

Name: PL Karthik Natarajan Register Number: 192011116 Guided by Dr.E.K. Subramanian

Enhancing data breach detection and ensuring customer data privacy in the banking sector using Isolation forest compared with one-class support vector machine

INTRODUCTION

- > In the constantly evolving landscape of cybersecurity in the banking sector, the detection of data breaches and ensuring customer data privacy stands as a paramount challenge.
- > This paper introduces a novel approach that integrates the Isolation Forest algorithm and compares its performance with the One-Class Support Vector Machine (SVM) for heightened effectiveness in data breach detection and privacy assurance.
- > The focus is on evaluating the superiority of Isolation Forest over One-Class SVM, particularly in terms of accuracy and overall performance, underscoring the significance of cybersecurity and data breach detection in the banking sector.
- > The foundation of this research is rooted in an extensive exploration of scholarly papers addressing the nuances of cybersecurity in the banking sector. Drawing insights from 1,500 comprehensive studies sourced from platforms review uncovers traditional and state-of-the-art approaches to data breach detection and privacy in the banking sector.
- > The overarching goal of this study is to enhance data breach detection and ensure customer data privacy in the banking sector through the incorporation of the Isolation Forest algorithm.

Data Breach Information

MATERIALS AND METHODS

Improving Product Information Accuracy in E-commerce Platforms

➤ When comparing IF and O-SVM models in terms of mean accuracy, it is observed that IF expose more accuracy compared to O-SVM.

		Algoritl	hms	N			MEAN	Std. Deviation	Std. Deviation		Std. Error Mean	
Accuracy		IF			20		92.067	0.79920	0.79920		.17871	
		O-SVM			20		88.50	0.90851	0.90851		.20315	
									95% Confidence Interval of the Difference			
		F	Sig.	t	df	Sig. (2-tailed)	Difference	Std. Error Difference	Lowe	r	Upper	
Accuracy	Equal variances assumed	.030	.864	13.185	38	.000	3.56	.27057	3.019		4.115	
	Equal variances not assumed			13.185	37.392	.000	3.56	.27057	3.019		4.115	

Significant Threshold value of a Accuracy rate Comparison of IF and O-SVM algorithm.

DISCUSSION AND CONCLUSION

- > This research study unmistakably demonstrates the superior performance of Isolation Forest over One-Class SVM concerning accuracy and overall performance in data breach detection and customer data privacy assurance in the banking sector.
- Isolation Forest achieves an outstanding accuracy rate, with a mean accuracy of 92.06%, surpassing One-Class SVM, which yields an accuracy of 88.50%. The application of an independent sample T-test confirms the statistical (Misman and Bhatti 2020; Siano et al. 2020) significance of these differences, highlighting the paramount importance of cybersecurity and customer data privacy.
- > This research emphatically underscores the superior performance of Isolation Forest over One-Class SVM in the realm of data breach detection and customer data privacy assurance, emphasizing the pivotal aspects of cybersecurity in the banking sector.
- > Isolation Forest achieves an impressive accuracy of 92.06%, surpassing the One-Class SVM's accuracy of 88.50%.
- > Overall, the results suggest that Isolation Forest stands out as a promising and influential tool in revolutionizing the landscape of data breach detection and customer data privacy assurance, contributing significantly to improved cybersecurity and enhanced customer data protection in the banking sector.
- > Isolation Forest's exceptional potential to significantly enhance accuracy and transform the landscape of this domain, emphasizing the crucial considerations of cybersecurity and customer data privacy. (Mageto 2021; Sun et al. 2020)

- > Ahmed, Shakeel, M. Ejaz Majeed, Eleftherios Thalassinos, and Yannis Thalassinos. 2021. "The Impact of Bank Specific and Macro-Economic Factors on Non-Performing Loans in the Banking Sector: Evidence from an Emerging Economy." Journal of Risk and Financial Management 14 (5): 217.
- > Al-Shehari, Taher, and Rakan A. Alsowail. 2021. "An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques." Entropy 23 (10): 1258.
- > Athari, Seyed Alireza, Chafic Saliba, Danielle Khalife, and Madonna Salameh-Ayanian. 2023. "The Role of Country Governance in Achieving the Banking Sector's Sustainability in Vulnerable Environments: New Insight from Emerging Economies." Sustainability: Science Practice and Policy 15 (13): 10538.
- ➤ Awan, Khalil, Naveed Ahmad, Rana Tahir Naveed, Miklas Scholz, Mohammad Adnan, and Heesup Han. 2021. "The Impact of Work–Family Enrichment on Subjective Career Success through Job Engagement: A Case of Banking Sector." Sustainability: Science Practice and Policy 13 (16): 8872.
- > Rahman, Habib-Ur, Muhammad Waqas Yousaf, and Nageena Tabassum. 2020. "Bank-Specific and Macroeconomic Determinants of Profitability: A Revisit of Pakistani Banking Sector under Dynamic Panel Data Approach." International Journal of Financial Studies 8 (3): 42.
- > Seh, Adil Hussain, Mohammad Zarour, Mamdouh Alenezi, Amal Krishna Sarkar, Alka Agrawal, Rajeev Kumar, and Raees Ahmad Khan. 2020. "Healthcare Data Breaches: Insights and Implications." Healthcare Papers 8 (2): 133.

Name: PL Karthik Natarajan Register Number: 192011116 Guided by Dr.E.K. Subramanian

Enhancing data breach detection and ensuring customer data privacy in the banking sector using Isolation forest compared with Gradient Boosting Algorithm

INTRODUCTION

- ➤ In the constantly evolving landscape of cybersecurity in the banking sector, the detection of data breaches and ensuring customer data privacy stands as a paramount challenge.
- > This paper introduces a novel approach that integrates the Isolation Forest algorithm and compares its performance with the Gradient Boosting Algorithm (XGBOOST) for heightened effectiveness in data breach detection and privacy assurance.
- > The focus is on evaluating the superiority of Isolation Forest over Gradient Boosting(XGBOOST), particularly in terms of accuracy and overall performance, underscoring the significance of cybersecurity and data breach detection in the banking sector.
- > The foundation of this research is rooted in an extensive exploration of scholarly papers addressing the nuances of cybersecurity in the banking sector. Drawing insights from 1,500 comprehensive studies sourced from platforms review uncovers traditional and state-of-the-art approaches to data breach detection and privacy in the banking sector.
- > The overarching goal of this study is to enhance data breach detection and ensure customer data privacy in the banking sector through the incorporation of the Isolation Forest algorithm.

Data Breach Information

MATERIALS AND METHODS

Improving Data Accuracy in Banking Sector

Simple Bar Mean of ACCURACY by ALGORITHM Simple Bar Mean of ACCURACY by ALGORITHM From Bars: 95% CI Error Bars: 95% CI Error Bars: 95% CI Error Bars: 95% CI

IF and XGBOOST

➤ When comparing IF and XGBOOST models in terms of mean accuracy, it is observed that IF expose more accuracy compared to XGBOOST.

	Algorithms		N		MEAN	Sta. Deviation	Std. Deviation		Std. Error Mean		
	IF			20		92.06	0.7992	0.79920		.17871	
	XGB	OOST		20		85.04	0.52424	0.52424		.11722	
							In				
	F	Sig.	t	df		Difference	Std. Error Difference	Lowe	er	Upper	
Equal variances assumed	8.631	.006	32.861	38	.000	7.02315	.21372	6.590)49	7.45581	
Equal variances not assumed			32.861	32.796	.000	7.02315	.21372	6.588	22	7.45807	
	variances assumed Equal variances not	IF XGB F Equal 8.631 variances assumed Equal variances not	IF XGBOOST F Sig. Equal 8.631 .006 variances assumed Equal variances not	F Sig. t Equal 8.631 .006 32.861 variances assumed Equal variances not	IF 20 XGBOOST 20	F Sig. t df Sig. (2 tailed)	F Sig. t df Sig. (2- Mean Difference	IF 20 92.06 0.7992 XGBOOST 20 85.04 0.52424	IF 20 92.06 0.79920 XGBOOST 20 85.04 0.52424 F Sig. t df Sig. (2- Mean Difference Difference Difference Difference Equal variances 32.861 32.796 .000 7.02315 .21372 6.588 variances not 32.861 32.796 .000 7.02315 .21372 6.588 Variances 32.861 .006 .00	Tight 20 92.06 0.79920	

Significant Threshold value of a Accuracy rate Comparison of IF and XGBOOST algorithm.

DISCUSSION AND CONCLUSION

- > This research study unmistakably demonstrates the superior performance of Isolation Forest over XGBOOST concerning accuracy and overall performance in data breach detection and customer data privacy assurance in the banking sector.
- Isolation Forest achieves an outstanding accuracy rate, with a mean accuracy of 92.06%, surpassing XGBOOST, which yields an accuracy of 88.50%. The application of an independent sample T-test confirms the statistical (Misman and Bhatti 2020; Siano et al. 2020) significance of these differences, highlighting the paramount importance of cybersecurity and customer data privacy.
- > This research emphatically underscores the superior performance of Isolation Forest over XGBOOST in the realm of data breach detection and customer data privacy assurance, emphasizing the pivotal aspects of cybersecurity in the banking sector.
- > Isolation Forest achieves an impressive accuracy of 92.06%, surpassing the XGBOOST accuracy of 88.50%.
- > Overall, the results suggest that Isolation Forest stands out as a promising and influential tool in revolutionizing the landscape of data breach detection and customer data privacy assurance, contributing significantly to improved cybersecurity and enhanced customer data protection in the banking sector.
- ➤ Isolation Forest's exceptional potential to significantly enhance accuracy and transform the landscape of this domain, emphasizing the crucial considerations of cybersecurity and customer data privacy.(Mageto 2021; Sun et al. 2020)

- > Ahmed, Shakeel, M. Ejaz Majeed, Eleftherios Thalassinos, and Yannis Thalassinos. 2021. "The Impact of Bank Specific and Macro-Economic Factors on Non-Performing Loans in the Banking Sector: Evidence from an Emerging Economy." *Journal of Risk and Financial Management* 14 (5): 217.
- > Al-Shehari, Taher, and Rakan A. Alsowail. 2021. "An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques." Entropy 23 (10): 1258.
- > Athari, Seyed Alireza, Chafic Saliba, Danielle Khalife, and Madonna Salameh-Ayanian. 2023. "The Role of Country Governance in Achieving the Banking Sector's Sustainability in Vulnerable Environments: New Insight from Emerging Economies." Sustainability: Science Practice and Policy 15 (13): 10538.
- > Awan, Khalil, Naveed Ahmad, Rana Tahir Naveed, Miklas Scholz, Mohammad Adnan, and Heesup Han. 2021. "The Impact of Work–Family Enrichment on Subjective
- Career Success through Job Engagement: A Case of Banking Sector." Sustainability: Science Practice and Policy 13 (16): 8872.

 > Rahman, Habib-Ur, Muhammad Waqas Yousaf, and Nageena Tabassum. 2020. "Bank-Specific and Macroeconomic Determinants of Profitability: A Revisit of Pakistani
- Banking Sector under Dynamic Panel Data Approach." *International Journal of Financial Studies* 8 (3): 42. > Seh, Adil Hussain, Mohammad Zarour, Mamdouh Alenezi, Amal Krishna Sarkar, Alka Agrawal, Rajeev Kumar, and Raees Ahmad Khan. 2020. "Healthcare Data Breaches: Insights and Implications." *Healthcare Papers* 8 (2): 133.

Name: PL Karthik Natarajan Register Number: 192011116 Guided by Dr.E.K. Subramanian

Enhancing data breach detection and ensuring customer data privacy in the banking sector using Isolation forest compared with K-Means Clustering

INTRODUCTION

- > In the constantly evolving landscape of cybersecurity in the banking sector, the detection of data breaches and ensuring customer data privacy stands as a paramount challenge.
- > This paper introduces a novel approach that integrates the Isolation Forest algorithm and compares its performance with the Gradient Boosting Algorithm (K-M) for heightened effectiveness in data breach detection and privacy assurance.
- > The focus is on evaluating the superiority of Isolation Forest over K-means(K-M), particularly in terms of accuracy and overall performance, underscoring the significance of cybersecurity and data breach detection in the banking sector.
- > The foundation of this research is rooted in an extensive exploration of scholarly papers addressing the nuances of cybersecurity in the banking sector. Drawing insights from 1,500 comprehensive studies sourced from platforms review uncovers traditional and state-of-the-art approaches to data breach detection and privacy in the banking sector.
- > The overarching goal of this study is to enhance data breach detection and ensure customer data privacy in the banking sector through the incorporation of the Isolation Forest algorithm.
- > The Isolation Forest algorithm stands as a powerful tool in the domain of machine learning, particularly well-suited for enhancing data breach detection and ensuring customer data privacy in the banking sector.

Data Breach Information

MATERIALS AND METHODS

Improving Data Accuracy in Banking Sector

RESULTS Simple Bar Mean of ACCURACY by ALGORITHM 100.00 K-M **ALGORITHM** Error Bars: 95% CI

IF and K-M

Error Bars: +/- 1 SD

> When comparing IF and K-M models in terms of mean accuracy, it is observed that IF expose more accuracy compared to K-M.

	Algorithms			N		MEAN	Std. Deviation		Std. Error Mean			
	IF			20		92.06	0.79920		.17871			
		K-M				83.74	0.48290		.10798			
									Confidence ral of the ence			
	F	Sig.	t	df		Difference	Std. Error Difference	Lower	Upper			
Equal variances assumed	9.945	.003	39.885	38	.000	8.32791	.20880	7.9052	8.75060			
Equal variances not assumed			39.885	31.242	.000	8.32791	.20880	7.9022	8.75362			
	variances assumed Equal variances not	F Equal 9.945 variances assumed Equal variances not	F Sig. Equal 9.945 .003 variances assumed Equal variances not	F Sig. t Equal 9.945 .003 39.885 variances assumed Equal 39.885 variances not	F Sig. t df	F Sig. t df Sig. (2 tailed) Equal 9.945 .003 39.885 38 .000 variances assumed Equal variances not 39.885 31.242 .000	F Sig. t df Sig. (2- Mean Difference	F Sig. t df Sig. (2- Mean Difference Difference Difference Std. Error Difference Difference Std. Error Difference Difference Difference Std. Error Difference Difference Difference Std. Error Difference Differ	IF 20 92.06 0.79920			

Significant Threshold value of a Accuracy rate Comparison of IF and K-M algorithm.

DISCUSSION AND CONCLUSION

- > This research study unmistakably demonstrates the superior performance of Isolation Forest over K-M concerning accuracy and overall performance in data breach detection and customer data privacy assurance in the banking sector.
- Isolation Forest achieves an outstanding accuracy rate, with a mean accuracy of 92.06%, surpassing K-M, which yields an accuracy of 88.50%. The application of an independent sample T-test confirms the statistical (Misman and Bhatti 2020; Siano et al. 2020) significance of these differences, highlighting the paramount importance of cybersecurity and customer data privacy.
- > This research emphatically underscores the superior performance of Isolation Forest over K-M in the realm of data breach detection and customer data privacy assurance, emphasizing the pivotal aspects of cybersecurity in the banking sector.
- Isolation Forest achieves an impressive accuracy of 92.06%, surpassing the K-M accuracy of 88.50%.
- > Overall, the results suggest that Isolation Forest stands out as a promising and influential tool in revolutionizing the landscape of data breach detection and customer data privacy assurance, contributing significantly to improved cybersecurity and enhanced customer data protection in the banking sector.
- > Isolation Forest's exceptional potential to significantly enhance accuracy and transform the landscape of this domain, emphasizing the crucial considerations of cybersecurity and customer data privacy. (Mageto 2021; Sun et al. 2020)

- > Ahmed, Shakeel, M. Ejaz Majeed, Eleftherios Thalassinos, and Yannis Thalassinos. 2021. "The Impact of Bank Specific and Macro-Economic Factors on Non-Performing Loans in the Banking Sector: Evidence from an Emerging Economy." Journal of Risk and Financial Management 14 (5): 217.
- > Al-Shehari, Taher, and Rakan A. Alsowail. 2021. "An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques." Entropy 23 (10): 1258.
- > Athari, Seyed Alireza, Chafic Saliba, Danielle Khalife, and Madonna Salameh-Ayanian. 2023. "The Role of Country Governance in Achieving the Banking Sector's
- Sustainability in Vulnerable Environments: New Insight from Emerging Economies." Sustainability: Science Practice and Policy 15 (13): 10538. > Awan, Khalil, Naveed Ahmad, Rana Tahir Naveed, Miklas Scholz, Mohammad Adnan, and Heesup Han. 2021. "The Impact of Work–Family Enrichment on Subjective Career Success through Job Engagement: A Case of Banking Sector." Sustainability: Science Practice and Policy 13 (16): 8872.
- > Rahman, Habib-Ur, Muhammad Waqas Yousaf, and Nageena Tabassum. 2020. "Bank-Specific and Macroeconomic Determinants of Profitability: A Revisit of Pakistani Banking Sector under Dynamic Panel Data Approach." International Journal of Financial Studies 8 (3): 42.
- > Seh, Adil Hussain, Mohammad Zarour, Mamdouh Alenezi, Amal Krishna Sarkar, Alka Agrawal, Rajeev Kumar, and Raees Ahmad Khan. 2020. "Healthcare Data Breaches: Insights and Implications." HealthcarePapers 8 (2): 133.

Name: PL Karthik Natarajan Register Number: 192011116 Guided by Dr.E.K. Subramanian

Enhancing data breach detection and ensuring customer data privacy in the banking sector using Isolation forest compared with Naïve Bayes Classification

INTRODUCTION

- > In the constantly evolving landscape of cybersecurity in the banking sector, the detection of data breaches and ensuring customer data privacy stands as a paramount challenge.
- > This paper introduces a novel approach that integrates the Isolation Forest algorithm and compares its performance with the Naïve Bayes (NB) for heightened effectiveness in data breach detection and privacy assurance.
- > The focus is on evaluating the superiority of Isolation Forest over Naïve Bayes(NB), particularly in terms of accuracy and overall performance, underscoring the significance of cybersecurity and data breach detection in the banking sector.
- > The foundation of this research is rooted in an extensive exploration of scholarly papers addressing the nuances of cybersecurity in the banking sector. Drawing insights from 1,500 comprehensive studies sourced from platforms review uncovers traditional and state-of-the-art approaches to data breach detection and privacy in the banking sector.
- > The overarching goal of this study is to enhance data breach detection and ensure customer data privacy in the banking sector through the incorporation of the Isolation Forest algorithm.

Data Breach Information

MATERIALS AND METHODS

Improving Data Accuracy in Banking Sector

> When comparing IF and NB models in terms of mean accuracy, it is observed that IF expose more

Significant Threshold value of a Accuracy rate Comparison of IF and NB algorithm.

DISCUSSION AND CONCLUSION

accuracy compared to NB.

- > This research study unmistakably demonstrates the superior performance of Isolation Forest over NB concerning accuracy and overall performance in data breach detection and customer data privacy assurance in the banking sector.
- Isolation Forest achieves an outstanding accuracy rate, with a mean accuracy of 92.06%, surpassing NB, which yields an accuracy of 88.50%. The application of an independent sample T-test confirms the statistical (Misman and Bhatti 2020; Siano et al. 2020) significance of these differences, highlighting the paramount importance of cybersecurity and customer data privacy.
- > This research emphatically underscores the superior performance of Isolation Forest over NB in the realm of data breach detection and customer data privacy assurance, emphasizing the pivotal aspects of cybersecurity in the banking sector.
- > Isolation Forest achieves an impressive accuracy of 92.06%, surpassing the NB accuracy of 88.50%.
- > Overall, the results suggest that Isolation Forest stands out as a promising and influential tool in revolutionizing the landscape of data breach detection and customer data privacy assurance, contributing significantly to improved cybersecurity and enhanced customer data protection in the banking sector.
- > Isolation Forest's exceptional potential to significantly enhance accuracy and transform the landscape of this domain, emphasizing the crucial considerations of cybersecurity and customer data privacy. (Mageto 2021; Sun et al. 2020)

- > Ahmed, Shakeel, M. Ejaz Majeed, Eleftherios Thalassinos, and Yannis Thalassinos. 2021. "The Impact of Bank Specific and Macro-Economic Factors on Non-Performing Loans in the Banking Sector: Evidence from an Emerging Economy." Journal of Risk and Financial Management 14 (5): 217.
- > Al-Shehari, Taher, and Rakan A. Alsowail. 2021. "An Insider Data Leakage Detection Using One-Hot Encoding, Synthetic Minority Oversampling and Machine Learning Techniques." Entropy 23 (10): 1258.
- > Athari, Seyed Alireza, Chafic Saliba, Danielle Khalife, and Madonna Salameh-Ayanian. 2023. "The Role of Country Governance in Achieving the Banking Sector's Sustainability in Vulnerable Environments: New Insight from Emerging Economies." Sustainability: Science Practice and Policy 15 (13): 10538.
- > Awan, Khalil, Naveed Ahmad, Rana Tahir Naveed, Miklas Scholz, Mohammad Adnan, and Heesup Han. 2021. "The Impact of Work–Family Enrichment on Subjective Career Success through Job Engagement: A Case of Banking Sector." Sustainability: Science Practice and Policy 13 (16): 8872.
- > Rahman, Habib-Ur, Muhammad Waqas Yousaf, and Nageena Tabassum. 2020. "Bank-Specific and Macroeconomic Determinants of Profitability: A Revisit of Pakistani Banking Sector under Dynamic Panel Data Approach." International Journal of Financial Studies 8 (3): 42.
- > Seh, Adil Hussain, Mohammad Zarour, Mamdouh Alenezi, Amal Krishna Sarkar, Alka Agrawal, Rajeev Kumar, and Raees Ahmad Khan. 2020. "Healthcare Data Breaches: Insights and Implications." HealthcarePapers 8 (2): 133.