LIST OF ABBREVIATIONS ————

Abbreviations conform to the practice of the American Standard Abbreviations for Scientific and Engineering Terms, ASA Z10.1

abs	Absolute
AGA	American Gas Association
AISI	American Iron and Steel Institute
Amer Std	American Standard
API	American Petroleum Institute
ASA	American Standards Association
Ashve	American Society of Heating and Ventilation Engineers
ASME	American Society of Mechanical Engineers
ASTM	American Society for Testing Materials
AWWA	American Water Works Association
B & S	Bell and spigiot or Brown & Sharpe (gauge)
bbl	Barrel
Btu	British thermal unit(s)
C	Centigrade
cfm	Cubic feet per minute
cfs	Cubic feet per second
CI	Cast iron
CS	
Comp	Companion
C to F	Center to face
°C	Degrees Centigrade
°F	Degrees Fahrenheit
diam	Diameter
dwg	Drawing
ex-hy	Extra-heavy
F & D	Faced and drilled
F	Fahrenheit
F to F	Face to face
flg	Flange or flanges
flgd	Flanged
g	Gage or gauge

---- List Of Abbreviations

hex	Hexagonal
hg	mercury
IBBM	Iron body bronze (or brass) mounted
ID	Inside diameter
kw	Kilowatt(s)
MI	Malleable iron
max	Maximum
min	Minimum
mtd	Mounted
MSS	
	(of Value and Fittings Industry)
NEWWA	New England Water Works Association
NPS	. Nominal pipe size (formerly IPS for iron pipe size)
0D	Outside diameter
OS&Y	Outside screw and yoke
OWG	Oil, water, gas (see WOG)
psig	Pounds per square inch, gage
red	Reducing
sch or sched	Schedule
scd	Screwed
SF	Semifinished
Spec	
SSP	Steam service pressure
	Seconds Saybolt Universal
Std	Standard
Trans	Transactions
WOG	
WWP	Working water pressure
	Extra strong
XXS	

DECIMAL EQUIVALENTS OF FRACTIONS —————

DECIMAL EQUIVALEN	IS OI I NA	CHONS	
1/64	. 0.015625	33/64	0.515625
1/32		17/32	
3/64	. 0.046875	³⁵ /64	0.546875
¹ / ₁₆		⁹ ⁄16	0.5625
5/64	. 0.078125	³⁷ / ₆₄	0.578125
³ / ₃₂	0.09375	19/32	0.59375
⁷ / ₆₄	. 0.109375	³⁹ /64 ⁵ /8	0.609375
1/8	0.125	5/8	0.625
9/64		41/64	0.640625
5/32		²¹ / ₃₂	0.65625
11/64	. 0.171875	⁴³ / ₆₄ ¹¹ / ₁₆	0.671875
³ / ₁₆	0.1875	¹¹ / ₁₆	0.6875
13/64	. 0.203125	⁴⁵ / ₆₄	0.703125
7/32		23/32	0.71875
15/64	. 0.234375	⁴⁷ /64	0.734375
1/4		3/4	0.75
17/64		49/64	0.765625
9/32	0.28125	25/32	0.78125
¹⁹ ⁄64 ⁵ ⁄16	. 0.296875	⁵¹ / ₆₄ ¹³ / ₁₆	0.796875
5/16	0.3125	¹³ / ₁₆	0.8125
21/64	. 0.328125	53/64	0.828125
11/32	0.34375	27/32	
23/64	. 0.359375	⁵⁵ / ₆₄	0.859375
3/8		7/8	
25/64	. 0.390625	57/64	0.890625
13/32	0.40625	29/32	0.90625
²⁷ / ₆₄ ⁷ / ₁₆	. 0.421875	⁵⁹ /64 ¹⁵ / ₁₆	0.921875
//16	0.43/5	19/16	0.93/5
29/64	. 0.453125	61/64	0.953125
15/32	0.468/5	31/32	0.968/5
31/64	. 0.484375	⁶³ / ₆₄	
1/2	U. 5	1	I

DECIMAL DEGREE EQUIVALENTS OF MINUTES ----

Min. Deg.	Min.	DEG.	Min.	DEG.	Min.	Deg.
1 0.0167 2 0.0333 3 0.0500 4 0.0667 5 0.1000 7 0.1167 8 0.1333 9 0.1500 10 . 0.1667 11 . 0.1833 12 . 0.2000 13 . 0.2167 14 . 0.2333	16 . 0. 17 . 0. 18 . 0. 19 . 0. 20 . 0. 21 . 0. 22 . 0. 23 . 0. 24 . 0. 25 . 0. 26 . 0. 27 . 0. 29 . 0.	2667 2833 3000 3167 3333 3500 3667 3833 4000 4167 4333 4500 4667	31 . 0 32 . 0 33 . 0 34 . 0 35 . 0 36 . 0 37 . 0 38 . 0 40 . 0 41 . 0 42 . 0 44 . 0	.5167 .5333 .5500 .5667 .5833 .6000 .6167 .6333 .6500 .6667 .6833 .7000	46 . 0. 47 . 0. 48 . 0. 49 . 0. 50 . 0. 51 . 0. 52 . 0. 54 . 0. 55 . 0. 56 . 0. 58 . 0. 59 . 0.	7667 7833 8000 8167 8333 8500 8667 8833 9000 9167 9333 9500 9667

DECIMAL EQUIVALENTS OF FRACTIONS —————

DECIMAL EQUIVALEN	IS OI I NA	CHONS	
1/64	. 0.015625	33/64	0.515625
1/32		17/32	
3/64	. 0.046875	³⁵ /64	0.546875
¹ / ₁₆		⁹ ⁄16	0.5625
5/64	. 0.078125	³⁷ / ₆₄	0.578125
³ / ₃₂	0.09375	19/32	0.59375
⁷ / ₆₄	. 0.109375	³⁹ /64 ⁵ /8	0.609375
1/8	0.125	5/8	0.625
9/64		41/64	0.640625
5/32		²¹ / ₃₂	0.65625
11/64	. 0.171875	⁴³ / ₆₄ ¹¹ / ₁₆	0.671875
³ / ₁₆	0.1875	¹¹ / ₁₆	0.6875
13/64	. 0.203125	⁴⁵ / ₆₄	0.703125
7/32		23/32	0.71875
15/64	. 0.234375	⁴⁷ /64	0.734375
1/4		3/4	0.75
17/64		49/64	0.765625
9/32	0.28125	25/32	0.78125
¹⁹ ⁄64 ⁵ ⁄16	. 0.296875	⁵¹ / ₆₄ ¹³ / ₁₆	0.796875
5/16	0.3125	¹³ / ₁₆	0.8125
21/64	. 0.328125	53/64	0.828125
11/32	0.34375	27/32	
23/64	. 0.359375	⁵⁵ / ₆₄	0.859375
3/8		7/8	
25/64	. 0.390625	57/64	0.890625
13/32	0.40625	29/32	0.90625
²⁷ / ₆₄ ⁷ / ₁₆	. 0.421875	⁵⁹ /64 ¹⁵ / ₁₆	0.921875
//16	0.43/5	19/16	0.93/5
29/64	. 0.453125	61/64	0.953125
15/32	0.468/5	31/32	0.968/5
31/64	. 0.484375	⁶³ / ₆₄	
1/2	U. 5	1	I

DECIMAL DEGREE EQUIVALENTS OF MINUTES ----

Min. Deg.	Min.	DEG.	Min.	DEG.	Min.	Deg.
1 0.0167 2 0.0333 3 0.0500 4 0.0667 5 0.1000 7 0.1167 8 0.1333 9 0.1500 10 . 0.1667 11 . 0.1833 12 . 0.2000 13 . 0.2167 14 . 0.2333	16 . 0. 17 . 0. 18 . 0. 19 . 0. 20 . 0. 21 . 0. 22 . 0. 23 . 0. 24 . 0. 25 . 0. 26 . 0. 27 . 0. 29 . 0.	2667 2833 3000 3167 3333 3500 3667 3833 4000 4167 4333 4500 4667	31 . 0 32 . 0 33 . 0 34 . 0 35 . 0 36 . 0 37 . 0 38 . 0 40 . 0 41 . 0 42 . 0 44 . 0	.5167 .5333 .5500 .5667 .5833 .6000 .6167 .6333 .6500 .6667 .6833 .7000	46 . 0. 47 . 0. 48 . 0. 49 . 0. 50 . 0. 51 . 0. 52 . 0. 54 . 0. 55 . 0. 56 . 0. 58 . 0. 59 . 0.	7667 7833 8000 8167 8333 8500 8667 8833 9000 9167 9333 9500 9667

Nom. Pipe	Actual Inside	ACTUAL Outside		Length Containing	Gallons Per
DIA.	DIA.	DIA.	W т./ F т.	ONE CU. FT.	LINEAL FT.
INCHES	INCHES	Inches	Pounds	FEET	GALLONS
1/8	0.269	0.405	0.244	2,526.000	0.0030
1/4	0.364	0.540	0.424	1,383.800	0.0054
3⁄8	0.493	0.675	0.567	754.360	0.0099
1/2	0.622	0.840	0.850	473.910	0.0158
3/4	0.824	1.050	1.130	270.030	0.0277
1	1.049	1.315	1.678	166.620	0.0449
11/4	1.380	1.660	2.272	96.275	0.0777
11/2	1.610	1.900	2.717	70.733	0.1058
2	2.067	2.375	3.652	49.913	0.1743
21/2	2.469	2.875	5.793	30.077	0.2487
3	3.068	3.500	7.575	19.479	0.3840
31/2	3.548	4.000	9.109	14.565	0.5136
4	4.026	4.500	10.790	11.312	0.6613
41/2	4.560	5.000	12.538	9.030	0.8284
5	5.047	5.563	14.617	7.198	1.0393
6	6.065	6.625	18.974	4.984	1.5008
8	7.981	8.625	28.554	2.878	2.5988
10	10.020	10.750	40.483	1.826	4.0963

----- BARLOW'S FORMULA

Barlow's Formula is a safe, easy method for finding the relationship between internal fluid pressure and stress in the pipe wall. The formula predicts bursting pressures that have been found to be safely within the actual test bursting pressures.

It is interesting to note that the formula uses the "Outside Diameter" of pipe and is sometimes referred to as the "Outside Diameter Formula."

$$P = (2 \cdot t \cdot S) / D$$

Where:

P = internal units pressure, in psi

S = unit stress, in psi

D = outside diameter of pipe, in inches

t = wall thickness, in inches

Nom. Pipe	Actual Inside	ACTUAL Outside		Length Containing	Gallons Per
DIA.	DIA.	DIA.	W т./ F т.	ONE CU. FT.	LINEAL FT.
INCHES	INCHES	Inches	Pounds	FEET	GALLONS
1/8	0.269	0.405	0.244	2,526.000	0.0030
1/4	0.364	0.540	0.424	1,383.800	0.0054
3⁄8	0.493	0.675	0.567	754.360	0.0099
1/2	0.622	0.840	0.850	473.910	0.0158
3/4	0.824	1.050	1.130	270.030	0.0277
1	1.049	1.315	1.678	166.620	0.0449
11/4	1.380	1.660	2.272	96.275	0.0777
11/2	1.610	1.900	2.717	70.733	0.1058
2	2.067	2.375	3.652	49.913	0.1743
21/2	2.469	2.875	5.793	30.077	0.2487
3	3.068	3.500	7.575	19.479	0.3840
31/2	3.548	4.000	9.109	14.565	0.5136
4	4.026	4.500	10.790	11.312	0.6613
41/2	4.560	5.000	12.538	9.030	0.8284
5	5.047	5.563	14.617	7.198	1.0393
6	6.065	6.625	18.974	4.984	1.5008
8	7.981	8.625	28.554	2.878	2.5988
10	10.020	10.750	40.483	1.826	4.0963

----- BARLOW'S FORMULA

Barlow's Formula is a safe, easy method for finding the relationship between internal fluid pressure and stress in the pipe wall. The formula predicts bursting pressures that have been found to be safely within the actual test bursting pressures.

It is interesting to note that the formula uses the "Outside Diameter" of pipe and is sometimes referred to as the "Outside Diameter Formula."

$$P = (2 \cdot t \cdot S) / D$$

Where:

P = internal units pressure, in psi

S = unit stress, in psi

D = outside diameter of pipe, in inches

t = wall thickness, in inches

COMMERCIAL PIPE SIZES AND WALL THICKNESSES .

This table lists standard pipe sizes and wall thicknesses, or specifically:

- 1. Traditional standard weight, extra strong and durable extra strong pipe.
- 2. Pipe wall thickness in American Standard B36.10 for carbon steel.
- 3. Pipe wall thickness in ASTM Specification A409 and American Standard B36.19 and applicable only to corrosion resistant materials.

Note: All dimensions in inches and thicknesses are nominal or average wall thickness. Actual thickness may be as much as 12.5% under nominal due to mill tolerance.

Nom.			Noм	INAL W AL	L THICKNE	ss For	
PIPE	OUTSIDE	Sch	Sch	Sch	Sch	Sch	Scн
Size	DIA.	58*	108*	10	20	30	Std.†
1/8	0.405	_	0.049	_	_	_	0.068
1/4	0.540	_	0.650	_	_	_	0.088
3/8	0.675	_	0.065	_	_	_	0.091
1/2	0.840	0.065	0.083	_	_	_	0.109
3/4	1.050	0.065	0.083	_	_	_	0.113
1	1.315	0.065	0.109	_			0.133
11/4	1.660	0.065	0.109	_	_	_	0.140
11/2	1.900	0.065	0.109	_	_	_	0.145
2	2.375	0.065	0.109	_	_	_	0.540
21/2	2.875	0.083	0.120				0.203
3 31/2	3.500 4.000	0.083 0.083	0.120 0.120	_	_	_	0.216 0.226
4							
5	4.500 5.563	0.083 0.109	0.120 0.134	_	_	_	0.237 0.258
6	6.625	0.109	0.134		<u> </u>		0.280
8	8.625	0.103	0.148	_	0.250	0.277	0.322
10	10.750	0.134	0.165	_	0.250	0.307	0.365
12	12.750	0.156	0.180	_	0.250	0.330	0.375
14 O.D.	14.000	0.156	0.188	0.250	0.312	0.375	0.375
16 O.D.	16.000	0.165	0.188	0.250	0.312	0.375	0.375
18 O.D.	18.000	0.165	0.188	0.250	0.312	0.438	0.375
20 O.D.	20.000	0.188	0.218	0.250	0.375	0.500	0.375
22 O.D.	22.000	0.188	0.218	0.250	0.375	0.500	0.375
24 O.D.	24.000	0.218	_	0.250	0.375	0.562	0.375
26 O.D.	26.000	-	_	0.312	0.500	_ 0.005	0.375
28 O.D.	28.000	- 0.050	-	0.312	0.500	0.625	0.375
30 O.D. 32 O.D.	30.000	0.250	0.312	0.312	0.500	0.625	0.375
	32.000			0.312	0.500	0.625	0.375
34 O.D. 36 O.D.	34.000 36.000	_	_	0.312 0.312	0.500 0.500	0.625 0.625	0.375 0.375
42 O.D.	42.000			-	0.375	-	-

Note: Thicknesses shown in light face for Schedule 60 and heavier pipe are not currently supplied by the mills unless a certain minimum tonnage is ordered.

*Schedule 5S and 10S are available in corrosion resistant material and Schedule 10S is available in carbon steel in sizes up to 12"

†Thickness shown in italics are available in stainless steel as Sch. 40S ‡Thickness shown in italics are available in stainless stell as Sch. 80S

	Nominal Wall Thickness For							
Scн	Sch	Extra	Sch	Scн	Scн	Scн	Sch.	XX
40	60	Strong#	80	100	120	140	160	Strong
0.068	_	0.095	0.095	-	-	_	_	_
0.088		0.119	0.119			_	_	_
0.091	_	0.126	0.126	-	-	_	_ 0.100	_ 0.004
0.109		0.147	0.147				0.188	0.294
0.113	_	0.154 0.179	0.154 0.179	_	_	_	0.219 0.250	0.308 0.358
0.133		0.179	0.179				0.250	0.382
0.140	_	0.191	0.191	_	_	_	0.230	0.362
0.540		0.218	0.218				0.344	0.436
0.203	_	0.276	0.276	_	_	_	0.375	0.552
0.216	_	0.300	0.300	_	_	_	0.438	0.600
0.226	_	0.318	0.318	_	-	_	-	_
0.237	_	0.337	0.337	_	0.438	_	0.531	0.674
0.258	_	0.375	0.375	_	0.500	_	0.625	0.750
0.280	_	0.432	0.432	-	0.562	_	0.719	0.864
0.322	0.406		0.500	0.594	0.719	0.812	0.906	0.875
0.365	0.500		0.594	0.719	0.844	1.000	1.125	1.000
0.406	0.562	0.500	0.688	0.844	1.000	1.125	1.312	1.000
0.438	0.594		0.750	0.938	1.094	1.250	1.406	_
0.500	0.656		0.844	1.031	1.219	1.438	1.594	
0.562 0.594	0.750 0.812	0.500 0.500	0.938 1.031	1.156 1.281	1.375 1.500	1.562 1.750	1.781 1.969	_
0.584	0.875	0.500	1.125	1.375	1.625	1.875	2.125	
0.688	0.075	0.500	1.123	1.531	1.812	2.062	2.125	_
	_	0.500			-			_
_	_	0.500	_	_	_	_	_	_
_	_	0.500	_	_	_	_	_	_
0.688		0.500						_
0.688	_	0.500	_	_	-	_	_	_
0.750	_	0.500		_	_	_	_	_
_	-	0.500	_	-	-	-	_	-

Weld Fitting ——90° Elbow, 180° Return, 45° Elbow

Nom.	90° E	LBOWS	180° F	RETURNS	45°
PIPE	Long R	SHORT R	Long R	SHORT R	Elbow
Size	A	A	K	K	В
1/2	11/2	_	17/8	_	5/8
3/4	11/8	_	11 ¹ ⁄16	-	⁷ /16
1	11/2	1	2 3⁄16	15⁄8	7/8
11/4	17⁄8	11/4	23/4	21/16	1
11/2	11/4	11/2	31/4	27/16	11/8
2	3	2	43/16	33/16	13⁄8
21/2	33/4	21/2	53/16	315/16	13/4
3	41/2	3	61/4	43/4	2
31/2	51/4	31/2	71/4	51/2	21/4
4	6	4	81/4	61/4	21/2
5	71/2	5	10 5⁄16	73/4	31/8
6	9	6	12 5⁄16	95/16	33/4
8	12	8	16 5⁄16	125/16	5
10	15	10	203/8	153⁄8	61/4
12	18	12	243/8	183⁄8	71/2
14	21	14	28	21	83/4
16	24	16	32	24	10
18	27	18	36	27	111/4
20	30	20	40	30	121/2
22	33	_	44	_	131/2
24	36	24	48	36	15
26	39	_	52	_	16
30	45	30	60	45	181/2
34	51	_	_	_	21
36	54	36	_	54	221/4
42	63	48	_	_	26

^{*}Dimensions apply to STD and XS only.

Nom.					
PIPE	TEES	Caps	Crosses		Ends
Size	C	E	C	F	G
1/2	1	1	_	3	13⁄8
3/4	11/8	1	_	3	111⁄16
1	11/2	11/2	-	4	2
11/4	17/8	11/2	17/8	4	21/2
11/2	21/4	11/2	21/4	4	27/8
2	21/2	11/2*	21/2	6	35⁄8
21/2	3	11/2*	3	6	41/4
3	33/8	2*	33/8	6	5
31/2	33/4	21/2*	33/4	6	51/2
4	41/8	21/2*	41/8	6	63/16
5	47/8	3*	47/8	8	75⁄16
6	55/8	31/2*	55/8	8	81/2
8	7	4*	7	8	105⁄8
10	81/2	5*	81/2	10	123⁄4
12	10	6*	10	10	15
14	11	61/2*	11	12	161/4
16	12	7*	12	12	181/2
18	131/2	8*	131/2	12	21
20	15	9*	15	12	23
22	16½	10	16½	_	_
24	17	101/2	17	12	271/4
26	191/2	101/2	-	_	_
30	22	101/2	_	_	-
34	25	101/2	_	_	-
36	261/2	101/2	-	_	_
42	_	12	_	_	-

^{*}Dimensions apply to STD and XS only.

WELD FITTING ——— REDUCERS AND REDUCING OUTLET TEES

H: Concentric and Eccentric Reducers

C, M: Reducing Outlet Tees

Nom. Pi	PE				Nom. P	IPE			
Size		Н	C	M	Size		Н	C	M
1/2 X 1	1/4	_	1	1	4 X	11/2	4	41/8	33/8
3	3/8			1		2			31/2
3/4 X 3	3/8 1	1/2	11/8	11/8		21/2			33/4
1	1/2			11/8		3			37/8
1 X 3	3/8	2	11/2	11/2		31/2			4
1	1/2			11/2	5 X		5	47/8	41/8
3	3/4			11/2		21/2			41/4
11/4 X 1	1/2	2	17⁄8	17/8		3			43/8
3	3/4			17/8		31/2			41/2
-	1			17/8		4			45/8
1½ X 1	1/2 2	1/2	21/4	21/4	6 X	21/2	51/2	55/8	43/4
3	3/4			21/4		3			47/8
-	1			21/4		31/2			5
-	11/4			21/4		4 5			5½ 53/8
2 X 3	3/4	3	21/2	13⁄4	0 V			7	
	1			2	8 X	3 31/2	- 6	7	6
	11/4			21/4		4	O		61/8
-	11/2			23/8		5			63/8
21/2 X		31/2	3	21/4		6			65/8
	11/4			21/2	10 X		7	81/2	71/4
	11/2			25/8	10 /	5	,	072	71/2
	2			23/4		6			75/8
3 X		_	-0.	25/8		8			8
		31/2	33⁄8	23/4	12 X	5	8	10	81/2
	1½			27/8	12.7	6	Ū	. •	85/8
	2 21⁄2			3 31/4		8			9
		1		٥ <i>/</i> 4		10			91/2
3½ X		4	_ 	-	14 X	6	13	11	93/8
	11/2		33⁄4	31/8		8		•	91/4
	2 21⁄2			31/4 31/2		10			101/8
	2 <i>1</i> /2 3			35/8		12			105/8
	<u> </u>			070					

Nom. Pi	PE 150	LB.	300	LB.	400		600	LB.
Size	0	Y ⁽¹⁾	0	Y ⁽¹⁾	0	Y ⁽²⁾	0	Y ⁽²⁾
1/2	31/2	1 7⁄8	33/4	2 ¹ /16	Fo	r	33/4	21/16
3/4	37/8	2 ¹ /16	45/8	21/4	size	es	45/8	21/4
1	41/4	2 3/16	47/8	27/16	31/	2	47/8	27/16
11/4	45⁄8	21/4	51/4	29/16	an	d	51/4	25⁄8
11/2	5	2 7/16	61/8	211/16	sma	ller	61/8	23/4
2	6	21/2	61/2	23/4	us	е	61/2	27/8
21/2	7	23/4	71/2	3	600	LB.	71/2	31/8
3	71/2	23/4	81/4	31/8	Stand	dard	81/4	31/4
31/2	81/2	213/16	9	33⁄16			9	33⁄8
4	9	3	10	33/8	10	31/2	103/4	4
5	10	31/2	11	37/8	11	4	13	41/2
6	11	31/2	121/2	37/8	121/2	41/16	14	45⁄8
8	131/2	4	15	43/8	15	45⁄8	16½	51/4
10	16	4	17½	45⁄8	17½	47/8	20	6
12	19	41/2	201/2	51/4	201/2	53/8	22	61/8
14	21	5	23	55/8	23	57/8	233/4	61/2
16	231/2	5	251/2	53/4	251/2	6	27	7
18	25	51/2	28	61/4	28	61/2	291/4	71/4
20	271/2	511/16	301/2	63/8	301/2	65⁄8	32	71/2
22	291/2	57/8	33	61/2	33	63/4	341/4	73/4
24	32	6	36	65/8	36	67/8	37	8
26	341/4	5	381/4	71/4	381/4	75⁄8	40	83/4
30	383/4	51/8	43	81/4	43	85/8	441/2	93/4
34	433⁄4	5 5⁄16	471/2	91/8	471/2	91/2	49	105⁄8
36	46	53/8	50	91/2	50	97/8	513/4	111/8
42	53	55⁄8	57	107/8	57	113⁄8	583/4	123⁄4

⁽¹⁾ The 1/16" raised face **is** included in length thru Hub, "Y". (2) The 1/16" raised face **is not** included in length thru Hub, "Y".

SLIP-ON, THREADED AND SOCKET FLANGES ----

Nom. Pipe	15	0 LB.	30	00 LB.	4	00 LB.	6	00 LB.
Size	0	Y ⁽¹⁾	0	Y ⁽¹⁾	0	Y ⁽²⁾	0	Y ⁽²⁾
1/2	31/2	5/8	33/4	7/8	For	33/4	7/8	
3/4	37/8	5⁄8	45/8	1	sizes	45/8	1	
1	41/4	11/16	47/8	1 1/16	31/2	47/8	11/16	
11/4	45⁄8	13/16	51/4	1 ½16	and	51/4	11/8	
11/2	5	7/8	61/8	1 3⁄16	smaller	61/8	11/4	
2	6	1	61/2	1 5⁄16	use	61/2	1 ⁷ /16	
21/2	7	11/8	71/2	11/2	600 LB.	71/2	15⁄8	
3	71/2	1 3⁄16	81/4	1 11/16	Standard	81/4	113/16	
31/2	81/2	11/4	9	13/4			9	1 15/16
4	9	1 5⁄16	10	17/8	10	2†	103⁄4	21/8†
5	10	1 7/16	11	2†	11	21/8†	13	23/8*
6	11	19⁄16	121/2	21/16†	121/2	21/4†	14	25/8†
8	131/2	13⁄4	15	27/16†	15	211/16†	161/2	3†
10	16	1 15⁄16	171/2	25/8†	171/2	27/8†	20	33/8†
12	19	2 3/16	201/2	27/8†	201/2	31/8†	22	35/8†
14	21	21/4	23	3†	23	35/16†	233/4	311/16†
16	231/2	1/2	251/2	31/4†	251/2	311/16†	27	43/16†
18	25	211/16	28	31/2†	28	37/8†	291/4	45/8†
20	271/2	27/8	301/2	33/4†	301/2	4†	32	5†
22	291/2	31/8 *†	33	4*†	33	41/4*†	341/4	51/4*†
24	32	31/4	36	43/16†	36	41/2†	37	51/2†
26	341/4	33/8*†	381/4	71/4*†	381/4	75/8*†	40	83/4*†
30	383/4	31/2*†	43	81/4*†	43	85/8*†	441/2	93/4*†
34	433/4	311/16*†	471/2	91/8*†	471/2	91/2*†	49	105⁄8*†
36	46	33/4*†	50	91/2*†	50	97/8*†	513⁄4	111/8*†
42	53	4*†	57	107/8*†	57	113/8*†	583⁄4	123/4*†

^{*} Not available in Threaded type

[†] Not available in Socket type

⁽¹⁾ The 1/16" raised face is included in length thru Hub, "Y".

⁽²⁾ The ½16" raised face is not included in length thru Hub, "Y".

Nom. Pipe	150	LB.	300	LB.	400	LB.	600	LB.
Size	0	Y ⁽¹⁾	0	Y ⁽¹⁾	0	Y ⁽²⁾	0	Y ⁽²⁾
1/2	31/2	5/8	33/4	7/8	For	33/4	7/8	
3/4	37/8	5/8	45/8	1	sizes	45/8	1	
1	41/4	11/16	47/8	11/16	31/2	47/8	11/16	
11/4	45⁄8	13/16	51/4	11/16	and	51/4	11/8	
11/2	5	7/8	61/8	13/16	smaller	61/8	11/4	
2	6	1	61/2	1 5⁄16	use	61/2	1 7/16	
21/2	7	11/8	71/2	11/2	600 LB.	71/2	15⁄8	
3	71/2	13/16	81/4	111/16	Standard	81/4	1 13/16	
31/2	81/2	11/4	9	13/4			9	1 ¹⁵ ⁄16
4	9	15/16	10	17/8	10	2	103/4	21/8
5	10	1 ⁷ /16	11	2	11	21/8	13	23/8
6	11	19⁄16	121/2	21/16	121/2	21/4	14	25/8
8	131/2	13/4	15	27/16	15	211/16	161/2	3
10	16	1 15/16	171/2	33/4	171/2	4	20	43/8
12	19	2 3/16	201/2	4	201/2	41/4	22	45⁄8
14	21	31/8	23	43/8	23	45/8	233/4	5
16	231/2	37/16	251/2	43/4	251/2	50	27	51/2
18	25	313/16	28	51/8	28	53/8	291/4	6
20	271/2	41/16	301/2	51/2	301/2	53/4	32	61/2
24	32	43⁄8	36	6	36	61/4	37	71/4

⁽¹⁾ The 1/16" raised face **is** included in length thru Hub, "Y". (2) The 1/16" raised face **is not** included in length thru Hub, "Y".

BLIND FLANGES -

Nom. Pipe	150	LB.	300	LB.	400 L	B.	600	LB.
SIZE	0	Y ⁽¹⁾	0	Y ⁽¹⁾	0	Y ⁽²⁾	0	Y ⁽²⁾
1/2	31/2	7/16	33/4	9⁄16	For	33/4	9⁄16	
3/4	37/8	1/2	45/8	5/8	sizes	45/8	5⁄8	
1	41/4	9⁄16	47/8	1 ½16	31/2	47/8	1 ¹ ⁄16	
11/4	45⁄8	5/8	51/4	3/4	and	51/4	13/16	
11/2	5	1 1⁄16	61/8	13/16	smaller	61/8	7/8	
2	6	3/4	61/2	7/8	use	61/2	1	
21/2	7	7/8	71/2	1	600 LB.	71/2	11/8	
3	71/2	1 5⁄16	81/4	11/8	Standard	81/4	11/4	
31/2	81/2	1 5⁄16	9	1 3⁄16		9	13⁄8	
4	9	1 5⁄16	10	11/4	10	13⁄8	103⁄4	11/2
5	10	1 5⁄16	11	13⁄8	11	11/2	13	13/4
6	11	1	121/2	1 7/16	121/2	15⁄8	14	1 7⁄8
8	131/2	11/8	15	15⁄8	15	1 7/8	161/2	23/16
10	16	13⁄16	171/2	17⁄8	171/2	21/8	20	21/2
12	19	11/4	201/2	2	201/2	1/4	22	25/8
14	21	13⁄8	23	21/8	23	23/8	233/4	23/4
16	231/2	1 7/16	251/2	21/4	25 1/2	21/2	27	3
18	25	19⁄16	28	23/8	28	25/8	291/4	31/4
20	271/2	1 ¹¹ / ₁₆	301/2	21/2	301/2	23/4	32	31/2
22	291/2	113/16	33	25/8	33	27/8	341/4	33/4
24	32	1 7⁄8	36	23/4	36	3	37	4
26	341/4	2	381/4	31/8	381/4	31/2	40	41/4
30	383/4	21/8	43	35⁄8	43	4	441/2	41/2
34	433/4	25/16	471/2	4	471/2	43/8	49	43/4
36	46	23/8	50	41/8	50	41/2	513/4	47/8
42	53	25⁄8	57	45⁄8	57	51/8	583⁄4	51/2

⁽¹⁾ The 1/16" raised face is included in Thickness, "Q".

⁽²⁾ The 1/4" raised face is not included in Thickness, "Q".

- BOLTING DIMENSIONS FOR 150 TO 300 LB. STEEL FLANGE

	125	/150	LB. FLA	NGE			250/	3 00 Lв	. Flang	E
Nom.	Вост		No.			Вост		No.		
PIPE	CIRCLE	Bolt	0F	*STUD	Вост	CIRCLE	Воцт	0F	*STUD	Вост
SIZE	DIA.	DIA.	Bolts	Len.	LEN.	Dia.	DIA.	Bolts	Len.	LEN.
1/2	23/8	1/2	4	21/4	13⁄4	25/8	1/2	4	21/2	2
3/4	23/4	1/2	4	21/4	2	31/4	5⁄8	4	23/4	21/2
1	31/8	1/2	4	21/2	2	31/2	5⁄8	4	3	21/2
11/4	31/2	1/2	4	21/2	21/4	37/8	5/8	4	3	23/4
11/2	37/8	1/2	4	23/4	21/4	41/2	3/4	4	31/2	3
2	43/4	5⁄8	4	3	23/4	5	5/8	8	31/4	3
21/2	51/2	5/8	4	31/4	3	57/8	3/4	8	33/4	31/4
3	6	5/8	4	31/2	3	65/8	3/4	8	4	31/2
31/2	7	5⁄8	8	31/2	3	71/4	3/4	8	41/4	33/4
4	71/2	5/8	8	31/2	3	77/8	3/4	8	41/4	33/4
5	81/2	3/4	8	33/4	31/4	91/4	3/4	8	41/2	4
6	91/2	3/4	8	33/4	31/4	105⁄8	3/4	12	43/4	41/4
8	113⁄4	3/4	8	4	31/2	13	7/8	12	51/4	43/4
10	141⁄8	7/8	12	41/2	33/4	15 ¹ /4	1	16	6	51/4
12	17	7/8	12	41/2	4	173/4	11/8	16	61/2	53/4
14	183⁄4	1	12	5	41/4	201/4	11/8	20	63/4	6
16	211/4	1	16	51/4	41/2	221/2	11/4	20	71/4	61/2
18	223/4	11/8	16	53/4	43/4	243/4	11/4	24	71/2	63/4
20	25	11/8	20	6	51/4	27	11/4	24	8	7
22	27 ¹ /4	11/4	20	$6^{1/2}$	51/2	291/4	11/2	24	83/4	71/2
24	291/2	11/4	20	63/4	53/4	32	11/2	24	9	73/4
26	313⁄4	11/4	24	7	6	341/2	15⁄8	28	10	83/4
30	36	11/4	28	71/4	61/4	391/4	13/4	28	111/4	10
34	401/2	11/2	32	8	7	431/2	1 7/8	28	121/4	103/4
36	423/4	11/2	32	81/4	7	46	2	32	123/4	111/4
42	491/2	11/2	36	83/4	71/4	523/4	2	36	133⁄4	131/2

^{*1/16&}quot; Raised Face

Stud lengths for lap joint flanges are equal to lengths shown plus the thickness of two laps of the stub ends.

Bolting Dimensions for $400\ L_{B}$./ $600L_{B}$. Steel Flange

	400 LI	B. Steel	FLANG	ES	600 L	B. Stee	L FLAN	GES
	DIAM			LENGTH	DIAM			LENGTH
Nом	OF	DIAM	No.	OF STUDS	0F	DIAM	No	OF STUDS
PIPE	Вост	OF	0F	1/4" RAISED	Вост	0F	0F	1/4" RAISED
SIZE	CIRCLE	Bolts	Bolts	FACE	CIRCLE	Bolts	Bolts	Face
1/2	25/8	1/2	4	3	25/8	1/2	4	3
3/4	31/4	5/8	4	31/4	31/4	5/8	4	31/4
1	31/2	5/8	4	31/2	31/2	5/8	4	31/2
11/4	37/8	5/8	4	33⁄4	37/8	5/8	4	33/4
11/2	41/2	3/4	4	4	41/2	3/4	4	4
2	5	5/8	8	4	5	5/8	8	4
21/2	5 ⁷ /8	3/4	8	41/2	57/8	3/4	8	41/4
3	65/8	3/4	8	43/4	65/8	3/4	8	43/4
31/2	71/4	7/8	8	51/4	71/4	7/8	8	51/4
4	77/8	7/8	8	51/4	81/2	7/8	8	51/2
5	91/4	7/8	8	61/2	101/2	1	8	61/4
6	105⁄8	7/8	12	53⁄4	111/2	1	12	61/2
8	13	1	12	61/2	133⁄4	11/8	12	71/2
10	15 ¹ /4	11/8	16	71/4	17	11/4	16	81/4
12	173/4	11/4	16	73/4	191/4	11/4	20	81/2
14	201/4	11/4	20	8	203/4	13⁄8	20	9
16	221/2	13⁄8	20	81/2	233/4	11/2	20	93/4
18	243/4	13⁄8	24	83⁄4	253/4	15⁄8	20	101/2
20	27	11/2	24	91/2	281/2	15⁄8	24	111/4
22	291/4	15⁄8	24	10	305/8	13/4	24	12
24	32	13/4	24	101/2	33	17⁄8	24	123⁄4
26	341/2	13/4	28	111/2	36	17⁄8	28	131/4
30	391/4	2	28	13	401/4	2	28	14
34	431/2	2	28	133⁄4	441/2	21/4	28	15
36	46	2	32	14	47	21/2	28	153/4
42	523/4	21/2	32	161/4	533/4	23/4	28	171/2

Stud lengths for lap joint flanges are equal to lengths shown minus 1/2" plus the thickness of two laps of the stub ends.

—— STANDARD CAST IRON COMPANION FLANGES AND BOLTS

(for working pressures up to 125 psi steam, 175 psi WOG)

SIZE	FLANGE DIA.	BOLT CIRCLE	No. Bolts	BOLT SIZE	BOLT LENGTH
3/4	31/2	21/2	4	3/8	13⁄8
1	41/4	31⁄8	4	1/2	11/2
11/4	45⁄8	31/2	4	1/2	11/2
11/2	5	37/8	4	1/2	13⁄4
2	6	43/4	4	5/8	2
21/2	7	51/2	4	5/8	21/4
3	71/2	6	4	5/8	21/2
31/2	81/2	7	8	5/8	21/2
4	9	71/2	8	5/8	23/4
5	10	81/2	8	3/4	3
6	11	91/2	8	3/4	3
8	131/2	113⁄4	8	3/4	31/4
10	16	141/4	12	7/8	31/2
12	19	17	12	7/8	33⁄4
14	21	183⁄4	12	1	41/4
16	231/2	211/4	16	1	41/4

- Extra Heavy Cast Iron Companion Flanges and Bolts

(for working pressures up to 250 psi steam, 400 psi WOG)

SIZE	FLANGE DIA.	BOLT CIRCLE	No. Bolts	BOLT SIZE	BOLT LENGTH
1	47/8	31/2	4	5/8	21/4
11/4	51/4	37/8	4	5/8	21/2
11/2	61/8	41/2	4	3/4	21/2
2	61/2	5	8	5/8	21/2
21/2	71/2	5 ⁷ ⁄8	8	3/4	3
3	81/4	6 5⁄8	8	3/4	31/4
31/2	9	71/4	8	3/4	31⁄4
4	10	7 ⁷ /8	8	3/4	31/2
5	11	91/4	8	3/4	33⁄4
6	12½	105⁄8	12	3/4	33⁄4
8	15	13	12	7/8	41/4
10	171/2	15 ¹ /4	16	1	5
12	201/2	173⁄4	16	11/8	51⁄2
14 O.D	. 23	201/4	20	11⁄8	53/4
16 O.D	. 25½	221/2	20	11/4	6
18 O.D	. 28	243/4	24	11/4	61⁄4
20 O.D.	. 301/2	27	24	11/4	63/4
24 O.D	. 36	32	24	11/2	71/2
30 O.D	. 43	391/4	28	13/4	81⁄2
36 O.D	. 50	46	32	2	91/2
42 O.D	. 57	523/4	36	2	10
48 O.D	. 65	603/4	40	2	11

—— STANDARD CAST IRON COMPANION FLANGES AND BOLTS

(for working pressures up to 125 psi steam, 175 psi WOG)

SIZE	FLANGE DIA.	BOLT CIRCLE	No. Bolts	BOLT SIZE	BOLT LENGTH
3/4	31/2	21/2	4	3/8	13⁄8
1	41/4	31⁄8	4	1/2	11/2
11/4	45⁄8	31/2	4	1/2	11/2
11/2	5	37/8	4	1/2	13⁄4
2	6	43/4	4	5/8	2
21/2	7	51/2	4	5/8	21/4
3	71/2	6	4	5/8	21/2
31/2	81/2	7	8	5/8	21/2
4	9	71/2	8	5/8	23/4
5	10	81/2	8	3/4	3
6	11	91/2	8	3/4	3
8	131/2	113⁄4	8	3/4	31/4
10	16	141/4	12	7/8	31/2
12	19	17	12	7/8	33⁄4
14	21	183⁄4	12	1	41/4
16	231/2	211/4	16	1	41/4

- Extra Heavy Cast Iron Companion Flanges and Bolts

(for working pressures up to 250 psi steam, 400 psi WOG)

SIZE	FLANGE DIA.	BOLT CIRCLE	No. Bolts	BOLT SIZE	BOLT LENGTH
1	47/8	31/2	4	5/8	21/4
11/4	51/4	37/8	4	5/8	21/2
11/2	61/8	41/2	4	3/4	21/2
2	61/2	5	8	5/8	21/2
21/2	71/2	5 ⁷ ⁄8	8	3/4	3
3	81/4	6 5⁄8	8	3/4	31/4
31/2	9	71/4	8	3/4	31⁄4
4	10	7 ⁷ /8	8	3/4	31/2
5	11	91/4	8	3/4	33⁄4
6	12½	105⁄8	12	3/4	33⁄4
8	15	13	12	7/8	41/4
10	171/2	15 ¹ /4	16	1	5
12	201/2	173⁄4	16	11/8	51⁄2
14 O.D	. 23	201/4	20	11⁄8	53/4
16 O.D	. 25½	221/2	20	11/4	6
18 O.D	. 28	243/4	24	11/4	61⁄4
20 O.D.	. 301/2	27	24	11/4	63/4
24 O.D	. 36	32	24	11/2	71/2
30 O.D	. 43	391/4	28	13/4	81⁄2
36 O.D	. 50	46	32	2	91/2
42 O.D	. 57	523/4	36	2	10
48 O.D	. 65	603/4	40	2	11

ASTM Carbon Steel Pipe and Flange Specifications -

PIPE AND TUBING DESCRIPTION AND APPLICATIONS	Spec No.	ASTM OR Type	GRADE STRENGTH PSI
Seamless milled steel pipe for high- temperature service, suitable for bending, flanging and similar forming operations	(1) A106	Α	48,000
As above, except use Grade A for close coiling, cold bending or forge welding.	(1) A106	В	60,000
Black or hot-dip galvanize seamless or res-welded steel pipe suitable for coiling, bending, flanging, and other special purposes, suitable for welding	A 53	Α	48,000
As above, except use Grade A for close coiling, cold bending or forge welding.	A 53	В	60,000
Black or hot-dip galvanize seamless or res. welded steel pipe suitable for ordinary uses. (When tension, flattening or bend test required, order to A-53)	A 120 (obsolete)	_	-
Resistance welded steel pipe for liquid, gas or vapor	A 135	Α	48,000
As above, except use Grade A for flanging and bending	A 135	В	60,000
Electric-fusion-welded strait- or spiral- seam pipe for liquid, gas or vapor frommill grades of plate	A 139	Α	48,000
As above	A 139	В	60,000
Forged Pipe, Flanges Description and Applications			
Forged or rolled steel pipe flanges, fittings (6) values and parts for high temperature service. Heat treatment required; may be annealed or normalized	A105	I	60,000
As above	A 105	П	70,000
As above except for general service. Heat treatment is not required	A 181	I	60,000
As above	A 181	II	70,000

^{(1) 0.10%} silicon minimum.

⁽²⁾ Open hearth, 0.13 max for 1/8" and 1/4" size resistance welded pipe only

⁽³⁾ Seamless: open hearth 0.048 max, acid bessemar 0.11 max; Res. welded: open hearth 0.050 max.

⁽⁴⁾ Longitudinal or transverse direction of test specimen with respect to pipe axis

YIELD POINT OR	Elongation (% in 2") STD Rectangular					MICAL	,	
Strength PSI	STD Round			ULAR ⁵ /16"	C	OMPOSI MN	TION, 9 P	S
30,000	28 long. OR (4)	17.5+ or	56t	35	.25	.27 to	.048	.058
		12.5+		25	max	.93	max	max
35,000	28 long. OR (4) 12 trans.	17.5+ or 6.5+		35 16.5	30 max	.27 to 1.06	.048 max	.058 max
30,000	28	17.5+	56t	35	(2)	_	(3)	-
35,000	22	15+	48t	30	(2)	_	(3)	-
_	-	-	_	-	-	-	-	
30,000	_	17.5+	56t	35	_	_	.050 max	.060 max
35,000	-	15+	48t	30	_	_	.05 max	.060 max
30,000	_	17.5+	56t	35	_	.30 to 1.00	.040 max	.050 max
35,000	_	15+	48t	30	.30 max	.30 to 1.00	.040 max	.050 max
30,000	25		_	_	.35 (5) max	.90 max	.05 max	.05 max
36,000	22		_	_	.35 (5) max	.90 max	.05 max	.05 max
30,000	22		_	_	.35 (5) max	.90 max	.05 max	.05 max
36,000	18		_	_	.35 (5) max	.90 max	.05 max	.05 max

⁽⁵⁾ When flanges will be subject to fusion welding, carbon content shall be $\le 0.35\%$. If carbon is $\le 0.35\%$, it may be necessary to add silicon to meet required tensile properties. The silicon content shall be $\le 0.35\%$.

⁽⁶⁾ Factor-made Wrought Carbon Steel and Ferritic Alloy Steel Welding Fitting Specifications are covered under ASTM A234.

Nom	Outside Arc						
Size	Α	В	C	D	E	F	G
2	5/32	3/8	2 3/32	13⁄32	121/32	23/4	39⁄32
21/2	3/32	7/16	2 9/32	111/32	21/32	33/8	41/16
3	7/32	9⁄16	11/8	1 5⁄8	215/32	43/32	429/32
31/2	1/8	5/8	19⁄32	129/32	227/32	43/4	511/16
4	9/32	2 3/32	1 7/16	2 5/32	31/4	513/32	615/32
5	3/16	2 9/32	125/32	211/16	41/32	623/32	8 1/16
6	7/32	11/16	2 5/32	37/32	427/32	81/16	921/32
8	9/32	1 7/16	227/32	49⁄32	613/32	10 ¹¹ /16	12 ¹³ /16
10	11/32	1 ²⁵ /32	39⁄16	511/32	8	1311/32	16
12	7/16	21/8	41/4	63/8	99/16	15 ³¹ /32	195/32
14	1/2	2 7/16	47/8	75⁄16	11	18 5⁄16	22
16	9⁄16	213/16	519/32	83/8	129⁄16	2015/16	251/8
18	5/8	31/8	69/32	97/16	14½	239/16	28 9⁄32
20	1 1⁄16	31/2	7	1015/32	15 23/32	26 3/16	3113/32
22	3/4	327/32	711/16	11 ¹⁷ /32	179⁄32	28 ¹³ /16	349⁄16
24	27/32	43/16	83/8	129⁄16	1827/32	3113/32	3711/16
26	2 9/32	417/32	93/32	135⁄8	2013/32	341/32	4027/32
30	11/32	51/4	1015/32	153/4	239/16	391/4	471/8
34	15⁄32	529/32	1127/32	17 ¹³ /16	26 ²³ / ₃₂	4417/32	533/8
36	17/32	61/4	12 17/32	187⁄8	287/32	47	5617/32
42	1 7/16	75/16	145⁄8	22	3231/32	54 ³¹ /32	65 ¹⁵ /16

How to Cut Odd-Angle Elbows

Step1
Measure distance on outside arc using the values from the table on the previous page and make a mark.

Step2
Measure distance on inside arc using the values from the table below and make a mark.

Step1 Wrap tape around elbow and mark cutting line

Nom				Inside A rc	;		
SIZE	AA	BB	CC	DD	EE	FF	GG
2	1/32	5/32	5 ⁄16	15/32	2 3/32	1 3⁄16	17/16
21/2	3/32	3/16	13/32	19⁄32	2 9/32	11/2	1 ¹³ ⁄16
3	3/32	1/4	1/2	2 3/32	13/32	113/16	2 5/32
31/2	1/16	9/32	9⁄16	2 7/32	19⁄32	21/8	2 9⁄16
4	1/16	⁵ /16	21/32	31/32	115/32	2 7/16	215/16
5	5/32	13/32	13/16	11/4	1 ²⁷ /32	33/32	323/32
6	3/32	1/2	1	11/2	27/32	323/32	415/32
8	1/8	1 1⁄16	111/32	2	31/32	51/32	61/32
10	5/32	2 7/32	1 ¹¹ /16	217/32	325/32	6 5⁄16	79⁄16
12	7/32	1	21/32	31/16	49⁄16	719/32	91⁄8
14	1/4	1 7/32	2 7/16	321/32	51/2	95/32	11
16	9/32	1 13/32	2 ¹³ /16	43/16	6 3⁄16	10 ¹⁵ /32	125⁄8
18	5⁄16	19⁄16	31/8	423/32	71/16	11 ²⁵ /32	141/8
20	11/32	13/4	31/2	51/4	727/32	133/32	15 ¹¹ /16
22	3/8	1 ²⁹ /32	327/32	53/4	85⁄8	143⁄8	179⁄32
24	13/32	2 3/32	43/16	69⁄32	97/16	15 ¹¹ /16	18 ²⁷ /32
26	15⁄32	2 9/32	417/32	613/16	107/32	171/32	2013/32
30	17/32	25/8	51/4	77/8	11 ²⁵ /32	195⁄8	239/16
34	19⁄32	231/32	529/32	829/32	133⁄8	22 9/32	2611/16
36	5/8	213/16	61/4	97/16	14½	235/8	281/4
42	2 3/32	321/32	75/16	10 ¹⁹ / ₃₂	16 ¹ /2	263/8	3231/32

ALIGNMENT OF PIPE-

Proper alignment is important if a piping system is to be correctly fabricated.

Poor alignment may result in welding difficulties and a system that does not function properly.

Welding rings may be employed to assure proper alignment as well as the correct welding gap. In addition to using welding rings, some simple procedures can be followed to assist the pipe fitter. Below and on the following page are alignment procedures commonly used by today's craftsmen.

PIPE-TO-PIPE

- Level one length of pipe using spirit level
- 2. Bring lengths together leaving only small welding gap

- 4. Tack weld top and bottom
- 5. Rotate pipe 90°
- 6. Repeat procedure

45° ELBOW-TO-PIPE

- 1. Level pipe using spirit level
- 2. Place fitting to pipe leaving small welding gap

4. Tack weld in place

90° ELBOW.TO-PIPE

- 1. Level pipe using spirit level
- Place fitting to pipe leaving small welding gap
- 3. Place spirit level on face of elbow and maneuver elbow until level
- 4. Tack weld in place

TEE-TO-PIPE

- 1. Level pipe using spirit level
- 2. Place tee to pipe leaving small welding gap
- 3. Place spirit level on face of tee and maneuver tee until level
- 4. Tack weld in place

FLANGE-TO-PIPE

- 1. Bring flange to pipe end leaving smal welding gop
- 2. Align toptwo holes of flange with spirit level
- 3. Tack weld in place
- 4. Center square on face of flange as shown
- 5. Tack weld in place
- 6. Check sides in same way

JIG FOR SMALL DIAMETER PIPING

The jig is made from channel iron 3' 9" long. Use $\frac{1}{8}$ " x $\frac{11}{2}$ " for pipe sizes $\frac{11}{4}$ " thru 3"; 1/8" x 3/4" for Sizes 1" or smaller.

- 1. Cut out 90° notches about 9" from end.
- 2. Heat bottom of notch with torch.
- 3. Bend channel iron to 90° angle and weld sides.
- 4. Place elbow in jig and saw half thru sides of channel iron as shown. Repeat this step with several elbows so jig may be used for different operations.
- 5. A used hack saw blade placed in notch as shown will provide proper welding gap.

DRILL SIZES FOR PIPE TAPES ----

TAP SIZE	THREADS/IN.	Drill Diameter
1/8	27	11/32
1/4	18	7/16
3/8	18	37/32
1/2	14	23/32
3/4	14	59⁄32
1	111/2	1 5⁄32
11/4	111/2	11/2
11/2	111/2	149/32
2	111/2	23/16
21/2	8	29/16
3	8	33/16
31/2	8	311/16
4	8	43/16
41/2	8	43/4
5	8	5 ⁵ ⁄16
6	8	65⁄16

TAP AND DRILL SIZES (AMERICAN STANDARD COARSE)

DRILL SIZE	TAP SIZE	Threads/In.	
7	1/4	20	
F	5⁄16	18	
5⁄16	3/8	16	
U	7/16	14	
27/32	1/2	13	
31/32	9⁄16	12	
17/32	5⁄8	11	
19⁄32	1 ¹ /16	11	
21/32	3/4	10	
23/32	13/16	10	
49/32	7/8	9	
53/32	1 5⁄16	9	
7/8	1	8	
63/32	11/8	7	
17/32	11/4	7	
113/32	13⁄8	6	
111/32	11/2	6	
129/32	15⁄8	51/2	
19⁄16	13/4	5	
111/16	17/8	5	
125/32	2	41/2	

DRILL SIZES FOR PIPE TAPES ----

TAP SIZE	THREADS/IN.	Drill Diameter
1/8	27	11/32
1/4	18	7/16
3/8	18	37/32
1/2	14	23/32
3/4	14	59⁄32
1	111/2	1 5⁄32
11/4	111/2	11/2
11/2	111/2	149/32
2	111/2	23/16
21/2	8	29/16
3	8	33/16
31/2	8	311/16
4	8	43/16
41/2	8	43/4
5	8	5 ⁵ ⁄16
6	8	65⁄16

TAP AND DRILL SIZES (AMERICAN STANDARD COARSE)

DRILL SIZE	TAP SIZE	Threads/In.	
7	1/4	20	
F	5⁄16	18	
5⁄16	3/8	16	
U	7/16	14	
27/32	1/2	13	
31/32	9⁄16	12	
17/32	5⁄8	11	
19⁄32	1 ¹ /16	11	
21/32	3/4	10	
23/32	13/16	10	
49/32	7/8	9	
53/32	1 5⁄16	9	
7/8	1	8	
63/32	11/8	7	
17/32	11/4	7	
113/32	13⁄8	6	
111/32	11/2	6	
129/32	15⁄8	51/2	
19⁄16	13/4	5	
111/16	17/8	5	
125/32	2	41/2	

PIPE AND WATER WEIGHT/FOOT

	WEIG	GHT	We	EIGHT
Nom. Pipe Size	STD PIPE	Water	XS PIPE	Water
1/2	0.851	0.132	1.088	0.101
3/4	1.131	0.231	1.474	0.187
1	1.679	0.374	2.172	0.311
11/4	2.273	0.648	2.997	0.555
11/2	2.718	0.882	3.632	0.765
2	3.653	1.453	5.022	1.278
21/2	5.794	2.073	7.622	1.835
3	7.580	3.200	10.250	2.860
31/2	9.110	4.280	12.510	3.850
4	10.790	5.510	14.990	4.980
5	14.620	8.660	20.780	7.880
6	18.980	12.510	28.580	11.290
8	28.560	21.680	43.400	19.800
10	40.500	34.100	54.700	32.300
12	49.600	49.000	65.400	47.000
14	54.600	59.700	72.100	57.500
16	62.600	79.100	82.800	76.500
18	70.600	101.200	93.500	98.300
20	78.600	126.000	104.100	122.800
24	94.600	183.800	125.500	179.900
30	118.700	291.000	157.600	286.000

---- WEIGHT/FOOT - SEAMLESS BRASS AND COPPER PIPE

Nominal		REGULAR		Ex	KTRA STROI	NG
PIPE	YELLOW	RED		YELLOW	RED	
Size	Brass	Brass	Copper	Brass	Brass	Copper
1/2	0.91	0.93	0.96	1.19	1.23	1.25
3/4	1.23	1.27	1.30	1.62	1.67	1.71
1	1.73	1.78	1.82	2.39	2.49	2.51
11/4	2.56	2.63	2.69	3.29	3.39	3.46
11/2	3.04	3.13	3.20	3.99	4.10	4.19
2	4.01	4.12	4.22	5.51	5.67	5.80

PIPE AND WATER WEIGHT/FOOT

	WEIG	GHT	We	EIGHT
Nom. Pipe Size	STD PIPE	Water	XS PIPE	Water
1/2	0.851	0.132	1.088	0.101
3/4	1.131	0.231	1.474	0.187
1	1.679	0.374	2.172	0.311
11/4	2.273	0.648	2.997	0.555
11/2	2.718	0.882	3.632	0.765
2	3.653	1.453	5.022	1.278
21/2	5.794	2.073	7.622	1.835
3	7.580	3.200	10.250	2.860
31/2	9.110	4.280	12.510	3.850
4	10.790	5.510	14.990	4.980
5	14.620	8.660	20.780	7.880
6	18.980	12.510	28.580	11.290
8	28.560	21.680	43.400	19.800
10	40.500	34.100	54.700	32.300
12	49.600	49.000	65.400	47.000
14	54.600	59.700	72.100	57.500
16	62.600	79.100	82.800	76.500
18	70.600	101.200	93.500	98.300
20	78.600	126.000	104.100	122.800
24	94.600	183.800	125.500	179.900
30	118.700	291.000	157.600	286.000

---- WEIGHT/FOOT - SEAMLESS BRASS AND COPPER PIPE

Nominal		REGULAR		Ex	KTRA STROI	NG
PIPE	YELLOW	RED		YELLOW	RED	
Size	Brass	Brass	Copper	Brass	Brass	Copper
1/2	0.91	0.93	0.96	1.19	1.23	1.25
3/4	1.23	1.27	1.30	1.62	1.67	1.71
1	1.73	1.78	1.82	2.39	2.49	2.51
11/4	2.56	2.63	2.69	3.29	3.39	3.46
11/2	3.04	3.13	3.20	3.99	4.10	4.19
2	4.01	4.12	4.22	5.51	5.67	5.80

WATER PRESSURE TO FEET HEAD

VVAIEN I	nessune
LBS./	FEET
Sq.In.	HEAD
1	2.31
2	4.62
3	6.93
4	9.24
5	11.54
6	13.85
7	16.16
8	18.47
9	20.78
10	23.09
15	34.63
20	46.18
25	57.72
30	69.27

FEET
HEAD
92.36
115.45
138.54
161.63
184.72
207.81
43.31
47.64
51.97
56.30
60.63
64.96
69.29
73.63

LBS./	FEET
Sq.In.	HEAD
180	77.96
200	86.62
250	108.27
300	129.93
350	151.58
400	173.24
500	216.55
600	259.85
700	303.16
800	346.47
900	389.78
1,000	433.00

FEET HEAD TO WATER PRESSURE

FEET	LBS./
HEAD	Sq.In.
1	0.43
2	0.87
3	1.30
4	1.73
5	2.17
6	2.60
7	3.03
8	3.46
9	3.90
10	4.33
15	6.50
20	8.66
25	10.83
30	12.99

FEET	LBS./
HEAD	Sq.In.
40	17.32
50	21.65
60	25.99
70	30.32
80	34.65
90	38.98
100	43.31
110	47.64
120	51.97
130	56.30
140	60.63
150	64.96
160	69.29
170	73.63

FEET	LBS./
HEAD	Sa.In.
180	77.96
200	86.62
250	108.27
300	129.93
350	151.58
400	173.24
500	216.55
600	259.85
700	303.16
800	346.47
900	389.78
1,000	433.00

Note: One foot of water at 62°F equals 0.433 pound pressure per square inch. To find the pressure per square inch for any feet head not given in the table above, multiply the feet head by 0.433.

WATER PRESSURE TO FEET HEAD

VVAIEN I	nessune
LBS./	FEET
Sq.In.	HEAD
1	2.31
2	4.62
3	6.93
4	9.24
5	11.54
6	13.85
7	16.16
8	18.47
9	20.78
10	23.09
15	34.63
20	46.18
25	57.72
30	69.27

FEET
HEAD
92.36
115.45
138.54
161.63
184.72
207.81
43.31
47.64
51.97
56.30
60.63
64.96
69.29
73.63

LBS./	FEET
Sq.In.	HEAD
180	77.96
200	86.62
250	108.27
300	129.93
350	151.58
400	173.24
500	216.55
600	259.85
700	303.16
800	346.47
900	389.78
1,000	433.00

FEET HEAD TO WATER PRESSURE

FEET	LBS./
HEAD	Sq.In.
1	0.43
2	0.87
3	1.30
4	1.73
5	2.17
6	2.60
7	3.03
8	3.46
9	3.90
10	4.33
15	6.50
20	8.66
25	10.83
30	12.99

FEET	LBS./
HEAD	Sq.In.
40	17.32
50	21.65
60	25.99
70	30.32
80	34.65
90	38.98
100	43.31
110	47.64
120	51.97
130	56.30
140	60.63
150	64.96
160	69.29
170	73.63

FEET	LBS./
HEAD	Sa.In.
180	77.96
200	86.62
250	108.27
300	129.93
350	151.58
400	173.24
500	216.55
600	259.85
700	303.16
800	346.47
900	389.78
1,000	433.00

Note: One foot of water at 62°F equals 0.433 pound pressure per square inch. To find the pressure per square inch for any feet head not given in the table above, multiply the feet head by 0.433.

--- BOILING POINTS OF WATER AT VARIOUS PRESSURES

Vacuum, in		
Inches of	Boiling	
Mercury	Роінт	
29	76.62	
28	99.93	
27	114.22	
26	124.77	
25	133.22	
24	140.31	
23	146.45	
22	151.87	
21	156.75	
20	161.19	
19	165.24	
18	169.00	
17	172.51	
16	175.80	
15	178.91	
14	181.82	
13	184.61	
12	187.21	
11	189.75	
10	192.19	
9	194.50	
8	196.73	
7	198.87	
6	200.96	
5	202.25	
4	204.85	
3	206.70	
2	208.50	
1	210.25	

Pressure Gauge Lbs	Boiling Point	
0	212.0	
1	215.6	
2	218.5	
4	224.4	
6	229.8	
8	234.8	
10	239.4	
15	249.8	
25	266.8	
50	297.7	
75	320.1	
100	337.9	
125	352.9	
200	387.9	

The accompanying chart provides fast answers to many problems that may confront the pipe fitter. Procedures for using the chart are as follows:

Note that there are three sets of figures shown in connection with the extreme left-hand column **A**.

"Standard" gives the internal diameter of standard pipe (somewhat greater than 1" for 1 in. standard pipe).

"Exact" gives the exact diameter.

"Extra Heavy" gives the internal diameter of extra heavy pipe.

EXAMPLE:

How much water is passing through a pipe with parameters:

I.D. of exactly 1 in. Velocity of the water being 3 F.P.S.

To apply the chart to the problem locate 1 in. in column "A" using the scale "Exact" and run a straight line from the point through the 3 in column "C". From the intersection of this line with column "B". run a straight line horizontally to column "G". The intersection of this line at columns "D", "E" and "F" gives the following information:

"D" shows the cubic feet/minute flowing through the pipe.

"E" shows the volume of flow in gallons/minute

"F" gives the weight of the water in pounds/minute. (For liquids other tharn water. multiply the value of column "F" by the specific gravity of the liquid for accurate weight conversion.)

If a quantity in columns "**D**", "**E**" and "**F**" is known then velocity may be determined by reversing the procedure. Draw a horizontal line from the known point to column "**G**". From this intersection draw a line to the exact I.D. of the pipe in column "**A**" and extend this line to cross column "**C**". The intersection with column "**C**" gives the velocity in feet/second.

The chart can be used as a.conversion chart to determine the number of gallons in a certain number of cubic feet of liquid. The horizontal line already drawn to determine answers in columns "C" and "D" will provide the answer to the conversion in column "E".

A little practice will prove this chart to be a real time-saver.

HEAT LOSSES FROM HORIZONTAL BARE STEEL PIPE -

(BTU per hour per linear foot at 70°F room temperature)

Pipe Nom. Pipe Size	Hot Water (180°F)	Steam 5 PSIG (20 PSIA)
1/2	60	96
3/4	73	118
1	90	144
11/4	112	179
11/2	126	202
2	155	248
21/2	185	296
3	221	355
31/2	244	401
4	279	448

Total Thermal Expansion of Piping Material (Inches Per 100 Ft. Above 32°F) ————

TEMP °F	Carbon and Carbon Molly Steel	Cast Iron	Copper	Brass and Bronze	Wrought Iron
32	0.0	0.0	0.0	0.0	0.0
100	0.5	0.5	8.0	0.8	0.5
150	0.8	0.8	1.4	1.4	0.9
200	1.2	1.2	2.0	2.0	1.3
250	1.7	1.5	2.7	2.6	1.7
300	2.0	1.9	3.3	3.2	2.2
350	2.5	2.3	4.0	3.9	2.6
400	2.9	2.7	4.7	4.6	3.1
450	3.4	3.1	5.3	5.2	3.6
500	3.8	3.5	6.0	5.9	4.1
550	4.3	3.9	6.7	6.5	4.6
600	4.8	4.4	7.4	7.2	5.2
650	5.3	4.8	8.2	7.9	5.6
700	5.9	5.3	9.0	8.5	6.1
750	6.4	5.8	_	_	6.7
800	7.0	6.3	_	_	7.2
850	7.4	-	_	_	_
900	8.0	_	_	_	_
950	8.5	_	_	_	_
1000	9.1	_	_	_	_

Material	CHEMICAL Symbol	WEIGHT IN POUNDS PER CUBIC INCH	WEIGHT IN POUNDS PER CUBIC FOOT
Aluminum	Al	0.093	160
Antimony	Sb	0.2422	418
Brass	_	0.303	524
Bronze	_	0.32	552
Chromium	Cr	0.2348	406
Copper	Cu	0.323	558
Gold	Au	0.6975	1,205
Iron (cast)	Fe	0.26	450
Iron (wrought)	Fe	0.2834	490
Lead	Pb	0.4105	710
Maganese	Mn	0.2679	463
Mercury	Hg	0.491	849
Molybdenum	Mo	0.309	534
Monel	_	0.318	550
Platinum	Pt	0.818	1,413
Steel (mild)	_	0.2816	490
Steel (stainless)	_	0.277	484
Tin	Sn	0.265	459
Titanium	Ti	0.1278	221
Zinc	Zn	0.258	446

COLORS AND APPROXIMATE TEMPERATURE FOR CARBON STEEL

Black Red	990°F
Dark Blood Red	1,050°F
Dark Cherry Red	1,175°F
Medium Cherry Red	1,250°F
Full Cherry Red	1,375°F
Light Cherry, Scalding	1,550°
Salmon, Free Scalding	1,650°F
Light Salmon	1,725°F
Yellow	1,825°F
Light Yellow	1,975°F
White	2,220°F

Material	CHEMICAL Symbol	WEIGHT IN POUNDS PER CUBIC INCH	WEIGHT IN POUNDS PER CUBIC FOOT
Aluminum	Al	0.093	160
Antimony	Sb	0.2422	418
Brass	_	0.303	524
Bronze	_	0.32	552
Chromium	Cr	0.2348	406
Copper	Cu	0.323	558
Gold	Au	0.6975	1,205
Iron (cast)	Fe	0.26	450
Iron (wrought)	Fe	0.2834	490
Lead	Pb	0.4105	710
Maganese	Mn	0.2679	463
Mercury	Hg	0.491	849
Molybdenum	Mo	0.309	534
Monel	_	0.318	550
Platinum	Pt	0.818	1,413
Steel (mild)	_	0.2816	490
Steel (stainless)	_	0.277	484
Tin `	Sn	0.265	459
Titanium	Ti	0.1278	221
Zinc	Zn	0.258	446

COLORS AND APPROXIMATE TEMPERATURE FOR CARBON STEEL

Black Red	990°F
Dark Blood Red	1,050°F
Dark Cherry Red	1,175°F
Medium Cherry Red	1,250°F
Full Cherry Red	1,375°F
Light Cherry, Scalding	1,550°
Salmon, Free Scalding	1,650°F
Light Salmon	1,725°F
Yellow	1,825°F
Light Yellow	1,975°F
White	2,220°F

Dry Air (1 cu. Ft. at 60°F. a	nd 29.92" Hg. Weighs .07638	pound) 1.000
Acetylene	C ₂ H ₂	0.91
Ethane	C ₂ H ₄	1.05
Methane	CH ₄	0.554
Ammonia	NH ₃	0.596
Carbon-dioxide	CO ₂	1.53
Carbon_monoxide		0.967
Butane	C ₄ H ₁₀	2.067
Butene	C ₄ H ₈	1.93
Chlorine	Cl ₂	2.486
Helium	He	0.138
Hydrogen	H ₂	0.0696
Nitrogen	N ₂	0.9718
Oxygen	02	1.1053

---- Spcific Gravity Of Liquids

Liquid	Темр °F	SPECIFIC GRAVITY
Water (1 cuft. weights 62.41 lb.)	50	1.00
Brine (Sodium Chloride 25%)	32	1.20
Pennsylvania Crude Oil	80	0.85
Fuel Oil No. 1 and 2	85	0.95
Gasoline	80	0.74
Kerosene	85	0.82
Lubricating Oil SAE 10-20-30	115	0.94

---- Typcial BTU Values Of Fuels

ASTM RANK SOLIDS	BTU VALUES PER POUND
Anthracite Class I	11,230
Bitiminous Class II Group 1	14,100
Bitiminous Class II Group 3	13,080
Sub-Bituminous Class III Group 1	10,810
Sub-Bituminous Class III Group 2	9,670
LIQUIDS	BTU VALUES PER GALLON
Fuel Oil No. 1	136,000
Fuel Oil No. 2	138,000
Fuel Oil No. 4	145,000
Fuel Oil No. 5	148,000
Fuel Oil No. 6	152,000
GASES	BTU VALUES PER CU. FT.
Natural Gas	935 to 1132
Producers Gas	163
Illuminating Gas	534
Mixed (Coke oven and water gas)	545

Dry Air (1 cu. Ft. at 60°F. a	nd 29.92" Hg. Weighs .07638	pound) 1.000
Acetylene	C ₂ H ₂	0.91
Ethane	C ₂ H ₄	1.05
Methane	CH ₄	0.554
Ammonia	NH ₃	0.596
Carbon-dioxide	CO ₂	1.53
Carbon_monoxide		0.967
Butane	C ₄ H ₁₀	2.067
Butene	C ₄ H ₈	1.93
Chlorine	Cl ₂	2.486
Helium	He	0.138
Hydrogen	H ₂	0.0696
Nitrogen	N ₂	0.9718
Oxygen	02	1.1053

---- Spcific Gravity Of Liquids

Liquid	Темр °F	SPECIFIC GRAVITY
Water (1 cuft. weights 62.41 lb.)	50	1.00
Brine (Sodium Chloride 25%)	32	1.20
Pennsylvania Crude Oil	80	0.85
Fuel Oil No. 1 and 2	85	0.95
Gasoline	80	0.74
Kerosene	85	0.82
Lubricating Oil SAE 10-20-30	115	0.94

---- Typcial BTU Values Of Fuels

ASTM RANK SOLIDS	BTU VALUES PER POUND
Anthracite Class I	11,230
Bitiminous Class II Group 1	14,100
Bitiminous Class II Group 3	13,080
Sub-Bituminous Class III Group 1	10,810
Sub-Bituminous Class III Group 2	9,670
LIQUIDS	BTU VALUES PER GALLON
Fuel Oil No. 1	136,000
Fuel Oil No. 2	138,000
Fuel Oil No. 4	145,000
Fuel Oil No. 5	148,000
Fuel Oil No. 6	152,000
GASES	BTU VALUES PER CU. FT.
Natural Gas	935 to 1132
Producers Gas	163
Illuminating Gas	534
Mixed (Coke oven and water gas)	545

Dry Air (1 cu. Ft. at 60°F. a	nd 29.92" Hg. Weighs .07638	pound) 1.000
Acetylene	C ₂ H ₂	0.91
Ethane	C ₂ H ₄	1.05
Methane	CH ₄	0.554
Ammonia	NH ₃	0.596
Carbon-dioxide	CO ₂	1.53
Carbon_monoxide		0.967
Butane	C ₄ H ₁₀	2.067
Butene	C ₄ H ₈	1.93
Chlorine	Cl ₂	2.486
Helium	He	0.138
Hydrogen	H ₂	0.0696
Nitrogen	N ₂	0.9718
Oxygen	02	1.1053

---- Spcific Gravity Of Liquids

Liquid	Темр °F	SPECIFIC GRAVITY
Water (1 cuft. weights 62.41 lb.)	50	1.00
Brine (Sodium Chloride 25%)	32	1.20
Pennsylvania Crude Oil	80	0.85
Fuel Oil No. 1 and 2	85	0.95
Gasoline	80	0.74
Kerosene	85	0.82
Lubricating Oil SAE 10-20-30	115	0.94

---- Typcial BTU Values Of Fuels

ASTM RANK SOLIDS	BTU VALUES PER POUND
Anthracite Class I	11,230
Bitiminous Class II Group 1	14,100
Bitiminous Class II Group 3	13,080
Sub-Bituminous Class III Group 1	10,810
Sub-Bituminous Class III Group 2	9,670
LIQUIDS	BTU VALUES PER GALLON
Fuel Oil No. 1	136,000
Fuel Oil No. 2	138,000
Fuel Oil No. 4	145,000
Fuel Oil No. 5	148,000
Fuel Oil No. 6	152,000
GASES	BTU VALUES PER CU. FT.
Natural Gas	935 to 1132
Producers Gas	163
Illuminating Gas	534
Mixed (Coke oven and water gas)	545

USEFUL DEFINITIONS -

ALLOY STEEL: A Steel which owes its distinctive properties to elements other than carbon.

AREA OF A CIRCLE: The measurement of the surface within a circle. To find the area of a circle, multiply the product of the radius times the radius by Pi (3.142). Commonly written $A = \pi r^2$.

BRAZE WELD OR BRAZING: A process of joining metals using a nonferrous filler metal or alloy, the melting point of which is higher than 800°F but lower than that of the metals to be joined.

BUTT WELD: A circumferential weld in pipe fusing the abutting pipe walls completely from inside wall to outside wall.

CARBON STEEL: A steel which owes its distinctive properties chiefly to the various percentages of carbon (as distinguished from the other elements) which it contains.

CIRCUMFERENCE OF A CIRCLE: The measurement around the perimeter of a circle. To find the circumference, multiply Pi (3.142) by the diameter. (Commonly written as πd).

COEFFICIENT OF EXPANSION: A number indicating the degree of expansion or contraction of a substance.

The coefficient of expansion is not constant and varies with changes in temperature. For linear expansion it is expressed as the change in length of one unit of length of a substance having one degree rise in temperature.

CORROSION: The gradual destruction or alteration of a metal or alloy caused by direct chemical attack or by electrochemical reaction.

CREEP: The plastic flow of pipe within a system; the permanent set in metal caused by stresses at high temperatures. Generally associated with a time rate of deformation.

DIAMETER OF A CIRCLE: A straight line drawn through the center of a circle from one extreme edge to the other. Equal to twice the radius.

DUCTILITY: The property of elongation, above the elastic limit, but under the tensile strength.

A measure of ductility is the percentage of elongation of the fractured piece over its original length.

ELASTIC LIMIT: The greatest stress which a material can withstand without a permanent deformation after release of the stress.

EROSION: The gradual destruction of metal or other material by the abrasive action of liquids, gases, solids or mixtures thereof.

RADIUS OF A CIRCLE: A straight line drawn from the center to the extreme edge of a circle.

SOCKET FITTING: A fitting used to join pipe in which the pipe is inserted into the fitting. A fillet weld is then made around the edge of the fitting and the outside wall of the pipe.

SOLDERING: A method of joining metals using fusible alloys, usually tin and lead, having melting points under 700°F

STRAIN: Change of shape or size of a body produced by the action of a stress.

STRESS: The intensity of the internal, distributed forces which resist a change in the form of a body. When external forces act on a body they are resisted by reactions within the body which are termed stresses.

TENSILE STRESS: One that resists a force tending to pull a body apart.

COMPRESSIVE STRESS: One that resists a force tending to crush a body.

SHEARING STRESS: One that resists a force tending to make one layer of a body slide across another layer.

TORSIONAL STRESS: One that resists forces tending to twist a body.

TENSILE STRENGTH: The maximum tensile stress which a material will develop. The tensile strength is usually considered to be the load in pounds per square inch at which a test specimen ruptures.

TURBULENCE: Any deviation from parallel flow in a pipe due to rough inner walls, obstructions or directional changes.

VELOCITY: Time rate of motion in a given direction and sense, usually expressed in feet per second.

VOLUME OF A PIPE: The measurement of the space within the walls of the pipe. To find the volume of a pipe, multiply the length (or height) of the pipe by the product of the inside radius times the inside radius by Pi (3.142). Commonly written as $V = h\pi r^2$.

WELDING: A process of joining metals by heating until they are fused together, or by heating and applying pressure until there is a plastic joining action. Filler metal may or may not be used.

YIELD STRENGTH: The stress at which a material exhibits a specified limiting permanent set.

	FLOW
1 gpm	= 0.134 cu. ft. per min
	= 500 lb.per hr. x sp. gr.
500 lb. Per hr.	= 1 gpm / sp. gr.
1 cu. Ft. per min. (cfm)	= 448.8 gal. per hr. (gph)
	POWER
I Btu per hr.	= 0.293 watt
	= 12.96 ft. lb. per min.
	= 0.00039 hp
1 ton refrigeration (U.S.)	= 288,000 Btu per 24 hr.
	= 12,000 Btu per hr.
	= 200 Btu per min.
	= 83.33 lb. ice melted per
	24 hr. from and at 32°F.
	= 2,000 lb. ice melted per
	24 hr. from and at 32°F
1 hp	= 550 ft. lb. per sec.
	= 746 watt
	= 2,545 Btu per hr.
1 boiler hp	= 33,480 Btu per hr.
	= 34.5 lb. water evap. per
	hr. from and at 212°F
	= 9.8 kw.
1 kw.	= 3,413 Btu per hr.
	MASS
1 lb. (avoir.)	= 16 oz. (avoir.)
	= 7,000 grain
1 ton (short)	= 2,000 lb.
1 ton (long)	= 2,240 lb.
	PRESSURE
1 lb. Per sq. in.	= 3.13 ft. water at 60°F
	= 2.04 in. hg at 60°F
1 ft. water at 60°F	= .433 lb. per sq. in.
	= .884 in. hg at 60°F
I in. Hg at 60°F	= .49 lb. per sq. in.
	= 1.13 ft. water at 60°F
I lb. Per sq. in.	= lb. per sq. in gauge (psig)
Absolute (psia)	= 14.7

TEMPERATURE						
°C	= (°F-32) x 5/9					
VOLUME						
I gal. (U.S.)	= 128 fl. oz. (U.S.)					
	= 231 cu. in.					
	= .833 gal. (Brit.)					
1 cu. ft.	= 7.48 gal. (U.S.)					
	WEIGHT OF WATER					
1 cu. ft. at 50°F.	= 62.41 lb.					
I gal. at 50°F.	= 8.34 lb.					
1 cu. ft. of ice	= 57.2 lb.					
1 cu. ft. at 39.2°F.	= 62.43 lb.					
	Note: Water is at its greatest density					
	at 39.2°F					
	WEIGHT OF LIQUID					
1 gal. (U.S.)	= 8.34 lb. x sp. gr.					
I cu. ft.	= 62.4 lb. x sp. gr.					
1 lb.	= .12 U.S. gal. / sp. gr.					
	= .016 cu. ft. / sp. gr.					
	WORK					
1 Btu (mean)	= 778 ft. lb.					
	= .293 watt hr.					
	= 1/180 of heat required to change					
	temp of 1 lb. water from 32°F to					
	212°F					
1 hp-hr	= 2545 Btu (mean)					
	= .746 kwhr					
1 Kwhr	= 3413 Btu (mean)					
	= 1.34 hp-hr					

GEOMETRY FORMULAS

 $\mathbf{A} = \text{Area}$

A1 = Surface area of solids

 \mathbf{C} = Circumference π = Pi (3.14159)

V = Volume

CIRCLE

$$\mathbf{A} = \pi \bullet \mathbf{R} \bullet \mathbf{R}$$

$$\boldsymbol{C}=\boldsymbol{\pi}\bullet D$$

$$\mathbf{R} = D/2$$

ELLIPSE

$$\mathbf{A} = \pi \bullet A \bullet B$$

$$\mathbf{C} = 2 \bullet \pi \bullet \sqrt{\frac{A^2 + B^2}{2}}$$

PARALLELOGRAM

$$A = H \cdot L$$

RECTANGLE

$$A = W \cdot L$$

SECTOR OF CIRCLE

$$\mathbf{A} = (\pi \bullet R^2 \bullet \alpha) / 360$$

$$\mathbf{L} = (\pi \bullet \mathsf{R} \bullet \alpha) / 180$$

$$\alpha = (L \bullet 180) / (\pi \bullet R)$$

$$\mathbf{R} = (\mathsf{L} \bullet 180) / (\pi \bullet \alpha)$$

TRAPEZOID

$$A = H \cdot (L1 + L2) / 2$$

TRIANGLE

$$\mathbf{A} = (\mathbf{W} \bullet \mathbf{H}) / 2$$

GEOMETRY FORMULAS

 $\mathbf{A} = \text{Area}$

A1 = Surface area of solids

V = Volume

C = Circumference π = Pi (3.14159)

CONE

$$\mathbf{A1} = (\pi \bullet \mathsf{R} \bullet \mathsf{S}) + (\pi \bullet \mathsf{R}^2)$$

$$V = (\pi \cdot R^2 \cdot H) / 3$$

CYLINDER

$$\mathbf{A1} = (2 \bullet \pi \bullet R^2) + (2 \bullet \pi \bullet R \bullet H)$$

$$V = \pi \cdot R^2 \cdot H$$

ELLIPTICAL TANKS

$$\mathbf{A1} = 2 \bullet \pi \bullet \sqrt{\frac{A^2 + B^2}{2}} \bullet H = (2 \bullet \pi A \bullet B)$$

$$\mathbf{V} = \pi \bullet A \bullet B \bullet H$$

Rectangular Solid

$$\mathbf{A1} = 2 \bullet [(W \bullet L) + (L \bullet H) + (H \bullet W)]$$

$$V = W \cdot L \cdot H$$

SPHERE

$$A1 = 6 \cdot \pi \cdot R^2$$

$$V = (4 \cdot \pi \cdot R^3) / 3$$

CAPACITY IN GALLONS

For the above contains, capacity in gallons (G) is:

 $\mathbf{G} = (V / 231)$; when V is in cubic inches

 $\mathbf{G} = (V \bullet 7.48)$; when V is in cubic feet

SIMPLE FLOW RATE

Q = K P 0.5, where

Q = flow rate (GPM)

K = discharge coefficient of pipe

P = pressure (PSI)

GENERAL VOLUMETRIC FLOW RATE

Q = flow rate (GPM)

D = outlet diameter (Inches)

Cd = discharge coefficient based on outlet geometry

P = pressure (PSI)

Q = 29.8 D 2 Cd P 0.5, where

Pressure Tank Sizing (Tank above sprinklers)

P = (30/A) - 15, where

P = air pressure in tank (PSI)

A = proportion of air in the tank

PRESSURE TANK SIZING (TANK BELOW SPRINKLERS)

P = [(30/A) - 15] + (0.43 H/A), where

P = air pressure carried in tank (PSI)

A = proportion of air in the tank

H = height of highest sprinkler above tank bottom (Ft)

Pressure Tank Sizing (Hydraulically calculated)

$$Pi = [(Pf = 15)/A] - 15$$
, where

Pi = tank air pressure to use (PSI)

A = proportion of air in the tank

Pf = system pressure req'd per hydraulic calc. (PSI)

DARCY-WEISBACH FORMULA FOR FRICTION LOSS:

HL = f v 2 / 2 g D, where

HL = friction loss (Ft)

Re = Reynolds number

f = friction factor (f=64/Re)

v = water velocity (Ft/Sec)

g = gravitational constant (Ft/Sec^2)

D = pipe diameter (Ft)

HAZEN-WILLIAMS FORMULA FOR PRESSURE LOSS

 $P = 4.52 \ Q \ 1.85 \ /C \ 1.85 \ D \ 4.87 \ , where:]$

P = pressure loss (PSI) per lineal ft.

Q = flow rate (GPM)

C = friction factor of pipe (constant)

D = internal diameter of pipe (Inches)

Typical "C" values:

Unlined cast or ductile iron	100
Black steel (dry sys.incl.preaction)	100
Black steel (wet sys.incl.deluge)	120
Galvanized (all)	120
Plastic (listed) – all	150
Cement lined cast or ductile iron	140
Copper tube or stainless steel	150

HAZEN-WILLIAMS FORMULA FOR PRESSURE LOSS (IN SI UNITS):

P = 10.5 (6.05) Q 1.85 / C 1.85 D 4.87, where

P = pressure loss (Bars) per lineal ft

Q = flow rate (Litre/Min)

C = friction factor of pipe (constant)

D = internal diameter of pipe (mm)

Pressure Velocity:

 $Pv = 0.001123 \ Q \ 2 \ /D \ 4$, where

Pv = pressure velocity (PSI)

Q = upstream flow rate (GPM)

D = internal dia. of pipe (Inches)

ESTIMATE - DRY PIPE TRIP TIME:

t = 0.0352 (Vt/An TO 0.5) In(pao/pa), where

t = time (seconds)

Vt = dry volume of sprinkler system(Cu. Ft)

An = flow area of open sprinklers (Sq. Ft)

TO = air temperature (Degrees Rankine)

pao = initial air pressure (absolute)

pa = trip pressure (absolute)

STANDARD CONVERSIONS

To Change	To	MULTIPLY BY
Inches	Feet	
Inches		
Feet		
Feet	Yards	0.3333
Yards		
Square Inches		
Square feet		
Square feet	•	
Square yards		
Cubic Inches		
Cubic feet		
Cubic feet		
Cubic yards	•	
Cubic Inches		
Cubic feet		
Gallons		
Gallons		
Gallons		
Pounds of water		
Ounces		
Pounds		
Inches of water		
Inches of water		
Inches of water	_	
Inches of water		
Inches of mercury		
Inches of mercury		
Inches of mercury		
Ounces per square inch		
Ounces per square inch		
Pounds per square inch		
Feet of water	-	
Feet of water		
Feet of water	•	
Atmospheres		
Atmospheres		
Atmospheres		
Long tons		
Short tons		
Short tons		

HARDNESS CONVERSION NUMBERS

- (1) Brinell Indentation Diameter, MM.
- (2) Standard or Tungsten Carbide Ball Brinell Hardness No. -10MM. Ball 3000-KG. Load
- (3) Diamond Pyramid Hardness Number. Superficial Brale Penetrator: 50-KG. Load
- (4) Rockwell Hardness Number B-Scale 100-KG. Load: 1/16" Diameter Ball
- (5) Rockwell Hardness Number C-Scale 150-KG. Load **Brale Penetrator**

Rockwell Superficial Hardness Number

- (6) 15-N Scale 15-KG. Load
- (7) 30-N Scale 30-KG. Load
- (8) 45-N Scale 45-KG. Load
- (9) Shore Scleroscope Hardness Number (10) Tensile Strength (Approx.) 1000 PSI.

					(. •)	10110110 0		(, , , , , , ,	,	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
2.95	429	455	-	45.7	83.4	64.6	49.9	61	217	
3.00	415	440	_	44.5	82.8	63.5	48.4	59	210	
3.05	401	425	-	43.1	82.0	62.3	46.9	58	202	
3.10	388	410	-	41.8	81.4	61.1	45.3	56 54	195	
3.15	375	396		40.4	80.6	59.9	43.6	54	188	
3.20	363	383	- (110.0)	39.1	80.0	58.7	42.0	52	182	
3.25 3.30	352 341	372 360	(110.0)	37.9 36.9	79.3 78.6	57.6 56.4	40.5 39.1	51 50	176 170	
3.35	331	350	(109.0) (108.5)	35.5	78.0	55.4	39.1 37.8	48	166	
3.40	321	339	(108.0)	34.3	77.3	54.3	36.4	47	160	
3.45	311	328	(107.5)	33.1	76.7	53.3	34.4	46	155	
3.50	302	319	(107.0)	32.1	76.1	52.2	33.8	45	150	
3.55	293	309	(106.0)	30.9	75.5	51.2	32.4	43	145	
3.60	285	301	(105.5)	29.9	75.0	50.3	31.2	_	141	
3.65	277	292	(104.5)	28.8	74.4	49.3	29.9	41	137	
3.70	269	284	(104.0)	27.6	73.7	48.3	28.5	40	133	
3.75	262	276	(103.0)	26.6	73.1	47.3	27.3	39	129	
3.80	255	269	(102.0)	25.4	72.5	46.2	26.0	38	126	
3.85	248	261	(101.0)	24.2	71.7	45.1	24.5	37	122	
3.90	241	253	100.0	22.8	70.9	43.9	22.8	36	118	
3.95 4.00	235 229	247 241	99.0 98.2	21.7 20.5	70.3 69.7	42.9 41.9	21.5 20.1	35 34	115 111	
4.05	223	234	97.3	(18.8)	-	41.9 -	20.1 –	-	-	
4.10	217	228	96.4	(17.5)	_	_	_	33	105	
4.15	212	222	95.5	(16.0)	-	_	_	-	102	
4.20	207	218	94.6	(15.2)	_	_	_	32	100	
4.25	201	212	93.8	(13.8)	_	_	_	31	98	
4.30	197	207	92.8	(12.7)	-	-	-	30	95	
4.35	192	202	91.9	(11.5)	-	-	-	29	93	
4.40	187	196	90.7	(10.0)					90	
4.45	183	192	90.0	(9.0)	-	_	-	28	89 07	
4.50 4.55	179 174	188 182	89.0 87.8	(8.0)	_	_	_	27 -	87 85	
4.55	174	178	67.6 86.8	(6.4) (5.4)	_	_	_	_ 26	83	
4.65	167	175	86.0	(4.4)	_	_	_	-	81	
4.70	163	171	85.0	(3.3)			_	25	79	
4.80	156	163	82.9	(0.9)	_	_	_	_	76	
4.90	149	156	80.8	_	-	_	_	23	73	
5.00	143	150	78.7	_	_	_	-	22	71	
5.10	137	143	76.4	_	_		_	21	67	
5.20	131	137	74.0	-	-	_	_	_	65	
5.30	126	132	72.0	_	_	_	_	20	63	
5.40	121	127	69.8	_	_	_	_	19	60	
5.50 5.60	116 111	122 117	67.6 65.7	_	_	_	_	18 15	58 56	
5.00	111	117	65.7					10	50	

Note: Values in () are beyond normal range; given for information only.

COATED ARC WELDING ELECTRODES - Types & Styles -

A. W. S. Classification

E6010 Direct Current, Reverse polarity, All Positions.

All purpose. Moderately smooth finish. Good penetration. This is the electrode used for most carbon steel pipe

welding.

E6011 Alternating Current, All Positions.

All purpose. Moderately smooth finish. Good penetration.

E6012 Direct Current, Straight Polarity, All Positions.

High bead. Smooth. Fast. "Cold rod".

E6013 Alternating Current, All Positions.

High bead. Smooth. Fast. "Cold rod".

E6015 Direct Current, Reverse polarity, All Positions.

"Low hydrogen" electrode.

E6016 Direct Current or Alternating Current, All Positions

"Low hydrogen" electrode.

E6018 Direct Current, All Positions

"Low hydrogen" iron powder electrodes

E6020 Direct Current, Straight Polarity, Flat Position Only.

Flat bead. Smooth. Fast. Deep penetration. Can be used

with A.C. also. "Hot rod".

E6024 Direct Current, Straight Polarity or

and Alternating and Current, Flat Position Only. E6027 Flat bead. Smooth. Fast. Deep penetration.

"Iron powder electrodes".

NOTE: This information also applies to E70, E80, E90, and E100 Series.

The last two numbers (in bold type) designate the types or styles and the first two numbers the minimum specified tensile strength in 1 200 pair of the world deposit as worlded.

in 1,000 psi of the weld deposit as welded.

PHYSICAL PROPERTIES OF E60 & E70 SERIES ELECTRODES

TYPICAL VALUES							
AWS ASTM	TENSILE	YIELD		RED. IN AREA			
ELECTRODE	Strength	Strength	ELONGATION	Min. %			
E6010	62,000-70,000	52,000-58,000	22 to 28%	35			
E6011	62,000-73,000	52,000-61,000					
E6012	68,000-78,000	55,000-65,000	17 to 22%	25			

MINIMUM VALUES AWS ASTM Tensile Yield						
ELECTRODE	STRENGTH	STRENGTH	Elongation			
E7010	70,000	57,000	22			
E7011	70,000	57,000	22			
E7015	70,000	57,000	22			
E7016	70,000	57,000	22			
E7020	70,000	52,000	25			

WELDING AND BRAZING TEMPERATURES	
Carbon Steel Welding	2700–2790°F
Stainless Steel Welding	2490–2730°F
Cast Iron Welding	1920–2500°F
Copper Welding and Brazing	1980°F
Brazing Copper-Silicon with Phosphor-Bronze	1850–1900°F
Brazing Naval Bronze with Manganese Bronze	1600–1700°F
Silver Solder	1175–1600°F
Low Temperature Brazing	1175–1530°F
Soft Solder	200-730°F
Wrought Iron	2700–2750°F
-	

TROUBLE SHOOTING ARC WELDING EQUIPMENT

Problem:	Welder w	ill not start (Starter not operating)
	Cause:	Power circuit dead.
		Check voltage.
	Cause:	Broken power lead.
	Remedy:	Repair.
	Cause: Remedy:	Wrong supply voltage. Check nameplate against supply.
	Cause:	Open power switches
	Remedy:	Close.
	Cause:	Blown fuses.
	Remedy:	·
	Cause:	Overload relay tripped.
	Remedy:	Let set cool. Remove cause of overloading.
	Cause: Remedy:	Open circuit to starter button. Repair.
	Cause:	Defective operating coil.
	Remedy:	Replace.
	Cause:	Mechanical obstruction in contactor.
	Remedy:	Remove.
Problem:	Welder w	vill not start (Starter operating)
	Cause:	Wrong motor connections.
	Remedy:	Check connection diagram.
	Cause:	Wrong supply voltage.
	Remedy:	Check nameplate against supply.
	Cause:	Rotor stuck.
	Remedy:	, , , , , , , , , , , , , , , , , , ,
	Cause: Remedy:	Power circuit single-phased. Replace fuse; repair open line.
	Cause:	Starter single-phased.
	Remedy:	Check contact of starter tips.
	Cause:	Poor motor connection.
		Tighten.
	Cause:	Open circuit in windings.
	Remedy:	Repair.
Problem:	'	perates and blows fuse
	Cause:	Fuse too small.
	Remedy:	Should be two to three times rated motor current.
	Cause:	Short circuit in motor connections.
	Remedy:	Check starter and motor leads for insulation from around and from each other.

TROUBLE SHOOTING ARC WELDING EQUIPMENT

Problem: Welder runs but soon stops Cause: Wrong relay heaters Renewal part recommendations Remedy: Welder overloaded Cause: Remedy: Considerable overland can be carried only for a short time Duty cycle too high Cause: Remedy: Do not operate continually at overload currents Leads too long or too narrow in cross section Cause: Remedy: Should be large enough to carry welding current without excessive voltage drop Cause: Power circuit single-phased Check for one dead fuse or line Remedy: Cause: Ambient temperature too high Operate at reduced loads where temperature Remedy: exceeds 100° F Ventilation blocked Cause: Check air inlet and exhaust openings Remedy: Problem: Welding arc is loud and spatters excessively Current setting too high Cause: Remedy: Check setting and output with ammeter Cause: Polarity wrong Check polarity, try reversing, or an electrode of Remedy: opposite polarity Problem: Welding arc sluggish Cause: Current too low Remedy: Check output, and current recommended for electrode being used Poor connections Cause: Check all electrode-holder, cable and ground-Remedy: cable connections. Strap iron is poor ground return Cable long or too small Cause: Check cable voltage drop and change cable Remedy: Problem: Touching set gives shock Cause: Frame not grounded Ground solidly Remedy: Problem: Generator control fails to vary current Any part of field circuit may be short circuited Cause: or open circuited

Find faulty contact and repair

Remedy:

TROUBLE SHOOTING ARC WELDING EQUIPMENT ———

Droblom		to to but will not deliver welding current
Problem:	Cause:	tarts but will not deliver welding current Wrong direction of rotation See INITIAL STARTING
	Cause: Remedy:	3 · · · · · · · · · · · · · · · · · · ·
	Cause: Remedy:	Brush connections loose Tighten
	Cause: Remedy:	Open field circuit Check connection to rheostat, resistor, and auxiliary brush studs
	Cause: Remedy:	Series field and armature circuit open Check with test lamp or bell ringer
	Cause: Remedy:	Wrong driving speed Check name plate against speed of motor or belt drive
	Cause: Remedy:	Dirt, grounding field coils Clean and reinsulate
	Cause: Remedy:	Welding terminal shorted Electrode holder or cable grounded
Problem:	Cause:	enerating but current falls off when welding Electrode or ground connection loose Clean and tighten all connections
		Poor ground Check ground-return circuit
	Cause: Remedy:	Brushes worn worn off Replace with recommended grade. Sand to fit. Blow out carbon dust.
	Cause: Remedy:	Weak brush spring pressure. Replace or readjust brush springs
	Cause: Remedy:	Brush not properly fitted Sand brushes to fit
	Cause: Remedy:	Brushes in backwards Reverse
	Cause: Remedy:	Wrong brushes used Renewal part recommendations
	Cause: Remedy:	Brush pigtails damaged Replace brushes
	Cause: Remedy:	Rough or dirty commutator Turn down or clean commutator
	Cause: Remedy:	Motor connection single-phased Check all connections

BASIC ARC AND GAS WELDING SYMBOLS

	Type of Weld						
Groove Bead	Groove Fillet	Groove Square	Groove "V"				
Groove Bevel	Groove "U"	Groove "J"	Plug & Slot				
Field Weld	Weld All Around	Flush					

- In plan or elevation, near, far, and both sides, locations refer to nearest member parallel to plane of drawing and not to others farther behind.
- In section or end views only, when weld is not drawn, the side to which arrow points is considered near side.
- 3. Welds on both sides are of same size unless otherwise shown.
- Symbols govern to break in continuity of structure or to extent of hatching or dimension lines.

- 5. Tail of arrow used for specification reference.
- All welds are continuous and of user's standard propertions and all except V-grooved and bevel-grooved welds are closed unless otherwise shown.
- 7. When welds are drawn in section or end views, obvious information is not given by symbol.
- 8. In joints in which one member only is to be grooved, arrows point to that member.

SYMBOLS FOR PIPE FITTINGS -

	Flanged	Screwed	Bell And Spigot	Welded	Soldered
Bushing			6 4	××	4 þ
Сар					
Cross (Reducing)	6 4 6	6 6 6	6 4 6	6×2 4×6	6 0 6
Cross (Straight)	###	+++)	**	0 0
Crossover		+^+	} ^-(
Elbow - 45°	+	+	(X	*	Ø
Elbow - 90°	+	+		X	6
Elbow - Turned Down	0#	0+	\bigcirc	$\bigcirc \times$	$\bigcirc \diamond$
Elbow - Turned Up	•	•	•	\bullet \times	••
Elbow - Base	+	+	\		
Elbow - Double Branch	###	+++			
Elbow - Long Radius	+	+			

---- Symbols For Pipe Fittings

	Flanged	Screwed	Bell And Spigot	Welded	Soldered
Elbow - Reducing	4 4	2 4		4 2	2
Elbow - Side Outlet (Outlet Down)		+	+		
Elbow - Side Outlet (OutletUp)		+	•		
Elbow - Street		+			
Joint - Conn. Pipe		+		\rightarrow	\bigcirc
Joint - Expansion	+		+		-
Lateral	***		\(\frac{1}{2}\)	**	
Orifice Plate	- -				
Reducing Flange					
Plug - Bull			-(
Plug - Pipe					
Reducer - Concentric	#		→	*	-6_>

SYMBOLS FOR PIPE FITTINGS -

	Flanged	Screwed	Bell And Spigot	Welded	Soldered		
Reducer - Eccentric	+		->-	X	-0		
Valve - Gate Angle Gate (Plan)				G			
Valve - Globe Angle Globe (Elevation)	**			*			
Valve - Globe (Plan)	O			0 ×	O		
Valve (Auto)- B-Pass	+						
Valve (Auto)- Governor Oper.	± 						
Valve - Reducing	#						
Valve - Check (Straight Way)	+	+	-)	*	+q b		
Valve - Cock	-H_		$\rightarrow \Box \in$	×□k	d □þ		
Valve - Diaphragm	+5+						
Valve - Float	1			-X	-d>\b-		
Valve - Gate*	→		→	-X><\rightarrow-	-q> <b-< td=""></b-<>		
*Also used for General	*Also used for General Stop Valve when amplified by specification.						

---- Symbols For Pipe Fittings

	Flanged	Screwed	Bell And Spigot	Welded	Soldered
Valve - Gate Motor Operated					
Valve - Globe			>>	-X>X	- 6>
Valve - Globe Motor Operated					
Valve - Angle Hose Angle					
Valve - Hose Gate					
Valve - Hose Globe					
Valve - Lockshield					- -
Valve - Quick Opening				***	-
Valve - Saftey	HS4H	— 		-X){X-	-d/fb-
Sleeve				××	-00-

SYMBOLS FOR PIPE FITTINGS -

	Flanged	Screwed	Bell And Spigot	Welded	Soldered
Tee - Straight	###	+++		**	•
Tee - Outlet Up	#•	#•		*•*	000
Tee - Outlet Down	#0#	+0+) ((*	0 ○0
Tee - Double Sweep	#**	+++			
Tee - Reducing	2 16 4	6 4) ₆ 4	× ₆ 4×	0 4 2 6 4 4 C
Tee - Single Sweep	#_#	+++			
Tee - Side Outlet (Outlet Down)	###	+++)		
Tee - Side Outlet (Outlet Up)	#5#	+++++++++++++++++++++++++++++++++++++++	+		
Union				— — — X ×	- a b
Angle Valve Check	F			*	b
Angle Valve Gate				*	

OVERVIEW

Strength of wire ropes vary, depending on the material from which the individual strands are made and the method used in forming the cable, ranging between 30 and 100 tons per square inch. Primarily there are 3 classes of wire rope:

- (1) Iron Iron wire is soft with low tensile strength of 30 to 40 tons per square inch. Commonly used for drum type elevator cables and to some extent for derrick guys; being replaced by lowcarbon steel wire in these uses.
- (2) Cast Steel May have a tensile strength up to 90 tons per square inch and because of its greater strength is generally used for hoisting purposes. To check quickly whether a piece of wire is iron or cast steel, bend it. Iron will bend easily and take a long time to regain its original shape, while cast steel will be harder to bend and will snap back to its original shape very quickly.
- (3) Plow Steel Plow steel wire rope is made from high grade, open hearth furnace steel and has an average tensile strength of 110 tons per square inch. This is the best and safest wire rope for cranes, derricks, dredges and slings or straps for heavy loads.

LUBRICATION — WIRE ROPE

All wire rope, whether used indoors or out, should be considered as a group of moving wires constantly rubbing against one another. The resulting friction causes incessant wear on the moving parts of the wire rope or cable and will shorten its life very rapidly unless lubricants are used to overcome the friction. Lubrication also prevents rusting.

Lubricating intervals will depend on the types and amount of work encountered. Under average conditions, if worked steadily on equipment, wire rope or cable will require lubrication once every 3 weeks. Where heavy abrasive dusts exist, more frequent lubrication is in order. Rusty ropes may break without warning.

Wire rope is usually larger than the nominal diameter and may exceed the nominal diameter by the amounts shown in the U.S. Federal Specification for Wire Rope.

SHEAVES

The life of wire rope or cable is directly affected by the condition and size of the sheaves over which it is used. Sheaves should be at least 16 x the diameter of the rope or cable that is used over them. In passing over a sheave, the inside portion of the cable, which is against the sheave, is shortened and compression is developed in that section of the cable. The outside portion (away from the sheave) is lengthened or stretched, causing tension in that section. These compressive and tensional stresses

WIRE ROPE

combine to create bending stresses which increase rapidly as the diameter of the sheaves decrease. As these bending stresses cause much undue wear and directly shorten the safe working life of the rope or cable, the ratio mention between sheaves and rope should be maintained.

New wire rope may be damaged and not work properly in sheaves that have become worn or in which the grooves have become irregular in shape. When sheaves are worn or damaged, it is more economical to renew the sheaves rather than to allow excessive wear on the cable.

One cause of very severe wear in wire rope or cables is reverse bending, which will shorten the life of the rope by approximately ½. Reverse bending refers to the bending of a cable or rope over sheaves, first in one direction then in another.

Another cause of severe rope wear is twisting of the fall rope. When the fall rope is twisted and a hoist is made, the wear produced is equal to more than that resulting from weeks of normal use. The person in charge of lifting operations should guard against twisting of the fall rope and should not allow a lift to be made if the fall rope is twisted.

HANDLING CABLE OR WIRE ROPE

Cable or wire rope must not be coiled or uncoiled like manila rope. Cable or wire rope must be taken off the reel in a straight line, avoiding kinking. The reel may be mounted on a heavy pipe or roller to facilitate unwinding. If space is limited, the cable as it comes off the reel may be layed out in a figure 8, after which it can be reeved into the line for which it is intended.

CLAMP FASTENINGS

When it is necessary to make a short bend. as in attaching wire rope or when it is to be looped. thimbles should always be used.

In clamping a strap or an eye, the loose or "dead" end is clamped against the main part of the rope with the damps spaced apart a distance equal to 6 x diameter of the rope. Clamp fastenings seldom develop more than $\frac{4}{5}$ of rope strength at best.

The point of greatest fatigue and/or wear in a rope usually develops at or near the end where it is clamped around the boom or where attached to the becket on the block. Clamps should be inspected at least once weekly and tightened if they show signs of loosening. All clamped or spliced fastenings, especially those on cranes or derricks, should be shifted and changed at least once every six months.

No. of Crosby or Safety Clips and Dist. Between Clips Needed for Safety							
ROPE DIA. No. OF DIST. BETWEEN							
Inches		CLIPS, INCHES					
1/4 -3/8	3	21/4					
7/16 -5/8	3	33⁄4					
3/4 – 11/8	4	63⁄4					
11/4 – 11/2	5	9					
15/8 – 13/4	6	101/2					
2 and over	7	6 x diam.					
		of cable					

CORRECT - U-Bolts on short end of rope. (No distortion on live end of rope.)

INCORRECT - U-Bolts on live end of rope. (Causes mashed spots on live end of rope.)

INCORRECT - Staggered clips. (Causes a mashed spot in live end of rope due to incorrect position of center clip.)

CORRECT

INCORRECT - Thimble should be used to increase strength of eye and reduce wear on rope.

Safe Load (in Pounds) on Improved Plow Steel Wire Rope (6 Strands, 19 or 37 Wires per Strand, Hempcore)							
DIA.	CIRCUM.	Single Verticle	Two Part Sling Wt./Ft.				BREAKING STRENGTH TONS
Inches	Inches	WIREROPE	60°	45°	30°	LBS.	(2000 LBS)
1/4	3/4	1,100	1,900	1,550	1,100	0.10	2.74
3/8	11/8	2,500	4,230	3,460	2,450	0.23	6.1
1/2	11/2	4,300	7,450	6,080	4,300	0.40	10.7
5/8	2	6,600	11,600	9,430	6,670	0.63	16.7
3/4	21/4	9,400	16,500	13,450	9,520	0.90	23.8
7/8	23/4	12,800	22,300	18,200	12,800	1.23	32.2
1	3	16,000	29,000	23,690	16,790	1.60	41.8
11/8	31/2	21,000	36,450	29,780	21,040	2.03	52.6
11/4	4	26,000	44,700	36,570	25,870	2.50	64.6
13⁄8	41/4	31,000	53,800	43,900	31,050	3.03	77.7
11/2	43/4	37,000	63,700	52,000	36,800	3.60	92.0
15⁄8	5	43,000	74,400	60,700	42,900	4.23	107.0
13/4	51/2	49,600	86,000	70,260	49,700	4.90	124.0
2	61/4	64,000	110,700	90,400	64,000	6.40	160.0
21/8	65⁄8	63,000	125,200	102,200	72,200	7.22	181.0
21/4	71/8	81,000	140,300	114,600	79,000	8.10	202.0
21/2	77/8	98,000	170,000	139,100	98,400	10.00	246.0
23/4	85/8	117,600	203,500	166,700	117,700	12.10	294.0