

场效应管

场效应管

场效应管的结构原理

三个电极 —— 源极s,栅极g,漏极d;

依靠漏极与源极之间的导电沟道(非耗尽层)实现场效应管的导通;

由于场效应管仅依靠一种载流子(多子)导电,因此称为**单极型晶体管**;

栅-源电压 (u_{GS}) 决定场效应管导通 / 截止(夹断);

栅-漏电压 (u_{GD}) 决定场效应管导通时工作在可变电阻区/恒流区;

 $u_{\rm GS} > U_{\rm GS(th)}$

形成导电沟道

且u_{GS}越大

导电沟道越宽

场效应管的工作原理

不存在导电沟道

夹断区 (截止状态)

 $u_{\rm GD} > U_{\rm GS(th)}$ 即 $u_{\rm DS} < u_{\rm GS} - U_{\rm GS(th)}$ 导电沟道沿源-漏方向逐渐变窄 (但没有出现夹断区域) 漏极电流随 $u_{\rm DS}$ 近似线性变化

可变电阻区

 $u_{\mathrm{GD}} < U_{\mathrm{GS(th)}}$ $\bowtie u_{\mathrm{DS}} > u_{\mathrm{GS}} - U_{\mathrm{GS(th)}}$

导电沟道存在夹断区 且 u_{DS} 越大 夹断区长度越长 漏极电流几乎不受 u_{DS} 的变化

原作者:b站up主宣流区ximo不太冷

场效应管的工作原理

○ 以N沟道耗尽型MOSFET为例简要分析其工作原理:

不要将课件上传至网上的各个公共平台,谢谢 在b站私信反馈给我,不胜感激!

场效应管的工作原理

g与s间耗尽层承受 反向电压 N沟道中自由电子流通 $u_{GS} = 0$

随着反向电压增大 耗尽层变厚 导电沟道宽度变窄 直至被夹断

思考: 为什么N沟道JFET不能工作 在 u_{GS} 正偏压?

准静态

 $u_{\rm GS} < U_{\rm GS(off)}$ 导电沟道被完全夹断 场效应管截止

 $U_{\text{GS(off)}} < u_{\text{GS}} < 0$ $u_{\rm GD} > U_{\rm GS(off)}$ \square $u_{\rm DS} < u_{\rm GS} - U_{\rm GS(off)}$

导电沟道沿源-漏方向逐渐变窄 (但没有出现夹断区域)

 $\stackrel{\not=V_{\rm DD}}{\uparrow^{(u_{\rm DS})}}$ 漏极电流随 $u_{\rm DS}$ 近似线性变化

 $U_{\text{GS(off)}} < u_{\text{GS}} < 0$ $u_{\rm GD} < U_{\rm GS(off)}$ \bowtie $u_{\rm DS} > u_{\rm GS} - U_{\rm GS(off)}$ 导电沟道存在夹断区 且 u_{DS} 越大 夹断区长度越长

漏极电流几乎不受 ups 的变化

:b站up主—运流这no不太冷

场效应管

场效应管的工作特性曲线

场效应管的工作特性通常用两个特性来描述——转移特性与输出伏安特性:

转移特性——漏极电流 i_D 和 栅-源电压 u_{GS} 的关系;

输出伏安特性——漏极电流 i_D 和 漏-源电压 u_{DS} 的关系;

思考:为什么不研究场效应管的输入伏安特性?

场效应管的工作特性曲线

 \bigcirc 场效应管的输出特性曲线 ($i_D - u_{DS}$)

三个工作区

以N沟道增强型MOSFET为例

①夹断区(截止区):

不存在导电沟道(导电沟道被完全夹断), 对外表现为几乎没有任何电流流进流出;

②可变电阻区(线性区):

栅-源电压一定时漏极电流 i_D 与 u_{DS} 成线性关系; (可变电阻的大小受 u_{GS} 控制)

③恒流区(饱和区):

漏极电流 i_D 仅受栅-源电压 u_{GS} 控制, 不再与 u_{DS} 保持线性关系;

场效应管的工作特性曲线

〇 从输出特性曲线 (i_D - u_{DS}) 得到转移特性曲线 (i_D - u_{GS})

以N沟道增强型MOSFET为例

以N沟道增强型MOSFET为例大次

场效应管的工作特性曲线

 \bigcirc 场效应管的转移特性曲线 $(i_D - u_{GS})$

以N沟道增强型MOSFET为例

特点:

- ①存在开启电压 $U_{GS(th)}$ (或夹断电压 $U_{GS(off)}$);
- ②当场效应管工作在恒流区时:

电压控制电流——漏极电流 i_D 与栅-源电压 u_{GS} 有对应关系, 近似为二次型函数:

$$i_{\rm D} = I_{\rm DO} \left(\frac{u_{\rm GS}}{U_{\rm GS(th)}} - 1\right)^2$$

场效应管的转移特性曲线

○ 场效应管的重要参数——跨导 g_m

以N沟道增强型MOSFET为例

动态分析:

考虑在静态工作点附近的低频小信号扰动

$$g_{\rm m} = \frac{\Delta i_{\rm D}}{\Delta u_{\rm GS}}$$

低频跨导体现输入侧电压变化对输出侧漏极电流变化的控制

gm与静态工作点Q有关,是Q点处转移特性曲线切线的斜率;

$$i_{\rm D} = I_{\rm DO} \left(\frac{u_{\rm GS}}{U_{\rm GS(th)}} - 1 \right)^2 \implies g_{\rm m} = \frac{\Delta i_{\rm D}}{\Delta u_{\rm GS}} = \frac{2}{U_{\rm GS(th)}} \sqrt{I_{\rm DO} I_{\rm DQ}}$$

不要死记硬背!

场效应管的转移特性曲线

记住N沟道增强型MOSFET的再去记其他的与它的区别!

请同学们不要将课件上传至网上的各个公共平台,谢谢! 课件中存在的错误可以在b站私信反馈给我,**重点关注如何从输出特性曲线中得到转移特性曲线的参数**!

场效应管的输出伏安特性曲线

场效应管的工作状态

○ 场效应管工作区的判断与划分

Step1:确定场效应管类型,并绘制出该场效应管的转移特性曲线;

Step2: 通过判断 u_{GS} 和 $U_{GS(th)}$ / $U_{GS(off)}$ 的大小来判断是否截止,即是否工作在夹断区(截止区);

Step3:通过判断 u_{DS} 和 $u_{GS} - U_{GS(th)}$ / $u_{GS} - U_{GS(off)}$ 的大小来判断导通后的情况,即工作在恒流区or可变电阻区;即比较 u_{GD} 和 $U_{GS(th)}$ / $U_{GS(off)}$ 的大小;

Step3可以利用转移特性曲线,表现为 u_{GS} 和 u_{GD} 在 $U_{GS(th)}$ / $U_{GS(off)}$ 的同侧/异侧: 同侧——可变电阻区; 异侧——恒流区;

场效应管的工作状态

注意: 不要死记硬背此表格! 按照上一页给出的技巧去判断工作状态!

不同类型场效应管不同工作区的电位关系

场效应管类型		N汽	道	P沟道			
工作区	JFET	耗尽型 MOSFET	增强型 MOSFET	JFET	耗尽型 MOSFET	增强型 MOSFET	
截止区	$u_{\rm GS} < U_{\rm GS(off)}$		$u_{\mathrm{GS}} < U_{\mathrm{GS(th)}}$	$u_{\rm GS} > U_{\rm GS(off)}$		$u_{\rm GS} > U_{\rm GS(th)}$	
可变电阻区	$u_{\rm GS} > U_{\rm GS(off)}$ $u_{\rm GD} > U_{\rm GS(off)}$		$u_{\rm GS} > U_{\rm GS(th)}$ $u_{\rm GD} > U_{\rm GS(th)}$	$u_{\rm GS} < U_{\rm GS(off)}$ $u_{\rm GD} < U_{\rm GS(off)}$		$u_{\rm GS} < U_{\rm GS(th)}$ $u_{\rm GD} < U_{\rm GS(th)}$	
恒流区	$u_{\rm GS} > U_{\rm GS(off)}$ $u_{\rm GD} < U_{\rm GS(off)}$		$u_{\rm GS} > U_{\rm GS(th)}$ $u_{\rm GD} < U_{\rm GS(th)}$	$u_{\rm GS} < U_{\rm GS(off)} u_{\rm GD} > U_{\rm GS(off)}$		$u_{\rm GS} < U_{\rm GS(th)}$ $u_{\rm GD} > U_{\rm GS(th)}$	

场效应管的工作状态

根据下列表格中的已知条件判断场效应管的管型以及工作状态,补充表格。

管号		$U_{ m GS(th)}$ /V 或 $U_{ m GS(off)}$ /V	$U_{ m S}$ /V	$U_{ m G}$ /V	$U_{ m D}$ /V	管型	工作状态
JFET	T_1	3	1	3	-10		
	T_2	-3	3	-1	10		
MOSFET	T_3	-4	5	0	-5		
	T_4	4	-2	3	-1.2		
	T ₅	-3	0	0	10		

:传至网上的各个公共平台,谢谢 <u>、在b站私</u>信反馈给我,不胜感激!

场效应管的工作状态

例 2

分别判断如图所示的各电路中的场效应管是否有可能工作在恒流区,简述理由。

场效应管的工作状态

已知电路如左图所示,场效应管的输出伏安特性曲线如右图所示;

- (1)请绘制出该场效应管的转移特性曲线;
- (2)求解 u_1 为 0 V, 6 V, 8 V情况下的输出电压 u_0 。

场效应管

场效应管的主要参数

开启电压 / 夹断电压 $U_{GS(th)}$ / $U_{GS(off)}$ —— 增强型MOSFET / 耗尽型MOSFET 和 JFET;

饱和漏电流 I_{DSS} —— JFET 和 耗尽型MOSFET 在 $u_{GS}=0$ 时的漏极电流;对于增强型MOSFET,等效的参数为在 $u_{GS}=2U_{GS(th)}$ 时的漏极电流 I_{DO} ;

直流输入电阻 $R_{GS(DC)}$ —— 可以视为无穷大;

低频跨导 g_m —— 转移特性曲线上静态工作点处切线的斜率;

最高工作频率 f_M —— 考虑场效应管的极间电容效应,工作频率存在上限值;

其他极限参数如最大漏极电流 $I_{\rm DM}$ 、击穿电压 $U_{\rm (BR)DS}$ 、最大耗散功率 $P_{\rm DM}$ 类似晶体管;

场效应管与晶体管的对比

晶体管 (BJT)	场效应管 (FET)			
双极型晶体管 (两种载流子导电)	单极型晶体管 (仅有一种载流子导电)			
发射极e、基极b、集电极c	源极s、栅极g、漏极d			
截止区、放大区、饱和区	夹断区、恒流区、可变电阻区			
电流控制型器件 (i _B → i _C)	电压控制型器件 (u _{GS} > i _D)			
放大区特点:	恒流区特点:			
$i_{\mathrm{B}}:i_{\mathrm{C}}:i_{\mathrm{E}}=1:\beta:1+\beta$	输入电阻无穷大, $i_G=0$; $i_D \approx i_S$;			

原作者:b站up主—这个ximo不太冷