APPM 5600 — HOMEWORK # 1

- 1. (15 points) How would you perform the following calculations to avoid cancellation? Justify your answers.
 - i. (5 pts) Evaluate $\sqrt{x+1}-1$ for $x \simeq 0$.
 - ii. (5 pts) Evaluate $\sin(x) \sin(y)$ for $x \simeq y$.
 - iii. (5 pts) Evaluate $\frac{1-\cos(x)}{\sin(x)}$ for $x \simeq 0$.
- 2. (20 points) Consider the polynomial $p(x) = (x-2)^9 = x^9 18x^8 + 144x^7 672x^6 + 2016x^5 4032x^4 + 5376x^3 4608x^2 + 2304x 512$.
 - i. (5 pts) Plot p(x) for $x = 1.920, 1.921, 1.922, \dots, 2.080$ (i.e. x = [1.920 : 0.001 : 2.080];) evaluating p via its coefficients.
 - ii. (5 pts) Produce the same plot again, now evaluating p via the expression $(x-2)^9$.
 - iii. (10 pts) What is the difference? What is causing the discrepancy? Which plot is correct?
- 3. (25 points) Cancellation of terms. Consider computing $y = x_1 x_2$ with $\tilde{x}_1 = x_1 + \Delta x_1$ and $\tilde{x}_2 = x_2 + \Delta x_2$ being approximations to the exact values. If the operation $x_1 x_2$ is carried out exactly we have $\tilde{y} = y + (\Delta x_1 \Delta x_2)$.
 - i. (10 pts) Find upper bounds on the absolute error $|\Delta y|$ and the relative error $|\Delta y|/|y|$, when is the relative error large?
 - ii. (5 pts) First manipulate $\cos(x+\delta) \cos(x)$ into an expression without subtraction. Then, tabulate or plot the difference between your expression and $\cos(x+\delta) \cos(x)$ for $\delta = 10^{-16}, 10^{-15}, \dots, 10^{-2}, 10^{-1}, 10^{0}$ (note that you can get an logarithmically equispaced vector in matlab by using logspace).
 - iii. (10 pts) Taylor expansion yields $f(x+\delta) f(x) = \delta f'(x) + \frac{\delta^2}{2!}f''(\xi)$, $\xi \in [x, x+\delta]$. Use this expression to approximate $\cos(x+\delta) \cos(x)$ for the same values of δ as in (b). Determine for what values of δ each method is better.
- 4. (5 points) Show that $(1+x)^n = 1 + nx + o(x)$ as $x \to 0$ where $n \in \mathbb{Z}$.
- 5. (5 points) Show that $x \sin \sqrt{x} = O(x^{3/2})$ as $x \to 0^+$.
- 6. (30 points) The function $f(x) = (x-5)^9$ has a root (with multiplicity 9) at x=5 and is monotonically increasing (decreasing) for x>5 (x<5) and should thus be a suitable candidate for your function above. Set a=4.8 and b=5.31 and tol = 1e-4 and use bisection with: (10 points for bisection code)

1

- i. (5 pts) $f(x) = (x-5)^9$.
- ii. (5 pts) The expanded expanded version of $(x-5)^9$, that is, $f(x) = x^9 45x^8 + \ldots 1953125$.
- iii. (10 pts) Explain what is happening.