Table 1: Test accuracy on long-tailed imbalance on CIFAR-10. We use the imbalance ratio ρ to denote the ratio between the sample sizes of the most frequent and least frequent class, i.e., $\rho = \max_i n_i / \min_i n_i$. Long-tailed imbalance follows an exponential decay in sample sizes across different classes. The test accuracy on a full dataset is 89.98 ($\rho = 10$) and 75.03 ($\rho = 100$). We report the average performance across three runs.

	CIFAR-10									
Imbalance Ratio	10					100				
Pruning Rate	30%	50%	70%	80%	90%	30%	50%	70%	80%	90%
Random	42.48 ± 0.45	28.20 ± 0.07	18.85 ± 0.24	10.00 ± 0.00	10.00 ± 0.00	28.23 ± 0.09	19.36 ± 0.18	10.00 ± 0.00	10.00 ± 0.00	10.00 ±0.00
EL2N	89.42 ± 0.20	87.59 ± 0.97	68.15 ± 3.44	52.90 ± 1.87	$33.25{\scriptstyle~\pm0.41}$	72.70 ± 1.58	$66.06 ~\pm 4.27$	52.90 ± 2.88	41.79 ± 2.61	$30.30{\scriptstyle~ \pm 0.58}$
Dyn-Unc	89.64 ± 0.28	87.60 ± 0.39	67.60 ± 4.34	53.05 ± 0.88	39.16 ± 1.94	$\textbf{74.40} \pm 1.32$	$\textbf{70.22} \hspace{0.1cm} \pm 1.60$	51.89 ± 3.08	41.27 ± 2.34	31.24 ± 0.23
CCS	84.42 ±0.89	73.04 ± 1.20	47.07 ± 0.68	37.38 ± 0.36	27.91 ± 0.96	$63.18 ~\pm 1.56$	$45.46 {\scriptstyle~\pm 1.33}$	$32.66{\scriptstyle~ \pm 0.63}$	29.38 ± 0.71	24.10 ± 0.97
DUAL	89.67 ± 0.40	$88.75 \pm\! 0.36$	75.38 ± 3.41	56.70 ± 2.83	43.58 ± 2.45	72.94 ± 1.14	$69.66 ~ \pm 0.73$	$52.80{\scriptstyle~\pm 1.00}$	$38.32 ~\pm 1.28$	$25.30{\scriptstyle~\pm1.28}$
$\mathrm{DUAL} + \beta$	89.49 ± 0.21	88.12 ± 0.61	$\textbf{76.00} \pm 2.79$	$\textbf{78.31} \ \pm 2.26$	$\textbf{71.27} \pm 1.44$	73.81 ± 2.06	68.89 ± 0.24	$52.95 \hspace{0.1cm} \pm 2.79$	$46.49 \pm\! 1.80$	$\textbf{36.43} \pm 1.00$

Table 2: Test accuracy on long-tailed imbalance on CIFAR-100. We use the imbalance ratio ρ to denote the ratio between the sample sizes of the most frequent and least frequent class, i.e., $\rho = \max_i n_i / \min_i n_i$. Long-tailed imbalance follows an exponential decay in sample sizes across different classes. The test accuracy on a full dataset is 62.92 ($\rho = 10$) and 41.67 ($\rho = 100$). We report the average performance across three runs.

	CIFAR-100									
Imbalance Ratio	10					100				
Pruning Rate	30%	50%	70%	80%	90%	30%	50%	70%	80%	90%
Random	32.89 ± 0.23	18.79 ± 0.75	8.26 ± 0.41	5.43 ± 0.07	3.23 ± 0.05	22.88 ± 0.87	11.45 ± 0.11	5.90 ± 0.15	3.96 ± 0.05	2.48 ± 0.02
EL2N	57.57 ± 0.50	$47.23{\scriptstyle~\pm0.46}$	$21.38{\scriptstyle~ \pm 0.33}$	$13.92{\scriptstyle~\pm 0.97}$	9.54 ± 0.19	37.59 ± 2.13	$24.76 ~\pm 1.87$	$12.33{\scriptstyle~\pm 0.54}$	$9.42{\scriptstyle~ \pm 0.26}$	$6.64{\scriptstyle~ \pm 0.02}$
Dyn-Unc	58.09 ± 0.85	46.68 ± 0.69	25.95 ± 2.16	$20.80{\scriptstyle~ \pm 0.68}$	13.48 ± 0.50	37.82 ±1.08	26.88 ± 0.38	15.41 ± 0.42	12.47 ± 0.55	9.52 ± 0.12
CCS	46.51 ± 0.56	$34.85{\scriptstyle~\pm0.79}$	18.08 ± 0.80	11.34 ± 0.30	6.06 ± 0.43	27.46 ± 0.27	$17.85{\scriptstyle~\pm0.76}$	11.43 ± 0.33	$8.25{\scriptstyle~ \pm 0.66}$	4.34 ± 0.53
DUAL	58.50 ± 0.27	54.11 ± 0.27	39.15 ± 1.43	30.10 ± 0.97	18.80 ± 1.17	36.35 ± 0.66	30.19 ± 1.58	20.47 ± 0.30	17.76 ± 0.47	12.52 ± 0.56
$\mathrm{DUAL} + \beta$	58.05 ± 0.34	$\textbf{54.88} \ \pm 0.36$	$43.53 \pm\! 0.66$	$35.87 \pm\! 1.75$	27.13 ± 1.49	37.04 ± 0.97	$32.25 \hspace{0.1cm} \pm 0.45$	21.94 ± 1.27	$19.38 \pm\! 0.77$	$15.42 \pm\! 0.32$