

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ **ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ**КАФЕДРА **ПРОГРАММНОЕ ОБЕСПЕЧЕНИЕ ЭВМ И ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ (ИУ7)**

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ

ОТЧЕТ

По лабораторной работе № 4

Название: Исследование синхронных счетчиков

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-45Б	26.05.2022	С.К.Романов
	(Группа)	(Подпись, дата) (И.О. Фамилия)
Преподаватель			С.В.Ибрагимов
		(Подпись, дата) (И.О. Фамилия)

Цель работы:

Изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

1. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 цифровых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 В и 0 В (общая);
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе.

Вариант 18: 10010010

Схема, построенная в Multisim

Временная диаграмма

Puc.1-2

На данной диаграмме видно, что мультиплексор можно использовать как адресный коммутатор: он передает на выход информационный сигнал, адрес которого установлен на адресных входах.

2. Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 аналоговых сигналов:

- а. на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- b. на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц;
- с. снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

Схема, построенная в Multisim

puc.2-1

Временная диаграмма

puc. 2-2

По данным с осциллографа можно сделать вывод, что выходной сигнал — это функция, а не дискретные значения. В дискретные значения он переводится по следующему правилу: если сигнал >= 0.5, то он интерпретируется как 1, иначе — как 0.

puc. 2-3

3. Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ четырех переменных.

ФАЛ задается преподавателем. Проверить работу формирователя в статическом и динамическом режимах. Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ

Вариант 18: 0, 3, 6, 7, 9, 10, 13, 14

Вспомогательная таблица:

					Ta	блица 1
№ набора	A2	A1	A0	X	f	Di
0	0	0	0	0	1	!x
1	0	0	0	1	0	
2	0	0	1	0	0	X
3	0	0	1	1	1	
4	0	1	0	0	0	0
5	0	1	0	1	0	
6	0	1	1	0	1	1
7	0	1	1	1	1	
8	1	0	0	0	0	X
9	1	0	0	1	1	
10	1	0	1	0	1	!x
11	1	0	1	1	0	
12	1	1	0	0	0	X
13	1	1	0	1	1	
14	1	1	1	0	1	!x
15	1	1	1	1	0	

Схема, построенная в Multisim

Временная диаграмма, соответствующая схеме

puc. 3-2

4. Наращивание мультиплексора.

Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4. Исследовать мультиплексора MUX 16-1 в динамическом режиме. На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 — по варианту ($Bapuahm\ 18:\ 0,\ 3,\ 6,\ 7,\ 9,\ 10,\ 13,\ 14$ ($1001\ 0011\ 0110\ 0110)$). Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1.

Рисунок 4

Схема построенная в Multisim:

puc. 4-1.

Временная диаграмма

Исходя из данных логического анализатора, наша построенная схема работает верно, соответственно, можно сделать вывод о том, что построение было выполнено верно. Таким образом, используя данный метод наращивания, можно реализовать мультиплексор любой

сложности.

Вывод

В результате данной лабораторной работы были изучены принципы построения и практического применения, а также экспериментально исследованы мультиплексоры.

Контрольные вопросы

1. Что такое мультиплексор?
Мультиплексор – это функциональный узел, имеющий □ адресных
входов и $\square = 2^{\land}\square$ информационных входов и выполняющий
коммутацию на выход того информационного сигнала, адрес (т.е. номер)
которого установлен на адресных входах. Мультиплексор переключает
сигнал с одной из 🗆 входных линий на один выход.
2. Какую логическую функцию выполняет мультиплексор?
Аі - адресные входы и сигналы Dj - информационные входы и сигналы
ті - конституента числу, образованному двоичным кодом сигналов на
адресных входах EN - вход и сигнал разрешения (стробирования)
3. Каково назначение и использование входа разрешения?
Вход □□ используется для:
1. Разрешения работы мультиплексора
2. Стробирования
3. Наращивания числа информационных входов
При $\square \square = 1$, разрешается работа мультиплексора, при $\square \square -$ работа
запрещена.
4. Какие функции может выполнять мультиплексор?
Минтиппексоры широко применциотся пла построения:

- 1. коммутаторов-селекторов
- 2. постоянных запоминающих устройств емкостью бит
- 3. комбинационных схем, реализующих функции алгебры логики
- 4. преобразователей кодов (например, параллельного кода в последовательный) и других узлов.

5. Какие способы наращивания мультиплексоров?

Существует два способа наращивания коммутируемых каналов:

- 1. по пирамидальной схеме соединения мультиплексоров меньшей размерности
- 2. путем выбора мультиплексора группы информационных входов по адресу (т.е. номеру) мультиплексора с помощью дешифратора адреса мультиплексора группы, а затем выбором информационного сигнала мультиплексором группы по адресу информационного сигнала в группе.

6. Поясните методику синтеза формирователя ФАЛ на
мультиплексоре?
Для реализации ФАЛ □ + 1 переменных на адресные входы
мультиплексора подаются переменных, на информационных входы
$\Box + 1$ -ая переменная (или ее инверсия), константы 0 или 1 (в соответствии
со значениями ФАЛ)
7. Почему возникают ложные сигналы на выходе мультиплексора?
Как их устранить?
Для исключения на выходе ложных сигналов (их вызывают гонки
входных сигналов), вход 🗆 🗀 используется как стробирующий. Для
выделения 18 полезного сигнала на вход 🗆 🗆 подается сигнал в
интервале времени, свободном от действия ложных сигналов.