Théorème des Restes Chinois et Paramètres Cryptographiques

Alexandre Duc

- 1. Choix de la Taille des Clefs
- 2. Théorème des Restes Chinois
- 3. Racines Carrées
- 4. Génération de Paramètres Cryptographiques

Alexandre Duc 2/30

Question

Comment choisir la taille d'une clef symétrique? D'une clef asymétrique?

Alexandre Duc 3/30

Choix de la Taille des Clefs

- Clef symétrique : complexité du bruteforce. Loi de Moore.
- Clef asymétrique : en plus de la loi de Moore, considérer la difficulté supposée de casser un problème difficile à l'aide des meilleurs algorithmes connus.
- Problèmes difficiles sous-jacents à RSA et El Gamal :
 - 1. Factorisation de n = pq
 - 2. **Logarithme discret** dans \mathbb{Z}_p^* ou sur une courbe elliptique.

Alexandre Duc 4/30

Factorisation

Quelques Records

	Problème	Taille (bits)	Année	Auteur(s)		
-	RSA-100	330 1991		A. K. Lenstra		
	RSA-110	364	1992	A. K. Lenstra et M. S. Manasse		
	RSA-120	A-120 397		T. Denny		
	RSA-129	426	426 1994 A. K. Lenstra et al.			
-	RSA-130	430	1996	A. K. Lenstra et al.		
	RSA-140	463	1999	H. te Riele et al.		
	RSA-150	496	2004	K. Aoki et al.		
	RSA-155	512	1999	H. te Riele et al.		
	RSA-160	530	2003	J. Franke et al.		
	RSA-170	563	2009	D. Bonenberger and M. Krone		
	RSA-180	596 2010 S. A. Danilov et I.		S. A. Danilov et I. A. Popovyan		
	RSA-190	629	2010	A. Timofeev et I. A. Popovyan		
	RSA-193	640	2005	J. Franke et al.		
	RSA-210	696	2013	R. Propper		
	RSA-232	768	2009	T. Kleinjung et al.		
	RSA-240	795	2019	F. Bourdot et al.		
	RSA-250	829	2020	F. Bourdot et al.		

Alexandre Duc 5/30

Logarithme Discret

Records

Corps	Taille (bits)	Année	Auteur(s)		
GF(p)	431	2005	A. Joux et R. Lercier		
GF(p)	530	2007	T. Kleinjung		
GF(p)	768	2016	T. Kleinjung et al.		
$GF(\rho)$	795	2019	F. Bourdot et al.		
GF(65537 ²⁵)	401	2005	A. Joux et R. Lercier		
$GF(370801^{30})$	556	2005	A. Joux et R. Lercier		
GF(33553771 ⁴⁷)	1175	24-12-2012	A. Joux		
GF(33341353 ⁵⁷)	1425	06-01-2013	A. Joux		
$GF(2^k)$	613	2005	A. Joux et R. Lercier		
$GF(2^k)$	809	06-04-2013	Barbulescu et al.		
$GF(2^k)$	1778	11-02-2013	A. Joux		
$GF(2^k)$	1971	19-02-2013	R. Granger et al.		
$GF(2^k)$	4080	22-03-2013	A. Joux		
$GF(2^k)$	6120	11-04-2013	R. Granger et al.		
$GF(2^k)$	6168	21-05-2013	A. Joux et al.		
$GF(2^k)$	9324	31-01-2014	R. Granger et al.		
GF(3 ^k)	676	2010	T. Hasashi et al.		
GF(3 ^k)	923	2012	Kyushu, NICT and Fujitsu Labs		
GF(3 ^k)	1551	27-01-2014	G. Adj et al.		
GF(3 ^k)	3796	12-2014	A. Joux et al.		
GF(3 ^k)	4841	18-07-2016	G. Adj et al.		

Alexandre Duc 6/30

Équations de Lenstra (2004)

Année	Symétrique	Module (optimiste)	Module (conservateur)	Sous-groupe log discret
1989	61	515	649	122
1994	64	640	745	128
1999	68	781	850	136
2006	72	1007	1012	144
2018	80	1329	1478	160
2019	81	1358	1523	162
2025	85	(1538)	(1805)	(170)
2040	95	(2049)	(2644)	(190)
2066	112	(3154)	(4582)	(224)
2084	124	(4093)	(6318)	(248)
2090	128	(4440)	(6974)	(256)
2142	163	(8204)	(14423)	(326)
2282	256	(26268)	(53516)	512

- Coût de référence d'une attaque : 40 · 10⁶ [dollarday].
- Les nombres entre parenthèses doivent être pris avec précaution, étant donné que la date se situe loin dans le futur.
- Source: http://www.keylength.com

Alexandre Duc 7/30

keylength.com

Method	Date	Symmetric	Factoring Modulus	Discrete Key	Logarithm Group	Elliptic Curve	Hash
[1] Lenstra / Verheul @	2023	88	2054 1632	155	2054	166	175
[2] Lenstra Updated @	2023	84	1476 1708	167	1476	167	167
[3] ECRYPT	2018 - 2028	128	3072	256	3072	256	256
[4] NIST	2019 - 2030	112	2048	224	2048	224	224
[5] ANSSI	2021 - 2030	128	2048	200	2048	256	256
[6] NSA	•	256	3072	•	÷	384	384
[7] RFC3766 @	•	-	-	-	-	-	-
[8] BSI	2023 - 2026	128	3000	250	3000	250	256

- Il existe plein d'autres tables.
- A vous de choisir auxquelles vous faites confiance.

Alexandre Duc 8/30

FCRYPT

The goal of ECRYPT-CSA (Coordination & Support Action) is to strengthen European excellence in the area of cryptology. This report [3] on cryptographic algorithms, schemes, keysizes and protocols is a direct descendent of the reports produced by the ECRYPT I and II projects (2004-2012), and the ENISA reports (2013-2014). It provides rather conservative quiding principles, based on current state-of-the-art research, addressing construction of new systems with a long life cycle. This report is aimed to be a reference in the area, focusing on commercial online services that collect, store and process the data.

Protection	Symmetric	Factoring Modulus	Discrete Key	Logarithm Group	Elliptic Curve	Hash
Legacy standard level Should not be used in new systems	80	1024	160	1024	160	160
Near term protection Security for at least ten years (2018-2028)	128	3072	256	3072	256	256
Long-term protection Security for thirty to fifty years (2018-2068)	256	15360	512	15360	512	512

All key sizes are provided in bits. These are the minimal sizes for security. Click on a value to compare it with other methods.

Recommended algorithms:

Block Ciphers: For near term use, AES-128 and for long term use, AES-256.

Hash Functions; For near term use, SHA-256 and for long term use, SHA-512 and SHA-3 with a 512-bit result. Public Key Primitive: For near term use, 256-bit elliptic curves, and for long term use 512-bit elliptic curves.

Future algorithms (expected to remain secure in 10-50 year lifetime):

Block Ciphers: AES, Camellia, Serpent Hash Functions: SHA2 (256, 384, 512, 512/256), SHA3 (256, 384, 512, SHAKE128, SHAKE256), Whirlpool-512, BLAKE (256, 584, 512) Stream Ciphers: HC-128, Salsa20/20, ChaCha, SNOW 2.0, SNOW 3G, SOSEMANUK, Grain 128a

Alexandre Duc

- 1. Choix de la Taille des Clefs
- 2. Théorème des Restes Chinois
- 3. Racines Carrées
- 4. Génération de Paramètres Cryptographiques

Alexandre Duc 10/30

Théorème des Restes Chinois

On souhaite résoudre le problème suivant, datant du troisième siècle de notre ère :

Combien l'armée de Han Xing comporte-t-elle de soldats si, rangés par 3 colonnes, il reste deux soldats, rangés par 5 colonnes, il reste trois soldats et, rangés par 7 colonnes, il reste deux soldats?

Plus formellement, on souhaite résoudre le système d'équations suivant :

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

Alexandre Duc 11/30

Théorème des Restes Chinois

Théorème (Restes Chinois)

Soient m_1, m_2, \ldots, m_n des entiers positifs **deux-à-deux premiers entre eux**, ainsi que $a_1, a_2, \ldots, a_n \in \mathbb{Z}$. Une solution x du système

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ \dots & \dots \\ x \equiv a_n \pmod{m_n} \end{cases}$$

est donnée par

$$x \equiv \sum_{i=1}^{n} a_i \left(\left(\frac{m}{m_i} \right)^{-1} \pmod{m_i} \right) \frac{m}{m_i} \pmod{m}$$
où $m = m_1 \cdots m_n$.

Alexandre Duc 12/30

Les solutions du système

$$\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{5} \\ x \equiv 2 \pmod{7} \end{cases}$$

sont

$$2\cdot (2\cdot (5\cdot 7))+3\cdot (1\cdot (3\cdot 7))+2\cdot (1\cdot (3\cdot 5))\equiv 233\equiv 23\pmod{105}$$

13/30

Théorème des Restes Chinois

 Pour l'instant, le théorème des reste chinois (CRT) ressemble à la formule magique suivante :

$$x \equiv \sum_{i=1}^{n} a_i \left(\left(\frac{m}{m_i} \right)^{-1} \pmod{m_i} \right) \frac{m}{m_i} \pmod{m}$$

Le CRT est **beaucoup plus** que cela.

Restes Chinois

Si m et n sont premiers entre eux, il existe un **isomorphisme** d'anneau entre $\mathbb{Z}_m \times \mathbb{Z}_n$ et \mathbb{Z}_{mn} .

Alexandre Duc 14/30

$$\mathbb{Z}_m \times \mathbb{Z}_n$$

- **Tuples** avec la première composante dans \mathbb{Z}_m et la deuxième dans \mathbb{Z}_n .
- Les calculs sont faits composante par composante.
- Il s'agit d'un anneau! Les inverses sont calculés aussi composante par composante.
- Exemple dans $\mathbb{Z}_3 \times \mathbb{Z}_5 : (1,3) + (2,2) = (0,0)$.
- Exemple dans $\mathbb{Z}_3 \times \mathbb{Z}_5 : (1,2) \cdot (2,3) = (2,1)$.

15/30

Isomorphisme d'Anneau?

Une fonction f est un **isomorphisme d'anneau** si

- $f: A \to B$, pour deux anneaux A et B.
- f est bijectif.
- Les opérations d'addition sont préservées : f(x+y)=f(x)+f(y).
- Les opérations de multiplication sont préservées : f(xy) = f(x)f(y).

16/30

CRT (illustration)

Alexandre Duc 17/30

Retour au CRT

- On peut travailler arbitrairement dans \mathbb{Z}_{mn} ou dans $\mathbb{Z}_m \times \mathbb{Z}_n$. Les opérations sont **préservées**.
- Pour passer d'un élément $x \in \mathbb{Z}_{mn}$ à $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$, on calcule $a = x \mod m$ et $b = x \mod n$.
- Pour passer d'un élément $(a,b) \in \mathbb{Z}_m \times \mathbb{Z}_n$ à $x \in \mathbb{Z}_{mn}$, on utilise la formule des restes chinois :

$$x \equiv (a(n^{-1} \mod m)n + b(m^{-1} \mod n)m) \pmod{mn}.$$

Image

Les mondes \mathbb{Z}_{mn} et $\mathbb{Z}_m \times \mathbb{Z}_n$ sont équivalents.

Alexandre Duc 18/30

Signatures RSA Rapides

 On peut accélérer les signatures RSA avec le théorème des restes chinois.

Alexandre Duc 19/30

Signatures RSA Rapides

- On peut accélérer les signatures RSA avec le théorème des restes chinois.
- Au lieu de calculer $s = m^d \mod n$, on calcule $s_p = m^{d \mod p 1} \mod p$ et $s_q = m^{d \mod q 1} \mod q$.
- On recombine ensuite le résultat avec le théorème des restes chinois :

$$s \equiv (s_p(q^{-1} \mod p)q + s_q(p^{-1} \mod q)p) \pmod n.$$

- Les deux exponentiations modulaires sont effectuées sur des paramètres possédant la **moitié de la taille** de *n*.
- Réduction du temps de calcul considérable.

Alexandre Duc 20/30

- 1. Choix de la Taille des Clefs
- 2. Théorème des Restes Chinois
- 3. Racines Carrées
- 4. Génération de Paramètres Cryptographiques

Alexandre Duc 21/30

Question

Combien de racines carrées à le nombre 1 dans \mathbb{Z}_{15} ?

Alexandre Duc 22/30

Racines Carrées dans un Corps

- Dans un **corps**, un nombre a **au plus** *n* racines *n*ème.
- Dans \mathbb{Z}_p^* , p > 2 premier, un nombre a soit 0 soit 2 racines carrées.
- **Exemple :** dans \mathbb{Z}_7^* , 4 a deux racines carrées : 2 et 5.
- **Exemple :** dans \mathbb{Z}_7^* , 3 n'a pas de racines carrées.

Alexandre Duc 23/30

Racines Carrées dans un Anneau

- Dans \mathbb{Z}_{pq}^* avec, p, q > 2 premiers et $p \neq q$, un nombre x a soit 0 soit 4 racines carrées.
- Cette propriété vient du **théorème des restes chinois** : si x a deux racines dans \mathbb{Z}_p et deux racines dans \mathbb{Z}_q , on a $(\pm x_p)^2 = x \mod p$ et $(\pm x_q)^2 = x \mod q$. Soit $f: \mathbb{Z}_p \times \mathbb{Z}_q \to \mathbb{Z}_{pq}$ l'isomorphisme du CRT, on a

$$f(x_p, x_q)f(x_p, x_q) = f(x_p x_p, x_q x_q) = f(x, x) = x$$

- $f(x_p, x_q)$ est donc une racine de x dans \mathbb{Z}_{pq}^* .
- Le même raisonnement tient pour $f(\pm x_p, \pm x_q)$.
- **Exemple :** 1 a 4 racines carrées dans \mathbb{Z}_{15}^* : 1, 4, 11, 14.

Alexandre Duc 24/30

- 1. Choix de la Taille des Clefs
- 2. Théorème des Restes Chinois
- 3. Racines Carrées
- 4. Génération de Paramètres Cryptographiques

Alexandre Duc 25/30

Comment Générer des Nombres Premiers?

- 1. Générer aléatoirement un nombre impair de taille voulue.
- 2. S'il n'est pas premier, retourner à l'étape 1.
- 3. S'il ne convient pas au cryptosystème retourner à l'étape 1.

La boucle est répétée environ ln(p) fois, soit environ 900 fois en moyenne pour un nombre premier de 1300 bits.

Alexandre Duc 26/30

Test de Fermat

- 1. Choisir aléatoirement $2 \le a \le n-1$.
- 2. Calculer $x = a^{n-1} \mod n$. Si $x \neq 1$, alors n n'est pas premier.
- 3. Répéter suffisamment de fois les étapes 1 et 2. Si *n* passe tous les tests, alors il est peut-être premier (on dit que *n* est **pseudo-premier**).

Problème

Il existe des nombres composés (non-premiers) passant presque toujours ce test! Il s'agit des nombres de **Carmichael**, le plus petit étant $561 = 3 \cdot 11 \cdot 17$

Alexandre Duc 27/30

Test de Miller-Rabin

- Version déterministe proposée par Gary L. Miller en 1976.
 Cette version repose sur l'hypothèse de Riemann généralisée, qui n'a jamais été démontrée.
- Version probabiliste décrite par Michael O. Rabin en 1980, qui ne repose sur aucune hypothèse non-démontrée.

Alexandre Duc 28/30

Test de Miller-Rabin

```
1: Ecrire n-1=2^s d avec d impair.
 2: for k itérations do
 3:
         Tirer un a \in [2, n-1] aléatoire.
 4:
         x \leftarrow a^d \mod n, i \leftarrow 0
 5:
         if x \neq 1 then
                                                                 \triangleright Si x vaut 1, on ne peut rien dire
 6:
              while x \neq n-1 do
 7:
                  x \leftarrow x^2 \mod n
 8:
                  i \leftarrow i + 1
9:
                  if i = s then
                                                                               \triangleright Si i = s \Rightarrow a^{n-1} \neq 1.
10:
                       return Composite
11:
                   end if
12:
                  if x = 1 then
                                                                              \triangleright Si x = 1 \Rightarrow \sqrt{x} \neq \pm 1.
13:
                       return Composite
14:
                   end if
15:
              end while
16:
          end if
17: end for
18: return Peut-être premier.
```

Alexandre Duc 29/30

Test de Miller-Rabin

Résultat

La probabilité que le test de Miller-Rabin annonce n comme étant premier de manière erronnée est inférieure à 4^{-k} .

- Si $a^{2^s d} \mod n \neq 1$, le nombre est composite (Test de Fermat).
- Sinon, on a forcément atteint 1 quelque part dans la chaine de mises au carrés.
- L'équation $x^2 \equiv 1 \pmod{n}$ possède au plus deux solutions si n est premier : ± 1 (corps).
- Le nombre précédant 1 était une racine de 1. Si cette racine diffère de -1, \mathbb{Z}_n n'est pas un corps et n n'est pas premier.

Alexandre Duc 30/30