Datenkommunikation

Grundlagen von Rechnernetzen, Teil 2

Wintersemester 2011/2012

Einordnung

1	Grundlagen von Rechnernetzen, Teil 1		
2	Grundlagen von Rechnernetzen, Teil 2		
3	Transportzugriff		
4	Transportschicht, Grundlagen		
5	Transportschicht, TCP (1)		
6	Transportschicht, TCP (2) und UDP		
7	Vermittlungsschicht, Grundlagen		
8	Vermittlungsschicht, Internet		
9	Vermittlungsschicht, Routing		
10	Vermittlungsschicht, Steuerprotokolle und IPv6		
11	Anwendungsschicht, Fallstudien		
12	Mobile IP und TCP		

Überblick

1. Sicherungsschicht

- Aufgaben
- XON/XOFF-Protokoll
- Kodierung (Quellen-, Kanalkodierung)

2. Buszugriffsverfahren und Ethernet

- Überblick
- CSMA-Protokolle
- Ethernet

Aufgaben

- Gruppierung des übertragenen Bitstroms in logische Einheiten
- Fehlererkennung (Prüfsummen) und ggf. Fehlerkorrektur
- Ende-zu-Ende-Verbindung zwischen Rechnern/Knoten

DL-Instanzen

 Schicht-2-Instanzen verwalten üblicherweise Empfangspuffer und auch Sendepuffer

Typische Schicht-2-Protokolle

- HDLC
- SDLC
- BSC
- PPP

Beispiel: Flusskontrolle mit XON/XOFF-Protokoll

Quellen- und Kanalkodierung

Quellenkodierung

- Aufgabe: Information mit möglichst geringer Bitrate übertragen
- Datenkomprimierung
 - Wichtig vor allem bei Audio- und Videoströmen
 - Verlustbehaftete Kompression
 - Quellenkodierungstechniken
 - Semantik des Bitstroms wird ausgewertet und für die Komprimierung genutzt
 - Z.B. JPEG (Bilder), MP3 (Audio), MPEG (Video)
 - Verlustfreie Kompression
 - Entropiekodierungstechniken
 - Manipulation des Bitstroms, ohne Betrachtung der Semantik
 - Z.B. einfache Lauflängenkompression
 - AAAABBBCDDDD → 4A3BC4D

Kanalkodierung

- Aufgabe: Übertragungsfehler durch Redundanz erkennen und behandeln
 - Fehlererkennende und fehlerkorrigierende Codes
 - Nutzung auch bei der Speicherung von Daten (z.B. Hamming-Code)

Verfahren

- Paritätsbits (einfache Paritätsbits und zweidimensionale Parität)
- Prüfsummen (auch in IP für Header genutzt)
- Zyklische Redundanzcodes (CRC = Cyclic Redundancy Check)

Kanalkodierung – Zweidimensionale Parität

- 7-Bit-Code wird um ein Paritätsbit ergänzt (even oder odd)
- Über alle Bytes einer Nachricht
- Even Parity = auf gerade 1-Bit-Anzahl erweitern
 - $-0101100 \rightarrow 0101100$
- Ein zusätzliches Paritätsbyte für die gesamte Nachricht (in Schicht 2 auch Frame genannt)
- Beispiel: (5 Bytes im Frame) → 35 Nutzdaten-Bits, 13 Bits Redundanz

Kanalkodierung – CRC (1)

- Gute Fehlererkennungsfähigkeit bei k redundanten Bits in einer n-Bit-Nachricht auch wenn k << n (entschieden kleiner)
- Beispiel:
 - Ethernet nutzt CRC-Code: Bei 1500-Byte-Frame = 12000 Bit wird mit 32-Bit-langem CRC der Großteil der Fehler gefunden (n = 12000, k = 32)
- Wie wird es gemacht?
 - Senden und Empfangen von Nachrichten durch Austausch von "Polynomen"
 - Nachricht mit n+1 Bits wird durch ein Polynom vom Grad n repräsentiert
 - Bits der Nachricht werden als Koeffizienten in den Termen verwendet
 - Beispiel:
 - Nachricht: 11011010
 - $M(x) = x^7 + x^6 + x^4 + x^3 + x^4 + x^$
 - Divisor-Polynom G(x) vom Grad k wird vereinbart → Auswahl wichtig für die Fehlererkennung
 - Beispiel: $G(x) = x^3 + x^2 + 1 (k = 3)$
 - Gesendet werden bei einer Nachricht der Länge n+1 insgesamt n+1+k Bits
 - Die redundante Nachricht wird als Polynom T(x) bezeichnet
 - T(x) muss durch G(x) ohne Rest teilbar sein

Kanalkodierung – CRC (2)

- Grundlage: Modulo-2-Arithmetik
 - Polynom B(x) ist durch Divisor-Polynom G(x) teilbar, wenn B(x) einen höheren Grad als G(x) hat
 - Polynom B(x) ist einmal durch Divisor-Polynom G(x) teilbar, wenn
 B(x) den gleichen Grad als G(x) hat
 - Rest einer Division wird durch Subtraktion B(x) G(x) ermittelt
 - Subtraktion wird durch XOR-Operationen auf korrespondierende Koeffizientenpaare ermittelt

Beispiel:

```
- B(x) = x^3 + x \rightarrow 1010

- G(x) = x^3 + x^2 + 1 \rightarrow 1101

1010

1101 XOR

-----

0111 = Rest
```

Kanalkodierung – CRC (3)

Algorithmus:

- T(x) = M(x) ergänzt um k 0-Bits (M(x) = Nachricht)
- Dividiere T(x) durch G(x)
- Subtrahiere den Rest der Division von T(x) → Ergebnis ist die um die Prüfsumme ergänzte Nachricht
- Übertrage T(x) an Empfänger
- Empfänger teilt T(x) durch G(x) und muss bei Fehlerfreiheit 0 als Rest erhalten, sonst ist die Übertragung fehlerhaft

Es lässt sich zeigen:

- T(x) ist durch G(x) teilbar!
- Denn es gilt für jede Division: Wenn man vom Dividenden den Rest abzieht, ist das Ergebnis durch den Divisor teilbar."
 - Beispiel: 101 : 25 ist 4 Rest $1 \rightarrow 101 1 = 100$ (ist durch 25 teilbar)

Kanalkodierung – CRC (4)

Beispiel:

-
$$M(x) = x^7 + x^4 + x^3 + x \rightarrow 10011010$$

-
$$G(x) = x^3 + x^2 + 1 = 1101$$

1 0 1

1. Bit der Division = 1, 1 1 0 1 da Dividend und Divisor ---------den gleichen Grad $\begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \end{pmatrix}$ aufweisen

T(x) wird übertragen und ist durch G(x) ohne Rest teilbar! (Nachweis sieht unten)

sein

T(x) = 100 11010 101

Angehängter Rest muss vom Grad des Generatorpolynoms

Mandl/Bakomenko/Weiß Datenkommunikation Seite 15

(Rest)

Kanalkodierung – CRC (5)

- Sender und Empfänger müssen natürlich G(x) kennen
- Ermittlung von G(x) (CRC-Polynom = Generator-Polynome)
 so, dass die Wahrscheinlichkeit sehr gering ist, eine falsche
 Nachricht so zu teilen, dass der Rest 0 ist
- Wichtige CRC-Polynome:
 - CRC-CCITT wird im HDLC-Protokoll verwendet

$$x^{16} + x^{12} + x^5 + 1$$

- CRC-32 wird im Ethernet-Protokoll verwendet

$$x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + 2 = x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^4 + x^5 + x^5$$

- Ergänzung zum Verständnis: Modulo-2 Arithmetik
 - M = Daten, R = Divisionsrest, G = Divisor (Generatorpolynom), Q = Quotient
 - $M * 2^n / G = Q + R / G => M * 2^n + R / G = Q$ (R/G + R/G = 0)!!
 - Dies lässt sich zeigen, da in Modulo-2 die Addition gleicher Zahlen immer 0 ergibt

Überblick

1. Sicherungsschicht

- Aufgaben
- XON/XOFF-Protokoll
- Kodierung (Quellen-, Kanalkodierung)

2. Buszugriffsverfahren und Ethernet

- Überblick
- CSMA-Protokolle
- Ethernet

Buszugriffsverfahren

- Bus als gemeinsam genutztes Medium
- Einteilung der Zugriffsverfahren

Zugriffsverfahren für Mehrfachzugriffskanäle ALOHA und CSMA

- ALOHA (Protokoll, das im ALOHAnet genutzt wurde)*
 - Keine Prüfung des Kanals vor dem Senden
 - Nicht so effektiv
 - Varianten: slotted (feste Zuordnung von Zeitschlitzen) und pure (beliebiges Senden)
 - Pure ALOHA ist nicht kollisionsfrei

CSMA

- Prüfung des Kanals vor dem Senden
 - Trägererkennungsprotokoll (Carrier Sense)
- Varianten: non-persistent (Kanal frei -> Senden) und p-persistent (Kanal frei → Senden mit WS p)
- CSMA ist nicht kollisionsfrei
- *) ALOHAnet = erstes Funk-basiertes Rechnernetz, nutzt ALOHA-Protokoll zur Verbindung der vielen Inseln um Hawaii

CSMA-Protokolle

- Vorgänger: ALOHA (Hawaii)
- Non-Persistent CSMA
- p-persistent CSMA
 - Sonderfall: 1-persistent CSMA
- CSMA/CD

CSMA/CD =
Carrier Sense
Multiple Access
Collision Detection

CSMA-Protokolle

Non-Persistent CSMA

- Kanal frei → Senden
- Kanal belegt → Zufällige Zeit warten, dann erneut versuchen

CSMA-Protokolle

p-persistent CSMA

- Wenn Kanal frei ist, wird mit WS p gesendet und mit WS 1-p eine zufällige Zeit gewartet und dann erneut gesendet
- Bei belegtem Kanal beobachtet Station zunächst den Kanal (siehe Station S2)

CSMA/CD =
Carrier Sense
Multiple Access
Collision Detection

S1, S2 = Stationen

IEEE 802.x

- Andere Klassifizierung von Buszugriffsverfahren:
 - Wettkampfverfahren
 - Token-Passing-Verfahren
 - Distributed-Queue-Dual-Bus-Verfahren (DQDB)
- IEEE-Standardisierungsgruppen

Schicht 2	LLC (Logical Link Control)	IEEE 802.2 Logical Link Control					
S S	MAC (Media Access Control)		IEEE	IEEE	IFFF	IEEE	
Schicht 1	Bitübertragung	IEEE 802.3 Ethernet	802.4 Token Bus	802.5 Token Ring	IEEE 802.11 WLAN	IEEE 802.6 DQDB	

Ethernet Überblick

- Ethernet wurde Anfang der 70er Jahre von Bob Metcalfe entwickelt und als IEEE 802.3-Standard bekannt
- Die Architektur basiert auf der Definition von Funktionen auf den beiden untersten Schichten des ISO/OSI-Referenzmodells für
 - die Festlegung der physikalischen Eigenschaften der benötigten Komponenten
 - die Zugriffsverfahren der Stationen auf das Netz und
 - den Aufbau der versendeten Nachrichten

Zugriffsverfahren Mehrfachzugriffskanäle, Grundprinzip

- Kein zentraler Controller
- Alle Stationen sind gleichberechtigt und entscheiden eigenständig
- Gesendete Signale pflanzen sich in beide Richtungen des Kanals fort
- Wettkampfverfahren erforderlich!
- Kollisionen möglich

Zugriffsverfahren für Ethernet CSMA, Non-persistent

- Kanalzugriff bei non-persistent CSMA
- Vor dem Senden wird geprüft, ob der Kanal frei ist
- Ist Kanal frei, wird auf alle Fälle gesendet

Zugriffsverfahren CSMA/CD, Grundprinzip

- MA = "mehrfacher Zugriff" von Rechnern auf ein Übertragungsmedium (Multiple Access)
- CS = "Befühlen des Mediums": (Carrier Sense)
 - Sendewillige Station prüft, ob Kabel nicht gerade von einem anderen Rechner benutzt wird
 - Sendewillige Stationen hören den Bus ab und belegen ihn, wenn er frei ist (wenn keine andere Station bereits sendet)
- Im Kollisionsfall Abbruch des Sendevorgangs und Wiederholung
- Stochastisches Verfahren
 - für zeitkritische Anwendungen nicht geeignet
 - nicht deterministisch

Ethernet-Grundprinzip

- CSMA/CD- Zugriffsverfahren auf das Medium (dezentrale Steuerung)
 - Medium wird von allen Stationen unabhängig abgehört, wenn Medium frei (keine Signalenergie) darf Station senden
 - **Kollision** möglich → Sendungen werden eingestellt
 - **Backoff**: Stationen warten eine bestimmte, zufällige Zeit → verhindert erneute Kollision
- Genaue Bezeichnung des Verfahrens: 1-persistent CSMA/CD mit exponentiellem Backoff:
 - Bei freiem Medium wird sofort gesendet (1-persistent)
 - Bei Kollision wird zufällige Zeit gewartet (Rückzieher)
 - Nach jeder Kollision wird die Wartezeit bis zum 10. Versuch verdoppelt (binär exponentielles Wachstum)
 - Nach 16 Versuchen erfolgt Abbruch

Kollisionen im Ethernet

Ethernet: Ablauf

Backoff-Algorithmus:

- Algorithmus bestimmt nach einer Kollision eine Zeitspanne zum Warten, bevor sie einen neuen Sendeversuch startet
- Die Zeitspanne ist ein Vielfaches von einem so genannten "Slot" der z.B. 51,2 µs lang ist (je nach Ethernet-Typ, hier bei 10 Mbit/s)

Einordnung in den IEEE 802-Standard

- Die Architektur basiert auf der Definition von Funktionen auf den beiden untersten Schichten des ISO/OSI-Referenzmodells für
 - die Festlegung der physikalischen Eigenschaften
 - die Zugriffsverfahren der benötigten Stationen auf das Netz
 - den Aufbau der versendeten Nachrichten
- Unterschiedliche Arbeitsgruppen der IEEE 802.3

Ethernet-Laufzeitbedingungen

- Mindestrahmenlänge erforderlich, um Kollisionen zu erkennen → Mindestrahmenlänge 64 Byte bei 10 Mbit/s
- Ethernet-Standard begrenzt die Entfernung zwischen zwei Knoten
- Signallaufzeit muss bedacht werden
 - Bitzeit ist 0,1 Mikrosekunden bei 10 Mbit/s

Kollisionsdomänen

Quelle: Stein (2004): Taschenbuch Rechnernetze und Internet,

Fachverlag Leipzig, S. 202

Kollisionsdomänen

2 Kollisionsdomänen über Bridge verbunden

2 Kollisionsdomänen über Router verbunden

Quelle: Stein (2004): Taschenbuch Rechnernetze und Internet,

Fachverlag Leipzig, S. 202

Basisbandübertragung und Manchesterkodierung

Basisbandübertragung

- Netzwerkadapter schiebt das digitale Signal direkt auf das Medium
- Keine Verschiebung des Signals in ein anderes Frequenzband wie bei ADSL

Leitungskodierung

Manchesterkodierung wird verwendet (ältere Ethernets)

Paketaufbau

Paketaufbau: Physikalischer Aufbau (MAC Frame)

- Die Struktur des Ethernet Pakets ist grundsätzlich für alle Übertragungsraten gleich: (vgl.:Riggert, 2001)

Präambel	7 Byte	Dient der Synchronisation der Station auf dem gemeinsamen Kabel
Start Frame Delimiter	1 Byte	SFD markiert den Anfang des Pakets
Zieladresse	6 Byte	Zur Identifikation des Empfängers: z. B. 00 00 0C 60 50 01 (16)
Quelladresse	6 Byte	HW-Adresse des Senders z. B. 00 06 7C 67 45 31 (16)
Pakettyp oder Längenfeld	2 Byte	IP 0800 (16) ARP 0806 (16)
Nutzdaten und Padding	0 Byte – 1500 Byte	Falls weniger als 46 Byte Nutzdaten, wird mit Füllbyte aufgefüllt (Padding)
Prüfsumme CRC	4 Byte	Cyclic Redundancy Check

 ARP=Address Resolution Protocol übersetzt die IP-Adresse eines Rechners in eine MAC-Adresse → Siehe Internet-Protokolle

Einschub: Ethernet-Broadcast

- Broadcast wird von Ethernet unterstützt
- In IPv4: Limited Broadcast wird in Ethernet-LANs auf Ethernet-Brodcast abgebildet

Ethernet: Familie von LAN-Konzepten

- Ethernet ist eine Familie von LAN-Konzepten
- Gemeinsamkeiten:
 - Rahmenaufbau
 - Zugriffsverfahren (CSMA/CD, nicht mehr ab 10-Gbit-Ethernet)
- Topologie:
 - Anfänglich: Bustopologie mit Koaxialkabeln
 - Danach: Sterntopologie mit Twisted-Pair-Kabeln und Multiport-Repeater (Hubs)
 - **Heute**: Sterntopologie mit bidirektionalen, geschalteten Punkt-zu-Punkt-Verbindungen (Switches)
 - Vollduplex

Beispiele für Ethernet-Varianten

- 10Base5 (thicknet, Koaxialkabel)
- 10Base2 (cheapernet, Koaxialkabel)
- 10BaseT2 (2 Paare UTP Kat. 3,4 oder 5)
- 10BaseF (Glasfaser, 2 optische Fasern)
- 1000BaseT4 (4 Paare UTP Kat. 5 oder besser)
- 100BaseTX (2 Paare UTP Kat. 5 oder STP)

10Base5 Bustopologie

- Ausgangspunkt für Ethernet-Netzwerke ("gelbes Kabel")
- Alle Stationen sind über Transceiver an den Kanal gekoppelt
- Max. Segmentlänge: 500m
- Mindestabstand zwischen 2 Stationen: 2,5m
- Max. Anzahl der Stationen pro Segment: 100
- Max. Netzausdehnung: 2500 m (= 5 Segmente über 4 Repeater)
- Übertragungsgeschwindigkeit: 10 Mbit/s

10Base5 Verkabelung: Koaxialkabel

■ 50 Ohm

10Base2 Bustopologie

- Netze auf der Basis dieses Kabeltyps schließen die Stationen direkt an das Kabel gemäß BNC-Technik an
- BNC (Bayonet-Neill-Concelmann)-Stecker verbinden 2 Koaxialkabel
- Wegen Einsparung von Transceiver und -kabel preiswerter
- Max. Segmentlänge: 185m
- Mindestabstand zwischen 2 Stationen: 0,5m
- Max. Anzahl der Stationen pro Segment: 30
- Max. Netzausdehnung: 925 m (5 Segmente über 4 Repeater)
- Übertragungsgeschwindigkeit: 10 Mbit/s
- Heute: Nicht mehr relevant!

Fast Ethernet: 100BaseT,..., 100BaseFX

- Varianten: FX, TX, T2, T4:
 - F → Glasfaserverkabelung
 - T → Twisted-Pair-Verkabelung
 - TX nutzt 2 Doppeladern (für Etagenverkabelung)
 - FX nutzt 2 Multimode-Fasern (Sekundärverkabelung)
 - T2/T4 nicht praxisrelevant, kaum genutzt
- Alle Varianten verwenden eine Sterntopologie
- Zugriffsverfahren und Rahmenformat nach 802.3
- Segmentlänge: 100 m
- Netzwerkausdehnung: 200 m, bei FX: 400 m
- Übertragungsgeschwindigkeit: 100 Mbit/s
- Vollduplex-Unterstützung → 200 Mbit/s

Verkabelung für 10BaseT Twisted Pair

- Twisted Pair ist die generelle Bezeichnung für Kupferkabel mit einem oder mehreren verdrillten Leitungspaaren;
- Fast alle Dienste benötigen zur Signalübertragung 2 Paare (4 Adern):
 - 1 Paar für das Senden
 - 1 Paar für das Empfangen

Verkabelung für 10BaseT Twisted Pair

- Durchbruch von Twisted Pair in Netzwerken zu Beginn der 80er
 Jahre; Ersatz für die teuren Koaxialkabel
- Um eine Störung der Signale auf den Leitungspaaren zu verhindern, sind die Adern symmetrisch gegeneinander verdrillt
- Dadurch neutralisieren sich die elektromagnetischen Kräfte, die von stromleitenden Adern ausgehen
- Beim Kabelaufbau werden mehrere Varianten unterschieden:
 - UTP
 - STP
 - S/UTP
 - S/STP
 - S/FTP, F/FTP oder SF/FTP (Screened Foiled Twisted Pair)
- Sie unterscheiden sich nach der Art der Abschirmung

Gigabit- und 10Gigabit-Ethernet Varianten

- 1000BaseT (4 Paare UTP Kat. 5, Distanz: 100 m)
- 1000BaseSX (Glasfaser, Distanz: 10 km)
- 10Gbase-LR (4 Paare UTP Kat. 5 oder besser)

...

Ethernet: LAN-Switching und VLAN

Strukturierte Verkabelung Beispiel: Verteilerkasten

Switch

- Arbeitet auf der Schicht 2 und verbindet mehrere Segmente
- Exklusive Leitung je Port möglich:
 - Jeder Port ist eine eigene Kollisionsdomäne
 - Verzicht auf "shared Medium"
 - Keine Kollisionsbehandlung mehr erforderlich
 - Trotzdem noch CSMA/CD → eigentlich nicht mehr notwendig
- MAC-Schicht hat zusätzliche Flusssteuerung
 - Empfänger sendet Pausenrahmen zur Vermeidung von Pufferüberläufen im Switch
- Ein Switch kann in einem Ethernet-LAN verschiedene Gruppen schalten.
 - Z.B. können 100 Mbit/s-Segmente mit 10 Mbit/s-Segmente verbunden werden

Hub

- Verbindet mehrere Segmente eines LANs
- Besitzt mehrere Ports
- Kommt ein Paket an einem Port an, wird es an alle anderen Ports weitergeleitet
- Ein passiver Hub überträgt Daten von einem Port an alle anderen
- Ein intelligenter Hub beinhaltet Features, die es dem Administrator ermöglichen, den Verkehr des Hub zu überwachen und jeden Port im Hub zu konfigurieren
- Ein switching Hub liest die Zieladresse und gibt das Paket an den richtigen Port weiter

Switches und Hubs Anwendungsbeispiel

Switches und Hubs Hub als Sternkoppler, Beispiel

Sterntopologie

Rückblick: That's it!

1. Sicherungsschicht

- Aufgaben
- XON/XOFF-Protokoll
- Kodierung (Quellen-, Kanalkodierung)

2. Buszugriffsverfahren und Ethernet

- Überblick
- CSMA-Protokolle
- Ethernet