# PRINCÍPIOS DE ANÁLISE E PROJETO DE SISTEMAS COM UALL



**(** 



•



# PRINCÍPIOS DE ANÁLISE E PROJETO DE SISTEMAS COM UNAL

# Consultoria Editorial

Lorenzo Ridolfi Gerente Sênior Accenture

Sérgio Colcher Professor do Departamento de Informática da PUC-Rio

 $3^{\rm a}$  edição totalmente revista e atualizada







Todos os direitos reservados e protegidos pela Lei  $n^2$  9.610, de 19/02/1998.

Nenhuma parte deste livro, sem autorização prévia por escrito da editora, poderá ser reproduzida ou transmitida, sejam quais forem os meios empregados: eletrônicos, mecânicos, fotográficos, gravação ou quaisquer outros.

Copidesque: Gabriel Pereira Editoração Eletrônica: Mojo Design

Elsevier Editora Ltda. Conhecimento sem Fronteiras Rua Sete de Setembro, 111 – 16º andar 20050-006 – Rio de Janeiro – RJ Rua Quintana, 753 – 8º andar 04569-011 – Brooklin – São Paulo – SP

Serviço de Atendimento ao Cliente 0800 026 53 40 atendimento1@elsevier.com

ISBN: 978-85-352-2626-3

ISBN (versão digital): 978-85-352-2627-0

Nota: Muito zelo e técnica foram empregados na edição desta obra. No entanto, podem ocorrer erros de digitação, impressão ou dúvida conceitual. Em qualquer das hipóteses, solicitamos a comunicação à nossa Central de Atendimento, para que possamos esclarecer ou encaminhar a questão.

Nem a editora nem o autor assumem qualquer responsabilidade por eventuais danos ou perdas a pessoas ou bens, originados do uso desta publicação.

### CIP-BRASIL. CATALOGAÇÃO-NA-FONTE SINDICATO NACIONAL DOS EDITORES DE LIVROS, RJ

B469p 3. ed.

Bezerra, Eduardo, 1972-

Princípios de análise e projeto de sistemas com UML / Eduardo Bezerra.

- [3. ed.] - Rio de Janeiro : Elsevier, 2015.

416 p.: il.; 24 cm.

ISBN 978-85-352-2626-3

1. Métodos orientados a objetos (Computação). 2. UML (Computação). 3. Análise de sistemas. 4. Projeto de sistemas. I. Título.

14-18048

CDD: 005.117 CDU: 004.414.2





# Agradecimentos

á se passaram 12 anos desde o lançamento da primeira edição deste livro. Durante todo esse tempo, diversas pessoas me ajudaram a esclarecer meu entendimento sobre os assuntos de que trato neste livro. A todas elas, devo meus sinceros agradecimentos. Começo por agradecer aos diversos leitores das duas primeiras edições, que contribuíram com críticas e sugestões para o melhoramento da mesma. Agradeço também a meus alunos, nas diversas instituições de ensino pelas quais passei. Certamente a tarefa de professar é uma das melhores maneiras de aprender. Devo agradecimentos também a todos os meus colegas professores com os quais troquei ideias e ensinamentos sobre o problema da modelagem de sistemas de software: Ronaldo Goldschmidt, Carmem de Queiróz, Jorge Soares, Ismael Humberto, Leandro Chernicharo, Ricardo Choren, dentre outros. Obrigado também à equipe editorial da Elsevier, por toda a paciência e profissionalismo durante o tempo em que trabalhamos na produção desta edição. Finalmente, e não menos importante, agradeço a toda a minha família, pelo carinho e incentivo. Em especial, agradeço a meus irmãos, José, Edmar, Emanuel e Helton, à minha querida esposa Aline, ao meu filho, Felipe, e ao Janu.





# Sumário

| Prefácio                                                 | XIII |
|----------------------------------------------------------|------|
| Visão geral                                              | 1    |
| 1.1 Modelagem de sistemas de software                    |      |
| 1.2 O paradigma da orientação a objetos                  | 4    |
| 1.2.1 Classes e objetos                                  | 7    |
| 1.2.2 Operação, mensagem e estado                        | 7    |
| 1.2.3 O papel da abstração na orientação a objetos       | 8    |
| 1.3 Evolução histórica da modelagem de sistemas          | 13   |
| 1.4 A Linguagem de Modelagem Unificada (UML)             | 15   |
| 1.4.1 Visões de um sistema                               | 16   |
| 1.4.2 Diagramas da UML                                   | 17   |
| O processo de desenvolvimento de software                | 21   |
| 2.1 Atividades típicas de um processo de desenvolvimento | 22   |
| 2.1.1 Levantamento de requisitos                         | 22   |
| 2.1.2 Análise                                            | 26   |
| 2.1.3 Projeto (desenho)                                  | 29   |
| 2.1.4 Implementação                                      | 30   |
| 2.1.5 Testes                                             | 30   |
| 2.1.6 Implantação                                        | 31   |
| 2.2 O componente humano (participantes do processo)      | 32   |
| 2.2.1 Gerentes de projeto                                |      |
| 2.2.2 Analistas                                          | 32   |
| 2.2.3 Projetistas                                        | 34   |
| 2.2.4 Arquitetos de software                             |      |
| 2.2.5 Programadores                                      |      |
| 2.2.6 Especialistas do domínio                           |      |
| 2.2.7 Avaliadores de qualidade                           |      |
| 2.3 Modelos de ciclo de vida                             | 36   |
| 2.3.1 O modelo de ciclo de vida em cascata               | 36   |
| 2.3.2. O modelo de ciclo de vida iterativo e incremental | 38   |









| VIII | PRINCÍPIOS DE ANÁLISE E PROJETO DE SISTEMAS COM UML                                                   | ELSEVIER |
|------|-------------------------------------------------------------------------------------------------------|----------|
|      | 2.4 Utilização da UML no processo iterativo e incremental                                             | 42       |
|      | 2.5 Prototipagem                                                                                      | 42       |
|      | 2.6 Ferramentas CASE                                                                                  | 43       |
| 3    | Mecanismos gerais                                                                                     | 47       |
|      | 3.1 Estereótipos                                                                                      |          |
|      | 3.2 Notas explicativas                                                                                |          |
|      | 3.3 Etiquetas valoradas (tagged values)                                                               |          |
|      | 3.4 Restrições                                                                                        |          |
|      | 3.5 Pacotes                                                                                           |          |
|      | 3.6 OCL                                                                                               | 52       |
| 4    | Modelagem de casos de uso                                                                             |          |
|      | 4.1 Modelo de casos de uso                                                                            |          |
|      | 4.1.1 Casos de uso                                                                                    |          |
|      | 4.1.2 Atores                                                                                          |          |
|      | 4.1.3 Relacionamentos                                                                                 |          |
|      | 4.2 Diagrama de casos de uso                                                                          |          |
|      | 4.3 Identificação dos elementos do MCU                                                                |          |
|      | 4.3.1 Identificação de atores                                                                         |          |
|      | 4.3.2 Identificação de casos de uso                                                                   |          |
|      | 4.4 Construção do modelo de casos de uso                                                              |          |
|      | 4.4.1 Construção do diagrama de casos de uso                                                          |          |
|      | 4.4.2 Documentação dos atores                                                                         |          |
|      | 4.4.3 Documentação dos casos de uso                                                                   |          |
|      | 4.5 Documentação suplementar ao MCU                                                                   |          |
|      | 4.5.1 Regras do negócio                                                                               |          |
|      | 4.5.2 Requisitos de desempenho                                                                        |          |
|      | 4.5.3 Requisitos de interface gráfica                                                                 |          |
|      | 4.6 O MCU em um processo de desenvolvimento iterativo 4.6.1 O MCU nas atividades de análise e projeto |          |
|      | 4.6.2 O MCU e outras atividades do desenvolvimento                                                    |          |
|      | 4.7 Estudo de caso                                                                                    |          |
|      | 4.7.1 Descrição da situação                                                                           |          |
|      | 4.7.2 Regras do negócio                                                                               |          |
|      | 4.7.3 Documentação do MCU                                                                             |          |
| 5    | Modelagem de classes de análise                                                                       | 109      |
| _    | 5.1 Estágios do modelo de classes                                                                     |          |
|      | 5.2 Diagrama de classes                                                                               |          |
|      | 5.2.1 Classes                                                                                         |          |
|      |                                                                                                       |          |









|   |     | 5.2.2 Associações                                                | 113  |
|---|-----|------------------------------------------------------------------|------|
|   |     | 5.2.3 Generalizações e especializações                           | .129 |
|   | 5.3 | Diagrama de objetos                                              | 136  |
|   | 5.4 | Técnicas para identificação de classes                           | 138  |
|   |     | 5.4.1 Análise textual de Abbott                                  | .139 |
|   |     | 5.4.2 Análise dos casos de uso                                   | 140  |
|   |     | 5.4.3 Técnicas baseadas em responsabilidades                     | 145  |
|   |     | 5.4.4 Padrões de análise                                         | .156 |
|   |     | 5.4.5 Outras técnicas de identificação                           | 160  |
|   |     | 5.4.6 Discussão                                                  | 160  |
|   | 5.5 | Construção do modelo de classes                                  | 163  |
|   |     | 5.5.1 Definição de propriedades                                  | 163  |
|   |     | 5.5.2 Definição de associações                                   | 165  |
|   |     | 5.5.3 Organização da documentação                                | 166  |
|   | 5.6 | Modelo de classes no processo de desenvolvimento                 | 168  |
|   | 5.7 | Estudo de caso                                                   |      |
|   |     | 5.7.1 Análise do caso de uso: Fornecer Grade de Disponibilidades | 170  |
|   |     | 5.7.2 Análise do caso de uso: Realizar Inscrição                 | 171  |
|   |     | 5.7.3 Análise do caso de uso: Lançar Avaliações                  | 174  |
|   |     | 5.7.4 Análise das regras do negócio                              | 175  |
|   |     | 5.7.5 Documentação das responsabilidades                         | 177  |
|   |     | 5.7.6 Glossário de conceitos                                     | 178  |
| 6 | Pas | ssagem da análise para o projeto                                 | 183  |
|   |     | Detalhamento dos aspectos dinâmicos                              |      |
|   |     | Refinamento dos aspectos estáticos e estruturais                 |      |
|   |     | Projeto da arquitetura                                           |      |
|   |     | Persistência de objetos                                          |      |
|   |     | Projeto de interface gráfica com o usuário                       |      |
|   |     | Projeto de algoritmos                                            |      |
|   |     | Padrões de software                                              |      |
| 7 | Mo  | delagem de interações.                                           | 191  |
| • |     | Elementos da modelagem de interações                             | 193  |
|   | 1.1 | 7.1.1 Mensagens                                                  | 195  |
|   |     | 7.1.2 Atores                                                     | .199 |
|   |     | 7.1.3 Objetos                                                    | .199 |
|   |     | 7.1.4 Classes                                                    | .200 |
|   |     | 7.1.5 Coleções de objetos                                        | 201  |
|   | 72  | Diagrama de sequência                                            | 201  |
|   |     | 7.2.1 Linhas de vida                                             | 203  |





| X | PRINCÍPIOS DE ANÁLISE E PROJETO DE SISTEMAS COM UML      | ELSEVIER |
|---|----------------------------------------------------------|----------|
|   | 7.2.2 Mensagens                                          | 205      |
|   | 7.2.3 Ocorrências de execução                            |          |
|   | 7.2.4 Criação e destruição de objetos                    | 206      |
|   | 7.3 Diagrama de comunicação                              | 208      |
|   | 7.4 Modularização de interações                          | 210      |
|   | 7.4.1 Quadros                                            | 211      |
|   | 7.4.2 Diagrama de visão geral da interação               | 216      |
|   | 7.5 Construção do modelo de interações                   | 217      |
|   | 7.5.1 Responsabilidades e mensagens                      | 217      |
|   | 7.5.2 Coesão e acoplamento                               | 218      |
|   | 7.5.3 Encapsulamento                                     | 221      |
|   | 7.5.4 Procedimento de construção do modelo de interações | 226      |
|   | 7.6 Modelo de interações em um processo iterativo        | 231      |
|   | 7.7 Estudo de caso                                       | 234      |
|   | 7.7.1 Operações de sistema                               |          |
|   | 7.7.2 Observações gerais                                 | 234      |
|   | 7.7.3 Modelos de interações                              |          |
|   | 7.7.4 Visão geral das interações em um caso de uso       | 250      |
| 8 | Modelagem de classes de projeto                          | 255      |
|   | 8.1 Reúso: padrões, frameworks, bibliotecas, componentes |          |
|   | 8.2 Especificação de atributos                           | 260      |
|   | 8.2.1 Notação da UML para atributos                      | 260      |
|   | 8.3 Especificação de operações                           | 263      |
|   | 8.3.1 Notação da UML para operações                      | 266      |
|   | 8.3.2 Dicas práticas                                     | 265      |
|   | 8.3.3 Projeto por contrato                               | 265      |
|   | 8.3.4 Operações de criação e destruição de objetos       | 268      |
|   | 8.3.5 Seletores e modificadores                          | 268      |
|   | 8.3.6 Outras operações típicas                           | 269      |
|   | 8.4 Especificação de associações                         | 270      |
|   | 8.4.1 O conceito de dependência                          | 270      |
|   | 8.4.2 Transformação de associações em dependências       | 272      |
|   | 8.4.3 Navegabilidade de associações                      | 272      |
|   | 8.4.4 Implementação de associações                       | 274      |
|   | 8.5 Herança                                              |          |
|   | 8.5.1 Tipos de herança                                   |          |
|   | 8.5.2 Classes abstratas                                  |          |
|   | 8.5.3 Operações polimórficas                             |          |
|   | 8.5.4 Interfaces                                         |          |
|   | 8.5.5 Acoplamentos concreto e abstrato                   | 288      |

**(** 









|   |     | 8.5.6 Reúso por delegação                             | 290 |
|---|-----|-------------------------------------------------------|-----|
|   |     | 8.5.7 Classificação dinâmica                          | 291 |
|   | 8.6 | Padrões de projeto                                    | 293 |
|   |     | 8.6.1 Composite                                       | 294 |
|   |     | 8.6.2 Observer                                        | 295 |
|   |     | 8.6.3 Strategy                                        | 296 |
|   |     | 8.6.4 Factory Method                                  | 297 |
|   |     | 8.6.5 Mediator                                        | 299 |
|   |     | 8.6.6 Façade                                          | 299 |
|   | 8.7 | Modelo de classes de projeto em um processo iterativo | 300 |
|   |     | Estudo de caso                                        |     |
| 9 | Mo  | delagem de estados                                    | 311 |
|   |     | Diagrama de transição de estado                       |     |
|   |     | 9.1.1 Estados                                         |     |
|   |     | 9.1.2 Transições                                      |     |
|   |     | 9.1.3 Eventos                                         |     |
|   |     | 9.1.4 Condição de guarda                              | 316 |
|   |     | 9.1.5 Ações                                           |     |
|   |     | 9.1.6 Atividades                                      | 317 |
|   |     | 9.1.7 Ponto de junção                                 | 317 |
|   |     | 9.1.8 Cláusulas entry, exit e do                      |     |
|   |     | 9.1.9 Transições internas                             |     |
|   |     | 9.1.10 Exemplo                                        | 321 |
|   |     | 9.1.11 Estados aninhados                              | 321 |
|   |     | 9.1.12 Estados concorrentes                           | 322 |
|   | 9.2 | Identificação dos elementos de um diagrama de estados | 323 |
|   |     | Construção de diagramas de transições de estados      |     |
|   |     | Modelagem de estados no processo de desenvolvimento   |     |
|   |     | Estudo de caso                                        |     |
|   |     |                                                       |     |

| 10 | Modelagem de atividades             | 331 |
|----|-------------------------------------|-----|
|    | 10.1 Diagrama de atividade          | 33  |
|    | 10.1.1 Fluxo de controle sequencial | 332 |
|    | 10.1.2 Fluxo de controle paralelo   |     |
|    | 10.1.2.1 Raias de natação           |     |

| 10.2 Diagrama de atividade no processo de desenvolvimento iterativo | 334 |
|---------------------------------------------------------------------|-----|
| 10.2.1 Modelagem dos processos do negócio                           | 335 |
| 10.2.2 Modelagem da lógica de um caso de uso                        | 335 |
| 10.2.3 Modelagem da lógica de uma operação complexa                 | 335 |
| 10.3 Estudo de caso                                                 | 335 |





| 11  | Arquitetura do sistema                                      | 339 |
|-----|-------------------------------------------------------------|-----|
|     | 11.1 Arquitetura lógica                                     | 340 |
|     | 11.1.1 Conceito de camada de software                       | 342 |
|     | 11.1.2 Camadas típicas de um sistema de informação          | 344 |
|     | 11.1.3 O padrão MVC e sua relação com a arquitetura lógica  |     |
|     | 11.2 Arquitetura física                                     | 355 |
|     | 11.2.1 Alocação de camadas lógicas aos nós de processamento | 356 |
|     | 11.2.2 Alocação de componentes aos nós de processamento     | 359 |
|     | 11.2.3 Padrões e tecnologias para distribuição de objetos   | 362 |
|     | 11.3 Projeto da arquitetura no processo de desenvolvimento  | 363 |
| 12  | Mapeamento de objetos para o modelo relacional              | 365 |
|     | 12.1 Projeto de banco de dados                              |     |
|     | 12.1.1 Conceitos do modelo de dados relacional              | 367 |
|     | 12.1.2 Mapeamento de objetos para o modelo relacional       | 369 |
|     | 12.1.3 Classes e seus atributos                             | 370 |
|     | 12.1.4 Associações                                          | 371 |
|     | 12.1.5 Agregações e composições                             | 374 |
|     | 12.1.6 Associações reflexivas                               |     |
|     | 12.1.7 Associações ternárias                                | 375 |
|     | 12.1.8 Classes associativas                                 | 375 |
|     | 12.1.9 Generalização                                        | 376 |
|     | 12.2 Construção da camada de persistência                   | 379 |
|     | 12.2.1 Acesso direto ao banco de dados                      | 381 |
|     | 12.2.2 Uso de um SGBDOO ou de um SGBDOR                     | 381 |
|     | 12.2.3 Padrão DAO                                           | 383 |
|     | 12.2.4 Frameworks ORM                                       | 385 |
| Ref | ferências                                                   | 391 |
| Índ | lice                                                        | 395 |





# Prefácio

eja bem-vindo à terceira edição de *Princípios de Análise e Projeto de Sistemas com UML*. Este livro é uma introdução aos conceitos fundamentais necessários para se realizar a análise e o projeto de sistemas de software orientados a objetos com o uso da Linguagem de Modelagem Unificada (UML). Desde o lançamento da 1ª edição desta obra, já existiam bons livros disponíveis aqui no Brasil discutindo a modelagem de sistemas orientados a objetos com UML. No entanto, uma razão que me levou a escrever esta obra foi o fato de alguns desses livros darem uma ênfase maior à descrição da UML em si.

De fato, a UML define uma notação padrão que pode ser utilizada por desenvolvedores de software orientado a objetos. Sem dúvida o domínio dessa notação é importante para qualquer desenvolvedor que queira aproveitar todas as capacidades que a UML fornece. Mas, igualmente importante, em especial para iniciantes no desenvolvimento de software, é o entendimento de como aplicar a notação da UML na modelagem. É esse enfoque que procurei dar neste livro. Em vista disso, esta obra não fornece uma referência completa sobre a notação definida pela UML. Em vez disso, ela descreve uma parte dessa notação e também como realizar a análise e o projeto de sistemas orientados a objetos através de parte da notação mais utilizada.

Durante todo o livro, exemplos são utilizados para demonstrar a aplicação da UML em situações práticas de modelagem. Ao fim de cada capítulo





são fornecidos exercícios para testar o conteúdo apreendido pelo leitor. Além disso, um estudo de caso, o Sistema de Controle Acadêmico (SCA), é desenvolvido para os principais tópicos abordados com o objetivo de exemplificar a aplicação dos procedimentos e dicas de modelagem que são apresentadas em cada capítulo.

## Público-alvo

Este livro é destinado a estudantes de cursos técnicos, de graduação ou pósgraduação em informática, computação, sistemas de informação ou engenharia de software que devem cursar uma ou mais disciplinas de análise e projeto orientados a objetos. Esta obra também pode ser utilizada como guia por estudantes no desenvolvimento de seus projetos finais de curso. Profissionais que desenvolvem sistemas segundo outros paradigmas (que não o orientado a objetos) também podem encontrar neste livro uma boa iniciação aos conceitos da orientação a objetos e da sua aplicação à modelagem de sistemas de software. Em todos os casos, o livro pode servir como uma fonte de referência e dicas práticas sobre a aplicação da UML e de outras técnicas no desenvolvimento de um sistema de software orientado a objetos.

O conhecimento de alguma linguagem de programação orientada a objetos (p. ex., Java, C#, C++ etc.) é desejável (mas não obrigatório) para o bom entendimento dos assuntos tratados neste livro. Mais especificamente, este livro fornece diversos exemplos de trechos de código-fonte em linguagem Java. Entretanto, esses exemplos devem ser facilmente entendidos por profissionais familiarizados com outras linguagens orientadas a objetos.

# Organização dos capítulos

O Capítulo 1 apresenta uma breve introdução à utilização do paradigma da orientação a objetos e da UML. O objetivo deste capítulo é fornecer uma visão geral sobre a análise e o projeto de sistemas de software sob o ponto de vista de orientação a objetos. Os principais conceitos do paradigma da orientação a objetos são introduzidos neste capítulo.

O Capítulo 2 descreve as principais atividades constituintes de um processo de desenvolvimento de software. Também descrevemos os principais profissionais envolvidos nesse processo, juntamente com suas respectivas atribuições. O processo de desenvolvimento em cascata é apresentado com o objetivo de motivar o surgimento do processo incremental e evolutivo. Em seguida, este último é também descrito e apresentado como a forma atual de se desenvolver sistemas orientados a objetos. Na maioria dos capítulos seguintes são feitas alusões à utilização da UML em um processo de desenvolvimento incremental e evolutivo.







O Capítulo 3, o menor deste livro, é apenas uma apresentação dos mecanismos de uso geral da UML. Essa apresentação se faz necessária em virtude de esses mecanismos serem utilizáveis em diversos diagramas da UML. Nos capítulos posteriores, fazemos uso e estendemos os conceitos introdutórios apresentados neste capítulo.

No Capítulo 4, apresentamos o modelo de casos de uso e os diversos elementos do diagrama de casos de uso da UML. Além disso, são fornecidas diversas dicas práticas que podem ser utilizadas na construção desse modelo. Esse capítulo também enfatiza o modelo de casos de uso como um ponto central de um processo de desenvolvimento que utilize a UML como linguagem de modelagem.

O Capítulo 5 descreve a construção do modelo de classes de análise de um sistema de software orientado a objetos (SSOO). Os principais elementos de notação definidos pela UML para a construção do diagrama de classes são descritos. Também é apresentado o conceito de responsabilidade de um objeto. Descrevemos, além disso, diversas técnicas úteis na identificação das classes iniciais de um SSOO, como a análise textual de Abbot, a análise de casos de uso e o uso de padrões de análise. Nesta 3ª edição, adiciono a este capítulo uma pequena introdução aos padrões táticos do DDD (*Domain Driven Design*) no contexto de identificação de classes do domínio.

O Capítulo 6 serve como uma apresentação do conteúdo dos capítulos que o seguem. A partir desse capítulo, a descrição das atividades de projeto começa a tomar o lugar da descrição das atividades de análise.

A modelagem de interações entre objetos em um SSOO é discutida no Capítulo 7. Nesse capítulo, apresento a ideia de que as construções do modelo de classe e do modelo de interações são interdependentes: a construção de um modelo fornece informações para a construção do outro e vice-versa. Seguindo a filosofia das edições anteriores, não me preocupei em apresentar todos os elementos de notação, mas apenas os que, na minha visão, são os mais importantes e relevantes em situações práticas de modelagem. Nessa 3ª edição, estendi o conteúdo desse capítulo com a descrição de boas práticas e princípios de projeto relevantes para a construção correta do modelo de interações.

O Capítulo 8 retoma a discussão sobre o modelo de classes, agora com um enfoque nas características de modelagem referentes à fase de projeto. Conceitos fundamentais ao projeto de um SSOO são apresentados: classe abstrata, interface, polimorfismo, tipos de acoplamento, projeto por contrato etc. Na 2ª edição, apresentei uma pequena introdução a um assunto um tanto avançado, mas cada vez mais sedimentado no desenvolvimento de um SSOO: padrões de projeto. Essa descrição sobre padrões de projeto continua nesse capítulo, mas é aprofundada em outras partes do livro.

O Capítulo 9 descreve a sintaxe, a semântica e a construção dos diagramas de transições de estados.







O Capítulo 10 finaliza a apresentação dos diagramas da UML relacionados à parte comportamental do sistema. Esse capítulo descreve os diagramas de atividades.

O Capítulo 11 faz uma introdução aos conceitos relacionados à arquitetura de um sistema de SSOO. Termos como subsistema, componente e camada são descritos. Outros diagramas da UML são apresentados: o de componentes, o de pacotes e o de implantação. Nesta 3ª edição, esse capítulo foi estendido com um maior detalhamento acerca das camadas tipicamente encontradas na arquitetura em um sistema de informação.

Finalmente, o Capítulo 12 descreve alternativas de representação de objetos em um mecanismo de armazenamento persistente como um sistema de gerência de bancos de dados relacional. É feita também uma introdução a questões relacionadas à implementação de uma camada de persistência em um SSOO.

# Recursos na web

Como informação suplementar à contida neste livro, é fornecido um site na própria editora Elsevier. Acesse a página da Editora (www.elsevier.com.br). Nesse endereço, o leitor pode obter informações e material relacionado ao livro. Entre os recursos que podem ser encontrados no site, estão os seguintes:

- Soluções de alguns dos exercícios propostos no livro. O leitor pode encontrar diversos exercícios resolvidos no material disponibilizado no site da editora.
- Complementos ao estudo de caso apresentado no livro. O estudo de caso que desenvolvo no livro é denominado Sistema de Controle Acadêmico (SCA). No final de alguns capítulos, forneço diversos exemplos de modelagem no contexto do SCA. Um problema que surge é como continuar e complementar esses exemplos. Uma solução que adoto a partir dessa segunda edição é utilizar a Internet como fornecedora de novos materiais acerca deste estudo de caso.
- Outras fontes de informação. O material disponível no site da editora contém também endereços para outras fontes interessantes sobre modelagem de sistemas de software orientados a objetos. Seguindo a natureza dinâmica da Internet, o conteúdo do site será modificado de tempos em tempos. O leitor também pode utilizar esse site para entrar em contato comigo, com o objetivo de trocar ideias sobre o livro.







# **Convite ao leitor**

Finalmente, convido o leitor a prosseguir pelo restante desta obra. Espero que as informações contidas neste livro o ajudem de alguma forma, e que a leitura seja a mais agradável possível. Tentei dar o meu melhor para produzir um texto cuja leitura seja aprazível e didática. Entretanto, pelo fato de a produção de um livro ser uma tarefa bastante complexa, tenho consciência de que erros e inconsistências ainda se escondem por entre as linhas que o compõem. Para os que quiserem entrar em contato comigo para trocar ideias e fornecer críticas e sugestões, fiquem à vontade para enviar uma mensagem.

Eduardo Bezerra Rio de Janeiro ebezerra@cefet-rj.br 18 de agosto de 2014





