Листок № $\Gamma 3$ 220.01.2019

Кодирование

Наша цель была научиться говорить о выводимости в РА языком арифметики. В прошлом листке мы поняли, что рекурсивные функции могут быть хорошим подспорьем в этом деле. Осталось эту возможность реализовать.

Пусть Σ не более чем счётная сигнатура, содержащая функциональные символы $\{f_i^n\}$, предикатные символы $\{R_i^n\}$, переменные v_0, v_1, \ldots Например, положим = как R_0^2 , 0 как f_0^0 , S есть f_0^1 и так далее. Наша цель приписать гёделевы номера объектам языка, чтобы разным объектам соответствовали разные натуральные числа, а смысл слова мог бы определяться примитивно-рекурсивным образом. Обозначив гёделев номер объекта A как [A], распределим номера, скажем, так:

$$[v_i] \coloneqq \langle 1, i \rangle, [f_i^n] \coloneqq \langle 2, \langle n, i \rangle \rangle, [R_i^n] \coloneqq \langle 3, \langle n, i \rangle \rangle, [\neg] \coloneqq \langle 4, 0 \rangle, [\rightarrow] \coloneqq \langle 4, 1 \rangle, [\forall] \coloneqq \langle 4, 3 \rangle.$$

Задача Г3.1. Объясняет почему квантору существования и остальным логическим связкам не нужны отдельные гёделевые номера.

Дальше можно этот язык расширить на более сложные конструкции, например: $[(A \to B)] = \langle [\to], [A], [B] \rangle, [\forall v_i \quad A] = \langle [\forall], [v_i], [A] \rangle.$

Задача Г3.2. Докажите, что $\mathrm{Tm}(x) = \langle x \rangle$ есть гёделев номер терма» является примитивно рекурсивной.

Задача Г3.3. Докажите, что AtFm(x) = «x есть гёделев номер атомарной формулы» является примитивно рекурсивной.

Задача Г3.4. Докажите, что $\operatorname{Fm}(x) = \langle x \rangle$ есть гёделев номер формулы» является примитивно рекурсивной.

Определение. Hyмерал \underline{n} — это терм $\underbrace{S(\dots S(0)\dots)}_n$

Задача Г3.5. Покажите, что $nm(x) := [\underline{x}]$ и $\operatorname{Num}(x) = «x$ есть гёделев номер нумерала» примитивно рекурсивны.

Задача Г3.6. Докажите, что $\mathrm{Sub}(x,i,y)=$ «результат подстановки в x выражения y вместо свободных вхождений переменной v_i » является примитивно рекурсивной. Другими словами, если $x=[\varphi]$, то выполняется $\mathrm{Sub}([\varphi],i,[t])=[\varphi[v_i/t]]$.

Задача Г3.7. Докажите, что Free(x,y) = «x есть гёделев номер переменной, имеющей свободное вхождение в выражение с номером y» является примитивно рекурсивной.

Задача Г3.8. Покажите, что следующие предикаты примитивно рекурсивны «x есть код подформулы формулы с кодом y», «t подстановочен в φ вместо свободного вхождения переменной v_i »,

Определение. Пусть $Ax_i(x) = \langle x \rangle$ есть код применения *i*-ой аксиомы Cl», $Log(x) = \bigvee Ax_i(x)$, $MP(x, y, z) = (y = \langle [\to], x, z \rangle \& x, y, z \in Fm)$ (выводимость по modus ponens),

$$B1(x,y) = (x, y \in Fm)\&(\exists A, a, B, v \quad (x = \langle A, [\rightarrow], Sub(B, a, v))\&$$

$$\&(y = \langle A, [\rightarrow], [\forall] \quad , v, B \rangle)\&(A, B \in Fm)\&v \in Var\&Tm(a))$$

$$(1)$$

 $\operatorname{Gen}(x,i,y)=(y=\langle [\forall],[v_i],x\rangle)$ (применение квантора всеобщности).

Задача Г3.9. Покажите, что Ax_i , Log, MP, Gen являются примитивно рекурсивными.

Задача Г3.10. Докажите, что $\Pr(x,y) = \langle x \rangle$ есть вывод y в языке предикатов» является примитивно рекурсивной.