

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Динамические системы с дискретным временем»

 $\frac{{
m C}_{
m T}_{
m Y}_{
m Z}_{
m C}_{
m H}_{
m A}}{{
m A.\,B.\,\,T}_{
m C}_{
m T}_{
m Z}_{
m C}_{
m B}}$

 $\frac{\Pi p \text{еподаватель}}{\text{к.ф.-м.н., доцент } \text{И. В. Востриков}}$

Содержание

1	Пос	становка задачи	задачи 3	
2	Исс	следование первой системы	4	
	2.1	Неподвижные точки системы	4	
	2.2	Устойчивость неподвижных точек	5	
	2.3	Существование циклов длины 2, 3	8	
	2.4	Бифуркационная диаграмма	8	
	2.5	Показатель Ляпунова	11	
3	Исс	следование второй системы	12	
	3.1	Неподвижные точки системы	12	
	3.2	Устойчивость неподвижных точек	13	
	3.3	Существование циклов длины 2 и 3	15	
	3.4	Бифуркация Неймарка-Сакера	15	

1 Постановка задачи

Даны системы:

$$u_{t+1} = u_t^2 e^{r(1-u_t^2)}, r > 0, u_t \le 0, \forall t = 0, 1, ...,$$

$$u_{t+1} = u_t^2 e^{r(1-u_{t-1}^2)}, r > 0, u_t \le 0, \forall t = 0, 1, \dots$$

Необходимо:

- 1. Найти неподвижные точки.
- 2. Исследовать устойчивость неподвижных точек в зависимости от значений параметров.
- 3. Проверить существование циклов длиной 2 и 3.
- 4. В случае существования цикла длиной 3 построить бифуркационную диаграмму.
- 5. Построить график показателя Ляпунова в зависимости от значений параметра.
- 6. В случае системы с запаздыванием проверить возможность возникновения бифуркации Неймарка-Сакера.

2 Исследование первой системы

2.1 Неподвижные точки системы

Рассмотрим дискретную динамическую систему:

$$u_{t+1} = f(u_t), u_t \in \mathbb{R}, f : \mathbb{R} \to \mathbb{R}, \tag{2.1}$$

или, в других обозначениях:

$$u \mapsto f(u), u \in \mathbb{R}, f : \mathbb{R} \to \mathbb{R}.$$
 (2.2)

Множество всевозможных состояний u_t называется пространством состояний (или фазовым пространством системы (2.1).

Множество точек $u_t, t = 0, 1, ...$ называется <u>траекторией</u> (или <u>орбитой</u>) системы (2.1).

<u>Неподвижными точками</u> системы (2.1) называются такие точки пространства состояний u^* , что $f(u^*) = u^*$.

Исследуем первую систему:

$$u_{t+1} = u_t^2 e^{2(1-u_t^2)}, r > 0, u_t \le 0, \forall t = 0, 1, ...,$$

Рассмотрим уравнение $f(u) = u^2 e^{r(1-u^2)} = u = g(u)$. В общем случае оно имеет 3 корня, это следует из графика (Рис. 1) и математических выкладок:

$$u(1 - ue^{r(1 - u^2)}) = uw(u) = 0 \iff \begin{bmatrix} u = 0, \\ u = 1, \\ u = e^{ru^2} \frac{1}{e^r}. \end{bmatrix}$$

Производная второй скобки

$$w(u)' = \left(1 - ue^{r(1-u^2)}\right)' = -e^{r(1-u^2)} + 2ru^2e^{r(1-u^2)} = e^{r(1-u^2)}(2ru^2 - 1) = 0,$$
$$u = \frac{1}{\sqrt{2r}}$$

Итак, мы показали, что 3 корня системы равны $u=0,\ u=1,\ u=1/\sqrt{2r},$ причем 3й зависит от r. Других решений нет. Значит, вне зависимости от r существуют только три неподвижные точки $u_1^*=0$ и $u_2^*=1,\ u_3^*=\frac{1}{\sqrt{2r}}.$

Рис. 1. График $g(u) = u_t^2 e^{r(1-u_t^2)}$ при $r \in [0,5]$ и график f(u) = u. Зелёными точками отмечены точки пересечения графиков.

2.2 Устойчивость неподвижных точек

Неподвижная точка u^* отображения $u_{t+1}=f(u_t)$ называется устойчивой по Ляпунову, если $\forall \epsilon>0$ \exists такое $\delta>0$, что для \forall начальных данных u_0 из $\delta-$ окрестности точки u^* вся траектория системы $u_t,\ t=0,1,...$ содержится в $\epsilon-$ окрестности точки u^* . Если, кроме того, $\lim_{t\to\inf}f(u_t)=u^*$, то точка u^* называется асимптотически устойчивой.

Утв. Пусть u^* — неподвижная точка отображения $u_{t+1} = f(u_t)$ и f обратима в малой окрестности u^* . Тогда u^* асимптотически устойчива, если $|f_u(u^*)| < 1$, и неустойчива, если $|f_u(u^*)| > 1$.

Рассмотрим производную $f_u'(u)$:в точках u_1^*, u_2^*

$$f'_u(u) = 2ue^{r(1-u^2)} - 2ru^3e^{r(1-u^2)} = 2ue^{r(1-u^2)}(1-ru^2).$$

Используем утверждение и исследуем устойчивость.

$$u_1^* = 0 \Longrightarrow |f_u(u_1^*)| = 0 < 1$$

Следовательно, точка $u_1^* = 0$ устойчива для $\forall r > 0$. Это отражается и на графике (Рис. 2).

Рис. 2. График зависимости u_t от t. $u_0 = 0.01, r \in (0, 5)$. Траектория устремляется к $u_1^* = 0$.

$$u_2^* = 1 \Longrightarrow |f_u(u_2^*)| = |2(1-r)| < 1$$
 при $r > 0.5, \ge 1$ при $r \in [0, 0.5],$

Вторая точка устойчива $\forall r > 0.5$, иначе неустойчива. Получаем следующие случаи:

- $|f_u(u_2^*)| < 1$, при r > 0.5 асимптотически устойчивая неподвижная точка (Рис. 3).
- $|f_u(u_2^*)| = 1$, при r = 0.5 ничего нельзя сказать об устойчивости.
- $|f_u(u_2^*)| > 1$, при 0 < r < 0.5 неустойчивая неподвижная точка (Рис. 4).

Рис. 3. График зависимости u_t от t. $u_0 = 1.01, r \in (0.5, 5)$. Точка является асимптотически устойчивой.

Рис. 4. График зависимости u_t от t. $u_0=1.01,$ $r\in(0,0.5),$ $u^*=1/\sqrt{2r}.$ Точка не является асимптотически устойчивой.

2.3 Существование циклов длины 2, 3

<u>Циклом длины k</u> системы (2.1) называется множество различных точек $u_1, u_2, ..., u_k$ таких, что

$$u_2 = f(u_1), ..., u_k = f(u_{k-1}), u_1 = f(u_k).$$

Упорядочим все натуральные числа следующим образом:

$$3 \succ 5 \succ 7 \succ ... \succ 2 \cdot 3 \succ 2 \cdot 5 \succ 2 \cdot 7 \succ ... \succ 2^2 \cdot 3 \succ 2^2 \cdot 5 \succ 2^2 \cdot 7 \succ ... \succ 2^3 \succ 2^2 \succ 2 \succ 1.$$

Определения 1. (Шарковский). Пусть $f: \mathbb{R} \to \mathbb{R}$ — непрерывное отображение, и пусть f имеет цикл длины k. Тогда f имеет цикл длины m для всех таких m, что $k \succ m$ в указанном выше порядке.

Покажем, что существует цикл длины 3. Для этого найдём решение системы:

$$\begin{cases} f^3(u,r) = u, \\ \frac{df^3(u,r)}{du} = 1, \end{cases}$$
 где $f^3 = f \circ f \circ f.$ (2.3)

Решим систему численно с помощью Matlab. Получаем решение вида:

$$r = 0.942170, \begin{cases} u = 1.657764 = u_1, \\ u = 0.620441 = u_2, \\ u = 0.016812 = u_3, . \end{cases}$$

Заметим, что результаты согласуются с бифуркационной диаграммой. Из существования цикла длины 3 следует существование циклов любой длины (по теореме (3.2)). Аналогично найдём цикл длины 2 из системы:

$$\begin{cases} f^2(u,r) = u, \\ \frac{df^2(u,r)}{du} = 1, \end{cases}$$
 где $f^2 = f \circ f.$ (2.4)

Получим значения: $r = 0.695, u_1 = 0.499085, u_2 = 1.29817$

2.4 Бифуркационная диаграмма

Две дискретные динамические системы <u>топологически эквивалентны</u>, если они имеют равное количество неподвижных точек одинакового характера, расположенных в одинаковом порядке на фазовой прямой. При этом фазовые портреты топологически эквивалентных систем также называются топологически эквивалентными.

Появление топологически неэквивалентных фазовых портретов при изменении параметров динамической системы называется бифуркацией.

<u>Бифуркационной диаграммой</u> динамической системы называется разбиение пространства параметров на максимальные связные подмножества, которые определяются соотношениями топологической эквивалентности и рассматриваются вместе с фазовыми портретами для каждого элемента разбиения.

Построим бифуркационную диаграмму. Будем рассматривать все значения $r \in (0,3)$ с шагом $\delta = 0.01$. Для выберем начальное значение u_0 , выберем достаточно большое n = 100, на котором система стабилизируется, отметим k точек на графике. На оси абсцисс отмечаются значения r, ординат — полученные значения u. К примеру, можно использовать следующие параметры: $u_0 = 0.5$ $u_0 = 1.1$, n = 100, k = 100 (Puc. 5, 6).

Рис. 5. Бифуркационная диаграмма при $u_0 = 0.5$.

Рис. 6. Бифуркационная диаграмма при $u_0 = 1.1$.

2.5 Показатель Ляпунова

Пусть $f:\mathbb{R} \to \mathbb{R}$ — гладкое отображение. Показателем Ляпунова траектории $u_1,u_2,...$ называется величина:

$$h(u_1) = \lim_{n \to \inf} \frac{\ln |f'(u_1)| + \ln |f'(u_2)| + \dots + \ln |f'(u_n)|}{n},$$

если этот предел существует.

Орбиту $\{u_i\}_{i=1}^{\inf}$ дискретной системы $u_{t+1}=f(u_t)$ назовём <u>хаотической</u>, если эта орбита ограничена, не стремится к периодической траектории и её показатель Ляпунова $h(u_1)$ больше нуля.

Построим график зависимости показателя Ляпунова от параметра r. Возьмём параметры $u_0=2$ (Рис. 8), $u_0=0.4$ (Рис. 7), r изменяется от значения 0.005 до 2 с шагом $\Delta=0.005,\,n=1000$.

Рис. 7. $u_0 = 0.4, r \in [0, 0.5].$

Рис. 8. $u_0 = 2, r \in [0.5, 2].$

Показатель Ляпунова является легко вычислимым признаком хаотического поведения. Если h(u)>0, то близкие траектории разбегаются, и в системе может наблюдаться хаотическое поведение. Интервалы с h(u)<0 соответствуют циклам с небольшим периодом.

3 Исследование второй системы

3.1 Неподвижные точки системы

Рассмотрим систему с запаздыванием:

$$u_{t+1} = u_t^2 e^{r(1-u_{t-1}^2)}, r > 0, u_t \le 0, \forall t = 0, 1, \dots$$

Перепишем её в другом виде, чтобы избавиться от запаздывания:

$$\begin{cases} u_{t+1} = f(u_t, v_t) = u_t^2 e^{r(1-v_t^2)}, \\ v_{t+1} = g(u_t, v_t) = u_t. \end{cases}$$

Точка $u^* \in \mathbb{R}$ является неподвижной точкой системы

$$u_{t+1} = f(u_t, u_{t-1}), u_t \in \mathbb{R}, f : \mathbb{R}^2 \to \mathbb{R},$$

если $f(u^*, u^*) = u^*$.

Задача сводится нахождению решений следующей системы:

$$\begin{cases} u^* = u^{*2}e^{r(1-v^{*2})}, \\ v^* = u^*. \end{cases} \equiv \begin{cases} u^* = u^{*2}e^{r(1-u^{*2})}, \\ v^* = u^*. \end{cases}$$

Таким образом, видно, что у данной системы с запаздыванием будут такие же неподвижные точки, как у первой системы с точностью до добавления второй координаты. Итак, в изучаемой системе будут две неподвижные точки $\forall r>0$: $u_1=(0,0), u_2=(1,1)$.

3.2 Устойчивость неподвижных точек

Пусть f — гладкое отображение $\mathbb{R}^n \to \mathbb{R}^n$.. Дана динамическая система с дискретным временем:

$$u_{t+1} = f(u_t), u_t \in \mathbb{R}^n,$$

Тогда неподвижная точка u^* асимптотически устойчива, если все собственные значения $\lambda_1,\lambda_2,...,\lambda_n$ матрицы Якоби функции f(u), вычисленные в точке u^* , таковы, что $|\lambda_i|<1,\ i=1,...,n.$ Если $\exists \lambda_i$ такое, что $|\lambda_i|>1$, то неподвижная точка u^* неустойчива.

Рассмотрим матрицу Якоби для системы (3.1):

$$J(u,v) = \begin{bmatrix} \frac{\delta f(u,v)}{\delta u} & \frac{\delta f(u,v)}{\delta v} \\ \frac{\delta g(u,v)}{\delta u} & \frac{\delta g(u,v)}{\delta v} \end{bmatrix} = \begin{bmatrix} 2ue^{r(1-v^2)} & -2rvu^2e^{r(1-v^2)} \\ 1 & 0 \end{bmatrix}.$$

1. $u_1 = (0,0)$. Значение определителя матрицы Якоби в этой точке равно 0.

$$J(0,0) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \Longrightarrow det(J(0,0) - \lambda I) = \lambda^2.$$

Корень $\lambda = 0$ кратности 2, точка $u_1 = (0,0)$ ассимптотически устойчива(Рис. 9).

Рис. 9. График зависимости u_t от $r \in (0, 2.5)$. $u_0 = u_1 = 0.01$.

2. $u_2 = (1,1)$. Найдём матрицу Якоби и её собственные значения:

$$J(1,1) = \begin{bmatrix} 2 & -2r \\ 1 & 0 \end{bmatrix}.$$

$$det(J(1,1) - \lambda I) = det \begin{bmatrix} 2 - \lambda & -2r \\ 1 & -\lambda \end{bmatrix} = \lambda^2 - 2\lambda + 2r.$$

Дискриминант $D=1-2r\geq 0\Longleftrightarrow r\leq 0.5.$ Получим корни: $\lambda_{1,2}=1\pm\sqrt{1-2r}.$

- При $r \in [0, 0.5]$ имеем два вещественных корня, и $|\lambda_1| = |1 \sqrt{1 2r}| \le 1$. Из теоремы (3.2) следует, что точка u_2 является асимптотически устойчивой(Рис. 10).
- При r > 0.5 имеем два комплексных корня, и $|\lambda_i| = \sqrt{1 (1 2r)} \sqrt{2r} = 1 \iff$. Значит, пр точка u_2 является неустойчивой(Рис. 11).

Рис. 10. График зависимости u_t от $r \in (0, 0.5)$. $u_0 = u_1 = 1.01$.

Рис. 11. График зависимости u_t от $r \in (0.5, 1)$. $u_0 = u_1 = 1.01$.

3.3 Существование циклов длины 2 и 3

Проверим существование цикла длины 2. Для этого решим систему:

$$\begin{cases} f(u,v) = u^2 e^{r(1-v^2)}, \\ g(u,v) = u, \\ f(f(u,v),g(u,v)) = u, \end{cases} \Rightarrow \begin{cases} u^4 e^{2r(1-v^2)} e^{r(1-u^2)} = u, \\ u^2 e^{r(1-v^2)} = v. \end{cases} \Rightarrow \begin{cases} u \left(u^3 e^{2r(1-v^2)} e^{r(1-u^2)} - 1 \right) = 0, \\ u = \pm \sqrt{v} e^{-r(1-v^2)}.. \end{cases}$$

Заметим, что $f_1(u,v)=u^3e^{2r(1-v^2)}e^{r(1-u^2)}$ — монотонно убывающая функция, которая пересекает константу 1 не более чем в одной точке. Значит, уравнение имеет корни $u^*=0,1$. Но пары (u,v)=(1,1) и (0,0) являются неподвижными точками. Следовательно, цикл длины 2 не может быть образован. Но тогда из теоремы (3.2) следует, что цикла длины 3 (и всех промежуточных) не существует.

3.4 Бифуркация Неймарка-Сакера

Бифуркацией положения равновесия в системе, соответствующая появлению собственных значений $|\lambda_1|=|\lambda_2|=1, \lambda_1=\bar{\lambda_2},$ называется бифуркацией Неймарка-Сакера.

Условия для бифуркации Неймарка-Сакера выполняются только для значения $r=\frac{1}{2}$. При этом установлено, что для $r<\frac{1}{2}$ точка (1,1) является асимптотически устойчивой, а для $r>\frac{1}{2}$ — неустойчивой. Из графика (Рис. 12) видно, что траектории из окрестности точки (1,1) медленно сходятся к этой точке.

При выборе достаточно близкого начального приближения траектории будут ограничены замкнутой инвариантной кривой и стремятся к ней при $t \to \inf$. Для начального приближения вне кривой будет происходить обратная ситуация — кривая будет ограничивать внутреннюю область. Таким образом, происходит мягкая потеря устойчивости, а бифуркация системы является суперкритической.

Рис. 12. Траектории в окрестности точки (1,1) при $r \in (0.4,0.6)$.

Список литературы

[1] А. С. Братусь, А. С. Новожилов, А. П. Платонов. Динамические системы и модели биологии. — М.: ФИЗМАТЛИТ, 2010.