Stat 3202 Lab 6

Jane Weissberg.11

2024-06-28

1b.

```
set.seed(123)
mu <- 10
sigma <- 3
n <- 5
alpha <- 0.01
num_samples <- 10000</pre>
true_mu <- 10
compute_coverage <- function(mu, sigma, n, alpha, true_mu) {</pre>
  samples <- rnorm(n, mean = mu, sd = sigma)</pre>
  xbar <- mean(samples)</pre>
  se <- sigma / sqrt(n)</pre>
  zstar <- qnorm(1 - alpha / 2)</pre>
  LL <- xbar - zstar * se
  UL <- xbar + zstar * se
  return(true_mu >= LL & true_mu <= UL)</pre>
coverage_results <- replicate(num_samples, compute_coverage(mu, sigma, n, alpha, true_mu))</pre>
coverage_rate <- mean(coverage_results)</pre>
coverage_rate
## [1] 0.9905
1c.
chooseCRANmirror(graphics = FALSE, ind = 1)
install.packages("DescTools")
##
## The downloaded binary packages are in
   /var/folders/66/_4vz9_y57nx1wgym4pn0zxcc0000gn/T//RtmpTBO2Av/downloaded_packages
library(DescTools)
oatmeal \leftarrow c(790,794,789,801,795,789,795,
797,796,791,801,795,790,782,
799,793,793,798,797,796)
result <- ZTest(oatmeal, sd_pop = 5, conf.level = 0.99)
conf_interval <- result$conf.int</pre>
conf_interval
```

```
## attr(,"conf.level")
## [1] 0.99
1d.
chooseCRANmirror(graphics = FALSE, ind = 1)
install.packages("DescTools")
##
## The downloaded binary packages are in
   /var/folders/66/_4vz9_y57nx1wgym4pn0zxcc0000gn/T//RtmpTB02Av/downloaded_packages
library(DescTools)
set.seed(123)
n <- 50
compute_coverage_ztest <- function(mu, sigma, n, alpha, true_mu) {</pre>
  samples <- rnorm(n, mean = mu, sd = sigma)</pre>
  result <- ZTest(samples, sd_pop = sigma, conf.level = 1 - alpha)
 LL <- result$conf.int[1]</pre>
 UL <- result$conf.int[2]</pre>
  return(true_mu >= LL & true_mu <= UL)</pre>
}
coverage_results_ztest <- replicate(num_samples, compute_coverage_ztest(mu, sigma, n, alpha, true_mu))</pre>
coverage_rate_ztest <- mean(coverage_results_ztest)</pre>
coverage_rate_ztest
## [1] 0.9922
Increasing n makes the confidence interval more narrow because n is in the denominator of the standard
error. When you increase the denominator the fraction becomes smaller. Therefore, the coverage rate gets
closer to (1-\alpha)\%.
  2.
chooseCRANmirror(graphics = FALSE, ind = 1)
install.packages("DescTools")
##
## The downloaded binary packages are in
    /var/folders/66/_4vz9_y57nx1wgym4pn0zxcc0000gn/T//RtmpTB02Av/downloaded_packages
library(DescTools)
explore_coverage <- function(mu, sigma, n, alpha, num_samples, true_mu) {
  coverage_results <- replicate(num_samples, compute_coverage_ztest(mu, sigma, n, alpha, true_mu))</pre>
  return(mean(coverage_results))
```

[1] 791.1701 796.9299

```
}
mu_values \leftarrow c(5, 10, 15)
sigma_values \leftarrow c(1, 3, 5)
n_{values} < c(5, 50, 100)
alpha_values <- c(0.01, 0.05, 0.10)
results <- list()
for (mu_val in mu_values) {
  for (sigma_val in sigma_values) {
    for (n_val in n_values) {
      for (alpha_val in alpha_values) {
        coverage_rate <- explore_coverage(mu_val, sigma_val, n_val, alpha_val, num_samples, true_mu)</pre>
        results <- rbind(results, data.frame(mu = mu_val, sigma = sigma_val, n = n_val, alpha = alpha_v
      }
    }
 }
}
results
```

```
##
      mu sigma
                  n alpha coverage_rate
                  5
## 1
       5
              1
                     0.01
                                  0.0000
## 2
       5
                  5
                     0.05
                                  0.0000
              1
## 3
       5
              1
                  5
                     0.10
                                  0.0000
## 4
       5
              1
                 50
                     0.01
                                  0.0000
## 5
       5
              1
                 50
                     0.05
                                  0.0000
## 6
       5
              1
                 50
                     0.10
                                  0.0000
## 7
       5
              1 100
                     0.01
                                  0.0000
## 8
       5
              1 100
                     0.05
                                  0.0000
## 9
       5
              1 100
                     0.10
                                  0.0000
## 10
       5
                  5
                     0.01
                                  0.1232
## 11
       5
                  5
                     0.05
                                  0.0383
              3
## 12
       5
              3
                  5
                     0.10
                                  0.0181
## 13
       5
              3
                 50
                     0.01
                                  0.0000
## 14
       5
                 50
                     0.05
                                  0.0000
## 15
       5
              3
                 50
                     0.10
                                  0.0000
## 16
       5
              3 100
                     0.01
                                  0.0000
              3 100
## 17
       5
                     0.05
                                  0.0000
              3 100
                     0.10
## 18
       5
                                  0.0000
## 19
       5
              5
                  5
                     0.01
                                  0.6362
## 20
       5
              5
                  5
                     0.05
                                  0.3925
## 21
       5
                  5
              5
                     0.10
                                  0.2727
## 22
       5
              5
                 50
                     0.01
                                  0.0000
## 23
                     0.05
       5
              5
                 50
                                  0.0000
## 24
       5
              5 50
                     0.10
                                  0.0000
## 25
       5
              5 100
                     0.01
                                  0.0000
             5 100
## 26
       5
                     0.05
                                  0.0000
## 27
       5
             5 100
                     0.10
                                  0.0000
                  5
## 28 10
                     0.01
                                  0.9899
              1
## 29 10
                  5
                     0.05
                                  0.9511
              1
## 30 10
                  5 0.10
              1
                                  0.9026
```

##	31	10	1	50	0.01	0.9908
##	32	10	1	50	0.05	0.9516
##	33	10	1	50	0.10	0.9006
##	34	10	1	100	0.01	0.9899
##	35	10	1	100	0.05	0.9515
##	36	10	1	100	0.10	0.9012
##	37	10	3	5	0.01	0.9905
##	38	10	3	5	0.05	0.9516
##	39	10	3	5	0.10	0.9036
##	40	10	3	50	0.01	0.9878
##	41	10	3	50	0.05	0.9508
##	42	10	3	50	0.10	0.8931
##	43	10	3	100	0.01	0.9905
##	44	10	3	100	0.05	0.9491
##	45	10	3	100	0.10	0.9016
##	46	10	5	5	0.01	0.9893
##	47	10	5	5	0.05	0.9518
##	48	10	5	5	0.10	0.8949
##	49	10	5	50	0.01	0.9903
##	50	10	5	50	0.05	0.9467
##	51	10	5	50	0.10	0.8978
##	52	10	5	100	0.01	0.9894
##	53	10	5	100	0.05	0.9505
##	54	10	5	100	0.10	0.8921
##	55	15	1	5	0.01	0.0000
##	56	15	1	5	0.05	0.0000
##	57	15	1	5	0.10	0.0000
##	58	15	1	50	0.01	0.0000
##	59	15	1	50	0.05	0.0000
##	60	15	1	50	0.10	0.0000
##	61	15	1	100	0.01	0.0000
##	62	15	1	100	0.05	0.0000
##	63	15	1	100	0.10	0.0000
##	64	15	3	5	0.01	0.1228
##	65	15	3	5	0.05	0.0384
##	66	15	3	5	0.10	0.0204
##	67	15	3	50	0.01	0.0000
##	68	15	3	50	0.05	0.0000
##	69	15	3	50	0.10	0.0000
##	70	15	3	100	0.01	0.0000
##	71	15	3	100	0.05	0.0000
##	72	15	3	100	0.10	0.0000
##	73	15	5	5	0.01	0.6329
##	74	15	5	5	0.05	0.3926
##	75	15	5	5	0.10	0.2672
##	76	15	5	50	0.01	0.0000
##	77	15	5	50	0.05	0.0000
##	78	15	5	50	0.10	0.0000
##	79	15	5	100	0.01	0.0000
##	80	15	5	100	0.05	0.0000
##	81	15	5	100	0.10	0.0000
			_		0.10	0.000

Changing μ and σ does not affect the coverage rate. Increasing α results in a smaller confidence level, so the coverage rate is lower. On the other hand, decreasing α results in a higher confidence level, so the coverage

rate is higher.