Written Assignment

- Q1. What is the big-Oh (O) time complexity for the following algorithm (shown in pseudocode) in terms of input size n? Show all necessary steps:
- (a) For the time complexity, (note that C_i where i is positive integer is constant and n is input size)
- 1. count = $0 \rightarrow C_1$
- 2. for i = 0 to n-1 \rightarrow C₂n (For loop take n times, constant time will be omitted on C₁)
- 3. sum = $0 \rightarrow C_3$ n (because it is under for loop)
- 4. for j = 0 to $n-1 \rightarrow C_4 n^2$ (Under the for loop, there is another for loop so it will run n^2 times. n times by constant will be omitted)
- 5. sum = sum + A[0] \rightarrow C₅n² (Calling A[0] and assigning new sum value, it is constant time * n² times)
- 6. for k = 1 to $j \rightarrow C_6$ n³ (This for loop is increasing k(1+2+3+...+n-1) = k*(n-1)*n/2 and the first for loop also multiplied, then the result will be c_6*n^3)
- 7. $sum = sum + A[k] \rightarrow c_7 * n^3$ (Since it is under 3rd for loop)
- 8. if B[i] == sum then count = count + 1 \rightarrow c₈*n (it is under the first loop)
- 9. return count \rightarrow c₉ (Return only once (constant time))

The sum of all the steps is $C'_1 + C'_2*n + C'_3*n^2 + C'_4*n^3$ and it satisfies $C'_1 + C'_2*n + C'_3*n^2 + C'_4*n^3 < c*n^3$ where any $c > C'_1 + C'_2 + C'_3 + C'_4$ or $c = C'_1 + C'_2 + C'_3 + C'_4 + 1$ and $n_0 = 1$ ($n \ge 1$)

Therefore, the answer is time complexity is $O(n^3)$

- (b) Document a hand-run on MyAlgorithm for input arrays $A = [1\ 2\ 5\ 9]$ and $B = [2\ 29\ 40\ 57]$ and show the final output.
- 1. count = 0
- 2. input size is the same as size of Array which is 4 (A and B are the same input size given pseudo code)
- 3. Note that when ever for loop is executed, sum will be reset as i value increments. Therefore, we only can consider j for loop case. When j = 0, k loop does not execute because k = 1 and j = 0 so sum is the same as A[0] which is 1.
- 4. Next, j = 1, then k loop executes 1 time so sum is 1 + A[0] + A[1] = 4.
- 5. Next, j = 2, then k loop executes 2 times so sum is 4 + A[0] + A[1] + A[2] = 12
- 6. Lastly, j = 3, then k loop executes 3 times so sum is 12 + A[0] + A[1] + A[2] = 29
- 7. j loop is done, and if B[i] == sum will be executed. However when i = 0, sum = 29 and B[0] = 2 so count will not increment.

8. when i = 1, do the same procedures 3 to 6 and sum is exactly the same value as 29 (since sume value becomes zero when i is incremented.). Therefore, count will be incremented.

- 9. when i = 2 and 3, do the same procedures 3 to 6 and since B[2] and B[3] are not the same as 29, count will not be incremented.
- 10. return count which is 1 and output will be 1.
- Q2. Consider the following code fragments (a), (b) and (c) where n is the variable specifying data size and C is a constant. What is the big-Oh time complexity in terms of n in each case? Show all necessary steps.

Note that k_i is arbitrary constant for question 2.

Since C is constant, for the first for loop, i = 0, one operation, i = i + C is running n/C times because of i < n. i < n is n/C + 1 operation. Total operation is $k_1n + k_2$ operations.

For the second for loop, it is constant time of loop, so we can simply conclude that it will be multiplication of k_3 times on first loop. Therefore, it is $k_4n + k_5$ operations (note that $k_1*k_3=k_4$ and $k_2*k_3=k_5$).

Sum[i] += j * Sum[i] is actually Sum[i] = Sum[i] + j*Sum[i]. Therefore, sum[i] is calling constant times. For the simplicity, we denote another constant time k_6 times will be multiplied. Therefore, it is k_7 *n + k_8 operations.

In total, we can simply denote $k'_1 + k'_2 n$ and it satisfies $k'_1 + k'_2 n < c^* n$ where any $c > k'_1 + k'_2 + 1$ and $n_0 = 1$ ($n \ge 1$).

The big-Oh is thus **O(n)**.

i = 1 is 1 operation. For i = i * C, it will accumulate until the value of 1*C*C*...*C is reached to n because of i < n, so it means that when $log_c n$ is reached, the loop will be stopped (Note that $C^x = n$, then $x = log_c n$). Therefore, we can let it $k_1*log_C n$ operations.

For the second loop, j = 0 is 1 operation and since j < i and j increment by 1, we can say that it is 1 + C + C*C (which is C^2)+ C*C*C (which is C^3)+ ... + $C^{(\log_C n)}$ times. Note that it is combining from previous loop. The sum of this calculation is $(1-C^{(\log_C n+1)})/1-C = 1-Cn/1-C$ so we can denote k_2n operations.

In total, it is $k_1*log_c n + k_2 n$ and $k_1*log_c n + k_2 n < c*n$ where $c > k_1 + k_2$ and $n_0 = 1$ ($n \ge 1$)

Therefore, the big-Oh is O(n).

```
(c) for (int i = 1; i < n; i = i*2)

for (int j = 0; j < n; j = j + 2)

Sum[i] += j*sum[i];
```

Similar to question (b), first for loop operates $k_1*log(n)$ times because of similar reason to question (b) (just it is log(n) instead of $log_c n$).

However, for the second loop, the loop will be done n/2 times. The second for loop will run n/2 times because j is incremented by 2. Therefore, n/2 times can be written k_2 *n times. Note that regardless of previous loop it will run the same amount of time. Therefore, combining with previous loop, it will be k_3 *nlog(n) times.

The last operation is Same as (a), (b), simple constant time, so combining with loop, it will be $k_4*nlog(n)$. In total, total operations can be denoted as $k'_1*log(n) + k'_2*nlog(n)$ and it satisfies $k'_1*log(n) + k'_2*nlog(n)$

Therefore, the big-Oh is O(n*log(n)).

Q3. The number of operations executed by algorithms A and B are $12n^3 + 40n\log n$ and $5n^4 - 100n^2$ respectively. Determine an n 0 such that B is greater than A for $n \ge n_0$.

B-A should be greater than $0.5n^4 - 100n^2 - 12n^3 - 40n\log n > 0$. We know that $n\log(n) >= n$ when n >= 2. Please note that in algorithm $\log(n) = \log_2 n$. Assume $5n^4 - 100n^2 - 12n^3 - 40n > 0$ then n > 5.97, base on this, we test 6 or 7 (or more if it's applicable)

When n = 6, B-A = -332.39 and when n = 7, B-A = 2202.94

< c*nlog(n) where $c > k'_1 + k'_2$ or $c = k'_1 + k'_2 + 1$ and $n_0 = 1$ ($n \ge 1$).

Therefore, B is greater than A for $n \ge n_0$ where $n_0 = 7$

Also, we can simply prove by the graph. Check the below image. In this case, it is also $n_0 = 7$

You can also verify with below image.

Please note that if by mistake, if we denote log(n) as $log_{10}(n)$ (normal mathematical intuition), Then the answer will be different or wrong, However, in algorithm calculation, log(n) should be $log_2(n)$

Q4. Answer the following questions:

a) Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) + e(n) is O(f(n) + g(n)).

By definition, $d(n) \le C_1 * f(n)$, $n \ge n_1$ and $e(n) \le C_2 * g(n)$, $n \ge n_2$. Adding them, then,

 $d(n) + e(n) \le C_1 * f(n) + C_2 * g(n)$. Actually, O(f(n) + g(n)) is $C_3(f(n) + (g(n))$.

If we denote $C_3 = C_1 + C_2$. We get

 $d(n) + e(n) \le C_1 * f(n) + C_2 * g(n) \le (C_1 + C_2) * (f(n) + (g(n)))$ where $n \ge \max(n_1, n_2)$ (Note that if max is not allowed, we can simply determine $n \ge n_1 + n_2$)

b) Show that if d(n) is O(f(n)) and e(n) is O(g(n)), then d(n) - e(n) is not necessarily O(f(n) - g(n)).

We can prove by counter example.

Assume that d(n) = 3x, then f(n) = n. e(n) = 2x, then g(n) = n as well. d(n) - e(n) = x; however, f(n)-g(n) = 0 which we denote in big-Oh as O(1). It shows that d(n) - e(n) = x so its big-Oh should be O(x), but f(n)-g(n) can be 0 in some cases so given statement is true.

c) Show that $2^{n+1} + n^2$ is $O(2^n)$

 $2^{n+1} + n^2 \le g(n)$ where g(n) = c*2ⁿ where c = 5 and n≥1.

Therefore $g(n) = 2^n$ so its big-Oh is $O(2^n)$.

d) Show that $f(n) = \sum_{i=1}^{n} i^2$ is $O(n^3)$

 $\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2.$ It can be shown as $n(n+1)(2n+1)/6 = (2n^3+3n^2+n)/6$ $(2n^3+3n^2+n)/6 \le C^*n^3$ where C = 1 and $n \ge 1$ so big-Oh is $O(n^3)$