76	<i>x</i>	U		университет имени	IIDE	
Λ	ЛОСКОВСКИИ	госупанственный	техническии	VHURENCUTET UMEHU	. Н → Һат	имаца
T	TOCKOBCKIII	тосударственным	10MIN TOOKHH	y in independent of invents	LII.J.Da	y wiaita

Кафедра «Системы обработки информации и управления»

Рубежный контроль №1 по дисциплине «Методы машинного обучения» на тему «Методы обработки данных»

Выполнил:

Студент ИУ5-24М

Гаврилюк А.Г.

Москва, 2020

Задача:

Для заданного набора данных постройте основные графики, входящие в этап разведочного анализа данных с использованием библиотек Matplotlib и Seaborn. В случае наличия пропусков в данных удалите строки или колонки, содержащие пропуски. Какие графики Вы построили и почему? Какие выводы о наборе данных Вы можете сделать на основании построенных графиков? Проведите корреляционный анализ. Сделайте выводы о возможности построения моделей машинного обучения и о возможном вкладе признаков в модель.

Набор данных:

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_wine.html#sklearn.datasets.load_wine

```
In [17]:
```

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
```

```
In [18]:
```

```
from sklearn.datasets import load_wine
X, y = load_wine(return_X_y=True)
print(X.shape)
```

```
(178, 13)
```

```
In [ ]:
```

In [19]:

```
data = make_dataframe(load_wine)
data.head()
```

Out[19]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocyanins	color_inte
0	14.23	1.71	2.43	15.6	127.0	2.80	3.06	0.28	2.29	
1	13.20	1.78	2.14	11.2	100.0	2.65	2.76	0.26	1.28	
2	13.16	2.36	2.67	18.6	101.0	2.80	3.24	0.30	2.81	
3	14.37	1.95	2.50	16.8	113.0	3.85	3.49	0.24	2.18	
4	13.24	2.59	2.87	21.0	118.0	2.80	2.69	0.39	1.82	

Количество пустых значений в колонках

```
In [6]:
```

```
for col in data.columns:
    temp_null_count = data[data[col].isnull()].shape[0]
    print('{} - {}'.format(col, temp_null_count))

alcohol - 0
malic_acid - 0
```

```
ash - 0
alcalinity_of_ash - 0
magnesium - 0
total_phenols - 0
flavanoids - 0
```

```
nonflavanoid_pnenois - 0
proanthocyanins - 0
color_intensity - 0
hue - 0
od280/od315_of_diluted_wines - 0
proline - 0
target - 0
```

In [7]:

```
data.describe()
```

Out[7]:

		alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phenols	proanthocya
col	unt 178	3.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.000000	178.00
me	an 13	3.000618	2.336348	2.366517	19.494944	99.741573	2.295112	2.029270	0.361854	1.590
:	std 0	.811827	1.117146	0.274344	3.339564	14.282484	0.625851	0.998859	0.124453	0.572
r	nin 11	.030000	0.740000	1.360000	10.600000	70.000000	0.980000	0.340000	0.130000	0.410
2	5 % 12	.362500	1.602500	2.210000	17.200000	88.000000	1.742500	1.205000	0.270000	1.250
5) % 13	3.050000	1.865000	2.360000	19.500000	98.000000	2.355000	2.135000	0.340000	1.55
7	5 % 13	3.677500	3.082500	2.557500	21.500000	107.000000	2.800000	2.875000	0.437500	1.950
n	nax 14	.830000	5.800000	3.230000	30.000000	162.000000	3.880000	5.080000	0.660000	3.580

Распределение значений целевого признака

In [12]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.distplot(data['alcohol'])
```

Out[12]:

<matplotlib.axes._subplots.AxesSubplot at 0x12fcd0cd0>


```
10 11 12 13 14 15 alcohol
```

Парные диаграммы

In [9]:

```
sns.pairplot(data)
```

Out[9]:

<seaborn.axisgrid.PairGrid at 0x129995bd0>

Находим почти линейную зависимость

In [14]:

```
fig, ax = plt.subplots(figsize=(10,10))
sns.scatterplot(ax=ax, x='proline', y='alcohol', data=data)
```

<matplotlib.axes._subplots.AxesSubplot at 0x131bfa090>

Violin plot

In [13]:

```
sns.violinplot(x=data['alcohol'])
```

Out[13]:

<matplotlib.axes._subplots.AxesSubplot at 0x131baacd0>

Корреляционная матрица

In [22]:

```
data.corr()
```

Out[22]:

	alcohol	malic_acid	ash	alcalinity_of_ash	magnesium	total_phenols	flavanoids	nonflavanoid_phe
alcohol	1.000000	0.094397	0.211545	-0.310235	0.270798	0.289101	0.236815	-0.15
malic_acid	0.094397	1.000000	0.164045	0.288500	-0.054575	-0.335167	-0.411007	0.29
ash	0.211545	0.164045	1.000000	0.443367	0.286587	0.128980	0.115077	0.18
alcalinity_of_ash	0.310235	0.288500	0.443367	1.000000	-0.083333	-0.321113	-0.351370	0.36
magnesium	0.270798	-0.054575	0.286587	-0.083333	1.000000	0.214401	0.195784	-0.25
total_phenols	0.289101	-0.335167	0.128980	-0.321113	0.214401	1.000000	0.864564	-0.44
flavanoids	0.236815	-0.411007	0.115077	-0.351370	0.195784	0.864564	1.000000	-0.53
nonflavanoid_phenols	0.155929	0.292977	0.186230	0.361922	-0.256294	-0.449935	-0.537900	1.00
proanthocyanins	0.136698	-0.220746	0.009652	-0.197327	0.236441	0.612413	0.652692	-0.36
color_intensity	0.546364	0.248985	0.258887	0.018732	0.199950	-0.055136	-0.172379	0.13
hue	0.071747	-0.561296	0.074667	-0.273955	0.055398	0.433681	0.543479	-0.26
od280/od315_of_diluted_wines	0.072343	-0.368710	0.003911	-0.276769	0.066004	0.699949	0.787194	-0.50
proline	0.643720	-0.192011	0.223626	-0.440597	0.393351	0.498115	0.494193	-0.31
target	0.328222	0.437776	0.049643	0.517859	-0.209179	-0.719163	-0.847498	0.48

Матрица корреляций по Пирсону

In [23]:

```
mask = np.zeros_like(data.corr(), dtype=np.bool)
mask[np.tril_indices_from(mask)] = True
sns.heatmap(data.corr(), mask=mask, annot=True, fmt='.lf')
```

Out[23]:

<matplotlib.axes._subplots.AxesSubplot at 0x137de4ed0>

In []: