アルゴリズムとデータ構造b 12 - バックトラック

バックトラック(後戻り法)

- それ以上先に進んでも解がない(やっても無駄な)場合、元来た道を戻って、違う道を辿る方法
- 探索する組み合わせが膨大な場合に、探索回数を大幅に減らせる
 - 探索の枝を切ってしまうことから「刈り込み」 と呼ばれる。
 - チェス、将棋、囲碁などの解法、人工知能分野(推論、解決木の探索など)に有効、というか必須。

(DeepBlueも刈り込みせずには人間に勝てない)

nクイーン問題

- バックトラックの例として取り上げる
- 最も一般的には8クイーン問題がある
 - 8×8の盤に8つのチェスのクイーンを置く
 - それぞれのクイーンは互いに取れない場所に置く解の一例

クイーンが移動 できる範囲: 上下と斜めなら いくつでも進める

将棋の角+飛車

8クイーン問題での効果

- 8クイーン問題の解は92個ある。
- クイーンを置く組み合わせは全部で 8⁸≒1677万通り
- それ以上進んでも解がない状態で、バックトラックを行うことで 15720通りだけ調べるだけで良くなる。
 - 1677万÷15720≒1<mark>067倍</mark>高速になる!

nクイーン問題の解法(1)

- 4クイーン問題
 - 各行に1つずつQ(クイーン)を置いてみる
 - Qは1列目、2列目…という順に置いてみる
 - 置けなかったら右の列へ、置けたら下の行に進む
 - 4行全部置けたら解が見つかった

(1,1)に置ける 2行目に進む

(1,1)があるの で(2,1)には置 けない

(1,1)があるの で(2,2)には置 けない

(2,3)に置ける 3行目に進む

nクイーン問題の解法(2)

(2,3)があるの で(3,2)には置 けない

(1,1)と(2,3)が あるので(3,3) には置けない

(2,3)があるの で(3,4)には置 けない

3行目は全てダメ だったので、 バックトラック(2行 目に戻る)する (2,4)に置ける 3行目に進む

(1,1)があるの で(3,1)には置 けない

(3,2)に置ける4行目に進む

nクイーン問題の解法(3)

(1,1)と(3,2)が あるので(4,1) には置けない

(3,2)があるの で(4,2)には置 けない

(3,2)があるの で(4,3)には置 けない

(1,1)があるの で(4,4)には置 けない

Q X X

4行目は全てダメ だったので、 バックトラック(3行 目に戻る)する

(1,1)と(2,4)が あるので(3,3) には置けない

(2,4)があるの で(3,4)には置 けない

だったので、 バックトラック(2 バックトラック(1 行目に戻る)する 行目に戻る)する

3行目は全てダメ 2行目は全てダメ だったので、

nクイーン問題の解法(4)

(1,2)に置ける 2行目に進む (1,2)があるの で(2,1)には置 けない (1,2)があるの で(2,2)には置 けない

(1,2)があるの で(2,3)には置 けない

(2,4)に置ける 3行目に進む

(3,1)に置ける 4行目に進む

(3,1)があるの で(4,1)には置 けない

Q

(1,2),(2,4), (3,1)があるの で(4,2)には置 けない (4,3)に置ける

解発見!

nクイーン問題の解法(5)

解発見の後は、 続き(4行目の Qを一つ右へ) (2,4)があるの で(4,4)には置 けない

(2,1)があるの で(4,1)には置 けない

(4,2)に置ける

解発見!

4クイーン問題の解は、 この2つだけ

プログラム例(変数や配列)

■変数や配列

プログラム例(本体の概略)

```
public void solve(int i) { //i行目に置くQを求める
   int j,k;
   for (j=1; j<=N; j++) { //jはi行目にQを置く位置
      boolean b = true;
       // 同じ列に○がいるか?
                           Qが取れる位置に
       // 左上方向に○がいるか?
                           いたらbをfalseに
       // 右上方向に○がいるか?
      if (b) { // Qが置けるなら
          line[i]=j;
          if (i == N) { // 解発見!
              // 解を表示する
          } else {
              solve(i+1); //次の行にQを置く
```

プログラム例(本体の前半)

```
public void solve(int i) { //i行目に置くQを求める
    int j,k;
    for (j=1; j<=N; j++) { //jはi行目にQを置く位置
       boolean b = true;
       // 同じ列にQがいるか?
       for (k=1; k<i; k++) {
           if (line[k] == j) b = false;
       // 左上方向に○がいるか?
       for (k=1; k<i; k++) {
           if (line[k] == j-(i-k)) b = false;
       // 右上方向にQがいるか?
       for (k=1; k<i; k++) {
           if (line[k] == j+(i-k)) b = false;
       if (b) { // Qが置けるなら ...
```

同じ列にQがいるか?

```
for (k=1; k<i; k++) {
   if (line[k] == j) b = false;
}</pre>
```

- 3行目(i=3)の4列目(j=4)にQを置く場合、
 - 1行目のQ(line[1])が4列目(j) にいないか? line[1]は2≠4
 - 2行目のQ(line[2]が4列目(j) にいないか? line[2]は4なので同じ列(4列目にQがいる) そこでbをfalseにする

左上にQがいるか?

```
for (k=1; k<i; k++) {
  if (line[k] == j-(i-k))
    b = false;
}</pre>
```

- 3行目(i=3)の4列目(j=4)にQを置く場合、
 - 1行目のQ(line[1])が2列目(j-2) にいないか? line[1]は1≠2
 - 2行目のQ(line[2]が3列目(j-1)
 にいないか?
 line[2]は3なので左上(3列目にQがいる)
 そこでbをfalseにする

右上にQがいるか?

```
for (k=1; k<i; k++) {
  if (line[k] == j+(i-k))
    b = false;
}</pre>
```

- 3行目(i=3)の2列目(j=2)にQを置く場合、
 - 1行目のQ(line[1])が4列目(j+2) にいないか? line[1]は1≠2
 - 2行目のQ(line[2]が3列目(j+1)
 にいないか?
 line[2]は3なので右上(3列目にQがいる)
 そこでbをfalseにする

Qが置ける場合… i行目のj列目にQを置く

```
if (b) { // Qが置けるなら
                              解の表示
  line[i] = j;
  if (i == N) { // 解発見!
    for (k=1; k \le N; k++)
      System.out.print(line[k] + " ");
    System.out.println();
  } else {
    solve(i+1); //次の行にQを置く
           再帰
```

プログラムリスト(改良前)

```
public class NQueenSolver {
   final int N=4;
   int[] line = new int[N+1];
   public void solve(int i) { // i行目に置くoを求める
        int j,k;
        for (j=1; j<=N; j++) { // jはi行目にQを置く列番号
            boolean b = true;
            // 同じ列に⊙がいるか?
            for (k=1; k<i; k++) {
                 if (line[k] == j) b = false;
             // 左上方向に○がいるか?
             for (k=1; k<i; k++) {
                if (line[k] == j-(i-k)) b = false;
             // 右上方向に⊙がいるか?
             for (k=1; k<i; k++) {
                 if (line[k] == j+(i-k)) b = false;
            if (b) { // oが置けるなら
                 line[i]=i;
                 if (i == N) { // 解発見!
                     for (k=1; k \le N; k++)
                        System.out.print(line[k] + " ");
                    System.out.println();
                 } else {
                    solve (i+1); //次の行にQを置く
    public static void main(String[] args) {
       NQueenSolver prog = new NQueenSolver();
       prog.solve(1); //1行目から始める
```

プログラムの改良(1)

- 同じ列、左上、右上にQがいないかどうか調べるのに、lineの各要素を見ている
- 一発でQがいないかどうか調べられないか?
- 同じ列:lineではなく各列のどこかにQが既に置かれているかどうかのフラグを使う

boolean row[] = new boolean(N+1);

プログラムの改良(2)

■ 右上

boolean rup[] = new boolean (2*N+1);

rup | ? | ? | F | T | F | T | F | F | F | 添字 | 0 1 2 3 4 5 6 7 8

未使用

i行目,j列目とすると

rup[i+j]がtrueなら、 その筋にQがいる、 falseならいない

プログラムの改良(3)

■ 左上

boolean lup[] = new boolean(2*N);

i行目,j列目とすると

rup[j-i+N]がtrueなら、その筋にQがいる、falseならいない

プログラムの改良(Qが置けるか?)

```
同じ列(j)にQ
 public void solve(int i) {
                                がいないか?
     int j, k;
     for (j=1; j \le N; j++) {
          if (row[j] == false &&
              rup[i+j] == false &&
同じ右上(i+j)に
              lup[j-i+N] == false) {
Oがいないか?
                  pos[i]=j;
               ...(省略)...
                           同じ左上(j-i+N)
                           にQがいないか?
```

プログラムの改良(次の行へ)

(j列目、(i+j)の右上斜め、(j-i+N)の左上斜めをtrueにする

Qを取り除く 同様の箇所をfalse

可様の箇所をfalse にする

```
row[j] = rup[i+j] = lup[j-i+N] = true;
solve(i+1); //次の行にQを置く
row[j] = rup[i+j] = lup[j-i+N] = false;
```

プログラムリスト(改良後)

```
public class NQueenSolver2 {
    final int N=8;
   int[] pos = new int[N+1];
   boolean[] row = new boolean[N+1]; // 各列にOを置いたか?
   boolean[] rup = new boolean[2*N+1]; // 各右上斜めにQを置いたか?
   boolean[] lup = new boolean[2*N]; // 各左上斜めにOを置いたか?
   public void solve(int i) { // i行目に置くOを求める
       int j,k;
    for (j=1; j<=N; j++) { // jはi行目にQを置く列番号
           if (row[j] == false &&
               rup[i+j] == false &&
               lup[j-i+N] == false) {
               pos[i]=j;
               if (i == N) { // 解発見!
                   for (k=1; k \le N; k++) {
                       System.out.print(pos[k] + " ");
                   System.out.println();
               } else {
                   row[j] = rup[i+j] = lup[j-i+N] = true;
                   solve(i+1); //次の行に○を置く
                   row[j] = rup[i+j] = lup[j-i+N] = false;
   public static void main(String[] args) {
       NQueenSolver2 prog = new NQueenSolver2();
    prog.solve(1); //1行目から始める
```

宿題

- 5クイーン問題を、この教材で挙げた方法で順に解を求め、1~4番目に見つかった解を答えよ
- 解答例: このような解を4つ書く

			Q	
	Q			
				Q
		Ø		
Q				

				Q
		Q		
Q				
			Ø	
	Q			