BRACT'S Vishwakarma Institute of Information Technology

Autonomous Institute affiliated to Savitribai Phule University (NBA and NAAC accredited, ISO: 9001:2015 certified)

INSUREIQ - A RAG Based Multilingual Assistance For LIC Services

Group ID – TA-36

NLP Subject Teacher – Pranjal Pandit GenAl Subject Teacher – Dr. Anuradha Yenkiker

Name	PRN	Email
Komal Patankar	22210480	komal.22210480@viit.ac.in
Rutuja Sonwane	22210341	rutuja.22210341@viit.ac.in
Shejal rajgade	22210977	shejal.22210977@viit.ac.in

CONTENTS

- Abstract
- Introduction
- Literature Survey
- Methodology
- Architecture & Flow Diagram
- Implementation Details
- Results
- Conclusion
- Future Scope
- References

ABSRATCT

- one of the biggest challenges faced by LIC customers—especially in rural and multilingual regions—is understanding complex policy documents.
- This project focuses on developing a multilingual chatbot that can process and retrieve information from LIC policy-related PDFs.
- The chatbot uses **NLP models** (Sentence Transformers) for text embedding and **FAISS** (Facebook Al Similarity Search) for fast retrieval.
- The chatbot efficiently provides responses based on user queries in multiple languages.
- This system is scalable, efficient, and improves accessibility for users across different languages.

Problem Statement:

LIC customers frequently face challenges in retrieving policy-related information, service requests, and transaction details due to:

- pysical visit to call centers.
- Static FAQ sections that lack personalization
- Language barriers (primarily Hindi & English users)
- Limited Al-driven assistance for real-time query resolution

Proposed Solution:

Develop a <u>scalable</u>, <u>multilingual chatbot</u> using:

- Open-source **LLMs** for accurate, Al-generated responses
- FAISS-powered RAG system to enable efficient document retrieval
- Integration with LIC's knowledge base for policy & service information

Objectives:

- Support English & Hindi queries for wider accessibility
- Provide real-time, Al-powered responses with high accuracy
- Enable service transactions (e.g., LIC customer service, policy renewals, claims)
- Utilize Retrieval-Augmented Generation (RAG) for contextualized responses

INTRODUCTION

CHALLENGES

- Understanding insurance policies is complex and time-consuming.
- Customers struggle with claims, premiums, and policy terms.
- Language Barrier Limited multilingual support hinders accessibility.
- Slow Search Manually finding information in PDFs is inefficient.
- **Unstructured Data** Lengthy policy documents are hard to navigate.
- Lack of Context Keyword-based searches fail to give personalized answers.

Existing System:

LIC customers rely on call centers and FAQs, leading to delays. No Al-driven, multilingual chatbot for real-time support.

Proposed Solution:

- RAG-based system for retrieving accurate policy information.
- Multilingual support (English & Hindi) for wider accessibility.
- Lightweight LLMs (Florence, Bitnet, Sarvam) for efficient responses.
- End-to-end automation for policy inquiries, service requests, and transactions.

Literature Survey

Title	Year	Author(s)	Models	Compared	Findings	Gap
Attention is	201	Vaswani et	Used Transformer	Models	Introduced	Does not
All You Need	7	al.	Hansionici	No	Transformer	address
All fou Neeu	'	ai.				information
					model for	
D.III. I	204		FAICC		NLP	retrieval
Billion-scale	201	Johnson et	FAISS	No	Fast	Focus not
Similarity	9	al.			similarity	specific to
Search with					search over	chatbot
FAISS					large	contexts
					datasets	
Retrieval-	202	Lewis et al.	RAG	Yes (vs	Effective for	Needs domain
Augmented	0			standard	knowledge-	adaptation for
Generation				generation	intensive	policy queries
(RAG))	tasks	
Overview of	200	Smith	Tesseract	No	Reliable OCR	Less effective
the Tesseract	7		OCR		for scanned	on
OCR Engine					text	noisy/complex
						scans
Gemini API	202	Google AI	Gemini API	No	Enables	Limited to
for	3	_			multilingual	supported
Multilingual					chatbot	language scope
NLP					interactions	
AI Chatbots in	202	Gupta et	Al Chatbot	Yes (vs	Improved	Lack of deep
the Insurance	1	al.	Framework	manual	customer	learning
Sector				service)	response	integration
				,	times	

Literature Survey

Al Chatbots in	202	Huang et	DL-powered	No	Reduces	Not tailored for
Financial	2	al.	Chatbots		operational	insurance-
Services					cost in banks	specific use
Conversationa	202	Zhang et	Transformer	Yes (vs	Higher	Doesn't
I AI for	1	al.	-based	rule-	response	integrate
Customer			Dialogue	based)	quality and	retrieval-based
Support			Model		coherence	components
Fairness in AI	201	Binns et al.	Fairness-	No	Highlights	Ethical
Chatbots	8		aware NLP		bias in Al	methods
					chatbots	underdevelope
						d in insurance
Billion-scale	201	Johnson et	FAISS on	No	Improved	Limited
Similarity	7	al	GPU		search	evaluation in
Search with					efficiency	QA systems
GPUs						
Language	202	Brown et	GPT-3	Voc (vo	Strong	Not trained on
Models are	0	al.		Yes (vs	generalizatio	policy-specific
Few-Shot				fine-	n with few	corpora
Learners				tuning)	examples	
Efficient Info	202	Das et al.	DL-based IR	Yes (vs TF-	Better	Not domain-
Retrieval	1			IDF)	precision in	specific
Using DL					large	
					datasets	

Tech Stack and Dataset:

Faiss

Dataset Used: 18 LIC policy doc and service PDFS

Unique Contribution

1. Multilingual LIC Support (English & Hindi)

- ✓ Enables wider accessibility for LIC customers across India.
- ✓ Uses open-source LLMs like Sarvam for Hindi support.
- ✓ Ensures accurate language translation within chatbot responses.

2. RAG-powered Policy & Service Information Retrieval

- ✓ Combines retrieval (document search) and generation (LLM response).
- ✓ FAISS-backed vector similarity search ensures real-time query matching.
- ✓ Knowledge base contains LIC policies, service manuals, and FAQs.

3. Lightweight LLM for Efficient Chatbot Responses

- ✓ Deploys on-device or cloud-agnostic environments for faster responses.
- ✓ Reduces response latency compared to traditional chatbot models.

4. Fast & Accurate Customer Service Automation

- ✓ Automates policy inquiries, service requests, and transactions.
- ✓ Minimizes customer wait times by providing instant answers.
- ✓ Enhances LIC's customer engagement with AI-driven interactions.

RESULTS

"We tested over **50 real-world queries** about LIC services, and the chatbot responded **correctly in 87% of cases.** Users were able to access policy details, renewal instructions, and claim procedures instantly — all in their preferred language."

RESULTS

Fig 1(a): Cosine Similarity per Query

Average BLEU Score

Average Cosine Similarity

Avg. Response Time

0.41

0.94

2.09

Fig 1(b): Response Time per Query

RESULTS

Fig 2(a): Recall

measures how many of the relevant documents the system successfully retrieved.

Fig 2(c): f1 score

Fig 2(b):Precision

how many of the retrieved chunks were actually relevant.

FUTURE SCOPE

- Improved OCR with deep learning for better text extraction.
- Added support for more Indian languages. (Tamil..)
- Enabled complex, multi-turn query handling.
- Integrated with insurance systems and chat platforms.
- Integrate voice input in chatbot.

Conclusion

- Developed a multilingual, RAG-powered chatbot for LIC services.
- Successfully retrieves policy information and automates service requests.
- Efficient lightweight **LLM integration** ensures quick and accurate responses.
- Provides real-time customer support in both English & Hindi.

REFERENCES

• • •

- A. Vaswani et al., "Attention is All You Need," NeurIPS, 2017.
- J. Johnson et al., "Billion-scale similarity search with FAISS," Facebook AI Research, 2019.
- P. Lewis et al., "Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks," NeurIPS, 2020.
- ⁴ R. Smith, "An overview of the Tesseract OCR engine," ICDAR, 2007.
- Google AI, "Gemini API for Multilingual NLP," Google Research Publications, 2023.
- A. Gupta et al., "AI Chatbots in the Insurance Sector: En- hancing Customer Experience," Journal of AI Applications, 2021.
- X. Huang et al., "AI Chatbots in Financial Services: A Review," International Journal of Finance & AI, 2022.
- Y. Zhang et al., "Conversational AI for Customer Support: Transformer-based Approaches," ACM Transactions on AI, 2021.
- R. Binns et al., "Fairness in AI Chatbots: Addressing Bias in Automated Decision-Making," AI & Ethics Journal, 2018.
- J. Johnson et al., "Billion-scale similarity search with GPUs," Facebook AI Research (FAISS), 2017.
- T. B. Brown et al., "Language Models are Few-Shot Learners," NeurIPS, 2020.
- A. Das et al., "Efficient Information Retrieval Using Deep Learning," *IEEE Transactions on Knowledge and Data Engineering*, 2021.
- S. T. Hsu et al., "Building Scalable AI-powered APIs using FastAPI," ACM Computing Surveys, 2023.

THANK YOU!!