Low-Power SRAM Using Hierarchical Bit Line and Local Sense Amplifiers

Lixin Shen, Xinyi Zhang, Bin Xu

Introduction

Why do we need HBLSA-SRAM?

- Reducing capacitance of bitlines
- Reducing write swing voltage of bit lines
- Reducing the power consumption
- No noise margin degradation
- No extra logic in each local row decoder

Cited from(B.-D. Y. a. L.-S. Kim, "A low-power SRAM using hierarchical bit line and local sense amplifiers)

How does HBLSA-SRAM work?

Static Random Access Memory (SRAM):

 Read the signal from voltage change of sub_bitlines (subBL, subBL_bar)

Local Sense Amplifier (LSA):

- Precharged Bitline, differential small change of voltage from bitlines
- Amplifier the low swing signal to the full swing signal

HBLSA-SRAM Structure

ARCHITECTURE:

- BL (Bitlines): Sense amplified signal from LSA
- GWL (Global Write lines): Control "Access" to the bit for LSA
- LWL (Local Write lines): Control "Access" to the bit for SRAM
- Sub BL (sub bitlines): Used for "Write" and "Read"
- LSAE (Local sense amplifier enable): Enable the LSA

Schematic

Cited from(B.-D. Y. a. L.-S. Kim, "A low-power SRAM using hierarchical bit line and local sense amplifiers)

Read simulation

- In read operation, all bit-lines are pre-charged to Vdd and then word-line (WL) is selected to turn on the access transistor.
- After the selected sub-bit line is disconnected from the bit line, the local sense amplifier amplifies the low swing signal to the full swing signal.
- The swing voltage of sub bit line in memory cell is generated by LWL

Read simulation

Write simulation

- Same as SRAM cell reading operation, the two bit-lines are pre-charged to VDD in a write operation. The address decoder enables the word line (WL) to turn on the access transistor.
- To write data in memory cells, the full swing signal is used only in the low capacitive sub-bit line whereas the low swing signal is used in the high capacitive bit line.

Write simulation

Simulation Challenge

- · Guess the author's intended voltage input
- · Trying to match simulation waveform in paper
- · Using different technology node and PDK

Comparison with CV_SRAM

	Name/Signal/Expr	Value	Plot	Save	Save Options
3	BL		~	V	allv
4	BL_bar		V	~	allv
5	sub_BL		V	~	allv
6	sub_BL_bar		V	~	allv
7	Q		V	~	allv
8	Q_bar		<u>~</u>	<u>~</u>	allv
9	V20/PLUS		V	✓	yes
10	-2.433u		V		

Outputs	? 🗗			
Name/Signal/Expr	Value	Plot	Save	Save Options
1 q		✓		allv
q_bar		~		allv
3 LWL		~	~	allv
4 V0/PLUS		~	~	yes
5 -4.337u		V	~	

Power Consumption for 6T SRAM = 4.337 uW

Power Consumption for HBLSA-SRAM = 2.433 uW

Reduction of Power Consumption = (4.337-2.433)/4.337 = 43.9%

HBLSA_SRAM with extra memory

Power Consumption

- · Huge reduction in VBL change
- · Added SBL only has small V change

$$P_{\rm BL} = f \times C_{\rm BL} \times V_{\rm BL} \times V_{\rm DD}$$

$$P_{\rm SBL} = f \times C_{\rm SBL} \times V_{\rm DD}^{2}$$

$$P_{\rm HBL} = P_{\rm BL} + P_{\rm SBL}$$

$$= f \times (C_{\rm BL} \times V_{\rm BL} + C_{\rm SBL} \times V_{\rm DD}) \times V_{\rm DD}$$

Cited from(B.-D. Y. a. L.-S. Kim, "A low-power SRAM using hierarchical bit line and local sense amplifiers)

Question?