Procesamiento Digital de Imágenes

Unidad III: Operaciones en el dominio frecuencial

Departamento de Informática - FICH Universidad Nacional del Litoral

10 de abril de 2017

Temas a desarrollar

- Introducción.
- Transformada bidimensional de Fourier y su inversa:
 - Definición y propiedades.
 - Representación gráfica.
 - Importancia de la magnitud y la fase.
- Filtrado frecuencial:
 - Filtros de suavizado
 - Filtros de acentuado
 - Filtrado de alta potencia
 - Filtrado de énfasis de altas frecuencias
 - Filtros pasa-banda y rechaza-banda
 - Filtrado homomórfico

Señales unidimensionales digitales:

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-\frac{j2\pi ux}{M}}, \text{ para } u = 0, 1, \dots, M-1$$

$$f(x) = \sum_{u=0}^{M-1} F(u) e^{rac{j2\pi ux}{M}}$$
 , para $x=0,1,\ldots,M-1$

Señales bidimensionales digitales:

$$F(u,v) = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) e^{-j2\pi(ux/M + vy/N)} \text{ , para } \left\{ \begin{array}{l} u=0,\ldots,M-1 \\ v=0,\ldots,N-1 \end{array} \right.$$

$$f(x,y) = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u,v) e^{j2\pi(ux/M+vy/N)} \text{ , para } \left\{ \begin{array}{l} x=0,1,\ldots,M-1 \\ y=0,1,\ldots,N-1 \end{array} \right.$$

Relaciones entre paso espacial y paso frecuencial:

$$\Delta u = \frac{1}{M\Delta x}, \Delta v = \frac{1}{N\Delta y}$$

En coordenadas polares:

$$F(u,v) = |F(u,v)| e^{-j\phi(u)}$$

donde

$$\text{Magnitud (espectro)} \quad : \quad |F(u,v)| = \sqrt{R^2(u,v) + I^2(u,v)}$$

Fase :
$$\phi(u,v) = \tan^{-1}\left[\frac{I(u,v)}{R(u,v)}\right]$$

• Concepto de imágenes base:

Base para imagen de 4x4

Base para imagen de 16x16

 Ejemplo con imagen de 4x4: imagen, imágenes base de 4x4 y coeficientes positivos de la DCT2

Representación gráfica 1D:

• Representación gráfica 2D:

Traslación:

$$f(x,y)e^{j2\pi(u_0x/M+v_0y/N)} \Leftrightarrow F(u-u_0,v-v_0)$$
$$f(x-x_0,y-y_0) \Leftrightarrow F(u,v)e^{-j2\pi(ux_0/M+vy_0/N)}$$

Cuando $u_0 = M/2$ y $v_0 = N/2$:

$$e^{j2\pi(u_0x/M+v_0y/N)} = e^{j\pi(x+y)}$$

= $(-1)^{x+y}$

Por lo tanto:

$$f(x,y)(-1)^{x+y} \Leftrightarrow F(u-M/2,v-N/2)$$
$$f(x-M/2,y-N/2) \Leftrightarrow F(u,v)(-1)^{u+v}$$

Centrado de la transformada:

• Periodicidad: f(x,y) y F(u,v) son funciones periódicas de período M y N

$$F(u, v) = F(u + M, v) = F(u, v + N) = F(u + M, v + N)$$
$$f(x, y) = f(x + M, y) = f(x, y + N) = f(x + M, y + N)$$

• Simetría conjugada: si f(x,y) es real entonces

$$F(u,v) = F^*(-u,-v)$$
, y
$$|F(u,v)| = |F(-u,-v)|$$

lo que dice que el espectro es simétrico respecto al origen.

Rotación:

En coordenadas polares:

$$x = r\cos\theta, \ y = r\sin\theta, \ u = \omega\cos\varphi, \ v = \omega\sin\varphi$$

Substituyendo:

$$f(r,\theta) \Leftrightarrow F(\omega,\varphi)$$

 $f(r,\theta+\theta_0) \Leftrightarrow F(\omega,\varphi+\theta_0)$

Si f(x,y) se gira un ángulo θ_0 , su transformada de Fourier F(u,v) se gira la misma cantidad.

Convolución:

$$g(x,y) = f(x,y) * h(x,y)$$

$$g(x,y) \Leftrightarrow G(u,v)$$

$$G(u,v) = F(u,v)H(u,v)$$

$$f(x,y) * h(x,y) \Leftrightarrow F(u,v)H(u,v)$$

La TF de la salida de un sistema es igual a la multiplicación de la TF de la entrada al sistema por la TF de la respuesta del sistema al impulso unitario.

- Consecuencias del análisis de Fourier:
 - La mayoría de las características más importantes de una señal se preservan sólo si la información de la fase se mantiene.
 - Cuando una señal es de longitud finita, la información de la fase es suficiente para reconstruir una señal (podemos ver la imagen a grandes rasgos).
- Imagen de sólo módulo: la TF tiene como módulo el de la imagen original, y fase nula.
- Imagen de sólo fase: la TF tiene módulo unidad (o promediado) y fase igual a la de la imagen original.
- Las características de la imagen original son identificables en una imagen de sólo fase, ya que la inteligibilidad está asociada a los detalles (puntos, bordes, etc.)

Experimento de Oppenheim

f(x,y)

g(x,y)

$$F^{-1}\left[\left|F(u,v)\right|*exp\left(i\angle G(u,v)\right)\right]$$

$$F^{-1}\Big[\left|F(u,v)\right|*exp\big(i\angle G(u,v)\big)\Big] \qquad F^{-1}\Big[\left|G(u,v)\right|*exp\big(i\angle F(u,v)\big)\Big]$$

Filtrado frecuencial

- En el dominio espacial: la convolución puede se computacionalmente ineficiente cuando aumenta la talla del filtro.
- Filtrado en frecuencia: utilización de la propiedad de correspondencia entre convolución espacial y producto de TF
- Proceso:
 - 1. Generar una función H(u,v) (función de transferencia del filtro)
 - 2. Calcular la TF F(u, v) de la imagen
 - 3. Multiplicar elemento a elemento las funciones
 - 4. Calcular la TF inversa
 - 5. Obtener la parte real

Filtro pasa-bajos ideal:

$$H(u,v) = \begin{cases} 1 & \text{si } D(u,v) \le D_0 \\ 0 & \text{si } D(u,v) > D_0 \end{cases}$$

donde: D_0 es la frecuencia de corte, y D(u,v) es la distancia euclídea desde el punto (u,v) hasta el origen del plano de frecuencia.

Ejemplos de PB ideal:

 Efecto de sobredisparo característico de los filtros ideales por la discontinuidad de la función de transferencia: fenómeno de Gibbs.

- Fenómeno de Gibbs: oscilaciones presentes en la imagen filtrada originadas en el cálculo de la TF inversa.
- La aparición de oscilaciones se explica claramente en el dominio espacial:

• Solución: multiplicación del filtro ideal por una ventana suavizante (Hamming, Kaiser, etc.), o generar una función H(u, v) con caída suave.

Filtro pasa-bajos Butterworth de orden n:

$$H(u,v) = \frac{1}{1 + \left[\frac{D(u,v)}{D_0}\right]^{2n}}$$

Transición de corte suave, no introduce sobredisparo.

• Ejemplo de filtrado sin sobredisparo:

• Ejemplo de reducción de ruido:

Filtro pasa-bajos gaussiano:

$$H(u,v) = e^{-D^2(u,v)/2\sigma^2}$$

- σ : medida de la dispersión de la curva gaussiana. Cuando $D(u,v)=\sigma$, la función de transferencia está a 0.607 de su valor máximo.
- Propiedad: la TF inversa de un filtro gaussiano también es gaussiana. Ventaja: no tiene sobredisparo.

Filtros de acentuado

Filtro pasa-altos ideal:

$$H(u,v) = \begin{cases} 0 & \text{si } D(u,v) \le D_0 \\ 1 & \text{si } D(u,v) > D_0 \end{cases}$$

donde: D_0 es la frecuencia de corte, y D(u,v) es la distancia euclídea desde el punto (u,v) hasta el origen del plano de frecuencia.

Filtros de acentuado

• Ejemplos de PA ideal:

 Al igual que en el filtro pasa-bajos, se observa la aparición del fenómeno de Gibbs.

Filtro pasa-altos Butterworth de orden n:

$$H(u,v) = \frac{1}{1 + \left[\frac{D_0}{D(u,v)}\right]^{2n}}$$

• Al igual que el filtro PB, para orden bajo no introduce sobredisparo (n < 20).

Filtros de acentuado

Comparación con filtro PA ideal:

Original

Ideal

Butterworth

Filtros de acentuado

Filtro pasa-altos gaussiano:

$$H(u,v) = 1 - e^{-D^2(u,v)/2\sigma^2}$$

con σ^2 : varianza de la curva gaussiana ($\sigma = D_0$).

Resultados anteriores

En el filtrado pasa-altos, el brillo medio era anulado:

Original

 $\log(|F.*H|)$

max=142, min=-155

- El resultado "visualmente" no es óptimo.
- Solución: trabajar sobre la imagen original, agregando componentes de alta frecuencia.

Filtrado de máscara difusa

Operación:

```
en el dominio espacial: f_{PA}(x,y) = f(x,y) - f_{PB}(x,y) en el dominio frecuencial: F_{PA}(u,v) = F(u,v) - F_{PB}(u,v) al ser: F_{PB}(u,v) = H_{PB}(u,v) F(u,v) entonces: F_{PA}(u,v) = F(u,v) - H_{PB}(u,v) F(u,v) despejando: = F(u,v) (1 - H_{PB}(u,v)) el filtro es: H_{PA}(u,v) = 1 - H_{PB}(u,v)
```

- Resultado: visualmente similar al filtro pasa-altos.
- Solución: amplificar el aporte de la imagen original.

Filtrado de alta potencia (high-boost)

• Generalización de la máscara difusa ($A \ge 1$):

$$f_{AP}(x,y) = A f(x,y) - f_{PB}(x,y)$$

vimos que puede ser reescrita como:

$$f_{AP}(x,y) = (A-1) f(x,y) + f_{PA}(x,y)$$

en el dominio frecuencial:

$$H_{AP}(u,v) = (A-1) + H_{PA}(u,v)$$

Filtrado de alta potencia (high-boost)

• Ejemplo:

Filtrado de énfasis de alta frecuencia

 Para aumentar el aporte de los componentes de alta frecuencia a la imagen, se multiplica por una constante al filtro PA y se modifica el offset para no eliminar el brillo medio:

$$H_{EAF}(u,v) = a + b H_{PA}(u,v)$$

$$con a > 0 \text{ y } b > a.$$

- Casos particulares:
 - Si a = (A 1) y b = 1: $H_{EAF} = H_{AP}$
 - Si a = 0 y b = 1: $H_{EAF} = H_{PA}$

Filtrado de énfasis de alta frecuencia

Original

Alta Potencia

Enfasis de AF

- Las imágenes digitales que procesamos normalmente se crean a partir de imágenes ópticas, las cuales constan de dos componentes:
 - Iluminación i(x,y): condiciones de luz (cambiante).
 - Reflectancia r(x,y): propiedad intrínseca de los objetos (fija).
- En muchas aplicaciones interesa realzar la componente de reflectancia mientras se reduce la componente de iluminación.
- El filtrado PA y PB por sí solos no logran ambos cometidos a la vez, por lo que generalmente se utilizan con un procesamiento posterior.
- El filtrado homomórfico es un proceso que:
 - comprime el rango dinámico a partir de las condiciones de iluminación,
 - realza el contraste a partir de las propiedades de reflectancia de los objetos.

Recordar que una imagen puede expresarse como:

$$f(x,y) = i(x,y) r(x,y)$$

 La ecuación anterior no se puede usar directamente porque la transformada de Fourier de un producto de funciones no es separable:

$$\mathfrak{F}\left\{f(x,y)\right\} \neq \mathfrak{F}\left\{i(x,y)\right\} \,\,\mathfrak{F}\left\{r(x,y)\right\}$$

Haciendo:

$$z(x,y) = \ln f(x,y) = \ln i(x,y) + \ln r(x,y)$$

entonces

$$\mathfrak{F}\left\{z(x,y)\right\} = \mathfrak{F}\left\{\ln f(x,y)\right\} = \mathfrak{F}\left\{\ln i(x,y)\right\} + \mathfrak{F}\left\{\ln r(x,y)\right\}$$

o bien:

$$Z(u,v) = I(u,v) + R(u,v)$$

• Al procesar con un filtro a Z(u, v) se tiene:

$$S(u, v) = H(u, v) Z(u, v) = H(u, v)I(u, v) + H(u, v)R(u, v)$$

En el dominio espacial:

$$s(x,y) = \mathfrak{F}^{-1} \{ S(u,v) \} = \mathfrak{F}^{-1} \{ H(u,v)I(u,v) \} + \mathfrak{F}^{-1} \{ H(u,v)R(u,v) \}$$
$$= i'(x,y) + r'(x,y)$$

La imagen resultante es:

$$g(x,y) = e^{s(x,y)}$$

= $e^{i'(x,y)} e^{r'(x,y)}$
= $i_0(x,y) r_0(x,y)$

La secuencia de operaciones es:

$$f(x,y) \to \langle \ln \rangle \to \langle \mathfrak{F} \rangle \to \langle H(u,v) \rangle \to \langle \mathfrak{F}^{-1} \rangle \to \langle \exp \rangle \to g(x,y)$$

- Clave: definir un filtro homomórfico H(u,v) que actúe sobre las componentes de iluminación y reflectancia de forma separada.
- Conceptos:
 - La iluminación se caracteriza por variaciones espaciales pequeñas → bajas frecuencias de la TF del logaritmo de la imagen.
 - La reflectancia tiende a variar abruptamente en los bordes → altas frecuencias de la TF del logaritmo de la imagen.

El filtro homomórfico H(u,v), entonces, debe afectar de manera diferente a las bajas y altas frecuencias.

• Especificación de H(u, v):

- Elección de parámetros:
 - $\gamma_L < 1$: decrementa el brillo
 - $\gamma_H > 1$: amplifica las altas frecuencias

Ecualizada de filtrada

Fin de teoría

• Próxima teoría: Unidad IV - Restauración de imágenes.