1/5/2019 Untitled19

```
In [1]: import numpy as np
   import pandas as pd
   import seaborn as sns
   import matplotlib.pyplot as plt
   %matplotlib inline
```

In [15]: df = pd.read_csv('E:/adult-income-usa/adult-income-usa-cleaned.csv')
 df.head()

Out[15]:

	row	age	fnlwgt	educational- num	capital- gain	capital- loss	hours- per- week	workclass	marital- status	race	Ма
0	0	25	226802	7	0	0	40	0	0	0	1
1	1	38	89814	9	0	0	50	0	1	1	1
2	2	28	336951	12	0	0	40	1	1	1	1
3	3	44	160323	10	7688	0	40	0	1	0	1
4	5	34	198693	6	0	0	30	0	0	1	1

In [16]: x = df.drop(['>50K', 'row'], axis=1)
y = df['>50K']

- In [17]: from sklearn.cross_validation import train_test_split
 x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
- In [7]: from sklearn.linear_model import LogisticRegression
- In [18]: | logmodel = LogisticRegression()
- In [19]: logmodel.fit(x_train, y_train)
- In [20]: predictions = logmodel.predict(x_test)
- In [11]: from sklearn.metrics import classification_report

1/5/2019 Untitled19

```
In [21]: print (classification_report(y_test, predictions))
                      precision
                                    recall f1-score
                                                       support
                   0
                           0.80
                                     0.96
                                                0.88
                                                         10239
                   1
                           0.71
                                     0.27
                                                0.39
                                                          3328
         avg / total
                           0.78
                                     0.79
                                                0.76
                                                         13567
In [13]: from sklearn.metrics import confusion_matrix
In [22]: confusion_matrix(y_test, predictions)
Out[22]: array([[9876,
                        363],
                       890]], dtype=int64)
                [2438,
```