Name:	
J#:	Dr. Clontz
Date:	

MASTERY QUIZ DAY 15

Math 237 – Linear Algebra Fall 2017

Version 6 Fall 2017 Show all work. Answers without work will not receive credit. You may use a calculator, but you must show all relevant work to receive credit for a standard.

Standar	d V2.	Mark:				
Determine if	$\begin{bmatrix} 1 \\ 4 \\ 3 \end{bmatrix}$ is a \lim	ear com	bination of the vectors	$\begin{bmatrix} 2\\3\\-1 \end{bmatrix},$	$\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, and$	$\begin{bmatrix} -3\\-2\\5 \end{bmatrix}.$

Standard S1. Mark:

Determine if the set of matrices $\left\{ \begin{bmatrix} 3 & -1 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}, \begin{bmatrix} 3 & -8 \\ 6 & 5 \end{bmatrix} \right\}$ is linearly dependent or linearly independent.

Standard S3.

Mark:

Let W be the subspace of \mathcal{P}_3 given by $W = \text{span}\left(\left\{x^3 + x^2 + 2x + 1, 3x^3 + 3x^2 + 6x + 3, 3x^3 - x^2 + 3x - 2, 7x^3 - x^2 + 8x - 3\right\}\right)$. Find a basis for W.

Standard S4.

$$\begin{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}
\end{bmatrix}$$
Let $W = \operatorname{span}\left(\left\{\begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ 3 \\ 6 \\ 3 \end{bmatrix}, \begin{bmatrix} 3 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} 7 \\ -1 \\ 8 \\ -3 \end{bmatrix}\right\}\right)$. Find the dimension of W .

Additional Notes/Marks