Answer Set Programming

(2) Extensions of ASP programs

Abdallah Saffidine

COMP4418

Overview of the Lecture

- Semantics of ASP programs
- Extensions of ASP programs
- Handling of variables in ASP
- ASP as modelling language

Choice Rules

Definition: choice rule

A choice rule is a rule the form

$$\{A_1; \ldots; A_k\} \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$$
 which allows any subset of $\{A_1, \ldots, A_k\}$ in a stable model.

Choice Rules

Definition: choice rule

A **choice rule** is a rule the form

$$\{A_1;\ldots;A_k\}\leftarrow B_1,\ldots,B_m,$$
 not $C_1,\ldots,$ not C_n which allows any subset of $\{A_1,\ldots,A_k\}$ in a stable model.

Theorem: reduction to normal rules

A choice rule can be encoded by 2k+1 normal rules using 2k+1 new atoms.

Choice Rules

Definition: choice rule

A **choice rule** is a rule the form

$$\{A_1; \ldots; A_k\} \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$$
 which allows any subset of $\{A_1, \ldots, A_k\}$ in a stable model.

Theorem: reduction to normal rules

A choice rule can be encoded by 2k+1 normal rules using 2k+1 new atoms.

Further extensions:

- Conditional literals: $\{A:B\}$ <u>Ex.</u>: $\{m(v,C):c(C)\}$ expands to $\{m(v,r);m(v,g);m(v,b)\}$
- Cardinality constraints: $min \{A_1; ...; A_k\}$ max $\underline{Ex.}$: $1 \{m(v,r); m(v,g); m(v,b)\}$ 1

Integrity Constraints

Definition: integrity constraint

An **integrity constraint** is a rule *r* of the form

$$\leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$$

S **satisfies** r iff some $B_i \notin S$ or some $C_j \in S$.

 P^S contains $\leftarrow B_1, \ldots, B_m$ iff P contains r and $C_1, \ldots, C_n \notin S$.

Integrity Constraints

Definition: integrity constraint

An **integrity constraint** is a rule r of the form

$$\leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$$

S **satisfies** r iff some $B_i \notin S$ or some $C_j \in S$.

 P^S contains $\leftarrow B_1, \ldots, B_m$ iff P contains r and $C_1, \ldots, C_n \notin S$.

Theorem: reduction to normal rules

Let P' be like P except that every integrity constraint

$$\leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$$

is replaced with

 $dummy \leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n, \text{not } dummy$

for some new atom dummy.

Then P and P' have the same stable models.

Negation in the Rule Head

Definition: rules with negated head

A rule with **negated head** is of the form $\operatorname{not} A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$

Negation in the Rule Head

Definition: rules with negated head

A rule with **negated head** is of the form

$$\operatorname{not} A \leftarrow B_1, \ldots, B_m, \operatorname{not} C_1, \ldots, \operatorname{not} C_n$$

Theorem: reduction to normal rules

Let P' be like P except that every rule with negated head not $A \leftarrow B_1, \dots, B_m$, not C_1, \dots , not C_n

is replaced with

$$\leftarrow B_1, \ldots, B_m, \text{not } C_1, \ldots, \text{not } C_n, \text{not } dummy$$

and

$$dummy \leftarrow not A$$

for some new atom *dummy*.

Then P and P' have the same stable models (modulo dummy propositions).

Complexity

Theorem: complexity of NLPs without negations

Is S a stable model of a negation-free P? – **Linear time** Does a negation-free P have a stable model? – **Constant** (yes, one)

Theorem: complexity of NLPs with negations

Is *S* a stable model of *P*? – **Linear time** Does *P* have a stable model? – **NP-complete**

<u>Note</u>: integrity constraints, choice rules, negation in heads **preserve complexity** (program grows only polynomially)