DETAILED PROJECT DOCUMENTATION

1. PROJECT OBJECTIVE

To investigate the increasing failure rate of JAMB candidates from 2020 to 2025 and forecast future performance using supervised machine learning. The project aimed at:

- Analyze student preparation behavior.
- Identify root causes of poor performance.
- Develop a predictive model for exam success.
- Forecast pass rate trends for strategic planning.

2. PROJECT PHASES

Survey Design and Administration

- Developed a well-structured Google Form targeting post-JAMB students.
- Questions designed to capture both quantifiable data and subjective insights.
- Ensured anonymity and optional sections for open-ended responses.

Data Collection and Cleaning

- Downloaded data in Excel format.
- Removed duplicates and inconsistent text inputs.
- Converted categorical variables to numerical where needed (e.g. age ranges to midpoints).

Exploratory Data Analysis (EDA)

- Used histograms, bar chat, and line chart to discover trends.
- Investigated how each variable correlates with scores and success.
- Used scatter plots with color coding to highlight interactions.

Model Development

- Selected Random Forest due to its capability to handle mixed data types.
- One-hot encoded categorical features.
- Split dataset using an 80/20 train-test split.
- Evaluated using accuracy, precision, recall, and confusion matrix.

Forecasting

- Aggregated yearly pass rates.
- Built a simple linear regression model to project scores up to 2030.

3. TOOLS AND TECHNOLOGIES USED

- Google Forms: Data collection
- Python: Data cleaning, EDA, modeling
- **Libraries**: pandas, matplotlib, seaborn, scikit-learn
- Jupyter Notebook: Interactive workflow documentation
- Excel: Pre-cleaning inspection and formatting

4. KEY DECISIONS MADE

- Score threshold set at 200 for pass/fail classification.
- Used numeric midpoint approximations for ordinal text fields.
- Removed rows with critical missing values to preserve model integrity.

5. CHALLENGES ENCOUNTERED

- Non-numeric survey fields with inconsistent formatting.
- Imbalanced dataset (more passing students).
- Limited responses from certain regions.
- Need to balance simplicity vs. predictive power in feature engineering.

6. RESOLUTIONS

- Created mapping dictionaries for categorical fields.
- Applied stratified sampling and test splits to ensure generalizability.
- Noted geographical gaps and suggested expanded outreach for future surveys.
- Chose interpretable models (like Random Forest) to support stakeholder understanding.