Review for Midterm 1

1. Find the constant c that makes g continuous on $(-\infty, \infty)$.

$$g(x) = \begin{cases} x^2 - c^2, & x < 4 \\ cx + 20, & x \ge 4 \end{cases}$$

2. Find the average rate of change for the function $f(x) = x^3 + 1$ over the interval [2,3].

3. Find $\lim_{h\to 0} \frac{3}{\sqrt{3h+1}+1}$

4. Determine $\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$

5. Prove using the ϵ , δ definition of limit that $\lim_{x\to 6} \left(\frac{x}{4}+3\right) = \frac{9}{2}$.

6. Calculate the derivative of $f(x) = x^2$ at the point x = 1 using the definition of derivative.

7. Find $\lim_{x \to \infty} \frac{2x+5}{x^2-7x+3}$

8. If f(x) is a continuous function and if $x^4 \le f(x) \le x^2$ for $-1 \le x \le 1$, are there any points a such that you can determine $\lim_{x\to a} f(x)$?

- 9. Find the domain and range of $g(x) = \frac{1}{x+1}$
- 10. Prove using the $\epsilon,\,\delta$ definition of limit that $\lim_{x\to 4} 9 x = 5$

11. Find $\lim_{x\to 0} \frac{\sin 2x}{\sin x}$

12. Find $\lim_{\theta \to 0} \frac{\sin \sqrt{2}\theta}{\sqrt{2}\theta}$

13. Find the derivative of $f(x) = 15 - x + 4x^2 - 4x^4$

- 14. Find $\lim_{x \to \infty} \frac{2}{x} 3$
- 15. Calculate the derivative of f(x) = 3x 4 using the definition of derivative.

- 16. True or false: If $\lim_{x\to a} f(x)$ exists, and $\lim_{x\to a^+} f(x) = c$, then $\lim_{x\to a} f(x) = c$.
- 17. Find the derivative of $g(x) = (x^3 7)(2x^2 + 3)$

18. Determine $\lim_{x\to 9} \frac{\sqrt{x}-3}{x-9}$

19. For what value of b is the function $g(x) = \begin{cases} x, & x < -2 \\ bx^2, & x \ge -2 \end{cases}$ continuous?

20. Let f be the function defined by the requirement that for any x one has y = f(x) if and only if y is the largest of all possible solutions of $2y^2 = -2x - 5xy$. Graph f and find a formula. What is the domain and range?

21. Find the derivative of $g(x) = (8x^2 - 5x)(13x^2 + 4)$

22. True or false: If f(x) and g(x) are continuous for $0 \le x \le 1$, the $\frac{f(x)}{g(x)}$ is continuous for $0 \le x \le 1$.

23. Find the derivative of $f(x) = \frac{4x-5}{3x+2}$

24. Find
$$\lim_{x \to \infty} \frac{2x+3}{5x+7}$$

25. Prove using the ϵ , δ definition of limit that $\lim_{x\to 9} \sqrt{x-5} = 2$.

26. Find
$$\lim_{x \to 3} \frac{1}{(x-3)^2}$$

27. Find an examples of functions f(x) and g(x) and a number a where $\lim_{x\to a} f(x)g(x)$ exists, but $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ do not exist.

28. Find the derivative of $f(x) = \frac{1}{1+x+x^2+x^3}$

29. Find $\lim_{x \to \infty} \frac{\sin 2x}{1+x^2}$

30. Evaluate $\lim_{u \to \infty} \frac{(2u+1)^3}{(3u^2+1)^2}$.

31. Find $\lim_{x\to 0} \frac{\tan 2x}{x}$

32. If f and g are functions such that f(2) = 3, f'(2) = -1, g(2) = -5, and g'(2) = 2, find h'(2) for

(a)
$$h(x) = 2f(x) - g(x)$$

(b)
$$h(x) = 5f(x) + 3g(x)$$

(c)
$$h(x) = g(x)g(x)$$

(d)
$$h(x) = \frac{1}{f(x) + g(x)}$$

 $33. \ \,$ Express the following limits as in the definition of limit.

(a)
$$\lim_{t \to c} v(t) = K$$

(b)
$$\lim_{t \to b} f(t) = M$$

34. Calculate the derivative of $f(x) = \sqrt{x}$ at x = 7 using the definition of derivative.

35. Find the derivative of $g(x) = \frac{1}{\sin x \tan x}$

36. Determine $\lim_{x \to -2} \frac{-2x-4}{x^3+2x^2}$

37. True or false: If f(s) = f(t), then s = t.

38. Prove using the $\epsilon, \, \delta$ definition of limit that $\lim_{x \to 1} \frac{1}{x} = 1$.

39. A function f is given that satisfies $f(3x+1)=x^3$. Find f(x).

40. Find $\lim_{x\to 0} \frac{x+x\cos x}{\sin x\cos x}$

41. Prove using the ϵ , δ definition of limit that $\lim_{x\to 1} 2x - 4 = 2$.

- 42. True or false:
 - (a) For all real numbers x, we have $\sin(\arcsin x) = x$
 - (b) For all real numbers x, we have $\arcsin(\sin x) = x$
- 43. Find $\frac{dy}{dx}$ if $y = \frac{3x-1}{x^2}$

44. Find the average rate of change for the function $f(x) = \sqrt{4x+1}$ over the interval [0,2].

45. Determine $\lim_{h\to 0} \frac{\sqrt{3h+1}-1}{h}$

46. Find the second derivative of $y = \frac{3x+4}{x+1}$

47. Prove using the ϵ , δ definition of limit that $\lim_{x\to\sqrt{3}}\frac{1}{x^2}=\frac{1}{3}$.

48. Find the derivative of $f(\theta) = \frac{\sin \theta}{\theta}$

49. Find $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ when $f(x)\sqrt{2x}$

50. True or false: If $\lim_{x\to 6} f(x)g(x)$ exists, then the limit must be f(6)g(6).

51. Find $\lim_{x\to 0} \frac{\tan 3x}{\sin 8x}$

52. Find the derivative of $f(t) = t - t^2 \cos t$

53. Find
$$\lim_{x\to 2} \frac{1}{x-2}$$

54. Evaluate
$$\lim_{x\to 4^+} \frac{3}{x-4}$$
 and $\lim_{x\to 4^-} \frac{3}{x-4}$

55. Determine
$$\lim_{x\to 5} \frac{x-5}{x^2-25}$$

56. For what value of
$$a$$
 if $f(x) = \begin{cases} x^2 - 1, & x < 3 \\ 2ax, & x \ge 3 \end{cases}$ continuous?

- 57. True or false: If f(x) and g(x) are continuous at 0, then f(g(x)) is continuous at 0.
- 58. Find the derivative of $f(x) = 4\cos x$

59. Find $\lim_{x \to \infty} \cos x$

60. Find $\lim_{x\to 0} \frac{\sin 4x}{\sin 6x}$

ANSWERS

3.
$$\frac{3}{2}$$

4.
$$\frac{3}{2}$$

8.
$$-1, 0, 1$$
.

13.
$$f'(x) = -1 + 8x - 20x^3$$

$$14. -3$$

17.
$$g'(x) = 10x^4 + 9x^2 - 28x$$

18.
$$\frac{1}{6}$$

21.
$$g'(x) = 416x^3 - 195x^2 + 64x - 20$$

23.
$$f'(x) = \frac{23}{(3x+2)^2}$$

$$24. \frac{2}{5}$$

26.
$$\infty$$

28.
$$f'(x) = -\frac{1+2x+3x^2}{(1+x+x^2+x^3)^2}$$

32. (a)
$$-4$$

(c)
$$-20$$

(d)
$$-\frac{1}{4}$$

33. (a) For every
$$\epsilon > 0$$
, there is a $\delta > 0$ such that if $0 < |t-c| < \delta$, then $|v(t) - K| < \epsilon$

34.
$$\frac{1}{2\sqrt{7}}$$

35.
$$-\csc x(1+2\cot^2 x)$$

36.
$$-\frac{1}{2}$$

$$40.\ 2$$

42. True or false:

(a) T

43.
$$\frac{dy}{dx} = \frac{-3x+2}{x^3}$$

45.
$$\frac{3}{2}$$

46.
$$\frac{2}{(x+1)^3}$$

48.
$$\frac{\theta\cos\theta-\sin\theta}{\theta^2}$$

49.
$$\frac{1}{\sqrt{2x}}$$

51.
$$\frac{3}{8}$$

52.
$$f'(t) = t^2 \sin t - 2t \cos t + 1$$

53. DNE (it approaches $\pm \infty$ from each direction)

54.
$$\infty, -\infty$$

55.
$$\frac{1}{10}$$

58.
$$4\sin x$$

60.