About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example
Advantages over other techniques
Application on Unit commitment problem

GREY WOLF OPTIMIZER(GWO)

Dr. Rajesh Kumar Associate Professor

ELECTRICAL ENGINEERING
MNIT JAIPUR

April 17, 2015

OUTLINE

About Grev Wolf Developers of Algorithm Wolf behaviour in nature Example Advantages over other techniques Application on Unit commitment problem

OUTLINE

- Algorithm

 Algorithm developments human wordpress

 Algorithm developments human antages of the second secon Wolf behaviour in nature

- 6 Advantages over other techniques
- Application on Unit commitment problem

About Grey Wolf

- Wolf is characterised by power full teeth, bushy tail and lives and hunts in packs. The average group size is 5-12.
- Their natural habitats are found in the mountains, forests, plains of North America, Asia and Europe.
- Grey wolf (Canis lugus) belongs to Canidae family.
- Grey wolves are considered as apex predators, meaning that they are at the top of the food chain.

OUTLINE About Grey Wolf Developers of Algorithm Wolf behaviour in nature Algorithm development Example Advantages over other techniques

Application on Unit commitment problem

Developers of Algorithm

Seyedali Mirjalili

Seyed Mohammad Mirjalili

Andrew Lewis

OUTLINE
About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example
Advantages over other techniques

Social behaviour Hunting behaviou

Wolf behaviour in nature

Social behaviour

- Hierarchy exits in pack
- ullet lpha is the leader and decision maker.

Application on Unit commitment problem

- β and δ assist α in decision making.
- Rest of the wolves (ω) are followers.

Application on Unit commitment problem

Social behaviour Hunting behaviour

Wolf behaviour in nature

Hunting behaviour

Group hunting behaviour is of equal interest in studying optimization.

- Tracking, chasing, and approaching the prey.
- Pursuing, encircling, and harassing the prey until it stops moving.
- Attacking the prey.

About Grey Wolf
About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example
Advantages over other techniques

Social behaviour Hunting behaviour

Approach, track and pursuit

About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example
Advantages over other techniques

Social behaviour Hunting behaviour

About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example
Advantages over other techniques

Social behaviour Hunting behaviour

About Grey Wolf

About Grey Wolf

Developers of Algorithm

Wolf behaviour in nature

Algorithm development

Example

Advantages over other techniques

Social behaviour Hunting behaviour

About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example
Advantages over other techniques
Application on Unit commitment problem

Social behaviour Hunting behaviour

At the end when the prey stops, wolves make a approximate regular polygon around it and lay down

OUTLINE
About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development

Advantages over other techniques Application on Unit commitment problem

Algorithm development

Social hierarchy

In order to mathematically model the social hierarchy of wolves when designing GWO, we consider the fittest solution as the alpha (α) . Consequently, the second and third best solutions are named beta (β) and delta (δ) respectively. The rest of the candidate solutions are assumed to be omega (ω) . In the GWO algorithm the hunting (optimization) is guided by α , β , and δ . The ω wolves follow these three wolves.

About Grey Wolf Wolf behaviour in nature Algorithm development

Advantages over other techniques Application on Unit commitment problem

Encircling prey

Example
Advantages over other techniques
Application on Unit commitment problem

Encircling Prey: Mathematical Modeling

The mathematical model of the encircling behaviour is represented by the equations:

$$D = |CX_p - AX(t)| \tag{1}$$

$$X(t+1) = X_p(t) - AD \tag{2}$$

Encircling Prey: Mathematical Modeling

A and C are coefficient vectors given by:

$$A = 2ar_1a \tag{3}$$

$$C = 2r2 \tag{4}$$

- t is the current iteration
- X is the position vector of a wolf
- r_1 and r_2 are random vectors $\in [0,1]$ and a linearly varies from 2 to 0
- More description in later slides

Application on Unit commitment problem

Hunting

- Grey wolves have the ability to recognize the location of prey and encircle them.
- The hunt is usually guided by the alpha. The beta and delta might also participate in hunting occasionally.
- However, in an abstract search space we have no idea about the location of the optimum (prey).
- In order to mathematically simulate the hunting behaviour, we suppose that the alpha, beta and delta have better knowledge about the potential location of prey.

Advantages over other techniques Application on Unit commitment problem

Hunting

$$\overrightarrow{D}_{\alpha} = |\overrightarrow{C}_{1}.\overrightarrow{X}_{\alpha}(t) - \overrightarrow{X}(t)|, \overrightarrow{D}_{\beta} = |\overrightarrow{C}_{2}.\overrightarrow{X}_{\beta}(t) - \overrightarrow{X}(t)|, \overrightarrow{D}_{\delta} = |\overrightarrow{C}_{3}.\overrightarrow{X}_{\delta}(t) - \overrightarrow{X}(t)|$$
(5)
$$\overrightarrow{X}_{1} = \overrightarrow{X}_{\alpha}(t) - \overrightarrow{A}_{1}.(\overrightarrow{D}_{\alpha}), \overrightarrow{X}_{2} = \overrightarrow{X}_{\beta}(t) - \overrightarrow{A}_{2}.(\overrightarrow{D}_{\beta}), \overrightarrow{X}_{3} = \overrightarrow{X}_{\delta}(t) - \overrightarrow{A}_{3}.(\overrightarrow{D}_{\delta})$$
(6)
$$\overrightarrow{X}(t+1) = (\overrightarrow{X}_{\alpha} + X_{2} + X_{3})$$
(7)
Indicates the current iteration, $\overrightarrow{X}_{\alpha}(t), \overrightarrow{X}_{\delta}(t)$ and $\overrightarrow{X}_{\delta}(t)$ are the position of the gray wolves α , β and δ

$$\overrightarrow{X}_{1} = \overrightarrow{X}_{\alpha}(t) - \overrightarrow{A}_{1} \cdot (\overrightarrow{D}_{\alpha}), \overrightarrow{X}_{2} = \overrightarrow{X}_{\beta}(t) - \overrightarrow{A}_{2} \cdot (\overrightarrow{D}_{\beta}), \overrightarrow{X}_{3} = \overrightarrow{X}_{\delta}(t) - \overrightarrow{A}_{3} \cdot (\overrightarrow{D}_{\delta})$$
(6)

$$\overrightarrow{X}(t+1) = \underbrace{X_1 + X_2 + X_3}_{3} \tag{7}$$

where t indicates the current iteration, $\overrightarrow{X}_{\alpha}(t)$ $\overrightarrow{X}_{\delta}(t)$ and $\overrightarrow{X}_{\delta}(t)$ are the position of the gray wolves α , β and δ at t^th iteration, $\overrightarrow{X}(t)$ presents the position of the gray wolf at t^{th} iteration.

$$\overrightarrow{C}_{(.)} = 2 \overrightarrow{a}. rand(0, 1) - \overrightarrow{a}$$

$$\overrightarrow{C}_{(.)} = 2. rand(0, 1)$$
(8)

$$\overrightarrow{C}_{(.)} = 2.rand(0,1) \tag{9}$$

Where \vec{a} is the linear value varies from 2 to 0 according to iteration. $\vec{A}_{(.)}$ and $\vec{C}_{(.)}$ are the coefficient vector of α . β and δ wolfs.

About Grey Wolf Wolf behaviour in nature Algorithm development

Advantages over other techniques

Advantages over other techniques Application on Unit commitment problem

Attacking prey & Search for prey

About Grey Wolf

Developers of Algorithm Wolf behaviour in nature Example

Advantages over other techniques

Example

minimization of Korn function

nization of Korn function
$$f_{(x_1,x_2)} = \min\{(x_1-5)^2 + (x_2-2)^2\}$$

About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example

Exampl Advantages over other technique Application on Unit commitment probler

Iteration 1

	x_1	x_2	f(x)
1	6.1686	4.4100	7.1739
2	6.2104	4.0935	5.8479
3	7.4231	8.3880	46.6773
4	2.8950	0.8703	5.7074
5	6.1062	3.7275	4.2079
6	6.3458	3.2158	3.2896
7	7.5690	6.1457	23.7866
8	6.2471	4.0456∖	5.7397
9	6.9965	4.5846\	10.6663
10	4.7372	3.3048	1.7717
11	4.8148	3.4931	2.2637
12	5.9444	3.4433	2.9751

		201		
		$\langle {}^{\circ}_{X_1}$	<i>x</i> ₂	f(x)
	all	4.7372	3.3048	1.7717
9	β	4.8148	3.4931	2.2637
1	δ	5.9444	3.4433	2.9751

Example

Advantages over other techniques

Application on Unit commitment problem

Update process

$$\overrightarrow{D}_{\alpha} = |2.rand().[4.7372, 3.3048] - [6.1686, 4.4100]|$$

$$X_{1} = [4.7372, 3.3048] - (2\overrightarrow{a}.rand(0, 1) - \overrightarrow{a})\overrightarrow{D}_{\alpha}$$

$$\overrightarrow{D}_{\beta} = |2.rand().[4.8148, 3.4931] - [6.1686, 4.4100]|$$

$$X_{2} = [4.8148, 3.4931] - (2\overrightarrow{a}.rand(0, 1) - \overrightarrow{a})\overrightarrow{D}_{\beta}$$

$$\overrightarrow{D}_{\delta} = |2.rand().[5.9444, 3.4433] - [6.1686, 4.4100]|$$

$$X_{3} = [5.9444, 3.4433] - (2\overrightarrow{a}.rand(0, 1) - \overrightarrow{a})\overrightarrow{D}_{\delta}$$

$$\overrightarrow{X}(1,:) = \frac{X_{1} + X_{2} + X_{3}}{3} = [4.0487, 2.6051]$$

$$\overrightarrow{a} = 2 - 2.\left(\frac{itr}{maxitr}\right)$$

$$\overrightarrow{a} = 2 - 2.\left(\frac{1}{3}\right)$$

$$\overrightarrow{a} = 1.3333$$

About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example

Advantages over other techniques
Application on Unit commitment problem

Iteration 2

<i>x</i> ₁	<i>X</i> ₂	f(x)
4.0487	2.6051	1.2710
4.6492	3.0427	1.2103
5.4633	3.6633	2.9813
5.6096	3.5901	2.9001
4.6582	3.0302	1.1781
4.7476	3.3369	1.8509
4.2452	2.6600	1(0054
4.9026	3.2497	1.5712
4.5202	2.9588	1.1495
5.3971	3.5432	2.5392
4.1136	2.5382	1.0754
5.0927	3.1546	1.3418
	4.0487 4.6492 5.4633 5.6096 4.6582 4.7476 4.2452 4.9026 4.5202 5.3971 4.1136	4.04872.60514.64923.04275.46333.66335.60963.59014.65823.03024.74763.33694.24522.66004.90263.24974.52022.95885.39713.54324.11362.5382

		201		
	Ĺ,	$\langle {}^{\circ}_{X_1}$	<i>X</i> ₂	f(x)
	all	4.2452	2.6600	1.0054
9	β	4.1136	2.5382	1.0754
1	δ	5.0927	3.1546	1.3418

About Grey Wolf
Developers of Algorithm
Wolf behaviour in nature
Algorithm development
Example

Advantages over other techniques

Iteration 3

x_1	<i>x</i> ₂	f(x)
4.4838	2.7843	0.8816
4.5634	2.8257	0.8725
4.5899	2.8395	0.8730
4.7486	2.9400	0.9467
4.6340	2.8684	0.8881
4.5957	2.8445	0.8767
4.5830	2.8366	0.8738
4.5787	2.8339	0.8729
4.5750	2.8321.\	0.8730
4.5724	2.8306	0.8727
4.5703	2.8295	0.8727
4.5696	2.8291	0.8727
	4.4838 4.5634 4.5899 4.7486 4.6340 4.5957 4.5830 4.5787 4.5750 4.5724 4.5703	4.4838 2.7843 4.5634 2.8257 4.5899 2.8395 4.7486 2.9400 4.6340 2.8684 4.5957 2.8445 4.5830 2.8366 4.5787 2.8339 4.5750 2.8321 4.5724 2.8306 4.5703 2.8295

	2010		
	X_1	<i>x</i> ₂	f(x)
Q	4.5634	2.8257	0.8725
β	4.5696	2.8291	0.8727
δ	4.5750	2.8321	0.8730

About Grey Wolf

Wolf behaviour in nature Example

Advantages over other techniques

Application on Unit commitment problem

Flow chart

Iter=Iter+1

Advantages over other techniques

- Easy to implement due to simple structure.
- Less storage requirement than the other techniques.
- Convergence is faster to continuous reduction of search space and Decision variables are very less $(\alpha, \beta \text{ and } \delta)$.
- It avoids local optima when applied to composite functions also.
- only two main parameters to be adjusted (a and C).

Unit Commitment Problem

- Unit Commitment (UC) is a very significant optimization task, which plays an important role in the operation planning of power systems.
- UCP is considered as two linked optimization decision processes, namely the unit scheduled problem that determines on/off status of generating units in each time period of planning horizon, and the economic load dispatch problem.
- UCP is a complex nonlinear, mixed-integer combinational optimization problem with 01 variables that represents on/off status.

Unit commitment problem

Table: Total costs of the BGWO method for test systems

-							
	No. Unit	of	Best Cost (\$)	Average Cost (\$)	Worst Cost (\$)	Std. De- viation	CPU Time (Sec)
	10		563937.3	563976.6	564017.7	40.2	31.3
	20		1124687.9	1124837.7	1124941.1	128.7	58.7
	40		2248280.0	2248397.6	2248614.0	174.2	124.6
	60		3367893.4	3367881.1	3367933.4	37.9	216.9
	80		4492399.4	4492608.1	4492672.5	154.4	347.5
	100	`	\$612309.4	5612377.2	5612496.3	96.9	505.6

Performance Comparison

Table : Comparison With Other Algorithms

	10	20	140	60	80	100		
LR	565825	1130660	2258503	3394066	4526022	5657277		
GA	565825	1126243	2251911	3376625	4504933	5627437		
EP	564551	1125494	2249093	3371611	4498479	5623885		
MA	565827	1128192	2249589	3370820	4494214	5616314		
GRASP	565825	1128160	2259340	3383184	4525934	5668870		
LRPSO	565869	1128072	2251116	3376407	4496717	5623607		
PSO	564212	\ \1125983	2250012	3374174	4501538	5625376		
IBPSO	563977	1125216	2248581	3367865	4491083	5610293		
BFWA	563977	1124858	2248372	3367912	4492680	5612619		
BGWO	563937,3	1124684.8	2248280.0	3367893.4	4492399.4	5612309.4		

About Grey Wolf Developers of Algorithm Wolf behaviour in nature

