Al3607 Deep Learning Course Project End-to-End Jigsaw Puzzle Solver

Xiangyuan Xue (521030910387)

School of Electronic Information and Electrical Engineering

Task Description

Design an end-to-end neural network to solve jigsaw puzzles

Dataset Construction

- CIFAR10 Dataset
 - split into k sub-images
 - generate a permutation
 - shuffle the sub-images
- Dataset Size
 - increase exponentially
 - harder with larger scale

DATASET SIZE

Scale	#Class	Set	#Size	
2×2	4!	Train	$50000 \times 4!$	
		Test	$10000 \times 4!$	
3×3	9!	Train	$50000 \times 9!$	
		Test	$10000 \times 9!$	
4×4	16!	Train	$50000 \times 16!$	
		Test	$10000 \times 16!$	

- Extractor-Aggregator
 - CNN as feature extractor
 - FCN as feature aggregator
 - Sinkhorn as result predictor
- Tensor Flow
 - input an $n \times n$ puzzle
 - output a $k \times k$ matrix
 - total fragment $k = n^2$

- Feature Extractor
 - input k sub-images
 - output **512** features
- Structural Detail
 - different structure for different puzzle scale
 - introduce padding to compensate size loss

- Feature Aggregator
 - concatenate 512k features
 - hidden layer with 4096 units
 - output a $k \times k$ matrix
- Sinkhorn Algorithm
 - generate doubly stochastic matrix
 - iterative procedure
 - allow gradient back-propagation

Algorithm 1 Sinkhorn-Knopp Algorithm

Input: Matrix $M \in \mathbb{R}^{n \times n}$, parameter $\lambda \in \mathbb{R}$ Output: Doubly stochastic matrix $P \in \mathbb{R}^{n \times n}$

- 1: Initialize $P = e^{-\lambda M}$
- 2: while none-convergence do
- 3: Normalize P by rows
- 4: Normalize P by columns
- 5: end while
- 6: Return doubly stochastic matrix P

$$\min_{oldsymbol{X} \in \{0,1\}^{n imes n}} oldsymbol{X}^T oldsymbol{M} oldsymbol{X} \qquad oldsymbol{P} \cdot oldsymbol{1}^n = oldsymbol{1}^n \ ext{s.t. } oldsymbol{X} \cdot oldsymbol{1} = oldsymbol{1}, oldsymbol{X}^T \cdot oldsymbol{1} \leq oldsymbol{1} \qquad oldsymbol{P}^T \cdot oldsymbol{1}^n = oldsymbol{1}^n \ ext{s.t. } oldsymbol{X} \cdot oldsymbol{1} = oldsymbol{1}, oldsymbol{X}^T \cdot oldsymbol{1} \leq oldsymbol{1} \qquad oldsymbol{P}^T \cdot oldsymbol{1}^n = oldsymbol{1}^n \ ext{s.t. } oldsymbol{X} \cdot oldsymbol{1} = oldsymbol{1}, oldsymbol{X}^T \cdot oldsymbol{1} \leq oldsymbol{1} \qquad oldsymbol{P}^T \cdot oldsymbol{1}^n = oldsymbol{1}^n \ ext{s.t. } oldsymbol{X} \cdot oldsymbol{1} = oldsymbol{1}^n \ ext{s.t. } oldsymbol{1}^n \ ext{s.t. } oldsymbol{1}^n \ ext{s.t. } oldsymbol{1} = oldsymbol{1}^n \ ext{s.t.$$

- Sinkhorn Algorithm
 - row and column normalization

$$m{M}_{ij}^{(t+1)} = rac{m{M}_{ij}^{(t)}}{\sum\limits_{k=1}^{n}m{M}_{ik}^{(t)}} \qquad m{M}_{ij}^{(t+1)} = rac{m{M}_{ij}^{(t)}}{\sum\limits_{k=1}^{n}m{M}_{kj}^{(t)}}$$

partial derivative

$$egin{aligned} rac{\partial \mathcal{L}}{\partial oldsymbol{M}_{pq}^{(t)}} &= \sum_{i=1}^{n} rac{\partial \mathcal{L}}{\partial oldsymbol{M}_{pi}^{(t+1)}} \left[rac{\mathbb{1}_{i=q}}{\sum\limits_{j=1}^{n} oldsymbol{M}_{pj}^{(t)}} - rac{oldsymbol{M}_{pi}^{(t)}}{\left(\sum\limits_{j=1}^{n} oldsymbol{M}_{pj}^{(t)}
ight)^{2}}
ight] \end{aligned}$$

- Loss Function
 - Frobenius norm

$$\left\|oldsymbol{A}
ight\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^n oldsymbol{A}_{ij}^2}$$

mean square error loss

$$\mathcal{L}\left(\boldsymbol{P},\boldsymbol{Q}\right) = \frac{1}{n^2} \sum_{i=1}^{n} \sum_{j=1}^{n} \left(\boldsymbol{P}_{ij} - \boldsymbol{Q}_{ij}\right)^2$$

Model Improvement

- Data Augmentation
 - resize sub-images to 32×32
- Network Architecture
 - deeper CNN and FCN
- Loss Function
 - apply cross entropy loss

$$\mathcal{L}(oldsymbol{P}, oldsymbol{Q}) = -\sum_{i=1}^n \sum_{j=1}^n oldsymbol{Q}_{ij} \log oldsymbol{P}_{ij}$$

- Parameter Tuning
 - batch size
 - learning rate
 - weight decay

Performance Metrics

- Epoch Loss
 - directly reflects fitting effect
- Fragment Accuracy
 - proportion of fragments which are placed correctly
- Puzzle Accuracy
 - proportion of puzzles that are perfectly solved

- Intuition
 - τ_F is likely to be higher
 - τ_P is more important

$$\tau_F = \frac{1}{mn} \sum_{k=1}^{m} \sum_{i=1}^{n} \mathbb{1} \left[p_i^{(k)} = q_i^{(k)} \right]$$

$$\tau_P = \frac{1}{m} \sum_{k=1}^m \mathbb{1} \left[\boldsymbol{p}^{(k)} = \boldsymbol{q}^{(k)} \right]$$

$$\tau_P = \frac{1}{m} \sum_{k=1}^m \prod_{i=1}^n \mathbb{1} \left[p_i^{(k)} = q_i^{(k)} \right] \approx \tau_F^n$$

Experiment Result

- Baseline Model
 - faster convergence
 - lower accuracy

- Improved Model
 - slower convergence
 - higher accuracy

Experiment Result

- Performance Metrics
 - improved model solves almost all the 2×2 and 3×3 puzzles

IMPROVED PERFORMANCE

Scale	Model	\mathcal{L}_E	$ au_F$	$ au_P$
2×2	Baseline	8.3484	90.72%	84.43%
	Improved	0.2013	$\mathbf{99.84\%}$	99.63 %
3×3	Baseline	18.7751	49.20%	8.44%
	Improved	0.0256	99.98%	99.86 %
4×4	Baseline	-	-	-
	Improved	21.4948	73.55 %	$\boldsymbol{2.49\%}$

- Computation Efficiency
 - without Sinkhorn, both learning and inference are accelerated

Experiment Result

Baseline Model

Improved Model

Conclusion

- Baseline Model
 - Sinkhorn increases interpretability but decreases efficiency
 - cross entropy loss performs better for classification tasks
- Improved Model
 - resizing is extremely effective but brings potential unfairness
 - exploiting edge features is of vital importance
 - fitting permutation largely relies on model complexity
 - 3×3 puzzle implies semantic information of higher quality

References

- Santa Cruz R, Fernando B, Cherian A, et al. Deeppermnet: Visual permutation learning[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017: 3949-3957.
- LeCun Y, Bottou L, Bengio Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
- Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological review, 1958, 65(6): 386.
- Koopmans T C, Beckmann M. Assignment problems and the location of economic activities[J]. Econometrica: journal of the Econometric Society, 1957: 53-76.
- Sinkhorn R, Knopp P. Concerning nonnegative matrices and doubly stochastic matrices[J]. Pacific Journal of Mathematics, 1967, 21(2): 343-348.
- Paumard M M. Solving Jigsaw Puzzles with Deep Learning for Heritage[D]. CY Cergy Paris Université, 2020.
- Chen Y, Shen X, Liu Y, et al. Jigsaw-ViT: Learning jigsaw puzzles in vision transformer[J]. Pattern Recognition Letters, 2023, 166: 53-60.
- Doersch C, Gupta A, Efros A A. Unsupervised visual representation learning by context prediction[C]. Proceedings of the IEEE international conference on computer vision. 2015: 1422-1430.
- Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles[C]. Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part VI. Cham: Springer International Publishing, 2016: 69-84.