Final quiz practice

Select the best answer.

Let G(V, E) be a connected graph such that $ V =9$. Select the statement that is always true? (A) $ E \geq 29$ (B) $ E \geq 8$ (C) $ E \geq 36$ (D) $ E \geq 9$
Let G be a graph. Let Gc be the complement of G. Select the statement that is always true. (A) G or Gc is connected. (B) If G is connected, Gc is disconnected. (C) If G is connected, Gc is connected. (D) All of the above.
In order to determine whether or not a graph has an <u>odd</u> cycle, we use: (A) Topological ordering (B) BFS (C) DFS (D) none of the above
A graph G has exactly two components Then G is a (A) Forest (B) complete graph (C) disconnected graph (D) bipartite graph
Let C be a connected component of a graph. If $ V(C) = k$, then the maximum number of edges in C is (A) $k^2/2$. (B) $(k^2 + k)/2$. (C) k^2 . (D) $(k^2 - k)/2$
True or False questions.
There is a graph with seven vertices such that its vertices has the following vertex degrees: 3, 5, 3, 4, 2, 6, 4. A connected component on n vertices and n edges may or may not have a cycle. We use dynamic programming to reduce the complexity due to the dynamic nature of the problem. In the case of an undirected graph, a minimum spanning tree can be used to compute the shortest path between any two vertices. Not every NP-Complete problem can be verified in Polynomial-time. There are problems in P that are not in NP. If there is a polynomial reduction from problem A to Problem B means if you have polynomial time algorithm to solve Problem A, then we have a polynomial time algorithm for Problem B. A problem P is NP-hard if for every problem S in NP, P is polynomial reducible to S.