

Exam IV

1. (25 points) A survey is conducted of 100 freshmen at public universities. It is found that these students work 11.5 hours a week for pay, on average. The SD of the data is 5.
a) Find a 95% confidence interval on the hours a week worked by freshmen at public universities.
b) True or false and explain: There is a 95% chance that if a second sample of 100 freshmen were taken the average of the sample would be in the range you found in a).
c) True or false and explain: There is a 95% chance that the average hours a week worked for pay among all freshmen at public universities is in the range you found in a).
uniong we recommen at public universities is in the range you found in wy.
d) True or false and explain: There is a 95% chance that the average hours a week worked for pay among all $18-20$ year olds is in the range you found in a).

2. (15 points) Based on the survey data in $\#1$, a news organization reports that the freshmen at public universities work 12 hours a week for pay, on average. Use a z-test to comment on this assertion. State
the null and alternative hypotheses. Calculate the test statistic and estimate the P value.
3. (10 points) Would taking the average of 100 measurements decrease the likely size of the chance error by a factor of 5, 10 or 25? Justify your answer.
4. (10 points) A surveyor is measuring the distances between five points V , W , X , Y , and Z along a straight line. She finds that each of the four distances measures one mile, give or take two inches or so. The distance from V to Z is about four miles; but the estimate is likely to be off by around: 4 inches, 2 inches, 1 inch, $1/2$ inch or $1/4$ inch. Justify your answer.
$V - \!\!\!\!-\!\!\!\!\!-\!\!\!\!\!- V - \!\!\!\!\!-\!\!\!\!\!\!- Z$

5.	(20.1)	points	Five	hundred	draws	are	made	at	random	from	the	box
υ.	(40)	DOMES,) I I V C	nunuicu	uraws	arc	maac	αu	random	11 0111	UIIC	DOV

Note that $\sqrt{0.25 \times 0.75} / \sqrt{500} \approx 0.02$. True or false? Explain your conclusions.

i. The expected value for the percentage of 1s among the draws is around 25%, give or take 2% or so.

ii. The expected value for the percentage of 1s among the draws is exactly 25%.

iii. The percentage of 1s among the draws will be around 25%, give or take 2% or so.

iv. The percentage of 1s in the box is exactly 25%.

v. The percentage of 1s among the draws will be exactly 25%.

vi. The percentage of 1s in the box is around 25%, give or take 2% or so.

6. (10 points) Find the specified area under the normal curve. Write down the R command that you use.

a)
$$z > -1.15$$

b)
$$z < -1.75$$

c)
$$-0.5 < z < 2.3$$

7. (10 points) Fill in the blanks:

The _____ hypothesis says that the difference is due to chance but the _____ says that the difference is real.

Formula Sheet

$$\operatorname{mean} = \frac{1}{n} (x_1 + \dots + x_n)$$

$$\operatorname{SD} = \sqrt{\frac{1}{n} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{sd} = \sqrt{\frac{1}{n-1} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{EV}_{\operatorname{sum}} = n \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{sum}} = \sqrt{n} \operatorname{SD}_{\operatorname{box}}$$

$$\operatorname{EV}_{\operatorname{av}} = \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{av}} = \operatorname{SD}_{\operatorname{box}} / \sqrt{n}$$

Shortcut formula (if there are only two different kinds of numbers in the box):

$$SD_{box} = (big \# - small \#) \sqrt{\begin{pmatrix} fraction of \\ tickets with the \\ big number \end{pmatrix} \begin{pmatrix} fraction of \\ tickets with the \\ small number \end{pmatrix}}$$

95% confidence interval = observed \pm 2SE

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}}$$

Exam IV

2.	(10 points)	Would	taking	the av	erage o	of 625	measur	ements	decrease	the	likely	size	of the	chance	error
by	a factor of	5, 10 or	25? Ju	ıstify y	our an	swer.									

3. (10 points) A surveyor is measuring the distances between five points V, W, X, Y, and Z along a straight line. She finds that each of the four distances measures one mile, give or take two inches or so. The distance from V to Z is about four miles; but the estimate is likely to be off by around: 4 inches, 2 inches, 1 inch, 1/2 inch or 1/4 inch. Justify your answer.

$$V \longrightarrow W \longrightarrow X \longrightarrow Y \longrightarrow Z$$

4. (15 points) The Zorro News Organization reports that 30% of freshmen at public universities work 15 hours a week for pay. If that is report is accurate, approximately what is the chance of getting a sample percent as low as or lower than 20% (as we did in #1)? Hint: calculate z then a p-value (area under the normal curve).

5.	(20)	points)) Five	hundred	draws	are	made	at	random	from	the	box
0. 1	(20	pomis	, 1100	nunaica	araws	arc	maac	αv	random	11 ()111	ULIC	DUA

Note that $\sqrt{0.25 \times 0.75} / \sqrt{500} \approx 0.02$. True or false? Explain your conclusions.

i. The expected value for the percentage of 1s among the draws is exactly 25%.

ii. The expected value for the percentage of 1s among the draws is around 25%, give or take 2% or so.

iii. The percentage of 1s among the draws will be around 25%, give or take 2% or so.

iv. The percentage of 1s among the draws will be exactly 25%.

v. The percentage of 1s in the box is exactly 25%.

vi. The percentage of 1s in the box is around 25%, give or take 2% or so.

6. (10 points) Find the specified area under the normal curve. Write down the R command that you use.

a)
$$z < 2.15$$

b)
$$z > -1.75$$

c)
$$-1.25 < z < 2.5$$

7. (10 points) Fill in the blanks:

The _____ hypothesis says that the difference is due to chance but the _____ says that the difference is real.

Formula Sheet

$$\operatorname{mean} = \frac{1}{n} (x_1 + \dots + x_n)$$

$$\operatorname{SD} = \sqrt{\frac{1}{n} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{sd} = \sqrt{\frac{1}{n-1} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{EV}_{\operatorname{sum}} = n \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{sum}} = \sqrt{n} \operatorname{SD}_{\operatorname{box}}$$

$$\operatorname{EV}_{\operatorname{av}} = \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{av}} = \operatorname{SD}_{\operatorname{box}} / \sqrt{n}$$

Shortcut formula (if there are only two different kinds of numbers in the box):

$$SD_{box} = (big \# - small \#) \sqrt{\begin{pmatrix} fraction of \\ tickets with the \\ big number \end{pmatrix} \begin{pmatrix} fraction of \\ tickets with the \\ small number \end{pmatrix}}$$

95% confidence interval = observed \pm 2SE

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}}$$

$\mathbf{Exam}\ \mathbf{IV}$

1. (25 points) A survey is conducted of 100 freshmen at public universities. Among the surveyed students 80% (or $4/5$) work at least 5 hours per week for pay.
a) Find a 95% confidence interval on the percent of freshmen at public universities who work at leas 5 hours per week for pay.
b) True or false and explain: There is a 95% chance that the percent among <i>all</i> freshmen at public universities is in the range you found in a).
c) True or false and explain: There is a 95% chance that if a second sample of 100 freshmen were taken, the sample percent would be in the range you found in a).
d) True or false and explain: There is a 95% chance that among all 18–20 year olds, the percent who work at least 5 hours per week for pay is in the range you found in a).

2. (10 points) Would taking the average of 25 measurements decrease the likely size of the chance error 6	у
a factor of 5, 10 or 25? Justify your answer.	

3. (10 points) A surveyor is measuring the distances between five points A, B, C, D, and E along a straight line. She finds that each of the four distances measures one mile, give or take an inch or so. The distance from A to E is about four miles; but the estimate is likely to be off by around: 4 inches, 2 inches, 1 inch, 1/2 inch or 1/4 inch. Justify your answer.

$$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$$

4. (15 points) The Zorro News Organization reports that 85% of freshmen at public universities work 5 hours a week for pay. If that is report is accurate, approximately what is the chance of getting a sample percent as low as or lower than 80% (as we did in #1)? Hint: calculate z then a p-value (area under the normal curve).

5	(20)	points	Five	hundred	draws	are	made	at	random	from	the	box
υ. ι	(20	pomo	1 1110	nunuicu	uraws	arc	maac	αu	random	11 0111	ULIC	DUA

20,000	0	S	60 000	1	S
20,000	U	S	00,000	1	S

Note that $\sqrt{0.25 \times 0.75} / \sqrt{500} \approx 0.02$. True or false? Explain your conclusions.

i. The expected value for the percentage of 1s among the draws is exactly 75%.

ii. The expected value for the percentage of 1s among the draws is around 75%, give or take 2% or so.

iii. The percentage of 1s among the draws will be around 75%, give or take 2% or so.

iv. The percentage of 1s among the draws will be exactly 75%.

v. The percentage of 1s in the box is exactly 75%.

vi. The percentage of 1s in the box is around 75%, give or take 2% or so.

6. (10 points) Find the specified area under the normal curve. Write down the R command that you use.

a)
$$z > 1.35$$

b)
$$z < -2$$

c)
$$-1.5 < z < 3.5$$

7. (10 points) Fill in the blanks:

The _____ hypothesis says that the difference is due to chance but the _____ says that the difference is real.

Formula Sheet

$$\operatorname{mean} = \frac{1}{n} (x_1 + \dots + x_n)$$

$$\operatorname{SD} = \sqrt{\frac{1}{n} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{sd} = \sqrt{\frac{1}{n-1} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{EV}_{\operatorname{sum}} = n \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{sum}} = \sqrt{n} \operatorname{SD}_{\operatorname{box}}$$

$$\operatorname{EV}_{\operatorname{av}} = \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{av}} = \operatorname{SD}_{\operatorname{box}} / \sqrt{n}$$

Shortcut formula (if there are only two different kinds of numbers in the box):

$$SD_{box} = (big \# - small \#) \sqrt{ \begin{pmatrix} fraction \ of \\ tickets \ with \ the \\ big \ number \end{pmatrix} \begin{pmatrix} fraction \ of \\ tickets \ with \ the \\ small \ number \end{pmatrix}}$$

95% confidence interval = observed \pm 2SE

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}}$$

Formula Sheet

$$\operatorname{mean} = \frac{1}{n} (x_1 + \dots + x_n)$$

$$\operatorname{SD} = \sqrt{\frac{1}{n} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{sd} = \sqrt{\frac{1}{n-1} ((x_1 - \operatorname{mean})^2 + \dots + (x_n - \operatorname{mean})^2)}$$

$$\operatorname{EV}_{\operatorname{sum}} = n \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{sum}} = \sqrt{n} \operatorname{SD}_{\operatorname{box}}$$

$$\operatorname{EV}_{\operatorname{av}} = \operatorname{AV}_{\operatorname{box}}$$

$$\operatorname{SE}_{\operatorname{av}} = \operatorname{SD}_{\operatorname{box}} / \sqrt{n}$$

Shortcut formula (if there are only two different kinds of numbers in the box):

$$SD_{box} = (big \# - small \#) \sqrt{\begin{pmatrix} fraction of tickets with the big number \end{pmatrix} \begin{pmatrix} fraction of tickets with the small number \end{pmatrix}}$$

95% confidence interval = observed $\,\pm\,\,2\,\mathrm{SE}$

$$z = \frac{\text{observed} - \text{expected}}{\text{standard error}}$$