Genetics and Molecular Biology: Lecture 5

Morgan McCarty

12 September 2024

• DNA Replication Technology

- Polymerase Chain Reaction (PCR) 1983
 - * In vitro (test tube) method for making copies of DNA sequences using DNA polymerase
 - * USes: molecular cloning, diagnostics, forensics, DNA sequencing, gene expression analysis, etc.
 - * E.g. Covid testing
 - * PCR amplifies specific 'target' DNA sequences
- PCR Primers Initiate Replication
 - * Short DNA sequences (oligonucleotides) produced synthetically and added to PCR Reaction
 - * Fufill same role as RNA primase (but are DNA)
 - * Primers can be designed to target regions of desire (region amplifed between primers)
- PCR Components
 - * Template (source) DNA
 - * DNA nucleotides (dNTPS) e.g. any nucleotide triphosphates
 - * oligonucleotides primers
 - * Buffers/salts magnesium buffers triphosphate charge: need proper environment for DNA polymerase to work
 - * DNA polymerase

- PCR cycle

- 1. Denature 95 deg C: heat to separate DNA strands
- 2. Anneal (prime) $50 60 \deg C$: cool to allow primers to bind to template DNA
- 3. Extend 72 deg C: heat to allow DNA polymerase to synthesize new DNA strand
- 4. Repeat
- Heat stable polymerase greatly improves PCR
 - * Thermus aquaticus (Taq): bacteria that lives in Yellowstone hot springs has DNA polymerase that will not denature during heating of DNA to separate strands
- The product of one cycle being used as a template in next cycle leads to an exponential increase
 in DNA only works if the product of one primer contains the binding site for the other primer
- Primer Sequence influences annealing temperature
 - * GC base pairs are stronger than AT pairs, so they can anneal at higher temps
 - * Larger sequences anneal at higher temps
- DNA Sequencing

- Reasosn to know a DNA molecule's nucleotide sequences
 - * Find and interpret genes
 - * Asses evoluation connections
 - * Discover and diagnose genetic disorders
- Sanger Sequencing 1977
 - * Similar to PCR, but only one primer is used and no chain reaction occurs
 - * Dideoxynucleotides (ddNTPs) included to prematurely teminate strand synthesis (they do not have a 3' OH group)
 - * Flourescently labeled ddNTPS + unlabled dNTPS + primer and polymerase + DNA template are added to sequence
 - * Goal to creaate nucleotide stands of each length then sort by size to determine nucelotide at each location
 - * Gel Electrophoresis
 - · Uses electricity to separate DNA molecules by size (number of nucelotides)
 - · Larger molecules move through the gel slower than small moleculear and get stuck sooner
 - · Add a DNA sample to electric field and it slowly moves toward the postive end (nucleic acids are negatively charged)
 - * Capillary Electrophoresis
 - * Sanger sequencing can only sequence 100s to 1000s of base pairs at a time (a single read)
 - * Human genome has 3.2 billion base pairs (shotgun sequencing used to sequence many disjointed small portions)
- Contigs and Coverage (Genome Sequencing Assembly)
 - * Contig: continuous segment of sequence created through overalapping reads (sequences)
 - * Coverage: number of copies of genome sequnced, more coverage is needed for new genome assembly