UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PONTA GROSSA

CARLOS DA CONCEIÇÃO CASTILHO NETO FERNANDO DE ALMEIDA LUCAS LIEBEL CAMARGO RIBAS

PROJETO DE INSTALAÇÃO ELÉTRICA INDUSTRIAL

1. CORREÇÃO DE ITENS DA PRIMEIRA ENTREGA

De acordo com as orientações fornecidas após a primeira entrega, foram realizadas algumas correções para que fosse possível dar o correto prosseguimento ao desenvolvimento do projeto.

1.1. Definição do Sistema de Aterramento em MT

Para o aterramento em média tensão foi escolhido o sistema TT, que é mais utilizado quando a fonte e a carga estiverem muito distantes uma da outra, nessa configuração correntes de curto-circuito fase-massa são mais baixas quando comparadas com o sistema TN-S, por causa da alta impedância da terra.

O seguinte trabalho tem por propósito apresentar um projeto industrial seguindo as normas brasileiras referentes à área. Dessa forma, é especificado e detalhado o dimensionamento de todos os equipamentos necessários, bem como a planta e o diagrama unifilar, analisando desde o ponto de entrega em média tensão até os quadros de distribuição gerais de cada bloco, contendo as cargas motrizes e gerais.

1.2. Explicação dos Níveis de Tensão de cada Bloco

Tendo em vista o grande número de cargas motrizes que serão instaladas nas fábricas, optouse por instalações de 380V, o que permite que a espessura dos condutores seja menor nesses blocos. A nível de tensão utilizado na oficina segue um raciocínio semelhante, pois embora esse bloco contenha menor número de cargas, a presença dos motores da ponte rolante e do compressor fizeram com que fosse mais conveniente a escolha do nível de 380V.

No laboratório, por também conter motores de 15 CV, foi adotado o nível de 380 V. Já no centro de convivência, como não há cargas motrizes, mas apenas chuveiros e TUG's, adotou-se o nível de 220V. Nos depósitos também não há nenhuma carga além das TUG's, portanto o nível de tensão escolhido também foi de 220V.

Bloco	Subestação	Nível de tensão
Fábrica 1	SE1 – TR1	380V/220V
Centro de Convivência	SE2 – TR2	220V/127V
Fábrica 2	SE3 – TR3	380V/220V
Depósito 1	SE4 – TR4	220V/127V
Depósito 2	SE4 – TR4	220V/127V
Oficina	SE5 – TR5	380V/220V
Laboratório	SE6 – TR6	380V/220V
ADM	SE7 – TR7	380V/220V

Tabela 1: Níveis de tensão para cada bloco

1.3. Dimensionamento e Especificação dos Transformadores

O projeto dispõe de 7 transformadores em toda a planta e estes transformadores foram escolhidos a partir das cargas demandadas e conectados no modo Triângulo - Estrela aterrado, com o intuito de obter dois níveis de tensão no secundário.

Os transformadores escolhidos para as duas fábricas, para a oficina e para o laboratório foram da marca União, transformadores secos com bobinas encapsuladas a vácuo em resina epóxi, da série DRY PLUS. Já os transformadores do centro de convivência, dos depósitos e do bloco administrativo são da marca Steel Classe 15kV. Essa escolha foi feita baseando-se nos valores oferecidos por cada empresa, de forma a suprir a demanda sem superdimensionar nenhum dos equipamentos.

Tabela 2: Características transformador marca União.

7,2 / 15,0 / 24,2 / 36,2 kV Classe de Tensão AT 20 / 34 / 50 / 70 kV Tensão aplicada Suportável AT (outras características sob consulta) 40 / 95 / 125 / 150 kV Nível Básico de Impulso AT (NBI) Descargas parciais (induzida 2x Vn) < 10pC 1,2 KV Nível de Tensão máxima BT Tensão aplicada Suportável BT 10 KV Grupo de Ligação Dyn1 Frequência 60Hz F-155°C / 105°C Classe de Temperatura / Elevação Fator K K = 4ABNT NBR 10295 / 5356-Normas 1/5 e IEC EN 60076

Características do Transformador Padrão

CIA (kVA)*	POTÉNCIA NOMENAL (RVA)* GRUPO DE LIGAÇÃO **	COR. EXCITAÇÃO 16% (A) CORRENTE DE INRUSH		72.00	RDAS XIMAS	Z56 (Q)	NGAS A1S	DE TEN	LAÇÃO SÃO (%) 5°C			RENDIM	ENTO (%	CHOO	SEE!
POTÊNCIA OMINAL (KV	GRUPO DE LIGAÇÃO **	16% (A)	CORRENTE	VAZIO (W)	rotals (W)	C.C - Z	DESCARGAS	CAR	BN	Res	pelto à	3	100%	TUU DEFAÇÃO GAN	AFTIME
Ž		00)	•	F			17		N	Vature	Za		2	1
50	Dynl	3,4	12	400	2500	4,0	≤ 10p/C	1,92	4,85	1,47	3,68	98,68	98,00	98,68	98,5
75	Dyn1	3,1	12	420	2370	4,0	≤ 10p/C	1,86	4,80	1,41	3,57	98,45	97,78	98,35	98,1
112,5	Dyn1	2,8	12	500	3150	4,0	≤ 10p/C	1,81	4,74	1,35	3,53	98,15	97,67	98,02	97,5
150	Dynl	2,6	11	670	4460	4,5	≤ 10p/C	1,75	4,65	1,31	3,49	98,05	97,58	97,93	97,4
225	Dyn1	2,3	11	765	3465	4,5	≤ 10p/C	1,49	4,49	1,12	3,37	98,3	97,88	98,17	97,72
300	Dyn1	2,2	10	1100	6820	4,5	≤ 10p/C	1,42	4,45	1,07	3,34	98,39	98	98,27	97,85
500	Dynl	1,2	10	1500	7200	5,0	≤ 10p/C	1,59	4,55	1,19	3,41	98,29	97,87	98,19	97,75
750	Dyn1	1,2	10	1900	10200	5,5	≤ 10p/C	1,38	4,42	1,04	3,32	98,54	98,18	98,45	98,0
1000	Dynl	1,2	10	2400	11700	5,5	≤ 10p/C	1,28	4,36	0,96	3,27	98,67	98,34	98,6	98,25
1250	Dynl	1,2	10	2800	14200	6,0	≤ 10p/C	1,16	4,28	0,87	3,21	98,79	98,5	98,72	98,4
1500	Dynl	1,2	9	3300	16700	6,0	≤ 10p/C	1,15	4,27	0,86	3,2	98,84	98,55	98,78	98,4
2000	DynI	0,6	9	4000	21000	6,0	≤ 10p/C	1,03	4,19	0,78	3,14	98,96	98,7	98,9	98,63
2500	Dynl	0,6	9	4500	23500	6,0	≤ 10p/C	0,96	4,14	0,72	3,11	99,03	99,79	98,97	98,72

Tabela 3: Características transformador marca Steel

Os dados técnicos dos transformadores utilizados, com base no catálogo do fabricante, além das relações de tensões entre o primário e secundário, são:

Bloco	Demanda (kVA)	Subestação	Potência (kVA)	Perda a Vazio (W)	Perdas totais (W)	Z (%)	Nível de Tensão
Fábrica 1	552,215	SE1 – TR1	500	1650	8500	5	13,8kV - 380V/220V
Centro de Convivência	45,778	SE2 – TR2	50	400	2500	4	13,8kV - 220V/127V
Fábrica 2	442,94	SE3 – TR3	500	1650	8500	5	13,8kV - 380V/220V
Depósito 1 e 2	60	SE4 – TR4	75	420	2370	4	13,8kV - 220V/127V
Oficina	242,69	SE5 – TR5	225	1100	4000	5	13,8kV - 380V/220V
Laboratório	217,785	SE6 – TR6	225	1000	4000	5	13,8kV - 380V/220V
ADM	156,364	SE7 – TR7	150	670	4460	4,5	13,8kV - 380V/220V

Tabela 4: Transformadores Utilizados

1.4. Demanda Geral

Para o cálculo da demanda geral da planta foi considerado a soma das potências dos transformadores corrigidos a fim de ficar liberado toda a potência de transformação de todos eles, sendo assim, pode-se verificar a demanda geral desta indústria na equação abaixo:

$$D_{geral} = P_{tr_{-1}} + P_{tr_{-2}} + P_{tr_{-3}} + P_{tr_{-4}} + P_{tr_{-5}} + P_{tr_{-6}}$$
 (1)

$$D_{geral} = 500kVA + 50kVA + 500kVA + 75kVA + 225kVA + 225kVA + 150kVA$$

$$D_{geral} = 1{,}725MVA$$

2. IDENTIFICAÇÃO DE ALIMENTADORES E DISJUNTORES

2.1. Alimentadores de Baixa Tensão

Após a definição da disposição dos quadros, dos transformadores e do cálculo da demanda, foram calculadas as correntes de projeto e, assim, utilizando-se dos fatores de correção por agrupamento e por temperatura, foram definidas as espessuras dos cabos a serem utilizados. Os cabos de BT utilizados são de PVC, que possui considerável resistência a agentes químicos e é amplamente utilizado em distribuições residenciais e industriais. A identificação dos condutores de BT está na tabela 5.

SE	Quadro	Tensão Linha (V)	Demanda (kVA)	Corrente Projeto (A)	Seção (mm²)	Corrente Corrigida do Cabo (A)	Distância (km)	Cabo (mm²)
	CCM_1		12,509	21,354	6	46,61	0,032	3#6(6)T6
	CCM_2		12,509	21,354	6	46,61	0,048	3#6(6)T6
Fábrica 1	CCM_3	380	12,509	21,354	6	46,61	0,056	3#6(6)T6
	CCM_4		316,086	539,599	3 x 120	938,52	0,025	3x3#120(120)T70
	CCM_5		19,927	34,018	6	46,61	0,021	3#6(6)T6
	QD_1		178,675	305,021	120	312,84	0,014	3#120(120)T70
	QDG_1		552,215	942,701	2 x 240	971,7	0,011	2x3#240(240)T120
Centro de	QD_2	000	45,778	133,485	50	154,84	0,012	2#50(50)T25
Convivência	QDG_2	220	45,778	133,485	50	154,84	0,012	2#50(50)T25
	QD_3		89,3726	146,008	50	173,01	0,028	3#50(50)T25
	QD_4		65,613	107,192	25	115,34	0,013	3#25(25)T16
Fábrica 2	QD_5	380	182,0467	297,410	120	312,84	0,022	3#120(120)T70
	QD_6		105,908	173,022	70	221,99	0,034	3#70(70)T35
	QDG_3		442,9403	723,632	2 x 185	823,18	0,011	2x3#185(185)T95
Depósito 1	QD_7		30	87,477	25	103,49	0,020	2#25(25)T16
5 (!: 0	QD_8	220	30	87,477	25	103,49	0,013	2#25(25)T16
Depósito 2	QDG_4		60	174,955	70	221,99	0,015	2#70(70)T35
	CCM_6		20	33,577	6	46,61	0,022	3#6(6)T6
	QD_9		28,07	47,125	10	63,99	0,014	3#10(10)T10
00.	QD_10	200	21,053	35,344	6	46,61	0,025	3#6(6)T6
Oficina	CCM_7	380	8,713	14,628	6	46,61	0,018	3#6(6)T6
	QD_11		164,855	276,764	120	312,84	0,037	3#120(120)T70
	QDG_5		242,691	407,437	240	485,85	0,011	3#240(240)T120
	CCM_8		63,785	108,889	25	115,34	0,017	3#25(25)T16
1 - 1	QDNB	200	40	68,285	16	86,9	0,014	3#16(16)T16
Laboratório	QD_12	380	114	194,612	70	221,99	0,027	3#70(70)T35
	QDG_6		217,785	371,787	185	411,59	0,011	3#185(185)T95
	CCM_9		90,364	156,016	50	173,01	0,013	3#50(50)T25
ADM	QD_13	380	66	113,951	35	142,99	0,013	3#35(35)T16
	QDG_7]	156,364	269,966	120	312,84	0,012	3#120(120)T70

Tabela 5: Identificação de alimentadores de BT e correntes de projeto

É importante mencionar que, para a obtenção dos corretos fatores de correção, foi necessário realizar a escolha de um método de referência e disposição para cada caso. Para a maioria dos quadros e CCM's, foi utilizado o método de referência G, com condutores dispostos horizontalmente.

Isso foi feito analisando-se que o fator de agrupamento para esse método é unitário, o que impede uma grande perda da capacidade de condução.

Para os blocos que não possuem cargas motrizes (Depósitos e Centro de Convivência), foi escolhido o método de referência F, com condutores justapostos horizontalmente. Essa escolha é conveniente analisando-se que o circuito fica mais compacto e as perdas de capacidade de condução de corrente avaliadas durante o dimensionamento não foram significativamente grandes a ponto de ser necessário alterar as bitolas dos cabos.

Optou-se por enterrar os condutores dos quadros gerais, devido à forma mais compacta de apresentação. Além disso, como ambos os depósitos estão ligados ao mesmo quadro geral, que se localiza no depósito 2, optou-se por enterrar os condutores do quadro do depósito 1 até esse quadro geral, por razões de padronização quanto aos cabos externos de BT.

A obtenção dos fatores de correção de temperatura e agrupamento foi feita por meio das tabelas 40 e 42 da NBR 5410. Na tabela 6 foi considera uma temperatura de 45° C, obtendo-se um fator de correção de temperatura igual a 0,79. Na tabela 7, tendo em vista que os circuitos são embutidos, o fator de agrupamento utilizado foi igual a 1.

Temperatura		Isolação
°C	PVC	EPR ou XLPE
Ambiente		
10	1,22	1,15
15	1,17	1,12
20	1,12	1,08
25	1,06	1,04
35	0,94	0,96
40	0,87	0,91
45	0,79	0,87
50	0,71	0,82
55	0,61	0,76
60	0,50	0,71
65		0,65
70	_	0,58
75		0.50

Tabela 6: Fatores de correção de temperatura

Fatores de correção aplicáveis a condutores agrupados em feixe (em linhas abertas ou fechadas) e a condutores agrupados num mesmo plano, em camada única

	Come de commente des	1		N	lúmero	de circi	uitos ou	de cat	oos mu	tipolare	98			Tabelas dos
Ref.	Forma de agrupamento dos condutores	1	2	3	4	5	6	7	8	9 a 11	12 a 15	16 a 19	≥20	métodos de referência
1	Em feixe: ao ar livre ou sobre superficie; embutidos; em conduto fechado	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38	36 a 39 (métodos A a F)
2	Camada única sobre parede, piso, ou em bandeja não perfurada ou prateleira	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70			36 e 37 (método C)	
3	Camada única no teto	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62		0,	61		S. S.
4	Camada única em bandeja perfurada	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72		38 e 39		
5	Camada única sobre leito, suporte etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78		(métodos E e F)		

Tabela 7 – Fatores de correção de agrupamento

Convencionou-se para a realização do dimensionamento de cabos, que a seção máxima utilizada para um único cabo seria de 240mm², tendo em vista a dificuldade de disponibilidade de condutores com seções acima desse valor.

Assim, quando a corrente de projeto ultrapassou a corrente corrigida de um único condutor de 240mm², foram utilizados dois ou três condutores em paralelo. Através de cálculos de condução, avaliou-se que na CCM4 da Fábrica 1 era mais adequado utilizar 3 cabos de 120mm² ao invés de 2 cabos de 240mm². No caso do QDG1 da Fábrica 1, como a corrente é maior, foi necessário utilizar 2 cabos de 240mm². Já no QDG2 da Fábrica 2 não foi possível utilizar um único cabo de 240mm², sendo necessário utilizar 2 cabos de 185mm².

A tabela 8 contém os métodos de referência, os fatores de correção, bem como a quantia de cabos por fase.

SE	Quadro	Seção (mm²)	Corrente (A) por cabo a 30 °C	FCT	FCA	Corrente Corrigida do Cabo (A)	Método de Referência
	CCM_1	6	59	0,79	1	46,61	G
	CCM_2	6	59	0,79	1	46,61	G
	CCM_3	6	59	0,79	1	46,61	G
Fábrica 1	CCM_4	3 x 120	396	0,79	1	938,52	G
	CCM_5	6	59	0,79	1	46,61	G
	QD_1	120	396	0,79	1	312,84	G
	QDG_1	2 x 240	615	0,79	1	971,7	G
Centro de	QD_2	50	196	0,79	1	154,84	F
Convivência	QDG_2	50	196	0,79	1	154,84	F
	QD_3	50	219	0,79	1	173,01	G
	QD_4	25	146	0,79	1	115,34	G
Fábrica 2	QD_5	120	396	0,79	1	312,84	G
	QD_6	70	281	0,79	1	221,99	G
	QDG_3	2 x 185	521	0,79	1	823,18	G
Depósito 1	QD_7	25	131	0,79	1	103,49	F
Donásito 2	QD_8	25	131	0,79	1	103,49	F
Depósito 2	QDG_4	70	281	0,79	1	221,99	F

	CCM_6	6	59	0,79	1	46,61	G
	QD_9	10	81	0,79	1	63,99	G
Oficina	QD_10	6	59	0,79	1	46,61	G
Officina	CCM_7	6	59	0,79	1	46,61	G
	QD_11	120	396	0,79	1	312,84	G
	QDG_5	240	615	0,79	1	485,85	G
	CCM_8	25	146	0,79	1	115,34	G
	QDNB	16	110	0,79	1	86,9	G
Laboratório	QD_12	70	281	0,79	1	221,99	G
	QDG_6	185	521	0,79	1	411,59	G
	CCM_9	50	219	0,79	1	173,01	G
ADM	QD_13	35	181	0,79	1	142,99	G
	QDG_7	120	396	0,79	1	312,84	G

Tabela 8: Fatores de correção, métodos de referência e quantias de cabos por fase de alimentadores de BT

2.2. Escolha dos Disjuntores

Em seguida foi feita a escolha dos disjuntores, cuja corrente nominal deve ser inferior à corrente suportada pelo cabo, mas superior à corrente nominal do circuito. Em alguns casos não foi possível encontrar um disjuntor fixo dentro do intervalo requisitado, e dessa forma foi escolhido um disjuntor eletrônico com capacidade adequada para cada caso. O catálogo utilizado para essa seleção foi o de Disjuntores Industriais em Caixa Moldada da empresa Soprano. A tabela 9 apresenta o dimensionamento dos disjuntores, bem como seus modelos e a capacidade máxima de interrupção de corrente.

SE	Quadro	Corrente de Projeto (A)	Seção (mm²)	Corrente Corrigida do Cabo (A)	Capacidade do Disjuntor (A)	Tipo	Modelo	Capacidade Max de I _{CU} (kA)
	CCM_1	21,354	6	46,61	40	Fixo	DS160-B	25
	CCM_2	21,354	6	46,61	40	Fixo	DS160-B	25
	CCM_3	21,354	6	46,61	40	Fixo	DS160-B	25
Fábrica 1	CCM_4	539,599	3 x 120	938,52	600	Fixo	DS800-S	50
	CCM_5	34,018	6	46,61	40	Fixo	DS160-B	25
	QD_1	305,021	120	312,84	310	Eletrônico	DSE400-H	50
	QDG_1	942,701	2 x 240	971,7	950	Eletrônico	DSE1600-S	50
Centro de	QD_2	133,485	50	154,84	150	Fixo	DS160-B	25
Convivência	QDG_2	133,485	50	154,84	150	Fixo	DS160-B	25
	QD_3	146,008	50	173,01	150	Fixo	DS160-B	25
	QD_4	107,192	25	115,34	110	Eletrônico	DSE250-H	50
Fábrica 2	QD_5	297,410	120	312,84	300	Fixo	DS400-H	50
	QD_6	173,022	70	221,99	200	Fixo	DS250-H	50
	QDG_3	723,632	2 x 185	823,18	800	Fixo	DS800-S	50
Depósito 1	QD_7	87,477	25	103,49	100	Fixo	DS160-B	25
Danásita C	QD_8	87,477	25	103,49	100	Fixo	DS160-B	25
Depósito 2	QDG_4	174,955	70	221,99	200	Fixo	DS250-H	50

	CCM_6	33,577	6	46,61	40	Fixo	DS125N	20
	QD_9	47,125	10	63,99	50	Fixo	DS125N	20
Oficina	QD_10	35,344	6	46,61	40	Fixo	DS125N	20
Officina	CCM_7	14,628	6	46,61	40	Fixo	DS160-B	25
	QD_11	276,764	120	312,84	300	Fixo	DS400-H	50
	QDG_5	407,437	240	485,85	450	Fixo	DS800-S	50
	CCM_8	108,889	25	115,34	110	Eletrônico	DSE250-H	50
Laboratório	QDNB	68,285	16	86,9	70	Fixo	DS160-B	25
Laboratorio	QD_12	194,612	70	221,99	200	Fixo	DS250-H	50
	QDG_6	371,787	185	411,59	380	Eletrônico	DS400-H	50
	CCM_9	156,016	50	173,01	160	Fixo	DS160-B	25
ADM	QD_13	113,951	35	142,99	125	Fixo	DS160-B	25
	QDG_7	269,966	120	312,84	300	Fixo	DS400-H	50

Tabela 9 – Dimensionamento de disjuntores, modelos e capacidade máxima de interrupção

Consultando a tabela a seguir, foram obtidos os valores de impedância de sequência positiva e negativa para os cabos de BT.

					Esque	ema TN	S (valor	es em f	Ω /Km)					
6 2440	and the same	and the second		Trifólio						ana	d (mm)= 30			
Form	nação do cir	cuito	Se	q. + Seq zero		cabo PE		Seq. +		Seq zero		cab	o PE	
Cabos fase	Cabo neutro	Cabo terra	R1	XI1	RO	XIO	R _{pg}	ХÌ _{РЕ}	R1	XII	RO	XIO	R _{re}	XI _{pe}
1,5	1,5	1,5	14,48	0,156	57,92	0,623	14,480	0,312	14,48	0,3130	57,92	1,6444	14,4800	0,756
2,5	2,5	2,5	8,87	0,145	35,48	0,581	8,870	0,290	8,87	0,2930	35,48	1,5644	8,8700	0,716
4	4	4	5,52	0,145	22,08	0,579	5,520	0,289	5,52	0,2781	22,08	1,5048	5,5200	0,687
6	6	6	3,69	0,131	14,76	0,524	3,690	0,262	3,69	0,2581	14,76	1,4248	3,6900	0,647
10	10	10	2,19	0,131	8,76	0,526	2,190	0,263	2,19	0,2481	8,76	1,3848	2,1900	0,627
16	16	16	1,38	0,122	5,52	0,487	1,380	0,244	1,38	0,2281	5,52	1,3048	1,3800	0,587
25	25	16	0,87	0,116	5,01	0,483	1,380	0,238	0,87	0,2081	5,01	1,2848	1,3800	0,567
35	35	16	0,63	0,114	4,77	0,484	1,380	0,237	0,63	0,1981	4,77	1,2748	1,3800	0,557
50	50	25	0,46	0,116	3,07	0,468	0,870	0,233	0,46	0,1881	3,07	1,2048	0,8700	0,527
70	70	35	0,32	0,114	2,21	0,459	0,630	0,229	0,32	0,1781	2,21	1,1648	0,6300	0,507
95	95	50	0,23	0,104	1,61	0,454	0,460	0,220	0,23	0,1581	1,61	1,1148	0,4600	0,477
120	120	70	0,18	0,100	1,14	0,444	0,320	0,215	0,18	0,1481	1,14	1,0748	0,3200	0,457
150	150	70	0,15	0,103	1,11	0,451	0,320	0,219	0,15	0,1430	1,11	1,0697	0,3200	0,451
185	185	95	0,12	0,106	0,81	0,422	0,230	0,211	0,12	0,1381	0,81	1,0048	0,2300	0,427
240	240	120	0.09	0,105	0,63	0,411	0,180	0,207	0,09	0,1281	0.63	0.9648	0,1800	0,407

Tabela 10 – Impedâncias para cabos com isolação de PVC até 1kV

Assim, os dados referentes às impedâncias de sequência positiva e negativa dos cabos de BT, bem como as impedâncias de PE podem ser verificados na tabela 11.

SE	Quadro	Seção (mm²)	Cabo (mm²)	Impedância Unitária (Seq +)	Impedância Unitária (Seq 0)	Impedância Unitária Cabo PE
	CCM_1	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
	CCM_2	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
	CCM_3	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
Fábrica 1	CCM_4	3 x 120	3x3#120(120)T70	0,06+0,0494i	0,38+0,358i	0,11+0,152i
	CCM_5	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
	QD_1	120	3#120(120)T70	0,18+0,1481i	1,14+1,0748i	0,32+0,457i
	QDG_1	2 x 240	2x3#240(240)T120	0,045+0,06405i	0,315+0,4824i	0,09+0,2035i

Centro de	QD_2	50	2#50(50)T25	0,46+0,1881i	3,07+1,2048i	0,87+0,527i
Convivência	QDG_2	50	2#50(50)T25	0,46+0,1881i	3,07+1,2048i	0,87+0,527i
	QD_3	50	3#50(50)T25	0,46+0,1881i	3,07+1,2048i	0,87+0,527i
	QD_4	25	3#25(25)T16	0,87+0,2081i	5,01+1,2848i	1,38+0,567i
Fábrica 2	QD_5	120	3#120(120)T70	0,18+0,1481i	1,14+1,0748i	0,32+0,457i
	QD_6	70	3#70(70)T35	0,32+0,1781i	2,21+1,1648i	0,63+0,507i
	QDG_3	2 x 185	2x3#185(185)T95	0,06+0,06905i	0,405+0,5024i	0,115+0,2135i
Depósito 1	QD_7	25	2#25(25)T16	0,87+0,2081i	5,01+1,2848i	1,38+0,567i
Donásito 2	QD_8	25	2#25(25)T16	0,87+0,2081i	5,01+1,2848i	1,38+0,567i
Depósito 2	QDG_4	70	2#70(70)T35	0,32+0,1781i	2,21+1,1648i	0,63+0,507i
	CCM_6	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
	QD_9	10	3#10(10)T10	2,19+0,2481i	8,76+1,3848i	2,19+0,627i
Oficina	QD_10	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
Officilia	CCM_7	6	3#6(6)T6	3,69+0,2581i	14,76+1,4248i	3,69+0,647i
	QD_11	120	3#120(120)T70	0,18+0,1481i	1,14+1,0748i	0,32+0,457i
	QDG_5	240	3#240(240)T120	0,09+0,1281i	0,63+0,9648i	0,18+0,407i
	CCM_8	25	3#25(25)T16	0,87+0,2081i	5,01+1,2848i	1,38+0,567i
Laboratório	QDNB	16	3#16(16)T16	1,38+0,2281i	5,52+1,3048i	1,58+0,587i
Laboratorio	QD_12	70	3#70(70)T35	0,32+0,1781i	2,21+1,1648i	0,63+0,507i
	QDG_6	185	3#185(185)T95	0,12+0,1381i	0,81+1,0048i	0,23+0,427i
	CCM_9	50	3#50(50)T25	0,46+0,1881i	3,07+1,2048i	0,87+0,527i
ADM	QD_13	35	3#35(35)T16	0,63+0,1981i	4,77+1,2748i	1,38+0,557i
	QDG_7	120	3#120(120)T70	0,18+0,1481i	1,14+1,0748i	0,32+0,457i

Tabela 11 – Impedâncias unitárias dos cabos de BT

2.3. Alimentadores de Média Tensão

Os cabos de MT utilizados possuem isolação de EPR (modelo Eprotenax Compact 105), que apesar de apresentar um custo mais elevado, conferem maior rigidez dielétrica e flexibilidade mecânica que o cabo com isolação de PVC. O dimensionamento dos cabos foi feito com base em uma tabela fornecida pelo fabricante. A corrente de projeto, bem como a identificação desses condutores e a corrente corrigida estão na tabela 12.

SE	Demanda (kVA)	Corrente de Projeto (A)	Seção (mm²)	Corrente (A) por cabo a 20 °C	Corrente Corrigida (A)	Cabo (mm²)
Fábrica 1, 2, Depósitos, Oficina, Laboratório e ADM	1671,995	69,95123	35	128	77,952	3#35(35)T16
Centro de Convivência	45,778	1,915213	16	84	51,156	3#16(16)T16

Tabela 12 – Identificação de condutores de MT

Como todos os blocos estão ligados em anel, com exceção do Centro de Convivência, foram calculadas as impedâncias com base nas distâncias a partir da Fábrica 1 (Lado A) ou a partir do Laboratório (Lado B). No caso de centro de convivência só uma distância foi calculada, pois ele está

conectado radialmente ao barramento de entrada. As impedâncias unitárias e distâncias podem ser verificadas na tabela 13.

SE	Distância Lado A (km)	Distância Lado B (km)	Impedância Unitária do Cabo (Seq +)	Impedância Real Lado A	Impedância Real Lado B	Cabo (mm²)
Fábrica 1	0,091	0,396	0,701+0,149i	0,0637+0,0135i	0,277596+0,059004i	3#35(35)T16
Centro de Convivência	0,255		1,536+0,174i	0,391+0,044i		3#16(16)T16
Fábrica 2	0,291	0,196	0,701+0,149i	0,2039+0,0433i	0,137396+0,029204i	3#35(35)T16
Depósito 1 e 2	0,258	0,229	0,701+0,149i	0,1808+0,0384i	0,160529+0,034121i	3#35(35)T16
Oficina	0,343	0,144	0,701+0,149i	0,2404+0,0511i	0,100944+0,021456i	3#35(35)T16
Laboratório	0,377	0,11	0,701+0,149i	0,2642+0,0561i	0,07711+0,01639i	3#35(35)T16
ADM	0,175	0,312	0,701+0,149i	0,1226+0,0260i	0,218712+0,046488i	3#35(35)T16

Tabela 13 – Impedâncias unitárias e distâncias de cada cabo de MT

Para MT, optou-se pela utilização do arranjo em trifólio, o que torna a instalação mais compacta, analisando-se também que, como a corrente necessária é menor do que em BT, as perdas por fatores de correção não causam um aumento significativo na seção dos cabos. O método de referência utilizado foi o B1, e os condutores foram todos enterrados, tendo em mente que dessa forma a instalação se torna mais segura e confiável, pois reduz a chance de rompimento dos condutores.

Para a determinação do fator de correção de temperatura foi utilizada a tabela 14, fornecida pelo fabricante, considerando-se nessa etapa uma temperatura de 40° C, tendo em vista que os cabos serão todos subterrâneos.

EM FUNÇÃO DA T	EMPERATURA							
cabos	linha		fatores f _t pa	ra temperati	ıra ambiente	diferente da	considerada	
20003		20	25	30	35	40	45	50
Eprotenax Compact,	subterrânea	1,00	0,96	0,93	0,89	0,85	0,80	0,76
Eprotenax e Voltalene	não subterrânea	1,08	1,04	1,00	0,96	0,91	0,87	0,82
	subterrânea	1,00	0,97	0,94	0,91	0,87	0,84	0,80
Eprotenax Compact 105	não subterrânea	1,06	1,03	1,00	0,97	0,93	0,89	0,86

Tabela 14 – Fatores de correção de temperatura para cabos de EPR Eprotenax, utilizados em MT

De forma similar, utilizando-se da tabela 7, foi determinado o valor de 0,7 para o fator de agrupamento para o trifólio. Em MT não foi necessário utilizar mais de um condutor por fase em nenhum caso, visto que a corrente é bem inferior àquelas calculadas em BT. A tabela 15 explicita os cabos, o método de referência, a disposição e os fatores de correção para MT.

SE	Corrente de Projeto (A)	Seção (mm²)	Corrente (A) por cabo a 20 °C	FCT	FCA	Corrente Corrigida (A)	Método de Referência	Disposição	Cabo (mm²)
Fábrica 1, 2, Depósitos, Oficina, Laboratório e ADM	69,95	35	128	0,87	0,7	77,952	B1	Trifólio (Enterrado)	3#35(35)T16
Centro de Convivência	1,92	16	84	0,87	0,7	51,156	B1	Trifólio (Enterrado)	3#16(16)T16

Tabela 15 – Condutores, método de referência e disposição em MT

3. DETERMINAÇÃO DAS QUEDAS DE TENSÃO NOS ALIMENTADORES

De acordo com a NBR 5410, a queda de tensão a partir do secundário do transformador até a carga não deve superar 7% do valor da tensão nominal. Dessa forma, como não há informação acerca dos cabos que serão conectados diretamente à carga, convencionou-se limitar a queda de tensão em BT nos cabos dimensionados em 3%. Para esse cálculo, foi utilizada a seguinte equação:

$$V (\%) = \frac{I_{PROJ} * \sqrt{3} * |Z_{REAL}|}{V_{LINHA}} * 100$$

Analogamente, para a partida de motores, a queda de tensão máxima é de 10%. Novamente, como não temos conhecimento dos cabos que estão conectados diretamente à carga, limitou-se a queda de tensão em um valor inferior, que nesse caso é de 6%. De forma similar, foi utilizada a equação a seguir, cuja diferença reside na corrente.

$$V (\%) = \frac{I_{QUEDA} * \sqrt{3} * |Z_{REAL}|}{V_{LINHA}} * 100$$

			Regime Pe	ermanente	Partida do Mo	otor (Unitário)
SE	Quadro	Corrente Projeto (A)	ΔV Parcial (%) Máx 3%	ΔV Total (%) Máx 3%	ΔV Parcial (%) Máx 6%	ΔV Total (%) Máx 6%
	CCM_1	21,354	1,1521	1,5221	0,9721	2,6992
	CCM_2	21,354	1,7282	2,0982	0,9721	2,6992
	CCM_3	21,354	2,0162	2,3862	0,9721	2,6992
Fábrica 1	CCM_4	539,599	0,4779	0,8479	3,8973	5,6244
	CCM_5	34,018	1,2045	1,5745	-	-
	QD_1	305,021	0,4537	0,8237	-	-
	QDG_1	942,701	0,37	-	1,7271	-
Centro de	QD_2	133,485	0,2095	0,2095	-	-
Convivência	QDG_2	133,485	0,2095	-	-	-

	QD_3	146,008	0,9261	1,258	-	-
	QD_4	107,192	0,5682	0,9001	2,47	2,6837
Fábrica 2	QD_5	297,410	0,6952	1,0271	-	-
	QD_6	173,022	0,982	1,3139	-	-
	QDG_3	723,632	0,3319	-	0,2137	-
Depósito 1	QD_7	87,477	0,4119	0,6648	-	-
Denésite 2	QD_8	87,477	0,2677	0,5206	-	-
Depósito 2	QDG_4	174,955	0,2529	-	-	-
	CCM_6	33,577	1,2454	1,5652	-	-
	QD_9	47,125	0,6628	0,9826	-	-
Ofician	QD_10	35,344	1,4898	1,8096	-	-
Oficina	CCM_7	14,628	0,4439	0,7637	3,809	4,1748
	QD_11	276,764	1,088	1,4078	-	-
	QDG_5	407,437	0,3198	-	0,3658	-
	CCM_8	108,889	0,7548	1,0958	1,2123	1,3727
Laborotário	QDNB	68,285	0,6095	0,9505	-	-
Laboratório	QD_12	194,612	0,8771	1,2181	-	-
	QDG_6	371,787	0,341	-	0,1604	-
	CCM_9	156,016	0,4594	0,8036	-	-
ADM	QD_13	113,951	0,4459	0,7901	-	-
i	QDG_7	269,966	0,3442	-	-	-

Tabela 16 – Quedas de tensão nos condutores

Após a aplicação dos três critérios necessários ao dimensionamento de cabos (capacidade de corrente, coordenação com a proteção e máxima queda de tensão), algumas mudanças foram realizadas, principalmente após a determinação do terceiro critério. Contudo, como as tabelas 5 e 8 foram sendo modificadas à medida que essas alterações eram necessárias, não há um registro dos cabos que foram selecionados previamente ou parcialmente após cada critério. Logo, as tabelas 5 e 8 contém as escolhas finais após a aplicação dos três critérios.

4. CÁLCULO DOS CURTOS-CIRCUITOS

Após o dimensionamento dos condutores e disjuntores, foi realizada a etapa do cálculo dos curto-circuitos (monofásico, bifásico, bifásico à terra e trifásico). Inicialmente foram desenhados diagramas relacionados a cada curto-circuito em cada situação, e depois foi elaborado um código para o cálculo dos valores propriamente ditos. Além dos valores de I_{CC}, foram obtidos os valores das impedâncias dos transformadores, que podem ser conferidos na tabela 17. **DIAGRAMAS FERNANDO**

Bloco	Demanda (kVA)	Subestação	Potência (kVA)	Perdas a Vazio (W)	Perdas Totais (W)	Z (%)	Impedância (ohms)	Nível de Tensão
Fábrica 1	552,215	SE1 – TR1	500	1650	8500	5	0,660+9,978i	13,8kV - 380V/220V

Centro de Convivência	45,778	SE2 – TR2	50	400	2500	4	15,802+50,938i	13,8kV - 220V/127V
Fábrica 2	442,94	SE3 – TR3	500	1650	8500	5	0,660+9,978i	13,8kV - 380V/220V
Depósito 1 e 2	60	SE4 – TR4	75	420	2370	4	0,556+9,985i	13,8kV - 220V/127V
Oficina	242,69	SE5 – TR5	225	1100	4000	5	1,975+22,134i	13,8kV - 380V/220V
Laboratório	217,785	SE6 – TR6	225	1000	4000	5	1,975+22,134i	13,8kV - 380V/220V
ADM	156,364	SE7 – TR7	150	670	4460	4,5	3,951+26,372i	13,8kV - 380V/220V

Tabela 17 – Transformadores utilizados e suas impedâncias

A tabela 18 exibe os resultados dos códigos para as correntes de curto-circuito, bem como a verificação de que todos os disjuntores suportam a corrente de curto circuito, visto que os valores de I_{CU} máximas de todos eles são superiores aos valores dos curtos-circuitos.

						Icυ Máxima (KVA)	Disjuntor (A)
SE	Ponto	Icc3f (A)	Icc2f (A)	Icc2ft (A)	Icc1f (A)	-	-
	Pe	2002,79	1734,46	1775,89	1399,58	-	-
	Tr_Pri	1972,13	1707,91	1745,67	1385,47	-	-
	Tr_Sec	12621,93	10930,91	13255,64	13996,49	-	-
	QDG1	12263,61	10620,60	12620,28	12578,20	50	950
Fábrica 1	CCM1	1779,92	1541,45	1610,78	912,77	25	40
rabrica 1	CCM2	1205,20	1043,74	1083,89	612,24	25	40
	CCM3	1037,26	898,29	931,17	525,64	25	40
	CCM4	11332,40	9814,14	11488,63	9916,54	50	600
	CCM5	2637,40	2284,06	2383,20	1365,97	25	40
	QD1	10752,13	9311,61	10711,51	8593,21	50	310
	Pe	2002,79	1734,46	1775,89	1399,58	-	-
	Tr_Pri	1905,93	1650,58	1681,17	1354,67	-	-
	Tr_Sec	12570,67	10886,52	13182,43	13955,69	-	-
Fábrica 2	QDG3	11989,40	10383,13	12408,25	11959,95	50	800
rabilica 2	QD3	7789,61	6746,00	7414,91	4187,01	25	150
	QD4	8718,60	7550,53	8506,96	5279,78	50	110
	QD5	9794,13	8481,96	9525,00	6934,58	50	300
	QD6	7898,14	6839,99	7513,32	4358,05	50	200

	Pe	2002,79	1734,46	1775,89	1399,58	-	-
	Tr_Pri	1889,02	1635,94	1664,85	1346,71	-	-
	Tr_Sec	6246,07	5409,25	6481,28	6749,40	-	-
	QDG5	5986,06	5184,08	6051,25	5798,02	50	450
Oficina	ССМ6	2285,44	1979,25	2110,44	1242,36	25	40
	QD9	4099,75	3550,48	3994,05	2674,85	20	50
	QD10	2062,52	1786,19	1894,15	1105,87	25	40
	CCM7	2660,77	2304,29	2481,09	1485,10	25	40
	QD11	5054,51	4377,33	4924,16	3675,55	50	300
	Pe	2002,79	1734,46	1775,89	1399,58	-	-
	Tr_Pri	1878,03	1626,43	1654,28	1341,52	-	-
	Tr_Sec	6243,95	5407,42	6478,24	6747,77	-	-
Laboratório	QDG6	5958,53	5160,23	5257,42	392,70	50	380
	CCM8	4896,44	4240,44	4322,08	367,17	50	110
	QDNB	4693,80	4064,95	4142,58	367,00	25	70
	QD12	5034,71	4360,18	4448,53	374,84	50	200
	Pe	2002,79	1734,46	1775,89	1399,58		
	Tr_Pri	1968,71	1704,95	1740,89	1384,23	-	-
A	Tr_Sec	4741,32	4106,1	4912,59	5087,86	-	-
Administrativo	QDG_7	4539,42	3931,25	4707,53	4429,1	50	300
	ССМ9	4220,62	3655,17	4395,52	3541,79	25	160
	QD13	4160,98	3603,51	4340,66	3286,64	25	125
	Pe	2002,79	1734,46	1775,89	1399,58	-	-
	Tr_Pri	1907,86	1652,26	1676,01	1357,64	-	-
Centro de Convivência	Tr_Sec	3195,32	2767,23	3297,62	3389,73	-	-
	QDG_2	2949,92	2554,71	3117,41	2647,82	25	150
	QD2	2695,26	2334,17	2750,24	2048,49	25	150
	Pe	2002,79	1734,46	1775,89	1399,58	-	-
	Tr_Pri	1958,16	1695,82	1730,16	1379,46	-	-
Dan falls	Tr_Sec	4736,62	4102,04	4894,62	5042,19	-	-
Depósitos	QDG_4	4166,33	3608,15	4306,8	3419,38	50	200
Zopoditoo	QD7	2994,63	2593,42	2860,51	1655,55	25	100
	QD8	3368,49	2917,2	3285,43	2055,33	25	100

Tabela 18 - Correntes de curto circuito nos quadros, e capacidades de Icu dos disjuntores

5. TEMPO DE ATUAÇÃO DA PROTEÇÃO

Como medida de segurança foi verificado se o tempo de atuação fornecido pelo fabricante dos disjuntores escolhidos para o início e o fim de cada condutor atenderia os aspectos do tópico 5.3.5.5.2 da norma NBR5410, que diz que "A integral de Joule que o dispositivo deixa passar deve ser inferior ou igual à integral de Joule necessária para aquecer o condutor desde a temperatura máxima para serviço contínuo até a temperatura limite de curto-circuito". Este aspecto pode ser verificado com a seguinte equação:

$$I^2 * t \le K^2 * S^2$$

Utilizou-se os valores do fator K presentes na Tabela 55 do tópico 6.4.3.1.2, conforme a figura a seguir:

Tabela 55 — Fator k para condutor de proteção constituído por veia de cabo multipolar ou enfeixado com outros cabos ou condutores isolados

	Isolação				
Material do condutor	PVC ^(*)	EPR ou XLPE			
Cobre	115/103	143			
Alumínio	76/68	94			
Aço	42/37	52			

(*) O valor mais baixo aplica-se a condutores com seção maior que 300 mm² -

NOTAS

- 1 A temperatura inicial considerada é de 70°C para o PVC e 90°C para o EPR e o XLPE.
- 2 A temperatura final considerada é:
 - PVC até 300 mm²; 160°C;
 - PVC major que 300 mm²: 140°C;
 - EPR e XLPE: 250°C.

No total foram obtidos 8 tempos de atuação para cada cabo levando em consideração os 4 tipos de curto possíveis que são: curto trifásico, curto entre 2 fases, curto entre 2 fases e terra e curto entre fase e terra. Dentre todos os testes realizados, a maioria dos disjuntores atuaram em tempo hábil e respeitaram a norma com exceção do teste realizado para o início do condutor do CCM4 onde o tempo de atuação do seu disjuntor atingiu o tempo de 180 minutos para o curto fase-terra, da mesma maneira o disjuntor do QDG6 presente no laboratório teve o mesmo tempo de atuação para a mesma situação de curto.

Como solução para tal problema, optou-se em utilizar um disjuntor com bobina de abertura que possua as mesmas características dos disjuntores anteriormente escolhidos, onde o mesmo é acionado por um relé, desta maneira pode-se configurar o tempo de atuação para o tempo de 0,01 segundo atendendo os requisitos da norma.

Abaixo seguem as tabelas com o tempo de atuação para o início e fim de cada condutor com suas respectivas verificações, o tempo de atuação é **identificado na tabela pela letra "T" e o múltiplo da corrente pela letra "I".**

SE	Ponto	Seção (mm²)	Disju ntor (A)	I 3f	I 2f	I 2ft	I 1f	T 3f (s)	T 2f (s)	T 2ft (s)	T 1f (s)	Norma ok? 3f	Norm a ok? 2f?	Norma ok? 2ft?	Norma ok? 1f?
	QDG1	240	950	12,91	11,18	13,28	13,24	0,06	15	0,06	0,06	Sim	Sim	Sim	Sim
	CCM1	6	40	44,50	38,54	40,27	22,82	0,013	0,014	0,0135	0,018	Sim	Sim	Sim	Sim
Fábrica	CCM2	6	40	30,13	26,09	27,10	15,31	0,016	0,017	0,017	0,03	Sim	Sim	Sim	Sim
1	CCM3	6	40	25,93	22,46	23,28	13,14	0,017	0,018	0,018	0,04	Sim	Sim	Sim	Sim
	CCM4	120	600	18,89	16,36	19,15	16,53	0,018	0,025	0,018	0,025	Sim	Sim	Sim	Sim
	CCM5	6	40	65,94	57,10	59,58	34,15	0,0108	0,0116	0,0113	0,0145	Sim	Sim	Sim	Sim
	QD1	120	310	34,68	30,04	34,55	27,72	0,015	0,0165	0,0145	0,017	Sim	Sim	Sim	Sim
	QDG3	185	800	14,99	12,98	15,51	14,95	0,025	0,06	0,025	0,025	Sim	Sim	Sim	Sim
	QD3	50	150	51,93	44,97	49,43	27,91	0,012	0,013	0,012	0,017	Sim	Sim	Sim	Sim
Fábrica 2	QD4	25	110	79,26	68,64	77,34	48,00	0,0105	0,0112	0,0105	0,0125	Sim	Sim	Sim	Sim
_	QD5	120	300	32,65	28,27	31,75	23,12	0,016	0,0165	0,016	0,0175	Sim	Sim	Sim	Sim
	QD6	70	200	39,49	34,20	37,57	21,79	0,014	0,015	0,014	0,018	Sim	Sim	Sim	Sim
	QDG5	240	450	13,30	11,52	13,45	12,88	0,06	15	0,06	15	Sim	Sim	Sim	Sim
	ССМ6	6	40	57,14	49,48	52,76	31,06	0,0103	0,0105	0,0104	0,0145	Sim	Sim	Sim	Sim
Oficina	QD9	10	50	81,99	71,01	79,88	53,50	0,01	0,01	0,01	0,0104	Sim	Sim	Sim	Sim
	QD10	6	40	51,56	44,65	47,35	27,65	0,0105	0,0125	0,012	0,016	Sim	Sim	Sim	Sim
	CCM7	6	40	66,52	57,61	62,03	37,13	0,0108	0,0116	0,011	0,014	Sim	Sim	Sim	Sim
	QD11	120	300	16,85	14,59	16,41	12,25	0,026	0,026	0,0255	14	Sim	Sim	Sim	Sim
	QDG6	185	380	15,68	13,58	13,84	1,03	0,025	0,04	0,04	10800	Sim	Sim	Sim	Não
LAB	CCM8	25	110	44,51	38,55	39,29	3,34	0,013	0,0135	0,0135	60	Sim	Sim	Sim	Sim
	QDNB	16	70	67,05	58,07	59,18	5,24	0,105	0,116	0,116	15	Sim	Sim	Sim	Sim
	QD12	70	200	25,17	21,80	22,24	1,87	0,017	0,0175	0,0175	300	Sim	Sim	Sim	Sim
	QDG_7	120	300	15,13	13,10	15,69	14,76	0,025	12	0,025	0,026	Sim	Sim	Sim	Sim
ADM	ССМ9	50	160	26,38	22,84	27,47	22,14	0,017	0,018	0,017	0,018	Sim	Sim	Sim	Sim
	QD13	35	125	33,29	28,83	34,73	26,29	0,015	0,016	0,0145	0,017	Sim	Sim	Sim	Sim
Centro	QDG_2	50	150	19,67	17,03	20,78	17,65	0,019	0,03	0,019	0,03	Sim	Sim	Sim	Sim
de Convivê ncia	QD2	50	150	17,97	15,56	18,33	13,66	0,03	0,03	0,019	0,04	Sim	Sim	Sim	Sim
D = (- 1)	QDG_4	70	200	20,83	18,04	21,53	17,10	0,018	0,018	0,0175	0,026	Sim	Sim	Sim	Sim
Depósit os	QD7	25	100	29,95	25,93	28,61	16,56	0,016	0,017	0,016	0,03	Sim	Sim	Sim	Sim
	QD8	25	100	33,68	29,17	32,85	20,55	0,015	0,016	0,015	0,019	Sim	Sim	Sim	Sim

Tabela 19 – Tempo de atuação dos disjuntores para o fim de cada condutor

SE	Ponto	Seção (mm²)	Disj unto r (A)	I 3f	l 2f	I 2ft	I 1f	T 3f (s)	T 2f (s)	T 2ft (s)	T 1f (s)	Norm a ok? 3f	Norm a ok? 2f	Norm a ok? 2ft?	Norm a ok? 1f
	QDG1	240	950	13,29	11,51	13,95	14,73	0,06	0,06	0,06	0,06	Sim	Sim	Sim	Sim
	CCM1	6	40	306,59	265,51	315,51	314,46	0,001	0,001	0,001	0,001	Sim	Sim	Sim	Sim
Fabrica	CCM2	6	40	44,50	38,54	40,27	22,82	0,013	0,014	0,0135	0,018	Sim	Sim	Sim	Sim
Fabrica 1	ССМ3	6	40	30,13	26,09	27,10	15,31	0,016	0,017	0,017	0,03	Sim	Sim	Sim	Sim
	CCM4	120	600	1,73	1,50	1,55	0,88	2400	2400	2400	10800	Não	Não	Não	Não
	CCM5	6	40	283,31	245,35	287,22	247,91	0,001	0,001	0,001	0,001	Sim	Sim	Sim	Sim
	QD1	120	310	8,51	7,37	7,69	4,41	22	30	32	60	Sim	Sim	Sim	Sim
	QDG3	185	800	15,71	13,61	16,48	17,44	0,025	0,06	0,025	0,025	Sim	Sim	Sim	Sim
	QD3	50	150	79,93	69,22	82,72	79,73	0,01	0,0105	0,01	0,01	Sim	Sim	Sim	Sim
Fabrica	QD4	25	110	70,81	61,33	67,41	38,06	0,01	0,0116	0,0112	0,014	Sim	Sim	Sim	Sim
2	QD5	120	300	29,06	25,17	28,36	17,60	0,016 5	0,017	0,0165	0,025	Sim	Sim	Sim	Sim
	QD6	70	200	48,97	42,41	47,63	34,67	0,012	0,0135	0,012	0,015	Sim	Sim	Sim	Sim
	QDG5	240	450	13,88	12,02	14,40	15,00	0,06	15	0,03	0,025	Sim	Sim	Sim	Sim
	ССМ6	6	40	149,65	129,60	151,28	144,95	0,01	0,01	0,01	0,01	Sim	Sim	Sim	Sim
Oficina	QD9	10	50	45,71	39,58	42,21	24,85	0,012 5	0,013	0,013	0,017 5	Sim	Sim	Sim	Sim
	QD10	6	40	102,49	88,76	99,85	66,87	0,01	0,01	0,01	0,01	Sim	Sim	Sim	Sim
	CCM7	6	40	51,56	44,65	47,35	27,65	0,012	0,013	0,0125	0,016	Sim	Sim	Sim	Sim
	QD11	120	300	8,87	7,68	8,27	4,95	5	5	5	40	Sim	Sim	Sim	Sim
	QDG6	185	380	15,68	13,58	13,84	1,03	0,025	0,04	0,04	10800	Sim	Sim	Sim	Não
LAB	ССМ8	25	110	44,51	38,55	39,29	3,34	0,013	0,0135	0,0135	50	Sim	Sim	Sim	Sim
	QDNB	16	70	67,05	58,07	59,18	5,24	0,010 5	0,0105	0,0116	18	Sim	Sim	Sim	Sim
	QD12	70	200	25,17	21,80	22,24	1,87	0,017	0,018	0,0175	400	Sim	Sim	Sim	Sim
	QDG_ 7	120	300	15,80	13,69	16,38	16,96	0,025	0,04	0,025	0,025	Sim	Sim	Sim	Sim
ADM	ССМ9	50	160	28,37	24,57	29,42	27,68	0,016	0,017	0,016	0,017	Sim	Sim	Sim	Sim
	QD13	35	125	33,76	29,24	35,16	28,33	0,015	0,016	0,0145	0,016	Sim	Sim	Sim	Sim
Centro de	QDG_ 2	50	150	21,30	18,45	21,98	22,60	0,018	0,019	0,018	0,018	Sim	Sim	Sim	Sim
Convivê ncia	QD2	50	150	19,67	17,03	20,78	17,65	0,019	0,03	0,019	0,03	Sim	Sim	Sim	Sim
	QDG_ 4	70	200	23,68	20,51	24,47	25,21	0,017 5	0,018	0,0175	0,017	Sim	Sim	Sim	Sim
Depósit os	QD7	25	100	41,66	36,08	43,07	34,19	0,013 5	0,0145	0,013	0,014 5	Sim	Sim	Sim	Sim
i İ	QD8	25	100	29,95	25,93	28,61	16,56	0,016	0,017	0,016	0,03	Sim	Sim	Sim	Sim

Tabela 20 – Tempo de atuação dos disjuntores para o Início de cada condutor

6. TENSÃO DE TOQUE

A verificação da tensão de toque para todas as SE's com exceção da subestação responsável pelo laboratório foi de acordo com o tópico 5.1.2.2.4.2 da NBR 5410, pois seu esquema de aterramento é TN-S. Na qual solicita que a equação abaixo seja atendida.

Para se obter a corrente (*ia*) que assegura o tempo de atuação do disjuntor utilizou-se a tabela 25 fornecida na norma conforme a figura abaixo, vale destacar que este trabalho se enquadra na situação 1.

U _o V	Tempo de	Tempo de seccionamento s		
	Situação 1	Situação 2		
115, 120, 127	8,0	0,35		
220	0,4	0,20		
254	0,4	0,20		
277	0,4	0,20		
400	0,2	0.05		

Já a SE do laboratório obedece aos requisitos do tópico 5.1.2.2.4.3, pois a mesma possui o esquema de aterramento IT. Na qual solicita que a equação abaixo seja atendida.

$$Ra * id < Ul$$

Na qual Ra representa a impedância dos condutores terra até o transformador e a tensão de contato limite Ul presente no anexo C, conforme a figura a seguir. vale destacar que este trabalho se enquadra na situação 1.

Tabela C.2 — Valores da tensão de contato limite UL (V)

Natureza da corrente	Situação 1	Situação 2	Situação 3
Alternada, 15 Hz - 1 000 Hz	50	25	12
Continua sem ondulação ¹⁾	120	60	30

Uma tensão continua "sem ondulação" é convencionalmente definida como apresentando uma taxa de ondulação não superior a 10% em valor eficaz; o valor de crista máximo não deve ultrapassar 140 V, para um sistema em corrente continua sem ondulação com 120 V nominais, ou 70 V para um sistema em corrente continua sem ondulação com 60 V nominais.

SE	Quadro	Tensão Fase (V)	Modelo	Disjuntor (A)	Múltiplo	Impedância Real (Seq+)	Impedância Real PE	Módulo Zs	ia	Zs*ia<=Uf?
	CCM_1		DS160-B	40	12	0,11808+ 0,0082592i	0,11808+0 ,020704i	0,2398	480	Sim
	CCM_2		DS160-B	40	12	0,17712+ 0,0123888i	0,17712+ 0,031056i	0,3587	480	Sim
	CCM_3		DS160-B	40	12	0,20664+ 0,0144536i	0,20664+ 0,036232i	0,4182	480	Sim
Fábrica 1	CCM_4	220	DS800-S	600	12	0,0015+ 0,001235i	0,00275+ 0,0038i	0,0098	7200	Sim
	CCM_5		DS160-B	40	12	0,07749+ 0,0054201i	0,07749+ 0,013587i	0,1580	480	Sim
	QD_1		DSE400- H	310	12	0,00252+ 0,0020734i	0,00448+ 0,006398i	0,0142	3720	Sim
	QDG_1		DSE1600- S	950	12	0,000495+ 0,00070455i	0,00099+ 0,0022385i	0,0033	11400	Sim
Centro de	QD_2	127	DS160-B	150	12	0,00552+ 0,0022572i	0,01044+ 0,006324i	0,0362	1800	Sim
Convivência	QDG_2		DS160-B	150	12	0,00552+ 0,0022572i	0,01044+ 0,006324i	0,0181	1800	Sim
	QD_3		DS160-B	150	12	0,01288+ 0,0052668i	0,02436+ 0,014756i	0,0455	1800	Sim
	QD_4		DSE250- H	110	12	0,01131+ 0,0027053i	0,01794+ 0,007371i	0,0338	1320	Sim
Fábrica 2	QD_5	220	DS400-H	300	12	0,00396+ 0,0032582i	0,00704+ 0,010054i	0,0209	3600	Sim
	QD_6 QDG_3		DS250-H	200	12	0,01088+ 0,0060554i	0,02142+ 0,017238i	0,0432	2400	Sim
			DS800-S	800	12	0,00066+ 0,00075955i	0,001265+ 0,0023485i	0,0037	9600	Sim
Depósito 1	QD_7		DS160-B	100	12	0,0174+ 0,004162i	0,0276+ 0,01134i	0,0646	1200	Sim
Depósito 2	QD_8	127	DS160-B	100	12	0,01131+ 0,0027053i	0,01794+ 0,007371i	0,0480	1200	Sim
Deposito 2	QDG_4		DS250-H	200	12	0,0048+ 0,0026715i	0,00945+ 0,007605i	0,0176	2400	Sim
	CCM_6		DS125N	40	12	0,08118+ 0,0056782i	0,08118+ 0,014234i	0,1673	480	Sim
	QD_9		DS125N	50	12	0,03066+ 0,0034734i	0,03066+ 0,008778i	0,0668	600	Sim
Oficina	QD_10	220	DS125N	40	12	0,09225+ 0,0064525i	0,09225+ 0,016175i	0,1896	480	Sim
Onema	CCM_7	220	DS160-B	40	12	0,06642+ 0,0046458i	0,06642+ 0,011646i	0,1376	480	Sim
	QD_11		DS400-H	300	12	0,00666+ 0,0054797i	0,01184+ 0,016909i	0,0355	3600	Sim
	QDG_5		DS800-S	450	12	0,00099+ 0,0014091i	0,00198+ 0,004477i	0,0066	5400	Sim
	CCM_9		DS160-B	160	12	0,00598+ 0,0024453i	0,01131+ 0,006851i	0,0286	1920	Sim
ADM	QD_13	220	DS160-B	125	12	0,00819+ 0,0025753i	0,01794+ 0,007241i	0,0364	1500	Sim
	QDG_7		DS400-H	300	12	0,00216+ 0,0017772i	0,00384+ 0,005484i	0,0094	3600	Sim

Tabela 21 – Verificação Tensão de Toque para esquema TN

SE	Quadro	Módulo Zpe	IccfT	Ra*id<=Ul?
	QDG6	0,0053	392,70	Sim
	CCM8	0,0297	367,17	Sim
Laboratório	QDNB	0,0254	367,00	Sim
	QD12	0,0268	374,84	Sim

Tabela 22 – Verificação Tensão de Toque para esquema IT

6.1 CÁLCULO DA TENSÃO DE TOQUE

A corrente máxima de não fibrilação (Ichcd), pode ser dada pela seguinte equação, onde t é o tempo de atuação do dispositivo de segurança, no caso o disjuntor.

$$Ichcd = 0.116/\sqrt{(t)}$$

A máxima tensão de toque permissível de curta duração (Etcd) é dada pela seguinte equação, Rch representa a resistência presente no corpo humano que é em média 1000 ohms.

$$Etcd = (Rch + 1,5 * Ps * C) * Ichcd$$

O fator de redução C é dado pela seguinte Equação, onde utilizou-se a espessura do concreto igual a 10 cm, a resistividade média do solo P1=100 ohms e Ps no valor de 1200 ohms para o piso seco e para o piso molhado o valor de 21 ohms, conforme a tabela 5 presente na NBR 15751.

$$C = 1 - a * \left[\frac{1 - \left(\frac{p1}{ps}\right)}{2 * hs + a} \right]$$

Tabela 5 – Resistividade do material de recobrimento (ρ_s)

Material	Resistividade Ω×m						
	seco	molhado					
Brita nº 1, 2 ou 3		3 000					
Concreto	1 200 a 280 000	21 a 100					
Asfalto	2×10 ⁶ a 30×10 ⁶	10 × 10 ³ a 6 × 10 ⁶					

Com os valores do tempo de permanência das tensões de toque já estabelecidos e a corrente de toque obtida, utilizou-se a tabela presente na norma IEC 60479-1 com as zonas do efeito da corrente alternada no corpo humano, como requisito de projeto, o nível aceitável é AC-2. Conforme a tabela a seguir pode-se ver que este requisito foi atendido em todos os QD's e CCM's.

E Т Т Т Т Categoria **ICH** Fator de Etcd toque SE 2f |ZPE| **Ponto** 3f 2ft 1f Ichld Tensão Reducão (V) Real (A) de Toque (s) (s) (s) (s) (V) QDG1 0,06 15 0,06 0,06 30,787 0,0308 AC-2 0,00245 0,473568 0,68246187 1055,31 CCM₁ 0,013 0,014 0,0135 0,018 0,12126 110,683 0,1107 AC-2 0,864613 0,68246187 1926,73 CCM₂ 0.017 AC-2 0,016 0,017 0.03 0,18120 110,935 0,1109 0,669726 0,68246187 1492,44 Fábrica 1 CCM3 0,017 0,018 0,018 0,04 110,997 0,1110 AC-2 0,21116 0,58 0.68246187 1292,49 0,00710 CCM4 0.01 0,01 0,01 0.01 70.436 0.0704 AC-2 1,16 0,68246187 2584,98 CCM₅ 0.0108 0.0116 0.0113 0.0145 AC-2 0,08006 109,360 0,1094 0,963328 0,68246187 2146,71 0.0165 0.0145 0,01022 AC-2 QD1 0,015 0,017 87,849 0.0878 0.889679 0,68246187 1982,59 QDG3 0,025 0,06 0,025 0,025 0,00267 31,903 0,0319 AC-2 0,733648 0,68246187 1634,89 QD3 0,012 0,013 0.012 0,017 0,889679 0,68246187 1982,59 0,03081 128,998 0,1290 AC-2 AC-2 Fábrica 2 QD4 0,0105 0,0112 0,0105 0,02152 113,644 0,1136 0,0125 1,037536 0,68246187 2312,08 QD5 0,016 0,0165 0,016 103,508 AC-2 0,0175 0,01493 0,1035 0,876878 0,68246187 1954,06 QD6 0,014 0,015 0,014 0,018 AC-2 1926.73 0,02997 130,614 0,1306 0.864613 0.68246187 QDG5 0,06 15 0,06 15 0,00490 28,383 0,0284 AC-2 0.029951 0,68246187 66,74 0,0103 0,1059 CCM6 0,0105 0,0104 0,0145 0,08524 105,898 AC-2 0.963328 0.68246187 2146.71 QD9 0.01 0.01 0.01 0.0104 0.03523 94,232 0.0942 AC-2 1,137474 | 0,68246187 2534,78 Oficina 0,09647 **QD10** 0,0105 0,0125 0,012 0,016 106,679 0,1067 AC-2 2043,61 0,917061 0,68246187 CCM7 0.0108 0,0116 0,011 0,014 0,980379 | 0,68246187 2184,71 0,07027 104,365 0.1044 AC-2 **QD11** 0.026 0.026 0.0255 14 0.02546 93.590 0.0936 AC-2 0,031002 0,68246187 69,09 QDG6 0.01 0,01 0.01 0.01 0,00534 2.095 0.0021 AC-2 1,16 0,68246187 2584,98 CCM8 0,013 0.0135 0.0135 60 0,02968 10,898 0,0109 AC-2 0,014976 | 0,68246187 33,37 Laboratório **QDNB** AC-2 0,105 0,116 0,116 15 0,02538 9,315 0,0093 0,029951 0,68246187 66,74 **QD12** 0.017 0.0175 0.0175 300 10,057 AC-2 0.02683 0,0101 0.006697 0,68246187 14,92 0,025 0,026 0,0297 AC-2 QDG_7 0,025 12 0,00669 29,652 0,719401 0,68246187 1603,14 Administrativo CCM9 0,017 0,018 0,017 0,018 0,01954 69,194 0,0692 AC-2 0,864613 0,68246187 1926,73 0,017 0,02522 **QD13** 0.015 0,016 0.0145 82,905 0.0829 AC-2 1982,59 0.889679 0,68246187 0,03 QDG_2 0.019 0,019 0,03 32,319 0,0323 AC-2 2,30314348 0,01221 0,669726 718,31 Centro de Convivência 0,0500 0,03 0,03 0,019 0,04 0,02441 50,008 AC-2 QD2 0,58 2,30314348 622,08 AC-2 QDG 4 0,018 0,018 0,0175 0,026 0,0229 1603,14 0,00669 22,892 0,719401 0,68246187 QD7 0,016 0,017 0,016 0,03 0,01954 32,344 0,0323 AC-2 Depósitos 0,669726 0,68246187 1492,44 QD8 0,015 0,016 0,015 0,019 0,02522 51,845 0,0518 AC-2 0,841552 0,68246187 1875,34

Tabela 23 – Tensão de toque, tempo de permanência e zona tempo/corrente

7. CÁLCULO DA ENERGIA INCIDENTE

Seguindo-se a norma internacional IEC 60479-1, inicialmente foi calculado o valor do arco elétrico. O arco para BT foi obtido a partir da seguinte equação, cujo resultado é posteriormente invertido (através da aplicação da função exponencial).

$$log_{10}I_A = K + 0.662 * log_{10}I_{BF} + 0.0966 * V + 0.000526 * G + 0.5588 * V * log_{10}I_{BF} - 0.00304 * G * log_{10}I_{BF}$$

Onde:

 I_A = corrente do arco elétrico, em kA;

K = é -0,153 para arco em ambiente aberto ou -0,097 para arco em ambiente fechado;

I_{BF} = Corrente de curto-circuito para uma falta trifásica, em kA;

V = tensão do sistema, em kV;

G = distância entre condutores, em mm.

Para o cálculo, o valor de K utilizado foi o referente à ambiente fechado. O valor de G é dado pela tabela 19, adaptada da norma IEC 60479-1.

TENSÃO DO SISTEMA (KV)	TIPO DE EQUIPAMENTO	DISTÂNCIA TÍPICA ENTRE CONDUTORES (MM)	DISTÂNCIA X FATOR
0,208 - 1,0	Ambiente aberto	10-40	2,000
	Painel de distribuição	32	1,473
	CCM e Painel	25	1,641
	Cabos	13	2,000
>1 - 5	Ambiente aberto	102	2,000
	Painel de distribuição	13-102	0,973
	Cabos	13	2,000
>5 - 15	Ambiente aberto	13-153	2,000
	Painel de distribuição	153	0,973
	Cabos	13	2,000

Tabela 24 – Distância típica entre condutores e fator x

Para MT a equação utilizada foi a seguinte:

$$log_{10}I_A = 0.00402 + 0.983 * log_{10}I_{BF}$$

Em seguida foi calculada a energia incidente normalizada, através da seguinte equação:

$$log_{10}E_N = K_1 + K_2 + 1,081 * log_{10}I_A + 0,0011 * G$$

Onde:

E_N = Energia incidente normalizada (J/cm2) para tempo de 200 ms e distância de 610 mm;

 $K_1 = \text{é} - 0.792$ para ambiente aberto ou - 0.555 para ambiente fechado;

 K_2 = é 0 para sistema isolado ou aterrado por alta resistência ou -0,113 para sistema solidamente aterrado:

Nessa equação, K_1 foi considerada como ambiente aberto no cálculo referente ao ponto de entrega, e como ambiente fechado para os outros pontos. K_2 foi utilizada como -0,113. O valor de G utilizado foi igual a 13.

Logo após, foi calculada a energia incidente em J/cm², seguindo a seguinte equação:

$$E = 4,184 * C_F * E_N * \frac{t}{0,2} * \frac{610^X}{D^X}$$

Onde:

E = Energia incidente (J/cm²);

Cf = é um fator de cálculo igual a 1,0 para tensão acima de 1 kV e 1,5 para tensão igual ou menor do que 1 kV;

t = tempo do arco, em segundos;

D = Distância do possível ponto do arco para uma pessoa (mm);

x = Expoente de distância, conforme tabela 19.

Nessa equação, o valor do fator x utilizado foi igual a 2, e o valor de t foi determinado a partir da tabela 20. Ele foi considerado como 0,025s em BT e 0,080s em MT.

Tensão e tipo de disjuntor	Tempo de abertura em 60 Hz (ciclos)	Tempo de abertura (s)
Baixa tensão (<1 kV), caixa moldada e relé de proteção integrado	1,5	0,025
Baixa tensão (<1 kV), caixa isolada com relé de proteção integrado ou operado por relé externo	3,0	0,050
Média Tensão (1 a 35 kV)	5,0	0,080
Alta tensão (> 35 kV)	8,0	0,130

Tabela 25 – Tempo de abertura para disjuntores de potência

Além disso, os valores de distância típicos aplicados foram obtidos através da tabela 21. Foram utilizados 910, 610 e 455, respectivamente para MT, quadros gerais em BT e quadros e CCM's em BT.

TIPO DE EQUIPAMENTO	DISTÂNCIA DE TRABALHO TÍPICA (MM)
Painel de 15 kV	910
Painel de 5 kV	910
Painel de baixa tensão	610
CCMs e quadros elétricos de baixa tensão	455
Cabos	455
Outros	A ser determinada no campo

Tabela 26 - Distância de trabalho típica

Por fim, foi calculada a distância segura de aproximação do arco, através da seguinte equação:

$$D_B = [4,184 * C_F * E_N * \frac{t}{0,2} * \frac{610^X}{E_B}]^{\frac{1}{X}}$$

Onde:

 D_B = Distância de aproximação do ponto do arco, em (mm).

Os valores obtidos após todos esses cálculos estão relacionados na tabela 22.

SE	Ponto	log10 (I _A)	I _A (A)	log10 (E _N)	E _N (J/cm ²)	E (J/cm²)	Distância Segura (mm)
	Pe	0,3005	1350,57	-0,7696	0,4632	0,3483	910
	Tr_Pri	0,2939	1341,71	-0,5357	0,5853	0,4401	910
	Tr_Sec	1,0864	2963,67	-0,1637	0,8490	0,2993	910
	QDG1	0,8554	2352,20	-0,2721	0,7618	1,0741	455
Eábrico 1	CCM1	0,1556	1168,34	-0,6007	0,5485	0,7733	455
Fábrica 1	CCM2	0,0142	1014,32	-0,6670	0,5132	0,7237	455
	ССМ3	-0,0402	960,61	-0,6926	0,5003	0,7054	455
	CCM4	0,8267	2285,81	-0,2856	0,7516	1,0598	455
	CCM5	0,2982	1347,37	-0,5337	0,5864	0,8269	455
	QD1	0,8077	2242,66	-0,2945	0,7449	0,5844	610
	Pe	0,3005	1350,57	-0,7696	0,4632	0,3483	910
	Tr_Pri	0,2794	1322,29	-0,5425	0,5813	0,4371	910
	Tr_Sec	1,0847	2958,52	-0,1645	0,8483	0,2990	910
Fábrica 0	QDG3	0,8472	2332,99	-0,2760	0,7588	1,0700	455
Fábrica 2	QD3	0,6908	1995,32	-0,3494	0,7051	0,9942	455
	QD4	0,7317	2078,51	-0,3302	0,7188	1,0135	455
	QD5	0,7738	2168,05	-0,3104	0,7331	1,0338	455
	QD6	0,6958	2005,36	-0,3470	0,7068	0,5545	610
	Pe	0,3005	1350,57	-0,7696	0,4632	0,3483	910
	Tr_Pri	0,2756	1317,27	-0,5443	0,5802	0,4363	910
	Tr_Sec	0,7861	2194,82	-0,3046	0,7374	0,2599	910
	QDG5	0,5953	1813,61	-0,3942	0,6742	0,9507	455
Oficina	ССМ6	0,2462	1279,18	-0,5581	0,5723	0,8070	455
	QD9	0,4581	1581,05	-0,4586	0,6321	0,8913	455
	QD10	0,2090	1232,46	-0,5756	0,5624	0,7930	455
	CCM7	0,3014	1351,68	-0,5322	0,5873	0,8281	455
	QD11	0,5340	1705,73	-0,4230	0,6551	0,5139	610
	Pe	0,3005	1350,57	-0,7696	0,4632	0,3483	910
	Tr_Pri	0,2731	1313,99	-0,5455	0,5796	0,4358	910
	Tr_Sec	0,7860	2194,50	-0,3047	0,7373	0,2599	910
Laboratório	QDG6	0,5937	1810,59	-0,3950	0,6737	0,9499	455
	CCM8	0,5225	1686,20	-0,4284	0,6515	0,9187	455
	QDNB	0,5072	1660,55	-0,4356	0,6469	0,9121	455
	QD12	0,5326	1703,31	-0,4237	0,6546	0,5136	610
	Pe	0,3005	1350,57	-0,7696	0,4632	0,3483	910
	Tr_Pri	0,2932	1340,71	-0,5361	0,5851	0,4400	910
Administrativo	Tr_Sec	0,6684	1951,17	-0,3599	0,6978	0,2460	910
	QDG_7	0,4950	1640,54	-0,4413	0,6432	0,9069	455
	ССМ9	0,4686	1597,80	-0,4537	0,6353	0,8958	455
	QD13	0,4635	1589,57	-0,4561	0,6337	0,8936	455

	Pe	0,3005	1350,57	-0,7696	0,4632	0,7752	610
Centro de Convivência	Tr_Pri	0,2798	1322,86	-0,5423	0,5814	0,4372	910
	Tr_Sec	0,5000	1648,65	-0,4390	0,6447	0,2273	910
	QDG_2	0,3505	1419,75	-0,5092	0,6010	0,8474	455
	QD2	0,3162	1371,91	-0,5253	0,5914	0,4640	610
	Pe	0,3005	1350,57	-0,7696	0,4632	0,3483	910
	Tr_Pri	0,2909	1337,64	-0,5371	0,5844	0,4395	910
Donásitos	Tr_Sec	0,6680	1950,34	-0,3601	0,6976	0,2459	910
Depósitos	QDG_4	0,4816	1618,64	-0,4476	0,6392	0,9012	455
	QD7	0,3562	1427,89	-0,5065	0,6026	0,8497	455
	QD8	0,4009	1493,12	-0,4855	0,6154	0,4828	610

Tabela 27 – Valores para corrente de arco, energia normalizada, energia incidente e distância segura