Causal Inference

MIXTAPE SESSION

Roadmap

Counterfactuals and causality
Causality and models
Potential outcomes
Randomization and selection bias
Randomization inference

Directed Acyclic Graphs
Graph notation
Backdoor criterion
Collider bias
Front door criterion
Concluding remarks

Demand for Learning HIV Status

- Rebecca Thornton implemented an RCT in rural Malawi for her job market paper at Harvard in mid-2000s
- At the time, it was an article of faith that you could fight the HIV epidemic in Africa by encouraging people to get tested; but Thornton wanted to see if this was true
- She randomly assigned cash incentives to people to incentivize learning their HIV status
- Also examined whether learning changed sexual behavior.

Experimental design

- Respondents were offered a free door-to-door HIV test
- Treatment is randomized vouchers worth between zero and three dollars
- These vouchers were redeemable once they visited a nearby voluntary counseling and testing center (VCT)
- Estimates her models using OLS with controls

Why Include Control Variables?

 To evaluate experimental data, one may want to add additional controls in the multivariate regression model. So, instead of estimating the prior equation, we might estimate:

$$Y_i = \alpha + \delta D_i + \gamma X_i + \eta_i$$

- There are 2 main reasons for including additional controls in the regression models:
 - 1. Conditional random assignment. Sometimes randomization is done conditional on some observable (e.g., gender, school, districts)
 - 2. Exogenous controls increase precision. Although control variables X_i are uncorrelated with D_i , they may have substantial explanatory power for Y_i . Including controls thus reduces variance in the residuals which lowers the standard errors of the regression estimates.

Table: Impact of Monetary Incentives and Distance on Learning HIV Results

	1	2	3	4	5
Any incentive	0.431***	0.309***	0.219***	0.220***	0.219 ***
	(0.023)	(0.026)	(0.029)	(0.029)	(0.029)
Amount of incentive		0.091***	0.274***	0.274***	0.273***
		(0.012)	(0.036)	(0.035)	(0.036)
Amount of incentive 2			-0.063***	-0.063***	-0.063***
			(0.011)	(0.011)	(0.011)
HIV	-0.055*	-0.052	-0.05	-0.058*	-0.055*
	(0.031)	(0.032)	(0.032)	(0.031)	(0.031)
Distance (km)				-0.076***	
				(0.027)	
Distance ²				0.010**	
				(0.005)	
Controls	Yes	Yes	Yes	Yes	Yes
Sample size	2,812	2,812	2,812	2,812	2,812
Average attendance	0.69	0.69	0.69	0.69	0.69

Figure: Visual representation of cash transfers on learning HIV test results.

Results

- Even small incentives were effective
- Any incentive increases learning HIV status by 43% compared to the control (mean 34%)
- Next she looks at the effect that learning HIV status has on risky sexual behavior

Figure: Visual representation of cash transfers on condom purchases for HIV positive individuals.

Table: Reactions to Learning HIV Results among Sexually Active at Baseline

Dependent variables:	Bought condoms		Number of condoms bought	
	OLS	IV	OLS	IV
Got results	-0.022	-0.069	-0.193	-0.303
Cat regulta v 1 111/	(0.025)	(0.062)	(0.148)	(0.285)
Got results × HIV	0.418*** (0.143)	0.248 (0.169)	1.778*** (0.564)	1.689** (0.784)
HIV	-0.175** (0.085)	-0.073 (0.123)	-0.873 (0.275)	-0.831 (0.375)
Controls Sample size Mean	Yes 1,008 0.26	Yes 1,008 0.26	Yes 1,008 0.95	Yes 1,008 0.95

Results

- For those who were HIV+ and got their test results, 42% more likely to buy condoms (but shrinks and becomes insignificant at conventional levels with IV).
- Number of condoms bought very small. HIV+ respondents who learned their status bought 2 more condoms