Simulation and Modelling

Spring 2023 CS4056

Muhammad Shahid Ashraf

Random-Number Generation

Overview

Notes

- Discuss characteristics and the generation of random numbers.
- Subsequently, introduce tests for randomness:

 - Frequency test Autocorrelation test

CS4056

Overview

- Historically
 - Throw dices
 - Deal out cards
 - Draw numbered balls
 - \bullet Use digits of π
 - Mechanical devices (spinning disc, etc.)
 - Electric circuits
 - Electronic Random Number Indicator (ERNIE)
 - Counting gamma rays
- In combination with a computer
 - Hook up an electronic device to the computer
 - Read-in a table of random numbers

-	
N	
Notes	
-	
-	
Notes	
Notes	

Pseudo-Random Numbers

- Approach: Arithmetically generation (calculation) of random numbers
- "Pseudo", because generating numbers using a known method removes the potential for true randomness.

Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin. For, as has been pointed out several times, there is no such thing as a random number — there are only methods to produce random numbers, and a strict arithmetic procedure of course is not such a method.

• Goal: To produce a sequence of numbers in [0,1] that simulates, or imitates, the ideal properties of random numbers (RN).

Pseudo-Random Numbers

• Important properties of good random number routines

- Fast
- Portable to different computers
- Have sufficiently long cycle
- Replicable
- Verification and debugging
- Use identical stream of random numbers for different systems

• Closely approximate the ideal statistical properties of

- uniformity and
- independence

Pseudo-Random Numbers: Properties

- Two important statistical properties:
- Uniformity
- Independence
- Random number R_i must be independently drawn from a uniform distribution with PDF:

$$f(x) = \begin{cases} 1, & 0 \le x \le 1 \\ 0, & \text{otherwise} \end{cases}$$

$$E(R) = \int_0^1 x dx = \frac{x^2}{2} \Big|_0^1 = \frac{1}{2}$$

<0> ←2 → ←2 → 2 → 9 ← 7/28

Pseudo-Random Numbers

- Problems when generating pseudo-random numbers
 - The generated numbers might not be uniformly distributed
 - The generated numbers might be discrete-valued instead of continuous-valued
 - The mean of the generated numbers might be too high or too low
 - $\bullet\,$ The variance of the generated numbers might be too high or too low
- There might be dependence:
 - Autocorrelation between numbers
 - Numbers successively higher or lower than adjacent numbers
 - Several numbers above the mean followed by several numbers below the mean

Notes

Notes

Notes

Generating Random Numbers

- Midsquare method
- Linear Congruential Method (LCM)
- Combined Linear Congruential Generators (CLCG)
- Random-Number Streams

Midsquare method

- First arithmetic generator: Midsquare method
- von Neumann and Metropolis in 1940s
- The Midsquare method:
 - ullet Start with a four-digit positive integer Z_0
 - Compute: $Z_0^2 = Z_0 \times Z_0$ to obtain an integer with up to eight
 - Take the middle four digits for the next four-digit number

i	Z_i	U_i	$Z_i \times Z_i$
0	7182	-	51581124
1	5811	0.5811	33767721
2	7677	0.7677	58936329
3	9363	0.9363	87665769

Midsquare method

• Problem: Generated numbers tend to 0

+ Ø > + € > + € > CS4056

Linear Congruential Method (LCM)

₹ 90 (~ 11/28

• To produce a sequence of integers X_1, X_2, \dots between 0 and m-1 by following a recursive relationship:

$$X_{i+1} = (aX_i + c) \mod m, \quad i = 0,1,2,...$$

- Assumption: m > 0 and a < m, c < m, $X_0 < m$
- ullet The selection of the values for a,c,m, and X_0 drastically affects the statistical properties and the cycle length
- The random integers X_i are being generated in [0, m-1]

Notes

Notes

Notes

ullet Convert the integers X_i to random numbers

 $R_i = \frac{X_i}{m},$ $i=1,2,\ldots$

- Note:
- $X_i \in \{0, 1, \dots, m-1\}$
- $R_i \in [0, \frac{m-1}{m}]$
- $\bullet \ \ \mathsf{Use} \ X_0 = 27, a = 17, c = 43, \ \mathsf{and} \ m = 100.$
- ullet The X_i and R_i values are:

 $X_1 = (17 \times 27 + 43) \mod 100 = 502 \mod 100 = 2$ $X_2 = (17 \times 2 +43) \mod 100 = 77$

 $X_3 = (17 \times 77 + 43) \mod 100 = 52$

 $X_4 = (17 \times 52 + 43) \mod 100 = 27$

CS4056

 $R_1 = 0.02$

 $R_2 = 0.77$ $R_3 = 0.52$

 $R_3 = 0.27$

13 / 28

Linear Congruential Method (LCM)

- Use a = 13, c = 0, and m = 64
- The period of the generator is very low
- Seed X_0 influences the sequence

	X_i $X_0=1$	X_i $X_0=2$	$X_i X_0=3$	X_i $X_0=4$
0	1	2	3	4
1	13	26	39	52
2	41	18	59	36
3	21	42	63	20
4	17	34	51	4
5	29	58	23	
6	57	50	43	
7	37	10	47	
8	33	2	35	
9	45		7	
10	9		27	
11	53		31	
12	49		19	
13	61		55	
14	25		11	
15	5		15	
16	1		3	

14 / 28

Characteristics of a good Generator

- Maximum Density
 The values assumed by R, i=1,2,... leave no large gaps on [0,1]
 Problem: Instead of continuous, each R, is discrete
 Solution: a very large integer for modulus m
 Approximation appears to be of little consequence
- Maximum Period To achieve maximum density and avoid cycling Achieved by proper choice of a,c,m, and X_0
- Most digital computers use a binary representation of numbers
- Speed and efficiency are aided by a modulus, m, to be (or close to) a power of 2.
- The LCG has full period if and only if the following three conditions hold (Hull and Dobell, 1962):
 The only positive integer that (exactly) divides both m and c is 1

- 2. If q is a prime number that divides m, then q divides a-1
- 3. If 4 divides m, then 4 divides a-1

CS4056

15/28

Proper choice of parameters

- For m a power 2, $m=2^b$, and $c\neq 0$
 - Longest possible period $P=m=2^b$ is achieved if c is relative prime to m and a=1+4k, where k is an integer
- For m a power 2, $m=2^b$, and c=0
 - Longest possible period $P=m/4=2^{b\cdot 2}$ is achieved if the seed X_0 is odd and a=3+8k or a=5+8k, for k=0,1,...
- For m a prime and $c{=}0$ Longest possible period $P{=}m{-}1$ is achieved if the multiplier a has property that smallest integer k such that $a^k{-}1$ is divisible by m is $k=m{-}1$

Notes

Notes

Notes

Notes

CS4056

· Linear Congruential Generators are a special case of generators defined by:

$$X_{i+1} = g(X_i, X_{i-1}, ...) \mod m$$

- where g() is a function of previous X_i's
 - $X_i \in [0, m-1], R_i = X_i/m$
- Quadratic congruential generator
 - Defined by: $g(X_i, X_{i-1}) = aX_i^2 + bX_{i-1} + c$
- Multiple recursive generators
 - Defined by: $g(X_i, X_{i-1}, \ldots) = a_1 X_i + a_2 X_{i-1} + \cdots + a_k X_{i-k}$
- Fibonacci generator
 - Defined by: $g(X_i, X_{i-1}) = X_i + X_{i-1}$

CS4056

Combined Congruential Generators

- Reason: Longer period generator is needed because of the increasing complexity of simulated systems.
- Approach: Combine two or more multiplicative congruential generators.
- Let $X_{i,1}, X_{i,2}, ..., X_{i,k}$ be the *i*-th output from k different multiplicative congruential generators.
 - The j-th generator $X_{\bullet j}$:

$$X_{i+1,j} = (a_j X_i + c_j) \bmod m_j$$

- has prime modulus m_{j} , multiplier a_{j} , and period m_{j} -1
 produces integers $X_{i,j}$ approx \sim Uniform on $[0, m_{j}-1]$ $W_{i,j}=X_{i,j}$ -1 is approx \sim Uniform on integers on $[0, m_{j}-2]$

CS4056

Combined Congruential Generators

• Suggested form:

$$X_{i} = \left(\sum_{j=1}^{k} (-1)^{j-1} X_{i,j}\right) \mod m_{1} - 1 \qquad \text{Hence, } R_{i} = \begin{cases} \frac{X_{i}}{m_{1}}, & X_{i} > 0\\ \frac{m_{1} - 1}{m_{1}}, & X_{i} = 0 \end{cases}$$

• The maximum possible period is: $P = \frac{(m_1-1)(m_2-1)...(m_k-1)}{2^{k-1}}$

CS4056

Combined Congruential Generators

• Example: For 32-bit computers, combining k=2 generators with $m_1=2147483563$, $a_1=40014$, $m_2=2147483399$ and $a_2=40692$. The algorithm becomes:

Step 1: Select seeds Step 1: Select Seeds $\mathcal{X}_{0,1}$ in the range [1,2147483562] for the 1^{st} generator $\mathcal{X}_{0,2}$ in the range [1,2147483398] for the 2^{nd} generator Step 2: For each individual generator,

 $X_{i+1,1} = 40014 \times X_{i,1} \text{ mod } 2147483563$ $X_{i+1,2} = 40692 \times X_{i,2} \text{ mod } 2147483399$ Step 3: $X_{i+1} = (X_{i+1,1} - X_{i+1,2}) \text{ mod } 2147483562$

Step 4: Return

$$R_{i+1} = \begin{cases} \frac{X_{i+1}}{2147483563}, & X_{i+1} > 0\\ \frac{2147483562}{2147483563}, & X_{i+1} = 0 \end{cases}$$

Step 5: Set i = i+1, go back to step 2.

Combined generator has period: $(m_1-1)(m_2-1)/2\sim 2 \times 10^{18}$

CS4056

Notes

Notes

Notes

Combined Congruential Generators

• In Excel 2003 and 2007 new Random Number Generator

 $X, Y, Z \in \{1,...,30000\}$

 $X = X \cdot 171 \mod 30269$

 $Y = Y \cdot 172 \mod 30307$

 $Z = Z \cdot 170 \mod 30323$

$$R = \left(\frac{X}{30269} + \frac{Y}{30307} + \frac{Z}{30323}\right) \mod 1.0$$

 It is stated that this method produces more than 10¹³ numbers

21 / 28

Random-Numbers Streams

- The seed for a linear congruential random-number generator: Is the integer value X_0 that initializes the random-number sequence Any value in the sequence $(X_0, X_1, ..., X_p)$ can be used to "seed" the generator
- A random-number stream:
- Refers to a starting seed taken from the sequence $(X_0, X_1, ..., X_p)$.

 If the streams are b values apart, then stream i is defined by starting seed:

$$S_i = X_{b(i-1)}$$

- $i = 1, 2, \dots, \left\lfloor \frac{P}{b} \right\rfloor$
- Older generators: b = 10⁵
 Newer generators: b = 10³⁷
- A single random-number generator with k streams can act like k distinct virtual random-number generators
- To compare two or more alternative systems.
 - Advantageous to dedicate portions of the pseudo-random number sequence to the same purpose in each of the simulated systems.

CS4056

22 / 28

Tests for Random Numbers

- The seed for a linear congruential random-number generator: Is the integer value X_0 that initializes the random-number sequence Any value in the sequence $(X_0, X_1, ..., X_p)$ can be used to "seed" the generator
- A random-number stream:
 Refers to a starting seed taken from the sequence (X_p X_p, ..., X_p).
 If the streams are b values apart, then stream i is defined by starting seed:

$$S_i = X_{b(i-1)}$$
 $i = 1, 2, \dots, \left\lfloor \frac{P}{b} \right\rfloor$

- Older generators: $b = 10^5$ Newer generators: $b = 10^{37}$
- A single random-number generator with k streams can act like k distinct virtual random-number generators
- To compare two or more alternative systems.
 - Advantageous to dedicate portions of the pseudo-random number sequence to the same purpose in each of the simulated systems.

CS4056

23/28

Tests for Random Numbers

- Two categories:
 - Testing for uniformity:

$$H_0$$
: $R_i \sim U[0,1]$

- Festing for uniformity: $H_0\colon R_i\sim U[0,1]$ $H_1\colon R_i-U[0,1]$ Failure to reject the null hypothesis, H_0 , means that evidence of non-uniformity has not been detected. Testing for **independence**:

$$H_0$$
: $R_i \sim \text{independent}$

 H_1 : $R_i \neq independent$

- Failure to reject the null hypothesis, H_0 , means that evidence of dependence has not been detected.
- Level of significance α , the probability of rejecting H_0 when it is

$$\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})$$

CS4056 24 / 28

Notes

Notes

Notes

Tests for Random Numbers

- When to use these tests:

 - If a well-known simulation language or random-number generator is used, it is probably unnecessary to test

 If the generator is not explicitly known or documented, e.g., spreadsheet programs, symbolic/numerical calculators, tests should be applied to many sample numbers.
- Types of tests: • Theoretical tests: evaluate the choices of m, a, and c without actually generating any numbers
 - Empirical tests: applied to actual sequences of numbers produced.
 Our emphasis.

25 / 28

Frequency tests: Kolmogorov-Smirnov Test

• Compares the continuous CDF, F(x), of the uniform distribution with the empirical CDF, $S_N(x)$, of the N sample observations.

• We know: F(x) = x, $0 \le x \le 1$

• If the sample from the RNG is $R_1, R_2, ..., R_N$, then the empirical CDF, $S_N(x)$ is:

$$S_N(x) = \frac{\text{Number of } R_i \text{ where } R_i \le x}{N}$$

- Based on the statistic: $D = max | F(x) S_N(x)|$
 - ullet Sampling distribution of D is known

CS4056 26 / 28

Frequency tests: Kolmogorov-Smirnov Test

- The test consists of the
 - following steps • **Step 1:** Rank the data from smallest to largest $R_{(1)} \le R_{(2)} \le ... \le R_{(N)}$
 - Step 2: Compute

$$\begin{split} D^+ &= \max_{1 \leq i \leq N} \left\{ \frac{i}{N} - R_{(i)} \right\} \\ D^- &= \max_{1 \leq i \leq N} \left\{ R_{(i)} - \frac{i-1}{N} \right\} \end{split}$$

- Step 3: Compute $D = \max(D^i, D^i)$ Step 4: Get D_a for the significance level α Step 5: If $D \le D_a$ accept, otherwise reject H_0

Freedom					
(N)	. Do.10	$D_{0.05}$	$D_{0.04}$		
1	0.950	0.975	0.995		
2	0.776	0.842	0.929		
3	0.642	0.708	0.828		
3 4 5	0.564	0.624	0.733		
5	0.510	0.565	0.669		
6	0.470	0.521	0.618		
7	0.438	0.486	0.577		
8	0.411	0.457	0.543		
9	0.388	0.432	0.514		
10	0.368	0.410	0.490		
11	0.352	0.391	0.468		
12	0.338	0.375	0.450		
13	0.325	0.361	0.433		
14	0.314	0.349	0.418		
15	0.304	0.338	0.404		
16	0.295	0.328	0.392		
17	0.286	0.318	0.381		
18	0.278	0.309	0.371		
19	0.272	0.301	0.363		
20	0.264	0.294	0.356		
25	0.24	0.27	0.32		
30	0.22	0.24	0.29		
35	0.21	0.23	0.27		
Over	1.22	1.36	1,63		
26	/AT	(8)	757		

Kolmogorov-Smirnov Critical Values

←□ > ←□ > ←≥ > ←≥ > ≥ →9
27/28

Frequency tests: Kolmogorov-Smirnov Test

28 / 28

• Example: Suppose *N*=5 numbers: 0.44, 0.81, 0.14, 0.05, 0.93.

CS4056

	i	1	2	3	4	5	Arrange R _(j) from
Step 1:	$R_{(i)}$	0.05	0.14	0.44	0.81	0.93	smallest to largest
	i/N	0.20	0.40	0.60	0.80	1.00	$D^+ = max\{i/N - R_{(i)}\}$
Step 2:	$i/N - R_{(i)}$ $R_{(i)} - (i-1)/N$	0.15	0.26	0.16	-	0.07	$D^- = max\{R_{(i)} - (i-1)/N\}$
Otep 2.	$R_{(i)} - (i-1)/N$	0.05	-	0.04	0.21	0.13	
Step 4: F	$D = \max(D^+, \Gamma)$ For $\alpha = 0.05$ $D_{\alpha} = 0.565 > 0$ $\Omega_{\alpha} = 0.565 > 0$	D=0.		Commission bookstills Commission bookstills 2.0 1.0 0	- 0.15	/	10 10 10 10 10 10 10 10 10 10 10 10 10 1

Notes

Notes

Notes