Generative Models of protein sequences

Marion Chauveau, 2nd year Phd student

Supervisors: Ivan Junier & Olivier Rivoire / Collaborator: Yaakov Kleeorin

Training data $\sim P_{data}$

Artificial data $\sim P_{model}$

- 1. Learn P_{model} similar to P_{data}
- 2. Generate samples from P_{model}

Training data $\sim P_{data}$

Artificial data $\sim P_{model}$

- 1. Learn P_{model} similar to P_{data}
- 2. Generate samples from P_{model}

Homologous sequences

Training data $\sim P_{data}$

Artificial data $\sim P_{model}$

- 1. Learn P_{model} similar to P_{data}
- 2. Generate samples from P_{model}

Homologous sequences

Conservation

Training data $\sim P_{data}$

Artificial data $\sim P_{model}$

- 1. Learn P_{model} similar to P_{data}
- 2. Generate samples from P_{model}

Homologous sequences

Correlations

Contacts

Training data $\sim P_{data}$

Artificial data $\sim P_{model}$

- 1. Learn P_{model} similar to P_{data}
- 2. Generate samples from P_{model}

Homologous sequences

Correlations

S N G D S L I ... G L G N S L S ...

Training data $\sim P_{data}$

Artificial data $\sim P_{model}$

- 1. Learn P_{model} similar to P_{data}
- 2. Generate samples from P_{model}

Homologous sequences

Potts Model

$$p(\{\sigma_i\}_{i=1,...,L}) = \frac{1}{Z(h,J)} \prod_{i=1}^{L} e^{h_i(\sigma_i)} \prod_{i< j} e^{J_{ij}(\sigma_i,\sigma_j)}$$

- Parameters inferred with Gradient descent algorithm
- Boltzmann Machine algorithm (BM)

Correlations

Contacts

Functional Positions

Collective

Contacts Functional Positions

Output

Description

Functional Positions

Undersampling

L2-norm of the L2-Regularization: Loss $+\lambda \times \text{Penalty}$

Undersampling

L2-norm of the L2-Regularization: Loss $+\lambda \times \text{Penalty}$ parameters

Introduce a bias

Undersampling

L2-norm of the L2-Regularization: Loss $+\lambda \times \text{Penalty}$ parameters

Introduce a bias

Low regularization

Undersampling

Introduce a bias

Infer Generative Models that:

- Combine the inference of both local & Collective features
- Reproduce the diversity of natural protein families
- Capture other statistics

 (1st, 2nd, 3rd order statistics, PCA, energy distributions...)
- **SBM** (stochastic Boltzmann Machine)*

