Measure of dispersion:

Quartile deviation:

Inter-quartile range: $Q_3 - Q_1$

Semi inter quartile range/quartile deviation:

$$Q.D = \frac{Q_3 - Q_1}{2}$$

$$Q_i = L_i + \frac{\frac{Ni}{4} - f_c}{f_a}.c; i = 1, 2, 3$$

Problem: Calculate quartile deviation from the following frequency distribution and also calculate standard deviation using empirical relation:

Class interval	Frequency	
0-5	5	
5-10	13	
10-15	12	
15-20	7	
20-25	3	
25-30	5	

We know that,

Quartile deviation=(2/3) standard deviation Standard deviation=(3/2).(11.57)=17.36

Empirical relation between measure of dispersion:

- i) Quartile deviation=(2/3) standard deviation
- ii) Mean deviation=(4/5) standard deviation
- iii) Quartile deviation=(5/6) mean deviation

Calculating missing using median formula:

<u>Problem:</u> An incomplete frequency distribution is given below. where the median is 33.5. Determine the missing frequency by applying median's formula.

Variables	Frequency	
0-10	4	
10-20	16	
20-30	?	
30-40	100	
40-50	?	
50-60	6	
60-70	4	
	N=230 and median=33.5	

Solution:

Variables	Frequency	Cumulative
		frequency
0-10	4	4
10-20	16	20
20-30	f_1	$20 + f_1$
30-40(median class)	100	$120 + f_1$
40-50	f_2	$120 + f_1 + f_2$
50-60	6	$126 + f_1 + f_2$
60-70	4	$130 + f_1 + f_2$
	N=230 and median=33.5	

Let the missing frequencies be f_1 and f_2 Here

$$N = 130 + f_1 + f_2$$

 $\Rightarrow 230 = 130 + f_1 + f_2$
 $\Rightarrow f_1 + f_2 = 100 \dots (i)$

We know that,

$$M_e = L_1 + \frac{\frac{N}{2} - f_c}{f_m} \cdot c \dots (ii)$$
 $Here N = 230; \frac{N}{2} = \frac{230}{2} = 115$
 $M_e = L_1 + \frac{\frac{N}{2} - f_c}{f_m} \cdot c$
 $\Rightarrow 33.5 = 30 + \frac{115 - (20 + f_1)}{100} \cdot 10$
 $\Rightarrow 33.5 - 30 = \frac{95 - f_1}{10}$

⇒
$$35 = 95 - f_1$$

⇒ $f_1 = 60$
From (i)60 + $f_2 = 100$; $f_2 = 40$

So the missing frequencies be 60 and 40.

Graphical representation of data:

- i) Histogram:(X-axis: continuous class interval and Y-axis: frequency)
- ii) Frequency polygon: (X-axis: mid values of the continuous class interval and Y-axis: frequency)
- iii) Cumulative frequency curve or Ogive: (X-axis: upper limit of the continuous class interval and Y-axis: cumulative frequency)

Problem: Draw Histogram, frequency polygon and Ogive from the following frequency distribution:

Class interval	Mid values	Frequency	Cumulative frequency
0-5	2.5	5	5
U-3	4.5	<u> </u>	3
5-10	7.5	13	18
10-15	12.5	12	30
15-20	17.5	7	37
20-25	22.5	3	40
25-30	27.5	5	45

Next class:

Moments, Skewness and kurtosis: