Frame

- Variance to semantic network
- A popular method to represent the facts in Expert System
- The data structure represent the knowledge about the concept or object.
- Resemble the record and structure in data structure.
- Provide a natural way in representing the structured knowledge.

Basic Frame Design Structure

Basic Frame Design Structure

Basic Frame Design Structure

Frame Name	: Iweety	
CLASS	: Bird	
Properties	Color	Yellow
	Eats	Worms
	No-Wings	1
	Flies	False
	Hungry	Unknown
	Activity	Unknown
	Lives	Cage I

Frame

- Provide ways to manage the knowledge in slot that contains characteristic and attribute
- Consists of 2 basic elements
 - slot set of attributes to describe the object that represent the frame
 - facet
 ^I subslot to describe knowledge or action for the attribute in the slot.

Frame

- Need to document clearly the information related to the model
- Provide a way to limit the value for the attribute
- Provide information modularity system expansion and maintenance

Facet Types:

- VALUE value for slot: example: colour slot, the value is either blue, red or yellow
- TYPE data/value that assign to the slot, example number of wings must be in numeric.
- DEFAULT the initial value for the slot, example the default value for the number of wings is two unless stated otherwise.
- CONSTRAINT/RANGE- the range for the value, example 0- 100.

Value, Range and Default

Frame: CAR

Specialization of: LAND VEHICLE

Body: Steel VALUE

Windows: glass CONSTRAINT /RANGE

Fuel Remaining:

Range: (empty, 1/4 tank, 1/2 tank, full)

Default: none * DEFAULT

Type of Wreck:

Range:(feader bender, serious, total)

Default: none

Frame

Frame : CAR

Specialization of: LAND VEHICLE
Model: Type: alphanumeric

Range: (Sedan, convertible, sport, wagon)

Default: Sedan

Body: steel Windows: glass

Mobility: self-propelled Mobility Mechanism: has wheels Tires: Rubber

Fuel: Type: alphanumeric

Range: (gasoline, diesel, propane)

Default: gasoline

Number of seats: Type: numeric

Range: (1-9) Default: 2

Some other facets:

If-CHANGED

- To state the changes of the slot value if the changes occurs in other slot
 - Example:
 - Value for the hungry slot is changed from unknown to eat something. The slot activity is changed from unknown to eat worms.

Example If-Needed/ If-Added

Frame: CAR

Specialization of: LAND VEHICLE

Body: Steel Windows: glass

Fuel Remaining:

Range: (empty, 1/4 tank, 1/2 tank, full)

Default: none

If-Needed: check fuel range

Type of Wreck:

Range:(feader bender, serious, total)

Default: none

If-Changed: dall insurance agent

Disadvantages of Frame Representation

- Not easy to represent the following
 - 'negation' (the FALSE facts)
 - Disjunction (A or B)
 - Quantification (true for ALL or PART-OF)

Semantic Network

- Definition
 - A method of knowledge representation using graph made up of nodes and arcs where the nodes represent objects and the arcs represent the relationships between the objects
- Semantic networks are excellent in supporting system analysis, demonstrating changes, and showing inheritance relationships
- The nodes represent objects, object properties or property values.
- Example of a node is "bird" or "Jack"
- Arcs is a label of terms such as "IS-A", "HAS" that clearly define

Semantic Network of Bird

Object: Bird

Property: Wings, Fly

Interpretation from the net: A bird has wings and can fly

"Canary" node link to the "Bird" node via an IS-A arc, i.e. "a canary is a bird"

Since birds have wings and can fly, and canaries are a type of birds, it seems reasonable that they also have wings and can fly.

the system knows not only the objects and their properties,

Expanding the Network

But also know that "tweety is an animal and breathes air"

Inheritance in Semantic Network

- Inheritance eases the task of coding knowledge
- For example, if you add some specific object node to the network (e.g. Tweety"), it inherits information throughout the network via the IS-A links
- In addition, if you add a general object node (e.g. "Animal"), other nodes inherit its properties
- This ability made it an attractive knowledge representation

Semantic Network Operation: Case 1

Question: How do bird travel

The node first looks for an arc labeled "travel".

The node then uses the information in the attached node as the

answer

TILVE O LEVOREFROS

Semantic Network Operation: Case 2

Question: How do tweety travel?

The process:

The node is unable to locate the answer via a local arc, it then searches for an answer via its IS-A links.

Semantic Network Operation

- The "tweety" node has no way to answer the question, so it asks the "canary" node.
- Pass the question along until one of the nodes can provide the answer.
- An answer of "fly" is found, and sent back along the links to the user.
- A semantic network equipped with an inheritance feature provides an efficient way to process information

Exception Handling

- Inheritance is a powerful feature in a semantics network, but it can cause problems.
- Consider the figure again, the "Penguin" node is linked to the "Bird" node, it inherits the information "TRAVEL-Fly"
- We would expect that a penguin is kind of bird and can fly a mistake
- Overcome this using exception handling technique
- Requires for exception on a local basis

Exception Handling

- When a node inherits incorrect information, then line a new node to it with information that can effectively over-ride the inherited information
- A "Walk" node is attached to the "Penguin" node using a "Travel" link
- Therefore, since a node first looks locally for an answer to a question, an answer of "Walk" is provided to a travel question posed to the penguin

and you fail to account for a necessary exception, obvious problems

Advantages and Disadvantages of Semantic Network Semantic

Advantages

- Uses deductive reasoning (inheritence)
- Shows important associations explicitly and clearly
- Follows the hierarchy of relationships easily
- Provides flexibility in adding

SCHEENCAST WIND MATERIAL MATERIAL WINDS

Disadvantages

- Not a complete knowledge representation
- Lacks operational knowledge
- Manipulates the net through inferences that are valid
- Meaning of node may be ambiguous.
 No standards exist concerning the definition of nodes
- Makes procedural knowledge difficult to represent because sequence and time are not clearly represented