Exercise Sheet No. 1

1 Matrix Algebra

- (a) Let \boldsymbol{A} ($m \times m$) be an idempotent matrix and $\lambda \in \mathbb{R}$ an eigenvalue of \boldsymbol{A} . Prove that $\lambda = 0$ or $\lambda = 1$.
- (b) Let $\mathbf{A}(m \times m)$ be a symmetric, idempotent matrix. Prove that the matrices \mathbf{A} and $\mathbf{I}_m - \mathbf{A}$ are positive semidefinite.
- (c) Let $\boldsymbol{A}(m \times m)$ be an orthogonal matrix and $\lambda \in \mathbb{R}$ an eigenvalue of \boldsymbol{A} . Prove that $\lambda = -1$ or $\lambda = 1$.

 Hint: Consider $(\boldsymbol{A}\boldsymbol{v})^T(\boldsymbol{A}\boldsymbol{v})$ for an eigenvector $\boldsymbol{v} \in \mathbb{R}^m$ of the eigenvalue λ .

2 Generalized Inverse

See the Matrix Algebra Reader, p.8. Let $X(n \times k)$ be any matrix.

- (a) Show that if $rk(\mathbf{X}) = k < n$, $(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is the Moore-Penrose inverse to \mathbf{X} .
- (b) Show that if \boldsymbol{X} is regular, there exists no other generalized inverse than \boldsymbol{X}^{-1} .

3 Expectation, Variance

Verify the following statements for the random variables (r.v.s) X, Y:

(a)
$$Var(Y) = E\{(Y - a)^2\} - \{E(Y - a)\}^2$$
, $a \in \mathbb{R}$

(b)
$$Var(aY + b) = a^2 Var(Y)$$
 a, $b \in \mathbb{R}$

(c)
$$E(Y) = E_X[E(Y|X)]$$

Hint: It suffices to show the result for absolutely continuous r.v.s.

- (d) $E(Y) = \arg\min_{a \in \mathbb{R}} E\{(Y a)^2\}$
- (e) E(Y|X) = E(Y) if X, Y are independent.
- (f) $E(\varepsilon|X) = 0 \Rightarrow E(\varepsilon) = 0 \& cov(X, \varepsilon) = 0$ with $cov(\cdot, \cdot)$ the covariance.

4 Dependence concepts

Consider the two random variables (r.v.s) ε and X. This exercise extends Exercise 1.1(e) and clarifies the relation between the following dependence concepts, namely

$$\varepsilon$$
, X are independent \implies E(ε |X) = E(ε) \implies cov(ε , X) = 0,

where the converses do not hold. Show:

- (a) If ε and X are independent, then $\mathsf{E}(\varepsilon|X) = \mathsf{E}(\varepsilon)$.

 Hint: It suffices to show this for absolutely continuous r.v.s.
- (b) If $E(\varepsilon|X) = E(\varepsilon)$, then ε and X are uncorrelated, i.e. $cov(\varepsilon, X) = 0$.
- (c) The converse of (b) does not hold, i.e. from $cov(\varepsilon, X) = 0$ it does not necessarily follow that $E(\varepsilon|X) = E(\varepsilon)$.

Hint: Consider $X^2 - 1$ and X, where $X \sim \mathcal{N}(0, 1)$.

(d) The converse of (a) does not hold.

Hint: Consider $\varepsilon = XY$, where Y is centered and independent of X.