Transformations on Flat File

Kaylynn Mosier

15 April 2024

In [1]: # Importing required packages import pandas as pd import numpy as np

In [23]: # Load and print data
temperature_data = pd.read_csv("C:/Users/kayly/OneDrive/Desktop/MSDS/DSC540/Tem Project/TemperatureByCity.csv") temperature data

		Region	Country	State	City	Month	Day	Year	AvgTemperature
	0	Africa	Algeria	NaN	Algiers	1	1	1995	64.2
	1	Africa	Algeria	NaN	Algiers	1	2	1995	49.4
	2	Africa	Algeria	NaN	Algiers	1	3	1995	48.8
	3	Africa	Algeria	NaN	Algiers	1	4	1995	46.4
	4	Africa	Algeria	NaN	Algiers	1	5	1995	47.9
10	48570	Middle East	Oman	NaN	Muscat	2	7	1999	-99.0
10	48571	Middle East	Oman	NaN	Muscat	2	8	1999	-99.0
10	48572	Middle East	Oman	NaN	Muscat	2	9	1999	-99.0
10	48573	Middle East	Oman	NaN	Muscat	2	10	1999	-99.0
10	48574	Middle East	Oman	NaN	Muscat	2	11	1999	-99.0

1048575 rows × 8 columns

Transformation 1: Setting index

In [24]: temperature_data.set_index('City', inplace=True)
temperature_data

	Region	Country	State	Month	Day	Year	AvgTemperature
City							
Algiers	Africa	Algeria	NaN	1	1	1995	64.2
Algiers	Africa	Algeria	NaN	1	2	1995	49.4
Algiers	Africa	Algeria	NaN	1	3	1995	48.8
Algiers	Africa	Algeria	NaN	1	4	1995	46.4
Algiers	Africa	Algeria	NaN	1	5	1995	47.9
Muscat	Middle East	Oman	NaN	2	7	1999	-99.0
Muscat	Middle East	Oman	NaN	2	8	1999	-99.0
Muscat	Middle East	Oman	NaN	2	9	1999	-99.0
Muscat	Middle East	Oman	NaN	2	10	1999	-99.0
Muscat	Middle East	Oman	NaN	2	11	1999	-99.0

1048575 rows × 7 columns

Transformation 2: Dropping State column

In [25]: # Accessing State column and counting the number of null values
temperature_data['State'].isna().sum()

Out[25]: 1048575

This entire column is empty, so it adds no value to my research.

In [26]: # Dropping State column from dataframe and updatating the dataframe to reflect this change temperature_data = temperature_data.drop(columns = 'State') temperature_data

	Region	Region Country M		Day	Year	AvgTemperature
City						
Algiers	Africa	Algeria	1	1	1995	64.2
Algiers	Africa	Algeria	1	2	1995	49.4
Algiers	Africa	Algeria	1	3	1995	48.8
Algiers	Africa	Algeria	1	4	1995	46.4
Algiers	Africa	Algeria	1	5	1995	47.9
Muscat	Middle East	Oman	2	7	1999	-99.0
Muscat	Middle East	Oman	2	8	1999	-99.0
Muscat	Middle East	Oman	2	9	1999	-99.0
Muscat	Middle East	Oman	2	10	1999	-99.0
Muscat	Middle East	Oman	2	11	1999	-99.0

1048575 rows × 6 columns

Transformation 3: Removing values from AvgTemperature column

When examining the data, I realized the AvgTemperature column contains values for -99. These seem to be filling Na values.

```
In [28]: # Removing data with AvgTemperature values greater than -99
temperature_data = temperature_data[temperature_data['AvgTemperature'] > -99]
temperature_data

Out[28]: Region Country Month Day Year AvgTemperature
```

	Region	Country	Month	Day	Year	AvgTemperature
City						
Algiers	Africa	Algeria	1	1	1995	64.2
Algiers	Africa	Algeria	1	2	1995	49.4
Algiers	Africa	Algeria	1	3	1995	48.8
Algiers	Africa	Algeria	1	4	1995	46.4
Algiers	Africa	Algeria	1	5	1995	47.9
		***				***
Beirut	Middle East	Lebanon	5	13	2020	67.8
Muscat	Middle East	Oman	4	19	1995	82.8
Muscat	Middle East	Oman	9	24	1995	94.5
Muscat	Middle East	Oman	9	25	1995	92.6
Muscat	Middle East	Oman	10	1	1995	93.1

992090 rows × 6 columns

Transformation 4: Change column title

I plan to add a columns that calculates average temperatures by month and by year for each city. The current AvgTemperature column shows the average daily temperature. This column title will become confusing when I add the new column

```
In [29]: # Renaming AvgTemperature column using remane method
    temperature_data = temperature_data.rename(columns={"AvgTemperature":"AvgDailyTemp"})
    temperature_data
```

		_						
ut[29]:		Region	Country	Month	Day	Year	AvgDailyTemp	
	City							
	Algiers	Africa	Algeria	1	1	1995	64.2	
	Algiers	Africa	Algeria	1	2	1995	49.4	
	Algiers	Africa	Algeria	1	3	1995	48.8	
	Algiers	Africa	Algeria	1	4	1995	46.4	
	Algiers	Africa	Algeria	1	5	1995	47.9	

	Beirut	Middle East	Lebanon	5	13	2020	67.8	
	Muscat	Middle East	Oman	4	19	1995	82.8	
	Muscat	Middle East	Oman	9	24	1995	94.5	
	Muscat	Middle East	Oman	9	25	1995	92.6	
	Muscat	Middle East	Oman	10	1	1995	93.1	

992090 rows × 6 columns

Transformation 5: Removing years that are not possible

In trying to recode data to datetime format, I found an errors in the year column. This dataset is supposed to cover years from 1995-2020. A few entires contain values of 200 and 201. Becuase I cannot tell what these years are supposed to be, I will remove all years less than 1995 from the dataset.

```
In [30]: # Removing data with Year values less than 1995
temperature_data = temperature_data[temperature_data['Year'] > 1995]
temperature_data

Out[30]: Region Country Month Day Year AvgDailyTemp
```

	Region	Country	Month	Day	Year	AvgDailyTemp
City						
Algiers	Africa	Algeria	1	1	1996	67.4
Algiers	Africa	Algeria	1	2	1996	60.0
Algiers	Africa	Algeria	1	3	1996	54.4
Algiers	Africa	Algeria	1	4	1996	57.7
Algiers	Africa	Algeria	1	5	1996	57.6
Beirut	Middle East	Lebanon	5	9	2020	70.4
Beirut	Middle East	Lebanon	5	10	2020	68.5
Beirut	Middle East	Lebanon	5	11	2020	68.7
Beirut	Middle East	Lebanon	5	12	2020	71.5
Beirut	Middle East	Lebanon	5	13	2020	67.8

952987 rows × 6 columns

Transformation 6: Adding datetime column

In [31]: # Adds date column by combining Month, Day, and Year columns using to_datetime method temperature_data['Date'] = pd.to_datetime(temperature_data[['Month', 'Day', 'Year']]) temperature_data

C:\Users\kayly\AppData\local\Temp\ipykernel_15608\437200125.py:2: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.ht

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy temperature_data['Date'] = pd.to_datetime(temperature_data[['Month', 'Day', 'Year']])

Region Country Month Day Year AvgDailyTemp City 1 1 1996 Africa Algeria Algiers 67.4 1996-01-01 **Algiers** Africa Algeria 1 2 1996 60.0 1996-01-02 Africa Algeria 1 3 1996 54.4 1996-01-03 Algiers **Algiers** Africa Algeria 1 4 1996 57.7 1996-01-04 Africa Algeria 1 5 1996 57.6 1996-01-05 **Beirut** Middle East Lebanon 5 9 2020 70.4 2020-05-09 **Beirut** Middle East Lebanon 5 10 2020 68.5 2020-05-10
 Beirut
 Middle East
 Lebanon
 5
 11
 2020
 68.7
 2020-05-11

 Beirut
 Middle East
 Lebanon
 5
 12
 2020
 71.5
 2020-05-12
 Beirut Middle East Lebanon 5 13 2020 67.8 2020-05-13 952987 rows × 7 columns

Transformation 7: Calculate average monthly temperature for each city

For later analysis, it may be useful to see the average monthly temperature of each city.

```
In [32]: # Group values by City, Month, and Year
temperature_subset_month = temperature_data.groupby(['City','Month', 'Year'])

In [33]: # Find the average temperature in each City for each Month
avg_monthly_temp = temperature_subset_month.mean(['AvgDailyTemp'])
avg_monthly_temp
```

Out[33]: Day AvgDailyTemp City Month Year Abidjan 1 1996 16.000000 80.754839 **1997** 16.000000 80.483871 **1998** 16.000000 81.145161 **1999** 16.200000 81.286667 **2000** 15.733333 80.456667 Zurich 12 2015 15.500000 40.020000 **2016** 16.000000 33.254839 **2017** 16.000000 34.364516 2018 16.000000 38.219355 **2019** 16.000000 38.848387

32404 rows × 2 columns

In [34]: # Change column title from AvgDailyTemp to AvgMonthlyTemp
avg_monthly_temp = avg_monthly_temp.rename(columns={"AvgDailyTemp":"AvgMonthlyTemp"})
avg_monthly_temp

Dut[34]: Day AvgMonthlyTemp

City	Month	Year																										
Abidjan	1	1996	16.000000	80.754839																								
		1997	16.000000	80.483871																								
		1998	16.000000	81.145161																								
		1999	16.200000	81.286667																								
		2000	15.733333	80.456667																								
Zurich	12	2015	15.500000	40.020000																								
		2016	16.000000	33.254839																								
																										2017	16.000000	34.364516
		2018	16.000000	38.219355																								
		2019	16.000000	38.848387																								

32404 rows × 2 columns

In [35]: # Drop Day column
avg_monthly_temp = avg_monthly_temp.drop(columns='Day')
avg_monthly_temp

AvgMonthlyTemp City Month Year Abidjan 1 1996 80.754839 80.483871 1997 1998 81.145161 81.286667 2000 80.456667 Zurich 12 2015 40.020000 33.254839 2016 2017 34.364516 2018 38.219355 2019 38.848387 32404 rows × 1 columns

Transformation 8: Calculate average yearly temperature for each city

For later analysis, it may be useful to see the average yearly temperature of each city.

```
In [36]: temperature_sebset_year = temperature_data.groupby(['City', 'Year'])
AvgYearlyTemp = temperature_sebset_year.mean(['AvgDailyTemp'])
AvgYearlyTemp
```

Out[36]: Month Day AvgDailyTemp City Year **Abidjan 1996** 6.498623 15.757576 **1997** 6.575419 15.768156 **1998** 6.465374 15.590028 **1999** 6.150307 15.503067 80.573006 2000 6.541547 15.974212 79.888825 _ _ _ _ _ Zurich 2016 6.508287 15.801105 49.890884 **2017** 6.526027 15.720548 50.350685 **2018** 6.497222 15.752778 52.093889 **2019** 6.565460 15.657382 51.086908 2020 2.738806 14.798507 45.263433

2797 rows × 3 columns

```
In [37]: # Change column title from AvgDailyTemp to AvgYearlyTemp
AvgYearlyTemp = AvgYearlyTemp.rename(columns={"AvgDailyTemp": "AvgYearlyTemp"})
AvgYearlyTemp
```

		Month	Day	AvgYearlyTemp
City	Year			
Abidjan	1996	6.498623	15.757576	80.513774
	1997	6.575419	15.768156	80.284637
	1998	6.465374	15.590028	81.113573
	1999	6.150307	15.503067	80.573006
	2000	6.541547	15.974212	79.888825
Zurich	2016	6.508287	15.801105	49.890884
	2017	6.526027	15.720548	50.350685
	2018	6.497222	15.752778	52.093889
	2019	6.565460	15.657382	51.086908
	2020	2.738806	14.798507	45.263433

2797 rows × 3 columns

```
In [38]: # Drop Month and Day columns
AvgYearlyTemp = AvgYearlyTemp.drop(columns=['Day', 'Month'])
AvgYearlyTemp
```

Out[38]: AvgYearlyTemp City Year Abidjan 1996 80.513774 1997 80.284637 1998 81.113573 1999 80.573006 2000 79.888825 Zurich 2016 49 890884 2017 50.350685 2018 52.093889 2019 51.086908 45.263433 2020

I was able to calculate averge monthly temperature and average yearly temperature by city, but I couldn't figure out how to join it back to the original dataset. I need to continue working on this to have a fully finalized dataset. However, my first 6 transformations are shown in the final dataset.

Final Dataset

In [39]: # Prints a h uman-readable version of my final dataset temperature_data

Region Country Month Day Year AvgDailyTemp 1 1996 Algiers Africa Algeria Africa Algeria 1 2 1996 60.0 1996-01-02 Algiers Algiers Africa Algeria 1 3 1996 54.4 1996-01-03 Africa Algeria 1 4 1996 57.7 1996-01-04 Algiers 1 5 1996 Africa Algeria 57.6 1996-01-05 Algiers Beirut Middle East Lebanon 5 9 2020 70.4 2020-05-09 **Beirut** Middle East Lebanon 5 10 2020 68.5 2020-05-10 Beirut Middle East Lebanon 5 11 2020 68.7 2020-05-11 **Beirut** Middle East Lebanon 5 12 2020 71.5 2020-05-12 Beirut Middle East Lebanon 5 13 2020 67.8 2020-05-13

In [25]: temperature_data['City'].unique()

Joining Datasets

In [18]: AvgYearlyTemp

Out[18]: AvgYearlyTemp City Year Abidjan 1996 80.513774 1997 80.284637 1998 81.113573 1999 80.573006 2000 79.888825 Zurich 2016 49.890884 2017 50.350685 2018 52.093889 2019 2020 45 263433

2797 rows × 1 columns

In [40]: temperature_data

Out[40]: Region Country Month Day Year AvgDailyTemp Date City 1 1 1996 67.4 1996-01-01 Algiers Africa Algeria Africa Algeria 1 2 1996 60.0 1996-01-02 Algiers Africa Algeria 1 3 1996 Algiers **Algiers** Africa Algeria 1 4 1996 57.7 1996-01-04 Africa Algeria 1 5 1996 57.6 1996-01-05 Beirut Middle East Lebanon 5 9 2020 70.4 2020-05-09 **Beirut** Middle East Lebanon 5 10 2020 68.5 2020-05-10 Beirut Middle East Lebanon 5 11 2020 68.7 2020-05-11 **Beirut** Middle East Lebanon 5 12 2020 71.5 2020-05-12 Beirut Middle East Lebanon 5 13 2020 67.8 2020-05-13

952987 rows x 7 columns

In [45]: # Resetting index of dataframe
temperature_data = temperature_data.reset_index()

temperature_data City Region Country Month Day Year AvgDailyTemp Africa Algeria 1 1 1996 67.4 1996-01-01 0 Algiers 1 Algiers Africa Algeria 1 2 1996 60.0 1996-01-02 2 Algiers Africa Algeria 1 3 1996 54.4 1996-01-03 **3** Algiers Africa Algeria 1 4 1996 57.7 1996-01-04 1 5 1996 4 Algiers Africa Algeria 57.6 1996-01-05 952982 Beirut Middle East Lebanon 5 9 2020 70.4 2020-05-09 68.5 2020-05-10 5 10 2020 952983 Beirut Middle East Lebanon 5 11 2020 68.7 2020-05-11 952984 Beirut Middle East Lebanon **952985** Beirut Middle East Lebanon 5 12 2020 71.5 2020-05-12 **952986** Beirut Middle East Lebanon 5 13 2020 67.8 2020-05-13 952987 rows × 8 columns In [47]: # Setting index as City and temperature_data.set_index(['City', 'Year'], inplace=True) temperature_data In [52]: # Join temperature_data and AvgYearLyTemp dataframes on City and Year temperature_data_join1 = temperature_data.join(AvgYearLyTemp) temperature_data_join1 Region Country Month Day AvgDailyTemp Date AvgYearlyTemp City Year Abidjan 1996 Africa Ivory Coast 79.6 1996-01-01 80.513774 81.2 1996-01-02 80.513774 **1996** Africa Ivory Coast 1 2 80.513774 1996 Africa Ivory Coast 1 3 82.2 1996-01-03 **1996** Africa Ivory Coast 1 4 83.0 1996-01-04 80.513774 1 5 1996 Africa Ivory Coast 82.1 1996-01-05 80.513774 Zurich 2020 Europe Switzerland 5 9 67.1 2020-05-09 45.263433 **2020** Europe Switzerland 5 10 64.7 2020-05-10 45.263433 2020 Europe Switzerland 5 11 52.0 2020-05-11 45.263433 **2020** Europe Switzerland 5 12 43.5 2020-05-12 45.263433 2020 Europe Switzerland 5 13 44.6 2020-05-13 45.263433 952987 rows × 7 columns In [53]: # Resetting index temperature_data_join1 = temperature_data_join1.reset_index() Out[53]: City Year Region Country Month Day AvgDailyTemp Date AvgYearlyTemp **0** Abidjan 1996 Africa Ivory Coast 1 1 79.6 1996-01-01 **1** Abidjan 1996 Africa Ivory Coast 1 2 81.2 1996-01-02 80.513774 2 Abidjan 1996 Africa Ivory Coast 1 3 82.2 1996-01-03 80.513774 **3** Abidjan 1996 Africa Ivory Coast 1 4 83.0 1996-01-04 80.513774 82 1 1996-01-05 80 513774 4 Abidjan 1996 Africa Ivory Coast 1 5 ... 952982 Zurich 2020 Europe Switzerland 5 9 67.1 2020-05-09 45.263433 **952983** Zurich 2020 Europe Switzerland 5 10 64.7 2020-05-10 45.263433 952984 Zurich 2020 Europe Switzerland 5 11 52.0 2020-05-11 45.263433 **952985** Zurich 2020 Europe Switzerland 5 12 43.5 2020-05-12 45.263433 **952986** Zurich 2020 Europe Switzerland 5 13 44.6 2020-05-13 45 263433 952987 rows × 9 columns In [54]: temperature_data_join1.set_index(['City', 'Month', 'Year'], inplace=True) temperature_data_join1 Region Country Day AvgDailyTemp Date AvgYearlyTemp

City	Month	Year							
Abidjan	1	1996	Africa	Ivory Coast	1	79.6	1996-01-01	80.513774	
		1996	Africa	Ivory Coast	2	81.2	1996-01-02	80.513774	
		1996	Africa	Ivory Coast	3	82.2	1996-01-03	80.513774	
		1996	Africa	Ivory Coast	4	83.0	1996-01-04	80.513774	
		1996 Africa Ivory Co		Ivory Coast	5	82.1	1996-01-05	80.513774	
Zurich	5	2020	Europe	Switzerland	9	67.1	2020-05-09	45.263433	
			2020	Europe	Switzerland	10	64.7	2020-05-10	45.263433
		2020	Europe	Switzerland	11	52.0	2020-05-11	45.263433	
		2020	Europe	Switzerland	12	43.5	2020-05-12	45.263433	
		2020	Europe	Switzerland	13	44.6	2020-05-13	45.263433	

952987 rows x 6 columns

City	Month	Year								
Abidjan	1	1996	Africa	Ivory Coast	1	79.6	1996-01-01	80.513774	80.754839	
		1996	Africa	Ivory Coast	2	81.2	1996-01-02	80.513774	80.754839	
		1996	Africa	Ivory Coast	3	82.2	1996-01-03	80.513774	80.754839	
		1996	Africa	Ivory Coast	4	83.0	1996-01-04	80.513774	80.754839	
		1996	Africa	Ivory Coast	5	82.1	1996-01-05	80.513774	80.754839	

Zurich	12	2019	Europe	Switzerland	27	40.8	2019-12-27	51.086908	38.848387	
			2019	Europe	Switzerland	28	35.5	2019-12-28	51.086908	38.848387
					2019	Europe	Switzerland	29	30.4	2019-12-29
		2019	Europe	Switzerland	30	29.9	2019-12-30	51.086908	38.848387	
		2019	Europe	Switzerland	31	31.4	2019-12-31	51.086908	38.848387	

952987 rows × 7 columns

In [57]: temperature_data_join2.rename(columns={'Date':'Date of Observation'}, inplace=True) temperature_data_join2

Region Country Day AvgDailyTemp Date of Observation AvgYearlyTemp AvgMonthlyTemp

City	Month	Year							
Abidjan	1	1996	Africa	Ivory Coast	1	79.6	1996-01-01	80.513774	80.754839
		1996	Africa	Ivory Coast	2	81.2	1996-01-02	80.513774	80.754839
		1996	Africa	Ivory Coast	3	82.2	1996-01-03	80.513774	80.754839
		1996	Africa	Ivory Coast	4	83.0	1996-01-04	80.513774	80.754839
		1996	Africa	Ivory Coast	5	82.1	1996-01-05	80.513774	80.754839

Zurich	12	2019	Europe	Switzerland	27	40.8	2019-12-27	51.086908	38.848387
		2019	Europe	Switzerland	28	35.5	2019-12-28	51.086908	38.848387
		2019	Europe	Switzerland	29	30.4	2019-12-29	51.086908	38.848387
		2019	Europe	Switzerland	30	29.9	2019-12-30	51.086908	38.848387
		2019	Europe	Switzerland	31	31.4	2019-12-31	51.086908	38.848387

952987 rows × 7 columns

Final Dataset

In [60]: temperature_data_join2 = temperature_data_join2.reset_index()
temperature_data_join2.set_index('City', inplace=True)
temperature_data_join2

Out[60]: index Country Month Year Region Day AvgDailyTemp Date of Observation AvgYearlyTemp AvgMonthlyTemp

City										
Abidjan	0	Ivory Coast	1	1996	Africa	1	79.6	1996-01-01	80.513774	80.754839
Abidjan	1	Ivory Coast	1	1996	Africa	2	81.2	1996-01-02	80.513774	80.754839
Abidjan	2	Ivory Coast	1	1996	Africa	3	82.2	1996-01-03	80.513774	80.754839
Abidjan	3	Ivory Coast	1	1996	Africa	4	83.0	1996-01-04	80.513774	80.754839
Abidjan	4	Ivory Coast	1	1996	Africa	5	82.1	1996-01-05	80.513774	80.754839
Zurich	952982	Switzerland	12	2019	Europe	27	40.8	2019-12-27	51.086908	38.848387
Zurich	952983	Switzerland	12	2019	Europe	28	35.5	2019-12-28	51.086908	38.848387
Zurich	952984	Switzerland	12	2019	Europe	29	30.4	2019-12-29	51.086908	38.848387
Zurich	952985	Switzerland	12	2019	Europe	30	29.9	2019-12-30	51.086908	38.848387
Zurich	952986	Switzerland	12	2019	Europe	31	31.4	2019-12-31	51.086908	38.848387

952987 rows × 10 columns

In [63]: temperature_data_join2 = temperature_data_join2.drop(columns='index')
temperature_data_join2

Country Month Year Region Day AvgDailyTemp Date of Observation AvgYearlyTemp AvgMonthlyTemp

	-			-	-				
City									
Abidjan	Ivory Coast	1	1996	Africa	1	79.6	1996-01-01	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	2	81.2	1996-01-02	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	3	82.2	1996-01-03	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	4	83.0	1996-01-04	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	5	82.1	1996-01-05	80.513774	80.754839

Zurich	Switzerland	12	2019	Europe	27	40.8	2019-12-27	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	28	35.5	2019-12-28	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	29	30.4	2019-12-29	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	30	29.9	2019-12-30	51.086908	38.848387
Zurich	Switzerland	12	2019	Furone	31	31.4	2019-12-31	51 086908	38 848387

952987 rows × 9 columns

In [68]: temperature_data_join2 = temperature_data_join2.rename(columns={'Date of Observation':'DateOfObservation'}) temperature_data_join2

	+	0	

	Country	Month	Year	Region	Day	AvgDailyTemp	DateOfObservation	AvgYearlyTemp	AvgMonthlyTemp
City									
Abidjan	Ivory Coast	1	1996	Africa	1	79.6	1996-01-01	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	2	81.2	1996-01-02	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	3	82.2	1996-01-03	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	4	83.0	1996-01-04	80.513774	80.754839
Abidjan	Ivory Coast	1	1996	Africa	5	82.1	1996-01-05	80.513774	80.754839
								***	***
Zurich	Switzerland	12	2019	Europe	27	40.8	2019-12-27	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	28	35.5	2019-12-28	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	29	30.4	2019-12-29	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	30	29.9	2019-12-30	51.086908	38.848387
Zurich	Switzerland	12	2019	Europe	31	31.4	2019-12-31	51.086908	38.848387

952987 rows × 9 columns

In []

Out[70]:

Writing to CSV file

In [69]: # Writing dataframe to a csv file temperature_data_join2.to_csv('TemperatureData', sep=',', encoding='utf-8', index=True)

In [70]: # Checking that writing to file worked correctly csvFile = pd.read_csv("C:/Users/kayly/OneDrive/Desktop/MSDS/DSC540/Tem Project/TemperatureData") csvFile

	City	Country	Month	Year	Region	Day	AvgDailyTemp	${\bf Date Of Observation}$	AvgYearlyTemp	AvgMonthlyTemp
0	Abidjan	Ivory Coast	1	1996	Africa	1	79.6	1996-01-01	80.513774	80.754839
1	Abidjan	Ivory Coast	1	1996	Africa	2	81.2	1996-01-02	80.513774	80.754839
2	Abidjan	Ivory Coast	1	1996	Africa	3	82.2	1996-01-03	80.513774	80.754839
3	Abidjan	Ivory Coast	1	1996	Africa	4	83.0	1996-01-04	80.513774	80.754839
4	Abidjan	Ivory Coast	1	1996	Africa	5	82.1	1996-01-05	80.513774	80.754839
952982	Zurich	Switzerland	12	2019	Europe	27	40.8	2019-12-27	51.086908	38.848387
952983	Zurich	Switzerland	12	2019	Europe	28	35.5	2019-12-28	51.086908	38.848387
952984	Zurich	Switzerland	12	2019	Europe	29	30.4	2019-12-29	51.086908	38.848387
952985	Zurich	Switzerland	12	2019	Europe	30	29.9	2019-12-30	51.086908	38.848387
952986	Zurich	Switzerland	12	2019	Europe	31	31.4	2019-12-31	51.086908	38.848387

952987 rows × 10 columns

Ethical Implications

I made numerous changes to the data. To begin I set the index to City. I then dropped the State column because it contained only Na values. I also removed rows that had -99 for the value of AvgTemp. I believe these are meant to code for Na values. I also removed a few rows that contain implausabe years. These were likely entered incorrectly. I added a column containg date-time information to make serching easier. Finally, I caclulated both the average montly temperature and average yearly temperature by city.

There is no legal or regulatory guidelines for my data or project topic. In this dataset, I am simply looking for changes in average temperature of a city over time.

I do not see many risks in the transformations I made. I only excluded data that was obviously incorrect. I did not assume I knew what years were meant to be when years were coded as 200 and 201. Instead, I removed these rows from the dataset. I was pretty conservative in my transformations because I wanted to maintain the integrity of the original dataset while fixing a few imperfections.

I sourced the data from Kaggle where it was posted and collected by the University of Dayton. I do not have any background on how the data was collected, or the original sources of the data. Without any further background information, I just have to trust that the values provided are accurate. Ethically, this is shakey ground. I cannot be sure that any conclusions I make are 100% sound without knowing how the original data was sourced and collected. I must be careful not to draw conclusions from this dataset alone. In combination with other datasets that are more easily verified and more credible, I may confirm assumptions drawn from this dataset.