Examen 26/2/2021 (virtual)

1.	Sea N is candidad de funciones injectivas $f:\{1,2,\ldots,11\} \to \{1,2,\ldots,13\}$ tales que $f(x)+x$ es impar para todo $x \in \{1,2,\ldots,11\}$ y sea $F=6!/2!$ Entonces $\frac{N}{F^2} = \frac{1}{2}$. Pista: No catclude el valor de $\frac{F^2}{F^2}$ encuentre mejor una expresión producto para $\frac{N}{F^2}$ y luego simplifique términos en la expresión $\frac{N}{F^2}$ (observe que F en el denominador aparece elevado al cuadrado).
2.	Sean $(b_n)y(c_n)$ dos sucesiones que verifican $c_n=\sum_{n=0}^\infty 2^kb_{n-k}$ para todo $n\geq 0$. Se sabe que la función generatriz $C(x)=\sum_{n=0}^\infty c_nx^n$ viene dada por $C(x)=\frac{1}{(1-2x)(1-x)^3}$. Entonces $b_{100}=$
3.	Una relación R en el conjunto $A=\{1,2,3,4\}$ se dice que es <i>admisible</i> si la matriz booleana (matriz cero-uno) asociada a la relación es de la forma: $\mathcal{M}(R) = \begin{pmatrix} M & N \\ N & M \end{pmatrix} \text{donde } M \text{ y N son matrices cuadradas } 2 \times 2.$ Existen exactamente
0	
l.	Decimos que una relación de orden en $A = \{1, 2, \dots, 7\}$ es regular si verifica (todas) las siguientes condiciones: • 7 es un elemento máximo de A : • 1, 2 y 3 son los únicos elementos minimales; • No existe una cadena con 4 elementos; • Existen exactamente 3 cadenas de largo 3 que pasan por el elemento 6. Entonces existen exactamente ordenes regulares en A , de los cualles son reticulos.
	Sean $I=\{1,2,\ldots,11\}$ y $J=\{1,2,\ldots,5\}$. Denotamos por $A=\{X:X\subseteq I\}$ al conjunto potencia de I (i.e. el conjunto de todos los subconjuntos de I). Consideramos en A la relación de equivalencia $X\sim Y$ si $X\cap J=Y\cap J$. Entonces el cardinal del conjunto cociente A/\sim es la clase de equivalencia de $X=\{1,3,8\}$ tiene elementos.
	Se define el grafo cuadrícula $Q_{m,n}$ con m,n enteros positivos de la siguiente forma: Considere una cuadrícula m x n. Los vértices de $Q_{m,n}$ serán los centros de los cuadraditos que componen la cuadrícula y conectamos 2 de esos centros por una arista si los cuadraditos correspondientes tienen un lado en común. Complete las siguientes afirmaciones: El mínimo número de aristas que debemos quitarte a $Q_{3,3}$ de forma que el grafo resultante posea un circuito euleriano es El mínimo número de aristas que debemos quitarte a $Q_{16,14}$ de forma que el grafo resultante posea un circuito euleriano es Existen valores de $n:1 \le n \le 17$ para los cuales el grafo $Q_{3,n}$ posee ciclo hamiltoniano.
	2. Una cuadrícula m x n es un arreglo rectangular de cuadraditos unitarios, con m filas de cuadraditos y n columnas de cuadraditos.

Sea G un grafo plano simple conexo co Se sabe que una representación plana		do 3, 25 son de grado 4 y 4 son de grado 6.	
Entonces el número de regiones es	de las cuales		
son de grado 3			
son de grado 4.			
Se incluyen las 10 preguntas que se		con modificaciones menores) y la indicación era seleccionar cuáles eran	
verdaderas.	e 4 preguntas de las de abajo (o c	of modificaciones menores, y la muicacion era seleccional cuales eran	
Seleccionar todas las opciones verdader	as.		
1. Existe un grafo con 1000 vértices	que posee un ciclo hamiltoniano pero	no un circuito euleriano.	
2. SI un grafo G posee un subgrafo l	homeomorfo a $K_{4,4}$ entonces no es pl	ano.	
3. Sea H un subgrafo recubridor cor	nexo de un grafo G. SI G no es plano en	ntonces H tampoco lo será.	
0 4. Si un grafo conexo G posee exactamente 2 vértices de grado impar entonces existe una arista e tal que G-e posee un circuito euleriano.			
○ 5. Si un grafo plano verifica la fórmula de Euler v-e+r=2 entonces es conexo.			
○ 6. Si G no es plano entonces su complemento si lo es.			
7. Si dos grafos son homeomorfos y tienen la misma cantidad de vértices y la misma cantidad de aristas entonces son el mismo o isomorfos.			
O 8. SI un grafo G posee un recorrido euleriano entonces G es conexo o posee vértices aislados.			
9. Si un grafo G plano conexo tiene la misma cantidad de vértices que de aristas entonces posee un ciclo.			
10. Sea H un subgrafo recubridor co	onexo de un grafo G. Si H es conexo en	tonces G también lo será.	

7.