МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №6

по дисциплине «Качество и метрология программного обеспечения»

Тема: Оценка характеристик надёжности программ по структурным схемам надёжности

Студент гр. 8304	Ивченко A.A.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2022

Цель работы.

Изучить методику расчёта характеристик надёжности вычислительной системы по структурной схеме надёжности.

Ход выполнения.

Был выбран 5 вариант задания:

Вариант	N1			N2		N3			
	комбинат. соединения	λ_1	λ_2	λ_3	λ_4	комб. соедин.	λ	комб. соедин.	λ
5	C(3)	3.8	2.8	4.0	-	(1,2)	1.8	(2,1)	2.8

Структура вычислительной системы представляет собой три блока: N1-из трёх последовательных элементов, N_2- из двух параллельных ветвей (1 элемент на верхней, 2 элемента на нижней), N_3- из двух параллельных ветвей (2 элемента на верхней, 1 элемент на нижней). Схема вычислительной системы представлена на рисунке 1.

Рисунок 1 – Схема вычислительной системы

Был выполнен вручную расчёт характеристик надёжности:

• Надёжность каждого блока:

• Общая надёжность системы:

$$R(2) = R_{N1}(2) * R_{N2}(2) * R_{N3}(2) = 0.99978801359$$

• Среднее время до отказа:

MTTF=
$$\int_{0}^{\infty} R_{N_1}(t) \cdot R_{N_2}(t) \cdot R_{N_3}(t) dt = 7984.471936841737$$

Затем был выполнен расчёт с помощью программы rssa. Для этого был составлен файл system.xml, содержащий описание схемы системы. Схема вычислительной системы, построенная с помощью программы, представлена на рисунке 2. Результат программных вычислений представлен на рисунке 3.

Рисунок 2 – Схема вычислительной системы, построенная с помощью программы

t	R	T	
2.0	0.9997880136089575	7978.0698137544	

Рисунок 3 – Результат программных вычислений

Выводы.

В ходе выполнения лабораторной работы была изучена методика расчёта характеристик вычислительной системы по структурной схеме надёжности. В ходе расчёта вручную и с помощью программы rssa были получены схожие результаты, за исключением разницы в среднем времени до отказа ≈ 6.4 , что объясняется большей точностью вычисления интеграла программой rssa.