Mark II	Yes/No/Unknown/ InProgress/NA
Required Features	
Mandatory ventilation	
•the operator can set a tidal volume and respiratory rate. The output will be selected by the operator to be either pressure-controlled ventilation (PCV) or volume-controlled ventilation (VCV)	Yes
Positive end expiratory pressure (PEEP)	
•range from 5 to 25 cm H2O adjustable in increments of 2 cm H2O or smaller	Yes
•patient breathing system must remain pressurised to at least the PEEP level setting at all times	Yes
Respiratory rate	
•range from 5 to 30 breaths per minute adjustable in increments of 2 or smaller	Yes
Tidal volume (Vt)	
•range from at least 200 mL to 800 mL, adjustable in increments of 50 mL or smaller.	Yes
•inspiratory flow rate up to 100 litres per minute	Unknown
•inspiratory time adjustable from 0.5 seconds to 2 seconds	No
Airway pressure safety	
•peak inspiratory pressure should adapt to achieve the set tidal volume and	No
-peak maphratory pressure and adapt to acmeve the set tidal volume and	140
•have an operator-adjustable limit up to 50 cm H2O	Yes
•a mechanical failsafe valve must open at 80 cm H2O	Yes
nspired oxygen proportion (FiO ₂)	
•range up to 100%, adjustable in increments of 5% or smaller	Yes
•the ventilator must present 22 mm outside diameter (OD) 'male' standard connectors for connection to operator-supplied 22 mm 'female' connectors on the breathing system	Yes
•All elements in the gas pathway must meet biological safety and oxygen safety standards for 100% oxygen, especially to minimise risk of fire or contamination of the patient's airway	Unknown
Oxygen supply to ventilator	
•all gas connectors and hoses must use standard non-interchangeable connectors and be colour coded according to AS 2902-2005 or equivalent standards	Yes
•must connect to wall pipeline oxygen supply via Sleeve Index System (SIS) defined in AS 2896-2011 or equivalent. Assume oxygen pipeline pressure is in the range 400 kPa (4 bar) to 500 kPa	Yes
-must be able to be operated on any attached oxygen cylinder connected via SIS and fitted with a 400 kPa output regulator	Yes
Air supply to ventilator	
•it is preferable not to require pressurised air, as it will not be available in all care areas in pandemic conditions, however if pressurised air is required for ventilator operation:	Yes
•all gas connectors and hoses must use standard non-interchangeable connectors and be colour coded according to applicable standards	In Progress
•must connect to the wall pipeline air supply via SIS	Yes
•Assume wall pipeline pressure is in the range 400 kPa (4 bar) to 500 kPa	Yes
Displays	
•current settings of tidal volume, frequency, inspiratory time, PEEP, FiO2, ventilation mode:	
•tidal volume	Yes
•frequency	Yes
•inspiratory time	No
•PEEP	Yes
•Fi02	Yes
•ventilation mode	Yes
•mechanical displays on control devices such as knobs and sliders are acceptable	Yes

Alarms Aust generate an audible alarm at: "gas or electricity supply failure "machine switched off while connected to a patient "his piratory and PEEP pressure not achieved "expiratory tidal volume not achieved by 10% "inspiratory dail volume not achieved by 10% "inspiratory dail volume cacecled by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of the pressure not achieved by 10% "A comparison of a comparison of the pressure not achieved the achieved the pressure not achieved the pressure not achieved the not achieved the pressure not achieved the pressure not achi	lark II	Yes/No/Unknown/ InProgress/NA
gas or electricity supply failure machine switched off while connected to a patient inspiratory and PEEP pressure not achieved expiratory tidal volume not achieved by 10% inspiratory tidal volume acceeded by 10% inspiratory tidal volume exceeded by 10% inspiratory tidal volume exceeded by 10% Electricity supply -240 Mc mains Yes -20 minutes backup battery in case of mains electricity failure should avoid RP or EM emissions that could interfere with other critical machinery Unknown must achieve 100% operating duty cycle for at least 14 days must chieve 100% operating duty cycle for at least 14 days must include instructions for use and trouble shooting in Progress must chieve 100% operating duty cycle for at least 14 days must include instructions for use and trouble shooting in Progress must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deen them appropriate for usage in exceptional circumstances must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including disposables, that are readily available in the Australian supply chain, machine and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight novement): Materials of Construction (raw materials) a. The closen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. Pot components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. Pot Systomathy the first 20 or so items in an injection moulding techniques are comparatively simple and well controlled; therefore, ventilators with a Abould release agents used within extrusion or	Alarms	
machine switched off while connected to a patient inspiratory and PEEP pressure not achieved -expiratory tidal volume not achieved by 10% -expiratory tidal volume exceeded by 10% -expiratory tidal volu	lust generate an audible alarm at:	
expiratory tidal volume not achieved by 10% **inspiratory tidal volume exceeded by 10% **inspiratory tidal volume exceeded by 10% **Inspiratory tidal volume exceeded by 10% **Color tidal volume tidal volu	•gas or electricity supply failure	No
expiratory tidal volume not achieved by 10% **inspiratory tidal volume exceeded by 10% **Electricity supply **240V AC mains **Pos **20 minutes backup battery in case of mains electricity failure **should avoid RF or EM emissions that could interfere with other critical machinery **Unknown **must achieve 100% operating duty cycle for at least 14 days **must include instructions for use and trouble shooting **char labeling of all critical functions and control using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff **must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances **must be able to be moved easily within hospital premises **must be made from materials and parts, including disposables, that are readily available in the Australian supply chain calificating increasing global restrictions on freight movement): **Materials of Construction (raw materials) **The American material must be reasonably pure and simple in nature (minimise the use of additives where possible) **Possible)** **Possible** **Possib	•machine switched off while connected to a patient	No
Electricity supply -240V AC mains -20 minutes backup battery in case of mains electricity failure -should avoid RP or EM emissions that could interfere with other critical machinery Wiscellaneous	•inspiratory and PEEP pressure not achieved	No
### Page 12:40V AC mains ### 240V AC mains ### 24	•expiratory tidal volume not achieved by 10%	No
-240V AC mains -20 minutes backup battery in case of mains electricity failure -should avoid RF or EM emissions that could interfere with other critical machinery Wiscellaneous -must achieve 100% operating duty cycle for at least 14 days -must achieve 100% operating duty cycle for at least 14 days -must achieve 100% operating duty cycle for at least 14 days -must include instructions for use and trouble shooting -clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff -must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be amenable to standard disinfection and cleaning procedures -must be made from materials and parts, including disposables, that are readily available in the Australian supply chain functipating increasing global restrictions on freight movement): I. Materials of Construction (raw materials) - a. For components requiring flexibility avoid the use of materials requiring plasticisers, Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene - a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable - a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway - a.PVC should be avoided elsewhere - 2. Manufacturing Process (risk from contaminants) - a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production - a. Aproximately, the first 20 or so ite	•inspiratory tidal volume exceeded by 10%	No
*20 minutes backup battery in case of mains electricity failure *should avoid RF or EM emissions that could interfere with other critical machinery Wiscellaneous *must achieve 100% operating duty cycle for at least 14 days *must include instructions for use and trouble shooting *must achieve 100% operating duty cycle for at least 14 days *must include instructions for use and trouble shooting *must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances *must be able to be moved easily within hospital premises *must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitric butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full	Electricity supply	
### Wiscellaneous **must achieve 100% operating duty cycle for at least 14 days **must include instructions for use and trouble shooting **clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff **must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Threapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances **must be able to be moved easily within hospital premises **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): **Materials of Construction (raw materials) **a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) **a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acryfonitrile butadiene styrene (ABS) should be avoided elsewhere **B. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway **a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway **a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway **a. Approximately, the first 2 or so items in	•240V AC mains	Yes
### ### ### #### #### ################	•20 minutes backup battery in case of mains electricity failure	No
-must achieve 100% operating duty cycle for at least 14 days -must include instructions for use and trouble shooting -clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff -must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be amenable to standard disinfection and cleaning procedures -must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Amould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the	•should avoid RF or EM emissions that could interfere with other critical machinery	Unknown
must include instructions for use and trouble shooting clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances must be able to be moved easily within hospital premises must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere 2.Manufacturing Process (risk from contaminants) a. Abould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to b	/liscellaneous	
clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances must be able to be moved easily within hospital premises must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): Materials of Construction (raw materials) a.The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a.For components requiring flexibility avoid the use of materials requiring plasticisers, Good candidates are those materials that belong to the polyoelfin family, examples include polyethylene and polypropylene are for components. materials such as polycarbonate or acrylontirile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.For structural components, materials such as polycarbonate or acrylontirile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.Polycing chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere 8.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Aparticularies of the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.E	•must achieve 100% operating duty cycle for at least 14 days	Unknown
must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances must be able to be moved easily within hospital premises must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere P. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Amanufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a dabove are followed, chemical or particula	•must include instructions for use and trouble shooting	In Progress
arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be amenable to standard disinfection and cleaning procedures -must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): I. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere P. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Haza		In Progress
must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 8. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose	arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods	No
must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): **Naterials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere **No** **Manufacturing Process (risk from contaminants)* a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 20°C	•must be able to be moved easily within hospital premises	Yes
supply chain (anticipating increasing global restrictions on freight movement): . Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere b. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary b. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (mat	•must be amenable to standard disinfection and cleaning procedures	Yes
a.The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a.For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a.For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere No 2.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or		Yes
a.For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a.For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere No 2.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	. Materials of Construction (raw materials)	
a.For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere No P.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary B. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		Yes
a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere No 2.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		Yes
a.PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a. Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		Yes
a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary B. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway	No
a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary b. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	a.PVC should be avoided elsewhere	No
a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary b. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	.Manufacturing Process (risk from contaminants)	
a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		NA
a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		NA
a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary B. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		NA
should not be necessary 8. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		Yes
a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		
concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	. Hazard Mitigation	
260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used		Unknown
water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out	Yes
	water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	Yes

Mark II	Yes/No/Unknown/ InProgress/NA
•See Appendix A, Relevant Standards and Documents	
•Device verification and validation testing must be carried out by the manufacturer. Testing should be aligned to the requirements in the UK MHRA guidelines in Appendix B (Testing protocol for final validation of safety and performance of RVMS) at	In Progress
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/876167/RMVS001_v3.1.pdf	
•Rapidly manufactured ventilators are likely to include software. Included software falls under the definition of a medical device and must meet requirements that will ensure product performance and safety. See Appendix C (software development requirements) from the MHRA guideline at the link above.	No
Desirable Features	
Spontaneous ventilation	
•the operator sets an inspiratory pressure and PEEP. The ventilator will sense when a patient starts to breathe in and apply the operator-specified inspiratory pressure, then sense when the patient starts to breathe out and apply the operator-specified expiratory pressure.	No
•If the patient stops breathing in pressure support mode, it must failsafe automatically to mandatory ventilation.	Yes
Synchronized mandatory ventilation	
•same as mandatory ventilation but mandatory breaths are synchronized to patient effort through flow sensing or pressure sensing, also known as synchronized intermittent mandatory ventilation volume control (SIMV-VC) or pressure control (SIMV-PC)	No
•additional inspiratory pressure support for those patients breathing to some extent themselves.	No
Tidal volume	
•capacity to set inspiratory rise-time as a fraction of the inspiratory time, through waveform control or ratio control.	No
•inspiratory flow rate up to 150 litres per minute	Unknown
Exhalation filters	
•use modular expiratory components that can be removed for disinfection, and that can vent to long life viral filters	Yes
Gas supply	
•can operate using an oxygen concentrator device for input oxygen	Unknown
Extended battery use	
•hot swappable batteries to run on battery supply for an extended period, for example, 2 hours for within-hospital transfer	In Progress
Alarms	
•inspiratory airway pressure exceeded	No
•respiratory rate exceeds a set limit	No
Displays	
•actual achieved measurements of tidal volume, breathing rate, PEEP, peak and plateau pressure, FiO2, inspiratory to expiratory time ratio (I:E)	No
•displayed waveforms of key parameters including but not limited to flow, pressure and volume versus time	No
•if it exists, in pressure support mode there must be real-time confirmation of each patient breath and an alarm if below acceptable range	No

Mark II	Notes
Required Features	
Mandatory ventilation	
•the operator can set a tidal volume and respiratory rate. The output will be selected by the operator to be either pressure-controlled ventilation (PCV) or volume-controlled ventilation (VCV)	PCV you set pressures not volumes, you car
Positive end expiratory pressure (PEEP)	
•range from 5 to 25 cm H2O adjustable in increments of 2 cm H2O or smaller	
•patient breathing system must remain pressurised to at least the PEEP level setting at all times	
Respiratory rate	
•range from 5 to 30 breaths per minute adjustable in increments of 2 or smaller	
Tidal volume (Vt)	
•range from at least 200 mL to 800 mL, adjustable in increments of 50 mL or smaller.	
•inspiratory flow rate up to 100 litres per minute	
•inspiratory time adjustable from 0.5 seconds to 2 seconds	Ventilator has a fixed I:E ratio of one to two,
Airway pressure safety	
•peak inspiratory pressure should adapt to achieve the set tidal volume and	Pressure control ventilation mode only, not pachieve target volume
•have an operator-adjustable limit up to 50 cm H2O	
•a mechanical failsafe valve must open at 80 cm H2O	Pop off at 40cm H20
Inspired oxygen proportion (FiO ₂)	
•range up to 100%, adjustable in increments of 5% or smaller	
•the ventilator must present 22 mm outside diameter (OD) 'male' standard connectors for connection to	
operator-supplied 22 mm 'female' connectors on the breathing system	
•All elements in the gas pathway must meet biological safety and oxygen safety standards for 100% oxygen, especially to minimise risk of fire or contamination of the patient's airway	
Oxygen supply to ventilator	
•all gas connectors and hoses must use standard non-interchangeable connectors and be colour coded according to AS 2902-2005 or equivalent standards	Does not use 4 bar gas supply directly, inste supply
•must connect to wall pipeline oxygen supply via Sleeve Index System (SIS) defined in AS 2896-2011 or equivalent. Assume oxygen pipeline pressure is in the range 400 kPa (4 bar) to 500 kPa	Uses Standard Sleeve Index as ventilator us
•must be able to be operated on any attached oxygen cylinder connected via SIS and fitted with a 400 kPa output regulator	
Air supply to ventilator	
•it is preferable not to require pressurised air, as it will not be available in all care areas in pandemic conditions, however if pressurised air is required for ventilator operation:	Requires pressured gas supply, but is very fi
•all gas connectors and hoses must use standard non-interchangeable connectors and be colour coded according to applicable standards	
•must connect to the wall pipeline air supply via SIS	Uses Standard Sleeve Index as ventilator us
•Assume wall pipeline pressure is in the range 400 kPa (4 bar) to 500 kPa	
Displays	
•current settings of tidal volume, frequency, inspiratory time, PEEP, FiO2, ventilation mode:	
•tidal volume	
•frequency	
•inspiratory time	Fixed I:E ratio 1:2, so inspiratory time will be
•PEEP	
•Fi02	
•ventilation mode	Only does PCV
•mechanical displays on control devices such as knobs and sliders are acceptable	

Must generate an audible alarm at: "gas or electricity supply failure "impiratory and PEEP pressure not achieved "expiratory tidal volume acceeded by 10% Electricity supply "2409 XC mains "20 minutes backup battery in case of mains electricity failure "should word RR or LM entisotions that could interfere with other critical mathinery Miscellaneous "must achieve 100% operating duty cycle for at least 14 days "must achieve 100% operating duty cycle for at least 14 days "must include instructions for use and trouble shooting "should word RR or LM entisotions that could interfere with other critical mathinery Miscellaneous "must achieve 100% operating duty cycle for at least 14 days "must include instructions for use and trouble shooting "short sheeling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian beth than es staff "must have transparent design, supply riskin, manufacture and terting processes and field service "must be able to be moved easily within hospital premise." "must be able to be moved easily within hospital premise." "must be able to be moved easily within hospital premise." "must be able to be moved easily within hospital premise." "must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (including thing increasing procedures "must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (including thing increasing procedures "must be materials for the miscellang disposables, that are readily available in the Australian supply chain (including thing increasing procedures) 1. Malerfells of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (mininise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticities Good candidates are there anaerinals final to belong to	Mark II	Notes
gas or electricity supply failure	Alarms	
morthine switched off while connected to a patient impiratory and PEEP pressure not achieved **expiratory did a volume an achieved by 10% **Inspiratory tidal volume exceeded by 10% **Electricity supply **240V AC mains **Communes backing battery in case of mains electricity failure **should avoid RF or RM emissions that could interfere with other critical machinery Miscellaneous **must include instructions for use and trouble shooting **clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff **must have transparent design, supply chain, manufacture and testing processes and field service **arrangements that are of sufficient quality to enable bealth department officials and Therapeutic Goods Administration (ToA) officials to deem them appropriate for usage in exceptional circumstances **must be be meted by the production of the programs	Must generate an audible alarm at:	
espiratory and PEEP pressure not achieved by 10% inspiratory tidal volume oxeceded by 10% inspiratory and tidal volume oxeceded by 10% inspiratory and tidal volume oxeceded by 10% oxerating dusty oxer for at least 14 days inspiratory and tidal volume oxer for the 10% oxerating dusty oxer for at least 14 days inspiratory oxer for a least 14 days inspiratory oxer for a least 14 days inspiratory oxer for the 10% oxerating dusty oxer for at least 14 days inspiratory oxer for the 10% oxerating dusty oxer for for the 10% oxerating dusty oxer for for for for for for for for for fo	•gas or electricity supply failure	
expiratory tidal volume not achieved by 10% **Electricity supply **2-409 AC mains **20 minutes backup battery in case of mains electricity failure **should avoid RF or EM emissions that could interfere with other critical machinery **Miscellaneous **must achieve 100% operating duty cycle for at least 14 days **must include instructions for use and trouble shooting **clear labelting of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff **must have transparent design, supply chain, manufacture and testing processes and field service **arrangements bat are of sulfittering duality to enable health department officials and Therapeutic Goods Administration (TCA) officials to deem them appropriate for usage in exceptional circumstances **must be be made from materials and parts, including disposables, that are readily avoidable in the Australian supply chain (auctipoting increasing global restrictions on freight movement): 1. **Materials of Construction (raw materials) **In the chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) **A. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene **a. For structural components, materials and as polycarbonate or arrylonitrile bataleine styrene (AIS) should be used without additives, albough evidercement with glass libre would be acceptable **a. Polyving chloride (PPC) must be avoided in the patient gas pathway **a. PVC will be replaced for Mark III **a. Approximately, the first 20 or so items in a misjection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production run should be discarded to minimise risk from contamination with mould release agents **a. Approximately, the first 20 or so ite	•machine switched off while connected to a patient	
Impiratory tidal volume exceeded by 10% Electricity supply **2-20/W AC mains 2-20 minutes backup battery in case of mains electricity failure **should avoid RF or EM emissions that could interfere with other critical machinery **Miscellaneous **must achieve 100% operating duty cycle for at least 14 days **must include instructions for use and trouble shooting **claer labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healblicher staff. **must have inseparent design, supply chain, imanifacture and testing processes and field service arrangements with card of sufficient quality to reabile thealth department of titish and Threspectatic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances **must be able to be moved easily within hospital premises **must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (califorpting hore-sizing global restrictions on freight movement): 1. **Materials of Construction (raw materials) **a The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) **a Proceedings of the popularity of the popula	•inspiratory and PEEP pressure not achieved	
### Page 140 AC mains *20 minutes backup battery in case of mains electricity failure *should awould Five Fix Memissions that could interfere with other critical machinery **Miscellaneous** **must achieve 100% operating duty cycle for at least 14 days **must include instructions for use and trouble shooting **clear labeling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff **must include instructions for use and trouble shooting **clear labeling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff **must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to doe mit them appropriate for usage in exceptional circumstances **must be able to be moved easily within hospital premises **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be menable for manterials and ports, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): **Matterials of Construction (raw materials) **Materials of Construction (raw materials) **Anticipating increasing global restrictions on freight movement): **Materials of Construction (raw materials) **Anticipating increasing global restrictions on freight movement): **Materials of Construction (raw materials) **Anticipating increasing global materials requiring plasticisers, Good condidates are those materials that belong to the polyoletin family, examples include polyetylene and polypropylete **Afort components requiring feachbility, avoid the use of materials requi	•expiratory tidal volume not achieved by 10%	
-2400 AC mains -200 minutes backup battery in case of mains electricity failure -should avoid RF or EM emissions that could interfere with other critical machinery Miscellaneous -must achieve 100% operating duty cycle for at least 14 days -must include instructions for use and trouble shooting -claer labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff -must have transparent design, supply chain, manufacture and resting processes and field service -must be able to be moved easily within hospital be health department officials and Therapeutic Goods -doministration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be male from materials and parts. Including disposables, that are readily available in the Australian supply chain caintripating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) - a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) - a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyetylene and polypropylene - a. Por structural components, materials such as polycarbonate or acryptionitrie buttadiene styrene (ABS) - should be used without additives, although reinforcement with glass fibre would be acceptable - a. Polyving thoride (PPC) must be avoided in the patient gas pathway - a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) - a. Monufacturing process (risk from contaminants) - a. Anotice representative, the first 20 or so items is an injection moulding techniques may be required in setting up the machine, they should and not be needed once a process is in full scale production - a. Approximately, the first 20 or so items is an injection moulding techniques may be required to be man	•inspiratory tidal volume exceeded by 10%	
-20 minutes backup battery in case of mains electricity failure should avoid RF or EM emissions that could interfere with other critical machinery Miscellaneous "must achieve 100% operating duty cycle for at least 14 days "must include instructions for use and trouble shooting -dear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readly recognised by Australian healthcare staff -must have transparent design, upply chain, manufacture and testing processes and field service -must be able to that or of sufficient quality to enable health department officials and throughouts Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be be made from materials and parts, including disposables, that are readily available in the Australian -supply chain (anticipating increasing global restrictions on freight movement): Materials of Construction (raw materials) a The chosen material must be reasonably pure and simple in nature (minimise the use of additives where -possible) a The chosen material must be reasonably pure and simple in nature (minimise the use of additives where -possible) a The chosen material must be the polyolefin family, examples include polyethylene and polypropylene -a For structural components. Tarefrais such as polyerathonate or arginountive bustadiene styrace (ABS) -should be used without additives, although reinforcement with glass fibre would be acceptable -a Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a PVC will be replaced for Mark III PVC will be replaced for Mark III 2.Manufacturing Process (risk from contaminants) -a Mould release agents used within extrusion or injection moulding techniques may be required in settling up the machine, they should not be needed once a process is in full scale production -a Approximately, the first 20 or so items in an injection of moulding products from -contamina	Electricity supply	
should avoid RF or EM emissions that could interfere with other critical machinery **Miscellaneous **must achieve 100% operating duty cycle for at least 14 days** **must include instructions for use and trouble shooting** **clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff** **must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TCA) officials to deen them appropriate for usage in exceptional circumstances **must be able to be moved easily within hospital premises** **must be amenable to standard disinfection and cleaning procedures** **must be amenable from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): **Materials of Construction (raw materials)** a.The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a.For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyotylynea and polypropylene as for structural components, materials such as polycarbonate or acytonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.POz should be avoided elsewhere 2.Manufacturing Process (risk from contaminants) a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contaminant on with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to b	•240V AC mains	
must achieve 100% operating duty cycle for at least 14 days must include instructions for use and trouble shooting clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration [TGA] officials to deem them appropriate for usage in exceptional circumstances must be able to be moved easily within hospital premises must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including dispossibles, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyulefin family, examples include polyuthylene and polypropylene a. For structural components, materials such as polycarbonate or arryonintrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. PVC swill be replaced for Mark III 2. Manufacturing Process (risk from contaminants) a. Approximately, the first 20 or so items in an injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be	•20 minutes backup battery in case of mains electricity failure	
-must include instructions for use and trouble shooting -clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff -must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (auticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Pov. Structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Pov. Should be avoided elsewhere 2. Wanufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an inspection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamina	•should avoid RF or EM emissions that could interfere with other critical machinery	
**must include instructions for use and trouble shooting **clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TCA) officials to deem them appropriate for usage in exceptional circumstances must be able to be moved easily within hospital premises must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **must be amenable to standard disinfections and cleaning procedures **must be amenable to standard disinfection and cleaning procedures **a. The chosen material must be readouble process (risk from combinable amenable and polypropylene and polypropylene **a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be avoided elsewhere **2. Manufacturing Process (risk from contaminants) **a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production run	Miscellaneous	
-clear labelling of all critical functions and controls using standard terms, pictograms and colours that will be readily recognised by Australian healthcare staff -must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be amenable to standard disinfection and cleaning procedures -must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyoclefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. Manufacture in a reasonably clean room and protection o	•must achieve 100% operating duty cycle for at least 14 days	
be readily recognised by Australian healthcare staff -must have transparent design, supply chain, manufacture and testing processes and field service arrangements that are of sufficient quality to enable health department officials and Therspeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances -must be able to be moved easily within hospital premises -must be amenable to standard disinfection and cleaning procedures -must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC will be replaced for Mark III a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanooms specifications a. Manufacture in a reasonably clean room and protection of components	•must include instructions for use and trouble shooting	
arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods Administration (TGA) officials to deem them appropriate for usage in exceptional circumstances *must be able to be moved easily within hospital premises *must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere PVC will be replaced for Mark III 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If and above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate mat		
must be amenable to standard disinfection and cleaning procedures must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. For the quieted to be manufactured within cleanroom specifications a. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufactured process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C Risk	arrangements that are of sufficient quality to enable health department officials and Therapeutic Goods	
**must be made from materials and parts, including disposables, that are readily available in the Australian supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Por Structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Por Structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions ar	•must be able to be moved easily within hospital premises	
supply chain (anticipating increasing global restrictions on freight movement): 1. Materials of Construction (raw materials) a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere PVC will be replaced for Mark III a. PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Estrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised	•must be amenable to standard disinfection and cleaning procedures	
a. The chosen material must be reasonably pure and simple in nature (minimise the use of additives where possible) a. For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a. For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a. Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a. PVC should be avoided elsewhere PVC will be replaced for Mark III 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a. Leachable substances (in condensate): chemicals removed from the medical d		
a.For components requiring flexibility avoid the use of materials requiring plasticisers. Good candidates are those materials that belong to the polyolefin family, examples include polyethylene and polypropylene a.For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere PVC will be replaced for Mark III PVC	1. Materials of Construction (raw materials)	
a.For structural components, materials such as polycarbonate or acrylonitrile butadiene styrene (ABS) should be used without additives, although reinforcement with glass fibre would be acceptable a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere PVC will be replaced for Mark III 2.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device by the action of water, other liquids or other gases related to the use of the medical device by the action of water, other liquids or other gases related to the use of the medical device by the action of water, other liquids or oth		
a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway a.PVC should be avoided elsewhere PVC will be replaced for Mark III a.PVC should be avoided elsewhere PVC will be replaced for Mark III 2.Manufacturing Process (risk from contaminants) a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
a.PVC should be avoided elsewhere 2. Manufacturing Process (risk from contaminants) a. Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a. Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a. Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a. Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a. If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 26°°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a. Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.	a.Polyvinyl chloride (PVC) must be avoided in the patient gas pathway	PVC will be replaced for Mark III
a.Mould release agents used within extrusion or injection moulding techniques may be required in setting up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.	a.PVC should be avoided elsewhere	PVC will be replaced for Mark III
up the machine, they should not be needed once a process is in full scale production a.Approximately, the first 20 or so items in an injection moulding production run should be discarded to minimise risk from contamination with mould release agents a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.	2.Manufacturing Process (risk from contaminants)	
a.Extrusion and moulding techniques are comparatively simple and well controlled; therefore, ventilators will not be required to be manufactured within cleanroom specifications a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
a.Manufacture in a reasonably clean room and protection of components and products from contamination should suffice a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
a.If a-d above are followed, chemical or particulate testing of the air coming out of the breathing circuit should not be necessary 3. Hazard Mitigation a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
3. Hazard Mitigation a. Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a. Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a. Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
a.Particulate matter: solid particles suspended in a gas. Particulate matter emissions are not of significant concern if the manufacturing process is adequately controlled as per the above criteria a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
a.Volatile organic compound (VOC): organic compound whose boiling point is in the range of 50°C to 260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.	3. Hazard Mitigation	
260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out in section 1 (materials of construction) a.Leachable substances (in condensate): chemicals removed from the medical device by the action of water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.		
water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used between the ventilator and breathing system.	260°C. Risk of exposure to VOCs can be minimised through the appropriate choice of materials as set out	
Other relevant standards	water, other liquids or other gases related to the use of the medical device. Ensure an HME filter is used	
	Other relevant standards	

Mark II	Notes
•See Appendix A, Relevant Standards and Documents	
•Device verification and validation testing must be carried out by the manufacturer. Testing should be aligned to the requirements in the UK MHRA guidelines in Appendix B (Testing protocol for final validation of safety and performance of RVMS) at	
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/876167/RMVS001_v3.1.pdf	
•Rapidly manufactured ventilators are likely to include software. Included software falls under the definition of a medical device and must meet requirements that will ensure product performance and safety. See Appendix C (software development requirements) from the MHRA guideline at the link above	e.
Desirable Features	
Spontaneous ventilation	
•the operator sets an inspiratory pressure and PEEP. The ventilator will sense when a patient starts to breathe in and apply the operator-specified inspiratory pressure, then sense when the patient starts to breathe out and apply the operator-specified expiratory pressure.	
•If the patient stops breathing in pressure support mode, it must failsafe automatically to mandatory ventilation.	
Synchronized mandatory ventilation	
•same as mandatory ventilation but mandatory breaths are synchronized to patient effort through flow sensing or pressure sensing, also known as synchronized intermittent mandatory ventilation volume control (SIMV-VC) or pressure control (SIMV-PC)	
•additional inspiratory pressure support for those patients breathing to some extent themselves.	
Tidal volume	
•capacity to set inspiratory rise-time as a fraction of the inspiratory time, through waveform control or ratio control.	
•inspiratory flow rate up to 150 litres per minute	
Exhalation filters	
•use modular expiratory components that can be removed for disinfection, and that can vent to long life viral filters	
Gas supply	
•can operate using an oxygen concentrator device for input oxygen	Depends on flow rate of concentrator
Extended battery use	
•hot swappable batteries to run on battery supply for an extended period, for example, 2 hours for within hospital transfer	n-
Alarms	
•inspiratory airway pressure exceeded	
•respiratory rate exceeds a set limit	
Displays	
•actual achieved measurements of tidal volume, breathing rate, PEEP, peak and plateau pressure, FiO2, inspiratory to expiratory time ratio (I:E)	
•displayed waveforms of key parameters including but not limited to flow, pressure and volume versus time	
•if it exists, in pressure support mode there must be real-time confirmation of each patient breath and a alarm if below acceptable range	n