Report

Jialin shi

UID: 7948542502

(a) Use pandas to load data. Rename the columns.

(b-i) Use seaborn to plot scatter plot between each pair of variables.

(b-ii) Use matplotlib and Seaborn to plot boxplot.

(b-iii) Use pandas to split data into train set and test set.

Replace 'AB'and 'NO' with '1'and'0'.

(c-i) Classification using KNN on Vertebral Column Data Set

Define the model: init K-NN

(c-ii) Plot train_error and test_error

For training size =210, x=k-value, y= train_error, test_error when k =4, test_err = min(test_err)

when k =4, Confusion Matrix is:

[[69 1] [5 25]]

F1 score is: 0.95833333333333333

True Positive Rate is: 0.9857142857142858
True Negative Rate is: 0.833333333333333333

Precision is: 0.9324324324324325

Test Accuracy: 0.94

	PRECISION	RECALL	F1-SCORE	SUPPORT	
0	0.96	0.83	0.89	30	
1	0.93	0.99	0.96	70	
AVG / TOTAL	0.94	0.94	0.94	100	

(c-iii) Plot learning curve

for each size of training set, the test error looks like:

best k-value for each training size

(d-i-A) find best k-value [metric = 'minkowski'] manhattan

min test err: 0.1099999999999999

best k-value: 6

(d-i-B) find best log10(p)-value [metric = 'minkowski']

min test_err: 0.06000000000000005

best log10(p): 0.6

(d-i-c) find best k-value [metric = 'chebyshev']

when k is: 16

min test err is: 0.079999999999996

(d-ii) find best k-value [metric = 'mahalanobis']

k = 6 min test err 0.079999999999996

	Metric	Best Test Error	Best K-value
d-i-A	Manhattan Distance	0.11	6
d-i-B	Manhattan Distance	0.06	log10(p)=0.6
d-i-C	Chebyshev	0.08	16
d-ii	mahalanobis	0.08	6

(e) change weight= 'distance'

euclidean	0.099999999999998
minkowski	0.099999999999998
chebyshev	0.109999999999999

(f)

The lowest training error rate I got in this homework is 0 when k=1. However, when k=1, it is very likely to over fit to train set.

You can see the answer in the plot (c-ii).