Formulário:

$$c \approx 3x10^8 m/s$$
; $k_B = 1.38x10^{-23} J/K$; $\sigma = 5.67x10^{-8} W/m^2/K^4$

$$h = 6.63x10^{-34} J \cdot s$$
 $\hbar = 1.05x10^{-34} J \cdot s$ $1eV = 1.6x10^{-19} J$ $e = 1.6x10^{-19} C$

massa do eletrão: $m_e = 9.1x10^{-31}kg$; massa do protão: $m_p = 1.67x10^{-27}kg$

$$\gamma = 1/\sqrt{1-\beta^2}$$
; $\beta = v/c$ Contração do comprimento: $\Delta L_0 = \gamma \Delta L$

Dilatação do tempo: $\Delta t = \gamma \Delta t_0$ Efeito do relógio atrás estar adiantado: vL₀ / c^2

Transformações do Lorentz:
$$\Delta x = \gamma \Big[\Delta x' + \beta \big(c \Delta t' \big) \Big] \quad \Delta y = \Delta y';$$

$$c \Delta t = \gamma \Big[\beta \Delta x' + \big(c \Delta t' \big) \Big] \quad \Delta z = \Delta z'$$

Soma das velocidades longitudinais: $u' = (v+u)/(1+uv/c^2)$

Intervalo invariante:
$$\Delta s^2 = (c\Delta t)^2 - [\Delta x^2 + \Delta y^2 + \Delta z^2]$$

Efeito Doppler longitudinal:
$$f_{observada} = \sqrt{\frac{1 \pm \beta}{1 \mp \beta}} f_{emitida}$$

Produto invariante entre 2 tetra-vetors: $\mathbf{A} \bullet \mathbf{B} = \mathbf{A}_t \mathbf{B}_t - (\mathbf{A}_x \mathbf{B}_x + \mathbf{A}_y \mathbf{B}_y + \mathbf{A}_z \mathbf{B}_z)$

Tetra-vetor energia momento: $P = (E/c, \vec{p}) = (\gamma mc, \gamma m\vec{v})$

$$E^2 = p^2c^2 + m^2c^4$$
; $\frac{\vec{v}}{c} = \frac{c\vec{p}}{E}$ Energia cinética: $E - mc^2$ Fotões não têm massa.

Lei de Stefan-Boltzmann: Potência/área = $\varepsilon\sigma T^4$ Lei de Wien: $\lambda_{\max} T = 2.9 \ x 10^{-3} \ m \cdot K$

Fotões:
$$E = hf = 1240 (eV \cdot nm) / \lambda$$
 $f\lambda = c$ $p = h / \lambda$

Efeito fotoelétrico: $KE_{\text{max}} = eV_{corte} = hf - \Phi$ Efeito Compton: $\lambda' - \lambda = \frac{h}{m_e c} (1 - \cos \theta)$

Coulomb:
$$F = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r^2}$$
; Energia Potencial: $E = \frac{1}{4\pi\varepsilon_0} \frac{qQ}{r}$; $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{N \cdot m^2}{C^2}$

Espetro de Hidrogénio:
$$\frac{1}{\lambda_{mn}} = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$
 $R = 1.097 \times 10^7 \, m^{-1} = \frac{1}{91.13 \, nm}$

Átomo H de Bohr: $L = m_e v_n r_n = n\hbar$

$$E_n = -\frac{1}{4\pi\varepsilon_0} \frac{Ze^2}{2r_a} = -13.6eV \frac{Z^2}{n^2}; \quad r_n = \frac{n^2}{Z} a_B; \quad a_B = \frac{4\pi\varepsilon_0 \hbar^2}{e^2 m_e} = 5.29 \times 10^{-11} m$$

Expressão de deBroglie: $\lambda = h/p$; Principio de incerteza do Heisenberg $\Delta x \Delta p_x \geq \hbar/2$