9.S918: Statistical Inference in Brain and Cognitive Sciences

Week 1 Day 2: Introduction to causal inference

Roger Levy
Dept. of Brain & Cognitive Sciences
Massachusetts Institute of Technology

April 4, 2024

A tiny bit of statistics

- On Tuesday we reviewed basics of probability: the logical calculus of uncertainty—a branch of mathematics
- The primary focus of this class is statistics: the mathematics, science, craft, and art of drawing inferences from data
- The two fields are fundamentally different
- But, probability is used extensively throughout statistics

Perhaps the simplest probability distribution

- Consider a binary random variable Y with two possible outcomes: 0 and 1
- Y is a Bernoulli random variable with parameter $P(\text{heads}) = \pi$, where $0 \le \pi \le 1$
- Figuring out from observed data what the weighting is likely to be is parameter estimation
- In general, we will use ${\bf y}$ to refer to observed-outcome data and θ to refer to the model parameters to be estimated

Statistical estimators

- **Estimator**: a procedure for guessing a quantity of interest within a population from a sample from that population
- For example, the relative frequency estimator: if we observe r instances of heads in n coin flips,

"this is an estimator"
$$\widehat{\pi} = \frac{r}{n}$$

- Data are stochastic, so estimators give random variables!
- Bias of an estimator is $E[\widehat{\theta}] \theta$ Here we used linearity of the expectation $E[\widehat{\pi}] = E[\frac{r}{n}] = \frac{1}{n} E[r] = \frac{1}{n} \sum_{i=1}^{n} E[Y_i] = \frac{1}{n} n\pi = \pi$...so $\widehat{\pi}$ is unbiased
- Variance of an estimator is ordinary variance

$$\operatorname{Var}(X) \equiv E[(X - E[X])^2]$$
 $\operatorname{Var}(\widehat{\pi}) = \frac{\pi(1 - \pi)}{n}$ (see reading materials)

Good estimators have favorable bias-variance tradeoff

Maximum likelihood estimation

$$\operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv P(\boldsymbol{y}|\boldsymbol{\theta}) \qquad \hat{\boldsymbol{\theta}}_{MLE} \stackrel{\text{def}}{=} \arg\max_{\boldsymbol{\theta}} \operatorname{Lik}(\boldsymbol{\theta}; \boldsymbol{y})$$

- *p* refers to the value of P(coin toss_i = Heads)
- Likelihood for the following dataset

This is choosing the maximum likelihood estimate (MLE)

The MLE also turns out to be the relative frequency estimate (RFE)

Introductory causal inference

- You have probably had previous exposure to both probability and statistics
- You are less likely to have had exposure to causal inference
- Causal inference uses probability and statistics, but it is something separate from the traditional construal of those two fields
- You can think of causal inference as being a framework extending more traditional statistics by:
 - Adding new probability-based mathematical constructs; and,
 - Developing a set of practice for statistical inference based on those constructs
- Two causal inference frameworks:
 - The potential outcomes framework
 - The causal graphical models framework

The potential-outcomes framework

- In epidemiology and many other areas of statistics, causal inference was developed out of the idea of potential outcomes (Neyman 1923, Rubin 1974)
- Consider an outcome, Y, and a potential treatment A

Example:

Y: an individual survives to the end of the year (0: no, 1: yes)

A: an individual with heart disease receives a heart transplant (0: no, 1: yes)

Potential-outcome random variables

- Suppose that A is discrete; for this case, $A \in \{0,1\}$
- The **potential outcomes**, or **counterfactual outcomes**, are random variables for Y for each potential value of A

$$Y^{a=0}$$
 The value that Y would take if A were 0 $Y^{a=1}$ The value that Y would take if A were 1

 Counterfactual risk is the expected value of each counterfactual-outcome random variable:

$$E[Y^{a=0}] E[Y^{a=1}]$$

Expected value, or expectation, is defined as follows:

$$E[X] = \sum x P(X = x)$$

• So we are interested in (and likewise for $Y^{a=1}$):

$$E[Y^{a=0}] = \sum yP(Y^{a=0} = y) = 0 \times P(Y^{a=0} = 0) + 1 \times P(Y^{a=0} = 1) = \boxed{P(Y^{a=0} = 1)}$$

Counterfactual data and causal effects

- Suppose we knew what would happen for each individual in the population under each value of the treatment
- Then we could compute the counterfactual risks:

$$E[Y^{a=0}] = 0.5$$
 $E[Y^{a=1}] = 0.5$

• The average causal effect of treatment A is defined as the difference of counterfactual risks:

$$E[Y^{a=1}] - E[Y^{a=0}] = 0$$

Here, treatment is ineffective

(Hernan & Robins, 2020, Table 1						
	$Y^{a=0}$	$Y^{a=1}$				
Rheia	0	1				
Kronos	1	0				
Demeter	0	0				
Hades	0	0				
Hestia	0	0				
Poseidon	1	0				
Hera	0	0				
Zeus	0	1				
Artemis	1	1				
Apollo	1	0				
Leto	0	1				
Ares	1	1				
Athena	1	1				
Hephaestus	0	1				
Aphrodite	0	1				
Cyclope	0	1				
Persephone	1	1				
Hermes	1	0				
Hebe	1	0				
Dionysus	1	0				
$P(V^{a=*}) - 1$	0.5	0.5				

Remember, $E[Y^{a=i}] = P(Y^{a=i} = 1)$

Estimating causal effects

	L	A	Y	Y^0	Y^1
Rheia	0	0	0	0	?
Kronos	0	0	1	1	?
Demeter	0	0	0	0	?
Hades	0	0	0	0	?
Hestia	0	1	0	?	0
Poseidon	0	1	0	?	0
Hera	0	1	0	?	0
Zeus	0	1	1	?	1
Artemis	1	0	1	1	?
Apollo	1	0	1	1	?
Leto	1	0	0	0	?
Ares	1	1	1	?	1
Athena	1	1	1	?	1
Hephaestus	1	1	1	?	1
Aphrodite	1	1	1	?	1
Polyphemus	1	1	1	?	1
Persephone	1	1	1	?	1
Hermes	1	1	0	?	0
Hebe	1	1	0	?	0

Dionysus

Naively, we might estimate the counterfactual risks $P(Y^{a=i}=1)$ directly from observed A and Y:

$$\hat{P}_{MLE}(Y=1 | A=0) = \frac{3}{7} \quad \hat{P}_{MLE}(Y=1 | A=1) = \frac{7}{13}$$

But under what circumstances

$$\hat{P}_{MLE}(Y|A=i) = \hat{P}_{MLE}(Y^{a=i}=1)$$
?

The following is certainly true:

$$\hat{P}_{MLE}(Y=1 \mid A=i) = \frac{\operatorname{Count}(Y=1 \land A=i)}{\operatorname{Count}(A=i)}$$

$$Consistency: \text{ when } A=i, Y=Y^{a=i}$$

$$= \frac{\operatorname{Count}(Y^{a=1}=1 \land A=i)}{\operatorname{Count}(A=i)}$$

$$= \hat{P}_{MLE}(Y^{a=i}=1 \mid A=i)$$

$$Crucial step; make sure you understand it!$$

So, the following condition suffices:

$$P(Y^{a=i} = 1 | A = i) = P(Y^{a=i} = 1)$$

This is called Exchangeability:

$$Y^a \perp A \mid \{\}$$

Exchangeability and randomization

Goal:
$$\hat{P}(Y^a = 1)$$

- Why is a randomized experiment so powerful?
- Recap of exchangeability criterion:

$$Y^a \perp A \mid \{\}$$

- If we ourselves determine A in a way that is *truly blind to* Y^a , it **imposes** exchangeability!
- We can now go ahead and estimate

$$\hat{P}(Y^{a=i} = 1) = \hat{P}(Y = 1 | A = i)$$

Hooray!!!

Does loss of randomization make things hopeless?

- In the real world, many datasets are not randomized this way
- **Example:** let's imagine some other variable that might affect whether treatment A is applied; e.g., L = whether the patient was in critical condition (1=yes, 0=no)
- In general, L will be related to Y^a
 - E.g., in this example, patients in critical condition are surely more likely to die overall!

	\overline{L}
Rheia	0
Kronos	0
Demeter	0
Hades	0
Hestia	0
Poseidon	0
Hera	0
Zeus	0
Artemis	1
Apollo	1
Leto	1
Ares	1
Athena	1
Hephaestus	1
Aphrodite	1
Polyphemus	1
Persephone	1
Hermes	1
Hebe	1
Dionysus	1