Applied Regression Analysis

Week 4

- 1. Homework week 3: highlights
- 2. Polynomial regression I
- 3. Polynomial regression II
- 4. Polynomial regression III
- 5. Example: Dose-response study / assessing multicollinearity
- 6. Example: Potential energy
- 7. Homework

Stanley Lemeshow, Professor of Biostatistics College of Public Health, The Ohio State University

WEEK 4: POLYNOMIAL REGRESSION

A polynomial of order k in x is an expression of the form

$$Y = C_0 + C_1 X + C_2 X^2 + C_3 X^3 + \dots + C_k X^k$$

where the c's and k are constants.

When k = 1 we had

$$\mathbf{y} = \mathbf{C}_0 + \mathbf{C}_1 \mathbf{X}$$
 straight line

Let us now focus on the 2^{nd} order polynomial (k = 2)

$$\mathbf{y} = \mathbf{C}_0 + \mathbf{C}_1 \mathbf{X} + \mathbf{C}_2 \mathbf{X}^2$$

These are <u>mathematical</u> models.

The statistical model for the k = 2 case can be expressed in one of two ways:

mean of y at a given x

Or

$$y = \beta_0 + \beta_1 X + \beta_2 X^2 + \varepsilon$$
Unknown parameters

(regression coefficients)

(regression coefficients)

Let us now use the method of least squares to obtain estimates for the regression coefficients in the parabolic (2^{nd} degree) model.

The estimated parabola may be written as

$$\hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x} + \hat{\beta}_2 \mathbf{x}^2$$

and

SSE =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i - \hat{\beta}_2 x_i^2)^2$$

 $\hat{\beta}_0, \hat{\beta}_1, \hat{\beta}_2$ are chosen so that the SSE is smaller than for any other choice of β 's.

Instead of presenting here the precise formulas for $\hat{\beta}_0$, $\hat{\beta}_1$, $\hat{\beta}_2$ (which can get very complex-particularly when k is large) it is assumed that you will be doing this work via computer.

For the age-SBP example with the outlier removed (n = 29) we obtain from the computer:

$$\hat{\beta}_{0} = 113.41$$

$$\hat{\beta}_1 = 0.088$$

$$\hat{\beta}_2 = 0.010$$

Hence, the fitted model is

$$\hat{y} = 113.41 + 0.088x + 0.010x^2$$

Recall that for these n = 29 individuals, the straight-line model was

$$\hat{y} = 97.08 + 0.95x$$

Now, the essential results based on fitting a 2nd - (or higher) order polynomial model can be summarized in an ANOVA table.

As was true for the 1st order polynomial model,

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

$$SSY = (SSY - SSE) + SSE$$

$$Total SS = Due regression SS + residual SS$$

Then the ANOVA Table is

Source	df	SS	MS	F
Due Regression	k = 2	SSY - SSE = 6273.40	$\frac{\text{SSY - SSE}}{k} = 3136.70$	35.37
Due Residual	n - k - 1 = 26	SSE = 2306.05	$\frac{\text{SSE}}{n-1-k} = 88.69$	(p < .001)
Total $r^2 = .731$	<i>n</i> – 1 = 28	SSY = 8579.45		

Now recall that in the straight-line model with the outlier removed we had

Source	df	SS	MS	F
Due Regression	1	6110.10	6110.10	66.81
Due Residual	27	2469.35	91.46	(p < .0001)
Total $r^2 = .712$	28	8579.45		

These tables give rise to the following for the 2nd order polynomial model:

Source		df	SS	MS	F
Regression-	$\begin{bmatrix} X \\ X^2 X \end{bmatrix}$	1 1	6110.10 163.30	6110.10 163.3	$66.81 = \frac{6110.1}{91.46}$ $1.84 = \frac{163.30}{88.69}$
Residual		26	2306.05	88.69	
Total		28	8979.45		

computed by subtraction

note: as usual, the residual sum of squares SSE is divided by its degrees of freedom to yield an estimate of σ^2

i.e., MS residual =
$$s_{y|x}^2 = \frac{1}{n-3} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

follows general rule = n - # estimated regression coefficients

There are 2 basic inferential questions associated with 2nd order polynomial regression:

- (1) Is the overall regression significant?
- (2) Does the 2nd order model explain significantly more than that achieved by the straight-line model?

(1) Test for overall regression

 H_0 : There is no significant overall regression using x and x^2

H_a: There is a significant overall regression

we use
$$F = \frac{\text{MS regression}}{\text{MS residual}}$$

and compare this to the F(2, n-1-k)

In our example

$$F = 35.37$$
 and $F_{.999}(2,26) = 9.12$: reject $H_0(p < .001)$

This F - test is not equivalent to any t - test

[This is true since
$$F(1, v) = t^2(v)$$
 but $F(2, v) \neq t$]

We can compute the multiple R^2

- R^2 = "squared multiple correlation coefficient"
 - = proportionate reduction in the error sum of squares obtained using x and x^2 instead of the naive predictor \overline{y} .

$$R^{2} = \frac{SSY - SSE(2^{nd} \text{ order model})}{SSY} = \frac{Due \text{ Reg. SS}}{Total \text{ SS}}$$

In our example $R^2 = 0.731$. The F-test also tests

$$H_0: \mathbb{R}^2 = 0$$

vs
$$H_a: R^2 > 0$$
.

As was true for the straight-line model, this one is significant.

(2) Test for the Addition of x^2 Into the Model

 H_0 : The addition of the x^2 term to the model does not significantly improve the prediction of y over and above that achieved by the straight-line model.

 H_a : it does add to the prediction of y

note:

 r^2 = .712 for the straight-line model R^2 = .731 for the second order model

*more variation will <u>always</u> be explained by adding extra terms to the model.

The question here is whether the increase

$$=(.731-.712)=.019$$

represents a <u>significant</u> increase in the variation explained by the additional term.

(i.e., is .019 enough of an increase to warrant adding the x 2 term to the model).

To answer this we compute the extra sum of squares due to the addition of x^2 . This appeared in the ANOVA table under the source heading "Regression x^2 x".

Extra SS due to adding
$$x^2 = SS$$
 regression – SS regression $\left(2^{nd} \text{ order model}\right)$ $\left(1^{st} \text{ order model}\right)$

In our example,

SS regression (straight-line model) =
$$6110.10$$

SS regression (2^{nd} order model) = 6273.40

Extra SS due to adding x^2 term = 6273.40 - 6110.10 = 163.30

To test H_0 , we use

$$F = \frac{\left(\text{Extra } SS \text{ due to adding } x^2\right)/1}{MS \text{ residual for 2}^{\text{nd}} \text{ order model}}$$
and this F is compared to the $F\left(1, n-1-k\right)$

In our example

$$F = \frac{163.30}{88.69} = 1.84$$
and $F_{.90}(1,26) = 2.91$
in fact $.10$

Another way to perform this test is to compute

$$t = \frac{\hat{\beta}_2}{\widehat{SE}(\hat{\beta}_2)}$$
 obtain from computer output

and compare this to a
$$t(n-1-k)$$

- . use ":Macintosh HD:Desktop Folder:notes1.dta"
- . drop if sbp==220
 (1 observation deleted)
- . regress sbp age

Source	ss .	df	MS		Number of obs	
Model Residual	6110.10173 2469.34654		 0.10173 4572794		F(1, 27) Prob > F R-squared	= 0.0000 = 0.7122
Total	+ 8579.44828	28 306	.408867		Adj R-squared Root MSE	= 0.7015 = 9.5633
sbp	 Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
age _cons	.9493225 97.07708	.1161445 5.527552	8.174 17.562	0.000 0.000	.7110137 85.73549	1.187631 108.4187

Variable		1/VIF
age	1.00	1.000000
Mean VIF		

. gen agesq=age*age

. regress sbp age agesq

Source	ss	df	MS		Number of obs	= 29
	+				F(2, 26)	= 35.37
Model	6273.40168	2	3136.70084		Prob > F	= 0.0000
Residual	2306.0466	26	88.6940999		R-squared	= 0.7312
	+				Adj R-squared	= 0.7105
Total	8579.44828	28	306.408867		Root MSE	= 9.4178
sbp	Coef.	Std. E	rr.	P> t	[95% Conf.	<pre>Interval]</pre>
age	+ .0875433	.645328	89 0.:	 136 0.893	-1.238949	1.414036
agesq	.0099368	.007323	32 1.3	357 0.186	0051163	.0249899
_cons	113.4097	13.210	41 8.!	585 0.000	86.25533	140.5641

Variable	VIF	1/VIF
age agesq	31.83 31.83	0.031413 0.031413
Mean VIF	31.83	

Another Example

Let x = dose of a certain drug y = weight gain (in decagrams) after 2 weeks

n = 8 laboratory animals were used and each assigned to one of eight dosage levels of the drug.

x (Dosage)	1	2	3	4	5	6	7	8
y (Weight Gain)	1	1.2	1.8	2.5	3.6	4.7	6.6	9.1

Scatter diagram:

If we had fit a straight-line regression to these data we would find

$$\hat{y} = -1.20 + 1.11x$$

ANOVA (straight-line model)

Source	df	SS	MS	F
Regression (x)	1	52.04	52.04	61.95
Residual	6	5.03	0.84	
Total	7	57.07		

note that
$$r^2 = 0.912$$

and $F = 61.95$ is compared to $F_{.999}(1,6) = 35.51$
i.e., $p < .001$

Let us decide whether or not the addition of the x^2 term significantly improves the prediction of y over and above that achieved via a straight-line.

2nd order equation: $\hat{y} = 1.35 - 0.41x + 0.17x^2$ ANOVA

Source	df	SS	MS	F		
Pogression X	1	52.04	52.04	61.95	← F	(1,6)
Regression $\begin{cases} x^2 x \end{cases}$	1	4.83	4.83	120.75	← F	(1,5)
Residual	5	0.2	0.04			
Total	7	57.07				

here $R^2 = .997$

We would like to know whether the increase of (.997 - .912) = .085 in \mathbb{R}^2 represents a significant improvement in the fit.

The test for this is

$$F = \frac{\left(\text{extra } SS \text{ due to adding } x^2\right)/1}{MS \text{ residual for 2}^{\text{nd}} \text{ order model}} = \frac{4.83}{0.04} = 120.75$$

and
$$F_{.999}(1,5) = 47.18$$
 $(p < .001)$
 \therefore reject H_0

Hence, the addition of the x^2 term to the model significantly improves the prediction.

Also, the test of the overall 2nd order model is highly significant.

$$F = \frac{\text{MS regression}(2^{\text{nd}} - \text{order model})}{\text{MS residual }(2^{\text{nd}} - \text{order model})} = \frac{(52.04 + 4.83)/2}{0.04}$$
$$= 710.88$$

Hence, the straight-line model is not as good as the 2nd order model.

Can the 2nd order model be improved upon?

• let us add the x ³ term to the model and see if it improves the prediction.

ANOVA (3rd order model)

Source		df	SS	MS	F
	(X	1	52.040	52.04	
Regression	$X^2 X$	1	4.830	4.83	
	$ x^3 x,x^2$	1	0.140	0.14	10.00
Residual	Residual		0.056	0.014	
Total		7	57.066		

Here $R^2 = .999$

is the increase in
$$R^2 = (.999 - .997 = .002)$$
 significant?

 H_0 : the addition of the x^3 term is not worthwhile

$$F = \frac{\left(\text{extra SS due to adding } x^3\right)/1}{\text{MS residual for 3}^{\text{rd}} \text{ order model}} = \frac{0.14}{.014} = 10.0$$

and
$$F \sim F(1,4)$$
 $F_{.95}(1,4) = 7.71$ $F_{.975}(1,4) = 12.22$ $.025$

I still wouldn't add x³ since

- $(1)R^2$ for the 2nd order model was very high = .997
- (2) Increse in R^2 was only .002
- (3) Tolerance suggests multicolinearity
- (4) Scatter diagram suggests 2nd order model
- When in doubt use the simplest modelthis promotes ease of interpretation

Hence the best fitting model is

$$\hat{y} = 1.35 - 0.41x + 0.17x^2$$

with $R^2 = 0.997$

Finally, the computer programs give us the standard errors associated with each β .

Coeff
$$\hat{\beta}_{i}$$
 $s_{\hat{\beta}_{i}}$ $\hat{\beta}_{1} = -.41$ $s_{\hat{\beta}_{1}} = .141$ $\hat{\beta}_{2} = .17$ $s_{\hat{\beta}_{2}} = .015$

Using these we can compute confidence intervals

$$\hat{\beta}_{i} - \left[t_{.975} \left(n - 1 - k\right)\right] s_{\hat{\beta}_{i}} \leq \beta_{i} \leq \hat{\beta}_{i} + \left[t_{.975} \left(n - 1 - k\right)\right] s_{\hat{\beta}_{i}}$$
95% confidence interval

e.g.,

$$0.17 - (2.571)(.015) \le \beta_2 \le 0.17 + (2.571)(.015)$$

$$t_{.975}(5) \qquad .13 \le \beta_2 \le .21$$

note that 0 is not in the interval

t -tests can also be constructed in the obvious way

. regress wtgain dose

Source	ss	df	MS		Number o	f obs	= 8
	+			•	F(1,	6)	= 62.05
Model	52.037204	1	52.037204	ŧ	Prob > F	ı	= 0.0002
Residual	5.03154917	6	.838591529		R-square	:d	= 0.9118
	+			•	Adj R-sq	uared	= 0.8971
Total	57.0687531	7	8.15267902	}	Root MSE) 1	= .91575
 wtgain	 Coef.	Std. I	 Err.	t P> t	: [95%	Conf.	Interval]
dose	1.113095	.14130	027 7.	877 0.00	.7673	399	1.458851
_cons	-1.196429	.71354	439	677 0.14	-2.942	408	.5495503

Variable	VIF	1/VIF		
dose	1.00	1.000000		
Mean VIF				

. regress wtgain dose dosesq

Source	SS	df	MS		Number o	of obs	=	8
	+			-	F(2,	5)	=	722.73
Model	56.8720267	2	28.436013	3	Prob > 1	?	=	0.0000
Residual	.196726451	5	.0393452	9	R-square	ed	=	0.9966
	+			_	Adj R-so	quared	=	0.9952
Total	57.0687531	7	8.1526790	2	Root MSI	⊡	=	.19836
wtgain	Coef.	Std. E	rr.	t P> t	[95%	Conf.	In	terval]
·	t 4126007	14100	16 2					
dose	4136907	.14109	10 -2	.932 0.03	37763	3/82	(0510031
dosesq	.1696429	.01530	35 11	.085 0.00	0 .1303	3039	. 2	2089819
_cons	1.348215	.2767	36 4	.872 0.00	5 .6368	3421	2	.059587

Variable	VIF	1/VIF		
dose dosesq	21.25 21.25	0.047059 0.047059		
+ Mean VIF	21.25			

. regress wtgain dose dosesq dosecube

Source	SS	df	MS		Number of obs	= 8
					F(3,4)	= 1362.82
Model	57.0129739	3	19.0043246		Prob > F	= 0.0000
Residual	.055779265	4	.013944816		R-squared	= 0.9990
t					Adj R-squared	= 0.9983
Total	57.0687531	7	8.15267902		Root MSE	= .11809
wtgain	 Coef.	Std. I	Err. t	P> t	[95% Conf.	Interval]
wtgain dose	Coef.	Std. 1		P> t 142 0.223	[95% Conf. 3513834	Interval] 1.110619
			868 1.4	142 0.223		
dose	.379618	.26328	868 1.4 419 -0.5	142 0.223	3513834	1.110619

Variable	VIF	1/VIF
dosesq	1116.59	0.000896
dosecube	399.01	0.002506
dose	208.78	0.004790
+- Mean VIF	574.79	