# Restricted Isometry Property in Quantized Network Coding of Sparse Messages

Mahdy Nabaee and Fabrice Labeau ECE Dept, McGill University

December 4, 2012





## Scenario: Data Gathering in Sensor Networks



- messages are correlated,
- Iinks are lossless without any interference.

# Linear Network Coding in lossless networks



 Calculates linear combinations in a <u>finite</u> field, according to network coding coefficients.

## Linear Network Coding in lossless networks



 Calculates linear combinations in a <u>finite</u> field, according to network coding coefficients.



 Perfect decoding is possible, by using matrix inversion in the field, if measurement matrix is full rank.

### Linear Network Coding in lossless networks



 Calculates linear combinations in a <u>finite</u> field, according to network coding coefficients.



 Perfect decoding is possible, by using matrix inversion in the field, if measurement matrix is full rank.

#### Using Quantized Network Coding (QNC),

robust recovery is possible even if there are fewer measurements.

### Quantized Network Coding



### Network Coding + Quantization o QNC

- Linear network coding in <u>real</u> field with semi-random coefficients,
- Quantization to cope with the finite capacity of links.

### **QNC** meets Compressed Sensing





# Decoding for: $[\Psi_{tot}]_{m \times n} \cdot [\underline{x}]_{n \times 1} + [\underline{n}_{eff,tot}]_{m \times 1} = [\underline{z}_{tot}]_{m \times 1}$

- If  $\Psi_{tot}$  is full rank, a matrix inversion can recover  $\underline{x}$ , with respect to an error, caused by  $\underline{n}_{eff,tot}$ .
- If not, we have an under-determined set of equations, which for **Compressed Sensing** decoding ( $\ell_1$ -minimization) may help.

meas. eq. : 
$$[\Psi_{tot}]_{m\times n}\cdot [\underline{x}]_{n\times 1}+[\underline{n}_{\mathit{eff},tot}]_{m\times 1}=[\underline{z}_{tot}]_{m\times 1}$$

### CS claims recovery is possible for m < n, if:

- $\underline{x} = \phi \cdot \underline{s}$ , where  $\underline{s}$  is k-sparse,
- ullet bounded measurement noise,  $\left|\left|\underline{n}_{ ext{eff,tot}}
  ight|
  ight|_{\ell_2} \leq \epsilon_{ ext{rec}}.$

$$\Psi_{tot}\phi \cdot \underline{s} + \underline{n}_{\text{eff},tot} = \underline{z}_{tot}$$

meas. eq. : 
$$[\Psi_{tot}]_{m\times n}\cdot [\underline{x}]_{n\times 1}+[\underline{n}_{\mathit{eff},tot}]_{m\times 1}=[\underline{z}_{tot}]_{m\times 1}$$

#### CS claims recovery is possible for m < n, if:

- $\underline{x} = \phi \cdot \underline{s}$ , where  $\underline{s}$  is k-sparse,
- ullet bounded measurement noise,  $\left|\left|\underline{n}_{ ext{eff,tot}}
  ight|
  ight|_{\ell_2} \leq \epsilon_{ ext{rec}}.$

$$\Psi_{tot}\phi \cdot \underline{s} + \underline{n}_{eff,tot} = \underline{z}_{tot}$$

#### $\ell_1$ -min recovery

$$\underline{\hat{\mathbf{x}}} = \phi \cdot \arg\min_{\underline{\mathbf{s}}'} \left| \left| \underline{\mathbf{s}}' \right| \right|_{\ell_1}, \ \ \textit{s.t.} \ \left| \left| \underline{\mathbf{z}}_{\textit{tot}} - \Psi_{\textit{tot}} \cdot \phi \cdot \underline{\mathbf{s}}' \right| \right|_{\ell_2} \leq \epsilon_{\textit{rec}}$$

$$[\Psi_{\textit{tot}}]_{m\times n}\cdot [\phi]_{n\times n}\cdot [\underline{\textit{s}}]_{n\times 1}+[\underline{\textit{n}}_{\textit{eff},\textit{tot}}]_{m\times 1}=[\underline{\textit{z}}_{\textit{tot}}]_{m\times 1}$$

### Advantage:

If we have robust recovery, when m < n, we have a *saving* in the required number of channel uses  $\longrightarrow$  **inter-node compression**.

$$[\Psi_{tot}]_{m\times n}\cdot [\phi]_{n\times n}\cdot [\underline{s}]_{n\times 1}+[\underline{n}_{\mathsf{eff},tot}]_{m\times 1}=[\underline{z}_{tot}]_{m\times 1}$$

### Advantage:

If we have robust recovery, when m < n, we have a *saving* in the required number of channel uses  $\longrightarrow$  **inter-node compression**.

#### How to ensure robust recovery?

**Theorem (Candes, 2008):** If  $\Theta_{tot}=\Psi_{tot}\cdot\phi$  satisfies Restricted Isometry Property (RIP) of order 2k with constant  $\delta_{2k}<\sqrt{2}-1$ , then:

$$||\underline{x} - \hat{\underline{x}}||_{\ell_2} = ||\underline{s} - \hat{\underline{s}}||_{\ell_2} \leq c_1(\delta_{2k}) \cdot \epsilon_{\text{rec}}.$$

### Satisfaction of RIP

#### Definition

As a *norm conservation* property,  $\Theta_{m \times n}$  is said to satisfy Restricted Isometry Property (RIP) of order k, with constant  $\delta_k$ , if for all k-sparse vector s, we have:

$$1 - \delta_{k} \leq \frac{\left|\left|\Theta \cdot \underline{s}\right|\right|_{\ell_{2}}^{2}}{\left|\left|\underline{s}\right|\right|_{\ell_{2}}^{2}} \leq 1 + \delta_{k}.$$

### Satisfaction of RIP

#### Definition

As a norm conservation property,  $\Theta_{m\times n}$  is said to satisfy Restricted Isometry Property (RIP) of order k, with constant  $\delta_k$ , if for all k-sparse vector s, we have:

$$1 - \delta_{k} \leq \frac{||\Theta \cdot \underline{\mathbf{s}}||_{\ell_{2}}^{2}}{||\underline{\mathbf{s}}||_{\ell_{2}}^{2}} \leq 1 + \delta_{k}.$$

#### Example

Random matrices with i.i.d Gaussian entries satisfy RIP, with overwhelming probability.

### Appropriate NC Coefficients



$$y_{\Theta}(t) = \sum_{\Theta' \in In(V)} \beta_{\Theta,\Theta'}(t) \cdot y_{\Theta'}(t-1) + \alpha_{\Theta,V}(t) \cdot x_V$$

#### Semi-random coefficients...

We proposed design of local network coding coefficients,  $\alpha_{e,v}(t)$  and  $\beta_{e,e'}(t)$ , which results in a Gaussian-like total measurement matrix,  $\Psi_{tot}$ .

### Appropriate NC Coefficients



$$y_{\Theta}(t) = \sum_{\Theta' \in In(V)} \beta_{\Theta,\Theta'}(t) \cdot y_{\Theta'}(t-1) + \alpha_{\Theta,V}(t) \cdot x_V$$

#### Semi-random coefficients...

We proposed design of local network coding coefficients,  $\alpha_{e,v}(t)$  and  $\beta_{e,e'}(t)$ , which results in a Gaussian-like total measurement matrix,  $\Psi_{tot}$ .

#### In the following,

we show that the resulting  $\Psi_{tot}$  has similar RIP behavior as i.i.d Gaussian.

### Tail Probability and RIP Satisfaction

#### Definition

$$\text{Tail Prob.} \quad \mathbf{p}_{\textit{tail}}\Big(\Psi_{\textit{tot}}, \epsilon\Big) = \max_{\underline{x}', \ ||\underline{x}'||_{\ell_2} = 1} \mathbf{P}\Big(\Big|\big|\big|\Psi_{\textit{tot}}\underline{x}'\big|\big|_{\ell_2}^2 - 1\Big| > \epsilon\Big)$$

### Tail Probability and RIP Satisfaction

#### Definition

$$\text{Tail Prob.} \quad \mathbf{p}_{\textit{tail}}\Big(\Psi_{\textit{tot}}, \epsilon\Big) = \max_{\underline{x}', \ ||\underline{x}'||_{\ell_0} = 1} \mathbf{P}\Big(\Big|\big|\big|\Psi_{\textit{tot}}\underline{x}'\big|\big|_{\ell_2}^2 - 1\Big| > \epsilon\Big)$$

#### **Theorem**

For every orthonormal  $\phi$ ,  $\Theta_{tot} = \Psi_{tot}\phi$  satisfies RIP of order k with constant  $\delta_k$ , with a probability exceeding:

$$1 - \binom{n}{k} \left(\frac{42}{\delta_k}\right)^k \mathbf{p}_{tail}(\Phi, \epsilon = \frac{\delta_k}{\sqrt{2}}). \tag{1}$$

### Tail Probability and RIP Satisfaction

#### Definition

$$\text{Tail Prob.} \quad \mathbf{p}_{\textit{tail}}\Big(\Psi_{\textit{tot}}, \epsilon\Big) = \max_{\underline{x}', \ ||\underline{x}'||_{\ell_0} = 1} \mathbf{P}\Big(\Big|\big|\big|\Psi_{\textit{tot}}\underline{x}'\big|\big|_{\ell_2}^2 - 1\Big| > \epsilon\Big)$$

#### Theorem

For every orthonormal  $\phi$ ,  $\Theta_{tot} = \Psi_{tot}\phi$  satisfies RIP of order k with constant  $\delta_k$ , with a probability exceeding:

$$1 - \binom{n}{k} \left(\frac{42}{\delta_k}\right)^k \mathbf{p}_{tail}(\Phi, \epsilon = \frac{\delta_k}{\sqrt{2}}). \tag{1}$$

#### Therefore,

we compare tail probabilities for i.i.d Gaussian and  $\Psi_{\textit{tot}}$  matrices.

### Numerical Evaluation: Tail Probabilities vs No of Measurements

Tail probabilities versus the number of received packets for different  $\epsilon=\delta_{\bf k}/\sqrt{2}$ :





### Conclusion '

- The measurement matrix,  $\Psi_{tot}$ , resulting from appropriate quantized network coding has almost the same behavior in terms of RIP satisfaction as a i.i.d Gaussian matrix.
- This enables to perform sparse recovery by using smaller number of measurements (received packets) than the size of data.
- Moreover, this can be done in a non-adaptive way, which provides the bases for joint distributed compression and network coding of sparse sources (messages).

### Effective Measurement Noise in QNC (Backup)

$$\Psi_{tot} \cdot \underline{x} + \underline{n}_{eff,tot} = \underline{z}_{tot}$$

#### Quantization Noise at Nodes

 We use uniform quantizer in a constant range for all nodes and vary the step size, depending on the capacity of edges.

#### **Quantization Noise Propagation**

- Quantization noises at each outgoing edge is considered as a random source which propagates noise in the network and has a transfer function to decoder ports.
- We have calculated an *upper bound* on the  $\ell_2$ -norm of effective noise, at the decoder ports,  $\left|\left|\underline{n}_{eff,tot}\right|\right|_{\ell_2}$ .

# Simulation Results (Backup)

- Random uniform deployment of 1400 edges, and 100 nodes,
- QNC with uniform quantizer,
- Packet forwarding via delay optimized routes,
- Different sparsity factors,  $\frac{k}{n} = 0.1, 0.2, 0.3,$

