Parallel Algorithms and Programming

Parallel Algorithms in Distributed Memory Systems (Part 2)

Thomas Ropars

Email: thomas.ropars@univ-grenoble-alpes.fr

Website: tropars.github.io

In this lecture

- Performance of parallel distributed algorithms
- Stencil algorithms
- Some major concepts
 - Greedy algorithm
 - Bulk communication
 - block-cyclic allocation

Introduction

About the performance of distributed parallel algorithm

Assumptions

- A distributed memory system
 - Processes communicate by sending and receiving messages
- A virtual ring topology

Main costs to consider

- The cost of running computation
 - floating point operations in our context
- The cost of moving data
 - from the memory to the processors
 - between nodes (over the interconnection network)

Cost of a distributed parallel algorithm

• A computational term:

$$nb of flops \times time per flop$$

• A bandwidth term:

$$\text{amount of data moved} \times \frac{1}{bandwidth}$$

• A latency term:

nb of messages \times *latency*

Cost of a distributed parallel algorithm

We should remember that (in general):

time per flop
$$\ll \frac{1}{bandwidth} \ll latency$$

Consequence

- Minimizing communication is important for performance
- It is also important for energy efficiency
 - Moving data from/to DRAM or over the interconnection network are the most energy consuming operations

About memory accesses

Cost of moving data between the memory and the processor

- Can often be ignored
 - Cost mostly hidden by hardware prefetchers

Prefetchers

- Hardware mechanisms to load data in the cache before it is needed
- Based on the memory access pattern of the program
- Works well for regular access patterns
 - It is the case for the programs studied in this lecture

Stencil algorithms

About stencil algorithms

A common class of parallel applications

• Operate on cells that divide a discrete domain

Main properties of the cells

- Cells can hold one or multiple values
- Cells are in general organized in a N-dimensional grid (often 2D or 3D)
 - They are non-overlapping
 - They are of equal size (load balancing)
- Cells can be distributed over multiple nodes to execute a program in parallel
 - Deal with large problems

About stencil algorithms

Definition of a stencil

- Iterative algorithm
- Applies a pre-defined function to update the value of the cells based on the value of the neighboring cells
- Specifying a stencil boils down to defining:
 - The location of a cell's neighbors
 - The function used to update cell values
- The combination of both forms a *stencil*
 - Applied to all cells in the domain

2-dimensional domains

In the following, we consider stencils applying to 2-dimensional domains

- In this case, a cell can have at most 8 neighbors
 - Cardinal coordinates: N, NE, E, SE, S, SW, W, NW.

NW	N	NE
w	Cell	E
sw	s	SE

• 9-point stencil: The stencil function uses as input the value of the cell and of the 8 neighbors

A case study

A stencil algorithm

Definition of the stencil

$$c_{new} = Update(c_{old}, W_{new}, N_{new})$$

• The new value of a cell (c_{new}) depends on the previous value of the cell (c_{old}) and the already updated value of the West and North neighbors.

Some comments

Stencil of practical importance

• At the root of some numerical algorithms

Case of the border cells

- Might not have West or North neighbors
- A modified Update function is applied to these cells
 - For instance, using a constant value for the non-existent cells.

Main assumptions that we make

- $n \times n$ cells
- *p* processors
 - Unidirectional ring

Greedy algorithm

Greedy = the algorithm tries to put all processors to work as early as possible

First version (assuming n=p)

- Each processor stores 1 row
 - Row i is stored on processor P_i
- As soon as a processor P_i has computed a value, it sends it to processor P_{i+1} .

Notation used in the following

- A is the domain on which the stencil is applied
- $A_{x,y}$ (or A[x][y]) is the y-th element on row x

Parallel execution of the greedy algorithm

- The number associated with each cell is the step in which the cell is updated
 - In step k, the k-th anti-diagonal can be computed.

Description of the algorithm

Some special cases (in terms of communication)

- ullet Processor P_0 does not receive North values from another processor
- Processor P_{n-1} does not need to send its updated values

General algorithm

- At iteration i + j, processor P_i performs the following operations:
 - 1. Receives $A_{i-1,j}$ from P_{i-1} ;
 - 2. Computes $A_{i,j}$;
 - 3. Sends $A_{i,j}$ to P_{i+1} .

Detailed description of the algorithm

```
double A[n]; /* one row of A, assumed to be already initialized*/
      double north = 0; /* to recv North values */
      int rank = my_rank();
      int P = num_procs();
      if (rank == 0){
        A[0] = Update(A[0], NULL, NULL);
        Send(A[0], rank+1);
 9
      }
10
11
      else{
        Recv(north, rank-1);
12
13
        A[0] = Update(A[0], NULL, north);
      }
14
15
      for(j=1; j<n; j++){
16
17
        if (rank == 0){
          A[j] = Update(A[j], A[j-1], NULL);
18
          Send(A[j], rank+1);
19
20
        else if (rank == P-1) {
          Recv(north, rank-1);
          A[j] = Update(A[j], A[j-1], north);
23
        }
24
25
        else{
          Send(A[j-1], rank+1);
26
27
          Recv(north, rank-1);
28
          A[j] = Update(A[j], A[j-1], north);
29
30
31
      }
```

Generalizing the algorithm

What if n > p?

• How to assign rows to processors?

First solution

• Assigning a set of consecutive rows to the same processors

Generalizing the algorithm

What if n > p?

• How to assign rows to processors?

First solution

- Assigning a set of consecutive rows to the same processors
 - Problem: The algorithm is not greedy anymore
 - $\circ P_1$ can start working when P_0 has computed the first value on each row assigned to it
 - $\circ \ P_1$ waits at least $rac{n}{p}$ steps
 - $\circ \ P_2$ waits at least $2 imes rac{n}{p}$ steps
 - Processors do not start computing as early as possible

Cyclic row assignment

Solution to ensure that each processor starts as early as possible

• Row j of the domain is assigned to processor P_k with $k=j \mod p$

Extra notation

- b -- time to transfer one cell: $b = \frac{sizeof(cell)}{B}$
- ullet w -- cost of executing the stencil <code>Update()</code> function for one cell

Time to run one step of the algorithm

- 3 operations need to be run by one process
 - 1. Receiving north value for step k
 - 2. Computing one cell
 - 3. Sending value for step k+1
- ullet Comment: The send operation (at iteration n) can occur in parallel with the reception (for iteration n+1)

Extra notation

- b -- time to transfer one cell: $b=rac{size of(cell)}{B}$
- ullet w -- cost of executing the stencil <code>Update()</code> function for one cell

Time to run one step of the algorithm

- 3 operations need to be run by one process
 - 1. Receiving north value for step k
 - 2. Computing one cell
 - 3. Sending value for step k+1
- ullet Comment: The send operation (at iteration n) can occur in parallel with the reception (for iteration n+1)

$$T_{step}(p,n)=w+L+b$$

Total number of steps

When does the last processor computes its last cell?

Total number of steps

When does the last processor computes its last cell?

- ullet It takes p-1 steps before processor P_{p-1} starts computing its first cell
- From this point, processor P_{p-1} updates one cell per step
- ullet Processor P_{p-1} has $rac{n}{p} imes n$ cells to compute in total.

Total number of steps

When does the last processor computes its last cell?

- ullet It takes p-1 steps before processor P_{p-1} starts computing its first cell
- From this point, processor P_{p-1} updates one cell per step
- Processor P_{p-1} has $rac{n}{p} imes n$ cells to compute in total.

$$T(n,p)=(p-1+rac{n^2}{p}) imes (w+L+b)$$

Speedup achieved by the algorithm

Some comments:

• When n becomes large, the execution time is equal to:

$$T(n,p)=rac{n^2}{p} imes (w+L+b)$$

The sequential execution time is:

$$n^2 imes w$$

Speedup on p processors

$$Speedup = rac{T_{seq}}{T_{par}} = rac{n^2 imes w}{rac{n^2}{p} imes (w+L+b)} = p imes rac{w}{w+L+b} < p$$

Speedup achieved by the algorithm

Some comments:

• When n becomes large, the execution time is equal to:

$$T(n,p)=rac{n^2}{p} imes (w+L+b)$$

• The sequential execution time is:

$$n^2 imes w$$

Speedup on p processors

$$Speedup = rac{T_{seq}}{T_{par}} = rac{n^2 imes w}{rac{n^2}{p} imes (w+L+b)} = p imes rac{w}{w+L+b} < p$$

Can we do better?

Speedup achieved by the algorithm

Some comments:

• When n becomes large, the execution time is equal to:

$$T(n,p)=rac{n^2}{p} imes (w+L+b)$$

The sequential execution time is:

$$n^2 imes w$$

Speedup on p processors

$$Speedup = rac{T_{seq}}{T_{par}} = rac{n^2 imes w}{rac{n^2}{p} imes (w+L+b)} = p imes rac{w}{w+L+b} < p$$

Can we do better?

- ullet The network latency L can have a high impact on the performance of parallel algorithms
 - Let's try to reduce the latency term!

Bulk communication

• To reduce the impact of latency, the idea is to send less messages

Bulk communication

- To reduce the impact of latency, the idea is to send less messages
 - We need to send larger messages
 - A processor computes k values on one row before sending updates to the next processors

New performance

• Execution time of one step:

$$T_{step} = k imes (w+b) + L$$

- Number of steps:
 - It takes p-1 steps until processor P_{p-1} starts working
 - lacksquare Processor P_{p-1} should run $rac{n^2}{p imes k}$ such steps

Execution time:

$$T_{bulk}(p,n,k) = (p-1+rac{n^2}{p imes k}) imes (k imes (w+b)+L)$$

ullet When n becomes large: $T_{bulk}(p,n,k)=rac{n^2}{p} imes (w+b+rac{L}{k})$

Discussion on performance

Some comments

- ullet We obtain the expected result: the latency term is divided by k
- ullet This solution does not perform that well when n is not large enough
 - In this case, the startup time cannot be ignored

Discussion on performance

Some comments

- We obtain the expected result: the latency term is divided by k
- This solution does not perform that well when n is not large enough
 - In this case, the startup time cannot be ignored

What values of k ensure that a processor is never idle ones it has started computing ?

- Case of processor P_0
 - ullet P_0 has to process $rac{n}{k}$ chunks before starting computing its second allocated row
 - ullet It takes p steps until P_0 receives a first update from P_{p-1}
- Condition to be met:

$$p \leq rac{n}{k} \Rightarrow k \leq rac{n}{p}$$

Reducing the amount of communication

To further improve the performance we need to reduce the amount of data sent over the network.

•

Reducing the amount of communication

To further improve the performance we need to reduce the amount of data sent over the network.

Solution

- Allocate blocks of *r* consecutive rows to the same processor
- Concept of block-cyclic allocation
 - Blocks of size $r \times k$
 - lacktriangle Total amount of communication is divided by r
 - Only the last row of each block is sent

Block-cyclic allocation

- ullet Bloc-cyclic allocation with p=4, n=16, k=4, and r=2.
 - Each processor is associated with one color.
 - Light and dark colors are used to illustrate blocks.

Performance of the block-cyclic-allocation version

- Execution time for one step
 - = time required to process one $r \times k$ block

$$T_{step} = r \times k \times w + k \times b + L$$

- Number of steps:
 - It takes p-1 steps until processor P_{p-1} starts working.
 - lacksquare Processor P_{p-1} should run $rac{n^2}{p imes r imes k}$ such steps

Execution time

$$T_{block-cyclic}\left(n,p,r,k
ight) = (p-1 + rac{n^2}{p imes r imes k}) imes (r imes k imes w + k imes b + L)$$

ullet When n becomes large: $T_{block-cyclic}(n,p,r,k)=rac{n^2}{p} imes(w+rac{b}{r}+rac{L}{r imes k})$

Performance

Comments on this new version

- The block-cyclic allocation helps reducing both the bandwidth and the latency term
- ullet However, if r is too large, the startup time is going to become too costly

Comments on the implementation

Concept of ghost cells

Problem

- We consider the case of a block allocation
 - A process computes over several consecutive rows
- Data are stored in different buffers (based on the figure presented in Slide 18)
 - The local domain: A (one allocation)
 - The values received from the North processor (*north vector*).
- How to avoid having to describe a special case for the computation of the first row of each block?
 - Special case: Read the north values from the *north vector* when applying Update to the first row of a block.

Concept of ghost cells

Solution: Allocating ghost cells

- ullet Allocating a block of size (r+1) imes k instead of r imes k
 - The extra row is used to receive data from north

Conclusion

- Study of stencil parallel algorithms in distributed environment
 - Impact of assignment of sub-domains to processes on performance
- Some general (and sometimes contradictory) principles to develop efficient algorithms in distribute shared memory:
 - Sending data in bulk to limit the impact of network latency
 - Sending data early to avoid having idle processors
 - Assigning blocks of data to processors to limit the amount of communication and have regular access patterns for the computation
 - Applying cyclic data distribution to increase load balancing between processors and reduce idle time.

References

• Section 4.1 and 4.3 of the book "Parallel Algorithms" (by Casanova, Robert, and Legrand).