

planetmath.org

Math for the people, by the people.

approximate identity

Canonical name ApproximateIdentity
Date of creation 2013-03-22 17:30:22
Last modified on 2013-03-22 17:30:22
Owner asteroid (17536)
Last modified by asteroid (17536)

Numerical id 6

Author asteroid (17536)
Entry type Definition

Entry type Definition Classification msc 46H05

Synonym approximate unit

Defines left approximate identity
Defines right approximate identity

Let \mathcal{A} be a Banach algebra.

A left approximate identity for \mathcal{A} is a net $(e_{\lambda})_{\lambda \in \Lambda}$ in \mathcal{A} which :

- 1. $||e_{\lambda}|| < C \quad \forall_{\lambda \in \Lambda}$, for some constant C.
- 2. $e_{\lambda}a \longrightarrow a$, for every $a \in \mathcal{A}$.

Similarly, a **right approximate identity** for \mathcal{A} is a net $(e_{\lambda})_{\lambda \in \Lambda}$ in \mathcal{A} which:

- 1. $||e_{\lambda}|| < C \quad \forall_{\lambda \in \Lambda}$, for some constant C.
- 2. $ae_{\lambda} \longrightarrow a$, for every $a \in \mathcal{A}$.

An **approximate identity** for a \mathcal{A} is a net $(e_{\lambda})_{{\lambda} \in \Lambda}$ in \mathcal{A} which is both a left and right approximate identity.

0.0.1 Remarks:

- There are examples of Banach algebras that do not have approximate .
- If \mathcal{A} has an identity element e, then clearly e itself is an approximate identity for \mathcal{A} .