Temperature Structure of the Atmosphere

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #6: Friday, February 5 2021

Review Question What is the "atmospheric window"?

- 1. Regions where there are few clouds to block radiation.
- 2. Desert regions with very little water vapor.
- 3. Tropical regions with low CO₂ concentrations.
- 4. A range of wavelengths where no greenhouse gases absorb much.

Measuring Greenhouse Effect:

Measuring Greenhouse Effect:

- Go to MODTRAN, set CO₂ to 0 ppm, and set all other gases to zero.
- Set altitude to 70 km and location to "Tropical Atmosphere".
- Press "Save this run to background"
- Note I_{out}
- Set CO_2 to 400 ppm and note the change in I_{out}
- Adjust the temperature offset to make the difference in $I_{\text{out}}(\text{New}-\text{BG})$ equal zero.

No Greenhouse Gases

400 ppm

Adjust temperature

Calculating Global Warming

Calculating Global Warming

- "Climate sensitivity" = ΔT_{2x}
 - Temperature rise for doubled CO₂.
 - Uncertain (because of feedbacks)
 - Best estimate: $\Delta T_{2x} \sim 3.2$ K (range 2.0–4.5 K)
- Every time you double CO₂, T rises by ΔT_{2x} .
- For arbitrary change in CO₂:

$$\ln\left(\frac{\text{new }p\text{CO}}{\text{old }p\text{CO}}\right)$$

$$\Delta T = \Delta T_{2x} \times \frac{1}{1}$$

Global Warming Potential

- Absorption by CO₂ and water vapor are very saturated
- Absorption in the atmospheric window is not saturated
- Therefore, molecule-for-molecule, gases that absorb in the window have a much bigger effect on the climate than adding more CO₂.
 - One chlorofluorocarbon molecule = thousands of CO₂ molecules
- Global Warming Potential (GWP) of $x = how many CO_2$ molecules cause the same warming as one molecule of x

Evolving theory of greenhouse effect

Greenhouse effect

- 1. Purely radiative (no convection)
 - Each layer has uniform temperature
 - a. Single-layer, uniform spectrum (Mon. 2/1)
 - Absorbs 100% longwave light
 - b. Multi-layer, uniform spectrum (Lab #2)
 - More layers ⇒ greater greenhouse effect.
 - c. Realistic spectrum (Wed. 2/3 & today)
 - More realistic
 - Harder to do calculations (need computer)
- 2. Introduce convection (Today & Monday 2/8)
 - Temperature changes with height
 - Convection moves heat up and down
 - Radiative-convective models are very accurate
 - But require computers

The Vertical Structure of the Atmosphere

Greenhouse effect

- 1. Purely radiative (no convection)
 - Each layer has uniform temperature
 - a. Single-layer, uniform spectrum
 - Absorbs 100% longwave light
 - b. Multi-layer, uniform spectrum
 - More layers ⇒ greater greenhouse effect.
 - c. Realistic spectrum
 - More realistic
 - Harder to do calculations (need computer)

2. Convection:

- Temperature changes with height
- Convection moves heat up and down
- Radiative-convective models are very accurate
 - But require computers

Radiative-Convective Equilibrium

Normal Atmosphere:

Vertical Structure

Lapse rate =
$$\frac{-\Delta T}{\Delta \text{height}}$$

- Positive lapse rate: Air overhead is cooler (normal for troposphere)
- Negative lapse rate: Air overhead is warmer (abnormal, "inversion")

Air vs. Water

Air vs. Water

- Pressure = weight of everything overhead.
- Air is compressible, water isn't.
- 1 cubic meter of water weighs
 1000 kg
- 1 cubic meter of dry air at sea-level density weighs 1.3 kg
- 1 cubic meter of dry air 10 km above sea level weighs 0.4 kg

Air Pressure

• Pressure at height *h*:

$$P(h) = P_0 e^{-h/8.0 \text{km}}$$

$$= P_0 2^{-h/5.5 \text{km}}$$

$$= P_0 \left(\frac{1}{2}\right)^{h/5.5 \text{km}}$$

- Half the air in the atmosphere is below
 5.5 km.
- 3/4 is below 11 km
- 7/8 is below 16.5 km
- **NOTE:** The number 5.5 km is not exact, but it's consistent with the textbook.

Why is the air cooler higher up?

Terminology

Environmental Lapse

- Measured temperature of actual atmosphere
- Compares one bit of air at one height with another bit at another height.
- Changes from one time and place to another.

Adiabatic Lapse

- Change in a single parcel of air as it moves up or down
- "Adiabatic" means no heat flowing in or out
 - Adiabatic changes are reversible
 - Heat flow is irreversible

Overview of Convection

Overview of convection

- Closer to vertical = smaller lapse rate (vertical = zero)
- Closer to horizontal = larger lapse rate

Stable Atmosphere Initial State

- green = adiabatic lapse
- blue = environmental lapse < adiabatic

Stable Atmosphere Parcel is heated

Stable Atmosphere Rises to new equilibrium

Stable Atmosphere Parcel is cooled

Stable Atmosphere Sinks to new equilibrium

Unstable Atmosphere

Unstable Atmosphere Initial State

- green = adiabatic lapse
- blue = environmental lapse > adiabatic

Unstable Atmosphere Parcel is heated

Unstable Atmosphere Rises without stopping

Summary of Stability

Summary of stability:

- Stable conditions:
 - Adiabatic Lapse > Environmental Lapse
- Unstable conditions:
 - Adiabatic Lapse < Environmental Lapse</p>
- Why is stability important?
 - A stable atmosphere does not move heat around
 - An unstable atmosphere undergoes convection:
 - Hot air rises, cold air sinks
 - Redistributes heat

Moist Convection

Moist Convection

- Dry air rises and cools
- Cooling ⇒ water vapor condenses to liquid
- Condensation releases latent heat
- Latent heat warms air

Moist Convection

- Latent heat warms air
- Heat reduces adiabatic cooling
- Moist adiabatic lapse < Dry adiabatic lapse
- Smaller lapse = less stable
- Humid air is less stable than dry air

Perspective

- Stable:
 - Environmental lapse ≤ adiabatic lapse
- Unstable:
 - Environmental lapse > adiabatic lapse
- Adiabatic lapse:
 - Dry: 10 K/km
 - Moist: 4-8 K/km (depends on humidity)
- Pure radiative equilibrium:
 - Would produce lapse of 16 K/km: unstable
- Radiative-Convective equilibrium:
 - Convection modifies environmental lapse
 - Normal environmental lapse is roughly 6 K/km (typical moist adiabatic lapse rate)

Greenhouse effect

Greenhouse effect

- Skin temp: $T_{\text{skin}} = T_{\text{bare rock}} = 254 \text{ K}.$
- Ground temp: $T_{\text{ground}} = T_{\text{skin}} + h_{\text{skin}} \times \text{ELR}$
 - ELR = Environmental Lapse Rate

Global warming

- Greater CO₂ → greater skin height.
- Warming: $\Delta T_{\text{ground}} = \Delta h_{\text{skin}} \times \text{env. lapse}$

Vertical Structure and Saturation

Set up MODTRAN:

Go to MODTRAN (http://climatemodels.uchicago.edu/modtran/)

- Set altitude to **70 km** and location to "1976 U.S. Standard Atmosphere".
- Set CO₂ to 0.1 ppm, all other gases to zero.
- Now increase by factors of 10 (1, 10, 100, 1000, 10000)

10,000 ppm CO₂

Question

• Why do we see the spike in the middle of the CO₂ absorption feature?

Answer

Answer

Question

- Water vapor absorption is completely saturated.
 - Why does water vapor emit at warmer temperatures than CO₂?

Answer

- Near the ground, there is much more water vapor (10 times more)
- Above about 7 km, there is much more CO₂ (100 times more at 20 km)
 - Water vapor concentrations become small enough to be transparent to space at a much lower altitude than CO₂