ALGEBRA 1, Lista 6

Konwersatorium 10.11.2021, Ćwiczenia 23.11.2021.

- OS. Materiał teoretyczny: Homomorfizmy, epimorfizmy, monomorfizmy, endomorfizmy i automorfizmy grup: definicje i przykłady. Twierdzenie Cayley'a. Własności homomorfizmów grup. Jądro i obraz homomorfizmu grup. Dzielnik normalny. Charakteryzacja monomorfizmu grup przy pomocy jądra.
- 18. Niech $S \in D_4$ będzie symetrią osiową (dowolną). Udowodnić, że podgrupa $\{id, S\} < D_4$ nie jest dzielnikiem normalnym w D_4 .
- 2K. Grupa przekształceń afinicznych prostej to poniższy zbiór funkcji $\mathbb{R} \to \mathbb{R}$:

$$A = \{x \mapsto ax + b \mid a, b \in \mathbb{R}, a \neq 0\}.$$

- (a) Udowodnić, że A jest grupą względem złożenia funkcji (podgrupą $S_{\mathbb{R}}$).
- (b) Niech

$$H := \left\{ \left(\begin{array}{cc} a & b \\ 0 & 1 \end{array} \right) \mid a, b \in \mathbb{R}, a \neq 0 \right\}.$$

Udowodnić, że H jest podgrupą $GL_2(\mathbb{R})$.

- (c) Udowodnić, że $A \cong H$.
- (d) Udowodnić, że H nie jest dzielnikiem normalnym w $GL_2(\mathbb{R})$.
- 3K. Niech $n \in \mathbb{N}_{\geq 2}$.
 - (a) Udowodnić, że każdy homomorfizm $f: \mathbb{Z}_n \to \mathbb{Q}$ jest trywialny, tzn. dla każdego $x \in \mathbb{Z}_n$ mamy f(x) = 0.
 - (b) Udowodnić, że każdy homomorfizm $f: \mathbb{Q} \to \mathbb{Z}_n$ jest trywialny, tzn. dla każdego $y \in \mathbb{Q}$ mamy f(y) = 0.
 - 4. Czy istnieją poniższe homomorfizmy grup $f:G\to H$? Jeśli istnieją, to wyznaczyć obraz i jądro danego homomorfizmu.
 - (a) $G = (\mathbb{Z}_4, +_4), H = (\mathbb{Z}, +), f(1) = 1.$
 - (b) $G = (\mathbb{Z}_4, +_4), H = (\mathbb{Z}_2, +_2), f(1) = 1.$
 - (c) $G = H = (\mathbb{R}, +), f(1) = 99.$
 - (d) $G = (\mathbb{R}_{>0}, \cdot), H = (\mathbb{R}, +), f(8) = 3.$
 - (e) $G = (\mathbb{Q}, +), H = (\mathbb{Q} \setminus \{0\}, \cdot), f(1) = 2.$
 - (f) $G = (\mathbb{Z}_4, +_4), H = (\mathbb{Z}_5, +_5), f(1) = 1.$
 - 5. Wyznaczyć wszystkie homomorfizmy $f:G\to H$, gdzie:
 - (a) $G = (\mathbb{Z}, +), H = (\mathbb{Z}_4, +_4);$
 - (b) $G = (\mathbb{Z}_3, +_3), H = (\mathbb{Z}_4, +_4);$
 - (c) $G = (\mathbb{Z}_{10}, +_{10}), H = (\mathbb{Z}_6, +_6);$
 - (d) $G = H = (\mathbb{Q}, +).$
 - 6. Czy następująca podgrupa H grupy G jest dzielnikiem normalnym?
 - (a) $G = D_4$, $H = \{ id, O_{\pi/2}, O_{\pi}, O_{3\pi/2} \}$.
 - (b) $G = D_4$, $H = \{ id, O_{\pi} \}$.
 - (c) $G = S_4$, $H = \{id, (1, 2, 3), (1, 3, 2)\}.$
 - 7. Niech

$$H := {id, (1,2)(3,4), (1,3)(2,4), (1,4)(2,3)} \subset S_4.$$

Udowodnić, że:

- (a) H jest podgrupa S_4 ;
- (b) H jest dzielnikiem normalnym w S_4 (wskazówka: dla $\sigma \in S_4$ opisać $\sigma(1,2)(3,4)\sigma^{-1}$ i następnie skorzystać z odpowiedniego kryterium na dzielnik normalny z wykładu).