

VERSION 5

JUN 09, 2023

OPEN ACCESS

dx.doi.org/10.17504/protocol s.io.n2bvj6mdnlk5/v5

Protocol Citation: Yin-Tse Huang, Tsu-Chun Hung 2023. DNA extraction (BOMB). protocols.io

https://dx.doi.org/10.17504/p rotocols.io.n2bvj6mdnlk5/v5V ersion created by Yin-Tse Huang

License: This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

Protocol status: Working We use this protocol and it's working

Created: Jun 09, 2023

Last Modified: Jun 09, 2023

PROTOCOL integer ID: 83099

ONA extraction (BOMB) V.5

Yin-Tse

Huang¹, Tsu-Chun Hung¹

¹KMU

Yin-Tse Huang

ABSTRACT

DNA extraction (BOMB)

MATERIALS

1. Lysis master mix (870 uL/sample)

A	В
TE buffer	225 uL
Lysis buffer	375 uL
Ammonium acetate	270 uL

2. TE buffer

A	В
Tris HCl pH8.0	10mM
EDTA	1mM

3. Lysis buffer

A	В
GITC	4M
Tris HCI pH8.0	50mM
SDS	0.5g
EDTA	20mM

Sample Collection

3m

1 Add 4 200 µL of **0.5 mm beads** to 2mL screw tube

2 Add 4 200 µL of 1 mm beads to 2mL screw tube

3 Add \underline{A} 870 μ L Lysis master mix to 2mL screw tube. The final look:

30s

Note

In 11F, 4°C fridge

Lysis master mix: 225 μ L of TE buffer + 375 μ L of lysis buffer + 270 μ L of 10M ammonium acetate

4 Collect 4 20-50 mg of **sample** to 2mL screw tube

Note

You can collect up to 100 mg of sample if you can until you bump into the low DNA quality or PCR success rate; by then it means too many inhibitors in the sample and you have to lower the input.

Sample crush

4m

5 Put the 2mL screw tube in mixmill for sample crush, at 3200 rpm 00:04:00

Note

Remember to balance if you have odd number of samples

Centrifugation

3m

6

Put 2mL screw tube in centrifuge for centrifugation, at this condition:

10 x g, 25°C, 00:03:00

3m

DNA purification

37m 30s

7 Add \mathbb{Z} 350 μ L of **isopropanol** to the 1st well of 96 well plate

30s

Add \coprod 100 μ L of magnetic beads (10mg/ml) to the 1st well of 96 deep well plate

30s

10 Add $\underline{\mathbb{Z}}$ 300 μL of 80% ethanol to the 3rd well of 96 deep well plate

Add \pm 300 μ L of 80% ethanol to the 4th well of 96 deep well plate

30s

12 Add $\underline{\mathbb{Z}}$ 300 μL of **DDW** to the 5th well of 96 deep well plate

Add \perp 100 μ L of **DEPC-treated water** to the 6th well of 96 deep well plate

Add \perp 300-500 μ L of the **sample (lysate)** from the 1.5mL centrifuged tube to the 1st well of 96 14 deep well plate

Note

Pipetting **as many lysate as you can**, as long as it's free of any cell debris (no solids in your tip)

Put the prepared 96 deep well plate in the automated DNA extraction machine and select the BOMB protocol

34m

16 After the extraction is done, put on the 96 magnetic plate to pellet the magnetic bead residues.

