1. Consider a simplified model of a **vacuum diode** consisting of a **cathode** in the x=0 plane and an **anode** in the x=d plane, where the anode is held to a constant potential $V_a=2$ V relative to the cathode. The region 0 < x < d between the cathode and the anode supports a charge density $\rho(x)$ accounting for the electrons in transit from the cathode (where they are emitted) to the anode. If the potential distribution in the region 0 < x < d is given by $V(x) = V_a(x/d)^{4/3}$, find the following:

Due: Feb 5, 2013, 5PM

- a) Electric field **E** at x = d/4,
- b) Volumetric charge density ρ at x = d/2,
- c) The surface charge density ρ_s on the anode.
- 2. Given that $V(x, y, z) = y^3 xz$ and $\mathbf{E} = -\nabla V$, what is $\nabla \times \mathbf{E}$?
- 3. An important vector identity which is true for any vector field $\mathbf{A}(x,y,z)$ is

$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A},$$

where

$$\nabla^2 \mathbf{A} \equiv (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}) \mathbf{A}$$

is Laplacian of **A** and $\nabla(\nabla \cdot \mathbf{A})$ is the gradient of the divergence of **A**.

Verify the identity for $\mathbf{A} = (z - y)\hat{y} + (z + y)\hat{z}$ by calculating each side of the identity and showing them to be the same.

- 4. Given that $\mathbf{E} = 2\hat{x} + 2y\hat{y} + z\hat{z}$ V/m, determine the electrostatic potential V(3,2,1) if V(0,0,0) = 0.
- 5. Given the fields $\mathbf{E_1} = \hat{x}y + \hat{y}x$ V/m and $\mathbf{E_2} = \hat{x}y \hat{y}x$ V/m, determine the circulation $\oint_C \mathbf{E} \cdot d\mathbf{l}$ for both $\mathbf{E_1}$ and $\mathbf{E_2}$ along a triangular path C traversing in order its vertices at (x, y, z) = (-1, -1, 0), (-1, 1, 0), and (1, 1, 0) m.

Hint: $d\mathbf{l} = (-\hat{x} - \hat{y})dx$ and x = y on the slant edge of C.

- 6. Consider a static volumetric charge density $\rho(x,y,z) = 6\delta(z) + \rho_s\delta(z-10)$ C/m³ in a given region of free space (having permittivity ϵ_0), where the displacement field is $\mathbf{D} = \hat{x}\,2\epsilon_0 + \hat{z}\,4\epsilon_0$ C/m² for 0 < z < 10 m and $D_z = 2\epsilon_0$ C/m² for z > 10 m. Furthermore, field \mathbf{D} is uniform in each of regions z < 0, 0 < z < 10 m, and z > 10 m.
 - a) Determine ρ_s ,
 - b) Determine **D** for the region z > 10 m,
 - c) Determine **D** for the region z < 0.
 - d) Determine **E** in all three regions (z < 0, 0 < z < 10, and z > 10)
 - e) What is the voltage drop from the z = 0 m plane to the z = 10 m plane?
 - f) Which of your answers above (parts a, b, c, d, or e) would change if the region from 0 < z < 10 m were filled with a perfect dielectric having permittivity $\epsilon = 4\epsilon_0$ instead of a vacuum having ϵ_0 ? Explain.
- 7. The gap between a pair of parallel infinite copper plates extends from z = 0 to z = W > 0 and is initially occupied by vacuum (ϵ_o, μ_o) . The plates carry equal and oppositely signed surface charge densities and as a consequence we have a constant electric field $\mathbf{E} = -3\hat{z} \text{ V/m}$ in vacuum in the gap region and zero electric field elsewhere.

- a) What are the corresponding displacement vector \mathbf{D} and polarization vector \mathbf{P} in the gap region?
- b) What is the surface charge density ρ_s of the copper plate at z=0?
- c) Next, we fill the gap with a non-conducting fluid of permittivity $\epsilon = 81\epsilon_o$ without changing the surface charge densities of the copper plates. What are the new values of \mathbf{E} , \mathbf{D} , and \mathbf{P} in the gap region?
- d) What would be the new equilibrium values of \mathbf{E} , \mathbf{D} , and \mathbf{P} in the gap region if some amount of salt were dissolved in the fluid in the gap (see part c) to raise its conductivity to $\sigma = 4$ S/m (conductivity of sea water)? State the values of \mathbf{E} , \mathbf{D} , and \mathbf{P} after a steady-state equilibrium is reached and briefly explain your answer.
- 8. Consider the following spherically symmetric configuration of composite materials in *steady-state equilibrium*:
 - (i) The region defined by $r \le a$, where $r = \sqrt{x^2 + y^2 + z^2}$ is the radial distance from the origin, has $\epsilon = \epsilon_o$, $\sigma = 10^6$ S/m, and holds a net charge of Q = 2 C.
 - (ii) A perfect dielectric shell with $\epsilon = 10\epsilon_o$ occupies the region a < r < b.
 - (iii) Region $b \le r \le c$ has the same material properties as region $r \le a$ and holds a net charge of -4 C.
 - (iv) Region r > c is occupied by free space.

Determine, in all four regions, (a) **D**, (b) **E**, and (c) **P**, and (d) the surface charge densities, in C/m^2 units, at each of the three material boundaries at r = a, b, and c.

Hint: Make use of Gauss's law in integral form, $\oint_S \mathbf{D} \cdot dS = \int_V \rho dV$, with $\mathbf{D} = \epsilon \mathbf{E} = \epsilon_o \mathbf{E} + \mathbf{P}$, and a crucial fact about steady-state fields within conducting materials.