

Caroline
Data Analyst
14/12/2024

Déroulé

- Contexte
 - Traitement des données
 - Mise en concurrence de modèles d'apprentissage
 - Résultats de l'analyse
 - Test pour mise en production

Contexte

- L'organisation nationale de lutte contre le faux-monnayage souhaite mettre en place des méthodes d'identification des faux billets en euros pour lutter contre la contrefaçon
- mettre à disposition des équipes une application de machine learning à partir de scan de billets

Traitement des données

 Jeu de données : dimensions de 1500 billets scannés (Identifiés vrai/faux)

• 37 valeurs manquantes (margin_low)

Traitement des données

Données manquantes

-> Régression linéaire multiple

On constate que certains paramètres ne sont pas significativement différents de 0, car leur p-valeur n'est pas inférieure à 5 %, le niveau de test que nous souhaitons

	0L:	S Regressi	ion Results			=
Dep. Variable:	mar	gin_low	R-squared:		0.61	7
Model:		0LS	Adj. R-squared	:	0.61	5
Method:	Least :	Squares	F-statistic:		390.	7
Date:	Tue, 03 D	ec 2024	Prob (F-statis	tic):	4.75e-29	9
Time:	1	7:40:39	Log-Likelihood	:	-774.1	4
No. Observations:		1463			1562.	
Df Residuals:		1456	BIC:		1599.	
Df Model:	f Model: 6					
Covariance Type:	nonrobust					
	coef	std er		P> t	[0.025	0.975]
Intercept	2.8668	8.316	0.345	0.730	-13.445	19.179
is_genuine[T.True]	-1.1406	0.050	-23.028	0.000	-1.238	-1.043
diagonal	-0.0130	0.036	-0.364	0.716	-0.083	0.057
height_left	0.0283	0.039	0.727	0.468	-0.048	0.105
height_right	0.0267	0.038	0.701	0.484	-0.048	0.102
margin_up	-0.2128	0.059	-3.621	0.000	-0.328	-0.098
length	-0.0039	0.023	-0.166	0.868	-0.050	0.042
Omnibus:		21.975	Durbin-Watson:		 2.03	= 8
Prob(Omnibus):		0.000	Jarque-Bera (JB):		37.993	
Skew:		0.061			5.62e-0	9
Kurtosis:		3.780	Cond. No. 1.95e+05		5	

Traitement des données

Non colinéarité des variables ✓ Homoscédasticité des résidus X ✓

H0 rejetée (car p-valeur <<5%) pour les tests :

- Breusch Pagan
- Shapiro-Wilk

Cependant, le fait qu'ils ne soient pas très différents d'une distribution symétrique, et le fait que l'échantillon soit de taille suffisante (supérieure à 30) permettent de dire que les résultats obtenus par le modèle linéaire gaussien ne sont pas absurdes

Mise en concurrence de modèles d'apprentissage

- Régression logistique
 - KNN
 - K-Means
 - Random Forest

Régression logistique

Standardisation des données Validation croisée stratifiée

- Nombre de vrais positifs : 188

- Nombre de vrais négatifs : 110

- Nombre de faux positifs: 1

- Nombre de faux négatifs : 1

KNN – Algorithme des k plus proches voisins

Standardisation des données

+ Validation croisée stratifiée

- Nombre de vrais positifs : 188

- Nombre de vrais négatifs : 109

- Nombre de faux positifs : 2

- Nombre de faux négatifs : 1

Le nombre de faux positifs est plus élevé, alors que nous cherchons à minimiser surtout ce paramètre = augmenter la précision

K-Means

- + Standardisation des données
- + 2 clusters souhaités

- Nombre de vrais positifs : 185

- Nombre de vrais négatifs : 106

- Nombre de faux positifs : 5

- Nombre de faux négatifs : 4

Random Forest

+Validation croisée stratifiée

- Nombre de vrais positifs : 188

- Nombre de vrais négatifs : 110

- Nombre de faux positifs: 1

- Nombre de faux négatifs : 1

Résultats

Modèle	Accuracy	Précision	F-Score
Régression Logistique	0.9933	0.9947	0.99
KNN	0.9900	0.9947	0.99
K-Means	0.9700	0.9736	0.97
Random Forest	0.9933	0.9947	0.99

Test pour mise en production

Application basée sur la régression logistique