Московский физико-технический институт (госудраственный университет)

Лабораторная работа по общему курсу физики Квантовая физика

5.1.1. Фотоэффект

Глаз Роман Сергеевич Группа Б01-008а

Долгопрудный 2022

Содержание

1	Теоретическое введение	1
2	Экспериментальная установка	3
3	Ход работы	4
4	Заключение	10
5	Список используемой литературы	11

Цель работы: Исследовать зависимость фототока от величины задерживающего потенциала и частоты падающего излучения, что позволяет вычислить величину постоянной Планка.

1. Теоретическое введение

Фотоэффект – явление испускания электронов фотокатодом, облучаемым светом, Это явление хорошо объясняется фотонной теорией света. Взаимодействие монохроматического света с веществом можно описывать как взаимодействие с веществом частиц, называемых фотонами, которые обладают энергией $\hbar\omega$ и импульсом $\hbar\omega/c$. При столкновении фотона с электроном фотокатода энергия фотона полностью передается электрону, и фотон прекращает свое существование. Энергетический баланс этого взаимодействия для вылетающих электронов описывается уравнением

$$\hbar\omega = E_{max} + W \tag{1}$$

Рис. 1: Зависимость фототока от напряжения на аноде фотоэлемента

Здесь E_{max} – максимальная кинетическая энергия электрона после выхода из фотокатода, W – работа выхода электрона из катода. Реально энергетический спектр вылетевших из фотокатода электронов непрерывен – он простирается от нуля до E_{max} .

Для измерения энергии вылетевших фотоэлектронов вблизи фотокатода обычно располагается второй электрод (анод), на который подается задерживающий (V<0) или ускоряющий (V>0) потенциал. При достаточно больших ускоряющих напряжениях фототок достигает насыщения (рис. 1): все испущенные электроны попадают на анод.

При задерживающих потенциалах на анод попадают лишь электроны, обладающие достаточно большой кинетической энергией, в то время как медленно

движущиеся электроны заворачиваются полем и возвращаются на катод. При некотором значении $V=-V_0$ (потенциал запирания) даже наиболее быстрые фотоэлектроны не могут достичь анода. Максимальная кинетическая энергия E_{max} электронов связана с запирающим потенциалом V_0 очевидным соотношением $E_{max}=eV_0$. Тогда (1) примет вид, называемый уравнением Эйнштейна:

$$eV_0 = \hbar\omega - W \tag{2}$$

Чтобы определить величину запирающего напряжения, нам надо правильно экстраполировать получаемую токовую зависимость к нулю, т. е. определить, какова функциональная зависимость I(V). Расчет для простейшей геометрии – плоский катод, освещаемый светом, и параллельный ему анод – приводит к зависимости

$$\sqrt{I} \propto V_0 - V,$$
 (3)

т. е. корень квадратный из фототока линейно зависит от запирающего напряжения. Эта зависимость хорошо описывает экспериментальные данные.

В работе изучается зависимость фототока из фотоэлемента от величины задерживающего потенциала V для различных частот света ω , лежащих в видимой области спектра. С целью экспериментальной проверки уравнения Эйнштейна определяются потенциалы запирания V_0 при разных частотах света и строится зависимость $V_0(\omega)$, которая, как это следует из (2), должна иметь вид

$$V_0(\omega) = \frac{\hbar\omega - W}{e} \tag{4}$$

Рис. 2: Зависимость запирающего потенциала от частоты света

Потенциал запирания V_0 для любого катода линейно зависит от частоты света ω . По наклону прямой на графике $V_0(\omega)$ (рис. 2) можно определить постоянную Планка:

$$\frac{dV_0}{d\omega} = \frac{\hbar}{e} \tag{5}$$

Как показывает формула (5), угол наклона прямой $V_0(\omega)$ не зависит от рода вещества, из которого изготовлен фотокатод. От рода вещества, однако, зависит величина фототока, работа выхода W и форма кривой I(V) (рис. 1). Все это определяет выбор пригодных для опыта катодов.

2. Экспериментальная установка

Рис. 3: Принципиальная схема экспериментальной установки

Свет от источника S (обычная электрическая лампа накаливания) с помощью конденсора фокусируется на входную щель призменного монохроматора УМ-2, выделяющего узкий спектральный интервал, и попадает на катод фотоэлемента Φ Э.

Фотоэлемент конструктивно представляет собой откачанный до высокого вакуума стеклянный баллон диаметром 25 мм и высотой 30 мм. Внутри баллона расположены два электрода: фотокатод и анод. Фотокатод представляет собой тонкую пленку металла, легированного элементами Na, K, Sb и Cs и расположенного на массивной металлической пластине. Анод фотоэлемента выполнен в виде пояска тонкой пленки, осажденной на внутренней части боковой поверхности вверху баллона. Такое расположение фотокатода и анода обеспечивает наиболее полный сбор на аноде электронов, эмитированных фотокатодом. Фотокатод и анод имеют вплавленные в стекло колбы никелевые выводы для подключения к внешней схеме. Такой фотоэлемент обладает спектральной чувствительностью в области длин волн от 300 до 850 нм. Наибольшая чувствительность Φ Э лежит в области от 400 до 500 нм.

Фототок, протекающий в фотоэлементе, мал, особенно при потенциалах V, близких к V_0 , и не может быть измерен непосредственно. Для его измерения используется усилитель постоянного тока. Для уменьшения погрешностей измерений, обусловленных наводками, усилитель ототока смонтирован в одном корпусе с Φ 9. Абсолютные значения ототока нам не нужны, поэтому он измеряется в относительных единицах цировым вольтметром V_2 , подключенным к выходу усилителя. Эти показания пропорциональны величине измеряемого тока. Тормозящий потенциал регулируется при помощи двух потенциометров "Грубо"и "Плавно установленных на корпусе блока питания установки. Измерение тормозящего потенциала осуществляется с помощью цирового вольтметра V_1 .

Контактная разность потенциалов между катодом и анодом мешает точному определению величины V_0 , но не оказывает влияния на определение постоянной Планка, которая выражается через производную $dV_0/d\omega$.

3. Ход работы

1. Выполним градуировку монохроматора.

λ	θ	λ	θ	λ	θ
540.1	1840	609.6	2218	633.4	2318
585.2	2102	614.3	2238	638.2	2336
588.2	2118	616.3	2248	640.2	2342
594.5	2148	621.7	2268	650.6	2380
597.6	2162	626.6	2288	653.2	2388
603.0	2183	630.4	2302	659.8	2416
607.4	2207	_	_	_	_

Таблица 1: Калибровочные данные монохроматора

Рис. 4: Калибровочные кривая монохроматора

Заметим, что среднеквартичное отклонение измеренныз величин и величин модели равно $\sigma_{\lambda}=0.15$ нм, поэтому модель можно считать точной.

2. Снимем зависимость $V_1(V)$, затем построим графики $\sqrt{(V_1)}(V)$, определим соответствующие пороговые значения напряжений V_0 .

$\lambda = 540.1$, HM			$\lambda = 582.8$, HM			$\lambda = 617.3$, HM		
V, B	V_1 , B	$\sqrt{(V_1)}, \mathrm{B}^{1/2}$	V, B	V_1 , B	$\sqrt{(V_1)}, B^{1/2}$	V, B	V_1 , B	$\sqrt{(V_1)}, B^{1/2}$
-0.70	0.01	0.10	-0.62	0.01	0.10	-0.43	0.01	0.10
-0.62	0.03	0.17	-0.58	0.02	0.14	-0.38	0.02	0.14
-0.54	0.04	0.20	-0.56	0.02	0.14	-0.32	0.04	0.20
-0.47	0.07	0.26	-0.46	0.05	0.22	-0.25	0.08	0.28
-0.37	0.11	0.33	-0.39	0.08	0.28	-0.20	0.10	0.32
-0.26	0.15	0.39	-0.33	0.10	0.32	-0.10	0.15	0.39
-0.13	0.21	0.46	-0.21	0.16	0.40	-0.01	0.20	0.45
0.02	0.29	0.54	-0.11	0.20	0.45	0.03	0.22	0.47
0.16	0.36	0.60	0.00	0.26	0.51	0.11	0.27	0.52
0.28	0.40	0.63	0.12	0.32	0.57	0.19	0.34	0.58
0.38	0.42	0.65	0.29	0.39	0.62	0.32	0.39	0.62
0.44	0.44	0.66	0.39	0.43	0.66	0.41	0.42	0.65
0.51	0.45	0.67	0.51	0.44	0.66	0.52	0.44	0.66

Таблица 2: Данные зависимостей $\sqrt{(V_1)}(V)$

	$\lambda = 639$	· · · · · · · · · · · · · · · · · · ·	$\lambda = 668.7$, нм			
V, B	V_1 , B	$\sqrt{(V_1)}, \mathrm{B}^{1/2}$	V, B	V_1 , B	$\sqrt{(V_1)}, \mathrm{B}^{1/2}$	
-0.30	0.02	0.14	-0.16	0.04	0.20	
-0.19	0.06	0.24	-0.05	0.09	0.30	
-0.12	0.10	0.32	0.00	0.12	0.35	
-0.03	0.15	0.39	0.09	0.16	0.40	
0.02	0.18	0.42	0.13	0.19	0.44	
0.09	0.22	0.47	0.17	0.22	0.47	
0.14	0.26	0.51	0.22	0.26	0.51	
0.23	0.32	0.57	0.30	0.32	0.57	
0.31	0.36	0.60	0.36	0.35	0.59	
0.39	0.40	0.63	0.41	0.38	0.62	
0.48	0.43	0.66	0.45	0.41	0.64	
0.54	0.45	0.67	0.50	0.50	0.71	

Таблица 3: Данные зависимостей $\sqrt{(V_1)}(V)$

Рис. 5: Зависимость $\sqrt{(V_1)}(V)$ для $\lambda = 540.1,$ нм

Рис. 6: Зависимость $\sqrt{(V_1)}(V)$ для $\lambda = 582.8,$ нм

Рис. 7: Зависимость $\sqrt{(V_1)}(V)$ для $\lambda = 617.3,$ нм

Рис. 8: Зависимость $\sqrt{(V_1)}(V)$ для $\lambda = 639.6,$ нм

Рис. 9: Зависимость $\sqrt{(V_1)}(V)$ для $\lambda = 668.7$, нм

3. Построим таблицу и график зависимости $V_0(\omega)$

V_0 , B	λ , HM	$\omega \cdot 10^{15}, \mathrm{c}^{-1}$
-0.842	540.1	3.488
-0.781	582.8	3.232
-0.521	617.3	3.051
-0.455	639.6	2.945
-0.391	668.7	2.817

Таблица 4: Таблица зависимости $V_0(\omega)$

.

Рис. 10: График зависимости $V_0(\omega)$

С помощью МНК найдём значение коэффициента наклона графика:

$$\left| \frac{dV_0}{d\omega} \right| = (0.719 \pm 0.127) \cdot 10^{-15} \text{ B} \cdot \text{c} \Rightarrow \hbar = (1.115 \pm 0.203) \cdot 10^{-34} \text{ Дж} \cdot \text{c} \quad (6)$$

Таким образом, полученное значение постоянной Дирака совпадает с теоретическим значением $\hbar = 1.054 \cdot 10^{-34}$ Дж · с.

4. Заключение

В результате работы подверждена квантовая теория света и получено значением постоянной Дирака $\hbar=(1.115\pm0.203)\cdot10^{-34}$ Дж · c, которое совпадает с теортическим значением $\hbar=1.054\cdot10^{-34}$ Дж · c.

5. Список используемой литературы

- Лабораторный практикум по общей физике. Квантовая физика
- Описание лабораторных работ на кафедре общей физики МФТИ