

آزمایشگاه فیزیک عمومی ۲

دانشکده فیزیک دانشگاه صنعتی شریف

پاییز ۱۴۰۲

دوشنبه صبح – کروه 🗚

معین آعلی - ۴۰۱۱۰۵۵۱۱

امیرحسین صوری - ۴۰۱۱۰۲۱۸۲

آزمایشگاه فیزیک عمومی ۲ - آزمایش شماره ۱ دوشنبه صبح - 44: معین آعلی، امیرحسین صوری فهرست عناوين محاسبه در صد خطا: ٦,٣ اهمي بو دن مقاو مت سيم: ٦,٤ بر ر سی بستگی مقاو مت سیم به طول سیم مقاومت در سیمها با قطرهای مختلف: مقاومت در سیمها با قطرهای مختلف: ۸,١. ۸,۲. مقدار مقاومت ویژه: ۸,٣. 9,1. محاسبه مقاو مت و پژ ه سیمها: 9, 4.

آزمایشگاه فیزیک عمومی ۲ - آزمایش شماره ۱

١. عنوان آزمايش

بررسی قانون اهم و عوامل موثر بر آن.

۲. هدف آزمایش

هدف از این آزمایش بررسی عوامل موثر بر مقاومت الکتریکی یک سیم است. به طور کلی طول سیم، جنس سیم، سطح مقطع، ولتاژ و جریان الکتریکی از عوامل موثر بر مقاومت الکتریکی سیم هستند که در این آزمایش به بررسی آنها میپردازیم.

٣. شرح آزمایش

ابتدا با استفاده از قانون اهم (V=R.I) و تنظیم ولتاژ و جریان الکتریکی مدار، منحنی (V=R.I) را رسم نموده و در صورتی که این نمودار خطی باشد، سیم ما اهمی است. سپس با استفاده از فرمول $R=\rho \frac{l}{A}$ و نیز قانون اهم، با تغییر عواملی مانند: طول، قطر و جنس سیم چگونگی تاثیر باشد، سیم ما اهمی را به دست می آوریم.

٤. ابزارهای مورد نیاز

- سیم رسانا با جنسهای مختلف و طولهای مختلف
 - منبع ولتاژ
 - آمپرسنج
 - مولتىمتر
 - سیم مناسب اتصال به مولتیمتر

٥. نكاتى كه بايد حين آزمايش مورد توجه قرار بگيرند

- آمپرسنج باید به صورت سری در مدار بسته شود
- ولتمتر باید به صورت موازی در مدار بسته شود
- دقت مولتیمتر از دیگر ابزارهای مورد استفاده در آزمایش بالاتر است

٦. بررسی قانون اهم روی سیمهای فلزی

۱/۱. تکمیل جدول و رسم نمودار:

جدول ۱

I(mA)	1.7.9	۲۰۱.۹	٣٠١.٠	4.1	۵۰۰.۱
V(V)	7.7	4.4	۶.٧	٩.٠	11.٣

$$\bar{x} = \frac{10 + 27 + 50 + 80 + 100}{5} = 53.4$$

$$m = \frac{\sum_{i=1}^{5} (x_i - \bar{x}) y_i}{\sum_{i=1}^{5} (x_i - \bar{x})^2} = \frac{4197.75}{21512.56} \approx 1.95 \times 10^{-1} \Omega$$

شیب خط به دست آمده برحسب V/mاست، در نتیجه مقاومت برحسب $k\Omega$ بدست می آید.

بنابراین مقاومت الکتریکی سیم فلزی برابر است با:

V = RI

٦/٢. محاسبه درصد خطا:

$$R_1 = \frac{V_1}{I_1} = \frac{4.4}{0.2} = 22.0\Omega$$

$$R_2 = \frac{V_2}{I_2} = \frac{6.7}{0.3} \approx 23.3\Omega$$

• درصد خطا مقاومت ۲:

$$\frac{|R_1 - R|}{R} \times 100 = \frac{22 - 20.1}{20.1} \approx 9\%$$

• درصد خطا مقاومت۳:

$$\frac{|R_2 - R|}{R} \times 100 = \frac{23.3 - 20.1}{20.1} \approx 16\%$$

دوشنبه صبح - 44: معین آعلی، امیرحسین صوری

آزمایشگاه فیزیک عمومی ۲ - آزمایش شماره ۱

٦/٣. گذر نمودار از مبدا:

به صورت ایدهآل انتظار میرود که نمودار از مبدا بگذرد، اما به دلایلی نظیر خطای وسایل اندازهگیری و آزمایشگر، مقدار بدست آمده با مقدار واقعی تفاوت دارد.

3/4. اهمى بودن مقاومت سيم:

با توجه به این که نمودار ما تقریبا خطی است، میتوان نتیجه گرفت که این فلز از قانون اهم پیروی میکند.

۷. بررسی بستگی مقاومت سیم به طول سیم

۷/۱. مقاومت در طولهای مختلف:

برای بدست آوردن مقاومت ها از رابطهی V=RI استفاده می کنیم:

I (cm)	1.	77	۵٠	٨٠	1
V(V)	۰.۵۴	1.44	۲.۶۹	4.79	۵.۴۶
R	7.17	۵.۷۹	۸.۰۱	17.67	71.98
$I = \Upsilon \circ \cdot (mA)$					

٧/٢. نمودار مقاومت برحسب طول:

$$\overline{x} = \frac{10 + 27 + 50 + 80 + 100}{5} = 53.4 \Omega$$

$$\sum_{i=1}^{5} (x_i - \overline{x}) y_i = 4197.75$$

$$m = \frac{\sum_{i=1}^{5} (x_i - \bar{x}) y_i}{\sum_{i=1}^{5} (x_i - \bar{x})^2} = \frac{4197.75}{21512.56} \approx 1.95 \times 10^{-1} \Omega$$

٨. بررسى بستگى مقاومت با قطر سيم

٨/١. مقاومت در سيمها با قطرهاي مختلف:

شماره سیم	a,b (١)	c,d (۲)	e,f (٣)	
قطر (mm)	۵۲.۰	٠٠.٠	٠٣٠.	
V (v)	۵.۴۸	۲.۷۲	4.98	
R (Ω)	71.97	۸۸.۰۱	19.84	
I = Yo⋅ mA				

- در آزمایشها، اندازه گیریها دقیقا با $I = Yo \cdot mA$ انجام شده اند.
 - ه مقاومتها نیز از رابطه $R=rac{V}{I}$ محاسبه شده اند. lacktriangle

٨/٢. نمودار مقاومت برحسب عكس سطح مقطع سيم

انتظار میرود این سه نقطه تشکیل خط بدهند، اما به دلیل دقت وسایل اندازه گیری و خطاهای احتمالی حین انجام آزمایش، دادههای بهدستآمده کمی خطا دارند.

$$\bar{x} = \frac{\text{Y.99+14.10+14.17}}{\text{r}} = \text{14.19} / mm^{\text{r}}$$

$$m = \frac{\sum_{i=1}^{r} (x_i - \bar{x}) y_i}{\sum_{i=1}^{r} (x_i - \bar{x})^{\tau}} = \frac{\text{fh.ff}}{\text{YY}} = \cdot .\text{A9 }\Omega m m^{\tau}$$

٨/٣. مقدار مقاومت ويژه:

به کمک رابطه $R=
horac{L}{A}$ از شیب دو نمودار رسمشده اخیر می توان نتیجه گرفت:

$$m_1 = \frac{R}{L} = \frac{\rho}{A}$$

$$m_{\tau} = \frac{R}{\frac{1}{A}} = RA = \rho L$$

حالا به کمک هر یک از روابط بالا ρ را محاسبه می کنیم:

$$\rho_1 = m_1 A = 1.90 \times 4.91 \times 10^{-9} = 0.99 \times 10^{-9} \Omega m$$

$$\rho_{\rm T} = \frac{m_{\rm T}}{L} = \frac{\cdot . \rm Aq \times 1 \cdot ^{-\rho}}{1} = \cdot . \rm Aq \times 1 \cdot ^{-\rho} \Omega m$$

میانگین رو مقدار بهدستآمده را به عنوان جواب نهایی اعلام می کنیم:

$$\rho = \frac{\rho_1 + \rho_7}{7} = \frac{(\cdot.99 + \cdot.19) \times 10^{-9}}{7} = \cdot.97 \times 10^{-9} \Omega m$$

۹. بررسی بستگی مقاومت با مقاومت ویژه

٩/١. مقاومت در سيمها با جنسها (مقاومتهاي ويژه) متفاوت

جنس و شماره سیم	کروم نیکل e,f (۳)	گالوانیزه g,h (۴)	کروم خالص i,j (۵)		
V (v)	4.90	٠.٧٣	۲.۲۵		
R (Ω)	٠٨.٢١	۲.۹۲	9.00		
I = Υο٠, ε mA					

٩/٢. محاسبه مقاومت ويژه سيمها:

طول هر سه سیم در آزمایش ۱ متر بوده است و قطر سیمهای ۳ و ۴ و ۵ به ترتیب برابر ۰.۳۰ و ۰.۳۰ و ۰.۴۰ میلیمتر بوده است. از رابطه زیر کمک میگیریم:

$$R = \rho \frac{L}{A} \Rightarrow \rho = \frac{RA}{L}$$

$$\rho_{r} = \frac{R_{r}A_{r}}{L} = 19.\lambda \times \cdot ... \times 1.^{-9} = 1.79 \times 1.^{-9} \Omega m$$

$$\rho_{\rm f} = \frac{R_{\rm f} A_{\rm f}}{L} = {\rm f.97} \times ... {\rm f} \times 10^{-9} = 0.1 \times 10^{-9} \, {\rm G} m$$

$$\rho_{\scriptscriptstyle \Delta} = \frac{R_{\scriptscriptstyle \Delta} A_{\scriptscriptstyle \Delta}}{L} = 9 \times \cdot .17 \times 1 \cdot ^{-9} = 1.17 \times 1 \cdot ^{-9} \Omega m$$