Identificação Automática da Região do Espelho Nasal de Bovinos

(parece que dá para escrever melhor esse título)

Jorge Luiz dos Santos Ramos Junior

Curso de Bacharelado em Sistemas de Informação – Universidade Tecnológica Federal do Paráná (UTFPR) – Campus de Curitiba 80230-901 – Curitiba – PR– Brasil

tetris.attack@hotmail.com

Abstract. ...

Resumo. Esboço contendo os pontos a desenvolver. todo: Mudar template, LaTeXificar

1. Introdução

TEMA

- identificação de bovinos é fundamental para a rastreabilidade, facilitando controle de vacinação e doenças (Gimenez, 2015) (discorrer um pouco sobre requisitos de métodos de identificação de bovinos? único, permanente, insubstituível, positivo (Machado et al., 2001))
- padrões do focinho são suficientes para identificar unicamente o animal (Baranov et al., 1993), da mesma forma que impressões digitais em humanos
- discorrer sobre os métodos de identificação das regiões de interesse manual, "tradicional" (levantar bibliografia. Arymurthy 2013 fez manual, Kumar 2017 automático com métodos tradicionais, e os outros?) e CNN (YOLO) (Redmon et al., 2016). (comparar YOLO com outros métodos usados em artigos anteriores)

PROBLEMA

Extrair a região de interesse correspondente ao espelho nasal de bovinos, visando permitir futuramente a sua identificação biométrica.

MOTIVAÇÃO

Facilitar a coleta de dados sobre a origem e saúde dos bovinos, a fim de possibilitar a retirada de circulação de produtos considerados "impróprios", diminuindo o impacto de tais produtos na saúde pública. (expandir beneficios. Awad 2016, Gimenez 2015)

PROBLEMA COMPUTACIONAL

Dado um conjunto de tamanho n de imagens digitais, sendo uma imagem digital definida como uma função bi-dimensional f(x,y) onde x, y representam coordenadas espaciais, f(x,y) representa a intensidade da coordenada, e x, y, f(x,y) são quantidades discretas e finitas [Gonzales and Woods, 2008], identificar elementos do conjunto contradomínio que pertençam a uma região de interesse.

JUSTIFICATIVA (COMPUTACIONAL)

Extrair regiões de interesse manualmente é impraticável para bases de dados com um grande número de imagens. (reescrever? fonte? precisa fonte para isso?) (essa justificativa é não-computacional?)

RELEVÂNCIA (COMPUTACIONAL)

A identificação efetiva de regiões de interesse em uma imagem é útil para muitas aplicações (incluir artigos de exemplos), e essencial para um melhor desempenho dos algoritmos de extração de características e classificação. (provar afirmação com trabalhos das referências)

UTILIDADE (COMPUTACIONAL)

A identificação de bovinos é feita com artefatos físicos (RFID, brincos) ou marcações no animal, métodos que possuem seus problemas. (listar métodos e problemas, consultar Awad 2016). Métodos de identificação biométrica tem maior robustez e não machucam o animal. (reler fonte e reescrever. Awad 2016 fala disso)

(e computacionalmente?)

(tem algum overlap entre justificativa/relevância/utilidade. condensar essas coisas em uma seção?)

OBJETO (COMPUTACIONAL)

Imagens. Características úteis para identificar regiões de interesse. Algoritmos de reconhecimento de regiões de interesse. (mais?)

OBJETIVO GERAL

Identificação automática da região do espelho nasal de bovinos. (através de... comparar abordagens clássicas com YOLO, pelo menos. então, é um levantamento do estado-da-arte?)

(hipótese a testar?)

OBJETIVOS ESPECÍFICOS

Avaliação e comparação de características úteis para identificar regiões de interesse.

Avaliação e comparação de algoritmos de reconhecimento de regiões de interesse.

(mais... reescrever?)

ESTRUTURA DO TEXTO

<todo>

2. Estado da Arte

(alguma coisa sobre outros métodos biométricos? provavelmente não)

(facial: Shadduck and Golden, 2002; Corkery et al., 2007)

(retina: Rusk et al., 2006; Allen et al., 2008; Barry et al., 2008; Gonzales Barron et al., 2008; Adell et al., 2012, Sun et al., 2013)

(Awad (2016): Levantamento do estado-da-arte com respeito à métodos de identificação de gado. Menciona a ausência de uma estrutura padrão para os trabalhos de identificação biométrica, mais notavelmente a falta de características-padrão e bases de dados padronizadas.)

Barry et al. (2007): Método manual (folha com tinta). Imagens pré-processadas manualmente; controle da variação de iluminação importante.

Noviyanto and Arymurthy (2013): Método manual. (reescrever. pré-processado manualmente?)

Kumar and Singh (2017): Base de dados com 5000 imagens. Novas técnicas de préprocessamento (quais?), classificador KNN

(ver métodos usados por: Minagawa et al. (2002), Gimenez (2015), Gaber (2016), ...) (listar de uma maneira mais natural. adicionar outros...? expandir.)

3. Materiais e Métodos

TAREFAS A SEREM DESENVOLVIDAS

(- levantamento mais profundo do estado-da-arte)

(- obtenção de bases de dados. peguei iapar2 do wyverson, tenho a USP. pegar iapar1, purunã?)

(- implementação/execução dos algoritmos. quais algoritmos?)

(- análise dos resultados)

(- experimentos)

FLUXO DAS TAREFAS (E.g. Máquina de Estados)

<inserir figura>

(pensar com base nas tarefas)

<inserir figura. usar base de TII>

4. Proposta Experimental

(uso de artefatos implementando conceitos de machine learning para comparar resultados, fornecendo como entrada imagens de regiões de interesse geradas por vários processos) | < métricas a serem usadas >

Referências (standardizar formato)

- Gonzalez, R. C. and Woods, R. E. Digital Image Processing, Pearson, 3rd edition, 2008.
- Minagawa, H., Fujimura, T., Ichiyanagi, M., Tanaka, K., 2002. Identification of beef cattle by analyzing images of their muzzle patterns lifted on paper. Publications of the Japanese Society of Agricultural Informatics 8, 596–600.
- Barry, B., Gonzales-Barron, U.A., McDonnell, K., Butler, F., Ward, S., 2007. Using muzzle pattern recognition as a biometric approach for cattle identification. American Society of Agricultural and Biological Engineers 50 (3), 1073–1080
- Noviyanto, A., Arymurthy, A.M., 2013. Beef cattle identification based on muzzle pattern using a matching refinement technique in the sift method. J. Comput. Electron. Agric. 99 (1), 77–84.
- Awad, A.I., Zawbaa, H.M., Mahmoud, H.A., Nabi, E.H.H.A., Fayed, R.H., Hassanien, A. E., 2013. A robust cattle identification scheme using muzzle print images. In: Proceedings Federated Conference on Computer Science and Information Systems (FedCSIS), Kraków, Poland. IEEE, pp. 529–534
- Tharwat, A., Gaber, T., Hassanien, A.E., Hassanien, H.A., Tolba, M.F., 2014. Cattle identification using muzzle print images based on texture features approach. In: Proceedings of the 5th International Conference on Innovations in Bio-Inspired Computing and Applications IBICA 2014, vol. 303, pp. 217–227.
- Awad, A.I.: 'From classical methods to animal biometrics: a review on cattle identification and tracking', Comput. Electron. Agric., 2016, 123, pp. 423–435
- Kumar, S., Singh, S.K., 2017. Automatic identification of cattle using muzzle point pattern: a hybrid feature extraction and classification paradigm.
- GIMENEZ, Carolina Melleiro. Identificação de bovinos através de reconhecimento de padrões do espelho nasal utilizando redes neurais artificiais. 2011. Dissertação (Mestrado em Qualidade e Produtividade Animal) Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, 2011. doi:10.11606/D.74.2011.tde-24052011-085146.
- Baranov, A.S., Graml, R., Pirchner, F., Schmid, D.O., 1993. Breed differences and intrabreed genetic variability of dermatoglyphic pattern of cattle. J. Anim. Breed. Genet. 110 (1–6), 385–392.
- Redmon, J., Divvala, S., Girshick, R., Farhadi, A., 2016. You Only Look Once: Unified, Real-Time Object Detection (https://arxiv.org/pdf/1506.02640v5.pdf)