

UNIVERZITET U NOVOM SADU PRIRODNO-MATEMATIČKI FAKULTET DEPARTMAN ZA MATEMATIKU I INFORMATIKU

Dekompozicija grafa na K-jezgra i analiza menjanja globalnih metrika po jezgrima

Projekat iz predmeta Socijalne mreže

Stefan Obradović 287/21

Sadržaj

Sa	adržaj	1
1	$\mathbf{U}\mathbf{vod}$	2
2	Poređenje rezultata algoritama 2.1 Mreža 1 2.2 Mreža 2 2.3 Mreža 3	3
3	Modeli za generisanje nasumičnih mreža 3.1 Model Jezgro-Periferija	4
4	Prikupljeni podaci 4.1 Erdos-Renyi model 4.2 Barabas-Albert model 4.3 Jezgro-periferija model 4.3.1 Mreža 1 4.3.2 Mreža 2 4.3.3 Mreža 3 4.4 Condensed matter collaboration 2003 4.5 Condensed matter collaborations 2005 4.6 Enron email mreža 4.7 Github mreža	6 8 10 11 13 15
5	Zaključak	20
6	Literatura	91

1 Uvod

Implementiran je Batagelj-Zaverštnik algoritam za dekompoziciju mreže na K-jezgra. Poredi se tačnost ovog algoritma upoređivajući njegov rezultat sa rezultatima "Straight-forward" algoritma. Posmatra se promena globalnih metrika mreže po K-jezgrima nad veštački generisanim i realnim mrežama.

2 Poređenje rezultata algoritama

Mreže u ovoj oblasti su osmišljeni bez neke posebne strukture, već su napravljeni nasumičnim crtanjem čvorova i veza na papiru. Napravljeni su samo za testiranje tačnosti Batagelj-Zaverštnik algoritma.

2.1 Mreža 1

Slika 1: Izgled malog grafa za testiranje algoritma

Čvor	Ručno računanje	Batagelj-Zaverštnik	"Straight forward"
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	1	1	1
6	1	1	1
7	1	1	1
8	2	2	2
9	2	2	2
10	2	2	2
11	2	2	2
12	1	1	1
13	1	1	1
14	1	1	1
15	1	1	1
16	1	1	1
17	1	1	1
18	1	1	1
19	1	1	1

Tabela 1: Šel indeksi za čvorove dobijeni različitim metodama

2.2 Mreža 2

 ${f Slika}$ 2: Izgled malog grafa za testiranje algoritma

Čvor	Ručno računanje	Batagelj-Zaverštnik	"Straight forward"
1	2	2	2
2	2	2	2
3	2	2	2
4	2	2	2
5	2	2	2
6	2	2	2
7	2	2	2
8	2	2	2
9	2	2	2
10	2	2	2
11	1	1	1
12	1	1	1
13	1	1	1
14	1	1	1
15	2	2	2
16	2	2	2

Tabela 2: Šel indeksi za čvorove dobijeni različitim metodama

2.3 Mreža 3

Slika 3: Izgled malog grafa za testiranje algoritma

Čvor	Ručno računanje	Batagelj-Zaverštnik	"Straight forward"
1	3	3	3
2	3	3	3
3	3	3	3
4	3	3	3
5	2	2	2
6	2	2	2
7	3	3	3
8	3	3	3
9	2	2	2
10	2	2	2
11	3	3	3
12	3	3	3
13	2	2	2
14	3	3	3
15	3	3	3
16	2	2	2
17	3	3	3

Tabela 3: Šel indeksi za čvorove dobijeni različitim metodama

3 Modeli za generisanje nasumičnih mreža

Svaki model je modifikovan tako da svaki čvor ima sigurno barem jednog suseda. "Erdos-Renyi" model je modifikovan tako da za svaki čvor, ukoliko ima stepen 0 pre nasumičnog povezivanja sa drugim čvorovima, nasumično izabere 1 čvor (svaki čvor ima jednaku šansu da bude izabran) i poveže se sa njim.

"Barabasi-Albert" model se oslanja na prethodni model, zbog čega početna konfiguracija mreže ne može da ima čvor koji nema suseda. Svaki sledeći čvor koji se ne nalazi u početnoj konfiguraciji unosi novu granu u mrežu, samim tim imaće barem 1 suseda.

3.1 Model Jezgro-Periferija

Model je baziran na ideji stohastičkog blok modela za mreže koje imaju strukturu zajednica. Model umesto proizvoljnog broja zajednica ima već 2 ugrađene zajednice, jezgro i periferiju. Model ima 3 parametra:

- Broj čvorova u mreži
- Procenat čvorova u jezgru mreže
- Niz verovatnoća po kojima se čvorovi povezuju

Niz verovatnoća očekuje 3 vrednosti koje predstavljaju verovatnoću da su neka 2 čvora povezana u zavisnosti od toga u kom delu mreže se nalazae (jezgro-jezgro, periferija-periferija, jezgro-periferija).

Čvorovi se povezuju slično kao u "Erdos-Renyi" modelu. Prvo se za svaki čvor proveri da li čvor ima suseda, ako nema poveže se sa nasumično izabranim čvorom iz iste oblasti u kojoj se on nalazi (jezgro ili periferija). U suprotnom čvor se povezuje sa ostalim čvorovima po odgovarajućoj verovatnoći.

4 Prikupljeni podaci

Podaci koji su prikazani za neku od mreža koja je generisana po nekom modelu je nasumično izabrana od generisanih.

4.1 Erdos-Renyi model

• Broj čvorova u mreži: 2000

• Broj grana u mreži: 20292

• Procenat čvorova u najvećoj komponenti: 100%

• Procenat grana u najvećoj komponenti: 100%

• Gustina mreže: 0,01

• Broj komponenti povezanosti: 1

• Dijametar mreže: 4

• Koeficijent klasterisanja mreže: 0,010

• Koeficijent malog sveta: 2,821

• Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,473

• Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,468

• Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,473

4.2 Barabas-Albert model

• Broj čvorova u mreži: 2000

• Broj grana u mreži: 13840

 $\bullet\,$ Procenat čvorova u najvećoj komponenti: 100%

• Procenat grana u najvećoj komponenti: 100%

• Gustina mreže: 0,01

- Broj komponenti povezanosti : 1
- Dijametar mreže: 5
- Koeficijent klasterisanja mreže: 0,009
- Koeficijent malog sveta: 3,178
- Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,054
- Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,053
- Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,051
- Spermanov indeks korelacije za šel indeks i "Eigenvector" metriku: 0,050

4.3 Jezgro-periferija model

4.3.1 Mreža 1

• Broj čvorova u mreži: 2000

 $\bullet\,$ Procenat čvorova u jezgru: 30%

• Broj grana u mreži: 44412

 $\bullet\,$ Procenat čvorova u najvećoj komponenti: 100%

 \bullet Procenat grana u najvećoj komponenti: 100%

• Gustina mreže: 0,022

• Broj komponenti povezanosti : 1

• Dijametar mreže: 4

• Koeficijent klasterisanja mreže: 0,012

• Koeficijent malog sveta: 2,366

• Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,809

• Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,791

• Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,374

4.3.2 Mreža 2

• Broj čvorova u mreži: 2000

 \bullet Procenat čvorova u jezgru: 50%

• Broj grana u mreži: 55285

 \bullet Procenat čvorova u najvećoj komponenti: 100%

• Procenat grana u najvećoj komponenti: 100%

• Gustina mreže: 0,027

• Broj komponenti povezanosti : 1

• Dijametar mreže: 3

• Koeficijent klasterisanja mreže: 0,013

• Koeficijent malog sveta: 2,285

• Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,468

 $\bullet\,$ Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,460

 $\bullet\,$ Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,443

4.3.3 Mreža 3

• Broj čvorova u mreži: 2000

• Procenat čvorova u jezgru: 90%

• Broj grana u mreži: 34461

• Procenat čvorova u najvećoj komponenti: 100%

 \bullet Procenat grana u najvećoj komponenti: 100%

- Gustina mreže: 0,017
- Broj komponenti povezanosti : 1
- Dijametar mreže: 3
- Koeficijent klasterisanja mreže: 0,025
- Koeficijent malog sveta: 2,454
- Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,490
- Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,482
- Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,447
- $\bullet\,$ Spermanov indeks korelacije za šel indeks i "Eigenvector" metriku: 0,490

4.4 Condensed matter collaboration 2003

Mreža koautorstva naučnika koji su postavili preprint na temu: Kondenzovana materija, u periodu od januara 1993. godine do aprila 2003. godine.

• Broj čvorova u mreži: 23133

• Broj grana u mreži: 93439

• Procenat čvorova u najvećoj komponenti: 92,348%

• Procenat grana u najvećoj komponenti: 97,695%

• Gustina mreže: $3,49 \cdot 10^{-4}$

• Broj komponenti povezanosti : 567

• Dijametar mreže: 15

• Koeficijent klasterisanja mreže: 0,641

• Koeficijent malog sveta: 5,352

• Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,932

• Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,482

• Spermanov indeks korelacije za šel indeks i "Closenness" metriku:0,649

4.5 Condensed matter collaborations 2005

Mreža koautorstva naučnika koji su postavili preprint na temu: Kondenzovana materija, u periodu od januara 1995. godine do marta 2005. godine.

• Broj čvorova u mreži: 40421

• Broj grana u mreži: 175692

- Procenat čvorova u najvećoj komponenti: 90,195 %

• Procenat grana u najvećoj komponenti: 97,747%

• Gustina mreže: $2, 15 \cdot 10^{-4}$

• Broj komponenti povezanosti : 1798

• Dijametar mreže: 18

• Koeficijent klasterisanja mreže: 0,656

• Koeficijent malog sveta: 5,499

• Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,937

• Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,497

• Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,679

4.6 Enron email mreža

Mreža komunikacije između Enron mejlova. Jedan čvor predstavlja jednu mejl adresu, a čvorovi A i B su povezani ako je bilo koji od njih poslao mejl drugom.

• Broj čvorova u mreži: 36692

• Broj grana u mreži: 183831

• Procenat čvorova u najvećoj komponenti: 91,834%

- Procenat grana u najvećoj komponenti: 98,357%
- Gustina mreže: $2,73 \cdot 10^{-4}$
- Broj komponenti povezanosti : 1065
- Dijametar mreže: 13
- Koeficijent klasterisanja mreže: 0,509
- Koeficijent malog sveta: 4,025
- Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,983
- Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,693
- $\bullet\,$ Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,495
- $\bullet\,$ Spermanov indeks korelacije za šel indeks i "Eigenvector" metriku: $0{,}964$

4.7 Github mreža

Mreža programera sa Github mreže. Čvorovi su programeri koji imaju barem 10 repozitorijuma, a veza izmedju programera postoji ako se uzajamno prate.

• Broj čvorova u mreži: 37700

• Broj grana u mreži: 289003

• Procenat čvorova u najvećoj komponenti: 100%

• Procenat grana u najvećoj komponenti: 100%

• Gustina mreže: $4,06 \cdot 10^{-4}$

• Broj komponenti povezanosti : 1

• Dijametar mreže: 11

• Koeficijent klasterisanja mreže:0,167

• Koeficijent malog sveta: 3,246

• Spermanov indeks korelacije za šel indeks i stepen povezanosti: 0,990

• Spermanov indeks korelacije za šel indeks i "Betweenness" metriku: 0,818

• Spermanov indeks korelacije za šel indeks i "Closenness" metriku: 0,729

5 Zaključak

U veštački generisanim mrežama korelacija između metrika centralnosti i šel indeksa čvora je uglavnom manja od 0,5, osim u slučaju mreže generisane po modelu jezgro-periferija gde je procenat čvorova u jezgru 30%, gde imamo visoke korelacije. U realnim mrežama uglavnom imamo visoke korelacije sa retkim primerima gde je manja od 0,6.

U svim mrežam vidimo da promena metrika koje pratimo kroz k-jezgra je uglavnom ista, gustina mreže raste, koeficijent malog sveta opada, koeficijent klasterisanja uglavnom raste...

6 Literatura

- [1] Leskovec, J., Kleinberg, J., Faloutsos, C. Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 2007.
- [2] M. E. J. Newman, Proc. Natl. Acad. Sci. USA, The structure of scientific collaboration networks, 2001.
- [3] J. Leskovec, K. Lang, A. Dasgupta, M. Mahoney, Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters, 2009.
- [4] B. Klimmt, Y. Yang, Introducing the Enron corpus, 2004.
- [5] B. Rozemberczki, C. Allen and R. Sarkar, Multi-scale Attributed Node Embedding, 2019.