Conditioning of rootfinding 2: multiple roots

Sunday, August 30, 2020 3:37 PM

Multiple roots

$$f(x) = (x-3)^2$$
 has a double root at $x=3$
 $\widetilde{f}(x) = (x-3)^2 + 10^{-100}$ has no roots. Clearly this is bad

What does it mean to have a multiple root? (we want a definition to cover non-polynomials too)

let r be a rout.
Write
$$f(x) = (x-r) \int_{(x-r)}^{f(x)} g(x)$$

 $= (x-r) \cdot g(x)$

to be a <u>Simple rout</u> means $g(r) \neq 0$... multiple rout means g(r) = 0

... but there's a simpler way, no need for g

(we can also keep repeating for f"(r) too ...

(at x=r, g(r) =
$$\frac{f(r)}{x-r} = \frac{0}{0}$$
,
but we can define
g(r) = $\lim_{x\to r} \frac{f(r)}{x-r}$ which
exists (L'Hôpital's rule)
as long as $f(r)$ exists.)

Observe f'(x) = (x-r)g'(x) + g(x) (product rule) So f'(r) = 0 - g'(r) + g(r). = g(r). So $f'(r) = \begin{cases} not zero & Simple root \\ o & multiple root \end{cases}$

so r is a root of f with multiplicity m if $f(r) = f'(r) = \dots = f^{(m-1)} = 0 \text{ and } f^{(m)} \neq 0$

Conclusion: the absolute condition number for finding a multiple rout is ∞ | /f(r)|

$$f(x) = (x-3)^2$$
 so $r=3$
 $f'= z(x-3)$ so $f'(3)=0$, so $r=3$ is a double root
so condition # is ∞

$$f(x) = (x-3)^2 - 10^{-6}$$
 has two single roots (both near $r=3$)
$$f'(x) = 2 \cdot (x-3)$$
 is 0 at $r=3$ but not 0 at the true roots
however, $f'(roots)$ is small, so K is very large.

Final recap!

if |f'(r) | is small, it will be hard for all algorithms to accurately find the root

and if f'(r) = 0, given floating point error, it may be completely impossible (ie., there may not exist any root!)