Gleichförmige Bewegung				
Weg s	$s = v \cdot t$	S	Weg	m
C 1 1 1 1 1	S _ 1	v	Geschwindigkeit	$\mathbf{m} \cdot \mathbf{s}^{-1}$
Geschwindigkeit v	$v = \frac{s}{t} = \pi \cdot d \cdot n$	t	Zeit	S
		d	Durchmesser	m
		n	Drehzahl	min ⁻¹
Gleichförmige beschleunig	te Bewegung	1		
Bewegung ohne Anfangs-	$s = \frac{1}{2}a \cdot t^2$	S	Weg	m
geschwindigkeit	_	a	Beschleunigung	$\text{m}\cdot\text{s}^{-2}$
	$v = a \cdot t$	t	Zeit	S
	$v = \sqrt{2 \cdot a \cdot s}$	ν	Geschwindigkeit	$\mathbf{m} \cdot \mathbf{s}^{-1}$
	$s = \frac{v \cdot t}{2}$			
	$3-{2}$			
	$\dot{s} = v = \frac{ds}{dt}$			
	$\ddot{s} = a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$			
	$v = \int a \cdot dt$			
	$s = \int v \cdot dt$			
Schiefe Ebene		1		
Kraft F	$F = m \cdot a$	F	Kraft	$N = kg \cdot m \cdot s^{-2}$ $m \cdot s^{-2}$
Gewichtskraft F_G	$F_G = m \cdot g$	a	Beschleunigung	
		m	Masse	kg
Haftreibungskraft F_R	$F_R = \mu \cdot F_G$	g	Fallbeschleunigung	m·s ⁻²
	$F_R = \mu \cdot F_N$	μ	Haftreibungszahl	1
	K , N		<i>m</i>	
Hangabtriebskraft F_H	$F_H = m \cdot g \cdot \sin \alpha$		F _H	
Normalkraft F_N	$F_N = m \cdot g \cdot \cos \alpha$		α	
1401maiki art 17 N	$I_N = m \cdot g \cdot \cos \alpha$			
			$rac{\alpha}{r}$	
Arbeit				
F ist konstant auf	$W = F_s \cdot s = F \cdot s \cdot \cos \alpha$	W	Arbeit	J
geradem Weg	$=\vec{F}\cdot\vec{s}$	F_s	-	N
	_ 1		Wegrichtung	2
	s_2	F	Kraft	$N = kg \cdot m \cdot s^{-2}$
F ist veränderlich	$W = \int_{s_2}^{s_2} F_s \cdot ds$	S	Weg	m
	s_1	α	Winkel zwischen \vec{F}	1°, 1 (rad)
A 7 % 0			und \vec{s}	
Arbeitsformen	W E 1 1		Carrialetalmoft	NT
Hubarbeit W_H	$W_H = F_G \cdot h = m \cdot g \cdot h$	F_G		N
D 11	1 ,	h	Höhe über Nullniveau	m ls c
Beschleunigungs-	$W_B = \frac{1}{2}m \cdot v^2$	m	Masse Fallbeschleunigung	kg m·s ⁻²
arbeit W_B	~	g	Fallbeschleunigung Geschwindigkeit	$\mathbf{m} \cdot \mathbf{s}$ $\mathbf{m} \cdot \mathbf{s}^{-1}$
D.:!	117	v	Geschwindigkeit Heftreibungszehl	m·s 1
Reibungsarbeit W_R	$W_R = \mu \cdot m \cdot g \cdot s \cdot \cos \alpha$	μ	Haftreibungszahl Wag	m
		S	Weg Winkel der Sehrögen	1°, 1 (rad)
		α	Winkel der Schrägen	1 , 1 (1au)

Energie, Energieerhaltung				
kinetische Energie E_{kin} potentielle Energie E_{pot}	$E_{kin} = \frac{1}{2}m \cdot v^{2}$ $E_{pot} = m \cdot g \cdot h$	E_{kin} kinetische Energie m Masse v Geschwindigkeit E_{pot} potentielle Energie g Fallbeschleunigung h Höhe über Nullniveau	J kg m·s ⁻¹ J m·s ⁻² m	
Energieerhaltung	$E_{pot} + E_{kin} = \text{konstant}$	E_{kin} kinetische Energie E_{pot} potentielle Energie	J J	
Leistung				
Momentanleistung P	$P = \frac{dW}{dt} = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t}$	P Momentanleistung ΔW Arbeit während Δt Δt Zeitintervall	$W = J \cdot s^{-1}$ J s	
Wirkungsgrad η	$\eta = \frac{W_{ab}}{W_{zu}} = \frac{P_{ab}}{P_{zu}}$	η Wirkungsgrad W_{ab} abgegebene Arbeit W_{zu} zugeführte Arbeit	1 J J	
Übersetzung i	$egin{aligned} oldsymbol{\eta}_{ges} &= oldsymbol{\eta}_1 \cdot oldsymbol{\eta}_2 \cdot \cdot oldsymbol{\eta}_n \ i &= rac{n_{vor}}{n_{nach}} \ i_{ges} &= i_1 \cdot i_2 \cdot \cdot i_n \end{aligned}$	i Übersetzung n_{vor} Drehzahl (Eingang) n_{nach} Drehzahl (Ausgang)	1 min ⁻¹ min ⁻¹	
Gleichförmige Kreisbewegung	o .			
	$\omega = \frac{\varphi}{t} = \text{konstant}$	ω Winkelgeschwindigkeit φ Drehwinkel t Zeit	s ⁻¹ 1 (rad) s	
Gleichförmige beschleunigte l	Kreisbewegung			
Drehwinkel φ Winkelgeschwindigkeit ω	$\varphi = \frac{1}{2}\alpha \cdot t^2 = \frac{s}{r} = \frac{\omega \cdot t}{2}$ $\omega = \frac{v}{r} = \alpha \cdot t = \frac{\pi \cdot n}{30}$	φ Drehwinkel α Winkelbeschleunigung t Zeit a Beschleunigung s Bogen r Radius	1 (rad) s ⁻² s m·s ⁻² m m	
Winkelbeschleunigung $lpha$	$\alpha = \ddot{\varphi} = \frac{a}{r} = \frac{\omega}{t} = \text{konstant}$	 ω Winkelgeschwindigkeit ν Bahngeschwindigkeit n Drehzahl 	s ⁻¹ m·s ⁻¹ min ⁻¹	
Zentripetalkraft / Zentrifugal			-2	
Zentripetalkraft F_{Zp} Zentrifugalkraft F_{Zf}	$F_{Zp} = F_{Zf}$ $F_{Zp} = \frac{m \cdot v^2}{r} = m \cdot r \cdot \omega^2$	F_{Zp} Zentripetalkraft F_{Zf} Zentrifugalkraft m Masse v Geschwindigkeit r Radius ω Winkelgeschwindigkeit	$N = kg \cdot m \cdot s^{-2}$ $N = kg \cdot m \cdot s^{-2}$ kg $m \cdot s^{-1}$ m s^{-1}	
Gravitationsgesetz				
Gravitationskraft F_G Gravitationskonstante γ	$F_G = \gamma \frac{m_1 \cdot m_2}{r^2}$ $\gamma = 6.67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}$	F_G Gravitationskraft γ Gravitationskonstante m Masse r Schwerpunktabstand	N m ³ ·kg ⁻¹ ·s ⁻² kg m	
Begriff des Trägheitsradius				
Trägheitsradius i	$i = \sqrt{\frac{J_Z}{m}}$	i Radius J_Z Massenträgheitsmoment m Masse	m kg·m² kg	

Kinetik der Rotation				
Massenträgheitsmoment J_S	$J_S = \int r^2 \cdot dm = \sum m_i \cdot r_i^2$	J_S	Massenträgheitsmoment	kg·m ²
		m	Masse	kg
Drehmoment M	$M = J \cdot \ddot{\varphi}$	r	Abstand von der	m
	,		Drehachse	
	$J_A = J_S + m \cdot a^2$	\ddot{arphi}	Winkelbeschleunigung	s^{-2}
		a	Abstand Drehpkt./Schwerpkt	m
Begriff des Schwungmoments	Satz von Steiner		1 1	
		J_Z	Massenträgheitsmoment	kg·m ²
Schwungmoment $F_G \cdot D^2$	$F_G \cdot D^2 = J_Z \cdot 4g$		Fallbeschleunigung	$m \cdot s^{-2}$
Begriff der reduzierten Masse		g	Tanbescheungung	111.2
Degriii dei reduzierten wasse	7	m	reduzierte Masse	kg
reduzierte Masse m_{red}	$m_{red} = \frac{J_Z}{r^2}$		Massenträgheitsmoment	kg·m ²
	r-	r	Radius	m
Beschleunigung		1'	Rudius	111
		ΰ	Rotationsbeschleunigung	s ⁻²
Rotationsbeschleunigung $\ddot{\varphi}$	$\ddot{\varphi} = \frac{\ddot{x}}{R}$	$\begin{vmatrix} \varphi \\ \ddot{x} \end{vmatrix}$	Translationsbeschleunigung	$\text{m}\cdot\text{s}^{-2}$
	, A	$\stackrel{\scriptstyle \mathcal{X}}{R}$	Radius	m
	$m \cdot q$	m	Masse	kg
Translationsbeschleunigung \ddot{x}	$\ddot{x} = \frac{m_2 \cdot g}{\frac{m_1}{2} + m_2}$	g	Fallbeschleunigung	$m \cdot s^{-2}$
	$\frac{m_1}{2} + m_2$	$ ^{s}_{\omega} $	Winkelgeschwindigkeit	s^{-1}
		$\left \frac{\omega}{t} \right $	Zeit	S
	$\omega = \omega_0 - \ddot{\varphi} \cdot t$	ľ	Zeit	S
Arbeit, Energie und Leistung	bei der Rotation			3 3
Arbeit W (bei konstantem	φ_2		Arbeit	$J = kg \cdot m^2 \cdot s^{-2}$
Drehmoment)	$W_{rot} = \int_{a}^{\varphi_2} M(\varphi) \cdot d\varphi = M \cdot \varphi$	M	Drehmoment	N⋅m
	$arphi_1$	φ	Drehwinkel	1°, 1 (rad)
	Candarfall, M(a) Ivanat			
	Sonderfall: $M(\varphi) = \text{konst.}$			
	$W = M(\varphi_2 - \varphi_1)$			
Rotationsenergie E_{rot}	$E_{rot} = \frac{1}{2} J_P \cdot \omega^2$		Rotationsenergie	J
(kinetische Energie)	$L_{rot} = \frac{1}{2} J_P \cdot \omega$	J_P	Massenträgheitsmoment	$\frac{\text{kg} \cdot \text{m}^2}{\text{s}^{-1}}$
(kinetische Energie)		ω	Winkelgeschwindigkeit	s ⁻¹
Energieerhaltungssatz	$W_{rotE} = W_{rotA} + W_{zu} - W_{ab}$			
Leistung P	$P = M \cdot \omega$ (Rotation)	P	Leistung	$W = J \cdot s^{-1}$
	$P = F \cdot v$ (Translation)	M	Drehmoment	N⋅m
	, , ,	ω	Winkelgeschwindigkeit	s^{-1}
	$J_P = J_S + m \cdot r^2$	\boldsymbol{F}	Kraft	$N = kg \cdot m \cdot s^{-2}$
	P - 5	v	Geschwindigkeit	m·s ⁻²
		J_P	Massenträgheitsmoment	kg·m ²
		J_S	Massenträgheitsmoment	kg·m ²
		m	Masse	kg
		r	Radius	m
Trägheitsmittelpunkt				
	$\int_{Y} \int_{Z} J_{Z}$	χ_T	Abstand zwischen Dreh-	m
	$x_T = \frac{J_Z}{m \cdot r_S}$ $J_Z = J_S + m \cdot r_S^2$		punkt und Angriffspunkt	
	$I = I + m \cdot r^2$		der Trägheitskraft F_{Tr}	2
	$J_Z - J_S + m \cdot r_S$	J_P	Massenträgheitsmoment	kg·m ²
	_	m	Masse	kg
	$x_T = \frac{J_S}{m \cdot r_S} + r_S$ $x_T > r_S$	r_S	Abstand zwischen Schwer-	m
	$m \cdot r_S$		punkt und Drehpunkt	2
	$x_T > r_c$	J_Z	Massenträgheitsmoment	$kg \cdot m^2$
	1 3	J_S	Massenträgheitsmoment	kg·m ²

Kinetik der allgemeinen eben	en Bewegung		
Drehpunkt ist der	$\vec{a}_C = \vec{a}_S + \vec{a}_{CS}$	<i>a</i> _C Beschleunigung – Punkt C	$\text{m}\cdot\text{s}^{-2}$
Schwerpunkt		a_S Schwerpunkt-	$m \cdot s^{-2}$
•	$\vec{a}_{CS} = \vec{a}_{CSN} + \vec{a}_{CST}$	beschleunigung	
		a_{CS} Beschleunigung des Punktes	m·s ⁻²
	<u> </u>	C bei der Drehung von S	2
	$a_{CST} = r \cdot \ddot{\varphi} = r \cdot \alpha$	a_{CST} Tangentialkomponente	$\mathbf{m} \cdot \mathbf{s}^{-2}$
	$a_{CSN} = r \cdot \dot{\varphi}^2 = r \cdot \omega^2$	a_{CSN} Normalkomponente	m·s ⁻²
	$F_{RX} = m \cdot a_{SX}$		
	$F_{RY} = m \cdot a_{SY}$		
Schwerpunktsatz	$ F_R = \begin{cases} F_{RX} \\ F_{RY} \end{cases} = m \cdot a_S = m \cdot \begin{cases} a_S \\ a_S \end{cases} $	$\begin{pmatrix} X \\ Y \end{pmatrix}$	
Relativbewegung			
	$a_{cor} = 2 \cdot v_{rel} \cdot \omega_F \qquad \text{für } \omega \perp$	${oldsymbol{\mathcal{V}}_{rel}}$	
	sonst:		
	$\vec{a}_{cor} = 2(\vec{\omega}_F \times \vec{v}_{rel})$		
	$a_{cor} = 2 \cdot \omega_F \cdot v_{rel} \cdot \sin(\angle \omega_F)$	v_{rel})	
Kinetik der Relativbewegung			
	$\vec{v}_{Cabc} = \vec{v}_F + \vec{v}_{rel}$		
Festigkeitslehre			
Normalspannung σ	$\sigma = \frac{F}{\Gamma}$	σ Normalspannung	N·m ⁻²
Normal spanning 0	$\sigma = \frac{F}{A}$	F Kraft	$N = kg \cdot m \cdot s^{-2}$
Schubspannung τ	$\tau = \frac{F}{A}$	A Fläche	m^2 $N \cdot m^{-2}$
benuospannung t	$\iota = A$	τ Schubspannung	N·m N·m ⁻²
Zugbeanspruchung σ_z	$\sigma_{z} = \frac{F}{A} \leq \sigma_{zzul}$	σ_{z} Zubeanspruchung	11.111
	A		
Formänderung bei Beanspru		Al Varlöngarung	m
Verlängerung Δl	$\Delta l = l - l_0$	Δl Verlängerung 1 Endlänge	m m
Dehnung ε	$\varepsilon = \frac{\Delta l}{l_0}$	l ₀ Anfangslänge	m
		ε Dehnung	1
Durchmesseränderung Δd	$\Delta d = d_0 - d$	Δd Durchmesseränderung	m
Onorkijezuro a	$\int_{C} \Delta d$	d ₀ Anfangsbreite	m
Querkürzung $oldsymbol{arepsilon}_{arrho}$	$\varepsilon_{Q} = \frac{\Delta d}{d_{0}}$	d Endbreite	m
		$arepsilon_{\scriptscriptstyle Q}$ Querkürzung	1
Querzahl oder Poissonzahl μ	$\mu = \frac{\varepsilon_Q}{\varepsilon}$	μ Poissonzahl	$N \cdot mm^2$
		E Elastizitätsmodul	11.111111
	$\sigma = E \cdot \varepsilon$ für Stahl : $E = 210000 \frac{N}{mm^2}$		
Statische Belastung	mm ²		
	$R_{\circ}(R_{n})$		
zähe Werkstoffe	$\sigma_{zul} = \frac{R_e(R_{P_{0,2}})}{v}$	v = 1,32,0	
spröde Werkstoffe	$\sigma_{zul} = \frac{R_m}{V}$	v = 2,04,0	
Schwellende Belastung			
	$\sigma_{zul} = \frac{\sigma_{Zsch}}{v}$	v = 3,06,0	
		I .	

Wechselnde Belastung			
	$\sigma_{zul} = \frac{\sigma_{Zdw}}{V}$	v = 3,06,0	
	v = v	7 3,0.110,0	
Beanspruchung auf Druck		E IZ C	NT.
	$\sigma_d = \frac{F}{A} \le \sigma_{dzul}$	F Kraft A Fläche Δl Verkürzung	N m ² m
Verkürzung Δl	$\Delta l = l_0 - l (= l_0 \cdot \Delta t \cdot \alpha)$ $\varepsilon = \frac{\Delta l}{l_0} (= \Delta t \cdot \alpha)$	$egin{array}{ll} l_0 & ext{Anfangslänge} \ l & ext{Endlänge} \end{array}$	m m
Stauchung ε	$\varepsilon = \frac{\Delta t}{l_0} (= \Delta t \cdot \alpha)$	ε Stauchung	1
Beanspruchung auf Abschere	n		
Abscherspannung $ au_a$	$\tau_a = \frac{F}{A} \le \tau_{a_{zul}}$	für zähe Metalle: $\tau_a \approx 0.8 \cdot Rm$ für Grauguß: $\tau_{ab} \approx 1.1 \cdot Rm$	
Inneres Kräftesystem und Spa	nnungsarten		
Biegespannung σ_{by}	$\sigma_{by} = \sigma_{b \max} \cdot \frac{y}{e}$	σ_{by} Biegespg. im Abstand y vor neutralen Faser $\sigma_{b\max}$ maximale Biegespannung in Randfaser y Abstand von der neutralen He Abstand der Randfaser von Faser	n der Faser
Flächenmoment 2. Grades	$I = \int y^2 \cdot dA$		
axiales Widerstandsmoment	$\sigma_{b \max} = \frac{M_b \cdot e}{I}$ $W = \frac{I}{e}$		
	$\sigma_{b\max} = \frac{M_b}{W} \le \sigma_{bzul}$		
	$\sigma_{bzul} = \frac{\text{Festigkeitswert}}{\text{Sicherheitszahl}} \left(= \frac{\sigma_{b}}{v} \right)$	$ \left(= \frac{\sigma_{bF}}{V} \right) \left(= \frac{\sigma_{bsch}}{V} \right) \left(= \frac{\sigma_{bw}}{V} \right) $	
Vollkommen elastischer Stoß			
Impulserhaltungssatz		$n_2 \cdot v_{2E}$	
Impuls p	$p = m \cdot v$	T T	kg·m·s ⁻¹
	$\vec{p} = \vec{m} \cdot \vec{v}$	m Massev Geschwindigkeit	kg m·s ⁻¹
Teilweise plastischer Stoß	$v_{1E} = \frac{v_{1A} \cdot (m_1 - m_2) + 2 \cdot m_2 \cdot m_2}{m_1 + m_2}$ $v_{2E} = \frac{v_{2A} \cdot (m_2 - m_1) + 2 \cdot m_1 \cdot m_2}{m_1 + m_2}$		m·s ⁻¹ m·s ⁻¹ m·s ⁻¹ kg kg
Tenweise plastischer Stoß		c Stoffachl	1
Stoßzahl $arepsilon$	$\varepsilon = \frac{v_{2E} - v_{1E}}{v_{1A} - v_{2A}}$	ε Stoßzahl ε =0 vollkommen plastischer Stoß ε =1 vollkommen elastischer Stoß	

	$v_{1A} \cdot (m_1 - \varepsilon \cdot m_2) + v_{2A} \cdot (1 + \varepsilon) \cdot m_2$	v_{IA}	Geschwindigkeit vor	m·s ⁻¹
	$v_{1E} = \frac{v_{1A} \cdot (m_1 - \varepsilon \cdot m_2) + v_{2A} \cdot (1 + \varepsilon) \cdot m_2}{m_1 + m_2}$		dem Stoß (Körper 1)	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	v_{2A}	Geschwindigkeit vor	m⋅s ⁻¹
	$v_{2E} = \frac{v_{2A} \cdot (m_2 - \varepsilon \cdot m_1) + v_{1A} \cdot (1 + \varepsilon) \cdot m_1}{m_1 + m_2}$		dem Stoß (Körper 2)	
	$m_1 + m_2$	v_{1E}	Geschwindigkeit nach	$\text{m}\cdot\text{s}^{-1}$
			dem Stoß (Körper 1)	
		v_{2E}	Geschwindigkeit nach	m⋅s ⁻¹
			dem Stoß (Körper 2)	
		m_1	Masse (Körper 1)	kg
		m_2	Masse (Körper 2)	kg
Emanaiavanlust A.E.	$A_{E} = 1 \begin{pmatrix} 1 & 2 \end{pmatrix} m_1 \cdot m_2 \begin{pmatrix} 1 & 1 \end{pmatrix}^2$	ΔE	Energieverlust	$kg \cdot m^2 \cdot s^{-2}$
Energieverlust ΔE	$\Delta E = \frac{1}{2} \cdot (1 - \varepsilon^2) \cdot \frac{m_1 \cdot m_2}{m_1 + m_2} \cdot (v_{1A} - v_{2A})^2$	ε	Stoßzahl	1
	1 2	v_{IA}	Geschwindigkeit vor	$\mathbf{m} \cdot \mathbf{s}^{-1}$
			dem Stoß (Körper 1)	1
		v_{2A}	Geschwindigkeit vor	$\mathbf{m} \cdot \mathbf{s}^{-1}$
			dem Stoß (Körper 2)	
		m_1	Masse (Körper 1)	kg
		m_2	Masse (Körper 2)	kg
Wirkungsgrad n	η	W	irkungsgrad	1
Wirkungsgrad η	$\eta = \frac{1}{1 + \frac{m_a}{n}}$ $m_b > m_a$ $m_b > m_a$, kle	eine Masse	kg
	m_b	, gro	oße Masse	kg

		mb grobe wasse	Kg
Geometrische Körper			
Kreis: $A = \pi \cdot r^2 = \frac{\pi}{4} \cdot d^2$		$M \leftarrow r$	
$U = 2 \cdot \pi \cdot r = \pi \cdot d$		W	
Kugel:			
$V = \frac{4}{3} \cdot \pi \cdot r^{3} = \frac{\pi}{6} \cdot d^{3} = \frac{1}{6} \cdot \sqrt{\frac{O^{3}}{\pi}}$			
$O = 4 \cdot \pi \cdot r^2 = \pi \cdot d^2 = \sqrt[3]{36 \cdot \pi \cdot V}$ $r = \frac{1}{2} \cdot \sqrt{\frac{O}{\pi}} = \sqrt[3]{\frac{3 \cdot V}{4 \cdot \pi}}$	7 2	M	
$d = \sqrt{\frac{O}{\pi}} = 2 \cdot \sqrt[3]{\frac{3 \cdot V}{4 \cdot \pi}}$			
Quader:			
$V = a \cdot b \cdot c$ $O = 2 \cdot (a \cdot b + a \cdot c + b \cdot c)$		S	
$d = \sqrt{a^2 + b^2 + c^2}$		a	b
Zylinder:			
$V = \pi \cdot r^2 \cdot h$			1
$M = 2 \cdot \pi \cdot r \cdot h$			
$O = 2 \cdot \pi \cdot r \cdot (r+h)$			4

Massenträgheitsmomente einiger Körper				
	Hohlzylinder	1 (2, 2)		
X	Homzymidei	$J_x = \frac{1}{2} \cdot m \cdot \left(r_a^2 + r_i^2 \right)$		
y ri		$J_{y} = J_{z} = \frac{1}{4} \cdot m \cdot \left(r_{a}^{2} + r_{i}^{2} + \frac{1}{3} \cdot l^{2}\right)$		
	dünnwandiger Hohlzylinder	$J_S = J_x = m \cdot r^2$		
		$J_{y} = J_{z} = \frac{1}{4} \cdot m \cdot \left(2 \cdot r^{2} + \frac{1}{3} \cdot l^{2}\right)$		
x z				
z /x	Vollzylinder	$J_x = \frac{1}{2} \cdot m \cdot r^2$		
		$J_y = J_z = \frac{1}{4} \cdot m \cdot r^2 + \frac{1}{12} \cdot m \cdot t^2$		
	dünne Scheibe (1 « r)	$J_S = J_x = \frac{1}{2} \cdot m \cdot r^2$		
		$J_{y} = J_{z} = \frac{1}{4} \cdot m \cdot r^{2}$		
	dünner Stab (l » r) unabhängig von	$J_x = \frac{1}{2} \cdot m \cdot r^2$		
x , z	der Form des Querschnitts	$J_S = J_y = J_z = \frac{1}{12} \cdot m \cdot l^2$		
Z /x	dünner Ring	$J_{x} = m \cdot r^{2}$		
y (in the second		$J_{y} = J_{z} = \frac{1}{2} \cdot m \cdot r^{2}$		
x z				
Z	Kugel, massiv	$J_x = J_y = J_z = \frac{2}{5} \cdot m \cdot r^2$		
V A	dünne Kugelschale	$J_x = J_y = J_z = \frac{2}{3} \cdot m \cdot r^2$		
x z				
z x	Quader	$J_S = J_x = \frac{1}{12} \cdot m \cdot \left(b^2 + h^2 \right)$		
		$J_{v} = \frac{1}{12} \cdot m \cdot \left(l^2 + h^2\right)$		
y E		$J_z = \frac{1}{12} \cdot m \cdot \left(l^2 + b^2\right)$		
x b Z				
11				

180°

Umrechnung vom Bogenmaß ins Gradmaß: $\alpha =$