Complete Machine Learning Algorithms & Evaluation Cheat Sheet

Table of Contents

- 1. <u>Supervised Learning Algorithms</u>
- 2. <u>Unsupervised Learning Algorithms</u>
- 3. Semi-Supervised Learning
- 4. Reinforcement Learning
- 5. Ensemble Methods
- 6. Deep Learning Algorithms
- 7. Evaluation Metrics
- 8. Model Selection & Validation
- 9. Feature Engineering & Selection
- 10. Optimization Algorithms

1. Supervised Learning Algorithms {#supervised-learning}

1.1 Linear Regression

Purpose: Predict continuous values by fitting a linear relationship between features and target.

Mathematics:

- Model: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n + \epsilon$
- Loss Function: MSE = $(1/n)\Sigma(y_i \hat{y}_i)^2$
- Solution: $\beta = (X'X)^{-1}X'y$ (Normal Equation)

Variants:

- Ridge Regression (L2): Adds $\lambda\Sigma\beta_i^2$ penalty to prevent overfitting
- Lasso Regression (L1): Adds $\lambda\Sigma|\beta_i|$ penalty for feature selection
- Elastic Net: Combines L1 and L2 penalties

When to Use:

- Linear relationships between features and target
- Interpretability is important
- Baseline model for regression tasks

1.2 Logistic Regression

Purpose: Binary/multiclass classification using sigmoid/softmax function.

Mathematics:

- Binary: $P(y=1|x) = 1/(1 + e^{(-\beta x)})$
- Loss: Cross-entropy = $-\Sigma[y \log(p) + (1-y)\log(1-p)]$
- Optimization: Gradient Descent or Newton-Raphson

Key Concepts:

- Odds Ratio: p/(1-p)
- Log Odds: $log(p/(1-p)) = \beta'x$
- Decision Boundary: Linear in feature space

Extensions:

- Multinomial Logistic Regression (Softmax)
- Ordinal Logistic Regression

1.3 Decision Trees

Purpose: Non-linear classification/regression through recursive partitioning.

Algorithms:

- CART (Classification and Regression Trees)
 - Gini Impurity: $G = 1 \Sigma p_i^2$
 - Entropy: $H = -\Sigma p_i \log_2(p_i)$
 - MSE for regression
- ID3/C4.5: Uses Information Gain
 - $IG(S,A) = H(S) \Sigma(|S_v|/|S|)H(S_v)$

Pruning Methods:

- Pre-pruning: Max depth, min samples split
- Post-pruning: Cost complexity pruning

Advantages: Interpretable, handles non-linearity, no scaling needed **Disadvantages**: Overfitting, unstable, biased to high-cardinality features

1.4 Support Vector Machines (SVM)

Purpose: Find optimal hyperplane maximizing margin between classes.

Mathematics:

- Linear SVM: $\min(1/2)||w||^2$ subject to $y_i(w'x_i + b) \ge 1$
- Soft Margin: Adds slack variables ξ_i with penalty C
- ullet Dual Form: Uses Lagrange multipliers α_i

Kernel Trick:

- Linear: $K(x_i, x_j) = x_i'x_j$
- Polynomial: $K(x_i, x_j) = (\gamma x_i x_j + r)^d$
- RBF: $K(x_i, x_j) = \exp(-\gamma ||x_i x_j||^2)$
- Sigmoid: $K(x_i, x_j) = tanh(\gamma x_i x_j + r)$

Key Parameters:

- C: Regularization (trade-off between margin and misclassification)
- γ (gamma): Kernel coefficient
- kernel: Type of kernel function

1.5 k-Nearest Neighbors (k-NN)

Purpose: Instance-based learning using proximity to training examples.

Algorithm:

- 1. Calculate distance to all training points
- 2. Select k nearest neighbors
- 3. Vote (classification) or average (regression)

Distance Metrics:

- Euclidean: $d = \sqrt{\Sigma(x_i y_i)^2}$
- Manhattan: $d = \Sigma |x_i y_i|$
- Minkowski: $d = (\Sigma |x_i y_i|^p)^(1/p)$
- Cosine: similarity = $(x\cdot y)/(||x||||y||)$

Considerations:

- k selection: Cross-validation, odd k for binary classification
- Curse of dimensionality
- Computational cost: O(nd) for each prediction
- Feature scaling crucial

1.6 Naive Bayes

Purpose: Probabilistic classifier based on Bayes' theorem with independence assumption.

Mathematics:

• Bayes' Theorem: P(y|X) = P(X|y)P(y)/P(X)

• Naive Assumption: $P(X|y) = \prod P(x_i|y)$

Variants:

• Gaussian NB: $P(x_i|y) \sim N(\mu_y, \sigma_y^2)$

• Multinomial NB: For discrete features (text classification)

• Bernoulli NB: For binary features

Laplace Smoothing: Add α to avoid zero probabilities

2. Unsupervised Learning Algorithms {#unsupervised-learning}

2.1 K-Means Clustering

Purpose: Partition data into k clusters minimizing within-cluster variance.

Algorithm:

1. Initialize k centroids randomly

2. Assign points to nearest centroid

3. Update centroids as cluster means

4. Repeat until convergence

Objective Function: $J = \Sigma \Sigma ||x_i - \mu_i||^2$ (inertia)

Initialization Methods:

• Random

• K-means++: Probabilistic selection for better initialization

• Multiple runs with different seeds

Limitations:

- Assumes spherical clusters
- Sensitive to outliers
- Must specify k
- Local minima issues

2.2 Hierarchical Clustering

Purpose: Build hierarchy of clusters using agglomerative or divisive approach.

Linkage Criteria:

Single: min distance between clusters

• Complete: max distance between clusters

• Average: mean distance between all pairs

Ward: minimize within-cluster variance

Distance Metrics: Euclidean, Manhattan, Cosine

Output: Dendrogram for visualizing hierarchy

2.3 DBSCAN (Density-Based Spatial Clustering)

Purpose: Find arbitrary-shaped clusters based on density.

Parameters:

• ε (eps): Maximum distance between points in neighborhood

• MinPts: Minimum points to form dense region

Point Types:

Core points: Have ≥ MinPts within ε

Border points: Within ε of core point

• Noise points: Neither core nor border

Advantages: Finds arbitrary shapes, robust to outliers, no k needed

2.4 Gaussian Mixture Models (GMM)

Purpose: Probabilistic model assuming data from mixture of Gaussians.

Mathematics:

• Model: $p(x) = \Sigma \pi_k N(x|\mu_k, \Sigma_k)$

• EM Algorithm:

E-step: Calculate responsibilities

• M-step: Update parameters (π, μ, Σ)

Covariance Types:

• Full: Each component has own covariance matrix

- Diagonal: Diagonal covariance matrices
- Spherical: $\Sigma = \sigma^2 I$
- Tied: All components share same covariance

2.5 Principal Component Analysis (PCA)

Purpose: Linear dimensionality reduction maximizing variance.

Algorithm:

- 1. Standardize data
- 2. Compute covariance matrix
- 3. Calculate eigenvectors/eigenvalues
- 4. Select top k components
- 5. Transform data

Mathematics:

- Covariance: C = (1/n)X'X
- Components: Principal axes of variation
- Explained Variance Ratio: λ_i/Σλ_i

Variants:

- Kernel PCA: Non-linear using kernel trick
- Sparse PCA: L1 penalty for interpretability
- Incremental PCA: For large datasets

2.6 t-SNE (t-Distributed Stochastic Neighbor Embedding)

Purpose: Non-linear dimensionality reduction for visualization.

Key Concepts:

- Preserves local structure
- Uses Student's t-distribution in low dimensions
- Perplexity parameter: Balance between local/global aspects

Limitations:

- Computationally expensive O(n²)
- Non-deterministic
- Cannot project new data

Mainly for visualization (2D/3D)

2.7 Autoencoders

Purpose: Neural network for unsupervised representation learning.

Architecture:

• Encoder: Compresses input to latent representation

Decoder: Reconstructs input from latent space

Loss: Reconstruction error (MSE, Cross-entropy)

Variants:

- Denoising Autoencoders
- Sparse Autoencoders
- Variational Autoencoders (VAE)
- Contractive Autoencoders

3. Semi-Supervised Learning {#semi-supervised-learning}

3.1 Self-Training

Algorithm:

- 1. Train on labeled data
- 2. Predict on unlabeled data
- 3. Add confident predictions to training set
- 4. Retrain and repeat

3.2 Co-Training

Requirements: Two independent feature sets Process: Train two classifiers, each labels data for the other

3.3 Graph-Based Methods

Approach: Propagate labels through graph of data points Examples: Label Propagation, Label Spreading

4. Reinforcement Learning {#reinforcement-learning}

4.1 Core Concepts

• Agent: Decision maker

Environment: External system

State (s): Current situation

- Action (a): Agent's decision
- Reward (r): Feedback signal
- Policy (π): Mapping states to actions
- Value Function: Expected future reward

4.2 Q-Learning

Update Rule: $Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max Q(s',a') - Q(s,a)]$

4.3 Deep Q-Networks (DQN)

Innovations:

- Neural network approximates Q-function
- Experience replay buffer
- Target network for stability

4.4 Policy Gradient Methods

Objective: Maximize expected reward Examples: REINFORCE, Actor-Critic, PPO, TRPO

5. Ensemble Methods {#ensemble-methods}

5.1 Bagging (Bootstrap Aggregating)

Purpose: Reduce variance through averaging.

Algorithm:

- 1. Create bootstrap samples
- 2. Train model on each sample
- 3. Average predictions (regression) or vote (classification)

Example: Random Forest

- Multiple decision trees
- Random feature selection at each split
- Out-of-Bag (OOB) error estimation

5.2 Boosting

Purpose: Reduce bias by combining weak learners sequentially.

AdaBoost:

Weight misclassified samples higher

- Combine weighted weak learners
- Exponential loss function

Gradient Boosting:

- Fit new model to residuals
- Additive model: $F(x) = \Sigma f_m(x)$
- Can use any differentiable loss

XGBoost Improvements:

- Regularization terms
- Second-order approximation
- Column subsampling
- Parallel processing

LightGBM Features:

- · Leaf-wise growth
- Gradient-based One-Side Sampling
- Exclusive Feature Bundling

5.3 Stacking (Stacked Generalization)

Process:

- 1. Train base models on training data
- 2. Use predictions as features for meta-model
- 3. Meta-model learns optimal combination

Key Considerations:

- Use cross-validation to generate base predictions
- Diverse base models improve performance

6. Deep Learning Algorithms {#deep-learning}

6.1 Feedforward Neural Networks

Components:

- Input layer
- Hidden layers with activation functions
- Output layer

• Backpropagation for training

Activation Functions:

- ReLU: f(x) = max(0,x)
- Sigmoid: $f(x) = 1/(1+e^{-(-x)})$
- Tanh: $f(x) = (e^x e^{-x})/(e^x + e^{-x})$
- Leaky ReLU: $f(x) = max(\alpha x, x)$
- GELU, Swish, Mish (modern variants)

6.2 Convolutional Neural Networks (CNN)

Key Layers:

- Convolutional: Feature detection with filters
- Pooling: Downsampling (Max, Average)
- Fully Connected: Classification/regression

Important Concepts:

- Stride, Padding, Receptive Field
- Transfer Learning
- Data Augmentation

Architectures: LeNet, AlexNet, VGG, ResNet, Inception, EfficientNet

6.3 Recurrent Neural Networks (RNN)

Purpose: Sequential data processing with memory.

Variants:

- Vanilla RNN: $h_t = tanh(W_h h_{t-1} + W_x X_t + b)$
- **LSTM**: Gates control information flow (forget, input, output)
- **GRU**: Simplified LSTM with reset and update gates

Issues: Vanishing/exploding gradients, long-term dependencies

6.4 Transformer Architecture

Key Innovation: Self-attention mechanism

Components:

Multi-head attention

- Positional encoding
- Feed-forward networks
- Layer normalization

Applications: BERT, GPT, T5, Vision Transformer

6.5 Generative Models

Generative Adversarial Networks (GANs):

- Generator: Creates fake samples
- Discriminator: Distinguishes real/fake
- Minimax game optimization

Variational Autoencoders (VAE):

- Encoder: Maps to latent distribution
- Decoder: Generates from latent space
- KL divergence regularization

Diffusion Models:

- Forward process: Add noise gradually
- Reverse process: Denoise to generate

7. Evaluation Metrics {#evaluation-metrics}

7.1 Classification Metrics

Confusion Matrix Components:

- True Positives (TP), True Negatives (TN)
- False Positives (FP), False Negatives (FN)

Basic Metrics:

- Accuracy: (TP + TN) / Total
- Precision: TP / (TP + FP)
- Recall (Sensitivity): TP / (TP + FN)
- Specificity: TN / (TN + FP)
- **F1 Score**: 2 × (Precision × Recall) / (Precision + Recall)

Advanced Metrics:

- F-beta Score: Weighted F1 score
- Matthews Correlation Coefficient (MCC): Balanced measure for imbalanced data
- Cohen's Kappa: Agreement correcting for chance
- **ROC-AUC**: Area under ROC curve (TPR vs FPR)
- PR-AUC: Area under Precision-Recall curve

Multi-class Metrics:

- Micro-averaging: Aggregate contributions
- Macro-averaging: Average per-class metrics
- Weighted-averaging: Class-frequency weighted

7.2 Regression Metrics

Error-based Metrics:

- Mean Absolute Error (MAE): $(1/n)\Sigma |y_i \hat{y}_i|$
- Mean Squared Error (MSE): (1/n)Σ(y_i ŷ_i)²
- Root Mean Squared Error (RMSE): √MSE
- Mean Absolute Percentage Error (MAPE): (100/n)Σ|y_i ŷ_i|/|y_i|

Correlation-based Metrics:

- R² (Coefficient of Determination): 1 (SS_res/SS_tot)
- Adjusted R²: Penalizes for number of features
- Pearson Correlation: Linear correlation coefficient

7.3 Clustering Metrics

Internal Metrics (no ground truth):

- **Silhouette Score**: Cohesion vs separation (-1 to 1)
- Davies-Bouldin Index: Ratio of within-cluster to between-cluster distance
- Calinski-Harabasz Index: Ratio of between-group to within-group dispersion

External Metrics (with ground truth):

- Adjusted Rand Index (ARI): Chance-corrected Rand index
- Normalized Mutual Information (NMI): Information-theoretic measure
- Fowlkes-Mallows Score: Geometric mean of precision and recall

7.4 Ranking Metrics

- Mean Average Precision (MAP)
- Normalized Discounted Cumulative Gain (NDCG)
- Mean Reciprocal Rank (MRR)

8. Model Selection & Validation {#model-selection}

8.1 Train-Test Split

Basic Split:

• Training: 60-80%

Test: 20-40%

• Stratified split for imbalanced data

8.2 Cross-Validation Techniques

k-Fold Cross-Validation:

- Split data into k folds
- Train on k-1, validate on 1
- Repeat k times, average results

Variations:

• Stratified k-Fold: Preserves class distribution

Group k-Fold: Groups stay together

• Time Series Split: Respects temporal order

Leave-One-Out (LOO): k = n samples

8.3 Hyperparameter Tuning

Grid Search:

- Exhaustive search over parameter grid
- Computationally expensive but thorough

Random Search:

- Sample random combinations
- Often more efficient than grid search

Bayesian Optimization:

• Build probabilistic model of objective

- Intelligently select next parameters
- Examples: Gaussian Processes, Tree-structured Parzen Estimators

Advanced Methods:

- Genetic Algorithms
- Hyperband
- Population Based Training

8.4 Model Selection Criteria

Information Criteria:

- **AIC (Akaike)**: -2ln(L) + 2k
- **BIC (Bayesian)**: -2ln(L) + k×ln(n)
- Lower is better, penalizes complexity

Bias-Variance Tradeoff:

- High Bias: Underfitting, too simple
- High Variance: Overfitting, too complex
- Goal: Balance both

9. Feature Engineering & Selection {#feature-engineering}

9.1 Feature Creation

Numerical Features:

- Polynomial features
- Interaction terms
- Binning/Discretization
- Log/exponential transforms
- Domain-specific calculations

Categorical Features:

- One-hot encoding
- Label encoding
- Target encoding
- Frequency encoding
- Binary encoding

Text Features:

- Bag of Words (BoW)
- TF-IDF
- Word embeddings (Word2Vec, GloVe)
- N-grams
- Topic modeling (LDA)

Time Features:

- Lag features
- Rolling statistics
- Seasonal decomposition
- Fourier features

9.2 Feature Selection Methods

Filter Methods:

- Correlation coefficient
- Chi-square test
- Mutual information
- ANOVA F-statistic

Wrapper Methods:

- Forward selection
- Backward elimination
- Recursive Feature Elimination (RFE)

Embedded Methods:

- L1 regularization (Lasso)
- Tree-based feature importance
- Permutation importance

9.3 Feature Scaling

Standardization: $z = (x - \mu) / \sigma$ **Min-Max Normalization**: $x' = (x - \min) / (\max - \min)$ **Robust Scaling**: Use median and IQR **Unit Vector Scaling**: x' = x / ||x||

10. Optimization Algorithms {#optimization}

10.1 Gradient Descent Variants

Batch Gradient Descent:

- Uses entire dataset
- Stable but slow convergence

Stochastic Gradient Descent (SGD):

- Updates per sample
- Noisy but faster

Mini-batch Gradient Descent:

- Balance between batch and SGD
- Most commonly used

10.2 Advanced Optimizers

Momentum:

- Accelerates in consistent directions
- $v = \beta v + (1-\beta)\nabla f$
- $\theta = \theta \alpha v$

AdaGrad:

- · Adaptive learning rates per parameter
- Accumulates squared gradients

RMSprop:

- Fixes AdaGrad's diminishing learning rates
- Exponential moving average of squared gradients

Adam (Adaptive Moment Estimation):

- Combines momentum and RMSprop
- Bias correction for initial steps
- Most popular optimizer

Variants:

- AdamW: Decoupled weight decay
- NAdam: Nesterov momentum in Adam
- RAdam: Rectified Adam

LAMB: Layer-wise adaptive moments

10.3 Learning Rate Scheduling

Step Decay: Reduce by factor every k epochs **Exponential Decay**: $Ir = Ir_0 \times e^{-(-kt)}$ **Cosine Annealing**: Cyclical learning rates **ReduceLROnPlateau**: Reduce when metric plateaus **Warm Restarts**: Reset to initial LR periodically

Best Practices Summary

Model Selection Guidelines

- 1. Linear Models: When relationships are approximately linear, interpretability needed
- 2. **Tree-based**: Non-linear patterns, mixed data types, feature importance needed
- 3. **SVM**: High-dimensional data, clear margin of separation
- 4. **Neural Networks**: Complex patterns, large datasets, unstructured data
- 5. **Ensemble Methods**: When single models insufficient, competition settings

Common Pitfalls to Avoid

- 1. Data leakage between train/test sets
- 2. Not handling class imbalance
- 3. Ignoring multicollinearity
- 4. Overfitting to validation set
- 5. Not considering computational constraints
- 6. Ignoring temporal aspects in time series
- 7. Using inappropriate metrics

Performance Optimization Tips

- Start simple, increase complexity gradually
- 2. Ensure proper data preprocessing
- 3. Use cross-validation for reliable estimates
- 4. Monitor both training and validation metrics
- 5. Implement early stopping for iterative methods
- 6. Consider ensemble methods for final boost
- 7. Profile code for computational bottlenecks

When to Stop Improving

1. Validation performance plateaus

- 2. Marginal gains not worth complexity
- 3. Computational budget exceeded
- 4. Business requirements met
- 5. Risk of overfitting to test set