Integer Points in Dynamical Systems

PM reading 1 - Dynamics and Arithmetic of Post-critically Finite Polynomials

Bowen Dai

Mentor: Xiao Zhong

Auguest 8, 2025

Dynamical system

Definition:

Let $\phi_1, \ldots, \phi_r : \mathbb{P}^1 \to \mathbb{P}^1$ be a collections of separable rational maps $(\mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$. The dynamical system generated by ϕ_1, \cdots, ϕ_r denoted by

$$\Phi = \langle \phi_1, \dots, \phi_r \rangle$$

is defined as all possible compositions of ϕ_i where $1 \leq i \leq r$, more formally:

$$\Phi = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_k} : k \leq 0, 1 \leq i_j \leq r\}$$

Dynamical system

Definition:

Let $\phi_1, \ldots, \phi_r : \mathbb{P}^1 \to \mathbb{P}^1$ be a collections of separable rational maps $(\mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$. The dynamical system generated by ϕ_1, \cdots, ϕ_r denoted by

$$\Phi = \langle \phi_1, \dots, \phi_r \rangle$$

is defined as all possible compositions of ϕ_i where $1 \leq i \leq r$, more formally:

$$\Phi = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_k} : k \leq 0, 1 \leq i_j \leq r\}$$

The degree of Φ is the minimum of degree of all $\phi\in\Phi$

Dynamical system

Definition:

Let $\phi_1, \dots, \phi_r : \mathbb{P}^1 \to \mathbb{P}^1$ be a collections of separable rational maps $(\mathbb{P}^1 = \mathbb{C} \cup \{\infty\})$.

The dynamical system generated by ϕ_1, \cdots, ϕ_r denoted by

$$\Phi = \langle \phi_1, \dots, \phi_r \rangle$$

is defined as all possible compositions of ϕ_i where $1 \le i \le r$, more formally:

$$\Phi = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_k} : k \leq 0, 1 \leq i_j \leq r\}$$

The degree of Φ is the minimum of degree of all $\phi \in \Phi$

The orbit of a point P is the collection of all points such that P can be mapped into by some $\phi \in \Phi$, denoted as

$$O_{\Phi}^+(P) = \{ \phi(P) : \phi \in \Phi \}$$

Problem

Given a dynamical system, does the orbit of a point contain finitely many integer?

Examples of dynamical system

Examples

Let $\phi:\mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi:z \to z+1$. Then $\Phi_1 = \langle \phi \rangle = \{z+1,z+2,z+3,\dots\}$.

Examples of dynamical system

Examples

Let
$$\phi: \mathbb{P}^1 \to \mathbb{P}^1$$
 given by $\phi: z \to z+1$. Then $\Phi_1 = \langle \phi \rangle = \{z+1, z+2, z+3, \dots\}$.

The question on the number of integer points is easy in this case: if the initial input is an integer, then Φ can generate infinitely many integer points.

Examples of dynamical system

Examples

Let
$$\phi: \mathbb{P}^1 \to \mathbb{P}^1$$
 given by $\phi: z \to z+1$. Then $\Phi_1 = \langle \phi \rangle = \{z+1, z+2, z+3, \dots\}$.

The question on the number of integer points is easy in this case: if the initial input is an integer, then Φ can generate infinitely many integer points.

Note that this is true for all Φ with at least one polynomial with integer coefficient among its generators.

Examples

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi: z \to \frac{1}{z+1}$. Then

$$\Phi_2 = \langle \phi \rangle = \{ \frac{1}{z+1}, \frac{1}{\frac{1}{z+1}+1} = \frac{z+1}{z+2}, \frac{1}{\frac{1}{\frac{1}{z+1}+1}+1} = \frac{z+2}{z+3}, \frac{1}{\frac{1}{\frac{1}{z+1}+1}+1} = \frac{z+3}{z+5} \dots \}$$

Examples

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi: z \to \frac{1}{z+1}$. Then

$$\Phi_2 = \langle \phi \rangle = \{ \frac{1}{z+1}, \frac{1}{\frac{1}{z+1}+1} = \frac{z+1}{z+2}, \frac{1}{\frac{1}{\frac{1}{z+1}+1}+1} = \frac{z+2}{z+3}, \frac{1}{\frac{1}{\frac{1}{z+1}+1}+1} = \frac{z+3}{z+5} \dots \}$$

In this case, there is no obvious answer if Φ will generate infinitely many integer points.

Examples

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$ given by $\phi: z \to \frac{1}{z+1}$. Then

$$\Phi_2 = \langle \phi \rangle = \{ \frac{1}{z+1}, \frac{1}{\frac{1}{z+1}+1} = \frac{z+1}{z+2}, \frac{1}{\frac{1}{\frac{1}{z+1}+1}+1} = \frac{z+2}{z+3}, \frac{1}{\frac{1}{\frac{1}{\frac{1}{z+1}+1}+1}+1} = \frac{z+3}{z+5} \dots \}$$

In this case, there is no obvious answer if Φ will generate infinitely many integer points.

However, if we change the coordinate with this coordinate function $y(z) = \frac{1}{z}$. Then the generator of Φ_2 becomes $y \circ \phi = z + 1$.

Therefore, Φ_2 is just Φ_1 under a different coordinate system.

Ramification captures the local invertibility of a function.

Ramification captures the local invertibility of a function.

Definition:

Ramification index of a function ϕ at a point P is denoted as $e_P(\phi)$ and defined as

 $e_P(\phi)$ = lowest order of non zero derivative of ϕ at point P

or more formally,

$$e_P(\phi) = ord_P(\phi(z) - \phi(P))$$

Ramification captures the local invertibility of a function.

Definition:

Ramification index of a function ϕ at a point P is denoted as $e_P(\phi)$ and defined as

 $e_P(\phi)$ = lowest order of non zero derivative of ϕ at point P

or more formally,

$$e_P(\phi) = ord_P(\phi(z) - \phi(P))$$

A function ϕ is ramified at a point P if $e_P(\phi) > 1$

Ramification captures the local invertibility of a function.

Definition:

Ramification index of a function ϕ at a point P is denoted as $e_P(\phi)$ and defined as

 $e_P(\phi) = \text{lowest order of non zero derivative of } \phi \text{ at point } P$

or more formally,

$$e_P(\phi) = ord_P(\phi(z) - \phi(P))$$

A function ϕ is ramified at a point P if $e_P(\phi) > 1$

 ϕ is totally ramified at a point P if $e_P(\phi) = deg(\phi)$.

Example of ramification index

Examples

Let $\phi(z) = z^3$, then $e_0(\phi) = 3$ and ϕ is totally ramified at 0 because the only nonzero derivative of ϕ is the third order derivative.

Example of ramification index

Examples

Let $\phi(z)=z^3$, then $e_0(\phi)=3$ and ϕ is totally ramified at 0 because the only nonzero derivative of ϕ is the third order derivative.

Examples

Let
$$\phi(z) = (z-1)(z-2)^2$$
, then $e_1(\phi) = 1$ and $e_2(\phi) = 2$

Polynomial

Definition:

Let $\phi: \mathbb{P}^1 \to \mathbb{P}^1$, be a separable rational map. ϕ is a polynomial if any of the following equivalent condition are true:

- 1. There exist a point $P \in \mathbb{P}^1$ such that $\phi(P) = P$ and ϕ is totally ramified at P
- 2. There exists a coordinate function y (i.e. y is a rational function of degree 1) on \mathbb{P}^1 such that $y \circ \phi \in k[y]$

If ϕ satisfies these conditions, then we say ϕ is polynomial with respect to P or that ϕ is polynomial with respect to y.

Decomposition property of dynamical system

Let Φ be a dynamical system, $P_0 \in \mathbb{P}^1$ be a point. We say Φ has the decomposition property if there exist finite subsets $\Lambda_1, \Lambda_2 \subset \Phi$ satisfying the following conditions:

1.
$$\Phi = \Lambda_1 \cup \bigcup_{\lambda \in \Lambda_2} \lambda \circ \Phi$$

2. every $\lambda \in \Lambda_2$ satisfies $\#\lambda^{-1}(P_0) \geq 3$

Polynomial generator and decomposition property

Theorem 1

Let $\Phi = \langle \phi_1, \cdots, \phi_r \rangle$ be a dynamical system of degree at least two. Then

- 1. Φ has the decomposition property for every $P \in \mathbb{P}^1 \iff \Phi$ contains no nontrivial polynomial maps.
- 2. Suppose Φ is generated by a single element, say $\Phi = \langle \phi \rangle$. Fix a point $P_0 \in \mathbb{P}^1$. Then Φ has the decomposition property $\iff \Phi$ does not contain a nontrivial map which is polynomial with respect to P_0 .

Recall: Theorem 1.1 (forward direction)

Let $\Phi = \langle \phi_1, \cdots, \phi_r \rangle$ be a dynamical system of degree at least two. Then:

 Φ has the decomposition property for every $P \in \mathbb{P}^1 \implies \Phi$ contains no nontrivial polynomial maps.

Proof part 1

Suppose that Φ has the decomposition property and it has degree at least 2. For the sake of contradiction, assume that Φ contains a nontrivial polynomial map $\phi \in \Phi$, say ϕ is polynomial with respect to the point $P_0 \in \mathbb{P}^1$.

Proof part 1

Suppose that Φ has the decomposition property and it has degree at least 2. For the sake of contradiction, assume that Φ contains a nontrivial polynomial map $\phi \in \Phi$, say ϕ is polynomial with respect to the point $P_0 \in \mathbb{P}^1$.

As for any iteration of $(\phi^n)^{-1}(P_0) = \{P_0\}$, thus $\phi^n \neq \lambda \psi$ for any $\lambda \in \Lambda_2$. (Note that ϕ^n denotes the n^{th} iteration of ϕ , not the n^{th} power of ϕ .)

Proof part 1

Suppose that Φ has the decomposition property and it has degree at least 2. For the sake of contradiction, assume that Φ contains a nontrivial polynomial map $\phi \in \Phi$, say ϕ is polynomial with respect to the point $P_0 \in \mathbb{P}^1$.

As for any iteration of $(\phi^n)^{-1}(P_0) = \{P_0\}$, thus $\phi^n \neq \lambda \psi$ for any $\lambda \in \Lambda_2$. (Note that ϕ^n denotes the n^{th} iteration of ϕ , not the n^{th} power of ϕ .)

Hence, the iterations of $\phi^n \in \Lambda_1$. Since Λ_1 is finite, there are some $n > m \ge 1$ such that $\phi^n = \phi^m$. Therefore, $deg(\phi) = 1$ which contradict the assumption that Φ has degree at least 2.

Recall: Theorem 1.1 (backward direction)

Let $\Phi = \langle \phi_1, \cdots, \phi_r \rangle$ be a dynamical system of degree at least two. Then:

 Φ contains no nontrivial polynomial maps $\implies \Phi$ has the decomposition property for every $P \in \mathbb{P}^1$

For each integer m, let $\Phi_m = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_m} : 1 \leq i_1, \dots, i_m \leq r\} \subset \Phi$.

For each integer m, let $\Phi_m = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_m} : 1 \leq i_1, \dots, i_m \leq r\} \subset \Phi$. Clearly each Φ_m is finite set, and for each $M \geq 1$,

$$\Phi = \bigcup_{m=0}^{M-1} \Phi_m \cup \bigcup_{\lambda \in \Phi_M} \lambda \circ \Phi$$

For each integer m, let $\Phi_m = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_m} : 1 \leq i_1, \dots, i_m \leq r\} \subset \Phi$. Clearly each Φ_m is finite set, and for each $M \geq 1$,

$$\Phi = \bigcup_{m=0}^{M-1} \Phi_m \cup \bigcup_{\lambda \in \Phi_M} \lambda \circ \Phi$$

Since Φ does not satisfies the decomposition property, every Φ_m contains a map $\psi_m \in \Phi_m$ such that $\#\psi_m^{-1}(P_0) \leq 2$.

For each integer m, let $\Phi_m = \{\phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_m} : 1 \leq i_1, \dots, i_m \leq r\} \subset \Phi$. Clearly each Φ_m is finite set, and for each $M \geq 1$,

$$\Phi = \bigcup_{m=0}^{M-1} \Phi_m \cup \bigcup_{\lambda \in \Phi_M} \lambda \circ \Phi$$

Since Φ does not satisfies the decomposition property, every Φ_m contains a map $\psi_m \in \Phi_m$ such that $\#\psi_m^{-1}(P_0) \leq 2$.

Since $\psi_m \in \Phi_m$, ψ_m can be written as

$$\psi_{m} = \phi_{i_1} \circ \phi_{i_2} \circ \cdots \circ \phi_{i_m}$$

and

$$\psi_m^{-1}(P_0) = \phi_{i_m}^{-1} \circ \phi_{i_{m-1}}^{-1} \circ \cdots \circ \phi_{i_n}^{-1} \circ \phi_{i_n}^{-1}(P_0)$$

Since this is true for all $m \ge 1$, take m = 5r + 1 where r is the number of generators of Φ .

Since this is true for all $m \ge 1$, take m = 5r + 1 where r is the number of generators of Φ .

There are only r distinct functions, by pigeon hole principle, there must be a function that appears at least 6 times in the expression for ψ_m . Therefore, either ϕ appears 3 times before ϕ_t , or ϕ appears 3 times after ϕ_t .

Since this is true for all $m \ge 1$, take m = 5r + 1 where r is the number of generators of Φ .

There are only r distinct functions, by pigeon hole principle, there must be a function that appears at least 6 times in the expression for ψ_m . Therefore, either ϕ appears 3 times before ϕ_t , or ϕ appears 3 times after ϕ_t .

Call this function ϕ and let P_u, P_v, P_w be the inputs of ϕ .

$$\cdots P_{u-1} \xleftarrow{\phi} P_u \cdots P_{v-1} \xleftarrow{\phi} P_v \cdots P_{w-1} \xleftarrow{\phi} P_w \cdots$$

By Hurwitz's formula, we know that

$$2 extit{deg}(\phi) - 2 \geq \sum_{P \in \mathbb{P}^1} (e_P(\phi) - 1)$$

This means that any map can only have at most 2 distinct totally ramified points.

By Hurwitz's formula, we know that

$$2 extit{deg}(\phi)-2\geq \sum_{P\in\mathbb{P}^1}(e_P(\phi)-1)$$

This means that any map can only have at most 2 distinct totally ramified points.

Thus, P_u, P_v, P_w are not all distinct, say $P_u = P_w$.

By Hurwitz's formula, we know that

$$2 deg(\phi) - 2 \geq \sum_{P \in \mathbb{P}^1} (e_P(\phi) - 1)$$

This means that any map can only have at most 2 distinct totally ramified points.

Thus, P_u, P_v, P_w are not all distinct, say $P_u = P_w$.

Then take the composition of map between ϕ at P_u and ϕ at P_w . We get a map that has a fixed and totally ramified point which is equivalent as a polynomial.

$$P_0 \xleftarrow{\phi_{i_0}} P_1 \xleftarrow{\phi_{i_1}} \dots \xleftarrow{\phi_{i_{u-1}}} P_u \underbrace{\xrightarrow{\phi_{i_u} = \phi}}_{\text{This is a polynomial with respect to } P_{i_u}}_{\text{This is a polynomial with respect to } P_{i_u}} P_w = P_u \xleftarrow{\phi_w = \phi}_{\text{total energy}} \dots$$

Recall: Theorem 1.2

Let $\Phi = \langle \phi_1, \cdots, \phi_r \rangle$ be a dynamical system of degree at least two. Then:

Suppose Φ is generated by a single element, say $\Phi = \langle \phi \rangle$. Fix a point $P_0 \in \mathbb{P}^1$. Then Φ has the decomposition property $\iff \Phi$ does not contain a nontrivial map which is polynomial with respect to P_0 .

Proof part 2

Define μ , ν as:

$$P_0 \underbrace{\stackrel{\phi_{i_0}}{\longleftarrow} P_1 \stackrel{\phi_{i_1}}{\longleftarrow} \dots \stackrel{\phi_{i_{u-1}}}{\longleftarrow}}_{v} P_u \underbrace{\stackrel{\phi_{i_u}}{\longleftarrow} P_{u+1} \stackrel{\phi_{i_{u+1}}}{\longleftarrow} \dots \stackrel{\phi_{i_{w-1}}}{\longleftarrow}}_{u} P_w = P_u \stackrel{\phi_w}{\longleftarrow} \dots P_m$$

Proof part 2

Define μ , ν as:

$$P_0 \underbrace{\overset{\phi_{i_0}}{\longleftarrow} P_1 \overset{\phi_{i_1}}{\longleftarrow} \dots \overset{\phi_{i_{u-1}}}{\longleftarrow}}_{v} P_u \underbrace{\overset{\phi_{i_u}}{\longleftarrow} P_{u+1} \overset{\phi_{i_{u+1}}}{\longleftarrow} \dots \overset{\phi_{i_{w-1}}}{\longleftarrow}}_{\mu} P_w = P_u \overset{\phi_w}{\longleftarrow} \dots P_m$$

Since Φ only has 1 generator ϕ , $\mu = \phi^n$ and $\nu = \phi^m$ for some n, m. Note that $\nu(P_u) = P_0$.

Proof part 2

Define μ , ν as:

$$P_0 \underbrace{\stackrel{\phi_{i_0}}{\longleftarrow} P_1 \stackrel{\phi_{i_1}}{\longleftarrow} \dots \stackrel{\phi_{i_{u-1}}}{\longleftarrow}}_{v} P_u \underbrace{\stackrel{\phi_{i_u}}{\longleftarrow} P_{u+1} \stackrel{\phi_{i_{u+1}}}{\longleftarrow} \dots \stackrel{\phi_{i_{w-1}}}{\longleftarrow}}_{\mu} P_w = P_u \stackrel{\phi_w}{\longleftarrow} \dots P_m$$

Since Φ only has 1 generator ϕ , $\mu = \phi^n$ and $v = \phi^m$ for some n, m. Note that $v(P_u) = P_0$.

Choose some integer k such that nk > m, then consider:

$$P_u \xrightarrow{\phi^m} P_0 \xrightarrow{\phi^{nk-m}} P_u \xrightarrow{\phi^m} P_0 \xrightarrow{\phi^{nk-m}} P_u$$

It follows that ϕ^{nk} fixes P_0 and ϕ^{nk} is totally ramified at P_0 . Since $\phi^{nk} \in \Phi$, Φ contains a polynomial with respect to P_0 . \square

Integer points in dynamical system

Theorem 2

Suppose that Φ contains no polynomial maps and fix a point $P \in \mathbb{P}^1(\mathbb{Q})$. Let z be a coordinate function. Then

$$\{Q:Q\in O^+_\Phi(P) \text{ and } z(Q)\in \mathbb{Z}\}$$

is a finite set.

Proof

Since Φ does not contain any polynomial map, there are finite sets $\Lambda_1,\Lambda_2\subset\Phi$ such that

$$\Phi = \Lambda_1 \cup \bigcup_{\lambda \in \Lambda_2} \lambda \circ \Phi$$

Proof

Since Φ does not contain any polynomial map, there are finite sets $\Lambda_1,\Lambda_2\subset\Phi$ such that

$$\Phi = \Lambda_1 \cup \bigcup_{\lambda \in \Lambda_2} \lambda \circ \Phi$$

Therefore, the orbit of any point P can be written as

$$O_{\Phi}(P) = \{\lambda(P) : \lambda \in \Lambda_1\} \cup \bigcup_{\lambda \in \Lambda_2} \{\lambda \circ \phi(P) : \phi \in \Phi\}$$

Proof

Since Φ does not contain any polynomial map, there are finite sets $\Lambda_1,\Lambda_2\subset\Phi$ such that

$$\Phi = \Lambda_1 \cup \bigcup_{\lambda \in \Lambda_2} \lambda \circ \Phi$$

Therefore, the orbit of any point P can be written as

$$O_{\Phi}(P) = \{\lambda(P) : \lambda \in \Lambda_1\} \cup \bigcup_{\lambda \in \Lambda_2} \{\lambda \circ \phi(P) : \phi \in \Phi\}$$

Thus, it is equivalent to show the set $\{\lambda \circ \phi(P) : \phi \in \Phi \text{ and } z \circ \lambda \circ \phi(P) \in \mathbb{Z}\}$ is finite for each $\lambda \in \Lambda_2$.

For any homogeneous coordinate [X, Y] on \mathbb{P}^1 , let:

- z be the coordinate function with $z = \frac{X}{Y}$
- for any $\phi \in \Phi$, write $\phi P = [u_{\phi}, v_{\phi}]$
- $\lambda = [F_{\lambda}, G_{\lambda}]$ where $F_{\lambda}, G_{\lambda} \in \mathbb{Z}[X, Y]$ are homogeneous polynomial of degree d Since F_{λ} , G_{λ} have no common factors. Thus, the resultant of F_{λ} and G_{λ} , $Res(F_{\lambda}, G_{\lambda}) \neq 0$.

$$z \circ \lambda \circ \phi(P) \in \mathbb{Z} \iff \frac{F_{\lambda}(u_{\phi}, v_{\phi})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z}$$

$$z \circ \lambda \circ \phi(P) \in \mathbb{Z} \iff rac{F_{\lambda}(u_{\phi}, v_{\phi})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z} \implies rac{Res(F_{\lambda}, G_{\lambda})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z}$$

$$z \circ \lambda \circ \phi(P) \in \mathbb{Z} \iff \frac{F_{\lambda}(u_{\phi}, v_{\phi})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z} \implies \frac{Res(F_{\lambda}, G_{\lambda})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z}$$

Since $Res(F_{\lambda}, G_{\lambda})$ is fixed and independent of ϕ , there are finitely possibility for $G_{\lambda}(u_{\phi}, v_{\phi})$.

$$z \circ \lambda \circ \phi(P) \in \mathbb{Z} \iff rac{F_{\lambda}(u_{\phi}, v_{\phi})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z} \implies rac{Res(F_{\lambda}, G_{\lambda})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z}$$

Since $Res(F_{\lambda}, G_{\lambda})$ is fixed and independent of ϕ , there are finitely possibility for $G_{\lambda}(u_{\phi}, v_{\phi})$.

Since $\#\lambda^{-1}(P_0) \ge 3$, $deg(G_\lambda) \ge 3$. It is a Thue-Mahler equation, so there are only finitely many co-prime paire of $[u_\phi, v_\phi]$ satisfying the equation.

$$z \circ \lambda \circ \phi(P) \in \mathbb{Z} \iff rac{F_{\lambda}(u_{\phi}, v_{\phi})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z} \implies rac{Res(F_{\lambda}, G_{\lambda})}{G_{\lambda}(u_{\phi}, v_{\phi})} \in \mathbb{Z}$$

Since $Res(F_{\lambda}, G_{\lambda})$ is fixed and independent of ϕ , there are finitely possibility for $G_{\lambda}(u_{\phi}, v_{\phi})$.

Since $\#\lambda^{-1}(P_0) \ge 3$, $deg(G_\lambda) \ge 3$. It is a Thue-Mahler equation, so there are only finitely many co-prime paire of $[u_\phi, v_\phi]$ satisfying the equation.

Thus, for any $\lambda \in \Lambda_2$, the set $\{\lambda \phi P : \phi \in \Phi \text{ and } z(\lambda \phi P) \in \mathbb{Z}\}$ is finite which is equivalent as $\{Q : Q \in O_{\Phi}^+(P) \text{ and } z(Q) \in \mathbb{Z}\}$ is a finite set. \square

Integer points in dynamical system generated by a single function

Theorem 3

Let $\phi(Z) \in K(Z)$ be a rational function of degree at least two and let $t \in K \cup \{\infty\} = \mathbb{P}^1(K)$. If $\phi^2(Z) \notin \bar{K}[Z]$, then the sequence

$$t, \phi(t), \phi^2(t), \phi^3(t), \dots$$

contains only finitely many elements of R_S .

Thank you!

Reference

J. H. Silverman, Integer points, Diophantine approximation, and iteration of rational maps, Duke Math. J. **71** (1993), no. 3, 793–829