Package 'r4fish'

February 2, 2024

Type Package

Version 1.1.0

Index

Title r4fish analysis

Author Elmer O. Quispe Salazar
Maintainer The package maintainer <qselmer@gmail.com></qselmer@gmail.com>
Description Assessment for Marine Resources Toolkit.
License What license is it under?
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
R topics documented:
assignerPeruvianGrid
calculateJuv
curve.sel
distCoast
estimateMode
g2plotSurvey
getModeSpecies
getStockInfo
getSurveyLmax
MapPeruGrid
plot2CompSizeTime
PlotSimpleFrec2

8

9

10

12

2 calculateJuv

```
{\it assigner Peruvian Grid} \quad \textit{Title} \quad
```

Description

Title

Usage

```
assignerPeruvianGrid(
  data,
  xlon = "lon",
  ylat = "lat",
  by = "onedegree",
  metadata = F,
  save = T,
  cout = "."
)
```

Arguments

cout

calculateJuv

Title

Description

Title

Usage

```
calculateJuv(vec, marks, mjuv, abs = T)
```

Arguments

abs

curve.sel 3

curve.sel

Title

Description

Title

Usage

```
curve.sel(
    sp = NA,
    stock = NA,
    marks = NA,
    par = c(NA, NA),
    method = "log3",
    add.plot = T,
    add.inv = T
)
```

Arguments

add.inv

 ${\tt distCoast}$

Title

Description

Title

Usage

```
distCoast(lon, lat)
```

Arguments

lat

4 g2plotSurvey

estimateMode

Estima moda de una frecuencia de tallas

Description

Estima moda de una frecuencia de tallas

Usage

```
estimateMode(len, freq, tol.n = 150, nmodes = 2, tol.freq = 10)
```

Arguments

len vector completo de tallas

freq vector completo de frecuencias

tol.n valor de tolerancia del numero de la muestra

nmodes numero de modas a estimar

tol.freq valor de tolerancia para ser considerada moda

g2plotSurvey

Title

Description

Title

Usage

```
g2plotSurvey(
  dat = dat,
  col.var = "biomasa",
  col.factor = 2,
  factor = NA,
  cols.factor = c("red", "blue"),
  box = "boxplot",
  model = "lm",
  lambda = 1e-04,
  IC.model = TRUE,
  info = TRUE,
  marf = c(0.5, 0.5, 0, 0.5),
  omaf = c(3, 4.5, 2, 2),
  hline = TRUE,
  cline = "white",
  bgf = "white",
  lwdf = 1,
  ltyf = 1,
  pchf = 16,
  cexf = 1.5,
```

getModeSpecies 5

```
unitf = 1,
saveplot = T,
outf = "./",
widthf = 1800,
heightf = 1200,
resf = 250,
labels.f = c("\nverano", "\ninvierno-\nprimavera"),
labels.y = "Biomasa ton",
...
)
```

Arguments

labels.y

getModeSpecies

Title

Description

Title

Usage

```
getModeSpecies(
  Length = Length,
  sp = "anchoveta",
  src = "fsh",
  nmodes = 2,
  tol = 0,
  savePlot = TRUE,
  dirout = "Outputs/")
```

Arguments

dirout

 ${\tt getStockInfo}$

Title

Description

Title

Usage

```
getStockInfo(sp, data = NULL, ...)
```

Arguments

. . .

6 MapPeruGrid

getSurveyLmax

Title

Description

Title

Usage

```
getSurveyLmax(dat = dat, sp = "anchoveta", src = "pope", col.var = 4:78)
```

Arguments

col.var

MapPeruGrid

Title

Description

Title

Usage

```
MapPeruGrid(
  data,
  colcode = "code",
  colval = "freq",
  typeval = "#",
  xxlim = c(-86, -70),
  yylim = c(-21, -3),
  by = "onedegree",
  gradient = c("yellow", "red"),
  border = NA,
  all.grid = F,
  land.col = "gray90",
  land.border = "gray90",
  legend = T,
  txtleg = "(n)",
  xaxis = 1,
  yaxis = 4,
  portImport = 2,
  save = T,
  cout = "."
)
```

Arguments

cout

plot2CompSizeTime 7

plot2CompSizeTime

Title

Description

Title

Usage

```
plot2CompSizeTime(
  dat = dat_marks,
  sp = "anchoveta",
  stock = "nc",
  type = "B",
  ab = NA,
  factor = NA,
  cexf = 3,
  col.in = "gray90",
  col.bd = "black",
  marp = c(3, 3, 2, 2),
  omap = c(1, 2, 1, 1),
  mgpp = c(1, 0.5, 0),
  widthFig = 2600,
  heightFig = 3200,
  resFig = 380,
  SavePlot = T,
  dirout = "Outputs/"
)
```

Arguments

dirout

PlotSimpleFrec2

Title

Description

Title

Usage

```
PlotSimpleFrec2(
  data,
  sp = sp,
  stock = stock,
  col.sp = "red",
  colset = "navajowhite",
  cout = ".",
```

8 renderBiometric

```
save = T,
format = ".png",
ylim = c(0, 0.5),
width = 2625,
height = 1750
)
```

Arguments

colset

plot_envir

Title

Description

Title

Usage

```
plot_envir(
   what = NA,
   year.limit = c(1990, 2022),
   ylim = c(-2, 3.5),
   magnitude = F,
   axis.x = T
)
```

Arguments

axis.x

 ${\tt renderBiometric}$

Crea, unifica archivo biometrico

Description

Crea, unifica archivo biometrico

Usage

```
renderBiometric(
  cin = "inputs",
  cout = ".",
  file = "data.xlsx",
  encoding = "latin",
  save = T,
  ...
)
```

SimpleFrecSp 9

Arguments

cin	vector de caracteres que contienen la ruta de entrada
cout	vector de caracteres que contienen la ruta de salida
file	vector de caracteres que contienen el nombre del archivo
encoding	vector de caracteres para tipo de codificacion
save	logico; ¿Se deben guardar el archivo?

Value

base de datos biométrico

Examples

```
\code{renderBiometric(cin = "input",
cout = NA,
file = "Biometria por especies 03032023.xlsx",
save = T)}
```

SimpleFrecSp

Plot: Estructura de tallas para "anchoveta "spTarget" lances

Description

Plot: Estructura de tallas para "anchoveta "spTarget" lances

Usage

```
SimpleFrecSp(data = x, sp = "anchoveta", stock = "nc", save = T)
```

Arguments

data	datos del crucero en formato MF
sp	especie objetivo de la evaluación
stock	stock objetivo de la evaluación
save	valor logico: ¿Se deben guardar la matriz de lances en "csv"?

10 validateSp

subsetSurvey

Title

Description

Title

Usage

```
subsetSurvey(
  dat = dat,
  col.var = c("biomasa", "abundancia"),
  year.lim = c(1996, 2022),
  col.set = "filter",
  set = "ok",
  col.factor = "season",
  col.label = 2,
  col.date = NA,
  col.month = NA,
  col.sems = "semester",
  col.year = "year"
)
```

Arguments

col.year

validateSp

Identifica errores y valida la base de datos

Description

Identifica errores y valida la base de datos

Usage

```
validateSp(
  data = data,
  sp = "anchoveta",
  stock = NA,
  cout = "outputs",
  file = "validateSp"
)
```

Arguments

data	datos del crucero en formato MF
sp	especie objetivo de la evaluación
stock	stock objetivo de la evaluación
cout	vector de caracteres que contienen la ruta de salida
file	ector de caracteres que contienen el nombre del archivo

validateSp 11

Examples

```
\code{validateSp(data = data, sp = "jurel", stock = NA, cout = "outputs",
file = "document.docx")}
```

Index

```
assigner {\tt Peruvian Grid}, {\tt 2}
calculateJuv, 2
curve.sel, 3
distCoast, 3
estimateMode, 4
g2plotSurvey, 4
getModeSpecies, 5
getStockInfo, 5
{\tt getSurveyLmax}, {\color{red} 6}
MapPeruGrid, 6
{\tt plot2CompSizeTime, 7}
plot_envir, 8
{\tt PlotSimpleFrec2, 7}
{\tt renderBiometric}, {\color{red} 8}
SimpleFrecSp, 9
\verb|subsetSurvey|, 10\\
{\tt validateSp}, \textcolor{red}{10}
```