TBMC 18 2.2015

Hae:

ΦH:

- 1. Нека $P(A \cup B) = 0.8$ и $P(A \cup \overline{B}) = 0.6$. Определете P(A). $\bigcirc 0.2 \quad \bigcirc 0.3 \quad \bigcirc 0.4 \quad \bigcirc 0.6 \quad \bigcirc 0.7 \quad \bigcirc$ друга
- Възможно ли е група от събития да са независими две по две, но да са зависими в съвкупност. Дайте пример.
- 3. Функцията на разпределение на сл.в. X се дефинира през

$$F_{\xi}(x) = \left\{ \begin{array}{ll} 0 & x < 0 \\ x/5 & 0 \leq x < 4 \\ 9/10 & 4 \leq x < 7 \\ 1 & x \geq 7 \end{array} \right.$$

Каква е верхитността $P(3 \le X < 7)$?

- 4. Нека случайшите величний X и Y са независими равномерно разпределени в (0.2). Определете $\mathbb{E}(6X-3Y)$ и $\mathbb{D}(6X-3Y)$.
- 5. Дефинирайте коефициента на корелация $\rho_{X,Y}$. Докажете, че $\rho_{X,Y} \geq -1.$ Ако $\rho_{X,Y} = -1,$ то ...?
- 6. На графиката е дадена плътността на $X \in N(10,9)$. На същата графика начертайте плътността на $Y \in N(5,4)$.

- 7. Пека $X\in N(\mu,\sigma^2)$. Докажете, че за $Y=\frac{X-\mu}{\sigma}$ е и ягълнево $Y\in N(0,1)$.
- 8. Какио паричаме квартил. Намерете квартилите $Q_1,\,Q_2$ и Q_3 на случайната величина $X\in N(2,9)$.
- 9. Нека $X_1,X_2,\ldots X_7$ са пезависими случайни величнии и $X_i\in N(0,1)$. Какво внаем за $X_1^2+X_2^2+\ldots +X_7^2$? Определете $\mathbf{P}(X_1^2+X_2^2+\ldots +X_7^2<9.04)$
- 10. Формулирайте перавенство на Чебингов. Ако EX = 15 и DX = 10, коя оценка за вероятността $p=P(10 \le X \le 20)$ е изпълнена?
 - p < 0.4 p < 0.6 p > 0.4 p > 0.6 p > 0.5 друга
- 11. По наблюдения над случайните величини X и Y са построени следните boxplot-и. Тогава за очаквашето и дисперсията на X и Y е вкрио
 - \bigcirc EX < EY n DX < DY
 - \bigcirc EX > EY n DX < DY
 - \bigcirc EX < EY II DX > DY
 - \bigcirc EX > EY II DX > DY
 - \bigcirc EX < DY
 - иншо от посоченото

Какво наричаме точкова оценка? Кога казнаме, че една точкова оценка е неизместена? Посочете изместена и неизместена оценка на дисперсията.

TBMC 18.2.2015

Mane:

ΦH:

- 1. Here $P(A \cup B) = 0.9$ if $P(A \cup \overline{B}) = 0.7$. Ondersomer P(A).

- 0.2 0.1 0.4 0.6 0.7 друга
- 2. Възымено ли е група от събития да са независими две по две, но да са зивисими в съвкушност. Дайте иример.
- 3. Функциять на разпределение на сл.в. X се дофинира чрез

$$F_{\xi}(x) = \begin{cases} 0 & x < 0 \\ x/4 & 0 \le x < 3 \\ 5/6 & 3 \le x < 5 \\ 1 & x \ge 5 \end{cases}$$

Каква е вероигиостта $P(2 \le X < 5)$?

- Нежа случаймите величини X и Y са независими равномерно разпределени в (0.1). Определете E(5X - 4Y) = D(5X - 4Y)
- 5. Дофинирайте воефициента на корелации $\rho_{X,Y}$. Докажете, че $\rho_{X,Y} \leq 1$. Ако $\rho_{X,Y} = 1$, то ... ?
- 6. На графиката е дадена илътността на $X \in N(10,9)$. На същите графика начертайте илътността на $Y \in N(15, 16)$

- 7. Века $X\in N(\mu,\sigma^2)$. Домажете, че за $Y=\frac{X-\mu}{\sigma}$ е изпълмено $Y\in N(0,1)$.
- 8. Какво ввричаме квартил. Намерете квартилите $Q_1,\,Q_2$ и Q_3 на случайната величика $X\in N(1,4)$.
- 9. Некв $X_1, X_2, \dots X_6$ са везависими случайня величини и $X_i \in N(0, 1)$. Какво зимем за $X_1^2 + X_2^2 + \dots + X_6^2$? Определити $P(X_1^2 + X_2^2 + \dots + X_6^2 < 3.45)$
- 10. Формулирыйте верваемство на Чебицов. Ако EX=20 в DX=30, коя оденка за верситиосута $p=P(10\leq X\leq 30)$ е изизълнена?

Op < 0.3 Op < 0.7 Op > 0.3 Op > 0.7 Op > 0.5 Oppyin

11. По наблюжения вад случийните величини X и Y са пострющи следните boxplot-и. Тогава за очикивнето и дисперсинта на X и Y е нарио ...

O EX < EY & DX < DY

$$\bigcirc$$
 EX > EY \oplus DX $<$ DY

$$\bigcirc$$
 EX $<$ EY \times DX $>$ DY

$$\bigcirc$$
 EX > EY \oplus DX > DY

- O EX < DY
- O while of necessitions

Къвмо нарители: точкима оценка? Кога казнаме, че една точкова оценка е неизместена? Посочете циместена и неизместена оценка на дисперсияса.

1	٠					ì
	1	٦	4	٠	۰	

ΦH

1. Събитията A,B и C са независими в съвкупност. Ако е и вистно, че P(A)=0 4, P(B)=00.5 и $P(C) \approx 0.6$, на колко е равно $P(A \cap B \cap C)$?

O 0.12 O 0.18 O 0.30 O 0.12 O 0.6

Формулирайте аксиомите, които са изпълнени за вереятността P(A)

0 2

03

Функцията на разпределение на сл. в. ξ се дефинира чрез

$$F_{\xi}(x) = \begin{cases} 0 & x < 0 \\ x/3 & 0 \le x < 2 \\ 2/3 & 2 \le x < 4 \\ 8/9 & 4 \le x < 6 \\ 1 & x \ge 6 \end{cases}$$

Каква е вероятността $P(1 < \xi < 5)$?

029 013 059 023 089

4. Опишете връзката между Биномното и Поасоновото разпределение.

5. Нека ξ е производна неотрицателна сл.в., за която $E\xi=30$. Каква оценка може да се получи от неравенството на Чебишов за вероятността $p=P(\xi>40)$? $\bigcirc p < 1/2 \quad \bigcirc p > 3/4 \quad \bigcirc p < 2/3 \quad \bigcirc p > 1/4 \quad \bigcirc p < 3/4$

6. Нека е $\xi_1, \xi_2, \dots \xi_n, \dots$ е редица от произволни случайни величини. Формулирайте "Закона за големите числа". На какви условия трябва да отговаря редицата за да е изпълнен 3143

7. Нека ξ е произволна сл.в. с крайно математическо очакване, а g(x) е функция изпъкнала надолу. Докажете следното неравенство $E(g(\xi)) \geq g(E(\xi))$.

8. На графиката са дадени наблюденията над сл.в. ξ и η . Какво можете да кажете за коефициента на корелация $\rho_{\xi,\eta}$?

$$\bigcap \rho = -1$$

$$\bigcap \rho = 0$$

$$\bigcirc \rho = 1/2$$

$$\bigcirc \rho = 1$$

9. Нека случайните величини $\xi \in Ge(2/3)$ и $\eta \in U(0,3)$ са независими. Намерете $E(3\xi - 2\eta)$ и $D(3\xi - 2\eta)$.

10. Нека случайната величини $\xi \in N(\mu,4)$, където μ е веизвество. Ако вероятността ξ да надхвърля 1.65 с 0.91, определете стойността на μ .

11 Постройте хистограма по данните от таблицата.

	HOCHOMIC SUCTOMPERS IN A							
CT	ойност	[0: 3]	3:5)	[5:6)	[6:7)	[7:10] 10		
	OVEC TO	30	25	15	12	10		

12. При проверка на проста хипотеза срещу проста алтернатива, какъв е смисълът на понятията - "Грешка от първи род", Грешка от втори род" и "Мощност на критерия"?