

Question: Soit C une courbe algébrique plane {(x,y) \in R' \f(x,y) = 0 } avec f polynôme de degre d. Soit D une droite.

Combien y a-t-il de points dans C 1)?

$$\frac{\mathcal{E}_{x}}{\mathcal{E}_{x}}$$
: $C: x^{2}-y^{2}=0$

$$\mathcal{D}: x = y$$

$$C \cap D = D$$
 infinité de points.

"cas Aupide" can DCC.
() exclure ces cas dans la suite

• Combre de degré 1:
$$C = \{ax + bry + c = 0\}$$

$$D = \{a'x + b'y + c' = 0\}$$

$$\#(C \cap D) = 1$$

. Droites jarallèles: $y = 0 \in C$ $y = 1 \in D$ 0

Courbe algébrique: f(x,y)=0. Dans \mathbb{RP}^2 , problèm!

$$\chi^2 + y^2 = 1$$
 \longrightarrow dans \mathbb{RP}^2 , soit (χ, y, z) tel que $\chi^2 + y^2 = 1$.

C

alors $(\lambda \chi, \lambda y, \lambda z)$ apparlient à C

from tout $\underline{\lambda} \in \mathbb{R}^{\times}$, $\lambda^2 \chi^2 + \lambda^2 y^2 = \underline{\lambda}^2 = 1$

Cette equation " a pas de sens dans IRP?

Pour faire de la géométrie projective, en ne regarde que les folynômes <u>homogines</u>.

$$f(x,y)$$
 polynome $\sim F(x,y,z)$ homogène.
 $x^2+y^2-1 \qquad \sim x^2+y^2-z^2$

Droite
$$D = \{ax + bry + cz = 0\}$$

Droites non paralliles:
$$C = \{y = x + z\}$$

$$D = \{y = z\}$$

Points d'intersection:

•
$$(x_1y_1)$$
: $\begin{cases} y = x+1 \\ y = 1 \end{cases} \iff (x_1y_1) = (0,1,1)$

• $(x_1,1,2)$: $\begin{cases} 1 = x+2 \\ 1 = 2 \end{cases} \iff (x_1y_1) = (0,1,1)$

Dinto familles.
$$C = \{x = 0\}$$

$$D : \{x = 32\}$$

$$D: \left\{ x = 32 \right\}$$

$$\cdot (x, y, 1): \left\{ x = 0 \right\}$$

$$\times = 3$$

$$\cdot (2,3,1) : \begin{cases} x=0 \\ x=3 \end{cases} \times$$

•
$$(x,1,2)$$
: $\begin{cases} x = 0 \\ x = 32 \end{cases}$ $(x,7,2) = (0,1,0)$

 $y = x^3$

$$\mathcal{D}'$$
 droite $x = 0$

C:
$$\{y \neq^2 = x^3\}$$

D: $\{x = 0\}$.

* $(x,y,1)$: $\} = x^3$
 $x = 0$

* (1, 7,2): | y22=1

= 0

$$x^{2}+y^{2}=1$$

$$y^{2}+y^{2}=1$$

$$y^{2}+y^{2}=1$$

$$y^{2}+y^{2}=1$$

$$y^{2}=1-4=-3$$

$$x^{2}=1-4=-3$$

$$x=\pm i\sqrt{3}$$

Il faut aller dans (.

Termat