Graph-based time-space trade-offs for approximate near neighbors

Thiis Laarhoven

mail@thijs.com
http://thijs.com/

SoCG 2018, Budapest, Hungary (June 13, 2018)

Nearest neighbor searching

Nearest neighbor problem – Problem description

Nearest neighbor problem – Problem description

Nearest neighbor problem – Problem description

Nearest neighbor problem – Approximate solutions

Nearest neighbor problem – Approximate solutions

Partition-based methods

Partition-based methods – Data structure

Partition-based methods – Near the boundaries

Partition-based methods – Randomizations

Partition-based methods – Randomizations

Main problem: choosing the best types of space partitions.

- · Requires an **efficient decoding** algorithm;
- · Space partitions should have **nice shapes**.

Main problem: choosing the best types of space partitions.

- Requires an efficient decoding algorithm;
- Space partitions should have nice shapes.

Utopia: disjoint spheres lying on an efficiently decodable code or lattice.

Main problem: choosing the best types of space partitions.

- · Requires an **efficient decoding** algorithm;
- · Space partitions should have **nice shapes**.

Utopia: disjoint spheres lying on an efficiently decodable code or lattice.

Real world: approximate ideal solution as best as we can.

- Product of bisections; [Cha03]
- Voronoi cells induced by hypercube; [TT07, Laa16]
- · Random (overlapping) spheres; [AI06, AINR14]
- · Voronoi cells induced by cross-polytopes; [TT07, AIL+15, KW17]
- · Voronoi cells induced by (pseudo)random points. [BDGL16, ALRW17, Chr17]

Main problem: choosing the best types of space partitions.

- · Requires an **efficient decoding** algorithm;
- · Space partitions should have nice shapes.

Utopia: disjoint spheres lying on an efficiently decodable code or lattice.

Real world: approximate ideal solution as best as we can.

- Product of bisections; [Cha03]
- Voronoi cells induced by hypercube; [TT07, Laa16]
- · Random (overlapping) spheres; [AI06, AINR14]
- · Voronoi cells induced by cross-polytopes; [TT07, AIL+15, KW17]
- Voronoi cells induced by (pseudo)random points. [BDGL16, ALRW17, Chr17]

Best techniques are theoretically optimal as well as practical.

Nearest neighbor methods – Practice (ANN Benchmarks [ABF17])

Nearest neighbor methods – Practice (ANN Benchmarks [ABF17])

Graph-based methods

Graph-based methods – Data structure

Graph-based methods – Data structure

Main problem: designing the graph.

- · Intuitively: connect **near neighbors** for gradual progress;
- · Avoiding local minima: add a few long edges;
- Hierarchical graphs: long edges in upper layers, short edges in bottom layers.

Main problem: designing the graph.

- · Intuitively: connect **near neighbors** for gradual progress;
- · Avoiding local minima: add a few long edges;
- Hierarchical graphs: long edges in upper layers, short edges in bottom layers.

Practically, graph-based methods are very efficient as well.

Main problem: designing the graph.

- · Intuitively: connect **near neighbors** for gradual progress;
- · Avoiding local minima: add a few long edges;
- Hierarchical graphs: long edges in upper layers, short edges in bottom layers.

Practically, graph-based methods are very efficient as well.

Theoretically, little is known about the performance of these methods.

Main problem: designing the graph.

- · Intuitively: connect **near neighbors** for gradual progress;
- · Avoiding local minima: add a few long edges;
- Hierarchical graphs: long edges in upper layers, short edges in bottom layers.

Practically, graph-based methods are very efficient as well.

Theoretically, little is known about the performance of these methods.

Graph-based methods - Contributions

Theorem (Main result, informal)

For randomized greedy walks on the near neighbor graph and for "random" data sets, we can solve the approximate nearest neighbor problem on n points with query time $O(n^{\rho_q})$ and space $O(n^{1+\rho_s})$ with $\rho_q, \rho_s \geq 0$ satisfying

$$(2c^2-1)\rho_q+2c^2(c^2-1)\sqrt{\rho_s(1-\rho_s)}\geq c^4.$$

Graph-based methods – Contributions

In the most common regime of $c \approx 1$ (high recall rate) and $\rho_s \approx 0$ (near-linear space), this scales equivalently as the best partition-based trade-offs: [ALRW17]

$$\rho_q = 1 - 4(c - 1)\sqrt{\rho_s} \cdot (1 + o(1)). \tag{1}$$

Graph-based methods – Contributions

In the most common regime of $c \approx 1$ (high recall rate) and $\rho_s \approx 0$ (near-linear space), this scales equivalently as the best partition-based trade-offs: [ALRW17]

$$\rho_q = 1 - 4(c - 1)\sqrt{\rho_s} \cdot (1 + o(1)). \tag{1}$$

Positive result: greedy algorithm already "optimal" for $c \approx 1$ and $\rho_s \approx 0$.

Graph-based methods – Contributions

In the most common regime of $c \approx 1$ (high recall rate) and $\rho_s \approx 0$ (near-linear space), this scales equivalently as the best partition-based trade-offs: [ALRW17]

$$\rho_q = 1 - 4(c - 1)\sqrt{\rho_s} \cdot (1 + o(1)). \tag{1}$$

Positive result: greedy algorithm already "optimal" for $c \approx 1$ and $\rho_s \approx 0$.

Negative result: (analysis of) this algorithm is not competitive for $c \gg 1$ or $\rho_s \gg 0$.

Graph-based methods – Open problems

Various **open problems** remain:

- · Current **analysis** may not be sharp can it be tightened?
- Does adding long edges lead to better theoretical guarantees?
- · What can theoretically be said about hierarchical approaches?
- · Can we obtain **lower bounds** showing limitations of graph-based methods?

