Exercises Week 1

Econometrics

- 1. **Ex. 2.6 in ETM**: Prove that, if the k columns of X are linearly independent, each vector z in $\mathcal{S}(X)$ can be expressed as Xb for one and only one k-vector b. Hint: Suppose that there are two different vectors, b_1 and b_2 , such that $z = Xb_i$, i = 1, 2, and show that this implies that the columns of X are linearly dependent.
- 2. **Ex. 2.9 in ETM**: Prove algebraically that $P_X M_X = O$. Use only the definition that $P_X + M_X = I$, and the idempotency of P_X .
- 3. Ex. 3.1 in ETM: Generate a sample of size 25 from the model

$$y_t = \beta_1 + \beta_2 y_{t-1} + u_t,$$

with $\beta_1 = 1$ and $\beta_2 = 0.8$. For simplicity, assume that $y_0 = 0$ and that the u_t are NID(0,1). Use this sample to compute the OLS estimates $\hat{\beta}_1$ and $\hat{\beta}_2$. Repeat at least 100 times, and find the averages of the $\hat{\beta}_1$ and $\hat{\beta}_2$. Use these averages to estimate the bias of the OLS estimators of β_1 and β_2 .

Repeat this exercise for sample sizes of 50, 100, and 200. What happens to the bias of $\hat{\beta}_1$ and $\hat{\beta}_2$ as the sample size is increased?

- 4. **Section 2.7 in AGME**: Follow the example on the Capital Asset Pricing Model (CAPM) from AGME (PDF attached titled *CAPM_example*) and replicate the tables. The data is available on the *Ecdat* library under *Capm*.
- 5. **Exercise 2.3 in AGME**: Work on the empirical regression exercise from Asset Pricing in AGME (PDF attached titled *FactorModel AGME*). The data is available on the *assets2.dat* file.

On g, "partial slopes" refer to the individual betas.