Open die steel forgings for general engineering purposes —

Part 3: Alloy special steels

The European Standard EN 10250-3:1999 has the status of a British Standard

ICS 77.140.85

National foreword

This British Standard is the official English language version of EN 10250-3:1999. This British Standard supersedes BS 4670:1971 which is withdrawn.

The UK participation in its preparation was entrusted to Technical Committee ISE/31, Wrought steels, which has the responsibility to:

- aid enquirers to understand the text;
- present to the responsible European committee any enquiries on the interpretation, or proposals for change, and keep the UK interests informed;
- monitor related international and European developments and promulgate them in the UK.

A list of organizations represented on this committee can be obtained on request to its secretary.

Cross-references

The British Standards which implement international or European publications referred to in this document may be found in the BSI Standards Catalogue under the section entitled "International Standards Correspondence Index", or by using the "Find" facility of the BSI Standards Electronic Catalogue.

A British Standard does not purport to include all the necessary provisions of a contract. Users of British Standards are responsible for their correct application.

Compliance with a British Standard does not of itself confer immunity from legal obligations.

Summary of pages

This document comprises a front cover, an inside front cover, the EN title page, pages 2 to 12, an inside back cover and a back cover.

The BSI copyright notice displayed in this document indicates when the document was last issued.

This British Standard, having been prepared under the direction of the Engineering Sector Committee, was published under the authority of the Standards Committee and comes into effect on 15 February 2000

© BSI 02-2000

Amendments issued since publication

Amd. No.	Date	Comments

ISBN 0 580 35393 1

EUROPEAN STANDARD NORME EUROPÉENNE EUROPÄISCHE NORM

EN 10250-3

October 1999

ICS 77.140.20; 77.140.85

English version

Open die steel forgings for general engineering purposes -Part 3: Alloy special steels

Pièces forgées en acier pour usage général - Partie 3: Aciers spéciaux alliés Freiformschmiedestücke aus Stahl für allgemeine Verwendung - Teil 3: Legierte Edelstähle

This European Standard was approved by CEN on 9 September 1999.

CEN members are bound to comply with the CEN/CENELEC Internal Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any alteration. Up-to-date lists and bibliographical references concerning such national standards may be obtained on application to the Central Secretariat or to any CEN member.

This European Standard exists in three official versions (English, French, German). A version in any other language made by translation under the responsibility of a CEN member into its own language and notified to the Central Secretariat has the same status as the official versions.

CEN members are the national standards bodies of Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and United Kingdom.

EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION EUROPÄISCHES KOMITEE FÜR NORMUNG

Central Secretariat: rue de Stassart, 36 B-1050 Brussels

Contents

	Page
Foreword	3
1 Scope	4
2 Normative references	4
3 Chemical composition	4
4 Heat treatment	5
5 Mechanical properties	5
Annex A (informative) Heat treatment	12

Foreword

This European Standard has been prepared by Technical Committee ECISS/TC 28, Steel forgings, the Secretariat of which is held by BSI.

This European Standard shall be given the status of a national standard, either by publication of an identical text or by endorsement, at the latest by April 2000, and conflicting national standards shall be withdrawn at the latest by April 2000.

This European Standard has been prepared under a mandate given to CEN by the European Commission and the European Free Trade Association. This European Standard is considered to be a supporting standard to those application and product standards which in themselves support an essential safety requirement of a New Approach Directive and which make reference to this European Standard.

The titles of the other parts of this European Standard are:

Part 1: General requirements

Part 2: Non-alloy quality and special steels

Part 4: Stainless steels

According to the CEN/CENELEC Internal Regulations, the national standards organizations of the following countries are bound to implement this European Standard: Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom.

1 Scope

This part of this European Standard specifies the technical delivery requirements for open die forgings, forged bars and products pre-forged and finished in ring rolling mills, manufactured from alloy special steel and supplied in the quenched and tempered condition.

NOTE: The majority of steels listed in this part of EN 10250 are identical to steels specified in EN 10083-1 and more extensive information on hardenability and technological properties is given in that European Standard.

General information on technical delivery conditions is given in EN 10021.

2 Normative references

This part of EN 10250 incorporates by dated or undated reference, provisions from other publications. These normative references are cited at the appropriate places in the text and the publications are listed hereafter. For dated references, subsequent amendments to, or revisions of, any of these publications apply to this European Standard only when incorporated in it by amendment or revision. For undated references the latest edition of the publication referred to applies.

EN 10021 General technical delivery requirements for iron and steel products

EN 10083-1 Quenched and tempered steels – Part 1: Technical delivery conditions for special steels

EN 10250-1 Open die steel forgings for general engineering purposes – Part 1: General requirements

3 Chemical composition

3.1 Cast analysis

The chemical composition of the steel shall be determined by cast analysis and shall conform to the analysis given in Table 1 (see A.7 and A.8, of EN 10250-1).

Measures should be taken to prevent the addition from the scrap, or other material used in the manufacture of the steels, of such elements which affect the hardenability, mechanical properties and applicability of the steel.

3.2 Product analysis

The product analysis shall not deviate from the specified cast analysis (see Table 1) by more than the values specified in Table 2 (see 9.2 of EN 10250-1).

4 Heat treatment

Heat treatment details are not given in Table A1 for guidance.

5 Mechanical properties

The mechanical properties determined on test pieces selected, prepared and tested in accordance with clauses 11 and 12 of EN 10250-1 shall conform to the property requirements given in Table 3.

Page 6 EN 10250-3:1999

Table 1: Steel grades and chemical composition 1)

>		%													ı
												00	0,	00	0
Z		%	ı	ı	ı	ı	ı	ı	ı	1	ı	0,90 to 1,20	1,30 to 1,70	1,80 to 2,20	3,60 to 4,10
Mo		%	1	1	1	1	1	0,15 to 0,30	0,30 to 0,50	0,25 to 0,45					
Cr		%	0,40 to 0,60	0,40 to 0,60	0,90 to 1,20	1,30 to 1,70	1,80 to 2,20	1,60 to 2,00							
S	max	%	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,025
Ь	max	%	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,035	0,030
Mn		%	0,50 to 0,80	0,50 to 0,80	0,60 to 0,90	0,50 to 0,80	0,50 to 0,80	0,50 to 0,80	0,30 to 0,60	0,30 to 0,60					
Si		%	≤ 0,40	≤ 0,40	≤ 0,40	≤ 0,40	≤ 0,40	≤ 0,40	≤ 0,40	< 0,40	≤ 0,40	≤ 0,40	≤ 0,40	≤ 0,40	< 0,40
C		%	0,35 to 0,42	0,42 to 0,50	0,30 to 0,37	0,34 to 0,41	0,38 to 0,45	0,22 to 0,29	0,30 to 0,37	0,38 to 0,45	0,46 to 0,54	0,32 to 0,40	0,30 to 0,38	0,26 to 0,34	0,32 to 0,39
		Number	1.7003	1.7006	1.7033	1.7034	1.7035	1.7218	1.7220	1.7225	1.7228	1.6511	1.6582	1.6580	1.6773
Steel designation		Name	38Cr2	46Cr2	34Cr4	37Cr4	41Cr4	25CrMo4	34CrMo4	42CrMo4	50CrMo4	36CrNiMo4	34CrNiMo6	30CrNiMo8	36NiCrMo16

Page 7 EN 10250-3:1999

Table 1: Steel grades and chemical composition (concluded)

Steel designation		C	Si	Mn	Ь	S	Cr	Mo	ž	Λ
					Max	Max				
Name	Number	%	%	%	%	%	%	%	%	%
51CrV4	1.8159	0,47 to 0,55	≤ 0,40	0,70 to 1,10	0,035	0,035	0,90 to 1,20	ı	ı	0,10 to 0,25
33NiCrMoV14-5	1.6956	0,28 to 0,38	≤ 0,40	0,15 to 0,40	0,035	0,035	1,00 to 1,70	1,00 to 1,70 0,30 to 0,60	2,90 to 3,80	0,08 to 0,25
40CrMoV13-9	1.8523	0,35 to 0,45	0,15 to 0,40	0,40 to 0,70	0,035	0,035	3,00 to 3,50	0,80 to 1,10	ı	0,15 to 0,25
18CrMo4	1.7243	0,15 to 0,21	≤ 0,40	0,60 to 0,90	0,035	0,035	0,90 to 1,20	0,15 to 0,25	1	ı
20MnMoNi4-5	1.6311	0,17 to 0,23	≤ 0,40	1,00 to 1,50	0,035	0,035	≤ 0,50	0,45 to 0,60	$0,40 \text{ to } 0,80^2$	ı
30CrMoV9	1.7707	0,26 to 0,34	≤ 0,40	0,40 to 0,70	0,035	0,035	2,30 to 2,70	2,30 to 2,70 0,15 to 0,25	≥ 0,60	0,10 to 0,20
32CrMo12	1.7361	0,28 to 0,35	≤ 0,40	0,40 to 0,70	0,035	0,035	2,80 to 3,30	0,30 to 0,50	≥ 0,60	ı
28NiCrMoV8-5	1.6932	0,24 to 0,32	≤ 0,40	0,15 to 0,40	0,035	0,035	1,00 to 1,50	1,00 to 1,50 0,35 to 0,55	1,80 to 2,10	0,05 to 0,15
		,					,			

purposes. Elements not quoted in Tables 1 and 2 shall not be added intentionally to the steel without the agreement of the purchaser, except for the purpose 1) At the option of the manufacturer the elements aluminium, titanium, vanadium and niobium may be added singly or in combination for grain control of finishing the heat.

 $^{^{2)}\,\}mathrm{For}$ greater cross-sections up to 1,00 % Ni is admissible.

Table 2: Permissible deviations between the product analysis and the limiting values given in Table 1 for the cast analysis

Element	Permissible maximum content in the cast analysis %	Permissible deviation %
Carbon	≤ 0,55	± 0,02
Silicon ¹⁾	·	+ 0,03
Silicon	≤ 0,40	+ 0,03
Manganese	≤ 1,00	$\pm 0{,}04$
	> 1,00 ≤ 1,50	$\pm0,\!06$
Phosphorus	≤ 0,035	+ 0,005
Sulphur	≤ 0,045	+ 0,005
Chromium	≤ 2,00	± 0,05
	$>$ 2,00 \leq 3,50	± 0,12
Molybdenum	≤ 0,30	± 0,03
	> 0,30 \le 1,10	$\pm 0,\!06$
Nickel	≤ 2,00	± 0,05
	> 2,00 \le 4,10	$\pm 0,\!07$
Vanadium	≤ 0,25	± 0,02
¹⁾ For steel 40 Cr Mo V13	9, the permissible deviation is ± 0.03	%

Page 9 EN 10250-3:1999

Table 3: Mechanical properties in the quenched and tempered condition

	$160 < t_{R} \le 330 \text{ mm}$	$R_{\rm e}$ min $R_{\rm m}$ min A min KV min	N/mm^2 N/mm^2 % J	1^{1} tr^{1} 1^{1} tr^{1}	1	1	1	1	1	380 600 18 14 38 22	410 650 16 12 33 17
Thickness of ruling section t _R	$70 < t_{\rm R} \le 160 \text{ mm}$	$R_{\rm m}$ min A min KV min	N/mm^2 %	1^{1} \mathbf{tr}^{1} 1^{1}	1	1	1	1	1	650 17 13 45	700 15 10 40
Thickness of ru		R _e min	N/mm ²		ı	ı	ı	ı	ı	400	450
	udinal)	in KV min	ı.		7 35	35	5 40	35	35	5 50	45
	< 70 mm t _R (longitudinal)	$R_{\rm m}$ min A min	N/mm^2 %		600 17	650 15	700 15	750 14	800 14	700 15	800 14
	< 70 r	$R_{\rm e}$ min $R_{\rm m}$	N/mm^2 $N/$		350 6	400	7 7	510 7	8 095	7 7	8 055
	ignation	Number			1.7003	1.7006	1.7033	1.7034	1.7035	1.7218	1.7220
	Steel designation	Name			38Cr2	46Cr2	34Cr4	37Cr4	41Cr4	25CrMo4	34CrMo4

¹ 1 = longitudinal tr = transverse

Page 10 EN 10250-3:1999

Table 3: Mechanical properties in the quenched and tempered condition (continued)

					I	hickn	ess of	Thickness of ruling section $t_{\rm R}$	ction t _R										
Steel designation	ation		$t_{\rm R} \le 160 \rm mm$	0 mm					$160 < t_{\rm R} \le 330 \text{ mm}$	< 33(mm ($330 < t_{\rm R} \le 660 \rm mm^2)$)99 >	mm (<u> </u>	
Name	Number	R _e min	R _m min	A_1	A min	KV	KV min	R _e min	R _m min	A min	nin	KV min	nin	Re min	R _m min	Aı	A min	AX	KV min
		N/mm^2	N/mm ²	<u> </u>	%		J	N/mm ²	N/mm^2	%	`0	J		N/mm ²	N/mm^2		%	•	_
				11)	$\operatorname{tr}^{1)}$	11)	$\mathbf{tr}^{1)}$			11)	tr ¹⁾	11)	$\operatorname{tr}^{1)}$			11)	$\mathbf{tr}^{1)}$	$l^{1)}$	tr ¹⁾
42CrMo4	1.7225	200	750	14	10	30	16	460	700	15	11	27	14	390	009	16	12	22	12
50CrMo4	1.7228	550	800	13	6	25	14	540	750	14	10	20	12	490	700	15	11	15	10
36CrNiMo4	1.6511	550	750	14	10	45	22	200	700	15	11	45	22	450	650	16	12	40	20
34CrNiMo6	1.6582	009	800	13	6	45	22	540	750	14	10	45	22	490	700	15	11	40	20
30NiCrMo8	1.6580	200	006	12	8	45	22	630	850	12	∞	45	22	969	800	12	~	40	20
36NiCrMo16	1.6773	800	1 000	11	8	45	22	800	1 000	11	∞	45	22	800	1 000	11	∞	45	22
51CrV4	1.8159	009	800	13	6	30	16	1	ı						ı		ı		ı

 $^{1)}$ 1 = longitudinal tr = transverse

 $^{2)}$ For steels 42 CrMo 4, 50 CrMo 4, 36 CrNiMo 4 these properties apply only to a $t_{\rm R} \le 500~{\rm mm}$

Page 11 EN 10250-3:1999

Table 3: Mechanical properties in the quenched and tempered condition (concluded)

					Th	ickne	ss of 1	Thickness of ruling section t _R	ction t _R										
Steel designation $t_{\rm R} \le 160 {\rm mm}$	$t_{\rm R} \le 160 \rm mm$	$t_{\rm R} \le 160 \rm mm$	mm		•				$160 < t_{\rm R} \le 330 \text{ mm}$	< 33	0 mm			-	$330 < t_{\rm R} \le 660 \text{ mm}^2$	99 >	0 mm	5)	
Number $R_{\rm e}$ min $R_{\rm m}$ min A min	R _m min		A mi	Ξ.	u	KV	KV min	Re min	$R_{\rm m}$ min	A I.	A min	KV min	min	Re min	$R_{\rm m}$ min	Y	A min	KV	KV min
N/mm^2 N/mm^2 %	N/mm^2		%	\ 0			ı	N/mm ²	N/mm ²		%	<u> </u>		N/mm ²	N/mm^2	%			J
(1)	11)	11)	$l^{1)}$		$\operatorname{tr}^{1)}$	$l^{1)}$	$\operatorname{tr}^{1)}$			1 ¹⁾	$\operatorname{tr}^{1)}$	11)	tr ¹⁾			$1^{1)}$	tr ¹⁾	1^{1}	$\operatorname{tr}^{1)}$
1.6956 980 1100 10	1100		10		7	28	17	820	1000	12	~	48	27	780	950	12	∞	48	27
1.8523 660 850 15	820		15		15	35	35	099	850	15	15	35	35	099	850	15	15	35	35
720 900 15	006		15		15	32	32	720	006	15	15	32	32	720	006	15	15	32	32
780 950 14	950		14		14	30	30	780	950	14	14	30	30	780	950	14	14	30	30
840 1 000 12	1 000		12		12	25	25	840	1 000	12	12	25	25		ı			ı	ı
890 1 050 11	1 050		11		11	22	22	ı	ı	ı	ı		1		ı		ı	ı	ı
940 11100 111	1 100		11		11	20	20	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı	ı
1.7243 275 (Rp 0.2) 485-660 20	485-660		20		20	99	90	-	ı	ı	ı	ı	ı	-	ı		ı	ı	ı
1.6311 420 580 17	280		17		14	39	24	390	550	17	14	39	24	ı	ı	ı	ı	ı	ı
1.7707 700 900 12	006		12		∞	35	20	965	800	14	10	35	20				,	ı	ı
1.7361 680 900 12	006		12		~	35	20	930	850	13	6	35	20	490	700	15	1	35	20
1.6932 630 800 14	800		14		10	45	25	965	750	15	11	40	21	969	750	15	11	40	21

 $^{^{1)}}$ 1 = longitudinal tr = transverse

 $^{^{2)}}$ For steels 42 CrMo 4, 50 CrMo 4, 36 CrNiMo 4 these properties apply only to a $\it t_{\rm R} \le 500~\rm mm$

Annex A (informative)

Heat treatment

Heat treatment details are given in Table A.1

Table A.1: Heat treatment conditions

Steel design	ation	Quenching temperature ¹⁾	Tempering temperature
Name	Number	°C	°C
38Cr2	1.7003	830 to 870	540 to 680
34Cr4	1.7033	830 to 870	540 to 680
34CrMo4	1.7220	830 to 870	540 to 680
46Cr2	1.7006	820 to 860	540 to 680
37Cr4	1.7034	825 to 865	540 to 680
42CrMo4	1.7225	820 to 860	540 to 680
50CrMo4	1.7228	820 to 860	540 to 680
41Cr4	1.7035	820 to 860	540 to 680
25CrMo4	1.7218	840 to 880	540 to 680
36CrNiMo4	1.6511	820 to 850	540 to 680
34CrNiMo6	1.6582	830 to 860	540 to 680
30CrNiMo8	1.6580	830 to 860	540 to 680
36NiCrMo16	1.6773	865 to 885	550 to 650
51CrV4	1.8159	820 to 860	540 to 680
33NiCrMoV14-5	1.6956	820 to 890	550 to 650
40CrMoV13-9	1.8523	920 to 970	550 to 720
18CrMo4	1.7243	850 to 880	595 to 700
20MnMoNi4-5	1.6311	870 to 940	630 to 680
30CrMoV9	1.7707	840 to 870	540 to 680
32CrMo12	1.7361	890 to 940	550 to 740
28NiCrMoV8-5	1.6932	830 to 870	550 to 850

Quenching from hardening may be carried out in oil, water, or water based solutions. Caution should be observed in the use of water as a quenching medium to avoid the risk of cracking the forgings.

BSI — British Standards Institution

BSI is the independent national body responsible for preparing British Standards. It presents the UK view on standards in Europe and at the international level. It is incorporated by Royal Charter.

Revisions

British Standards are updated by amendment or revision. Users of British Standards should make sure that they possess the latest amendments or editions.

It is the constant aim of BSI to improve the quality of our products and services. We would be grateful if anyone finding an inaccuracy or ambiguity while using this British Standard would inform the Secretary of the technical committee responsible, the identity of which can be found on the inside front cover. Tel: 020 8996 9000. Fax: 020 8996 7400.

BSI offers members an individual updating service called PLUS which ensures that subscribers automatically receive the latest editions of standards.

Buying standards

Orders for all BSI, international and foreign standards publications should be addressed to Customer Services. Tel: 020 8996 9001. Fax: 020 8996 7001.

In response to orders for international standards, it is BSI policy to supply the BSI implementation of those that have been published as British Standards, unless otherwise requested.

Information on standards

BSI provides a wide range of information on national, European and international standards through its Library and its Technical Help to Exporters Service. Various BSI electronic information services are also available which give details on all its products and services. Contact the Information Centre. Tel: 020 8996 7111. Fax: 020 8996 7048.

Subscribing members of BSI are kept up to date with standards developments and receive substantial discounts on the purchase price of standards. For details of these and other benefits contact Membership Administration. Tel: 020 8996 7002. Fax: 020 8996 7001.

Copyright

Copyright subsists in all BSI publications. BSI also holds the copyright, in the UK, of the publications of the international standardization bodies. Except as permitted under the Copyright, Designs and Patents Act 1988 no extract may be reproduced, stored in a retrieval system or transmitted in any form or by any means – electronic, photocopying, recording or otherwise – without prior written permission from BSI.

This does not preclude the free use, in the course of implementing the standard, of necessary details such as symbols, and size, type or grade designations. If these details are to be used for any other purpose than implementation then the prior written permission of BSI must be obtained.

If permission is granted, the terms may include royalty payments or a licensing agreement. Details and advice can be obtained from the Copyright Manager. Tel: 020 8996 7070.