Ćwiczenia z ANALIZY NUMERYCZNEJ (M)

Lista M 13 22 stycznia 2016 r. ¹

M13.1. I punkt Niech $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą dominującą przekątniowo, tj. taką, że

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{n} |a_{ij}| \qquad (i = 1, 2, \dots, n).$$

Wykazać, że metoda eliminacji Gaussa bez wyboru elementów głównych zachowuje tę własność, tzn. że wszystkie macierze $A^{(k)}$ są dominujące przekątniowo. Wywnioskować stąd, że każda macierz dominująca przekątniowo jest nieosobliwa i posiada rozkład LU.

- **M13.2.** I punkt Niech cond $(A) := \|A\|_p \|A^{-1}\|_p$ $(p \in \{1, 2, \infty\})$ oznacza p-ty wskaźnik uwarunkowania macierzy $A \in \mathbb{R}^{n \times n}$.
 - a) Wykazać, że $cond(A) \ge 1$.
 - b) Wykazać, że $cond(AB) \leq cond(A) cond(B)$.
- M13.3. 1 punkt Niech $B = [b_{ij}] \in \mathbb{R}^{n \times n}$ będzie macierzą o elementach

$$b_{ii} = 1$$
 $(i = 1, 2, ..., n),$
 $b_{ij} = -1$ $(i < j),$
 $b_{ij} = 0$ $(i > j).$

Sprawdzić, że det $B \ll \operatorname{cond}_{\infty}(B)$, gdzie $\operatorname{cond}_{\infty}(B) := \|B\|_{\infty} \|B^{-1}\|_{\infty}$. Jaki stąd wniosek?

M13.4. I punkt Jak ocenimy uwarunkowanie układu Ax = b, o macierzy

$$A = \left[\begin{array}{cc} 1 & 1 + \varepsilon \\ 1 - \varepsilon & 1 \end{array} \right],$$

dla $0 < \varepsilon \le 0.01$?

M13.5. 1 punkt Niech \tilde{x} będzie przybliżonym rozwiązaniem układu Ax = b, gdzie det $A \neq 0$, $b \neq \theta$. Niech $r := b - A\tilde{x}$ oznacza resztę. Wykazać, że wówczas zachodzą nierówności

$$\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\| \le \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|A\|}, \qquad \frac{\|\boldsymbol{x} - \tilde{\boldsymbol{x}}\|}{\|\boldsymbol{x}\|} \le \operatorname{cond}(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|},$$

gdzie $\boldsymbol{x} := A^{-1}\boldsymbol{b}$ jest dokładnym rozwiązaniem.

M13.6. I punkt Wykazać, że jeśli dowolna norma macierzy B jest mniejsza od 1, to ciąg $\{x^{(k)}\}_{k=0}^{\infty}$ określony wzorem

$$x^{(k+1)} = Bx^{(k)} + c$$
 $(k = 0, 1, ...)$

jest zbieżny do pewnego wektora \boldsymbol{x}^* , niezależnie od wyboru $\boldsymbol{x}^{(0)}$, przy czym – przy naturalnym założeniu (jakim?) – zachodzi nierówność

$$\|x^* - x^{(k)}\| \le \|B\|^k \|x^* - x^{(0)}\| \qquad (k \ge 1).$$

¹ zajęcia 27 stycznia 2016 r.

M13.7. 0,5 punkta Wykazać, że dla dowolnej macierzy $A \in \mathbb{R}^{n \times n}$ oraz dowolnej normy macierzowej $\|\cdot\|$, indukowanej przez pewną normę wektorową, zachodzi nierówność

$$\rho(A) \leqslant ||A||$$
.

M13.8. I punkt Niech \tilde{x} oznacza rozwiązanie układu równań liniowych Ax = b o danej macierzy nieosobliwej A, otrzymane metodą eliminacji, w arytmetyce zmiennopozycyjnej. Dokładność rozwiązania \tilde{x} można poprawić w następujący sposób.

Krok 1 Oblicz wektor $r := b - A\tilde{x}$.

Krok 2 Oblicz rozwiązanie h układu Ah = r.

Krok 3 Oblicz poprawione rozwiązanie układu Ax = b według wzoru $x' := \tilde{x} + h$.

- a) Dlaczego w kroku 1 warto obliczyć wektor r z podwójną precyzją?
- b) Jak obliczyć możliwie małym kosztem wektor \boldsymbol{h} w kroku $\boldsymbol{2}$?
- **M13.9.** I punkt Załóżmy, że wszystkie wartości własne λ_i macierzy $A \in \mathbb{R}^{n \times n}$ są rzeczywiste i spełniają nierówności

$$0 < \alpha \leqslant \lambda_i \leqslant \beta$$
 $(i = 1, 2, \dots, n).$

Wykazać, że metoda iteracyjna Richardsona

$$\boldsymbol{x}^{(k+1)} = (I - \tau A)\boldsymbol{x}^{(k)} + \tau \boldsymbol{b} \qquad (k \geqslant 0),$$

zastosowana do rozwiązania układu równań liniowych Ax = b, jest zbieżna, jeśli $0 < \tau < 2/\beta$.

M13.10. 1 punkt Niech macierz $A = [a_{ij}] \in \mathbb{R}^{n \times n}$ spełnia warunki

$$|a_{jj}| > \sum_{\substack{i=1\\i\neq j}}^{n} |a_{ij}| \qquad (j=1,2,\ldots,n).$$

(Mówimy, że A jest macierzą z przekątną dominującą kolumnowo.)

Pokazać, że metoda iteracyjna Jacobiego, zastosowana do układu równań o macierzy A, jest zbieżna.