本项目使用 XGBoost 机器学习模型,探讨国企与民营企业在估值上的差异及其影响因素。以市净率(PB)作为估值指标,考察企业性质(EquityNature)、资本支出(Capexp)、第一大股东持股比例(LargestHolderRate)、前十股东持股比例(TopTenHoldersRate),以及公司规模(size)、固定资产占比(ppe_ratio)、无形资产占比(intangible_ratio)、资产负债率(lev)、毛利率(Gross_Margin)和公司年龄(age)等因素对估值的影响,旨在识别国企与民营企业在市场定价中的表现差异。

环境检查

```
In [1]: ! python --version
        ! pip list | findstr "pandas matplotlib scikit-learn"
       Python 3.13.2
                             3.10.3
       matplotlib
       matplotlib-inline
                             0.1.7
                             2.3.0
       pandas
       scikit-learn
                             1.7.0
In [2]: import numpy as np
        import pandas as pd
        import xgboost as xgb
        from xgboost import XGBRegressor
        from sklearn.model_selection import train_test_split, cross_val_score, GridSearc
        from bayes_opt import BayesianOptimization
        from IPython.core.interactiveshell import InteractiveShell
        from sklearn.metrics import (
            median_absolute_error,
            mean_absolute_error,
            mean_squared_error,
            r2 score,
        import pandas as pd
        from pprint import pprint
        import shap
        import numpy as np
```

c:\Users\Lenovo\AppData\Local\Programs\Python\Python313\Lib\site-packages\tqdm\au
to.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets.
See https://ipywidgets.readthedocs.io/en/stable/user_install.html
from .autonotebook import tqdm as notebook_tqdm

In [3]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"

目录

- 1. 数据整理
- 2. 描述性统计
- 3. 构建模型
- 4. 典型特征可视化

数据整理

导入数据

X的相关数据

```
In [72]: df_cas=pd.read_excel("rawdata\X\FS_Combas.xlsx",skiprows=[1,2],header=0)
    df_far=pd.read_excel("rawdata\X\FAR_Finidx.xlsx",skiprows=[1,2],header=0)
    df_en=pd.read_excel("rawdata\X\EN_EquityNatureAll.xlsx",skiprows=[1,2],header=0)
    df_stk=pd.read_excel("rawdata\X\STK_LISTEDCOINFOANL.xlsx",skiprows=[1,2],header=
    df_T10=pd.read_excel("rawdata\Y\FI_T10.xlsx",skiprows=[1,2],header=0)

    df_cas.head()
    df_far.head()
    df_en.head()
    df_stk.head()
    df_stk.head()
    df_T10.head()
```

```
<>:1: SyntaxWarning: invalid escape sequence '\X'
<>:2: SyntaxWarning: invalid escape sequence '\X'
<>:3: SyntaxWarning: invalid escape sequence '\X'
<>:4: SyntaxWarning: invalid escape sequence '\X'
<>:5: SyntaxWarning: invalid escape sequence '\Y'
<>:1: SyntaxWarning: invalid escape sequence '\X'
<>:2: SyntaxWarning: invalid escape sequence '\X'
<>:3: SyntaxWarning: invalid escape sequence '\X'
<>:4: SyntaxWarning: invalid escape sequence '\X'
<>:5: SyntaxWarning: invalid escape sequence '\Y'
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2676626486.py:1: SyntaxWarnin
g: invalid escape sequence '\X'
 df_cas=pd.read_excel("rawdata\X\FS_Combas.xlsx",skiprows=[1,2],header=0)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2676626486.py:2: SyntaxWarnin
g: invalid escape sequence '\X'
 df_far=pd.read_excel("rawdata\X\FAR_Finidx.xlsx",skiprows=[1,2],header=0)
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2676626486.py:3: SyntaxWarnin
g: invalid escape sequence '\X'
 df_en=pd.read_excel("rawdata\X\EN_EquityNatureAll.xlsx",skiprows=[1,2],header=
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2676626486.py:4: SyntaxWarnin
g: invalid escape sequence '\X'
 df_stk=pd.read_excel("rawdata\X\STK_LISTEDCOINFOANL.xlsx",skiprows=[1,2],header
C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2676626486.py:5: SyntaxWarnin
g: invalid escape sequence '\Y'
 df_T10=pd.read_excel("rawdata\Y\FI_T10.xlsx", skiprows=[1,2], header=0)
c:\Users\Lenovo\AppData\Local\Programs\Python\Python313\Lib\site-packages\openpyx
l\styles\stylesheet.py:237: UserWarning: Workbook contains no default style, appl
y openpyxl's default
 warn("Workbook contains no default style, apply openpyx1's default")
c:\Users\Lenovo\AppData\Local\Programs\Python\Python313\Lib\site-packages\openpyx
l\styles\stylesheet.py:237: UserWarning: Workbook contains no default style, appl
y openpyxl's default
 warn("Workbook contains no default style, apply openpyxl's default")
c:\Users\Lenovo\AppData\Local\Programs\Python\Python313\Lib\site-packages\openpyx
l\styles\stylesheet.py:237: UserWarning: Workbook contains no default style, appl
y openpyxl's default
 warn("Workbook contains no default style, apply openpyxl's default")
c:\Users\Lenovo\AppData\Local\Programs\Python\Python313\Lib\site-packages\openpyx
l\styles\stylesheet.py:237: UserWarning: Workbook contains no default style, appl
y openpyxl's default
 warn("Workbook contains no default style, apply openpyxl's default")
c:\Users\Lenovo\AppData\Local\Programs\Python\Python313\Lib\site-packages\openpyx
l\styles\stylesheet.py:237: UserWarning: Workbook contains no default style, appl
y openpyxl's default
 warn("Workbook contains no default style, apply openpyxl's default")
```

Out[72]:		Stkcd	ShortName	Accper	Typrep	A00121200	00	A001218000	A00	1000000
	0	2	万科A	2007- 12-31	Α	5.752056e+0	0.	000000e+00	1.000)945e+11
	1	2	万科A	2008- 12-31	Α	1.265333e+0	0.0	000000e+00	1.192	2366e+11
	2	2	万科A	2009- 12-31	Α	1.355977e+0)9 8.	196633e+07	1.376	6086e+11
	3	2	万科A	2010- 12-31	Α	1.219582e+0)9 3.	739519e+08	2.156	5376e+11
	4	2	万科A	2011- 12-31	Α	1.595863e+0)9 4.	354743e+08	2.962	2084e+11
			_	_	_	_				
Out[72]:		Stkcd	Accper	T30100	T401	00 Ca	рехр			
	0	2	2007-12-31	0.661125	0.4199	46 2.578978	e+08	-		
	1	2	2008-12-31	0.674441	0.3899	93 2.152837	e+08			
	2	2	2009-12-31	0.670017	0.2939	03 8.060622	e+08			
	3	2	2010-12-31	0.746861	0.4069	96 2.619386	e+08			
	4	2	2011-12-31	0.770997	0.3977	92 2.615609	e+08			
Out[72]:		Symbol	ShortNam	e EndDa	te Larg	jestHolderRa	te To	pTenHolders	Rate	EquityNa
Out[72]:	0	Symbol 2		200	7-	estHolderRa		<u>·</u>	Rate 22.71	EquityNa
Out[72]:	0		万科	A 200 12-3	7- 31 8-		53	·		EquityNa
Out[72]:		2	万科	A 200 12-3 A 200 12-3	7- 31 8- 31 9-	14.6	3		22.71	EquityNa
Out[72]:	1	2	万科	A 200 12-3 A 200 12-3 A 200 12-3	7- 31 8- 31 9- 31	14.6 14.7	i3 '3 '3	· · · · · · · · · · · · · · · · · · ·	22.71 22.01	EquityNa
Out[72]:	1 2	2 2	万科 万科 万科	A 200 12-3 A 200 12-3 A 201 A 201 12-3	7- 31 8- 31 9- 31 0- 31	14.6 14.7 14.7	73 73		22.71 22.01 22.91	EquityNa
Out[72]:	1 2 3	2 2 2	万科 万科 万科	A 200 12-3 A 200 12-3 A 201 12-3 A 201	7- 31 8- 31 9- 31 0- 31	14.6 14.7 14.7	73 73		22.71 22.01 22.91 22.77	EquityNa
Out[72]: Out[72]:	1 2 3	2 2 2	万科 万科 万科 万科	A 200 12-3 A 200 12-3 A 201 12-3 A 201 12-3 A 201	7- 31 8- 31 9- 31 0- 31 1- 31	14.6 14.7 14.7	73 73		22.71 22.01 22.91 22.77	EquityNa
	1 2 3	2 2 2	万科。 万科。 万科。 万科。 ShortNam	A 200 12-3 A 200 12-3 A 201 12-3 A 201 12-3 A 201	7- 31 8- 31 9- 31 0- 31 1- 31	14.6 14.7 14.7 14.7	73 73		22.71 22.01 22.91 22.77	EquityNa
	1 2 3 4	2 2 2 2 Symbol	万科 万科 万科 万科 万科	A 200 12-3 A 200 12-3 A 201 12-3 A 201 12-3 A 201 12-3 A 207-1	7- 31 8- 31 9- 31 0- 31 1- 31	14.6 14.7 14.7 14.7 14.7	73 73		22.71 22.01 22.91 22.77	EquityNa
	1 2 3 4	2 2 2 2 Symbol 2	万科 万科 万科 万科 ShortNam 万科	A 2000 12-3 A 2000 12-3 A 2011 12-3	7- 31 8- 31 9- 31 0- 31 1- 31 Date E: 2-31	14.6 14.7 14.7 14.7 14.7 stablishDate 1984-05-30	73 73		22.71 22.01 22.91 22.77	EquityNa
	1 2 3 4 0 1	2 2 2 2 Symbol 2 2 2	万科 万科 万科 万科 ShortNam 万科 万科	A 2000 12-3 A 2000 12-3 A 2011 12-3	7- 31 8- 31 9- 31 0- 31 1- 31 Date E: 2-31 2-31	14.6 14.7 14.7 14.7 14.7 stablishDate 1984-05-30 1984-05-30	73 73		22.71 22.01 22.91 22.77	EquityNa

[72]:		Stkcd	ShortName	Accper	Source	Indcd1	Indnme1	F100101B	F100401A
	0	2	万科A	2007- 12-31	0	K70	房地产业	37.271017	5.842908
	1	2	万科A	2008- 12-31	0	K70	房地产业	15.284721	1.826939
	2	2	万科A	2009- 12-31	0	K70	房地产业	18.484927	2.617532
	3	2	万科A	2010- 12-31	0	K70	房地产业	10.224503	1.655741
	4	2	万科A	2011- 12-31	0	K70	房地产业	7.080777	1.210838

Out[

```
数据合并
          Υ
In [73]: df_T10["year"]=df_T10["Accper"].str.slice(0,4).astype("int64")
          df_T10 = df_T10.rename(columns={"F100101B": "pe"})
          df_T10 = df_T10.rename(columns={"F100401A": "pb"})
          Χ
In [74]: df_11=pd.merge(df_cas,df_far,how="outer",on=["Stkcd","Accper"])
          df_22=pd.merge(df_en,df_stk,how="outer",on=["Symbol","EndDate"])
In [75]: df_11.columns
Out[75]: Index(['Stkcd', 'ShortName', 'Accper', 'Typrep', 'A001212000', 'A001218000',
                 'A001000000', 'A002101000', 'A002201000', 'A002000000', 'T30100',
                 'T40100', 'Capexp'],
                dtype='object')
In [76]: df_11["year"]=df_11["Accper"].str.slice(0,4).astype("int64")
          df_1=df_11[['Stkcd', 'ShortName', 'year',
                      'A001212000', 'A001218000', 'A0010000000', 'A002101000', 'A002201000', 'A002000000',
                      'T30100', 'T40100', 'Capexp']]
In [77]: df_22.columns
Out[77]: Index(['Symbol', 'ShortName_x', 'EndDate', 'LargestHolderRate',
                  'TopTenHoldersRate', 'EquityNature', 'EquityNatureID', 'Seperation',
                  'ShortName_y', 'EstablishDate'],
                dtype='object')
In [78]: df_22["year"]=df_22["EndDate"].str.slice(0,4).astype("int64")
          df_22 = df_22.rename(columns={"Symbol": "Stkcd"})
          df_2=df_22[['Stkcd', 'year',
                      'LargestHolderRate', 'TopTenHoldersRate', 'EquityNature',
                      'EquityNatureID', 'Seperation', 'EstablishDate']]
```

```
In [79]: df=pd.merge(df_1,df_2,how="outer",on=["Stkcd","year"])
        df=pd.merge(df,df_T10,how="outer",on=["Stkcd","year"])
In [80]: df.head()
           Stkcd ShortName x year A001212000
                                                  A001218000
                                                               A001000000
                                                                             A0021
Out[80]:
         0
               2
                        万科A 2007 5.752056e+08 0.000000e+00 1.000945e+11 1.10485
         1
               2
                        万科A 2008 1.265333e+09 0.000000e+00 1.192366e+11 4.60196
         2
               2
                        万科A 2009 1.355977e+09 8.196633e+07 1.376086e+11 1.18825
               2
                        万科A 2010 1.219582e+09 3.739519e+08 2.156376e+11 1.47800
         3
         4
               2
                        万科A 2011 1.595863e+09 4.354743e+08 2.962084e+11 1.72444
```

5 rows × 25 columns

数据清洗

```
Out[83]:
         Stkcd
                                0
         ShortName_x
                                1
         year
                                0
                                4
         A001212000
         A001218000
                               237
         A001000000
                                1
         A002101000
                             8095
                             17077
         A002201000
         A002000000
                                1
                                30
         T30100
                               71
         T40100
                               58
         Capexp
         LargestHolderRate
                             2204
         TopTenHoldersRate
                             2204
         EquityNature
                             3269
         EquityNatureID
                             3269
         Seperation
                             4599
         EstablishDate
                              822
         ShortName_y
                             3169
                             3169
         Accper
         Source
                             3169
         Indcd1
                             3169
         Indnme1
                             3169
         pe
                             10185
         pb
                             3488
         dtype: int64
In [84]: #剔除资产总计缺失的样本
         df=df.dropna(axis=0, subset="A001000000")
         # A002101000 [短期借款]、A002201000 [长期借款]、Seperation[两权分离率(%)]缺失较多
         df.drop(["A002101000"],axis=1,inplace=True)
         df.drop(["A002201000"],axis=1,inplace=True)
         df.drop(["Seperation"],axis=1,inplace=True)
In [85]: df.head()
Out[85]:
            Stkcd ShortName x
                                      A001212000
                                                    A001218000
                                                                 A001000000
                                                                               A0020
                                year
                         万科A 2007 5.752056e+08 0.000000e+00 1.000945e+11 6.61749
         0
               2
                         万科A 2008 1.265333e+09 0.000000e+00 1.192366e+11 8.04180
         1
               2
         2
               2
                         万科A 2009 1.355977e+09 8.196633e+07 1.376086e+11 9.22000
         3
               2
                         万科A 2010 1.219582e+09 3.739519e+08 2.156376e+11 1.61051
               2
                         万科A 2011 1.595863e+09 4.354743e+08 2.962084e+11 2.28375
         4
        5 rows × 22 columns
```

In [86]: # 只保留国企和民营
df = df[(df['EquityNature'] == '国企') | (df['EquityNature'] == '民营')]

```
In [87]: df.shape
         df.isnull().sum()
Out[87]: (48235, 22)
Out[87]: Stkcd
         ShortName_x
                                0
         year
                                0
         A001212000
                                1
         A001218000
                              174
         A001000000
                                0
         A002000000
                                0
                                2
         T30100
         T40100
                               32
         Capexp
                               42
                              1
         LargestHolderRate
         TopTenHoldersRate
         EquityNature
                              0
                              0
         EquityNatureID
                              0
         EstablishDate
                           1429
         ShortName_y
                           1429
         Accper
         Source
                           1429
         Indcd1
                            1429
         Indnme1
                             1429
                            7533
         pe
                             1714
         pb
         dtype: int64
In [88]: df=df.dropna()
         牛成变量
In [89]: df.columns
Out[89]: Index(['Stkcd', 'ShortName_x', 'year', 'A001212000', 'A001218000',
                'A001000000', 'A002000000', 'T30100', 'T40100', 'Capexp',
                'LargestHolderRate', 'TopTenHoldersRate', 'EquityNature',
                'EquityNatureID', 'EstablishDate', 'ShortName_y', 'Accper', 'Source',
                'Indcd1', 'Indnme1', 'pe', 'pb'],
               dtype='object')
In [90]: # 公司规模
         df["size"] =np.log(df["A001000000"])
         # 固定资产净额占比
         df['ppe_ratio'] =df["A001212000"]/df["A001000000"]*100
         # 无形资产净额占比
         df['intangible ratio'] =df["A001218000"]/df["A001000000"]*100
         # 资产负债率
         df['lev'] = (df['A002000000'] / df['A001000000'])*100
         # 营业毛利率
         df['Gross_Margin'] = df['T40100']
         #公司年龄
         df["Establish_year"]=df["EstablishDate"].str.slice(0,4).astype("int64")
         df["age"] = df["year"] - df["Establish year"]
In [91]: df.columns
```

```
Out[91]: Index(['Stkcd', 'ShortName_x', 'year', 'A001212000', 'A001218000',
                'A001000000', 'A002000000', 'T30100', 'T40100', 'Capexp',
                'LargestHolderRate', 'TopTenHoldersRate', 'EquityNature',
                'EquityNatureID', 'EstablishDate', 'ShortName_y', 'Accper', 'Source',
                'Indcd1', 'Indnme1', 'pe', 'pb', 'size', 'ppe_ratio',
                'intangible_ratio', 'lev', 'Gross_Margin', 'Establish_year', 'age'],
               dtype='object')
In [92]: df_clean=df[['Stkcd', 'year','Indcd1', 'Indnme1', 'EquityNature',
                     'Capexp', 'LargestHolderRate', 'TopTenHoldersRate',
                     'size', 'ppe_ratio', 'intangible_ratio',
                      'lev', 'Gross_Margin', 'age', 'pe', 'pb']]
In [93]: df soe=df clean[df clean['EquityNature'] == "国企"]
         df_po=df_clean[df_clean['EquityNature'] == "民营"]
In [94]: df_soe.shape
         df_po.shape
Out[94]: (15687, 16)
Out[94]: (24827, 16)
         为后续估值比较, 现对国企, 民营样本随机抽取, 保证样本数量一致
In [95]: # 设置随机种子以确保结果可复现
         np.random.seed(42)
         # 从国企数据集中随机抽取13000个样本
         df_soe_sample = df_soe.sample(n=13000, random_state=42)
         # 从民企数据集中随机抽取13000个样本
         df_po_sample = df_po.sample(n=13000, random_state=42)
         # 检查新样本的形状
         print(df_soe_sample.shape)
         print(df_po_sample.shape)
        (13000, 16)
        (13000, 16)
         数据导出
In [96]: df clean.to excel("data/df clean.xlsx",index=False)
```

```
In [96]: df_clean.to_excel("data/df_clean.xlsx",index=False)
    df_soe.to_excel("data/df_soe.xlsx",index=False)
    df_po.to_excel("data/df_po.xlsx",index=False)
    df_soe_sample.to_excel("data/df_soe_sample.xlsx",index=False)
    df_po_sample.to_excel("data/df_po_sample.xlsx",index=False)
```

描述性统计

```
In [97]: df_soe = pd.read_excel('data\df_soe.xlsx')
df_po = pd.read_excel('data\df_po.xlsx')
```

```
<>:1: SyntaxWarning: invalid escape sequence '\d'
        <>:2: SyntaxWarning: invalid escape sequence '\d'
        <>:1: SyntaxWarning: invalid escape sequence '\d'
        <>:2: SyntaxWarning: invalid escape sequence '\d'
        C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2745604325.py:1: SyntaxWarnin
        g: invalid escape sequence '\d'
          df_soe = pd.read_excel('data\df_soe.xlsx')
        C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\2745604325.py:2: SyntaxWarnin
        g: invalid escape sequence '\d'
          df_po = pd.read_excel('data\df_po.xlsx')
In [98]: columns_of_interest = ['pb','Capexp', 'LargestHolderRate', 'TopTenHoldersRate',
                                 'intangible_ratio', 'lev', 'Gross_Margin', 'age',]
In [99]: descriptive_soe = df_soe[columns_of_interest].describe().transpose().round(4)
         descriptive_soe.insert(0, 'variable', columns_of_interest)
         descriptive_soe
         descriptive_po = df_po[columns_of_interest].describe().transpose().round(4)
         descriptive_po.insert(0, 'variable', columns_of_interest)
         descriptive_po
Out[99]:
                                       variable
                                                  count
                                                                                 std
                                                                mean
                                                                                         n
                                            pb 15687.0 3.065000e+00 4.151700e+00
                                                                                      0.10
                         pb
                     Capexp
                                        Capexp
                                               15687.0 1.845876e+09 1.165562e+10
                                                                                      0.00
          LargestHolderRate
                              LargestHolderRate 15687.0 3.962740e+01
                                                                       1.548590e+01
                                                                                       3.62
         TopTenHoldersRate
                            TopTenHoldersRate 15687.0 5.879050e+01 1.593320e+01
                                                                                     12.72
                                           size 15687.0 2.280080e+01 1.490100e+00 17.66
                        size
                                      ppe ratio 15687.0 2.526530e+01 1.927640e+01
                                                                                      0.00
                   ppe ratio
             intangible ratio
                                 intangible_ratio 15687.0 5.388000e+00 8.379400e+00
                                                                                      0.00
                                                15687.0 4.866140e+01
                                                                       1.960780e+01
                                                                                      1.02
```

Gross_Margin

15687.0

2.546000e-01

15687.0 1.948660e+01

Gross Margin

age

1.604000e-01

7.161900e+00

-0.51

0.00

	variable	count	mean	std	n			
pb	pb	24827.0	4.204600e+00	1.706560e+01	0.00			
Сарехр	Сарехр	24827.0	3.870119e+08	1.925693e+09	0.00			
LargestHolderRate	LargestHolderRate	24827.0	3.240710e+01	1.362090e+01	2.19			
TopTenHoldersRate	TopTenHoldersRate	24827.0	6.030540e+01	1.472100e+01	3.58			
size	size	24827.0	2.179430e+01	1.088900e+00	15.97			
ppe_ratio	ppe_ratio	24827.0	1.864590e+01	1.295060e+01	0.00			
intangible_ratio	intangible_ratio	24827.0	4.258700e+00	4.906400e+00	0.00			
lev	lev	24827.0	3.557960e+01	1.870740e+01	0.70			
Gross_Margin	Gross_Margin	24827.0	3.263000e-01	1.785000e-01	-1.21			
age	age	24827.0	1.780180e+01	6.266200e+00	1.00			
4								
<pre>descriptive_soe.to_excel("data/descriptive_soe.xlsx",index=False)</pre>								

In [100...

Out[99]

descriptive_po.to_excel("data/descriptive_po.xlsx",index=False)

构建模型

国民估值差异

```
In [101...
          df_soe_sample = pd.read_excel('data\df_soe_sample.xlsx')
          df_po_sample = pd.read_excel('data\df_po_sample.xlsx')
          df_soe_sample.head()
          df_po_sample.head()
         <>:1: SyntaxWarning: invalid escape sequence '\d'
         <>:2: SyntaxWarning: invalid escape sequence '\d'
         <>:1: SyntaxWarning: invalid escape sequence '\d'
         <>:2: SyntaxWarning: invalid escape sequence '\d'
         C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\3059238796.py:1: SyntaxWarnin
         g: invalid escape sequence '\d'
           df_soe_sample = pd.read_excel('data\df_soe_sample.xlsx')
         C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\3059238796.py:2: SyntaxWarnin
         g: invalid escape sequence '\d'
           df_po_sample = pd.read_excel('data\df_po_sample.xlsx')
```

Out[101		Stkcd	year	Indcd1	Indnme1	EquityNature	Сарехр	LargestHolderRat			
	0	603123	2013	F52	零售业	国企	1.056187e+08	55.0			
	1	2125	2024	C26	化学原料 和化学制 品制造业	国企	1.199149e+08	29.5			
	2	600389	2020	C26	化学原料 和化学制 品制造业	国企	1.991432e+08	29.30			
	3	2302	2015	C30	非金属矿 物制品业	国企	2.205167e+08	36.1			
	4	600861	2013	F52	零售业	国企	2.507833e+06	33.4!			
	•							•			
Out[101		Stkcd	year	Indcd1	Indnme1	EquityNature	Сарехр	LargestHolderRate			
	0	2446	2020	C39	计算机、 通信和其 他电子设 备制造业	民营	7.707588e+07	9.8			
	1	300067	2017	C26	化学原料 和化学制 品制造业	民营	4.317553e+07	38.1			
	2	2815	2023	C39	计算机、 通信和其 他电子设 备制造业	民营	1.359295e+09	45.6			
	3	603057	2022	C13	农副食品 加工业	民营	1.072157e+08	24.7			
	4	688622	2021	C40	仪器仪表 制造业	民营	1.321843e+08	20.8			
								•			
In [102	de		算 <i>pb</i> 自 ob = df	内描述性纟 -['pb'].¢	充计信息	ercentiles=[0.2	2, 0.4, 0.6, 0.	8]).round(3)			
	st #	民营 pb st	oe = ca 统计			df_soe_sample) f_po_sample)					
	st		pd.Da	ataFrame(stats_pb_soe)	})				
	# 合并两个 DataFrame result_stats = pd.concat([stats_soe, stats_po], axis=1)										
	re		ts['dif	f'] = re			result_stats[' <mark>r</mark> apply(lambda >	oo_pb'] c: 1 if x > 0 else			

```
print(result_stats)
                                     diff indicator
                 soe_pb
                            po_pb
        count 13000.000 13000.000
                                     0.000
                  3.068
                            4.193
                                    -1.125
                                                   -1
        mean
        std
                  4.142
                          18.941 -14.799
                                                   -1
        min
                 0.108
                           0.000
                                    0.108
                                                   1
        20%
                  1.198
                            1.798
                                    -0.600
                                                   -1
                  1.799
        40%
                           2.540 -0.741
                                                   -1
        50%
                           2.946 -0.786
                                                   -1
                  2.160
                           3.459
        60%
                  2.612
                                    -0.847
                                                   -1
        80%
                  4.107
                           5.170 -1.063
                                                   -1
                244.631 2000.870 -1756.239
                                                   -1
        max
         性能函数
In [103...
         def myscoring(y_true, y_pred):
             print("-" * 10, "\n")
             print("median_absolute_error:", median_absolute_error(y_true, y_pred))
             print("mean_absolute_error:", mean_absolute_error(y_true, y_pred))
             print("mean_squared_error:", mean_squared_error(y_true, y_pred))
             print("r2_score:", r2_score(y_true, y_pred))
```

XGBoost pb

国企

```
In [36]: df_soe = pd.read_excel('data\df_soe.xlsx')
         df_soe.head()
         df_soe.columns
        <>:1: SyntaxWarning: invalid escape sequence '\d'
        <>:1: SyntaxWarning: invalid escape sequence '\d'
        C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\8676071.py:1: SyntaxWarning: i
        nvalid escape sequence '\d'
         df_soe = pd.read_excel('data\df_soe.xlsx')
Out[36]:
                   year Indcd1 Indnme1 EquityNature
                                                             Capexp LargestHolderRate
         0
                2 2007
                            K70
                                 房地产业
                                                  国企 2.578978e+08
                                                                                  14.63
                                 房地产业
         1
                  2008
                           K70
                                                  国企 2.152837e+08
                                                                                  14.73
         2
                2 2009
                           K70
                                 房地产业
                                                  国企 8.060622e+08
                                                                                  14.73
         3
                2 2010
                            K70
                                 房地产业
                                                  国企 2.619386e+08
                                                                                  14.73
                                 房地产业
                                                  国企 2.615609e+08
         4
                2 2011
                           K70
                                                                                  14.73
Out[36]: Index(['Stkcd', 'year', 'Indcd1', 'Indnme1', 'EquityNature', 'Capexp',
                'LargestHolderRate', 'TopTenHoldersRate', 'size', 'ppe_ratio',
                'intangible_ratio', 'lev', 'Gross_Margin', 'age', 'pe', 'pb'],
               dtype='object')
In [37]:
        # 定义特征列和目标列名
```

features = ['Capexp','LargestHolderRate', 'TopTenHoldersRate', 'size',

```
'ppe_ratio', 'intangible_ratio', 'lev', 'Gross_Margin', 'age']
         # 获取特征数据 (X) 和目标变量数据 (Y)
         X = df_soe[features]
         y_pb = df_soe['pb']
In [38]: from sklearn.model_selection import train_test_split
         X_train_pb, X_test_pb, y_train_pb, y_test_pb = train_test_split(
             X, y_pb, test_size=0.3, random_state=42
         print("PB 模型数据: ")
         print("X_train_pb shape:", X_train_pb.shape)
         print("y_train_pb shape:", y_train_pb.shape)
         print("X_test_pb shape:", X_test_pb.shape)
         print("y_test_pb shape:", y_test_pb.shape)
       PB 模型数据:
       X_train_pb shape: (10980, 9)
       y_train_pb shape: (10980,)
       X_test_pb shape: (4707, 9)
       y_test_pb shape: (4707,)
In [39]: xgb_model_pb = xgb.XGBRegressor(objective="reg:squarederror", random_state=42)
         xgb_model_pb.fit(X_train_pb, y_train_pb)
         y_train_pred_pb = xgb_model_pb.predict(X_train_pb)
         y_test_pred_pb = xgb_model_pb.predict(X_test_pb)
         print("训练集评估:")
         myscoring(y_train_pb, y_train_pred_pb)
         print("测试集评估:")
         myscoring(y_test_pb, y_test_pred_pb)
Out[39]:
          XGBRegressor
         ► Parameters
        训练集评估:
       median_absolute_error: 0.49084503043746963
       mean absolute error: 0.6914826948145606
       mean_squared_error: 1.027504719691468
       r2 score: 0.9416129741351332
       测试集评估:
       median_absolute_error: 0.7982378918151856
       mean_absolute_error: 1.3970954951954995
       mean_squared_error: 11.356426512093265
       r2 score: 0.306671750863294
```

```
In [43]: def function_xgbreg(
             n estimators,
              learning_rate,
              max_depth,
              min_child_weight,
              gamma,
              subsample,
              colsample bytree,
              reg_alpha, #新增正则化参数
              reg lambda
                             # 新增正则化参数
          ):
              xgbreg = XGBRegressor(
                  objective="reg:squarederror",
                  booster="gbtree",
                  n_estimators=int(n_estimators),
                  learning_rate=learning_rate,
                  max_depth=int(max_depth),
                  min_child_weight=min_child_weight,
                  gamma=gamma,
                  subsample=subsample,
                  colsample bytree=colsample bytree,
                  reg_alpha=reg_alpha, # 添加正则化参数
reg_lambda=reg_lambda # 添加正则化参数
              )
              cvs = cross_val_score(estimator=xgbreg, X=X_train_pb, y=y_train_pb, scoring=
              return cvs.mean()
          # 参数搜索空间调整(重点优化过拟合相关参数)
          pds = {
              "n_estimators": (500, 2000), # 扩大迭代次数范围
              "learning_rate": (0.001, 0.1), # 降低学习率上限
              "max_depth": (3, 10), # 降低树深度上限
"min_child_weight": (1, 5), # 降低最小样本权重上限
"gamma": (1, 5), # 提高分裂阈值下限
              "subsample": (0.5, 1), # 限制子样本比例
"colsample_bytree": (0.5, 1), # 限制特征采样比例
              "reg_alpha": (0, 10), #添加L1正则化
"reg_lambda": (0, 10) #添加L2正则化
              "reg_lambda": (0, 10)
          }
          optimizer = BayesianOptimization(function xgbreg, pds, random state=0)
          optimizer.maximize(init_points=20, n_iter=50)
          xgbpds = optimizer.max["params"]
          # 最终模型构建(完整参数应用)
          xgbreg_pb_gq = XGBRegressor(
              objective="reg:squarederror",
              booster="gbtree",
              n_estimators=int(xgbpds["n_estimators"]),
              learning rate=xgbpds["learning rate"],
              max_depth=int(xgbpds["max_depth"]),
              min_child_weight=xgbpds["min_child_weight"],
              gamma=xgbpds["gamma"],
              subsample=xgbpds["subsample"],
              colsample_bytree=xgbpds["colsample_bytree"],
              reg_alpha=xgbpds["reg_alpha"], # 应用优化后的正则化参数 reg_lambda=xgbpds["reg_lambda"] # 应用优化后的正则化参数
          )
```

```
xgbreg_pb_gq.fit(X_train_pb, y_train_pb)

y_train_pred_pb = xgbreg_pb_gq.predict(X_train_pb)
y_test_pred_pb = xgbreg_pb_gq.predict(X_test_pb)

myscoring(y_train_pb, y_train_pred_pb)
myscoring(y_test_pb, y_test_pred_pb)
```

| iter | target | colsam... | gamma | learni... | max_depth | min_c h... | n_esti... | reg_alpha | reg_la... | subsample |

1	0.361	0.7744	3.861	0.06067	6.814	1 2.695
1.469e+03	4.376	8.918	0.9818	i	,	
2	0.388	0.6917	4.167	0.05336	l 6.976	4.702
606.6	0.8713	0.2022	0.9163	i		
3	0.3714	0.8891	1 4.48	0.09788	8.594	2.846
1.671e+03	1.183	6.399	0.5717		1 2722	1 = 1 = 1
4	0.3802	0.9723	3.087	0.04205	4.852	4.097
1.184e+03	5.684	0.1879	0.8088		1	1
5	0.441	0.806	3.468	0.09443	l 7.773	2.438
1.156e+03	6.976	0.6023	0.8334			1 27 .50
6	0.4253	0.8353	1.842	0.01376	5.208	2.455
1.355e+03	4.386	9.884	0.551		1 2122	1 27 .52
7	0.4075	0.6044	1.645	0.06566	4.773	2.865
866.6	1.59	1.104	0.8282		1	1 = 1000
8	0.4055	0.5691	1.786	0.0375	8.747	1.388
1.757e+03	0.961	9.765	0.7343		1 000	1 -1300
9	0.3488	0.9884	3.419	0.07419	3.274	2.131
680.3	2.961	1.187	0.659		1 3127.	1 2.131
1 10	0.3568	0.7071	1.257	0.06955	6.966	2.062
1.285e+03	0.9394	5.759	0.9646		1 0.300	1 2.002
11	0.418	0.6593	3.67	0.01405	8.014	2.158
774.8	5.865	0.2011	0.9145	0.01.05	1 0101.	1 2.130
1 12	0.4168	0.5023	3.711	0.02773	8.146	4.849
873.1	5.762	5.92	0.7861	0.02//3	1 012.0	1
13	0.3957	0.6115	4.811	0.04527	8.925	3.798
946.2	8.138	3.965	0.9406	0.0.527	1 01323	1 3.730
1 14	0.3748	0.7906	4.527	0.06956	8.077	3.005
1.934e+03	6.44	4.239	0.8032		1 0.077	1 3.003
15	0.4071	0.5096	2.206	0.06636	5.031	1 3.472
1.143e+03	1.355	2.983	0.785	0.00030	1 3.031	1 3.472
111456103	0.3638	0.7954	3.297	0.06567	7.565	2.726
1.845e+03	3.676	4.359	0.946	1	1 7.303	2.720
17	0.4227	0.9031	3.816	0.01092	9.436	3.857
1.998e+03	!	8.681	0.5812	0.01032	1 3.430	1 3.037
18	0.3534	0.8078	1.495	0.08495	8.651	3.276
	0.6917	6.974	0.7268	0.00433	1 0.031	1 3.270
19	0.3965	0.861	1 4.466	0.09758	8.991	1.047
1.04e+03	7.3	1.716	0.7605	0.03730	1 0.331	1 1.047
20	0.3113	0.5272	1.8	0.002834	8.556	1.896
1.018e+03	9.281	7.044	0.5159	0.002034	1 0.330	1 1.050
21	0.3901	0.812	2.314	0.08544	9.969	1.267
1.16e+03	5.981	9.481	0.6593		1 3.303	1 21207
22	0.3798	1.0	5.0	0.1	3.0	5.0
1.155e+03	:	0.0	1.0		1 3.0	1 3.0
23	0.3936	0.7427	3.526	0.03991	6.75	3.804
912.6	7.341	3.601	0.9431		1 00.75	1 3.00
24	0.4013	0.6409	2.411	0.04466	4.251	3.641
1.127e+03		6.572	0.7809		1	1 373.2
25	0.3851	0.9628	4.123	0.05798	7.702	1.421
1.088e+03	:	7.968	0.7126		1	,
26	0.3524	0.8032	3.285	0.0812	7.613	3.329
1.463e+03	:	6.842	0.9468		1 : 1020	, 5.525
27	0.385	0.9966	1.05	0.0913	8.3	2.533
1.153e+03	8.996	2.182	0.7109		, 5.5	, 2.333
28	0.3614	0.8227	4.337	0.02408	4.544	1.739
1.695e+03	:	8.403	0.9562		, ,,,,,,,	,,,,,
, _,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,	,	1		

29	0.3907	0.9781	2.819	0.04431	8.908	3.403
1.296e+03	1.678	0.9366	0.8085			
30	0.3825	0.9303	3.572	0.09915	7.059	1.008
687.5	5.161	5.16	0.5704			
31	0.3797	0.7405	1.899	0.06215	4.612	4.402
1.387e+03	2.13	1.985	0.8184			
32	0.4236	0.5286	4.644	0.07492	6.195	4.311
1.907e+03	5.982	3.569	0.8466			
33	0.3723	0.8263	2.38	0.05286	3.568	2.752
1.154e+03	5.01	2.004	0.6375			
34	0.3501	0.9644	3.613	0.04725	3.449	3.404
1.191e+03	8.224	7.101	0.755			
35	0.4248	0.6988	4.729	0.003215	7.838	1.474
1.336e+03	6.881	0.2093	0.8806			
36	0.4159	0.6587	2.963	0.04047	6.346	4.898
971.7	8.229	9.618	0.6229			
37	0.3785	0.9983	2.992	0.09654	8.978	1.306
949.9	6.844	8.129	0.8197			
38	0.3802	0.9707	2.157	0.07405	4.333	4.011
1.037e+03	9.579	5.18	0.5227			
39	0.4016	0.73	3.887	0.04655	8.647	3.299
945.4	8.118	3.835	0.5428			
40	0.3916	0.7999	4.48	0.04479	8.099	2.074
1.158e+03	6.821	1.412	0.7729			
41	0.4427	0.9575	4.445	0.003271	9.823	3.087
1.156e+03	6.722	0.4112	0.5746			
42	0.3926	0.5917	3.741	0.07389	9.317	3.199
1.156e+03	4.356	0.8916	0.8883			
43	0.417	0.5077	2.329	0.01588	6.077	3.075
1.355e+03	4.178	9.081	0.8904			
44	0.4018	0.6063	4.283	0.04041	7.71	3.185
1.155e+03	8.539	3.311	0.6518	!		
45	0.3877	0.8827	4.753	0.05338	8.224	4.067
1.153e+03	6.015	0.5741	0.9317	!		
	0.3811	0.9149	:	0.01877	3.946	1.76
1.355e+03	:	8.289	0.5061	!		
47	0.4269	0.6247	1.456	0.03129	7.135	3.046
1.157e+03	:	0.1817	0.8757			
48	0.3761	0.9489	3.037	0.08433	9.54	4.016
1.157e+03		0.07724	0.6691			
•	0.387	0.8114	4.723	0.04523	8.709	2.262
1.156e+03	:	0.7056	0.9729		l a 070	
	0.3852	0.723	4.133	0.08006	6.273	4.062
1.906e+03	:	4.695	0.7237		l = 506	1 2 040
51	0.4255	0.5516	3.984	0.03809	7.536	2.818
1.157e+03	:	1.105	0.9535	1 0 05453	1 0 660	I 1 404
52	0.4522	0.6585	4.811	0.05453	8.669	1.404
1.156e+03	:	0.2741	0.8726	0 05451	l E 420	ا ۽ مو
53 971.6	0.3848	0.7621	3.347	0.05451	5.429	3.98
:	7.935	:	0.7205	1 0 0622	l o 746	1 2 526
54 1.157e+03	0.4261 7.574	0.5461 0.2177	3.661 0.5659	0.0623	8.746	2.526
1.157e+03 55	0.4226	0.7095	1.008	0.05615	6.447	2.787
1.157e+03	:	1.101	0.8772	0.62012	1 0.44/	4./0/
1.137e+03 56	0.3105	0.5304	4.812	0.001575	7.869	3.053
1.155e+03	:	1.358	0.7946	0.0013/3	1 7.009	دده،د ۱
57	0.4267	0.7379	1.315	0.00722	6.944	4.585
1.156e+03	•	:	0.6564		1 0.544	1 4.202
:	0.4231	0.6756	2.256	0.01259	8.574	2.312
1.158e+03	:	:	0.7816		1 3.374	, 2.312
,,	, 0	, 025,	, 00.020	1		

59	0.4253	0.6058	1.813	0.02846	6.057	3.578
1.157e+03	6.411	0.6889	0.7962			
60	0.4254	0.5732	3.032	0.004982	7.783	1.869
1.156e+03	7.592	0.1918	0.6842			
61	0.3955	0.593	1.238	0.08095	6.354	4.261
1.156e+03	6.025	2.449	0.6578			
62	0.4048	0.97	1.01	0.06094	8.946	2.584
1.156e+03	6.662	1.941	0.9497			
63	0.4211	0.8729	1.901	0.02917	6.795	2.837
1.155e+03	6.027	0.1386	0.739			
64	0.3739	0.8	1.87	0.07425	5.673	3.223
1.157e+03	8.167	1.531	0.591			
65	0.4138	0.9033	2.715	0.01092	9.46	2.018
1.156e+03	7.679	1.346	0.7532			
66	0.4003	0.6941	2.706	0.02279	7.634	4.132
1.157e+03	7.421	2.206	0.8297			
67	0.4296	0.7451	2.594	0.06569	7.491	2.992
1.156e+03	6.79	0.5319	0.8589			
68	0.4267	0.9469	1.481	0.007131	7.69	2.113
1.156e+03	5.535	0.7025	0.8807			
69	0.3906	0.9304	2.007	0.07809	6.507	4.105
1.156e+03	5.57	0.09368	0.9836			
70	0.4393	0.5317	2.954	0.06121	8.184	1.573
1.158e+03	7.616	0.03646	0.9987			

median_absolute_error: 0.6345219159164428
mean_absolute_error: 0.9175571608217421
mean_squared_error: 1.8874593480804907

r2_score: 0.892746830585507

median_absolute_error: 0.7947727151565551
mean_absolute_error: 1.3440422545743953
mean_squared_error: 7.318453858410396

r2_score: 0.553196527566472

模型解释

```
In [44]: from matplotlib import rcParams
rcParams["font.family"] = ["Times New Roman", "SimSun"]

# modeL指向训练好的模型
model=xgbreg_pb_gq

In [45]: featureimportance=pd.DataFrame(
["gain": model get beesten() get scene(importance type="gain")
```

	gain	weight	cover
Сарехр	165.919373	1299.0	1322.929932
LargestHolderRate	52.716782	1377.0	803.522156
TopTenHoldersRate	81.243385	1398.0	856.545044
size	207.985443	1482.0	1951.215942
ppe_ratio	72.220818	1497.0	797.883118
intangible_ratio	107.979317	1384.0	804.452332
lev	187.637650	1330.0	1763.018066
Gross_Margin	79.723541	1369.0	1126.222046
age	83.576752	1068.0	996.573059

Out[45]:

```
In [46]: explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)
```

In [47]: shap.summary_plot(shap_values, X, plot_type="bar")

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\1599793300.py:1: FutureWarnin g: The NumPy global RNG was seeded by calling `np.random.seed`. In a future versi on this function will no longer use the global RNG. Pass `rng` explicitly to optin to the new behaviour and silence this warning.

shap.summary_plot(shap_values, X, plot_type="bar")

In [48]: shap.summary_plot(shap_values, X)

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\3017445420.py:1: FutureWarnin
g: The NumPy global RNG was seeded by calling `np.random.seed`. In a future versi
on this function will no longer use the global RNG. Pass `rng` explicitly to optin to the new behaviour and silence this warning.
 shap.summary_plot(shap_values, X)

民营

```
In [104...
          df_po = pd.read_excel('data\df_po.xlsx')
          df_po.head()
          df_po.columns
         <>:1: SyntaxWarning: invalid escape sequence '\d'
         <>:1: SyntaxWarning: invalid escape sequence '\d'
        C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\3007340969.py:1: SyntaxWarnin
         g: invalid escape sequence '\d'
          df_po = pd.read_excel('data\df_po.xlsx')
                                                                     LargestHolderRate T
             Stkcd year Indcd1 Indnme1 EquityNature
                                                             Capexp
Out[104...
          0
                 7 2011
                                    住宿业
                                                    民营
                                                          723368.00
                                                                                 17.41
                            H61
          1
                 7 2012
                            H61
                                    住宿业
                                                    民营
                                                         1869274.04
                                                                                 17.41
          2
                 7 2013
                            H61
                                    住宿业
                                                    官男
                                                          832043.82
                                                                                 17.41
          3
                 7 2015
                            H61
                                    住宿业
                                                    民营
                                                            45829.00
                                                                                 15.17
          4
                 7 2016
                            H61
                                                          792581.11
                                    住宿业
                                                    民营
                                                                                 13.53
          Index(['Stkcd', 'year', 'Indcd1', 'Indnme1', 'EquityNature', 'Capexp',
Out[104...
                 'LargestHolderRate', 'TopTenHoldersRate', 'size', 'ppe_ratio',
                 'intangible_ratio', 'lev', 'Gross_Margin', 'age', 'pe', 'pb'],
                dtype='object')
          # 定义特征列和目标列名
In [105...
          features = ['Capexp','LargestHolderRate', 'TopTenHoldersRate', 'size',
                      'ppe_ratio', 'intangible_ratio', 'lev', 'Gross_Margin', 'age']
          # 获取特征数据 (X) 和目标变量数据 (y)
          X = df_po[features]
```

```
y_pb = df_po['pb']
          from sklearn.model selection import train test split
In [106...
          X_train_pb, X_test_pb, y_train_pb, y_test_pb = train_test_split(
              X, y_pb, test_size=0.3, random_state=42
          print("PB 模型数据: ")
          print("X_train_pb shape:", X_train_pb.shape)
          print("y_train_pb shape:", y_train_pb.shape)
          print("X_test_pb shape:", X_test_pb.shape)
          print("y_test_pb shape:", y_test_pb.shape)
         PB 模型数据:
        X_train_pb shape: (17378, 9)
         y_train_pb shape: (17378,)
        X_test_pb shape: (7449, 9)
        y_test_pb shape: (7449,)
In [107...
         xgb_model_pb = xgb.XGBRegressor(objective="reg:squarederror", random_state=42)
          xgb_model_pb.fit(X_train_pb, y_train_pb)
          y_train_pred_pb = xgb_model_pb.predict(X_train_pb)
          y_test_pred_pb = xgb_model_pb.predict(X_test_pb)
          print("训练集评估: ")
          myscoring(y_train_pb, y_train_pred_pb)
          print("测试集评估:")
          myscoring(y_test_pb, y_test_pred_pb)
Out[107...
           XGBRegressor
          ► Parameters
         训练集评估:
         ______
         median_absolute_error: 0.8197997951126098
         mean_absolute_error: 1.1341985475813798
         mean squared error: 2.7301441029933113
         r2_score: 0.983865463797295
         测试集评估:
         -----
         median_absolute_error: 1.1095636865234377
         mean absolute error: 2.093586804826088
         mean_squared_error: 551.9456663493805
         r2 score: 0.04152500534863912
          调参
In [109...
          def function_xgbreg(
              n_estimators,
              learning_rate,
              max_depth,
```

```
min_child_weight,
   gamma,
   subsample,
   colsample_bytree,
   reg_alpha,# 新增正则化参数reg_lambda# 新增正则化参数
):
   xgbreg = XGBRegressor(
       objective="reg:squarederror",
       booster="gbtree",
       n_estimators=int(n_estimators),
       learning_rate=learning_rate,
       max_depth=int(max_depth),
       min_child_weight=min_child_weight,
       gamma=gamma,
       subsample=subsample,
       colsample_bytree=colsample_bytree,
       reg_alpha=reg_alpha, #添加正则化参数
       reg_lambda=reg_lambda #添加正则化参数
   )
   cvs = cross_val_score(estimator=xgbreg, X=X_train_pb, y=y_train_pb, scoring=
   return cvs.mean()
# 参数搜索空间调整 (重点优化过拟合相关参数)
pds = {
   "n_estimators": (500, 1500), # 扩大迭代次数范围
   "learning_rate": (0.001, 0.2), # 降低学习率上限
   "gamma": (1, 5), # 提高分裂阈值下限 "subsample": (0.6, 1), # 限制子样本比例
   "colsample_bytree": (0.5, 1), # 限制特征采样比例
   "reg_alpha": (0, 5), # 添加L1正则化
"reg_lambda": (0, 10) # 添加L2正则化
}
optimizer = BayesianOptimization(function xgbreg, pds, random state=0)
optimizer.maximize(init_points=20, n_iter=50)
xgbpds = optimizer.max["params"]
# 最终模型构建(完整参数应用)
xgbreg_pb_my = XGBRegressor(
   objective="reg:squarederror",
   booster="gbtree",
   n_estimators=int(xgbpds["n_estimators"]),
   learning_rate=xgbpds["learning_rate"],
   max_depth=int(xgbpds["max_depth"]),
   min child weight=xgbpds["min child weight"],
   gamma=xgbpds["gamma"],
   subsample=xgbpds["subsample"],
   colsample_bytree=xgbpds["colsample_bytree"],
   reg_alpha=xgbpds["reg_alpha"], # 应用优化后的正则化参数
   reg_lambda=xgbpds["reg_lambda"] # 应用优化后的正则化参数
xgbreg_pb_my.fit(X_train_pb, y_train_pb)
y_train_pred_pb = xgbreg_pb_my.predict(X_train_pb)
y_test_pred_pb = xgbreg_pb_my.predict(X_test_pb)
```

myscoring(y_train_pb, y_train_pred_pb)
myscoring(y_test_pb, y_test_pred_pb)

| iter | target | colsam... | gamma | learni... | max_depth | min_c h... | n_esti... | reg_alpha | reg_la... | subsample |

1	0.1559	0.7744	3.861	0.1209	7.904	1.847
1.146e+03	2.188	8.918	0.9855	ĺ		
2	0.2853	0.6917	4.167	0.1063	8.112	2.851
571.0	0.4356	0.2022	0.933	[
3	0.1542	0.8891	4.48	0.1957	10.19	1.923
1.281e+03	0.5914	6.399	0.6573			
4	0.329	0.9723	3.087	0.08352	5.381	2.548
956.2	2.842	0.1879	0.8471	[
5	0.1752	0.806	3.468	0.1888	9.136	1.719
937.0	3.488	0.6023	0.8667			
6	0.2606	0.8353	1.842	0.02666	5.839	1.727
1.07e+03	2.193	9.884	0.6408			
7	0.3023	0.6044	1.645	0.131	5.28	1.933
744.4	0.7948	1.104	0.8625			
8	0.1603	0.5691	1.786	0.07438	10.39	1.194
1.338e+03	0.4805	9.765	0.7875			
9	0.07942	0.9884	3.419	0.1481	3.353	1.566
620.2	1.481	1.187	0.7272			
10	0.1521	0.7071	1.257	0.1388	8.099	1.531
1.023e+03	0.4697	5.759	0.9717			
11	0.3337	0.6593	3.67	0.02723	9.447	1.579
683.2	2.933	0.2011	0.9316	ļ		
12	0.1741	0.5023	3.711	0.05473	9.617	2.924
748.8	2.881	5.92	0.8289	!		
13	0.1977	0.6115	4.811	0.08998	10.62	2.399
797.4	4.069	3.965	0.9524			
14	0.1627	0.7906	4.527	0.1388	9.527	2.003
1.456e+03	3.22	4.239	0.8426			
15	0.2015	0.5096	2.206	0.1324	5.611	2.236
928.8	0.6774	2.983	0.828			
16	0.2426	0.7954	3.297	0.131	8.869	1.863
1.397e+03	1.838	4.359	0.9568		1 44 20	
17	0.1341	0.9031	3.816	0.02095	11.28	2.428
1.499e+03	0.7472	8.681	0.665	 0.1600	l 10 27	1 2 420
18	0.0327	0.8078	1.495	0.1698	10.27	2.138
907.2 19	0.3458	6.974	0.7814 4.466	 0 1051	l 10 7	1.023
860.0	0.1158 3.65	0.861 1.716	0.8084	0.1951	10.7	1.025
20	0.3495	0.5272	1.8	0.004686	10.14	1.448
845.4	4.64	7.044	0.6127	1	10.14	1.440
21	0.1034	0.5396	1.34	0.1871	10.3	2.783
1.159e+03	1.094	8.178	0.9324	0.1071	1 10.5	2.765
22	0.2183	0.6323	4.423	0.1095	4.66	1.143
1.341e+03	4.236	0.5911	0.8423	0.1033	1	1 2.2.5
23	0.1364	0.7427	3.526	0.07921	7.821	2.402
775.1	3.67	3.601	0.9545		1 7.021	1 2
24	0.1154	0.6409	2.411	0.08877	4.608	2.32
918.0	2.915	6.572	0.8247		1	1
25	0.1626	0.9628	4.123	0.1155	9.045	1.211
892.2	4.462	7.968	0.7701	İ		,
26	0.08203	0.8032	3.285	0.1622	8.93	2.165
1.142e+03	0.9124	6.842	0.9575			
27	0.1751	0.5421	1.827	0.1392	10.82	1.534
844.7	1.46	9.432	0.8274	 İ		
28	0.2144	0.8227	4.337	0.0474	4.985	1.37
1.297e+03	1.554	8.403	0.9649	Ì		·

29	0.321	0.9781	2.819	0.08805	10.6	2.202
1.031e+03	0.8392	0.9366	0.8468			
30	0.1721	0.9303	3.572	0.1983	8.219	1.004
625.0	2.58	5.16	0.6563			
31	0.2096	0.7405	1.899	0.1239	5.073	2.701
1.091e+03	1.065	1.985	0.8547			
32	0.1799	0.5286	4.644	0.1496	7.108	2.656
1.438e+03	2.991	3.569	0.8773			
33	0.142	0.8263	2.38	0.1052	3.731	1.876
935.9	2.505	2.004	0.71			
34	0.02195	0.9644	3.613	0.09397	3.578	2.202
960.3	4.112	7.101	0.804	<u> </u>		
35	0.3704	0.6988	4.729	0.005452	9.22	1.237
1.058e+03	3.441	0.2093	0.9044			
36	0.05729	0.6587	2.963	0.08034	7.302	2.949
814.4	4.115	9.618	0.6983		1	
37	0.1819	0.9983	2.992	0.1931	10.69	1.153
800.0	3.422	8.129	0.8558			
38	0.006878	0.9707	2.157	0.1478	4.714	2.506
857.7	4.79	5.18	0.6181	!		
39	0.2852	0.6387	3.404	0.02886	9.123	1.816
681.9	3.197	0.2775	0.8564			
40	0.2231	0.6865	3.869	0.04241	7.54	1.349
1.058e+03	3.751	0.6029	0.8353	!		
41	0.1756	0.8931	1.303	0.02596	10.65	2.67
844.3	3.535	6.932	0.631			
42	0.08819	0.5578	4.479	0.1354	8.156	1.466
682.4	3.233	0.1488	0.6225	<u> </u>		
43	0.3868	0.9089	2.495	0.003496	5.177	1.661
743.7	0.4578	1.041	0.6067			
44	0.3664	0.9542	2.319	0.1075	9.298	2.84
1.031e+03	0.2912	0.7484	0.9949	!		
45	0.1895	0.7673	4.723	0.107	9.189	1.878
1.057e+03	4.04	0.6215	0.8245	<u> </u>		
	0.1904	0.9362		0.1214	10.0	2.782
683.4	3.712	0.6875	0.7611	!		
47	0.2834	0.8973	3.597	0.07567	11.48	2.828
1.03e+03	0.96	0.8705	0.7985			
48	0.3099	0.8492	4.1	0.01051	6.095	1.638
955.1	2.671	0.144	0.7643			
49	0.3072	0.5998	3.128	0.03146	9.653	1.806
682.6	3.304	1.103	0.9313			
50	0.1483	0.5	2.141	0.001	9.775	1.0
846.1	5.0	7.056	0.6			
51	0.05865	0.7725	3.057	0.1175	10.92	1.216
1.031e+03	1.279	1.081	0.7347			
52	0.2443	0.8631	3.49	0.03216	10.48	1.807
537.2	0.4562	0.2647	0.6816			
53	0.1181	0.7102	1.706	0.1089	9.136	1.563
1.438e+03		9.395	0.9725			
54	0.1799	0.9704	3.856	0.1547	7.949	1.826
1.413e+03		4.989	0.8423		1 5 44	1 4 242
55	0.2046	0.5098	4.371	0.1101	5.11	1.342
967.1	0.515	4.943	0.6764			1 4 5
56	0.3404	0.9412	4.433	0.03575	7.769	1.346
1.057e+03	3.118	0.02884	0.8037		l = 0==	1 4 044
57	0.1906	0.9377	4.685	0.1781	5.875	1.946
954.8	3.66	0.9687	0.7945		1 7 045	1 2 2 4 2
58	0.1624	0.5488	3.639	0.08229	7.046	2.348
955.4	2.409	0.5836	0.7309	I		

59	0.2258	0.5357	1.706	0.06841	5.221	1.309
1.391e+03	1.571	2.037	0.6773	İ	·	•
60	0.2336	0.5099	3.916	0.1693	8.146	2.787
1.366e+03	0.9445	2.907	0.8565	ĺ		
61	0.1802	0.9753	1.447	0.1631	4.053	1.355
506.5	2.168	8.399	0.8306			
62	0.2024	0.8854	2.173	0.08992	11.7	2.135
548.6	3.87	2.217	0.8186			
63	0.3082	0.9573	3.57	0.03765	5.567	2.051
955.7	2.776	0.08653	0.815			
64	0.3065	0.7206	4.699	0.08722	8.011	1.856
572.1	0.1802	0.3555	0.9028			
65	0.2534	0.8176	2.946	0.1758	5.577	1.918
744.2	0.8801	2.097	0.9031			
66	0.06529	0.8481	2.874	0.1216	4.635	2.474
955.1	2.752	0.4702	0.7789			
67	0.2229	0.6126	3.349	0.1923	9.361	1.476
1.057e+03	4.007	0.3266	0.9678			
68	0.2921	0.6543	4.709	0.06362	8.268	1.04
1.057e+03	2.85	1.28	0.9345			
69	0.1559	0.8337	3.0	0.1034	4.89	1.028
744.4	0.06196	1.359	0.7158			
70	0.2642	0.9887	3.316	0.1748	11.8	1.636
810.8	3.653	6.02	0.8013			

Out[109...

median_absolute_error: 1.3134588806304932
mean_absolute_error: 1.8570707546119096
mean_squared_error: 33.09265599435633

r2_score: 0.8044298630247384

median_absolute_error: 1.3007100518188475
mean_absolute_error: 2.16383471079438
mean_squared_error: 540.3668043883429

r2_score: 0.061632146925776454

模型解释

\cap		-	Γ	1	1	1	
U	u	L	L	т	Т	Т	• •

	gain	weight	cover
Сарехр	33513.023438	1513.0	1034.339111
LargestHolderRate	47090.054688	1236.0	89.431229
TopTenHoldersRate	4576.290039	1643.0	1750.121094
size	20681.775391	2835.0	4951.875000
ppe_ratio	18550.898438	1071.0	473.787109
intangible_ratio	16709.542969	1084.0	326.362549
lev	22402.300781	2781.0	3976.354492
Gross_Margin	6433.604492	2131.0	3042.277832
age	2896.394043	969.0	2243.337402

```
In [112... explainer = shap.TreeExplainer(model)
    shap_values = explainer.shap_values(X)
```

In [113... shap.summary_plot(shap_values, X, plot_type="bar")

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\1599793300.py:1: FutureWarnin g: The NumPy global RNG was seeded by calling `np.random.seed`. In a future versi on this function will no longer use the global RNG. Pass `rng` explicitly to optin to the new behaviour and silence this warning.

In [114... shap.summary_plot(shap_values, X)

C:\Users\Lenovo\AppData\Local\Temp\ipykernel_19584\3017445420.py:1: FutureWarnin
g: The NumPy global RNG was seeded by calling `np.random.seed`. In a future versi
on this function will no longer use the global RNG. Pass `rng` explicitly to optin to the new behaviour and silence this warning.
 shap.summary_plot(shap_values, X)

典型特征可视化

营业毛利率

```
import pandas as pd
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

Gross_Margin_mean = df_clean.groupby(['year', 'EquityNature'])['Gross_Margin'].m

Gross_Margin_pivot = Gross_Margin_mean.pivot(index='year', columns='EquityNature

fig, ax = plt.subplots(figsize=(10, 6))

bar_width = 0.35
index = range(len(Gross_Margin_pivot))

ax.bar(index, Gross_Margin_pivot['国企'], bar_width, label='国企', alpha=0.7, co
ax.bar([i + bar_width for i in index], Gross_Margin_pivot['民营'], bar_width, la
```

```
plt.xlabel('年份')
        plt.ylabel('营业毛利率均值')
        plt.title('不同股权性质下各年份营业毛利率均值差异')
        plt.xticks([i + bar_width / 2 for i in index], Gross_Margin_pivot['year'])
        plt.legend(title="股权性质")
        plt.grid(True)
        plt.tight_layout()
        plt.show()
Out[]: <BarContainer object of 18 artists>
Out[]: <BarContainer object of 18 artists>
Out[]: Text(0.5, 0, '年份')
Out[]: Text(0, 0.5, '营业毛利率均值')
Out[]: Text(0.5, 1.0, '不同股权性质下各年份营业毛利率均值差异')
Out[]: ([<matplotlib.axis.XTick at 0x24c0fd53390>,
          <matplotlib.axis.XTick at 0x24c0fd64410>,
          <matplotlib.axis.XTick at 0x24c0fd64b90>,
          <matplotlib.axis.XTick at 0x24c0fd65310>,
          <matplotlib.axis.XTick at 0x24c0fd65a90>,
          <matplotlib.axis.XTick at 0x24c0fd66210>,
          <matplotlib.axis.XTick at 0x24c0fd66990>,
          <matplotlib.axis.XTick at 0x24c0fd67110>,
          <matplotlib.axis.XTick at 0x24c0fd67890>,
          <matplotlib.axis.XTick at 0x24c0fd78050>,
          <matplotlib.axis.XTick at 0x24c0fd787d0>,
          <matplotlib.axis.XTick at 0x24c0fd78f50>,
          <matplotlib.axis.XTick at 0x24c0fd796d0>,
          <matplotlib.axis.XTick at 0x24c0fd79e50>,
          <matplotlib.axis.XTick at 0x24c0fd7a5d0>,
          <matplotlib.axis.XTick at 0x24c0fd7ad50>,
          <matplotlib.axis.XTick at 0x24c0fd7b4d0>,
          <matplotlib.axis.XTick at 0x24c0fd7bc50>],
          [Text(0.175, 0, '2007'),
          Text(1.175, 0, '2008'),
          Text(2.175, 0, '2009'),
          Text(3.175, 0, '2010'),
          Text(4.175, 0, '2011'),
          Text(5.175, 0, '2012'),
          Text(6.175, 0, '2013'),
          Text(7.175, 0, '2014'),
          Text(8.175, 0, '2015'),
          Text(9.175, 0, '2016'),
          Text(10.175, 0, '2017'),
          Text(11.175, 0, '2018'),
          Text(12.175, 0, '2019'),
          Text(13.175, 0, '2020'),
          Text(14.175, 0, '2021'),
          Text(15.175, 0, '2022'),
          Text(16.175, 0, '2023'),
          Text(17.175, 0, '2024')])
Out[]: <matplotlib.legend.Legend at 0x24c0fdd4550>
```


2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021

资产负债率

```
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False

df_clean = pd.read_excel('data/df_clean.xlsx')

means = df_clean.groupby(['year', 'EquityNature'])['lev'].mean().reset_index()
yes_means = means[means['EquityNature'] == "国企"]
no_means = means[means['EquityNature'] == "民营"]

plt.plot(yes_means['year'], yes_means['lev'], label='国企', marker='p', color='c
plt.plot(no_means['year'], no_means['lev'], label='民营', marker='d', color='g')

plt.legend()
plt.xlabel('年份')
plt.ylabel('资产负债率均值')
plt.title('国企与民营资产负债率均值')
plt.title('国企与民营资产负债率均值是异')
plt.grid(True)

plt.show()
```

```
Out[]: [<matplotlib.lines.Line2D at 0x24ba3649310>]
Out[]: [<matplotlib.lines.Line2D at 0x24ba3649450>]
Out[]: <matplotlib.legend.Legend at 0x24ba3649590>
Out[]: Text(0.5, 0, '年份')
Out[]: Text(0, 0.5, '资产负债率均值')
Out[]: Text(0.5, 1.0, '国企与民营资产负债率均值差异')
```

国企与民营资产负债率均值差异

