Can Nanopore be used to detect RNA-protein interaction?

Anh Thu Thi Phan

Dr Chun Shen Lim Assoc Prof Chris Brown Dr Augustine Chen

Direct RNA sequencing

Each base creates a signature signal

- Magnitude of current blockage
- Event duration

Wang, 2021, Nat Biotechnol 39, 1348-1365

Oxford Nanopore Technologies, 2023 How Nanopore sequencing works

Objective

Nanopore direct RNA sequencing

- *No PCR and RT bias*
- Detect modified bases
- *Identify protein binding sites?*

To detect protein-nucleic acid interaction sites on native RNA

- To create an *in vitro* model for protein-RNA interaction
 - To design and make an in vitro transcribed mRNA
 - To modify the RNA at the site of protein binding
 - To directly sequence the RNA, detecting the modifications

RNA and protein interaction

RNA 1201 nt

A (324) =27.0%

U (213) = 17.7%

C (347) = 28.9%

G (317) = 26.4%

ONT direct RNA sequencing

Direct RNA sequencing kit (SQK-RNA002)

Flongle flow cell R9.4.1

GridION sequencer

Data analysis -alignment workflow

Results comparison: U and U + 4sU

Coverage plot for transcripts with U and transcripts with $U + {}^{4s}U$

Sequencing accuracy of direct RNA seq by base

	U	U + ⁴⁵ U				
Readouts (Q-score >7)						
Base-called reads	24.4 k	11.4 k				
N50	1.18 kb	1.18 kb				
Primary aligned reads						
Aligned reads	17.7 k (73.2%)	8.2 k (72.1%)				
Mean coverage	12.2 k	5.3 k				
Mean base Q-score (Dorado)	31.4	33.5				
Alignment error rate (M/D/I)	8.3% (3.7/2.6/2.0)	6.3% (2.7/2.1/1.5)				
Consensus	0.25% (3 in 1.2 kb)	0.08% (1 in 1.2 kb)				

1201 nt + ~100 As

Next steps

- To detect protein-nucleic acid interaction sites on native RNA
 - To create an in vitro model for protein-RNA
 - To create a synthetic RNA construct with:
 - To perform direct RNA sequencing on in vitro transcribed mRNA
 - To crosslink protein and in vitro transcribed mRNA
 - To perform direct RNA seq on crosslinked mRNA
 - New RNA flow cell and chemistry available this month?
 - Direct RNA seq kit (SQK-RNA004) and RP4 pore.

Direct RNA Sequencing

Upgrades

Improvements to Direct RNA

- "RP4" nanopore optimised specifically for RNA accuracy
 - Allows best signal for base calling without compromise
 - Requires dedicated flowcells for best RNA results
- · RNA enzyme motor developed for better speed and output
 - Now averaging speed of 125 bps (~2x improvement)
 - Hitting outputs of 30 million reads from PromethION flowcell

S1m coverage

Tablet showing direct RNA reads against reference seq

Synthetic RNA

Known sequence

IVT from plasmid

Protein interaction site

S1m introduction

Modified base for crosslinking

• ^{4S}U incorporation

Polyadenylated

• Poly-A tail addition

aguuuggacaaaccacaacuagaaugcagug 3'

AUGCGGCCGCCGACCAGAA ICA IGCAAGUGCGI AAGAI AGUCGCGGGGUCGGCGGCCGCAU

	60 nt	
	· · · · · · · · · · · · · · · · · · ·	§ 1201 bases (RNA)
' a	acauuugcuucugacacaacuguguucacuagcaaccucaaacaacguggauggucuacaccaucguggagcaguacgagaggccgaggccagacacagcacccucuagagggcccugaagaagggccc	130
a	auaucgggcccugaagaagggcccggauccuaguuuucucuccacucccaguucaauuacagcucuuaaggcuagaguacuuaauacccuucaucaugcauaccgguagcgagcugauuaaggagaacau	260
g	gcacaugaagcuguacauggagggcaccguggacaaccaucacuucaagugcacauccgagggcgaaggccauacgagggcacccagaccaugagaaucaagguggucgagggcggcccucucccc	390
u	uucgccuucgacauccuggcuacuagcuuccucuacggcagcaagaccuucaucaaccacaccagggcauccccgacuucuucaagcaguccuucccugagggcuucacaugggagagucaccacau	520
a	acgaagacgggggcgugcugaccgcuacccaggacaccagccuccaggacggcugccucaucuacaacgucaagaucagaggggugaacuucacauccaacggcccugugaugcagaagaaaacacucgg	650
C	cugggaggccuucaccgagacgcuguaccccgcugacggcggccuggaaggcagaaacgacauggcccugaagcucgugggcgggagccaucugaucgcaaacaucaagaccacauauagauccaagaaa	780
C	ccgcuaagaaccucaagaugccuggcgucuacuauguggacuacagacuggaaagaaucaaggaggccaacaacgagaccuacgucgagcagcagguggcaguggccagauacugcgaccucccua	910
g	gcaaacuggggcacaagcuuaaugguaccuaaccgcgguccguagaaaAUGCGGCCGCCGACCAGAAUCAUGCAAGUGCGUAAGAUAGUCGCGGGUCGGCGGCCGCAUcugcuggcuagguccguagaaa	1040
	S1m	
A	AUGCGGCCGCCGACCAGAAUCAUGCAAGUGCGUAAGAUAGUCGCGGGUCGGCGGCCGCAUcugcugacuagcuugacugacugagauacagcguaccuucagcucacagacaugauaagauacauugaug	1170
	S1m	

Sequencing kit and flow cell

Sequencing kit

- Direct RNA Sequencing Kit (SQK-RNA002)
 - Kit chemistry: kit 9

- Flongle Flow Cell R9.4.1 (FLO-FLG001)
 - Up to 126 channels

Sequencer

GridION

ONT direct RNA sequencing

Accuracy of the consensus sequence -tablet