SOLUTIONS FOR HOMEWORK 1

Bonus problem: existence of $\sqrt{2}$. [little partial credit] Use the completeness of \mathbb{R} to show the existence of x > 0 with $x^2 = 2$ (this is x is denoted by $\sqrt{2}$). Specifically, consider $S = \{t \in \mathbb{R} : t > 0, t^2 < 2\}$. Clearly, S is non-empty $(1 \in S)$. Further, 2 is an upper bound for S. Indeed, suppose $t \in S$, then $(2-t)(2+t) = 4-x^2 > 4-2 > 0$. Clearly 2+t>0, hence 2-t>0.

Let $x = \sup S$. Prove that $x^2 = 2$, by establishing that (i) $x^2 \le 2$, and (ii) $x^2 \ge 2$. Once these inequalities are established, we can conclude that $x^2 = 2$.

Hint. For (i), suppose, for the sake of contradiction, that $x^2 > 2$. Use the Archimedean property to find $n \in \mathbb{N}$ so that $\frac{x^2 - 2}{2x} > \frac{1}{n}$. What can you say about $y = x - \frac{1}{n}$?

For (ii), begin by noting that $x \ge 1$. Supposing, for the sake of contradiction, that $x^2 < 2$, consider $n \in \mathbb{N}$ so that $\frac{2-x^2}{4x} > \frac{1}{n}$; look at $z = x + \frac{1}{n}$.

(i) $y^2 = \left(x - \frac{1}{n}\right)^2 = x^2 - \frac{2x}{n} + \frac{1}{n^2} > x^2 - 2x \cdot \frac{x^2 - 2}{2x} + \frac{1}{n^2} > x^2 - (x^2 - 2) + \frac{1}{n^2} > 2$, hence y is an upper bound for S This contradicts x being the least upper bound.

(ii) $z^2 = \left(x + \frac{1}{n}\right)^2 = x^2 + \frac{2x}{n} + \frac{1}{n^2} < x^2 + \frac{4x}{n} < 2$, hence x is not an upper bound for S. This again gives a contradiction.

1.8(a). We use induction to show that, for any $n \in \mathbb{N}$, $n \geq 2$, the statement $P_n : n^2 > n + 1$ holds.

Basis for induction. P_2 holds: $2^2 > 2 + 1$.

Inductive step. For $n \geq 2$, show that, if P_n holds, then P_{n+1} holds as well.

We have $(n+1)^2 = n^2 + 2n + 1$. If P_n holds – that is, if $n^2 > n + 1$, then $(n+1)^2 = n^2 + 2n + 1 > (n+1) + (2n+1) = 3n + 2 > n + 2$, hence P_{n+1} holds.

- **2.8.** The rational roots of the polynomial $p(x) = x^8 4x^5 + 13x^3 7x + 1$ are intergers, which divide 1. Thus, the only possible roots are ± 1 . We check whether they are indeed roots using brute force: plug ± 1 into p. We have $p(1) = 1 4 + 13 7 + 1 = 4 \neq 0$, and p(-1) = 1 + 4 13 + 7 + 1 = 0. So, -1 is the only rational zero of p.
- **3.5.** (a) If either $|b| \le a$ or $-a \le b \le a$ holds, then $a \ge 0$. Now consider two cases (i) $b \ge 0$, and (ii) b < 0.

1

Case (i): $b \ge 0$. Then

 $|b| \le a \Leftrightarrow b \le a$ [Definition of $|\cdot|$]

 $\Leftrightarrow -a \le b \le a \text{ [since } b \ge 0 \ge -a \text{]}.$

Case (ii): b < 0. Then

 $|b| \le a \Leftrightarrow -b \le a$ [Definition of $|\cdot|$]

$$\Leftrightarrow -a \le b \text{ [Theorem 3.2(i)]}$$

$$\Leftrightarrow -a \le b \le a \text{ [since } b \le 0 \le a \text{]}.$$

(b) By (a), it suffices to show that $-|a-b| \le |a| - |b| \le |a-b|$.

The right hand side follows from the triangle inequality: $|a| = |(a-b)+b| \le |a-b|+|b|$. The left hand side is derived similarly: $|b| = |a+(b-a)| \le |a|+|b-a| = |a|+|a-b|$, so $-|a-b| \le |a|-|b|$.

3.8. Suppose, for the sake of contradiction, that $a \leq b_1$ whenever $b_1 > b$, yet a > b. Let $b_1 = (a+b)/2$. Then

$$b_1 = \frac{a}{2} + \frac{b}{2} > \frac{b}{2} + \frac{b}{2} = b$$
, and $b_1 = \frac{a}{2} + \frac{b}{2} < \frac{a}{2} + \frac{a}{2} = a$,

which contradicts our assumption that $b_1 > b$ implies $b_1 < a$.

4.1. (r) We have $S = \bigcap_n \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$. Then $\sup S = 1$. In fact, we shall show that $S = \{1\}$. Indeed, if u > 1, then there exists $n \in \mathbb{N}$ so that $\frac{1}{n} < u - 1$. Therefore, $u \notin \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$, hence also $u \notin S$. Similarly, if u < 1, then $u \notin S$. It is clear that $1 \in \left(1 - \frac{1}{n}, 1 + \frac{1}{n}\right)$ for any n, which implies $1 \in S$. Thus, $S = \{1\}$. Consequently, $x \in \mathbb{R}$ works as an upper bound iff $x \ge 1$.

REMARK. We are only asked to give three upper bounds for S. As $S \subset (0,2)$, any three numbers from $[2,\infty)$ will suffice.

- **4.8.** (a) Every $t \in T$ is an upper bound for S; similarly, any $s \in S$ is a lower bound for T.
- (b) Suppose, for the sake of contradiction, that $s_0 := \sup S > \inf T =: t_0$. Let $a = (s_0 + t_0)/2$. As $s_0 > a$, a is not an upper bound for S. Therefore, there exists $s \in S$ with s > a. Similarly, there exists $t \in T$ with t < a. By the associativity of order, s > t, which contradicts our assumption.
- (c) Let $S = (-\infty, 0]$ and $T = [0, \infty)$. Many other examples are possible.
- (d) Let $S = (-\infty, 0)$ and $T = (0, \infty)$. Once again, many other examples are possible.
- **8.5.** (a) Fix $\varepsilon > 0$. Find $M, N \in \mathbb{R}$ so that $|a_n s| < \varepsilon$ for n > M, and $|b_n s| < \varepsilon$ for n > N. Let $K = \max\{M, N\}$. For n > K, we have $s \varepsilon < a_n, b_n < s + \varepsilon$, and therefore,

$$s - \varepsilon < a_n \le s \le b_n < s + \varepsilon.$$

In particular, $|s_n - s| < \varepsilon$ for n > K.

- **(b)** Apply Part (a), with $a_n = -t_n$ and $b_n = t_n$.
- **8.6.** (a) From the definition of convergence, $\lim_n s_n = 0$ if and only if for any $\varepsilon > 0$ there exists $N \in \mathbb{R}$ so that $|s_n| < \varepsilon$ for any n > N. The latter condition is equivalent to $\lim |s_n| = 0$.
- (b) $|s_n| = 1$ for any n, hence $\lim |s_n| = 1$. In class, we proved that the sequences (s_n) diverges.