PROGRAM 7

The following tables are maintained by a Book Dealer:

AUTHOR(author-id: int, name: String, city: String, country: String)

PUBLISHER(publisher-id: int, name: String, city: String, country: String)

CATALOG(book-id: int, title: String, author-id: int, publisher-id: int, category-id: int,

year: int, price: int)

CATEGORY(category-id: int, description: String)

ORDER-DETAILS(order-no: int, book-id: int, quantity: int)

i. Create the above tables by properly specifying the primary keys and the foreign keys.

ii. Enter at least five tuples for each relation.

'AUTHOR' table:

'PUBLISHER' table:

'CATEGORY' table:

'CATALOG' table:

'ORDER-DETAILS' table:

iii. Give the details of the authors who have 2 or more books in the catalog and the price of the books in the catalog and the year of publication is after 2000.

Query:

SELECT * FROM author WHERE author_id IN (SELECT author_id FROM catalog WHERE year>2000 AND price > (SELECT AVG(price) FROM catalog) GROUP BY author_id HAVING COUNT(*)>1)

iv. Find the author of the book which has maximum sales.

Query:

SELECT name FROM author a, catalog c WHERE a.author_id=c.author_id AND book_id IN (SELECT book_id FROM orderdetails WHERE quantity = (SELECT MAX(quantity) FROM orderdetails));

v. Demonstrate how you increase the price of books published by a specific publisher by 10%.

Query:

UPDATE catalog SET price=1.1*price WHERE publisher_id IN (SELECT publisher_id FROM publisher WHERE Name='Pearson');

