Quiz-I (CS4403 Design & Analysis of Algorithms)

Points:
10/10
1.In a given graph if edges contain both positive and negative weight without any negative cycle then which algorithm is useful for finding the shortest path between a pair of nodes? (1/1 Point)
Dijkstra's algorithm
○ Floyd algorithm
Kruskal algorithm
Bellman ford
2.Huffman code is based on which paradigm? (1/1 Point)
Divide and conquer
Greedy technique
Oynamic programming
None
3.Which of the following is not a Greedy approach Algorithm?
(1/1 Point)
Prims Algorithm
Kruskal algorithm
Huffman coding
Bellman ford
4.The traveling salesman problem involves visiting each city how many times except the
start vertex?
(1/1 Point) O 2
© 1
O 3
0
5.1/0 knapsack problem is based on which paradigm? (1/1 Point)
Divide and conquer
Oynamic programming
Greedy Technique
None of the above

6. What is the time complexity of matrix multiplied recursively by Divide and Conquer Method?
(2/2 Points)
O(n)
O(n^2)
O(n^3)
O(n!)
7. Which of the following is false in the case of a spanning tree of a graph G?
(1/1 Point)
It is tree that spans G
It is a subgraph of the G
It includes every vertex of the G
It can be either cyclic or acyclic
8.Consider a graph M with 3 vertices. Its adjacency matrix is [0, 1, 1; 1, 0, 1; 1, 1, 0]. Which
of the following is true?
(2/2 Points)
Graph M has no minimum spanning tree
Graph M has a unique minimum spanning trees of cost 2
Graph M has 3 distinct minimum spanning trees, each of cost 2
Graph M has 3 spanning trees of different costs