多目标优化

question 1

某厂生产A和B两种型号的润滑油,每公斤润滑油的平均生产时间和利润分别为A种: 3小时,100元;B种:2小时,80元。该厂每周生产时间为120小时,但可加班48小时,加班时间生产每公斤润滑油的利润为:90元(A种),70元(B种),市场每周需要A,B两种润滑油各30公斤以上,问如何安排每周的生产计划,在尽量满足市场需求的条件下使利润最大,加班时间最少,建立数学模型,并求解分析。

解:

提取题目信息绘制表格:

车辆型号	l l	4	I	3
时间性质	正常	加班	正常	加班
时间/h	3	3	2	2
利润/元	100	90	80	70

设:

f₁利润, f₂: 加班时间

x₁: 正常时间生产A型号的件数
 x₂: 加班时间生产A型号的件数
 x₃: 正常时间生产B型号的件数
 x₄: 加班时间生产B型号的件数

建立下面的数学模型:

$$egin{aligned} max f_1(x) &= 100x_1 + 90x_2 + 80x_3 + 70x_4 \ min f_2(x) &= 3x_2 + 2x_4 \ &= \begin{cases} x_1 + x_2 \geqslant 30 \ x_3 + x_4 \geqslant 30 \ 3x_1 + 2x_2 \leqslant 120 \ 3x_2 + 2x_4 \leqslant 48 \ x_i \geqslant 0 (i = 1, 2, 3) \end{aligned}$$

利用matlab求解,代码如下:

example1Fun.m文件

```
1 function y=example1Fun(x)
2 y(1)=-100*x(1)-90*x(2)-80*x(3)-70*x(4);
3 y(2)=0*x(1)+0*x(3)+3*x(2)+2*x(4);
```

主程序:

```
fitnessfcn=@example1Fun;
 2
    nvars=4;
 3
    lb=zeros(1,4);
4
    ub=[];
    A=[-1,-1,0,0;0,0,-1,-1;3,2,0,0;0,3,0,2];
 5
6
    b=[-30,-30,120,48]';
 7
    Aeq=[];
8
    beq=[];
9
    options=gaoptimset('paretoFraction',0.3,'populationsize',200,'generations',3
    00, 'stallGenLimit',200, 'TolFun',1e-10, 'PlotFcns',@gaplotpareto);
    [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)
10
```

得到下图为Pareto Front图像,横轴Objective_1为第一个目标,即加班时间;纵轴Objective_2为第二个目标,即工厂利润。其中主要的三个拐点已经标记出,由上图我们可以看到加班时间最小化与利润最大化之间是存在冲突的,和多目标规划定义符合。由图像可知:当加班时间在45小时时,收益达到最大值12100元,而当加班时间小于1.5小时时,利润变动变化较小,基本保持在1000元左右。对于其他的情况,工厂决策者可以根据工厂实际情况进行方案选择。

由于智能优化算法涉及到算子的选择问题,以及终止代数的不同,运行了多次后这里给出某一次运行得 到的解:

```
Optimization terminated: maximum number of generations exceeded.
1
2
3
  x =
4
5
     38.3415
                0.0006 40.3113
                                 0.0014
     38.3153
                0.0006
                        42.8133
                                   0.0014
6
7
     39.7381 0.3147 55.5439
                                 7.6425
                                 0.0014
     38.3111
                0.0006
                        47.0525
8
9
     39.7227
                0.3942
                        55.5439
                                  21.1019
```

10	39.6002	0.2844	55.3303	0.6878	
11	39.5167	0.0956	54.8273	0.5241	
12	39.7744	0.1369	55.5941	3.5944	
13	39.4302	0.6629	55.5800	21.3278	
14	39.5659	0.3877	55.6210	18.2277	
15	39.6052	0.3827	55.5886	6.7798	
16	38.2748	0.0009	49.0621	0.0038	
17	39.5688	0.5795	55.5871	19.7164	
18	39.7084	0.3832	55.5752	7.1980	
19	39.4333	0.8459	55.6505	21.3612	
20	38.3415	0.0006	40.3113	0.0014	
21	39.0505	0.1864	55.1779	0.0292	
22	39.4872	0.4540	55.5384	3.7340	
23	39.6244	0.2803	55.3777	9.9654	
24	39.6353	0.2928	55.5416	4.2795	
25	39.6289	0.3182	55.4071	2.9023	
26	39.6823	0.3738	55.5326	14.7173	
27	38.9561	0.0622	55.0470	0.0949	
28	39.6681	0.1914	55.4449	14.3487	
29	39.6729	0.1624	55.4501	2.8995	
30	39.6762	0.3922	55.5087	16.5414	
31	39.5558	0.5717	55.4504	14.8769	
32	39.7238	0.2125	55.5440	19.8433	
33	39.7371	0.3299	55.5334	16.1894	
34	39.5034	0.3993	55.3928	13.5974	
35	39.6015	0.3144	55.3297	8.3833	
36	39.7575	0.1725	55.5535	12.7964	
37	39.5644	0.4567	55.5663	18.5874	
38	39.6331	0.3554	55.4680	5.9694	
39	39.5994	0.3787	55.4911	8.6419	
40	39.7853	0.1057	55.6097	3.5944	
41	39.6872	0.3401	55.5290	5.7027	
42	39.7113	0.1881	55.2620	1.3229	
43	39.6689	0.3721	55.5235	12.7218	
	39.5081			9.9763	
44		0.3974	55.4487		
45	39.6856	0.3218	55.5102	12.2595	
46	39.7379	0.1587	55.5770	9.2568	
47	39.6826	0.3032	55.3414	6.2021	
48	39.6803	0.2178	55.5447	8.0555	
49	39.7076	0.3087	55.4763	11.4260	
50	39.7101	0.2379	55.4515	19.1730	
51	39.4348	0.5143	55.6418	20.6623	
52	39.5825	0.3993	55.5873	9.2082	
53	39.6745	0.4102	55.4985	10.1649	
54	39.6023	0.3912	55.4926	14.3071	
55	39.7530	0.3312	55.5480	17.7180	
56	39.7380	0.1952	55.5496	14.0390	
57	39.6822	0.2019	55.5409	13.3794	
58	39.5106	0.3370	55.3921	0.3769	
59	39.6024	0.2694	55.4282	5.0978	
60	39.5577	0.2553	54.9089	1.8850	
61	38.2709	0.0011	53.3743	0.0043	
62	39.5925	0.4812	55.5646	19.0020	
63	38.3089	0.0006	43.8297	0.0014	
64	39.7664	0.1719	55.5712	5.5347	
65					
66					
67	fval =				
07					

```
68
 69
         1.0e+03 *
 70
                    0.0000
 71
         -7.0592
 72
         -7.2567
                    0.0000
 73
        -8.9806
                    0.0162
 74
        -7.5955
                    0.0000
 75
         -9.9284
                    0.0434
 76
        -8.4602
                    0.0022
 77
         -8.3832
                    0.0013
        -8.6889
                    0.0076
 78
 79
        -9.9420
                    0.0446
         -9.7171
 80
                    0.0376
 81
        -8.9166
                    0.0147
         -7.7528
 82
                    0.0000
                    0.0412
 83
        -9.8361
 84
        -8.9552
                    0.0155
         -9.9668
 85
                    0.0453
 86
        -7.0592
                    0.0000
 87
         -8.3381
                    0.0006
 88
        -8.6940
                    0.0088
 89
        -9.1155
                    0.0208
 90
        -8.7328
                    0.0094
 91
        -8.6273
                    0.0068
 92
         -9.4747
                    0.0306
 93
        -8.3116
                    0.0004
 94
        -9.4240
                    0.0293
 95
         -8.6209
                    0.0063
        -9.6015
                    0.0343
 96
 97
         -9.4845
                    0.0315
        -9.8241
                    0.0403
 98
 99
         -9.5793
                    0.0334
100
        -9.3695
                    0.0284
        -9.0017
                    0.0177
101
102
         -9.3313
                    0.0261
103
        -9.7440
                    0.0385
104
         -8.8506
                    0.0130
105
        -9.0382
                    0.0184
106
        -8.6884
                    0.0075
107
         -8.8408
                    0.0124
108
         -8.5016
                    0.0032
109
         -9.3328
                    0.0266
110
        -9.1208
                    0.0211
111
        -9.2965
                    0.0255
112
        -9.0822
                    0.0190
113
         -8.8570
                    0.0133
114
         -8.9951
                    0.0168
115
        -9.2365
                    0.0238
116
         -9.7706
                    0.0391
117
        -9.8875
                    0.0429
         -9.0857
118
                    0.0196
119
         -9.1558
                    0.0216
120
        -9.4363
                    0.0298
121
         -9.6844
                    0.0363
122
        -9.4181
                    0.0287
123
         -9.3662
                    0.0274
124
         -8.4391
                    0.0018
125
         -8.7756
                    0.0110
```

126	-8.5034	0.0045
127	-8.0974	0.0000
128	-9.7779	0.0394
129	-7.3374	0.0000
130	-8.8252	0.0116

question 2

某工厂共有工人300名,生产A,B,C,D四种产品,要求每人每周平均生产时间在40~48小时内,C为国防用产品,每周至少生产150件,而每周至多可以提供能源20吨标准煤。其他数据如下表:

产品	最大产量	销售量	成本	售价	能耗	生产时间
	(kg/周)	(kg/間)	(元/kg)	(元/kg)	(吨煤/kg)	(h/kg)
Α	270	300	190	200	0.015	13
В	240	300	210	230	0.02	13.5
C	460	600	148	160	0.018	14
D	130	200	100	114	0.011	11.5

问如何安排每周的生产,才能使纯利润最高,而能耗最少?试建立数学模型并求解。

解:

设利润函数为 f_1 ,能耗函数为 f_2 。A,B,C,D四种产品分别生产 x_1, x_2, x_3, x_4 件。

则可得:

$$egin{aligned} maxf_1 &= 10x_1 + 20x_2 + 12x_3 + 14x_4 \ minf_2 &= 0.01*(1.5x_1 + 2x_2 + 1.8x_3 + 1.1x_4) \ &= \left\{ egin{aligned} 13x_1 + 13.5x_2 + 14x_3 + 15x_4 \leqslant 48*300 \ 13x_1 + 13.5x_2 + 14x_3 + 15x_4 \geqslant 40*300 \ 0.01*(1.5x_1 + 2x_2 + 1.8x_3 + 1.1x_4) \leqslant 20 \ x_1 \leqslant 270, x_2 \leqslant 240, 150 \leqslant x_3 \leqslant 460, x_4 \leqslant 130 \ x_i \geqslant 0 (i = 1, 2, 4...) \end{aligned} \end{aligned}$$

利用matlab求解,代码如下:

example2Fun.m文件

```
function y=example2Fun(x)
y(1)=-10*x(1)-20*x(2)-12*x(3)-14*x(4);
y(2)=0.01*(1.5*x(1)+2*x(2)+1.8*x(3)+1.1*x(4));
```

主程序:

```
fitnessfcn=@example2Fun;
 2
    nvars=4;
 3
    A=[13,13.5,14,15;-13,-13.5,-14,-15;1.5,2,1.8,1.1];
    b=[48*300 -40*300 2000]';
4
 5
    Aeq=[];
6
    beq=[];
 7
    1b=[0,0,150,0];
    ub=[270 240 460 130];
8
    options=gaoptimset('paretoFraction',0.3,'populationsize',200,'generations',3
    00, 'stallGenLimit', 200, 'TolFun', 1e-10, 'PlotFcns', @gaplotpareto);
10 [x,fval]=gamultiobj(fitnessfcn,nvars,A,b,Aeq,beq,lb,ub,options)
```

利用Matlab代码求解后得到下图所示的Pareto front。由图像可知: 当煤耗量达到17.71t时所获得的利润也达到了最大值14240元; 当煤耗量在14.45t~14.33t之间波动时, 最大利润波动不大; 当煤耗量达到最小14.06t时, 利润值也达到了10510元。

对于其他的情况,我们给出相应的决策变量以及对应的决策空间的解,管理者可以根据工厂的实际情况进行相应的选择。

决策变量取值以及对应解空间:

```
Optimization terminated: maximum number of generations exceeded.
1
2
3
   x =
4
     189.0180 187.4171 362.9732 128.8139
 6
     185.5869 201.1508 363.6902 128.5536
     189.8770 221.8578 365.6191 129.0825
 7
 8
     203.2001 228.0210 376.8566 128.8167
 9
     189.6417 215.0598 363.8967 128.7110
10
      184.7055 203.7014 364.3507 129.2203
```

11	212.9575	234.4151	391.4783	127.0872		
12	240.5554	237.9694	428.3378	126.8196		
13	200.2482	229.9833	370.4803	128.5868		
14	245.2034	239.3590	434.1242	126.8815		
15	188.4607	218.8681	363.5786	128.2781		
16	190.0733	227.8499	365.6017	129.0156		
17	187.2969	204.9426	363.5894	128.9131		
18	189.2680	187.1046	363.2857	129.0639		
19	244.0298	236.9993	434.4807	126.0695		
20	185.1289	235.0681	372.7274	128.9956		
21	219.7818	236.4132	398.5688	127.7469		
22	187.9076	230.5156	370.1032	128.7267		
23	225.4262	237.7796	426.1897	128.5497		
24	208.7417	231.3122	378.8929	127.6669		
25	220.3109	239.2287	420.7368	128.6807		
26	191.8645	224.0972	365.3354	128.7435		
27	195.3110	189.8294	365.5893	128.8317		
28	190.8987	229.2107	365.6856	128.7392		
29	195.7228	237.1872	387.5464	128.1211		
30	207.2508	237.2509	418.1441	128.6798		
31	194.4102	237.3641	376.0654	128.4735		
32	222.6615	236.7216	425.9430	129.0495		
33	210.1939	238.3062	394.9713	129.0491		
34	235.9816	236.9031	435.1917	128.7042		
35	200.1645	238.0035	394.0818	128.8537		
36	195.1400	236.8992	390.9815	128.4786		
37	191.2060	226.1392	375.2515	128.7986		
38	217.8292	237.7610	420.1167	127.3852		
39	204.7860	230.7780	387.5477	126.9538		
40	189.5479	197.3031	363.5262	128.9837		
41	187.1201	210.6637		128.9141		
42	232.7274	237.9128	428.2384	127.8199		
43		232.2800		128.8444		
44		231.4863				
45	209.8118		404.7967			
46	221.0395	237.4626				
47	213.5691	236.3556				
48	213.2930	237.2747				
49	211.8528	235.9714				
50	205.1619	232.8786				
51	196.3391	229.4849				
52	189.8930					
53	186.9331	220.5519				
54	208.9854	235.3342	397.1610			
55	236.2644	237.1680		126.9700		
56	186.5875	214.0117				
57	187.5350	209.1073				
58	198.2441	235.3180				
59	225.4262		426.0647			
60	236.0597		435.0979			
61	189.1549	187.9267				
62	208.7754	235.6443	394.2593	128.1656		
63	217.2058		423.9528			
64	185.5773	130.1308	363.0228	128.5548		
65						
66	fval					
67	fval =					
68						

```
69
        1.0e+04 *
 70
 71
         -1.1798
                     0.0015
 72
        -1.2043
                    0.0015
 73
         -1.2531
                     0.0015
 74
        -1.2918
                    0.0016
 75
        -1.2366
                    0.0015
         -1.2102
                    0.0015
 76
 77
         -1.3295
                    0.0016
 78
         -1.4080
                     0.0017
 79
         -1.2848
                    0.0016
        -1.4225
 80
                    0.0018
                    0.0015
 81
         -1.2421
 82
         -1.2651
                    0.0015
                     0.0015
 83
         -1.2140
                    0.0015
 84
        -1.1801
        -1.4159
 85
                    0.0018
 86
         -1.2831
                    0.0016
 87
         -1.3497
                    0.0017
 88
         -1.2733
                    0.0016
                    0.0017
 89
        -1.3924
 90
         -1.3048
                    0.0016
 91
         -1.3838
                    0.0017
 92
         -1.2587
                    0.0015
 93
         -1.1940
                    0.0015
 94
        -1.2684
                    0.0015
 95
        -1.3145
                    0.0016
 96
        -1.3637
                    0.0017
 97
         -1.3003
                    0.0016
 98
         -1.3879
                    0.0017
        -1.3414
                    0.0016
 99
100
         -1.4122
                    0.0018
101
        -1.3295
                    0.0016
        -1.3180
                    0.0016
102
103
         -1.2741
                    0.0016
                    0.0017
104
        -1.3758
105
         -1.3091
                    0.0016
106
         -1.2010
                    0.0015
107
         -1.2259
                    0.0015
108
         -1.4014
                    0.0017
109
         -1.2872
                    0.0016
110
         -1.3704
                    0.0017
111
         -1.3465
                    0.0017
112
         -1.3851
                    0.0017
113
         -1.3255
                    0.0016
114
         -1.3704
                    0.0017
115
         -1.3666
                    0.0017
116
         -1.3212
                    0.0016
117
         -1.2775
                    0.0016
118
        -1.2608
                    0.0015
119
                    0.0015
         -1.2496
120
         -1.3369
                    0.0016
121
         -1.3969
                    0.0017
                    0.0015
122
         -1.2316
123
        -1.2225
                    0.0015
124
         -1.2912
                     0.0016
125
         -1.3922
                     0.0017
126
         -1.4134
                     0.0018
```

127	-1.1846	0.0015
128	_1 3326	0.0016
120	-1.3320	0.0010
129	-1.3794	0.0017
130	_1 1934	0.0015
130	-1.1934	0.0013