To Add or to Multiply 解题报告

试题来源

ACM/ICPC World Finals 2011 A

题目大意

给定两个操作:1、加上一个数 a 2、乘上一个数 m。

求一个最短的操作序列,使得所有整数 $\mathbf{x} \in [\mathbf{p}, \mathbf{q}]$,依次进行操作后得到的值 $\mathbf{y} \in [\mathbf{r}, \mathbf{s}]$,若有多个最短找出字典序最小的一个。

所有的的 a,m,p,q,r,s∈[1,1000000000],且 p≤q,r≤s。

考察算法

数学,进制表示

算法详解

对于 15%的数据, 所有数不大于 50 的情况, 可以直接搜索得解。

对于全部的数据,设 $y=kx+b(k\geq 1)$,由于 y 对于 x 单调递增,所以 $k*p+b\geq r, k*q+b\leq s$ 。我们可以发现 $k=m^n$,b=a*w。这个可以用归纳法证明:

- 1、先假设 k=mⁿ,b=a*w,然后开始时 k=1=m⁰,b=0=a*0。
- 2、操作后(kx+b)*m=mⁿ⁺¹x+bm, kx+b+a=kx+(w+1)a, 仍然符合假设, 所以得证。

所以我们可以枚举 n,然后得到 w 的取值范围。对于每个 n,可以使 $w=C_n*m^n+C_{n-1}*m^{n-1}......+C_1*m+C_0$,那么我们的操作序列就是: C_nA 1M $C_{n-1}A$

1M C_2A 1M C_1A 1M C_0A 。那么序列长度 $I=n+\sum_{i=0}^n C_i$ 。由于 A 的字典序小

于 M,所以当序列长度相同时,越前面的 C 应该越大。若存在 $C_i \ge m(i < n)$,那么使之减少 m,然后使 C_{i+1} 增加 1,这会使解变得更优。所以除 C_n 外,其余每个都 C_i 小于 m。

设解出的 w 的取值范围为 u≤w≤v,若 u=v,那么序列直接被确定。若 u<v 则将 u,v 拆分,从 n 到 1 枚举系数 C_i ,若系数相同,那么这一位就已经确定。若 第 i 项系数不同,设其中的较小值为 t,那么我们可以确定 $C_1=C_2=\cdots=C_{i-1}=0$,因为如果其中有一项非 0,由于 C_i ≥t 那么这个解,必定劣于解 C_i =t+1, $C_1=C_2=\cdots=C_{i-1}=0$ 。同时我们发现 C_i 必定等于 t 或 t+1。那么之后我们只需要判断 C_i =t 是 否符合要求就可以确定 C_i 的值。

枚举 n 求出每一个 n 的最优解,然后直接比较得到最优解。由于原操作序列非常长,所以我们要比较转化后的操作序列。注意当 m=1 时只计算 n=0 的情况。这样时间复杂度即为 $O(log^2s)$ 。