Chapitre 8 : statistiques

Seconde 11

Les statistiques servent à décrire une masse de données au moyen de quelques paramètres, nombres (par exemple la moyenne, la médiane, les quartiles).

1 Vocabulaire et présentation d'une série statistique

Population : C'est l'ensemble que l'on étudie. Par exemple si l'on s'intéresse à la taille des élèves d'une classe la population est l'ensemble de tous les élèves de la classe.

Caractère : Ce que l'on étudie (par exemple la taille dans l'exemple précédent) s'appelle le caractère de l'étude statistique.

1.1 Présentation d'une série statistique

Définition 1 Dans une population, l'effectif d'une valeur x_i est le nombre, noté n_i de personnes de la population présentant cette valeur pour le caractère.

On a déjà rencontré des séries statistiques présentées sous la forme d'un tableau d'effectif. **Exemple :** On représente ici le nombre d'enfants ayant moins de 5 ans dans une commune :

Age de l'enfant x_i	0	1	2	3	4	5
Nombre d'enfants n_i	180	117	153	148	112	119

L'effectif total est la somme de tous les effectifs. On le note souvent N. Ici N =

Définition 2 La fréquence f_i d'une valeur x_i est le quotient entre l'effectif de la valeur et l'effectif total :

$$f_i = \frac{\text{effectif de la valeur}}{\text{effectif total}}.$$

Définition 3 L'effectif cumulé d'une valeur x est le nombre d'individus de la population dont le caractère a une valeur inférieure ou égale à x.

La fréquence cumulée se détermine de manière similaire.

Exemple : Compléter le tableau suivant :

Age de l'enfant x_i	0	1	2	3	4	5
Nombre d'enfants n_i	80	117	153	78	212	119
Fréquence f_i						
Effectif cumulé croissant						
Fréquence cumulée croissante						

1.2 Premières représentations graphiques

2 Paramètres d'une série statistique

2.1 Moyenne d'une série statistique

On considère une série statistique d'effectif total N.

Définition 4 La moyenne d'une série statistique est la somme des N valeurs de la série divisée par N.

Exemple 0 : La moyenne de la série donnée par 1; 17; 5; 8; 65; 7; 42; 3 est :

Exemple 1 : Lors d'un tournoi de badminton, on note le nombre de matchs gagnés par les participants, on en tire le tableau de synthèse suivant :

Nombre de matchs gagnés		1	2	3
Effectif		22	21	13

Quel est le nombre moyen de match gagné par un joueur?

Exemple 2 : (cas d'une variable continue) Dans une maternité la masse à la naissance des bébés est donnée dans le tableau suivant :

Masse	[2;2,5[[2,5;3[[3;3,5[[3,5;4[
Centre de la classe				
Effectif	21	372	942	525

Calculer la masse moyenne des bébés. (on représentera chaque classe par son centre dans le calcul de la moyenne)

2.2 Médiane d'une série statistique

On considère une série statistique d'effectif total *N* que l'on suppose classée dans l'**ordre croissant**. On étudie un certain caractère.

Définition 5 La médiane d'une série statistique est est un nombre réel qui partage cette série en deux parties telles que :

- Au moins 50% des valeurs de la série sont inférieures ou égales à la médiane.
- Au moins 50% des valeurs de la série sont supérieures ou égales à la médiane.

On note généralement la médiane Me.

Méthode : Déterminer la médiane En pratique, pour déterminer la médiane, il faut :

- 1. ranger les N valeurs a_1, \ldots, a_n de la série dans l'ordre croissant,
- 2. Si N est pair, la médiane Me est la moyenne des deux valeurs "centrales" de la série. Autrement dit, si N=2p, $Me=\frac{a_p+a_{p+1}}{2}$,
 - Si N est impair, Me est la valeur centrale de la série. Autrement dit, si N=2p+1, $Me=a_{p+1}$.

Exemple : Il y a 36 élèves dans la classe de Ludwig. Son professeur d'histoire leur a communiqué les notes sur 20 obtenues au dernier devoir surveillé.

8;7;12;18;6;11;10;9;13;6;17;5;8;13;11;12;10;9;7;15;12;12;12;14;8;10;8;9;15;16;14;12;6;2;14;5.

Ludwig et ses amis Wolfgang et Hector ont eu respectivement 9, 10 et 11.

- 1. Quelle est la moyenne de la classe?
- 2. Ludwig, Wolfgang et Hector sont ils dans la première moitié ou la deuxième moitié de la classe?

2.3 Quartiles d'une série statistique

Définition 6 Le premier quartile d'une série statistique est la plus petite valeur de la série telle qu'au moins 25% (un quart) des valeurs de la série lui soit inférieures ou égales. On le note en général Q1.

Le **troisième quartile** d'une série statistique est la plus petite valeur de la série telle qu'au moins 75% (un quart) des valeurs de la série lui soit inférieures ou égales. On le note en général Q3.

L'écart interquartile est la différence Q3 - Q1.

Remarque : Contrairement à la médiane, les quartiles sont **nécessairement** des valeurs de la série.

Exemple:

On suppose que les notes à un contrôle dans une classe de 21 élèves sont les suivantes : 5 ; 14 ; 13 ; 16 ; 9 ; 8 ; 18 ; 2 ; 13 ; 12 ; 15 ; 12 ; 8 ; 6 ; 5 ; 17 ; 3 ; 19 ; 9 ; 13 ; 14.

- 1. Déterminer la moyenne de cette série.
- 2. Déterminer la médiane de cette série.
- 3. Déterminer le 1er quartile Q1 et le 3eme quartile Q3.