Assignment Project Exam Help

https://prowcoders.com
Australian National University

Add We Chat powcoder

Recall: Hoare Logic

Assignment Project Exam Help

- . P and ttps://powisoder.com
- *S* is a code (fragment)

Example Axdd while that poweder

Meaning. If we run S from a state that satisfies precondition P and if S terminates, then the post-state will satisfy Q.

Hoare Logic

Idea. *Proof Rules* that allow us to prove all *true* triples.

Assignment

Assignment Project Exam Help

Precondition Strengthening / Postcondition Weakening

$$\xrightarrow{P_s \to \text{frtps:} \{P_t\} \text{powcoder}_{\{P_t\}}^{Q_s} \text{powcoder}_{\{P_t\}}^{Q_s} \text{powcoder}_{\{P_t\}}^{Q_s \to Q_w} }$$

Sequence.

Conditional.

$$\frac{\{P \wedge b\} \; \mathsf{S_1} \; \{Q\} \qquad \{P \wedge \neg b\} \; \mathsf{S_2} \; \{Q\}}{\{P\} \; \mathsf{if} \; \mathsf{b} \; \mathsf{then} \; \mathsf{S_1} \; \mathsf{else} \; \mathsf{S_2} \; \{Q\}}$$

Proof Rule for While Loops (Rule 6/6)

Assignment Project Exam Help

- I is called the loop invariant.
- I is integrated encountered the loop (although not necessarily midway during execution of the loop body).
- If the conteminates the control condition must be false, so $\neg b$ appears in the postcondition. If $\overrightarrow{DOWCOGET}$
- For the body of the loop *S* to execute, *b* needs to be true, so it appears in the precondition.

Soundness of the While Rule w.r.t. the semantics

Assignment Project Exam Help while b do $S \{l \land \neg b\}$

Soundness. If the premise is true, then so is the conclusion.

- assume that / holds in the initial state.
- if b is false, nothing happens, so $I \wedge \neg b$ is true in post-state.
- if b is true then (by premise) I holds at end of each iteration
- assuming that the loop terminates, b pecomes faise (and still holds)
- Q. What about non-termination?

Applying the While Rule

Assignment (Project Exam Help Difficult bit. Finding the right invariant.

This requires intuition and practice. There is no automated way of doin https://powcoder.com

Easy bit. Establishing the desired postcondition

• The postcondition we get after applying our rule has form $I \wedge \neg b$. But $i \land b \rightarrow v$, we in use that $i \land b \rightarrow v$.

Easy bit. Establishing the desired precondition

• The precondition we get after applying our rule has form I. But if $P \rightarrow I$, we can use *precondition strengtening*.

```
\underset{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}}{\textbf{Assignment}_{I} Project} \underset{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}{\textbf{Exam}} \underset{\text{while } b \text{ do } S \text{ } \{Q\}}{\textbf{Exam}}
```

https://powcoder.com

Add WeChat powcoder

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

https://powcoder.com

Add WeChat powcoder

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

https://powcoder.com

 $\{I\}$ while b do S $\{I \land \neg b\}$

Add WeChat powcoder

```
 \underbrace{ \text{Assignment}_{\{I\}} \text{Project Exam Help}}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{ \text{P}}_{\{P\}} \text{ while } b \text{ do } S \text{ } \{Q\}
```

 $h_{\{I \land b\}}$ typs://powcoder.com

Add WeChat powcoder

```
 \underbrace{ \text{Assignment}_{\{I\}} \text{Project Exam Help}}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{ \text{P}}_{\{P\}} \text{ while } b \text{ do } S \text{ } \{Q\}
```

 $\underset{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}}{\text{https://powcoder.com}}$

Add WeChat powcoder

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S} \underbrace{P}_{\{I \land \neg b\}} \underbrace{Exam}_{\{P\}} \underbrace{Help}_{\text{while } b \text{ do } S} \underbrace{Q}_{\{Q\}}
```

```
1. {/ ^ b} https://powcoder.com
```

2. $\{I\}$ while b do S $\{I \land \neg b\}$

(While Loop, 1)

Add WeChat powcoder

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

```
1. {/ ^ b} https://powcoder.com
```

```
2. \{I\} while b do S \{I \land \neg b\}
                                                                                         (While Loop, 1)
   I \wedge \neg b \rightarrow Q
```

Add WeChat powcoder

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

```
1. {/ ^ b} https://powcoder.com
```

2. $\{I\}$ while b do S $\{I \land \neg b\}$

(While Loop, 1)

3. $I \land \neg b \rightarrow Q$

(Logic)

Add WeChat powcoder

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}} 
               1. {/ ^ b} https://powcoder.com
                2. \{I\} while b do S \{I \land \neg b\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     (While Loop, 1)
                3. I \wedge \neg b \rightarrow Q
               4. {/} while defined to the second to the se
                                     \{P\} while b do S \{Q\}
```

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

1. {/ ^ b} https://powcoder.com

2. $\{I\}$ while b do S $\{I \land \neg b\}$

(While Loop, 1)

3. $I \wedge \neg b \rightarrow Q$

- 4. {I} whatd WeChat powdition dering, 2, 3)
 - $\{P\}$ while b do S $\{Q\}$

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

```
1. {/ ^ b} https://powcoder.com
```

2. $\{I\}$ while b do S $\{I \land \neg b\}$

(While Loop, 1)

- 3. $I \wedge \neg b \rightarrow Q$
- 4. {I} what dd WeChat powdio dering, 2, 3)
 5. P I Add WeChat powdio dering, 2, 3)
- - $\{P\}$ while b do S $\{Q\}$

```
 \underbrace{Assign pent}_{\{I\} \text{ while } b \text{ do } S \text{ } \{I \land \neg b\}} \underbrace{P}_{\{P\} \text{ while } b \text{ do } S \text{ } \{Q\}}
```

```
1. {/ ^ b} https://powcoder.com
```

- 2. $\{I\}$ while b do S $\{I \land \neg b\}$
- 3. $I \wedge \neg b \rightarrow Q$
- 4. {/} whadd WeChat powdio dering, 2, 3)
 5. P / Add WeChat powdio dering, 2, 3)
- 6. $\{P\}$ while b do S $\{Q\}$

- (While Loop, 1)

- (Precondition Strengthening, 4, 5)

Example

Goal. Find condition *I* to prove that:

$$\{I \wedge b\} \ \mathbf{n} := \mathbf{n} - \mathbf{1} \ \{I\}$$

https://powcoder.com

Want. Loop invariant I such that

It is implied by the precondition:

Add WeChat powcoder

• if the loop terminates (i.e. n > 0 is farse), then I should imply the postcondition:

$$1 \wedge n \leq 0 \rightarrow n = 0$$

• If I is true and the body is executed, I is true afterwards:

$$\left\{I \wedge n > 0\right\} \; \mathbf{n} := \mathbf{n} + \mathbf{n}$$

Example (cont.)

Assignment, Project Exam Help

```
\{n > 3\} while n>0 do n := n-1 \{n = 0\}
Loop Inhittps://pow.coder.com
```

- $n > 3 \to n > 0$.
- · n > 0 nd d Wechat powcoder

Example, Formally

```
1. \{n-1 \ge 0\} n := n-1 \{n \ge 0\}
                                                                  (Assignment)
```

2. $n \ge 0 \land n > 0 \to n-1 \ge 0$ (Logic)

Assignment-Project Examtre p 4. $\{n \ge 0\}$ while (n > 0) do n := n - 1 $\{n \ge 0 \land \neg (n > 0)\}$ (While Loop, 3)

- (Logic)
- 6. {n > https://pow.coder.com (Prec.
- 7. $n = 0 \leftrightarrow n \ge 0 \land \neg (n > 0)$
- 8. $\{n \ge Add (nW) \in Chat \{powcodefiv., 6, 7\}\}$

Other Invariants

- e.g. true or n = 0
- both are invariants, and give n = 0 as postcondition
- but $n \ge 0$ is better (weaker) as it is more general.

Let's Prove a Program!

```
Assignment Project Exam Help
     s:=0;
     https://powcoder.com
      s:=s+(2*i-1)
     {s=n^2}
 (The sura Addidfirs Welchhart is powcoder
 Goal: prove
```

 $\{True\}\ Program\ \{s=n^2\}$

A Very Informal Analysis

Aessignment Project Exam Help

It looks OA-dtdseeWeePrait powcoder

{True} Program $\{s = n^2\}$

How can we prove it?

First Task. Find a loop invariant I. (NB: S and s are different!)

Post spindition and loop condition I (NB: S and S are different!)

[I \ \text{NS:} \frac{\lambda}{\lambda} \frac{\lamb

Want. (Add) We Chat powcoder

Loop Body. Each time i increments, s moves to next square number.

Invariant. $I \equiv s = i^2$.

Check I as $(s = i^2)$ is an invariant: prove $\{I\}S\{I\}$

Using that the state of the contract of the co

- 1. $\{Q\}$ s:=s+(2*i-1) $\{s = i^2\}$
- 2.
 3. {s = A, dd+1W}eChat powcoder
- 4. $\{s = i^2\}$ i:=i+1; s:=s+(2*i-1) $\{s = i^2\}$
- (Sequence, 3, 1)

Check I as $(s = i^2)$ is an invariant: prove $\{I\}S\{I\}$

$$\begin{array}{lll} & \{s=i^2\} & i:=i+1 & \{Q\} & \{s:=s+(2*i-1) & \{s=i^2\} \\ & \textbf{Assignment}_1 & \textbf{Project}_1 \\ & \textbf{Exam Help} \\ \end{array}$$

Using the assignment axiom and the sequence rule:

- 1. $\{s + (2*i-1)\}$ $= i^2\}$ s: = s + (2*i-1) $\{s = i^2\}$ (Assignment) 2. Add WeChat powcoder
- 3. $\{s = i^2\}$ i:=i+1 $\{s + (2 * i 1) = i^2\}$
- 4. $\{s = i^2\}$ i:=i+1; s:=s+(2*i-1) $\{s = i^2\}$ (Sequence, 3, 1)

Check I as $(s = i^2)$ is an invariant: prove $\{I\}S\{I\}$

$$\frac{\{s=i^2\} \ i:=i+1 \ \{Q\} \ \ s:=s+(2*i-1) \ \{s=i^2\} }{ \text{Assignment}^{j^2} \text{Project}^{1} \text{Exam Help} }$$

$$Q \text{ is } \{s+(2*i-1)=i^2\}$$

Using the https://powecoder.com

```
1. \{s + (2 * i - 1) = i^2\} s:=s+(2*i-1) \{s = i^2\}
```

2.
$$\{s + (2*(i+1)-1) = (i+1)^2\}$$
 i:=i+1 $\{s + (2*i-1) = i^2\}$ (Assigned) We Chat powcoder

3. $\{s = i^2\}$ i:=i+1 $\{s + (2*i-1) = i^2\}$ (Prec. Equiv

3.
$$\{s = i^2\}$$
 i:=i+1 $\{s + (2 * i - 1) = i^2\}$ (Prec. Equiv., 2)

4.
$$\{s = i^2\}$$
 i:=i+1; s:=s+(2*i-1) $\{s = i^2\}$ (Sequence, 3, 1)

So far, so good. (I as $(s = i^2)$ is an invariant.)

Completing the Proof of $\{True\}\ Program\ \{s=n^2\}$

6 Strengthen the precondition to match the While rule premise $\{I \land b\}$ S $\{I\}$

Assignment Project Exam Help

7 Apply the While rule and postcondition equiv:

$$s = h^{2} \wedge i = h^{2} \wedge j =$$

- 8 Check that the initialisation establishes the invariant $\{0 = 0^2\}$ i.=0; s:=0 $\{s = i^2\}$
- 9 $(0 = 0^2) \leftrightarrow True$, so putting it all together with Sequencing we have

$$\{ \textit{True} \} \text{ i} := 0 \text{ ; } \text{s} := 0 \text{ ; } \text{while } (i \neq n) \text{ do S } \{ s = n^2 \}$$

What about Termination?

Hoare Logic (in this form) proves partial correctness.

AXSOLEMNMENT description of the provest partial correctness.

• This will loop forever!

can still prove things about it

Exercise. https://powcoder.com

 $\{True\}$ while 1+1 = 2 do x:=0 $\{False\}$

Terminated dd WeChat powcoder

- remember functional programs? Something must decrease
- need loop variant (later)

Are the Rules Complete?

Assignment Project Exam Help new Fales for arrays, for-loops, exceptions, ...

- every house beloage pro Ws Contact true Om
 - soundness holds but terms and conditions apply
 - with these assumptions, also have *completeness*, i.e. every true Hoare triple in the last powcoder

Completeness. if $\{P\}$ S $\{Q\}$ is true then $\{P\}$ S $\{Q\}$ is provable

What are these Assumptions?

- The language we use for expressions in our programs is the same as SSI MINION IN THE ARCHITECTURE AND ARCHIT
 - We assumed no aliasing of variables. (In most real languages we can have multiple names for the one piece of memory.)

 How is aliasing problem

Add WeChat powcoder

What are these Assumptions?

- The language we use for expressions in our programs is the same as SSI MINATER TO THE OST CONTINUE TO THE ARCHITECTURE AND ARCHITECTURE TO THE ARC
- We assumed no aliasing of variables. (In most real languages we can have multiple names for the one piece of memory.)

 How is aliasing a problem
 - Suppose x and y refer to the same cell of memory.
 - ► We get $\{y + 1 = 5 \land y = 5\}$ x;=y+1 $\{x = 5 \land y = 5\}$ (Assignment)
 - · AUH VY ELEMAR POWCOCCI
 - i.e. if initial state satisfies False and x:=y+1 terminates then final state satisfies $\{x=5 \land y=5\}$ (but also works for $x=6 \land y=6$)

which makes a mockery of our calculus since it proves rubbish!

Finding a Proof

Assignment Project Exam Help

```
{ n >= 0 }
  f := 1;
  ihttps://powcoder.com
    f := f * i;
  f Ardd WeChat powcoder
```

Finding a Proof

```
Annotating the program: I = f * i! = n! \land i \ge 0
\{ n >= 0 \}
                                       gnment Project Exam Help
           i := n:
{ f = 1 / i = n / n >= 0} -- provable with assignment
                                    https://powscoderwaterna
           while (i > 0) do
                      fAdd: Wechan power of the control of
                                  i := i-1;
                      \{I\}
                                                                                                                                          -- up until here.
\{ I / \setminus not(i > 0) \}
                                                                                                                                         -- general conclusion of while rule
                                                                                                                                          -- use postcond weakening
\{f = n!\}
```

From Annotated Programs to Proofs

Initialisation Part

Assignment Project Exam Help

```
\{ f = 1 / \ n > = 0 \}
                -- provable with assignment
{ f = 1 https://powcoder.com.ignment
```

- 1. $\{f = 1 \land n = n \land n \ge 0\}$ $i := n \{f = 1 \land i = n \land n \ge 0\}$ (Assignment)
- 2. $\{1 = A \land d + A \land$
- 4. $\{n \ge 0\}$ f := 1 $\{f = 1 \land n = n \land n \ge 0\}$ (Prec. Equiv. 2, 3)
- 5. $\{n \ge 0\}$ f := 1; i := n $\{f = 1 \land i = n \land n \ge 0\}$ (Sequence, 1, 4)

From Invariant to Loop Body

f := f * i; i := i - 1:

 $\{ f * i! = n! / \} i >= 0 \}$

```
{ I }
                    -- general premis of while rule
Assignment-Profestic Kam Help

f := f * i; -- n, n * (n-1), n * (n-1) * (n-2) ...
      i := i-1; -- n-1, n-2, n-3,
 { I /\ https://powrcoder.come rule
 Invariant. I = f * i! = n! \land i > 0
 LOOP BOARD ON THE Chat powcoder
   \{ f * i! = n! / i >= 0 / i > 0 \}
```

```
4 D > 4 D > 4 E > 4 E > E 9 Q P
```

From Annotated Programs to Proofs

```
Loop Body
Assignment Project Exam Help
                                                            for loop body
  { f * (https://powcoder.comtation!
  \{ f * i! = n! / i >= 0 \}
                                                       -- end loop body
 6. \{f*(i-1) = p! \land (i-1)\} is \{f*[i] = p! \land i \ge 0\} (Assignment)
7. \{(f*i)*[i] \land (i)\} (Assignment)
 8. f * i! = n! \land i \ge 0 \land i > 0 \rightarrow (f * i) * (i - 1)! = n! \land (i - 1) \ge 0 (Logic)
 9. \{f*i! = n! \land i \ge 0 \land i > 0\} f:=f*i \{f*(i-1)! = n! \land (i-1) \ge 0\} (Prec. Stren., 7,8)
10. \{f * i! = n! \land i \ge 0 \land i > 0\} f := f * i; i := i - 1 \{f * i! = n! \land i \ge 0\} (Sequence, 6,9)
```

From Annotated Programs to Proofs

Loop Body to While Loop

Assignment Project Examina Help

```
11. \{f * i! = n! \land i \ge 0\}
while (i > 0) do \{f := f*i; i := i-1\}
\{f * i! = n! \land i \ge 0 \land \neg(i > 0)\} (While, 10)
```

```
Putting it all together
\{ n >= 0 \}
```

i := i-1:

```
f := 1;
Assignment-Project Examir Help
```

```
\{ f * i! = n! / i >= 0 \}
  {}^{\mathtt{while}}\mathbf{http}^{(i, )}\mathbf{s}^{\mathtt{o})}\mathbf{s}^{\mathtt{do}}//powcoder.com
```

- 12. $f = 1 \land i = n \land n \ge 0 \rightarrow f * i! = n! \land i \ge 0$ (Logic)
- 14. $\{n \ge 0\}$ program $\{f * i! = n! \land i \ge 0 \land \neg(i > 0)\}$ (Seq., 13, 11)
- 15. $f * i! = n! \land i \ge 0 \land \neg(i > 0) \to f = n!$ (Logic)
- = Add WeChat powcoder weakening 13. $\{n \ge 0\}$ f := 1; i := n $\{f * i! = n! \land i \ge 0\}$ (Postcond. Weak., 5, 12)

16. $\{n \geq 0\}$ program $\{f = n!\}$ (Postcondition, Weakening, 14, 15)

 $\{f * i! = n! / i >= 0 / not(i > 0)\}$ -- have already

Hoare Logic: Total Correctness

Motto. Total Correctness = partial correctness + termination

Assignment Project Exam Help

- P and Ctarp precondition and postcordition as before
 S is a code fragment

Meaning. If the precondition holds, then executing s will terminate, and the postconditions trive ecnat powcoder

Example.

- [P] S [true] S always terminates from precondition P
- $\{P\}$ S $\{false\}$ S never terminates from precondition P

Rules for Total Correctness

Assignment Project Exam Help

- assignment
- sequencing condition ps://powcoder.com
- pre/post strengthening/weakening

still work, as there's podanger of non-termination.

Problematic Rule. while (may introduce non-termination)

Assignment, revisited

Assignment Project Exam Help

Assumptions. (fine for our toy language)

- eval https://spowieeder.com
- evaluation of e returns a number (no exception e.g.)

• the expression can be recursively defined owcoder

- there may be errors, e.g. division by zero

Rules for Total Correctness

Assignment Project Examet Help

$$\frac{[P \land b] \ S_1 \ [Q] \qquad [P \land \neg b] \ S_2 \ [Q]}{[P] \ \text{if b then} \ S_1 \ \text{else} \ S_2 \ [Q]} \tag{Conditional}$$

Assumption. Evaluation of b always terminates (OK here)

Termination of Loops

Assignment Project Exam Help

```
whilattps://powcoder.com
q := q + 1
```

[tryAdd WeChat powcoder

Termination of Loops

Example

Observation dd WeChat powcoder

- q := q + 1 irrelevant
- y doesn't change, always positive
- r strictly decreases in each iteration
- \bullet y < r will eventually be false.

Termination of Loops: General Condition

Example

Assignment Project Exam Help

```
https://powcoder.com
```

[true]

Termination follows if we have a barrant prowed to the termination follows if we have a barrant prowed to the termination follows if we have a barrant prowed to the termination follows if we have a barrant prowed to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows if we have a barrant property to the termination follows in the termination follows

- ullet $E \ge 0$ at the beginning of each iteration
- E strictly decreases at each iteration
- **Q.** What could be a variant in this example?

While Rule for Total Correctness

Goal. Show that

Assignment Project Exam Help that that

- $\begin{tabular}{ll} \bullet & E \geq 0 & \text{at the beginning of each iteration:} \\ \textbf{https://powcoder.com} \\ & I \land b \to E \geq 0 \\ \end{tabular}$
- $\begin{array}{c} \bullet \text{ E is strictly decreasing in each iteration} \\ \textbf{Add} & \textbf{WeChat powcoder} \\ [\textit{I} \land \textit{b} \land (\textit{E} = \textit{n})] & \bullet [\textit{I} \land \textit{E} < \textit{n}] \\ \end{array}$

where n is an auxiliary variable not appearing elsewhere, to "remember" initial value of E

While Rule for Total Correctness

Assignment Project Exam Help
$$\frac{I \wedge b \rightarrow E \geq 0}{[I] \text{ while b do S } [I \wedge \neg b]}$$
 https://powdoder.icom/ere.

Intuition.

- E is A upper bound testile humber of bon iterations der
 termination of functional programs: measure decrease in recursive call

Example

Goal. [y > 0] while (y < r) do r := r - y; q := q+1 [true]

Assignment Project Exam Help

• want some variant: here r is decreasing

First Gont to Siant / is DOWN GOOD TE GOOM

- formally: $I \wedge (v < r) \rightarrow r > 0$

• this suggests / We Chat powcoder cond Goal. The invariant is re-established, and the variant decre

formally: $[(y > 0) \land (y < r) \land r = n]$ r := r = y; q:= q+1 $[(y > 0) \land r < n]$

this seems to be right, so let's prove it!

Example Proof

Goal.

```
[(y > 0) \land (y < r) \land r = n] r := r - y; q := q+1 [(y > 0) \land r < n]
```

Assignment Project Exam Help

$$[(y > 0) \land (r < n)] q := q + 1 [y > 0 \land r < n]$$

Second histopent://powcoder.com

$$[(y>0) \land (r-y < n)] r := r-y [y>0 \land r < n]$$

Sequencials. dd WeChat powcoder $[(y > 0) \land (r - y < n)]$ r := r - y; q := q + 1 $[y > 0 \land r < n]$

$$[(y > 0) \land (r - y < n)] r := r-y; q := q+1 [y > 0 \land r < n]$$

Precondition Strengthening.

$$[(y > 0) \land (y < r) \land (r = n)] r := r - y; q := q+1 [y > 0 \land r < n]$$

Completing the Proof

While Rule.

6)

- 2. $[(y > 0) \land (r y < n)] r := r y [y > 0 \land r < n]$ (Assignment)
- 3. [(y > 0)] / DOWCOOPOOMPequence, 2, 1)
- 4. $(y > 0) \land (y < r) \land (r = n) \rightarrow (y > 0) \land (r y < n)$ (Logic)
- 5. $[(y > 0) \land (y \le r) \land (r = n)]$ r := r-y; q := q+1 $[y > 0 \land r \le n]$ (Prec. Streng., A3dd WeChat powcoder
- 6. $(y > 0) \land (y < r) \rightarrow r \ge 0$ (Logic.) 7. [y > 0] while (y < r) do r := r - y; q := q + 1 $[y > 0 \land y \ge r]$ (While Loop, 5,
- 8. $y > 0 \land y \ge r \rightarrow true$
- 9. [y > 0] while (y < r) do r := r y; q := q + 1 [true] (Postc. Weak., 7, 8)

Second Example

Invariant: fact * i! = n!

```
[n >= 0]
fact := 1;

Assignment Project Exam Help
fact := fact * i;
[fact https://powcoder.com
```

```
Q1. What is the invariant (linking n, fact and i)?

before: And WieChat powcoder

1st iteration: fact = n, i = n-1

2nd iteration: fact = n * (n-1), i = n-2

...

last iteration: fact = n * ... * 1, i = 0
```

Second Example

```
Assignment Project Exam Help

while (i > 0) do

fact := fact */i;
inttps://powcoder.com

[fact = n!]
```

Q2. Is the parter per WCOCET

- true initially: for fact = 1 and i = n.
- implies postcondition: $fact * i! = n! \land \neg(i > 0) \rightarrow fact = n!$

```
Stronger Invariant. fact * i! = n! \land i \ge 0
```

Second Example

```
Assignment Project Exam Help

while (i > 0) do

first = fact /*/powcoder.com

[fact = n!]
```

Q3. What Addriant! VeChat powcoder

- $i \ge 0$ for every iteration $(I \land b \to E \ge 0)$
- decreases with every iteration

```
Variant. E \equiv i
```

Proof Skeleton

Simple Assignments.

```
Assignment Project Exam Help
```

Applying https://powcoder.com

```
[ fact * i! = n! /\ i >= 0 ]
while (i > 0) do
fact dac WeChat powcoder
[ fact * i! = n! /\ i >= 0 /\ i <= 0]</pre>
```

Missing Glue. Weakening / Strengthening

- from postcondition of assignments to precondition of while
 - from postcondition of while to goal statement (fact = n!)

Zooming in on While

```
[ fact * i! = n! / i >= 0 ]
Assignment; Project Exam Help
   [ fact * i! = n! /\ i >= 0 /\ i <= 0]
        https://powcoder.com
 Loop Body (Invariant: fact * i! = n! \land i \ge 0, Variant: i)
     fact * i! = n! (\ i > = 0 /\ i > 0 /\ i = a]
fact dect echat powcoder
   [ fact * i! = n! /\ i >= 0 /\ i < a]
```

Positivity Condition. $fact * i! = n! \land i \ge 0 \land i > 0 \rightarrow i \ge 0 \land (Maths)$

While Rule: Soundness Assignment Project Exam Help [/] while b do S $[I \wedge \neg b]$

• premises of the rule imply those of the rule or partial correctness

- so if the loop terminates, the postcondition holds

Missing. And aliowe Chat powcoder

Termination Analysis

 $I \wedge b \rightarrow E \geq 0$ $[I \wedge b \wedge E = n] S [I \wedge E < n]$

Assignment where the precondition I. If b is false in σ , we are done. Assume that b is true in σ , hence the value of E in σ is ≥ 0 .

Induction the glad of power der. com Base case. $\sigma(L) = 0$.

- Right premise implies that E < 0 after one iteration
- With After the loop terminates after one iteration.
 hence the loop terminates after one iteration.

Step Case. Let
$$\sigma(E) = k + 1$$

- after one iteration, have $\sigma(E) \leq k$
- statement follows by induction hypothesis.

Variation: More Expressive Logic

Assignment (We keep July For now) X am Help

• P and Q propositional formulae made from basic arithmetic

Q. How latters: he proveder.com

 $\{true\}$ x := 2 * x $\{even(x)\}$

A. We could say that even exchat powcoder

Change. Allowing pre/postconditions to be *first order* formulae.

Example.

Assignment Project Exam Help

Using the assignment axiom.

https://powcoder.com

- all rule end valid eChat powcoder
 - Hoare-logic is (almost) insensitive to underlying logic

Variation: More Expressive Programs

Example Feature. Arrays

• allow expressions to contain a[i]

Assignment Project Exam Help

```
 \begin{array}{lll} \text{m} := & \text{a[0]} \\ \text{i} : & \text{https://powcoder.com} \\ \text{while (i, k, n) do} \end{array} \\ \text{if a[i] > m then m := a[i] else m := m;} \\ \text{i} & \text{Add}^1 & \text{WeChat powcoder} \end{array}
```

Q. How do we express that m is the maximum array element?

A. Use first order logic.

- m is largest: $\forall k.0 \le k < n \rightarrow m \ge a[k]$
- m is in array: $\exists k.0 \le k < n \land m = a[k]_{+}$

Annotated Code

```
\{n >= 1\}
   m := a[0]
Assignment Project Exam Help
  {forall k. 0 \le k \le i \rightarrow m \ge a[k] / i \le n}
   \{forall \ k. \ 0 \le k \le i \rightarrow m \ge a[k] / i \le n / i \ge n\}
  ==> Add WeChat powcoder
```

Invariant. $I \equiv \forall k.0 \le k < i \rightarrow m \ge a[k] \land i \le n$

- initially: $m = a[0] \land i = 1 \rightarrow I$
- at end: $I \wedge i \geq n \rightarrow \forall k.0 \leq k < n \rightarrow m \leq a[i]$

Remark. Can turn this into a formal proof as before.

References

The textbook has material on Hoare Logic

ASSISMMMembal, PoliOptoCate Matana: Help

Computer Science Perspective", Prentice-Hall, Chapter 9, pp.

481-518.

Some niceptiling notes / with loss of example: er.com • Gordon, "Specification and Verification I", http://www.cl.cam.ac.

Gordon, "Specification and Verification I", http://www.cl.cam.ac.uk/~mjcg/Lectures/SpecVer1/SpecVer1.html, Chapters 1-2, pp. 7-46.

A comprehensive Carly history Cribate to Popular Coder

 Apt, K.R., Ten Years of Hoare Logic: A Survey", ACM Transactions on Programming Languages and Systems, October, 1981.