Midterm 2 – Solutions

Problem 1

x_1	x_2	-x ₃	-x ₄	x_5	-1	
10^{11}	2	0	0	6	-1	$= -x_6$
0	-1	-2	0	3	-2	$= -x_7$
-1	0	0	4	-4	3	$= -x_8$
2	0	3-300	0	1	2	$= f -> \min$

Multiply columns 3 and 4, and the last row by -1

x_1	x_2	x_3	x_4	x_5	-1	
10 ¹¹	2	0	0	6	-1	$= -x_6$
0	-1	2	0	3	-2	$= -x_7$
-1	0	0	-4	-4	3	$= -x_8$
-2	0	3 ⁻³⁰⁰	0	-1	-2	$= f -> \max$

Row 1 is a bad row, so the LP is infeasible

Problem 2

 $x_1, x_2 >= 0$

 $2x_1 + 3x_2 \le 6$

 $3x_1 + 2x_2 -> max$

 $x_1 = 3$

 $x_2 = 0$

max = 9

Problem 3

$x_1/3000$	$x_1/3000002$	$x_3/3000003$	x ₄ /3000005	-1	
10^{11}	-1/3000002	1/300004	0	-2	$= -x_6$
-1/3000002	-1/3000002	0	0	1	$= -x_7$
-1	0	-1/3000002	-4/3005	2	$= -x_8$
2	0	0	1/305	2	$= f -> \min$

Multiply the last row by -1

Row 1 is a bad row, so the LP is infeasible

Problem 4

2	0	0	0	3-10 ⁻¹⁰⁰	5	10
0	2	0	0	2	1	4
0	0	2	0	2	0	3-10 ⁻¹⁰⁰
0	0	0	2	2	3-10 ⁻¹⁰⁰	0
0	0	0	-10 ⁻¹⁰⁰	0	0	3-10 ⁻¹⁰⁰

Column 1 dominates columns 5, 6, 7 Row 4 dominates row 5

This leaves matrix:

2	0	0	0
0	2	0	0
0	0	2	0
0	0	0	2

His optimal strategy: $[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0]^T$ Her optimal strategy: $[\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, 0, 0, 0]$ Value of game = $\frac{1}{2}$

Problem 5

-10 ¹⁰⁰	3-10 ⁻¹⁰⁰					
0*	2	0	-1	-2 ^{\Delta}	-1	-1
0*	3*	3*	0	-2 [∆]	0	-1
-1 ^Δ	0	3*	0	2	3*	0
$0^{*_{\Delta}}$	3*	1	4*	3*	0^{Δ}	4*

 $^{^*}$ denote maximums $^\Delta$ denote minimums

Saddle point on row 5, column 1

Value of game = 0