Chapitre 6

Équations différentielle linéaire

Table des matières

Ι		2
II		5
TTT	Amovo	7

Première partie

Définition: Une <u>équation différentielle</u> est une égalité faisant intervenir une fonction inconnue y ainsi que ses dérivées successives $y', y'', y^{(3)}, \ldots, y^{(n)}$.

Définition: Une équation différentielle linéaire d'ordre n est de la forme

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_0 y = b(t)$$

où b, a_0, a_1, \ldots, a_n sont des fonctions connues et continues sur un intervalle I. On dit que b est le <u>second membre</u> de l'équation.

Proposition (Principe de superposition): Soient b_1 et b_2 continues sur I. Soient a_0, a_1, \ldots, a_n également continues sur I.

$$(E_1): \sum_{k=0}^{n} a_k y^{(k)} = b_1$$

$$(E_2): \sum_{k=0}^{n} a_k y^{(k)} = b_2$$

Soient $(\lambda_1, \lambda_2) \in \mathbb{C}^2$.

(E):
$$\sum_{k=1}^{n} a_k y^{(k)} = \lambda_1 b_1 + \lambda_2 b_2$$

 y_1 solution de (E_1) y_2 solution de (E_2) $\Longrightarrow \lambda_1 y_1 + \lambda_2 y_2$ solution de (E)

Proposition: Soit (E) l'équation différentielle $\sum_{k=0}^{n} a_k y^{(k)} = b$ où a_0, a_1, \dots, a_n sont des fonctions homogènes. L'équation homogène associée à (E) est

$$(H): \sum_{k=0}^{n} a_k y^{(k)} = 0$$

Les solutions de (E) sont toutes de la forme $h+y_0$ où h est solution de (H) et y_0 solution de (E).

3

Théorème (Théorème de Cauchy): Soit (E) une équation linéaire différentielle.

(E):
$$y^{(n)} + \sum_{k=0}^{n-1} a_k y^{(k)} = b$$

où a_0, a_1, \ldots, a_n sont <u>continues</u> sur un <u>intervalle</u> I. Soit $t_0 \in I$ et $(\alpha_0, \alpha_1, \ldots, \alpha_n) \in \mathbb{C}^n$. Il existe **une et une seule** fonction y telle que

$$\begin{cases} y \text{ solution de } (E) \\ \forall i \in [0, n-1], y^{(i)}(t_0) = \alpha_i \end{cases}$$

Deuxième partie

Soit (E) l'équation y' + ay = b où a et b sont continues sur un intervalle I.

Proposition: Soit A une primitive de a sur un intervalle I.

$$(H): \quad y' + ay = 0$$

 $(H): \quad y'+ay=0$ Les solutions de (H) sont $t\mapsto \lambda e^{-A(t)}$ avec $\lambda\in\mathbb{C}$

REMARQUE (pseudo preuve):

$$\frac{dy}{dt} + a(t)y = 0 \iff \frac{dy}{y} = -a(t)dt$$

$$\iff \int \frac{dy}{y} = \int -a(t)dt$$

$$\iff \ln(y) = -A(t) + K$$

$$\iff y = e^{-A(t)+K}$$

$$\iff y = \lambda e^{-A(t)} \text{ avec } \lambda = e^{K}$$

Troisième partie

Annexe

III Annexe

 $y:I\to E$ où E est un $\mathbb{K}\text{-espace}$ vectoriel.

(*):
$$y' + a(x)y = 0$$
 et $y(x_0) = 0$
 $\iff \forall x \in I, y(x) = -\int_{x_0}^x a(u)y(u) \ du$

$$T: E^I \longrightarrow E^I$$

$$y \longmapsto \left(x \mapsto - \int_{x_0}^x a(u) y(u) \ du \right)$$

$$\operatorname{donc} (*) \iff T(y) = y$$