More Applications

of

the Pumping Lemma

The Pumping Lemma:

- \cdot Given a infinite regular language L
- \cdot there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^{l} z \in L$ i = 0, 1, 2, ...

Non-regular languages

$$L = \{vv^R : v \in \Sigma^*\}$$

Theorem: The language

$$L = \{ vv^R : v \in \Sigma^* \} \qquad \Sigma = \{a,b\}$$
 is not regular

Proof: Use the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{vv^R : v \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and

length $|w| \ge m$

We pick
$$w = a^m b^m b^m a^m$$

Write
$$a^m b^m b^m a^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a...aa...a...ab...bb...ba...a$$

$$x y z.$$

Thus:
$$y = a^k, k \ge 1$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

$$x y^{l} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m b^m a^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...ab...bb...ba...a}^{m + k} \in L$$

Thus:
$$a^{m+k}b^mb^ma^m \in L$$

$$a^{m+k}b^mb^ma^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{vv^R : v \in \Sigma^*\}$$

$$a^{m+k}b^mb^ma^m \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Note: Can we use a string w=amam?

Non-regular languages

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Regular languages

Theorem: The language

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

is not regular

Proof: Use the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string
$$w$$
 such that: $w \in L$ and
$$|w| \ge m$$

We pick
$$w = a^m b^m c^{2m}$$

Write
$$a^m b^m c^{2m} = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = \overbrace{a...aa...aa...ab...bc...cc...c}^{m}$$

$$xyz = \underbrace{a...aa...aa...ab...bc...cc...c}_{x}$$

Thus:
$$y = a^k$$
, $k \ge 1$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma:
$$x y^{l} z \in L$$
 $i = 0, 1, 2, ...$

Thus:
$$x y^0 z = xz \in L$$

$$x y z = a^m b^m c^{2m} \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $xz \in L$

$$xz = \overbrace{a...aa...ab...bc...cc...c}^{m-k} \in L$$

Thus:
$$a^{m-k}b^mc^{2m} \in L$$

$$a^{m-k}b^mc^{2m} \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^l c^{n+l} : n, l \ge 0\}$$

$$a^{m-k}b^mc^{2m} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $L = \{a^{n!}: n \ge 0\}$

$$L = \{a^{n!}: n \ge 0\}$$

Theorem: The language $L = \{a^{n!}: n \ge 0\}$ is not regular

$$n! = 1 \cdot 2 \cdot \cdot \cdot (n-1) \cdot n$$

Proof: Use the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Assume for contradiction that $\,L\,$ is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^{n!}: n \ge 0\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$

length $|w| \ge m$

We pick
$$w = a^{m!}$$

Write
$$a^{m!} = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^{m!} = \underbrace{a...aa...aa...aa...aa...aa...aa}_{x \ y \ z.}$$

Thus:
$$y = a^k$$
, $1 \le k \le m$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

$$x y^{i} z \in L$$

 $i = 0, 1, 2, ...$

Thus:
$$x y^2 z \in L$$

$$x y z = a^{m!}$$

$$y = a^k$$
, $1 \le k \le m$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = \overbrace{a...aa...aa...aa...aa...aa...aa...aa}^{m+k} \underbrace{m!-m}_{x} \in L$$

$$a^{m!+k} \in L$$

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

Since:
$$L = \{a^{n!}: n \ge 0\}$$

There must exist p such that:

$$m! + k = p!$$

$$m!+k \leq m!+m$$

for
$$m > 1$$

$$\leq m!+m!$$

$$< m!m + m!$$

$$= m!(m+1)$$

$$=(m+1)!$$

$$m!+k < (m+1)!$$

$$m!+k \neq p!$$
 for any p

$$a^{m!+k} \in L$$

$$1 \le k \le m$$

BUT:
$$L = \{a^{n!}: n \ge 0\}$$

$$a^{m!+k} \notin L$$

CONTRADICTION!!!

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Lex

Lex: a lexical analyzer

· A Lex program recognizes strings

 For each kind of string found the lex program takes an action

Output

Input

```
Var = 12 + 9;
if (test > 20)
 temp = 0;
else
 while (a < 20)
     temp++;
```

```
Lex
program
```

```
Identifier: Var
```

Operand: =

Integer: 12

Operand: +

Integer: 9

Semicolon:;

Keyword: if

Parenthesis: (

Identifier: test

....

In Lex strings are described with regular expressions

Lex program

```
Regular expressions
               /* operators */
               /* keywords */
    "then"
```

Lex program

Regular expressions

$$(a|b|..|z|A|B|...|Z)+$$
 /* identifiers */

identifiers

Each regular expression has an associated action (in C code)

Examples:

Regular expression	Action
\n	linenum++;
[0-9]+	printf("integer");
[a-zA-Z]+	printf("identifier");

Default action: ECHO;

Prints the string identified to the output

A small lex program

```
%%

[\t\n] ; /*skip spaces*/

[0-9]+ printf("Integer\n");

[a-zA-Z]+ printf("Identifier\n");
```

Input

1234 test

var 566 78

9800

Output

Integer

Identifier

Identifier

Integer

Integer

Integer

```
%{
                   Another program
int linenum = 1;
%}
%%
                ; /*skip spaces*/
[\t]
                linenum++:
\n
               prinf("Integer\n");
[0-9]+
                printf("Identifier\n");
[a-zA-Z]+
                printf("Error in line: %d\n",
                        linenum);
                                             43
```

Input

1234 test

var 566 78

9800 +

temp

Output

Integer

Identifier

Identifier

Integer

Integer

Integer

Error in line: 3

Identifier

Lex matches the longest input string

Example: Regular Expressions "if"

"ifend"

Input: ifend if

Matches: "ifend" "if"

Internal Structure of Lex

The final states of the DFA are associated with actions