

Random forests

 $\frac{\text{Learning steps}}{\text{Resources}}$ $\frac{\text{Quick notes}}{\text{YouTube video (} \rightarrow \underline{\text{link}}\text{)}}$

Learning steps

- ✓ yt video
- notebook/own implementation
- ✓ book chapter

Resources

- website
 - o lesson 6
- notebooks
 - How random forests really work
 - o Road to the top, part 1
- book
 - o chapter 9
 - o solutions to exercises

Quick notes

YouTube video (→ <u>link</u>)

- · titanic wreck
 - good model using binary splits
 - we re-created the OneR model
 - → what if we did a TwoR?
 - remove 'sex' and do a next split
 - men: age; women: pclass
 - create a decision tree
 - P use DecisionTreeClassifier from sklearn to do it for us

- use Gini index
- o random forest
 - idea: make different trees using different records (creating independant from one another) ⇒ averaging the errors will lead to an average error of 0
 - out of the bag error (OOB): to test a particular model, use unused records as validation
 - I to have an idea of the quality of a prediction, take a look at the variance between the different models
- o gradient boosting
 - use model to predict the residuals from the previous one, then finally sum everything
 - · can overfit, unlike random forest
- · fastkaggle (see notebook)
 - o allows to download the data for a competition regardless of the platform used
 - fastcore.parallel
- how to win kaggle competitions fast
 - iterate!
 - use fast models to understand the data more
 - even submitting to kaggle has to be easy
 - AutoML
 - test for multiple hyperparameter values
 - data augmentation
 - tta (test time augmentation)

Random forests 2