LES FONCTIONS VALEUR ABSOLUE ET RACINE CARRÉE

I - LA FONCTION VALEUR ABSOLUE

DÉFINITION

La fonction **valeur absolue** notée $x \mapsto |x|$ est définie sur \mathbb{R} par

- |x| = x si x est positif ou nul,
- |x| = -x si x est négatif ou nul.

REMARQUE

-x est l'opposé de x. Attention, toutefois, à ne pas vous laisser abuser par cette notation: -x n'est pas forcément négatif: -x est négatif si x est positif mais il est positif si x est négatif. Par exemple - (-5) est positif!

PROPRIÉTÉ

La distance entre les nombres réels x et y est égale à |y-x| (ou aussi à |x-y|).

EXEMPLE

$$AB = |5 - (-3)| = |8| = 8$$

 $BA = |-3 - (+5)| = |-8| = 8.$

PROPRIÉTÉ

La fonction valeur absolue est :

- strictement décroissante sur]−∞;0];
- strictement croissante sur $[0; +\infty[$.

TABLEAU DE VARIATIONS

Tableau de variation de la fonction valeur absolue

COURBE REPRÉSENTATIVE

Graphique de la fonction valeur absolue

PROPRIÉTÉ

La courbe représentative de la fonction $x \mapsto |x|$, dans un repère orthonormé, est **symétrique** par rapport à l'**axe des ordonnées**.

II - LA FONCTION RACINE CARRÉE

DÉFINITION

La fonction racine carrée est la fonction définie sur $[0; +\infty[$ par $f(x) = \sqrt{x}$.

PROPRIÉTÉ

La fonction racine carrée est strictement croissante sur $[0; +\infty[$.

TABLEAU DE VARIATIONS

Tableau de variation de la fonction racine carrée

COURBE REPRÉSENTATIVE

Graphique de la fonction racine carrée

REMARQUE

La courbe représentative de la fonction racine carrée est une demi-parabole.

PROPRIÉTÉ

Pour tout $x \in \mathbb{R}$:

$$\sqrt{x^2} = |x|$$
.

EXEMPLE

•
$$\sqrt{3^2} = \sqrt{9} = 3$$
;

•
$$\sqrt{(-3)^2} = \sqrt{9} = 3$$
.

REMARQUE

Ne pas confondre:

- $\sqrt{x^2}$ qui est défini pour tout $x \in \mathbb{R}$ (ce qui est sous le radical est x^2 donc toujours positif) et est égal à |x|;
- $(\sqrt{x})^2$ qui n'est défini que pour $x \ge 0$ (ce qui est sous le radical est x).