Adopted Levels, Gammas

		m		History	G! !	
		Туре		thor	Citation	Literature Cutoff Date
	Fu	ll Evaluation	S. Lalkovski, J. T	imar and Z. Elekes N	NDS 161, 1 (2019	9) 1-Apr-2019
$Q(\beta^{-})=-1347$	5; S(n)=	-7094.1 7; S(₁	p)= $-8748 \ 3; \ Q(\alpha)=$	-2884.7 <i>12</i> 2017W a	a10	
				¹⁰⁵ Pd Levels		
				Tu Levels		
				Cross Reference (XREI	F) Flags	
			decay (35.3 h)	\mathbf{F} 104 $\mathbf{Pd}(\mathbf{d},\mathbf{p})$	K 104R	$u(\alpha,3n\gamma)$
		B 105 Ag ε	decay (41.29 d) decay (7.23 min)	G 106Pd(d,t)	L ⁹⁶ Zr	$(^{13}\text{C}, 4\text{n}\gamma), ^{96}\text{Zr}(^{12}\text{C}, 3\text{n}\gamma)$ $(^{48}\text{Ca}, \alpha 3\text{n}\gamma)$
			decay (7.23 min) C decay (35.5 μ s)	H Coulomb excitat I 105 Pd(n,n' γ)	tion M ⁶⁴ Ni	$({}^{\circ}\text{Ca}, \alpha \text{sn}\gamma)$
		E 106Pd(p,		$J = 104 Pd(n,\gamma) E = th$	ı	
E(level) [†]	J^{π}	T _{1/2}	XREF		Cor	nments
0.0‡	5/2+	stable	ABCDEFGHIJKLM	μ =-0.642 3 (2014St)		
				$Q=+0.660 \ 11 \ (2016S)$ I^{π} · L=2 in 106 Pd(p d	St14) 1) (1975An06): A	lso: L=2 in ¹⁰⁶ Pd(d,t) 1980Sc23.
				$\langle r^2 \rangle = 4.5128 \text{ fm}^2 25$	5 (2004An14).	13(4,6) 1,000.
280.62 20	3/2+	47 ps 5	ABC EF HIJK	μ =-0.074 <i>13</i> (1981A XREF: J(281).	A119)	
					d) (1975An06); 29	80.54γ M1+E2 to 5/2 ⁺ ; 64.072γ
				M1(+E2) from 1/2		D/E2\\\\\280.54\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
						om B(E2) \uparrow (280.54 γ)=0.0095 5 in \prime)=0.0238 4, and 67 ps 17 from
				$\gamma\gamma$ (t) in $^{105}{ m Ag}\;arepsilon$ d	lecay (41.29 d) (1	
306.41 [#] 21	7/2+	71 ps 8	ABCDE HIJKLM	μ : from IPAC in 198		06.30γ M1+E2 to 5/2 ⁺ .
300.41 21	1/2	71 ps o	ABCDE HIJKEH			11 in Coulomb excitation, and
319.38 22	5/2+	33 ps 5	ABC E GHIJ L	$\alpha(306.30\gamma)=0.018$ $\mu=+0.95\ 20\ (1981A1$		
319.38 22	3/2	33 ps 3	ABC E GHIJ E	XREF: G(321).		
						8.77 γ M1(+E2) to 3/2 ⁺ , and
				319.24 γ M1+E2 to $T_{1/2}$: weighted avera		1962Me07, 48 ps 7 in 1971Sh21, 40
				ps 10 from β - γ (t)	in 105 Rh β^- deca	y (1974Be71), 20 ps 3 from
				B(E2)↑(319.24 γ)= μ : from IPAC in 198		lomb excitation.
344.9 <i>4</i>	1/2+	0.91 ns 5	BC EF HIJ	XREF: F(340).		
				J^{π} : L=0 in 106 Pd(p,d	d) (1975An06); 34	44.61 γ E2 to 5/2 ⁺ . From 618-344 γ (t) and 22X-344 γ (t)
				in 105 Ag ε decay ((41.29 d) (1970S	c10), 0.88 ns 5 from $\gamma \gamma(t)$ in
				105 Ag ε decay (41	1.29 d) (1974Be7	1), 801 ps 64 in 105 Ag ε decay
				in Coulomb excita		24 from B(E2) \uparrow (344.61 γ)=0.0022 5
442.53 [‡] 21	$(7/2)^+$	1.2 ps 6	ABC E GHIJKL	XREF: E(447)G(441		
						42.25γ M1+E2 to 5/2 ⁺ . in Coulomb excitation, and
				$\alpha(442.25\gamma)=0.007$	56 11; Others: 3.	71 ps 9 from DSAM in 1972SiZP;
				3.8 ps <i>10</i> from DS 1971SiYQ.	SAM in 1971SiY	G, and 3.81 ps 14 from RDDS in
489.1 [@] 3	11/2-	35.5 μs 5	B DEFG IJKLM	XREF: D(495)F(486	6)G(486).	
	•	•				

105Pd Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
				J ^π : L=5 in 106 Pd(p,d) (1975An06); 182.92 γ M2 to $7/2^+$. T _{1/2} : weighted average of 36.1 μ s 4 from 155.39 γ -182.85 γ (t) in 1970BlZT, 34.2 μ s 6 in 1965Mc03, 33 μ s 6 in 1956Ve03, and 36 μ s 3 in 1958Du80.
535 560.50 <i>19</i>	3/2+	1.9 ps 5	E BC EF HIJK	XREF: E(561)F(565)J(558). J^{π} : L=(2) in 104 Pd(d,p) (1963Cu02); 560.79 γ M1+E2 to 5/2 ⁺ ; 6534.0 γ from the (1/2 ⁺) resonance. $T_{1/2}$: from DSA (1974Er05); Others:<35 ps from
644.7 5	7/2-	126 ps 2	в ІЈ	B(E2) \uparrow (560.79 γ)=0.0095 9 in Coulomb excitation. μ =-1.49 9 (1981A119) J $^{\pi}$: 155.38 γ E2 to 11/2 $^{-}$, 325.43 γ E1 to 5/2 $^{+}$, and 644.63 γ E1+M2 to 5/2 $^{+}$.
650.9 4	(3/2)+	<7 ps	B EFGHI	T _{1/2} : from $\gamma\gamma$ (t) in ¹⁰⁵ Ag ε decay (41.29 d). μ: from IPAC in 1981A119. XREF: E(650)G(652). J ^π : L=2 in (p,d) (1975An06); 331.58γ M1+E2 to 5/2 ⁺ , and 370.28γ M1+E2 to 3/2 ⁺ .
673.2 4	1/2+	5.0 ps 5	в е ні	$T_{1/2}$: from B(E2)↑(650.78)=0.0078 <i>6</i> in Coulomb excitation. XREF: E(674). J ^π : L=0 in (p,d) (1975An06); 392.73γ M1+E2 to 3/2 ⁺ , and 673.24γ E2 to 5/2 ⁺ .
696.66 19	(7/2+)	<11 ps	GH K	T _{1/2} : from B(E2)(673.24γ)=0.0082 <i>9</i> in Coulomb excitation; Others:>2 ps from DSA (1974Er05). XREF: G(692). J ^π : 415.8γ to 3/2 ⁺ , and 254.3γ to (7/2) ⁺ . T _{1/2} : from B(E2)(697.1γ)=0.0020 <i>10</i> in Coulomb excitation.
727.5 5	5/2+	<7 ps	B EFGHI	XREF: F(724)G(721). J ^π : L=2 in 106 Pd(p,d) (1975An06); 421.03γ M1(+E2) to $^{7/2^+}$, and 446.8γ M1+E2 to $^{3/2^+}$. T _{1/2} : from B(E2)↑(727.28)=0.0057 25 in Coulomb excitation.
781.99 [‡] 22	9/2+	1.58 ps <i>14</i>	C E HI KL	XREF: E(784). J ^π : L=4 in 106 Pd(p,d) (1975An06); 781.3 γ E2 to $^{5/2}$ +, 339.4 γ M1(+E2) to (7/2)+; band member. T _{1/2} : weighted average of 1.7 ps 4 from DSAM in 1971SiYG, 1.11 ps 28 in 1974Er05, 1.80 ps 28 from RDDS in 1971SiYQ, 1.4 ps 1 in 1970GeZY, and 1.94 ps 13 from B(E2)↑(781.3)=0.101 7 in Coulomb excitation; Other: 2.9 ps
785.0 <i>10</i>	$(1/2^+ \text{ to } 9/2^+)$		FGH	3 from DSAM in 1972SiZX. XREF: F(787). J^{π} : 785 γ to 5/2 ⁺ . B(E2) \uparrow : 0.05 1 in Coulomb excitation.
808 902.12 22 921.3 6 929.6 5	9/2 ⁺ (1/2 ⁺ to 5/2 ⁺) (5/2 ⁺)		E L B C E I	J ^π : 582.74 γ E2 to 5/2 ⁺ , 595.73 γ M1+E2 to 7/2 ⁺ . J ^π : 576.7 γ to 1/2 ⁺ , 921.2 γ to 5/2 ⁺ . J ^π : L=2 in ¹⁰⁶ Pd(p,d) (1975An06); 486.8 γ to (7/2) ⁺ , 370 γ to 3/2 ⁺ .
945.0 10			GH	J^{π} : 945 γ to 5/2 ⁺ .
962.4 4	(1/2,3/2)+	<0.2 ps	B E HI	B(E2)↑: 0.020 <i>5</i> in Coulomb excitation. XREF: E(964)I(961.4). J ^π : L=0 in ¹⁰⁶ Pd(p,d) (1975An06); 401.75γ to 3/2 ⁺ , 962.45γ to 5/2 ⁺ .
970.0 [@] 3 970	15/2 ⁻ (1/2 ⁺ to 7/2 ⁺)		I KLM EFG	$T_{1/2}$: from B(E2)↑(962.45γ)=0.008 <i>5</i> in Coulomb excitation. J^{π} : 480.8γ E2 to 11/2 ⁻ ; band member. XREF: E(972)G(979). J^{π} : L=(2) in ¹⁰⁴ Pd(d,p) (1963Cu02).
			Continued on nex	t page (footnotes at end of table)

105Pd Levels (continued)

$E(level)^{\dagger}$ J^{π}	XREF	Comments
1011.47 [#] 24 (11/2 ⁺)	I KLM	J ^{π} : 228.9 γ M1+E2 to 9/2 $^+$, 705.2 γ E2 to 7/2 $^+$, 523.6 γ to 11/2 $^-$.
1072.2 8 (5/2+,7/2+,9/2+)	C G	XREF: G(1068). J^{π} : 629.7γ to (7/2) ⁺ , 1072.2γ to 5/2 ⁺ ; log ft = 6.84 10 in ¹⁰⁵ Ag ε decay
		(7.23 min).
$1074.6 \ 4 \qquad (3/2^+)$	FI	XREF: F(1075).
1088.2 4 3/2-	В І	J^{π} : L=(0) in 104 Pd(d,p) (1963Cu02); 768.4 γ to 7/2 ⁺ , 793.8 γ to 3/2 ⁺ . J^{π} : L=(0) in 104 Pd(d,p) (1963Cu02); 360.72 γ E1 to 5/2 ⁺ , 414.85 γ (E1) to
		$1/2^+$, 807.57γ E1(+M2) to $3/2^+$.
1098.1 5 $(5/2^+, 7/2^+, 9/2^+)$	CEI	J^{π} : 818γ to 3/2+, 656.5γ to (7/2)+; log ft =5.94 10 in ¹⁰⁵ Ag ε decay (7.23 min).
1102.3 5 $(1/2^+ \text{ to } 5/2^+)$	FG I	XREF: F(1103)G(1105).
1125.1 6 (1/2 ⁺ to 7/2 ⁺)	В	J ^π : L=2 in ¹⁰⁴ Pd(d,p) (1963Cu02); 821.7 <i>γ</i> to 3/2 ⁺ . J ^π : 844.6 <i>γ</i> to 3/2 ⁺ , 1125.2 <i>γ</i> to 5/2 ⁺ .
1123.10 $(1/2 + 10 + 1/2 + 1)$ $1142.34 17$ $(1/2^+, 3/2^+)$	FG I	XREF: F(1141)G(1155).
		J^{π} : L=(0) in ¹⁰⁴ Pd(d,p) (1963Cu02); 582.1 γ to 3/2 ⁺ , 1142.2 γ to 5/2 ⁺ .
$1177.7 \ 3 \qquad (1/2^+, 3/2^+)$	IJ	J^{π} : 1177.7 γ to 5/2 ⁺ ; 5918 γ primary from 7094.1-keV level in 104 Pd(n, γ) E=th.
1201.7 4 (1/2+,3/2+)	FI	J^{π} : L=(2) 104 Pd(d,p) (1963Cu02); 640.8 γ to 3/2 ⁺ .
$1259.22 \ 22 \ (3/2^+)$	FG I	XREF: $F(1263)G(1242)$. J^{π} : L=(0) in $^{104}Pd(d,p)$ (1963Cu02); 952.6 γ to $7/2^{+}$, 979.0 γ to $3/2^{+}$.
1271.41 [‡] 24 (11/2) ⁺	G KL	XREF: G(1288).
	C AL	J^{π} : 489.5 γ M1+E2 to 9/2+, 829.1 γ E2 to (7/2)+.
$1324.2 \ 3 \qquad (11/2^+) 1357.0^b \ 8 \qquad (13/2^-)$	K	J^{π} : 312.6 γ to (11/2 ⁺), 881.3 γ (E2) to (7/2) ⁺ .
1357.0 ⁶ 8 (13/2 ⁻) 1405.2 3 (3/2 ⁺ ,5/2 ⁺)	F I	J^{π} : 387 γ to 15/2 ⁻ , 868 γ to 11/2 ⁻ . XREF: F(1402).
		J^{π} : 263.3 γ to (1/2+,3/2), 1098.5 γ to 7/2+, 1405.5 γ to 5/2+.
$1410.9 \ 3 \qquad (13/2^+)$	G K	XREF: G(1417). J^{π} : L=5 in ¹⁰⁶ Pd(d,t) (1980Sc23); 140.0 γ to (11/2) ⁺ , 399.9 γ to (11/2 ⁺),
		628.1 γ to 9/2 ⁺ ; assumed near-yrast level.
1520.8 5 $(3/2^+ \text{ to } 7/2^+)$	FI	XREF: $F(1522)$. J^{π} : 1078.0 γ to $(7/2)^+$, 1240.8 γ to $3/2^+$.
1601.3 5 $(1/2^+ \text{ to } 5/2^+)$	FI	XREF: F(1602).
1650 6 5 (7/2-)	г т	J^{π} : L=(2) in 104 Pd(d,p) (1963Cu02), 459.0 γ to (1/2+,3/2), 1600.4 γ to 5/2+.
1650.6 5 (7/2 ⁻)	FΙ	XREF: $F(1652)$. J^{π} : 1162.1 γ to 11/2 $^{-}$, 1208.7 γ to (7/2) $^{+}$, 1305.5 γ to 1/2 $^{+}$.
$1671.14^{\ddagger} 24 (13/2)^{+}$	L	J^{π} : 399.76 γ E2+M1 to (11/2) ⁺ , 889.24 γ E2 to 9/2 ⁺ ; band member.
1701.0 8 $(1/2^+ \text{ to } 9/2^+)$	FI	XREF: $F(1702)$. J^{π} : 973.3 γ to $5/2^{+}$.
1741.8 [@] 3 19/2 ⁻	KLM	J^{π} : 973.3 γ to 3/2 $^{\circ}$. J^{π} : 771.83 γ E2 to 15/2 $^{\circ}$; band member.
$1749.6 \ 3 \qquad (13/2)^+$	L	J^{π} : 847.6 γ E2 to 9/2+; near-yrast state assumed.
1763.2 <i>3</i> (15/2) ⁻	L	J^{π} : 793.17 γ M1+E2 to 15/2 $^{-}$, 1274.15 γ to 11/2 $^{-}$; near yrast state.
$1774.7 6 (1/2^+ \text{ to } 9/2^+)$	FI	XREF: $F(1772)$. J^{π} : 1455.3 γ to 5/2 ⁺ .
1854.1 <i>3</i> (13/2 ⁺)	K	J^{π} : 530.3 γ to (11/2 ⁺), 442 γ to (13/2 ⁺); assumed near-yrast.
1865.6 4 $(1/2^+ \text{ to } 7/2^+)$	FI	XREF: $F(1867)$. J^{π} : 1305.5 γ to 3/2 ⁺ .
1873.9 <i>3</i> (15/2 ⁺)	K	J^{π} : 1305.5 γ to 3/2°. J^{π} : 602.7 γ to (11/2)+; 862.7 γ to (11/2+) assumed to be (E2) in
"		104 Ru(α ,3n γ) (1977Gr22).
$1901.8^{\#} 3 \qquad (15/2)^{+}$	KLM	XREF: K(1900.8)L(1902.17)M(1903).
1922.9 <i>5</i> (1/2 ⁺ ,3/2 ⁺)	FI	J^{π} : 889.8 γ E2 to (11/2 ⁺); band member. XREF: F(1923).
		J^{π} : L=(0) in 104 Pd(d,p) (1963Cu02); 1360.7 γ to 3/2 ⁺ .
$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	L F I	J^{π} : 991.38 γ M1+E2 to 15/2 $^{-}$; 814.22 γ (E2) from (21/2 $^{-}$). XREF: F(1990).
1988.9 5 (1/2,3/2,5/2)+	г 1	AKEI ⁻ . I'(1790).

105Pd Levels (continued)

E(level) [†]	J^{π}	XREF	Comments
2064.7 7	$(1/2^+,3/2^+)$	F I	J^{π} : 1026.7 γ to $(1/2,3/2)^{+}$; L=(2) from 104 Pd(d,p) (1963Cu02). XREF: F(2062).
2101.5 7	$(7/2^-,9/2,11/2^+)$	F I	J^{π} : L=(2) in 104 Pd(d,p) (1963Cu02); 1745.2 γ to 5/2 ⁺ , 1784.3 γ to 3/2 ⁺ . XREF: F(2102).
*********	(4.7/2) ±	_	J^{π} : 1611.8 γ to 11/2 ⁻ , 1660.0 γ to (7/2) ⁺ .
2197.1 [‡] <i>3</i> 2280.6 <i>4</i>	$(15/2)^+$ $(15/2,17/2)^-$	L L	J^{π} : 925.8 γ E2 to (11/2) ⁺ ; near yrast state. J^{π} : 1310.6 γ M1+E2 to 15/2 ⁻ .
2344.6 3	(19/2,17/2) $(19/2)^{-}$	L	J^{π} : 581.45 γ E2 to (15/2) ⁻ , 602.78 γ M1+E2 to 19/2 ⁻ .
2420		F	
2490.9 4	(19/2 ⁻)	L	J^{π} : 749.1 γ to 19/2 ⁻ , 1520.9 γ (E2) to 15/2 ⁻ .
2552.0 [‡] 3	$(17/2)^+$	L	J^{π} : 881.0 γ E2 to $(13/2)^+$, 649.9 γ to $(15/2)^+$, 1582.0 γ to $15/2^-$; band member.
2565.01 <i>24</i> 2613 <i>8</i>	$(17/2)^+$	L F	J^{π} : 367.9 γ to (15/2) ⁺ , 815.4 γ E2 to (13/2) ⁺ , 893.88 γ (E2) to (13/2) ⁺ .
2700.2 [@] 3	23/2-	KLM	XREF: K(2698.9).
2700.2 3	23/2	KLII	J^{π} : 958.42 γ to E2 to 19/2 ⁻ ; band member.
2703.9 <i>3</i>	(19/2)	L	J^{π} : 962.10 γ M1+E2 to 19/2 $^{-}$.
2755.9 [#] 3	19/2+	KLM	XREF: K(2754.5)M(2757).
Ь			J^{π} : 854.02 γ E2 to (15/2) ⁺ , 1014.3 γ E1+M2 to 19/2 ⁻ ; band member.
2775.6^{b} 3	$(21/2^{-})$	L	J^{π} : 1033.7 γ M1+E2 to 19/2 $^{-}$; near-yrast state assumed.
2806.5 ^c 3 2900.7 ^{&} 3	(19/2) ⁺	L	J^{π} : 254.53 γ M1+E2 to $(17/2)^{+}$, 904.7 γ E2 to $(15/2)^{+}$.
2900.74 3 3072.8 ^a 3	$(21/2)^-$ $(21/2)^+$	L L	J^{π} : 1158.94 γ M1+E2 to 19/2 $^-$, 939.4 γ to (17/2) $^-$. J^{π} : 372.6 γ E1+M2 to 23/2 $^-$, 508.0 γ E2 to (17/2) $^+$, 1331.0 γ E1+M2 to 19/2 $^-$;
3072.0 3	(21/2)		band member.
3119.2 ^c 3	$(21/2)^+$	L	J^{π} : 312.67 γ M1+E2 to (19/2) ⁺ , 1377.3 γ to 19/2 ⁻ ; band member.
3153.3 3	(23/2)	KL	J ^π : 452.98 γ M1(+E2) to 23/2 ⁻ , 808.8 γ E2 to (19/2) ⁻ ; J ^π =(27/2) ⁻ in ¹⁰⁴ Ru(α ,3n γ).
3294.7 [#] <i>3</i>	23/2+	KLM	J^{π} : 538.83 γ E2 to 19/2 ⁺ ; band member.
3320	(22/2)+	F	III 240 20 M1 F2 (21/0)+
3468.6 ^c 3 3527.6 ^a 3	$(23/2)^+$ $(25/2)^+$	L L	J^{π} : 349.38 γ M1+E2 to (21/2) ⁺ ; near-yrast state assumed. J^{π} : 232.8 γ M1+E2 to 23/2 ⁺ ; 454.82 γ E2 to (21/2) ⁺ ; band member.
3570	(23/2)	F	3 . 232.67 WITH 122 to 23/2 , 13 1.62 / 122 to (21/2) , build infolioci.
3690		F	
3694.4 <i>4</i>	$(25/2^{-})$	L	J^{π} : 918.8 γ E2 to (21/2 ⁻), 994.12 γ M1+E2 to 23/2 ⁻ .
3800.5 [@] 3	$(27/2^{-})$	KLM	XREF: K(3797.7).
3859.4 <mark>&</mark> 6	(25/2-)	T	J^{π} : 1100.24 γ (E2) to 23/2 $^{-}$; band member.
3873.0 [#] 3	(25/2 ⁻) 27/2 ⁺	L KLM	J^{π} : 1084 γ to (21/2 ⁻), 1159 γ to 23/2 ⁻ ; band member. XREF: K(3871.3)M(3874).
3673.0 3	21/2	KLII	J^{π} : 578.27 γ E2 to 23/2+; band member.
4000		F	· · · · · · · · · · · · · · · · · · ·
4110		F	
4254.4 ^a 4 4510	$(29/2)^+$	L	J^{π} : 726.8 γ E2 to (25/2) ⁺ ; band member.
4510 4668.2 [#] 4	$(31/2^+)$	F LM	XREF: M(4669).
4008.2 4	(31/2)	LII	J^{π} : 795.23 γ (E2) to 27/2 ⁺ ; band member.
4690		F	
4783.4 <mark>b</mark> 7	$(29/2^{-})$	L	J^{π} : 1089 γ (E2) to 25/2 ⁻ ; band member.
4840		F	
4953.1 [@] 4	$(31/2^{-})$	LM	J^{π} : 1152.64 γ (E2) to (27/2 ⁻); band member.
4955.9 8	(29/2 ⁻)	L	J^{π} : 1261 γ to 25/2 $^{-}$; band member.
5255.3 ^a 5 5682.2 [#] 11	$(33/2^+)$	L	J^{π} : 1000.9 γ (E2) to (29/2) ⁺ ; band member.
5682.2" 11	$(35/2^+)$	M	J^{π} : 1014 γ to (31/2 ⁺); assumed near-yrast state.

¹⁰⁵Pd Levels (continued)

E(level) [†]	${ m J}^{\pi}$	T _{1/2}	XREF	Comments
5847.4 ^b 12	$(33/2^{-})$		L	J^{π} : 1064 γ (E2) to (29/2 ⁻); band member.
6073.1 [@] 11	$(35/2^{-})$		LM	J^{π} : 1120 γ to (31/2 ⁻); band member.
6860.3 [#] <i>15</i>	$(39/2^+)$		M	J^{π} : 1178 γ to (35/2 ⁺); band member.
6995.4 ^b 16	$(37/2^{-})$		L	
(7094.5 7)		5.1 fs 8	J	J^{π} : assumed s-wave neutron capture.
7193.1 [@] <i>15</i>	$(39/2^{-})$		LM	J^{π} : 1120 γ to (35/2 ⁻); band member.
8127.3 [#] <i>18</i>	$(43/2^+)$		M	J^{π} : 1267 γ to (39/2 ⁺); band member.
8297.4 ^b 19	$(41/2^{-})$		L	J^{π} : 1302 γ to (37/2 ⁻); band member.
8410.1 [@] 18	$(43/2^{-})$		LM	J^{π} : 1217 γ to (39/2 ⁻); band member.
9440.3 [#] 21	$(47/2^+)$		M	J^{π} : 1313 γ to (43/2 ⁺); band member.
10875.3 [#] 23	$(51/2^+)$		M	J^{π} : 1435 γ to (47/2 ⁺); band member.
\mathbf{x}^{d}	$[43/2^+]$		M	Additional information 1.
				J^{π} : from systematics.
x+1209.0 ^d 10	$[47/2^+]$		M	J^{π} : 1209 γ to [43/2 ⁺]; band member.
x+2491.0 ^d 15	$[51/2^+]$		M	J^{π} : 1282 γ to [47/2 ⁺]; band member.
x+3870.0 ^d 18	$[55/2^+]$		M	J^{π} : 1379 γ to [51/2 ⁺]; band member.
$x+5358.0^{d}$ 20	$[59/2^+]$		M	J^{π} : 1488 γ to [55/2 ⁺]; band member.
x+6955.0 ^d 23	$[63/2^+]$		M	J^{π} : 1597 γ to [59/2 ⁺]; band member.
x+8675.1 ^d 25	$[67/2^+]$		M	J^{π} : 1720 γ to [63/2 ⁺]; band member.
$x+10521^{d}$ 3	$[71/2^+]$		M	J^{π} : 1846 γ to [67/2 ⁺]; band member.
$x+12528^{d}$ 3	$[75/2^+]$		M	J^{π} : 2007 γ to [71/2 ⁺]; band member.
x+14669 ^d 3	$[79/2^{+}]$		M	J^{π} : 2141 γ to [75/2 ⁺]; band member.

[†] From a least-squares fit to Eγ. ‡ Band(A): $\Delta J=1$ band built on $J^{\pi}=5/2^{+}$. # Band(B): $\Delta J=2$ band built on $J^{\pi}=7/2^{+}$. @ Band(C): $\Delta J=2$ band built on $J^{\pi}=11/2^{-}$.

[&]amp; Band(D): $\Delta J=2$ signature partner of $J^{\pi}=11/2^{-}$ band.

^a Band(E): $\Delta J=2$ band built on $J^{\pi}=(21/2^+)$. ^b Band(F): $\Delta J=2$ wobbling band on $J^{\pi}=(13/2^-)$.

^c Band(G): $\Delta J=1$ band, built on $J^{\pi}=(17/2^{+})$.

^d Band(H): $\Delta J=2$ superdeformed band.

$\gamma(^{105}\text{Pd})$

							γ (103Pd)	
$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f \mathbf{J}^2	Mult.	δ	α^{\dagger}	Comments
280.62	3/2+	280.54	100	0.0 5/2	M1+E2	+0.143 7	0.0238	$\alpha(K)=0.0207\ 3;\ \alpha(L)=0.00249\ 4;\ \alpha(M)=0.000469\ 7;$ $\alpha(N+)=7.89\times10^{-5}\ 12$ $\alpha(N)=7.89\times10^{-5}\ 12$ $\alpha(M)=0.0203\ 22;\ B(E2)(W.u.)=4.6\ 7$ Mult.: $A_{22}=0.156\ 8,\ A_{44}=0.031\ 9$ in 105 Ag ε decay (41.29 d) (1983Si08); Also $A_{22}=-0.048\ 10,\ A_{44}=0.015\ 10\ (1977Ri05)$ and
								(1963Si06), Also A_{22} =-0.048 7 0, A_{44} =-0.013 7 10 (1977Ri03) and R_{DCO} =2.19 6 (1977Ri05) in 96 Zr(12 C,3n γ). Mult.: α (K)exp=0.0209 1 3 in 105 Ag ε decay (41.29 d) (1970Ka13), 0.020 4 (1965Pi01). δ : weighted average of 0.178 14 (1983Si08) and +0.132 8 (1977Wi10); Others: 0.01 1 (1977Ri05), +0.07 7 (1976Ba39),
306.41	7/2+	306.30	100	0.0 5/2	2+ M1+E2	+0.055 2	0.0188	+0.013 3 (1972Be67), +0.035 22 (1962Bh03), +0.11 3 (1958Ra01). $\alpha(K)$ =0.01640 23; $\alpha(L)$ =0.00196 3; $\alpha(M)$ =0.000368 6; $\alpha(N+)$ =6.20×10 ⁻⁵ 9 $\alpha(N)$ =6.20×10 ⁻⁵ 9
								B(M1)(W.u.)=0.0106 12 ; B(E2)(W.u.)=0.30 4 Mult.: A ₂₂ =-0.048 10 , A ₄₄ =0.015 10 (1977Ri05); R _{DCO} =2.19 6 (1977Ri05). Mult.: α (K)exp=0.0209 13 (1970Ka13); 0.016 2 (1964Ka23).
								δ: from 1976Ba39; Other: 0.06 1 (1977Wi10), 0.01 1 (1977Ri05), +0.02 4 (1977Ri05).
319.38	5/2+	38.77 17	0.14	280.62 3/2	2 ⁺ M1(+E2)		24 18	$\alpha(K)=12.7$; $\alpha(L)=10$ 10; $\alpha(M)=1.9$ 18; $\alpha(N+)=0.3$ 3 $\alpha(N)=0.3$ 3
		319.24	100.0	0.0 5/2	2 ⁺ M1+E2	+0.103 8	0.01697	Mult.: $\alpha(K)\exp=5.8 \ 6 \text{ in }^{105}\text{Rh }\beta^{-} \text{ decay } (35.3 \text{ h}) \ (1965\text{Pi}01).$ $\alpha(K)=0.01481 \ 2I; \ \alpha(L)=0.001769 \ 25; \ \alpha(M)=0.000332 \ 5;$ $\alpha(N+)=5.60\times10^{-5} \ 8$
								$\alpha(N)=5.60\times10^{-5}~8$ B(M1)(W.u.)=0.019 3; B(E2)(W.u.)=1.8 4 Mult.: A ₂₂ =0.21 4, A ₄₄ =0.01 5 (1977Ri05); R _{DCO} =1.08 19 (1977Ri05) in $^{96}\text{Zr}(^{12}\text{C},3n\gamma)$; Also, $\alpha(K)\exp=0.013$ (1964Ka23) in $^{105}\text{Rh}~\beta^-$ decay (35.3 h) and 0.014 9 (1970Ka13) in $^{105}\text{Ag}~\varepsilon$ decay (41.29 d).
344.9	1/2+	64.072	26.8	280.62 3/2	2+ M1(+E2)	-0.025 30	1.354 23	δ: weighted average of +0.137 9 (1981Al19), +0.11 I (1977Wi10) and +0.091 $I3$ (1976Ba39); $\alpha(K)$ =1.175 $I9$; $\alpha(L)$ =0.147 5; $\alpha(M)$ =0.0276 9; $\alpha(N+)$ =0.00463 $I4$ $\alpha(N)$ =0.00463 $I4$
		344.61	100.0	0.0 5/2	2+ E2		0.0188	B(M1)(W.u.)=0.0149 +20-21; B(E2)(W.u.)=2.0 +91-16 Mult.: α (K)exp=1.17 7 (1970Ka13) in 105 Ag ε decay (41.29 d). δ: from (1981Al19) in 105 Ag ε decay (41.29 d). α (K)=0.01611 23; α (L)=0.00219 3; α (M)=0.000413 6; α (N+)=6.80×10 ⁻⁵ 10

$\gamma(^{105}\text{Pd})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
442.53	(7/2)+	442.25	100	0.0	5/2+	M1+E2	-0.23 6	0.00756 11	α (N)=6.80×10 ⁻⁵ 10 B(E2)(W.u.)=2.64 15 Mult.: α (K)exp=0.0163 10 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d). B(M1)(W.u.)=0.20 +17-7; B(E2)(W.u.)=47 +55-24 α =0.00756 11; α (K)=0.00661 10; α (L)=0.000784 13; α (M)=0.0001471 23; α (N+)=2.48×10 ⁻⁵ α (N)=2.48×10 ⁻⁵ 4
489.1	11/2-	182.92	100	306.41	7/2+	M2		0.453	Mult.: A_{22} =-0.610 21, A_{44} =0.031 24 (1977Ri05); R_{DCO} =4.1 7 (1977Ri05) in 96 Zr(12 C,3n γ). δ : weighted average of -0.33 13 or -0.20 7 (1977Ri05) in 96 Zr(12 C,3n γ); Also: -0.2 or -0.3 (1977Wi10) and -0.8 +7-4 (1976Ba39) in 105 Rh β ⁻ decay (35.3 h). α (K)=0.383 δ ; α (L)=0.0567 δ ; α (M)=0.01087 1 δ ; α (N+)=0.00182 3 B(M2)(W.u.)=0.132 4 Mult.: A_{22} =0.03 4, A_{44} =0.00 4 (1977Ri05) in 96 Zr(12 C,3n γ); Also
560.50	3/2+	216.1	2.44	344.9	1/2+				$\alpha(K)$ exp=0.40 5 (1970Ka13) in 105 Ag ε decay (41.29 d).
	-,	560.79	100	0.0	5/2+	M1+E2		0.00427 7	α =0.00427 7; α (K)=0.00372 6; α (L)=0.000451 18; α (M)=8.5×10 ⁻⁵ 4; α (N+)=1.42×10 ⁻⁵ 5 α (N)=1.42×10 ⁻⁵ 5
644.7	7/2-	155.38	4.05	489.1	11/2-	E2		0.289	Mult.: $\alpha(K)\exp=0.0038\ 4\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha(K)=0.238\ 4$; $\alpha(L)=0.0423\ 6$; $\alpha(M)=0.00808\ 12$; $\alpha(N+)=0.001290\ 16\ \alpha(N)=0.001290\ 18$ B(E2)(W.u.)=63.5 23 Mult.: $\alpha(K)\exp=0.235\ 21\ (1970Ka13)$.
		202.21 325.43	0.29 1.98	442.53 319.38		E1		0.00559 8	α =0.00559 8; α (K)=0.00489 7; α (L)=0.000571 8; α (M)=0.0001067 15: α (N+)=1.79×10 ⁻⁵ 3 α (N)=1.79×10 ⁻⁵ 3
		644.63	100	0.0	5/2+	E1+M2	-0.016 4	0.001061 15	B(E1)(W.u.)= $1.289 \times 10^{-6} 24$ Mult.: α (K)exp= $0.0043 8 (1970 \text{Ka} 13)$. α = $0.001061 15$; α (K)= $0.000930 13$; α (L)= $0.0001070 15$;
									$\alpha(\text{M}) = 2.00 \times 10^{-5} \ 3$; $\alpha(\text{N}+) = 3.37 \times 10^{-6} \ \alpha(\text{N}) = 3.37 \times 10^{-6} \ 5$ $B(\text{E1})(\text{W.u.}) = 8.38 \times 10^{-6} \ 14$; $B(\text{M2})(\text{W.u.}) = 0.024 \ 12$ Mult.: $A_{22} = -0.170 \ 5$, $0.001 \ 1$ (1977Ba32); Also, $\alpha(\text{K}) \exp = 0.00090 \ 6$ (1970Ka13) in $^{105} \text{Ag } \varepsilon \text{ decay } (41.29 \ \text{d})$. δ : weighted average of $-0.020 + 5 - 6$ (1977Ba32) and $-0.012 \ 4$ (1981Al19) in $^{105} \text{Ag } \varepsilon \text{ decay } (41.29 \ \text{d})$.
650.9	$(3/2)^+$	90.01 331.58	0.81 100	560.50 319.38		M1+E2	-0.084 7	0.01539	B(M1)(W.u.)>0.047; B(E2)(W.u.)>2.2

γ (105Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
									$\alpha(K)$ =0.01343 19; $\alpha(L)$ =0.001602 23; $\alpha(M)$ =0.000301 5; $\alpha(N+)$ =5.07×10 ⁻⁵ 8 $\alpha(N)$ =5.07×10 ⁻⁵ 8 Mult.: A ₂₂ =-0.104 11, A ₄₄ =-0.10 10 (1977Ba32) in ¹⁰⁵ Ag ε decay (41.29 d); Also $\alpha(K)$ exp=0.0122 8 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d). δ : -0.084 7 (1983Si08), and -0.062 9 (1981Al19) in ¹⁰⁵ Ag ε decay
650.9	(3/2)+	370.28	17.85	280.62	3/2+	M1+E2	0.11 3	0.01167	(41.29 d). B(M1)(W.u.)>0.0059; B(E2)(W.u.)>0.21 α (K)=0.01020 15 ; α (L)=0.001212 18 ; α (M)=0.000228 4 ; α (N+)=3.84×10 ⁻⁵ 6 α (N)=3.84×10 ⁻⁵ 6
									Mult.: A_{22} =-0.072 12, A_{44} =-0.001 16 (1983Si08) and A_{22} =-0.098 16, A_{44} =-0.030 45 (1977Ba32) in 105 Ag ε decay (41.29 d); Also α (K)exp=0.0094 8 (1970Ka13) in 105 Ag ε decay (41.29 d). δ: from 1983Si08 in 105 Ag ε decay (41.29 d), based on γ - γ (θ); Other: 0.000 3 (1977Ba32) in 105 Ag ε decay (41.29 d).
		650.78	60.85	0.0	5/2+	M1+E2		0.00293 7	α =0.00293 7; α (K)=0.00256 7; α (L)=0.000306 5; α (M)=5.74×10 ⁻⁵ 9; α (N+)=9.64×10 ⁻⁶ 14 α (N)=9.64×10 ⁻⁶ 14 Mult.: α (K)exp=0.00264 18 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
673.2	1/2+	112.51 328.61	1.76 10.25	560.50 344.9		(M1)		0.01570	$\alpha(K)$ =0.01371 20; $\alpha(L)$ =0.001632 23; $\alpha(M)$ =0.000307 5; $\alpha(N+)$ =5.17×10 ⁻⁵ 8 $\alpha(N)$ =5.17×10 ⁻⁵ 8 B(M1)(W.u.)=0.0078 8 Mult.: $\alpha(K)$ exp=0.0084 9 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
		353.8 392.73	0.42 100	319.38 280.62		M1+E2	+0.06 3	0.01006 15	B(M1)(W.u.)=0.045 +6-5; B(E2)(W.u.)=0.9 +12-7 α (K)=0.00879 13; α (L)=0.001042 15; α (M)=0.000196 3; α (N+)=3.30×10 ⁻⁵ 5 α (N)=3.30×10 ⁻⁵ 5 Mult.: A ₂₂ =0.182 17, A ₄₄ =0.020 25 (1983Si08) and 0.149 13, -0.014 20
		673.24	48.74	0.0	5/2+	E2		0.00263 4	(1977Ba32) in 105 Ag ε decay (41.29 d); Also α (K)exp=0.0083 δ (1970Ka13) in 105 Ag ε decay (41.29 d). δ : weighted average of 0.05 δ (1983Si08) and +0.10 δ (1981A119) in 105 Ag ε decay (41.29 d); Other: $-0.84 + 3 - 17$ (1977Ba32). B(E2)(W.u.)=8.4 9 α =0.00263 δ ; α (K)=0.00229 δ ; α (L)=0.000280 δ ; α (M)=5.26×10 ⁻⁵ δ ; α (N)=8.79×10 ⁻⁶ δ 13 Mult.: α (K)exp=0.00224 δ 19 (1970Ka13) in δ 105 Ag δ 2 decay (41.29 d).

$\gamma(\frac{105}{\text{Pd}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f J	π f Mult.	δ	α^{\dagger}	Comments
696.66	(7/2+)	135.8 [#] 3 254.3 [#] 3 415.8 [#] 3 697.1 [#] 3	22 [#] 5 92 [#] 27 38 [#] 11 100 [#]	560.50 3/2 442.53 (7/2 280.62 3/2 0.0 5/2	2) ⁺ +			
727.5	5/2+	284.8	65.71	442.53 (7/			0.0226	$\alpha(K)$ =0.0197 3; $\alpha(L)$ =0.00236 4; $\alpha(M)$ =0.000443 7; $\alpha(N+)$ =7.47×10 ⁻⁵ 11 $\alpha(N)$ =7.47×10 ⁻⁵ 11 B(M1)(W.u.)>0.025 Mult.: $\alpha(K)$ exp=0.0162 23 (1970Ka13) in 105 Ag ε decay
		408.08	28.57	319.38 5/2	+ M1(+E2)		0.0101 10	(41.29 d). $\alpha(K)=0.0087 \ 8$; $\alpha(L)=0.00109 \ 15$; $\alpha(M)=0.00021 \ 3$; $\alpha(N+)=3.4\times10^{-5} \ 5$ $\alpha(N)=3.4\times10^{-5} \ 5$ Mult.: $\alpha(K)=0.0070 \ 25 \ (1970 \ Ka13)$ in $^{105} \ Ag \ \varepsilon$ decay
		421.03	82.86	306.41 7/2	+ M1(+E2)		0.0092 8	(41.29 d). α =0.0092 8; α (K)=0.0080 7; α (L)=0.00100 13; α (M)=0.000188 25; α (N+)=3.1×10 ⁻⁵ 4 α (N)=3.1×10 ⁻⁵ 4 Mult.: α (K)exp=0.0069 17 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
		446.8	68.57	280.62 3/2	+ M1+E2	0.9 +9-5	0.0078 4	B(M1)(W.u.)>0.00040 α =0.0078 4; α (K)=0.0068 3; α (L)=0.00083 6; α (M)=0.000157 11; α (N+)=2.62×10 ⁻⁵ 17 α (N)=2.62×10 ⁻⁵ 17 Mult.: A ₂₂ =0.043 (32); A ₄₄ =0.053 (47) (1983Si08) in ¹⁰⁵ Ag ε decay (41.29 d).
		727.28	100	0.0 5/2	+ M1(+E2)		0.00223 9	δ: from 1983Si08 in 105 Ag ε decay (41.29 d), based on $\gamma\gamma(\theta)$. α =0.00223 9; α (K)=0.00195 8; α (L)=0.000231 5; α (M)=4.34×10 ⁻⁵ 9; α (N+)=7.30×10 ⁻⁶ 18 α (N)=7.30×10 ⁻⁶ 18 Mult.: α (K)exp=0.0028 9 (1970Ka13) in 105 Ag ε decay (41.29 d).
781.99	9/2+	339.4# 1	#	442.53 (7/	2) ⁺ M1(+E2)	-0.04 4	0.01448	$\alpha(K)$ =0.01264 18; $\alpha(L)$ =0.001505 22; $\alpha(M)$ =0.000283 4; $\alpha(N+)$ =4.76×10 ⁻⁵ 7 $\alpha(N)$ =4.76×10 ⁻⁵ 7 Mult.: A_{22} =-0.29 5, A_{4} =0.03 8 (1977Ri05); R_{DCO} =2.5 5 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), based on $\gamma(\theta)$. δ : Also: -0.08 8 (1977Ri05) in 96 Zr(12 C,3n γ).
		475.1 [@]	100 [@]	306.41 7/2	+			v. 7150. 0.00 0 (1777100) iii 21(C,511y).

$\gamma(^{105}\text{Pd})$ (continued)

E_i (level)	J_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f \mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
781.99	9/2+	781.3 [@]	54 [@]	0.0 5/2+	E2		0.00180 3	B(E2)(W.u.)=14.7 <i>13</i> α =0.00180 <i>3</i> ; α (K)=0.001571 <i>22</i> ; α (L)=0.000189 <i>3</i> ; α (M)=3.55×10 ⁻⁵ <i>5</i> ; α (N+)=5.95×10 ⁻⁶ <i>9</i> α (N)=5.95×10 ⁻⁶ <i>9</i> Mult.: A ₂₂ =0.33 <i>3</i> , A ₄₄ =-0.05 <i>4</i> (1977Ri05); R _{DCO} =1.01 <i>18</i> (1977Ri05) in ⁹⁶ Zr(¹² C,3n γ).
785.0	$(1/2^+ \text{ to } 9/2^+)$	785 ^d		$0.0 5/2^+$				
902.12	9/2+	459.6 ^{&} 3	41& 7	442.53 (7/2)+	M1+E2	+0.24 9	0.00688 11	α =0.00688 11; α (K)=0.00601 9; α (L)=0.000712 12; α (M)=0.0001337 23; α (N+)=2.25×10 ⁻⁵ 4 α (N)=2.25×10 ⁻⁵ 4 Mult.: A ₂₂ =0.10 11, A ₄₄ =-0.07 4 (1977Ri05) in 96 Zr(12 C,3nγ). δ: from γ (θ) in 1977Ri05.
		582.74 ^{&} 25	66 ^{&} 7	319.38 5/2+	E2		0.00387 6	α =0.00387 6; α (K)=0.00336 5; α (L)=0.000418 6; α (M)=7.87×10 ⁻⁵ 11; α (N+)=1.312×10 ⁻⁵ 19 α (N)=1.312×10 ⁻⁵ 19 Mult.: A ₂₂ =0.46 5, A ₄₄ =-0.11 7 (1977Ri05), and R _{DCO} =0.92 16 (1977Ri05) in 96 Zr(12 C,3n γ).
		595.73 ^{&} 15	100 & 7	306.41 7/2+	M1+E2	+0.16 3	0.00367 6	α =0.00367 6; α (K)=0.00321 5; α (L)=0.000376 6; α (M)=7.06×10 ⁻⁵ 10; α (N+)=1.191×10 ⁻⁵ 17 α (N)=1.191×10 ⁻⁵ 17 Mult.: A ₂₂ =-0.01 3, A ₄₄ =0.02 4 (1977Ri05) and R _{DCO} =2.4 5 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from γ (θ) in 96 Zr(12 C,3n γ) (1977Ri05); Also there: -0.04 8 (1977Ri05).
921.3	$(1/2^+ \text{ to } 5/2^+)$	270.5 576.7 640.5 921.2	4.29 85.71 100 57	650.9 (3/2) ⁺ 344.9 1/2 ⁺ 280.62 3/2 ⁺ 0.0 5/2 ⁺				0.01 0 (1577Kl03).
929.6	(5/2+)	285.0 [@] f	@	644.7 7/2-				E_{γ} : observed only in (n,n' γ), where BRs are different from the two ¹⁰⁵ Ag ε decay data sets.
945.0		370 ^a 486.8 610.0 649.2 ^a 929.1 945 ^d	20 ^a 33 60.61 3 27.59 ^a 100	560.50 3/2 ⁺ 442.53 (7/2) ⁺ 319.38 5/2 ⁺ 280.62 3/2 ⁺ 0.0 5/2 ⁺ 0.0 5/2 ⁺				nom me two Ag & decay data sets.
943.0 962.4	(1/2,3/2)+	289.37	10.14	673.2 1/2 ⁺	M1		0.0217	B(M1)(W.u.)>0.31 α (K)=0.0189 3; α (L)=0.00226 4; α (M)=0.000425 6; α (N+)=7.17×10 ⁻⁵ 10

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{\ddagger}$	\mathbf{E}_f	\mathbf{J}^π_f	Mult.	δ	$lpha^\dagger$	Comments
962.4	(1/2,3/2)+	311.74	6.64	650.9	(3/2)+	M1		0.0179	$\alpha(N)=7.17\times10^{-5}\ 10$ Mult.: $\alpha(K)\exp=0.0147\ 17\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). B(M1)(W.u.)>0.16 $\alpha(K)=0.01566\ 22;\ \alpha(L)=0.00187\ 3;\ \alpha(M)=0.000351\ 5;$ $\alpha(N+)=5.92\times10^{-5}\ 9$ $\alpha(N)=5.92\times10^{-5}\ 9$
		401.75	16.08	560.50	3/2+	M1		0.00950 14	Mult.: $\alpha(K)\exp=0.0096\ 14\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay (41.29 d). B(M1)(W.u.)>0.18 $\alpha=0.00950\ 14;\ \alpha(K)=0.00831\ 12;\ \alpha(L)=0.000983\ 14;$ $\alpha(M)=0.000185\ 3;\ \alpha(N+)=3.11\times10^{-5}\ 5$ $\alpha(N)=3.11\times10^{-5}\ 5$
		617.90	100	344.9	1/2+	M1(+E2)		0.00334 6	Mult.: $\alpha(K)\exp=0.0065\ 10\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.00334\ 6$; $\alpha(K)=0.00291\ 6$; $\alpha(L)=0.000350\ 7$; $\alpha(M)=6.56\times10^{-5}\ 14$; $\alpha(N+)=1.101\times10^{-5}\ 19$ $\alpha(N)=1.101\times10^{-5}\ 19$
		681.94	6.29	280.62	3/2+	M1(+E2)		0.00261 8	Mult.: $\alpha(K)\exp=0.00306\ 25\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.00261\ 8;\ \alpha(K)=0.00228\ 8;\ \alpha(L)=0.000272\ 4;$ $\alpha(M)=5.10\times10^{-5}\ 8;\ \alpha(N+)=8.57\times10^{-6}\ 15$ $\alpha(N)=8.57\times10^{-6}\ 15$
		962.45	9.44	0.0	5/2+	M1(+E2)		0.00116 7	Mult.: $\alpha(K)\exp=0.0034\ 8\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay (41.29 d). $\alpha=0.00116\ 7$; $\alpha(K)=0.00102\ 6$; $\alpha(L)=0.000119\ 6$; $\alpha(M)=2.23\times10^{-5}\ 11$; $\alpha(N+)=3.75\times10^{-6}\ 19$ $\alpha(N)=3.75\times10^{-6}\ 19$ Mult.: $\alpha(K)\exp=0.00119\ 23\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay
970.0	15/2-	480.8 [@] 2	100 [@]	489.1	11/2-	E2		0.00670 10	(41.29 d). α =0.00670 10 ; α (K)=0.00580 9 ; α (L)=0.000741 11 ; α (M)=0.0001395 20 ; α (N+)=2.32×10 ⁻⁵ 4 α (N)=2.32×10 ⁻⁵ 4 Mult.: A ₂₂ =0.334 9 , A ₄₄ =-0.084 9 (1977Ri05); R _{DCO} =0.99 2
1011.47	(11/2+)	228.9 [@]	64.29 [@]	781.99	9/2+	M1+E2	-0.05 9	0.0399 8	(1977Ri05) in 96 Zr(12 C,3n γ). α (K)=0.0348 7; α (L)=0.00420 11; α (M)=0.000789 21; α (N+)=0.000133 4 α (N)=0.000133 4 Mult.: A ₂₂ =-0.33 15, A ₄₄ =0.21 19 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), based on $\gamma(\theta)$.

E_i (level)	J_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	J_f^π	Mult.	α^{\dagger}	Comments
1011.47	$(11/2^+)$	523.6 [@] 7	32 [@] 6	489.1				
		705.2 [@] 2	100 [@] 7	306.41	7/2+	E2	0.00233 4	α =0.00233 4; α (K)=0.00203 3; α (L)=0.000247 4; α (M)=4.64×10 ⁻⁵ 7; α (N+)=7.76×10 ⁻⁶ 11 α (N)=7.76×10 ⁻⁶ 11 Mult.: A ₂₂ =0.346 17, A ₄₄ =-0.102 24 (1977Ri05); R _{DCO} =0.99 4 (1977Ri05) in 96 Zr(12 C,3n γ).
1072.2	$(5/2^+, 7/2^+, 9/2^+)$	629.7 ^a 1072.2 ^a	50 ^a 100 ^a		$(7/2)^+$ $5/2^+$			
1074.6	$(3/2^+)$	768.4 [@] 5 793.8 [@] 5	40 [@] 20 100 [@] 20	306.41				
1088.2	3/2-	159.0	0.29	280.62 929.6				
1000.2	<i>5,2</i>	360.72	4.36	727.5		E1	0.00427 6	α =0.00427 6; α (K)=0.00374 6; α (L)=0.000436 6; α (M)=8.15×10 ⁻⁵ 12; α (N+)=1.365×10 ⁻⁵ 20 α (N)=1.365×10 ⁻⁵ 20 Mult.: α (K)exp=0.0039 4 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).
		414.85	2.78	673.2	1/2+	(E1)	0.00299 5	α =0.00299 5; α (K)=0.00262 4; α (L)=0.000305 5; α (M)=5.69×10 ⁻⁵ 8; α (N+)=9.55×10 ⁻⁶ 14 α (N)=9.55×10 ⁻⁶ 14
		437.30	2.66	650.9	(3/2)+	E1	0.00263 4	Mult.: $\alpha(K)\exp=0.0040 \ 8 \ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.00263 \ 4$; $\alpha(K)=0.00230 \ 4$; $\alpha(L)=0.000267 \ 4$; $\alpha(M)=4.99\times10^{-5} \ 7$; $\alpha(N+)=8.37\times10^{-6} \ 12$ $\alpha(N)=8.37\times10^{-6} \ 12$
		443.44	100	644.7	7/2-	E2	0.00853 12	Mult.: $\alpha(K)\exp=0.0029\ 6\ (1970Ka13)$ in $^{105}Ag\ \varepsilon$ decay (41.29 d). $\alpha=0.00853\ 12$; $\alpha(K)=0.00737\ 11$; $\alpha(L)=0.000954\ 14$; $\alpha(M)=0.000180\ 3$; $\alpha(N+)=2.98\times10^{-5}\ 5$ $\alpha(N)=2.98\times10^{-5}\ 5$
		527.34	1.00	560.50	3/2+	E1	0.001673 24	Mult.: $\alpha(K)\exp=0.0075\ 5\ (1970Ka13)$ in 105 Ag ε decay (41.29 d). $\alpha=0.001673\ 24$; $\alpha(K)=0.001466\ 21$; $\alpha(L)=0.0001694\ 24$; $\alpha(M)=3.17\times10^{-5}\ 5$; $\alpha(N+)=5.32\times10^{-6}$ $\alpha(N)=5.32\times10^{-6}\ 8$
		(46.00	0.62	112.52	(7/0)+			Mult.: $\alpha(K)$ exp=0.0015 4 (1970Ka13) in 105 Ag ε decay (41.29 d).
		646.00 743.45	0.62 4.9	442.53 344.9	1/2+	E1	0.000778 11	α =0.000778 11; α (K)=0.000683 10; α (L)=7.83×10 ⁻⁵ 11; α (M)=1.463×10 ⁻⁵ 21; α (N+)=2.46×10 ⁻⁶ α (N)=2.46×10 ⁻⁶ 4
		768.9	0.09	319.38	5/2+			Mult.: $\alpha(K)$ exp=0.00070 11 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d).

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	$\mathbf{J}_f^{\boldsymbol{\pi}}$	Mult.	δ	$lpha^\dagger$	Comments
1088.2	3/2-	807.57	10.62	280.62	3/2+	E1(+M2)	0.03 +4-3	0.000659 19	α =0.000659 19; α (K)=0.000579 17; α (L)=6.62×10 ⁻⁵ 20; α (M)=1.24×10 ⁻⁵ 4; α (N+)=2.08×10 ⁻⁶ 7 α (N)=2.08×10 ⁻⁶ 7 Mult.: A ₂₂ =-0.108 15; A ₄₄ =-0.2 2 (1983Si08) in ¹⁰⁵ Ag ε decay (41.29 d); Also: α (K)exp=0.00061 7 (1970Ka13) in ¹⁰⁵ Ag ε decay (41.29 d). δ: 0.03 +4-3 (1983Si08) in ¹⁰⁵ Ag ε decay (41.29 d), based on $\gamma\gamma$ (θ).
		1088.05	33.20		5/2+				Mult.: $\alpha(K)$ exp=0.000299 22 (1970Ka13) in 105 Ag ε decay (41.29 d).
1098.1	(5/2+,7/2+,9/2+)	656.5 ^a 818 ^a 1098.39 ^a	12 ^a 6.06 ^a 100 ^a	442.53 280.62 0.0	$3/2^{+}$				
1102.3 1125.1	$(1/2^+ \text{ to } 5/2^+)$ $(1/2^+ \text{ to } 7/2^+)$	821.7 [@] 4 564.4 844.6 1125.2	100 [@] 22 100 45	280.62 560.50 280.62 0.0	3/2 ⁺ 3/2 ⁺				
1142.34	$(1/2^+, 3/2^+)$	491.2 [@] 5 582.1 [@] 2 1142.2 [@] 2	58 [@] 4 100 [@] 62 [@] 5		(3/2) ⁺ 3/2 ⁺				
1177.7	$(1/2^+,3/2^+)$	1177.7 [@] 3	100@	0.0	-				
1201.7	$(1/2^+,3/2^+)$	640.8 [@] 5 921.3 [@] 4	100 [@] 6 46 [@] 6	560.50 280.62	3/2+				
1259.22	(3/2+)	952.6 [@] 3 979.0 [@] 4 1259.2 [@] 3	100 [@] 8 49 [@] 8 85 [@] 8	306.41 280.62 0.0	3/2+				
1271.41	$(11/2)^+$	260.0 [#] 3 489.5 [#] 3	28 [#] 9 93 [#] 28	1011.47 781.99		M1+E2	-0.13 6	0.00588 9	α =0.00588 9; α (K)=0.00514 8; α (L)=0.000605
									9; $\alpha(M)=0.0001136$ 17; $\alpha(N+)=1.92\times10^{-5}$ 3 $\alpha(N)=1.92\times10^{-5}$ 3 Mult.: A ₂₂ =-0.46 5, A ₄₄ =0.04 6 (1977Ri05) and R _{DCO} =3.1 10 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), but also -0.05 8 (1977Ri05).
		829.1# 3	100#	442.53	(7/2)+	E2		0.001558 22	α =0.001558 22; α (K)=0.001359 19; α (L)=0.0001628 23; α (M)=3.05×10 ⁻⁵ 5; α (N+)=5.12×10 ⁻⁶

γ (105Pd) (continued)

E_i (level)	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\clip{t}}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.	δ	$lpha^\dagger$	Comments
	<u> </u>								$\alpha(N)=5.12\times10^{-6}~8$ Mult.: $A_{22}=0.20~5$, $A_{44}=-0.09~7~(1977Ri05)$ and $R_{DCO}=1.2~4~(1977Ri05)$ in $^{96}Zr(^{12}C,3n\gamma)$.
1324.2	$(11/2^+)$	312.6 [#] <i>3</i> 834.9 [#] <i>3</i>	53 [#] 16 ≤44 [#]	1011.47 489.1	$(11/2^+)$				
		881.3 [#]	100#	442.53	•	(E2)		0.001347 19	α =0.001347 19; α (K)=0.001176 17; α (L)=0.0001401 20; α (M)=2.63×10 ⁻⁵ 4; α (N+)=4.41×10 ⁻⁶ α (N)=4.41×10 ⁻⁶ 7
1357.0	(13/2 ⁻)	387 ^e 868 ^e		970.0 489.1	15/2 ⁻ 11/2 ⁻				. ,
1405.2	$(3/2^+,5/2^+)$	263.3 [@] 5 1098.5 [@] 3 1405.5 [@] 7	25 [@] 5 100 [@] 13 [@] 3	1142.34 306.41	$(1/2^+,3/2^+)$				
1410.9	(13/2+)	140.0 [#] 3 399.9 [#] 3 628.1 [#] 3	40 [#] 10 100 [#] 30 50 [#] 15	1271.41 1011.47 781.99	$(11/2)^+$ $(11/2^+)$				
1520.8	$(3/2^+ \text{ to } 7/2^+)$	1078.0 [@] 5 1240.8 [@] 7	100 [@] 21 62 [@] 15	442.53 280.62	$(7/2)^+$				
1601.3	$(1/2^+ \text{ to } 5/2^+)$	459.0 [@] 5 1600.4 [@] 16	100 [@] 10 13 [@] 7		$(1/2^+, 3/2^+)$ $5/2^+$				
1650.6	(7/2 ⁻)	1162.1 [@] 8	31@ 8	489.1	•	[E2]		0.000727 11	α =0.000727 11; α (K)=0.000633 9; α (L)=7.40×10 ⁻⁵ 11; α (M)=1.385×10 ⁻⁵ 20 α (N+)=5.67×10 ⁻⁶ 1 α (N)=2.33×10 ⁻⁶ 4; α (IPF)=3.34×10 ⁻⁶ 8
		1208.7 [@] 8	34 [@] 9	442.53	(7/2)+	[E1+M2]		0.0010 7	$\alpha(N)=2.53\times10^{-4}$; $\alpha(IPF)=5.54\times10^{-6}$ $\alpha=0.0010$ 7; $\alpha(K)=0.0009$ 6; $\alpha(L)=0.00010$ 8; $\alpha(M)=1.9\times10^{-5}$ 14; $\alpha(N+)=2.5\times10^{-5}$ 18 $\alpha(N)=3.2\times10^{-6}$ 23; $\alpha(IPF)=2.2\times10^{-5}$ 21
		1305.5 [@] 4	100 [@] 14	344.9	1/2+	[E3]		0.001091 16	α =0.001091 16; α (K)=0.000944 14; α (L)=0.0001143 16; α (M)=2.15×10 ⁻⁵ 3; α (N+)=1.123×10 ⁻⁵ α (N)=3.61×10 ⁻⁶ 5; α (IPF)=7.62×10 ⁻⁶ 12
1671.14	(13/2)+	399.76 ^{&} 10	35.1 ^{&} 21	1271.41	(11/2)+	E2+M1	-0.08 4	0.00964 14	α =0.00964 14; α (K)=0.00842 12; α (L)=0.000997 15; α (M)=0.000187 3; α (N+)=3.16×10 ⁻⁵ 5 α (N)=3.16×10 ⁻⁵ 5

Adopted	Levels,	Gammas	(continued)

γ (105Pd) (continued)

E_i (level)	\mathbf{J}^{π}_{i}	$\mathrm{E_{\nu}}^{\ddagger}$	$_{\mathrm{I}_{\gamma}^{\ddagger}}$	E_f	${\rm J}_{_f}^\pi$	Mult.	δ	$lpha^\dagger$	Comments
		,			J				Mult.: A_{22} =-0.38 4, A_{44} =-0.05 5 (1977Ri05) and R_{DCO} =3.9 11 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from 1977Ri05 in 96 Zr(12 C,3n γ), but also -0.19 11 (1977Ri05).
1671.14	(13/2)+	889.24 ^{&} 25	100 ^{&}	781.99 9)/2 ⁺	E2		0.001318 19	α =0.001318 19; α (K)=0.001151 17; α (L)=0.0001371 20; α (M)=2.57×10 ⁻⁵ 4; α (N+)=4.31×10 ⁻⁶ α (N)=4.31×10 ⁻⁶ 6 Mult.: A ₂₂ =0.329 16, A ₄₄ =-0.06 21 (1977Ri05) and R _{DCO} =1.15 20 (1977Ri05) in 96 Zr(12 C,3n γ).
1701.0	$(1/2^+ \text{ to } 9/2^+)$	973.3 [@] 8 1382.4 [@] 16	100 [@] 25 54 [@] 29	727.5 5 319.38 5	•				
1741.8	19/2-	771.83 ^{&} 5	100 ^{&}	970.0 1	.5/2-	E2		0.00186 3	α =0.00186 3; α (K)=0.001618 23; α (L)=0.000195 3; α (M)=3.66×10 ⁻⁵ 6; α (N+)=6.13×10 ⁻⁶ 9 α (N)=6.13×10 ⁻⁶ 9 Mult.: A ₂₂ =0.353 10, A ₄₄ =-0.104 11 (1977Ri05); R _{DCO} =0.96 2 (1977Ri05) in 96 Zr(12 C,3n γ).
1749.6	(13/2)+	847.6 ^{&} 3	100 &	902.12 9	0/2+	E2		0.001477 21	α =0.001477 21; α (K)=0.001290 18; α (L)=0.0001541 22; α (M)=2.89×10 ⁻⁵ 4; α (N+)=4.85×10 ⁻⁶ α (N)=4.85×10 ⁻⁶ 7 Mult.: R _{DCO} =1.12 21 (1977Ri05) in 96 Zr(12 C,3n γ).
1763.2	(15/2)	793.17 ^{&} 25	100 ^{&} 11	970.0 1	.5/2-	M1+E2	+1.0 5	0.00181 6	α =0.00181 6; α (K)=0.00159 5; α (L)=0.000187 5; α (M)=3.51×10 ⁻⁵ 8; α (N+)=5.91×10 ⁻⁶ 14 α (N)=5.91×10 ⁻⁶ 14 Mult.: A ₂₂ =0.28 4, A ₄₄ , -0.08 6 (1977Ri05) and R _{DCO} =1.2 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 1977Ri05; Also: 1.0 (1977Ri05) in 96 Zr(12 C,3n γ).
		1274.15 ^{&} 15	41 ^{&} 5	489.1 1	1/2-				Mult.: A_{22} =0.27 12, A_{44} =0.02 18 (1977Ri05) in 96 Zr(12 C,3n γ).
1774.7 1854.1	(1/2 ⁺ to 9/2 ⁺) (13/2 ⁺)	1455.3 [@] 5 442 [#] 3 530.3 [#] 3 582.0 [#] 3	100 [@] # 53 [#] 15 100 [#]	319.38 5 1410.9 (1324.2 (1271.41 (13/2 ⁺) 11/2 ⁺)				
1865.6	(1/2 ⁺ to 7/2 ⁺)	843.0 [#] 3 1305.5 [@] 4 1583.9 [@] 6	70 [#] 20 100 [@] 49 [@] 13	1011.47 (560.50 3 280.62 3	11/2 ⁺)				
1873.9	(15/2+)	463.1# 3	13# 4	1410.9 (

E_i (level)	\mathtt{J}_{i}^{π}	E_{γ}^{\ddagger}	I_{γ}^{\sharp}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
1873.9	(15/2+)	549.1 [#] 3	7.3 [#] 18	1324.2	(11/2+)				
		602.7 [#] 3	100 [#]	1271.41	$(11/2)^+$				
		862.7 [#] <i>3</i>	24 [#] 7	1011.47	$(11/2^+)$				
1901.8	$(15/2)^+$	578.0 [#]	31 [#] 9		$(11/2^+)$				
		889.8# 3	100#		(11/2+)	E2		0.001317 19	$\begin{array}{l} \alpha \! = \! 0.001317 \ 19; \ \alpha(K) \! = \! 0.001150 \ 17; \\ \alpha(L) \! = \! 0.0001369 \ 20; \ \alpha(M) \! = \! 2.57 \! \times \! 10^{-5} \ 4; \\ \alpha(N+) \! = \! 4.31 \! \times \! 10^{-6} \\ \alpha(N) \! = \! 4.31 \! \times \! 10^{-6} \ 6 \\ \text{Mult.:} \ A_{22} \! = \! 0.329 \ 16, \ A_{44} \! = \! -0.096 \ 21 \\ (1977 Ri05) \ \text{and} \ R_{DCO} \! = \! 0.96 \ 4 \\ (1977 Ri05) \ \text{in} \ ^{96} \text{Zr} (^{12}\text{C}, 3n\gamma). \end{array}$
1922.9	$(1/2^+,3/2^+)$	825.1 [@] 3 1360.7 [@] 8	100 [@] 17 42 [@] 11	1098.1 560.50	$(5/2^+,7/2^+,9/2^+)$				
1961.3	$(17/2)^{-}$	604 ^e	42 11		$(13/2^{-})$				
	(,-)	991.38 & 5	100 ^{&}	970.0	15/2	M1+E2	1.8 5	0.001055 23	α =0.001055 23; α (K)=0.000923 20; α (L)=0.0001083 21; α (M)=2.03×10 ⁻⁵ 4;
									α (N+)=3.42×10 ⁻⁶ α (N)=3.42×10 ⁻⁶ 7 Mult.: A ₂₂ =0.436 25, A ₄₄ =0.01 3 (1977Ri05) and R _{DCO} =0.58 8
									(1977Ri05) and RDCO=0.36 δ (1977Ri05) in ⁹⁶ Zr(¹² C,3nγ). δ: from DCO and linear pol. in 2019Ti02; Also: +0.46 10 or 1.3 7 from DCO measurements in 1977Ri05.
1988.9	$(1/2,3/2,5/2)^+$	890.7 [@] 4 1026.7 [@] 4	100 [@] 63 [@] 11		$(5/2^+, 7/2^+, 9/2^+)$ $(1/2, 3/2)^+$				
2064.7	$(1/2^+, 3/2^+)$	1745.2 [@] 7 1784.3 [@] 16	100 [@] 27 [@] 13	319.38 280.62	5/2+				
2101.5	$(7/2^-, 9/2, 11/2^+)$	1611.8 [@] 8	100@	489.1					
		1660.0 [@] 10	40 [@] 14		$(7/2)^+$				
2197.1	(15/2)+	925.8 ^{&} 3	100 ^{&}		(11/2)+	E2		0.001200 17	α =0.001200 <i>17</i> ; α (K)=0.001048 <i>15</i> ; α (L)=0.0001244 <i>18</i> ; α (M)=2.33×10 ⁻⁵ <i>4</i> ; α (N+)=3.92×10 ⁻⁶
									α (N)=3.92×10 ⁻⁶ 6 Mult.: R _{DCO} =0.7 3 (1977Ri05) in 96 Zr(12 C,3n γ).
2280.6	(15/2,17/2)	1310.6 ^{&} 2	100 ^{&}	970.0	15/2-	M1+E2	+1.3 7	0.000612 25	α =0.000612 25; α (K)=0.000515 23; α (L)=5.94×10 ⁻⁵ 24; α (M)=1.11×10 ⁻⁵ 5; α (N+)=2.73×10 ⁻⁵ 15

Adopted Levels,	Gammas	(continued)
-----------------	--------	-------------

γ (105Pd) (continued)

Mul R δ: f: π e:	Comments N)=1.88×10 ⁻⁶ 8; α (IPF)=2.54×10 ⁻⁵ 15 Ilt.: A ₂₂ =1.4 7, A ₄₄ =-0.4 8 (1977Ri05) and R _{DCO} =0.8 3 (1977Ri05) in 96 Zr(12 C,3n γ). from 96 Zr(12 C,3n γ) (1977Ri05), based on DCO measurements, but also 4 4 (1977Ri05) can not be
α(N Mul R δ: fi m	ilt.: $A_{22}=1.4$ 7, $A_{44}=-0.4$ 8 (1977Ri05) and $R_{DCO}=0.8$ 3 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$. from $^{96}Zr(^{12}C,3n\gamma)$ (1977Ri05), based on DCO
2244.6 $(10/0)$ $=$ $501.45 %$ 25 $20 %$ 0 $17(2.2)$ $(15/0)$ $=$ 12	excluded.
lpha $lpha$ (N	0.00390 6; $\alpha(K)=0.00338$ 5; $\alpha(L)=0.000421$ 6; $\alpha(M)=7.92\times10^{-5}$ 12; $\alpha(N+)=1.320\times10^{-5}$ 19 N)=1.320×10 ⁻⁵ 19 ldt.: $A_{22}=0.46$ 5, $A_{44}=-0.11$ 7 (1977Ri05) and $R_{DCO}=0.9$ 5 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$.
602.78 ^{&} 15 100 ^{&} 1741.8 19/2 M1+E2 -0.01 60 0.00357 6 α=0 α (N Mul R δ: fi	$0.00357 \ 6; \ \alpha(K)=0.00313 \ 5; \ \alpha(L)=0.000366 \ 7;$ $\alpha(M)=6.86\times 10^{-5} \ 13; \ \alpha(N+)=1.157\times 10^{-5} \ 19$ $\alpha(M)=0.86\times 10^{-5} \ 19$ $\alpha(M)=0.86\times 10^{-5} \ 19$ $\alpha(M)=0.00366 \ 7;$ $\alpha(M)=0.00366 \ 7;$ $\alpha(M)=0$
2490.9 (19/2 ⁻) 749.1 ^{&} 4 73 ^{&} 12 1741.8 19/2 ⁻ 1520.9 ^{&} 3 100 ^{&} 19 970.0 15/2 ⁻ (E2) 0.000507 7 $\alpha = 0$ α	0.000507 7; $\alpha(K)$ =0.000366 6; $\alpha(L)$ =4.21×10 ⁻⁵ 6; $\alpha(M)$ =7.87×10 ⁻⁶ 11; $\alpha(N+)$ =9.13×10 ⁻⁵ 13 N)=1.327×10 ⁻⁶ 19; $\alpha(IPF)$ =9.00×10 ⁻⁵ 13 alt.: R_{DCO} =0.75 21 (1977Ri05) in 96 Zr(12 C,3n γ).
2552.0 $(17/2)^+$ 649.9 3 26 7 1901.8 $(15/2)^+$ 881.0 2 100 1671.14 $(13/2)^+$ E2 0.001348 19 α =0 α (N Mul	0.001348 19; $\alpha(K)$ =0.001177 17; $\alpha(L)$ =0.0001402 20; $\alpha(M)$ =2.63×10 ⁻⁵ 4; $\alpha(N+)$ =4.41×10 ⁻⁶ N)=4.41×10 ⁻⁶ 7 alt.: A ₂₂ =0.376 24, A ₄₄ =-0.18 3 (1977Ri05) and R _{DCO} =1.0 3 (1977Ri05) in 96 Zr(12 C,3n γ).
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
lpha $lpha$ (N Mul	0.001622 23; α (K)=0.001415 20; α (L)=0.0001697 24; α (M)=3.18×10 ⁻⁵ 5; α (N+)=5.34×10 ⁻⁶ N)=5.34×10 ⁻⁶ 8 alt.: A_{22} =0.27 8, A_{44} =-0.01 11 (1977Ri05) and R_{DCO} =1.07 23 (1977Ri05) in 96 Zr(12 C,3n γ).
893.88 $\frac{\&}{10}$ 100 $\frac{\&}{100}$ 1671.14 (13/2) ⁺ (E2) 0.001302 19 $\alpha = 0$	0.001302 19; $\alpha(K)$ =0.001137 16; $\alpha(L)$ =0.0001353 19; $\alpha(M)$ =2.54×10 ⁻⁵ 4; $\alpha(N+)$ =4.26×10 ⁻⁶ N)=4.26×10 ⁻⁶ 6

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
									Mult.: A_{22} =0.37 5, A_{44} =-0.11 7 (1977Ri05) and R_{DCO} =0.81 14 in 96 Zr(12 C,3n γ).
2700.2	23/2-	958.42 ^{&} 5	100 ^{&}	1741.8	19/2-	E2		0.001108 <i>16</i>	α =0.001108 16 ; α (K)=0.000968 14 ; α (L)=0.0001146 16 ; α (M)=2.15×10 ⁻⁵ 3 ; α (N+)=3.61×10 ⁻⁶ α (N)=3.61×10 ⁻⁶ 5 Mult.: A ₂₂ =0.283 19 , A ₄₄ =-0.075 24 (1977Ri05) and R _{DCO} =1.12 4 (1977Ri05) in 96 Zr(12 C,3n γ).
2703.9	(19/2)	962.10 ^{&} 15	100&	1741.8	19/2-	M1+E2	+0.2 4	0.00122 4	$\alpha_{\text{DCO}}=1.12\ 4\ (1977\text{Rio5})\ \text{in}\ ^{12}\text{Cr}(^{-1}\text{C},3n\gamma).$ $\alpha=0.00122\ 4;\ \alpha(\text{K})=0.00107\ 3;\ \alpha(\text{L})=0.000124\ 3;$ $\alpha(\text{M})=2.32\times10^{-5}\ 6;\ \alpha(\text{N}+)=3.92\times10^{-6}\ 10$ $\alpha(\text{N})=3.92\times10^{-6}\ 10$ Mult.: $A_{22}=0.42\ 4,\ A_{44}=-0.08\ 5\ (1977\text{Rio5})\ \text{and}$ $R_{\text{DCO}}=0.93\ 24\ (1977\text{Rio5})\ \text{in}\ ^{96}\text{Zr}(^{12}\text{C},3n\gamma).$ δ : from DCO measurements in 1977Rio5; Alternatively: $0.2\ 6\ (1977\text{Rio5})\ \text{in}\ ^{96}\text{Zr}(^{12}\text{C},3n\gamma).$
2755.9	19/2+	854.02 ^{&} 5	100&	1901.8	(15/2)+	E2		0.001451 21	α =0.001451 21; α (K)=0.001267 18; α (L)=0.0001513 22; α (M)=2.84×10 ⁻⁵ 4; α (N+)=4.76×10 ⁻⁶ α (N)=4.76×10 ⁻⁶ 7 Mult.: A ₂₂ =0.326 25, A ₄₄ =-0.08 4 (1977Ri05)and R _{DCO} =1.02 5 (1977Ri05) in 96 Zr(12 C,3n γ).
		881.3 [#]	65 [#] 20	1873.9	$(15/2^+)$				R _D CO=1.92 3 (1777Rt03) iii 21(C,3117).
		1014.3 ^{&} 3	19 ^{&} 3	1741.8	19/2-	E1+M2	-0.25 25	0.0005 4	α =0.0005 4; α (K)=0.0005 3; α (L)=6.E-5 4; α (M)=1.0×10 ⁻⁵ 7; α (N+)=1.7×10 ⁻⁶ 11 α (N)=1.7×10 ⁻⁶ 11 Mult.: A ₂₂ =0.28 8, A ₄₄ =-0.05 11 (1977Ri05)and R _{DCO} =1.0 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.08 8 (1977Ri05) can not be excluded.
2775.6	(21/2-)	814.22 ^{&} 20	50 ^{&} 10	1961.3	(17/2)	(E2)		0.001628 23	α =0.001628 23; α (K)=0.001420 20; α (L)=0.0001704 24; α (M)=3.20×10 ⁻⁵ 5; α (N+)=5.36×10 ⁻⁶ α (N)=5.36×10 ⁻⁶ 8 Mult.: A ₂₂ =0.27 8, A ₄₄ =-0.01 11 (1977Ri05) and R _{DCO} =0.7 3 (1977Ri05) in 96 Zr(12 C,3n γ).
		1033.77 & 10	100&	1741.8	19/2-	M1+E2	2.3 3	0.000952 15	α =0.000952 <i>15</i> ; α (K)=0.000833 <i>13</i> ; α (L)=9.77×10 ⁻⁵ <i>15</i> ; α (M)=1.83×10 ⁻⁵ <i>3</i> ; α (N+)=3.08×10 ⁻⁶ <i>5</i> α (N)=3.08×10 ⁻⁶ <i>5</i> Mult.: A ₂₂ =0.57 <i>6</i> , A ₄₄ =0.14 <i>8</i> (1977Ri05) and R _{DCO} =0.62 <i>14</i> (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO and linear pol. in 2019Ti02; Also: +0.62 <i>18</i> or 0.8 <i>3</i> from DCO measurements in 1977Ri05.

$\gamma(^{105}\text{Pd})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\ddagger}$	${\rm I}_{\gamma}^{ \ddagger}$	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
2806.5	(19/2)+	241.6 ^{&} 2 254.53 ^{&} 10	6.5 ^{&} 22 100.0 ^{&} 22	2565.01 2552.0	(17/2) ⁺ (17/2) ⁺	M1+E2	+0.09 1	0.0304	$\alpha(K)$ =0.0265 4; $\alpha(L)$ =0.00319 5; $\alpha(M)$ =0.000599 9; $\alpha(N+)$ =0.0001009 15 $\alpha(N)$ =0.0001009 15 Mult.: A_{22} =-0.11 3, A_{44} =0.04 4 (1977Ri05) and R_{DCO} =1.64 18 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.13 4 can not be excluded
		904.7 ^{&} 1	26 ^{&} 4	1901.8	(15/2)+	E2		0.001266 18	(1977Ri05). α =0.001266 18; α (K)=0.001106 16; α (L)=0.0001315 19; α (M)=2.47×10 ⁻⁵ 4; α (N+)=4.14×10 ⁻⁶ α (N)=4.14×10 ⁻⁶ 6 Mult.: A ₂₂ =0.37 19, A ₄₄ =-0.3 3 (1977Ri05) and R _{DCO} =1.0 4 (1977Ri05) in 96 Zr(12 C,3n γ).
2900.7	(21/2)	939.4 ^{&} 3 1158.94 ^{&} 10	46 ^{&} 13 100 ^{&}	1961.3 1741.8	(17/2) ⁻ 19/2 ⁻	M1+E2	+1.3 9	0.00076 5	α =0.00076 5; α (K)=0.00067 4; α (L)=7.7×10 ⁻⁵ 5; α (M)=1.45×10 ⁻⁵ 8; α (N+)=5.34×10 ⁻⁶ 16 α (N)=2.44×10 ⁻⁶ 14; α (IPF)=2.9×10 ⁻⁶ 3 Mult.: A ₂₂ =0.65 8, A ₄₄ =-0.03 12 (1977Ri05) and R _{DCO} =0.58 16 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 1.6 11 (1977Ri05) can not be excluded.
3072.8	(21/2)+	372.6 ^{&} 2	8.0 ^{&} 20	2700.2	23/2-	E1+M2	-0.20 13	0.0055 24	α =0.0055 24; α (K)=0.0048 21; α (L)=0.0006 3; α (M)=0.00011 6; α (N+)=1.8×10 ⁻⁵ 9 α (N)=1.8×10 ⁻⁵ 9 Mult.: A ₂₂ =0.13 20, A ₄₄ =-0.0 3 in 96 Zr(12 C,3n γ) (1977Ri05). δ : from 96 Zr(12 C,3n γ) (1977Ri05).
		508.0 & 3	100&	2565.01	(17/2)+	E2		0.00571 8	α =0.00571 8; α (K)=0.00494 7; α (L)=0.000627 9; α (M)=0.0001179 17; α (N+)=1.96×10 ⁻⁵ 3 α (N)=1.96×10 ⁻⁵ 3 Mult.: A ₂₂ =0.263 23, A ₄₄ =-0.10 3 (1977Ri05) and R _{DCO} =0.91 9 (1977Ri05) in ⁹⁶ Zr(¹² C,3nγ).
		1331.0 ^{&} 2	48 ^{&} 6	1741.8	19/2-	E1+M2	+0.8 8	0.0008 4	α =0.0008 4; α (K)=0.0006 4; α (L)=7.E-5 5; α (M)=1.3×10 ⁻⁵ 9; α (N+)=8.E-5 4 α (N)=2.2×10 ⁻⁶ 14; α (IPF)=7.E-5 5 δ : R _{DCO} =1.8 5 (1977Ri05) in 96 Zr(12 C,3n γ).
3119.2	(21/2)+	312.67 ^{&} 10	100&	2806.5	(19/2)+	M1+E2	+0.12 3	0.0179	α (K)=0.01564 23; α (L)=0.00187 3; α (M)=0.000352 6; α (N+)=5.92×10 ⁻⁵ 9

$\gamma(^{105}\text{Pd})$ (continued)

						<u></u>			
E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
2110.2	(21/2)+	1377.3 ^{&} 3	38& 9	1741.8	10/2-				$\alpha(N)=5.92\times10^{-5}$ 9 Mult.: $A_{22}=-0.05$ 3, $A_{44}=-0.01$ 4 (1977Ri05) and $R_{DCO}=1.60$ 17 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$. δ : from DCO measurements in $^{96}Zr(^{12}C,3n\gamma)$ (1977Ri05), but also 0.11 4 (1977Ri05) can not be excluded.
3119.2 3153.3	$(21/2)^{-}$ $(23/2)^{-}$	452.98 ^{&} 20	58& 6			M1(+E2)	0.0.6	0.0071.2	a=0.0071 2; a/V)=0.00610 21; a/L)=0.00072 5;
3133.3	(23/2)			2700.2 2	23/2	M1(+E2)	0.0 6	0.0071 3	α =0.0071 3; α (K)=0.00619 21; α (L)=0.00073 5; α (M)=0.000137 9; α (N+)=2.31×10 ⁻⁵ 13 α (N)=2.31×10 ⁻⁵ 13 Mult.: A ₂₂ =0.42 5, A ₄₄ =-0.13 8 (1977Ri05) and R _{DCO} =0.8 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.0 7 (1977Ri05) can not be excluded.
		808.8 ^{&} 2	100 ^{&}	2344.6 ((19/2)	E2		0.001655 24	α =0.001655 24; α (K)=0.001443 21; α (L)=0.0001732 25; α (M)=3.25×10 ⁻⁵ 5; α (N+)=5.45×10 ⁻⁶ α (N)=5.45×10 ⁻⁶ 8 Mult.: A ₂₂ =0.28 5, A ₄₄ =-0.07 8 (1977Ri05) and R _{DCO} =1.0 3 (1977Ri05) in 96 Zr(12 C,3n γ).
3294.7	23/2+	538.83 ^{&} 15	100 ^{&}	2755.9	19/2+	E2		0.00482 7	α =0.00482 7; α (K)=0.00418 6; α (L)=0.000526 8; α (M)=9.89×10 ⁻⁵ 14; α (N+)=1.646×10 ⁻⁵ 23 α (N)=1.646×10 ⁻⁵ 23 Mult.: A ₂₂ =0.358 19, A ₄₄ -0.08 3 (1977Ri05) and R _{DCO} =1.02 5 (1977Ri05) in 96 Zr(12 C,3n γ).
3468.6	(23/2)+	349.38 ^{&} 15	100&	3119.2 ((21/2)+	M1+E2	+0.14 2	0.01354 20	$\alpha(K)$ =0.01182 17; $\alpha(L)$ =0.001410 21; $\alpha(M)$ =0.000265 4; $\alpha(N+)$ =4.46×10 ⁻⁵ 7 $\alpha(N)$ =4.46×10 ⁻⁵ 7 Mult.: A ₂₂ =-0.02 3, A ₄₄ =0.01 5 (1977Ri05) and R _{DCO} =1.6 3 (1977Ri05) in 96 Zr(12 C,3n γ). δ : from DCO measurements in 96 Zr(12 C,3n γ) (1977Ri05), but also 0.11 6 (1977Ri05)can not be excluded.
3527.6	(25/2)+	232.8& 3	5.3& 13	3294.7 2	23/2+	M1+E2	-0.27 7	0.0403 13	$\alpha(K)$ =0.0350 11; $\alpha(L)$ =0.00433 19; $\alpha(M)$ =0.00082 4; $\alpha(N+)$ =0.000137 6 $\alpha(N)$ =0.000137 6 Mult.: A ₂₂ =-0.69 10, A ₄₄ =0.14 13 (1977Ri05) in 96 Zr(12 C,3n γ).
		454.82 ^{&} 10	100 &	3072.8 ((21/2)+	E2		0.00791 11	α =0.00791 11; α (K)=0.00683 10; α (L)=0.000880 13; α (M)=0.0001659 24; α (N+)=2.75×10 ⁻⁵

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
3694.4	(25/2 ⁻)	918.8 ^{&} 3	100 ^{&}	2775.6	(21/2 ⁻)	E2		0.001221 18	$\alpha(N)=2.75\times10^{-5}$ 4 Mult.: $A_{22}=0.36$ 3, $A_{44}=-0.07$ 4 (1977Ri05) and $R_{DCO}=1.19$ 12 (1977Ri05) in $^{96}Zr(^{12}C,3n\gamma)$. $\alpha=0.001221$ 18; $\alpha(K)=0.001067$ 15; $\alpha(L)=0.0001267$ 18; $\alpha(M)=2.38\times10^{-5}$ 4; $\alpha(N+)=3.99\times10^{-6}$ $\alpha(N)=3.99\times10^{-6}$ 6
		994.12 ^{&} 20	89 ^{&} 17	2700.2	23/2-	M1+E2	2.7 6	0.001035 17	Mult.: $R_{DCO}=1.0 \ 4 \text{ in } ^{96}Zr(^{12}C,3n\gamma) \ (1977Ri05).$ $\alpha=0.001035 \ 17; \ \alpha(K)=0.000905 \ 15; \ \alpha(L)=0.0001064 \ 17;$ $\alpha(M)=1.99\times10^{-5} \ 3; \ \alpha(N+)=3.35\times10^{-6}$ $\alpha(N)=3.35\times10^{-6} \ 6$
									Mult.: A_{22} =0.8 3, A_{44} =-0.2 4 in 96 Zr(12 C,3n γ) (1977Ri05). δ : from DCO and linear pol. in 2019Ti02; Also: +1.5 10 in 1977Ri05.
3800.5	(27/2-)	1100.24 ^{&} 10	100&	2700.2	23/2-	(E2)		0.000815 12	α =0.000815 12; α (K)=0.000713 10; α (L)=8.35×10 ⁻⁵ 12; α (M)=1.564×10 ⁻⁵ 22; α (N+)=3.17×10 ⁻⁶ α (N)=2.63×10 ⁻⁶ 4; α (IPF)=5.44×10 ⁻⁷ 8 Mult.: A ₂₂ =0.14 4, A ₄₄ =-0.08 5 (1977Ri05) and R _{DCO} =1.54 16 (1977Ri05) in 96 Zr(12 C,3n γ).
3859.4	(25/2-)	959 ^e 1084 ^e 1159 ^e			(21/2) ⁻ (21/2 ⁻) 23/2 ⁻				Ng(0 13 13 (17)/1405) iii 2i (5,511).
3873.0	27/2+	578.27 ^{&} 5	100&	3294.7	23/2+	E2		0.00396 6	α =0.00396 6; α (K)=0.00344 5; α (L)=0.000428 6; α (M)=8.04×10 ⁻⁵ 12; α (N+)=1.341×10 ⁻⁵ 19 α (N)=1.341×10 ⁻⁵ 19 Mult.: A ₂₂ =0.44 3, A ₄₄ =-0.11 4 (1977Ri05) and R _{DCO} =1.04 6 (1977Ri05) in 96 Zr(12 C,3n γ).
4254.4	(29/2)+	726.8 ^{&} 2	100&	3527.6	(25/2)+	E2		0.00216 3	α =0.00216 3; α (K)=0.00188 3; α (L)=0.000228 4; α (M)=4.28×10 ⁻⁵ 6; α (N+)=7.17×10 ⁻⁶ 10 α (N)=7.17×10 ⁻⁶ 10 Mult.: A ₂₂ =0.26 3, A ₄₄ =-0.02 4 (1977Ri05) and R _{DCO} =0.91 16 (1977Ri05) in 96 Zr(12 C,3n γ).
4668.2	(31/2+)	795.23 ^{&} 25	100 ^{&}	3873.0	27/2+	(E2)		0.001724 25	α =0.001724 25; α (K)=0.001504 21; α (L)=0.000181 3; α (M)=3.39×10 ⁻⁵ 5; α (N+)=5.69×10 ⁻⁶ 8 α (N)=5.69×10 ⁻⁶ 8 Mult.: A ₂₂ =0.28 4, A ₄₄ =-0.08 6 (1977Ri05) and R _{DCO} =1.21 18 (1977Ri05) in 96 Zr(12 C,3n γ).
4783.4	(29/2-)	924 ^e 983 ^e 1089 ^e		3800.5	(25/2 ⁻) (27/2 ⁻) (25/2 ⁻)	(E2)		0.000833 12	α =0.000833 12; α (K)=0.000729 11; α (L)=8.54×10 ⁻⁵ 12;

γ (105Pd) (continued)

						γ (103)	d) (continued)	
E_i (level)	\mathbf{J}_i^{π}	${\rm E}_{\gamma}^{ \ddagger}$	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
		0.	0.					$\alpha({\rm M})$ =1.600×10 ⁻⁵ 23; $\alpha({\rm N}+)$ =2.69×10 ⁻⁶ $\alpha({\rm N})$ =2.69×10 ⁻⁶ 4 Mult.: from DCO and γ polarization measurements in $^{96}{\rm Zr}(^{13}{\rm C},4{\rm n}\gamma)$ (2019Ti02).
4953.1	(31/2-)	1152.64 ^{&} 20	100&	3800.5	(27/2-)	(E2)	0.000739 11	α =0.000739 11; α (K)=0.000645 9; α (L)=7.53×10 ⁻⁵ 11; α (M)=1.410×10 ⁻⁵ 20; α (N+)=5.02×10 ⁻⁶ 8 α (N)=2.37×10 ⁻⁶ 4; α (IPF)=2.65×10 ⁻⁶ 4 Mult.: A ₂₂ =0.19 8, A ₄₄ =-0.11 2 (1977Ri05) and R _{DCO} =0.43 23 (1977Ri05) in 96 Zr(12 C,3n γ).
4955.9	(29/2-)	1097 ^e 1261 ^e		3859.4 3694.4	(25/2 ⁻) (25/2 ⁻)			
5255.3	(33/2+)	1000.9 ^{&} 3	100 ^{&}	4254.4	(29/2)+	(E2)	0.001004 14	$\alpha = 0.001004 \ 14; \ \alpha(K) = 0.000878 \ 13; \ \alpha(L) = 0.0001035 \ 15; \\ \alpha(M) = 1.94 \times 10^{-5} \ 3; \ \alpha(N+) = 3.26 \times 10^{-6} \\ \alpha(N) = 3.26 \times 10^{-6} \ 5 \\ \text{Mult.: A}_{22} = 0.02 \ 9, \ A_{44} = 0.04 \ 14 \ (1977\text{Ri}05) \ \text{and R}_{DCO} = 0.9 \ 3 \\ (1977\text{Ri}05) \ \text{in} \ ^{96}\text{Zr}(^{12}\text{C}, 3n\gamma).$
5682.2	$(35/2^+)$	1014 <mark>b</mark>	100 <mark>b</mark>	4668.2	$(31/2^+)$			· · · · · · · · · · · · · · · · · · ·
5847.4	(33/2-)	1064 ^e		4783.4	(29/2-)	(E2)	0.000876 13	α =0.000876 13; α (K)=0.000767 11; α (L)=9.00×10 ⁻⁵ 13; α (M)=1.687×10 ⁻⁵ 24; α (N+)=2.84×10 ⁻⁶ α (N)=2.84×10 ⁻⁶ 4 Mult.: from DCO and γ polarization measurements in 2019Ti02.
6073.1	$(35/2^{-})$	1120 ^b	100 <mark>b</mark>	4953.1	$(31/2^{-})$, .
6860.3	$(39/2^+)$	1178 ^b	100 <mark>b</mark>	5682.2	$(35/2^+)$			
6995.4	$(37/2^{-})$	1148 ^e		5847.4	$(33/2^{-})$			
(7094.5)		5918 ^c 3 6534.0 ^c 10		1177.7	$(1/2^+,3/2^+)$			
		6652 ^c 8		560.50 442.53	$(7/2)^+$			
		6749.4 ^c 10		344.9	1/2+			
		6812.9 ^c 14	1	280.62				
7193.1	$(39/2^{-})$	1120^{b}_{b}	100^{b}_{b}	6073.1	$(35/2^{-})$			E_{γ} : 1119 in ${}^{96}Zr({}^{13}C,4n\gamma)$ (2019Ti02).
8127.3	$(43/2^+)$	1267 ^b	100 ^b	6860.3	$(39/2^+)$			
8297.4 8410.1	$(41/2^{-})$ $(43/2^{-})$	1302 ^e 1217 ^b	100 <mark>b</mark>	6995.4 7193.1	(37/2 ⁻) (39/2 ⁻)			E_{v} : 1215 in ${}^{96}Zr({}^{13}C,4n\gamma)$ (2019Ti02).
9440.3	$(43/2^{+})$	1313^{b}	100^{b}	8127.3	$(39/2)$ $(43/2^+)$			L_{γ} . 1213 III $L_{1}(-C, +II\gamma)$ (20171102).
10875.3	$(51/2^+)$	1435 ^b	100^{b}	9440.3	$(43/2^{+})$			
x+1209.0	$[47/2^+]$	1209 ^b	100 b	х	$[43/2^+]$			
x+2491.0	$[51/2^+]$	1282 ^b	100 ^b	x+1209.0	[47/2+]			
x+3870.0	[55/2+]	1379 ^b	100 <mark>b</mark>	x+2491.0	[51/2+]			
x+5358.0	$[59/2^{+}]$	1488 ^b	100 ^b	x+3870.0	$[55/2^+]$			

γ (105Pd) (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}
x+6955.0	[63/2+]	1597 <mark>b</mark>	100 <mark>b</mark>	x+5358.0	[59/2+]
x+8675.1	$[67/2^{+}]$	1720 ^b	100 <mark>b</mark>	x+6955.0	$[63/2^+]$
x+10521	$[71/2^+]$	1846 <mark>b</mark>	100 <mark>b</mark>	x+8675.1	$[67/2^+]$
x+12528	$[75/2^{+}]$	2007 ^b	100 ^b	x+10521	$[71/2^+]$
x+14669	$[79/2^{+}]$	2141 ^b	100 <mark>b</mark>	x+12528	$[75/2^{+}]$

- [†] Additional information 2. [‡] From 105 Ag ε decay (41.29 d), unless otherwise noted. ΔE =1 keV assumed by the evaluators for all transitions where ΔE not explicitely given by the authors. [#] From 104 Ru(α ,3n γ).

- [#] From 105 Ru(α,3nγ). [@] From 105 Pd(n,n'γ). [&] From 96 Zr(12 C,3nγ) (1977Ri05). ^a From 105 Ag ε decay (7.23 min). ^b From 64 Ni(48 Ca,α3n). ^c From 104 Pd(n,γ) E=th.

- ^d From Coulomb excitation. ^e From ⁹⁶Zr(¹³C,4nγ) (2019Ti02).
- f Placement of transition in the level scheme is uncertain.

Adopted Levels, Gammas

$\begin{array}{ccc} & & & & \\ \underline{Level\ Scheme} & & & & & \\ \underline{Intensities:\ Type\ not\ specified} & & & & & \\ & & & & & & \\ Intensities:\ Type\ not\ specified & & & & \\ & & & & & \\ \underline{I}_{\gamma} < \ 10\% \times I_{\gamma}^{max} \\ & & & & \\ & & & & \\ & & & & \\ I_{\gamma} > \ 10\% \times I_{\gamma}^{max} \end{array}$

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Type not specified

Legend

Adopted Levels, Gammas Legend Level Scheme (continued) $\begin{array}{ll} & \mathbf{I}_{\gamma} < 2\% \times \mathbf{I}_{\gamma}^{max} \\ & \mathbf{I}_{\gamma} < 10\% \times \mathbf{I}_{\gamma}^{max} \\ & \mathbf{I}_{\gamma} > 10\% \times \mathbf{I}_{\gamma}^{max} \end{array}$ Intensities: Type not specified $(21/2)^{+}$ 3119.2 $(21/2)^{+}$ 3072.8 001 34 W | 100 $(21/2)^{-}$ 2900.7 $(19/2)^{+}$ 2806.5 $(21/2^{-})$ 2775.6 2755.9 19/2+ (19/2) 2703.9 23/2⁻ (17/2)⁺ 2700.2 2565.01 $\overline{(17/2)^{+}}$ 2552.0 $(19/2^{-})$ 2490.9 $(19/2)^{-}$ 2344.6 $(15/2,17/2)^{-}$ -85. -8-2280.6 $(15/2)^+$ 2197.1 $(7/2^-, 9/2, 11/2^+)$ 2101.5 $\frac{(1/2^+,3/2^+)}{(1/2,3/2,5/2)^-}$ 2064.7 1988.9 (17/2) 1961.3 $\overline{(1/2^+,3/2^+)}$ 1922.9 $(15/2)^{+}$ 1901.8 $(15/2^+)$ 1873.9 $(15/2)^{-}$ 1763.2 $(13/2)^{+}$ 1749.6 19/2-(13/2) 1741.8 1671.14 $(13/2^+)$ 1410.9 $(13/2^{-})$ 1357.0 (11/2+) 1324.2 $(11/2)^{+}$ 1271.41 $(5/2^+, 7/2^+, 9/2^+)$ 1098.1 $(11/2^+)$ 1011.47 970.0 <0.2 ps (1/2,3/2) 962.4 3/2+ 560.50 1.9 ps 5 35.5 μs 5 11/2 489.1 $(7/2)^{-1}$ 442.53 1.2 ps 6 5/2+ 319.38 33 ps 5 $3/2^{+}$ 280.62 47 ps 5 5/2+ 0.0 stable

 $^{105}_{46}\mathrm{Pd}_{59}$

Adopted Levels, Gammas

Adopted Levels, Gammas

Band(H): $\Delta J=2$ superdeformed band

Band(G): $\Delta J=1$ band, built on $J^{\pi}=(17/2^{+})$

(23/2)+	3468.6
(21/2)+ 349	3119.2
$(19/2)^+$ 313	2806.5