1. Conductores

1.1. Cálculo de resistividad

1.1.1. Resolver: Justificar en cada caso su respuesta

- 1. Un conductor de cobre tiene una resistencia de 1Ω . Si se triplica la longitud. ¿Cuál será el valor de su resistencia en Ohms?
- 2. El conductor del problema anterior tiene sección cuadrada, si se duplica su sección. ¿Cuál será el valor de su resistencia?
- 3. Si la longitud inicial del conductor del problema 1 es de 20m de largo. ¿Qué longitud debe tener el conductor para que disminuya la resistencia a 0.4Ω ?
- 4. Un conductor de sección circular y 40 metros de longitud, tiene un diámetro de 2mm. Otro conductor mide 30 metros de largo y tiene un diámetro de 1mm. Si en ambos se mide el mismo valor de resistencia 4Ω , ¿Están hechos del mismo material?
- 5. Calcular la resistividad para un conductor que posee 2Ω , tiene un diámetro de 3mm y una longitud de 10 metros.
- 6. Calcular la resistividad para un conductor que posee 10Ω , tiene un radio de 3mm y una longitud de 40 metros.
- 7. Un cable metálico parece ser buen conductor, sobre una longitud 5m y 1mm de diámetro se midió $0,2\Omega$, ¿Qué resistencia tendrá un cable fabricado con el mismo material de 40m largo y 2mm radio?
- 8. Se conecta un conductor a una batería de 9V y se mide con un amperímetro que el cortocircuito marca 4A. Si el conductor se corta a la mitad, y se vuelve a conectar. ¿Cuánto debería marcar el amperímetro?
- 9. ¿Cuál es la resistividad del conductor del problema anterior si tiene una longitud de 2m y una sección de $2mm^2$?
- 10. Un conductor de cobre tiene una resistividad $0.0171\Omega mm^2/m$. Si tiene una longitud de 100m y una sección de $4mm^2$. Calcular su resistencia.
- 11. Calcular el valor de la resistencia en $\mathrm{Ohms}(\Omega)$ para un conductor de cobre con resistividad igual a la del problema anterior, que tiene una longitud de 1000m y un diámetro de 5mm.
- 12. La resistividad para el cobre tiene dos representaciones $0.0171\Omega \frac{mm^2}{m}$ y $1.71x10^{-8}\Omega m$ Si el hierro tiene una resistividad de $8.90x10^{-8}\Omega m$ ¿Cual será su valor en $\Omega \frac{mm^2}{m}$?
- 13. Elaborar una tabla con resistividades en $\Omega^{\frac{mm^2}{m}}$ y Ωm para los materiales cobre, hierro, plata, oro, estaño, platino, aluminio y grafito.
- 14. El conductor del problema 1. ¿Es de realmente de cobre?

Siendo: ρ :Resistividad. s:Sección del conductor. l:longitud del conductor.

$$R = \rho(\frac{l}{s}) \Rightarrow \rho = R(\frac{s}{l})$$