

O QUE É INTERAÇÃO/INTERFACE HUMANO-COMPUTADOR

Prof^a. Renata P. M. Fortes PAE André de Lima Salgado PAE Humberto Lidio Antonelli Instituto de Ciências Matemáticas e Computação - USP

Agenda

- Um pouco de história
- Termos e Definições
 - o Interface Humano-Computador
 - o Interação Humano-Computador
 - Experiência de Usuário (UX)
 - Usabilidade
 - Acessibilidade
- Evolução de Interfaces
- Metáforas de Interfaces
- Paradigmas e Princípios

Um pouco de história

Novas tecnologias provêem poder às pessoas.

É preciso sensibilidade às capacidades e necessidades humanas.

Isso tem sido feito a partir de ferramentas e técnicas vindas de áreas como:

- Psicologia
- Ergonomia
- Antropologia

E.g.: Psicologia para entendimento do comportamento, pensamento e outros fatores humanos.

E.g.: Ergonomia no uso de sistemas computacionais.

E.g.: Antropologia e práticas de etnografia.

Interfaces na sociedade

Diversas interfaces têm auxiliado tarefas cotidianas de milhares de pessoas.

Exemplos a seguir...

Paineis de bordo pervasivos

Novos conceitos de gerenciadores de finanças

Previsão do tempo

Prontuário Eletrônico e-sus

Profissional da área

Atualmente são denominados *UX Designers*

Entretanto, trabalham não somente com UX (Experiência de Usuário), mas também com outros termos importantes, como:

- Acessibilidade
- Usabilidade

Então, como diferenciar tantos termos? (UX, acessibilidade, usabilidade, interface, interação, design, etc.)

Interface

Lugar onde o contato entre duas entidades ocorre (por exemplo, a tela de um computador).

Interfaces Humano-Computador

- Eram geralmente entendidas como o hardware e software com o qual homem e computador podiam se comunicar.
- Evolução do conceito para aspectos cognitivos e emocionais.
- A forma das interfaces reflete as qualidades físicas das partes na interação.
- Reflete o que pode ser feito com ela.
- Exemplos a seguir...

Experiência de Usuário (UX)

"a experiência envolvendo os sentimentos dos usuários, assim como os aspectos afetivos e hedônicos relacionados com sua interação com interfaces" [Law et al. 2009]

Usabilidade

"O grau em que um produto pode ser usado por <u>usuários específicos</u> para atingir <u>objetivos específicos</u> com <u>efetividade</u>, <u>eficiência</u> e <u>satisfação</u> em um <u>contexto específico</u> de uso" [ISO/IEC 25066]

Termos que compõem usabilidade [ISO 25066, 2016]

Usuário: "pessoa que interage com" a interface.

Objetivo: "saída desejada".

Efetividade: "acurácia e a completude com as quais usuários alcançam objetivos".

Eficiência: se refere à efetividade e adequada utilização de recursos.

Satisfação: "ausência de desconforto, e atitudes positivas" a medida que os usuários utilizam a interface.

Contexto específico de uso: combinação entre perfil dos usuários, tarefas e equipamentos envolvidos.

Tarefas: "atividades requisitadas para atingir um objetivo".

Acessibilidade

Pode ser entendida como usabilidade para pessoas "com maior diversidade de características e capacidades" [ISO/IEC 25066]

Acessibilidade

"websites e softwares que atendam às diferentes necessidades, preferências e situações dos usuários.

Especificamente, a acessibilidade permite que pessoas com deficiência possam perceber, compreender, navegar e interagir com a Web, e assim podem contribuir com a mesma." [W3C 2005]

Quiz

Qual o principal objetivo de um sistema interativo?

Deve ser usável por pessoas!

Objetivo de sistema interativo

Projetistas de sistemas interativos enfrentam duas questões:

- 1. Como um sistema interativo pode ser projetado para assegurar usabilidade?
- 2. Como a **usabilidade** de um sistema interativo pode ser <u>demonstrada</u> ou <u>medida?</u>

Paradigmas e Princípios

Projetar para maximizar a usabilidade!

EXEMPLOS de estratégias para a construção efetiva de sistemas interativos provêm **PARADIGMAS** para o projeto de sistemas interativos com boa usabilidade.

PRINCÍPIOS abstratos oferecem um modo de compreender a usabilidade de modo mais geral. Através de **conceitos teóricos**.

Paradigmas de interação

Construção de bons sistemas repetindo os casos de sucesso

Segredo? Conhecer a história!

Mudanças de Paradigmas

Novos **paradigmas** são complementares

→ não necessariamente anulam os anteriores

Associados à evolução tecnológica

→ demandam que os usuários repensem o uso da tecnologia de modo inovador

História

Herman Hollerith (Buffalo, 29 de fevereiro de 1860 — Washington, D.C., 17 de novembro de 1929)

Redes de computadores e Tempo compartilhado

Anos 1960-70s:

- Processamento de programas em lote
 - Entrada: cartões perfurados, fitas de papel, etc
 - Saída: relatórios impressos
 - ..

Redes de computadores e Tempo compartilhado

- J.C.R. Licklider (~1960)
 propôs o início das pesquisas em aplicações centradas no usuário.
- Processamento em tempo compartilhado (time-sharing): permitiu que bons programadores passagem a "interagir" com computadores via terminais "remotos".

Video display units (VDUs)

- Tecnologia:
 Surge o VDU como novo dispositivo físico
- (1962) Sketchpad: www.wikipedia.org/wiki/Sketchpad
 Ivan Sutherland's (p/ Ph.D. no MIT)
 Programa (MIT) para manipulação de imagens visuais em telas
 Entrada via caneta ótica (light pen)

Arquitetura VDU (Vetorial)

Arquitetura VDU (Matricial)

Toolkits de Programação

- Década de 60: Douglas Engelbart
 - Pesquisador do Stanford Research Institute
 - Propôs uso do computador como mecanismo de complementar a capacidade humana de resolução de problemas
 - Defendeu a necessidade de Toolkits apropriados tanto para
 - produzir equipamento computacional
 - produzir software!
- Projeto NSL/Augment a partir de 1963, demonstrado em 1968
 - VIDEO: http://sloan.stanford.edu/mousesite/1968Demo.html
 - De quebra: inventou o mouse e o editor de texto

Computação pessoal: 1980s

- Os toolkits de Douglas Engelbart's
 - Usados por especialistas em computação
- O time de Seymor Papert (MIT) desenvolveu LOGO: uma linguagem de programação gráfica para crianças
 - Uma tartaruga desenhava uma trilha com sua cauda em um tanque de areia
 - A criança pode fazer de conta que está dentro da tartaruga e dirigir a tartaruga de modo a desenhar formas geométricas simples digitando frases simples tais como Go Forward e Turn Left

Computação pessoal

- Alan Kay (influenciado por Papert e Engelbart) um dos fundadores do Xerox PARC (Palo Alto Research Center)
 - Trabalhou para incorporar Smalltalk nos computadores pessoais que se tornavam acessíveis
 - Meados de 70: concebeu o Dynabook
 - Não existe ainda: o mais próximo de hoje seria um Tablet PC mas o custo teria que ser MUITO baixo de modo que qualquer um pudesse possuir um Dynabook
 - http://www.honco.net/os/kay.html

"The best way to predict the future is to invent it."

Estilos de Interação

- Linguagens de Comando
- Linguagem Natural
- Interação por menus
- Interação por formulários
- Interação por manipulação direta
- WIMP

Perspectivas de Interação

Perspectivas de Interação

Perspectiva	Significado da interação	Fatores de qualidade mais evidentes
sistema	Transmissão de dados	Eficiência (tal como indicado pelo tempo de uso e nro. de erros cometidos)
parceiro de discurso	Conversa usuário-sistema	Adequação da interpretação e geração de textos
ferramenta	Manipulação da ferramenta	Funcionalidades relevantes ao usuário, facilidade de uso
mediação	Comunicação entre usuários e comunicação designer-usuário	Qualidade da comunicação mediada e entendimento mútuo

Windows

- ANTES: uma tarefa por computador/terminal
- Computação pessoal "de fato"
 - sucesso do PC ênfase para aumentar a usabilidade da tecnologia computacional foi colocada no problema de um único usuário que inicia um diálogo com o computador com o objetivo de executar uma tarefa.
- Windows: permite uma tarefa por janela
 - Mapeia o fato de que os seres humanos trabalham, na verdade, com várias tarefas ao mesmo tempo e sob condições de interrupção constante
- WIMP interface: Windows, Icons, Menus and Pointers
 - http://cne.gmu.edu/itcore/userinterface/GUIHistory3.html

Quiz

Como descrever as tarefas de usuários?

A partir de modelo conceitual e metáforas!

Metáforas

- usadas frequentemente para ensinar novos conceitos em termos de outros conceitos já compreendidos; por ex:
 - tartaruga
 - escritório
 - o carrinho de compras
 - o máquina de escrever
- Em cada caso:
 - o Como funciona?
 - O que ajuda?
 - Onde falha?

Metáforas

- Definição
 - metáfora é o uso de conceitos no mundo real para facilitar o APRENDIZADO de um novo sistema
- Em que ajuda
 - o aprendizado, por permitir que conceitos utilizados no mundo real sejam reutilizados no projeto
- Qual o problema?
 - A metáfora não se aplica 100% no projeto, e assim em algum momento o seu uso falha

Manipulação Direta

Ben Shneiderman, 1982

- A disponibilidade de fornecer feedback visual e sonoro rápidos em uma tela de alta resolução permite fornecer resposta a cada ação do usuário...
- Feedback rápido é uma das características de uma técnica de interação denominada 'manipulação direta'.

Ex: Windows, menus, buttons e metaphors

Manipulação Direta

Características

- Visibilidade dos objetos de interesse
- Ação incremental na interface com feedback rápido em todas as ações
- Reversibilidade de todas as ações
- Correção sintática de todas as ações
- Ações atuam diretamente sobre os objetos visíveis

10. sucesso – o Macintosh, da Apple em 1984

Manipulação Direta

- Model-world metaphor
 - Interface é um 'mundo' no qual o usuário pode agir, e cujo estado muda em conseqüência dessas ações
 - deixa de ser uma 'mediadora' do diálogo entre usuário e sistema, e passa a ser o próprio sistema

Paradigma WYSIWYG

 Diferença entre a representação do objeto e o objeto de interesse final é mínima

Linguagem vs. Ação de agentes

- Linha de comando
 - dir –wt *.java
 - o ps -u renata
 - Ip cv.pdf
 - mv ./../../src/*.java ./../../backup/.
- Manipulação direta (WIMP)
- Agentes
 - Aprendem as ações do usuário e as executam

Hypertext/WWW

- Vanevar Bush: 1945
 - Memex
 - http://www.theatlantic.com/unbound/flashbks/computer/bushf.h
 tm
 - http://www.kerryr.net/pioneers/memex_pic.htm
- Ted Nelson: 1965
 - Xanadu
 - http://www.xanadu.com/
- Berners-Lee: 1989...
 - World Wide Web
- Web 2.0 & RIAs

Ubiquitous computing - Computação Ubíqua

- 1991, Mark Weiser
 - Computação embutida no ambiente de modo transparente
 - Apoio ao usuário sem este "utilizar o computador"
 - Afastamento do paradigma de computador pessoal
 - Calm computing, Natural interfaces, Augmented Reality, Context-aware computing

Ubiquitous computing - Computação Ubíqua

Escalas

- Jarda (yard, ~1m) Dispositivos públicos, 1 para vários indivíduos
- Pé (foot, ~30cm) Dispositivos pessoais, 1 para cada indivíduo
- Polegada (inch, ~2.5cm) Dispositivos pessoais (vários para um individuo)
 - cada vez menores, públicos (vários embutidos no ambiente), sempre provendo servidos ao usuário de modo individual ou coletivo - loT (Internet of Things)

Como construir sistemas seguindo heurísticas abstratas

Conceitos teóricos sobre usabilidade

- Dimensões para o projeto: Autoridade vs Generalidade
 - Padrões (standards)
 - Heurísticas e Diretrizes (guidelines)

Regras de projeto

Padrões (Standards)

- Definidos por organizações para assegurar conformidade a um conjunto de regras por uma ampla comunidade
 - ISO: International Organization for Standardization
 - BSI: Bristish Standards Institution

Guidelines (diretrizes)

- MITRE Corporation
 - Guidelines for Designing User Interface Software (1986)
 - http://www.hcibib.org/sam/
- Questões
 - Estilos de diálogo, uso de cores, etc...

Guidelines (diretrizes)

- Diretrizes abstratas: utilizadas para especificação de requisitos
 - Ex: Consistência
 - Apple guidelines
 - "effective applications are both consistent within themselves and consistent with one another"
 - "the user, not the computer, initiates and controls all actions."
- Diretrizes específicas: utilizadas no projeto detalhado
 - Ex: toda página do projeto tem que ter o logo em tamanho X no canto superior direito...

Princípios de usabilidade: três categorias

- Learnability
 (facilidade de aprendizado)
- Flexibility
 (flexibilidade)
- 3. **Robustness** (robustez)

1. Learnability (facilidade de aprendizado)

- 1a. Predictability Previsibilidade (facilidade de prever o resultado da interação)
- 1b. Synthesizability (facilidade de **inferir** como a interação funciona depois de utilizar um pouco)
- 1c. Familiarity (familiaridade)
- 1d. Generalizability (facilidade de **generalizar** o mecanismo geral de interação depois de utilizar um pouco)
- 1e. Consistency (consistência)

2. *Flexibility* (flexibilidade)

- 2a. Dialog Initiative (iniciativa do diálogo)
- 2b. Multi-threading (suporte a múltiplas tarefas/diálogos)
- 2c. Task Migratability (transferência de **controle entre sistema e usuário** para execução de tarefas)
- 2d. Substitutivity (formas alternativas de entrar/exibir informação)
- 2e. Customizability (capacidade de adaptação da interface)

3. *Robustness* (robustez)

3a. Observability - capacidade que o usuário tem de avaliar o estado interno do sistema a partir da representação perceptível da interface

3b. Recoverability - habilidade do usuário realizar uma ação corretiva uma vez que tenha percebido que um erro aconteceu

3c. Responsiveness - como o usuário percebe o taxa de comunicação com o sistema, tempo necessário para perceber mudanças de estado no sistema em resposta a ações

3d. Task conformance - quanto os serviços do sistema suportam todas as tarefas que o usuário precisa realizar, da maneira que o usuário espera

Interação Humano Computador

Prof^a. Renata P. M. Fortes PAE André de Lima Salgado Instituto de Ciências Matemáticas e Computação - USP

Exercícios

- 1. Projeto Prático (Trabalho)
 - a. Formação e apresentação de grupos
 - b. Cadastro de grupos no tidia-ae
 - c. LEMBRETE da proxima semana Parte 0 a ser apresentada.
 - d. Pesquisa de interfaces concorrentes
 - e. Elencar elementos similares entre tais interfaces
- 2. Pesquise sobre **affordance** em IHC. O que é **affordance**?
- 3. Pesquise sobre modelo conceitual e modelo mental em IHC. O que são? Qual a diferença entre ambos os conceitos?

Créditos

- Adaptado de material gentilmente cedido pela profa. Maria da Graça C.
 Pimentel, e prof. Rudinei Goularte do ICMC-USP
- Baseado no curso do Prof. Gregory Abowd, Georgia Tech, Atlanta EUA.
 Curso de HCI recomendação ACM.