Theoretical Computer Science Cheat Sheet						
	Definitions	Series				
f(n) = O(g(n))	iff \exists positive c, n_0 such that $0 \le f(n) \le cg(n) \ \forall n \ge n_0$.	$\sum_{n=1}^{n} i = \frac{n(n+1)}{2}, \sum_{n=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}, \sum_{n=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}.$				
$f(n) = \Omega(g(n))$	iff \exists positive c, n_0 such that $f(n) \geq cg(n) \geq 0 \ \forall n \geq n_0$.	i=1 $i=1$ $i=1$ In general:				
$f(n) = \Theta(g(n))$	iff $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$.	$\sum_{i=1}^{n} i^{m} = \frac{1}{m+1} \left[(n+1)^{m+1} \Leftrightarrow 1 \Leftrightarrow \sum_{i=1}^{n} \left((i+1)^{m+1} \Leftrightarrow i^{m+1} \Leftrightarrow (m+1)i^{m} \right) \right]$				
f(n) = o(g(n))	iff $\lim_{n\to\infty} f(n)/g(n) = 0$.	$\sum_{i=1}^{n-1} i^m = \frac{1}{m+1} \sum_{k=0}^m \binom{m+1}{k} B_k n^{m+1-k}.$				
$\lim_{n \to \infty} a_n = a$	iff $\forall \epsilon \in \mathbb{R}$, $\exists n_0$ such that $ a_n \Leftrightarrow a < \epsilon$, $\forall n \geq n_0$.	Geometric series:				
$\sup S$	least $b \in \mathbb{R}$ such that $b \geq s$, $\forall s \in S$.	$\sum_{i=0}^{n} c^{i} = \frac{c^{n+1} \Leftrightarrow 1}{c \Leftrightarrow 1}, c \neq 1, \sum_{i=0}^{\infty} c^{i} = \frac{1}{1 \Leftrightarrow c}, \sum_{i=1}^{\infty} c^{i} = \frac{c}{1 \Leftrightarrow c}, c < 1,$				
$\inf S$	greatest $b \in \mathbb{R}$ such that $b \le s$, $\forall s \in S$.	$\sum_{i=0}^{n} ic^{i} = \frac{nc^{n+2} \Leftrightarrow (n+1)c^{n+1} + c}{(c \Leftrightarrow 1)^{2}}, c \neq 1, \sum_{i=0}^{\infty} ic^{i} = \frac{c}{(1 \Leftrightarrow c)^{2}}, c < 1.$				
$ \liminf_{n\to\infty} a_n $	$\lim_{n \to \infty} \inf \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	Harmonic series: $n = n + n = n + n = n = n = n = n = n = $				
$\limsup_{n \to \infty} a_n$	$\lim_{n \to \infty} \sup \{ a_i \mid i \ge n, i \in \mathbb{N} \}.$	$H_n = \sum_{i=1}^n \frac{1}{i}, \qquad \sum_{i=1}^n iH_i = \frac{n(n+1)}{2} H_n \Leftrightarrow \frac{n(n \Leftrightarrow 1)}{4}.$				
$\binom{n}{k}$	Combinations: Size k subsets of a size n set.	$\sum_{i=1}^{n} H_i = (n+1)H_n \Leftrightarrow n, \sum_{i=1}^{n} \binom{i}{m} H_i = \binom{n+1}{m+1} \left(H_{n+1} \Leftrightarrow \frac{1}{m+1} \right).$				
$\left[egin{array}{c} n \\ k \end{array} ight]$	Stirling numbers (1st kind): Arrangements of an n element set into k cycles.	$1. \binom{n}{k} = \frac{n!}{(n \Leftrightarrow k)!k!}, \qquad 2. \sum_{k=0}^{n} \binom{n}{k} = 2^{n}, \qquad 3. \binom{n}{k} = \binom{n}{n \Leftrightarrow k},$				
$\left\{ egin{array}{l} n \\ k \end{array} \right\}$	Stirling numbers (2nd kind): Partitions of an n element set into k non-empty sets.	$4. \binom{n}{k} = \frac{n}{k} \binom{n \Leftrightarrow 1}{k \Leftrightarrow 1}, \qquad \qquad 5. \binom{n}{k} = \binom{n \Leftrightarrow 1}{k} + \binom{n \Leftrightarrow 1}{k \Leftrightarrow 1}, \\ 6. \binom{n}{m} \binom{m}{k} = \binom{n}{k} \binom{n \Leftrightarrow k}{m \Leftrightarrow k}, \qquad \qquad 7. \sum_{k \leq n} \binom{r+k}{k} = \binom{r+n+1}{n},$				
$\left\langle {n\atop k}\right\rangle$	1st order Eulerian numbers: Permutations $\pi_1 \pi_2 \dots \pi_n$ on $\{1, 2, \dots, n\}$ with k ascents.	$8. \ \sum_{k=0}^{n} \binom{k}{m} = \binom{n+1}{m+1}, \qquad \qquad 9. \ \sum_{k=0}^{n} \binom{r}{k} \binom{s}{n \Leftrightarrow k} = \binom{r+s}{n},$				
$\binom{n}{k}$ C_n	2nd order Eulerian numbers.	10. $\binom{n}{k} = (\Leftrightarrow 1)^k \binom{k \Leftrightarrow n \Leftrightarrow 1}{k},$ 11. $\begin{Bmatrix} n \\ 1 \end{Bmatrix} = \begin{Bmatrix} n \\ n \end{Bmatrix} = 1,$				
C_n	Catlan Numbers: Binary trees with $n+1$ vertices.	$ 10. \binom{n}{k} = (\Leftrightarrow 1)^k \binom{k \Leftrightarrow n \Leftrightarrow 1}{k}, \qquad \qquad 11. \begin{Bmatrix} n \\ 1 \end{Bmatrix} = \begin{Bmatrix} n \\ n \end{Bmatrix} = 1, \\ 12. \begin{Bmatrix} n \\ 2 \end{Bmatrix} = 2^{n-1} \Leftrightarrow 1, \qquad \qquad 13. \begin{Bmatrix} n \\ k \end{Bmatrix} = k \begin{Bmatrix} n \Leftrightarrow 1 \\ k \end{Bmatrix} + \begin{Bmatrix} n \Leftrightarrow 1 \\ k \Leftrightarrow 1 \end{Bmatrix}, $				
14. $\begin{bmatrix} n \\ 1 \end{bmatrix} = (n \Leftrightarrow 1)$		$\Rightarrow 1)!H_{n-1},$ 16. $\begin{bmatrix} n \\ n \end{bmatrix} = 1,$ 17. $\begin{bmatrix} n \\ k \end{bmatrix} \ge \begin{Bmatrix} n \\ k \end{Bmatrix},$				
$18. \begin{bmatrix} n \\ k \end{bmatrix} = (n \Leftrightarrow 1)$	1) $\begin{bmatrix} n \Leftrightarrow 1 \\ k \end{bmatrix} + \begin{bmatrix} n \Leftrightarrow 1 \\ k \Leftrightarrow 1 \end{bmatrix}$, 19. $\begin{Bmatrix} n \Leftrightarrow 1 \\ n \Leftrightarrow 1 \end{Bmatrix}$	$\binom{n}{n+1} = \binom{n}{n \Leftrightarrow 1} = \binom{n}{2}, 20. \ \sum_{k=0}^{n} \binom{n}{k} = n!, 21. \ C_n = \frac{1}{n+1} \binom{2n}{n},$				
		$ \binom{n}{n \Leftrightarrow 1 \Leftrightarrow k}, \qquad 24. \ \binom{n}{k} = (k+1) \binom{n \Leftrightarrow 1}{k} + (n \Leftrightarrow k) \binom{n \Leftrightarrow 1}{k \Leftrightarrow 1}, $				
25. $\left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.$	$25. \ \left\langle \begin{array}{c} 0 \\ k \end{array} \right\rangle = \left\{ \begin{array}{c} 1 & \text{if } k = 0, \\ 0 & \text{otherwise} \end{array} \right. \qquad 26. \ \left\langle \begin{array}{c} n \\ 1 \end{array} \right\rangle = 2^n \Leftrightarrow n \Leftrightarrow 1, \qquad 27. \ \left\langle \begin{array}{c} n \\ 2 \end{array} \right\rangle = 3^n \Leftrightarrow (n+1)2^n + \binom{n+1}{2},$					
$28. \ \ x^n = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {x+k \choose n}, \qquad 29. \ \left\langle {n \atop m} \right\rangle = \sum_{k=0}^m {n+1 \choose k} (m+1 \Leftrightarrow k)^n (\Leftrightarrow 1)^k, \qquad 30. \ \ m! \left\{ {n \atop m} \right\} = \sum_{k=0}^n \left\langle {n \atop k} \right\rangle {k \choose n \Leftrightarrow m},$						
$31. \left\langle {n \atop m} \right\rangle = \sum_{k=0}^{n}$	$ {n \brace k} {n \Leftrightarrow k \choose m} (\Leftrightarrow 1)^{n-k-m} k!, $	32. $\left\langle \left\langle {n\atop 0} \right\rangle \right\rangle = 1,$ 33. $\left\langle \left\langle {n\atop n} \right\rangle \right\rangle = 0$ for $n \neq 0,$				
$34. \left\langle\!\!\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle\!\!\right\rangle = (k + 1)^n$	$+1$ $\left\langle \left\langle \begin{array}{c} n \Leftrightarrow 1 \\ k \end{array} \right\rangle \right\rangle + (2n \Leftrightarrow 1 \Leftrightarrow k) \left\langle \left\langle \begin{array}{c} n \Leftrightarrow k \end{cases} \right\rangle \left\langle \left\langle \left\langle \begin{array}{c} n \Leftrightarrow k \end{cases} \right\rangle \left\langle \left\langle \left\langle \begin{array}{c} n \Leftrightarrow k \end{cases} \right\rangle \left\langle $					
$36. \left\{ \begin{array}{c} x \\ x \Leftrightarrow n \end{array} \right\} = \frac{1}{k}$	$\sum_{k=0}^{n} \left\langle\!\!\left\langle \begin{array}{c} n \\ k \end{array} \right\rangle\!\!\right\rangle \left(\begin{array}{c} x+n \Leftrightarrow 1 \Leftrightarrow k \\ 2n \end{array} \right),$	37. ${n+1 \choose m+1} = \sum_{k} {n \choose k} {k \choose m} = \sum_{k=0}^{n} {k \choose m} (m+1)^{n-k},$				

Identities Cont.

$$\mathbf{38.} \ \begin{bmatrix} n+1 \\ m+1 \end{bmatrix} = \sum_{k} \begin{bmatrix} n \\ k \end{bmatrix} \binom{k}{m} = \sum_{k=0}^{n} \begin{bmatrix} k \\ m \end{bmatrix} n^{\frac{n-k}{m}} = n! \sum_{k=0}^{n} \frac{1}{k!} \begin{bmatrix} k \\ m \end{bmatrix}, \qquad \mathbf{39.} \ \begin{bmatrix} x \\ x \Leftrightarrow n \end{bmatrix} = \sum_{k=0}^{n} \left\langle \!\! \begin{pmatrix} n \\ k \end{pmatrix} \!\! \right\rangle \binom{x+k}{2n},$$

$$\mathbf{40.} \ \left\{ \begin{array}{l} n \\ m \end{array} \right\} = \sum_{k=0}^{n} \binom{n}{k} \binom{k+1}{m+1} (\Leftrightarrow 1)^{n-k},$$

42.
$${m+n+1 \brace m} = \sum_{k=0}^{m} k {n+k \brace k},$$

42.
$${m+n+1 \atop m} = \sum_{k=0}^{n} k {n+k \atop k},$$

$$(m) \qquad \underset{k}{\overset{}{\underset{}}} \qquad (k+1) \lfloor m \rfloor \qquad , \qquad$$

48.
$${n \atop \ell+m} {\ell+m \atop \ell} = \sum_{i} {k \atop \ell} {n \Leftrightarrow k \atop m} {n \atop k},$$

41.
$$\begin{bmatrix} n \\ m \end{bmatrix} = \sum_{k=0}^{n} \begin{bmatrix} n+1 \\ k+1 \end{bmatrix} {k \choose m} (\Leftrightarrow 1)^{m-k},$$

43.
$$\begin{bmatrix} m+n+1 \\ m \end{bmatrix} = \sum_{k=0}^{m} k(n+k) \begin{bmatrix} n+k \\ k \end{bmatrix},$$

$$\mathbf{44.} \ \binom{n}{m} = \sum_{k=0}^{n+1} \binom{k}{m} (\Leftrightarrow 1)^{m-k}, \quad \mathbf{45.} \ (n \Leftrightarrow m)! \binom{n}{m} = \sum_{k=0}^{n+1} \binom{k}{m} (\Leftrightarrow 1)^{m-k}, \quad \text{for } n \geq m,$$

46.
$$\left\{ {n \atop n \Leftrightarrow m} \right\}^k = \sum_k \binom{m \Leftrightarrow n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k}, \qquad \textbf{47.} \quad \left[{n \atop n \Leftrightarrow m} \right] = \sum_k \binom{m \Leftrightarrow n}{m+k} \binom{m+n}{n+k} \binom{m+k}{k},$$

49.
$$\binom{n}{\ell+m} \binom{\ell+m}{\ell} = \sum_{k} \binom{k}{\ell} \binom{n \Leftrightarrow k}{m} \binom{n}{k}.$$

Trees

Every tree with nvertices has $n \Leftrightarrow 1$ edges.

Kraft inequality: If the depths of the leaves of a binary tree are d_1, \ldots, d_n :

$$\sum_{i=1}^{n} 2^{-d_i} \le 1,$$

and equality holds only if every internal node has 2 sons.

Recurrences

Master method:

$$T(n) = aT(n/b) + f(n), \quad a \ge 1, b > 1$$

If $\exists \epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ then

$$T(n) = \Theta(n^{\log_b a}).$$

If
$$f(n) = \Theta(n^{\log_b a})$$
 then $T(n) = \Theta(n^{\log_b a} \log_2 n)$.

If $\exists \epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$, and $\exists c < 1$ such that $af(n/b) \leq cf(n)$ for large n, then

$$T(n) = \Theta(f(n)).$$

Substitution (example): Consider the following recurrence

$$T_{i+1} = 2^{2^i} \cdot T_i^2, \quad T_1 = 2.$$

Note that T_i is always a power of two. Let $t_i = \log_2 T_i$. Then we have $t_{i+1} = 2^i + 2t_i, \quad t_1 = 1.$

Let $u_i = t_i/2^i$. Dividing both sides of the previous equation by 2^{i+1} we get

$$\frac{t_{i+1}}{2^{i+1}} = \frac{2^i}{2^{i+1}} + \frac{t_i}{2^i}$$

Substituting we find

$$u_{i+1} = \frac{1}{2} + u_i, \qquad u_1 = 12,$$

which is simply $u_i = i/2$. So we find that T_i has the closed form $T_i = 2^{i2^{i-1}}$. Summing factors (example): Consider the following recurrence

$$T_i = 3T_{n/2} + n, \quad T_1 = n.$$

Rewrite so that all terms involving Tare on the left side

$$T_i \Leftrightarrow 3T_{n/2} = n.$$

Now expand the recurrence, and choose a factor which makes the left side "telescope"

$$1(T(n) \Leftrightarrow 3T(n/2) = n)$$
$$3(T(n/2) \Leftrightarrow 3T(n/4) = n/2)$$

$$3^{\log_2 n - 1} \left(T(2) \Leftrightarrow 3T(1) = 2 \right)$$
$$3^{\log_2 n} \left(T(1) \Leftrightarrow 0 = 1 \right)$$

Summing the left side we get T(n). Summing the right side we get

$$\sum_{i=0}^{\log_2 n} \frac{n}{2^i} 3^i.$$

Let $c = \frac{3}{2}$ and $m = \log_2 n$. Then we have

$$\begin{split} n\sum_{i=0}^{m}c^{i} &= n\left(\frac{c^{m+1} \Leftrightarrow 1}{c \Leftrightarrow 1}\right) \\ &= 2n(c \cdot c^{\log_{2}n} \Leftrightarrow 1) \\ &= 2n(c \cdot c^{k\log_{c}n} \Leftrightarrow 1) \\ &= 2n^{k+1} \Leftrightarrow 2n \approx 2n^{1.58496} \Leftrightarrow 2n, \end{split}$$

where $k = (\log_2 \frac{3}{2})^{-1}$. Full history recurrences can often be changed to limited history ones (example): Consider the following recurrence

$$T_i = 1 + \sum_{i=0}^{i-1} T_j, \quad T_0 = 1.$$

Note that

$$T_{i+1} = 1 + \sum_{j=0}^{i} T_j.$$

Subtracting we find

$$T_{i+1} \Leftrightarrow T_i = 1 + \sum_{j=0}^{i} T_j \Leftrightarrow 1 \Leftrightarrow \sum_{j=0}^{i-1} T_j$$

= T_i .

And so
$$T_{i+1} = 2T_i = 2^{i+1}$$
.

Generating functions:

- 1. Multiply both sides of the equation by x^i .
- 2. Sum both sides over all i for which the equation is valid.
- 3. Choose a generating function G(x). Usually $G(x) = \sum_{i=0}^{\infty} x^{i}$.
- 3. Rewrite the equation in terms of the generating function G(x).
- 4. Solve for G(x).
- 5. The coefficient of x^i in G(x) is g_i . Example:

$$g_{i+1} = 2g_i + 1, \quad g_0 = 0.$$

We choose $G(x) = \sum_{i>0} x^i$. Rewrite in terms of G(x):

$$\frac{G(x) \Leftrightarrow g_0}{x} = 2G(x) + \sum_{i \ge 0} x^i.$$

Simplify

$$\frac{G(x)}{x} = 2G(x) + \frac{1}{1 \Leftrightarrow x}.$$

Solve for
$$G(x)$$
:
$$G(x) = \frac{x}{(1 \Leftrightarrow x)(1 \Leftrightarrow 2x)}.$$

Expand this using partial fractions:

$$G(x) = x \left(\frac{2}{1 \Leftrightarrow 2x} \Leftrightarrow \frac{1}{1 \Leftrightarrow x} \right)$$
$$= x \left(2 \sum_{i \geq 0} 2^i x^i \Leftrightarrow \sum_{i \geq 0} x^i \right)$$
$$= \sum_{i \geq 0} (2^{i+1} \Leftrightarrow 1) x^{i+1}.$$

So
$$g_i = 2^i \Leftrightarrow 1$$
.

Theoretical Computer Science Cheat Sheet							
$\pi \approx 3.14159, \qquad e \approx 2.71$		$e \approx 2.7$	1828, $\gamma \approx 0.57721$, $\phi = \frac{1+\sqrt{5}}{2} \approx$	$\hat{\phi} = \frac{1 - \sqrt{5}}{2} \approx \Leftrightarrow 61803$			
i	2^i	p_i	General	Probability			
1	2	2	Bernoulli Numbers ($B_i = 0$, odd $i \neq 1$):	Continuous distributions: If			
2	4	3	$B_0 = 1, B_1 = \Leftrightarrow \frac{1}{2}, B_2 = \frac{1}{6}, B_4 = \Leftrightarrow \frac{1}{30},$	$\Pr[a < X < b] = \int_{a}^{b} p(x) dx,$			
3	8	5	$B_6 = \frac{1}{42}, B_8 = \Leftrightarrow \frac{1}{30}, B_{10} = \frac{5}{66}.$	J_a then p is the probability density function of			
4	16	7	Change of base, quadratic formula:	X. If			
5	32	11	$\log_b x = \frac{\log_a x}{\log_b b}, \qquad \frac{\Leftrightarrow b \pm \sqrt{b^2 \Leftrightarrow 4ac}}{2a}.$	$\Pr[X < a] = P(a),$			
6	64	13	$\log_a b$ 2 a Euler's number e :	then P is the distribution function of X . If			
7	128	17	Euler's number e . $e = 1 + \frac{1}{2} + \frac{1}{6} + \frac{1}{24} + \frac{1}{120} + \cdots$	P and p both exist then			
8	256	19	2 0 24 120	$P(a) = \int_{a}^{a} p(x) dx.$			
9	512	23	$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = e^x.$	$J_{-\infty}$ Expectation: If X is discrete			
10	1,024	29	$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}$.	l -			
11	2,048	31	$\left(1 + \frac{1}{n}\right)^n = e \Leftrightarrow \frac{e}{2n} + \frac{11e}{24n^2} \Leftrightarrow O\left(\frac{1}{n^3}\right).$	$E[g(X)] = \sum_{x} g(x) \Pr[X = x].$			
12	4,096	37	$(1 + \frac{\cdot}{n}) = e \Leftrightarrow \frac{\cdot}{2n} + \frac{\cdot}{24n^2} \Leftrightarrow O\left(\frac{\cdot}{n^3}\right).$	If X continuous then			
13	8,192	$\begin{array}{c c} & 41 \\ & 43 \end{array}$	Harmonic numbers:	$E[g(X)] = \int_{-\infty}^{\infty} g(x)p(x) dx = \int_{-\infty}^{\infty} g(x) dP(x).$			
$\begin{array}{c c} 14 \\ 15 \end{array}$	$16,384 \\ 32,768$	45	$1, \frac{3}{2}, \frac{11}{6}, \frac{25}{12}, \frac{137}{60}, \frac{49}{20}, \frac{363}{140}, \frac{761}{280}, \frac{7129}{2520}, \dots$	$J-\infty$ $J-\infty$			
$\begin{bmatrix} 10 \\ 16 \end{bmatrix}$	65,536	53	1 477 41 44	Variance, standard deviation: $VAR[X] = E[X^2] \Leftrightarrow E[X]^2,$			
$\begin{bmatrix} 10 \\ 17 \end{bmatrix}$	131,072	59	$ \ln n < H_n < \ln n + 1, $				
$\begin{bmatrix} 1 \\ 18 \end{bmatrix}$	262,144	61	$H_n = \ln n + \gamma + O\left(\frac{1}{n}\right).$	$\sigma = \sqrt{\text{VAR}[X]}.$ Basics:			
19	524,288	67	Factorial, Stirling's approximation:	$\Pr[X \lor Y] = \Pr[X] + \Pr[Y] \Leftrightarrow \Pr[X \land Y]$			
20	1,048,576	71	$1, 2, 6, 24, 120, 720, 5040, 40320, 362880, \dots$	$\Pr[X \land Y] = \Pr[X] \cdot \Pr[Y],$			
21	$2,\!097,\!152$	73		iff X and Y are independent.			
22	4,194,304	79	$n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right).$	I -			
23	8,388,608	83	(e) (n) Ackermann's function and inverse:	$\Pr[X Y] = \frac{\Pr[X \land Y]}{\Pr[B]}$			
24	16,777,216	89	1 24	$E[X \cdot Y] = E[X] \cdot E[Y],$			
25	$33,\!554,\!432$	97	$a(i,j) = \begin{cases} 2^j & i = 1\\ a(i \Leftrightarrow 1,2) & j = 1\\ a(i \Leftrightarrow 1, a(i, j \Leftrightarrow 1)) & i, j \geq 2 \end{cases}$	iff X and Y are independent.			
26	67,108,864	101	•	E[X + Y] = E[X] + E[Y],			
27	$134,\!217,\!728$	103	$\alpha(i) = \min\{j \mid a(j,j) \ge i\}.$	E[cX] = c E[X].			
28	$268,\!435,\!456$	107	Binomial distribution:	Bayes' theorem:			
29	536,870,912	109	$\Pr[X = k] = \binom{n}{k} p^k q^{n-k}, \qquad q = 1 \Leftrightarrow p,$	$\Pr[A_i B] = \frac{\Pr[B A_i]\Pr[A_i]}{\sum_{i=1}^n \Pr[A_i]\Pr[B A_i]}.$			
30	1,073,741,824	113	$\sum_{n=1}^{n}$ (n)	Inclusion-exclusion:			
31	2,147,483,648	127	$E[X] = \sum_{k=1}^{n} k = 1k \binom{n}{k} p^k q^{n-k} = np.$	$\begin{bmatrix} n \\ N \end{bmatrix} \begin{bmatrix} N \\ N \end{bmatrix}$			
32	4,294,967,296 Pascal's Triangl	131	Poisson distribution:	$\Pr\left[\bigvee_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \Pr[X_i] +$			
		<u>e</u>	$\Pr[X = k] = \frac{e^{-\lambda} \lambda^k}{k!}, \operatorname{E}[X] = \lambda.$	$n \longrightarrow k+1 \longrightarrow k$			
	1 1 1		Normal (Gaussian) distribution:	$\sum_{k=1}^{n} (\Leftrightarrow 1)^{k+1} \sum_{i_{i} < \dots < i_{k}} \Pr\left[\bigwedge_{j=1}^{k} X_{i_{j}}\right].$			
	1 2 1		$p(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}, E[X] = \mu.$	Moment inequalities:			
	1 3 3 1		V 2 n 0	$\Pr\left[X \ge \lambda \operatorname{E}[X]\right] \le \frac{1}{\lambda},$			
$1\ 4\ 6\ 4\ 1$			The "coupon collector": We are given a	Λ ,			
1 5 10 10 5 1			random coupon each day, and there are n different types of coupons. The distribu-	$\Pr\left[\left X \Leftrightarrow_{\mathbf{E}}[X]\right \ge \lambda \cdot \sigma\right] \le \frac{1}{\lambda^2}.$			
$1\ 6\ 15\ 20\ 15\ 6\ 1$		[tion of coupons is uniform. The expected	Geometric distribution:			
1 7 21 35 35 21 7 1			number of days to pass before we to col-	$\Pr[X = k] = p^{k-1}q, \qquad q = 1 \Leftrightarrow p,$			
1 8 28 56 70 56 28 8 1			lect all n types is	$\operatorname{E}[X] = \sum_{k=0}^{\infty} kpq^{k-1} = \frac{1}{p}.$			
1 9 36 84 126 126 84 36 9 1		36 9 1	nH_n .	k=1 p			

1 10 45 120 210 252 210 120 45 10 1

Theoretical Computer Science Cheat Sheet More Trig. Trigonometry Matrices Multiplication: $C = A \cdot B$, $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$. $(\cos\theta,\sin\theta)$ Determinants: $\det A = 0$ iff A is non-singular. $\det A \cdot B = \det A \cdot \det B,$ Law of cosines: $c^2 = a^2 + b^2 \Leftrightarrow 2ab \cos C$ (0,-1) $\det A = \sum_{\pi} \prod_{i=1}^{n} \operatorname{sign}(\pi) a_{i,\pi(i)}.$ Pythagorean theorem: 2×2 and 3×3 determinant: $C^2 = A^2 + B^2.$ $A = \frac{1}{2}hc$ $\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad \Leftrightarrow bc,$ Definitions: $=\frac{1}{2}ab\sin C,$ $\sin a = A/C$, $\cos a = B/C$, $\begin{vmatrix} a & b & c \\ d & e & f \\ q & h & i \end{vmatrix} = g \begin{vmatrix} b & c \\ e & f \end{vmatrix} \Leftrightarrow h \begin{vmatrix} a & c \\ d & f \end{vmatrix} + i \begin{vmatrix} a & b \\ d & e \end{vmatrix}$ $=\frac{c^2\sin A\sin B}{2\sin C}.$ $\csc a = C/A$, $\sec a = C/B$. $\tan a = \frac{\sin a}{\cos a} = \frac{A}{B}, \quad \cot a = \frac{\cos a}{\sin a} = \frac{B}{A}.$ Heron's formula: $aei + bfg + cdh \\ \Leftrightarrow ceg \Leftrightarrow fha \Leftrightarrow ibd.$ Area, radius of inscribed circle: $A = \sqrt{s \cdot s_a \cdot s_b \cdot s_c}$ $\frac{1}{2}AB$, $\frac{AB}{A+B+C}$ $s = \frac{1}{2}(a + b + c),$ Permanents: $\operatorname{perm} A = \sum_{\pi} \prod_{i=1}^{n} a_{i,\pi(i)}.$ $s_a = s \Leftrightarrow a$, Identities: $s_b = s \Leftrightarrow b$, $\sin x = \frac{1}{\csc x},$ $\cos x = \frac{1}{\sec x}$ Hyperbolic Functions $s_c = s \Leftrightarrow c$. $\sin^2 x + \cos^2 x = 1,$ $\tan x = \frac{1}{\cot x}$ Definitions: More identities: $\sinh x = \frac{e^x \Leftrightarrow e^{-x}}{2}, \qquad \cosh x = \frac{e^x + e^{-x}}{2},$ $\sin\frac{x}{2} = \sqrt{\frac{1 \Leftrightarrow \cos x}{2}}$ $1 + \tan^2 x = \sec^2 x,$ $1 + \cot^2 x = \csc^2 x,$ $\tanh x = \frac{e^x \Leftrightarrow e^{-x}}{e^x + e^{-x}}, \qquad \operatorname{csch} x = \frac{1}{\sinh x},$ $\operatorname{sech} x = \frac{1}{\cosh x}, \qquad \operatorname{coth} x = \frac{1}{\tanh x}.$ $\cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}$ $\sin x = \cos\left(\frac{\pi}{2} \Leftrightarrow x\right)$, $\sin x = \sin(\pi \Leftrightarrow x),$ $\tan x = \cot \left(\frac{\pi}{2} \Leftrightarrow x\right)$, $\cos x = \Leftrightarrow \cos(\pi \Leftrightarrow x),$ $\tan \frac{x}{2} = \sqrt{\frac{1 \Leftrightarrow \cos x}{1 + \cos x}}$ Identities: $\cot x = \Leftrightarrow \cot(\pi \Leftrightarrow x),$ $\csc x = \cot \frac{x}{2} \Leftrightarrow \cot x,$ $\cosh^2 x \Leftrightarrow \sinh^2 x = 1$, $\tanh^2 x + \operatorname{sech}^2 x = 1$. $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y,$ $= \frac{\sin x}{1 + \cos x},$ $\cot \frac{x}{2} = \sqrt{\frac{1 + \cos x}{1 \Leftrightarrow \cos x}},$ $\coth^2 x \Leftrightarrow \operatorname{csch}^2 x = 1,$ $\sinh(\Leftrightarrow x) = \Leftrightarrow \sinh x,$ $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$ $\cosh(\Leftrightarrow x) = \cosh x, \qquad \tanh(\Leftrightarrow x) = \Leftrightarrow \tanh x,$ $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$ $\sinh(x+y) = \sinh x \cosh y + \cosh x \sinh y$, $\cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot x \pm \cot y},$ $\cosh(x+y) = \cosh x \cosh y + \sinh x \sinh y,$ $= \frac{\sin x}{1 \Leftrightarrow \cos x}$ $\sin 2x = \frac{2\tan x}{1 + \tan^2 x}$ $\sinh 2x = 2 \sinh x \cosh x$, $\sin 2x = 2\sin x \cos x,$ $\cosh 2x = \cosh^2 x + \sinh^2 x,$ $\sin x = \frac{e^{ix} \Leftrightarrow e^{-ix}}{2i}$ $\cos 2x = \cos^2 x \Leftrightarrow \sin^2 x, \qquad \cos 2x = 2\cos^2 x \Leftrightarrow 1.$ $\cos 2x = 1 \Leftrightarrow 2\sin^2 x,$ $\cos 2x = \frac{1 \Leftrightarrow \tan^2 x}{1 + \tan^2 x}$ $\cosh x + \sinh x = e^x, \qquad \cosh x \Leftrightarrow \sinh x = e^{-x}.$ $\cos x = \frac{e^{ix} + e^{-ix}}{2},$ $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx, \quad n \in \mathbb{Z},$ $\tan 2x = \frac{2\tan x}{1 \Leftrightarrow \tan^2 x}, \qquad \cot 2x = \frac{\cot^2 x \Leftrightarrow 1}{2\cot x},$ $\tan x = \Leftrightarrow i \frac{e^{ix} \Leftrightarrow e^{-ix}}{e^{ix} + e^{-ix}}$ $2\sinh^2\frac{x}{2} = \cosh x \Leftrightarrow 1$, $2\cosh^2\frac{x}{2} = \cosh x + 1$.

 $\cos \theta$

 $\sin \theta$

 $\tan \theta$

 $\frac{\sqrt{3}}{3}$

 $\sqrt{3}$

... in mathematics

you don't under-

stand things, you

just get used to

– J. von Neumann

them.

 $= \Leftrightarrow i \frac{e^{2ix} \Leftrightarrow 1}{e^{2ix} + 1},$

 $\sin x = \frac{\sinh ix}{i}$

 $\cos x = \cosh ix$,

 $\tan x = \frac{\tanh ix}{i}.$

 $\sin(x+y)\sin(x \Leftrightarrow y) = \sin^2 x \Leftrightarrow \sin^2 y$,

 $\cos(x+y)\cos(x \Leftrightarrow y) = \cos^2 x \Leftrightarrow \sin^2 y$.

 $e^{ix} = \cos x + i \sin x, \qquad e^{i\pi} = \Leftrightarrow 1.$

©1994 by Steve Seiden

sseiden@acm.org
http://www.opt.math.tu-graz.ac.at/~seiden

Euler's equation:

Theoretical Computer Science Cheat Sheet							
Number Theory		Graph Th	neory				
The Chinese remainder theorem: There ex-	Definitions:		Notation:				
ists a number C such that:	Loop	An edge connecting a ver-	E(G) Edge set				
$C \equiv r_1 mod m_1$	Directed	tex to itself. Each edge has a direction.	V(G) Vertex set $c(G)$ Number of components				
i i i	Simple	Graph with no loops or	G[S] Induced subgraph				
$C \equiv r_n \mod m_n$	TT7 11	$\operatorname{multi-edges}$.	$\deg(v)$ Degree of v $\Delta(G)$ Maximum degree				
if m_i and m_j are relatively prime for $i \neq j$.	$Walk \ Trail$	A sequence $v_0 e_1 v_1 \dots e_\ell v_\ell$. A walk with distinct edges.	$\delta(G)$ Minimum degree				
Euler's function: $\phi(x)$ is the number of	Path	A trail with distinct	$\chi(G)$ Chromatic number				
positive integers less than x relatively		vertices.	$\chi_E(G)$ Edge chromatic number G^c Complement graph				
prime to x . If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime fac-	Connected	A graph where there exists a path between any two	K_n Complete graph				
torization of x then		vertices.	K_{n_1,n_2} Complete bipartite graph				
$\phi(x) = \prod_{i=1}^{n} p_i^{e_i - 1}(p_i \Leftrightarrow 1).$	Component	A maximal connected	$r(k,\ell)$ Ramsey number				
Euler's theorem: If a and b are relatively	Tree	subgraph.	$\operatorname{Geometry}$				
prime then	Free tree	A connected acyclic graph. A tree with no root.	Projective coordinates: triples				
$1 \equiv a^{\phi(b)} \bmod b.$	DAG	Directed acyclic graph.	(x, y, z), not all x, y and z zero.				
Fermat's theorem:	Eulerian	Graph with a trail visiting each edge exactly once.	$(x, y, z) = (cx, cy, cz) \forall c \neq 0.$ Cartesian Projective				
$1 \equiv a^{p-1} \bmod p.$	Hamiltonian		$\frac{\text{Cartesian}}{(x,y)} \qquad \frac{\text{Trojective}}{(x,y,1)}$				
The Euclidean algorithm: if $a > b$ are in-		each vertex exactly once.	$y = mx + b \qquad (x, y, 1)$ $y = mx + b \qquad (m, \Leftrightarrow 1, b)$				
tegers then $gcd(a, b) = gcd(a \mod b, b).$	Cut	A set of edges whose re-	$x = c \qquad (1, 0, \Leftrightarrow c)$				
		moval increases the number of components.	Distance formula, L_p and L_{∞} metric:				
If $\prod_{i=1}^{n} p_i^{e_i}$ is the prime factorization of x then	Cut-set	A minimal cut.	$\sqrt{(x_1 \Leftrightarrow x_0)^2 + (x_1 \Leftrightarrow x_0)^2},$				
$S(x) = \sum_{d \mid x} d = \prod_{i=1}^{n} \frac{p_i^{e_i + 1} \Leftrightarrow 1}{p_i \Leftrightarrow 1}.$	Cut edge	A size 1 cut.	$[x_1 \Leftrightarrow x_0 ^p + x_1 \Leftrightarrow x_0 ^p]^{1/p},$				
$S(x) = \sum_{d x} a = \prod_{i=1} p_i \Leftrightarrow 1$	$k ext{-}Connected$	A graph connected with the removal of any $k \Leftrightarrow 1$					
Perfect Numbers: x is an even perfect num-		vertices.	$\lim_{p \to \infty} \left[x_1 \Leftrightarrow x_0 ^p + x_1 \Leftrightarrow x_0 ^p \right]^{1/p}.$				
ber iff $x = 2^{n-1}(2^n \Leftrightarrow 1)$ and $2^n \Leftrightarrow 1$ is prime.	$k ext{-} Tough$	$\forall S \subseteq V, S \neq \emptyset$ we have	Area of triangle (x_0, y_0) , (x_1, y_1) and (x_2, y_2) :				
Wilson's theorem: n is a prime iff $(n \Leftrightarrow 1)! \equiv \Leftrightarrow 1 \mod n$.	$k ext{-}Regular$	$k \cdot c(G \Leftrightarrow S) \leq S $. A graph where all vertices					
	n roganar	have degree k .	$\frac{1}{2} \operatorname{abs} \begin{vmatrix} x_1 \Leftrightarrow x_0 & y_1 \Leftrightarrow y_0 \\ x_2 \Leftrightarrow x_0 & y_2 \Leftrightarrow y_0 \end{vmatrix}.$				
Möbius inversion: $ \int_{0}^{\infty} 1 \text{if } i = 1. $	$k ext{-} Factor$	A k-regular spanning	Angle formed by three points:				
$\mu(i) = \begin{cases} 1 & \text{if } i = 1. \\ 0 & \text{if } i \text{ is not square-free.} \\ (\Leftrightarrow 1)^r & \text{if } i \text{ is the product of} \\ r & \text{distinct primes} \end{cases}$	Matching	subgraph. A set of edges, no two of	l				
r distinct primes.	,	which are adjacent.	$(x_1, y_1) \cdot (x_2, y_2)$				
If	Clique	A set of vertices, all of which are adjacent.	$\cos\theta = \frac{(x_1, y_1) \cdot (x_2, y_2)}{\ell_1 \ell_2}.$				
$G(a) = \sum_{d a} F(d),$	$Ind. \ set$	A set of vertices, none of	Line through two points (x_0, y_0)				
'		which are adjacent.	and (x_1, y_1) :				
then $F(a) = \sum u(d)G\left(\frac{a}{d}\right).$	Vertex cover	· A set of vertices which cover all edges.	$\begin{vmatrix} x & y & 1 \\ x_0 & y_0 & 1 \\ x_1 & y_1 & 1 \end{vmatrix} = 0.$				
$F(a) = \sum_{d a} \mu(d)G\left(\frac{a}{d}\right).$	Planar grapl	h A graph which can be em-	1 91				
Prime numbers:		beded in the plane.	Area of circle, volume of sphere:				
$p_n = n \ln n + n \ln \ln n \Leftrightarrow n + n \frac{\ln \ln n}{\ln n}$	Plane graph	An embedding of a planar	$A = \pi r^2, \qquad V = \frac{4}{3}\pi r^3.$				
111 16		graph.					
$+O\left(\frac{n}{\ln n}\right),$		$\sum_{v \in V} \deg(v) = 2m.$					
$\pi(n) = \frac{n}{\ln n} + \frac{n}{(\ln n)^2} + \frac{2!n}{(\ln n)^3}$		ar then $n \Leftrightarrow m + f = 2$, so	TCT1 C 1 11 11				
		$n \Leftrightarrow 4, m \leq 3n \Leftrightarrow 6.$	If I have seen farther than others, it is because I have stood on the				
$+O\left(\frac{n}{(\ln n)^4}\right).$		graph has a vertex with de-	shoulders of giants.				
() /	gree ≤ 5 .		– Issac Newton				

Wallis' identity:
$$\pi = 2 \cdot \frac{2 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot \cdots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot \cdots}$$

Brouncker's continued fraction expansion:

$$\frac{\pi}{4} = 1 + \frac{1^2}{2 + \frac{3^2}{2 + \frac{5^2}{2 + \frac{7^2}{2 + \dots}}}}$$

Gregrory's series:

$$\frac{\pi}{4} = 1 \Leftrightarrow \frac{1}{3} + \frac{1}{5} \Leftrightarrow \frac{1}{7} + \frac{1}{9} \Leftrightarrow \cdots$$

Newton's series:

$$\frac{\pi}{6} = \frac{1}{2} + \frac{1}{2 \cdot 3 \cdot 2^3} + \frac{1 \cdot 3}{2 \cdot 4 \cdot 5 \cdot 2^5} + \cdots$$

Sharp's series:

$$\frac{\pi}{6} = \frac{1}{\sqrt{3}} \left(1 \Leftrightarrow \frac{1}{3^1 \cdot 3} + \frac{1}{3^2 \cdot 5} \Leftrightarrow \frac{1}{3^3 \cdot 7} + \cdots \right)$$

Euler's series:

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \frac{1}{5^2} + \cdots$$

$$\frac{\pi^2}{8} = \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \frac{1}{9^2} + \cdots$$

$$\frac{\pi^2}{12} = \frac{1}{1^2} \Leftrightarrow \frac{1}{2^2} + \frac{1}{3^2} \Leftrightarrow \frac{1}{4^2} + \frac{1}{5^2} \Leftrightarrow \cdots$$

Partial Fractions

Let N(x) and D(x) be polynomial functions of x. We can break down N(x)/D(x) using partial fraction expansion. First, if the degree of N is greater than or equal to the degree of D, divide N by D, obtaining

$$\frac{N(x)}{D(x)} = Q(x) + \frac{N'(x)}{D(x)},$$

where the degree of N' is less than that of D. Second, factor D(x). Use the following rules: For a non-repeated factor:

$$\frac{N(x)}{(x \Leftrightarrow a)D(x)} = \frac{A}{x \Leftrightarrow a} + \frac{N'(x)}{D(x)},$$

where

$$A = \left[\frac{N(x)}{D(x)}\right]_{x=a}.$$

For a repeated factor:

$$\frac{N(x)}{(x \Leftrightarrow a)^m D(x)} = \sum_{k=0}^{m-1} \frac{A_k}{(x \Leftrightarrow a)^{m-k}} + \frac{N'(x)}{D(x)},$$

where

$$A_k = \frac{1}{k!} \left[\frac{d^k}{dx^k} \left(\frac{N(x)}{D(x)} \right) \right]_{x=a}.$$

The reasonable man adapts himself to the world; the unreasonable persists in trying to adapt the world to himself. Therefore all progress depends on the unreasonable. - George Bernard Shaw

Derivatives:
$$d(cu)$$

1.
$$\frac{d(cu)}{dx} = c\frac{du}{dx}$$
, 2. $\frac{d(u+v)}{dx} = \frac{du}{dx} + \frac{dv}{dx}$,

$$\frac{d(u/v)}{dx} = \frac{1}{dx} + \frac{1}{dx},$$

$$\frac{d(u/v)}{dx} = \frac{v(\frac{du}{v})}{v(\frac{du}{v})} \Leftrightarrow u(\frac{dv}{v})$$

Calculus

$$3. \ \frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx},$$

4.
$$\frac{d(u^n)}{dx} = nu^{n-1}\frac{du}{dx}$$
, **5.** $\frac{d(u/v)}{dx} = \frac{v(\frac{du}{dx}) \Leftrightarrow u(\frac{dv}{dx})}{v^2}$, **6.** $\frac{d(e^{cu})}{dx} = ce^{cu}\frac{du}{dx}$

$$\frac{d(\ln u)}{dx} = ce^{-x} \frac{d}{dx},$$

7.
$$\frac{d(c^u)}{dx} = (\ln c)c^u \frac{du}{dx}$$

$$8. \frac{d(\ln u)}{dx} = \frac{1}{u} \frac{du}{dx}$$

$$9. \ \frac{d(\sin u)}{dx} = \cos u \frac{du}{dx},$$

$$\mathbf{10.} \ \frac{d(\cos u)}{dx} = \Leftrightarrow \sin u \frac{du}{dx},$$

11.
$$\frac{d(\tan u)}{dx} = \sec^2 u \frac{du}{dx}$$

12.
$$\frac{d(\cot u)}{dx} = \csc^2 u \frac{du}{dx},$$

13.
$$\frac{d(\sec u)}{dx} = \tan u \sec u \frac{du}{dx}$$

14.
$$\frac{d(\csc u)}{dx} = \Leftrightarrow \cot u \csc u \frac{du}{dx}$$

15.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1 \Leftrightarrow u^2}} \frac{du}{dx}$$

16.
$$\frac{d(\arccos u)}{dx} = \frac{\Leftrightarrow 1}{\sqrt{1 \Leftrightarrow u^2}} \frac{du}{dx}$$

17.
$$\frac{d(\arctan u)}{dx} = \frac{1}{1 \Leftrightarrow u^2} \frac{du}{dx}$$

18.
$$\frac{d(\operatorname{arccot} u)}{dx} = \frac{\Leftrightarrow 1}{1 \Leftrightarrow u^2} \frac{du}{dx}$$

19.
$$\frac{d(\operatorname{arcsec} u)}{dx} = \frac{1}{u\sqrt{1 \Leftrightarrow u^2}} \frac{du}{dx}$$

20.
$$\frac{d(\operatorname{arccsc} u)}{dx} = \frac{\Leftrightarrow 1}{u\sqrt{1 \Leftrightarrow u^2}} \frac{du}{dx}$$

21.
$$\frac{d(\sinh u)}{dx} = \cosh u \frac{du}{dx},$$

22.
$$\frac{d(\cosh u)}{dx} = \sinh u \frac{du}{dx}$$

23.
$$\frac{d(\tanh u)}{dx} = \operatorname{sech}^2 u \frac{du}{dx},$$

24.
$$\frac{d(\coth u)}{dx} = \Leftrightarrow \operatorname{csch}^2 u \frac{du}{dx}$$

25.
$$\frac{d(\operatorname{sech} u)}{dx} = \Leftrightarrow \operatorname{sech} u \tanh u \frac{du}{dx}$$

26.
$$\frac{d(\operatorname{csch} u)}{dx} = \Leftrightarrow \operatorname{csch} u \operatorname{coth} u \frac{du}{dx}$$

27.
$$\frac{d(\arcsin u)}{dx} = \frac{1}{\sqrt{1+u^2}} \frac{du}{dx},$$

28.
$$\frac{d(\operatorname{arccosh} u)}{dx} = \frac{1}{\sqrt{u^2 \Leftrightarrow 1}} \frac{du}{dx}$$

29.
$$\frac{d(\operatorname{arctanh} u)}{dx} = \frac{1}{1 \Leftrightarrow u^2} \frac{du}{dx}$$

30.
$$\frac{d(\operatorname{arccoth} u)}{dx} = \frac{1}{u^2 \Leftrightarrow 1} \frac{du}{dx}$$

31.
$$\frac{d(\operatorname{arcsech} u)}{dx} = \frac{\Leftrightarrow 1}{u\sqrt{1 \Leftrightarrow u^2}} \frac{du}{dx},$$

32.
$$\frac{d(\operatorname{arccsch} u)}{dx} = \frac{\Leftrightarrow 1}{|u|\sqrt{1+u^2}} \frac{du}{dx}$$

Integrals:

$$1. \int cu \, dx = c \int u \, dx,$$

$$2. \int (u+v) dx = \int u dx + \int v dx,$$

3.
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq \Leftrightarrow 1,$$

4.
$$\int \frac{1}{x} dx = \ln x$$
, **5.** $\int e^x dx = e^x$,

6.
$$\int \frac{dx}{1+x^2} = \arctan x,$$

7.
$$\int u \frac{dv}{dx} dx = uv \Leftrightarrow \int v \frac{du}{dx} dx,$$

8.
$$\int \sin x \, dx = \Leftrightarrow \cos x,$$

$$9. \int \cos x \, dx = \sin x,$$

10.
$$\int \tan x \, dx = \Leftrightarrow \ln|\cos x|,$$

$$\mathbf{11.} \int \cot x \, dx = \ln|\cos x|,$$

$$12. \int \sec x \, dx = \ln|\sec x + \tan x|,$$

12.
$$\int \sec x \, dx = \ln|\sec x + \tan x|$$
, **13.** $\int \csc x \, dx = \ln|\csc x + \cot x|$,

14.
$$\int \arcsin \frac{x}{a} dx = \arcsin \frac{x}{a} + \sqrt{a^2 \Leftrightarrow x^2}, \quad a > 0,$$

Calculus Cont.

15.
$$\int \arccos \frac{x}{a} dx = \arccos \frac{x}{a} \Leftrightarrow \sqrt{a^2 \Leftrightarrow x^2}, \quad a > 0,$$

16.
$$\int \arctan \frac{x}{a} dx = x \arctan \frac{x}{a} \Leftrightarrow \frac{a}{2} \ln(a^2 + x^2), \quad a > 0,$$

17.
$$\int \sin^2(ax)dx = \frac{1}{2a} \left(ax \Leftrightarrow \sin(ax) \cos(ax) \right),$$

18.
$$\int \cos^2(ax)dx = \frac{1}{2a} (ax + \sin(ax)\cos(ax)),$$

$$19. \int \sec^2 x \, dx = \tan x,$$

$$\mathbf{20.} \int \csc^2 x \, dx = \Leftrightarrow \cot x,$$

21.
$$\int \sin^n x \, dx = \Leftrightarrow \frac{\sin^{n-1} x \cos x}{n} + \frac{n \Leftrightarrow 1}{n} \int \sin^{n-2} x \, dx,$$

22.
$$\int \cos^n x \, dx = \frac{\cos^{n-1} x \sin x}{n} + \frac{n \Leftrightarrow 1}{n} \int \cos^{n-2} x \, dx,$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n \Leftrightarrow 1} \Leftrightarrow \int \tan^{n-2} x \, dx, \quad n \neq 1$$

23.
$$\int \tan^n x \, dx = \frac{\tan^{n-1} x}{n \Leftrightarrow 1} \Leftrightarrow \int \tan^{n-2} x \, dx, \quad n \neq 1,$$
 24.
$$\int \cot^n x \, dx = \Leftrightarrow \frac{\cot^{n-1} x}{n \Leftrightarrow 1} \Leftrightarrow \int \cot^{n-2} x \, dx, \quad n \neq 1,$$

25.
$$\int \sec^n x \, dx = \frac{\tan x \sec^{n-1} x}{n \Leftrightarrow 1} + \frac{n \Leftrightarrow 2}{n \Leftrightarrow 1} \int \sec^{n-2} x \, dx, \quad n \neq 1,$$

$$\mathbf{26.} \ \int \csc^n x \, dx = \Leftrightarrow \frac{\cot x \csc^{n-1} x}{n \Leftrightarrow 1} + \frac{n \Leftrightarrow 2}{n \Leftrightarrow 1} \int \csc^{n-2} x \, dx, \quad n \neq 1, \quad \mathbf{27.} \ \int \sinh x \, dx = \cosh x, \quad \mathbf{28.} \ \int \cosh x \, dx = \sinh x,$$

29.
$$\int \tanh x \, dx = \ln |\cosh x|$$
, **30.** $\int \coth x \, dx = \ln |\sinh x|$, **31.** $\int \operatorname{sech} x \, dx = \arctan \sinh x$, **32.** $\int \operatorname{csch} x \, dx = \ln |\tanh \frac{x}{2}|$,

33.
$$\int \sinh^2 x \, dx = \frac{1}{4} \sinh(2x) \Leftrightarrow \frac{1}{2} x,$$
 34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2} x,$$
 35.
$$\int \operatorname{sech}^2 x \, dx = \tanh x,$$

34.
$$\int \cosh^2 x \, dx = \frac{1}{4} \sinh(2x) + \frac{1}{2}x$$

$$35. \int \operatorname{sech}^2 x \, dx = \tanh x,$$

36.
$$\int \operatorname{arcsinh} \frac{x}{a} dx = x \operatorname{arcsinh} \frac{x}{a} \Leftrightarrow \sqrt{x^2 + a^2}, \quad a > 0,$$

37.
$$\int \operatorname{arctanh} \frac{x}{a} dx = x \operatorname{arctanh} \frac{x}{a} + \frac{a}{2} \ln |a^2 \Leftrightarrow x^2|,$$

$$\mathbf{38.} \ \int \operatorname{arccosh} \frac{x}{a} dx = \begin{cases} x \operatorname{arccosh} \frac{x}{a} \Leftrightarrow \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} > 0 \text{ and } a > 0, \\ x \operatorname{arccosh} \frac{x}{a} + \sqrt{x^2 + a^2}, & \text{if } \operatorname{arccosh} \frac{x}{a} < 0 \text{ and } a > 0, \end{cases}$$

39.
$$\int \frac{dx}{\sqrt{a^2 + x^2}} = \ln\left(x + \sqrt{a^2 + x^2}\right), \quad a > 0,$$

40.
$$\int \frac{dx}{a^2 + r^2} = \frac{1}{a} \arctan \frac{x}{a}, \quad a > 0,$$

41.
$$\int \sqrt{a^2 \Leftrightarrow x^2} \, dx = \frac{x}{2} \sqrt{a^2 \Leftrightarrow x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

42.
$$\int (a^2 \Leftrightarrow x^2)^{3/2} dx = \frac{x}{8} (5a^2 \Leftrightarrow 2x^2) \sqrt{a^2 \Leftrightarrow x^2} + \frac{3a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

43.
$$\int \frac{dx}{\sqrt{a^2 \Leftrightarrow x^2}} = \arcsin \frac{x}{a}, \quad a > 0,$$
 44.
$$\int \frac{dx}{a^2 \Leftrightarrow x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a \Leftrightarrow x} \right|,$$
 45.
$$\int \frac{dx}{(a^2 \Leftrightarrow x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 \Leftrightarrow x^2}},$$

44.
$$\int \frac{dx}{a^2 \Leftrightarrow x^2} = \frac{1}{2a} \ln \left| \frac{a+x}{a \Leftrightarrow x} \right|,$$

$$45. \int \frac{dx}{(a^2 \Leftrightarrow x^2)^{3/2}} = \frac{x}{a^2 \sqrt{a^2 \Leftrightarrow x^2}},$$

46.
$$\int \sqrt{a^2 \pm x^2} \, dx = \frac{x}{2} \sqrt{a^2 \pm x^2} \pm \frac{a^2}{2} \ln \left| x + \sqrt{a^2 \pm x^2} \right|,$$

47.
$$\int \frac{dx}{\sqrt{x^2 \Leftrightarrow a^2}} = \ln \left| x + \sqrt{x^2 \Leftrightarrow a^2} \right|, \quad a > 0,$$

48.
$$\int \frac{dx}{ax^2 + bx} = \frac{1}{a} \ln \left| \frac{x}{a + bx} \right|,$$

49.
$$\int x\sqrt{a+bx} \, dx = \frac{2(3bx \Leftrightarrow 2a)(a+bx)^{3/2}}{15b^2},$$

50.
$$\int \frac{\sqrt{a+bx}}{x} dx = 2\sqrt{a+bx} + a \int \frac{1}{x\sqrt{a+bx}} dx,$$

51.
$$\int \frac{x}{\sqrt{a+bx}} dx = \frac{1}{\sqrt{2}} \ln \left| \frac{\sqrt{a+bx} \Leftrightarrow \sqrt{a}}{\sqrt{a+bx} + \sqrt{a}} \right|, \quad a > 0,$$

52.
$$\int \frac{\sqrt{a^2 \Leftrightarrow x^2}}{x} dx = \sqrt{a^2 \Leftrightarrow x^2} \Leftrightarrow a \ln \left| \frac{a + \sqrt{a^2 \Leftrightarrow x^2}}{x} \right|,$$

53.
$$\int x\sqrt{a^2 \Leftrightarrow x^2} \, dx = \Leftrightarrow \frac{1}{3}(a^2 \Leftrightarrow x^2)^{3/2},$$

54.
$$\int x^2 \sqrt{a^2 \Leftrightarrow x^2} \, dx = \frac{x}{8} (2x^2 \Leftrightarrow a^2) \sqrt{a^2 \Leftrightarrow x^2} + \frac{a^4}{8} \arcsin \frac{x}{a}, \quad a > 0,$$

55.
$$\int \frac{dx}{\sqrt{a^2 \Leftrightarrow x^2}} = \Leftrightarrow_{\overline{a}}^1 \ln \left| \frac{a + \sqrt{a^2 \Leftrightarrow x^2}}{x} \right|,$$

56.
$$\int \frac{x \, dx}{\sqrt{a^2 \Leftrightarrow x^2}} = \Leftrightarrow \sqrt{a^2 \Leftrightarrow x^2},$$

57.
$$\int \frac{x^2 dx}{\sqrt{a^2 \Leftrightarrow x^2}} = \Leftrightarrow_{\frac{x}{2}} \sqrt{a^2 \Leftrightarrow x^2} + \frac{a^2}{2} \arcsin \frac{x}{a}, \quad a > 0,$$

58.
$$\int \frac{\sqrt{a^2 + x^2}}{x} dx = \sqrt{a^2 + x^2} \Leftrightarrow a \ln \left| \frac{a + \sqrt{a^2 + x^2}}{x} \right|,$$

59.
$$\int \frac{\sqrt{x^2 \Leftrightarrow a^2}}{x} dx = \sqrt{x^2 \Leftrightarrow a^2} \Leftrightarrow a \arccos \frac{a}{|x|}, \quad a > 0,$$

60.
$$\int x\sqrt{x^2 \pm a^2} \, dx = \frac{1}{3}(x^2 \pm a^2)^{3/2},$$

61.
$$\int \frac{dx}{x\sqrt{x^2 + a^2}} = \frac{1}{a} \ln \left| \frac{x}{a + \sqrt{a^2 + x^2}} \right|,$$

Calculus Cont.

62.
$$\int \frac{dx}{x\sqrt{x^2 \Leftrightarrow a^2}} = \frac{1}{a} \arccos \frac{a}{|x|}, \quad a > 0,$$
 63. $\int \frac{dx}{x^2\sqrt{x^2 \pm a^2}} = \mp \frac{\sqrt{x^2 \pm a^2}}{a^2 x},$

64.
$$\int \frac{x \, dx}{\sqrt{x^2 + a^2}} = \sqrt{x^2 \pm a^2},$$

65.
$$\int \frac{\sqrt{x^2 \pm a^2}}{x^4} dx = \mp \frac{(x^2 + a^2)^{3/2}}{3a^2 x^3},$$

$$\mathbf{66.} \int \frac{dx}{ax^2 + bx + c} = \begin{cases} \frac{1}{\sqrt{b^2 \Leftrightarrow 4ac}} \ln \left| \frac{2ax + b \Leftrightarrow \sqrt{b^2 \Leftrightarrow 4ac}}{2ax + b + \sqrt{b^2 \Leftrightarrow 4ac}} \right|, & \text{if } b^2 > 4ac, \\ \frac{2}{\sqrt{4ac \Leftrightarrow b^2}} \arctan \frac{2ax + b}{\sqrt{4ac \Leftrightarrow b^2}}, & \text{if } b^2 < 4ac, \end{cases}$$

$$\mathbf{67.} \ \int \frac{dx}{\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{1}{\sqrt{a}} \ln \left| 2ax + b + 2\sqrt{a}\sqrt{ax^2 + bx + c} \right|, & \text{if } a > 0, \\ \frac{1}{\sqrt{\Leftrightarrow a}} \arcsin \frac{\Leftrightarrow 2ax \Leftrightarrow b}{\sqrt{b^2 \Leftrightarrow 4ac}}, & \text{if } a < 0, \end{cases}$$

68.
$$\int \sqrt{ax^2 + bx + c} \, dx = \frac{2ax + b}{4a} \sqrt{ax^2 + bx + c} + \frac{4ax \Leftrightarrow b^2}{8a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

69.
$$\int \frac{x \, dx}{\sqrt{ax^2 + bx + c}} = \frac{\sqrt{ax^2 + bx + c}}{a} \Leftrightarrow \frac{b}{2a} \int \frac{dx}{\sqrt{ax^2 + bx + c}},$$

70.
$$\int \frac{dx}{x\sqrt{ax^2 + bx + c}} = \begin{cases} \frac{\Leftrightarrow 1}{\sqrt{c}} \ln \left| \frac{2\sqrt{c}\sqrt{ax^2 + bx + c} + bx + 2c}{x} \right|, & \text{if } c > 0, \\ \frac{1}{\sqrt{\Leftrightarrow c}} \arcsin \frac{bx + 2c}{|x|\sqrt{b^2 \Leftrightarrow 4ac}}, & \text{if } c < 0, \end{cases}$$

71.
$$\int x^3 \sqrt{x^2 + a^2} \, dx = (\frac{1}{3}x^2 \Leftrightarrow \frac{2}{15}a^2)(x^2 + a^2)^{3/2},$$

72.
$$\int x^n \sin(ax) \, dx = \Leftrightarrow \frac{1}{a} x^n \cos(ax) + \frac{n}{a} \int x^{n-1} \cos(ax) \, dx,$$

73.
$$\int x^n \cos(ax) \, dx = \frac{1}{a} x^n \sin(ax) \Leftrightarrow \frac{n}{a} \int x^{n-1} \sin(ax) \, dx,$$

74.
$$\int x^n e^{ax} dx = \frac{x^n e^{ax}}{a} \Leftrightarrow \frac{n}{a} \int x^{n-1} e^{ax} dx,$$

75.
$$\int x^n \ln(ax) dx = x^{n+1} \left(\frac{\ln(ax)}{n+1} \Leftrightarrow \frac{1}{(n+1)^2} \right),$$

76.
$$\int x^n (\ln ax)^m \, dx = \frac{x^{n+1}}{n+1} (\ln ax)^m \Leftrightarrow \frac{m}{n+1} \int x^n (\ln ax)^{m-1} \, dx.$$

Finite Calculus

Difference, shift operators:

$$\Delta f(x) = f(x+1) \Leftrightarrow f(x),$$

 $\to f(x) = f(x+1).$

Fundamental Theorem:

$$f(x) = \Delta F(x) \Leftrightarrow \sum_{i} f(x)\delta x = F(x) + C.$$
$$\sum_{i} f(x)\delta x = \sum_{i} f(i).$$

Differences:

$$\Delta(cu) = c\Delta u, \qquad \Delta(u+v) = \Delta u + \Delta v,$$

$$\Delta(uv) = u\Delta v + \operatorname{E} v\Delta u,$$

$$\Delta(x^{\underline{n}}) = nx^{\underline{n}-1}.$$

$$\Delta(H_x) = x^{-1}, \qquad \qquad \Delta(2^x) = 2^x$$

$$\Delta(c^x) = (c \Leftrightarrow 1)c^x, \qquad \Delta\binom{x}{m} = \binom{x}{m-1}.$$

Sums:

$$\sum cu \, \delta x = c \sum u \, \delta x,$$

$$\sum (u+v) \, \delta x = \sum u \, \delta x + \sum v \, \delta x,$$

$$\sum u \Delta v \, \delta x = uv \Leftrightarrow \sum \mathbf{E} \, v \Delta u \, \delta x,$$

$$\sum x^{\underline{n}} \, \delta x = \frac{x^{\underline{n+1}}}{\underline{m+1}}, \qquad \qquad \sum x^{\underline{-1}} \, \delta x = H_x,$$

$$\sum c^x \, \delta x = \frac{c^x}{c-1}, \qquad \qquad \sum {x \choose m} \, \delta x = {x \choose m+1}.$$

Falling Factorial Powers:

$$x^{\underline{n}} = x(x \Leftrightarrow 1) \cdots (x \Leftrightarrow m+1), \quad n > 0,$$

$$x^{\underline{0}} = 1,$$

$$x^{\underline{n}} = \frac{1}{(x+1)\cdots(x+|n|)}, \quad n < 0,$$

$$x^{\underline{n+m}} = x^{\underline{m}}(x \Leftrightarrow m)^{\underline{n}}$$

Rising Factorial Powers:

$$x^{\overline{n}} = x(x+1)\cdots(x+m \Leftrightarrow 1), \quad n > 0,$$

$$x^{\overline{0}} = 1$$

$$x^{\overline{n}} = \frac{1}{(x \Leftrightarrow 1) \cdots (x \Leftrightarrow |n|)}, \quad n < 0,$$

$$x^{\overline{n+m}} = x^{\overline{m}} (x+m)^{\overline{n}}.$$

Conversion:

$$x^{\underline{n}} = (\Leftrightarrow 1)^n (\Leftrightarrow x)^{\overline{n}} = (x \Leftrightarrow m+1)^{\overline{n}}$$

$$=1/(x+1)^{-n},$$

$$x^{\overline{n}} = (\Leftrightarrow 1)^n (\Leftrightarrow x)^{\underline{n}} = (x + m \Leftrightarrow 1)^{\underline{n}}$$

$$= 1/(x \Leftrightarrow 1)^{-n}$$

$$x^{n} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} x^{\underline{k}} = \sum_{k=1}^{n} \begin{Bmatrix} n \\ k \end{Bmatrix} (\Leftrightarrow 1)^{n-k} x^{\overline{k}},$$

$$x^{\underline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} (\Leftrightarrow 1)^{n-k} x^{k},$$

$$x^{\overline{n}} = \sum_{k=1}^{n} \begin{bmatrix} n \\ k \end{bmatrix} x^k.$$

Series

Taylor's series:

$$f(x) = f(a) + (x \Leftrightarrow a)f'(a) + \frac{(x \Leftrightarrow a)^2}{2}f''(a) + \dots = \sum_{i=0}^{\infty} \frac{(x \Leftrightarrow a)^i}{i!}f^{(i)}(a).$$

Expansions:

Expansions:
$$\frac{1}{1 \Leftrightarrow x} = 1 + x + x^2 + x^3 + x^4 + \cdots = \sum_{i=0}^{\infty} x^i,$$

$$\frac{1}{1 \Leftrightarrow cx} = 1 + cx + c^2x^2 + c^3x^3 + \cdots = \sum_{i=0}^{\infty} c^ix^i,$$

$$\frac{1}{1 \Leftrightarrow x^n} = 1 + x^n + x^{2n} + x^{3n} + \cdots = \sum_{i=0}^{\infty} x^{ni},$$

$$\frac{x}{(1 \Leftrightarrow x)^2} = x + 2x^2 + 3x^3 + 4x^4 + \cdots = \sum_{i=0}^{\infty} ix^i,$$

$$x^k \frac{d^n}{dx^n} \left(\frac{1}{1 \Leftrightarrow x}\right) = x + 2^nx^2 + 3^nx^3 + 4^nx^4 + \cdots = \sum_{i=0}^{\infty} i^nx^i,$$

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)$$

$$\ln(1 + x) = x \Leftrightarrow \frac{1}{2}x^2 + \frac{1}{3}x^3 \Leftrightarrow \frac{1}{4}x^4 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)$$

$$\ln \frac{1}{1 \Leftrightarrow x} = x + \frac{1}{2}x^2 + \frac{1}{3}x^3 \Leftrightarrow \frac{1}{1}x^7 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)^i + \frac{x^{2i+1}}{i^i},$$

$$\sin x = x \Leftrightarrow \frac{1}{3}x^3 + \frac{1}{6}x^5 \Leftrightarrow \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)^i + \frac{x^{2i+1}}{(2i+1)^n},$$

$$\cos x = 1 \Leftrightarrow \frac{1}{2}x^2 + \frac{1}{4}x^4 \Leftrightarrow \frac{1}{6}x^6 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)^i + \frac{x^{2i+1}}{(2i+1)^n},$$

$$\tan^{-1} x = x \Leftrightarrow \frac{1}{3}x^3 + \frac{1}{5}x^5 \Leftrightarrow \frac{1}{7}x^7 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)^i + \frac{x^{2i+1}}{(2i+1)^n},$$

$$(1 + x)^n = 1 + nx + \frac{n(n-1)}{2}x^2 + \cdots = \sum_{i=0}^{\infty} (i^nx^i)^i + \frac{x^{2i+1}}{(2i+1)^n},$$

$$\frac{1}{(1 \Leftrightarrow x)^{n+1}} = 1 + (n+1)x + \binom{n+2}{2}x^2 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{x}{e^x \Leftrightarrow 1} = 1 \Leftrightarrow \frac{1}{2}x + \frac{1}{12}x^2 \Leftrightarrow \frac{1}{12n}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{n}{i}x^i,$$

$$\frac{1}{\sqrt{1 \Leftrightarrow 4x}} = 1 + x + 2x^2 + 5x^3 + \cdots = \sum_{i=0}^{\infty} \binom{2i}{i}x^i,$$

$$\frac{1}{\sqrt{1 \Leftrightarrow 4x}} \ln \frac{1}{1 \Leftrightarrow x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{2}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{2i+n}{i}x^i,$$

$$\frac{1}{1 \Leftrightarrow x} \ln \frac{1}{1 \Leftrightarrow x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{2}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{4i}{i}x^i,$$

$$\frac{1}{1 \Leftrightarrow x} \ln \frac{1}{1 \Leftrightarrow x} = x + \frac{3}{2}x^2 + \frac{1}{16}x^3 + \frac{25}{2}x^4 + \cdots = \sum_{i=0}^{\infty} \binom{4i-1}{i}x^i,$$

$$\frac{1}{1 \Leftrightarrow x} \ln \frac{1}{1 \Leftrightarrow x} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i,$$

$$\frac{x}{1 \Leftrightarrow x \Leftrightarrow x^2} = x + x^2 + 2x^3 + 3x^4 + \cdots = \sum_{i=0}^{\infty} F_{ii}x^i.$$

Ordinary power series:

$$A(x) = \sum_{i=0}^{\infty} a_i x^i.$$

Exponential power series:

$$A(x) = \sum_{i=0}^{\infty} a_i \frac{x^i}{i!}.$$

Dirichlet power series:

$$A(x) = \sum_{i=1}^{\infty} \frac{a_i}{i^x}.$$

Binomial theorem

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k.$$

Difference of like powers:

$$x^n \Leftrightarrow y^n = (x \Leftrightarrow y) \sum_{k=0}^{n-1} x^{n-1-k} y^k.$$

For ordinary power series:

$$\alpha A(x) + \beta B(x) = \sum_{i=0}^{\infty} (\alpha a_i + \beta b_i) x^i,$$

$$x^k A(x) = \sum_{i=0}^{\infty} a_{i-k} x^i,$$

$$\frac{A(x) \Leftrightarrow \sum_{i=0}^{k-1} a_i x^i}{x^k} = \sum_{i=0}^{\infty} a_{i-k} x^i,$$

$$A(cx) = \sum_{i=0}^{\infty} c^i a_i x^i,$$

$$A'(x) = \sum_{i=0}^{\infty} (i+1) a_{i+1} x^i,$$

$$xA'(x) = \sum_{i=1}^{\infty} i a_i x^i,$$

$$\int A(x) dx = \sum_{i=1}^{\infty} i a_{i-1} x^i,$$

$$\frac{A(x) + A(\Leftrightarrow x)}{2} = \sum_{i=0}^{\infty} a_{2i} x^{2i},$$

$$\frac{A(x) \Leftrightarrow A(\Leftrightarrow x)}{2} = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}.$$
Summation: If $b = \sum_{i=0}^{\infty} a_{2i+1} x^{2i+1}$.

Summation: If $b_i = \sum_{j=0}^i a_i$ then

$$B(x) = \frac{1}{1 \Leftrightarrow r} A(x).$$

Convolution:

$$A(x)B(x) = \sum_{i=0}^{\infty} \left(\sum_{j=0}^{i} a_j b_{i-j} \right) x^i.$$

God made the natural numbers; all the rest is the work of man. - Leopold Kronecker

Series

Expansions:
$$\frac{1}{(1 \Leftrightarrow x)^{n+1}} \ln \frac{1}{1 \Leftrightarrow x} = \sum_{i=0}^{\infty} (H_{n+i} \Leftrightarrow H_n) \binom{n+i}{i} x^i, \qquad \left(\frac{1}{x}\right)^{\frac{-n}{n}} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^i,$$

$$x^{\overline{n}} = \sum_{i=0}^{\infty} \begin{bmatrix} n \\ i \end{bmatrix} x^i, \qquad (e^x \Leftrightarrow 1)^n = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n!x^i}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(\Leftrightarrow 4)^i B_2}{(2i)!}$$

$$\tan x = \sum_{i=1}^{\infty} (\Leftrightarrow 1)^{i-1} \frac{2^{2i}(2^{2i} \Leftrightarrow 1) B_{2i} x^{2i-1}}{(2i)!}, \qquad \zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^x},$$

$$\zeta(x) = \prod_{p} \frac{1}{1 \Leftrightarrow p^{-x}},$$

$$\zeta(x) = \prod_{i=1}^{\infty} \frac{\phi(i)}{x^i},$$

$$\zeta(x) = \prod_{i=1}^{\infty} \frac{\phi$$

$$\left(\frac{1}{x}\right)^{\overline{-n}} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} x^{i},$$

$$(e^{x} \Leftrightarrow 1)^{n} = \sum_{i=0}^{\infty} \begin{Bmatrix} i \\ n \end{Bmatrix} \frac{n! x^{i}}{i!},$$

$$x \cot x = \sum_{i=0}^{\infty} \frac{(\Leftrightarrow 4)^{i} B_{2i} x^{2i}}{(2i)!},$$

$$\zeta(x) = \sum_{i=1}^{\infty} \frac{1}{i^{x}},$$

$$\frac{\zeta(x \Leftrightarrow 1)}{\zeta(x)} = \sum_{i=1}^{\infty} \frac{\phi(i)}{i^{x}},$$

Stieltjes Integration

If G is continuous in the interval [a, b] and F is nondecreasing then

$$\int_{a}^{b} G(x) \, dF(x)$$

exists. If a < b < c then

$$\int_{a}^{c} G(x) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{b}^{c} G(x) dF(x).$$

If the integrals involved exist

$$\int_{a}^{b} \left(G(x) + H(x)\right) dF(x) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} H(x) dF(x),$$

$$\int_{a}^{b} G(x) d\left(F(x) + H(x)\right) = \int_{a}^{b} G(x) dF(x) + \int_{a}^{b} G(x) dH(x),$$

$$\int_{a}^{b} c \cdot G(x) dF(x) = \int_{a}^{b} G(x) d\left(c \cdot F(x)\right) = c \int_{a}^{b} G(x) dF(x),$$

$$\int_{a}^{b} G(x) dF(x) = G(b)F(b) \Leftrightarrow G(a)F(a) \Leftrightarrow \int_{a}^{b} F(x) dG(x).$$

If the integrals involved exist, and F possesses a derivative F' at every point in [a, b] then

$$\int_a^b G(x) dF(x) = \int_a^b G(x)F'(x) dx.$$

Crammer's Rule

 $\left(\frac{\arcsin x}{x}\right)^2 = \sum_{i=1}^{\infty} \frac{4^i i!^2}{(i+1)(2i+1)!} x^{2i}.$

 $=\sum_{i=1}^{\infty} \frac{(4i)!}{16^i \sqrt{2}(2i)!(2i+1)!} x^i,$

If we have equations:

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n = b_1$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n = b_2$$

$$\vdots \qquad \vdots$$

$$a_{n,1}x_1 + a_{n,2}x_2 + \dots + a_{n,n}x_n = b_n$$

Let $A = (a_{i,j})$ and B be the column matrix (b_i) . Then there is a unique solution iff det $A \neq 0$. Let A_i be A with column i replaced by B. Then $x_i = \frac{\det A_i}{\det A}$.

$$x_i = \frac{\det A_i}{\det A}$$

Improvement makes strait roads, but the crooked roads without Improvement, are roads of Genius.

- William Blake (The Marriage of Heaven and Hell)

 $0 \quad 47 \quad 18 \quad 76 \quad 29 \quad 93 \quad 85 \quad 34 \quad 61 \quad 52$ 86 11 57 28 70 39 94 45 2 63 68 74 9 91 83 55 27 12 46 30 37 8 75 19 92 84 66 23 50 41 14 25 36 40 51 62 3 77 88 99 21 32 43 54 65 6 10 89 97 78 42 53 64 5 16 20 31 98 79 87

The Fibonacci number system: Every integer n has a unique representation

 $n = F_{k_1} + F_{k_2} + \dots + F_{k_m}$ where $k_i \geq k_{i+1} + 2$ for all i, $1 \leq i < m \text{ and } k_m \geq 2.$

Fibonacci Numbers

 $1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \dots$ Definitions:

$$F_{i} = F_{i-1} + F_{i-2}, \quad F_{0} = F_{1} = 1,$$

$$F_{-i} = (\Leftrightarrow 1)^{i-1} F_{i},$$

$$F_{i} = \frac{1}{\sqrt{5}} \left(\phi^{i} \Leftrightarrow \hat{\phi}^{i} \right),$$

Cassini's identity: for i > 0:

$$F_{i+1}F_{i-1} \Leftrightarrow F_i^2 = (\Leftrightarrow 1)^i.$$

Additive rule:

$$F_{n+k} = F_k F_{n+1} + F_{k-1} F_n,$$

$$F_{2n} = F_n F_{n+1} + F_{n-1} F_n.$$

Calculation by matrices:

$$\begin{pmatrix} F_{n-2} & F_{n-1} \\ F_{n-1} & F_n \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n.$$