Engenharia de Computação Fundamentos de Programação

Aula 01 - Introdução

Prof. Muriel de Souza Godoi muriel@utfpr.edu.br

Conceitos Básicos

- De forma geral, o que é um Computador?
 - É um equipamento eletrônico capaz de executar quatro tarefas básicas :
 - Receber Dados por uma Entrada de Dados
 - Armazenar Dados
 - Processar e Efetuar Cálculo sobre os Dados
 - Saída de Resultados (geralmente exibidos)

ARMAZENAMENTO e PROCESSAMENTO

Hardware x Software

- Hardware
 - Dispositivo e Componentes físicos
 - Exemplos: Processadores, Placa Mãe, Periféricos em geral, Memória, Placas diversas (rede, som, etc...)....
- Software
 - Conjunto de instruções representadas em vários Bytes que, ao serem executadas pelo Processador geram várias ordens de processamento/cálculo...
 - Exemplos: Navegador, editor de texto, jogos, aplicativos, etc...

Tipos de Software

- Básico
 - Necessários para a utilização do sistema computacional
 - Exemplos: Sistema Operacional, Drivers
- Aplicativo
 - Que tem aplicação direta para o usuário
 - Exemplos: Navegador, editor de texto, jogos, aplicativos, etc...
 - Programas que serão desenvolvidos nesta disciplina...

- As informações armazenadas no computador são medidas em BITS e BYTES.
- Medidas de Dados
 - BIT
 - Menor unidade de dado
 - Apresenta os valores 0 ou 1 (Desligado ou Ligado)

BYTE

- Conjunto de 8 bits, representa um caractere
- Menor unidade de dados que um computador trabalha
- 1 Byte pode representar 2⁸ = 256 combinações valores
 - Os Dados são representados por várias sequencias de Bytes....
 - Uma tecla digitada gera um sinal elétrico codificado (keycode) que é interpretado com 1 ou mais Bytes (ex: representar a letra "a"), geralmente na tabela ASCII
 - Ex: letra "a" em ASCII

Medidas de Quantidade de Dados (base 2)

Medida Representa o mesmo que:					
Bit	0 ou 1 – menor unidade de dado				
Byte	Conjunto de 8 bits ou 1 caracter				
KiloByte (KB)	2 ¹⁰ bytes ou 1.024 bytes				
MegaByte (MB)	2 ²⁰ bytes ou 1.048.576 bytes				
GigaByte (GB)	2 ³⁰ bytes ou 1.073.741.824 bytes				
TeraByte (TB)	2 ⁴⁰ bytes ou 1.099.511.627.776 bytes				

- Padrões IEEE 1541-2002 e IEC 80000-13:2008
 - Evitar confusão base 10 e base 2 por conta de alguns fabricantes
 - Ex: Alguns fabricantes de disco vendem disco de 1 TeraByte como 1012 = 1.000.000.000.000 bytes, sendo na base 2 é de 1012 / 240 = 909,49
 GigaBytes
 - Padrão atual que tende a ser adotado (já valido):

Binary Prefixes:				Binary Prefixes:				
Factor	Symbol	Name	Value	Factor	Symbol	Name	Derivation	Value
10³	k	Kilo	1,000	210	Ki	Kibi	Kilobinary	1,024
106	М	Mega	1,000,000	220	Mi	Mebi	Megabinary	1,048,576
109	G	Giga	1,000,000,000	230	Gi	Gibi	Gigabinary	1,073,741,824
1012	T	Tera	1,000,000,000	240	Ti	Tebi	Terabinary	1,099,511,627,776
1015	Р	Peta	1,000,000,000,000	250	Pi	Pebi	Petabinary	1,125,899,906,842,624
1018	Е	Exa	1,000,000,000,000,000,000	260	Ei	Exbi	Exabinary	1,152,921,504,606,846,976
1021	Z	Zetta	1,000,000,000,000,000,000	270	Zi	Zebi	Zettabinary	1,180,591,620,717,411,303,424

Mueller, S. Upgrading and Repairing PCs. 2013.

- Medidas de Armazenamento de dados (Base 2)
 - Memória principal (RAM). Ex: 4GBytes = 4x2³⁰ bytes
 - Memória secundária. Ex: 1TByte = 1x2⁴⁰ bytes
- Medidas de Transferência de Dados (Base 10):
 - Velocidade de conexão/transferência de dados
 - Ex: Taxa de transferência de 20Mbps = 20x10⁶ bits/s

Linguagem de Programação

- Computadores entendem apenas sim/não (zero/um)
 - Números binários ou bits
- Computadores fazem o que queremos
 - Programas são constituído de instruções
 - Instruções: conjunto de bits que o processador entende...
 - Ex: 100011001010000
- Faz-se necessária uma linguagem mais semelhante ao nosso idioma e nossa forma de pensar
 - Linguagem de Programação

Linguagem de Programação

- Conjunto de regras definidas e que devem ser organizadas para serem convertidas em linguagem de máquina (são executadas pelo computador)
 - Cada Linguagem de Programação adota um determinado conjunto de regras.
 - Exemplo: Linguagem C.
- Essas regras devem ser estruturadas segundo uma determinada lógica, que deve ser pensada com base em algoritmos

Algoritmo

- Definições:
 - Procedimento passo a passo para a solução de um problema
 - Sequência detalhada de ações a serem executadas para realizar alguma tarefa
 - Conjunto de regras para a solução de um problema

O termo algoritmo não é restrito a computação.
 Pode ser aplicado a qualquer circunstância que exija a descrição de uma solução.

Exemplo de Algoritmo

- Receita de Bolo:
 - Entrada: ingredientes e quantidades
 - Processamento: regras para o preparo, sequência de inclusão dos ingredientes, cozimento
 - Saída: o bolo pronto

Uma receita de bolo é um algoritmo.

Exemplo de Algoritmo 2

- Troca de um pneu furado
 - Afrouxar ligeiramente as porcas
 - Suspender o carro
 - Retirar as porcas
 - Retirar o pneu furado
 - Pegar o pneu reserva
 - Colocar o pneu reserva
 - Apertar as porcas
 - Abaixar o carro
 - Dar o aperto final nas porcas

Algoritmo: Somar dois números

Dificuldade: Saber o problema

Como o cliente explicou...

Como o lider de projeto entendeu...

Como o analista projetou...

Como o programador construiu...

Hegócios descreveu...

Como o projeto foi documentado...

Que funcionalidades foram instaladas...

cobrado...

Como foi mantido...

O que o cliente realmente queria...

Passos para um algoritmo

Deve especificar com clareza e de forma correta as instruções que um software deverá conter para que, ao ser executado, forneça resultados esperados.

Etapas:

- Primeiro: Conhecer qual é o problema a ser resolvido pelo software (objetivo do programa)
- Segundo: Extrair todas as informações a respeito desse problema (dados e operações)
- Terceiro: Descrever claramente os passos para se chegar à sua solução. Os passos devem ser colocados em uma sequência lógica.
- Quarto: Temos a especificação do algoritmo.