Package 'DiscreteWeibull'

October 12, 2022

Type Package

Title Discrete Weibull Distributions (Type 1 and 3)

version 1.1	
Date 2015-10-15	
Author Alessandro Barbiero	
Maintainer Alessandro Barbiero <alessandro.barbiero@unimi.it></alessandro.barbiero@unimi.it>	
Description Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions.	
License GPL	
LazyLoad yes	
Depends Rsolnp, stats	
NeedsCompilation no	
Repository CRAN	
Date/Publication 2015-10-18 01:21:16	
Discrete Weibull-package Discrete Weibull (Type 1) Discrete Weibull (Type 3) Edweibull	2 3 4 6
Edweibull3 estdweibull3 loglikedw loglikedw3 lossdw lossdw3	7 9 10 12 13 14 15 16
Index	17

DiscreteWeibull-package

Discrete Weibull Distributions (Type 1 and 3)

Description

Probability mass function, distribution function, quantile function, random generation and parameter estimation for the type I and III discrete Weibull distributions. In the present version, some modifications have been made on the functions in Edweibull for the computation of the moments of the type I discrete Weibull distribution.

Details

Package: DiscreteWeibull

Type: Package Version: 1.1

Date: 2015-10-17 License: GPL

LazyLoad: yes Depends: Rsolnp

Author(s)

Alessandro Barbiero <alessandro.barbiero@unimi.it>

References

T. Nakagawa and S. Osaki (1975) The discrete Weibull distribution, IEEE Transactions on Reliability, 24(5), pp. 300-301

D.N.P. Murthy, M. Xie, R Jiang (2004) Weibull models, John Wiley & Sons: Hoboken, New Jersey

W.J. Padgett and J.D. Spurrier (1985) Discrete failure models, IEEE Transactions on Reliability, 34(3), pp. 253-256

H. Rinne (2008) The Weibull Distribution: A Handbook. CRC Press: Boca Raton, Florida

M. S. A. Khan, A. Khalique, and A. M. Abouammoh (1989) On estimating parameters in a discrete Weibull distribution, IEEE Transactions on Reliability, 38(3), pp. 348-350

See Also

ddweibull, estdweibull, Edweibull, ddweibull3, estdweibull3, Edweibull3

```
Discrete Weibull (Type 1)
```

The type 1 discrete Weibull distribution

Description

Probability mass function, distribution function, quantile function and random generation for the discrete Weibull distribution with parameters q and β

Usage

```
ddweibull(x, q, beta, zero = FALSE)
pdweibull(x, q, beta, zero = FALSE)
qdweibull(p, q, beta, zero = FALSE)
rdweibull(n, q, beta, zero = FALSE)
```

Arguments

X	vector of quantiles
p	vector of probabilities
q	first parameter
beta	second parameter
zero	TRUE, if the support contains 0 ; FALSE otherwise
n	sample size

Details

```
The discrete Weibull distribution has probability mass function given by P(X=x;q,\beta)=q^{(x-1)^{\beta}}-q^{x^{\beta}},\ x=1,2,3,\ldots, if zero=FALSE; or P(X=x;q,\beta)=q^{x^{\beta}}-q^{(x+1)^{\beta}},\ x=0,1,2,\ldots, if zero=TRUE. The cumulative distribution function is F(x;q,\beta)=1-q^{x^{\beta}} if zero=FALSE; F(x;q,\beta)=1-q^{(x+1)^{\beta}} otherwise
```

Value

ddweibull gives the probability function, pdweibull gives the distribution function, qdweibull gives the quantile function, and rdweibull generates random values.

Author(s)

Alessandro Barbiero

Examples

```
# Ex.1
x <- 1:10
q < -0.6
beta <- 0.8
ddweibull(x, q, beta)
t <- qdweibull(0.99, q, beta)
pdweibull(t, q, beta)
x < -0:10
ddweibull(x, q, beta, zero=TRUE)
t <- qdweibull(0.99, q, beta, zero=TRUE)
pdweibull(t, q, beta, zero=TRUE)
# Ex.2
q < -0.4
beta <- 0.7
n <- 100
x <- rdweibull(n, q, beta)</pre>
tabulate(x)/sum(tabulate(x))
y <- 1:round(max(x))
# compare with
ddweibull(y, q, beta)
```

Discrete Weibull (Type 3)

The type 3 discrete Weibull distribution

Description

Probability mass function, distribution function, quantile function, random generation, and hazard function for the type 3 discrete Weibull distribution with parameters c and β

Usage

```
ddweibull3(x, c, beta)
pdweibull3(x, c, beta)
qdweibull3(p, c, beta)
rdweibull3(n, c, beta)
hdweibull3(x, c, beta)
```

Arguments

С

x vector of values/quantilesp vector of probabilities

first parameter

```
beta second parameter
n sample size
```

Details

```
The type 3 discrete Weibull distribution is characterized by the following cumulative distribution function: F(x;c,\beta)=1-\exp(-c\sum_{j=0}^{x+1}j^{\beta}), for x=0,1,2,\ldots, with c>0 and \beta>=-1.
```

Value

ddweibull3 gives the probability function, pdweibull3 gives the distribution function, qdweibull3 gives the quantile function, hdweibull3 gives the hazard function, and rdweibull generates random values.

Author(s)

Alessandro Barbiero

```
# ddweibull3
x < -0:10
c <- 0.3
beta <- 0.75
p \leftarrow ddweibull3(x, c, beta)
plot(x, p, type="b", ylab=expression(P(X)==x))
# pdweibull3
x <- 0:10
c <- 0.5
beta <- 0.5
p \leftarrow pdweibull3(x, c, beta)
cumsum(ddweibull3(x, c, beta))
plot(x, p, type="s", ylab=expression(P(X<=x)))
# qdweibull3
p <- c(1:9)/10
c < -0.1
beta <- 0.5
qdweibull3(p, c, beta)
pdweibull3(10, c, beta)
pdweibull3(9, c, beta)
# rdweibull3
n <- 20
c <- 0.25
beta <- -0.25
x <- rdweibull3(n, c, beta)
beta <- 0
x <- rdweibull3(n, c, beta)
```

6 Edweibull

```
beta <- 0.25
x <- rdweibull3(n, c, beta)
n <- 1000
x <- rdweibull3(n, c, beta)</pre>
obs <- c(sum(x==0), tabulate(x))
obs <- obs/sum(obs)</pre>
theo <- ddweibull3(min(x):max(x), c, beta)
barplot(rbind(obs, theo), beside=TRUE, names.arg=min(x):max(x),
ylab="relative frequency/probability", col=1:2)
legend(24, 0.1, c("observed", "theoretical"), pch=15, col=1:2)
#hdweibull3
x <- 0:15
c <- 0.5
hn<-hdweibull3(x, c, beta = -0.5)
h0 < -hdweibull3(x, c, beta = 0)
hp < -hdweibull3(x, c, beta = 0.5)
plot(x, hn, type="b", ylim = c(0, 1), ylab="hazard rate")
points(x, h0, type = "b", col=2)
points(x, hp, type = "b", col=3)
legend(11, 0.5, c("beta<0", "beta=0", "beta>0"), col=1:3, pch=21)
```

Edweibull

Expected values

Description

First and second order moments, variance and expected value of the reciprocal for the type 1 discrete Weibull distribution

Usage

```
Edweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE)

E2dweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE)

Vdweibull(q, beta, eps = 1e-04, nmax = 1000, zero = FALSE)

ERdweibull(q, beta, eps = 1e-04, nmax = 1000)
```

Arguments

q	first parameter
beta	second parameter
eps	error threshold for the numerical computation of the expected value
nmax	maximum value considered for the numerical approximate computation of the expected value;
zero	TRUE, if the support contains 0; FALSE otherwise

Edweibull3 7

Details

The expected value is numerically computed considering a truncated support: integer values smaller than or equal to $2F^{-1}(1-eps;q,\beta)$ are considered, where F^{-1} is the inverse of the cumulative distribution function (implemented by the function qdweibull). However, if such value is greater than nmax, the expected value is computed recalling the formula of the expected value of the corresponding continuous Weibull distribution (see the reference), adding 0.5. Similar arguments apply to the other moments.

Value

the (approximate) expected values of the discrete Weibull distribution: Edweibull gives the first order moment, E2dweibull the second order moment, Vdweibull the variance, ERdweibull the expected value of the reciprocal (only if zero is FALSE)

Author(s)

Alessandro Barbiero

References

M. S. A. Khan, A. Khalique, and A. M. Abouammoh (1989) On estimating parameters in a discrete Weibull distribution, IEEE Transactions on Reliability, 38(3), pp. 348-350

Examples

```
q <- 0.75
beta <- 1.25
Edweibull(q, beta)
E2dweibull(q, beta)
Vdweibull(q, beta)
ERdweibull(q, beta)
# if beta=0.75...
beta <- 0.75
Edweibull(q, beta)
Edweibull(q, beta, nmax=100)
# here above, the approximation through the continuous model intervenes
# if beta=1...
beta <- 1
Edweibull(q, beta)
# which equals...
1/(1-q)
```

Edweibull3

Expected values

Description

First and second order moments for the type 3 discrete Weibull distribution

8 Edweibull3

Usage

```
Edweibull3(c, beta, eps = 1e-04)
E2dweibull3(c, beta, eps = 1e-04)
```

Arguments

С	first parameter
beta	second parameter
eps	error threshold for the numerical computation of the expected value

Details

The expected values are numerically computed considering a truncated support: integer values smaller than or equal to $2F^{-1}(1-eps;c,\beta)$), where F^{-1} is the inverse of the cumulative distribution function (implemented by the function qdweibull3)

Value

the (approximate) expected values of the discrete Weibull distribution: Edweibull3 gives the first order moment, E2dweibull3 the second order moment

Author(s)

Alessandro Barbiero

```
c <- 0.4
beta <- 0.25
Edweibull3(c,beta)
c < -0.4
beta <- -0.75
Edweibull3(c, beta) # may require too much time
Edweibull3(c, beta, eps=0.001) # try with a smaller eps->worse approximation
c \leftarrow rep(0.1, 11)
beta <- (0:10)/10
Edweibull3(c, beta)
c \leftarrow rep(0.5, 11)
beta <- (-5:5)/10
Edweibull3(c,beta)
# E2dweibull3
c < -0.4
beta <- 0.25
E2dweibull3(c, beta)
c \leftarrow rep(0.1, 11)
beta <- (0:10)/10
Edweibull3(c, beta)
c <- rep(0.8, 11)
beta <- (-5:5)/11
E2dweibull3(c, beta)
```

estdweibull 9

estdweibull	Estimation of parameters

Description

Estimation of the parameters of the type 1 discrete Weibull distribution

Usage

```
estdweibull(x, method = "ML", zero = FALSE, eps = 1e-04, nmax=1000)
```

Arguments

X	the vector of sample values
method	"ML" for the maximum likelihood method; "M" for the method of moments; "P" for the method of proportions
zero	TRUE, if the support contains 0; FALSE otherwise
eps	error threshold for the computation of the moments of the distribution
nmax	maximum value considered for the numerical computation of the expected value

Value

the vector of the estimates of q and β

Author(s)

Alessandro Barbiero

See Also

ddweibull

```
# Ex1 n <- 10 q <- 0.5 beta <- 0.8  
x <- rdweibull(n, q, beta)  
estdweibull(x, "ML") # maximum likelihood method  
# it may return some harmless warnings  
# that depend on the optimization function used in the maximization routine  
estdweibull(x, "M") # method of moments  
estdweibull(x, "P") # method of proportion  
# the estimates provided by the three methods may be quite different  
# from the true values... and to each other  
# change the sample size  
n <- 50
```

10 estdweibull3

```
q <- 0.5
beta <- 0.8
x <- rdweibull(n, q, beta)</pre>
estdweibull(x, "ML") # maximum likelihood method
estdweibull(x, "M") # method of moments
estdweibull(x, "P") # method of proportion
# the estimates should be (on average) closer to the true values
# ...and to each other
# When the estimation methods fail...
# Ex2
# only 1s and 2s
x \leftarrow c(1,1,1,1,1,1,2,2,2,2)
\begin{array}{ll} \text{estdweibull(x, "ML") \# fails!} \\ \text{estdweibull(x, "M") \# fails!} \end{array}
estdweibull(x, "P") # fails!
# Ex3
# no 1s
x \leftarrow c(2,2,3,4,5,5,5,6,6,8,10)
estdweibull(x, "ML") # works
estdweibull(x, "M") # works
estdweibull(x, "P") # fails!
```

estdweibull3

Estimation of parameters

Description

Estimation of the parameters of the type 3 discrete Weibull distribution

Usage

```
estdweibull3(x, method = "P", eps = 1e-04)
```

Arguments

x the vector of sample values

method "ML" for the maximum likelihood method; "M" for the method of moments; "P"

for the method of proportions

eps error threshold for the computation of the moments of the distribution

Value

the vector of the estimates of c and β

Author(s)

Alessandro Barbiero

estdweibull3

See Also

ddweibull3

```
# Ex1
x \leftarrow c(0,0,0,0,0,1,1,1,1,1,1,1,2,2,2,2,3,3,4,6)
estdweibull3(x,\ ^{\prime \prime }P^{\prime \prime })
estdweibull3(x, "ML")
estdweibull3(x, "M")
# Ex 2
n <- 20
c <- 1/3
beta <- 2/3
x <- rdweibull3(n, c, beta)</pre>
estdweibull3(x, "P")
par <- estdweibull3(x, "ML")</pre>
par
-loglikedw3(par, x)
par <- estdweibull3(x, "M")</pre>
par
lossdw3(par, x)
n <- 50
x <- rdweibull3(n, c, beta)
estdweibull3(x, "P")
estdweibull3(x, "ML")
estdweibull3(x, "M")
n <- 100
x <- rdweibull3(n, c, beta)
estdweibull3(x, "P")
estdweibull3(x, "ML")
estdweibull3(x, "M")
# Ex 3: a piece of simulation study
nSim <- 50
n <- 50
c <- 0.2
beta <- 0.7
par <- matrix(0, nSim, 2)</pre>
for(i in 1:nSim)
x <- rdweibull3(n, c, beta)</pre>
par[i,] <- estdweibull3(x, "ML")</pre>
op <- par(mfrow = c(1,2))
boxplot(par[,1], xlab=expression(hat(c)[ML]))
abline(h = c)
boxplot(par[,2], xlab=expression(hat(beta)[ML]))
abline(h = beta)
op <- par()
```

12 loglikedw

loglikedw

Loglikelihood function

Description

Loglikelihood function (changed in sign) for the type 1 discrete Weibull distribution

Usage

```
loglikedw(par, x, zero = FALSE)
```

Arguments

par the vector of parameters, q and β x the vector of sample values zero TRUE, if the support contains 0; FALSE otherwise

Value

the value of the loglikelihood function (changed in sign) for the observed sample x under the parameters par

Author(s)

Alessandro Barbiero

See Also

```
estdweibull
```

```
 x \leftarrow c(1,1,1,2,2,2,2,2,2,2,3,4,4,5,6,8) \\ -loglikedw(c(0.8, 1), x) \# loglikelihood function for q=0.8 and beta=1 \\ -loglikedw(c(0.4, 2), x) \# loglikelihood function for q=0.4 and beta=2 \\ par <- estdweibull(x, "ML")\# parameter estimates derived by the ML method par \\ -loglikedw(par, x) \# the maximum value of the loglikelihood function \\
```

loglikedw3

loglikedw3

Loglikelihood function

Description

Loglikelihood function (changed in sign) for the type 3 discrete Weibull distribution

Usage

```
loglikedw3(par, x)
```

Arguments

```
par the vector of parameters, c and \beta x the vector of sample values
```

Value

the value of the loglikelihood function (changed in sign) for the observed sample x under the parameters par

Author(s)

Alessandro Barbiero

See Also

```
estdweibull3
```

```
n <- 20
c <- 1/3
beta <- 2/3
x <- rdweibull3(n, c, beta)
par <- estdweibull3(x, "ML")
par
-loglikedw3(par, x)</pre>
```

14 lossdw

lossdw	Loss function
--------	---------------

Description

Loss function for the method of moments (type 1 discrete Weibull)

Usage

```
lossdw(par, x, zero = FALSE, eps = 1e-04, nmax=1000)
```

Arguments

par	vector of parameters q and β
х	the vector of sample values
zero	TRUE, if the support contains 0; FALSE otherwise
eps	error threshold for the numerical computation of the expected value
nmax	maximum value considered for the numerical computation of the expected value

Details

The loss function is given by $L(x; q, \beta) = [m_1 - E(X; q, \beta)]^2 + [m_2 - E(X^2; q, \beta)]^2$, where $E(\cdot)$ denotes the expected value, m_1 and m_2 are the first and second order sample moments respectively.

Value

the value of the quadratic loss function

Author(s)

Alessandro Barbiero

See Also

Edweibull

```
x \leftarrow c(1,1,1,1,1,2,2,2,3,4)
lossdw(c(0.5, 1), x)
par <- estdweibull(x, "M") # parameter estimates derived by the method of moments par
lossdw(par, x) # the loss is zero using these estimates
```

lossdw3

lossdw3

Loss function

Description

Loss function for the method of moments (type 3 discrete Weibull)

Usage

```
lossdw3(par, x, eps = 1e-04)
```

Arguments

par vector of parameters q and β x the vector of sample values eps error threshold for the numerical computation of the expected value

Details

The loss function is given by $L(x; c, \beta) = [m_1 - \mathrm{E}(X; c, \beta)]^2 + [m_2 - \mathrm{E}(X^2; c, \beta)]^2$, where $\mathrm{E}(\cdot)$ denotes the expected value, m_1 and m_2 are the first and second order sample moments respectively.

Value

the value of the quadratic loss function

Author(s)

Alessandro Barbiero

See Also

```
Edweibull3
```

```
n <- 25
c <- 1/3
beta <- 2/3
x <- rdweibull3(n, c, beta)
par <- estdweibull3(x, "M")
par
lossdw3(par, x)</pre>
```

16 varFisher

varFisher

Observed Fisher information matrix

Description

Observed Fisher information matrix on a sample from the type 1 discrete Weibull distribution

Usage

```
varFisher(x, zero = FALSE)
```

Arguments

x a vector of sample values

zero TRUE, if the support contains 0; FALSE otherwise

Value

a list of two matrices: the observed Fisher information matrix, and its inverse, which contains asymptotic variances and covariances of the maximum likelihood estimators of q and β

Author(s)

Alessandro Barbiero

See Also

```
estdweibull
```

```
x <- rdweibull(100, 2/3, 3/2)
estdweibull(x, "ML")
IF <- varFisher(x)[[2]]
diag(IF)
diag(IF)/length(x)
# asymptotic variances of the ML estimators directly estimated from the sample</pre>
```

Index

* distribution	hdweibull3 (Discrete Weibull (Type 3)),
Discrete Weibull (Type 1), 3	4
Discrete Weibull (Type 3),4	
Edweibull, 6	loglikedw, 12
Edweibull3, 7	loglikedw3, 13
estdweibull, 9	lossdw, 14
estdweibull3, 10	lossdw3, 15
loglikedw, 12	
loglikedw3, 13	pdweibull (Discrete Weibull (Type 1)), 3
lossdw, 14	pdweibull3 (Discrete Weibull (Type 3)),
lossdw3, 15	4
varFisher, 16	qdweibull, 7
* htest	qdweibull(Discrete Weibull (Type 1)), 3
estdweibull, 9	qdweibull3, 8
estdweibull3, 10	qdweibull3 (Discrete Weibull (Type 3)),
loglikedw, 12	4
loglikedw3, 13	•
varFisher, 16	rdweibull (Discrete Weibull (Type 1)), 3
* package	rdweibull3 (Discrete Weibull (Type 3)),
DiscreteWeibull-package, 2	4
ddweibull, 2, 9	varFisher, 16
ddweibull (Discrete Weibull (Type 1)), 3	Vdweibull (Edweibull), 6
ddweibull3, 2, <i>11</i>	
ddweibull3 (Discrete Weibull (Type 3)),	
4	
Discrete Weibull (Type 1),3	
Discrete Weibull (Type 3),4	
DiscreteWeibull	
(DiscreteWeibull-package), 2	
DiscreteWeibull-package, 2	
E2dweibull (Edweibull), 6	
E2dweibull3 (Edweibull3), 7	
Edweibull, 2, 6, <i>14</i>	
Edweibull3, 2, 7, 15	
ERdweibull (Edweibull), 6	
estdweibull, 2, 9, <i>12</i> , <i>16</i>	
estdweibull3, 2, 10, <i>13</i>	