

TP 1 - ÉVOLUTION DE LA VALEUR D'UN ACTIF FINANCIER

 $\mathrm{UV}:\mathbf{RO05}$

 ${\bf Branche: G\'{e}nie\ Informatique}$

Filière : Fouille de Données et Décisionnel Auteurs : LU Han - SAUVENT Alexandre

Table des matières

1	Contexte	2
2	Démonstration des exercices	3
	2.1 Question 1	3
	2.2 Question 2	4

1. Contexte

Considérons une option Européenne représentant un actif financier dont la valeur au temps \underline{t} est S(t) pour $0 \le t \le T$, où T est le temps de l'exercice de l'option. Notons que $M \in N^*$ le nombre de subdivision de l'intervalle [0,T] et h = T/M. notons également $S_n = S(nh)$, pour n = 0,1,...,M, les valeurs de l'actif aux instants t = nh. Léquation d'évolution du prix de l'actif en temps discret s'écrit comme suit :

$$S_{n+1} = S_n + \mu h S_n + \sigma h^{1/2} S_n \xi_n \tag{1.1}$$

où $\xi_n, n \geq 0$ est une suite de v.a. i.i.d de loi N(0,1) indépendante de $S_0.$

2. Démonstration des exercices

2.1 Question 1

Monter que

$$S_M = S_0 \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n),$$

et en réduire

$$ln(\frac{S_M}{S_0}) = \sum_{n=0}^{M-1} ln(1 + \mu h + \sigma h^{1/2} \xi_n).$$

${\bf D\acute{e}monstration}:$

Selon l'équation (1.1), nous utilisons la méthode de la multiplication continuée pour résoudre cette question : quand n = 0, nous obtenons :

$$S_1 = S_0 + \mu h S_0 + \sigma h^{1/2} S_0 \xi_0 \tag{2.1}$$

et pour $S_0 \neq 0$ nous obtenons :

$$\frac{S_1}{S_0} = 1 + \mu h + \sigma h^{1/2} \xi_0 \tag{2.2}$$

quand n = 1, nous obtenons:

$$S_2 = S_1 + \mu h S_1 + \sigma h^{1/2} S_1 \xi_1 \tag{2.3}$$

et pour $S_1 \neq 0$ nous obtenons :

$$\frac{S_2}{S_1} = 1 + \mu h + \sigma h^{1/2} \xi_1 \tag{2.4}$$

Nous obtenons les autres équations en utilisant la même transformation et pour la dernière équation, c'est quand n = M - 1, nous obtenons :

$$S_M = S_{M-1} + \mu h S_{M-1} + \sigma h^{1/2} S_{M-1} \xi_{M-1}$$
(2.5)

et pour $S_{M-1} \neq 0$ nous obtenons :

$$\frac{S_M}{S_{M-1}} = 1 + \mu h + \sigma h^{1/2} \xi_{M-1} \tag{2.6}$$

Ensuite, nous multiplions des équations ensemble et obtenons l'équation finale :

$$\frac{S_M}{S_0} = \frac{S_M}{S_M H_T^4} * \frac{S_M H_T^4}{S_M H_T^4} * \cdots * \frac{S_M^2}{S_M^2} * \frac{S_M^4}{S_0}$$

$$= (1 + \mu h + \sigma h^{1/2} \xi_0) * (1 + \mu h + \sigma h^{1/2} \xi_1) * \cdots * (1 + \mu h + \sigma h^{1/2} \xi_{M-1})$$

$$= \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n)$$

Donc, nous trouvons le résultat suivant :

$$S_M = S_0 \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n)$$
 (2.7)

Maintenant nous calculons $\ln(\frac{S_M}{S_0})$:

$$\ln\left(\frac{S_M}{S_0}\right) = \ln \prod_{n=0}^{M-1} (1 + \mu h + \sigma h^{1/2} \xi_n)$$

$$= \ln(1 + \mu h + \sigma h^{1/2} \xi_0) + \ln(1 + \mu h + \sigma h^{1/2} \xi_1) + \dots + \ln(1 + \mu h + \sigma h^{1/2} \xi_{M-1})$$

$$= \sum_{n=0}^{M-1} \ln(1 + \mu h + \sigma h^{1/2} \xi_n)$$

2.2 Question 2

En utilisant l'approximation $\ln(1+\varepsilon) \approx \varepsilon - \varepsilon^2/2$, pour $\varepsilon \to 0$, et la loi des grands nombres, montrer que

$$\ln(\frac{S(t)}{S_0}) \approx (\mu - \frac{1}{2}\sigma^2)t.$$

Ici on a supposé que l'approximation proposée est valable lorsque $h \to 0$.

Démonstration :

Rappel:

La Loi des grands nombres : si X_1, \ldots, X_n est une suite de v.a. indépendantes de même loi ayant une espérance μ et une variance σ^2 , alors la suite $(\overline{X_n})$ définie par $\overline{X_n} = \frac{1}{n} \prod_{i=1}^n X_i$ vérifie : $\overline{X_n} \to \mu$.

On note que $a_n = \ln(1 + \mu h + \sigma h^{1/2} \xi_n)$, donc :

$$\ln(\frac{S(t)}{S_0}) = \ln(\frac{S_n}{S_0}) = \prod_{n=0}^{M-1} a_n$$

Et selon la loi des grands nombres, nous obtenons :

$$\prod_{n=0}^{M-1} a_n = (M-1)\overline{a_n} = (M-1)E(a_n).$$

Donc pour trouver la valeur de $\prod_{n=0}^{M-1} a_n$, il faut tout d'abord calculer $E(a_n)$.

Quand $h \to 0$, $\mu h + \sigma h^{1/2} \xi_n \to 0$ et en utilisant l'approximation $\ln(1+\varepsilon) \approx \varepsilon - \varepsilon^2/2$, pour $\varepsilon \to 0$, nous pouvons

calculer l'approximation de a_n et la valeur de $E(a_n)$:

$$a_n = \ln(1 + \mu h + \sigma h^{1/2} \xi_n) \approx \mu h + \sigma h^{1/2} \xi_n - \frac{(\mu h + \sigma h^{1/2} \xi_n)^2}{2}$$

et donc :

$$\begin{split} E[a_n] &= E[\ln(1 + \mu h + \sigma h^{1/2} \xi_n)] \\ &\approx E[\mu h + \sigma h^{1/2} \xi_n - \frac{(\mu h + \sigma h^{1/2} \xi_n)^2}{2}] = E[\mu h - \frac{1}{2} \mu^2 h^2 + (\sigma h^{1/2} - \mu \sigma h^{3/2}) \xi_n - \frac{1}{2} \sigma^2 h \xi_n^2] \\ &= \mu h - \frac{1}{2} \mu^2 h^2 + (\sigma h^{1/2} - \mu \sigma h^{3/2}) E[\xi_n] - \frac{1}{2} \sigma^2 h E[\xi_n^2] \end{split}$$

selon l'exercice, on a $\xi_n, n \geq 0$ est une suite de v.a. i.i.d de loi N(0,1) indépendante de S_0 , donc nous savons l'espérance de $\xi_n : E[\xi_n] = 0$ et la variance de $\xi_n : var(\xi_n) = 1$

