

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

tert-Butyl 6-amino-5-cyano-2-(2-methoxyethyl)nicotinate

Yi-Ning Chen, a Xing-Dong Zhao, b Jie Deng and Oin-Geng Lia*

^aLaboratory of Pharmaceutical Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China, ^bFochon Pharma Inc., 1933 Davis Street, Suite 207, San Leandro, CA 94577, USA, and ^cChongqing Pharmaceutical Research Institute Co. Ltd, Chongqing 400016, People's Republic of China

Correspondence e-mail: sntmilk@yahoo.com.cn

Received 21 March 2012; accepted 2 April 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean $\sigma(C-C) = 0.002 \text{ Å}$; R factor = 0.040; wR factor = 0.100; data-to-parameter ratio = 13.7.

The title compound, $C_{14}H_{19}N_3O_3$, was synthesized by the reaction of 3-methoxypropionitrile, *tert*-butyl bromoacetate and ethoxymethylenemalononitrile. In the crystal, $N-H\cdots O$ hydrogen bonds link the molecules into chains propagating along the b axis.

Related literature

For a related structure, see: Wang *et al.* (2007). For applications of pyridines, see: Spurr (1995). For background to the synthesis of highly substituted pyridines, see: Chun *et al.* (2009, 2011).

$$H_3C$$
 CH_3
 CH_3

Experimental

Crystal data C₁₄H₁₉N₃O₃

 $M_r=277.32$

Monoclinic, C2/c Z=8 Mo $K\alpha$ radiation b=15.2482 (5) Å $\mu=0.09~{\rm mm}^{-1}$ c=19.4882 (6) Å $T=130~{\rm K}$ $\beta=99.853$ (3)° $0.35\times0.30\times0.30~{\rm mm}$ V=2961.59 (18) Å³

Data collection

Agilent Xcalibur Eos diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.902, T_{\max} = 1.000$ R_{in}

5419 measured reflections 2608 independent reflections 2094 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.100$ S = 1.05 2608 reflections 191 parameters 4 restraints

H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.16 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.22 \text{ e Å}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N2 - H2A \cdot \cdot \cdot O3^{i} \\ N2 - H2B \cdot \cdot \cdot O1^{i} \end{array} $	0.88 (1)	2.25 (1)	3.0186 (18)	146 (2)
	0.88 (1)	2.00 (1)	2.8427 (18)	159 (2)

Symmetry code: (i) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, $-z + \frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

The authors thank Yin Ping, Fang Bo and Fochon Pharma, Inc.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5269).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England. Chun, Y. S., Lee, J. H., Kim, J. H., Ko, Y. O. & Lee, S. G. (2011). Org. Lett. 13, 6390–6393

Chun, Y. S., Ryu, K. Y., Ko, Y. O., Hong, J. Y., Hong, J., Shin, H. & Lee, S. G. (2009). J. Org. Chem. 74, 7556–7558.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spurr, P. R. (1995). *Tetrahedron Lett.* **36**, 2745–2748.

Wang, Q., Zhou, D., Li, C., Shao, Q. & Tu, S. (2007). Acta Cryst. E63, o4220.

Acta Cryst. (2012). E68, o1375 [doi:10.1107/S1600536812014328]

tert-Butyl 6-amino-5-cyano-2-(2-methoxyethyl)nicotinate

Yi-Ning Chen, Xing-Dong Zhao, Jie Deng and Qin-Geng Li

Comment

Pyridines can be found in many natural products and biologically active compounds (Spurr, 1995). Thus, the synthesis of highly substituted pyridines has attracted much attention (Chun *et al.* 2009, 2011). We synthesized the title compound (I). Herein we present its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related compound methyl 6-amino-5-cyano-4-(4-fluorophenyl)-2-methylpyridine-3-carboxylate (Wang *et al.*, 2007).

In the crystal structure of (I), intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated along the b axis.

Experimental

A mixture of zinc powder (0.65 g) and 3-methoxypropionitrile (0.85 g) in tetrahydrofuran (10 ml) was refluxed, then *tert*-Butyl bromoacetate (1.95 g) was added dropwise. Keep stirring under reflux for 1 h. Ethoxymethylenemalononitrile (1.22 g) was added, the reaction mixture was stirred under reflux for 2 h to afford the title compound (I) (Chun *et al.* 2009, 2011). Single crystals were grown by slow evaporation of a solution of Pet: EtOAc=5:1 at room temperature.

Refinement

C-bound H atoms were positioned geometrically (C—H 0.95–0.99 Å), and were refined using a riding model, with $U_{iso}(H) = 1.2-1.5~U_{eq}(C)$. N-bound H atoms were located in a difference map and refined freely with $U_{iso}(H) = 1.2~U_{eq}(N)$.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO* (Agilent, 2010); data reduction: *CrysAlis PRO* (Agilent, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov *et al.*, 2009); software used to prepare material for publication: OLEX2 (Dolomanov *et al.*, 2009).

Acta Cryst. (2012). E68, o1375 Sup-1

Figure 1The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

tert-Butyl 6-amino-5-cyano-2-(2-methoxyethyl)nicotinate

Crystal data

 $D_{\rm x} = 1.244 \; {\rm Mg \; m^{-3}}$ $C_{14}H_{19}N_3O_3$ $M_r = 277.32$ Melting point: 404.16 K Monoclinic, C2/c Mo $K\alpha$ radiation, $\lambda = 0.7107 \text{ Å}$ a = 10.1155 (4) Å Cell parameters from 2258 reflections $\theta = 2.9 - 29.1^{\circ}$ b = 15.2482 (5) Åc = 19.4882 (6) Å $\mu = 0.09 \text{ mm}^{-1}$ $\beta = 99.853 (3)^{\circ}$ T = 130 K $V = 2961.59 (18) \text{ Å}^3$ Block, colourless $0.35\times0.30\times0.30~mm$ Z = 8F(000) = 1184

Data collection

Agilent Xcalibur Eos Detector resolution: $16.0874 \text{ pixels mm}^{-1}$ diffractometer ω scans

Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator

Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)

$T_{\rm min} = 0.902$, $T_{\rm max} = 1.000$ 5419 measured reflections 2608 independent reflections 2094 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$	$ \theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ} $ $ h = -12 \rightarrow 11 $ $ k = -18 \rightarrow 10 $ $ l = -15 \rightarrow 23 $
Refinement	
Refinement on F^2 Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.040$ $wR(F^2) = 0.100$	Hydrogen site location: inferred from neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
2608 reflections	and constrained refinement $w = 1/[\sigma^2(F_0^2) + (0.0438P)^2 + 1.1844P]$
191 parameters 4 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant direct methods	$(\Delta/\sigma)_{\text{max}} < 0.001$ $\Delta\rho_{\text{max}} = 0.16 \text{ e Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.22 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	X	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
O1	0.21160 (13)	0.04640 (8)	0.29380 (6)	0.0402 (3)
O2	0.12016 (10)	0.02438 (7)	0.38946 (5)	0.0280 (3)
O3	0.33430 (10)	-0.04292(7)	0.12374 (6)	0.0296 (3)
N1	0.17189 (12)	-0.23015 (8)	0.25819 (6)	0.0241 (3)
N2	0.16078 (15)	-0.36625 (9)	0.30598 (8)	0.0322 (4)
H2A	0.1613 (17)	-0.4024(9)	0.3412 (8)	0.039*
H2B	0.1820 (17)	-0.3884 (10)	0.2674 (7)	0.039*
N3	0.11844 (14)	-0.34153 (10)	0.48130 (7)	0.0367 (4)
C1	0.15937 (14)	-0.27913 (10)	0.31410 (8)	0.0237 (4)
C2	0.14474 (14)	-0.24020(10)	0.37841 (8)	0.0233 (4)
C3	0.14728 (14)	-0.15014 (10)	0.38336 (8)	0.0230 (4)
Н3	0.1386	-0.1227	0.4261	0.028*
C4	0.16250 (13)	-0.09908(10)	0.32599 (8)	0.0218 (3)
C5	0.17249 (13)	-0.14259(10)	0.26322 (8)	0.0219 (3)
C6	0.16804 (14)	-0.00242 (11)	0.33331 (8)	0.0250 (4)
C7	0.13015 (15)	-0.29497(11)	0.43634 (8)	0.0263 (4)
C8	0.11812 (17)	0.11866 (10)	0.40839 (9)	0.0303 (4)
C9	0.0559 (2)	0.11529 (13)	0.47372 (11)	0.0529 (6)
H9A	0.0480	0.1749	0.4913	0.079*
H9B	0.1128	0.0802	0.5092	0.079*

Н9С	-0.0334	0.0886	0.4629	0.079*
C10	0.25917 (19)	0.15437 (14)	0.42359 (11)	0.0505 (5)
H10A	0.2974	0.1550	0.3806	0.076*
H10B	0.3143	0.1171	0.4583	0.076*
H10C	0.2575	0.2142	0.4417	0.076*
C11	0.03036 (19)	0.16861 (12)	0.35095 (10)	0.0459 (5)
H11A	0.0773	0.1751	0.3112	0.069*
H11B	0.0104	0.2268	0.3680	0.069*
H11C	-0.0536	0.1364	0.3363	0.069*
C12	0.18509 (14)	-0.09710 (11)	0.19592 (8)	0.0247 (4)
H12A	0.1426	-0.0385	0.1950	0.030*
H12B	0.1367	-0.1315	0.1563	0.030*
C13	0.33020 (14)	-0.08676 (11)	0.18746 (8)	0.0252 (4)
H13A	0.3796	-0.0524	0.2268	0.030*
H13B	0.3732	-0.1451	0.1873	0.030*
C14	0.46425 (17)	-0.04423 (13)	0.10532 (10)	0.0417 (5)
H14A	0.4621	-0.0133	0.0611	0.063*
H14B	0.4923	-0.1051	0.1004	0.063*
H14C	0.5280	-0.0152	0.1418	0.063*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0612 (8)	0.0263 (7)	0.0407 (7)	-0.0069 (6)	0.0305 (6)	-0.0014 (6)
O2	0.0394 (6)	0.0213 (6)	0.0262 (6)	-0.0012(5)	0.0138 (5)	-0.0030(5)
О3	0.0326 (6)	0.0331 (7)	0.0258 (6)	-0.0025(5)	0.0128 (4)	0.0028 (5)
N1	0.0260(7)	0.0240 (7)	0.0236 (7)	-0.0005 (6)	0.0082 (5)	-0.0018 (6)
N2	0.0477 (9)	0.0228 (8)	0.0300(8)	0.0015 (7)	0.0177 (7)	-0.0008(7)
N3	0.0444 (9)	0.0367 (9)	0.0296(8)	-0.0065 (7)	0.0077 (6)	0.0051 (7)
C1	0.0204(8)	0.0241 (8)	0.0274 (8)	0.0001 (6)	0.0065 (6)	-0.0001 (7)
C2	0.0225 (8)	0.0249 (8)	0.0235 (8)	0.0001 (6)	0.0066 (6)	0.0007 (7)
C3	0.0207(8)	0.0274 (8)	0.0216 (8)	0.0005 (6)	0.0060(6)	-0.0013 (7)
C4	0.0185 (7)	0.0245 (8)	0.0231 (8)	0.0004(6)	0.0059(6)	-0.0003(7)
C5	0.0164 (7)	0.0253 (8)	0.0249 (8)	-0.0001(6)	0.0062(6)	0.0010(7)
C6	0.0241 (8)	0.0274 (9)	0.0248 (8)	-0.0003(7)	0.0078 (6)	-0.0009(7)
C7	0.0282 (9)	0.0258 (9)	0.0259 (9)	-0.0014 (7)	0.0071 (7)	-0.0029(8)
C8	0.0399 (9)	0.0211 (8)	0.0324 (9)	-0.0023 (7)	0.0132 (7)	-0.0071 (8)
C9	0.0851 (15)	0.0328 (11)	0.0507 (13)	-0.0069 (10)	0.0392 (11)	-0.0133 (10)
C10	0.0487 (12)	0.0491 (12)	0.0533 (13)	-0.0149 (10)	0.0076 (9)	-0.0227 (11)
C11	0.0542 (12)	0.0304 (10)	0.0526 (12)	0.0095 (9)	0.0080 (9)	-0.0036 (10)
C12	0.0259 (8)	0.0268 (9)	0.0219 (8)	-0.0008(7)	0.0052 (6)	-0.0002 (7)
C13	0.0304 (9)	0.0246 (8)	0.0223 (8)	0.0020 (7)	0.0094 (6)	0.0022 (7)
C14	0.0431 (11)	0.0426 (11)	0.0470 (11)	0.0023 (9)	0.0290(8)	0.0050 (10)

Geometric parameters (Å, °)

O1—C6	1.2072 (18)	C8—C10	1.508 (2)
O2—C6	1.3342 (17)	C8—C11	1.510 (2)
O2—C8	1.4852 (19)	C9—H9A	0.9800
O3—C13	1.4170 (18)	C9—H9B	0.9800

02 C14	1.4209 (18)	CO HOC	0.0800
O3—C14 N1—C1	` /	C9—H9C C10—H10A	0.9800 0.9800
N1—C5	1.3447 (19) 1.339 (2)	C10—H10A C10—H10B	0.9800
N2—H2A	0.880 (12)	C10—H10C	0.9800
N2—H2B	0.883 (12)	C11—H11A	0.9800
N2—C1	1.338 (2)	C11—H11B	0.9800
N3—C7	1.149 (2)	C11—H11C	0.9800
N3—C7 C1—C2	* *	C12—H12A	0.9800
C2—C3	1.417 (2)	C12—H12A C12—H12B	0.9900
C2—C7	1.377 (2)	C12—C13	
C3—H3	1.432 (2) 0.9500	C12—C13 C13—H13A	1.513 (2) 0.9900
C3—C4			0.9900
	1.392 (2)	C13—H13B	
C4—C5	1.410 (2)	C14—H14A	0.9800
C4—C6	1.481 (2)	C14—H14B	0.9800
C5—C12	1.508 (2)	C14—H14C	0.9800
C8—C9	1.515 (2)		
C6—O2—C8	121.51 (12)	Н9А—С9—Н9В	109.5
C13—O3—C14	112.44 (12)	H9A—C9—H9C	109.5
C5—N1—C1	119.64 (13)	H9B—C9—H9C	109.5
H2A—N2—H2B	117.1 (16)	C8—C10—H10A	109.5
C1—N2—H2A	121.9 (11)	C8—C10—H10B	109.5
C1—N2—H2B	119.3 (11)	C8—C10—H10C	109.5
N1—C1—C2	121.50 (14)	H10A—C10—H10B	109.5
N2—C1—N1	116.81 (14)	H10A—C10—H10C	109.5
N2—C1—C2	121.69 (15)	H10B—C10—H10C	109.5
C1—C2—C7	119.56 (14)	C8—C11—H11A	109.5
C3—C2—C1	118.44 (14)	C8—C11—H11B	109.5
C3—C2—C7	121.99 (14)	C8—C11—H11C	109.5
C2—C3—H3	119.8	H11A—C11—H11B	109.5
C2—C3—C4	120.32 (14)	H11A—C11—H11C	109.5
C4—C3—H3	119.8	H11B—C11—H11C	109.5
C3—C4—C5	117.88 (14)	C5—C12—H12A	109.3
C3—C4—C6	119.12 (13)	C5—C12—H12B	109.3
C5—C4—C6	123.00 (14)	C5—C12—C13	111.75 (12)
N1—C5—C4	122.18 (14)	H12A—C12—H12B	107.9
N1—C5—C12	113.27 (13)	C13—C12—H12A	109.3
C4—C5—C12	124.55 (14)	C13—C12—H12B	109.3
O1—C6—O2	123.89 (15)	O3—C13—C12	108.60 (12)
01—C6—C4	124.35 (14)	O3—C13—H13A	110.0
O2—C6—C4	111.76 (13)	O3—C13—H13B	110.0
N3—C7—C2	177.52 (17)	C12—C13—H13A	110.0
02—C8—C9	101.62 (13)	C12—C13—H13B	110.0
O2—C8—C10	110.20 (14)	H13A—C13—H13B	108.4
O2—C8—C11	109.60 (13)	O3—C14—H14A	109.5
C10—C8—C9	111.25 (16)	O3—C14—H14B	109.5
C10—C8—C11	112.31 (16)	O3—C14—H14C	109.5
C11—C8—C9	111.34 (16)	H14A—C14—H14B	109.5
C8—C9—H9A	109.5	H14A—C14—H14C	109.5

C8—C9—H9B C8—C9—H9C	109.5 109.5	H14B—C14—H14C	109.5
N1—C1—C2—C3 N1—C1—C2—C7 N1—C5—C12—C13 N2—C1—C2—C3 N2—C1—C2—C7 C1—N1—C5—C4 C1—N1—C5—C12 C1—C2—C3—C4 C1—C2—C7—N3 C2—C3—C4—C5 C2—C3—C4—C6 C3—C2—C7—N3 C3—C4—C5—N1 C3—C4—C5—N1	-1.8 (2) 179.27 (13) -86.09 (16) 178.53 (14) -0.4 (2) 1.0 (2) -179.11 (12) 0.7 (2) -3 (4) 1.2 (2) -178.59 (13) 178 (100) -2.1 (2) 178.08 (12)	C4—C5—C12—C13 C5—N1—C1—N2 C5—N1—C1—C2 C5—C4—C6—O1 C5—C4—C6—O2 C5—C12—C13—O3 C6—O2—C8—C9 C6—O2—C8—C10 C6—O2—C8—C11 C6—C4—C5—N1 C6—C4—C5—N1 C6—C4—C5—C12 C7—C2—C3—C4 C8—O2—C6—O1 C8—O2—C6—O1	93.76 (17) -179.37 (13) 0.9 (2) -18.0 (2) 162.63 (13) -179.41 (12) 179.74 (14) -62.23 (19) 61.86 (18) 177.67 (13) -2.2 (2) 179.59 (13) -0.6 (2) 178.73 (12)
C3—C4—C6—O1 C3—C4—C6—O2	161.74 (15) -17.62 (19)	C14—O3—C13—C12	-169.39 (13)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
N2—H2 <i>A</i> ···O3 ⁱ	0.88(1)	2.25 (1)	3.0186 (18)	146 (2)
N2—H2 <i>B</i> ···O1 ⁱ	0.88(1)	2.00(1)	2.8427 (18)	159 (2)

Symmetry code: (i) -x+1/2, y-1/2, -z+1/2.

Acta Cryst. (2012). E68, o1375 sup-6