PR7 - 함수

조성우

2020년4월30일

함수와사용자정의함수

함수

- 특정목적에 맞게 생성된 연사되정의 집합
- ex) mean 함수: 모든 원소의 합을 원소의 개수로 나눔

##사용자정의함수* 사용자의편에 따라직접 작성하여 사용하는함수* 함수명<- function(인수){연신과정 형태로 작성(한) 자만 연신할 경우(}로 묶지않아도됨) * 연신과정으로 나오는 결과 값을 return, print, cat 등으로 변환하는 형태가 이상적

에서1. 두숫자를 비교해 더큰수를 반환하는 함수

예시2. 평균값과표준으차를계신하는 함수

```
# エデンパ = エデザ / エピロン/

se <- function(x){
    tmp.sd <-sd(x) # エピン/
    tmp.N <- length(x) # エピコン/
    tmp.se <- tmp.sd / sqrt(tmp.N) # ピーン/
}

A <- c(1,2,3,4,5,6,7,8,9,10)
cat(se(A))
## 0.9574271
```

예사 8. 데이터 프레임이 앞뒤 3개의 데이터를 리스트로 보여주는 함수

```
head tail <- function(x){
 front <- head(x,3)
 rear \leftarrow tail(x,3)
 F_R <- list(front, rear) #2개의 데이터프레임 릿트로 묶음
 print(F_R) #묶은 리스트 변화
}
head_tail(mtcars)
## [[1]]
##
                mpg cyl disp hp drat wt qsec vs am gear carb
               21.0 6 160 110 3.90 2.620 16.46 0 1
                                                              4
## Mazda RX4
## Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1
                                                         4
                                                              4
               22.8 4 108 93 3.85 2.320 18.61 1 1
## Datsun 710
                                                              1
##
## [[2]]
                mpg cyl disp hp drat
                                       wt qsec vs am gear carb
## Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1
## Maserati Bora 15.0 8 301 335 3.54 3.57 14.6 0 1
                                                        5
                                                            8
## Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1
                                                            2
```

예시4. 홀수판별함수

```
oddnum <- function(x){
    if(x%2==1){ #2로 나는 나마자가 1 이면
        return(T)
    }else { #그렇지 않으면
        return(f)} #F를 변환
}
```

scope of variable

- 함수 비깥에서 생성된 변수는 같은함수 안에서는 언제나 사용가능
- 함수인에서생성된 변수는 함수가 종료되면 사라짐(local variable은 휘발성)
- 함수내에서생성된변수가시라지지않게하려면"<<-"을할당 연신자로사용(global variable로할당)

```
# <- == CLA AB

scopetest <-function(x){
    a <- 10
    print(a)
    print(x)
}

scopetest(9)
```

```
## [1] 10
## [1] 9

#print(a) #주석 제거후 함수실행하여 메세지 확인할것

# <<- 할당 언산자 사용

scopetest <- function(x){
    a <<- 10
    print(a)
    print(x)
}

scopetest(9)

## [1] 10
## [1] 9

print(a)
## [1] 10
```

함수의 default 값설정

- 인수를 입력하지 않았을때자동으로 적용되는 값을 default라고 함
- 함수작성시"인수=T 또는 인수=10" 이런식으로 미리 인수에 적용될 값을 입력

```
add10 <- function(x=10)x+10
add10()
## [1] 20
```

PR7 연습문제

문제1

- PR3의연습문제1번을 활용한 문제입니다.
- 벡터prices에저정된값은2020-03-01 부터2020-03-06 까지bitcoin의종가이다 *prices <- c(11905000.0, 1973000.0, 121900000.0, 12700000.0, 12303000.0, 12604000.0)
- 힌트를참고하여순서대로2020-03-02 부터2020-03-06 까지5일간의수익률을 구하는 in_rate 함수를 작성하세요.
- 함수를 사용하여 증가율을 출력해 주세요 HINT 수익율= ((금일이 종가 전일이 종가 전일이 종가 100 prices <- c(11905000.0, 11973000.0, 12190000.0, 12700000.0, 12303000.0, 12604000.0)

문제2

- PR5의 연습문제 1 번을 활용하는 문제입니다.
- URL을 입력받아서 해당 웹사이트의 Table list를 반환하는 함수 read.html.tables를 작성하세요.
- 웹사이트의URL을입력여결교 값을 저장하고 특정 테이블을 head를 사용해서 출력해주세요(웹사이트 자율)

```
library(XML)
## Warning: package 'XML' was built under R version 3.6.3
 library(httr)
## Warning: package 'httr' was built under R version 3.6.3
read.html.tables <- function(URL){ #웹의 content를 불리오는 read.html.tables
함수를 Define 해줍니다.
 html source <- GET(URL)</pre>
 tabs <- readHTMLTable(rawToChar(html_source$content), stringsAsFactors = F)</pre>
 return(tabs)
}
KoreaPopulation <-read.html.tables("https://www.worldometers.info/world-
population/south-korea-population/") #read.html.tables 함수를 call하여 변수에 할당
ForecastKorPOP <- KoreaPopulation[2] #테이블 라스트중 한국 인구예측 테이블을
names(ForecastKorPOP) <- ForecastKorPOP #하당 테이블의 이름이 NULL 이므로 이름을
不心管上다.
ForecastKorPOP
```

## ¢							
## \$. ##		Population Y	early %	Change	Yearly Change	Migrants (net)	Median
Age ## 1 43.7	2020	51,269,185		0.09 %	43,877	11,731	
## 2 41.4	2019	51,225,308		0.10 %	53,602	11,731	
## 3	2018	51,171,706		0.15 %	75,291	11,731	
41.4 ## 4	2017	51,096,415		0.22 %	112,958	11,731	
41.4 ## 5 41.4	2016	50,983,457		0.32 %	160,364	11,731	
## 6	2015	50,823,093		0.51 %	255,491	80,237	
40.8	2010	49,545,636		0.34 %	168,913	-31,309	
38.0 ## 8	2005	48,701,073		0.55 %	264,366	16,245	
34.8 ## 9	2000	47,379,241		0.90 %	417,344	31,886	
	1995	45,292,522		1.08 %	474,821	14,284	
	1990	42,918,419		1.02 %	422,803	34,116	
	1985	40,804,402		1.41 %	551,759	18,578	
	1980	38,045,607		1.46 %	533,389	-33,027	
	1975	35,378,661		1.90 %	636,596	-41,988	
	1970	32,195,681		2.19 %	660,025	-16,369	
	1965	28,895,558		2.67 %	713,209	-13,827	
	1960	25,329,515		3.32 %	762,989	62,079	
18.6 ## 18 18.9	1955	21,514,570		2.29 %	460,637	86,590	
##	Fert	ility Rate De	nsity (P	/Km짼) U	rban Pop % Urb	an Population	
## 1		1.11		527	81.8 %	41,934,110	
## 2		1.21		527	81.6 %	41,805,375	
## 3		1.21		526	81.4 %	41,678,226	
## 4		1.21		526	81.3 %	41,552,264	
## 5		1.21		524	81.3 %	41,426,777	
## 6		1.23		523	81.3 %	41,301,851	
## 7		1.17		510	81.9 %	40,601,614	
## 8		1.21		501	81.4 %	39,622,010	
## 9		1.50		487	79.6 %	37,729,427	

```
## 10
                                    466
                                             78.2 %
                                                           35,441,319
                 1.68
                                             73.9 %
## 11
                 1.57
                                    441
                                                           31,696,103
                 2.23
                                             64.9 %
## 12
                                    420
                                                           26,474,831
## 13
                2.92
                                    391
                                             56.7 %
                                                           21,582,191
## 14
                4.00
                                    364
                                             48.0 %
                                                           16,997,155
## 15
                                             40.7 %
                4.65
                                    331
                                                           13,110,502
## 16
                 5.60
                                    297
                                             32.4 %
                                                            9,351,713
                                             27.7 %
## 17
                6.33
                                    261
                                                            7,022,058
## 18
                                    221
                                             24.4 %
                 5.65
                                                            5,251,885
##
      Country's Share of World Pop World Population South KoreaGlobal Rank
## 1
                             0.66 %
                                        7,794,798,739
                                                                            28
## 2
                             0.66 %
                                                                            28
                                        7,713,468,100
## 3
                             0.67 %
                                        7,631,091,040
                                                                            28
## 4
                             0.68 %
                                        7,547,858,925
                                                                            27
## 5
                             0.68 %
                                        7,464,022,049
                                                                            27
                             0.69 %
## 6
                                        7,379,797,139
                                                                            27
## 7
                             0.71 %
                                        6,956,823,603
                                                                            26
## 8
                             0.74 %
                                                                            25
                                        6,541,907,027
                             0.77 %
## 9
                                        6,143,493,823
                                                                            24
## 10
                             0.79 %
                                        5,744,212,979
                                                                            24
## 11
                             0.81 %
                                        5,327,231,061
                                                                            24
                             0.84 %
## 12
                                        4,870,921,740
                                                                            23
## 13
                             0.85 %
                                                                            23
                                        4,458,003,514
## 14
                             0.87 %
                                        4,079,480,606
                                                                            23
                             0.87 %
## 15
                                        3,700,437,046
                                                                            24
## 16
                             0.87 %
                                        3,339,583,597
                                                                            24
## 17
                             0.83 %
                                                                            24
                                        3,034,949,748
## 18
                             0.78 %
                                                                            24
                                        2,773,019,936
```

문제3

- 어떤 문제를 수치계산으로 풀지않고 확률(난수)를 이용해서 푸는 것을 몬테키를로법이라 한다.이방법으로 원주율 파이를 구할 수 있다. **각도형의 면적*** 반지름이 | 1인원 면적의 1/4 = 1/4 x pi X 1^2 = pi/4 * 한 변이 1인정시각형의 면적 = 1^2 = 1 **공식 유도** 1. 1/4원 내부에 표시된 난수 개수: a 2. 1/4원 외부에 표시된 난수 개수: b 3. pi/4:1 = a:a+b 4. pi = 4a/a+b = 4a/n **이미지는 PR본문참고**
 - 점을뽑을갯수n을입력받아파이를 추정하는함수mc pi를 작성하세요
 - 점을 100개1000개10000개100000개 뽑았을 때 추정된 파이를 출력하고 실제 파이지과 가까워지는지 확인하세요 * HINT1 : 난수생성함수 runif(n,min=0,max=1) * 0 에서 1 사이의 난수를 n개생성(default)-+ HINT2 : 좌표평면상의 점이므로 각각 n개의 x 값과 y 값이 필요합니다 두점과 원점(0,0)사이의 거리는 다음과 같이 구할 수 있습니다.

```
*distance = sqrt(x^2 + y^2)+
```

```
vec <- c(100,1000,10000,100000,1000000)
mc pi <- function(n) {</pre>
 x <- runif(n, min=0, max=1) #좌표명방 x 좌표가 0~1 인 x 난수생성
 y <- runif(n, min=0, max=1) #조표명안 y조표가 0~1 인 y 난수생성
 # 말이 두줄코드는 난수와 원점사이의 거리공식,pi 공식을 통해 pi를 구하는 괴정입니다
 xy <- ifelse(x^2 + y^2 <= 1,T,F) #x제곱과 y제곱의 합이 1보다 작거나 같은 경우 xy 에
count
 PI <- 4*(sum(xy)/n) #pi 값을 구하는 공식 적용
 return(PI)
}
cat("n=",100,"일 때 추정된 PI : ",mc_pi(vec[1]),"\n","n=",1000,"일 때 추정된 PI :
",mc_pi(vec[2]),"\n","n=",10000,"일 때 추정된 PI :
",mc_pi(vec[3]),"\n","n=",100000,"일때 추정된 PI :
",mc_pi(vec[4]),"\n","n=",1000000,"일 때 추정된 PI : ",mc_pi(vec[5]),"\n")
## n= 100 일 때 추정된 PI : 3.12
## n= 1000 일 때 추정된 PI : 3.128
## n= 10000 일 때 추정된 PI : 3.144
## n= 1e+05 일 때 추정된 PI : 3.14316
## n= 1e+06 일 때 추정된 PI : 3.139088
```