Q5. Build a decision tree model based on the following dataset.

112 -72 -75 - 75	Non K	ID	XI	X2	Y
0.12 0.22 0.25 6.3	0.410,570,58	0.61	0.22	0.38	No
	3rd quantile		0.58	0,32	Yes
	0,57 + 0,58	3	0.57	0,28	Yes
	= 0,575	4	0.41	0.43	Yes
		5	0.6	0.29	NO
		6	0,12	0.32	Yes
		7	0.25	0.32	Yes
		8	0,32	0.38	NO
	,	-			

Formula for Information Grain (IGI)

IGI = es - Eion a Water

Formula for Entropy $e = E_{i=1...k} - P_{i} \log_{2} P_{i}$

Arbitrary Rule: splitting on the 4th quantiles

$$X_{2} \leq 0.38$$
 $Y_{2} \leq 0.38$
 $Y_{2} \leq 0.38$
 $Y_{2} \leq 0.38$
 $Y_{2} \leq 0.35$
 $X_{2} \leq 0.35$
 $X_{3} \leq 0.58$
 $X_{4} \leq 0.58$
 $X_{4} \leq 0.58$
 $X_{5} \leq 0.58$
 $X_{7} \leq 0.58$

$$e^{-\frac{5}{8}\log_2(\frac{5}{8})} - \frac{3}{8}\log_2(\frac{3}{8}) = 0.9544$$

$$e^{-\frac{5}{8}\log_2(\frac{5}{8})} - \frac{3}{8}\log_2(\frac{3}{8}) = 0.9544$$

$$e^{-\frac{5}{8}\log_2(\frac{4}{7})} - \frac{3}{7}\log_2(\frac{3}{7}) = 0.9852$$

$$e^{-\frac{5}{8}\log_2(\frac{4}{7})} - \frac{9}{7}\log_2(\frac{9}{7}) = 0$$

$$IG = e^{-\frac{7}{8}(e^{-\frac{5}{8}})} - \frac{1}{8}(e^{-\frac{5}{8}}) - \frac{1}{8}(e^{-\frac{5}{8}}) = 0$$

$$0.9544 - \frac{7}{8}(0.9852) - 0 = 0.0924$$

$$\begin{aligned} & \text{Evoot} = -\frac{4}{7} \log_2 \left(\frac{4}{7} \right) - \frac{3}{7} \log_2 \left(\frac{3}{7} \right) = 0.9852 \\ & \text{ex}_2 \le 0.35 = -\frac{4}{5} \log_2 \left(\frac{4}{5} \right) - \frac{1}{5} \log_2 \left(\frac{1}{5} \right) = 0.7219 \\ & \text{ex}_2 > 0.35 = -\frac{0}{2} \log_2 \left(\frac{9}{2} \right) - \frac{2}{2} \log_2 \left(\frac{2}{2} \right) = 0 \\ & \text{IG} = \text{evoot} - \frac{5}{7} \left(\text{es}_5 0.35 \right) - \frac{2}{7} \left(\text{ex}_5 > 0.35 \right) = 0.9852 - 0.92 - 0 = 0.4696 \end{aligned}$$

$$e_{\text{vool}} = -\frac{4}{5} \log_2(\frac{4}{5}) - \frac{1}{5} \log_2(\frac{1}{5}) = 0.7219$$

$$e_{\text{x} \leq 0.58} = -\frac{4}{4} \log_2(\frac{4}{4}) - \frac{9}{4} \log_2(\frac{9}{4}) = 0$$

$$e_{\text{x} \geq 0.58} = -\frac{9}{1092} \log_2(\frac{9}{1}) - \frac{1}{1092} \log_2(\frac{1}{1}) = 0$$

$$\text{TG} = e_{\text{vool}} - \frac{4}{5} (e_{\text{x}_1} \leq 0.58) - \frac{1}{5} (e_{\text{x}_1} > 0.58) = 0.7219$$