COMENIUS UNIVERSITY IN BRATISLAVA $\begin{tabular}{l} FACULTY OF MATHEMATICS, PHYSICS AND \\ \hline INFORMATICS \end{tabular}$

HUMANOID ROBOT LILLI

Master Thesis

2020 Bc. Gabriel Halasi

COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

HUMANOID ROBOT LILLI

Master Thesis

Study programme: Aplied informatics

Study field: 2511 Aplied informatics

Department: Department of Applied Informatics

Supervisor: Mgr. Pavel Petrovič, PhD.

Bratislava, 2020

Bc. Gabriel Halasi

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Gabriel Hal
--

Študijný program: aplikovaná informatika (Jednoodborové štúdium,

magisterský II. st., denná forma)

Študijný odbor: aplikovaná informatika

Typ záverečnej práce: diplomová Jazyk záverečnej práce: anglický Sekundárny jazyk: slovenský

Názov: Humanoid Robot Lilli

Humanoidný Robot Lilli

Anotácia: Robot Lilli predstavil na viedenskom podujatí Maker Faire 2018 jeho

autor Per R. Ø. Salkowitsch. Ide o humanoidného robota s 25 stupnami voľnosti vytvoreného z dielov vyrezaných z preglejky laserom. K robotu zatiaľ neexistuje obslužný softvér. Cieľom diplmovej práce bude preskúmať a implementovať algoritmy, pomocou ktorých sa robot bude vedieť pohybovať vo svojom prostredí, vrátane inverznej kinematiky a využitia algoritmov strojového učenia. Predpokladá sa vytvorenie modelu robota pre simuláciu

a otestovanie algoritmov v simulácii i na reálnom robotovi.

Literatúra: R.Siegwart et.al: Introduction to Autonomous Mobile Robots, The MIT Press,

2011.

H. Choset et.al: Principles of Robot Motion, Theory, Algorithms, and

Implementations, The MIT Press, 2005.

Kľúčové

slová: humanoidný robot, inverzná kinematika, strojové učenie, simulácia

Vedúci: Mgr. Pavel Petrovič, PhD.

Katedra: FMFI.KAI - Katedra aplikovanej informatiky

Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 26.09.2018

Dátum schválenia: 31.10.2018 prof. RNDr. Roman Ďurikovič, PhD.

garant študijného programu

študent	vedúci práce

Bratislava, 2020	Bc. Gabriel Halasi

Acknowledgement

Abstract

Keywords:

Abstrakt

Kľúčové slová:

Contents

1	Introduction	1
2	Motivation	2
3	Issue recognition	3
4	Previous solutions	4
5	Proposal	5
6	Implementation	6
7	Results	7
8	Conclusion	8

Introduction

Motivation

Issue recognition

Previous solutions

Proposal

Implementation

Results

Conclusion

Bibliography

- [BBM+02] Rodney Brooks, Cynthia Breazeal, Matthew Marjanovic, Brian Scassellati, and Matthew M. Williamson. The cog project: Building a humanoid robot. *Lecture Notes in Ar*tificial Intelligence, 1562, 03 2002.
- [CHL⁺05] Howie M Choset, Seth Hutchinson, Kevin M Lynch, George Kantor, Wolfram Burgard, Lydia E Kavraki, and Sebastian Thrun. *Principles of robot motion: theory, algorithms, and implementation*. MIT press, 2005.
- [dLGCZM04] Javier de Lope, Rafaela González-Careaga, Telmo Zarraonandia, and Darío Maravall. Inverse kinematics for humanoid robots using artificial neural networks. volume 2809, pages 448–459, 04 2004.
 - [Gol09] K. Gold. An information pipeline model of human-robot interaction. In 2009 4th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages 85–92, March 2009.
 - [RS11] Davide Scaramuzza Roland Siegwart, Illah Reza Nourbakhsh. Introduction to autonomous mobile robots. 2011.
 - [SA10] Benjamin Stephens and Christopher Atkeson. Modeling and

BIBLIOGRAPHY 10

control of periodic humanoid balance using the linear biped model. pages $379-384,\,01\,\,2010.$

- [Ste07] B. Stephens. Humanoid push recovery. In 2007 7th IEEE-RAS International Conference on Humanoid Robots, pages 589–595, Nov 2007.
- [TS00] G. Tevatia and S. Schaal. Inverse kinematics for humanoid robots. In *Proceedings 2000 ICRA*. Millennium Conference.

 IEEE International Conference on Robotics and Automation.

 Symposia Proceedings (Cat. No.00CH37065), volume 1, pages 294–299 vol.1, April 2000.

List of Figures