

CONDUCCIÓN AUTÓNOMA DE UN VEHÍCULO EN SIMULADOR MEDIANTE APRENDIZAJE EXTREMO A EXTREMO BASADO EN VISIÓN

Vanessa Fernández Martínez v.fernandezmarti@alumnos.urjc.es

Índice

- Introducción
- Objetivos
- Infraestructura
- Infraestructura desarrollada
- Redes de clasificación
- Redes de regresión
- Conclusiones

Introducción

Visión Artificial

- Navegación en robótica
- Medicina
- Mantenimiento e inventario urbano
- Conducción autónoma
- Etc.

Introducción

Conducción autónoma

- Vehículos con sensores
- Aprendizaje de normas de circulación
- Redes neuronales
- Reducción de tasa de accidentes

Objetivos

Estudio de redes neuronales para conducción autónoma en simulación

- Aplicación de control visual.
- Creación de bases de datos propias.
- Estudio de redes neuronales convolucionales de clasificación.
- Estudio de redes neuronales convolucionales y recurrentes de regresión.

Infraestructura

- JdeRobot
- ROS
- Gazebo
- OpenCV
- Python
- PyQt
- Keras
- HDF5

- Circuitos de carreras en Gazebo.
- Piloto autónomo explícito.
- Creación de un conjunto de datos para entrenamiento neuronal.
- Piloto autónomo basado en redes neuronales.

- Cuantificación de velocidades.
- Arquitectura de red: SmallerVGGNet:
 - 1 bloque: capa convolucional, BatchNormalization, pooling, dropout.
 - 2 bloques: capa convolucional, BatchNormalization, capa convolucional, BatchNormalization, pooling, dropout.
 - Fully-connected.

- Buenos resultados en métricas neuronales no implican buen rendimiento.
- Imágenes de distintas dimensiones:
 - La imagen recortada mejora el rendimiento.

Experimentos

	Programado	5v+7w	sesgada recortada	5v+7w	sesgada completa
Circuitos	Tiempo	% Tiempo		%	Tiempo
pistaSimple (h)	1' 35"	100 %	1' 41"	35%	
pistaSimple (ah)	1' 33"	100 %	1' 39"	100 %	1' 49"
monacoLine (h)	1' 15"	100 %	1' 20"	100 %	1' 24"
monacoLine (ah)	1' 15"	100 %	1' 18"	100 %	1' 29"
nurburgrinLine (h)	1' 02"	100 %	1' 03"	100 %	1' 10"
nurburgrinLine (ah)	1' 02"	100 %	1' 05"	100 %	1' 07"
curveGP (h)	2' 13"	100 %	2' 06"	95%	
curveGP (ah)	2' 09"	100 %	2' 11"	7 %	
pista_simple (h)	1' 00"	100 %	1' 02"	8 %	
pista_simple (ah)	59"	100 %	1' 03"	12%	

Resultados de conducción con redes de clasificación (imagen completa e imagen recortada)

- Número de clases:
 - 4 clases de velocidad de tracción (v) y 7 clases de velocidad de rotación (w).
 - 4 clases de v y 9 clases de w.
 - 5 clases de v y 7 clases de w.
 - Gran influencia del número de clases y el rango de clases en el rendimiento.

Experimentos

	Programado	4v+7w sesgada		4v+9w	sesgada	5v+7w sesgada	
Circuitos	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo
pistaSimple (h)	1' 35"	100 %	1' 38"	100 %	1' 42"	100 %	1' 41"
pistaSimple (ah)	1' 33"	100%	1' 38"	100%	1' 39"	100%	1' 39"
monacoLine (h)	1' 15"	5%		5%		100%	1' 20"
monacoLine (ah)	1' 15"	5%		12%		100%	1' 18"
nurburgrinLine (h)	1' 02"	8 %		8 %		100%	1' 03"
nurburgrinLine (ah)	1' 02"	90%		80 %		100%	1' 05"
curveGP (h)	2' 13"	100%	2' 19"	100%	2' 17"	100%	2' 06"
curveGP (ah)	2' 09"	100%	2' 12"	100%	2' 13"	100%	2' 11"
pista_simple (h)	1' 00"	100%	1' 04"	100%	1' 04"	100%	1' 02"
pista_simple (ah)	59"	100%	1' 04"	100%	1' 02"	100%	1' 03"

Resultados de conducción con redes de clasificación modificando la combinación del número de clases (imagen recortada)

- Influencia de los datos de entrenamiento:
 - Conjunto de entrenamiento sin ninguna modificación (red desbalanceada).
 - Conjunto de entrenamiento balanceado (red balanceada).
 - Entrenamiento con pesos diferentes para cada clase (red sesgada).
 - Redes sesgadas mejoran el entrenamiento.

Experimentos

	Programado	5v+7w sesgada		5v+7w balanceada		5v+7w	desbalanceada
Circuitos	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo
pistaSimple (h)	1' 35"	100%	1' 41"	75%		100%	1' 42"
pistaSimple (ah)	1' 33"	100 %	1' 39"	100%	1' 39"	100%	1' 43"
monacoLine (h)	1' 15"	100 %	1' 20"	70 %		85 %	
monacoLine (ah)	1' 15"	100%	1' 18"	8 %		100%	1' 20"
nurburgrinLine (h)	1' 02"	100%	1' 03"	100%	1' 03"	100%	1' 05"
nurburgrinLine (ah)	1' 02"	100%	1' 05"	80%		80 %	
curveGP (h)	2' 13"	100 %	2' 06"	97 %		100 %	2' 15"
curveGP (ah)	2' 09"	100%	2' 11"	100%	2' 05"	100%	2' 15"
pista_simple (h)	1' 00"	100%	1' 02"	100%	1' 02"	100%	1' 01"
pista_simple (ah)	59"	100 %	1' 03"	100 %	1' 03"	100 %	1' 04"

Resultados de conducción con redes de clasificación (estudio de la influencia de los datos de entrenamiento)

- Predecir valores de velocidades.
- Arquitecturas de red:
 - PilotNet: capa de normalización, 5 capas convolucionales, 3 capas fullyconnected.
 - TinyPilotNet: 2 capas convolucionales, capa dropout, 2 capas fullyconnected.
 - LSTM-TinyPilotnet: 3 capas convolucionales, capa ConvLSTM2D, 1 capa convolucional, 1 capa fully-connected.
 - DeepestLSTM-TinyPilotNet: 3 capas convolucionales, 3 capas ConvLSTM2D, 2 capas fully-connected.

- Buenos resultados en métricas neuronales no implican buen rendimiento.
- Comparativa entre redes de regresión:
 - Redes profundas mejoran el resultado.
 - Conducción más suave con ConvLSTM2D.

Experimentos

	Programado	Pile	otNet	TinyI	PilotNet	LSTM-Tinypilotnet		Deepes	stLSTM-Tinypilotnet
Circuitos	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo
pistaSimple (h)	1' 35"	100 %	1' 41"	100%	1' 39"	100 %	1' 39"	100 %	1' 38"
pistaSimple (ah)	1' 33"	100%	1' 39"	100%	1' 38"	100%	1' 40"	100 %	1' 39"
monacoLine (h)	1' 15"	100%	1' 21"	100%	1' 19"	50 %		100 %	1' 22"
monacoLine (ah)	1' 15"	100%	1' 23"	100%	1' 20"	12 %		100 %	1' 21"
nurburgrinLine (h)	1' 02"	100%	1' 03"	100%	1' 05"	20%		100%	1' 05"
nurburgrinLine (ah)	1' 02"	100%	1' 06"	100%	1' 06"	80 %		100%	1' 08"
curveGP (h)	2' 13"	100%	2' 20"	100%	2' 11"	100 %	2' 20"	100 %	2' 19"
curveGP (ah)	2' 09"	100%	2' 16"	100%	2' 06"	100 %	2' 25"	100 %	2' 18"
pista_simple (h)	1' 00"	100%	1' 07"	100%	1' 02"	100%	1' 11'	100%	1' 09"
pista_simple (ah)	59"	100 %	1' 09"	100%	1' 02'	100%	1' 09"	100 %	1' 08"

Resultados de conducción con redes neuronales de regresión (imagen completa)

Experimentos

- Imágenes de distintas dimensiones:
 - La imagen completa mejora el rendimiento.

	Programado	Pile	otNet	TinyI	PilotNet	LSTM-Tinypilotnet		Deepes	stLSTM-Tinypilotnet
Circuitos	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo
pistaSimple (h)	1' 35"	100 %	1' 37"	100%	1' 41"	100 %	1' 40"	100%	1' 36"
pistaSimple (ah)	1' 33"	100 %	1' 38"	100%	1' 41"	100 %	1' 38"	100 %	1' 37"
monacoLine (h)	1' 15"	100 %	1' 20"	100 %	1' 19"	50 %		100 %	1' 21"
monacoLine (ah)	1' 15"	100 %	1' 19"	100%	1' 18"	35%		100%	1' 19"
nurburgrinLine (h)	1' 02"	100 %	1' 04"	100%	1' 04"	40 %		100 %	1' 04"
nurburgrinLine (ah)	1' 02"	100 %	1' 06"	100%	1' 05"	50 %		80 %	
curveGP (h)	2' 13"	100 %	2' 16"	25%		100 %	2' 17"	100 %	2' 17"
curveGP (ah)	2' 09"	100 %	2' 12"	75%		100 %	2' 04"	100 %	2' 19"
pista_simple (h)	1' 00"	100 %	1' 04"	100%	59"	100 %	1' 07"	100 %	1' 05"
pista_simple (ah)	59"	100 %	1' 05"	100%	1' 00'	100 %	1' 03"	100%	1' 08"

Resultados de conducción con redes neuronales de regresión (imagen recortada)

- Tipo de imagen de entrada:
 - Creación de imagen temporal.
 - Imagen apilada (PilotNet (stacked)).
 - Imagen diferencia (*Temporal (dif)*).
 - Imagen apilada-diferencia (PilotNet (stacked, dif)).
 - Complejidad al introducir temporalidad en imágenes.

Experimentos

	Programado	PilotNet (stacked)		PilotNe	et (stacked, dif)	Temporal (dif)	
Circuitos	Tiempo	%	Tiempo	%	Tiempo	%	Tiempo
pistaSimple (h)	1' 35"	100%	1' 40"	100 %	1' 43"	35%	
pistaSimple (ah)	1' 33"	100%	1' 46"	10%		10%	
monacoLine (h)	1' 15"	50%		5%		3 %	
monacoLine (ah)	1' 15"	7 %		5%		3 %	
nurburgrinLine (h)	1' 02"	50%		8 %		8 %	
nurburgrinLine (ah)	1' 02"	80 %		50%		3 %	
curveGP (h)	2' 13"	25%		25%		12%	
curveGP (ah)	2' 09"	100 %	2' 07"	75 %		3 %	
pista_simple (h)	1' 00"	100 %	1' 11'	100 %	1' 03"	25%	
pista_simple (ah)	59"	100 %	1' 08"	100 %	1' 02"	15%	

Resultados de conducción con redes neuronales de regresión introduciendo temporalidad (imagen completa)

Conclusiones

Conclusiones

- Objetivo cumplido: Estudio de redes neuronales para conducción autónoma en simulación.
- Aplicación de control visual.
- Creación de bases de datos propias.
- Estudio de redes neuronales convolucionales de clasificación.
- Estudio de redes neuronales convolucionales y recurrentes de regresión.

Conclusiones

Trabajos futuros

- Uso de robots reales.
- Grabar un conjunto de datos de situaciones complejas.
- Estudio más amplio de la cuantización de clases.
- Estudio de imágenes apiladas.
- Estudio más amplio de imagen diferencia.
- Empleo de algoritmo de objetos salientes en la imagen.

Enlaces

Enlaces

- Mediawiki: https://jderobot.org/Vmartinezf-tfm
- Repositorio: https://github.com/RoboticsURJC-students/2017-tfm-vanessa-fernandez
- Vídeos:
 - https://www.youtube.com/watch?v=7s4vpMGU2Mg
 - https://www.youtube.com/watch?v=J6bDIE7TofE