Sri Chaitanya IIT Academy

13-12-15_Sr. IPLCO_JEE-ADV_(2012_P1)_RPTA-14_Q'Paper

JEE-ADVANCED-2012-P1-Model

Time: 3:00 Hrs.

IMPORTANT INSTRUCTIONS

Max Marks: 210

PHYSICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 1 – 10)	Questions with Single Correct Choice	3	-1	10	30
Sec – II(Q.N : 11 – 15)	Questions with Multiple Correct Choice	4	0	5	20
Sec – III(Q.N : 16 – 20)	Questions with Integer Answer Type	4	0	5	20
Total			20	70	

CHEMISTRY:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec – I(Q.N : 21 – 30)	Questions with Single Correct Choice	3	-1	10	30
Sec – II(Q.N : 31 – 35)	Questions with Multiple Correct Choice	4	0	5	20
Sec – III(Q.N : 36 – 40)	Questions with Integer Answer Type	4	0	5	20
Total			20	<i>7</i> 0	

MATHEMATICS:

Section	Question Type	+Ve Marks	- Ve Marks	No.of Qs	Total marks
Sec - I(Q.N : 41 - 50)	Questions with Single Correct Choice	3	-1	10	30
Sec – II(Q.N : 51 – 55)	Questions with Multiple Correct Choice	4	0	5	20
Sec – III(Q.N : 56 – 60)	Questions with Integer Answer Type	4	0	5	20
Total			20	70	

SR.IPLCO _JEE-ADV_P1

space for rough work

MATHEMATICS

Max.Marks:70

SECTION - I (SINGLE CORRECT CHOICE TYPE)

This section contains 10 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct

- For $x, y, z, t \in R$, $\sin^{-1} x + \cos^{-1} y + \sec^{-1} z \ge t^2 \sqrt{2\pi} t + 3\pi$ The value of 41. x + y + z is equal to
 - A) 1
- B) 0
- C) 2
- D) -1
- If the sides of a triangle are in A.P, and its greatest angle exceeds the least angle 42. by α , then the sides are in the ratio 1+x:1:1-x where $x=\sqrt{\frac{a-\cos\alpha}{b-\cos\alpha}}$, then a+b=
 - A) 6
- B) 7
- C) 8
- D) 9
- If $x = \cos ec \left(\tan^{-1} \left(\cos \left(\cot^{-1} \left(\sec \left(\sin^{-1} a \right) \right) \right) \right) \right)$ and 43.

 $y = \sec\left(\cot^{-1}\left(\sin\left(\tan^{-1}\left(\cos ec\left(\cos^{-1}a\right)\right)\right)\right)\right)$ Where $a \in [0,1]$ then relation between xand y is

- A) x + y = 0 B) x = 2y C) x = y

- D) $x^{2} = y$

SR.IPLCO _JEE-ADV_P1

space for rough work

44.
$$\cos^{-1}\left\{\frac{1}{2}x^2 + \sqrt{1-x^2}.\sqrt{1-\frac{x^2}{4}}\right\} = \cos^{-1}\frac{x}{2} - \cos^{-1}x$$
 Holds for

- A) $|x| \leq 1$
- B) $x \in R$ C) $0 \le x \le 1$
- D) $-1 \le x \le 0$
- Triangle ABC is inscribed in a unit circle, such that three internal angle 45. bisectors of A, B, C are extended to intersect the circumcircle at P, Q, R respectively. Let us denote area $(\triangle ABC) = \Delta_1$ and area $(\triangle PQR) = \Delta_2$

The maximum value of $AP\cos\frac{A}{2} + BQ\cos\frac{B}{2} + CR\cos\frac{C}{2}$ is

- A) $\sqrt{3}$

- B) $3\sqrt{3}$ C) $2\sqrt{3}$ D) $\frac{5\sqrt{3}}{2}$
- In a right $\triangle ABC$, right angled at C. CA = b & CB = a. CH is altitude from C to AB 46. where H is on AB. AM is the median through A to side BC where M is on BC. Then area of $\triangle BMH$

- A) $\frac{a^3b}{a^2+b^2}$ B) $\frac{a^3b}{2(a^2+b^2)}$ C) $\frac{ab^3}{2(a^2+b^2)}$ D) $\frac{a^3b}{4(a^2+b^2)}$

SR.IPLCO _JEE-ADV_P1

space for rough work

- In a $\triangle ABC$ D is the foot of perpendicular from A on BC. If E,F are feet of perpendicular from D on AC and AB respectively, then $\frac{\Delta}{EF}$ is equal to (where \triangle be the area of the $\triangle ABC$)
 - A) 4R
- B) 2R
- C) R
- D) R/2
- 48. If the median AM, angle bisector AD and altitude AH drawn from vertex A of a ΔABC divide angle A into four equal parts and D lies in between H and M, then
- A) $\angle A = \frac{\pi}{3}$ B) $\angle A = 90^{\circ}$ C) $\frac{AC}{AB} = \sqrt{3} 1$ D) $\frac{AC}{AB} = \frac{1}{\sqrt{2} 2}$
- In a scalene acute angled triangle $\triangle ABC$, the line joining circumcentre and 49. orthocentre is parallel to the side BC, then $\angle A \in$

- A) $\left(0, \frac{\pi}{6}\right)$ B) $\left(\frac{\pi}{6}, \frac{\pi}{3}\right)$ C) $\left(\frac{\pi}{6}, \frac{\pi}{4}\right)$ D) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$

SR.IPLCO _JEE-ADV_P1

space for rough work

- 50. In triangle ABC, with usual notation, the value of $\left(\frac{a+b+c}{r_1+r_2+r_3}\right)\left(\frac{a}{r_1}+\frac{b}{r_2}+\frac{c}{r_3}\right)$ is less than
 - A) 2
- B) 3
- C) 4
- D) 5

SECTION - II (MULTIPLE CORRECT CHOICE TYPE)

This section contains 5 multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/ are correct

- 51. Which of the following is / are true
 - A) The equation $\sin^{-1}(|\cos x|) \cos^{-1}(|\sin x|) = a$, has at least one solution for one integral value a.
 - B) The equation $\sin^{-1}(|\cos x|) \cos^{-1}(|\sin x|) = a$, has at least one solution iff $a \in (0, \pi)$
 - C) If $\sin^{-1}(x-1) + \cos^{-1}(x-3) + \tan^{-1}\left(\frac{x}{2-x^2}\right) = \cos^{-1}k + \pi$, then the value of $K = \frac{1}{\sqrt{2}}$
 - D) α_1 and α_2 satisfies $\sin^{-1}\left(\frac{2x}{1+x^2}\right) = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$ and $|\alpha_1 \alpha_2| < K$, for all α_1

and α_2 (K \in I) then minimum value of k is equal to 2

SR.IPLCO _JEE-ADV_P1

space for rough work

- 52. In a triangle ABC, the measure of angle A is 75^{0} and the measure of angle B is 45^{0} and D is a point on the side BC, such that AD = 4 then which of the following is/are false.
 - A) If AD is the altitude then area of the triangle ABC is $8(3-\sqrt{3})$
 - B) If AD is the angular bisector, then area of the triangle ABC is $2(3+\sqrt{3})$
 - C) If AD is the median and $|ADB| = \theta$ then the value of $\tan \theta$ is $2(1+\sqrt{3})$
 - D) If AD is the median, and $|ADB| = \theta$ then the value of $\tan \theta$ is $(1+\sqrt{3})$
- 53. In a variable $\triangle ABC$, the base BC is fixed and $\angle BAC = \alpha$ (a constant)
 - A) The locus of centroid of $\triangle ABC$ lies on a circle
 - B) The locus of incentre of $\triangle ABC$ lies on a circle
 - C) The locus of ortho-centre of $\triangle ABC$ lies on a circle
 - D) The locus of ex-centre opposite to A' lies on a circle

SR.IPLCO _JEE-ADV_P1

space for rough work

54. If in a $\triangle ABC$, $\sin C + \cos C + \sin(2B + C) - \cos(2B + C) = 2\sqrt{2}$, then $\triangle ABC$

is

A) Equilateral

B) isosceles

C) right angled

D) obtuse angled

55. If $1+\left[\sin^{-1}x\right] > \left[\cos^{-1}x\right]$ then ([x] denotes greatest integer function)

A) $x \in (\cos 1, \sin 1)$

B) $x \in [\sin 1, 1]$

C) $x \in (\cos 2, 0)$

D) $x \in (\cos 1, 1]$

SECTION -III

(INTEGER ANSWER TYPE)

This section contains 5 questions. The answer to each of the questions is a single digit integer, ranging from **0 to 9**. The appropriate bubbles below the respective question numbers in the ORS have to be darkened.

56. If the sum of the series $\cot^{-1} 2 + \cot^{-1} 8 + \cot^{-1} 18 + ... + \cot^{-1} 2n^2 +$ upto ∞ is $\frac{k\pi}{4}$

then the value of k is

SR.IPLCO _JEE-ADV_P1

space for rough work

Sri Chaitanya IIT Academy

13-12-15_Sr. IPLCO_JEE-ADV_(2012_P1)_RPTA-14_Q'Paper

- 57. In the $\triangle ABC$, a similar $\triangle A'B'C'$ is inscribed so that A^1 lies on BC, B^1 lies on CA, C^1 lies on AB and $B'C' = \lambda BC$. If B'C' is inclined at an angle θ with BC, than $2\lambda\cos\theta$ _____
- 58. If the circumcentre of $\triangle ABC$ lies on incircle then $\cos A + \cos B + \cos C = \sqrt{k}$; then the numerical quantity k should be
- 59. If $\sin^{-1} x \in \left(0, \frac{\pi}{2}\right)$, then value of $\tan\left(\frac{\cos^{-1}\left(\sin\left(\cos^{-1} x\right)\right) + \sin^{-1}\left(\cos\left(\sin^{-1} x\right)\right)}{2}\right)$ is
- 60. Number of triangles to which an acute angle triangle ABC can act as a pedal triangle is

 $SR.IPLCO_JEE-ADV_P1$

space for rough work