Review:

- 1. Peak value of $V_o = \sqrt{3}V_m$ for $0 < \alpha < 30^\circ$
- 2. $V_0 \ge 0$ for $\alpha \le 60^\circ$
- 3. $V_o \le 0$ for $\alpha \ge 120^\circ$
- 4.For $\alpha > 90^{\circ}$ operation is known as 'Inversion' or 'Inverter'
 - $\Rightarrow \alpha \rightarrow$ Phase angle delay \rightarrow Converter
 - $\beta \rightarrow$ Phase advance (35°)
 - Device is triggered at 180-35=145°

- 5.P.F. is always lagging As $\alpha \uparrow$, P.F. \downarrow
- 6.Incoming device should be triggered again after 60° Continuous gate pulses for 70-75° are desired
- 7. During commutation

$$V_o = \frac{V_{on} + V_{in}}{2}$$

on \rightarrow outgoing phase in \rightarrow Incoming phase provided $\mu < 60^{\circ}$

3 Phase Bridge:

Assume T₅ & T₆ are ON &

T₁ is triggered

Pot. of
$$X = \frac{V_{an} + V_{cn}}{2}$$

w.r.t. n

Pot. of
$$Y = V_{bn}$$

w.r.t. n

$$\therefore V_{o} = V_{xy} = \frac{V_{an} + V_{cn}}{2} - V_{bn}$$

& after
$$\mu$$
, $V_o = V_{an} - V_{bn}$

Expression of voltage drop due to μ

For single phase, total V drop =
$$\frac{\omega L_s}{\pi} I_o$$

= $2L_s I_o f = \frac{2L_s I_o}{T}$

∴ Volt sec. loss due to 1 commutation = $L_s I_o$

In 6 pulse converter there are 6 commutation per cycle

∴ Voltage drop =
$$\frac{6L_sI_o}{T} = \frac{3\omega L_sI_o}{\pi}$$

Other useful expression:

V_m is peak L-L voltage

Pb.1: 3-phase fully controlled converter is supplying power to a purely resistive load. If $\alpha=90^\circ$, Determine avg. o/p voltage. Input to the bridge is $400\,\text{V},50\text{Hz}$. Draw the o/p voltage & phase A current.

Solution:

$$\begin{split} \textbf{V}_{o} &= \frac{6}{2\pi} \int\limits_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{6} + \alpha + \frac{\pi}{6}} \left(\textbf{V}_{A} - \textbf{V}_{B}\right) d\omega t \\ &= \frac{3\sqrt{3}\textbf{V}_{m}}{\pi} \int\limits_{\frac{\pi}{6} + \alpha}^{\frac{\pi}{6} + \alpha + \frac{\pi}{6}} \sin\left(\omega t + \frac{\pi}{6}\right) d\omega t \\ &= \frac{3\sqrt{3}\textbf{V}_{m}}{\pi} \left[\frac{\cos\alpha}{2} - \left(\frac{\sqrt{3}}{2} - 1\right)\sin\alpha\right] \\ &= \frac{3\sqrt{3}*400*(\sqrt{2}/\sqrt{3})}{\pi} \left[0.134\right] \\ &= 72.4\,\textbf{V} \end{split}$$

Pb. 2

A 3-phase fully controlled bridge is feeding a 100HP, 400V, 1500rpm S.E. dc motor having arm. resistance=0.1 Ω and filter choke which is connected in series with armature. The current is almost constant at 175A. The bridge is connected to a 3ϕ , 400V, 50Hz supply. L_s=0.5mH

The back emf constant = 0.25 V/rpm. Determine the triggering angle $'\alpha'$

Soln:

$$E_b = 0.25*1500 = 375V$$

$$I_{\alpha}R_{\alpha}=17.5V$$

.: Voltage across arm. terminal=392.5V

∴ Voltage across arm. terminal=392.5V

Voltage drop due to inductance =
$$\frac{3\omega L}{\pi}I_o$$

= $\frac{3*314*0.5*10^{-3}}{\pi}*175$
= 26.24 V

$$2.34*V_{rms} \cos \alpha = 392.5 + 26.24$$

$$V_{rms} = \frac{400}{\sqrt{3}} = 231V$$

$$\therefore \alpha$$
=39.2°

$$1.17V_{rms} \left[\cos \alpha + \cos \left(\alpha + \mu \right) \right] = 2.34V_{rms} \cos \alpha - \frac{3\omega L}{\pi} I_{o}$$

$$= 392.5 \text{ V}$$

Pb.3

A separately excited DC machine is controlled by a circulating type dual

converter. Total resistance of the inductor is 1 Ω .

for both the bridges.

Average value of armature

current while driving a particular
load is found to be 95A and the
average value of circulating
current is found to be 5A. The terminal
voltage is maintained at 400V.

Determine the triggering angle

The equivalent circuit is

 $V \rightarrow RMS$ value of phase voltage=231V

$$\alpha_1 + \alpha_2 \neq 180$$

$$2.34*231*\cos\alpha_1 = 400+0.5*100$$

$$\Rightarrow \alpha_1 = 33.64^{\circ}$$

2.34*231*
$$\cos \alpha_2$$
=-400+5*0.5 =-397.5
 $\Rightarrow \alpha_2$ =137.4°

HVDC Power Transmission

AC System Data	<u>Barsoor</u>	<u>L. Sileru</u>
Nominal system voltage	220 kV	220 kV
Nominal AC system Frequency	50 Hz	50 Hz
Rated Power	100 Mw	
Rated current	1000 A	
DC Link Voltage	100 kV	

3 phase half controlled bridge

at
$$\alpha = 30^{\circ} (\omega t = 60)$$

$$V_0 = V_{qn} - V_{bn}$$

$$V_{\rm qn} \propto \sin 60 = \sqrt{3}/2$$

$$V_{bn} \propto \sin 300 = -\sqrt{3}/2$$

$$\therefore V_0 = \sqrt{3}$$

at ωt=90°

$$V_{bn} \propto Sin330=-1/2$$

$$\therefore V_0 = 1.5$$

at $\omega t = 90^{+}$, D₂ starts conducting at ωt=120°

$$V_{an} \propto Sin120 = \sqrt{3}/2$$

$$V_{cn} \propto Sin240 = -\sqrt{3}/2 \therefore V_0 = \sqrt{3}$$

at $\omega t = 150^{\circ}$

$$V_{\rm gn} \propto \sin 150 = 1/2$$

$$V_{cn} \propto \sin 270 = -1$$
 $\therefore V_0 = 1.5$

$$V_{cn} = 0$$
, $V_{cn} = -\sqrt{3}/2$:: $V_0 = \sqrt{3}/2$

at $\omega t = 180^{+}$, T_3 is triggered

$$V_0 = \sqrt{3}$$

$$V_o = 1.17*V_{rms}[1+\cos\alpha]$$

Limitations of line commutated converter

	Uncontrolled	Half controlled	Full controlled
Displace angle	ement 0	$\alpha/2$	α
P.F.	Highest	$f(\alpha)$	$f(\alpha)$
THD	48%	f(lpha)	48%

- ⇒ P.F. is max. in uncontrolled bridge
- \Rightarrow controlled bridge with $\alpha = 0$

⇒ No control over
$$V_o = \left(\frac{2V_m}{\pi}\right)$$
 =constant