

DP-Mix: Mixup-based Data Augmentation for Differentially Private Learning

Wenxuan Bao¹, Francesco Pittaluga², Vijay Kumar B G², Vincent Bindschaedler¹

¹University of Florida, ²NEC Labs America

Background | Mixup Data Augmentation

$$\hat{x} = \lambda x_i + (1 - \lambda)x_j,$$

$$\hat{y} = \lambda y_i + (1 - \lambda)y_j,$$

where $\lambda \in [0,1]$ is a random number

Image

Label [1.0, 0.0] [0.0, 1.0] [0.7, 0.3] cat dog cat dog

Image source: https://hoya012.github.io/blog/Bag-of-Tricks-for-Image-Classification-with-Convolutional-Neural-Networks-Review/

Microbatch

Our Method | DP-Mix_{self}

Background | Stable Diffusion


```
"prompt:" "Futuristic architectures
with planets in the
background."
```

```
"prompt:" "cyberpunk city at night
with transparent neon
billboards."
```

Our Method | DP-Mix_{diff}

DP-Mix_{diff} vs Pretraining with Diffusion Data

Pre-training on diffusion samples does not improve performance; mixing up training samples with them does

Main Results

Main Results

Takeaway

 We show how to apply mixup for DP training of ML models and demonstrate it surpasses the prior SoTA at no extra privacy cost.

https://wenxuan-bao.github.io