Lec13_3D_Construction

Stereo vision 立体视觉

- is the extraction of 3D information from digital images, such as
- comparing info about a scene from two vantage points视点, 3D info extracted by examining relative positions of objects in two panels.

Multi-view representations

- A set of 2D img correspond to pics, given 3D shape from different viewpoints.
- dependent on lighting and a high number of img might be required to cover all the angles of a given 3D shape

RGB-D images

- color image that contains depth information at each pixel(ie. distance b/t camera & object)
- This distance encodes info about 3D geometry from a fixed point of view.
- img easily captured with relatively cheap hardware many dataset of RGB-D img exists

Ultrasonic images

- created by sending pulses of ultrasound into tissue using a probe.
- ultrasound pulses **echo** off tissues with different reflection properties and **returne**d to the probe which records and displays them as an image.

Photometric stereo光度立体

- estimating surface normals of objects by observing that object under different lighting conditions.
- FACT: amount of light reflected by a surface is dependent on orientation of surface in relation to light source and observer.

Point clouds

a set a 3D vertices with coordinates x,y,z), usually captured by 3D scanners.

Voxel(volume element-cubic) grid representation:

- element" and is an extension of 2D pixels to 3D.
- A voxel represents a value on a regular grid in 3D space.

Meshes网格

- a set of vertices connected to each other in order to form triangles (or sometimes quadrilaterals).
- forms a 2D surface in a 3D space
- common data structure usually employed by 3D renderers. compute lighting effects
- Gather the good points- requires many views otherwise holes appear

Single Still Image Object Reconstruction

Challenges in deep learning methods:

- 1. shape complexity of objects;
- 2. uncertainty of objects;
- 3. reconstruction of fine grained objects;
- 4. memory requirements and calculation time;
- 5. training datasets;

2D image \rightarrow 2D encoder(transfomer/CNN) \rightarrow latent space \rightarrow 3D encoder \rightarrow 3D representations (Voxel-based 3D decoder, Point cloud-based 3D decoder, Mesh-based 3D decoder

Reconstruction based on Video Sequences

Structure from Motion (SfM)

- process of reconstructing 3D structure from its projections into a series of images taken from different viewpoints.
- Incremental SfM is a sequential processing pipeline with an iterative reconstruction component.

Correspondence Search:

- correspondence search which finds scene overlap in the input images and identifies projections of same points in overlapping images.
- output: set of geometrically verified image pairs and a graph of image projections for each point.

Feature Extraction:

• invariant under radiometric and geometric Changes ← SIFT used to extract local features.

Image Matching

• tests scene overlap; searches for feature correspondences

Geometric Verification

verifies the potentially overlapping image pairs. matching is based solely on appearance, it is not
guaranteed that corresponding features actually map to the same scene point. → SfM verifies the
matches by estimate a transformation maps feature points between images using projective geometry.

Incremental Reconstruction:

- input: scene graph.
- outputs estimates for registered images and the reconstructed scene structure as a set of points.

Image Registration:

• Starting from a metric reconstruction, new images can be registered to current model by solving Perspective n Point (PnP) problem using feature correspondences to triangulated points in already registered images (2D-3D correspondences).

Triangulation:

• A newly registered image must observe existing scene points. In addition, it may also increase scene coverage by extending the set of points X through triangulation.

Bundle Adjustment:

• Bundle Adjustment is the joint non-linear refinement of camera parameters and point parameters that minimizes the reprojection error.