Real-Time Piano Accompaniment Using Kuramoto Model for Human-Like Synchronization

Kit Armstrong, Ji-Xuan Huang, Tzu-Ching Hung, Jing-Heng Huang & Yi-Wen Liu

("Western classical music")

Composer – Performer – Listener

("Western classical music")

Composer – Performer – Listener

Create an AI performer

Score reading: sheet music \rightarrow a machine-friendly representation Transcription: musical performance \rightarrow a machine-friendly representation Score following: musical performance + score \rightarrow score-aligned performance Interpretation: score + score-aligned performance \rightarrow MIDI or similar Sound synthesis: interpretation \rightarrow sound

Prevalence:

- Music-notation programs like Finale, Sibelius, MuseScore, etc.
- Useful tool for composers
- Not suitable for performance

Prevalence:

- Music-notation programs like Finale, Sibelius, MuseScore, etc.
- Useful tool for composers
- Not suitable for performance

Levels of advancement:

- Basic, in essence MusicXML to MIDI
- Algorithmic expressiveness
- Ongoing attempts with machine learning

Challenges:

- Deformation for natural performance

Challenges:

- Deformation for natural performance
- Understanding score indications

Challenges:

- Deformation for natural performance
- Understanding score indications
- Synchronization in an ensemble

Scope:

- Digital piano
- 1 person ("input") + AI "accompaniment"
- Precisely defined score

Goal:

- Human-like time synchronization

Scope:

- Digital piano
- 1 person ("input") + AI "accompaniment"
- Precisely defined score

Goal:

- Human-like time synchronization

Collaboration more than synchronization

Human-like time synchronization

Intuition:

"I'm early" → Slow down "I'm late" → Speed up

Human-like time synchronization

Introduce the concept of score position

Human-like time synchronization

A performance is a function: time \rightarrow score position

 $f(t) = 2\pi * (beat number reached at time t)$

Human-like time synchronization

A performance is a function: time → score position

 $f(t) = 2\pi * (beat number reached at time t)$

{input timings}, {input score positions} determine f

Input is one such function, accompaniment is another function

Intuition:

"I'm early" → Slow down "I'm late" → Speed up

Input score
$$\{p_n\}$$
Input timing $\{t_n\}$
 ω_1
 ω_2
 ω_3
Accompanist score $\{P_m\}$
Output $\{T_m\}$

$$\frac{d\theta_i(t)}{dt} = \sum_{j \neq i} k_{ij} \sin(\theta_j(t) - \theta_i(t)) + \Omega_i(t)$$

Predictive nature:

- extrapolate ω_3 to predict next outputs
- additional learned parameter: "reaction time"
- each new input rewrites all future predictions

Model training

Capturing human behavior

Model training

Capturing human behavior

Model training

Capturing human behavior

Choose parameters such that the model performs most similarly

Architecture

- input reading thread

writes all MIDI messages to Input Queue

- calculation thread

listens to *Input Queue*, determines outputs of form (note, velocity, time), and writes them to *Output Queue*

- output thread

listens to *Output Queue*, sends MIDI messages at corresponding time

Demonstration

Additional elements:

- Simple velocity matching (running average)
- Basic error-correction

"Turing test"

Can people tell the difference between Human (H) and AI (A)?

Environment: Create identical setup for H and A

- 1.
 W. A. Mozart: "Twinkle, Twinkle, Little Star"
 K. 265, Theme
- 2.
 W. A. Mozart: "Twinkle, Twinkle, Little Star"
 K. 265, Variation II
- 3.
 J. S. Bach/C. Gounod:
 "Ave Maria, Méditation sur le Prélude de Bach"

Results:

12 participants, 80 trials

Total: 59% correct guesses

Problem: Output delay

Getting the OS to reliably send a MIDI message at a pre-determined future time

- Misrepresents the model
- Bumpy effect
- Cascading slow-down
- Worse when the output has many notes

Limitations:

- Only rhythm is taken into account

Limitations:

- Only rhythm is taken into account
- Each note carries the same weight or salience

Limitations:

- Only rhythm is taken into account
- Each note carries the same weight or salience

General limitations:

- No intrinsic musicality
- Primitive score reading

Taking stock

- This model is conceptually simple, and its scope is very limited.
- Playing with it is surprisingly satisfying, especially compared to "perfect accompaniment".
- New trial suggests this may not be thanks to the Kuramoto model, but rather the predictive nature.
- We are devising a new model with larger scope and different internal workings.