CS 520 Theory of Programming Language

06/02 - 06/09, 2021

Continuations in a Functional Language ... Chap12

- 1. Motivation / Overview.
- O Continuations. ... CPS transformation. > Two important concepts of program transformations.

 Defunctionalisations

 used by compilers for functional long.

2) Continuations. What are they? Why do we care about them? represent the rest of computation. (continuation for 3+4. (1) (9 * (8 + (3*4)))(([]+2)xp) $R \in [\Lambda \xrightarrow{c} A]$ $[\Lambda \xrightarrow{c} \Lambda^*]$ $A = \sqrt{x} = (x + \xi \text{ that } \frac{1}{2}(x + \xi) + 4)$

(2) - Programming style. Continuation-passing-style programming.

(3) - Programming style. Continuation-passing-style programming.

(3) - Programming style. Continuation-passing-style programming.

(4) - Programming style. Continuation-passing-style programming.

(5) - Programming style. Continuation-passing-style programming.

(6) - Programming style. Continuation-passing-style programming.

(7) - Programming style. Continuation-passing-style programming.

(8) - Programming style. Continuation-passing-style programming.

(9) - Programming style programming - Control operator. generalized goto, callec, throw backtracking, coroutine, generalized terrator. V_ Donotational Semantics. / mathematics. V , V* = [V-]1R] | inver cont. V - One compilation step Program ---> Program in cont. passing style (1) no noed to use stack.
(2) no longer depends on whether we use Front or Dogs.

2. Continuation-based Danotofmal Sanantics.

[= [(vai) = V],

[= [(vai) = V],

(a) Add continuations as a new part to I-I., and add continuations to functions.

E Vood. V con : Vou -> V Tellin R & Vx. [3][c] K = K(J13(3)) $\begin{array}{lll}
g: V_0 - \frac{1}{2}V_+ & g(v) = \begin{cases} \frac{1}{2}(b) & \frac{1}{2}V_- = \frac{1}{2}(b) \\ \frac{1}{2}V_- = \frac{1}{2}(b) & \frac{1}{2}V_- = \frac{1}{2}(b) \end{cases}$ $\begin{array}{llll}
\text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_1 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } (\lambda v_2 \in V_- + v_2) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } K = K(\eta(x)) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } K = K(\eta(x)) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } K = K(\eta(x)) \\ \text{Texily } K = K(\eta(x)) & \text{Texily } K = K(\eta(x)) \\ \text{Texily } K = K(\eta(x$ (IESIEN (XNSE) Telling (>V E Vtaple. if 1 Edom(v) then R(V2) IEI+65 IN K = IGIICh (YNE NA (TezIn () Nz EVT. this ((this (1/4 th) this)) A

3) Relationship by court sevents I-Ic and direct semantics I-I Ielon R = Rx (IeI) $\nabla \frac{\text{Telch } R = \text{Ichs}(e_2 \wedge e_3) \mathbb{I}[L] \wedge e_4 : \underline{n}^{2}(K)}{\text{chs}(K)}$ $\nabla \frac{\text{chs}(\langle e_1, e_2 \rangle, z)}{\text{chs}(\langle e_1, e_2 \rangle, z)} = \frac{\text{chs}(\langle e_2, y_1, y_2 \rangle)}{\text{chs}(\langle e_2, y_2 \rangle, z)}$ (4) CPS-transform. cps: <exp> x (funda) -> <exp>. , cps (3, 3) = 2(3) " cps (e.1, 7.) = cps(e,)V. =(v,1)) cps(x, z) = z(x)cps (e, e, \neq) = cps(e, χ). cps(e, χ). cps(e, χ). cps()x. 3++, 2) = 2 ()x. >f. cps(3+x, f) = = (/x. xf. cps (3, /xi. cps (x, /xz. f(x,+xz))) (()x1. cps(x,)x2. f(x1+x2))) 3) ((xx2.f(x1+42)) x).