Spring 2016, CS122A, UC Irvine, Quiz 8, Prof. Chen Li

Student ID:	Name:	Score (out of 16):

Let the relation R(A, B, C, D, E) have a functional dependency set $F=\{A->B, B->C, CD->E\}$.

- 1. Suppose we decompose R into R1(A, B, C) and R2(C, D, E)
 - a. Compute the local dependencies in F_{R1} and F_{R2} .

$$F_{R1} = \{A->B, B->C\}$$

 $F_{R2} = \{CD->E\}$

b. What's the strongest normal form of R1 and R2 respectively?

The strongest normal form of R1 is 2NF (R1 violates 3NF due to transitivity, ie, A->B and B->C imply A->C) and R2 is BCNF (since there is only one dependency CD->E)

c. Is this decomposition lossless join?

No, since the $R1 \cap R2 = C$ but C is a key for neither R1 nor R2

d. Is this decomposition dependency preserving?

Yes (it is easy to check that $(F_{R1} \cup F_{R2})^+ = F^+$)

- 2. Suppose we decompose R into R3(A, B, C, D), R2(C, D, E).
 - a. Compute the local dependencies in F_{R3} and F_{R2} .

$$F_{R3} = \{A->B, B->C\}$$

 $F_{R2} = \{CD->E\}$

b. What's the strongest normal form of R3 and R2 respectively?

The strongest normal form of R3 is potentially 1NF (R3 violates 2NF due to A->B but A is a proper subset of the key {A,D}) and R2 is BCNF (since there is only one dependency CD->E)

c. Is this decomposition lossless join?

Yes, since the R3 \cap R2 = {C, D} and {C, D} is a key for R2

d. Is this decomposition dependency preserving?

Yes (it is easy to check that $(F_{p3} \cup F_{p2})^+ = F^+$)

Spring 2016, CS122A, UC Irvine, Quiz 8, Prof. Chen Li

Let relation R(A, B, C, D, E) have a functional dependency set $F=\{A->B, B->C, CD->E\}$ (same as before).

- 3. Suppose we decompose R into R4(A, B), R5(B, C), R2(C, D, E).
 - a. Compute the local dependencies in F_{R4} , F_{R5} and F_{R2} .

$$\mathbf{F}_{\mathrm{R4}} = \{\mathbf{A} -> \mathbf{B}\}$$

$$F_{R5} = \{B -> C\}$$

$$\mathbf{F}_{\mathbf{R}2} = \{\mathbf{CD} - \mathbf{E}\}$$

b. What's the strongest normal form of R4, R5, and R2 respectively?

The strongest normal form of R4 is BCNF (since there is only one dependency A->B), R5 is BCNF (since there is only one dependency B->C), R2 is BCNF (since there is only one dependency CD->E)

c. Is this decomposition lossless join?

No, since the $R5 \cap R2 = C$ but C is a key for neither R5 nor R2

d. Is this decomposition dependency preserving?

Yes (it is easy to check that $(F_{R3} \cup F_{R2})^+ = F^+$)

- 4. Suppose we decompose R into R6(A, B, D), R7(A, C, D, E).
 - a. Compute the local dependencies in F_{R6} and F_{R7} .

$$\mathbf{F}_{R6} = \{\mathbf{A} - \mathbf{B}\}$$

$$F_{R7} = \{A->C, CD->E\}$$

b. What's the strongest normal form of R6 and R7 respectively?

The strongest normal form of R6 is potentially 1NF (since {A, D} is the set of prime attributes and we have A->B which is a 2NF violation), R7 is potentially 1NF (since {A, D} is the set of prime attributes and we have A->C which is a 2NF violation)

c. Is this decomposition lossless join?

Yes, since the R6 \cap R7 = {A, D} and {A, D} is a key for R6 (and R7)

d. Is this decomposition dependency preserving?

No (it is easy to check that $(F_{R6} \cup F_{R7})^+ \neq F^+$ by noting that the dependency B->C is missing in $(F_{R6} \cup F_{R7})^+$ whereas B->C is present in F^+)