# **Topic 12: Capacitors**

#### Advanced Placement Physics C

Dr. Timothy Leung

December 6, 2020

Olympiads School Toronto, ON, Canada

**Capacitors** 

#### **Electric Field and Electric Potential Difference**

Recall that the relationship between electrostatic force ( $\mathbf{F}_q$ ) and electric potential energy ( $U_q$ ) can be expressed using definition of mechanical work and the fundamental theorem of calculus:

$$\Delta U_q = -\int \mathbf{F}_q \cdot d\mathbf{r}$$
  $\mathbf{F}_q = -\nabla U_q = -\frac{\partial U_q}{\partial r} \hat{\mathbf{r}}$ 

Dividing both sides of the equations by q, we get the relationship between electric field (E), electric potential (V) and electric potential difference ( $\Delta V$ ):

$$\Delta V = -\int \mathbf{E} \cdot d\mathbf{r}$$
  $\mathbf{E} = -\nabla V = -\frac{\partial V}{\partial r}\hat{\mathbf{r}}$ 

This relationship holds regardless of the charge configuration.

#### **Electric Field and Electric Potential Difference**



In the case of two parallel plates (as we have worked out using Gauss's law), the electric field is uniform, and the relationship simplifies to:

$$E = \frac{\Delta V}{d}$$
 or  $\Delta V = Ed$ 

| Quantity                                     | Symbol | SI Unit |
|----------------------------------------------|--------|---------|
| Electric field intensity                     | Ε      | N/C     |
| Electric potential difference between plates | ΔV     | V       |
| Distance between plates                      | d      | m       |

3

#### **Capacitors**

**Capacitors** is a device that stores energy in a circuit. The simplest form of a capacitor is a set of closely spaced parallel plates:



When the plates are connected to a battery, the battery transfer charges to the plates until the voltage V equals the battery terminals. After that, one plate has charge +Q; the other has -Q.

#### Parallel-Plate Capacitors

As we have seen already, the (uniform) electric field between two parallel plates is proportional to the charge density  $\sigma$ , which is the charge Q divided by the area of the plates A:

$$E = \frac{\sigma}{\epsilon_0} = \frac{Q}{A\epsilon_0}$$

Substituting this into the relationship between the plate voltage *V* and electric field, we find a relationship between the charges across the plates and the voltage:

$$V = Ed = \frac{Qd}{A\epsilon_0} \longrightarrow Q = \left[\frac{A\epsilon_0}{d}\right]V$$

5

## **Parallel-Plate Capacitors**

Since area A, distance of separation d and the vacuum permittivity  $\epsilon_0$  are all constants, the relationship between charge Q and voltage V is *linear*. And the constant is called the **capacitance** C, defined as:

$$C = \frac{Q}{V}$$

For parallel plates:

$$C = \frac{\mathsf{A}\epsilon_{\mathsf{C}}}{\mathsf{d}}$$

The unit for capacitance is a **farad** (named after Michael Faraday), where 1F = 1C/V.

#### **Practical Capacitors**



- Parallel-plate capacitors are very common in electric circuits, but the vacuum between the plates is not very effective
- Instead, a non-conducting **dielectric** material is inserted between the plates
- When the plates are charged, the electric field of the plates polarizes the dielectric.
- The polarization produces an electric field that opposes the field from the plates, therefore reduces the effective voltage, and increasing the capacitance

#### **Dielectric Constant**

If electric field without dielectric is  $E_0$ , then E in the dielectric is reduced by  $\kappa$ , the **dielectric constant**:

$$\kappa = \frac{E_0}{E}$$

The capacitance of the plates with the dielectric is now amplified by the same factor  $\kappa$ :

$$C = \kappa C_0$$

We can also view the dielectric as something that increases the effective permittivity:

$$\epsilon = \kappa \epsilon_0$$

#### **Dielectric Constant**

The dielectric constants of commonly used materials are:

| $\kappa$ |
|----------|
| 1.000 59 |
| 4.9      |
| 5.6      |
| 6.9      |
| 3.4      |
| 2.55     |
| 80       |
|          |

9

## Storage of Electrical Energy



- When charging up a capacitor, imagine positive charges moving from the negatively charged plate to the positively charged plate
- Initially neither plates are charged, so moving the first charge takes very little work; as the electric field builds, more and more work needs to be done

## **Storage of Electrical Energy**



In the beginning—when the plates aren't charged—moving an infinitesimal charge dq across the plates, the infinitesimal work done dU is related to the capacitance:

$$dU = Vdq = \frac{q}{C}dq$$

As the electric field begins to form between plates, more and more work is required to move the charges.

#### Storage of Electrical Energy

To fully charge the plates, the total work  $U_c$  is the integral:

$$U_c = \int dU = \int_0^Q \frac{q}{C} dq = \frac{1}{2} \frac{Q^2}{C}$$

The work done is stored as a potential energy inside the capacitor. There are different ways to express  $U_c$  using definition of capacitance:

$$U_c = \frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} QV = \frac{1}{2} CV^2$$

## Notes About Storage of Electric Energy

• The work done (i.e. the energy stored in the capacitor) is inversely proportional to the capacitance:

$$dU = Vdq = \frac{q}{C}dq$$

- The presence of a dielectric *increases* the capacitance; therefore the work (and potential energy stored) to move the charge dq decreases with the dielectric constant  $\kappa$
- After the capacitor is charged, removing the dielectric material from the capacitor plates will require additional work.