Example 7

Given any $\triangle ABC$, AE bisects $\angle BAC$, BD bisects $\angle ABC$, $CP \perp BD$, and $CQ \perp AE$, prove that PQ is parallel to AB.

Solution: Method 1:

Extend CP and CQ to meet AB at S and R, respectively. Since BP is the perpendicular bisector of CS, and AQ is the perpendicular bisector of CR, it shows that $\triangle CPB \cong \triangle SPB$, and $\triangle CQA \cong \triangle RQA$, respectively.

It then follows that CP = SP and CQ = RQ or P and Q are midpoints of CS and CR, respectively. Therefore, in $\triangle CSR, PQ//SR$. Thus, PQ//AB. Method 2:

Connect CF. We know that CF bisects $\angle A$. Since $\angle CPF = \angle CQF = 90^\circ$, CPFQ are concyclic. Thus $\angle PCF = \angle PQF = \frac{\angle C}{2} - \angle PCD$ $= \frac{\angle C}{2} - (\angle C - \angle PCE) = \frac{\angle C}{2} - [\angle C - (90^\circ - \frac{\angle B}{2})]$

$$=90^{\circ}-\frac{\angle C}{2}-\frac{\angle B}{2}=\frac{\angle B}{2}=\frac{180^{\circ}-\angle C-\angle B}{2}=\frac{\angle A}{2}=\angle EAB.$$
 Thus, $PQ//AB$.