Kap. 3: Schaltnetze und Schaltwerke

- 3.1 Einführung und Überblick
- 3.2 Boolesche Funktionen und Boolesche Algebra
- 3.3 Schaltnetze
- 3.4 Schaltwerke

Martin Gergeleit, HSRM Einführung Informatik

3-1

3.1 Einführung und Überblick

- Ziel dieses Kapitels:
 - Annäherung an die Realisierung von Rechnern.
 - Zunächst "im kleinen": einfache digitale Schaltungen, wie sie im Innern eines Prozessors vorkommen.
 Im folgenden Kapitel: "im großen": Architektur von Rechensystemen
- Beschreibung digitaler Schaltungen auf der logischen Ebene
 - durch mathematische Modelle wie Boolesche Funktionen, Boolesche Terme und Boolesche Algebren (3.2)
 - durch Schaltnetze (3.3) aus zyklusfreien Graphen als Modelle der Realisierung Boolescher Funktionen
 - durch Schaltwerke (3.4) als Modelle für zustandsbehaftete digitale Systeme (Berücksichtigung von Gedächtnis/Speicher).
- Detaillierte Behandlung einschl. der technischen Umsetzung in elektronischen Bauteilen erfolgt in der Veranstaltung Elektrotechnik/Digitaltechnik (2. Semester).

3.2 Boolesche Funktionen und Boolesche Algebra

Eine Schaltfunktion wird definiert durch eine Abbildung

$$f_s: \{0,1\}^n \to \{0,1\}^m$$
.

Sie bildet die Menge der binären n-Tupel von n *Eingängen* in die Menge der binären m-Tupel von m *Ausgängen* ab.

- Schaltfunktion kann als math. Abstraktion eines elektronischen Bausteins mit n Eingängen und m Ausgängen angesehen werden.
- In 3.2 und 3.3 werden nur solche Schaltfunktionen betrachtet, bei denen die Ausgänge nur von den Eingängen abhängen (Funktionen im math. Sinne, ohne Rückkopplung).
- Eine n-stellige Boolesche Funktion ist eine Funktion f:{0,1}ⁿ→{0,1}.
 Sie heißt für n=1 unär, für n=2 binär, ansonsten auch n-är.
 Zuordnung von Wahrheitswerten: 0 = falsch, 1 = wahr.
- Schaltfunktionen lassen sich als Kombination von Booleschen Funktionen auffassen:

$$f_s(x_1, ..., x_n) = (f^1(x_1, ..., x_n), ..., f^m(x_1, ..., x_n))$$

 Eine n-stellige Boolesche Funktion f:{0,1}ⁿ→{0,1} kann über eine generische Wahrheitstafel (Wertetabelle) mit 2ⁿ Zeilen definiert werden:

X 1	X 2		X _{n-1}	Xn	f(x ₁ ,,x _n)
0	0	•••	0	0	f(0,0,,0,0)
0	0	•••	0	1	f(0,0,,0,1)
	•••	•••		•••	•••
1	1		1	0	f(1,1,,1,0)
1	1		1	1	f(1,1,,1,1)

• Da in jeder der 2ⁿ Zeilen entweder der Funktionswert 0 oder der Funktionswert 1 angenommen wird, existieren genau

verschiedene Funktionen $f:\{0,1\}^n \rightarrow \{0,1\}$.

• Für n=1 ergeben sich aus 2 genau 4 Funktionen:

X 1	O (x ₁)	1(x ₁)	Id(x ₁)	NOT(x ₁)
0	0	1	0	1
1	0	1	1	0

- Dabei bezeichnen
 - 0() die Null-Funktion f≡0,
 - 1() die Eins-Funktion f≡1,
 - Id() die Identitätsfunktion $f(x_1)=x_1$ und
 - NOT() die Negation (Verneinung, Inversion) $f(x_1)=\overline{x_1}$ (lies: x_1 negiert). Andere Schreibweisen: NICHT(), $f(x_1)=\neg x_1$.
- Die Negation ist f

 ür das weitere von besonderer Bedeutung.

• Für n=2 ergeben sich aus ² genau 16 Funktionen. Die für die Praxis wichtige Funktionen sind:

X 1	X 2	AND (x ₁ ,x ₂)	OR (x ₁ ,x ₂)	XOR (x ₁ ,x ₂)	NAND (x1,x2)	NOR (x ₁ ,x ₂)	IMPL (x ₁ ,x ₂)	EQUIV (x ₁ ,x ₂)
0	0	0	0	0	1	1	1	1
0	1	0	1	1	1	0	1	0
1	0	0	1	1	1	0	0	0
1	1	1	1	0	0	0	1	1

Andere Schreibweisen und Bezeichnungen:

AND (x ₁ ,x ₂)	OR (x ₁ ,x ₂)	XOR (x ₁ ,x ₂)	NAND (x ₁ ,x ₂)	NOR (x ₁ ,x ₂)	IMPL (x ₁ ,x ₂)	EQUIV (x ₁ ,x ₂)
X ₁ ^X ₂	X ₁ × X ₂	X ₁ ⊕ X ₂	<u>X₁^X₂</u>	$\overline{\mathbf{x}_1}^{\vee}\mathbf{x}_2$	$\chi_1 \Rightarrow \chi_2$	x ₁⇔ x ₂
X1*X2	X1+X2	X 1 [≠] X 2	X ₁ *X ₂	X1+X2		X ₁ =X ₂
UND	ODER	Exclusiv Oder	NICHT UND	NICHT ODER		
Kon- junktion	Dis- junktion	Anti- valenz	Sheffer- Funktion	Pierce- Funktion	Impli- kation	Äqui- valenz

- Satz: Alle höherstelligen (n≥3) Booleschen Funktionen können durch Verknüpfung 2-stelliger Boolescher Funktionen erzeugt werden.
- Technisch sehr einfach realisieren lassen sich
 - n-faches NAND:

```
NAND(x_1, ..., x_n) = NOT(AND(x_1, ..., x_n))
= NOT(AND(...AND(AND(x_1, x_2), x_3), ...,x_n)) = x_1^* ... x_n^*
```

n-faches NOR:

```
NOR(x_1, ..., x_n) = NOT(OR(x_1, ..., x_n))
= NOT(OR(...OR(OR(x_1, x_2), x_3), ...,x_n)) = x_1 + ... + x_n
```

- Durch die Kombination Boolescher Funktionen lassen sich andere Boolesche Funktionen erzeugen.
- Von besonderer Bedeutung:
 Funktionen oder Funktionenmengen, mit deren Hilfe sich alle
 Booleschen Funktionen erzeugen lassen (genannt vollständige Basis;

 Beschränkung auf wenige verschiedene Bauteile).
- <u>Satz</u>: Jede n-stellige Boolesche Funktion läßt sich durch NOT() und das binäre AND() und/oder OR() darstellen.
- <u>Satz</u>: Jede n-stellige Boolesche Funktion läßt sich ausschließlich durch binäre NOR-Funktionen darstellen.
- <u>Satz</u>: Jede n-stellige Boolesche Funktion läßt sich ausschließlich durch binäre NAND-Funktionen darstellen.
- Bemerkung: NOR() und NAND() sind damit von großer praktischer Bedeutung, da damit nur ein Komponententyp für die Realisierung benötigt wird.

- Die Menge {0,1} zusammen mit den binären Operationen OR() und AND() unter Benutzung von NOT() zur Invertierung erfüllt die Eigenschaften einer math. Struktur, die Boolesche Algebra genannt wird:
- Ein Tripel (M,+,*) aus einer Menge M und zwei binären Funktionen
 +,*: M×M→M heißt Boolesche Algebra genau dann, wenn für alle
 x,y,z∈M gilt:

• Assoziativ-Gesetze: (x+y)+z = x+(y+z) und (x*y)*z = x*(y*z)

• Kommutativ-Gesetze: (x+y) = (y+x) und (x*y) = (y*x)

• Distributiv-Gesetze: $x^*(y+z) = (x^*y)+(x^*z)$ und $x+(y^*z) = (x+y)^*(x+z)$

• Absorptions-Gesetze: $x^*(x+y) = x$ und $x+(x^*y) = x$

• Neutrale Elemente: $\exists 0 \in M \text{ mit } 0+x=x \text{ und } \exists 1 \in M \text{ mit } 1*x=x$

• Inverse Elemente: $\forall x \in M \text{ existient } x \in M \text{ mit } x^*x = 0 \text{ und } x + x = 1$

- ({0,1}, OR, AND) ist eine Boolesche Algebra:
 - OR entspricht +
 - AND entspricht *
 - 0 und 1 sind neutrale Elemente
 - Zu $x \in \{0,1\}$ ist NOT(x) das inverse Element \overline{x} .
- Gegeben sei eine Menge M, sei P(M) deren Potenzmenge.
 Dann ist (P(M),∪,∩) eine Boolesche Algebra:
 - U entspricht +
 - ∩ entspricht *
 - \varnothing und M sind neutrale Elemente, \varnothing entspricht 0, M entspricht 1.
 - Zu A∈M ist das Mengen-Komplement M\A das inverse Element.
- Sind B_1 , ..., B_n Boolesche Algebren, dann ist auch das Kreuzprodukt $B_1 \times ... \times B_n$ mit komponentenweisen Verknüpfungen eine Boolesche Algebra.

- Die folgenden wichtigen Rechenregeln gelten allgemein für jede Boolesche Algebra (M,+,*):
 - Idempotenz: x+x = x und x*x = x
 - Doppelte Negation: $\overline{x} = x$
 - De Morgansche Regeln: (x+y) = x * y und (x*y) = x + yPraktische Anwendung: Überführung von Konjunktion in Disjunktion und umgekehrt

- Zu jeder gültigen Rechenregel einer Booleschen Algebra gehört eine andere gültige (die duale) Rechenregel, die aus der ursprünglichen entsteht durch:
 - vertausche die Rollen von * und +
 - vertausche die Rollen von 0 und 1
- Beispiele für duale Regeln:
 - Idempotenzregeln
 - De Morgansche Regeln

Def

- Wahrheitstafeln sind für vielstellige Funktionen unhandlich, da die Anzahl 2ⁿ der Zeilen stark wächst.
- Eine weitere wichtige Repräsentierung Boolescher Funktionen bilden die Booleschen Terme (oder Booleschen Ausdrücke), implizit definiert durch:

- Die Konstanten 0 und 1 sind Boolesche Terme.
- Für jedes i ist x_i ein Boolescher Term.
- Sind s und t Boolesche Terme, dann auch ¬s, (s∨t) und (s∧t).
- Verwendet wurden hier die logischen Verknüpfungssymbole
 ¬, ∨ und ∧. Alternativ werden auch ¬, + und * verwendet.
- Festlegungen zur Vereinfachung der Schreibweise:
 - Weglassen von Klammern: ¬ bindet stärker als ∧ bindet stärker als ∨.
 - In der ($\overline{}$, +, *)-Schreibweise "geht Punktrechnung vor Strichrechung", und der * kann auch entfallen: $x_1x_2:=x_1*x_2$

- Jedem Booleschen Term entspricht eine Boolesche Funktion:
 - entspreche der Negation bzw. NOT(),
 - A entspreche der Konjunktion * bzw. AND()
 - v entspreche der Disjunktion + bzw. OR()
 - Mittels Wahrheitstafeln kann damit jedem Booleschen Term t über den Booleschen Variablen $\{x_1, ..., x_n\}$ unmittelbar eine Boolesche Funktion $f_t:\{0,1\}^n \rightarrow \{0,1\}$ zugeordnet werden.
- Satz: Jede Boolesche Funktion f:{0,1}ⁿ→{0,1} läßt sich durch einen Booleschen Term über {¬, ∧, ∨} beschreiben.

Idee für einen Induktionsbeweis:

- Den einstelligen Booleschen Funktionen 0(), 1(), $Id(x_i)$ und $NOT(x_i)$ werden die Terme 0, 1, x_i und $\neg x_i$ zugeordnet.
- Sei f eine n+1-stellige Boolesche Funktion. Dann sind $f_0(x_1, ..., x_n) := f(x_1, ..., x_n, 0)$ und $f_1(x_1, ..., x_n) := f(x_1, ..., x_n, 1)$ n-stellig und besitzen daher Terme t_0 und t_1 .
- Dann wird f definiert durch den Term $(x_{n+1} \wedge t_1) \vee (\neg x_{n+1} \wedge t_0)$.
- Daher heißt {¬, ∧, ∨} auch eine *vollständige Basis*.

X 1	X 2	XOR (x ₁ ,x ₂)	
0	0	0	
0	1	1	$(\neg x_1 \land x_2) \Rightarrow XOR(x_1, x_2) = 1$
1	0	1	$(\mathbf{x}_1 \land \neg \mathbf{x}_2) \Rightarrow XOR(\mathbf{x}_1, \mathbf{x}_2) = 1$
1	1	0	
			$XOR(x_1,x_2) = 1 \Leftrightarrow (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$

zugehöriger Term

 Ein Boolescher Term t über den Variablen {x₁, ..., x_n} heißt in disjunktiver Normalform (DNF) genau dann, wenn t die Form

$$t = (a_{11} \land ... \land a_{1n}) \lor ... \lor (a_{k1} \land ... \land a_{kn})$$

besitzt, wobei jedes a_{ij} entweder x_j oder $\neg x_j$ entspricht. Ein Teilausdruck der Form $a_{i1} \land ... \land a_{in}$, heißt auch *Minterm*.

 Ein Boolescher Term t über den Variablen {x₁, ..., x_n} heißt in konjunktiver Normalform (KNF) genau dann, wenn t die Form

$$t = (a_{11} \lor ... \lor a_{1n}) \land ... \land (a_{k1} \lor ... \lor a_{kn})$$

besitzt, wobei jedes a_{ij} entweder x_j oder $\neg x_j$ entspricht. Ein Teilausdruck der Form $a_{i1} \lor ... \lor a_{in}$ heißt auch *Maxterm*.

• Anmerkung: Jeder Minterm bzw. Maxterm enthält alle Booleschen Variablen $\{x_1, ..., x_n\}$ genau einmal, entweder in der Form x_j oder in der negierten Form x_i .

- Sei eine Boolesche Funktion f:{0,1}ⁿ→{0,1} in Form einer Wertetafel gegeben.
- Jeder Zeile (b₁ ... bₙ), bᵢ∈{0,1}, in der f den Funktionswert 1 hat (f(b₁, ...,bₙ)=1), wird ein Minterm a₁∧...∧aₙ zugeordnet, mit
 aᵢ = xᵢ, falls bᵢ=1 und aᵢ = ¬xᵢ, falls bᵢ=0,
 d.h. im Falle einer 1 wird die zugehörige Variable xᵢ andernfalls deren Komplement ¬xᵢ eingesetzt.
- Der gesuchte Term t ist die Disjunktion (v) aller dieser Minterme.

X ₁	X ₂	X 3	S (x ₁ ,x ₂ ,x ₃)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

$$\neg x_1 \wedge \neg x_2 \wedge \quad x_3$$

$$\neg X_1 \land X_2 \land \neg X_3$$

$$X_1 \wedge \neg X_2 \wedge \neg X_3$$

$$X_1 \wedge X_2 \wedge X_3$$

$$S(x_1,x_2,x_3): \quad (\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land \neg x_3) \lor (x_1 \land \neg x_2 \land \neg x_3) \lor (x_1 \land x_2 \land x_3)$$

$$\overline{x}_1 \overline{x}_2 x_3 + \overline{x}_1 x_2 \overline{x}_3 + x_1 \overline{x}_2 \overline{x}_3 + x_1 x_2 x_3$$

Martin Gergeleit, HSRM

- Komplexitätsmaße zur Beurteilung von Termen, z.B.:
 - die Größe als die Anzahl der Operatoren
 - die Tiefe als Maß für die Auswertungszeit.
- Die durch DNF oder KNF beschriebenen Normalformen-Terme sind zwar prinzipiell für einen Schaltungsentwurf nutzbar, jedoch i.d.R. nicht minimal in Hinblick auf den Aufwand zur Realisierung.
- Gesucht werden daher für die praktische Realisierung äquivalente Minimalformen von Termen, die aus der Normalform hergeleitet werden können.
 - Hierzu existieren Algorithmen (z.B. Karnaugh/Veitch, Quine/McCluskey, heuristische Verfahren), auf die hier nicht näher eingegangen wird (vgl. Vorlesung Elektrotechnik/Digitaltechnik).

3.3 Schaltnetze

- Motivation:
 - Boolesche Terme können einen wesentlichen Aspekt der technischen Realisierung nicht angemessen modellieren, nämlich die Mehrfachverwendung bereits ermittelter "Zwischenergebnisse".
- Diesen Mangel beheben Schaltnetze, auch kombinatorische Schaltwerke oder lineare Schaltungen genannt.
- Schaltnetze sind sehr anschauliche Graphen.
 - Verwendeten graphischen Symbole für Boolesche Funktionen sind durch DIN 40900/12 genormt.
 - Daneben existiert ebenfalls weit verbreitete Notation als US ANSI-Norm.

- Ein Schaltnetz ist ein gerichteter, zyklenfreier Graph, dessen Knoten von einem der Typen (a)-(e) sind. Die Knoten werden so angeordnet, dass die verbindenden Kanten "von links nach rechts" verlaufen und daher keine Pfeilspitzen benötigen.
 - (a) Eingangs-Knoten:
 - mit Markierung aus {0, 1, x₁, ..., x_n},
 d.h. Konstante oder Boolesche Eingangsvariable,
 - nur ausgehende Kanten

- (b) Ausgangs-Knoten:
 - mit Markierung aus $\{y_1, ..., y_m\}$, jede Ausgangsvariable muss genau einmal vorkommen,
 - nur einmündende Kanten

- (c) Verzweigungsknoten:
 - eine eingehende Kante, zwei oder mehr ausgehende Kanten dienen der Verteilung eines Signals, z.B.

- (d) unäre Gatter:
 - eine eingehende Kante, eine ausgehende Kante
 - NOT-Gatter mit Markierung 1 und O am Ausgang
 - Id-Gatter mit Markierung 1 (Identität) (kaum Bedeutung)

- (e) 2-stellige logische Gatter:
 - zwei eingehende Kanten, eine ausgehende Kante
 - Markierungen vgl. Symbole

XOR als Schaltnetz basierend auf NOT, AND und OR-Gattern:

X 1	X 2	XOR (x ₁ ,x ₂)
0	0	0
0	1	1
1	0	1
1	1	0

$$y = XOR(x_1,x_2) = (x_1 \land \neg x_2) \lor (\neg x_1 \land x_2)$$

Schaltnetze für NOT, AND und OR basierend auf dem NAND-Gatter:

$$y = NOT(x) = \overline{x \wedge x}$$

$$y = AND(x_1, x_2) = \overline{x_1} \wedge x_2$$
$$= (\overline{x_1} \wedge \overline{x_2}) \wedge (\overline{x_1} \wedge \overline{x_2})$$

$$x_1 \leftarrow x_2 \leftarrow x_2 \leftarrow x_2 \leftarrow x_2 \leftarrow x_3 \leftarrow x_4 \leftarrow x_4$$

Schalter:

AND-Verknüpfung als Serienschaltung

OR-Verknüpfung als Parallelschaltung

- In elektronischen Schaltungen werden Gatter i.d.R. durch Transistoren realisiert (vgl. Vorlesung Elektrotechnik, Digitaltechnik).
- In integrierten Schaltkreisen (ICs) befinden sich heute Millionen von Transistoren.

Gatter mit n Eingängen (vgl. 3.2):

Negation an Eingängen:

• Im folgenden:

- Beispiele praktisch relevanter Schaltnetze
- teilweise noch als separate Bausteine (Chips) gefertigt oder Teil eines hochintegrierten Bausteins
- Insbesondere im Inneren eines Prozessors verwendet

Übersicht

- Tore
- Encoder
- Decoder
- Multiplexer
- Demultiplexer
- Halbaddierer
- Volladdierer
- Arithmetisch-logische Einheit (ALU)

- kontrollierte Durchleitung (Tor) eines oder einer Menge von Eingängen
 - Nutzung eines AND-Gatters
 - Unterscheidung von Daten- und Steuereingängen

Tor für Einzelsignal

$$y = \begin{cases} x, & \text{falls s=1} \\ 0, & \text{sonst} \end{cases}$$

Tor für Signalgruppe (z.B. Bus)

- 1-aus-n Code am Eingang wird in einen dichten Code am Ausgang codiert
- Beispiel: n=8 (Ansatz auf beliebiges n übertragbar)

e ₇	•••	e ₂	e ₁	e ₀	S ₂	S ₁	S ₀
0		0	0	1	0	0	0
0		0	1	0	0	0	1
0		1	0	0	0	1	0
0	:	0	0	0	0	1	1
0		0	0	0	1	0	0
0		0	0	0	1	0	1
0	:	0	0	0	1	1	0
1		0	0	0	1	1	1

Decoder

- Auswahl eines Ausgangs, Gegenstück zum Encoder
- n-Bit Dualzahl am Eingang wird decodiert in 1-aus-2ⁿ am Ausgang
- Beispiel: n=2

- Durchschalten eines von n Eingängen auf den (einzigen) Ausgang
- Auswahl des Eingangs über Steuereingänge,
 z.B. dual codiert
- Nutzung von Tor und Decoder
- Beispiel: n=4

- Gegenstück zum Multiplexer
- Durchschalten
 (Verteilen) des (einen)
 Eingangs auf einen von
 n Ausgängen
- Auswahl des Ausgangs über Steuereingänge,
 z.B. dual codiert
- Nutzung von Tor und Decoder
- Beispiel: n=4

Addition zweier Bits:

X 1	X 2	S Sum	Ü Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

 $S = XOR(x_1,x_2)$ (Summe)

 $\ddot{U} = AND(x_1, x_2)$ (\ddot{U} bertrag, Carry)

Volladdierer

 Addition zweier Bits mit Berücksichtigung des Übertrags der niederwertigeren Stelle:

Schaltnetz zur Addition von 4-Bit-Dualzahlen a₃a₂a₁a₀ und b₃b₂b₁b₀ aus 4 Volladdierern:

Prinzipiell: Erweiterung auf eine beliebige Maschinenwortlänge n.

- Eine arithmetisch-logische Einheit (Arithmetical Logical Unit, ALU)
 ist ein Schaltnetz, das
 - die wesentliche Komponente eines jeden Prozessors ist
 - als Kern einen Paralleladdierer enthält
 - andere Operationsarten durch zusätzliche Gatter realisiert, wie:
 - Subtraktion
 - logische Operationen wie AND, OR, XOR, usw.
 - Shift-Operationen
 - Auswahl der Operation F erfolgt über Steuersignale (Function Code)
 - außer Ergebnis R (Result) werden Flags erzeugt, die Fehlersituationen (z.B. Überlauf) und Aussagen über das Ergebnis (z.B. =0, <0, >0, Übertrag) angeben.

3.4 Schaltwerke

- Motivation:
 - Die bisher betrachteten Schaltnetze können zwar beliebige Boolesche Funktionen berechnen, können aber keine Werte speichern.
- Diese Möglichkeit entsteht, wenn die Zyklusfreiheit der Schaltnetze beschreibenden Graphen fallengelassen wird. Derartige Graphen, also Schaltnetze mit Rückkopplungen, die Ausgänge wieder auf Eingänge führen, werden Schaltwerke oder sequentielle Schaltwerke genannt.

3-44

- Typisch für Schaltwerke ist, dass durch Gatter-Signallaufzeiten zeitlich verzögerte Ausgänge als Eingangswerte erscheinen.
 - ⇒ Eingänge und Ausgänge zu diskreten *Zeitpunkten* betrachtet.
- Rückgekoppelte Signale können eine Wirkungsfolge (Sequenz) im Schaltnetz auslösen. Dabei können letztlich entstehen:
 - stabile Zustände: Rückkopplungsausgänge ändern sich nicht weiter
 - instabile Zustände: Rückkopplungsausgänge führen zu fortwährenden Änderungen an den Eingängen.
 - ⇒ Die mit instabilen Zuständen verbundenen komplexen Vorgänge interessieren hier nicht.
- Der Zustandsbegriff ist von zentraler Bedeutung.
- Die Zustandübergangsfunktion entspricht einem deterministischen endlichen Automaten (vgl. Vorlesung Informatik 2).

 RS-Flip-Flop als einfache bistabile Kippstufe aus zwei rückgekoppelten NOR-Gattern:

R	S	Z ^{t+1}	\overline{Z}^{t+1}	Funktion
0	0	Z ^t	Z ^t	Speichern
0	1	1	0	Setzen
1	0	0	1	Löschen
(1)	(1)	-	-	-

R=1 S=1 ist unzulässig

- Es ist oft wünschenswert, dass eine an einem Eingang anliegende Information nur zu einem bestimmten Zeitpunkt verarbeitet werden soll. Ein solcher Zeitpunkt wird Takt (Clock) genannt.
- Ein Takt vereinfacht das Denken:
 - Abstraktion von komplexen zeitbezogenen Einschwingvorgängen, die abhängig von äußeren Bedingungen, Fertigungstoleranzen, usw. sein können.
 - Verzögerungszeiten (Gatterlaufzeiten) werden irrelevant, d.h. Wettläufe zwischen Signalen (Race Conditions) werden vermieden.
 - Verhalten wird zu diskreten Zeitpunkten betrachtet.
- Synchrone Schaltwerke sind solche, die auf einem Takt zur Verarbeitung basieren (weit verbreitet).
- Asynchrone Schaltwerke besitzen keinen Takt.

Beispiel:

Das bisher behandelte RS-Flip-Flop ist ein asynchrones Schaltwerk.

asynchrones RS-Flip-Flop mit zusätzlichem Takteingang T

- Variation des synchronen RS-Flip-Flop mit nur einem Eingang (Data)
- Vermeidung der verbotenen Eingabe R=S=1
- Es wird der zum Taktsignal vorliegende Eingabewert D gespeichert.

Т	D	Z ^{t+1}	$\overline{\mathbf{Z}}^{t+1}$
0	x	Z ^t	$\overline{\mathbf{Z}}^{t}$
1	0	0	1
1	1	1	0

x: don't care (egal)

3-52

- In einem Flip-Flop kann ein einzelnes Bit gespeichert werden.
- Wichtige Schaltwerke sind Zusammenfassungen von mehreren Flip-Flops und Schaltnetzen unter funktionalen Gesichtspunkten.
- Sie werden teilweise als separate Bausteine (Chips) gefertigt oder sind Teil eines hochintegrierten Bausteins. Insbesondere werden sie z.B. im Inneren eines Prozessors verwendet.
- Übersicht
 - Register
 - Schieberegister
 - Zähler

Register

- Zusammenfassung von Flip-Flops mit gemeinsamem Takt und Toren
- Verwendung z.B. als Prozessorregister mit Wortbreite n

Quellen

- M. Broy: "Informatik Eine grundlegende Einführung", Teil II, Springer-Verlag, 1992 (Kap. 2)
- U. Rembold, P. Levi: "Einführung in die Informatik für Naturwissenschaftler und Ingenieure", 3. Auflage, Hanser-Verlag, 1999 (Kap. 2.4)
- D. Werner u.a.: "Taschenbuch der Informatik", Fachbuchverlag Leipzig, 1995 (Kap. 3.2)
- F. Mayer-Lindenberg: "Konstruktion digitaler Systeme", Vieweg-Verlag, 1998 (Kap. 1)
- H.-P. Gumm, M. Sommer: "Einführung in die Informatik", 2. Auflage, Addison-Wesley, 1995 (Kap. IV.2)
- H. Dispert, H.-G. Heuck: "Einführung in die Technische Informatik und Digitaltechnik", Vorlesungsskript FH Kiel (Kap. 1-4), http://www.e-technik.fh-kiel.de/universe/digital/dig0_00.htm
- F. Flores: "Informatik für Ingenieure", Vorlesungsskript, TU Harburg, (Kap. 2, 4 und 5)
- Th. Schwentick: "Grundzüge der Informatik I", Vorlesungsskript, Uni Mainz, (Kap. 5)