PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:
C12Q 1/68, C12P 19/34, C07H 21/02,
21/04

(11) International Publication Number:

WO 98/03683

(43) International Publication Date:

29 January 1998 (29.01.98)

(21) International Application Number:

PCT/US97/12606

A1

(22) International Filing Date:

18 July 1997 (18.07.97)

(30) Priority Data:

60/020,998

19 July 1996 (19.07.96) U

US

(71) Applicants (for all designated States except US): THE RE-GENTS OF THE UNIVERSITY OF MICHIGAN [US/US]; Technology Management Office, Wolverine Tower, Roon 2071, 3003 South State Street, Ann Arbor, MI 48109-1280 (US). BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITY [US/US]; East Lansing, MI 48824 (US).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): VENTA, Patrick, J. [US/US]; 9646 Rolling Green, Pinckney, MI 48169 (US). BREWER, George, J. [US/US]; 3820 Gensley, Ann Arbor, MI 48103 (US). YUZBASIYAN-GURKAN, Vilma [US/US]; 3101 Dexter Road, Ann Arbor, MI 48103 (US). SCHALL, William, D. [US/US]; 3150 S. Williamston, Williamston, MI 48895 (US).
- (74) Agents: SMITH, DeAnn, F. et al.; Harness, Dickey & Pierce, P.L.C., P.O. Box 828, Bloomfield Hills, MI 48303 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE

(57) Abstract

The complete sequence of the canine von Willebrand Factor cDNA and deduced amino acid sequence is provided. The mutation which causes von Willebrand's Disease in Scottish Terriers, a single base deletion in exon 4, has also been determined. Methods for detecting carriers of the defective vWF gene are also provided.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
ВВ	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	Hυ	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	ΚZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 98/03683 PCT/US97/12606

DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE

FIELD OF THE INVENTION

This invention relates generally to canine von Willebrand factor (vWF), and more particularly, to the gene encoding vWF as well as a genetic defect that causes canine von Willebrand's disease.

BIOLOGICAL DEPOSITS

SEQUENCE

15

20

25

30

ACCESSION NO.

Canine von Willebrand Factor

10 BACKGROUND OF THE INVENTION

In both dogs and humans, von Willebrand's disease (vWD) is a bleeding disorder of variable severity that results from a quantitative or qualitative defect in von Willebrand factor (vWF) (Ginsburg, D. et al., *Blood* 79:2507-2519 (1992); Ruggeri, Z.M., et al., *FASEB J* 7:308-316 (1993); Dodds, W.J., *Mod Vet Pract* 681-686 (1984); Johnson, G.S. et al., *JAVMA* 176:1261-1263 (1988); Brooks, M., *Probl In Vet Med* 4:636-646 (1992)). This clotting factor has two known functions, stabilization of Factor VIII (hemophilic factor A) in the blood, and aiding the adhesion of platelets to the subendothelium, which allows them to provide hemostasis more effectively. If the factor is missing or defective, the patient, whether human or dog, may bleed severely.

The disease is the most common hereditary bleeding disorder in both species, and is genetically and clinically heterogenous. Three clinical types, called 1, 2, and 3 (formerly I, II, and III; see Sadler, J.E. et al., *Blood* 84:676-679 (1994) for nomenclature changes), have been described. Type 1 vWD is inherited in a dominant, incompletely penetrant fashion. Bleeding appears to be due to the reduced level of vWF rather than a qualitative difference. Although this is the most common form of vWD found in most mammals, and can cause serious bleeding problems, it is generally less severe than the other two types. In addition, a relatively inexpensive vasopressin analog (DDAVP) can help alleviate symptoms (Kraus, K.H. et al., *Vet Surg* 18:103-109 (1989)).

In Type 2 vWD, patients have essentially normal levels of vWF, but the factor is abnormal as determined by specialized tests (Ruggeri, Z.M., et al., *FASEB J* 7:308-316 (1993); Brooks, M., *Probl In Vet Med* 4:636-646 (1992)). This type is also

PCT/US97/12606 WO 98/03683

- 2 -

inherited in a dominant fashion and has only rarely been described in dogs (Turrentine, M.A., et al., Vet Clin North Am Small Anim Pract 18:275 (1988)).

Type 3 vWD is the most severe form of the disease. It is inherited as an autosomal recessive trait, and affected individuals have no detectable vWF in their blood. Serious bleeding episodes require transfusions of blood or cryoprecipitate to supply the missing vWF. Heterozygous carriers have moderately reduced factor concentrations, but generally appear to have normal hemostasis.

5

10

15

20

25

30

Scottish terriers have Type 3 vWD (Dodds, W.J., Mod Vet Pract 681-686 (1984); Johnson, G.S. et al., JAVMA 176:1261-1263 (1988)). Homozygotes have no detectable vWF and have a severe bleeding disorder. Heterozygotes have reduced levels of the factor, and are clinically normal (Brooks, M. et al., JAVMA 200:1123-1127 (1992)). The prevalence of vWD among Scottish terriers including both heterozygotes and homozygotes has been variously estimated from 27-31% (Stokol, T. et al., Res. Vet. Sci. 59:152-155 (1995); Brooks, M., Proc. 9th ACVIM Forum 89-91 (1991)).

Currently, detection of affected and carrier Scottish terrier dogs is done by vWF antigen testing (Benson, R.E. et al., Am J Vet Res 44:399-403 (1983); Stokol, T. et al., Res. Vet. Sci. 59:152-155 (1995)) or by coagulation assays (Rosborough, T.K. et al., J. Lab. Clin. Med. 96:47-56 (1980); Read, M.S. et al., J. Lab. Clin. Med. 101:74-82 (1983)). These procedures yield variable results, as the protein-based tests can be influenced by such things as sample collection, sample handling, estrous, pregnancy, vaccination, age, and hypothyroidism (Strauss, H.S. et al., New Eng J Med 269:1251-1252 (1963); Bloom, A.L., Mayo Clin Proc 66:743-751 (1991); Stirling, Y. et al., Thromb Haemostasis 52:176-182 (1984); Mansell, P.D. et al., Br. Vet. J. 148:329-337 (1992); Avgeris, S. et al., JAVMA 196:921-924 (1990); Panciera, D.P. et al. JAVMA 205:1550-1553 (1994)). Thus, for example, a dog that tests within the normal range on one day, can test within the carrier range on another day. It is therefore difficult for breeders to use this information.

It would thus be desirable to provide the nucleic acid sequence encoding canine vWF. It would also be desirable to provide the genetic defect responsible for canine vWD. It would further be desirable to obtain the amino acid sequence of canine vWF. It would also be desirable to provide a method for detecting carriers of the defective vWF gene based on the nucleic acid sequence of the normal and defective vWF gene.

PCT/US97/12606

5

10

15

20

25

30

35

SUMMARY OF THE INVENTION

The present invention provides a novel purified and isolated nucleic acid sequence encoding canine vWF. A nucleic acid sequence containing the mutation that causes vWD in Scottish terriers, a single-base deletion in exon 4, is also provided. The nucleic acid sequences of the present invention may be used in methods for detecting carriers of the mutation that causes vWD. Such methods may be used by breeders to reduce the frequency of the disease-causing allele and the incidence of disease. In addition, the nucleic acid sequence of the canine vWF provided herein may be used to determine the genetic defect that causes vWD in other breeds as well as other species.

Additional objects, advantages, and features of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and by referencing the following drawings in which:

Figures 1A-1C is the nucleic acid sequence of the canine von Willebrand factor of the present invention;

Figures 2A-2C is a comparison of the human and canine prepro-von Willebrand factor amino acid sequences;

Figure 3 provides nucleotide sequencing ladders for the von Willebrand's disease mutation region for normal (clear), carrier, and affected Scottish terriers, the sequences being obtained directly from PCR products derived from genomic DNAs in exon 4;

Figure 4 illustrates the results of a method of the present invention used to detect the Scottish terrier vWD mutation; and

Figure 5 shows the Scottish terrier pedigree, which in turn illustrates segregation of the mutant and normal vWF alleles.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The cDNA encoding canine von Willebrand Factor (vWF) has been sequenced, and its sequence is set forth in Figures 1A-1C and SEQ ID NO: 1. The amino acid sequence corresponding to the cDNA of canine vWF has been subsequently deduced and is set forth in Figures 2A-2C and SEQ ID NO: 2. The mutation of the normal vWF gene which causes von Willebrand's Disease (vWD),

a deletion at codon 88 of the normal gene resulting in a frameshift, is also provided. The nucleic acid sequences of the present invention may be used in methods for detecting homozygous and heterozygous carriers of the defective vWF gene.

In a preferred method of detecting the presence of the von Willebrand allele in canines, DNA samples are first collected by relatively noninvasive techniques, *i.e.*, DNA samples are obtained with minimal penetration into body tissues of the animals to be tested. Common noninvasive tissue sample collection methods may be used and include withdrawing buccal cells via cheek swabs and withdrawing blood samples. Following isolation of the DNA by standard techniques, PCR is performed on the DNA utilizing pre-designed primers that produce enzyme restriction sites on those DNA samples that harbor the defective gene. Treatment of the amplified DNA with appropriate restriction enzymes such as *Bsi*E I thus allows one to analyze for the presence of the defective allele. One skilled in the art will appreciate that this method may be applied not only to Scottish terriers, but to other breeds such as Shetland sheepdogs and Dutch Kooikers.

10

15

20

25

30

Overall, the present invention provides breeders with an accurate, definitive test whereby the undesired vWD gene may be eliminated from breeding lines. The current tests used by breeders are protein-based, and as noted previously, the primary difficulty with this type of test is the variability of results due to a variety of factors. The ultimate result of such variability is that an inordinate number of animals fall into an ambiguous grouping whereby carriers and noncarriers cannot be reliably distinguished. The present invention obviates the inherent limitations of protein-based tests by detecting the genetic mutation which causes vWD. As described in Specific Example 1, the methods of the present invention provide an accurate test for distinguishing noncarriers, homozygous carriers and heterozygous carriers of the defective vWF gene.

It will be appreciated that because the vWF cDNA of the present invention is substantially homologous to vWF cDNA throughout the canine species, the nucleic acid sequences of the present invention may be used to detect DNA mutations in other breeds as well. In addition, the canine vWF sequence presented herein potentially in combination with the established human sequence (Genbank Accession No. X04385, Bonthron, D. et al., *Nucleic Acids Res.* 14:7125-7128 (1986); Mancuso, D.J. et al., *Biochemistry* 30:253-269 (1989); Meyer, D. et al., *Throm Haemostasis* 70:99-104 (1993)), may be used to facilitate sequencing of the vWF

WO 98/03683 PCT/US97/12606

- 5 -

gene and genetic defects causing vWD, in other mammalian species e.g., by using cross-species PCR methods known by those skilled in the art.

5

10

15

20

25

30

35

It is also within the contemplation of this invention that the isolated and purified nucleic acid sequences of the present invention be incorporated into an appropriate recombinant expression vector, e.g., viral or plasmid, which is capable of transforming an appropriate host cell, either eukaryotic (e.g., mammalian) or prokaryotic (e.g., E. coli). Such DNA may involve alternate nucleic acid forms, such as cDNA, gDNA, and DNA prepared by partial or total chemical synthesis. The DNA may also be accompanied by additional regulatory elements, such as promoters, operators and regulators, which are necessary and/or may enhance the expression of the vWF gene product. In this way, cells may be induced to over-express the vWF gene, thereby generating desired amounts of the target vWF protein. It is further contemplated that the canine vWF polypeptide sequence of the present invention may be utilized to manufacture canine vWF using standard synthetic methods. One skilled in the art will also note that the defective protein encoded by the defective vWF gene of the present invention may also be of use in formulating a complementary diagnostic test for canine vWD that may provide further data in establishing the presence of the defective allele. Thus, production of the defective vWF polypeptide, either through expression in transformed host cells as described above for the active vWF polypeptide or through chemical synthesis, is also contemplated by the present invention.

The term "gene" as to referred herein means a nucleic acid which encodes a protein product. The term "nucleic acid" refers to a linear array of nucleotides and nucleosides, such as genomic DNA, cDNA and DNA prepared by partial or total chemical synthesis from nucleotides. The term "encoding" means that the nucleic acid may be transcribed and translated into the desired polypeptide. "Polypeptide" refers to amino acid sequences which comprise both full-length proteins and fragments thereof. "Mutation" as referred to herein includes any alteration in a nucleic acid sequence including, but not limited to, deletions, substitutions and additions.

As referred to herein, the term "capable of hybridizing under high stringency conditions" means annealing a strand of DNA complementary to the DNA of interest under highly stringent conditions. Likewise, "capable of hybridizing under low stringency conditions" refers to annealing a strand of DNA complementary to the DNA of interest under low stringency conditions. In the present invention, hybridizing

WO 98/03683

- 6 -

under either high or low stringency conditions would involve hybridizing a nucleic acid sequence (e.g., the complementary sequence to SEQ ID NO: 1 or portion thereof), with a second target nucleic acid sequence. "High stringency conditions" for the annealing process may involve, for example, high temperature and/or low salt content, which disfavor hydrogen bonding contacts among mismatched base pairs. "Low stringency conditions" would involve lower temperature, and/or lower salt concentration than that of high stringency conditions. Such conditions allow for two DNA strands to anneal if substantial, though not near complete complementarity exists between the two strands, as is the case among DNA strands that code for the same protein but differ in sequence due to the degeneracy of the genetic code. Appropriate stringency conditions which promote DNA hybridization, for example, 6X SSC at about 45 °C, followed by a wash of 2X SSC at 50 °C are known to those skilled in the art or can be found in Current Protocols in Molecular Biology, John Wiley & Sons, NY (1989), 6.31-6.3.6. For example, the salt concentration in the wash step can be selected from a low stringency of about 2X SSC at 50 °C to a high stringency of about 0.2X SSC at 50 °C. In addition, the temperature in the wash step can be increased from low stringency at room temperature, about 22 °C, to high stringency conditions, at about 65 °C. Other stringency parameters are described in Maniatis, T., et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring NY, (1982), at pp. 387-389; see also Sambrook J. et al., Molecular Cloning: A Laboratory Manual, Second Edition, Volume 2, Cold Spring Harbor Laboratory Press, Cold Spring, NY at pp. 8.46-8.47 (1989).

SPECIFIC EXAMPLE 1 **Materials And Methods**

20

25

30

35

Isolation of RNA. The source of the RNA was a uterus from a Scottish Terrier affected with vWD (factor level < 0.1% and a clinical bleeder), that was surgically removed because of infection. Spleen tissue was obtained from a Doberman Pinscher affected with vWD that died from dilated cardiomyopathy (factor level 7% and a clinical bleeder). Total RNA was extracted from the tissues using Trizol (Life Technologies, Gaithersburg, MD). The integrity of the RNA was assessed by agarose gel electrophoresis.

Design of PCR primer sets. Primers were designed to a few regions of the gene, where sequences from two species were available (Lavergne, J.M. et al., Biochem Biophys Res Commun 194:1019-1024 (1993); Bakhshi, M.R. et al., Biochem Biophys Acta 1132:325-328 (1992)). These primers were designed using WO 98/03683

- 7 -

rules for cross-species' amplifications (Venta et al., "Genes-Specific Universal Mammalian Sequence-Tagged Sites: Application To The Canine Genome" Biochem. Genet. (1996) in press). Most of the primers had to be designed to other regions of the gene using the human sequence alone (Mancuso, D.J. et al., Biochemistry 30:253-269 (1991)). Good amplification conditions were determined by using human and canine genomic DNAs.

Reverse Transcriptase-PCR. Total RNA was reverse transcribed using random primers (Bergenhem, N.C.H. et al., PNAS (USA) 89:8789-8802 (1992)). The cDNA was amplified using the primer sets shown to work on canine genomic DNA.

DNA Sequence Analysis. Amplification products of the predicted sizes were isolated from agarose gels by adsorption onto silica gel particles using the manufacturer's method (Qiagen, Chatsworth, CA). Sequences were determined using 32P-5' end-labeled primers and a cycle sequencing kit (United States Biochemical Corp., Cleveland, OH). The sequences of the 5' and 3' untranslated regions were determined after amplification using Marathon™ RACE kits (Clontech, Palo Alto, CA). Sequences were aligned using the Eugene software analysis package (Lark Technologies, Houston, TX). The sequence of the canine intron four was determined from PCR-amplified genomic DNA.

Design of a Diagnostic Test. PCR mutagenesis was used to create diagnostic and control BsiE I and Sau96 I restriction enzyme sites for the test. Amplification conditions for the test are: 94°C, 1 min, 61°C, 1 min, and 72°C, 1 min, for 50 cycles using cheek swab DNA (Richards, B. et al., Human Molecular Genetics 2:159-163 (1992)).

Population Survey. DNA was collected from 87 Scottish terriers from 16 pedigrees. DNA was isolated either from blood using standard procedures (Sambrook, J. et al., Cold Harbor Spring Lab, Cold Harbor Spring NY, 2nd Edition, (1989)) or by cheek swab samples (Richards, B. et al., Human Molecular Genetics 2:159-163 (1992)). The genetic status of each animal in the survey was determined using the BsiE I test described above.

Results 30

5

10

15

20

25

35

Comparison of the canine and human sequences. The alignment of the canine and human prepro-von Willebrand Factor amino acid sequences is shown in Figures 2A-2C. The location of the Scottish terrier vWD mutation is indicated by the "*". Potential N-glycosylation sites are shown in bold type. The known and postulated integrin binding sites are boxed. Amino acid numbers are shown on the 5

10

15

20

25

30

35

right side of the figure. The human sequence is derived from Genbank accession number X04385 (Bonthron, D. et al., *Nucleic Acids Res.* 14:7125-7128 (1986)).

Overall, 85.1% sequence identity is seen between the prepro-vWF sequences. The pro-region is slightly less conserved than the mature protein (81.4% vs. 87.5%). There were no other noteworthy percentage sequence identity differences seen in other regions of the gene, or between the known repeats contained within the gene (data not shown). Fourteen potential N-linked glycosylation sites are present in the canine sequence, all of which correspond to similar sites contained within the human sequence. The two integrin binding sites identified in the human vWF protein sequence (Lankhof, H. et al., Blood 86:1035-1042 (1995)) are conserved in the canine sequence as well (Figures 2A-2C). The 5' and 3' untranslated regions have diverged to a greater extent than the coding region (data not shown), comparable to that found between the human and bovine sequences derived for the 5' flanking region (Janel, N. et al., Gene 167:291-295 (1995)). Additional insights into the structure and function of the von Willebrand factor can be gained by comparison of the complete human sequence (Mancuso, D.J. et al., Biochemistry 30:253-269 (1989); Meyer, D. et al., Throm Haemostasis 70:99-104 (1993)) and the complete canine sequence reported here.

The sequence for most of exon 28 was determined (Mancuso, D.J. et al., *Thromb Haemost* 69:980 (1993); Porter, C.A. et al., *Mol Phylogenet Evol* 5:89-101 (1996)). All three sequences are in complete agreement, although two silent variants have been found in other breeds (Table 1, exon 28). Partial sequences of exons 40 and 41 (cDNA nucleotide numbers 6923 to 7155, from the initiation codon) were also determined as part of the development of a polymorphic simple tandem repeat genetic marker (Shibuya, H. et al., *Anim Genet* 24:122 (1994)). There is a single nucleotide sequence difference between this sequence ("T") and the sequence of the present invention, ("C") at nucleotide position 6928.

Scottish Terrier vWD mutation. Figure 3 shows nucleotide sequencing ladders for the von Willebrand's Disease mutation region for normal (clear), carrier, and affected Scottish terriers. The sequences were obtained directly from PCR products derived from genomic DNAs in exon 4. The arrowheads show the location of the C nucleotide that is deleted in the disease-causing allele. Note that in the carrier ladder each base above the point of the mutation has a doublet appearance, as predicted for deletion mutations. The factor levels reported for these animals were: Normal, 54%; Carrier, 34%; Affected, <0.1%.

As a result of the deletion, a frameshift mutation at codon 88 leads to a new stop codon 103 bases downstream. The resulting severely truncated protein of 119 amino acids does not include any of the mature von Willebrand factor region. The identity of the base in the normal allele was determined from an unaffected dog.

5

10

15

25

30

Development of a diagnostic test. A PCR primer was designed to produce a BsiE I site in the mutant allele but not in the normal allele (Figure 4). The position of the deleted nucleotide is indicated by an asterisk. The altered nucleotides in each primer are underlined. The normal and mutant allele can also be distinguished using Sau96 I. The naturally occurring Sau96 I sites are shown by double underlines. The highly conserved donor and acceptor dinucleotide splice sequences are shown in bold type.

In order to ensure that the restriction enzyme cut the amplified DNA to completion, an internal control restriction site common to both alleles was designed into the non-diagnostic primer. The test was verified by digestion of the DNA from animals that were affected, obligate carriers, or normal (based on high factor levels [greater than 100% of normal] obtained from commonly used testing labs and reported to us by the owners, and also using breeds in which Type 3 vWD has not been observed). The expected results were obtained (e.g., Figure 5). Five vWD-affected animals from a colony founded from Scottish terriers (Brinkhous, K.M. et al., Ann. New York Acad. Sci. 370:191-203 (1981)) were also shown to be homozygous for this mutation. An additional unaffected animal from this same colony was found to be clear.

It would still be possible to misinterpret the results of the test if restriction enzyme digestion was not complete, and if the rates of cleavage of the cont778rol and diagnostic sites were vastly different. The rates of cleavage of the two *Bsi*E I sites were thus examined by partially digesting the PCR products and running them on capillary electrophoresis. The rates were found to be very nearly equal (the diagnostic site is cut 12% faster than the control site).

The mutagenesis primer was also designed to produce a Sau96 I site into the normal allele but not the mutant allele. This is the reverse relationship compared to the BsiE I-dependent test, with respect to which allele is cut. Natural internal Sau96 I sites serve as digestion control sites (shown in Figure 4). The test using this enzyme produced identical genotypic results compared to the BsiE I for all animals examined (data not shown).

5

10

15

20

A possible mutation in the Doberman Pinscher gene. The complete Scottish terrier sequence was compared to the complete Doberman Pinscher sequence. Several nucleotide differences were found and were compared to the nucleotides found in the same position in the human sequence as shown in Table 1 below. Most of these changes were silent. However, of three amino acid changes, one is relatively non-conservative (F905L) and is proposed to be the mutation that causes Doberman Pinscher vWD. Other data strongly suggest that the nucleotide interchange at the end of exon 43 causes a cryptic splice site to be activated reducing the amount of normally processed mRNA, with a concomitant decrease in the amount of vWF produced.

Mendelian inheritance. One test often used to verify the correct identification of a mutant allele is its inheritance according to Mendel's law of segregation. Three pedigrees were examined in which the normal and mutant alleles were segregating, as shown in Figure 5. Exon four of the vWF gene was PCR-amplified from genomic DNA. The PCR products were examined for the presence of the normal and mutant vWF alleles by agarose gel electrophoresis after digestion with BsiE I (see Figure 5). The affected animals are homozygous for the mutant allele (229 bp; lanes 3 and 5). The other animals in this pedigree are heterozygotes (251 bp and 229 bp; lanes 1, 2, 4, and 6), including the obligate carrier parents.

Table 1 - Differences Between Scottie And Doberman
Protein And Nucleotide von Willebrand Factor Sequences
With Comparison To The Human Sequences

				Amino Acid			Codon	
	Exon	A.A.1	Human	Scottie	Doberman	Human	Scottie	Doberman
5	5' UT²	nuc - 35³	N/A ⁴	N/A	N/A	N/A	Α	G
	4	85	S	S/F.Shift ⁵	s	TCC	TCC/TC_	тсс
	5	173	M	R	к	ATG	AGG	AAG
	11	422	s	T	T	TCC	ACA	ACC
	21	898	С	С	С	TGC	TGT	TGC
10	21	905	F	F	L	тт	TTC	TTA
	24	1041	S	S	S	TCA	TCA	TCG
	24	1042	s	s	S	TCC	TCC	TCA
	28	1333	D	D	E	GAC	GAC	GAG
	28	1349	Y	ΥΥ	Y	TAT	TAT	TAC*
15	42	2381	P	L	Р	ccc	CTG	ccG
	43	2479	s	S	S	TCG	TCG	TCA
	45	2555	P	Р	P	ccc	CCC	CCG
	47	2591	Р	Р	Р	ccc	CCT	ccc
	49	2672	D	D	D	GAT	GAT	GAC
20	51	2744	E	E	E	GAG	GAG	GAA

¹Amino acid residue position

Boxed residues show amino acid differences between breeds

The alleles, as typed by both the *Bsi*E I and *Sau*96 I tests, showed no inconsistencies with Mendelian inheritance. One of these pedigrees included two affected animals, two phenotypically normal siblings, and the obligate carrier parents. The two parents were found to be heterozygous by the test, the two affected animals were found to be homozygous for the mutant allele, and the normal siblings were found to be heterozygotes.

²Untranslated region

³Nucleotide position

⁴Not Applicable

^{25 &}lt;sup>5</sup>Frameshift mutation

^{*}This site has been shown to be polymorphic in some breeds

The mature VWF protein begins in exon 18

WO 98/03683

- 12 -

Population survey for the mutation. Cheek swabs or blood samples were collected from 87 animals in order to determine the incidence of carriers in the U.S. Scottish terrier population. Although we attempted to make the sample as random as possible, these dogs were found to come from 16 pedigrees, several of which are more distantly interconnected. This is due to some ascertainment bias, based on ownership (as opposed to phenotypic ascertainment bias). In these 87 animals four affected and 15 carrier animals were found.

Discussion

10

20

30

35

These results establish that the single base deletion found in exon four of the vWF gene causes vWD in the Scottish terrier breed. The protein produced from the mutant allele is extremely short and does not include any of the mature vWF protein. Four Scottish terriers known to be affected with the disease are homozygous for the mutation. Five other mixed-breed dogs descended from Scottish terriers, and affected with vWD, are also homozygous for the mutation. No normal animals are homozygous for the mutation. Unaffected obligate carriers are always heterozygous for the mutation.

The gene frequency, as determined from the population survey, appears to be around 0.13 resulting in a heterozygote frequency of about 23% and expected frequency of affected animals of about 2%. Although the sample size is relatively small and somewhat biased, these data are in general agreement with the proteinbased surveys (Stokol, T. et al., Res Vet Sci 59:152-155 (1995); Brooks, M., Probl In Vet Med 4:636-646 (1992)), in that the allele frequency is substantial.

All data collected thus far indicate that this mutation accounts for essentially all of the von Willebrand's disease found in Scottish terriers. This result is consistent 25 with the results found for other genetic diseases, defined at the molecular level, in various domestic animals (Shuster, D.E. et al., PNAS (USA) 89:9225-9229 (1992); Rudolph, J.A. et al., Nat Genet 2:144-147 (1992); O'Brien, P.J. et al., JAVMA 203:842-851 (1993)). A likely explanation may be found in the pronounced founder effect that occurs in domestic animals, compared to most human and wild animal populations.

Published data using the protein-based factor assays have shown that, at least in several instances, obligate carriers have had factor levels that would lead to a diagnosis of "clear" of the disease allele. For example, in one study an obligate carrier had a factor level of 78% (Johnson, G.S. et al., JAVMA 176:1261-1263 (1980)). In another study, at least some of the obligate carriers had factor levels of WO 98/03683

- 13 -

65% or greater (Brinkhous, K.M. et al., Ann. New York Acad. Sci. 370:191-203 (1981)). In addition, the number of animals that fall into an equivocal range can be substantial. In one study, 19% of Scottish terriers fell in this range (50-65% of the normal vWF antigen level) (Stokol, T. et al., Res Vet Sci 59:152-155 (1995)). Thus. although the protein-based tests have been useful, the certainty of the DNA-based test described herein should relieve the necessity of repeated testing and the variability associated with the protein-based assays.

5

10

15

20

25

30

35

The mutation is present in the pre-vWF part of the molecule. This part of the molecule is processed off prior to delivery of the mature protein into the plasma. This pre-portion of the molecule is important for the assembly of the mature vWF protein (Verwiei, L. et al., EBMO J 6:2885-2890 (1987); Wise, R.J. et al., Cell 52:229-236 (1988)). With the Scottish terrier frameshift vWD mutation, neither this pre-portion nor any of the mature factor is ever produced, in keeping with the fact that no factor has ever been detected in the blood of affected dogs.

The determination of the complete canine vWF cDNA sequence will have an impact upon the development of carrier tests for other breeds and other species as well. Currently, Shetland sheepdogs and Dutch Kooikers are known to have a significant amount of Type 3 vWD (Brooks, M. et al., JAVMA 200:1123-1127 (1992); Slappendel, R.J., Vet-Q 17:S21-S22 (1995)). Type 3 vWD has occasionally be seen in other breeds as well (e.g., Johnson, G.S. et al., JAVMA 176:1261-1263 (1980)). All Type 3 vWD mutations described in humans to date have been found within the vWF gene itself. The availability of the canine sequence will make it easier to find the mutations in these breeds. In addition, at least some Type 1 mutations have been found within the human vWF gene, and thus Type 1 mutations may also be found within the vWF gene for breeds affected with that form of the disease. The availability of two divergent mammalian vWF cDNA sequences will also make it much easier to sequence the gene from other mammalian species using crossspecies PCR methods (e.g., Venta et al., Biochem. Genet. (1996) in press).

The test described herein for the detection of the mutation in Scottish terriers may be performed on small amounts of DNA from any tissue. The tissues that are the least invasive to obtain are blood and buccal cells. For maximum convenience, a cheek swab as a source of DNA is preferred.

The foregoing discussion discloses and describes merely exemplary embodiments of the present invention. One skilled in the art will readily recognize from such discussion, and from the accompanying drawings, that various changes, WO 98/03683 PCT/US97/12606

- 14 -

modifications and variations can be made therein without departing from the spirit and scope of the invention.

All patents and other publications cited herein are expressly incorporated by reference.

WO 98/03683 PCT/US97/12606

- 15 -

SEQUENCE LISTING

```
(1) GENERAL INFORMATION:
```

(i) APPLICANT: Venta, Patrick J Yuzbasiyan-Gurkan, Vilma Schall, William D Brewer, George J

- (ii) TITLE OF INVENTION: DNA ENCODING CANINE VON WILLEBRAND FACTOR AND METHODS OF USE
- (iii) NUMBER OF SEQUENCES: 2
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: Harness, Dickey & Pierce, P.L.C.
 - (B) STREET: 5445 Corporate Drive
 - (C) CITY: Troy
 - (D) STATE: Michigan
 - (E) COUNTRY: USA
 - (F) ZIP: 48098
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE:
 - (C) CLASSIFICATION:
- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Smith, DeAnn F.
 - (C) REFERENCE/DOCKET NUMBER: 211501226PCA
 - (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 248-641-1600
 - (B) TELEFAX: 248-641-0270
 - (C) TELEX: 287637
- (2) INFORMATION FOR SEQ ID NO:1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 8802 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: cDNA
 - (iii) HYPOTHETICAL: NO
 - (iv) ANTI-SENSE: NO
 - (ix) FEATURE:
 - (A) NAME/KEY: CDS
 - (B) LOCATION: 203..8641
 - (D) OTHER INFORMATION: /function= "Blood Clotting Protein" /product= "Canine von Willebrand Factor" /standard name= "vWF"

- 16 -

(x) PUBLICATION INFORMATION:

(A) AUTHORS: Venta, Patrick J.

Li, Jianping

Yuzbasiyan-Gurkan, Vilma Schall, William D. Brewer, George J.

- (B) TITLE: Von Willebrand's Disease in the Scottish Terrier is Caused by a Single Base Deletion in Exon Four of the von Willebrand Factor Gene
- (C) JOURNAL: Journal of the American Veterinary Medicine Association
- (G) DATE: 1996
- (K) RELEVANT RESIDUES IN SEQ ID NO:1: FROM 1 TO 8802

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CATTAAAAGG TCCTGGCTGG GAGCTTTTTT TTGGGACCAG CACTCCATGT TCAAGGGCAA	60
ACAGGGGCCA ATTAGGATCA ATCTTTTTC TTTCTTTTT TAAAAAAAA AATTCTTCCC	120
ACTTTGCACA CGGACAGTAG TACATACCAG TAGCTCTCTG CGAGGACGGT GATCACTAAT	180
CATTTCTCCT GCTTCGTGGC AG ATG AGT CCT ACC AGA CTT GTG AGG GTG CTG Met Ser Pro Thr Arg Leu Val Arg Val Leu 1 5 10	232
CTG GCT CTG GCC CTC ATC TTG CCA GGG AAA CTT TGT ACA AAA GGG ACT Leu Ala Leu Ala Leu Ile Leu Pro Gly Lys Leu Cys Thr Lys Gly Thr 15 20 25	280
GTT GGA AGG TCA TCG ATG GCC CGA TGT AGC CTT CTC GGA GGT GAC TTC Val Gly Arg Ser Ser Met Ala Arg Cys Ser Leu Leu Gly Gly Asp Phe 30 35 40	328
ATC AAC ACC TTT GAT GAG AGC ATG TAC AGC TTT GCG GGA GAT TGC AGT Ile Asn Thr Phe Asp Glu Ser Met Tyr Ser Phe Ala Gly Asp Cys Ser 45 50 55	376
TAC CTC CTG GCT GGG GAC TGC CAG GAA CAC TCC ATC TCA CTT ATC GGG Tyr Leu Leu Ala Gly Asp Cys Gln Glu His Ser Ile Ser Leu Ile Gly 60 65 70	424
GGT TTC CAA AAT GAC AAA AGA GTG AGC CTC TCC GTG TAT CTC GGA GAA Gly Phe Gln Asn Asp Lys Arg Val Ser Leu Ser Val Tyr Leu Gly Glu 75 80 85 90	472
TTT TTC GAC ATT CAT TTG TTT GTC AAT GGT ACC ATG CTG CAG GGG ACC Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Met Leu Gln Gly Thr 95 100 105	520
CAA AGC ATC TCC ATG CCC TAC GCC TCC AAT GGG CTG TAT CTA GAG GCC Gln Ser Ile Ser Met Pro Tyr Ala Ser Asn Gly Leu Tyr Leu Glu Ala 110 115 120	568
GAG GCT GGC TAC TAC AAG CTG TCC AGT GAG GCC TAC GGC TTT GTG GCC Glu Ala Gly Tyr Tyr Lys Leu Ser Ser Glu Ala Tyr Gly Phe Val Ala 125	616
AGA ATT GAT GGC AAT GGC AAC TTT CAA GTC CTG CTG TCA GAC AGA TAC Arg Ile Asp Gly Asn Gly Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr 140 145 150	664
TTC AAC AAG ACC TGT GGG CTG TGT GGC AAC TTT AAT ATC TTT GCT GAG Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu 155 160 165 170	712

- 17 -

GAT (GAC Asp	TTC Phe	AAG Lys	ACT Thr 175	CAA Gln	GAA Glu	GGG Gly	ACG Thr	TTG Leu 180	ACT Thr	TCG Ser	GAC Asp	CCC Pro	TAT Tyr 185	GAC Asp	760
TTT (GCC Ala	AAC Asn	TCC Ser 190	TGG Trp	GCC Ala	CTG Leu	AGC Ser	AGT Ser 195	GGG Gly	GAA Glu	CAA Gln	CGG Arg	TGC Cys 200	AAA Lys	CGG Arg	808
GTG S	TCC Ser	CCT Pro 205	CCC Pro	AGC Ser	AGC Ser	CCA Pro	TGC Cys 210	AAT Asn	GTC Val	TCC Ser	TCT Ser	GAT Asp 215	GAA Glu	GTG Val	CAG Gln	856
CAG (GTC Val 220	CTG Leu	TGG Trp	GAG Glu	CAG Gln	TGC Cys 225	CAG Gln	CTC Leu	CTG Leu	AAG Lys	AGT Ser 230	GCC Ala	TCG Ser	GTG Val	TTT Phe	904
GCC (Ala / 235	CGC Arg	TGC Cys	CAC His	CCG Pro	CTG Leu 240	GTG Val	GAC Asp	CCT Pro	GAG Glu	CCT Pro 245	TTT Phe	GTC Val	GCC Ala	CTG Leu	TGT Cys 250	952
GAA :	AGG Arg	ACT Thr	CTG Leu	TGC Cys 255	ACC Thr	TGT Cys	GTC Val	CAG Gln	GGG Gly 260	ATG Met	GAG Glu	TGC Cys	CCT Pro	TGT Cys 265	GCG Ala	1000
GTC Val	CTC Leu	CTG Leu	GAG Glu 270	TAC Tyr	GCC Ala	CGG Arg	GCC Ala	TGT Cys 275	GCC Ala	CAG Gln	CAG Gln	GGG Gly	ATT Ile 280	GTC Val	TTG Leu	1048
TAC Tyr	GGC Gly	TGG Trp 285	ACC Thr	GAC Asp	CAC His	AGC Ser	GTC Val 290	TGC Cys	CGA Arg	CCA Pro	GCA Ala	TGC Cys 295	CCT Pro	GCT Ala	GGC Gly	1096
ATG Met	GAG Glu 300	TAC Tyr	AAG Lys	GAG Glu	TGC Cys	GTG Val 305	TCC Ser	CCT Pro	TGC Cys	ACC Thr	AGA Arg 310	ACT Thr	TGC Cys	CAG Gln	AGC Ser	1144
CTT Leu 315	CAT His	GTC Val	AAA Lys	GAA Glu	GTG Val 320	TGT Cys	CAG Gln	GAG Glu	CAA Gln	TGT Cys 325	GTA Val	GAT Asp	GGC Gly	TGC Cys	AGC Ser 330	1192
TGC Cys	CCC Pro	GAG Glu	GGC Gly	CAG Gln 335	CTC Leu	CTG Leu	GAT Asp	GAA Glu	GGC Gly 340	CAC His	TGC Cys	GTG Val	GGA Gly	AGT Ser 345	GCT Ala	1240
GAG Glu	TGT Cys	TCC Ser	TGT Cys 350	GTG Val	CAT His	GCT Ala	GGG Gly	CAA Gln 355	CGG Arg	TAC Tyr	CCT Pro	CCG Pro	GGC Gly 360	GCC Ala	TCC Ser	1288
CTC Leu	TTA Leu	CAG Gln 365	GAC Asp	TGC Cys	CAC His	ACC Thr	TGC Cys 370	ATT	TGC Cys	CGA Arg	AAT Asn	AGC Ser 375	CTG Leu	TGG Trp	ATC Ile	1336
TGC Cys	AGC Ser 380	AAT Asn	GAA Glu	GAA Glu	TGC Cys	CCA Pro 385	GGC Gly	GAG Glu	TGT Cys	CTG Leu	GTC Val 390	ACA Thr	GGA Gly	CAG Gln	TCC Ser	1384
CAC His 395	TTC Phe	AAG Lys	AGC Ser	TTC Phe	GAC Asp 400	Asn	AGG Arg	TAC	TTC Phe	ACC Thr 405	Phe	AGT Ser	GGG	GTC Val	TGC Cys 410	1432
CAC His	TAC Tyr	CTG Leu	CTG Leu	GCC Ala 415	Gln	GAC Asp	TGC Cys	CAG Gln	GAC Asp 420	CAC His	ACA Thr	TTC Phe	TCT Ser	GTT Val 425	Val	1480
ATA Ile	GAG Glu	ACT Thr	GTC Val 430	Gln	TGT Cys	GCC Ala	GAT Asp	GAC Asp 435	Leu	GAT Asp	GCT Ala	GTC Val	TGC Cys 440	Thr	CGC Arg	1528

- 18 -

			GTC Val													1576
			GGA Gly													1624
			GGT Gly													1672
			TAC Tyr													1720
			GTG Val 510													1768
			AAC Asn													1816
			GCG Ala													1864
			GCC Ala													1912
			CCG Pro													1960
			TCG Ser 590													2008
			CAG Gln													2056
			CTT Leu													2104
			GTG Val													2152
			CAG Gln													2200
			CTC Leu 670	Ser					Glu							2248
			AGC Ser										Asp			2296
GGA Gly	GAT Asp 700	Cys	GTG Val	CCC Pro	AAG Lys	GCT Ala 705	Gln	TGT Cys	CCC	TGT Cys	TAC Tyr 710	Tyr	GAT Asp	GGT Gly	GAG Glu	2344

- 19 -

			CCC Pro													2392
			GGC Gly													2440
CTG Leu	CTG Leu	CCC Pro	AAC Asn 750	CCG Pro	GTG Val	CTC Leu	AGC Ser	AGC Ser 755	CCC Pro	CGG Arg	TGT Cys	CAC His	CGC Arg 760	AGC Ser	AAA Lys	2488
			TCC Ser													2536
			AGG Arg													2584
			CAG Gln													2632
			ATG Met													2680
			TTC Phe 830													2728
			TGC Cys													2776
			GTG Val													2824
			TTC Phe													2872
			GTG Val													2920
			GGG Gly 910													2968
			ACC Thr													3016
			AAT Asn													3064
			TCT Ser													3112
TCT Ser	GTG Val	GTC Val	TGG Trp	GAC Asp 975	CAC His	CGC Arg	CTG Leu	AGC Ser	ATC Ile 980	TCT Ser	GTG Val	ACC Thr	CTG Leu	AAG Lys 985	CGG Arg	3160

WO 98/03683 PCT/US97/12606

- 20 -

				AAT TTT GAT Asn Phe Asp	
	990	99		1000	-
CAG AAC AAT Gln Asn Asn 100	Asp Phe Thr	AGC AGC AG Ser Ser Se 1010	C CTC CAA er Leu Gln	ATA GAA GAA Ile Glu Glu 1015	GAC CCT 3256 Asp Pro
			l Asn Pro	CAG TGT GCC Gln Cys Ala 1030	
		Ser Ser Pr		TGC CAC AAC Cys His Asn	
				ATC CTC ACC Ile Leu Thr	
		Arg Leu Va		GAG CCA TTC Glu Pro Phe 1080	Leu Asp
	Tyr Asp Thr			ATT GGG GAC Ile Gly Asp 1095	
				GTC TGT GCC Val Cys Ala 1110	
		Arg Thr Al		TGT CCC CAG Cys Pro Gln	
				TGT GAG TGG Cys Glu Trp	
		Cys Pro Il		CAG CAC CCC Gln His Pro 1160	Glu Pro
	Pro Val Gln			CAT GCG CAC His Ala His 1175	
				TGC ATC GAC Cys Ile Asp 1190	
		Val Ala Gl		TTG GCC CCA Leu Ala Pro	
				TGC CAA ATT Cys Gln Ile	
		Thr Cys Ly		AGA GAA CCC Arg Glu Pro 1240	Gly Ser
	Pro Pro Thr			TCT ACC ACC Ser Thr Thr 1255	

- 21 -

GTG GAG GAC Val Glu Asp 1260	ACG TCG GAG Thr Ser Glu	CCG CCC C Pro Pro L 1265	CTC CAT GAC Leu His Asp	TTC CAC TGC Phe His Cys 1270	AGC AGG Ser Arg	4024
CTT CTG GAC Leu Leu Asp 1275	CTG GTT TTC Leu Val Phe 128	Leu Leu A	GAT GGC TCC Asp Gly Ser 1285	TCC AAG CTG Ser Lys Leu	TCT GAG Ser Glu 1290	4072
GAC GAG TTT Asp Glu Phe	GAA GTG CTG Glu Val Leu 1295	AAG GTC T Lys Val P	TTT GTG GTG Phe Val Val 1300	GGT ATG ATG Gly Met Met	GAG CAT Glu His 1305	4120
CTG CAC ATC Leu His Ile	TCC CAG AAG Ser Gln Lys 1310	Arg Ile A	CGC GTG GCT Arg Val Ala .315	GTG GTG GAG Val Val Glu 1320	Tyr His	4168
GAC GGC TCC Asp Gly Ser 132	His Ala Tyr	ATC GAG C Ile Glu L 1330	CTC AAG GAC Leu Lys Asp	CGG AAG CGA Arg Lys Arg 1335	CCC TCA Pro Ser	4216
GAG CTG CGG Glu Leu Arg 1340	CGC ATC ACC Arg Ile Thr	AGC CAG G Ser Gln V 1345	TG AAG TAC Val Lys Tyr	GCG GGC AGC Ala Gly Ser 1350	GAG GTG Glu Val	4264
GCC TCC ACC Ala Ser Thr 1355	AGT GAG GTO Ser Glu Val 136	Leu Lys T	TAC ACG CTG Tyr Thr Leu 136	TTC CAG ATC Phe Gln Ile	TTT GGC Phe Gly 1370	4312
AAG ATC GAC Lys Ile Asp	CGC CCG GAP Arg Pro Glu 1375	GCG TCT C Ala Ser A	CGC ATT GCC Arg Ile Ala 1380	CTG CTC CTG Leu Leu Leu	ATG GCC Met Ala 1385	4360
AGC CAG GAG Ser Gln Glu	CCC TCA AGG Pro Ser Arg 1390	Leu Ala A	CGG AAT TTG Arg Asn Leu 1395	GTC CGC TAT Val Arg Tyr 1400	Val Gln	4408
GGC CTG AAG Gly Leu Lys 140	Lys Lys Lys	GTC ATT G Val Ile V 1410	GTC ATC CCT Val Ile Pro	GTG GGC ATC Val Gly Ile 1415	GGG CCC Gly Pro	4456
CAC GCC AGC His Ala Ser 1420	CTT AAG CAG Leu Lys Glr	ATC CAC C Ile His L 1425	CTC ATA GAG Leu Ile Glu	AAG CAG GCC Lys Gln Ala 1430	CCT GAG Pro Glu	4504
AAC AAG GCC Asn Lys Ala 1435	TTT GTG TTC Phe Val Phe 144	Ser Gly V	STG GAT GAG /al Asp Glu 144:	TTG GAG CAG Leu Glu Gln 5	CGA AGG Arg Arg 1450	4552
				CCC GAA GCA Pro Glu Ala		4600
		Met Ala G		GTG GGT TCG Val Gly Ser 148	Glu Leu	4648
TTG GGG GTT Leu Gly Val 148	Ser Ser Pro	GGA CCC A Gly Pro L 1490	AAA AGG AAC Lys Arg Asn	TCC ATG GTC Ser Met Val 1495	CTG GAT Leu Asp	4696
GTG GTG TTT Val Val Phe 1500	GTC CTG GAM	A GGG TCA G 1 Gly Ser A 1505	GAC AAA ATT Asp Lys Ile	GGT GAG GCC Gly Glu Ala 1510	AAC TTT Asn Phe	4744
AAC AAA AGC Asn Lys Ser 1515	AGG GAG TTO Arg Glu Pho 152	e Met Glu G	GAG GTG ATT Glu Val Ile 152	CAG CGG ATG Gln Arg Met 5	GAC GTG Asp Val 1530	4792

- 22 -

GGC CAG GAC AGG A Gly Gln Asp Arg I		Tyr Ser Tyr M	
ACC GTG GAG TAC A Thr Val Glu Tyr T 1550			
CAG CAG GTG CGG G Gln Gln Val Arg A 1565	Arg Gly Gly A		
GGA CTG GCC CTG C Gly Leu Ala Leu G 1580	Glu His Ser B		
GGG GAC CGG GAG C Gly Asp Arg Glu G 1595			
CCC GCT TCT GAT G Pro Ala Ser Asp G		Asp Ile Gln V	
CCC ATC GGG GTG G Pro Ile Gly Val G 1630			
GGC TGG CCC AAT G Gly Trp Pro Asn A 1645	Ile His Asp B		
CGA GAG GCT CCT G Arg Glu Ala Pro A 1660	Gln Arg Cys (
CTG CAG ATC CCC A Leu Gln Ile Pro T 1675			
GAT GTG GTC CTC C Asp Val Val Leu L		Ile Pro Ala S	
TTT GAT GAA ATG A Phe Asp Glu Met I 1710			
ATA GGG CCC CGG C Ile Gly Pro Arg I 1725	Ser Val Leu (
ACC ACT ATC GAT G Thr Thr Ile Asp V 1740	Val Ala Tyr (
CTG AGC CTT GTG G Leu Ser Leu Val A 1755			
GGG GAT GCT TTG A Gly Asp Ala Leu S		Thr Ser Glu \	
GGT GCC AGG CCC C Gly Ala Arg Pro C 1790			

PCT/US97/12606 WO 98/03683

- 23 -

GTC TCC GTG GAT TCA GTG GAT GCT GCA GCC GAG GCC GCC AGA TCC AAC Val Ser Val Asp Ser Val Asp Ala Ala Ala Glu Ala Ala Arg Ser Asn 1805 1810 1815	5656
CGA GTG ACA GTG TTC CCC ATT GGA ATC GGG GAT CGG TAC AGT GAG GCC Arg Val Thr Val Phe Pro Ile Gly Ile Gly Asp Arg Tyr Ser Glu Ala 1820 1825 1830	5704
CAG CTG AGC AGC TTG GCA GGC CCA AAG GCT GGC TCC AAT ATG GTA AGG Gln Leu Ser Ser Leu Ala Gly Pro Lys Ala Gly Ser Asn Met Val Arg 1835 1840 1845 1850	5752
CTC CAG CGA ATT GAA GAC CTC CCC ACC GTG GCC ACC CTG GGA AAT TCC Leu Gln Arg Ile Glu Asp Leu Pro Thr Val Ala Thr Leu Gly Asn Ser 1855 1860 1865	5800
TTC TTC CAC AAG CTG TGC TCT GGG TTT GAT AGA GTT TGC GTG GAT GAG Phe Phe His Lys Leu Cys Ser Gly Phe Asp Arg Val Cys Val Asp Glu 1870 1875 1880	5848
GAT GGG AAT GAG AAG AGG CCC GGG GAT GTC TGG ACC TTG CCA GAC CAG Asp Gly Asn Glu Lys Arg Pro Gly Asp Val Trp Thr Leu Pro Asp Gln 1885 1890 1895	5896
TGC CAC ACA GTG ACT TGC CTG CCA GAT GGC CAG ACC TTG CTG AAG AGT Cys His Thr Val Thr Cys Leu Pro Asp Gly Gln Thr Leu Leu Lys Ser 1900 1905 1910	5944
CAT CGG GTC AAC TGT GAC CGG GGG CCA AGG CCT TCG TGC CCC AAT GGC His Arg Val Asn Cys Asp Arg Gly Pro Arg Pro Ser Cys Pro Asn Gly 1915 1920 1925 1930	5992
CAG CCC CCT CTC AGG GTA GAG GAG ACC TGT GGC TGC CGC TGG ACC TGT Gln Pro Pro Leu Arg Val Glu Glu Thr Cys Gly Cys Arg Trp Thr Cys 1935 1940 1945	6040
CCC TGT GTG TGC ATG GGC AGC TCT ACC CGG CAC ATC GTG ACC TTT GAT Pro Cys Val Cys Met Gly Ser Ser Thr Arg His Ile Val Thr Phe Asp 1950 1955 1960	6088
GGG CAG AAT TTC AAG CTG ACT GGC AGC TGT TCG TAT GTC CTA TTT CAA Gly Gln Asn Phe Lys Leu Thr Gly Ser Cys Ser Tyr Val Leu Phe Gln 1965 1970 1975	6136
AAC AAG GAG CAG GAC CTG GAG GTG ATT CTC CAG AAT GGT GCC TGC AGC Asn Lys Glu Gln Asp Leu Glu Val Ile Leu Gln Asn Gly Ala Cys Ser 1980 1985 1990	6184
CCT GGG GCG AAG GAG ACC TGC ATG AAA TCC ATT GAG GTG AAG CAT GAC Pro Gly Ala Lys Glu Thr Cys Met Lys Ser Ile Glu Val Lys His Asp 1995 2000 2005 2010	6232
GGC CTC TCA GTT GAG CTC CAC AGT GAC ATG CAG ATG ACA GTG AAT GGG Gly Leu Ser Val Glu Leu His Ser Asp Met Gln Met Thr Val Asn Gly 2015 2020 2025	6280
AGA CTA GTC TCC ATC CCA TAT GTG GGT GGA GAC ATG GAA GTC AAT GTT Arg Leu Val Ser Ile Pro Tyr Val Gly Gly Asp Met Glu Val Asn Val 2030 2035 2040	6328
TAT GGG ACC ATC ATG TAT GAG GTC AGA TTC AAC CAT CTT GGC CAC ATC Tyr Gly Thr Ile Met Tyr Glu Val Arg Phe Asn His Leu Gly His Ile 2045 2050 2055	6376
TTC ACA TTC ACC CCC CAA AAC AAT GAG TTC CAG CTG CAG CTC AGC CCC Phe Thr Phe Thr Pro Gln Asn Asn Glu Phe Gln Leu Gln Leu Ser Pro 2060 2065 2070	6424

AGG ACC TTT GCT Arg Thr Phe Ala 2075	TCG AAG ACA T Ser Lys Thr T 2080	TAT GGT CTC TGT Tyr Gly Leu Cys 208	Gly Ile Cys	GAT GAG 6472 Asp Glu 2090
AAC GGA GCC AAT Asn Gly Ala Asn	GAC TTC ATT C Asp Phe Ile L 2095	TG AGG GAT GGG eu Arg Asp Gly 2100	ACA GTC ACC Thr Val Thr	ACA GAC 6520 Thr Asp 2105
TGG AAG GCA CTC Trp Lys Ala Leu 2110	Ile Gln Glu T	GG ACC GTA CAC rp Thr Val Glr 2115	G CAG CTT GGG Gln Leu Gly 2120	Lys Thr
TCC CAG CCT GTC Ser Gln Pro Val 2125	His Glu Glu G	AG TGT CCT GTO ln Cys Pro Val	TCC GAA TTC Ser Glu Phe 2135	TTC CAC 6616 Phe His
TGC CAG GTC CTC Cys Gln Val Leu 2140	CTC TCA GAA T Leu Ser Glu L 2145	TG TTT GCC GAG eu Phe Ala Glu	TGC CAC AAG Cys His Lys 2150	GTC CTC 6664 Val Leu
GCT CCA GCC ACC Ala Pro Ala Thr 2155	TTT TAT GCC A Phe Tyr Ala M 2160	TG TGC CAG CCC let Cys Gln Pro 216	Asp Ser Cys	CAC CCG 6712 His Pro 2170
AAG AAA GTG TGT Lys Lys Val Cys	GAG GCG ATT G Glu Ala Ile A 2175	CC TTG TAT GCC la Leu Tyr Ala 2180	C CAC CTC TGT His Leu Cys	CGG ACC 6760 Arg Thr 2185
AAA GGG GTC TGT Lys Gly Val Cys 2190	Val Asp Trp A	GG AGG GCC AAT rg Arg Ala Asr 2195	TTC TGT GCT Phe Cys Ala 2200	Met Ser
TGT CCA CCA TCC Cys Pro Pro Ser 2205	Leu Val Tyr A			
CTC TGT GAA GGC Leu Cys Glu Gly 2220				
TGC TTC TGC CCC Cys Phe Cys Pro 2235			Gly Ser Cys	
GAG GAG GCC TGT Glu Glu Ala Cys				
TTC CTG GAA ACC Phe Leu Glu Thr 2270	Trp Val Pro A	CC CAC CAG CCT la His Gln Pro 2275	TGC CAG ATC Cys Gln Ile 2280	Cys Thr
TGC CTC AGT GGG Cys Leu Ser Gly 2285	Arg Lys Val A			
GCC AAA GCT CCC Ala Lys Ala Pro 2300	ACC TGT GGC C Thr Cys Gly P 2305	CG TGT GAA GTO	G GCC CGC CTC Ala Arg Leu 2310	CGC CAG 7144 Arg Gln
AAC GCA GTG CAG Asn Ala Val Gln 2315			Val Cys Asp	
AGC TGT GAC CTG Ser Cys Asp Leu				

- 25 -

		Glu Cys Ar		TTC ACC TGT (Phe Thr Cys) 2360	
	Glu Cys Arg			TCT TGT CCC (Ser Cys Pro 1 2375	
			ln Cys Cys I	GAT GAG TAT (Asp Glu Tyr (2390	
		Ser Thr Va		CCG CTT GGG ? Pro Leu Gly ?	
				ACA ACA ACC T Thr Thr Thr (
Pro Asp Lys		His Arg Gl		TAC CCT GTG (Tyr Pro Val (2440	
	Glu Ala Cys			ACG GAC TTG (Thr Asp Leu (2455	
			n Cys Ser C	CAG AAG CCC 1 Gln Lys Pro (2470	
		Phe Thr Ty		CAT GAA GGC (His Glu Gly (
				GTC ACT GGT T Val Thr Gly S	
CGG GGC GAC Arg Gly Asp		His Trp Ly			
	Asn Pro Cys			GTC CGA GTG A Val Arg Val I 2535	
			l Ser Cys E	CCC CAG CTG A Pro Gln Leu A 2550	
		Phe Gln Le		AAG ACC TCA G Lys Thr Ser G	
				TGC TTG CTC A Cys Leu Leu A 2	
Thr Ile Ile		Lys Ser Le		GAT GTG TGT A Asp Val Cys T 2600	
TGC CGC TGC Cys Arg Cys 2605	Thr Val Pro	GTG GGA GT Val Gly Va 2610	C ATC TCT G	GGA TTC AAG C Gly Phe Lys I 2615	TTG GAG 8056 Leu Glu

- 26 -

GGC Gly	AGG Arg 2620	Lys	ACC Thr	ACC Thr	TGT Cys	GAG Glu 2625	Ala	TGC Cys	CCC Pro	CTG Leu	GGT Gly 2630	Tyr	AAG Lys	GAA Glu	GAG Glu	8104
AAG Lys 2635	Asn	CAA Gln	GGT Gly	GAA Glu	TGC Cys 2640	Cys	GGG Gly	AGA Arg	TGT Cys	CTG Leu 2645	Pro	ATA Ile	GCT Ala	TGC Cys	ACC Thr 2650	8152
ATT Ile	CAG Gln	CTA Leu	AGA Arg	GGA Gly 265	Gly	CAG Gln	ATC Ile	ATG Met	ACA Thr 2660	Leu	AAG Lys	CGT Arg	GAT Asp	GAG Glu 2669	Thr	8200
ATC Ile	CAG Gln	GAT Asp	GGC Gly 2670	TGT Cys)	GAC Asp	AGT Ser	CAC His	TTC Phe 2675	Cys	AAG Lys	GTC Val	AAT Asn	GAA Glu 2680	Arg	GGA Gly	8248
GAG Glu	TAC Tyr	ATC Ile 2685	Trp	GAG Glu	AAG Lys	AGA Arg	GTC Val 2690	Thr	GGT Gly	TGC Cys	CCA Pro	CCT Pro 2695	Phe	GAT Asp	GAA Glu	8296
		Cys		GCT Ala			Gly					Ile				8344
	Cys			TGT Cys		Glu					Asp					8392
				AAA Lys 2735	Val					Ser					Asp	8440
				GAG Glu)					Ser					Ser		8488
CAC His	ATG Met	GAG Glu 2765	Asp	GTG Val	CAG Gln	GAC Asp	CAG Gln 2770	Cys	TCC Ser	TGC Cys	TGC Cys	TCG Ser 2775	Pro	ACC Thr	CAG Gln	8536
ACG Thr	GAG Glu 2780	Pro	ATG Met	CAG Gln	GTG Val	GCC Ala 2785	Leu	CGC Arg	TGC Cys	ACC Thr	AAT Asn 2790	Gly	TCC Ser	CTC Leu	ATC Ile	8584
TAC Tyr 2795	His	GAG Glu	ATC Ile	CTC Leu	AAT Asn 2800	Ala	ATC Ile	GAA Glu	TGC Cys	AGG Arg 2805	Cys	TCC Ser	CCC Pro	AGG Arg	AAG Lys 2810	8632
	AGC Ser		TGAG	GCC#	CT G	CCTC	GAT	SC TA	CTGI	CGCC	TGC	CTT	CCC			8681
GACC	TCAC	TG G	SACTO	GCC#	G AC	TGCI	GCTC	AG1	ссто	CTC	AGTO	CTC	TC C	TGCI	CTGCT	8741
CTTC	TGCI	TC C	TGAI	CCCZ	AC AA	LAAT	GGTC	CAA :	CTTI	CAC	CTTC	LAAA	AA A	LAAA	AAAAA	8801
A																8802

(2) INFORMATION FOR SEQ ID NO:2:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 2813 amino acids
 (B) TYPE: amino acid
 (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Met Ser Pro Thr Arg Leu Val Arg Val Leu Leu Ala Leu Ala Leu Ile Leu Pro Gly Lys Leu Cys Thr Lys Gly Thr Val Gly Arg Ser Ser Met Ala Arg Cys Ser Leu Leu Gly Gly Asp Phe Ile Asn Thr Phe Asp Glu Ser Met Tyr Ser Phe Ala Gly Asp Cys Ser Tyr Leu Leu Ala Gly Asp Cys Gln Glu His Ser Ile Ser Leu Ile Gly Gly Phe Gln Asn Asp Lys Arg Val Ser Leu Ser Val Tyr Leu Gly Glu Phe Phe Asp Ile His Leu Phe Val Asn Gly Thr Met Leu Gln Gly Thr Gln Ser Ile Ser Met Pro Tyr Ala Ser Asn Gly Leu Tyr Leu Glu Ala Glu Ala Gly Tyr Tyr Lys Leu Ser Ser Glu Ala Tyr Gly Phe Val Ala Arg Ile Asp Gly Asn Gly Asn Phe Gln Val Leu Leu Ser Asp Arg Tyr Phe Asn Lys Thr Cys Gly Leu Cys Gly Asn Phe Asn Ile Phe Ala Glu Asp Asp Phe Lys Thr Gln Glu Gly Thr Leu Thr Ser Asp Pro Tyr Asp Phe Ala Asn Ser Trp Ala 180 Leu Ser Ser Gly Glu Gln Arg Cys Lys Arg Val Ser Pro Pro Ser Ser Pro Cys Asn Val Ser Ser Asp Glu Val Gln Gln Val Leu Trp Glu Gln Cys Gln Leu Leu Lys Ser Ala Ser Val Phe Ala Arg Cys His Pro Leu Val Asp Pro Glu Pro Phe Val Ala Leu Cys Glu Arg Thr Leu Cys Thr Cys Val Gln Gly Met Glu Cys Pro Cys Ala Val Leu Leu Glu Tyr Ala Arg Ala Cys Ala Gln Gln Gly Ile Val Leu Tyr Gly Trp Thr Asp His Ser Val Cys Arg Pro Ala Cys Pro Ala Gly Met Glu Tyr Lys Glu Cys Val Ser Pro Cys Thr Arg Thr Cys Gln Ser Leu His Val Lys Glu Val Cys Gln Glu Gln Cys Val Asp Gly Cys Ser Cys Pro Glu Gly Gln Leu 330 Leu Asp Glu Gly His Cys Val Gly Ser Ala Glu Cys Ser Cys Val His - 28 -

PCT/US97/12606

Ala Gly Gln Arg Tyr Pro Pro Gly Ala Ser Leu Leu Gln Asp Cys His Thr Cys Ile Cys Arg Asn Ser Leu Trp Ile Cys Ser Asn Glu Glu Cys 375 Pro Gly Glu Cys Leu Val Thr Gly Gln Ser His Phe Lys Ser Phe Asp Asn Arg Tyr Phe Thr Phe Ser Gly Val Cys His Tyr Leu Leu Ala Gln Asp Cys Gln Asp His Thr Phe Ser Val Val Ile Glu Thr Val Gln Cys Ala Asp Asp Leu Asp Ala Val Cys Thr Arg Ser Val Thr Val Arg Leu 440 Pro Gly His His Asn Ser Leu Val Lys Leu Lys Asn Gly Gly Val Ser Met Asp Gly Gln Asp Ile Gln Ile Pro Leu Leu Gln Gly Asp Leu 470 Arg Ile Gln His Thr Val Met Ala Ser Val Arg Leu Ser Tyr Gly Glu Asp Leu Gln Met Asp Ser Asp Val Arg Gly Arg Leu Leu Val Thr Leu 505 Tyr Pro Ala Tyr Ala Gly Lys Thr Cys Gly Arg Gly Gly Asn Tyr Asn Gly Asn Arg Gly Asp Asp Phe Val Thr Pro Ala Gly Leu Ala Glu Pro 535 Leu Val Glu Asp Phe Gly Asn Ala Trp Lys Leu Leu Gly Ala Cys Glu Asn Leu Gln Lys Gln His Arg Asp Pro Cys Ser Leu Asn Pro Arg Gln Ala Arg Phe Ala Glu Glu Ala Cys Ala Leu Leu Thr Ser Ser Lys Phe Glu Pro Cys His Arg Ala Val Gly Pro Gln Pro Tyr Val Gln Asn Cys Leu Tyr Asp Val Cys Ser Cys Ser Asp Gly Arg Asp Cys Leu Cys Ser Ala Val Ala Asn Tyr Ala Ala Ala Val Ala Arg Arg Gly Val His Ile 630 Ala Trp Arg Glu Pro Gly Phe Cys Ala Leu Ser Cys Pro Gln Gly Gln Val Tyr Leu Gln Cys Gly Thr Pro Cys Asn Met Thr Cys Leu Ser Leu 665 Ser Tyr Pro Glu Glu Asp Cys Asn Glu Val Cys Leu Glu Ser Cys Phe Ser Pro Pro Gly Leu Tyr Leu Asp Glu Arg Gly Asp Cys Val Pro Lys WO 98/03683 PCT/US97/12606

~ 29 -

Ala Gln Cys Pro Cys Tyr Tyr Asp Gly Glu Ile Phe Gln Pro Glu Asp Ile Phe Ser Asp His His Thr Met Cys Tyr Cys Glu Asp Gly Phe Met His Cys Thr Thr Ser Gly Gly Leu Gly Ser Leu Leu Pro Asn Pro Val Leu Ser Ser Pro Arg Cys His Arg Ser Lys Arg Ser Leu Ser Cys Arg Pro Pro Met Val Lys Leu Val Cys Pro Ala Asp Asn Pro Arg Ala Glu Gly Leu Glu Cys Ala Lys Thr Cys Gln Asn Tyr Asp Leu Gln Cys Met Ser Thr Gly Cys Val Ser Gly Cys Leu Cys Pro Gln Gly Met Val Arg His Glu Asn Arg Cys Val Ala Leu Glu Arg Cys Pro Cys Phe His Gln 825 Gly Gln Glu Tyr Ala Pro Gly Glu Thr Val Lys Ile Asp Cys Asn Thr Cys Val Cys Arg Asp Arg Lys Trp Thr Cys Thr Asp His Val Cys Asp Ala Thr Cys Ser Ala Ile Gly Met Ala His Tyr Leu Thr Phe Asp Gly Leu Lys Tyr Leu Phe Pro Gly Glu Cys Gln Tyr Val Leu Val Gln Asp Tyr Cys Gly Ser Asn Pro Gly Thr Leu Arg Ile Leu Val Gly Asn Glu Gly Cys Ser Tyr Pro Ser Val Lys Cys Lys Lys Arg Val Thr Ile Leu Val Glu Gly Gly Glu Ile Glu Leu Phe Asp Gly Glu Val Asn Val Lys 935 Lys Pro Met Lys Asp Glu Thr His Phe Glu Val Val Glu Ser Gly Gln Tyr Val Ile Leu Leu Gly Lys Ala Leu Ser Val Val Trp Asp His Arg Leu Ser Ile Ser Val Thr Leu Lys Arg Thr Tyr Gln Glu Gln Val Cys Gly Leu Cys Gly Asn Phe Asp Gly Ile Gln Asn Asn Asp Phe Thr Ser Ser Ser Leu Gln Ile Glu Glu Asp Pro Val Asp Phe Gly Asn Ser Trp Lys Val Asn Pro Gln Cys Ala Asp Thr Lys Lys Val Pro Leu Asp 1030 1035 Ser Ser Pro Ala Val Cys His Asn Asn Ile Met Lys Gln Thr Met Val 1050 1045

PCT/US97/12606 WO 98/03683

- 30 -

- Asp Ser Ser Cys Arg Ile Leu Thr Ser Asp Ile Phe Gln Asp Cys Asn
- Arg Leu Val Asp Pro Glu Pro Phe Leu Asp Ile Cys Ile Tyr Asp Thr 1080
- Cys Ser Cys Glu Ser Ile Gly Asp Cys Thr Cys Phe Cys Asp Thr Ile 1095
- Ala Ala Tyr Ala His Val Cys Ala Gln His Gly Lys Val Val Ala Trp 1115
- Arg Thr Ala Thr Phe Cys Pro Gln Asn Cys Glu Glu Arg Asn Leu His 1130
- Glu Asn Gly Tyr Glu Cys Glu Trp Arg Tyr Asn Ser Cys Ala Pro Ala 1145
- Cys Pro Ile Thr Cys Gln His Pro Glu Pro Leu Ala Cys Pro Val Gln
- Cys Val Glu Gly Cys His Ala His Cys Pro Pro Gly Lys Ile Leu Asp 1175
- Glu Leu Leu Gln Thr Cys Ile Asp Pro Glu Asp Cys Pro Val Cys Glu
- Val Ala Gly Arg Arg Leu Ala Pro Gly Lys Lys Ile Ile Leu Asn Pro 1205 1210
- Ser Asp Pro Glu His Cys Gln Ile Cys Asn Cys Asp Gly Val Asn Phe 1225 1220
- Thr Cys Lys Ala Cys Arg Glu Pro Gly Ser Val Val Pro Pro Thr 1240
- Asp Gly Pro Ile Gly Ser Thr Thr Ser Tyr Val Glu Asp Thr Ser Glu 1255
- Pro Pro Leu His Asp Phe His Cys Ser Arg Leu Leu Asp Leu Val Phe 1270 1275 1265
- Leu Leu Asp Gly Ser Ser Lys Leu Ser Glu Asp Glu Phe Glu Val Leu 1290
- Lys Val Phe Val Val Gly Met Met Glu His Leu His Ile Ser Gln Lys 1300 1305
- Arg Ile Arg Val Ala Val Val Glu Tyr His Asp Gly Ser His Ala Tyr
- Ile Glu Leu Lys Asp Arg Lys Arg Pro Ser Glu Leu Arg Arg Ile Thr
- Ser Gln Val Lys Tyr Ala Gly Ser Glu Val Ala Ser Thr Ser Glu Val 1345
- Leu Lys Tyr Thr Leu Phe Gln Ile Phe Gly Lys Ile Asp Arg Pro Glu 1370
- Ala Ser Arg Ile Ala Leu Leu Met Ala Ser Gln Glu Pro Ser Arg 1380 1385
- Leu Ala Arg Asn Leu Val Arg Tyr Val Gln Gly Leu Lys Lys Lys 1395 1400 1405

- Val Ile Val Ile Pro Val Gly Ile Gly Pro His Ala Ser Leu Lys Gln 1410
- Ile His Leu Ile Glu Lys Gln Ala Pro Glu Asn Lys Ala Phe Val Phe 1435
- Ser Gly Val Asp Glu Leu Glu Gln Arg Arg Asp Glu Ile Ile Asn Tyr
- Leu Cys Asp Leu Ala Pro Glu Ala Pro Ala Pro Thr Gln His Pro Pro 1465
- Met Ala Gln Val Thr Val Gly Ser Glu Leu Leu Gly Val Ser Ser Pro
- Gly Pro Lys Arg Asn Ser Met Val Leu Asp Val Val Phe Val Leu Glu 1495 1500
- Gly Ser Asp Lys Ile Gly Glu Ala Asn Phe Asn Lys Ser Arg Glu Phe 1515
- Met Glu Glu Val Ile Gln Arg Met Asp Val Gly Gln Asp Arg Ile His
- Val Thr Val Leu Gln Tyr Ser Tyr Met Val Thr Val Glu Tyr Thr Phe
- Ser Glu Ala Gln Ser Lys Gly Glu Val Leu Gln Gln Val Arg Asp Ile 1560
- Arg Tyr Arg Gly Gly Asn Arg Thr Asn Thr Gly Leu Ala Leu Gln Tyr
- Leu Ser Glu His Ser Phe Ser Val Ser Gln Gly Asp Arg Glu Gln Val 1590 1595
- Pro Asn Leu Val Tyr Met Val Thr Gly Asn Pro Ala Ser Asp Glu Ile
- Lys Arg Met Pro Gly Asp Ile Gln Val Val Pro Ile Gly Val Gly Pro 1625
- His Ala Asn Val Gln Glu Leu Glu Lys Ile Gly Trp Pro Asn Ala Pro
- Ile Leu Ile His Asp Phe Glu Met Leu Pro Arg Glu Ala Pro Asp Leu 1655
- Val Leu Gln Arg Cys Cys Ser Gly Glu Gly Leu Gln Ile Pro Thr Leu 1670 1675
- Ser Pro Thr Pro Asp Cys Ser Gln Pro Leu Asp Val Val Leu Leu Leu 1685 1690
- Asp Gly Ser Ser Ser Ile Pro Ala Ser Tyr Phe Asp Glu Met Lys Ser
- Phe Thr Lys Ala Phe Ile Ser Arg Ala Asn Ile Gly Pro Arg Leu Thr 1720 1725 1715
- Gln Val Ser Val Leu Gln Tyr Gly Ser Ile Thr Thr Ile Asp Val Pro 1735 1740
- Trp Asn Val Ala Tyr Glu Lys Val His Leu Leu Ser Leu Val Asp Leu 1750

PCT/US97/12606 WO 98/03683

- 32 -

Met Gln Gln Glu Gly Gly Pro Ser Glu Ile Gly Asp Ala Leu Ser Phe 1765 1770

Ala Val Arg Tyr Val Thr Ser Glu Val His Gly Ala Arg Pro Gly Ala 1785

Ser Lys Ala Val Val Ile Leu Val Thr Asp Val Ser Val Asp Ser Val 1800

Asp Ala Ala Ala Glu Ala Ala Arg Ser Asn Arg Val Thr Val Phe Pro

Ile Gly Ile Gly Asp Arg Tyr Ser Glu Ala Gln Leu Ser Ser Leu Ala 1835

Gly Pro Lys Ala Gly Ser Asn Met Val Arg Leu Gln Arg Ile Glu Asp 1845 1850

Leu Pro Thr Val Ala Thr Leu Gly Asn Ser Phe Phe His Lys Leu Cys 1865

Ser Gly Phe Asp Arg Val Cys Val Asp Glu Asp Gly Asn Glu Lys Arg

Pro Gly Asp Val Trp Thr Leu Pro Asp Gln Cys His Thr Val Thr Cys 1890

Leu Pro Asp Gly Gln Thr Leu Leu Lys Ser His Arg Val Asn Cys Asp 1910 1915

Arg Gly Pro Arg Pro Ser Cys Pro Asn Gly Gln Pro Pro Leu Arg Val 1930

Glu Glu Thr Cys Gly Cys Arg Trp Thr Cys Pro Cys Val Cys Met Gly 1940 1945

Ser Ser Thr Arg His Ile Val Thr Phe Asp Gly Gln Asn Phe Lys Leu

Thr Gly Ser Cys Ser Tyr Val Leu Phe Gln Asn Lys Glu Gln Asp Leu 1975

Glu Val Ile Leu Gln Asn Gly Ala Cys Ser Pro Gly Ala Lys Glu Thr 1995

Cys Met Lys Ser Ile Glu Val Lys His Asp Gly Leu Ser Val Glu Leu 2005 2010

His Ser Asp Met Gln Met Thr Val Asn Gly Arg Leu Val Ser Ile Pro 2020 2025

Tyr Val Gly Gly Asp Met Glu Val Asn Val Tyr Gly Thr Ile Met Tyr 2040

Glu Val Arg Phe Asn His Leu Gly His Ile Phe Thr Phe Thr Pro Gln

Asn Asn Glu Phe Gln Leu Gln Leu Ser Pro Arg Thr Phe Ala Ser Lys 2065 2070 2075

Thr Tyr Gly Leu Cys Gly Ile Cys Asp Glu Asn Gly Ala Asn Asp Phe 2090

Ile Leu Arg Asp Gly Thr Val Thr Thr Asp Trp Lys Ala Leu Ile Gln 2105 2100

WO 98/03683

- 33 -

- Glu Trp Thr Val Gln Gln Leu Gly Lys Thr Ser Gln Pro Val His Glu 2120 2115
- Glu Gln Cys Pro Val Ser Glu Phe Phe His Cys Gln Val Leu Leu Ser
- Glu Leu Phe Ala Glu Cys His Lys Val Leu Ala Pro Ala Thr Phe Tyr 2155 2150
- Ala Met Cys Gln Pro Asp Ser Cys His Pro Lys Lys Val Cys Glu Ala
- Ile Ala Leu Tyr Ala His Leu Cys Arg Thr Lys Gly Val Cys Val Asp 2185
- Trp Arg Arg Ala Asn Phe Cys Ala Met Ser Cys Pro Pro Ser Leu Val 2200
- Tyr Asn His Cys Glu His Gly Cys Pro Arg Leu Cys Glu Gly Asn Thr 2215
- Ser Ser Cys Gly Asp Gln Pro Ser Glu Gly Cys Phe Cys Pro Pro Asn
- Gln Val Met Leu Glu Gly Ser Cys Val Pro Glu Glu Ala Cys Thr Gln 2245
- Cys Ile Ser Glu Asp Gly Val Arg His Gln Phe Leu Glu Thr Trp Val 2265
- Pro Ala His Gln Pro Cys Gln Ile Cys Thr Cys Leu Ser Gly Arg Lys 2280
- Val Asn Cys Thr Leu Gln Pro Cys Pro Thr Ala Lys Ala Pro Thr Cys 2295
- Gly Pro Cys Glu Val Ala Arg Leu Arg Gln Asn Ala Val Gln Cys Cys
- Pro Glu Tyr Glu Cys Val Cys Asp Leu Val Ser Cys Asp Leu Pro Pro
- Val Pro Pro Cys Glu Asp Gly Leu Gln Met Thr Leu Thr Asn Pro Gly 2345
- Glu Cys Arg Pro Asn Phe Thr Cys Ala Cys Arg Lys Asp Glu Cys Arg 2360
- Arg Glu Ser Pro Pro Ser Cys Pro Pro His Arg Thr Pro Ala Leu Arg 2375 2370
- Lys Thr Gln Cys Cys Asp Glu Tyr Glu Cys Ala Cys Asn Cys Val Asn 2395
- Ser Thr Val Ser Cys Pro Leu Gly Tyr Leu Ala Ser Ala Val Thr Asn 2410
- Asp Cys Gly Cys Thr Thr Thr Thr Cys Phe Pro Asp Lys Val Cys Val 2420 2425
- His Arg Gly Thr Ile Tyr Pro Val Gly Gln Phe Trp Glu Glu Ala Cys 2440
- Asp Val Cys Thr Cys Thr Asp Leu Glu Asp Ser Val Met Gly Leu Arg 2450 2455

WO 98/03683 PCT/US97/12606

- 34 -

Val Ala Gln Cys Ser Gln Lys Pro Cys Glu Asp Asn Cys Leu Ser Gly 2465 2470 2475 2486

- Phe Thr Tyr Val Leu His Glu Gly Glu Cys Cys Gly Arg Cys Leu Pro 2485 2490 2495
- Ser Ala Cys Glu Val Val Thr Gly Ser Pro Arg Gly Asp Ala Gln Ser 2500 2510
- His Trp Lys Asn Val Gly Ser His Trp Ala Ser Pro Asp Asn Pro Cys 2515 2520 2525
- Leu Ile Asn Glu Cys Val Arg Val Lys Glu Glu Val Phe Val Gln Gln 2530 2535 2540
- Arg Asn Val Ser Cys Pro Gln Leu Asn Val Pro Thr Cys Pro Thr Gly 2545 2550 2555 2560
- Phe Gln Leu Ser Cys Lys Thr Ser Glu Cys Cys Pro Thr Cys His Cys 2565 2570 2575
- Glu Pro Leu Glu Ala Cys Leu Leu Asn Gly Thr Ile Ile Gly Pro Gly 2580 2585 2590
- Lys Ser Leu Met Ile Asp Val Cys Thr Thr Cys Arg Cys Thr Val Pro 2595 2600 2605
- Val Gly Val Ile Ser Gly Phe Lys Leu Glu Gly Arg Lys Thr Thr Cys 2610 2620
- Glu Ala Cys Pro Leu Gly Tyr Lys Glu Glu Lys Asn Gln Gly Glu Cys 2625 2630 2635 2640
- Cys Gly Arg Cys Leu Pro Ile Ala Cys Thr Ile Gln Leu Arg Gly Gly 2645 2650 2655
- Gln Ile Met Thr Leu Lys Arg Asp Glu Thr Ile Gln Asp Gly Cys Asp 2660 2665 2670
- Ser His Phe Cys Lys Val Asn Glu Arg Gly Glu Tyr Ile Trp Glu Lys 2675 2680 2685
- Arg Val Thr Gly Cys Pro Pro Phe Asp Glu His Lys Cys Leu Ala Glu 2690 2695 2700
- Gly Gly Lys Ile Met Lys Ile Pro Gly Thr Cys Cys Asp Thr Cys Glu 2705 2710 2715 2720
- Glu Pro Glu Cys Lys Asp Ile Ile Ala Lys Leu Gln Arg Val Lys Val 2725 2730 2735
- Gly Asp Cys Lys Ser Glu Glu Glu Val Asp Ile His Tyr Cys Glu Gly
 2740 2745 2750
- Lys Cys Ala Ser Lys Ala Val Tyr Ser Ile His Met Glu Asp Val Gln 2755 2760 2765
- Asp Gln Cys Ser Cys Cys Ser Pro Thr Gln Thr Glu Pro Met Gln Val 2770 2775 2780
- Ala Leu Arg Cys Thr Asn Gly Ser Leu Ile Tyr His Glu Ile Leu Asn 2785 2790 2795 2800
- Ala Ile Glu Cys Arg Cys Ser Pro Arg Lys Cys Ser Lys 2805 2810

WO 98/03683

- 35 -

WE CLAIM:

- 1. An isolated nucleic acid comprising a nucleotide sequence encoding canine von Willebrand Factor polypeptide.
- 2. The isolated nucleic acid of Claim 1, wherein the nucleotide sequence is capable of hybridizing under high stringency conditions to SEQ ID NO. 1.
 - 3. The isolated nucleic acid of Claim 1, wherein the nucleotide sequence encodes the Scottish terrier von Willebrand Factor polypeptide.
 - 4. The isolated nucleic acid of Claim 2, wherein the nucleotide sequence encodes the Scottish terrier von Willebrand Factor polypeptide.
- 10 5. A vector comprising the nucleic acid of Claim 1.
 - 6. A vector comprising the nucleic acid of Claim 2.
 - 7. A cell comprising the vector of Claim 5.
 - 8. A cell comprising the vector of Claim 6.
- 9. An isolated nucleic acid comprising a nucleotide sequence encoding defective canine von Willebrand Factor polypeptide. 15
 - 10. The isolated nucleic acid of Claim 9, wherein the nucleotide sequence is capable of hybridizing under high stringency conditions to the complement of SEQ ID NO. 1 having a base deletion at codon 88.
 - 11. A vector comprising the nucleic acid of Claim 9.
- 20 A vector comprising the nucleic acid of Claim 10. 12.
 - 13. A cell comprising the vector of Claim 11.
 - A cell comprising the vector of Claim 12. 14.

WO 98/03683 PCT/US97/12606

- 36 -

- 15. An isolated oligonucleotide sequence consisting of contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene.
- 16. An isolated oligonucleotide sequence consisting of contiguous nucleic acids of the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene.
 - 17. A method of detecting a canine von Willebrand Factor gene in a sample comprising the steps of:
 - a) contacting the sample with a oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of specifically hybridizing with the canine von Willebrand Factor gene, under conditions favorable for hybridization of the oligonucleotide to any complementary sequences of nucleic acid in the sample; and
 - b) detecting hybridization, thereby detecting a canine von Willebrand Factor gene.
 - 18. The method of Claim 17, further comprising the step of:
 - c) quantifying hybridization of the oligonucleotide to complementary sequence.
 - 19. The method of Claim 17, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.
 - 20. An assay kit for screening for a canine von Willebrand Factor gene comprising:
 - a) an oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence of SEQ ID NO. 1 and capable of hybridizing with the canine von Willebrand Factor gene;
 - b) reagents for hybridization of the oligonucleotide to a complementary nucleic acid sequence; and
- 30 c) container means for a)-b).

10

15

20

25

5

20

25

- 21. A method of detecting a canine von Willebrand Factor gene in a sample comprising the steps of:
 - a) contacting the sample with an oligonucleotide comprising contiguous nucleic acids of the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing to the complementary nucleotide sequence, under conditions favorable for hybridization of the oligonucleotide to any complementary sequences of nucleic acid in the sample; and
- 10 b) detecting hybridization, thereby detecting a canine von Willebrand Factor gene.
 - 22. The method of Claim 21, further comprising the step of:
 - c) quantifying hybridization of the oligonucleotide to complementary sequences.
- 15 23. The method of Claim 21, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.
 - 24. An assay kit for screening for a canine von Willebrand Factor gene comprising:
 - an oligonucleotide comprising contiguous acids from the nucleotide sequence that is complementary to the sequence of SEQ ID NO. 1 and capable of specifically hybridizing to the complementary nucleotide sequence;
 - b) reagents for hybridization of the oligonucleotide to a complementary nucleic acid sequence; and
 - c) container means for a)-b).
 - 25. The assay kit of Claim 24, wherein in SEQ ID NO. 1 there is a base deletion at codon 88.

WO 98/03683 PCT/US97/12606

26. A method for detecting a mutated canine von Willebrand Factor gene in a canine DNA sample comprising the steps of:

5

10

- a) amplifying the DNA sample by polymerase chain reaction to produce polymerase chain reaction products, wherein the polymerase chain reaction uses primers that produce a restriction site in a mutant allele but not in a normal allele;
- b) digesting the polymerase chain reaction products with a restriction enzyme specific to the restriction site of the restriction site primer to produce DNA fragments; and
- c) detecting the DNA fragments, thereby detecting a mutated canine von Willebrand Factor gene.
- 27. The method of Claim 26, wherein the primers are those of Figure 4.
- 28. The method of Claim 26, wherein the DNA fragments are detected by gel electrophoresis.
- 15 29. The method of Claim 27, wherein the restriction enzyme is BsiEI.
 - 30. The method of Claim 27, wherein the restriction enzyme is Sau96 I.
 - 31. An oligonucleotide probe capable of detecting a mutation associated with canine von Willebrand's disease, wherein the mutation is a base deletion at codon 88 of the canine von Willebrand Factor gene.

1/9

FIGURE 1A

1 CATTAANAGG TCCTGGCTGG GAGCTTTTTT TTGGGACCAG CACTCCATGT TCAAGGGCAA 61 ACAGGGGCCA ATTAGGATCA ATCTTTTTTC TTTCTTTTTT TAAAAAAAA AATTCTTCCC 121 ACTITIGCACA CGGACAGTAG TACATACCAG TAGCTCTCTG CGAGGACGGT GATCACTAAT 181 CATTTCTCCT GCTTCGTGGC AGATGAGTCC TACCAGACTT GTGAGGGTGC TGCTGGCTCT 241 GGCCCTCATC TTGCCAGGGA AACTTTGTAC AAAAGGGACT GTTGGAAGGT CATCGATGGC 301 CCGATGTAGC CTTCTCGGAG GTGACTTCAT CAACACCTTT GATGAGAGCA TGTACAGCTT 361 TGCGGGAGAT TGCAGTTACC TCCTGGCTGG GGACTGCCAG GAACACTCCA TCTCACTTAT 421 CGGGGGTTTC CAAAATGACA AAAGAGTGAG CCTCTCCGTG TATCTCGGAG AATTTTTCGA 481 CATTCATTTG TTTGTCAATG GTACCATGCT GCAGGGGACC CAAAGCATCT CCATGCCCTA 541 CGCCTCCAAT GGGCTGTATC TAGAGGCCGA GGCTGGCTAC TACAAGCTGT CCAGTGAGGC 601 CTACGGCTTT GTGGCCAGAA TTGATGGCAA TGGCAACTTT CAAGTCCTGC TGTCAGACAG 661 ATACTTCAAC AAGACCTGTG GGCTGTGTGG CAACTTTAAT ATCTTTGCTG AGGATGACTT 721 CAAGACTCAA GAAGGGACGT TGACTTCGGA CCCCTATGAC TTTGCCAACT CCTGGGCCCT 781 GAGCAGTGGG GAACAACGGT GCAAACGGGT GTCCCCTCCC AGCAGCCCAT GCAATGTCTC 841 CTCTGATGAA GTGCAGCAGG TCCTGTGGGA GCAGTGCCAG CTCCTGAAGA GTGCCTCGGT 901 GTTTGCCCGC TGCCACCCGC TGGTGGACCC TGAGCCTTTT GTCGCCCTGT GTGAAAGGAC 961 TCTGTGCACC TGTGTCCAGG GGATGGAGTG CCCTTGTGCG GTCCTCCTGG AGTACGCCCG 1021 GGCCTGTGCC CAGCAGGGGA TTGTCTTGTA CGGCTGGACC GACCACAGGG TCTGCCGACC 1081 AGCATGCCCT GCTGGCATGG AGTACAAGGA GTGCGTGTCC CCTTGCACCA GAACTTGCCA 1141 GAGCCTTCAT GTCAAAGAAG TGTGTCAGGA GCAATGTGTA GATGGCTGCA GCTGCCCCGA 1201 GGGCCAGCTC CTGGATGAAG GCCACTGCGT GGGAAGTGCT GAGTGTTCCT GTGTGCATGC 1261 TGGGCAACGG TACCCTCCGG GCGCCTCCCT CTTACAGGAC TGCCACACCT GCATTTGCCG 1321 AAATAGCCTG TGGATCTGCA GCAATGAAGA ATGCCCAGGC GAGTGTCTGG TCACAGGACA 1381 GTCCCACTTC AAGAGCTTCG ACAACAGGTA CTTCACCTTC AGTGGGGTCT GCCACTACCT 1441 GCTGGCCCAG GACTGCCAGG ACCACACATT CTCTGTTGTC ATAGAGACTG TCCAGTGTGC 1501 CGATGACCTG GATGCTGTCT GCACCCGCTC GGTCACCGTC CGCCTGCCTG GACATCACAA 1561 CAGCCTTGTG AAGCTGAAGA ATGGGGGAGG AGTCTCCATG GATGGCCAGG ATATCCAGAT 1621 TCCTCTCCTG CAAGGTGACC TCCGCATCCA GCACACCGTG ATGGCCTCCG TGCGCCTCAG 1681 CTACGGGGAG GACCTGCAGA TGGATTCGGA CGTCCGGGGC AGGCTACTGG TGACGCTGTA 1741 CCCCGCCTAC GCGGGGAAGA CGTGCGGCCG TGGCGGGAAC TACAACGGCA ACCGGGGGGA 1801 CGACTTCGTG ACGCCCGCAG GCCTGGCGGA GCCCCTGGTG GAGGACTTCG GGAACGCCTG 1861 GAAGCTGCTC GGGGCCTGCG AGAACCTGCA GAAGCAGCAC CGCGATCCCT GCAGCCTCAA 1921 CCCGCGCCAG GCCAGGTTTG CGGAGGAGGC GTGCGCGCTG CTGACGTCCT CGAAGTTCGA 1981 GCCCTGCCAC CGAGCGGTGG GTCCTCAGCC CTACGTGCAG AACTGCCTCT ACGACGTCTG 2041 CTCCTGCTCC GACGGCAGAG ACTGTCTTTG CAGCGCCGTG GCCAACTACG CCGCAGCCGT 2101 GGCCCGGAGG GGCGTGCACA TCGCGTGGCG GGAGCCGGGC TTCTGTGCGC TGAGCTGCCC 2161 CCAGGGCCAG GTGTACCTGC AGTGTGGGAC CCCCTGCAAC ATGACCTGTC TCTCCCTCTC 2221 TTACCCGGAG GAGGACTGCA ATGAGGTCTG CTTGGAAAGC TGCTTCTCCC CCCCAGGGCT 2281 GTACCTGGAT GAGAGGGGAG ATTGTGTGCC CAAGGCTCAG TGTCCCTGTT ACTATGATGG 2341 TGAGATCTTT CAGCCCGAAG ACATCTTCTC AGACCATCAC ACCATGTGCT ACTGTGAGGA 2401 TGGCTTCATG CACTGTACCA CAAGTGGAGG CCTGGGAAGC CTGCTGCCCA ACCCGGTGCT 2461 CAGCAGCCCC CGGTGTCACC GCAGCAAAAG GAGCCTGTCC TGTCGGCCCC CCATGGTCAA 2521 GTTGGTGTGT CCCGCTGATA ACCCGAGGGC TGAAGGACTG GAGTGTGCCA AAACCTGCCA 2581 GAACTATGAC CTGCAGTGCA TGAGCACAGG CTGTGTCTCC GGCTGCCTCT GCCCGCAGGG 2641 CATGGTCCGG CATGAAAACA GGTGTGTGGC GCTGGAAAGA TGTCCCTGCT TCCACCAAGG 2701 CCAAGAGTAC GCCCCAGGAG AAACCGTGAA AATTGACTGC AACACTTGTG TCTGTCGGGA 2761 CCGGAAGTGG ACCTGCACAG ACCATGTGTG TGATGCCACT TGCTCTGCCA TCGGCATGGC 2821 GCACTACCTC ACCTTCGACG GACTCAAGTA CCTGTTCCCT GGGGAGTGCC AGTATGTTCT 2881 GGTGCAGGAT TACTGCGGCA GTAACCCTGG GACCTTACGG ATCCTGGTGG GGAACGAGGG 2941 GTGCAGCTAC CCCTCAGTGA AATGCAAGAA GCGGGTCACC ATCCTGGTGG AAGGAGGAGA 3001 GATTGAACTG TTTGATGGGG AGGTGAATGT GAAGAAACCC ATGAAGGATG AGACTCACTT 3061 TGAGGTGGTA GAGTCTGGTC AGTACGTCAT TCTGCTGCTG GGCAAGGCAC TCTCTGTGGT 3121 CTGGGACCAC CGCCTGAGCA TCTCTGTGAC CCTGAAGCGG ACATACCAGG AGCAGGTGTG

FIGURE 1B

	#CCCCTCT	CCCARTTTC	ATGGCATCCA	GAACAATGAT	TTCACCAGCA	GCAGCCTCCA
2191	1000010101	CACCCTCTCC	ACTTTGGGAA	TTCCTGGAAA	GTGAACCCGC	AGTGTGCCGA
3241	AATAGAAGAA	CTACCACTGG	ACTUATUCCU	TECCETCTEC	CACAACAACA	TCATGAAGCA
3301	CACCAAGAAA	CATTCCTCCT	GCAGGATCCT	CACCAGTGAT	ATTTTCCAGG	ACTGCAACAG
3361	GACGATGGTG	CCTCACCCAT	TCCTGGACAT	TTGCATCTAC	GACACTTGCT	CCTGTGAGTC
3421	GCIGGIGGAC	CCIGAGCCAI	TCTCTCACAC	CATTGCTGCT	TACGCCCACG	TCTGTGCCCA
3481	CATTGGGGAC	TOCACCIGCI	CCACCACACAC	CALIGORACE	CCCCAGAATT	CCCACCACCG.
3541	GCATGGCAAG	GTGGTAGCCT	A TO A CT CTCA	CTCCCCCTIT	AACAGCTGTG	CCCCCCCCCC
3661	TCCCATCACG	TGCCAGCACC	CCGAGCLACI	CCATCACCTT	GTACAGTGTG TTGCAGACCT	CCDTCCDCCC
					GCCCCAGGAA	
					TGTGATGGTG	
					CCCACAGATG	
					CTCCATGACT	
					AAGCTGTCTG	
					CTGCACATCT	
					GCCTACATCG	
					GTGAAGTACG	
					CAGATCTTTG	
					AGCCAGGAGC	
					AAGAAAGTCA	
					CTCATAGAGA	
					GAGCAGCGAA	
4561	TATCAACTAC	CTCTGTGACC	TTGCCCCCGA	AGCACCTGCC	CCTACTCAGC	ACCCCCAAT
4621	GGCCCAGGTC	ACGGTGGGTT	CGGAGCTGTT	GGGGGTTTCA	TCTCCAGGAC	CCALAAGGAA
4681	CTCCATGGTC	CTGGATGTGG	TGTTTGTCCT	GGAAGGGTCA	GACAAAATTG	GTGAGGCCAA
4741	CTTTAACAAA	AGCAGGGAGT	TCATGGAGGA	GGTGATTCAG	CGGATGGACG	TGGGCCAGGA
4801	CAGGATCCAC	GTCACAGTGC	TGCAGTACTC	GTACATGGTG	ACCGTGGAGT	ACACCTTCAG
4961	CGAGGCGCAG	TCCAAGGGCG	AGGTCCTACA	GCAGGTGCGG	GATATCCGAT	ACCGGGGTGG
4921	CAACAGGACC	AACACTGGAC	TGGCCCTGCA	ATACCTGTCC	GAACACAGCT	TCTCGGTCAG
4981	CCAGGGGGAC	CGGGAGCAGG	TACCTAACCT	GGTCTACATG	GTCACAGGAA	ACCCCGCTTC
5041	TGATGAGATC	AAGCGGATGC	CTGGAGACAT	CCAGGTGGTG	CCCATCGGGG	TGGGTCCACA
5101	TGCCAATGTG	CAGGAGCTGG	AGAAGATTGG	CTGGCCCAAT	GCCCCCATCC	TCATCCATGA
5161	CTTTGAGATG	CTCCCTCGAG	AGGCTCCTGA	TCTGGTGCTA	CAGAGGTGCT	GCTCTGGAGA
5221	GGGGCTGCAG	ATCCCCACCC	TCTCCCCCAC	CCCAGATTGC	AGCCAGCCCC	TGGATGTGGT
5281	CCTCCTCCTG	GATGGCTCTT	CCAGCATTCC	AGCTTCTTAC	TTTGATGAAA	TGAAGAGCTT
5341	CACCAAGGCT	TTTATTTCAA	GAGCTAATAT	AGGCCCCGG	CTCACTCAAG	TGTCGGTGCT
					GTAGCCTATG	
5461	TTTACTGAGC	CTTGTGGACC	TCATGCAGCA	GGAGGGAGGC	CCCAGCGAAA	TTGGGGATGC
5521	TTTGAGCTTT	GCCGTGCGAT	ATGTCACCTC	AGAAGTCCAT	GGTGCCAGGC	CCGGAGCCTC
5581	GAAAGCGGTG	GTTATCCTAG	TCACAGATGT	CTCCGTGGAT	TCAGTGGATG	CTGCAGCCGA
5641	GGCCGCCAGA	TCCAACCGAG	TGACAGTGTT	CCCCATTGGA	ATCGGGGATC	GGTACAGTGA
5701	GGCCCAGCTG	AGCAGCTTGG	CAGGCCCAAA	GGCTGGCTCC	AATATGGTAA	GGCTCCAGCG
					TTCTTCCACA	
					AAGAGGCCCG	
					GATGGCCAGA	
					TGCCCCAATG	
					CCCTGTGTGT	
					AAGCTGACTG	
					ATTCTCCAGA	
			•		GTGAAGCATG	
					AGACTAGTCT	
					ATGTATGAGG	
					GAGTTCCAGC	
		CUCUICIICA	CALICACCCC	COMMON		

FIGURE 1C

6421	CCCCAGGACC	TTTGCTTCGA	AGACATATGG	TCTCTGTGGG	ATCTGTGATG	AGAACGGAGC
6481	CANTGACTIC	ATTCTGAGGG	ATGGGACAGT	CACCACAGAC	TGGAAGGCAC	TCATCCAGGA
6541	ATGGACCGTA	CAGCAGCTTG	GGAAGACATC	CCAGCCTGTC	CATGAGGAGC	AGTGTCCTGT
6601	CTCCGAATTC	TTCCACTGCC	AGGTCCTCCT	CTCAGAATTG	TTTGCCGAGT	GCCACAAGGT
6661	CCTCGCTCCA	GCCACCTTTT	ATGCCATGTG	CCAGCCCGAC	AGTTGCCACC	CGAAGAAAGT
6721	GTGTGAGGCG	ATTGCCTTGT	ATGCCCACCT	CTGTCGGACC	AAAGGGGTCT	GTGTGGACTG
6781	GAGGAGGGCC	AATTTCTGTG	CTATGTGATG	TCCACCATCC	CTGGTGTACA	ACCACTGTGA
				TACAAGCTCC		AACCCTCGGA
6901	AGGCTGCTTC	TGCCCCCAA	ACCAAGTCAT	GCTGGAAGGT	AGCTGTGTCC	CCGAGGAGGC
				CCGGCACCAG		
					CGGAAGGTCA	ACTGTACGTT
7081	GCAGCCCTGC	CCCACAGCCA	AAGCTCCCAC	CTGTGGCCCG	TGTGAAGTGG	
7141	CCAGAACGCA	GTGCAGTGCT	GCCCGGAGTA	CGAGTGTGTG	TGTGACCTGG	TGAGCTGTGA
7201	CCTGCCCCCG	GTGCCTCCCT	GCGAAGATGG	CCTCCAGATG	ACCCTGACCA	ATCCTGGCGA
7261	GTGCAGACCC	AACTTCACCT	GTGCCTGCAG	GAAGGATGAA	TGCAGACGGG	AGTCCCCGCC
7321	CTCTTGTCCC	CCGCACCGGA	CGCCGGCCCT	TCGGAAGACT	CAGTGCTGTG	ATGAGTATGA
7381	GTGTGCATGC	AACTGTGTCA	ACTCCACGGT	GAGCTGCCCG	CTTGGGTACC	TGGCCTCGGC
					CCTGACAAGG	
					GCCTGTGACG	
					CAGTGCTCCC	
					GAAGGCGAGT	
					CGGGGCGACG	
					CCCTGCCTCA	
					GTCTCCTGCC	
					ACCTCAGAGT	
					ACCATCATTG	
					GTGCCGGTGG	
					TGCCCCCTGG	
					ATAGCTTGCA	
					ATCCAGGATG	
					GAGAAGAGAG	
					AAAATCATGA	
					ATCATTGCCA	
					ATTCATTACT	
					GTGCAGGACC	
					CGCTGCACCA	
					TCCCCCAGGA	
					CGACCTCACT	
					TCTTGTGCTT	CCTGATCCCA
8761	CAATAAAGGT	CAATCTTTCA	CCTTGAAAAA	AAAAAAAAA	AA	

Human Dog	MIPARFAGVLLALALILPGTLCAEGTRGRSSTARCSLFGSDFVNTFDGSMYSFAGYCSYL -S-T-LVRKTKVML-GIED	60
Human Dog	LAGGCQKRSFSIIGDFQNGKRVSLSVYLGEFFDIHLFVNGTVTQGDQRVSMPYASKGLYLDEH-I-LGD	120
Human Dog	ETEAGYYKLSGEAYGFVARIDGSGNFQVLLSDRYFNKTCGLCGNFNIFAEDDFMTQEGTL -AKK	180
Human Dog	TSDPYDFANSWALSSGEQWCERASPPSSSCNISSGEMQKGLWEQCQLLKSTSVFARCHPL	240
Human Dog	VDPEPFVALCEKTLCECAGGLECACPALLEYARTCAQEGMVLYGWTDHSACSPVCPAGME	300
Human Dog	YRQCVSPCARTCQSLHINEMCQERCVDGCSCPEGQLLDEGLCVESTECPCVHSGKRYPPG -KETVK-VQHG-ASA-Q	360
Human Dog	TSLSRDCNTCICRNSQWICSNEECPGECLVTGQSHFKSFDNRYFTFSGICQYLLARDCQD ALQHV-HQ	420
Human Dog	HSFSIVIETVQCADDRDAVCTRSVTVRLPGLHNSLVKLKHGAGVAYDGQDVQLPLLKGDL-TVL	480
Human Dog	RIQHTVTASVRLSYGEDLQMDWDGRGRLLVKLSPVYAGKTCGLCGNYNGNQGDDFLTPSGRGRGRGRGRG	540
Human Dog	LAEPRVEDFGNAWKLHGDCQDLQKQHSDPCALNPRMTRFSEEACAVLTSPTFEACHRAVSL	600
Human Dog	PLPYLRNCRYDVCSCSDGRECLCGALASYAAACAGRGVRVAWREPGRCELNCPKGQVYLQ -QVQLDS-V-NV-RHIF-A-SQ	660
Human Dog	CGTPCNLTCRSLSYPDEECNEACLEGCFCPPGLYNDERGECVPKAQCPCYYDGEIFQPED	720
Human Dog	IFSDHHTMCYCEDGFMHCTMSGVPGSLLPDAVLSSPLSHRSKRSLSCRPPMVKLVCPADNTGLNPRC	780
Human Dog	LRAEGLECTKTCQNYDLECMSMGCVSGCLCPPGMVRHENRCVALERCPCFHQGKEYAPGE PAQ	840
Human Dog	TVKIGCNTCVCRDRKWNCTDHVCDATCSTIGMAHYLTFDGLKYLFPGECQYVLVQDYCGS	900
Human Dog	NPGTFRILVGNKGCSHPSVKCKKRVTILVEGGEIELFDGEVNVKRPMKDETHFEVVESGR	960
Human Dog	YIILLLGKALSVVWDRHLSISVVLKQTYQEKVCGLCGNFDGIQNNDLTSSNLQVEEDPVD-V	1020
Human	FGNSWKVSSQCADTRKVPLDSSPATCHNNIMKQTMVDSSCRILTSDVFQDCNKLVDPEPY	1080

FIGURE 2A

Human Dog	LDVCIYDTCSCESIGDCACFCDTIAAYAHVCAQHGKVVTWRTATLCPQSCEERNLRENGY	1140
Human Dog	ECEWRYNSCAPACQVTCQHPEPLACPVQCVEGCHAHCPPGKILDELLQTCVDPEDCPVCE	1200
Human Dog	VAGRRFASGKKVTLNPSDPEHCQICHCDVVNLTCEACQEPGGLVVPPTDAPVSPTTLYVEL-PIINGFKRSVG-IGSS	1260
Human Dog	DISEPPLHDFYCSRLLDLVFLLDGSSRLSEAEFEVLKAFVVDMMERLRISQKWVRVAVVE	1320
Human Dog	YHDGSHAYIGLKDRKRPSELRRIASQVKYAGSQVASTSEVLKYTLFQIFSKIDRPEASRI	1380
Human Dog	ALLLMASQEPQRMSRNFVRYVQGLKKKKVIVIPVGIGPHANLKQIRLIEKQAPENKAFVL	1440
Human Dog	SSVDELEQORDEIVSYLCDLAPEAPPPTLPPH:AQVTVGPGLLGVSTLGPKRNSMVLDVA -GSP	1500
Human Dog	FVLEGSDKIGEADFNRSKEFMEEVIQRMDVGQDSIHVTVLQYSYMVTVEYPFSEAQSKGD	1560
Human Dog	ILQRVREIRYQGGNRTNTGLALRYLSDHSFLVSQGDREQAPNLVYMVTGNPASDEIKRLP VQDR	1620
Human Dog	GDIQVVPIGVGPNANVQELERIGWPNAPILIQDFETLPREAPDLVLQRCCSGEGLCIPTL	1680
Human Dog	SPAPDCSQPLDVILLLDGSSSFPASYFDEMKSFAKAFISKANIGPRLTQVSVLQYGSITT	1740
Human Dog	IDVPWNVVPEKAHLLSLVDVMQREGGPSQIGDALGFAVRYLTSEMHGARPGASKAVVILV	1800
Human Dog	TDVSVDSVDAAADAARSNRVTVFPIGIGDRYDAAQLRILAGPAGDSNVVKLQRIEDLPTN:	1860
Human Dog	VTLGNSFLHKLCSGFVRICMDEDGNEKRPGDVWTLPDQCHTVTCQPDGQTLLKTHRVNCD	1920
Human Dog	RGLRPSCPNSQSPVKVEETCGCRWTCPCVCTGSSTRHIVTFDGQNFKLTGSCSYVLFQNK	1980
Human Dog	EQDLEVILHNGACSPGARQGCMKSIEVKHSALSVELHSDMEVTVNGRLVSVPYVGGNMEV	2040
Human Dog	NVYGAIMHEVRFNHLGHIFTFTPQNNEFQLQLSPKTFASKTYGLCGICDENGANDFMLRD	2100
Human	GTVTTDWKTLVQEWTVQRPGQTCQPILEEQCLVPDSSHCQVLLLPLFAECHKVLAPATFY	2160

FIGURE 2B

Human Dog	AICQQDSCHQEQVCEVIASYAHLCRINGVCVDWRTPDFCAMSCPPSLVYNHCEHGCPRHC -MPPKKALKRANL-	2220
Human Dog	DGNVSSCGDHPSEGCFCPPDKVMLEGSCVPEEACTQCIGEDGVQHQFLEAWVPDHQPCQI ETRRRRR	2280
Human Dog	CTCLSGRKVNCTTQPCPTAKAPTCGLCEVARLRQNADQCCPEYECVCDPVSCDLPPVPHC	2340
Human Dog	ERGLOPTLTNPGECRPNFTCACRKEECKRVSPPSCPPHRLPTLRKTQCCDEYECACNCVN-DMDR-ET-A	2400
Human Dog	STVSCPLGYLASTATNDCGCTTTTCLPDKVCVHRSTIYPVGQFWEEGCDVCTCTDMEDAV	2460
Human Dog	MGLRVAQCSQKPCEDSCRSGFTYVLHEGECCGRCLPSACEVVTGS#RGDSQSSWKSVGSQ	2520
Human Dog	WASPENPCLINECVRVKEEVFIQQRNVSCPQLEVPVCPSGFQLSCKTSACCPSCRCERME	2580
Human Dog	ACMLNGTVIGPGKTVMIDVCTTCRCMVQVGVISGFKLECRKTTCNPCPLGYKEEMMTGEC	2640
Human Dog	CGRCLPTACTIOLRGGQIMTLKRDETLQDGCDTHFCKVNERGEYFWEKRVTGCPPFDEHK	2700
Human Dog	CLAEGGKIMKIPGTCCDTCEEPECNDITARLQYVKVGSCKSEVEVDIHYCQGKCASKANY	2760
Human Dog	SIDINDVQDQCSCCSPTRTEPMQVALHCTNGSVVYHEVLNAMECKCSPRKCSK	2813

FIGURE 2C

WO 98/03683

BEST AVAILABLE COPY

e n e t

8/9

FIGURE 4

SUBSTITUTE SHEET (RULE 26)

RECT AVAILABLE CODY

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12606

	THE TON OR SUBTRACT MATTER		
A. CLASSIFICATION OF SUBJECT MATTER IPC(6) :C12Q 1/68; C12P 19/34; C07H 21/02, 21/04			
US CL :43	15/6, 91.2; 536/23.1, 24.3, 24.33 International Patent Classification (IPC) or to both	national classification and IPC	
	SEARCHED		
	umentation searched (classification system followed	by classification symbols)	
	5/6, 91.2; 536/23.1, 24.3, 24.33	•	
	n scarched other than minimum documentation to the	and at that such documents are included	in the fields searched
Documentation	n searched other than munimum documentation to the	EXERT UNIT SUCH LOCUMENTS 210 DECISES	
Plectronic data	a base consulted during the international search (na	me of data base and, where practicable	c, search terms used)
Please See E			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
	SHIBUYA, H. et al. A polymorphic (an intron of the canine von Willebrand in		15-22, 24-26, 28, 31
	April 1994, Volume 25, Number 2, pa		1-14, 23, 27, 29
<u> </u>			L.,
Further	r documents are listed in the continuation of Box C		
1	ial categories of cited documents:	*T* later document published after the int date and not in conflict with the app	lication but cited to understand
	ment defining the general state of the art which is not considered of particular relevance	the principle or theory underlying the	
	or document published on or efter the international filing date	"X" document of particular relevance; the considered movel or cannot be consider when the document is taken alone	and to manifes an magnitude steb
cited	ment which may throw doubts on priority claim(s) or which is to establish the publication date of another citation or other	*Y* document of particular relevance; th	e claimed invention cannot be
	el resson (es specified) ment referring to an oral disclosure, use, exhibition or other	considered to involve an inventive combined with one or more other suc being obvious to a person skilled in	step when the document is h documents, such combination
P doors	ment published prior to the international filing date but later than riority data claimed	*&* document member of the same paten	
	ctual completion of the international search	Date of mailing of the international se	
28 AUGUST 1997			397
Name and ma	Name and mailing address of the ISA/US Authorized officer		
Box PCT	r of Patents and Trademarks	DIANNE REES 1 (W)	Tank
Washington, Pacsimile No.	D.C. 20231 , (703) 305-3230	Telephone No. (703) 308-0196	UT

Form PCT/ISA/210 (second sheet)(July 1992)*

BEST AVAILABLE COPY

INTERNATIONAL SEARCH REPORT

International application No. PCT/US97/12606

B. FIELDS SEARCHED Electronic data bases consulted (Name of data base and where practicable terms used):
APS, BIOSIS, BIOTECHABS, BIOTECHDS, CABA, DGENE, DRUGU, EMBASE, MEDLINE, EUROPATFULL, JAPIO, WPIDS, USPATFULL, GENBANK search terms: von Willebrand, sequence, clone, cloning, probes, primers, hybridization, detection, nucleic acids, mutalions, canine, dogs, Scottish terriers, primers in Figure 4.
aciss, instancia, catalic, cogs, coccasii aciricis, pranats an rigute 4.