Задание 4.

Ответить, можно ли в векторных пространствах $(x,y) = -x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2 (1) \, \mathrm{u}$

$$(x, y) = 2x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$$
 (2)

(столбцов из двух действительных чисел) и P_2 (многочленов степени не выше второй) задать скалярное произведение формулами

$$(p,q) = p(1)q(1) - p'(1)q'(1) + p''(1)q''(1)$$
 (1) или

$$(p,q) = \int_{0}^{1} [p(x)q(x) + 2p'(x)q'(x)]dx (2).$$

Если можно, то найти угол между первыми двумя векторами стандартного базиса.

Решение.

Рассмотрим формулу (1) для пространства R^2 . Эта формула ставит в соответствие элементам $x=(x_1^{}x_2^{})^T$, $y=(y_1^{}y_2^{})^T$ пространства R^2 действительное число. Проверяем, удовлетворяет ли эта формула аксиомам 1–4 скалярного произведения. Сначала проверяем выполнение аксиомы 1. Поменяем местами множители x и y:

$$(y, x) = -y_1x_1 + y_2x_1 + y_1x_2 + 2y_2x_2 = -x_1y_1 + x_1y_2 + x_2y_1 + 2x_2y_2$$

Получили выражение в правой части формулы (1), т. е. (y, x) = (x, y). Значит, аксиома 1 выполняется. Заметим, что выражение в правой части (1) симметрическое относительно x и y. Оно не меняется при одновременной замене буквы x на букву y, а буквы y на букву x. Это и обеспечивает коммутативность.

Вместо аксиом 2 и 3 проверяем линейность по первому множителю. Для произвольных $x,y,z\in R^2$ и любых чисел $\alpha,\beta\in R$ получаем $(\alpha x + \beta y,z) = -(\alpha x_1 + \beta y_1)z_1 + (\alpha x_1 + \beta y_1)z_2 + (\alpha x_2 + \beta y_2)z_1 +$

$$+ (\alpha x_2 + \beta y_2)z_2 = \alpha(-x_1 z_2 + x_1 z_2 + x_2 z_1 + x_2 z_2) +$$

$$+ \beta(-y_1 z_1 + y_1 z_2 + y_2 z_1 + y_2 z_2) = \alpha(x, z) + \beta(x, z).$$

Линейность доказана, следовательно, аксиомы 2 и 3 выполняются. Вместо приведенного доказательства достаточно заметить, что выражение в правой части (1) линейно по переменным x_1x_2 :

$$- x_1 y_1 + x_1 y_2 + x_2 y_1 + 2x_2 y_2 = x_1 (- y_1 + y_2) + x_2 (y_1 + 2y_2).$$

Проверяем выполнение аксиомы 4. Записываем скалярный квадрат и представляем полученную квадратичную форму в матричном виде

$$(x,x) = -x_1^2 + x_1 x_2 + x_2 x_1 + 2x_2^2 = -x_1^2 + 2x_1 x_2 + 2x_2^2 = (x_1 \quad x_2) \begin{pmatrix} -1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Вычисляем угловые миноры матрицы квадратичной формы $\Delta_1 = -1 < 0$,

 $\Delta_2 = 2 > 0$. По критерию Сильвестра, эта квадратичная форма не является положительно определенной. Значит, аксиома 4 не выполняется. Чтобы в этом убедиться, не обязательно использовать критерий Сильвестра. Достаточно привести пример ненулевого вектора x для которого $(x,x) \leq 0$. Например, для $x = \begin{pmatrix} 1 & 0 \end{pmatrix}^T$ имеем (x,x) = -1. Значит, аксиома 4 не выполняется. Поэтому формулой R_1^2 нельзя задать скалярное произведение в R_1^2 .

Рассмотрим формулу (2) для пространства R^2 . Выражение в правой части формулы (2) симметрическое относительно x и y, а также линейно по переменным x_1, x_2 . Значит, аксиомы 1–3 выполняются. Проверяем выполнение аксиомы 4. Записываем скалярный квадрат и представляем полученную квадратичную форму в матричном виде

$$(x,x) = 2x_1^2 + 2x_1x_2 + 2x_2^2 = (x_1 \quad x_2)\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$$

Угловые миноры матрицы этой квадратичной формы положительные $\Delta_1 = 2 > 0$, $\Delta_2 = 2 > 0$, $\Delta_2 = \begin{vmatrix} 2 & 1 \\ 1 & 2 \end{vmatrix} = 3 > 0$. По критерию Сильвестра, квадратичная форма положительно определена, т. е. (x,x) > 0 для всех $x \neq o$. Значит, аксиома 4 для формулы (2) выполняется, поскольку $(x,x) \geq 0$ для всех

 $x \in \mathbb{R}^2$ и (x,x) = 0 только при x = o. Таким образом, формула (2) задает скалярное произведение в \mathbb{R}^2 .

Находим угол ϕ между первыми двумя векторами стандартного базиса R^2 , т. е. между векторами $e_1=\begin{pmatrix} 1 & 0 \end{pmatrix}^T$ и $e_2=\begin{pmatrix} 0 & 1 \end{pmatrix}^T$. Вычисляем косинус угла по формуле $2x_1y_1+x_1y_2+x_2y_1+2x_2y_2$ $2x_1^2+2x_1x_2+2x_2^2$ $\cos\phi=\frac{(e_1,e_2)}{\sqrt{(e_1,e_2)}\sqrt{(e_2,e_2)}}=\frac{1}{\sqrt{2}\sqrt{2}}=\frac{1}{2}$.

Значит, угол между векторами $\varphi = \frac{\pi}{6}$.

Рассмотрим формулу (1) для пространства P_2 . Эта формула ставит в соответствие элементам $p(x) = ax^2 + bx + c$, $q(x) = \alpha x^2 + \beta x + \gamma$ пространства P_2 действительное число. Проверим, удовлетворяет ли эта формула аксиомам 1–4 скалярного произведения. Сначала проверяем выполнение аксиомы 1. Выражение в правой части (1) симметрическое относительно p и q. Действительно, при одновременной замене буквы p на букву q, а буквы q — на букву p, выражение не меняется q(1)p(1)-q'(1)p'(1)+q''(1)p''(1)=p(1)q(1)-p'(1)q'(1)+p''(1)q''(1)

q(1)p(1)-q'(1)p'(1)+q''(1)p''(1)=p(1)q(1)-p'(1)q'(1)+p''(1)q''(1) Значит, формула (1) удовлетворяет аксиоме 1.

Выражение в правой части (1) линейно многочлену p, т. е. формула (1) линейна по первому множителю (аксиомы 2–3 выполняются). Проверяем выполнение аксиомы 4. Запишем скалярный квадрат

 $(p,p)=p(1)^2-p'(1)^2+p''(1)^2$. Это выражение не может быть отрицательным. Поэтому $(p,p)\geq 0$. Предположим, что, (p,p)=0, тогда $(p,p)=p(1)^2-p'(1)^2+p''(1)^2=0$.

Следовательно, каждое слагаемое равно нулю. Это возможно только тогда, когда p(x) = 0. Следовательно, аксиома 4 выполняется. Таким образом, формула (1) задает скалярное произведение в P^2 .

Рассмотрим формулу (2) для пространства P^2 . Правая часть формулы симметрическая относительно p и q, а также линейна по p (из-за линейности интеграла). Поэтому аксиомы 1–3 выполняются. Проверяем выполнение аксиомы 4. Записываем скалярный квадрат

$$(p,p) = \int_{0}^{1} \{ [p(x)]^{2} + 2[p'(x)]^{2} \} dx$$

Определенный интеграл от неотрицательной функции имеет неотрицательное значение. Поэтому $(p,p) \ge 0$. Предположим, что, (p,p) = 0, тогда

$$(p,p) = \int_{0}^{1} [p(x)]^{2} dx + 2 \int_{0}^{1} [p'(x)]^{2} dx = 0.$$

Следовательно, каждое слагаемое равно нулю. Так как многочлен является непрерывной функцией, равенство $\int_0^1 \left[p(x)\right]^2 dx = 0$ возможно только для нулевого многочлена p(x) = 0 Следовательно, аксиома 4 выполняется. Таким образом, формула (2) задает скалярное произведение в P^2 .

Находим угол φ между первыми двумя элементами стандартного базиса P_2 , т. е. между многочленами $p_1(x) \equiv 1$ и $p_2(x) = x$. Вычисляем скалярные

произведения
$$(p,q) = \int_{0}^{1} [p(x)q(x) + 2p'(x)q'(x)]dx$$

$$(p_1, p_2) = \int_0^1 x dx = 0, 5;$$
 $(p_1, p_1) = \int_0^1 dx = 1;$

$$(p_2, p_2) = \int_0^1 [x^2 + 2] dx = \frac{7}{3}.$$

Тогда
$$cos\phi = \frac{(p_1, p_2)}{\sqrt{(p_1, p_1)}\sqrt{(p_2, p_2)}} = \frac{0.5}{\sqrt{\frac{7}{3}}} = \frac{\sqrt{3}}{2\sqrt{7}} = \frac{\sqrt{21}}{14}$$
, значит, угол равен

$$arccos \frac{\sqrt{21}}{14}$$

Ответ: в пространстве R^2 формула (1) не задает скалярное произведение, а формула (2) — не задает. Углы между первыми двумя векторами стандартного базиса в R^2 и в P^2 равны $\frac{\pi}{6}$ и $\arccos\frac{\sqrt{21}}{14}$ соответственно.