Riemannov integral na pravokutniku i Fubinijev teorem

Magda Klarić

1. srpnja 2016.

Sadržaj

1	Riemannov integral omeđene funkcije na pravokutniku	3
2	Fubinijev teorem	4
	2.1 Neki primjeri	6

1 Riemannov integral omeđene funkcije na pravokutniku

Neka je $f:A=[a,b]\times [c,d]\to \mathbb{R}$ ograničena funkcija. Subdivizijom P pravokutnika A zvat ćemo izbor točaka

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b;$$
 $c = y_0 < y_1 < \ldots < y_{n-1} < y_n = d;$

Te točke određuju subdiviziju pravokutnika A na mn pravokutnika

$$A_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j], \quad i = 1, \dots, n; j = 1, \dots, m.$$

Formalnije rečeno, subdivizija P je uređen par subdivizija $P_{[a,b]}$ segmenta [a,b] i $P_{[c,d]}$ segmenta $[c,d]: P=(P_{[a,b]},P_{[c,d]}).$

Neka m_{ij} , M_{ij} označavaju redom infimum i supremum funkcije f na pravokutniku A_{ij} . Donju i gornju Darbouxovu sumu pridruženu subdiviziji P definiramo kao

$$s = s(P) = \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} (x_i - x_{i-1}) (y_j - y_{j-1})$$

$$S = S(P) = \sum_{i=1}^{n} \sum_{j=1}^{m} M_{ij} x_i - x_{i-1} (y_j - y_{j-1})$$

Budući da je $(x_i - x_{i-1})(y_j - y_{j-1})$ površina pravokutnika A_{ij} , te da je (u slučaju $f \leq 0$) m_{ij} visina upisanog kvadra iznad A_{ij} i ispod grafa funkcije f, vidimo da je s(P) volumen upisan ispod grafa funkcije f i iznad pravokutnika A. Taj je volumen (za integrabilnu funkciju f i za dovoljno finu subdiviziju P) aproksimacija odozdo za volumen ispod grafa funkcije f i iznad pravokutnika A. Analogno, S(P) je opisani volumen grafu funkcije f iznad f0, koji aproksimira volumen ispod grafa i iznad f1 odozgo.

Ako označimo sa m odnosno M infimum odnosno supremum funkcije f na čitavom pravokutniku A, onda očito za bilo koju particiju P vrijedi

$$m(b-a)(d-c) \le s(P) \le S(p) \le M(b-a)(d-c)$$

Slijedi da je skup svih donjih Darbouxovih suma ograničen, pa ima supremum. Skup svih gornjih Darbouxovih suma je također ograničen pa ima infimum. Kažemo da je funkcija f integrabilna na A ako je sup $_P s(P) = \inf_P S(P)$. U tom slučaju taj broj nazivamo integralom funkcije f po A i označavamo sa

$$\int_{A} f = \sup_{P} s(P) = \inf_{P} S(P) \tag{1}$$

Za (1) se koriste i oznake $\iint_A f$ ili $\iint_A f(x,y) dx dy$.

Sada možemo formulirati Lebesgueov teorem za funkcije 2 varijable. Za skup $S \subset \mathbb{R}^2$ kažemo da ima (Lebesgueovu) mjeru nula ako se za bilo koji $\varepsilon > 0$ skup S može pokriti sa najviše prebrojivo mnogo otvorenih pravokutnika čija je ukupna površina (tj. suma njihovih površina) manja od ε .

Teorem 1.1 (Lebesgue). Ograničena funkcija $f: A = [a,b] \times [c,d] \to \mathbb{R}$ integrabilna je na A (u Riemannovom smislu) ako i samo ako skup njezinih prekida S ima (Lebesgueovu) mjeru nula. Posebno, svaka je neprekidna funkcija na A integrabilna.

Ovaj teorem rješava problem nalaženja primjera integrabilnih funkcija (pod uvjetom da dobro razumijemo kada podskup od A ima mjeru 0). Ostaje pitanje računanja integrala. Ono je riješeno Fubinijevim teoremom koji nam je sljedeća tema.

2 Fubinijev teorem

Promotrimo sljedeći jednostavan primjer: neka je funkcija $f: A = [0,1] \times [0,2] \to \mathbb{R}$ dana sa f(x,y) = y.

U ovom se primjeru integral može izračunati iz definicije (1) (učinite to, vidjet ćete da ne želite koristiti definiciju čak ni u jednostavnim slučajevima). Moguće je međutim uz pomoć slike direktno odrediti volumen ispod grafa i iznad A, s obzirom da je riječ o prizmi, kojoj je baza jednakokračni pravokutni trokut u yz ravnini s katetama 2, i čija je visina jednaka 1. Dakle

$$\int_A f = 2$$

S druge strane, izračunajmo "iterirani" integral

$$\int_0^1 \left(\int_0^2 y \, dy \right) \, dx = \int_0^1 \left(\frac{y^2}{2} \Big|_{y=0}^{y=2} \right) \, dx = \int_0^1 2 \, dx = 2x \Big|_0^1 = 2$$

Iterirani integral u drugom poretku također daje isti rezultat:

$$\int_0^2 \left(\int_0^1 y \, dx \right) \, dy = \int_0^2 \left(yx \Big|_{x=0}^{x=1} \right) \, dy = \int_0^2 y \, dy = \left. \frac{y^2}{2} \right|_0^2 = 2$$

Teorem 2.1 (Fubini). Neka je $f: A = [a,b] \times [c,d] \to \mathbb{R}$ integrabilna funkcija. Pretpostavimo da je funkcija sa [c,d] u \mathbb{R} dana sa $y \mapsto f(x,y)$ integrabilna na [c,d] za svaki (fiksirani) $x \in [a,b]$. Tada je funkcija $g: [a,b] \to \mathbb{R}$ dana sa

$$g(x) = \int_{c}^{d} f(x, y) \, dy$$

integrabilna na [a, b] i vrijedi

$$\int_{A} f = \int_{a}^{b} g(x) dx = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx.$$
 (2)

Analogno, ako pretpostavimo da je funkcija sa [a,b] u \mathbb{R} dana sa $x\mapsto f(x,y)$ integrabilna na [a,b] za svaki (fiksirani) $y\in [c,d]$. Tada je funkcija $h:[c,d]\to\mathbb{R}$ dana sa $h(y)=\int_a^b f(x,y)\,dx$ integrabilna na [c,d] i vrijedi

$$\int_A f = \int_c^d h(y) \, dy = \int_c^d \left(\int_a^b f(x, y) \, dx \right) \, dy$$

Primijetimo da su pretpostavke teorema očito ispunjene ako je f neprekidna funkcija na A. Intuitivno, volumen ispod grafa funkcije $f \geq 0$ možemo podijeliti na "beskonačno tanke odreske" u smjeru y-osi. Volumen odreska kroz točku x jednak je produktu površine $\int_c^d f(x,y) \, dy$ i debljine dx. To treba integrirati po x da dobijemo čitav volumen.

Za (još jedan) primjer primjene Fubinijevog teorema, integrirajmo funkciju $f(x,y) = e^{2x+3y}$ po kvadratu $A = [0,1] \times [0,1]$:

$$\begin{split} \int_A f &= \int_0^1 \left(\int_0^1 e^{2x+3y} \, dy \right) \, dx = \int_0^1 \left(\frac{1}{3} e^{2x+3y} \Big|_{y=0}^{y=1} \right) \, dx = \\ & \int_0^1 \frac{1}{3} \left(e^{2x+3} - e^{2x} \right) \, dx = \frac{1}{6} \left(e^{2x+3} - e^{2x} \right) \Big|_{x=0}^{x=1} = \frac{1}{6} (e^5 - e^3 - e^2 + 1) \end{split}$$

Za primjene nije dovoljno znati integrirati samo po pravokutnicima. Sljedeći korolar pokazuje kako integrirati po općenitijim područjima. Primijetimo prvo da se svaki ograničen skup $S \subset \mathbb{R}^2$ može pokriti nekim pravokutnikom A. Ako je $f:C \to \mathbb{R}$ ograničena funkcija, proširimo je nulom do funkcije $\tilde{f}:A \to \mathbb{R}$. Tada kažemo da je f integrabilna na C ako je \tilde{f} integrabilna na A i definiramo

$$\int_C f = \int_A \tilde{f}$$

S obzirom da je integral funkcije 0 jednak 0 po bilo kojem pravokutniku, lako se vidi da gornja definicija ne ovisi o izboru pravokutnika A.

Korolar 2.2. Neka su $\phi, \psi : [a, b] \to \mathbb{R}$ neprekidne funkcije takve da je $\phi(x) \le \psi(x)$ za svaka $x \in [a, b]$. Neka je C područje u xy ravnini u pruzi $a \le x \le b$ i između grafova funkcija ϕ i ψ ; drugim riječima, $(x, y) \in C$ ako i samo ako vrijedi $a \le x \le b$ i $\phi(x) \le y \le \psi(x)$. Neka je $f: C \to \mathbb{R}$ neprekidna funkcija. Tada je f integrabilna na C i vrijedi

$$\int_{c} f = \int_{a}^{b} \left(\int_{\phi(x)}^{\psi(x)} f(x, y) \, dy \right) \, dx$$

Dokaz. Pokrijmo C pravokutnikom $A = [a, b] \times [c, d]$ i proširimo f nulom do funkcije $\tilde{f}: A \to \mathbb{R}$. Tada je skup prekida funkcije \tilde{f} sadržan u uniji grafova funkcija ϕ i ψ . Dakle Lebesgueov teorem povlači da je f integrabilna na C (odnosno da je \tilde{f} integrabilna na A).

Za fiksirani x, funkcija $y \mapsto \tilde{f}(x,y)$ je nula na $[c,\phi(x))$ i na $(\psi(x),d)$, a jednaka je $y \mapsto f(x,y)$

dakle neprekidna je, na $[\phi(x), \psi(x)]$. Odavde odmah slijedi da je ta funkcija integrabilna na [c,d] i da vrijedi

$$\int_{c}^{d} \tilde{f}(x,y) \, dy = \int_{\phi(x)}^{\psi(x)} f(x,y) \, dy$$

Sada tvrdnja korolara slijedi direktno iz (2) Fubinijevog teorema.

Dakako, moguće je zamijeniti ulogu varijabli x i v u korolaru pa integrirati neprekidne funkcije po području koje je u pruzi $c \le y \le d$ i između krivulja $x = \phi(y)$ i $x = \psi(y)$ gdje su ϕ i ψ neprekidne funkcije sa [c,d] u \mathbb{R}

2.1Neki primjeri

Primjer 2.3. Promotrimo integral $I=\int_0^1\int_x^1xy\,dydx$. Obratimo pažnju na skup $S=\{(x,y)\in\mathbb{R}^2\mid 0\leq x\leq 1,\, x\leq y\leq 1\}$. Možemo primijetiti da je on jednak skupu $S'=\{(x,y)\in\mathbb{R}^2\mid 0\leq y\leq 1,\, 0\leq x\leq y\}$

Dakle možemo napraviti zamjenu poretka integrala i granica integriranja.

Skup	x	y	integral	rezultat
S	[0, 1]	[x,1]	$\int_0^1 \left(\int_x^1 xy dy \right) dx$	$\frac{1}{8}$
S'	[0, y]	[0, 1]	$\int_0^1 \left(\int_0^y xy dx \right) dy$	$\frac{1}{8}$

U prvom smo slučaju integrirali po varijabli y pa po varijabli x, a u drugom smo slučaju prvo integrirali po varijabli y pa onda po varijabli x.

Zašto je u korolaru bitno da je $\phi(x) \leq \psi(x)$ za svaka $x \in [a, b]$? Promotrimo sljedeći primjer!

Primjer 2.4. Neka je $\psi(x) = x$ i neka je $\phi(x) = 1 - x$ za $x \in [0, 1]$. Površina skupa S jednaka je $\int_S 1 dx$.

Slika 1: Skup S

Sa slike 1. je jasno da to mora biti jednako 1/2. Računamo pripadni integral zanemarujući uvjet korolara:

$$I = \int_0^1 \int_x^{1-x} 1 \, dy \, dx = \int_0^1 (1-x-x) \, dx = \int_0^1 (1-2x) \, dx = 1 - 1 = 0 = (\text{sage rezultat}) = 0$$

što je očito pogrešno. Račun integrala primjenjujući korolar ide malo drukčije:

$$\int_{S} 1 \, dy dx = \int_{0}^{\frac{1}{2}} \int_{x}^{1-x} \, dy dx + \int_{\frac{1}{2}}^{1} \int_{1-x}^{x} \, dy dx = \frac{1}{2}$$

Ovo je bio kratak uvod u Riemannov integral na pravokutniku. Za one koji žele znati više, preporučam predmet Integrali funkcija više varijabli!