10 Lecture 10: Coordinates and Dimensions

10.1 Bases

Let H be a subspace. Every point in H can be written as a linear combination of vectors in the set $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$. Since \mathcal{B} is a basis we know it is linearly independent.

Suppose \vec{x} can be written in 2 ways.

$$\vec{x} = c_1 \vec{b}_1 + \dots + c_p \vec{b}_p \quad \text{or} \quad \vec{x} = d_1 \vec{b}_1 + \dots + d_p \vec{b}_p$$
 (1)

then:

$$\vec{0} = \vec{x} - \vec{x} = (c_1 - d_1)\vec{b}_1 + \dots + (c_p - d_p)\vec{x}$$
(2)

Since \mathcal{B} is linearly independent we know that all the weights in equation (2) must be zero., thus: $c_j = d_j$ for $1 \leq j \leq p$, This means that the 2 ways of writing the linear combination for \vec{x} in equation (1) must in fact be the same.

 $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for the subspace H. For each \vec{x} in H the coordinates of \vec{x} relative to the basis \mathcal{B} are the weights c_1, \dots, c_p such that $\vec{x} = c_1 \vec{b}_1 + \dots + c_p \vec{b}_p$. The vector:

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ c_p \end{bmatrix} \quad \text{Where} \quad [\vec{x}]_{\mathcal{B}} \in \mathbb{R}^p$$
 (3)

is called the coordinate vector of \vec{x} , relative to \mathcal{B} or the \mathcal{B} -coordinate vector of \vec{x} .

10.2 example problem bases

let:
$$\vec{v}_1 = \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix}$$
, $\vec{v}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$, $\vec{x} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix}$, $\mathcal{B} = \{\vec{v}_1, \vec{v}_2\}$

Determine if \vec{x} is in H, if it is determine $[\vec{x}]_{\mathcal{B}}$.

$$c_{1} \begin{bmatrix} 3 \\ 6 \\ 2 \end{bmatrix} + c_{2} \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 12 \\ 7 \end{bmatrix} \quad \text{must be consistent}$$
$$\begin{bmatrix} 3 & -1 & | & 3 \\ 6 & 0 & | & 12 \\ 2 & 1 & | & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & 3 \\ 0 & 0 & | & 0 \end{bmatrix}$$
$$(c_{1}, c_{2}) = (2, 3) \quad \text{and} \quad [\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

It's important to note that $[\vec{x}]_{\mathcal{B}} \in \mathbb{R}^2$ but outputs vectors in an \mathbb{R}^3 space. It can be thought of as a 2 dimensional plane oriented in a 3 dimensional space. The correspondence $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$ is a one-to-one correspondence between the subspace H and \mathbb{R}^2 that preserves linear combinations. This is what is referred to as isomorphism. In general if $\mathcal{B} = \{\vec{b}_1, \dots, \vec{b}_p\}$ is a basis for H then the mapping $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$ makes H look and act like an \mathbb{R}^P space eventhough vectors in H may have more than p entries.

10.3 Dimensions of a subspace

In Linear algebra the concept is a bit different. A dimension is defined as the amount of vectors contained in the basis of a space. This means \mathbb{R}^2 contains 2 basis vectors, \mathbb{R}^3 contains 3 basis vectors, and so on. The rank of a matrix denoted by Rank A is the dimension of the column space of A. Since the pivot columns of A form the basis for Col A the rank of a matrix A is nothing other then the number of pivot columns in A.

Theorem 1 The dimension of a nonzero subspace H, denoted by Dim H, is the number of vectors in the basis of H. The dimension of the null space $\{\vec{0}\}$ is defined to be 0, since the set $\{\vec{0}\}$ is defined to be a linearly dependent set.

Theorem 2 if a matrix A has n columns, then: rank A + dim Nul A = n.

Theorem 3 Let H be a p-dimensional subspace of \mathbb{R}^n any linearly independent set of exactly p elements in H is automatically a basis for H. Also, any set of p elements of H that spans H is automatically a basis for H.

Theorem 4 if A is an $n \times n$ matrix, then all the following statements imply that A is an invertible matrix:

- The columns of A form the basis of \mathbb{R}^n
- $ColA = \mathbb{R}^n$
- $dim\ Col\ A = \mathbb{R}^n$
- rank A = n
- $NulA = \{\vec{0}\}$
- dim Nul A = 0