se R è finito, il raggio di convergenza della h(zt) è infinito. Per |z| < R si ha

$$f_2(z) = \int_0^\infty e^{-t} \sum_{k=0}^\infty \frac{a_k}{k!} (zt)^k dt = \sum_{k=0}^\infty \frac{a_k}{k!} z^k \int_0^\infty e^{-t} t^k dt = \sum_{k=0}^\infty \frac{a_k}{k!} z^k \Gamma(k+1),$$

$$= \sum_{k=0}^\infty a_k z^k = f_1(z).$$
(5.675)

Esempio

Per vedere un'applicazione semplice, consideriamo la solita serie geometrica

$$f_1(z) = \sum_{n=0}^{\infty} z^n \,, \tag{5.676}$$

che converge uniformemente in |z| < 1. La sua funzione di Borel è

$$h(zt) = \sum_{n=0}^{\infty} \frac{1}{n!} (n!)(zt)^n = e^{zt}.$$
 (5.677)

Quindi, la trasformata di Borel è data da

$$f_2(z) = \int_0^\infty e^{-t} h(zt) dt = \int_0^\infty e^{-t(1-z)} dt, \qquad (5.678)$$

che quindi si riduce alla $f_1(z)$ nel disco di raggio 1, ma ora converge per $\Re(z) < 1$. La $f_2(z)$ è quindi la continuazione analitica della $f_1(z)$ al semipiano $\Re(z) < 1$.

