Al Lab

Lecture: 24.11.2024

Sangeeta Biswas, Ph.D.
Associate Professor,
University of Rajshahi, Rajshahi-6205, Bangladesh

Classification

Assigning objects to some pre-existing classes / categories / labels / groups.

Binary-Class Vs. Multi-Class Classification

Number of classes = 2

Number of classes = 4

Artificial Neural Network

- An artificial neural network (ANN) is a machine learning algorithm that uses a network of interconnected artificial neurons to process data to imitate our human brain.
- All ANNs have three kinds of layers:
 - One Input Layer: to receive data.
 - Multiple Hidden Layers: to process data
 - One Output layer: to produce the output.
- Shallow NN is a type of ANN with a few hidden layers, usually one or two.
- Deep NN (DNN) is a type of ANN having multiple hidden layers to solve complex problems.
 - GPT-3: 96 hidden layers
 - EfficientNet: 5-400 hidden layers
 - ResNet-152: 152 hidden layers

Fully Connected Layer

A fully connected layer connects every neuron in one layer to every neuron in its previous layer.

An image need to be turned into a vector before feeding into an fully connected layer.

Flatten() is used in Tensorflow.keras

Fully Connected Neural Network (FCNN)

FCNN consists of a series of fully connected layers

It is also known as multi-layer perceptron (MLP).

Image Source: Google Search Engine

Hidden Layers

- The number of hidden layers in a DNN depends on the complexity of the data:
 - Linearly separable data: No hidden layers are needed
 - Less complex data: 1–2 hidden layers are sufficient
 - Large data: 3–5 hidden layers are recommended
 - Complex data: Additional layers can be helpful
- Depth of an ANN = the number of hidden layers + the output layer
- Sometimes a deeper network have better performance comparing to a shallower network
- A DNN has risks of
 - experiencing vanishing gradient problem
 - high sensitivity to input data
 - having similar performance of a shallow network.

Optimum Number of Hidden Layers

Increasing the number of hidden layers

Can increase the performance of the network.

Adding too many hidden layers

 Can lead to overfitting, where the model memorizes the training data but doesn't generalize well to new data.

Reducing the number of hidden layers

 Can directly impact the accuracy of the network. For complex problems, the network might not be trained properly with fewer hidden layers.

Optimal number of layers depends on several factors including:

- the data
- the optimizer, and
- the network's architecture

Number of Neurons

Number of neurons in the:

- input layer depends on the size of the input data
 - for 28x28 input image, 784 neurons in the input layer
- output layer depends on the size of the output data
 - in a binary classifier, one or two neurons in the output layer
 - in a 10 class classifier, four or ten neurons in the output layer
- hidden layers depends on us, i.e., who design the architecture of the NN

More neurons means:

- more parameters for tuning
- more time for tuning parameters
- more data for avoiding overfitting
- o more hardware support, i.e., computational power & memory during parameter tuning, and storage space for saving model.

Parameter Vs Hyperparameter

Parameters: which NN will learn from data

• w, b, any variables in g(.)

Hyperparameters: which we need to decide based on our experience, intuition or error-trial such as

- number of layers
- number of neurons in each layer
- activation function
- epoch number
- learning rate

Performance Vs Parameters

In general, a model having more parameters performs better.

Keep in Mind

- Designing a suitable DNN automatically is not fully explored yet.
 - Recent Works: Neural Architecture Search—Finding the Best Model Design Automatically
- Designing a suitable network architecture is still a error-and-trial process.
- Not an architecture optimum for a data will be optimum for all datasets.
- It is upto us what will be the number of hidden layers and number of neurons in each hidden layer. However, we need to be careful.
- We should not design or work with any network which:
 - cannot be run in our available hardware support.
 - can be easily overfitted on our available training data.

Activation Function

- An activation function is a mathematical equation that determines how much data should be passed from a neuron to the next neuron.
- It is the function that is applied on the weighted sum of the input of the neuron, i.e., it is g(u).
- Generally, it is a nonlinear function for a neuron in the hidden layer and linear/non-linear function for neurons in the output layer.
- A linear activation function, also known as "no activation" or "identity function," is directly proportional to the input.
- Popular non-linear activation functions are:
 - Sigmoid, Tanh, ReLU, ELU, Softmax

Some Popular Activation Functions

Sigmoid

- a. Also known as the logistic activation function
- b. Often used for models that predict probability as an output.
- c. Its curve looks like an S-shape and exists between 0 and 1.
- d. Suffers from saturating gradients problem.

Hyperbolic tangent (Tanh)

- a. Has stronger gradients than the sigmoid function, and its output ranges from -1 to +1.
- b. Helps the learning algorithm converge faster.

Rectified linear unit (ReLU)

- a. A non-saturating function, meaning it doesn't become flat at the extremes of the input range.
- b. It is faster than sigmoid and tanh.

Softmax

- a. Converts vectors of real numbers into a probability distribution.
- b. Each output value represents the probability that the input belongs to a specific class.

Activation Functions

- Linear activation function in the output layer generally used for regression problem.
- Depending on the range of output values, we need to choose activation function.

Activation Functions for Classification

In output layer, generally:

- Sigmoid is used for binary classification
- Softmax is used for multi-class classification

Both generate values in the range of 0-1.

Summation of softmax values is 1.

Summation of sigmoid values in a classifier does not need to be 1.

$$sigmoid, \ y_i = \frac{e^{x_i}}{1 + e^{x_i}}$$

$$softmax, \ y_i = \frac{e^{x_i}}{\sum_{e}^{x_i} e^{x_j}}$$