

boundedly homogeneous function

Canonical name BoundedlyHomogeneousFunction

Date of creation 2013-03-22 19:13:17 Last modified on 2013-03-22 19:13:17

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 9

Author pahio (2872) Entry type Definition Classification msc 26B35 Classification msc 15-00

Synonym boundedly homogeneous

Defines set of homogeneity
Defines degree of homogeneity

A function $f: \mathbb{R}^n \to \mathbb{R}$, where n is a positive integer, is called boundedly homogeneous with respect to a set Λ of positive reals and a real number r, if the equation

$$f(\lambda \vec{x}) = \lambda^r f(\vec{x})$$

is true for all and $\vec{x} \in \mathbb{R}^n$ and $\lambda \in \Lambda$. Then Λ is the set of homogeneity and r the degree of homogeneity of f.

Example. The function $x \mapsto x^r \sin(\ln x)$ is boundedly homogeneous with respect to the set $\Lambda = \{e^{2\pi\nu} : \nu \in \mathbb{Z}\}$ and with degree of homogeneity r.

Theorem. Let $f: \mathbb{R}_+ \to \mathbb{R}$ be a boundedly homogeneous function with the degree of homogeneity r and the set of homogeneity $\Lambda \supset \{1\}$. Then f is of the form

$$f(x) = x^r f_1(\ln x) \tag{1}$$

where $f_1: \mathbb{R} \to \mathbb{R}$ is a periodic real function depending on f. Proof. Defining $g(x) := \frac{f(x)}{x^r}$, we obtain

$$g(\lambda x) = \frac{f(\lambda x)}{(\lambda x)^r} = \frac{\lambda^r f(x)}{\lambda^r x^r} = \lambda^0 g(x) \quad \forall \lambda \in \Lambda.$$

Thus g is a boundedly homogeneous function with the set of homogeneity Λ and the degree of homogeneity 0. Moreover, define $f_1(x) := g(e^x)$. If $\lambda \in \Lambda \setminus \{1\}$ and $p := \ln \lambda$, we see that

$$f_1(x+p) = g(e^x e^p) = g(e^x \lambda) = g(e^x) = f_1(x) \quad \forall x \in \mathbb{R}_+.$$

Therefore, f_1 is periodic and (1) is in .

References

[1] Konrad Schlude: "Bemerkung zu beschränkt homogenen Funktionen". – Elemente der Mathematik **54** (1999).