# Deep Learning for Computer Vision and Scene Understanding

Lecture 4 - Semantic Scene Graphs

Dr. Helisa Dhamo

Huawei London Research Centre

Noah's Ark Lab



Invited lecture: Novel View Synthesis

Semantic Scene Graphs

Lecture 4

## Scene graph







Scene hierarchy [Liu TOG 2014]



Semantic nodes and edges [Johnson CVPR 2015]

## (Recap) Scene Understanding Beyond Objects

#### **Scene Graphs**

- Nodes: objects in the scene
- Edges: relationships between objects (interaction, relative position)



Xu et al., "Scene graph generation by iterative message passing." CVPR'17

# (Recap) Scene Understanding Beyond Objects

#### **Scene Graphs**

- Nodes: objects in the scene
- Edges: relationships between objects (interaction, relative position)

Scene graph generation networks are usually build on top of an object detector





## Semantic Scene Graphs and Images

#### From image to scene graph



#### From scene graph to image



[Johnson CVPR 2018] Purely semantic nodes (object class)

Scene Understanding

Scene Synthesis

J. Johnson, A. Gupta, and FF. Li. Image generation from scene graphs. CVPR 2018.



## Semantic Image Editing The combined problem...

#### The spennerate id tile a anguence i byete per hybrapath annoje saigetheologies) h



Challenge: No real image pairs with changes!

at test time



## Semantic Image Editing Training

Our training strategy does not require pairs for the editing task







## Semantic Image Editing Results

#### original graph













relationship change

object replacement

object removal

Results on Visual Genome



# Semantic Image Editing Results



## 3D Semantic Scene Graphs



J. Wald\*, H. Dhamo\*, N. Navab, F. Tombari. Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions. CVPR 2020



#### 3DSSG Dataset

Based on 3RScan Dataset [Wald 2019]

#### Nodes

Hierarchy of semantic class labels



#### Attributes

**Static** (color, material, shape) and **dynamic** attributes (tidy/messy, open/closed) and **affordances** (sitting, eating)



#### Relationships

Proximity (left/right, front/behind, close by)
Support (lying in, hanging, leaning against)
Comparative (smaller than, same as)



J. Wald\*, **H. Dhamo**\*, N. Navab, F. Tombari. Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions. **CVPR 2020**J. Wald, A. Avetisyan, N. Navab, F. Tombari\*, M. Nießner\*. RIO: 3D Object Instance Re-Localization in Changing Indoor Environments. **ICCV 2019** 

#### 3DSSG Dataset

Based on 3RScan [Wald 2019]

#### Nodes

Hierarchy of semantic class labels



#### Attributes

**Static** (color, material, shape) and **dynamic** attributes (tidy/messy, open/closed) and **affordances** (sitting, eating)



#### Relationships

Proximity (left/right, front/behind, close by)
Support (lying in, hanging, leaning against)
Comparative (smaller than, same as)



J. Wald\*, **H. Dhamo**\*, N. Navab, F. Tombari. Learning 3D Semantic Scene Graphs from 3D Indoor Reconstructions. **CVPR 2020**J. Wald, A. Avetisyan, N. Navab, F. Tombari\*, M. Nießner\*. RIO: 3D Object Instance Re-Localization in Changing Indoor Environments. **ICCV 2019** 

## Learning 3D Semantic Scene Graphs



$$\mathcal{L}_{\text{total}} = \lambda_{obj} \mathcal{L}_{\text{obj}} + \mathcal{L}_{\text{pred}}$$
  $\mathcal{L} = -\alpha_t (1 - p_t)^{\gamma} \log p_t$ 

none or multiple predicate predictions per edge



## Learning 3D Semantic Scene Graphs Results



## Follow-up research Towards real world requirements



Build scene graph incrementally as the scene is reconstructed No need for class-agnostic instance segmentation



Domain agnostic scene retrieval

















query photo and its scene graph

















query photo and its scene graph

















query photo and its scene graph















Query based on node set and triplet set



query photo and its scene graph

best match



















best match



Scene generation and editing









"standing on"





## Graph-to-3D Results

















## Graph-to-3D Context learning results





## Open problem

- **Fixed vocabulary**: Pre-defined set of semantic class categories for objects and relationships
- Why is that a problem?
- Solution Open vocabulary 3D Scene Graphs

# CLIP: Contrastive Language-Image Pretraining



(2) Create dataset classifier from label text



# Open 3DSG



Koch el al. Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds with Queryable Objects and Open-Set Relationships. CVPR 2024

# Open 3DSG



