

Projet Année 3 Big Data/IA/Web

Partie Développement Web

Contexte du projet

Sujet

Objectif

Concevoir et développer une application d'étude des accidents de la route

Approfondir les compétences acquises dans les modules *Big Data, Intelligence Artificielle, Développement Web et Base de Données* à travers une application complète de traitements et de visualisation de données concernant les accidents corporels de la circulation routière en France.

Objectifs de la partie Développement Web :

- Programmation web coté client (front-end) :
 - Créer une maquette visuelle d'un site web
 - Programmer les éléments de la maquette visuelle en HTML
 - Programmer le style de la maquette visuelle en CSS
 - Modifier le comportement de la page web en JavaScript
 - Manipuler AJAX
- Programmation web coté serveur (back-end) :
 - Créer un code PHP qui encapsule les requêtes permettant d'interagir avec la base de données
 - Traiter les réponses des requêtes en PHP et envoyer des réponses au client

Déroulement du projet

Données brutes : stat_acc_V3.csv

Big Data

Analyse et traitement de données

Données traitées : export_IA.csv

Intelligence artificielle

Prédictions

Scripts python

Développement Web

Interface utilisateur

Application Web

Déroulement du projet

Données brutes : stat_acc_V3.csv

Big Data

Analyse et traitement de données

Données traitées : export_IA.csv

Intelligence artificielle

Prédictions

Scripts python

Développement Web

Interface utilisateur

Web

Processus de développement

Analyse:

- Maquette du site web (FIGMA, MockFlow)
- Charte graphique
- Modèle Conceptuel de Donnée (MCD)
- Requêtes client-serveur associées aux pages présentées

Conception et développement :

- HTML
- CSS
- JavaScript
- PHP
- SQL

Test

Recette fonctionnelle

Cahier des charges

Maquette de l'application web

Figma, MockFlow

Préparation du squelette de votre application web :

Réalisation de la maquette en ligne avec Figma ou MockFlow :

Figma Handmade Wireframe Kit

MockFlow Wireframe

→ Attendu : la maquette des différentes pages de votre application web en PDF

Charte graphique

Choix des couleurs principales

Définition de la charte graphique de l'application web :

Choix des éléments de style :

- Couleurs
- **Ombres**
- Police de caractères
- → Attendu : un document *PDF* présentant la charte graphique de votre application web

Définition des ombres

Les caractéristiques des ombres sont les mêmes pour toutes les zones, à savoir :

Décalage en X: 5 Décalage en Y: 5 Flou: 10 Diffusion: 5 40% Intensité: Couleur: Noir

Figure 3 : Exemple d'utilisation des ombres

Caractéristiques des couleurs utilisées

Dans l'interface

Pour toute l'interface la police utilisée est Assistant avec différentes caractéristiques d'épaisseurs :

Dans les documents

GRAND TITRE	Glacial Indifference, Bold	
Sous-titres	Open Sans, Bold	
Paragraphe	Open Sans	

Base de données

Modèle conceptuel de donnée

Conception de la base de données de l'application web :

Les nouveaux accidents ajoutés à l'aide de l'application web devront être stockés dans une base de données :

- Créez les entités nécessaires
- Ajouter les champs nécessaires
- Réfléchissez aux types et à la taille de chaque champ
- Créez les relations adéquates
- Réfléchissez aux cardinalités de vos relations
- Définissez vos clés primaires
- → Attendus : le modèle conceptuel de données (MCD) de votre application web en PDF

Attention

C'est à vous de définir les entités et les relations de votre modèle conceptuel de donnée en étudiant avec attention le cahier de charges fourni dans ce document.

Cahier des charges

Fonctionnalités

5 fonctionnalités principales sont attendues :

- 1. Page d'accueil
- 2. Ajout d'accidents
- 3. Visualisation des accidents ajoutés dans un tableau et sur une carte
- 4. Prédiction du *cluster* des accidents entrés (à partir du script *Python* de l'IA)
- 5. Prédiction de la gravité d'un l'accident (à partir des scripts *Python* de l'IA)
- + Import des données initiales avec un script Python (pour les CIR uniquement ou en bonus)
- + Options de filtrage des accidents pour la visualisation (pour les CIR uniquement ou en bonus)
- + Authentification pour l'ajout d'un accident (en bonus)

Attention

Les accidents des fichiers *CSV* (utilisées en Big Data et IA) ne seront pas insérés dans votre base de données web. Sauf si le bonus 1 est réalisé.

Page d'accueil

Ajout d'une page d'accueil :

- Ajout d'un menu pour naviguer entre les différentes pages du site
- Descriptif rapide du projet
- Image représentant le projet
- → Attendu : une page d'accueil qui s'affiche quand l'utilisateur entre l'url du site web

Ajout d'accidents

Ajouter un nouvel accident dans la base de données :

Le formulaire doit permettre d'ajouter un accident avec au minimum les informations suivantes :

- L'âge du conducteur
- La date et l'heure
- La ville
- La latitude et la longitude
- Les conditions atmosphériques
- La luminosité de la scène
- L'état de la route
- L'état d'utilisation de la ceinture de sécurité
- → Attendu : une page web contenant un formulaire permettant d'ajouter un nouvel accident

Pour ces nouveaux accidents, la gravité ne doit pas être fournie.

Attention

Les valeurs des différents champs devront être récupérés depuis la base de données et en adéquation avec les possibilités issues du fichier de données utilisé au début de la partie IA.

ALL IS DIGITAL!

Visualisation des accidents ajoutés sur une carte

Visualisation des accidents de la base de données web :

Tous les accidents de la base de données web devront apparaître :

- Dans un tableau avec :
 - L'âge du conducteur
 - La date et l'heure
 - La ville
 - La latitude et la longitude
 - Les conditions atmosphériques
 - La luminosité de la scène
 - L'état de la route
 - L'état d'utilisation de la ceinture de sécurité
- Sur une carte:
 - La position de chaque accident devra être visible sur la carte
 - Les détails d'un accident seront visibles lors du survol du point avec la souris
- → Attendu : une page web contenant un tableau et une carte avec les accidents de la base de données web

Conseil

Il est fortement conseillé d'utiliser la bibliothèque *plotly* : https://plotly.com/javascript/ pour l'affichage des données sur une carte.

Prédiction du *cluster* des accidents

Prédiction du *cluster* des accidents entrés dans la base de données web :

Les clusters doivent pouvoir être prédit suite aux actions suivantes :

- Clic sur un bouton « Prédire les clusters » en bas de la page web de visualisation des accidents
- Ouverture d'une nouvelle page
- Appel coté serveur de votre script Python permettant de prédire les clusters
- Affichage des accidents sur une carte
- Les accidents seront colorés en fonction de leur *cluster* d'appartenance
- → Attendu : une page web affichant sur une carte les accidents avec leur *cluster* d'appartenance

Information

Pour appeler votre script *Python* à partir de votre script PHP, vous pouvez utiliser la fonction system : https://www.php.net/manual/fr/function.exec.php

Prédiction de la gravité d'un l'accident

Prédiction de la gravité d'un accident entré dans la base de données web :

La gravité d'un accident doit être prédite, avec la méthode KNN et les méthodes de « haut niveau », suite aux actions suivantes :

- Sélection d'un accident dans le tableau à l'aide d'un bouton radio
- Clic sur un bouton « Prédire la gravité » en bas de la page web de visualisation des accidents
- Ouverture d'une nouvelle page
- Appel coté serveur de vos scripts Python permettant de prédire la gravité
- Affichage de la gravité de l'accident avec un comparatif des méthodes : KNN, SVM, Random Forest, MLP
- → Attendu : une page web affichant la gravité d'un accident avec les différentes méthodes de classification

Attention

Plusieurs scripts *Python* seront à appeler en fonction de la méthode à utiliser. Méthode simple : *KNN* et méthodes de « haut niveau » : *SVM*, Random Forest, *MLP*

Cahier des charges

Technologies à utiliser

Partie front-end:

Exclusivement avec les technologies HTML, JavaScript et CSS

Les bibliothèques *Plotly* et *Mapbox*, et uniquement celles-ci, peuvent être utilisées

Partie back-end:

Exclusivement en PHP

SCBD de type MySQL

Communications avec le font-end avec AJAX

Échange de données avec le font-end en JSON

Cahier des charges

Technologies à utiliser

Mise en page:

Il faut que la mise en page du front prenne en compte un en-tête et un pied de page commun à toutes les pages.

Accès:

L'accès au site web se fera via un serveur web hébergé sur projets.isen-ouest.fr

L'application web doit être :

- Ergonomique : facilité d'utilisation, homogénéité des informations, respect des normes utilisées pour le Web
- Évolutive : possibilité de rajouter de nouvelles fonctionnalités

Le code doit être:

- Correctement architecturé
- Réexploitable : code lisible, code bien commenté, noms de variables/fonctions explicites
- Séparé en plusieurs fichiers (par fonctionnalités)

Calendrier prévisionnel

Déroulement

Calendrier prévisionnel

Organisation du projet au jour le jour :

Demi-journée 1	Demi-journée 3	Demi-journée 5	Demi-journée 7
 Présentation de la partie Web du projet Gestion de projet Maquette Charte graphique 	 Gestion de projet Base de données (MCD) Définition de l'API en PHP 	 Gestion de projet Front pour la visualisation d'accidents Création de l'API en PHP pour la visualisation 	 Front pour la prédiction sur un accident Création de l'API en PHP pour l'appel des scripts IA Documentation du code Préparation de la soutenance
Demi-journée 2	Demi-journée 4	Demi-journée 6	Demi-journée 8
 Gestion de projet Base de données (MCD) Interface JavaScript/PHP 	 Gestion de projet Front pour l'ajout d'accidents Création de l'API en PHP pour l'ajout 	 Gestion de projet Front pour la prédiction sur un accident Création de l'API en PHP pour l'appel des scripts IA QCM de 30 minutes (individuel) 	Recette (sur le serveur) de 10 minutes (strict) + 5 minutes de questions (trinôme) Dépôt des livrables sur l'ENT (trinôme)

Déroulement

IS DIGITAL!

Organisation

Travail en trinôme:

- Chaque étudiant dans le trinôme connaît l'ensemble du projet : utiliser le gestionnaire de code Git
- Attention à bien se répartir le travail en prévoyant les tâches de chacun avec un diagramme de Gantt

Ressources externes:

- Tous les documents sont autorisés
- Attention à utiliser avec une grande précaution tout document extérieur : site de vulgarisation, forum, code d'autrui

Documentation du projet :

- Au fur et à mesure
- Standardisée
- Livraison de code ou de documents :
 - Ne pas attendre la dernière minute pour poster un livrable
 - Préparer des livrables intermédiaires (surtout pour les sources)
 - Sauvegarder régulièrement vos données

Livrables et évaluations

Livrable

Format de l'archive :

Archive ZIP, TGZ, 7ZIP, pas de RAR: projetweb_groupeX.zip (remplacer X par votre numéro de trinôme)

Le rendu final doit contenir:

- L'intégralité de vos codes sources commenté avec vos ressources (images, bases de données...) ainsi que les données de l'IA (scripts *Python*, modèles...) nécessaire au fonctionnement de votre application web
- Les visuels de votre maquette au format PDF
- Votre charte graphique au format PDF
- Votre MCD au format PDF
- Votre diagramme de Gantt en PDF

Remarques:

- Malus possible sur l'un des membres du groupe si l'investissement est jugé trop faible
- Possibilité d'être interrogé durant le projet de façon individuelle
- Plagiat sévèrement sanctionné pour TOUS les membres du/des groupe(s)

Attention

Les livrables seront à poster sur l'intranet. Tout retard sera sanctionné (l'heure du réseau faisant foi). Les fichiers au mauvais format ou avec un mauvais nommage seront pénalisés.

Évaluation

Présentation orale :

- Soutenance de 10 minutes (strict) + 5 minutes de questions
- Présentation en trinôme (pensez à vous répartir la parole)
- Présentez l'essentiel de votre projet

QCM:

- QCM de 30 minutes à points négatifs
- Évaluation individuelle

Code:

- Rendu de l'intégralité de vos codes sources avec les ressources associées
- Rendu de votre maquette
- Rendu de votre charte graphique
- Rendu de votre MCD

Barème indicatif : Soutenance 40% – QCM individuel 20% – Évaluation du code/maquette/MCD 40%

MERCI Des questions?

