Measuring perceptual video quality with VMAF

Zhi Li Video Algorithms, Netflix

9/18/17 @ ICIP 2017

Outline

- The need for a better quality metric for video
- How VMAF works
- VMAF open-source project

Ways to measure video quality

Subjective Assessment

Automated Assessment using PSNR, SSIM, or VMAF

Need a better perceptual metric

- Accurately measures human perception of quality
- Consistent across content
- Can be run at scale
- Works well relevant to adaptive streaming
 - Compression artifacts
 - Scaling artifacts

VMAF: Video Multimethod Assessment Fusion

Video Multimethod Assessment Fusion

- Full-reference video quality metric
- Combines multiple elementary quality metrics
 - Visual quality fidelity (VIF*) @ 4 scales
 - Detail loss measure (DLM**)
 - Temporal information (TI) average pixel difference between adj. frames
- Machine-learning regression to predict a final "fused" score, guided by subjective data

*Visual Information Fidelity - H. Sheikh and A. Bovik, "Image Information and Visual Quality".

**Detail Loss Measure - S. Li, F. Zhang, L. Ma, and K. Ngan, "Image Quality Assessment by Separately Evaluating Detail Losses and Additive Impairments".

How VMAF works

The **Power** Of **Fusion**

Performance evaluation

- SROCC: Spearman Rank Order Correlation Coefficient
- PLCC: Pearson Linear Correlation Coefficient
- RMSE: Root Mean Squared Error [sqrt(mean((y x)²))]

Source: Wikipedia

Results

	SRCC	PCC	RMSE
PSNR	0.746	0.725	24.577
SSIM*	0.603	0.417	40.686
MS FastSSIM*	0.685	0.605	31.233
PSNR-HVS*	0.845	0.839	18.537
VMAF v0.6.1	0.931	0.948	10.616

NFLX-TEST Dataset

	SRCC	PCC	RMSE
PSNR	0.416	0.394	16.934
SSIM*	0.658	0.618	12.340
MS FastSSIM*	0.566	0.561	13.691
PSNR-HVS*	0.589	0.595	13.213
VMAF v0.6.1	0.727	0.709	10.877

LIVE Video Database (Compression-relevant impairments)

^{*}https://github.com/xiph/daala/tree/master/tools

VMAF: advantages and limitations

- Evolvability: can easily incorporate new metrics for better accuracy
- Elimited applicability: accuracy and scope are as good as training data
 - Generalization is not guaranteed
 - Default VMAF model: 1080p pristine source from Netflix catalog, living room viewing condition (3*height)
- Customizability: metrics/training data can be tailored
 - Examples: content, artifacts, viewing conditions
 - Build model for your specific application

VMAF open-source project

https://github.com/Netflix/vmaf

Usages

- Basic
 - ./run_vmaf: python wrapper calling c executable
 - wrapper/vmafossexec: c++ wrapper
 - ./ffmpeg2vmaf: piping FFmpeg with VMAF
- Advanced
 - ./run_vmaf_training: train a new VMAF model
 - ./run_testing: validate VMAF model on a dataset

VMAF phone model

Predict how the quality of a video is perceived when viewed on a mobile device

Adoption and external contributions

- Adoption
 - Alliance for Open Media (AOM)
 - http://arewecompressedyet.com
 - Academic papers start evaluating/using VMAF
 - 0 ...
- External contributions
 - libvmaf library
 - FFmpeg integration
 - Docker support
 - Windows/Visual Studio support
 - 0 ..

How you can contribute

- Report bugs, request features, implement features
- Integrate new metrics
- Share subjective dataset
- Share trained models
- ... and many more

Backup Slides

How to train a VMAF model

To begin with: run a subjective test

- Example: subjective test for VMAF 0.6.1 (1080p model)
 - Source: 23 videos, each 10-sec long, selected from Netflix catalog
 - Distortion: each source video is encoded with 6 resolutions up to
 1080p, and 3 quality parameters (in total 18 impaired per source)
 - Subjects: ~55
 - Selective sampling: not all videos were viewed by each subject
 - Test methodology: absolute category rating (ACR)
 - Subject is instructed to watch an impaired video and give a rating on a continuous scale from bad to excellent

Collect data in a dataset file

example_raw_dataset.py

```
dataset name = 'example'
vuv fmt = 'vuv420p'
width = 1920
height = 1080
ref score = 100.0
from vmaf.config import VmafConfig
ref videos = [
   {'content id': 0, 'content name': 'checkerboard', 'path': VmafConfig.test resource path('vuv', 'checkerboard 1920 1080 10 3 0 0.vuv')},
    {'content id': 1, 'content name': 'flat', 'path': VmafConfiq.test resource path('yuv', 'flat 1920 1080 0.yuv')},
dis videos = |
   {'content id': 0, 'asset id': 0, 'os': [100, 100, 100, 100], 'path': VmafConfig.test resource path('yuv', 'checkerboard 1920 1080 10 3 0 0.yuv')}, # ref
    {'content id': 0, 'asset id': 1, 'os': [40, 45, 50, 55, 60], 'path': VmafConfig.test resource path('yuv', 'checkerboard 1920 1080 10 3 1 0.yuv')},
    {'content id': 1, 'asset id': 2, 'os': [90, 90, 90, 90, 90], 'path': VmafConfig.test resource path('yuv', 'flat 1920 1080 0.yuv')}, # ref
    {'content id': 1, 'asset id': 3, 'os': [70, 75, 80, 85, 90], 'path': VmafConfig.test resource path('yuv', 'flat 1920 1080 10.yuv')},
```

Dataset validation

./run_testing PSNR NFLX_dataset_raw.py --cache-result

Train a new model

- Training:
 - ./run_vmaf_training NFLX_dataset_raw.py
 resource/feature_param/vmaf_feature_v3.py
 resource/model_param/libsvmnusvr_v3.py test_model.pkl
 --cache-result
- Testing:
 - ./run_testing VMAF LIVEVideo_dataset.py --vmaf-model test_model.pkl --cache-result
- Single run:
 - ./run_vmaf yuv420p 576 324
 python/test/resource/yuv/src01_hrc00_576x324.yuv
 python/test/resource/yuv/src01_hrc01_576x324.yuv --model
 test_model.pkl --out-fmt xml