Chapter 5

Control Charts for Attributes

5-1. Introduction

- Data that can be classified into one of several categories or classifications is known as attribute data.
- Classifications such as <u>conforming</u> and <u>nonconforming</u> are commonly used in quality control.
- Another example of attributes data is the count of defects.

- Fraction nonconforming_is the ratio of the number of nonconforming items in a population to the total number of items in that population.
- Control charts for fraction nonconforming are based on the binomial distribution.

Recall: A quality characteristic follows a binomial distribution if:

- 1. All trials are independent.
- 2. Each outcome is either a "success" or "failure".
- 3. The probability of success on any trial is given as p. The probability of a failure is 1-p.
- 4. The probability of a success is constant.

• The binomial distribution with parameters $n \ne 0$ and 0 , is given by

$$p(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

The mean and variance of the binomial distribution are

$$\mu = np$$
 $\sigma^2 = np(1-p)$

Development of the Fraction Nonconforming Control Chart

Assume

- n = number of units of product selected at random.
- D = number of nonconforming units from the sample
- p= probability of selecting a nonconforming unit from the sample.
- Then:

$$P(D = x) = {n \choose x} p^{x} (1-p)^{n-x}$$

Development of the Fraction Nonconforming Control Chart

The sample fraction nonconforming is given as

$$\hat{p} = \frac{D}{n}$$

where $\hat{\mathbf{p}}$ is a random variable with mean and variance

$$\mu = p$$
 $\sigma^2 = \frac{p(1-p)}{n}$

Standard Given

• If a standard value of p is given, then the control limits for the fraction nonconforming are

$$UCL = p + 3\sqrt{\frac{p(1-p)}{n}}$$

$$CL = p$$

$$LCL = p - 3\sqrt{\frac{p(1-p)}{n}}$$

No Standard Given

• If no standard value of p is given, then the control limits for the fraction nonconforming are

$$UCL = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

$$CL = \overline{p}$$

$$LCL = \overline{p} - 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$

where

$$\overline{p} = \frac{\sum_{i=1}^{m} D_i}{mn} = \frac{\sum_{i=1}^{m} \hat{p}_i}{m}$$

Trial Control Limits

- Control limits that are based on a preliminary set of data can often be referred to as trial control limits.
- The quality characteristic is plotted against the trial limits, if any points plot out of control, assignable causes should be investigated and points removed.
- With removal of the points, the limits are then recalculated.

Example

• A process that produces bearing housings is investigated. Ten samples of size 100 are selected.

Sample #	1	2	3	4	5	6	7	8	9	10
# Nonconf.	5	2	3	8	4	1	2	6	3	4

• Is this process operating in statistical control?

Example

$$n = 100, m = 10$$

Sample #	1	2	3	4	5	6	7	8	9	10
# Nonconf.	5	2	3	8	4	1	2	6	3	4
Fraction Nonconf.	0.05	0.02	0.03	0.08	0.04	0.01	0.02	0.06	0.03	0.04

$$\overline{p} = \frac{\sum_{i=1}^{m} \hat{p}_i}{m} = 0.038$$

Example

Control Limits are:

$$UCL = 0.038 + 3\sqrt{\frac{0.038(1 - 0.038)}{100}} = 0.095$$

$$CL = 0.038$$

$$LCL = 0.038 - 3\sqrt{\frac{0.038(1 - 0.038)}{100}} = -0.02 \to 0$$

Example

Design of the Fraction Nonconforming Control Chart

• The sample size can be determined so that a shift of some specified amount, δ can be *detected* with a stated level of probability (50% chance of detection). If δ is the magnitude of a process shift, then n must satisfy:

$$\delta = L \sqrt{\frac{p(1-p)}{n}}$$

Therefore,

$$n = \left(\frac{L}{\delta}\right)^2 p(1-p)$$

Positive Lower Control Limit

• The sample size *n*, can be chosen so that the lower control limit would be nonzero:

$$LCL = p - L\sqrt{\frac{p(1-p)}{n}} > 0$$

and

$$n > \frac{(1-p)}{p}L^2$$

Interpretation of Points on the Control Chart for Fraction Nonconforming

- Care must be exercised in interpreting points that plot *below* the lower control limit.
 - They are frequently caused by errors in the inspection process or improperly calibrated test and inspection equipment.
 - They often do not indicate a real improvement in process quality.

The np control chart

• The actual number of nonconforming can also be charted. Let n = sample size, p = proportion of nonconforming. The control limits are:

$$UCL = np + 3\sqrt{np(1-p)}$$

$$CL = np$$

$$LCL = np - 3\sqrt{np(1-p)}$$

(if a standard, p, is not given, use \overline{p})

5-2.2 Variable Sample Size

- In some applications of the control chart for the fraction nonconforming, the sample is a 100% inspection of the process output over some period of time.
- Since different numbers of units could be produced in each period, the control chart would then have a variable sample size.

5-2.2 Variable Sample Size

Control Limits Based on an Average Sample Size

- Control charts based on the average sample size results in an approximate set of control limits.
- The average sample size is given by

$$\overline{n} = \frac{\sum_{i=1}^{m} n_i}{m}$$

• The upper and lower control limits are

$$\overline{p} \pm 3\sqrt{\frac{\overline{p}(1-\overline{p})}{\overline{n}}}$$

5-3. Control Charts for Nonconformities (Defects)

- There are many instances where an item will contain nonconformities but the item itself is not classified as nonconforming.
- It is often important to construct control charts for the total number of nonconformities or the average number of nonconformities for a given "area of opportunity". The inspection unit must be the same for each unit.

5-3. Control Charts for Nonconformities (Defects)

Poisson Distribution

- The number of nonconformities in a given area can be modeled by the Poisson distribution. Let **c** be the parameter for a Poisson distribution, then the mean and variance of the Poisson distribution are equal to the value **c**.
- The probability of obtaining **x** nonconformities on a single inspection unit, when the average number of nonconformities is some constant, **c**, is found using:

$$p(x) = \frac{e^{-c}c^x}{x!}$$

5-3.1 Procedures with Constant Sample Size

c-chart

• Standard Given:

$$UCL = c + 3\sqrt{c}$$

$$CL = c$$

$$LCL = c - 3\sqrt{c}$$

$$UCL = \overline{c} + 3\sqrt{\overline{c}}$$

$$CL = \bar{c}$$

$$LCL = \overline{c} - 3\sqrt{\overline{c}}$$

5-3.1 Procedures with Constant Sample Size

Choice of Sample Size: The *u* **Chart**

- If we find c total nonconformities in a sample of n inspection units, then the average number of nonconformities per inspection unit is u = c/n.
- The control limits for the average number of nonconformities is $\sqrt{\pi}$

$$UCL = \overline{u} + 3\sqrt{\frac{\overline{u}}{n}}$$

$$CL = \overline{u}$$

$$LCL = \overline{u} - 3\sqrt{\frac{\overline{u}}{n}}$$

5-3.2 Procedures with Variable Sample Size

Three Approaches for Control Charts with Variable Sample Size

- 1. Variable Width Control Limits
- 2. Control Limits Based on Average Sample Size
- 3. Standardized Control Chart

5-3.2 Procedures with Variable Sample Size

Control Limits Based on an Average Sample Size

- Control charts based on the average sample size results in an approximate set of control limits.
- The average sample size is given by

$$\overline{n} = \frac{\sum_{i=1}^{m} n_i}{m}$$

• The upper and lower control limits are

$$\overline{u} \pm 3\sqrt{\frac{\overline{u}}{\overline{n}}}$$

• When several less severe or minor defects can occur, we may need some system for classifying nonconformities or defects according to severity; or to weigh various types of defects in some reasonable manner.

Demerit Schemes

- 1. Class A Defects very serious
- 2. Class B Defects serious
- 3. Class C Defects Moderately serious
- 4. Class D Defects Minor
- Let c_{iA} , c_{iB} , c_{iC} , and c_{iD} represent the number of units in each of the four classes.

Demerit Schemes

- The following weights are fairly popular in practice:
 - Class A-100, Class B 50, Class C − 10, Class D 1

$$d_i = 100c_{iA} + 50c_{iB} + 10c_{iC} + c_{iD}$$

d_i - the number of demerits in an inspection unit

Control Chart Development

Number of demerits per unit:

$$u_i = \frac{D}{n}$$

where n = number of inspection units

$$D = \sum_{i=1}^{n} d_i$$

Control Chart Development

$$\begin{aligned} UCL &= \overline{u} + 3\hat{\sigma}_u \\ CL &= \overline{u} \\ LCL &= \overline{u} - 3\hat{\sigma}_u \end{aligned}$$
 where
$$\overline{u} = 100\overline{u}_A + 50\overline{u}_B + 10\overline{u}_C + \overline{u}_D$$
 and
$$\hat{\sigma}_u = \left[\frac{(100)^2 \overline{u}_A + (50)^2 \overline{u}_B + (10)^2 \overline{u}_C + \overline{u}_D}{n} \right]^{1/2}$$