



# Regresi Linier dan Korelasi

Dr. Budi Marpaung, ST., MT.





# Regresi (1)

Suatu persamaan yang mengekpresikan hubungan dua unsur penting dalam masalah statistik Diperkenalkan pertama sekali oleh **Sir Francis Galton** (1822 – 1911), seorang antropolog dan pakar meteorologi terkenal dari Inggris.

Banyak digunakan dalam bidang rekayasa, ekonomi dan sosial, untuk memprediksi output berdasarkan perkiraan input tertentu



# Regresi (2)

Dikenal dua variabel, yaitu variabel penjelas (explanatory variable) atau sering disebut variabel bebas (independent variable), dan variabel respon (response variable) atau sering juga disebut variabel tidak bebas/terikat (dependent variabel).

Nilai variabel terikat ditentukan oleh nilai variabel bebas

Regresi sebagai alat perkiraan difokuskan pada persamaan garis regresi

Regresi sebagai alat untuk menjelaskan sistem, difokuskan pada upaya untuk memperoleh pemahaman yang komprehensif tentang sistem yang menjadi objek penelitian.

## Persamaan Regresi Linier Sederhana

$$Y_i = \alpha + \beta X_i + \varepsilon_i$$
 i = 1, 2, ....., n



$$\hat{y} = a + bx$$

$$b = \frac{\sum_{i=1}^{n} \left( x_i - \overline{x} \right) \left( y_i - \overline{y} \right)}{\sum_{i=1}^{n} \left( x_i - \overline{x} \right)^2}, \text{ dan } a = \overline{y} - b\overline{x}$$

$$JKT = \sum_{i=1}^{n} \left( y_i - \overline{y} \right)^2; \quad JKR = \sum_{i=1}^{n} \left( \stackrel{\wedge}{y}_i - \overline{y} \right)^2; \quad JKG = \sum_{i=1}^{n} \left( y_i - \stackrel{\wedge}{y} \right)^2 = \sum_{i=1}^{n} \varepsilon_i^2$$

$$JKT = JKR + JKG$$

# Standar Deviasi Galat, Koef. Determinasi & Korelasi

#### **Standar Deviasi Galat**

#### **Koefisien Determinasi**

#### Korelasi

$$S_{\varepsilon} = \sqrt{\frac{JKG}{n-2}}$$

$$r^2 = \frac{JKR}{JKT} = 1 - \frac{JKG}{JKT}$$

$$r = \sqrt{\frac{JKR}{JKT}} = \sqrt{1 - \frac{JKG}{JKT}}$$



Kurva Regresi untuk JKG = 0







**Korelasi Negatif** 

## Korelasi

#### **Hubungan Linier**





### **Hubungan Curvilinear**







# Jenis Hubungan







# Jenis Hubungan

#### Tidak ada Hubungan







# **Konsep Korelasi**















## Nilai Korelasi

### Nilai r berkisar antara -1 s/d +1

| Interval Korelasi (r) | Tingkat Hubungan |
|-----------------------|------------------|
| 0.000 - 0.1999        | Sangat Rendah    |
| 0.200 - 0.3999        | Rendah           |
| 0.400 - 0.5999        | Sedang           |
| 0.600 - 0.7999        | Kuat             |
| 0.800 – 1.0000        | Sangat Kuat      |



## Contoh Soal Persamaan R.L. Sederhana

Data berikut ini adalah data tentang banyaknya jam kerja (dalam jam) dan hasil produksi (dalam ton).

Tentukan persamaan regresi yang dapat digunakan untuk memperkirakan hasil produksi.

| No   | Jam   | Hasil    |
|------|-------|----------|
| . 10 | Kerja | Produksi |
| 1    | 78    | 18       |
| 2    | 57    | 15       |
| 3    | 75    | 17       |
| 4    | 84    | 21       |
| 5    | 67    | 16       |
| 6    | 73    | 17       |
| 7    | 69    | 15       |
| 8    | 71    | 14       |
| 9    | 82    | 15       |
| 10   | 74    | 12       |

# Solusi Soal Persamaan R.L. Sederhana

| Bulan  | Xi  | Уi  | $(X_i - X)$ | $(y_i - \overline{y})$ | $(x_i - x)(y_i - y)$ | $(x_i - \bar{x})^2$ | $(y_i - \overline{y})^2$ |
|--------|-----|-----|-------------|------------------------|----------------------|---------------------|--------------------------|
| 1      | 78  | 18  | 5           | 2                      | 10                   | 25                  | 4                        |
| 2      | 57  | 15  | -16         | -1                     | 16                   | 256                 | 1                        |
| 3      | 75  | 17  | 2           | 1                      | 2                    | 4                   | 1                        |
| 4      | 84  | 21  | -11         | 5                      | 55                   | 121                 | 25                       |
| 5      | 67  | 16  | -6          | 0                      | 0                    | 36                  | 0                        |
| 6      | 73  | 17  | 0           | 1                      | 0                    | 0                   | 1                        |
| 7      | 69  | 15  | -4          | -1                     | 4                    | 16                  | 1                        |
| 8      | 71  | 14  | -2          | -2                     | 4                    | 4                   | 4                        |
| 9      | 82  | 15  | 9           | -1                     | -9                   | 81                  | 1                        |
| 10     | 74  | 12  | 1           | -4                     | -4                   | 1                   | 16                       |
| Jumlah | 730 | 160 | 0           | 0                      | 78                   | 544                 | 54                       |
| Mean   | 73  | 16  |             |                        |                      |                     |                          |

$$b = \frac{\sum_{i=1}^{n} \left( x_{i} - \bar{x} \right) \left( y_{i} - \bar{y} \right)}{\sum_{i=1}^{n} \left( x_{i} - \bar{x} \right)^{2}} = \frac{78}{544} = 0.1434; \text{ dan } a = \bar{y} - b\bar{x} = 16 - (0.1434)(73) = 5.5331.$$

$$\widehat{y} = 5.5331 + 0.1434x$$

## Solusi Soal Persamaan R.L. Sederhana

$$S_{\varepsilon} = \sqrt{\frac{JKG}{n-2}} = \sqrt{\frac{42,816}{10-2}} = 2,313$$

$$r^2 = \frac{JKR}{JKT} = \frac{11,187}{54,00} = 0,207$$
, atau  $r^2 = 1 - \frac{JKG}{JKT} = 1 - \frac{42,816}{54,00} = 0,207$ 

Sedangkan koefisien korelasinya:

$$r = \sqrt{\frac{JKR}{JKT}} = \sqrt{\frac{11,187}{54,00}} = 0.455$$
, atau  $r = \sqrt{1 - \frac{JKG}{JKT}} = \sqrt{1 - \frac{42,816}{54,00}} = 0.455$ .

# Tugas 10 Nomor 1 (20%)

PT. Rembulan adalah sebuah perusahaan yang memproduksi meja. Berikut ini adalah data banyaknya karyawan di bagian produksi perusahaan dan banyaknya meja yang dihasilkan sejumlah karyawan tersebut.

| Jumlah Karyawan (orang) | 56  | 59  | 42  | 38  | 51  | 46  | 37  | 44  |
|-------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Jumlah Meja (unit)      | 204 | 215 | 199 | 187 | 208 | 201 | 186 | 182 |

- a) Tentukan persamaan regresi linier sederhana berdasarkan data tersebut.
- b) Tentukan prediksi jumlah meja yang dihasilkan bila jumlah karyawan 60 orang.
- c) Tentukan standar deviasi galat, dan jelaskan artinya.
- d) Tentukan koefisien determinasi dan korelasi, lalu jelaskan artinya.



# Tugas 10 Nomor 2 (20%)

Massa material yang hilang (y-dalam gram) untuk setiap durasi pengeringan (x-dalam jam), dinyatakan sebagai berikut.

- a) Tentukan persamaan regresi linier sederhana yang menggambarkan hubungan durasi pengeringan dengan jumlah massa material yang hilang.
- b) Tentukan prediksi jumlah material yang hilang bila dilakukan pengeringan selama 5.0 jam.
- c) Tentukan standar deviasi galat, dan jelaskan artinya.
- d) Tentukan koefisien determinasi dan korelasi, lalu jelaskan artinya.

| X (jam) | <i>Y</i> (g | ram) |
|---------|-------------|------|
| 4.4     | 13.1        | 14.2 |
| 4.5     | 9.0         | 11.5 |
| 4.8     | 10.4        | 11.5 |
| 5.5     | 13.8        | 14.8 |
| 5.7     | 12.7        | 15.1 |
| 5.9     | 9.9         | 12.7 |
| 6.3     | 13.8        | 16.5 |
| 6.9     | 16.4        | 15.7 |
| 7.5     | 17.6        | 16.9 |
| 7.8     | 18.3        | 17.2 |

# Regresi Linier Ganda

$$\hat{Y}_i = a + b_{1i} X_1 + b_{2i} X_{2i} + \dots + b_k X_{ki}$$

dimana : i = 1, 2, ...., n  $\hat{y}$  = nilai regresi/variabek terikat X = variable bebas

$$na + b_{1} \sum_{1} X_{1} + b_{2} \sum_{1} X_{1} = \sum_{1} Y$$

$$a \sum_{1} X_{1} + b_{1} \sum_{1} X_{1}^{2} + b_{2} \sum_{1} X_{1} X_{2} = \sum_{1} X_{1} Y$$

$$a \sum_{1} X_{2} + b_{1} \sum_{1} X_{1} X_{2} + b_{2} \sum_{1} X_{2}^{2} = \sum_{1} X_{2} Y$$

## Contoh Soal Persamaan R.L. Ganda

Dua belas orang mahasiswa ditanyakan tentang berat badan (Y-dalam kg), tinggi (X<sub>1</sub>-dalam cm), dan umur mereka (X<sub>2</sub>-dibulatkan dalam tahun).

| Υ     | 64  | 71  | 53  | 67  | 55  | 58  | 77  | 57  | 56  | 51  | 76  | 58  |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| $X_1$ | 157 | 159 | 149 | 162 | 151 | 150 | 155 | 148 | 152 | 142 | 161 | 157 |
| $X_2$ | 18  | 20  | 16  | 21  | 18  | 19  | 20  | 21  | 20  | 22  | 21  | 19  |

- a) Tentukan persamaan regresi yang dapat digunakan untuk memperkirakan berat badan seorang mahasiswa.
- b) Tentukan perkiraaan berat badan seorang mahasiswa yang memiliki tinggi 160 cm dan berumur 23 tahun.

# Solusi Soal Persamaan R.L. Ganda

| Υ    | X <sub>1</sub> | X <sub>2</sub> | X <sub>1</sub> Y | $X_2Y$       | $X_1X_2$       | Y <sup>2</sup> | X <sub>1</sub> <sup>2</sup> | X <sub>2</sub> <sup>2</sup> |
|------|----------------|----------------|------------------|--------------|----------------|----------------|-----------------------------|-----------------------------|
| 64   | 157            | 18             | 10048            | 1152         | 2826           | 4096           | 24649                       | 324                         |
| 71   | 159            | 20             | 11289            | 1420         | 3180           | 5041           | 25281                       | 400                         |
| 53   | 149            | 16             | 7897             | 848          | 2384           | 2809           | 22201                       | 256                         |
| 67   | 162            | 21             | 10854            | 1407         | 3402           | 4489           | 26244                       | 441                         |
| 55   | 151            | 18             | 8305             | 990          | 2718           | 3025           | 22801                       | 324                         |
| 58   | 150            | 19             | 8700             | 1102         | 2850           | 3364           | 22500                       | 361                         |
| 77   | 155            | 20             | 11935            | 1540         | 3100           | 5929           | 24025                       | 400                         |
| 57   | 148            | 21             | 8436             | 1197         | 3108           | 3249           | 21904                       | 441                         |
| 56   | 152            | 20             | 8512             | 1120         | 3040           | 3136           | 23104                       | 400                         |
| 51   | 142            | 22             | 7242             | 1122         | 3124           | 2601           | 20164                       | 484                         |
| 76   | 161            | 21             | 12236            | 1596         | 3381           | 5776           | 25921                       | 441                         |
| 58   | 157            | 19             | 9106             | 1102         | 2983           | 3364           | 24649                       | 361                         |
| ΣY   | $\sum X_1$     | $\sum X_2$     | $\sum X_1 Y$     | $\sum X_2 Y$ | $\sum X_2 X_2$ | $\sum Y^2$     | $\sum X_1^2$                | $\sum X_2^2$                |
| =743 | =1843          | =235           | =114560          | =14596       | =36096         | =46879         | =283443                     | =4633                       |

## Solusi Soal Persamaan R.L. Ganda

$$na + b_1 \sum_{i=1}^{n} X_i + b_2 \sum_{i=1}^{n} X_i = \sum_{i=1}^{n} Y$$
 → 12a + 1843b<sub>1</sub> + 235b<sub>2</sub> = 743  
 $a\sum_{i=1}^{n} X_i + b_1 \sum_{i=1}^{n} X_i^2 + b_2 \sum_{i=1}^{n} X_i X_i = \sum_{i=1}^{n} X_i Y$  → 1843a + 283443b<sub>1</sub> + 36096b<sub>2</sub> = 114560  
 $a\sum_{i=1}^{n} X_i + b_1 \sum_{i=1}^{n} X_i X_i + b_2 \sum_{i=1}^{n} X_i^2 = \sum_{i=1}^{n} X_i Y$  → 235a + 36096b<sub>1</sub> + 4633b<sub>2</sub> = 14596

a = -104.1;  $b_1 = 1.16$ ; dan  $b_2 = -0.59$ 

$$\hat{y} = -104.1 + 1.16x_1 - 0.59x_2$$

$$\hat{y}(X_1 = 160; X_2 = 23) = -104.1 + 1.16(160) - 0.59(23) = 67.93 \sim 68 \text{ kg}.$$

# Korelasi Berganda

$$r_{x_1y} = \frac{\sum X_1Y}{\sqrt{\sum X_1^2} \sqrt{\sum Y^2}} \quad r_{x_2y} = \frac{\sum X_2Y}{\sqrt{\sum X_2^2} \sqrt{\sum Y^2}} \quad r_{x_1x_2} = \frac{\sum X_1X_2}{\sqrt{\sum X_1^2} \sqrt{\sum X_2^2}}$$

$$r_{Y.X_1X_2} = r_{Y.12} = \sqrt{\frac{r_{x_1y}^2 + r_{x_2y}^2 - 2r_{x_1y}r_{x_2y}}{1 - r_{x_1x_2}}}$$

# Korelasi Berganda

Contoh Soal Sebelumnya:

$$r_{x_1y} = \frac{\sum X_1Y}{\sqrt{\sum Y^2}\sqrt{\sum X_1^2}} = \frac{114560}{\sqrt{283443}\sqrt{46879}} = 0.9938$$

$$r_{x_2y} = \frac{\sum X_2Y_i}{\sqrt{\sum X_2}^2\sqrt{\sum Y^2}} = \frac{14596}{\sqrt{(4633)(46879)}} = 0.9904$$

$$r_{x_{11}x_2} = \frac{\sum X_1X_2}{\sqrt{\sum X_1^2}\sqrt{\sum X_2^2}} = \frac{36096}{(\sqrt{283443}\sqrt{4633}} = 0.9961$$

$$r_{Y,X_1X_2} = r_{Y,12} = \sqrt{\frac{r_{x_1y}^2 + r_{x_2y}^2 - 2r_{x_1y}r_{x_2y}}{1 - r_{x_1x_2}}}$$

$$= \sqrt{\frac{(0.9938)^2 + (0.9904)^2 - 2(0.9938)(0.9904)}{1 - 0.9960}} = 0.85$$

$$r_{Y.X_1X_2}^2 = (0.85)^2 = 0.7225 = 72.25\%$$

kontribusi  $X_1$  dan  $X_2$  terhadap naik-turun nilai Y sebesar 72,25%, ada 27.75% nilai Y dipengaruhi oleh faktor lain di luar  $X_1$  dan  $X_2$ .

## Korelasi Parsial

$$r_{x_1y.x_2} = \frac{r_{x_1y} - r_{x_2y}r_{x_1x_2}}{\sqrt{1 - r_{x_1y}^2} \sqrt{1 - r_{x_2y}^2}}$$
 Korelasi  $X_1$  dengan  $Y$  saat  $X_2$  konstan

$$r_{x_2y.x_1} = \frac{r_{x_2y} - r_{x_1y}r_{x_1x_2}}{\sqrt{1 - r_{x_1y}^2}\sqrt{1 - r_{x_1x_2}^2}}$$
 Korelasi  $X_2$  dengan  $Y$  saat  $X_1$  konstan

$$r_{x_1x_2.Y} = \frac{r_{x_1x_2} - r_{x_1y}r_{x_2Y}}{\sqrt{1 - r_{x_1y}^2}\sqrt{1 - r_{x_2Y}^2}}$$
 Korelasi  $X_1$  dengan  $X_2$  saat  $Y$  konstan

## Korelasi Parsial

#### Contoh Soal Sebelumnya:

$$r_{x_1y.x_2} = \frac{r_{x_1y} - r_{x_2y}r_{x_1x_2}}{\sqrt{1 - r_{x_2y}^2}\sqrt{1 - r_{x_1x_2}^2}} = \frac{0.9938 - (0.9904)(0.9961)}{\sqrt{1 - (0.9904)^2}\sqrt{1 - (0.9961)^2}} = 0.5955$$

$$r_{x_2y.x_1} = \frac{r_{x_2y} - r_{x_1y}r_{x_1x_2}}{\sqrt{1 - r_{x_1y}^2}\sqrt{1 - r_{x_1x_2}^2}} = \frac{0.9904 - (0.9938)(0.9961)}{\sqrt{1 - (0.9938)^2}\sqrt{1 - (0.9961)^2}} = 0.0485$$

$$r_{x_1x_2.Y} = \frac{r_{x_1x_2} - r_{x_1y}r_{x_2Y}}{\sqrt{1 - r_{x_1y}^2}\sqrt{1 - r_{x_2Y}^2}} = \frac{0.9961 - (0.9938)(0.9904)}{\sqrt{1 - (0.9938)^2}\sqrt{1 - (0.9904)^2}} = 0.7704$$

# Tugas 10 Nomor 3 (20%)

Suatu percobaan dilakukan untuk menentukan apakah berat seekor binatang dapat diprediksikan setelah jangka waktu tertentu berdasarkan berat awal dan jumlah makanan yang dikonsumsi. Data yang diperoleh (dalam kg), sbb.

| Berat Akhir Y | Berat Awal X1 | Makanan X2 |
|---------------|---------------|------------|
| 95            | 42            | 272        |
| 77            | 33            | 226        |
| 80            | 33            | 259        |
| 100           | 45            | 292        |
| 97            | 39            | 311        |
| 70            | 36            | 183        |
| 50            | 32            | 173        |
| 80            | 41            | 236        |
| 92            | 40            | 230        |
| 84            | 38            | 235        |

# Tugas 10 Nomor 3 (Samb....)

- a) Tentukan persamaan regresi linier ganda
- b) Tentukan prediksi bobot akhir seekor binatang yang berbobot awal 35 kg dan menghabiskan makanan 250 kg
- c) Tentukan nilai korelasi ganda dan korelasi parsial, dan artinya
- d) Tentukan koefisien determinasi dan artinya.

# Tugas 10 Nomor 4 (20%)

**12.1** A set of experimental runs was made to determine a way of predicting cooking time y at various values of oven width  $x_1$  and flue temperature  $x_2$ . The coded data were recorded as follows:

| $oldsymbol{y}$ | $oldsymbol{x}_1$ | $oldsymbol{x}_2$ |
|----------------|------------------|------------------|
| 6.40           | 1.32             | 1.15             |
| 15.05          | 2.69             | 3.40             |
| 18.75          | 3.56             | 4.10             |
| 30.25          | 4.41             | 8.75             |
| 44.85          | 5.35             | 14.82            |
| 48.94          | 6.20             | 15.15            |
| 51.55          | 7.12             | 15.32            |
| 61.50          | 8.87             | 18.18            |
| 100.44         | 9.80             | 35.19            |
| 111.42         | 10.65            | 40.40            |

Estimate the multiple linear regression equation

$$\mu_{Y|x_1,x_2} = \beta_0 + \beta_1 x_1 + \beta_2 x_2.$$



# Tugas 10 Nomor 5 (25%)

12.2 In Applied Spectroscopy, the infrared reflectance spectra properties of a viscous liquid used in the electronics industry as a lubricant were studied. The designed experiment consisted of the effect of band frequency  $x_1$  and film thickness  $x_2$  on optical density y using a Perkin-Elmer Model 621 infrared spectrometer. (Source: Pacansky, J., England, C. D., and Wattman, R., 1986.)

| $oldsymbol{y}$ | $oldsymbol{x}_1$ | $\boldsymbol{x}_2$ |
|----------------|------------------|--------------------|
| 0.231          | 740              | 1.10               |
| 0.107          | 740              | 0.62               |
| 0.053          | 740              | 0.31               |
| 0.129          | 805              | 1.10               |
| 0.069          | 805              | 0.62               |
| 0.030          | 805              | 0.31               |
| 1.005          | 980              | 1.10               |
| 0.559          | 980              | 0.62               |
| 0.321          | 980              | 0.31               |
| 2.948          | 1235             | 1.10               |
| 1.633          | 1235             | 0.62               |
| 0.934          | 1235             | 0.31               |

Estimate the multiple linear regression equation

$$\hat{y} = b_0 + b_1 x_1 + b_2 x_2.$$



## **SEKIAN**



# Ringkasan Materi Perkuliahan

#### **Statistik Deskriptif**

- Penyajian Data
- Ukuran pemusatan data
- Ukuran penyebaran data



| Teori Probabilitas                         |                            |  |  |  |
|--------------------------------------------|----------------------------|--|--|--|
| <ul> <li>Konsep probabilitas</li> </ul>    | Ekspektasi matematis       |  |  |  |
| <ul> <li>Probabilitas bersyarat</li> </ul> | Distribusi peluang diskrit |  |  |  |
| Variabel random                            | Distribusi peluang kontinu |  |  |  |

#### **Pengujian Hipotesis**

- Rataan
- Uji *Chi Square*, terdiri dari:
- Proporsi
- Uji kebebasan

- Uji keseragaman

- Good of fit-test

Varians



- Teori Penaksiran Rataan dan selisih rataan
- Proporsi dan selisih proporsi
- Varians dan rasio varians

#### **ANOVA**

- Kesamaan Varians
- Uji Bartlett
- ANOVA One Way
- ANOVA Two Way



#### **Statistik Non-parametrik**

- Uji Tanda
- Uji Peringkat Wilcoxon
- Uji Kruskal-Wallis



#### Regresi Linier dan Korelasi

- Korelasi Sederhana & Ganda
- Regresi Linier Sederhana
- Regresi Linier Ganda

