

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ShanghAl Lectures HS 2012

Soft Robotics Approach toward Artificial Ontogenetic Development

Fumiya Iida, Liyu Wang, Luzius Brodbeck

Bio-Inspired Robotics Lab,
Institute of Robotics and Intelligent Systems, ETH Zurich
Switzerland

Bio-Inspired Robotics Lab

What is the origin of mophological intelligence?

Morphology and Developmental Processes

Developmental Processes

Growth

Multiplication Metabolism Size/volume increase

Differentiation

Changes of mechanical and chemical properties

Morphogenesis

Changes of shapes and structures

Developmental Processes

Growth

Multiplication Metabolism Size/volume increase

Differentiation

Changes of mechanical and chemical properties

Morphogenesis

Changes of shapes and structures

Control of <u>adhesion</u> and <u>plasticity</u> is important for ontogenetic development!

Thermo-Plastic Adhesives

Thermo-Plastic Adhesives

Video 1

Robotizing Glue Gun

HMA Supplier

Active HMA Connector

Active HMA Connector

Case Study 1 Autonomous Construction

Developed by Liyu Wang

Video 2

Modelling of thermoplasticity I

HMA flow model

Flow volume *U* in time *t*:

$$U = K_1 \frac{F_{motor}}{\mu_{\text{(viscosity)}}} t$$

where
$$F_{motor} = f_1(\Delta \theta)$$

$$\mu = f_2(T_{app})$$

Modelling of thermoplasticity II

HMA string model

For given *U* in time *t*, string diameter *d*:

$$d = K_2 \sqrt{\frac{U/t}{v}}$$

Modelling of thermoplasticity II

Modelling of thermo-adhesion

The maximum bonding force F_{bond} :

Modelling of thermo-adhesion

Modelling of thermo-adhesion

Case Study 2 Autonomous Body Extension

Developed by Luzius Brodbeck and Liyu Wang

Video 3

Courtesy: L. Brodbeck Photo: L. Wang

Case Study 3: Climbing

Video 4

Conclusions

 Morphology control is one of the most important challenges in embodied intelligence research

We have many technological challenges in robotic developmental processes

Soft robotics (e.g. control of adhesion and plasticity)
 opens a door for artificial ontogenetic development

Collaborators & Acknowledgement

Bio-Inspired Robotics Laboratory ETH Zurich, Switzerland

Liyu Wang
Nandan Maheshwari
Keith Gunura
Murat Reis
Derek Leach
Hugo Marques
Luzius Brodbeck
Xiaoxian Yu
Marc Osswald
Fabian Guenther
Cristian Montillo

Sponsors:

Thank you!

For publications, video, pictures:

Fumiya Iida Bio-Inspired Robotics Lab Institute of Robotics and Intelligent Systems ETH Zurich

Email: iidaf@ethz.ch

URL: http://www.birl.ethz.ch

