BHAGWAN MAHAVIR UNIVERSITY

Effective From (2025-2026)

MASTER OF COMPUTER APPLICATION

Semester: I

Subject Code		Teaching Scheme								
	Subject Title	(Hours/Week)		Credits	Examinat	Total				
		Theory	Tutorial	Credits	Internal	External	Marks			
3050302104	Mathematical Foundations for Computer Science	4	0	4	40	60	100			

Duration of Exam: 2:30 Hours

Objective of the course:

• To develop analytical and computational skills in discrete mathematics, linear algebra, probability, and graph theory for problem-solving in computer applications.

Course Outcomes:

Upon completion of the course, the student shall be able to:

Sr.	CO statement	Marks %
No.	CO statement	weightage
CO-1	Apply linear algebra techniques to solve systems of equations and find eigenvalues.	15
CO-2	Understand and apply propositional and predicate logic to formulate valid arguments.	20
CO-3	Solve recurrence relations using analytical methods and generating functions.	20
CO-4	Analyze probability distributions and compute expected values and variances.	25
CO-5	Understand graph theory concepts and apply them to represent and solve network problems.	20

BHAGWAN MAHAVIR UNIVERSITY

Effective From (2025-2026)

Detail Content:

Sr. No.	Topic	Total Hrs.
1	 Linear Algebra: Elementary row transformation of a matrix Rank of a matrix Consistency and Solution of system of linear equations - Gauss-Elimination method, Gauss-Jordan method and approximate solution by Gauss-Seidel method. Rayleigh's power method to find the dominant Eigen value and the corresponding Eigenvector Problems. 	08
2	 Mathematical Logic: Propositional Logic Applications of Propositional Logic Propositional Equivalences Predicates and Quantifiers Nested Quantifiers Rules of Inference Introduction to Proofs. 	10
3	 Recurrence Relations: Introduction to Recurrence Relations The method of Characteristic Roots Solution of Non-homogeneous Recurrence Relations Generating Functions of Sequences Solving Recurrence Relations by Substitution and Generating Functions. 	10
4	Random Variable and Probability Distribution: Concept of random variable Discrete and continuous probability distributions Binomial & Poison's, and normal distribution. Mean and variance.	12
5	Graph Theory: Definition of graph different types of graphs directed graph representation of graph as matrix connected graph sub-graphs Bi-graphs paths and cycles graph Isomorphism Euler and Hamilton paths planar graphs.	08

BHAGWAN MAHAVIR UNIVERSITY

Effective From (2025-2026)

CO-PO Mapping Matrix with Bloom's Levels

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	-	-	-	-	-	-	1
CO2	2	3	-	2	-	-	-	1	-	2	-	1
CO3	3	3	2	-	-	-	ı	-	-	1	-	2
CO4	3	2	-	3	1	-	-	-	-		-	2
CO5	3	3	2	2	-	-	-	-	1	-	-	1

Scale: 3 = Strong, 2 = Moderate, 1 = Slight, - = No relation

Text books:

- Probability and Statistics for Engineers Richard A. Johnson and C. B. Gupta –
 Pearson Education Latest Edition
- 2. **Mathematical Foundations of Computer Science** Peter A. Fejer Springer, New York, NY Latest Edition
- 3. **Mathematical Foundation for Computer Science** Santha Prasad Cengage Latest Edition
- 4. **Mathematical Foundation for Computer Science** Shahnaz Bathul Prentice-Hall of India Pvt. Ltd. Latest Edition
