Physics Problem Solving

Dara Daneshvar Eason Shao Lev Shabalin

Physics Problem Solving Society St Paul's School

09.09.2024

Table of Contents

Welcome!

2 Overview of BPhO 24-25

3 Physics Challenge Past Paper

Table of Contents

Welcome!

2 Overview of BPhO 24-25

3 Physics Challenge Past Paper

Who we are

• Dara Daneshvar, U8, DaneshD@StPaulsSchool.org.uk

Who we are

- Dara Daneshvar, U8, DaneshD@StPaulsSchool.org.uk
- Lev Shabalin, U8, ShabalL@StPaulsSchool.org.uk

Who we are

- Dara Daneshvar, U8, DaneshD@StPaulsSchool.org.uk
- Lev Shabalin, U8, ShabalL@StPaulsSchool.org.uk
- Eason Shao, U8, ShaoY@StPaulsSchool.org.uk

• Past Papers for BPhO Competitions

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics
 - Thermal Physics

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics
 - Thermal Physics
 - Circuit Analysis

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics
 - Thermal Physics
 - Circuit Analysis
- Talks by Students
 Past examples include:

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics
 - Thermal Physics
 - Circuit Analysis
- Talks by Students
 Past examples include:
 - Special Relativity

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics
 - Thermal Physics
 - Circuit Analysis
- Talks by Students
 Past examples include:
 - Special Relativity
 - Brachistochrone Problem

- Past Papers for BPhO Competitions
- Topic-Focused Problem Solving Sessions Past examples include:
 - Mechanics
 - Thermal Physics
 - Circuit Analysis
- Talks by Students
 Past examples include:
 - Special Relativity
 - Brachistochrone Problem
 - Calculus of Variations

Our aim

Prepare for upcoming BPhO Competitions https://www.bpho.org.uk

Our aim

- Prepare for upcoming BPhO Competitions https://www.bpho.org.uk
- Improve problem-solving skills

Our aim

- Prepare for upcoming BPhO Competitions https://www.bpho.org.uk
- Improve problem-solving skills
- Deepen understanding in physics

Table of Contents

Welcome!

2 Overview of BPhO 24-25

3 Physics Challenge Past Paper

U8 Olympiads

Competition	Date	Length	Format	U8	L8
Physics	Sept - Dec	1h	SAQ	Yes	Opt.
Challenge					
BPhO R1	8 Nov	1h, 1h40min	SAQ, LAQ	Yes	PhC
BPhO R2	6 Feb	3h	MCQ, LAQ	Inv.	Inv.

Table: BPhO U8 Olympiads

Physics Challenge begins with estimation questions, and has 3 Long Answer Questions.

U8 Olympiads

Competition	Date	Length	Format	U8	L8
Physics	Sept - Dec	1h	SAQ	Yes	Opt.
Challenge					
BPhO R1	8 Nov	1h, 1h40min	SAQ, LAQ	Yes	PhC
BPhO R2	6 Feb	3h	MCQ, LAQ	Inv.	Inv.

Table: BPhO U8 Olympiads

Physics Challenge begins with estimation questions, and has 3 Long Answer Questions.

Note that BPhO R1 has two sections.

Section 1, 1h, Time-pressured, Short Answer Questions

U8 Olympiads

Competition	Date	Length	Format	U8	L8
Physics	Sept - Dec	1h	SAQ	Yes	Opt.
Challenge					
BPhO R1	8 Nov	1h, 1h40min	SAQ, LAQ	Yes	PhC
BPhO R2	6 Feb	3h	MCQ, LAQ	Inv.	Inv.

Table: BPhO U8 Olympiads

Physics Challenge begins with estimation questions, and has 3 Long Answer Questions.

Note that BPhO R1 has two sections.

- Section 1, 1h, Time-pressured, Short Answer Questions
- Section 2, 1h40min, Not-as-time-pressured, Long Answer Questions

L8 Challenges

Competition		Date	Length	Format
Senior Challenge (Physics Online	20-24 Jan	2 * 30min	Online MCQ
Senior Challenge	Physics	7 Mar	1h	MCQ, SAQ

Table: BPhO L8 Challenges

 $\verb|https://www.bpho.org.uk/Competitions/| for full schedule.$

Table of Contents

Welcome!

2 Overview of BPhO 24-25

Physics Challenge Past Paper

Qu. 1 Estimations

Qu. 1 (a) [2]

What is the equivalent mass of a joule?

Qu. 1 Estimations

Qu. 1 (a) [2]

What is the equivalent mass of a joule?

Fact (Mass-Energy Equivalence Equation)

$$E = mc^2$$
.

Fact (Mass-Energy Equivalence Equation)

For stationary particles,

$$E = mc^2$$

where E is its energy and m is its mass.

Fact (Mass-Energy Equivalence Equation)

For stationary particles,

$$E = mc^2$$

where E is its energy and m is its mass.

Fact (Energy-Momentum Relation Equation)

$$E^2 = (pc)^2 + (m_0c^2)^2$$

where E is the total energy of a particle, p is its momentum, m_0 is its stationary mass and c is the speed of light.

Qu. 1 (c) [4]

An inventor designs a novel type of battery reputed to have an emf of 2V and an internal resistance of $1\mu\Omega.$ He claims that this device could deliver 1MW to an appropriate load.

Comment on the feasibility of this and any safety considerations in the employment of such a power source.

Qu. 1 (c) [4]

An inventor designs a novel type of battery reputed to have an emf of 2V and an internal resistance of $1\mu\Omega.$ He claims that this device could deliver 1MW to an appropriate load.

Comment on the feasibility of this and any safety considerations in the employment of such a power source.

Draw a circuit diagram!

Qu. 1 (c) [4]

An inventor designs a novel type of battery reputed to have an emf of 2V and an internal resistance of $1\mu\Omega.$ He claims that this device could deliver 1MW to an appropriate load.

Comment on the feasibility of this and any safety considerations in the employment of such a power source.

Draw a circuit diagram!

Fact

Maximum power is dissipated to the external load when it has equal resistance with the internal resistance of the power source.

Fact

Maximum power is transferred to the external load when it has equal resistance with the internal resistance of the power source.

Solution

When the maximum power is obtained, the load has resistance of $R=r=1\mu\Omega$ as well.

Fact

Maximum power is transferred to the external load when it has equal resistance with the internal resistance of the power source.

Solution

When the maximum power is obtained, the load has resistance of $R=r=1\mu\Omega$ as well.

Therefore, by Ohm's law, the current $I = \frac{\mathcal{E}}{R+r} = \frac{2V}{2\mu\Omega} = 1 \text{MA}$.

Fact

Maximum power is transferred to the external load when it has equal resistance with the internal resistance of the power source.

Solution

When the maximum power is obtained, the load has resistance of $R = r = 1\mu\Omega$ as well.

Therefore, by Ohm's law, the current $I = \frac{\mathcal{E}}{R+r} = \frac{2V}{2U\Omega} = 1MA$.

Therefore, the power $P = l^2R = (1MA)^2 \cdot 1\mu\Omega = 1MW$ as claimed.

Qu. 2 Stopping Distances

Qu. 2(a). [2 + 2]

- What is the kinetic energy of a car of mass 1000kg travelling at $30 \,\mathrm{m\,s^{-1}}$?
- A car travelling at approximately 30m s⁻¹ in the country is required by law to halve its speed on entering a built-up area. What fraction of its kinetic energy is lost in doing this?

Qu. 2(b). [1+1]

- By inspection of the values given in the figure, suggest a relationship between the thinking distance, *T*, and the speed, *v*.
- The Thinking Distance in the table derives from empirical information about the behaviour of drivers. If you were to propose a theoretical explanation of this phenomenon, what assumption would be needed to explain your suggested relationship?

Qu. 2(c) i. [3]

Clearly, the speed and stopping distance have a different relationship. A student who has seen part (a) of this question suggests that the braking distance, B, is proportional to the square of the speed, v^2 .

Using the data, devise a test to check this hypothesis and comment on the results of your test.

Qu. 2(c) i. [3]

Clearly, the speed and stopping distance have a different relationship. A student who has seen part (a) of this question suggests that the braking distance, B, is proportional to the square of the speed, v^2 .

Using the data, devise a test to check this hypothesis and comment on the results of your test.

Solution

• Draw a table, with B as a column, v^2 as a column, and B/v^2 as the final column. Compare the final column values.

Qu. 2(c) i. [3]

Clearly, the speed and stopping distance have a different relationship. A student who has seen part (a) of this question suggests that the braking distance, B, is proportional to the square of the speed, v^2 .

Using the data, devise a test to check this hypothesis and comment on the results of your test.

Solution

- Draw a table, with B as a column, v^2 as a column, and B/v^2 as the final column. Compare the final column values.
- ② Draw a graph, with B on the y-axis, v^2 on the x-axis, and verify they are all lying close to line of best fit.

Qu. 2(c) ii. [1]

Again, the observed relationship is only an empirical finding. If you were to devise a theoretical explanation of the $B \propto v^2$ relationship, what assumption would you need to make about the braking behaviour of a car?

Fact (suvat equations)

For motion with uniform acceleration a, initial speed v, final speed u, elapsed time t and displacement s, we must have:

$$\begin{cases} a = \frac{v - u}{t} \\ s = ut + \frac{1}{2}at^{2} \\ s = vt - \frac{1}{2}at^{2} \\ s = \frac{1}{2}(u + v)t \\ 2as = v^{2} - u^{2} \end{cases}$$

Qu. 2(c) iii. [3]

Calculate the deceleration of a car when it brakes from a speed of $80 \mathrm{km} \, \mathrm{h}^{-1}$.

Qu. 2(c) iii. [3]

Calculate the deceleration of a car when it brakes from a speed of $80 \mathrm{km} \, \mathrm{h}^{-1}$.

Units!

Fact

 $1 \text{m s}^{-1} = 3.6 \text{km h}^{-1}$.

Qu. 2(c) iv. [2]

Hence determine the (minimum) coefficient of (static) friction, μ , for contact between car tyres and the road. (μ is the ratio of the maximum braking force before skidding sets in, to the weight of the car).

Qu. 2(c) iv. [2]

Hence determine the (minimum) coefficient of (static) friction, μ , for contact between car tyres and the road. (μ is the ratio of the maximum braking force before skidding sets in, to the weight of the car).

Solution

$$\mu = \frac{ma}{mg} = \frac{a}{g} = \dots$$

Try doing cancellation before actually plugging in the values (and don't be afraid of setting unknowns).

Qu. 2(c) v. [2]

It is often stated (incorrectly) that the value of μ cannot exceed unity. But, if tyres had this excellent level of grip, what would be the minimum stopping distance from 96km h⁻¹?