

TOUT CE QUE JE SAIS SUR ...

 Les signaux de référence avec e(n), r(n) et d(n) (donner leurs expressions, puis leur graphe) • Suite récurrente (définition, donner un exemple avec calcul des premiers termes)

• Définition d'une suite géométrique

• L'Expression d'une suite géométrique en fonction de n

La limite pour une suite géométrique

• Un signal retardé (définition, graphe en dessinant le signal de départ et le signal retardé)

LES THÈMES ABORDÉS DANS CE LIVRET DE RÉVISION

Extrait du formulaire sur la transformée en Z

Signal causal $n \to x(n) \ pour \ n \in \mathbb{N}$	Transformée en Z $z \to (Zx)(z) = X(z)$
e(n)=1	$E(z) = \frac{z}{z - 1}$
$ \begin{cases} d(0) = 1 \\ d(n) = 0 \text{ si } n \neq 0 \end{cases} $	D(z) = 1
r(n) = n	$R(z) = \frac{z}{(z-1)^2}$
$c(n) = n^2$	$C(z) = \frac{z(z+1)}{(z-1)^3}$
$f(n) = a^n$, avec $a \in \mathbb{R}^*$	$F(z) = \frac{z}{z - a}$
$y(n) = x(n - n_0)$ Ou $y_n = x_{n-n_0}$	$Y(z) = z^{-n_0} \cdot X(z)$

1. ORIGINAL D'UN SIGNAL

1.1. TRANSFORMÉE EN Z INVERSE

2906

Définition:

On considère x(n) un signal causal discret.

On dit que x(n) est de X(z)

si le signal x(n) admet X(z) comme transformée de Laplace.

C'est-à-dire si X(z) = Z(x(n))

1.2. UNICITÉ DE L'ORIGINAL

2907

Propriété:

Si X(z) admet un original,

Alors celui-ci est et on le note $x(n) = \dots$

Remarque:

Pour retrouver l'original, il suffit d'utiliser, dans le formulaire, le tableau des transformées en Z mais dans l'autre sens :

DE LA COLONNE DE DROITE VERS LA COLONNE DE GAUCHE!!

1.1.1. exemple – original d'un signal connu

Quel est l'original de $\frac{z}{z-1}$?

2908

1.1.2. exemple – trouver l'original

Quel signal a pour transformée en Z :

a)
$$X(z) = 1$$

2910

c)
$$Y(z) = \frac{2z}{(z-1)^2}$$

d) $X(z) = 4 - \frac{3z}{z-1}$

4d(n)-3*e(n)

e)
$$X(z) = \frac{5z}{z-2} + \frac{4z}{z+4}$$

5*2^n+4*(-4)^n

1.1.3. exemple – original et retard

Quel signal a pour transformée en Z :

a)
$$X(z) = z^{-1} \times \frac{z}{(z-1)^2}$$

b) Y(z) =
$$2z^{-2} \times \frac{z}{z+4}$$

c) T(z) =
$$-4z^{-3} \times \frac{z}{z-1}$$

r(n-1)

2*-4^(n-2)

-4e(n-3)

1.1.4. exemple – transformer pour trouver l'original

Déterminer les originaux des transformées en Z suivantes :

2924

a)
$$Y(z) = \frac{1}{z+1}$$

$$Y(z) = 1/(z+1)$$

$$xn = 4r(n-1)$$

$$Yn = -1^{(n-1)}$$

La transformée en z d'un produit N'EST SURTOUT PAS le produit des transformées en z !!! On utilise la transformée en Z qu'avec des sommes de fonctions multipliées par un coefficient !!

1.1.5. exemple – trouver l'original d'un signal en décomposant la forme de la transformée en Z

On considère la transformée en Z suivante : $Y(z) = \frac{1}{z(z-1)}$

$$\frac{1}{z(z-1)} = \frac{a}{z} + \frac{b}{z-1}$$

2925

1/z + z/(z-1)

2) Compléter le tableau donnant les originaux de signaux connaissant leurs transformées en Z

Transformée en Z	original
$\frac{1}{z}$	d(n-1)
$\frac{1}{z-1}$	e(n-1)

-d(n-1)+e(n-1)

3)En déduire le signal original y(n) ayant pour transformée de Laplace :

$$Y(z) = \frac{1}{z(z-1)}$$

2923

2. UTILISER L'ORIGINAL POUR TROUVER LA SOLUTION D'UN PROBLÈME

partie 3 : original de la transformée en Z

2.1.1. exemple – utilisation de $F(z) = \frac{Y(z)}{X(z)}$

On a la relation de récurrence (1) : $y_n = -y_{n-1} + 2(x_n - x_{n-1})$

On pose F(z) = $\frac{Y(z)}{X(z)}$ avec Y(z) et X(z) les transformées en Z respectives de y(n) et de x(n).

1/ En appliquant la transformée en Z à l'équation de récurrence (1), montrer que : $\frac{2(z-1)}{z}$

$$\mathsf{F}(\mathsf{z}) = \frac{2(z-1)}{z+1}$$

- 2/a) Si $x_n = 1$, l'échelon discrète. Que vaut alors X(z)
- 2/ b) En déduire Y(z) en utilisant l'expression de F(z)
- 2/ c) en déduire l'original y(n)

- 3/ b) En déduire Y(z) en utilisant l'expression de F(z)
- 3/ c) A l'aide d'un logiciel de calcul formel, on a obtenu :

1 ElémentsSimples
$$[2z/((z-1)(z+1))]$$

 $\rightarrow \frac{z}{z-1} - \frac{z}{z+1}$

en déduire l'original y(n).

- 4/a) Si $x_n = d_n$ l'impulsion discrète. Que vaut alors X(z)
- 4/ b) En déduire Y(z) en utilisant l'expression de F(z)
- 4/ c) A l'aide d'un logiciel de calcul formel, on a obtenu :

1 ElémentsSimples
$$[2(z-1)/(z+1)]$$

 $\rightarrow 2 - \frac{4}{z+1}$

en déduire l'original y(n).

$$Y(z) = z^{-1}Y(z) + 2X(z) - 2z^{-1}X(z)$$

$$Y(z)-z^{-1}Y(z) = 2^{*}X(z)-2^{*}z^{-1}X(z)$$

$$Y(z)(1-z^{-1}) = X(z)^{*}(2-2z^{-1})$$

$$Y(z)(z/z-1/z) = X(z)(2z/z-2/z)$$

$$Y(z)((z-1)/z) = X(z)((2z-2)/z)$$

$$Y(z)/X(z) = ((2z-2)/z)/(1/((z-1)/z))$$

$$Y(z)/X(z) = ((2z-2)/z)*(z/(z-1))$$

$$Y(z)/X(z) = 2(z-1)/(z-1)$$

2.1.2. exemple – avec une fonction de transfert numérique

On considère le système entrée sortie numérique dont la fonction de transfert numérique F est définie par :

$$F(z) = H(100 \frac{1-z^{-1}}{1+z^{-1}}) \text{ avec H(p)} = \frac{2}{1+\frac{p}{2}}$$

Ce système numérique permet d'approcher un système analogique. L'entrée et la sortie du système numérique sont modélisées, respectivement, par deux signaux causaux discrets x et y. Ces deux suites admettent des transformées en Z notées, respectivement, X(z) et Y(z) telles que $Y(z) = F(z) \times X(z).$

1. A) Montrer que F(z) =
$$\frac{2(1+z^{-1})}{51-49z^{-1}}$$

2938

1/B. En déduire que :

$$51 Y(z) - 49 z^{-1} Y(z) = 2 X(z) + 2z^{-1} X(z)$$

2939

1/ C. En déduire que pour tout nombre entier n supérieur ou égal à 0, on a :

$$y(n) = \frac{49}{51}y(n-1) + \frac{2}{51}x(n) + \frac{2}{51}x(n-1)$$

2948

2.1.2. exemple – avec une fonction de transfert numérique (suite)

suite de l'exercice :

2/ On suppose dans cette question que, pour tout nombre entier n, on a : x(n) = e(n) où e est la suite échelon unité définie par : $\begin{cases} e(n) = 0 \text{ si } n < 0 \\ e(n) = 1 \text{ si } n \ge 0 \end{cases}$

On admet alors que $Y(z) = \frac{2z(z+1)}{(z-1)(51z-49)}$

2. A) Vérifier que :
$$Y(z) = \frac{2z}{z-1} - \frac{100}{51} \times \frac{z}{z - \frac{49}{51}}$$

2949

2/B. En déduire y(n) pour tout nombre entier naturel n.

3. CORRECTION DES EXEMPLES DU COURS

1.1.1. exemple - original d'un signal connu

Quel est l'original de $\frac{z}{z-1}$?

D'après le tableau, on sait que la transformée en Z de e(n) est : $\frac{z}{z-1}$ Donc l'original de $\frac{z}{z-1}$ est e(n).

1.1.2. exemple - trouver l'original

a)le signal qui a pour transformée en Z : X(z) = 1 est x(n) = d(n)

b) On voit que Y(z) ressemble à la forme : $\frac{z}{z-a}$ avec a = -1

Donc le signal qui a pour transformée en Z : $Y(z) = \frac{z}{z+1} \frac{Z}{z+1}$ est

$$y(n) = a^n = (-1)^n$$

c) On voit que Y(z) = $2 \times \frac{z}{(z-1)^2}$ sachant que r(n) a pour

transformée en Z : $\frac{z}{(z-1)^2}$

Donc le signal qui a pour transformée en Z : $Y(z) = 2 \times \frac{z}{(z-1)^2}$ est

$$y(n) = 2 r(n)$$

d) On voit que : $X(z) = 4 - \frac{3z}{z-1} = 4 \times 1 - 3 \times \frac{z}{z-1}$ sachant que d(n) a pour

transformée en Z : 1 et e(n) a pour transformée en Z : $\frac{z}{z-1}$

Donc le signal qui a pour transformée en Z :

$$X(z) = 4 - \frac{3z}{z-1} = 4 \times 1 - 3 \times \frac{z}{z-1}$$
 est:

$$x(n) = 4 d(n) - 3 e(n)$$

1.1.2. exemple – trouver l'original (suite)

e) On voit que : $X(z) = \frac{5z}{z-2} + \frac{4z}{z+4} = 5 \times \frac{z}{z-2} + 4 \times \frac{z}{z+4}$

sachant que $\frac{z}{z-2}$ et que $\frac{z}{z+4}$ ressemblent à $\frac{z}{z-a}$ qui ont pour original aⁿ avec pour la première a = 2 et pour la seconde a = - 4

Donc le signal qui a pour transformée en Z :

$$X(z) = \frac{5z}{z-2} + \frac{4z}{z+4} = 5 \times \frac{z}{z-2} + 4 \times \frac{z}{z+4} \quad \text{est}$$
$$x(n) = 5 \times 2^{n} + 4 \times (-4)^{n}$$

Donc $x(n) = 5 \times 2^n + 4 \times (-4)^n$

1.1.3. exemple - original et retard

a)
$$X(z) = z^{-1} \times \frac{z}{(z-1)^2}$$
.

On reconnaît la forme du retard : $z^{-1} \times Y(z)$.

Donc on a un signal final qui va être retardé de 1. C'est la puissance de z qui nous l'indique.

Or $\frac{z}{(z-1)^2}$ a pour original r(n). Donc on va avoir un retard de 1 sur r(n)

Ainsi, l'original de X(z) = $z^{-1} \times \frac{z}{(z-1)^2}$ sera : x(n) = r(n - 1) pour n \geq 1

1.1.3. exemple – original et retard (suite)

b)
$$Y(z) = 2z^{-2} \times \frac{z}{z+4}$$

On reconnaît la forme du retard: $z^{-2} \times X(z)$.

Donc on a un signal final qui va être retardé de 2. C'est la puissance de z qui nous l'indique.

Or $2\frac{z}{z+4}$ a pour original (-4)ⁿ. Donc on va avoir un retard de 2 sur 2 × (-4)ⁿ

Ainsi, l'original de Y(z) = $2z^{-2} \times \frac{z}{z+4}$ sera : y(n) = 2 × (-4)ⁿ⁻² pour n ≥ 2

c) T(z) =
$$-4z^{-3} \times \frac{z}{z-1}$$

On reconnaît la forme du retard: $z^{-3} \times X(z)$.

Donc on a un signal final qui va être retardé de 3. C'est la puissance de z qui nous l'indique.

Or - $4\frac{z}{z-1}$ a pour original e(n). Donc on va avoir un retard de 3 sur - 4 e(n)

Ainsi, l'original de T(z) = $-4z^{-3} \times \frac{z}{z-1}$ sera : y(n) = -4 e(n - 3) pour n \geq 3

1.1.4. exemple – transformer pour trouver l'original

a) Y(z) =
$$\frac{1}{z+1}$$
.

On voit que Y(z) ressemble à une transformée en Z connue qui est $\frac{z}{z+1}$

Donc on va transformer Y(z) pour s'approcher de cette forme reconnue

ATTENTION!!

avec les fractions pour obtenir une fraction équivalente on a juste de droit de diviser ou multiplier numérateur et dénominateur par le même élément !!

1.1.4. exemple – transformer pour trouver l'original (suite)

Donc Y(z) =
$$\frac{1}{z+1}$$
 = $\frac{1}{z}$ \times $\frac{z}{z+1}$ or On reconnaît que $\frac{1}{z}$ = z^{-1}

Donc Y(z) =
$$\frac{1}{z+1} = \frac{1}{z} \times \frac{z}{z+1} = z^{-1} \times \frac{z}{z+1}$$

On reconnaît la forme du retard qui dit que la transformée en Z de

$$x(n-1)$$
 pour $n \ge 1$ est : $z^{-1} \times X(z)$

Ce retard va s appliquer sur l'original de $\frac{z}{z+1}$ est $(-1)^n$. Donc c'est $(-1)^n$ qui va être retardé de 1 unité.

Ainsi l'original de $Y(z) = \frac{1}{z+1}$ sera : $y(n) = (-1)^{n-1}$ pour $n \ge 1$

b)
$$X(z) = \frac{4}{(z-1)^2}$$

On voit que Y(z) ressemble à une transformée en Z connue qui est $\frac{z}{(z-1)^2}$ Donc on va transformer Y(z) pour s'approcher de cette forme reconnue

Donc X(z) =
$$\frac{4}{(z-1)^2}$$
 = $4 \times \frac{1}{z} \times \frac{z}{(z-1)^2}$ or On reconnaît que $\frac{1}{z} = z^{-1}$

Donc X(z) =
$$\frac{4}{(z-1)^2}$$
 = $4 \times \frac{1}{z} \times \frac{z}{(z-1)^2}$ = $4 \times z^{-1} \times \frac{z}{(z-1)^2}$

On reconnaît la forme du retard qui dit que la transformée en Z de

$$x(n-1)$$
pour $n \ge 1$ est : $z^{-1} \times x(n)$

Ce retard va s appliquer sur l'original de $4\frac{z}{(z-1)^2}$ est 4r(n). Donc c'est r(n) qui va être retardé de 1 unité

Ainsi l'original de X(z) =
$$\frac{4}{(z-1)^2}$$
 = $4 \times z^{-1} \times \frac{z}{(z-1)^2}$ sera :

$$x(n) = 4r(n-1) pour n \ge 1$$

1.1.5. exemple – trouver l'original d'un signal en décomposant la forme de la transformée en Z

$$1/\frac{1}{z(z-1)} = \frac{a}{z} + \frac{b}{z-1} = \frac{a(z-1)}{z(z-1)} + \frac{bz}{z(z-1)} = \frac{az-a+bz}{z(z-1)} = \frac{(a+b)z-a}{z(z-1)}$$

Comme ces deux fractions ont le même dénominateur, alors on va comparer entre eux les numérateurs : 1 = (a + b)z - a

En comparant les termes constants et les termes en z, on va faire une identification : $\begin{cases} 1 = -a \\ 0 = a + b \end{cases} \Rightarrow \begin{cases} a = -1 \\ 0 = -1 + b \Rightarrow b = 1 \end{cases}$

Donc
$$\frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}$$

2/

Transformée en Z	original
$\frac{1}{z} = z^{-1} = z^{-1} \times 1$ On reconnaît un retard de 1 sur l'original de 1 qui est d(n)	d(n – 1)
$\frac{1}{z-1} = z^{-1} \times \frac{z}{z-1}$ On reconnaît un retard de 1 sur l'original de $\frac{z}{z-1}$ qui est e(n)	e(n – 1)

$$3/Y(z) = \frac{1}{z(z-1)}$$

Attention ici on a aucune formule sur la transformée en Z d'un produit dans le tableau.

donc IL EST INTERDIT DE DIRE que y(n) = $d(n-1) \times e(n-1)$ ATTENTION C EST FAUX ET C EST VOTRE ERREUR MAJEUR !!!

1.1.5. exemple – trouver l'original d'un signal en décomposant la forme de la transformée en Z (suite)

Par contre on sait que la transformée en Z d'une somme est la somme des transformées en Z (principe de linéarité)

De plus on a vu à la question 1 que $Y(z) = \frac{1}{z(z-1)} = -\frac{1}{z} + \frac{1}{z-1}$

On va utiliser le tableau pour prendre l'original de chacun de ces 2 termes Donc y(n) = -d(n-1) + e(n-1) pour $n \ge 1$.

2.1.1. exemple – utilisation de $F(z) = \frac{Y(z)}{X(z)}$

1/ On applique la transformée en Z de chaque côté de l'égalité de la relation (1) : $y_n = -y_{n-1} + 2(x_n - x_{n-1})$

On a donc : $Y(z) = -z^{-1}Y(z) + 2(X(z) - z^{-1}X(z))$

Comme on veut $F(z) = \frac{Y(z)}{X(z)}$ on doit isoler Y(z) dans la partie de gauche, puis on va factoriser par Y(z) dans la partie de gauche et X(z) dans la partie de droite :

$$\begin{cases} Y(z) + z^{-1}Y(z) = 2(X(z) - z^{-1} X(z)) \Longrightarrow Y(z) (1 + z^{-1}) = 2X(z) (1 - z^{-1}) \\ \Rightarrow \frac{Y(z)}{X(z)} = \frac{2(1 - z^{-1})}{1 + z^{-1}} = \frac{2(1 - \frac{1}{z})}{1 + \frac{1}{z}} \end{cases}$$

On va donc tout multiplier par z, numérateur et dénominateur

Alors
$$\frac{Y(z)}{X(z)} = \frac{2(z-1)}{z+1} = F(z)$$

2/a) Si $x_n = 1$, l'échelon discrète alors $X(z) = \frac{z}{z-1}$

2/ b)
$$F(z) = \frac{Y(z)}{X(z)} = \frac{2(z-1)}{z+1} \implies Y(z) = \frac{2(z-1)}{z+1} X(z) = \frac{2(z-1)}{z+1} \frac{z}{z-1} = \frac{2z}{z+1}$$

2)c) $Y(z) = \frac{2z}{z+1}$. On reconnaît une transformée en Z du type : $\frac{z}{z-a}$ donc son original est : $y(n) = 2(-1)^n$.

2.1.1. exemple – utilisation de $F(z) = \frac{Y(z)}{X(z)}$ (suite)

3/ a) Si $x_n = n$, la rampe discrète alors $X(z) = \frac{z}{(z-1)^2}$

3/b)
$$F(z) = \frac{Y(z)}{X(z)} = \frac{2(z-1)}{z+1} \implies Y(z) = \frac{2(z-1)}{z+1} X(z) = \frac{2(z-1)}{z+1} \frac{z}{(z-1)^2} = \frac{2z}{(z+1)(z-1)}$$

3/ c) d'après le logiciel, il nous informe que $Y(z) = \frac{2z}{(z+1)(z-1)} = \frac{z}{z-1} - \frac{z}{z+1}$ On reconnaît 2 transformées en Z :

- une qui est celle de l'échelon unité discrète,
- l'autre du type : $\frac{z}{z-a}$ avec a = -1

Donc $y(n) = e(n) - (-1)^n$.

4/ a) Si $x_n = d_n$ alors X(z) = 1

4/b)
$$F(z) = \frac{Y(z)}{X(z)} = \frac{2(z-1)}{z+1} \implies Y(z) = \frac{2(z-1)}{z+1} X(z) = \frac{2(z-1)}{z+1} . 1 = \frac{2(z-1)}{z+1}$$

4/ c) d'après le logiciel, il nous informe que $Y(z) = \frac{2(z-1)}{z+1} = 2 - \frac{4}{z+1}$

On remarque que $\frac{1}{z+1}$ ressemble à $\frac{z}{z+1}$ dont on connait l'original qui sera :

(-1)ⁿ. On voit donc qu'ici il va y avoir un retard !!

Ainsi
$$Y(z) = 2 \times 1 - 4 \times \frac{1}{z} \times \frac{z}{z+1} = 2 \times 1 - 4 \times z^{-1} \times \frac{z}{z+1}$$

Donc $y(n) = 2 d(n) - 4 (-1)^{n-1} pour n \ge 1$.

2.1.2. exemple – avec une fonction de transfert numérique

1/ A.
$$F(z) = H(100 \frac{1-z^{-1}}{1+z^{-1}})$$
 avec $H(p) = \frac{2}{1+\frac{p}{2}}$

Donc on va faire de la composition en posant p = $100 \frac{1-z^{-1}}{1+z^{-1}}$:

$$\begin{cases}
H(p) = \frac{2}{1 + \frac{p}{2}} \Rightarrow H(100 \frac{1 - z^{-1}}{1 + z^{-1}}) = \frac{2}{1 + \frac{100}{1 + z^{-1}}} = \frac{2}{1 + 50 \frac{1 - z^{-1}}{1 + z^{-1}}} = \frac{2}{\frac{1 + z^{-1}}{1 + z^{-1}} + 50 \frac{1 - z^{-1}}{1 + z^{-1}}} \\
= \frac{2}{\frac{1 + z^{-1} + 50 - 50z^{-1}}{1 + z^{-1}}} = \frac{2(1 + z^{-1})}{51 - 49 z^{-1}}
\end{cases}$$

1/B. On sait que $F(z) = \frac{2(1+z^{-1})}{51-49z^{-1}}$ et $Y(z) = F(z) \times X(z)$.

Donc
$$Y(z) = \frac{2(1+z^{-1})}{51-49z^{-1}} \times X(z) \Rightarrow Y(z)(51-49z^{-1}) = 2(1+z^{-1}) \times X(z)$$

$$\Rightarrow$$
 51Y(z) - 49 z^{-1} Y(z) = (2 + 2 z^{-1}) × X(z)

$$\Rightarrow$$
 51Y(z) - 49 z^{-1} Y(z) = 2X(z) + 2 z^{-1} X(z)

1/C. A partir de 51Y(z) – 49 z^{-1} Y(z) = 2X(z) + $2z^{-1}$ X(z), on a cherché l'original de cette équation :

$$51 y(n) - 49 y(n-1) = 2 x(n) - 2 x(n-1)$$

$$\Rightarrow$$
 51 y(n) = 49 y(n - 1) + 2 x(n) - 2 x(n - 1)

$$\Rightarrow y(n) = \frac{49}{51} y(n-1) + \frac{2}{51} x(n) + \frac{2}{51} x(n-1)$$

2/ si x(n) = e(n) alors $X(z) = \frac{z}{z-1}$

et x(n-1) aura pour transformée en Z : $z^{-1} \times \frac{z}{z-1} = \frac{1}{z} \times \frac{z}{z-1} = \frac{1}{z-1}$

alors en prenant la transformée en Z de

$$: y(n) = \frac{49}{51}y(n-1) + \frac{2}{51}x(n) + \frac{2}{51}x(n-1)$$

on aura : $Y(z) = \frac{49}{51} \times z^{-1} Y(z) + \frac{2}{51} \times \frac{z}{z-1} + \frac{2}{51} \times \frac{z}{z-1}$

2.1.2. exemple – avec une fonction de transfert numérique (suite)

On va regrouper les Y(z) entre eux :

$$Y(z) - \frac{49}{51} \times z^{-1} Y(z) = \frac{2}{51} \times \frac{z}{z-1} + \frac{2}{51} \times \frac{1}{z-1}$$

$$\Rightarrow Y(z) \left(1 - \frac{49}{51} \times z^{-1} \right) = \frac{2}{51} \times \frac{z+1}{z-1}$$

$$\Rightarrow Y(z) = \frac{\frac{2}{51} \times \frac{z+1}{z-1}}{1 - \frac{49}{51} \times z^{-1}} = \frac{\frac{2}{51} \times \frac{z+1}{z-1}}{1 - \frac{49}{51} \times \frac{1}{z}} = \frac{\frac{2}{51} \times \frac{z+1}{z-1}}{1 - \frac{49}{51z}} = \frac{\frac{2}{51} \times \frac{z+1}{z-1}}{\frac{51z-49}{51z}} = \frac{2}{51} \times \frac{z+1}{z-1} \times \frac{51z}{51z-49}$$

$$= 2 \times \frac{z+1}{z-1} \times \frac{z}{51z-49} = \frac{2z(z+1)}{(z-1)(51z-49)}$$

c) On va partir du membre de droite en réduisant au même dénominateur pour vérifier si on obtient la même valeur qu'au 2.b

$$\frac{2z}{z-1} - \frac{100}{51} \times \frac{z}{z - \frac{49}{51}} = \frac{2z}{z-1} - \frac{100z}{51(z - \frac{49}{51})} = \frac{2z}{z-1} - \frac{100z}{51z-49}$$

$$= \frac{2z(51z-49)}{(z-1)(51z-49)} - \frac{100z(z-1)}{(z-1)(51z-49)} = = \frac{102z^2 - 98z - 100z^2 + 100z}{(z-1)(51z-49)} = \frac{2z^2 + 2z}{(z-1)(51z-49)}$$

$$= \frac{2z(z+1)}{(z-1)(51z-49)} = Y(z)$$

d) pour trouver l'original on ne va pas prendre Y(z) sous la forme d'un produit $\frac{2z(z+1)}{(z-1)(51z-49)}$ car je ne connais pas de formule sur une telle forme

Par contre on a vu que Y(z) pouvait être une somme de deux termes d'après la question c : $\frac{2z}{z-1} - \frac{100}{51} \times \frac{z}{z-\frac{49}{51}}$

On reconnaît Y(z) = $2 \times \frac{z}{z-1} - \frac{100}{51} \times \frac{z}{z - \frac{49}{51}}$

Or $\frac{z}{z-1}$ a pour original : e(n) et $\frac{z}{z-\frac{49}{51}}$ ressemble à $\frac{z}{z-a}$ avec a = $\frac{49}{51}$ donc son

original sera : $a^n = \left(\frac{49}{51}\right)^n$

Donc l'original de Y(z) sera : $y(n) = 2 e(n) - \frac{100}{51} \times \left(\frac{49}{51}\right)^n$

4. EXERCICES

4.1. EXERCICE - ORIGINAL D'UN SIGNAL

Déterminer les originaux des transformées en Z suivantes :

a)
$$X(z) = \frac{z(z+1)}{(z-1)^3}$$

2911

a)
$$X(z) = \frac{z(z+1)}{(z-1)^3}$$

$$Y(z) = -2^n$$

2910

c)
$$Y(z) = \frac{5z}{z-1} - 6$$

5e(n)-6d(n)

 $3*(3)^n+2*(-1)^n$

e) $X(z) = 3 z^{-2} \times \frac{z}{(z-1)^2}$

f) Y(z) =
$$-z^{-3} \times \frac{z}{z+6}$$

X(z) = 3r(n-2)

g) T(z) =
$$z^{-1} \times \frac{z}{z-1}$$

h)
$$Y(z) = \frac{-4}{z-2}$$

2914

$$T(z) = e(n-1)$$

$$Y(z) = -4*2^{(n-1)}$$

4.2. EXERCICE – AVEC UNE FONCTION DE TRANSFERT

On a la relation de récurrence (1) : $y_n - 3y_{n-1} = x_n$

On pose $F(z) = \frac{Y(z)}{X(z)}$ avec Y(z) et X(z) les transformées en Z respectives de y(n) et de x(n).

1/ En appliquant la transformée en Z à l'équation de récurrence (1), montrer que:

$$F(z) = \frac{z}{z-3}$$

$$Y(z) -3*z^{-1}Y(z) = X(z)$$

2/A) Si $x_n = d_n l'impulsion discrète. Que vaut alors <math>Y(z)$? Penser à utiliser l'expression de F(z).

2/B) En déduire l'original y(n).

3/A) Si $x_n = 1$, l'échelon discrète. Que vaut alors Y(z)? Penser à utiliser l'expression de F(z).

3/B) A l'aide d'un logiciel de calcul formel, on a obtenu :

1	ElémentsSimples $[z^2/((z-3)(z-1))]$
	$\rightarrow 3z - z$
	2(z-3) $2(z-1)$

en déduire l'original y(n).

3/2*3^n - 1/2

4.3. EXERCICE - AVEC UNE ÉQUATION DE RÉCURRENCE

On cherche à déterminer la réponse au système décrit par la relation de récurrence :

x(n) - 3x(n-1) + 2x(n-2) = d(n-2) pour $n \ge 2$; avec x(0) = x(1) = 0 et sachant que d(n) est l'impulsion unité discrète

1/ donner les valeurs de x(2); x(3); x(4)

2950

2/ en appliquant la transformée en Z à cette équation récurrente, montrer que :

$$(Zx)(z) = \frac{1}{(z-1)(z-2)}$$

3/ Déterminer les réels A et B tels que :

$$\frac{1}{(z-1)(z-2)} = \frac{A}{z-1} + \frac{B}{z-2}$$

4/ En déduire l'original x solution de cette équation.

5 / Vérifier que l'on retrouve les valeurs trouvées au 1, à partir de l'expression trouvée à la question 4.

1368

4.4. EXERCICE – AVEC UNE FONCTION DE TRANSFERT ANALOGIQUE

On se propose d'approcher la fonction de transfert analogique H par la fonction de transfert numérique F telle que :

$$F(z) = H(10 \frac{1-z^{-1}}{1+z^{-1}}) = H(\frac{10 z - 10}{z+1}) \text{ avec H(p)} = \frac{1}{1+2p}$$

L'entrée et la sortie du système numérique sont modélisées respectivement par deux signaux causaux discrets x et y, admettant des transformées en Z notées respectivement X et Y.

On se place dans le cas où le signal d'entrée d'un système analogique est U(t), la fonction échelon unité. Ce signal est échantillonné au pas de 0,2. Ainsi, le signal d'entrée x du système numérique est défini par x(n) = U(0,2n) pour tout nombre entier naturel n.

Les transformées en Z des signaux x et y vérifient : $Y(z) = F(z) \times X(z)$

1/ Montrer que F(z) = $\frac{z+1}{21z-19}$

2938

2/ A. représenter x(n) dans un repère orthonormé. Quel est en fait ce signal ?

2/ B. Déterminer X(z)

2/C) en déduire la forme de Y(z)

3 / Vérifier que Y(z) = $\frac{z}{z-1} - \frac{20}{21} \left(\frac{z}{z-\frac{19}{21}} \right)$

2949

4/ En déduire l'expression de y(n), pour tout nombre entier naturel n

5. CORRECTION DES EXERCICES DU COURS

4.1. EXERCICE – ORIGINAL D'UN SIGNAL

a)
$$x(n) = c(n) = n^2$$

b)
$$y(n) = (-2)^n$$

c)
$$y(n) = 5e(n) - 6 d(n)$$

d)
$$x(n) = 3 \times 3^{n} + 2 \times (-1)^{n} = 3^{n+1} + 2 \times (-1)^{n}$$

e)
$$X(z) = 3 z^{-2} \times \frac{z}{(z-1)^2}$$
. On reconnaît la formule du retard: $z^{-2} \times Y(z)$.

Donc on a un signal final qui va être retardé de 2. C'est la puissance de z qui nous l'indique.

Or $3\frac{z}{(z-1)^2}$ a pour original 3 r(n). Donc on va avoir un retard de 2 sur 3 r(n). Ainsi, l'original de X(z) = $3z^{-2} \times \frac{z}{(z-1)^2}$ sera : x(n) = 3 r(n - 2) pour n \geq 2

f)
$$Y(z) = -z^{-3} \times \frac{z}{z+6}$$
: On reconnaît la formule du retard: $z^{-3} \times Y(z)$.

Donc on a un signal final qui va être retardé de 3. C'est la puissance de z qui nous l'indique.

Or $-\frac{z}{z+6}$ a pour original – (-6)ⁿ. Donc on va avoir un retard de 3 sur – (-6)ⁿ.

Ainsi, l'original de Y(z) = $-z^{-3} \times \frac{z}{z+6}$ sera : y(n) = $-(-6)^{n-3}$ pour n ≥ 3

g) T(z) = $z^{-1} \times \frac{z}{z-1}$: On reconnaît la formule du retard: $z^{-1} \times X(z)$.

Donc on a un signal final qui va être retardé de 1. C'est la puissance de z qui nous l'indique.

Or $\frac{z}{z-1}$ a pour original e(n). Donc on va avoir un retard de 1 sur e(n).

Ainsi, l'original de $T(z) = z^{-1} \times \frac{z}{z-1}$ sera : t(n) = e(n-1) pour $n \ge 1$

4.1. EXERCICE – ORIGINAL D'UN SIGNAL (suite)

h) $Y(z) = \frac{-4}{z-2} = -4 \times z^{-1} \times \frac{z}{z-2}$. On reconnaît la formule du retard: $z^{-1} \times X(z)$. Donc on a un signal final qui va être retardé de 1. C'est la puissance de z qui nous l'indique.

Or $-4\frac{z}{z-2}$ a pour original -4× 2^n . Donc on va avoir un retard de 1 sur -4× 2^n

Ainsi, l'original de Y(z) = $\frac{-4}{z-2}$ = -4× z^{-1} × $\frac{z}{z-2}$ sera :

$$y(n) = -4 \times 2^{n-1} e(n-1) = -4 \times 2^{n-1} si n \ge 1$$

4.2. EXERCICE – AVEC UNE FONCTION DE TRANSFERT

1/ On applique la transformée en Z de chaque côté de l'égalité de la relation (1) : $y_n - 3y_{n-1} = x_n$

On a donc : $Y(z) - 3z^{-1}Y(z) = X(z)$

Comme on veut $F(z) = \frac{Y(z)}{X(z)}$, on doit isoler Y(z) donc on va factoriser par Y(z) dans la partie de gauche.

$$Y(z) - 3 z^{-1}Y(z) = X(z) \Rightarrow Y(z) (1 - 3 z^{-1}) = X(z) \Rightarrow \frac{Y(z)}{X(z)} = \frac{1}{1 - 3z^{-1}} = \frac{1}{1 - \frac{3}{z}}$$

On va donc tout multiplier par z, numérateur et dénominateur.

Alors
$$\frac{Y(z)}{X(z)} = \frac{z}{z-3} = F(z)$$

2/ a) Si
$$x_n = d_n$$
 alors $X(z) = 1$ donc $F(z) = \frac{Y(z)}{X(z)} = \frac{Y(z)}{1} = \frac{z}{z-3} \implies Y(z) = \frac{z}{z-3}$

2/ b) si $Y(z) = \frac{z}{z-3}$ alors on reconnaît une transformée en Z du type : $\frac{z}{z-a}$ donc $y(n) = 3^n$.

4.2. EXERCICE - AVEC UNE FONCTION DE TRANSFERT (suite)

3/a) Si $x_n = 1$, l'échelon discrète alors $X(z) = \frac{z}{z-1}$ donc $F(z) = \frac{Y(z)}{X(z)} = \frac{z}{z-3}$ $\Rightarrow Y(z) = \frac{z}{z-3} X(z) = \frac{z}{z-3} \times \frac{z}{z-1} = \frac{z^2}{(z-3)(z-1)}$

3)b) d'après le logiciel, il nous informe que

$$Y(z) = \frac{z^2}{(z-3)(z-1)} = \frac{3z}{2(z-3)} - \frac{z}{2(z-1)}$$

On reconnaît 2 transformées en Z :

- une du type : $\frac{z}{z-a}$ avec a = 3
- et l'autre qui est celle de l'échelon unité discrète

Donc **y(n)** = $\frac{3}{2} \times 3^n - \frac{1}{2}$

4.3. EXERCICE – AVEC UNE ÉQUATION DE RÉCURRENCE

1/ Pour n = 2 : x(2) - 3x(2 - 1) + 2 x(2 - 2) = d(2 - 2)

$$\Rightarrow$$
 x(2) - 3x(1) + 2 x(0) = d(0) or x(0) = x(1) = 0 et d(0) = 1 Donc x(2) = 1

Pour
$$n = 3$$
: $x(3) - 3x(2) + 2x(1) = d(1)$ or $x(1) = 0$; $x(2) = 1$ et $x(2) = 0$

Donc x(3) = 3

Pour n = 4 :
$$x(4) - 3x(3) + 2x(2) = d(2)$$
 or $x(2) = 1$; $x(3) = 3$ et $d(2) = 0$

Donc x(4) = 7

$$2/x(n) - 3x(n-1) + 2x(n-2) = d(n-2)$$

$$\Rightarrow X(z) - 3z^{-1}X(z) + 2z^{-2}X(z) = z^{-2}.D(z)$$

On va tout multiplier par z^2 :

$$z^2X(z) - 3zX(z) + 2X(z) = 1 \Rightarrow (z^2 - 3z + 2)X(z) = 1 \Rightarrow X(z) = \frac{1}{z^2 - 3z + 2}$$

Or
$$\frac{1}{(z-1)(z-2)} = \frac{1}{z^2 - 2z - z + 2} = \frac{1}{z^2 - 3z + 2} = X(z)$$
.

4.3. EXERCICE - AVEC UNE ÉQUATION DE RÉCURRENCE (suite)

$$3/\frac{A}{z-1} + \frac{B}{z-2} = \frac{A(z-2)}{(z-1)(z-2)} + \frac{B(z-1)}{(z-1)(z-2)} = \frac{Az-2A+Bz-B}{(z-1)(z-2)} = \frac{(A+B)z-2A-B}{(z-1)(z-2)}$$
$$= \frac{1}{(z-1)(z-2)}$$

Donc par identification :
$$\begin{cases} A+B=0 \\ -2A-B=1 \end{cases} \Rightarrow \begin{cases} -A=1 \\ B=-A \end{cases} \Rightarrow \begin{cases} A=-1 \\ B=1 \end{cases}$$

Donc
$$\frac{1}{(z-1)(z-2)} = \frac{-1}{z-1} + \frac{1}{z-2}$$

4/ X(z) =
$$\frac{1}{(z-1)(z-2)}$$
 = $\frac{-1}{z-1}$ + $\frac{1}{z-2}$ = -1 × z^{-1} × $\frac{z}{z-1}$ + z^{-1} × $\frac{z}{z-2}$

Donc
$$x(n) = -e(n-1) + 2^{n-1} e(n-1)$$

Ou pour $n \ge 1$, $x(n) = -1 + 2^{n-1}$.

$$5/x(n) = -1 + 2^{n-1}$$
 alors

- $x(2) = -1 + 2^{2-1} = 1$;
- $x(3) = -1 + 2^{3-1} = 3$;
- $x(4) = -1 + 2^{4-1} = 7$

4.4. EXERCICE – AVEC UNE FONCTION DE TRANSFERT ANALOGIQUE

$$1/F(z) = H(\frac{10z-10}{z+1}) = \frac{1}{1+2(\frac{10z-10}{z+1})} = \frac{1}{\frac{z+1+20z-20}{z+1}} = \frac{z+1}{21z-19}$$

2/ A) Pour trouver les valeurs à placer penser à faire un tableau de valeurs !!!

>	n	0	1	2	3	
>	x(n)	x(0) = U(0)	x(0) = U(0,2)	x(0) = U(0,4)	x(0) = U(0,6)	
>		= 1	= 1	= 1	= 1	

4.4. EXERCICE – AVEC UNE FONCTION DE TRANSFERT ANALOGIQUE (suite)

2/ A) On reconnaît le signal e(n) : échelon discret.

2/ B) Comme x(n) = e(n), alors X(z) =
$$\frac{z}{z-1}$$

$$2/C)Y(z) = F(z) \times X(z) = \frac{z+1}{21z-19} \times \frac{z}{z-1}$$

$$=\frac{21z^2-19z-20z^2+20z}{(z-1)(21z-19)}=\frac{z^2+z}{(z-1)(21z-19)}=\frac{(z+1)z}{(z-1)(21z-19)}=Y(z)$$

4/ D'après la question 3/, Y(z) =
$$\frac{z}{z-1} - \frac{20}{21} \left(\frac{z}{z - \frac{19}{21}} \right)$$

donc y(n) = **e(n)** -
$$\frac{20}{21}$$
 × $(\frac{19}{21})^n$