Logistic regression

Ben Bolker

October 3, 2018

Licensed under the Creative Commons attribution-noncommercial license (http:

//creativecommons.org/licenses/by-nc/3.0/). Please share & remix noncommercially,

mentioning its origin.

modeling

data analysis road map

(McCullagh and Nelder, 1989)

from Hadley Wickham

(https://jules32.github.io/2016-07-12-0xford/dplyr_tidyr/)

These are good, but they don't address the **data snooping** problem.

- 1. figure out the (subject-area) question
- 2. design experiment/data collection (power analysis; simulation)
- 3. collect data
- 4. understand the data
- 5. specify the model; write it down!
- 6. inspect data (Q/A) (return to 5?
- 7. fit model
- 8. graphical & quantitative diagnostics (return to 5?
- 9. interpret parameters; inference; plot results

basics

Can use *any* smooth function from $(0,1) \to \mathbb{R}$ as the link function

- logistic regression: binary data with a logit link (inverse-link=logistic)
- binomial (or aggregated binomial regression: binomial data (maybe logit link, maybe other)
- probit regression: probit link

Binary data and aggregated (N > 1 data) are handled slightly differently.


```
library(ggplot2)
theme_set(theme_bw())
library(grid)
zmargin <- theme_update(panel.spacing=unit(0,"lines"))</pre>
library(dotwhisker)
library(descr) ## for R^2 measures
library(aods3) ## for overdispersion
library(arm) ## binnedplot
library(dplyr) ## tidyverse!
library(DescTools)
library(broom) ## for augment()
```

Contraception data example

```
data("Contraception",package="mlmRev")
head(Contraception)
##
    woman district use livch
                               age urban
## 1
       1 1
                   N
                        3+ 18.4400
## 2
        2
                1
                         0 -5.5599
## 3
       3
                      2 1.4400
                1 N
## 4
       4
                1 N
                        3+
                             8.4400
                                      Υ
## 5
        5
                1
                         0 -13.5590
                         0 -11.5600
## 6
        6
                1
                   N
```

See here for more documentation.

Given these variables, what model do we think we want to use?

Visualize! Try some ggplots (univariate graphs are OK but multivariate graphs are almost always more informative ...)

```
gg0 <- ggplot(Contraception, aes(age, use, colour=urban))+</pre>
    stat_sum(alpha=0.5)+facet_wrap(~livch,labeller=label_both)
gg0 + geom_smooth(aes(group=1))
```

Hard to summarize o/1 values!

Alternative approach: binning (also see Faraway). (Transform!)

```
## transform via tidyverse ...
cc <- (Contraception
    %>% mutate(
            ## numeric (0/1) version of 'uses contraception'
            use_n=as.numeric(use)-1)
cc_agg0 <- (cc
    %>% group_by(livch,urban,age)
    %>% summarise(prop=mean(use_n),
            n=length(use),
            se=sqrt(prop*(1-prop)/n))
```

Plot:

```
ggplot(cc_agg0,aes(age,prop,colour=urban))+
    geom_pointrange(aes(ymin=prop-2*se,
                        ymax=prop+2*se))+
    facet_wrap(~livch,labeller=label_both)
```

Bin more coarsely:

```
## specify categories; compute midpoints as well
age\_breaks <- seq(-15,20,by=5)
age_mids <- (age_breaks[-1]+age_breaks[-length(age_breaks)])/2
cc_agg <- (cc
    ## discrete age categories
    %>% mutate(age_cat=cut(age,breaks=age_breaks))
    %>% group_by(age_cat,urban,livch)
    %>% summarise(
            prop=mean(use_n),
            n=length(use),
            se=sqrt(prop*(1-prop)/n)
    ## numeric values of age categories
    %>% mutate(age_mid=age_mids[as.numeric(age_cat)])
```

Plot:

```
## use numeric response rather than Y/N response
gg0B <- ggplot(cc,aes(age,use_n,colour=urban))+</pre>
    stat_sum(alpha=0.5)+facet_wrap(~livch,labeller=label_both)+
    labs(y="prob of contraceptive use")
gg_bin <- gg0B+geom_pointrange(data=cc_agg,</pre>
                     aes(x=age_mid,
                         y=prop,
                         ymin=prop-2*se,
                         ymax=prop+2*se,
                         size=n),
                     alpha=0.5)+
    scale_size(range=c(0.5,2))
```

How should we adjust our model specification based on this information?

Suppose we use a model with a quadratic function of age plus all three-way interactions:

```
model1 \leftarrow glm(use_n \sim urban*(age+I(age^2))*livch,
               data=cc,
               family=binomial,
               x=TRUE ## include model matrix in output
```

Explore diagnostics (plot(); DHARMa::simulateResiduals(); arm::binnedplot; mgcv::qq.gam).

Q-Q plot is useless for logistic regression; we know that the responses are conditionally Bernoulli-distributed! Quantile residuals 1 overcome many of the problems of GLM diagnostics, at the price of lots more computation.

```
## default plots: ugh!
plot(model1)
## binned plot
arm::binnedplot(fitted(model1), residuals(model1))
## smoothing via ggplot
ggplot(broom::augment(model1),aes(.fitted,.resid)) +
    geom_point() + geom_smooth()
## Q-Q of quantile residuals
mgcv::qq.gam(model1,pch=1)
## ... simulated quantil residuals ...
mgcv::qq.gam(model1,pch=1,rep=1000)
## alternative simulated residuals
plot(DHARMa::simulateResiduals(model1),pch=".")
```

¹ Ben, M. G. and V. J. Yohai (2004, March). Quantile-Quantile Plot for Deviance Residuals in the Generalized Linear Model. *Journal of Computational* and Graphical Statistics 13(1), 36-47; and Hartig, F. (2018). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.0

If you really need a global goodness-of-fit test: Hosmer-Lemeshow test (very common) dominated by Cessie-van Houwelingen test ².

```
DescTools::HosmerLemeshowTest(fit=fitted(model1),
                               obs=model1$y,
                               X=model1$x)
```

pseudo-R² measures

The UCLA statistics site has a very nice description of pseudo- R^2 measures.

- fraction of variance explained
- model improvement
- fraction of deviance explained: (dev(null)-dev(model))/dev(null) ("McFadden"):

```
with(model1,1-deviance/null.deviance)
## [1] 0.0733366
```

• correlation ("Efron"):

² le Cessie, S. and J. C. van Houwelingen (1991, December). A goodness-of-fit test for binary regression models, based on smoothing methods. Biometrics 47(4), 1267–1282; and Hosmer, D. W., T. Hosmer, S. L. Cessie, and S. Lemeshow (1997, May). A Comparison of Goodness-of-Fit Tests for the Logistic Regression Model. Statistics in Medicine 16(9), 965-980

```
cor(cc$use_n,predict(model1,type="response"))^2
## [1] 0.09300837
```

• Cox and Snell: average deviance explained

$$1 - (L(\text{null})/L(\text{full}))^{2/n}$$

(i.e. look at proportion on the likelihood scale, not the log-likelihood scale)

• Nagelkerke: Cox and Snell, adjusted to max=1

```
descr::LogRegR2(model1)
## Chi2
                       190.0085
## Df
                       23
## Siq.
## Cox and Snell Index 0.09357444
## Nagelkerke Index
                       0.1267833
## McFadden's R2
                       0.0733366
```

Plot predictions

```
gg_bin + geom_smooth(method="glm",
                    method.args=list(family=binomial),
                     formula=y \sim x + I(x^2)
```

Or by hand: predict function.

Confidence intervals: get new model matrix and compute XVX^T to get variances on the link-function scale. Then compute Normal CIs on the link scale, then back-transform. Or use se=TRUE in predict.

```
pvar <- newX %*% vcov(g1) %*% t(newX)</pre>
pse <- sqrt(diag(pvar))</pre>
```

Or equivalently for any model type where predict has an se.fit argument:

```
pse <- predict(model, newdata=newdata, se.fit=TRUE)$se.fit</pre>
lwr <- plogis(pred0-2*pse) ## or qnorm(0.025)</pre>
upr <- plogis(pred0+2*pse) ## or qnorm(0.975)</pre>
```

Note:

- using the inverse-link function to back-transform the standard errors never (??) makes sense: if you want to back-transform them (approximately), you have to multiply them by $(d\mu/d\eta)$, i.e. use dlogis or the mu.eta component of model\$family
- if you use response=TRUE and se.fit=TRUE, R computes the standard errors, scales them as above, and uses them to compute (approximate) symmetric confidence intervals. Unless your sample is very large and/or your predicted probabilities are near 0.5 (so the CIs don't approach o or 1), it's probably best to use the approach above

```
## prediction frame: all combinations of variables
pframe <- with(Contraception,</pre>
                expand.grid(age=unique(age),
                              livch=levels(livch),
                              urban=levels(urban)))
predfun <- function(model) {</pre>
    pp <- predict(model, newdata=pframe, type="link", se.fit=TRUE)</pre>
    linkinv <- family(model)$linkinv</pre>
    pframe$use_n <- linkinv(pp$fit)</pre>
    pframe$lwr <- linkinv(pp$fit-2*pp$se.fit)</pre>
    pframe$upr <- linkinv(pp$fit+2*pp$se.fit)</pre>
    return(pframe)
}
pp1 <- predfun(model1)</pre>
```

Posterior predictive simulations

Pick a summary statistic that matters (e.g. the proportion of urban women with no living children whose age is within 1 year of the mean who are using contraception) and simulate predictions from the model: see how they match the observed value. Can we reject the null hypothesis that the model is OK?

```
ppfun <- function(dd) {</pre>
    w <- which(dd$urban=="Y" & dd$livch=="0" & abs(dd$age)<1)</pre>
    return(mean(dd$use_n[w]))
ppfun(cc) ## observed value from data
## [1] 0.5
ss <- simulate(model1,1000)
```

```
simres <- rep(NA,1000)</pre>
newcc <- cc
for (i in 1:1000) {
     newcc$use_n \leftarrow ss[,i]
     simres[i] <- ppfun(newcc)</pre>
}
```

Plot results:

```
par(las=1)
hist(simres,col="gray")
points(ppfun(cc),0,col="red",cex=2,pch=16)
p_upr <- mean(simres>=ppfun(cc))
p_lwr <- mean(simres<=ppfun(cc))</pre>
text(0.6,150,paste0("prop>=obs=",round(p_upr,2)))
```

Histogram of simres


```
## 2-tailed p-value
2*min(p_upr,p_lwr)
## [1] 0.788
```

Simplify model

With caution!

```
drop1(model1,test="Chisq")
## Single term deletions
##
```

```
## use_n \sim urban * (age + I(age^2)) * livch
                       Df Deviance AIC
##
                                             LRT Pr(>Chi)
## <none>
                           2400.9 2448.9
## urban:age:livch
                      3 2401.2 2443.2 0.26485
                                                   0.9665
## urban:I(age^2):livch 3 2401.8 2443.8 0.89356
                                                   0.8270
## three-way interactions NS?
model2 \leftarrow update(model1, . \sim (urban+(age+I(age^2)+livch))^2)
drop1(model2,test="Chisq")
## Single term deletions
##
## Model:
## use_n \sim urban + age + I(age^2) + livch + urban:age + urban:I(age^2) +
      urban:livch + age:I(age^2) + age:livch + I(age^2):livch
                 Df Deviance AIC
                                      LRT Pr(>Chi)
##
## <none>
                      2402.1 2440.1
                1 2402.1 2438.1 0.0068 0.93452
## urban:age
## urban:I(age^2) 1 2403.0 2439.0 0.9059 0.34120
               3 2404.4 2436.4 2.2447 0.52320
## urban:livch
## age:I(age^2) 1 2402.1 2438.1 0.0005 0.98302
## age:livch
               3 2409.8 2441.8 7.6792 0.05313 .
## I(age^2):livch 3 2403.4 2435.4 1.3214 0.72405
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## two-way interactions NS?
model3 \leftarrow update(model1, . \sim (urban+(age+I(age^2)+livch)))
## or LRT
anova(model1, model2, model3, test="Chisq")
## Analysis of Deviance Table
## Model 1: use_n ~ urban * (age + I(age^2)) * livch
## Model 2: use_n \sim urban + age + I(age^2) + livch + urban:age + urban:I(age^2) +
      urban:livch + age:I(age^2) + age:livch + I(age^2):livch
## Model 3: use_n \sim urban + age + I(age^2) + livch
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1
        1910
                2400.9
## 2
        1915
                2402.1 -5 -1.2276 0.9422
## 3 1927 2417.7 -12 -15.5305 0.2137
```

Inference on the selected model

```
car::Anova(model3)
## Analysis of Deviance Table (Type II tests)
##
## Response: use_n
      LR Chisq Df Pr(>Chisq)
## urban
           52.849 1 3.602e-13 ***
           0.265 1
## age
                         0.607
## I(age^2) 39.070 1 4.088e-10 ***
## livch 33.333 3 2.739e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
drop1(model3,test="Chisq")
## Single term deletions
##
## Model:
## use_n \sim urban + age + I(age^2) + livch
          Df Deviance AIC LRT Pr(>Chi)
##
## <none>
              2417.7 2431.7
## urban 1 2470.5 2482.5 52.849 3.602e-13 ***
       1 2417.9 2429.9 0.265
## age
                                      0.607
## I(age^2) 1 2456.7 2468.7 39.070 4.088e-10 ***
## livch 3 2451.0 2459.0 33.333 2.739e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Coefficient or "dot-whisker" plots of the reduced model, with and without standardization by 2σ of the predictors:

```
dw1 <- dwplot(model3)+geom_vline(xintercept=0,lty=2)</pre>
dw2 <- dwplot(model3,by_2sd=FALSE)+geom_vline(xintercept=0,lty=2)</pre>
```

Can compare the effect of dropping interactions (carefully!)

```
mod_list <- list(full=model1, twoway=model2, reduced=model3)</pre>
dw_comb <- dwplot(mod_list)+ geom_vline(xintercept=0,lty=2)</pre>
```

```
pp_list <- lapply(mod_list,predfun)</pre>
pp_frame <- dplyr::bind_rows(pp_list,.id="method")</pre>
gg_compare_pred <- gg0B + geom_line(data=pp_frame,</pre>
```

```
aes(linetype=method))
pp3 <- pp_list[[3]]</pre>
gg_model3 <- gg0B + geom_line(data=pp3)+</pre>
    geom_ribbon(data=pp3,aes(ymin=lwr,ymax=upr,fill=urban),colour=NA,alpha=0.2)
```

```
summary(model3)
##
## Call:
## glm(formula = use_n \sim urban + age + I(age^2) + livch, family = binomial,
##
      data = cc, x = TRUE)
##
## Deviance Residuals:
##
      Min
              10
                   Median
                              30
                                     Max
## -1.4738 -1.0369 -0.6683 1.2401
                                   1.9765
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.9499521 0.1560118 -6.089 1.14e-09 ***
            ## urbanY
## age
            0.0045837 0.0089084 0.515
                                          0.607
## I(age^2) -0.0042865 0.0007002 -6.122 9.23e-10 ***
            ## livch1
## livch2
            0.8549040 0.1783573 4.793 1.64e-06 ***
## livch3+
            0.8060251 0.1784817 4.516 6.30e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 2590.9 on 1933 degrees of freedom
## Residual deviance: 2417.7 on 1927 degrees of freedom
## AIC: 2431.7
##
## Number of Fisher Scoring iterations: 4
```

The emmeans package has a whole bunch of convenience functions for computing and plotting "expected marginal means", which are the generalization of "least-squares means", i.e. effects averaged across categories in various sensible ways:

```
plot(emmeans::emmeans(model3,~livch*urban,type="response"))
```


Confidence intervals on nonlinear functions of predictions

Suppose we're interested in some value that can be computed as a nonlinear function of the parameters. For example, suppose want to estimate the age at which contraceptive use peaks, and the level of contraception use at that point. If a quadratic is parameterized as $\beta_0 + \beta_1 x + \beta_2 x^2$, then the critical values occurs where β_1 + $2\beta_2 \hat{x} = 0 \rightarrow \hat{x} = -\beta_1/(2\beta_2)$, and the value is $\beta_0 - \beta_1^2/(2\beta_2) + \beta_1^2/(2\beta_2)$ $\beta_2(\beta_1^2/(4\beta_2^2)) = \beta_0 - \beta_1^2/(4\beta_2)$. (Since the link function if monotonic, we don't have to worry about that nonlinearity for these purposes.) Since we have only an additive model,

```
cc3 <- as.list(coef(model3))</pre>
(use_peak <- with(cc3,</pre>
                   c(-age/(2*`I(age^2)`),
                      plogis(`(Intercept)` - age^2/(4*`I(age^2)`)))))
## [1] 0.5346756 0.2791410
```

So the peak is half a year above the mean age, at about 28% use (note that peak height varies among categories; this is the prediction for the baseline category {urban, livch=o}). These numbers seem reasonable based on what we've seen so far, but checking graphically:

```
gg_model3+
    geom_vline(xintercept=use_peak[1],linetype=3)+
    geom_hline(yintercept=use_peak[2],linetype=3)
```


Getting the confidence intervals on these values is harder . . .

• delta method: If we want to compute the variance on the peak location? of f(x,y,z) and $g=(\frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z})$ then the variance is gVg^T (which reduces to $CV^2(f(x,y)) = CV^2(x) + CV^2(y)$ for the case of independent values when f(x,y) = x/y or xy):

```
grad <- rep(0,length(coef(model3)))</pre>
names(grad) <- names(coef(model3))</pre>
## deriv \ of \ b1/(2*b2) = \{1/(2*b2), -b1/b2^2\}
grad[c("age","I(age^2)")] <-
    with(cc3,c(1/(2*`I(age^2)`),-age/`I(age^2)`^2))
peak_var <- t(grad) %*% vcov(model3) %*% grad</pre>
peak_se <- c(sqrt(peak_var)) ## c() converts from matrix to vector (= scalar)</pre>
deltaCI \leftarrow use\_peak[1]+c(-1,1)*2*peak\_se
```

Plot:

```
gg_model3+geom_vline(xintercept=use_peak[1],linetype=3)+
    annotate("rect",
           xmin=deltaCI[1],
           xmax=deltaCI[2],
           ymin=-Inf,
           ymax=Inf,alpha=0.3,fill="blue",
             colour=NA)
```


• bootstrapping

```
bootres <- numeric(250)</pre>
for (i in 1:250) {
    bootdat <- cc[sample(nrow(cc), replace=TRUE),]</pre>
    bootmodel <- update(model3,data=bootdat)</pre>
    bootcc <- coef(bootmodel)</pre>
    bootres[i] <- with(as.list(bootcc),c(age/(2*`I(age^2)`)))</pre>
hist(bootres,col="gray",breaks=50)
```

Histogram of bootres


```
bootCI <- quantile(bootres,c(0.025,0.975))</pre>
```

• pseudo-Bayes: MVN sample from parameters

```
library(MASS)
PBsamp <- as.data.frame(mvrnorm(1000, mu=coef(model3), Sigma=vcov(model3)))
PBres <- with(PBsamp,c(age/(2*`I(age^2)`)))
hist(PBres, col="gray", breaks=50)
```

Histogram of PBres


```
PBCI <- quantile(PBres, c(0.025, 0.975))
```

In this case the results are all extremely similar:

```
rbind(deltaCI,PBCI,bootCI)
##
                2.5%
                        97.5%
## deltaCI -1.398998 2.468349
## PBCI
           -2.200607 1.648390
## bootCI -2.414925 1.727165
```

References

Ben, M. G. and V. J. Yohai (2004, March). Quantile-Quantile Plot for Deviance Residuals in the Generalized Linear Model. Journal of Computational and Graphical Statistics 13(1), 36-47.

Hartig, F. (2018). DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. R package version 0.2.0.

Hosmer, D. W., T. Hosmer, S. L. Cessie, and S. Lemeshow (1997, May). A Comparison of Goodness-of-Fit Tests for the Logistic Regression Model. Statistics in Medicine 16(9), 965–980.

le Cessie, S. and J. C. van Houwelingen (1991, December). A goodness-of-fit test for binary regression models, based on smoothing methods. *Biometrics* 47(4), 1267–1282.

McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models. London: Chapman and Hall.