Started on	Saturday, 24 September 2022, 1:00 PM
State	Finished
Completed on	Saturday, 24 September 2022, 1:00 PM
Time taken	10 secs
Marks	0.00/27.00
Grade	0.00 out of 10.00 (0 %)

Not answered

Marked out of 1.00

Find $f \circ g$, where $f(x) = x^2 - 5$ and g(x) = x + 2, where f and g are functions from R to R.

- a. None of these
- b. $(f \circ g)(x) = (x^2 5)(x + 2)$
- o. $(f \circ g)(x) = x^2 3$
- \bigcirc d. $(f \circ g)(x) = x^2 + 4x 1$
- e. None of the others

The correct answer is: $(f \circ g)(x) = x^2 + 4x - 1$

Not answered

Marked out of 1.00

Consider the set defined by

$$A_n = \{1, 2, 3, ..., n\}, n = 1, 2, ...$$

What is $A_7 - A_4$?

- a. {4, 5, 6, 7}
- b. None of the others
- o. {1, 2, 3}
- od. {3}
- e. {5, 6, 7}

The correct answer is: {5, 6, 7}

List the first 3 terms of the sequence whose nth term is the sum of the first n positive integers.

- a. 1, 2, 3
- b. 1, 3, 5
- o. 1, 2, 5
- od. 1, 3, 6

The correct answer is: 1, 3, 6

Not answered

Marked out of 1.00

Determine whether each of these functions is a bijection from R to R.

- a) f(x) = -5x + 3
- b) $f(x) = -x^2 + 7$
- a. Not a bijection, Not a bijection
- b. Bijection, Bijection
- oc. Bijection, Not a bijection
- od. Not a bijection, Bijection
- e. None of the others

The correct answer is: Bijection, Not a bijection

Question 5
Not answered
Marked out of 1.00
Find the next two terms of the sequence 2, 5, 8, 11, 14, 17, 20,
a. None of the others
○ b. 23, 26
○ c. 23, 27
od. 24, 27

The correct answer is: 23, 26

e. 22, 25

Question 6		
t answered		
Marked out of 1.00		
Which one is true?		
(i) $A \oplus A = \emptyset$		
(ii) $A \oplus \emptyset = A$		
a. (i) only		
○ b. Both (i) and (ii)		
c. (ii) only		
d. Neither (i) nor (ii)		

The correct answer is: Both (i) and (ii)

Not answered

Marked out of 1.00

Which one is true?

$$(\underline{i}) \, \, \{ \, a \, \} \in \{ \, b, \{ a, \, c \} \, \}$$

(ii)
$$\varnothing \subseteq \{a, b\}$$

- a. (ii) only
- b. Neither (i) nor (ii)
- c. (i) only
- od. Both (i) and (ii)

The correct answer is: (ii) only

The correct answer is: 1001101

Question 9		
Not answered		
Marked out of 1.00		
Which one is true?		
(i) $A \oplus B = (A \cup B) - (A \cap B)$.		
(ii) $A \oplus B = (A - B) \cup (B - A)$.		
a. Only (ii)		
o b. Both		
o. Neither		
od. Only (i)		

The correct answer is: Both

Not answered

Marked out of 1.00

Which rules are functions?

(i)
$$f: \mathbf{R} \to \mathbf{R}$$
 where $f(x) = \begin{cases} x^2 & \text{if } x \le 2 \\ x - 1 & \text{if } x \ge 4 \end{cases}$

(i)
$$f: \mathbf{R} \to \mathbf{R}$$
 where $f(x) = \begin{cases} x^2 & \text{if } x \le 2 \\ x - 1 & \text{if } x \ge 4 \end{cases}$
(ii) $G: \mathbf{R} \to \mathbf{R}$ where $G(x) = \begin{cases} x + 2 & \text{if } x \ge 0 \\ x - 1 & \text{if } x \le 4 \end{cases}$

- a. Neither
- b. Only (ii)
- c. Only (i)
- d. Both

Your answer is incorrect.

- (i) f(3) is undefined.
- (ii) G has more than one values when x = 2.

The correct answer is:

Neither

Not answered

Marked out of 1.00

The **successor** of the set A is the set $A \cup \{A\}$.

Find the **successor** of {1, 2}.

- a. {1, 2}
- b. {{1, 2}}
- c. {1, 2, {1, 2}}
- d. None of these
- e. {1, 2, {1}, {2}}

The correct answer is: {1, 2, {1, 2}}

Not answered

Marked out of 1.00

List the first 4 terms of the sequence whose n^{th} term is the largest integer k such that $2^k \le n$.

- a. 0, 1, 1, 1
- b. 0, 1, 2, 3
- o. 0, 1, 1, 2
- d. 0, 1, 2, 2
- e. None of these

The correct answer is: 0, 1, 1, 2

The correct answer is: 8, 6

Your answer is incorrect.

The correct answer is:

A: finite, B: countably infinite

Not answered

Marked out of 1.00

Compute each of these (double) sums.

$$\sum_{j=0}^{8} (1 + (-1)^{j})$$

$$\sum_{i=1}^{3} \sum_{j=0}^{2} i$$

- a. 10, 9
- o b. 20, 9
- o. 0, 3
- d. None of these

The correct answer is: 10, 9

Not answered

Marked out of 1.00

Suppose $a_n = 1 + 3 + 5 + ... + (2n-1), n = 1, 2, 3, ...$

Find a₁, a₂, a₃, a₄.

- a. 1, 4, 9, 16
- b. None of the others
- o. 1, 3, 5, 7
- od. 1, 4, 9, 13

The correct answer is: 1, 4, 9, 16

The correct answer is: False, False, True

Not answered

Marked out of 1.00

Consider the sequence $\{a_n\}$, where a_n is defined by

 $a_0 = 7$, and $a_n = a_{n-1} - n$, if n > 0.

What are the terms a_1 , a_2 , and a_3 ?

- a. None of these
- b. 6, 4, 2
- o. 6, 5, 3
- d. 6, 4, 1
- e. 6, 5, 4

The correct answer is: 6, 4, 1

Not answered

Marked out of 1.00

The **shaded region** in the Venn diagram indicates ____

- $(i) \ \overline{A \cap B}$ $(ii) \ \overline{A} \cap \overline{B}$ $(iii) \ \overline{A \cup B}$
- a. None of these
- b. (i)
- _ c. (ii)
- d. (iii)

The correct answer is: (i)

The correct answer is: Neither (i) nor (ii)

Find the next two terms of the sequence 1, 4, 5, 9, 14, 23, ...

- a. 27, 50
- b. 37, 60
- oc. None of the others
- d. 47, 70
- e. 37, 45

The correct answer is: 37, 60

Not answered

Marked out of 1.00

Suppose that the universal set is $U = \{1, 2, 3, 4, 5, 6, 7, 8\}$, find the set specified by the bit string 01100101.

- a. {1, 4, 5}
- b. {2, 3, 6, 8}
- o. {1, 2, 5, 7}
- d. {3, 4, 6, 8}

The correct answer is: {2, 3, 6, 8}

Not answered

Marked out of 1.00

Which one is true?

$$(\underline{i}) \ a \in \{ \ b, \{a,c\} \, \}$$

(ii)
$$\varnothing \in \{a, b\}$$

- a. Both (i) and (ii)
- b. (ii) only
- o. Neither (i) nor (ii)
- d. (i) only

The correct answer is: Neither (i) nor (ii)

Question 24		
Not answered		
Marked out of 1.00		
Determine whether each of these sets is finite, countably infinite, or uncountable.		
A: the set of real numbers between 0 and 1		
B: the set of odd negative integers		
a. uncountable, uncountable		
○ b. countably infinite, countably infinite		
oc. finite, uncountable		
○ d. countably infinite, uncountable		
e. uncountable, countably infinite		

The correct answer is: uncountable, countably infinite

Not answered

Marked out of 1.00

Determine whether $f: Z \times Z \rightarrow Z$ is onto if

- i) f(m, n) = m 2n
- ii) f(m, n) = |n|
- a. not onto, onto
- b. onto, not onto
- c. onto, onto
- d. not onto, not onto

The correct answer is: onto, not onto

Not answered

Marked out of 1.00

Suppose that A is the set of freshmen at your school and B is the set of students in discrete mathematics at your school.

Express the set of freshmen at your school who are not taking discrete mathematics in terms of A and B.

Which one is true?

- $(i) A \cap B$ $(ii) A \cup B$ (iii) A B(iv) B A
- a. (ii)
- b. (i)
- o. (iv)
- d. (iii)

The correct answer is: (iii)

Not answered

Marked out of 1.00

Find the general term of the sequence $\{a_n\}$

if $a_1 = 1$, $a_2 = 5$, $a_3 = 9$, $a_4 = 13$, $a_5 = 17$, $a_6 = 21$, ...

- a. None of these
- \circ b. $a_n = 4n + 1$
- oc. $a_n = 4n 3$
- $oldsymbol{o}$ d. $a_n = 2n + 2$
- \bigcirc e. $a_n = n + 4$

The correct answer is: $a_n = 4n - 3$

«

>>