Automatic Structures

Sasha Rubin

University of Auckland Department of Computer Science

Dagstuhl, 30 October 2007

Finitely presentable structures

How can we compute with infinite structures?

We require the structure have a finite presentation.

Main formalisms:

- Explicit internal presentation of the elements, with machines describing the relations and functions (eg. computable structure).
- Structure is logically interpretable in a fixed structure (eg. tree-interpretable structure).
- Structure is a least solution of a system of equations in an algebra of structures. Similarly, generating structure by a deterministic grammar (eg. VR-equational graph).
- Structure is the transformation of another structure (eg. graph unfolding)

Outline of Talk

- 1. Background: S1S, S2S
- 2. Automatic presentations
 - Fundamental properties
 - Quotient problem
 - Characterisations and Isomorphism problem
- 3. Canonical presentations (automatic groups, automatic words)
- 4. Generalisation: Automata with oracles
- 5. Automatic Model Theory
- 6. Themes and Questions

ω -string automata

ω -string automata

A deterministic read-only finite-state machine that synchronously

- ▶ reads a tuple of infinite strings $(\alpha_1, \dots, \alpha_k)$, $\alpha_i \in \Sigma^{\omega}$,
- ▶ and accepts if the set of states $Inf(\rho)$ occurring infinitely often in the run ρ are in $\mathcal{F} = \{F_1, \dots, F_k\}$ (Muller acceptance).

Reads input synchronously: So view $(\alpha_1, \dots, \alpha_k) \in (\Sigma^k)^{\omega}$.

Examples.

- ▶ The set of strings $\alpha \in \{0,1\}^{\omega}$ containing finitely many 1s.
- ▶ The set $\otimes(\alpha_1,\alpha_2) \in (\{0,1\}^2)^{\omega}$ such that $\alpha_1 =_{\mathsf{ae}} \alpha_2$ (equal co-ordinate wise almost everywhere).

Languages accepted by $\omega\text{-string}$ automata are effectively closed under the operations of

- set union, complementation,
- projection, cylindrification, permutation of the co-ordinates.
- instantiation by ultimately-periodic string.

S1S Decidable

S1S is the monadic second-order theory of the structure (\mathbb{N}, S) .

Tuples of sets (A_1, \dots, A_k) of natural numbers encoded by their characteristic string $\otimes (A_1, \dots, A_k) \in (\{0, 1\}^k)^{\omega}$.

Theorem [Büchi 1962] Formulas ←→ Automata

MSO(\mathbb{N} , <) formulae $\Phi(X_1, \dots, X_k)$ define the same relations, modulo encoding \otimes , as automata $\mathcal{A}(\alpha_1, \dots, \alpha_k)$ operating on ω -strings; and translations are effective.

Thus S1S reduces to the emptiness problem for ω -automata:

Given an ω -automaton as input, does it accept any string whatsoever?

FO theories

Büchi noticed that certain FO theories are decidable via this technique:

- ▶ Code $n \in \mathbb{N}$ by its base 2 representation (Isd first).
- ▶ \mathbb{N} corresponds to the regular language $\{0,1\}^*0^\omega$.
- ▶ The atomic ternary-relation + corresponds to a regular relation $+_2$ over this coding.

Every FO-formula $\phi(\overline{x})$ of $(\{0,1\}^*0^\omega, +_2)$ defines a regular relation.

Therefore $FO(\mathbb{N}, +)$ is decidable.

S2S Decidable

S2S is the monadic second-order theory of the structure $(\{0,1\}^*, s_0, s_1)$.

Tuples of sets (A_1, \dots, A_k) of strings are encoded as a $\{0,1\}^k$ -labelled infinite tree $\otimes (A_1, \dots, A_k) : \{I,r\}^* \to \{0,1\}^k$.

Theorem [Rabin 1969] Formulas \longleftrightarrow Automata

MSO($\{0,1\}^*$, s_0 , s_1) formulae $\Phi(X_1,\cdots,X_k)$ define the same relations, modulo encoding \otimes , as automata $\mathcal{A}(\mathcal{T}_1,\cdots,\mathcal{T}_k)$ operating on ω -trees; and translations are effective.

Corollary The following theories are decidable (via interpretation):

- ▶ $MSO(\mathbb{Q}, <)$ decidable.
- MSOTh of countable linearly ordered sets.
- MSOTh of countable well-ordered sets.

Summary of definability

Fact. For each type of object $\diamondsuit \in \{\text{string}, \omega\text{-string}, \text{tree}, \omega\text{-tree}\}$ there is a notion of synchronous automaton with robust closure properties.

- ▶ WMSO(\mathbb{N}, S) \leftrightarrows automata on finite words
- ▶ WMSO($\{0,1\}^*$, s_0 , s_1) \leftrightarrows automata on finite trees
- ▶ $MSO(\mathbb{N}, S) \leftrightarrows$ automata on infinite words
- ▶ $MSO(\{0,1\}^*, s_0, s_1) \leftrightarrows$ automata on infinite trees

Weak: variables range over finite subsets of domain.

Automatic Presentations

Let $\diamondsuit \in \{ \mathsf{string}, \omega \mathsf{-string}, \mathsf{tree}, \omega \mathsf{-tree} \}.$

A \diamond -automatic presentation of a relational structure $\mathcal{D} = (D, (R_i))$ consists of

- 1. a tuple of \diamondsuit -automata $(M_A, (M_i))$,
- 2. a bijection $\mu:\mathcal{L}(\mathsf{M}_\mathsf{A})\to D$,

so that

$$(\mathcal{L}(\mathsf{M}_\mathsf{A}),(\mathcal{L}(\mathsf{M}_\mathsf{i})))\stackrel{\mu}{\cong} \mathcal{D}.$$

Say that \mathcal{D} is an \diamond -automatic structure.

[Hodgson 76] [Khoussainov, Nerode 95] [Blumensath, Grädel 00]

Relationships

- ▶ Structures in S-AutStr: $(\mathbb{N},+)$, ordinals (<) below ω^{ω} .
- ▶ Structures in T-AutStr but not in S-AutStr: The countable atomless Boolean algebra, (\mathbb{N}, \times) , (\mathbb{Q}, \times) .
- ▶ Uncountable structures in ω S-AutStr: (\mathbb{R} , +), ($\mathcal{P}(\mathbb{N})$, \cup , \cap , c).

Fundamental Properties

Theorem [FO definable \rightarrow regular] Given an \diamondsuit -automatic presentation μ of \mathcal{D} , every FO-formula $\Phi(\overline{x})$

defines a \diamondsuit -regular relation $\mu^{-1}(\Phi^{\mathcal{D}})$ (and the translation is effective).

Corollary [FO decidability] The following problem is decidable: Input: The automata forming an automatic presentation of some structure A, and a FO-sentence σ .

Output: Whether or not $A \models \sigma$.

Parameters: No problem in the finite cases. In the ω -cases, as long as they are ultimately-periodic strings / regular trees.

Fundamental Properties

A k-dimensional FO-interpretation is a collection of FO-formulas

- ▶ Domain formula $\Delta(\overline{x})$,
- ▶ Relation formulas $\Phi_i(\overline{x_1}, \dots, \overline{x_{r_i}})$.

The interpretation applied to a structure ${\cal A}$ produces the structure

$$(\Delta^{\mathcal{A}}, (\Phi_{i}^{\mathcal{A}})_{i}).$$

Corollary [FO Interpretability] The class \diamondsuit -AutStr is closed under FO-interpretations.

Corollary

- 1. \diamondsuit -AutStr is closed under direct-products (ordered products), ω -fold disjoint unions, definable substructures, definable extensions.
- 2. ω T-AutStr (T-AutStr) are closed under (weak) ω -fold direct powers.

The Quotient problem

Let \mathcal{A} be \lozenge -automatic and let ϵ be a \lozenge -regular congruence on \mathcal{A} .

Then the FO theory of \mathcal{A}/ϵ is decidable. However,

Is the quotient structure ♦-automatic?

S-AutStr: define a regular ϵ set of unique representatives by selecting length-lex least string from each class [Blumensath 99].

Eventhough there is no regular well-order on the set of all finite trees [Shelah,Gurevich] [Carayol,Löding 07]:

T-AutStr is closed under quotient [Colcombet, Löding 07].

The Quotient problem - ω S-AutStr

Given: $\mathcal{A} \in \omega$ S-AutStr and ϵ a ω -string regular congruence.

- ▶ There is no regular set of unique representatives of the equal almost-everywhere $=_{ae}$ relation [Kuske, Lohrey 06].
- ▶ If ϵ has countable index then it has a regular set of unique representatives [Bárány, Kaiser, R 07].

Corollary If \mathcal{A}/ϵ is countable, then it is in ωS -AutStr, and hence in S-AutStr.

Moreover, there exists $(\mathcal{A},\epsilon) \in \omega$ S-AutStr such that $\mathcal{A}/\epsilon \not\in \omega$ S-AutStr (Hjorth, Khoussainov, Montalban, Nies 07).

The Quotient problem

Let \mathcal{A} be \lozenge -automatic and let ϵ a \lozenge -regular congruence on \mathcal{A} .

Is the quotient structure \diamondsuit -automatic?

◇-AutStr	reg well order	ϵ reg uniq. rep.	Quotient
S-AutStr	Yes	Yes	Yes
T-AutStr	No	?	Yes
ω S-AutStr	No	index ℵ₀	index ℵ₀
ω T-AutStr	No	?	?

Decidable Extensions of FO

Recall Fundamental Property: FO-definability \rightarrow regularity

It can be improved by extending FO as in the following cases:

$$\lozenge\text{-AutStr} = \begin{cases} \text{S-AutStr} & FO + \exists^{\infty} + \exists^{\text{mod}} \\ \text{T-AutStr} & FO + \exists^{\infty} + \exists^{\text{mod}} \\ \omega \text{S-AutStr} & FO + \exists^{\infty} + \exists^{\text{mod}} \\ \omega \text{T-AutStr} & FO + \exists^{\infty} + \exists^{\text{mod}} + \exists^{\leq\aleph_0} + \exists^{>\aleph_0} \\ \omega \text{T-AutStr} & FO + \exists^{\infty} + \exists^{\text{mod}} + \exists^{\leq\aleph_0} + \exists^{>\aleph_0} \end{cases}$$

Approach: Quantifier Q preserves regularity :if $Q\overline{x} \Phi(\overline{x}, \overline{y})$ defines regular relation in $\mu^{-1}(\mathcal{D})$.

Unary quantifiers: Exactly the ones listed above.

```
S-AutStr: [Blumensath 99], [Khoussainov, R, Stephan 03]
T-AutStr: [Colcombet 04]
\omegaS-AutStr: [Kuske, Lohrey 06]
ωT-AutStr: [Kaiser, Bárány, Rabinovich, R 07]
(A, \epsilon) \in \omegaS-AutStr: [Kaiser, Bárány, R 07]
```

Undecidable Extensions

The following extensions of FO are undecidable on automatic structures.

- ► (W)MSO eg. The grid (N × N, up, right) is in S-AutStr.
- ► FO + certain binary generalised quantifiers (Reachability, ...) The one-step configuration graph of an arbitrary Turing machine is in S-AutStr.

Characterisation via set interpretations

Recall that $(\mathbb{N},+)$ is in S-AutStr: Interpret numbers as finite 0,1-strings so that $+_2$ is regular. Interpret numbers as finite subsets of \mathbb{N} so that $+_2$ is WMSO definable in (\mathbb{N},S) .

(finite) set interpretation
$$(\Delta(X), \Phi_i(X_1, \dots, X_{r_i}), \epsilon(X_1, X_2))$$

- \triangleright Δ, Φ_i, ϵ are (weak) monadic formulas.
- $ightharpoonup X_{i_i}$ are (weak) monadic variables.

(Interpretations can be of dimension k).

Characterisation via set interpretations

Theorem [Set Interpretations] A structure has a \lozenge -presentation if and only if it is interpretable in:

$$\diamondsuit = \begin{cases} \texttt{string} & \text{finite-set interpretable in } (\mathbb{N}, S) \\ \omega \text{-string} & \text{set interpretable in } (\mathbb{N}, S) \\ \texttt{tree} & \text{finite-set interpretable in } (\{0, 1\}^\star, s_0, s_1) \\ \omega \text{-tree} & \text{set interpretable in } (\{0, 1\}^\star, s_0, s_1) \end{cases}$$

Characterisation via FO interpretations

Theorem [FO Interpretations] A structure has a \lozenge -presentation if and only if it is FO-interpretable as follows:

$$\diamondsuit = \begin{cases} \texttt{string} & (\{0,1\}^\star, \preceq_{\texttt{prefix}}, =_{\text{len}}, \mathsf{suc}_0, \mathsf{suc}_1) \\ \omega\text{-string} & (\{0,1\}^\omega, \preceq_{\texttt{prefix}}, =_{\text{len}}, \mathsf{suc}_0, \mathsf{suc}_1) \\ \texttt{tree} & (\mathsf{fintrees}, \preceq_{\texttt{ext}}, \equiv_{\texttt{dom}}, (\mathsf{suc}_a^d)_{d \in \{l,r\}, a \in \{0,1\}}) \\ \omega\text{-tree} & (\omega\text{-trees}, \preceq_{\texttt{ext}}, \equiv_{\texttt{dom}}, (\mathsf{suc}_a^d)_{d \in \{l,r\}, a \in \{0,1\}}) \end{cases}$$

Comments.

- $ightharpoonup \omega$ cases: $u \in \{0,1\}^*$ is identified with $u10^\omega$, and similary for trees.
- ▶ string: Can take $(\mathbb{N}, +, |_k)$ for fixed $k \in \mathbb{N}^+$, where $n|_k m$ if n is a power of k and n divides m.
- ▶ ω -string: Can take $(\mathbb{R}, +, <, |_k, 1)$ where $x|_k y$ if $\exists n, m \in \mathbb{Z}$: $x = k^n$ and y = xm.

Characterisations of classes: S-AutStr

Full characterisations

- ▶ Ordinals (L,<): those below ω^{ω} (Delhommè 01)
- ▶ Boolean algebras: $(B_{\rm fin/co\text{-}fin})^n$ (KNRS 04)
- ▶ Finitely generated groups (G, +): virtually Abelian (Oliver, Thomas 05)
- ► Fields $(F, +, \times, 0, 1)$: finite (Stephan 04).

Partial characterisations

- ▶ Linear orders (L, <) and trees (T, \prec) have finite rank (KRS03)
- Individual structures not in S-AutStr
 - Random Graph (Delhommè 01) (Stephan 02)
 - ▶ (\mathbb{N}, \times) , $(\mathbb{N}, pairing)$ (Blumensath 99)
 - ▶ (\mathbb{Q}, \times) , $\oplus_k \mathbb{Z}[\frac{1}{k}]$, countable atomless BA (KNRS 04)

Characterisations of classes - T-AutStr

Delhommè 04 gives methods to prove that certain structures are not in T-AutStr. In particular,

- ▶ The least ordinal not in T-AutStr is $\omega^{\omega^{\omega}}$.
- ▶ The random graph is not in T-AutStr.

Theorem [Colcombet, Löding 06] If $\mathcal{P}^f(\mathcal{S})$ is finite-set interpretable in a tree t, then \mathcal{S} is WMSO interpretable in t.

Here $\mathcal{P}^f(\mathcal{S})$ is the structure

- ▶ domain consists of the finite subsets of *S*,
- ▶ ⊂ order,
- \blacktriangleright relations of $\mathcal S$ restricted to singletons.

So, the following are not finite-set interpretable in any tree:

- ▶ The free monoid $(\{a, b\}^*, \cdot, a, b)$
- ► The random graph

Needed: Techniques for ω S-AutStr and ω T-AutStr.

Isomorphism problem

Fix a class $\mathfrak C$ of structures closed under isomorphism (graphs, linear orders, ...)

The isomorphism problem for $\mathfrak{C} \cap \diamondsuit$ -AutStr is Given automata from \diamondsuit -automatic presentations of two structures $\mathcal{A}, \mathcal{B} \in \mathfrak{C}$, is \mathcal{A} isomorphic to \mathcal{B} ?

The complexity of the isomorphism problem for S-AutStr:

- ▶ Decidable: ordinals, Boolean algebras, fields.
- Π₁⁰: equivalence structures (decidable?)
- ▶ Π_3^0 -complete: locally finite graphs.
- \triangleright Σ_1^1 -complete: graphs, sucessor trees, ...

 Σ_1^1 -completeness (KNR, K Minnes): Reduction from the isomorphism problem for computable structures.

Canonical Presentations - groups

Automatic Groups (Cannon 84, Thurston 86)

A finitely generated group, say with semigroup generators S, is automatic if

$$(D, \sigma_1, \cdots, \sigma_{|S|}, =)$$

is an automatic presentation of its Cayley graph, where $D \subset S^*$.

Facts

- ▶ Algebraic notion: independent of generators.
- Such groups are finitely-presentable.

Canonical Presentations - sequences and numerations

Automatic sequences $(\mathbb{N}, <, C_1, \cdots, C_m)$

- ► Morphic words \equiv string-automatic $(D, <_{\text{llex}}, \overline{C})$ eg. Thue-Morse
- ▶ k-llex words $(D, <_{k-\text{llex}}, \overline{C})$ eg. Champernowne 01234567891011121314...

Theorem [Bárány 2006] MSO definable relations on $<_{k-\text{Ilex}}$ words define synchronous regular relations.

Automatic numeration systems $(\mathbb{N},+,<)$ (eg. -2, fibonacci)

Question

Is every finite-string automatic presentation of $(\mathbb{N},+,<)$ equivalent to one in which < is length reverse-lexicographic order?

Problem Is $(\mathbb{Q}, +) \diamondsuit$ -automatic ?

Generalisations via set interpretations

Fact. If $\mathcal A$ is set-interpretable in a structure with decidable MSO, then FO($\mathcal A$) is decidable.

- Natural extensions of (\mathbb{N}, S) by functions are usually undecidable (eg. $n \mapsto 2n$).
- ▶ Many decidable extensions by natural unary predicates (eg. $\{n!\}$, $\{2^n\}$, $\{n^2\}$, $<_{k\text{-llex}}$, pushdown hierarchy).

Example.

▶ $(\mathbb{Q}, +)$ is finite-set interpretable in (\mathbb{N}, S, P) where P is the word $1\#2\#3\#4\cdots$ (Miller, Stephan).

Model Theory on S-AutStr

Negative results.

► Compactness, Beth-property, interpolation, Łoś-Tarski fail on the class S-AutStr (Blumensath).

Positive results.

- ► Automatic KHonig's Lemma.
 - 1. Every finitely-branching infinite tree $(T, \prec) \in S$ -AutStr can be expanded to $(T, \prec, P) \in S$ -AutStr where P is an infinite path.
 - 2. If (T, \prec) has countably many infinite paths (not nec. fb.), this can be done for every path [KRS 03].
- ▶ Automatic Ramsey's Theorem. Every presentation of an infinite graph $(G, E) \in S$ -AutStr can be expanded to $(G, E, H) \in S$ -AutStr where $H \subset G$ is infinite and either a clique or an independent set [KRS 03].
- ▶ Cantor's Theorem. Every presentation of a linear order $(L,<) \in S$ -AutStr can be extended to one of $(\mathbb{Q},<)$ so that the embedding is continuous and regular [Kuske 03].

Model Theory on AutStr

 Downward Lowenheim-Skolem. Every ωT-AutStr (ωS-AutStr) structure has a countable elementarily-equivalent substructure consisting of the regular trees (u.p. strings) of the original presentation.

In particular, we get an automata theoretic proof that $FO(\mathbb{Q},+)$ is decidable.

Summary of Themes

- 1. Automatic structures have decidable FO[...] theories.
- 2. Some classes are easy (eg. automatic ordinals), others are complicated (eg. automatic graphs).
- 3. Automatic structures can be characterised in a number of ways (internally, logically, equationally).
- 4. For structures in a given class (f.g. groups, numeration systems, ...) canonical presentations are appropriate.

Some Questions

Specific

- 1. For $\mathcal C$ the class of linear orders, equivalence relations, f.g groups ...
 - Is the isomorphism problem for C ∩ S-AutStr decidable?
 - ▶ Describe isomorphism types of $C \cap S$ -AutStr.
- 2. Is ωT -AutStr closed by ωT -regular quotient?
- 3. If $(A, \epsilon) \in \omega$ T-AutStr and A/ϵ is countable, is $A/\epsilon \in$ T-AutStr?
- 4. Which binary quantifiers preserve regularity?

General

- 1. Identify useful canonical automatic-presentations of other classes of structures.
- 2. Develop model theory on the class of ♦-automatic structures. What is a natural logic?
- 3. Isolate well behaved subclasses of AutStr: decidable MSO, working model-theory.