

Synapse models

Imperial College London

Level of abstraction

Synapse time course

Postsynaptic potential form

Differential equation form (ignoring constants)

Matrix form y' = My

 $\mathbf{y} = (v)$

 $M = (-1/\tau)$

Single eigenvalue $-1/\tau$

Exponential

$$v(t) = H(t) e^{-t/\tau}$$

$$\tau v' = -v$$
$$v(0) = 1$$

Differential equation $\mathbf{v}' = M\mathbf{v}$

$$v(t) = H(t) e^{-t/\tau} t/\tau$$

$$\tau v' = x - v
\tau x' = -x
x(0) = 1$$

$$y = (v, x)
M = \begin{pmatrix} -1/\tau & 1 \\ 0 & -1/\tau \end{pmatrix}$$

Has solutions $oldsymbol{y}(t) = oldsymbol{y}^* e^{\lambda t}$ For eigenvalues λ

Eigenvectors y^*

Repeated eigenvalue $-1/\tau$

$$\mathbf{y} = (v, x)$$

$$M = \begin{pmatrix} -1/\tau & 1\\ 0 & -1/\tau_x \end{pmatrix}$$

Repeated ϵ

Repeated eigenvalues give
$$y(t) = y^* t e^{\lambda t}, t^2 e^{\lambda t}, ...$$

Biexponential

$$v(t) = H(t)(e^{-t/\tau} - e^{-t/\tau_x})$$
$$\tau_x \neq \tau$$

$$\tau v' = x - v$$

$$\tau_x x' = -x$$

$$x(0) = 1$$

Two eigenvalues $-1/\tau$, $-1/\tau_{\chi}$

Short term plasticity

Fraction available x

☑ Decreases after a spike

 \bigcirc

Probability of release *u*

↗ Increases after a spike

Continuous evolution:

$$\tau_f u' = -u$$
$$\tau_d x' = 1 - x$$

When a spike arrives:

$$u \leftarrow u + U \cdot (1 - u)$$

$$v \leftarrow v + A \cdot u \cdot x$$

$$x \leftarrow x - u \cdot x$$

Order of operations matters!

Channel types: excitation and inhibition

Channel types include:

Inhibitory:

GABA_A fast

GABA_B slow

Excitatory:

AMPA fast

NMDA slow

Shunting inhibition

Conductance increases locally

Reversal potential near resting potential

No effect on its own

Reduces effect of passing excitatory currents

Simplest model

Excitation $v \leftarrow v + w$

Inhibition $v \leftarrow v - w$

NMDA

Highly nonlinear

Depends on postsynaptic membrane potential being high

Long term plasticity

Will come back to this in more detail in week 4

Hebbian rules can be modelled as:

$$\frac{\mathrm{d}w}{\mathrm{d}t}$$
 = some function of w and pre- and post-synaptic activity

Spike timing-dependent plasticity (STDP):

$$\Delta w = \sum_{\substack{\text{presynaptic}\\ \text{spikes } t_i}} \sum_{\substack{\text{postsynaptic}\\ \text{spikes } t_i}} W(t_i - t_j)$$

$$W(\delta t) = \begin{cases} A_{+} \exp(-\delta t/\tau_{+}) & \text{for } \delta t > 0 \\ A_{-} \exp(-\delta t/\tau_{-}) & \text{for } \delta t < 0 \end{cases}$$

More synaptic fun

Connexor

connexin monomer

Synaptic failure

$$v \leftarrow v + w$$
 (with probability p)

Gap junctions

For example...

$$\tau v' = I_{gap} - v$$

$$I_{gap} = w(v_{pre} - v_{post})$$

Closed

Open