1 Hartree-Fock theory

Electronic structure theory aims to solve the "clamped-nuclei" Schrödinger equation

$$\hat{H}\Psi_k = E_k \Psi_k \qquad \hat{H} = V_{\text{nuc}} + \hat{H}_e = \sum_{a < b}^{\text{nuc.}} \frac{Z_a Z_b}{|\mathbf{R}_a - \mathbf{R}_b|} - \frac{1}{2} \sum_{i}^{\text{elec.}} \nabla_i^2 - \sum_{a}^{\text{nuc.}} \sum_{i}^{\text{elec.}} \frac{Z_a}{|\mathbf{R}_a - \mathbf{r}_i|} + \sum_{i < j}^{\text{elec.}} \frac{1}{|\mathbf{r}_i - \mathbf{r}_j|}$$
(1.1)

with an optimal balance of accuracy and efficiency. The most accurate solution possible for a given basis of spin-orbitals { ψ_p } results from expanding the wavefunction as

$$\Psi_k = \sum_{\sigma} \Phi_{\sigma} c_{\sigma k} \tag{1.2}$$

in the basis of Slater determinants, $\{\Phi_{\sigma} \mid \sigma = (p_1 \cdots p_n) \in \mathbb{N}_1^n\}$, which are defined as follows. 12

$$\Phi_{(p_1 \cdots p_n)}(1, \dots, n) \equiv \frac{1}{\sqrt{n!}} \begin{vmatrix} \psi_{p_1}(1) & \psi_{p_2}(1) & \cdots & \psi_{p_n}(1) \\ \psi_{p_1}(2) & \psi_{p_2}(2) & \cdots & \psi_{p_n}(2) \\ \vdots & \vdots & \ddots & \vdots \\ \psi_{p_1}(n) & \psi_{p_2}(n) & \cdots & \psi_{p_n}(n) \end{vmatrix} = \frac{1}{\sqrt{n!}} \sum_{\pi}^{S_n} \varepsilon_{\pi} \psi_{p_{\pi(1)}}(1) \cdots \psi_{p_{\pi(n)}}(n)$$
(1.3)

The expansion coefficients $c_{\sigma k}$ are determined from the matrix representation of the Schrödinger equation.

$$\mathbf{H}\mathbf{c}_{k} = E_{k}\mathbf{c}_{k} \tag{1.4}$$

$$(\mathbf{c})_{k} = c_{\sigma k} \tag{1.4}$$

$$(\mathbf{H})_{\sigma\tau} = \langle \Phi_{\sigma} | \hat{H} | \Phi_{\tau} \rangle$$

Equation 1.2 called the full configuration-interaction (FCI) solution to the Schrödinger equation.

Any spin-orbital basis with the same span yields the same FCI solution. In general, however, FCI is completely unfeasible for basis sets of sufficient size to approach the complete basis limit. This requires us to omit some Slater determinants in order to get an answer in a reasonable amount of time. As soon as we truncate the determinant expansion in equation 1.2, our choice of spin-orbitals makes a significant difference in the quality of our results. This motivates the search a spin-orbital basis which minimize the number of Slater determinants it takes to "get close to" the exact wavefunction.

One approach to determining an ideal spin-orbital basis for the wavefunction expansion is Hartree-Fock theory. It can be shown that optimizing the energy expectation value, $\langle \Psi | \hat{H} | \Psi \rangle$, by varying Ψ with a normalization constraint, $\langle \Psi | \Psi \rangle = 1$, is equivalent to solving the Schrödinger equation. When we further constrain the form of Ψ this is no longer true, but it still generally yields the best approximation to Ψ for a given Ansatz. Hartree-Fock orbitals are determined by varying the spin-orbital basis to solve for the best Slater-determinant approximation to the wavefunction, $\Phi \approx \Psi$, which is called the Hartree-Fock reference determinant. Using these orbitals, equation 1.2 can be expressed in terms of single $\{\Phi^a_{ij}\}$, double $\{\Phi^{abc}_{ijk}\}$, etc. substitutions of the orbitals in Φ ("occupied orbitals") with the remaining Hartree-Fock orbitals ("virtual orbitals").

$$\Psi = \Phi + \sum_{\substack{a \ i \ i \ i \ j \ k \ j \ k}} \Phi_i^a c_a^i + \sum_{\substack{a < b \ a < b < c \ i < j < k}} \Phi_{ij}^{abc} c_{abc}^{ijk} + \sum_{\substack{a < b < c < d \ i < j < k < l}} \Phi_{ijkl}^{abcd} c_{abcd}^{ijkl} + \dots$$
(1.5)

This series is rapidly convergent in the sense that the coefficients tend to be extremely small for determinants with many substitutions. For well-behaved systems, truncation at quadruple substitutions is sufficient to guarantee numerical accuracy.

 $^{^1\}pi\in S_n$ is a permutation of $(1,\cdots,n)$ with signature $\varepsilon_\pi\equiv (-)^\#$ transpositions. See https://en.wikipedia.org/wiki/Symmetric_group and https://en.wikipedia.org/wiki/Cyclic_permutation#Transpositions.

²The spin-orbital arguments are short-hand for the coordinates of a single electron, $(i) \equiv (\mathbf{r}_i, s_i)$, where $\mathbf{r}_i \in \mathbb{R}^3$ and $s_i \in \{\pm 1/2\}$ are its space and spin variables. The spin variable specifies an orbital's intrinsic angular momentum along one of the spatial axes.

³An "Ansatz" is an approximate functional form for the wavefunction.

⁴By convention, occupied orbitals are indexed by i, j, k, l, virtual orbitals by a, b, c, d, and general orbitals by p, q, r, s.

1.1 The Hartree-Fock equations

Since the nuclear repulsion energy is constant with respect to the electronic wavefunction, we will henceforth neglect this contribution and denote the electronic Hamiltonian by \hat{H} .⁵ The electronic Hamiltonian can be expressed as a sum of one- and two-electron operators.

$$\hat{H} = \sum_{i} \hat{h}(i) + \sum_{i < j} \hat{g}(i, j) \qquad \qquad \hat{h}(i) \equiv -\frac{1}{2} \nabla_{i}^{2} + \sum_{a} \frac{Z_{a}}{|\mathbf{r}_{i} - \mathbf{R}_{a}|} \qquad \qquad \hat{g}(i, j) \equiv \frac{1}{|\mathbf{r}_{i} - \mathbf{r}_{j}|}$$
(1.6)

Its expectation value with respect to a single determinant Φ is given by

$$\langle \Phi | \hat{H} | \Phi \rangle = \sum_{i}^{n} \langle \psi_{i} | \hat{h} | \psi_{i} \rangle + \frac{1}{2} \sum_{ij}^{n} \langle \psi_{i} \psi_{j} | | \psi_{i} \psi_{j} \rangle \qquad \langle \psi_{p} \psi_{q} | | \psi_{r} \psi_{s} \rangle \equiv \langle \psi_{p} \psi_{q} | \psi_{r} \psi_{s} \rangle - \langle \psi_{p} \psi_{q} | \psi_{s} \psi_{r} \rangle \qquad (1.7)$$

where the one- and two-electron integrals are defined as follows.

$$\langle \psi_p | \hat{h} | \psi_q \rangle \equiv \int d(1) \psi_p^*(1) \hat{h}(1) \psi_q(1) \qquad \langle \psi_p \psi_q | \psi_r \psi_s \rangle \equiv \int d(1) d(2) \psi_p^*(1) \psi_q^*(2) \hat{g}(1, 2) \psi_r(1) \psi_s(2)$$
 (1.8)

We wish to optimize equation 1.7 with respect to the orbitals $\{\psi_i\}$, while enforcing an orthonormality constraint⁶

$$\langle \psi_i | \psi_j \rangle \stackrel{!}{=} \delta_{ij} \tag{1.9}$$

which guarantees that Φ is normalized. The corresponding Lagrangian functional (see appendix A) is

$$\mathcal{L}[\{\psi_i\}, \{\psi_i^*\}, \{\epsilon_{ij}\}] = \sum_{i=1}^n \langle \psi_i | \hat{h} | \psi_i \rangle + \frac{1}{2} \sum_{i,j=1}^n \langle \psi_i \psi_j | |\psi_i \psi_j \rangle - \sum_{i,j=1}^n \epsilon_{ij} (\langle \psi_i | \psi_j \rangle - \delta_{ij})$$

$$(1.10)$$

where $\{\epsilon_{ij}\}$ are our Lagrangian multipliers for the orthonormality constraint. Note that the complex conjugates of the orbitals $\{\psi_i^*\}$ are included as separate arguments of \mathcal{L} , since the real and imaginary components of ψ_i can be varied independently.⁷

The stationarity conditions for the Hartree-Fock Lagrangian are (see appendix B)

$$\frac{d\mathcal{L}[\psi_k^* + \varepsilon \eta^*]}{d\varepsilon} \bigg|_{\varepsilon=0} \stackrel{!}{=} 0 \quad \text{and} \quad \frac{d\mathcal{L}[\psi_k + \varepsilon \eta]}{d\varepsilon} \bigg|_{\varepsilon=0} \stackrel{!}{=} 0 \quad \text{for all } \eta \qquad \qquad k = 1, \dots, n$$
 (1.11)

which can be stated in words as follows: For each orbital ψ_1, \ldots, ψ_n in the determinant Φ , mixing in a little bit of an arbitrary function $\eta = \eta(\mathbf{r}, s)$ doesn't change the Lagrangian.

Separating out the terms in eq (1.10) involving a particular orbital ψ_k , we can write

$$\mathcal{L} = \langle \psi_k | \hat{h} | \psi_k \rangle + \sum_i \langle \psi_k \psi_i | | \psi_k \psi_i \rangle - \sum_i \epsilon_{ki} (\langle \psi_k | \psi_i \rangle - \delta_{ki}) - \sum_i \epsilon_{ik} (\langle \psi_i | \psi_k \rangle - \delta_{ik})$$
$$+ \sum_{i \neq k} \langle \psi_i | \hat{h} | \psi_i \rangle + \frac{1}{2} \sum_{i \neq k, j \neq k} \langle \psi_i \psi_j | | \psi_i \psi_j \rangle - \sum_{i \neq k, j \neq k} \epsilon_{ij} (\langle \psi_i | \psi_j \rangle - \delta_{ij})$$

using $\langle \psi_k \psi_i || \psi_k \psi_i \rangle = \langle \psi_i \psi_k || \psi_i \psi_k \rangle$, which follows from exchanging integration variables in eq (1.8). The functional derivative for varying ψ_k^* along η^* is then

$$\left. \frac{d\mathcal{L}[\psi_k^* + \varepsilon \eta^*]}{d\varepsilon} \right|_{\varepsilon = 0} = \left. \frac{d}{d\varepsilon} \left(\langle \psi_k + \varepsilon \eta | \hat{h} | \psi_k \rangle + \sum_i \langle (\psi_k + \varepsilon \eta) \psi_i | | \psi_k \psi_i \rangle - \sum_i \epsilon_{ki} \langle \psi_k + \varepsilon \eta | \psi_i \rangle \right) \right|_{\varepsilon = 0}$$

 $^{^{5}}$ Note that one must always add $V_{
m nuc}$ back in to obtain a meaningful molecular energy.

 $^{{}^{6}}$ The $\stackrel{!}{=}$ sign means "must equal" – these are conditions to be satisfied.

⁷One can explicitly show that for complex variables $\frac{\partial z}{\partial z^*} = 0$. See https://en.wikipedia.org/wiki/Wirtinger_derivatives#Functions_of_one_complex_variable.

where we have dropped ε -independent terms since their derivatives vanish. Evaluating the right-hand side gives

$$\frac{d\mathcal{L}[\psi_k^* + \varepsilon \eta^*]}{d\varepsilon} \bigg|_{\varepsilon=0} = \langle \eta | \hat{h} | \psi_k \rangle + \sum_i \langle \eta \psi_i | | \psi_k \psi_i \rangle - \sum_i \epsilon_{ki} \langle \eta | \psi_i \rangle$$

where the first two terms can be written as follows.⁸

$$\langle \eta | \hat{h} | \psi_k \rangle + \sum_i \langle \eta \psi_i | | \psi_k \psi_i \rangle = \int d(1) \eta^*(1) \left(\hat{h}(1) + \sum_i \langle \psi_i(2) | \hat{g}(1,2) (1 - \hat{P}(1,2)) | \psi_i(2) \rangle \right) \psi_k(1)$$

Here, the coordinate exchange operator $\hat{P}(1,2)$ allows us to write $(1-\hat{P}(1,2))\psi_i(2)\psi_k(1)$ as a shorthand for $\psi_i(2)\psi_k(1)-\psi_i(1)\psi_k(2)$. The expression in parentheses constitutes the Fock operator.⁹

$$\hat{f}(1) \equiv \hat{h}(1) + \sum_{i} \langle \psi_i(2) | \hat{g}(1,2) (1 - \hat{P}(1,2)) | \psi_i(2) \rangle$$
(1.12)

Note that it implicitly depends on orbital set, $\hat{f} = \hat{f}[\{\psi_i\}]$.

Using a similar procedure for the variation of ψ_k along η , eq (1.11) evaluates to

$$\int d(1)\eta^*(1) \left(\hat{f}(1)\psi_k(1) - \sum_i \epsilon_{ki}\psi_i(1) \right) \stackrel{!}{=} 0 \quad \text{and} \quad \int d(1) \left(\psi_k^*(1)\hat{f}(1) - \sum_i \psi_i^*(1)\epsilon_{ik} \right) \eta(1) \stackrel{!}{=} 0 \quad \text{for all } \eta(1) = 0$$

which, by the Fundamental Lemma of Calculus of Variations (appendix C), is equivalent to the following

$$\hat{f}(1)\psi_k(1) \stackrel{!}{=} \sum_i \epsilon_{ki}\psi_i(1) \quad \text{and} \quad \hat{f}(1)\psi_k^*(1) \stackrel{!}{=} \sum_i \epsilon_{ik}\psi_i^*(1)$$

$$(1.13)$$

using the Hermitian-ness of the Fock operator, $\langle \psi_k | \hat{f} \eta \rangle = \langle \hat{f}^{\dagger} \psi_k | \eta \rangle = \langle \hat{f} \psi_k | \eta \rangle$. Subtracting the complex conjugate of the right equation from the left gives

$$\sum_{i} (\epsilon_{ki} - \epsilon_{ik}^*) \psi_i(1) \stackrel{!}{=} 0$$

which, since the orbitals are linearly independent, implies that $\epsilon = [\epsilon_{ij}]$ forms a Hermitian matrix.

$$\epsilon_{k1} - \epsilon_{1k}^* = \dots = \epsilon_{kn} - \epsilon_{nk}^* = 0 \tag{1.14}$$

Requiring the multiplier matrix to be Hermitian makes the second condition in eq (1.13) redundant, so that the final $Hartree-Fock\ equations$ can be expressed as follows.

$$\hat{f}\psi_i \stackrel{!}{=} \sum_j \epsilon_{ij}\psi_j \quad \text{and} \quad \boldsymbol{\epsilon} \stackrel{!}{=} \boldsymbol{\epsilon}^{\dagger}$$
 (1.15)

To review, these conditions define orbitals which optimize $\langle \Phi | \hat{H} | \Phi \rangle$ subject to the constraint $\langle \psi_i | \psi_j \rangle = \delta_{ij}$.

⁸Defining $\langle \psi_p(2)|\hat{g}(1,2)|\psi_q(2)\rangle \equiv \int d(2)\psi_p^*(2)\hat{g}(1,2)\psi_q(2)$

⁹You may see this written as $\hat{f}(1) = \hat{h}(1) + \sum_{i}(\hat{J}_{i}(1) - \hat{K}_{i}(1))$ where $\hat{J}_{i}(1) \equiv \langle \psi_{i}(2)|\hat{g}(1,2)|\psi_{i}(2)\rangle$ and $\hat{K}_{i} \equiv \langle \psi_{i}(2)|\hat{g}(1,2)\hat{P}(1,2)|\psi_{i}(2)\rangle$ are the *Coloumb* and *exchange operators*.

¹⁰http://en.wikipedia.org/wiki/Linear_independence\#Definition

1.2 The canonical Hartree-Fock equations

Appendix D shows that the Hartree-Fock energy and the orthogonality relations are invariant to unitary mixing of the orbitals in Φ . This implies that the solution to the Hartree-Fock optimization problem is not unique, because any unitary transformation of the orbitals in Φ is also a solution. In this section we show how to use this freedom to our advantage, by choosing orbitals which diagonalize the Lagrange multiplier matrix, partially decoupling eq (1.15). These orbitals are known as *canonical Hartree-Fock orbitals*.

In matrix notation, the Hartree-Fock equations can be written as follows.

$$\hat{f}\psi \stackrel{!}{=} \epsilon\psi \text{ and } \epsilon = \epsilon^{\dagger}$$

$$\epsilon = \begin{pmatrix} \epsilon_{11} & \cdots & \epsilon_{1n} \\ \vdots & \ddots & \vdots \\ \epsilon_{n1} & \cdots & \epsilon_{nn} \end{pmatrix}, \quad \psi = \begin{pmatrix} \psi_1 \\ \vdots \\ \psi_n \end{pmatrix}$$
(1.16)

Since the matrix ϵ is Hermitian, it can be diagonalized by a unitary transformation U.

$$\boldsymbol{\epsilon} = \mathbf{U}\tilde{\boldsymbol{\epsilon}}\mathbf{U}^{\dagger} \qquad \qquad \tilde{\boldsymbol{\epsilon}} = \begin{pmatrix} \epsilon_{1} & 0 & \cdots & 0 \\ 0 & \epsilon_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \epsilon_{n} \end{pmatrix}$$
 (1.17)

Inserting this decomposition into eq (1.16) and multiplying both sides from the left by \mathbf{U}^{\dagger} , we get

$$\hat{f}(\mathbf{U}^{\dagger}\boldsymbol{\psi}) = \tilde{\boldsymbol{\epsilon}}(\mathbf{U}^{\dagger}\boldsymbol{\psi})$$

which shows that the problem can be decoupled by using a new set of orbitals $\tilde{\psi}_1, \ldots, \tilde{\psi}_n$, defined as follows.¹¹

$$\tilde{\psi}_i = \sum_{j=1}^n U_{ji}^* \psi_j \tag{1.18}$$

It can be shown that the Fock operator \hat{f} is invariant to this type of transformation (see appendix D). Substituting the new orbitals into eq (1.16) and dropping tildes yields the *canonical Hartree-Fock equations*.

$$\hat{f}\psi_i = \epsilon_i \psi_i \qquad i = 1, \dots, n$$

Since ϵ is Hermitian, the Lagrangian eigenvalues are real. Note that these equations are not fully decoupled, since \hat{f} still depends on the full orbital set $\{\psi_i\}$. Solving them amounts to solving for the self-consistent field

$$\hat{v}(1) \equiv \sum_{i} \langle \psi_i(2) | \hat{g}(1,2) (1 - \hat{P}(1,2)) | \psi_i(2) \rangle = \sum_{i} (\hat{J}_i(1) - \hat{K}_i(1))$$
(1.19)

in $\hat{f} = \hat{h} + \hat{v}$ that allows all n equations to hold true simultaneously.

¹¹In matrix notation this reads $\tilde{\psi} = \mathbf{U}^{\dagger} \psi$.

A Constrained Optimization

The standard method of optimizing a function subject to a constraint is called Lagrangian optimization. Taking a function of two variables f(x, y) as an example, suppose we want to optimize it subject to a constraint of the form g(x, y) = c. In this approach, we define the "Lagrangian function" \mathcal{L} as

$$\mathcal{L}(x,y,\lambda) \equiv f(x,y) - \lambda(g(x,y) - c) \tag{A.1}$$

where the parameter λ is called the Lagrange multiplier. The constrained optimization problem can be solved solved by optimizing \mathcal{L} with respect to x, y, and λ . To see why, consider the stationarity conditions for \mathcal{L} .

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial f}{\partial x} - \lambda \frac{\partial g}{\partial x} \stackrel{!}{=} 0 \qquad \qquad \frac{\partial \mathcal{L}}{\partial y} = \frac{\partial f}{\partial y} - \lambda \frac{\partial g}{\partial y} \stackrel{!}{=} 0 \qquad \qquad \frac{\partial \mathcal{L}}{\partial \lambda} = c - g(x, y) \stackrel{!}{=} 0 \qquad (A.2)$$

The last equation is simply the requirement that the constraint g(x,y) = c be satisfied – i.e. that the point (x,y) lies along the contour of g(x,y) specified by g(x,y) = c. The first two equations correspond to the requirement that the gradients of the function f(x,y) and the constraint surface g(x,y) be parallel

$$\nabla f = \lambda \nabla g \tag{A.3}$$

which is always true at the point (x, y) of closest approach along the line g(x, y) = c to a minimum or maximum of the function f(x, y). This is best understood visually.

If the gradients were not parallel, we could move along g(x,y) = c to a higher contour of f(x,y) by following the component of ∇f parallel to g(x,y) = c.

B Functional Derivatives

A functional is just a function of a function – i.e. some rule F that maps a function f into a number F[f]. Definite integrals are a common example. In order to optimize a functional F with respect to its argument f, one needs to take a functional derivative. To motivate the definition of a functional derivative, first consider the definition of an ordinary derivative

$$\frac{df(x)}{dx} \equiv \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon} \tag{B.1}$$

and note the following identity, which you can verify using $f(x+\varepsilon) = f(x) + \frac{df(x)}{dx}\varepsilon + \mathcal{O}(\varepsilon^2)$.

$$\lim_{\varepsilon \to 0} \frac{f(x+\varepsilon) - f(x)}{\varepsilon} = \left. \frac{df(x+\varepsilon)}{d\varepsilon} \right|_{\varepsilon=0}$$
 (B.2)

For multivariate functions, we have the concept of a directional derivative

$$\mathbf{y} \cdot \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \lim_{\varepsilon \to 0} \frac{f(\mathbf{x} + \varepsilon \mathbf{y}) - f(\mathbf{x})}{\varepsilon}$$
(B.3)

which measures the change in $f(\mathbf{x})$ in the direction \mathbf{y} . Using equation B.2, the directional derivative can be evaluated as an ordinary scalar derivative with respect to ε .

$$\mathbf{y} \cdot \frac{\partial f(\mathbf{x})}{\partial \mathbf{x}} = \left. \frac{df(\mathbf{x} + \varepsilon \mathbf{y})}{d\varepsilon} \right|_{\varepsilon = 0}$$
(B.4)

The functional derivative $\frac{\delta F}{\delta f}$ is defined to satisfy an equation analogous to B.3, playing the role of the gradient.

$$\int_{-\infty}^{\infty} dx' \, g(x') \frac{\delta F[f]}{\delta f(x')} \equiv \lim_{\varepsilon \to 0} \frac{F[f + \varepsilon g] - F[f]}{\varepsilon} \tag{B.5}$$

This left-hand side could be called a functional directional derivative, giving the change in F upon displacing its argument along the function g. Here, the integral takes the role of the dot product in B.3. Using the same trick as in equation B.4, the functional derivative can be expressed as an ordinary scalar derivative.

$$\int_{-\infty}^{\infty} dx' \, g(x') \frac{\delta F[f]}{\delta f(x')} = \left. \frac{dF[f + \varepsilon g]}{d\varepsilon} \right|_{\varepsilon = 0} \tag{B.6}$$

The standard procedure for evaluating the functional derivative is to first evaluate the right-hand side of equation B.6 for an arbitrary g and then infer what $\frac{\delta F[f]}{\delta f(x)}$ must be by comparing to the left-hand side. Equivalently,

g(x') can be replaced with a Dirac delta $\delta(x-x')$ in order to arrive at $\frac{\delta F[f]}{\delta f(x)}$ directly.

Using eq. B.6 and the lemma in appendix C, we find that the stationarity condition for a functional

$$\frac{\delta F[f]}{\delta f} \stackrel{!}{=} 0 \tag{B.7}$$

is equivalent to the following condition.

$$\frac{dF[f+\varepsilon g]}{d\varepsilon}\bigg|_{\varepsilon=0} \stackrel{!}{=} 0 \qquad \text{for all } g(x)$$
 (B.8)

 $^{^{12} \}verb|http://en.wikipedia.org/wiki/Functional_derivative|$

C Fundamental Lemma of Calculus of Variations

The Fundamental Lemma of Calculus of Variations ¹³ says that, for continuous functions, the condition

$$\int_{-\infty}^{\infty} dx f(x) \eta(x) = 0 \qquad \text{for all } \eta(x)$$
 (C.1)

holds only when f(x) = 0 for all x. We can see this by considering the case $\eta(x) = f(x)$. Since $f(x)^2$ is nonnegative everywhere, the integral yields a positive number whenever $f(x) \neq 0$ on a finite range of x values.

 $^{^{13} \}verb|http://en.wikipedia.org/wiki/Fundamental_lemma_of_calculus_of_variations|$

D Unitary Invariances for Hartree-Fock Orbitals

Orthonormality. By definition, unitary transformations preserve overlaps. This can be verified as follows

$$\langle \tilde{\psi}_i | \tilde{\psi}_j \rangle = \sum_{kl} U_{ki} U_{lj}^* \langle \psi_k | \psi_l \rangle = \sum_{kl} U_{ki} U_{lj}^* \delta_{kl} = \sum_{kl} U_{ki} U_{kj}^* = \delta_{ij}$$

using $\sum_{k} U_{ki} U_{kj}^* = (\mathbf{U} \mathbf{U}^{\dagger})_{ji} = (\mathbf{1})_{ji} = \delta_{ji}$.

Fock operator. Only the Coulomb and exchange parts of the Fock operator depend on the orbital set. For the Coulomb part, we have

$$\sum_{i} \langle \tilde{\psi}_{i}(2) | \hat{g}(1,2) | \tilde{\psi}_{i}(2) \rangle = \sum_{ijk} U_{ji} U_{ki}^{*} \langle \psi_{j}(2) | \hat{g}(1,2) | \psi_{k}(2) \rangle = \sum_{jk} \delta_{jk} \langle \psi_{j}(2) | \hat{g}(1,2) | \psi_{k}(2) \rangle = \sum_{j} \langle \psi_{j}(2) | \hat{g}(1,2) | \psi_{j}(2) \rangle$$

using the fact that $\sum_i U_{ji} U_{ki}^* = \delta_{jk}$. For the exchange part, we have the same thing with a $\hat{P}(1,2)$ sandwiched in there.

Hamiltonian expectation value. The vector notation ψ for our orbitals allows us to express Φ and $\tilde{\Phi}$ as

$$\Phi(1,\ldots,n) = \frac{1}{\sqrt{n!}} |\psi(1)\cdots\psi(n)| \qquad \qquad \tilde{\Phi}(1,\ldots,n) = \frac{1}{\sqrt{n!}} |\tilde{\psi}(1)\cdots\tilde{\psi}(n)|$$

which, noting that the matrix $(\tilde{\psi}(1) \cdots \tilde{\psi}(n))$ is simply

$$(\tilde{\psi}(1) \cdots \tilde{\psi}(n)) = (\mathbf{U}^{\dagger}\psi(1) \cdots \mathbf{U}^{\dagger}\psi(n)) = \mathbf{U}^{\dagger}(\psi(1) \cdots \psi(n))$$

implies $\tilde{\Phi} = \det(\mathbf{U}^{\dagger})\Phi = \det(\mathbf{U})^*\Phi$. Therefore, $\tilde{\Phi}$ and Φ have the same energy expectation values.

$$\langle \tilde{\Phi} | \hat{H} | \tilde{\Phi} \rangle = \det(\mathbf{U} \mathbf{U}^{\dagger}) \langle \Phi | \hat{H} | \Phi \rangle = \langle \Phi | \hat{H} | \Phi \rangle \tag{D.1}$$