УДК 004.032.26

Козлов В.В. 1 , Льовкін В.М. 2 , Олійник А.О. 3

- ¹ студ. гр. КНТ-137 НУ «Запорізька Політехніка»
- ² канд. техн. наук, доц. НУ «Запорізька Політехніка»

ВИКОРИСТАННЯ НЕЙРОМЕРЕЖЕВИХ МОДЕЛЕЙ VGGNET В ЗАДАЧІ КЛАСИФІКАЦІЇ ЗОБРАЖЕНЬ

На даний момент застосування та використання нейронних мереж для вирішення задачі класифікації зображень ϵ одним з передових напрямків розвитку технологій машинного навчання. Для вирішення такої задачі прийнято використовувати підвиди згорткових нейронних мереж.

Згорткова нейронна мережа — це алгоритм глибокого навчання, який може приймати вхідне зображення, призначати важливість різним аспектам або об'єктам на зображенні та здатний диференціювати один об'єкт від іншого за рахунок механізмів, подібних зоровій корі [1].

Головною особливістю мережі ϵ наявність операції згортки [2]. В такій архітектурі кожен мережевий рівень виступа ϵ в якості фільтра виявлення на наявність певних ознак або шаблонів, присутніх у вхідних даних.

Згорткова нейронна мережа ϵ багатошаровою мережею без зворотних зв'язків. В загальному випадку її структура складається з таких шарів (рис. 1): вхідний (input), згортковий (convolutional), агрегувальний (pooling), згладжувальний (flatten), повнозв'язний (fully connected), вихідний (ouput).

Рисунок 1 – Загальна архітектура згорткової нейронної мережі

В якості функцій активації нейронів застосовується ReLU та Softmax (для вихідного шару). Для навчання найчастіше використовується метод зворотного поширення помилки.

Підвидом згорткової нейронної мережі ϵ сімейство моделей VGGNet, запропонованих вченими Оксфордського університету Кареном Сімоняном та Ендрю Зіссерманом в 2014 році [3].

³ канд. техн. наук, доц. НУ «Запорізька Політехніка»

Усі конфігурації VGG моделей мають загальну архітектуру і розрізняються лише кількістю шарів з вагами (рис. 2).

VGG-11	VGG-11 (LRN)	VGG-13	VGG-16-1	VGG-16	VGG-19
11 вагових шарів	11 вагових шарів	13 вагових шарів	16 вагових шарів	16 вагових шарів	19 вагових шарів
		Вхідний шар (224 × 2	24 RGB зображения)		
Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64
	LRN	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64	Згортка 3×3×64
		Максимізацій	не агрегувания		
Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128
		Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128	Згортка 3×3×128
		Максимізацій	не агрегування		
Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256
Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256	Згортка 3×3×256
			Згортка 1×1×256	Згортка 3×3×256	Згортка 3×3×256
					Згортка 3×3×256
		Максимізацій	не агрегування		
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512
			Згортка 1×1×512	Згортка 3×3×512	Згортка 3×3×512
					Згортка 3×3×512
		Максимізацій	не агрегувания		
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512
Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512	Згортка 3×3×512
			Згортка 1×1×512	Згортка 3×3×512	Згортка 3×3×512
					Згортка 3×3×512
			не агрегувания		
			яяй шар ×4096		
		Повноз'єдная	ний шар ×4096		
		Повноз'єдная	ний шар ×1000		
	Ho	рмалізована експонен	ціальна функція (Soft	nax)	

Рисунок 2 – Архітектура моделей VGGNet

В якості вхідних даних модель приймає RGB зображення розміру 224х224 пікселів. Зображення проходить через послідовність згортальних шарів, в яких використовуються фільтри з дуже маленьким рецептивним полем розміру 3х3. Просторова агрегація здійснюється за допомогою п'яти тах рооlіпд шарів на вікні розміру 2х2 з кроком 2, які розташовано за одним із згортальних шарів. Після згортальних шарів розміщено три повнозв'язних шари та softmax шар. В якості функцій активації нейронів застосовується ReLU.

Ефективність та перспективність використання VGG архітектури для вирішення задачі класифікації зображень доведено в ILSVRC [4], де моделі сімейства VGGNet досягли одного з найкращих результатів точності розпізнавання, випереджаючи навіть мережу GoogleNet.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- 1. Saha S. A Comprehensive Guide to Convolutional Neural Networks the ELI5 way [Electronic resource] / S. Saha. Access mode: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
- 2. Субботін С.О. Нейронні мережі: теорія та практика: навч. посіб. / С.О. Субботін. Житомир: Вид. О.О. Євенюк, 2020. 184 с.
- 3. Very Deep Convolutional Networks [Electronic resource]. Access mode: https://arxiv.org/abs/1409.1556/
- $4. \ ImageNet \ [Electronic \ resource]. Access \ mode: \ http://www.imagenet.org/challenges/LSVRC/$