Functions of bounded variation $\alpha:[a,b]\to\mathbb{R}$ is in BV[a,b] if $V_a^b\alpha=$ $\sup_{P \text{ partition}} V_a^b(\alpha, P) = \sup_{P} \sum_{i=1}^n |\alpha(x_i) - \alpha(x_{i-1})| < \infty$

Theorem 1. (Jordan's theorem:) $\alpha \in BV[a,b]$ if and only if α can be written as $\alpha = \beta - \gamma$ with β , γ non-decreasing.

 $Proof. \Leftarrow$

 $x_n = b$.

$$V_a^b(\alpha, P) = \sum_{i=1}^n |\alpha(x_i) - \alpha(x_{i-1})| = \sum_{i=1}^n |[\beta(x_i) - \beta(x_{i-1})] - [\gamma(x_i) - \gamma(x_{i-1})]|$$

$$\leq \sum_{i=1}^{n} |\beta(x_i) - \beta(x_{i-1})| + \sum_{i=1}^{n} |\gamma(x_i) - \gamma(x_{i-1})| = V_a^n(\beta, P) + V_a^b(\gamma, P) \leq V_a^b \beta + V_a^b \gamma$$

$$= \underbrace{[\beta(b) - \beta(a)] + [\gamma(b) - \gamma(a)]}_{independent\ of\ P} < \infty$$

Hence,

$$V_a^b \alpha = \sup V_a^b(\alpha, P) \le [\beta(b) - \beta(a)] + [\gamma(b) - \gamma(a)] < \infty$$

Exs: If $f, g \in BV[a, b]$, then $V_a^b(f \pm g) \leq V_a^b f + V_a^b g$ \Rightarrow : Assume that $\alpha \in BV[a,b]$, need to find β, γ such that $\alpha = \beta - \gamma(\gamma = \beta)$ $\beta - \alpha$). Introduce the variation function $v(x) = V_a^x \alpha = \text{total variation of } \alpha$ on [a,x].

Exs:V(x) is well-defined because $V_a^x \alpha \geq V_c^d \alpha$ for any interval $[c,d] \subseteq [a,b]$. **Question:** Is v non-decreasing? Yes! Let x < y, need to verify if

$$\underbrace{v(x)}_{=V_a^x\alpha} \le \underbrace{v(y)}_{V_a^y\alpha}.$$

True by Exs above since $[a, b] \subset [a, y]$

Question: Is $V(x_i) - \alpha(x_i)$ non-decreasing? Let x < y, need to verify if $v(x) - \alpha(x) \le v(y) - \alpha(y) \Leftrightarrow \alpha(y) - \alpha(x) \le \alpha(y) - \alpha(x) \le \alpha(y) - \alpha(y) = \alpha(y) + \alpha(y) = \alpha(y) + \alpha(y) = \alpha(y) + \alpha(y) = \alpha(y) = \alpha(y) + \alpha(y) = \alpha(y) =$

$$V_a^y \alpha - V_x^x \alpha = V_x^y \alpha = \sup_{P_{partition \ of \ [x,y]}} V_x^y (\alpha, P)$$

Note: $|\alpha(y) - \alpha(x)| = V_x^y (\alpha, P_0)$, where $P_0 = \{x, y\}$. Thus, $\alpha(y) - \alpha(x) \le$

Grace Yin 1 1

$$|\alpha(y) - \alpha(x)| = V_x^y(\alpha, P_0) \le V_x^y(\alpha) = v(y) - v(x).$$

Exs: Check that for any $c \in (a, b)$ and any $f \in BV[a, b]$,

$$V_a^c f + V_c^a f = V_a^b f$$

Set
$$\beta(x) = v(x), \gamma(x) = v(x) - \alpha(x)$$
. Clearly, $\alpha = \beta - \gamma$

Remark: Jordan's theorem suggests that BV[a, b] could be a good source of Riemann-Stieltjes integrators, with respect to which continuous functions functions on [a, b] can be integrated

$$\int f d \underbrace{\alpha}_{\in BV} = \int f d(\beta - \gamma) \stackrel{?}{=} \int f d\beta - \int f d\gamma$$

Interchanging integrals & integrators

Recall:

$$\int_{a}^{b} \left(\underbrace{udv}_{u(x)v'(x)dx} + \underbrace{vdu}_{v'(x)u'(x)dx} \right) = u(b)v(b) - u(a)v(a) \to integration \ by \ parts$$

Integration by parts for Riemann-Stieltjes integrals: Let $f, \alpha : [a, b] \to \mathbb{R}$ be arbitrary functions. Then $f \in \mathcal{R}_{\alpha}[a, b] \Leftrightarrow \alpha \in \mathcal{R}_{f}[a, b]$ $(f \in \mathcal{R}_{\alpha}[a, b] \Leftrightarrow \exists I \to, \forall \varepsilon > 0, \exists \text{ a partition } P_0, \text{ s.t., } |S_{\alpha}(f, P, T) - I| < \varepsilon, \text{ for } P \supseteq P_0, \text{ and any selection of points subordinate to } P)$ In either case:

$$\int_{a}^{b} f d\alpha + \int_{a}^{b} \alpha df = \alpha(b)f(b) - \alpha(a)f(a)$$

Corollary 1. $C[a, b] \subseteq \mathcal{R}_{\alpha}[a, b]$ for all $\alpha \in BV[a, b]$

Proof. Use the Jordan's theorem to write $\alpha = \beta - \gamma$ where β and γ are non-decreasing. Note by a previous theorem, $\mathcal{C}[a,b] \subseteq \mathcal{R}_{\beta}[a,b] \cap \mathcal{R}_{\gamma}[a,b]$. This implies if $f \in \mathcal{C}[a,b]$,then

$$\int_{a}^{b} f d\beta \& \int_{a}^{b} f d\gamma are \ well - defined$$

By IBP.

$$\int_a^b \beta df \& \int_a^b \gamma df are \ well-defined \ too.$$

i.e., $\beta, \gamma \in \mathcal{R}_f[a, b]$. But it is easy to see that $\mathcal{R}_f[a, b]$ is a vector space, with

$$\int_{a}^{b} (\beta \mp \gamma) df$$

This implies $\beta \mp \gamma \in \mathcal{R}_f[a,b]$. In particular, $\alpha = \beta - \gamma \in \mathcal{R}_f[a,b]$. Use IBP again, get $f \in \mathcal{R}_{\alpha}[a,b]$