Wyjaśnienie zależności funkcyjnych oraz kluczy

POJĘCIA

Atrybut KLUCZOWY (ang. prime attribute) to taki atrybut tabeli, który wchodzi w skład dowolnego klucza.

Atrybut NIEKLUCZOWY (ang. non-prime attribute) to taki atrybut tabeli, który nie wchodzi w skład żadnego klucza. Atrybut niekluczowy nazywany jest także atrybutem informacyjnym.

KLUCZ (ang. key) albo **KLUCZ KANDYDUJĄCY** (ang candidate key) jest to **minimalny** podzbiór atrybutów relacji, który pozwala jednoznacznie identyfikować każdą krotkę.

NADKLUCZ jest to **dowolny** (niekoniecznie minimalny) podzbiór atrybutów relacji, który pozwala identyfikować jednoznacznie każdą krotkę.

KLUCZ PODSTAWOWY albo **KLUCZ GŁÓWNY** (ang. primary key) jest to jeden dowolny klucz wybrany spośród kluczy kandydujących.

Dla przykładowej relacji **PODATNICY(NIP, PESEL, NAZWISKO, IMIĘ)**:

- kluczem (kluczem kandydującym) jest NIP
- kluczem (kluczem kandydującym) jest PESEL
- nadkluczem jest (NIP, PESEL)
- nadkluczem jest (NIP, PESEL, NAZWISKO)
- nadkluczem jest (NIP, PESEL, IMIE)
- nadkluczem jest (NIP, PESEL, NAZWISKO, IMIĘ)
- atrybutem kluczowym jest NIP
- atrybutem kluczowym jest PESEL
- atrybutem niekluczowym jest IMIE
- atrybutem niekluczowym jest NAZWISKO

Zależność funkcyjną w postaci A → B należy odczytywać (rozumieć):

- A determinuje B
- A określa B
- B zależy funkcyjnie od A

Prawa (aksjomaty) Armstronga:

- (A1) Zwrotność: Jeżeli $Y \subseteq X$ to $X \rightarrow Y$
- (A2) Rozszerzanie: Jeżeli $X \rightarrow Y$ to zachodzi $XZ \rightarrow YZ$
- (A3) Przechodniość: Jeżeli $X \to Y$ oraz $Y \to Z$ to zachodzi $X \to Z$

Domkniecie (zbioru atrybutów relacji nad zbiorem zależności funkcyjnych)

Niech dany będzie zbiór atrybutów $A = (A_1, A_2, ... A_n)$ oraz zbiór zależności funkcyjnych $F = (F_1, F_2 ... F_n)$. Domknięciem zbioru atrybutów A nad zbiorem zależności F nazywamy taki zbiór atrybutów B, w którym dla każdego atrybutu B_i , należącego do pewnej relacji R spełniającej zależności F, spełniona jest zależność $A_1 A_2 ... A_n \rightarrow B_i$.

PRZYKŁADY

Przykład 1

Dana jest relacja 3-atrybutowa R(A, B, C) dla której zachodzą następujące zależności funkcyjne $F = \langle A \rightarrow B, B \rightarrow C \rangle$

Dla wymienionych wyżej zależności tworzymy tabelę, w której w kolumnie "Lewostronne" umieszczamy te atrybuty, które we wszystkich zależnościach funkcyjnych występują **tylko po lewej** stronie a także te, które w ogóle w zależnościach funkcyjnych nie występują tj. znajdują się w relacji R lecz brak ich w zależnościach funkcyjnych. W kolumnie "Obustronne" umieszczamy te atrybuty, które we zależnościach funkcyjnych występują **po obu** stronach (np. w jednej zależności po stronie prawej a w innej po stronie lewej). W kolumnie "Prawostronne" umieszczamy te atrybuty, które we wszystkich zależnościach funkcyjnych występują **tylko** po prawej stronie.

Dla zależności funkcyjnych z przykładu tj. $F = \langle A \rightarrow B, B \rightarrow C \rangle$ otrzymujemy:

Lewostronne atrybuty kluczowe	Obustronne atrybuty potencjalnie kluczowe	Prawostronne atrybuty niekluczowe
A	В	С

Stąd wnioskujemy, że atrybuty które znalazły się w kolumnie "Lewostronne" SĄ na pewno atrybutami kluczowymi (muszą się pojawić w każdym kluczu). Atrybuty, które znalazły się w kolumnie "Prawostronne" NIE SĄ na pewno atrybutami kluczowymi (nie mogą się pojawić w żadnym kluczu). Natomiast atrybuty, które znajdują się w kolumnie "Obustronne" mogą ale nie muszą być atrybutami kluczowymi (mogą się pojawić w jednym kluczu ALBO mogą się pojawić w kilku kluczach ALBO mogą się pojawić we wszystkich kluczach ALBO mogą się nie pojawić w żadnym kluczu).

Jak sprawdzić czy atrybuty znajdujące się w kolumnie "Obustronne" są lub nie są atrybutami kluczowymi? Jeżeli są, to w jakich kluczach?

W tym celu musimy wyznaczyć domknięcie dla zbioru atrybutów kluczowych. W naszym przypadku dla atrybutu A, który jest na pewno atrybutem wchodzącym w skład klucza, musimy wyznaczyć **domknięcie**, czyli A⁺. W tym celu będziemy korzystać z praw Armstronga:

```
\begin{array}{l} A^+ \to ? \\ A^+ \to A \text{ (zgodnie z prawem zwrotności Armstronga, gdyż } A \subseteq A^+) \\ A^+ \to AB \text{ (gdyż A determinuje } B \text{ tj. istnieje zależność funkcyjna } A \to B) \\ A^+ \to ABC \text{ (gdyż } B \text{ determinuje } C \text{ tj. istnieje zależność funkcyjna } B \to C) \end{array}
```

Ponieważ po prawej stronie pojawiły się wszystkie atrybuty relacji **R(A, B, C)** to możemy powiedzieć, że atrybut A determinuje (określa) **wszystkie** atrybuty (A, B, C) relacji R. Jest to warunek konieczny, aby uznać, że określony atrybut jest **kluczem** relacji.

Komentarz: Powyżej powiedzieliśmy, że gdy pojedynczy atrybut lub zbiór atrybutów determinuje wszystkie atrybuty relacji to możemy uznać go za klucz tej relacji. W znakomitej większości przypadków tak będzie, jednak w bardzo szczególnych przypadkach może się okazać, że otrzymamy nie klucz lecz nadklucz! Dlatego w takich przypadkach, dla pewności powinniśmy sprawdzić, czy otrzymany atrybut albo zbiór atrybutów spełnia warunek klucza tj. czy jest zbiorem minimalnym? Dla wyżej przedstawionego przykładu możemy powiedzieć, że ponieważ atrybut A jest atrybutem pojedynczym, w związku z tym możemy na pewno stwierdzić, że jest minimalnym podzbiorem atrybutów relacji R (nie ma mniejszego podzbioru atrybutów relacji R niż pozbiór 1-elementowy). Zatem A na pewno jest kluczem.

Czy istnieją inne klucze w zadanej relacji? Formalnie powinniśmy sprawdzić domknięcie dla pozostałych, potencjalnych atrybutów, które znajdują się w kolumnie "Obustronne" tj. powinniśmy sprawdzić $AB^+ \rightarrow ?$ oraz $AC^+ \rightarrow ?$ Ale czy takie sprawdzenie na pewno jest konieczne? Przecież z definicji klucza wynika, że

klucz to minimalny zbiór atrybutów. Zatem biorąc pod uwagę wyznaczony wcześniej klucz A możemy stwierdzić, że:

- AB na pewno nie jest kluczem w relacji R, gdyż mniejszym podzbiorem ze zbioru AB, który jest już kluczem, jest pojedynczy atrybut A (AB jest zbiorem 2-elementowym, natomiast A jest zbiorem 1-elementowym);
- AC na pewno nie jest kluczem w relacji R, gdyż mniejszym podzbiorem ze zbioru AB, który jest już kluczem, jest pojedynczy atrybut A (AC jest zbiorem 2-elementowym, natomiast A jest zbiorem 1-elementowym);

AB oraz AC są nadkluczami w relacji R.

Na marginesie, dlaczego A pojawia się w obu domknięciach? Pojawia się dlatego, gdyż A jest **na pewno** atrybutem kluczowym, zatem musi się pojawić w **każdym** kluczu, natomiast B i C mogą sie pojawić ale nie muszą.

Wynik do sprawdzenia tutaj: http://uisacad5.uis.edu/cgi-bin/mcrem2/database_design_tool.cgi

Przykład 2

Dana jest relacja 4-atrybutowa R(K, L, M, N) dla której zachodzą następujące zależności funkcyjne $F = \langle MN \rightarrow K, K \rightarrow L, L \rightarrow M \rangle$

Dla zależności funkcyjnych z niniejszego przykładu tj. $\mathbf{F} = \langle \mathbf{MN} \rightarrow \mathbf{K}, \ \mathbf{K} \rightarrow \mathbf{L}, \ \mathbf{L} \rightarrow \mathbf{M} \rangle$ otrzymujemy:

Lewostronne atrybuty kluczowe	Obustronne atrybuty potencjalnie kluczowe	Prawostronne atrybuty niekluczowe
N	MKL	-

Atrybutem kluczowym jest na pewno N, natomiast M, K oraz L są potencjalnymi atrybutami kluczowymi.

Wyznaczamy domknięcie dla zbioru atrybutów kluczowych tj. dla N.

 $N^+ \rightarrow ?$

 $N^+ \rightarrow N$ (zgodnie z prawem zwrotności Armstronga, gdyż $N \subseteq N^+$)

Tutaj się zatrzymujemy, gdyż stosując prawa Armstronga nic więcej zrobić nie możemy. Możemy zatem wysnuć wniosek, że N nie jest kluczem (po prawej stronie nie otrzymaliśmy listy wszystkich atrybutów relacji R).

Zatem zamiast rozpatrywać tylko N, dołóżmy do tego atrybutu jeden z atrybutów, które potencjalnie mogą być atrybutami kluczowymi tj. M, K, L. Będziemy zatem musieli rozważyć 3 przypadki: MN, KN, LN.

Przypadek 1)

Zatem wyznaczmy domknięcie dla zbioru atrybutów kluczowych w postaci MN.

 $MN^+ \rightarrow ?$

 $MN^+ \rightarrow MN$ (zgodnie z prawem zwrotności Armstronga, gdyż $MN+ \subseteq MN$)

 $MN^+ \rightarrow MNK$ (gdyż MN determinuje K tj. istnieje zależność funkcyjna MN $\rightarrow K$)

 $MN^+ \rightarrow MNKL$ (gdyż K determinuje L tj. istnieje zależność funkcyjna K \rightarrow L)

Komentarz: $NM \rightarrow K$ jest tożsame dla $MN \rightarrow K$ (kolejność atrybutów nie ma znaczenia)

Ponieważ po prawej stronie pojawiły się wszystkie atrybuty relacji **R**(**K**, **L**, **M**, **N**) to możemy powiedzieć, że atrybuty MN determinują (określa) **wszystkie** atrybuty (K, L, M, N) relacji R. Jest to warunek konieczny, aby uznać atrybuty MN jako **klucz** relacji.

Następnie wyznaczmy domknięcie dla zbioru atrybutów kluczowych w postaci KN.

```
KN^+ \rightarrow ?
KN^+ \rightarrow KN (zgodnie z prawem zwrotności Armstronga, gdyż KN^+ \subseteq KN)
KN^+ \rightarrow KNL (gdyż K determinuje L tj. istnieje zależność funkcyjna K \rightarrow L)
KN^+ \rightarrow KNLM (gdyż L determinuje M tj. istnieje zależność funkcyjna L \rightarrow M)
```

Ponieważ po prawej stronie pojawiły się wszystkie atrybuty relacji **R**(**K**, **L**, **M**, **N**) to możemy powiedzieć, że atrybuty KN determinują (określa) **wszystkie** atrybuty (K, L, M, N) relacji R. Jest to warunek konieczny, aby uznać atrybuty KN jako **klucz** relacji.

Przypadek 2)

Następnie wyznaczmy domknięcie dla zbioru atrybutów kluczowych w postaci KN.

```
KN^+ \rightarrow ?
KN^+ \rightarrow KN (zgodnie z prawem zwrotności Armstronga, gdyż KN^+ \subseteq KN)
KN^+ \rightarrow KNL (gdyż K determinuje L tj. istnieje zależność funkcyjna K \rightarrow L)
KN^+ \rightarrow KNLM (gdyż L determinuje M tj. istnieje zależność funkcyjna L \rightarrow M)
```

Ponieważ po prawej stronie pojawiły się wszystkie atrybuty relacji **R**(**K**, **L**, **M**, **N**) to możemy powiedzieć, że atrybuty KN determinują (określa) **wszystkie** atrybuty (K, L, M, N) relacji R. Jest to warunek konieczny, aby uznać atrybuty KN jako **klucz** relacji.

Przypadek 3)

Na koniec wyznaczmy domkniecie dla zbioru atrybutów kluczowych w postaci LN.

```
LN^+ \rightarrow ?

LN^+ \rightarrow LN (zgodnie z prawem zwrotności Armstronga, gdyż LN+ \subseteq LN)

LN^+ \rightarrow LNM (gdyż L determinuje M tj. istnieje zależność funkcyjna L \rightarrow M)

LN^+ \rightarrow LNMK (gdyż MN determinuje K tj. istnieje zależność funkcyjna MN \rightarrow K)
```

Komentarz: $NM \rightarrow K$ jest tożsame dla $MN \rightarrow K$ (kolejność atrybutów nie ma znaczenia)

Ponieważ po prawej stronie pojawiły się wszystkie atrybuty relacji **R**(**K**, **L**, **M**, **N**) to możemy powiedzieć, że atrybuty KN determinują (określa) **wszystkie** atrybuty (K, L, M, N) relacji R. Jest to warunek konieczny, aby uznać atrybuty KN jako **klucz** relacji.

Reasumując otrzymaliśmy trzy klucze MN, KN, KL

Wynik do sprawdzenia tutaj: http://uisacad5.uis.edu/cgi-bin/mcrem2/database_design_tool.cgi

Przykład 3

Dana jest relacja 4-atrybutowa R(K, L, M, N) dla której zachodzą następujące zależności funkcyjne $F = \langle K \rightarrow L, L \rightarrow M, M \rightarrow K \rangle$

Dla zależności funkcyjnych z niniejszego przykładu tj. $F = \langle K \rightarrow L, L \rightarrow M, M \rightarrow K \rangle$ otrzymujemy:

Lewostronne atrybuty kluczowe	Obustronne atrybuty potencjalnie kluczowe	Prawostronne atrybuty niekluczowe
N	MKL	-

Atrybutem kluczowym jest na pewno N, natomiast M, K oraz L są potencjalnymi atrybutami kluczowymi.

Komentarz: Atrybut, który nie znajduje sie w żadnej zależności funkcyjnej, ani po lewej, ani po prawej stronie jest zawsze atrybutem kluczowym. Dlatego w tabeli jest wpisywany w kolumnie "Lewostronne".

Dalsze rozważania przebiegają dokładnie tak samo jak w zadaniu Przykład 2.

Przykład 4

Dana jest relacja 4-atrybutowa R(K, L, M, N) dla której zachodzą następujące zależności funkcyjne $F = \langle K \rightarrow MN \rangle$

Dla zależności funkcyjnych z niniejszego przykładu tj. $\mathbf{F} = \langle \mathbf{K} \rightarrow \mathbf{MN} \rangle$ otrzymujemy:

Lewostronne atrybuty kluczowe	Obustronne atrybuty potencjalnie kluczowe	Prawostronne atrybuty niekluczowe
K	-	-

Atrybutem kluczowym jest na pewno **KL** gdyż w przypadku gdy atrybut nie uczestniczy w żadnej zależności funkcyjnej jest na pewno atrybutem kluczowym tj. musi wejść do klucza relacji.