

Open-Minded

Presented by Cassandra Spark
Nurmalita Manggali, Nave Wibowo, Jean Qussa, Ali Amini

Overview

- What is SMATCH?
- What Why How
- Conceptual Solution
- Implementation
- Result (Demo)
- Summary

What is SMATCH?

What if we have a matchmaking app that instead of looking for a date, it matches us with appropriate course to take in a MOOC platform

Abstract task description:

An application for students to

- Give a list of suitable classes to take based on preferences
- Connect with other learners in a forum
- Show overviews of multiple platforms in one page

What - Why - How

WHAT DATA DO WE HAVE

- Details of courses scraped from various MOOCs platforms
 - Categorical : categories, provider
 - Ordered: price, duration (quantitative), level (ordinal)

- Dataset type: tables, trees
- dataset availability: Static

Data source

Open-Minded

Data Cleaning

What - Why - How

WHY

- is there a way to aggregate courses from different platforms and compare them to ease the choosing process?

Action - Target pairs

- Discover features of various courses based on interests
- Locate distribution of courses based on interest
- Compare similarities and trend between different platforms
- Summarise trends of courses between different platforms
- Derive the perfect courses from the list for the user

What - Why - How

How to present the data

Bar chart

Design Choice

What: data	Categorical, ordered (quantitative)	
Why: task	Discover features, locate distribution,	
	Compare similarities, summarise trends,	
	derive	
How: Facet	Superimpose	
How: Reduce	Filter, Aggregate	
How: Manipulation	Select, Navigate	

Pie Chart

What?

- 1 Categorical key attribute (duration)
- 1 Quantitative value attribute (number of courses)

How?

- · Marks: Area
- · Channels: Tilt

Bar Chart

What?

- 1 Categorical key attribute
- 1 Quantitative value attribute

How?

- Mark: Lines
- Channels:
 - Spatial regions:
 - Separated horizontally
 - Aligned vertically
 - Ordered by number of courses in the category
 - Length -> to express quant. value

Alternative design choices

How: Facet	Juxtapose
How: Reduce	Filter, Aggregate
How: Manipulate	Select, Navigate

Machine Learning Algorithm Used

Naive bayes Algorithm

- Multinomial and sparse (text classification)
- To categorise courses based on the descriptions as only half of the course are labeled
- Train data Udemy (labeled)
- Labels the rest of the data (Coursera and EDX)

Recommender System Algorithm Used

Content based recommendation

 After we minimise the number of courses based on factors such as price & durations

- **TF- IDF matrix** with stop words removed to quantify the descriptions
- **Elbow method** to decide the amount of clusters
- K-means clustering to put them into different clusters and return the top words of each clusters to the user to swipe on

Implementation - Preparation

Implementation - Backend

Algorithms

Connections

Implementation - Frontend

Results (10 min)

Summary

What

- Data: List of Online courses offered in MOOCs (study plan)
- Environment: Online Learning

Why

 Personalisation and Recommendation

How

Methods:

K mean, TF-IDF matrix, Data mining, Information visualisation, Content based recommendation

Who

- Students: To find a suitable course for them to learn from

