Lenguajes Formales y Computabilidad | FAMAF - UNC

Combos de definiciones y convenciones notacionales y los Combos de teoremas

01.07.2025

Matias Viola

Contenido

1.	Con	venerones	
2.	Con	nbos de definiciones y convenciones notacionales	1
	2.1.	Combo 1: Defina:	1
		2.1.1. Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -recursivo	1
		2.1.2. $\langle s_1, s_2, \rangle$	1
		2.1.3. « f es una función Σ -mixta»	1
		2.1.4. «familia Σ -indexada de funciones»	1
		2.1.5. $R(f,\varrho)$: Recursion primitiva sobre variable alfabética con valores numéricos 1	
	2.2.	Combo 2: Defina:	2
		2.2.1. $d \stackrel{n}{\vdash} d'$ y $d \stackrel{*}{\vdash} d'$	2
		2.2.2. $L(M)$	2
		2.2.3. «f es una función de tipo (n, m, s) »	2
		2.2.4. (<i>x</i>)	2
		2.2.5. $(x)_i$	2
	2.3.	Combo 3: Defina:	
		2.3.1. Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -re	2
		2.3.2. s^{\leq}	
		2.3.3. * ^{\leq}	3
		2.3.4. # ^{\leq}	3
	2.4.	Combo 4: Defina cuando una función $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es llamada Σ -efectivamente computable y defina «el procedimiento P computa a la función f » .	3
	2.5.	Combo 5: Defina cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -efectivamente computable y defina: «el procedimiento efectivo P decide la pertenencia a S »	
	2.6.	Combo 6: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -efectivamente enumerable y defina: «el procedimiento efectivo P enumera a S »	4
	2.7.	Combo 7: Defina cuando una función $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to\omega$ es llamada Σ -	
		Turing computable y defina «la máquina de Turing M computa a la función f »	4
	2.8.	Combo 8: Defina:	4
		2.8.1. $M(P)$ Minimización de variable numérica	4
		2.8.2. Lt	5
		2.8.3. Conjunto rectangular	5
		2.8.4. « S es un conjunto de tipo (n,m) »	5
	2.9.	Combo 9	5
		2.9.1. Conjunto rectangular	5
		2.9.2. « I es una instrucción de S^{Σ} »	5
		2.9.3. « P es un programa de S^{Σ} »	5
		2.9.4. I_i^P	5
		2.9.5. $n(P)$	6

		2.9.6. Bas
	2.10.	Combo 10: Defina relativo al lenguaje S^{Σ} :
		2.10.1. «estado»
		2.10.2. «descripción instantánea»
		$2.10.3. \ S_P$
		2.10.4. «estado obtenido luego de t pasos, partiendo del estado (\vec{x},\vec{lpha}) »
		2.10.5. « P se detiene (luego de t pasos), partiendo desde el estado (\vec{x},\vec{lpha}) »
	2.11.	Combo 11: Defina:
		2.11.1. $\Psi_P^{\text{n,m,\#}}$
		2.11.2. «f es Σ -computable» y « P computa a f »
		2.11.3. $M^{\leq}(P)$ Minimización de variable alfabética
	2.12.	Combo 12: Defina cuando un conjunto $S\subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -computable,
		cuando es llamado $\Sigma\text{-enumerable}$ y defina «el programa P enumera a S »
	2.13.	Combo 13
		$2.13.1. i^{n,m}$
		2.13.2. $E_{\#}^{n,m}$
		2.13.3. $E_{\#}^{n,m} + E_{*}^{n,m}$
		2.13.4. $E_{\#_i}^{n,m}$
		2.13.5. $E_{*,i}^{n,m}$
		2.13.6. $Halt^{n,m}$
		$2.13.7. T^{n,m}$
		2.13.8. AutoHalt $^{\Sigma}$
		2.13.9. Los conjuntos A y N
	2.14.	Combo 14: Explique en forma detallada la notación lambda
	2.15.	Combo 15: Dada una función $f:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto
es y qué propiedades debe tener el macro: [V2 ←		es y qué propiedades debe tener el macro: [V2 \leftarrow f(V1,W1)]
	2.16.	Combo 16: Dado un predicado $p:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto
		es y qué propiedades debe tener el macro: [IF P(V1,W1) GOTO A1]
	2.17.	Combo 17: Defina el concepto de función y desarrolle las tres Convenciones
		Notacionales asociadas a dicho concepto
3.	Com	bos de teoremas 11
	3.1.	Combo 1
		3.1.1. Proposición: Caracterización de conjuntos Σ -pr
		3.1.2. Teorema: Neumann vence a Gödel
	3.2.	Combo 2
		3.2.1. Lema 4.35: Lema de división por casos para funciones Σ -pr
		3.2.2. Proposición: Caracterización básica de conjuntos Σ -enumerables
	3.3.	Combo 3
		3.3.1. Teorema: Gödel vence a Neumann
		3.3.2. Teorema: Caracterización de conjuntos Σ -efectivamente computables 15
	3.4.	Combo 4

		3.4.1. Proposición: Cara	cterización básica de conjuntos Σ -enumerables	16
		3.4.2. Lema: Lema de la	sumatoria	17
	3.5.	Combo 5		17
		3.5.1. Lema, Ejercicio de	e la Guía 5	17
		3.5.2. Lema: Lema de cu	antificación acotada	18
3.6. Combo 6				18
		3.6.1. Lema:		18
		3.6.2. Teorema 4.12: Car	racterización de conjuntos Σ -re	19
	3.7.	Combo 7		20
		3.7.1. Lema 4.25: Lema o	de minimización acotada	20
		3.7.2. Lema		21
	3.8.	Combo 8		21
		3.8.1. Lema 4.62		21
		3.8.2. Teorema 4.15		22
		3.8.3. Lema 4.63		22
		3.8.4. Teorema: Neumar	nn vence a Gödel	22
	3.9.	Combo 9		23
		3.9.1. Lema: Lema de di	visión por casos para funciones Σ -r $ \dots \dots \dots$	23
		3.9.2. Teorema 4.5: Göde	el vence a Neumann	23
4.	Utili	idades		24
	4.1.	Lema 14		24
	4.2.	Def Conjuntos Σ -pr		24
	4.3.	Lema 4.31		
	4.4.	Lema 4.32		
	4.5.	Lema 4.33		
	4.6.	Lema 4.34		
	4.7.	Proposición 19		
	4.8.	Lema 4.35: Lema de division por casos para funciones Σ -pr		24
	4.9.	Lema 4.21		24
	4.10.	. Proposición 4.8		25
	4.11.	Definición de función Σ -c	computable	25
	4.12.	2. Definición de conjuntos Σ -enumerables		
	4.13.	4.13. Teorema 4.2 (Independencia del alfabeto)		25
		4.13.1. Lema 4.22 (Lema o	de cuantificación acotada)	25
		4.13.2. Lema 4.30		26
		4.13.3. Lema 4.25: Lema o	de minimización acotada	26

TODO: ordenar los lemas comunes y sus citaciones. agregar los de los manantiales.

1. Convenciones

Si no se especifica lo contrario, usaremos las siguientes convenciones:

- 1. $x, y, z, u, v, w, n, m, k, ... \in \omega$
- 2. $\alpha, \beta, \gamma, \delta, \varepsilon, \psi, \eta, \ldots \in \Sigma^*$
- 3. $O, s \in \{(\omega, \#), (\Sigma^*, *)\}$
- 4. «tq» es «tal que»
- 5. Σ -pr es « Σ -primitivo recursivo»
- 6. Sea $f: \mathrm{Dom}_f \to \{0,1\}$, entonces f es un predicado.

2. Combos de definiciones y convenciones notacionales

2.1. Combo 1: Defina:

2.1.1. Cuando un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ es llamado Σ -recursivo

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -recursivo cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -r.

2.1.2.
$$\langle s_1, s_2, ... \rangle$$

Dada una infinitupla $(s_1,s_2,\ldots)\in\omega^{[\mathbb{N}]}$ usaremos $\langle s_1,s_2,\ldots\rangle$ para denotar al numero $\prod_{i=1}^\infty \operatorname{pr}(i)^{s_i}$

2.1.3. «f es una función Σ -mixta»

Sea Σ un alfabeto finito. Una función f es Σ -mixta si:

- 1. $(\exists n, m \in \omega) \text{Dom}_f \subseteq \omega^n \times \Sigma^{*m}$
- 2. $\operatorname{Im}_f \subseteq O$

2.1.4. «familia Σ -indexada de funciones»

Dado un alfabeto Σ , una familia Σ -indexada de funciones sera una función $\varrho: \Sigma \to \operatorname{Im}_G$ donde Im_G es el conjunto de funciones $\varrho(a)$ asociadas a cada $a \in \Sigma$.

NOTACIÓN: Si ϱ es una familia Σ -indexada de funciones, entonces para $a \in \Sigma$, escribiremos ϱ_a en lugar de $\varrho(a)$.

2.1.5. $R(f, \varrho)$: Recursion primitiva sobre variable alfabética con valores numéricos.

Sean $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacíos.

Sea una función $f: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \to \omega$.

Sea una familia Σ -indexada de funciones $\varrho_a:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\times\Sigma^*\to\omega$ para cada $a\in\Sigma$.

$$\begin{split} R(f,\varrho): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* &\to \omega \\ (\vec{x},\vec{\alpha},\varepsilon) &\to f(\vec{x},\vec{\alpha}) \\ (\vec{x},\vec{\alpha},\alpha a) &\to \varrho_a(R(f,\varrho)(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha) \end{split}$$

También diremos que $R(f, \varrho)$ es obtenida por recursion primitiva a partir de f y ϱ .

2.2. Combo 2: Defina:

2.2.1.
$$d \stackrel{n}{\vdash} d'$$
 y $d \stackrel{*}{\vdash} d'$

(no hace falta que defina ⊢)

- $d \vdash d'$ si $(\exists d_2, ..., d_n \in Des) d \vdash d_2 \vdash ... \vdash d_n \vdash d'$.
- $d \stackrel{*}{\vdash} d'$ sii $(\exists n \in \omega) d \stackrel{n}{\vdash} d'$

2.2.2. L(M)

Llamamos $\mathcal{L}(M)$ al conjunto formado por todas las palabras que son aceptadas por alcance de estado final.

Una palabra $\alpha_1...\alpha_n \in \Sigma^*$ es aceptada por M por alcance de estado final si partiendo de $Bq_0\alpha_1...\alpha_nB...$ en algún momento de la computación M esta en un estado de F.

2.2.3. «f es una función de tipo (n, m, s)»

Dada una función Σ -mixta f,

- Si $f=\emptyset$, entonces es una función de tipo (n,m,s) cualquiera sean $n,m\in\omega$ y $s\in\{\#,*\}.$
- Si $f \neq \emptyset$, entonces hay únicos $n, m \in \omega$ tales que $\mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m}$.
 - ► Si $I_f \subseteq \omega$, entonces es una función de tipo (n, m, #).
 - Si $I_f \subseteq \Sigma^*$, entonces es una función de tipo (n, m, *).

De esta forma, cuando $f \neq \emptyset$, hablaremos de «el tipo de f» para referirnos a esta única terna (n, m, s).

2.2.4. (x)

Dado $x \in \mathbb{N}$, usaremos (x) para denotar a la única infinitupla $(s_1, s_2, ...) \in \omega^{[\mathbb{N}]}$ tq $x = \langle s_1, s_2, ... \rangle = \prod_{i=1}^{\infty} \operatorname{pr}(i)^{s_i}$

$2.2.5. (x)_i$

Dados $x, i \in \mathbb{N}$, usaremos $(x)_i$ para denotar a s_i de $(s_1, s_2, ...) = (x)$.

Se le suele llamar la «i-esima bajada de x» al numero $(x)_i$ (al «bajar» el i-esimo exponente de la única posible factorización de x como producto de primos).

2.3. Combo 3: Defina:

2.3.1. Cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*\,m}$ es llamado $\Sigma\text{-re}$

(no hace falta que defina «función Σ -r»)

Diremos que un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -re cuando sea vacío o haya una función sobreyectiva $F: \omega \to S$ tq $F_{(i)} = p_i^{n,m} \circ F$ sea Σ -r para cada $i \in \{1, ..., n+m\}$.

2.3.2. s^{\leq}

Sea \leq un orden sobre Σ^* .

$$\begin{split} S^{\leq} : \Sigma^* &\to \Sigma^* \\ \left(a_n\right)^m &\to \left(a_1\right)^{m+1} \\ \alpha a_i {\left(a_n\right)}^m &\to \alpha a_{i+1} {\left(a_1\right)}^m \text{ con } 1 \leq i < n \end{split}$$

$2.3.3. * \le$

Sea \leq un orden sobre Σ^* .

$$*^{\leq}: \omega \to \Sigma^{*}$$

$$0 \to \varepsilon$$

$$i+1 \to s^{\leq}(*^{\leq}(i))$$

2.3.4. #[≤]

Sea \leq un orden sobre Σ^* .

$$\begin{split} \#^{\leq} : \Sigma^* &\to \omega \\ \varepsilon &\to 0 \\ a_{i_k} ... a_{i_0} &\to i_k n^k + ... + i_0 n^0 \end{split}$$

2.4. Combo 4: Defina cuando una función $f:\mathrm{Dom}_f\subseteq\omega^n imes \Sigma^{*m}\to\omega$ es llamada Σ -efectivamente computable y defina «el procedimiento P computa a la función f»

Sea O. Una función Σ -mixta $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to O$ sera llamada Σ -efectivamente computable si hay un procedimiento efectivo P tq

- 1. El conjunto de datos de entrada de P es $\omega^n \times \Sigma^{*m}$
- 2. El conjunto de datos de salida esta contenido en \mathcal{O} .
- 3. Si $(\vec{x}, \vec{\alpha}) \in \mathrm{Dom}_f$, entonces P se detiene partiendo de $(\vec{x}, \vec{\alpha})$, dando como dato de salida $f(\vec{x}, \vec{\alpha})$.
- 4. Si $(\vec{x},\vec{\alpha})\in\omega^n imes\Sigma^{*m}-{
 m Dom}_f$, entonces P no se detiene partiendo desde $(\vec{x},\vec{\alpha})$

En ambos casos diremos que P computa a la función f.

Obs: $f = \emptyset$ es un procedimiento que nunca se detiene cualesquiera sea su dato de entrada. Por lo tanto es Σ -efectivamente computable, cualesquiera sean n, m, O y Σ .

2.5. Combo 5: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -efectivamente computable y defina: «el procedimiento efectivo P decide la pertenencia a S»

Un conjunto $S \subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -efectivamente computable cuando la función $\chi_S^{\omega^n \times \Sigma^{*m}}$ sea Σ -efectivamente computable.

Si P es un procedimiento efectivo el cual computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$, entonces diremos que P decide la pertenencia a S, con res_pecto al conjunto $\omega^n \times \Sigma^{*m}$.

Obs: $f = \emptyset$ es un procedimiento que siempre da 0 cualesquiera sea su dato de entrada. Por lo tanto es Σ -efectivamente computable, cualesquiera sean n, m, O y Σ .

2.6. Combo 6: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -efectivamente enumerable y defina: «el procedimiento efectivo P enumera a S»

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -efectivamente enumerable cuando sea vacío o haya una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}$ sea Σ -efectivamente computable, para cada $i\in\{1,...,n+m\}$.

2.7. Combo 7: Defina cuando una función $f:\mathrm{Dom}_f\subseteq\omega^n imes$ $\Sigma^{*^m}\to\omega$ es llamada Σ -Turing computable y defina «la máquina de Turing M computa a la función f»

Diremos que una función $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to\Sigma^*$ es Σ -Turing computable si existe una máquina de Turing con unit, $M=(Q,\Sigma^*,\Gamma,\delta,q_0,B,\nu,F)$ tq:

- 1. Si $(\vec{x}, \vec{\alpha}) \in \mathrm{Dom}_f$, entonces hay un $p \in Q$ tq $\lfloor q_0 B \nu^{x_1} B ... B \nu^{x_n} B \alpha_1 B ... B \alpha_m \rfloor \stackrel{*}{\vdash} \lfloor p B f(\vec{x}, \vec{\alpha}) \rfloor$ y $\lfloor p B f(\vec{x}, \vec{\alpha}) \rfloor$ $\not\vdash$ d para cada $d \in \mathrm{Des}$
- 2. Si $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m} \mathrm{Dom}_f$, entonces M no se detiene partiendo de $\lfloor q_0 B \nu^{x_1} B ... B \nu^{x_n} B \alpha_1 B ... B \alpha_m \rfloor$.

Cuando una maquina de Turing con unit M cumpla ambos items, diremos que M computa a la función f o que f es computada por M.

Cabe destacar que la condición $\lfloor pBf(\vec{x},\vec{\alpha}) \rfloor \not\vdash d$ para cada $d \in \text{Des}$ es equivalente a que (p,B) no este en el dominio de δ o que si lo este y que la tercer coordenada de $\delta(p,B)$ sea L.

2.8. Combo 8: Defina:

2.8.1. M(P) Minimización de variable numérica

Sea Σ un alfabeto finito y sea $P: \mathrm{Dom}_P \subseteq \omega^n \times \Sigma^{*m}$. Dado $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$, cuando exista al menos un $t \in \omega$ tq $P(t, \vec{x}, \vec{\alpha}) = 1$, usaremos $\min_t P(t, \vec{x}, \vec{\alpha})$ para denotar al menor de tales t's.

Definimos $M(P) = \lambda \vec{x} \vec{\alpha} [\min_t P(t, \vec{x}, \vec{\alpha})]$

Diremos que ${\cal M}(P)$ es obtenida por minimización de variable numérica a partir de P.

Obs: M(P) esta definida solo para aquellas (n+m)-uplas $(\vec{x}, \vec{\alpha})$ para las cuales hay al menos un t to se da $P(t, \vec{x}, \vec{\alpha}) = 1$

2.8.2. Lt

$$\begin{aligned} \operatorname{Lt}: \mathbb{N} &\to \omega \\ 1 &\to 0 \\ x &\to \max_{i} \left(x \right)_{i} \neq 0 \end{aligned}$$

2.8.3. Conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto Σ -mixto es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

2.8.4. «S es un conjunto de tipo (n, m)»

Dado un conjunto Σ -mixto $S \neq \emptyset$, decimos que S es un conjunto de tipo (n,m) para referirnos a los únicos $n,m \in \omega$ tq $S \subseteq \omega^n \times \Sigma^{*m}$

 \emptyset es un conjunto de tipo (n,m) cualesquiera sean $n,m\in\omega$ por lo cual cuando hablemos de el tipo de un conjunto deberemos estar seguros de que dicho conjunto es no vacío.

2.9. Combo 9

2.9.1. Conjunto rectangular

Sea Σ un alfabeto finito. Un conjunto Σ -mixto es llamado rectangular si es de la forma $S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m$ con cada $S_i \subseteq \omega$ y cada $L_i \subseteq \Sigma^*$.

2.9.2. «I es una instrucción de S^{Σ} »

Una instrucción de S^{Σ} es ya sea una instrucción básica de S^{Σ} o una palabra de la forma αI , donde $\alpha \in \{L\overline{n} : n \in \mathbb{N}\}$ y I es una instrucción básica de S^{Σ} . Llamamos Ins^{Σ} al conjunto de todas las instrucciones de S^{Σ} .

2.9.3. «P es un programa de S^{Σ} »

Un programa de S^Σ es una palabra de la forma $I_1I_2...I_n$ donde $n\geq 1,I_1,...,I_n\in \mathrm{Ins}^\Sigma$ y se cumple la ley de los GOTO.

Ley de los GOTO: Para cada $i \in \{1,...,n\}$, si GOTO $L\overline{m}$ es un tramo final de I_i , entonces existe $j \in \{1,...,n\}$ tq I_j tiene label $L\overline{m}$.

$$\begin{split} \textbf{2.9.4.} \ I_i^P \\ \lambda i P\big[I_i^P\big] : \omega \times \text{Pro}^\Sigma \to \Sigma^* \\ (i,P) &\to \begin{cases} \text{i-esima instrucción de P si } i \in \{1,\dots,n(P)\} \\ \varepsilon & \text{si } i \notin \{1,\dots,n(P)\} \end{cases} \end{split}$$

$$\lambda P[n(P)] : \operatorname{Pro}^{\Sigma} \to \omega$$

$$P \to m \text{ tq } P = I_1 I_2 ... I_m$$

2.9.6. Bas

$$\begin{split} \operatorname{Bas}: \operatorname{Ins}^{\Sigma} & \to \left(\Sigma \cup \Sigma_{p}\right)^{*} \\ & I \to \left\{ \begin{smallmatrix} J & \text{si } I \text{ es de la forma } L\overline{k}J \text{ con } J \in \operatorname{Ins}^{\Sigma} \\ I & \text{c.c.} \end{smallmatrix} \right. \end{split}$$

2.10. Combo 10: Defina relativo al lenguaje S^{Σ} :

2.10.1. «estado»

Es un par
$$(\vec{x},\vec{\sigma})=((s_1,s_2,\ldots),(\sigma_1,\sigma_2,\ldots))\in\omega^{[\mathbb{N}]}\times\Sigma^{*[\mathbb{N}]}$$

Si $i \geq 1$, entonces diremos que s_i es el valor de la variable $N\bar{i}$ y α_i es el valor de la variable $P\bar{i}$ en el estado $(\vec{x}, \vec{\sigma})$.

2.10.2. «descripción instantánea»

Es una terna $(i, \vec{x}, \vec{\sigma}) \in \mathrm{Des}^\Sigma = \omega \times \omega^{[\mathbb{N}]} \times \Sigma^{*[\mathbb{N}]}$ tq $(\vec{x}, \vec{\sigma})$ es un estado.

Si $i\in\{1,...,n(P)\}$, $(i,\vec{x},\vec{\sigma})$ nos dice que las variables están en el estado $(\vec{x},\vec{\sigma})$ y que la instrucción que debemos realizar es I_i^P

$2.10.3. S_P$

Dado un programa P.

$$S_P: \mathrm{Des}^\Sigma \to \mathrm{Des}^\Sigma$$

$$\begin{pmatrix} (i,\vec{x},\vec{\sigma}) & \text{si } i \not\in \{1,\dots,n(P)\} \\ (i+1,(s_1,\dots,s_k-1,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{k} - 1 \\ (i+1,(s_1,\dots,s_k+1,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{k} + 1 \\ (i+1,(s_1,\dots,s_n,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow N\overline{n} \\ (i+1,(s_1,\dots,s_n,\dots),\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = N\overline{k} \leftarrow 0 \\ (i+1,s,\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } N\overline{k} \neq 0 \operatorname{GOTO } L\overline{m} \wedge s_k = 0 \\ (\min\{l:I_i^P \text{ tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } N\overline{k} \neq 0 \operatorname{GOTO } L\overline{m} \wedge s_k \neq 0 \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{k} \cdot a \\ (i+1,\vec{s},(\sigma_1,\dots,\sigma_k,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow P\overline{n} \\ (i+1,\vec{s},(\sigma_1,\dots,\varepsilon,\dots)) & \text{si } \operatorname{Bas}(I_i^P) = P\overline{k} \leftarrow E \\ (\min\{l:I_i^P \text{ tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } P\overline{k} \operatorname{BEGINS } a \operatorname{GOTO } L\overline{m} \wedge [\sigma_k]_1 = a \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{IF } P\overline{k} \operatorname{BEGINS } a \operatorname{GOTO } L\overline{m} \wedge [\sigma_k]_1 + a \\ (\min\{l:I_i^P \text{ tiene label } L\overline{m}\},\vec{s},\vec{\sigma}) \operatorname{si } \operatorname{Bas}(I_i^P) = \operatorname{GOTO } L\overline{m} \\ (i+1,\vec{s},\vec{\sigma}) & \text{si } \operatorname{Bas}(I_i^P) = \operatorname{SKIP} \\ \end{pmatrix}$$

2.10.4. «estado obtenido luego de t pasos, partiendo del estado $(\vec{x}, \vec{\alpha})$ »

Dado un programa P y la descripción instantánea obtenida luego de t pasos desde el estado $(\vec{x}, \vec{\sigma})$

$$\overbrace{S_P(...S_P(S_P(1,\vec{x},\vec{\sigma}))...)}^{\text{t veces}} = (j,\vec{u},\vec{\eta})$$

diremos que $(\vec{u}, \vec{\eta})$ es el estado obtenido luego de t
 pasos, partiendo del estado $(\vec{x}, \vec{\sigma})$.

2.10.5. «P se detiene (luego de t pasos), partiendo desde el estado

$$(ec{x},ec{lpha})$$
»

Dado $S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta})$, si su primer coordenada j es igual a n(P) + 1, diremos que P se detiene (luego de t pasos), partiendo desde el estado $(\vec{x}, \vec{\sigma})$.

2.11. Combo 11: Defina:

2.11.1. $\Psi_P^{\mathrm{n,m,\#}}$

Dado $P \in \text{Pro}^{\Sigma}$.

$$\begin{split} D_{\Psi_P^{n,m,\#}} &= \{(\vec{x},\vec{\sigma}) \in \omega^n \times \Sigma^{*m} : P \text{ termina partiendo de } \|x_1,...,x_n,\alpha_1,...,\alpha_m\|\} \\ \Psi_P^{n,m,\#} &: D_{\Psi_P^{n,m,\#}} \to \omega \\ &\qquad \qquad (\vec{x},\vec{\sigma}) \to \text{valor de } N_1 \text{ cuando } P \text{ termina partiendo de } \|x_1,...,x_n,\alpha_1,...,\alpha_m\| \end{split}$$

2.11.2. «f es Σ -computable» y «P computa a f»

Dado $s,O\in\{(\#,\omega),(*,\Sigma^*)\}$. Una función Σ -mixta $f:S\subseteq\omega^n\times\Sigma^{*m}\to O$ sera llamada Σ -computable si hay un programa P de S^Σ tq $f=\Psi_P^{n,m,s}$.

En tal caso diremos que la función f es computada por P.

2.11.3. $M^{\leq}(P)$ Minimización de variable alfabética

Sea que $\Sigma \neq \emptyset$. Sea \leq un orden total sobre Σ , \leq puede ser naturalmente extendido a un orden total sobre Σ^* . Sea $P: \mathrm{Dom}_P \subseteq \omega^n \times \Sigma^{*m} \times \Sigma^*$ un predicado. Cuando $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$ es tq existe al menos un $\alpha \in \Sigma^*$ tq $P(\vec{x}, \vec{\alpha}, \alpha) = 1$, usaremos $\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha)$ para denotar al menor $\alpha \in \Sigma^*$ tq $P(\vec{x}, \vec{\alpha}, \alpha) = 1$.

Definimos
$$M^{\leq}(P) = \lambda \vec{x} \vec{\alpha} \left[\min_{\alpha}^{\leq} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$

Diremos que $M^{\leq}(P)$ es obtenida por minimización de variable alfabética a partir de P.

Obs: $M^{\leq}(P)$ esta definida solo para aquellas (n+m)-uplas $(\vec{x},\vec{\alpha})$ para las cuales hay al menos un α tq se da $P(\vec{x},\vec{\alpha},\alpha)=1$

2.12. Combo 12: Defina cuando un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ es llamado Σ -computable, cuando es llamado Σ -enumerable y defina «el programa P enumera a S»

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ sera llamado Σ -computable cuando la función $\chi_S^{\omega^n\times\Sigma^{*m}}$ sea Σ -computable.

Un conjunto $S\subseteq \omega^n \times \Sigma^{*m}$ sera llamado Σ -enumerable cuando sea vacío o haya una función sobreyectiva $F: \omega \to S$ tq $F_{(i)}$ sea Σ -computable, para cada $i \in \{1, ..., n+m\}$.

Nótese que, un conjunto no vacío $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -enumerable sii hay programas $P_1,...,P_{n+m}$ con dato de entrada $x \in \omega$ tales que:

$$S = \operatorname{Im} \left[\Psi_{P_1}^{1,0,\#}, ..., \Psi_{P_n}^{1,0,\#}, \Psi_{P_{n+1}}^{1,0,*}, ..., \Psi_{P_{n+m}}^{1,0,*} \right]$$

Como puede notarse, los programas $P_1, ..., P_{n+m}$ puestos secuencialmente a funcionar desde el estado $\|x\|$ producen, en forma natural, un procedimiento efectivo que enumera a S. Es decir que los programas $P_1, ..., P_{n+m}$ enumeran a S.

2.13. Combo 13

Defina:

$$2.13.1. i^{n,m}$$

$$\begin{split} i^{n,m} : \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} &\to \omega \\ (0, \vec{x}, \vec{\alpha}, P) &\to 1 \\ (t, \vec{x}, \vec{\alpha}, P) &\to j \text{ tq } \overbrace{S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...)}^{\text{t veces}} = (j, \vec{u}, \vec{\eta}) \end{split}$$

$$2.13.2.\ E_{\#}^{n,m}$$

$$\begin{split} 2.13.2. \ E^{n,m}_{\#} \\ E^{n,m}_{\#} : \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} &\rightarrow \omega^{[\mathbb{N}]} \\ & (0, \vec{x}, \vec{\alpha}, P) \rightarrow (x_1, ..., x_n, 0, ...) \\ & (t, \vec{x}, \vec{\alpha}, P) \rightarrow \vec{u} \ \operatorname{tq} \ \overbrace{S_P(...S_P(S_P(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta})}^{\text{t veces}} \end{split}$$

$$\begin{split} 2.13.3. \ E^{n,m}_{\#} + E^{n,m}_{*} \\ E^{n,m}_{*} : \omega \times \omega^{n} \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} \to \Sigma^{*[\mathbb{N}]} \\ (0, \vec{x}, \vec{\alpha}, P) &\to (\alpha_{1}, ..., \alpha_{n}, \varepsilon, ...) \\ (t, \vec{x}, \vec{\alpha}, P) &\to \vec{\eta} \text{ tq} \ \overbrace{S_{P}(...S_{P}(S_{P}(1, \vec{x}, \vec{\sigma}))...) = (j, \vec{u}, \vec{\eta}) \end{split}$$

$$\begin{aligned} &2.13.4.\ E_{\#_j}^{n,m} \\ &E_{\#_j}^{n,m}: \omega \times \omega^n \times \Sigma^{*m} \times \mathrm{Pro}^{\Sigma} \to \omega \\ &E_{\#_i}^{n,m} = p_j^{n,m} \circ E_{\#}^{n,m} \end{aligned}$$

$$\begin{aligned} &2.13.5.\ E^{n,m}_{*_j}\\ &E^{n,m}_{*_j}:\omega\times\omega^n\times\Sigma^{*^m}\times\operatorname{Pro}^\Sigma\to\Sigma^*\\ &E^{n,m}_{*_i}=p^{n,m}_j\circ E^{n,m}_* \end{aligned}$$

2.13.6. $Halt^{n,m}$

$$\begin{aligned} \operatorname{Halt}^{n,m} : \omega \times \omega^n \times \Sigma^{*m} \times \operatorname{Pro}^{\Sigma} &\to \{0,1\} \\ (t,\vec{x},\vec{\sigma},P) &\to i^{n,m}(t,\vec{x},\vec{\alpha},P) = n(P) + 1 \end{aligned}$$

$2.13.7. T^{n,m}$

$$\begin{split} \operatorname{Dom}_{T^{n,m}} &= \{(\vec{x},\vec{\sigma},P): P \text{ se detiene partiendo de} \parallel x_1,...,x_n,\alpha_1,...,\alpha_m \parallel \} \\ T^{n,m} &: \operatorname{Dom}_{T^{n,m}} \to \omega \\ &\qquad (t,\vec{x},\vec{\sigma},P) \to \min_t (\operatorname{Halt}^{n,m}(t,\vec{x},\vec{\sigma},P)) \end{split}$$

2.13.8. AutoHalt $^{\Sigma}$

Dado
$$\Sigma \supseteq \Sigma_p$$

$${\rm AutoHalt}^\Sigma: {\rm Pro}^\Sigma \to \{0,1\}$$

$$P \to (\exists t \in \omega) {\rm Halt}^{0,1}(t,P,P)$$

2.13.9. Los conjuntos A y N

Dado
$$\Sigma \supseteq \Sigma_p$$

$$A = \left\{ P \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(P) \right\}$$

$$N = \left\{ P \in \operatorname{Pro}^{\Sigma} : \neg \operatorname{AutoHalt}^{\Sigma}(P) \right\}$$

2.14. Combo 14: Explique en forma detallada la notación lambda

Usamos la notación lambda de Church de la forma descrita a continuación.

Esta notación se define en función de un alfabeto finito previamente fijado, que denotaremos por Σ .

Solo se usan expresiones tq:

- 1. Variables permitidas:
 - Se usan variables numéricas que se valúan en números de (ω) , y se denotan por letras como x,y,z,u,v,w,n,m,k,...
 - Se usan variables alfabéticas que se valúan en palabras sobre el alfabeto Σ . Se denotan por letras como $\alpha, \beta, \gamma, \delta, \varepsilon, \psi, \eta, ...$
- 2. **Dominio parcial**: Las expresiones lambda pueden ser **parcialmente definidas**. Es decir, puede haber valuaciones de sus variables para las cuales la expresión no este definida.
- 3. Libertad sintáctica: Las expresiones pueden ser descritas informalmente.
- 4. Valores booleanos: Consideramos que las expresiones booleanas toman valores en el conjunto $\{0,1\}\subseteq\omega$ (usando 0 para falso y 1 para verdadero).

Dado un alfabeto Σ a las expresiones que cumplan las características dadas anteriormente las llamaremos lambdificables con respecto a Σ .

2.15. Combo 15: Dada una función $f: \mathrm{Dom}_f \subseteq \omega \times \Sigma^* \to \omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: [V2 \leftarrow f(V1,W1)]

Dada una función $f:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$ Σ-computable, la palabra

$$V\overline{2} \leftarrow f(V1, W1)$$

denota a un macro M que cumple lo siguiente:

- 1. Sus variables oficiales son: V1, V2, W1
- 2. No tiene labels oficiales.
- 3. Si reemplazamos (tanto oficiales como auxiliares en cada caso):
 - 1. Las variables $V\overline{k'}$ por variables concretas $N\overline{k}$ con k distintos entre si.
 - 2. Las variables $W\overline{j'}$ por variables concretas $P\overline{j}$ con j distintos entre si.
 - 3. Los labels $A\overline{z'}$ por labels concretos $L\overline{z}$ con z distintos entre si.

Obtenemos la palabra $N\overline{k_2} \leftarrow f(N\overline{k_1}, P\overline{j_1})$ la cual es un programa de S^{Σ} .

El cual debe cumplir que: Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}, N\overline{k_2}, P\overline{j_1}$ valores x_1, x_2, α_1 , se dará que

- 1. Si $(x_1, \alpha_1) \notin \text{Dom}_P$, el programa no se detiene.
- 2. Si $(x_1, \alpha_1) \in \text{Dom}_P$, luego de una cantidad finita de pasos el programa se detiene llegando a un estado e' tq:
 - 1. e' asigna a $N\overline{k_2}$ el valor $f(x_1, \alpha_1)$;
 - 2. e' solo difiere de e en el valor de $N\overline{k_2}$ y en las variables que reemplazaron a las auxiliares de M.

La palabra $N\overline{k_2} \leftarrow f\left(N\overline{k_1}, P\overline{j_1}\right)$ se denomina la expansión del macro $V2 \leftarrow f(V1, W1)$ respecto de la elección concreta de variables y labels realizada.

2.16. Combo 16: Dado un predicado $p:\mathrm{Dom}_f\subseteq\omega\times\Sigma^*\to\omega$, describa qué tipo de objeto es y qué propiedades debe tener el macro: [IF P(V1,W1) GOTO A1]

Dado un predicado $P:\mathrm{Dom}_P\subseteq\omega\times\Sigma^*\to\{0,1\}$ $\Sigma\text{-computable, la palabra}$

[IF
$$P(V1, W1)$$
 GOTO $A1$]

denota a un macro M que cumple lo siguiente:

- 1. Sus variables oficiales son: V1, W1
- 2. A1 es su único label oficial.
- 3. Si reemplazamos (tanto oficiales como auxiliares en cada caso):
 - 1. Las variables $V\overline{k'}$ por variables concretas $N\overline{k}$ con k distintos entre si.
 - 2. Las variables $W\overline{j'}$ por variables concretas $P\overline{j}$ con j distintos entre si.
 - 3. Los labels $A\overline{z'}$ por labels concretos $L\overline{z}$ con z distintos entre si.

Obtenemos la palabra $\left[\text{IF } P \left(N\overline{k_1}, P\overline{j_1} \right) \right] \text{ GOTO } L\overline{z_1}$ la cual, si se cumple la ley del GOTO respecto a $L\overline{z_1}$, es un programa de S^{Σ} .

El cual debe cumplir que: Si lo hacemos correr partiendo de un estado e que le asigne a las variables $N\overline{k_1}$, $P\overline{j_1}$ valores x_1 , α_1 , se dará que

- 1. Si $(x_1, \alpha_1) \notin \text{Dom}_P$, el programa no se detiene.
- 2. Si $(x_1, \alpha_1) \in \mathrm{Dom}_P$, luego de una cantidad finita de pasos:
 - 1. Si $P(x_1, \alpha_1) = 1$, se salta al label $L\overline{z_1}$.
 - 2. Si $P(x_1, \alpha_1) = 0$, el programa se detiene.

En ambos casos, el estado alcanzado e' solo puede diferir de e en las variables que reemplazaron a las auxiliares de M.

La palabra $\left[\text{IF } P \left(N\overline{k_1}, P\overline{j_1} \right) \text{ GOTO } L\overline{z_1} \right]$ se denomina la expansión del macro $\left[\text{IF } P (V1, W1) \text{ GOTO } A1 \right]$ respecto de la elección concreta de variables y labels realizada.

2.17. Combo 17: Defina el concepto de función y desarrolle las tres Convenciones Notacionales asociadas a dicho concepto

Una función es un conjunto de pares tq, si $(x, y) \in f$ y $(x, z) \in f$, entonces y = z.

Dada una función f, definimos:

- $\operatorname{Dom}_f = \{x: (x,y) \in f \text{ para algún } y\}$
- $\operatorname{Im}_f = \{y : (x, y) \in f \text{ para algún } x\}$

Las convenciones notacionales son:

- Dado $x\in {\rm Dom}_f$, usaremos f(x) para denotar al único $y\in {\rm Im}_f$ tq $(x,y)\in f.$
- Escribimos $f:S\subseteq A\to B$ para expresar que f es una función tq $\mathrm{Dom}_f=S\subseteq A$ y $\mathrm{Im}_f\subseteq B$. También escribimos $f:A\to B$ si S=A. En tal contexto llamaremos a B conjunto de llegada.
- Muchas veces para definir una función f, lo haremos dando su dominio y su regla de asignación. Esto determina por completo a f ya que $f = \{(x, f(x)) : x \in \text{Dom}_f\}$.

Básico Con conjunto de llegada y flechas Con flechas y por casos

$$\begin{array}{lll} \mathrm{Dom}_f = \omega & & f: \omega \to \omega & & f: \mathbb{N} \to \omega \\ f(x) = 23x & & x \to 23x & & x \to \begin{cases} x+1 & \mathrm{si} \; \mathbf{x} \; \mathrm{es} \; \mathrm{par} \\ x+2 & \mathrm{si} \; \mathbf{x} \; \mathrm{es} \; \mathrm{impar} \end{cases} \end{array}$$

3. Combos de teoremas

3.1. Combo 1

3.1.1. Proposición: Caracterización de conjuntos Σ -pr

Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Entonces, S es Σ -pr sii S es el dominio de alguna función Σ -pr. (En la inducción de la prueba hacer solo el caso de la composición)

Prueba \Rightarrow

Sea S $\Sigma\text{-pr.}$

Entonces, $\chi_S^{\omega^n \times \Sigma^{*^m}}$ es Σ -pr para algún $n, m \in \omega$.

Para ese caso, pred o $\chi_S^{\omega^n \times \Sigma^{*^m}}$ es una función Σ -pr y $S = \mathrm{Dom}_{\mathrm{pred} \ \circ \chi_S^{\omega^n \times \Sigma^{*^m}}}$

Prueba ←

Sea S el dominio de una función Σ -pr $f: \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to O$. Probaremos por inducción en k que Dom_F es Σ -pr, para cada $F \in \mathrm{PR}_k^\Sigma$:

- $\text{1. Caso} \quad k=0 \text{:} \quad \operatorname{PR}_0^\Sigma = \left\{ \operatorname{suc}, \operatorname{pred}, C_0^{0,0}, C_\varepsilon^{0,0} \right\} \cup \left\{ d_a : a \in \Sigma \right\} \cup \left\{ p_j^{n,m} : 1 \leq j \leq n+m \right\} \\ \text{Los dominios de las funciones suc}, C_0^{0,0}, C_\varepsilon^{0,0}, d_a, p_j^{n,m} \text{ son de la forma } \omega^n \times \Sigma^{*m} \neq \omega \neq \Sigma^*$ son Σ -pr, por el «Lema 4.32» son Σ -pr. Finalmente, $\chi^{\omega}_{\mathrm{Dom}_{\mathrm{Pred}}} = \lambda x [x \neq 0]$ es Σ -pr, por definición $\mathrm{Dom}_{\mathrm{Pred}}$ es Σ -pr
- 2. Supongamos que Dom_F es Σ -pr $\forall F \in \mathrm{PR}_k^{\Sigma}$.
- 3. Sea $F \in \mathbf{PR}^{\Sigma}_{k+1}$. Veremos entonces que \mathbf{Dom}_F es Σ -pr solo para el caso de composición: Si $F = \emptyset$, entonces es claro que $\mathrm{Dom}_F = \emptyset$ es Σ -pr.

Sea $F = g \circ [g_1, ..., g_{n+m}]$ no vacío, con $g, g_1, ..., g_{n+m} \in PR_k^{\Sigma}$.

- $g: \mathrm{Dom}_q \subseteq \omega^n \times \Sigma^{*m} \to O$
- $g_i: \mathrm{Dom}_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \omega$ para i=1,...,n• $g_i: \mathrm{Dom}_{g_i} \subseteq \omega^k \times \Sigma^{*l} \to \Sigma^*$ para i=n+1,...,n+m

Por hipótesis inductiva, los conjuntos Dom_a , Dom_a , son Σ -pr.

Por «Lema 4.31», $S = \bigcap_{i=1}^{n+m} \mathrm{Dom}_{g_i}$ es Σ -pr.

Por «Lema 4.35» y «Lema 4.34»,
$$\chi_{\mathrm{Dom}_F}^{\omega^k \times \Sigma^{*l}}(\vec{x}, \vec{\alpha}) = \begin{cases} \chi_{\mathrm{Dom}_g}^{\omega^n \times \Sigma^{*m}} \circ [g_1, \dots, g_{n+m}] & \text{si } (\vec{x}, \vec{\alpha}) \in S \\ C_0^{k,l} & \text{si } (\vec{x}, \vec{\alpha}) \in \omega^k \times \Sigma^{*l} - S \end{cases}$$
 es Σ -pr.

Por lo tanto Dom_F es Σ -pr

3.1.2. Teorema: Neumann vence a Gödel

Si h es Σ -r, entonces h es Σ -computable. (En la inducción de la prueba hacer solo el caso h= $R(f,\varrho)$, con $I_h\subseteq\omega$)

Prueba:

Probaremos por inducción en k que: Si $h \in R_k^{\Sigma}$, entonces h es Σ -computable:

- 1. Caso k=0: $\mathbf{R}_0^{\Sigma} = \mathbf{P}\mathbf{R}_0^{\Sigma} = \left\{ \text{suc, pred, } C_0^{0,0}, C_{\varepsilon}^{0,0} \right\} \cup \left\{ d_a : a \in \Sigma \right\} \cup \left\{ p_j^{n,m} : 1 \leq j \leq n + 2 \right\}$ m Por lo que dados los programas que los computan (dejado al lector), entonces son Σ --computables.
- 2. Supongamos que $h \in R_k^\Sigma \Rightarrow h$ es Σ -computable.
- 3. Veamos que $h \in R_{k+1}^{\Sigma} R_k \Rightarrow h$ es Σ -computable para el caso $h = R(f, \varrho)$ con $\mathrm{Im}_h \subseteq \omega$. Sean
 - $\Sigma = \{a_1, ..., a_r\}$
 - $\bullet \ \left(f \in R_k^{\widetilde{\Sigma}}\right) f: S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \omega$
 - $(\forall a \in \Sigma, \varrho_a \in R_k^{\Sigma})\varrho_a : \omega \times S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times \Sigma^* \to \omega$

Por hipótesis inductiva, f y cada ϱ_a son Σ -computables por lo que existen sus macros. Recordemos:

$$\begin{split} R(f,\varrho): S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \times \Sigma^* &\to \omega \\ (\vec{x},\vec{\alpha},\varepsilon) &\to f(\vec{x},\vec{\alpha}) \\ (\vec{x},\vec{\alpha},\alpha a) &\to \varrho_a(R(f,\varrho)(\vec{x},\vec{\alpha},\alpha),\vec{x},\vec{\alpha},\alpha) \end{split}$$

Entonces, construimos el siguiente programa usando macros:

$$N\overline{n+1} \leftarrow f(N1,...,N\overline{n},P1,...,P\overline{m})$$

$$L\overline{r+1}: \text{IF } P\overline{m+1} \text{ BEGINS } a_1 \text{ GOTO } L1$$

$$\vdots$$

$$\text{IF } P\overline{m+1} \text{ BEGINS } a_r \text{ GOTO } Lr$$

$$\text{GOTO } L\overline{r+2}$$

$$L1: P\overline{m+1} \leftarrow \sim P\overline{m+1}$$

$$N\overline{n+1} \leftarrow \varrho_{a_1} \left(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m}, P\overline{m+2} \right)$$

$$P\overline{m+2} \leftarrow P\overline{m+2}.a_1$$

$$\text{GOTO } L\overline{r+1}$$

$$\vdots$$

$$Lr: P\overline{m+1} \leftarrow \sim P\overline{m+1}$$

$$N\overline{n+1} \leftarrow \varrho_{a_r} \left(N\overline{n+1}, N1, ..., N\overline{n}, P1, ..., P\overline{m}, P\overline{m+2} \right)$$

$$P\overline{m+2} \leftarrow P\overline{m+2}.a_r$$

$$\text{GOTO } L\overline{r+1}$$

$$L\overline{r+2}: N1 \leftarrow N\overline{n+1}$$

Este programa computa h.

3.2. Combo 2

3.2.1. Lema 4.35: Lema de división por casos para funciones Σ -pr

Si $f_i: \mathrm{Dom}_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O$ para i=1,...,k son Σ -pr tq si $i \neq j \Rightarrow \mathrm{Dom}_{f_i} \cap \mathrm{Dom}_{f_j} = \emptyset$, entonces la función $f = \bigcup_{i=1}^k f_i$ es también Σ -pr. (Hacer el caso $O = \Sigma^*, k = 2, n = 2$ y m = 1)

Prueba:

Supongamos
$$O=\Sigma^*,\,i=1,2,\,n=2$$
 y $m=1$.
Sean $f_i:\mathrm{Dom}_{f_i}\subseteq\omega^2\times\Sigma^{*2}\to\Sigma^*$ Σ -pr tq si $i\neq j\Rightarrow\mathrm{Dom}_{f_i}\cap\mathrm{Dom}_{f_j}=\emptyset$.
Por «Lema 4.34», existen funciones Σ -totales Σ -pr $\overline{f}_i:\omega^2\times\Sigma^{*2}\to\Sigma^*$ tq $f_i=\overline{f}_i|_{\mathrm{Dom}_{f_i}}$.
Por «Proposición 19», los conjuntos Dom_{f_1} y Dom_{f_2} son Σ -pr.

Por lo tanto, por «Lema 4.31», también lo es su unión: $\mathrm{Dom}_{f_1} \cup \mathrm{Dom}_{f_2}$. Finalmente, por «Lema 4.33»,

$$\begin{split} f_1 \cup f_2 &= \Big(\lambda \alpha \beta [\alpha \beta] \circ \Big[\lambda x \alpha [\alpha^x] \circ \Big[\chi_{\mathrm{Dom}_{f_1}}^{\omega^n \times \Sigma^{*^m}}, \overline{f}_1\Big] \cup \lambda x \alpha [\alpha^x] \circ \Big[\chi_{\mathrm{Dom}_{f_2}}^{\omega^n \times \Sigma^{*^m}}, \overline{f}_2\Big]\Big]\Big)|_{\mathrm{Dom}_{f_1} \cup \mathrm{Dom}_{f_2}} \\ &\text{es } \Sigma\text{-pr.} \end{split}$$

3.2.2. Proposición: Caracterización básica de conjuntos Σ -enumerables

Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

- 1. S es Σ -enumerable
- 2. Hay un programa $\mathbb{P} \in \operatorname{Pro}^{\Sigma}$ tq:
 - 1. Para cada $x \in \omega$, \mathbb{P} se detiene partiendo desde el estado $\|x\|$ y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...)),$ donde $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$
 - 2. Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$ hay un $x \in \omega$ tq \mathbb{P} se detiene partiendo desde el estado $\|x\|$ y llega a un estado como en $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$

(Hacer el caso n = 2 y m = 1)

Sea n = 2, m = 1 e i = 1, 2, 3.

Prueba ⇒:

Hipótesis: Dado $S \subseteq \omega^2 \times \Sigma^{*1}$ no vacío y Σ-enumerable.

Por definición existe una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}$ son Σ -computable.

Por «Proposición 4.8», existen macros para $F_{(1)}$, $F_{(2)}$ y $F_{(3)}$.

Sea Q el siguiente programa:

$$P1 \leftarrow F_{(3)}(N1)$$

$$N2 \leftarrow F_{(2)}(N1)$$

$$N1 \leftarrow F_{(1)}(N1)$$

donde:

- Ninguna expansion usa las variables auxiliares N1, N2, P1
- Dos expansiones distintas no usan el mismo label auxiliar.

 $\mathbb Q$ cumple las condiciones ya que emula el comportamiento de F quien enumera a S.

Prueba ⇐:

Hipótesis: Dado $\mathbb{P} \in \operatorname{Pro}^{\Sigma}$ tq cumple las condiciones (a) y (b).

Sean:

- $\mathbb{P}_1 = \mathbb{P}N1 \leftarrow N1$
- $\mathbb{P}_2 = \mathbb{P}N1 \leftarrow N2$
- $\mathbb{P}_3 = \mathbb{P}P1 \leftarrow P1$

Tenemos:

- $\begin{array}{l} \bullet \ \ F_{(1)} = \Psi_{\mathbb{P}_1}^{1,0,\#} \\ \bullet \ \ F_{(2)} = \Psi_{\mathbb{P}_2}^{1,0,\#} \\ \bullet \ \ F_{(3)} = \Psi_{\mathbb{P}_3}^{1,0,*} \end{array}$

Por definición, cada $F_{(i)}$ es Σ -computable.

Por lo tanto $F = [F_{(1)}, F_{(2)}, F_{(3)}]$ es Σ -computable.

Por hipótesis, dado que F emula a \mathbb{P} , $\mathrm{Dom}_F = \omega$ y $\mathrm{Im}_F = S$.

Por lo tanto S es Σ -enumerable.

3.3. Combo 3

3.3.1. Teorema: Gödel vence a Neumann

Si $f: \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -computable, entonces f es Σ -r (Hacer caso $O = \Sigma^*$)

Prueba:

Hipótesis: Sea $O = \Sigma^*$ y dado el programa \mathbb{P}_0 que computa a f.

$$f = \Phi^{n,m}_* \circ \left[p^{n,m}_1, ..., p^{n,m}_{n+m}, C^{n,m}_{\mathbb{P}_0} \right]$$

donde $p_1^{n,m},...,p_{n+m}^{n,m}$ (respecto del alfabeto $\Sigma\cup\Sigma_p$) y $\Phi_*^{n,m}$ son $(\Sigma\cup\Sigma_p)$ -recursivas. Por lo tanto f es $(\Sigma\cup\Sigma_p)$ -recursiva.

Por «Teorema 4.2», f es Σ -r.

3.3.2. Teorema: Caracterización de conjuntos Σ -efectivamente computables

Sea $S\subseteq \omega^n\times \Sigma^{*m}$. Son equivalentes:

1. S es Σ -efectivamente computable

2. $S \vee (\omega^n \times \Sigma^{*m}) - S \text{ son } \Sigma$ -efectivamente enumerables

 $(Hacer solo \Leftarrow)$

Prueba ⇐:

Hipótesis: Dado que $S\subseteq\omega^n\times\Sigma^{*m}$ y S y $(\omega^n\times\Sigma^{*m})-S$ son Σ -efectivamente enumerables.

Si $S=\emptyset$ o $S=\omega^n\times \Sigma^{*m}$, entonces es claro que S es Σ -efectivamente computable.

Supongamos que S no es vacío ni Σ -total.

Por definición, existen procedimientos efectivos \mathbb{P}_1 y \mathbb{P}_2 que enumeran a S y $(\omega^n \times \Sigma^{*m}) - S$. El siguiente procedimiento efectivo computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$:

Dada la entrada $(\vec{x}, \vec{\alpha}) \in \omega^n \times \Sigma^{*m}$

E1: Asignar a T el valor 0

E2: Realizar \mathbb{P}_1 con entrada T obteniendo $(\vec{y}, \vec{\beta})$

 $E3: \; \; \text{Realizar} \; \mathbb{P}_{\!2} \; \text{con entrada} \; T \; \text{obteniendo} \; (\vec{z}, \vec{\gamma})$

 $E4: \operatorname{Si}(\vec{x}, \vec{\alpha}) = (\vec{y}, \vec{\beta}) \text{ entonces detenerse y devolver 1}$

E5: Si $(\vec{x}, \vec{\alpha}) = (\vec{z}, \vec{\gamma})$ entonces detenerse y devolver 0

E6: Asignar a T el valor T+1

E7: Saltar a E2

Por lo tanto, S es Σ -efectivamente computable.

3.4. Combo 4

3.4.1. Proposición: Caracterización básica de conjuntos Σ -enumerables

Sea $S \subseteq \omega^n \times \Sigma^{*m}$ un conjunto no vacío. Entonces son equivalentes:

- 1. S es Σ -enumerable
- 2. Hay un programa $\mathbb{P} \in \operatorname{Pro}^{\Sigma}$ tq:
 - 1. Para cada $x \in \omega$, \mathbb{P} se detiene partiendo desde el estado ||x|| y llega a un estado de la forma $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...)), \, \text{donde} \, (x_1,...,x_n,\alpha_1,...,\alpha_m) \in S$
 - 2. Para cada $(x_1,...,x_n,\alpha_1,...,\alpha_m)\in S$ hay un $x\in\omega$ t
q $\mathbb P$ se detiene partiendo desde el estado $\|x\|$ y llega a un estado como en $((x_1,...,x_n,y_1,...),(\alpha_1,...,\alpha_m,\beta_1,...))$

(Hacer el caso n = 2 y m = 1)

Sea n = 2, m = 1 e i = 1, 2, 3.

Prueba ⇒:

Hipótesis: Dado $S \subseteq \omega^2 \times \Sigma^{*1}$ no vacío y Σ-enumerable.

Por definición existe una función sobreyectiva $F:\omega\to S$ tq $F_{(i)}$ son Σ -computable.

Por «Proposición 4.8», existen macros para $F_{(1)},\,F_{(2)}$ y $F_{(3)}.$

Sea Q el siguiente programa:

$$P1 \leftarrow F_{(3)}(N1)$$

$$N2 \leftarrow F_{(2)}(N1)$$

$$N1 \leftarrow F_{(1)}(N1)$$

donde:

- Ninguna expansion usa las variables auxiliares N1, N2, P1
- Dos expansiones distintas no usan el mismo label auxiliar.

 $\mathbb Q$ cumple las condiciones ya que emula el comportamiento de F quien enumera a S.

Prueba ⇐:

Hipótesis: Dado $\mathbb{P} \in \operatorname{Pro}^{\Sigma}$ tq cumple las condiciones (a) y (b).

Sean:

- $\mathbb{P}_1 = \mathbb{P}N1 \leftarrow N1$
- $\mathbb{P}_2 = \mathbb{P}N1 \leftarrow N2$
- $\mathbb{P}_3 = \mathbb{P}P1 \leftarrow P1$

Tenemos:

- $\begin{array}{l} \bullet \ \ F_{(1)} = \Psi^{1,0,\#}_{\mathbb{P}_1} \\ \bullet \ \ F_{(2)} = \Psi^{1,0,\#}_{\mathbb{P}_2} \\ \bullet \ \ F_{(3)} = \Psi^{1,0,*}_{\mathbb{P}_3} \\ \end{array}$

Por definición, cada $F_{(i)}$ es Σ -computable.

Por lo tanto $F = \left[F_{(1)}, F_{(2)}, F_{(3)}\right]$ es Σ -computable.

Por hipótesis, dado que F emula a \mathbb{P} , $\mathrm{Dom}_F = \omega$ y $\mathrm{Im}_F = S$.

Por lo tanto S es Σ -enumerable.

3.4.2. Lema: Lema de la sumatoria

Sea Σ un alfabeto finito. Si $f:\omega\times S_1\times\ldots\times S_n\times L_1\times\ldots\times L_m\to\omega$ es Σ -pr, con $S_1,\ldots,S_n\subseteq\omega$ y $L_1,\ldots,L_m\subseteq\Sigma^*$ no vacíos, entonces, la función $\lambda xy\vec{x}\vec{\alpha}\left[\sum_{i=x}^y f(i,\vec{x},\vec{\alpha})\right]$ es también Σ -pr.

Prueba:

$$\begin{split} \lambda x y \vec{x} \vec{\alpha} \left[\sum_{i=x}^{y} f(i, \vec{x}, \vec{\alpha}) \right] &= \lambda y x \vec{x} \vec{\alpha} \left[\sum_{t=0}^{y} h(t, x, \vec{x}, \vec{\alpha}) \right] \circ \left[p_{2}^{2+n, m}, p_{1}^{2+n, m}, p_{3}^{2+n, m} ..., p_{2+n+m}^{2+n, m} \right] \\ &= R(h, g) \circ \left[p_{2}^{2+n, m}, p_{1}^{2+n, m}, p_{3}^{2+n, m} ..., p_{2+n+m}^{2+n, m} \right] \end{split}$$

Donde:

$$\begin{split} h: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m &\to \omega \\ (x, \vec{x}, \vec{\alpha}) &\to \begin{cases} 0 & \text{si } (x, \vec{x}, \vec{\alpha}) \in H_1 \\ f(0, \vec{x}, \vec{\alpha}) & \text{si } (x, \vec{x}, \vec{\alpha}) \in H_2 \end{cases} \\ g: \omega^3 \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m &\to \omega \\ (A, t, x, \vec{x}, \vec{\alpha}) &\to \begin{cases} 0 & \text{si } (A, t, x, \vec{x}, \vec{\alpha}) \in G_1 \\ A + f(t+1, \vec{x}, \vec{\alpha}) & \text{si } (A, t, x, \vec{x}, \vec{\alpha}) \in G_2 \end{cases} \end{split}$$

Donde:

$$\begin{split} H_1 &= \{(x, \vec{x}, \vec{\alpha}) \in \mathrm{Dom}_h : x > 0\} \\ H_2 &= \{(x, \vec{x}, \vec{\alpha}) \in \mathrm{Dom}_h : x = 0\} \\ G_1 &= \big\{(A, t, x, \vec{x}, \vec{\alpha}) \in \mathrm{Dom}_g : x > t + 1\big\} \\ G_2 &= \big\{(A, t, x, \vec{x}, \vec{\alpha}) \in \mathrm{Dom}_g : x \leq t + 1\big\} \end{split}$$

Por «Lema 4.35» y «Lema 4.34», h y g son Σ -pr.

3.5. Combo 5

3.5.1. Lema, Ejercicio de la Guía 5

Sean $\Sigma=\{@,\%,!\}$ y $S_1,S_2\subseteq\omega$ y $L_1,L_2\subseteq\Sigma^*$ no vacíos.

Sea $f:S_1\times S_2\times L_1\times L_2\to \omega$ y ϱ una familia Σ -indexada de funciones $\varrho_a:\omega\times S_1\times S_2\times L_1\times L_2\times \Sigma^*\to \omega$ para cada $a\in \Sigma$.

Si f y cada ϱ_a son Σ -efectivamente computables, entonces $R(f,\varrho):S_1\times S_2\times L_1\times L_2\times \Sigma^*\to\omega$ lo es.

Prueba:

Por definición, existen procedimientos efectivos \mathbb{P}_f , $\mathbb{P}_{\varrho_{@}}$, $\mathbb{P}_{\varrho_{\%}}$ y $\mathbb{P}_{\varrho_!}$.

El siguiente procedimiento efectivo computa a $R(f, \varrho)$:

Dada la entrada $(x, y, \alpha, \beta, \gamma) \in S_1 \times S_2 \times L_1 \times L_2 \times \Sigma^*$

E1: Asignar a τ el valor ε

E2: Asignar a A el resultado de correr $\mathbb{P}_{\!f}$ con entrada (x,y,α,β)

E3: Si $\gamma = \varepsilon$ detenerse y devolver A

 $E4: \ \ \text{Si} \ [\gamma]_1= @, \text{Asignar a A el resultado de correr} \ \mathbb{P}_{\varrho_{@}} \ \text{con entrada} \ (A,x,y,\alpha,\beta,\tau)$

 $E5: \ \ \mathrm{Si} \ [\gamma]_1 = \%, \\ \mathrm{Asignar} \ \mathrm{a} \ A \ \mathrm{el} \ \mathrm{resultado} \ \mathrm{de} \ \mathrm{correr} \ \mathbb{P}_{\varrho_{\%}} \ \mathrm{con} \ \mathrm{entrada} \ (A,x,y,\alpha,\beta,\tau)$

 $E6: \ \ \mathrm{Si} \ [\gamma]_1 = !, \\ \mathrm{Asignar} \ \mathrm{a} \ A \ \mathrm{el} \ \mathrm{resultado} \ \mathrm{de} \ \mathrm{correr} \ \mathbb{P}_{\varrho_!} \ \mathrm{con} \ \mathrm{entrada} \ (A, x, y, \alpha, \beta, \tau)$

E7: Asignar a τ el resultado de correr τ . $[\gamma]_1$

E8: Asignar a γ el resultado de correr $\sim \gamma$

E9: Saltar a E3

3.5.2. Lema: Lema de cuantificación acotada

Sean
$$P: S \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m \to \{0,1\}$$
 y $\overline{S} \subseteq S$ Σ-pr. Entonces $\lambda x \vec{x} \vec{\alpha} \left[\left(\forall t \in \overline{S} \right)_{t \le x} P(t, \vec{x}, \vec{\alpha}) \right]$ es Σ-pr

Prueba:

Sea:

$$\begin{split} Q: \omega \times S_1 \times \ldots \times S_n \times L_1 \times \ldots \times L_m &\to \{0,1\} \\ (t,\vec{x},\vec{\alpha}) &\to \begin{cases} P(t,\vec{x},\vec{\alpha}) \text{ si } (t,\vec{x},\vec{\alpha}) \in \overline{S} \\ 1 & \text{ si } (t,\vec{x},\vec{\alpha}) \in \omega - \overline{S} \end{cases} \end{split}$$

Por «Lema 4.35» y «Lema 4.34», Q es Σ -pr.

$$\begin{split} \lambda x \vec{x} \vec{\alpha} \Big[\Big(\forall t \in \overline{S} \Big)_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \Big] &= \lambda x \vec{x} \vec{\alpha} \left[\prod_{t=0}^{x} Q(t, \vec{x}, \vec{\alpha}) \right] \\ &= \lambda z x \vec{x} \vec{\alpha} \left[\prod_{t=z}^{x} Q(t, \vec{x}, \vec{\alpha}) \right] \circ \left[C_{0}^{1+n,m}, p_{1}^{1+n,m}, ..., p_{1+n+m}^{1+n,m} \right] \end{split}$$

Por «Lema 4.21», es Σ -pr.

3.6. Combo 6

3.6.1. Lema:

Si $S\subseteq\omega^n\times\Sigma^{*m}$ es Σ -efectivamente computable, entonces S es Σ -efectivamente enumerable

Prueba:

Si $S = \emptyset$, por definición S es Σ -efectivamente enumerable.

Supongamos que S no es vacío.

Por definición existe un procedimiento efectivo que computa a $\chi_S^{\omega^n \times \Sigma^{*m}}$.

El siguiente procedimiento efectivo enumera a S:

Dada la entrada $x \in \omega$

E1: Asignar a \vec{x} los resultados de correr $((x))_1, ..., ((x))_n$

E2: Asignar a $\vec{\alpha}$ los resultados de correr $*^{\leq} ((x))_1,...,*^{\leq} ((x))_n$

 $E3: \text{Si } \chi_S^{\omega^n \times \Sigma^{*m}}(\vec{x}, \vec{\alpha}) = 1 \text{ detenerse y devolver } (\vec{x}, \vec{\alpha})$

E4: Asignar a x el valor 0

E5: Asignar a \vec{x} los resultados de correr $((x))_1, ..., ((x))_n$

E6: Asignar a $\vec{\alpha}$ los resultados de correr $* \le ((x))_1, ..., * \le ((x))_n$

Si $\chi_S^{\omega^n \times \Sigma^{*m}}(\vec{x}, \vec{\alpha}) = 1$ detenerse y devolver $(\vec{x}, \vec{\alpha})$

E8: Asignar a x el resultado de correr x + 1

E9: Saltar a E5

Cada elemento en S es equivalente a un posible estado de $(\vec{x}, \vec{\alpha})$ que tarde o temprano sera alcanzado.

Ademas, dado que $S \neq \emptyset$, el procedimiento efectivo siempre se detiene y devuelve un elemento de S. Por lo tanto, S es Σ -efectivamente enumerable.

3.6.2. Teorema 4.12: Caracterización de conjuntos Σ -re

Sea $S \subseteq \omega^n \times \Sigma^{*m}$. Son equivalentes:

- 1. S es Σ -re
- 2. $S = \operatorname{Im}_F$, para alguna $F : \operatorname{Dom}_F \subseteq \omega^k \times \Sigma^{*l} \to \omega^n \times \Sigma^{*m}$ tq cada F(i) es Σ -r
- 3. $S = \text{Dom}_f$, para alguna función Σ -r f

(Hacer la prueba de $(2) \rightarrow (3)$, con k = l = 1 y n = m = 2)

Prueba ⇒:

Hipótesis: Dado $F: \mathrm{Dom}_F \subseteq \omega \times \Sigma^* \to S \subseteq \omega^2 \times \Sigma^{*2}$ sobreyectiva t
q cada F(i) es Σ -r.

Por teorema, existen programas \mathbb{P}_i que computan $F_{(i)}$.

Sea \leq un orden total sobre Σ .

Sea NotHalt_{\mathbb{P}_i} = $\lambda tx\alpha[\neg \text{Halt}^{1,1}(t,x,\alpha,\mathbb{P}_i)]$

Notar que, al abstraer \mathbb{P} , su dominio esta bajo Σ , por lo que la función es Σ -mixta.

Por definición, $\operatorname{Halt}^{1,1}$ es $(\Sigma \cup \Sigma_p)$ -pr por lo que $\operatorname{NotHalt}_{\mathbb{P}_2}$ también.

Por «Teorema 4.2», NotHalt $_{\mathbb{P}_i}$ es Σ -pr, por lo que es Σ -computable y existe su macro.

- $\operatorname{NeqE}_{\mathbb{P}_i\#} = \lambda z t x \alpha \left[y \neq E_{\#1}^{1,1}(t,x,\alpha,P_i) \right]$ para i = 1, 2 $\operatorname{NeqE}_{\mathbb{P}_i*} = \lambda x t \alpha \beta \left[\beta \neq E_{*1}^{1,1}(t,x,\alpha,P_i) \right]$ para i = 3, 4

Notar que, al abstraer \mathbb{P} , sus dominios están bajo Σ , por lo que las funciones son Σ -mixtas.

Por definición, $E_s^{1,1}$ son $(\Sigma \cup \Sigma_p)$ -pr por lo que Neq $\mathbb{E}_{\mathbb{P}_i s}$ también.

Por «Teorema 4.2», $\mathrm{NeqE}_{\mathbb{P}_s s}$ son Σ -pr, por lo que son Σ -computable y existen sus macros.

Luego, para algún $j \in \mathbb{N}$, $\lambda x [(x)_j]$ y $\lambda x [* \le (x)_j]$ son Σ -pr, por lo que son Σ -computable y existen sus macros.

 $p_1^{2,2}|_S$ es una función t
q $\mathrm{Dom}_{p_1^{2,2}}|_S=S.$ Demos un programa que la compute:

$$\begin{split} L1: N5 &\leftarrow N5 + 1 \\ N4 &\leftarrow (N5)_1 \\ N3 &\leftarrow (N5)_2 \\ P3 &\leftarrow *^{\leq} ((N5)_3) \\ & \left[\text{IF NotHalt}_{\mathbb{P}_1}(N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NotHalt}_{\mathbb{P}_2}(N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NotHalt}_{\mathbb{P}_3}(N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NotHalt}_{\mathbb{P}_4}(N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NotHalt}_{\mathbb{P}_4}(N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NeqE}_{\mathbb{P}_1 \#}(N1, N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NeqE}_{\mathbb{P}_2 \#}(N2, N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NeqE}_{\mathbb{P}_3 *}(P1, N4, N3, P3) \text{ GOTO } L1 \right] \\ & \left[\text{IF NeqE}_{\mathbb{P}_4 *}(P2, N4, N3, P3) \text{ GOTO } L1 \right] \end{split}$$

Por lo tanto, $p_1^{2,2}|_S$ es Σ -computable y Σ -r.

3.7. Combo 7

3.7.1. Lema 4.25: Lema de minimización acotada

Sea $P: \mathrm{Dom}_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \{0,1\} \Sigma$ -pr, entonces:

- 1. M(P) es Σ -r
- 2. Si existe $f:\omega^n \times \Sigma^{*m} \to \omega$ Σ -pr tq $M(P)(\vec{x},\vec{\alpha}) = \min_t P(t,\vec{x},\vec{\alpha}) \leq f(\vec{x},\vec{\alpha})$, entonces M(P) es Σ -pr

Prueba 1:

Hipótesis: Dado $P: \mathrm{Dom}_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \{0,1\} \Sigma$ -pr.

Entonces, por definición, P es Σ -r.

Sea

$$\begin{split} Q: \omega \times \omega^n \times \Sigma^{*m} &\to \{0,1\} \\ (x,\vec{x},\vec{\alpha}) &\to \begin{cases} P(x,\vec{x},\vec{\alpha}) \text{ si } (x,\vec{x},\vec{\alpha}) \in \mathrm{Dom}_P \\ 0 & \text{si } (x,\vec{x},\vec{\alpha}) \in \omega^n \times \Sigma^{*m} - \mathrm{Dom}_P \end{cases} \end{split}$$

Por «Lema 4.35» y «Lema 4.34», Q es Σ -r.

Notar que M(Q) = M(P).

Como Q es Σ -r, entonces existe un k tq $Q \in \mathbf{R}_k^{\Sigma}$.

Como Q es Σ -total y Σ -r, por definición $M(Q) \in \mathbf{R}^{\Sigma}_{k+1} \subseteq \mathbf{R}^{\Sigma}.$

Prueba 2:

Hipótesis: Dado $P: \mathrm{Dom}_P \subseteq \omega \times \omega^n \times \Sigma^{*m} \to \{0,1\}$ Σ-pr y $f: \omega^n \times \Sigma^{*m} \to \omega$ Σ-pr tq $M(P)(\vec{x}, \vec{\alpha}) = \min_t P(t, \vec{x}, \vec{\alpha}) \leq f(\vec{x}, \vec{\alpha}).$

Ya que M(P) = M(Q), basta probar que M(Q) es Σ -pr.

Nótese que:

$$\begin{split} \chi_{\mathrm{Dom}_{M(Q)}}^{\omega^{n} \times \Sigma^{*m}} &= \lambda \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq f(\vec{x}, \vec{\alpha})} Q(t, \vec{x}, \vec{\alpha}) \right] \\ &= \lambda x \vec{x} \vec{\alpha} \left[(\exists t \in \omega)_{t \leq x} Q(t, \vec{x}, \vec{\alpha}) \right] \circ \left[f, p_{1}^{n,m}, ..., p_{n+m}^{n,m} \right] \end{split}$$

Por «Lema 4.22» es Σ -pr, por lo que $\mathrm{Dom}_{M(Q)}$ es Σ -pr.

Sea

$$G = \lambda t \vec{x} \vec{\alpha} \left[Q(t, \vec{x}, \vec{\alpha}) \land \neg (\exists j \in \omega)_{j < t} (j \neq t \land Q(t, \vec{x}, \vec{\alpha})) \right]$$

G es Σ -total y es fácil demostrar que es Σ -pr por «Lema 4.22».

Notar que $G(t,\vec{x},\vec{lpha})=1\Leftrightarrow (\vec{x},\vec{lpha})\in \mathrm{Dom}_{M(Q)}\wedge t=M(Q)(\vec{x},\vec{lpha})$ Por lo tanto,

$$\begin{split} M(Q) &= \lambda \vec{x} \vec{\alpha} \left[\prod_{t=0}^{f(\vec{x}, \vec{\alpha})} t^{G(t, \vec{x}, \vec{\alpha})} \right] |_{\mathrm{Dom}_{M(Q)}} \\ &= \lambda x y \vec{x} \vec{\alpha} \left[\prod_{t=x}^{y} t^{G(t, \vec{x}, \vec{\alpha})} \right] \circ \left[C_0^{n,m}, f, p_1^{n,m}, ..., p_{n+m}^{n,m} \right] \end{split}$$

Por «Lema 4.21», es Σ -pr.

3.7.2. Lema

Si $f:\mathrm{Dom}_f\subseteq\omega^n imes\Sigma^{*m}\to O$ es Σ -r y $S\subseteq\mathrm{Dom}_f$ es Σ -re, entonces $f|_S$ es Σ -r (Hacer solo el caso S no vacío, n=m=1 y $O=\Sigma^*$)

Prueba:

Hipótesis: Dado $f:\mathrm{Dom}_f\subseteq\omega^1\times\Sigma^{*\,1}\to\Sigma^*$ $\Sigma\text{-r}$ y $S\subseteq\mathrm{Dom}_f$ $\Sigma\text{-re no vacío.}$

Entonces, por definición, existen programas que computan a f, $F_{(1)}$ y $F_{(2)}$ tq $\left[F_{(1)},F_{(2)}\right]$ enumera a S.

El siguiente programa computa a $f|_S$:

$$\begin{split} L2: \left[\text{IF } N1 \neq F_{(1)}(N3) \text{ GOTO } L1\right] \\ \left[\text{IF } P1 = F_{(2)}(N3) \text{ GOTO } L3\right] \\ L1: N3 \leftarrow N3 + 1 \\ \text{ GOTO } L2 \\ L3: \left[P1 \leftarrow f(N1, P1)\right] \\ \text{ SKIP} \end{split}$$

3.8. Combo 8

3.8.1. Lema 4.62

Si $\Sigma \supseteq \Sigma_p$, entonces Auto
Halt $^\Sigma$ no es $\Sigma\text{-recursivo}$

Prueba:

Supongamos que Auto
Halt $^{\Sigma}$ es $\Sigma\text{-recursivo}$ t
q existe su macro.

Sea el siguiente programa \mathbb{P} :

$$L1: [\text{IF AutoHalt}^{\Sigma}(P1) \text{ GOTO } LL]$$

Este programa termina partiendo de $\|\mathbb{P}\|$ sii AutoHalt $^{\Sigma}(\mathbb{P}) = 0$. Lo cual es un absurdo por definición de AutoHalt $^{\Sigma}$.

3.8.2. Teorema 4.15.

Si $\Sigma \supseteq \Sigma_p$, entonces Auto
Halt $^\Sigma$ no es Σ -efectivamente computable

Prueba:

Si Auto Halt^Σ fuera Σ -efectivamente computable, la Tesis de Church nos diría que es Σ -recursivo, contradiciendo el lema anterior.

3.8.3. Lema 4.63.

Si
$$\Sigma \supseteq \Sigma_p$$
. Sea $A = \{ \mathbb{P} \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(P) = 1 \}$, entonces A es Σ -re y no Σ -r. Además, el conjunto $N = \{ \mathbb{P} \in \operatorname{Pro}^{\Sigma} : \operatorname{AutoHalt}^{\Sigma}(P) = 0 \}$ no es Σ -re.

Prueba:

Sea $P = \lambda t P[\operatorname{Halt}^{0,1}(t, P, P)].$

Como P es Σ -pr, por «Lema 4.25» M(P) es Σ -r.

Como $\mathrm{Dom}_{M(P)}=A$, por «Teorema 4.12» A es Σ -re.

Supongamos que N es Σ -re.

Por «Lema 4.35» y «Lema 4.34»,

AutoHalt
$$^{\Sigma}: \operatorname{Pro}^{\Sigma} \to \{0,1\}$$

$$P \to \begin{cases} 1 \text{ si } P \in A \\ 0 \text{ si } P \in N \end{cases}$$

es Σ -r, lo que contradice el «Lema 4.62».

Finalmente supongamos A es Σ -r. Entonces el conjunto $N=(\Sigma^*-A)\cap \operatorname{Pro}^\Sigma$ deberia serlo, lo cual es absurdo.

3.8.4. Teorema: Neumann vence a Gödel

Si h es Σ -r, entonces h es Σ -computable (Hacer solo el caso h=M(P))

Prueba:

Probaremos por induccion en k:

- 1. Caso k=0: $\mathbf{R}_0^{\Sigma} = \mathrm{PR}_0^{\Sigma} = \left\{ \mathrm{suc}, \mathrm{pred}, C_0^{0,0}, C_{\varepsilon}^{0,0} \right\} \cup \left\{ d_a : a \in \Sigma \right\} \cup \left\{ p_j^{n,m} : 1 \leq j \leq n + m \right\}$
 - suc: $N1 \leftarrow N1 + 1$
 - pred: $L1: \text{IF } N1 = 0 \text{ GOTO } L1: N1 \leftarrow N1 1$
 - $C_0^{0,0}$ y $C_{\epsilon}^{0,0}$: SKIP

- $\begin{array}{l} \bullet \ d_a \hbox{:}\ P1 \leftarrow P1.a \\ \bullet \ p_j^{n,m} \hbox{:}\ Nj \leftarrow Nj \ \text{para}\ j=1,...,n \\ \bullet \ p_j^{n,m} \hbox{:}\ Pj \leftarrow Pj \ \text{para}\ j=n+1,...,m \end{array}$
- 2. Supongamos: Si $h \in R_k^{\Sigma}$, entonces h es Σ -computable.
- 3. Veamos para el caso h=M(P) con $P:\omega\times\omega^n\times\Sigma^{*m}\to\{0,1\}$ tq $P\in R_k^\Sigma$ si se cumple: Si $h\in R_{k+1}^\Sigma$, entonces h es Σ -computable.

Sea
$$h = M(P) \in R_{k+1}^{\Sigma}$$
.

Por hipótesis inductiva, P es Σ -computable por lo que tenemos su macro.

El siguiente programa computa a h:

$$L2:$$
 IF $P(N\overline{n+1},N1,...,N\overline{n},P1,...,P\overline{m})$ GOTO $L1$

$$N\overline{n}+1\leftarrow N\overline{n+1}+1$$
GOTO $L2$

$$L1:N1\leftarrow N\overline{n+1}$$

3.9. Combo 9

3.9.1. Lema: Lema de división por casos para funciones Σ -r

Sean funciones Σ -r $f_i: \mathrm{Dom}_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O$ para i=1,...,k, tq $\mathrm{Dom}_{f_i} \cap \mathrm{Dom}_{f_j} = \emptyset$ para $i \neq j$. Entonces $f_1 \cup ... \cup f_k$ es Σ -r (Hacer el caso k=2, n=m=1 y $O=\omega$)

Prueba:

Por «Tesis de Church», existen programas $\mathbb{P}_1, \mathbb{P}_2$ que computan f_1, f_2 .

Sea
$$\operatorname{Halt}_{\mathbb{P}_i} = \lambda tx\alpha [\operatorname{Halt}^{1,1}(t,x,\alpha,\mathbb{P}_i)]$$

Notar que, al abstraer \mathbb{P} , su dominio esta bajo Σ , por lo que la función es Σ -mixta.

Por definición, $\operatorname{Halt}^{1,1}$ es $(\Sigma \cup \Sigma_p)$ -pr por lo que $\operatorname{Halt}_{\mathbb{P}_i}$ también.

Por «Teorema 4.2», $\operatorname{Halt}_{\mathbb{P}_{\epsilon}}$ es Σ -pr. Por «Tesis de Church» es Σ -computable tq existe su macro.

El siguiente programa computa a $f_1 \cup f_2$:

$$\begin{split} L1: N2 \leftarrow N2 + 1 \\ & \left[\text{IF Halt}_{\mathbb{P}_1}(N2, N1, P1) \text{ GOTO } L2 \right] \\ & \left[\text{IF Halt}_{\mathbb{P}_2}(N2, N1, P1) \text{ GOTO } L3 \right] \\ & \text{GOTO } L1 \\ L2: \left[P1 \leftarrow f_1(N1, P1) \right] \\ & \text{GOTO } L4 \\ L3: \left[P1 \leftarrow f_2(N1, P1) \right] \\ L4: \text{SKIP} \end{split}$$

Como es Σ -computable, por «Tesis de Church», $f_1 \cup f_2$ es Σ -r.

3.9.2. Teorema 4.5: Gödel vence a Neumann

Si $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*^m}\to\omega$ es $\Sigma\text{-computable, entonces }f$ es $\Sigma\text{-r}$

Prueba:

Como f es Σ -computable, existe un programa $\mathbb P$ que lo computa. Nótese que $f=\Phi^{n,m}_s\circ [p^{n,m}_1,...,p^{n,m}_{n+m},C^{n,m}_{\mathbb P}]$ bajo el alfabeto $\Sigma\cup\Sigma_p$. Por lo tanto f es $(\Sigma\cup\Sigma_p)$ -r. Por «Teorema 4.2», f es Σ -r.

4. Utilidades

4.1. Lema 14.

Sean $P: S \subseteq \omega^n \times \Sigma^{*m} \to \{0,1\}$ y $Q: S \subseteq \omega^n \times \Sigma^{*m} \to \{0,1\}$ Σ -pr, entonces también lo son: $(P \vee Q), (P \wedge Q)$ y $\neg P$.

4.2. Def Conjuntos Σ -pr

Un conjunto Σ -mixto $S \subseteq \omega^n \times \Sigma^{*m}$ se llama Σ -recursivo primitivo si su función característica $\chi_S^{\omega^n \times \Sigma^{*m}} \equiv \lambda \vec{x} \vec{\alpha} [(\vec{x}, \vec{\alpha}) \in S]$ es Σ -pr

4.3. Lema 4.31.

Si $S_1, S_2 \subseteq \omega^n \times \Sigma^{*m}$ son Σ -pr, entonces también lo son: $S_1 \cup S_2, S_1 \cap S_2$ y $S_1 - S_2$.

4.4. Lema 4.32.

Sean $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ conjuntos no vacíos.

Entonces $S_1 \times ... \times S_n \times L_1 \times ... \times L_m$ es Σ -pr sii $S_1,...,S_n,L_1,...,L_m$ son Σ -pr

4.5. Lema 4.33.

Sea $f:\mathrm{Dom}_f\subseteq\omega^n\times\Sigma^{*m}\to O$ una función Σ -pr. Si $S\subseteq\mathrm{Dom}_f$ es Σ -pr, entonces la función $f|_S$ también es Σ -pr

4.6. Lema 4.34.

Si $f: \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -pr, entonces existe una función $\overline{f}: \omega^n \times \Sigma^{*m} \to O$ Σ -pr tal que $f = \overline{f}|_{\mathrm{Dom}_f}$.

4.7. Proposición 19.

Sea $S\subseteq \omega^n\times \Sigma^{*m}$. Entonces, S es Σ -pr sii S es el dominio de alguna función Σ -pr.

4.8. Lema 4.35: Lema de division por casos para funciones Σ -pr

Si $f_i: \mathrm{Dom}_{f_i} \subseteq \omega^n \times \Sigma^{*m} \to O$ para i=1,...,k son Σ -pr tq si $i \neq j \Rightarrow \mathrm{Dom}_{f_i} \cap \mathrm{Dom}_{f_j} = \emptyset$, entonces la función $f = \bigcup_{i=1}^k f_i$ es también Σ -pr.

4.9. Lema 4.21.

Sea Sigma un alfabeto finito.

(a) Si $f:\omega\times S_1\times...\times S_n\times L_1\times...\times L_m\to\omega$ es Σ -pr, con $S_1,...,S_n\subseteq\omega$ y $L_1,...,L_m\subseteq\Sigma^*$ no vacíos, entonces, las funciones $\lambda xy\vec{x}\vec{\alpha}.\sum_{t=x}^y f(t,\vec{x},\vec{\alpha})$ y $\lambda xy\vec{x}\vec{\alpha}.\prod_{t=x}^y f(t,\vec{x},\vec{\alpha})$ son también Σ -pr

4. Utilidades

(b) Si $f:\omega\times S_1\times...\times S_n\times L_1\times...\times L_{m_{\!\!\!\!/}}\to \Sigma^*$ es Σ -pr, con $S_1,...,S_n\subseteq \omega$ y $L_1,...,L_m\subseteq \Sigma^*$ no vacíos, entonces la función $\lambda xy\vec x\vec \alpha.$ $\underset{t=x}{\subset} f(t,\vec x,\vec \alpha)$ es Σ -pr

4.10. Proposición 4.8

Sea $f:\mathrm{Dom}_f\subseteq\omega^n imes\Sigma^{*m} o\omega$ una función Σ -computable. Entonces, en S^Σ hay un macro de la forma: $V\overline{n+1}\leftarrow f(V1,...,V\overline{n},W1,...,W\overline{m})$

Sea $f: \mathrm{Dom}_f \subseteq \omega^n \times \Sigma^{*m} \to \Sigma^*$ una función Σ -computable. Entonces, en S^Σ hay un macro de la forma: $W\overline{n+1} \leftarrow f(V1,...,V\overline{n},W1,...,W\overline{m})$

4.11. Definición de función Σ -computable

Una función Σ -mixta $f:S\subseteq\omega^n\times\Sigma^{*m}\to O$ será llamada Σ -computable si hay un programa P tal que $f=\Psi_P^{n,m,s}$.

4.12. Definición de conjuntos Σ -enumerables

Un conjunto $S\subseteq\omega^n\times\Sigma^{*m}$ será llamado Σ -enumerable cuando sea vacío o exista una función sobreyectiva $F:\omega\to S\in\omega^n\times\Sigma^{*m}$ y F(i) sea Σ -computable para cada $i\in\{1,...,n+m\}$.

4.13. Teorema 4.2 (Independencia del alfabeto)

Sean Σ y Γ alfabetos cualesquiera:

- 1. (a) Supongamos que una función f es Σ -mixta y Γ -mixta. Entonces f es Σ -r (resp. Σ -pr) sii f es Γ -recursiva (resp. Γ -pr).
- 2. (b) Supongamos que un conjunto S es Σ -mixto y Γ -mixto. Entonces S es Σ -recursivo (resp. Σ -re, Σ -pr) sii S es Γ -recursivo (resp. Γ -re, Γ -pr).

4.13.1. Lema 4.22 (Lema de cuantificación acotada)

Sea Σ un alfabeto finito.

1. Sea $P: \mathbb{S} \times \mathbb{S}_{-1} \times ... \times \mathbb{S}_{-n} \times \mathbb{L}_{-1} \times ... \times \mathbb{L}_{-m} \to \omega$ un predicado Σ -pr, con $S, S_1, ..., S_n \subseteq \omega$ y $L_1, ..., L_m \subseteq \Sigma^*$ no vacíos. Sea $\overline{S} \subset S$ Σ -pr. Entonces estos predicados son Σ -pr:

$$\begin{split} &\lambda x \vec{x} \vec{\alpha} \bigg[\forall \Big(t \in \overline{S} \Big)_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \bigg] \\ &\lambda x \vec{x} \vec{\alpha} \bigg[\exists \Big(t \in \overline{S} \Big)_{t \leq x} P(t, \vec{x}, \vec{\alpha}) \bigg] \end{split}$$

2. Sea $P: S_1 \times ... \times S_n \times L_1 \times ... \times L_m \times L \to \omega$ un predicado Σ-pr, con $S_1, ..., S_n \subseteq \omega$ y $L, L_1, ..., L_m \subseteq \Sigma^*$ no vacíos. Sea $\overline{L} \subset L$ Σ-pr. Entonces estos predicados son Σ-pr:

$$\lambda x \vec{x} \vec{\alpha} \left[\forall \left(\alpha \in \overline{L} \right)_{|\alpha| \le x} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$
$$\lambda x \vec{x} \vec{\alpha} \left[\exists \left(\alpha \in \overline{L} \right)_{|\alpha| \le x} P(\vec{x}, \vec{\alpha}, \alpha) \right]$$

4. Utilidades 26

4.13.2. Lema 4.30

Sean $P:S\subset\omega^n\times\Sigma^{*m}\to\omega$ y $Q:S\subseteq\omega^n\times\Sigma^{*m}\to\omega$ predicados Σ -recursivos. Entonces también lo son: $(P\vee Q),(P\wedge Q)$ y $\neg P$

4.13.3. Lema 4.25: Lema de minimización acotada

Sea $P:\mathrm{Dom}_P\subseteq\omega\times\omega^n\times\Sigma^{*\,m}\to\{0,1\}$ $\Sigma\text{-pr,}$ entonces:

- 1. M(P) es Σ -r
- 2. Si existe $f:\omega^n \times \Sigma^{*m} \to \omega$ Σ -pr tq $M(P)(\vec{x},\vec{\alpha}) = \min_t P(t,\vec{x},\vec{\alpha}) \leq f(\vec{x},\vec{\alpha})$, entonces M(P) es Σ -pr