	Estructura de Computadores 02-06-2020	2021-2022	Konputagailuen Egitura 2020-06-02
	Nombre / Izena: Apellidos / Abizenak:		Grupo / Taldea:
	Galdera teorikoak (4 pu	<u>untu)</u>	
1.	b₃b₂b₁b₀ bit-sekuentzia iristen bad Errorea detektatzeko zirkuitu bat p		ekotasun bakoitiko bit bat bada.
2.	Hurrengo Hamming hitza jasot transmisioan? Hala balitz, zein da k		
3.	Zer da kontrol hitza?		
4.	Zerk bereizten du Von Neumann a	rkitektura?	
5.	Zer kontrol-unitate motatan eman	daiteke sekuentziazio inpli:	zitua eta zertan datza?
6.	Etendura bat ematen denean, ze azpierrutinean?	r da egin behar den leher	nengo gauza etenari erantzuteko
7.	Kanalizazioko exekuzioan datuen a	arrisku-arazoa konpontzeko	modu bat adierazi.
8.	Sarrera/Irteera (I/O) periferikoen zeinek du fidagarritasun handiag ondoriozko transmisio-erroreak de	goa, eta zein mekanismo	

	Estructura de Computado 02-06-2020	res 2021-20	22	Konputagailuen 202	Egitura <u>0-06-02</u>
	Nombre / Izena: Apellidos / Abizenak:			Grupo / Taldea:	
9.	Zertan datza bus artekar duena?	itza deszentralizatua, e	ta artekaritza inc	dependentearen es	trategia
10.	Zertan bereizten da I/O pe etenen bidez?	riferikoekin egindako da	tu-transferentzia r	maneiua, programat	uan eta
11.	Sistema batek 2 MB-ko ed eta lerro bakoitzeko 1 kB memoria nagusia? Zenbat Korrespondentzia-metodo zenbatzen badira, eta blok	badu (hitzaren luzera 1 lerro ditu (L) cache mem guztiz elkarkorra erabil	LB), zenbat bloke noriak? tzen bada, eta cad	tan (NumBlo) bana che lerroak 0-tik (L-	tzen da 1)-raino

12. Memorian irakurketa 200 atzipenetatik 5 cachean ez dauden datuetara egiten badira. Irakurketak bakarrik kontuan hartuta, zer hobekuntza lortzen da cachea erabiliz, erabili gaberekin konparatuta, batezbesteko memoria atzipen denboran?, baldin eta hobekuntzarik badago. (Datuak: cachera atzipen denbora: 5 ns; memoria nagusira atzipen denbora: 50ns).

Galderak (Azterketaren %40a)

Ariketekin batezbestekoa egiteko galderen puntuazioaren erdia atera behar da.

Gardera laburra (erantzunen puntuaketa): Zuzena: +1 Okerra: ± 0 Zurian: ± 0 Test galdera (erantzunen puntuaketa): Zuzena: +1 Okerra: -0.5 Zurian: ± 0

Ariketak (Azterketaren 60%a)

Galderekin batezbestekoa egiteko ariketen puntuazioaren erdia atera behar da.

Nombre / Izena: ______Grupo / Taldea: _____ Apellidos / Abizenak: _____

Ariketa 1 (2 puntu)

Kontuan hartuta 1., 2., 3. eta 4. irudietako taula, kontrol-unitatea (Control Unit, CU), exekuzio unitatea (Unitate Aritmetiko-Logikoa – Arithmetic-Logic Unit, ALU), PCa kalkulatzeko zirkuitua eta instrukzioen formatua.

Honako instrukzio hauek egin nahi dira:

- 3 erregistroaren edukiari 2 erregistroarena kendu eta emaitza 3 erregistroan gorde.
- Emaitza negatiboa bada, -9 posizio jauzi egin.

Eskatzen da:

- a) Zein motatako kontrol unitatea da?
- b) Instrukzioak hamaseitarrean.
- c) Lehenengo instrukzioari dagokion kontrol hitza.
- d) 2 erregistroan 2 bat gordeta badago, eta 3 erregistroan 4 bat badago biltegiratuta, eta PCak, jauzi kondizionalaren aurretik, 102Bh balioa badu, zein izango da programa-kontagailuaren hurrengo balioa (Program Counter, PC) offseta instrukzioaren 6 bitez osatuta badago: AD = DR SB? W, X eta Y multiplexoreen irteerak adierazi.

Agindua	Eragiketa kodea	Mnemonikoa	Helbidea	Deskribapena	Egoera bitak
A mugitu	0000000	MOVA	DA, AA	R[DA]←R[AA]*	N, Z
Gehitu	0000001	INC	DA, AA	R[DA]←R[AA]+1*	N, Z
Batu	0000010	ADD	DA, AA, BA	R[DA]←R[AA]+R[BA]*	N, Z
Kendu	0000101	SUB	DA, AA, BA	R[DA]←R[AA]-R[BA]*	N, Z
Murriztu	0000110	DEC	DA, AA	R[DA]←R[AA]-1*	N, Z
AND	0001000	AND	DA, AA, BA	R[DA]←R[AA]·R[BA]*	N, Z
OR	0001001	OR	DA, AA, BA	R[DA]←R[AA] + R[BA]*	N, Z
XOR	0001010	XOR	DA, AA, BA	R[DA]←R[AA]⊕R[BA]*	N, Z
NOT	0001011	NOT	DA, AA	R[DA]←/R[AA]*	N, Z
B mugitu	0001100	MOV B	DA, BA	R[DA]←R[BA]*	
Despl. Eskuin	0001101	SHR	DA, BA	R[DA]←sr R[BA]*	
Despl. Ezker	0001110	SHL	DA, BA	R[DA]←sl R[BA]*	
Kargatu erag.	1001100	LDI	DA, OP	R[DA]←OP*	
Batu eragigaia	1000010	ADI	DA, AA, OP	R[DA]←R[AA]+OP*	N, Z
Kargatu	0010000	LD	DA, AA	R[DA]←M[AA]*	
Biltegiratu	0100000	ST	AA, BA	M[AA]←R[BA]*	
Jauzi zero	1100000	BRZ	AA, AD	If R[AA]=0 PC←PC+AD else PC←PC+1	N, Z
Jauzi neg.	1100001	BRN	AA, AD	If R[AA]<0 PC←PC+AD else PC←PC+1	N, Z
Jauzi ez-bald.	1110000	JMP	AA	PC←R[AA]	

Fig. 1. Instrukzioak.

Fig. 3. PCaren kalkulua.

Fig. 2. Kontrol Unitatea.

Figura 4. Instrukzioen formatua.

Nombre / Izena: ______ Grupo / Taldea: _____ Apellidos / Abizenak:

Ariketa 2 (2 puntu)

Memoria-zirkuitu integratuak daude, irudiaren modukoak.

a) Adierazi zenbat linea dituen helbide-busak (X) eta datu-busak (Y).

64k x 8-ko memoria bat lortu nahi bada, irudiarena bezalako memoria-zirkuituetan oinarrituta:

- b) Adierazi zenbat memoria-zirkuitu beharko liratekeen.
- c) Beharrezko konexio eta zirkuitu integratu guztiak marraztu.
- d) ABh datua 3AF0h posizioan gorde nahi izanez gero, zein memoria-txipetan gordeko litzateke?

Ariketa 3 (1 puntu)

Hurrengo irudia kontuan izanda, adierazi zein izango den metagailuaren edukia, eta zein memoria-helbidetara joan behar den datua aurkitzeko, datuak eta helbideak hamartarrean daude:

298	Erag. Kod. Modua
299	ADRS edo NBR = 500
300	Hurrengo instrukzioa
400	600
	•••
500	800
	•••
600	200
	•••
700	150
	•••
800	250
900	350

Helbideratze modua		Helbide eraginkorra	Acc.
Indexatua	LDA ADRS (R3)		
Berehalakoa	LDA #NBR		
Zeharkako erregistroa	LDA (R2)		
Erlatiboa	LDA \$ADRS		
Zeharkakoa	LDA [ADRS]		
Erregistroa	LDA R2		
Zuzena	LDA ADRS		

PC = 300
R0 = 100
R1 = 300
R2 = 400
R3 = 200

Ariketa 4 (1 puntu)

Datuen bide bat 4 etapatan banatzen da: A: 8 ns, B: 4 ns, C: 2 ns eta D: 6 ns. Etapa horiek begiztan exekutatzen dira. Kanalizazio bat inplementatzeko, bi erregistro daude, eta bakoitzak 1 ns gehitzen ditu.

- a) Zein da hasierako sistemaren funtzionamendu-maiztasun maximoa?
- b) Non jarriko zenituzke erregistroak ahalik eta kanalizaziorik onena egiteko?
- c) Zein izango litzateke sistemaren funtzionamenduaren maiztasun maximoa kanalizazioaren ondoren?
- d) Zenbat denbora beharko litzateke 3 instrukzio exekutatzeko kanalizazioarekin?