Predicting Privileged Information For Height Estimation

Nikolaos Sarafianos¹, Christophoros Nikou^{1,2} and Ioannis A. Kakadiaris¹

¹Computational Biomedicine Lab, Dept. of Computer Science, University of Houston, Houston, TX ²Department of Computer Science and Engineering, University of Ioannina, Ioannina, Greece

Training and Prediction

Observable information

- Arm length
 - Knee height
 - Waist height
 - Hip breadth

Training Only

Privileged information

- Hip circumference
- Chest circumference
- Ankle circumference

Introduction

Problem Statement

· Predict the height using human metrology

Motivation

- Explore the use of ratios of anthropometric measurements for gender estimation
- · Exploit privileged information available during training
- Predict the privileged information at prediction-time in a regression setup

Background

- · Observable features: Information available at both training and prediction
- · Privileged features: Information available only at training time

Method

A. Regression

$$\begin{aligned} \text{ϵ-SVR+: & \underset{\substack{w,w_1,w_2,\\b,b_1^*,b_2^*}}{\text{minimize}} \Big\{ \frac{1}{2} \Big(||w||^2 + \gamma \big(||w_1^*||^2 + ||w_2^*||^2 \big) \Big) + \\ & \quad b,b_1^*,b_2^* \\ & \quad + C \sum_{l=1}^l \big(\langle w_1^*, x_l^* \rangle + b_1^* \big) + C \sum_{l=1}^l \big(\langle w_2^*, x_l^* \rangle + b_2^* \big) \Big\} \\ & \quad \text{s.t.} & \quad y_i - \langle w, x_i \rangle - b \leq \varepsilon + \langle w_1^*, x_i^* \rangle + b_2^* \\ & \quad \langle w, x_i \rangle + b - y_i \leq \varepsilon + \langle w_2^*, x_i^* \rangle + b_2^* \\ & \quad \langle w_1^*, x_l^* \rangle + b_1^* \geq 0 \\ & \quad \langle w_2^*, x_l^* \rangle + b_2^* \geq 0 \\ & \quad i = 1 & I \end{aligned}$$

B. Privileged Information Prediction (PIP)

Algorithm: Privileged Information Prediction (PIP)

Input: Ratios of observable x and privileged x* features, labels v, number of selected features K, and estimation error allowed e, tolerance ε

// privileged feature prediction

- 1. $\hat{x}_i^* \leftarrow \varepsilon SVR \ model \ on \ (x, x_i^*), i = 1 \dots K$ // height estimation
- $h \leftarrow \varepsilon SVR \ model \ on ([x^T, \hat{x}^{*T}]^T, y)$
- $h_c \leftarrow$ mapping to height classes by allowing error e **Output**: Height h (cm), $h_c \in \{1^{st}, 2^{nd}, 3^{rd}, 4^{th}\}$ quartiles

Results

Height Estimation Error (%)

Quantile	ε-SVR	ε-SVR+ [1]	PIP
1 st	4.21 ± 0.12	4.28 ± 0.33	3.96 ± 0.34
2 nd	2.62 ± 0.13	2.50 ± 0.16	2.65 ± 0.12
3 rd	2.92 ± 0.15	2.71 ± 0.19	2.69 ± 0.11
4 th	4.08 ± 0.17	3.86 ± 0.33	3.73 ± 0.22
All	3.48 ± 0.04	3.33 ± 0.10	3.25 ± 0.12

Height Classification Accuracy (%)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Height estimation error (%) allowed in the regression with respect to the ground truth

Contributions

- Proposed a novel method for predicting privileged information at prediction time
- Demonstrated the efficacy of ratios of measurements for robust height estimation
- Provided the implementation of ε-SVR+: www.cbl.uh.edu/repository-code/

References

[1] V. Vapnik and A. Vashist, "A new learning paradigm: Learning using privileged information." Neural Networks, vol. 22, no. 5-6, pp. 544-57, 2009.

Acknowledgements

This research was funded in part by the UH Hugh Roy and Lillie Cranz Cullen Endowment Fund and the European Commission (H2020-MSCA-IF-2014), under grant agreement No 656094.

