Name:

Regents review and practice

January 2020

- 1. A cone has a volume of 108π and a base diameter of 12. What is the height of the cone?
- 2. The endpoints of directed line segment PQ have coordinates of P(-7, -5) and Q(5, 3). What are the coordinates of point A, on \overline{PQ} , that divide \overline{PQ} into a ratio of 1:3?
- 3. Kayla was cutting right triangles from wood to use for an art project. Two of the right triangles she cut are shown below.

If $\triangle ABC \sim \triangle DEF$, with right angles B and E, BC = 15 cm, and AC = 17 cm, what is the measure of $\angle F$, to the nearest degree?

- 4. Jaden is comparing two cones. The radius of the base of cone A is twice as large as the radius of the base of cone B. The height of cone B is twice the height of cone A. The volume of cone A is
 - (a) twice the volume of cone B
 - (b) four times the volume of cone B
 - (c) equal to the volume of cone B
 - (d) equal to half the volume of cone B
- 5. A regular hexagon is rotated about its center. Which degree measure will carry the regular hexagon onto itself?

(a) 45°

(c) 120°

(b) 90°

(d) 135°

6. In triangle MAH below, \overline{MT} is the perpendicular bisector of \overline{AH} .

Which statement is *not* always true?

- (a) $\triangle MAH$ is isosceles.
- (b) $\triangle MAT$ is isosceles.
- (c) \overline{MT} bisects $\angle AMH$.
- (d) $\angle A$ and $\angle TMH$ are complementary.

7. In circle B below, diameter \overline{RT} , radius \overline{BE} , and chord \overline{RE} are drawn.

It $m \angle TRE = 15^{\circ}$ and BE = 9, then the area of sector EBR is what in terms of π ?

- 8. Lou has a solid clay brick in the shape of a rectangular prism with a length of 8 inches, a width of 3.5 inches, and a height of 2.25 inches. If the clay weighs 1.055 oz/in³, how much does Lou's brick weigh, to the nearest ounce?
- 9. In right triangle RST below, altitude \overline{SV} is drawn to hypotenuse \overline{RT} .

If RV = 4.1 and TV = 10.2, what is the length of \overline{ST} , to the nearest tenth?

10. For the acute angles in a right triangle, $\sin(4x)^{\circ} = \cos(3x+13)^{\circ}$. What is the number of degrees in the measure of the smaller angle?

Name:

Similarity January 2020

11. Triangle JGR is similar to triangle MST. Which statement is not always true?

(a) $\angle J \cong \angle M$

(c) $\angle R \cong \angle T$

(b) $\angle G \cong \angle T$

(d) $\angle G \cong \angle S$

12. In trapezoid ABCD below, $\overline{AB} \parallel \overline{CD}$.

If AE = 5.2, AC = 11.7, and CD = 10.5, what is the length of \overline{AB} , to the nearest tenth?

- 13. The line represented by 2y = x + 8 is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y \frac{1}{2}x = 2$. What is the scale factor?
- 14. In quadrilateral ABCD below, $\overline{AB} \parallel \overline{CD}$, and E, H, and F are the midpoints of \overline{AD} , \overline{AC} , and \overline{BC} , respectively.

If AB = 24, CD = 18, and AH = 10, then what is FH?

Name:

- 15. Points that are all located on the same plane are _____
- 16. Identify three points in the given plane.

17. Given \overline{ABC} , AB = 3x - 4, BC = x + 5, AC = 13. Find BC. Check your answer for full credit.

18. Given \overrightarrow{PQ} as shown on the number line, with P=-3 and Q=5.5.

What is the exact distance on the number line between the points P and Q?

19. Given \overline{WXYZ} , $WX=3\frac{1}{2}$, $XY=4\frac{3}{4}$, and $YZ=1\frac{1}{4}$. Find WZ.

20. Given the points V and W, draw \overrightarrow{WV} .

21. Use symbols to write the name of each geometric figure.

22. Given $\triangle ABC$ with $\overline{AB}\cong \overline{AC}$. On the diagram mark the congruent line segments with tick marks.

- 23. Find the measure of the angle in degrees and the given segment's length in centimeters.
 - (a) $m\angle GEF = \underline{\hspace{1cm}}$
 - (b) EG =_____
 - (c) Name a pair of opposite rays: _____

Name:

- 24. Use each term according to its geometric meaning: "sketch", "draw", "construct".
 - (a) ______ is to make a freehand diagram showing important features.
 - (b) ______ is to depict with accurate measures using ruler, protractor, and compass.
 - (c) ______ is a formal, logical process to create geometric figures using only a straightedge and compass.
- 25. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: \overrightarrow{PR} and \overrightarrow{PU} are opposite rays.
- (b) True or False: $\angle TPR$ is an obtuse angle.
- (c) True or False: $\angle RPS$ and $\angle TPU$ are adjacent angles.
- 26. Given the rectangle ABCD shown below, with AB = 12 and BC = 5. The diagonal \overline{AC} is drawn to create two triangles. Find the area of the lower triangle, $\triangle ABC$.

27. A student constructs a triangle with a given side, \overline{AB} as shown below. Is $\triangle ABC$ equilateral? Justify your answer by explaining what was done incorrectly and how it should have been done.

28. In the following two problems, solve for the value of x.

(a)
$$3(x-5) = -33$$

(b)
$$3 - \frac{1}{2}x = 2$$

29. In the following two problems, solve for the value of x by factoring.

(a)
$$x^2 + 6x = -5$$

(b)
$$x^2 = x + 12$$