Total No. of Questions: 8]	SEAT No.:
PB-3858	[Total No. of Pages : 2
	[6262]-121
,	n Technology Engineering)
	y of Computation
(2019 Patter)	n) (Semester-I) (314441)
Time: 2½ Hours]	[Max. Marks : 70
Instructions to the candidates:	04.05 06.07 08
	· Q4, Q5 or Q6, Q7 or Q8.
	drawn wherever necessary.
3) Figures to the right side	
4) Assume suitable data, if	necessary.
× .	grammar? Explain with a suitable example. [4]
b) What is Regular Gram	mar? Explain types of regular grammar. [5]
c) Convert the following	grammar to GNF. [9]
$S \to AB$	
$A \rightarrow BSB \mid BB \mid b$	0,60
$B \rightarrow aAb a$	
	OR
Q2) a) Write CFG for the lang	guage L= { $a^i b^j c^k i = j + k \& j, k >= 1$ } [6]
b) Convert the following	RLG to FA. [6]
$S \rightarrow 0A \mid 1B \mid 0$	
$A \rightarrow 0S \mid 1B \mid 1$	
$B \rightarrow 0A \mid 1S$	
·	ure properties of Context Free language. [6]
	tomata. Explain different types of PDA. Explain.

any two applications of PDA. [6]
Write a note on Instantaneous Description of PDA with an example [5] any two applications of PDA.

P.T.O.

	c)	empty stack. [6]
		$S \rightarrow 0S1 \mid A$	
		$A \rightarrow 1A0 \mid S \mid \varepsilon$	
		OR OR	
Q4)	<u>a)</u>	Compare Finite Automata and Pushdown Automata. [4]
	<u>b</u>)	Design a Pushdown Automata for the following language. $L=\{0^a1^b2^c \mid a+c=b\}$	7]
	<u>c)</u>	Design Post Machine for $L = \{0^n 1^n n \ge 0\}$	[6]
Q5)	<u>a</u>)	Write a note on Universal turing Machine [[6]
	b)	Explain Church Turing hypothesis.	3]
	c)	Define Turing machine and design a right shifting TM over alphabet {0, with an example.	1} 9]
	6	OR	
Q6)	a)	Construct a Turing Machine to replace string '110' by '101' in a bina input string. Write down transition table along with diagram. [1]	ry 0]
	b)/	Discuss the following terms [[8]
<u>\</u>	b)	Discuss the following terms i) Post Correspondence Problem	[8]
<u></u>	b) /		8]
Q7)	b) a)	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm 	(,)
Q7)	a) b)	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. Define decidability of problem with suitable example. Describent 	àn [8]
Q7)	,	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. Define decidability of problem with suitable example. Describent 	an 8] be
	b)	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. Define decidability of problem with suitable example. Describundecidable problems for context-free Grammar. 	an 8] be
	b)	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. Define decidability of problem with suitable example. Describundecidable problems for context-free Grammar. 	an 8] be 9]
	b)	ii) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. [Define decidability of problem with suitable example. Describe undecidable problems for context-free Grammar. OR rite short note on:	an 8] be 9]
	b)	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. Define decidability of problem with suitable example. Describundecidable problems for context-free Grammar. OR rite short note on: i) A Simple Un-decidable problem ii) Measuring Complexity 	an 8] be 9]
	b)	 i) Post Correspondence Problem ii) Halting Problem of Turing Machine What do you mean by NP problems? Justify why the Travelling Salesm problem is a NP problem. Define decidability of problem with suitable example. Describundecidable problems for context-free Grammar. OR rite short note on: i) A Simple Un-decidable problem ii) Measuring Complexity 	an [8] be [9]