Begonnen am	Montag, 18. Dezember 2023, 13:42
Status	Beendet
Beendet am	Donnerstag, 21. Dezember 2023, 14:53
Verbrauchte Zeit	3 Tage 1 Stunde
Bewertung	28,50 von 30,00 (95 %)
Frage 1	
Erreichte Punkte 1,00 vor	1.00

Which statements about unsupervised learning are true?

Wählen Sie eine oder mehrere Antworten:

- It does not need labels for training
- extstyle ext
- Its goal is to learn a mapping from input data to output data.
- It needs labels for training

Your answer is correct.

Die richtigen Antworten sind: Its goal is to find patterns in the data., It does not need labels for training

Richtig
Erreichte Punkte 1,00 von 1,00
Which of the following methods solve a supervised learning problem?
Wählen Sie eine oder mehrere Antworten:
☑ Ordinary Least Squares Regression ✓
□ Non-Negative Matrix Factorization
☑ (Kernel) Ridge Regression ✓
☐ K-Means Clustering
✓ Perceptron ✓
☑ Nearest Centroid Classifier ✓
 Principal Component Analysis
☑ Linear Discriminant Analysis ✓
Your answer is correct.
Die richtigen Antworten sind: Linear Discriminant Analysis, Nearest Centroid Classifier, Perceptron, Ordinary Least Squares
Regression, (Kernel) Ridge Regression
Frage 3
Richtig
Erreichte Punkte 1,00 von 1,00
Cross-Validation can be used to
Wählen Sie eine oder mehrere Antworten:
detect outliers in the data
train a model that will be deployed
estimate the generalization error
☑ find optimal parameter values ✓
Your answer is correct.
Die richtigen Antworten sind: estimate the generalization error, find optimal parameter values

Frage 4
Richtig
Erreichte Punkte 1,00 von 1,00
Which statements are true? Nested Cross-Validation
Wählen Sie eine oder mehrere Antworten:
☑ a performs multiple cross-validations. ✓
□ b can be only used to estimate the generalization error, but is more accurate than usual cross validation.
c can be used for parameter tuning while it also estimates the generalization error. ×
d is the same as cross-validation.
Your answer is correct.
Die richtige Antwort ist: performs multiple cross-validations.
Frage 5
Richtig
Erreichte Punkte 1,00 von 1,00

Which statement about Principal Component Analysis is false?

Wählen Sie eine Antwort:

- O PCA finds the direction that maximizes the variance of the projected data
- lacktriangleright The first k PCs are the eigenvectors corresponding to the smallest k eigenvalues \checkmark
- ullet The data mapped onto the first k principal components is uncorrelated.

Your answer is correct.

Die richtige Antwort ist: The first k **PC**s are the eigenvectors corresponding to the smallest k eigenvalues

Frage 6	
Richtig	
Erreichte Punkte 1,00 von 1,00	
Tick the correct statements regarding Principal Compor Wählen Sie eine oder mehrere Antworten:	biggest
 The first principal component corresponds to the components must be orthogonal 	
Negative eigenvalues indicate negative correlation	tigenvalue 7. dist
The covariance matrix is symmetric and positive se	emi-definite 🗸

Your answer is correct.

Die richtigen Antworten sind: Distinct principal components must be orthogonal, The covariance matrix is symmetric and positive semi-definite

Frage 7

Richtig

Erreichte Punkte 1,00 von 1,00

Linear Kernel PCA is cheaper to compute than standard PCA if, ...

Wählen Sie eine Antwort:

- ... the data in non-negative
- ... the number of samples is larger than the number of features
- ... the noise in the data follows a Gaussian distribution
- $\, ullet \,$... the number of features is larger than the number of samples $\, ullet \,$

Your answer is correct.

Die richtige Antwort ist: ... the number of features is larger than the number of samples

- If there are more dimensions than samples $(n \ll d)$ Compute PCA on linear kernel matrix $X^\top X \in \mathbb{R}^{n \times n}$
- If there are more samples than dimensions $(d \ll n)$ Compute PCA on covariance matrix $XX^{\top} \in \mathbb{R}^{d \times d}$

rage 8	
lichtig	
rreichte Punkte 1,00 von 1,00	

Nonnegative Matrix Factorization	
----------------------------------	--

PCA/HMF都用于 reduce dimensionality

Wählen Sie eine oder mehrere Antworten:

- ... is an iterative method
- ... learns a lower dimensional embedding
- extstyle ext
- ... maps the input to a higher dimensional feature space

Your answer is correct.

Die richtigen Antworten sind: ... learns a lower dimensional embedding, ... is an iterative method, ... yields interpretable results for non-negative valued data

```
Frage 9
Richtig
Erreichte Punkte 8,00 von 8,00
```

Insert your implementation of the function pca() from the notebook. Make sure to use inputs and returns of the function just as described in the notebook.

Antwort: (Abzugssystem: 0 %)

Antwort zurücksetzen

```
1 v def pca(X, ncomp=10):
 2
         ''' Principal Component Analysis
 3
        INPUT: X
                        - dxn array of n data points with d features
 4
                ncomp - number of principal components to estimate
 5
        OUTPUT: W
                        - d x ncomp array of directions of maximal variance,
 6
                        sorted by their eigenvalues
                        - ncomp x n array of projected data '''
 7
 8
 9
        ncomp = min(np.hstack((X.shape, ncomp)))
10
        # ... your code here ...
11
12
        # center the data
13
        x_{means} = np.mean(X, axis = 1)
14
        X = X - x_{means.reshape(-1,1)}
15
        #print(x_means,np.hstack((X.shape, ncomp)),X_centered)
16
        # compute linear kernel
17
        K = X.T @ X
        # compute eigenvectors and sort them according to their eigenvalues
18
19
        eigenvalues, eigenvectors = np.linalg.eig(K)
20
        #print(eigenvalues, eigenvectors)
21
22
        idx = np.argsort(-eigenvalues)
23
        eigenvalues = eigenvalues[idx]
        eigenvectors = eigenvectors[:,idx]
24
25
        #print(idx,eigenvalues.shape, eigenvectors.shape,X.shape)
26
27
        # select k largest eigenvalues
28
        W = X @ eigenvectors[:,:ncomp]
29
        H = W.T @ X
30
        # compute W and H
31
        return W, H
```

	Test	Erwartet	Erhalten	
~	import numpy as np	True	True	~
	# create random rotated data			
	np.random.seed(1)			
	X = np.array([[1,2],[0,2]]) @ np.random.randn(2,300)			
	# apply liner kernel pca			
	W, H = pca(X,2)			
	<pre># normalize eigenvectors (non normalized because of kernel context)</pre>			
	<pre>W = W / np.diag(W.T @ W)[None, :]</pre>			
	# project back to original space			
	R = W @ H			
	# compare to X normalized			
	<pre>Xn = X - X.mean(axis=1, keepdims=True)</pre>			
	<pre>print(np.allclose(R, Xn))</pre>			

	Test	Erwartet	Erhalten	
~	import numpy as np	True	True	~
	# create random rotated data			
	np.random.seed(1)			
	<pre>X = np.random.rand(20,20) @ np.random.rand(20,300)</pre>			
	# apply liner kernel pca			
	W, H = pca(X, 20)			
	<pre># normalize eigenvectors (non normalized because of kernel context)</pre>			
	W = W / np.diag(W.T @ W)[None, :]			
	# project back to original space			
	R = W @ H			
	# compare to X normalized			
	<pre>Xn = X - X.mean(axis=1, keepdims=True)</pre>			
	<pre>print(np.allclose(R, Xn))</pre>			

Alle Tests bestanden! ✓

Richtig

Bewertung für diese Einreichung: 8,00/8,00.

Information

Richtig

Erreichte Punkte 1,00 von 1,00

Initialize the centroids to the mean of X and separate them by adding standard normal noise to it (as described in Task 2. A in the notebook).

Antwort: (Abzugssystem: 0 %)

Antwort zurücksetzen

```
import numpy as np
np.random.seed(1)
d, n, k = 2, 500, 3
X = np.random.randn(d, n)

#centroids = # compute the matrix of centroids (d x k)
idx = np.random.choice(n,k)
centroids = X[:, idx]
```

	Test	Eingabe	
~	round(centroids[0][0],4)	-0.0998	~
~	round(centroids[1][2],4)	-0.8472	~

Alle Tests bestanden! ✓

Richtig

Bewertung für diese Einreichung: 1,00/1,00.

Frage 11 Richtig Erreichte Punkte 3,00 von 3,00

For step 1 of the k means algorithm, we need the distance between each data point x_i and each centroid μ_j .

Complete the function distmat that calculates a matrix $Dist \in \mathbb{R}^{n imes m}$.

Antwort: (Abzugssystem: 0 %)

Antwort zurücksetzen

```
import numpy as np
 2
def distmat(X, Y):
    """ Distance Matrix
 5
        INPUT:
                     Χ
                                 - dxn array of N data points with d features
                                 - dxm array of M data points with d features
 6
                               - nxm array s.t. D[i, j] = || x_i - y_j ||^2
                     distmat
 8
        Hint: np.tile might be helpful
 9
10
11
        d, n = np.shape(X)
12
        d_y, m = np.shape(Y)
13
        assert d == d_y
14
15
        # calculate the distance matrix
        \# ... your code here ...
16
17
        #dist = np.zeros(1)
        dist = np.zeros((n,m))
18
19 •
        for i in range(n):
             for j in range(m):
20 •
21
                 dist[i,j] = np.sum((X[:,i] - Y[:,j])**2)
22
23
24
25
        return dist
```

	Test	Erwartet	Erhalten	
~	<pre>np.random.seed(3) X =</pre>	[[19.05459673 49.80046971 12.04469063 31.60051139	[[19.05459673 49.80046971 12.04469063 31.60051139	~
	np.random.randn(10,20)	26.15388087]	26.15388087]	
	Y =	[17.30121641 11.45715976	[17.30121641 11.45715976	
	np.random.randn(10,5)	9.32182249 8.89565008	9.32182249 8.89565008	
	<pre>print(distmat(X, Y))</pre>	13.71033844]	13.71033844]	
		[14.04142679 24.89194967	[14.04142679 24.89194967	
		13.21157321 13.38536058	13.21157321 13.38536058	
		21.66263494]	21.66263494]	
		[23.0439199 50.90861883	[23.0439199 50.90861883	
		23.9635248 38.63976426	23.9635248 38.63976426	
		47.52835569]	47.52835569]	
		[32.45822809 37.88427093 23.25191876 27.58444617	[32.45822809 37.88427093 23.25191876 27.58444617	
		18.49459745]	18.49459745]	
		[18.49029931 29.77753166	[18.49029931 29.77753166	
		16.00435534 14.02314878	16.00435534 14.02314878	
		16.669772691	16.669772691	
		[17.46542632 32.31299977	[17.46542632 32.31299977	
		18.29267833 21.82045356	18.29267833 21.82045356	
		21.66789513]	21.66789513]	
		[16.73717553 16.37335167	[16.73717553 16.37335167	
		6.15982101 16.85732793	6.15982101 16.85732793	
		11.36520831]	11.36520831]	
		[20.20753085 54.48197801	[20.20753085 54.48197801	
		17.69450879 45.04736398	17.69450879 45.04736398	
		34.75789074]	34.75789074]	
		[17.4530542 25.01821764	[17.4530542 25.01821764	
		12.61102795 19.86847094	12.61102795 19.86847094	
		24.19008106] [20.65668009 18.41018333	24.19008106] [20.65668009 18.41018333	
		13.27256928 16.58148216	13.27256928 16.58148216	
		18.00918868]	18.00918868]	
		[21,26637574 25,16938127	[21,26637574 25,16938127	
		30.8026436 20.97310663	30.8026436 20.97310663	
		20.87062217]	20.87062217]	
		[22.45077568 25.42815504	[22.45077568 25.42815504	
		13.74633768 16.13634877	13.74633768 16.13634877	
		9.95600904]	9.95600904]	
		[20.4624784 29.09407173	[20.4624784 29.09407173	
		16.56423721 9.77490254	16.56423721 9.77490254	
		24.10762538]	24.10762538]	
		[17.45192654 15.31948003 9.9598384 9.32034937	[17.45192654 15.31948003 9.9598384 9.32034937	
		13.25615985]	13.25615985]	
		[28.09105835 52.24253558	[28.09105835 52.24253558	
		23.01621664 30.92847166	23.01621664 30.92847166	
		29.64954333]	29.64954333]	
		[14.04362076 37.16868139	[14.04362076 37.16868139	
		10.91208124 11.04538385	10.91208124 11.04538385	
		26.05270115]	26.05270115]	
		[11.12093489 40.33424146	[11.12093489 40.33424146	
		9.11996721 27.99672981	9.11996721 27.99672981	
		17.36761056]	17.36761056]	
		[19.26314221 20.66795688	[19.26314221 20.66795688	
		10.25572774 18.91013105	10.25572774 18.91013105	
		16.56425754]	16.56425754]	
		[27.7111169 50.0081247	[27.7111169 50.0081247	
		25.77038572 27.67096015 42.84422069]]	25.77038572 27.67096015	
		72.04422003]]	42.84422069]]	

Alle Tests bestanden! 🗸

Bewertung für diese Einreichung: 3,00/3,00.

Frage 12 Richtig Erreichte Punkte 4,00 von 4,00

Assign each data point to its closest centroid as indicated by the distances measured in the matrix "dist".

Antwort: (Abzugssystem: 0 %)

Antwort zurücksetzen

```
import numpy as np
    def get_closest(dist):
    """ Distance Matrix
3 •
 4
 5
        INPUT:
                   dist
                                - nxm array of distance between data point n and m
        OUTPUT:
 6
                    closest
                                - nxk array that indicates for each of the N data points
                                  in X the closest centroid in current iteration.
 8
                                  Each row in closest only holds one non-zero entry.
9
                                  closest[i, j] == 1 <=>
10
                                  centroids[:, j] is closest to data point X[:, i]
11
12
13
        n, k = dist.shape
        closest = np.zeros((n, k), dtype='bool')
14
15
        # compute the matrix indicating the closest centroid
16
17
        # ... your code here ...
18
19
        #closest = np.zeros(1)
        #closest = np.zeros(1)
20
        max_by_row = np.min(dist,axis = 1)[:,None]
21
22
        closest = max_by_row == dist
23
        return closest
```

	Test	Erwartet	Erhalten	
_	np.random.seed(3)	[[False False True]	[[False False True]	~
	<pre>dist = np.abs(np.random.randn(30,3))</pre>	[False True False]	[False True False]	
	<pre>print(get_closest(dist))</pre>	[False False True]	[False False True]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[False True False]	[False True False]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[False True False]	[False True False]	
		[False False True]	[False False True]	
		[False False True]	[False False True]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[False False True]	[False False True]	
		[True False False]	[True False False]	
		[False False True]	[False False True]	
		[True False False]]	[True False False]]	

Alle Tests bestanden! ✓

Richtig

Bewertung für diese Einreichung: 4,00/4,00.

Frage 13 Richtig Erreichte Punkte 4,00 von 4,00

Update each cluster center to the mean of the members in that cluster

Antwort: (Abzugssystem: 0 %)

Antwort zurücksetzen

```
import numpy as np
 2
3
     def update_centroids(X, closest):
 4
 5
         INPUT: X
                                  - dxn array of N data points with D features
 6
                                  - nxk array that indicates for each of the N data points
                   closest
 7
                                     in X the closest centroid after convergence.
 8
                                     Each row in closest only holds one non-zero entry.
                                  closest[i, j] == 1 <=>
centroids[:, j] is closest to data point X[:, i]
- dxk array of k centroids with d features
 9
10
         OUTPUT: centroids
11
12
13
14
         # ... your code here ...
15
         #centroids = np.zeros(1)
16
17
         d,n = X.shape
         n1,k = closest.shape
18
19
         centroids = np.zeros((d,k))
20
21 ,
         for i in range(k):
              k_cluster = X[:,closest[:,i]]
centroids[:,i] = np.mean(k_cluster,axis = 1)
22
23
24
25
26
         return centroids
```

	Test	Erwartet	Erhalten	
~	np.random.seed(3) exp = np.array([[-0.02054159, -0.00991774, -0.01217853], [0.03886024, -0.06677293, -0.04202068]])	[[True True True] [True True True]]	[[True True True] [True True True]]	~
	<pre>X = np.random.randn(2,1500) closest = np.zeros([1500,3],'bool') idx = np.random.randint(3,size=[1500]) closest[np.arange(idx.size),idx] = True</pre>			
	<pre>r = update_centroids(X, closest) print(np.isclose(exp,r))</pre>			

Alle Tests bestanden! ✓

Richtig

Bewertung für diese Einreichung: 4,00/4,00.

Suppose we only have two data points,
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 and $\begin{bmatrix} 0 \\ 2 \end{bmatrix}$, $X = \begin{bmatrix} 0 & 0 \\ 1 & 2 \end{bmatrix}$.

In the following, you will have to answer the following questions:

- What would be the principal directions $W = [\mathbf{w}_1, \mathbf{w}_2]$?
- What will be the variance of the projected data onto each of the principal components $\operatorname{Var}(\mathbf{w}_1^\mathsf{T} X)$, $\operatorname{Var}(\mathbf{w}_2^\mathsf{T} X)$?
- What is H?

Frage 14

Falsch

Erreichte Punkte 0,00 von 0,50

What are the principal components/eigenvectors?

$$\mathbf{w}_1 = ?$$
 and $\mathbf{w}_2 = ?$

Wählen Sie eine oder mehrere Antworten:

$$\begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} \circ & \circ \\ \hline \circ & \overline{\circ} \end{bmatrix} \begin{bmatrix} \circ & \circ \\ 1 & 2 \end{bmatrix}$$

$$egin{bmatrix} -2 \ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Your answer is incorrect.

Die richtigen Antworten sind: $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Falsch

Erreichte Punkte 0,00 von 0,50

What is the variance of the projection to the first eigenvector?

Wählen Sie eine Antwort:

$$Var(\mathbf{w}_1^\mathsf{T}X) = 0.5 \times$$

$$ightharpoonup ext{Var}(\mathbf{w}_1^\mathsf{T}X) = 0.25$$

$$\bigcirc \ \operatorname{Var}(\mathbf{w}_1^\mathsf{T} X) = 5$$

Your answer is incorrect.

Die richtige Antwort ist: $\mathrm{Var}(\mathbf{w}_1^\mathsf{T} X) = 0.25$

Frage 16

Falsch

Erreichte Punkte 0,00 von 0,50

The variance of the data projected to the second eigenvector is

×

Wählen Sie eine Antwort:

$$\bigvee \operatorname{Var}(\mathbf{w}_2^{\mathsf{T}}X) = 0$$

$$extstyle extstyle ext$$

 $\bigcirc \operatorname{Var}(\mathbf{w}_2^\mathsf{T} X) = -1$

Your answer is incorrect.

Die richtige Antwort ist:

$$\operatorname{Var}(\mathbf{w}_2^\mathsf{T} X) = 0$$

Richtig

Erreichte Punkte 0,50 von 0,50

What is the data projected to the first PC?

Wählen Sie eine Antwort:

$$\begin{bmatrix} 2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \end{bmatrix}$$

Your answer is correct.

Die richtige Antwort ist: $\begin{bmatrix} 1 & 2 \end{bmatrix}$