forensic-proof.com

Logical Volume Manager

- Software RAID

Proneer

@pr0neer

proneer@gmail.com

http://forensic-proof.com

Outline

- 1. Background
- 2. LVM Basics
- 3. LVM Structure
- 4. LVM Advantage & Disadvantage

Layers to make it easier

Layers in a typical system (before LVM)

Files / Dirs Filesystems **Partitions** Disks

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

What is a Disk?

- Lets look at some terms first, starting from the bottom
- It has various techie things in it:
 - Cylinders, Heads, Sectors, mbr, partitions
 - It's own cpu, cache, firmware etc

- Linux : /dev/hda, /dev/sda
- Windows : \\PhysicalDrive0, \\PhysicalDrive1

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

Partitions

- One partition must be a continuous chunk of blocks
- The original IBM PC from 1981 only had 4 primary partitions
- On a typical linux system you have something like
 - hda1 /
 - hda2 swap
 - hda3 /home
- Or for a dual boot
 - hda1 M\$ Windows C:
 - hda2 swap
 - hda3 /

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

Partition tools

- Partition tools can change the existing partition without loosing existing data
 - I never tried this tools
 - They are all very risky

- Parted
 - A free tool that can handle ext2 and vfat but not NTFS
- Acronis Disk Director & Partition magic
 - Commercial tool that can do more including NTFS

Files / Dirs

Filesystems

Partitions

Disk(s)

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

Filesystems

- Filesystem are a fancy way to hold together a group of files and directories
- Without LVM one filesystem = one partition
- Common File Systems:
 - In the Windows World :
 - FAT12/16/32, exFAT
 - NTFS
 - In Linux
 - Ext2/3/4, Reiserfs, jfs, xfs
 - FAT/NTFS
 - And many many more

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

Files on a linux (and unix) system

- Within User Level we have
 - Files
 - Directories
 - Filesytems
- Files Hold Data
- Directories hold files and directories
- Filesystems holds directories and files
- Mount points hold Filesystems

Files / Dirs

Filesystems

Partitions

Disk(s)

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

Logical Volume Manager Basics

Why Volume Management?

- To make your like as System Administrator easier
- To give you a biggers Sandbox to play in
- One Filesystem = One Volume
- One Volume = more than One Partition
- This have many advantages
 - Can carve out non continues filesystems
 - Can add disks partitions together so they look like one BIG

Files / Dirs

Filesystems

VOLUMES

Partitions

Disk(s)

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

What is LVM?

- Stands for Logical Volume Management
- It manages disk drives and similar mass-storage devices, in particular large ones
- available in Linux (Arch Linux, Debian, Fedora, Gentoo, MontaVista Linux, openSUSE, SLED, Slackware, SLES and Ubuntu)
- as well as HP-UX, IBM AIX, Solaris, OS/2 and Windows
- It is placed between the filesystems and disk partitions

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

Implementations each OS

Vendor	Introduced in	Volume manager	Allocae anywhere	Snapshots	RAID 0	RAID 1	RAID 5	RAID 10
IBM	AIX 3.0	Logical Volume Manager	YES	NO	YES	YES	NO	YES
Hewlett- Packard	HP-UX 9.0	HP Logical Volume Manager	YES	YES	YES	YES	NO	YES
	FreeBSD	Vinum Volume Manager	YES	NO	YES	YES	YES	
	NetBSD	Logical Volume Manager	YES	NO	YES	YES	NO	NO
	Linux 2.2	Logical Volume Manager	YES	YES	YES	YES	NO	
	Linux 2.4	Enterprise Volume Management System	YES	YES	YES	YES	YES	
	Linux 2.6	Logical Volume Manager	YES	YES	YES	YES	YES	THE STREET
Silicon Graphics	IRIX or Linux	XVM Volume Manager	YES	YES	YES	YES	YES	
Sun Microsystems	SunOS	Solaris Volume Manager	NO	NO	YES	YES	YES	YES
Sun Microsystems	Solaris 10	ZFS	YES	YES	YES	YES	YES	YES
Veritas	Cross-OS	Veritas Volume Manager	YES	YES	YES	YES	YES	YES
Microsoft	Later NT- based	Logical Disk Manager	YES	YES	YES	YES	YES	

Windows Dynamic Disk - required 8MB area

Logical Volume Manager Structure

What is LVM? cont.

- The appearance of New Terms
- Physical Volumes PVs
 - collects all disk partitions
- Volume Group VGs
 - creates one big virtual disk
- Logical Volumes LVs
 - From the VG you can then create filesystem within LVs
- Extents
 - Physical & Logical Extents

Files / Dirs

Filesystems

LVM

Partitions

Disk(s)

http://home.techwiz.ca/~peters/presentations/lvm/oclug-lvm.pdf

LVM Structure

LVM Structure cont.

http://sunoano.name/ws/public_xhtml/lvm.html

LVM Structure cont.

http://sunoano.name/ws/public_xhtml/lvm.html

LVM Structure cont.

http://sunoano.name/ws/public_xhtml/lvm.html

Lowest Level of LVM

Logical Volume Manager Advantage & Disadvantage

Advantages

Advantages

- Resizing
 - Resize volume groups online by absorbing new physical volumes(PV) or ejecting existing ones
 - Resize logical volumes (LV) online by concatenating extents onto them or truncating extents from them

- Snapshot
 - Create read-only snapshots of logical volumes (LVM1)
 - Create read-write snapshots of logical volumes (LVM2)

Advantages

- Similar to RAID 0
 - Stripe whole or parts of logical volumes across multiple PVs

- Similar to RAID 1
 - Mirror whole or parts of logical volumes

- Move online
 - Move online logical volumes between PVs

Disadvantages

• The volume managers can complicate the boot process and make disaster recovery difficult

• Logical volumes can *suffer from external fragmentation* when the *underlying* storage devices do not allocate their PEs contiguously

Question & Answer

