Problem 5. As you know, if F is a field and $s(x) \in F[x]$ has degree 2 or degree 3, then s(x) is irreducible if and only if s(x) has no root in F. By inspection, the only irreducible degree 2 polynomial over \mathbb{Z}_2 is $x^2 + x + 1 = s(x)$. Observe that $[s(x)]^2 = x^4 + x^2 + 1$.

The polynomial $t(x) = x^4 + x + 1$ has no root in \mathbb{Z}_2 ; hence, it has no factorization into degree 1 polynomial times a degree 3 polynomial. So t(x) is reducible over \mathbb{Z}_2 if and only if it is a product of two irreducible degree 2 polynomials. But $x^2 + x + 1$ is the only irreducible degree 2 polynomial over \mathbb{Z}_2 , and $(x^2 + x + 1)(x^2 + x + 1) \neq x^4 + x + 1$. Thus, $t(x) = x^4 + x + 1$ is irreducible over \mathbb{Z}_2 , completing the first part of the problem.

For the second part of the problem, you're asked to find $(\theta^2+1)^{-1}$, where $\theta = x + (t(x))$, a root of t(x) in $F_1 = \mathbb{Z}_2[x]/(t(x))$.

This would be a good time to review a very important observation concerning inverses of elements in finite dimensional extensions:

For any field F contained in a field K, whenever an element $\beta \in K$, $F(\beta)$ is by definition the least subfield of K containing F and β .

Suppose β is a root of some irreducible polynomial $p(x) \in F[x]$, and let's consider $F[\beta]$, the least ring of K that contains F and β . Since $F[\beta]$ is a subring of K, it is closed under addition and multiplication, so it follows that if $q(x) \in F[x]$, then $q(\beta) \in F[\beta]$. On the other hand, $\{q(\beta) : q(x) \in F[x]\}$ is clearly closed under addition and multiplication, so $\{q(\beta) : q(x) \in F[x]\}$ must be equal to $F[\beta]$. Notice also that $p(\beta) = 0$, so if $q(\beta) = s(\beta)p(\beta) + r(\beta)$, where $\deg(r(x)) < \deg(p(x))$. It follows that $F[\beta] = \{q(\beta) : q(x) \in F[x], \deg(q(x)) < \deg(p(x))\}$.

If we select $\alpha \in F[\beta] - \{0\}$, since $F[\beta]$ consists of polynomials in β of idegree less than $\deg p(x)$, there exists a polynomial $q(x) \in F[x] - \{0\}$ such that $\alpha = q(\beta)$.

Since p(x) is irreducible and q(x) is non-0 and of lesser degree than p(x), (p(x), q(x)) = 1. Since we're operating in a Euclidean domain (see the first couple of pages of Chapter 8), there exists polynomials $s(x), t(x) \in F[x]$ such that s(x)q(x) + t(x)p(x) = 1. Evaluate this last equation at $x \to \beta$: we see that $s(\beta)q(\beta) + t(\beta)p(\beta) = 1$. Since β is a root of p(x), $s(\beta)q(\beta) = 1$. But $q(\beta) = \alpha$, and now it is apparent that $s(\beta)$ is the inverse in K of α . It follows that $F[\beta]$ is field! And it must be the least field containing F and β , the field we called $F(\beta)$. Moreover, we have a procedure for finding inverses

of elements of $F[\beta] = F(\beta)$, the Euclidean algorithm with backtracking. In 5(b), you're asked to implement that algorithm over \mathbb{Z}_2 .

So in 5(b), with θ the root of t(x), we're asked to find $(\theta^2 + 1)^{-1}$, we're asked to to determine s(x), t(x) in $\mathbb{Z}_2[x]$ satisfying

$$s(x)(x^2 + 1) + t(x)(x^4 + x + 1) = 1$$

over \mathbb{Z}_2 .

It is s(x) that will determine the inverse of $\theta^2 + 1$, and we won't have to be precise about t(x) above.

Applying the Division Algorithm twice (again see the first pages of Chapter 8), we have

- $(1.) x^4 + x + 1 = (x^2 + 1)(x^2 + 1) + x$
- (2.) $x^2 + 1 = (x)x + 1$, witnessing that $(t(x), x^2 + 1) = 1$. Now we have to "backtrack" to find s(x), t(x) above.

(2'.)
$$1 = x^2 + 1 + (x)x$$

(1.') = $(1)(x^2 + 1) + (x)[x^4 + x + 1 + (x^2 + 1)(x^2 + 1)]$
= $[1 + x(x^2 + 1)](x^2 + 1) + (x)(x^4 + x + 1)$
= $[1 + x + x^3](x^2 + 1) + (x)(x^4 + x + 1)$

So
$$s(x) = x^3 + x + 1$$
. Thus $(\theta^2 + 1)^{-1} = \theta^3 + \theta + 1$.

Check:
$$(\theta^3 + \theta + 1)(\theta^2 + 1) = \theta^5 + \theta^3 + \theta^2 + \theta^3 + \theta + 1 = \theta^5 + \theta^2 + \theta + 1 = (\theta^2 + \theta) + \theta^2 + \theta + 1 = 1$$
. (Notice that $\theta^4 + \theta + 1 = 0$ implies that $\theta^5 = \theta^2 + \theta$.)