

# STAT011 Statistical Methods I

### Lecture 9 Sampling Distribution

Lu Chen Swarthmore College 2/19/2019

#### Review

- Exploratory data analysis of one variable
- Exploratory data analysis of the relationship between two variables
- Association and causation
  - Lurking variable
  - Types of associations: *direct causation, mediation, common response, confounding.*
- Data collection
- Design of experiments: comparative experiments, matched pairs design, block design
- Sampling design: simple random sample, stratified sample, multistage sample

#### Outline

- ▶ Population, sample, parameter and statistic
- Statistical inference
- Sampling variability
  - Simulation
- Sampling distribution
- Bias and variability
  - Manage bias and variability
- ▶ Sampling distribution of a sample mean

## Population and sample

**Population**: The entire group of individuals that we want information about.

**Sample**: A part of the population that we actually examine in order to gather information.

- Usually, it is difficult to gather information from every single individual in a population (exception: US census).
- ▶ However, it is much easier to gather information from part of the population. Most data we study are samples from populations.
- ▶ A population can be large or small. Its size depends on the question of interest.

## Population and sample

**Determine the population and sample** of the following examples.

Do Swarthmore students like to study at the library?

- ▶ **Population**: all Swarthmore students
- ▶ **Sample**: part of the Swarthmore students who were given the survey

How much were the homes sold in Pennsylvania in 2018?

- ▶ **Population**: All PA homes sold in 2018
- ▶ **Sample**: part of the PA homes sold in 2018 that we study
- Question: Is the mean price of the sample PA homes the same as the mean price of all PA homes sold in 2018?
- ▶ Population mean: mean price of all PA homes sold in 2018
- Sample mean: mean price of the sample PA homes

#### Parameter and statistic

A **parameter** is a number that describes the population.

- Fixed
- Unknown (It will be known if population data is available)

A **statistic** is a number that describes a sample.

- Changes from sample to sample
- Used to estimate the unknown population parameter

- ▶ Mean price of all PA homes sold in 2018 is a **population parameter**.
- ▶ Mean price of the sample PA homes we study is a **sample statistic**.

#### Parameter and statistic

Suppose Variable X has mean  $\mu$  and standard deviation  $\sigma$ . The mean and standard deviation of a sample from X are  $\bar{x}$  and s.

|                      | Mean      | Standard deviation |
|----------------------|-----------|--------------------|
| Population Parameter | $\mu$     | $\sigma$           |
| Sample Statistic     | $\bar{x}$ | S                  |

One of major tasks of Statistics is, in fact, to **estimate population parameters using sample statistics**.

- ▶ How to obtain a good sample that is representative of the population?
- ▶ How do we know that the sample statistics are good estimates of the population parameters (since they change from sample to sample)?

#### Statistical inference

**Statistical inference** uses a fact about a sample to estimate the truth about the whole population.

- The process of estimating population mean  $\mu$  using the sample mean  $\bar{x}$  is making inference about the **center** of population from the **center** of sample.
- Similarly, the process of estimating population SD  $\sigma$  using the sample SD s is making inference about the **spread** of population from the **spread** of sample.
- In this course, most of the time, we focus on the estimation of the population mean using sample mean and comparing population means between groups.

## Samples are different

• Each sample, if randomly generated from a population, is different from one another.

```
set.seed(9)
# rnorm(): randomly generates data from a Normal distribution
rnorm(n = 5) # Generate 5 values from N(0, 1)
## [1] -0.7667960 -0.8164583 -0.1415352 -0.2776050 0.4363069
x1 <- rnorm(n = 5); x1 # Semicolon separates codes that are written in one line
## [1] -1.18687252 1.19198691 -0.01819034 -0.24808460 -0.36293689
x2 <- rnorm(n = 5); x2
## [1] 1.2775705 -0.4688971 0.0710541 -0.2660384 1.8452572
x3 \leftarrow rnorm(n = 5); x3
## [1] -0.83944966 -0.07744806 -2.61770553 0.88788403 -0.70749145
```

## Sample statistics are different

▶ The value of a statistic calculated from each sample is also different from one another.

```
mean(x1)

## [1] -0.1248195

mean(x2)

## [1] 0.4917892

mean(x3)

## [1] -0.6708421
```

# Sampling variability

**Sampling variability**: The value of a statistic varies in repeated random sampling.

- In this example,  $X \sim N(0, 1)$ , population mean  $\mu = 0$ .
- We generated three samples  $X_1$ ,  $X_2$  and  $X_3$  from  $X \sim N(0, 1)$ .
- The sample mean for the first one is  $\bar{x}_1 = -0.12$ .
- The sample mean for the second one is  $\bar{\chi}_2 = 0.49$ .
- The sample mean for the third one is  $\bar{x}_3 = -0.67$ .
- ▶ The sample means are **different from one another**.
- In addition, the sample means are all **different from the population mean**.

# Sampling variability

$$\mu = 0, \bar{x}_1 = -0.12, \bar{x}_2 = 0.49, \bar{x}_3 = -0.67$$

- ▶ Which sample is better in the sense of estimating the population mean?
- In practice, we do not know the value of the population mean and only have one sample, how do we know the sample is a good sample representing the population? How do we know the sample mean is a good estimate of the population mean?
- We will never know. But we can evaluate the sampling procedure (the way we generate the sample).
- If it is a good sampling procedure, we believe most of the times it will generate a good sample.

# Sampling variability

All of statistical inference is based on one idea: to see how trustworthy a procedure is, ask what would happen if we repeated it many times.

- ▶ This can hardly be done in real world. Therefore, we do it using **simulation**.
- The sampling procedure we evaluate here is the most common one: **simple** random sampling (each of the *n* individuals in the sample has an equal chance to be chosen from the population).

#### Simulation

**Simulation**: We imitate taking many samples by using computer software or other tools to emulate chance behavior.

- 1. Determine the distribution of population e.g.,  $X \sim N(0, 1)$ .
- 2. Take an SRS of size n from the population e.g., 5 values from N(0, 1).
- 3. Calculate the statistic based on the sample e.g., mean of the 5 values.
- 4. Repeat 2. and 3. many times e.g., 1000 times.
- 5. Evaluate the distribution of these many statistics e.g., distribution of 1000 means calculated from the 1000 samples.

#### Simulation

- ▶ All the 1000 samples have size 5.
- All the 1000 samples are generated from the same population distribution N(0, 1).
- ▶ The same statistic (mean) is calculated for all the 1000 samples.

#### Simulation



```
head(mean x)
## [1] -0.3132175 -0.1248195
                              0.49178
mean(mean x)
## [1] 0.01022393
sd(mean x)
## [1] 0.4356788
```

▶ The *mean* of the 1000 sample means:

Normal

0.01

▶ The *SD* of the 1000 sample means: 0.44

# Sampling distribution

The **sampling distribution** of **a statistic** is the distribution of values taken by the statistic in *all possible samples* of **the same size** from **the same population**.



- This is a **sampling distribution** of the **sample mean**.
- All the 1000 samples have the **same** size 5.
- All the 1000 samples are generated from the same population
   distribution N(0, 1).

# Sampling distribution



$$X \sim N(0, 1)$$

- ▶ Population mean: 0
- ▶ Mean of sample mean: 0.01
- ▶ Population SD: 1
- ▶ SD of sample mean: 0.44
- Is this sampling procedure (SRS) a good one?

## Bias and variability

To evaluate whehter the sampling procedure works well or not, we use **bias** and **variability** to describe the sampling distribution of the sample mean.

Bias concerns the center of the sampling distribution.

Bias = Mean of the statistic - Population parameter

A statistic used to estimate a parameter is an **unbiased estimator** if its mean is equal to the true value of the parameter being estimated.

The **variability** of a statistic is described by the spread of its sampling distribution. This spread is determined by the sampling design and the sample size n. Statistics from larger samples have smaller spreads.

### Bias and variability



- **Bias** concerns the **center**. It is about **accuracy** of the estimation.
- Variability concerns the spread.
  It is about the precision and consistency of the estimation.
- The ideal case: low/no bias, low variability. In terms of the sampling distribution of the sample mean, the mean of the sampling distribution should be as close to population mean as possible; while the SD of the sampling distribution should be as small as possible.

## Bias and variability

#### Simulation: 1000 samples



# Bias and variability - Simulation: 1000 samples

| Sample size | Mean of mean $\bar{x}$ | SD of mean $\bar{x}$ |
|-------------|------------------------|----------------------|
| 5           | 0.010                  | 0.436                |
| 10          | 0.006                  | 0.314                |
| 20          | -0.005                 | 0.219                |
| 50          | -0.0017                | 0.144                |
| 80          | -0.0018                | 0.114                |
| 100         | -0.0006                | 0.101                |

- The mean of  $\bar{x}$  is always close to the population mean (0) regardless of the sample size. As sample size increases, the mean of  $\bar{x}$  gets closer and closer (but not always) to the population mean (this is called **Law of Large Numbers**).
- The SD of  $\bar{x}$  is consistently getting smaller as sample size increases.

## Manage bias and variability

#### For SRS,

- The mean of the statistic is always close to the population parameter. We reasonally infer that SRS is an unbiased sampling procedure.
- Larger sample size will always result in smaller spread of the statistic.

#### Therefore,

To **reduce bias**, use random sampling. When we start with the entire population, simple random sampling produces unbiased estimates – the values of a statistic computed from an SRS neither consistently overestimate nor consistently underestimate the value of the population parameter.

To **reduce the variability** of a statistic from an SRS, use a larger sample. You can make the variability as small as you want by taking a large enough sample.

The **population distribution** of **a variable** is the distribution of its values for all members of the population.

The **sampling distribution** of **a statistic** is the distribution of values taken by the statistic in all possible samples of **the same size** from **the same population**.

- $\blacktriangleright$  Distribution of X is a population distribution.
- Distribution of  $\bar{x}$  is a sampling distribution, where  $\bar{x}$  is the sample mean.

 $X \sim N(0, 1)$ . The following is the distribution of  $\bar{x}$  for 1000 simulated samples with sample size n = 25.



- Mean of  $\bar{\chi}$ : -0.01
- ▶ SD of  $\bar{x}$ : 0.20.
- What is the distribution of  $\bar{x}$ ?
- What is the relationship between the SD of X ( $\sigma = 1$ ) and the SD of  $\bar{x}$  (0.20)?

Let  $\bar{x}$  be the mean of an SRS of size n from a population having Normal distribution with mean  $\mu$  and standard deviation  $\sigma$ . The mean and standard deviation of  $\bar{x}$  are

$$\mu_{\bar{x}} = \mu,$$

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

And  $\bar{x}$  has the  $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$  distribution.

This says that if  $X \sim N(\mu, \sigma)$ , then

$$\bar{x} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$



- Population distribution:  $X \sim N(0, 1)$
- Sampling distribution of  $\bar{x}$  (by formula):

$$\bar{x} \sim N\left(0, \frac{1}{\sqrt{25}}\right) = N(0, 0.2)$$

- 68% of  $\bar{x}$  fall between [-0.2, 0.2]
- 95% of  $\bar{x}$  fall between [-0.4, 0.4]
- 99.7% of  $\bar{x}$  fall between [-0.6, 0.6]

## Summary

- ▶ Population, sample, parameter and statistic
- Statistical inference
- Sampling variability
  - Simulation
- Sampling distribution
- Bias and variability
  - Manage bias and variability
- ▶ Sampling distribution of a sample mean