# **CO2** Emission from Cereal Food Production

Nomvume Sandi

#### Introduction

The aim of the project is to compare the total amount of emissions produced by countries and the product contribution due to converting from Forest to agriculture land. The data extracted from Ritchie(2021), gives an overview of countries emission , agriculture land use which are rice , wheat and other cereals. Lastly the deforestation emission per capita. Various statistical analysis will be performed to show variation and impact and trends of the deforestation to CO2 emissions. The data comprises of countries (entity and code ) , amount of emissions by products (emissions and per capital emission).



Figure 1: Figure 1: Indian Rice farm

```
library(tidyverse)
library(skimr)
library(knitr)
```

Rows: 132 Columns: 5

-- Column specification -----

Delimiter: ","

chr (3): entity, code, products

dbl (2): emission, per\_capital\_emission

- i Use `spec()` to retrieve the full column specification for this data.
- i Specify the column types or set `show\_col\_types = FALSE` to quiet this message.

```
emission_data <- emission_data |>
  mutate(kilo_emission =emission/1000)
```

# **Exploratory data analysis**

In the following analysis it will give an overview of the data , what data comprises of. To view the top and last rows of the data which is a quick snapshot. Summary provides 5 number summary min, max,mean ,median and quartiles.

```
head(emission_data) |>
  kable()
```

| entity    | code | products      | emission  | per_capital_emission | kilo_emission |
|-----------|------|---------------|-----------|----------------------|---------------|
| Australia | AUS  | Rice          | 879389.07 | 0.5242982            | 879.38907     |
| Australia | AUS  | Wheat         | 41496.59  | 0.5242982            | 41.49659      |
| Australia | AUS  | Other Cereals | 89034.21  | 0.5242982            | 89.03421      |
| Austria   | AUT  | Rice          | 184118.42 | 0.3532005            | 184.11842     |
| Austria   | AUT  | Wheat         | 15495.06  | 0.3532005            | 15.49506      |
| Austria   | AUT  | Other Cereals | 30146.20  | 0.3532005            | 30.14620      |

```
tail(emission_data) |>
  kable()
```

| entity  | code | products      | emission  | per_capital_emission | kilo_emission |
|---------|------|---------------|-----------|----------------------|---------------|
| United  | GBR  | Rice          | 1279478.7 | 0.3912465            | 1279.4787     |
| Kingdom |      |               |           |                      |               |
| United  | GBR  | Wheat         | 119004.5  | 0.3912465            | 119.0045      |
| Kingdom |      |               |           |                      |               |
| United  | GBR  | Other Cereals | 248065.5  | 0.3912465            | 248.0655      |
| Kingdom |      |               |           |                      |               |

| entity        | $\operatorname{code}$ | products      | emission  | per_capital_emission | kilo_emission |
|---------------|-----------------------|---------------|-----------|----------------------|---------------|
| United States | USA                   | Rice          | 4564029.4 | 0.3465427            | 4564.0294     |
| United States | USA                   | Wheat         | 761894.5  | 0.3465427            | 761.8945      |
| United States | USA                   | Other Cereals | 1027923.6 | 0.3465427            | 1027.9236     |

### str(emission\_data)

To compare the emissions regardless of the product factor comparing the minimum and maximum , the max is 47 times more than the min which shows variation of the emissions produced.

### summary(emission\_data)

skim(emission\_data)

| entity             | code             | products         | emission        |
|--------------------|------------------|------------------|-----------------|
| Length: 132        | Length: 132      | Length:132       | Min. : 1309     |
| Class :character   | Class :character | Class :character | 1st Qu.: 17533  |
| Mode :character    | Mode :character  | Mode :character  | Median : 79844  |
|                    |                  |                  | Mean : 933255   |
|                    |                  |                  | 3rd Qu.: 316456 |
|                    |                  |                  | Max. :62291319  |
| per_capital_emissi | on kilo_emission |                  |                 |
| Min. :0.06882      | Min. : 1.31      |                  |                 |
| 1st Qu.:0.20271    | 1st Qu.: 17.53   |                  |                 |
| Median :0.38503    | Median: 79.84    | :                |                 |
| Mean :0.50759      | Mean : 933.25    |                  |                 |
| 3rd Qu.:0.50162    | 3rd Qu.: 316.46  |                  |                 |
| Max. :2.77977      | Max. :62291.32   |                  |                 |
|                    |                  |                  |                 |

Table 3: Data summary

| Name                   | emission data |
|------------------------|---------------|
| Number of rows         | 132           |
| Number of columns      | 6             |
| Column type frequency: |               |
| character              | 3             |
| numeric                | 3             |
| Group variables        | None          |

### Variable type: character

| skim_variable | n_missing | complete_rate | min | max | empty | n_unique | whitespace |
|---------------|-----------|---------------|-----|-----|-------|----------|------------|
| entity        | 0         | 1             | 5   | 14  | 0     | 44       | 0          |
| code          | 0         | 1             | 3   | 3   | 0     | 44       | 0          |
| products      | 0         | 1             | 4   | 13  | 0     | 3        | 0          |

# Variable type: numeric

| skim_variable | n_missi <b>ng</b> n | nplete_ | _ratan | $\operatorname{sd}$ | p0              | p25     | p50               | p75              | p100       | hist |
|---------------|---------------------|---------|--------|---------------------|-----------------|---------|-------------------|------------------|------------|------|
| emission      | 0                   | 1       | 933254 | .932513554          | . <b>83</b> 08. | 8417532 | .8 <b>6</b> 9843. | <b>73</b> 16456. | .062291319 | 9.14 |
| per_capital_e | emiss <b>i</b> øn   | 1       | 0.51   | 0.56                | 0.07            | 0.20    | 0.39              | 0.50             | 2.78       |      |
| kilo_emission | 0                   | 1       | 933.25 | 5513.55             | 1.31            | 17.53   | 79.84             | 316.46           | 62291.32   |      |

#### Visualization

The analysis will allow a visualization of countries with the highest amount of the emissions will only show the most 10 countries with highest emissions and the countries with lowest emission. Lastly a summary of products contributing to the emissions.

```
total_emissions <- emission_data|>
  group_by(code) |>
  summarize(total_emission = sum(kilo_emission, na.rm = TRUE))

total_emissions |>
  kable()
```

| code                 | total_emission |
|----------------------|----------------|
| AUS                  | 1009.91987     |
| AUT                  | 229.75968      |
| $\operatorname{BEL}$ | 595.69876      |
| BGR                  | 40.87139       |
| BRA                  | 15718.37656    |
| $\operatorname{CAN}$ | 882.78948      |
| CHE                  | 393.39554      |
| CHN                  | 6109.72339     |
| CYP                  | 25.70653       |
| CZE                  | 158.37562      |
| DEU                  | 1988.00595     |
| DNK                  | 199.78931      |
| ESP                  | 1196.69436     |
| EST                  | 33.11000       |
| FIN                  | 147.27767      |
| FRA                  | 1885.50176     |
| GBR                  | 1646.54864     |
| GRC                  | 129.02292      |
| HRV                  | 36.09888       |
| HUN                  | 80.17478       |
| IDN                  | 64161.32172    |
| IND                  | 3471.96060     |
| IRL                  | 224.79825      |
| ITA                  | 1462.99509     |
| $_{ m JPN}$          | 2932.99163     |
| KOR                  | 1473.68790     |
| LTU                  | 33.60716       |
| LUX                  | 79.63687       |
| LVA                  | 19.24015       |
| MEX                  | 5021.20101     |
| MLT                  | 14.47665       |
| NLD                  | 799.34081      |
| NOR                  | 244.03889      |
| POL                  | 398.85900      |
| PRT                  | 222.55816      |
| ROU                  | 106.11337      |
| RUS                  | 1128.60563     |
| SVK                  | 98.91165       |
| SVN                  | 38.10742       |
| SWE                  | 270.59773      |
| TUR                  | 656.27742      |
|                      |                |

| code | total_emission |
|------|----------------|
| TWN  | 901.87440      |
| USA  | 6353.84751     |
| ZAF  | 567.75907      |

```
top_20_emissions <- total_emissions |>
    slice_max(order_by = total_emissions, n = 20)

top_20_emissions |>
    kable()
```

| code | total_emission |
|------|----------------|
| ZAF  | 567.75907      |
| USA  | 6353.84751     |
| TWN  | 901.87440      |
| TUR  | 656.27742      |
| SWE  | 270.59773      |
| SVN  | 38.10742       |
| SVK  | 98.91165       |
| RUS  | 1128.60563     |
| ROU  | 106.11337      |
| PRT  | 222.55816      |
| POL  | 398.85900      |
| NOR  | 244.03889      |
| NLD  | 799.34081      |
| MLT  | 14.47665       |
| MEX  | 5021.20101     |
| LVA  | 19.24015       |
| LUX  | 79.63687       |
| LTU  | 33.60716       |
| KOR  | 1473.68790     |
| JPN  | 2932.99163     |

```
Bottom_20_emission <- total_emissions |>
    slice_min(order_by = total_emissions, n = 20)

Bottom_20_emission |>
    kable()
```

| code                 | total_emission |
|----------------------|----------------|
| AUS                  | 1009.91987     |
| AUT                  | 229.75968      |
| $\operatorname{BEL}$ | 595.69876      |
| BGR                  | 40.87139       |
| BRA                  | 15718.37656    |
| CAN                  | 882.78948      |
| CHE                  | 393.39554      |
| CHN                  | 6109.72339     |
| CYP                  | 25.70653       |
| CZE                  | 158.37562      |
| DEU                  | 1988.00595     |
| DNK                  | 199.78931      |
| ESP                  | 1196.69436     |
| EST                  | 33.11000       |
| FIN                  | 147.27767      |
| FRA                  | 1885.50176     |
| GBR                  | 1646.54864     |
| GRC                  | 129.02292      |
| HRV                  | 36.09888       |
| HUN                  | 80.17478       |
|                      |                |

The results shows America followed by Mexico and Japan in emission production regardless of the product they emit with have highest production of emissions. In the bottom 20 with the least amount of emission is Cyprus, Estonia and Croatia respectively. With the Rice conversion contributing the most to the emissions.

```
ggplot(top_20_emissions, aes(x = reorder(code, total_emission), y = total_emission)) +
  geom_bar(stat = "identity", fill = "steelblue") +
  labs(
    x = "Country Code",
    y = "Total Emission",
    title = "Top 20 Total Emissions per Country") +
  coord_flip() +
  theme_light()
```

Top 20 Total Emissions per Country



```
ggplot(Bottom_20_emission, aes(x = reorder(code, total_emission)), y = total_emission)) +
geom_bar(stat = "identity", fill = "red") +
labs(
    x = "Country Code",
    y = "Total Emission",
    title = "Bottom 20 Total Emissions per Country"
) +
coord_flip() +
theme_light()
```

# Bottom 20 Total Emissions per Country



```
product_emissions <- emission_data |>
  group_by(products) |>
  summarize(total_emission = sum(emission, na.rm = TRUE))

product_emissions |>
  kable()
```

| products      | total_emission |
|---------------|----------------|
| Other Cereals | 9637471        |
| Rice          | 101948790      |
| Wheat         | 11603388       |

```
ggplot(
  product_emissions,
  aes(
    x = fct_reorder(products, total_emission),
    y = total_emission,
    fill = products)
) +
  geom_bar(stat = "identity") +
  labs(
    title = "Total Emissions by Product",
```

```
x = " By Product",
y = "Total Emissions",
fill = "Product"
) +
theme_classic()
```



# Inferential Statistical analysis

The Anova analysis conducted to test difference between products and emissions.

- Null Hypothesis (H0): There is no significant difference in mean emissions between product and emission produced
- Alternative Hypothesis (H1): There is a significant difference in mean emissions between product and emission produced.

```
anova_result <- aov(kilo_emission ~ products, data = emission_data)
summary(anova_result)</pre>
```

```
Df Sum Sq Mean Sq F value Pr(>F)
products 2 1.264e+08 63210365 2.115 0.125
Residuals 129 3.856e+09 29890588
```

**F-value**: The F-value of 2.115 is the ratio of the variance between the groups (products) to the variance within the groups (residuals).

**p-value**: The p-value of 0.125 is greater than the commonly used significance level of 0.05. This suggests that the observed differences among group means are not statistically significant.

Since the p-value (0.125) is greater than 0.05 we fail to reject the null hypothesis, this mean emissions do not differ significantly between the products.

```
ggplot(emission_data, aes(x = products, y = kilo_emission, fill = products)) +
  geom_boxplot() +
  labs(
    title = "Emissions by Product",
    x = "Product",
    y = "Emission"
  ) +
  theme_minimal()
```

# **Emissions by Product**



```
emission_data |>
  ggplot(aes(products, emission)) +
  geom_point() +
  geom_smooth( se = FALSE, method = "lm" ) +
  ggtitle("Product vs Emission") +
  theme_bw()
```

`geom\_smooth()` using formula = 'y ~ x'



# Conclusion

The amount of emission are influenced by the products individually the is no link in terms of products. Each products have its own contribution to the emission in general. Also the increase in per\_capita\_emission is the contribution of the deforestation.

products