### TP 1

## Adan Rodriguez

DataSet usado: breast cancer diagnosis

Objetivo: saber si a partir de ciertos detalles del tumor, intentar predecir si un tumor podra ser maligno o benigno

```
import pandas as pd
import statsmodels.api as sm
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn import metrics
In [258... df = pd.read_csv('data.csv')
df.head()
```

Out[258]:

|   | id       | diagnosis | radius_mean | texture_mean | perimeter_mean | area_mean | SI |
|---|----------|-----------|-------------|--------------|----------------|-----------|----|
| 0 | 842302   | М         | 17.99       | 10.38        | 122.80         | 1001.0    | _  |
| 1 | 842517   | М         | 20.57       | 17.77        | 132.90         | 1326.0    |    |
| 2 | 84300903 | М         | 19.69       | 21.25        | 130.00         | 1203.0    |    |
| 3 | 84348301 | М         | 11.42       | 20.38        | 77.58          | 386.1     |    |
| 4 | 84358402 | М         | 20.29       | 14.34        | 135.10         | 1297.0    |    |

5 rows × 33 columns

Ahora limpiare el dataset de modo que omita campos como uri, artists\_names etc y se persistira solo datos cuantitativos

```
In [259... df = df.drop(['id'], axis=1)
    df.head()
```

Out[259]:

|   | diagnosis  | radius_mean | texture_mean | perimeter_mean | area_mean | smoothness_ |
|---|------------|-------------|--------------|----------------|-----------|-------------|
| C | ) M        | 17.99       | 10.38        | 122.80         | 1001.0    | 0           |
| 1 | L M        | 20.57       | 17.77        | 132.90         | 1326.0    | 0.          |
| 2 | <b>2</b> M | 19.69       | 21.25        | 130.00         | 1203.0    | 0.          |
| 3 | B M        | 11.42       | 20.38        | 77.58          | 386.1     | 0.          |
| 4 | <b>I</b> M | 20.29       | 14.34        | 135.10         | 1297.0    | 0.          |

5 rows × 32 columns

ya que la ultima columna esta constituida por NaN, la eliminamos del dataset

```
In [260...] df = df.dropna(axis=1)
          df.head()
Out[260]:
              diagnosis radius mean texture mean perimeter mean area mean smoothness
           0
                    M
                               17.99
                                            10.38
                                                           122.80
                                                                      1001.0
                                                                                       0
                               20.57
                                                          132.90
                                                                      1326.0
                                                                                       0.
           1
                     M
                                            17.77
           2
                    M
                               19.69
                                            21.25
                                                          130.00
                                                                      1203.0
                                                                                       0.
           3
                               11.42
                                            20.38
                                                                                       0.
                     M
                                                            77.58
                                                                       386.1
           4
                                            14.34
                     Μ
                               20.29
                                                          135.10
                                                                      1297.0
                                                                                       0.
          5 rows × 31 columns
          '''Vemos si hay datos nulos en nuestro dataset'''
In [261...
          df.isnull().any()
Out[261]: diagnosis
                                        False
           radius_mean
                                        False
           texture mean
                                        False
           perimeter mean
                                        False
           area mean
                                        False
           smoothness mean
                                        False
           compactness_mean
                                        False
           concavity_mean
                                        False
           concave points mean
                                        False
                                        False
           symmetry mean
           fractal_dimension_mean
                                        False
           radius se
                                        False
           texture_se
                                        False
                                        False
           perimeter_se
                                        False
           area se
           smoothness se
                                        False
           compactness se
                                        False
           concavity_se
                                        False
           concave points_se
                                        False
           symmetry_se
                                        False
                                        False
           fractal dimension se
           radius_worst
                                        False
           texture worst
                                        False
           perimeter_worst
                                        False
           area worst
                                        False
           smoothness_worst
                                        False
           compactness worst
                                        False
           concavity worst
                                        False
           concave points worst
                                        False
           symmetry worst
                                        False
           fractal dimension worst
                                        False
           dtype: bool
In [262...
          #Resumen del dataframe
          df.describe()
```

Out[262

| 2]: |             | radius_mean | texture_mean | perimeter_mean | area_mean   | smoothness_mean |
|-----|-------------|-------------|--------------|----------------|-------------|-----------------|
|     | count       | 569.000000  | 569.000000   | 569.000000     | 569.000000  | 569.000000      |
|     | mean        | 14.127292   | 19.289649    | 91.969033      | 654.889104  | 0.096360        |
|     | std         | 3.524049    | 4.301036     | 24.298981      | 351.914129  | 0.014064        |
|     | min         | 6.981000    | 9.710000     | 43.790000      | 143.500000  | 0.052630        |
|     | 25%         | 11.700000   | 16.170000    | 75.170000      | 420.300000  | 0.086370        |
|     | 50%         | 13.370000   | 18.840000    | 86.240000      | 551.100000  | 0.095870        |
|     | <b>75</b> % | 15.780000   | 21.800000    | 104.100000     | 782.700000  | 0.105300        |
|     | max         | 28.110000   | 39.280000    | 188.500000     | 2501.000000 | 0.163400        |

8 rows × 30 columns

Ahora traduciremos el valor categorico M o B a uno numerico 1 o 0

```
In [263... from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()

#Transformo la columna
df.iloc[:, 0] = labelencoder_X.fit_transform(df.iloc[:, 0])
df.head()
```

Out[263]: diagnosis radius\_mean texture\_mean perimeter\_mean area\_mean smoothness\_ 0 1 17.99 10.38 122.80 1001.0 0 1 1 20.57 17.77 132.90 1326.0 0. 2 21.25 1203.0 1 19.69 130.00 0. 3 1 11.42 20.38 77.58 386.1 0. 20.29 14.34 1297.0 4 1 135.10 0.

5 rows × 31 columns

```
In [264... #Separamos la variable independiente
y = pd.DataFrame(df.iloc[:, 0])
X = df.drop('diagnosis', axis=1)

X_df = X
```

Ahora para ver el p valor de cada campo le agregamos una fila de 1 a la matriz

for i in range(0, numVars):

```
regressor OLS = sm.OLS(y, x.tolist()).fit()
                  maxVar = max(regressor OLS.pvalues)
                  if maxVar > sl:
                       for j in range(0, numVars - i):
                           if (regressor OLS.pvalues[j] == maxVar):
                               x = np.delete(x, j, 1)
              regressor OLS.summary()
              return x
In [267... #Eliminamos las variables con mayor valor p automaticamente y mostramos e
          SL = 0.05
          y = y.astype(int)
          X \text{ opt } = X
          X Modelado = EliminacionBackward(X opt, SL)
          pd.DataFrame(X_Modelado).head()
                0
                      1
                              2
                                                      5
                                                             6
                                                                      7
                                                                                  9
Out[267]:
           0 1.0 17.99 0.27760 0.14710 1.0950 0.006399 0.05373 0.01587 25.38 17.33 20
           1 1.0 20.57 0.07864 0.07017 0.5435 0.005225 0.01860 0.01340 24.99 23.41 19
           2 1.0 19.69 0.15990 0.12790 0.7456 0.006150 0.03832 0.02058 23.57 25.53 1
           3 1.0 11.42 0.28390 0.10520 0.4956 0.009110 0.05661 0.01867 14.91 26.50
                                                                                    Ţ
           4 1.0 20.29 0.13280 0.10430 0.7572 0.011490 0.05688 0.01885 22.54 16.67
                                                                                    1!
4
In [268... #Eliminacion hecha a mano para comparar con la eliminacion automatica
          X_{opt} = X[:, [0, 1, 6, 8, 11, 15, 17, 18, 21, 22, 24, 27, 29, 30]]
          #Con este X auxiliar veremos y eliminaremos las columnas que menos influy
          # X opt, al inicio, tomará todas las filas y cada una de las columnas del
          #convierto columna a tipo numerico
          y = y.astype(int)
          # tecnica OLS
          SL = 0.05
```

regression\_OLS = sm.OLS(endog = y, exog = X\_opt.tolist()).fit()

# observar el p valor en el sumario

regression\_OLS.summary()

Out[268]:

### **OLS Regression Results**

| Dep. Variable:    | diagnosis        | R-squared:          | 0.771     |
|-------------------|------------------|---------------------|-----------|
| Model:            | OLS              | Adj. R-squared:     | 0.766     |
| Method:           | Least Squares    | F-statistic:        | 144.1     |
| Date:             | Sat, 27 May 2023 | Prob (F-statistic): | 3.34e-168 |
| Time:             | 14:34:02         | Log-Likelihood:     | 26.008    |
| No. Observations: | 569              | AIC:                | -24.02    |
| Df Residuals:     | 555              | BIC:                | 36.80     |
| Df Model:         | 13               |                     |           |

Covariance Type: nonrobust

|                | coef      | std err | t       | P> t    | [0.025          | 0.975] |
|----------------|-----------|---------|---------|---------|-----------------|--------|
| const          | -2.0783   | 0.182   | -11.449 | 0.000   | -2.435          | -1.722 |
| <b>x1</b>      | -0.0340   | 0.015   | -2.224  | 0.027   | -0.064          | -0.004 |
| x2             | -3.3622   | 0.552   | -6.092  | 0.000   | -4.446          | -2.278 |
| х3             | 4.9320    | 0.943   | 5.230   | 0.000   | 3.080           | 6.784  |
| x4             | 0.2147    | 0.069   | 3.105   | 0.002   | 0.079           | 0.351  |
| х5             | 19.6509   | 4.335   | 4.533   | 0.000   | 11.135          | 28.167 |
| х6             | -3.0397   | 0.747   | -4.067  | 0.000   | -4.508          | -1.571 |
| x7             | 7.7568    | 3.348   | 2.317   | 0.021   | 1.180           | 14.334 |
| <b>x8</b>      | 0.1657    | 0.021   | 8.041   | 0.000   | 0.125           | 0.206  |
| x9             | 0.0102    | 0.002   | 5.552   | 0.000   | 0.007           | 0.014  |
| x10            | -0.0009   | 0.000   | -7.663  | 0.000   | -0.001          | -0.001 |
| <b>x11</b>     | 0.6533    | 0.144   | 4.537   | 0.000   | 0.370           | 0.936  |
| x12            | 0.7751    | 0.213   | 3.634   | 0.000   | 0.356           | 1.194  |
| <b>x13</b>     | 3.3066    | 1.139   | 2.903   | 0.004   | 1.070           | 5.544  |
| (              | Omnibus:  | 27.517  | Durbi   | n-Watso | on:             | 1.777  |
| Prob(Omnibus): |           | 0.000   | Jarque- | Bera (J | <b>B):</b> 3    | 0.209  |
|                | Skew:     | 0.554   |         | Prob(J  | <b>B):</b> 2.7  | 6e-07  |
|                | Kurtosis: | 3.218   |         | Cond. N | <b>No.</b> 4.71 | Le+05  |

#### Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.71e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [269... #Ahora asignamos el dataFrame real con los campos que sabemos que su valo X_df = X_df.iloc[:, [0, 5, 7, 10, 14, 16, 17, 20, 21, 23, 26, 28, 29]]
```

X\_df

Out[269]:

|   |     | radius_mean | compactness_mean | concave<br>points_mean | radius_se | smoothness_se | СО |
|---|-----|-------------|------------------|------------------------|-----------|---------------|----|
|   | 0   | 17.99       | 0.27760          | 0.14710                | 1.0950    | 0.006399      |    |
|   | 1   | 20.57       | 0.07864          | 0.07017                | 0.5435    | 0.005225      |    |
|   | 2   | 19.69       | 0.15990          | 0.12790                | 0.7456    | 0.006150      |    |
|   | 3   | 11.42       | 0.28390          | 0.10520                | 0.4956    | 0.009110      |    |
|   | 4   | 20.29       | 0.13280          | 0.10430                | 0.7572    | 0.011490      |    |
|   |     |             |                  |                        |           |               |    |
| Ę | 64  | 21.56       | 0.11590          | 0.13890                | 1.1760    | 0.010300      |    |
| Ę | 65  | 20.13       | 0.10340          | 0.09791                | 0.7655    | 0.005769      |    |
| Ę | 566 | 16.60       | 0.10230          | 0.05302                | 0.4564    | 0.005903      |    |
| Ę | 67  | 20.60       | 0.27700          | 0.15200                | 0.7260    | 0.006522      |    |
| Ę | 68  | 7.76        | 0.04362          | 0.00000                | 0.3857    | 0.007189      |    |

569 rows × 13 columns

Out[270]: <Axes: >



In [346... X\_aux.describe()

| O -  | - 1 | г |   | Л  | п.  |     |
|------|-----|---|---|----|-----|-----|
| 1 11 | 17  |   | ~ | 71 | - 1 | - 1 |
|      |     |   |   |    |     |     |

|  |             | diagnosis  | radius_mean | compactness_mean | concave<br>points_mean | radius_se  | smo |
|--|-------------|------------|-------------|------------------|------------------------|------------|-----|
|  | count       | 569.000000 | 569.000000  | 569.000000       | 569.000000             | 569.000000 |     |
|  | mean        | 0.372583   | 14.127292   | 0.104341         | 0.048919               | 0.405172   |     |
|  | std         | 0.483918   | 3.524049    | 0.052813         | 0.038803               | 0.277313   |     |
|  | min         | 0.000000   | 6.981000    | 0.019380         | 0.000000               | 0.111500   |     |
|  | 25%         | 0.000000   | 11.700000   | 0.064920         | 0.020310               | 0.232400   |     |
|  | 50%         | 0.000000   | 13.370000   | 0.092630         | 0.033500               | 0.324200   |     |
|  | <b>75</b> % | 1.000000   | 15.780000   | 0.130400         | 0.074000               | 0.478900   |     |
|  | max         | 1.000000   | 28.110000   | 0.345400         | 0.201200               | 2.873000   |     |
|  |             |            |             |                  |                        |            |     |

## Definimos el significado de los campos:

diagnosis: diagnostico final del tumor (M/1: Maligno, B/0: Benigno) radius mean: media de las distancias desde el medio a varios puntos del tumor compactness\_mean: el perimetro cuadrado dividido por el area-1 concave points\_mean: media del numero de porciones concavas del contorno radius\_se: error estandar de la medida del radio smoothness se: variacion local en longitud de radio

concavity\_se: severidad de las porciones concavas del contorno concave points\_se: error estandar de las porciones concavas

radius\_worst: distancia mas amplia entre el centro y algun punto del tumor

texture\_worst: peor desviacion de los valores en escala de grises

area\_worst: mayor area del tumor

concavity\_worst: concavidad mas severa del contorno

symmetry worst: peor simetria del tumor

fractal\_dimension\_worst: peor irregularidad de los contornos del tumor

# In [271... corr['diagnosis'].abs().sort\_values(ascending=False)

```
Out[271]: diagnosis
                                      1.000000
          concave points mean
                                      0.776614
          radius worst
                                     0.776454
                                     0.733825
          area worst
          radius mean
                                     0.730029
          concavity_worst
                                     0.659610
          compactness_mean
                                     0.596534
          radius_se
                                     0.567134
          texture worst
                                     0.456903
          symmetry_worst
                                     0.416294
          concave points se
                                     0.408042
          fractal_dimension_worst
                                     0.323872
          concavity_se
                                      0.253730
          smoothness_se
                                      0.067016
          Name: diagnosis, dtype: float64
```

Vemos la correlacion entre el diagnostico y las variables

Ahora reacomodamos nuestra matriz:

```
In [272... #Asigno la matriz resultante a la matriz original de variables dependient X = X_df X
```

| $\cap$ . |       | $\Gamma \cap$ | 70  | т.  |
|----------|-------|---------------|-----|-----|
| UL       | IT I  | -             | //  | 1.5 |
| 00       | 4 - 1 | L -           | / _ | л.  |

|  |     | radius_mean | compactness_mean | concave<br>points_mean | radius_se | smoothness_se | со |
|--|-----|-------------|------------------|------------------------|-----------|---------------|----|
|  | 0   | 17.99       | 0.27760          | 0.14710                | 1.0950    | 0.006399      |    |
|  | 1   | 20.57       | 0.07864          | 0.07017                | 0.5435    | 0.005225      |    |
|  | 2   | 19.69       | 0.15990          | 0.12790                | 0.7456    | 0.006150      |    |
|  | 3   | 11.42       | 0.28390          | 0.10520                | 0.4956    | 0.009110      |    |
|  | 4   | 20.29       | 0.13280          | 0.10430                | 0.7572    | 0.011490      |    |
|  |     |             |                  |                        |           |               |    |
|  | 564 | 21.56       | 0.11590          | 0.13890                | 1.1760    | 0.010300      |    |
|  | 565 | 20.13       | 0.10340          | 0.09791                | 0.7655    | 0.005769      |    |
|  | 566 | 16.60       | 0.10230          | 0.05302                | 0.4564    | 0.005903      |    |
|  | 567 | 20.60       | 0.27700          | 0.15200                | 0.7260    | 0.006522      |    |
|  | 568 | 7.76        | 0.04362          | 0.00000                | 0.3857    | 0.007189      |    |

569 rows × 13 columns

```
In [273... #Separamos nuestros conjuntos
         X train, X test, y train, y test = train test split(X, y, test size=0.2,
In [274... regressor = LinearRegression()
         regressor.fit(X train, y train)
Out[274]: ▼ LinearRegression
          LinearRegression()
In [275... y pred = regressor.predict(X test)
         #Redondeamos los resultados para tener una respuesta binaria (tambien pod
         y test = np.round(y test, decimals=0, out=None)
         y pred = np.round(y pred, decimals=0, out=None)
In [328...
         #Redimensionamos el array
         y test = np.array(y test).reshape(-1)
         y_pred = np.array(y_pred).reshape(-1)
         #Cambiamos el tipo de valor a entero
         y pred = y_pred.astype(int)
         y_test = y_test.astype(int)
         #Creamos el dataframe para mostrar nuestra prediccion
         df = pd.DataFrame({'Actual': y_test, 'Predicted': y_pred})
         #Reemplazamos los valores numericos por categoricos para mejor visualizad
         df['Actual'].replace(to_replace=0, value='B', regex=True, inplace=True)
         df['Actual'].replace(to_replace=1, value='M', regex=True, inplace=True)
         df['Predicted'].replace(to replace=0, value='B', regex=True, inplace=True
         df['Predicted'].replace(to_replace=1, value='M', regex=True, inplace=True
         df['Predicted'].replace(to_replace=2, value='M', regex=True, inplace=True
         df toShow = df.head(25)
         df toShow.head()
Out[328]:
             Actual Predicted
          0
                 M
                          M
          1
                 В
                           В
          2
                 B
                           В
          3
                 В
                           В
          4
                 В
                           В
In [330... def entropia(y):
             if isinstance(y, pd.Series):
                 a = y.value_counts() / y.shape[0]
                 entropy = np.sum(-a * np.log2(a + 1e-9))
                 return entropy
             else:
                  raise('el obj debe ser una serie Pandas')
```

entropia(X aux.diagnosis)

```
Out[330]: 0.9526351195164697
```

Segun el calculo de la entropia, al estar cerca del 1 podemos afirmar que los datos varian bastante entre M y B

Ahora, veremos el conteo de diagnosticos con los que queriamos comparar nuestra prediccion

```
In [331... graf1 = pd.crosstab(index = ['Diagnosis'], columns=df['Actual'], margins=
    graf1
```

```
        Out[331]:
        Actual row_0
        B
        M
        All All

        Diagnosis
        67
        47
        114

        All
        67
        47
        114
```

Conteo de los resultados de la prediccion

```
In [332... graf2 = pd.crosstab(index = ['Diagnosis'], columns=df['Predicted'], margi
graf2

Out[332]: Predicted B M All
    row_0
```

**Diagnosis** 70 44 114 **All** 70 44 114

Visualizamos los datos

```
In [338... graf1[0:1].plot(kind='bar')
Out[338]: <Axes: xlabel='row_0'>
```



In [342... graf2[0:1].plot(kind='bar')

Out[342]: <Axes: xlabel='row\_0'>



Por ultimo calculamos el indice de error del algoritmo

```
In [343...
print('Mean Absolute Error:', metrics.mean_absolute_error(y_test, y_pred)
print('Mean Squared Error:', metrics.mean_squared_error(y_test, y_pred))
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(y_test))
```

Mean Absolute Error: 0.043859649122807015 Mean Squared Error: 0.043859649122807015 Root Mean Squared Error: 0.20942695414584775

Viendo que nuestras metricas son cercanas al cero, podemos tener confianza de que nuestro algoritmo tendrá buenas predicciones

En conclusion, pudimos ver que en el diagnostico cancerigeno de un tumor, antes de hacer una biopsia para saber con certeza la naturaleza del mismo, la concavidad, el radio y el area influye a la hora de saber si es maligno o benigno, por lo que con un algoritmo como el propuesto, podriamos monitorear el cambio de estos valores en algun paciente para saber de antemano que resultados podria esperar, y asi estudiarlo mas fondo en pro de diagnosticarle lo mas pronto posible y tratarle en una etapa temprana