

Guillaume Arcas <guillaume.arcas@free.fr>

Objet de la présentation

- Au cours de ces dernières années, les vers sont devenus une source bien réelle de nuisances.
- Quelques caractéristiques et tendances :
 - perfectionnement des algorithmes de propagation et des méthodes de pénétration.
- Un terrain favorable :
 - démocratisation des accès à Internet (type ADSL);
 - les machines cibles ne sont plus seulement des serveurs et ne sont pas toujours
 « administrées » ;
 - homogénéité du parc logiciel des systèmes cibles.
- Conséquences : saturation de bande passante, déni de service, etc...
- La nécessité : détecter au plus vite toute activité suspecte.
- Les IDS sont un complément utile aux solutions classiques antivirus mais souffrent des mêmes limites lorsqu'ils fonctionnent à base de signatures.
- La question : l'analyse statistique peut-elle répondre à ces besoins ?
- Début de commencement de réponse à travers un retour d'expérience.

Contexte

Contexte (1)

- Fourniture d'accès Internet à 65.000
 professionnels et personnels de la santé (libéraux et établissements)
 - RTC / RNIS / ADSL et LS
- Plate-forme technique « classique »
- Sécurité et Qualité de service présentées comme des valeurs fortes
- Clientèle nomade : un seul poste, plusieurs usages (pro. et perso.).

Etat des lieux

Etat des lieux (1)

- Nul ne peut contester ni ignorer le pouvoir de nuisance des vers.
- Leur « terrain de jeu » a évolué au cours des dernières années dans un sens très favorable à leur propagation du fait, notamment, des nouveaux moyens d'accès permanent et performant à Internet (ADSL).
- Les utilisateurs sont majoritairement des « non techniciens » : pas d'administration, encore moins de gestion de parc (mises à jour, correctif).
- L'homogénéité du parc logiciel des cibles potentielles accroît encore la menace.

Etat des lieux (2)

- Perfectionnement des vers
- Algorithmes de propagation améliorés
- Exploitation de failles logicielles multiples mais aussi - et peut-être même avant tout - « ingénierie sociale »
- Propagation « multi-canaux »
- Attaques « tous azimuts » (toute machine connectée - plus seulement les serveurs - est une cible potentielle)

Etat des lieux (3)

- Les méthodes de recherche de cibles évoluent : une certaine et toute relative furtivité semble être préférée à la rapidité :
 - Balayage plus ou moins aléatoire (ex. : plusieurs réseaux traités en parallèle, adresses cibles entremêlées)
 - Balayage lent (à la « nmap mode parano »)
 - Balayage sur des ports très usuels (80)
 - Recherche de la « banalité » dans les traces (balayage d'adresses à l'aide de GET /)
- Mais : caractère « foudroyant » de l'attaque
- Donc : nécessité de disposer de moyens de détection eux aussi rapides.

Etat des lieux (4)

- Une solution antivirus n'est-elle pas suffisante?
 - Généralement, les signatures pour un nouveau ver sont mises à disposition sous deux à quatre heures;
 - Compte-tenu de la « fulgurance » des vers récents, cela peut déjà être trop long.
 - Il faut que les canaux utilisés pour la propagation ou l'attaque puissent être analysés. Les principaux protocoles sont éligibles (SMTP, FTP, HTTP, IMAP, POP3). Mais quid des protocoles Peer-to-peer ? Des flux chiffrés ? Des éventuels protocoles propriétaires ?
- Les antivirus ne traitent pas durant la phase de recherche de cibles.

Etat des lieux (5)

Pourquoi un FAI devrait-il se soucier des vers ?

- Après tout, les antivirus personnels existent, de même que les pare-feux du même acabit...
- Le coût des moyens de détection n'est généralement pas un bien admis dans les directions informatiques...
- Brider la liberté des utilisateurs quand ceux-ci sont des clients n'est pas non plus le meilleur des arguments de vente...

Oui, mais :

- I 'indisponibilité d 'un service suite à un DoS (même involontaire) est pire encore que le mal...
- il y aura peut-être un jour des obligations légales de protection a minima faites aux professionnels
- il est parfois nécessaire de se protéger de ces propres clients...

Anatomie d'un ver

Anatomie d'un ver (1)

- Quelques critères de classification :
 - Méthodes de sélection et de recherche des cibles
 - Utilisation de listes pré-établies
 - Balayage de classes d'adresses et de ports
 - Méthodes de propagation
 - Mono-canal
 - Multi-canaux
 - Attaques
 - Déni de service (parfois involontaire…)
 - Vol de données
 - Installation de portes dérobées
 - Spams

Anatomie d'un ver (2)

- Quelques critères de détection :
 - Sélection et de recherche des cibles
 - Listes pré-établies
 - Détection basée sur des exemplaires (si disponibles) de ces listes
 - Balayage d'adresses et de ports
 - Si balayages séquentiels : utilisation de modules ad hoc
 - Si balayages aléatoires : ?
 - Propagation, attaques
 - Mono-canal
 - Multi-canaux
 - A ce stade, les signatures (tant antivirus que IDS) sont disponibles et souvent suffisamment fiables.

Problématique

Problématique

- Détection par signature :
 - la détection à base de signature peut être efficace (règles Snort pour vers Nimda, Code Red, etc.) ... pour autant que la signature existe!
 - généralement, les premières signatures « souffrent » d'une certaine imprécision et produisent beaucoup de fausses alertes ;
 - peu adaptée à une réponse rapide ;
 - inefficace en cas de chiffrement.
- Eléments de résolution :
 - identifier les éléments intangibles (adresses IP, ports, protocoles, taille des paquets...) : existe t-il un profil type associé à un ver ?

Premiers cas

Blaster, août 2003

Août 2003

- Comportements anormaux de certains équipements réseaux « sans raison apparente »
- Retour à la normale par redémarrage...
- ... avant retour à l'anormal.
- Après diagnostic : saturation des équipements par balayages de plages d'adresses sur les ports 135/139.
- Cas « classique » et simple
 - Blocage des ports utilisés pour la recherche et la propagation
 - Signature de l'attaque disponible.

« Blaster? », le retour

- Début 2004
 - Comportements anormaux de certains équipements réseaux « sans raison apparente »
 - Retour à la normale par redémarrage...
 - ... avant retour à l'anormal.
 - Mais, après première analyse : rien de flagrant.
- Seconde phase d'analyse
 - Traitement des journaux
 - Très nombreuses requêtes HTTP (GET /) d'une adresse « interne » vers des adresses externes. Le post-traitement permet de mettre en évidence le balayage.
 - Blocage des ports utilisés impossible (HTTP!)
 - Signature de l'attaque disponible mais les « dégâts » se produisent lors des actions de recherche.
- Donc : nécessité de mettre en œuvre un dispositif de détection de ces balayages.

Premières pistes

Outils

- Analyse réseau
 - tcpdump
 - ntop
- Traitement des journaux
 - grep & awk
 - Expressions régulières PERL
- Mise en forme
 - MRTG / RRDtool
- Détection
 - snort
 - Module flow-portscan
 - Module SPADE

Phase I - 1ère Analyse

- Dans un premier temps : trouver l'origine et la nature des évènements à l'origine des « plantages ».
- Premières actions :
 - Captures réseaux au format tcpdump
 - Traitement des journaux des pare-feux
- Résultats :
 - Traces réseaux
 - Analyse a posteriori avec Snort : RDBM* (Rien De Bien Méchant)
 - Passage par la case ipaudit
 - Journaux des pare-feux
 - Nombreuses requêtes de type GET / non suivies d'autres connexions.
 - Nécessité de retrier les traces pour mettre en évidence un balayage à l'aide de ces requêtes.
 - Suivi des erreurs 404 peu envisageable (HTTP : 90% du trafic Internet)

Phase II - Analyse graphique (1)

Phase II - Analyse graphique (2)

Phase II - Analyse graphique (3)

Snort

- Snort (2.1.1 et 2.1.2)
 - Note: Snort a été retenu comme sonde réseau. L'IDS en tant que tel peut très bien être construit au-dessus d'une architecture Prelude-IDS.
- Comment traduire d 'une manière ou d 'une autre la phrase suivante :
 - si n connexions sont faites en x secondes vers y adresses depuis 1 seule,
 avec n = 95% y alors : faire quelquechose (alerter, couper la session, etc...)
- Règles Standard
 - Règles standard
 - Event Thresholding
 - Module flow-portscan
 - Module prometteur... dans le README.
 This is module is designed to detect portscans based off flow creation in the flow preprocessors. The goal is to catch one->many hosts and one->many ports scans.
 - Documentation peu claire et réglages pifométriques
 - Module SPADE
 - Adapté à la détection d'évènements inhabituels.

Nouvelles idées

D'abord réfléchir...

- Exemple de quelques « vers » :
 - Code Red I & II;
 - Nimda;
 - Slammer;
 - Blaster.
- Y a t-il des points communs ?
 - algorithmes de recherche de cibles ;
 - vitesse de propagation

... avant d'agir.

- Et si on modélisait le comportement d'un ver ?
- Objectif : trouver les bons réglages pour les modules de détection Snort.
- Quelques outils testés :
 - nmap
 - scripts PERL
 - NetWorm Simulator

Résultats

Remerciements