Let AERINE a modrix.

Def: If $Ax = \lambda x$ for some scalar $\lambda \in \mathbb{C}$ and some nonzero vector $X \in \mathbb{R}^n$, then Is called an eigenvalue of A. and x is called an eigenvector of A associated to 2

Let u, VER" be two vectors Def . The dot product / inner product between u and v is

 $u_0V = u_1V_1 + u_2V_2 + \dots + u_nV_n$

Def The <u>l[†]-norm</u> of u is $|u|_{p} = |u_{1}|^{p} + \cdots + |u_{n}|^{p}$

 $|u|_{1} = |u|_{2} = |u_{1}| + \cdots + |u_{n}|_{2}$ P=1: $|u|_{2}^{2} = |u|_{\ell^{2}}^{2} = |u|_{\ell^{2}}^{2} + \cdots + |u|_{\ell^{2}}^{2}$ P=2: Def: The tremspose of $A = (A_{ij})_{m \times n}$ is $A^T = (A_{\hat{J}^{\hat{I}}})_{n \times m}$ A motrix A is called symmetric if $A = A^T$. A mortinx U is called orthogonal
if UTU = UUT = I Remark: U is orthogonal if and only if the columns of O form an orthonormal

Theorem: (Figenvalue Decomposition for Symmetrie Medrices)

If AER^{nxn} is sym, then there exists an oxthogonal U such that $UAUT = \begin{pmatrix} \lambda_1 \\ \lambda_n \end{pmatrix}$ where $\lambda_1, \dots, \lambda_n$ are eigenvalues of A. Def: Let $A \in \mathbb{R}^{m \times n}$ is called a singular value of A if or 2 is un eigenventre of ATA or AAT Remarka (1) The non-zero eigenveilues of ATA and AAT agree. Theorem (Singular Value Decomposition)
Let A & Rmxn, There exist orthogonal
matrices UER^{mxm}, VER^{nxn} s.t.

Proposition: (1) Ker (A) = Rom (AT)
$$\perp$$

Ker (AT) = Rom (A) \perp

(2) Ker (A) \perp = Rom (AT)

Ker (AT) \perp = Rom (AT)

Ker (AT) \perp = Rom (AT)

Linear Methods in Regnession, 21 Lineen Regnession We denote a sample point by

X = (X1, --, Xp) \(\in \mathbb{R}^{\dagger} \) where p is the # of features.

· Noise-free model: linear regression assumes $y = f(x \beta^{x})$ is a linear function with persemeter Bx.

 $\mathcal{Y} = f(x; \beta^*) = x^T \beta^* \left(= (\beta^*)^T x \right) = \beta_1^* x_1 + \beta_2^* x_4$

Remark: A general linear function of x is $y = \beta_0^* + \beta_1^* x_1 + \dots + \beta_p^* x_p$

In this case, define $x \stackrel{\text{def}}{=} (1, x_1, \dots, x_p)$ $\beta^* = (\beta^*, \beta^*, \beta^*)$, then

Noise model: in the presence of noise E (random) îs $y = \chi^T \beta^* + \epsilon$

Good of linear regression: estimate β^* from the noisy measurement.

Criven the sample points: $\left\{ \left(\chi^{(i)}, \chi_{1} \right), \left(\chi^{(i)}, \chi_{2} \right), \ldots, \left(\chi^{(i)}, \chi_{N} \right) \right\}$

Need to choose β s.t. $x^{(n)} + \beta = y_1$ $x^{(n)} + \beta = y_n$

Set
$$X \stackrel{\text{def}}{=} \begin{bmatrix} x^{(1)} & x^{(2)} & x^{(n)} \end{bmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(n)} \\ x^{(2)} & x^{(2)} & x^{(n)} \end{bmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(n)} \end{bmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2)} \end{pmatrix}_{p \times n} y = \begin{pmatrix} x^{(1)} & x^{(2)} & x^{(2)} \\ x^{(2)} & x^{(2)} & x^{(2$$