实验名称:	数字钟实验	姓名:	严加铧	学早,	3220101731	
安洲石柳 :	级 十 th 大 为\\	<i>¥</i> + <i>1</i> -1:	厂加铁管		5440101751	

专业: 电气工程及其自动

浙江大学实验报告

<u>化</u> 姓名: 严旭铧

学号: 3220101731

日期: 2024.4.23

课程名称:___电路与电子技术 2_实验___指导老师:____张伟____成绩._

实验名称: _____数字钟实验____实验类型: _数电实验____ 同组学生姓名: 褚玘铖

实验 6 滤波器设计

一、实验目的

- 1. 了解数字电路的基本组成,认识数字信号、逻辑电平和逻辑关系。
- 2. 接触数字电路的调试过程,对数字电路达到一个大体的感性认识。
- 3. 掌握数制、码制及相互间的转换。

二、 实验内容

- 1. 检查译码显示电路的功能。
- 2. 测试 74LS161 计数器的功能。
- 3. 分别连接 10 进制和 6 进制计数器。
- 4. 连接 60 进制或 24 进制计数器。

三、 实验原理

- 1. 数字钟的基本组成
 - (1) 原理示意图

(2) 工作原理

外部脉冲输入后,用计数器累加脉冲次数,用来定时。分别使用 60 进制计数器和 24 进制计数器对秒 (分) 和小时进行计数,实现进位。

所用元件 (实验箱用共阴极数码管)

译码器74LS247 共阳极数码管

16 	15 	14	13 	12	11	10 	9
VCC	动态进位输出	QA	Qв	Qc	QD	使能T	置数
	12.40(11)		74L	S161			L
)	(-		刮加剂		数器)	
		(数输入)		
清除	时钟	A	В	С	D	使能P	GND
Υ							

输入计	计数器输出			对应	输入计	计数器输出				对应	
数脉冲 顺序	Q_{D}	Q_{C}	Q_{B}	Q_A	1.2#	46- H3- 3-1-			$Q_{\rm B}$	Q_A	十进制数
0	0	0	0	0	0	8	1	0	0	0	8
1	0	0	0	1	1	9	1	0	0	1	9
2	0	0	1	0	2	10	1	0	1	0	10
3	0	0	1	1	3	11	1	0	1	1	11
4	0	1	0	0	4	12	1	1	0	0	12
5	0	1	0	1	5	13	1	1	0	1	13
6	0	1	1	0	6	14	1	1	1	0	14
7	0	1	1	1	7	15	1	1	1	1	15

10 进制、6 进制计数器 (4)

i. 10 进制计数器

Qb 和 Qd 作为输入接入与非 门,当数码管输出为9时置 位 1001,输出为 10 时置位 1010, 也是第一次 Qb 和 Qd 同时为 1。此时与非门输出 为 0。注意 1 脚清除时钟是 低电平有效,也即输出0时 有效。那么可以实现9之后 到 10 的极短时间里面时钟 清除,重新从0开始,实现 10 进制。

与10进制同理,输出为6时清 除时钟。达到6进制的效果

(5) 60 进制计数器

这里将十进制和 6 进制的两个连接在一起, 6 进制作十位, 10 进制作个位。10 进制这里 QA 和 QD 作与非门的输入,输出送入十位作时钟信号。在 0-7,QD 一直为 0,与非门输出一直为 1, 8 为 1000 输出 1, 9 为 1001,到 9 输出 0,那么 10 个为 1 个周期,个位跑 10 次,十位进一,实现 60 进制。

(6) 24 进制计数器

原理与 60 进制类似,但是要在十进制和 6 进制的基础上得到 24 进制,就是当输出为 24 时,要整个重置,那么只要把个位的 $\overline{R_D}$ 重置即可。这里将 Z1 和 Z2 与非门的输出作与运算即可。由于使用与非门,不能直接作与接非,可以将非门改成与非门,最下面的与非门输出接两次或者引一路高电平。这里 Z2 控制了逢 Z4 重置,即同时满足十位为 Z4 位第一次为 Z4 时,输出低电平,Z1 则是逢 Z4 低电平。这两个只要有一个满足低电平那么就要重置个位,实现 Z4 进制。

四、 实验数据

- 1. 手动检测没有问题。
- 2. 单独的6进制和10进制没有问题。
- 3. 60 进制

五、 仿真及时序图

大、
1. 10 进制

OCD_HEX

OCD_HE

遮掉前面一部分后就与课件给出的时序图一致,说明仿真参数调整有效,可以得到时序图。

2. 6 进制

3. 60 进制

此处, $Q0\sim Q3$ 对应的是十位的输出,即原理图上的 $QA\sim QD$; $Q4\sim Q7$ 对应个位的输出,即原理图上个位的 $QA\sim QD$ 。下面 24 进制与 60 进制一样。

4. 24 进制

七、实验体会与思考

- 1. 本次实验中我们学习了数字钟的电路搭建,了解了6进制、十进制、24进制和60进制利用移位寄存器的实现方法。
- 2. 本次实验中连接了比较复杂的电路,锻炼了复杂电路的连接和分析能力。在实验中我们曾漏接了与非门芯片的电源,导致实验一直无法顺利进行。后续经过排查独立解决了问题,实现了要求的效果。
- 3. 在手绘了十进制的时序图后,我尝试使用仿真软件 Multisim 进行仿真,希望能直接显示出时序图,发现得到的时序图与手绘和课件提供的吻合,之后的时序图便使用仿真软件直接仿真

得到。

- 关于 Multisim 仿真的一些补充说明:
 - 数码管采用了 Indicators 组中,HEX DISPLAY 系列的 DCD HEX。
 - 要一次得到多个输出的时序图,可以使用右侧工具栏中的逻辑分析仪 (如右图)。该工具只需要接左边即可。左边引脚接入输出高低电平,即 可在上面显示信号波形,可以理解为数字信号的示波器。CQT 不用接, T 用来提供外部时钟,这里用不到。
 - 逻辑分析仪的设置: (3)
 - 时钟设置。时钟源采用内部时钟,频率与外部输入信号频率一致(本 i. 实验可以这样)。阈值电压设在高 低电平值中间。例如低电平 0,高 电平 5V,这个阈值电压就设在 2~3 左右,如果高电平是 3.3V 那 设在2左右。
 - 触发设置。触发器边沿设置成两者,应该 ii. 可以自动检验是上升沿还是下降沿,反正 可以改。

关于频率设置。要做到1s的时间,在Multisim iii.

> 中频率应该设置成 2Hz。但是这个软件本身有一定的问题,和示波器一样,频率设太 小,波形只显示很小一段就会闪烁消失,虽然时间轴在往前走,但是前面的波形看不 了。因此采用了更大的频率,当然这样数码管计时的速度会变快很多。采用更大的频 率可以得到更长的时序图,包含更多的周期。