Mininet

快速部署SDN工具介绍

为什么选择 | 命令详解 | OpenFlow协议 | 案例应用 | 获取方式

优速网络 SDN项目组

为什么选择

凡事必有其原因,当中有何隐情,让我们一同探索为何要选择Mininet

背景

SDN真的那么容易吗?

控制器研究

开源成为不可抵挡的趋势。NOX, POX, Floodlight等均采用公开源代码的形式,任何人都可以学习SDN,只要有相应的IT编程能力,都可以为SDN的控制器的完善做出贡献。各大设备厂商也启动了OpenDayLight项目。

SDN搭建

光有控制器还不能构成完整SDN网,但当前硬件SDN交换机还很少,也很难找到。难道要让我用OpenVSwitch去手动搭建复杂的网络吗?哦,亲,我可以告诉你我已经不感兴趣了吗?

什么是Mininet,他又有何好处?

1 快速

可以快速搭建一个SDN网络,所有搭建工作均在同一台计算 机上完成

2 高效

搭建的SDN网络可以媲美真实硬件环境的网络,它具备SDN 网络应有的特性

3 灵活

可通过命令行、用户API、Python应用来创建主机、交换机、 控制器

优势

作为轻量级软定义网络研发和测试平台, 优势是什么?

- 支持Openflow、OpenvSwitch等软定义网络部件
- 方便多人协同开发
- 支持系统级的还原测试
- 支持复杂拓扑、自定义拓扑
- 提供python API
- 很好的硬件移植性(Linux兼容),结果有更好的说服力
- 高扩展性,支持超过4096台主机的网络结构

对SDN网络研究需要什么样的工具组合?

Mininet 部署工具

注意

研究SDN网络的注意事项

1

抓包工具

wireshark 是一款抓包工具。使用wireshark检测lo网卡,并通过过滤of协议可以看到OpenFlow的网包。

2

控制器

这里的控制器(controller)我们默认使用Floodlight,其可以获取网络拓扑、向交换机写入流表,当然还有很多其他功能需要进行更为详细的配置,我们这里仅对其基本功能进行了解。

命令详解

基本命令行

1 --topo

定义了一个将在mininet启动时加载的拓扑

2 --switch

定义mininet要使用的交换机(默认使用OVSK即OpenVSwitch交换机)

3 --controller

定义要使用的控制器,如果没有指定则默认的控制器将默认使用hub behavior

拓扑

Mininet创建拓扑的方法

1

线形拓扑

交换机连接呈线形排列,且每个交换机所连接主机数目多为一个

2

树形拓扑

交换机连接成树形排列,且每个交换机所连接主机一般有 多个

(3)

自定义拓扑

用Python语言写脚本,执行脚本即可创建拓扑 执行命令格式: sudo python <script name>

拓扑创建命令介绍

1 sudo mn --topo linear,4

每个主机连接一个交换机,交换机之间互相连接举例:4个hosts和4个switches.

2 sudo mn --topo single,3

所有host都连接到同一个switch上举例:3个hosts和1个switch.

3 sudo mn --topo tree,depth=2,fanout=2

通过depth和fan-out定义的树形拓扑

sudo mn --topo linear,4

(s1, s2) (s1, h5) (s2, s3) (s2, h6) (s3, s4) (s3, h7) (s4, h8)


```
from mininet.net
import Mininet
from mininet.topo
import LinearTopo
Linear4 =
LinearTopo(k=4)
net =
Mininet(topo=Linear4)
net.start()
net.pingAll()
net.stop()
```

sudo mn --topo single,3

(s1, h2) (s1, h3) (s1, h4)


```
from mininet.net import
Mininet
from mininet.topo import
SingleSwitchTopo
Single3 =
SingleSwitchTopo(k=3)
net = Mininet(topo=Single3)
net.start()
net.pingAll()
net.stop()
```

sudo mn --topo tree,depth=2,fanout=2

(h1, s6) (h2, s6) (h3, s7) (h4, s7) (s5, s6) (s5, s7)

from mininet.net import
Mininet
from mininet.topolib import
TreeTopo
Tree22 = TreeTopo(depth=2,
fanout=2)
net = Mininet(topo=Tree22)
net.start()
net.pingAll()
net.stop()

Mininet的常用交互命令

hep 默认列出所有命令文档,后面加命令名

将介绍该 命令用法

dump 打印节点信息

intfs 列出所有的网络接口

nodes 列出所有的节点信息

net 显示网络链接情况

iperf 两个节点之间进行简单的iperf口CP测试

dpct 在所有交换机上用dptcl执行相关命令,

本地为 tcp 127.0.0.1:6634

iperfudp 两个节点之间用制定带宽udp进行测试

Mininet的常用交互命令

pingpair 在前两个主机之间互ping测试

ink 禁用或启用两个节点之间的链路

pingall 所有host节点之间互ping

xterm 给定节点上开启xterm

SOURCE 从外部文件中读入命令

py 执行python表达式

sh 运行外部shell命令

quit/exit 退出

流表修改命令

dpctl dump-flows tcp:127.0.0.1:6634

可以看到更详细的流表信息。

此时,流表为空,执行h2中ing的3无法得到响应。因此我们需要通过dpctl手动添加流表项,实现转发。

- dpctl add-flow tcp:127.0.0.1:6634 in_port=1,actions=output:2
- dpctl add-flow tcp:127.0.0.1:6634 in_port=2,actions=output:1

此时查看流表可以看到新的转发信息,同时可以在h2和h3之间ping通

命令学习进阶

- sudo mn
- --test pingall
- --topo single,3
- --controller=remote, ip=192.168.208.144, port=6633

- 创建一个独立的网络, 有三个主机以非交互模式 连接在一个交换机上
- 网络中的每个主机均完成Ping操作到其余的主机
- 这个命令使用远程的 controller(控制器), 其ip为192.168.208.144, 端口为6633

0penFow协议

对OpenFlow协议的消息类型和连接流程进行介绍

概述

简要介绍OpenFlow协议

OpenFlow协议诞生于斯坦福大学,是创新型网络的研究产物。它所定义的网络架构不同于传统的网络架构的分布式控制方式OpenFlow协议的解决方案是集中式控制,正是由于这种思想产生了SDN(软件定义网络)的概念,基于OpenFlow协议的SDN的核心是数据层面和控制层面的分离,这样使得网络的交换机的数据转发更为简单、快速。OpenFlow协议用于控制器向交换机中传送转发表,交换机依此转发数据包。

消息

介绍OpenFlow协议的消息类型

- 1 Controller-to-Switch 控制器至交换机消息此类消息由控制器主动发出
- 2 Asynchronous 异步消息此类消息由交换机主动发出
- 3 Symmetric 对称消息,可以由控制器或交换机主动发起

Controller-to-Switch

Features 用来获取交换机特性 Configuration 用来配置Openflow交换机 **Modify-State** Read-Stats Send-Packet Barrier 阻塞消息

用来修改交换机状态(修改流表)

用来读取交换机状态

用来发送数据包

Asynchronous

Packet-in 用来告知控制器交换机接收到数据包 Flow-Removed 用来告知控制器交换机流表被删除 Port-Status 用来告知控制器交换机端口状态更新 Error 用来告知控制器交换机发生错误

Symmetric

Hello Echo endor

He O 用来建立Openflow连接

Vendor 厂商自定义消息

抓包 OpenFlow连接建立时抓包

Source	Destination	Protocol	Length	Info
192.168.208.144	192.168.208.143	0FP	74	Hello (SM) (8B)
192.168.208.143	192.168.208.144	0FP	74	Hello (SM) (8B)
192.168.208.144	192.168.208.143	0FP	74	Hello (SM) (8B)
192.168.208.144	192.168.208.143	0FP	74	Features Request
192.168.208.143	192.168.208.144	0FP	290	Features Reply (
192.168.208.144	192.168.208.143	0FP	98	Stats Request (C
192.168.208.143	192.168.208.144	0FP	78	Get Config Reply
192.168.208.143	192.168.208.144	0FP	1134	Stats Reply (CSM

流程 介绍OpenFlow连接建立时要控制器和交换机消息顺序

Message	Туре	Description
Hello	Controller-> Switch	following the ITCP I handshake, I the I tontroller sends I its version I humber I to I the I switch
Hello	Switch-> Controller	the Is witch I deplies I with I its Is upported I version number.
Features Request	Controller-> Switch	the Controller Casks Clockee Owhich Coorts Care available
Set Config	Controller-> Switch	indhisdease, dhedontrollerdasks dhedowitch do send flow Expirations
Features Reply	Switch-> Controller	the Is witch I deplies I with I dist I of I ports, I port speeds, I and supported I ables I and I actions.
Port Status	Switch-> Controller	enables The Tawitch To Tinform That Tontroller of Thanges to Toott Speeds To Tonnectivity. I Ignore This Tone, Lit appears To The Tabug

案例应用

从网络创建代码到拓扑,讲述如何通过Mininet研究SDN网络及OpenFlow协议

创建第一个SDN网络

1

启动Mininet

输入命令: sudo mn

*** Creating network *** Adding controller *** Adding hosts: h1 h2 *** Adding switches: **s**1 *** Adding links: (h1, s1) (h2, s1) *** Configuring hosts h1 h2 *** Starting controller *** Starting 1 switches **s**1 *** Starting CLI:

创建了两个主机和一个交 换机

定义节点间的连接

开启默认的控制器和建立 的交换机

创建第一个SDN网络

available nodes are: c0 h1 h2 s1

在Mininet中输入命 mininet > < command>

> mininet> nodes mininet> net mininet> dump

h2 h2-eth0:s1-eth2 s1 lo: s1-eth1:h1-eth0 s1-eth2:h2-eth0 c0

h1 h1-eth0:s1-eth1

<Host h1: h1-eth0:10.0.0.1</pre> pid=9916>

<Host h2: h2-eth0:10.0.0.2</pre> pid=9917>

<OVSSwitch s1:

lo:127.0.0.1,s1-

pid=9920>

<OVSController c0: 127.0.0.1:6633 pid=9908>

观察控制器的情况

http://192.168.208.144:8080/ui/index.htmlNone,s1-eth2:None

Live updates

Controller Status

Hostname: localhost:6633

Healthy: true

Uptime: 28313 s

JVM memory bloat: 488116624 free out of 515899392

n.f.topology.TopologyManager, n.f.flowcache.FlowReconcileManager, n.f.devicemanager.internal.DefaultEntityClassifier, n.f.storage.memory.MemoryStorageSource, n.f.counter.CounterStore, n.f.restserver.RestApiServer, n.f.firewall.Firewall,

Modules loaded: n.f.core.FloodlightProvider, n.f.perfmon.PktlnProcessingTime, n.f.devicemanager.internal.DeviceManagerImpl,

n.f.linkdiscovery.internal.LinkDiscoveryManager, n.f.staticflowentry.StaticFlowEntryPusher, n.f.threadpool.ThreadPool,

n.f.flowcache.FlowCache,

Switches (1)

DPID	IP Address	Vendor	Packets	Bytes	Flows	Connected Since
00:00:00:00:00:00:00:01	/192.168.208.143:51333	Nicira Networks, Inc.	0	0	0	2014年1月6日 下午5:05:17

Hosts (2)

MAC Address	IP Address	Switch Port	Last Seen	
7a:01:39:10:d8:02		00:00:00:00:00:00:01-2	2014年1月6日 下午5:05:26	
ba:77:43:81:42:d2		00:00:00:00:00:00:01-1	2014年1月6日 下午5:05:26	

Network Topology

控制器发现的 网络拓扑

创建含两个switch的SDN网络

 $egin{pmatrix} egin{pmatrix} \egn{pmatrix} \e$

打开wireshark

登录到虚拟机命令行界面,打开wireshark,使其后台运行,命令为:sudo wireshark &

2

启动Mininet

输入命令: sudo mn --custom mininet/custom/topo-2sw-2host.py --topo mytopo --controller=remote, ip=<ip>, port=6633

> 这个创建命令好 复杂,来我们研 究一下

创建的拥有两个switch的SDN网络命令分析

sudo mn --custom mininet/custom/topo-2sw-2host.py
--topo mytopo --controller=remote , ip=<ip>, port=6633

- 这里的controller是另外创建的虚拟机,后面跟随的是其ip和端口
- 这里可以看到一个比较陌生的.py,这是使用的自定义拓扑模式,用python语言写的自定义拓扑。
- 除了使用mn命令进行交互式操作以外, mininet最为强大之处是提供api可以直接通过python编程进行灵活的网络实验。在mininet/example目录下给出了几个python程序的例子,包括使用gui方式创建拓扑、运行多个测试,在节点上运行sshd,创建多个节点的tree结构网络等等。运行这些程序就可以得到令人信服的结果,而且这些程序大都十分短小,体现了mininet平台的强大易用性。

创建

创建的拥有两个switch的SDN网络

*** Creating network *** Adding controller 创建了2个主机和2个交 *** Adding hosts: 换机,并添加控制器 h1 h2 *** Adding switches: s3 s4 *** Adding links: 定义节点间的连接 (h1, s3) (h2, s4) (s3, s4) *** Configuring hosts h1 h2 开启默认的控制器和建立 *** Starting controller 的交换机 *** Starting 2 switches s3 s4 *** Starting CLI:

拓扑

创建的拥有两个switch的SDN网络

创建含两个switch的SDN网络

3

测试网络

通过进行ping操作,对网络进行研究mininet > h1 ping h2

抓包情况分析

在步骤3进行后,通过wireshark进行抓包,分析抓包情况对OpenFlow协议进行研究

抓包 mininet > h1 ping h2

抓
包
情
况

ba:ea:36:38:13:eb	Broadcast	OFP+ARP	126 Packet In
192.168.208.144	192.168.208.143	0FP	90 Packet Out
ba:ea:36:38:13:eb	Broadcast	0FP+ARP	126 Packet In
192.168.208.144	192.168.208.143	0FP	90 Packet Out
b2:3b:69:b5:58:a7	ba:ea:36:38:13:eb	0FP+ARP	126 Packet In
192.168.208.144	192.168.208.143	0FP	170 Packet Out
192.168.208.144	192.168.208.143	0FP	146 Flow Mod (
b2:3b:69:b5:58:a7	ba:ea:36:38:13:eb	0FP+ARP	126 Packet In
192.168.208.144	192.168.208.143	0FP	90 Packet Out
10.0.0.1	10.0.0.2	OFP+ICMP	182 Packet In
192.168.208.144	192.168.208.143	0FP	170 Packet Out
192.168.208.144	192.168.208.143	0FP	146 Flow Mod (

如何获取

获取

获取Mininet的方法

1

镜像文件

官方网站已给我们制作好镜像文件,可以直接下载 http://mininet.org/download/

2

自行安装

如果对mininet的安装感兴趣,可以下载源代码自行编译安装mininet。详见http://mininet.org/download/

谢姚观赏

设计制作: 冀烨

Mininet

优速网络 SDN项目组