CDF of a sample F(x)

Discrete adiabatic evolutions $\ U_j$

$$|\psi(au)
angle = \prod_j^{\longleftarrow} U_j |\psi_0
angle
ightarrow \hat{F}(x)$$

$${\cal C}(au)
ightarrow {\cal C}_R = R_z [heta_3(au)] R_x [heta_2(au)] R_z [heta_1(au)]$$

Rotations as functions of the time

At this point, any time can be called!

$$|\psi(au)
angle = \mathcal{C}(au)|\psi_0
angle$$

 $\mathrm{d} au o 0$ limit

$$\hat{
ho}(x) = rac{\mathrm{d}\hat{F}(x)}{\mathrm{d}x} = \sum_{i=1}^3 rac{\partial\hat{F}}{\partial heta_i} rac{\partial heta_i}{\partial au}$$

derivative of $\,\mathcal{C}_{R}\,$

PDF of the sample ho(x)