Clase 20

October 11, 2022

Matrices de transformaciones lineales

Lo que veremos en esta clase es que dados los espacios vectoriales V, $\dim(V) = n$ y W, $\dim(W) = m$ entonces cualquier transformación lineal $T: V \to W$ la podremos pensar como una transformación matricial $T_A: \mathbb{R}^n \to \mathbb{R}^m$.

Pero cómo construir la matriz A adecuada?

Sean V, W dos \mathbb{F} -espacios vectoriales con dim(V) = n y dim(W) = m. Sea $T: V \to W$ una transformación lineal. Consideramos $\mathcal{B}_V = \{v_1, ..., v_n\}$ una base ordenada para V y $\mathcal{B}_W = \{w_1, ..., w_m\}$ una base ordenada para W. Lo que se busca entonces es una matriz A que cumpla lo siguiente:

$$(1) [T(v)]_{\mathcal{B}_W} = A[v]_{\mathcal{B}_V}$$

donde $v \in V$ y $A \in \mathbb{R}^{m \times n}$. En particular podemos intentar ver qué pasa cuando v es un elemento de la base \mathcal{B}_V : Pero obviamente

$$[v_1]_{\mathcal{B}_V} = \left[egin{array}{c} 1 \ 0 \ ... \ 0 \end{array}
ight]$$

pues $v_1 = 1v_1 + 0v_2 + ... + 0v_n$. De forma análoga:

$$[v_2]_{\mathcal{B}_V} = \left[egin{array}{c} 0 \ 1 \ ... \ 0 \end{array}
ight];; [v_n]_{\mathcal{B}_V} = \left[egin{array}{c} 0 \ 0 \ ... \ 1 \end{array}
ight]$$

Entonces si escribimos

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

vemos que

$$A[v_1]_{\mathcal{B}_V} = \left[\begin{array}{cccc} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{array} \right] \left[\begin{array}{c} 1 \\ 0 \\ \dots \\ 0 \end{array} \right] = \left[\begin{array}{c} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{array} \right]$$

o sea que $A[v_1]_{\mathcal{B}_V}$ da la primer columna de A. Análogamente:

$$A[v_2]_{\mathcal{B}_V} = \left[\begin{array}{c} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{array} \right]; \dots; A[v_n]_{\mathcal{B}_V} = \left[\begin{array}{c} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{array} \right]$$

Pero si sustituímos esto en (1) tenemos que

$$[T(v_1)]_{\mathcal{B}_W} = A[v_1]_{\mathcal{B}_V} = \begin{bmatrix} a_{11} \\ a_{21} \\ \dots \\ a_{m1} \end{bmatrix}$$

$$[T(v_2)]_{\mathcal{B}_W} = A[v_2]_{\mathcal{B}_V} = \begin{bmatrix} a_{12} \\ a_{22} \\ \dots \\ a_{m2} \end{bmatrix}$$

$$\dots$$

$$[T(v_n)]_{\mathcal{B}_W} = A[v_n]_{\mathcal{B}_V} = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \\ a_{mn} \end{bmatrix}$$

Es decir que las columnas de A son las coordenadas de los vectores $T(v_k)$ respecto de la base \mathcal{B}_W . Esto es:

$$A = \begin{bmatrix} [T(v_1)]_{\mathcal{B}_W} & [T(v_2)]_{\mathcal{B}_W} & \dots & [T(v_n)]_{\mathcal{B}_W} \end{bmatrix}$$

Vamos a denotar dicha matriz por

$$A = [T]_{\mathcal{B}_W \mathcal{B}_V}$$

Entonces ahora la transformación lineal $T:V\to W$ la podemos manejar mediante su matriz en las bases ordenadas (fijas) y trabajar todo en coordenadas. Es decir (se puede ver) que para evaluar T(v) basta calcular $[T]_{\mathcal{B}_W\mathcal{B}_V}$ y escribir a v en coordenadas respecto de la base de V, o sea $[v]_{\mathcal{B}_V}$ y luego

$$(2) [T]_{\mathcal{B}_W \mathcal{B}_V} [v]_{\mathcal{B}_V} = [T(v)]_{\mathcal{B}_W}$$

Es decir que a la transformación $T:V\to W$ la pensamos como $T_A:\mathbb{R}^n\to\mathbb{R}^m$ donde $A=[T]_{\mathcal{B}_W\mathcal{B}_V}.$

Example 1 Sea $V = P_1$ y $W = P_2$. Y sea $T : P_1 \rightarrow P_2$ la transformación lineal dada por

$$T(p) = xp$$

Elijamos las respectivas bases canónicas (por ejemplo) para los correspondientes espacios:

$$\mathcal{B}_{P_1} = \{1, x\}$$
 $\mathcal{B}_{P_2} = \{1, x, x^2\}$

Entonces sabemos, por lo visto antes, que las columnas de la matriz $A=[T]_{\mathcal{B}_{P_2}\mathcal{B}_{P_1}}$ son las coordenadas $[T(1)]_{\mathcal{B}_{P_2}}$, $[T(x)]_{\mathcal{B}_{P_2}}$. Proseguimos a calcularlas:

$$T(1) = x = (0)1 + (1)x + (0)x^{2}$$

 $T(x) = x^{2} = (0)1 + (0)x + (1)x^{2}$

o sea

$$[T(1)]_{\mathcal{B}_{P_2}} = \left[\begin{array}{c} 0 \\ 1 \\ 0 \end{array}\right] \text{ y } [T(x)]_{\mathcal{B}_{P_2}} = \left[\begin{array}{c} 0 \\ 0 \\ 1 \end{array}\right]$$

entonces la matriz queda

$$A = [T]_{\mathcal{B}_{P_2}\mathcal{B}_{P_1}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Entonces, por ejemplo, si queremos evaluar T(2x+3) bien podemos calcularlo rápido con la definición de T. O bien apicamos que

$$[T]_{\mathcal{B}_W \mathcal{B}_V}[v]_{\mathcal{B}_V} = [T(v)]_{\mathcal{B}_W}$$

que en nuestro caso sería

(*)
$$[T]_{\mathcal{B}_{P_2}\mathcal{B}_{P_1}}[2x+3]_{\mathcal{B}_{P_1}} = [T(2x+3)]_{\mathcal{B}_{P_2}}$$

para lo cual necesitamos calcular primero $[2x+3]_{\mathcal{B}_{P_1}}$:

$$2x + 3 = (3)1 + (2)x$$

es decir

$$[2x+3]_{\mathcal{B}_{P_1}} = \left[\begin{array}{c} 3\\2 \end{array} \right]$$

y luego por (*):

$$[T]_{\mathcal{B}_{P_2}\mathcal{B}_{P_1}}[2x+3]_{\mathcal{B}_{P_1}} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ 3 \\ 2 \end{bmatrix}$$
$$= [T(2x+3)]_{\mathcal{B}_{P_2}}$$

O sea
$$T(2x+3) = (0)1 + (3)x + (2)x^2 = 3x + 2x^2$$
.

La ventaja de trabajar con matrices de una transformación lineal dada es que rápidamente podemos estudiar su núcleo e imagen. Al menos podemos ver su nulidad y su rango. Simplemente debemos estudiar el rango y nulidad de la matriz que la representa. Por ejemplo en este caso al tomar la matriz que representa a la T:

$$A = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array} \right]$$

vemos que si la llevamos a su MERF:

$$A = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{array}\right] \rightarrow f_1 \leftrightarrow f_2 \rightarrow \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array}\right] \rightarrow f_2 \leftrightarrow f_3 \rightarrow \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{array}\right] = R_A$$

vemos rápidamente que rango(A) = 2 y por ende nulidad(A) = 0 (Teorema de la dimensión para matrices). Por ende $Nu(A) = \{0\}$ y luego, como esto representa la transformación lineal T (pensada como T_A) sabemos que por el Teorema 7 (Clase 19) la T es inyectiva. Como rango(A) = 2 esto es que rango(T) = 2 y luego $\dim(\operatorname{Im}(T)) = 2$.

Matriz de un operador lineal

En el caso que V y W sean los mismos $\mathbb{F}-espacios$ vectoriales entonces la $T:V\to V$ es un operador lineal. En este caso podemos tomar una única base ordenada en V para calcular la matriz que represente a dicho T (esto no es obligatorio, también podemos considerar una base para el V como espacio dominio y otra base para V como espacio de llegada).

Suponemos que dim(V) = n. Consideremos una base ordenada para V, $\mathcal{B}_V = \{v_1, ..., v_n\}$. Por lo visto antes las columnas de la matriz $A = [T]_{\mathcal{B}_V \mathcal{B}_V}$, a la cual denotaremos directamente por

$$A = [T]_{\mathcal{B}_V},$$

son las coordenadas:

(*)
$$A = [[T(v_1)]_{\mathcal{B}_V}[T(v_2)]_{\mathcal{B}_V}...[T(v_n)]_{\mathcal{B}_V}].$$

Example 2 Sea $T: \mathbb{R}^2 \to \mathbb{R}^2$ la transformación lineal dada por

$$T(x,y) = (x+y, -2x+4y)$$

Tomemos la base canónica para \mathbb{R}^2 ,

$$\mathcal{C}_{\mathbb{R}^2} = \{(1,0), (0,1)\}$$

entonces aplicamos T a la base $\mathcal{C}_{\mathbb{R}^2}$ y calculamos las coordenadas de T(1,0) y de T(0,1), como indica (*):

$$T(1,0) = (1,-2) = (\mathbf{1})(1,0) + (-\mathbf{2})(0,1)$$

 $T(0,1) = (1,4) = (\mathbf{1})(1,0) + (\mathbf{4})(0,1)$

y entonces la matriz es

$$[T]_{\mathcal{C}_{\mathbb{R}^2}} = \left[\begin{array}{cc} 1 & 1 \\ -2 & 4 \end{array} \right]$$

También podríamos haber elegido otra base como por ejemplo:

$$\mathcal{B}_{\mathbb{R}^2} = \{(1,1), (1,2)\}$$

y entonces calculamos la nueva matriz para T:

$$T(1,1) = (2,2) = (\mathbf{2})(1,1) + (\mathbf{0})(1,2)$$

 $T(1,2) = (3,6) = (\mathbf{0})(1,1) + (\mathbf{3})(1,2)$

$$I(1,2) = (3,0) = (0)(1,1) + (3)(1,$$

y en este caso resulta que la matriz para T queda

$$[T]_{\mathcal{B}_{\mathbb{R}^2}} = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right]$$

que es una matriz diagonal (más linda que la anterior).

Matrices de composiciones de transformaciones lineales y transformaciones inversas

Theorem 3 Sean U, V, W tres \mathbb{F} -espacios vectoriales. Sean $T: U \to V$ y $S: V \to W$ transformaciones lineales. Si \mathcal{B}_U , \mathcal{B}_V y \mathcal{B}_W son tres bases ordenadas para U, V, W respectivamente entonces $(S \circ T: U \to W)$

$$[S \circ T]_{\mathcal{B}_W \mathcal{B}_U} = [S]_{\mathcal{B}_W \mathcal{B}_V} [T]_{\mathcal{B}_V \mathcal{B}_U}$$

Theorem 4 Sea V un \mathbb{F} -espacio vectorial. Y sea $T:V\to V$ un operador lineal. Sea \mathcal{B} una base ordenada para V. Entonces los siguientes ítems son equivalentes:

- 1. T es uno a uno.
- 2. $[T]_{\mathcal{B}}$ es invertible.

Además cuando esto vale se tiene

$$[T^{-1}]_{\mathcal{B}} = ([T]_{\mathcal{B}})^{-1}$$
.

No vamos a demostrar dichos teoremas.

Relación entre la matriz cambio de base y el operador lineal identidad

Recordemos que el operador identidad sobre un \mathbb{F} -espacio vectorial V es $I:V\to V$ definido naturalmente por

$$I(v) = v$$
.

También recordemos cómo era la matriz cambio de base en V :

(Remark 15 de la Clase 16): Dadas dos bases ordenadas $\mathcal{A} = \{\alpha_1, ..., \alpha_n\}$ y $\mathcal{B} = \{\beta_1, ..., \beta_n\}$. Si queremos calcular la matriz cambio de base que nos transfiera desde la base \mathcal{B} a la \mathcal{A} debemos escribir a los vectores de la base \mathcal{B} como combinación lineal de los vectores de la base \mathcal{A} y poner las coordenadas como columnas de P.

$$[P]_{\mathcal{B}\mathcal{A}} = \left[\begin{array}{cccc} [\beta_1]_{\mathcal{A}} & [\beta_2]_{\mathcal{A}} & \dots & [\beta_n]_{\mathcal{A}} \end{array} \right].$$

Y entonces tenemos el siguiente...

Theorem 5 Dado V un \mathbb{F} -espacio vectorial. Y sean $\mathcal{A} = \{\alpha_1, ..., \alpha_n\}$ y $\mathcal{B} = \{\beta_1, ..., \beta_n\}$ bases ordenadas para V. Entonces la matriz del operador identidad con respeto a las bases \mathcal{B} y \mathcal{A} , $[I]_{\mathcal{A}\mathcal{B}}$ es en realidad la matriz cambio de base $[P]_{\mathcal{B}\mathcal{A}}$.

Proof. Como $I: V \to V$ y considerando \mathcal{B} como la base del dominio y \mathcal{A} como la base de la llegada podemos calcular la matriz del I con respecto a dichas bases. Como hicimos antes dicha matriz tiene por columnas a las coordenadas:

$$\begin{split} [I]_{\mathcal{A}\mathcal{B}} &= & \left[\begin{array}{cccc} [I(\beta_1)]_{\mathcal{A}} & [I(\beta_2)]_{\mathcal{A}} & \dots & [I(\beta_n)]_{\mathcal{A}} \end{array} \right] \\ &= & \left[\begin{array}{cccc} [\beta_1]_{\mathcal{A}} & [\beta_2]_{\mathcal{A}} & \dots & [\beta_n]_{\mathcal{A}} \end{array} \right] \\ &= & [P]_{\mathcal{B}\mathcal{A}} \end{aligned}$$

Cambio de base para las matrices de un operador lineal

Ahora si tenemos dos bases \mathcal{B} y \mathcal{A} para un \mathbb{F} -espacio vectorial V. ¿Qué relación habrá entre $[T]_{\mathcal{B}}$ y $[T]_{\mathcal{A}}$?

Theorem 6 Sea V un \mathbb{F} -espacio vectorial, sea $T: V \to V$ un operador lineal y sean $\mathcal{A} = \{\alpha_1, ..., \alpha_n\}$ $y \mathcal{B} = \{\beta_1, ..., \beta_n\}$ bases ordenadas para V. Entonces

$$[T]_{\mathcal{B}} = P^{-1}[T]_{\mathcal{A}}P$$

donde P es la matriz de cambio de base de \mathcal{B} a la \mathcal{A} , $P = [P]_{\mathcal{B}\mathcal{A}}$.

Proof. Solo basta tener en cuenta que podemos componer a T con el operador identidad I:

$$T = I \circ T \circ I$$

y entonces la matriz de T respecto de la base \mathcal{B} es

$$[T]_{\mathcal{B}} = [I \circ T \circ I]_{\mathcal{B}}$$

(No olvidar que $[T]_{\mathcal{B}}$ es la matriz de T con respeto a la misma base en V: $[T]_{\mathcal{B}\mathcal{B}}$)

Ahora podemos aplicar el Teorema que nos dice cómo calcular la matriz de una composición:

$$\begin{split} [T]_{\mathcal{B}} &= [I \circ T \circ I]_{\mathcal{B}} \\ &= [(I \circ T) \circ I]_{\mathcal{B}\mathcal{B}} \\ &= [I \circ T]_{\mathcal{B}\mathcal{A}}[I]_{\mathcal{A}\mathcal{B}} \\ &= [I]_{\mathcal{B}\mathcal{A}}[T]_{\mathcal{A}\mathcal{A}}[I]_{\mathcal{A}\mathcal{B}} \\ &= [P]_{\mathcal{A}\mathcal{B}}[T]_{\mathcal{A}}[P]_{\mathcal{B}\mathcal{A}} \\ &= P^{-1}[T]_{\mathcal{A}}P \end{split}$$

Example 7 Consideramos nuevamente la transformación lineal $T: \mathbb{R}^2 \to \mathbb{R}^2$ dada por

$$T(x,y) = (x+y, -2x+4y)$$

Si tomamos la base canónica $C = \{(1,0), (0,1)\}$ vimos que

$$[T]_{\mathcal{C}} = \left[\begin{array}{cc} 1 & 1 \\ -2 & 4 \end{array} \right]$$

Si ahora tomamos la base $\mathcal{B} = \{(1,1), (1,2)\}$ y queremos calcular $[T]_{\mathcal{B}}$ basta calcular la matriz cambio de base $[P]_{\mathcal{BC}}$ (y su inversa) ya que por el Teorema anterior se tiene:

(*)
$$[T]_{\mathcal{B}} = [P]_{\mathcal{C}\mathcal{B}}[T]_{\mathcal{C}}[P]_{\mathcal{B}\mathcal{C}}$$

Pero para calcular $[P]_{\mathcal{BC}}$ escribimos a los vectores de la base \mathcal{B} como combinación lineal de la base \mathcal{C} :

$$(1,1) = (\mathbf{1})(1,0) + (\mathbf{1})(0,1)$$

$$(1,2) = (1)(1,0) + (2)(0,1)$$

y ponemos las coordenadas en columna:

$$[P]_{\mathcal{BC}} = \left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array} \right]$$

calculamos su inversa $[P]_{\mathcal{CB}} = ([P]_{\mathcal{BC}})^{-1}$

$$[P]_{\mathcal{CB}} = \left[\begin{array}{cc} 2 & -1 \\ -1 & 1 \end{array} \right]$$

y reemplazamos en (*):

$$[T]_{\mathcal{B}} = [P]_{\mathcal{C}\mathcal{B}}[T]_{\mathcal{C}}[P]_{\mathcal{B}\mathcal{C}}$$

$$= \left(\begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix} \right) \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 4 & -2 \\ -3 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$$

como también habíamos calculado más arriba.