SUSTech

Final Exam for Calculus I in Fall Semester, 2018

1. (10 pts) Determine whether the following statements are true or false? No justification is necessary.

- (1) If f(2) > 0 and f(4) < 0, then there exists a number c between 2 and 4 such that f(c) = 0.
- (2) If f(x) > 1 for all x and $\lim_{x \to 0} f(x)$ exists, then $\lim_{x \to 0} f(x) > 1$.
- (3) If $h(x) \leq f(x) \leq g(x)$ and $\lim_{x \to +\infty} (g(x) h(x)) = 0$, then $\lim_{x \to +\infty} f(x)$ exists.
- 2. (10 pts) Express

$$\lim_{n\to\infty}\frac{1}{n\sqrt{2n}}(\sqrt{1}+\sqrt{3}+\cdots+\sqrt{2n-1})$$

as a definite integral, then evaluate this integral.

3. (15 pts) Multiple Choice Questions: (only one correct answer for each of the following questions.)

- (2) Let the function f(x) be positive and continuous on [a, b]. Then the number of roots of the equation $\int_{a}^{x} f(t) dt + \int_{b}^{x} f(t) dt = 0 \text{ in } (a, b) \text{ is } \overline{(A) \ 0;} \quad (B) \ 1; \quad (C) \ 2; \quad (D) \ 3.$
- (3) Among the improper integrals below, ______ is convergent.

(A)
$$\int_0^{+\infty} \frac{1}{\sqrt{1+x}} dx$$
; (B) $\int_1^{+\infty} \frac{\ln x}{x+x^2} dx$; (C) $\int_0^1 \frac{1}{\sqrt{x} \sin x} dx$; (D) $\int_1^2 \frac{1}{x(\ln x)^2} dx$.

4. (10 pts) Let $f(x) = \int_1^{x^2} (x^2 - t)e^{-t^2} dt$. Identify the open intervals on which f is increasing and decreasing.

1

5. (10 pts) For what values of a and b is

$$\lim_{x \to 0} \left(\frac{\tan(2x)}{x^3} + \frac{a}{x^2} + \frac{\sin(bx)}{x} \right) = 0?$$

6. (10 pts) Evaluate the following limits:

- $(1) \lim_{x \to 1} \frac{x \sin x}{1 \sec x};$
- (2) $\lim_{x \to 1} x^{\frac{x}{1-x}}$.
- 7. (10 pts)
 - (1) Find the derivative, h'(x) of the function

$$h(x) = \begin{cases} x^{4/3} \sin\left(\frac{1}{x^2}\right), & x \neq 0; \\ 0, & x = 0 \end{cases}$$

for all $-\infty < x < \infty$.

- (2) Is the derivative h'(x) at x = 0 continuous?
- 8. (10 pts) Find the derivative of the following functions:

(1)
$$f(x) = \left(\frac{\sin x}{x}\right)^{x^2}$$
, $0 < x < \frac{\pi}{2}$;

(2)
$$f(x) = \left(\frac{(x+2)(x-1)}{(x-2)(x+3)}\right)^5, x > 2.$$

- 9. (10 pts) The graphs of y = x(1-x) and y = 2x 1 (x > 0) intersect at one point x = r. Use Newton's method to estimate the value of r starting with $x_0 = 1$ and find x_2 .
- 10. (15 pts)
 - (1) For $y = x(6-2x)^2$, identify the coordinates of any local and absolute extreme points and inflection points.
 - (2) Sketch the graph of the function. (Please identify some specific points, such as local maximum and minimum points, inflection points, and intercepts.)
- 11. (10 pts) Find the length of the curve $y = \ln \frac{e^x 1}{e^x + 1}$ from $x = \ln 2$ to $x = \ln 3$.
- 12. (10 pts) Find the volume of the solid generated by revolving the region bounded by $y = \frac{1}{\sqrt{1+x^2}}$, y = 0, $x = -\frac{\sqrt{3}}{3}$, and $x = \sqrt{3}$, about the x-axis.
- 13. (10 pts) For what value of a does $\int_{1}^{+\infty} \left(\frac{ax}{x^2 + 1} \frac{1}{2x} \right) dx$ converges? Evaluate the corresponding integral.

2

14. (20 pts) Evaluate the integrals.

(1)
$$\int \frac{\sqrt{x-2}}{x+1} dx, \ x > 2;$$

$$(2) \int x \tan^2 x \, dx;$$

(3)
$$\int_{1}^{\sqrt{2}} \frac{1}{x\sqrt{x^4 - 1}} dx;$$

(4)
$$\int x \cos^3 x \, dx.$$

- 15. (10 pts) If f(x) is continuous with $f(x) = x \sin x + \int_0^{\frac{\pi}{4}} f(2x) dx$. Find the integral $\int_0^{\frac{\pi}{2}} f(x) dx$.
- 16. (10 pts) Solve the differential equation:

$$\frac{dy}{dx} = xy + 3x - 2y - 6.$$

17. (10 pts) The Bernoulli equation $\frac{dy}{dx} + P(x)y = Q(x)y^n$, where n > 1, can be transformed into the linear equation using the substitution $u = y^{1-n}$.

Solve the equation $x^2y' + 2xy = y^3$.

- 18. (10 pts) Suppose that the function f(x) is defined on $(-\infty, +\infty)$, and satisfies the following properties:
 - (1) $f(a+b) = f(a) \cdot f(b)$ for any $a, b \in (-\infty, +\infty)$;
 - (2) f(0) = 1;
 - (3) f is differentiable at x = 0.

Show that $f'(x) = f'(0) \cdot f(x)$ for any $x \in (-\infty, +\infty)$.