Relatório EP2 - MAC0121

João Gabriel Basi - N° USP: 9793801

1. O programa

Utiliza a técnica de backtracking para achar uma solução para o jogo de tabuleiro "Resta Um". O programa recebe as dimenções do tabuleiro e um matriz com 0, -1 e 1, representando sem buraco, buraco sem peça e buraco com peça respectivamente, e retorna os movimentos realizados para resolver o tabuleiro ou "Impossivel"se não há como resolvê-lo.

2. As funções

Foi criada uma struct chamada pilha que contém uma matriz, de número de linhas definido de acordo com o tabuleiro e 3 colunas, uma para guardar uma posição de linha, uma para posição coluna e a terceira para o movimento executado, além de duas variáveis inteiras, uma para guardar o topo da pilha e outra para guardar o tamanho máximo da pilha.

Foram criadas também algumas funções sobre essa struct:

- criaPilha: Aloca uma pilha de número de linhas especificado;
- pilhaVazia: Verifica se a pilha está vazia;
- pilhaCheia: Verifica se a pilha está cheia;
- empilha: Empilha uma posição e um movimento na pilha;
- desempilha: Desempilha a posição e o mivimento que estão no topo da pilha;
- imprimePilha: Imprime as posições e movimentos guardados na pilha.

Foram criadas funções para ajudar na manipulação de matrizes:

- criaMatriz: Aloca uma matriz de número de linhas e colunas especificados;
- podeMexer: Verifica se a peça pode ser movida e indica a direção do movimento;
- mexe: Mexe ou volta uma peça.

Foram criadas algumas funções para verificações sobre matrizes:

- concluido: Verifica se as posições que estavam livres no começo estão ocupadas;
- ehPossivel: Faz alguns testes (especificados no item 3) na distribuição das peças do tabuleiro para identificar se a distribuição pode ser resolvida;
- dfs: Utilizada pela função ehPossivel para verificar se o tabuleiro tem partes desconexas.

E, finalmente, algumas funções para resumir alguns processos:

- criaVetor: Aloca um vetor de tamanho especificado;
- freeAll: Desaloca as estruturas alocadas na função main;
- freeAll2: Desaloca as estruturas alocadas na função ehPossivel.

3. Conceitos matemáticos e simplificações utilizados

Na função *ehPossivel* foram feitos três testes para identificar se um tabuleiro tem potencial para ser resolvido:

- O primeiro teste checa se N° de peças $\geq 2 \cdot \text{N}^{\circ}$ de espaços iniciais, pois, para cada buraco sem peça do tabuleiro inicial é preciso de, no mínimo, um movimeto, e cada movimento precisa de duas peças para ser executado, então, se o tabuleiro tem n buracos, é preciso de, pelo menos, 2n peças para resolvê-lo.
- O segundo teste leva em conta a classe de posições do tabuleiro. Conforme foi descrito no site http://recmath.org/pegsolitaire/index.html#pre, a classe de posições do tabuleiro é definida enumerando as diagonais do tabuleiro do seguinte modo:

Numeração no resta um tradicional

A partir disso, definimos uma função N_i sobre o tabuleiro, que retorna a quantidade de casas ocupadas marcadas com número i, e a função T, que retorna o total de casas ocupadas. Com isso definimos a classe de posições do tabuleiro como sendo a 6-upla da forma $(T - N_1, T - N_2, T - N_3, T - N_4, T - N_5, T - N_6) \mod 2$ (no site é colocado como a "paridade" desses números, mas no programa eu considerei como módulo 2). Definidas as classes, observamos que a cada movimento executado a paridade dos númes dessa 6-upla não muda. Pegando como exemplo o tabuleiro da imagem, com a posição central livre e as outras ocupadas, vemos que, ao mexer qualquer peça para a posição central, os N_2 e N_5 aumentam em 1 e os N_1 , N_3 , N_4 , N_6 e T diminuem em 1, então, para os N_5 que diminuiram, temos que $N-1-(T-1) \equiv N-T \mod 2$, e para os que aumentaram $N+1-(T-1) \equiv N-T \mod 2$, vemos que essa regra vale para todo o tabuleiro e, concluimos que, a partir de um tabuleiro com certa classe de posição, só é possível atingir tabuleiros com a mesma classe, então temos que os tabuleiros final e inicial têm que estar na mesma classe, se não o tabuleiro é impossível. Lembrando que esse teste indicar que um tabuleiro é impossível é suficiente para que ele seja impossível, mas não é necessário.

• O terceiro leva em conta a possibilidade de tabuleiros com partes desconexas, checando com a função floodFill se, sempre quando há uma parte desconexa, ela tem no mínimo uma casa vazia, para que todas as peças possam ser movidas.

4. Informações sobre os testes realizados

Considerando como núcleo a formação 3x3 central do tabuleiro tradicional (imagem do item anterior) com a posição central livre e as outras ocupadas, e como braços as quatro partes restentes, escrevemos que um tabuleiro é nnnn se tem o núcleo e 4 braços 3xn, contados a partir do de cima em sentido horário (notação encontrada no site citado no item 3).

- Testei com um tabuleiro 1111, que passou nos testes da *ehPossivel*, mas, depois de 140*seq*, o programa concluiu que ele é impossível;
- Testei com o tabuleiro 2222, que ele resolveu em pouco mais de 1seg;
- Testei com um tabuleiro 3322, que passou no teste da *ehPossivel*, mas o programa não cconsiguiu achar uma resolução depois de meia hora rodando;
- Testei para o tabuleiro francês, um tabuleiro com um núcleo 5x5, e 4 braços 3x1 (também descrito no site ja citado) e o programa concluiu, ainda no teste das classes, que esse tabuleiro não é possível;
- Testei com o tabuleiro 3333 (clássico) e não foi resolvido depois de 3 horas

5. Prós e contras

• Prós

 Identifica boa parte dos tabuleiros que são impossíveis no começo do programa, deixando de gastar tempo tentando resolvê-los

• Contras

Não consegui dizer quais os melhores movimentos a serem feitos, então o programa demora para resolver tabuleiros grandes que possuem uma variedade pequena de soluções e tabuleiros que passaram nos pré-testes mas são impossíveis pois o algoritimo não está otimizado