Simulación	Nombre:	
		Código de honor:
Primavera 2018		No he dado ni recibido
Examen Recuperativo		ayuda durante este certamen
18/12/18		
Tiempo límite: 90 Minutos	\mathbf{Firma}	

Este certamen contiene 7 páginas (incluyendo esta cubierta) y 5 preguntas. Cerciorece que su copia contiene todas las páginas. Ponga su iniciales arriba de cada página en el caso de que separe las hojas y estas se puedan perder.

Usted **PUEDE** utilizar una hoja A4 escrita en una de sus carillas para el certamen.

Se requiere que muestre su trabajo para cada problema en este certamen. Las siguientes reglas aplican:

- Organize su trabajo, de forma razonablemente ordenada, en el espacio entregado. Trabajo desorganizado difícil de evaluar recibirá poco o nada de puntaje (independiente de su exactitud).
- Respuestas misteriosas o sin fundamentos no recibirán puntaje. Una respuesta correcta, sin soporte de calculos, explicación, o trabajo algebraico NO recibirá puntaje; una respuesta incorrecta que sea el resultado de calculos intermedios correctos podría recibir puntaje parcial.
- Si necesita mas espacio, use el reverso de la página; indique claramente cuando haga esto.

No escriba en la tabla a la derecha.

Problem	Points	Score
1	10	
2	15	
3	15	
4	10	
5	10	
Total:	60	

Probability theory - Certamen 1

1. Una variable aleatoria Y tiene la siguiente función de densidad:

$$f_Y(x) = \begin{cases} 0 & \text{for } x < 0\\ \frac{3}{16}x^2 + \frac{1}{4} & \text{for } 0 \le x < 2\\ 0 & \text{for } 2 < x \end{cases}$$

(a) (4 points) ¿Cuál es el valor esperado de Y? (b) (6 points) ¿Cuál es la función de densidad acumulada de Y? ¿Es más probable obtener un valor cercano a 1/2 o a 3/2?

Validación de distribución - Certamen 1

2. Usted quiere modelar el número diario de clientes que van a un restaurant. El dueño del local entrega una aproximación teórica de como los clientes se distribuyen durante la semana:

Día	L	Μ	Μ	J	V	S
Porcentaje (%)	15	10	15	20	25	15

Antes de utilizar esta distribución teórica usted decide validarla, por lo cual va a recolectar datos y obtiene la siguiente tabla:

Día	L	Μ	Μ	J	V	S	Total
Número de Clientes	26	18	34	45	50	27	200

Comprobar s adrado de ta		rica sirve	para mod	elar el flu	jo de clie	nte

Likelihood y moment matching - Certamen 1

3. Suponga que X es una variable aleatoria discreta con función de probabilidad de masa.

X	ζ 0 1		2	3
P(X=x)	$2\theta/3$	$\theta/3$	$2(1-\theta)/3$	$(1-\theta)/3$

pide dete	rminar el par	rámetro θ .			
-					

Procesos Especiales - Certamen 2

4. Usted necesita determinar los tiempos de llegada de un proceso de intensidad variable en el tiempo. La siguiente información ha sido obtenida:

$$\lambda(x) = \begin{cases} 2.5 & \text{for } x \in [0, 10[\\ 3 & \text{for } x \in [10, 20[\\ 4.2 & \text{for } x \in [20, 30] \end{cases}$$

(a)	(7 points) Determine la distribución inversa acumulada.
(b)	(3 points) Utilizando los siguientes números aleatorios: $0.375,0.063,\mathrm{y}$ $0.0.5$ determine e tiempo de las primeras tres llegadas al sistema.

Variables Aleatorias - Certamen 2

	$1 - \exp[-(x/a)^b]$, para $x > 0$, 0 de otro modo) usando el primer número aleatorio.
(b)	(2 points) Genere una variable aleatoria exponencial con $\lambda=5$ usando el segundo númer aleatorio
(b)	

(c)	(3 points) Utilizando una mezcla de las dos distribuciones anteriores con pesos $p_1 = 0.3$ y
	$p_2 = 1 - p_1$, y con números aleatorios 0.1453, 0.8763 genere una variable aleatoria mixta