0 8 Parakeets (P) 727444 In question as said that no P of same color can sit together. green P can sit on 1 on all of them sit on Il And all the passible permutation is 8! = 70 So probability that no too adjacent parakette are of $\frac{2}{70} = .0286$ same color =

P (having manufactiveing diffect) =
$$\frac{3}{10}$$

a) Pro (no core io defective) =
$$\left(1-\frac{3}{10}\right)^8$$

$$= \left(\frac{7}{10}\right)^8 = .058$$

. ^	
b) No of Cosce Functioning	Probability ×1000
	Probability × 1000 8c, x · 7' x · 3" × 1000 = 1.22
2	8(2 x. 12 x. 36 x 1000 = 10.01
3	863 x.73 x.35 x1000 = 46.67
Committed in 4 Property	8C4 x - 74 x - 34 x 1000 = 136.14
5	8C5 x.75 x.33 x 1000 =254.12
6	8C6 x-76 x-32 x 1000 =296.47
L 7	8C7 x . 7 x . 3 x 1000 = 197.65
5	8C8 X.78. ×1000 = 57.64

so, No. of Great Model = 1.22+10.01+46.67 ≈ 58 No. of Advance Model = 136.14+254.12+29647+197.65 ≈ 884 No. of Extreme Model ≈ 58

Scanned by CamScanner

c) Expected Revenue = 58x50 + 884x100 + 1000x58 =\$149300

Problem 3
Defendent failty
$$\rightarrow$$
 Ge

To given:

P(Jos) (a) = · 7

P(Jos) (a) = · 2

P(a) = · 7

a) Todge votes guity \rightarrow Ja

P(a| Ja) = ?

= P(Ja|(a) × P((a) + P(Ja|(a) × P(a) + P(Ja|(a) × P(a)

Scanned by CamScanner

Since each judge votes independenty so

= P(JG1/G1)XP(JG2/G1) × P(JG3/G1) × P(G1)

$$= \frac{-7 \times -7 \times -7}{(-7)^4 + (-2)^3 \times -3} = \frac{-4}{(-7)^4 + (-2)^3 \times -3}$$

 $\int_{0}^{\infty} \rho\left(\alpha|J_{q_{1}},J_{q_{2}},J_{q_{3}}\right) = .99$

Scanned by CamScanner