1. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 74.1. This means i = 3. We know n = 7. Determine the percentile ℓ .

$$\ell = \frac{3}{7}$$

$$\ell = 0.429$$

So, the percentile rank is 0.429, or 42.9th percentile.

(b) We are given $\ell = 0.286$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by *n*.

$$n\cdot(\ell)=n\cdot\left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (7)(0.286)$$

$$i = 2$$

Determine the x associated with i = 2.

- (c) The mean: $\bar{x} = \frac{516.858}{7} = \boxed{73.837}$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=7 and so n is odd.

median =
$$x_{(7+1)/2}$$
, = x_4

So, median = 76.338

2. Solution

Let x represent a datum of interest. Let i represent that datum's index. Let ℓ represent that datum's percentile. Let n represent the sample size (number of measurements). In general,

$$\ell = \frac{i}{n}$$

(a) We are given x = 68.704. This means i = 24. We know n = 63. Determine the percentile ℓ .

$$\ell = \frac{24}{63}$$

$$\ell = 0.381$$

So, the percentile rank is 0.381, or 38.1th percentile.

(b) We are given $\ell = 0.254$. We can use algebra to solve for *i*.

$$\ell = \frac{i}{n}$$

Multiply both sides by n.

$$n\cdot (\ell)=n\cdot \left(\frac{i}{n}\right)$$

Simplify both sides.

$$n\ell = i$$

To make me happy, switch the sides.

$$i = n\ell$$

Now, we can evaluate i.

$$i = (63)(0.254)$$

$$i = 16$$

Determine the x associated with i = 16.

- (c) The mean: $\bar{x} = \frac{4382.071}{63} = \boxed{69.557}$
- (d) If n is odd, then median is $x_{i=\frac{n+1}{2}}$, the value of x when $i=\frac{n+1}{2}$. Otherwise, if n is even, the median is mean of $x_{i=\frac{n}{2}}$ and $x_{i=\frac{n}{2}+1}$. In this case, n=63 and so n is odd.

median =
$$x_{(63+1)/2}$$
, = x_{32}

So, median = 70.334