Programozható irányítóberendezések és szenzorrendszerek - Közegáram mérésének elvei és műszerei

Kiss Bálint

Irányítástechnika és Informatika Tanszék, Budapesti Műszaki és Gazdaságtudományi Egyetem

2016. március 5.

Két előadás a témában

Az előadások célja

- Bemutatni az áramlásmérés szerepét az ipari gyakorlatban.
- Megadni az áramláshoz köthető mérendő mennyiségeket.
- Megismertetni az áramló közegek viselkedésének leírásához használható jellemzőket és alapvető összefüggéseket (viszkozitás, Reynolds-szám, Newton viszkozitási törvénye, kontinuitási egyenlet, Bernoulli-egyenlet)
- Megmagyarázni az alkalmazható mérési elveket, előnyeiket, hátrányaikat, a kapcsolódó alkalmazástechnikai megfontolásokat.

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- Térfogatkiszorításos mérők
- Coriolis elvű mérők
- Örvénymérők
- Turbinás mérők
- Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Daniel Bernoulli (1700-1782)

Tartalom

- Bevezetés
- 2 Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- 4 Térfogatkiszorításos mérők
- 5 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Folyamatokhoz anyagtovábbítás

- nagynyomású gőzt turbinákhoz
- folyékony földgázt/oxigént tartályba
- vért, oldatot terápiához
- nyers olajat finomítóba
- üzemanyagot motorba
- olvadékot öntvénykészítéshez
- sört/bort/pálinkát (palackozáshoz)

Áramló közegek mérése szükséges

- elszámoláshoz
- vezérléshez, szabályozáshoz
- üzemvitelhez

Mi kell az áramlás meghatározásához?

Áramlási viszonyok + Érzékelési elv + Számítások

Áramlási viszonyok

- áramló közeg (víz, olaj, földgáz, vízgőz, sör, stb.) tulajdonságai (viszkozitás, sűrűség)
- környezeti tulajdonságok (nyomás, hőmérséklet)
- áramlást befolyásoló mechanikai konfiguráció (csőátmérő, csőfelület érdessége, csőalak, torlóelemek)
- ezek kölcsönhatásai (hőmérsékletfüggő viszkozitás, felületi érdességtől függő áramlási profil, stb.)

Mi kell az áramlás meghatározásához?

Áramlási viszonyok + Érzékelési elv + Számítások

Érzékelési elv

- Időegység alatt mechanikailag kiszorított térfogat
- Nyomáskülönbség (DP)
- Hőmérsékletkülönbség (DT)
- Rezgési fáziskülönbség
- Frekvencia különbség (DF)
- Örvényleválások számlálása
- stb.

Mi kell az áramlás meghatározásához?

Áramlási viszonyok + Érzékelési elv + Számítások

Számítások eredménye

- pillanatnyi térfogatáram a keresztmetszeten $[m^3/h]$
- ullet pillanatnyi tömegáram a keresztmetszeten [kg/s]
- pillanatnyi sűrűség a csőszakaszban $[kg/m^3]$
- ullet pillanatnyi közegsebesség [m/s]
- összegzett átáramlott térfogat [m³]
- összegzett átáramlott tömeg [kg]

A számítások a mérési elvből következnek és csak adott áramlási viszonyok mellett pontosak.

- Összenyomható közegek esetében a térfogatot (vagy térfogatáramot) szabványos nyomáson és hőmérsékleten adjuk meg (STP - standard temperature and pressure) ún. normálköbméterben (Nm³).
- Az STP értékeket szabványok rögzítik, amelyek (szervezetként, országonként, régiónként) eltérhetnek. Adott Nm³ értéknek nincs jelentése, ha nincs megadva a hozzá tartozó STP.
- Adott műszer esetében a számított normálköbméterhez tartozó STP érték helyességéről meg kell győződni. Ha szükséges, akkor az elszámolási szerződésben adott értékhez kell igazítani. Egyes műszerekben az STP választható, illetve a számítás piacfüggő lehet!
- Gáztechnikai normál állapot Magyarországon (MSZ2373 és egyben ISO13443): $101325 Pa (1 atm) \text{ és } 288,15 K (15^{\circ}C - \text{világ-}$ középhőmérséklet) - ezen adják meg a földgáz köbméterének fűtési értékét is (v.ö. gázszolgáltatási szerződések).
- **STP** az IUPAC szerint: 100000 Pa és $0^{\circ}C$
- **STP** a NIST (USA) szerint: 101325 Pa és $20^{\circ}C$

Intelligens áramlásmérők piaca

- 2014-es jelentés.
- Intelligens mérő: érzékelők + beágyazott feldolgozó elektronika
- Globális piac 2020-ban: 7098,79 M USD (becsült)
- Átlagosan 5,7%-os évi növekedési ráta az 2014-2020 időszakban
- Legnagyobb várható növekedési régió: APAC
- Legnagyobb várható növekedést mutató mérési elv: ultrahang, vertex, Coriolis

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- 4 Térfogatkiszorításos mérők
- 5 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- 8 Indukciós mérők
- Ultrahangos mérők
- Mramlásmérési módszerek összefoglaló

Áramlás leírása

Fizikai mennyiségek 1

- v áramlási sebesség [m/s]
- ρ sűrűség $[kg/m^3]$

Fizikai mennyiségek 2

- p nyomás $[Pa = \frac{N}{m^2} = \frac{kg}{m \cdot s^2}]$
- T hőmérséklet [°C]

Megjegyzések

- Az áramlási jelenségek, avagy mozgásban lévő kontinuum anyag (csepfolyós vagy légnemű közegek) viszonyainak leírása az áramlástanhoz (fluid dynamics) tartozik.
- Az áramlástanhoz tartozik még az áramló közeg és a határoló elemek (csőfal), szűkítő elemek, torlóelemek (szárny, perem, stb.) közötti kölcsönhatások leírása is.
- Adott áramlási konfigurációban és általános esetben v, ρ, p, T egyszerre idő- és helyfüggő.

Áramlás leírása

Stacionárius áramlás

v, ρ , p, T időben állandó (a térben még változhat)

Összenyomhatatlan közeg áramlása

Az áramló közeg összenyomhatatlan, ha sűrűsége a vizsgált térrészben jó közelítéssel állandó, azaz $\frac{D\rho}{Dt}=0$ (teljes derivált, mivel ρ függhet T-től, p-től).

Szövegesen

Tömeg nem keletkezik és nem tűnik el. Tekintve egy *A* felülettel határolt *V* térrészt a sűrűség a beáramló és a kiáramló tömegek különbsége miatt változik. (Összenyomhatatlan közeg esetében a be és kiáramló tömegmennyiség megegyezik.)

Egyenlettel

Vegyük észre, hogy egy infinitezimális dA felületen átáramló tömeg a $\rho \cdot v \cdot dA$ szorzattal adható meg. Ekkor

$$-\int_{V} \frac{\partial \rho}{\partial t} dV = \int_{A} \rho \cdot v \cdot dA$$

Ennek differenciális alakja:

$$\frac{D\rho}{Dt} + \rho \nabla v = 0$$

Folytonosság (kontinuitás) tétele

Folytonossági egyenlet

Előző fóliáról:

$$-\int_{V} \frac{\partial \rho}{\partial t} dV = \int_{A} \rho \cdot v \cdot dA$$

Változó átmérőjű csővezetékben

Feltételezés

A be- és kilépő felületeken az áltagsebesség rendre \bar{v}_1 és \bar{v}_2 . Az áramlás stacionárius.

Kontinuitási egyenlet csővezetékben

Vizsgáljuk az A_1 és A_2 felületek által határolt csőszakasz térfogatát. Ekkor $\rho_1 \bar{v}_1 A_1 = \rho_2 \bar{v}_2 A_2$

Következmény $(A_i = r_i^2 \pi)$

Összenyomhatatlan közegnél a sebesség a csőátmérők négyzetének arányában változik: $\bar{v}_2 = \bar{v}_1 \frac{D_1^2}{D_2^2}$

Szilárd testek és folyadékok: egy lényeges különbség

Súrlódás és viszkozitás

- Nyírófeszültség (terhelés) hatására a szilárd testek rugalmassági tartományukban deformálódnak. A deformáció és a terhelés viszonyainak lineáris közelítésű leírása a Hooke-törvény, (benne a Young-modulus). A jelenséget felhasználtuk erőméréshez, nyomásméréshez. A Young-modulus az anyag merevségre jellemző mennyiség (általános esetben tenzor).
- A folyadékok is deformálódnak, de nem nyerik vissza eredeti alakjukat, "merevségük" általában nulla.
- Folyadékok esetében a terhelés és a deformáció sebessége között írható fel összefüggés.

Határfelületen: tapadási törvény

Szilárd test és folyadék érintkezésénél a relatív sebesség nulla.

Tapasztalat

- A víz "könnyebben" folyik, mint a fogkrém és a méz. A víz kevésbé viszkózus anyag.
- A viszkozitás és a sűrűség különböző fogalmak. (A sűrűség áramlás nélkül is értelmezett.)

Szöveggel

A viszkozitás az áramló közeg belső súrlódási tényezője. A közeg "ellenáll" annak, hogy benne egyes rétegek között relatív sebesség alakuljon ki, azaz a relatív sebesség fenntartásához külső erőhatás szükséges.

Newton viszkozitási törvénye

Egyenlettel

Tegyük fel, hogy egy áramló közeg áramlási sebessége egy *A* felületen *v* és a sebesség a felület környezetében, egy arra merőleges *y* irányban változik. Akkor az áramlási sebességgradiens fenntartásához szükséges erőt megadó kifejezés

$$F = \mu A \frac{\partial v}{\partial y}$$

A μ együttható értéke az anyagra jellemző dinamikus viszkozitás. Izotropikus közeg esetében μ minden irányban azonos.

Illusztráció (1DOF)

Mértékegység

A μ dinamikus viszkozitás mértékegysége: [kg/ms]

Newton viszkozitási törvénye

Megjegyzések

Ez lineáris közelítés. Newtoniaknak nevezzük azokat a közegeket, ahol ez a viszkozitási törvény jó közelítéssel érvényes.

Kinematikai viszkozitás

$$\nu = \frac{\mu}{\rho}$$

Egysége m^2/s vagy St (Stokes). 1 $cSt = 1cm^2/s$.

Folyékonyság

A folyékonyság a viszkozitás reciproka.

Euler, Navier, Stokes és Bernoulli

Euler-egyenlet (súrlódásmentes eset)

A súrlódást elhanyagoljuk, a közeg összenyomhatatlan. Adott pontban a közeg gyorsulása a nyomásgradienstől és valamely külső erőtér irányától (pl. gravitáció) függ.

$$\frac{dv}{dt} = g - \frac{1}{\rho} \nabla p$$

Áramvonal

Adott ponton áthaladó áramvonal a *v* sebességmező egy integrálgörbéje, azaz egy olyan vonal, amelynek minden pontjában az érintője egybe esik a közeg adott pontban vett sebességének irányával.

Áramvonalak és idővonalak

Navier-Stokes egyenlet (súrlódásos eset)

A közeg összenyomhatatlan. Adott pontban a közeg gyorsulása a nyomásgradienstől, valamely külső erőtér irányától (pl. gravitáció) és a sebességgradienstől függ.

$$\frac{dv}{dt} = g - \frac{1}{\rho} \nabla p + \nu \nabla v$$

Megjegyzések

- A sebesség növekedésével az áramlás rendezetlenné (gomolygóvá), turbulenssé válik.
- Rendezett áramlásnál a súrlódási erők dominálnak, gátolják örvények kialakulását.
- Az ipari gyakorlatban közegek szállításakor alacsony sebességet szoktak alkalmazni, mert kisebb teljesítményű szivattyúkra van szükség és kisebb a súrlódási veszteség is.

Lamináris és turbulens (gomolygó) áramlások

lamináris (rendezett) áramlás turbulens (gomolygó) áramlás

- A gomolygó áramlásban a súrlódási veszteség nagyobb, ezért az ipari gyakorlatban kerülendő.
- Egyes (gyorsan terjedő) mérők torlótesttel keltenek örvényeket (eddy) egy rövid szakaszon és azokat számolják (arányos sebességgel). Ezeket később vizsgáljuk.
- A turbulencia környezetében nincsen stacionárius áramlás.
- A turbulens áramlás kialakulása nem csak a közeg sebességének köszönhető.

Reynolds-szám

Szöveggel

A Reynolds-szám egy áramlási konfigurációra jellemző, dimenziómentes mennyiség, melynek értékéből az áramlás viselkedésére lehet következtetni. Például: lamináris vagy turbulens áramlás alakul-e ki.

Egyenlettel

A Reynolds-szám a tehetetlenségi és a viszkózus erők nagyságának hányadosa (v.ö. Navier-Stokes egyenlet). Csőáramlás (*d* - csőátmérő) esetében

$$Re = \frac{\rho vd}{\mu} = \frac{\rho vd}{\rho \nu} = \frac{vd}{\nu}$$

Tapasztalat

Csőáramláskor turbulencia akkor alakul ki, ha Re > 2300.

Euler, Navier, Stokes és Bernoulli (folytatás)

Bernoulli-egyenlet

A korábbi feltételezések esetén egy áramvonal minden pontjában

$$\frac{v^2}{2} + gz + \frac{p}{\rho} = C$$
 $\frac{v_1^2}{2} + \frac{p_1}{\rho} + gh_1 = \frac{v_2^2}{2} + \frac{p_2}{\rho} + gh_2$

Bernoulli-egyenlet csővezetékben

Bernoulli-egyenlet

Előző fóliáról:

$$\frac{v_1^2}{2} + \frac{p_1}{\rho} + gh_1 = \frac{v_2^2}{2} + \frac{p_2}{\rho} + gh_2$$

Változó átmérőjű csővezetékben

Feltételezés .

Az áramlás stacionárius, a közeg összenyomhatatlan (ρ állandó), belső súrlódásokat elhanyagoltuk.

Bernoulli-egyenlet

Mivel $h_1 = h_2$ és $\rho_1 = \rho_2 = \rho$

$$\frac{v_1^2}{2} + \frac{p_1}{\rho} = \frac{v_2^2}{2} + \frac{p_2}{\rho}$$
$$\sqrt{v_1^2 - v_2^2} = \sqrt{\frac{2(p_2 - p_1)}{\rho}}$$

Bernoulli-egyenlet

Mivel
$$h_1 = h_2$$
 és $\rho_1 = \rho_2 = \rho$, így a korábbiak szerint $\frac{v_1^2}{2} + \frac{p_1}{\rho} = \frac{v_2^2}{2} + \frac{p_2}{\rho}$ és $\sqrt{v_1^2 - v_2^2} = \sqrt{\frac{2(p_2 - p_1)}{\rho}}$

Megjegyzések

- A fenti egyenlet mutatja a nyomásváltozás és az áramlási sebességváltozás közötti összefüggést vízszintes csőben (+ feltételezések).
- **2** A nyomás mérésére ismerünk eljárásokat. Ha a nyomást folyadékoszlop magasságból számoljuk $(p_i = \rho g h_{p,i})$, akkor a fenti egyenlet

$$\sqrt{v_1^2 - v_2^2} = \sqrt{2g(h_{p,2} - h_{p,1})}$$

alakú (ρ nélkül). A gyakorlatban a nyomást deformáció alapján mérjük, így ρ is szükséges.

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- 4 Térfogatkiszorításos mérők
- 6 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- 8 Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Venturi-cső

Giovanni Battista Venturi (1746-1822)

Megállapítás

Mindent értünk, hogy megvizsgáljuk az áramlásmérés egyik módszerének alapeszközét, a Venturi-csövet.

Venturi-cső

Feltételezések

- Stacionárius áramlás
- Összenyomhatatlan közeg
- Elhanyagolható belső súrlódás (kis viszkozitás)
- Áramlási sebesség a keresztmetszeten jól közelíthető egy átlag értékkel

Egyenletek

Bernoulli és kontinuitás:

$$v_2^2 - v_1^2 = \frac{2(p_1 - p_2)}{\rho}$$
$$A_1 v_1 = A_2 v_2$$

Venturi-cső

Egyenletek (folytatás)

Átrendezve v_2 -re vagy v_1 -re:

$$v_2 = \frac{A_1}{\sqrt{A_1^2 - A_2^2}} \sqrt{\frac{2(p_1 - p_2)}{\rho}}$$
$$v_1 = \frac{A_2}{\sqrt{A_1^2 - A_2^2}} \sqrt{\frac{2(p_1 - p_2)}{\rho}}$$

A térfogatáram - q_v

Ismert, hogy $q_v = A_1 v_1 = A_2 v_2$

$$q_{\scriptscriptstyle V} = rac{A_1 A_2 \sqrt{2}}{\sqrt{
ho(A_1^2 - A_2^2)}} \sqrt{p_1 - p_2}$$

Venturi-cső - megjegyzések

Kihasznált tulajdonság - DP

Az áramlási sebesség arányos a nyomáskülönbség gyökével, illetve fordítottan arányos a sűrűség gyökével.

$$q_{v} \propto \sqrt{\Delta p}$$

Fontos korlátozások

- A Venturi csőnél (és egyéb nyomáskülönbségen alapuló térfogatáram mérésénél) az áramlási sebességet valójában csak egy ponton (kis felületen) mérjük.
- Ebből a teljes keresztmetszeten időegység alatt átáramló térfogat csak megfelelő áramlási körülmények között kalibráció nyomán számolható.
- A módszerrel tömegáramot csak akkor lehet meghatározni, ha a sűrűség ismert.

Pitot-cső (tórlócső)

Az eszköz

A Pitot-cső szintén nyomáskülönbségen alapuló eszköz, áramlás sebességének mérésére. Elterjedt a repülőgépiparban.

nyomáskülönbség

Megjegyzések

Egy pontban, egy irányban méri a közeg sebességét. A konstrukció ezen javíthat (több nyílás). Viharban befagyhat, többszörözés. Az AF447 lezuhanását jegesedésnek tulajdonítják.

Az eszköz

A Venturi-cső bonyolult konstrukciója helyett egy peremmel szűkítjük a cső keresztmetszetét. Az átmérők aránya: $\beta = \frac{d}{D}$.

Mérőperemes áramlásmérők

Megjegyzések

- A nyomást nem a középvonalban mérjük, hanem a csőfal közelében.
- A hatásos áramlási felület kisebb, mint a csőátmérő.
- Nagyobb sebességeknél a turbulencia csökkentésére módosítani kell a geometriát (közelíteni a Venturi-csövet).
- Kis áramlási sebességeknél (ekkor olcsó a szállítás), a nyomáskülönbség kicsi, ez növeli a pontatlanságot.
- A peremnél lerakódások keletkezhetnek, módosítják a geometriát.

Összenyomható közegek

Az elv összenyomható közegekre is alkalmazható. Ekkor $\rho = f(p)$ (nem állandó), és a Bernoulli-egyenlet (vízszintes csőben):

$$\frac{v_1^2}{2} - \frac{v_2^2}{2} + \int_{p_1}^{p_2} \frac{dp}{\rho} = 0$$

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- Térfogatkiszorításos mérők
- 6 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- 8 Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Térfogatkiszorításos mérők - köbözők és húsdarálók

Mérési elv

- A közeg ismert térfogatú térrészekbe sorolódik be a belépő oldalon és továbbítódik a kilépő oldal felé. A mérő az átvitt térrészeket számolja.
- A számolás általában egy forgó tengelyen zajlik, inkrementális jeladóval.
- A mechanikai mozgáshoz szükséges munkát a "közeg" végzi.
- Összenyomhatatlan közegekhez.
- Nagy pontosság, mivel a térrészek nagy precizitással kialakíthatóak.
- Működhet pumpaként is (precíziós adagoló)
- Érzékeny a szennyeződésekre.

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- Térfogatkiszorításos mérők
- Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- 8 Indukciós mérők
- Ultrahangos mérők
- Maramlásmérési módszerek összefoglaló

A Coriolis-erő

Jól ismert jelenség

Egy inerciarendszerhez képest forgó koordinátarendszerben egyenletes sebességgel haladó testre a tömegével arányos erő hat.

Egyenlettel

$$F_C = 2m(\omega \times v),$$

ahol

- \bullet ω a pillanatnyi szögsebesség vektora
- v a test pillanatnyi sebességvektora
- *m* a test tömege

Gaspard-Gustave de Coriolis (1792-1843)

Coriolis-erők rezgő/lengő csőben

Erőhatások elemzése $v \neq 0$

- A lengés tengelyével párhuzamosan haladó közegre nem hat Coriolis-erő.
- A legnagyobb erő a lengésre merőleges szakaszokban keletkezik.
- A lengések deformálják a csövet.

Coriolis-erők rezgő/lengő csőben

Erőhatások elemzése $v \neq 0$

- Két csőszakaszt rezgetünk ellenfázisban.
- A mérőpontokban érzékeljük (elkapjuk pick-up) az elmozdulásokat.

Csőalak és rezgetése - $F_C = 2m(\omega \times v)$

Megfontolások

- A Coriolis-erő nagyobb, ha növeljük a közeg sebességét (csökken a keresztmetszet, ez áramlási veszteség)
- Két azonos formájú csőszakaszt ellenfázisban rezgetnek, hogy a mérőből kifelé ne terjedjen rezgés.
- A mérőt megfelelően be kell fogni, hogy kívülről befelé ne terjedjen rezgés (külső hatás).
- Többfázisú közegben (pl. buborékos folyadék vagy kicsapódó ködös gázok) a belső súrlódás csökkenti a rezgési energiát, egyébként az egynemű közeg viszkozitásától a mérés pontossága nem függ.

Ismeretlen gázolaj tolvaj (i.e. 2000-)

Csőalak és rezgetése

A lengőrendszer

- Rezgetés és pick-up mágneses elven. Az elmozdulások mm-nél kisebbek.
- Kis amplitúdójú rezgésnél a struktúra lineáris rugóként viselkedik.
- A csőalak egy mechanikai lengő-rendszer (egy kéttárolós lengőtag):

$$W(s) = \frac{1}{ms^2 + bs + k} = \frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}}$$

ahol k (nagyrészt) a cső merevsége, b (nagyrészt) a közeg viszkozitása és m a rezgő tömeg (cső és közeg).

- A lengőrendszer csillapítatlan sajátfrekvenciája: $\omega_0 = \sqrt{\frac{k}{m}}$.
- **5** A ω_0 -n történő rezgetéshez kell a legkevesebb energia.

Mit mérhetünk a rezgés alapján?

Mérhető mennyiségek

- Sűrűség (csillapítatlan saját)frekvenciából
- Tömegáram fáziskülönbségből

Sűrűség mérése

$$W(s) = \frac{\frac{1}{m}}{s^2 + \frac{b}{m}s + \frac{k}{m}} \quad \omega_0 = \sqrt{\frac{k}{m}}$$

Elgondolás

- A rezgő csőszakasz k merevsége ismert (mi gyártottuk).
- **2** A cső V térfogata és m_{pipe} tömege a két befogási pont között ismert.
- lacktriangle Ha a cső éppen ω_0 körfervekvencián rezeg, a benne található közeg (átlagos) sűrűsége

$$\rho = \frac{1}{V} \left(\frac{k}{\omega_0^2} - m_{pipe} \right)$$

Sűrűség mérése

Rezgetés ω_0 -n

Ez egy szabályozási feladat. Megoldása ismert: PLL (benne VCO).

ω_0 meghatározása

- A pick-up-ok jeleiből (vagy a különbségi jelből).
- Például FFT-vel.

Hol tanultuk a hozzávalókat?

Jelek és rendszerek, Fizika, Elektronika, Elektromágneses terek, Méréstechnika, Szabályozástechnika.

Sűrűség mérése

Rezgetés ω₀-n

Ez egy szabályozási feladat. Megoldása ismert: PLL (benne VCO).

ω_0 meghatározása

- A pick-up-ok jeleiből (vagy a különbségi jelből).
- Például FFT-vel.

Hol tanultuk a hozzávalókat?

Jelek és rendszerek, Fizika, Elektronika, Elektromágneses terek, Méréstechnika, Szabályozástechnika.

Tömegáram mérése

Elgondolás

A Δt fáziseltolódás az érzékelőknél arányos a **tömegárammal** $q_m \propto \Delta t$. Az összefüggés

$$q_m = \frac{k(T) - \Theta\omega_0^2}{2Kd^2} \Delta t,$$

ahol

- k cső merevsége
- T hőmérséklet
- Θ cső inerciája
- *K* csőalak konstans
- d átmérő

Hőtágulás

A cső merevsége a hőmérséklettel változik, kompenzálásához *T*-t mérik.

Coriolis-mérő - blokkvázlat

A jelfeldolgozás menete

Coriolis-féle tömegárammérés - összegzés

Előnyök

- "Közvetlen" tömegáram mérés (független a közeg konziszteniájától az elvből adódóan).
- Az elérhető pontosság akár 0, 1% alatt a mért értékhez képest (nem a mérési tartományhoz képest).

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- 3 Nyomáskülönbségen alapuló áramlásmérés
- 4 Térfogatkiszorításos mérők
- 6 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Kármán-féle örvénysor

Örvénysor kialakulása

- Torlótest mögötti nyomáskülönbség miatt örvények alakulnak ki.
- A közeg mozgásának megfelelő energiaszintűnek kell lennie, különben a viszkozitás miatt az örvény nem jön létre.
- Az örvénysor adott elrendezésben bizonyos *Re* tartományban alakul ki.

Kármán-féle örvénysor - éneklő vezetékek

Megjegyzések

- A viszkozitás miatt az áramlás a csőben később rendeződik.
- Kis sebességű (alacsony energiájú) áramlás esetén nem alakul ki, szűkítő kellhet közeg gyorsításához.
- Tipikus Re tartomány az örvénysor kialakulásához: [47, 10⁵].
- A leváló örvények a torlótestet rezgetik. Ha a struktúra rezonancia frekvenciája hallgató tartományba esik, akkor a szél zenél.

(Bűvös) képletek

Az átlagos *v* áramlási sebesség hengeres torlótestnél

$$v = \frac{fd}{0,198} \left(1 - \frac{19,7}{Re} \right)^{-1},$$

ahol

- f örvénysor frekvencia
- d torlótest átmérője
- Re Reynolds-szám

Azaz $v \propto f$ és $q_v = Av$. Nem mér q_m -et.

Örvénymérők és torlótestek

Örvények számlálása

Cső hossztengelyére merőleges elmozdulás, illetve deformáció érzékelésével (pl. piezo, optikai).

Gyakori torlótest formák

Strouhal-szám

Adott elrendezésben a $\frac{fd}{v}$ hányadosra Strouhal-számként hivatkozunk.

Tartalom

- Bevezetés
- 2 Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- Térfogatkiszorításos mérők
- 5 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- 8 Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Megfontolások

- Az áramlás a turbina lapátok között továbbhaladva azokat megforgatja.
- A tubinalapátok kiképzése gátolja az örvényleválást, és minimalizálja az áramlási veszteséget, ugyanakkor a turbinalapátok közvetlen közelében a közeg áll.
- Ideális viselkedést akkor kapunk, ha eltekintünk a turbina tengelyének súrlódásától és a turbina lapátjainak közegellenállásától.

Ideális viselkedés

Elhanyagolt súrlódás és elhanyagolt közegellenállás mellett

$$q_v = Kf$$
,

ahol

- K a mérő kalibrációs állandója
- f forgási sebességgel arányos lapátfrekvencia

Szivárgási áramlás

Egy küszöb q_v áramlás alatt a lapátok nem mozdulnak. Ez a mérő szivárgása.

Súrlódás és közegellenállás

A mérés pontatlanságát befolyásoló hatások éppen a mért mennyiség (áramlás) függvényei, amit a kalibrációs állandóban is figyelembe kell(ene) venni.

Megjegyzések

- Az ábra K függését mutatja q_v -től különböző kinematikai viszkozitás értékek mellett.
- A mérési tartomány felső részét kell használni.
- Adott viszkozitás mellett $K(q_v)$ -t interpolálni szokták.

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- 3 Nyomáskülönbségen alapuló áramlásmérés
- Térfogatkiszorításos mérők
- 5 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Mérési elv

Faraday-törvény

Egy *B* indukciójú mágneses térben *v* sebességgel mozgó vezető közegben feszültség indukálódik. Amennyiben *v* merőleges *B*-re:

$$U = v \cdot B \cdot D,$$

ahol *D* a csőátmérő, *U* az indukált feszültség, és *v* a közeg átlagsebessége.

Korlátozott alkalmazhatóság

Csak vezető közegre (víz, vér, különböző oldatok, cseppfolyós fémek).

Nehézség

B létrehozása

- Váltakozó árammal átjárt tekerccsel.
- Egyenáramú gerjesztés (nagy teljesítmény kell).

Bevezetés Áramló közeg és az áramlás tulajdonságai Nyomáskülönbségen alapuló áramlásmérés Térfogatkiszorításos mérők Coriolis elvű mérők Örvénymérők Turbiná:

Indukciós áramlásmérők

Megjegyzések

- Az elektródák rendszeres tisztítása szükséges.
- A mágneses tér változtatásával a szisztematikus hibák kiküszöbölhetők.

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- 4 Térfogatkiszorításos mérők
- 5 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Ultrahangos mérők

Mérési elv

Az áramló közegbe ultrahang csomagokat küldünk. Két mérési módszer is rendelkezésre áll

- áthaladási időn alapuló (Time of Flight ToF)
- 2 Doppler-hatáson alapuló.

Áthaladási idő (ToF)

Az ultrahang impulzusok terjedési sebessége a közegben az áramlással azonos és ellentétes irányban különbözik.

Doppler-hatás

Áramló (mozgó) részecskékről visszaverődő csomagok frekvenciája sebességükkel arányosan változik $(v \propto \Delta \omega)$.

Előny - a módszer népszerűségének magyarázata

Nincs szükség torlótestre, az áramlási veszteség kicsi (szűkítésből adódhat).

Ultrahangos mérők - mérési elrendezések

Terjedési idő (ToF)

- A nyaláb a cső falánál valójában megtörik: elhelyezéskor figyelembe venni.
- Léteznek a cső faláról visszaverődő csomagok idejét mérő megoldások is.

Doppler-hatás

A visszaverődés a csőben az áramlással együtt mozgó reflexív részecsékről, felületekről érkezik.

Terjedési idő alapú mérés

Megjegyzés

Több adó-vevő pár alakítható ki a keresztmetszeten. Adó és vevő a piezoelektromos hatást használja ki.

Egyenlet

Az átlagos közegsebesség

$$v = \frac{L}{2\sin\alpha} \frac{t_- - t_+}{t_- t_+} \quad q_v = A \cdot v,$$

- t_ terjedési idő az áramlással szemben
- t₊ terjedési idő az áramlás irányában
- α terjedési út és az áramlás irányának szöge
- L távolság az adó és a vevő között

Doppler-hatáson alapú mérés

Megjegyzés

Fémből készült csövek elvezethetik a kívülről átküldeni kívánt ultrahang nagy részét.

Egyenlet

Az átlagos közegsebesség

$$v = \frac{c}{2f_{+}\cos\alpha}(f_{+} - f_{-}) \quad q_{v} = A \cdot v,$$

- f_− visszaverődő frekvencia
- f_+ adó frekvencia
- α terjedési út és az áramlás irányának szöge
- *c* a hang sebessége az áramló közegben

Tartalom

- Bevezetés
- Áramló közeg és az áramlás tulajdonságai
- Nyomáskülönbségen alapuló áramlásmérés
- Térfogatkiszorításos mérők
- 5 Coriolis elvű mérők
- 6 Örvénymérők
- Turbinás mérők
- 8 Indukciós mérők
- Ultrahangos mérők
- Áramlásmérési módszerek összefoglaló

Áramlásmérési módszerek - összehasonlítás

Mért érték és tipikus pontosság (leolvasott értékhez viszonyítva)

- Turbinás mérő q_{ν} $\pm 0,3\%$, gyenge kis q_{ν} -nél és nagy ν -nél.
- Mérőperem q_v $\pm 0,2\%$, bonyolult kompenzációs számítások.
- Indukciós mérő q_v $\pm 0, 1\%$, csak vezető közegekre.
- Örvénymérő q_v $\pm 0, 1\%$, rendezetlenné teszi az áramlást.
- Coriolis $q_m \pm 0, 1\%$

Egyéb szempontok lehetnek

Átfogás (legnagyobb és legkisebb pontosan mérhető áramlási érték hányadosa), szükséges előtét csőszakasz (straight run), null-stabilitás, kalibrálhatóság, áramlási veszteség, karbantartási költség, TCO (total cost of ownership).

Áramlásmérési módszerek - összefoglaló

