AS1056 - Mathematics for Actuarial Science. Chapter 13, Tutorial 2.

Emilio Luis Sáenz Guillén

Bayes Business School. City, University of London.

March 07, 2024

Refreshing some concepts: Argand Diagram

• An Argand diagram is a plot of complex numbers as points z=x+iy in the complex plane using the x-axis as the real axis and y-axis as the imaginary axis.

The radius of the dashed circle represents the <u>complex modulus</u> r=|z|, and the angle $\theta=\arg(z)$ represents its complex argument.

That is,

- The complex number z=x+iy is represented as the point (x,y) in the plane.
- $r=|z|=|x+iy|=\sqrt{x^2+y^2}$ is the distance of the point (x,y) from the origin (\sim equation of a circle centred at (0,0)).

Polar representation

Any point (x,y) in two-dimensional space can be written in the form $(r\cos(\theta),r\sin(\theta))$, where:

•
$$r = |z| = \sqrt{x^2 + y^2}$$

•
$$r\cos(\theta) = x$$
, $r\sin(\theta) = y$, $\tan(\theta) = \frac{y}{x}$

Euler's formula

So we can write:
$$z = \underbrace{x + iy}_{\text{Cartesian representation}} = \underbrace{r \times (\cos(\theta) + i\sin(\theta)) \stackrel{\downarrow}{=} re^{i\theta}}_{\text{Polar representation}}.$$

With complex conjugate:
$$z^* = x - iy = r \times (\cos(\theta) - i\sin(\theta)) = re^{-i\theta}$$
.

Cartesian coordinates:
$$(x,y)$$

Polar coordinates:
$$(r, \theta)$$

Emilio Luis Sáenz Guillén Bayes Business School 4/6

Exercise 13.5

Represent in polar form:

(i)
$$\frac{(1+i)(2+i)}{3-i}$$

(ii)
$$\sqrt{2+2i} - \sqrt{2-2i}$$

Exercise 13.9

Consider the polynomial

$$p(x) = x^4 + 8x^3 + 33x^2 + 68x + 52$$

Knowing that one of the roots of p is x=2+3i, and all the other roots.

[**Hint:** Recall that complex solutions of polynomial equations always come in complex conjugate pairs.]

 \longrightarrow Quadratic polynomials with no real roots will have two complex roots that are conjugates of each other.