\parallel

Pesquisa Operacional

Capítulo 3

Programação Linear

Capfille Bulletine Capfille Cap

3. PAUTA

- 1. Introdução
- 2. Exemplos de Aplicação
- 3. Definição Geral de Programação Linear

Capitulo 31 Programação Lincar

3. PAUTA

- 4. Solução Gráfica de um PPL
- 5. Exercícios do capítulo
- 6. Saiba mais...

Capítule Sa Programación Linear

3.1

Introdução

3.1. Introdução

 Os problemas de programação linear (PPLs) são uma classe especial de problemas de programação matemática.

Elaboração de *modelos matemáticos* para a obtenção
de solução para problemas
de planejamento.

Capítulo 3: Programação Linear

Capitule 3: Programagiae Linear

3.1. Introdução

 O estudo dos PPLs nos permite entender os outros modelos de programação matemática mais sofisticados.

Capíllo 34 Ellogo tamba (grafo) Ellogo t

3.1. Introdução

 Os modelos de PL são um tipo especial de modelos de otimização.

Busca pelas melhores soluções para problemas matematicamente bem definidos.

Capítulo 3: Programação Lincar

3.1. Introdução

Fácil...

Identificando, no problema, certas características que nos permitem concluir que ele é modelável pela Programação Linear!

3.2

Exemplos de Aplicação

Capítulo 34 Programação Lincar

3.2. Exemplos de Aplicação

Exemplo 01: Uma dieta balanceada

Capitello Se Programa e ao Linear

3.2. Exemplos de Aplicação

Exemplo 01

Para uma boa alimentação, o corpo necessita de vitaminas e proteínas. A necessidade mínima de vitaminas é de 32 unidades por dia e a de proteínas é de 36 unidades por dia.

Capite Comment of the Comment of the

3.2. Exemplos de Aplicação

Exemplo 01 (continuação)

Uma pessoa tem disponível carne e ovos para se alimentar.

Cada unidade de ovo contem 8 unidades de vitamina e 6 de proteína e cada unidade de carne contém 4 unidades de vitamina e 6 de proteínas.

Capíllo 22 Propertiona de la companya della companya de la companya de la companya della companya della companya della companya de la companya della companya

3.2. Exemplos de Aplicação

Exemplo 01 (continuação)

Qual a quantidade diária de carne e ovos que deve ser consumida para suprir as necessidades de vitaminas e proteínas com o menor custo?

Cada unidade de carne custa R\$ 3,00 e cada unidade de ovo custa R\$ 2,50.

Capitello Electronical de la company de la c

3.2. Exemplos de Aplicação

Auguste Rodin (1840 – 1917)

Capítulo 3-1200 ramagao - inear

3.2. Exemplos de Aplicação

Fases para elaborar o *modelo* do problema:

- 1. Identificar as variáveis de decisão
- 2. Construir a função objetivo
- 3. Expressar as restrições aplicáveis
- 4. Explicitar formalmente o *modelo* concebido

#

3.2. Exemplos de Aplicação

1ª Fase: Identificar as *variáveis de decisão*

x₁: Qtde de carne consumida por dia

X2: Qtde de ovos consumida por dia

Capítulo 3: Programação Linear

3.2. Exemplos de Aplicação

2ª Fase: Construir a função objetivo

O objetivo é gastar o menos possível com a dieta.

3.2. Exemplos de Aplicação

3ª Fase: Expressar as restrições aplicáveis

$$4.x_1 + 8.x_2 \ge 32$$

$$6.x_1 + 6.x_2 \ge 36$$

$$x_1 \ge 0 e x_2 \ge 0$$

Capítulo 3- Programación de mozar

3.2. Exemplos de Aplicação

4ª Fase: Explicitar formalmente o *modelo* concebido

Capíllo de la companya de la company

Exemplo 01: modelo de PPL

min
$$z = 3,00.x_1 + 2,50.x_2$$

sujeito a

$$4.x_1 + 8.x_2 \ge 32$$

 $6.x_1 + 6.x_2 \ge 36$

$$6.x_1 + 6.x_2 \ge 36$$

$$x_1 \ge 0 \ e \ x_2 \ge 0$$

Capfilling

Exemplo 01: Implementado no LINDO...

$$min 3.00x1 + 2.50x2$$

st

$$4x1 + 8x2 >= 32$$

$$6x1 + 6x2 >= 36$$

$$x1 >= 0$$

$$x2 >= 0$$

Capítulo 31 Programação Linear

RESPOSTA:							
LP OPTIMUM	FOUND AT STEP	1					
OBJECTIVE FUNCTION VALUE							
1)	15.00000						
VARIABLE	VALUE		REDUCED COST				
X1	0.00000)	0.500000				
X2	6.00000)	0.00000				

RESPOSTA: (continuação)

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	16.00000	0.00000
3)	0.00000	-0.416667
4)	0.00000	0.00000
5)	6.00000	0.00000

NO. ITERATIONS= 1

Capitulo 3. Programação Lincar

3.2. Exemplos de Aplicação

Exemplo 02: Um problema de produção

Capíllo 32 Propilitaria (para o la capílitaria propilitaria)

3.2. Exemplos de Aplicação

Exemplo 02

Uma indústria produz sapatos, bolsas e cintos, cuja venda resulta em lucro, por unidade vendida, de R\$ 2,00; R\$ 3,00 e R\$ 1,50, respectivamente.

Para fabricar estes produtos são necessárias quatro matériasprimas: couro, borracha, metal e rebite.

Capítulo 3- Programação Hinear

3.2. Exemplos de Aplicação

Exemplo 02 (continuação)

A tabela a seguir mostra o número de unidades de matériasprimas consumidas para a produção de uma unidade de cada produto.

Apresenta também a quantidade em estoque de cada matériaprima.

Capfilling manufacture of the contraction of the con

3.2. Exemplos de Aplicação

Exemplo 02 (continuação)

Matéria-prima	Produtos Fabricados			Matéria-prima em	
	Sapatos	Bolsas	Cintos	estoque	
Couro	2	3	1	900	
Metal	0	2	1	500	
Borracha	1	2	1	800	
Rebite	3	4	2	1500	

Capília

3.2. Exemplos de Aplicação

Exemplo 02 (continuação)

Outra informação importante é o número de horas de mão-deobra necessárias para produzir uma unidade de cada produto:

Poouroo	Homens-hora necessários para a produção			
Recurso	Sapato	Bolsa	Cinto	
Mão-de-obra	3,0	5,0	1,0	

3.2. Exemplos de Aplicação

Exemplo 02 (continuação)

O planejamento da produção é mensal e conta com no máximo 1.050 homens-hora.

Por fim, sabe-se que a indústria recebeu uma encomenda de, no mínimo, 600 itens, e que fez compromisso contratual em atender sem nenhum atraso o fornecimento destes produtos.

Capítulo 34 Programação Hacar

3.2. Exemplos de Aplicação

Exemplo 02 (continuação)

Questiona-se:

a) Qual o modelo de produção que permite à indústria atender ao pedido recebido e obter o maior lucro possível, respeitando-se as restrições impostas? \parallel

Capilling

3.2. Exemplos de Aplicação

Fases para elaborar o *modelo* do problema:

- 1. Identificar as variáveis de decisão
- 2. Construir a função objetivo
- 3. Expressar as restrições aplicáveis
- 4. Explicitar formalmente o *modelo* concebido

3.2. Exemplos de Aplicação

1ª Fase: Identificar as *variáveis de decisão*

x₁: Qtde de sapatos produzidos

 $\mathbf{x_2}$: Qtde de bolsas produzidos

x3: Qtde de cintos produzidos

Capitulo 3: Programação Linear

3.2. Exemplos de Aplicação

2ª Fase: Colemsitira ara sun qua a velis ed le decisão

x₁: Qtde de sapatos produzidos

 $\mathbf{x_2}$: Qtde de bolsas produzidos

x3: Qtde de cintos produzidos

Capitulo 3: Programação Linear

3.2. Exemplos de Aplicação

3ª Fase: Expressar as restrições aplicáveis

```
2.x_1 + 3.x_2 + 1.x_3 \le 900 { couro } 0.x_1 + 2.x_2 + 1.x_3 \le 500 { metal } 1.x_1 + 2.x_2 + 1.x_3 \le 800 { borracha } 3.x_1 + 4.x_2 + 2.x_3 \le 1500 { rebite }
```

Capitulo 3: Programação Linear

3.2. Exemplos de Aplicação

3ª Fase: Expressar as restrições aplicáveis

$$3.x_1 + 5.x_2 + 1.x_3 \le 1050$$
 { mão-de-obra } $1.x_1 + 1.x_2 + 1.x_3 \ge 600$ { pedido } $x_1 \ge 0$, $x_2 \ge 0$ e $x_3 \ge 0$

 \parallel

Capíte de la company de la com

3.2. Exemplos de Aplicação

4ª Fase: Explicitar formalmente o *modelo* concebido

Capitule 3. Programagiae Linear

```
Exemplo 02: modelo de PPL
max z = 2,00.x_1 + 3,00.x_2 + 1,50.x_3
sujeito a
     2.x_1 + 3.x_2 + 1.x_3 \le 900 { couro }
     0.x_1 + 2.x_2 + 1.x_3 \le 500  { metal }
    1.x_1 + 2.x_2 + 1.x_3 \le 800 { borracha }
    3.x_1 + 4.x_2 + 2.x_3 \le 1500 { rebite }
    3.x_1 + 5.x_2 + 1.x_3 \le 1050  { mão-de-obra }
     1.x_1 + 1.x_2 + 1.x_3 \ge 600 { pedido }
     x_1 \ge 0, x_2 \ge 0 e x_3 \ge 0
```

end

Capite lo 3- Programação Linear

Exemplo 02: Implementado no LINDO...

```
max 2x1 + 3x2 + 1.5x3
st

2x1 + 3x2 + 1x3 <= 900
0x1 + 2x2 + 1x3 <= 500
1x1 + 2x2 + 1x3 <= 800
3x1 + 4x2 + 2x3 <= 1500
3x1 + 5x2 + 1x3 <= 1050
1x1 + 1x2 + 1x3 >= 600

x1 >= 0
x2 >= 0
x3 >= 0
```

46

Capfillavialenatarasasasasas

Resposta:

OBJECTIVE FUNCTION VALUE

1) 1083.333

 VARIABLE
 VALUE
 REDUCED COST

 X1
 166.666672
 0.000000

 X2
 16.666666
 0.000000

 X3
 466.666656
 0.000000

Resposta: (continuação)

NO. ITERATIONS=

ROW	SLACK OR SURPLUS	DUAL PRICES
2)	50.000000	0.000000
3)	0.00000	0.166667
4)	133.333328	0.000000
5)	0.00000	0.666667
6)	0.00000	0.000000
7)	50.00000	0.000000
8)	166.666672	0.000000
9)	16.666666	0.000000
10)	466.666656	0.000000

Capitulo 3. Programagao Linear

3.2. Exemplos de Aplicação

Como é que consigo encontrar a solução para este modelo de PPL?

3.2. Exemplos de Aplicação

Fácil...

Há um método denominado Simplex que obtém a solução ótima para o PPL (se existe solução).

Capítilo 3: Programação Linear

3.2. Exemplos de Aplicação

Capitulo 3 Programato atominical

3.3

Definição Geral de Problema de Programação Linear (PPL)

Capília de la companya de la companya

3.3. Definição Geral do PPL

Um PPL pode ser formulado da seguinte maneira:

Otimizar
$$z = \sum_{j=1}^{n} c_{j}x_{i}$$

sujeito a:

Capitulo 3: Programação Lincar

3.3. Definição Geral do PPL

$$\sum a_{ij}x_i \geq b_i$$

$$i = 1, 2, 3, ..., p$$

$$\sum a_{ij}x_{j} = b_{i}$$

$$i = (p+1), (p+2), (p+3), ..., m$$

$$x_i \ge 0$$

$$j = 1, 2, 3, ..., q$$

$$x_i \in \Re$$

$$j = (q+1), (q+2), (q+3), ..., n$$

3.3. Definição Geral do PPL

com:

 $A = \{a_{ij}\} \equiv matriz de restrições (ordem <math>m \times n$) $x = (x_j) = vetor coluna de n componentes$ $c = (c_i) = vetor linha de n componentes$

Otimizar ≡ minimizar ou maximizar

Capitulo 3: Programação Linear

3.3. Definição Geral do PPL

Capília de la composition della composition della

3.3. Definição Geral do PPL

Não apenas uma.

Há TRÊS formas de expressar um modelo:

- mista
- canônica
- padrão

Capítulo 3: Programação Linear

3.3. Definição Geral do PPL

1. Forma mista (já vista)

Otimizar
$$z = c.x$$
 sujeito a:

$$A.x \ge b$$
 ou $A.x = b$
 $x \ge 0$

3.3. Definição Geral do PPL

2. Forma canônica

Otimizar
$$z = c.x$$
 sujeito a:

$$A.x \le b$$
 ou $A.x \ge b$

$$x \ge 0$$

Capitulo 3 Programação Incar

3.3. Definição Geral do PPL

3. Forma padrão

Otimizar
$$z = c.x$$
 sujeito a:

$$A.x = b$$

$$x \ge 0$$
 e $b \ge 0$

Capitulo 3: Programação Linear

3.3. Definição Geral do PPL

3. Forma padrão

Min
$$z = c_1 x_1 + c_2 x_2 + ... + c_n x_n$$

sujeito a:

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 - \dots$$

$$a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2$$

•••••

$$a_m x_1 + a_{m2} x_2 + ... + a_{mn} x_n = b_m$$

 $x_1, x_2, ..., x_n \ge 0$

Os termos independentes, "b's", são todos positivos.

Capítulo 31 Programação Linear

3.3. Definição Geral do PPL

3.3. Definição Geral do PPL

Equivalentes significa que se pode converter um modelo de PPL para qualquer uma delas a partir de outra dada.

Capitulo 3- Programação Lincar

3.3. Definição Geral do PPL

Equivalência das formas

 \parallel

- 3.3. Definição Geral do PPL
- Equivalência das formas
 - Por meio de operações elementares um modelo expresso numa forma (mista, canônica ou padrão) pode ser expresso noutra forma.

Capítulo 3: Programação Linear

- 3.3. Definição Geral do PPL
- Equivalência das formas

1º operação: mudar critério de otimização

Capille Barrier Barrier Capille Control of the Control of the Capille Control of the Capill

3.3. Definição Geral do PPL

Equivalência das formas

1º operação: mudar critério de otimização.

$$\max [f(x)] = \min [-f(x)]$$

 $\min [f(x)] = \max [-f(x)]$

Capítulo 3: Programação Incar

3.3. Definição Geral do PPL

Equivalência das formas

2º operação: transformar variável *livre* em variável não negativa.

$$x_n = x_a - x_b \text{ com } x_n \in \Re, x_a \ge 0 \text{ e } x_b \ge 0$$

Capítulo 3: Programação Linear

3.3. Definição Geral do PPL

Equivalência das formas

3º operação: transformar desigualdades em igualdades (ou vice-versa).

$$x_1 + x_2 + x_3 + ... + x_n \le b$$
 adicionar variável $x_{(n+1)}$

- 3.3. Definição Geral do PPL
- Equivalência das formas

3º operação: transformar desigualdades em igualdades (ou vice-versa).

$$x_1 + x_2 + x_3 + ... + x_n + X_{(n+1)} = b$$

 $com x_{(n+1)} \ge 0$ Variável de "folga"

Capitulo 3 Programa va o Program

3.3. Definição Geral do PPL

Equivalência das formas

3º operação: transformar desigualdades em igualdades (ou vice-versa).

$$x_1 + x_2 + x_3 + \dots + x_n \ge b$$
 subtrair variável $x_{(n+1)}$

- 3.3. Definição Geral do PPL
- Equivalência das formas

3º operação: transformar desigualdades em igualdades (ou vice-versa)

$$x_1 + x_2 + x_3 + ... + x_n - X_{(n+1)} = b$$

com $x_{(n+1)} \ge 0$ Variável de "excesso"

Capílle Com Perce de la la companya de la companya

3.4

Solução Gráfica de um PPL

3.4. Solução Gráfica de um PPL

- Em teoria pode-se resolver qualquer PPL por meio de um método gráfico, ou seja:
 - representando a função objetivo e as restrições graficamente num plano cartesiano "n" dimensional.

3.4. Solução Gráfica de um PPL

 Na prática apenas problemas que envolvam 2 ou 3 variáveis de decisão podem ser resolvidos por meio

gráfico.

3.4. Solução Gráfica de um PPL

Acompanhe, em sala de aula, a apresentação do método gráfico para resolução de PPLs

Capital

Exemplo 01: modelo de PPL

$$min z = 3,00.x_1 + 2,50.x_2$$

sujeito a

$$4.x_1 + 8.x_2 \ge 32$$

$$4.x_1 + 8.x_2 \ge 32$$

 $6.x_1 + 6.x_2 \ge 36$

$$x_1 \ge 0 \ e \ x_2 \ge 0$$

 \parallel

3.4. Solução Gráfica de um PPL

- Considere o Exemplo 01 Problema da Dieta para resolução pelo método gráfico...
 - Como há somente DUAS variáveis de decisão, o gráfico será bidimensional... portanto a função objetivo e as restrições serão representadas por retas.

3.4. Solução Gráfica de um PPL

- Ponto de mínimo custo: (0, 6)
- Custo mínimo:

$$z = 3,00.x_1 + 2,50.x_2$$

 $z = 3,00.0 + 2,50.6$
 $z = 0,00 + 15,00$
 $z = 15,00$

O custo mínimo da dieta é de R\$ 15,00.

3.5

Exercícios do Capítulo

Capital Brown Capital Brown

3.5. Exercícios do Capítulo

O professor encaminhará, por correio eletrônico, arquivo em formato .PDF (*Portable Document Format*) com a Lista de Exercício do capítulo.

Capitaliana

3.6

Saiba Mais...

- International Federation of the OR Societies www.ifors.org
- Sociedade Brasileira de Pesquisa Operacional www.sobrapo.org.br
- Australian Society for Operations Research www.asor.org.au

- Institute for OR and the Management Sciences www.informs.org
- Operational Research Society of United Kingdom www.orsoc.org.uk
- Canadian OR Society www.cors.ca

Capí Linguis L

- ILOG www.ilog.com
- Hearne Scientific Software www.hearne.com.au
- OR The OR Society www.theorsociety.com

- LINDO Systems <u>www.lindo.com</u>
- The MathWorks <u>www.mathlab.com</u>
- Maple Software www.maplesoft.com