Homework-1

September 12, 2024

1. Calculate the order of following groups:

- (a). $GL_n(p)$;
- (b). $SL_n(p)$.

2. Let $C \subset M_n(F)$ be the scalar matrices over F. Prove that C is the center of $GL_n(F)$, denoted by $Z(GL_n(F))$.

3. Prove Eular's Theorem: Let n be a positive integer. Let x be an integer which is coprime to n. If $1 \le x \le n$, then

$$x^{\varphi(n)} \equiv 1 \mod n$$
,

in which φ is the Euler's Totient function.

4. Let G be a group, $a, b \in G$. If $aba^{-1} = b^r$, prove that $a^iba^{-i} = b^{r^i}$.

5. Let G be a group. If $\forall a, b \in G$, $(ab)^2 = a^2b^2$. Prove that G is abelian. Show that if exp(G) = 2, then G is abelian. exp(G) is the smallest integer n s.t. $\forall g \in G$, $g^n = e$.

6. Assume |G| is even. Prove: $\exists a \neq e \in G$ s.t. $a^2 = e$.

7. Suppose n > 2. Prove that for a finite group G, there exists even number of x where |x| = n.

8. Consider $a, b \in SL_2(\mathbb{Q})$, where

$$a = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, b = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}.$$

1

Prove that:

- (a). |a| = 4;
- (b). |b| = 3;
- (c). $|ab| = \infty$.

9. If a group G has only finitely many subgroups, prove G is a finite group.