Entwicklung eines Termersetzungssystems für assoziative und kommutative Ausdrücke Vortrag zur Bachelorarbeit

Bruno Borchardt

18. August 2021

Betreuer: PD Dr. Prashant Batra

Prof. Dr. Siegfried Rump

• Ziel: vereinfache mathematische Ausdrücke automatisch, etwa $\sin(\frac{21}{2}\pi)$ zu (exakt) 1 oder $x^2 + 5xy - 12xy$ zu $x^2 - 7xy$

- Ziel: vereinfache mathematische Ausdrücke automatisch, etwa $\sin(\frac{21}{2}\pi)$ zu (exakt) 1 oder $x^2 + 5xy 12xy$ zu $x^2 7xy$
- Problem: Computer kennen keine mathematischen Gesetzmäßigkeiten

- Ziel: vereinfache mathematische Ausdrücke automatisch, etwa $\sin(\frac{21}{2}\pi)$ zu (exakt) 1 oder $x^2 + 5xy 12xy$ zu $x^2 7xy$
- Problem: Computer kennen keine mathematischen Gesetzmäßigkeiten
- Idee: formuliere Vereinfachungsregeln

- Ziel: vereinfache mathematische Ausdrücke automatisch, etwa $\sin(\frac{21}{2}\pi)$ zu (exakt) 1 oder $x^2 + 5xy 12xy$ zu $x^2 7xy$
- Problem: Computer kennen keine mathematischen Gesetzmäßigkeiten
- Idee: formuliere Vereinfachungsregeln
- Mathematica ist Beispiel einer kommerziellen Umsetzung

Term

Definition

Terme sind

- Konstantensymbole, etwa 1, −3i, a, sin
- oder Funktionsanwendungen eines Terms f auf die Terme t_1, \ldots, t_n , geschrieben $f(t_1, \ldots, t_n)$, etwa sin(3)

Term

Definition

Terme sind

- Konstantensymbole, etwa 1, -3i, a, sin
- oder Funktionsanwendungen eines Terms f auf die Terme t_1, \ldots, t_n , geschrieben $f(t_1, \ldots, t_n)$, etwa sin(3)

Ist t = 3 + 4a ein Term?

Term

Definition

Terme sind

- Konstantensymbole, etwa 1, -3i, a, sin
- oder Funktionsanwendungen eines Terms f auf die Terme t_1, \ldots, t_n , geschrieben $f(t_1, \ldots, t_n)$, etwa sin(3)

Ist
$$t = 3 + 4a$$
 ein Term?

Ersetzungsregeln

- Paar (I, r) aus Termen I und r, geschrieben I = r
- unterscheide *Literale* (zu vereinfachende Terme) von *Mustern* (Terme in Regeln)
- ullet wird I in einem Literal gefunden, erfolgt die Ersetzung durch r
- Mustervariablen sind Platzhalter in Regeln, idetifiziert durch vorangestellten Unterstrich _, etwa _x

Die Regel $sum(_x, _x) = prod(2, _x)$ steht für die folgende Transformation eines Literals.

Die Regel $sum(_x, _x) = prod(2, _x)$ steht für die folgende Transformation eines Literals.

Aus $t = \sin(\text{sum}(a, a))$ wird $t' = \sin(\text{prod}(2, a))$.

Normalisierung

Wann sind zwei Terme identisch?

- **1** sum(1, 1) vs. 2
- 2 sum(a, b) vs. sum(b, a)
- sum(sum(a, b), 2) vs. sum(a, sum(b, 2))

Normalisierung

Wann sind zwei Terme identisch?

- **1** sum(1, 1) vs. 2
- 2 sum(a, b) vs. sum(b, a)
- sum(sum(a, b), 2) vs. sum(a, sum(b, 2))

- werte bekannte Funktionsanwendungen aus: sum(1, 1) → 2
- ② sortiere Argumente kommutativer Funktionsanwendungen: $sum(b, a) \rightarrow sum(a, b)$
- erlaube keine geschachtelten Funktionsanwendungen derselben assoziativen Funktion:

$$sum(sum(a, b), 2) \rightarrow sum(a, b, 2)$$

Multi-Mustervariablen

- Bestimmte Muster sollen Funktionsanwendungen beliebiger Argumentanzahl darstellen können.
- Multi-Mustervariablen sind Platzhalter für beliebig viele Argumente, identifiziert durch einen Suffix aus drei Punkten, etwa xs...

Multi-Mustervariablen

- Bestimmte Muster sollen Funktionsanwendungen beliebiger Argumentanzahl darstellen können.
- Multi-Mustervariablen sind Platzhalter für beliebig viele Argumente, identifiziert durch einen Suffix aus drei Punkten, etwa xs...

Regel
$$sum(_x, _x) = prod(2, _x)$$
 wird zu $sum(_x, _x, ys...) = sum(prod(2, _x), ys...)$.

Termersetzungssystem

Pseudocode Termersetzungssystem

Input: Regelmenge R, Literal t

- normalisiere t
- ② Wenn $\exists (I, r) \in R$ anwendbar auf t oder Teil von t
- ersetze / in t durch r
- 9 gehe zu 1
- gebe t zurück

Demo

Demo

Spickzettel

```
diff(3 + t + a, t)
:add diff(_u + vs..., _x) = diff(_u, _x) + diff(sum(vs...), _x)
:add diff(_y, _x) | !contains(_y, _x) = 0
:add diff(_x, _x) = 1
```

Match

Definition

Eine Funktion v, die Mustervariablen auf Literale abbildet, ist ein Match des Musters p mit dem Literal t, wenn die normalisierte Form der Ersetzung der Mustervariablen x_i in p durch ihre Funktionswerte $v(x_i)$ mit t identisch ist.

Match

Definition

Eine Funktion v, die Mustervariablen auf Literale abbildet, ist ein Match des Musters p mit dem Literal t, wenn die normalisierte Form der Ersetzung der Mustervariablen x_i in p durch ihre Funktionswerte $v(x_i)$ mit t identisch ist.

Beispiel 1

Mit $v(x) = \sin(a)$ ist v ein Match des Musters $p = \sup(x, x)$ mit dem Literal $t = \sup(\sin(a), \sin(a))$.

Match

Definition

Eine Funktion v, die Mustervariablen auf Literale abbildet, ist ein Match des Musters p mit dem Literal t, wenn die normalisierte Form der Ersetzung der Mustervariablen x_i in p durch ihre Funktionswerte $v(x_i)$ mit t identisch ist.

Beispiel 1

Mit $v(x) = \sin(a)$ ist v ein Match des Musters $p = \sup(x, x)$ mit dem Literal $t = \sup(\sin(a), \sin(a))$.

Beispiel 2

Mit v(x) = 3 ist v ein Match des Musters p = sum(x, x) mit dem Literal t = 6.

Vorgehen

- Muster und Literal werden parallel abgelaufen
- Mustervariablen werden in Entdeckungsreihenfolge der Tiefensuche an Teilterme des Literals gebunden
- Backtracking wenn Match aktuell unmöglich
- Algorithmus berücksichtigt Kommutativität entsprechender Funktionsanwendungen

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_X	-
_У	-
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	-
_У	-
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_X	-
_y	-
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	a
_У	-
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	а
_У	2
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	a
_У	2
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	a
_У	2
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	-
_У	-
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matchstatus	
_x	sum(3, b)
_У	-
zs	-

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Matche
$$p = \text{prod}(\text{pow}(_x, _y), _x, zs...)$$
 in $t = \text{prod}(\text{pow}(a, 2), \text{pow}(\text{sum}(3, b), 4), \text{sum}(3, b))$

Demo

Zusammenfassung

- Terme als Baumstrukturen
- Ersetzungsregeln als Paare von Mustertermen
- Mustererkennung f
 ür assoziative und kommutative Funktionen teilweise rechenintensiv
 - Assoziativität indirekt über Multi-Mustervariablen ausgedrückt
 - Kommutativität direkt berücksichtigt
 - Backtracking

Fragen?