Discounted Cash Flow Analysis Factors

Intuition, Illustration, Calculation & Excel

Note: "i" is the appropriate discount rate (MARR, etc.).

Chris Willmore, October 2022

Table of Contents

Discounted Cash Flow Analysis Factors	<i>1</i>
$F = P \times (F/P,i,N)$ (Move right on the timeline)	3
INTUITION	
ILLUSTRATION	3
FORMULA	3
EXCEL EQUIVALENT	3
$P = F \times (P/F,i,N)$ (Move left on the timeline)	4
INTUITION	
ILLUSTRATION	
FORMULA	4
EXCEL EQUIVALENT	4
$F = A \times (F/A,i,N)$ (Sequence to Single Payment on Right)	5
INTUITION	
ILLUSTRATION	
FORMULA	
EXCEL EQUIVALENT	5
$P = A \times (P/A,i,N)$ (Sequence to Single Payment on Left)	6
INTUITION	
ILLUSTRATION	
FORMULA	
EXCEL EQUIVALENT.	
$A = P \times (A/P,i,N)$ (Single Payment to Sequence on Right)	
INTUITION	
ILLUSTRATION	
FORMULA	
EXCEL EQUIVALENT	

$A = F \times (A/F,i,N)$ (Single Payment to Sequence on Left)	8
INTUITION	
ILLUSTRATION	8
FORMULA	8
EXCEL EQUIVALENT	
$P = A \times (P/A,g,i,N)$ (Geometric Gradient to Single Payment)	9
INTUITION	9
ILLUSTRATION	9
FORMULA	9
EXCEL EQUIVALENT	9
$A = G \times (A/G,i,N)$ (Arithmetic Gradient to Sequence)	10
INTUITION	10
ILLUSTRATION	10
FORMULA	
EXCEL EQUIVALENT.	

$F = P \times (F/P,i,N)$ (Move right on the timeline)

INTUITION

- Start: A single payment of magnitude P, at time t
- End: A single payment of magnitude $P \times (F/P, i, N)$, at time t + N.

ILLUSTRATION

Drawn for P = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

$$P \times (F/P,i,N) = P \times (1+i)^{N}$$

$$P \times (F/P,i,N) = FV(i,N,-P)$$

$P = F \times (P/F,i,N)$ (Move left on the timeline)

INTUITION

- Start: A single payment of magnitude F, at time t.
- End: A single payment of magnitude F x (P/F,i,N), at time (t N).

ILLUSTRATION

Drawn for F = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

 $F \times (P/F,i,N) = F / (F/P,i,N) = F/(1+i)^{N}$

EXCEL EQUIVALENT

 $F \times (P/F,i,N) = PV(i,N,,-F)$

$F = A \times (F/A,i,N)$ (Sequence to Single Payment on Right)

INTUITION

- Start: N payments of magnitude A. The last payment is at time t+N.
- End: A single payment of magnitude A x (F/A,i,N), at time t+N.

ILLUSTRATION

Drawn for A = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

$$A \times (F/A,i,N) = A \times = \frac{(1+i)^{N}-1}{i}$$

$$\mathbf{A} \times (\mathbf{F}/\mathbf{A}, \mathbf{i}, \mathbf{N}) = \mathbf{FV}(\mathbf{i}, \mathbf{N}, \mathbf{-A})$$

$P = A \times (P/A,i,N)$ (Sequence to Single Payment on Left)

INTUITION

- Start: A sequence of N payments of magnitude A. First payment: time t+1.
- End: A single payment of A x (P/A,i,N), at time t.

ILLUSTRATION

Drawn for A = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

$$A \times (P/A, i, N) = A \times = \frac{(1+i)^{N}-1}{[i(1+i)^{N}]}$$

$$A \times (P/A,i,N) = PV(i,N,-A)$$

$A = P \times (A/P,i,N)$ (Single Payment to Sequence on Right)

INTUITION

- Start: A single payment of magnitude P, at time t.
- End: N payments of magnitude P x (A/P,i,N). The first payment is at time t+1.

ILLUSTRATION

Drawn for P = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

 $P \times (A/P,i,N) = A / (P/A,i,N) = F/(1+i)^{N}$

EXCEL EQUIVALENT

 $P \times (A/P,i,N) = PMT(i,N,-P)$

$A = F \times (A/F,i,N)$ (Single Payment to Sequence on Left)

INTUITION

- Start: A single payment of magnitude F, at time t.
- End: N payments of magnitude A. The last payment is at time t.

ILLUSTRATION

Drawn for F = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

$$F \times (A/F,i,N) = F/(F/A,i,N) = F \times \frac{i}{(1+i)^N-1}$$

$$\mathbf{F} \ge (\mathbf{A}/\mathbf{F}, \mathbf{i}, \mathbf{N}) = \mathbf{PMT}(\mathbf{i}, \mathbf{N}, -\mathbf{F})$$

$P = A \times (P/A,g,i,N)$ (Geometric Gradient to Single Payment)

INTUITION

- Start: A sequence of N payments. The first payment is at time t+1, and has magnitude A. Each payment is greater than the last by a factor of (1+g).
- End: A single payment of magnitude A x (P/A,g,i,N), at time t.

ILLUSTRATION

Drawn for A = \$100, N = 5, i = 10%, g = 50%. <u>Start</u>: White, <u>End</u>: Black

FORMULA

A x (P/A,g,i,N) = A x (P/A,i^\circ,N)/(1+g), where i^o = (1+i)/(1+g) -1

EXCEL EQUIVALENT

 $A \times (P/A,g,i,N) = PV(((1+i)/(1+g)-1),N,-A)/(1+g)$

$A = G \times (A/G,i,N)$ (Arithmetic Gradient to Sequence)

INTUITION

- Start: A sequence of (N-1) payments. The first payment is at time t+2, and has magnitude G. Each payment is greater than the last by G.
- <u>End</u>: A sequence of N payments of magnitude G x (A/G,i,N). The first payment is at time (t+1).

ILLUSTRATION

Drawn for G = \$100, N = 5, i = 10%. Start: White, End: Black

FORMULA

G x (A/G,i,N) = G x
$$\left(\frac{1}{i} - \frac{N}{(1+i)^N - 1}\right)$$

$$G \times (A/G,i,N) = G*((1/i)-(N/((1+i)^N-1)))$$