

Evaluación de Bachillerato para Acceder a estudios Universitarios

QUÍMICA

Texto para los Alumnos

3 páginas

Castilla y León

Solo se corregirán los ejercicios claramente elegidos, en el orden que aparezcan resueltos, que no excedan de los permitidos y que no aparezcan totalmente tachados. En todo caso, se adaptará a lo dispuesto por la COEBAU.

CRITERIOS GENERALES DE EVALUACIÓN

El alumno deberá contestar a 5 de las 10 preguntas, con sus problemas y cuestiones en cada caso.

La calificación máxima (entre paréntesis al final de cada pregunta) la alcanzarán aquellos ejercicios que, además de bien resueltos, estén bien explicados y argumentados, cuidando la sintaxis y la ortografía y utilizando correctamente el lenguaje científico, las relaciones entre las cantidades físicas, símbolos, unidades, etc.

DATOS GENERALES

Los valores de las constantes de equilibrio que aparecen en los problemas debe entenderse que hacen referencia a presiones expresadas en atmósferas y concentraciones expresadas en mol·L⁻¹.

El alumno deberá utilizar los valores de los números atómicos, masas atómicas y constantes universales que se le suministran con el examen.

- 1. Dados los elementos A (Z = 17), B (Z = 19) y C (Z = 20), responda a las siguientes cuestiones:
 - a. Escriba sus configuraciones electrónicas ordenadas.

(Hasta 0,6 puntos)

b. Ordene razonadamente estos elementos según el valor creciente del tamaño de sus átomos.

(Hasta 0,5 puntos)

- c. Razone cual será el ión más estable para cada uno de esos átomos.
- (Hasta 0,5 puntos)
- **d.** Escriba la fórmula de un compuesto que contenga solamente los elementos A y C. Indique cual será el tipo de enlace que explique mejor sus propiedades. (Hasta 0,4 puntos)
- 2. Cada comprimido de aspirina contiene 0,5 g de ácido acetilsalicílico, un ácido monoprótico débil de fórmula C₉O₄H₈ (de forma simplificada HA). Se disuelve un comprimido de aspirina en agua hasta formar 200 mL de disolución, se mide su pH y resulta ser 2,65.
 - a. Determine el valor de la constante de acidez de dicho ácido.

(Hasta 1,0 puntos)

- **b.** Explique si el pH de una disolución de la sal sódica del ácido acetilsalicílico es menor, igual o mayor que 7. Escriba los equilibrios necesarios para su explicación. (Hasta 1,0 puntos)
- **3.** Se introduce fosgeno (COCl₂) en un recipiente vacío de 2 L a una presión de 0,82 atm y a una temperatura de 227 °C, produciéndose su descomposición según el equilibrio:

 $COCl_2(g) \leftrightarrows CO(g) + Cl_2(g)$ Sabiendo que en estas condiciones el valor de K_p vale 0,189, calcule:

a. La concentración inicial del fosgeno.

(Hasta 0,2 puntos)

b. Las concentraciones de todas las especies en el equilibrio.

(Hasta 1,2 puntos)

c. La presión parcial de cada uno de los componentes en el equilibrio

(Hasta 0,6 puntos)

- **4.** El producto de solubilidad del $Mn(OH)_2$ es 4,6·10⁻¹⁴. Calcule:
 - a. La solubilidad del hidróxido de manganeso en g/L.

(Hasta 1,0 puntos)

b. El pH de una disolución saturada de Mn(OH)₂.

(Hasta 1,0 puntos)

Evaluación de Bachillerato para Acceder a estudios Universitarios

QUÍMICA

Texto para los Alumnos

3 páginas

Castilla y León

5. A partir del 1-propanol (propan-1-ol) escriba la reacción de obtención de los compuestos de los apartados a, b y c. Formule y nombre todas las sustancias e indique en cada caso el tipo de reacción:

a. 1-cloropropano (Hasta 0,7 puntos)

b. propeno. (Hasta 0,7 puntos)

c. ácido propanoico (Hasta 0,6 puntos)

6. Teniendo en cuenta la estructura y el tipo de enlace, justifique las siguientes afirmaciones:

a. El cloruro de sodio tiene mayor punto de fusión que el bromuro de sodio. (Hasta 0,5 puntos)

b. El carbono en forma de diamante es un sólido muy duro. (Hasta 0,5 puntos)

c. El nitrógeno molecular presenta gran estabilidad química. (Hasta 0,5 puntos)

d. El amoniaco gaseoso es una molécula polar. (Hasta 0,5 puntos)

7. La reacción A + 3B → C es de primer orden respecto de A y de segundo orden respecto de B. Utilizando los datos de la tabla, calcule:

a. La constante de velocidad con sus unidades correspondientes. (Hasta 0,5 puntos)

b. El orden total de la reacción y escriba la ecuación de la velocidad. (Hasta 0,5 puntos)

c. Los valores de las concentraciones que faltan en la tabla. (Hasta 1,0 puntos)

Experimento	[A] (mol·L ⁻¹)	[B] (mol·L ⁻¹)	V (mol·L ⁻¹ ·s ⁻¹)
1	0,10	0,30	0,030
2	•••••	0,60	0,120
3	0,30		0,090

8. Calcule:

a. El pH de la disolución resultante de añadir 50 mL de ácido clorhídrico (HCl) 0,24 M a 50 mL de hidróxido de potasio (KOH) 0,2 M, suponiendo que los volúmenes son aditivos.

(Hasta 1,0 puntos)

- **b.** El volumen de HCl 0,5 M necesario para neutralizar 50 mL de KOH 0,2 M. (Hasta 1,0 puntos)
- 9. Responda a las siguientes cuestiones, escribiendo las reacciones que tienen lugar en cada electrodo:
 - a. Se hace pasar una corriente eléctrica de 1,5 A a través de 250 mL de una disolución acuosa de iones Cu²⁺ 0,1 M. ¿Cuántos minutos tienen que transcurrir para que todo el cobre de la disolución se deposite como cobre metálico? (Hasta 1,0 puntos)
 - **b.** Determine el volumen de Cl₂ gaseoso, medido a 27 °C y 1 atm, que se desprenderá en el ánodo durante la electrólisis de una disolución acuosa de un cloruro metálico, aplicando una corriente de 4 A de intensidad durante 15 minutos. (Hasta 1,0 puntos)

10.Formule y nombre:

a. Dos isómeros de posición de fórmula C₃H₈O. (Hasta 0,7 puntos)
b. Dos isómeros de función de fórmula C₃H₆O. (Hasta 0,7 puntos)
c. Dos isómeros de cadena de fórmula C₆H₁₂. (Hasta 0,6 puntos)

LEÓ	X VI	TIL
196		CNG
	-	Spie
	TEQ	OPT A VI

		€ (VA TEO		Evalu: Accede	uación o ler a est	Evaluación de Bachillerato para Acceder a estudios universitarios	illerato iniversi	para tarios		OUÍMICA	ПСА	EJE	EJERCICIO			
		EIDMÉ	S DE CNSTILL			Cast	Castilla y León	León			,		N A	N° Páginas: 3			
1. Tabla periódica de los elementos	ódica de los	s elemen	ıtos					Grupos	Ñ								
1	1 2	8	4	S	9	7	∞	6	10	11	12	13	14	15	16	17	18
[2
1 E	Н																He
1,1	01																4,00
					Z	Nún	Número atómico	ico				2	9	7	8	6	10
2 T	.i Be				×	J 1	Símbolo					B	C	Z	0	Έ.	Ne
(6,					$\mathbf{A_r}$	Masa s	Masa atómica relativa	lativa				10,81	12,01	14,01	16,00	19,00	20,18
1												13	14	15	16	17	18
<u>Z</u> ზ												A	Si	Ь	S	C	Ar
22,												26,98	28,09	30,97	32,06	35,45	39,95
		21	22	23	24	25	97	27	28	56	30	31	32	33	34	35	36
4		Sc	Ë	>	Cr	Mn	Fe	Co	Z	Cu	Zn	Сa	g	As	Se	Br	Kr
odos 7 39,		44,96	47,87	50,94	52,00	54,94	55,85	58,93	58,69	63,55	65,38	69,72	72,63	74,92	78,97	79,90	83,80
		39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
S		X	Zr	Sp	M_0	Тc	Ru	Rh	Pd	Ag	Cq	In	Sn	$\mathbf{S}\mathbf{p}$	Te	Ι	Xe
85,		88,91	91,22	92,91	95,95	[67]	101,07	102,91	106,42	107,87	112,41	114,82	118,71	121,76	127,60	126,90	131,29
3		57	72	73	74	75	92	77	28	62	80	81	82	83	84	82	98
9		La	Hť	Га	*	Re	Os	lr	Pt	Au	Hg	Ξ	Pb	Bi	P_0	At	Rn
132		138,91	178,49	180,95	183,84	186,21	190,23	192,22	195,08	196,97	200,59	204,38	207,2	208,98	[509]	[210]	[222]
∞		68	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
		Ac	Rf	Db	S	Bh	Hs	Mt	Ps	Rg	Cn	N N	도	Mc	Lv	Z	ogo
[2]		[227]	[267]	[270]	[271]	[270]	[277]	[276]	[281]	[582]	[285]	[285]	[589]	[589]	[293]	[294]	[294]

Períodos

17	Lu	174,97	103	Γ r	[262]
20	Λþ	173,05	102	N ₀	[529]
69	Тm	168,93	101	Md	[528]
89	Er	167,26	100	Fm	[257]
<i>L</i> 9	\mathbf{H}_{0}	164,93	66	Es	[252]
99	Dy	162,50	86	Ct	[251]
65	$\mathbf{T}\mathbf{b}$	158,93	26	Bk	[247]
64	Вd	157,25	96	Cm	[247]
63	Eu	151,96	98	Am	[243]
62	\mathbf{Sm}	150,36	76	Pu	[244]
61	Pm	[145]	66	Np	[237]
9	Nd	144,24	92	n	238,03
29	Pr	140,91	91	Pa	231,04
28	Ce	140,12	06	Th	232,04
27	La	138,91	68	Ac	[227]

2. Constantes físico-químicas

Carga elemental (e): $1,602 \cdot 10^{-19}$ C Constante de Avogadro (N_A): $6,022 \cdot 10^{23}$ mol⁻¹
Unidad de masa atómica (u): $1,661 \cdot 10^{-27}$ kg
Constante de Faraday (F): 96490 C mol⁻¹
Constante molar de los gases (R): 8,314 J mol⁻¹ K⁻¹ = 0,082 atm dm³ mol⁻¹ K⁻¹

3. Algunas equivalencias 1 atm = 760 mmHg = 1,013·10⁵ Pa 1 cal = 4,184 J 1 eV = 1,602·10⁻¹⁹ J