Zadání Conflation Existující nástroje Knihovna GEOC Zásuvný modul Conflate Shrnutí

Bakalářská práce

Zásuvný modul QGIS pro slučování vektorových map

Tereza Fiedlerová

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Katedra mapování a kartografie

25. 6. 2013 / obhajoba

Zadání Conflation Existující nástroje Knihovna GEOZ Zásuvný modul Conflate Shrnutí

Obsah

- Zadání
- Conflation
- 8 Existující nástroje
- Mihovna GEOC
- 5 Zásuvný modul Conflate
- 6 Shrnutí

Zadání

Hlavní cíl:

nastudování problematiky slučování vektorových dat

Dle oficiálního zadání:

- návrh a implementace zásuvného modulu pro QGIS
- návrh C++ knihovny obsahující vybrané algoritmy
- přehled existujících nástrojů umožňujících slučování map

Pojem conflation

Encyklopedická definice

Proces kombinování geografických informací z překrývajících se zdrojových dat, který zachovává přesnost dat, minimalizuje nadbytečná data a předchází konfliktům v datech.

(Shekhar, Xiong: Encyclopedia of GIS)

Stručná definice

Proces sjednocení dvou rozdílných datových sad.

(Blasby a kol.: GIS Conflation Using Open Source Tools)

Klasifikace

Dle typu vstupních vrstev:

- rastr rastr (imagery to imagery)
- rastr vektor (vector to imagery)
- vektor vektor (vector to vector)

Dle území zobrazovaného vstupními vrstvami:

- horizontální
 - vrstvy zobrazující sousedící území
- vertikální
 - vrstvy zobrazující překrývající se území

Obecný postup

Postup při slučování vektorových dat:

- Předzpracování dat (zajištění kompatibility)
- Wontrola kvality dat a topologické správnosti vrstev
- Vyhledání odpovídajících si prvků
- Sloučení geometrických prvků a/nebo jejich atributů
- 5 Závěrečné úpravy (kontrola, drobné opravy)

Úkolem programu pro automatické sloučení dat jsou kroky 3 a 4, zbytek je ponechán většinou na uživateli.

Obecný postup

Postup při slučování vektorových dat:

- Předzpracování dat (zajištění kompatibility)
- Wontrola kvality dat a topologické správnosti vrstev
- Vyhledání odpovídajících si prvků
- Sloučení geometrických prvků a/nebo jejich atributů
- 3 Závěrečné úpravy (kontrola, drobné opravy)

Úkolem programu pro automatické sloučení dat jsou kroky 3 a 4, zbytek je ponechán většinou na uživateli.

Proprietární nástroje

- ESRI ArcGIS Spatial Adjustment, Integrate
 - dílčí nástroje umožňující různé operace
- Intergraph Geomedia Fusion
 - údržba dat v geografických databázích, topologické opravy, integrace dat
- ESEA MapMerger
 - převod atributů, aktualizace a kombinace dvou map
- ConfleX
 - využití umělé inteligence, porovnávání jednotlivých segmentů a topologických vztahů

Open Source nástroje

- JCS Java Conflation Suite
 - jediný ucelenější nástroj v této skupině
 - knihovna založená na JTS (Java Topology Suite)
 - kolekce zásuvných modulů pro OpenJUMP QA, Conflate, RoadMatcher
- OpenStreetMap
 - JOSM conflation, Potlatch2merging tool
 - drobné nástroje, spíše ruční slučování map

GEOC

- knihovna obsahující algoritmy pro slučování vektorových map
- navržena nezávisle na QGIS zásuvném modulu
- využívá knihovnu GEOS (Geometry Engine, Open Source)
 - přepis knihovny JTS do C++
 - reprezentace geometrie
 - prostorové vztahy a operace

Vertex Snapper Přichycení vrcholů

- určení vzdálenostní tolerance
- nalezení blízkých prvků
- výpočet vzdáleností mezi vrcholy blízkých prvků
- přichycení dvou nejbližších vrcholů

Coverage Alignment

Zarovnání vrstev

- nalezení odpovídajících si prvků
- určení bodů pro TIN
- Oelaunayho triangulace
- lokální afinní transformace
- o případně další iterace

GEOC Vertex Snapper Coverage Alignment Line Matcher

Coverage Alignment

Nalezení odpovídajících si prvků

Test obalových zón prvků

Test obalových zón hranic prvků

Line Matcher Spojování linií

nalezení blízkých linií k danému segmentu

- testování segmentu s každým úsekem blízké linie
- určení nejpodobnějšího segmentu (délka, úhel, blízkost)
- průměr z odpovídajících si segmentů

Conflate

- zásuvný modul pro Quantum GIS
- psaný v jazyce C++
- využití algoritmů knihovny GEOC

Grafické uživatelské rozhraní

Grafické uživatelské rozhraní

Ukázka zarovnání vrstev

Shrnutí

Využití

- Vertex Snaper přichycení map sousedících území, sjednocení hranic parcel s hranicemi katastrálního území
- Coverage Alignment zpřesnění obsáhlých map (OSM)
- Line Matcher spojování map silničních sítí, vyhledání cyklistických tras vedoucích po silnici

Další vývoj

- poskytnutí uživatelům QGIS
- zvýšení rychlosti zpracování (paralelizace, zpracování po dlaždicích)

Zadání Conflation Existující nástroje Knihovna GEOC Zásuvný modul Conflate Shrnutí

Děkuji za pozornost

Zadání Conflation Existující nástroje Knihovna GEOC Zásuvný modul Conflate Shrnutí

Reakce na otázky oponenta

JCS do C++

- možnost připojení JCS do QGIS užitečné x nezbytné úpravy knihovny, která je koncipována pro openJUMP
- přepsání JCS do C++ asi nezbytné pro připojení do QGIS, mohlo by být využitelné i pro jiné projekty

