MATH214

Linear Algebra

Homework 1

Manuel — UM-JI (Spring 2023)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Morphisms

- 1. Show that the composition of two homomorphisms is a homomorphism.
- 2. Show that the inverse of an isomorphism is an isomorphism.
- 3. Consider the following functions and say whether they are homomorphisms, isomorphisms, endomorphisms, or automorphisms.
 - a) The logarithm function from (\mathbb{R}_+^*, \times) into $(\mathbb{R}, +)$.
 - b) The exponential function from $(\mathbb{R}, +)$ into (\mathbb{R}, \times) .
 - c) The identity function.
 - d) The function $f_x: \mathbb{Z} \to \mathbb{Z}$, $n \mapsto nx$, with $x \in \mathbb{Z}$, for $(\mathbb{Z}, +)$.
 - e) The function $f_x:(\mathbb{N},+)\to(\mathbb{Z},\times),\ n\mapsto x^n$, with $x\in\mathbb{Z}$.

Ex. 2 — Function space

In this exercise we want to understand the basics of functional spaces.

- * 1. Make sure you fully understand the examples (1.17|1.37).
- * 2. Knowing that $\mathcal{F}(\mathbb{R}, \mathbb{R})$ is a vector space,
 - a) what is the **0** vector?
 - b) which of the following functions are vectors?

$$i - x$$
;

$$ii - x^2$$
:

iii –
$$\log x$$
;

$$iv - exp x$$
;

Which of the following sets are vector subspaces of $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$.

- 3. The set of the function differentiable in 0.
- 4. The set of the monotonic functions on \mathbb{R} .
- 5. The set of the function taking the value 0 or 1.
- 6. The set of the functions f which are twice differentiable and such that f'' + 2f' 3f = 0.

Ex. 3 — Vector spaces

1. Is $V = \{(x, y, z) \in \mathbb{R}^3, x - 2y + 3z = 0\}$ a vector subspace of \mathbb{R}^3 .

Let V be a \mathbb{K} -vector space and A, B, and C be three subspaces of V.

- * 2. What is the difference between a set and a vector space?
 - 3. If A, B and C are such that (i) $A \cap B = A \cap C$, (ii) A + B = A + C, and (iii) $B \subset C$, then show that B = C.

Hint for students with basics in linear algebra. Can an argument based on the dimension be used?

- 4. Show that $A \cap (B + (A \cap C)) = (A \cap B) + (A \cap C)$.
- 5. Show that $A \cap (B + C) \neq (A \cap B) + (A \cap C)$.

Ex. 4 — Kernel and image

- * 1. We want to understand the concepts of kernel.
 - a) Let $f(x_1, x_2, x_3) = (x_1 + 2x_2, x_3)$ be a function from \mathbb{R}^3 into \mathbb{R}^2 . Show that f is a linear map and determine its kernel.
 - b) Let f(P) = P' be the function which given a polynomial returns its differential. Show that f is a linear map an determine its kernel.
 - 2. Let V be a \mathbb{K} -vector spaces and $f \in \mathcal{L}(V, V)$. Show that $\ker f^2 = \ker f$ if and only if $\operatorname{im} f \cap \ker f = \{0\}$.

* Ex. 5 — Challenging problem

Let V be a finite dimensional \mathbb{K} -vector space, where \mathbb{K} is a field with infinitely many elements.

- 1. Show that it is not possible to have $V = \bigcup_{i=1}^n W_i$, where the W_i are strict vector subspaces of V. Does it change anything if \mathbb{K} is finite?
- 2. Let W_i , $1 \le i \le n$, be n subspaces of V, such that they all have the same finite dimension. Show that there exists G such that for all $1 \le i \le n$, $G \oplus W_i = V$.