

โครงงานวิทยาศาสตร์ ประเภทสิ่งประดิษฐ์

เรื่อง แบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ ผิวดินที่สามารถคาดคะเนด้วยปัญญาประดิษฐ์

โดย
นายพศิน บัวขาว
นายนภัสกร ลิ้มสังคมเลิศ
นายภณพล ช่วยบุญส่ง
นายธนัทรัช จันทร์ทอง

ระดับชั้นมัธยมศึกษาปีที่ 4/13

ครูที่ปรึกษา นางสาวอารยา อุ่นเจ้าบ้าน

โครงงานเล่มนี้เป็นส่วนหนึ่งของรายวิชา การสร้างสรรค์โครงงานวิทยาศาสตร์
รหัสวิชา ว30281 ภาคเรียนที่ 2 ปีการศึกษา 2565
โรงเรียนบดินทรเดชา (สิงห์สิงหเสนี) ๒ สังกัดสำนักงานเขตพื้นที่การศึกษามัธยมศึกษา เขต 2

ชื่อเรื่อง แบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินที่ สามารถคาดคะเนด้วยปัญญาประดิษฐ์

ชื่อผู้ทำโครงงาน นายพศิน บัวขาว

นายนภัสกร ลิ้มสังคมเลิศ นายภณพล ช่วยบุญส่ง นายธนัทรัช จันทร์ทอง

ชื่ออาจารย์ที่ปรึกษา นางสาวอารยา อุ่นเจ้าบ้าน

จัดทำเมื่อ 18 ธันวาคม 2022

บทคัดย่อ

ปัจจุบันอุณหภูมิและความชื้นเป็นข้อเปรียบเทียบในการเกิดปรากฏการณ์ต่างๆของธรรมชาติแต่ยังมีการ สื่อสารที่คลาดเคลื่อนบางจุดเกี่ยวกับตำแหน่งของอุณหภูมิและความชื้น เพราะอุณหภูมิของพื้นดินและอากาศ มี ความแตกต่างเพราะความต่างของสภาพพื้นผิว ซึ่งสามารถศึกษาความสัมพันธ์ของอุณหภูมิและความชื้นเมื่อเวลา ผ่านไปได้ด้วยเทคโนโลยีปัญญาประดิษฐ์ เพื่อศึกษาปัจจัยของการเปลี่ยนแปลงอุณหภูมิ

การศึกษาข้อมูลเกี่ยวกับสภาพอากาศจำเป็นต้องตรวจสอบหลายปัจจัย โดยสามารถสังเกตความ เปลี่ยนแปลงได้จากอุณหภูมิและความชื้น แต่การตรวจสอบในสภาพแวดล้อมปกติจะได้ผลลัพธ์ที่ต่างกับการ ตรวจสอบในสภาพแวดล้อมที่เกิดปรากฏการณ์ทางธรรมชาติ ทำให้สำรวจข้อมูลจะมีค่าของอุณหภูมิและความชื้นที่ วัดมีการเบี่ยงเบนไป หากมีการจัดเก็บข้อมูลอุณหภูมิและความชื้นทั้งในอากาศและใต้ดินจะทำให้ง่ายต่อการ เปรียบเทียบความแตกต่างและการเปลี่ยนแปลงของอุณหภูมิเมื่อเวลาผ่านไปและยังมีระบบการพยากรณ์ตัวเลข ของอุณหภูมิและความชื้นจากชุดข้อมูลเก่าของเทคโนโลยีปัญญาประดิษฐ์ทำให้สามารถศึกษาความสัมพันธ์ของ อุณหภูมิและความชื้นโดยการเปรียบเทียบกกับข้อมูลที่มีการทดลองจริง

กิตติกรรมประกาศ

งานวิจัยเรื่อง "แบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินที่สามารถคาดคะเน ด้วยปัญญาประดิษฐ์ "จะไม่สามารถสำเร็จลุล่วงและสมดังเจตนารมณ์ของคณะผู้วิจัยได้เลยถ้าขาดการให้การ สนับสนุนและอนุเคราะห์ในทุกๆมิติ จากสถานศึกษาตลอดจนผู้ที่เกี่ยวข้องทุกท่านดังมีรายละเอียดต่อไปนี้ ขอขอบคุณ อาจารย์อารยา อุ่นเจ้าบ้าน และคณะ ที่ได้นำแนวคิดของคณะผู้วิจัยไปช่วยให้งานทำเร็จลุล่วง สุดท้ายนี้คณะผู้จัดทำโครงงานขอกราบขอบพระคุณ ผู้เกี่ยวข้องทุกท่านที่เป็นกำลังใจ และให้ การสนับสนุนในทุก เรื่องๆ ทำให้ข้าพเจ้าสามารถทำโครงงานชิ้นนี้สำเร็จลุล่วงด้วยดีคุณค่าและ คุณประโยชน์อันพึงมาจากโครงงานชิ้น นี้คณะผู้จัดทำโครงงานขอมอบแด่ผู้มีพระคุณทุกท่าน

นายพศิน บัวขาว นาย นภัสกร ลิ้มสังคมเลิศ นาย ภณพล ช่วยบุญส่ง นาย ธนัทรัช จันทร์ทอง

คณะผู้จัดทำโครงงาน

สารบัญ

	หน้า
บทคัดย่อ	ก
กิตติกรรมประกาศ	
สารบัญ	ନ
สารบัญภาพ	
สารบัญกราฟ	
บทที่ 1 บทนำ	
ความเป็นมาและความสำคัญของโครงงาน	
วัตถุประสงค์	
ขอบเขตการดำเนินงาน	
สมมุติฐาน	
ตัวแปรที่ศึกษา	
นิยามเชิงปฏิบัติการ	
บทที่ 2 เอกสารและรายงานวิจัยที่เกี่ยวข้อง	
บทที่ 3 วัสดุอุปกรณ์และวิธีดำเนินงาน	
บทที่ 4 ผลการดำเนินงาน	
บทที่ 5 สรุป อภิปรายผลการดำเนินงานและข้อเสนอแนะ	
เอกสารอ้างอิง	
ภาคผนวก	

สารบัญภาพ

ภาพที่		หน้า
2.1	Microcontroller	4
2.2	LED Display	5
2.3	อุปกรณ์วัดในอากาศ	6
2.4	อุปกรณ์วัดในใต้ดิน	6
2.5	แบตเตอรี่สำรอง	7
2.6	ชุดคำสั่งใช้งาน Microcontroller	8
2.7	ชุดคำสั่งใช้งาน Esp8266	8
2.8	ชุดคำสั่ง Webserver	9
2.9	ชุดข้อมูลในรูปแบบText file	9
2.10	Microsoft excel กราฟแสดงผลข้อมูล	10
3.1	การเชื่อมต่ออุปกรณ์ที่ใช้ในโครงงาน	13
3.2	ตัวอย่างตารางของการเก็บของข้อมูลในซอฟแวร์ Microsoft excel	14
3.3	ภาพแบบจำลองในสภาพแวดล้อมอุณหภูมิห้อง	14
3.4	ภาพแบบจำลองในสภาพแวดล้อมฤดูร้อน	15
3.5	ภาพแบบจำลองในสภาพแวดล้อมฤดูฝน	15
3.6	ภาพแบบจำลองในสภาพแวดล้อมฤดูหนาว	15

ภาพที่		หน้า
4.1	ผลการทำนายจากMachine Learning ของผลการจำลองสภาพแวดล้อมของฤดูร้อน	16
4.2	ผลการทำนายจากMachine Learning ของผลการจำลองสภาพแวดล้อมของฤดูฝน	17
4.3	ผลการทำนายจากMachine Learning ของผลการจำลองสภาพแวดล้อมของฤดูหนาว	18

สารบัญกราฟ

กราฟที่		หน้′
4.1	ผลการจำลอง สภาพแวดล้อมของฤดร้อน	16
4.2	ผลการจำลอง สภาพแวดล้อมของฤดูฝน	17
4.3	ผลการจำลอง สภาพแวดล้อมของฤดูหนาว	18

บทที่ 1

ความเป็นมาและความสำคัญของโครงงาน

ปัจจุบันอุณหภูมิและความชื้นเป็นข้อเปรียบเทียบในการเกิดปรากฏการณ์ต่างๆของธรรมชาติแต่ ยังมีการสื่อสารที่คลาดเคลื่อนบางจุดเกี่ยวกับตำแหน่งของอุณหภูมิและความชื้น เพราะอุณหภูมิของพื้นดินและ อากาศ มีความแตกต่างเพราะความต่างของสภาพพื้นผิว ซึ่งสามารถศึกษาความสัมพันธ์ของอุณหภูมิและความชื้น เมื่อเวลาผ่านไปได้ด้วยเทคโนโลยีปัญญาประดิษฐ์ เพื่อศึกษาปัจจัยของการเปลี่ยนแปลงอุณหภูมิ

การศึกษาข้อมูลเกี่ยวกับสภาพอากาศจำเป็นต้องตรวจสอบหลายปัจจัย โดยสามารถสังเกต ความเปลี่ยนแปลงได้จากอุณหภูมิและความชื้น แต่การตรวจสอบในสภาพแวดล้อมปกติจะได้ผลลัพธ์ที่ต่างกับการ ตรวจสอบในสภาพแวดล้อมที่เกิดปรากฏการณ์ทางธรรมชาติ ทำให้สำรวจข้อมูลจะมีค่าของอุณหภูมิและความชื้นที่ วัดมีการเบี่ยงเบนไป หากมีการจัดเก็บข้อมูลอุณหภูมิและความชื้นทั้งในอากาศและใต้ดินจะทำให้ง่ายต่อการ เปรียบเทียบความแตกต่างและการเปลี่ยนแปลงของอุณหภูมิเมื่อเวลาผ่านไปและยังมีระบบการพยากรณ์ตัวเลข ของอุณหภูมิและความชื้นจากชุดข้อมูลเก่าของเทคโนโลยีปัญญาประดิษฐ์ทำให้สามารถศึกษาความสัมพันธ์ของ อุณหภูมิและความชื้นโดยการเปรียบเทียบกกับข้อมูลที่มีการทดลองจริง

ดังนั้น คณะผู้จัดทำจึงสนใจทำโครงงานประเภทสิ่งประดิษฐ์เรื่องแบบจำลองความสัมพันธ์ ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินที่สามารถคาดคะเนด้วยปัญญาประดิษฐ์ เพื่อเป็นเครื่องมือ ในการทดลองของความสัมพันธ์ของอุณหภูมิและความชื้นระหว่างพื้นดินและอากาศสำหรับแนวทางพื้นฐานในการ ต่อยอดการศึกษาต่อไป

วัตถุประสงค์

- 1.เพื่อเปรียบเทียบความแตกต่างของอุณหภูมิและความชื้นของพื้นดินและอากาศ
- 2.นำเทคโนโลยีปัญญาประดิษฐ์มาใช้พยากรณ์ชุดข้อมูลเพื่อเปรียบเทียบกับข้อมูลที่ทดลอง

ขอบเขตการดำเนินงาน

เป็นโครงงานที่จัดทำเพื่อศึกษาความสัมพันธ์ของอุณหภูมิและความชื้นในสภาพแวดล้อมปรากฏการณ์ ต่างๆทางธรรมชาติ สำหรับการเป็นข้อมูลที่สามารถใช้อ้างอิงกับการทดลองทางภูมิอากาศอื่นๆได้ โดยจะมีการแบ่ง รอบการทดลองเป็นปรากฏการณ์ทางธรรมชาติต่างๆที่กำหนดไว้ว่าเป็นฤดูต่างๆ เพื่อง่ายต่อการสรุปผลการทดลอง

สมมุติฐาน

อุณหภูมิและความชื้นจะมีการเปลี่ยนแปลงเมื่ออยู่ในสภาพแวดล้อมปรากฏการณ์ต่างๆทางธรรมชาติเมื่อ เวลาผ่านไปขณะหนึ่ง โดยอุณหภูมิและความชื้นจะมีการเปลี่ยนแปลงแบบแปรผันตรง

ตัวแปรที่ศึกษา

- 1. ตัวแปรต้น :อุณหภูมิและความชื้น บริเวณในอากาศและใต้ดิน
- 2. ตัวแปรตาม :ความสัมพันธ์ของอุณหภูมิและความชื้นในสภาพแวดล้อมปรากฏการณ์ต่างๆทางธรรมชาติ
- 3. ตัวแปรควบคุม : ช่วงเวลาที่วัด ชนิดของดิน อุปกรณ์ที่ใช้วัดอุณหภูมิและความชื้น

นิยามเชิงปฏิบัติการ

- 1. Arduino เป็นไมโครคอนโทรลเลอร์บอร์ดที่มีคำสั่งเป็น Open Source ที่สามารถนำไป พัฒนาต่อเป็น อุปกรณ์ต่างๆได้
- 2. Machine learning คือระบบที่สามารถเรียนรู้ได้ด้วยตนเองโดยไม่จำเป็นต้องป้อนคำสั่ง โดยจะเรียนรู้ เพียงแค่จากข้อมูลอย่างเดียวเพื่อที่จะผลิตผลลัพธ์ที่แม่นยำออกมาได้
- 3.ปรากฏการณ์ธรรมชาติ เป็นการเปลี่ยนแปลงของธรรมชาติที่มนุษย์ไม่ได้สร้างขึ้นเอง ทั้งในระยะยาว และระยะสั้นจะเปลี่ยนแปลงไปตามเวลาและมีผลกระทบกับมนุษย์

บทที่ 2

เอกสารและรายงานวิจัยที่เกี่ยวข้อง

ในการจัดทำโครงงาน เรื่องแบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินที่ สามารถคาดคะเนด้วยปัญญาประดิษฐ์ คณะผู้จัดทำได้ทำการศึกษา ค้นคว้าแนวคิด ทฤษฎีตลอดจนความหมาย ของนิยามเชิงปฏิบัติการศึกษาวจัย ดังนี้

- 1.นิยามที่เกี่ยวข้องกับความชื้นและอุณหภูมิ
- 2.Internet Of Things
- 3. ระบบการจัดเก็บข้อมูล
- 4. Artificial intelligence

1.นิยามที่เกี่ยวข้องกับความชื้นและอุณหภูมิ

นิยามของคำว่า อุณหภูมิ จากพจนานุกรม ฉบับราชบัณฑิตยสถาน พ.ศ2554 กล่าวว่า "(น.) ระดับความสูงต่ำของ ความร้อนนิยมวัดได้ด้วยเครื่องมือที่เรียกว่า เทอร์โมมิเตอร์ "

นิยามของคำว่า ความชื้น จากพจนานุกรม ฉบับราชบัณฑิตยสถาน พ.ศ2554 กล่าวว่า "(น.) ปริมาณไอน้ำที่มีอยู่ ในอากาศ."

2.Internet Of Things

อินเทอร์เน็ตของสรรพสิ่ง หรือ IoT หมายถึงเครือข่ายของอุปกรณ์ และสิ่งของอื่นๆ ที่มีวงจร อิเล็กทรอนิกส์ ซอฟต์แวร์ เซ็นเซอร์ และการเชื่อมต่อกับเครือข่าย ทำให้วัตถุเหล่านั้นสามารถเก็บ บันทึกและแลกเปลี่ยนข้อมูลได้

2.1 ส่วนประกอบของอินเทอร์เน็ตสรรพสิ่ง

2.1.1) Microcontroller

เป็นอุปกรณ์ที่มีหน้าที่ควบคุมอุปกรณ์ในวงจรอิเล็กทรอนิกส์ โดยจะสามารถทำงานร่วมกับ อุปกรณ์อื่น โดยการอัปโหลดคำสั่งที่มีภาษาคอมพิวเตอร์ที่มีชื่อว่า C++ และมีอุปกรณ์ส่งสัญญาณเครือข่ายไร้สาย เพื่อทำงานในการเก็บข้อมูลไร้สาย แบบอัตโนมัติ

ซึ่งในการจัดทำโครงงานเรื่องแบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศ และใต้ผิวดินที่สามารถคาดคะเนด้วยปัญญาประดิษฐ์ คณะผู้จัดทำได้ใช้งาน อุปกรณ์ Microcontroller รุ่น Arduino UNO+WiFi R3 ATmega328P+ESP8266 ที่สามารถอัปโหลดคำสั่งคอมพิวเตอร์เพื่อควบคุม ระบบการ วัดอุณหภูมิและความชื้น และมีอุปกรณ์ส่งสัญญาณเครือข่ายไร้สายที่ชื่อว่า ESP8266 ฝังใน Microcontrollerด้วย

ภาพที่ 2.1 Microcontroller

2.1.2) LED Display

เป็นอุปกรณ์ที่สามารถแสดงผลในรูปแบบหน้าจอ คณะผู้จัดทำได้ใช้งานอุปกรณ์ LED Dispaly รุ่น
OLED LCD LED Display Module 128X64 0.96" For Arduino ในการแสดงผลเวลาที่นับและอุณหภูมิ
ความชื้น ในเวลานั้น

ภาพที่ 2.2 LED Display

2.1.3) ระบบการวัด อุณหภูมิและความชื้น

ในการจัดทำโครงงาน มีการวัดค่าของอุณหภูมิและความชื้นในใต้ดินและในอากาศเพื่อนำมา เปรียบเทียบ

2.1.3.1)อุปกรณ์วัดในอากาศ

คณะผู้จัดทำได้ใช้งานอุปกรณ์อุปกรณ์วัดในอากาศ รุ่น DHT22 ที่สามารถวัดได้ทั้งอุณหภูมิและ ความชื้น

ภาพที่ 2.3 อุปกรณ์วัดในอากาศ

2.1.3.2)อุปกรณ์วัดในใต้ดิน

คณะผู้จัดทำได้ใช้งานอุปกรณ์อุปกรณ์วัดในอากาศ รุ่น SHT20 ที่สามารถวัดได้ทั้งอุณหภูมิและ ความชื้น

ภาพที่ 2.4 อุปกรณ์วัดในใต้ดิน

2.1.4)1. แหล่งพลังงานไฟฟ้า

ในการจัดทำโครงงาน คณะผู้จัดทำได้พัฒนาวงจรอิเล็กทรอนิกส์เพื่อวัดและเปรียบเทียบอุณหภูมิ และความชื้นในใต้ดินและในอากาศ คณะผู้จัดทำจึงใช้แบตเตอรี่สำรองในการใช้งานเป็นแหล่งพลังงาน ไฟฟ้าแบบพกพา

ภาพที่ 2.5 แบตเตอรี่สำรอง

3.ระบบการจัดเก็บข้อมูล

ชุดคำสั่งใช้งาน Microcontroller-ของ Arduino ใข้เก็บข้อมูลอุณหภูมิและความชื้น

```
sketch_arduino | Arduino 1.8.19
File Edit Sketch Tools Help
       sketch_arduino
 void setup()
 Serial.begin (9600);
    if (!OLED.begin(SSD1306_SWITCHCAPVCC, 0x3C)) ( // สังโห้ออ OLED เจ็มห่างานที่ Address 0x3C
Serial.println("SSD1306 allocation failed");
    } else (
       Serial.println("ArdinoAll OLED Start Work !!!");
    sht20.initSHT20(); // Init SHT20 Sensor
    delay(1000);
    sht20.checkSHT20(); // Check SHT20 Sensor
    dht.begin();
    delay(2000);
void loop()
      g_temp = sht20.resdTemperature();
      g_humd = sht20.readHumidity();
      air_temp = dht.readTemperature();
      air_humd = dht.readHumidity();
      if(!imnan(air_temp) && air_temp > 10) { a_temp = air_temp; }
if(!imnan(air_humd) && air_humd > 10) { a_humd = air_humd; }
   OLED.clearDisplay(): // ธมภาพในหน้าออทักหมด
OLED.setTextColor(WHITE, BLACK): //ท่าหนดขอดวามส์ขาว ฉากหลังสีส่ว
OLED.setTextSize(2): // ท่าหนดขนาดตัวอัทษา
OLED.setCursor(0, 0): // กำหนดตำแหน่ง x,y ที่จะแสดงผล
OLED.println("ITMX 5"); // แสดงผลข้อความ
OLED.setCursor(0, 20): // ท่าหนดตำแหน่ง x,y ที่จะแสดงผล
OLED.println("A"); // แสดงผลข้อความ
```

ภาพที่ 2.6 ชุดคำสั่งใช้งาน Microcontroller

ชุดคำสั่งใช้งาน Esp8266 ใช้เชื่อมต่อเครือข่ายไร้สาย และส่งข้อมูลไปที่Webserver

```
sketch_esp | Arduino 1.8.19
File Edit Sketch Tools Help
                                                                                                                      Q
 sketch_esp §
#include <ESP8266WiFi.h>
#include <ESP8266HTTPClient.h>
#include <WiFiClient.h>
WiFiClient wifiClient;
String urlparam ="";
int mmode = 0;
const char* said - "AIS2.4G";
const char' pass = "*********;
void setup()
  Serial.begin(9600);
WiFi.begin(ssid,pass);
  delay(1000);
  Serial.print("Connecting to WiFi");
while (WiFi.status() != WL_CONNECTED) {
    delay (500);
    Serial.print(".");
  Serial.println("done.");
void loop()
  if (WiFi.status() -- WL_CONNECTED) ( //Check WiFi connection status
    HTTPClient http: //Declare an object of class HTTPClient
    while (Serial.available ()) {
       char Rdata:
       Rdata=Serial.read();
      if(mmode -- 1 ss Rdata !- ']' ) { urlparam - urlparam + Rdata; }
      if(Rdata=='[') { mmode = 1; }
if(Rdata==']') {
        mmode = 0;
         Serial.println(urlparam);
```

ภาพที่ 2.7 ชุดคำสั่งใช้งาน Esp8266

ชุดคำสั่งที่ Webserver มีหน้าที่รับข้อมูล Microcontroller มาเขียนลง Text file. เพื่อในการทำนายต่อไป

```
File
            Edit
                   View
                          Git
                                Project
                                                          Analyze
                                                                     Tools
                                                                             Extensions
                                                                                         Window
                                                                                                    Help
                                          Debug
                                                   Test
                                           Select Startup Item... - _ Python 3.6 (64-bit)
send.php + X
           <?php
       1
       2
       3
           $s = $ GET['s'];
       4
           $at = $_GET['at'];
           $ah = $_GET['ah'];
           $gt = $_GET['gt'];
       7
           $gh = $_GET['gh'];
       8
       9
           $myFile = "data.txt";
           $fh = fopen($myFile, 'a') or die("can't open file");
$stringData = $s . ',' . $at . ',' . $ah . ',' . $gt . ',' . $gh;
     10
     11
           fwrite($fh, $stringData."\n");
     12
     13
           fclose($fh);
     14
           3>
     15
```

ภาพที่ 2.8 ชุดคำสั่ง Webserver

```
summer.txt - Notepad
File Edit Format View Help
0,0.00,0.00,28.23,45.62
5,29.60,50.40,28.33,45.34
10,29.60,50.40,28.39,45.17
15,29.60,50.40,28.43,45.07
20,29.60,50.40,28.46,45.03
25,29.60,50.40,28.48,44.96
30,32.00,50.40,28.50,44.90
35,32.00,50.40,28.53,44.87
40,32.00,50.40,28.55,44.83
45,32.00,50.40,28.57,44.83
50,32.00,50.40,28.59,44.83
55,32.00,50.40,28.59,44.83
60,32.00,50.40,28.61,44.80
65,32.00,50.40,28.64,44.86
70,32.00,50.40,28.64,44.82
                                 Ln 7, Col 27
                                          100% Unix (LF)
```

ภาพที่ 2.9 ชุดข้อมูลในรูปแบบText file

การนำเข้าชุดข้อมูลในรูปแบบText fileเข้ามาในโปรแกรมMicrosoft excelเพื่อสร้างกราฟแสดงผลข้อมูล

ภาพที่ 2.10 Microsoft excel กราฟแสดงผลข้อมูล

4. Artificial Intelligence

นิยามของ ปัญญาประดิษฐ์ (Artificial intelligence) คือ ระบบประมวลผลของคอมพิวเตอร์ หุ่นยนต์ เครื่องจักร หรืออุปกรณ์อิเล็กทรอนิกส์ต่าง ๆ ที่มีการวิเคราะห์เชิงลึกคล้ายความฉลาดของ มนุษย์ และสามารถก่อให้เกิดผลลัพธ์ที่เป็นการกระทำได้

4.1) Machine learning

ประเภทของปัญญาประดิษฐ์ที่มีการเรียนรู้จากข้อมูลที่ได้รับโดยการวิเคราะห์รูปแบบตามคำสั่งที่ ได้รับ ในการดำเนินโครงงาน คณะผู้จัดทำได้เลือกใช้ดังต่อไปนี้ เพื่อสะดวกต่อการปฏิบัติตามเป้าหมาย

4.1.1) Linear regression

การวิเคราะห์การถดถอยเชิงเส้น(Linear Regression)เป็น Machine Learning ประเภท การเรียนรู้แบบมีผู้สอน(Supervised Learning) เป็นความสัมพันธ์ของตัวแปร ซึ่งจะถูกใช้กับการคำนวณ ค่าที่เป็นตัวเลข เพื่อหาความสัมพันธ์หรือทำนายข้อมูลต่าง ๆ

ในการจัดทำโครงงานคณะผู้จัดทำได้ใช้Machine learningชนิดนี้ในการทำนายอุณหภูมิ และความชื้น ที่มาจากการทดลองในสภาพแวดล้อมที่กำหนดโดยวัดจากวงจรอิเล็กทรอนิกส์ ที่เป็นระบบ IoT เป็นข้อมูลของอุณหภูมิและความชื้นที่มีการวิเคราะห์ความเปลี่ยนแปลง เพื่อเปรียบเทียบกับผลการทดลอง

บทที่ 3

วัสดุอุปกรณ์และวิธีดำเนินงาน

1.เครื่องมือที่ใช้ในการศึกษา

- 1. แบบจำลองสภาพแวดล้อมปรากฏการณ์ธรรมชาติ
 - 1.1 กระบะดิน
 - 1.2 พัดลมไอเย็น (จำลองฤดูหนาว)
 - 1.3 สเปรย์ฉีดละอองน้ำ (จำลองฤดูฝน)
 - 1.4 ไดร์เป่าผม (จำลองฤดูร้อน)
 - 1.5 ดินจำลอง
- 2. ระบบการตรวจจับอุณหภูมิ และความชื้น
 - 2.1 ESP8266 Wi-Fi MCU (microcontroller)
 - 2.2 SHT20 module (ตรวจจับ อุณหภูมิและความชื้นใต้ดิน)
 - 2.3 DHT22 module (ตรวจจับ อุณหภูมิและความชื้นในอากาศ)
 - 2.4 Jump wire(สายวงจร)
 - 2.5 Computer pc (อุปกรณ์เขียนโปรแกรม)
 - 2.6 Arduino IDE (ซอฟแวร์ในการอัพโหลดคำสั่ง)
 - 2.7 Arduino UNO (microcontroller)
 - 2.8 Arduino UNO (microcontroller)
 - 2.9 แบตเตอรี่สำรอง (แหล่งพลังงาน)
- 3. ระบบการจัดเก็บข้อมูล
 - 3.1 Window IIS (Webserver)
 - 3.2 Excel file.csv (ชุดข้อมูลสำหรับพัฒนาโมเดลปัญญาประดิษฐ์)

- 4. การพยากรณ์ข้อมูลด้วยปัญญาประดิษฐ์
 - 4.1 Python (Programming language)
 - 4.2 Scikit (Machine learning library of python)

2.ขั้นตอนและวิธีการศึกษาโครงงาน

- 1. คิดหัวข้อโครงงาน
- 2. ศึกษาข้อมูลที่เกี่ยวข้องกับโครงงาน
- 3 สร้างแบบจำลองที่มีดิน และติดตั้งอุปกรณ์จำลองสภาพแวดล้อม
- 4. พัฒนาระบบการตรวจจับอุณหภูมิและความชื้นในใต้ดินและบนดิน จาก Internet of Things
- 5. พัฒนา web server ที่สามารถรับข้อมูลจากระบบการตรวจจับอุณหภูมิและความชื้นด้วย Http GET ที่มีการส่งข้อมูลผ่านจากลิงค์ URL ในรูปแบบ text file
 - 6.นำเข้าข้อมูล text ไปที่ file.csv ที่ใช้งานผ่าน Microsoft excel
- 7. พัฒนา Machine learning ในประเภท Regression ทำให้สามารถพยากรณ์ข้อมูลเมื่อเวลา เปลี่ยนแปลงจากชุดข้อมูล
 - 8. พัฒนาความสามารถในการแสดงผลของการพล็อตกราฟ จาก Microsoft excel
 - 9.จัดทำเอกสารโครงงาน
 - 9.นำเสนอโครงงานและนำไปใช้งาน

ภาพที่ 3.1 การเชื่อมต่ออุปกรณ์ที่ใช้ในโครงงาน

3.การเก็บรวบรวมข้อมูล

เก็บรวบรวมข้อมูลด้วยการทดสอบสิ่งประดิษฐ์ที่จะสร้างสามารถบันทึกค่าของอุณหภูมิและความชื้นใน สภาพแวดล้อมที่จำลองขึ้นมาใน text file และนำเข้าในตารางของ Microsoft excel

ภาพที่ 3.2 ตัวอย่างตารางของการเก็บของข้อมูลในซอฟแวร์ Microsoft excel

1.การเก็บข้อมูลในอุณหภูมิห้อง (ตัวแปรต้น)

ภาพที่ 3.3 ภาพแบบจำลองในสภาพแวดล้อมอุณหภูมิห้อง

2.การเก็บข้อมูลสภาพแวดล้อมจำลองปรากฏการณ์ธรรมชาติ (ตัวแปรตาม)

ภาพที่ 3.4 ภาพแบบจำลองในสภาพแวดล้อมฤดูร้อน

ภาพที่ 3.5 ภาพแบบจำลองในสภาพแวดล้อมฤดูฝน

ภาพที่ 3.6 ภาพแบบจำลองในสภาพแวดล้อมฤดูหนาว

บทที่ 4

ผลการดำเนินงาน

จากการทดลองการสร้างแบบจำลองทางสิ่งแวดล้อมโดยกำหนดเวลาทดลอง 20 นาที ซึ่งจะแบ่งเป็นสองส่วน คือ

1.ในเวลา10 นาทีแรกจะทำการเปิดใช้งานอุปกรณ์จำลองสภาพแวดล้อมให้ทำงานจนกว่าจะครบเวลา

2.หลังจากนั้นจะปิดใช้งานอุปกรณ์จำลองสภาพแวดล้อมเพื่อสังเกตการเปลี่ยนแปลงอุณหภูมิเมื่อเวลาผ่านไป

ซึ่งจะได้ผลทดลองดังนี้

1.แบบจำลองฤดูร้อน

- 1.อุณหภูมิและความชื้นในดินจะมีค่าที่คงที่กว่าอุณหภูมิและความชื้นบนอากาศ
- 2.เมื่อเปิดใช้งานเครื่องจำลองสภาพแวดล้อม ความชื้นจะมีค่าที่ลดลง และ อุณหภูมิสูงขึ้น แต่เมื่อปิดใช้งานจะเกิด การเปลี่ยนแปลงในทิศตรงกันข้ามจนมีค่าที่ใกล้เคียงกัน

```
C:\Program Files\Python36\python.exe

Actual Ground Temperature = 30.42 Machine Learning predict = [30.417]

Press any key to continue . . . _
```

ภาพที่ 4.1 ผลการทำนายจาก Machine Learning ของผลการจำลอง สภาพแวดล้อมของฤดูร้อน

2.)แบบจำลองฤดูฝน

- 1.อุณหภูมิและความชื้นในดินจะมีค่าที่คงที่กว่าอุณหภูมิและความชื้นบนอากาศ
- 2.ในการทดลองไอน้ำจะควบแน่นเป็นหยดน้ำตกลงในกระบะดินทำให้มีหยดน้ำบางส่วนกระทบกับเครื่องวัดบน อากาศทำให้มีค่าความชื้นที่สูงในขณะหนึ่ง
- 3. ฤดูฝนมีผลกระทบกับความชื้นในอากาศเป็นอย่างมาก

```
C:\Program Files\Python36\python.exe

Actual Ground Temperature = 27.79 Machine Learning predict = [27.8107]

Press any key to continue . . . _
```

ภาพที่ 4.2 ผลการทำนายจาก Machine Learning ของผลการจำลอง สภาพแวดล้อมของฤดูฝน

3.แบบจำลองฤดูหนาว

กราฟที่ 4.3 ผลการจำลอง สภาพแวดล้อมของฤดูหนาว

- 1.อุณหภูมิและความชื้นในดินจะมีค่าที่คงที่กว่าอุณหภูมิและความชื้นบนอากาศ
- 2.เมื่อเวลาผ่านไปความชื้นบนอากาศจะมีค่าที่สูงขึ้นแต่อุณหภูมิบนอากาศจะมีค่าที่ลดลง

```
C:\Program Files\Python36\python.exe

Actual Ground Temperature = 29.11 Machine Learning predict = [29.1184]

Press any key to continue . . . ___
```

ภาพที่ 4.3 ผลกาทำนายจาก Machine Learning ของผลการจำลอง สภาพแวดล้อมของฤดูหนาว

บทที่ 5

สรุป อภิปรายผลการดำเนินงานและข้อเสนอแนะ

โครงงานสิ่งประดิษฐ์เรื่อง แบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินที่ สามารถคาดคะเนด้วยปัญญาประดิษฐ์มีวัตถุประสงค์เพื่อ

- 1. ศึกษาความสัมพันธ์ของอุณหภูมิและความชื้นในสภาพแวดล้อมปรากฏการณ์ต่างๆทางธรรมชาติ
- 2. เพื่อคาดคะเนอุณหภูมิ

สรุปผล

1. เป็นข้อมูลที่สามารถใช้อ้างอิงกับการทดลองทางภูมิอากาศอื่นๆได้

2. อุณหภูมิและความชื้นในดินจะมีค่าที่คงที่ หรือมีการเปลี่ยนแปลงที่น้อย หากเทียบกับอุณหภูมิและ ความชื้นบนอากาศ

อภิปรายผล

จากผลการทดลองผู้สร้างแบบจำลองความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินที่ สามารถคาดคะเนด้วยปัญญาประดิษฐ์นั้นทำให้สามารถนำความรู้ ทางด้าน Internet Of Things(IOT) ประยุกต์ใช้ ในควบคุมความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดินเพื่อให้ผู้ใช้งานมีความสะดวกต่อการ ใช้งานโดยผู้จัดทำได้ออกแบบความสัมพันธ์ระหว่างอุณหภูมิและความชื้นของอากาศและใต้ผิวดิน สามารถ แก้ปัญหาร่วมกับเพื่อนในกลุ่มในขณะที่ดำเนินโครงงานได้อย่างมีประสิทธิภาพ

ข้อเสนอแนะ

- 1. ควรออกแบบระบบให้มีความเหมาะสมในการใช้งานตามวัตถุประสงค์อื่นๆมากขึ้น
- 2. ควรปรับปรุงประสิทธิภาพของอุปกรณ์ที่ใช้วัดให้มีความแม่นยำที่มากขึ้น

เอกสารอ้างอิง

David Cournapeau (2007). Machine Learning.Retrieved Jan 20,2023 from https://scikit-learn.org nikhilaggarwal3.(n.d.). Data Visualization with Python. Retrieved Jan 20,2023 from https://www.geeksforgeeks.org/

Rui Santos (n.d.). 9 Arduino Compatible Temperature Sensors for Your Electronics Projects.Retrieved Jan 21,2023 from https://randomnerdtutorials.com

DLTV.(2564).ลมบก ลมทะเล.วันที่ค้นข้อมูล 21 มกราคม 2566 ,จาก มูลนิธิการศึกษาทางไกลผ่านดาวเทียม ใน พระบรมราชูปถัมภ์ เว็ปไซต์ https://dltv.ac.th/teachplan/episode/43113 สำนักงานกองทุนสนับสนุนการวิจัย(2546).การเปลี่ยนแปลงอุณหภูมิอากาศโลก.วันที่ค้นข้อมูล 22 มกราคม 2566, จาก ศูนย์การเรียนรู้วิทยาศาสตร์โลกและดาราศาสตร์ เว็ปไซต์ https://www.pw.ac.th/

ภาคผนวก

ชุดคำสั่งใช้งาน Arduino ใช้เก็บข้อมูลสภาพแวดล้อม

```
Sketch_arduino | Arduino 1.8.19

File Edit Sketch Tools Help

Sketch_arduino

void setup()

if (!OLED.begin(SSD1306_SHITCHCAFVCC, 0x3C)) { // hThReD OLED [faithvriuf] Address 0x3C

Serial.begin(SSD1306_SHITCHCAFVCC, 0x3C)) { // hThReD OLED [faithvriuf] Address 0x3C

Serial.println("SSD1306_allocation failed");
} else {
    Serial.println("ArdinoAll OLED Start Work !!!");
}

sht20.initSHT20(); // Init SHT20 Sensor

dat.begin();
dalay(1000);
sht20.checkSHT20(); // Check SHT20 Sensor

dht.begin();
delay(2000);
}

void loop()

{
    q_temp = sht20.readTemperature();
    g_hund = sht20.readTemperature();
    air_temp = dht.readTemperature();
    air_temp = dht.readTemperature();
    if(!isnan(air_tumd) as air_temp > 10) { s_temp = air_temp; }
    if(!isnan(air_tumd) as air_tumd > 10) { a_hund = air_hund; }

OLED.selertNetDis(); // nunwinwinsonNature

OLED.selertxtolocy(PHITE, BLACK); // fributeShonnubBorna

OLED.selertxtolocy(PHITE, BL
```

ชุดคำสั่งใช้งาน Esp8266 ใช้เชื่อมต่อ Wi-Fi และส่งข้อมูล

```
sketch_esp[Arduine 1.8.19]

File Edit Sketch Tools Help

Sketch_esp[

sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sketch_esp[
sket
```

ชุดคำสั่งที่ Webserver มีหน้าที่รับข้อมูลจาก Arduino มาเขียนลง Text file.

ชุดคำสั่ง Machine Learning พัฒนาบน Python ที่ทำการเรียนรู้และคาดเดาอุณหภูมิ

```
File Edit View Git Project Debug Test Analyze Tools Extensions Window Help Search (Ctrl+Q)
 © + ○ | ③ + 🎂 💾 🛂 | り + ◯ + | 🐹 | 🚳 | ▶ Current Document (bd2-predicttemp.py) + 🛫 Python 3.6 (64-bit)
                                                                                                                                                               - A 🖽 🖽 - II
                                                                                                                             ▼ ₹ ⋈ Stack Frame:
  Process: [20252] bd2-predicttemp.py - E Lifecycle Events - Thread:
bd2-predicttemp.py → ×
          # %%
          import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os,tqdm,random,re,sys
          from sklearn.model_selection import train_test_split
          import warnings
warnings.filterwarnings('ignore')
          #Load train file
df_train = pd.DataFrame()
df = pd.read_csv('summer_train.csv')
df_train = df[['time', 'at', 'ah', 'gt', 'gh']].copy()
df_train = df_train.dropna(axis=0)
           #Load test file
          df_test = pd.DataFrame()
df = pd.read_csv('summer_test.csv')
df_test = df[['time', 'at','ah','gh']].copy()
df_test = df_test.dropna(axis=0)
          model_train_y = df_train.pop('gt')
model_train_X = df_train
model_test = df_test
           train\_X, test\_X, train\_y, test\_y = train\_test\_split(model\_train\_X, model\_train\_y, test\_size = 0.2 \ , random\_state = 3)
          #ML4 randomforest depth=10 from sklearn.ensemble import RandomforestRegressor regr = RandomforestRegressor(max_depth=10, random_state=0,n_estimators=100) regr.fit(train_X,train_y)
          predict_validate = regr.predict(test_X)
#print('ML4', np.mean((predict_validate-test_y)**2))
           predict_test = regr.predict(model_test)
          C:\Program Files\Python36\python.exe
Output Actual Ground Temperature = 30.42 Machine Learning predict = [30.417]
Show ou Press any key to continue . . .
```