Concepts of NFAs and e-NFAs

*	This form will record your name, please fill your name.

1

Considering the definition below, select the correct answer for each of the data missing, i.e., (1), (2), (3), (4), and (5).

Definition of ε-NFA			
A	ε-NFA	is a (1) $(Q, \Sigma, q_0, A, \delta)$,	
where			
Q is a finite set of states;			
Σ is a finite input alphabet;			
$q_0 \in Q$ is the initial state;			
$A \subseteq$	$A \subseteq Q$ is the set of accepting states;		
δ :	$\delta: Q \times (2) \rightarrow (5)$ is the transition function.		
For every element q of Q and every element σ of (2), we interpret			
$\delta(q,\sigma)$ as the set of states to which the FA can move, if it is in state q and			
receives the input σ , or, if $\sigma = (3)$, the set of states other than q to which			
(4)	the (4) can move from state q without receiving any input symbol.		

With respect to (1): (1 Point)

O Set

List

5-tuple

O Vector

3

With respect to (2): (1 Point)

- a. (Σ∪{ε})
 - b. Σ
 - c. {ε

d. Ø

- O a.
- () b.
- O c.
- \bigcirc d.

4

With respect to (3): (1 Point)

a. Ø b. ε c. a

- () a.
- O b.
- O c.

5

With respect to (4): (1 Point)

- O a.
- () b.
- O c.

- a. Equivalent DFA
- b. DFA
- c. ε-NFA

6

With respect to (5): (1 Point)

a. 2^Q, i.e., the powerset of Q
b. Q

- () a.
- () b

This content is neither created nor endorsed by Microsoft. The data you submit will be sent to the form owner.

Microsoft Forms