ფაკულტეტი	საინჟინრო-ტექნიკური
	ენერგეტიკისა და ტელეკომუნიკაციების
სპეციალობა	ელექტრული ინჟინერია (6B211-21; 6B212-21);
საგანი	ელექტროტექნიკის ამოცანების მათემატიკური უზრუნველყოფა
პედაგოგი	ფხაკაძე შორენა
გამოცდის სახე	დასკვნითი გამოცდა
სემესტრი	სწ მე-2 წელი, საშემოდგომო

	შეკითხვის, დავალების, საკითხის ან ტესტის შინაარსი	ტესტის შემთხვევაში ჩაწერეთ წერტილით გამოყოფილი პასუხები	1, 2, 3,
1.	რა ეწოდებათ მოცემული ჩანაცვლების სქემის1,2,3,და 4 წერტილებს ?	(ა) 1, 2, 3 და 4 წერტილებს კვანძები. გ) 1, 2, 3 და 4 წერტილებს შტოები. გ) 1, 2, 3 და 4 წერტილებს კონტურები. დ) 1, 2, 3 და 4 წერტილებს განაწილების კოეფიციენტები.	
2.	3 რას უწოდებენ ღია სქემას, რომლის	(ა))მოგეზილი ანუ ორიენტირებული სქემა.	2
2.	შტოებზეც არჩეული გვაქვს დადებითი მიმართულება?	გ) გამარტივებული სქემა. გ) გართულებული სქემა. დ) არცერთი პასუხი არ არის სწორი.	
3.	რა განზომილება აქვს დენს I ?	(ა) ამპერი. გ) ომი. გ) ვოლტი. დ) სიმენსი.	3
4.	რა განზომილება აქვს დენს R ?	s) ამპერი. (გ) უმი.	3

	The state of the s	$\sum E = \sum Ir$	
9.	როგორ B მატრიცას ეწოდება A ატრიცის შებრუნებული მატრიცა?		6
10	. გამოთვალეთ დეტერმინანტის მნიშვნელობა: [2 1 1] 1 2 3] 1 2 1]	$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix} = 2 \cdot 2 \cdot 1 + 1 \cdot 3 \cdot 1 + 1 \cdot 2 \cdot 1 - 1 \cdot 2 \cdot 1 - 2 \cdot 3 \cdot 2 - 1 \cdot 1 \cdot 1 = $ $= 4 + 3 + 2 - 2 - 12 - 1 = 7 - 13 = -6$ $3) -6.$ $8) -10.$ $8) 3.$	7
11.	გამოსახეთ კოორდინატთა ღერძეზის და \vec{i} , \vec{j} და \vec{k} მგეზავეზით \vec{a} , \vec{b} და \vec{c} ვექტორეზის ჯამი, თუ: $\vec{a} = \vec{a}(1;2;3); \ \vec{b} = \vec{b}(0;-1;-2);$ $\vec{c} = \vec{c}(2;2;2).$	(a) 5. (a) $3\vec{i} + 3\vec{j} + 3\vec{k}$. (a _x + b _x + c _x) \vec{i}' (a _y + b _y + c _y) \vec{i} ; (a _z + b _z + c _z) \vec{k} = $3\vec{i} + 3\vec{j} + 3\vec{k}$ (a) $2\vec{i} + 2\vec{j} + 4\vec{k}$. (a) $2\vec{i} + 7\vec{j} + 3\vec{k}$. (b) $\vec{i} + 3\vec{j} + 8\vec{k}$.	8
12.	გამოსახეთ კოორდინატთა ღერძების და \vec{i}, \vec{j} და \vec{k} მგეზავებით \vec{a} , \vec{b} და \vec{c} ვექტორების ჯამი, თუ: $\vec{a} = \vec{a}(3;1;1); \ \vec{b} = \vec{b}(1;1;1);$ $\vec{c} = \vec{c}(-2;0;2).$	s) $3\vec{i} + 3\vec{j} + 3\vec{k}$. (a) $2\vec{i} + 2\vec{j} + 4\vec{k}$. $(a_x + b_x + c_x)\vec{i}'(a_y + b_y + c_y)\vec{i}; (a_z + b_z + c_z)\vec{k} = 2\vec{i} + 2\vec{j} + 4\vec{k}$ 8) $2\vec{i} + 7\vec{j} + 3\vec{k}$. (a) $\vec{i} + 3\vec{j} + 8\vec{k}$.	8
13.	ვექტორების სკალარული ნამრავლი.	$\vec{a} \cdot \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z$ $\vec{a} \cdot \vec{b} = 1 \cdot 3 + 2 \cdot 1 + 3 \cdot 2 = 3 + 2 + 6 = 11$ 3) 11. 3) 10. 3) 27.	9

	Q) 15.	9
4.	ვექტორეზის სკალარული ნამრავლი.	$ \vec{b} = a_x \cdot b_x + a_y \cdot b_y + a_z \cdot b_z \vec{b} = 1 \cdot 1 + 1 \cdot 1 + 4 \cdot 2 = 1 + 1 + 8 = 10 $ 11. (a) 27.	
15.	როგორ დია სქიმას უწოდებენ	დ) 15. ა) რომლის შტოებზეც არჩეული გვაქვს დადებითი მიმართულება. ბ) რომლის შტოებზეც არჩეული გვაქვს უარყოფითი მიმართულება. გ) რომლის შტოებზეც არჩეული არ გვაქვს მიმართულება. დ) რომელსაც შტოები არ გააჩნია.	10
16	. რას განსაზღვრავს გრაფი?		10
17	. რას ეწოდება კომპლექსური რიცხვი?		11
18	. კომპლექსურ რიცხვთა სიმრავლეში რას უდრის i²	(a) -1. (b) 2. (c) 0. (c) 1.	12
19	როგორ ჩაიწერება კომპლექსური რიცნვები?	(a) $a + bi$ (b) $a - bi$ (b) $a - bi$ (c) $a \cdot bi$ (c) $a + bi$ (c) $a \cdot bi$	13
20	როგარა რიცხვია შვეთლებული კონალესური რიცხვის ნამრავლი?	აქანამდვილი. გ) კომპლექსური. გ) ნატურალური. დ) ლუნქციური.	13

21.	ნებისმიერ ვექქტორს კომპლექსურ სიბრტყეზე შეესაბამება სრულიად გარკვეული კომპლექსური რიცხვი. რა ფორმებით შეიძლება ამ რიცხვების ჩაწერა? ა) მაჩვენებლიანი ფორმით ბ) ტრიგონომეტრიული ფორმით გ) ალგებრული ფორმით	ა) მხოლოდ მაჩვენებლიანი ფორმით. ბ) მხოლოდ ტრიგონომეტრიული ფორმით. გ) მხოლოდ ალგებრული ფორმით. ② ყველა პასუხი სწორია.	14
22.		(a) $I = I_m \sin(\omega t + \varphi)$ (b) $E = E_m \sin(\omega t + \varphi)$ (c) $E = E_m \sin(\omega t + \varphi)$ (d) $E = E_m \sin(\omega t + \varphi)$ (e) $E = E_m \sin(\omega t + \varphi)$	15
23.	რას უდრის 5 + 2i და 3 + 4i კომპლექსური რიცხვების ჯამი?	(a+bi)+(c+di)=(a+c)+(b+d)i (5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i (a) $(5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (b) $(5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (c) $(5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (d) $(5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (e) $(5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (f) $(5+2i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (g) $(5+3i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (g) $(5+3i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (g) $(5+3i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (h) $(5+3i)+(3+4i)=(5+3)+(2+4)i=8+6i$ (h) $(5+3i)+(3+4i)=(5+3)+(3+4i)=(5+3)+(3+4i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3)+(3+4i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+4i)=(5+3i)=8+6i$ (h) $(5+3i)+(3+3i)=8+6i$ (h) $(5+3i)+(3+3i)=8+6i$	16
24.	რას უდრის 1 + 2i და 3 + 2i კომპლექსური რიცხვების ნამრავლი?	$(a+bi) \cdot (c+di) = ac + bic + adi + bdi^{2} =$ $= ac + bic + adi - bd = (ac - bd) + (cb + ad)i$ $(1+2i) \cdot (3+2i) = 1 \cdot 3 + 2 \cdot 3i + 1 \cdot 2i + 2 \cdot 2i^{2} =$ $= 3 + 6i + 2i + 4i^{2} = 3 + 8i - 4 = 8i - 1$ $(5) 8i - 1.$ $(8) 3i - 2.$ $(8) i + 10.$	17
25.	მოცემული სქემისათვის იპოვეთ შტოებში დენების განაწილების კოეფიციენტთა (C) მატრიცა.	$ (C) = \begin{pmatrix} -1 & -1 & -1 \\ 0 & -1 & -1 \\ 0 & 0 & -1 \end{pmatrix} $	18

31.	გადაამრავლეთ კომპლექსური რიცხვები: $\alpha_1=4(\cos 77^0+i\sin 77^0)$ და $\alpha_2=2(\cos 13^0+i\sin 13^0)$	$\begin{array}{l} \alpha_1 \cdot \alpha_2 = 8(\cos 77^0 + i \sin 77^0) \cdot (\cos 13^0 + i \sin 13^0) = \\ = 8(\cos 77^0 \cdot \cos 13^0 + i \sin 77^0 \cos 13^0 + \\ + \cos 77^0 \cdot i \sin 13^0 + i^2 \sin 77^0 \sin 13^0 = \\ = 8 \cdot \frac{1}{2} (\cos(77^0 + 13^0) + \cos(77^0 - 13^0) + i \sin(77^0 + 13^0) + \\ + i \sin(77^0 - 13^0) + i \sin(77^0 + 13^0) - i \sin(77^0 - 13^0) + \\ + \cos(77^0 + 13^0) - \cos(77^0 - 13^0)) = \\ = 4(\cos 90^0 + \cos 64^0 + i \sin 90^0 + i \sin 64^0 + i \sin 90^0 - i \sin 64^0 + \cos 90^0 - \cos 64^0 + \cos 90^0 + 2 \sin 90^0) = 8(\cos 90^0 + i \sin 90^0) = 8(0 + i \cdot 1) = 8i \end{array}$	23
	იპოვეთ მოცემული ელექტრული სისტემიდან Δ , Δ_1 , Δ_2 , Δ_3 და \mathbf{I}_I ; \mathbf{I}_{II} ; I_{III} ; მნიშვნელობები .		24

1 1 <th>14 15 16 17 18 19 20 21 22 23 24 1 1 1 1 1 1 1 1 1</th>	14 15 16 17 18 19 20 21 22 23 24 1 1 1 1 1 1 1 1 1
ფაკულტეტის დეკანი	14 15 16 17 18 19 20 21 22 23 24 1 1 1 1 1 1 1 1 1 1