Functional Analysis Homework 6

Deadline: October 21st_

1. Problem 1 (6 points)

Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ be Banach spaces. Let $T: D \subset X \mapsto Y$ be a linear operator with closed graph, show the equivalence of the following statements:

- a) T is injective and its range T(D) is closed in $(Y, \|\cdot\|_Y)$;
- b) There exists a C > 0 such that for every $x \in D : ||x||_X \le C ||Ax||_Y$.

2. Problem 2 (4 points)

Let $(X, \|\cdot\|)$ be an infinite-dimensional normed vector space. Let $Y \subset X$ be a bounded subset with compact boundary. Prove that Y has empty interior.

Hint: Use the fact that unit sphere in an infinite-dimensional normed space is not compact.

3. Problem 3 (4 points)

Let $(X, \|\cdot\|_X)$ be a finite dimensional normed space with $\dim X = d$. Let $x \in X$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. Prove that weak convergence $x_n \xrightarrow{w} x$ for $n \to \infty$ implies that $\|x_n - x\|_X \to 0$ for $n \to \infty$.

4. Problem 4 (6 points)

Let $(X, \|\cdot\|_X), (Y, \|\cdot\|_Y)$ be Banach spaces. Let $T: X \mapsto Y$ be a linear operator. Prove the equivalence of the following statements:

- a) T is continuous;
- b) Given a sequence $(x_n)_{n\in\mathbb{N}}$ in X, if $x_n \xrightarrow{w} x$ in X then $Tx_n \xrightarrow{w} Tx$ in Y.