Dynamics of complex systems

Lecture 5: Long-range correlations and scaling (cnt.)

Dr. Maarten Wijnants & dr. Fred Hasselman

Research Master Behavioural Sciences

Faculty of Social Sciences Nijmegen

change perspective

High variability

Low variability

FIGURE 3 | Three different classes of temporal variability, white noise (upper left panel), 1/f scaling (middle left panel), and Brownian noise (lower left panel), and their respective power spectra are shown in the respective panels at the right.

Fractal physiology

 A healthy heart fluctuates as 1/f noise

Figure 2: Healthy dynamics (top), showing multiscale, longrange order; pathological breakdown of fractal dynamics, leading to single-scale (bottom left) or uncorrelated randomness (bottom right)

Top heart-rate time-series is from a healthy individual; bottom left is from patient with heart failure, and bottom right from patient with atrial fibrillation.

Gait intervals

(Hausdorff, 2007)

$$A + B + C + D = RT$$

E.g., 84ms + 46ms + 128ms + 304ms = 562ms

???

1/f Noise in Human Cognition

D. L. Gilden,* T. Thornton, M. W. Mallon

When a person attempts to produce from memory a given spatial or temporal interval, there is inevitably some error associated with the estimate. The time course of this error was measured in a series of experiments where subjects repeatedly attempted to replicate given target intervals. Sequences of the errors in both spatial and temporal replications were found to fluctuate as 1/f noises. 1/f noise is encountered in a wide variety of physical systems and is theorized to be a characteristic signature of complexity.

Interaction-dominant dynamics

A hallmark of complexity

Changes on multiple time scales are coupled to changes on other timescales

- Three random processes can together mimic a 1/f noise signal
 - If one assumes a slow, an intermediate, and a fast process
- Mostly post-hoc however:
 - conscious, preconscious, and unconscious processes (Ward, 2002)
 - neural, behavioral and cognitive events (Pressing, 1999)
 - planning and control (Valdez & Amazeen, 2008)
 - automatic, conscious, and sustained attention (Wagenmakers et al., 2004).

- Shifts in strategy or attention can under limited conditions mimic a 1/f noise signal
 - If one assumes discrete transitions from one mode of operation (i.e., a specific mean or variance) to the next
 - are associated with particular threshold levels that determine the criterion amount of accumulation of information required for a response

Wagenmakers, Farrell, & Ratcliff (2004) change perspective

- Component-dominant approaches could emulate 1/f noise
 - Within narrow parameter bounds
 - Other complexity measures (RQA, entropy,...)?
 - Consistent changes with experimental manipulations?

Task constraints

Variable cues add perturbations to task performance No correlation between fractal streams More streams of 1/f noise = more components

Figure 2. Spectral plots for reaction times (left) and key-contact durations (right) from Experiment 1, each plotted separately for blocks of fixed versus variable release—cue intervals. Δ versus slopes of regression lines are shown with their respective standard errors.

- $RT_n = (1/f^{\alpha})_n + \beta N(0,1)$
 - 1/f noise part is associated with elementary cognitive processes
 - The random part is attributed to motor delay
 - β is a free parameter that determines the contribution of the random part of the model

Domain-specific modelling

- Plug-in fractality
- E.g. finger tapping
- W-K model:
 - Tapping interval = internal clock + motor delay
 - $I_i = C_i + M_i M_{i-1}$
- Delignières et al. (2008) provided C with fractal properties, thereby accounting for empirical 1/f patterns in tapping intervals
- Diniz et al. (2011): a discussion
- 2012: Délignières: 'mathematical curiosities'

Interaction-dominance

- Interaction dominance
- 1/f scaling reveals coordination of a task performance
 - Reducing dimensionality
 - High-dimensional DOF
 - Component interactions
 - More orderly, lower-dimensional behaviors
 - Through self-organization
 - To control human performance

Radbo

External perturbations add extraneous random variation to the measured performances: Number of response options

Choice Reaction Task

Task constraints

Simple RT, Precision aiming:

- Each trial is identical: same SIGNAL to respond and same RESPONSE
- EXTERNAL sources of variation in Response Time are minimized
- Variation must largely reflect INTERNAL sources

Choice RT, Word-naming

- Experimental trials differ:

 A different SIGNAL to respond and a different RESPONSE
- EXTERNAL sources of variation in Response Time are introduced to the measured values
- Variation must reflect INTERNAL sources to a lesser extent

Data from: Van Orden, Holden, & Turvey, 2003; Kello, Beltz, Van Orden, & Turvey, 2007; Wijnants et al., 2009 Radboud University

Task constraints

External perturbations add extraneous random variation to the measured performances: Accuracy feedback

FIGURE 3 | Spectral exponents of the time estimates. Spectral exponents α closer to 0 imply presence of white noise whereas values closer to 1 suggest pink noise. Individual points represent observations from individual participants. Error bars plot within-condition SD.

Fitts task

Motor Learning

W = 0.8 cm

D = 24 cm

- 5 blocks x 1100 trials
- Non-dominant hand

(Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009)

No Motor Learning

- 5 blocks x 1100 trials
- Non-dominant hand

Speed-Accuracy Trade Off

- Not very accurate
 - r = -.77**
- Recruits slow-timescale dynamics of the fractal pattern to the measurement of speed (Movement Time)
 - r = .62*
 - Faster participants show more 1/f scaling in their MT dynamics
- Does not recruit slow-timescale dynamics of the fractal pattern to the measurement of accuracy (Line Length)
 - r = -.58*
 - Faster participants show reduced 1/f scaling in their LL dynamics

- Not very fast
 - r = -.77**
- Recruits slow-timescale dynamics of the fractal pattern to the measurement of accuracy (Line Length)
 - r = .45*
 - More accurate participants show more 1/f scaling in their LL dynamics
- Does not recruit slow-timescale dynamics of the fractal pattern to the measurement of speed (Movement Time)
 - r = -.71*
 - Accurate participants show reduced 1/f scaling in their MT dynamics

	Harmonicity	Movement time	Accuracy
FD MT	-0.61**	0.52*	0.70**
condition SampEn MT	-0.66**	0.45*	0.74**
FD MA	0.50*	-0.45*	-0.48*
SampEn MA	0.75**	-0.64**	-0.74**
FD MT	-0.13	0.00	0.15
condition SampEn MT FD MA SampEn MA	-0.12	0.03	0.05
	-0.31	0.33	0.30
	0.03	-0.08	0.33
	SampEn MT FD MA SampEn MA FD MT SampEn MT FD MA	FD MT -0.61** SampEn MT -0.66** FD MA 0.50* SampEn MA 0.75** FD MT -0.13 SampEn MT -0.12 FD MA -0.31	time FD MT -0.61** 0.52* SampEn MT -0.66** 0.45* FD MA 0.50* -0.45* SampEn MA 0.75** -0.64** FD MT -0.13 0.00 SampEn MT -0.12 0.03 FD MA -0.31 0.33

^{**}p < 0.01, *p < 0.05, one-tailed.

Timescale

Dependent Measure

Constraint

Within a trial

Energy Minimization

Single trial

Task compliance

Over trials

Interaction-dominant dynamics

Word-naming

- 7-8 year old Dyslexic Readers
- 6-7 year old Controls
- 1 Block of 550 Word Stimuli
- → Dyslexic Readers Show Reduced 1/f Noise

Word-naming

 Oral reading fluency is regarded as the sole best indicator of reading problems (Fuchs, Fuchs, Hosp, & Jenkins, 2001)

Modular or interactive dynamics?

- These results follow naturally from predictions of an interaction-dominant approach
 - 1/f noise is ubiquitous in human performance
 - 1/f noise is obscured when sources of external variation are increased
 - More stable and coordinated behaviors reveal a clearer 1/f noise signature
 - 1/f noise should be accompanied by additional evidence for emergence and selforganization
 - Indefinite numbers of 1/f signals exist in any behavior
- Component-dominant approaches should post-hoc explain:
 - New components for longer data series
 - New components for every independent stream of 1/f
 - Consistent changes in 1/f scaling with changes in task performance (at multiple levels of analysis)

