

ORTHOGONAL REAL SUBSPACES

Definition

Two subspaces $S,T\subset \mathbf{R}^n$ are orthogonal if

$$x^{\top}y = 0$$
 for all $x \in S, y \in T$.

For any set $S \subset \mathbf{R}^n$ (not necessarily a subspace), the *orthogonal complement* of S is the set

$$S^{\perp} = \{ x \in \mathbf{R}^n \mid x^{\top} y = 0 \text{ for all } y \in S \}.$$

 S^{\perp} is the set of all vectors which are orthogonal to every vector in S.

Orthgonal complement is a subspace

Notice that S^{\perp} is always a subspace. If $x \in S^{\perp}$, then $x^{\top}y = 0$ for all $y \in S$. So then $(\alpha x)^{\top}y = \alpha(x^{\top}y) = 0$ for all $\alpha \in \mathbf{R}$ and $y \in S$. We conclude $\alpha x \in S^{\perp}$ for all $\alpha \in \mathbf{R}$. In other words, S^{\perp} is closed under scalar multiplication. If $x, z \in S^{\perp}$, then $(x+z)^{\top}y = x^{\top}y + z^{\top}y = 0 + 0 = 0$. We conclude that $x+z \in S^{\perp}$ for all $x, z \in S^{\perp}$. In other words, S^{\perp} is closed under vector addition. Consequently, S^{\perp} is a subspace.

