Input:

C: regularization parameter tol: numerical tolerance max_passes : max # of times to iterate over α 's without changing $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$: training data

Output:

 $\alpha \in \mathbb{R}^m$: Lagrange multipliers for solution $b \in \mathbb{R}$: threshold for solution

- \circ Initialize $\alpha_i = 0, \forall i, b = 0.$
- \circ Initialize passes = 0.

$$\circ$$
 for $i=1,\ldots m,$

- \circ Calculate $E_i = f(x^{(i)}) y^{(i)}$ using (2).
- \circ if $((y^{(i)}E_i < -tol && & \alpha_i < C) || (y^{(i)}E_i > tol && & \alpha_i > 0))$