

IIT-JAM MATHEMATICAL SCIENCE: ONLINE COURSE SUBJECT: Linear Algebra - TOPIC: Direct sum, Coordinate vector and Transition matrix

Sum and Direct sum of Subspaces

Sum of two subspaces: Let V be a vector space over the field \mathbb{F} , and let V_1 and V_2 be its subspaces, sum of V_1 and V_2 is given by $V_1 + V_2\{v_1 + v_2 : v_1 \in V_1, v_2 \in V_2\}$

- 1. $V_1 + V_2$ is a subspace of V.
- 2. $V_1 + V_2$ is the smallest subspace of V, which contains $V_1 \cup V_2$ and $V_1 + V_2 = span(V_1 \cup V_2)$

Theorem: Let V be finite dimensional vector space over a field \mathbb{F} , then

 $dim(V_1 + V_2) = dimV_1 + dimV_2 - dim(V_1 \cap V_2).$

Note: This result cannot be extended in general.

Direct sum: Let V be a vector space over a field \mathbb{F} , and let V_1, V_2 be two subspaces, V is said to be the direct sum of V_1 and V_2 if any vector $v_1 \in V_1$, $v_2 \in V_2$. If V is the direct sum of V_1 and V_2 , then we write $V = V_1 \bigoplus V_2$.

Theorem: Let V be a vector space over a field \mathbb{F} , let V_1, V_2 be two its subspaces, then $V = V_1 \bigoplus V_2$ iff

(i) $V_1 + V_2 = V$. (ii) $V_1 \cap V_2 = \{0\}$.

Result: Let V be a finite dimensional vector space over a field \mathbb{F} , and let V_1, V_2 be two its subspaces, then $dim(V) = dim(V_1) + dim(V_2)$, if $V = V_1 \bigoplus V_2$.

Moreover, If \mathcal{B}_1 and \mathcal{B}_2 be bases for V_1 and V_2 respectively, then $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ is a basis for V.

Coordinate vector: Let V be a n-dimensional vector space over a field \mathbb{F} , and let $\mathcal{B} = \{v_1, v_2, \dots, v_n\}$ be an ordered basis for V, let $v \in V$ be any vector, then v can be uniquely expressed as a linear combination of vectors in \mathcal{B} , that is $v = c_1v_1 + c_2v_2 + \dots + c_nv_n$, $c_i \in \mathbb{F}$, $\forall i$.

The matrix, $(c_1 \ c_2 \ \cdots \ c_n)^T$ is called the coordinate vector of v with respect to the ordered basis \mathcal{B} , it is denoted by $[v]_{\mathcal{B}}$.

Linear transformations or linear maps: Let V and W be two vector space over the same field \mathbb{F} , a map $T:V\longrightarrow W$ is said to be linear map if

 $T(v_1 + v_2) = T(v_1) + T(v_2), \forall v_1, v_2 \in V$

 $T(cv) = cT(v), \forall c \in \mathbb{F}, v \in V \text{ or }$

 $T(cv_1 + v_2) = cT(v_1) + T(v_2)$

Result: If $T: V \longrightarrow W$ is a linear transformation then T(0) = 0.

 $T(O_v + O_v) = T(O_v) + T(O_v)$ $T(O_v) = T(O_v) + T(O_v)$ $O_w = T(O_v)$

Kernel and image of a linear tranformation

- 1. Let V and W be two vector space over the same field \mathbb{F} and map $T:V\longrightarrow W$ is a linear transformation. The kernel of T or the null space of T is given by $ker(T)=\{v\in V:Tv=0\}$. ker(T) is a subspace of V and dim(ker(T)) is called nullity of T.
- 2. The image space of T or the range space of T is given by $\{Tv : v \in V\}$, that is $\{w \in W : w = T(v), \text{ for some } v \in V\}$.

The range space is a subspace of w, and the dim(range(T)) is called the rank(T).

Rank- Nullity Theorem: Let V and W be a finite dimensional vector space over the same field \mathbb{F} , and

let $T: V \longrightarrow W$ is a linear transformation, then rank(T) + nullity(T) = dim(V)

Result: Let V be a vector space over the same field \mathbb{F} and $T:V\longrightarrow V$ is a linear transformation, then

- (i) $ker(T) \subseteq kerT^2 \subseteq kerT^3 \subseteq \cdots$ and $nullity(T) \le nullityT^2 \le nullityT^3 \le \cdots$
- (ii) $Range(T) \supseteq Range(T^2) \supseteq Range(T^3) \supseteq \cdots$ and $rank(T) \ge rank(T^2) \ge rank(T^3) \ge \cdots$.
- (iii) Let \mathbb{F} be a field and let $T: \mathbb{F}^n \longrightarrow \mathbb{F}^n$ be a linear transformation then T is in form $T(x_1, x_2, \dots, x_n) = (\sum_{i=1}^n (a_{1i}x_i), \sum_{i=1}^n (a_{2i}x_i), \dots \sum_{i=1}^n (a_{mi}x_i))$

Singular and non-singular transformation Let V and W be two vector space over the same field \mathbb{F} , and let $T:V\longrightarrow W$ is a linear transformation.

- (i) T is 1-1 or injective if $v_1 \neq v_2 \Rightarrow T(v_1) \neq T(v_2)$.
- (ii) T is onto or surjective if T(V) = W, that is img(T) = W, that is rank(T) = dim(W).
- 1. T is bijective or invertible if T is both 1-1 and onto.
- 2. T is singular if T(x) = 0, for some non-zero $v \in V$
- 3. T is non-singular if $T(v) = 0 \Leftrightarrow v = 0$.

Result:

- 1. $T \text{ is } 1 1 \text{ iff } ker(T) = \{0\}.$
- 2. T is non-singular iff $ker(T) = \{0\}$.
- 3. If $dimV = dimW < \infty$, then T is 1 1 iff T is onto.
- 4. If dimV > dimW and $dimV < \infty$, then T is singular $\dim V > \dim W \implies T$ is not one-one $\implies \ker(T) \neq \{0\}$ $\implies T$ is singular.

Definition: Let V and W be two vector space over the same field \mathbb{F} . V and W are said to be isomorphic if there exist an invertible linear transformation $T:V\longrightarrow W$.

Result:

- 1. If V and W are finite dimensional vector space over the same field \mathbb{F} , then V and W are isomorphic iff dimV = dimW.
- 2. Let V be an n dimensional vector space over a field \mathbb{F} , then $V \cong \mathbb{F}^n$.
- 3. Let V be an infinite dimensional vector space over a field \mathbb{F} then $V \cong V \times V$. In general $V \cong V^n$
- 4. \mathbb{R} over \mathbb{Q} is isomorphic to \mathbb{C} over \mathbb{Q} .

Theorem:

- 1. Let V and W are finite dimensional vector space over a field \mathbb{F} , and let $T:V\longrightarrow W$ be linear map if $\{v_1,v_2,\cdots,v_n\}$ is a spanning set of V, then $\{T(v_1),T(v_2),\cdots,T(v_n)\}$ is a spanning set of img(T).
- 2. Let V and W be two finite dimensional vector space over the same field \mathbb{F} , and let $\{v_1, v_2, \dots, v_n\}$ be a basis for V, then $\{T(v_1), T(v_2), \dots, T(v_n)\}$ is a basis for img(T) for any non-singular linear map $T: V \longrightarrow W$.

Definition: Let V be a vector space over the same field \mathbb{F} , any linear transformation, $T:V\longrightarrow V$ is also called linear operator on V.

Definition: Let V be a vector space over the same field \mathbb{F} , any linear transformation, $T:V\longrightarrow \mathbb{F}$ is also called linear functional on V.

Definition:

Matrix representation of a linear transformation: Let V and W be two vector space over the same field \mathbb{F} , with dim(V) = n, dim(W) = m, let $\mathcal{B}_1 = \{v_1, v_2, \cdots, v_n\}$, $\mathcal{B}_2 = \{u_1, u_2, \cdots, u_m\}$ be ordered bases for V and W respectively. Let $T: V \longrightarrow W$ be a linear transformation.

For each v_i , $T(v_i)$ can be uniquely expressed as linear combination of elements of \mathcal{B}_2 , that is

$$T(v_1) = a_{11}w_1 + a_{21}w_2 + \dots + a_{m1}w_m$$

$$T(v_2) = a_{12}w_1 + a_{22}w_2 + \dots + a_{m2}w_m$$

$$\vdots$$

$$T(v_n) = a_{1n}w_1 + a_{2n}u_2 + \dots + a_{mm}w_m$$

The matrix of T with respect to the basis \mathcal{B}_1 and \mathcal{B}_2 is an $m \times n$ matrix whose columns are the co-ordinate vectors of $T(v_i)$'s with respect to the bases \mathcal{B}_2 , that is

$$M_{\mathcal{B}_{2}}^{\mathcal{B}_{1}} = [[T(v_{1})]_{\mathcal{B}_{2}}, [T(v_{2})]_{\mathcal{B}_{2}}, \cdots, [T(v_{n})]_{\mathcal{B}_{2}}]$$

$$= \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} \wedge a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Result:

- 1. For any $v \in V$, we have $M[v]_{\mathcal{B}_1} = [T(v)]_{\mathcal{B}_2}$ If $[T(v)]_{\mathcal{B}_2} = [c_1 \ c_2 \ \cdots \ c_m]^T$, then $T(v) = c_1 w_1 + c_2 w_2 + \cdots + c_m w_m.$
- 2. rank(T) = rank(M)nullity(T) = nullity(M).
- 3. Let T be a linear operator on a vector space V over a field \mathbb{F} , with dimV = n, let M be the matrix of T with respect to an ordered basis \mathcal{B} of V, then
- (i) Characteristic polynomial of T = Characteristic polynomial of M.
- (ii) Minimal polynomial of T = Minimal polynomial of M.
- (iii) Eigen values of T = Eigen values of M.
- (iv) Eigen vector of T =Eigen vector of M.
- (v) rank(T) = rank(M).
- (vi) nullity(T) = nullity(M).
 - 4. Let V be a vector space over the same field \mathbb{F} and dim(V) = n, let $T: V \longrightarrow W$ be a linear transformation, let A be the matrix of T with respect to the ordered bases \mathcal{B}_1 of V and let \mathcal{B} be the matrix of T with respect to the ordered bases \mathcal{B}_2 of V, then A and B are similar.

IIT-JAM MATHEMATICAL SCIENCE: ONLINE COURSE SUBJECT: Linear Algebra - TOPIC:Special Linear Transformations

Some standard linear transformations

Transformation on \mathbb{R}^2

- 1. Projection map (idempotent maps)
 - (i) Projection on to x axis

$$T(x,y) = (x,0)$$

$$T^{2}(x,y) = T(x,0) = (x,0) = T$$
. Therefore $T^{2} = T$.

- (a) Matrix of T with respect to standard basis $M = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$
- (b) $\chi_T(x) = x(x-1) = M_T(x)$.
- (c) T is diagonalizable.
- (d) Eigen values are 0, 1 and T is always singular
- (e) $ker(T) = \{(0, y) : y \in \mathbb{R}\}.$
- (f) Nullity(T) = 1.
- (g) $Range(T) = \{(x,0) : x \in \mathbb{R}\}$
- (h) rank(T) = 1.
- (i) $\mathbb{R}^2 = kerT \oplus RangeT$.
- (ii) Projection on to y- axis.

$$T(x,y) = (0,y)$$

All the results are analogus to the previous case.

- 2. Reflection map (Involuntary map)
 - (i) Reflection along x axis

$$T(x,y) = (x, -y)$$

$$T^{2}(x,y) = T(x,-y) = (x,y) = I$$
. Therefore $T^{2} = I$.

- (a) Matrix of T with respect to standard basis $M = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- (b) $\chi_T(x) = (x-1)(x+1) = M_T(x)$.
- (c) T is diagonalizable.
- (d) Eigen values are 1, -1 and T is non-singular.
- (e) $ker(T) = \{(0,0)\}.$
- (f) Nullity(T) = 1.
- (g) $Range(T) = \mathbb{R}^2$
- (ii) Reflection along y axis

$$T(x,y) = (-x,y)$$

All the results are analogus to the previous case.

- 3. Rotation map (Orthogonal maps)
 - (i) Rotation through θ degree anticlockwise

$$T(x,y) = (\cos\theta x - \sin\theta y, \sin\theta x + \cos\theta y).$$

- (a) Matrix of T with respect to standard basis $M = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$.
- (b) $\chi_T(x) = x^2 2\cos\theta + 1$.

(c)
$$m_T(x) = \begin{cases} x - 1, & \theta = 2n\pi \\ x + 1, & \theta = (2n - 1)\pi \\ x^2 - 2\cos\theta x + 1, & \text{otherwise} \end{cases}$$

- (d) T is diagonalizable over \mathbb{C} .
- (e) Eigen values are $\cos \theta + i \sin \theta$ and $\cos \theta i \sin \theta$.
- (f) T is non-singular.
- (ii) Rotation through θ degree clockwise $T(x,y) = (\cos \theta x + \sin \theta y, -\sin \theta x + \cos \theta y).$
 - 1. Matrix of T with respect to standard basis $M = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$.

All the results are analogus to the previous case (replace θ by $-\theta$).

4. Dilation maps (Scalar maps)

 $T(x,y) = (\alpha x, \alpha y)$, where α is a fixed real number $T(x,y) = \alpha(x,y) = \alpha I$.

- (a) Matrix of T with respect to standard basis $M = \begin{pmatrix} \alpha & 0 \\ 0 & \alpha \end{pmatrix}$
- (b) $\chi_T(x) = (x \alpha)^2$.
- (c) $M_T(x) = (x \alpha)$.
- (d) T is diagonalizable.
- (e) Eigen values are $\alpha, -\alpha$.
- (f) T is non-singular if $\alpha \neq 0$.

Note: If $|\alpha| < 1$, then T is called a contraction map.

II. Transformations on \mathbb{R}^3

- 1. Projection map.
 - (i) On x- axis: T(x, y, z) = (x, 0, 0)
 - (ii) On y-axis: T(x, y, z) = (0, y, 0)
 - (iii) On z- axis : T(x, y, z) = (0, 0, z)
 - (iv) On xy- axis: T(x, y, z) = (x, y, 0)
 - (v) On yz- axis : T(x, y, z) = (0, y, z)
 - (vi) On xz- axis : T(x, y, z) = (x, 0, z)

$$\chi_T(x) = \begin{cases} x^2(x-1) & , (i), (ii), (iii) \\ x(x-1)^2 & , (iv), (v), (vi) \end{cases}$$

$$m_T(x) = x(x-1).$$

T is singular and diagonalizable.

- 2. Reflection map.
 - (i) On x- axis: T(x, y, z) = (x, -y, -z)
 - (ii) On y- axis: T(x, y, z) = (-x, y, -z)
 - (iii) On z- axis : T(x, y, z) = (-x, -y, z)
 - (iv) On xy- plane : T(x, y, z) = (x, y, -z)
 - (v) On yz- plane : T(x, y, z) = (-x, y, z)
 - (vi) On xz- plane : T(x, y, z) = (x, -y, z)

$$\chi_T(x) = \begin{cases} (x-1)(x+1)^2 &, (i), (ii), (iii) \\ (x-1)^2(x+1) &, (iv), (v), (vi) \end{cases}$$

$$m_T(x) = (x-1)(x+1)$$

T is non-singular and diagonalizable.

- 3. Rotation map.
 - (i) Rotation along xy- plane θ degree anticlockwise: $T(x,y,z) = (\cos\theta x \sin\theta y, \sin\theta x + \cos\theta y, -z)$. Matrix of T with respect to standard basis $M = \begin{pmatrix} \cos \theta & -\sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$
 - (ii) Rotation along yz- plane θ degree anticlockwise: $T(x,y,z) = (x,\cos\theta y \sin\theta z,\sin\theta y + \cos\theta z)$. Matrix of T with respect to standard basis $M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \end{pmatrix}$
 - (iii) Rotation along zx- plane θ degree anticlockwise : $T(x, y, z) = (\cos \theta x \sin \theta z, y, \sin \theta x + \cos \theta z)$. Matrix of T with respect to standard basis $M = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$

To get the map when the rotation is through θ degree clockwise, replace θ by $-\theta$ in the above cases.

Eigen values are
$$1, \cos \theta + i \sin \theta, \cos \theta - i \sin \theta \chi_T(x) = (x-1)(x^2 - 2\cos \theta x + 1) m_T(x) = \begin{cases} (x-1)(x-1) & (x-1)(x-1) \\ (x-1)(x^2 - 2\cos \theta x + 1) & (x-1)(x^2 - 2\cos \theta x + 1) \end{cases}$$

T is non-singular and diagonalizable (over \mathbb{C}).

(4) Dilation map.

 $T(x,y,z)=(\alpha x,\alpha y,\alpha z)$, for a fixed $\alpha\in\mathbb{R}$. $T=\alpha I$.

III. Derivative map: Let V be a real vector space of different functions over \mathbb{R} , the map $D:V\longrightarrow V$ defined by $D(f(x)) = \frac{df(x)}{dx}$ is a linear operator on V called the derivative map. Result: Derivative map is always singular. Since it maps constant functions to zero, ker(T) is non-trivial

always.

Particular case: If $V = P_n(x)$, then $D: V \longrightarrow V$ defined by D(P(x)) = P'(x). Here D is nilpotent operator, $D^{n+1} = 0$. Here 0 is the only eigen value of D.

IV. Integral map: Let V be the vector space of all Riemann integer functions over [a, b] over the field \mathbb{R} , the map $J:V\longrightarrow V$ defined by $J(f(x))\equiv\int\limits_a^x f(t)dt$ is a linear map, called the integral map.

Particular case: $J:P_n(x)\longrightarrow P_{n+1}(x),\ x\in [a,b]$ defined by $J(P(x))=\int\limits_a^x P(t)dt$ matrix with respect to standard basis.

$$J(1) = \int_{a}^{x} 1dt = x - a$$

$$J(x) = \int_{-x}^{a} x dt = \frac{x^2}{2} - \frac{a^2}{2}$$

$$J(x^2) = \int_{a}^{x} x^2 dt = \frac{x^3}{3} - \frac{a^3}{3}$$

$$J(x^n) = \int_{0}^{x} x^n dt = \frac{x^{n+1}}{n+1} - \frac{a^{n+1}}{n+1}$$

$$M = \begin{pmatrix} -a & -\frac{a^2}{2} & \cdots & -\frac{a^{n+1}}{n+1} \\ 1 & 0 & \cdots & 0 \\ 0 & \frac{1}{2} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & \frac{1}{n+1} \end{pmatrix}_{(n+1)\times(n+1)}$$

Matrix Transformations:

(i) Let $A \in M_n(\mathbb{R})$ be a non-zero fixed matrix, then the linear transformation $T: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ defined by

T(x) = Ax is called a matrix transformation.

properties

- (a) $\chi_T(x) = \chi_A(x)$.
- (b) $m_T(x) = m_A(x)$.
- (c) Eigen values of T =Eigen values of A.
- (d) Trace T = Trace A.
- (e) Determinant of T = Determinant of A.
- (f) Rank of T = Rank of A.
- (g) Nullity of T = Nullity of A.
- (h) The matrix of T with respect to the standard basis is A itself.
- (i) T is non-singular iff A is non-singular.
- (j) T is diagonalizable iff A is diagonalizable.
- (i) Let $A \in M_n(\mathbb{R})$ be a non-zero fixed matrix, then the linear transformation $T: M_n(\mathbb{R}) \longrightarrow M_n(\mathbb{R})$ defined by T(x) = Ax is called a matrix transformation.

properties

- (a) $\chi_T(x) = (\chi_A(x))^n$.
- (b) $m_T(x) = m_A(x)$.
- (c) Trace $T = n \cdot \text{Trace } A$.
- (d) Determinant of $T = (det(A))^n$.
- (e) T is invertible iff A is invertible.
- (f) T is diagonalizable iff A is diagonalizable.
- (g) If $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of A, then $\lambda_1, \lambda_2, \dots, \lambda_n$ are the eigen values of T, each of multiplicity n.