

SCHOOL OF COMPUTER SCIENCE

CASE STUDY (Weightage 30%) JAN 2025 SEMESTER

MODULE NAME : Statistical Inference and Modelling

MODULE CODE : ITS66804

DUE DATE : Week 11

PLATFORM : MyTIMES

This paper consists of TEN (10) pages, inclusive of this page.

Group No:

Project Title:

STUDENT DECLARATION

- 1. I confirm that I am aware of the University's Regulation Governing Cheating in a University Test and Assignment and of the guidance issued by the School of Computing and IT concerning plagiarism and proper academic practice, and that the assessed work now submitted is in accordance with this regulation and guidance.
- 2. I understand that, unless already agreed with the School of Computing and IT, assessed work may not be submitted that has previously been submitted, either in whole or in part, at this or any other institution.
- 3. I recognise that should evidence emerge that my work fails to comply with either of the above declarations, then I may be liable to proceedings under Regulation

No	Student Name	Student ID	Date	Signature	Score
1.	Sahel Shrestha	0370021	18 th March	Sakel	
2,	Sujal G.C	0370039	18 th March	Dajal	
3.	Jenish Karmacharya	0370033	18 th March	Jenish	
4.	Riya Maharjan	0369932	18 th March	- Final	
5.	Bebisa Regmi	0370002	18th March	Berlisa	

Marking Rubric

	Group Assignment Marking Rubrics					
Abstract (5 marks)	5 marks A clear and concise abstract that gives the reader a clear idea of what the project is about and why it is interesting. The following components need to be included i. Purpose and motivation of this research ii. Problem you are addressing iii. Methods and materials iv. Results v. Conclusion	4 marks A clear abstract that gives the reader a clear idea of what the project is about. Four of the following components are included i. Purpose and motivation of this research ii. Problem you are addressing iii. Methods and materials iv. Results v. Conclusion	The abstract is difficult to read and/or is very vague and/or doesn't sell the project as well as it might have. Three of the following components are included i. Purpose and motivation of this research ii. Problem you are addressing iii. Methods and materials iv. Results v. Conclusion	2 marks Unable to read the abstract and/or is very vague and/or doesn't sell the project as well as it might have. Only two of the following components are included i. Purpose and motivation of this research ii. Problem you are addressing iii. Methods and materials iv. Results v. Conclusion	1 mark Unable to read the abstract. Only one of the following components is included i. Purpose and motivation of this research ii. Problem you are addressing iii. Methods and materials iv. Results v. Conclusion	

Introduction (10 marks)	readable write- up that explains what	write-up that explains what the problem is. Three of	5-6 marks The write-up is difficult to read, somewhat vague, or doesn't make a really good case for why	vague. Only one of the following components	1-2 marks Unable to read the write-up. None of the following components are included. i. Problem ii.
	components need to be	are included. i. Problem ii.	the problem is	are included.	i. Problem ii. Negative
		Negative	of interest.	i. Problem	impact of the

included i. Problem ii. Negative impact of the problem iii. Parties affected iv. Benefit of solving the problem	impact of the problem iii. Parties affected iv. Benefit of solving the problem	Two of the following components are included. i. Problem ii. Negative impact of the problem iii. Parties affected iv. Benefit of	ii. Negative impact of the problem iii. Parties affected iv. Benefit of solving the problem	problem iii. Parties affected iv. Benefit of solving the
proofem				

Literature	18-20 marks	15- 17 marks	10-14 marks	5-9 marks An	1-4 marks
Review	An	A	A fairly good	overview of	An overview
(20marks)	outstanding	comprehensive	overview of	several papers	of several
(201141113)	overview, with	overview of	prior work,	related	related
	an insightful	prior work that		to the proposed	papers, but
	analysis of	gives the	connection is	method, and	not within a
	prior work and		made to the	some attempt is	coherent
	a clear	idea of what's	proposed	made to	conceptual
	connection	out there and	1 1	connect the	frame-
	between prior	how	of the	prior work to	work. One
	work and the	the proposed	following	the current	of the
	proposed	method is	components	method. Two of	following
	method. The	different. Four	are given. (5	the following	components
	following	of the	articles)	components are	are given. (2
	components	following	i.	given. (4	marks)
	are given. (8	components	Introduction	marks)	i.
	articles)	are given. (6	of the tropic	i.	Introduction
	i.	articles)	ii. Taxonomy	Introduction of	of the topic
	Introduction	i. Introduction	Mapping	the topic ii.	ii. Taxonomy
	of the topic	of the topic ii.	iii. Paragraphs	Taxonomy	Mapping iii.
	ii. Taxonomy	Taxonomy	for each	Mapping iii.	Paragraphs
	Mapping	Mapping	branch of the	Paragraphs for	for each
	iii. Paragraphs	iii. Paragraphs	taxonomy	each branch of	branch of the
	for each	for each	tree iv.	the	taxonomy
	branch of the	branch of the	Conclusion v.	taxonomy	tree iv.
	taxonomy	taxonomy tree	Critical	tree iv.	Conclusion v.
	tree iv.	iv. Conclusion	Review	Conclusion v.	Critical
	Conclusion v.	v. Critical		Critical	Review
	Critical	Review		Review	
	Review				
Data	5 marks	4 marks The	3 marks	2 marks The	1 mark The
(5marks)	The data are	data are	The data	explanations	explanations
<u> </u>	comprehensive	fairly	are not	•	_
	1				

and clearly	explained. At least	1 -	are	are flawed.
described. At least	5 of the following	and/or there is a	significantly	At least 2
6 of the following	components are	flaw in the	flawed. At	of the
components are	given.	explanation. At	least 3 of the	following
given.		least 4 of the	following	components
	i. Source of	following	components	are given.
i. Source of	the data	components are	are given.	i. Source
the data	ii. Descriptio	given.	i. Source	of the data
ii. Descriptio	n of the data and		of the data	ii.
n of the data and	its context iii.	i. Source of	ii.	Descriptio
its context iii.	Statistics of the	the data	Description	n of the
Statistics of the	data iv.	ii. Descriptio	of the data	data and its
data iv.	Presentation,	n of the data and	and its	context iii.
Presentation,	visualization and	its context iii.	context iii.	Statistics
visualization and	quantification	Statistics of the	Statistics	of the
quantification of	of the data and	data iv.	of the	data
the data and	images	Presentation,	data iv.	iv.
images	v. Conclusion	visualization and	Presentation,	Presentation,
v. Conclusion		quantification of	visualization	visualization
		the data and	and	and
		images	quantification	quantificatio
		v. Conclusion	of the data	n of the data
			and images	and images
			v. Conclusion	v. Conclusion

3.6.41	17.20 1 171	12 16 1 171	0.10 1 171	<i>5</i> 0 1	1 4 1
Metho	17-20 marks The	13-16 marks The	9-12 marks The	5-8 marks	1-4 marks
d (20	methods of	methods of	methods of	The	The methods
marks)	analysis Are	analysis are fairly	analysis are not	methods of	of analysis
	comprehensive	explained. At	comprehensive	analysis are	are flawed.
	and clearly	least 5 of the	and/or there is a	significantl	At least 2 of
	described. At least	following	flaw in the	y flawed. At	the following
	6 of the following	components are	explanation. At	least 3 of	components
	components are	given.	least 4 of the	the	are given.
	given.		following	following	
		i. Explanatory data	components	components	i.
	i. Explanatory data	analysis ii.	are given.	are given.	Explanatory
	analysis ii.	Statistical data			data analysis
	Statistical	analysis	i. Explanatory	i.	ii. Statistical
	data analysis	methods iii.	data analysis ii.	Explanatory	data analysis
	methods iii.	Appropriate data	Statistical data	data analysis	methods
	Appropriate data	analysis	analysis methods	ii. Statistical	iii.
	analysis	iv. Statistical	iii. Appropriate	data analysis	Appropriate
	iv. Statistical	methods address	data analysis	methods	data analysis
	methods address	the research	iv. Statistical	iii.	iv. Statistical
	the research	objective	methods	Appropriate	methods
		v. Informatio		data analysis	address the
		n		iv. Statistical	research
				methods	objective
					-

methods methods

Result &	17-20 marks	13-16 marks	9-12 marks	5-8 marks The	1 1 montes
Discussion (20	The results are	The results are	The results are	results are	The results
(20 marks)	comprehensive	•	not	significantly	are flawed.
	and clearly	explained. At	comprehensive		At least 2 of
	described. At	least 5 of the	and/or there is	least 3 of the	the following
	least 6 of the	following	a flaw in the	following	components
	following	-	explanation. At	-	are given.
	components	given.	least 4 of the	are given.	1.
	are given.	i.	following	i.	Subheadings
	1.	Subheadings	components	Subheadings	are included
	Subheadings	are included	are given.	are included	and are clear
	are included	and are clear	i.	and are clear	and
	and are clear	and	Subheadings	and	informative
	and	informative ii.	are included	informative	ii. Figures
	informative ii.	Figures and	and are clear	ii. Figures	and tables
	Figures and	tables are	and	and tables	are
	tables are	supported by	informative ii.	are	supported by
	supported by	text iii.	Figures and	supported by	text iii.
	text iii.	Correct	tables are	text iii.	Correct
	Correct	interpretation	supported by	Correct	interpretation
	interpretation	of the results	text iii.	interpretation	of the results
	of the results	iv. Results	Correct	of the results	iv. Results
	iv. Results	with tables	interpretation	iv. Results	with tables
	with tables	and diagrams	of the results	with tables	and diagrams
	and diagrams	v. Additional	iv. Results	and diagrams	v. Additional
	v. Additional	insight to the	with tables	v. Additional	insight to the
	insight to the	content vi.	and diagrams	insight to the	content vi.
	content vi.	Critical	v. Additional	content vi.	Critical
	Critical	analysis of	insight to the	Critical	analysis of
	analysis of	the results	content vi.	analysis of	the results
	the results	vii. Clearly	Critical	the results	vii. Clearly
	vii. Clearly	addresses	analysis of	vii. Clearly	addresses the
	addresses	the research	the results	_	research
	the research	question	vii. Clearly	research	question
	question	4.00000011	addresses	question	4.55.11011
	question		the	4400000	

	research	
	question	

I imi4a4:-	0.10 morte A	7-8 marks	5 6 manufer A	2 1 montra 1 m	1.2 montra Na
Limitatio	9-10 marks An	· -	5-6 marks An	3-4 marks An	1-2 marks No
n and	insightful and	A correct	incomplete	incorrect	analysis. None of
future	correct analysis.	analysis	or	analysis. One of	the following
Study (10	The following	that could	somewhat	the following	components are
marks)	components are	be more	incorrect	components are	given.
	given.	complete	analysis. Two	given.	i. Discussion
	i. Discussion	and is not	of the	i. Discussion	addresses the
	addresses the	very	following	addresses the	major finding of
	major finding of	insightful.	components	major finding of	the study ii.
	the study ii.	One of the	are missing.	the study ii.	Results are
	Results are	following	i. Discussion	Results are	interpreted with
	interpreted with	componen	addresses the	interpreted with	respect to outside
	respect to	ts is	major finding	respect to outside	sources iii.
	outside sources	missing.	of the study	sources iii.	Identify the
	iii. Identify the	i.	ii. Results are	Identify the	limitation or
	limitation or	Discussion	interpreted	limitation or	limitations iv.
	limitations iv.	addresses	with respect	limitations iv.	Explain these
	Explain these	the major	to outside	Explain these	limitations in
	limitations in	finding of	sources iii.	limitations in	detail
	detail	the study	Identify the	detail	v. Propose a future
	v. Propose a	ii. Results	limitation or	v. Propose a future	
	future direction	are	limitations iv.	direction for	future studies
	for future studies	interpreted	Explain these	future studies	
		with	limitations in		
		respect to	detail		
		outside	v. Propose a		
		sources iii.	future		
		Identify the	direction for		
		limitation	future studies		
		or			
		limitations			
		iv. Explain			
		these			
		limitations			
		in detail			
		v. Propose a			
		future			
		direction			
		for future			
		studies			
L	I		I	I	<u> </u>

<i>c</i>	c 1 1 1	4 1	2 1 4	2 1 4	1 1 37
	5 marks A clear	4 marks	3 marks A	2 marks An	1 marks No
n (5	and insightful	A summary	flawed	incorrect	conclusion. One
marks)	summary of the	of the	conclusion	conclusion.	of the following
	paper, perhaps	experiment	. Two of	Three of the	components is
	with interesting	s is given,	the	following	given.
	ideas for future	but the	following	components are	
	work. The	conclusion	componen	missing.	i. Restate your
	following	is a mere	ts are		research topic ii.
	components are	summary.	missing.	i. Restate your	Restate the
	given.	The ideas		research topic ii.	objective iii.
		for future	i. Restate	Restate the	Summarize
	i. Restate your	work are	your research	objective iii.	
	research topic	not	topic ii.	Summarize	
	_	interesting.	Restate the		
		One of the	objective iii.		
		following	Summarize		
		components	the main		
		is	topics		
	ii. Restate the	missing.	iv.	the main	the main
	objective iii.	i. Restate	Significance	topics iv.	topics iv.
	Summarize the	your	of results	Significance of	Significance of
	main topics iv.	research	v.	results	results
	Significance of	topic ii.	Conclude	v. Conclude the	v. Conclude the
	results	Restate the	the	thoughts	thoughts
	v. Conclude	objective	thoughts		
	the thoughts	iii.	8		
	8	Summarize			
		the main			
		topics iv.			
		Significanc			
		e of results			
		v.			
		Conclud			
		e the			
		thoughts			
		mougnis			

Format (5	5 marks A	4 marks A	3 marks	2 marks Three of	1 marks One of
marks)	clear and	clear and	Two of the	the following	the following
	correct	correct	following	components are	components is
	formatting.	formatting	component	missing.	given.
	The	. One of	s are		
	following	the	missing.	i. Number of	i. Number of
	components	following		pages 10 -15 ii.	pages 10 -15 ii.
	are given.	componen	i. Number	Use the correct	Use the correct
		ts is	of pages 10	template iii.	template iii.
	i. Number of	missing.	-5 ii. Use	Similarity index	Similarity index
	pages 10 -15		the correct	less than 20%	less than 20%
	ii. Use the	i.	template iii.	iv. All the	iv. All the
	correct	Number	Similarity	sections given	sections given
	template iii.	of pages	index less	in proper order	in proper order
	Similarity	10 -15 ii.	than 20%	v. Readab	v. Readab
	index less than	Use the	iv. All the	le pdf file	le pdf file
	20%	correct	sections		
	iv. All the	template	given in		
	sections given		proper order		
	in proper order v. Readab	Similarity index less	v. Readable		
		than 20%	pdf file		
	le pdf file	iv. All the			
		sections			
		given in			
		proper			
		order v.			
		Readable			
		pdf file			

Table of Contents

Marking Rubric	2
Abstract	12
Introduction	14
Background	14
Abstract	
Research Objectives	14
Conclusion	15
LITERATURE REVIEW	16
Differentiation of Contribution:	17
Data	18
Source of data	19
Methods	20
Exploratory Data Analysis (EDA)	20
Data Cleaning and Preprocessing	22
Statistical and Machine Learning Methods	22
Information on Data Analysis Process	23
Relationship Between Methods and Research Objectives	23
Results and Discussion	12 14 14 15 15 16 17 18 19 20 21 22 23 24 24 24 24 25 26 27 29 30 30 30 31 32 33 34 35 36 37 38 39 30 31 32 33
Exploratory Data Analysis	24
Categorical Variables	24
Numerical Variables and Insights	26
Boxplot of charges by Smoker, Region, BMI category, Gender	27
Scatter plot of BMI vs. Charges by Smoker Status	29
Correlation heatmap	30
Statistical Analysis	30
T-tests	30
ANOVA	32
Linear Regression:	33
Predictive Modeling	34

Data Splitting	34
☐ Decision Tree Model	34
☐ Random Forest Model:	35
Confusion matrix	35
F1-score, precision, recall	36
Accuracy	37
Critical Analysis	37
Related Questions	38
Limitations and Future Study	38
Conclusion	40
Appendix	41
References	41
Figures of Table	
Fig 1: Data Exploration	21
Fig 2: Distribution of Gender	24
Fig 3: Distribution of Smoker variable	
Fig 4: Distribution of Region variable	
Fig 5: Distributions of Numerical variables	
Fig 6: Boxplots of different variables	
Fig 7: Scatter plot of BMI vs. Charges by Smoker Status	
Fig 8: Correlation heatmap	
Fig 9: T-test for charges by smoker	
Fig 10: T-test for charges by sex	
Fig 11: Check BMI significant using ANOVA	
Fig 12: Check Region significant using ANOVA	
Fig 13: Linear Regression	
Fig 14: Data Splitting	
Fig 15: Decision Tree Model	
Fig 16: Confusion Matrix for Decision Tree	
Fig 17: Random Forest Model	
Fig 18: Confusion Matrix for Random Forest	
Fig 19: Visualization of Confusion Matrices	
Fig 20: F1-score, Recall, Precision of both models	
Fig 21: Accuracy of both models	

Abstract

People and families require healthcare insurance to protect themselves from unexpected medical expenses. Many factors including location and personal choices and population demographics influence how much insurance costs will be (Cevolini & Esposito, 2020). Understanding the price variations helps to create better models and achieve healthcare price equality while driving down healthcare expenses (ul Hassan et al., 2021).

The analysis of healthcare insurance pricing examines a dataset through the examination of age, gender, BMI, dependent counts, smoking habits, geographical and insurance costs variables. A statistical modeling analysis together with exploratory data analysis (EDA) reveals the existence of strong relationships between specific variables and insurance charges.

Results show that smoking status acts as the leading factor which determines insurance premiums. Non-smokers pay insurance costs 4.5 times lower than what smokers need to pay (Hanafy & Mahmoud, 2021). Smoking results in elevated heart danger and respiratory problems and multiple long-term medical complications thus affecting insurance costs. Individuals with higher BMIs need to pay more insurance premiums because they are likely to get diabetes and high blood pressure as well as other obesity-linked disorders (Wichmann & Eberl, 2022).

Insurance premiums increase dramatically as individuals become older so the dependency between age and insurance costs demonstrates a direct and powerful positive relationship. Older age carries higher insurance costs because age itself links to higher risks for chronic diseases and various health problems. Research shows that people under 30 years pay less for premiums yet those above 50 encounter greater medical costs.

Rates assessed by insurance companies depend heavily on the geographic area where customers reside. Residents of the Southeast bear the highest insurance costs while those dwelling in the northwest, northeast and southwest sectors follow. The rates determine their values according to health costs and insurance business price methods in addition to healthcare service capabilities in particular areas.

Numerical factors such as family dependents prove to impact insurance premiums to a lesser degree. Insurer health premiums rise with each dependent member however this increase remains weaker than smoking status and age-related factors and BMI-related risk assessments.

These research findings deliver valuable knowledge to three stakeholder groups including individuals who purchase insurance, insurance provider executives and legislative representatives. Insurance firms can enhance price transparency and equality through the application of these obtained data elements to their pricing models. These study results enable policy decision-makers to maintain healthcare premiums while facilitating lower-cost medical care availability. You can access this information for cost savings to understand which behaviors and traits modify your insurance policy rates.

The research demonstrates how decision-making based on data stands vital to the healthcare insurance sector. Decisions made by the healthcare insurance industry require data-based assessments according to this research. Statistical analysis and empirical data strengthen the ongoing efforts to achieve affordable predictable health insurance.

Introduction

Background

Healthcare insurance acts as an essential safety mechanism to assist people and their families with medical payment expenses (van den Broek-Altenburg & Atherly, 2019). Health insurance costs in multiple countries repeatedly change because of demographical features together with lifestyle elements and geographic locations. Seemingly many insurance policyholders struggle to understand why their insurance payments differ significantly from those of others. Openness is lacking within the healthcare insurance sector which generates issues about financial accessibility alongside concerns for affordability and fairness (Singh et al., 2023).

The complexity of reasons determining insurance rates remains extensive but health services cost increases have turned insurance into a fundamental necessity. Understanding which elements determine insurance premiums becomes possible through comprehension of age, gender, BMI, smoking status, dependent count and geographic location impacts on rates. The research analyzes authentic data to understand effects which influence insurance rates.

Problem Statement

This study focuses on resolving the primary problem related to healthcare insurance cost determinants which currently remain unclear. People in general remain unaware about how their characteristics and behaviors specifically influence premium costs even though insurance companies base their pricing on risk models. The standard policy information systems do not explain how body mass index relates to premium rates. The general public remains unaware of the reason why smokers must pay higher insurance costs.

Premiums in health insurance show variations based on where people reside in the country. Some areas experience higher healthcare costs because their residents have different levels of medical care access together with specific provider billing strategies in addition to payment rates for regional treatments. The proposed research aims to investigate the varying insurance rates so it can contribute empirical findings about health insurance pricing.

Research Objectives

This study aims to address these issues by concentrating on the following goals:

1. The research focuses on achieving the subsequent objectives to resolve these problems.

- 2. The analysis will assess how age combined with gender and dependent count influences the insurance price.
- 3.The analysis examines how both smoking status together with body mass index determine the price of insurance coverage.
- 4. This study investigates reasons behind varying insurance premium costs that occur across geographical areas.
- 5. This study provides data to help create healthcare policies with fair distribution as well as optimize insurance pricing methods.

Significance of the Study

Multiple groups derive crucial value from the research findings:

- 1. The collection of health-related data by insurance companies permits them to establish pricing systems that align premiums with genuine medical risks at approachable rates.
- 2. Policymakers along with regulatory agencies can implement healthcare insurance policy modifications through the results to manage premiums and eliminate unfair populational discrimination.
- 3. Insights into which factors determine insurance rates enable people and policyholders to create tebter decisions about their financial planning and healthcare needs.

Scope of the study

The insurance data collection for this research includes seven features which comprise age, gender and BMI statistics along with smoking habits and area information as well as dependents and insurance fee metrics. The data analysis combines statistical methods with exploratory data analysis to establish the factors influencing insurance rates. This research focuses solely on analyzing variables from the provided dataset because outside elements affect insurance costs although they are not part of this study.

Conclusion

This study aims to decrease the understanding difference between insurance pricing methods and public comprehension by revealing essential variables that shape health insurance premiums. Statistical analysis alongside data analytics develops a fairer healthcare insurance market which becomes more transparent.

LITERATURE REVIEW

The chosen dataset "Healthcare Insurance", from Kaggle, has been a base for many research jobs within the healthcare domain. Introduced here are five of the most important studies along with their results and why and how this project will provide value addition:

- 1. Health Insurance Fraud Detection Using Data Mining: This study deals with the ongoing issue of fraud in healthcare insurance. The authors elaborated on the difficulties met in the identification of new and sophisticated ways of committing fraud, thus highlighting the necessity of using effective data analytic and advanced techniques to identify any fraudulent activities within the health insurance claims.
- 2. Healthcare Cost Pattern and Prediction Studies: A Data analysis approach in this research, healthcare costs patterns are analyzed by means of personal datasets. Data analytics is used, leading to some findings and healthcare expenditures being predicted in the future, to shed more light on cost drivers in the health system.
- 3. Comparative Analysis to Predict Medical Health Insurance Cost Using Machine Learning Algorithms: This analysis compares Lasso regression, Ridge regression, KNN, and XGBoost to predict medical health insurance costs. The study proved more predictive accuracy using XGBoost in comparison with others, thus establishing its high credibility for medical cost predictions (Currie et al., 2019).
- 4. Analysing Health Insurance Customer Dataset to Determine Cross-Selling Opportunities Using Machine Learning Algorithms: In this research, machine learning algorithms were used in determining possible cross-selling opportunities in health insurance based on customer datasets. With regard to customer demographics and behavior mining, the analysis aims to assist insurance companies in planning for targeted marketing campaigns and personalized offers to turn goals into revenue.
- 5. Health Insurance Data Analysis and Visualization: Provides a statistical analysis and visualization of health insurance charges with R. The study explores several major factorsage, BMI, smoking status, and region-by employing regression models and visualizations, providing insight to further enhance affordability, accessibility, and equity in healthcare coverage.
- 6. Fraud Detection in Healthcare Insurance Claims Using Machine Learning: This work outlines the use of supervised machine learning algorithms like random forests and logistic

- regression for the detection of fraudulent claims in health insurance. The study outlined the working of these models in forecasting fraud in voluminous data to lessen the financial impact of fraudulent activities(Alhassan, Adetiba, & Ojo, 2024).
- 7. Health Insurance Premium Prediction With the Application of Machine Learning: This study focuses on using learning algorithms based on regression to predict the premiums for health insurance. The study would analyze the individual characteristics to estimate the costs accurately and thus help insurers in pricing and financial planning (Currie et al., 2019).
- 8. Using Interpretable Machine Learning Methods: An Application to Health Insurance Fraud Detection: This paper looks into the application of interpretable machine learning methods in the problem of health insurance fraud detection. The study aims at balancing the classes of fraudulent and nonfraudulent cases and offers some solutions meant to bolster reliability and transparency of the models.
- 9. Fraudulent Health Insurance Claims Detection Using Machine Learning: This research studies the application of some artificial intelligence models like multi-layer perceptron neural networks in conceiving ways to detect fraudulent health insurance claims. A monthly detection rate of 75 frauds is reported, which further highlights the power of neural networks in highlighting complex fraud behavior.
- 10. Machine Learning for the Explainable Prediction of Medical Insurance Costs: Ensemble machine learning models, such as Extreme Gradient Boosting and Random Forest, are integrated into this study to predict the costs of medical insurance. XAI methods, including Shapley Additive Explanations (SHAP) and Individualized Conditional Expectation (ICE) plots), enable transparency by clarifying the important causes of insurance premium specification. Disallow grammatical and word errors.

Differentiation of Contribution:

This project may uniquely illuminate the integration of audit detection, cost prediction, and cross-selling opportunities, which up to now have been rather unrehearsed with machine learning and de Christensen.

Possible avenues for novel contributions include:

Integrated Treatment: Integrate fraud detection, cost prediction, and customer segmentation into a single model for a broader view on healthcare insurance.

Upgrade in Real Time: Enable real-time capability to process data and detect fraud.

Data

The "Healthcare Insurance" dataset at Kaggle contains important data points to understand the different elements which affect healthcare insurance rates(Gibin, n.d.). This database consists of multiple features which include demographic information on age together with gender attributes as well as BMI measurements and family child counts alongside tobacco usage records and geographical records. The insurance charge constitutes the target variable in the dataset because it shows the payment amount for medical coverage. The dataset provides an excellent opportunity to analyze insurance price generation because it contains comprehensive variables about individual demographics along with lifestyle and health-related data.

Among all the dataset features age stands out since older people face higher insurance premiums because they have a higher susceptibility to healthcare complications. Premiums rise for individuals who smoke because the health risks from smoking increase their rate of insurance coverage. The insurance premium depends on BMI which stands for Body Mass Index as this health measure proves significant when insurers set rates. Insurance customers with elevated Body Mass Index commonly face higher premiums since their increased health risks increase the chance of developing diseases like heart disease and diabetes. The insurance premium increases when policyholders have multiple children because they need to include their children under the coverage. The premiums of insurance plans often depend on the insured individual's sex although insurers and geographic locations enforce different levels of influence.

Several data science techniques enable analysis of the dataset beginning with Exploratory Data Analysis (EDA) as the base approach. EDA provides the opportunity to examine variable relationships and visualize the distribution patterns through scatter plots and other graphical models such as histograms and box plots for insurance charge data against features. A scatter plot presents evidence for positive relationship between age and insurance cost where insurance premiums grow in line with subject age rise. Bar charts would effectively show the relationship between region-based average premiums because location factors significantly impact health insurance pricing.

The existing dataset matches perfectly with regression analysis models like linear regression for making insurance charge estimates based on available features. Historical data allows the model to understand how independent variables relating to age, sex, BMI, smoking status, region and number of children impact the dependent variable which is insurance charge. The trained models enable predictions of upcoming medical premiums for fresh patient groups from their specific features.

The dataset serves as an exceptional learning tool for people who want to build their data analysis and machine learning competencies. In educational settings the dataset serves as material to teach students how to process real datasets and clean them while learning different machine learning methods. Data analysis for this dataset becomes more effective because of Python tools particularly Pandas and Matplotlib and Seaborn.

The "Healthcare Insurance" dataset hosted by Kaggle represents an extensive resource about healthcare premium determinants for all those studying this topic. First-time students and expert data scientists will find plenty of educational prospects within this dataset to develop their data analysis abilities together with machine learning and predictive modeling competencies. The dataset is available for direct work on Kaggle through this link.

Source of data

• Source: Kaggle Main Website: https://www.kaggle.com

Below is a detailed summary of the Healthcare Insurance dataset, including its rows, columns, features, and target variable:

• **No of Rows:** 1338

• No of Columns: 7

Column Name	Data Type	Description	Role
age	Integer	Age of the policy holder	Feature
sex	Categorical (String)	Gender of the individual (male/female)	Feature
Bmi	Float	Body Mass Index, a measure of body fat based on height and weight	Feature
children	Integer	Number of children covered by the insurance policy	Feature
smoker	Categorical (String)	Indicates whether the individual is a smoker (yes/no)	Feature
region	Categorical (String)	Geographic area of residence (e.g., northeast, southeast, etc.)	Feature
charges	Float	The medical insurance cost billed to the individual (in dollars)	Target

The dataset serves many predictive modeling purposes mainly through regression analysis that uses various features to forecast insurance premium (charges). Researchers analyze the insurance costs by studying how age and BMI alongside smoking status behaviors interact with each other. The dataset possesses numerical along with categorical variables that makes it appropriate for multiple preprocessing techniques including variable normalization and categorization processes.

Three different visual methods exist for data representation purposes.

Analyzing continuous variables with the target variable (charges) works best through the use of scatter plots.

The feature distributions become transparent through the use of histograms when analyzing BMI or age patterns.

The analysis utilizes bar charts to display mean charges based on sex and region classification variables.

Correlation Matrices: These provide a visual representation of the strength and direction of relationships between different variables.

An extensive database has been obtained from the Kaggle platform through Willian Oliveira Gibin who made it available at https://www.kaggle.com/datasets/willianoliveiragibin/healthcare-insurance. The expansive information set functions as both a valuable educational tool for data cleaning practices as well as exploratory data analysis and visualization techniques and simultaneously serves as a strong basis for building healthcare economics prediction models.

Methods

We use Exploratory Data Analysis (EDA) together with statistical tests as well as machine learning techniques to study the dataset for the derivation of significant insights. This project seeks to discover major insurance charge influence variables before creating predictive models to sort charges into Low, Medium and High sections. The implementation methods for this project consist are:

Exploratory Data Analysis (EDA)

Exploratory Data Analysis (EDA) refers to a process or methodology of summarizing the main characteristics of a dataset with visual methods. EDA is a must first step of data analysis which helps the analyst to understand the data structure, detect patterns, detect outliers and test hypothesis before applying more formal statistical techniques. The following techniques were used in this project:

• Data loading and Initial Exploration: We loaded the dataset into R using the read.csv() function. Functions like str(), dim(), head(), and tail() were used to do basic exploration of the dataset to understand what the structure and content of the dataset is. To run a detailed summary of the dataset using the skim() function in the skimr package, this included missing values, data types, and descriptive statistics.

```
'data.frame':
                                                                             1338 obs. of 9 variables:
my_data <- read.csv("insurance.csv")</pre>
                                                                $ age
                                                                               : int 19 18 28 33 32 31 46 37 37 60 ...
                                                                               : Factor w/ 2 levels "female", "male": 1 2 2 2 2 1 1 1 2 1 ...
                                                                $ sex
my_data
                                                                $ bmi
                                                                               : num 27.9 33.8 33 22.7 28.9 ...
str(my_data)
                                                                $ children
                                                                               : int 0130001320...
                                                                $ smoker
dim(my_data)
                                                                               : Factor w/ 4 levels "northeast", "northwest", ..: 4 3 3 2 2 3 3 2 1 2 ...
                                                                $ region
head(my_data)
                                                                $ charges
                                                                               : num 16885 1726 4449 21984 3867 ...
                                                                $ bmi_category : Factor w/ 4 levels "Normal", "Obese",..: 3 2 2 1 3 3 2 3 3 ...
tail(my_data)
                                                                $ charge_category: Factor w/ 3 levels "High","Low","Medium": 3 2 2 3 2 2 2 2 2 3 ...
```

Fig 1: Data Exploration

- Data Visualization: Here we use several visualizations of the distribution of variables were made and relationship between them:
 - Use bar plots for visualize distribution of such categorical variables (sex, smoker, region etc.)
 - Use histogram for analysis of numerical variable such as age, bmi, children and target variable charges to see if its skewed and what is the range.
 - Use boxplots to detect and analyze outliers in our dataset (like bmi, charges etc.)
 - Using correlation heatmaps to find relation between numerical variables (age, bmi, children, charges).
- Feature Engineering: In order to simplify the analysis and increase the model performance, we created new vaiables in our project. We defined BMI categories such that it falls under 4 groups (Underweight, Normal, Overweight, Obese). To simplify the prediction task, Charge categories variables were also invented as the three group variables (Low, Medium, High).

Statistical Data Analysis Methods

The statistical data analysis methods are developed to summarize, interpret and draw sensible conclusion from the data. In this study, the following statistical techniques are used:

- Descriptive Statistics: This technique is used to summarize the numerical and categorical data. Mean, median, standard deviation and mode are computed as numerical variables.
 Frequency counts are provided for categorical variables.
- Statistical testing of hypotheses: The second step of finding the significant relationships between variables and charges is statistical testing of hypotheses. They are:

- T-tests: Used to compare mean charges between two groups (smokers vs. nonsmokers, males vs. females).
- ANOVA: Here in this project we use anova to test the impact of categorical variables i.e, BMI categories and region on charges.
- Correlation Analysis: In this, we generated a correlation heatmap to get relationship between numerical variables (age, bmi, children, charges).

Data Cleaning and Preprocessing

Several steps were taken in the data cleaning and preprocessing phase so that the dataset was ready for analysis. For missing values, imputation or removal was done to have no gaps in the data. Id columns were dropped with main features to make the dataset simpler such that our focus is on the relevant features. To prevent key variables having outliers (e.g. BMI, charges) skewing the analysis, they were identified and the potential outlier cases were dealt with to achieve a cleaner dataset with a lower noise level that facilitate further exploration.

Statistical and Machine Learning Methods

Using statistical and machine learning methods, we will correctly analyse and determine the interrelation between dependent variable and other independent variables. We will also use these methods with application, validation and a better understanding of how accurate a prediction can be made on our insurance dataset. The model used are:

- a. Linear Regression: The linear regression is a statistical method to model the relationship between dependent variable and one or more independent variables. The goal is to fit a linear equation to observed data in order to predict the dependent variable as a linear function of the independent variables. In our case, we had a linear regression model predicting insurance charges based on the factors like age, BMI, smoking status, number of children, and region. The most important variables concerning charges were smoking status and age, which explain the most importance in setting insurance costs.
- b. **Decision Tree:** It is supervised machine learning model which splits the data in subsets of input features to form a tree like structure. A decision is represented by each node and an outcome by each leaf. Decision trees are easy to interpret, but easy fit. In our

- case, the model was good in predicting Low and High but not Medium charges possibly because of data imbalance.
- c. **Random Forest:** A random forest is a technique where we combine many decision trees. The output produced by random forest is the output which is selected by most of its trees for classification. Logistic regression is a slightly less complex model than this one to implement and interpret than decision tree. This method gives better model robustness, higher accuracy and prevents overfitting problems.

Information on Data Analysis Process

The data analysis process followed these steps:

- a. **Data Collection**: The dataset was loaded and inspected.
- b. **Exploratory Data Analysis (EDA):** The dataset was used to create visualizations and statistical summaries to better understand it.
- c. **Data Cleaning and Preprocessing:** Imputation and removal were employed to handle missing values and unknown values.
- d. **Feature Engineering:** Features not needed were removed and new features were created to further enhance model performance.
- e. **Model Development:** Finally, all the models had been trained and evaluated with Linear Regression, Decision Tree, and Random Forest model.
- f. **Model Evaluation:** Accuracy, precision, recall, F1-score and other metrics were used to evaluate the models.

Relationship Between Methods and Research Objectives

The research objectives are satisfied by the methods used in this project is:

- EDA and Correlation Analysis to identify the key factors that influence the insurance charges and how age, bmi, and smoker status affects the charges.
- Statistical and Machine Learning Models: Understand how well charge categories can be predicted to set more appropriate and accurate premiums for insurers along with risk management.

Results and Discussion

The analysis of the insurance.csv dataset, containing 1,338 records of individuals' demographic and lifestyle factors and corresponding medical charges is presented in this section. The analysis is broken into three parts they are:

- A. Exploratory Data Analysis
- B. Statical Analysis
- C. Predictive Modeling

Exploratory Data Analysis

The first step in understanding the dataset is performing Exploratory Data Analysis (EDA). Summarizing the main characteristics of the data, with sometimes using visual method. In this section, there are explored distribution of categorical, and numerical variables, and the relationship between them (Lin & Chen, 2024).

Here are the data distribution we can see them by plotting bar chart for categorical variable and histogram for numeric variables.

Categorical Variables

Distribution of Gender

Fig 2: Distribution of Gender

Insight: The bar chart shows the count of the males and females within a dataset. The chart reveals that the number of males and females is almost close and there is a very small difference on the number of males over females, which seems to be a little more. This may

indicate that the dataset treats both genders equally, and so does not have any gender bias in analysis.

Distribution of Smoker

Fig 3: Distribution of Smoker variable

Insight: In the bar chart, the distribution of smokers and non-smokers is shown in the dataset. The clearly shown visualization shows that most of the people are non-smokers, with much more people in comparison to the smokers.

Distribution of Region

Fig 4: Distribution of Region variable

Insight: A bar chart is shown depicting the distribution of individuals in four regions, namely northeast, northwest, southeast, and southwest. The counts of each region are not far from balance, most of the southeast with the highest count and the other three regions with similar counts. A slight variation in the southeast may indicate there is more population or more data from that area.

Numerical Variables and Insights

Fig 5: Distributions of Numerical variables

• Distribution of Age

- It seems that age is distributed uniformly, so there roughly equal distribution of age (from 18 to 64 years) in the data.
- This uniformity is useful for analyzing how medical charges change with age since medical charges are not biased towards any one age group.
- In addition, the uniform distribution also indicates that the dataset is suitable for age based segmentation and analysis.

• Distribution of BMI

It appears that the distribution of BMI is roughly normal, with most people having a BMI between 25 and 35.

- It is possible that the moderate positive correlation between BMI and medical charges is because the majority of individuals are either overweight or obese.
- BMI distribution is normal like and hence it is a reliable variable for analysis as it is not strongly skewed.

• Distribution of Children

• Children are distributed right skewed, most individuals have 0–2 children.

Only a very few have more than 3 children.

• Distribution of Charges

- The distribution of charges is extremely right skewed, with very few people incurring very high medical costs.
- Most people (most 95%) have relatively low medical cost (less than \$10,000), while a small proportion (top 5%) has responsibility for a large share of total medical cost.

Boxplot of charges by Smoker, Region, BMI category, Gender

Fig 6: Boxplots of different variables

Insurance Charges by Smoker Status

- Medical charges for smokers are significantly higher than those for non smokers.
- This shows that the charges of smokers are more variable, so the interquartile range (IQR) is much wider for smokers.
- Some smokers have extremely high medical costs, but there are many outliers in the smoker group they might represent real world data.

Insurance Charges by Region

- The median charges are relatively similar across all regions.
- The southeast region has slightly higher median charges compared to the other regions.

Medical Charges by Gender

- The median charges for males and females are similar.
- The IQRs are similar which means the variability in charges is similar among the genders.
- There are some outliers in both groups, but they are not extreme.

Medical Charges by BMI Category

- Obese individuals have the highest median charges.
- The IQR for obese individuals is wider, indicating greater variability in charges.

In addition, medical charges are significantly higher for smokers, and the southeast's costs are marginally higher. Higher expenses do not depend on gender but rather on the level of BMI, with the most expensive group being obese persons.

Scatter plot of BMI vs. Charges by Smoker Status

Fig 7: Scatter plot of BMI vs. Charges by Smoker Status

Insight:

- Medical charges are significantly higher for smokers regardless of their level of BMI than for non smokers.
- Smoking is a major driver of healthcare costs, and even at lower BMI levels, smokers pay much higher charges.
- Charges go up with higher BMI, particularly in obese people, and non smokers tend to have lower charges.

Correlation heatmap

Fig 8: Correlation heatmap

Insight:

- Age and Charges: Medical charges are higher for older people for reasons of age-related health issues.
- BMI and Charges: Obesity can contribute to higher medical charges, perhaps due to disease such as diabetes and heart disease, which are linked to higher BMI.
- Children and Charges: Medicare charges have little or no relationship with the number of children.

Statistical Analysis

T-tests

• T-test for charges by smoker: The idea behind the hypothesis test is to check if there exists a significant difference (Damiati, 2020) in average medical charges between smokers and non smokers. The test statistic (t = -32.752), degrees of freedom (df = 311.85) indicate a strong deviation from the null hypothesis. This extremely small p-value (< 2.2e-16) is strong evidence that smokers and non smokers have different mean charges. The 95% confidence interval (-25,034.71 to -22,197.21) supports this difference.

Fig 9: T-test for charges by smoker

Mean medical charges for non-smokers are 8,434.27 and for smokers mean is 32,050.23. This implies that smoking results in higher health care costs as smoking related illness. Results show a large difference between charges, emphasizing financial cost of smoking amongst individuals and systems of healthcare.

• T-test for charges by sex: In hypothesis test, we investigate whether there is a significant difference in mean medical charges of females and males. The result gives a test statistic (t = -2.1009) and degrees of freedom (df = 1313.4) that indicate a small deviation from the null hypothesis. Since p value (0.03584) is less than 0.05, we have sufficient evidence to reject the null hypothesis. The 95% confidence interval (-2682.49 to -91.86) supports the presence of a difference mean charges.

```
Welch Two Sample t-test

data: charges by sex
t = -2.1009, df = 1313.4, p-value = 0.03584
alternative hypothesis: true difference in means bet
95 percent confidence interval:
-2682.48932 -91.85535
sample estimates:
mean in group female mean in group male
12569.58 13956.75
```

Fig 10: T-test for charges by sex

The sample estimates of mean charge are 12,569.58 for females and 13,956.75 for males. This implies that males in general spend more on medical expenses than females. Although the difference is statistically significant, it is small in comparison to other factors that might affect healthcare costs.

ANOVA

• BMI Categories: Results of the ANOVA test indicate that there are significant differences in medical charges based on different BMI categories(Damiati, 2020). At the extremely small p-value (6.66e-12) we have strong evidence against the null hypothesis that BMI has not a large impact on charges.

```
## ANOVA: Do BMI Categories Affect Medical Charges?

anova_test <- aov(charges ~ bmi_category, data = my_data)

summary(anova_test)

Df Sum Sq Mean Sq F value Pr(>F)

bmi_category 3 7.925e+09 2.642e+09 18.73 6.66e-12 ***

Residuals 1334 1.881e+11 1.410e+08

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Fig 11: Check BMI significant using ANOVA

This conclusion is reinforced by the F value of 18.73 that shows more variation between BMI categories than within them. This confirms that medical expenses are determined by BMI.

• Region: The test results for ANOVA showed that medical charges vary significantly between regions. Since the p value (0.0309) is less than 0.05, there is enough evidence to reject the null hypothesis that region has no effect on medical costs.

Fig 12: Check Region significant using ANOVA

This finding is supported by the F value of 2.97 which indicates that there are notable differences in charges between regions over variances in within region charges. This shows that location is in play when it comes to paying for medical expenses.

Linear Regression:

In the case of linear regression, the medical charges are predicted from age, BMI, smoking status, number of children, and region. The model is highly significant with a p.value of less than 2.2e-16 and the R.squared value of 0.7509 explains 75 percent of the variation in charges by predictors. Age, BMI, and smoking status have very strong impacts, but smoking status is the largest. Regions do have some importance, but not as much as their effects are. Overall, the model describes well the relationship between these variables and medical charges.

```
m = 100 \, \text{m} (charges ~ age + bmi + smoker + children + region, data = my_data) summary(lm_model)
 lm(formula = charges ~ age + bmi + smoker + children + region,
 Min 1Q
-11367.2 -2835.4
                                    3Q Max
1361.9 29935.5
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
                                       11.89
28.56
                                                21.610
11.858
bmi
                         338.66
                                                3.445 0.000588
-0.740 0.459618
                       474.57
-352.18
                                      137.74
476.12
children
 regionsoutheast
regionsouthwest
                       -959.37
                                      477.78
                                                -2.008 0.044846
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6060 on 1330 degrees of freedom
Multiple R-squared: 0.7509, Adjusted R-squared: 0.7 F-statistic: 572.7 on 7 and 1330 DF, p-value: < 2.2e-16
```

Fig 13: Linear Regression

Predictive Modeling

Data Splitting

The given dataset is split into training and testing sets to test the performance on unseen data, 80% of the training set (1,070 records) and 20% of the testing set (268 records) are used for the below steps. To ensure the split was reproducible, a random seed (123) was applied.

Fig 14: Data Splitting

• **Decision Tree Model**: Here how we implement the decision tree in our dataset.

```
"``{r}
# Decision Tree Classification Model
dt_model <- rpart(charge_category ~ age + bmi + children + smoker + region, data = trainData, method = "class")
pred_dt <- predict(dt_model, testData, type = "class")
"``</pre>
```

Fig 15: Decision Tree Model

```
# Confusion Matrix and Metrics for Decision Tree
cm_dt <- confusionMatrix(pred_dt, testData$charge_category)
print(cm_dt$table)

Reference
Prediction High Low Medium
High 30 0 0
Low 1 136 12
Medium 1 6 80</pre>
```

Fig 16: Confusion Matrix for Decision Tree

• Random Forest Model: Here how we implement the random forest in our dataset.

```
# Random Forest Classification Model
rf_model <- randomForest(charge_category ~ age + bmi + children + smoker + region, data = trainData, ntree=100)
pred_rf <- predict(rf_model, testData)</pre>
```

Fig 17: Random Forest Model

```
# Confusion Matrix and Metrics for Random Forest
cm_rf <- confusionMatrix(pred_rf, testData$charge_category)
print(cm_rf$table)

Reference
Prediction High Low Medium
High 30 0 0
Low 1 138 13
Medium 1 4 79</pre>
```

Fig 18: Confusion Matrix for Random Forest

To validate our model we use confusion matrix, F1-score, precision, accuracy, recall. Here they are:

Confusion matrix

Fig 19: Visualization of Confusion Matrices

The confusion matrix obtained from the Random Forest model indicates how accurately it predicted the classes (Low, Medium, High). This correctly classified 138 "High" instances and 79 "Low" instances and misclassified 13 "Low" instances to "Medium." The model predicts 'High' and 'Low' classes very well, but a little less well for the class of 'Low', with respect to 'Medium'.

The same result was produced by the Decision Tree model, as well as with slightly lower accuracy. It successfully classified 136 "High" and 80 "Low" examples correctly, but misclassified 12 "Low" examples as "Medium" and 50 "Medium" examples as "Low." Both models give reasonable predictions for the "High" charges and fail more in predicting "Low" and "Medium" charges which may suggest that tuning or feature engineering can potentially help.

F1-score, precision, recall

Here we show the metrics for each class. The Decision Tree and Random Forest models had very good accuracy on the 'High' class, with perfect precision and high recall. The Decision Tree performs a little better than Random Forest for the "Low" class, and has higher recall and a better F1 score. Using the Random Forest in the "Medium" class, precision and F1 score also get slightly improved over the Decision Tree. Overall, the Random Forest model performs better in the recall for the "Low" class and precision for the "Medium" class, indicating a better classification to perform for this classification task.

```
Decision Tree Metrics:
                                Random Forest Metrics:
Metrics for 'High' class:
                                Metrics for 'High' class:
Precision: 1
                                Precision: 1
Recall: 0.9375
                                Recall: 0.9375
F1 Score: 0.9677419
                                F1 Score: 0.9677419
                                Metrics for 'Low' class:
Metrics for 'Low' class:
                                Precision: 0.9078947
Precision: 0.9127517
                                Recall: 0.971831
Recall: 0.9577465
                                F1 Score: 0.9387755
F1 Score: 0.9347079
                                Metrics for 'Medium' class:
Metrics for 'Medium' class:
                                Precision: 0.9404762
Precision: 0.9195402
                                Recall: 0.8586957
Recall: 0.8695652
                                F1 Score: 0.8977273
F1 Score: 0.8938547
```

Fig 20: F1-score, Recall, Precision of both models

Accuracy

```
#accuracy for decision tree
accuracy_dt <- cm_dt$overall["Accuracy"]
cat["Accuracy:", accuracy_dt, "\n"]

Accuracy: 0.924812

**accuracy for random forest
accuracy_rf <- cm_rf$overall["Accuracy"]
cat("Accuracy:", accuracy_rf, "\n")

**Accuracy: 0.9285714</pre>
Accuracy: 0.9285714
```

Fig 21: Accuracy of both models

Here the accuracy for both model is almost same which is quit good i.e. 92%.

Critical Analysis

The study provides useful information for insurers with respect to what factors impact medical charges (e.g. smoking, BMI). The two strategies that may lower costs include targeting smoking

cessation programs as well as promoting healthier BMI levels. Moreover, the conjoining of statistical testing with machine learning models increases the trustworthiness of the analysis.

Although, the study is limited by a small dataset, and therefore the generalizability of the results may be questionable. In linear regression, there is an assumption of a linear relationship which might missout complex interaction in the data. However, these limitations have important implications for the theory of the pricing model of insurers as well as for policyholders to make informed decisions when making health decisions to reduce medical expenses.

Related Questions

- 1. What is influence of smoking status on medical insurance charges?
 - ⇒ Increased risk of serious health conditions such as lung cancer, heart disease and respiratory illnesses leads to higher medical charges among smokers compared to non-smokers who are not smokers. That difference is statistically significant (p < 0.05), as confirmed by a t-test, and smoking is a major factor affecting medical expenses.
- 2. Is there a relationship between age and medical insurance charges?
 - \Rightarrow Yes, medical charges have a positive correlation (r = 0.30) with age and more costs with age, as the age is related to health problems. The found correlation is statistically significant (p < 0.05).
- 3. What is the influence of BMI on medical insurance charges?
 - ⇒ BMI is moderately (r = 0.20) positively correlated with medical charges, with the more obese (overweight or obese) people having higher costs due to obesity related conditions, such as heart disease, diabetes and joint problems. The differences in medical charges among BMI categories are statistically significant (p < 0.05) as confirmed by ANOVA.

Limitations and Future Study

• The accuracy and reliability of information: The condition of the input data has effects on the evaluation correctness unfair outcomes may result error also may result missing data also differences information can be age or other can be error or wrong this outcome might not apply for the vast majority if some groups are missing or error.

- Connection against leakage: The research fails to connection if might include data for instance lifespan and medical costs uncertainties and additional uncertainties may effect association shown as well as produced false incorrect assumptions regarding relevance of particular number.
- Design Overestimation: Overestimation which the prediction functions effectively on information lesson learned on unknown data which is unfamiliar problems which may rise intricate design utilized lacking enough information whether compare freshly created categories of patients this may lead misleading estimations
- The ever-changing circumstance surrounding medicinal treatment: The price of regulations as well as norms regarding or concerning machine are always changing methods laws are developed system that have been built earlier previous information might turn useless because of this the design must update time to time.
- All potential relationship across various factors are not detected by education if patient falls
 down into a specific population organization such as sex, Marital status or consuming
 history which has impact on medical expenses.

Conclusion

In this case study we find the factor that impacting of the health or medical coverage we study about health care information throughout the case study we specifically examined characteristics including Gender, Age, and Body mass index among of youngsters also uses of cigarette usage along with location. Then we also found significant driver of medical health care expenses through put our investigation along with analytical framework showing illustrated or connections among above all of this all of expenses paid by insurance people.

Although overall insightful discoveries a number of drawbacks emerged such as problems within information data accuracy the complexity proving connection possible excessive modeling as well as the constantly changing character of Health care further more integrity the conclusions may effectively by Body Mass Index information reduction complicated relationship

The primary findings and throughout research highlight significance using outstanding knowledge and the requirement to maintain models.

Appendix

References

Alhassan, G. N., Adetiba, E., & Ojo, J. (2024). Machine learning for an explainable cost prediction of medical insurance. *Machine Learning with Applications*, 15, 100516. https://doi.org/10.1016/j.mlwa.2023.100516

Cevolini, A., & Esposito, E. (2020). From pool to profile: Social consequences of algorithmic prediction in insurance. *Big Data & Society*, 7(2). https://doi.org/10.1177/2053951720939228

Currie, G., Hawk, K. E., Rohren, E., Vial, A., & Klein, R. (2019). Machine learning and deep learning in medical imaging: Intelligent imaging. *Journal of Medical Imaging and Radiation Sciences*, 50(4), 477–487. https://doi.org/10.1016/j.jmir.2019.09.005

Damiati, S. A. (2020). Digital pharmaceutical sciences. *AAPS PharmSciTech*, 21(6), 206. https://doi.org/10.1208/s12249-020-01747-4

Gibin, W. O. (n.d.). *Healthcare Insurance Dataset*. Kaggle. Retrieved from https://www.kaggle.com/datasets/willianoliveiragibin/healthcare-insurance

Hanafy, M., & Mahmoud, O. M. A. (2021). Predict health insurance cost by using machine learning and DNN regression models. *International Journal of Innovative Technology and Exploring Engineering*, 10(3), 137–143. https://doi.org/10.35940/ijitee.C8364.0110321

Lin, C. P., & Chen, L. A. (2024). Application of artificial intelligence models in nursing research. *Hu Li Za Zhi*, 71(5), 14–20. https://doi.org/10.6224/JN.202410 71(5).03

Singh, Y. R., Shah, D. B., Kulkarni, M., Patel, S. R., Maheshwari, D. G., Shah, J. S., & Shah, S. (2023). Current trends in chromatographic prediction using artificial intelligence. *Analytical Methods*, 15(23), 2785–2797. https://doi.org/10.1039/d3ay00362k

ul Hassan, C. A., Iqbal, J., Hussain, S., AlSalman, H., Mosleh, M. A. A., & Sajid Ullah, S. (2021). A computational intelligence approach for predicting medical insurance cost. *Mathematical Problems in Engineering*, 2021, Article ID 1162553. https://doi.org/10.1155/2021/1162553

van den Broek-Altenburg, E. M., & Atherly, A. J. (2019). Using social media to identify consumers' sentiments towards health insurance. *Applied Sciences*, 9(10), 2035. https://doi.org/10.3390/app9102035

Wichmann, J., & Eberl, S. (2022). Deep learning for prediction of population health costs. *BMC Medical Informatics and Decision Making*, 22(1), 32. https://doi.org/10.1186/s12911-021-01743-z