

EXHIBIT A

US011253020B2

(12) **United States Patent**
Lotti

(10) **Patent No.:** US 11,253,020 B2
(45) **Date of Patent:** *Feb. 22, 2022

(54) **ARTIFICIAL LASH EXTENSIONS**(71) Applicant: **Lashify, Inc.**, North Hollywood, CA (US)(72) Inventor: **Sahara Lotti**, North Hollywood, CA (US)(73) Assignee: **Lashify, Inc.**, North Hollywood, CA (US)

(*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

This patent is subject to a terminal disclaimer.

(21) Appl. No.: **17/342,355**(22) Filed: **Jun. 8, 2021**(65) **Prior Publication Data**

US 2021/0289870 A1 Sep. 23, 2021

Related U.S. Application Data

(63) Continuation of application No. 17/003,853, filed on Aug. 26, 2020, which is a continuation of application No. 16/556,518, filed on Aug. 30, 2019, which is a continuation of application No. 15/968,361, filed as application No. PCT/US2017/044217 on Jul. 27, 2017, now Pat. No. 10,660,388.

(60) Provisional application No. 62/368,116, filed on Jul. 28, 2016.

(51) **Int. Cl.**
A41G 5/00 (2006.01)
A41G 5/02 (2006.01)(52) **U.S. Cl.**
CPC *A41G 5/02* (2013.01)(58) **Field of Classification Search**CPC A41G 5/02
See application file for complete search history.(56) **References Cited**

U.S. PATENT DOCUMENTS

1,021,063 A	3/1912	Miller
1,450,259 A	4/1923	Nesler
1,831,801 A	11/1931	Birk
1,897,747 A	2/1933	Birk

(Continued)

FOREIGN PATENT DOCUMENTS

CN	102975141 A	3/2013
CN	103027410 A	4/2013

(Continued)

OTHER PUBLICATIONS

www.ubuy.com.kwen-sa/catalog/product/view/id/37236 I envy by Kiss Premium Qutro 02 Lash buy only ubuy Qatar, Dec. 30, 2020.
(Continued)*Primary Examiner* — Cris L. Rodriguez
Assistant Examiner — Brianne E Kalach(74) *Attorney, Agent, or Firm* — Lowenstein Sandler LLP(57) **ABSTRACT**

An artificial lash extension system includes multiple lash extensions designed to attach to an underside of natural lashes. Each of the multiple lash extensions include multiple clusters of artificial hairs. Each of the multiple clusters include at least two artificial hairs. Each of the multiple lash extensions include a base from which the at least two artificial hairs of each of the plurality of clusters protrude. At least some of the artificial hairs are connected to one another at a respective part of the base by at least an application of heat.

19 Claims, 10 Drawing Sheets

US 11,253,020 B2

Page 2

(56)

References Cited**U.S. PATENT DOCUMENTS**

2,013,011 A	9/1935	Sheldon	5,117,846 A	6/1992	Finamore et al.
D129,526 S	9/1941	Hanisch	D328,246 S	7/1992	Nottingham et al.
2,268,082 A	12/1941	Phillips, Sr.	5,154,195 A	10/1992	Irisawa
2,323,595 A	7/1943	Hanisch	D342,671 S	12/1993	Elliott
2,392,694 A	1/1946	Rector	D343,340 S	1/1994	Frye, Jr. et al.
D154,227 S	6/1949	Alvizua	5,307,826 A	5/1994	Iosilevich
D155,559 S	10/1949	Tillmann	D348,219 S	6/1994	Goldberg
2,618,279 A	11/1952	Reiffert	5,322,166 A	6/1994	Crowther
2,812,768 A	11/1957	Giuliano	5,368,052 A	11/1994	Finamore
3,016,059 A	1/1962	Hutton	5,377,700 A	1/1995	Harris
3,032,042 A	5/1962	Meehan	D358,312 S	5/1995	Keenan
3,174,321 A	3/1965	Williams	5,411,775 A	5/1995	Wilson
3,295,534 A	1/1967	Dorkin	5,419,345 A	5/1995	Kadymir
3,343,552 A	9/1967	Steffen	D359,583 S	6/1995	Abbo
3,392,727 A	7/1968	Hanlon	D368,495 S	4/1996	Rypinski
3,447,540 A	6/1969	Osher	5,533,529 A	7/1996	Ohno
3,454,015 A	7/1969	Udes	5,547,529 A	8/1996	Woolf
3,478,754 A	11/1969	Martin, Jr.	D373,726 S	9/1996	Power
3,547,135 A	12/1970	Roos	5,571,543 A	11/1996	Song et al.
3,557,653 A	1/1971	Kim	D379,923 S	6/1997	De Baschmakoff
3,561,454 A	2/1971	Oconnell	D380,616 S	7/1997	Leslie et al.
3,625,229 A	12/1971	Silson	D382,198 S	8/1997	Mulhauser et al.
3,645,281 A	2/1972	Seidler	D386,808 S	11/1997	Litton
3,670,742 A	6/1972	Weaner	D387,483 S	12/1997	Sloan
3,703,180 A	11/1972	Aylott	D388,549 S	12/1997	Mouyiaris et al.
3,828,803 A	8/1974	Windsor	5,746,232 A	5/1998	Martin et al.
3,833,007 A	9/1974	Jacobs	5,765,571 A	6/1998	Dinnel
3,900,038 A	8/1975	Masters	D397,040 S	8/1998	Bakic
D240,769 S	7/1976	Bowman	5,813,418 A	9/1998	Pillars
3,968,807 A	7/1976	Kraicer	D403,922 S	1/1999	Terracciano et al.
3,970,092 A	7/1976	Nelson	D404,531 S	1/1999	Bakic et al.
3,970,992 A	7/1976	Boothroyd et al.	5,894,846 A	4/1999	Gang
3,971,392 A	7/1976	Brehmer	5,896,996 A	4/1999	Chuang
3,980,092 A	9/1976	Garufi	D411,649 S	6/1999	Bakic
3,982,313 A	9/1976	Nelson, Jr.	D418,018 S	12/1999	Winsted
4,016,889 A	4/1977	Cowles	D418,253 S	12/1999	Bakic
4,029,111 A	6/1977	Barton	6,003,467 A	12/1999	Shelton-Ferrell et al.
4,049,006 A	9/1977	Saunders et al.	6,016,814 A	1/2000	Elliott
4,163,535 A	8/1979	Austin	6,019,107 A	2/2000	Overmyer et al.
4,168,713 A	9/1979	Agiotis	6,029,674 A	2/2000	Han
4,203,518 A	5/1980	Current	6,032,609 A	3/2000	Luoma
4,205,693 A	6/1980	Mallouf	6,035,861 A	3/2000	Copello
4,225,693 A	9/1980	McCormick	6,092,291 A	7/2000	Cendoma
4,254,772 A	3/1981	McNamee	6,109,274 A	8/2000	Ingersoll
4,254,784 A	3/1981	Nelson	D437,086 S	1/2001	Dickert
4,284,092 A	8/1981	Buretta	6,174,321 B1	1/2001	Webb
4,296,765 A	10/1981	Bachtell	6,182,839 B1	2/2001	Robbins
D261,601 S	11/1981	Kettlestrings	D442,304 S	5/2001	Huang
4,299,242 A *	11/1981	Choe	6,230,715 B1	5/2001	Cho
		A41G 5/02	D443,471 S	6/2001	Lillelund et al.
		132/53	6,247,476 B1	6/2001	Sartena
4,360,033 A	11/1982	Schmehling	6,257,250 B1	7/2001	Sartena
4,395,824 A	8/1983	Puro	6,265,010 B1	7/2001	Franco
D270,551 S	9/1983	Thayer	D448,927 S	10/2001	Vazquez
4,458,701 A	7/1984	Holland	6,302,115 B1	10/2001	Sartena
4,509,539 A	4/1985	Alfieri	6,308,716 B1	10/2001	Han
D280,354 S	8/1985	Bakic	D452,151 S	12/2001	Scott
D281,259 S	11/1985	Hensley	D454,981 S	3/2002	Lamagna et al.
D281,825 S	12/1985	Bakic	D456,077 S	4/2002	Etter et al.
4,600,029 A	7/1986	Ueberschaar	D456,097 S	4/2002	LaMagna et al.
4,697,856 A	10/1987	Abraham	D458,413 S	6/2002	Boilen
4,739,777 A	4/1988	Nelson	6,405,736 B2	6/2002	Townsend
D298,070 S	10/1988	Ferrari	6,439,406 B1	8/2002	Duhon
4,784,713 A	11/1988	Van Nieulande	D463,280 S	9/2002	Brozell
D299,561 S	1/1989	Bakic	D463,744 S	10/2002	Brozell
D301,371 S	5/1989	Kaprelian	D464,565 S	10/2002	Weinstein et al.
D302,602 S	8/1989	Bakic	D464,877 S	10/2002	Weinstein et al.
4,865,057 A	9/1989	Braun	6,471,515 B2	10/2002	Feuer
4,934,387 A	6/1990	Megna	D467,800 S	12/2002	Chen et al.
4,964,428 A	10/1990	Lamatrice	6,494,212 B1	12/2002	Yamakoshi
D314,066 S	1/1991	Bakic	6,530,379 B2	3/2003	Iosilevich
5,010,914 A	4/1991	Merges	D472,675 S	4/2003	Lamagna
D318,346 S	7/1991	Bakic	D472,810 S	4/2003	Gelardi et al.
5,033,626 A	7/1991	Platti	D473,106 S	4/2003	Scherer
5,072,745 A	12/1991	Cheh	6,561,197 B2	5/2003	Harrison
5,082,010 A	1/1992	Skaryd et al.	6,567,640 B2	5/2003	Ishikawa
			D475,616 S	6/2003	Lambrecht
			6,581,609 B2	6/2003	Ott
			D479,365 S	9/2003	Todeschini

US 11,253,020 B2

Page 3

(56)	References Cited	
U.S. PATENT DOCUMENTS		
D480,864 S	10/2003	Sayers et al.
D481,946 S	11/2003	Nicholson et al.
D481,952 S	11/2003	Orsomando
D482,495 S	11/2003	Jackel-Marken
D482,928 S	12/2003	Liu
D482,934 S	12/2003	Liu
D483,232 S	12/2003	Liu
D483,909 S	12/2003	Todeschini
D485,359 S	1/2004	McMichael et al.
6,688,315 B1	2/2004	Harrison
6,691,714 B1	2/2004	Yaguchi et al.
6,708,696 B2	3/2004	Ferguson
D488,353 S	4/2004	Govrik et al.
D488,618 S	4/2004	Wekstein
D490,932 S	6/2004	Mammone
D491,336 S	6/2004	Cecere
D495,834 S	9/2004	Todeschini
D496,759 S	9/2004	Rodriguez
6,820,625 B2	11/2004	Park
D501,580 S	2/2005	Sugawara
D506,573 S	6/2005	de Grandcourt
D507,678 S	7/2005	Lamagna
6,935,348 B2	8/2005	Gold
6,935,349 B2	8/2005	Nicot et al.
D509,942 S	9/2005	Connolly et al.
D512,913 S	12/2005	Gauthier
6,973,931 B1	12/2005	King
6,981,814 B2	1/2006	Gearding et al.
D515,242 S	2/2006	Cho
D516,247 S	2/2006	Merheje
7,000,775 B2	2/2006	Gelardi et al.
7,036,518 B2	5/2006	Park
D522,376 S	6/2006	Hales
D532,891 S	11/2006	Buthier et al.
D533,650 S	12/2006	Ohta
D534,426 S	1/2007	Bakic
7,159,720 B2	1/2007	Pearson
7,168,432 B1	1/2007	Brumfield
D537,208 S	2/2007	Shaljian
D540,112 S	4/2007	Nichols et al.
D543,662 S	5/2007	Bivona et al.
D543,815 S	6/2007	Metcalf
D543,850 S	6/2007	Legros
D544,148 S	6/2007	Bivona et al.
D544,202 S	6/2007	Markfelder
D545,396 S	6/2007	Casey et al.
7,228,863 B2	6/2007	Dumler et al.
D546,002 S	7/2007	Bowen
D547,940 S	8/2007	Sandy
D559,457 S	1/2008	Garland et al.
D561,045 S	2/2008	Lee
D561,942 S	2/2008	Khubani
7,331,351 B1	2/2008	Asai
D563,157 S	3/2008	Bouveret et al.
D563,616 S	3/2008	Lynde et al.
D563,728 S	3/2008	Welch, III
7,343,921 B2	3/2008	Salinas
D569,041 S	5/2008	Azoulay
D569,553 S	5/2008	Cho
7,374,048 B2	5/2008	Mazurek
D571,543 S	6/2008	Sungadi
D573,308 S	7/2008	Wittke-Kothe
D575,904 S	8/2008	Iqbal
D579,059 S	10/2008	Chan
7,469,701 B1	12/2008	Bernard
D584,449 S	1/2009	Shaljian
D587,529 S	3/2009	Pratt
D588,746 S	3/2009	Ross
D591,599 S	5/2009	Okin et al.
D592,923 S	5/2009	Konopka
7,533,676 B2	5/2009	Sthair
D595,054 S	6/2009	Whitaker
D600,441 S	9/2009	Estrada
D602,354 S	10/2009	Dibnah et al.
7,600,519 B2	10/2009	Dinh
		D604,579 S 11/2009 Robinson et al.
		7,610,921 B2 11/2009 Gold
		D605,514 S 12/2009 Weber
		D607,332 S 1/2010 Huntington et al.
		D615,290 S 5/2010 Heffner
		D617,187 S 6/2010 Murray
		D617,943 S 6/2010 Bouix et al.
		7,748,391 B2 7/2010 Vance
		D627,103 S 11/2010 Cho
		7,836,899 B2 11/2010 Sugai et al.
		D631,606 S 1/2011 Chen
		7,896,192 B2 3/2011 Conley et al.
		D638,733 S 5/2011 Sullivan et al.
		7,938,128 B2 5/2011 Gueret
		D639,196 S 6/2011 Sullivan et al.
		D640,005 S 6/2011 Lee et al.
		D640,834 S 6/2011 Chen
		D641,106 S 7/2011 Williams et al.
		8,015,980 B2 9/2011 Rabe et al.
		8,025,065 B2 9/2011 Gulliker
		8,042,553 B2 10/2011 Paris
		D647,799 S 11/2011 Dunwoody
		8,061,367 B2 11/2011 Rabe et al.
		D650,669 S 12/2011 Dunwoody
		D650,670 S 12/2011 Dunwoody
		D651,082 S 12/2011 Dunwoody
		8,113,218 B2 2/2012 Nguyen
		8,127,774 B2 3/2012 Dinh
		D657,496 S 4/2012 Flatt
		D657,696 S 4/2012 Floyd et al.
		D659,330 S 5/2012 Davis
		8,171,943 B2 5/2012 Hamano
		8,186,361 B2 5/2012 Hampton
		D661,185 S 6/2012 Battat
		D661,599 S 6/2012 Floyd et al.
		8,191,556 B2 6/2012 Betts
		8,196,591 B2 6/2012 Lee et al.
		8,205,761 B2 6/2012 Stull, Sr. et al.
		D663,113 S 7/2012 Simms
		D664,011 S 7/2012 Affonso
		8,342,186 B2 1/2013 Freelove
		8,347,896 B2 1/2013 Liao
		D679,590 S 4/2013 Stull, Sr. et al.
		D679,591 S 4/2013 Stull, Sr. et al.
		D679,592 S 4/2013 Stull, Sr. et al.
		D679,595 S 4/2013 Stull, Sr. et al.
		D679,596 S 4/2013 Stull, Sr. et al.
		D682,103 S 5/2013 Jedlicka et al.
		D682,688 S 5/2013 Murray
		8,434,500 B2 5/2013 Alex
		D686,495 S 7/2013 Murray
		D690,419 S 9/2013 Porat
		8,528,571 B2 9/2013 Costa
		8,578,946 B2 11/2013 Ellery
		8,596,284 B2 12/2013 Byrne
		8,616,223 B2 12/2013 Rabe et al.
		D698,078 S 1/2014 Purizhansky et al.
		8,657,170 B2 2/2014 Martinez
		D700,799 S 3/2014 Ludeman et al.
		D702,510 S 4/2014 Segal
		8,701,685 B2 4/2014 Chipman
		D707,392 S 6/2014 Yu et al.
		D707,556 S 6/2014 Kawamura
		8,739,803 B2 6/2014 Freelove
		8,752,562 B2 6/2014 Dinh
		D709,129 S 7/2014 Moerl
		D711,227 S 8/2014 Sheikh
		D713,217 S 9/2014 Micara-Sartori et al.
		D714,494 S 9/2014 Vasquez et al.
		8,826,919 B2 9/2014 Dinh
		D716,498 S 10/2014 Wolff
		D717,038 S 11/2014 Lee
		8,875,718 B2 11/2014 Dinh
		8,881,741 B1 11/2014 Mattson et al.
		8,881,744 B2 11/2014 McKinstry

US 11,253,020 B2

Page 4

(56)

References Cited

U.S. PATENT DOCUMENTS

D718,901 S	12/2014	Parker	D836,432 S	12/2018	Riedel et al.
8,939,159 B2	1/2015	Yeo et al.	10,149,528 B2	12/2018	Erickson et al.
8,967,158 B2	3/2015	Sanbonmatsu	D836,943 S	1/2019	Klieman
9,004,299 B2	4/2015	Hardin	D837,653 S	1/2019	Meranus
9,027,568 B2	5/2015	Lee	D840,104 S	2/2019	Hussain et al.
9,044,076 B2	6/2015	Temple	10,264,837 B2	4/2019	Park
9,078,480 B2	7/2015	Beschta	D847,631 S	5/2019	Villbrandt
9,107,461 B2	8/2015	Martins et al.	D847,632 S	5/2019	Villbrandt
D738,579 S	9/2015	Owens et al.	D848,795 S	5/2019	Butler
D738,611 S	9/2015	Gupta	D850,715 S	6/2019	Lotti
9,149,083 B1	10/2015	Dinh	D852,412 S	6/2019	Grund et al.
9,155,345 B2	10/2015	Nisim et al.	10,362,823 B1	7/2019	Hill et al.
9,179,722 B2	11/2015	Le	D863,419 S	10/2019	Oguma et al.
D746,046 S	12/2015	Lee	D863,679 S	10/2019	Lotti
D746,514 S	12/2015	Lambridis et al.	10,433,607 B2	10/2019	Ahn
9,215,901 B1	12/2015	Schroeder	D867,664 S	11/2019	Lotti
9,254,012 B2	2/2016	Pham	D867,668 S	11/2019	Lotti
D751,904 S	3/2016	Landrum et al.	10,660,388 B2	5/2020	Lotti
9,277,777 B2	3/2016	Lee et al.	D890,430 S	7/2020	Lotti
D753,455 S	4/2016	Hyma et al.	10,721,984 B2	7/2020	Lotti
D753,881 S	4/2016	Hussain et al.	D895,201 S	9/2020	Lotti
9,314,085 B2	4/2016	Hatch	D895,958 S	9/2020	Guo et al.
D755,577 S	5/2016	Segal	D909,680 S	2/2021	Hussain et al.
D757,274 S	5/2016	Gelb et al.	D914,965 S	3/2021	Lotti
D758,009 S	5/2016	Berkos	D917,153 S	4/2021	Denei et al.
9,339,072 B2	5/2016	Kenna	D918,475 S	5/2021	Hu
9,351,752 B2	5/2016	Slavin	D920,400 S	5/2021	Saito
D761,489 S	7/2016	Krakovszki	D920,465 S	5/2021	Bould et al.
D762,433 S	8/2016	Yang	D930,788 S	9/2021	Roth
D764,688 S	8/2016	Robinson et al.	D932,101 S	9/2021	Davis et al.
D765,909 S	9/2016	Marchica et al.	2001/0023699 A1	9/2001	Matthews
9,439,465 B2	9/2016	Ott	2001/0035192 A1	11/2001	Townsend
9,451,800 B2	9/2016	Dinh	2001/0037813 A1	11/2001	Ra
9,456,646 B2	10/2016	Calina	2002/0114657 A1	2/2002	Gueret
9,462,837 B2	10/2016	Ngo	2002/0056465 A1	5/2002	Shin
9,468,245 B2	10/2016	Woods	2002/0094507 A1	7/2002	Feuer
9,486,025 B1	11/2016	Dinh	2002/0198597 A1	12/2002	Godfrey
9,504,285 B2	11/2016	Lin	2003/0005941 A1	1/2003	Iosilevich
D773,915 S	12/2016	Barakat et al.	2003/0111467 A1	6/2003	Norman et al.
D775,270 S	12/2016	Moffat	2003/0155317 A1	8/2003	McNeeley et al.
9,516,908 B2	12/2016	Miyatake et al.	2003/0226571 A1	12/2003	Rahman
9,565,883 B2	2/2017	Dinh	2004/0011371 A1	1/2004	Harrison
9,596,898 B2	3/2017	Seawright	2004/0011372 A1	1/2004	Park
D783,899 S	4/2017	Roh	2004/0211436 A1	10/2004	Knight
D783,901 S	4/2017	Kim et al.	2005/0061341 A1	3/2005	Choe
D784,615 S	4/2017	Choi	2005/0098190 A1	5/2005	Kim
9,622,527 B2	4/2017	Nguyen	2005/0098191 A1	5/2005	Frazier
D788,556 S	6/2017	James	2005/0115581 A1	6/2005	Choi
9,730,481 B2	8/2017	Uresti	2005/0166939 A1	8/2005	Stroud
D796,582 S	9/2017	Beard	2005/0194015 A1	9/2005	Watts
D800,966 S	10/2017	Silva	2005/0247326 A1	11/2005	Park
D805,135 S	12/2017	Beard	2005/0252517 A1	11/2005	Salinas
D806,315 S	12/2017	Hardwick	2005/0252518 A1	11/2005	Salinas
9,833,028 B2	12/2017	Jang et al.	2006/0065280 A1	3/2006	Cheung
9,848,661 B2	12/2017	Harris et al.	2006/0065281 A1	3/2006	Kim
9,848,662 B2	12/2017	Dinh	2006/0081267 A1	4/2006	Kuptiz
D810,534 S	2/2018	Liu	2006/0096609 A1	5/2006	Nwokola
D810,543 S	2/2018	Astrandsson et al.	2006/0124658 A1	6/2006	Coe et al.
D811,872 S	3/2018	Wu	2006/0129187 A1	6/2006	Cho
D814,107 S	3/2018	Lotti et al.	2006/0142693 A1	6/2006	Kahen
D814,260 S	4/2018	Dhubb	2006/0175853 A1	8/2006	Anderson et al.
9,930,919 B1	4/2018	Branker et al.	2006/0180168 A1	8/2006	Dinnel
D817,132 S	5/2018	Yang	2006/0180171 A1	8/2006	Kim
9,993,373 B2	6/2018	Nassif et al.	2006/0266376 A1	11/2006	Basso
D823,538 S	7/2018	Ruggaber	2007/0023062 A1	2/2007	McKinstry et al.
D823,683 S	7/2018	Caldwell	2007/0050207 A1	3/2007	Merszei
D825,333 S	8/2018	Ozamiz et al.	2007/0084749 A1	4/2007	Demelo et al.
D828,013 S	9/2018	Van Wijngaarden et al.	2007/0157941 A1	7/2007	Awad et al.
D828,014 S	9/2018	Van Wijngaarden et al.	2007/0157944 A1	7/2007	Catron et al.
D828,629 S	9/2018	Hussain	2007/0199571 A1	8/2007	McCulloch
D829,381 S	9/2018	Kim	2007/0221240 A1	9/2007	Junsuh Lee
D830,170 S	10/2018	Holmes	2007/0227550 A1	10/2007	Merszei
D832,701 S	11/2018	Oates	2007/0272263 A1	11/2007	Gold
D832,702 S	11/2018	Oates	2007/0272264 A1	11/2007	Byrne
D835,465 S	12/2018	Son et al.	2007/0295353 A1	12/2007	Dinh

US 11,253,020 B2

Page 5

(56)	References Cited					
U.S. PATENT DOCUMENTS						
2008/0017210 A1	1/2008 Eaton	2015/0128986 A1	5/2015 Stookey			
2008/0196732 A1	8/2008 Merszei	2015/0136162 A1	5/2015 Brouillet et al.			
2008/0223390 A1	9/2008 Brown	2015/0173442 A1	6/2015 Raouf			
2008/0276949 A1	11/2008 Lee	2015/0181967 A1	7/2015 Dinh			
2008/0283072 A1	11/2008 Sun	2015/0201691 A1	7/2015 Palmer-Rogers			
2009/0014023 A1	1/2009 Waters	2015/0201692 A1	7/2015 Hansen et al.			
2009/0026676 A1	1/2009 Kurita et al.	2015/0216246 A1	8/2015 Ahn et al.			
2009/0028625 A1	1/2009 Bonneyrat	2016/0016702 A1	1/2016 Siskindovich et al.			
2009/0071490 A1	3/2009 Sthair	2016/0037847 A1	2/2016 Tavakoli			
2009/0071492 A1	3/2009 Oh	2016/0037848 A1	2/2016 Lee			
2009/0178689 A1	7/2009 Navarro et al.	2016/0050996 A1	2/2016 Kwon			
2009/0217936 A1	9/2009 Sato et al.	2016/0058088 A1	3/2016 Le			
2009/0217939 A1	9/2009 Rabe et al.	2016/0088889 A1	3/2016 Kettavong			
2009/0223534 A1	9/2009 Green	2016/0135531 A1	5/2016 Ezechukwu			
2009/0241973 A1	10/2009 Hampton	2016/0174645 A1	6/2016 Goldner			
2009/0241979 A1	10/2009 Navarro et al.	2016/0192724 A1	7/2016 Scott et al.			
2009/0255547 A1	10/2009 Starks et al.	2016/0192725 A1	7/2016 Merszei			
2009/0266373 A1	10/2009 Kupitz	2016/0206031 A1	7/2016 Stoka			
2009/0266376 A1	10/2009 Beschta	2016/0219959 A1	8/2016 Chipman et al.			
2010/0043816 A1	2/2010 Dix	2016/0286881 A1	10/2016 Ko			
2010/0065078 A1	3/2010 Reece	2016/0324241 A2	11/2016 Lee			
2010/0070526 A1	3/2010 Matias	2016/0324242 A1	11/2016 Hansen et al.			
2010/0127228 A1	5/2010 Xie et al.	2016/0345648 A1	12/2016 Miniello et al.			
2010/0170526 A1 *	7/2010 Nguyen	A41G 5/02 132/201	2016/0353821 A1	12/2016 Calina		
			2017/0000204 A1	1/2017 Wibowo		
			2017/006947 A1	1/2017 Uresti		
			2017/0020219 A1	1/2017 Beschta		
			2017/0049173 A1	2/2017 Dinh		
			2017/0055615 A1	3/2017 Crocilla		
			2017/0079356 A1	3/2017 Dinh		
2011/0079233 A1	4/2011 Cheh	2017/0079357 A1	3/2017 Dinh			
2011/0079235 A1	4/2011 Reed	2017/0079358 A1	3/2017 Dinh			
2011/0121592 A1	5/2011 Cho	2017/0112214 A1	4/2017 Ahn			
2011/0127228 A1	6/2011 Sagel	2017/0112215 A1	4/2017 Dinh			
2011/0220136 A1	9/2011 Kang	2017/0112264 A1	4/2017 Park			
2011/0226274 A1	9/2011 Turner	2017/0127743 A1	5/2017 Nakamura et al.			
2011/0240049 A1	10/2011 Kim et al.	2017/0311667 A1	5/2017 Passariello			
2011/0278869 A1	11/2011 Lee et al.	2017/0150763 A1	6/2017 Schroeder			
2011/0290271 A1	12/2011 Rabe et al.	2017/0208885 A1	7/2017 Alex			
2011/0290937 A1	12/2011 Salkeld	2017/0231309 A1	8/2017 Han			
2012/0037177 A1	2/2012 Teater Makinen	2017/0258163 A1	9/2017 Uresti			
2012/0055499 A1 *	3/2012 Sanbonmatsu	A41G 5/02 132/201	2017/0265550 A1	9/2017 Han et al.		
			2017/0340041 A1	11/2017 Nguyen		
			2017/0347731 A1	12/2017 Chipman et al.		
2012/0160259 A1	6/2012 Nguyen et al.	2017/0358245 A1	12/2017 Dana			
2012/0174939 A1	7/2012 Starks et al.	2017/0360134 A1	12/2017 Crocilla			
2012/0180804 A1	7/2012 Hochi et al.	2017/0360135 A1	12/2017 Ahn			
2012/0266903 A1	10/2012 Devlin	2017/0360136 A1	12/2017 Ferrier et al.			
2012/0305020 A1	12/2012 Byrne	2018/0065779 A1	3/2018 Chiba			
2012/0318290 A1	12/2012 Kim	2018/0098591 A1	4/2018 Leeflang			
2013/0019889 A1	1/2013 Palmer-Rogers	2018/0160755 A1	6/2018 Hansen et al.			
2013/0032162 A1	2/2013 Major	2018/0235299 A1	8/2018 Stoka			
2013/0042881 A1	2/2013 Mutchler	2018/0242671 A1	8/2018 Merszei			
2013/0042884 A1	2/2013 Wilkinson	2018/0242672 A1	8/2018 Lotti			
2013/0110032 A1	5/2013 Luzon et al.	2018/0242715 A1	8/2018 Lotti			
2013/0160783 A1	6/2013 Ahn et al.	2018/0352885 A1	12/2018 Kim			
2013/0167855 A1	7/2013 Kupitz	2018/0352886 A1	12/2018 Schroeder et al.			
2013/0167858 A1	7/2013 Lee	2019/0133227 A1	5/2019 Le			
2013/0255706 A1	10/2013 Dinh	2019/0191851 A1	6/2019 Esposito et al.			
2013/0276807 A1	10/2013 Teater Makinen	2019/0254373 A1	8/2019 Kim			
2013/0298931 A1	11/2013 Samain et al.	2019/0254374 A1	8/2019 Schroeder			
2013/0306089 A1	11/2013 Araujo Costa	2020/0093211 A1	3/2020 Lee			
2013/0306094 A1	11/2013 West	2021/0030140 A1	2/2021 Chico			
2013/0312781 A1	11/2013 Murphy					
2013/0312782 A1	11/2013 Kindall					
2013/0320025 A1	12/2013 Mazzetta et al.					
2013/0333714 A1	12/2013 Merszei					
2014/0011372 A1	1/2014 Kato et al.					
2014/0060559 A1	3/2014 Lin	CN	203897379 U	10/2014		
2014/0069451 A1	3/2014 Hwang	CN	104363790 A	2/2015		
2014/0083447 A1	3/2014 Rabe et al.	CN	205274180 U	6/2016		
2014/0110304 A1	4/2014 Wu et al.	CN	302315323	6/2016		
2014/0116456 A1	5/2014 Palmer-Rogers	CN	303086463	6/2016		
2014/0135914 A1	5/2014 Conant	CN	304049505	6/2016		
2014/0216488 A1	8/2014 Dinh	CN	304049506	6/2016		
2014/0332025 A1	11/2014 Kim et al.	CN	304310042	6/2016		
2015/0020840 A1	1/2015 Rabe et al.	CN	304329374	6/2016		
2015/0075549 A1	3/2015 Lee et al.	CN	304329375	6/2016		
2015/0114421 A1	4/2015 Pham	CN	304382151	6/2016		
2015/0114422 A1	4/2015 Abraham et al.	CN	304452297	6/2016		
2015/0114423 A1	4/2015 Sanbonmatsu	CN	304497372	6/2016		

FOREIGN PATENT DOCUMENTS

US 11,253,020 B2

Page 6

(56)

References Cited

FOREIGN PATENT DOCUMENTS

CN	304777737	6/2016
CN	304859863	6/2016
CN	304859864	6/2016
CN	305738664	6/2016
CN	305916370	6/2016
EP	1839526 A1	10/2007
EP	006381257	6/2016
GB	1021063	2/1966
GB	1021063 A	2/1966
GB	1272616	5/1972
GB	1307107	2/1973
JP	2011500979	1/2011
JP	2011122288 A	6/2011
JP	2011177395	9/2011
JP	2015105447	6/2015
JP	3201846	1/2016
JP	2016027220 A	2/2016
JP	2016163699	9/2016
JP	2019522125	8/2019
KR	200165452	2/2000
KR	20090010717	1/2009
KR	101336422	12/2013
KR	101509029	12/2013
KR	20150140672	12/2015
KR	20190035787	4/2019
WO	2014163364	10/2014
WO	2018022914	2/2018
WO	2018119034	6/2018

OTHER PUBLICATIONS

- <https://picclick.com/i-ENVY-by-kiss-SO-Wispy-01-Strip-Eyelashes-292311410878.html>, retrieved Dec. 30, 2020.
- https://www.ebay.com/sch/i.html?_nkw=lenvy&norover=1&mkevt=1&mkevt=1&mkrid=711-156598-701868-2&mkecid=2&keywprd=lenvy&crip=435059434779_&_lenvy, retrieved Dec. 30, 2020.
- https://www.madamemadeline.com/online_shoppe/proddetail.asp?prod=mmKPE62, KISS i-ENVY Premium Quattro 01 Lashes (KPE62), retrieved Dec. 30, 2020.
- <https://www.bicoastalbeauti.com/shop/kiss-brand-lashes/kiss-i-envy-premium-quattro/> KISS i-ENVY Premium Quattro 01 Lashes (KPE62), retrieved Dec. 30, 2020.
- Siegmund, A. and Harget, P.J., 1980. Melting and crystallization of poly (ethylene terephthalate) under pressure. *Journal of Polymer Science: Polymer Physics Edition*, 18(11), pp. 2181-2196.
- Lindström, L, Suojalehto, H., Henriks-Eckerman, M.L. and Suuronen, K., 2013. Occupational asthma and rhinitis caused by cyanoacrylate-based eyelash extension glues. *Occupational medicine*, 63(4), pp. 294-297.
- How to Apply Lashing using Sephora Bull Eye Lash Applicator, Nov. 14, 2012 youtube video, <https://www.youtube.com/watch?v=yYwcYzXJX4M>.
- Aug. 18, 2015 "How to apply iENVY Quattro collection eyelashes" Quattro Video—<https://www.youtube.com/watch?v=kW-oVIGoCmc>. lenvy https://www.ebay.com/sch/i.html?_nkw=lenvy&norover=1&mkevt=1&mkrid=711-156598-701868-2&mkecid=2&keywrd=lenvy&crip=435059434779, retrieved Dec. 30, 2020.
- Madame Madeline got lashes? KISS i-ENVY Premium Quattro 01 Lashes (KPE62), i-ENVY Strip Lashes by KISS—Madame Madeline Lashes, retrieved Dec. 30, 2020.
- I-ENVY by Kiss So Wispy #01 Strip Eyelashes KPE58 False Lashes Black 1 pair NEW, <https://www.picclickimg.com/d/w1600/picV292311410878 li-ENVY-by-Kiss-SO-WISPY-01-Strip-Eyelashes.jpg>) retrieved Dec. 30, 2020.
- Satkowski, M.M., 1990. The crystallization and morphology of polyethylene and its blends.
- Brandrup, J., Immergut, E.H., Grulke, E.A., Abe, A. and Bloch, D.R. eds., 1999. *Polymer handbook* (vol. 89). New York: Wiley.
- Varga J, Ehrenstein GW, Schlarb AK. Vibration welding of alpha and beta isotactic polypropylenes: Mechanical properties and structure. *Express Polymer Letters*. Mar. 1, 2008;2(3):5-19.
- Troughton MJ. *Handbook of plastics joining: a practical guide*. William Andrew; Oct. 17, 2008.
- International Search Report and Written Opinion dated May 7, 2020, on application No. PCT/US2020/013561.
- Notter E. *The Art of the Chocolatier: From Classic Confections to Sensational Showpieces*. John Wiley & Sons; Jan. 18, 2011. <https://www.youtube.com/watch?v=vvbDF18x2h8>, Volume Tweezers.
- "Kiss Ever EZ Trio Lashes Medium Combo 30 EA 2pk,<https://www.ebay.com/urw/Kiss-Ever-EZ-Trio-Lashes-Medium-Combo-30-EA-2pk/product-reviews/1117964400?pgn=2#Retrieved on Mar. 9, 2021>".
- "Amazon.com : Kiss Ever Ez Lashes 30 Count Trio Lashes in Various Lengths 57927 : Beauty<https://www.amazon.com/Kiss-Lashes-Lashes-Various-Lengths/dp/BOOJH7SR4S>Retrieved on Mar. 9, 2021".
- "BL Kiss Envy Quattro 01 Lashes—Two Pack, https://www.ebay.ca/itm/BL-Kiss-I-Envy-Quattro-O_1-Lashes-Two-PACK-/293706028541, Retrieved on Dec. 30, 2020".
- Pinterest search for False Eyelashes: Kiss Premium Lashes, i-ENVY by KISS Premium Lashes, Lashes, False eyelashes, eyelashes; <https://www.pinterest.es/amp/pin/449515606533816815/>, Retrieved Dec. 30, 2020.
- Pinterest search from kissusa.com; <https://www.pinterest.com.au/pin/19562579608263895/>; Retrieved Dec. 30, 2020.
- "KISS—I-Envy by Kiss Premium Quattro 02 Lashes, <https://www.ubuy.com.kw/en-sa/catalog/product/view/id/37236>, Retrieved Dec. 30, 2020".
- KISS—So Wispy 01 Strip Eyelashes, <https://picclick.com/i-ENVY-by-Kiss-SO-WISPY-01-Strip-Eyelashes-292311410878.html>; Retrieved Dec. 30, 2020.
- KISS—i-ENVY Premium Quattro 01 Lashes, https://www.madamemadeline.com/online_shoppe/proddetail.asp?prod=mmKPE62; Retrieved Dec. 30, 2020.
- "KISS—I-ENVY Premium Quattro 01 Lashes, <https://www.bicoastalbeauti.com/shop/kiss-brand-lashes/kiss-i-envy-premium-quattro/> Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Premium Quattro 01 Lashes, <https://www.biloltd.net/product-p/60351.htm>; Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Premium Quattro 01 Lashes, <https://www.cashmerecosmetics.com/product/kiss-i-envy-quattro-01-lashes/>; Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Premium Quattro 01 Lashes, <https://www.ebay.com/p/1044019861>; Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Premium Quattro 01 Lashes, https://www.ussalonsupply.com/Kiss-I-Env-Quattro-01-Lashes-_p_120305.html; Retrieved Dec. 30, 2020".
- "KISS—I-Env by Kiss Premium Quattro 02 Lashes, <https://www.walmart.com/ip/Kiss-I-Env-Quattro-02-Lashes/187353459>, Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Premium Quattro 01 Lashes, <https://www.beautyproductsusa.com/home/322-kiss-i-envy-strip-eyelash-quattro-01-kpe62.html>; Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Strip Eyelashes—Pack of 2,<https://www.ebay.com.au/itm/Kiss-I-Env-Strip-Eyelashes-Pack-of-2-Choose-your-Style/183303124469>; Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Eye Lash Adhesive (6g Individual, Clear) Reviews; <https://www.influenster.com/reviews/kiss-i-envy-eye-lash-adhesive-6g-individual-clear>; Retrieved Dec. 30, 2020".
- "KISS—I-ENVY 100% Human Eyelash So Wispy 03;<https://www.pinterest.co.kr/pin/308285536984155041/>Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Premium Quattro 01 Lashes, <https://www.ammancart.com/products/kiss-i-envy-premium-quattro-01-lashes-kpe62>; Retrieved Dec. 30, 2020".
- "KISS—I-Env by Kiss Premium Quattro 02 Lashes, <https://www.lashaddict.nl/kiss-i-envy-lashes-quattro-02.html>, Retrieved Dec. 30, 2020".
- "KISS—I-ENVY Pre-Cut Lashes, <https://www.shopbeautylicious.com/products/kiss-i-envy-pre-cut-lashes>; Retrieved Dec. 30, 2020".
- KISS Falscara Eyelash—Bond & Seal, <https://www.kissusa.com/kiss-falscara-eyelash-bond-seal>.
- "Amazon, Ocamo False Eyelashes Curler Stainless Steel Extension Eye Lash Applicator Remover Tweezers Clip Makeup Tools, <https://www.amazon.com/Ocamo-False-Eyelashes-Curler-Stainless-Steel-Extension-Eye-Lash-Applicator-Remover-Tweezers-Clip-Makeup-Tools/dp/B08L7PQH4D>

US 11,253,020 B2

Page 7

(56)

References Cited

OTHER PUBLICATIONS

- www.amazon.kin/Ocamo-Eyelashes-Stainless-Extension-Applicator/dp/B07F15XW8C?tag=googhydr18418-21&tag=googinkensho-21&ascsu..., downloaded from internet Oct. 10, 2018 (3 pages)."
- Born Pretty, False Eyelashes Thick Natural Simulation Recyclable Curly False Eyelash Makeup Cosmetic Tools, <http://www.bornprettystore.com/false-eyelashes-thick-natural-simulation-recyclable-curly-false-eyelash-makeup-cosmetic-tools-p-44675.html> downloaded from internet Oct. 18, 2018 (6 pages).
- Buy Korea, Plastic, False Eyelash Applicator, Multy colour, <http://www.buykorea.or.kr/product-details/Plastic-False-Eyelash-Applicator-Multy-colour-3106709.html>, downloaded from internet Feb. 14, 2019 (3 pages).
- Buzludzha Monument, Gueorguy Stoilov circa 1980, justanotherbackpacker.com, published by blogger Rich on Feb. 29, 2014 © 2019, online, site visited Aug. 27, 2019. Downloaded from Internet, URL: <http://www.justanotherbackpacker.com/buzludzha-monument-bulgaria-ufo/> (Year: 2014).
- Cosmopolitan, You've Been Applying False Eyelashes Wrong Your Whole Life, <https://www.cosmopolitan.com/style-beauty/beauty/how-to/a55781/this-false-eyelash-hack-will-change-your-life/>, Mar. 25, 2016 (12 pages).
- Cruiser Portable Speaker, NYNE, published at thegamerwithkids.com, posted by Sam Versionone on Apr. 6, 2015 © not listed, online, cite visited Jun. 20, 2018. Available from Internet. URL: <https://thegamerwithkids.com/2015/04/06/nyne-cruiser-review-a-wireless-speaker-for-your-bycicle/> (Year: 2015).
- Delicate Hummingbird, Ha! I've mastered the false lashes!, <http://delicatehummingbird.blogspot.com/2011/11/ha-ive-mastered-false-lashes.htm>, Nov. 10, 2011 (12 pages).
- Dream Lashes Curved Volume Tweezer—3 Minute Test, <https://www.youtube.com/watch?v:cw1qYeEOSD7s>, downloaded from the internet Feb. 13, 2019 (1 page).
- Electron Microscopy Sciences, "EMS High Precisions and Ultra Fine Tweezers." https://www.emsdiasum.com/microscopy/products/tweezers/ultra_fine.aspx. Downloaded from the internet Feb. 13, 2019 (7 pages).
- European Search Report issued in EP17835287A dated Feb. 11, 2020 (5 pages).
- European Search Report issued in EP17884561A dated Sep. 11, 2020 (7 pages).
- First Office Action issued in CN201780004312A dated May 7, 2020 (17 pages).
- First Office Action issued in CN201780033755A dated Aug. 28, 2020 (8 pages).
- Focallure, <https://shopfocallure.com/collections/eyelashes/products/eyelash-tweezer-by-focallure>, downloaded from internet Feb. 14, 2019 (1 page).
- Hongjun web page, <https://detail.1686.com/offer/574685154963.html?spm=a2615.7691456.newlist.75.22f96dc5Msy00t>, downloaded from internet Oct. 31, 2018 (16 pages).
- Image Essentials, How to wear false eyelashes without looking like you're wearing them, <https://imageessentials.wordpress.com/2012/03/30/how-to-wear-false-eyelashes-without-looking-like-youre-wearing-any/>, Mar. 30, 2012 (5 pages).
- International Search Report and Written Opinion dated Mar. 12, 2018 in related PCT/US2017/067513 filed Dec. 20, 2017 (10 pages).
- International Search Report and Written Opinion dated Dec. 19, 2019 in related PCT/US2019/057104 filed Oct. 19, 2019 (8 pages).
- International Search Report and Written Opinion dated Dec. 23, 2019 in related PCT/US2019/057102 filed Oct. 19, 2019 (8 pages).
- International Search Report and Written Opinion dated Nov. 27, 2017 in related PCT/US2017/044217 filed Jul. 27, 2017 (10 pages).
- Japonesque False Lash Applicator, <https://japonesque.com/products/implements/false-lash-applicator/>, downloaded from internet Feb. 13, 2019 (6 pages).
- Lashify Gossamer Lash Cartridge <https://lashify.com/collections/shop-1/products/gossamer-eye-lozenges-c-style?variant=783670738950>, downloaded from internet Jun. 15, 2018 (2 pages).
- Lashify Wand, <https://www.instagram.com/p/BWgeQ8wg00S/?iqshid=zauiyw8a6v5>, downloaded from Internet 2019 (1 page).
- MAC Cosmetics, 34 Lash, <http://www.bornpretty/store.com/false-eyelashes-thick-natural-simulation-recyclable-curly-false-eyelash-makeup-cosmetic-tools-p-44675.html>, downloaded from internet Feb. 14, 2019 (1 page).
- "Madame Madeline Lashes, Ardell Dual Lash Applicator, https://www.madamemadeline.com/online_shoppe/proddetail.asp?prod=mm62059, downloaded frominternet Oct. 18, 2018 (3 pages)."
- Made in China, New Product Eyelashes Aid Eyelashes Applicator Innovative Eyelashes Curler, 2018, <https://www.made-in-china.com/productdirectory.do?word=creative+eyelashes+curler&subaction=hunt&style=b&mode=and&code=0&comProvince=nolimit&order=0&isOpenCorrection=1>, downloaded from internet Feb. 13, 219(2 pages).
- Pak Laipall, Nail Artist Tweezers PL-1, http://www.laipall.com/proddetail.prod nail-artists-tweezers_1, downloaded from internet Feb. 13, 2019 (1 page).
- Peonies and Lilies, Bourjois 2 in 1 Tweezers and Faux & Fabulous Eyelashes, Posted Oct. 24, 2012 (2 pages).
- Jun. 11, 2014 youtube video, <https://www.youtube.com/watch?v=vvbDF18x2h8>.
- Nov. 14, 2012 youtube video, <https://www.youtube.com/watch?v=yYwcYzXJX4M>.
- Japanese Office action dated Aug. 30, 2021, on application No. 2019-504850.

* cited by examiner

U.S. Patent

Feb. 22, 2022

Sheet 1 of 10

US 11,253,020 B2

Fig. 1

U.S. Patent

Feb. 22, 2022

Sheet 2 of 10

US 11,253,020 B2

Fig. 2

U.S. Patent

Feb. 22, 2022

Sheet 3 of 10

US 11,253,020 B2

Fig. 3A

Fig. 3B

U.S. Patent

Feb. 22, 2022

Sheet 4 of 10

US 11,253,020 B2

Fig. 3C

U.S. Patent

Feb. 22, 2022

Sheet 5 of 10

US 11,253,020 B2

Fig. 4

U.S. Patent

Feb. 22, 2022

Sheet 6 of 10

US 11,253,020 B2

Fig. 5

U.S. Patent

Feb. 22, 2022

Sheet 7 of 10

US 11,253,020 B2

Fig. 6

U.S. Patent

Feb. 22, 2022

Sheet 8 of 10

US 11,253,020 B2

Fig. 7

U.S. Patent

Feb. 22, 2022

Sheet 9 of 10

US 11,253,020 B2

800

801

Form clusters of multiple artificial hairs

802

Fuse multiple clusters together to form a set of artificial lash extensions

803

Apply adhesive to the top of the set of artificial lash extensions

FIG. 8

U.S. Patent **Feb. 22, 2022** **Sheet 10 of 10** **US 11,253,020 B2**

900

901

Acquire set of artificial lash extensions

902

Remove the set of artificial lash extensions using an applicator

903

Apply adhesive to the top of the set of artificial lash extensions

904

Arrange the set of artificial lash extensions beneath individual's
natural eyelashes

905

Affix the set of artificial lash extensions to the underside of
individual's natural eyelashes

FIG. 9

US 11,253,020 B2

1**ARTIFICIAL LASH EXTENSIONS****CROSS-REFERENCE TO RELATED APPLICATIONS**

The present application is a continuation of U.S. patent application Ser. No. 17/003,853, filed Aug. 26, 2020; which is a continuation of U.S. patent application Ser. No. 16/556,518, filed Aug. 30, 2019; which is a continuation of U.S. patent application Ser. No. 15/968,361 filed May 1, 2018, now U.S. Pat. No. 10,660,388 issued May 26, 2020; which is a continuation of International Application No. PCT/US17/44217 filed Jul. 27, 2017; which claims the benefit of U.S. Provisional Application No. 62/368,116 filed Jul. 28, 2016; the contents of all of which are incorporated herein by reference in their entirety herein.

FIELD OF THE INVENTION

Various embodiments concern artificial eyelashes and, more specifically, clusters of artificial eyelash extensions that can be applied to the underside of an individual's natural eyelashes.

BACKGROUND

Eyelash extensions have conventionally been used to enhance the length, thickness, and fullness of natural eyelashes. Eyelash extensions, however, must be applied to an individual's natural eyelashes one by one to avoid having the eyelash extensions stick together. Consequently, lash extension services can cost hundreds of dollars depending on the type and number of lashes used, the skill of the cosmetician, and the venue where the eyelash extensions are applied. It usually takes an experienced cosmetician one to two hours to attach a full set of eyelash extensions.

Clusters of artificial lashes have conventionally been used to enhance the length, thickness, and fullness of an individual's natural eyelashes. However, each cluster must be applied to the individual's eyelashes individually in order to avoid having the clusters of artificial lashes stick together and to ensure multiple clusters are evenly distributed across the width of the individual's lash line.

Alternatively, false eyelashes may be applied directly to an individual's eyelid. False eyelashes come in strips (and thus may also be referred to as "strip lashes") that can be trimmed to fit the width of the individual's eyelid. While a strip of false eyelashes can be applied in a single motion, false eyelashes are easily distinguishable from the individual's natural eyelashes and may be uncomfortable when worn for extended periods of time.

BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are illustrated by way of example and not limitation in the accompanying drawings, in which like references indicate similar elements. Various objects, features, and characteristics of the present invention will become more apparent to those skilled in the art from a study of the Detailed Description in conjunction with the accompanying drawings.

FIG. 1 depicts the upper tightline, upper lash line, and upper waterline of an eyelid.

FIG. 2 depicts clusters of artificial lashes that can be used by professional lash technicians and cosmeticians.

2

FIG. 3A depicts how multiple clusters of artificial lashes can be connected to form a bundle (also referred to as a "lash fusion").

FIG. 3B is a side view of two different styles of lash fusion.

FIG. 3C illustrates how a set of multiple lash fusions can be secured to an individual's lashline in a single motion.

FIG. 4 illustrates how multiple lash fusions within a set can be positioned in a specified arrangement.

FIG. 5 depicts how the arrangement of the set of lash extensions enables all of the lash fusions to be simultaneously grasped by an applicator.

FIG. 6 depicts how the set of lash fusions can be placed underneath an individual's natural lashes, where the plastic represents the individual's eyelid.

FIG. 7 depicts how an adhesive can be applied to the top of an entire set of lash extensions or to the lash fusions that make up the set.

FIG. 8 depicts a flow diagram of a process for manufacturing a lash fusion including multiple clusters of artificial lashes.

FIG. 9 depicts a flow diagram of a process for applying a set of lash extensions to an individual's natural eyelashes.

The figures depict various embodiments for the purpose of illustration only. Those skilled in the art will readily recognize that alternative embodiments may be employed without departing from the principles of the present invention. The claimed subject matter is intended to cover all modifications, equivalents, and alternatives falling within the scope of the present invention as defined by the appended claims.

DETAILED DESCRIPTION

Conventional eyelash extensions (or simply "lash extensions") are individually adhered to an individual's eyelashes one-by-one in order to prevent the eyelash extensions from sticking together. However, because the average individual might have anywhere from thirty to eighty lashes per eye, the application process can take several hours to attach a full set of eyelash extensions.

Introduced here, therefore, are techniques for creating clusters of artificial lash extensions that can be applied to an individual's natural eyelashes. Clusters of artificial lashes include multiple artificial hairs made of natural materials (e.g., silk or authentic mink hair) or synthetic materials (e.g., acrylic resin, polybutylene terephthalate (PBT), or synthetic mink hair made of polyester). A cluster of artificial lashes generally includes approximately 10 to 30 artificial hairs (and preferably 10 to 20 artificial hairs). Clusters of artificial lashes are initially formed using, for example, a hot melt method in which artificial lashes are heated. For example, in some embodiments linear artificial lashes are heated at one end such that they begin to fuse to one another at that end, while in other embodiments linear artificial lashes are heated near a central point and folded underneath one another. Clusters of artificial lashes have conventionally been made available only to professional lash technicians and cosmeticians.

Multiple clusters can then be fused together to form a bundle (also referred to as a "lash fusion") that can be applied along the upper tightline in a single motion. As shown in FIG. 1, the upper tightline is interposed between the upper lash line and the upper waterline. While certain embodiments have been described in the context of lash fusions that include multiple clusters, those skilled in the art

US 11,253,020 B2

3

will recognize that a lash fusion could also include a series of individual artificial hairs that are connected to one another.

More specifically, a lash fusion can include multiple clusters that are fused together near the inner ends of the artificial lashes (also referred to as the “base” of the lash fusion) to form a straight line of artificial hairs that can be placed underneath an individual’s natural lashes. For example, the multiple clusters can be fused together (e.g., via a heat seal process) approximately 1-5 millimeters (mm) above the base via crisscrossing artificial hairs. In some embodiments, the multiple clusters are fused together approximately 1.5-2.5 mm above the base. The distance from the base at which fusing occurs may depend on the desired fan-out of the artificial lashes (e.g., shorter distances may cause a larger fan-out). Adjacent clusters can be secured to one another when the intersecting portions of the crisscrossing artificial hairs are fused together. Such a technique allows a set of multiple lash fusions to appear seamless and blend in with an individual’s natural lashes.

The base of the lash fusion (i.e., where the multiple clusters are fused together) is intended to be affixed to an individual’s natural lashes. The lash fusion may be approximately 4-8 mm wide. A lash fusion could include 3-10, 3-7, 5-10, 5-7, or 4-6 clusters. Accordingly, a lash fusion could include 30-150, 30-120, or 30-90 individual artificial hairs.

A set of multiple lash fusions can then be formed by arranging the multiple lash fusions next to one another in a form that matches the curvature of the upper tightline along the base of an eyelid. While the multiple lash fusions are typically not connected to one another (e.g., are not fused together using heat, an adhesive, etc.), the entire set can be applied to the underside of the individual’s natural lashes in a single motion. A set could include 3-8, 3-5, 5-8, or 4-6 lash fusions. Accordingly, a set could include 150-360 individual artificial hairs.

The number of lash fusions in a set may vary. In fact, because the multiple lash fusions are typically not secured to one another, an individual could decide to apply part of a set (e.g., five lash fusions rather than six lash fusions) based on the desired density.

Density of the artificial hairs may vary across the width of the eyelid. In some embodiments the artificial hairs are distributed evenly across the entire tightline (i.e., each cluster/lash fusion can include a substantially similar number of artificial lashes), while in other embodiments the artificial hairs are more densely populated in certain area(s) of the tightline (i.e., some clusters/lash fusions may include fewer artificial lashes than others). For example, density may be lower along the outer edge opposite the tear duct.

An adhesive may be applied to the top of each lash fusion within a set during the manufacturing process, which enables an individual to easily apply the set of lash fusions directly to the underside of the individual’s eyelashes rather than to the individual’s eyelid. Additionally or alternatively, the individual could apply an adhesive before applying the set of lash fusions to the individual’s natural eyelashes. For example, the individual may apply an adhesive to the set of lash fusions before applying the set of lash fusions to the natural eyelashes. As another example, the individual could apply an adhesive directly to the natural eyelashes. The adhesive could be a waterproof glue or mascara.

Terminology

Brief definitions of terms, abbreviations, and phrases used throughout this application are given below.

4

Reference to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the disclosure. The appearances of the phrase “in some embodiments” are not necessarily referring to the same embodiment, nor are they necessarily referring to separate or alternative embodiments that are mutually exclusive of one another.

The terms “connected,” “coupled,” or any variant thereof includes any connection or coupling between two or more elements, either direct or indirect. The coupling or connection between the elements can be physical, logical, or a combination thereof. For example, two components may be coupled directly to one another or via one or more intermediary channels/components. The words “associate with,” meanwhile, mean connecting or relating objects, items, etc.

System Topology Overview

FIG. 2 depicts clusters of artificial lashes that can be used by professional lash technicians and cosmeticians. Each cluster of artificial lashes includes multiple artificial hairs that consist of natural materials (e.g., silk or authentic mink hair) or synthetic materials (e.g., acrylic resin, PBT, or synthetic mink hair made of polyester).

Clusters of artificial hairs typically include 10 to 30 hairs that are heated (e.g., as part of a hot melt process) and then secured to one another. For example, in some embodiments linear artificial lashes are heated at one end such that they begin to fuse to one another at that end, while in other embodiments linear artificial hairs are heated near a central point and folded underneath one another.

In some embodiments, some or all of the artificial hairs within a cluster may be tied to a support thread (i.e., knotted). The artificial hairs may be tied by any such means, such as a slip knot that prevents horizontal spreading of the cluster.

FIG. 3A depicts how multiple clusters of artificial lashes can be connected to form a bundle (also referred to as a “lash fusion”). More specifically, the lash fusion can include multiple clusters that are fused together near the base to form a straight line of artificial hairs that can be applied along the upper tightline.

For example, the multiple clusters can be fused together (e.g., via a heat seal process) approximately 1-5 mm above the base via crisscrossing artificial hairs. In some embodiments, the multiple clusters are fused together approximately 1.5-2.5 mm above the base. Adjacent clusters can be secured to one another when the intersecting portions of the crisscrossing artificial hairs are fused together. Such a technique allows a set of multiple lash fusions to appear seamless and blend in with an individual’s natural lashes.

The intersecting portions of the crisscrossing artificial hairs could also be connected using an adhesive (i.e., rather than being fused together via a hot melt process). In such embodiments, the multiple clusters may be exposed to a curing assembly (e.g., a heater, dryer, or light source) that causes the adhesive to solidify. Artificial lashes made of natural materials (e.g., human or authentic mink hair) are typically connected using a glue or other adhesive rather than through the hot melt process.

A lash fusion could include 3-10, 3-7, 5-10, 5-7, or 4-6 clusters. Accordingly, a lash fusion could include 30-90 individual artificial hairs. Here, for example, a first style of lash fusion includes nine clusters, while a second style of lash fusion includes five clusters.

Note, however, that both styles could include the same number of artificial lashes. For example, the first style of lash fusion may include nine clusters of five artificial lashes

US 11,253,020 B2

5

each, while the second style of lash fusion may include five clusters of nine artificial lashes each. Both styles could also include different numbers of artificial lashes (e.g., the first style may include a higher density of artificial lashes, and thus be more appropriate for placement near the tear duct).

Lash fusions may be 4-8 mm wide, though embodiments are often 5-6 mm wide. This is much wider than conventional clusters (which are 1.5-2 mm wide), and thus provide greater coverage along the eyelid.

FIG. 3B is a side view of two different styles of lash fusion. The multiple clusters of each lash fusion can be fused to one another (e.g., during a hot melt process). Such a design provides several advantages over conventional clusters of lash extensions.

For example, because the multiple clusters can be heat sealed to one another, the total height at the base of the lash fusion is only 0.05-0.15 mm. Conventional clusters, meanwhile, use a string at the base to connect the artificial hairs to one another. But the presence of the string causes the total height at the base of the cluster to exceed 0.3 mm (e.g., typically 0.3-0.7 mm).

Moreover, the lash fusions described here have no quantifiable weight. Therefore, the lash fusions can more easily adhere to an individual's natural lashes and remain secured for longer periods of time. Again, the presence of the string causes conventional clusters to have a quantifiable weight that affects how they must be adhered to the individual's natural lashes.

FIG. 3C illustrates how a set of multiple lash fusions can be secured to an individual's lashline in a single motion. A set can include multiple lash fusions that are arranged to match the curvature of the upper tightline of an eyelid. For example, multiple lash fusions may be arranged such that the inner ends (i.e., the bases) form a concave shape that substantially complements the universal tightline of nearly any human eye. In some embodiments, sets preferably include five to seven distinct clusters of artificial lashes. The number of lash fusions within each set (as well as the number of clusters within each lash fusion) may be based on the thickness of the artificial hair used, the desired style of the eyelid on which the set is intended to be affixed, the desired lash density (also referred to as "fullness" of the individual's lashes), etc. As shown in FIG. 3C, the set of lash fusions is aligned with the tightline rather than the lash line, and then affixed to the underside of the individual's natural lashes. Said another way, the set of lash fusions is applied directly to the underside of the natural lashes rather than to the eyelid.

An adhesive can be applied to the top of each lash fusion in the set, which enables an individual to easily apply the set directly to the natural lashes. The individual responsible for applying the set of lash fusions could be a person who affixes the lash fusions to herself or some other person (e.g., a professional lash technician or a cosmetician). In some embodiments, the adhesive is applied when the lash fusions and/or the set are initially manufactured. Additionally or alternatively, the individual could apply an adhesive before attaching the set of lash fusions to the individual's natural lashes.

The adhesive could be a waterproof (semi-permanent) glue, mascara, or some other co-polymer solution having an adhesive quality. Although latex-based adhesives are generally avoided to avoid irritation of the individual's eyelid (e.g., due to an allergic reaction), adhesives can include various other natural and/or chemical ingredients. Examples of possible adhesives include:

6

Acrylates/ethylhexyl acrylate copolymer, aqua, propylene glycol, ceteareth-25, hydrogenated castor oil, glycerin, phenoxyethanol, 2-bromo-2-nitropropane-1, 3-diol, methylchloroisothiazolinone, methylisothiazolinone, methylparaben, and optionally a color agent (e.g., black 2 (CI 77266));

Polyterpene, styrene/isoprene copolymer, petrolatum, polyisobutene, microcrystalline wax (cera microcrystallina, cire microcrystalline), hydrogenated styrene/methyl styrene/indene copolymer, styrene/VA copolymer, and optionally an antioxidant (e.g., butylated hydroxytoluene (BHT));

Chlorine dioxide, p-anisic acid, biotin, *lavandula angustifolia* oil, propylene glycol, water, 2-ethylhexyl acrylate, and optionally a preservative (e.g., benzalkonium chloride); and

Acrylate copolymer and water.

Those skilled in the art will recognize that many other adhesive compositions are possible and, in fact, may be desirable for individuals having certain allergies, desiring certain fixation duration (also referred to as "permanency" of the lash extensions), etc.

Semi-permanent clusters of lash extensions may be applied with a Federal Drug Administration-approved (FDA-approved) adhesive that achieves a strong bond. Such adhesives generally include cyanoacrylate. Different types of cyanoacrylates (e.g., ethyl, methyl, propyl, butyl, and octyl) have been designed for bonding to different surfaces. For example, adhesives made from methyl-2-cyanoacrylate are designed to bond a smooth surface (e.g., the lash extension) to a porous surface (e.g., the natural eyelash), but not on the skin as it may cause irritation.

FIG. 4 illustrates how multiple lash fusions within a set can be positioned in a specified arrangement. While the 35 multiple lash fusions within the set will typically not be connected to one another, the multiple lash fusions can be arranged such that the set substantially complements the shape of an eyelid. More specifically, the curvature of the 40 multiple lash fusions may substantially match the tightline curvature of an average person. Thus, an entire set of lash fusions may become substantially flush with the lash line when the set is arranged proximate to the tightline. Together, the multiple lash fusions form a set of lash extensions that can be collectively applied in a single motion.

FIG. 5 depicts how the arrangement of the set of lash extensions enables all of the lash fusions to be simultaneously grasped by an applicator. More specifically, an individual or a healthcare professional, such as a lash technician or cosmetician, can grasp an entire set of lash extensions using the applicator and simultaneously apply the entire set of lash extensions to the individual's natural eyelashes in a single motion.

FIG. 6 depicts how the set of lash fusions can be placed underneath an individual's natural lashes, where the plastic 55 represents the individual's eyelid. As further described below, an adhesive is applied to the top of each lash fusion in the set of lash extensions. Consequently, the set of lash extensions can be applied directly to the underside of the individual's natural lashes proximate to the tightline, rather than to the eyelid above the lash line.

FIG. 7 depicts how an adhesive can be applied to the top of an entire set of lash extensions or to the lash fusions that make up the set. Additionally or alternatively, an adhesive could be applied to the individual's natural lashes. The adhesive applied to the artificial lash extensions may be the same adhesive applied to the individual's natural lashes or a different adhesive.

US 11,253,020 B2

7

Such a technique enables the individual to easily apply the set of lash extensions directly to the underside of the individual's natural lashes proximate to the tightline, rather than to the individual's eyelid adjacent to the lash line. While multiple lash fusions are typically arranged with the intention that they be simultaneously grasped and applied to the individual's natural lashes, the individual could also individually apply the lash fusions.

The adhesive could be a semi-permanent glue or mascara. In some embodiments, the adhesive includes an oil-soluble polymer or a water-soluble polymer that helps to enhance adhesion and substantivity of the artificial lash extensions to the individual's natural eyelashes. The adhesive may be a waterproof formulation that allows the set of lash extensions to remain affixed to the individual's natural lashes for longer periods of time (e.g., days, weeks, or months).

Although latex-based adhesives are generally avoided to avoid irritation of the individual's eyelid (e.g., due to an allergic reaction), adhesives can include various other natural ingredients (e.g., sugar or honey) and/or chemical ingredients. For example, copolymer is often a main ingredient in many adhesive formulations. The adhesive could be a commercially-available adhesive for conventional lash extensions or a specialized composition for use with the set of lash extensions described herein. The adhesive could be clear or colored (e.g., milky white or black to emulate mascara).

FIG. 8 depicts a flow diagram of a process 800 for manufacturing a lash fusion including multiple clusters of artificial lashes. Clusters of artificial lashes are initially formed using, for example, a hot melt method in which artificial hairs are heated and connected to one another (step 801). In some embodiments, linear artificial hairs are heated at one end such that they begin to fuse to one another at that end, while in other embodiments, linear artificial hairs are heated near a central point and folded proximate to the central point (i.e., so that a single artificial hair appears as two artificial lashes). Artificial hairs can then be overlapped (e.g., near the fused end or central fold) to form a cluster.

The hot melt method requires that the multiple artificial hairs be heated to a temperature that is sufficient to cause the individual lashes to begin to melt. For example, artificial hairs made of PBT could be heated to approximately 55-110° C. at one end during a heat seal process (during which the heated ends begin to fuse to one another). Note, however, that clusters could include artificial hairs that consist of natural materials (e.g., silk or authentic mink hair) or synthetic materials (e.g., acrylic resin, PBT, or synthetic mink hair made of polyester). While clusters may include 10 to 90 artificial hairs, most clusters include 10 to 30 artificial hairs.

Multiple clusters can then be connected together to form a lash fusion (step 802). More specifically, the lash fusion can include multiple clusters that are fused together near one end (i.e., the base) to form a straight line of artificial hairs that can be placed underneath an individual's natural lashes.

For example, the multiple clusters could be connected together using a hot melt method substantially similar to the hot melt method used to form the individual clusters. As noted above, the hot melt method requires that the multiple clusters be heated to a temperature that is sufficient to cause the individual lashes to begin to melt. Thus, clusters made of PBT could be heated to approximately 55-110° C. (e.g., 65° C.) near one end. For example, the clusters could be heated approximately 1.5-2.5 mm above the base. As the individual artificial hairs begin to melt, the multiple clusters will

8

connect to one another near the base to form a straight line of artificial hairs, thereby forming a lash fusion.

As another example, the multiple clusters could be connected together using a glue or some other adhesive composed of various substances. In such embodiments, the clusters may be exposed to a curing assembly (e.g., a heater, dryer, or light source) that causes the adhesive to solidify. Thus, after multiple clusters have been formed (e.g., via a hot melt process), the multiple clusters may be glued to one another to form a lash fusion. Artificial lashes made of natural materials (e.g., human or authentic mink hair) are typically connected using a glue or other adhesive rather than through the hot melt process.

An adhesive (e.g., a pressure-sensitive adhesive) can then be applied to the top of the lash fusion (step 803). The adhesive may enable an individual to subsequently apply the lash fusion directly to the underside of the individual's natural lashes. Additionally or alternatively, the individual could apply an adhesive before applying the lash fusion to the natural lashes.

In some embodiments, multiple lash fusion are positioned in a specified arrangement to form a set of lash extensions (step 804). For example, 4-6 lash fusions could be arranged such that the inner ends (i.e., the bases) of the lash fusions form a concave shape that substantially complements the tightline of an eyelid. While the lash fusions are typically not connected to one another (e.g., are not fused together using heat, an adhesive, etc.), the entire set could be applied to the underside of the individual's natural lashes in a single motion.

FIG. 9 depicts a flow diagram of a process 900 for applying a set of artificial lash extensions to an individual's natural lashes. The set of lash extensions is initially acquired by the individual or a healthcare professional, such as a lash technician or cosmetician (step 901). The set of artificial lash extensions can include multiple lash fusions, each of which is comprised of multiple clusters of artificial lashes. The set of artificial lash extensions can then be grasped using an applicator (step 902). The applicator may be designed so that the entire set of artificial lash extensions (i.e., all of the lash fusions) can be seized and removed (e.g., from a surface to which the set of artificial lash extensions are attached) in a single motion.

In some embodiments an adhesive is applied to the top of each lash fusion in the set of artificial lash extensions (step 903), while in other embodiments an adhesive is applied to the top of each lash fusion in the set of artificial lash extensions during the manufacturing process. The adhesive could be, for example, a waterproof glue or mascara. The set of artificial lash extensions can then be arranged proximate to the tightline beneath the individual's natural lashes (step 904) and affixed to the underside of the individual's natural lashes (step 905), rather than to the individual's eyelid above the lash line.

Unless contrary to physical possibility, it is envisioned that the steps described above may be performed in various sequences and combinations. For instance, an adhesive could be applied to the individual clusters before or after the clusters are formed into lash fusions. Other steps could also be included in some embodiments.

Remarks

The foregoing description of various embodiments of the claimed subject matter has been provided for the purposes of illustration and description. It is not intended to be exhaustive or to limit the claimed subject matter to the precise forms disclosed. Many modifications and variations will be apparent to one skilled in the art. Embodiments were chosen

US 11,253,020 B2

9

and described in order to best describe the principles of the invention and its practical applications, thereby enabling those skilled in the relevant art to understand the claimed subject matter, the various embodiments, and the various modifications that are suited to the particular uses contemplated.

What is claimed is:

1. An artificial lash extension system comprising:
a plurality of lash extensions designed to attach adjacent to one another at an underside of natural lashes, each of the plurality of lash extensions comprising:

a plurality of clusters of artificial hairs, each of the plurality of clusters comprising at least two artificial hairs; and

a base from which the at least two artificial hairs of each of the plurality of clusters protrude, wherein at least some of the artificial hairs are connected to one another at a respective part of the base by at least an application of heat.

2. The artificial lash extension system of claim 1, wherein the at least some of the artificial hairs that are connected to one another at the respective part of the base by at least the application of heat correspond to at least one of the plurality of clusters.

3. The artificial lash extension system of claim 1, wherein the base of each of the plurality of lash extensions is formed by at least the application of heat.

4. The artificial lash extension system of claim 3, wherein the plurality of clusters are connected together by at least the application of heat.

5. The artificial lash extension system of claim 1, wherein the at least two artificial hairs comprise a synthetic material.

6. The artificial lash extension system of claim 5, wherein the at least two artificial hairs comprise polybutylene terephthalate (PBT).

7. The artificial lash extension system of claim 5, wherein the at least two artificial hairs comprise polyester.

8. The artificial lash extension system of claim 1, wherein one or more of the at least two artificial hairs of a first cluster

10

of the plurality of clusters crisscross one or more of the at least two artificial hairs of a second cluster of the plurality of clusters.

9. The artificial lash extension system of claim 1, wherein an artificial hair of a first cluster of the plurality of clusters crisscrosses another artificial hair of the first cluster.

10. The artificial lash extension system of claim 1, wherein the application of heat facilitates at least a partial melting of the at least some of the artificial hairs that are connected to one another at the respective part of the base.

11. The artificial lash extension system of claim 1, wherein the application of heat comprises heat sealing.

12. The artificial lash extension system of claim 1, wherein the application of heat comprises heat fusing.

13. The artificial lash extension system of claim 1, wherein each of the plurality of lash extensions is further formed by an application of an adhesive.

14. The artificial lash extension system of claim 13, wherein the plurality of clusters are connected together by at least the application of the adhesive.

15. The artificial lash extension system of claim 1, wherein each of the plurality of clusters is connected to the base.

16. The artificial lash extension system of claim 15, wherein one or more of the plurality of clusters is directly connected to an adjacent one of the plurality of clusters at the base.

17. The artificial lash extension system of claim 15, wherein one or more of the plurality of clusters is indirectly connected to an adjacent one or more of the plurality of clusters.

18. The artificial lash extension system of claim 1, wherein a thickness of the base ranges between 0.05 millimeters (mm) and 0.15 mm inclusive.

19. The artificial lash extension system of claim 1, wherein a thickness of the base is less than 0.3 millimeters.

* * * * *