Optimisation de l'isolation thermique par matériaux à changement de phase

N° d'inscription: 50654

Introduction - Contexte énergétique

Énergie bâtiment

66%

→ Chauffage/climatisation logement

Image extraite du site Archi-Vision (archi-vision.ch)

Augmentation du prix du kilowattheure depuis 2007

Introduction - Isolant classique

 $R_{th} = 1,14 \text{ m}^2 \text{K/W}$

Déphasage (4 cm): 9 min

 $R_{th} = 1 \text{ m}^2 \text{K/W}$

Déphasage (4 cm): 29 min

Introduction - Isolant classique

 $R_{th} = 1,14 \text{ m}^2 \text{K/W}$

Déphasage (4 cm): 9 min

 $R_{th} = 1 \text{ m}^2 \text{K/W}$

Déphasage (4 cm) : 29 min

Coût de l'énergie

Réchauffement climatique

Optimisation du déphasage + stratégique

Pour lisser les pics de température et éviter la climatisation

Introduction - Isolant classique

LAINE DE VERRE

 $R_{th} = 1$, 14 m²K/W

Déphasage (4 cm): 9 min

 $R_{th} = 1 \text{ m}^2 \text{K/W}$

Déphasage (4 cm) : 29 min

TIPE

 $R_{th}=?$

Déphasage (4 cm):?

Coût de l'énergie

Réchauffement climatique

Optimisation du déphasage + stratégique

LES MATERIAUX A CHANGEMENT DE PHASES

Introduction – Les matériaux à changement de phase (MCP)

Accumulation d'énergie

La température augmente

Le MCP fond

La température se stabilise

Introduction – Les matériaux à changement de phase (MCP)

Accumulation d'énergie

La température augmente

Le MCP fond

La température se stabilise

Restitution d'énergie

Objectifs – Problématique et plan de la présentation

Comment les matériaux à changement de phase peuvent-ils améliorer l'isolation et le confort dans un contexte de transition énergétique ?

Objectifs – Problématique et plan de la présentation

Comment les matériaux à changement de phase peuvent-ils améliorer l'isolation et le confort dans un contexte de transition énergétique ?

Plan:

LE MCP

Isolant MCP

Caractérisation expérimentale et numérique de l'isolant

NOTRE MATERIAU A CHANGEMENT DE PHASE

Température de changement d'état : 60 °C

Température de changement d'état : 60 °C

Paraffine

Le % huile influence la température de fusion

Huile de Colza Vierge

Température de changement d'état : 60 °C

Paraffine

Le % huile influence la température de fusion

Huile de Colza Vierge

Le mélange

Température de changement d'état : 60 °C

Paraffine

Le % huile influence la température de fusion

Huile de Colza Vierge

Le mélange

Quelle doit être la température de changement d'état?

Le MCP – Température de changement d'état

Température murale en hiver en plein soleil

3-6°C 15-18°C

Température murale en été en plein soleil

Le MCP – Température de changement d'état

Température murale en été en plein soleil

Objectif de changement d'état:

~ 35°C

Quelle proportion d'huile et de paraffine doit contenir notre mélange ?

Expérience 1

Thermocouple

Bécher avec différent mélange

Thermocouple Type K Incertitude: ± 0.5 °C

Transmetteur thermocouple EuroSmart

Expérience 1

Changement d'état trop lent

Expérience 1

Changement d'état trop lent

Schéma

expérience 2

Expérience 1

 Changement d'état trop lent

Mélange 30% d'huile / 70% paraffine

expérience 3

Mélange 30% d'huile / 70% paraffine

Mélange 30% d'huile / 70% paraffine

Schéma expérience 3

► Rappel:

Recherche du mélange idéal pour $T_{chgt \, \acute{e}tat} = ~35^{\circ}\text{C}$

► Rappel:

Recherche du mélange idéal pour $T_{chgt \, \acute{e}tat} = ~35^{\circ}\text{C}$

► Rappel:

Recherche du mélange idéal pour $T_{chgt \, \acute{e}tat} = ~35^{\circ}C$

Composition massique du MCP : 90% d'huile / 10% de paraffine

CONCEPTION DE NOTRE ISOLANT

Conception de l'isolant, idée initiale

Comment intégrer les MCP afin de réaliser l'isolant ?

CONCEPTION DU MUR

Conception de l'isolant, idée initiale

Moulage au réfrigérateur

Quadrillage

CONCEPTION **DU MUR**

Conception de l'isolant, idée initiale

Moulage au réfrigérateur

Quadrillage

Différentes dispositions pour comparer

Pourquoi ne pas le garder?

Conception de l'isolant, idée initiale

DU MUR

Conception de l'isolant, idée initiale

Expérience initiale

▶ Problèmes:

Avant l'expérience

Après l'expérience

2^{ième} idée → solution adoptée

Choix : Stockage dans des balles de ping-pong

Ouverture

Choix : Stockage dans des balles de ping-pong

Ouverture

Encapsulation du MCP

Choix : Stockage dans des balles de ping-pong

Ouverture

Encapsulation du MCP

Fermeture

Colle

thermofusible

Choix : Stockage dans des balles de ping-pong

Ouverture

Encapsulation du MCP

Fermeture

Vu de coupe

Raison:

- + Etanche
- + Volume connu et constant
- + Bonnes répartitions de chaleur (homogénéité)

CONCEPTION DE NOTRE MAQUETTE

Comment a-t-on créé notre maquette?

Conception de la maquette, Mur final

Mousse expansive de polyuréthane

Raison:

- + Facilité de mise en œuvre
- + Isolant classique de propriétés connues
- + Maintien mécanique

Conception de la maquette, Mur final

Mousse expansive de polyuréthane

Dispositif de moulage

DU MUR

Conception de la maquette, Mur final

Mousse expansive de polyuréthane

Dispositif de moulage

Remplissage du mur

Conception de la maquette, *Mur final*

Dispositif expérimental de caractérisation de l'isolant

LA MAQUETTE ASSEMBLÉE

1/ Plaque de bois support

3/ La plaque chauffante

Marque: RS PRO

Prix: ~ 150 €

Puissance nominale: 320W

4/ Thermocouple

5/ isolant (et thermocouple)

6/ Plaque de bois support

7/ Serre-joints

CONCEPTION DU MUR

Conception de la maquette, La maquette

La maquette réelle

La maquette schématisée

Raisons:

Raisons:

Raisons:

Raisons:

Raisons:

Raisons:

- + Symétrie de la maquette
- + Répartition équitable de P_{th}

Raisons:

- + Symétrie de la maquette
- + Répartition équitable de P_{th}
- + Limite les pertes

Thermocouples

Introduction des températures

CARACTERISATION

Mesures, l'installation

Compteur d'énergie

Variateur de tension alternif

L'ensemble des capteurs (EuroSmart)

Plage de mesure: 1,5W à 3000W

Incertitude: ± 1W

A quoi sert ce montage?

Mesures, caractéristiques du mur

Chauffe des murs / Refroidissement

Mesures, caractéristiques du mur Chauffe des murs / Refroidissement

L'impact de la chauffe

Sans MCP

Dégradation du mur

Avec MCP

- Dégradation du mur
- + Limitation de la chauffe

Mesures, caractéristiques du mur Chauffe des murs

Quel résultat peut-on obtenir avec les chauffes/refroidissements?

L'impact de la chauffe

Sans MCP

Dégradation du mur

Avec MCP

- Dégradation du mur
- + Limitation de la chauffe

Mesures, caractéristiques du mur

Capacité thermique :

- De la mousse expansive
- Des balles avec MCP
- Du calorimètre utilisé

Résistance thermique :

- Du mur sans MCP
- X
- Du mur avec MCP

Déphasage thermique :

- Du mur sans MCP
- Du mur avec MCP

MESURES

Mesures, capacité thermique

BINOME TIPE

Protocole d'une calorimétrie :

Conservation de l'énergie :

$$m_1 c_{eau}(T_f - T_0) + m_2 c_x(T_f - T_2) + C_{calo}(T_f - T_0) = 0$$

 c_x : capacité thermique massique recherchée

C_{calo} : capacité thermique du calorimètre

Mur	Capacité thermique	
Sans MCP	$c_{th}^{exp} = 6J/g/K$	
	$c_{th}^{th} = 1.5 J/g/K$	
Avec MCP	$c_{th}^{exp} = 7 J/g/K$	
	$c_{th}^{th} = 5J/g/K$	

CARACTERISATION

2/ LES RESISTANCES THERMIQUES

Mur sans MCP

Théorie:

$$\lambda_{th} = 0.034 W/(m.K)$$

$$R_{th}^{th} = 24 K/W$$

$$R_{th}^{th} = 24 \, K/W$$

Dans l'ARQS:

$$T_{int} - T_{9/10} = 9 \frac{R_{th}}{10} \cdot \frac{P_{th}}{2}$$

Schéma électrique équivalent

Pourquoi $T_{9/10}$? Le capteur n'était pas au milieu du mur ?

Mur sans MCP

Mur sans MCP

Le capteur n'est plus au milieu

Mur sans MCP

Observation : Le capteur est à environ 9/10 d'épaisseur du mur (pas la moitié)

Dégradation importante des murs (épaisseur divisée par 2)

Dans l'ARQS :

$$T_{int} - \frac{T_{9/10}}{10} = 9 \frac{R_{th}}{10} \cdot \frac{P_{th}}{2}$$

Dans l'ARQS:

$$T_{int} - \frac{T_{9/10}}{10} = 9 \frac{R_{th}}{10} \cdot \frac{P_{th}}{2}$$

$$R_{th} = \frac{20}{9.P} \cdot (T_{int} - T_{\frac{9}{10}})$$

Expérimentalement:

$$R_{th}^{exp} = 12 \text{ K/W}$$

Mur sans MCP

Théoriquement:

$$R_{th}^{th} = 24 \text{ K/W}$$

Expérimentalement:

$$R_{th}^{exp} = 12 \text{ K/W}$$

Ecart notable (facteur 2):

Pertes de chaleur latérales
Imperfections de contact thermique
Mousse moins dense que le modèle
théorique

Variation de **l'épaisseur** du mur au fil des expériences

MUR AVEC MATERIAU A CHANGEMENT DE PHASE

Dans l'ARQS:

$$R_{th} = \frac{4}{P_{th}} \cdot \left(T_{int} - T_{1/2} \right)$$

Schéma électrique équivalent

Dans l'ARQS:

$$R_{th} = \frac{4}{P_{th}} \cdot \left(T_{int} - T_{1/2} \right)$$

Schéma électrique équivalent

Expérimentalement:

$$R_{th}^{exp} = 8 \text{ K/W}$$

Dans l'ARQS:

$$R_{th} = \frac{4}{P_{th}} \cdot \left(T_{int} - T_{1/2} \right)$$

Isolant Chauffante Isolant T_{1/2} $\frac{1}{2}$ R_{th} $\frac{1}{2}$ R_{th}

Schéma électrique équivalent

Expérimentalement:

$$R_{th}^{exp} = 8 \text{ K/W}$$

Théoriquement :

⇒ Utilisation de la bibliographie

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \varphi_L) + R_L \cdot \varphi_L$$

/₁C

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \phi_L) + R_L \cdot \phi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \varphi_L) + R_L \cdot \varphi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

$$R_S = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_S}$$

$$R_L = R_{cl} + R_{cv}$$

40

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \varphi_L) + R_L \cdot \varphi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

$$R_S = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_S}$$

$$R_L = R_{cl} + R_{cv}$$

$$R_{cl} = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_L}$$

$$R_{cv} = \frac{1}{4 \cdot \pi \cdot r^2 \cdot h}$$

$$R_{cv} = \frac{1}{4 \cdot \pi \cdot r^2 \cdot h}$$

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \varphi_L) + R_L \cdot \varphi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

$$R_S = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_S}$$

$$R_L = R_{cl} + R_{cv}$$

$$R_{cl} = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_L}$$

$$R_{cv} = \frac{1}{4 \cdot \pi \cdot r^2 \cdot h}$$

$$T_L$$
 = $T_{chgt\; \acute{e}tat}$ + ε = 39°C Changement de phase lent et contrôlé T_S = $T_{chgt\; \acute{e}tat}$ - ε = 35°C

40

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \phi_L) + R_L \cdot \phi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

$$R_S = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_S}$$

$$R_L = R_{cl} + R_{cv}$$

$$R_{cl} = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_L}$$

$$R_{cv} = \frac{1}{4 \cdot \pi \cdot r^2 \cdot h}$$

T_L = $T_{chgt\; \acute{e}tat}$ + ε = 39°C Changement de phase lent et contrôlé T_S = $T_{chgt\; \acute{e}tat}$ - ε = 35°C

Hypothèse : les balles sont en parallèle

$$\frac{1}{R_{th}} = \frac{V_{balles}}{V_{total}} \cdot \frac{1}{R_G} + \frac{V_{mousse}}{V_{total}} \cdot \frac{1}{R_{mousse}}$$

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \varphi_L) + R_L \cdot \varphi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

$$R_S = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_S}$$

$$R_L = R_{cl} + R_{cv}$$

$$R_{cl} = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_L}$$

$$R_{cv} = \frac{1}{4 \cdot \pi \cdot r^2 \cdot h}$$

$$T_L$$
 = $T_{chgt\ \acute{e}tat}$ + ε = 39°C Changement de phase lent et contrôlé T_S = $T_{chgt\ \acute{e}tat}$ - ε = 35°C

Hypothèse : les balles sont en parallèle

$$\frac{1}{R_{th}} = \frac{V_{balles}}{V_{total}} \cdot \frac{1}{R_G} + \frac{V_{mousse}}{V_{total}} \cdot \frac{1}{R_{mousse}}$$

$$R_{th} = \frac{V_{total} \cdot R_G \cdot R_{mousse}}{V_{balles} \cdot R_{mousse} + V_{mousse} \cdot R_G}$$

Mesures, résistances thermiques

Modélisation du changement d'état :

$$R_G = R_S \cdot (1 - \phi_L) + R_L \cdot \phi_L$$

$$\phi_{L} = \begin{cases} 1 & si \ T_{L} = T_{f} \\ 0 & si \ T_{S} = T_{f} \\ \frac{T - T_{S}}{T_{L} - T_{S}} & si \ T_{S} < T < T_{L} \end{cases}$$

$$R_S = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_S}$$

$$R_L = R_{cl} + R_{cv}$$

$$R_{cl} = \frac{1}{4 \cdot \pi \cdot r \cdot \lambda_L}$$

$$R_{cv} = \frac{1}{4 \cdot \pi \cdot r^2 \cdot h}$$

$$T_L = T_{chgt \; \acute{e}tat} + \varepsilon = 39 ^{\circ} \text{C} \qquad \begin{array}{c} \text{Changement de phase} \\ T_S = T_{chgt \; \acute{e}tat} - \ \varepsilon = 35 ^{\circ} \text{C} \end{array}$$

Hypothèse : les balles sont en parallèle

$$\frac{1}{R_{th}} = \frac{V_{balles}}{V_{total}} \cdot \frac{1}{R_G} + \frac{V_{mousse}}{V_{total}} \cdot \frac{1}{R_{mousse}}$$

$$R_{th} = \frac{V_{total} \cdot R_G \cdot R_{mousse}}{V_{balles} \cdot R_{mousse} + V_{mousse} \cdot R_G}$$

$$R_{th}^{exp} = 15 \, K/W$$

Mur avec MCP

Expérimentalement:

$$R_{th}^{th} = 8 \, K/W$$

Théoriquement:

$$R_{th}^{exp} = 15 \, K/W$$

- Pertes latérales
- Dégradation du mur
- Capteur pas vraiment au milieu d'une balle

Mur	Capacité thermique	Résistance thermique	
Sans MCP	$c_{th}^{exp} = 6J/g/K$	$R_{th}^{exp} = 12 \ K/W$	
	$c_{th}^{th}=1.5J/g/K$	$R_{th}^{th} = 24 \ K/W$	
Avec MCP	$c_{th}^{exp} = 7 J/g/K$	$R_{th}^{exp} = 8 K/W$	
	$c_{th}^{th}=5J/g/K$	$R_{th}^{th} = 15 K/W$	

LE DEPHASAGE

Mesures, déphasage

Chauffe du mur jusque 95°C

Résistance chauffante

Tint

Refroidissement à l'air libre

Mur sans MCP

Déphasage de 1200 ± 200 s

$$\Delta t \# \frac{e^2}{D_{sans}}$$

$$avec D = \frac{\lambda}{\rho \cdot c}$$

Mur avec MCP

Déphasage de 3000 ± 200 s

$$\Delta t # \frac{e^2}{D_{avec}}$$

$$avec D = \frac{\lambda}{\rho \cdot c}$$

Mur sans MCP

Déphasage de 1200 ± 200 s

$$\Delta t \# \frac{e^2}{D_{sans}}$$

$$avec D = \frac{\lambda}{\rho \cdot c}$$

 $\Delta t # 1800 s$

Mur avec MCP

Déphasage de 3000 ± 200 s

$$\Delta t \# \frac{e^2}{D_{avec}}$$

$$\Delta t # \frac{e^2}{D_{avec}}$$
 $avec D = \frac{\lambda}{\rho \cdot c}$

 $\Delta t # 3600 s$

Mur	Capacité thermique	Résistance thermique	Déphasage
Sans MCP	$c_{th}^{exp} = 6J/g/K$	$R_{th}^{exp} = 12 K/W$	$\varphi^{exp} = 1200 s$
	$c_{th}^{th}=1.5J/g/K$	$R_{th}^{th} = 24 K/W$	φ^{th} # 1800 s
Avec MCP	$c_{th}^{exp} = 7 J/g/K$	$R_{th}^{exp} = 8 K/W$	$\varphi^{exp} = 3000 s$
	$c_{th}^{th}=5J/g/K$	$R_{th}^{th} = 15 K/W$	φ^{th} # 3600 s

VALIDATION DU MODELE PAR SIMULATION NUMERIQUE

SIMULATION

Modélisation numérique, SANS MCP

Equation de chaleur:

$$T_j^{n+1} = T_j^n + \Delta t \cdot D \cdot \frac{T_{j-1}^n - 2 \cdot T_j^n + T_{j+1}^n}{\Delta z^2}$$

Températures simulées pour chaque 10ième de l'épaisseur du mur

SIMULATION

Modélisation numérique, SANS MCP

Equation de chaleur:

$$T_j^{n+1} = T_j^n + \Delta t \cdot D \cdot \frac{T_{j-1}^n - 2 \cdot T_j^n + T_{j+1}^n}{\Delta z^2}$$

Comparaison sans MCP

Modélisation numérique, AVEC MCP

Equation de chaleur:

$$T_j^{n+1} = T_j^n + \Delta t \cdot D \cdot \frac{T_{j-1}^n - 2 \cdot T_j^n + T_{j+1}^n}{\Delta z^2}$$

Temps (s)

Modélisation numérique, AVEC MCP

Equation de chaleur:

$$T_j^{n+1} = T_j^n + \Delta t \cdot D \cdot \frac{T_{j-1}^n - 2 \cdot T_j^n + T_{j+1}^n}{\Delta z^2}$$

Modélisation numérique, AVEC MCP

Equation de chaleur:

$$T_j^{n+1} = T_j^n + \Delta t \cdot D \cdot \frac{T_{j-1}^n - 2 \cdot T_j^n + T_{j+1}^n}{\Delta z^2}$$

1000

2000

3000

4000

Temps (s)

5000

6000

7000

Courbe expérimentale semblable à 8/10

Capteur excentré

Mur	Capacité thermique	Résistance thermique	Déphasage	Rapprocheme nt par rapport à la simulation
Sans MCP	$c_{th}^{exp} = 6J/g/K$	$R_{th}^{exp} = 12 \ K/W$	$\varphi^{exp} = 1200 s$	Simulation sans balle 70 1000 2000 3000 4000 5000 6000 7000
	$c_{th}^{th}=1.5J/g/K$	$R_{th}^{th} = 24 \ K/W$	φ^{th} # 1800 s	0 1000 2000 3000 3000 5000 7000 7000 *********************
Avec MCP	$c_{th}^{exp} = 7 J/g/K$	$R_{th}^{exp} = 8 K/W$	$\varphi^{exp} = 3000 s$	Simulation avec balle 70 60 00 00 00 00 00 00 00 00
	$c_{th}^{th} = 5 J/g/K$	$R_{th}^{th} = 15 K/W$	φ^{th} # 3600 s	0 1000 2000 3000 4000 5000 6000 7000 Temps (s)

Retour sur l'introduction

 $R_{th} = 1.14 \text{ m}^2 \text{K/W}$

Déphasage (4 cm): 9 min

 $R_{th} = 1 \text{ m}^2 \text{K/W}$

Déphasage (4 cm) : 29 min

TIPE

$$R_{th} = 0.4 \text{ m}^2 \text{K/W}$$

Déphasage (4 cm): 50 min

Retour sur l'introduction

Déphasage (4 cm): 9 min

LAINE DE BOIS

 $R_{th} = 1 \text{ m}^2 \text{K/W}$

Déphasage (4 cm) : 29 min

Conclusion:

Utile pour le confort estival : la chaleur accumulée la journée est restituée le soir lorsqu'elle est moins dérangeante

TIPE

 $R_{th} = 0.4 \text{ m}^2 \text{K/W}$

Déphasage (4 cm): 50 min

Retour sur l'introduction

LAINE DE VERRE

 $R_{th}=1,14~\mathrm{m^2K/W}$

Déphasage (4 cm): 9 min

LAINE DE BOIS

 $R_{th} = 1 \text{ m}^2 \text{K/W}$

Déphasage (4 cm) : 29 min

TIPE

MATERIAUX A CHANGEMENT DE PHASE

 $R_{th} = 0.4 \text{ m}^2 \text{K/W}$

Déphasage (4 cm): 50 min

Conclusion:

Utile pour le confort estival : la chaleur accumulée la journée est restituée le soir lorsqu'elle est moins dérangeante

Dans le contexte climatique et économique : le MCP retarde les pics de chaleurs

MERCI POUR VOTRE ECOUTE!

ANNEXE

ANNEXE

Courbe de chauffe

Calorimétrie pour notre MCP

Calorimétrie pour notre MCP

Calorimétrie pour notre MCP

Calorimétrie pour notre MCP

$$m_1 c_{eau}(T_f - T_0) + m_2 c_x(T_f - T_2) + C_{calo}(T_f - T_0) = 0$$

Résultats expérimentaux :

 $c_{eau} = 4.2 J/g/K$

MESURES

 c_{balle} = négligeable

 $c_{MCP} = 1.4 J/g/K$

 $C_{\rm calo} = 2000 \, J/K$

 $c_{mousse} = 6,2 J/g/K$

Résultats théoriques :

 c_{MCP}^{th} = 0,9. c_{huile}^{th} + 0,1. $c_{paraffine}^{\text{th}}$ c_{MCP}^{th} = 1,37 J/g/K

MCP Organiques:

- Paraffines: sous-produits de distillation de pétrole (20 à 90 °C)
- Mélange organique : mélange d'alcane (plus la chaine carbonée est longue, plus le point de fusion est haut)
- Acide gras

MCP Inorganiques:

- Sels hydratés (grande densité énergétique, faible expansion volumique, bonne conductivité thermique)
- Métaux (peu utilisés en raison de leur poids)

MCP eutectiques:

 Mélange de deux corps purs ou plus qui change d'état à température constante (les plus utilisés d'après la littérature pour le stockage d'énergie)

MESURES

Mesures, résistances thermiques

Mur avec MCP

$$R_G = R_S \cdot (1 - \phi_L) + R_L \cdot \phi_L$$

$$\frac{1}{R_{th,total}} = \frac{V_{balles}}{V_{total}} \cdot \frac{1}{R_G} + \frac{V_{mousse}}{V_{total}} \cdot \frac{1}{R_{mousse}}$$

$$C_{th,total} = \frac{V_{balles}}{V_{total}} \cdot C_{MCP} + \frac{V_{mousse}}{V_{total}} \cdot C_{mousse}$$