电子技术实验

实验报告

(2020 - 2021 学年度 春季学期)

实验名称 _____实验二:两级放大电路____

姓名刘祖炎学号2019010485院系自动化系教师叶朝辉时间2021 年 4 月 2 日

目录

1	实验	目的	1
2	预习	报告	1
	2.1	测量 2N7000G 的特性曲线	1
	2.2	两级放大电路静态工作点	2
	2.3	两级放大电路动态参数	3
	2.4	两级放大电路电压放大倍数测量	6
	2.5	多级放大电路频率分析	8
	2.6	数据记录表格	q

1. 实验目的

- 了解 N 沟道绝缘栅型场效应管的特性和工作原理。
- 熟悉两级放大电路的设计和调试方法。
- 学习使用 Multisim 分析、测量场效应管和两级放大电路的方法。

2. 预习报告

2.1 测量 2N7000G 的特性曲线

将 2N7000G 的模型参数 $U_{GS(th)}$ 设置为 1.5V,如图3所示搭建仿真电路,对 2N7000G 的输出特性曲线进行仿真,仿真结果如图2所示。

图 1: 测量 2N7000G 输出特性曲线仿真电路图

图 2: 2N7000G 输出特性曲线

如图??所示搭建仿真电路,对 2N7000G 的转移特性曲线进行仿真,并测量 $I_D=5\mu A$ 时的 $U_{GS(th)}$ 和 $U_{GS}=2\times U_{GS(th)}$ 的 I_{DO} ,仿真结果如图4所示。

图 3: 测量 2N7000G 转移特性曲线仿真电路图

图 4: 2N7000G 转移特性曲线

根据测量结果,可以读出 $U_{GS(th)}=1.5002V$, $I_{DO}=91.2274mA$ 。

2.2 两级放大电路静态工作点

直流通路下,有公式:

$$\begin{cases} k_n = \frac{I_{DO}}{U_{GS(th)}^2} = 40.543 mA/V^2 \\ I_{DQ} = k_n (U_{GSQ} - U_{GS(th)})^2 \\ U_{GQ} = \frac{R_{g1}}{R_{g1} + R_{g2}} V_{CC} \\ U_{SQ} = I_{DQ} R_S \end{cases}$$
(1)

由于 $I_{DO}=91.222mA$, $I_{DQ}=2.0mA$, $V_{CC}=12.0V$ 不妨取 $R_{g1}=R_{g2}=300k\Omega$, $U_{GQ}=6.0V$,此时解得:

$$U_{GSQ} = 1.722V, U_{SQ} = 4.278V, R_S = \frac{U_{SQ}}{I_{DQ}} = 2.139k\Omega, U_{GDQ} = -6V$$

依照上述所取 R_{g1}, R_{g2}, R_S 参数值搭建仿真电路,仿真电路图以及仿真结果如图5所示。

图 5: 测量 2N7000G 转移特性曲线仿真电路图

根据仿真结果,可得仿真数据为:

$$R_{g1} = R_{g2} = 300k\Omega, R_S = 2.15k\Omega, I_{DQ} = 2mA, U_G = 6.00V, U_S = 4.29V, U_{GSQ} = 1.71V, U_{GDQ} = -6.00V, U_{GSQ} = 1.71V, U_{GSQ} = -6.00V, U_{GSQ} =$$

$$U_{CEQ} = 4.523V, R_{b1} = 766k\Omega$$

在第二级放大电路中,由实验一数据可得 $I_{CQ} = 3mA$ 时相应理论值: $R_{b1} = 785.9k\Omega$, $U_{CEQ} = 4.520V$ 。将上述理论值与仿真结果一并填入表2中。

2.3 两级放大电路动态参数

取 $R_{bb'} = 800\Omega$, 可对相关动态参数进行理论计算:

$$\begin{cases} g_{m} &= \frac{2}{U_{GS(th)}} \sqrt{I_{DO}I_{DQ}} = 18.010mS \\ r_{be} &= R_{bb'} + \beta \frac{U_{T}}{I_{CQ}} = 2880.0\Omega \\ R_{i} &= R_{g3} + R_{g1}//R_{g2} = 1.060M\Omega \\ R_{i2} &= R_{b1}//r_{be} = 2869\Omega \\ R_{o} &= R_{C} = 2k\Omega \\ A_{u1} &= \frac{g_{m}(R_{S}//R_{i2})}{g_{m}(R_{S}//R_{i2})+1} = 0.9567 \\ A_{u2} &= \frac{-\beta(R_{C}//R_{L}}{r_{be}} = -138.89 \\ A_{u} &= A_{u1} \cdot A_{u2} = -\frac{g_{m}(R_{S}//R_{i2})}{g_{m}(R_{S}//R_{i2})+1} \cdot \frac{\beta(R_{C}//R_{L}}{r_{be}} = -132.88 \end{cases}$$

检验知满足两级电压放大倍数 $|\dot{A}_u| \geq 110$,输入电阻 $R_i \geq 1M\Omega$ 。 利用与静态工作点时相同的电路,进行仿真测量上述参数:

• 第一级电路电压放大倍数 A_{u1}

图 6: 测量 A_{u1} 仿真波形图

$$A_{u1} = \frac{U_o}{U_i} = \frac{6.722mV}{7.040mV} = 0.9548$$

• 两级放大电路电压放大倍数 $\dot{A_u}$

图 7: 测量 A_u 仿真波形图

$$A_{u1} = \frac{U_o}{U_i} = -\frac{1.162V}{7.039mV} = -165.08$$

• 输入电阻 R_i

图 8: 测量输入电阻 R_i 仿真波形图

$$R_i = \frac{U_i}{U_i' - U_i} R_1 = 1M\Omega \times \frac{3.575}{7.027 - 3.575} = 1.036M\Omega$$

• 输出电阻 R_o

图 9: 测量输出电阻 R_o 仿真波形图 $(R_L = 2k\Omega)$

图 10: 测量输出电阻 R_o 仿真波形图 $(R_L = \infty\Omega)$

$$R_o = R_L(\frac{U_O'}{U_O} - 1) = 2k \times (\frac{1.384}{0.711} - 1) = 1.89k\Omega$$

2.4 两级放大电路电压放大倍数测量

• 第一级电路电压放大倍数 A_{u1}

图 11: 测量 Au1 仿真波形图

$$A_{u1} = \frac{U_o}{U_i} = \frac{6.867mV}{7.036mV} = 0.9760$$

图 12: 测量 Au2 仿真波形图

$$A_{u1} = \frac{U_o}{U_i} = -\frac{1.211mV}{7.036mV} = -172.11$$

2.5 多级放大电路频率分析

图 13: f_{max} 测量波形图

图 14: f_L 测量波形图

图 15: f_H 测量波形图

读图可知,仿真所得 $f_L = 344.402 Hz, f_H = 1.054 MHz$ 。

2.6 数据记录表格

表 1: 2N7000G 参数仿真

参数	$U_{GS(th)}$	I_{DO}
仿真值	1.5002V	91.2274mA

表 2: 静态工作点数据表格

 参数	理论值	仿真结果	
$R_g 1/k\Omega$	300	300	300
$R_g 2/k\Omega$	300	300	300
$R_S/k\Omega$	2.14	2.15	2. 385
I_{DQ}/mA	2	2	1.80
$U_A(U_G)/V$	6.00	6.00	5.85
U_S/V	4.28	4.29	4. 29
U_{GSQ}/V	1.72	1.71	1.66
U_{GDQ}/V	-6.00	-6.00	-5.89
U_{CEQ}/V	4.520	4.523	4. 43
$R_{b1}/k\Omega$	785.9	766	784

表 3: 两级放大电路主要性能指标

参数	理论值	仿真结果	实测值
A_{u1}	0.9567	0.9548	0. 9635
A_u	-132.88	-165.08	-157. 14
$R_i/M\Omega$	1.060	1.036	1. 049
$R_o/k\Omega$	2.00	1.89	1.94

表 4: 选做实验

参数	理论值	仿真结果	实测值
A_{u1}	0.9747	0.9760	0. 9737
A_{u2}	-138.89	-172.11	-166. 37
$A_{u1} \cdot A_{u2}$	-135.38	-167.98	-161. 99

表 5: 两级放大电路频率响应

参数	仿真结果	实测值
f_L/Hz	344.402	570. 9
f_H/MHz	1.054	1.03