APPENDIX

A. Intermediate matrices for the state-space model

$$\begin{aligned} & \boldsymbol{A}_{11} = \\ & \begin{bmatrix} -\boldsymbol{\Gamma}^{-1} - \boldsymbol{\Gamma}^{-1}\boldsymbol{K}_{\mathrm{I}} & -\boldsymbol{\Gamma}^{-1}\boldsymbol{K}_{\mathrm{P}}\hat{\boldsymbol{T}}_{\mathrm{FL,B}}\underline{\boldsymbol{E}}_{\mathcal{G}}\underline{\boldsymbol{E}}_{\mathcal{G}}^{T} & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} & \hat{\boldsymbol{T}}_{\mathrm{FL,B}}\underline{\boldsymbol{E}}_{\mathcal{G}}\underline{\boldsymbol{E}}_{\mathcal{G}}^{T} & \boldsymbol{O} \\ \hat{\boldsymbol{T}}_{\mathrm{B,FL}} & \boldsymbol{O} & -\boldsymbol{T}_{\mathrm{B,L}}\boldsymbol{D}_{\mathrm{L}}^{-1}\boldsymbol{T}_{\mathrm{L,A}}\underline{\boldsymbol{L}}(\boldsymbol{\mathcal{G}},\boldsymbol{W}_{\mathrm{p}})\boldsymbol{T}_{\mathrm{A,B}} & \boldsymbol{T}_{\mathrm{B,SF}} \\ \boldsymbol{O} & \boldsymbol{O} & -\underline{\boldsymbol{M}}_{\mathrm{SF}}^{-1}\boldsymbol{T}_{\mathrm{SF,A}}\underline{\boldsymbol{L}}(\boldsymbol{\mathcal{G}},\boldsymbol{W}_{\mathrm{p}})\boldsymbol{T}_{\mathrm{A,B}} - \underline{\boldsymbol{M}}_{\mathrm{SF}}^{-1}\boldsymbol{D}_{\mathrm{SF}} \\ \boldsymbol{O} & \boldsymbol{O} & -\boldsymbol{M}_{\mathrm{SF}}^{-1}\boldsymbol{T}_{\mathrm{SF,A}}\underline{\boldsymbol{L}}(\boldsymbol{\mathcal{G}},\boldsymbol{W}_{\mathrm{p}})\boldsymbol{T}_{\mathrm{A,B}} & -\boldsymbol{M}_{\mathrm{SF}}^{-1}\boldsymbol{D}_{\mathrm{SF}} \\ \end{pmatrix} \end{aligned}$$

$$A_{12} = \operatorname{col}(\boldsymbol{O}, \boldsymbol{O}, -\boldsymbol{T}_{\mathrm{B,L}}\boldsymbol{D}_{\mathrm{L}}^{-1}\boldsymbol{T}_{\mathrm{L,A}}\underline{\boldsymbol{L}}(\boldsymbol{\mathcal{G}}, \boldsymbol{W}_{\mathrm{p}})\boldsymbol{T}_{\mathrm{A,FL}}, \boldsymbol{O})$$

$$A_{21} = \operatorname{row}(\boldsymbol{D}_{\mathrm{FL}} - \boldsymbol{\Gamma}^{-1}\boldsymbol{M}_{\mathrm{FL}}, -\boldsymbol{\Gamma}^{-1}\boldsymbol{M}_{\mathrm{FL}}\boldsymbol{K}_{\mathrm{I}},$$

$$-\boldsymbol{\Gamma}^{-1}\boldsymbol{M}_{\mathrm{FL}}\boldsymbol{K}_{\mathrm{P}}\hat{\boldsymbol{T}}_{\mathrm{FL,B}}\underline{\boldsymbol{E}}_{\boldsymbol{\mathcal{G}}}\underline{\boldsymbol{E}}_{\boldsymbol{\mathcal{G}}}^{T} + \boldsymbol{T}_{\mathrm{FL,A}}\underline{\boldsymbol{L}}(\boldsymbol{\mathcal{G}}, \boldsymbol{W}_{\mathrm{p}})\boldsymbol{T}_{\mathrm{A,B}}, \boldsymbol{O})$$

$$A_{22} = \boldsymbol{T}_{\mathrm{FL,A}}\underline{\boldsymbol{L}}(\boldsymbol{\mathcal{G}}, \boldsymbol{W}_{\mathrm{p}})\boldsymbol{T}_{\mathrm{A,FL}}$$

$$(45)$$

with $m{W}_{
m p} = m{B}_{
m V} rac{\partial \sin(m{\underline{E}}_{\mathcal{G}}^T m{T}_{
m A}^T m{lpha}^0)}{\partial (m{\underline{E}}_{\mathcal{G}}^T m{T}_{
m A}^T m{lpha}^0)}$

B. Notation of some matrices

TABLE I NOTATION OF SOME MATRICES.

Matrix	Expression
T	$\!$
$m{T}_{ m SF}$	Submatrix of T consisting of columns corresponding to \mathcal{V}_{SF}
$m{T}_{ m L}$	Submatrix of T consisting of columns corresponding to $\overline{\mathcal{V}}_{\mathrm{L}}^{\mathrm{SP}}$
$\hat{\boldsymbol{T}}_{\mathrm{FL}}$	Submatrix of T consisting of columns corresponding to $\mathcal{V}_{\mathrm{FL}}$
	(multiplying $\hat{m{ heta}}_{\mathrm{FL}}$)
$T_{ m FL}$	Submatrix of T consisting of columns corresponding to $\mathcal{V}_{\mathrm{FL}}$
	(multiplying $ heta_{\mathrm{FL}}$)
$T_{ m A}$	$\operatorname{diag}(\operatorname{col}(\boldsymbol{I}_{ \underline{\mathcal{V}}_{\operatorname{SF}} + \mathcal{V}_{\operatorname{L}} },\boldsymbol{O}_{ \mathcal{V}_{\operatorname{FL}} \times(\underline{\mathcal{V}}_{\operatorname{SF}} + \mathcal{V}_{\operatorname{L}})},\boldsymbol{I}_{ \mathcal{V}_{\operatorname{FL}} })$
$T_{ m B}$	$ ext{row}(m{T}_{ ext{SF}}, m{T}_{ ext{L}}, m{\hat{T}}_{ ext{FL}})$
$T_{ m C}$	$\mathrm{row}(T_{\mathrm{SF}},\!T_{\mathrm{L}})$
$T_{ m DS}$	$\operatorname{row}(I_{ \mathcal{V}_{\mathrm{SF}} }, O_{ \mathcal{V}_{\mathrm{SF}} imes \mathcal{V}_{\mathrm{FL}} })$
$T_{ m DL}$	$\operatorname{row}(oldsymbol{O}_{ \mathcal{V}_{\mathrm{L}} imes \mathcal{V}_{\mathrm{SF}} }, oldsymbol{I}_{ \mathcal{V}_{\mathrm{L}} }, oldsymbol{O}_{ \mathcal{V}_{\mathrm{L}} imes \mathcal{V}_{\mathrm{FL}} })$
$T_{ m D}$	$\operatorname{col}(\operatorname{row}(\overline{\boldsymbol{I}_{ \mathcal{V}_{\mathrm{SF}} }}, \overline{\boldsymbol{O}_{ \mathcal{V}_{\mathrm{SF}} \times \mathcal{V}_{\mathrm{L}}\cup\mathcal{V}_{\mathrm{FL}} }}), \operatorname{row}(\overline{\boldsymbol{O}_{ \mathcal{V}_{\mathrm{FL}} \times \mathcal{V}_{\mathrm{SF}}\cup\mathcal{V}_{\mathrm{L}} }, \boldsymbol{I}_{ \mathcal{V}_{\mathrm{FL}} }}))$
$\widetilde{m{T}}_{ m D}$	$\operatorname{diag}(\operatorname{row}(\boldsymbol{I}_{ \mathcal{V}_{\mathrm{SF}} },\boldsymbol{I}_{ \mathcal{V}_{\mathrm{SF}} }),\boldsymbol{I}_{ \mathcal{V}_{\mathrm{L}} - \mathcal{V}_{\mathrm{SL}} },\operatorname{row}(\boldsymbol{I}_{ \mathcal{V}_{\mathrm{FL}} },\boldsymbol{I}_{ \mathcal{V}_{\mathrm{FL}} }))$
$T_{ m SL}$	$\operatorname{col}(\operatorname{row}(I_{ \mathcal{V}_{\operatorname{SF}} },O_{ \mathcal{V}_{\operatorname{SF}} imes \mathcal{V}_{\operatorname{FL}}}),O_{(\mathcal{V}_{\operatorname{L}} - \mathcal{V}_{\operatorname{SL}}) imes \mathcal{V}_{\operatorname{SL}} },$
	$\operatorname{row}(O_{ \mathcal{V}_{\operatorname{FL}} imes \mathcal{V}_{\operatorname{SF}} }, I_{ \mathcal{V}_{\operatorname{FL}} }))$
\boldsymbol{T}_1	$\operatorname{col}(I_{ \mathcal{E}_{\text{QE}} }, O_{ \mathcal{E}_{\text{L}} \times \mathcal{E}_{\text{QE}} })$
T_2	$\operatorname{col}(O_{ \mathcal{E}_{\operatorname{SF}} imes \mathcal{E}_{\operatorname{L}} },I_{ \mathcal{E}_{\operatorname{L}} })\in\mathbb{R}^{(\mathcal{E}_{\operatorname{SF}} + \mathcal{E}_{\operatorname{L}}) imes \mathcal{E}_{\operatorname{L}} }$
T_3	$\operatorname{col}(oldsymbol{O}_{2 \mathcal{V}_{\operatorname{FL}} imes(\mathcal{V} -1)},oldsymbol{I}_{ \mathcal{V} -1},oldsymbol{O}_{(\mathcal{V}_{\operatorname{SF}} -1) imes(\mathcal{V} -1)})$
T_4	$\operatorname{col}(oldsymbol{O}_{2 \mathcal{V}_{\mathrm{FL}} imes(\mathcal{V} + \mathcal{V}_{\mathrm{SF}} -2)},oldsymbol{I}_{ \mathcal{V} + \mathcal{V}_{\mathrm{SF}} -2})$

C. Linear matrices in the reformulation of BMI

$$\widetilde{F}_{1}(\widetilde{\boldsymbol{Y}}) = -\widetilde{\boldsymbol{A}}_{b}^{T} \boldsymbol{E}_{G} \widetilde{\boldsymbol{B}} \overset{\overrightarrow{\cup}}{\overset{\cup}{\odot}} \left\{ \begin{bmatrix} \frac{1}{d_{i}} \widetilde{\boldsymbol{Y}}_{23}^{ij,k,0} - \frac{1}{d_{j}} \widetilde{\boldsymbol{Y}}_{23}^{ij,k,1} \cdots \\ \vdots & \ddots \end{bmatrix} \right.$$
(46)

$$F_{1}(\boldsymbol{Y}) = -\boldsymbol{A}_{b}^{T} \underline{\boldsymbol{E}}_{\mathcal{G},4} \boldsymbol{B}_{SF} \underbrace{\overset{\overset{\kappa}{\circ}}{\circ}}_{\circ} \left[\underbrace{\begin{bmatrix} -\frac{1}{d_{j}} \boldsymbol{Y}_{23}^{ij,k,1} + \frac{1}{m'_{i}} \boldsymbol{Y}_{23}^{ij,k,0} \cdots \\ \vdots & \ddots \end{bmatrix}}_{k \in \{1, \dots, n_{x}\}} \right]$$
(47)

Note that in E_G , entries for branch $(i, j) \in \mathcal{E}_L$ are assigned 1 and -1 for buses i and j, respectively. $\frac{1}{m'_i} = 0$ if $i = i_0$ and $m'_i = m_i$ otherwise.

D. The dual problem in DSOS

To write the dual problem of (38), we first reformulate it into a more canonical form. By rearranging optimization variables in \mathcal{X} as a block diagonal matrices:

$$\tilde{\boldsymbol{X}} = \operatorname{diag} \begin{pmatrix} \operatorname{diag}(\boldsymbol{z}), \operatorname{diag}(\boldsymbol{T}_{\mathrm{E}}\boldsymbol{p}_{\mathrm{in}}^{0}), \operatorname{diag}(\Re(\hat{\boldsymbol{u}})), \operatorname{diag}(\Im(\hat{\boldsymbol{u}})), \\ \operatorname{diag}(\check{\boldsymbol{u}}), \boldsymbol{X}, \boldsymbol{Z}_{\mathrm{PD}}, \boldsymbol{U}_{\mathrm{PSD1},ij}, \boldsymbol{U}_{\mathrm{PSD2},ij}, \\ \widetilde{\boldsymbol{Y}}^{ij,k,0}, \widetilde{\boldsymbol{Y}}^{ij,k,1}, \boldsymbol{Y}^{ij,k,0}, \boldsymbol{Y}^{ij,k,1}, \boldsymbol{Z}^{ij} \end{pmatrix}$$
(48)

where $\operatorname{diag}(V)$ is not needed for \tilde{X} since they are contained in $U_{\mathrm{PSD1},ij}$. Then (38) can be rewritten as

$$\min_{\tilde{\mathbf{Y}}} \operatorname{Tr}(\mathbf{B}\mathbf{B}^T \mathbf{X}) \tag{49a}$$

s.t.
$$\operatorname{Tr}(\tilde{A}_i \tilde{X}) \trianglerighteq_i \tilde{b}_i \quad \forall i \in \mathcal{I} = \mathcal{I}_1 \cup \mathcal{I}_2$$
 (49b)

$$\operatorname{Tr}(\boldsymbol{N}_{\mathbf{x}}^{(k)T}\boldsymbol{v}_{\mathbf{x},i}\boldsymbol{v}_{\mathbf{x},i}^{T}\boldsymbol{N}_{\mathbf{x}}^{(k)}\boldsymbol{X}) > 0 \quad \forall i \in \{1,\dots,\dim^{2}(\boldsymbol{A})\}$$
 (49c)

$$\operatorname{Tr}(\boldsymbol{N}_{z}^{(k)T}\boldsymbol{v}_{z,i}\boldsymbol{v}_{z,i}^{T}\boldsymbol{N}_{z}\boldsymbol{Z}_{PD}) > 0 \quad \forall i \in \{1,\dots,\mathcal{E}_{L,2}|^{2}\}$$
 (49d)

$$[\tilde{X}]_j \gtrsim_j 0 \quad \forall j \in \mathcal{J}_1 \cup \mathcal{J}_3 \setminus \{j_1, j_2\}$$
 (49e)

$$[\tilde{X}]_i \in \mathbb{R} \quad \forall i \in \mathcal{J}_2$$
 (49f)

$$X \in \mathbb{S}^{\dim(A)}, Z_{\text{PD}} \in \mathbb{S}^{|\mathcal{E}_{\text{L},2}|}$$
 (49g)

where " \succeq_i " equals " \succeq " for $i \in \mathcal{I}_1$ and " \succeq_i " equals " \equiv " for $i \in \mathcal{I}_2$; " \succeq_j " equals " \succeq " for $j \in \mathcal{J}_1$, " \succeq or \leq " for $j \in \mathcal{J}_2$, " \succeq " for $j \in \mathcal{J}_3$, and " \succeq " for $j \in \{j_1, j_2\}$; $[\tilde{\boldsymbol{X}}]_j$ denotes scalar entries of vector variables in $\tilde{\boldsymbol{X}}$, indexed by $j \in \mathcal{J}_1 \cup \mathcal{J}_2$, and $[\tilde{\boldsymbol{X}}]_j$ denotes matrix variables in $\tilde{\boldsymbol{X}}$, indexed by $j \in \mathcal{J}_3 \cup \{j_1, j_2\}$; and $[\tilde{\boldsymbol{X}}]_{j_1} = \boldsymbol{X}$ and $[\tilde{\boldsymbol{X}}]_{j_2} = \boldsymbol{Z}_{\mathrm{PD}}$. Then the dual of (49) is

$$\max_{\tilde{\mathbf{y}}, \tilde{\boldsymbol{\alpha}}_{\mathbf{x}}, \tilde{\boldsymbol{\alpha}}_{\mathbf{z}}} \sum_{i \in \mathcal{I}} \tilde{y}_{i} \tilde{b}_{i} \tag{50a}$$

s.t.
$$\tilde{y}_i > 0 \quad \forall i \in \mathcal{I}_1$$
 (50b)

$$\tilde{y}_i \in \mathbb{R} \ \forall i \in \mathcal{I}_2$$
 (50c)

$$\tilde{\alpha}_{\mathbf{x},i} > 0 \quad \forall i \in \{1, \dots, \dim^2(\mathbf{A})\}$$
 (50d)

$$\tilde{\alpha}_{\mathbf{z},i} > 0 \quad \forall i \in \{1, \dots, |\mathcal{E}_{\mathbf{L},2}|^2\}$$
 (50e)

$$\sum_{i \in \mathcal{I}} y_i [\tilde{\mathbf{A}}_i]_j \le 0 \quad \forall j \in \mathcal{J}_1$$
 (50f)

$$\sum_{i \in \mathcal{I}} y_i [\tilde{\mathbf{A}}_i]_j = 0 \quad \forall j \in \mathcal{J}_2$$
 (50g)

$$\sum_{i \in \mathcal{I}} y_i [\tilde{A}_i]_j \leq 0 \quad \forall j \in \mathcal{J}_3$$
 (50h)

$$\boldsymbol{B}\boldsymbol{B}^{T} - \sum_{i \in \mathcal{I}} y_{i} [\tilde{\boldsymbol{A}}_{i}]_{j_{1}} = \sum_{i=1}^{\dim^{2}(\boldsymbol{A})} \tilde{\alpha}_{\mathbf{x},i} (\boldsymbol{N}_{\mathbf{x}}^{(k)T} \boldsymbol{v}_{\mathbf{x},i}) \boldsymbol{v}_{\mathbf{x},i}^{T} \boldsymbol{N}_{\mathbf{x}}^{(k)} \quad (50i)$$

$$-\sum_{i\in\mathcal{I}} y_i [\tilde{\boldsymbol{A}}_i]_{j_2} = \sum_{i=1}^{|\mathcal{E}_{L,2}|^2} \tilde{\alpha}_{z,i} (\boldsymbol{N}_z^{(k)T} \boldsymbol{v}_{z,i}) (\boldsymbol{N}_z^{(k)T} \boldsymbol{v}_{z,i})^T \quad (50j)$$