THÉORÈME D'OLIVIER

Théorème 1. (Olivier) Soit $(a_n)_{n\in\mathbb{N}}$ une suite décroissante dont la série converge. Alors $\lim_{n\to\infty} n \, a_n = 0$.

Démonstration. Tout d'abord, on remarque que

Problème 1. Montrer que les termes généraux $a_n \ge 0$.

Pour montrer que $\lim_{n\to\infty} n \, a_n = 0$, il suffit de trouver un constant positif $C \in \mathbb{R}_{>0}$, tel que la proposition au-dessous est valable:

Proposition 2. Pour tout positif $\varepsilon > 0$, il existe un entier $N \in \mathbb{N}$ tel que pour tout entier $n \geq N$, on ait

$$n \, a_n \le C \, \varepsilon \tag{1}$$

Problème 2. Pourquoi c'est suffisant?

On fixe un positif $\varepsilon > 0$. Par critère de Cauchy, il existe un entier $M \in \mathbb{N}_{\geq 2}$ tel que pour tout entiers $n, m \ (n \geq m \geq M)$, on ait

$$\sum_{k=m}^{n} a_k \le \varepsilon \tag{2}$$

Problème 3. En utilisant l'inégalité (2), le fait que la série (a_n) soit décroissante, montrer qu'il existe $M \in \mathbb{N}$ tel que pour tout entier n, on ait

$$n \, a_n \le \frac{n}{n - m + 1} \, \varepsilon \tag{3}$$

pour tout entier $m \in [M, n] \cap \mathbb{N}$.

La stratégie est au-dessous: On choisit un entier $N \ge M$, tel que l'on puisse épuiser l'inégalité (3) pour majorer n a_n pour tout $n \ge N$. Pour cela, on remarque que, en effet, il suffit de prendre m = M pour l'épuiser:

Problème 4. On fixe deux entiers $M \leq n$. Montrer que l'inégalité (3) est valable pour tout entier $m \in [M, n] \cap \mathbb{N}$ si et seulement si

$$n \, a_n \le \frac{n}{n - M + 1} \, \varepsilon \tag{4}$$

[Indication: la fonction f(x) = n/(n-x+1) est décroissante sur [M, n].]

De la même manière, remarquons que la fonction $g_M(x) = x/(x-M+1) = 1-(M-1)/(x-M+1)$ est décroissante sur $[N, +\infty[$ si $N \ge M,$ on déduit que

Proposition 3. Pour tout positif $\varepsilon > 0$, il existe un entier $M \in \mathbb{N}_{\geq 2}$ tel que pour tout entier $N \geq M$, l'inégalité

$$n a_n \le g_M(N) \varepsilon = \left(1 - \frac{M-1}{N-M+1}\right) \varepsilon \tag{5}$$

est valable pour tout entier $n \ge N$.

De plus, en utilisant le fait que g_M est décroissante et que $\lim_{N\to\infty} g_M(N) = 1$, on conclut que

Problème 5. La proposition 2 est valable pour tout constant positif C > 1.

Remarque. Le théorème d'Olivier est assez difficile. Pourtant, la technique pour épuiser l'inégalité (3) et en déduire l'inégalité (5) est importante.