Chapter 6. Branch and Bound

Chapter 6 introduces an algorithm design technique called "Branch and Bound".

CHAPTER 6Foundations of Algorithms

Branch and Bound

- □ *Similar* to "Backtracking"
 - a state-space tree is used to solve a problem
- □ *Different* from "Backtracking"
 - does not limit us to any particular way of traversing a tree
 - is used *only for optimization problems*

Branch and Bound

■ Step 1:

- computes a number (bound) at a node to determine whether the node is *promising*

(the number is a bound on the value of the solution that could be obtained by expanding beyond the node)

■ Step 2:

- if the bound is no better than the value of the best solution found so far, the node is *non-promising*.

■ <u>Breadth-First Search</u> with Branch and Bound Pruning

■ Breadth-First Search with Branch and Bound Pruning

Example:

→ Bound on Maximum Possible Profit:

 $Node_1 : 40 + 30 + (50 * 9/10) = 115$

- → Queue: { Node_o }
- \rightarrow Current best solution = 0

■ Breadth-First Search with Branch and Bound Pruning

Example:

→ Bound on Maximum Possible Profit:

 $Node_1 : 40 + 30 + (50 * 9/10) = 115$

Node₂: 0 + 30 + 50 + (10*1/5) = 82

 \rightarrow Queue: { Node₁, Node₂ }

 \rightarrow Current best solution = 40

■ Breadth-First Search with Branch and Bound

Pruning

Example:

$$p_i$$
 w_i p_i/w_i
item 1: 40 2 20
item 2: 30 5 6
item 3: 50 10 5
item 4: 10 5 2
 $W = 16$

→ Bound on Maximum Possible Profit:

Node₃:
$$40 + 30 + (50 * 9/10) = 115$$

Node₄: $40 + 0 + 50 + (10*4/5) = 98$
Node₅: $0 + 30 + 50 + (10 * 1/5) = 82$
Node₆: $0 + 0 + 50 + 10 = 60$

- → Queue: { Node₃, Node₄, Node₅ }
- \rightarrow Current best solution = 70

Breadth-First Search with Branch and Bound

Pruning

 $Node_7 \quad Node_8 \quad Node_9 \quad Node_{10} \quad Node_{11} \quad Node_{12}$

- → Queue: { Node₈, Node₉ }
- \rightarrow Current best solution = 90

Example:

$$p_i$$
 w_i p_i/w_i
item 1: 40 2 20
item 2: 30 5 6
item 3: 50 10 5
item 4: 10 5 2
 $W = 16$

→ Bound on Maximum Possible Profit:

Node₇: **0** (overweight)

 $Node_8: 40 + 30 + 0 + 10 = 80$

Node₉: 40 + 0 + 50 + (10 * 4/5) = 98

Node₁₀: 40 + 0 + 0 + 10 = 50

Node₁₁: $\mathbf{0} + \mathbf{30} + \mathbf{50} + (10 * 1/5) = 82$

Node₁₂: $\mathbf{0} + \mathbf{30} + \mathbf{0} + 10 = 40$

Breadth-First Search with Branch and Bound

Pruning

Example:

→ Bound on Maximum Possible Profit:

Node₁₃:
$$40 + 30 + 0 + 10 = 80$$

Node₁₄: $40 + 30 + 0 + 0 = 70$
Node₁₅: 0 (overweight)
Node₁₆: $40 + 0 + 50 + 0 = 90$
Oueue: {

→ Current best solution = 90

Breadth-First Search with Branch and Bound

```
public static int knapsack2(int n, int[] p, int[] w, int W)
    queue_of_node Q; node u, v; int maxProfit;
    initialize(Q);
    v.level = 0; v.profit = 0; v.weight=0;
    maxProfit = 0;
    enqueue(Q,v);
    while(! Empty(Q) ){
        dequeue(Q,v);
        u.level = v.level + 1;
        take care of the left child;
        take care of the right child;
    return maxProfit;
```

```
public class node
{
    int level;
    int profit;
    int weight;
}
```

Breadth-First Search with Branch and Bound

```
u.weight = v.weight + w[u.level];
           u.profit = v.profit + p[u.level];
           if (u.weight<=W && u.profit > maxProfit)
Left
              maxProfit = u.profit ;
Child
           if (bound(u) > maxProfit)
              enqueue(Q,u);
           u.weight = v.weight;
Right
           u.profit = v.profit ;
          if (bound(u) > maxProfit)
Child
              enqueue(Q,u);
```

```
public class node
{
    int level;
    int profit;
    int weight;
}
```

- □ **Best-First** Search with Branch and Bound Pruning
 - Basic Idea
 - uses **bound** to **select a node to expand next**, rather than just determine whether a node is promising
 - uses a *priority queue* of nodes where the priority is determined by the bound value of a node

□ Best-First Search with Branch and Bound Pruning

Example:

→ Bound on Maximum Possible Profit:

 $Node_0$: **40** + 30 + (50 * 9/10) = 115

- \rightarrow Queue: { Node_o }
- \rightarrow Current best solution = 0

□ Best-First Search with Branch and Bound Pruning

Example:

→ Bound on Maximum Possible Profit:

 $Node_1 : 40 + 30 + (50 * 9/10) = 115$

Node₂: 0 + 30 + 50 + (10*1/5) = 82

 \rightarrow Queue: { Node₁, Node₂ }

 \rightarrow Current best solution = 40

□ Best-First Search with Branch and Bound Pruning

Example:

→ Bound on Maximum Possible Profit:

Node₃:
$$40 + 30 + (50 * 9/10) = 115$$

Node₄: $40 + 0 + 50 + (10*4/5) = 98$

- \rightarrow Queue: { Node₃, Node₄, Node₂ }
- \rightarrow Current best solution = 70

□ Best-First Search with Branch and Bound Pruning

Example:

$$p_i$$
 w_i p_i/w_i
item 1: 40 2 20
item 2: 30 5 6
item 3: 50 10 5
item 4: 10 5 2
 $W = 16$

→ Bound on Maximum Possible Profit:

Node₅: **0** (overweight)

 $Node_6: 40 + 30 + 0 + 10 = 80$

 \rightarrow Queue: { Node₄, Node₆, Node₂ }

 \rightarrow Current best solution = 70

□ Best-First Search with Branch and Bound Pruning

Example:

→ Bound on Maximum Possible Profit:

Node₇:
$$40 + 0 + 50 + (10 * 4/5) = 98$$

Node₈: $40 + 0 + 0 + 10 = 50$

- \rightarrow Queue: { Node₇, Node₂, Node₆ }
- → Current best solution = 90

□ Best-First Search with Branch and Bound Pruning

Example:

$$p_i$$
 w_i p_i/w_i
item 1: 40 2 20
item 2: 30 5 6
item 3: 50 10 5
item 4: 10 5 2
 $W = 16$

→ Bound on Maximum Possible Profit:

Node₉: 0 (overweight) Node₁₀: 40 + 0 + 50 + 0 = 90

- \rightarrow Queue: { Node₂, Node₆ }
- **→** Current best solution = 90

□ Best-First Search with Branch and Bound Pruning

Example:

$$p_i$$
 w_i p_i/w_i
item 1: 40 2 20
item 2: 30 5 6
item 3: 50 10 5
item 4: 10 5 2
 $W = 16$

→ Since both of Node₂ and Node₄ have bound values less than 90, they will *not be expanded further*.

→ Queue: { }

 \rightarrow Final best solution = 90

□ **Best-First** Search with Branch and Bound

```
public static int knapsack3(int n, int[] p, int[] w, int W)
    priority_queue_of_node PQ; node u, v;
    int maxProfit;
    v.level = 0; v.profit = 0; v.weight=0; maxProfit = 0;
    v.bound = bound(v);
    PQ.enqueue(v);
    while( ! PQ.Empty() ){
         v = PQ.dequeue();
        if (v.bound > maxProfit) {
           u.level = v.level + 1;
           take care of the left child;
           take care of the right child;
```

```
public class node
{
    int level;
    int profit;
    int weight;
    int bound;
}
```

Best-First Search with Branch and Bound

```
u.weight = v.weight + w[u.level];
           u.profit = v.profit + p[u.level];
          if (u.weight<=W && u.profit > maxProfit)
Left
              maxProfit = u.profit ;
Child
          u.bound = bound(u) ;
          if (u.bound > maxProfit)
              PQ.enqueue(u);
           u.weight = v.weight;
Right
           u.bound = bound(u);
Child
          u.profit = v.profit;
          if ( u.bound > maxProfit)
              PQ.enqueue(u);
```

```
public class node
{
    int level;
    int profit;
    int weight;
    float bound;
}
```

□ **Best-First** Search with Branch and Bound

```
public static float bound(node u)
{
    index j,k; int totWeight; float result;
    if (u.weight >= W) return 0;
    else {
          result = u.profit ;
         j = u.level + 1;
          totWeight = u.weight;
          while (j \le n \&\& totWeight + w[j] \le W)
            totWeight = totWeight + w[i];
            result = result + p[j];
            j++;
          k = i;
          if (k \le n)
          result=result+(W-totWeight)*p[k]/w[k];
          return result;
```

```
public class node
{
    int level;
    int profit;
    int weight;
    float bound;
}
```

☐ The Branch and Bound Approach to T.S.P.

Given a directed graph with n nodes, let $[i_1, i_2, ..., i_k]$ be a path from i_1 to i_k passing through $i_2, i_3, ...,$ and i_{k-1}

- □ The Branch and Bound Approach to T.S.P.
 - □ How to compute the *bound* on each node?
 - At the level k of the state space tree, each node corresponds to a state where (k+1) vertices have been visited.
 - □ lower bound on the *root* node
 - $= \sum_{\mathbf{v_m} \in \mathbf{V}} (lowest \ weight \ of \ edge \ leaving \ \mathbf{v_m})$ $\mathbf{v_m} \in \mathbf{V}$

- The Branch and Bound Approach to T.S.P.
 - \square lower bound on node [1, i_2 , ..., i_k] (1 < k < n)
 - = sum of actual weight from V_1 to V_{ik} + \sum (lowest weight of edge leaving V_m $v_m \in A$ excluding those to vertices i_2 , ..., i_k and the edge from Vi_k to V_1) where $A = V - \{V_1, Vi_2, ..., Vi_{k-1}\}$

- □ The Best-First Search with Branch and Bound
 - **□** Example:

$$W = \begin{bmatrix} 0 & 14 & 4 & 10 & 20 \\ 14 & 0 & 7 & 8 & 7 \\ 4 & 5 & 0 & 7 & 16 \\ 11 & 7 & 9 & 0 & 2 \\ 18 & 7 & 17 & 4 & 0 \end{bmatrix}$$

The start node is V_1 .

→ the lower bound on the *root* node

= \sum (lowest weight of edge leaving v_m) = 4 + 7 + 4 + 2 + 4 = **21** $v_m \in V$

■ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

Node₀: 4 + 7 + 4 + 2 + 4 = 21

 \rightarrow Queue: { Node_o }

■ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

 $Node_1: 14 + (7 + 4 + 2 + 4) = 31$

Node₂: 4 + (7 + 5 + 2 + 4) = 22

Node₃: 10 + (7 + 4 + 2 + 7) = 30

 $Node_4: 20 + (7 + 4 + 7 + 4) = 42$

→ Queue: { Node₂, Node₃, Node₁, Node₄}

□ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

Node₅:
$$4+5+(7+2+4)=22$$

Node₆:
$$4+7+(7+2+7)=27$$

$$Node_7: 4+16+(8+7+4)=39$$

→ Queue: { Node₅, Node₆, Node₃, Node₁, Node₇, Node₄}

■ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

Node₈: 4+5+8+(2+18)=37

Node₉: 4+5+7+(4+11)=31

- → Queue: { Node₆, Node₃, Node₁, Node₇, Node₄}
- → Current best solution = 31

■ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

Node₁₀:
$$4+7+7+(7+18)=43$$

Node₁₁:
$$4+7+2+(7+14)=34$$

- → Queue: { Node₃, Node₁, Node₇, Node₄}
- → Current best solution = 31

■ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

 $Node_{12}: 10+7+(7+4+17)=45$

Node₁₃: 10+9+(7+5+7)=38

Node₁₄: 10+2+(7+4+7)=30

→ Queue: { Node₁₄, Node₁, Node₇, Node₄}

→ Current best solution = 31

■ The Best-First Search with Branch and Bound

Example:

0	14	4	10	20
14	0	7	8	7
4	5	0	7	16
11	7	9	0	2
18	7	17	4	0

→ Lower Bound on Minimum Cost Tour

$$Node_{15}$$
: $10+2+7+(7+4)=30$

Node₁₆:
$$10+2+17+(5+14)=48$$

 \rightarrow Queue: { Node₁, Node₂, Node₄}

→ Current best solution = 30

■ The Best-First Search with Branch and Bound

```
public static number travel2(int n, number[] W,
                            node optTour)
  priority_queue_of_node PQ; node u, v;
  number minLength;
  PQ.initialize();
  v.level = 0; v.path = [1]; minLength = \infty;
  v.bound=bound(v);
  PQ.enqueue(v);
 while(! PQ.Empty() ) {
     v = PQ.dequeue();
     if v is promising // the bound of v < minLength
         take care of children;
```

```
public class node
{
    int level;
    ordered_set path;
    number bound;
}
```

■ The Best-First Search with Branch and Bound

take_care_of_children

```
u.level = v.level + 1;
for (all i such that 2 \le i \le n \&\& i not in v.path) {
  u.path = v.path; put i at the end of u.path;
  if ( u.level == n-2 ) {
     put index of only vertex not in u.path at the end of u.path;
     put 1 at the end of u.path;
     if (length(u) < minLength) {
      minLength = length(u); optTour = u.path;
  else {
     u.bound = bound(u);
     if (u.bound < minLength)
         PQ.enqueue(u);
```