Towards Single- and Multiobjective Bayesian Global Optimization for Mixed Integer Problems

Kaifeng Yang, Koen van der Blom, Thomas Bäck and Michael Emmerich

Outline:

Background

Algorithm

Test problems

Experiments

Conclusions

Background:

Multi-objective optimization problems (MOPs):

"min"
$$(y(x^1), y(x^2), ..., y(x^n))$$

 $y = (y_1, y_2, ..., y_d); x \in \mathcal{X}$

- Bayesian Global Optimization (BGO) is efficient to optimize problems with expensive evaluations.
- The optimization problems are restricted to continuous problems.
 - In normal MOBGO, $\boldsymbol{\mathcal{X}} = \mathbb{R}^m$
 - what if $x = (x_r, x_z, x_d)$? More common in real applications/machine learning
- How to solve discrete (even mixed integer) optimization problems using BGO?

Algorithm – Bayesian Global Optimization

- BGO was proposed by Prof. Mockus and Prof. Žilinskas [1]
- Suppose:
 - Decision vectors: $X = (x^{(1)}, x^{(2)}, ..., x^{(n)})^{\top}$
 - Objective values: $Y = (y(x^{(1)}), y(x^{(2)}), ..., y(x^{(n)}))^{\mathsf{T}}$
- GP/Kriging assumes:
 - $Y(x) = \mu(x) + \epsilon(x)$
 - Where $\mu(x)$ is the estimated mean value over all given sampled points
 - And $\epsilon(x) \sim \mathcal{N}(0, \sigma^2)$
 - $Corr[\epsilon(x), \epsilon(x')] = R(x, x') = exp^{-\theta d(x, x')^2}$ R(.,.) is the correlation function
- The distance function (d(.,.)) utilizes *Euclidean metric*:
 - $d(x, x') = \sqrt{\sum_{i=1}^{i=m} (x_i x_i')^2}$ m dimensional search space

[1] Mockus, J., Tiešis, V., Žilinskas.: The application of Bayesian methods for seeking the extremum. In: L. Dixon, G. Szego (eds.) Towards Global Optimization, vol. 2, pp. 117–131. North-Holland, Amsterdam (1978)

Algorithm – Mixed Integer MOBGO (1)

• Euclidean metric

- Assumes the continuity of an objective function
- Only suitable for the continuous space (isotropic in every dimension of the search space)
- Not suitable for a nominal discrete or an integer space

• Basic idea:

- Use heterogeneous metric to calculate the distance function d(.,.)

• Heterogeneous metric

- Combine the distance of different type variables

$$d_h(x,x') = \sqrt{\sum_{i=1}^{i=n_r} (r_i - r_i')^2 + \sum_{i=1}^{i=n_z} |z_i - z_i'| + \sum_{i=1}^{i=n_d} I(d_i \neq d_i')}$$

where I=1 if the statement $(d_i \neq d'_i)$ is true; otherwise, I=0.

Algorithm – Mixed Integer MOBGO (2)

g = g + 1;

12 Return P

- Mixed Integer MOBGO follows the structure of MOBGO
- Difference is how to build up the Kriging models:
 - Euclidean metric to calculate the distance function in normal MOBGO:
 - Heterogeneous metric to calculate the distance function in mixed integer MOBGO:
- Use EHVI as the infill criterion

```
Algorithm 1: MOBGO Algorithm
   Input: Objective functions y, initialization size \mu, termination criterion T_c
   Output: Pareto-front approximation \mathcal{P}
1 Initialize \mu points (\mathbf{x}^{(1)}, \cdots, \mathbf{x}^{(\mu)});
2 Evaluate the initial set of \mu points: (\mathbf{y}^{(1)} = \mathbf{y}(\mathbf{x}^{(1)}), \dots, \mathbf{y}^{(\mu)} = \mathbf{y}(\mathbf{x}^{(\mu)}));
3 Store (\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(\mu)}) and (\mathbf{y}^{(1)} = \mathbf{y}(\mathbf{x}^{(1)}), \dots, \mathbf{y}^{(\mu)} = \mathbf{y}(\mathbf{x}^{(\mu)})) in D:
    D = ((\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(\mu)}, \mathbf{y}^{(\mu)}));
4 Compute the non-dominated subset of D and store it in \mathcal{P};
g = \mu;
6 while g \ll T_c do
        Train Kriging models M_1, \dots, M_d based on D;
        Use an optimizer (opt) to find the promising point \mathbf{x}^* based on surrogate
          models M, with the infill criterion C;
        Update D: D = D \cup (\mathbf{x}^*, \mathbf{y}(\mathbf{x}^*));
        Update \mathcal{P} as the non-dominated subset of D;
```

Algorithm – Mixed Integer MOBGO (3)

Definition and computational complexity

^[2] **M. Emmerich**, **K. Yang**, A. Deutz, H. Wang, C. M. Fonseca, A multicriteria generalization of bayesian global optimization, in: P. M. Pardalos, A. Zhigljavsky, J. Žilinskas(Eds.), Advances in Stochastic and Deterministic Global Optimization, Springer, Berlin, Heidelberg, 2016, pp. 229–243.

^[3] Yang, K., Emmerich, M., Deutz, A., & Fonseca, C. M. (2017, March). Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In *International Conference on Evolutionary Multi-Criterion Optimization* (pp. 685-700). Springer, Cham.

^[4] Yang, K., Deutz, A., Yang, Z., Bäck, T., & Emmerich, M. (2016, July). Truncated expected hypervolume improvement: Exact computation and application. In *Evolutionary Computation (CEC), 2016 IEEE Congress on* (pp. 4350-4357). IEEE.

Test problems

- Three MOPs are tested:
- Sphere functions:

-
$$f_{sphere_1}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} r_i^2 + \sum_{i=1}^{n_z} z_i^2 + \sum_{i=1}^{n_d} d_i^2$$

-
$$f_{sphere_2}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} (r_i - 2)^2 + \sum_{i=1}^{n_z} (z_i - 2)^2 + \sum_{i=1}^{n_d} (d_i - 2)^2$$

Barrier functions:

-
$$f_{barrier_1}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} (r_i^2 + \alpha \sin(r_i)^2) + \sum_{i=1}^{n_z} A[z_i]^2 + \sum_{i=1}^{n_d} B_i[d_i]^2$$

-
$$f_{barrier_2}(\mathbf{r}, \mathbf{z}, \mathbf{d}) = \sum_{i=1}^{n_r} ((r_i - 2)^2 + \alpha \sin(r_i - 2)^2) + \sum_{i=1}^{n_z} (A[z_i] - 2)^2 + \sum_{i=1}^{n_d} (B_i[d_i] - 2)^2$$

- $\alpha = 1$, A is generated by Algorithm 6 in Li et al. (2013) with C = 75
- $B_i \in 1, ..., n_d$ is a set of n_d random permutations of the sequence 0,...,4
- Optical filter functions:
 - $f_{optfilt_1}$: a continuous variable is used in $f_{optfilt_1}$ if its corresponding binary variable is active; otherwise ignore it
 - $f_{optfilt_2}(\mathbf{r}, \mathbf{d}) = \sum_{i=1}^{n_r} r_i d_i$
 - Penalty: If all bits are inactive, (250, 1250) is returned as the penalty.

^[5] Li, R., Emmerich, M.T., Eggermont, J., Bäck, T., Schütz, M., Dijkstra, J. and Reiber, J.H., 2013. Mixed integer evolution strategies for parameter optimization. *Evolutionary computation*, 21(1), pp.29-64.

Experiments – Parameter settings

Hardware:

- Intel(R) i7-4800mq CPU @ 2.70GHz, RAM 32GB

Software:

- OS: Ubuntu 16.04 LTS (64 bit)
- Platform: MATLAB 8.4.0.150421 (R2014b), 64 bit
- MOBGO (mixed integer version and normal version)
 - Number of sampling points for the initialization ($N_{initial}$): 90
 - Number of function evaluations (N_{max}) , including $N_{initial}$: 200
 - Optimal θ strategy: simplex search method of Lagarias et al. (fminsearch) with max function evaluations of 1000
 - Infill criterion (C): Expected Hypervolume Improvement (EHVI)
 - Optimizer (opt): Genetic algorithm (MATLAB build-in function)

Others

- Repetitions: 10
- Performance is evaluated by mean HV and the std. over 10 repetitions

Experiments – Results (1)

• Landscape of the $f_{mbarrier}$

- For the visualization n_r , n_z , $n_d = 1$
- Range: [0,4]

Parameters:

- Fixed θ strategy, $\theta = [1 \ 1 \ 1] \times 0.01$
- Decision variables are normalized to [0,1] in Fig. 1
- $N_{inital} = 15$ to build up the Kriging models
- Plotted by 200 predictions/evaluations

Results:

- The landscapes by Heterogeneous metric are more accurate than using the Eucl. metric.
- The first column is very analogous to the third column, but not the exactly the same

FIGURE 1. Landscape of the $f_{mbarrier}$ function

Experiments – Results (2)

- Comparison of predictions on $f_{msphere}$
- Parameters:
 - $-n_r, n_z, n_d = 5$
 - Range: [0,4]
 - Optimal θ strategy
 - \hat{y} and σ represent the predicted mean and std.
 - $N_{inital} = 90$ to build up the Kriging models
 - Plotted by 200 predictions/evaluations.
- Results:
 - Using the optimal θ strategy, the Kriging of using the Hete. metric is still slightly better than that of using the Eucl. metric, w.r.t. mean and std.

FIGURE 2. Comparison of predictions on $f_{msphere}$ functions

Experiments – Results (3)

TABLE 1. Parameter settings and empirical experimental results

	HV - Eucl.		HV - Hete.		Para. setting						
	mean	std.	mean	std.	ref.	n_r	range	n_z	range	n_d	range
f_{sphere}	8.4644e+03	98.5064	8.5446e+03	18.3754	[100, 100]	5	[0, 4]	5	[0, 4]	5	[0, 4]
$f_{barrier}$	6.4769e+03	175.5024	6.6927e+03	55.9169	[100, 100]	5	[0, 4]	5	[0, 4]	5	[0, 4]
$f_{optfilt}$	1.5469e+04	27.4487	1.5456e+04	6.3562	[50, 800]	7	[0, 1]	N/A	N/A	7	[0, 1]

Sphere and Barrier problems:

- The proposed algorithm outperforms the MOBGO algorithm using the Euclidean metric, w.r.t mean HV.
- The proposed algorithm is more robust, w.r.t. the std.

Optical filter problems:

- The proposed algorithm is more robust, w.r.t. the std.
- The MOBGO algorithm using the Eucl. metric is slightly better than the algorithm in this paper.

MAYBE: $N_{max} = 200$ is too small for this problem, as the 14 variables are in this problem.

Conclusions and future work

Conclusions:

- Proposes a mixed integer MOBGO to solve the mixed integer multi-objective optimization problems
- Achieved by calculating the distance function using the heterogeneous metric, instead of the Euclidean metric.
- On sphere and barrier problems: outperforms the traditional MOBGO algorithm w.r.t mean HV and std.
- On optical filter problem: more robust, but the traditional MOBGO performs slightly better, w.r.t. mean HV. Maybe can increase the N_{max} , as 14 variables in the search space

Future work:

- Compare the proposed algorithm with another integer-based BGO, using the one-hot encoding strategy.

References

- [1] Mockus, J., Tiešis, V., Žilinskas.: The application of Bayesian methods for seeking the extremum. In: L. Dixon, G. Szego (eds.) Towards Global Optimization, vol. 2, pp. 117–131. North-Holland, Amsterdam (1978)
- [2] **M. Emmerich**, **K. Yang**, A. Deutz, H. Wang, C. M. Fonseca, A multicriteria generalization of bayesian global optimization, in: P. M. Pardalos, A. Zhigljavsky, J. Žilinskas(Eds.), Advances in Stochastic and Deterministic Global Optimization, Springer, Berlin, Heidelberg, 2016, pp. 229–243.
- [3] Yang, K., Emmerich, M., Deutz, A., & Fonseca, C. M. (2017, March). Computing 3-D expected hypervolume improvement and related integrals in asymptotically optimal time. In *International Conference on Evolutionary Multi-Criterion Optimization* (pp. 685-700). Springer, Cham.
- [4] Yang, K., Deutz, A., Yang, Z., Bäck, T., & Emmerich, M. (2016, July). Truncated expected hypervolume improvement: Exact computation and application. In *Evolutionary Computation (CEC)*, 2016 IEEE Congress on (pp. 4350-4357). IEEE.
- [5] Li, R., **Emmerich, M.T.**, Eggermont, J., **Bäck, T.**, Schütz, M., Dijkstra, J. and Reiber, J.H., 2013. Mixed integer evolution strategies for parameter optimization. *Evolutionary computation*, *21*(1), pp.29-64.

Thanks for your attention!

Questions and suggestions?