A Superfast Direct Solver for Nonuniform Discrete Fourier Transform of Type 3

Jingyu Liu

School of Mathematical Sciences, Fudan University

June 2, 2025

2 A Superfast Solver for INUDFT of Type 3

2 A Superfast Solver for INUDFT of Type 3

NUDFT

Nonuniform discrete Fourier transform (NUDFT):

$$f_j = \sum_{k=0}^{N-1} \mathrm{e}^{2\pi \mathrm{i} x_j \omega_k} u_k, \quad 0 \le j \le M-1,$$

- $M \geq N$.
- Samples: $\{x_j\}_{j=0}^{M-1} \subset [0,1)$.
- Frequencies: $\{\omega_k\}_{k=0}^{N-1} \subset [-1/2, N-1/2).$
- Coefficients: $\{u_k\}_{k=0}^{N-1} \subset \mathbb{C}$.
- Right hand side (RHS): $\{f_j\}_{j=0}^{M-1} \subset \mathbb{C}$.

NUFFT and INUDFT

Fast forward computation:

- Uniform case (FFT): $x_j = j/M$ and $\omega_k = k$. Complexity: $\mathcal{O}(M \log M)$ [Cooley and Tukey 1965]
- Nonuniform case (NUFFT)
 - Type 1: Equispaced samples, i.e., $x_i = j/M$;
 - Type 2: Integer frequencies, i.e., $\omega_k = k$;
 - Type 3: Nonequispaced samples and noninteger frequencies.

Complexity: $\mathcal{O}(M + N \log N)$ [Dutt and Rokhlin 1993], [Greengard and Lee 2004], [Barnett, Magland, and Klinteberg 2019]

Problem (Inverse NUDFT Problem, INUDFT)

Given samples $\{x_j\}$ and frequencies $\{\omega_k\}$, determine the coefficients $\{u_k\}$ from the RHS $\{f_j\}$.

Displacement Structure of INUDFT-II Matrix

Method in [Wilber, Epperly, and Barnett 2024]: Let $\tilde{\bf A} = {\bf A}{\bf F}^{-1}$ where ${\bf F}$ is the standard $N \times N$ DFT matrix, then

$$\mathbf{\Gamma}\mathbf{\tilde{A}} - \mathbf{\tilde{A}}\mathbf{D} = \mathbf{a}\mathbf{b}^*,$$

where

- $\Gamma = \operatorname{diag}(\{\exp(2\pi i x_j)\}_j);$
- $\mathbf{D} = \operatorname{diag}(\{\exp(-2\pi \mathrm{i} k/N)\}_k);$
- $\bullet \ a_j = \gamma_j^N 1;$
- $b_k = \exp(-2\pi i k/N)/N$.

The matrix $\tilde{\mathbf{A}}$ is called to have the displacement structure.

HSS Matrix Approximation

[Beckermann and Townsend 2017]: displacement structure \Rightarrow low-rank.

The authors use a HSS matrix to approximate $\tilde{\mathbf{A}}$.

$$\boldsymbol{U}_2 = \begin{bmatrix} \boldsymbol{U}_4 \boldsymbol{R}_4 \\ \boldsymbol{U}_5 \boldsymbol{R}_5 \end{bmatrix}, \quad \boldsymbol{V}_2 = \begin{bmatrix} \boldsymbol{V}_4 \boldsymbol{W}_4 \\ \boldsymbol{V}_5 \boldsymbol{W}_5 \end{bmatrix},$$

$$\boldsymbol{U}_3 = \begin{bmatrix} \boldsymbol{U}_6 \boldsymbol{R}_7 \\ \boldsymbol{U}_6 \boldsymbol{R}_7 \end{bmatrix}, \quad \boldsymbol{V}_3 = \begin{bmatrix} \boldsymbol{V}_6 \boldsymbol{W}_6 \\ \boldsymbol{V}_7 \boldsymbol{W}_7 \end{bmatrix}.$$

[Wilber 2021]: fADI-based construction for HSS matrices.

[Xi et al. 2014]: URV factorization-based superfast least-squares solver for HSS matrices.

A Superfast Direct Solver of INUDFT-II

Algorithm 1: INUDFT-II

Input: Samples $\{x_j\}_{j=0}^{M-1}$ and RHS $\{f_j\}_{j=0}^{M-1}$.

Output: Coefficients $\{u_k\}_{k=0}^{N-1}$.

Approximate $\tilde{\mathbf{A}} = \mathbf{A}\mathbf{F}^{-1}$ by an HSS matrix $\tilde{\mathbf{A}}_{\mathrm{HSS}}$.

Solve $\mathbf{v} = \arg\min_{\mathbf{w}} \|\mathbf{\tilde{A}}_{\mathrm{HSS}}\mathbf{w} - \mathbf{f}\|_2$ by the URV factorization.

Compute $\mathbf{u} = \mathbf{F} \mathbf{v}$.

Fast structure in NUDFT-II:

$$\mathbf{A}_{\mathrm{fast}} = \mathbf{\tilde{A}}_{\mathrm{HSS}} \mathbf{F},$$

$$\mathbf{A}_{ ext{fast}}^{\dagger} = \mathbf{F}^{-1} \mathbf{ ilde{A}}_{ ext{HSS}}^{\dagger}.$$

Complexity:

- Construction and factorization: $\mathcal{O}(k^2M)$.
- Solution: $\mathcal{O}(kM + N \log N)$.

2 A Superfast Solver for INUDFT of Type 3

Motivation

Fact: $\{e^{2\pi i\ell x}\}_{\ell\in\mathbb{Z}}$ is an orthogonal basis of $L^2[0,1]$.

For NUDFT-III matrix:

$$\mathbf{A}(j,k) = \mathrm{e}^{2\pi\mathrm{i} x_j \omega_k} pprox \sum_{-R \le \ell \le N-1+R} \mathrm{e}^{2\pi\mathrm{i} x_j \ell} Q_{\ell,k},$$

where $Q_{\ell,k} = \mathrm{e}^{-\pi\mathrm{i}(\ell-\omega_k)}\sin(\pi(\ell-\omega_k))/(\pi(\ell-\omega_k))$.

Or, in matrix form,

$$\mathbf{A} = \mathbf{BQ} + \mathbf{E},$$

Proposition

Suppose $\{x_j\}$ are IID uniform random variables in [0,1) and $R \ge 2$, then **E** is a random matrix satisfying $\mathbb{E}\mathbf{E} = \mathbf{0}$ and

$$\mathbb{E} \| \mathbf{E} \|_{\mathrm{F}}^2 \le \| \mathbf{A} \|_{\mathrm{F}}^2 \frac{2}{\pi^2} \frac{1}{R - 3/2}.$$

Practical Algorithm

Denoting $\mathbf{H} = \mathbf{B}^{\dagger} \mathbf{A}$, we have

$$\begin{split} \textbf{H} &= \textbf{Q} + \textbf{B}^{\dagger}\textbf{E}, \\ \textbf{A} &= \textbf{B}\textbf{H} + \left(\textbf{I} - \textbf{B}\textbf{B}^{\dagger}\right)\textbf{E}. \end{split}$$

- **B** is a NUDFT-II matrix possessing a fast structure;
- Q is a kernel matrix, can be compressed into an HSS matrix;
- H can be empirically compressed into an HSS matrix;
- $I BB^{\dagger}$ is a projection matrix.

The Construction of $\mathbf{H}_{\mathrm{HSS}}$

Goal: Find an efficient way to construct $\mathbf{H} = \mathbf{B}_{\text{fast}}^{\dagger} \mathbf{A}$.

- Fast forward computation on A: NUFFT.
- Fast forward computation on $\mathbf{B}_{\text{fast}}^{\dagger}$: URV factorization and FFT.

Black-box setting: Compress a matrix into its HSS form through matrix-vector multiplication.

Method in [Levitt and Martinsson 2024]: Random sampling. Complexity: $\mathcal{O}(k^2N + kT_{\text{mult}})$.

A Superfast Direct Solver of INUDFT-III

Algorithm 2: INUDFT-III

Input: Samples $\{x_j\}_{j=0}^{M-1}$, frequencies $\{\omega_k\}_{k=0}^{M-1}$, RHS $\{f_j\}_{j=0}^{M-1}$.

Output: Coefficients $\{u_k\}_{k=0}^{N-1}$.

Construct a superfast direct solver $\mathbf{B}_{\mathrm{fast}}$.

Compress $\mathbf{H} = \mathbf{B}_{\mathrm{fast}}^{\dagger} \mathbf{A}$ into an HSS matrix $\mathbf{H}_{\mathrm{HSS}}$.

Compute the URV factorization of $H_{\rm HSS}$.

Calculate $\mathbf{u} = \mathbf{H}_{\mathrm{HSS}}^{-1} \mathbf{B}_{\mathrm{fast}}^{\dagger} \mathbf{f}$.

Fast structure in NUDFT-III:

$$A_{\mathrm{fast}} = B_{\mathrm{fast}} H_{\mathrm{HSS}},$$

$$\textbf{A}_{\mathrm{fast}}^{\dagger} = \textbf{H}_{\mathrm{HSS}}^{-1} \textbf{B}_{\mathrm{fast}}^{\dagger}.$$

Complexity:

- Construction and factorization: $\mathcal{O}(k^2M + kN \log N)$.
- Solution: $\mathcal{O}(kM + N \log N)$.

2 A Superfast Solver for INUDFT of Type 3

Experiment Setting

- M = 4N.
- Samples are IID uniform random variables in [0, 1).
- Frequencies are perturbed integers given by

$$\omega_k = k + \alpha \psi_k, \quad 0 \le k \le N - 1,$$

where $\{\psi_k\}$ are IID uniform RVs on [-1,1] and $0 \le \alpha < 1/2$ controls the non-uniformity.

INUDFT-III Construction

INUDFT-III Direct Solver

Preconditioner of CG

N	method	$\alpha = 4e-1$			
		$t_{ m pre}$	$t_{ m iter}$	$n_{ m iter}$	$r_{ m s}$
131072	CG	-	X	X	X
	PCG	1.7e + 02	2.4e + 01	9	1.0e-14
262144	CG	-	×	X	×
	PCG	3.4e + 02	4.6e + 01	8	7.1e-15
524288	CG	-	×	X	×
	PCG	7.0e + 02	1.0e + 02	9	4.1e-14
1048576	CG	-	×	Х	×
	PCG	1.5e + 03	2.1e+02	8	7.7e-13

Table: Time cost, iteration number and relative residual of CG and PCG when $\alpha = 0.4$. The marker "x" means iterative method does not converge in 500 steps.

Conclusions and Future Work

Conclusions:

- A superfast direct solver for INUDFT-III;
- The direct solver could be used as an efficient preconditioner;
- Error bound of forward approximation when samples are uniform RVs.

Future work:

- Theoretical analysis on the NUDFT matrix;
- Extension to 2D and 3D problems;
- A method on regularized least-squares problem.

Thanks for listening!