CRYPTOCURRENCIES IN EMERGING MARKETS: A STABLECOIN SOLUTION?

David Murakami¹ Ganesh Viswanath-Natraj²

¹University of Oxford, St Hilda's College

²University of Warwick, Warwick Business School

29 August 2022 CEBRA Conference (UPF BSE)

RESEARCH QUESTIONS

- What are the macroeconomic effects for a small open EME of circulating cryptocurrencies, such as Bitcoin, as legal tender?
 - Welfare implications?
 - Effects on monetary policy efficacy?
 - Buffer to global financial shocks?
 - Implication for exchange rate regimes?

MOTIVATION

- El Salvador became the first country to adopt Bitcoin as legal tender in September, 2021.
- Digital currencies address emerging market challenges of financial inclusion and the high remittance costs.
- **Store of Value**: Bitcoin daily price changes is an order of magnitude higher than fiat currency exchange rates. High volatility in a medium of exchange corresponds to high volatility in the macroeconomy.
- **Stablecoin solution**: A potential solution to the volatility inherent to Bitcoin is to instead adopt a global stablecoin, which can transform cross-border payments, make it easier for migrants to send remittances to emerging countries, and bring financial inclusion benefits for the unbanked population.

ROADMAP OF TALK

- Background: El Salvador Bitcoin Experiment and Stablecoin Solution
- Small Open Economy Model: allow for domestic, foreign and digital currency.
 - 1. Households: Segmentation with digital currency held by unbanked: financial inclusion.
 - 2. Banks: Hold deposits in domestic, foreign currency and digital currency deposits.
 - 3. Digital currency deposits are subject to price volatility
 - 4. Propagation of "Bitcoin price shocks" to households, firm output and bank lending.
- Model Results
 - 1. Global financial cycle
 - 2. Fixed versus Flexible exchange rates
 - 3. Welfare analysis

EL SALVADOR

- El Salvador's recent law to make Bitcoin legal tender took effect on September 7th, 2021.
- Under the new regime, each individual can own a government sponsored Chivo digital wallet and is eligible for \$30 US in Bitcoin. El Salvador has installed a number Bitcoin ATMs, allowing its citizens to convert the cryptocurrency into US Dollars.
- Banks are also pursuing regulations to encourage the use of Bitcoin wallet services in banking.
- Reasons for digital currency adoption:
 - 1. Financial inclusion: two thirds of El Salvador's population is without bank account.
 - 2. **Remittance costs**. Remittances total 25 percent of GDP. However, Hanke et al (2021) find Bitcoin wallet fees \approx bank fees of approximately 5 per cent.
 - 3. **FDI flows**: "Bitcoin Beach project" in El Zonte.

MAP OF EL SALVADOR BITCOIN-DOLLAR ATMS

BITCOIN PRICE AND HISTOGRAM OF RETURNS

SOLUTION: STABLECOINS AND MOBILE PAYMENTS

- Within the first day of the Bitcoin law, Bitcoin fell by approximately 10 percent, from \$52,000 US to \$47,000 US by day's end. Moody's downgraded government debt due to the risk of poor governance and the Bitcoin law.
- Replacing Bitcoin with a stablecoin is a solution to the volatility problem. Much of the existing infrastructure (eg. Chivo wallet and Bitcoin-ATMs) is in place for this transition.
- However we caveat that for stablecoins to be legal tender, they need to be appropriately regulated to be fully collateralized at all times.
- An alternative that can be used instead of a stablecoin is a mobile payment platform. In Kenya, the biggest phone company developed M-Pesa, a texting-based system for storing and sending money.

Model

Model Schematic

Domestic Currency (Regular) Households

- Setup based on Aoki, Benigno, and Kiyotaki (2016).
- The representative household contains a continuum of individuals, each of which are of type $i \in \{b, h, u\}$.
 - Bankers (i = b) and regular workers (i = h) share a perfect insurance scheme.
 - However, unbanked workers (i = u) are not part of the insurance scheme.
- The problem for regular workers is the following:

$$\max_{C_t^h, L_t^h, K_t^h, D_t} \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s \ln \left(C_{t+s}^h - \frac{\zeta_0^h}{1 + \zeta^h} (L_{t+s}^h)^{1+\zeta^h} \right) \right], \tag{1}$$

subject to their period budget constraint,

$$C_t^h + Q_t K_t^h + \chi_t^h + D_t = w_t^h L_t^h + \Pi_t^P + (z_t^k + \lambda Q_t) K_{t-1}^h + \frac{R_{t-1}}{\Pi_t} D_{t-1}.$$
 (2)

Unbanked Households

- Unbanked workers also supply labor to firms for a wage. Their only savings vehicle is cryptocurrency.
- Their problem is:

$$\max_{C_t^u, L_t^u, B_t^u} \mathbb{E}_t \left[\sum_{s=0}^{\infty} \beta^s \left\{ \ln \left(C_{t+s}^u - \frac{\zeta_0^u}{1 + \zeta^u} (L_{t+s}^u)^{1+\zeta^u} \right) + \nu_u \ln \left(1 + B_{t+s}^u \right) \right\} \right], \quad (3)$$

subject to period budget constraint,

$$C_t^u + B_t^u = w_t^u L_t^u + \frac{R_{t-1}^c}{\Pi_t} B_{t-1}^u,$$
(4)

where B_t^u are real cryptocurrency holdings in terms of domestic quantities for unbanked workers, and R_t^c is the nominal return on cryptocurrency holdings:

$$R_t^c = \frac{P_t^c}{P_{t-1}^c}. (5)$$

BANKERS

• Bankers seek to maximize franchise value, \mathbb{V}_t^b :

$$\mathbb{V}_t^b = \mathbb{E}_t \left[\sum_{s=1}^{\infty} \Lambda_{t,t+s}^h \sigma^{s-1} (1-\sigma) n_{t+s} \right]. \tag{6}$$

- As in Gertler and Kiyotaki (2010), a financial friction (moral hazard) is used to limit the banker's ability to raise funds.
- Banker can abscond with a fraction, Θ_t , of assets.
- Thus, the bankers face the following incentive compatibility constraint:

$$\mathbb{V}_t^b \ge \Theta(x_t, x_t^c) Q_t k_t^b, \tag{7}$$

BANK BALANCE SHEET AND FLOW OF FUNDS

 Bank balance sheet contains deposits, cryptocurrency deposits, foreign debt, and net worth:

Assets

Loans $Q_t k_t^D$	Deposits d _t		
Management costs χ^b_t	Bitcoin deposits b_t		
	Foreign debt $\epsilon_t d_t^*$		
	Net worth <i>n</i> _t		
$(1+\frac{2^b}{2},\frac{2}{2})$ $(1+\frac{2^b}{2},\frac{2}{2})$			

$$\left(1 + \frac{\varkappa^2}{2} x_t^2\right) Q_t k_t^b = d_t + \epsilon_t d_t^* + n_t + B_t.$$
(8)

Liabilities + Equity

• We can also write the flow of funds of an individual banker as:

$$n_{t} = (z_{t}^{k} + \lambda Q_{t})k_{t-1}^{b} - \frac{R_{t-1}}{\Pi_{t}}d_{t-1} - \frac{R_{t-1}^{*}}{\Pi_{t}^{*}}\epsilon_{t}d_{t-1}^{*} - \frac{R_{t-1}^{c}}{\Pi_{t}}b_{t-1}.$$
 (9)

WEDGES AND DEVIATION FROM UIP

$$\mu_{t} = \mathbb{E}_{t} \left[\Omega_{t,t+1} \left\{ \frac{z_{t+1}^{k} + \lambda Q_{t+1}}{Q_{t}} - (1 + \tau_{t}^{K}) \frac{R_{t}}{\Pi_{t+1}} \right\} \right], \tag{10}$$

$$\mu_t^c = \mathbb{E}_t \left[\Omega_{t,t+1} \left\{ (1 - \tau_t^c) \frac{R_t}{\Pi_{t+1}} - \frac{R_t^c}{\Pi_{t+1}} \right\} \right], \tag{11}$$

$$\mu_t^* = \mathbb{E}_t \left[\Omega_{t,t+1} \left\{ (1 - \tau_t^{D^*}) \frac{R_t}{\Pi_{t+1}} - \frac{\epsilon_{t+1}}{\epsilon_t} \frac{R_t^*}{\Pi_{t+1}^*} \right\} \right], \tag{12}$$

$$v_t = \mathbb{E}_t \left[\Omega_{t,t+1} \frac{R_t}{\Pi_{t+1}} \right], \tag{13}$$

• $\Omega_{t,t+1}$ is the stochastic discount factor of the banker; μ_t is the excess return on capital over home deposits; μ_t^c is the cost advantage of cryptocurrency holdings over home deposits; and μ_t^* is the cost advantage of foreign currency debt over home deposits or the deviation from real uncovered interest parity (UIP).

FIRMS

Firms and production in the model are standard.

- Final goods are produced by perfectly competitive firms using intermediate goods as inputs into production.
- Final good firms also export output to foreign economy.

Monetary Policy

• The domestic central bank is assumed to operate an inertial Taylor Rule:

$$\frac{R_t}{\bar{R}} = \left(\frac{R_{t-1}}{\bar{R}}\right)^{\rho_R} \left[\left(\frac{\Pi_t}{\bar{\Pi}}\right)^{\frac{1-\omega_E}{\omega_E}} \left(\frac{E_t}{\bar{E}}\right)^{\frac{\omega_E}{1-\omega_E}} \right]^{1-\rho_R} \exp(\varepsilon_t^R). \tag{14}$$

- $\omega_{E} \in [0,1]$ with:
 - $\omega_E \rightarrow 0$: strict inflation targeting
 - ullet $\omega_{\it E}
 ightarrow 1$: exchange rate peg

CRYPTOCURRENCY MARKET CLEARING AND EXOGENOUS PROCESSES

• Cryptocurrency market clearing (baseline case):

$$B_t^u = B_t. (15)$$

• Stationary AR(1) processes for TFP and cryptocurrency prices are given as:

$$\ln\left(\frac{A_t}{\bar{A}}\right) = \rho_A \ln\left(\frac{A_{t-1}}{\bar{A}}\right) + \varepsilon_t^A,\tag{16}$$

$$\ln\left(\frac{P_t^c}{\bar{p}_c}\right) = \rho_{P^c} \ln\left(\frac{P_{t-1}^c}{\bar{p}_c}\right) + \varepsilon_t^{P^c}. \tag{17}$$

• We also specify AR(1) processes for foreign output, inflation, and interest rates.

Model Simulations

P_t^c Unit St.Dev Shock

P^c SHOCK SUMMARY

- $P^c \downarrow$ shock reduces holdings of cryptocurrency and a decline in the savings and consumption of unbanked households.
- Through GHH preferences, the decline in consumption reduces labor supply by unbanked workers and a decline in the real wage.
- Peak decline in net output of approximately 8 percent.
- Regular households also experience consumption losses but more-so due to the general equilibrium effects of a decline in wages, labor supply, and income.
- For bankers, decline in the value of their cryptocurrency liabilities causes an increase in net worth. There is a reallocation toward holding more domestic and foreign deposits.
- N ↑ causes a rise in asset prices and investment, but this is not enough to offset the decline in consumption, wages and output due to the valuation of household savings.
- Central bank responds to the decline in prices by lowering interest rates, triggering a nominal and real exchange rate depreciation.

Unit St.Dev Shock to R_t^*

R* SHOCK SUMMARY

- A foreign interest rate increase causes investors to pursue higher yields overseas, leading to a capital outflow, exchange rate depreciation, and a contraction of bank balance sheets.
- A decline in bank net worth and leverage leads to a fall in capital prices and contraction in loans to firms.
- This sees output and consumption consequently fall by approximately 1 percent in the baseline specification.
- Relative to the baseline calibration, the crypto autarky economy sees a larger peak decline in output.
- Implication: For an EME, such as El Salvador, the circulation of cryptocurrencies as legal tender helps to buffer the effect of global financial shocks.

Unit St.Dev Shock to P_t^c : Fixed vs Float

FIXED VS FLOATING SUMMARY

- We simulate the response of an economy to a cryptocurrency price shock under two extreme cases of the Taylor rule: a fixed exchange rate peg is approximated by $\omega_E = 0.99$. A free floating exchange rate regime is approximated by $\omega_E = 0.01$.
- We find that flexible exchange rates provide a buffer through a nominal exchange rate depreciation.
- We observe a peak decline in output of 9 percent and 5 percent for the fixed and flexible exchange rate, respectively.
- Policy takeaway: For an EME, conditional on making cryptocurrencies legal tender, a floating exchange rate softens the effects of crypto asset price shocks.

Welfare Analysis

We calculate welfare by maximizing the value function for each type of household:

$$V_t^i = U(C_t^i, L_t^i) + \beta V_{t+1}^i, \quad i \in \{h, u, agg\}.$$
 (18)

• We also compute a synthetic welfare for the aggregate household:

$$U^{\text{Aggregate}} = U^h(C_t^h, L_t^h) + U^u(C_t^u, L_t^u, B_t^u).$$

 Method: compute the first moment of welfare based on a second order log-linear approximation to the steady state. Compare to an autarky economy for each type of household.

Welfare and Cryptocurrency Price Volatility

CONCLUDING REMARKS

- In this paper we study the macroeconomic costs and benefits of El Salvador's monetary experiment to make Bitcoin as legal tender.
- Using a small open economy model to understand the macroeconomic effects of Bitcoin adoption, we find:
 - 1. Bitcoin brings net welfare losses through the general equilibrium effects of more volatile consumption, bank lending and firm labor demand. In contrast, a digital currency with sufficiently low volatility, such as a stablecoin, can result in net welfare benefits.
 - 2. Holding deposits in cryptocurrency can attenuate the effect of domestic monetary policy on bank balance sheets. A loss of monetary policy sovereignty.
 - 3. Cryptocurrency adoption buffers against the effects of the global financial cycle.
 - 4. Floating exchange rates provide a buffer against cryptocurrency price shocks.

Thank You!

MARKET EQUILIBRIUM

Aggregate variables:

$$K_t = K_t^h + K_t^b, (19)$$

$$C_t = C_t^h + C_t^u, (20)$$

$$L_t = L_t^h + L_t^u. (21)$$

The aggregate resource constraint of the domestic economy is

$$Y_{t} = C_{t} + \left[1 + \Phi\left(\frac{I_{t}}{\bar{I}}\right)\right]I_{t} + EX_{t} + \frac{\kappa}{2}(\Pi_{t} - 1)^{2}Y_{t} + \chi_{t}^{h} + \chi_{t}^{b}.$$
 (22)

• The law of motion of aggregate net foreign debt is given as:

$$D_t^* = \frac{R_{t-1}^*}{\Pi_t^*} D_{t-1}^* + M_t - \frac{1}{\epsilon_t} E X_t.$$
 (23)

AGGREGATE BANK VARIABLES

• Aggregate net worth of the bankers is:

$$N_{t} = \sigma \left[(z_{t}^{k} + \lambda Q_{t}) K_{t-1}^{b} - \frac{R_{t-1}}{\Pi_{t}} D_{t-1} - \epsilon_{t} \frac{R_{t-1}^{*}}{\Pi_{t}^{*}} D_{t-1}^{*} - \frac{R_{t-1}^{c}}{\Pi_{t}} B_{t-1} \right] + \gamma (z_{t}^{k} + \lambda Q_{t}) K_{t-1},$$
(24)

Aggregate balance sheet of the banking sector:

$$Q_t K_t^b \left(1 + \frac{\varkappa^b}{2} x_t^2 \right) = \left(1 + \frac{\varkappa^b}{2} x_t^2 \right) \phi_t N_t, \tag{25}$$

$$Q_t K_t^b \left(1 + \frac{\varkappa^b}{2} x_t^2 \right) = N_t + D_t + \epsilon_t D_t^* + B_t, \tag{26}$$

$$x_t = \frac{\epsilon_t D_t^*}{Q_t K_t^b},\tag{27}$$

$$x_t^c = \frac{B_t}{Q_t K_t^b}. (28)$$

CALIBRATION

Parameter	Value	Description
β	0.9876	Household discount factor
$\zeta^h = \zeta^u$	1/3	Labor supply parameter
$\zeta_0^h = \zeta_0^u$	7.883	Inverse-Frisch elasticity
\varkappa^h	0.0197	Regular worker direct finance cost
$ u_{u}$	0.0028	Cryptocurrency sub-utility parameter
θ	0.1	Elasticity of foreign financed leverage
$ heta^c$	0.1	Elasticity of cryptocurrency financed leverage
$ heta_{0}$	0.401	Bank moral hazard severity
σ	0.94	Banker survival probability
γ	0.0045	Fraction of total assets brought by new banks
\varkappa^b	0.0197	Bank management cost of foreign borrowing
		-

Calibration (cont.)

Parameter	Value	Description
α_{K}	0.3	Production share of capital
α_{M}	0.18	Production share of imports
$lpha_{h}$	0.1734	Production share of regular workers
$\alpha_{m{c}}$	0.3466	Production share of unbanked workers
λ	0.98	One minus the depreciation rate $(\delta=0.02)$
ω_{E}	0.5	Monetary policy exchange rate sensitivity parameter
$ ho_{\mathcal{A}}$	0.85	TFP AR(1) coefficient
$ ho_{R}$	8.0	Monetary policy inertia
$ ho_{R^*}$	0.85	Foreign interest rate AR(1) coefficient
$ ho_{Y^*}$	0.85	Foreign output AR(1) coefficient
$ ho_{\Pi^*}$	0.85	Foreign inflation AR(1) coefficient
ρρο	0	Cryptocurrency price AR(1) coefficient