

Challenges in Designing Core Algorithmic Models

Alt text: Robotic process automation illustration

Uncertainty and Variability

In environments where sensor data may be **noisy** or incomplete (like heavy rain or fog for a self-driving car), designing robust algorithms is challenging but crucial.

Alt text: Self drive car in rain

Real-Time Performance

Algorithms must respond in real-time.

For example, an industrial robot arm must instantly adjust its movements to prevent errors during high-speed assembly.

Alt text: Robotic arm

Safety and Reliability

In critical systems, such as autonomous surgical robots, the algorithms must guarantee safe operations, as lives depend on them.

Alt text: Robotic surgery

Ethical and Legal Considerations

Autonomous systems raise concerns such as privacy and fairness.

An Al facial recognition system must be designed ethically to avoid bias and ensure fair outcomes.

Alt text: Al facial recognition