PART B

(30 points) Member OA rotates with constant angular velocity of $\omega_1 = 2 \text{ rad/s}$ when in position shown in the figure below. Find the (a) angular velocity of body 3, (b) angular acceleration of body 3, h= 14cm, a=6 cm, r=4cm, L=20 cm.

- (40 points) A uniformly loaded cuboidal crate is released from rest in the position shown in the figure below. The floor is sufficiently rough to prevent slipping and the impact at A is perfectly plastic.
 - (a) Find the largest value of the ratio of $k \mid a$ for which the edge B will remain in contact with the floor.
 - (b) If this ratio is exceeded, find the angle through which the crate will rotate after A strikes the floor. $k_{ZZ}^B = k_{ZZ}^A = k$ k is the radius of gyration $\Rightarrow T_{33}^A = m k_{33}^2$

3. (50 points) A thin square plate (length of its sides = b) of mass m_b rotates with constant angular velocity ω_b with respect to an L-shaped arm ABC (angle ABC = 90°, length AB= a, length BC = a), which has mass m_b and rotates with a constant angular velocity ω_a about the y axis. Determine the force-couple system representing the full reaction (static + dynamic) at the support A

TO SECOND AS	R= LA ®
POWERY USEFUL FORMULAE Very = Vale + Wmyx AP + VPym (AP = Pra) HAP = (AA) + AP +	1 = R + 52 m 82
BOL = BAL + BONJE XAP + BONJE (BOMJE XAP) + 2WMJE VPM + CEPAM	I A
V=8'e; a=8e, +8en, -1 - 15"	
Moments of inertia about center of mass Trentic Matrix Transferentia	Eulor's Axioms

Moments of inertia about center of made as square plate of side L

The Top = T

ASSOCIATE Where

Ry = ê; ê;

Fort = mac.

Rot = Hc

And = Hc + 3Cox mac

And of show man = HA

All gls wert inested solves

frame