Clase práctica 3

November 26, 2024

- 1. Sean a y n enteros mayores que 1.
 - Si $a^n 1$ es primo $\Rightarrow a = 2$ y n es primo.
 - Si $a^n + 1$ es pimo $\Rightarrow a$ es par y n es una potencia de 2
- 2. Demustra que existe un bloque de 2022 enteros consecutivos donde exactamente 15 de ellos son primos.
- 3. Sean n,m enteros positivos, con n>1. Demustre que $(a^n-1,a^m-1)=a^{(n,m)}-1$
- 4. Sea $n \in \mathbb{Z}$ n > 4. Demuestra que n | (n-1)! si y solo si n es compuesto.
- 5. Se define $p_1p_2...p_n$, $p_1=2$ y $\forall n>1$ p_n es el mayor primo que divide a $p_1p_2...p_n+1$. Demuestra que 5 no existe en la seccuencia.
- 6. Determine los valores enteros positivos de n, para los cuales n^4+4 es primo.