Conjecture Mong-Si

Valentin De Bortoli email: valentin.debortoli@gmail.com

Théorème 1. Soit $(P_n)_{n\in\mathbb{N}}$ la suite de polynômes définie par $P_0=0$ et $P_1=1$ avec la relation de récurrence $P_{n+1} = XP_n - P_{n-1}$. Soit Q un facteur irréductible d'un des éléments (non-nuls) de la suite. Alors, Q(2) est soit un inversible de \mathbb{Z} soit un irréductible de \mathbb{Z} .

Preuve : on commence par montrer que $P_{n \wedge m} = P_n \wedge P_m$. On peut montrer par récurrence la relation $P_{n+1}^2 = 1 + P_n P_{n+2}$ qui prouve (via le théorème de Bézout) que $P_{n+1} \wedge P_n = 1$. On montre ensuite (toujours par récurrence) :

$$P_{n+m} = P_n P_{m+1} - P_{n-1} P_m \tag{1}$$

Ceci prouve que $P_{n+m} \wedge P_n = P_n \wedge P_m$. On peut donc appliquer l'algorithme d'Euclide et finalement on trouve que :

$$P_{n \wedge m} = P_n \wedge P_m \tag{2}$$

On va maintenant montrer le théorème.

Soit $n = \prod_{i=1}^{N} p_i^{\alpha_i}$ la décomposition en produit de facteurs premiers de n. $P_n = \prod_{i=1}^{N} P_{p_i^{\alpha_i}} R$. Il convient de remarquer que $P_n(2) = n$ (preuve par récurrence...), donc R(2) = 1. Soit Q un facteur irréductible de P_n . Soit Q divise R et donc Q(2) inversible de \mathbb{Z} . Soit Q divise un des $P_{p_i^{\alpha_i}}$.

Si $\alpha_i = 1$ alors la proposition est vérifiée car alors $P_{p_i}(2) = p_i$ et donc $Q(2) = p_i$ ou $-p_i$ ou inversible de \mathbb{Z} .

Si $\alpha_i > 1$ alors $P_{p_i^{\alpha_i-1}}$ divise $P_{p_i^{\alpha_i}}$ donc $P_{p_i^{\alpha_i}} = P_{p_i^{\alpha_i-1}}T$. Avec $T(2) = p_i$ ou $-p_i$ ou inversible de \mathbb{Z} . Si Q divise $P_{p_i^{\alpha_i-1}}$ divise $P_{p_i^{\alpha_i-1}}$ et on peut conclure. Sinon, Q divise $P_{p_i^{\alpha_i-1}}$ et on peut conclure par récurrence.

Ainsi dans tous les cas, Q(2) vérifie bien la propriété annoncée.