

Diabetes Dataset

Programação e Algoritmos em Ciências

Diabetes

Base de Dados

Kaggle

Disponível em:

https://www.kaggle.com/datasets/mathchi/diabetes-data-set

Composição

- 768 pacientes do sexo feminino;
- Pelo menos 21 anos de idade;
- · Background genético Pima Indian.

Propósito

Prever se o paciente tem diabetes com base nos meios de diagnóstico que compõem as diferentes variáveis

National Institute of Diabetes and Digestive and Kidney Diseases

Variáveis da base de dados

Objetivo

- Leitura e manipulação da base de dados
- Construção e visualização de informação gráfica e estatística da nossa base de dados
- Construção de uma interface estilo menu para o utilizador poder interagir
 livre e personalizadamente com a base de dados
- Extração em ficheiros do tipo .png e .txt dos resultados obtidos pelo utilizador

Programa

pip3 install "package"

import pandas as pd

from pandas_profiling import ProfileReport

import numpy as np

import seaborn as sns

import matplotlib.pyplot as plt

Código

```
def var num(dataframe, variaveis):
   for i in variaveis:
       fig, ax = plt.subplots()
        ax.axis('off')
        ax.axis('tight')
        df var = dataframe[i].describe()
        colnames = df var.axes[0].tolist()
        tabela = ax.table(cellText =
[df_var.values.round(2)],colLabels=colnames, loc =
'center')
        tabela.auto set font size(False)
        tabela.set fontsize(8)
        plt.title(f"Table of statistical values of {i}")
        plt.show()
        sns.histplot(data = dataframe, x=i)
        plt.title(f"Histogram of {i}")
        plt.show()
        sns.boxplot(data = dataframe, x = i)
        plt.title(f"Boxplot of {i}")
        plt.show()
```

Output

Table of statistical values of Pregnancies

Γ	count	mean	std	min	25%	50%	75%	max
Γ	768.0	3.85	3.37	0.0	1.0	3.0	6.0	17.0


```
universidade de aveiro Clcm
departamento de ciências médicas
```

```
def swarmplotvar(dataframe, variaveis,
vcategorical = None):
    for s in variaveis:
        sns.catplot(x = vcategorical, y = s,
hue = vcategorical, kind = "swarm", data =
dataframe)
    plt.title(f"Swarmplot of {s} by
{vcategorical}")
    plt.savefig("swarmplot.png")
    plt.show()
```



```
def hist_vcat(dataframe, vcategorical,
variaveis):
counter = 0
    for var in variaveis:
        counter += 1
        print(counter, ':', var)
        sns.displot(data = df bal, kde=True, x
= dataframe[str(var)], hue=vcategorical,
palette=cores)
        plt.title(f'Histogram of "{var}" by
{vcategorical}')
    plt.plot()
    plt.savefig("histogram_variaveis_numericas.
png")
    plt.show()
```



```
def categorica_values(dataframe, vcategorical):
    order = []
    if vcategorical == "Outcome":
        order = [0,1]
    else:
        order = ['Hypoglycemia','Normal','Pre-
diabetes']
    plt.figure()
    sns.countplot(x = dataframe[vcategorical], data =
dataframe, hue_order = order)
    plt.title(f"Distribution of {vcategorical}")
    plt.savefig("barplot_variavel_categorica.png")
    plt.show()
```



```
universidade de aveiro Clcm departamento de ciências médicas
```

```
def circular(dataframe, vcategorical):
    labels = []
    if vcategorical == "Outcome":
        labels = {'Not Diabetic', 'Diabetic'}
    else:
        labels = {'Normal':'Normal','Pre-
diabetes':'Pre-
diabetes','Hypoglycemia':'Hypoglycemia'}
    plt.figure(figsize = (10,7))
    plt.pie(dataframe[vcategorical].value count
s(), labels = labels, autopct = '%0.02f%%')
    plt.legend()
    plt.savefig("circular var categorica.png")
    plt.show()
```



```
universidade de aveiro CCM departamento de ciências médicas
```

```
def boxplot all(dataframe, drop values,
has outcome = False):
    diabetesbp = dataframe.drop(drop values, axis
= 1
    diabetes melted = pd.melt(diabetesbp, id vars
= "Outcome", var name = "variables", value name =
"value")
    plt.figure(figsize = (15, 15))
    sns.boxplot(data = diabetes melted, x =
"variables", y = "value", hue = "Outcome") if
has outcome else sns.boxplot(data =
diabetes melted, x = "variables", y = "value")
    plt.title("Boxplot of numeric variables by
Outcome") if has outcome else plt.title("Boxplot
of numeric variables")
    plt.savefig("boxplot all.png")
    plt.show()
```



```
def stripvar(dataframe, drop values,
has outcome = False):
    diabetesbp= dataframe.drop(drop values,
axis = 1
    diabetes melted = pd.melt(diabetesbp,
id vars = "Outcome", var name = "variables",
value name = "value")
    plt.figure(figsize = (15, 15))
    sns.stripplot(x = "variables", y = "value",
hue = "Outcome", data = diabetes melted) if
has outcome else sns.stripplot(x = "variables",
y = "value", data = diabetes melted)
    plt.title("Stripplot of numeric variables
by Outcome") if has outcome else
plt.title("Stripplot of numeric variables")
    plt.savefig("stripplot.png")
    plt.show()
```



```
def pairplt(dataframe, vcategorical = None):
    plt.figure()
    sns.set(font_scale = 0.7)
    sns.pairplot(dataframe, hue =
    vcategorical, diag_kind = "kde", plot_kws =
    {"s": 8})
        plt.title(f"Pairplot of all numeric
    variables by {vcategorical}")
        plt.savefig("pairplot.png")
        plt.show()
```



```
def hist total(dataframe, has outcome = False):
    variaveis = dataframe.columns
    print(variaveis)
    counter = 1
    for i in variaveis:
        print(counter, ':', i)
        plt.subplot(2,5,counter)
        sns.histplot(data = dataframe, x = datafram
has outcome else sns.histplot(data = dataframe, x =
        counter += 1
    plt.suptitle("Histogram of all variables by Out
variables", fontsize = 16)
    plt.plot()
    plt.savefig("histogram all.png")
    plt.show()
```

Histogram of all variables by Outcome


```
universidade de aveiro Clcm
departamento de ciências médicas
```

```
def scatterplt(dataframe, variavel 1, variavel 2,
vcategorical = None):
    print(f"Variável no eixo dos xx: {variavel 1}
\nVariável no eixo dos yy: {variavel 2}")
    sns.scatterplot(data = dataframe, x = variavel 1,
y = variavel 2, hue = vcategorical)
    plt.title(f"Scatterplot of {variavel 1} by
{variavel 2} in order to {vcategorical}") if
vcategorical is not None else plt.title(f"Scatterplot
of {variavel 1} by {variavel 2}")
    plt.legend()
    plt.savefig("scatterplot.png")
    plt.show()
```



```
universidade de aveiro CCM
departamento de ciências médicas
```

```
def regressao (dataframe, variavel 1, variavel 2,
    if vcategorical == "Outcome":
        sns.regplot(x = variavel 1, y = variavel 3
        sns.regplot(x = variavel 1, y = variavel
    elif vcategorical=="GlycemiaValues":
        sns.regplot(x = variavel 1, y = variavel
        sns.regplot(x = variavel 1, y = variavel
        sns.regplot(x = variavel 1, y = variavel
    else:
        sns.regplot(x = variavel 1, y = variavel
    plt.title(f"{variavel 1} vs {variavel 2} scat
    plt.savefig("regressao.png")
    plt.show()
```



```
def matrcorr(dataframe):
    corr = dataframe.corr().round(2)
    plt.figure(figsize = (14, 10))
    sns.set(font_scale = 1.15)
    mask = np.zeros_like(corr)
    mask[np.triu_indices_from(mask)] = True
    sns.heatmap(corr, annot = True, cmap =
'BuPu', mask = mask, cbar = True)
    plt.title('Correlation Matrix')
    plt.savefig("correlation_matrix.png")
    plt.show()
```



```
elif opcao == 5:
        lista=get lista variaveis()
        escolha6=menu 5()
        if escolha6==0:
            list calcs to write=[]
            for c in lista:
                lista valores=diabetesdf[c]
.values
                print(f"Média da variável
{c}")
                calc valor =
np.mean(lista valores).round(2)
                print(calc valor)
                list calcs to write.append(
f"Media da variavel {c}: {calc valor} \n")
            save file(list calcs to write)
            terminar()
                                       χ4
```

```
<class 'list'>
    0: Média
    1: Média Ponderada
    2: Mediana
    3: Variância
    4: Desvio Padrão
Escolha o cálculo do menu acima que pretende efetuar: 0
Média da variável Pregnancies
3.85
Deseja guardar o cálculo num ficheiro? Sim ou Não?
s
Escolha o nome do seu ficheiro: MediaPregnancies
```

MediaPregnancies - Bloco de notas
Ficheiro Editar Formatar Ver Ajuda
Media da variavel Pregnancies: 3.85

Overview

Dataset statistics		Variable types		
Number of variables	10	Numeric	8	
Number of observations	768	768 Categorical 0 0.0% 0 0.0% 60.1 KIB	2	
Missing cells	0			
Missing cells (%)	0.0%			
Duplicate rows	0			
Duplicate rows (%)	0.0%			
Total size in memory	60.1 KiB			
Average record size in memory	80.2 B			

Alerts	
Pregnancies is highly overall correlated with Age	High correlation
Glucose is highly overall correlated with Glycemiavalues	High correlation
SkinThickness is highly overall correlated with Insulin	High correlation
Insulin is highly overall correlated with SkinThickness	High correlation
Age is highly overall correlated with Pregnancies	High correlation
Glycemiavalues is highly overall correlated with Glucose	High correlation
BloodPressure is highly overall correlated with BMI	High correlation
BMI is highly overall correlated with BloodPressure	High correlation
Pregnancies has 111 (14.5%) zeros	Zeros
BloodPressure has 35 (4.6%) zeros	Zeros
SkinThickness has 227 (29.6%) zeros	Zeros
Insulin has 374 (48.7%) zeros	Zeros

Limitações e trabalho futuro

Trabalho futuro:

Manipular a base de dados tendo a opção de retirar outliers e/ou os zeros.

Limitações:

- Dificuldade inicial de trabalhar em equipa uma vez que eram três pessoas a tentar escrever o mesmo código - ultrapassado com recurso ao GitHub;
- Pouco conhecimento de programação, especialmente a nível prático ao longo do projeto adquirimos mais conhecimentos ao pesquisar por iniciativa própria como se construía o gráfico desejado, tentando sempre otimizar o código

Obrigado pela atenção!

Referências:

- Mayo Clinic Staff. (2022, March 24). Glucose tolerance test. Mayo Clinic. Retrieved December 10, 2022, from https://www.mayoclinic.org/tests-procedures/glucose-tolerance-test/about/pac-20394296
- 2. Diabetes overview. Diabetes Symptoms, Causes, & Treatment | ADA. (n.d.). Retrieved December 12, 2022, from https://diabetes.org/diabetes
- 3. Waskom, M. L. (2021). Statistical Data Visualization#. seaborn: statistical data visualization. Retrieved December 14, 2022, from https://seaborn.pydata.org/
- 4. Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Matplotlib documentation Matplotlib 3.6.2 documentation. Retrieved December 13, 2022, from https://matplotlib.org/stable/index.html