

... but how does recombination affect molecular evolution?

- We've shown recombination
 - Can combine good mutations
 - Helps selection get rid of bad mutations from a population

 But what about how it affects variation in **neutral** sequences (have no effect on fitness)

First, how do we "quantify molecular variation?

- CAGAGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGATCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA
- CAGAAATCGATCGATCGCCCCTTTCGTAATTA
- CAGAAATCGATCGATCGCCCCTTTCGCAATTA

- π = average number of pairwise mismatches (2pq)
- AGC TAT ATT CAT CAC GGG TT
- AGT TAT ATT CAC CAC GGA TT
- AGC TAT ATT CAT CAC GGG TT

- π = average number of pairwise mismatches (2pq)
- AGC TAT ATT CAT CAC GGG TT ¬
- AGT TAT ATT CAC CAC GGA TT 3
- AGC TAT ATT CAT CAC GGG TT

- π = average number of pairwise mismatches (2pq)
- AGC TAT ATT CAT CAC GGG TT
- AGT TAT ATT CAC CAC GGA TT 3
 AGC TAT ATT CAT CAC GGG TT 3

- π = average number of pairwise mismatches (2pq)
- AGC TAT ATT CAT CAC GGG TT
- AGT TAT ATT CAC CAC GGA TT
 AGC TAT ATT CAT CAC GGG TT

- π = average number of pairwise mismatches (2pq)
- AGC TAT ATT CAT CAC GGG TT
 AGT TAT ATT CAC CAC GGA TT
 AGC TAT ATT CAT CAC GGG TT

- $\pi = (3 + 3 + 0) / \text{number of sequences } (3) = 2$
- $\pi per site = 2 / \# bases (20) = 0.1 (10\%)$

- π = average number of pairwise mismatches (2pq)
- AGC TAT ATT CAT CAC GGG TT
 AGT TAT ATT CAC CAC GGA TT
 AGC TAT ATT CAT CAC GGG TT

- $\pi per site = 2 / \# bases (20) = 0.1 (10\%)$
- π per site is greater when there are more bases differing among individuals

... but how does recombination affect molecular evolution?

- We've shown recombination
 - Can combine good mutations
 - Helps selection get rid of bad mutations from a population

 But what about how it affects variation in **neutral** sequences (have no effect on fitness)

Let's first assume no recombination

- CAGAGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGCCCCTTTCGTAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTA

Let's first assume no recombination

- CAGAGATCGATCGCCCCTTTCGCĂATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA Good
 - mutation CAGAGATCGATCGCCCCTTTCGTAATTA
 - CAGAAATCGATCGCCCCTTTCGC

Let's first assume no recombination

- CAGAGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTC mutation

 - CAGAAATCGATCGATCGCCCCTTTCGCAATTG

Let's first assume no recombination

- CAGAÄATCGATCGATCGCCCCTTTCGCÄATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG

Hitchhiking with a sweep

- "Selective sweep" is spread of an advantageous allele throughout population by natural selection and associated loss of variation near it
 - New mutation at base 4 generated a "selective sweep"
- "Hitchhiking" is spread of other nearby alleles along with the advantageous one because of linkage (lack of recombination)
 - SNPs 1-3 (A-A-C) all "hitchhiked" with base 4
 - ALL old variation at those SNPs was lost!

... but what if there WAS lots of recombination among the sites???

- CAGAGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTA
- CAGAGATCGATCGCCCCTTTCGTAATTA Good
 CAGAAATCGATCGCCCCCTTTCGTAATTA mutation
 - CAGAAATCGATCGATCGCCCCTTTCGCAATTG^f

... but what if there WAS lots of recombination among the sites???

- CAGAGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTA
- CAGAGATCGATCGCCCCTTTCGTAATTA Good
 CAGAAATCGATCGCCCCTTTCGCAATTG mutation
 - CAGAAATCGATCGCCCCTTTCGCAATTG

Get some recombination:

 One heterozygous individual experiences crossing over before making gamete:

CAGAGATCGATCGTTCGCCCCTTTCGTAATTA

CAGAAATCGATCGCCCCTTTCGCAATTG

Get some recombination:

 One heterozygous individual experiences crossing over before making gamete:

CAGAGATCGATCGTTCGCCCCTTTCGTAATTA

CAGAAATCGATCGCCCCTTTCGCAATTG

Get some recombination:

 One heterozygous individual experiences crossing over before making gamete:

CAGAGATCGATCGTTCGCCCCTTTCGTAATTA

CAGAAATCGATCGCCCCTTTCGCAATTG

... but what if there WAS lots of recombination among the sites???

- CAGAGATCGATCGCCCCTTTCGCAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGTAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGTAATTA
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTA
- CAGAAATCGATCGCCCCTTTCGCAATTA
- CAGAGATCGATCGTTCGCCCCTTTCGCAATTG Good
 CAGAAATCGATCGCCCCCTTTCGCAATTG mutation
 - CAGAAATCGATCGATCGCCCCTTTCGCAATTG

... but what if there WAS lots of recombination among the sites???

- CAGAGATCGATCGCCCCTTTCGCAATTG
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGTAATTG
- CAGAGATCGATCGTTCGCCCCTTTCGCAATTG
- CAGAAATCGATCGTTCGCCCCTTTCGCAATTG
- CAGAAATCGATCGCCCCTTTCGCAATTG
- CAGAGATCGATCGCCCCTTTCGCAATTC mutatio
 - CAGAAATCGATCGCCCCTTTCGCAATTG mutation
 - CAGAAATCGATCGATCGCCCCTTTCGCAATTG

Recap- what happened with recombination?

- Mutation at site 4 still spread
- Recombination allowed SNPs 1 and 2 to maintain variation (2 abundant alleles)
 - Other alleles recombined onto chromosomes bearing the sweeping allele at site 4 (π not reduced in left)

Recap- what happened with recombination?

- Mutation at site 4 still spread
- Recombination allowed SNPs 1 and 2 to maintain variation (2 abundant alleles)
 - Other alleles recombined onto chromosomes bearing the sweeping allele at site 4 (π not reduced in left)
- At SNP 3, MOST of the population got one allele
 - Most chromosomes have same allele at SNP 3 after sweep
 - One SNP 3 allele became very common by hitchhiking
 - But other allele was not completely lost
 - π greatly reduced in right half (unlike left)

Example: variation at SNP near *EPAS1*

3,890 m

- EPAS1 affects tolerance to low oxygen
- Evidence for recent sweep & hitchhiking in Tibetan (high-altitude) populations
- "A" SNP frequency in Europe: 0.46
 - Mutation for tolerance to low O₂ near SNP in China
 - Arose on chromosome with "A" allele at SNP

Example: variation at SNP near *EPAS1*

3,890 m

- EPAS1 affects tolerance to low oxygen
- Evidence for recent sweep & hitchhiking in Tibetan (high-altitude) populations
- "A" SNP frequency in Europe: 0.46
 - Mutation for tolerance to low O₂ near SNP in China
 - Arose on chromosome with "A" allele at SNP
- "A" SNP frequency in Tibet: 0.89

Three Principles:

Adaptive alleles can "sweep"

- SNP/ marker alleles near adaptive allele (with zero or low recombination) hitchhike
 - π typically reduced

- SNP/ marker alleles far from adaptive allele (with high recombination) don't hitchhike
 - π not typically reduced

Example from a lab exercise

- Started with white-eyed population
- Introduced advantageous red-eye allele
 - Will "Near" or "Far" marker allele hitchhike?
 - Do we expect π to be reduced at "Near" region?
 - Do we expect π to be reduced at "Far" region?

Red / White eye color gene

