Fonctions et graphiques : exemples corrigés

Corrigé des exemples de la page 3 du cours

1) $f(x) = \frac{1}{x-3}$ La seule valeur à exclure est 3, donc $D_{\text{déf}} = \mathbb{R} - \{3\}$ que l'on peut aussi écrire simplement $x \neq 3$

Méthode de calcul : $x-3 \neq 0 \implies x \neq 3$

2) $f(x) = \sqrt{x-3}$ L'argument d'une racine carrée ne doit pas être négatif, mais il peut être nul $(\sqrt{0}=0)$, ainsi $D_{\text{déf}}=[3;+\infty[$ que l'on peut aussi écrire simplement $x\geq 3$

Méthode de calcul : $x-3 \ge 0 \implies x \ge 3$

3) $f(x) = \ln(x-3)$ L'argument d'un log naturel doit être strictement positif, ainsi $D_{\text{déf}} =]3; +\infty[$ que l'on peut aussi écrire simplement x>3

Méthode de calcul : $x-3>0 \implies x>3$

4) $f(x) = \frac{x^2 - 9}{x - 3}$ Exactement comme dans l'exemple 1 : $D_{\text{déf}} = \mathbb{R} - \{3\}$ ou $x \neq 3$ Mais ici la situation est un peu différente : si on pose x = 3 dans l'exemple 1, on obtient une impossibilité du type $\frac{1}{0}$, alors qu'ici, on obtient une indétermination du type $\frac{0}{0}$, ce qui est beaucoup plus ennuyeux. On aurait aussi pu penser à simplifier la fraction : $\frac{x^2 - 9}{x - 3} \stackrel{(*)}{=} \frac{(x - 3)(x + 3)}{x - 3} = x + 3$ qui est défini partout et dont le $D_{\text{déf}}$ est donc égal à \mathbb{R} . Malheureusement le passage (*) n'est autorisé que si $x - 3 \neq 0$ et on retrouve la valeur interdite. (Voir plus loin dans le cours : 'Notions de limites')

Corrigé des exemples de la page 4 du cours

- 1) $f(x) = 4x^2 + 5x + 3$ On remplace x par (-x) et on calcule : $f(-x) = 4(-x)^2 + 5(-x) + 3 = 4x^2 5x + 3$ qui n'est pas égal à f(x) ni à -f(x), donc la fonction est ni paire, ni impaire.
- 2) $f(x) = 7x^4 3x^2 + 11$ On remplace x par (-x) et on calcule : $f(-x) = 7(-x)^4 3(-x)^2 + 11 = 7x^4 3x^2 + 11$ qui est égal à f(x), donc la fonction est paire.
- 3) $f(x) = 6x^3 8x$ On remplace x par (-x) et on calcule : $f(-x) = 6(-x)^3 8(-x) = -6x^3 + 8x = -(6x^3 8x) = -f(x)$, donc la fonction est impaire.
- 4) $f(x) = \frac{7x^4 3x^2 + 11}{6x^3 8x}$ On remplace x par (-x) et on calcule : $f(-x) = \frac{7(-x)^4 3(-x)^2 + 11}{6(-x)^3 8(-x)} = \frac{7x^4 3x^2 + 11}{-6x^3 + 8x} = \frac{7x^4 3x^2 + 11}{-(6x^3 8x)} = -\frac{7x^4 3x^2 + 11}{6x^3 8x} = -f(x)$, donc la fonction est impaire.
- 5) $f(x) = \frac{16x^3 + 18x}{6x^3 8x}$ On remplace x par (-x) et on calcule : $f(x) = \frac{16(-x)^3 + 18(-x)}{6(-x)^3 8(-x)} = \frac{-16x^3 18x}{-6x^3 + 8x} = \frac{-(16x^3 + 18x)}{-(6x^3 8x)} = \frac{16x^3 + 18x}{6x^3 8x} = f(x)$, donc la fonction est paire.