Physics in Medicine: Physics of Magnetic Resonance Imaging (A) - physics776

Degree - M.Sc. in Physics (PO von 2014)

\overline{Module}	Elective Advanced Lectures: Applied Physics
Module No.	physics70b

\overline{Course}	Physics in Medicine: Physics of Magnetic Resonance Imaging (A)
Course No.	physics776

		Tea	Teaching			
Category	Type	Language hou	ırs CP	Semester		
Elective	Lecture with exercises	English 3+1	6	WT		

Requirements for Participation:

Preparation: Lectures Experimental Physics I-III (physik111-physik311) respectively

Form of Testing and Examination: Requirements for the examination (written or oral): successful work with the exercises

Length of Course: 1 semester

Aims of the Course: Understanding the principles of Magnetic Resonance Imaging Physics

Contents of the Course:

- Theory and origin of nuclear magnetic resonance (QM and semiclassical approach)
- Spin dynamics, T1 and T2 relaxation, Bloch Equations and the Signal Equation
- Gradient echoes and spin echoes and the difference between T2 and T2*
- On- and off-resonant excitation and the slice selection process
- Spatial encoding by means of gradient fields and the k-space formalism
- Basic imaging sequences and their basic contrasts, basic imaging artifacts
- Hardware components of an MRI scanner, accelerated imaging with multiple receiver
- Computation of signal amplitudes in steady state sequences
- The ultra-fast imaging sequence EPI and its application in functional MRI
- Basics theory of diffusion MRI and its application in neuroimaging
- Advanced topics: quantitative MRI, spectroscopic imaging, X-nuclei MRI

Recommended Literature:

- T. Stöcker: Scriptum zur Vorlesung
- E.M. Haacke et al, Magnetic Resonance Imaging: Physical Principles and Sequence Design, John Wiley 1999
- M.T. Vlaardingerbroek, J.A. den Boer, Magnetic Resonance Imaging: Theory and Practice, Springer, 20

•	Z.P. Liang, 1999	P.C.	Lauterbur,	Principles	of Magnetic	Resonance	Imaging:	A Signal	Processing	Perspective,	SPIE