✓ 딥러닝 분반 (CV 프로젝트)

Human Protein Atlas Image Classification

13기 최해윤·14기 김종민·14기 이우준·14기 최대원

목적: microscope image에서 mixed patterns of protein을 분류

0.	Nucleoplasm	14.	Microtubules
1.	Nuclear membrane	15.	Microtubule ends
2.	Nucleoli	16.	Cytokinetic bridge
3.	Nucleoli fibrillar center	17.	Mitotic spindle
4.	Nuclear speckles	18.	Microtubule organizing center
5.	Nuclear bodies	19.	Centrosome
6.	Endoplasmic reticulum	20.	Lipid droplets
7.	Golgi apparatus	21.	Plasma membrane
8.	Peroxisomes	22.	Cell junctions
9.	Endosomes	23.	Mitochondria
10.	Lysosomes	24.	Aggresome
11.	Intermediate filaments	25.	Cytosol
12.	Actin filaments	26.	Cytoplasmic bodies
13.	Focal adhesion sites	27.	Rods & rings

Macro-F1:

is the harmonic mean between precision and recall, where the average is calculated per label and then averaged across all labels. If p_j and r_j are the precision and recall for all $\lambda_j \in h(x_i)$ from $\lambda_j \in y_i$, the macro-F1 is

Macro-F1=
$$\frac{1}{Q}\sum_{j=1}^{Q}\frac{2\times pj\times rj}{pj+rj}$$

• 31,072개의 train data

	ld	Target
0	00070df0-bbc3-11e8-b2bc-ac1f6b6435d0	16 0
1	000a6c98-bb9b-11e8-b2b9-ac1f6b6435d0	7120
2	000a9596-bbc4-11e8-b2bc-ac1f6b6435d0	5
3	000c99ba-bba4-11e8-b2b9-ac1f6b6435d0	1
4	001838f8-bbca-11e8-b2bc-ac1f6b6435d0	18
31067	ffed4430-bbac-11e8-b2ba-ac1f6b6435d0	21
31068	fff0a998-bbae-11e8-b2ba-ac1f6b6435d0	5
31069	fff189d8-bbab-11e8-b2ba-ac1f6b6435d0	7
31070	fffdf7e0-bbc4-11e8-b2bc-ac1f6b6435d0	25 2 21
31071	fffe0ffe-bbc0-11e8-b2bb-ac1f6b6435d0	20

31072 rows × 2 columns

각 데이터는 R,G,B,Y 4개의 이미지로 구성 (green: protein of interest, blue: 핵, red: 미세관, yellow: 소포내막)

1) EDA

• 단백질 빈도

• 데이터 imbalance 문제

	image_count	pct_of_dataset
1	15126	48.680484
2	12485	40.180870
3	3160	10.169928
4	299	0.962281
5	2	0.006437

• 단백질 간 Correlation

Lysomes & Endosomes 상관관계가 높음

Lysomes & Endosomes은 항상 동시 관찰

2) 전처리 및 최종 데이터

2. 데이터

Albumentations Library 이용하여 데이터 증강

```
def strong_aug(p=1):
   return Compose([
       RandomRotate90(),
       Flip(),
       Transpose(),
       OneOf([
           IAAAdditiveGaussianNoise(),
           GaussNoise(),
       ], p=0.2),
       OneOf([
           MotionBlur(p=.2),
           MedianBlur(blur limit=3, p=.1),
           Blur(blur_limit=3, p=.1),
       ], p=0.2),
       ShiftScaleRotate(shift_limit=0.0625, scale_limit=0.2,
                        rotate limit=45, p=.2),
       OneOf([
           OpticalDistortion(p=0.3),
           GridDistortion(p=.1),
           IAAPiecewiseAffine(p=0.3),
       ], p=0.2),
       OneOf([
           CLAHE(clip_limit=2),
           IAASharpen(),
           IAAEmboss(),
           RandomContrast(),
           RandomBrightness(),
        [, p=0.3),
   [p=p]
```


183d51d4-bbc5-11e8-b2bc-ac1f6 b6435d0_green

target_5_augmen tedaug_04249_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04259_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04241_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04251_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04261_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04243_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04253_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04263_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04245_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04255_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04265_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04247_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04257_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

target_5_augmen tedaug_04267_18 3d51d4-bbc5-11 e8-b2bc-ac1f6b...

(기존 31072개 데이터 + 11539개 데이터)

단백질을 딥러닝 모델을 통해 예측

HOW?

- ①Fine-tuning 기법을 통한 모델링 -> 여러가지 모델을 훈련, 평가 후 비교
- ② 데이터가 R,G,B,Y 로 주어져 있음-> 채널 (channel)을 여러가지 방식으로 구성 후 비교

1) 모델 간 비교

🦰 3. 모델

①ResNet50 fine-tune (R/2+Y/2, G/2+Y/2, B)

Model: "model"		
Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 299, 299, 3)]	0
batch_normalization (BatchNo	(None, 299, 299, 3)	12
resnet50 (Functional)	(None, 10, 10, 2048)	23587712
conv2d (Conv2D)	(None, 10, 10, 32)	65568
flatten (Flatten)	(None, 3200)	0
dropout (Dropout)	(None, 3200)	0
dense (Dense)	(None, 1024)	3277824
dropout_1 (Dropout)	(None, 1024)	0
dense_1 (Dense)	(None, 28)	28700

Total params: 26,959,816 Trainable params: 26,906,690 Non-trainable params: 53,126

1) 모델 간 비교

🤼 3. 모델

②VGG16 fine-tune (R/2+Y/2, G/2+Y/2, B)

Epoch 00008: ReduceLROnPlateau reducing learning rate to 1.0000000474974514e-05.

Model: "model 1" Output Shape Layer (type) Param # ----input_4 (InputLayer) [(None, 299, 299, 3)] batch normalization 204 (Bat (None, 299, 299, 3) 12 vgg16 (Functional) (None, 9, 9, 512) 14714688 conv2d 204 (Conv2D) (None, 9, 9, 32) 16416 flatten_1 (Flatten) (None, 2592) 0 0 dropout 2 (Dropout) (None, 2592) dense_2 (Dense) (None, 1024) 2655232 dropout_3 (Dropout) (None, 1024) 0 28700 dense 3 (Dense) (None, 28) Total params: 17,415,048 Trainable params: 17,415,042 Non-trainable params: 6

```
Epoch 00005: val_loss improved from 0.21793 to 0.21763, saving model to best_model2.h5
Epoch 00006: val_loss improved from 0.21793 to 0.21763, saving model to best_model2.h5
Epoch 00006: val_loss improved from 0.21793 to 0.21763, saving model to best_model2.h5
Epoch 00006: val_loss improved from 0.21793 to 0.21763, saving model to best_model2.h5
Epoch 00006: val_loss improved from 0.21763
Epoch 00006: val_loss did not improve from 0.21763
Epoch 00006: val_loss did not improve from 0.21763
Epoch 00007: val_loss did not improve from 0.21763
Epoch 00008: val_loss did not improve from 0.21763
Epoch 00008: val_loss did not improve from 0.21763
```

1) 모델 간 비교

/ 3. 모델

③ InceptionResNetV2 fine-tune (R/2+Y/2, G/2+Y/2, B)

Schematic diagram of Inception-ResNet-v2

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 299, 299, 3)]	0
batch_normalization_203 (Bat	(None, 299, 299, 3)	12
inception_resnet_v2 (Functio	(None, 8, 8, 1536)	54336736
conv2d_203 (Conv2D)	(None, 8, 8, 32)	49184
flatten (Flatten)	(None, 2048)	0
dropout (Dropout)	(None, 2048)	0
dense (Dense)	(None, 1024)	2098176
dropout_1 (Dropout)	(None, 1024)	0
dense_1 (Dense)	(None, 28)	28700

Total params: 56,512,808
Trainable params: 2,176,066
Non-trainable params: 54,336,742

2) 채널 조절(InceptionResNetV2 fine-tune)

3. 모델

① (R/2+Y/2, G/2+Y/2, B)

② (R=0, G, B=0)

2) 채널 조절(InceptionResNetV2 fine-tune)

🖊 3. 모델

③ (R,G,B)

4 (B/2+Y/2, R/2+Y/2, G)

1) 최종 모델 submission

<mark>최종모델</mark>:

데이터 증강 0, InceptionResNetV2 fine-tune, (R,G,B,Y)

Submission 결과

NameSubmittedWait timeExecution timeScoresubmit_best_model_rgby.csvjust now1 seconds0 seconds0.33828

Complete

Jump to your position on the leaderboard ▼

1465	▲ 50	C_heng	9	0.33888	3	Зу
1466	▼ 34	LarsHulstaert	(F)	0.33878	9	Зу
1467	▼ 20	masih4		0.33829	6	Зу
1468	2 9	miyashita	9	0.33807	1	Зу
1469	3 5	Ant0n		0.33797	8	Зу
1470	1 8	newber than IG		0.33765	6	Зу
1471	- 76	Krishnadasar Sudheer Kumar		0.33719	183	Зу

leaderboard: **1468**/2160

1) 최종 모델 submission

🔨 4. 결과 및 결론

<mark>최종모델</mark>:

데이터 증강 0, InceptionResNetV2 fine-tune, (R,G,B,Y)

비록 리더보드의 등수는 높진 않지만

- ① 1등의 f1 score가 0.59369라는 점에서 많은 차이를 보이지 않음.
- ② 최종모델의 경우 시간관계 상 20epoch에서 멈추었지만, val loss가 계속 줄고 있어서 더 훈련할 경우, 더 좋은 성능을 보였을 것.

2) Discussion

🔨 4. 결과 및 결론

① Activation function에 sigmoid 사용한 이유

Multi Class: 하나의 이미지에 하나의 객체만 존재, 각 객체는 2개 이상의 카테고리로 분류

Softmax 从용

Mutli Label: 하나의 이미지에 여러 객체가 존재. 각 객체는 2개 이상의 카테고리로 분류

Sigmoid 사용

Q&A