

1986年北京国际铸造展览会技术座谈综述

— 铸造机械手

国家机械委济南铸锻机械研究所 曹立人

据了解,联邦德国AST机器人公司所生产的机械手有固定式和移动式两种基本型式。移动式机械手装有轮子,可直接在地面上运行,或将装有轮子的机械手放在轨道上运行。机械手手臂的运动是由液压传动系统控制的,其液压压力为11~13MPa,电机功率8~12kW,机重约2.5~4 t,其结构见图1。

图 1 固定式机械手结构图

1 一底座; 2 一操作者座位; 3 一操纵手柄;4 一夹具; 5 一回转器; 6 一前臂; 7 一伸缩臂; 8 一回转弯头; 9 一主臂; 10一操纵臂; 11 一座位回转机构

这种机械手有三种操纵方式:

- 1. 手动: 由操作者直接控制操纵手柄进行工作。
- 2. 半自动:某些运动由机器自动控制, 其余动作仍由人工控制。
- 3. 全自动:全自动控制是应用示教技术,即由操作者控制操纵手柄,教给机械手运动程序,然后机械手便能自动地重复所要求的运动程序和动作,这实际上就是机器入了。

机械手有6个自由度,夹具可以更换各种

形状以适应各种不同工作要求,因此用途很广。目前该公司有四种规格,最大搬重能力为1t,其工作范围:回转半径可达7m,举高5m。据介绍该公司已生产出搬重能力为2t的机械手。AM型机械手的主要技术参数及其工作范围分别见表和图2。

			. 16	16.	
型 	号 —————	A M200	A M220	A M500	A M1000
主臂长	(m)	1.3~	8.1	1.3~2.9	
前臂长	(m)	1.95~2.7		1.95~4.35	
最大伸长距离EM (m)		3 ~ 4		3 ~ 6.5	
最小伸出距离Em (m)		1.1~1.6		1.3~2.7	
最大举升高度Hm (m)		2.8~3.7		3~5.5	
回转角度 (可调)		±110		±110	
搬重能力	(kg)	30~65	80~100	150~ 500	400~ 1000
举升速度	(°/s)	25	35	20	10
水平移动速度	(*/S)	35	45	30	15
回转角速度	(°/S)	45	45	40	40

图/2 AM型机械手工作范围示意图

这种机械手的操作比较简便。操作者坐在 四周密闭而又敞亮的操作室内,操作室内装有 空调设备,室内空气新鲜。操作者只要操纵图 1中所示的操纵手柄,即可完成各种运动和动 作。据介绍学会操纵是比较容易的,只要15分 钟左右就可学会,经过1~2周的工作即可成 为一名熟练的操作者。机械手还具有安全联锁 装置, 如当操作者离开座位, 机械手就不能起 动;有过载保护装置,当搬运重量超过额定数 值的20%时,开关即自动断开。

一、应用

据介绍该公司的机械手已出售250多台, 广泛用于铸造、锻造、冶金、化工等行业,其中 60%用于铸造厂的落砂、清理和熔炼等工序。

机械手前端的夹具可以换成各种形状的夹 坩、磁铁、砂轮、切割砂轮片、电焊和气焊枪 等,以适应搬运工件和清理整修铸件的需要。

在落砂工序, 机械手从振动落砂机上拣起 铸件送往清理工序,如图3所示,机械手拣起

机械手夹起铸件送往吊钩

铸件挂到悬链抛丸室的吊钩上。在落砂机上的 铸件往往尚有余热,用人工来搬运是较困难 的。这时机械手的夹具很重要,首先要具有减振 器,以避免机械手从振动落砂机上取件时受振 而损坏,接着就是要考虑夹具的夹紧力既要满 足搬运铸件的要求,又要避免防止夹坏铸件。因 此要根据铸件的大小和形状,设计不同形状和 夹紧力的夹具。特别是夹持大型铸件时,夹紧 点一定要通过铸件重心,以防止产生一个绕轴 线转动的扭矩而损坏夹具和铸件。所以机械手 有一个力的反馈系统, 使操作者能精确地感觉

到机械手臂上夹具所夹持的铸件重量。

在铸件清理工序, 机械手可以夹持各种不 同的工具对铸件进行清理和整修。如图4所示

机械手夹持砂轮清理铸件

为机械手夹持砂轮, 磨平铸件上浇冒口的残余 · 部位: 再如图 5 所示为机械手夹持砂带磨平船

医5 机械手夹持砂带精理特件

舶螺旋浆的表面。一般情况下, 在清理铸件的 多余的凸出部位,如浇冒口的残余部位、毛刺 和披缝、铸件的多肉部位等,采用砂轮 磨平; 铸件表面没有剧烈变化的曲率和较 平 直 的 表 面,以及需要磨平的表面,宜采用砂带磨平, 铸件表面夹砂的清除,可用气錾;对于铸件内 腔或特殊部位的清理和整修,则需要设计专用 的工具,才能充分发挥机械手的作用和效率。 但这种工具的重要性往往被忽视,认为只要有 了机械手就一切问题都可解决了,一旦达不到 预期的效果,就认为机械手并不理想。所以在应 用机械手时,必须认真研究、设计合理的工具, 在操作时合理选择工具。

在熔炼工序中, 机械手可以代替熔炼工做 许多工作, 如把铸锭和各种炉料投入熔炉, 从 金属熔液中去除炉渣;将液态金属浇入铸型 中,以及清理和修复铁水包等工作。用于熔炼工序的机械手,具有隔热装置,使操作者在一个良好的工作条件下工作。如采用移动式机械手,则一台机械手可同时照顾几台熔炼炉的熔炼工作,可以充分发挥机械手的作用。

在造型工序中,机械手可用于修整铸型, 安放型芯,以及空砂箱和铸型的搬运等工作。 尤其是在安放型芯时,必须根据型芯的形状和 大小及下芯要求等具体情况,设计专用夹具。

二、效果

机械手能在劳动条件恶劣的情况下工作, 能提高工作效率和质量,能连续三班工作而不 用休息,这是众所周知的。但一般都不容易计 算具体的经济效果。据AST机器人公司介绍, 使用机械手的技术经济效果还是 很 大 的。 按 1984年价格计,一台机械手的总投资约15~50 万马克,一般投资回收期为1~3年,有些效果 也无法具估计算经济价值。例如在 落 砂 工 序 中,可以守省劳动力40~70%,大大改善了劳 动条件,减少丁工伤事故,增进工人的身体健 康,增加了愿意在落砂工序工作的劳动力,甚 至可以录用一些残废人来操纵机械手; 又如在 清理工序,可以节省清理时间40~70%,消除 了清理工具(砂轮、砂带、切割砂轮片等) 在断 裂时给工人带来的危险,提高了铸件清理的质 量,以及改善劳动条件等。从技术发展的角度 来看,应用机械手有利于工人身心健康,又有 利于提高劳动生产率和质量。尤其是铸造、锻 造、冶金、轧钢、化工等行业中许多劳动条件较 差的工序中都可以使用机械手。因此,我国也 应该重视研究、开发和生产机械于。

湿型型砂控制的现状及动向

原载《JACT NEWS》1986年M2385

为铸造高精度的优质铸件,必须有稳定的 好铸型。要造出良好的铸型,其首要条件就是 稳定地供给质量好的型砂,同时要有合适的造 型操作相配合。

虽然湿型铸型的造型方法有各种各样,但 几乎都为自动化操作,因此造型条件可以认为 基本是稳定的。重要的是型砂的稳定性。

化学粘结的造型材料几乎都只能使用一次 而失去粘结力,因此这种型砂每次都必须加入 新的粘结剂,经混辗后才能再使用。可是湿型 单一砂,其大部分旧砂都可回收而 循环 再使 用。也就是说,这种湿型铸型 以粘土 (膨润 土)为粘结剂,浇注时部分粘土在熔液热的焙烧 下失去了粘结力,而变为粉尘,但大部分粘土 经加水后都能重新恢复粘结力。因此,单一砂 只要适当地加入失去的水和损耗了的 部分 粘 土,经混辗处理,便能重新得到原有的性能。

由于生产铸件的大小及形状、浇注和打箱 条件等不同,回收的旧砂成分也会发生各种变

[日] 三浦 孝

化,同时砂温也会升高。因此把这种旧砂作为 主要成分混成的型砂性能同样可能发生变化。

近年来,为稳定这种单一砂的性能已作了 技术上的种种开发。下面综述这些开发的成果。

一、水分自动控制

对单一砂性能影响最大的、同时也是变化最大的主要因素是水分。通常,湿型砂中的含水量为3~5%左右;但回收时,由于铸造条件的不同,砂中的水分减少到0~2%范围内。为了适当地加入水分,为了减少混辗后砂中水分的波动,开发了各种联机控制技术。

1. 利用造型性控制水分

型砂中水分变多时,它便会从松散状态渐渐变成粘性状态。例如,砂子通过一定筛孔的比例与其粘结力成反比,造型性就是指这种状态时的指数(等于通过的砂量/总砂量×100)。指数越大,表示水分低,粘结力弱;指数低,表示水分多,砂子的流动性差。