

Help

View

<u>Image</u>

1 page

Log Out Work Files Saved Searches

My Account

Search: Quick/Number Boolean Edvanced Derwent

The Delphion Integrated View

Get Now: PDF More choices		Tools:	Add to Work File: Create new Work File . Go
View: INPADOC Jump to: Top	Go to: Derw	ent	

JP9212915A2: OPTICAL RECORDING MEDIUM

Optical recording medium such as compact disc - has optical absorption layer, thin

metal layer, silver reflection layer and protective layer which are sequentially

layered over transparent substrate [Derwent Record]

JP Japan

MIYASHITA TAKEHIRO;

UMEHARA HIDEKI; **FUKUDA SHIN**; **FUKUDA NOBUHIRO**;

Assignee:

MITSUI TOATSU CHEM INC

News, Profiles, Stocks and More about this company

Published /

Filed:

1997-08-15 / 1996-02-06 JP1996000019648

SApplication

Number:

G11B 7/24; G11B 7/24;

Priority

1996-02-06 JP1996000019648

Number:

None **Family**:

Go to Result Set: Forward references (1) Forward

References:

PDF	Patent	Pub.Date	Inventor	Assignee	Title
		0000 05 07	Arioka;	TDK	Optical recording medium and process for
<u>US6383596</u>	2002-05-07	Hiroyuki	Corporation	producing the same	

9 Other Abstract Info:

DERABS G97-462752 DERG97-462752

Nominate this for the Gallery...

Copyright © 1997-2004 The Thomson Corporation

Powered by

Subscriptions | Web Seminars | Privacy | Terms & Conditions | Site Map | Contact Us | Help

Patent & Utility Model Concordance

Document Number list

	1	2	3	4	5
Application Number	08-019648(1996)	•			
Unexamined Publication Number	JP,09-212915,A(1997)				
Examined Publication Number					
Registration Number					

Please choose a Kind code wi		
Kind code Unexamined	Display Type All Pages	
List		Stored Data

(11) Publication number:

05073975 A

Generated Document.

PATENT ABSTRACTS OF JAPAN

(21) Application number: 03258708

(51) Intl. Cl.: G11B 11/10

(22) Application date: 11.09.91

(30) Priority:

(43) Date of application

publication:

26.03.93

(84) Designated contracting

states:

(71) Applicant: TONEN CORP

(72) Inventor: ASO JUNICHI

ARAI YOSHIHIRO

(74) Representative:

(54) MAGNETO-OPTICAL RECORDING MEDIUM

(57) Abstract:

PURPOSE: To provide the magneto-optical recording medium having high reproduced signal characteristics and recording sensitivity.

CONSTITUTION: At least one kind of the metals selected from among (A) Al, Au, Ag, and Cu and at least one kind of the metals selected from among (B) Ge, Ir, Nb, Rh, Ru, Si, Sn, Ta, Th, Ti, V, W, Zn, and Zr are incorporated into the heat conductive layer of the magneto-optical recording medium having at least the constitution of a substrate/magnetic layer/heat conductive layer. The ratio of the metals of the group (B) is specified to 0.1 to 1mol% of the total amt. of the metals of the group (A) and the metals of the group (B).

COPYRIGHT: (C)1993,JPO&Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(川)特許出類公開番号

特開平5-73975

(43)公開日 平成5年(1983)3月28日

(51)Int.CL⁵

 FI

技術表示首所

G11B 11/10

A 9075-5D

審査請求 未請求 請求項の数2(全 5 頁)

(21)出期登号	特 與平3-258708	(71)出原人 390022998 東塩株式会社
(22)治頭日	平成3年(1991)9月11日	東京部千代田区一ツ橋1丁目1番1号 (72)発明者 阿相 順一 埼玉県入園郡大井町西鶴ケ岡一丁目3番
		号 東燃模式会社総合研究所内 (72)発明者 荒井 芳博 埼玉県人園郡大井町西鶴ヶ岡一丁目3番 号 東燃煤式会社総合研究所内
		(74)代理人 弁理士 久保田 新平 (外1名)

(54)【発明の名称】 光磁気記録媒体

(57)【要約】

【目的】高い再生信号特性および記録感度を有する光磁 気記録媒体を提供する。

【構成】基板/磁性層/熱性導層の構成を少なくとも有する光磁気記録媒体において、熱伝導層が、(A)A). Au、AgaよびCuから選ばれる少なくとも1種の金属および(B) Ge. Ir、Nb. Rh、Ru、Su. Sn、Ta. Th、Ti、V、W. Znおよび2rから選ばれる少なくとも1種の金属を含み、(B)群の金属が、(A)群の金属および(B)群の金属の合計量のり、1~1~ル%である光磁気記録媒体。

(2)

特開平5-73975

【特許請求の範囲】

【請求項1】 透明基板上に磁性層と、該磁性層の基板 と反対側に隣接して熱伝導層とが少なくとも設けられた 光磁気記録媒体において、該熱伝導層が、(A)A!、 Au. AgおよびCuから遊ばれる少なくとも1種の金 届および (B) Ge、ir、Nb、Rh、Ru、Si、 Sn. Ta、Th、Ti. V、W、ZnおよびZrから 選ばれる少なくとも1種の金属を含み。(B) 群の金属 が、(A)群の金属および(B)群の金属の合計量の ①. 1~1モル%であることを特徴とする光磁気記録媒 10

【請求項2】 熱伝導風の層厚が150~300オング ストロームである請求項1記載の光磁気記録媒体。 【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、高い再生信号特性およ び高記録感度を有する再生可能な光磁気記録媒体に関す る.

[0002]

【従来の技術】情報の記録・再生を繰返すこと、すなわ 20 ち情報の舎換えが可能な記録層(磁性層)を備えた記録 媒体として、磁性層の微細な区域を光によってキュリー 点まで加熱し、この区域の保護力が極端に低下した状態 で外部磁界を印加し磁化方向の反転を生じさせ、信報を 記録する光磁気記録媒体が実用化されている。

【0003】とのような光磁気記録媒体では、情報は 0. 1に対応する磁化方向の反転区域と未反転区域との 繰り返しとして記録される。記録された情報は、例えば レーザー光が記録屋の表面で反射する際に、その偏向面 が磁化の方向によって異なる方向に回転するカー効果を 利用し、この回転角 (カー回転角 8 x) の変化を読み取 るととにより再生される。

【①①04】磁性層のカー回転角8kは、記録された情 級の再生特性に重大な影響をおよぼし、例えば情報の読 取りやすさの指標となるC/N比(再生信号特性)は、 カー回転角8kの増大とともに向上する。C/N比を向 上させることにより、精報再生装置の光学系の錯度を下 けても正確な信報再生を行える他、再生速度を上げるこ とが可能となる。

上に順次、第1誘電体層、記録層である磁性層および第 2 誘電体層が形成された層構成を有している (特開平1-263963号公報、特別昭62-209750 号公報および特別昭62 -217444 号公報)。第1誘電体層は、磁性層を保護する 役割を有しており、酸化されやすい磁性層への酸素、水 などの透過を防止する。さらに第1誘電体層は、カー効 果を高めるエンハンス層として働き、多重反射を利用し て見かけ上のカー回転角を大きくして再生信号特性を向 上させる。また、第2諸電体層は磁性層の保護のために 颔けられる。

【りり06】さらに最近では、より大きな再生信号特性 を得るために、磁栓層に隣接させて、もしくは第2誘電 体層の外側に、反射層を設けた構成の光磁気記録媒体に ついての研究がなされている(特公昭52-27458号公報、 特開昭60-53747号公報)。これは、カー効果に加えて、 磁性層透過光の反射によるファラデー効果を利用しよう とするものである。

[0007]

【発明が解決しようとする課題】反射層は、磁性層にレ ーザーによって書き込む際の熱を順垂直方向に逃げやす くし、ピットを矩形に書かせて高いC/N比を得る目的 で、Al、Au、Ag、Cu等の材料が用いられてき た。しかしながら、このような材料では記録感度が低 く、高記録パワー領域でしか高いC/N比を得ることが できないという問題があった。

【0008】また、耐酸性の改善、C/N比および記録 感度を高める等の目的で、Alと、他の金属との合金を 用いる試みも知られている。例えば、Ta、Ti、2 r. V、Mo. Cr、Pt. Pdを15モル%まで (実 施例では3モル%) 含むA 1の合金 (特闘平1-173454号 公報および特開平1-173455号公報)、Pt、Pd. Mo またはC!を0.1~15モル%含むA!の合金(特関 昭54-86348号公報) 等である。しかしながら、このよう な合金の場合。書き込み時のレーザー熱の膜垂直方向へ 逃げる速度が低下するので記録感度は向上するが、ピッ ト矩形性に劣るため、なおC/N比が低いという問題が あった

【0009】そこで本発明は、高い再生信号特性および 高記録感度を育する光磁気記録媒体を提供することを目 35 的とする。

[0010]

【課題を解決するための手段】本発明者らは、反射層の 材質について鋭き検討を重ねた結果。従来使用されてい たAl、Au、Ag、Cu等の材料に、特定の金属を極 微量添加すると、高い再生信号特性および高記録感度を 有する光磁気記録媒体を得ることができることを見出 し、本発明に到達した。

【0011】すなわち本発明は、透明基板上に避性層 と、該磁性層の基板と反対側に隣接して熱伝導層とが少 【0005】上記のような光遊気記録媒体は通常、基板(40)なくとも設けられた光遊気記録媒体において、該熱伝導 層が、(A)A)、Au、AgおよびCuから選ばれる 少なくとも1種の金属および(B)Ge、ig.Nb、 Rh. Ru, Si, Sn. Ta, Th. Ti, V. W, 2n および2r から選ばれる少なくとも1種の金属を含 み. (B) 群の金属が、(A) 群の金廃および(B) 群 の金属の台計量の0.1~1モル%であることを特徴と する光磁気記録媒体を提供する。

> 【0012】本発明の光磁気記録媒体は、基板/磁性層 /熱任導煙の層構成を少なくとも有する。任意的に、基 50 板と磁性層の間に第1誘電体層を、そして熱伝導層の外

(3)

特願平5-73975

側(蟇板と反対側)に第2該電体層を有することができ

【0013】 墓板の材料としては、具体的にはガラスな どの無機材料。ポリカーボネート、ポリメチルメタアク リレート、エポキシ樹脂などの樹脂材料を挙げることが できる。基板の厚さは特に限定されず、必要に応じて変 えることができる。

【①①14】 磁性層は記録層であり、通常希土類金層と 選移金属との合金が使用できる。例えば、ThFeCo 孫、GdFeCo系、DyFeCo系、PrFeCo系 10 く、直逢スパッタ法、高周波スパッタ法、反応性高周波 等の非晶質合金が挙げられる。好ましくは、次式:【下 ba (Fe, Co,) 1-4] 100-2 M2 《式中、M はCr、Ti. Zr、Pt. Pd、Rh、Nb. Vおよ び I nから選ばれ、X、Yおよび2はそれぞれ。0.17≦ X≦0.26、()≦Y≦0.20。()≦2≦6を満たす有理数で ある) で示される組成を有する。層厚は、好ましくは20 5~600 オングストロームである。磁性層は公知の薄膜 形成法のいずれで形成しても良く、例えばスパッタ法、 真空蒸着法、イオンプレーティング法、気相成長法など を使用できる。なかでもスパッタ法が特に好ましく、直 20 流スパッタ法、高周波スパッタ法、反応経高周波スパッ 夕法などが好ましく用いられる。

【① 0 1 5】本発明は、上記した磁性層の基板と反対側 の、磁性層に隣接して設けられる熱圧準層に特徴を有す る。熱伝導層は、(A)Al、Au、AgおよびCuか ら選ばれる少なくとも1種の金属および(B)Ge、i r. Nb, Rh. Ru, Si, Sn. Ta, Th. T Y、W、ZnおよびZrから選ばれる少なくとも1 種の金属を含み、(B)群の金属は、(A)群の金属は よび(B) 群の金属の合計量の(). 1~1モル%であ る。(B) 群の金属がQ. 1モル%より少ないと記録感 度が低下し、1モル%より多いとC/N比が低下してし まう。 微量な(B) 群の金属は、(A) 群の金属(母 材)中に均一に分散していても良く、または避性層側に 近付くほどその遺度が高くなっていても良い。また、 (A) 群の金属および (B) 群の金属は、一部または全

(A) 鬃の金属および (B) 鬃の金属の他にさらに、M o. Cr、Pt. Pd等の金属を1モル%まで含むこと もできる。熱任導座の歴厚は、150~300 オングストロ 40 ームであるのが好ましい。このような熱伝導層は、公知 の薄膜形成法のいずれで形成しても良い。なかでもスパ ッタ注が特に好ましく、直流スパッタ法、高周波スパッ タ法、反応性高周波スパッタ法などが好ましく用いられ る。(A) 群の金属と(B) 群の金属とを上記したよう な割合で含む層は、(A)群の金属ターゲット上に

部が合金の形になっていても良い。熱伝導座には、

(B) 辞の金属のチップをモザイク状に配置した複合タ ーゲットを用いることによって得ることができる。

【0016】第1および第2誘弯体層にはそれぞれ、2 n S等の硫化物、S:O、S:O、、In, O,、Sn 50 伝導層の煙厚は表 1 に示したとおりである。 得られた

O。等の酸化物、AIN、窒化ケイ素等の窒化物が使用 できる。好ましくは窒化ケイ煮であり、例えばSiN、 Si、N、、Si、N、等が挙げられる。各諸軍体層の 層厚は409~1500オングストロームが好ましい。特に保 護層である第2該電体層の層厚は、十分な保護特性を得 ると共に良好な記録感度を保つために、509~1209オン グストロームであるのが好ましい。このような誘電体層 は、上記した磁性層と同様に、公知の薄膜形成法のいず れで形成しても良い。なかでもスパッタ法が特に好まし スパッタ法などが好ましく用いられる。

[0017]

【作用】本発明の光磁気記録媒体においては、磁性層に 隣接して存在する熱伝導層が、Al. Au、Agおよび Cuから選ばれた金属に、上記した特定の金属が極級登 添加されたものであるので、書き込み時の熱の逃げる速 度は多少低下するが、ピット矩形性は劣化しないため、 高いC/N比を維持したまま、記録感度の向上が達成さ れる.

[0018]

【実施例】以下の実施例により、本発明をさらに詳しく 説明する。

実施例1~18および比較例1~8

ポリカーポネート (以下、PCということがある) 基板 上に、順次、SiN、{第1誘電体層、x=2.3}、 Tb. . .: Fe, . . 。Co. .: の組成を有する磁性層、表に示した 材質の熱伝導層、およびSiN、(第2諸電体層、x= 2. 0) の各層を形成した。各層の形成は、プレーナー マグネトロンスパッタ装置(基板自公転型、ULVAC 30 社製)を使用して、同一バッチ内で、以下の条件にて行 った。ただし、熱伝導層は、母材となる(A)群の金属 のターゲット上に(B)群の金属のチップをモザイク状 に配置した複合ターゲットを用いて行い、添加遺度は (B) 群の金属のチップ個数を変化させることにより行 atc.

初期真空度

第1 および第2 誘電体圧形成時: 2×15 Torr以下 磁性摄形成時:5×10° Torr以下 熱伝導層形成時:2×10° Torr以下

スパッタガス種およびガス圧

第1該電体層形成時:Ar+N,、6×10'Torr.

磁性層形成時:Ar、5×10 Torn 熱伝導層形成時:Ar、l×10 'Torr.

第2該電体層形成時:Ar+N,、3×10⁻¹Torr かくして、基板/第1誘電体歴/磁性層/熱伝導層/第 2誘電体層の唇情成を有する光磁気記録媒体を作製し た。各層の層厚は、第1誘電体層が、750オングスト ローム、磁性層が390オングストロームおよび第2誘 電体層が1000オングストロームであった。なお、熱

(4)

特開平5-73975

光歴気記録媒体の再生信号特性C/N比を、半径24 mmの測定位置にて、ディスク回転数 2409mm 、記録周波数 3.84 Mtz. 分解能帯域帽 30KHz. レーザー液長830mm にて測定した。また、C/N=45d時の記録レーザパワーを記録感度とし、およびC/N≥45dBの記録レ*

*一ザパワー範囲を45dBマージン幅として評価した。箱果を表しに示す。

[0019]

【表1】

丧 1

	熟云湖屬		并生信号特性	45dB#¥	45dBマー
	組成	限高。	(C/N) (dB)	TORREST (AV)	ジン幅(扇)
实施例1	Alos aRuo 6	210	47. 9	6.1	3.9
実施例2	Also, aRuo, o	280	47. 6	6.2	3.8
实施例3	Also a Wo a	230	47. 9	6.2	3.8
実施例4	Also a \$5 6	250	47. 8	6. 2	3.8
实施例5	Agos. sTio 2	230	47. 9	6. 3	3. 7
实施例6	Ago. 5Tio 5	260	47. 9	6.4	3. 6
实施例7	Agop. 7Nb:1. 3	240	47. 6	6. 3	3.7
实施例8	Agos. sNbo. s	260	47. 4	6.3	3.7
实施例9	Also sTio 2 Wo. 3	270	47. 7	6.1	3. 9
实施到10	Also, Tin. , Was	270	47. 8	6.1	1.9
实施例1	Aleg. 3 Vo 7	230	47.8	6. 3	3.7
实施例12	Algo, aZno, 6 &	250	47. 9	6. 2	3. 8
实施例13	Alee. 8Tan. 2	280	47. 8	6.2	3.8
实施例14	Aleg. aSno. 2	250	47.8	6. 2	3.8
实施例15	Algg. 6This 4	250	47. 9	6. 3	3.7
实施例6	Ages. Tau. 7	270	47.8	6. 3	3. 7
实施例17	Agos. 65nn. 4	280	47.9	6. 4	3.6
实施例18	Åg49, 2Thu. 8	250	47. 9	6. 4	3. 6
比較例1	Al	230	47.8	8.2	1.8
比較例2	Ag	210	47.9	8.4	1. 6
比較到3	Ales 2 11.3	200	45. 2	5.0	1.5
比较例4	Ages. aTi 1. 2	250	44. 7	5. 2	1.6
比較例5	Ales. aTa1. 2	290	45.8	5.0	2.3
比較的6	Ales, eSci. 5	290	46.0	4. 9	22
比较例7	Ages +Thi. 5	250	45.8	5.5	2.5
比较别8	Ag98. 4 V1. 6	270	46.1	5. 2	2.8

*単位:オングストローム

【発明の効果】本発明により、高い再生信号特性および 50 記録感度を有する光磁気記録媒体を提供することができ

(5)

特開平5-73975

る。したがって、本発明の光磁気記録媒体は専用性が高 く、工業的に有用である

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

05-073975

(43) Date of publication of application: 26.03.1993

(51)Int.CI.

G11B 11/10

(21)Application number : **03-258708**

(71)Applicant: TONEN CORP

(22)Date of filing:

11.09.1991

(72)Inventor: ASO JUNICHI

ARAI YOSHIHIRO

(54) MAGNETO-OPTICAL RECORDING MEDIUM

(57) Abstract:

PURPOSE: To provide the magneto-optical recording medium having high reproduced signal

characteristics and recording sensitivity.

CONSTITUTION: At least one kind of the metals selected from among (A) Al, Au, Ag, and Cu and at least one kind of the metals selected from among (B) Ge, Ir, Nb, Rh, Ru, Si, Sn, Ta, Th, Ti, V, W, Zn, and Zr are incorporated into the heat conductive layer of the magneto-optical recording medium having at least the constitution of a substrate/magnetic layer/heat conductive layer. The ratio of the metals of the group (B) is specified to 0.1 to 1mol% of the total amt. of the metals of the group (A) and the metals of the group (B).

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

CLAIMS