Linear equations: In n variables/unknowns: x_1 , x_2 , x_3 x_n , is an equation of the form of $a_1x_1+a_2x_2+a_3x_3++a_nx_n=b$.	a, b are coefficients. $\{a \in R \text{ and } b \in R\}$
System of linear equations: system of n linear equations in n unknowns x_1 , x_2 , x_3 x_n of the form: $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + \cdots + a_{1n}x_n = b_3$ \cdots $a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$	$\{a_{mn} \in R: m = 1,2,3,,n, n = 1,2,3,,n\}$ $\{b \in R\}$ e.x. a_{mn} is the coefficient of x_n in the m th. equation.
Solution: numbers s_1 , s_2 , s_3 ,, s_n s.t. if $x_1 = s_1$, $x_2 = s_2$,, $x_n = s_n$, all equations are satisfied. Goal: To find out if a system of linear equations has a solution, if it does, how to find all solutions A s.l.e can have and only have 1, infinite, or \emptyset solutions.	

General Procedure for solving s.l.e: Eliminating variables to make the system simpler enough to solve

Equivalent systems: two s.l.e that have the same set of variables. Which means all operations in solving s.l.e are reversible	To eliminate x_1 except for the first equation, then x_2 except for the first two equations till ref is reached	
e.x. $\begin{cases} x_1 + 2x_2 + x_4 = 7 \\ x_1 + x_2 + x_3 - x_4 = 3 \\ 3x_1 + x_2 + 5x_3 - 7x_4 = 1 \end{cases} \gg \gg \begin{pmatrix} 1 & 2 \\ 1 & 3 \\ 3 & 3 \end{pmatrix}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Convert to a matrix
$\begin{pmatrix} 1 & 2 & 0 & 1 & & 7 \\ 1 & 1 & 1 & -1 & & 3 \\ 3 & 1 & 5 & -7 & & 1 \end{pmatrix} \gg \gg \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 3 & 1 \end{pmatrix}$	$ \begin{array}{c cccc} 0 & 1 & 7 \\ 1 & -2 & -4 \\ 5 & -7 & 1 \end{array} $	R_2 - R_1 Eliminate x_1 from R_2
$\begin{pmatrix} 1 & 2 & 0 & 1 & 7 \\ 0 & -1 & 1 & -2 & -4 \\ 3 & 1 & 5 & -7 & 1 \end{pmatrix} \gg \gg \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 0 & -5 \end{pmatrix}$	$ \begin{array}{c cccc} 0 & 1 & 7 \\ 1 & -2 & -4 \\ 5 & -10 & -20 \end{array} $	
$\begin{pmatrix} 1 & 2 & 0 & 1 & 7 \\ 0 & -1 & 1 & -2 & -4 \\ 0 & -5 & 5 & -10 & -20 \end{pmatrix} \gg \gg \begin{pmatrix} 1 & 2 \\ 0 & -1 \\ 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 7 \\ 1 & -2 & -4 \\ 0 & 0 & 0 \end{pmatrix} (ref)$	
Matrix is said to be row-echelon form (ref) to to infinite, or zero solution. A matrix is at ref if: a) Each leading entry is to the right of ot	·	

b) Any row that consists entirely of zeros is at bottom of matrix. Leading entries: the first non-zero entry from the left of ref	
$ \begin{pmatrix} 1 & 2 & 0 & 1 & 7 \\ 0 & -1 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \gg \gg \begin{pmatrix} 1 & 0 & 2 & -3 & -1 \\ 0 & -1 & 1 & -2 & -4 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} $ Anytime try to eliminate a variable, new variable appears	$R_1 + 2R_2$ To make x_2 in R_1 0.
$\begin{pmatrix} 1 & 0 & 2 & -3 & & -1 \\ 0 & -1 & 1 & -2 & & -4 \\ 0 & 0 & 0 & 0 & & 0 \end{pmatrix} \gg \gg \begin{pmatrix} 1 & 0 & 2 & -3 & & -1 \\ 0 & 1 & -1 & 2 & & 4 \\ 0 & 0 & 0 & 0 & & 0 \end{pmatrix} (rref)$	R ₂ * -1
Matrix is said to be in reduced row-echelon form (rref) if a) Each leading entry is 1 b) Each leading entry is the only non-zero entry in its column	
Let $x_3 = s, x_4 = t$; $\{s, t \in R\}$ $\begin{cases} x_1 = -1 - 2s + 3t \\ x_2 = 4 + s - 2t \\ x_3 = s \\ x_4 = t \end{cases}$	s and t are parameters. At rref, we can represent variables with the rest variables.

Theorem: every s.l.e is equivalent to one in ref or rref, and the ref can be achieved through sequences of elementary row operations to original equations.

Elementary row operations include:

- 1) Adding a multiple (non-zero) of one row to another
- 2) Multiply one row by a non-zero constant
- 3) Interchange any two rows

Consistent system: a s.l.e that has at least one solution, otherwise it's in consistent.

Theorem: suppose an augmented matrix of s.l.e is in ref/rref.

- i) System is inconsistent iff ref of the augmented matrix of s.l.e. has row of form $(0,0,0,\ldots,0\mid c), c\neq 0$
- ii) If the system is consistent, two possibilities exist
 - a) The number of leading variables = number of variables in the system. The system has a unique solution.
 - b) The number of leading variables < number of variables in the system. The system has infinite solutions.

Pf:

i) (B ≠ A) if a row of form (0,0,0, ...,0 | c), c≠0 exists, this corresponds 0 = c, c≠0, which has no solution.
 (¬B ≠ ¬A) if a row of form (0,0,0, ...,0 | c), c≠0 does not exist, then rows are of form (0,0,0, ...,0 | 0), which satisfies 0 = 0, or satisfies for all rows that have a leading variable. Which can be solved by assigning values to non-leading variables

to determine values of leading variable.

- ii) Assume the system is consistent
 - a) (number of variables = number of leading variables) | There's no free (non-leading) variables | system has unique solution.
 - b) (number of variables < number of leading variables) | There are free (non-leading) variables | system has infinite solution.