LAPORAN TUGAS BESAR I

Milestone B: Backward Propagation IF4074 Pembelajaran Mesin Lanjut

Disusun Oleh

Aditya Putra Santosa / 13517013 Leonardo / 13517048 Vinsen Marselino / 13517054

Institut Teknologi Bandung Sekolah Teknik Elektro dan Informatika Teknik Informatika 2020

1. Penjelasan Kode Program

Pada implementasi CNN kali ini, kami membuat beberapa kelas. Sebuah kelas, dapat merepresentasikan sebuah layer, ataupun menampung seluruh layer yang ada. Setiap kelas layer harus mengimplementasikan fungsi updateInputShape dan forward yang kemudian akan dipanggil dari kelas sequential. Berikut adalah kelas yang diimplementasikan dan penjelasannya.

Nam a Kela s	Deskripsi	Fungsi & Variabel
Sequential	Berfungsi untuk menyimpan model CNN / mendefinisikan struktur model. Kelas ini dapat menampung layer-layer yang akan digunakan dalam model. Pada layer pertama, perlu didefinisikan input_shape. Untuk layer-layer selanjutnya, akan disesuaikan dengan output_shape dari layer sebelumnya.	Fungsi: Add: Berguna untuk menambahkan layer kedalam model. Forward: Menerima matrix (n,input_shape), dimana n adalah banyak data yang akan di forward. Variabel: layers: list dari layer yang ada pada sebuah model CNN. output_shape: ukuran keluaran dari model
Conv 2D	Berfungsi sebagai layer konvolusi dan detector pada CNN. Kelas ini dapat ditambahkan pada	Fungsi: • forward : mengembalikan hasil penjumlahan konvolusi per channel untuk setiap

	kelas sequential untuk melakukan konvolusi.	feature map yang dihasilkan Variabel: input_shape : ukuran masukan untuk sebuah layer output_shape : ukuran keluaran dari sebuah layer num_filter : menyatakan banyaknya filter yang digunakan / banyak feature map yang dihasilkan kernel_shape : menyatakan ukuran dari kernel (w_kernel, h_kernel, c) pad : besar padding stride : besar stride input_shape : menyatakan
Pool ng2I		 activation: jenis fungsi aktivasi yang dipakai Fungsi: forward: menerima sejumlah feature map hasil konvolusi dan melakukan downsampling dengan mengambil value paling representatif dari window yang didefinisikan ukuran pool (pool_shape) untuk setiap dimensi Variabel:

Flatte	Kelas ini digunakan untuk melakukan flattening, atau mengubah bentuk matrix hasil dari konvolusi menjadi bentuk array.	 input_shape : ukuran masukan untuk sebuah layer output_shape : ukuran keluaran dari sebuah layer pool_shape : bentuk window dari matrix pooling padding : besar padding stride : besar stride pool_mode : jenis dari pooling yang digunakan (max, avg) Fungsi: forward : Menerima hasil dari konvolusi, dan mengembalikan array hasil flattening dari hasil konvolusi tersebut. Variabel: input_shape : ukuran masukan untuk sebuah layer output_shape : ukuran keluaran dari sebuah layer
Dens	Digunakan sebagai	Fungsi:
e	representasi FCNN layer.	• forward : mengalikan matrix
	Kelas ini akan menerima	input (n, input_shape)
	input_shape dan jumlah unit sehingga output yang	dengan matrix weight (input_shape, unit)
	dihasilkan adalah (n, unit)	(input_snape, unit) kemudian menjumlahkannya
	dengan n adalah	dengan matrix bias.

banyaknya data yang	Variabel:
masuk.	input_shape : ukuran masukan
	untuk sebuah layer
	output_shape : ukuran keluaran
	dari sebuah layer
	units : banyaknya unit yang
	akan dibuat
	activation : jenis fungsi aktivasi
	yang akan dipakai

Selain kelas-kelas untuk *layers* dan Sequential model, terdapat juga beberapa file yang berisikan fungsi-fungsi pembantu yang dipakai dalam beberapa kelas yang disebutkan di atas.

1. util.py

No.	Nama Fungsi	Parameter Fungsi	Penjelasan Fungsi
1.	conv2d_batch	 mat: matrix data x kernel: kernel untuk konvolusi pad: padding untuk matrix data stride: lompatan data yang dilakukan saat konvolusi 	Fungsi conv2d melakukan konvolusi untuk matrix mat yang telah dipadding sebanyak pad menggunakan kernel dengan pergeseran sebanyak stride. Konvolusi dilakukan untuk setiap batch data masukan.
2.	conv2d_batch_kernel	 mat: matrix data x kernel: kernel untuk konvolusi pad: padding untuk matrix data 	Melakukan konvolusi batch namun menggunakan kernel batch yang seukuran dengan matrix <u>mat</u> yang telah diberi <i>padding</i> <u>pad</u> .

		stride: lompatan data yang dilakukan saat konvolusi	
3.	get_pooling_region	 <u>x</u>: matrix data x <u>pool_shape</u>: ukuran dari pool untuk mendapatkan region pool <u>stride</u>: lompatan data yang dilakukan saat pooling <u>output_shape</u>: ukuran output yang diharapkan 	Fungsi mengembalikan satu-per-satu region untuk melakukan pooling.
4.	one_channel_pooling	 <u>x</u>: matrix data x <u>pool_shape</u>: ukuran dari pool untuk mendapatkan region pool <u>stride</u>: lompatan data yang dilakukan saat pooling <u>padding</u>: padding untuk matrix data <u>pool_mode</u>: mode dari pooling yang dilakukan (maximum atau average) (default: max) 	Melakukan pooling untuk suatu gambar 1 channel. Pooling dilakukan terhadap data x yang telah dipadding sebanyak padding. Pooling dilakukan dengan ukuran pool pool_shape dengan pergeseran stride_dan mode pooling pool_mode.
5.	pooling2d	<u>x</u>: matrix data x<u>pool_shape:</u> ukuran dari	Melakukan multi-channel pooling dengan parameter-parameter yang

		pool untuk mendapatkan region pool stride: lompatan data yang dilakukan saat pooling padding: padding untuk matrix data pool_mode: mode dari pooling yang dilakukan (maximum atau average) (default: max)	diberikan.
6.	readImage	 path: lokasi direktori dari gambar yang ingin dibaca image_size: ukuran yang diinginkan dari gambar. (berbentuk tuple of width height). 	Melakukan pembacaan gambar dari direktori <u>path</u> menggunakan OpenCV. Gambar lalu akan di- <i>resize</i> menjadi ukuran <u>image_size</u> sebelum di- <i>return</i> .

2. activation.py

Nama Fungsi	Parameter Fungsi	Penjelasan Fungsi
sigmoid	• <u>x</u> : data yang akan diaktivasi	Pengimplementasian fungsi sigmoid $f(x) = \frac{1}{(1+e^{-x})}$
sigmoid_der iv	• <u>x</u> : data yang akan diaktivasi	Pengimplementasian turunan fungsi sigmoid $f'(x) = \sigma(x) - (1 - \sigma(x))$
relu	• <u>x</u> : data yang akan diaktivasi	Pengimplementasian fungsi relu $f(x) = max(0,1)$
relu_deriv	• <u>x</u> : data yang akan diaktivasi	Pengimplementasian turunan fungsi relu $f'(x) = \begin{cases} 0 & x \leqslant 0 \\ 1 & x > 0 \end{cases}$
leaky_relu	• <u>x</u> : data yang akan diaktivasi	Pengimplementasian fungsi leaky relu dengan parameter leak 1/100 $f(x) = max(\frac{x}{100}, x)$
leaky_relu_ deriv	• <u>x</u> : data yang akan diaktivasi	Pengimplementasian turunan fungsi leaky relu $f'(x) = \begin{cases} 0.01 & x \leqslant 0 \\ 1 & x > 0 \end{cases}$

2. Hasil Eksperimen

Pada bagian ini akan dipaparkan hasil dari beberapa kali eksperimen yang dilakukan, baik menggunakan split train maupun k-fold.

2.1. Split Train 90% 10%

ID	Arsitektur	Parameter	Hasil Eksperimen
1	Conv2D (8 filter, kernel_size = (2,2), pad = 0, stride = 2, relu) Pooling2D (pool_size = (2,2), stride = 2, padding = 0, average) Flatten Dense (8 unit, relu) Dense (4 unit, relu) Dense (1 unit, sigmoid)	Image_size = (30,30) Epoch = 10 Learning rate = 0.04 Momentum = 0.3 Batch-size = 10	precision recall f1-score support 0 0.67 1.00 0.80 2 1 1.00 0.50 0.67 2 accuracy 0.75 4 macro avg 0.83 0.75 0.73 4 weighted avg 0.83 0.75 0.73 4 [[2 0] [1 1]]
2	Conv2D (4 filter, Kernel_size = (3,3), Pad = 0, Stride = 2, relu) Conv2D (4 filter, kernel_size = (2,2), pad = 0, stride = 2, relu) Pooling2D (pool_size = (2,2), stride = 2, padding = 1, average) Flatten Dense (4 unit, relu) Dense (1 unit, sigmoid)	Image_size = (30,30) Epoch = 5 Learning rate = 0.04 Momentum = 0.3 Batch-size = 10	precision recall f1-score support 0 1.00 0.50 0.67 2 1 0.67 1.00 0.80 2 accuracy 0.75 4 macro avg 0.83 0.75 0.73 4 weighted avg 0.83 0.75 0.73 4 [[1 1] [0 2]]

2.2. 10-fold cross validation

ID	Arsitektur	Parameter	Hasil Eksperimen
1	Conv2D (6 filter, kernel_size = (2,2), pad = 0, stride = 2, relu) Pooling2D (pool_size = (2,2), stride = 2, padding = 0, average) Flatten Dense (4 unit, relu) Dense (1 unit, sigmoid)	Image_size = (30,30) Epoch = 10 Learning rate = 0.04 Momentum = 0.3 Batch-size = 10	Test Data Mean Accuracy = 53% Max Accuracy = 75% (fold 3, 5, 7, 10) All Data Mean Accuracy = 56.75% Max Accuracy = 65% (fold 4) Max Accuracy 2 = 62.5% (fold 3, 6) Max Accuracy 3 = 60% (fold 5)

3. Pembagian Tugas

Anggota	Tugas
13517013 / Aditya Putra Santosa	 Implementasi Backpropagation Convolutional Layer Implementasi Momentum Refaktor Backpropagation Dense Layer Refaktor Sequential Model Eksperimen model
13517048 / Leonardo	 Implementasi <i>Backpropagation</i> Pooling Layer Refaktor fungsi-fungsi utilitas Eksperimen model Pembuatan Laporan
13517054 / Vinsen Marselino	 Implementasi <i>Backpropagation</i> Flatten Layer Eksperimen model Implementasi <i>Save</i> dan <i>Load</i> model

• Per
