CV Final Project

Group 25

郭家瑋

309552003

江梓豪

309551116

范氏和兒

309540025

Image Enhancement

Motivation

Introduce problem

Results

Qualitative and Quantitative Result

Method

Briefs and Algorithms

Discussion

The effect of modification

Motivation

Goal

- Enhance low-light images automatically
- Prevent over enhancing a normal light image

Fig. 1. An illustrate example for the image enhancement.

Motivation

Based on Zero-DCE [1]

Two problems

• The color will tend to become white

Fig. 2. The result that the color tend to be white

Over enhancement

Fig. 3. Result that is over enhancement.

(b) Zero - DCE

(a) Input

Purpose

- Our Work: modified the paper Zero-DCE
- To avoid the color of the image becomes white and over enhancement

[1] C. Guo et al. Zero – reference deep curve estimation for low – light image enhancement. In CVPR, 2020.

Method

1. Zero-DCE

- Formulate light enhancement as a task of image-specific curve estimation
- A lightweight deep network, DCE-Net

• Use a Quadratic function (degree=2):

$$LE(I(X); \alpha) = I(x) + \alpha I(x)(1 - I(x))$$

• Learned the curve parameter $\alpha \in [-1, 1]$

Fig. 4. The Zero-DCE architecture.

Proposed Method

DCE-Net

- Input: a low light image
- Output: 8 parameter maps

Spatial Consistency Loss

- Preserving the difference of neighboring regions between the input image and its enhanced version
- *Y*, *I*: Average intensity value of local region in the enhanced version and input image, respectively
- $\mathcal{L}_{spa} = \frac{1}{K} \sum_{i=1}^{K} \sum_{j \in \Omega(i)} (\left| Y_i Y_j \right| \left| I_i I_j \right|)$

Proposed Method

Exposure Control Loss

- Restrain under-/over-exposed regions
- *Y*: Average intensity value of local region in the enhanced image
- E: well-exposedness level
- $\mathcal{L}_{exp} = \frac{1}{M} \sum_{k=1}^{M} |Y_k E|$

Color Constancy Loss

- Gray-World color constancy hypothesis : color in each sensor channel averages to gray over the entire image.
- Correct the potential color deviations in the enhanced image
- $\mathcal{L}_{col} = \sum_{\forall (p,q) \in \varepsilon} |J^p J^p|, \varepsilon = \{(R,G), (R,B), (G,B)\}$

Proposed Method

Illumination Smoothness Loss

- Preserve the monotonicity relations between neighboring pixels
- *Y*: Average intensity value of local region in the enhanced image
- *E* : Well-exposedness level
- $\mathcal{L}_{tv_{\mathcal{A}}} = \frac{1}{N} \sum_{n=1}^{N} \sum_{c \in \xi} (|\nabla_{x} \mathcal{A}_{n}^{c}| + |\nabla_{y} \mathcal{A}_{n}^{c}|), \xi \in \{R, G, B\}$

(a) Input

(b) Zero-DCE

(c) w/o L_{spa}

(d) w/o L_{exp}

(e) w/o L_{col}

(f) w/o L_{tv_A}

Method

2. Modification

• Iterative:

- o output only 3 parameter maps
- o the output of the previous iteration is an input of the next iteration

Stop Mechanism:

 \circ mean of an image, $\mu(I)$, should be less than or equal to 0.6

Fig. 4. The Zero-DCE++ architecture.

$Gray = (R_{avg} + R_{avg} + R_{avg})/3$

 $R' = \frac{Gray}{R_{avg}} R$

 $G' = \frac{Gray}{G_{avg}} G$

 $B' = \frac{Gray}{B_{avg}} B$

2. Modification

Weighted Color Constancy Loss: (inspired by [2])

$$L_{wcol} = \sum_{\forall (p,q) \in \varepsilon} (S \odot J^p - S \odot J^q)^2, \varepsilon = \{(R,G), (G,B), (B,R)\}$$

- S is the segmentation map,
- O denotes the element-wise product.

input

Gray world

[2]

segmentation map

- Color Consistency Loss:
 - \circ Transform the input image I (RGB color space) to enhanced image I' (YCbCr color space)
 - $L_{ccl} = \frac{1}{HW} \sum_{c \in \xi} (I^c I'^c)^2$, $\xi = \{Cb, Cr\}$, where HW is the number of pixels.

Results

Datasets

- Our dataset: Lucy
- VV, MEF, LOL, LIME, FiveK, DICM

Evaluation metric

• NIMA

Results (normal)

1.a. Input

1.b. Zero-DCE

1 1

1.c. Iterative Zero-DCE++ 1.d. Iterative Zero-DCE++ w/ stop

1.e. Weighted color constancy loss

1.f. Weighted color constancy loss (stop)

1.g. Color consistency loss

1.h. Color consistency loss (stop)

Results (normal)

2.a. Input

2.b. Zero-DCE

2.c. Iterative Zero-DCE++

2.d. Iterative Zero-DCE++ w/ stop

2.e. Weighted color constancy loss

2.f. Weighted color constancy loss (stop)

2.g. Color consistency loss

2.h. Color consistency loss (stop)

3.a. Input

3.b. Zero-DCE

3.c. Iterative Zero-DCE++

3.d. Iterative Zero-DCE++ w/ stop

3.e. Weighted color constancy loss

3.f. Color consistency loss

4.a. Input

4.d. Iterative Zero-DCE++ w/ stop

4.b. Zero-DCE

4.e. Weighted color constancy loss

4.c. Iterative Zero-DCE++

4.f. Color consistency loss

5.a. Input

5.d. Iterative Zero-DCE++ w/ stop

5.b. Zero-DCE

5.e. Weighted color constancy loss

5.c. Iterative Zero-DCE++

5.f. Color consistency loss

6.a. Input

6.d. Iterative Zero-DCE++ w/ stop

6.b. Zero-DCE

6.e. Weighted color constancy loss

6.c. Iterative Zero-DCE++

6.f. Color consistency loss

7.a. Input

7.d. Iterative Zero-DCE++ w/ stop

7.b. Zero-DCE

7.e. Weighted color constancy loss

7.c. Iterative Zero-DCE++

7.f. Color consistency loss

Results (low light)

8.a. Input

8.b. Zero-DCE

8.e. Weighted color constancy loss

8.c. Iterative Zero-DCE++

8.d. Iterative Zero-DCE++ w/ stop

8.f. Color consistency loss

Results (extremely dark)

9.a. Input

9.d. Iterative Zero-DCE++ w/ stop

9.b. Zero-DCE

9.e. Weighted color constancy loss

9.c. Iterative Zero-DCE++

9.f. Color consistency loss

Results (extremely dark) • Visual results

10.a. Input

10.b. Zero-DCE

10.c. Iterative Zero-DCE++

10.d. Iterative Zero-DCE++ w/ stop

10.e. Weighted color constancy loss

10.f. Color consistency loss

Results (extremely dark) • Visual results

11.a. Input

11.d. Iterative Zero-DCE++ w/ stop

11.b. Zero-DCE

11.e. Weighted color constancy loss

11.c. Iterative Zero-DCE++

11.f. Color consistency loss

• Quantitative results

	Lucy	VV	MEF	LOL	LIME	FiveK	DICM
Zero-DCE	4.725	4.579	4.618	4.755	4.549	4.141	4.382
Iterative Zero-DCE++	4.747	4.564	4.433	3.962	4.635	4.242	4.485
Iterative Zero-DCE++ w/ stop	4.741	4.564	4.333	3.962	4.634	4.239	4.481
Iterative Zero-DCE++ w/ weighted color constancy loss	4.762	4.544	4.644	4.251	4.725	4.389	4.477
Iterative Zero-DCE++ w/ color consistency loss	4.762	4.544	4.644	4.251	4.725	4.389	4.477

NIMA[†]

Discussion

Normal-light images.

- Hope that our model will not enhance a normal image too much.
- Observing Fig 1.f, 2.f:
 - o **color consistency loss:** only enhance its brightness and remain the color.
 - Stop mechanism: avoids color deviation.

1.a. Input

1.f. Color consistency loss

2.a. Input

2.f. Color consistency loss

Work plan

Low-Light images.

- The brightness should be increased and the color should be remained.
- Observing Fig 4 ~8: Zero-DCE enhance the brightness significantly.
- With color consistency loss: closer to the color its of corresponding input image.

color may change a little bit

4.f. Color consistency loss

closer to the color its of corresponding input image

Discussion

Extreme Dark images.

- Increasing the brightness is the most important part.
- Color consistency is less important.
- Fig. 9~11: Zero-DCE can enhance the brightness of image much more than the other methods.

9.a. Input

9.b. Zero-DCE

11.a. Input

11.b. Zero-DCE

Noise is amplified.

Work assignment plan between team

- We finish and discuss all the works together.
- Each member focus on different part:

郭家瑋:Code, 江梓豪: Report, 范氏和兒: PPT file