0.1. 13.08.2020 - Caminos y Ciclos

En esta sección se va hacer referencia al problema de **los puentes de Königsberg**, para poder deteminar cuando es podible hacer el recorrido por todas las aristas del grafo. Para estó se van a implementar utilies propiedades como la conexión, los caminos y los ciclos.

0.1.1. Caminata

Una caminata (walk) en un grafo G es una lista:

$$v_0e_1v_1\ldots e_kv_k$$
.

de vértices y aristas tal que para todo $1 \le i \le k$ la arista e_i tiene extremos v_{i-1} y v_i .

0.1.2. Sendero

Un sendero (trail) es una caminata sin aristas repetidas.

Ejemplo

- $v_1e_1v_1e_2v_2e_3v_1e_2v_2e_4v_3 \rightarrow (caminata)$
- $v_1e_2v_2e_4v_3e_5v_5 \rightarrow (\text{sendero})$
- $v_1e_3v_2e_4v_3e_5v_5 \rightarrow (\text{sendero})$

0.1.3. u,v-caminata

Una u,v-caminata tiene primer vértice u u último vértice v. estos dos son sus **extremos**. Los otros vértices son **vértices internos**. Análogamente se define un u,v-**sendero**.

0.1.4. Camino

Un camino es un sendero sin vértices repetidos. Análogamente se define un u,v-camino.

0.1.5. Circuito

Una caminata es **cerrada** si sus extremos son iguales. Un **circuito** es un sendero cerrado.

0.1.6. Ciclo

Un ciclo es un camino cerrado.

0.1.7. Longitud

La longitud de una caminata, sendero, camino o ciclo es el número de aristas que la conforman.

Observación _____

- Un bucle es un ciclo de longitud 1.
- Un ciclo de longitud 2 genera aristas paralelas.
- \blacksquare Se G es un grafo simple la cominata, sendero, circuito, camino o ciclo únicamente elista los vértices.

Observación .		

¿Si se sigue un u,v-camino y un v,w-camino, el resultado es un u,w-camino?

a-x-v y v-y-u-x-b

0.1.8. Lema

Cada u,v-caminata contiene un u,v-camino.

Demostración (Inducción fuerte sobre longitud de la caminata)

- P Base: Sea l=0. Al no tener aristas, la caminata consiste de un único vértice (u=v). Este es un u, v-camino de l=0.
- P Inductivo: $l \geq 1$. Suponiendo que la proposición se cumple para caminatas de longitud menor a l. Si la caminata no tiene vertices repetidos, entonces sus vertices y aristas forman un u, v-camino. Si la caminata tiene un vértice w repetido, entonces si se limita al camino a todos los vértices y ejes despues de w (incluyendo a w) creando una w, v-caminata dentro de la u, v-caminata. Por lo tanto, por hipotesis de inducción se puede asegurar que en la w, v-caminata existe un camino. Y como esté camino tambien va a estar en la u, v-caminata, se ha demostrado por inducción que la propiedad se cumple para toda caminata con $l \geq 0$.

0.1.9. Grafo Conexo

- Un grafo G es **conexo** si existe un u,v-camino entre cada par $uv \in V(G)$. En otro caso es **disconexo**.
- lacksquare Si G tiene un u,v-camino entonces u está **conectado** con v.

0.1.10. Relación de conexión

La **relación de conexión** en V(G) consiste en todos los pares ordenados (u, v) tales que u está conectado con v:

uRv sii existe un u, v-camino.

0.1.11. Teorema

La relación de conexión en $V\left(G\right)$ es una relación de equivalencia, Es decir que si $uRv \rightarrow vRu$.

0.1.12. Componentes

- \blacksquare Las **componentes** de un grafo G son sub grafos conexos maximales.
- Una componente es **trivial** si no tiene aristas, en otro caso no es trivial.
- \blacksquare Un $\mathbf{v\acute{e}rtice}$ $\mathbf{aislado}$ es un $\mathbf{v\acute{e}rtice}$ de grado cero.