

ECE 425, Sp 2023

Introduction to VLSI System Design MP2

2. List the eight ALU functions and explain how you implemented each of them.

I created a table that shows all possible I_{3-5} control signals and the function each combination goes with. Then I created new columns for when I need to invert either input to calculate the function, 0 if I don't need to invert, 1 if I do. Then I labeled each function with the logic block used to calculate the result of the function, ADD if I use the ADD logic block, OR for OR gate, etc. Then I created the sel_f signal based on what the inputs to the 4x1 MUX were that selected the function output.

Table 1

I_5	I_4	I_3	function	inv_r	inv_s	operation	sel_f[1:0]
0	0	0	R + S	0	0	ADD	00
0	0	1	S-R	1	0	ADD	00
0	1	0	R-S	0	1	ADD	00
0	1	1	$R \vee S$	0	0	OR	01
1	0	0	$R \wedge S$	0	0	AND	10
1	0	1	$\overline{R} \wedge S$	1	0	AND	10
1	1	0	$R \oplus S$	0	0	XOR	11
1	1	1	$R \overline{\oplus} S = R \oplus \overline{S}$	0	1	XOR	11

Using the values found in *Table 1*. I created functions for inv_r, inv_s, sel_f[0], and sel_f[1] in terms of I_5 , I_4 and I_3 , which are:

$$\begin{split} & \text{sel_r} = \sim & I_4 \& I_3 \\ & \text{inv_s} = \sim & I_5 \& I_4 \& \sim & I_3 \mid\mid I_5 \& I_4 \& I_3 \\ & \text{sel_f[0]} = & I_4 \& I_3 \mid\mid I_5 \& I_4 \\ & \text{sel_f[1]} = & I_5 \end{split}$$

These functions, along with their complements, were implemented in control.v and send to the datapath via pins.

Compare set name: c1 (hierarchical)
Compare command: compare . -start Ons -end 100ns -pos 2ns -neg 2ns \
-maxerrors 200
Successful compares: 22/24

Expression miscompares: 10