Financial Modeling Group

Aladdin.

by BlackRock

PHYSICAL RISK – MUNICIPAL BONDS

LIMITED DISTRIBUTION

EMPHASIZE BOTH PHYSICAL AND TRANSITION RISK OF INVESTMENT PORTFOLIOS

I believe that this is the beginning of a long but rapidly accelerating transition – one that will unfold over many years and reshape asset prices of every type. We know that climate risk is investment risk. But we also believe the climate transition presents a historic investment opportunity.

Larry Fink, 2021 Annual Letter to CEOs

SCOPE – CLIMATE RISK MODEL

Aladdin Climate

- A climate risk-calculation engine, allowing users to understand exposures to climate-related risks, evaluate investment trade-offs, stress test portfolios to different climate scenarios, and report on climate-related exposures to regulators and stakeholders.
- Select common metrics across all asset class (climate adjusted value, risk score)
- Asset class: CMBS, RMBS, Muni, Corporate Equity and Debt, Sovereign

For Muni

- Climate analytics including indicative price change and climate risk score given climate scenarios
- Obligor and security level analytics are accessible through Aladdin Research as supplementary information in addition to the standard risk analytics

Benefit

- Productionized scalable solution
- Consistency of climate risk approach for the entire portfolio
- Commercial use for Aladdin and external client

FRAMEWORK TO ASSESS PHYSICAL RISK IN MUNIS

Rhodium Data & Forecasts **CLIMATE ECONOMIC IMPACT MODELING** Assess physical risks Convert physical risks at specific geo-locations into economic impact Change in macros, energy cost Change in Temperature Impact of hurricanes Change in Precipitation Impact of crime... Sea level increase... FINANCIAL MODELING* Translate economic impact to financial impact **BRS Modeling** Muni Rating Transition Muni Yield Model Model (new model) (FMAC approved) Establish linkage between Establish linkage between muni probability of default and muni bond yield and regional macro conditions macro conditions

^{*}model estimation doesn't involve climate data

CLIMATE AND ECONOMIC IMPACT VARIABLES

Damage Functions

CLIMATE MODELING

Relationship between climate and economic variables

ECONOMIC IMPACT

Temperature

- Average annual temperature
- · Average seasonal temperature
- Days above 90F / below 32F

Precipitation

- Total annual precipitation
- Total seasonal precipitation

Sea Level Rise

- Fraction below high tide
- Fraction below mean sea

CLIMATE RISK - RHG DATA

PHYSICAL RISK EXPOSURE: **DAYS OVER 90F** – HIGH EMISSION 83 PERCENTILE

PHYSICAL RISK ECONOMIC IMPACT: CHANG IN UNEMPLOYMENT RATE – HIGH EMISSION 83 PERCENTILE

PHYSICAL RISK EXPOSURE: FRACTION BELOW **HIGH TIDE** – HIGH EMISSION 83 PERCENTILE

PHYSICAL RISK ECONOMIC IMPACT: CHANG IN **GDP** DUE TO HURRICANE - HIGH EMISSION 83 PERCENTILE

FINANCIAL MODELING

MODELING FRAMEWORK

RATING MIGRATION MODEL

Objective:

Project scenario-specific probability of other than temporary impairment (OTTID)

Methodology:

Parametric binomial model of rating migration with estimated probability

BBB вв В CCC CC С AAA AA Α D Climate Adjusted Probability of Transition **Down Input Variable Up Sign** AAA D1 D2 D3+ OTTID Sign **Economic Overlays due to** U1 D2 AA D1 D3+ OTTID Unemployment + Climate Change U2 U1 Α D1 D2 D3+ **OTTID** BBB muni spread + U1 D2 **BBB** U2 D1 **OTTID** DJ stock market Sourc index U2 U1 D1 BB OTTID Rating HPI U2 U1 **OTTID** VIX U1 CCC U2 OTTID **CPI Inflation** + CC U2 OTTID Real GDP Growth С OTTID **CRE Price Index** D **OTTID**

Destination Rating

IN-SAMPLE ESTIMATION PLOTS

LITERATURE REVIEW FOR MUNI YIELD MODEL

Municipal Yield:

Empirical Studies	Control variables	Relationship between yield and macro condition
Karpf and Mandel (2018)	time to maturityratingtreasurycoupon	Real gdp growthPopulation growthLocal/State debt
Poterba and Rueben (2000)	time to maturityratingtreasuryIssuance amount	Per capita incomeUnemployment rate
Hastle (1972) & Swartz (1989)	term to maturitybond offer sizetreasury rate	GDP population

Schwert (2017): Municipal bond liquidity and default risk

- Default risk plays an outsized role relative to the observed rate of default due to a high risk premium
- The role of liquidity is not as large as one might infer from the literature given the typical participates are buy-and-hold retail investors

MUNI YIELD MODEL

Determinants of Municipal Bond Yields

- Instrument Characteristics
 - Term to Maturity
 - Coupon
- Credit Market Condition
 - Muni Callable MMD curve (AAA)
 - Credit Rating
- Regional Macro Condition
 - Unemployment Rate
 - Employment
 - House Price
 - ❖ GDP
 - Personal Income
- Funding Type
 - General Obligor (GO)
 - Revenue Bond (REV)

Data

- Muni Bond issuance data from 2005-2019 (938k deals)
- Period selected: post Crisis (09 Q2)
- Dependent variable: Issuance Yield

First Difference Panel Regression

Model yield response to macro variable by controlling unobserved time-invariant heterogeneity (tax rate, state financing condition, investor preference)

Time Series Construction

50 Sates + DC

5 rating groups: (AAA, AA, A, BBB, BB below &NR) - BRS_3LO_MSF

 $\Delta MuniBondYield_{i,t}$ $= \Delta MuniMMD_{i,t} + \Delta TermtoMaturoty_{i,t} + \boldsymbol{\beta}^T \Delta \boldsymbol{X}_{i,t} + \boldsymbol{\gamma}_i + \varepsilon$

 $UnemploymentRate \ log(Employment) \ m{X}_{i,t} = m{log(GDP)} \ log(PersonalIncome) \ log(HPI)$

Model is segmented by GO and REV

OBLIGOR GEOLOCATION

MAPPING LOGIC

Туре	Percentage	Geo Mapping
LOCAL: CITIES COUNTIES	46%	County, Sub division Admin boundary
SCHOOL DISTRICT	28%	District boundary
WATER&SEWER	8%	County, Sub division Admin boundary
DEVELOPMENT DISTRICT	6%	County, Sub division Admin boundary
HOSPITAL	2%	Multi ZIP5 boundary
MULTI-FAMILY	2%	ZIP5 boundary
UNIVERSITY	2%	University boundary
PUBLIC POWER	2%	County, Sub division Admin boundary
CORP	1%	ZIP5 boundary
STATE	1%	State boundary
AIRPORT	0%	Airport boundary

- 1) Issuer Sector Code in Issuer_sector.issuer_code
- 2) Link the issuer name to a public available set of GIS data based on issuer name
 - Levenshtein distance + Longest common substring
 - Intersection of ZIP5 and matched boundary

			1	sector	sector0	ZIP	name	issuer
vision gov official files	County, Sub Di	ch with	_s Mat	CITIES COUNTIE	TAX	10701	YONKERS N Y	C57777
	sector1	sector0	ZIP	name				issuer
Match with School District gov official files	SCHOOL DISTRICTS	TAX	10583	N FREE SCH DIST	ALE N Y UI	SCARSD		C49593

NY STATE EXAMPLE

Issuer: C79165 | New York State | Sector: TAX

Issuer: C57777 | Yonkers City, Westchester |

Sector: TAX

Issuer: C44305 | Orange County | Sector: TAX

Issuer: C40911 | Monroe-Woodbury School

District | Sector: TAX

MULTI-COUNTY EXPOSURE

Macro Impact Contribution Follows:

Issuer: C57835 YORKSHIRE PIONEER N Y
CENT SCH DIST Sector: TAX

County	% Area
Cattaraugus	0.487
Wyoming	0.513

SCORING

METHODOLOGY COMPARISON

———— Current

Proposed

Early version of Rhodium data

ZIP5 to CBSA exposure

Location Mapping

Climate Scenario

Economic Metric

- Automated Rhodium data refresh via google cloud
- Map obligor (state, county, city, school district etc.) geo boundary to county (~3000)
- Representative scenarios: RCP 4.5/RCP 8.5 mean and RCP 8.5 83rd (tail risk)
- Translate economic impacts (regional GDP, un/employment, personal income, HPI) into financial impact

RCP 8.5 mean

 (~ 900)

• Economic impact: regional GDP

3000 OBLIGORS IN MBINDEX 10: HIGHEST RISK

OBLIGOR SCORE

MISSISSIPPI (STATE OF)	C40605	Score transfers to lower bucket
current score	9	Reason: mapping state obligor to state exposure diversifies
proposed score	7	climate risk

OBLIGOR SCORE

Leflore County	C36864	
current score	10	Coore transfers to lower bucket
proposed score	7	Score transfers to lower bucket Reason: Latest Rhodium
Biloxi city	C20117	hurricane impact provides higher accuracy
current score	9	mgner decardey
proposed score	9	

IMPACT ANALYSIS

PORTFOLIO COMPARISON

Portfolio	Muni ESG	BR-NATL	BR-HYMUNI	BR-SMO-AG	BFK	MBINDEX
#of Cusip	36	461	714	1,035	280	~55,000
# of Issuer	36	210	365	388	157	~3,000
Change in value -expected emission	-0.18%	-0.38%	-0.50%	-0.35%	-0.42%	-0.28%
Change in value – high emission	-0.27%	-0.56%	-0.73%	-0.51%	-0.63%	-0.41%
Change in value – high emission 83rd	-0.41%	-0.84%	-1.13%	-0.77%	-0.95%	-0.62%
Cusip Score	5.36	6.56	7.07	6.25	6.62	5.75
Proposed Obligor Score	5.24	6.03	6.28	5.87	6.33	5.82
Existing Obligor Score	4.65	5.38	5.76	5.54	5.51	5.73
Climate Hazard (hurri/temp)	44/56	52/48	49/51	49/51	48/52	48/52
wal_to_worst	4.90	6.36	7.65	7.38	6.59	5.47

As of 29th Jan 2021

- Existing score: compare obligor climate exposure against the 900 CBSA
- Proposed score; compare obligor aggregated climate impact against all other 46,000 obligors available in Aladdin

SECURITY LEVEL PRICING IMPACT

APPENDIX

ESTIMATION RESULT

Predictor Power	Time to maturity	Muni_MMD	Coupon	Employment	GDP/Income	НРІ
GO	29%	30%	19%	6%	11%	5%
REV	29%	27%	26%	4%	13%	1%

	GO		stderr.robust	t	P<.1 *
TimeTo	Maturity	0.0985	0.003	36.506	***
Muni	_MMD	0.6562	0.021	31.156	***
Co	upon	0.2942	0.014	21.396	
Employ	UER_lag1	-0.0326	0.006	-7.185	***
Employ	EM_gr_lag3	-0.0326	0.006	-1.10	
Croudb	Ln_GDP	2 4477	0.104	1 5 062	***
Growth	In_PI	-3.4477	0.184	-15.063	
In_H	In_HPI_cs		0.251	-5.316	***
Adj. R-	Adj. R-squared				
R	REV		stderr.robust	t	P<.1 *
TimeTo	Maturity	0.0681	0.002	33.860	***
Muni	Muni_MMD		0.022	0/: 011	***
		0.5354	0.022	24.311	
Co	upon	0.5354	0.022	28.543	
		0.4439	0.016	28.543	
Employ	upon		0.016		
Employ	upon UER_lag1	0.4439 -0.0264	0.016 0.005	28.543 -5.239	***
	upon UER_lag1 EM_gr_lag3	0.4439	0.016	28.543	***
Employ	UER_lag1 EM_gr_lag3 Ln_GDP	0.4439 -0.0264	0.016 0.005	28.543 -5.239	***

IN-SAMPLE (2009-2019) OUT-SAMPLE (2020) - GO

EMPIRICAL EVIDENCE

Z-Sector	Ratio	BBB&below as %population weighted by par
Housing	1.00	9%
GO	1.21	8%
Utility	1.36	7%
Education	1.40	16%
Transportation	1.51	15%
Health	1.54	31%
Corporation	2.15	64%
Tobacco	2.49	77%

Z-Rating	Ratio
AAA	1.00
AA	1.04
Α	1.13
BBB	1.35
HY	1.95
NR	2.73

Partial Correlation Graph

ESTIMATION RESULT – SECTOR – ALTERNATIVE MODEL

Predictor Power	Time to maturity	Muni_MMD	Coupon	Employment	GDP/Income	НРІ
GO	29%	30%	19%	6%	11%	5%
REV- Hous/Educ/Util	27%	21%	37%	4%	6%	5%
REV-Trasp/Heal	35%	21%	26%	6%	11%	1%
REV- CORP/TOBA/OT HER	33%	21%	29%	4%	13%	0%

coef		GO	REV			
		All	Hous/Educ/Util	Trasp/Heal	Corp/Toba/Oth er	
TimeToMaturity		0.0985	0.0578	0.0745	0.0765	
MuniMMD		0.6562	0.4248	0.4321	0.4948	
Coupon		0.2942	0.5310	0.4296	0.44051	
Employ	UER_lag1 EM_gr_lag3	-0.0326***	-0.0206***	-0.0333***	-0.0212**	
Growth	Ln_GDP ln_Pl	-3.4477***	-1.6022***	-3.0842***	-3.3836***	
In_HPI_cs		-0.9323***	-0.9108***	-0.2037*		
Adj. R-squared		0.68	0.64	0.59	0.58	

CASE STUDY – CLIMATE RISK IMPACT ON 20 YEAR GO BY MIAMI-DADE COUNTY Under high emissions 83rd percentile

Climate macro shocks & impact on spreads

Climate adjusted analytics and risk scores

ANALYTICS	BASE ANALYTICS	ANALYTICS W/ CLIMATE CHANGE	DIFFERENCE
Price	131.17	129.61	-1.20%
Yield to Worst	1.28%	1.44%	0.16%
Eff. Duration	13.56	13.52	-0.04

ANALYTICS	RISK SCORE	CLIMATE FACRTOR	CONTRIBUTION
Security Level	10	Hurricane	65%
Obligor Level	9	Temperature	35%