

Theory of Machines and Languages

Fatemeh Deldar

1403-1404

Properties of Context-Free Languages

Let L be an infinite context-free language. Then there exists some positive integer m such that any $w \in L$ with $|w| \ge m$ can be decomposed as

$$w = uvxyz$$
,

with

$$|vxy| \leq m$$
,

and

$$|vy| \ge 1$$
,

such that

$$uv^ixy^iz \in L,$$

for all i = 0, 1, 2, ... This is known as the pumping lemma for context-free languages.

- Consider a derivation tree and some sufficiently long path from the root to a leaf
 - o Since
 - The length of the string on the right side of any production is bounded
 - The number of variables in G is finite
 - There must be some variable that repeats on this path

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvxyz,$$

> So all the strings uv^ixy^iz , i = 0, 1, 2, ..., can be generated by the grammar

Example

Show that the language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is not context-free.

- \Box We pick the string $a^m b^m c^m$, which is in L
 - \triangleright If vxy contains only a's, then the pumped string will obviously not be in L
 - Fig. If v and y are composed of an equal number of a's and b's, then the pumped string $a^k b^k c^m$ with $k \neq m$ can be generated, and the generated string not in L
- □ In fact, the only way is to pick vxy so that vy has the same number of a's, b's, and c's. But this is not possible because of the restriction $|vxy| \le m$
 - > Therefore, *L* is not context-free

Example

Show that the following language is not context-free.

$$L = \{ww : w \in \{a, b\}^*\}$$

- \circ We pick the string $a^m b^m a^m b^m$, which is in L
- \circ There are many ways in which we can pick vxy, but for all of them we can obtain a pumped string not in L

Example

Show that the following language is not context-free.

$$L = \left\{ a^{n!} : n \ge 0 \right\}$$

 \circ We pick the string $a^{m!}$, which is in L

$$o v = a^k, y = a^l$$

$$i = 0$$

- O This string is in L only if m! (k + l) = j! for some j
- Since $k + l \le m$ m! (k + l) > m! m > (m 1)!