is an EWMA forecast with smoothing parameter θ and if $\lambda = 1 - \theta$, then using (15.2.3)

$$x_t = (1 - B)X_{t+} = -\frac{\lambda(1 - \delta B)}{g(1 - \delta)}\varepsilon_t = -\frac{\lambda(1 - \delta) + \lambda\delta\nabla}{g(1 - \delta)}\varepsilon_t \tag{15.2.14}$$

Finally, if N_t can be represented by an IMA(0, 1, 1) process with parameter θ , then $\varepsilon_t = a_t$, and this adjustment will yield MMSE control. After summing (15.2.14), we obtain

$$X_t = k_0 + k_P \varepsilon_t + k_I \sum_{i=1}^t \varepsilon_i$$
 (15.2.15)

in which

$$k_P = -\frac{\lambda}{g}\xi$$
 and $k_I = -\frac{\lambda}{g}$

The control equation (15.2.15) yields the discrete analog of continuous PI control mentioned earlier and will hereafter be referred to as (discrete) PI control.

Notice that despite their interesting ramifications, the adjustment equations corresponding to discrete integral control and PI control are extremely simple and intuitive. For discrete integral control

$$x_t = c_1 \varepsilon_t$$
 (with $c_1 = k_I$)

and for PI control

$$x_t = c_1 \varepsilon_t + c_2 \varepsilon_{t-1}$$
 (with $c_1 = k_I + k_P$ and $c_2 = -k_P$)

They, thus, make the adjustment x_t depend linearly on the last error and the last two errors, respectively.

15.2.4 General Minimum Mean Square Error Feedback Control Schemes

Arguing as earlier, it is not difficult to derive theoretical minimum mean square error feedback control schemes for the more general stochastic and linear dynamic models discussed in Chapters 4 and 11. Suppose the response to the series of adjustments in the manipulable input variable X_t is represented by the dynamic transfer function relation (11.2.3), written as

$$\mathcal{Y}_t = L_1^{-1}(B)L_2(B)B^{f+1}X_{t+1}$$

where $L_1(B)$ and $L_2(B)$ are polynomials in B. This relation allows for f periods of pure dead time in the response. In addition, assume the noise or process disturbances $\{N_t\}$ may be represented by the linear stochastic ARIMA process defined by

$$N_t = \varphi^{-1}(B)\theta(B)a_t = \left(1 + \sum_{i=1}^{\infty} \psi_i B^i\right) a_t$$

where a_t is a white noise process. Then the error at the output, $\varepsilon_{t+f+1} = Y_{t+f+1} - T$, at time t + f + 1 can be written

$$\varepsilon_{t+f+1} = \mathcal{Y}_{t+f+1} + N_{t+f+1} = L_1^{-1}(B)L_2(B)X_{t+} + N_{t+f+1}$$

Clearly, the effect of the disturbance at time t+f+1 would be canceled if it were possible to set $X_{t+}=-L_1(B)L_2^{-1}(B)N_{t+t+1}$. Since f+1 is positive, this is not possible, but intuitively we can obtain minimum mean square error control by replacing N_{t+f+1} by its optimal forecast $\hat{N}_t(f+1)$ at origin t. Now we can write $N_{t+f+1}=\hat{N}_t(f+1)+e_t(f+1)$, where $\hat{N}_t(f+1)$ is the *forecast* at time t of N_{t+f+1} and $e_t(f+1)$ is the error of the forecast for f+1 steps ahead. The noise N_{t+f+1} is not known at time t, but its minimum mean square error forecast $\hat{N}_t(f+1)$ can be deduced from the error sequence $\epsilon_t, \epsilon_{t-1}, \epsilon_{t-2}, \ldots$, which is observed. Thus, it follows that the control equation $X_{t+}=-L_1(B)L_2^{-1}(B)\hat{N}_t(f+1)$ will produce at time t+f+1 a level at the output that will cancel out the forecast of the noise f+1 periods ahead, and the error at the output will then be $\epsilon_{t+f+1}=e_t(f+1)$, the error of the forecast. To express the control equation in terms of the error sequence ϵ_t 's, we can write

$$\varepsilon_t = e_{t-f-1}(f+1) = a_t + \psi_1 a_{t-1} + \dots + \psi_f a_{t-f} = L_4(B) a_t$$

and

$$\hat{N}_t(f+1) = \psi_{f+1}a_t + \psi_{f+2}a_{t-1} + \dots = L_3(B)a_t$$

where the operators $L_3(B)$ and $L_4(B)$ are determined from knowledge of the model $N_t = \varphi^{-1}(B)\theta(B)a = \psi(B)a_t$ for the noise process. Hence, we have

$$\hat{N}_t(f+1) = L_3(B)L_4^{-1}(B)\varepsilon_t$$

Therefore, the MMSE feedback control equation is then

$$X_{t+} = -\frac{L_1(B)L_3(B)}{L_2(B)L_4(B)}\varepsilon_t$$
 (15.2.16)

Alternatively, as is usually convenient, we can define the control action in terms of the *adjustment* $x_t = X_{t+} - X_{t-1+}$ to be made at time t as

$$x_t = -\frac{L_1(B)L_3(B)(1-B)}{L_2(B)L_4(B)}\varepsilon_t$$

Example: Model with Dead Time. In particular, one more general dynamic model used above allows for "dead time"—that is, pure delay in response to adjustment. To illustrate the application of equation (15.2.16), consider a first-order system affected by between f and f+1 unit intervals of pure delay so that

$$(1 - \delta B)\mathcal{Y}_t = g(1 - \delta)[(1 - v) + vB]B^f X_{t-1}$$
 (15.2.17)

Combining this with the IMA(0, 1, 1) disturbance model of equation (15.2.10), we can use the general derivation above to obtain the MMSE control scheme. In terms of the general model, we have $L_2(B)/L_1(B) = g(1-\delta)(1-v\nabla)/(1-\delta B)$, and the IMA noise model yields $\hat{N}(f+1) - \hat{N}_{t-1}(f+1) = \lambda a_t$, so that $L_3(B) = \lambda/(1-B)$, and also

$$e_{t-f-1}(f+1)=[1+\lambda(B+B^2+\cdots+B^f)]a_t\equiv L_4(B)a_t$$

Hence, for the adjustment x_t , we have the relation

$$L_2(B)L_4(B)x_t = -L_1(B)L_3(B)(1-B)\varepsilon_t$$

and we obtain the MMSE control equation as

$$(1 - \nu \nabla)[1 + \lambda(B + B^2 + \dots + B^f)]x_t = -\frac{\lambda}{g(1 - \delta)}(1 - \delta B)\varepsilon_t$$

Thus, this optimal control scheme is not PI but is of the form

$$x_t = c_1 x_{t-1} + c_3 x_{t-2} + \dots + c_f x_{t-f-1} + c(\varepsilon_t - \delta \varepsilon_{t-1})$$
 (15.2.18)

where $c = -\lambda/[g(1-\delta)] = k_I + k_P$.

An interesting example by Fearn and Maris (1991) describes an MMSE scheme of this kind applied to the control of gluten addition to bread-making flour in a flour mill where the object was to maintain the protein content of the flour as close as possible to the target value. A careful process study showed that to an adequate approximation for this process $\delta = 0$, $\nu = 0$, f = 1, and $\lambda = 0.25$ ($\theta = 0.75$). The adjustment equation was thus

$$x_t = -0.25x_{t-1} - \frac{0.25}{g}\varepsilon_t \tag{15.2.19}$$

The scheme was tested extensively and the authors remarked that it worked well over a wide range of manufacturing conditions and was robust to moderate changes in the parameters.

The flour milling example does not yield a PI scheme. Notice, however, that the adjustment equation can be written $x_t = -(1 + \lambda B)^{-1} (\lambda/g) \varepsilon_t = -(1 - \lambda B + \lambda^2 B^2 - \cdots) (\lambda/g) \varepsilon_t$. For the rather small value $\lambda = 0.25$, if we truncate the expansion after the first-order term, we obtain the PI scheme $x_t = c_1 \varepsilon_t + c_2 \varepsilon_{t-1}$ with $c_1 = -\lambda/g$ and $c_2 = \lambda^2/g$. In practice, the behavior of this PI scheme will be almost identical to that of (15.2.19). More generally, we will find that PI schemes have an importance in addition to that conferred on them by their producing MMSE schemes for certain simple models. We therefore next consider how PI schemes can be put in effect using simple *feedback control charts*.

15.2.5 Manual Adjustment for Discrete Proportional-Integral Schemes

The equation for the adjustment $x_t = X_t - X_{t-1}$ for the discrete PI scheme (15.2.15) may also be written

$$x_t = -G(1 + P\nabla)\varepsilon_t \tag{15.2.20}$$

where

$$-G = k_I$$
 and $P = \frac{k_P}{k_I}$ (15.2.21)

or equivalently, $k_I = -G$ and $k_P = -PG$, and P is zero for pure integral control. In the special case where the stochastic and dynamic models are defined by (15.2.10) and (15.2.12), respectively, the PI control equation (15.2.15) yields MMSE when $G = \lambda/g$ and $P = \xi$.

Equation (15.2.20) shows how we can make a manual adjustment chart to put PI control into effect. We have already illustrated the use of such a chart for the metallic thickness example in Figure 15.3. For further illustration, we adapt an example discussed by Box et al. (1978). In a dyeing process, the quality characteristic of interest was the color index. Deviations ε_t from the desired target value of T = 9 were compensated by changing the dye addition rate X. For this example, the disturbance in the color index was approximated

by an IMA(0, 1, 1) model with $\lambda = 0.3$, and a change of 1 unit in the dye addition rate X eventually produced a change of 0.06 unit in the color index so that g = 0.06.

Suppose at first that ξ were zero so that the dynamic model was simply $\mathcal{Y}_t = gBX_{t+}$, implying that a change in the input X_t was fully effective at the output in one time interval. Then,

$$-G = k_I = -\frac{\lambda}{g} = -\frac{0.30}{0.06} = -5$$
 and $k_P = 0$ (15.2.22)

The MMSE integral feedback equation would be

$$X_{t} = k_{0} - G \sum_{i=1}^{t} \varepsilon_{t} = k_{0} - 5 \sum_{i=1}^{t} \varepsilon_{i}$$
 (15.2.23)

and at time t the corresponding adjustment would be

$$x_t = -G\varepsilon_t = -5\varepsilon_t \tag{15.2.24}$$

Appropriate action is read off the manual adjustment chart in Figure 15.7 with scales such that one unit deviation in the color index corresponds to -G = -5 units of adjustment of the dye addition rate. Action is taken after each observation by recording the value of the color index (indicated by a filled dot) and reading off on the left-hand scale the required adjustment to the dye addition rate. Thus, in the diagram at time 1:30 p.m., the color index was 9.14 calling for a reduction of -0.7 in the dye addition rate.

Now consider the case where, due perhaps to incomplete mixing of the dye, the process was subject to inertia, which was approximated by a first-order dynamic system as in (15.2.13) with $\delta=0.2$ and consequently $\xi=\delta/(1-\delta)=0.25$. Thus, as before, G=0.3/0.06=5 and now $P=\xi=0.25$. Thus, the appropriate MMSE control equation (15.2.15) would call for proportional-integral action such that

$$X_{t} = k_{0} - 1.25\varepsilon_{t} - 5\sum_{i=1}^{t} \varepsilon_{i}$$
 (15.2.25)

FIGURE 15.7 Manual adjustment chart for discrete integral control.

FIGURE 15.8 Manual adjustment chart putting into effect discrete integral plus proportional control.

The corresponding adjustment equation is

$$x_t = -5(1 + 0.25\nabla)\varepsilon_t \tag{15.2.26}$$

To put this into effect manually, the chart in Figure 15.8 may be employed with the vertical dashed lines placed at a fraction $P = k_P/k_I = 0.25$ within each sampling interval. At each step the operator extrapolates the line through the last two points to the next dashed line and reads off the appropriate adjustment. Thus, in this figure, the last two readings, at 1:15 and 1:30 p.m., were 9.06 and 9.14. The projected value of 9.16 requires reduction of the dye addition rate by -0.8 unit. No exactness is required. A line extrapolated by eye is good enough. As we later explore other uses of PI charts, we will sometimes use schemes in which P is negative. This calls for *interpolation* between the last two points rather than extrapolation.

Rounded Adjustment. The feedback schemes as so far discussed require that we take *some* action at every opportunity—in this example, every 15 minutes. In practice, usually little is lost if the "rounded" adjustment chart indicated in Figure 15.9 is used. Such a chart is easily constructed from the original chart by dividing the action scale into bands. The adjustment made when an observation falls within the band is that appropriate to the middle point of the band on an ordinary chart. Figure 15.9 shows a rounded chart in which possible action is limited to -2-, -1-, 0-, 1-, or 2-unit catalyst formulation changes. The increase in mean square error (usually small), which results from using the rounded scheme, is often outweighed by the convenience of working with a small number of standard adjustments. A convenient width for the rounded bands is about one standard deviation σ_{ε} or a little less. Justification for the use of such charts was provided by Box and Jenkins (1976, Section 13.1), where consideration is given to the effects of errors in the adjustment x_t . Note that the use of all these manual adjustment charts requires no calculation—they are simple and entirely graphical.

FIGURE 15.9 Rounded adjustment chart for proportional-integral control.

15.2.6 Complementary Roles of Monitoring and Adjustment

It is sometimes complained that feedback control can conceal the nature of a compensated disturbance that otherwise might be eliminated. However, when combined with appropriate monitoring, this need not happen. Adjustment schemes and monitoring schemes are complementary and should be used in consort. Figure 15.10 illustrates the point. This shows the behavior of a simulated feedback scheme in which the disturbance is an IMA(0, 1, 1) process with $\lambda = 0.2$ and the process dynamics are represented by a first-order system (15.2.13) with $\delta = 0.5$ and g = 1.0. The calculations were made assuming that the system is controlled by the PI controller,

$$-X_t = \text{constant} + 0.20\varepsilon_t + 0.20\sum_{i=1}^t \varepsilon_i$$
 (15.2.27)

which, for these stated parameter values, produces MMSE. Although this is not usually done, the control action X_t in Figure 15.10(b), as well as the deviation from target $\{\varepsilon_t\}$ in Figure 15.10(d), can be charted (or better still, displayed on the screen of a process computer). Assuming the dynamics known, the exact compensation \mathcal{Y}_t shown in Figure 15.10(c) can also be computed and hence the original disturbance N_t of Figure 15.10(a) can be reconstructed.

Examination of these monitoring displays motivates a generalized concept of common and special causes. The disturbance and the dynamic system together define the *common cause* system, which is taken account of in the design of the controller. But management action could change the system and hence the appropriate form of control. For example, suppose it was discovered that in the operation of the system, the pattern of the feedback control action X_t shown in Figure 15.10(b) mirrored that of a particular impurity in the feedstock. If this correlation checked out as a causative relation, management might decide to change the control system either by removing the impurity from the feedstock before it reached the process, or if that were impossible or too expensive, by measuring it and compensating for it by appropriate feedforward control.

FIGURE 15.10 (a) Disturbance N_t , (b) feedback control action X_t , (c) compensation of the disturbance \mathcal{Y}_t , and (d) resulting deviation ε_t from the target value.

In addition, a *special cause* producing a temporary deviation from the underlying system model, induced perhaps by misoperation of the controller or a mistake by the operator, can be evidenced in the residual sequence $\{\varepsilon_t\}$ leading to remedial action. To illustrate this, we have added a deviation of size $3\sigma_a$ to the 30th value of the disturbance N_t in Figure 15.10(a). After the disturbance has been subjected to feedback control, this outlier is clearly visible in the record of the deviations ε_t from target plotted as a Shewhart chart in Figure 15.10(d). The control limits can be calculated directly from the models used to design the controller or from the record of the ε_t 's during stable operation. Also, as noted later in Section 15.6, more specific checks may be applied to detect possible changes in the system parameters.

Assuming the models correct, in this particular example the residual ε_t 's will be a white noise sequence. For control schemes that are not MMSE or that allow for dead time, however, the sequence $\{\varepsilon_t\}$ will, in general, be autocorrelated. One way to allow for this is to filter $\{\varepsilon_t\}$ suitably to produce a sequence that, given the assumed model, will be white noise. Appropriate checks may then be applied to that series.

15.3 EXCESSIVE ADJUSTMENT SOMETIMES REQUIRED BY MMSE CONTROL

One rationalization for the use of integral control and proportional–integral control is that for perhaps the simplest models for disturbance [equation (15.2.10)] and dynamics [equations (15.2.12) and (15.2.13)], which approximate reality, these forms of feedback adjustment can produce minimum mean square error.² Unfortunately, MMSE control sometimes requires unacceptably large manipulations of the compensating variable X_t . For illustration, consider again the situation where to an adequate approximation the disturbance model is the IMA(0, 1, 1) model of equation (15.2.10) with parameter θ and the dynamic model is the first-order difference equation (15.2.13) with parameters δ and g. Then, the MMSE feedback control adjustment scheme can be written (see (15.2.14)) as

$$x_{t} = -\frac{\lambda}{g} \frac{1 - \delta B}{1 - \delta} \varepsilon_{t} = -\frac{\lambda}{g(1 - \delta)} (\varepsilon_{t} - \delta \varepsilon_{t-1})$$
 (15.3.1)

where $\lambda = 1 - \theta$ and $\varepsilon_t = a_t$. If δ is negligibly small, MMSE control will be obtained with $x_t = -(\lambda/g)\varepsilon_t$ and let us then write

$$\sigma_x^2 = \text{var}[x_t] = \frac{\lambda^2}{g^2} \sigma_a^2 = k$$
 (15.3.2)

But then, when δ is *not* negligible,

$$\sigma_x^2 = k \left[\frac{1 + \delta^2}{(1 - \delta)^2} \right]$$

Thus, if δ were near its upper limit of unity, σ_x^2 could become very large. For example, with $\delta=0.9$ (so that only 1/10 of the eventual change produced by a step input is experienced in the first interval), $\sigma_x^2=181k$. In fact, as δ approaches unity, the MMSE control action in equation (15.3.1) takes on more and more of an "alternating" character, the adjustment made at time t reversing a substantial portion of the adjustment made at time t-1. The reason for such alternating and variable adjustment can also be understood from the consideration that with $\delta=0.9$, the constant $P=\xi=9$ of the manual adjustment chart for MMSE control would call for *extrapolation* of the line joining ε_{t-1} and ε_t by *nine sampling intervals!* In practice, constrained schemes can be used that at the expense of rather small increases in MSE at the output require much less compensatory manipulation.

²This theoretical formulation, which results in a discrete PI controller yielding MMSE, is, however, not unique. For example, a PI controller giving MMSE can be obtained from the models $\mathcal{Y}_t = gBX_t$ and $N_t = (1 - \theta_1B - \theta_2B^2)a_t$, as well as the dynamics model (15.2.13) with IMA(0, 1, 1) noise model (15.2.10).

 $^{^3}$ A value of $\delta = 0.9$ corresponds to a time constant for the system of over nine sampling intervals. The occurrence of such a value would immediately raise the question as to whether the sampling interval being taken was too short; whether in fact the inertia of the process was so large that little would be lost by less frequent surveillance. Now (see Appendix A15.2) the question of the choice of sampling interval must depend on the nature of the noise that infects the system. Because the properties of the noise usually reflect system inertia as well, in many cases it would be concluded that the sampling interval should be increased.

15.3.1 Constrained Control

When the adjustments x_t form a stationary time series, such constrained control schemes can be obtained by finding an unconstrained minimum of the expression

$$\sigma_{\epsilon}^2 + \alpha \sigma_{r}^2 \tag{15.3.3}$$

where α can be regarded as an undetermined multiplier that allocates the relative *quadratic* costs of variations of ε_t and x_t . Such a scheme will be called a constrained MMSE scheme or CMMSE scheme. In particular, we have seen that for an IMA(0, 1, 1) disturbance and first-order dynamics, the *unconstrained* MMSE scheme calls for an adjustment of

$$x_t = -\frac{\lambda}{g}(1 + \xi \nabla)\varepsilon_t = -\frac{\lambda(1 - \delta B)}{g(1 - \delta)}\varepsilon_t$$
 (15.3.4)

It is shown in Appendix A15.1 (see equation (A15.1.27)) that the corresponding CMMSE is of the form

$$x_{t} = [k_{1} + (1 - \lambda)k_{0}]x_{t-1} - (1 - \lambda)k_{1}x_{t-2} - \frac{\lambda(1 - k_{0})(1 - \delta B)}{g(1 - \delta)}\varepsilon_{t}$$
(15.3.5)

where k_0 and k_1 are fairly complicated functions of the parameters g, λ , δ , and α . A table for applying such control is also given in Appendix A15.1.

For illustration suppose that $\lambda = 0.6$, $\delta = 0.5$, and g = 1; then the optimal *unconstrained* MMSE scheme is

$$x_t = -1.2(1 - 0.5B)\varepsilon_t \tag{15.3.6}$$

with

$$\sigma_x^2 = (0.6)^2 \left[\frac{1 + (0.5)^2}{(1 - 0.5)^2} \right] \sigma_a^2 = 1.80 \sigma_a^2$$

from (15.3.2)–(15.3.2a), and $\sigma_{\epsilon}^2 = \sigma_a^2$. Suppose that this amount of variation in the adjustment x_t produced difficulties in process operation and it was desired to reduce it so that σ_x^2 was about $0.50\sigma_a^2$. Use of Table A15.2 shows that this can be achieved with the scheme

$$x_t = 0.32x_{t-1} - 0.06x_{t-2} - (0.57 \times 1.2)(1 - 0.5B)\varepsilon_t$$
 (15.3.7)

which reduces σ_x^2 to $0.47\sigma_a^2$ with $\sigma_\varepsilon^2=1.07\sigma_a^2$. Thus, an almost fourfold reduction in σ_x^2 is produced for an increase of only 7% in the output variance. Such optimal constrained schemes are extremely attractive since they often produce a very large reduction in σ_x^2 for only a small increase in σ_ε^2 . See, for example, Whittle (1963), Tunnicliffe Wilson (1970a, 1970b), MacGregor (1972), Box and Jenkins (1976), Harris et al. (1982), Aström and Wittenmark (1984), Rivera et al. (1986), and Bergh and MacGregor (1987). Unfortunately, such schemes can become complicated.

In practice, however, exact "optimality" is to some extent an illusion because assumptions are never true. It turns out that a form of constrained control, which is almost as good as CMMSE control, can often be obtained using an *appropriately tuned* PI controller. Such a controller has the advantage that it is simple and, in particular, is easily adapted to manual control. The following example shows how suitably tuned PI controllers can do almost as

		$\sigma_{arepsilon}^2$	σ_x^2
(a) MMSE control	$-x_t = (1 + \nabla)\varepsilon_t$	1	5
(b) Optimal constrained control	$-x_t = -0.82x_{t-1} - 0.21x_{t-2} -0.39\varepsilon_t + 0.19\varepsilon_{t-1}$	1.20	0.25
(c) Optimal constrained PI control	$-x_{i} = 0.52(1 - 0.25\nabla)\varepsilon_{i}$	1.20	0.25

TABLE 15.1 Illustrative Results Comparing Different Control Schemes for Models (15.2.13) and (15.2.10), with g = 0.4, $\delta = 0.5$, $\lambda = 0.4$, and $\sigma_a^2 = 1$

well as optimal constrained schemes in producing great reductions in the variance σ_x^2 of the adjustment for only modest increases in the output variance σ_ε^2 .

As an illustration, consider once again the situation where the process disturbance is represented by an IMA(0, 1, 1) process of (15.2.10) and the process dynamics by the first-order system (15.2.13), that is,

$$(1 - \delta B)\mathcal{Y}_t = (1 - \delta)gBX_{t+}$$

and suppose that $\lambda=0.4$, $\sigma_a^2=1$, g=0.4, and $\delta=0.5$, so that $\xi=\delta/(1-\delta)=1$. Then minimum mean square error control is achieved by the PI scheme (a) shown in Table 15.1, yielding an output variance σ_{ε}^2 of 1.00 with $\sigma_x^2=5$. Using the optimal constrained control equation (b) in Table 15.1, it is possible to achieve a 20-fold reduction in σ_x^2 (to 0.25) at the expense of a 20% increase in σ_{ε}^2 to 1.20. But almost nothing is lost by, instead, using the much simpler optimal constrained PI controller (c) in Table 15.1 for which, to two-decimal accuracy, the same result is obtained. Notice that if we use a manual adjustment chart for the MMSE PI scheme (a), it would be necessary to extrapolate one whole time period ahead from the current time t. However, for the constrained PI control (c), we must *interpolate* a quarter of a period back from the current time t. This accounts for the much greater stability of the latter scheme. A fuller discussion of this topic can be found in Box and Luceño (1993).

15.4 MINIMUM COST CONTROL WITH FIXED COSTS OF ADJUSTMENT AND MONITORING

From the point of view of cost, we can summarize the discussion so far as follows. If we assume that the *only* control cost we need to consider is that of being off target and that this cost is proportional to the square of the deviation from target, unconstrained minimum mean square error control implies minimization of the total cost of the scheme. Suppose, however, that there is an additional quadratic loss associated with the size of the adjustment x_t , and that α is some measure of the *relative* cost of being off target and of making adjustments. Then, $\sigma_{\varepsilon}^2 + \alpha \sigma_x^2$ can be a measure of the overall cost of the scheme, and minimization of this quantity can produce a control scheme yielding minimum cost, and, as we have seen, suitably chosen PI schemes can often do almost as well. In either case, in practice, it is rarely easy to gauge α , in terms of relative costs. Instead, choice of a suitable scheme can be made by empirical judgment of what constitutes a satisfactory reduction of σ_x^2 in exchange for an acceptable increase in σ_{ε}^2 . The same kinds of considerations apply to systems for which there are fixed adjustment and monitoring costs.

15.4.1 Bounded Adjustment Scheme for Fixed Adjustment Cost

Especially in the "parts" industries, situations occur where an adjustment often has immediate effect but entails a *fixed* cost incurred, for example, by stopping a machine or changing a tool.

Bounded Adjustment Charts. It was shown by Box and Jenkins (1963) that in the latter case, on the assumption of a quadratic off-target loss and an IMA disturbance, the minimum cost feedback control is *not* achieved by repeated adjustment after each observation. Instead, it requires that an adjustment be made only when an exponentially weighted average $\hat{\epsilon}_t(1)$ of the deviations from target falls outside some fixed limits, $\pm L$, say. We call this *bounded adjustment*. The adjustment that should then be made is the one that will produce a change $-\hat{\epsilon}_t(1)$ at the output. Such an adjustment can be put into effect manually using a "bounded adjustment chart" such as that discussed below, or automatically.

A bounded adjustment chart such as that shown in Figure 15.11 is superficially similar to that proposed for process monitoring by Roberts (1959). However, its purpose and design are different. The purpose is to decide when, and by how much, to *adjust* the process. The boundary lines are designed to minimize the overall cost, taking into account both the cost of making adjustments and the cost of being off target. Their purpose is *not* to discover statistically significant deviations from target. As the cost of adjustment approaches zero, the lines come closer together, converging on the target value when the cost of adjustment is zero and so yielding the "repeated adjustment" MMSE scheme.

Figure 15.11 shows an example of such a chart for the metallic thickness control problem that would be appropriate if there had been a fixed cost for changing the deposition rate X. As before, $\lambda = 0.2$, g = 1.2, and $\sigma_a = 11$. At time t, an open circle represents the deviation from target ε_t obtained after periodically changing the deposition rate X_t as required by the chart. A filled circle represents an appropriate exponentially weighted moving average

FIGURE 15.11 Bounded adjustment chart: the open circles are the thickness deviations ε_t (after adjustment), the filled circles are their EWMA forecasts $\hat{\varepsilon}_{t-1}(1)$ of these deviations.

forecast. This is conveniently updated using the formula

$$\hat{\varepsilon}_t(1) = \lambda \varepsilon_t + \theta \hat{\varepsilon}_{t-1}(1)$$

The particular chart shown has boundary lines at 80 ± 8 , that is, at $T \pm 0.720\sigma_a$. We discuss the rationale for this choice below. To understand how the chart operates, suppose initially that the deposition rate is some value X_0 . This will remain unchanged until time t=13, when the forecasted value 88.7 (i.e., $\hat{\varepsilon}_t(1)=8.7$) falls outside the upper limit and the chart signals that a change is needed in the deposition rate that will reduce the thickness by -8.7. An adjustment of

$$X_{13} - X_0 = -8.7/1.2$$

is now made in the deposition rate. Notice that such an adjustment does not upset the calculation of the next EWMA. For example, the forecasted thickness at time t = 14 is

$$(0.2 \times 81.3) + (0.8 \times 80.0) = 80.3$$

where 80 is the appropriate previous forecasted value after the adjustment has been made to bring the process on target.

15.4.2 Indirect Approach for Obtaining a Bounded Adjustment Scheme

Tables for calculating the positions of the appropriate limit lines for minimum cost schemes in terms of the *cost of being off target* and the *cost of adjustment* were provided by Box and Jenkins (1963), Box et al. (1974), and Box and Kramer (1992). However, as we said earlier, these costs are not always easy to assess, and it seems more practical to use these results to provide an envelope of minimum cost schemes and then to choose among them empirically by considering the increased standard deviation at the output obtained in exchange for a longer interval between making adjustments. This approach was illustrated by Box (1991b). Table 15.2 shows theoretical average adjustment intervals (AAIs) and percent increase in standard deviation (ISD) of the adjusted process for various values of λ and L/σ_a , where limit lines of the bounded adjustment scheme are at $T \pm L$.

For illustration, consider again the thickness adjustment example. Entering Table 15.2 with $\lambda=0.2$ shows how much inflation in the error standard deviation would occur for a bounded scheme for various choice of L/σ_a . Thus, if L/σ_a were set equal to 0.5, a 2.6% increase in the standard deviation would occur, but on the average, adjustments would be needed only every 10 intervals. If L/σ_a were set equal to 1.0, a 9% increase in standard deviation would result, but the AAI would be 32. The scheme depicted in Figure 15.11 is a compromise in which L/σ_a was set equal to 0.72, which rough interpolation shows would give a 5% increase in the standard deviation with an AAI of about 20. To achieve this, L was set equal to $8\approx0.72\times11$. A Monte Carlo study using the 100 observations of metallic thickness graphed in Figure 15.2 shows an actual inflation of the standard deviation of 8.5% for this example with an AAI of 14. In view of the rather limited sample size, the agreement must be considered quite good.

Interpolation Chart. Any degree of technological sophistication can be used in applying these ideas: anything from transducers taking actions calculated by computers to operators taking actions based on a simple interpolation chart such as that shown in Figure 15.12, which used a pushpin and a piece of thread to indicate the appropriate *manual* adjustment.

TABLE 15.2 Average Adjustment Interval (AAI) and Percent Increase in Standard Deviation of Output (ISD) for Various Choice of L/σ_a Where the Limit Lines Are at $T\pm L$

λ	L/σ_a	AAI	Percent Increase in Standard Deviation ISD
0.1	0.5	32	2.4
	1.0	112	9
	1.5	243	18
	2.0	423	30
0.2	0.5	10	2.6
	1.0	32	9
	1.5	66	20
	2.0	112	32
0.3	0.5	5	2.6
	1.0	16	10
	1.5	32	20
	2.0	52	33
0.4	0.5	4	2.6
	1.0	10	10
	1.5	19	21
	2.0	32	34
0.5	0.5	3	2.5
	1.0	7	10
	1.5	13	21
	2.0	21	35

Source: Box (1991b).

In the situation depicted, a previous forecast made at time t-1 was 86 and the observation, which has just been made at time t, is 66. Just before the current time t, therefore, the location of the pushpin on the current forecast scale would be at 86 with the thread hanging down from the pin. As soon as the actual value 66 became available, the thread would be pulled tightly to join the point 66 on the right-hand scale. The updated forecast of 82 would then be read off on the intermediate scale. This value lies within the boundaries, so that pushpin would be moved down to this new current forecast value with the thread hanging loose again until the next observation became available to produce a new updated forecast. As soon as an updated forecast fell outside either boundary, the appropriate adjustment in deposition rate to cancel out the forecasted deviation would be made, and the pushpin would then be *placed on the target value* ready for the next interpolation.

15.4.3 Inclusion of the Cost of Monitoring

It was shown by Box and Kramer (1992) how these results could be extended to the case where the cost of monitoring the process had also to be taken into account. They considered the possibility of further reducing cost by less frequent monitoring at an interval m instead of at a unit interval. They provided charts for obtaining minimum cost schemes given that in addition to σ_a and λ (estimated from plant data), three cost constants were known:

FIGURE 15.12 Interpolation chart to update the forecasted value of thickness and to indicate when and by how much the deposition rate should be adjusted.

(1) the (assumed quadratic) cost of being off target, (2) the fixed cost of making a change, and (3) the fixed monitoring cost of taking an observation. Given this information, the corresponding values of L/σ_a and of m yielding minimum cost could be read off their charts.

Again, these three individual costs may not be easy to determine, and Box and Luceño (1993) used their results to allow the choice of scheme to be based on empirical judgment. The charts shown in Figure 15.13 give the values of the AAI and the percent ISD with respect to σ_a corresponding to value of the nonstationarity measure $\lambda = 0.1(0.1)0.6$, 0.8, and 1.0, the standardized action limit $L/\sigma_a = 0.0(0.25)$ 2.5, and the monitoring interval $m = 1, 2, 3, \ldots$ The charts cover small to moderate increases in the output standard deviation such as might be needed in practice. Thus, the larger values of m appear only with smaller values of λ .

For example, we saw earlier that by using a bounded adjustment chart with $L/\sigma_a=0.72$ instead of a continuous scheme, the average adjustment interval could be increased to about 20 at the cost of an increase of 5% in the standard deviation. This is confirmed by the chart of Figure 15.13 for $\lambda=0.2$, which also shows, for example, that if we monitor the process

FIGURE 15.13 Charts for $\lambda = 0.1$, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0 showing AAIs and ISDs obtained from various choices of L/σ_a and m.

FIGURE 15.14 System at time t subject to an observed input disturbance u_t and unobserved disturbance N_t , with potential compensating variable X_t .

half as frequently (m = 2) and we again set $L/\sigma = 0.72$, we could obtain about the same average adjustment interval (20) but with an 8% increase in the standard deviation.

15.5 FEEDFORWARD CONTROL

We now consider the design of discrete *feedforward* control schemes that give minimum mean square error at the output. A situation arising in the manufacture of a polymer is illustrated in Figure 15.14. The viscosity Y_t of the product is known to vary in part due to fluctuations in the feed concentration u_t , which can be observed but not changed. The steam pressure X_t is a control variable that is measured, can be manipulated, and is potentially available to alter the viscosity by any desired amount and hence compensate potential deviations from target. The total effect in the output viscosity of all *other* sources of disturbance at time t is denoted by N_t .

15.5.1 Feedforward Control to Minimize Mean Square Error at the Output

We can suppose that Y_t , u_t , X_t , N_t are deviations from reference values, which are such that if the conditions u = 0, X = 0, N = 0 were continuously maintained, then the process would remain in an equilibrium state such that the output was exactly on the target value Y = 0.

The transfer function model, which connects the observed but uncontrollable input disturbance u_t (feed concentration) and the output Y_t (viscosity), is assumed to be

$$\mathcal{Y}_{1t} = \delta^{-1}(B)\omega(B)B^b u_t$$

Now, changes will be made in X at times $t, t-1, t-2, \ldots$ immediately after the observations $u_t, u_{t-1}, u_{t-2}, \ldots$ are taken. Hence, we obtain a "pulsed" input, and we denote the level of X in the interval t to t+1 by X_{t+} . For this pulsed input, it is assumed that the transfer function model, which connects the compensating variable X_t (steam pressure) and the output Y_t (viscosity), has the effect

$$\mathcal{Y}_{2t} = L_1^{-1}(B)L_2(B)B^{f+1}X_{t+1}$$

where $L_1(B)$ and $L_2(B)$ are polynomials in B. Then, if no control is exerted (the potential compensating variable X_t is held fixed at $X_t = 0$), the total error or deviation from target value T = 0, $\varepsilon_t = Y_t - T$, in the output viscosity will be

$$\varepsilon_t = \delta^{-1}(B)\omega(B)u_{t-b} + N_t$$

Clearly, it ought to be possible to compensate the effect of the measured parts of the overall disturbance by manipulating X_t . Now at time t, and at the point P in Figure 15.14,

1. The total effect of the input disturbance (*u*) is

$$\delta^{-1}(B)\omega(B)u_{t-b}$$

2. The total effect of the compensation (X) is

$$L_1^{-1}(B)L_2(B)X_{t-f-1+}$$

and we assume that the effects of the input influences u and X on the output Y are additive. Then, the effect of the observed input disturbance u will be canceled if we set

$$L^{-1}(B)L_2(B)X_{t-f-1+} = -\delta^{-1}(B)\omega(B)u_{t-b}$$

Thus, the control action at time t should be such that

$$L_1^{-1}(B)L_2(B)X_{t+} = -\delta^{-1}(B)\omega(B)u_{t-(b-f-1)}$$
 (15.5.1)

Case 1: $b \ge f + 1$. Now at time t, the values u_{t+1}, u_{t+2} ... are unknown. The control action (15.5.1) is directly realizable, therefore, only if $(b - f - 1) \ge 0$, in which case the desired control action at time t is to set the manipulated variable X to the level

$$X_{t+} = -\frac{L_1(B)\omega(B)}{L_2(B)\delta(B)} u_{t-(b-f-1)}$$
 (15.5.2)

Alternatively, it is often more convenient to define the control action in terms of the *change* $x_t = X_{t+} - X_{t-1+}$, which is to be made in the level of X immediately after the observation u_t has come to hand. This is

$$x_{t} = -\frac{L_{1}(B)\omega(B)}{L_{2}(B)\delta(B)}(u_{t-(b-f-1)} - u_{t-1-(b-f-1)})$$
(15.5.3)

The situation is illustrated in Figure 15.14. The effect at P from the control action is $-\delta^{-1}(B)\omega(B)u_{t-b}$, and this exactly cancels the effect at P of the input disturbance. The component of the deviation from target due to u_t is (theoretically at least) exactly eliminated at the observation times, and only the component N_t due to the unobserved disturbance remains.

Case 2: (b - f - 1) Negative. It can happen that f + 1 > b. This means that an observed input disturbance reaches the output before it is possible for compensating action to become effective. In this case the action in (15.5.2) is not realizable because at time t, when the action is to be taken, the relevant value $u_{t+(f+1-b)}$ of the input disturbance is not yet available. One would usually avoid this situation if one could (if some quicker acting compensating variable could be used instead of X), but sometimes such an alternative is not available.

Now with $u_t' = \delta^{-1}(B)\omega(B)u_t$ represented by the linear model (see, for example, Box et al. (1974))

$$u_t' = \left(1 + \sum_{i=1}^{\infty} \psi_i' B^i\right) \alpha_t$$

where α_t is a white noise process with mean zero and variance σ_{α}^2 , then

$$u'_{t+f+1-b} = \hat{u}'_t(f+1-b) + e'_t(f+1-b)$$

In this expression

$$e'_{t}(f+1-b) = \alpha_{t+f+1-b} + \psi'_{1}\alpha_{t+f-b} + \dots + \psi'_{f-b}\alpha_{t+1}$$

is the forecast error. Then, we can write the right-hand side of (15.5.2) in the form

$$-L_1(B)L_2^{-1}(B)\hat{u}_t'(f+1-b)-L_1(B)L_2^{-1}(B)e_t'(f+1-b)$$

Now, $e_f'(f+1-b)$ is a function of the uncorrelated random variates $\alpha_{t+h}(h \ge 1)$, which have not yet occurred at time t and which are uncorrelated with any variable known at time t (and the α_{t+h} are therefore not forecastable). It follows that the optimal (minimum mean square error) action is achieved by setting

$$X_{t+} = -\frac{L_1(B)}{L_2(B)}\hat{u}_t'(f+1-b)$$
 (15.5.4)

that is, by making the *change* in the compensating variable at time t equal to

$$x_{t} = -\frac{L_{1}(B)}{L_{2}(B)} \{ \hat{u}'_{t}(f+1-b) - \hat{u}'_{t-1}(f+1-b) \}$$
 (15.5.5)

This results in an additional component in the deviation ε_t from the target, which now becomes

$$\varepsilon_t = N_t + e'_{t-f-1}(f+1-b)$$

If the model for the input disturbance is $\varphi_u(B)u_t = \theta_u(B)\alpha_t$, then the model for $u_t' = \delta^{-1}(B)\omega(B)u_t$ can be written

$$\varphi_u'(B)u_t' = \theta_u'(B)\alpha_t$$

with

$$\varphi_u'(B) = \varphi_u(B)\delta(B)$$
 and $\theta_u'(B) = \theta_u(B)\omega(B)$

The needed forecasts $\hat{u}'_t(f+1-b)$, obtained as in Chapter 5, can then be written conveniently in terms of previous u's and α 's obtainable from the u series itself.

15.5.2 An Example: Control of the Specific Gravity of an Intermediate Product

In the manufacture of an intermediate product, used for the production of a synthetic resin, the specific gravity Y_t of the product had to be maintained as close as possible to the value 1.260. This was actually achieved by a mixed scheme of feedforward and feedback control. We consider the complete scheme later and discuss here only the feedforward part. The process has rather slow dynamics, and also the disturbance is known to change slowly, so that observations and adjustments are made at 2-hour intervals. The uncontrolled input disturbance that is fed forward is the feed concentration u_t , which is measured as deviations from an origin of 30 g/L. The relation between specific gravity and feed concentration over the range of normal operation has the effect

$$\mathcal{Y}_{1t} = 0.0016u_t$$

where the effect \mathcal{Y}_{1t} is measured from the target value 1.260.

This relation contains "no dynamics" because the feed concentration can only be measured at the inlet to the reactor, so that in our general notation $\delta(B) = 1, \omega(B) = 0.0016, b = 0$. Control is achieved by varying pressure, which is referred to a convenient origin of 25 psi. The transfer function model relating specific gravity and pressure X_t was estimated as having the effect

$$(1 - 0.7B)\mathcal{Y}_{2t} = 0.0024X_{t-1+}$$

so that $L_1(B) = (1 - 0.7B)$, $L_2(B) = 0.0024$, f = 0. So far as could be ascertained, the effects of pressure and feed concentration were approximately additive in the region of normal operation. Therefore, the control equation (15.5.4) is used, since b - f - 1 is negative, and yields

$$X_{t+} = -\frac{(1 - 0.7B)0.0016}{0.0024}\hat{u}_t(1)$$
 (15.5.6)

for, in this particular example, $u'_t = 0.0016u_t$ and hence $\hat{u}'_t(1) = 0.0016\hat{u}_t(1)$. Study of the feed concentration showed that it could be represented by the linear stochastic model of order (0, 1, 1),

$$\nabla u_t = (1 - \theta_u B) \alpha_t$$

with $\theta_u = 0.5$. For such a process,

$$\hat{u}_t(1) = (1 - \theta_u)u_t + \theta_u\hat{u}_{t-1}(1)$$

that is, $(1 - \theta_u B)\hat{u}_1(1) = (1 - \theta_u)u_t$ or

$$\hat{u}_t(1) = \frac{1 - \theta_u}{1 - \theta_u B} u_t$$

Concentration			Pressure			
t	$u_{t} + 30$	u_{t}	X_{t+}	$X_{t+} + 25$	\boldsymbol{x}_{t}	
0	31.6	1.6	-0.63	24.4		
1	31.1	1.1	-0.31	24.7	0.3	
2	34.4	4.4	-1.36	23.6	-1.1	
3	32.0	2.0	-0.32	24.7	1.1	
4	28.2	-1.8	0.90	25.9	1.2	

TABLE 15.3 Calculation of Adjustments for Feedforward Control Scheme (15.5.7)

Thus, the control equation (15.5.6) can be written finally as

$$X_{t+} = -\frac{(1 - 0.7B)0.0016(0.5)}{0.0024(1 - 0.5B)}u_t$$

or

$$X_{t+} = 0.5X_{t-1+} - 0.333(u_t - 0.7u_{t-1})$$
 (15.5.7)

Table 15.3 shows the calculation of the first few of a series of settings of the pressure required to compensate the variations in feed concentration, given the starting conditions for time t = 0 of $u_0 = 1.6$, $X_{0+} = -0.63$. Once the calculation has been started off, it is sometimes more convenient to work directly with the changes x_t to be made at time t using

$$x_t = 0.5x_{t-1} - 0.333(\nabla u_t - 0.7\nabla u_{t-1})$$
 (15.5.8)

Figure 15.15a shows a section of the feed concentration. Figure 15.15b shows the output after applying feedforward control. Figure 15.15c shows the specific gravity if no control had been applied. These values Y_t are, of course, not directly available but may be obtained in general from the values Y_t' , which actually occurred using

$$Y_t = Y_t' + \hat{u}_{t-f-1}'(f+1-b)$$

For this example then

$$Y_t = Y_t' + \frac{0.0008}{1 - 0.5B} u_{t-1}$$

that is,

$$Y_t = 0.5Y_{t-1} + Y_t' - 0.5Y_{t-1}' + 0.0008u_{t-1}$$

As a result of feedforward control, the root mean square error deviation of the output from the target value over the sample record shown is 0.003. Over the same period, the root mean square error of the uncorrected series would have been 0.008. The improvement is marked and extremely worthwhile. However, it appears that other unidentified sources of disturbance exist in the process, as evidenced by the drift away from target. This kind of tendency is frequently met in pure feedforward control schemes, but may be compensated by the addition of feedback control, as discussed in Section 15.2. We will briefly indicate the details of the combined scheme later in Section 15.5.4.

Control action is effected in whatever manner is most suited to the situation. If changes are made infrequently, and if the control equation is fairly simple as in the above example,

FIGURE 15.15 (a) Feed concentration, (b) Specific gravity after feedforward control, (c) Specific gravity if no control had been applied.

the theory we have outlined may be used to obtain optimal control *manually*. It is then convenient to use some form of control chart or nomogram that can be easily understood by the process operator, similar to charts illustrated in Section 15.2 regarding feedback control.

15.5.3 Feedforward Control with Multiple Inputs

No difficulty arises in principle when the effects of several additive input disturbances u_1, u_2, \dots, u_m are to be compensated by changes in X using feedforward control. Suppose the combined effect at the output of all the input disturbances is given by

$$\mathcal{Y}_{t} = \sum_{j=1}^{m} \delta_{j}^{-1}(B)\omega_{j}(B)B^{b_{j}}u_{j,t} = \sum_{j=1}^{m} B^{b_{j}}u'_{j,t}$$

where $u'_{j,t} = \delta_j^{-1}(B)\omega_j(B)u_{j,t}$, and, as before, the transfer function model for the compensating variable contributes the effect

$$\mathcal{Y}_{2t} = L_1^{-1}(B)L_2(B)B^{f+1}X_{t+1}$$

Then, proceeding precisely as before, the required control action is to change X at time t by an amount

$$x_{t} = -L_{1}(B)L_{2}^{-1}(B)\sum_{i=1}^{m} [u'_{j,t+f+1-b_{j}} - u'_{j,t+f-b_{j}}]$$
(15.5.9)

where

$$[u'_{j,t+f+1-b_j} - u'_{j,t+f-b_j}]$$

$$= \begin{cases} u'_{j,t+f+1-b_j} - u'_{j,t+f-b_j} & f+1-b_j \le 0\\ \hat{u}'_{j,t}(f+1-b_j) - \hat{u}'_{j,t-1}(f+1-b_j) & f+1-b_j > 0 \end{cases}$$
(15.5.10)

If, as before, N_t is an unmeasurable disturbance, then the error or deviation from target at the output from this control action in the compensating variable X_t + will be

$$\varepsilon_t = N_t + \sum_{j=1}^m e'_{j,t-f-1}(f+1-b_j)$$
 (15.5.11)

where $e'_{j,t-f-1}(f+1-b_j)=0$ if $f+1-b_j \le 0$, and is the forecast error corresponding to the *j*th input variable $u_{i,t}$ if $f+1-b_j > 0$.

On the one hand, feedforward control allows us to take prompt action to cancel the effect of input disturbance variables, and if $f+1-b_j \leq 0$, to anticipate completely such disturbances, at least in theory. On the other hand, to use this type of control we must be able to measure the disturbing variables and possess complete knowledge—or at least a good estimate—of the relationship between each input disturbance variable and the output. In practice, we could never measure *all* of the disturbances that affected the system. The remaining disturbances, which we have denoted by N_t and which are not affected by feedforward control, could of course increase the variance at the output or cause the process to wander off target, as in fact occurred in the example discussed in Section 15.5.2. Clearly, we can prevent this from happening by using the deviations ε_t themselves to indicate an appropriate adjustment, that is, by using feedback control as discussed in earlier sections of this chapter. In fact, a combined feedforward–feedback control scheme can be used, which provides for the elimination of identifiable input disturbances by feedforward control and for the reduction of the remaining disturbance by feedback control.

15.5.4 Feedforward-Feedback Control

A combined feedforward-feedback control scheme provides for the elimination of identifiable input disturbances by feedforward control and for the reduction of the remaining disturbance by feedback control. We briefly discuss a combined feedforward-feedback scheme in which m identifiable input disturbances u_1, u_2, \ldots, u_m are fed forward. The combined effects on the output of all the input disturbances and of the compensating input variable X_t are assumed to be additive of the same form as given previously in Section 15.5.3. It is assumed also that N_t' is a further unidentified disturbance and that the *augmented noise* N_t is made up of N_t' plus that part of the feedforward disturbance that cannot be predicted at time t. Thus, using (15.5.11),

$$N_t = N_t' + \sum_{j=1}^m e_{j,t-f-1}'(f+1-b_j)$$

where $e'_{j,t-f-1}(f+1-b_j)=0$ if $f+1-b_j \le 0$, and includes any further contributions from errors in forecasting the identifiable inputs. It is assumed that N_t can be represented by a linear stochastic process so that, in the notation of Section 15.2.4, it follows that the

relationship between the forecasts of this noise process and the forecast errors may be written as

$$\frac{L_3(B)(1-B)}{L_4(B)}\varepsilon_t = \hat{N}_t(f+1) - \hat{N}_{t-1}(f+1)$$

where
$$\varepsilon_t = e_{t-f-1}(f+1) = N_t - \hat{N}_{t-f-1}(f+1)$$

where $\epsilon_t = e_{t-f-1}(f+1) = N_t - \hat{N}_{t-f-1}(f+1)$. Arguing as in (15.2.16) and (15.5.9), the optimal control action for the compensating input variable X_t to minimize the mean square error at the output is

$$x_{t} = -\frac{L_{1}(B)}{L_{2}(B)} \left\{ \sum_{i=1}^{m} [u'_{j,t+f+1-b_{j}} - u'_{j,t+f-b_{j}}] + \frac{L_{3}(B)(1-B)}{L_{4}(B)} \varepsilon_{t} \right\}$$
(15.5.12)

where the $[u'_{j,t+f+1-b_i} - u'_{j,t+f-b_i}]$ are as given in equation (15.5.10). The first term in the control equation (15.5.12) is the same as in (15.5.9) and compensates for changes in the feedforward input variables. The second term in (15.5.12) corresponds exactly to (15.2.16) and compensates for that part N'_t of the augmented noise, which can be predicted at time t.

An Example of Feedforward-Feedback Control. We illustrate by discussing further the example used in Section 15.5.2, where it was desired to control specific gravity as close as possible to a target value 1.260. Study of the deviations from target occurring after feedforward control showed that they could be represented by the IMA(0, 1, 1) process

$$\nabla N_t = (1 - 0.5B)a_t$$

where a_t is a white noise process. Thus,

$$\frac{L_3(B)(1-B)}{L_4(B)}a_t = \hat{N}_t(1) - \hat{N}_{t-1}(1) = 0.5a_t$$

and $\varepsilon_t = e_{t-1}(1) = a_t$. As in Section 15.5.2, the remaining parameters are

$$\delta^{-1}(B)\omega(B) = 0.0016 \quad b = 0$$
$$L_2^{-1}(B)L_1(B) = \frac{1 - 0.7B}{0.0024} \quad f = 0$$

and

$$\hat{u}_t(1) - \hat{u}_{t-1}(1) = \frac{0.5}{1 - 0.5B}(u_t - u_{t-1})$$

Using (15.5.12), the minimum mean square error adjustment incorporating feedforward and feedback control is

$$x_{t} = -\frac{1 - 0.7B}{0.0024} \left[\frac{(0.0016)(0.5)}{1 - 0.5B} (u_{t} - u_{t-1}) + 0.5\varepsilon_{t} \right]$$
 (15.5.13)

that is,

$$x_t = 0.5x_{t-1} - 0.333(1 - 0.7B)(u_t - u_{t-1}) - 208(1 - 0.7B)(1 - 0.5B)\varepsilon_t$$

FIGURE 15.16 Typical variation in specific gravity with (a) no control, (b) feedforward control only, and (c) feedforward with feedback control.

or

$$x_{t} = 0.5x_{t-1} - 0.333u_{t} + 0.566u_{t-1} - 0.233u_{t-2} - 208\varepsilon_{t} + 250\varepsilon_{t-1} - 73\varepsilon_{t-2}$$
 (15.5.14)

Figure 15.16 shows the section of record previously given in Figure 15.15, when only feedforward control was employed, and the corresponding calculated variation that would have occurred if no control had been applied. This is now compared with a record from a scheme using both feedforward and feedback control. The introduction of feedback control resulted in a further substantial reduction in mean square error and corrected the tendency to drift from the target, which was experienced with the feedforward scheme.

Note that with a feedback scheme, the correction employs a forecast having lead time f+1, whereas with a feedforward scheme the forecast has lead time f+1-b and no forecasting is involved if f+1-b is zero or negative. Thus, feedforward control gains in the immediacy of possible adjustment whenever b is greater than zero. The example we have quoted is an exception in that b=0, and consequently no advantage of immediacy is gained, in this case, by feedforward control. It might be true in this case that equally good control could have been obtained by a feedback scheme alone. In practice, possibly because of error transmission problems, the mixed scheme did rather better than the pure feedback system.

15.5.5 Advantages and Disadvantages of Feedforward and Feedback Control

With feedback control, it is the total disturbance, as evidenced by the error at the output, that actuates compensation. Therefore, it is not necessary to be able to identify and measure the sources of disturbance. All that is needed is that we *characterize* the disturbance N_t at the output by an appropriate stochastic model (and as we have seen in earlier sections,

an IMA(0, 1, 1) model would often provide adequate approximation to the noise model). Because we are not relying on "dead reckoning," unexpected disturbances and moderate errors in identifying and estimating the system's characteristics will normally result only in greater variation about the target value and not (as may occur with feedforward control) in a consistent drift away from the target value. On the other hand, especially if the delay f+1 is large, the errors about the target (since they are then the errors of a remote forecast) may be large, although they have zero mean. Clearly, if identifiable sources of input disturbance can be partially or wholly eliminated by feedforward control, then this should be done. Then, only the unidentifiable error has to be dealt with by feedback control.

In summary, although we can design a feedback control scheme that is optimal, in the sense that it is the best possible feedback scheme, it will not usually be as good as a combined feedforward–feedback scheme in which sources of error that can be are eliminated before the feedback loop.

15.5.6 Remarks on Fitting Transfer Function-Noise Models Using Operating Data

It is desirable that the parameters of a control system be estimated from data collected under as nearly as possible the conditions that will apply when the control scheme is in actual operation. The calculated control action, using estimates so obtained, properly takes account of noise in the system, which will be characterized as if it entered at the point provided for in the model. This being so, it is desirable to proceed iteratively in the development of a control scheme. Using technical knowledge of the process, together with whatever can be learned from past operating data, preliminary transfer function and noise models are postulated and used to design a pilot control scheme. The operation of this pilot scheme can then be used to supply further data, which may be analyzed to give improved estimates of the transfer function and noise models, and then used to plan an improved control scheme.

For example, consider a feedforward–feedback scheme with a single feedforward input, as in Section 15.5.1, and the case with b-f-1 nonnegative. Then for any inputs u_t and X_{t+} , the output deviation from target is given by

$$\varepsilon_t = \delta^{-1}(B)\omega(B)u_{t-b} + L_1^{-1}(B)L_2(B)X_{t-f-1} + N_t$$
 (15.5.15)

and it is assumed that the noise N_t may be described by an ARIMA(p,d,q) model. It is supposed that time series data are available for ε_t, u_t , and X_{t+} during a sufficiently long period of actual plant operation. Often, although not necessarily, this would be a period during which some preliminary pilot control scheme was being operated. Then for specified orders of transfer function operators and noise model, the methods of Sections 12.3 and 12.4 may be used directly to construct the sums of squares and likelihood function and to obtain estimates of the model parameters in the standard way through nonlinear estimation using numerical iterative calculation.

Consider now a pure feedback system that may be represented in the transfer function-noise model form

$$\varepsilon_t = v(B)X_{t+} + N_t \tag{15.5.16}$$

$$X_{t+} = c(B)\varepsilon_t\{+d_t\} \tag{15.5.17}$$

with

$$v(B) = L_1^{-1}(B)L_2(B)B^{f+1}$$

where c(B) is the known operator of the controller, not necessarily optimal, and d_t is either an additional unintended error or an added "dither" signal that has been deliberately introduced. The curly brackets in (15.5.17) emphasize that the added term may or may not be present. In either case, estimation of the unknown transfer function and noise model parameters can be performed, as described in Chapter 12.

However, difficulties in estimation of the model under feedback conditions can arise when the added term d_t is not present. To better understand the nature of issues involved in fitting of the model, we can substitute (15.5.17) in (15.5.16) to obtain

$$[1 - v(B)c(B)]\varepsilon_t = \psi(B)a_t\{+v(B)d_t\}$$
 (15.5.18)

First consider the case where d_t is zero. Because, from (15.5.17), X_{t+} is then a deterministic function of the ε_t 's, the model (which appears in (15.5.16) to be of the transfer function form) is seen in (15.5.18) to be equivalent to an ARIMA model whose coefficients are functions of the known parameters of c(B) and of the unknown dynamic and stochastic noise parameters of the model. It is then apparent that, with d_t absent, estimation difficulties can arise, as all dynamic and stochastic noise model forms $v_0(B)$ and $\psi_0(B)$, which are such that

$$\psi_0^{-1}(B)[1 - v_0(B)c(B)] = \psi^{-1}(B)[1 - v(B)c(B)]$$
 (15.5.19)

will fit equally well in theory. In particular, it can be shown (Box and MacGregor, 1976) that as the pilot feedback controller used during the generation of the data approaches near optimality, near singularities occur in the sum-of-squares surface used for estimation of model parameters. The individual parameters may then be estimated only very imprecisely or will be nonestimable in the limit. In these circumstances, however, accurate estimates of those functions of the parameters that are the constants of the feedback control equation may be obtainable. Thus, while data collected under feedback conditions may be inadequate for estimating the *individual* dynamic and stochastic noise parameters of the system, it may nevertheless be used for updating the estimates of the constants of a control equation whose mathematical form is assumed known.

The situation can be much improved by the deliberate introduction during data generation of a random signal d_t as in (15.5.17). To achieve this, the action $c(B)\varepsilon_t$ is first computed according to the control equation and then d_t is added on. The added signal can, for example, be a random normal variate or a random binary variable and should have mean zero and variance small enough so as not to unduly upset the process. We see from (15.5.18) that with d_t present, the estimation procedure based on fitting model (15.5.16) now involves a genuine transfer function model form in which ε_t depends on the random input d_t as well as on the random shocks a_t . Thus, with d_t present, the fitting procedure tacitly employs not only information arising from the autocorrelations of the ε_t 's but also additional information associated with the cross-correlations of the ε_t 's and the d_t 's.

In many examples, data from a pilot scheme are used to re-estimate parameters with the model form *already identified* from open-loop (no feedback control loop) data and from previous knowledge of the system. Considerable caution and care is needed in using closed-loop data in the model identification/specification process itself. In the first place, if d_t is absent, it is apparent from (15.5.16) that cross-correlation of the "output" ε_t and

the "input" X_{t+} with or without prewhitening will tell us (what we already know) about c(B) and not, as might appear if (15.5.16) were treated as defining an open-loop system, about v(B). Furthermore, since the autocorrelations of the ε_t will be the same for all model forms satisfying (15.5.19), unique identification is not possible if nothing is known about the form of either $\psi(B)$ or v(B). On the other hand, if either $\psi(B)$ or v(B) is known, the autocorrelation function can be used for the identification of the other. With d_t present, the form of (15.5.18) is that of a genuine transfer function–noise model considered in Chapter 12 and corresponding methods may be used for identification.

15.6 MONITORING VALUES OF PARAMETERS OF FORECASTING AND FEEDBACK ADJUSTMENT SCHEMES

Earlier we mentioned the complementary roles of process adjustment and process monitoring. This symbiosis is further illustrated if we again consider the need to monitor the adjustment scheme itself. It has often been proposed that the series of residual deviations from the target from such schemes (and similarly the errors from forecasting schemes) should be studied and that a Shewhart chart or more generally a cumulative sum or other monitoring chart should be run on the residual errors to warn of changes. The cumulative sum is, of course, appropriate to look for small changes in mean level, but often other kinds of discrepancies may be feared. A general theory of sequential directional monitoring based on a cumulative Fisher score statistic (Cuscore) was proposed by Box and Ramírez (1992) (see also Bagshaw and Johnson, 1977).

Suppose that a model can be written in the form of deviations e_t that depend on an unknown parameter θ as

$$e_t = e_t(\theta) \tag{15.6.1}$$

and that if the correct value of the parameter $\theta = \theta_0$ is employed in the model, $\{e_t\} = \{a_t\}$ is a sequence of Normal iid random variables. Then, the cumulative score statistic appropriate to detect a departure from the value θ_0 may be written

$$Q_t = \sum_{i=1}^t e_i r_i {15.6.2}$$

where $r_t = -(de_t/d\theta)|_{\theta=\theta_0}$ may be called the detector signal.

For example, suppose that we wished to detect a shift in a mean from a value θ_0 for the simple model $y_t = \theta + e_t$. We can write

$$e_t = e_t(\theta) = y_t - \theta \quad a_t = y_t - \theta_0$$
 (15.6.3)

Then, in this example, the detector signal is $r_t = 1$ and $Q_t = \sum_{i=1}^t e_i$, the well-known *cumulative sum* statistic.

In general, for some value of θ close to θ_0 , since e_t may be approximated by $e_t = a_t - (\theta - \theta_0)r_t$, the cumulative product in (15.6.2) will contain a part

$$-(\theta - \theta_0) \sum_{i=1}^{t} r_i^2 \tag{15.6.4}$$

FIGURE 15.17 Cuscore monitoring for detecting a change in the parameter θ used in conjunction with the adjustment chart of Figure 15.3.

which systematically increases in magnitude with sample size t when θ differs from θ_0 . For illustration, consider the possibility that in the feedback control scheme for metallic thickness of Section 15.2.1, the value of λ (estimated as 0.2) may have changed during the period t=1 to t=100. For this example,

$$e_t = e_t(\theta) = \frac{1 - B}{1 - \theta B} N_t \tag{15.6.5}$$

Thus,

$$r_{t} = -\frac{1 - B}{(1 - \theta B)^{2}} N_{t-1} = -\frac{e_{t-1}}{1 - \theta B} = -\frac{\hat{e}_{t-1}(1)}{\lambda}$$
 (15.6.6)

where $\hat{e}_{t-1}(1) = \lambda (1 - \theta B)^{-1} e_{t-1}$ is an EWMA of past e_t 's. The cumulative score (Cuscore) statistic for detecting this departure is, therefore,

$$Q_t = -\frac{1}{\lambda} \sum_{i=1}^t e_i \hat{e}_{i-1}(1)$$
 (15.6.7)

where the detector signal $\hat{e}_{t-1}(1)$ is, in this case, the EWMA of past values of the *residuals*. These residuals are the deviations from the target plotted on the feedback adjustment chart of Figure 15.3. The criterion agrees with the commonsense idea that if the model is true, then $e_t = a_t$ and e_t is not predictable from previous values. The Cuscore chart shown in Figure 15.17 suggests that a change in parameter may have occurred at about t = 40. However, we see from the original data of Figure 15.2 that this is very close to the point at which the level of the original series appears to have changed, and further data and analysis would be needed to confirm this finding.

The important point is that this example shows the *partnership* of two types of control (adjustment and monitoring) and the corresponding two types of statistical inference (estimation and criticism). A further development is to feed back the filtered Cuscore statistic to "self-tune" the control equation, but we do not pursue this further here.

APPENDIX A15.1 FEEDBACK CONTROL SCHEMES WHERE THE ADJUSTMENT VARIANCE IS RESTRICTED

Consider now the feedback control situation where the models for the noise and system dynamics are again given by (15.2.10) and (15.2.13), so that $\varepsilon_t = \mathcal{Y}_t + N_t$ with

$$(1 - B)N_t = (1 - \theta B)a_t$$
 and $(1 - \delta B)\mathcal{Y}_t = (1 - \delta)gX_{t-1+1}$

but some restriction of the input variance $\operatorname{var}[x_t]$ is necessary, where $x_t = (1-B)X_t$. The unrestricted optimal scheme has the property that the errors in the output $\varepsilon_1, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots$ are the uncorrelated random variables $a_t, a_{t-1}, a_{t-2}, \ldots$ and the variance of the output σ_ε^2 has the minimum possible value σ_a^2 . With the restricted schemes, the variance σ_ε^2 will necessarily be greater than σ_a^2 , and the errors $\varepsilon_t, \varepsilon_{t-1}, \varepsilon_{t-2}, \ldots$ at the output will be correlated.

We will pose our problem as follows: Given that σ_t^2 be allowed to increase to some value $\sigma_\epsilon^2 = (1+c)\sigma_a^2$, where c is a positive constant, we want to find the control scheme that produces the minimum value for $\sigma_x^2 = \text{var}[x_t]$. Equivalently, the problem is to find an (unconstrained) minimum of the expression $\sigma_\epsilon^2 + \alpha \sigma_x^2$, where α is some specified multiplier that allocates the relative costs of variations in ε_t and x_t .

A15.1.1 Derivation of Optimal Adjustment

Let the optimal adjustment, expressed in terms of the a_t 's, be

$$x_t = -\frac{1}{g}L(B)a_t (A15.1.1)$$

where

$$L(B) = l_0 + l_1 B + l_2 B^2 + \cdots$$

Then, we see that the error ε_t at the output is given by

$$\varepsilon_{t} = \frac{(1 - \delta)g}{1 - \delta B} X_{t-1+} + N_{t}$$

$$= -\frac{1 - \delta}{1 - \delta B} (1 - B)^{-1} L(B) a_{t-1} + (1 - B)^{-1} (1 - \theta B) a_{t}$$

$$= a_{t} + \left[\lambda - \frac{L(B)(1 - \delta)}{1 - \delta B} \right] S a_{t-1}$$
(A15.1.2)

where $S = (1 - B)^{-1}$. The coefficient of a_t in this expression is unity, so we can write

$$\varepsilon_t = [1 + B\mu(B)]a_t \tag{A15.1.3}$$

where

$$\mu(B) = \mu_1 + \mu_2 B + \mu_3 B^2 + \cdots$$

Furthermore, in practice, control would need to be exerted in terms of the observed output errors ε_t rather than in terms of the a_t 's, so that the control equation actually used would be of the form

$$x_t = -\frac{1}{g} \frac{L(B)}{1 + B\mu(B)} \varepsilon_t \tag{A15.1.4}$$

Equating (A15.1.2) and (A15.1.3), we obtain

$$(1 - \delta)L(B) = [\lambda - (1 - B)\mu(B)](1 - \delta B)$$
(A15.1.5)

Since δ , g, and σ_a^2 are constants, we can proceed conveniently by finding an unrestricted minimum of

$$C = \frac{(1-\delta)^2 g^2 V[x_t] + vV[\varepsilon_t]}{\sigma_a^2}$$
 (A15.1.6)

where, for example,

$$V[x_t] = \text{var}[x_t]$$

and $v = (1 - \delta)^2 g^2 / \alpha$. Now, from (A15.1.3), $V[\varepsilon_t] / \sigma_a^2 = 1 + \sum_{j=1}^{\infty} \mu_j^2$, while from (A15.1.1), $(1 - \delta)gx_t = -(1 - \delta)L(B)a_t = -\tau(B)a_t$, so that

$$\frac{(1-\delta)^2 g^2 V[x_t]}{\sigma_a^2} = \sum_{j=0}^{\infty} \tau_j^2$$

where

$$\tau(B) = \sum_{j=0}^{\infty} \tau_j B^j = (1 - \delta) L(B) = [\lambda - (1 - B)\mu(B)](1 - \delta B)$$

from (A15.1.5). The coefficients $\{\tau_i\}$ are thus seen to be functionally related to the μ_i by the difference equation

$$\mu_i - (1+\delta)\mu_{i-1} + \delta\mu_{i-2} = -\tau_{i-1}$$
 for $i > 2$ (A15.1.7)

with $\tau_0 = -(\mu_1 - \lambda)$, $\tau_1 = -[\mu_2 - (1 + \delta)\mu_1 + \lambda\delta]$. Hence, we require an unrestricted minimum, with respect to the μ_i , of the expression

$$C = \sum_{j=0}^{\infty} \tau_j^2 + v \left(1 + \sum_{j=1}^{\infty} \mu_j^2 \right)$$
 (A15.1.8)

This can be obtained by differentiating C with respect to each μ_i (i=1,2,...), equating these derivatives to zero and solving the resulting equations. Now, a given μ_i only influences the values τ_{i+1} , τ_i , and τ_{i-1} through (A15.1.7), and we see that

$$\frac{\partial \tau_j}{\partial \mu_i} = \begin{cases}
-1 & j = i - 1 \\
1 + \delta & j = i \\
-\delta & j = i + 1 \\
0 & \text{otherwise}
\end{cases}$$
(A15.1.9)

Therefore, from (A15.1.8) and (A15.1.9), we obtain

$$\frac{\partial}{\partial \mu_i} C = 2 \left(\tau_{i+1} \frac{\partial \tau_{i+1}}{\partial \mu_i} + \tau_i \frac{\partial \tau_i}{\partial \mu_i} + \tau_{i-1} \frac{\partial \tau_{i-1}}{\partial \mu_i} + v \mu_i \right)$$

$$= 2 \left[-\delta \tau_{i+1} + (1+\delta) \tau_i - \tau_{i-1} + v \mu_i \right] \quad \text{for } i = 1, 2, \dots \tag{A15.1.10}$$

Then, after substituting the expressions for the τ_j in terms of the μ_i from equation (A15.1.7) in (A15.1.10) and setting each of these equal to zero, we obtain the following equations:

(i = 1):
$$-\lambda(1+\delta+\delta^2) + 2(1+\delta+\delta^2)\mu_1 - (1+\delta)^2\mu_2 + \delta\mu_3 + \nu\mu_1 = 0$$
 (A15.1.11)

$$(i=2): \qquad \lambda\delta - (1+\delta)^2\mu_1 + 2(1+\delta+\delta^2)\mu_2 - (1+\delta)^2\mu_3 + \delta\mu_4 + \nu\mu_2 = 0 \tag{A15.1.12}$$

$$(i > 2): \qquad [\delta B^2 - (1+\delta)^2 B + 2(1+\delta+\delta^2) - (1+\delta)^2 F + \delta F^2 + \nu]\mu_i = 0$$
(A15.1.13)

A15.1.2 Case Where δ Is Negligible

Consider first the simpler case where δ is negligibly small and can be set equal to zero. Then the equations above can be written as

$$(i=1): \qquad -(\lambda-\mu_1)+(\mu_1-\mu_2)+\nu\mu_1=0 \qquad (A15.1.14)$$

$$(i > 1)$$
: $(B - (2 + v) + F]\mu_i = 0$ (A15.1.15)

These difference equations have a solution of the form

$$\mu_i = A_1 \kappa_1^i + A_2 \kappa_2^i$$

where κ_1 and κ_2 are the roots of the characteristic equation

$$B^2 - (2+v)B + 1 = 0 (A15.1.16)$$

that is, of

$$B + B^{-1} = 2 + v$$

Evidently, if κ is a root, so is κ^{-1} . Thus, the solution is of the form $\mu_i = A_1 \kappa^i + A_2 \kappa^{-i}$. Now if κ has modulus less than or equal to 1, κ^{-1} has modulus greater than or equal to 1, and since $\varepsilon_t = [1 + B\mu(B)]a_t$ must have finite variance, A_2 must be zero with $|\kappa| < 1$. By substituting the solution $\mu_i = A_1 \kappa^i$ in (A15.1.14), we find that $A_1 = \lambda$.

Finally, then, $\mu_i = \lambda \kappa^i$, and since μ_i and λ must be real, so must the root κ . Hence,

$$\mu(B) = \frac{\lambda \kappa}{1 - \kappa B} \qquad 0 < \kappa < 1 \tag{A15.1.17}$$

$$1 + B\mu(B) = 1 + \frac{\lambda \kappa B}{1 - \kappa B} = \frac{1 - \theta \kappa B}{1 - \kappa B}$$
 (A15.1.18)

where $\theta = 1 - \lambda$. Thus,

$$\varepsilon_t = \frac{1 - \theta \kappa B}{1 - \kappa B} a_t$$

so that

$$\frac{V[\varepsilon_t]}{\sigma_a^2} = 1 + \frac{\lambda^2 \kappa^2}{1 - \kappa^2} \tag{A15.1.19}$$

Also, using (A15.1.5) with $\delta = 0$,

$$L(B) = \lambda - \frac{(1 - B)\lambda\kappa}{1 - \kappa B} = \frac{\lambda(1 - \kappa)}{1 - \kappa B}$$
(A15.1.20)

Thus,

$$x_t = -\frac{\lambda}{g} \frac{1 - \kappa}{1 - \kappa B} a_t$$

and

$$\frac{V[x_t]}{\sigma_a^2} = \frac{\lambda^2}{g^2} \frac{(1-\kappa)^2}{1-\kappa^2} = \frac{\lambda^2}{g^2} \frac{1-\kappa}{1+\kappa}$$
 (A15.1.21)

Using (A15.1.4) with (A15.1.18) and (A15.1.20), we now find that the optimal control action, in terms of the observed output error ε_t , is

$$x_t = -\frac{1}{g} \frac{\lambda (1 - \kappa)}{1 - \theta \kappa B} \varepsilon_t$$

that is,

$$x_t = (1 - \lambda)\kappa x_{t-1} - \frac{1}{g}\lambda(1 - \kappa)\varepsilon_t$$
 (A15.1.22)

Note that the constrained control equation differs from the unconstrained one in two respects:

- **1.** A new factor $(1 \lambda)\kappa x_{t-1}$ is introduced, thus making present action depend partly on previous action.
- 2. The constant determining the amount of integral control is reduced by a factor 1κ .

We have supposed that the output variance is allowed to increase to some value $\sigma_a^2(1+c)$. It follows from (A15.1.19) that

$$c = \frac{\lambda^2 \kappa^2}{1 - \kappa^2}$$

that is,

$$\kappa = \sqrt{\frac{c}{\lambda^2 + c}}$$

where the positive square root is to be taken. It is convenient to write $Q = c/\lambda^2$. Then, $Q = \kappa^2/(1-\kappa^2)$ and $\kappa^2 = Q/(1+Q)$ and the output variance becomes $\sigma_a^2(1+\lambda^2Q)$.

In summary, suppose that we are prepared to tolerate an increase in variance in the output to some value $\sigma_a^2(1+\lambda^2Q)$; then

- **1.** We compute $\kappa = \sqrt{Q/(1+Q)}$.
- 2. Optimal control will be achieved by taking action given by (A15.1.22).

$c/\lambda^2 = Q$	К	W		$c/\lambda^2 = Q$	К	W
0.10	0.302	53.7	Ì	0.60	0.612	24.0
0.20	0.408	42.0		0.70	0.641	21.9
0.30	0.480	35.1		0.80	0.667	20.0
0.40	0.535	30.3		0.90	0.688	18.5
0.50	0.577	26.8		1.00	0.707	17.2

Table A15.1 Values of Parameters for a Simple Constrained Control Scheme

3. The variance of the input will be reduced to

$$V[x_t] = \frac{\lambda^2}{g^2} \frac{1 - \kappa}{1 + \kappa} \sigma_a^2$$

that is, it will reduce to a value that is W% of that for the unconstrained scheme, where

$$W = 100 \left(\frac{1 - \kappa}{1 + \kappa} \right)$$

Table A15.1 shows κ and W for values of Q between 0.1 and 1.0. For illustration, suppose that $\lambda = 0.4$. Then the optimal unconstrained scheme will employ the control action

$$x_t = -\frac{0.4}{g} \varepsilon_t$$

with $\varepsilon_t = a_t$. The variance of x_t would be $V[x_t] = (\sigma_a^2/g^2)0.16$. Suppose that it was desired to reduce this by a factor of 4, to the value $(\sigma_a^2/g^2)0.04$. Thus, we require W to be 25%. Table A15.1 shows that a reduction of the input variance to 24% of its unconstrained value is possible with Q = 0.60 and $\kappa = 0.612$. If we use this scheme, the output variance will be

$$\sigma_{\varepsilon}^2 = \sigma_{\alpha}^2 (1 + 0.16 \times 0.60) = 1.10 \sigma_{\alpha}^2$$

Thus, by the use of the control action

$$x_t = 0.37x_{t-1} - \frac{1}{g}0.16\varepsilon_t$$

instead of $x_t = -(0.4/g)\varepsilon_t$, the variance of the input is reduced to about 1/4 of its previous value, while the variance of the output is increased by only 10%.

Case Where δ Is Not Negligible. Consider now the more general situation where δ is not negligible and the system dynamics must be taken account of. The difference equation (A15.1.13) is of the form

$$(\alpha B^{-2} + \beta B^{-1} + \gamma + \beta B + \alpha B^2)\mu_i = 0$$

and if κ is a root of the characteristic equation, so is κ^{-1} . Suppose that the roots are $\kappa_1, \kappa_2, \kappa_1^{-1}, \kappa_2^{-1}$ and that κ_1 and κ_2 are a pair of roots with modulus < 1. Then, in the

solution

$$\mu_i = A_1 \kappa_1^i + A_2 \kappa_2^i + A_3 \kappa_1^{-i} + A_4 \kappa_2^{-i}$$

 A_3 and A_4 must be zero, because ε_t is required to have a finite variance.

Hence, the solution is of the form

$$\mu_i = A_1 \kappa_1^i + A_2 \kappa_2^i \qquad |\kappa_1| < 1 \quad |\kappa_2| < 1$$

The A's satisfying the initial conditions, defined by (A15.1.11) and (A15.1.12), are obtained by substitution to give

$$A_1 = \frac{\lambda \kappa_1 (1 - \kappa_2)}{\kappa_1 - \kappa_2} \qquad A_2 = -\frac{\lambda \kappa_2 (1 - \kappa_1)}{\kappa_1 - \kappa_2}$$

If we write $k_0 = \kappa_1 + \kappa_2 - \kappa_1 \kappa_2$, $k_1 = \kappa_1 \kappa_2$, then

$$\mu(B) = \lambda \left[\frac{k_0 - k_1 B}{1 - (k_0 + k_1)B + k_1 B^2} \right]$$
(A15.1.23)

and

$$1 + B\mu(B) = \frac{1 - k_1 B - (1 - \lambda)(k_0 B - k_1 B^2)}{1 - (k_0 + k_1)B + k_1 B^2}$$
(A15.1.24)

Now substituting (A15.1.23) in (A15.1.5),

$$L(B) = \frac{\lambda(1 - \delta B)(1 - k_0)}{(1 - \delta)[1 - (k_0 + k_1)B + k_1B^2]}$$
(A15.1.25)

and

$$\frac{L(B)}{1 + B\mu(B)} = \frac{\lambda(1 - \delta B)(1 - k_0)}{(1 - \delta)[1 - k_1 B - (1 - \lambda)(k_0 B - k_1 B^2)]}$$

Therefore, using (A15.1.4), we find that the optimal control action in terms of the error ε_t is

$$x_{t} = -\frac{\lambda}{g} \frac{(1 - \delta B)(1 - k_{0})}{(1 - \delta)[1 - k_{1}B - (1 - \lambda)(k_{0}B - k_{t}B^{2})]} \epsilon_{t}$$
(A15.1.26)

or

$$x_{t} = [k_{1} + (1 - \lambda)k_{0}]x_{t-1} - (1 - \lambda)k_{1}x_{t-2} - \frac{\lambda(1 - k_{0})(1 - \delta B)}{g(1 - \delta)}\varepsilon_{t}$$
(A15.1.27)

Thus, the modified control scheme makes x_t depend on both x_{t-1} and x_{t-2} (only on x_{t-1} if $\lambda = 1$) and reduces the standard integral and proportional action by a factor $1 - k_0$.

Variances of Output and Input. The actual variances for the output and input are readily found since

$$\varepsilon_{t} = a_{t} + \lambda \left[\frac{k_{0} - k_{1}B}{1 - (k_{0} + k_{1})B + k_{1}B^{2}} \right] a_{t-1}$$

The second term on the right defines a mixed autoregressive—moving average process of order (2, 0, 1), the variance for which is readily obtained to give

$$\frac{V[\varepsilon_t]}{\sigma_a^2} = 1 + \lambda^2 \left\{ \frac{(k_0 + k_1)^2 (1 - k_1) - 2k_1 (k_0 - k_1^2)}{(1 - k_1)(1 + k_1)^2 - (k_0 + k_1)^2} \right\} = 1 + \lambda^2 Q$$
 (A15.1.28)

Also,

$$\frac{V[x_t]}{\sigma_a^2} = \frac{\lambda^2}{g^2(1-\delta)^2} \frac{(1-k_0)[(1+\delta^2)(1+k_1) - 2\delta(k_0+k_1)]}{(1+k_0+2k_1)(1-k_1)}$$
(A15.1.29)

Computation of k_0 and k_1. Returning to the difference equations (A15.1.13), the characteristic equation may be written

$$B^4 - MB^3 - NB^2 - MB + 1 = 0$$

where $M = (1 + \delta)^2/\delta$ and $N = [(1 + \delta^2) + (1 + \delta^2) + v]/\delta$. It may also be written in the form

$$(B^2 - TB + P)(B^2 - P^{-1}TB + P^{-1}) = 0$$

where

$$T = \kappa_1 + \kappa_2$$
 and $P = \kappa_1 \kappa_2$

Equating coefficients of B gives

$$T + P^{-1}T = M$$

that is, T = PM/(1 + P), and

$$P + P^{-1} + P^{-1}T^2 = N$$

Thus, $P + P^{-1} + PM^2/(1+P)^2 = N$, that is,

$$(P+2+P^{-1})(P+P^{-1}) + M^2 = N(P+2+P^{-1})$$

or

$$(P + P^{-1})^2 + (2 - N)(P + P^{-1}) + M^2 - 2N = 0$$

For suitable vales of v, this quadratic equation will have two real roots:

$$u_1 = \kappa_1 \kappa_2 + \kappa_1^{-1} \kappa_2^{-1} \quad u_2 = \kappa_1 \kappa_2^{-1} + \kappa_1^{-1} \kappa_2$$

the root u_1 being the larger. The required quantity P is now the smaller root of the quadratic equation

$$P^2 - u_1 P + 1 = 0$$

and T is given by

$$T = [P(u_2 + 2)]^{1/2}$$

0.3

0.2

0.1

 $100 \ W$

 k_0

 k_1 100 W

 k_0

 k_1

 $k_0 k_1$

100 W

δ		100Q						
		20	40	60	80	100		
0.9	100 W	21.7	11.3	6.7	4.5	3.1		
	k_0	0.44	0.585	0.68	0.74	0.78		
	k_1^{-}	0.18	0.27	0.34	0.39	0.44		
0.8	100 W	22.0	11.7	7.2	4.8	3.4		
	k_0	0.44	0.585	0.68	0.74	0.78		
	k_1	0.18	0.27	0.33	0.38	0.43		
0.7	$100 \ W$	22.7	12.4	8.0	5.6	4.1		
	k_0	0.44	0.585	0.68	0.74	0.78		
	k_1	0.17	0.25	0.32	0.36	0.40		
0.6	100 W	24.1	13.6	9.0	6.6	5.0		
	k_0	0.44	0.58	0.67	0.73	0.78		
	k_1	0.16	0.24	0.29	0.33	0.365		
0.5	100 W	26.5	15.5	10.5	7.9	6.2		
	k_0	0.43	0.58	0.67	0.72	0.77		
	k_1	0.15	0.21	0.26	0.29	0.32		
0.4	100 W	28.5	17.7	12.7	9.8	7.9		
	k_0	0.43	0.57	0.66	0.72	0.76		
	k_1	0.13	0.18	0.22	0.245	0.265		

20.5

0.57

0.145

23.6

0.56

0.10

26.7

0.55

0.05

15.2

0.65

0.17

0.64

0.12

0.63

0.06

21.0

18.0

12.0

0.71

0.19

14.5

0.69

0.13

0.68

0.065

17.3

9.9

0.75

0.20

0.73

0.14

0.72

0.07

14.6

12.2

Table A15.2 Table to Facilitate the Calculation of Optimal Constrained Control Schemes

Table of Optimal Values for Constrained Schemes

31.5

0.43

0.105

0.42

0.07

0.42

0.04

38.2

34.8

Construction of the Table. Table A15.2 is provided to facilitate the selection of an optimal control scheme. The tabled values were obtained as follows for each chosen value of the parameter δ in the transfer function model:

- 1. Compute $M = (1 + \delta)^2 / \delta$ and $N = ((1 + \delta)^2 + (1 + \delta^2) + v) / \delta$ for a series of values of v chosen to provide a suitable range for Q.
- **2.** Compute $u_1 = 1/2(N-2) + \left[((N-2)/2)^2 + 2N M^2 \right]^{1/2}$ and $u_2 = 1/2(N-2) \left[((N-2)/2)^2 + 2N M^2 \right]^{1/2}$
- **3.** Compute $k_1 = P = 1/2u_1 \left[\left(1/2u_1 \right)^2 1 \right]^{1/2}$ and $k_0 = T P = \left[k_1(u_2 + 2) \right]^{1/2} k_1$.
- **4.** Compute $Q = \frac{(k_0 + k_1)^2 (1 k_1) 2k_1 (k_0 k_1^2)}{(1 k_1)[(1 + k_1)^2 (k_1 + k_1)^2]}$.

5. Compute
$$W = \frac{(1 - k_0)[(1 + \delta^2)(1 + k_1) - 2\delta(k_0 + k_1)]}{(1 + k_0 + 2k_1)(1 - k_1)(1 + \delta^2)}$$
.

6. Interpolate among the W, k_0, k_1 values at convenient values of Q.

Use of the Table. Table A15.2 may be used as follows. The value of δ is entered in the vertical margin. Using the fact that $V[\varepsilon_t] = (1 + \lambda^2 Q)\sigma_a^2$, the percentage increase in output variance is $100Q\lambda^2$. A suitable value of Q is entered in the horizontal margin. The entries in the table are then (1) 100W, the percentage reduction in the variance of x_t , (2) k_0 , and (3) k_1 .

For illustration, suppose that $\lambda = 0.6$, $\delta = 0.5$, and g = 1. The optimal unconstrained control equation is then

$$x_t = -1.2(1 - 0.5B)\varepsilon_t = -1.2(1 - 0.5B)a_t$$

and $\text{var}[x_t] = 1.80\sigma_a^2$. Suppose that this amount of variation in the input variable produces difficulties in process operation and it is desired to reduce $\text{var}[x_t]$ to about $0.50\sigma_a^2$, that is, to about 28% of the value for the unconstrained scheme. Inspection of Table A15.2 in the row labeled $\delta = 0.5$ shows that a reduction to 26.5% can be achieved by using a control scheme with constants $k_0 = 0.43$, $k_1 = 0.15$, that is, by employing the control equation (A15.1.27) to give

$$x_t = 0.32x_{t-1} - 0.06x_{t-2} - (0.57 \times 1.2)(1 - 0.5B)\varepsilon_t$$

This solution corresponds to a value Q = 0.20. Therefore, the variance at the output will be increased by a factor of

$$1 + \lambda^2 Q = 1 + 0.6^2(0.2) = 1.072$$

that is, by about 7%.

APPENDIX A15.2 CHOICE OF THE SAMPLING INTERVAL

In comparison to continuous systems, discrete systems of control, such as those discussed here, can be very efficient provided that the sampling interval is suitably chosen. Roughly speaking, we want the interval to be such that not too much change can occur during the sampling interval. Usually, the behavior of the disturbance that has to pass through all or part of the system reflects the inertia or dynamic properties of the system, so that the sampling interval will often be chosen tacitly or explicitly to be proportional to the time constant or constants of the system. In chemical processes involving reaction and mixing of liquids, rather infrequent sampling, say at hourly intervals and possibly with operator surveillance and manual adjustment, will be sufficient. By contrast, where reactions between gases are involved, a suitable sampling interval may be measured in seconds and automatic monitoring and adjustment may be essential.

In some cases, experimentation may be needed to arrive at a satisfactory sampling interval, and in others rather simple calculations will show how the choice of sampling interval will affect the degree of control that is possible.

A15.2.1 Illustration of the Effect of Reducing Sampling Frequency

To illustrate the kind of calculation that is helpful, suppose again that we have a simple system in which, using a particular sampling interval, the noise is represented by a (0, 1, 1) process $\nabla N_t = (1 - \theta B)a_t$ and the transfer function model by the first-order system $(1 - \delta B)\mathcal{Y}_t = g(1 - \delta)X_{t-1}$. In this case, if we employ the MMSE adjustment

$$x_t = -\frac{1-\theta}{g(1-\delta)}(1-\delta B)\varepsilon_t \tag{A15.2.1}$$

then the deviation from target is $\varepsilon_t = a_t$ and has variance $\sigma_a^2 = \sigma_1^2$, say.

In practice, the question has often arisen: How much worse off would we be if we took samples less frequently? To answer this question, we consider the effect of sampling the stochastic process involved.

A15.2.2 Sampling an IMA(0, 1, 1) Process

Suppose that with observations being made at some "unit" interval, we have a noise model

$$\nabla N_t = (1 - \theta_1 B) a_t$$

with $var[a_t] = \sigma_a^2 = \sigma_1^2$, where the subscript 1 is used in this context to denote the choice of sampling interval. Then, for the differences ∇N_t , the autocovariances γ_k are given by

$$\gamma_0 = (1 + \theta_1^2)\sigma_1^2$$

$$\gamma_1 = -\theta_1\sigma_1^2$$

$$\gamma_j = 0 j \ge 2$$
(A15.2.2)

Writing $\zeta = (\gamma_0 + 2\gamma_1)/\gamma_1$, we obtain

$$\zeta = -\frac{(1 - \theta_1)^2}{\theta_1}$$

so that, given γ_0 and γ_1 , the parameter $\lambda = 1 - \theta_1$ of the IMA process may be obtained by solving the quadratic equation

$$(1 - \theta_1)^2 - \zeta(1 - \theta_1) + \zeta = 0$$

selecting that root for which $-1 < \theta_1 < 1$. Also,

$$\sigma_1^2 = -\frac{\gamma_1}{\theta_1} \tag{A15.2.3}$$

Suppose now that the process N_t is observed at intervals of h units (where h is a positive integer) and the resulting process is denoted by M_t . Then,

$$\begin{split} \nabla M_t &= N_t - N_{t-h} = (a_t + a_{t-1} + \dots + a_{t-h+1}) \\ &- \theta_1(a_{t-1} + a_{t-2} + \dots + a_{t-h}) \\ \nabla M_{t-h} &= N_{t-h} - N_{t-2h} = (a_{t-h} + a_{t-h-1} + \dots + a_{t-2h+1}) \\ &- \theta_1(a_{t-h-1} + \dots + a_{t-2h}) \end{split}$$

and so on. Then, for the differences ∇M_t , the autocovariances $\gamma_k(h)$ are

$$\begin{split} \gamma_0(h) &= [(1+\theta_1^2) + (h-1)(1-\theta_1)^2] \sigma_1^2 \\ \gamma_1(h) &= -\theta_1 \sigma_1^2 \\ \gamma_j(h) &= 0 \qquad j \geq 2 \end{split} \tag{A15.2.4}$$

It follows that the process M_t is also an IMA process of order (0, 1, 1),

$$\nabla M_t = (1 - \theta_h B) e_t$$

where e_t is a white noise process with variance σ_h^2 . Now

$$\frac{\gamma_0(h) + 2\gamma_1(h)}{\gamma_1(h)} = -\frac{h(1 - \theta_1)^2}{\theta_1}$$

so that

$$\frac{h(1-\theta_1)^2}{\theta_1} = \frac{(1-\theta_h)^2}{\theta_h}$$
 (A15.2.5)

Also, since $\gamma_1(h) = -\theta_h \sigma_h^2 = -\theta_1 \sigma_1^2$, it follows that

$$\frac{\sigma_h^2}{\sigma_1^2} = \frac{\theta_1}{\theta_h} \tag{A15.2.6}$$

Therefore, we have shown that the sampling of an IMA process of order (0, 1, 1) at interval h produces another IMA process of order (0, 1, 1). From (A15.2.5), we can obtain the value of the parameter θ_h for the sampled process, and from (A15.2.6) we can obtain the variance $\sigma_h^2 = \text{var}[e_t]$ of the corresponding white noise generating process in terms of the parameters θ_1 and $\sigma_t^2 = \text{var}[a_t]$ of the original process.

In Figure A15.1, θ_n is plotted against log h, a scale of h being appended. The graph enables one to find the effect of increasing the sampling interval of a (0, 1, 1) process by any given multiple. For illustration, suppose that we have a process for which $\theta_1 = 0.5$ and $\sigma_1^2 = 1$. Let us use the graph to find the values of the corresponding parameters θ_2 , θ_4 , σ_2^2 , σ_4^2 when the sampling interval is (a) doubled and (b) quadrupled. Marking on the edge of a piece of paper the points h = 1, h = 2, h = 4 from the scale of the graph, we set the paper

FIGURE A15.1 Sampling of IMA(0, 1, 1) process: parameter θ_h plotted against log h.

horizontally so that h = 1 corresponds to the point on the curve for which $\theta_1 = 0.5$. We then read off the ordinates for θ_2 and θ_4 corresponding to h = 2 and h = 4. We find that

$$\theta_1 = 0.5$$
 $\theta_2 = 0.38$ $\theta_4 = 0.27$

Using (A15.2.6), the variances are in inverse proportion to the values of θ , so that

$$\sigma_1^2 = 1.00$$
 $\sigma_2^2 = 1.32$ $\sigma_4^2 = 2.17$

Suppose now that for the original scheme with unit interval, the dynamic constant was δ_1 (again we will use the subscript to denote the sampling interval). Then, since in real time the same fixed time constant $T = -h/\ln(\delta)$ applies to all the schemes, we have

$$\delta_2 = \delta_1^2 \qquad \delta_4 = \delta_1^4$$

The scheme giving minimum mean square error for a particular sampling interval h would be

$$x_t(h) = -\frac{1 - \theta_h}{g(1 - \delta_1^h)} (1 - \delta_1^h B) \varepsilon_t(h)$$

or

$$x_{t}(h) = -\frac{1 - \theta_{h}}{g} \left(1 + \frac{\delta_{1}^{h}}{1 - \delta_{1}^{h}} \nabla \right) \varepsilon_{t}(h)$$
 (A15.2.7)

Suppose, for example, with $\theta_1=0.5$ as above, $\delta_1=0.8$, so that $\delta_2=0.64$, $\delta_4=0.41$. Then the optimal schemes would be

$$h = 1: x_t(1) = -\frac{0.5}{g}(1 + 4\nabla)\varepsilon_t(1) \sigma_{\varepsilon}^2 = 1.00 g^2\sigma_{x}^2 = 10.25$$

$$h = 2: x_t(2) = -\frac{0.62}{g}(1 + 1.78\nabla)\varepsilon_t(2) \sigma_{\varepsilon}^2 = 1.32 g^2\sigma_{x}^2 = 5.50$$

$$h = 4: x_t(4) = -\frac{0.73}{g}(1 + 0.69\nabla)\varepsilon_t(4) \sigma_{\varepsilon}^2 = 2.17 g^2\sigma_{x}^2 = 3.84$$

In accordance with expectation, as the sampling interval is increased and the dynamics of the system have relatively less importance, the amount of "integral" control is increased and the ratio of proportional to integral control is markedly reduced. We noted earlier that an excessively large adjustment variance σ_x^2 would usually be a disadvantage. The values of $g^2\sigma_x^2$ are indicated to show how the schemes differ in this respect. The smaller value for σ_x^2 would not of itself, of course, justify the choice h=4. Using an optimal constrained scheme, as is described in Appendix A15.1, with h=1, a very large reduction in σ_x^2 would be produced with only a small increase in the output variance. For example, entering Table A15.2 with $\delta=0.8$, 100Q=20, we find that for a 5% increase of output variance to the value $(1+\lambda^2Q)\sigma_1^2=1.05\sigma_1^2$, the input variance for the scheme with h=1 could be reduced to 22% of its unconstrained value, so that $g^2\sigma_x^2=10.25\times0.22=2.26$.

Using (A15.1.27), we obtain for the constrained scheme with h = 1,

$$x_{t} = 0.40x_{t-1} - 0.09x_{t-2} - 0.56 \left[\frac{0.5}{g} (1 + 4\nabla) \right] \varepsilon_{t}(1)$$

$$\sigma_{\varepsilon}^{2} = 1.05 \qquad g^{2} \sigma_{x}^{2} = 2.26$$

In practice, various alternative schemes could be set out with their accompanying characteristics and an economic choice made to suit the particular problem. In general, the increase in output variance that comes with the larger interval would have to be balanced off against the economic advantage, if any, of less frequent surveillance.

EXERCISES

15.1. In a chemical process, 30 successive values of viscosity N_t that occurred during a period when the control variable (gas rate) X_t was held fixed at its standard reference origin were recorded as follows:

Time	Viscosities									
1-10	92	92	96	96	96	98	98	100	100	94
11-20	98	88	88	88	96	96	92	92	90	90
21-30	90	94	90	90	94	94	96	96	96	96

Reconstruct and plot the error sequence (deviations from target) ε_t and adjustments x_t , which would have occurred if the optimal feedback control scheme

$$x_t = -10\varepsilon_t + 5\varepsilon_{t-1} \tag{1}$$

had been applied during this period. It is given that the dynamic model is

$$y_t = 0.5y_{t-1} + 0.10x_{t-1} (2)$$

and that the error signal may be obtained from

$$\varepsilon_t = \varepsilon_{t-1} + \nabla N_t + y_t \tag{3}$$

Your calculation sequence should proceed in the order (2), (3), and (1) and initially you should assume that $\epsilon_1 = 0$, $y_1 = 0$, $x_1 = 0$. Can you devise a more direct way to compute ϵ_t from N_t ?

15.2. Given the following combinations of disturbance and transfer function models:

(1)
$$\nabla N_{t} = (1 - 0.7B)a_{t}$$

$$(1 - 0.4B)\mathcal{Y}_{t} = 5.0X_{t-1+}$$
(2)
$$\nabla N_{t} = (1 - 0.5B)a_{t}$$

$$(1 - 1.2B + 0.4B^{2})\mathcal{Y}_{t} = (20 - 8.5)X_{t-1+}$$
(3)
$$\nabla^{2}N_{t} = (1 - 0.9B + 0.5B^{2})a_{t}$$

$$(1 - 0.7B)\mathcal{Y}_{t} = 3.0X_{t-1+}$$

$$\nabla N_{t} = (1 - 0.7B)a_{t}$$

$$(1 - 0.4B)\mathcal{Y}_{t} = 5.0X_{t-2+}$$

- (a) Design the minimum mean square error feedback control schemes associated with each combination of disturbance and transfer function model.
- (b) For case (4), derive an expression for the error ε_t and for its variance in terms of σ_a^2 .
- (c) For case (4), design a nomogram suitable for carrying out the control action manually by a process operator.
- **15.3.** In a treatment plant for industrial waste, the strength u_t of the influent is measured every 30 minutes and can be represented by the model $\nabla u_t = (1 0.5B)\alpha_t$. In the absence of control, the strength of the effluent Y_t is related to that of the influent u_t by an effect \mathcal{Y}_{1t} that can be represented as

$$\mathcal{Y}_{1t} = \frac{0.3B}{1 - 0.2B} \tilde{u}_t$$

An increase in strength in the waste may be compensated by an increase in the flow X_t of a chemical to the plant, whose effect on Y_t is represented by the effect

$$\mathcal{Y}_{2t} = \frac{21.6B^2}{1 - 0.7B} \tilde{X}_t$$

Show that minimum mean square error feedforward control is obtained with the control equation

$$\tilde{X}_t = -\frac{0.3}{21.6} \left[\frac{(0.7 - 0.2B)(1 - 0.7B)}{(1 - 0.2B)(1 - 0.5B)} \right] \tilde{u}_t$$

that is,
$$\tilde{X}_t = 0.7\tilde{X}_{t-1} - 0.1\tilde{X}_{t-2} - 0.0139(0.7\tilde{u}_t - 0.69\tilde{u}_{t-1} + 0.14\tilde{u}_{t-2}).$$

15.4. A pilot feedback control scheme, based on the following disturbance and transfer function models:

$$\nabla N_t = a_t$$

$$(1 - \delta B)\mathcal{Y}_t = \omega_0 X_{t-1+} - \omega_1 X_{t-2+}$$

was operated, leading to a series of adjustments x_t and errors ε_t . It was believed that the noise model was reasonably accurate, but that the parameters of the transfer function model were of questionable accuracy.

(a) Given the first 10 values of the x_t, ε_t series shown below:

t	x_t	$\boldsymbol{arepsilon}_t$	t	x_t	ε_{t}
1	25	-7	6	-30	1
2	42	- 7	7	-25	3
3	3	-6	8	-25	4
4	20	- 7	9	20	0
5	5	-4	10	40	-3

set out the calculation of the residuals a_t $(t=2,3,\ldots,10)$ for $\delta=0.5$, $\omega_0=0.3, \omega_1=0.2$, and for arbitrary starting values y_1^0 and x_0^0 .

- **(b)** Calculate the values y_1, \hat{x}_0 of y_1^0 and x_0^0 that minimize the sum of squares $\sum_{t=2}^{10} (a_t | \delta = 0.5, \omega_0 = 0.3, \omega_1 = 0.2, y_1^0, x_0^0)^2$ and the value of this minimum sum of squares.
- **15.5.** Consider (Box and MacGregor, 1976) a system for which the process transfer function is gB and the noise model is $(1 B)N_t = (1 \theta B)a_t$ so that the error ε_t at the output satisfies

$$(1 - B)\varepsilon_t = g(1 - B)X_{t-1+} + (1 - \theta B)a_t$$

Suppose that the system is controlled by a known discrete "integral" controller

$$(1 - B)X_{t+} = -c\varepsilon_t$$

(a) Show that the errors ε_t at the output will follow the ARMA(1, 1) process

$$(1 - \phi B)\varepsilon_t = (1 - \theta B)a_t$$
 $\phi = 1 - gc$

and hence that the problem of estimating g and θ using data from a pilot control scheme is equivalent to that of estimating the parameters in this ARMA(1, 1) model.

(b) Show also that the optimal control scheme is such that $c = c_0 = (1 - \theta)/g$ and hence that if the pilot scheme used in collecting the data happens to be optimal already, then $1 - \theta$ and g cannot be separately estimated.

PART FIVE

CHARTS AND TABLES

This part of the book is a collection of auxiliary material useful in the analysis of time series. This includes tables and charts for obtaining preliminary estimates of the parameters in autoregressive—moving-average models, together with the usual tail area tables of the normal, χ^2 , and t distributions. This is followed by a listing of the time series analyzed in the book, as well as some additional time series that are discussed in the exercises located at the end of the individual chapters.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung

^{© 2016} John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.

COLLECTION OF TABLES AND CHARTS

- **TABLE A** Table relating ρ_1 to θ for a first-order moving average process
- **CHART B** Chart relating ρ_1 and ρ_2 to ϕ_1 and ϕ_2 for a second-order autoregressive process
- **CHART C** Chart relating ρ_1 and ρ_2 to θ_1 and θ_2 for a second-order moving average process
- **CHART D** Chart relating ρ_1 and ρ_2 to ϕ and θ for a mixed first-order autoregressive–moving average process
- **TABLE E** Tail areas and ordinates of unit normal distribution
- **TABLE F** Tail areas of the chi-square distribution
- **TABLE G** Tail areas of the t distribution

Charts B, C, and D are adapted and reproduced from Stralkowski (1968) with permission of the author. Tables E, F, and G are condensed and adapted from *Biometrika Tables for Statisticians*, Volume I, with permission from the trustees of Biometrika.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung

^{© 2016} John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.

TABLE A $\;$ Table Relating ρ_1 to θ for a First-Order Moving Average Process

θ	$ ho_1$	heta	$ ho_1$
0.00	0.000	0.00	0.000
0.05	-0.050	-0.05	0.050
0.10	-0.099	-0.10	0.099
0.15	-0.147	-0.15	0.147
0.20	-0.192	-0.20	0.192
0.25	-0.235	-0.25	0.235
0.30	-0.275	-0.30	0.275
0.35	-0.315	-0.35	0.315
0.40	-0.349	-0.40	0.349
0.45	-0.374	-0.45	0.374
0.50	-0.400	-0.50	0.400
0.55	-0.422	-0.55	0.422
0.60	-0.441	-0.60	0.441
0.65	-0.457	-0.65	0.457
0.70	-0.468	-0.70	0.468
0.75	-0.480	-0.75	0.480
0.80	-0.488	-0.80	0.488
0.85	-0.493	-0.85	0.493
0.90	-0.497	-0.90	0.497
0.95	-0.499	-0.95	0.499
1.00	-0.500	-1.00	0.500

Table A may be used to obtain first estimates of the parameters in the (0,d,1) model $w_t = (1-\theta B)a_t$, where $w_t = \nabla^d z_t$, by substituting $r_1(w)$ for ρ_1 .

CHART B Chart relating ρ_1 and ρ_1 to ϕ_1 and ϕ_2 for a second-order autoregressive process.

The chart may be used to obtain estimates of the parameters in the (2,d,0) model $(1-\phi_1B-\phi_2B^2)w_t=a_t$, where $w_t=\nabla^d z_t$, by substituting $r_1(w)$ and $r_2(w)$ for ρ_1 and ρ_2 .

CHART C Chart relating ρ_1 and ρ_1 to θ_1 and θ_2 for a second-order autoregressive process.

The chart may be used to obtain estimates of the parameters in the (0, d, 2) model $w_t = (1 - \theta_1 B - \theta_2 B^2) a_t$, where $w_t = \nabla^d z_t$, by substituting $r_1(w)$ and $r_2(w)$ for ρ_1 and ρ_2 .

CHART D Chart relating ρ_1 and ρ_2 to ϕ and θ for a mixed first-order autoregressive-moving average process.

The chart may be used to obtain estimates of the parameters in the (1,d,1) model $(1-\phi B)w_t=(1-\theta B)a_t$, where $w_t=\nabla^d z_t$, by substituting $r_1(w)$ and $r_2(w)$ for ρ_1 and ρ_2 .

TABLE E Tail Areas and Ordinates of Unit Normal Distribution^a

u_{ε}	ε	$p(u_{\varepsilon})$	u_{ε}	ε	$p(u_{\varepsilon})$
0.0	0.500	0.3989	1.6	0.055	0.1109
0.1	0.460	0.3969	1.7	0.045	0.0940
0.2	0.421	0.3910	1.8	0.036	0.0790
0.3	0.382	0.3814	1.9	0.029	0.0656
0.4	0.345	0.3683	2.0	0.023	0.0540
0.5	0.309	0.3521	2.1	0.018	0.0440
0.6	0.274	0.3322	2.2	0.014	0.0355
0.7	0.242	0.3123	2.3	0 011	0.0283
0.8	0.212	0.2897	2.4	0.008	0.0224
0.9	0.184	0.2661	2.5	0.006	0.0175
1.0	0.159	0.2420	2.6	0.005	0.0136
1.1	0.136	0.2179	2.7	0.003	0.0104
1.2	0.115	0.1942	2.8	0.003	0.0079
1.3	0.097	0.1714	2.9	0.002	0.0059
1.4	0.081	0.1497	3.0	0.001	0.0044
1.5	0.067	0.1295			

^a Shown are the values of the unit normal deviate u_{ε} such that $\Pr\{u>u_{\varepsilon}\}=\varepsilon$; also shown are the ordinates $p(u=u_{\varepsilon})$.

TABLE F Tail Areas of the Chi-Square Distribution a

							ε								
m	0.995	0.99	0.975	0.95	0.9	0.75	0.5	0.25	0.1	0.05	0.025	0.01	0.005	0.001	m
1	_	-	-	-	0.016	0.102	0.455	1.32	2.71	3.84	5.02	6.63	7.88	10.8	1
2	0.010	0.020	0.051	0.103	0.211	0.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6	13.8	2
3	0.072	0.115	0.216	0.352	0.584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8	16.3	3
4	0.207	0.297	0.484	0.711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13 3	14.9	18.5	4
5	0.412	0.554	0.831	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7	20.5	5
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5	22.5	6
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3	24.3	7
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0	26.1	8
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6	27.9	9
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	23.2	25.2	29.6	10
11	2.60	3.05	3.82	4.57	5.58	7.58	10.3	13.7	17.3	19.7	21.9	24.7	26.8	31.3	11
12	3.07	3.57	4.40	5.23	6.30	8.44	11.3	14.8	18.5	21.0	23.3	26.2	28.3	32.9	12
13	3.57	4.11	5.01	5.89	7.04	9.30	12.3	16.0	19.8	22.4	24.7	27.7	29.8	34.5	13
14	4.07	4.66	5.63	6.57	7.79	10.2	13.3	17.1	21.1	23.7	26.1	29.1	31.3	36.1	14
15	4.60	5.23	6.26	7.26	8.55	11.0	14.3	18.2	22.3	25.0	27.5	30.6	32.8	37.7	15
16	5.14	5.81	6.91	7.96	9.31	11.9	15.3	19.4	23.5	26.3	28.8	32.0	34.3	39.3	16
17	5.70	6.41	7.56	8.67	10.1	12.8	16.3	20.5	24.8	27.6	30.2	33.4	35.7	40.8	17
18	6.26	7.01	8.23	9.39	10.9	13.7	17.3	21.6	26.0	28.9	31.5	34.8	37.2	42.3	18
19	6.84	7.63	8.91	10.1	11.7	14.6	18.3	22.7	27.2	30.1	32.9	36.2	38.6	43.8	19
20	7.43	8.26	9.59	10.9	12.4	15.5	19.3	23.8	28.4	31.4	34.2	37.6	40.0	45.3	20
21	8.03	8.90	10.3	11.6	13.2	16.3	20.3	24.9	29.6	32.7	35.5	38.9	41.4	46.8	21
22	8.64	9.54	11.0	12.3	14.0	17.2	21.3	26.0	30.8	33.9	36.8	40.3	42.8	48.3	22
23	9.26	10.2	11.7	13.1	14.8	18.1	22.3	27.1	32.0	35.2	38.1	41.6	44.2	49.7	23
24	9.89	10.9	12.4	13.8	15.7	19.0	23.3	28.2	33.2	36.4	39.4	43.0	45.6	51.2	24
25	10.5	11.5	13.1	14.6	16.5	19.9	24.3	29.3	34.4	37.7	40.6	44.3	46.9	52.6	25
26	11.2	12.2	13.8	15.4	17.3	20.8	25.3	30.4	35.6	38.9	41.9	45.6	48.3	54.1	26
27	11.8	12.9	14.6	16.2	18.1	21.7	26.3	31.5	36.7	40.1	43.2	47.0	49.6	55.5	27
28	12.5	13.6	15.3	16.9	18.9	22.7	27.3	32.6	37.9	41.3	44.5	48.3	51.0	56.9	28
29	13.1	14.3	16.0	17.7	19.8	23.6	28.3	33.7	39.1	42.6	45.7	49.6	52.3	58.3	29
30	13.8	15.0	16.8	18.5	20.6	24.5	29.3	34.8	40.3	43.8	47.0	50.9	53.7	59.7	30

^aShown are the values of $x_{\varepsilon}^2(m)$ such that $\Pr\{x^2(m) > x_{\varepsilon}^2(m)\} = \varepsilon$, where m is the number of degrees of freedom.

TABLE G Tail Areas of the t Distribution^a

-				ε		
nu	0.25	0.10	0.05	0.025	0.01	0.005
1	1.00	3.08	6.31	12.71	31.82	63.66
2	0.82	1.89	2.92	4.30	6.96	9.92
3	0.76	1.64	2.35	3.18	4.54	5.84
4	0.74	1.53	2.13	2.78	3.75	4.60
5	0.73	1.48	2.02	2.57	3.36	4.03
6	0.72	1.44	1.94	2.45	3.14	3.71
7	0.71	1.42	1.90	2.36	3.00	3.50
8	0.71	1.40	1.86	2.31	2.90	3.36
9	0.70	1.38	1.83	2.26	2.82	3.25
10	0.70	1.37	1.81	2.23	2.76	3.17
11	0.70	1.36	1.80	2.20	2.72	3.11
12	0.70	1.36	1.78	2.18	2.68	3.06
13	0.69	1.35	1.77	2.16	2.65	3.01
14	0.69	1.34	1.76	2.14	2.62	2.98
15	0.69	1.34	1.75	2.13	2.60	2.95
16	0.69	1.34	1.75	2.12	2.58	2.92
17	0.69	1.33	1.74	2.11	2.57	2.90
18	0.69	1.33	1.73	2.10	2.55	2.88
19	0.69	1.33	1.73	2.09	2.54	2.86
20	0.69	1.33	1.72	2.09	2.53	2.84
30	0.68	1.31	1.70	2.04	2.46	2.75
40	0.68	1.30	1.68	2.02	2.42	2.70
60	0.68	1.30	1.67	2.00	2.39	2.66
120	0.68	1.29	1.66	1.98	2.36	2.62
∞	0.67	1.28	1.64	1.96	2.33	2.58

^a Shown are the values of $t_{\varepsilon}(v)$ such that $\Pr\{t(v) > t_{\varepsilon}(v)\} = \varepsilon$, where v is the number of degrees of freedom.

COLLECTION OF TIME SERIES USED FOR EXAMPLES IN THE TEXT AND IN EXERCISES

- **SERIES A** Chemical process concentration readings: every 2 hours
- SERIES B IBM common stock closing prices: daily, May 17, 1961–November 2, 1962
- **SERIES B'** IBM common stock closing prices: daily, June 29, 1959–June 30, 1960
- **SERIES C** Chemical process temperature readings: every minute
- **SERIES D** Chemical process viscosity readings: every hour
- **SERIES E** Wölfer sunspot numbers: yearly
- **SERIES F** Yields from a batch chemical process: consecutive
- **SERIES G** International airline passengers: monthly totals (thousands of passengers) January 1949–December 1960
- SERIES J Gas furnace data
- SERIES K Simulated dynamic data with two inputs
- SERIES L Pilot scheme data
- SERIES M Sales data with leading indicator
- **SERIES N** Mink fur sales of the Hudson's Bay Company: annual for 1850–1911
- **SERIES P** Unemployment and GDP data in UK: quarterly for 1955–1969
- **SERIES Q** Logged and coded U.S. hog price data: annual for 1867–1948
- **SERIES R** Monthly averages of hourly readings of ozone in downtown Los Angeles

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung

^{© 2016} John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.

SERIES A Chemical Process Concentration Readings: Every 2 Hours a

9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.5 17 17.3 57 16.8 97 17.1 137 16.7 177 <th>0222</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>,</th> <th></th> <th></th> <th></th>	0222						,			
3 16.3 43 16.5 83 16.4 123 16.8 163 17.1 4 16.1 44 17.8 84 16.5 124 17.0 164 17.4 5 17.1 45 17.3 85 16.6 125 17.2 165 17.2 6 16.9 46 17.3 86 16.6 126 17.3 166 16.9 7 16.8 47 17.1 87 16.5 127 17.2 167 16.9 8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 10 17.0 50 17.3 90 16.4 130 17.2 169 16.7 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172	1	17.0	41	17.6	81	16.8	121	16.9	161	17.1
3 16.3 43 16.5 83 16.4 123 16.8 163 17.1 4 16.1 44 17.8 84 16.5 124 17.0 164 17.4 5 17.1 45 17.3 85 16.6 125 17.2 165 17.2 6 16.9 46 17.3 86 16.6 126 17.3 166 16.9 7 16.8 47 17.1 87 16.5 127 17.2 167 16.9 8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 10 17.0 50 17.3 90 16.4 130 17.2 169 16.7 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172	2	16.6	42	17.5	82	16.7	122	17.1	162	17.1
5 17.1 45 17.3 85 16.4 125 17.2 165 17.2 6 16.9 46 17.3 86 16.6 126 17.3 166 16.9 7 16.8 47 17.1 87 16.5 127 17.2 167 16.9 8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.0 16.9 11 16.7 53 16.7 93 16.3 133 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9		16.3	43	16.5	83	16.4	123	16.8	163	17.1
5 17.1 45 17.3 85 16.4 125 17.2 165 17.2 6 16.9 46 17.3 86 16.6 126 17.3 166 16.9 7 16.8 47 17.1 87 16.5 127 17.2 167 16.9 8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.0 16.9 11 16.7 53 16.7 93 16.3 133 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9	4	16.1	44	17.8	84	16.5	124	17.0	164	17.4
7 16.8 47 17.1 87 16.5 127 17.2 167 16.9 8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 172 17.8 13 17.2 53 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176	5	17.1	45	17.3	85	16.4	125	17.2	165	
8 17.4 48 17.4 88 16.7 128 17.3 168 17.0 9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176	6	16.9	46	17.3	86	16.6	126	17.3	166	16.9
9 17.1 49 16.9 89 16.4 129 17.2 169 16.7 10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.5 17 17.3 57 16.8 97 17.1 137 16.7 177 <td>7</td> <td>16.8</td> <td>47</td> <td>17.1</td> <td>87</td> <td>16.5</td> <td>127</td> <td>17.2</td> <td>167</td> <td>16.9</td>	7	16.8	47	17.1	87	16.5	127	17.2	167	16.9
10 17.0 50 17.3 90 16.4 130 17.2 170 16.9 11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.7 177 <td>8</td> <td>17.4</td> <td>48</td> <td>17.4</td> <td>88</td> <td>16.7</td> <td>128</td> <td>17.3</td> <td>168</td> <td>17.0</td>	8	17.4	48	17.4	88	16.7	128	17.3	168	17.0
11 16.7 51 17.6 91 16.2 131 17.5 171 17.3 12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 <td>9</td> <td>17.1</td> <td>49</td> <td>16.9</td> <td>89</td> <td>16.4</td> <td>129</td> <td>17.2</td> <td>169</td> <td>16.7</td>	9	17.1	49	16.9	89	16.4	129	17.2	169	16.7
12 17.4 52 16.9 92 16.4 132 16.9 172 17.8 13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 </td <td>10</td> <td>17.0</td> <td>50</td> <td>17.3</td> <td></td> <td>16.4</td> <td>130</td> <td>17.2</td> <td>170</td> <td>16.9</td>	10	17.0	50	17.3		16.4	130	17.2	170	16.9
13 17.2 53 16.7 93 16.3 133 16.9 173 17.8 14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181<	11	16.7	51	17.6	91	16.2	131	17.5	171	17.3
14 17.4 54 16.8 94 16.4 134 16.9 174 17.6 15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182	12	17.4						16.9		17.8
15 17.4 55 16.8 95 17.0 135 17.0 175 17.5 16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.2 21 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 18	13	17.2	53	16.7	93	16.3	133	16.9	173	17.8
16 17.0 56 17.2 96 16.9 136 16.5 176 17.0 17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 1		17.4						16.9		17.6
17 17.3 57 16.8 97 17.1 137 16.7 177 16.9 18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7		17.4								
18 17.2 58 17.6 98 17.1 138 16.8 178 17.1 19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 <td< td=""><td>16</td><td>17.0</td><td>56</td><td>17.2</td><td></td><td>16.9</td><td>136</td><td>16.5</td><td>176</td><td>17.0</td></td<>	16	17.0	56	17.2		16.9	136	16.5	176	17.0
19 17.4 59 17.2 99 16.7 139 16.7 179 17.2 20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6										16.9
20 16.8 60 16.6 100 16.9 140 16.7 180 17.4 21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 <		17.2		17.6				16.8		
21 17.1 61 17.1 101 16.5 141 16.6 181 17.5 22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 <										
22 17.4 62 16.9 102 17.2 142 16.5 182 17.9 23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6		16.8								
23 17.4 63 16.6 103 16.4 143 17.0 183 17.0 24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 <										
24 17.5 64 18.0 104 17.0 144 16.7 184 17.0 25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 <										
25 17.4 65 17.2 105 17.0 145 16.7 185 17.0 26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 <										
26 17.6 66 17.3 106 16.7 146 16.9 186 17.2 27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 <										
27 17.4 67 17.0 107 16.2 147 17.4 187 17.3 28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 <										
28 17.3 68 16.9 108 16.6 148 17.1 188 17.4 29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8										
29 17.0 69 17.3 109 16.9 149 17.0 189 17.4 30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
30 17.8 70 16.8 110 16.5 150 16.8 190 17.0 31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4										
31 17.5 71 17.3 111 16.6 151 17.2 191 18.0 32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
32 18.1 72 17.4 112 16.6 152 17.2 192 18.2 33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
33 17.5 73 17.7 113 17.0 153 17.4 193 17.6 34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
34 17.4 74 16.8 114 17.1 154 17.2 194 17.8 35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
35 17.4 75 16.9 115 17.1 155 16.9 195 17.7 36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
36 17.1 76 17.0 116 16.7 156 16.8 196 17.2 37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
37 17.6 77 16.9 117 16.8 157 17.0 197 17.4 38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
38 17.7 78 17.0 118 16.3 158 17.4 39 17.4 79 16.6 119 16.6 159 17.2										
39 17.4 79 16.6 119 16.6 159 17.2									197	17.4
40 17.8 80 16.7 120 16.8 160 17.2										
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	40	17.8	80	16.7	120	16.8	160	17.2		

^a197 observations.

SERIES B IBM Common Stock Closing Prices: Daily, May 17, 1961–November 2, 1962^a

DEITH	.5 2 12.11	common s	toek Closin	g i iiees. D	,,,	,, 1,, 01 1,0	, cimper 2 , 1	
460	471	527	580	551	523	333	394	330
457	467	540	579	551	516	330	393	340
452	473	542	584	552	511	336	409	339
459	481	538	581	553	518	328	411	331
462	488	541	581	557	517	316	409	345
459	490	541	577	557	520	320	408	352
463	489	547	577	548	519	332	393	346
479	489	553	578	547	519	320	391	352
493	485	559	580	545	519	333	388	357
490	491	557	586	545	518	344	396	
492	492	557	583	539	513	339	387	
498	494	560	581	539	499	350	383	
499	499	571	576	535	485	351	388	
497	498	571	571	537	454	350	382	
496	500	569	575	535	462	345	384	
490	497	575	575	536	473	350	382	
489	494	580	573	537	482	359	383	
478	495	584	577	543	486	375	383	
487	500	585	582	548	475	379	388	
491	504	590	584	546	459	376	395	
487	513	599	579	547	451	382	392	
482	511	603	572	548	453	370	386	
479	514	599	577	549	446	365	383	
478	510	596	571	553	455	367	377	
479	509	585	560	553	452	372	364	
477	515	587	549	552	457	373	369	
479	519	585	556	551	449	363	355	
475	523	581	557	550	450	371	350	
479	519	583	563	553	435	369	353	
476	523	592	564	554	415	376	340	
476	531	592	567	551	398	387	350	
478	547	596	561	551	399	387	349	
479	551	596	559	545	361	376	358	
477	547	595	553	547	383	385	360	
476	541	598	553	547	393	385	360	
475	545	598	553	537	385	380	366	
475	549	595	547	539	360	373	359	
473	545	595	550	538	364	382	356	
474	549	592	544	533	365	377	355	
474	547	588	541	525	370	376	367	
474	543	582	532	513	374	379	357	
465	540	576	525	510	359	386	361	
466	539	578	542	521	335	387	355	
467	532	589	555	521	323	386	348	
471	517	585	558	521	306	389	343	

^a369 observations (read down).

SERIES B' IBM Common Stock Closing Prices: Daily, June 29, 1959–June 30, 1960^a

SERIES D	IDM Commo	ii Stock Closing I II	ces. Daily, Julie 2.	, 1757-June 50, 1	700
445	425	406	441	415	461
448	421	407	437	420	463
450	414	410	427	420	463
447	410	408	423	424	461
451	411	408	424	426	465
453	406	409	428	423	473
454	406	410	428	423	473
454	413	409	431	425	475
459	411	405	425	431	499
440	410	406	423	436	485
446	405	405	420	436	491
443	409	407	426	440	496
443	410	409	418	436	504
440	405	407	416	443	504
439	401	409	419	445	509
435	401	425	418	439	511
435	401	425	416	443	524
436	414	428	419	445	525
435	419	436	425	450	541
435	425	442	421	461	531
435	423	442	422	471	529
433	411	433	422	467	530
429	414	435	417	462	531
428	420	433	420	456	527
425	412	435	417	464	525
427	415	429	418	463	519
425	412	439	419	465	514
422	412	437	419	464	509
409	411	439	417	456	505
407	412	438	419	460	513
423	409	435	422	458	525
422	407	433	423	453	519
417	408	437	422	453	519
421	415	437	421	449	522
424	413	444	421	447	522
414	413	441	419	453	
419	410	440	418	450	
429	405	441	421	459	
426	410	439	420	457	
425	412	439	413	453	
424	413	438	413	455	
425	411	437	408	453	
425	411	441	409	450	
424	409	442	415	456	

^a255 observations (read down).

SERIES C Chemical Process Temperature Readings: Every Minute a

DERIED C	Chemical 110cess 1ch	iperature Readings. E	very iviliace	
26.6	19.6	24.4	21.1	24.4
27.0	19.6	24.4	20.9	24.2
27.1	19.6	24.4	20.8	24.2
27.1	19.6	24.4	20.8	24.1
27.1	19.6	24.5	20.8	24.1
27.1	19.7	24.5	20.8	24.0
26.9	19.9	24.4	20.9	24.0
26.8	20.0	24.3	20.8	24.0
26.7	20.1	24.2	20.8	23.9
26.4	20.2	24.2	20.7	23.8
26.0	20.3	24.0	20.7	23.8
25.8	20.6	23.9	20.8	23.7
25.6	21.6	23.7	20.9	23.7
25.2	21.9	23.6	21.2	23.6
25.0	21.7	23.5	21.4	23.7
24.6	21.3	23.5	21.7	23.6
24.2	21.2	23.5	21.8	23.6
24.0	21.4	23.5	21.9	23.6
23.7	21.7	23.5	22.2	23.5
23.4	22.2	23.7	22.5	23.5
23.1	23.0	23.8	22.8	23.4
22.9	23.8	23.8	23.1	23.3
22.8	24.6	23.9	23.4	23.3
22.7	25.1	23.9	23.8	23.3
22.6	25.6	23.8	24.1	23.4
22.4	25.8	23.7	24.6	23.4
22.2	26.1	23.6	24.9	23.3
22.0	26.3	23.4	24.9	23.2
21.8	26.3	23.2	25.1	23.3
21.4	26.2	23.0	25.0	23.3
20.9	26.0	22.8	25.0	23.2
20.3	25.8	22.6	25.0	23.1
19.7	25.6	22.4	25.0	22.9
19.4	25.4	22.0	24.9	22.8
19.3	25.2	21.6	24.8	22.6
19.2	24.9	21.3	24.7	22.4
19.1	24.7	21.2	24.6	22.2
19.0	24.5	21.2	24.5	21.8
18.9	24.4	21.1	24.5	21.3
18.9	24.4	21.0	24.5	20.8
19.2	24.4	20.9	24.5	20.2
19.3	24.4	21.0	24.5	19.7
19.3	24.4	21.0	24.5	19.3
19.4	24.3	21.1	24.5	19.1
19.5	24.4	21.2	24.4	19.0
				18.8

^a226 observations (read down).

SERIES D Chemical Process Viscosity Readings: Every Hour a

SERIES D	Circinic	ar i rocess viscosi	ity iteauings. I	very moun		
8.0	8.8	9.3	9.1	9.0	10.0	9.6
8.0	8.6	9.9	9.5	9.0	9.8	8.6
7.4	8.6	9.7	9.4	9.4	9.8	8.0
8.0	8.4	9.1	9.5	9.0	9.7	8.0
8.0	8.3	9.3	9.6	9.0	9.6	8.0
8.0	8.4	9.5	10.2	9.4	9.4	8.0
8.0	8.3	9.4	9.8	9.4	9.2	8.4
8.8	8.3	9.0	9.6	9.6	9.0	8.8
8.4	8.1	9.0	9.6	9.4	9.4	8.4
8.4	8.2	8.8	9.4	9.6	9.6	8.4
8.0	8.3	9.0	9.4	9.6	9.6	9.0
8.2	8.5	8.8	9.4	9.6	9.6	9.0
8.2	8.1	8.6	9.4	10.0	9.6	9.4
8.2	8.1	8.6	9.6	10.0	9.6	10.0
8.4	7.9	8.0	9.6	9.6	9.6	10.0
8.4	8.3	8.0	9.4	9.2	9.0	10.0
8.4	8.1	8.0	9.4	9.2	9.4	10.2
8.6	8.1	8.0	9.0	9.2	9.4	10.0
8.8	8.1	8.6	9.4	9.0	9.4	10.0
8.6	8.4	8.0	9.4	9.0	9.6	9.6
8.6	8.7	8.0	9.6	9.6	9.4	9.0
8.6	9.0	8.0	9.4	9.8	9.6	9.0
8.6	9.3	7.6	9.2	10.2	9.6	8.6
8.6	9.3	8.6	8.8	10.0	9.8	9.0
8.8	9.5	9.6	8.8	10.0	9.8	9.6
8.9	9.3	9.6	9.2	10.0	9.8	9.6
9.1	9.5	10.0	9.2	9.4	9.6	9.0
9.5	9.5	9.4	9.6	9.2	9.2	9.0
8.5	9.5	9.3	9.6	9.6	9.6	8.9
8.4	9.5	9.2	9.8	9.7	9.2	8.8
8.3	9.5	9.5	9.8	9.7	9.2	8.7
8.2	9.5	9.5	10.0	9.8	9.6	8.6
8.1	9.9	9.5	10.0	9.8	9.6	8.3
8.3	9.5	9.9	9.4	9.8	9.6	7.9
8.4	9.7	9.9	9.8	10.0	9.6	8.5
8.7	9.1	9.5	8.8	10.0	9.6	8.7
8.8	9.1	9.3	8.8	8.6	9.6	8.9
8.8	8.9	9.5	8.8	9.0	10.0	9.1
9.2	9.3	9.5	8.8	9.4	10.0	9.1
9.6	9.1	9.1	9.6	9.4	10.4	9.1
9.0	9.1	9.3	9.6	9.4	10.4	
8.8	9.3	9.5	9.6	9.4	9.8	
8.6	9.5	9.3	9.2	9.4	9.0	
8.6	9.3	9.1	9.2	9.6	9.6	
8.8	9.3	9.3	9.0	10.0	9.8	

^a310 observations (read down).

SERIES E Wölfer Sunspot Numbers: Yearly^a

1770	101	1795	21	1820	16	1845	40
1771	82	1796	16	1821	7	1846	62
1772	66	1797	6	1822	4	1847	98
1773	35	1798	4	1823	2	1848	124
1774	31	1799	7	1824	8	1849	96
1775	7	1800	14	1825	17	1850	66
1776	20	1801	34	1826	36	1851	64
1777	92	1802	45	1827	50	1852	54
1778	154	1803	43	1828	62	1853	39
1779	125	1804	48	1829	67	1854	21
1780	85	1805	42	1830	71	1855	7
1781	68	1806	28	1831	48	1856	4
1782	38	1807	10	1832	28	1857	23
1783	23	1808	8	1833	8	1858	55
1784	10	1809	2	1834	13	1859	94
1785	24	1810	0	1835	57	1860	96
1786	83	1811	1	1836	122	1861	77
1787	132	1812	5	1837	138	1862	59
1788	131	1813	12	1838	103	1863	44
1789	118	1814	14	1839	86	1864	47
1790	90	1815	35	1840	63	1865	30
1791	67	1816	46	1841	37	1866	16
1792	60	1817	41	1842	24	1867	7
1793	47	1818	30	1843	11	1868	37
1794	41	1819	24	1844	15	1869	74

^a100 observations.

SERIES F Yields from a Batch Chemical Process: Consecutive^a

47	44	50	62	68
64	80	71	44	38
23	55	56	64	50
71	37	74	43	60
38	74	50	52	39
64	51	58	38	59
55	57	45	59	40
41	50	54	55	57
59	60	36	41	54
48	45	54	53	23
71	57	48	49	
35	50	55	34	
57	45	45	35	
40	25	57	54	
58	59	50	45	

^a70 Observations (read down).

SERIES G International Airline Passengers: Monthly Totals (Thousands of Passengers) January 1949–December 1960^a

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1949	112	118	132	129	121	135	148	148	136	119	104	118
1950	115	126	141	135	125	149	170	170	158	133	114	140
1951	145	150	178	163	172	178	199	199	184	162	146	166
1952	171	180	193	181	183	218	230	242	209	191	172	194
1953	196	196	236	235	229	243	264	272	237	211	180	201
1954	204	188	235	227	234	264	302	293	259	229	203	229
1955	242	233	267	269	270	315	364	347	312	274	237	278
1956	284	277	317	313	318	374	413	405	355	306	271	306
1957	315	301	356	348	355	422	465	467	404	347	305	336
1958	340	318	362	348	363	435	491	505	404	359	310	337
1959	360	342	406	396	420	472	548	559	463	407	362	405
1960	417	391	419	461	472	535	622	606	508	461	390	432

^a144 observations.

SERIES J Series J Gas Furnace Data^a

t	X_{t}	Y_t	t	X_t	Y_t	t	X_{t}	Y_t
1	-0.109	53.8	51	1.608	46.9	101	-0.288	51.0
2	0.000	53.6	52	1.905	47.8	102	-0.153	51.8
3	0.178	53.5	53	2.023	48.2	103	-0.109	52.4
4	0.339	53.5	54	1.815	48.3	104	-0.187	53.0
5	0.373	53.4	55	0.535	47.9	105	-0.255	53.4
6	0.441	53.1	56	0.122	47.2	106	-0.229	53.6
7	0.461	52.7	57	0.009	47.2	107	-0.007	53.7
8	0.348	52.4	58	0.164	48.1	108	0.254	53.8
9	0.127	52.2	59	0.671	49.4	109	0.330	53.8
10	-0.180	52.0	60	1.019	50.6	110	0.102	53.8
11	-0.588	52.0	61	1.146	51.5	111	-0.423	53.3
12	-1.055	52.4	62	1.155	51.6	112	-1.139	53.0
13	-1.421	53.0	63	1.112	51.2	113	-2.275	52.9
14	-1.520	54.0	64	1.121	50.5	114	-2.594	53.4
15	-1.302	54.9	65	1.223	50.1	115	-2.716	54.6
16	-0.814	56.0	66	1.257	49.8	116	-2.510	56.4
17	-0.475	56.8	67	1.157	49.6	117	-1.790	58.0
18	-0.193	56.8	68	0.913	49.4	118	-1.346	59.4
19	0.088	56.4	69	0.620	49.3	119	-1.081	60.2
20	0.435	55.7	70	0.255	49.2	120	-0.910	60.0
21	0.771	55.0	71	-0.280	49.3	121	-0.876	59.4
22	0.866	54.3	72	-1.080	49.7	122	-0.885	58.4
23	0.875	53.2	73	-1.551	50.3	123	-0.800	57.6
24	0.891	52.3	74	-1.799	51.3	124	-0.544	56.9
25	0.987	51.6	75	-1.825	52.8	125	-0.416	56.4
26	1.263	51.2	76	-1.456	54.4	126	-0.271	56.0
27	1.775	50.8	77	-0.944	56.0	127	0.000	55.7
28	1.976	50.5	78	-0.570	56.9	128	0.403	55.3
29	1.934	50.0	79	-0.431	57.5	129	0.841	55.0

SERIES J (continued)

SEKIES J	(continuea)							
t	X_t	Y_t	t	X_{t}	Y_t	t	X_t	Y_t
30	1.866	49.2	80	-0.577	57.3	130	1.285	54.4
31	1.832	48.4	81	-0.960	56.6	131	1.607	53.7
32	1.767	47.9	82	-1.616	56.0	132	1.746	52.8
33	1.608	47.6	83	-1.875	55.4	133	1.683	51.6
34	1.265	47.5	84	-1.891	55.4	134	1.485	50.6
35	0.790	47.5	85	-1.746	56.4	135	0.993	49.4
36	0.360	47.6	86	-1.474	57.2	136	0.648	48.8
37	0.115	48.1	87	-1.201	58.0	137	0.577	48.5
38	0.088	49.0	88	-0.927	58.4	138	0.577	48.7
39	0.331	50.0	89	-0.524	58.4	139	0.632	49.2
40	0.645	51.1	90	0.040	58.1	140	0.747	49.8
41	0.960	51.8	91	0.788	57.7	141	0.900	50.4
42	1.409	51.9	92	0.943	57.0	142	0.993	50.7
43	2.670	51.7	93	0.930	56.0	143	0.968	50.9
44	2.834	51.2	94	1.006	54.7	144	0.790	50.7
45	2.812	50.0	95	1.137	53.2	145	0.399	50.5
46	2.483	48.3	96	1.198	52.1	146	-0.161	50.4
47	1.929	47.0	97	1.054	51.6	147	-0.553	50.2
48	1.485	45.8	98	0.595	51.0	148	-0.603	50.4
49	1.214	45.6	99	-0.080	50.5	149	-0.424	51.2
50	1.239	46.0	100	-0.314	50.4	150	-0.194	52.3
151	-0.049	53.2	201	-2.473	55.6	251	0.185	56.3
152	0.060	53.9	202	-2.330	58.0	252	0.662	56.4
153	0.161	54.1	203	-2.053	59.5	253	0.709	56.4
154	0.301	54.0	204	-1.739	60.0	254	0.605	56.0
155	0.517	53.6	205	-1.261	60.4	255	0.501	55.2
156	0.566	53.2	206	-0.569	60.5	256	0.603	54.0
157	0.560	53.0	207	-0.137	60.2	257	0.943	53.0
158	0.573	52.8	208	-0.024	59.7	258	1.223	52.0
159	0.592	52.3	209	-0.050	59.0	259	1.249	51.6
160	0.671	51.9	210	-0.135	57.6	260	0.824	51.6
161	0.933	51.6	211	-0.276	56.4	261	0.102	51.1
162	1.337	51.6	212	-0.534	55.2	262	0.025	50.4
163	1.460	51.4	213	-0.871	54.5	263	0.382	50.0
164	1.353	51.2	214	-1.243	54.1	264	0.922	50.0
165	0.772	50.7	215	-1.439	54.1	265	1.032	52.0
166	0.218	50.0	216	-1.422	54.4	266	0.866	54.0
167	-0.237	49.4	217	-1.175	55.5	267	0.527	55.1
168	-0.714	49.3	218	-0.813	56.2	268	0.093	54.5
169	-1.099	49.7	219	-0.634	57.0	269	-0.458	52.8
170	-1.269	50.6	220	-0.582	57.3	270	-0.748	51.4
171	-1.175	51.8	221	-0.625	57.4	271	-0.947	50.8
172	-0.676	53.0	222	-0.713	57.0	272	-1.029	51.2
173	0.033	54.0	223	-0.848	56.4	273	-0.928	52.0
174	0.556	55.3	224	-1.039	55.9	274	-0.645	52.8
175	0.643	55.9	225	-1.346	55.5	275	-0.424	53.8
176	0.484	55.9	226	-1.628	55.3	276	-0.276	54.5
177	0.109	54.6	227	-1.619	55.2	277	-0.158	54.9
178	-0.310	53.5	228	-1.149	55.4	278	-0.033	54.9
- / 0	0.010	23.5		2,11,7	22		0.000	2

SERIES J (continued)

t	X_t	Y_t	t	X_{t}	Y_t	t	X_{t}	Y_t
179	-0.697	52.4	229	-0.488	56.0	279	0.102	54.8
180	-1.047	52.1	230	-0.160	56.5	280	0.251	54.4
181	-1.218	52.3	231	-0.007	57.1	281	0.280	53.7
182	-1.183	53.0	232	-0.092	57.3	282	0.000	53.3
183	-0.873	53.8	233	-0.620	56.8	283	-0.493	52.8
184	-0.336	54.6	234	-1.086	55.6	284	-0.759	52.6
185	0.063	55.4	235	-1.525	55.0	285	-0.824	52.6
186	0.084	55.9	236	-1.858	54.1	286	-0.740	53.0
187	0.000	55.9	237	-2.029	54.3	287	-0.528	54.3
188	0.001	55.2	238	-2.024	55.3	288	-0.204	56.0
189	0.209	54.4	239	-1.961	56.4	289	0.034	57.0
190	0.556	53.7	240	-1.952	57.2	290	0.204	58.0
191	0.782	53.6	241	-1.794	57.8	291	0.253	58.6
192	0.858	53.6	242	-1.302	58.3	292	0.195	58.5
193	0.918	53.2	243	-1.030	58.6	293	0.131	58.3
194	0.862	52.5	244	-0.918	58.8	294	0.017	57.8
195	0.416	52.0	245	-0.798	58.8	295	-0.182	57.3
196	-0.336	51.4	246	-0.867	58.6	296	-0.262	57.0
197	-0.959	51.0	247	-1.047	58.0			
198	-1.813	50.9	248	-1.123	57.4			
199	-2.378	52.4	249	-0.876	57.0			
200	-2.499	53.5	250	-0.395	56.4			

^aSampling interval 9 seconds; observations for 296 pairs of data points. X, 0.60 – 0.04 (input gas rate in cubic feet per minute); Y, %CO₂ in outlet gas.

SERIES K Simulated Dynamic Data with Two Inputs a

t	**						
	X_{1t}	X_{2t}	Y_t	t	X_{1t}	X_{2t}	Y_t
-2	0	0	58.3				
-1			61.8				
0			64.2	30			65.8
1			62.1	31			67.4
2	-1	1	55.1	32	-1	-1	64.7
3			50.6	33			65.7
4			47.8	34			67.5
5			49.7	35			58.2
6			51.6	36			57.0
7	1	-1	58.5	37	-1	1	54.7
8			61.5	38			54.9
9			63.3	39			48.4
10			65.9	40			49.7
11			70.9	41			53.1
12	-1	-1	65.8	42	1	-1	50.2
13	_	_	57.6	43	_	_	51.7
14			56.1	44			57.4
15			58.2	45			62.6
16			61.7	46			65.8
17	1	1	59.2	47	-1	-1	61.5
18			57.9	48			61.5
19			61.3	49			56.8
20			60.8	50			62.3
21			63.6	51			57.7
22	1	-1	69.5	52	-1	1	54.0
23			69.3	53			45.2
24			70.5	54			51.9
25			68.0	55			45.6
26			68.1	56			46.2
27	1	1	65.0	57	1	1	50.2
28	-	_	71.9	58	_	_	54.6
29			64.8	59			55.6
-				60	0	0	60.4
				61			59.4

^a64 observations.

SERIES L Pilot Scheme Data^a

t	x_t	ϵ_{t}	t	x_{t}	$\boldsymbol{\varepsilon}_t$	t	x_t	$\boldsymbol{\varepsilon}_t$
1	30	-4	53	-60	6	105	55	-4
2	0	-2	54	50	-2	106	0	2
3	-10	0	55	-10	0	107	-90	8
4	0	0	56	40	-4	108	40	0
5	-40	4	57	40	-6	109	0	0
6	0	2	58	-30	0	110	80	-8
7	-10	2	59	20	-2	111	-20	-2
8	10	0	60	-30	2	112	-10	0
9	20	-2	61	10	0	113	-70	6
10	50	-6	62	-20	2	114	-30	6
11	-10	-2	63	30	-2	115	-10	4
12	-55	4	64	-50	4	116	30	-1
13	0	2	65	10	-2	117	-5	0
14	10	0	66	10	-2	118	-60	6
15	0	-2	67	10	-2	119	70	-4
16	10	-2	68	-30	0	120	40	-6
17	-70	6	69	0	0	121	10	-4
18	30	0	70	-10	2	122	20	-4
19	-20	2	71	-10	3	123	10	-3
20	10	0	72	15	0	124	0	-2
21	0	0	73	20	-2	125	-70	6
22	0	0	74	-50	4	126	50	-2
23	20	-2	75	20	0	127	30	-4
24	30	-4	76	0	0	128	0	-2
25	0	-2	77	0	0	129	-10	0
26	-10	0	78	0	0	130	0	0
27	-20	2	79	0	0	131	-40	4
28	-30	4	80	-40	4	132	0	2
29	0	2	81	-100	12	133	-10	2
30	10	0	82	0	8	134	10	0
31	20	-2	83	0	-12	135	0	0
32	-10	0	84	50	-15	136	80	-8
33	0	0	85	85	-15	137	-80	4
34	20	-2	86	5	-12	138	20	4
35	10	-2	87	40	-14	139	20	0
36	-10	0	88	10	-8	140	-10	2
37	0	0	89	-60	2	141	10	0
38	0	0	90	-50	6	142	0	0
39	0	0	91	-50	8	143	-20	2
40	0	0	92	40	0	144	20	-1
41	0	0	93	0	0	145	55	-6
42	0	0	94	0	0	146	0	-3
43	20	-2	95	-20	2	147	25	-4
44	-50	4	96	-30	4	148	20	<u>-4</u>
45	20	0	97	-60	8	149	-60	4
46	0	0	98	-20	6	150	-40	6
47	0	0	99	-30	6	151	10	4
48	40	-4	100	30	0	152	20	0

SERIES L (continued)

t	X_t	$\boldsymbol{arepsilon}_t$	t	x_t	$\boldsymbol{arepsilon}_t$	t	x_t	$\boldsymbol{arepsilon}_t$
49	0	-2	101	-40	4	153	60	-6
50	50	-6	102	80	-6	154	-50	2
51	-40	0	103	-4 0	0	155	-10	2
52	-50	3	104	-20	2	156	-30	4
157	20	0	209	-40	4	261	-25	4
158	0	0	210	40	-2	262	35	-2
159	20	-2	211	-90	8	263	70	8
160	10	-2	212	40	0	264	-10	-5
161	10	-2	213	0	0	265	100	-20
162	10	-22	214	0	0	266	-20	-8
163	50	-6	215	0	0	267	-40	0
164	-30	0	216	20	-2	268	-20	2
165	-30	6	217	90	-10	269	10	0
166	90	12	218	30	-8	270	0	0
167	60	0	219	20	-6	271	0	0
168	-40	4	220	30	-6	272	-20	2
169	20	0	221	30	-6	273	-50	6
170	0	0	222	30	-6	274	50	-2
171	20	-2	223	30	-6	275	30	-4
172	10	-2	224	-90	6	276	60	-8
173	-30	2	225	10	2	277	-40	0
174	-30	4	226	10	2	278	-20	2
175	0	2	227	-30	4	279	-10	2
176	50	-4	228	-20	4	280	10	0
177	-60	4	229	40	-2	281	-110	13
178	20	0	230	10	-2	282	15	4
179	0	0	231	10	-2	283	30	-2
180	40	-8 12	232	10	-2	284	0	-1
181	80	-12	233	-100	12	285	25	-3
182	20	-8	234	10	6	286	-5	-1
183	-100	6	235	45	-2	287	-15	1
184	-30	6	236	30	-4 -	288	45	-4
185	30 -20	0 2	237	30	-5 1	289	40 50	-6 2
186		4	238	-15 5	-1	290	-50	2
187	-30 20	0	239	-5	0	291 292	-10	2
188	60	-6	240 241	10	-1 8	292	-50	6
189 190	-10	-0 -2	241	-85 0	6 4	293 294	20 5	1 0
		-2 -4				294	-40	4
191 192	30 -40	-4 2	243 244	0 60	0 -4	293 296	-40 0	
192	30	-2	244	40	-4 -6	290	-60	6 8
193	-20	1	246	-30		298	-00 40	
194	-20 5	0	246 247	-30 -40	0 4	298 299	-20	0 2
195 196	-20	2	247	-40 -40	6	300	-20 130	-12
190	-20 -30	4	248	-40 50	-2	300	-20	-12 -4
197	-30 20	0	250	30 10	-2 -2	301	-20 0	-4 -2
198	10	-1	250	30	-2 -4	302	30	-2 -4
122	10	-1	231	50	-4	505	30	-4

SERIES L (continued)

t	x_t	$\boldsymbol{arepsilon}_t$	t	x_t	$\boldsymbol{arepsilon}_t$	t	x_t	ε_{t}
200	-15	1	252	-40	2	304	-20	0
201	-75	8	253	10	0	305	60	6
202	-40	8	254	-40	4	306	10	-4
203	-40	6	255	40	-2	307	-10	1
204	90	-6	256	-30	2	308	-25	2
205	90	-12	257	-50	6	309	0	1
206	80	-14	258	0	3	310	15	-1
207	-45	-2	259	-45	6	311	-5	0
208	-10	0	260	-20	5	312	0	0

^a312 observations.

SERIES M Sales Data with Leading Indicator a

	Leading Indicator	Sales		Leading Indicator	Sales		Leading Indicator	Sales
t	X_{t}	Y_t	t	X_t	Y_t	t	X_{t}	Y_t
1	10.01	200.1	51	10.77	220.0	101	12.90	249.4
2	10.07	199.5	52	10.88	218.7	102	13.12	249.0
3	10.32	199.4	53	10.49	217.0	103	12.47	249.9
4	9.75	198.9	54	10.50	215.9	104	12.47	250.5
5	10.33	199.0	55	11.00	215.8	105	12.94	251.5
6	10.13	200.2	56	10.98	214.1	106	13.10	249.0
7	10.36	198.6	57	10.61	212.3	107	12.91	247.6
8	10.32	200.0	58	10.48	213.9	108	13.39	248.8
9	10.13	200.3	59	10.53	214.6	109	13.13	250.4
10	10.16	201.2	60	11.07	213.6	110	13.34	250.7
11 12	10.58 10.62	201.6 2013	61 62	10.61 10.86	212.1 211.4	111 112	13.34 13.14	253.0 253.7
13	10.86	2013	63	10.34	211.4	113	13.49	255.0
14	11.20	203.5	64	10.78	212.9	113	13.49	256.2
15	10.74	204.9	65	10.78	213.3	115	13.39	256.0
16	10.74	207.1	66	10.33	211.5	116	13.59	257.4
17	10.48	210.5	67	10.44	212.3	117	13.27	260.4
18	10.77	210.5	68	10.50	213.0	118	13.70	260.0
19	11.33	209.8	69	10.75	211.0	119	13.20	261.3
20	10.96	208.8	70	10.40	210.7	120	13.32	260.4
21	11.16	209.5	71	10.40	210.1	121	13.15	261.6
22	11.70	213.2	72	10.34	211.4	122	13.30	260.8
23	11.39	213.7	73	10.55	210.0	123	12.94	259.8
24	11.42	215.1	74	10.46	209.7	124	13.29	259.0
25	11.94	218.7	75	10.82	208.8	125	13.26	258.9
26	11.24	219.8	76	10.91	208.8	126	13.08	257.4
27	11.59	220.5	77	10.87	208.8	127	13.24	257.7
28	10.96	223.8	78	10.67	210.6	128	13.31	257.9
29	11.40	222.8	79	11.11	211.9	129	13.52	257.4
30	11.02	223.8	80	10.88	212.8	130	13.02	257.3
31	11.01	221.7	81	11.28	212.5	131	13.25	257.6
32	11.23	222.3	82	11.27	214.8	132	13.12	258.9
33	11.33	220.8	83	11.44	215.3	133	13.26	257.8
34	10.83	219.4	84	11.52	217.5	134	13.11	257.7
35	10.84	220.1	85	12.10	218.8	135	13.30	257.2
36	11.14	220.6	86	11.83	220.7	136	13.06	257.5
37	10.38	218.9	87	12.62	222.2	137	13.32	256.8
38	10.90	217.8	88	12.41	226.7	138	13.10	257.5
39 40	11.05	217.7 215.0	89 90	12.43	228.4	139	13.27	257.0
40	11.11	215.0	90 91	12.73	233.2 235.7	140	13.64 13.58	257.6
41	11.01 11.22	215.3	91 92	13.01 12.74	235.7	141 142	13.38	257.3 257.5
42	11.22	215.9	92	12.74	240.6	142	13.53	257.5
44	11.21	216.7	93	12.75	243.8	143	13.41	261.1
45	11.69	217.7	95	12.70	245.3	145	13.41	262.9
46	10.93	218.7	96	12.64	246.0	146	13.50	263.3
47	10.99	222.9	97	12.79	246.3	147	13.58	262.8
48	11.01	224.9	98	13.05	247.7	148	13.51	261.8
49	10.84	222.2	99	12.69	247.6	149	13.77	262.2
50	10.76	220.7	100	13.01	247.8	150	13.40	262.7
						I		

^a150 observations.

SERIES N	Mink Fur Sales	of the Hudson's Bay	Company: Annua	l for 1850-1911a
----------	----------------	---------------------	----------------	------------------

1850	29,619	1866	51,404	1882	45,600	1897	76,365
1851	21,151	1867	58,451	1883	47,508	1898	70,407
1852	24,859	1868	73,575	1884	52,290	1899	41,839
1853	25,152	1869	74,343	1885	110,824	1900	45,978
1854	42,375	1870	27,708	1886	76,503	1901	47,813
1855	50,839	1871	31,985	1887	64,303	1902	57,620
1856	61,581	1872	39,266	1888	83,023	1903	66,549
1857	61,951	1873	44,740	1889	40,748	1904	54,673
1858	76,231	1874	60,429	1890	35,596	1905	55,996
1859	63,264	1875	72,273	1891	29,479	1906	60,053
1860	44,730	1876	79,214	1892	42,264	1907	39,169
1861	31,094	1877	79,060	1893	58,171	1908	21,534
1862	49,452	1878	84,244	1894	50,815	1909	17,857
1863	43,961	1879	62,590	1895	51,285	1910	21,788
1864	61,727	1880	35,072	1896	70,229	1911	33,008
1865	60,334	1881	36,160				

^a62 observations.

SERIES P Unemployment and GDP Data in UK: Quarterly for 1955-1969^a

		UN	GDP			UN	GDP			UN	GDP
1955	1	225	81.37	1960	1	363	92.30	1965	1	306	108.07
	2	208	82.60		2	342	92.13		2	304	107.64
	3	201	82.30		3	325	93.17		3	321	108.87
	4	199	83.00		4	312	93.50		4	305	109.75
1956	1	207	82.87	1961	1	291	94.77	1966	1	279	110.20
	2	215	83.60		2	293	95.37		2	282	110.20
	3	240	83.33		3	304	95.03		3	318	110.90
	4	245	83.53		4	330	95.23		4	414	110.40
1957	1	295	84.27	1962	1	357	95.07	1967	1	463	111.00
	2	293	85.50		2	401	96.40		2	506	112.10
	3	279	84.33		3	447	96.97		3	538	112.50
	4	287	84.30		4	483	96.50		4	536	113.00
1958	1	331	85.07	1963	1	535	96.16	1968	1	544	114.30
	2	396	83.60		2	520	99.79		2	541	115.10
	3	432	84.37		3	489	101.14		3	547	116.40
	4	462	84.50		4	456	102.95		4	532	117.80
1959	1	454	85.20	1964	1	386	103.96	1969	1	532	116.80
	2	446	87.07		2	368	105.28		2	519	117.80
	3	426	88.40		3	358	105.81		3	547	119.00
	4	402	90.03		4	330	107.14		4	544	119.60

Source: Bray (1971).

 $^{^{}a}$ 60 pairs of data; data are seasonally adjusted; unemployment (UN) in thousands; gross domestic product (GDP) is composite estimate (1963 = 100).

SERIES Q Logged and Coded U.S. Hog Price Data: Annual for 1867–1948^a

1867	597	1888	709	1909	810	1929	1112
1868	509	1889	763	1910	957	1930	1129
1869	663	1890	681	1911	970	1931	1055
1870	751	1891	627	1912	903	1932	787
1871	739	1892	667	1913	995	1933	624
1872	598	1893	804	1914	1022	1934	612
1873	556	1894	782	1915	998	1935	800
1874	594	1895	707	1916	928	1936	1104
1875	667	1896	653	1917	1073	1937	1075
1876	776	1897	639	1918	1294	1938	1052
1877	754	1898	672	1919	1346	1939	1048
1878	689	1899	669	1920	1301	1940	891
1879	498	1900	729	1921	1134	1941	921
1880	643	1901	784	1922	1024	1942	1193
1881	681	1902	842	1923	1090	1943	1352
1882	778	1903	886	1924	1013	1944	1243
1883	829	1904	784	1925	1119	1945	1314
1884	751	1905	770	1926	1195	1946	1380
1885	704	1906	783	1927	1235	1947	1556
1886	633	1907	877	1928	1120	1948	1632
1887	663	1908	777				

Source: Quenouille (1957).

SERIES R Monthly Averages of Hourly Readings of Ozone in Downtown Los Angeles a

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
1955	2.63	1.94	3.38	4.92	6.29	5.58	5.50	4.71	6.04	7.13	7.79	3.83
1956	3.83	4.25	5.29	3.75	4.67	5.42	6.04	5.71	8.13	4.88	5.42	5.50
1957	3.00	3.42	4.50	4.25	4.00	5.33	5.79	6.58	7.29	5.04	5.04	4.48
1958	3.33	2.88	2.50	3.83	4.17	4.42	4.25	4.08	4.88	4.54	4.25	4.21
1959	2.75	2.42	4.50	5.21	4.00	7.54	7.38	5.96	5.08	5.46	4.79	2.67
1960	1.71	1.92	3.38	3.98	4.63	4.88	5.17	4.83	5.29	3.71	2.46	2.17
1961	2.15	2.44	2.54	3.25	2.81	4.21	4.13	4.17	3.75	3.83	2.42	2.17
1962	2.33	2.00	2.13	4.46	3.17	3.25	4.08	5.42	4.50	4.88	2.83	2.75
1963	1.63	3.04	2.58	2.92	3.29	3.71	4.88	4.63	4.83	3.42	2.38	2.33
1964	1.50	2.25	2.63	2.96	3.46	4.33	5.42	4.79	4.38	4.54	2.04	1.33
1965	2.04	2.81	2.67	4.08	3.90	3.96	4.50	5.58	4.52	5.88	3.67	1.79
1966	1.71	1.92	3.58	4.40	3.79	5.52	5.50	5.00	5.48	4.81	2.42	1.46
1967	1.71	2.46	2.42	1.79	3.63	3.54	4.88	4.96	3.63	5.46	3.08	1.75
1968	2.13	2.58	2.75	3.15	3.46	3.33	4.67	4.13	4.73	3.42	3.08	1.79
1969	1.96	1.63	2.75	3.06	4.31	3.31	3.71	5.25	3.67	3.10	2.25	2.29
1970	1.25	2.25	2.67	3.23	3.58	3.04	3.75	4.54	4.46	2.83	1.63	1.17
1971	1.79	1.92	2.25	2.96	2.38	3.38	3.38	3.21	2.58	2.42	1.58	1.21
1972	1.42	1.96	3.04	2.92	3.58	3.33	4.04	3.92	3.08	2.00	1.58	1.21

^a216 observations; values are in pphm.

 $[^]a$ 82 observations; values are $1000 \log_{10}(H_t)$, where H_t is the price, in dollars, per head on January 1 of the year.

REFERENCES

- Abraham, B. (1981). Missing observations in time series, Commun. Stat., A10, 1643–1653.
- Abraham, B. and Box, G. E. P. (1978). Deterministic and forecast-adaptive time-dependent models, *Appl. Stat.*, **27**, 120–130.
- Adler, J. (2010). R in a Nutshell, O'Reilly Media, Sebastopol, CA.
- Ahn, S. K. (1993). Some tests for unit roots in autoregressive-integrated-moving average models with deterministic trends, *Biometrika*, **80**, 855–868.
- Ahn, S. K. and Reinsel, G. C. (1988). Nested reduced-rank autoregressive models for multiple time series, *J. Am. Stat. Assoc.*, **83**, 849–856.
- Ahn, S. K. and Reinsel, G. C. (1990). Estimation for partially nonstationary multivariate autoregressive models, *J. Am. Stat. Assoc.*, **85**, 813–823.
- Akaike, H. (1971). Autoregressive model fitting for control, Ann. Inst. Stat. Math., 23, 163-180.
- Akaike, H. (1974a). A new look at the statistical model identification, *IEEE Trans. Autom. Control*, **AC-19**, 716–723.
- Akaike, H. (1974b). Markovian representation of stochastic processes and its application to the analysis of autoregressive moving average processes, *Ann. Inst. Stat. Math.*, **26**, 363–387.
- Akaike, H. (1976). Canonical correlation analysis of time series and the use of an information criterion, in *Systems Identification: Advances and Case Studies* (eds. R. K. Mehra and D. G. Lainiotis), Academic Press, New York, pp. 27–96.
- Ali, M. M. (1989). Tests for autocorrelation and randomness in multiple time series, *J. Am. Stat. Assoc.*, **84**, 533–540.
- Andersen, T. G., Davis, R. A., Kreiss, J.-P., and Mikosch, T. (2009). *Handbook of Financial Time Series*, Springer, Berlin.
- Anderson, B. D. O. and Moore, J. B. (1979). *Optimal Filtering*, Prentice Hall, Englewood Cliffs, NJ. Anderson, R. L. (1942). Distribution of the serial correlation coefficient, *Ann. Math. Stat.*, **13**, 1–13.

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung

^{© 2016} John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.

- Anderson, T. W. (1951). Estimating linear restrictions on regression coefficients for multivariate normal distributions, Ann. Math. Stat., 22, 327–351.
- Anderson, T. W. (1971). The Statistical Analysis of Time Series, Wiley, New York.
- Anscombe, F. J. (1961). Examination of residuals, *Proceedings of the 4th Berkeley Symposium*, Vol. 1, pp. 1–36.
- Anscombe, F. J. and Tukey, J. W. (1963). The examination and analysis of residuals, *Technometrics*, **5**, 141–160.
- Ansley, C. F. (1979). An algorithm for the exact likelihood of a mixed autoregressive moving average process, *Biometrika*, **66**, 59–65.
- Ansley, C. F. and Kohn, R. (1982). A geometrical derivation of the fixed interval smoothing algorithm, Biometrika, 69, 486–487.
- Ansley, C. F. and Kohn, R. (1983). Exact likelihood of vector autoregressive-moving average process with missing or aggregated data, *Biometrika*, **70**, 275–278.
- Ansley, C. F. and Kohn, R. (1985). Estimation, filtering, and smoothing in state space models with incompletely specified initial conditions, *Ann. Stat.*, **13**, 1286–1316.
- Ansley, C. F. and Newbold, P. (1980). Finite sample properties of estimators for autoregressive moving average models, *J. Econom.*, **13**, 159–183.
- Aström, K. J. and Bohlin, T. (1966). Numerical identification of linear dynamic systems from normal operating records, in *Theory of Self-Adaptive Control Systems* (ed. P. H. Hammond), Plenum Press, New York, pp. 96–111.
- Aström, K. J. and Wittenmark, B. (1984). *Computer Controlled Systems*, Prentice Hall, Englewood Cliffs, NJ.
- Athanasopoulos, G., Poskitt, D. S., and Vahid, F. (2012). Two canonical VARMA forms: Scalar component models vis-à-vis the Echelon form, *Econometric Rev.*, **31**, 60–83.
- Bachelier, L. (1900). Théorie de la spéculation, Ann. Sci. École Norm. Sup., Paris, Ser. 3, 17, 21-86.
- Bagshaw, M. and Johnson, R. A. (1977). Sequential procedures for detecting parameter changes in a time-series model, *J. Am. Stat. Assoc.*, **72**, 593–597.
- Baillie, R. T. (1979). The asymptotic mean squared error of multistep prediction from the regression model with autoregressive errors, *J. Am. Stat. Assoc.*, **74**, 175–184.
- Baillie, R. T. and Bollerslev, T. (1992). Prediction in dynamic models with time-dependent conditional variances, *J. Econom.*, **52**, 91–113.
- Barnard, G. A. (1949). Statistical inference, J. R. Stat. Soc., **B11**, 115–139.
- Barnard, G. A. (1959). Control charts and stochastic processes, J. R. Stat. Soc., B21, 239-257.
- Barnard, G. A. (1963). The logic of least squares, J. R. Stat. Soc., **B25**, 124–127.
- Barnard, G. A., Jenkins, G. M., and Winsten, C. B. (1962). Likelihood inference and time series, J. R. Stat. Soc., A125, 321–352.
- Bartlett, M. S. (1946). On the theoretical specification and sampling properties of autocorrelated time-series, J. R. Stat. Soc., B8, 27–41.
- Bartlett, M. S. (1955). Stochastic Processes, Cambridge University Press, Cambridge.
- Basu, S. and Reinsel, G. C. (1996). Relationship between missing data likelihoods and complete data restricted data likelihoods for regression time series models: an application to total ozone data, *Appl. Stat.*, **45**, 63–72.
- Bell, W. R. (1984). Signal extraction for nonstationary time series, Ann. Stat., 12, 646–664; correction, 19, 2280, 1991.
- Bell, W. R. (1987). A note on overdifferencing and the equivalence of seasonal time series models with monthly means and models with $(0, 1, 1)_{12}$ seasonal parts when $\Theta = 1$, J. Bus. Econ. Stat., 5, 383–387.

- Bell, W. R., Chu, Y.-J., and Tiao, G. C. (2012). Comparing mean squared errors of X-12-ARIMA and canonical ARIMA model-based seasonal adjustments, in *Economic Time Series: Modeling and Seasonality* (eds. W. R. Bell, S. H. Holan, and T. S. McElroy), Chapman & Hall, Boca Raton, FL, pp. 161–184.
- Bell, W. R. and Hillmer, S. C. (1983). Modeling time series with calendar variation, *J. Am. Stat. Assoc.*, **78**, 526–534.
- Bell, W. R. and Hillmer, S. C. (1987). Initializing the Kalman filter in the nonstationary case, *Proceedings of the American Statistical Association, Business and Economic Statistics Section*, pp. 693–697.
- Bell, W. R. and Sotiris, E. (2010). Seasonal adjustment to facilitate forecasting: empirical results, Proceedings of the American Statistical Association, Business and Economic Statistics Section, Alexandria, VA.
- Bera, J. and Higgins, M. (1993). ARCH models: properties, estimation, and testing, *J. Econ. Surv.*, 7, 305–362.
- Beran, J. (1994). Statistics for Long Memory Processes, Chapman & Hall, New York.
- Beran, J. (1995). Maximum likelihood estimation of the differencing parameter for invertible short and long memory autoregressive integrated moving average models, J. R. Stat. Soc., **B57**, 659–672.
- Bergh, L. G. and MacGregor, J. F. (1987). Constrained minimum variance controllers: internal model structure and robustness properties, *Ind. Eng. Chem. Res.*, **26**, 1558–1564.
- Berndt, E. K., Hall, B. H., Hall, R. E., and Hausman, J. A. (1974). Estimation inference in nonlinear structural models, *Ann. Econ. Soc. Meas.*, **4**, 653–665.
- Bhargava, A. (1986). On the theory of testing for unit roots in observed time series, *Rev. Econ. Stud.*, **53**, 369–384.
- Bhattacharyya, M. N. and Layton, A. P. (1979). Effectiveness of seat belt legislation on the Queensland road toll—an Australian case study in intervention analysis, *J. Am. Stat. Assoc.*, **74**, 596–603.
- Billingsley, P. (1999). Convergence of Probability Measures, 2nd ed., Wiley, New York.
- Birnbaum, A. (1962). On the foundations of statistical inference, J. Am. Stat. Assoc., 57, 269-306.
- Bloomfield, P. (2000). Fourier Analysis of Time Series: An Introduction, 2nd ed., Wiley, Hoboken, NJ.
- Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity, *J. Econom.*, **31**, 307–327.
- Bollerslev, T. (1987). A conditional heteroskedastic time series model for speculative prices and rates of return, *Rev. Econ. Stat.*, **69**, 542–547.
- Bollerslev, T. (1988). On the correlation structure in the generalized autoregressive conditional heteroskedastic process, *J. Time Ser. Anal.*, **9**, 121–31.
- Bollerslev, T., Chou, R. Y., and Kroner, K. F. (1992). ARCH modelling in finance: a review of the theory and empirical evidence. *J. Econom.*, **52**, 5–59.
- Bollerslev, T., Engle, R. F., and Nelson, D. B. (1994). ARCH model, in *Handbook of Econometrics IV* (eds. R. F. Engle and D. C. McFadden), Elsevier Science, Amsterdam, pp. 2959–3038.
- Bollerslev, T. and Wooldridge, J. M. (1992). Quasi-maximum likelihood estimation and inference in dynamic models with time-varying covariances, *Econom. Rev.*, **11**, 143–172.
- Box, G. E. P. (1966). Use and abuse of regression, *Technometrics*, **8**, 625–629.
- Box, G. E. P. (1980). Sampling and Bayes' inference in scientific modelling and robustness, *J. R. Stat. Soc.*, **A143**, 383–430.
- Box, G. E. P. (1991a). Feedback control by manual adjustment, Qual. Eng., 4(1), 143-151.
- Box, G. E. P. (1991b). Bounded adjustment charts, Qual. Eng., 4(a), 331–338.
- Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations, J. R. Stat. Soc., B26, 211–243.

- Box, G. E. P. and Hunter, W. G. (1965). The experimental study of physical mechanisms, *Technometrics*, 7, 23–42.
- Box, G. E. P., Hunter, W. G., and Hunter, J. S. (1978). *Statistics for Experimenters*, Wiley, New York.
- Box, G. E. P. and Jenkins, G. M. (1962). Some statistical aspects of adaptive optimization and control, *J. R. Stat. Soc.*, **B24**, 297–331.
- Box, G. E. P. and Jenkins, G. M. (1963). Further contributions to adaptive quality control: simultaneous estimation of dynamics: non-zero costs, *Bulletin of the International Statistical Institute*, *34th Session*, Ottawa, Canada, pp. 943–974.
- Box, G. E. P. and Jenkins, G. M. (1965). Mathematical models for adaptive control and optimization, *AIChE J. Chem. E Symp. Ser.*, **4**, 61.
- Box, G. E. P. and Jenkins, G. M. (1968a). Discrete models for feedback and feedforward control, in *The Future of Statistics* (ed. D. G. Watts), Academic Press, New York, pp. 201–240.
- Box, G. E. P. and Jenkins, G. M. (1968b). Some recent advances in forecasting and control, I, *Appl. Stat.*, **17**, 91–109.
- Box, G. E. P. and Jenkins, G. M. (1969). Discrete models for forecasting and control, in *Encyclopaedia of Linguistics, Information and Control* (eds. A. R. Meaham and R. A. Hudson), Pergamon Press, Elmsford, NY, p. 162.
- Box, G. E. P. and Jenkins, G. M. (1976). *Time Series Analysis: Forecasting and Control*, revised ed., Holden-Day, San Francisco, CA.
- Box, G. E. P., Jenkins, G. M., and Bacon, D. W. (1967a). Models for forecasting seasonal and nonseasonal time series, in *Spectral Analysis of Time Series* (ed. B. Harris), Wiley, New York, pp. 271–311.
- Box, G. E. P., Jenkins, G. M., and MacGregor, J. F. (1974). Some recent advances in forecasting and control, Part II, *Appl. Stat.*, **23**, 158–179.
- Box, G. E. P., Jenkins, G. M., and Wichern, D. W. (1967b). Least squares analysis with a dynamic model, Technical Report 105, Department of Statistics, University of Wisconsin–Madison.
- Box, G. E. P. and Kramer, T. (1992). Statistical process monitoring and feedback adjustments—a discussion, *Technometrics*, **34**, 251–285.
- Box, G. E. P. and Luceño, A. (1993). Charts for optimal feedback control with recursive sampling and adjustment, Report 89, Center for Quality and Productivity Improvement, University of Wisconsin–Madison.
- Box, G. E. P. and MacGregor, J. F. (1976). Parameter estimation with closed-loop operating data, Technometrics, 18, 371–380.
- Box, G. E. P. and Pierce, D. A. (1970). Distribution of residual autocorrelations in autoregressive-integrated moving average time series models, *J. Am. Stat. Assoc.*, **65**, 1509–1526.
- Box, G. E. P. and Ramírez, J. (1992). Cumulative score charts, Qual. Reliab. Eng., 8, 17-27.
- Box, G. E. P. and Tiao, G. C. (1965). Multiparameter problems from a Bayesian point of view, *Ann. Math. Stat.*, **36**, 1468–1482.
- Box, G. E. P. and Tiao, G. C. (1973). Bayesian Inference, Addison-Wesley, Reading, MA.
- Box, G. E. P. and Tiao, G. C. (1975). Intervention analysis with applications to economic and environmental problems, *J. Am. Stat. Assoc.*, **70**, 70–79.
- Box, G. E. P. and Tiao, G. C. (1976). Comparison of forecast and actuality, Appl. Stat., 25, 195–200.
- Box, G. E. P. and Tiao, G. C. (1977). A canonical analysis of multiple time series, *Biometrika*, 64, 355–365.
- Bray, J. (1971). Dynamic equations for economic forecasting with the G.D.P.-unemployment relation and the growth of G.D.P. in the United Kingdom as an example, *J. R. Stat. Soc.*, **A134**, 167–209.

- Briggs, P. A. N., Hammond, P. H., Hughes, M. T. G., and Plumb, G. O. (1965). Correlation analysis of process dynamics using pseudo-random binary test perturbations, *Proceedings of the Institution of Mechanical Engineers, Advances in Automatic Control*, Paper 7, Nottingham, UK, April.
- Brockwell, P. J. and Davis, R. A. (1991). *Time Series: Theory and Methods*, 2nd ed., Springer, New York.
- Brown, R. G. (1962). *Smoothing, Forecasting and Prediction of Discrete Time Series*, Prentice Hall, Englewood Cliffs, NJ.
- Brown, R. G. and Meyer, R. F. (1961). The fundamental theorem of exponential smoothing, *Oper. Res.*, **9**, 673–685.
- Brubacher, S. R. and Tunnicliffe Wilson, G. (1976). Interpolating time series with applications to the estimation of holiday effects on electricity demand, *Appl. Stat.*, **25**, 107–116.
- Bruce, A. G. and Martin, R. D. (1989). Leave-k-out diagnostics for time series (with discussion), *J. R. Stat. Soc.*, **B51**, 363–424.
- Campbell, S. D. and Diebold, F. X. (2005). Weather forecasting for weather derivatives, *J. Am. Stat. Assoc.*, **100**, 6–16.
- Chan, N. H. and Wei, C. Z. (1988). Limiting distributions of least squares estimates of unstable autoregressive processes, *Ann. Stat.*, **16**, 367–401.
- Chang, I., Tiao, G. C., and Chen, C. (1988). Estimation of time series parameters in the presence of outliers. *Technometrics*, **30**, 193–204.
- Chatfield, C. (1979). Inverse autocorrelations, J. R. Stat. Soc., A142, 363–377.
- Cheang, W. K. and Reinsel, G. C. (2000). Bias reduction of autoregressive estimates in time series regression model through restricted maximum likelihood, *J. Am. Stat. Assoc.*, **95**, 1173–1184.
- Cheang, W. K. and Reinsel, G. C. (2003). Finite sample properties of ML and REML estimators in time series regression models with long memory noise, *J. Stat. Comput. Simul.*, **73**, 233–259.
- Chen, C. and Liu, L.-M. (1993). Joint estimation of model parameters and outlier effects in time series, *J. Am. Stat. Assoc.*, **88**, 284–297.
- Chen, C. and Tiao, G. C. (1990). Random level shift time series models, ARIMA approximation, and level shift detection, *J. Bus. Econ. Stat.*, **8**, 170–186.
- Chen, R. and Tsay, R. S. (1993). Nonlinear additive ARX models, J. Am. Stat. Assoc., 88, 955–967.
- Chu, Y-J., Tiao, G. C., and Bell, W. R. (2012). A mean squared error criterion for comparing X-12-ARIMA and model-based seasonal adjustment filters, *Taiwan Econ. Forecast Policy*, **43**, 1–32.
- Cleveland, W. S. (1972). The inverse autocorrelations of a time series and their applications, *Technometrics*, **14**, 277–293.
- Cleveland, W. S. and Tiao, G. C. (1976). Decomposition of seasonal time series: a model for the Census X-11 Program, *J. Am. Stat. Assoc.*, **71**, 581–587.
- Cooper, D. M. and Thompson, R. (1977). A note on the estimation of the parameters of the autoregressive moving average process, *Biometrika*, **64**, 625–628.
- Cooper, D. M. and Wood, E. F. (1982). Identifying multivariate time series models, *J. Time Ser. Anal.*, **3**, 153–164.
- Coutie, G. A. (1964) Short Term Forecasting, ICI Monograph 2, Oliver & Boyd, Edinburgh.
- Crawley, M. J. (2007). The R Book, Wiley, Hoboken, NJ.
- Cryer, J. D. and Chan, K.-S. (2010). *Time Series Analysis with Applications in R*, 2nd ed., Springer, New York.
- Damsleth, E. (1980). Interpolating missing values in a time series, Scand. J. Stat., 7, 33–39.
- Daniel, C. (1959). Use of half-normal plots in interpreting factorial two-level experiments, *Technometrics*, 1, 311–341.

- Davies, N., Triggs, C. M., and Newbold, P. (1977). Significance levels of the Box–Pierce portmanteau statistic in finite samples, *Biometrika*, **64**, 517–522.
- Deistler, M., Dunsmuir, W., and Hannan, E. J. (1978). Vector linear time series models: corrections and extensions, *Adv. Appl. Probab.*, **10**, 360–372.
- Deming, W. E. (1986). *Out of the Crisis*, Center for Advanced Engineering Study, MIT, Cambridge, MA
- Dent, W. and Min, A. S. (1978). A Monte Carlo study of autoregressive integrated moving average processes, *J. Econom.*, **7**, 23–55.
- Dickey, D. A., Bell, W. R., and Miller, R. B. (1986). Unit roots in time series models: tests and implications, *Am. Stat.*, **40**, 12–26.
- Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimates for autoregressive time series with a unit root, *J. Am. Stat. Assoc.*, **74**, 427–431.
- Dickey, D. A. and Fuller, W. A. (1981). Likelihood ratio tests for autoregressive time series with a unit root, *Econometrica*, **49**, 1057–1072.
- Dickey, D. A. and Pantula, S. G. (1987). Determining the order of differencing in autoregressive processes, J. Bus. Econ. Stat., 5, 455–461.
- Diebold, F. X. and Nerlove, M. (1989). The dynamics of exchange rate volatility: a multivariate latent factor ARCH model, *J. Appl. Econom.*, **4**, 1–28.
- Doob, J. L. (1953). Stochastic Processes, Wiley, New York.
- Dudding, B. P. and Jennet, W. J. (1942). Quality control charts, British Standard 600R.
- Dunsmuir, W. and Hannan, E. J. (1976). Vector linear time series models, *Adv. Appl. Probab.*, **8**, 339–364.
- Durbin, J. (1960). The fitting of time-series models, Rev. Int. Stat. Inst., 28, 233–244.
- Durbin, J. (1970). Testing for serial correlation in least-squares regression when some of the regressors are lagged dependent variables, *Econometrica*, **38**, 410–421.
- Durbin, J. and Koopman, S. J. (2012). Time Series Analysis by State Space Methods, 2nd ed., Oxford University Press.
- Elliott, G., Rothenberg, T. J., and Stock, J. H. (1996). Efficient tests for an autoregressive unit root, *Econometrica*, **64**, 813–836.
- Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, *Econometrica*, 50, 987–1008.
- Engle, R. F. (1983). Estimates of the variance of U.S. inflation based on the ARCH model, *J. Money Credit Banking*, **15**, 286–301.
- Engle, R. F. and Bollerslev, T. (1986). Modeling the persistence of conditional variances, *Econom. Rev.*, **5**, 1–50.
- Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correction: representation, estimation, and testing, *Econometrica*, **55**, 251–276.
- Engle, R. F., Lilien, D. M., and Robins, R. P. (1987). Estimating time-varying risk premia in the term structure: the ARCH-M model, *Econometrica*, **55**, 391–407.
- Fan, J. and Yao, Q. (2003). Nonlinear Time Series, Springer, New York.
- Fearn, T. and Maris, P. I. (1991). An application of Box–Jenkins methodology to the control of gluten addition in a flour mill, *Appl. Stat.*, **40**, 477–484.
- Fisher, R. A. (1956). Statistical Methods and Scientific Inference, Oliver & Boyd, Edinburgh.
- Fisher, T. J. and Gallagher, C. M. (2012). New weighted portmanteau statistics for time series goodness of fit testing, *J. Am. Stat. Assoc.* **107**, 777–787.
- Fox, A. J. (1972). Outliers in time series, J. R. Stat. Soc., **B34**, 350–363.

- Francq, C. and Zakoïan, J.-M. (2009). A tour in the asymptotic theory of GARCH estimation, in *Handbook of Financial Time Series* (eds. T. G. Andersen, R. A. Davis, J.-P. Kreiss, and T. Mikosch), Springer, New York, pp. 85–111.
- Francq, C. and Zakoïan, J.-M. (2010). GARCH Models, Wiley, New York.
- Franses, P. H. and van Dijk, D. (2000). *Non-Linear Time Series Models in Empirical Finance*, Cambridge University Press, Cambridge.
- Fuller, W. A. (1996). Introduction to Statistical Time Series, 2nd ed., Wiley, New York.
- Gao, J. (2007). Nonlinear Time Series: Semiparametric and Nonparametric Methods, Chapman & Hall/CRC.
- Gardner, G., Harvey, A. C., and Phillips, G. D. A. (1980). Algorithm AS 154. An algorithm for exact maximum likelihood estimation of autoregressive-moving average models by means of Kalman filtering, *Appl. Stat.*, **29**, 311–322.
- Gersch, W. and Kitagawa, G. (1983). The prediction of time series with trends and seasonalities, *J. Bus. Econ. Stat.*, 1, 253–264.
- Geweke, J. and Porter-Hudak, S. (1983). The estimation and application of long memory time series models, *J. Time Ser. Anal.*, **4**, 221–238.
- Ghysels, E. and Osborn, D. R. (2001). The Econometric Analysis of Seasonal Time Series, Cambridge University Press, Cambridge.
- Glosten, L. R., Jagannathan, R., and Runkle, D. E. (1993). On the relation between the expected value and the volatility of nominal excess return on stocks, *J. Finance*, **48**, 1779–1801.
- Godfrey, L. G. (1979). Testing the adequacy of a time series model, *Biometrika*, **66**, 67–72.
- González-Rivera, G. (1998). Smooth transition GARCH models, *Stud. Nonlinear Dyn. Econom.*, 3, 161–178.
- Granger, C. W. J. and Anderson, A. P. (1978). An Introduction to Bilinear Time Series Models, Vandenhoek & Ruprecht, Gottingen.
- Granger, C. W. J. and Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing, *J. Time Ser. Anal.*, **1**, 15–29.
- Gray, H. L., Kelley, G. D., and McIntire, D. D. (1978). A new approach to ARMA modelling, *Commun. Stat.*, **B7**, 1–77.
- Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis of Stationary Time Series, Wiley, New York.
- Hagerud, G. E. (1997). A new non-linear GARCH model, EFI, Stockholm School of Economics.
- Haggan, V. and Ozaki, T. (1981). Modeling nonlinear vibrations using an amplitude-dependent autoregressive time series model, *Biometrika*, **68**, 189–196.
- Haldrup, N., Kruse, R., Terävirta, T., and Varneskov, R. T. (2013). Unit roots, non-linearities and structural breaks, in *Handbook of Research Methods and Applications in Empirical Macroeco-nomics* (eds. N. Hashimzade and M. A. Thornton), Edward Elgar Publishing, Ltd., UK
- Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application, Academic Press, New York.
- Hamilton, J. D. (1994). Time Series Analysis, Princeton University Press, Princeton, NJ.
- Hannan, E. J. (1960). Time Series Analysis, Methuen, London.
- Hannan, E. J. (1970). Multiple Time Series, Wiley, New York.
- Hannan, E. J. and Deistler, M. (1988). The Statistical Theory of Linear Systems, Wiley, New York.
- Hannan, E. J., Dunsmuir, W. M., and Deistler, M. (1979). Estimation of vector ARMAX models, *J. Multivariate Anal.*, **10**, 275–295.
- Hannan, E. J. and Kavalieris, L. (1984). Multivariate linear time series models, Adv. Appl. Probab., 16, 492–561.

- Hannan, E. J. and Quinn, B. G. (1979). The determination of the order of an autoregression, *J. R. Stat. Soc.*, **B41**, 190–195.
- Hannan, E. J. and Rissanen, J. (1982). Recursive estimation of mixed autoregressive moving average order, *Biometrika*, **69**, 81–94; correction, **70**, 303, 1983.
- Harris, T. J., MacGregor, J. F., and Wright, J. D. (1982). An overview of discrete stochastic controllers: generalized PID algorithms with dead-time compensation, *Can. J. Chem. Eng.*, **60**, 425–432.
- Harrison, P. J. (1965). Short-term sales forecasting, Appl. Stat., 14, 102–139.
- Harvey, A. C. (1981). Finite sample prediction and overdifferencing, J. Time Ser. Anal., 2, 221–232.
- Harvey, A. C. (1989). Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge.
- Harvey, A. C. and Phillips, G. D. A. (1979). Maximum likelihood estimation of regression models with autoregressive-moving average disturbances, *Biometrika*, **66**, 49–58.
- Harvey, A. C. and Pierse, R. G. (1984). Estimating missing observations in economic time series, J. Am. Stat. Assoc., 79, 125–131.
- Harvey, A. C., Ruiz, E., and Shephard, N. (1994). Multivariate stochastic variance models, *Rev. Econ. Stud.*, **61**, 247–264.
- Harvey, A. C. and Todd, P. H. J. (1983). Forecasting economic time series with structural and Box–Jenkins models: a case study, *J. Bus. Econ. Stat.*, **1**, 299–307.
- Harvey, D. I., Leybourne, S. J., and Taylor, A. M. R. (2009). Unit root testing in practice: dealing with uncertainty over trend and initial conditions (with commentaries and rejoiner), *Econom. Theory*, 25, 587–667.
- Harville, D. A. (1974). Bayesian inference for variance components using only error contrasts, *Biometrika*, **61**, 383–385.
- Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems, *J. Am. Stat. Assoc.*, **72**, 320–340.
- Haugh, L. D. and Box, G. E. P. (1977). Identification of dynamic regression (distributed lag) models connecting two time series, *J. Am. Stat. Assoc.*, **72**, 121–130.
- Hauser, M. A. (1999). Maximum likelihood estimators for ARMA and ARFIMA models: a Monte Carlo study, *J. Stat. Plan. Infer.*, **80**, 229–255.
- He, C., Silvennoinen, A., and Teräsvirta, T. (2008). Parameterizing unconditional skewness in non-linear time series with conditional heteroscedasticity, *J. Financ. Econ.*, **6**, 208–230.
- He, C. and Teräsvirta, T. (1999). Fourth moment structure of the GARCH(p,q) process, *Econom. Theory*, **15**, 824–846.
- Hillmer, S. C. and Tiao, G. C. (1979). Likelihood function of stationary multiple autoregressive moving average models, *J. Am. Stat. Assoc.*, **74**, 652–660.
- Hillmer, S. C. and Tiao, G. C. (1982). An ARIMA-model-based approach to seasonal adjustment, J. Am. Stat. Assoc., 77, 63–70.
- Hinich, M. J. (1982). Testing for Gaussianity and linearity of a stationary time series, *J. Time Ser. Anal.*, 3, 169–176.
- Holt, C. C. (1957). Forecasting trends and seasonals by exponentially weighted moving averages, O.N.R. Memorandum 52, Carnegie Institute of Technology, Pittsburgh, PA.
- Holt, C. C., Modigliani, F., Muth, J. F., and Simon, H. A. (1963). *Planning Production, Inventories and Work Force*, Prentice Hall, Englewood Cliffs, NJ.
- Hosking, J. R. M. (1980). The multivariate portmanteau statistic, J. Am. Stat. Assoc., 75, 602-608.
- Hosking, J. R. M. (1981). Fractional differencing, Biometrika, 68, 165–176.
- Hosking, J. R. M. (1996). Asymptotic distributions of the sample mean, autocovariances, and autocorrelations of long memory time series, *J. Econom.*, 73, 261–284.

- Hougen, J. O. (1964). Experience and Experiments with Process Dynamics, Chemical Engineering Progress Monograph Series, Vol. 60, No. 4, American Institute Chemical Engineers.
- Hurst, H. (1951). Long term storage capacity of reservoirs, Trans. Am. Soc. Civil Eng., 116, 778–808.
- Hutchinson, A. W. and Shelton, R. J. (1967). Measurement of dynamic characteristics of full-scale plant using random perturbing signals: an application to a refinery distillation column, *Trans. Inst. Chem. Eng.*, 45, 334–342.
- Ishikawa, K. (1976). Guide to Quality Control, Asian Productivity Organization, Tokyo.
- Jacquier, E., Polson, N. G., and Rossi, P. (1994). Bayesian analysis of stochastic volatility models (with discussion), *J. Bus. Econ. Stat.*, **12**, 371–417.
- Jeffreys, H. (1961). Theory of Probability, 3rd ed., Clarendon Press, Oxford.
- Jenkins, G. M. (1956). Tests of hypotheses in the linear autoregressive model, I, *Biometrika*, 41, 405–419, 1954; II, *Biometrika*, 43, 186–199.
- Jenkins, G. M. (1964). Contribution to the discussion of the paper "Relationships between Bayesian and confidence limits for predictors," by A. R. Thatcher, *J. R. Stat. Soc.*, **B26**, 176–210.
- Jenkins, G. M. (1975). The interaction between the muskrat and mink cycles in North Canada, *Proceedings of the 8th International Biometric Conference*, Editura Aca- demiei Republicii Socialiste Romania, Bucharest, pp. 55–71.
- Jenkins, G. M. (1979). Practical Experiences with Modelling and Forecasting Time Series, Gwilym Jenkins & Partners Ltd., Jersey, Channel Islands.
- Jenkins, G. M. and Watts, D. G. (1968). Spectral Analysis and Its Applications, Holden-Day, San Francisco, CA.
- Johansen, S. (1988). Statistical analysis of cointegration vectors, J. Econ. Dyn. Control, 12, 231–254.
- Johansen, S. (1991). Estimation and hypothesis testing of cointegration vectors in Gaussian vector autoregressive models, *Econometrica*, **59**, 1551–1580.
- Johansen, S. and Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration: with applications to the demand for money, *Oxf. Bull. Econ. Stat.*, **52**, 169–210.
- Johnson, R. A. and Wichern, D. W. (2007). *Applied Multivariate Statistical Analysis*, 6th ed., Pearson, Prentice Hall, Upper Saddle River, NJ.
- Jones, R. H. (1980). Maximum likelihood fitting of ARMA models to time series with missing observations, *Technometrics*, 22, 389–395.
- Kalman, R. E. (1960). A new approach to linear filtering and prediction problems, *J. Basic Eng.*, **82**, 35–45.
- Kalman, R. E. and Bucy, R.S. (1961). New results in linear filtering and prediction theory, *J. Basic Eng.*, **83**, 95–108.
- Keenan, D. M. (1985). A Tukey non-additivity-type test for time series nonlinearity, *Biometrika*, 72, 39–44.
- Kendall, M. G. (1945). On the analysis of oscillatory time-series, J. R. Stat. Soc., A108, 93–129.
- Kitagawa, G. and Gersch, W. (1984). A smoothness priors-state space modeling of time series with trend and seasonality, *J. Am. Stat. Assoc.*, **79**, 378–389.
- Kohn, R. and Ansley, C. F. (1986). Estimation, prediction, and interpolation for ARIMA models with missing data, *J. Am. Stat. Assoc.*, **81**, 751–761.
- Kolmogoroff, A. (1939). Sur l'interpolation et l'extrapolation des suites stationnaires, C. R. Acad. Sci. Paris, 208, 2043–2045.
- Kolmogoroff, A. (1941a). Stationary sequences in Hilbert space, Bull. Math. Univ. Moscow, 2(6), 1–40.
- Kolmogoroff, A. (1941b). Interpolation und Extrapolation von stationären zufälligen folgen, *Bull. Acad. Sci. (Nauk) USSR, Ser. Math.*, **5**, 3–14.

- Koopmans, L. H. (1974). The Spectral Analysis of Time Series, Academic Press, New York.
- Kotnour, K. D., Box, G. E. P., and Altpeter, R. J. (1966). A discrete predictor-controller applied to sinusoidal perturbation adaptive optimization, *Inst. Soc. Am. Trans.*, **5**, 255–262.
- Lanne, M. and Saikkonen, P. (2005). Nonlinear GARCH models for highly persistent volatility, Econom. J., 8, 251–276.
- Le, N. D., Martin, R. D., and Raftery, A. E. (1996). Modeling flat stretches, bursts, and outliers in time series using mixture transition distribution models, *J. Am. Stat. Assoc.*, **91**, 1504–1515.
- Ledolter, J. (1981). Recursive estimation and adaptive forecasting in ARIMA models with time varying coefficients, in *Applied Time Series II* (ed. D. F. Findley), Academic Press, New York, pp. 449–472.
- Levinson, N. (1947). The Wiener (root mean square) error criterion in filter design and prediction, *Math. Phys.*, **25**, 262–278.
- Lewis, P. A. W. and Stevens, J. G. (1991). Nonlinear modeling of time series using multivariate adaptive regression splines (MARS), *J. Am. Stat. Assoc.*, **86**, 864–877.
- Leybourne, S. J. and McCabe, B. P. M. (1994). A consistent test for a unit root, *J. Bus. Econ. Stat.*, 12, 157–166.
- Li, W. K. (2004). Diagnostic Checks for Time Series, Chapman & Hall/CRC.
- Li, W. K., Ling, S., and McAleer, M. (2003). Recent theoretical results for time series models with GARCH errors, *J. Econ. Surv.*, **16**, 245–269.
- Li, W. K. and Mak, T. K. (1994). On the squared residual autocorrelations in non-linear time series models with conditional heteroscedasticity, *J. Time Ser. Anal.*, **15**, 627–636.
- Li, W. K. and McLeod, A. I. (1981). Distribution of the residual autocorrelations in multivariate ARMA time series models, *J. R. Stat. Soc.*, **B43**, 231–239.
- Li, W. K. and McLeod, A. I. (1986). Fractional time series modelling, *Biometrika*, 73, 217–221.
- Ling, S. and McAleer, M. (2002). Stationarity and the existence of moments of a family of GARCH models, J. Econom., 106, 109–117.
- Ling, S. and Tong, H. (2011). Score based goodness-of-fit tests for time series, *Stat. Sin.*, **21**, 1807–1829.
- Liu, J. and Brockwell, P. J. (1988). On the general bilinear time series model, *J. Appl. Probab.*, **25**, 553–564.
- Liu, L.-M. and Hanssens, D. M. (1982). Identification of multiple-input transfer function models, Commun. Stat., A11, 297–314.
- Ljung, G. M. (1986). Diagnostic testing of univariate time series models, *Biometrika*, 73, 725-730.
- Ljung, G. M. (1993). On outlier detection in time series, J. R. Stat. Soc., B55, 559–567.
- Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series models, *Biometrika*, **65**, 297–303.
- Ljung, G. M. and Box, G. E. P. (1979). The likelihood function of stationary autoregressive-moving average models, *Biometrika*, **66**, 265–270.
- Loève, M. (1977). Probability Theory I, Springer, New York.
- Lundbergh, S. and Teräsvirta, T. (2002). Evaluating GARCH models, J. Econom., 110, 417–435.
- Lütkepohl, H. (2006). New Introduction to Multiple Time Series Analysis, Springer, Berlin.
- Lütkepohl, H. and Poskitt, D. S. (1996). Specification of echelon-form VARMA models, *J. Bus. Econ. Stat.*, **14**, 69–79.
- Luukkonen, R., Saikkonen, P., and Teräsvirta, T. (1988a). Testing linearity against smooth transition autoregressive models, *Biometrika*, **75**, 491–499.
- Luukkonen, R., Saikkonen, P., and Teräsvirta, T. (1988b). Testing linearity in univariate time series, *Scand. J. Stat.*, **15**, 161–175.

- MacGregor, J. F. (1972). Topics in the control of linear processes with stochastic disturbances, Ph.D. thesis, University of Wisconsin–Madison.
- Mahdi, E. and McLeod, I. A. (2012). Improved multivariate portmanteau test, *J. Time Ser. Anal.*, **33**, 211–222.
- Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations, *Econometrica*, **11**, 173–220.
- Maravall, A. (1993). Stochastic linear trends: models and estimators, J. Econom., 56, 5–37.
- Martin, R. D. and Yohai, V. J. (1986). Influence functionals for time series (with discussion), *Ann. Stat.*, **14**, 781–855.
- McLeod, A. I. and Hipel, K. W. (1978). Preservation of the rescaled adjusted range. I. A reassessment of the Hurst phenomenon, *Water Resour. Res.*, **14**, 491–508.
- McLeod, A. I. and Li, W. K. (1983). Diagnostic checking ARMA time series models using squared-residual autocorrelations, J. Time Ser. Anal., 4, 269–273.
- Melino, A. and Turnbull, S. M. (1990). Pricing foreign currency options with stochastic volatility, *J. Econom.*, **45**, 239–265.
- Milhøj, A. (1985). The moment structure of ARCH processes, Scand. J. Stat., 12, 281–292.
- Mills, T. C. and Markellos, R. N. (2008). *The Econometric Modelling of Financial Time Series*, 3rd ed., Cambridge University Press, Cambridge.
- Montgomery, D. C. and Weatherby, G. (1980). Modeling and forecasting time series using transfer function and intervention methods, *AIIE Trans.*, 289–307.
- Monti, A. C. (1994). A proposal for residual autocorrelation test in linear models, *Biometrika*, **81**, 776–780.
- Moran, P. A. P. (1954). Some experiments on the prediction of sunspot numbers, *J. R. Stat. Soc.*, **B16**, 112–117.
- Muth, J. F. (1960). Optimal properties of exponentially weighted forecasts, *J. Am. Stat. Assoc.*, **55**, 299–306.
- Nelson, D. B. (1990). Stationarity and persistence in the GARCH(1, 1) model, *Econom. Theory*, **6**, 318–334
- Nelson, D. B. (1991). Conditional heteroskedasticity in asset returns: a new approach, *Econometrica*, **59**, 347–370.
- Nelson, D. B. and Cao, C. Q. (1992). Inequality constraints in the univariate GARCH model, *J. Bus. Econ. Stat.*, **10**, 229–235.
- Newbold, P. (1973). Bayesian estimation of Box–Jenkins transfer function-noise models, *J. R. Stat. Soc.*, **B35**, 323–336.
- Newbold, P. (1974). The exact likelihood function for a mixed autoregressive-moving average process, *Biometrika*, **61**, 423–426.
- Newbold, P. (1980). The equivalence of two tests of time series model adequacy, *Biometrika*, **67**, 463–465.
- Ng, S. and Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power, *Econometrica*, **69**, 1519–1554.
- Nicholls, D. F. and Hall, A. D. (1979). The exact likelihood function of multivariate autoregressive moving average models, *Biometrika*, **66**, 259–264.
- Nicholls, D. F. and Quinn, B. G. (1982). Random Coefficient Autoregressive Models: An Introduction, Lecture Notes in Statistics, Vol. 11, Springer, New York.
- Osborn, D. R. (1982). On the criteria functions used for the estimation of moving average processes, *J. Am. Stat. Assoc.*, **77**, 388–392.
- Page, E. S. (1957). On problems in which a change in a parameter occurs at an unknown point, *Biometrika*, **44**, 248–252.

- Page, E. S. (1961). Cumulative sum charts, *Technometrics*, **3**, 1–9.
- Palm, F. C., Smeekes, S., and Urbain, J. P. (2008). Bootstrap unit-root tests: comparison and extensions, J. Time Ser. Anal., 29, 371–401.
- Palma, W. (2007). Long-Memory Time Series: Theory and Methods, Wiley, New York.
- Pankratz, A. (1991). Forecasting with Dynamic Regression Models, Wiley, New York.
- Pantula, S. G., Gonzalez-Farias, G., and Fuller, W. A. (1994). A comparison of unit root test criteria, J. Bus. Econ. Stat., 12, 449–459.
- Peña, D. and Rodríguez, J. (2002). A powerful portmanteau test of lack of fit for time series, *J. Am. Stat. Assoc.*, **97**, 601–610.
- Peña, D. and Rodríguez, J. (2006). The log of the determinant of the autocorrelation matrix for testing of lack of fit in time series, *J. Stat. Plan. Infer.*, **136**, 2706–2718.
- Perron, P. and Qu, Z. (2007). A simple modification to improve the finite sample properties of Ng and Perron's unit root tests, *Econ. Lett.*, **94**, 12–19.
- Petruccelli, J. and Davies, N. (1986). A portmanteau test for self-exciting threshold autoregressive-type nonlinearity in time series, *Biometrika*, **73**, 687–694.
- Phillips, P. C. B. (1987). Time series regression with a unit root, *Econometrica*, **55**, 277–301.
- Phillips, P. C. B. and Perron, P. (1988). Testing for a unit root in time series regression, *Biometrika*, **75**, 335–346.
- Phillips, P. C. B. and Xiao, Z. (1998). A primer on unit root testing, J. Econ. Surv., 12, 423–470.
- Pierce, D. A. (1972a). Least squares estimation in dynamic-disturbance time series models, *Biometrika*, **59**, 73–78.
- Pierce, D. A. (1972b). Residual correlations and diagnostic checking in dynamic-disturbance time series models, *J. Am. Stat. Assoc.*, **67**, 636–640.
- Poskitt, D. S. (1992). Identification of echelon canonical forms for vector linear processes using least squares, *Ann. Stat.*, **20**, 195–215.
- Poskitt, D. S. and Tremayne, A. R. (1980). Testing the specification of a fitted autoregressive-moving average model, *Biometrika*, **67**, 359–363.
- Poskitt, D. S. and Tremayne, A. R. (1981). An approach to testing linear time series models, *Ann. Stat.*, **9**, 974–986.
- Poskitt, D. S. and Tremayne, A. R. (1982). Diagnostic tests for multiple time series models, *Ann. Stat.*, **10**, 114–120.
- Priestley, M. B. (1980). State-dependent models: a general approach to non-linear time series analysis, *J. Time Ser. Anal.*, **1**, 47–71.
- Priestley, M. B. (1981). Spectral Analysis and Time Series, Academic Press, New York.
- Priestley, M. B. (1988). Non-Linear and Non-Stationary Time Series Analysis, Academic Press, London.
- Quenouille, M. H. (1949). Approximate tests of correlation in time-series, *J. R. Stat. Soc.*, **B11**, 68–84.
- Quenouille, M. H. (1952). Associated Measurements, Butterworth, London.
- Quenouille, M. H. (1957). Analysis of Multiple Time Series, Hafner, New York.
- Quinn, B. G. (1980). Order determination for a multivariate autoregression, J. R. Stat. Soc., B42, 182–185.
- Ramsey, J. B. (1969). Tests for specification errors in classical least-squares regression analysis, J. R. Stat. Soc., B31, 350–371.
- Rao, C. R. (1965). Linear Statistical Inference and Its Applications, Wiley, New York.
- Rao, J. N. K. and Tintner, G. (1963). On the variate difference method, *Aust. J. Stat.*, 5, 106–116.

- Reinsel, G. C. (1979). Maximum likelihood estimation of stochastic linear difference equations with autoregressive moving average errors, *Econometrica*, 47, 129–151.
- Reinsel, G. C. (1997). Elements of Multivariate Time Series Analysis, 2nd ed., Springer, New York.
- Reinsel, G. C. and Ahn, V. (1992). Vector autoregressive models with unit roots and reduced rank structure: estimation, likelihood ratio test, and forecasting, *J. Time Ser. Anal.*, **13**, 353–375.
- Reinsel, G. C. and Tiao, G. C. (1987). Impact of chlorofluoromethanes on stratospheric ozone: a statistical analysis of ozone data for trends, *J. Am. Stat. Assoc.*, **82**, 20–30.
- Reinsel, G. C. and Wincek, M. A. (1987). Asymptotic distribution of parameter estimators for nonconsecutively observed time series, *Biometrika*, 74, 115–124.
- Rivera, D. E., Morari, M., and Skogestad, S. (1986). Internal model control. 4. PID controller design, *Ind. Eng. Chem. Process Des. Dev.*, **25**, 252–265.
- Roberts, S. W. (1959). Control chart tests based on geometric moving averages, *Technometrics*, 1, 239–250.
- Robinson, E. A. (1967). Multichannel Time Series Analysis, Holden-Day, San Francisco, CA.
- Robinson, P. M. (2003). Time Series with Long Memory, Oxford University Press, Oxford.
- Said, S. E. and Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order, *Biometrika*, **71**, 599–607.
- Said, S. E. and Dickey, D. A. (1985). Hypothesis testing in ARIMA(p, 1, q) models, J. Am. Stat. Assoc., 80, 369–374.
- Saikkonen, P. and Luukkonen, R. (1993). Testing for a moving average unit root in autoregressive integrated moving average models, *J. Am. Stat. Assoc.*, **88**, 596–601.
- Savage, L. J. (1962). The Foundations of Statistical Inference, Methuen, London.
- Schmidt, P. and Phillips, P. C. B. (1992). LM tests for a unit root in the presence of deterministic trends, *Oxf. Bull. Econ. Stat.*, **54**, 257–287.
- Schuster, A. (1898). On the investigation of hidden periodicities, *Terr. Magn. Atmos. Electr.*, 3, 13–41.
- Schuster, A. (1906). On the periodicities of sunspots, *Philos. Trans. R. Soc.*, **A206**, 69–100.
- Schwarz, G. (1978). Estimating the dimension of a model, Ann. Stat., 6, 461–464.
- Shea, B. L. (1987). Estimation of multivariate time series, J. Time Ser. Anal., 8, 95–109.
- Shephard, N. G. (2005). Stochastic Volatility: Selected Readings, Oxford University Press, Oxford.
- Shewhart, W. A. (1931). The Economic Control of the Quality of Manufactured Product, Macmillan, New York.
- Shin, D. W. and Fuller, W. A. (1998). Unit root tests based on unconditional maximum likelihood estimation for the autoregressive moving average, *J. Time Ser. Anal.*, **19**, 591–599.
- Shumway, R. and Stoffer, D. (2011). Time Series Analysis and Its Applications, 3rd ed., Springer, New York.
- Silvey, S. D. (1959). The Lagrangian multiplier test, Ann. Math. Stat., 30, 389–407.
- Slutsky, E. (1937). The summation of random causes as the source of cyclic processes (Russian), *Probl. Econ. Conditions*, **3**, 1, 1927; English translation, *Econometrica*, **5**, 105–146.
- Solo, V. (1984a). The exact likelihood for a multivariate ARMA model, *J. Multivariate Anal.*, **15**, 164–173.
- Solo, V. (1984b). The order of differencing in ARIMA models, J. Am. Stat. Assoc., 79, 916–921.
- Solo, V. (1986). Topics in advanced time series analysis, in *Lectures in Probability and Statistics* (eds. G. del Pino and R. Rebolledo), Springer, New York, pp. 165–328.
- Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models, *J. Econom.*, **53**, 165–188.

- Stralkowski, C. M. (1968). Lower order autoregressive-moving average stochastic models and their use for the characterization of abrasive cutting tools, Ph.D. thesis, University of Wisconsin–Madison.
- Straumann, D. and Mikosch, T. (2006). Quasi-maximum-likelihood estimation in conditionally heteroscedastic time series: a stochastic recurrence equations approach, *Ann. Stat.*, **34**, 2449–2495.
- Subba Rao, T. (1981). On the theory of bilinear models, J. R. Stat. Soc., B43, 244-255.
- Subba Rao, T. and Gabr, M. M. (1980). A test for nonlinearity of stationary time series, J. Time Ser. Anal., 1, 145–158.
- Subba Rao, T. and Gabr, M. M. (1984). An Introduction to Bispectral Analysis and Bilinear Time Series Models, Springer, Berlin.
- Tam, W. K. and Reinsel, G. C. (1997). Tests for seasonal moving average unit root in ARIMA models, J. Am. Stat. Assoc., 92, 725–738.
- Tam, W. K. and Reinsel, G. C. (1998). Seasonal moving-average unit root tests in the presence of a linear trend, *J. Time Ser. Anal.*, **19**, 609–625.
- Teräsvirta, T. (1994). Specification, estimation, and evaluation of smooth transition autoregressive models, *J. Am. Stat. Assoc.*, **89**, 208–218.
- Teräsvirta, T. (2009). An introduction to univariate GARCH models, in *Handbook of Financial Time Series* (eds. T. G. Andersen, R. A. Davis, J.-P Kreiss, J.-P., and T. Mikosch), Springer, New York, pp. 85–111.
- Teräsvirta, T., Tjøstheim, D, and Granger, W. J. (2010). *Modelling Nonlinear Economic Time Series*, Oxford University Press, Oxford, UK.
- Thompson, H. E. and Tiao, G. C. (1971). Analysis of telephone data: a case study of forecasting seasonal time series, *Bell J. Econ. Manage. Sci.*, **2**, 515–541.
- Tiao, G. C. and Box, G. E. P. (1981). Modeling multiple time series with applications, *J. Am. Stat. Assoc.*, **76**, 802–816.
- Tiao, G. C., Box, G. E. P., and Hamming, W. J. (1975). Analysis of Los Angeles photochemical smog data: a statistical overview, *J. Air Pollut. Control Assoc.*, **25**, 260–268.
- Tiao, G. C. and Tsay, R. S. (1983). Multiple time series modeling and the extended sample cross-correlations, *J. Bus. Econ. Stat.*, **1**, 43–56.
- Tiao, G. C. and Tsay, R. S. (1989). Model specification in multivariate time series (with discussion), *J. R. Stat. Soc.*, **B51**, 157–213.
- Tintner, G. (1940). The Variate Difference Method, Principia Press, Bloomington, IN.
- Tjøstheim, D. (1994). Non-linear time series: a selective review, Scand. J. Stat., 21, 97-130.
- Tong, H. (1978). On a threshold model, in *Pattern Recognition and Signal Processing* (ed. C. H. Chen), Sijthoff & Noordhoff, Amsterdam, pp. 101–141.
- Tong, H. (1983). Threshold Models in Non-Linear Time Series Analysis, Springer, New York.
- Tong, H. (1990). Non-Linear Time Series: A Dynamical System Approach, Oxford University Press, Oxford, UK.
- Tong, H. (2007). Birth of the threshold autoregressive model, Stat. Sin., 17, 8–14.
- Tong, H. and Lim, K. S. (1980). Threshold autoregression, limit cycles, and cyclical data (with discussion), *J. R. Stat. Soc.*, **B42**, 245–292.
- Tsay, R. S. (1986a). Nonlinearity tests for time series, *Biometrika*, **73**, 461–466.
- Tsay, R. S. (1986b). Time series model specification in the presence of outliers, *J. Am. Stat. Assoc.*, **81**, 132–141.
- Tsay, R. S. (1987). Conditional heteroskedastic time series models, J. Am. Stat. Assoc., 82, 590–604.
- Tsay, R. S. (1988). Outliers, level shifts, and variance changes in time series, J. Forecasting, 7, 1–20.
- Tsay, R. S. (1989a). Identifying multivariate time series models, J. Time Ser. Anal., 10, 357–372.

- Tsay, R. S. (1989b). Parsimonious parametrization of vector autoregressive moving average models, *J. Bus. Econ. Stat.*, **7**, 327–341.
- Tsay, R. S. (1991). Two canonical forms for vector ARMA processes, Stat. Sin., 1, 247–269.
- Tsay, R. S. (2010). Analysis of Financial Time Series, 3rd ed., Wiley, Hoboken, NJ.
- Tsay, R. S. (2014). Multivariate Time Series Analysis, Wiley, Hoboken, NJ.
- Tsay, R. S. and Tiao, G. C. (1984). Consistent estimates of autoregressive parameters and extended sample autocorrelation function for stationary and nonstationary ARMA models, *J. Am. Stat. Assoc.*, **79**, 84–96.
- Tsay, R. S. and Tiao, G. C. (1985). Use of canonical analysis in time series model identification, *Biometrika*, **72**, 299–315.
- Tuan, P.-D. (1985). Bilinear Markovian representation and bilinear models, Stoch. Process. Appl., 20, 295–306.
- Tuan, P.-D. (1986). The mixing property of bilinear and generalized random coefficient autoregressive models, *Stoch. Process. Appl.*, **21**, 291–300.
- Tukey, J. W. (1961). Discussion, emphasizing the connection between analysis of variance and spectrum analysis, *Technometrics*, **3**, 191–219.
- Tunnicliffe Wilson, G. (1970a). Optimal control: a general method of obtaining the feedback scheme which minimizes the output variance, subject to a constraint on the variability of the control variable, Technical Report 20, Department of Systems Engineering, University of Lancaster, Lancaster, UK.
- Tunnicliffe Wilson, G. (1970b). Modelling Linear Systems for Multivariate Control, Ph.D. thesis, University of Lancaster, UK.
- Tunnicliffe Wilson, G. (1989). On the use of marginal likelihood in time series model estimation, *J. R. Stat. Soc.*, **B51**, 15–27.
- Venables, W. N. and Ripley, B. D. (2002). *Modern Applied Statistics with S*, 4th ed., Springer, New York.
- Walker, A. M. (1964). Asymptotic properties of least-squares estimates of parameters of the spectrum of a stationary non-deterministic time-series, *J. Aust. Math. Soc.*, **4**, 363–384.
- Walker, G. (1931). On periodicity in series of related terms, Proc. R. Soc., A131, 518-532.
- Wei, W. W. S. (2006). *Time Series Analysis, Univariate and Multivariate Methods*, 2nd ed., Pearson, Addison-Wesley.
- Weiss, A. A. (1984). ARMA models with ARCH errors, J. Time Ser. Anal., 5, 129-143.
- Weiss, A. A. (1986). Asymptotic theory for ARCH models: estimation and testing. *Econom. Theory*, **2**, 107–131.
- Whittle, P. (1953). Estimation and information in stationary time series, Ark. Math., 2, 423–434.
- Whittle, P. (1963). *Prediction and Regulation by Linear Least-Squares Methods*, English Universities Press, London.
- Wichern, D. W. (1973). The behaviour of the sample autocorrelation function for an integrated moving average process, *Biometrika*, **60**, 235–239.
- Wiener, N. (1949). Extrapolation, Interpolation and Smoothing of Stationary Time Series, Wiley, New York.
- Wincek, M. A. and Reinsel, G. C. (1986). An exact maximum likelihood estimation procedure for regression-ARMA time series models with possibly nonconsecutive data, J. R. Stat. Soc., B48, 303–313.
- Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages, *Manage. Sci.*, **6.** 324–342.
- Wold, H. O. (1938). A Study in the Analysis of Stationary Time Series, Almqvist & Wiksell, Uppsala, Sweden; 2nd ed., 1954.

- Wong, H. and Ling, S. (2005). Mixed portmanteau tests for time series, *J. Time Ser. Anal.*, **26**, 569–579.
- Woodward, W. A. and Gray, H. L. (1981). On the relationship between the S array and the Box–Jenkins method of ARMA model identification, *J. Am. Stat. Assoc.*, **76**, 579–587.
- Xekalaki, E. and Degiannakis, S. (2010). ARCH Models for Financial Applications, Wiley, New York.
- Yaglom, A. M. (1955). The correlation theory of processes whose *n*th difference constitute a stationary process, *Mat. Sb.*, **37**(79), 141.
- Yamamoto, T. (1976). Asymptotic mean square prediction error for an autoregressive model with estimated coefficients, *Appl. Stat.*, **25**, 123–127.
- Yap, S. F. and Reinsel, G. C. (1995). Results on estimation and testing for a unit root in the nonstationary autoregressive moving-average model, *J. Time Ser. Anal.*, **16**, 339–353.
- Young, A. J. (1955). An Introduction to Process Control Systems Design, Longmans Green, New York.
- Yule, G. U. (1927). On a method of investigating periodicities in disturbed series, with special reference to Wolfer's sunspot numbers, *Philos. Trans. R. Soc.*, A226, 267–298.
- Zadeh, L. A. and Ragazzini, J. R. (1950). An extension of Wiener's theory of prediction, *J. Appl. Phys.*, **21**, 645.
- Zakoïan, J. M. (1994). Threshold heteroscedastic models, J. Econ. Dyn. Control, 18, 931–955.

INDEX

ACF. See autocorrelation function (ACF) Additive outliers (AO), 488 Adjustment (control) charts for discrete proportional-integral schemes, 575–78 metallic thickness example, 567–68 Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model see autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model see autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model see autoregressive integrated moving average (ARIMA) model ARCH model see autoregressive integrated moving average (ARIMA) model ARCH model see autoregressive integrated moving average (ARIMA) model ARCH model see autoregressive integrated moving average (ARIMA) model ARCH model see autoreg	A Abraham, B., 336, 498	of maximum likelihood estimator in ARMA model, 222
Additive outliers (AO), 488 Adjustment (control) charts for discrete proportional-integral schemes, 575–78 metallic thickness example, 567–68 Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARIMA) model ARTMA model. See autor		•
Adjustment (control) charts for discrete proportional-integral schemes, 575–78 metallic thickness example, 567–68 Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive integrated moving average (ARIMA) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARCH model. See autoregressive-moving average (ARMA) model ARTMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,	· · · · · · · · · · · · · · · · · · ·	
for discrete proportional-integral schemes, 575–78 metallic thickness example, 567–68 Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, R.L., 185, 287 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive integrated moving average (ARIMA) model ARTOM, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,		
metallic thickness example, 567–68 Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, R.L., 185, 287 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARMA model. See autoregressive-moving average (ARMA) model ARMA model See autoregressive-moving average (ARMA) model ARStröm, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,	- ·	· · ·
metallic thickness example, 567–68 Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive integrated moving average (ARMA) model ARMA model. See autoregressive integrated moving average (ARMA) model ARSTÖM, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,		•
Adler, J., 18 Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARMA model. See autoregressive-moving average (ARMA) model ARSTÖM, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, general model with added correlated noise,	metallic thickness example, 567–68	,
Ahn, S.K., 545, 547, 549, 551 Akaike, H., 190, 192, 193, 517, 518, 530, 537, 543 Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARTMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,		•
Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,	Ahn, S.K., 545, 547, 549, 551	
Akaike's information criterion (AIC), 187, 190, 193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARMA model. See autoregressive-moving average (ARMA) model ARStröm, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, general model with added correlated noise,	Akaike, H., 190, 192, 193, 517, 518, 530, 537,	processes, 180–81, 206–07
193, 360, 515, 517–8, 519, 522, 544, 558 Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARSTÖM, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, 528.	543	estimated, standard errors and variance,
Ali, M.M., 518 Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model AStröm, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, of ARMA process, 77 of ARMA(1, 1) process, 78–80 of AR(2) process, 59–64 of MA(2) process, 70 of MA(2) process, 71–72 of residuals, 287–89 role in identifying ARIMA model, Autocovariance coefficient, 24 Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	Akaike's information criterion (AIC), 187, 190,	31–34, 183–85
Andersen, T.G., 377 Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARSTÖM, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, of AR(1) process, 78–80 of AR(2) process, 59–64 of MA(1) process, 69 of MA(1) process, 70 of MA(2) process, 71–72 of residuals, 287–89 role in identifying ARIMA model, 180–83 Autocovariance coefficient, 24 Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	193, 360, 515, 517–8, 519, 522, 544, 558	estimated vs. theoretical, 183-84
Anderson, A.P., 378 Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARSTÖM, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, of AR process, 56–57 of AR(1) process, 59–64 of MA process, 69 of MA(1) process, 70 of MA(2) process, 71–72 of residuals, 287–89 role in identifying ARIMA model, 180–83 Autocovariance coefficient, 24 Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	Ali, M.M., 518	of ARMA process, 77
Anderson, B.D.O., 161, 498 Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARTOR MARIMA model ARMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, general model with added correlated noise,	Andersen, T.G., 377	of ARMA(1, 1) process, 78–80
Anderson, R.L., 185, 287 Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARTOM M.J., 3, 581 Asymptotic distribution of least square estimator in AR model, of AR(2) process, 59–64 of AR(2) process, 59–64 of MA(2) process, 70 of MA(2) process, 71–72 of residuals, 287–89 role in identifying ARIMA model, 180–83 Autocovariance coefficient, 24 Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	Anderson, A.P., 378	
Anderson, T.W., 190, 340, 550 Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARTOM Model ARMA model. See autoregressive moving average (ARMA) model ARMA model See autoregressive moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model,	Anderson, B.D.O., 161, 498	of AR(1) process, 58–59
Anscombe, F.J., 284 Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARTOM Model ARTOM ARTO	Anderson, R.L., 185, 287	
Ansley, C.F., 158, 160, 217, 243, 262, 496, 497, 498, 532 of residuals, 287–89 AR model. See autoregressive (AR) model ARCH model, 362–366 180–83 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model estimation, 30 Aström, K.J., 3, 581 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	Anderson, T.W., 190, 340, 550	
498, 532 AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, AR model. See autoregressive-moving average (ARMA) model average (ARMA) model setimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	Anscombe, F.J., 284	of MA(1) process, 70
AR model. See autoregressive (AR) model ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, role in identifying ARIMA model, 180–83 Autocovariance coefficient, 24 Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	Ansley, C.F., 158, 160, 217, 243, 262, 496, 497,	
ARCH model, 362–366 ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model ARMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution general linear process, 50 general model with added correlated noise,		of residuals, 287–89
ARIMA model. See autoregressive integrated moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, Autocovariance coefficient, 24 Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,		, ,
moving average (ARIMA) model ARMA model. See autoregressive-moving average (ARMA) model Aström, K.J., 3, 581 Asymptotic distribution of least square estimator in AR model, Autocovariance function defined, 24, 29 estimation, 30 standard errors, 31–32 general linear process, 50 general model with added correlated noise,	· · · · · · · · · · · · · · · · · · ·	
ARMA model. See autoregressive-moving average (ARMA) model estimation, 30 estimation, 31 standard errors, 31–32 asymptotic distribution general linear process, 50 general model with added correlated noise,	e e	,
average (ARMA) model estimation, 30 Aström, K.J., 3, 581 standard errors, 31–32 Asymptotic distribution general linear process, 50 of least square estimator in AR model, general model with added correlated noise,		
Aström, K.J., 3, 581 standard errors, 31–32 Asymptotic distribution general linear process, 50 of least square estimator in AR model, general model with added correlated noise,	e e	
Asymptotic distribution general linear process, 50 general model with added correlated noise,		•
of least square estimator in AR model, general model with added correlated noise,		
	J 1	2 1
20	of least square estimator in AR model, 274–76	general model with added correlated noise, 125–26

Time Series Analysis: Forecasting and Control, Fifth Edition. George E. P. Box, Gwilym M. Jenkins, Gregory C. Reinsel, and Greta M. Ljung
© 2016 John Wiley & Sons. Inc. Published 2016 by John Wiley & Sons. Inc.

Autocovariance function (Continued)	Autoregressive-moving average (ARMA)
linking estimate with sample spectrum,	model
43–44	ARMA(p, q) model, 10, 53, 75-78
and spectrum, 38–39	ARMA(1, 1) model, 78–81
Autocovariance generating function, 50, 82–84	autocorrelation function and spectrum, 77-78
Automatic process control (APC), 5, 561	estimation of parameters, 226-30, 232-33,
Autoregressive conditional heteroscedasticity	238–39, 250–51
(ARCH)	fractionally integrated, 385–92
ARCH model, 362–66	likelihood function, exact, 259-65
example, weekly S&P 500 Index, 370-73	missing values, 497
Exponential GARCH (EGARCH) model, 374	model checking, 284–301
GARCH model, 366–67	partial autocorrelation function, 78, 80-81
GARCH-M model, 376	relationship between ψ and π weights, 48–50
GJR and Threshold GARCH models, 374–75	stationarity and invertibility, 75–77
IGARCH and FIGARCH models, 376	
Model building, ARCH and GARCH,	В
367–70	Bachelier, L., 174
Nonlinear smooth transition models, 375–76	Backward difference operator, 7
testing for, 367–68	Backward shift operator, 7, 8, 48
Autoregressive integrated moving average	Bagshaw, M., 599
(ARIMA) model	Baillie, R.T., 343, 365
ARIMA(p, d, q) model, 88–105	Barnard, G.A., 5, 210, 256, 572
deterministic trends, 95, 121–22	Bartlett, M.S., 31-32, 47, 185, 210, 298, 433
difference equation form, 97	Basu, S., 500
differencing, 90–92	Bayes' theorem, 245
effect of added noise, 122-26	Bayesian estimation of parameters, 247-51
identification, 180–83	Bayesian HPD regions, 248-249
integrated MA (IMA) processes, 106–16	Bayesian information criterion (BIC), 190, 193,
inverted form, 103–05	515, 517–18, 519, 522, 532
minimum mean square error forecasts,	Bell, W.R., 336, 339, 343,
131–32	Bera, J., 362
random shock form, 98–103	Beran, J., 386, 389, 391
unit roots, unit root testing, 90–92, 353–61	Bergh, L.G., 581
Autoregressive (AR) model	Berndt, E.K., 369
AR(p) model, $8,52$	Bhargava, A., 358
AR(1) model, 58–59	BHHH algorithm, 369
AR(2) model, 59–64	Billingsley, P., 276, 354
autocorrelation function, 56–57	Birnbaum, A., 210
asymptotic distribution of estimators,	Bivariate stochastic process, 429
274–76	Bloomfield, P., 36, 553
duality with moving average process, 71,	Bollerslev, T., 362, 363, 365, 366, 367, 368,
74–5	369, 370, 376
estimation of parameters, 232–33, 236–38,	Bounded adjustment scheme
247–49, 269–74	for fixed adjustment cost, 583–84
forecasting, 150–52	indirect approach, 584–585
likelihood function, exact, 266–68	Box, G.E.P., 4, 15, 92, 96, 175, 246, 248, 262,
partial autocorrelation function, 64–68	288, 289, 324, 336, 369, 444, 445, 470,
recursive calculation of YuleWalker	482, 484, 485, 486, 502, 515, 517, 518,
estimates, 66, 84–86	529, 547, 562, 565, 567, 568, 575, 577,
spectrum, 57, 58, 63	581, 582, 583, 584, 585, 586, 591, 598,
stationarity conditions, 54–55	599, 615
unit root testing, 353–61	Box-Cox transformation, 96, 331

Box-Pierce statistic, 289 Bray, J., 639 Briggs, P.A.N., 429 Brockwell, P.J., 46, 84, 161, 243, 379, 386, 533 Brown, R.G., 2, 7, 171, 172–74, 305 Brownian motion, 353, 354 Brubacher, S.R., 498 Bruce, A.G., 488, 499 Bucy, R.S., 92	Crawley, M.J., 18 Cross-covariance function, 431, 506–7, 526 Cross-covariance generating function, 471 Cross-correlation function in bivariate stochastic processes, 429–31 estimated, approximate standard errors, 433–35 estimation, 431–33 role in identifying transfer function-noise model, 435–41
C	vector process, 506–07, 513–15, 526
Campbell, S.D., 363	Cross-spectral analysis, 471–72, 552–53
Cao, C.Q., 366	Cumulative periodogram, 284, 297–300,
Canonical correlations, 190–92, 530–31, 539,	324–25
541, 543–44, 557	Cuscore charts, 562, 568, 599–600
Chan, KS., 17	Cusum charts, 562, 568
Chan, N.H., 354	.
Chang, I., 488, 491	D
Characteristic equation, defined, 55	Damsleth, E., 498
Chatfield, C., 190	Daniel, C., 285
Cheang, W.K., 344, 345, 390	Data series
Chen, C., 488, 489, 491, 492	Series A, Chemical process concentration
Chen, R., 380 Cholesky decomposition, 244, 510	readings, 201, 219–20, 231, 241, 292, 360,
Chu, YJ., 339	391–92, 625
Cleveland, W.S., 190, 339	Series B, IBM common stock closing price, 201, 214–16, 231, 292, 294–95, 626
Coherency spectrum, 472, 552–53	Series C, Chemical process temperature
Cointegration, 547–51	readings, 201, 219–20, 231, 239–40, 282,
Conditional heteroscedasticity, 361–76	290, 292, 299–300, 359, 494–95
Conditional least squares estimates, 211, 217,	Senes D, Chemical process viscosity
232, 236–37, 270–71	readings, 201, 219–20, 231, 283, 292,
Conditional likelihood, 210–12	492–94, 629
Conditional sum-of-squares function, 211–12	Series E, Wölfer sunspot numbers, 201,
Confidence regions, 220, 223–26, 257–58	231–33, 292, 394, 630
Constrained control schemes, 581–82	Series F, Yields from batch chemical
Controller, defined, 13–14	process, 22, 66–68, 201, 231, 292, 630
Cooper, D.M., 190, 192, 344, 530,	Series G, International airline passengers, 18,
543	305-6, 309-13, 317-25, 631
Covariance matrix	Series J, Gas furnace data, 429–30,432–33,
for ARMA process zeros, 234-36	438-41, 443, 447, 453-57, 465-67, 631-33
in asymptotic distribution of LSE in AR	Series K, Simulated dynamic data with two
model, 273–74	inputs, 459-61, 634
in asymptotic distribution of MLE in ARMA	Series L, Pilot scheme data, 635–37
model, 222-23, 233-34, 238	Series M, Sales data with leading indicator,
large-sample information matrices, 233–36	468–70, 479, 638
of errors in Kalman filtering, 157–58, 159,	Series N, Mink fur sales data of Hudson's
160, 538	Bay Company, 87, 639
of LS estimates in linear regression model, 257	Series P, Unemployment and GDP data in UK, 208, 479, 639
of AR and MA parameter estimates, 234,	Series Q, U.S. hog price data, 208, 503, 640
236–38	Series R, Ozone in downtown Los Angeles,
Cox, D.R., 96, 331	351, 502, 640

Data series (Continued)	E
Weekly Standard & Poor's 500 Index,	EGARCH model, 374
370–73	Elliott, G., 358
U.S. fixed investment and change in business	Engineering process control (EPC)
inventories, 519–24	automatic adjustments, 5-6
Davies, N., 289, 381	defined, 561
Davis, R.A., 46, 84, 161, 243, 386, 533	process adjustment in, 562, 564-66
Deistler, M., 446, 529, 530, 533, 534, 539, 540,	Engle, R.F., 362, 365, 368, 369, 370, 376, 547
542	Estimation. See also nonlinear estimation;
Degiannakis, S., 362	Yule-Walker equations
Deming, W.E., 562, 564, 567	airline data and multiplicative model,
Dent, W., 217	320–23
Deterministic components, 22, 95, 331–33,	ARCH and GARCH parameters, 368–70
335–36	autocorrelation function, 30–31
Diagnostic checking	Bayes's Theorem, 245
autocorrelation check, 287–89	cross-correlation function, 431–33
cross-correlation check, 522–23	partial autocorrelation function, 66, 67–8
example, airline data, 324–25	spectrum, 39–40
example, gas furnace data, 453–57	time series missing values, 498–500
overfitting, 285–87	Exact likelihood function
periodogram check, 297–300, 324–25	for AR process, 266–68
portmanteau tests, 289–94, 324, 518–19,	based on innovations form, 243–45,
522–24	532–33
residual autocorrelation checks, 287–94	based on state-space model form, 242–43
role of residuals in transfer function-noise	for MA and ARMA processes, 259–65
model, 449–53	for VARMA process, 532–33
score (LM) test, 295–97, 519	with missing values, 496–7
seasonal multiplicative model, 324–25	
vector models, 518–19, 522–24, 533	F
Dickey, D.A., 353, 354, 356, 358	Fan, J., 378, 380, 381
Dickey-Fuller test, 353–56, 359–60	Fearn, T., 575
Diebold, F.X., 362, 363	Feedback adjustment charts, 567–68
Difference equations	Feedback control
and ARIMA model, 97, 116–17	advantages and disadvantages, 596-97
calculating forecasts, 133, 134–35	characterizing appropriate disturbance
complementary function evaluation,	models with variograms, 570–71
117–19	complementary roles of monitoring and
for forecasting airline model, 311	adjustment, 578–79
general solution, 117	constrained control, 581-82
IMA(0, 1, 1) process, 107	vs. feedforward control, 596–97
IMA(0, 2, 2) process, 110	general MMSE schemes, 573–75
IMA process of order $(0, d, q)$, 114	inclusion of monitoring cost, 585-88
Differencing operator, 91	manual adjustment for discrete
Discrete control systems	proportional-integral schemes, 575-78
choosing sampling interval, 609-13	need for excessive adjustment, 580-82
models for discrete control systems,	with restricted adjustment variance, 600-09
13–14	simple models for disturbances and
Discrete transfer function, 398–400	dynamics, 570–73
Duality between AR and MA processes, 75	and transfer function-noise model, 597-99
Dudding, B.P., 5	Feedforward control
Dunsmuir, W., 533	vs. feedback control, 596–97
Durbin, J., 66, 155, 210, 288, 332, 339	fitting transfer function-noise model, 597-99

minimizing mean square error at output, 588–91	forecasting, 390 Francq, C., 362, 363, 370
multiple inputs, 593-94	Fuller, W.A., 84, 353–59
Feedforward-feedback control, 594–96	
Fisher, R.A., 210, 222	G
Fisher, T.J., 294, 370	Gabr, M.M., 197, 378, 381, 385
Fixed-interval smoothing algorithm, 160–61	Gallagher, C.M., 294, 370
Forecast errors	GARCH model, 366–72
calculating probability limits at any lead	GARCH-M model, 376
time, 137–39	Gardner, G., 159, 242, 243
correlation, same origin with different lead	Gaussian process, 28
times 132, 165–66	Generalized least squares (GLS), 339–40
one-step-ahead, 132	Gersch, W., 332, 339
Forecast function	Geweke, J., 389
and forecast weights, 140-44	Ghysels, E., 339
eventual, for ARIMA model, 140-50	Glosten, L.R., 374
eventual, for seasonal ARIMA model,	González-Rivera, G., 375
307-08, 329-31	Godfrey, L.G., 295, 296, 297
role of autoregressive operator, 140	Granger, C.W.J., 378, 386, 547
role of moving average operator, 140–41	Gray, H.L., 190
updating, 136, 144–50	Grenander, U., 47, 84, 210
Forecasting	
airline data, multiplicative seasonal model,	H
311–18	Hagerud, G.E., 375
autoregressive process, 150–52	Haggan, V., 379, 385
calculating forecasts, 135–39	Haldrup, N., 353, 359
fractionally integrated ARMA process,	Hall, A.D., 532
390–91	Hall, P., 354
in integrated form, 133, 145–46, 147–48,	Hamilton, J.D., 353, 357
153, 154–55, 163, 168–71	Hannan, E.J., 47, 193, 210, 222, 446, 517, 529,
lead time, 130, 131, 132	530, 531, 532, 533, 534, 539, 540, 542, 553
regression models with time series errors,	Hanssens, D.M., 437
342–43	Harris, T.J., 581
role of constant term, 152, 164	Harrison, P.J., 2
transfer function-noise model, 461–69	Harvey, A.C., 159, 243, 244, 332, 334, 336,
updating forecasts, 136, 144–47	339, 343, 377, 496, 498
vector ARMA process, 534–36	Harvey, D.I, 358
weighted average of previous observations,	Harville, D.A, 345
131, 133, 146, 148	Haugh, L.D., 444
weighted sum of past observations, 163	Hauser, M.A., 390
Forecasts, minimum mean square error	He, C., 367, 370
(MMSE)	Heyde, C.C., 354
derivation, 131–32	Higgins, M., 362
as infinite weighted sum, 130–31	Hillmer, S.C., 217, 332, 339, 343, 532
in integrated form, 133	Hinich, M.J., 381
	Hipel, K.W., 385
in terms of difference equation, 133, 134–35	Holt, C.C., 2, 7
with transfer function-noise model, 461–65	Hosking, J.R.M., 386, 387, 389, 518
Forward shift operator, 7, 48	Hougen, J.O., 428
Fox, A.J., 488	Hunter, W.G., 15
Fractionally integrated ARMA model	
definition, 385	Hurst, H., 385 Hutchinson, A.W., 3, 429
estimation of parameters, 389	11utomison, A. W., J, 727

I	Kendall, M.G., 47
Identification, See Model selection	Kitagawa, G., 332, 339
IGARCH model, 376	Kohn, R., 160, 496, 497, 498, 532
Information matrix, 222, 233-36. See also	Kolmogoroff, A.,131
covariance matrix	Kolmogorov-Smirnov test, 299, 324
Initial estimates, method of moments, 194–202	Koopman, S.J., 155, 332, 339
Innovational outliers, 488	Koopmans, L.H., 48
Innovations	Kotnour, K.D., 438
likelihood function calculations, 243-45	Kramer, T., 562, 584, 585
in state-space model, 159, 243–45 sticky, 572–73	Kronecker index, 530–532, 539–44, 546, 557
Intervention analysis	2 10, 22 7
example, 484–85	L
models, 481–84	Lag window, 39
nature of maximum likelihood estimator,	Lanne, M., 375
485–88	Le, N.D., 294
useful response patterns, 483–84	Least squares estimates
Invertibility	conditional, unconditional, 211, 213
ARMA process, 75–7	linear least squares theory; review, 256–58
ARMA(1, 1) process, 78	in transfer function-noise model, 446–47
linear processes, 51–2	in vector AR model, 516–17
MA process, 68–9	Ledolter, J., 380
MA(1) process, 70	Levinson-Durbin recursion algorithm, 66,
MA(2) process, 71–2	84–86, 196, 387
Ishikawa, K., 562	
1511Rdwd, 1K., 502	Lewis, P.A.W., 380
ī	Leybourne, S.J., 336
Jacquier E 377	Li, W.K., 294, 362, 367–68, 370, 381, 389, 518 Likelihood function
Jacquier, E., 377	
Jarque-Bera test, 372	AR model, 266–74
Jeffreys, H., 246 Jenking, G.M., 30, 36, 30, 46, 51, 02, 246, 420	ARMA model, 262–65
Jenkins, G.M., 30, 36–39, 46, 51, 92, 246, 429,	ARIMA model, 210–11
431, 457, 472, 473, 485, 553, 567, 577,	based on state-space model, 242–45
581, 583, 584	care in interpreting, 221
Jennet, W.J., 5	conditional, 210–12
Johansen, S., 547, 549, 551	MA model, 259–62
Johnson, R.A., 516, 599	unconditional, 213–17
Jones, R.H., 159, 242, 243, 244, 496, 497	vector ARMA model, 532–33
Joyeux, R., 386	Likelihood principle, 210
Juselius, K., 549	Lim, K.S., 197, 380
¥7	Linear stationary processes
K	autocorrelation function, 56–57
Kalman filtering	autocovariance generating function, 50,
and state-space model formulation, 157–160, 496–97, 536–39	82–84 autoregressive (AR), 52, 54–68
fixed-interval smoothing algorithm,	general process, 47–54
160–61	invertibility, 51–52
likelihood function with missing values,	mixed ARMA, 53-54, 75-82
496–97	moving average (MA), 53, 68-75
for use in prediction, 157–160	spectrum, 51
Kalman, R.E., 92, 155	stationarity, 51, 84
Kavalieris, L., 532	Ling, S., 367, 370
Keenan, D.M., 381-83	Liu, J., 379

Liu, LM., 437, 488, 489, 491, 492	for regression models, 340–42
Ljung, G.M., 262, 289, 292, 499, 518	for seasonal models, 318–29
Ljung-Box statistic, 289–90	for vector AR model, 515–24
Loève, M., 38	Model selection
Long memory time series processes	ARIMA model, nonseasonal, 180–83,
estimation of parameters, 38990	190–94
forecasting, 39091	ARIMA model, seasonal, 318–20, 327–28
fractionally integrated, 38592	transfer function-noise model, 435–46
Luceño, A., 582, 586	vector autoregressive (VAR) model, 515–18
Lundbergh, S., 370	Monti, A.C., 293
Lütkepohl, H., 506, 510, 518, 519, 524, 530,	Moore, J.B., 161, 498
532	Moran, P.A.P., 197, 232
Luukkonen, R., 336, 368, 381, 382	Moving average (MA) model
	autocorrelation function and spectrum, 69
M	calculation of unconditional sum of squares,
MA model. See moving average (MA) model	214–16
MacGregor, J.F., 581, 598, 615	duality with autoregressive process, 75
Mahdi, E., 518	estimation of parameters, 226-30, 232, 238,
Mak, T.K., 370	249–50, 280
Mann, H.B., 222	invertibility conditions, 75–77
Maravall, A., 524	likelihood function, 259-62
Maris, P.I., 575	MA(q), 9, 53
Markellos, R.N., 362, 376	MA(1), 70-71
Martin, R.D., 488, 499	MA(2), 71–75
Maximum likelihood (ML) estimates	spectrum, 70
approximate confidence regions, 223-26	vector MA, 524–26
for AR process, 236–38	Multiplicative seasonal model, 308–11
for ARMA processes, 238–39	Multivariate time series models. See vector AR
for MA process, 238	MA, and ARMA models
likelihood principle, 210	Muth, J.F., 7, 110
parameter redundancy, 240-42	
variances and covariances, 222-23	N
McAleer, M., 367	Nelson, D.B., 366, 369, 374, 376
McCabe, B.P.M., 336	Nerlove, M., 362
McLeod, A.I., 367–68, 370, 381, 385, 389, 518	Newbold, P., 217, 262, 297, 449
Melino, A., 377	Nicholls, D.F., 377, 380, 385, 532
Meyer, R.F., 171	Ng, S., 358
Milhøj, A., 365	Nonlinear estimation
Mills, T.C., 362, 376	general approach, 226-29
Mikosch, T., 374	general least squares algorithm for
Min, A.S., 217	conditional model, 229-31
Minimum mean square error (MMSE) control	large-sample information matrices, 233–36
constrained control schemes, 581–82	sum of squares, 226–27
excessive adjustment requirement, 580-82	in transfer function-noise model, 447–49
feedback control schemes, 573-75	Nonlinear time series models
Minimum mean square error (MMSE)	bilinear, 378
forecasts. See Forecasts	Canadian lynx example, 382
Missing values in ARMA model, 495–502	classes, 378–81
Model building	detection of nonlinearity, 381–82
basic ideas and general approach, 14–17,	exponential autoregressive, 378, 379
177–78	random coefficient, 380
for ARCH and GARCH model, 367–72	threshold autoregressive, 378, 379–80

0	Pierce, D.A., 288, 289, 448, 450, 452
One-step-ahead forecast error, 132	Pierse, R.G., 244, 496, 498
Operators	Porter-Hudak, S., 389
backward difference operator, 7, 91	Portmanteau tests, 289-94, 324, 367-68, 370,
backward shift operator, 7, 48	371–72, 381, 518–19, 522–24, 533
forward shift operator, 7, 48	Poskitt, D.S., 295, 297, 453, 518, 524, 532
Order determination. See Model selection	Power spectrum, 38, 40
Osborn, D.R., 217, 339	Prediction. See forecasting
Outliers in time series	Prewhitening, 436, 437–41, 443, 444, 450, 471
additive, 488–91	Priestley, M.B., 131, 378, 380, 444, 553
analysis examples, 492–95	Process adjustment
detection, iterative procedure for, 491–95	bounded adjustment schemes, 583-88
estimation of effect for known timing,	cost control, 582–88
489–91	defined, 561
innovational, 488-91	introduction, 564-66
Overfitting, 221, 285–87	monitoring of scheme, 599-600
Ozaki, T., 379, 385	vs. process monitoring, 561–62, 568, 578–79
	role of feedback control, 566–79
P	Process control
PACF. See partial autocorrelation function	defined, 561
(PACF)	introduction, 561–62
Page, E.S., 5	minimum cost control, 582–88
Palm, F.C., 359	Process monitoring
Palma, W., 386	cost control, 585–88
Pankratz, A., 437	defined, 561–62
Pantula, S.G., 353, 357, 358	introduction, 562-64, 568
Parameter redundancy, 240–42	vs. process adjustment, 561–62, 568, 578–79
Parsimony, 14–15, 47, 241, 400, 445	and Shewhart charts, 562–64
Partial autocorrelation function (PACF). See	Process regulation. See process adjustment
also autocorrelation function (ACF)	Proportional-integral (PI) control, 561, 569,
autoregressive processes for deriving, 64–66	575–78, 580
ARMA process, 78, 83	
defined, 65	Q
estimated, standard errors, 66–67, 183–85	Q-Q plots, 290, 291, 295, 324, 372
estimation, 66–68	Qu, Z., 358
ARMA(1, 1) process, 80–81	Quenouille, M.H., 47, 66, 208, 210, 547, 640
MA(1) process, 71	Quinn, B.G., 377, 380, 385, 517, 518
MA(2) process, 72–75	Quimi, B.G., 577, 500, 505, 517, 510
role in identifying nonseasonal ARIMA	R
model, 83,	R software, 17–18
and Yule-Walker equations, 84–86	R commands, 17, 25–26, 31, 34, 40, 42, 59, 64,
Peña, D., 293, 294, 368, 381, 518	68, 75, 81, 139, 182–83, 232–33, 286–87,
Periodograms	292, 317, 320, 323, 359–60, 371, 384, 392,
for analysis of variance, 35–36	440–41, 456–57, 494–95, 514, 524, 527,
cumulative, 297–300, 324–35	544
as diagnostic tool, 297–300, 324–25	Ragazzini, J.R., 92
for time series, 34–35	Ramírez, J., 568, 599
Perron, P., 358	Ramsey, J.B., 381
Petruccelli, J., 381	
Phillips, G.D.A., 243, 343	Random walk, 109, 110, 125, 161, 174, 181,
Phillips, P.C.B., 353, 358, 359	185, 306, 332, 353, 355, 357, 549
PI. See proportional-integral (PI) control	Rao, C.R., 501
2.2. 500 proportional mograti (1.1) control	Rao, J.N.K., 92

Regression models with time series errors	Shewhart charts, 561, 562–64, 567, 568, 579,
model building, estimation, and forecasting,	599
339–44	Shewhart, W.A., 5, 564
restricted maximum likelihood estimation,	Shin, D.W., 358
344–45	Shumway, R., 36, 176
Reinsel, G.C., 244, 336, 343, 344, 345, 358,	Silvey, S.D., 295
390, 446, 448, 496, 497, 500, 506, 509,	Slutsky, E., 47
513, 514, 517, 518, 519, 529, 530, 531,	Smoothing relations, in state-space model,
532, 533, 534, 545–46, 547, 549, 551	160–61
Residual analysis, 287–94, 301–2, 324–25,	Solo, V., 358, 361, 530, 532
449–57, 518–19, 522–24, 533	Sotiris, E, 339
Restricted control schemes, 581–82	Sowell, F., 389
Ripley, B.D, 18, 344	Spectral density function
Rissanen, J., 193, 531	and autocorrelation function, 40–43, 58–59
Rivera, D.E., 581	and stationary multivariate processes,
Roberts, S.W., 5, 583	552–53
Robinson, E.A., 47	theoretical, 39–42
Robinson, P.M., 386	Spectral window, 40
Rodríquez, J., 293, 294, 368, 381, 518	Spectrum
Rosenblatt, M., 47, 84, 210	and autocovariance function, 37–39
Roscholatt, 141., 47, 64, 210	ARMA process, 81
g	compared with autocorrelation function,
S O.F256 .259	42–43
Said, S.E., 356, 358	
Saikkonen, P., 336, 375	estimation, 39–40
Savage, L.J., 245	for AR(1) process, 58–59
Scalar component model (SCM), 530–31, 539	for MA(1) process, 71
Schmidt, P., 358	for MA process, 70
Schuster, A., 197	for AR(2) process, 63
Schwarz, G., 190, 193	for MA(2) process, 72
Score test, 295–97, 358, 368, 370, 381,	State-space model
382, 519	as basis for likelihood function, 242–45
Seasonal ARIMA model	for ARIMA process, 155–57
airline data, 305–06, 309	for exact forecasting, 158–59
choice of transformation, 331	estimating missing values in time series,
eventual forecast functions, 329–31	496–97
model identification, 327–28	innovations form for time-invariant models
multiplicative model, 308–11	159
nonmultiplicative models, 325–26	Kalman filtering for, 157–58
parameter estimation, 320-23	smoothing relations, 160–61
Seasonal models	for structural component time series model,
deterministic seasonal and trend components,	332–3, 337, 339
335–36	for vector ARMA process, 536-39
estimation of unobserved components in	Stationarity
structural models, 336–39	of ARMA process, 75–76
general multiplicative, 325-26	of AR process, 54–55
involving adaptive sines and cosines, 308–10	of AR(2) process, 59–60
structural component models, 332–35	of ARMA(1, 1) process, 78
Second-order stationarity, 28, 507	of linear process, 51, 84
Shapiro-Wilk test, 372	VAR(p) process, 509
Shea, B.L., 532	weak, 29, 507
Shelton, R.J., 3, 429	Stationary models, 7–10
Shephard, N.G., 377	Stationary multivariate processes, 506–46
onepharu, 11.O., 311	Santonary main variate processes, 500–40

Statistical process control (SPC), 5, 561–64 Statistical time series <i>vs.</i> deterministic time series, 22 Steady-state gain, 398, 400, 402, 405 Step response, 401, 403, 406–07, 410 Stevens, J.G., 380 Sticky innovation model, 571–72 Stochastic processes defined, 22 strictly stationary, 24 weakly stationary, 28	nonstationary behavior, 88–116 outlier analysis, 489–95 as realization of stochastic process, 22–23 regression models, model building and forecasting, 339–45 seasonal models, 305–39 vector models, 505–51 Tintner, G., 92 Tjøstheim, D., 380 Todd, P.H.J., 332 Tong, H., 131, 197, 294, 370, 378, 380, 382,
Stochastic volatility models, 377	384–85
Stoffer, D., 36, 176	Transfer function-noise model
Stralkowski, C.M., 60 Straumann, D., 374 Strictly stationary stochastic processes, 24, 506–07 Structural component models, 331–39 Subba Rao, T., 197, 378, 381, 385 Sum of squares conditional, calculating, 210–12, 229–31 and conditional likelihood, 210–11 graphical study, 218–20 iterative least squares procedure, 229–31 nonlinear estimation, 226–29 unconditional, calculation for ARMA	cross-correlation function, 429–31 conditional sum-of-squares function, 446–47 design of optimal inputs, 469–71 fitting and checking, 446–53 forecasting, 461–469 gas furnace CO ₂ output forecasting, 465 gas furnace, diagnostic checking, 453–57 gas furnace, identifying transfer function, 438–41 gas furnace, identifying noise model, 443 identification, 435–46 identifying noise model, 442–46 identifying transfer function model, 435–41,
process, 213–14, 262–65 unconditinoal, calculation for MA process, 214–16, 259–62 unconditional, general procedure for calculating, 216–18 unconditional, introduction, 213–14	444–46 model checking, 449–53 nonlinear estimation, 447–49 nonstationary sales data, 468–70 single-input <i>vs.</i> multiple-input, 445, 472–73 Tremayne, A.R., 295, 297, 453, 518
Т	Tsay, R.S., 190, 191, 192, 362, 369, 374, 377,
Tam, W.K., 336 Teräsvirta, T., 362, 367, 370, 374, 376, 378, 380, 385	378, 380, 381–83, 488, 489, 491, 506, 510, 523, 530, 531, 539, 543, 551, 557 Tuan, P.D., 379
Thompson, R., 344 Tiao, G.C., 4, 175, 190, 191, 192, 217, 246, 248, 332, 339, 343, 349, 350, 369, 445, 482, 484–86, 489, 502, 515, 517, 529, 530–31, 532, 539, 547, 557	Tukey, J.W., 15, 284 Tunnicliffe Wilson, G., 344, 345, 498, 581 Turnbull, S.M., 377 U
Time series	Unconditional sum of squares, 213–18
heteroscedastic, 361-77	Unit roots, tests for, 353–60
continuous <i>vs.</i> discrete, 21–22 deterministic <i>vs.</i> statistical, 22 estimation, missing values, 495–505	Unstable linear filters, 92 Updating forecasts, 136, 144–55, 313–15
forecasting overview, 129-44	V
intervention analysis, 481-88	van Dijk, D., 362, 378
long memory processes, 385–92	Variate difference method, 92
multivariate, 505–51 nonlinear models, 377–85	Variograms, 571–72 Vector AR (VAR) model

cross-covariance and cross-correlation	W
matrices, 506–07, 511, 512–14	Wald, A., 222
infinite MA representation, 509	Walker, A.M., 222
model building, 515–24	Walker, G., 47, 57
model building example, 519–24	Watts, D.G., 30, 36–39, 46, 51, 401, 429, 431,
model checking, 518–19	457, 472, 473, 553
model specification and least squares	Weak stationarity, 28, 507
estimation, 515–18	Wei, C.Z., 354
parameter estimation, 516, 518	Wei, W.W.S., 514, 517
partial autoregression matrices, 516–17	Weiss, A.A., 363, 368, 369, 370
stationarity, 506, 509–10, 512	White noise process
VAR(<i>p</i>) model, 509–11	added, 124–25
VAR(1) model, 511–15	defined, 7-8, 28-29
Yule-Walker equations, 510–11	effect on IMA process, 124-25
Vector MA (VMA) model, 524–26	linear filter output, 47–8
Vector ARMA (VARMA) model	vector, 507–08
aspects of nonuniqueness and parameter	Whittle, P., 131, 210, 222, 273, 581
identifiability, 528–29	Wichern, D.W., 206, 516
calculating forecasts from difference	Wiener, N., 131
equation, 534–36	Wincek, M.A., 244, 343, 496
canonical correlation analysis, 530–31,	Winters, P.R., 7
541–43	Wittenmark, B., 581
cointegration, estimation and inferences,	Wold, H.O., 47, 48, 131, 508
549–51	Wong, H., 370
covariance matrix properties, 506–07,	Wood, E.F., 190, 192, 530, 543
528	Woodward, W.A., 190
echelon canonical form, 530, 533, 539, 541–42	Wooldridge, J.M., 370
estimation and model checking, 532–33	X
forecasting, 534–36	Xiao, Z., 353
Kronecker indices, 530, 539–43	Xekalaki, E., 362
likelihood function, 532–33	
model specification, 529–32, 539–45	Y
nonstationarity and cointegration, 546–51	Yaglom, A.M., 92
partial canonical correlation analysis reduced	Yamamoto, T., 343
rank structure, 545–46	Yao, Q., 378, 380, 381
relation to transfer function and ARMAX	Yap, S.F., 358
model forms, 533–34 scalar component models (SCM), 530–31,	Yohai, V.J., 488
539	Young, A.J., 428
state-space form, 536–39	Yule, G.U., 7, 47, 57, 197
stationary and invertibility conditions,	Yule-Walker equations introduction, 57
527–28	obtaining parameter estimates of AR process,
vector autoregressive (VAR) model, 509–24	237–38
vector autoregressive-moving averge	and partial autocorrelation function, 64–66
(VARMA) model, 527–35	in AR(2) process, 61–62
vector moving average (VMA) model,	in VAR(p) process, 510–11
524–27	(F) F,
vector white noise process, 507-08	Z
Vector white noise process, 507–08	Zadeh, L.A., 92
Venables, W.N., 18, 344	Zakoïan, JM., 362, 363, 370, 375

WILEY SERIES IN PROBABILITY AND STATISTICS

ESTABLISHED BY WALTER A. SHEWHART AND SAMUEL S. WILKS

Editors: David J. Balding, Noel A. C. Cressie, Garrett M. Fitzmaurice, Geof H. Givens, Harvey Goldstein, Geert Molenberghs, David W. Scott, Adrian F. M. Smith, Ruey S. Tsay, Sanford Weisberg Editors Emeriti: J. Stuart Hunter, Iain M. Johnstone, Joseph B. Kadane, Jozef L. Teugels

The Wiley Series in Probability and Statistics is well established and authoritative. It covers many topics of current research interest in both pure and applied statistics and probability theory. Written by leading statisticians and institutions, the titles span both state-of-the-art developments in the field and classical methods.

Reflecting the wide range of current research in statistics, the series encompasses applied, methodological and theoretical statistics, ranging from applications and new techniques made possible by advances in computerized practice to rigorous treatment of theoretical approaches.

This series provides essential and invaluable reading for all statisticians, whether in academia, industry, government, or research.

† ABRAHAM and LEDOLTER · Statistical Methods for Forecasting

AGRESTI · Analysis of Ordinal Categorical Data, Second Edition

AGRESTI · An Introduction to Categorical Data Analysis, Second Edition

AGRESTI · Categorical Data Analysis, Third Edition

AGRESTI · Foundations of Linear and Generalized Linear Models

ALSTON, MENGERSEN and PETTITT (editors) · Case Studies in Bayesian Statistical Modelling and Analysis

ALTMAN, GILL, and McDONALD · Numerical Issues in Statistical Computing for the Social Scientist

AMARATUNGA and CABRERA · Exploration and Analysis of DNA Microarray and Protein Array Data

AMARATUNGA, CABRERA, and SHKEDY · Exploration and Analysis of DNA Microarray and Other High-Dimensional Data, Second Edition

ANDEL · Mathematics of Chance

ANDERSON · An Introduction to Multivariate Statistical Analysis, Third Edition

* ANDERSON · The Statistical Analysis of Time Series

ANDERSON, AUQUIER, HAUCK, OAKES, VANDAELE, and WEISBERG Statistical Methods for Comparative Studies

ANDERSON and LOYNES · The Teaching of Practical Statistics

ARMITAGE and DAVID (editors) · Advances in Biometry

ARNOLD, BALAKRISHNAN, and NAGARAJA · Records

* ARTHANARI and DODGE · Mathematical Programming in Statistics AUGUSTIN, COOLEN, DE COOMAN and TROFFAES (editors) · Introduction to Imprecise Probabilities

* BAILEY · The Elements of Stochastic Processes with Applications to the Natural Sciences

BAJORSKI · Statistics for Imaging, Optics, and Photonics

BALAKRISHNAN and KOUTRAS · Runs and Scans with Applications

BALAKRISHNAN and NG · Precedence-Type Tests and Applications

BARNETT · Comparative Statistical Inference, Third Edition

BARNETT · Environmental Statistics

BARNETT and LEWIS · Outliers in Statistical Data, Third Edition

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

- BARTHOLOMEW, KNOTT, and MOUSTAKI · Latent Variable Models and Factor Analysis: A Unified Approach, *Third Edition*
- BARTOSZYNSKI and NIEWIADOMSKA-BUGAJ · Probability and Statistical Inference, Second Edition
- BASILEVSKY · Statistical Factor Analysis and Related Methods: Theory and Applications
- BATES and WATTS · Nonlinear Regression Analysis and Its Applications
- BECHHOFER, SANTNER, and GOLDSMAN · Design and Analysis of Experiments for Statistical Selection, Screening, and Multiple Comparisons
- BEH and LOMBARDO · Correspondence Analysis: Theory, Practice and New Strategies
- BEIRLANT, GOEGEBEUR, SEGERS, TEUGELS, and DE WAAL · Statistics of Extremes; Theory and Applications
- BELSLEY · Conditioning Diagnostics: Collinearity and Weak Data in Regression BELSLEY, KUH, and WELSCH · Regression Diagnostics: Identifying Influential Data and Sources of Collinearity
 - BENDAT and PIERSOL · Random Data: Analysis and Measurement Procedures, Fourth Edition
 - BERNARDO and SMITH · Bayesian Theory
 - BHAT and MILLER · Elements of Applied Stochastic Processes, Third Edition
 - BHATTACHARYA and WAYMIRE · Stochastic Processes with Applications
 - BIEMER, GROVES, LYBERG, MATHIOWETZ, and SUDMAN · Measurement Errors in Surveys
 - BILLINGSLEY · Convergence of Probability Measures, Second Edition
 - BILLINGSLEY · Probability and Measure, Anniversary Edition
 - BIRKES and DODGE · Alternative Methods of Regression
 - BISGAARD and KULAHCI · Time Series Analysis and Forecasting by Example
 - BISWAS, DATTA, FINE, and SEGAL · Statistical Advances in the Biomedical Sciences: Clinical Trials, Epidemiology, Survival Analysis, and Bioinformatics
 - BLISCHKE and MURTHY (editors) · Case Studies in Reliability and Maintenance
 - BLISCHKE and MURTHY (editors) * Case Studies in Reliability and Maintenance BLISCHKE and MURTHY * Reliability: Modeling, Prediction, and Optimization
 - BLOOMFIELD · Fourier Analysis of Time Series; An Introduction, Second Edition
 - **BOLLEN** · Structural Equations with Latent Variables
 - BOLLEN and CURRAN · Latent Curve Models: A Structural Equation Perspective
 - BONNINI, CORAIN, MAROZZI and SALMASO · Nonparametric Hypothesis
 - Testing: Rank and Permutation Methods with Applications in R
 - BOROVKOV · Ergodicity and Stability of Stochastic Processes BOSO and BLANKE · Inference and Prediction in Large Dimensions
 - BOULEAU · Numerical Methods for Stochastic Processes
- * BOX and TIAO · Bayesian Inference in Statistical Analysis
 - BOX · Improving Almost Anything, Revised Edition
- * BOX and DRAPER · Evolutionary Operation: A Statistical Method for Process Improvement
 - BOX and DRAPER · Response Surfaces, Mixtures, and Ridge Analyses, Second
 - BOX, HUNTER, and HUNTER · Statistics for Experimenters: Design, Innovation, and Discovery, Second Editon
 - BOX, JENKINS, REINSEL, and LJUNG · Time Series Analysis: Forecasting and Control, Fifth Edition
 - BOX, LUCEÑO, and PANIAGUA-QUIÑONES · Statistical Control by Monitoring and Adjustment, *Second Edition*
- * BROWN and HOLLANDER · Statistics: A Biomedical Introduction CAIROLI and DALANG · Sequential Stochastic Optimization

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

CASTILLO, HADI, BALAKRISHNAN, and SARABIA · Extreme Value and Related Models with Applications in Engineering and Science

CHAN · Time Series: Applications to Finance with R and S-Plus®, Second Edition

CHARALAMBIDES · Combinatorial Methods in Discrete Distributions

CHATTERJEE and HADI · Regression Analysis by Example, Fourth Edition

CHATTERJEE and HADI · Sensitivity Analysis in Linear Regression

CHEN · The Fitness of Information: Quantitative Assessments of Critical Evidence

CHERNICK · Bootstrap Methods: A Guide for Practitioners and Researchers, Second Edition

CHERNICK and FRIIS · Introductory Biostatistics for the Health Sciences

CHILÈS and DELFINER · Geostatistics: Modeling Spatial Uncertainty, Second Edition

CHIU, STOYAN, KENDALL and MECKE · Stochastic Geometry and Its Applications, *Third Edition*

CHOW and LIU · Design and Analysis of Clinical Trials: Concepts and Methodologies, *Third Edition*

CLARKE · Linear Models: The Theory and Application of Analysis of Variance CLARKE and DISNEY · Probability and Random Processes: A First Course with Applications. Second Edition

* COCHRAN and COX · Experimental Designs, Second Edition

COLLINS and LANZA · Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences

CONGDON · Applied Bayesian Modelling, Second Edition

CONGDON · Bayesian Models for Categorical Data

CONGDON · Bayesian Statistical Modelling, Second Edition

CONOVER · Practical Nonparametric Statistics, Third Edition

COOK · Regression Graphics

COOK and WEISBERG · An Introduction to Regression Graphics

COOK and WEISBERG · Applied Regression Including Computing and Graphics

CORNELL · A Primer on Experiments with Mixtures

CORNELL · Experiments with Mixtures, Designs, Models, and the Analysis of Mixture Data, *Third Edition*

COX · A Handbook of Introductory Statistical Methods

CRESSIE · Statistics for Spatial Data, Revised Edition

CRESSIE and WIKLE · Statistics for Spatio-Temporal Data

CSÖRGŐ and HORVÁTH · Limit Theorems in Change Point Analysis

DAGPUNAR · Simulation and Monte Carlo: With Applications in Finance and MCMC

DANIEL · Applications of Statistics to Industrial Experimentation

DANIEL · Biostatistics: A Foundation for Analysis in the Health Sciences, Eighth Edition

* DANIEL · Fitting Equations to Data: Computer Analysis of Multifactor Data, Second Edition

DASU and JOHNSON · Exploratory Data Mining and Data Cleaning

DAVID and NAGARAJA · Order Statistics, Third Edition

DAVINO, FURNO and VISTOCCO · Quantile Regression: Theory and Applications

* DEGROOT, FIENBERG, and KADANE · Statistics and the Law DEL CASTILLO · Statistical Process Adjustment for Quality Control DEMARIS · Regression with Social Data: Modeling Continuous and Limited Response Variables

DEMIDENKO · Mixed Models: Theory and Applications with R, Second Edition

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

- DENISON, HOLMES, MALLICK, and SMITH · Bayesian Methods for Nonlinear Classification and Regression
- DETTE and STUDDEN · The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis
- DEY and MUKERJEE · Fractional Factorial Plans
- DILLON and GOLDSTEIN · Multivariate Analysis: Methods and Applications
- * DODGE and ROMIG · Sampling Inspection Tables, Second Edition
- * DOOB · Stochastic Processes
 - DOWDY, WEARDEN, and CHILKO · Statistics for Research, Third Edition
 - DRAPER and SMITH · Applied Regression Analysis, Third Edition
 - DRYDEN and MARDIA · Statistical Shape Analysis
 - DUDEWICZ and MISHRA · Modern Mathematical Statistics
 - DUNN and CLARK · Basic Statistics: A Primer for the Biomedical Sciences, Fourth Edition
 - DUPUIS and ELLIS · A Weak Convergence Approach to the Theory of Large Deviations
 - EDLER and KITSOS · Recent Advances in Quantitative Methods in Cancer and Human Health Risk Assessment
- * ELANDT-JOHNSON and JOHNSON · Survival Models and Data Analysis ENDERS · Applied Econometric Time Series, *Third Edition*
- † ETHIER and KURTZ · Markov Processes: Characterization and Convergence EVANS, HASTINGS, and PEACOCK · Statistical Distributions, *Third Edition* EVERITT, LANDAU, LEESE, and STAHL · Cluster Analysis, *Fifth Edition* FEDERER and KING · Variations on Split Plot and Split Block Experiment Designs
 - FELLER · An Introduction to Probability Theory and Its Applications, Volume I, Third Edition, Revised; Volume II, Second Edition
 - FITZMAURICE, LAIRD, and WARE · Applied Longitudinal Analysis, Second Edition
- * FLEISS · The Design and Analysis of Clinical Experiments
 - FLEISS · Statistical Methods for Rates and Proportions, Third Edition
- † FLEMING and HARRINGTON · Counting Processes and Survival Analysis FUJIKOSHI, ULYANOV, and SHIMIZU · Multivariate Statistics: High-Dimensional and Large-Sample Approximations
 - FULLER · Introduction to Statistical Time Series, Second Edition
- † FULLER · Measurement Error Models
 - GALLANT · Nonlinear Statistical Models
 - GEISSER · Modes of Parametric Statistical Inference
 - GELMAN and MENG · Applied Bayesian Modeling and Causal Inference from neomplete-Data Perspectives
 - GEWEKE · Contemporary Bayesian Econometrics and Statistics
 - GHOSH, MUKHOPADHYAY, and SEN · Sequential Estimation
 - GIESBRECHT and GUMPERTZ · Planning, Construction, and Statistical Analysis of Comparative Experiments
 - GIFI · Nonlinear Multivariate Analysis
 - GIVENS and HOETING · Computational Statistics
 - GLASSERMAN and YAO · Monotone Structure in Discrete-Event Systems
 - GNANADESIKAN · Methods for Statistical Data Analysis of Multivariate Observations, Second Edition
 - GOLDSTEIN · Multilevel Statistical Models, Fourth Edition
 - GOLDSTEIN and LEWIS · Assessment: Problems, Development, and Statistical Issues
 - GOLDSTEIN and WOOFF · Bayes Linear Statistics

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

[†]Now available in a lower priced paperback edition in the Wiley Interscience Paperback Scries.

- GRAHAM · Markov Chains: Analytic and Monte Carlo Computations
- GREENWOOD and NIKULIN · A Guide to Chi-Squared Testing
- GROSS, SHORTLE, THOMPSON, and HARRIS · Fundamentals of Queueing Theory, Fourth Edition
- GROSS, SHORTLE, THOMPSON, and HARRIS · Solutions Manual to Accompany Fundamentals of Queueing Theory, Fourth Edition
- * HAHN and SHAPIRO · Statistical Models in Engineering
 - HAHN and MEEKER · Statistical Intervals: A Guide for Practitioners
 - HALD · A History of Probability and Statistics and their Applications Before 1750
- † HAMPEL · Robust Statistics: The Approach Based on Influence Functions
 - HARTUNG, KNAPP, and SINHA . Statistical Meta-Analysis with Applications
 - HEIBERGER · Computation for the Analysis of Designed Experiments
 - HEDAYAT and SINHA · Design and Inference in Finite Population Sampling
 - **HEDEKER** and **GIBBONS** · Longitudinal Data Analysis
 - **HELLER** · MACSYMA for Statisticians
 - HERITIER, CANTONI, COPT, and VICTORIA-FESER · Robust Methods in Biostatistics
 - HINKELMANN and KEMPTHORNE · Design and Analysis of Experiments, Volume 1: Introduction to Experimental Design, Second Edition
 - HINKELMANN and KEMPTHORNE · Design and Analysis of Experiments, Volume 2: Advanced Experimental Design
 - HINKELMANN (editor) · Design and Analysis of Experiments, Volume 3: Special Designs and Applications
 - HOAGLIN, MOSTELLER, and TUKEY · Fundamentals of Exploratory Analysis of Variance
- * HOAGLIN, MOSTELLER, and TUKEY · Exploring Data Tables, Trends and Shapes
- * HOAGLIN, MOSTELLER, and TUKEY · Understanding Robust and Exploratory Data Analysis
 - HOCHBERG and TAMHANE · Multiple Comparison Procedures
 - HOCKING · Methods and Applications of Linear Models: Regression and the Analysis of Variance, *Third Edition*
 - HOEL: Introduction to Mathematical Statistics, Fifth Edition
 - HOGG and KLUGMAN · Loss Distributions
 - HOLLANDER, WOLFE, and CHICKEN · Nonparametric Statistical Methods, Third Edition
 - HOSMER and LEMESHOW · Applied Logistic Regression, Second Edition
 - HOSMER, LEMESHOW, and MAY · Applied Survival Analysis: Regression Modeling of Time-to-Event Data, Second Edition
 - HUBER · Data Analysis: What Can Be Learned From the Past 50 Years
 - **HUBER** · Robust Statistics
- † HUBER and RONCHETTI · Robust Statistics, Second Edition
 - HUBERTY · Applied Discriminant Analysis, Second Edition
 - HUBERTY and OLEJNIK · Applied MANOVA and Discriminant Analysis, Second Edition
 - HUITEMA · The Analysis of Covariance and Alternatives: Statistical Methods for Experiments, Quasi-Experiments, and Single-Case Studies, Second Edition
 - HUNT and KENNEDY · Financial Derivatives in Theory and Practice, Revised Edition
 - HURD and MIAMEE · Periodically Correlated Random Sequences: Spectral Theory and Practice
 - HUSKOVA, BERAN, and DUPAC · Collected Works of Jaroslav Hajek— with Commentary
 - HUZURBAZAR · Flowgraph Models for Multistate Time-to-Event Data

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

JACKMAN · Bayesian Analysis for the Social Sciences

† JACKSON · A User's Guide to Principle Components

JOHN · Statistical Methods in Engineering and Quality Assurance

JOHNSON · Multivariate Statistical Simulation

JOHNSON and BALAKRISHNAN · Advances in the Theory and Practice of Statistics: A Volume in Honor of Samuel Kotz

JOHNSON, KEMP, and KOTZ · Univariate Discrete Distributions, *Third Edition* JOHNSON and KOTZ (editors) · Leading Personalities in Statistical Sciences: From the Seventeenth Century to the Present

JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions, Volume 1, Second Edition

JOHNSON, KOTZ, and BALAKRISHNAN · Continuous Univariate Distributions, Volume 2, Second Edition

JOHNSON, KOTZ, and BALAKRISHNAN · Discrete Multivariate Distributions JUDGE, GRIFFITHS, HILL, LÜTKEPOHL, and LEE · The Theory and Practice of Econometrics, Second Edition

JUREK and MASON · Operator-Limit Distributions in Probability Theory

KADANE · Bayesian Methods and Ethics in a Clinical Trial Design

KADANE AND SCHUM · A Probabilistic Analysis of the Sacco and Vanzetti Evidence

KALBFLEISCH and PRENTICE · The Statistical Analysis of Failure Time Data, Second Edition

KARIYA and KURATA · Generalized Least Squares

KASS and VOS · Geometrical Foundations of Asymptotic Inference

† KAUFMAN and ROUSSEEUW · Finding Groups in Data: An Introduction to Cluster Analysis

KEDEM and FOKIANOS · Regression Models for Time Series Analysis

KENDALL, BARDEN, CARNE, and LE · Shape and Shape Theory

KHURI · Advanced Calculus with Applications in Statistics, Second Edition

KHURI, MATHEW, and SINHA · Statistical Tests for Mixed Linear Models

* KISH · Statistical Design for Research

KLEIBER and KOTZ: Statistical Size Distributions in Economics and Actuarial Sciences

KLEMELÄ · Smoothing of Multivariate Data: Density Estimation and Visualization

KLUGMAN, PANJER, and WILLMOT · Loss Models: From Data to Decisions, Third Edition

KLUGMAN, PANJER, and WILLMOT · Loss Models: Further Topics

KLUGMAN, PANJER, and WILLMOT · Solutions Manual to Accompany Loss Models: From Data to Decisions, *Third Edition*

KOSKI and NOBLE · Bayesian Networks: An Introduction

KOTZ, BALAKRISHNAN, and JOHNSON · Continuous Multivariate Distributions, Volume 1, Second Edition

KOTZ and JOHNSON (editors) · Encyclopedia of Statistical Sciences: Volumes 1 to 9 with Index

KOTZ and JOHNSON (editors) · Encyclopedia of Statistical Sciences: Supplement Volume

KOTZ, READ, and BANKS (editors) · Encyclopedia of Statistical Sciences: Update Volume 1

KOTZ, READ, and BANKS (editors) · Encyclopedia of Statistical Sciences: Update Volume 2

KOWALSKI and TU · Modern Applied U-Statistics

KRISHNAMOORTHY and MATHEW · Statistical Tolerance Regions: Theory, Applications, and Computation

*Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

KROESE, TAIMRE, and BOTEV · Handbook of Monte Carlo Methods

KROONENBERG · Applied Multiway Data Analysis

KULINSKAYA, MORGENTHALER, and STAUDTE · Meta Analysis: A Guide to Calibrating and Combining Statistical Evidence

KULKARNI and HARMAN · An Elementary Introduction to Statistical Learning Theory

KUROWICKA and COOKE · Uncertainty Analysis with High Dimensional Dependence Modelling

KVAM and VIDAKOVIC · Nonparametric Statistics with Applications to Science and Engineering

LACHIN · Biostatistical Methods: The Assessment of Relative Risks, *Second Edition*LAD · Operational Subjective Statistical Methods: A Mathematical, Philosophical, and Historical Introduction

LAMPERTI · Probability: A Survey of the Mathematical Theory, Second Edition

LAWLESS · Statistical Models and Methods for Lifetime Data, Second Edition

 $LAWSON \cdot Statistical\ Methods\ in\ Spatial\ Epidemiology,\ \textit{Second}\ Edition$

LE · Applied Categorical Data Analysis, Second Edition

LE · Applied Survival Analysis

LEE · Structural Equation Modeling: A Bayesian Approach

LEE and WANG · Statistical Methods for Survival Data Analysis, Fourth Edition

LEPAGE and BILLARD · Exploring the Limits of Bootstrap

LESSLER and KALSBEEK · Nonsampling Errors in Surveys

LEYLAND and GOLDSTEIN (editors) \cdot Multilevel Modelling of Health Statistics LIAO \cdot Statistical Group Comparison

LIN · Introductory Stochastic Analysis for Finance and Insurance

LINDLEY · Understanding Uncertainty, Revised Edition

LITTLE and RUBIN · Statistical Analysis with Missing Data, Second Edition

LLOYD · The Statistical Analysis of Categorical Data

LOWEN and TEICH · Fractal-Based Point Processes

MAGNUS and NEUDECKER · Matrix Differential Calculus with Applications in Statistics and Econometrics, Revised Edition

MALLER and ZHOU · Survival Analysis with Long Term Survivors

MARCHETTE · Random Graphs for Statistical Pattern Recognition

MARDIA and JUPP · Directional Statistics

MARKOVICH · Nonparametric Analysis of Univariate Heavy-Tailed Data: Research and Practice

MARONNA, MARTIN and YOHAI · Robust Statistics: Theory and Methods

MASON, GUNST, and HESS: Statistical Design and Analysis of Experiments with Applications to Engineering and Science, Second Edition

McCULLOCH, SEARLE, and NEUHAUS · Generalized, Linear, and Mixed Models, Second Edition

McFADDEN · Management of Data in Clinical Trials, Second Edition

* McLACHLAN · Discriminant Analysis and Statistical Pattern Recognition McLACHLAN, DO, and AMBROISE · Analyzing Microarray Gene Expression Data

McLACHLAN and KRISHNAN · The EM Algorithm and Extensions, Second Edition

McLACHLAN and PEEL · Finite Mixture Models

McNEIL · Epidemiological Research Methods

MEEKER and ESCOBAR · Statistical Methods for Reliability Data

MEERSCHAERT and SCHEFFLER · Limit Distributions for Sums of Independent Random Vectors: Heavy Tails in Theory and Practice

MENGERSEN, ROBERT, and TITTERINGTON · Mixtures: Estimation and Applications

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

- MICKEY, DUNN, and CLARK · Applied Statistics: Analysis of Variance and Regression, *Third Edition*
- * MILLER · Survival Analysis, Second Edition

MONTGOMERY, JENNINGS, and KULAHC1 · Introduction to Time Series Analysis and Forecasting, Second Edition

MONTGOMERY, PECK, and VINING · Introduction to Linear Regression Analysis, Fifth Edition

MORGENTHALER and TUKEY · Configural Polysampling: A Route to Practical Robustness

MUIRHEAD · Aspects of Multivariate Statistical Theory

MULLER and STOYAN · Comparison Methods for Stochastic Models and Risks MURTHY, XIE, and JIANG · Weibull Models

MYERS, MONTGOMERY, and ANDERSON-COOK · Response Surface Methodology: Process and Product Optimization Using Designed Experiments, *Third Edition*

MYERS, MONTGOMERY, VINING, and ROBINSON · Generalized Linear Models. With Applications in Engineering and the Sciences, *Second Edition* NATVIG · Multistate Systems Reliability Theory With Applications

† NELSON · Accelerated Testing, Statistical Models, Test Plans, and Data Analyses

† NELSON · Applied Life Data Analysis

NEWMAN · Biostatistical Methods in Epidemiology

NG, TAIN, and TANG · Dirichlet Theory: Theory, Methods and Applications

OKABE, BOOTS, SUGIHARA, and CHIU · Spatial Tesselations: Concepts and Applications of Voronoi Diagrams, Second Edition

OLIVER and SMITH · Influence Diagrams, Belief Nets and Decision Analysis PALTA · Quantitative Methods in Population Health: Extensions of Ordinary Regressions

PANJER · Operational Risk: Modeling and Analytics

PANKRATZ · Forecasting with Dynamic Regression Models

PANKRATZ · Forecasting with Univariate Box-Jenkins Models: Concepts and Cases

PARDOUX · Markov Processes and Applications: Algorithms, Networks, Genome and Finance

PARMIGIANI and INOUE · Decision Theory: Principles and Approaches

* PARZEN · Modern Probability Theory and Its Applications

PEÑA, TIAO, and TSAY · A Course in Time Series Analysis

PESARIN and SALMASO · Permutation Tests for Complex Data: Applications and Software

PIANTADOSI · Clinical Trials: A Methodologic Perspective, Second Edition

POURAHMADI · Foundations of Time Series Analysis and Prediction Theory

POURAHMADI · High-Dimensional Covariance Estimation

POWELL · Approximate Dynamic Programming: Solving the Curses of Dimensionality, Second Edition

POWELL and RYZHOV · Optimal Learning

PRESS · Subjective and Objective Bayesian Statistics, Second Edition

PRESS and TANUR · The Subjectivity of Scientists and the Bayesian Approach

PURI, VILAPLANA, and WERTZ · New Perspectives in Theoretical and Applied Statistics

† PUTERMAN · Markov Decision Processes: Discrete Stochastic Dynamic Programming

QIU · Image Processing and Jump Regression Analysis

* RAO · Linear Statistical Inference and Its Applications, Second Edition

RAO · Statistical Inference for Fractional Diffusion Processes

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

[†]Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

RAUSAND and HØYLAND · System Reliability Theory: Models, Statistical Methods, and Applications, Second Edition

RAYNER, THAS, and BEST · Smooth Tests of Goodnes of Fit: Using R, Second Edition

RENCHER and SCHAALJE · Linear Models in Statistics, Second Edition

RENCHER and CHRISTENSEN · Methods of Multivariate Analysis, Third Edition

RENCHER · Multivariate Statistical Inference with Applications

RIGDON and BASU · Statistical Methods for the Reliability of Repairable Systems

* RIPLEY · Spatial Statistics

* RIPLEY · Stochastic Simulation

ROHATGI and SALEH · An Introduction to Probability and Statistics, *Third Edition*

ROLSKI, SCHMIDLI, SCHMIDT, and TEUGELS · Stochastic Processes for Insurance and Finance

ROSENBERGER and LACHIN · Randomization in Clinical Trials: Theory and Practice

ROSSI, ALLENBY, and McCULLOCH · Bayesian Statistics and Marketing

† ROUSSEEUW and LEROY Robust Regression and Outlier Detection

ROYSTON and SAUERBREI · Multivariate Model Building: A Pragmatic Approach to Regression Analysis Based on Fractional Polynomials for Modeling Continuous Variables

* RUBIN · Multiple Imputation for Nonresponse in Surveys

RUBINSTEIN and KROESE · Simulation and the Monte Carlo Method, Second Edition

RUBINSTEIN and MELAMED · Modern Simulation and Modeling

RUBINSTEIN, RIDDER, and VAISMAN · Fast Sequential Monte Carlo Methods for Counting and Optimization

RYAN · Modern Engineering Statistics

RYAN · Modern Experimental Design

RYAN · Modern Regression Methods, Second Edition

RYAN · Sample Size Determination and Power

RYAN · Statistical Methods for Quality Improvement, Third Edition

SALEH · Theory of Preliminary Test and Stein-Type Estimation with Applications

SALTELLI, CHAN, and SCOTT (editors) · Sensitivity Analysis

SCHERER · Batch Effects and Noise in Microarray Experiments: Sources and Solutions

* SCHEFFE · The Analysis of Variance

SCHIMEK · Smoothing and Regression: Approaches, Computation, and Application

SCHOTT · Matrix Analysis for Statistics, Second Edition

SCHOUTENS · Levy Processes in Finance: Pricing Financial Derivatives

SCOTT · Multivariate Density Estimation

SCOTT · Multivariate Density Estimation: Theory, Practice, and Visualization

* SEARLE · Linear Models

† SEARLE · Linear Models for Unbalanced Data

† SEARLE · Matrix Algebra Useful for Statistics

† SEARLE, CASELLA, and McCULLOCH · Variance Components SEARLE and WILLETT · Matrix Algebra for Applied Economics

SEBER · A Matrix Handbook For Statisticians

† SEBER · Multivariate Observations

SEBER and LEE · Linear Regression Analysis, Second Edition

† SEBER and WILD · Nonlinear Regression

SENNOTT · Stochastic Dynamic Programming and the Control of Queueing

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

Systems

* SERFLING · Approximation Theorems of Mathematical Statistics

SHAFER and VOVK · Probability and Finance: It's Only a Game!

SHERMAN · Spatial Statistics and Spatio-Temporal Data: Covariance Functions and Directional Properties

SILVAPULLE and SEN · Constrained Statistical Inference: Inequality, Order, and Shape Restrictions

SINGPURWALLA · Reliability and Risk: A Bayesian Perspective

SMALL and McLEISH · Hilbert Space Methods in Probability and Statistical Inference

SRIVASTAVA · Methods of Multivariate Statistics

STAPLETON · Linear Statistical Models, Second Edition

STAPLETON · Models for Probability and Statistical Inference: Theory and Applications

STAUDTE and SHEATHER · Robust Estimation and Testing

STOYAN · Counterexamples in Probability, Second Edition

STOYAN and STOYAN · Fractals, Random Shapes and Point Fields: Methods of Geometrical Statistics

STREET and BURGESS: The Construction of Optimal Stated Choice Experiments: Theory and Methods

STYAN The Collected Papers of T. W. Anderson: 1943–1985

SUTTON, ABRAMS, JONES, SHELDON, and SONG · Methods for Meta-Analysis in Medical Research

TAKEZAWA · Introduction to Nonparametric Regression

TAMHANE · Statistical Analysis of Designed Experiments: Theory and Applications

TAÑAKA · Time Series Analysis: Nonstationary and Noninvertible Distribution Theory

THOMPSON · Empirical Model Building: Data, Models, and Reality, Second Edition

THOMPSON · Sampling, Third Edition

THOMPSON · Simulation: A Modeler's Approach

THOMPSON and SEBER · Adaptive Sampling

THOMPSON, WILLIAMS, and FINDLAY · Models for Investors in Real World Markets

TIERNEY · LISP-STAT: An Object-Oriented Environment for Statistical Computing

and Dynamic Graphics

TROFFAES and DE COOMAN · Lower Previsions

TSAY · Analysis of Financial Time Series, Third Edition

TSAY · An Introduction to Analysis of Financial Data with R

TSAY · Multivariate Time Series Analysis: With R and Financial Applications

UPTON and FINGLETON · Spatial Data Analysis by Example, Volume II: Categorical and Directional Data

† VAN BELLE · Statistical Rules of Thumb, Second Edition

VAN BELLE, FISHER, HEAGERTY, and LUMLEY · Biostatistics: A Methodology for the Health Sciences, Second Edition

VESTRUP · The Theory of Measures and Integration

VIDAKOVIC · Statistical Modeling by Wavelets

VIERTL · Statistical Methods for Fuzzy Data

VINOD and REAGLE · Preparing for the Worst: Incorporating Downside Risk in Stock Market Investments

WALLER and GOTWAY · Applied Spatial Statistics for Public Health Data

WEISBERG · Applied Linear Regression, Fourth Edition

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

^{*}Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

WEISBERG · Bias and Causation: Models and Judgment for Valid Comparisons WELSH · Aspects of Statistical Inference

WESTFALL and YOUNG · Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment

* WHITTAKER · Graphical Models in Applied Multivariate Statistics

WINKER · Optimization Heuristics in Economics: Applications of Threshold Accepting

WOODWORTH · Biostatistics: A Bayesian Introduction

WOOLSON and CLARKE · Statistical Methods for the Analysis of Biomedical Data, Second Edition

WU and HAMADA · Experiments: Planning, Analysis, and Parameter Design Optimization, Second Edition

WU and ZHANG · Nonparametric Regression Methods for Longitudinal Data Analysis

YAKIR · Extremes in Random Fields

YIN · Clinical Trial Design: Bayesian and Frequentist Adaptive Methods

YOUNG, VALERO-MORA, and FRIENDLY · Visual Statistics: Seeing Data with Dynamic Interactive Graphics

ZACKS · Examples and Problems in Mathematical Statistics

ZACKS · Stage-Wise Adaptive Designs

* ZELLNER · An Introduction to Bayesian Inference in Econometrics ZELTERMAN · Discrete Distributions Applications in the Health Sciences ZHOU, OBUCHOWSKI, and McCLISH · Statistical Methods in Diagnostic Medicine, Second Edition

^{*}Now available in a lower priced paperback edition in the Wiley Classics Library.

[†]Now available in a lower priced paperback edition in the Wiley Interscience Paperback Series.

WILEY END USER LICENSE AGREEMENT

Go to www.wiley.com/go/eula to access Wiley's ebook EULA.