Regressions- och tidsserieanalys Föreläsning 4 - Multipel regression

Mattias Villani

Statistiska institutionen Stockholms universitet

Institutionen för datavetenskap Linköpings universitet

Översikt

- Multipel regression
- Modellantaganden
- Modellkontroll

Mattias Villani

Cykeluthyrning revisited

Fler förklarande variabler - multipel regression

- Dålig lösning: skatta enkel regression för varje förklarande varia bel
- Bra lösning: skatta multipel regression med alla förklarande variabler.
- Regressionanpassning med två förklarande variabler

$$y = a + b_1 x_1 + b_2 x_2$$

ST123G

- b_1 talar om hur y förändras när vi ändrar x_1 med en enhet (utan att ändra x_2).
- b_2 talar om hur y förändras när vi ändrar x_2 med en enhet (utan att ändra x_1).

Mattias Villani

Minsta kvadrat-skattningar

- Stickprov: (y_i, x_{1i}, x_{2i}) för i = 1, ..., n.
- x_{1i} är t ex den i:te observationens värde på x_1 -variabeln.
- Samma idé: hitta a, b₁ och b₂ som minimerar residualkvadratsumman

$$Q = \sum_{i=1}^{n} (y_i - a - b_1 x_{1i} - b_2 x_{2i})^2$$

- Vi får nu tre ekvationer (från partialderivatorna) som ska lösa med avseende på a, b_1 och b_2 . Se AJÅ.
- Med k förklarande variabler

$$y = a + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$$

får k+1 ekvationer att lösa.

Använd dator! (busenkelt att programmera själv om man kan linjär algebra).

Enkel regression temp - SAS

		Analysis of \	ariance/		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	1	1078688585	1078688585	473.47	<.0001
Error	729	1660846807	2278254		
Corrected Total	730	2739535392			

Root MSE	1509.38845	R-Square	0.3937
Dependent Mean	4504.34884	Adj R-Sq	0.3929
Coeff Var	33.50958		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	1214.64212	161.16353	7.54	<.0001
temp	1	6640.71000	305.18803	21.76	<.0001

■ Skattad modell

antal uthyrningar $= 1214.64 + 6640.71 \cdot temperatur$

Mattias Villani

Multipel regression temp och hum - SAS

		Analysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	1169231889	584615944	271.03	<.0001
Error	728	1570303503	2157010		
Corrected Total	730	2739535392			

Root MSE	1468.67638	R-Square	0.4268
Dependent Mean	4504.34884	Adj R-Sq	0.4252
Coeff Var	32.60574		

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	2657.89512	272.42279	9.76	<.0001
temp	1	6886.97373	299.37906	23.00	<.0001
hum	1	-2492.85413	384.76433	-6.48	<.0001

Skattad modell:

antal uthyrningar $= 2657.9 + 6886.97 \cdot \text{temperatur} - 2492.85 \cdot \text{luftfuktighet}$

Mattias Villani

Multipel regression temp, hum, wind - SAS

		Analysis of V	ariance		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	3	1262638191	420879397	207.18	<.0001
Error	727	1476897201	2031495		
Corrected Total	730	2739535392			

Root MSE	1425.30539	R-Square	0.4609
Dependent Mean	4504.34884	Adj R-Sq	0.4587
Coeff Var	31.64287		

		Parameter I	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	4084.36338	337.86220	12.09	<.0001
temp	1	6625.53271	293.08535	22.61	<.0001
hum	1	-3100.12313	383.99161	-8.07	<.0001
windspeed	1	-4806.92932	708.90424	-6.78	<.0001

Skattad modell:

antal uthyrningar $=4084.4+6625.5 \cdot temp -3100.1 \cdot hum -4806.9 \cdot wind$

Mattias Villani

Multipel regression

 \blacksquare Multipel regression med k förklarande variabler:

$$y = a + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k$$

Residualvariansen mäter graden av spridning kring linjen

$$s_e^2 = \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{n - (k+1)},$$

där de predikterade värden ges av regressionekvationen

$$\hat{y}_i = a + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_{ki} x_k.$$

Andel förklarad variation

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\sum (\hat{y}_{i} - \bar{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Alternativt sätt (kom ihåg att SST = SSR + SSE)

$$R^{2} = \frac{\text{SSR}}{\text{SST}} = \frac{\text{SST} - \text{SSE}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

Multipel regression som sannolikhetsmodell

Populationsmodell för regression med två förklarande variabler:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$
, $\varepsilon \sim N(0, \sigma_{\varepsilon}^2)$

Populationsmodell för multipel regression med k förklarande variabler:

$$y = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \varepsilon, \quad \varepsilon \sim N(0, \sigma_{\varepsilon}^2)$$

- β_i talar om hur y förändras när vi ändrar x_i med en enhet (utan att ändra de andra x-variablerna).
- Samma antaganden som tidigare:
 - \triangleright Feltermerna ε_i har **samma varians** σ_{ε}^2 (homoskedastiticitet)
 - Feltermerna är normalfördelade
 - Feltermerna är oberoende.

Konfidensintervall

Exakt 95% konfidensintervall för β_j

$$b_j \pm t_{0.975}(n-k-1) \cdot s_{b_j}$$

 \blacksquare Hälsodata med k=3 förklarande variabler

$$t_{0.975}(n-k-1) = t_{0.975}(26) = 2.056$$

p-värdet beräknas på samma sätt som i enkel regression, men från $t_{0.975}(n-k-1)$ fördelningen.

		Parameter I	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	4084.36338	337.86220	12.09	<.0001
temp	1	6625.53271	293.08535	22.61	<.0001
hum	1	-3100.12313	383.99161	-8.07	<.0001
windspeed	1	-4806.92932	708.90424	-6.78	<.0001

Mattias Villani

ST123G

Signifikanstest för en regressionkoefficient t-test

Nollhypotes som testar om x_j är en "viktig" förklarande variabel

$$H_0: \beta_j = 0$$

 $H_1: \beta_j \neq 0$

Teststatistiska

$$t = \left| \frac{b_j - 0}{s_{b_j}} \right|$$

 \blacksquare Vi förkastar nollhypotesten på signifikansnivån lpha=0.05 om

$$t_{\rm obs} > t_{\rm crit}$$

där det kritiska värdet t_{crit} hämtas från tabell:

$$t_{\rm crit} = t_{0.975}(n-k-1)$$

ANOVA - medelversionen

Mean Squared Error (MSE)

MSE =
$$\frac{\text{SSE}}{n - (k+1)} = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n - (k+1)} = s_e^2$$

■ Mean Square Regression (MSR)

$$MSR = \frac{SSR}{k}$$

■ Mean Square Total (MST)

$$MST = \frac{SST}{n-1}$$

Notera att frihetsgraderna summerar också

$$df(SST) = df(SSE) = df(SSR)$$

$$n-1 = n - (k+1) + k$$

Signifikanstest för flera regressionkoefficienter

F-test statistiska

$$F = \frac{\text{MSR}}{\text{MSE}}$$

Nollhypotesen om ingen regression

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_k = 0$$

 $H_1: \text{åtminstone något } \beta_i \neq 0$

Under H_0 följer F en F-fördelning med k och n-(k+1) frihetsgrader.

$$F \sim F(k, n-k-1)$$

Cykeluthyrningsdata: $F_{\rm obs} = 207.18$. $F_{0.95}(3,727) = 2.617$. Vi tokförkastar nollhypotesen om ingen regression!

Val av förklarande variabler

- Ju fler förklarande variabler desto mer förklarar regressionen.
- R² kan inte minska när man lägger till fler förklarande variabler. Se upp för överanpassning!
- R²_{adjusted} ("justerad R-2"), se AJÅ, kan minska om en förklarande variabel bara reducerar variationen marginellt.
- Andra vanliga informationskriterier: AIC, BIC.
- Full sökning: Gå igenom alla möjliga kombinationer av förklarande variabler och välj modell med högst R_{adjusted}^2 . Beräkningstungt.

Stepwise selection and beyond

Forward selection:

- Börja med bara interceptet.
- 2 Lägg till x-variabeln med högst $t_{\rm obs}$, om $t_{\rm obs} > 2$, annars stanna.
- 3 Lägg till x-variabeln med högst $t_{\rm obs}$, givet att valda variabeln i Steg 2 ingår i modellen, om $t_{\rm obs} > 2$, annars stanna.
- 4 Fortsätt tills ingen ny förklarande variabel har $t_{
 m obs}>2$ i modellen där alla tidigare variabler ingår.
- **Backward selection**. Starta med alla variabler i modellen. Ta bort den variabel som har lägst $t_{\rm obs}$. Skatta modellen utan denna variabel. Fortsätt tills alla variabler som är kvar har $t_{\rm obs} > 2$.
- Det finns massor av andra (bättre) variabelselektionsstrategier. Bayesian variable selection.

Regularisering

- Problemet med för många förklarande variabler är att minsta kvadrat-metoden ges för mycket frihet att överanpassa data. Modellen är överparametriserad.
- Variabelselektion är en typ av regularisering där man försöker minska antalet fria parametrar.
- L2-regularisering (ridge regression) behåller alla variabler i modellen men minimerar en straffad residualkvadratsumma:

$$Q_{-} = \sum_{i=1}^{n} (y_i - a - b_1 x_{1i} - \ldots - b_k x_{ki})^2 + \lambda \cdot \sum_{j=1}^{k} b_j^2$$

Straff/kostnad för att introducera en variabel i modellen

$$\lambda \cdot \sum_{j=1}^{k} b_j^2$$

- Hur hårt vi straffar bestäms av regulariseringsparametern λ .
- lacksquare Vi kan bestämma λ själva eller genom kors-validering.

Mattias Villani ST123G

Prognosförmåga på testdata

- Välj den modell som ger bäst prediktioner på nya (test) data.
- Dela upp observationer i två delmängder:
 - ► Träningsdata för att skatta modellens parametrar.
 - ► Testdata för att utvärdera modellens prediktioner.
- Modellen får aldrig chans att anpassa sig till testdata.
- Prediktionsmått: kvadrerade prediktionsfel på testdata

$$Q_{\text{test}} = \sum_{j=1}^{n_{\text{test}}} (y_j - \hat{y}_j)^2$$

- Observera:
 - > summan är över observationerna i testdata.
 - \blacktriangleright modellen som ger \hat{y}_j är skattad enbart på träningsdata.
 - ▶ överanpassning på träningsdata ⇒ dåliga prediktioner på testdata.

Korsvalidering

- Vilka observationer ska vara i träning respektive test? Korsvalidering.
- Mått på modellens prognosförmåga: genomsnittligt Q_{test} över alla K=3 testdataset.

	Split 1			Split 2	
country	spending (x)	Ifespan (y)	country	spending (x)	lifespan (y)
ustralia	3.357	81.4	Australia	3.357	81.4
ustria.	3.763	80.1	Austria.	3.763	80.1
Selgium	3.595	79.8	Belgium	3.595	79.8
Canada	3.895	80.7	Canada	3.895	80.7
zech	1.626	77	Czech	1.626	77
lenmark	3.512	78.4	Denmark	3.512	78.4
inland	2.84	79.5	Finland	2.84	79.5
rance	3.601	81	France	3.601	81
Germany	3.588	80	Germany	3.588	80
3reece	2.727	79.5	Greece	2.727	79.5
Hungary	1.388	73.3	Hungary	1.388	73.3
celand	3.319	81.2	loeland	3.319	81.2
Ireland	3.424	79.7	Ireland	3.424	79.7
taly	2.686	81.4	Italy	2.686	81.4
Japan	2.581	82.6	Japan	2.581	82.6
Korea	1.688	79.4	Korea	1.688	79.4
.uxembourg	4.162	79.4	Luxembourg	4.162	79.4
Mexico	0.823	75	Mexico	0.823	75
Netherlands	3.837	80.2	Netherlands	3.837	80.2
N.Zealand	2.454	80.2	N.Zealand	2.454	80.2
Norway	4.763	80.6	Norway	4.763	80.6
Poland	1.035	75.4	Poland	1.035	75.4
Portugal	2.15	79.1	Portugal	2.15	79.1
Slovakia	1,555	74.3	Slovakia	1,555	74.3
Spain	2.671	81	Spain	2.671	81
Sweden	3.323	81	Sweden	3.323	81
Switzerland	4.417	81.9	Switzerland	4.417	81.9
Turkey	0.618	73.4	Turkey	0.618	73.4
UK	2,992	79.5	UK	2.992	79.5
USA	7.29	78.1	USA	7.29	78.1
	7,20	10.2		1.20	70.1
Träning					
Test					

Mattias Villani

ST123G