PSA: Calculating Derivatives

A1) Consider the function

$$f: \mathbb{R} o \mathbb{R}^n, \, x \mapsto f(x) = (f_1(x), \cdots, f_n(x)).$$

Prove that f is differentiable at x_0 iff every f_k is differentiable at x_0 and

$$f'(x) = (f'_1(x), \dots, f'_n(x)).$$

Proof: For any $h \in \mathbb{R}$,

$$\|\frac{f(x+h)-f(x)}{h}-(f_1'(x),\cdots,f_n'(x))\|_2\leqslant n\max_{1\leqslant k\leqslant n}\left\{\left|\frac{f_k(x+h)-f_k(x)}{h}-f_k'(x)\right|\right\}\to 0.$$

Therefore $f'(x) = (f'_1(x), \cdots, f'_n(x)).$

A2) Consider the function

$$f: \mathbb{R} \to \mathbb{C}, x \mapsto e^{ix}.$$

Prove by definition, f'(0) = i and $(e^{ix})' = ie^{ix}$.

Proof: For any $h \in \mathbb{R}$,

$$\left|\frac{f(h)-f(0)}{h}-i\right|=\left|\frac{e^{ih}-ih-1}{h}\right|\leqslant \sum_{n=2}^{\infty}\left|\frac{1}{h}\frac{(ih)^n}{n!}\right|\leqslant |h|\to 0.$$

Therefore f'(0) = i. For any $x \in \mathbb{R}$,

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} e^{ix} \frac{f(h) - f(0)}{h} = ie^{ix}.$$

Hence $(e^{ix})' = ie^{ix}$.

A3) Calculate the derivatives of $\sin x$ and $\cos x$.

Solution: $\sin x = (e^{ix} - e^{-ix})/2i$, so $(\sin x)' = (e^{ix} + e^{-ix})/2 = \cos x$. Likewise $(\cos x)' = -\sin x$.

A4) Prove Faà di Bruno's formula for n=3.

Proof:

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}x}(f\circ g) &= f'(g)\cdot g'. \ rac{\mathrm{d}^2}{\mathrm{d}x^2}(f\circ g) &= f'(g)\cdot g'' + f''(g)\cdot (g')^2. \ rac{\mathrm{d}^3}{\mathrm{d}x^3}(f\circ g) &= f'(g)\cdot g''' + f''(g)\cdot g''\cdot g' + f'''(g)\cdot (g')^3 + f''(g)\cdot 2g'g''. \end{aligned}$$

A5) Define the map

$$E: \mathbb{R} \to \mathbb{C} = \mathbb{R}^2, \ \theta \mapsto (\cos \theta, \sin \theta).$$

Prove that the points in $\mathbf{S}^1=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}$ can be written in the form $(\sin\theta,\cos\theta)$, i.e. $E(\mathbb{R})=\mathbf{S}^1$. Calculate $E'(\theta)$ and show that Rolle's mean-value theorem is invalid for E. Proof: Obviously $E(\mathbb{R})\subset\mathbf{S}^1$. Consider any $(x,y)\in\mathbf{S}^1$, then $x\in[-1,1]$. Note that $\cos 0=1,\cos\pi=-1$, hence there exists $\theta\in[0,\pi]$ such that $\cos\theta=x$, and $|\sin\theta|=|y|$. If $\sin\theta=y$ then $(x,y)=(\cos\theta,\sin\theta)\in E(\mathbb{R})$. Otherwise $(x,y)=(\cos(-\theta),\sin(-\theta))\in E(\mathbb{R})$, therefore $E(\mathbb{R})=\mathbf{S}^1$. By A1) and A3), $E'(\theta)=(-\sin\theta,\cos\theta)$. Since $E'(\theta)\neq 0$ for all $\theta\in\mathbb{R}$ and $E'(\theta)=E'(\theta+2\pi)$, Rolle's mean-value theorem is invalid.

A6) Calculate the derivatives of the following functions:

(1) $f(x) = a^x$, a > 0.

$$f'(x) = (e^{x \log a})' = a^x \log a.$$

(2) $f(x) = \arcsin x$.

Let $y = \arcsin x$, then $x = \sin y$, so $1 = \cos y \cdot y'$, hence

$$f'(x) = \frac{1}{\cos(\arcsin x)} = \frac{1}{\sqrt{1 - x^2}}.$$

(3) $f(x) = \arctan x$.

Let $y = \arctan x$, then $x = \tan y$, so $1 = \sec^2 y \cdot y'$, hence

$$f'(x) = \cos^2 y = \frac{1}{1 + x^2}.$$

(4) $f(x) = x^{x^x}$, x > 0.

Let $y=x^x, z=x^y$, then $\log y=x\log x$, so $y'/y=\log x+1$, $y'=x^x(1+\log x)$. $\log z=y\log x$, so $z'/z=y'\log x+y/x=x^x\log x(1+\log x)+x^{x-1}$. Therefore

$$f'(x) = x^{x^x} \cdot x^x \cdot (\log x + \log^2 x + x^{-1}).$$

(5) $f(x) = \log(\log(\log x)).$

$$f'(x) = \frac{(\log \log x)'}{\log \log x} = \frac{1}{x \log x \log \log x}.$$

(6)
$$f(x) = \sqrt{x + \sqrt{x + \sqrt{x}}}$$

$$f'(x) = \frac{(x + \sqrt{x + \sqrt{x}})'}{2\sqrt{x + \sqrt{x + \sqrt{x}}}} = \left(1 + \frac{1 + \frac{1}{2\sqrt{x}}}{2\sqrt{x + \sqrt{x}}}\right)/2\sqrt{x + \sqrt{x + \sqrt{x}}}$$
$$= \frac{2\sqrt{x + \sqrt{x} + 1 + 1/2\sqrt{x}}}{4\sqrt{x + \sqrt{x}}\sqrt{x + \sqrt{x + \sqrt{x}}}}.$$

(7) f(x) = |x|.

If x>0, f'(x)=(x)'=1. If x<0, f'(x)=(-x)'=-1. If x=0, f is not differentiable at x.

(8) $f(x) = \log|x|.$

If x>0, $f'(x)=rac{1}{x}$. If x<0, $f'(x)=-rac{1}{x}$. If x=0, f is not differentiable at x.

(9)

$$f(x)=egin{cases} x^n\sinrac{1}{x}, & x
eq 0,\ 0, & x=0. \end{cases}$$
 $n=1,2,\cdots$

For x
eq 0, $f'(x) = nx^{n-1} \sin rac{1}{x} - x^{n-2} \cos rac{1}{x}$. When x=0,

$$f'(0) = \lim_{h \to 0} h^{n-1} \sin \frac{1}{h} = \begin{cases} 0, & n \geqslant 2; \\ \text{diverges}, & n = 1. \end{cases}$$

A7) Calculate $f^{(3)}(x)$:

(1) $f(x) = \log(x+1)$.

$$\frac{\mathrm{d}^3}{\mathrm{d}x^3}\mathrm{log}\left(x+1\right) = \frac{2}{(x+1)^3}.$$

(2) $f(x) = x^{-1} \log x$.

$$\frac{\mathrm{d}^3}{\mathrm{d}x^3} \frac{\log x}{x} = \frac{11 - 6\log x}{x^4}.$$

(3)
$$f(x)=rac{x^m}{1-x}$$
 , $m\in\mathbb{Z}_{\geqslant 0}$.

$$\frac{\mathrm{d}^3}{\mathrm{d}x^3}\frac{x^m}{1-x} = \frac{(m-2)(m-1)mx^{m-3}}{1-x} + \frac{3(m-1)mx^{m-2}}{(1-x)^2} + \frac{6mx^{m-1}}{(1-x)^3} + \frac{6x^m}{(1-x)^4}.$$

(4) $f(x)=x^me^x$, $m\in\mathbb{Z}_{\geqslant 0}$.

$$rac{\mathrm{d}^3}{\mathrm{d}x^3}(x^me^x) = e^x x^{m-3}(m^3 + 3m^2(x-1) + m(3x^2 - 3x + 2) + x^3).$$

(5) $f(x)=e^{ax}\sin{(bx)}$, $a,b\in\mathbb{R}$.

$$rac{\mathrm{d}^3}{\mathrm{d}x^3}(e^{ax}\sin{(bx)}) = e^{ax}((3a^2b - b^3)\cos{(bx)} + a(a^2 - 3b^2)\sin{(bx)}).$$

(6) $f(x) = e^{-x^2}$

$$\frac{\mathrm{d}^3}{\mathrm{d}x^3}e^{-x^2} = -4e^{-x^2}x(2x^2 - 3).$$

A8) $f^{\prime}(x_{0})>0$ does not imply f is increasing in a neighborhood of x_{0} : consider

$$f(x) = \begin{cases} x + 2x^2 \sin \frac{1}{x}, & x \neq 0; \\ 0, & x = 0. \end{cases}$$

Prove that f'(0)>0 but for any $\varepsilon>0$, f is not monotonic on $(-\varepsilon,\varepsilon)$. Proof:

$$f'(0) = \lim_{h o 0} 1 + 2h \sin rac{1}{h} = 1 > 0.$$

However, for any $n\in\mathbb{N}$, let $x_n=rac{1}{(2n+1/2)\pi}$, $y_n=rac{1}{(2n-1/2)\pi}$, then

$$f(x_n) = x_n + 2x_n^2, f(y_n) = y_n - 2y_n^2.$$

Note that $0 < x_n < y_n$, but

$$f(x_n) - f(y_n) = 2x_n^2 + 2y_n^2 - \pi x_n y_n > 0,$$

i.e. $f(x_n) > f(0), f(y_n)$, therefore f is not monotonic on any $(-\varepsilon, \varepsilon)$.

A9) $A \in \mathbf{M}_n(\mathbb{R})$, calculate

$$\left.rac{\mathrm{d}}{\mathrm{d}x}
ight|_{x=0} \det\left(\mathbf{I}_n+xA
ight).$$

Solution: Let $\Phi(x) = I_n + xA$, then $\Phi(0) = I_n$. Denote $\Phi(t) = (\varphi_1(t), \dots, \varphi_n(t))$. Note that \det is a multi-linear function for n rows, hence by Euler's formula:

$$rac{\mathrm{d}}{\mathrm{d}t}\mathrm{det}\,\Phi(t)=\mathrm{det}\,ig(arphi_1'(t),arphi_2(t),\cdots,arphi_n(t)ig)+\cdots+\mathrm{det}\,(arphi_1(t),arphi_2(t),\cdots,arphi_n'(t)ig).$$

When t=0, the formula becomes

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\det\Phi(t)=arphi_{1,1}'+\cdots+arphi_{n,n}'=\mathrm{tr}\,\Phi'(0)=\mathrm{tr}A.$$

A10) Prove that the derivation of odd functions are even, and that of even functions are odd.

Proof: If f is an odd function then

$$f'(-x) = \lim_{h \to 0} \frac{f(-x+h) - f(-x)}{h} = \lim_{h \to 0} \frac{f(x) - f(x-h)}{h} = f'(x),$$

so f' is even. If f is an even function then

$$f'(-x) = \lim_{h o 0} rac{f(-x+h) - f(-x)}{h} = -\lim_{h o 0} rac{f(x) - f(x-h)}{h} = -f'(x),$$

so f' is odd.

A11) Prove that

$$f(x) = egin{cases} 1/q, & x = rac{p}{q} \in \mathbb{Q}, q \geqslant 1, \gcd(p,q) = 1; \ 0, & x \in \mathbb{Q}^C. \end{cases}$$

is nowhere differentiable on \mathbb{R} .

Proof: For any $x \in \mathbb{Q}$, $f(x) \neq 0$, but for any $\varepsilon > 0$, there exists $y \in (x - \varepsilon, x + \varepsilon) \cap \mathbb{Q}^C$, such that f(y) = 0. Therefore f is not continuous at x, and clearly not differentiable.

Consider any $x\in\mathbb{Q}^C$, there is a sequence of irrational numbers $\{y_n\}_{n\geqslant 1}$ that converges to x, then

$$\lim_{n o\infty}rac{f(x)-f(y_n)}{x-y_n}=0.$$

Choose any sequence of rational numbers $\{r_n=p_n/q_n\}_{n\geqslant 1}$ that converges to x, then

$$\lim_{n o\infty}rac{f(x)-f(r_n)}{x-r_n}=\lim_{n o\infty}rac{1}{xq_n-p_n}=\infty.$$

Therefore f is nowhere differentiable on \mathbb{R} .

PSB

B1) Define the hyperbolic functions:

$$\sinh x = \frac{e^x - e^{-x}}{2}, \cosh x = \frac{e^x + e^{-x}}{2}, \tanh x = \frac{\sinh x}{\cosh x}.$$

(1)
$$\cosh^2 x - \sinh^2 x = 1$$

 $\operatorname{Proof:} \cosh^2 x - \sinh^2 x = \frac{e^{2x} + e^{-2x} + 2}{4} - \frac{e^{2x} + e^{-2x} - 2}{4} = 1.$

 $(2)\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$

$$\sinh x \cosh y + \cosh x \sinh y = \frac{e^{x+y} - e^{y-x} + e^{x-y} - e^{-x-y}}{4} + \frac{e^{x+y} - e^{x-y} + e^{y-x} - e^{-x-y}}{4} = \sinh \left(x + y \right)$$

(3) $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y$.

Proof: Same as (2).

(4)
$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

Proof: Same as (2).
$$(4) \tanh (x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}.$$
 Proof: $\tanh (x+y) = \frac{\sinh x \cosh y + \cosh x \sinh y}{\cosh x \cosh y + \sinh x \sinh y} = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}.$ Calculate $\sinh'(x)$, $\cosh'(x)$ and $\tanh'(x)$.

2. Calculate $\sinh'(x)$, $\cosh'(x)$ and $\tanh'(x)$.

Solution:
$$\sinh'(x) = \cosh x$$
, $\cosh'(x) = \sinh x$, $\tanh'(x) = \frac{1}{\cosh^2 x}$.

3. Prove that $\sinh:\mathbb{R}\to\mathbb{R}$ has an inverse $\mathrm{arcsinh}:\mathbb{R}\to\mathbb{R}$ and calculate $\mathrm{arcsinh}'(x)$.

Proof: $\sinh'(x)=\cosh x>0$, so \sinh is monotonically increasing over $\mathbb R$. Also $\lim_{x\to\infty}\sinh x=\infty$, $\lim_{x o-\infty}\sinh x=-\infty$, therefore $\sinh:\mathbb{R} o\mathbb{R}$ is a bijection and hence has an inverse.

 $\operatorname{arcsinh}'(x) = \frac{1}{\sqrt{1+x^2}}$.

B2) $a,b\in\mathbb{R}$, a>0. Consider $f:[-1,1] o\mathbb{R}$, where

$$f(x) = egin{cases} x^a \sinig(x^{-b}ig), & x
eq 0, \ 0, & x = 0. \end{cases}$$

Prove that

1. $f \in C([-1,1])$ iff a > 0;

Proof:
$$f\in C([-1,1])$$
 iff $\lim_{x\to 0}x^a\sin\left(x^{-b}\right)=0$. If $a>0$ then $|x^a\sin\left(x^{-b}\right)|\leqslant |x|^a\to 0$. If $a<0$ then let $x=((2n+1/2)\pi)^{-1/b}$, when $n\to\infty$, $x\to 0$ but $|x^a\sin\left(x^{-b}\right)|\to\infty$. If $a=0$, then let $x=((2n+1/2)\pi)^{-1/b}$, $|x^a\sin\left(x^{-b}\right)|=1$. Therefore $f\in C([-1,1])$ iff $a>0$.

2. f is differentiable at 0 iff a > 1;

Proof: f is differentiable at 0 iff $\lim_{x \to 0} x^{-a} \sin\left(x^{-b}\right)$ exists. By 1 we know that a>1. (a=1 is invalid since $x=(2n\pi)^{-1/b}$ and $x=((2n+1/2)\pi)^{-1/b}$ converge to different values.)

- 3. f' is bounded on [-1,1] iff $a \ge 1+b$; Proof: $f'(x) = ax^{a-1}\sin(x^{-b}) + x^a\cos(x^{-b})(-b)x^{-b-1}$ is bounded iff x^{a-1} and x^{a-b-1} are bounded, i.e. $a \geqslant 1 + b$.
- 4. $f \in C^1([-1,1])$ iff a > 1 + b; Proof: $f \in C^1([-1,1])$ iff $f'(0) = 0 = \lim_{x \to 0} f'(x)$. By 1 we know it is equivalent to a > 1+b.
- 5. f' is differentiable at 0 iff a > 2 + b;
- 6. f'' is bounded on [-1,1] iff $a \ge 2 + 2b$;
- 7. $f \in C^2([-1,1])$ iff a > 2 + 2b.

Proof: 5,6,7 are exactly the same as 2,3,4.

PSC

If f satisfy $\lim_{x\to x_0}f(x)=0$ near x_0 , we call f an infinitesimal when $x\to x_0$. Likewise when $\lim_{x o x_0}f(x)=+\infty$ or $\lim_{x o x_0}f(x)=-\infty$, we call f an infinite quantity when $x o x_0$. Suppose f,g are both infinitesimal when $x \to x_0$, and g(x) does not vanish near x_0 . We introduce the notations

- if $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 0$, we say f is an infinitesimal of higher order than g, and denote f(x) = o(g(x)),
- If $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \ell \neq 0$, we say f and g are of the same order;
- $\begin{array}{l} \bullet \quad \text{If $\ell=1$, denote $f\sim g$, $x\to x_0$;} \\ \bullet \quad \text{If $\limsup_{x\to x_0}\left|\frac{f(x)}{g(x)}\right|<+\infty$, denote $f(x)=O(g(x))$, $x\to x_0$.} \end{array}$

C1) Suppose a(x) = o(1) when $x \to x_0$, prove that:

(1) o(a) + o(a) = o(a)Proof: If f, g = o(a), then

$$\lim_{x o x_0}rac{f(x)+g(x)}{a(x)}=\lim_{x o x_0}rac{f(x)}{a(x)}+\lim_{x o x_0}rac{g(x)}{a(x)}=0,$$

hence f + g = o(a). (2) $co(a) = o(ca), c \in \mathbb{R}$ Proof: If f = o(a), then

$$\lim_{x o x_0}rac{cf(x)}{a(x)}=c\lim_{x o x_0}rac{f(x)}{a(x)}=0,$$

hence cf = o(a) = o(ca). (3) $o(a)^k = o(a^k)$

Proof: If f = o(a) then

$$\lim_{x o x_0}rac{f(x)^k}{a(x)^k}=\left(\lim_{x o x_0}rac{f(x)}{a(x)}
ight)^k=0,$$

hence $f^k = o(a^k)$.

(4) 1/(1+a) = 1 - a + o(a)

Proof:

$$\lim_{x o x_0}rac{1/(1+a)-1+a}{a(x)}=\lim_{x o x_0}rac{a(x)}{1+a(x)}=0,$$

hence 1/(1+a) = 1 - a + o(a).

C2) Suppose f,g are infinitesimals when $x o x_0$, then

- 1. Prove that $f\sim g\iff f(x)-g(x)=o(g(x))$, $x\to x_0$. Proof: $f\sim g\iff \lim_{x\to x_0}\frac{f(x)}{g(x)}=1\iff \lim_{x\to x_0}\frac{f(x)-g(x)}{g(x)}=0$, i.e. f(x)-g(x)=o(g(x)).
- 2. If $f\sim cg^k$, we call cg^k the leading term of f. Find the leading terms of the following functions, compared to $x - x_0$ or x:

$$(1) \ 1/\sin \pi x, \ x \to 1.$$

$$\frac{1}{\sin \pi x} = -\frac{1}{\pi(x-1)} + o(1).$$

$$(2) \ \sqrt{1+x} - \sqrt{1-x}, \ x \to 0.$$

$$\sqrt{1+x} - \sqrt{1-x} = x + o(x).$$

$$(3) \sin \left(\sqrt{1+\sqrt{1+\sqrt{x}}} - \sqrt{2}\right), \ x \to 0^+.$$

$$= \frac{\sqrt{2}x^{1/2}}{8} + o(x^{1/2}).$$

$$(4) \ \sqrt{1+\tan x} - \sqrt{1-\sin x}, \ x \to 0.$$

$$= x + o(x).$$

$$(5) \ \sqrt{x+\sqrt{x+\sqrt{x}}}, \ x \to 0^+.$$

$$= x^{1/8} + o(x^{1/8}).$$

$$(6) \ \sqrt{x+\sqrt{x+\sqrt{x}}}, \ x \to \infty.$$

$$= \sqrt{x} + o(\sqrt{x}).$$
Suppose $f \sim cx^k, \ x \to 0$, i.e. $f(x) = cx^k + cx^k = 0$.

3. Suppose $f\sim cx^k$, $x\to 0$, i.e. $f(x)=cx^k+o(x^k)$. If $f(x)-c^k$ has a leading term $c'x^{k'}$, we denote $f(x)=cx^k+c'x^{k'}+o(x^{k'})$. Expand the following terms to $o(x^2)$:

$$f(x)=cx+cx+o(x)$$
 . Expand the identity $(1)\sqrt{1+x}-1$. $\sqrt{1+x}-1=rac{1}{2}x-rac{1}{8}x^2+o(x^2)$. $(2)(1+x)^{1/m}-1, m\in\mathbb{Z}_{\geqslant 1}.$ $(1+x)^{1/m}-1=rac{1}{m}x-rac{m-1}{2m^2}x^2+o(x^2).$

PST: Takagi Function

Define $\psi:[0,1] o\mathbb{R}$ as

$$\psi(x) = egin{cases} x, & 0 \leqslant x < rac{1}{2}; \ 1-x, & rac{1}{2} \leqslant x \leqslant 1. \end{cases}$$

For $x\in R$, let $\psi(x)=\psi(\{x\})$, then $\psi\in C(\mathbb{R})$.

Define the Takagi function $T:\mathbb{R} \to \mathbb{R}$ as follows:

$$T(x)=\sum_{k=0}^{\infty}rac{1}{2^k}\psi(2^kx),$$

and the partial sum $T_n(x) = \sum_{k=0}^n rac{1}{2^k} \psi(2^k x).$

T1) Prove that T(x) is a well-defined bounded continuous function on $\mathbb R.$

Proof: Note that $\psi(x) \in [0,1/2]$ so the series $\sum_{k=0}^{\infty} 2^{-k} \psi(2^k x)$ converges absolutely, and hence T(x) is well-defined and bounded by $T(x) \in [0,1]$.

T2) For $x\in[0,1]$, suppose $x=\sum_{n=1}^\infty a_n2^{-n}$ is the binary form of x. Let $v_n=\sum_{k=1}^n a_k$, and $\sigma_n(y)=a_n+(1-2a_n)y$, where $y\in\{0,1\}$. Prove that

$$\psi(2^mx)=\sum_{n=1}^\inftyrac{\sigma_{m+1}(a_{m+n})}{2^n}.$$

Proof:

$$\psi(2^mx)=\psi\left(\sum_{n=1}^\infty a_n2^{m-n}\right)=\psi\left(\sum_{n=m+1}^\infty a_n2^{m-n}\right)=\begin{cases} \sum_{n=1}^\infty a_{m+n}2^{-n}, & a_{m+1}=0;\\ 1-\sum_{n=1}^\infty a_{m+n}2^{-n}, & a_{m+1}=1.\end{cases}$$

Therefore

$$\psi(2^mx) = \sigma_n \left(\sum_{n=1}^\infty a_{m+n} 2^{-n}
ight) = \sum_{n=1}^\infty \sigma_{m+1}(a_{m+n}) 2^{-n}.$$

T3) $x=\sum_{n=1}^{\infty}a_n2^{-n}\in[0,1]$, prove that

$$T(x) = \sum_{n=1}^{\infty} \frac{(1-a_n)v_n + a_n(n-v_n)}{2^n}.$$

Proof: By T2),

$$T(x) = \sum_{m=0}^{\infty} \sum_{n=1}^{\infty} \sigma_{m+1}(a_{m+n}) 2^{-m-n} = \sum_{n=1}^{\infty} \sum_{m=0}^{n-1} \sigma_{m+1}(a_n) 2^{-n} = \sum_{n=1}^{\infty} rac{(1-a_n)v_n + a_n(n-v_n)}{2^n}.$$

T4) Suppose $x_0=k_02^{-m_0}\in[0,1]$, where $k_0\in\mathbb{Z}_{\geqslant 1}$ is odd, $m_0\in\mathbb{Z}_{\geqslant 0}$. Let $h_n=2^{-n}$, where $n\in\mathbb{Z}_{\geqslant m_0}$. Prove that the sequence $\left\{\frac{T(x+h_n)-T(x)}{h_n}\right\}_{n\geqslant m_0}$ does not converge.

Proof: By T3),

$$rac{T(x+h_n)-T(x)}{h_n} = rac{1}{h_n}igg(rac{n-v_n}{2^n}-rac{v_n}{2^n}igg) = n-2\sum_{k=1}^n a_k = n-2-2S_2(k_0) o \infty.$$

T5) $f:I o\mathbb{R}$, where I is an open interval. If f is differentiable at a , prove that

$$\lim_{(h,h') o (0,0),h,h'>0}rac{f(a+h)-f(a-h')}{h+h'}=f'(a).$$

i.e. it converges for any sequence $(h_n,h'_n) o (0,0),h_n,h'_n>0.$ Proof: Consider any sequence $(h_n,h'_n) o (0,0)$, then

$$\frac{f(a+h)-f(a-h')}{h+h'}=\frac{f(a+h)-f(a)}{h}\cdot\frac{h}{h+h'}+\frac{f(a)-f(a-h')}{h'}\cdot\frac{h'}{h+h'}\to f'(a).$$

T6) Same as T5), if $f \in C^1(I)$, $a \in I$, prove that

$$\lim_{(h,h') o (0,0),h+h'
eq 0}rac{f(a+h)-f(a-h')}{h+h'}=f'(a).$$

Proof: For any $h+h'\neq 0$, there exists $\xi\in [a,a+h]$ and $\eta\in [a-h',a]$ such that $f(a+h)=f(a)+hf'(\xi)$ and $f(a-h')=f(a)-h'f'(\eta)$, then

$$\left|\frac{f(a+h)-f(a-h')}{h+h'}-f'(a)\right|\leqslant \frac{h}{h+h'}|f'(\xi)-f'(a)|+\frac{h'}{h+h'}|f'(\eta)-f'(a)|\to 0.$$

Hence

$$\lim_{(h,h') o (0,0),h+h'
eq 0}rac{f(a+h)-f(a-h')}{h+h'}=f'(a).$$

T7) Suppose $x\in[0,1]$, such that for any $n\in\mathbb{N}$, $2^nx\notin\mathbb{Z}$. For every $n\in N$, define $\{h_n\}_{n\geqslant 1}$ and $\{h'_n\}_{n\geqslant 1}$ as follows:

$$|2^n x| = 2^n (x - h'_n), |2^n x| + 1 = 2^n (x + h_n).$$

Prove that for an arbitrary n, $h_n+h'_n=2^{-n}$ and for every integer $1\leqslant \ell\leqslant n-1$, the interval $(2^\ell(x-h'_n),2^\ell(x+h_n))$ does not include integers or half-integers. Proof: $1=2^n(x+h_n)-2^n(x-h'_n)=2^n(h_n+h'_n)$, hence $h_n+h'_n=2^{-n}$. For any integer $1\leqslant \ell\leqslant n-1$, $2^\ell(x-h'_n)=\lfloor 2^nx\rfloor\cdot 2^{\ell-n}$ and $2^\ell(x+h_n)=(\lfloor 2^nx\rfloor+1)2^{\ell-n}$. Since $n-\ell\geqslant 1$, the interval does not include integers or half-integers.

T8) Follow the notations of T7), prove that the sequence $\left\{\frac{T(x+h_n)-T(x-h'_n)}{h_n+h'_n}\right\}_{n\geqslant 1}$ diverges.

Proof: Let $t = \lfloor 2^n x \rfloor$, then

$$a_n = rac{T(x+h_n) - T(x-h_n')}{h_n + h_n'} = \sum_{k=0}^{n-1} 2^{n-k} \left(\psi\left(rac{t+1}{2^{n-k}}
ight) - \psi\left(rac{t}{2^{n-k}}
ight)
ight).$$

Since the interval $(2^{k-n}(t+1), 2^{k-n}t)$ does not contain any integers or half-integers, $2^{n-k}(\psi(2^{k-n}(t+1))-\psi(2^{k-n}t))\in\{-1,1\}$, so $a_n\in\mathbb{Z}$ and n,a_n have the same parity. Therefore the sequence $\{a_n\}_{n\geqslant 1}$ diverges.

T9) Prove that T(x) is continuous but nowhere differentiable on $\mathbb R.$

Proof: For any $x\in[0,1]$, if $x=k_0\cdot 2^{-m_0}$ as in T4), by T4) the sequence $\left\{\frac{T(x+h_n)-T(x)}{h_n}\right\}$ diverges, hence T is not differentiable at x. Otherwise for any $n\in\mathbb{N}$, $2^nx\notin\mathbb{Z}$. Define $\{h_n\}_{n\geqslant 1}$ and $\{h'_n\}_{n\geqslant 1}$ as in T7), then by T8), the sequence $\left\{\frac{T(x+h_n)-T(x-h'_n)}{h_n+h'_n}\right\}_{n\geqslant 1}$ diverges. Combined with T5) we know that T is not differentiable at x. Therefore T is nowhere differentiable on \mathbb{R} , since T is periodic. For any x,y in \mathbb{R} ,

$$|T(x)-T(y)|\leqslant \sum_{k=0}^N 2^{-k}|T(2^kx)-T(2^ky)|+\sum_{k=N+1}^\infty 2^{-k}\leqslant 2\max_{0\leqslant k\leqslant N}|T(2^kx)-T(2^ky)|+2^{-N}.$$

Hence for any N>0, when arepsilon o 0, $|T(x)-T(x+arepsilon)|\leqslant 2^{1-N} o 0$, so T is (uniformly) continuous on $\mathbb R$.

T10) Prove that

$$T(x) = egin{cases} 2x + rac{T(4x)}{4}, & 0 \leqslant x < rac{1}{4}; \ rac{1}{2} + rac{T(4x-1)}{4}, & rac{1}{4} \leqslant x < rac{1}{2}; \ rac{1}{2} + rac{T(4x-2)}{4}, & rac{1}{2} \leqslant x < rac{3}{4}; \ 2 - 2x + rac{T(4x-3)}{4}, & rac{3}{4} \leqslant x \leqslant 1. \end{cases}$$

Proof: If $0 \leqslant x < 1/4$, then

$$T(x) = \psi(x) + \psi(2x)/2 + \sum_{k=2}^{\infty} \psi(2^k x) 2^{-k} = 2x + rac{T(4x)}{4}.$$

The other cases are exactly the same.

T11) Let
$$\Gamma=\{(x,T(x)):0\leqslant x\leqslant 1\}\subset \mathbb{R}^2.$$
 Define $\Phi_i:\mathbb{R}^2 o\mathbb{R}^2$

$$\Phi_0 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/4 & 0 \\ 1/2 & 1/4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \qquad \Phi_1 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1/4 \\ 1/2 \end{pmatrix},
\Phi_2 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1/2 \\ 1/2 \end{pmatrix}, \qquad \Phi_3 \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1/4 & 0 \\ 0 & 1/4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 3/4 \\ 1/2 \end{pmatrix}.$$

Prove that Φ_i maps Γ to $\left\{(x,T(x)):x\in\left[\frac{i}{4},\frac{i+1}{4}\right]\right\}$. Proof: Consider $(x,T(x))\in\Gamma$, then by T10),

$$\Phi_0 \begin{pmatrix} x \\ T(x) \end{pmatrix} = \begin{pmatrix} x/4 \\ x/2 + T(x)/4 \end{pmatrix} = \begin{pmatrix} x/4 \\ T(x/4) \end{pmatrix}.$$

Hence $\Phi_0(\Gamma)=\{(x,T(x)):x\in[0,1/4]\}$. The cases i=1,2,3 are similar.

T12) Let $S_0=\{(x,y)\in\mathbb{R}^2:0\leqslant x\leqslant 1,0\leqslant y\leqslant 1\}$. For every $n\geqslant 0$, define $S_{n+1}=\bigcup_{k=0}^3\Phi_k(S_n)$. Prove that S_n is a sequence of monotonically decreasing compact sets and $\Gamma=\bigcap_{n\geqslant 0}S_n$.

Proof: Let $S_n(x)=\{y\in[0,1]:(x,y)\in S_n\}$. We prove by induction that $S_n\subset S_{n-1}$ and $S_n(x)$ is a closed interval containing T(x) for any $x\in[0,1]$. The base n=0 is trivial. Suppose $S_n\subset S_{n-1}$ and $S_n(x)$ is a closed interval containing T(x), then consider S_{n+1} . Note that $\Phi_k(S_n)$ are disjoint, since for any $(x,y)\in\Phi_k(S_n)$, $x\in[k/4,(k+1)/4]$. Hence for any $x\in[0,1/4]$, $S_{n+1}(x)=\{y:(x,y)=\Phi_0(4x,z),z\in S_n(4x)\}=\{2x+z/4:z\in S_n(4x)\}$ is a closed interval containing T(x)=2x+T(4x)/4. By the induction hypothesis $S_n(x)=\{2x+z/4:z\in S_{n-1}(4x)\}$ and $S_n(4x)\subset S_{n-1}(4x)$ so $S_{n+1}(x)\subset S_n(x)$. The case $x\in[1/4,1]$ is similar. Therefore $S_{n+1}\subset S_n$ and S_{n+1} is compact, so by induction $S_n\subset S_{n-1}$ for all n>0 and S_n is compact. Clearly $\Gamma\subset \bigcap_{x>0}S_n$, so it suffices to show that $|S_n(x)|\to 0$ for all $x\in[0,1]$. From the proof above we get

Clearly $\Gamma\subset \bigcap_{n\geqslant 0}S_n$, so it suffices to show that $|S_n(x)|\to 0$ for all $x\in [0,1]$. From the proof above we get $\sup_{x\in [0,1]}|S_n(x)|\leqslant \sup_{x\in [0,1]}|S_{n-1}(x)|/4$, hence $|S_n(x)|\to 0$, therefore

$$\Gamma = \bigcap_{n \geq 0} S_n.$$

T13) Prove that $\sup_{x\in\mathbb{R}}T(x)\geqslant rac{2}{3}$.

Proof: For any $(x,y)\in \Gamma$, by T11) we know that $(x/4+1/4,y/4+1/2)\in \Gamma$, hence if $a=\sup_{x\in \mathbb{R}}T(x)$ then $a\geqslant a/4+1/2$, i.e. $a\geqslant 2/3$.

T14) Find a $c \in [0,1]$ such that $T(c) = \frac{2}{3}$.

Solution: Consider c=1/3, then by T10), T(c)=T(c)/4+1/2, hence $T(c)=\frac{2}{3}$.

T15) For $x \in [0,1]$, suppose $x = \sum_{n=1}^\infty b_n 4^{-n}$, where $b_n \in \{0,1,2,3\}$. Prove that

$$\left\{x \in [0,1]: T(x) = rac{2}{3}
ight\} = \left\{x \in [0,1]: x = \sum_{n=1}^{\infty} b_n 4^{-n}, b_n \in \{1,2\}
ight\}.$$

Proof: If $x=\sum_{n=1}^\infty b_n 4^{-n}$, where $b_n\in\{1,2\}$, then by T10),

$$T(x) = rac{1}{2} + rac{1}{4}T\left(\sum_{n=1}^{\infty}b_{n+1}4^{-n}
ight) = \cdots = rac{1}{2}\left(1 + rac{1}{4} + rac{1}{4^2} + \cdots
ight) = rac{2}{3}.$$

Otherwise take the least n such that $b_n \in \{0,3\}$, denote $y = \sum_{k=1}^\infty b_{n+k-1} 4^{-n}$, then

$$T(x) = rac{1}{2}igg(1+rac{1}{4}+\cdots+rac{1}{4^{n-2}}igg) + rac{\min\{2y,2-2y\}}{4^{n-1}} + rac{1}{4^n}T(4y-b_n) < rac{2}{3},$$

since $T(4y-b_n)\leqslant 2/3$ and $\min\{2y,2-2y\}<1/2$. Therefore

$$\left\{x \in [0,1]: T(x) = \frac{2}{3}\right\} = \left\{x \in [0,1]: x = \sum_{n=1}^{\infty} b_n 4^{-n}, b_n \in \{1,2\}\right\}.$$

T16) As in T11), study the self-similarity of Φ_1,Φ_2 on $\left\{(x,T(x)):x\in[0,1],T(x)=\frac{2}{3}\right\}$, which is a cantor set of Hausdorff dimension $\frac{1}{2}$.

Solution: Same as T11), denote $\Gamma'=\left\{(x,T(x)):x\in[0,1],T(x)=rac{2}{3}
ight\}$, then

$$\Phi_1(\Gamma') = \left\{ (x, T(x)) : x \in \left[0, \frac{1}{2}\right], T(x) = \frac{2}{3} \right\}, \ \Phi_2(\Gamma') = \left\{ (x, T(x)) : x \in \left[\frac{1}{2}, 1\right], T(x) = \frac{2}{3} \right\}.$$