Escalona_Joaquin_3

August 25, 2018

1 Ejercicio 1

Debe escribir un programa que le pida a un usuario adivinar un nombre, pero sólo tienen 3 posibilidades hasta que el programa se cierra.

1.1 Solucion

Elegir aleatoriamente --> De aquí saqué la forma para elegir aleatoriamente un elemento de una lista.

El programa a continuación elegirá aleatoriamente un elemento de la lista y el usuario debe adivinarlo. Si no lo logra, el programa imprimirá el nombre que ha elegido.

```
In [ ]: #IMPORTAR RANDOM PARA ELEGIR UN ELEMENTO AL AZAR
        import random
        nombres = ['Amelia','Luis','Jaime','Neil','Constanza','Joaquin','Yuuki']
        nom_elegido=random.choice(nombres)
        #IMPRIMIR CONDICIONES DEL JUEGO
        print('---- ADIVINA EL NOMBRE ----')
        print('\n Tendras solo 3 oportunidades')
        print('Los nombres a elegir son = ')
        for i in nombres:
            print '*',i
        #PEDIR UN NOMBRE
        n=raw_input('\n Comencemos, elige un nombre = ')
        #CONTADOR (POSIBILIDADES) = 1
        count = 1
        #CICLO CON TOPE = 3
        while True:
        #SI EL USUARIO ADIVINA
            if n == nom_elegido:
                print ('Correcto! has adivinado :)')
        #SINO, SE DESCUENTA UNA POSIBILIDAD (AGREGANDOLE A COUNT)
            else:
```

2 Ejercicio 2

Arreglen el código adjunto para que haga lo esperado: solo deje "pasar" a personal con uno de los tres nombres especificados. Deben usar como mucho solo una instancia de "==".

Codigo adjunto:

```
import sys
print("Hello. Please enter your name:")
name = sys.stdin.readline().strip()
if name == "Ana" or "Maria" or Itziar":
    print("Access granted.")
else:
    print("Access denied.")
```

2.1 Solución

La forma en que se me ha ocurrido hacer el problema es incluir los nombres del personal a una lista y hacer un ciclo IF como una puerta de entrada: si el nombre ingresado se encuentra en la lista, se abre la puerta, sino, no.

```
In []: import sys
    #LISTA CON NOMBRES PERMITIDOS
    personal= ['Ana','Maria','Itziar']

    print("Hello. Please enter your name:")

    name = sys.stdin.readline().strip()
    #SI EL NOMBRE SE ENCUENTRA EN LA LISTA, PERMITIR
    if name in personal:
        print('Access granted.')
    #NO PERMITIR
    else:
        print('Acces denied.')
```

3 Ejercicio 3

Sea x un número entero.

- A) Describa un algoritmo a base de iteraciones para comprobar si x es un número primo.
- B) Escriba un programa en Python que solicite un input de un número entero, y que usa el algoritmo de arriba para comprobar si este número es un número primo.
- C) Escriba un programa para comprobar si un número es el cuadrado de un número primo. Osea, que la raíz del número ingresado sea un número primo.

Nota: Pruebe al inicio si el número es un cuadrado de un número entero. Si eso es verdad, pruebe también si este número es primo.

3.1 Solución apartado A)

La funcion sqrt, se importa para ser usada más adelante.

```
In [ ]: from math import sqrt
        #APARTADO A)
        #-----
        #DEFINIMOS FUNCION QUE ARROJA SI UN VALOR ES PRIMO O NO
        \#INPUT = X
        #SI X ES PRIMO, RETORNA 1
        #SI NO, RETORNA O
       def es_primo(x):
        #INICIO LOOP DESDE 2 HASTA X-1
           for i in range(2,x):
        #LA FUNCION -IF ANY(LISTA)- LA APRENDI EN SOLOLEARN (SECCION "MAS TIPOS >> FUNCIONES
        #UTILES")
        #PARA QUE UN NUMERO SEA PRIMO, ESTE DEBE SER DIVISIBLE SOLO POR 1 Y EL MISMO
        #POR LO TANTO, SI EXISTIERA ALGUN i (IF ANY) QUE EL CUOCIENTE ENTRE EL NUMERO E i
        #SEA IGUAL A O, EL NUMERO NO ES PRIMO (Y LA FUNCION RETORNARA O)
               if any([x\%i==0]):
                   return 0
           return 1
```

3.2 Solución apartado B)

Esto va junto con el programa anterior (apartado A)

```
In []: x = int(input('Ingresa un numero y dire si es primo o no = '))
    if x==1:
        print('No es primo :( ')

elif x>0:
    if es_primo(x) == 1:
```

```
print('Es primo!')
else:
    print('No es primo :( ')
else:
    print('Debe ser un numero entero y positivo!')
```

3.3 Solución apartado C)

Esta parte del código va junto con el apartado B (no necesario) y A (necesario). Se importa la función sqrt del módulo math para poder realizar la operación raíz :)

```
In [ ]: y = int(input('Ingresa un numero y dire si es el cuadrado de un primo = '))
        #SI NUMERO INGRESADO ES MAYOR A O, SE SACA LA RAIZ DEL NUMERO
        if y>0:
            raiz=int(sqrt(y))
        #SINO, PEDIR QUE SEA POSITIVO
        else:
            print('Debe ser positivo')
        #1 POR CONVENIO, NO ES CONSIDERADO PRIMO
        #LO LEI AQUI: https://es.wikipedia.org/wiki/N%C3%BAmero_primo
        if raiz==1:
            print('No lo es :( ')
        #SI LA RAIZ ES DISTINTO DE 1
        else:
        #SI LA RAIZ ES PRIMO (VER APARTADO A)
            if es_primo(raiz) == 1:
                print 'Lo es! del primo ',raiz
            else:
                print('No lo es :( ')
```

4 Ejercicio 4:

En el siguiente ejercicio, escribiremos programas que usan algoritmos diferentes para calcular la tercera raíz con una precisión de 0.01.

- a) Escriba un programa que use un algoritmo a base de exhaustive enumeration para la determinar la tercera raíz. £Cuántas iteraciones necesita para determinarla con la precisión deseada para los números 25, 500 y 10000?
- b) Escriba un programa que calcula la tercera raíz con el algoritmo de bisección. £Cuántas iteraciones necesita para determinarla con la precisión deseada para los números 25, 500 y 10000?
- c) Escriba un programa que calcula la tercera raíz con el método de Newton. £Cuantas iteraciones necesita para determinarla con la precisión deseada para los números 25, 500 y 10000?

4.1 Solución apartado A)

Link para ver lectures3-4.pdf --> dropbox

```
In [ ]: #EXHAUSTIVE ENUMERATION
        #SE DEFINE FUNCION RAIZ CUBICA
        #DESCARADAMENTE COPIADO DEL MATERIAL ENVIADO POR PROFESORA
        #PUEDES ENCONTRAR EL ORIGINAL EN LECTURE3-4, PAG 68
        #LOS PASOS MATEMATICOS LOS EXPLICA LA PROFESORA MUCHO MEJOR QUE YO
        #SIN EMBARGO TRATARE DE DEJAR MIS COMENTARIOS CON LO QUE EL PROGRAMA HACE
        def raiz_cubica(x):
        #PRECISION
            epsilon = 0.01
            step = epsilon**3
            ans = 0.0
        #CONTADORA DE ITERACIONES
            count=0
            while abs(ans**3 - x) >= epsilon and ans <=x:
        #AGREGAR ITERACION HASTA QUE SE ROMPA EL CICLO
                count+=1
                ans += step
            if abs(ans**3 - x) >= epsilon:
                print 'No hemos encontrado la raiz de ',x
            print '* La raiz de', x, 'es aproximadamente', ans
            print '* Ocurrieron',count,'iteraciones \n'
        raiz_cubica(25)
        raiz_cubica(500)
        raiz_cubica(10000)
  El programa arroja este resultado:
* La raiz de 25 es aproximadamente 2.92362800005.
* Ocurrieron 2923628 iteraciones
* La raiz de 500 es aproximadamente 7.93695300076
* Ocurrieron 7936953 iteraciones
* La raiz de 10000 es aproximadamente 21.5443400005
* Ocurrieron 21544340 iteraciones
```

4.2 Solución apartado B)

De aquí pude entender mas o menos el algoritmo planteado por la profesora. Me parece bastante interesante este método de programación.

```
def raiz_cubica(x):
        #PRECISION
            epsilon = 0.01
        #MINIMO Y MAXIMO DEL INTERVALO
            low, high = 0.0, max(1.0,x)
        #RESPUESTA
            ans = (high + low)/2.0
        #CONTADORA DE ITERACIONES
            count = 0
            while abs(ans**3 - x) >= epsilon:
                #print 'low =', low, 'high =', high, 'ans = ', ans
                count +=1
        #SI EL CUADRADO DE LA POSIBLE RESPUESTA ES MENOR QUE X
        #ENTONCES DEBE ESTAR A LA IZQUIERDA
                if ans**3 < x:
                    low = ans
        #SI ES MAYOR, DEBE ESTAR A LA DERECHA
                else:
                    high = ans
                ans = (high + low)/2.0
            print '* La raiz de', x, 'es aproximadamente', ans
            print '* Ocurrieron',count,'iteraciones \n'
        raiz_cubica(25)
        raiz_cubica(500)
        raiz_cubica(10000)
  El programa arroja este resultado:
* La raiz de 25 es aproximadamente 2.92434692383
* Ocurrieron 14 iteraciones
* La raiz de 500 es aproximadamente 7.93695449829
* Ocurrieron 19 iteraciones
* La raiz de 10000 es aproximadamente 21.5443409979
* Ocurrieron 28 iteraciones
4.3 Solución apartado C)
In [ ]: #NEWTON
        #DESCARADAMENTE COPIADO DEL MATERIAL ENVIADO POR PROFESORA
        #PUEDES ENCONTRAR EL ORIGINAL EN LECTURE3-4, PAG 89
        #SE DEFINE FUNCION RAIZ CUBICA
        def raiz_cubica(x):
```

#PUEDES ENCONTRAR EL ORIGINAL EN LECTURE3-4, PAG 81

#SE DEFINE FUNCION RAIZ CUBICA

```
#PRECISION
    epsilon = 0.01
#RESPUEST
    guess = x/2.0
#CONTADORA DE ITERACIONES
    count=0
    while abs(guess**3 - x) >= epsilon:
        count+= 1
#METODO DE NEWTON
        guess = guess - (((guess**3) - x) / (3*(guess**2)))
    #print('* Ocurrieron '+str(count)+ ' iteraciones \n')
    print '* La raiz de', x, 'es aproximadamente', guess
   print '* Ocurrieron',count,'iteraciones \n'
raiz_cubica(25)
raiz_cubica(500)
raiz_cubica(10000)
```

El programa arroja este resultado:

```
* La raiz de 25 es aproximadamente 2.9242328368

* Ocurrieron 6 iteraciones

* La raiz de 500 es aproximadamente 7.93700527704

* Ocurrieron 12 iteraciones

* La raiz de 10000 es aproximadamente 21.5443469166

* Ocurrieron 17 iteraciones
```

5 Ejercicio 5

Ejercicio 5: Usted tiene las siguientes ecuaciones:

```
a) x^2 = 4x
b) e^x = 4x
```

c)
$$10x = x^2$$

Para cada ecuación, defina una función f(x) de forma que el cero de la función f sea la solución de la ecuación. Después, calcule también df/dx y use el método de Newton para determinar la solución. (No nos interesa la solución trivial x = 0 en caso de a) y c). Si resulta zero, cambie el supuesto inicial.)

5.1 Solución apartado A)

Ésta solución y las que siguen, han sido basadas tras leer la entrada de Shah en este link

```
In [ ]: #definimos funciones
```

```
# f1'(x) --- > 2x - 4
        def f1(x):
            return x**2 - 4*x
        def df1(x):
            return 2*x-4
        #supuesto inicial (con 2.0 retorna ZeroDivisionError)
        xnew = [3.0]
        #error tolerado al aproximar
        erro = 0.001
        #raiz de la funcion
        resp = xnew[-1]
        print '-----' Metodo de Newton ------'
        print 'Funcion = x^2 - 4x'
        #try/except por si ocurre division por O
        try:
            while True:
                print 'Mejor aproximacion = ',resp
        #metodo de newton-raphson
                resp = resp - (f1(resp)/df1(resp))
        #agregar esta resp a xnew
                xnew.append(resp)
        #alcanzar el error exigido
                if abs(xnew[-2]-xnew[-1]) <= erro:</pre>
                    break
        except (ZeroDivisionError):
            print 'Ha ocurrido una division por 0. No se puede continuar'
        print '***La aproximacion final es',resp
  El programa arroja:
----- Metodo de Newton -----
Funcion = x^2 - 4x
Mejor aproximacion = 3.0
Mejor aproximacion = 4.5
Mejor aproximacion = 4.05
Mejor aproximacion = 4.0006097561
***La aproximacion final es 4.00000009292
5.2 Solución apartado B)
In []: #para la funcion exponencial
        from math import exp
        # definimos funciones
        # f2(x) \longrightarrow e^x - 4x
        # df2(x) ---> e^x - 4
```

$f1(x) ---> x^2 - 4x$

```
return exp(x) - 4*x
        def df2(x):
            return exp(x) - 4
        #supuesto inicial
       xnew = [3.0]
        #error tolerado al aproximar
        erro = 0.001
        #raiz de la funcion
       resp = xnew[-1]
        print '-----' Metodo de Newton ------'
        print 'Funcion = e^x - 4x'
        #try/except por si ocurre division por 0
        try:
            while True:
                print 'Mejor aproximacion = ',resp
        #metodo de newton-raphson
                resp = resp - (f2(resp)/df2(resp))
        #agregar esta resp a xnew
               xnew.append(resp)
        #alvanzar el error exigido
                if abs(xnew[-2]-xnew[-1]) \le erro:
                    break
        except (ZeroDivisionError):
            print 'Ha ocurrido una division por O. No se puede continuar'
        print '***La aproximacion final es',resp
  El programa arroja:
----- Metodo de Newton -----
Funcion = e^x - 4x
Mejor aproximacion = 3.0
Mejor aproximacion = 2.49734118533
Mejor aproximacion = 2.23221940087
Mejor aproximacion = 2.15860801401
Mejor aproximacion = 2.15331857522
***La aproximacion final es 2.15329236475
5.3 Solución apartado C)
In [ ]: #definimos funciones
        #f3(x) ---> 10x - x^2
        #df3(x) --->10 - 2x
        def f3(x):
            return 10*x - x**2
        def df3(x):
```

def f2(x):

```
return 10 - 2*x
        #supuesto inicial
        xnew = [7.0]
        #error tolerado al aproximar
        erro = 0.001
        #raiz de la funcion
       resp = xnew[-1]
       print '----- Metodo de Newton -----'
       print 'Funcion = 10 - x^2'
        #try/except por si ocurre division por 0
           while True:
               print 'Mejor aproximacion = ',resp
        #metodo de newton-raphson
               resp = resp - (f3(resp)/df3(resp))
        #agregar esta resp a xnew
               xnew.append(resp)
        #alcanzar el error exigido
                if abs(xnew[-2]-xnew[-1]) \le erro:
                   break
        except (ZeroDivisionError):
           print 'Ha ocurrido una division por 0. No se puede continuar'
       print '***La aproximacion final es',resp
  El programa arroja:
----- Metodo de Newton -----
Funcion = 10 - x^2
Mejor aproximacion = 7.0
Mejor aproximacion = 12.25
Mejor aproximacion = 10.349137931
Mejor aproximacion = 10.0113941065
Mejor aproximacion = 10.000012953
***La aproximacion final es 10.0
```