

Classical Machine Learning: Classification and Regression (I)

- Learn some techniques to understand your data and prepare your data for ML.
- Learn the concept, theory, toy example, and scikit-learn usage of a few interesting base classifiers.

Techniques to Understand Your Data

Understand Your Data with Descriptive Statistics and Visualization

Data_understand.ipynb

- Take a peek at your raw data.
- Review the dimensions of your dataset.
- Review the data types of attributes in your data.
- Summarize the distribution of instances across classes in your dataset.
- Summarize your data using descriptive statistics.
- Understand the relationships in your data using correlations.
- Review the skew of the distributions of each attribute.

Visualization Techniques: Box Plots

- Box Plots
 - Invented by J.Tukey
 - Another way of displaying the distribution of data

Prepare your data for machine learning

Data Preparation

Data_prepare.ipynb

- Rescale data.
- Standardize data.
- Normalize data.
- Binarize data.

Scikit-Learn Recipe

- Load the data.
- Split the dataset into the input feature matrix and output target vector for machine learning.
- Apply a pre-processing transform to the input variables.
- Summarize the data to show the change.

Classification algorithm walkthrough

Classification

Classification uses models called classifiers to predict categorical (discrete, unordered) class labels.

Task	Feature set, x (or attribute set)	Class label, y
Spam filtering	Features extracted from email message header	spam or non-spam
	and content	
Tumor identification	Features extracted from MRI scans	malignant or benign
Bridge warning	Features extracted from river velocity and	danger or safe
	depth	

Base Classifier: Decision Tree

Example of a Decision Tree

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Induction

- Many Greedy Algorithms:
 - Hunt's Algorithm (one of the earliest)
 - CART
 - ID3, C4.5
 - SLIQ, SPRINT

A greedy algorithm is an approach for solving a problem by selecting the best option available at the moment. It doesn't worry whether the current best result will bring the overall optimal result.

https://en.wikipedia.org/wiki/Greedy_algorithm

General Structure of Hunt's Algorithm

Let D_t be the set of training records that reach a node t

General Procedure:

- If D_t contains records that belong the same class y_t, then t is a leaf node labeled as y_t
- If D_t contains records that belong to more than one class, use an attribute test to split the data into smaller subsets. Recursively apply the procedure to each subset.

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Hunt's Algorithm

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

14