

SEQUENCE LISTING

<110> CORDELL, Barbara
SCHIMMOLLER, Frauke
YU-WANG, Liu
QUON, Diana Hom

<120> MODULATION OF A β LEVELS BY
 β -SECRETASE BACE2

<130> 219002030710

<140> US 10/749,714
<141> 2003-12-31

<150> US 09/886,143
<151> 2001-06-20

<150> US 60/215,729
<151> 2000-06-28

<160> 2

<170> FastSEQ for Windows Version 4.0

<210> 1
<211> 1863
<212> DNA
<213> Homo sapiens

<400> 1
cccatccctg cccgcagccc cgcgccggcgg ccgagtcgt gaggccggc tgccggacgg 60
gacgggaccg gctaggctgg ggcgcgcggcc cggggccccg ccgtggcat gggcgcactg 120
gccccggcgc tgctgctgcc tctgctggcc cagtggtctcc tgccgcggc cccggagctg 180
gccccggcgc cttcacgct gcccctccgg gtggccggc ccacgaaccg ctagttgcg 240
cccaccccg gacccgggac ccctgcccgg cggcacggcc acggcttgc gctcgccctg 300
gagcctgccc tggcgtcccc cgccggcgcc gccaacttct tggccatggt agacaacctg 360
cagggggact ctggccggg ctactacctg gagatgtga tcgggacccc cccgcagaag 420
ctacagattc tcgttgacac tggaaagcgt aactttgccg tggcagaac cccgcactcc 480
tacatagaca cgtactttga cacagagagg tctagcacat accgctccaa ggctttgac 540
gtcacagtga agtacacaca aggaagctgg acgggcttcg ttggggaaaga cctcgtcacc 600
atccccaaag gcttaataac ttctttctt gtcaacattt ccactattt tgaatcagag 660
aatttcttt tgcctggat taaatggaaat ggaataacttgc gcctagctta tgccacactt 720
gccaagccat caagttctct ggagaccttc ttgcactccc tggtgacaca agcaaacatc 780
cccaacgttt tctccatgca gatgtgttgc gccggcttgc cgggtctgg atctggacc 840
aacggaggtt gtcttgttgc ggggtggatt gaaccaagtt tgtataaagg agacatctgg 900
tataccctta ttaaggaaga gtggtaatc cagatagaaa ttctgaaatt gaaaatttgg 960
ggccaaagcc ttaatcttgc ctgcagagag tataacgcag acaaggccat cgtggacagt 1020
ggcaccacgc tgctgcccgt gccccagaag gtgtttgtat cgggtgttgc agctgtggcc 1080
cgcgcatctc tgattccaga attctctgtat ggtttcttgc ctgggtttca gctggcgtgc 1140
tggacgaatt cggaaacacc ttgttcttac ttccctaaaa tctccatcta cctgagagac 1200
gagaactcca gcaggtcatt ccgtatcaca atccgtcctc agctttacat tcagcccatt 1260
atggggcccg gcctgaatta tgaatgttac cgattcggca tttccccatc cacaatgcg 1320
ctggtgatcg gtgcccacggt gatgggggc ttctacgtca ttctcgacag agcccagaag 1380
agggtgggtc tgcgcacgcg cccctgttca gaaattgcag gtgtgtcagt gtctgaaatt 1440
tccgggcctt tctcaacaga ggtatgttgc agcaactgtg tccccgtca gtctttgagc 1500
gagcccattt tggattgttgc tccctatgcg ctcatgagcg tctgtggagc catcctcatt 1560
gtcttaatcg tcctgtgttgc gtcggcgttc cgggtgtcagc gtgcggcccg tgacccttgc 1620
gtcgtcaatg atgagtccctc tctgggtcaga catcgcttgc aatgaatagc caggcctgac 1680
ctcaagcaac catgaactca gctattaaga aaatcacatc tccaggcag cagccggat 1740
cgatggtggc gctttcttgc tgcccaaccc gtcttcaatc tctgttgc tcccgatgc 1800
cttcttagatt cactgtcttt tgattcttgc tttaaagct ttcaaatcttccctacttcc 1860
aag 1863

<210> 2
<211> 517
<212> PRT
<213> Homo sapiens

<400> 2
Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln Trp
1 5 10 15
Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr Leu Pro
20 25 30
Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro Thr Pro Gly
35 40 45
Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu Ala Leu Ala Leu
50 55 60
Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala Asn Phe Leu Ala Met
65 70 75 80
Val Asp Asn Leu Gln Gly Asp Ser Gly Arg Gly Tyr Tyr Leu Glu Met
85 90 95
Leu Ile Gly Thr Pro Pro Gln Lys Leu Gln Ile Leu Val Asp Thr Gly
100 105 110
Ser Ser Asn Phe Ala Val Ala Gly Thr Pro His Ser Tyr Ile Asp Thr
115 120 125
Tyr Phe Asp Thr Glu Arg Ser Ser Thr Tyr Arg Ser Lys Gly Phe Asp
130 135 140
Val Thr Val Lys Tyr Thr Gln Gly Ser Trp Thr Gly Phe Val Gly Glu
145 150 155 160
Asp Leu Val Thr Ile Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn
165 170 175
Ile Ala Thr Ile Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys
180 185 190
Trp Asn Gly Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser
195 200 205
Ser Ser Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile
210 215 220
Pro Asn Val Phe Ser Met Gln Met Gly Ala Gly Leu Pro Val Ala Gly
225 230 235 240
Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu Pro Ser
245 250 255
Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu Glu Trp Tyr
260 265 270
Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly Gln Ser Leu Asn
275 280 285
Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala Ile Val Asp Ser Gly
290 295 300
Thr Thr Leu Leu Arg Leu Pro Gln Lys Val Phe Asp Ala Val Val Glu
305 310 315 320
Ala Val Ala Arg Ala Ser Leu Ile Pro Glu Phe Ser Asp Gly Phe Trp
325 330 335
Thr Gly Ser Gln Leu Ala Cys Trp Thr Asn Ser Glu Thr Pro Trp Ser
340 345 350
Tyr Phe Pro Lys Ile Ser Ile Tyr Leu Arg Asp Glu Asn Ser Ser Arg
355 360 365
Ser Phe Arg Ile Thr Ile Leu Pro Gln Leu Tyr Ile Gln Pro Met Met
370 375 380
Gly Ala Gly Leu Asn Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro Ser
385 390 395 400
Thr Asn Ala Leu Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr Val
405 410 415
Ile Phe Asp Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro Cys
420 425 430
Ala Glu Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe Ser
435 440 445
Thr Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser Glu

450 455 460
Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly Ala
465 470 475 480
Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg Cys Gln
485 490 495
Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser Ser Leu Val
500 505 510
Arg His Arg Trp Lys
515
