Notação Geral: I- Tratamento e J- Repetição, também pode ser às vezes r.

	Tratamentos					
Repetições	1	2				
1	Y ₁₁	Y ₂₁		Y _{I1}		
2	Y ₁₂	Y ₂₂		Y_{12}		
J	Y_{1J}	Y_{2J}		Y_{IJ}		

- nº de unidades experimentais: $N = I \times J$ Total geral: $G = \sum_{i=1,j=1}^{I,J} Y_{ij} = \sum_{i=1}^{I} T_i = Y_{ii}$
- Total para o tratamento i: $T_i = \sum\limits_{j=1}^J Y_{ij} = Y_{i \centerdot}$
- Média para o tratamento i: $\hat{m}_i = \frac{T_i}{J}$
- Média geral do experimento: $\hat{m} = \frac{G}{II}$

Delineamento Inteiramente Casualizado

Correção (C): Soma do Quad. Total.

$$C = \frac{\left(\sum_{i=1}^{I} \sum_{j=1}^{J} Y_{ij}\right)^{2}}{N} = \frac{G^{2}}{N}$$

$$\frac{G^2}{N} SQT_{otal} = \sum_{i=1}^{I} \sum_{j=1}^{ri} Y_{ij}^2 - C$$

Soma do Quad. Do Tratamento

Soma do Quad. do Resíduo

$$SQT_{rat} = \sum_{i=1}^{I} \frac{T_i^2}{r_i} - C \left[SQR_{es} = SQT_{otal} - SQT_{rat} = \right]$$

$$SQR_{es} = SQT_{otal} - SQT_{rat} =$$

Delineamento em Blocos Casualizado – número de blocos é a repetição (r)

Formulas de C e SQT não muda

Soma de Quad. Blocos

$$SQBI = \sum_{j=1}^{K} \frac{B_j^2}{I} - C$$

Soma de Tratamento

$$SQT_{rat} = \sum_{i=1}^{I} \frac{T_i^2}{r_i} - C$$

Soma de Quad. De Resíduos

$$SQR_{es} = SQT_{otal} - SQT_{rat} - SQBl =$$

Delineamento em Quadrado Latino

Formulas de C e SQT não muda / Notação: I= J ou r

SQT Linhas **SQT** Colunas

$$SQLinhas = \frac{1}{I} \sum_{i=1}^{I} L_i^2 - C \qquad SQColunas = \frac{1}{I} \sum_{j=1}^{J} C_j^2 - C \qquad SQTrat = \frac{1}{I} \sum_{k=1}^{K} T_k^2 - C$$

SQTr Tratamento

$$SQTrat = \frac{1}{I} \sum_{k=1}^{K} T_k^2 - C$$

SQRes

$$SQ \operatorname{Re} siduo = SQTot - SQL - SQC - SQTrat$$

Fc – em qualquer delineamento calculado por meio do QMTr, mas pode ser também calculado sobre QMBl, QMLinhas ou QMColunas.

$$s^2 = QM \operatorname{Re} siduo$$

COEFICIENTE DE VARIAÇÃO

$$CV = \frac{\sqrt{QMRes}}{\hat{m}} \cdot 100$$

C.V.	Avaliação	Precisão
< 10%	Baixo	Alta
10 a 20%	Médio	Média
20 a 30%	Alto	Baixa
>30%	Muito Alto	Muito Baixa

FV	GL	SQ	QM	Fc	Ftab
Trat. (DIC, DBC, DQL)					
Blocos (DBC)					
Linhas (DQL)					
Colunas (DQL)					
Resíduos (DIC, DBC, DQL)					
Total	·			•	•

Teste Tukey – Teste de diferença entre duas médias

• Experimento balanceado

Onde: q (i, gl res, 5%)
I ou i = n° de

I ou $i = n^{o}$ de tratamento

 ${\bf q}$ - amplitude estudentizada, i = número de tratamentos, gl res = graus de liberdade do resíduo e mais alfa.

• Experimento desbalanceado – qdo o I/i é diferente de J/j

$${\rm DMS} = \Delta = q(i \cdot gl \ res) \sqrt{\frac{QMResiduo}{2} \left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$