Deep Learning para Visión Artificial en la Industria

Ikusmen artifizialerako Deep Learning-are erabilera Industrian

Politeknikoa

IA aplicada a "Visión Artificial"

Luka Eciolaza (MONDRAGON UNIBERTSITATEA) – Coordinador Grupo Robótica y Automatización

Visión Artificial

Goi Eskola Politeknikoa

- Los sistemas de visión artificial Industriales dependen de diversos componentes de visión artificial que trabajan de manera conjunta para adquirir, procesar y analizar imágenes, generando información numérica o simbólica que puede ser tratada e interpretada por un ordenador.
- El objetivo final de esta disciplina es que **el sistema de visión artificial** pueda actuar o decidir una acción de forma automatizada según convenga en una determinada situación.

Visión Artificial

Goi Eskola Politeknikoa

- En la industria es una tecnología transversal
- "Ojo de la producción"

Ventajas de utilizar visión artificial en la industria

- Velocidad, precisión y la repetitividad
- Llega donde el ojo humano no puede llegar: inspección de objetos pequeños
- Inspección no destructiva al 100% de piezas
- Generación de datos y toma de decisiones: Análisis de tendencias

Aplicaciones Tradicionales en la industria

Goi Eskola Politeknikoa

- Localización de elementos

- Medición de cotas

Estimación de Pose

Verificación

Importancia de la Iluminación

Goi Eskola Politeknikoa

Dark-field: para aumentar contraste

- Difusores de luz

Iluminación difusa tipo Domo

- •Intensidad de luz necesaria
- Longitud de onda adecuada
- •Superficie a iluminar
- Reflectividad del objeto
- Color del objeto
- Espacio disponible
- •Tipo de cámara utilizada

Ópticas

Goi Eskola Politeknikoa

- •Tamaño y especificaciones del sensor de la cámara.
- •Distancia entre la cámara y el objeto.
- •Campo de visión y tamaño del objeto.

FIXED FOCAL LENGTH LENS

TELECENTRIC LENS

SETUP

Ópticas

entrance pupil "inside" the lens

ENTOCENTRIC:

Goi Eskola Politeknikoa

Optocéntrico

diverging rays

- Telecéntrico parallel rays

TELECENTRIC: entrance pupil at infinity entrance pupil

- Pericéntrico

Ópticas

entrance pupil "inside" the lens

ENTOCENTRIC:

Goi Eskola Politeknikoa

Optocéntrico

diverging rays

- Telecéntrico parallel rays

TELECENTRIC: entrance pupil at infinity

- Pericéntrico

Sensores & Procesamiento

Goi Eskola Politeknikoa

- Cámaras cada vez más económicas y con mayor resolución

- Librerías de tratamiento de imagen avanzadas

IA aplicada a la Visión

Cada vez requisitos más ambiciosos:

- Detección y Clasificación de defectos (defectos aleatorios)
- Segmentación de objetos/defectos
- Flexibilidad ante variabilidad de condiciones
- •

Capacidad para Funcionalidades más sofisticadas:

- Detección de anomalías
- Transferencia de conocimiento entre plantas
- Aprendizaje incremental y con muy pocos datos de entrenamiento
- •

Visión Convencional VS. Visión con IA

Goi Eskola Politeknikoa

Visión Convencional:

- Caracterización de rasgos representativos manual.
- Diseño manual de algoritmia para tener en cuenta toda la casuística.

Visión mediante IA:

- Capaz de aprender algoritmo de detección manera autónoma.
- Solo necesita suficientes datos representativos de entrenamiento.

IA aplicada a Visión: Deep Learning

Goi Eskola Politeknikoa

- 80-as y 90-as → En estas décadas NN eran muy populares
- 2000 → Bajada en popularidad
- 2009 → Speech Recognition
- 2012 → Visión artificial
- · → Cada vez más aplicaciones

- ¿Qué ha cambiado?
- Capacidad de generación de datos para entrenamiento
- Capacidad de procesado: CPU & GPU-s mucho más potentes.

• Librerías Software open-source

Goi Eskola Politeknikoa

Goi Eskola Politeknikoa

GRADIENT DESCENT

➤ Tarda Muchísimo para muchos datos de entrenamiento

- Es muy rápido
- Hay que hacer muchos pasos pero de pequeño tamaño

w2

Goi Eskola Politeknikoa

Generación de datos de entrenamiento:

- Necesidad de suficientes ejemplos representativos de defectos a detectar.

Clasificación/ Predicción Supervisada

✓ Una vez hecha la clasificación, es fácil realizar las demás tareas.

Goi Eskola Politeknikoa

Deep Learning

 ¿Cómo se detectaría un peatón/viandante desde una cámara de un coche?

Mediante un clasificador Peatón/No-Peatón. Pasar el clasificador por todas aquellas zonas donde podría haber un peatón.

 En una Query realizada en un buscador de web (google, yahoo), ¿cómo se haría el ranking de las páginas más relacionadas con la búsqueda?

Coger el par (búsqueda, página) como input del modelo y hacer una clasificación de Relevante/No-Relevante

Goi Eskola Politeknikoa

 Inspección de Calidad (Clasificación & Segmentación multilabel)

Goi Eskola Politeknikoa

Transferencia de Aprendizaje

Goi Eskola Politeknikoa

Transferencia de Aprendizaje

Goi Eskola Politeknikoa Detección de múltiples tipos de errores

Goi Eskola Politeknikoa

Deep Learning en la Industria

- Detección de Anomalías: Anotación automática
 - ✓ Piezas buenas y sin etiquetar para aprendizaje

MONITORIZACIÓN DE PROCESO:

Inspección de calidad individual

Goi Eskola Politeknikoa

Goi Eskola Politeknikoa

OPTIMIZACIÓN DE PROCESO: Análisis de origen de errores en fabricación

- Tendencias y evolución en el tiempo
- ✓ Desde la inspección individual de pieza, hacia optimización de proceso

Acumulado a nivel de célula

Acumulado a nivel de Panel

Goi Eskola Politeknikoa

 Misma metodología para diferentes aplicaciones

DEFLECTOMETRÍA EN REFLEXIÓN

- Basada en la ley de la reflexión especular
- Observando patrón reflejado en la superficie: Distorsión en errores
- Detección de defectos
- Se pueden obtener:
 - Textura pieza
 - Geometría

Goi Eskola Politeknikoa

Adquisición

 Reconstrucción (geometría & textura)

Fig. 2. Geometrical & textural defects can be observed in curvature and contrast

 Clasificación & Segmentación (mediante IA)

Figure 2. (a)(b) local curvatures, C_x and C_y respectively. (c) pattern contrast γ . (d)(e) Ground truth label and Performed segmentation: with defective areas (red), correct surface (green), background (black).

Goi Eskola Politeknikoa

- ✓ Soluciones muy robustas
- Grandes empresas desarrollando librerías open-source
 - Tensorflow (Google)
 - Pytorch (Facebook, Uber)
 - ...
- ✓ Modelos pre-entrenados disponibles (para detección de objetos, clasificación, ...)
 - ✓ Alexnet, Inception, Resnet, ...

Detección de objetos & Segmentación

Goi Eskola Politeknikoa

Modelos pre-entrenados Disponibles

lmage Classification	Object Detection	Image Segmentation	Text detection and recognition	Human Pose estimation	Person and face detection
Alexnet	MobileNet SSD	DeepLab	Easy OCR	Open Pose	Open Face
GoogLeNet	VGG SSD	UNet	CRNN	Alpha Pose	Torchreid
VGG	Faster R- CNN	FCN			Mobile FaceNet
ResNet	EfficientDet				OpenCV FaceDetector
SqueezeNet					
DenseNet					

Deep Learning: Tendencias

Goi Eskola Politeknikoa **Depth analysis**

Fuente: https://alexgkendall.com/

(Universidad de Cambridge)

Deep Learning en diferentes Sectores

✓ Cada vez son más numerosas las aplicaciones de visión artificial

Salud:

- Diagnosis de enfermedades en base a imágenes médicas
- Índice de evolución de enfermedad
- Análisis de Movimiento (enfermedades neurológicas,...)

Agricultura:

- Monitorizado de cosecha
- Detección de insectos
- Detección de enfermedades en plantas
- Cosechado automático
- Gestión de regadío

<u>Transporte:</u>

- Detección de infracciones
- Flujo de tráfico
- Gestión de parcking
- Control de acceso por matrícula
- Detección de peatones
- ...

• ...

• ..

Plataformas de Deep Learning

Goi Eskola Politeknikoa

- Community / University
- Private company
- Facebook
- Microsoft
- Google
- Apache (AWS)

PYTHON

C / C++

Java

R

Matlab

Plataformas de Deep Learning

Goi Eskola Politeknikoa

Deep Learning Framework Power Scores 2018

* Pesos en función de:

- Ofertas de trabajos
- Artículos científicos
- Actividad en Github
- Libros sobre Deep Learnign

* fuente: towardsdatascience.com

Plataformas de Deep Learning

Goi Eskola Politeknikoa

> ✓ También los softwares especializados de visión tienen funcionalidades Deep Learning integradas (basadas en software abierto)

Conslusión

Goi Eskola Politeknikoa

- La visión artificial es un requisito previo importante para la producción flexible en el sentido de Industria 4.0 [Christof Zollitsch, 2016]
 - En la industria es una tecnología transversal y representa el

"Ojo de la producción"

- ➤ Deep Learning
 - Tecnología muy accesible y efectiva
 - Plug&Play y sencillo de montar aplicaciones interesantes.
- Costes cada vez más competitivos en sistemas de Visión

Goi Eskola Politeknikoa

ESKERRIKASKO!!

Luka Eciolaza Echeverria

leciolaza@mondragon.edu

Robotics & Automation Area
Electronics and Computing Department
Mondragon University - Faculty of Engineering