The Effectiveness of Combinatorial Antiretroviral Treatments on Treating Patients with HIV-1 STAT 678 Final Project

Kyle Lee Yunhao Sun

Department of Mathematics and Statistics San Diego State University

August 11, 2018

Outline

- Background
- 2 Data
- Method
- 4 Conclusion
- Discussion
- 6 Bibliography

Background

- Human immunodeficiency virus (HIV) destroys CD4 cells. There are 5 stages of diagnosis (0,1,2,3, unknown) and AIDS is Stage 3.
- Most likely thought to originate from a type of chimpanzee in Central Africa as far as late 1800s[1].
- Before treatment options existed in the mid 1990s, HIV-inflicted patients can live only for several years.
- Currently, no cure exists. But treatment options exist that minimize the viral counts.
- Treatment regimens proposed in mid 1990s and followed by more research. This dataset came from one of the first studies on AIDS treatments (1997).
- Study terminated early due to "demonstration ... of clinical superiority" [2] of the three-drug regimen over the two-drug regimen.

Background

Figure 1: Source: Our World in Data

Background

Figure 2: Source: Our World in Data

Data

- Double-blind clinical trial with **two treatment regimes**:
 - 1 indinavir (IDV), zidovudine (ZDV) or stavudine (d4T) and lamivudine (3TC)
 - 2 zidovudine (ZDV) or stavudine (d4T) and lamivudine (3TC)
- Mechanism of action:
 - Inhibit HIV's reverse transcriptase, the enzyme that the virus uses to make a DNA copy of its RNA.
- Total observations: 1151, 5 missing from original dataset
- Randomization stratified according to CD4 cell count at the time of the screening
- Variables: id, time, censor, $time_d$, $censor_d$, tx, txgrp, strat2, sex, raceth, ivdrug, hemophil, karnof, cd4, priorzdv, age

Variables

Name	Description	Codes/Values
$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	Identification Code	1-1151
time	Time to AIDS diagnosis or death	Days
censor	Event indicator for AIDS/death	1/0
tx	Treatment indicator	1 (includes IDV)/0
txgrp	Treatment group indicator	1-4
strat2	CD4 stratum at screening	1/0
sex	Sex	1/0
raceth	Race/Ethnicity	1-6
ivdrug	IV drug use history	1-3
hemophil	Hemophiliac	1/0
karn of	Karnofsky Performance Scale	70, 80, 90, 100
cd	Baseline CD4 count	Cells/milliliter
priorzdv	Months of prior ZDV use	Months
age	Age at Enrollment	Years

Note: We do not use $time_d$ and $censor_d$ because most survive. Yay!

Summary Statistics

- 439(38.1%) patients had 50 or fewer CD4 cells per cubic millimeter and 712(61.9%) patients had 51 to 200 CD4 cells per cubic millimeter.
- 951(82.6%) of patients were male and 200(17.4%) were female.
- 596(51.8%) of patients were white non-hispanic, 327(28.4%) were black non-hispanic, 203(17.6%) were hispanic, 14(1.2%) were Asian or Pacific Islander, and 11(1.0%) were American Indian or Alaskan Native.
- Karnofsky Score: 32(2.8%) scored a 70, 182(15.8%) scored an 80, 541(47.0%) scored a 90, and 396(34.4%) scored a 100.

Summary Statistics

Method

- Backward Variable Selection
 - Fit a Cox model with all appropriate variables
 - 2 Find the largest p-value and remove that variable. Consider factored variables and their p-values.
 - 3 Repeat Steps 1 and 2 until variables are relatively significant
- Identifying functional form of covariates
- Assess the Proportional Hazards Assumption
- Identify Outliers
- Create final model
- Discussion

Backward Variable Selection

Figure 4: P-values for Model Selection

	Dependent variable: time							
	(1)	(2)	(3)	(4)	(5)	(6)		
tx	$p = 0.003^{***}$	$p = 0.003^{***}$	$p = 0.003^{***}$	$p = 0.003^{***}$	$p = 0.003^{***}$	$p = 0.002^{***}$		
strat2	p = 0.857	p = 0.858	_			_		
sex	p = 0.490	p = 0.495	p = 0.494	p = 0.498				
factor(raceth)2	p = 0.190	p = 0.189	p = 0.191	p = 0.198	p = 0.231			
factor(raceth)3	p = 0.721	p = 0.722	p = 0.715	p = 0.705	p = 0.673			
factor(raceth)4	p = 0.173	p = 0.174	p = 0.173	p = 0.174	p = 0.169			
factor(raceth)5	p = 0.810	p = 0.789	p = 0.790	p = 0.789	p = 0.804			
factor(ivdrug)2	p = 0.463	p = 0.464	p = 0.476	p = 0.487	p = 0.489	p = 0.465		
factor(ivdrug)3	$p = 0.081^*$	$p = 0.080^*$	$p = 0.081^*$	$p = 0.081^*$	$p = 0.083^*$	$p = 0.068^*$		
nemophil	p = 0.873							
karnof	$p = 0.00001^{***}$	$p = 0.00001^{***}$	$p = 0.00001^{***}$	$p = 0.00001^{***}$	$p = 0.00001^{***}$	$p = 0.00001^{***}$		
cd4	$p = 0.0003^{***}$	$p = 0.0002^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$	$p = 0.000^{***}$		
oriorzdv	p = 0.774	p = 0.789	p = 0.797	-	_	-		
age	$p = 0.040^{**}$	$p = 0.041^{**}$	$p = 0.042^{**}$	$p = 0.043^{**}$	$p = 0.050^{**}$	$p = 0.060^*$		

Finding functional forms of covariates

Figure 5: Finding functional forms of covariates[3]

Testing Proportional Hazards Assumption

Figure 6: Testing PH Assumption Part 1

Figure 7: Testing PH Assumption Part 2

Global Schoenfeld Test p: 0.3804

Outlier Analysis

Figure 8: Score Residuals for factor(ivdrug)2

Figure 9: Score Residuals for factor(ivdrug)3

Figure 10: Score Residuals for Karnofsky Scores

Figure 11: Score Residuals for $\sqrt{cd4}$

Figure 12: Score Residuals for age^2

Score Residuals for I(age^2)

Outliers

Table 1: Outliers

	id	time	censor	$_{ m tx}$	txgrp	strat2	ivdrug	karnof	cd4	age
492	495	144	1	1	2	1	2	70	57	56
1038	1,043	221	0	0	1	1	2	80	71.500	47
638	641	290	0	0	1	0	1	70	6	58

Conclusion

Figure 13: Cox PH Model Stratified by Treatment

Treatment including IDV improve the survival rates than treatment without IDV.

Conclusion

IDV is no longer recommended for use in United States because of serious side effects like kidney failure and liver problems [4].

Table 2: Final Cox PH Model with Stratified Treatment with age^2

	coef	$\exp(\operatorname{coef})$	se(coef)	\mathbf{z}	$\Pr(> z)$
factor(ivdrug)2	0.818	2.267	1.022	0.801	0.423
factor(ivdrug)3	-0.600	0.549	0.336	-1.786	0.074
karnof	-0.054	0.947	0.012	-4.512	0.00001
$\operatorname{sqrt}(\operatorname{cd}4)$	-0.182	0.833	0.030	-6.132	0
$I(age^2)$	0.0002	1.000	0.0001	1.948	0.051

Alternate model with age

Table 3: Final Cox PH Model with Stratified Treatment and age

	coef	exp(coef)	se(coef)	Z	$\Pr(> \mathbf{z})$
factor(ivdrug)2	0.820	2.270	1.022	0.802	0.422
factor(ivdrug)3	-0.609	0.544	0.336	-1.815	0.070
karnof	-0.054	0.947	0.012	-4.515	0.00001
$\operatorname{sqrt}(\operatorname{cd}4)$	-0.182	0.834	0.030	-6.119	0
age	0.021	1.021	0.011	1.856	0.063

Alternate model with age and age^2

Table 4

	coef	$\exp(\operatorname{coef})$	se(coef)	Z	$\Pr(> z)$
factor(ivdrug)2	0.822	2.276	1.022	0.805	0.421
factor(ivdrug)3	-0.594	0.552	0.337	-1.760	0.078
karnof	-0.054	0.947	0.012	-4.514	0.00001
$\operatorname{sqrt}(\operatorname{cd}4)$	-0.182	0.833	0.030	-6.136	0
age	-0.012	0.988	0.069	-0.179	0.858
$I(age^2)$	0.0004	1.000	0.001	0.487	0.627

```
Analysis of Deviance Table
Cox model: response is Surv(time, censor)
Model 1: * strata(tx) + factor(ivdrug) +
 karnof + sqrt(cd4) + age + I(age^2)
Model 2: ~ strata(tx) + factor(ivdrug) +
 karnof + sqrt(cd4) + age
   loglik Chisq Df P(>|Chi|)
1 -547.70
2 -547.81 \ 0.2274 \ 1 \ 0.6334
```

```
Analysis of Deviance Table
Cox model: response is Surv(time, censor)
Model 1: * strata(tx) + factor(ivdrug) +
 karnof + sqrt(cd4) + age + I(age^2)
Model 2: ~ strata(tx) + factor(ivdrug) +
 karnof + sqrt(cd4) + I(age^2)
   loglik Chisq Df P(>|Chi|)
1 -547.70
2 -547.71 \ 0.0315 \ 1 \ 0.8591
```

Discussion

Future Directions for HIV Treatment Research:

- Long-Acting Drugs
- Side Effects
- Broadly Neutralizing Antibodies
- Therapeutic HIV Vaccines

Any questions? Thank you!

Bibliography

- "Hiv/aids," Mar 2018. [Online]. Available: https://www.cdc.gov/hiv/basics/whatishiv.html
- J. Levin, Aug 1998. [Online]. Available: http://www.natap.org/1998/drug/320.html
- L. Xu, "Assessing the fit of the cox model."
- L. J. Campbell, F. Ibrahim, M. Fisher, S. G. Holt, B. M. Hendry, and F. A. Post, "Spectrum of chronic kidney disease in hiv-infected patients." Jul 2009. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/19226409