Python Matplotlib

Matplotlib is a python library used for data visualization

You can create barplots, scatter-plots, histograms and a lot more with matplotlib


```
In [1]: import numpy as np
   from matplotlib import pyplot as plt
```

```
In [2]: x=np.arange(1,11)
x
Out[2]: array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10])
```

```
In [4]: y= 2*x
y
Out[4]: array([ 2,  4,  6,  8, 10, 12, 14, 16, 18, 20])
```


Adding Title and Labels

```
In [8]: plt.plot(x,y)
    plt.title("Line Plot")
    plt.xlabel("x-label")
    plt.ylabel("y-label")
    plt.show()
```


Changing Line Aesthetics

```
In [10]: plt.plot(x,y,color='g',linestyle=':',linewidth=2)
   plt.show()
```


Adding two lines in the same plot

```
In [2]: x=np.arange(1,11)
y1=2*x
y2=3*x
```

```
In [11]: plt.plot(x,y1,color='g',linestyle=':',linewidth=2)
    plt.plot(x,y2,color='r',linestyle='-.',linewidth=3)
    plt.title("Line Plot")
    plt.xlabel("x-axis")
    plt.ylabel("y-axis")
    plt.grid(True)
    plt.show()
```


Adding sub-plots

```
x=np.arange(1,11)
y1=2*x
y2=3*x

plt.subplot(1,2,1)
plt.plot(x,y1,color='g',linestyle=':',linewidth=2)

plt.subplot(1,2,2)
plt.plot(x,y2,color='r',linestyle=':',linewidth=2)

plt.show()
```


Bar Plot

```
In [40]: names = list(student.keys())
values = list(student.values())
In [42]: plt.bar(names,values)
plt.show()
```


Bar Plot

Adding Title and Labels

```
In [16]: plt.bar(names,values)
  plt.title("Bar Plot")
  plt.xlabel("Names")
  plt.ylabel("Marks")
  plt.grid(True)
  plt.show()
```


Horizontal Bar Plot

Horizontal Bar Plot

```
In [44]: plt.barh(names,values,color='g')
    plt.title("Bar Plot")
    plt.xlabel("Names")
    plt.ylabel("Marks")
    plt.grid(True)
    plt.show()
```


Creating a basic scatter-plot

```
x=[10,20,30,40,50,60,70,80,90]
a=[8,1,7,2,0,3,7,3,2]
plt.scatter(x,a)
plt.show()
```


Changing Mark Aesthetics

```
In [7]: x=[10,20,30,40,50,60,70,80,90]
    a=[8,1,7,2,0,3,7,3,2]
    plt.scatter(x,a,marker="*",c="g",s=100)
    plt.show()
```



```
In [10]: x=[10,20,30,40,50,60,70,80,90]
    a=[8,1,7,2,0,3,7,3,2]
    b=[7,2,5,6,9,1,4,5,3]
    plt.scatter(x,a,marker="*",c="g",s=100)
    plt.scatter(x,b,marker=".",c="r",s=200)
    plt.show()
```

Adding two markers in the same plot

Adding sub-plots

```
x=[10,20,30,40,50,60,70,80,90]
a=[8,1,7,2,0,3,7,3,2]
b=[7,2,5,6,9,1,4,5,3]

plt.subplot(1,2,1)
plt.scatter(x,a,marker="*",c="g",s=100)

plt.subplot(1,2,2)
plt.scatter(x,b,marker=".",c="r",s=200)
plt.show()
```


Histogram

Creating data

Making Histogram

plt.hist(data)
plt.show()

Histogram

Changing Aesthetics

```
In [24]: plt.hist(data,color="g",bins=4)
  plt.show()
```


Histogram

Working with a dataset

```
iris=pd.read_csv('iris.csv')
iris.head()
```

```
plt.hist(iris['Sepal.Length'],bins=30,color="r")
plt.show()
```


Box-Plot

Creating data

```
one = [1,2,3,4,5,6,7,8,9]
two = [1,2,3,4,5,4,3,2,1]
three = [6,7,8,9,8,7,6,5,4]

data = list([one,two,three])
```

```
plt.boxplot(data)
plt.show()
```


Violin-Plot

Creating data

```
one = [1,2,3,4,5,6,7,8,9]
two = [1,2,3,4,5,4,3,2,1]
three = [6,7,8,9,8,7,6,5,4]

data = list([one,two,three])
```

```
plt.violinplot(data,showmedians=True)
plt.show()
```


Pie-Chart

Creating data

```
fruit = ['Apple','Orange','Mango','Guava']
quantity = [67,34,100,29]
```

```
plt.pie(quantity,labels=fruit)
plt.show()
```


Pie-Chart

Changing Aesthetics

DoughNut-Chart

Creating Data

```
fruit = ['Apple','Orange','Mango','Guava']
quantity = [67,34,100,29]
```

```
plt.pie(quantity,labels=fruit,radius=2)
plt.pie([1],colors=['w'],radius=1)
plt.show()
```



```
In [10]: import seaborn as sns
    from matplotlib import pyplot as plt
```

```
In [18]:
           fmri = sns.load_dataset("fmri")
           fmri.head()
Out[18]:
               subject timepoint event region
                                                  signal
                  s13
                                       parietal -0.017552
                   s5
                                       parietal -0.080883
                             14
                                       parietal -0.081033
                  s12
                                       parietal -0.046134
            3
                  s11
                             18
                  s10
                                  stim parietal -0.037970
```


Grouping data with 'hue'

Adding Styles

Adding Markers


```
In [29]: import pandas as pd
    sns.set(style="whitegrid")
    pokemon=pd.read_csv('pokemon.csv')
```



```
In [32]: sns.barplot(x="is_legendary", y="speed", hue="generation",data=pokemon)
  plt.show()
```


SeaBorn Scatterplot

```
In [5]: iris = pd.read_csv('iris.csv')
  iris.head()
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	
0	5.1	3.5	1.4	0.2	setosa	
1	4.9	3.0	1.4	0.2	setosa	
2	4.7	3.2	1.3	0.2	setosa	
3	4.6	3.1	1.5	0.2	setosa	
4	5.0	3.6	1.4	0.2	setosa	

SeaBorn Scatterplot

```
sns.scatterplot(x="Sepal.Length", y="Petal.Length", data=iris,hue="Species",style="Species")
plt.show()
```


SeaBorn Scatterplot

sns.scatterplot(x='Sepal.Length',y='Petal.Length',data=iris,hue='Petal.Length')

SeaBorn Histogram/Distplot

```
diamonds = pd.read_csv('diamonds.csv')
diamonds.head()
```

	carat	cut	color	clarity	depth	table	price	X	у	Z
0	0.23	Ideal	E	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Е	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Е	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	- 1	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75

sns.distplot(diamonds['price'])
plt.show()

SeaBorn Histogram/Distplot

SeaBorn Histogram/Distplot

SeaBorn Histogram/Distplot

SeaBorn Histogram/Distplot

SeaBorn JointPlot

```
In [5]: iris = pd.read_csv('iris.csv')
  iris.head()
```

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

sns.jointplot(x='Sepal.Length',y='Petal.Length',data=iris)
plt.show()

SeaBorn JointPlot

SeaBorn JointPlot


```
churn = pd.read_csv('churn.csv')
churn.head()
```

ustomerID	gender	SeniorCitizen	Partner	Dependents	tenure
7590- VHVEG	Female	0	Yes	No	1
5575- GNVDE	Male	0	No	No	34
3668- QPYBK	Male	0	No	No	2
7795- CFOCW	Male	0	No	No	45
9237- HQITU	Female	0	No	No	2

sns.boxplot(x='Churn',y='tenure',data=churn)
plt.show()


```
sns.boxplot(x='Contract',y='tenure',data=churn,order=["Two year","Month-to-month","One year"])
plt.show()
```


SeaBorn Pair Plot

```
df = sns.load_dataset("iris")
sns.pairplot(df, hue="species")
plt.show()
```

