

Very Large Scale Integration II - VLSI II Memory Structures

Prof. Dr. Berna Örs Yalçın Serdar Duran

ITU VLSI Laboratories
Istanbul Technical University

Memory Structures

- Traditional ROM/RAM distinctions:
 - ROM read only, data can be stored without power
 - RAM read and write, data can not be stored without power
- Traditional distinctions are blurred:
 - Advanced ROMs can be written e.g., EEPROM, FLASH
 - Advanced RAMs can hold bits without power e.g., NVRAM

ENGINEER INSTITE FUTURE

Memory Structures

- There is trade-off between the Write ability and storage permanence (life)
- Write ability: Manner and speed a memory can be written.
- Storage permanence :
 Ability to hold stored bits
 once written

Memory Structures

- Ranges of write ability:
 - High end [RAM]
 - Middle range [EEPROM]
 - Lower range [EPROM, OTP ROM]
 - Low end [Mask-programmed ROM]
- Range of storage permanence
 - High end [mask-programmed ROM]
 - Middle range [NVRAM]
 - Lower range [SRAM]
 - Low end [DRAM]

*

ENGINEERING THE FUTURE

Read-Only Memory (ROM)

- Read-Only Memories are nonvolatile
- Read-only memory is useful for storing software that is rarely changed.

*

ENGINEERING THE FUTURE

Mask-programmed ROM

- Mask-programmed ROM
 - Programmed only once by manufacturer at fabrication(mask) process.
 - Mask-programmed ROMs use one transistor per bit (Presence or absence determines 1 or 0).
 - Highest storage permanence (life of product).
 - Cheaper but design errors are costly.
 - Many microprocessors have Mask-ROM to store their microcode.
 Bootloaders and firmware can also be stored in Mask-ROMs.

Mask-programmed ROM

Mask-programmed ROM

4x4 NAND-type ROM

ENGINEER INSTREET HERE

ROM Example

- 4-word x 6-bit ROM
- Represented with dot diagram
- Dots indicate 1's in ROM

Word 0: 010101

Word 1: 011001

Word 2: 100101

Word 3: 101010

Looks like 6 4-input pseudo-nMOS NORs

Field Programmable ROMs

- Erasable programmable ROM (EPROM)
 - Programmable component is a MOS transistor, and transistor has "floating" gate.
 - Can be erased and reprogrammed thousands of times.
 - Reduced storage permanence, lasts about 10 years.
 - Not in-system programmable, historical.

E2PROM

- Programmed and erased electronically, in-system programmable.
- Can be erased and programmed tens of thousands of times.
- Storage permanence about 10 years.

FLASH

- Extension of EEPROM
 - Same floating gate principle.
 - Fast erase, better write ability.

*

ENGINEERING THE FUTURE

FLASH

- The adding of a load of electrons at the isolated gate is "programming" of the transistor while electrons removal is "deleting".
- Has electron load
 V_T increases
 (open switch)
- Opposite case VT decreases (closed switch)

Random-Access Memory (RAM)

- Typically volatile memory
- Typically used to store working data and machine code.

Static-RAM (SRAM)

- Requires 6 transistors
- Holds data as long as power supplied

WL = 1 (Write or Read)

WL = 0 (Hold)

Use BL to write 1 or 0

BLbar = 1

BL = 1 when Read (to speed up)

SRAM

- Not area efficient (at least 6 transistor for 1-bit data) →
- Expensive due to area ineficiency —
- No special semiconductor process (like in the FLASH) *
- Fast **
- Low power consumption *
- Easy to communicate *
- Used in
 - Embedded systems
 - CPU On-Chip Memory, Cache
 - FPGAs

Dynamic RAM (DRAM)

- DRAM uses a MOS transistor and a capacitor to store a bit
- More compact than SRAM
- "Refresh" required due to capacitor leak dynamic memory cells must be repeatedly read and restored.
- Slower than SRAM
- Cheaper

*

ENGINEERING THE FUTURE

Basic Concepts

- Memories are organized in words (groups of bits 2^k)
- An M x N memory
 - M=2^k words
 - N bits per word
- E.g.: 4096 x 8 memory:
 - $-4,096 \times 8 = 32,768 \text{ bits}$
 - $-4,096 = 2^{12}$
 - 12 address input signals
 - 8 input/output data signals (buses)

Basic Concepts

- Memory access signals
 - r/w Selects read or write
 - enable Read or write only when asserted
- Memory address/data
 - **A[0..k-1]** Address
 - **D[0..N-1]** Data

Memory Organization

- Random Access: Each memory location has a unique address, data can be accessed in any order.
- Sequential Access: Data can be accessed in a sequential order.
- Content Addressable: (Associative memory) compares the input with all the stored data

1-D Memory Architecture

n select signals: S_0 - S_{n-1}

n select signals are reduced to k address signals: A_0 - A_{k-1}

INNOVATION • QUALITY • RELIABILITY

20

www.vlsi.itu.edu.tr 03.04.2023

2-D Memory Architecture

3-D Memory Architecture

Advantages:

- 1. Shorter word/bit lines (reduced delay)
- 2. Enable only one module at a time (reduced power)

INNOVATION • QUALITY • RELIABILITY

22

www.vlsi.itu.edu.tr 03.04.2023

FF Based Memories

References

- http://www.pomante.net/sito_gg/sistemiembedded0809/memory_2pp.pdf
- http://www.next.gr/Digital-Memories-Tutorial.html
- http://www.ieee.org/portal/cms_docs_sscs/sscs/08Winter/sunami-fig3.jpg
- http://en.wikipedia.org
- http://www.seas.upenn.edu/~ese570/1244.pdf
- http://www.xtremesystems.org/forums/showthread.php?208829-Memory-101-SDR-vs-DDR1-vs-DDR2-vs-DDR3
- http://smithsonianchips.si.edu/ice/cd/MEMORY97/SEC09.PDF
- http://smithsonianchips.si.edu/ice/cd/MEMORY97/SEC07.PDF
- http://spectrum.ieee.org/semiconductors/design/the-mysterious-memristor
- http://www.eecg.toronto.edu/~kphang/papers/2001/igor_sense.pdf
- Xilinx Documentation