无线传输信号模拟系统

摘要:本设计实现的无线传输信号模拟系统,可以模拟无线传输信号的过程,实现模拟直达传输信号、多径传输信号以及合路信号,实现调整模拟信号有效值、相位、衰减以及延迟时间等功能。系统由控制器 STM32F407、AD9959 数字合成器模块、AD835 乘法器模块、后端滤波器、加法器以及串口屏六部分组成。使用串口屏输入信号类型和参数,按下装置启动键,即可在屏幕上显示信号类型以及参数,并输出模拟的无线传输信号。装置可以通过串口屏调节模拟信号的信号类型、载波有效值、载波频率、信号调制度、幅度衰减、延迟时间以及初相位等参数。

关键词: 多径信号模拟; 模拟乘法器; 调幅信号模拟; 信号合成器

一、系统方案

1. 比较与选择

1.1 信号发生设计方案

方案一:采用 FPGA 和高速数模转换模块 (Digital to Analog Conver, DAC),在 FPGA 内部利用 ROM 核存储波形值,并且经过处理后通过 DAC 输出波形。

方案二: 采用数字合成器 (Direct Digital Synthesizer, DDS) 模块, 利用主控 STM32F407 控制输出信号的相位和峰峰值。

方案选择: 方案一,采用 DAC 时,需要考虑浮点数转换、对齐等问题,操作难度较大;方案二,DDS 模块便于控制发生信号的相位,并且能够直接通过写寄存器控制幅值。综合考虑准确性和效率,使用方案二。

1.2 信号调制设计方案

方案一:采用 FPGA 的全加器 IP 核,使得产生的基波信号叠加直流偏置,然后用乘法器 IP 核对波形数据进行运算处理,得到调制信号。

方案二:采用加法器和乘法器模块,经过加法器加上直流偏置之后,和载波一起输入 到乘法器模块中得到调制信号。

方案选择:方案一,全数字方案对硬件要求较低,但由于输出频率较高,所以对电路时序要求高,波形容易失真;方案二,对硬件要求较高,需要电路各部分均有高带宽,但产生波形稳定可调,容易进行调理。综合考虑操作难度和准确性,使用方案二。

1.3 时延控制设计方案

方案一:利用 FPGA 设计 D 触发器,由于 D 触发器门延时一定,则可以将信号通过一系列 D 触发器,从而得到固定的延时。

方案二:利用 STM32F407 指令周期时间固定的特性,在一定的指令周期前后,分别控制 DDS 模块输出两路信号,从而使得两路信号产生可控的时间差,并经过调幅(AM)调制,得到时延的多径信号和直达信号。

方案选择:方案一,难以确定 D 类触发器具定的延时时间,导致延时时间存在不精确的问题;方案二,由于 STM32F407 的主频和指令周期已知,可准确得到所需要的延时时间。综合考虑精确度和操作难度,使用方案二。

2. 方案描述

系统框图如图 1 所示。主控制器 STM32F407 控制 DDS 模块 AD9959 产生载波和基波。 基波经过加法器叠加直流偏置后,再进入乘法器与载波相乘,即可得到 AM 信号。这样利 用 AD9959 的四个通道即可以产生两个 AM 信号,分别模拟直达信号和多径信号。载波有效值和 AM 调制度的调节,通过 DDS 模块分别控制载波和基带信号的幅度进行控制;相位差和载波频率同样由 STM32F407 控制 DDS 内部的 DAC 寄存器实现;多径信号的衰减通过控制衰减器调整信号幅值实现;两路信号的时延利用固定主频下,主控执行每条指令之间固定的时间间隔,从而实现精确的时延。信号合路通过 THS4061 运放加法器实现输出信号的合成。

图 1 系统框图

二、 理论分析与计算

1. 直达与多径信号产生的方法

1.1 连续波信号和调幅信号产生

本题要求模拟产生直达传输信号 S_{D} 、多径传输信号 S_{M} 以及最后输出的合路信号 S_{Out} ,并且两路信号均采用幅度调制信号进行模拟。

对于载波信号,采用四路输出的数字合成器模块生成两路的连续波信号 CW,即未调制的正弦载波信号,分别用于调制直达传输信号 S_D 和多径传输信号 S_M ,其数学表达式为: $S(t) = Asin(\omega_0 t) \tag{1}$

同时,AD9959 的另外两路生成 2M 频率的调制信号 $m(t) = A_{\rm m} sin(\omega_{\rm m} t)$,该信号经过加法器叠加恒定直流偏置 V_{DC} 后,输入乘法器与载波信号相乘,得到调制信号:

$$S_{\rm AM}(t) = [V_{DC} + A_{\rm m} sin(\omega_{\rm m} t)] \cdot Asin(\omega_{\rm 0} t) \tag{2}$$

1.2 直达传输信号和多径传输信号产生

直达传输信号由调幅信号模拟得到,即将式(2)将得到的 AM 调制信号化简,则可得直达信号表达式:

$$S_{\rm D}(t) = A \cdot V_{DC} \left[1 + \frac{A_{\rm m}}{V_{DC}} sin(\omega_{\rm m} t) \right] \cdot sin(\omega_{\rm 0} t)$$
 (3)

其中,由角速度与频率关系 $\omega=2\pi f$, ω_m 等于 $2\pi\cdot 2\mathrm{MHz}$ 。

多径信号 $S_M(t)$ 是指信号从发射天线经过多个路径抵达接收天线的传播信号,因而多径信号 $S_M(t)$ 相对于直达信号 $S_D(t)$ 具有幅度衰减、时延、以及多径引入的初相变化。由题可知,多径信号表达式为 $m(t) = \alpha \cdot x(t+\tau) \cdot e^{j\varphi}$,故 $S_M(t)$ 可以表示为:

$$S_{\rm M}(t) = \alpha S_{\rm D}(t+\tau) \cdot e^{j\varphi} \tag{4}$$

其中 α , τ , φ 分别代表多径信号的幅度衰减、时延、以及多径引入的初相变化。故利用另外两路通道产生的 AM 信号模拟多径信号,则可得多径信号,结合式(3)(4)可以得到 S_{M} 的表达式为:

$$S_{\rm M}(t) = \alpha A_{\rm D} \left[1 + m_a e^{j\omega_m(t+\tau)} \right] \cdot e^{j\omega_0(t+\tau)} \cdot e^{j\varphi} \tag{5}$$

2. 直达与多径信号的参数与信号合成设计

本模拟装置需要模拟调节的有关参数为: 直达信号的有效值 U_{rms} 、直达信号的 AM 调制度 m_a ,多径信号相对直达信号的时延au、相位差 φ 、以及幅值衰减lpha。

2.1 信号参数与控制原理

对于直达信号 $S_D(t)$ 的 CW 载波信号,可以通过控制 AD9959 的输出的 CW 信号幅值A,从而调整 CW 信号的有效值输出,后经过固定放大倍数的放大器得到最终的 CW 信号有效值 U_{rms} ,其有效值与峰值A的转换公式为:

$$U_{rms} = A_v \frac{A}{\sqrt{2}} \tag{6}$$

其中, A, 为放大器固定增益倍数。

对于 AM 信号,由式(2),可知其调制度 m_d 可以通过控制 AD9959 合成的调制信号m(t) 的幅值 A_m 来进行。其数学表达式为:

$$m_d = \frac{V_{DC} - A_{\rm m}}{V_{DC} + A_{\rm m}} \tag{7}$$

由式(3), 进行数学形式上的转换可以得到直达信号的复指数表达形式:

$$S_{\rm D}(t) = A_{\rm D} \left(1 + m_a e^{j\omega_m t} \right) \cdot e^{j\omega_0 t} \tag{8}$$

并且,对于延迟时间的模拟,将其转化为相位差进行测量。模拟多径信号中,相位偏移 $e^{j\omega_0(t+\tau)}$ 与延迟时间 τ 的关系为:

$$\tau = \frac{\varphi_1}{\omega_{\rm m}} = \frac{\varphi_2}{\omega_0} \tag{9}$$

其中 φ_1 为基带信号的时延相位差, φ_2 为载波信号的时延相位差

通过计算 τ 造成的相位差,模拟多径信号的时延,对 $S_M(t)$ 初相位的控制则是改变式(9)中的初始相位 φ ,则可以得到:

$$S_M(t) = \alpha A_D \left[1 + m_a e^{(j\omega_m t + \varphi_1)} \right] \cdot e^{j(\omega_0 t + \varphi_2)} \cdot e^{j\varphi}$$
(10)

2.2 信号合成原理设计

由式(8)与式(9)将直达信号 $S_D(t)$ 和多径信号 $S_M(t)$ 相加可以得到:

$$S_{\text{Out}}(t) = A_{\text{D}}e^{j\omega_0 t} \left\{ \left[1 + \alpha e^{j(\varphi + \varphi_2)} \right] + m_a e^{j\omega_{\text{m}} t} \left[1 + \alpha e^{j(\varphi + \varphi_1 + \varphi_2)} \right] \right\}$$
(11)

三、 电路与程序设计

1. 硬件电路设计

1.1 加法器电路设计

加法器电路如图 2 所示,能够完成信号合路功能。由于合路信号和直流偏置的输入信号频率在 30MHz 到 40MHz 之间,频率较高,所有需要采用高增益带宽积的 THS4061 运算放大器。由于需要对信号进行混叠来模拟信号接收,故搭建同相加法器。考虑到高频电路的阻抗匹配的衰减,所以需要放大倍数为 2,设计该放大电路的增益为 $A_{ths}=1+1/1=2$,使其满足信号合路的要求。

图 2 加法器电路

1.2 滤波器电路设计

滤波器电路如图 3 所示,可以得到滤去低频噪声。由于传输信号幅值较小,所以采用 高通滤波器滤去电路中较大的低频噪声。由于基带信号频率为 2MHz,并且低频噪声远小 于 100kHz, 因此设定-3dB 截止频率为 1MHz, 并且阻带设为 100kHz, 阻带衰减大于 40dB。

使用运算放大器搭建满足要求的巴特沃斯(Butterworth)高通滤波器,并且为了保证波形稳定性,在电路前端利用高通缓冲RC电路,对输入信号进行缓冲;同时采用高输出,低失调的高速宽带运放THS4061,保证在信号频率范围内,频率响应和相位响应的稳定。

图 3 滤波器电路

2. 软件程序设计

程序设计流程图如图 4 所示。首先,当按下"开始"键后,设置无线传输信号的信号类型和载波频率、载波有效值、AM 信号调制度等参数。程序先根据参数设置直达信号的载波频率,载波有效值,AM 或 CW 信号,若信号类型为 AM,则还需设置 AM 调制度,设置完后将直达信号输出;程序再根据直达信号的载波频率,载波有效值,AM 调制度同样设置多径信号,并且还需设置相对直达信号的幅度衰减,时延,若载波频率不固定,依照题目要求,还需设置初始相位差,设置完后将多径信号输出。合成信号则由多径信号和直达信号直接硬件相加输出。

图 4 软件设计流程图

四、测试方案与测试结果

1. 测试环境

示波器: Tektronix MDO3102型数字示波器;

电源: RIGOL DP832 型稳压源。

2. 测试方案

2.1 固定载波频率无线传输信号的测试方案

2.1.1 连续波信号和调幅信号的测试方案

设置信号类型为连续波(CW)信号,并且频率为 35MHz,观测示波器显示的直达和 多径信号波形,并记录相应参数;更改信号类型为调幅(AM)信号,设置调制信号频率 2MHz,重复上述操作。

2.1.2 直达信号 S_D 的测试方案

设置 S_D 的信号类型 CW,频率 35MHz,在 $100\text{mV} \sim 1\text{V}$ 的范围内更改有效值,并观测示波器波形显示的 S_D 信号类型以及载波频率;更改 S_D 信号类型为 AM,设置 2MHz 调制信号,频率 35MHz、有效值 500mV 的载波,并在 $30\% \sim 90\%$ 的调制深度内重复上述操作。

2.1.3 多径传输信号 S_M 的测试方案

设置 $S_{\rm M}$ 和 $S_{\rm D}$ 为 AM 信号,调制信号频率 2MHz,载波频率 35MHz,载波有效值 500mV,幅度衰减为 0dB。在要求范围内,设置相对时延,并观测 $S_{\rm M}$ 和 $S_{\rm D}$ 的相位差,用于计算时延;再要范围内设置衰减,并记录衰减前后 $S_{\rm M}$ 峰峰值的变化,用于计算衰减。

- 2.2 固定频段无线传输信号的测试方案
 - 2.2.1 直达信号 S_D 的测试方案

设置 S_D 信号类型为 CW 或 AM 信号,AM 调制信号频率 2MHz,在 30MHz ~ 40MHz 范围内步进载波频率,观测示波器显示的 S_D 信号的类型以及载波频率;在 100mV ~ 1V 范围内更改载波有效值,在 30% ~ 90%范围内更改 AM 调制度,重复前述操作。

2.2.2 多径传输信号 S_{M} 的测试方案

设置 S_{M} 和 S_{D} 信号类型为 CW 或 AM 信号,在题目规定范围和步进下,改变信号类型、载波频率、初始相位差、相对时延、幅度衰减以及示波器显示的 S_{M} 和 S_{D} 波形,同时观测屏幕显示的波形。

2.3 固定频段内合路输出无线传输信号 S_{Out} 的测试方案

设置 S_{M} 和 S_{D} 载波频率在 30MHz ~ 40MHz, 其余参数如上述在要求范围内进行控制,

观测示波器显示的 S_{out} 信号。

3. 测试结果与数据

3.1 固定载波频率无线传输信号测试

产生 S_D 和 S_M 信号时,测试结果分别如表 1、表 2 所示。产生信号类型设置 CW 或 AM 时,屏幕显示对应 CW 和 AM 信号的参数。根据测试结果可以看出,装置可以正确设置 AM、CW 信号; S_D 信号载波幅度有效值绝对误差小于 5mV,调制度绝对误差小于 3%; S_M 信号幅度衰减绝对误差小于 0.5dB,时延绝对误差小于 10ns。测试波形均稳定。

べ I 回足戦 放 例 平 3 D 信 5 例 因 ス								
信号参数设置				信号参数测量				
信号类型	载波频率 载波有效值		调制度	载波频率	载波有效值	调制度		
CW	35MHz	200mV	/	34.90MHz	199.10mV	/		
CW	35MHz	800mV	/	34.92MHz	800.22mV	/		
CW	35MHz	1000mV	/	35.10 MHz	1002.44mV	/		
AM	35MHz	200mV	60%	35.02MHz	201.35mV	57.80%		
AM	35MHz	800mV	80%	34.99MHz	804.66mV	81.23%		
AM	35MHz	$1000 \mathrm{mV}$	90%	34.95MHz	999.55mV	89.55%		

表 1 固定载波频率 S_n 信号测试表

表 2	固定载波频率 S_N	,信号测试表
~ ~ ~		コロ ノ ひょやソン

	产生信	号设置		产生信号测量		
信号类型	载波频率	幅度衰减	时延	载波频率	幅度衰减	时延
CW	35MHz	16dB	50ns	34.99MHz	16.20dB	51.00ns
CW	35MHz	2dB	140ns	35.03MHz	2.05dB	142.20ns
CW	35MHz	20dB	200ns	35.12MHz	19.66dB	198.54ns
AM	35MHz	6dB	80ns	35.11MHz	6.30dB	80.23ns
AM	35MHz	18dB	200ns	34.98MHz	17.82dB	198.50ns
AM	35MHz	20dB	50ns	35.06MHz	19.77dB	51.34ns

3.2 固定载波频段无线传输信号的测试

固定频段产生 S_D 和 S_M 信号时,测试结果分别如表 3、表 4 所示。产生信号类型设置 CW 或 AM 时,屏幕显示对应 CW 和 AM 信号的参数。根据测试结果可以看出,装置可以正确设置 AM、CW 信号; S_D 信号载波有效值绝对误差小于 10mV,调制度绝对误差小于 3%,载波频率相对误差小于 1%; S_M 信号幅度衰减绝对误差小于 0.5dB,时延绝对误差小于 10mV,载波频率相对误差小于 10mV,相位差绝对误差小于 10mV。测试波形均稳定。

表 3 固定载波频段 S_D 信号测试表

	产生信	号设置	信号参数测量				
信号类型	信号类型 载波频率 载波有效值			载波频率 载波有效值 调制度			
CW	31MHz	300mV	/	31.20MHz	299.20mV	/	

CW	40MHz	1000mV	/	39.92MHz	1001.22mV	/
CW	35MHz	500mV	/	34.98MHz	499.56mV	/
AM	31MHz	200mV	30%	31.10MHz	201.55mV	28.70%
AM	40MHz	800mV	90%	40.10MHz	798.88mV	92.20%
AM	35MHz	1000mV	50%	35.20MHz	1001.58mV	51.01%

表 4 固定载波频段 S_M 信号测试表

产生信号设置				信号参数测量				
信号类型	载波频率	幅度衰减	时延	初相差	载波频率	幅度衰减	时延	初相差
CW	30MHz	18dB	200ns	90°	30.20MHz	18.72dB	198.02ns	92.20°
CW	40MHz	4dB	80ns	180°	39.90MHz	4.25dB	78.25ns	182.72°
CW	35MHz	20dB	110ns	60°	34.95MHz	20.55dB	111.12ns	61.35°
AM	30MHz	18dB	50ns	30°	29.65MHz	17.86dB	48.60ns	29.30°
AM	40MHz	4dB	80ns	90°	40.99MHz	3.95dB	81.65ns	89.72°
AM	35MHz	20dB	110ns	150°	34.45MHz	19.87dB	109.78ns	150.78°

4. 测试结果分析

- 4.1 固定载波频率无线传输信号测试分析:由数据结果知,产生信号方式和相关参数显示正确,有效值幅度、调制度、时延、以及幅度衰减的绝对误差均满足题目要求,产生信号频率准确。误差主要来源乘法器的带宽积、采样精度和量化噪声等。
- 4.2 固定载波频段无线传输信号测试分析:由数据结果知,产生信号方式和相关参数显示正确,初相差、有效值幅度、调制度、时延、以及幅度衰减的绝对误差均满足题目要求,载波频率的相对误差也满足题目要求。误差主要来源相移计算的精度、采样精度和量化噪声等。
- 4.3 固定频段内合路输出无线传输信号 S_{Out} 的测试分析:测试的合成波形正确且稳定,满足题目要求。误差主要加法电路的频带和带宽以及量化噪声等。

五、 参考文献

- [1]. 罗杰,谢自美.电子线路-设计·实验·测试(第五版),2015,电子工业出版社.
- [2]. 康华光.电子技术基础(模拟部分)(第六版).2013,高等教育出版社.
- [3]. [美]Bruce Carter.运算放大器权威指南(第四版)2014,人民邮电出版社.
- [4]. 全国大学生电子设计竞赛组委会.第十一届全国大学生电子设计竞赛获奖作品选编,北京理工大学出版社.