Unit 1:

Prior knowledge:

Set forms:

- Roster A= { 1,a,2,b,... }
- Builder

$$x/0 \leq x \leq 1, x \in \mathbb{R}$$

Vendiagram

Cardinality:

The cardinal number of a set is defined as the number of elements in a finite set.

Represented by:

$$Card(A) \ or \ n(A) \ or \ (A)$$

Empty set:

Empty set or null set is represented by

φ

Property of sets:

- Repetitions are not allowed . {1,1,1,1,1} is not allowed
- In a set order doesn't matter . {1,2} or {2,1} are the same

Books recommended for Discrete Math course:

Discrete mathematics by K.H Rosen

Schum outlines

Mathematical symbols:

Mathematical representation of Subsets

When can we say

$$A\subseteq B$$

When

$$\forall x \in A \implies x \in B$$

Then

$$A\subseteq B$$

Proper Subset:

$$A \subset B$$

When all the elements are properly contained within B

When are two sets equal?

$$A \subset B \ and \ b \subset A$$
 $A = B$

Set of factors of 12 and 2

$$A=\{12,6,4,3,2,1\}$$
 $B=\{1,2\}$ $B\subseteq A\subseteq \phi$

Union

Combining of two or more sets

$$x = A \cup B$$
 $orall x \in A \ ee \ x \in B$

Intersection

$$x = A \cap B$$
 $orall x \in A \ \land \ x \in B$

Union and intersection repetition notation

Union:

$$A_1 \cup A_2 \dots A_n = \cup_{i=1}^n A_i$$

 $\cup_{i=1}^n A_i = A_1$

Intersection

$$A_1 \cap A_2 \dots A_n = \cap_{i=1}^n A_i$$

 $\cap_{i=1}^n A_i = A_n$

Operations on sets

$$Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$$

 $Card(A \cup B \ \cup C) = Card(A) + Card(B) + Card(C) - Card(A \cap B) - Card(B \cap C) + Card(C \cap A) + Card(C$

Difference

ullet $A\setminus B$

 $\forall x \in A, x
otin B$

Symmetrical difference

 $A\Delta B$

$$(A\setminus B)\cup (B\setminus A)=(A\cap B)\setminus (A\cup B)$$

Complement

ullet

 $orall x \in A, x
otin U$

Practice Problem:

100 students

M:50

P:40

C:25

$$M \cap C = 10$$

$$P \cap C = 10$$

$$M \cap P = 10$$

$$M \cap P \cap C = 5$$

Laws of sets:

Cartesian Point

Relations

Functions

Unit 2:

Partial order set

Lattice Theory

Unit 3:

Group theory

Graph Theory

Prop logic

Counting Theory