

高解析實境顯示基礎原理

Basic principles of high-resolution reality displays

莊智皓 助理研究員

陳建宇 教授

臺灣科技大學 色彩科技研究中心 臺灣科技大學 色彩與照明科技研究所

Chapter 2:色彩科學簡介

甚麼是色彩?

- 輻射計量學—強度、光譜、偏振,相位...
- 色度學--紅色、藍色、綠色...
- 光度測量學——亮度,反射率、透射率...
- 心理學—温暖、寒冷、和諧...

色彩如何形成?

- 1. 光源-可見光範圍,自然光或人造光源
- 2. 光與介質的互動—吸收、傳輸、反射、散射和螢光等
- 3. 產生刺激源—光子
- 4. 接受刺激訊號—眼睛
- 5. 辨識刺激訊號——大腦

色彩如何形成?

可見光波長範圍:380 nm ~ 780 nm

太陽光譜

色溫

混色

色彩產生和再現

Printing System

Display System

人眼結構

錐狀細胞和桿狀細胞-物理尺寸

	Diameter	Length	Quantity
Rod	2 μ m	40 to 60 μ m	100,000,000
Cone	2.5 to 7.5 μ m	28 to 58 μ m	6,500,000

桿狀細胞和 RGB 錐狀細胞的光譜靈敏度

CIE 1978 眼睛敏感度函數和光效

顯示器色彩學

顯示器色彩變換與計算

總結

- 了解到色彩是如何形成的。
- 人眼是如何感知色彩。
- 人眼對於色彩的敏感度函數。
- 顯示器色彩的運算流程。

Thank you for your attention