This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-80280 (P2002-80280A)

(43)公開日 平成14年3月19日(2002.3.19)

(51) Int.Cl.7		識別記号		FΙ			Ť	-7]-}*(参考)
C 0 4 B	35/52			C 0 4	B 41/88		ប	4G001
	35/565				•		v	4G032
	35/80				35/54		В	
	41/88						С	
							\mathbf{E}	
			審査請求	未請求	請求項の数24	OL	(全 20 頁)	最終頁に続く

(21)出願番号	特願2001-129070(P2001-129070)	(71)出顧人	000002130
			住友電気工業株式会社
(22) 出顧日	平成13年4月26日(2001.4.26)		大阪府大阪市中央区北浜四丁目5番33号
		(72)発明者	河合 千尋
(31)優先権主張番号	特願2000-189943 (P2000-189943)	9	兵庫県伊丹市昆陽北一丁目1番1号 住友
(32)優先日	平成12年6月23日(2000.6.23)		電気工業株式会社伊丹製作所内
(33)優先権主張国	日本 (JP)	(72)発明者	仲田 博彦
			兵庫県伊丹市昆陽北一丁目1番1号 住友
			重気工業株式会社伊丹製作所内
		(74)代理人	100083910
			弁理士 山本 正緒
		1	

最終頁に続く

(54) 【発明の名称】 高熱伝導性複合材料及びその製造方法

(57)【要約】

【課題】 熱膨張係数が小さく且つ熱伝導率が比較的高く、安価でヒートシンク材料として好適な複合材料を提供する。

【解決手段】 黒鉛粉末と、AgやCuを主成分とし、4A族、5A族、6A族元素から選ばれたTiなどを含む合金粉末とを混合し、真空下若しくはHe、Ar又は水素を含むガス雰囲気下に合金の融点以上で加熱し、黒鉛粒子表面にTiCなどの金属炭化物の被覆層を形成すると同時に焼結体とする。得られた複合材料は、相対密度が70%以上、室温での熱伝導率が220W/m·K以上、及び室温から200℃までの平均熱膨張係数が5~15×10⁻。/℃であり、半導体用シートシンクとして好適である。黒鉛粉末の代りに、炭素繊維又はSiCなどの炭化物粉末を用いることもできる。

【特許請求の範囲】

【請求項1】 表面に被覆層を有する複合炭素粒子、複 合炭素繊維、又は複合炭化物粒子からなる第一成分と、 銀及び/又は銅を含む金属からなる第二成分との複合材 料であって、上記第一成分である複合炭素粒子、複合炭 素繊維、又は複合炭化物粒子の表面に形成された被覆層 が、周期律表の4A族、5A族、6A族元素から選ばれ た少なくとも1種の金属の炭化物からなり、相対密度が 70%以上、少なくともある特定方向における室温での 熱伝導率が220♥/m·K以上、及び少なくともある 特定方向における室温から200℃までの平均熱膨張係 数が5~15×10- °/℃であることを特徴とする高 熱伝導性複合材料。

【請求項2】 前記第一成分が表面に被覆層を有する複 合炭素粒子であり、その炭素粒子の含有量が50~95 体積%であることを特徴とする、請求項1に記載の高熱 伝導性複合材料。

【請求項3】 前記第一成分が表面に被覆層を有する複 合炭素繊維であり、その炭素繊維の含有量が30~95 体積%であることを特徴とする、請求項1に記載の高熱 20 伝導性複合材料。

【請求項4】 前記第一成分が表面に被覆層を有する複 合炭化物粒子であって、その炭化物粒子の含有量が15 ~85体積%であることを特徴とする、請求項1に記載 の高熱伝導性複合材料。

【請求項5】 前記第一成分の表面に形成された被覆層 の厚さが0.01~3μmであることを特徴とする、請 求項1~4のいずれかに記載の高熱伝導性複合材料。

【請求項6】 前記第一成分の表面に形成された被覆層 の厚さが0.05~1μmであることを特徴とする、請 求項1~5のいずれかに記載の高熱伝導性複合材料。

【請求項7】 前記第一成分の表面に形成された被復層 が炭化チタンを主成分とすることを特徴とする、請求項 1~6のいずれかに記載の髙熱伝導性複合材料。

【請求項8】 前記第二成分が銀及び銅からなり、その 第二成分中の銅含有量が20体積%以下又は80体積% 以上であることを特徴とする、請求項1~7のいずれか に記載の高熱伝導性複合材料。

【請求項9】 相対密度が95%以上、少なくともある 特定方向における室温での熱伝導率が250W/m·K 以上であることを特徴とする、請求項1~8のいずれか に記載の高熱伝導性複合材料。

【請求項10】 相対密度が99%以上、少なくともあ る特定方向における室温での熱伝導率が270W/m· K以上であることを特徴とする、請求項1~8のいずれ かに記載の高熱伝導性複合材料。

【請求項11】 請求項1~10のいずれかに記載の高 熱伝導性複合材料を用いた半導体用ヒートシンク部材。

【請求項12】 請求項11の半導体用ヒートシンク部 材を用いた半導体装置。

【請求項13】 表面に被覆層を有する複合炭素粒子、 複合炭素繊維、又は複合炭化物粒子からなる第一成分 と、銀及び/又は銅を含む金属からなる第二成分との複 合材料の製造方法であって、

黒鉛粉末、炭素繊維、又は炭化物粉末を準備すると共 に、銀及び/又は銅を主成分とし、周期律表の4A族、 5A族、6A族元素から選ばれた少なくとも1種の金属 を含む合金粉末を準備する第1工程と、

これらの粉末の混合物を成形して成形体とする第2工程

その成形体を、0.0133Pa以下の真空下、若しく はヘリウム、アルゴン又は水素を含むガス雰囲気下にお いて、前記合金の融点以上の温度で加熱して、黒鉛粒 子、炭素繊維、又は炭化物粒子の表面に周期律表の4 A 族、5A族、6A族元素から選ばれた少なくとも1種の 金属の炭化物からなる被覆層を形成すると同時に、焼結 体とする第3a工程と、を含むことを特徴とする高熱伝 導率複合材料の製造方法。

【請求項14】 表面に被覆層を有する複合炭素粒子、 複合炭素繊維、又は複合炭化物粒子からなる第一成分 と、銀及び/又は銅を含む金属からなる第二成分との複 合材料の製造方法であって、

黒鉛粉末、炭素繊維、又は炭化物粉末を準備すると共 に、銀及び/又は銅を主成分とし、周期律表の4A族、 5 A族、6 A族元素から選ばれた少なくとも1種の金属 を含む合金塊又は合金粉末若しくはその成形体を準備す る第1工程と、

該黒鉛粉末、炭素繊維、又は炭化物粉末を成形して成形 体とする第2工程と、

その成形体を前記合金塊又は合金粉末若しくはその成形 体と接触させ、0.0133Pa以下の真空下、若しく はヘリウム、アルゴン又は水素を含むガス雰囲気下にお いて、該合金の融点以上の温度で加熱して、黒鉛粒子、 炭素繊維、又は炭化物粒子の表面に周期律表の4A族、 5A族、6A族元素から選ばれた少なくとも1種の金属 の炭化物からなる被覆層を形成すると同時に焼結体と し、且つ該焼結体中に溶融した前記合金を溶浸させる第 3 b 工程と、を含むことを特徴とする高熱伝導率複合材 料の製造方法。

【請求項15】 前記第3a工程又は第3b工程におい て、焼結温度を高くするか又は焼結時間を長くして、金 属の―部を溶出又は揮発させて多孔体とした後、この多 孔体を銀及び/又は銅の金属塊又は金属粉末若しくはそ の成形体と接触させ、非酸化性雰囲気下に該金属の融点 以上に加熱して、溶融した金属を多孔体中に溶浸させて 溶浸体とすることを特徴とする、請求項13又は14に 記載の高熱伝導性複合材料の製造方法。

【請求項16】 前記第3a工程又は第3b工程で得ら れた燒結体を、更に大気中又は不活性ガス雰囲気中にて 50 焼結体中の金属の融点以上に予備加熱し、600MPa

10

以上の圧力で鍛造するととを特徴とする、請求項13又 は14に記載の高熱伝導性複合材料の製造方法。

【請求項17】 前記第一成分が表面に被覆層が形成された複合炭素粒子であって、前記焼結体中の炭素粒子の含有量が50~95体積%であることを特徴とする、請求項13~16のいずれかに記載の高熱伝導性複合材料の製造方法。

【請求項18】 前記第一成分が表面に被覆層が形成された複合炭素繊維であって、前記焼結体中の炭素繊維の含有量が30~95体積%であることを特徴とする、請 10求項13~16のいずれかに記載の高熱伝導性複合材料の製造方法。

【請求項19】 前記第一成分が表面に被覆層が形成された複合炭化物粒子であって、前記溶浸体中の炭化物粒子の含有量が15~85体積%であることを特徴とする、請求項13~16のいずれかに記載の高熱伝導性複合材料の製造方法。

【請求項20】 前記第3a工程又は第3b工程における加熱温度が、前記合金粉末の融点を超え且つ(該融点+50)℃未満であることを特徴とする、請求項13~ 2019のいずれかに記載の高熱伝導性複合材料の製造方法。

【請求項21】 前記各第2工程において、冷間又は温間での静水圧成形により成形体を得ることを特徴とする、請求項13~20のいずれかに記載の高熱伝導性複合材料の製造方法。

【請求項22】 前記各第2工程において、成形圧力が300MPa以上であることを特徴とする、請求項13~21のいずれかに記載の高熱伝導性複合材料の製造方法。

【請求項23】 表面に被覆層を有する複合炭化ケイ素 粒子からなる第一成分と、銀及び/又は銅を含む金属か らなる第二成分との複合材料の製造方法であって、 炭化ケイ素粉末を、不活性ガス雰囲気中又は真空中にお いて2000℃以上の温度で加圧焼結し、炭化ケイ素の

多孔体を形成する工程と、

その炭化ケイ素の多孔体を、銀及び/又は銅を主成分とし、周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属を含む合金塊又は合金粉末若しくはその成形体と接触させ、0.0133Pa以下の真空下、若しくはヘリウム、アルゴン又は水素を含むガス雰囲気下において、該合金の融点以上の温度で加熱して、炭化ケイ素粒子の表面に周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属の炭化物からなる被覆層を形成すると同時に、溶融した前記合金を多孔体中に溶浸させる工程と、を含むことを特徴とする高熱伝導率複合材料の製造方法。

【請求項24】 得られた複合材料を前記溶浸温度より も高い温度で加熱して、金属の一部を溶出又は揮発させ て再び多孔体とした後、この多孔体を銀及び/又は銅の 50

金属塊又は金属粉末若しくはその成形体と接触させ、非酸化性雰囲気下に該金属の融点以上に加熱して、溶融した金属を多孔体中に溶浸させることを特徴とする、請求項23に記載の高熱伝導性複合材料の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体装置用のヒートシンク材料などとして使用される高い熱伝導率を有する複合材料、及びその製造方法に関するものである。 【0002】

【従来の技術】一般に、搭載された半導体素子からの発熱を放熱するために、半導体装置には高熱伝導率材料のヒートシンクが取り付けられている。ヒートシンク材料に必要な物性としては、熱伝導率がCu(395W/m・K)と同等かそれ以上であって、熱膨張係数がCu(16.9×10⁻⁶ /℃)以下であることが目安となっている。

【0003】従来から、ヒートシンク材料としては、半 導体レーザーやマイクロ波素子などの半導体素子を搭載 した電子部品の発熱量が小さかったため、熱伝導率が比 較的低くても、半導体素子と熱膨張係数が近似している A12O3やA1Nが用いられてきた。

【0004】しかし、最近では情報量の増大に合わせて 半導体素子の大型化や高出力化が進み、発熱量の増大が 問題となっている。例えば、A1Nは熱伝導率も比較的 良好であり、またSiやInPとの熱膨張係数が近いた め、最近まで使用に耐えているが、更なる高出力化や大 型化に対応することは熱伝導率の点で難しい。そのため 最近では、これら高出力の半導体素子を搭載するため、 80 ヒートシンク材料として格段に優れた熱伝導率のものが 要求されている。

【0005】また、ヒートシンク材料を熱膨張係数の観点から眺めると、GaAsのように熱膨張係数の大きい材料からなる半導体素子には、AlNでは対応が難しい。具体的には、各種半導体材料の熱膨張係数は、×10⁻⁶/℃(以下、ppm/℃とも表記)単位で、Siが4.2、InPが4.5、GaAsが5.9程度であるため、ヒートシンク材料の熱膨張係数はこれらに近いことが望ましい。更には、ヒートシンク材料をそのヤング40率の観点から眺めると、発生する熱応力が小さくなるため、ヤング率は小さいほど望ましい。

【0006】熱伝導率が最も高い材料はダイヤモンドや c-BN (立方晶窒化ホウ素) であるが、熱膨張係数に ついてはダイヤモンドが2.3ppm/℃、及びc-B Nが3.7ppm/℃と小さすぎ、且つこれらの材料は ヤング率が830~1050GPaと非常に大きいの で、ヒートシンクと半導体素子のロウ付け時やデバイス としての使用時にヒートシンクと半導体素子との間に大きな熱応力が発生して破壊が起こり易くなる。

【0007】最近では、熱膨張係数が小さく且つ熱伝導

4

率が比較的高いヒートシク材料として、セラミックスと金属を複合したAI-SiCのような各種の複合材料が提案されている。しかし、AIの熱伝導率が室温で約238W/m·Kと低いため、複合材料にした場合の熱伝導率にも上限が存在し、上記した高い熱伝導率を達成するための最近の要求レベルを満たすことはできない。AIの代わりに熱伝導率の高いCu(室温で395W/m·K)やAg(室温で420W/m·K)のような金属材料を用いることも考えられるが、これらはSiCとの濡れ性が極めて悪いために、CuやAgが本来持っている10高い熱伝導性を十分に活かすことができない。

【0008】 CuやAgとの濡れ性を向上させたヒートシンク材料として、ダイヤモンド-Ag系やダイヤモンド-Cu系の複合材料が特開平11-67991号公報に提案されている。これによれば、ダイヤモンド粉末とAg-Cu-Ti系粉末を混合し、成形した後、該合金の融点以上で加熱することにより、Ti成分がダイヤモンド粒子表面に拡散、反応して、表面にTiC層が形成される(燒結法)。TiCは溶融Cu又は溶融Agと濡れ性が高いため、結果としてダイヤモンド粒子と金属の20界面が密着し、高い熱伝導率が得られるというものである。

【0009】また、このようなダイヤモンドーAg系やダイヤモンドーCu系の複合材料の製法として、特開平10-223812号には溶浸法が提案されている。この方法では、ダイヤモンド粉末とAg-Cu-Ti系粉末を混合、成形した後、該合金の融点以上で加熱してダイヤモンド粒子表面にTiC層を形成させた後、更に加熱してAg成分やCu成分を溶出揮発させて多孔体とし、これに溶融Ag-Cu合金を含浸させることにより、燒結法よりも高い相対密度と熱伝導率を持つ複合材料が得られる。

[0010]

【発明が解決しようとする課題】しかし、上記したダイヤモンドーA g 系やダイヤモンドーC u 系の複合材料に共通する問題として、①ダイヤモンドは極めて高価であること、②ダイヤモンドは硬度が高く、前述のようにその高いヤング率により半導体素子との接合界面に大きな熱応力が残ると共に、③ダイヤモンドを含む混合粉末を成形する時に金型を激しく摩耗させてしまう。その結果、ダイヤモンドーA g 系やダイヤモンドーC u 系の複合材料はコストが嵩み、実用化が極めて困難である。また、④溶浸法を用いたとしても、ダイヤモンドーA g 系やダイヤモンドーC u 系の複合材料を完全に緻密化させることは困難であるという問題があった。

【0011】本発明は、とのような従来の事情に鑑み、 高価なダイヤモンドを使用せずに、熱膨張係数が小さく 且つ熱伝導率が比較的高く、安価でヒートシンク材料と して好適な複合材料を提供することを目的とする。

[0012]

【課題を解決するための手段】上記目的を達成するため、本発明が提供する複合材料は、表面に被覆層を有する複合炭素粒子、複合炭素繊維、又は複合炭化物粒子からなる第一成分と、銀及び/又は銅を含む金属からなる第二成分との複合材料であって、上記第一成分である複合炭素粒子、複合炭素繊維、又は複合炭化物粒子の表面に形成された被覆層が、周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属の炭化物からなり、相対密度が70%以上、少なくともある特定方向における室温での熱伝導率が220W/m·K以上、及び少なくともある特定方向における室温から200℃

及び少なくともある特定方向における室温から200でまでの平均熱膨張係数が $5\sim15\times10^{-6}$ /℃であることを特徴とするものである。

【0013】上記本発明の高熱伝導性複合材料において、前記第一成分が表面に被覆層を有する複合炭素粒子又は複合炭素繊維であるとき、その炭素粒子又は炭素繊維の含有量が30~95体積%であることが好ましい。また、前記第一成分が表面に被覆層を有する複合炭化物粒子であるときは、その炭化物粒子の含有量は15~85体積%であることが好ましい。

[0014]上記本発明の高熱伝導性複合材料において、前記第一成分の表面に形成された被覆層は炭化チタンが好ましく、この第一成分の被覆層の厚さは0.01~3μmが好ましく、0.05~1μmが更に好ましい。また、前記第二成分が銀及び銅からなる場合には、その第二成分中の銅含有量が20体積%以下又は80体積%以上であることが好ましい。この合金組成を外れると、Ag-Cu合金の熱伝導率が低下するため、複合材料の熱伝導率も低下する傾向がある。

30 【0015】上記本発明の高熱伝導性複合材料は、好ましくは相対密度が95%以上、少なくともある特定方向における室温での熱伝導率が250W/m·K以上であり、更に好ましくは相対密度が99%以上、少なくともある特定方向における室温での熱伝導率が270W/m·K以上である。

【0016】 このような本発明の高熱伝導性複合材料は、半導体用ヒートシンク部材として好ましいものである。また、本発明は、上記した高熱伝導性複合材料からなる半導体用ヒートシンク部材を用いた半導体装置を提40 供するものである。

【0017】また、本発明は、上記の表面に被覆層を有する複合炭素粒子、複合炭素繊維、又は複合炭化物粒子からなる第一成分と、銀及び/又は銅を含む金属からなる第二成分との複合材料の製造方法を提供するものである。即ち、本発明の焼結法による複合材料の製造方法は、黒鉛粉末、炭素繊維、又は炭化物粉末を準備すると共に、銀及び/又は銅を主成分とし、周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属を含む合金粉末を準備する第1工程と、これらの粉50末の混合物を成形して成形体とする第2工程と、その成

形体を、0.0133Pa以下の真空下、若しくはヘリウム、アルゴン又は水素を含むガス雰囲気下において、前記合金の融点以上の温度で加熱して、黒鉛粒子、炭素繊維、又は炭化物粒子の表面に周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属の炭化物からなる被覆層を形成すると同時に、焼結体とする第3a工程と、を含むことを特徴とする。

【0018】また、本発明は、上記高熱伝導性複合材料 の溶浸法による製造方法を提供するものである。即ち、 溶浸法による製造方法は、黒鉛粉末、炭素繊維、又は炭 10 化物粉末を準備すると共に、銀及び/又は銅を主成分と し、周期律表の4A族、5A族、6A族元素から選ばれ た少なくとも1種の金属を含む合金塊又は合金粉末若し くはその成形体を準備する第1工程と、該黒鉛粉末、炭 素繊維、又は炭化物粉末を成形して成形体とする第2工 程と、その成形体を前記合金塊又は合金粉末若しくはそ の成形体と接触させ、0.0133Pa以下の真空下、 若しくはヘリウム、アルゴン又は水素を含むガス雰囲気 下において、該合金の融点以上の温度で加熱して、黒鉛 粒子、炭素繊維、又は炭化物粒子の表面に周期律表の4 A族、5A族、6A族元素から選ばれた少なくとも1種 の金属の炭化物からなる被覆層を形成すると同時に焼結 体とし、且つ該焼結体中に溶融した前記合金を溶浸させ る第3b工程と、を含むことを特徴とする。

【0019】上記本発明の高熱伝導率複合材料の製造方法においては、前記第3a工程又は第3b工程において、焼結温度を高くするか又は焼結時間を長くして、金属の一部を溶出又は揮発させて多孔体とした後、この多孔体を銀及び/又は銅の金属塊又は金属粉末若しくはその成形体と接触させ、非酸化性雰囲気下に該金属の融点 30以上に加熱して、溶融した金属を多孔体中に溶浸させて溶浸体とすることができる。また、前記第3a工程又は第3b工程で得られた焼結体を、更に大気中又は不活性ガス雰囲気中において焼結体中の金属の融点以上に予備加熱し、600MPa以上の圧力で鍛造することができる。

【0020】上記した本発明の高熱伝導率複合材料の各製造方法では、前記各第3工程における加熱温度が、前記合金粉末の融点を超え且つ(該融点+50)で未満であることを特徴とする。また、各製造方法の前記各第2工程において、冷間又は温間での静水圧成形により成形体を得ることが好ましく、そのときの成形圧力は300MPa以上であることが好ましい。

【0021】更に、本発明は、表面に被覆層を有する複合
会成化ケイ素粒子からなる第一成分と、銀及び/又は銅を含む金属からなる第二成分との複合材料の製造方法を
提供する。即ち、この方法は、炭化ケイ素粉末を、不活性ガス雰囲気中又は真空中において2000℃以上の温度で加圧焼結し、炭化ケイ素の多孔体を形成する工程で、Mo、Cu、Co、Pb、と、その炭化ケイ素の多孔体を、銀及び/又は銅を主成 50 等が揮発して高純度化される。

8

分とし、周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属を含む合金塊又は合金粉末若しくはその成形体と接触させ、0.0133Pa以下の真空下、若しくはヘリウム、アルゴン又は水素を含むガス雰囲気下において、該合金の融点以上の温度で加熱して、炭化ケイ素粒子の表面に周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属の炭化物からなる被覆層を形成すると同時に、溶融した前記合金を多孔体中に溶浸させる工程と、を含むことを特徴とするものである。

【0022】この高熱伝導率複合材料の製造方法においては、得られた複合材料を前記溶浸温度よりも高い温度で加熱して、金属の一部を溶出揮発させて再び多孔体とした後、この多孔体を銀及び/又は銅の金属塊又は金属粉末若しくはその成形体と接触させ、非酸化性雰囲気下に該金属の融点以上に加熱して、溶融した金属を多孔体中に溶浸させることができる。

[0023]

【発明の実施の形態】発明者らは、上述したダイヤモンドーAg及び/又はCu系の複合材料において多くの問題の原因であるダイヤモンドを使用せず、その熱伝導率を大きく低下させず、低コストの複合材料を製造することを検討した。その結果、濡れ性を支配する因子として溶融金属と固体の接触角に着目し、以下の判断の基に本発明に至ったものである。

【0024】即ち、材質的観点から、①ダイヤモンドと同じ炭素である黒鉛はAg又はCuと接触角がほぼ同じである、②黒鉛は特定の結晶軸方向に極めて高い熱伝導率を持つ、③被覆層であるTiC層の厚みを制御することにより高熱伝導率が発現する、④黒鉛を用いることにより成形時の金型摩耗はほとんどゼロに近づく、ことに注目した。更に、プロセス的観点から、⑤成型時の圧力を一定以上にすることにより、黒鉛粉末の結晶面を配向させることができる、⑥熱間鍛造を用いることによりほぼ100%の相対密度が得られ、より高い熱伝導率が得られることを見いだした。

【0025】 このことから、本発明においては、AgやCuと複合させる成分として黒鉛を使用する。用いる黒鉛粉末としては黒鉛化度の高いものが好ましく、メソフェーズピッチ系の黒鉛粉末や熱分解黒鉛粉末、又は天然黒鉛粉末がこれに相当する。特に好ましい熱分解黒鉛粉末は、例えば、メタンやプロバンなどの炭化水素ガス原料を熱分解させて黒鉛を基板上に堆積させ、更に3000℃以上で熱処理させて塊状物を作製し、最終的に解砕して粉末にすることにより得られる。黒鉛中の不純物は少ないほど好ましく、例えば熱分解黒鉛粉末では、製造過程における3000℃以上での熱処理により、不純物であるFe、Si、Al、Ca、V、As、Sb、Cr、Mo、Cu、Co、Pb、Ni、Sn、Cd、Mn

【0026】黒鉛と複合化させる金属はAg及び/又はCuを主成分とし、周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属を含む。このような合金としてはAg基合金が最も好ましい。例えば、Agに前述した金属元素、例えばTiを添加した活性銀口ウ粉末を用いることができる。これにCu成分が加わると合金の融点が低下する効果があるので、燒結温度を低く設定でき、省エネ効果がある。AgにCuを添加する場合、CuとAgの総量に対するCu濃度は20体積%以下、又は80体積%以上が好ましい。これらの範囲10外では、Ag-Cu合金の熱伝導率の低下により複合材料の熱伝導率が低下する。尚、同じ観点から、CuにTiを添加した活性銅口ウ粉末を用いてもよい。

【0027】金属成分中のTi濃度が高くなると、黒鉛 粒子表面に形成されるTiCなどの被覆層の厚さが厚く なる。逆にTi濃度が低下すると、TiC層が薄くなり 溶融金属成分との濡れ性が低下する。Ti濃度を高くし たい場合には、活性Agロウ又は活性Cuロウ中のTi 濃度を上げればよい。しかし、Ti濃度を変えるため に、いちいちTi濃度の違う活性ロウを作製していては 20 効率が悪いので、Ti濃度を大幅に低下させたい時は、 例えば活性Agロウに純Agを多量に加えて濃度を希釈 するとよい。純Ag添加量を多くすれば、相対的にTi 濃度は低くなる。尚、一般にAg-Cu合金の熱伝導率 は、合金中のCu濃度が20~80体積%の範囲では、 純Agや純Cuに比べて低くなる。従って、市販されて いるAgロウ (例えば、70wt%Ag-28wt%C u-2wt%Ti)にはCuが含まれるので、純Agと Agロウを混合する場合には、混合後のCu濃度が20 体積%以下又は80体積%以上になるように混合する と、複合材料の熱伝導率は最も高くなる。

【0028】そして、本発明の複合材料は、以下のように製造することができる。まず、高純度の黒鉛粉末と、Ti、Zr、Hfなどの4A族、V、Nb、Taなどの5A族、W、Cr、Moなどの6A族のうちの少なくとも1種以上の元素を含むAg及び/又はCu合金の粉末とを、所定の組成で混合する。次に、この混合粉末を成形した後、0.0133Pa以下の高真空下、若しくはHe、Ar又はH2のガス雰囲気下に上記合金の融点以上で加熱して焼結する。

【0029】このような焼結法によって、焼結と同時に、Ag及び/又はCu合金中の上記Tiなどの添加成分が黒鉛と反応して、黒鉛粒子の表面にTiCなどの炭化物の被覆層が形成される。これら炭化物と溶融AgやCuは極めて濡れ性が高いために、炭化物被覆層の生成と同時に界面が濡れ、黒鉛粒子とAgやCuとの強固な密着が得られる。

【0030】上記方法以外にも、焼結と同時に合金を溶 浸する方法により本発明の複合材料を製造することがで きる。即ち、黒鉛粉末を成形した後、得られた成形体と 50

Tiなどを含むAg及び/又はCuの合金塊又は合金粉末若しくはその成形体とを接触させ、0.0133Pa以下の高真空下、若しくはHe、Ar又はHaを含むガス雰囲気下において、上記合金の融点以上の温度で加熱する。これにより、黒鉛粒子の表面にTiCなどの炭化物からなる被覆層を形成すると同時に焼結体とし、且つその焼結体中に溶融した前記合金を溶浸させることができる。

[0031]上記いずれの方法も、加熱温度T(C)は合金の融点Tm(C)以上であればよいが、温度が高すぎると溶融金属の表面張力が低下して浸みだしが起とりやすくなるので、Tm < T < Tm + 50 C程度が好ましい。また、加熱時間は30分程度あれば十分であり、長すぎるとやはり浸みだしが起こりやすくなる。

【0032】加熱時の加熱雰囲気は、0.0133Pa(1×10⁻⁴ torr)以下の高真空下か、He、Ar、又はH2のガス雰囲気が必要である。真空雰囲気の場合、真空度が低いと溶融金属中の例えばTiなどの添加成分が酸化又は窒化されて活性を失い、黒鉛と反応しなくなる。高真空以外では、He、Ar、H2などをフローさせながら加熱するのが好ましい。また、He、Ar、H2などのガス雰囲気を加圧してもよい。特にH2雰囲気を用いると、黒鉛や合金粉末表面に吸着した酸素やH2O、OH基などが昇温中にH2と反応して脱離するため、金属中の酸素濃度が低下して熱伝導率がより高くなる。

【0033】とのようにして製造される本発明の複合材料は、表面に被覆層を有する複合炭素粒子と、銀及び/又は銅を含む金属とからなる複合材料であって、複合炭素粒子の表面に周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属の炭化物からなる被覆層が形成されている。本発明における複合材料の熱伝導率と熱膨張係数は、黒鉛粒子と金属の比率により変化する。黒鉛粒子の含有量が全体の50~95体積%の時、相対密度が70%以上、少なくともある特定方向における室温での熱伝導率が220W/m・K以上、少なくともある特定方向における室温から200℃までの平均熱膨張係数が5~15ppm/℃である複合材料が得られる。尚、黒鉛粉末に代えて炭素繊維を用いると、熱膨張係数が更に低下する。従って、との場合には、炭素繊維の含有量を30~95体積%としてもよい。

【0034】黒鉛粉末と金属成分の混合粉末を面圧300MPa以上で成形すると、柔らかい黒鉛粉末が扁平に変形しながら圧密化が進行し、これに合わせて金属成分も変形するために、焼結後は図1に示すような配向した組織が得られる。図1は、本発明のAg-C系複合材料の代表的な組織を、光学顕微鏡による100倍の視野で観察した図である。図1において、明るい部分は主成分がAgの金属部分であり、暗い部分は主成分がCの非金属部分である。黒鉛粉末が扁平化しながら圧密化が進行

するときには、成形圧力の負荷方向と平行な方向に黒鉛 結晶のc軸が配向する傾向がある。ただし、通常の一軸 成形プレスでは結晶軸の配向性は大きくはない。

【0035】とのように、複合材料の組織が配向性を持 つとと、及び黒鉛の結晶自体もある程度配向するととに より、複合材料の面内方向に極めて高い熱伝導率が発現 するが、その寄与度は前者の方が大部分を占める。例え ば、メソフェーズビッチ系の黒鉛粉末、熱分解黒鉛粉 末、天然黒鉛粉末であって、高純度で且つ結晶化が進行 した黒鉛粉末は、a軸方向の熱伝導率が1900W/m 10 ·Kにも達する一方で、c軸方向では30W/m·K程度 と低い。このような黒鉛粉末を用いて複合材料を作製す ると、例えばAg-C系複合材料の場合、黒鉛量が全体 の90体積%程度の組成で相対密度100%になると、 面内方向の熱伝導率は600W/m·K近くに達する一 方で、厚さ方向では100W/m·K程度になり、大き な異方性が生じる。上記した種類の黒鉛粉末であれば組 織に異方性が出るが、黒鉛粉末粒径が10μm以下にな ると異方性組織を発現させるのに、100MPa以上の 高い圧力が必要になるため実用的でない。尚、黒鉛粉末 20 に代えて市販の粒状S i C粉末を用いると、熱伝導率の 異方性は発現しない。

【0036】一方、成形圧力が300MPa未満の場合 には、配向性が低下するので、熱伝導率の異方性を小さ くすることができる。ヒートシンクの構造によっては、 異方性の小さい方が好ましい場合もある。また、等方性 にしたい場合には、プレス成形などを用いず、冷間や温 間での静水圧成形(等方圧成形)を用いればよい。尚、 異方性の度合いを調べるには、X線回析で、黒鉛の(0 02)などの黒鉛のc軸に垂直な面のピーク強度をその 30 他のピーク強度と比較すればよい。

【0037】また、複合材料の熱膨張係数も、熱伝導率 ほどではないが異方性がある。黒鉛結晶のa軸方向の熱 膨張係数はほぼゼロであるのに対し、c軸方向は30p pm/℃程度と極めて異方性が高い。しかし、通常の一 軸プレス成形では、結晶軸の配向程度が小さいので、図 1のように組織に異方性が出ても、面内方向と厚さ方向 で熱膨張係数に極端に大きな差は出ない。このような黒 鉛結晶の熱膨張係数の異方性のために、複合材料の面内 方向の熱膨張係数は厚み方向よりも小さな値となり、と 40 の傾向は黒鉛含有量が多くなるほど顕著になる。しか し、50体積%の黒鉛含有量の組成程度では、大きな異 方性は生じない。また、黒鉛粒径が小さくなるほど複合 材料の組織の異方性は小さくなるので、異方性を出した くない場合には粒径の小さな黒鉛を用いるとよく、その 目安は10~20µm程度である。尚、熱伝導率と同様 に黒鉛の代わりにSiCを使うと、熱膨張係数の異方性 は発現しない。

【0038】高い熱伝導率の複合材料を得るためには、

被覆層の厚さを、好ましくは0.01~3 µmの範囲 に、更に好ましくは0.05~1μπの範囲に制御す る。これらの炭化物はそれ自体の熱伝導率が低く(例え ばTiCは30♥/m·K程度)、厚くなると炭化物被 **覆層での熱伝導の阻害が大きくなる。逆に炭化物被覆層** が薄過ぎると、炭化物形成の効果がなくなり、濡れ性が 低下して熱伝導率が低下する。炭化物の中では炭化チタ ン(TiC)が最も好ましい。

【0039】炭化物からなる被覆層の厚さは、黒鉛粉末 の粒径と、Ag及び/又はCu合金中のTiなどの金属 元素濃度を変えるととで制御できる。また、黒鉛の粒径 が小さくなるほど比表面積が増加するので、結果として 生成する炭化物被覆層の厚さは小さくなる。更に、Ti Cなどの被覆層の厚みを大きくするためには、黒鉛粉末 と共に使用する銀ロウなどの金属粉末中に含まれるTi 等の4A族、5A族、6A族元素の濃度を高くする等の 手段がある。

【0040】複合材料の相対密度を向上させる方法とし ては、例えば、自発溶浸法がある。即ち、燒結体の作製 時に燒結温度を高くするか又は焼結時間を長くして、燒 結体から溶融金属を意図的に浸み出させて多孔体とす る。例えば、Ag-Cu-Ti合金の場合、AgとCu 成分が溶出し、更には揮発して多孔体となる。この多孔 体を、Ag及び/又はCuの金属粉末や粉末成形体又は 金属塊と接触させ、真空又は不活性ガスのような非酸化 性雰囲気中において、その金属の融点以上で加熱する。 この場合、燒結体には既にTiCなどの炭化物被覆層が 形成されているので、溶浸雰囲気は低真空でもN2雰囲 気でもかまわない。

【0041】この溶浸法により、AgやCuの金属成分 が多孔体中に自発的に浸透し、燒結法よりも気孔率が低 く、相対密度が95%以上の溶浸体からなる複合材料が 得られる。その結果、溶浸体からなる複合材料は、その 少なくともある特定方向の室温での熱伝導率が250₩ /m·K以上となる。

【0042】更に、ほとんど緻密な複合材料を作製する には、燒結法で作製した燒結体を、大気中又は不活性ガ ス中において、使用した合金の融点以上に予備加熱し、 熱間鍛造することで達成できる。予備加熱は通常の炉加 熱で行うが、例えば髙周波誘導加熱など超短時間で加熱 できる設備を用いる場合には大気中でもかまわない。金 型温度は500℃程度でよく、鍛造圧力は600MPa 以上必要である。鍛造圧力が600MPa未満だと、9 9%以上の相対密度が得られない。このようにして得ら れた鍛造体からなる複合材料では、その相対密度を99 %以上とすることができ、少なくともある特定方向の室 温での熱伝導率を270W/m·K以上とすることが可 能である。

【0043】以上の説明は、AgやCuと複合させる成 黒鉛表面に形成される上記TiCなどの炭化物からなる 50 分が黒鉛の例であるが、黒鉛粉末の代わりに炭素繊維を

用いることができる。炭素繊維のうち、ビッチ系の炭素 繊維は繊維の長さ方向に極めて高い熱伝導率と高いヤン グ率を持つため、これを用いると極めて高い熱伝導率と 低い熱膨張係数が得られる。炭素繊維を用いる場合その 含有量は、焼結体、溶浸体、又は鍛造体のいずれの場合 も、黒鉛粒子の場合よりも少なくてよく、好ましい範囲 は30~95体積%である。即ち、炭素繊維はその繊維 方向の高いヤング率のため、少量でも熱膨張係数を低下 させることができるからである。尚、炭素繊維を用いる 場合、焼結方法では繊維と金属粉末の混合を均一にする ことが難しいため、溶浸法が好ましい。

【0044】また、黒鉛粉末の代わりにSiCなどの炭化物粉末を用いることもできる。その場合、炭化物粉末の含有量は、焼結体、溶浸体、又は鍛造体のいずれの場合においても、全体の15~85体積%の範囲が好ましい。SiC粉末が球状又はそれに近い形状である場合、黒鉛粉末と異なり、得られる複合材料の熱伝導率及び熱膨張係数に異方性は生じない。ただし、SiCの結晶自形である六角板状結晶を用いると、黒鉛粉末を使用した場合ほどではないにしても、異方性が発現する場合もあ20る。

[0045] 即ち、六角板状SiC粒子は、その面内方向(a軸方向)が成形時の加圧方向と垂直になりやすい。SiC結晶はc軸方向よりもa軸方向の熱伝導率が高いことから、プレス成形で作製した複合材料の熱伝導率は加圧方向に垂直な方向(面内方向)が高くなる。尚、C1Pを用いた場合には、黒鉛粉末使用時と同じく異方性は発現しない。また、SiCのような炭化物粉末を用いる場合、複合材料の相対密度を上げるためには、成形や熱間鍛造時の圧力を黒鉛よりも高く設定する必要 30 がある。

【0046】特に炭化物粉末としてSiC粉末を用いる 場合、複合材料の熱伝導率を最も高くするためには、S iC粉末の粒子同士を強固に焼結させた多孔体中に、溶 融したAg及び/又はCuを主成分とする合金を溶浸さ せる方法が好ましい。SiC粒子の焼結時には、SiC 粒子内部に含有されていたFeやAI等の不純物金属元 素、更には含有されていた窒素原子も揮発し、これらの 不純物元素の含有によりSiC結晶中に存在していた積 層欠陥などの結晶欠陥量が減少して、SiC粒子自体の 熱伝導率が向上する。更に、SiC粒子が分散した組織 を持つ複合材料に比べて、S i C粒子同士が強固に焼結 することにより、SiCと金属との界面の面積が減少し て界面での熱伝導のロスが低下することに加え、SiC 結晶の中のみを伝導するフォノン伝導が複合材料の熱伝 導機構に加わる。これは粒子分散型複合材料では決して 得られない熱伝導機構であり、これによって複合材料の 熱伝導率は大きく向上する。上記した界面の面積の効果 に関しては、SiC粒子の粒径が大きく影響する。即 ち、粒径が大きくなるほど、界面の面積が減少して熱伝 50 導率は向上する。

【0047】このようなSiC多孔体は、ホットプレス 装置などを用い、2000℃以上の温度で、Arガス等 の不活性ガス中又は真空中で加圧焼結させることにより 作製できる。窒素中で焼結すると、窒素原子がSiC結 晶内に取り込まれるため、熱伝導率が向上しない。使用 するSiC粉末としては、市販のSiC粉末でかまわな いが、特に好ましいのは、不純物量が少なく、結晶欠陥 が少ないSiC粉末である。このようなSiC粉末とし ては、高純度Si粉末と高純度黒鉛粉末を化学量論比で 混合し、熱処理して反応させることにより作製できる。 作製したSiC粉末の粒子は、SiC結晶の自形である 六角板状形状を持つ。

【0048】また、ややコストは高くなるが、SiC粉末として、半導体デバイス用に製造された高純度・低欠陥のSiC単結晶ウエハを粉砕した粉末を使用することもできる。SiC単結晶ウエハの粉砕粉を使用すれば、複合材料の熱伝導率は最も高くなり、市販SiC粉末や六角板状SiC粉末の使用では不可能である400W/mKを超える超高熱伝導率の複合材料の作製が可能となる。

【0049】このようにして作製したSiC多孔体中に、銀及び/又は銅を主成分とし、周期律表の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属を含む合金塊又は合金粉末若しくはその成形体、例えばTiを含むAg-Cu系溶融合金を接触させ、加熱して溶浸させることにより複合材料Aが得られる。このときの加熱により、上記合金の溶浸と同時に、多孔体を構成するSiC粒子の表面に、合金中の4A族、5A族、6A族元素から選ばれた少なくとも1種の金属の炭化物、例えばTiCの被覆層が形成される。

【0050】SiC多孔体へ溶融金属を溶浸する方法と しては、前記した高真空下での自発溶浸現象を利用する 方法に加えて、ヘリウム、アルゴン又は水素ガス雰囲気 を加圧して含浸する方法がある。即ち、多孔体の細孔径 が大きい場合は自発溶浸が可能であるが、細孔径が小さ くなると自発溶浸現象が起りにくくなるためである。一 般に、溶融金属を多孔体内部へ溶浸させるために必要な 圧力Pは、P=-4γcosθ/d(ととで、γは溶融 金属の表面張力、接触角のは溶融金属と多孔体材質間の 接触角、dは多孔体の最少細孔径)で表される。接触角 θは多孔体材質と溶融金属の濡れ性の指標であり、濡れ 性が高いほど θ は小さくなり、結果として圧力Pが低下 する。特に、接触角θが90°未満になると圧力Pはマ イナス値となり、基本的には圧力を付加しなくても溶浸 は自然に起るが、θができるだけ小さい方が短時間に溶 浸が終了することから、濡れ性の向上は重要である。ま た、細孔径dが小さいほど圧力Pは大きくなるので、例 えば微粒SiC粉末から作製したSiC多孔体を使用す る場合には、自発溶浸が起りにくくなるか、又は溶浸が 終了するまで時間がかかることになる。このような場合 には、自発溶浸ではなく、ガス雰囲気に圧力を付加しな がら溶浸することにより、短時間で溶浸が終了して緻密 な複合材料を作製することができる。

【0051】更に、この複合材料Aを溶浸温度よりも高 い温度で加熱し、金属成分を揮発せしめて再び多孔体と した後、この多孔体中に純Ag又は純Cu、若しくはA g-Cu系合金を接触させ、加熱して溶浸させることに より、更に熱伝導率の高い複合材料Bが得られる。複合 合材料Aでは金属成分中にTi等が残存するため、金属 成分の熱伝導率自体が純Agや純Cuに比べて若干低下 するためである。とれに対して、複合材料Bでは、金属 成分が純Ag又は純Cuになるため、金属成分の熱伝導 率が最も高くなり、複合材料の熱伝導率も高くなる。 尚、SiC粒子の表面に形成されたTiCの被覆層は、 金属製分の揮発の際の加熱によって除去されず、複合材 料B中に残っている。

【0052】本発明の複合材料は、高熱伝導率、低熱膨 張係数、易加工性を持ち、半導体用ヒートシンク材料と 20 して極めて有効である。特に、半導体レーザーやマイク 口波素子などの発熱量が大きい半導体デバイスには最適 である。

【0053】本発明の複合材料からなるヒートシンク材 をパッケージに応用した具体例を、図2に基づいて説明 する。この具体例では、バッケージ1の中に本発明の複 合材料からなるヒートシンク2が設けられ、このヒート* *シンク2の上に半導体素子3が搭載されている。半導体 素子3にはボンディングワイヤ4が接続され、そのボン ディングワイヤ4の他端はリードフレーム5に接続され ている。

【0054】一般に、とのような構成のパッケージ1に おいては、半導体索子3はヒートシンク2よりも小さい ため、ヒートシンク2の放熱機構としては面内方向(水 平方向) に熱を逃がす方が効率がよい。このため、本発 明品のように黒鉛の配向生によって面内方向の熱伝導率 材料Bの熱伝導率が複合材料Aよりも高くなるのは、複 10 が高い複合材料は、このような用途のヒートシンク材と して最適である。

[0055]

【実施例】実施例1

原料粉末として、平均粒径400μmの熱分解黒鉛粉末 と、平均粒径100μmのAg粉末(99.9%)と、 平均粒径100μmのAgロウ粉末(70wt%Ag-28wt%Cu-2wt%Ti)を用意した。

【0056】これらの各粉末を、黒鉛粉末が50.3体 積%、Ag粉末が24.6体積%、及びAgロウ粉末が 25.1体積%の組成となるように混合し、下記表1に 示す圧力100~800MPaでプレス成形した。得ら れた各成形体を、1気圧のH2中において表1に示す各 温度で1時間加熱して、直径35mm×厚み12mmの 焼結体とした。尚、下記表2に示す組成の合金の融点は 846℃である。

[0057]

【表1】

	C 量	Ag 量	Agロウ量	成形圧	焼結温度
試 料	<u>(vo1%)</u>	<u>(vo1%)</u>	(vo1%)	<u>(MPa)</u>	<u>(°C)</u>
1	50.3	24.6	25.1	100	850
2	50.3	24.6	25.1	200	850
3	50.3	24.6	25.1	300	850
4	50.3	24.6	25.1	400	850
5	50.3	24.6	25.1	600	850
6	50.3	24.6	25.1	800	850
7	50.3	24.6	25.1	800	840
8	50.3	24.6	25.1	800	850
9	50.3	24.6	25.1	800	886
10	50.3	24.6	25.1	800	900

[0058]得られた各燒結体を、直径10mm×厚み 40 厚さを測定した。 2mmに切り出し、密度を測定した後、レーザーフラッ シュ法により熱伝導率を測定した。また、各燒結体を、 直径5mm×厚み10mmに切り出し、密度を測定した 後、作動トランス式熱膨張係数測定装置により熱膨張係 数を測定した。尚、これらの試料の切り出しは、燒結体 の厚み方向と試料の厚み方向が一致する方向、及び燒結 体の厚み方向と試料の厚み方向が垂直になる方向、それ ぞれについて行った。また、各試料の炭化物量を測定す ると共に、黒鉛粒子と金属の界面を透過電子顕微鏡によ り観察し、黒鉛粒子の表面に形成された炭化物被覆層の 50 【表2】

【0059】とれらの結果から得られた各焼結体試料の 相対密度、非金属部分中の炭化物量と炭化物被覆層の層 厚、並びに面内方向と厚み方向における熱伝導率と熱膨 張係数を、下記表2に示した。この結果から分るよう に、成形圧が高いほど高い熱伝導率が得られ、熱伝導率 の異方性も増加した。また、焼結温度Tを金属成分の融 点Tmに対してT<Tm+50℃に制御することによ り、より高い熱伝導率が得られることが分る。

[0060]

-								
	密 度 炭化物 層厚 <u>熱伝導率(W/mK)</u>		熱膨張係数(ppm/°C)					
試 料	_(%)_	<u>(vol%)</u>	(μm)	面内方向	厚み方向	面内方向	厚み方向	
1	74.5	2.45	1.65	326	140	12.5	11.5	
2	77.7	2.45	1.65	336	126	12.5	11.5	
3	81.8	2.45	1.65	356	119	12.5	11.5	
4	82.6	2.45	1.65	364	112	12.5	11.5	
5	84.2	2.45	1.65	371	106	12.5	11.5	
6	85.8	2.45	1.65	379	105	12.4	11.4	
7	85.8	2.45	1.65	126	46	13.5	12.5	
8	85.8	2.45	1.65	379	105	12.4	11.4	
9	85.8	2.45	1.65	366	112	12.4	11.4	
10	85.8	2.45	1.65	340	95	12.4	11.4	

【0061】実施例2

原料粉末として、平均粒径400μmの熱分解黒鉛粉末 と、平均粒径100μmのAg粉末(99.9%)と、 平均粒径100μmのAgロウ粉末 (98wt%Ag-2wt%Ti)を用意した。これらの粉末を下記表3に 示す組成となるように混合し、圧力800MPaでプレ* *ス成形した。得られた各成形体を、1気圧のAr中にお いて表1に示す各温度で1時間加熱して、直径35mm ·×厚み12mmの燒結体とした。尚、下記表3に示す各 組成の合金の融点は、表3に示すとおりである。

[0062]

【表3】

	C 量	Ag 量	Agロウ量	合金融点	焼結温度
試料	<u>(vo1%)</u>	(vo1%)	(vo1%)	(°C)	(°C)
11	49.4	0.6	50.0	. 781	801
12	49.6	5.8	44.6	791	811
13	50.3	24.6	25.1	799	819
14	50.6	34.2	15.2	822	842
15	50.9	41.5	7.6	846	866
16	51.1	47.9	1.0	878	898
17	51.1	48.2	0.7	921	941
18	51.2	48.7	0.1	957	977
19*	51.2	48.8	0.0	959	979

(注)表中の*を付した試料は比較例である(以下同じ)。

[0063]得られた各燒結体の試料について、実施例 1と同様の評価を行った。評価の結果として、各焼結体 試料の相対密度、非金属部分中の炭化物量と炭化物被覆 層の層厚、並びに面内方向と厚み方向における熱伝導率 と熱膨張係数を、下記表4に示した。との結果から分る※

※ように、炭化物ΤiCの被覆層の層厚が0.01~3μ mの範囲のとき、特に $0.05\sim1~\mu$ mの範囲にある場 合に、髙い熱伝導率が得られた。

[0064]

【表4】

	密 度	炭化物	層厚	_ 熱伝導型	区(W/mK)	熱膨張係数	女(ppm/°C)
試料	<u>(%)</u>	(vo]%)	(μm)	面内方向	厚み方向	面内方向	厚み方向
11	86.9	4.90	3.32	210	55	11.1	10.1
12	86.7	4.37	2.95	225	60	11.0	10.0
13	85.8	2.45	1.65	256	66	10.9	9.9
14	85.4	1.48	0.99	333	131	10.8	9.8
1.5	85.1	0.74	0.50	369	130	10.8	9.8
1.6	84.8	0.09	0.06	354	130	10.7	9.7
17	84.8	0.06	0.04	311	130	10.7	9.7
18	84.8	0.01	0.01	223	129	10.7	9.7
19*	84.8	0.01	0.00	176	42	10.7	9.7

【0065】実施例3

実施例2と同じ各原料粉末、即ち平均粒径400μmの 熱分解黒鉛粉末と、平均粒径100μmのAg粉末(9 9.9%) と、平均粒径100μmのAgロウ粉末 (9 50 のHe中において表5に示す各温度で1時間加熱して、

8wt%Ag-2wt%Ti)を用意し、これらの粉末 を下記表5に示す組成となるように混合し、圧力800 MPaでプレス成形した。得られた各成形体を、1気圧

直径35mm×厚み12mmの燒結体とした。尚、下記 * [0066] 表5に示す各組成の合金の融点は表5に示すとおりであ 【表5】

> Agロウ量 合金融点 焼結温度 C 量 Ag 量 (°C) (vo1%) (vo1%) (vo1%) (°C) 試料 17.1 848 20 50.5 17.5 823 843 21 60.6 21.9 19.0 798 818 22 75.1 5.9 23 81.7 1.7 16.6 788 808 86.9 0.0 13.1 780 800 24 800 25 89.2 0.0 10.8 780

> > 0.0

【0067】得られた各焼結体の試料について、実施例 1と同様の評価を行った。評価の結果として、各焼結体 試料の相対密度、非金属部分中の炭化物量と炭化物被覆 層の層厚、並びに面内方向と厚み方向における熱伝導率 と熱膨張係数を、下記表6に示した。との表6の結果か※

26

90.4

※ 6分るように、炭素量が多くなるほど、炭化物被覆層の 層厚が薄くなり、熱伝導率が向上する一方、熱膨張係数 は低下した。

[0068]

【表6】

780

800

	密度	炭化物	層厚			熱膨張係数 (ppm/°C)	
試料	(%)	(vol%)	<u>(μm)</u>	面内方向	厚み方向	面内方向	厚み方向
20	85.5	1.66	1.11	351	131.	10.9	10.0
21	85.8	1.42	0.95	363	122	9.9	12.0
22	84.3	1.25	0.84	382	110	7.5	13.9
23	88.5	1.00	0.67	391	100	6.8	14.4
24	87.4	0.74	0.50	399	95	6.0	15.0
25	85.7	0.60	0.40	403	90	5.6	15.4
26	85.1	0.52	0.35	356	82	5.5	15.5

9.6

【0069】実施例4

実施例2と同じ各原料粉末を用意し、黒鉛粉末が50. 5体積%、Ag粉末が32.4体積%、及びAgロウ粉 末が17.1体積%の組成となるように混合し、圧力8 00MPaでプレス成形した。得られた各成形体を、下 記表7に示す雰囲気と圧力の下に848℃で1時間加熱★ ★して、直径35mm×厚み12mmの焼結体とした。

尚、上記組成の合金の融点は828℃である。また、比 較のために、上記実施例3の試料20についても表7に 30 併せて示した。

[0070]

【表7】

	CI	Ag III	AGUリ国		
<u>試料</u>	(vo1%)	(vo1%)	<u>(vo1%)</u>	焼結雰囲	気と圧力
20	50.5	32.4	17.1	He	1気圧
27*	50.5	32.4	17.1	真空	0.133Pa
28	50.5	32.4	17.1	真空	0.0133Pa
29*	50.5	32.4	17.1	N ₂	1気圧

[0071] 得られた各焼結体の試料について、実施例 1と同様の評価を行った。評価の結果として、各焼結体 40 で焼結した場合には、熱伝導率が大幅に低下した。 試料の相対密度、非金属部分中の炭化物量と炭化物被覆 層の層厚、並びに面内方向と厚み方向における熱伝導率

☆ 5分るように、0.133Paの真空中及び窒素ガス中

[0072]

【表8】

と熱膨張係数を、下記表8に示した。との表8の結果か☆

	密度	炭化物	層厚	熱伝導率(W/mK)		<u> 熱膨張係数(ppm/℃)</u>		
試 料	<u>(%)</u>	(vol%)	<u>(μm)</u>	面内方向	厚み方向	面内方向	厚み方向	
20	85.5	1.66	1.11	351	131	10.9	10.0	
27*	56.4	1.66	1.11	211	40	10.9	9.9	
28	56.4	1.66	1.11	351	130	10.9	9.9	
29*	56.4	1.66	1.11	216	50	10.9	9.9	

[0073] 実施例5

50 実施例3で作製した燒結体のうち試料20~22を用

い、それぞれ鍛造体を作製した。即ち、高周波誘導加熱 装置を用い、各焼結体を大気中にて温度850℃まで2 0秒で加熱し、800℃に達した瞬間に取り出して、予 め500℃に加熱しておいた金型内に装填し、圧力90 OMPaで熱間鍛造した。

【0074】得られた各鍛造体の試料について、実施例 1と同様の評価を行い、その結果を下記表9に示した。* *尚、各鍛造体試料20-1、21-1、22-1は、そ れぞれ焼結体試料20、21、22を鍛造したものであ る。この表9の結果から分るように、鍛造によりほぼ1 00%近くまで緻密化し、焼結体と比べて熱伝導率は大 幅に向上した。

[0075]

【表9】

	密度	炭化物	層厚			熱膨張係数 (ppm/℃)		
試料	<u>(%)</u>	(%[0v)	<u>(μm)</u>	面内方向	厚み方向	面内方向	厚み方向	
20–1	99.6	1.66	1.11	501	187	10.9	10.2	
21-1	99.4	1.42	0.95	519	151	8.9	12.0	
22-1	99.8	1.25	0.84	545	103	5.9	13.7	

[0076] 実施例6

原料粉末として、平均粒径200μmの熱分解黒鉛粉末 と、平均粒径100μmのCu粉末 (99.9%) と、 平均粒径100μmのCuロウ粉末(98wt%Cu-2 w t % T i) を用意した。これらの粉末を、下記表 1 0に示す各組成で混合し、圧力800MPaでプレス成 形した。得られた各成形体を、1気圧のH。中にて10 93℃で1時間加熱して、直径35mm×厚み12mm 20 【表10】 の燒結体とした。尚、下記表10に示す各組成の合金の※

【0077】得られた各焼結体を、高周波誘導加熱装置 を用いて、大気中にて1000°Cまで20秒で加熱し、 1000℃に達した瞬間に取り出し、予め500℃に加 熱しておいた金型内に装填し、圧力900MPaで熱間 鍛造した。

[0078]

※融点は全て1083℃である。

Cu 量 Cuロウ量 焼結温度 鍛造温度 鍛造圧力 C 量 (°C) (vo1%) (vo1%) (.C) (MPa) 試 料 (vo1%) 10.2 1093 1100 900 30 50.8 39.0 60.9 27.0 12.1 1093 1100 900 31 1093 1100 900 32 75.3 9.9 14.8 33 84.5 1.6 13.9 1093 1100 900 1100

10.8

【0079】得られた各鍛造体の試料について、実施例 試料の相対密度、非金属部分中の炭化物量と炭化物被覆 層の層厚、並びに面内方向と厚み方向における熱伝導率 と熱膨張係数を、下記表11に示した。この表11の結★

34

89.2

0.0

★果から分るように、Cu-C系複合材においても、鍛造 1と同様の評価を行った。評価の結果として、各焼結体 30 によりほぼ100%近くまで緻密化し、優れた熱伝導率 が得られる。

900

[0080]

【表11】

1093

	密度	密度 炭化物 層厚 <u>熱伝導率(W/mK)</u>		彦(W/mK)	熱膨張係数(ppm/°C)		
<u>試料</u>	(%)	<u>(%[0v)</u>	<u>(μm)</u>	面内方向	厚み方向	面内方向	厚み方向
30	99.8	0.99	0.33	489	176	11.2	11.0
31	100.0	0.98	0.33	509	142	10.3	12.0
32	100.0	0.97	0.33	539	98	7.4	14.0
33	100.0	0.81	0.27	560	71	6.0	15.0
34	100.0	0.60	0.20	572	58	5.4	15.3

【0081】実施例7

原料粉末として、平均粒径200μmのSiC(6H 型) 粉末と、平均粒径100 μ mのA g 粉末 (99.9 %) と、平均粒径100 μ mのA g ロウ粉末 (93 w t %Ag-3wt%Cu-4wt%M; M=Ti, W, Cr、Hf、V、Nb、Ta、Mo)を用意した。

【0082】これらの粉末を、下記表12に示す各種組 成で混合し、圧力800MPaでプレス成形した。得ら れた各成形体を、1気圧のH2中にて950℃で1時間 加熱して、直径35mm×厚み12mmの燒結体とし

た。尚、上記組成の各合金の融点は全てほぼ940°Cで ある。得られた各焼結体を、高周波誘導加熱装置を用い て、大気中にて温度960°Cまで20秒で加熱し、96 0℃に達した瞬間に取り出して、予め500℃に加熱し ておいた金型内に装填し、圧力900MPaで熱間鍛造 した。

[0083]

【表12】

50

			•	
		SiC量	Ag 盘	Agロウ盘
試料	元素M	(vol%)	(vol%)	(vol %)
35	Ti	17.3	79.0	3.7
36	Ti	51.7	34.7	13.6
37	Ti	67.8	15. 5	16.7
38	Ti	75.6	5. 5	18.9
39	Ti	82.1	0.0	17.9
40	₩	67.8	15. 5	16.7
41	Cr	67.8	15. 5	16.7
42	Hf	67.8	15. 5	16.7
43	V	67.8	15. 5	16.7
44	ΝЪ	67.8	15. 5	16.7
45	Ta	67.8	15. 5	16.7
46	Mo	67.8	15. 5	16.7

*1と同様の評価を行った。評価の結果として、各焼結体 試料の相対密度、非金属部分中の炭化物量と炭化物被復 層の層厚、並びに面内方向と厚み方向における熱伝導率 と熱膨張係数を、下記表13に示した。原料粉末として 黒鉛粉末の代りにSiC粉末を用いると、熱伝導率及び 熱膨張係数ともに異方性がなくなる。

【0085】 【表13】

10

【0084】得られた各鍛造体の試料について、実施例*

	密度	炭化物	層厚	_ 熱伝導	区(W/mK)	熱膨張係数	女(ppm/°C)
<u>試料</u>	_(%)	<u>(%l%)</u>	<u>(μm)</u>	面内方向	厚み方向	面内方向	厚み方向
35	79.3	2.17	0.73	392	392	12.5	12.5
36	98.5	2,60	0.88	358	358	7.3	7.3
37	98.8	2.44	0.82	342	342	6.1	6.1
38	99.4	2.47	0.83	335	335	5.6	5.6
39	99.7	2.17	0.73	330	330	5.3	5.3
40	100.0	2.44	0.82	330	330	6.1	6.1
41	100.0	2.44	0.82	326	326	6.1	6.1
42	100.0	2.44	0.82	335	335	6.1	6.1
43	100.0	2.44	0.82	315	315	6.1	6.1
44	100.0	2.44	0.82	320	320	6.1	6.1
45	100.0	2.44	0.82	320	320	6.1	6.1
46	100.0	2.44	0.82	319	319	6.1	6.1

【0086】実施例8

原料粉末として、平均粒径200μmのSiC(6H型)粉末と、平均粒径100μmのAg(99.9%)粉末と、平均粒径100μmのAg口ウ粉末(98wt%Ag-2wt%Ti)を準備した。

【0087】SiC粉末とAgロウ粉末を下記表14に 示す各組成で混合し、圧力800MPaでプレス成形した。各成形体を0.00133Paの真空中にて、97 0℃で3時間加熱することにより、焼結と同時に金属の※

30※一部を溶出させて、直径35mm×厚み12mmの多孔体とした。上記組成のAgロウの融点は950℃であった。次に、得られた各多孔体上に同じ形状の上記Ag粉末の成形体を接触設置し、Hz中にて970℃で0.5時間加熱して、Agを多孔体中に溶浸させた。尚、表14に示すAg溶浸量は、溶浸体中に溶浸されたAgの量である。

[0088]

【表14】

	SiC重	Agロウ量	焼結温度	溶浸温度	Ag溶浸量
<u>試料</u>	(vo1%)	<u>(vo1%)</u>	(°C)	(°C)	(vo1%)
47	64.2	35.8	970	970	32
48	67.0	33.0	970	970	29
49	63.2	36.8	970	970	34

[0089]得られた各溶浸体の試料について、実施例 1と同様の評価を行った。評価の結果として、各焼結体 ★と熱膨張係数を、下記表15に示した。

[0090]

【表15】

試料の相対密度、非金属部分中の炭化物量と炭化物被覆 層の層厚、並びに面内方向と厚み方向における熱伝導率★

	密度	炭化物	層厚			熱膨張係数	女(ppm/°C)
試 料	(%)	(vo]%)	<u>(μm)</u>	<u>面内方向</u>	厚み方向	面内方向	厚み方向
47	99.8	2.77	0.93	348	348	6.3	6.3

	25						26
48	99.8	2.44	0.82	346	346	6.1	6.1
49	99.9	2.89	0.97	349	349	6.4	6.4

【0091】実施例9

実施例5で作製したAg-C系複合材料の鍛造体からな る試料22-1の表面に、ロウ付けを可能にするための 金属接合層としてAu-Snを真空蒸着法により厚み3 μmに形成した。このようにして作製した各ヒートシン ク上に、Au-Sn合金ロウ材を用いて、0.3×0.3 ×0.1mmのSi製及びGaAs製の半導体レーザー 素子をそれぞれ接合した。

*【0092】得られた各レーザー素子の飽和光出力を測 定して比較し、その性能評価を行って下記表16に結果 を示した。また、比較のために、従来のA1-SiC系 ヒートシンク及びダイヤモンド系ヒートシンクを用い、 上記と同様に半導体レーザー素子を接合して評価した結 果を下記表16に併せて示した。

[0093]

*10 【表16】

半導体素子			ヒートシング			
	熱膨張係数		熱膨張係数	熱伝導率	飽和光	
材質	(ppm/°C)	材質	(ppm/°C)	_(W/mK)	<u>出</u> カ	割れ発生
Si	4.2	A1–SiC	7.2	300	60	割れ無し
Si	4.2	ダイヤ	2.3	1000	95	割れ無し
Si	4.2	Ag -C	5.9	545	100	割れ無し
GaAs	5.9	A1-SiC	7.2	300	65	割れ無し
GaAs	5.9	ダイヤ	2.3	1000	測定不可	GaAsに割れ
GaAs	5.9	Ag-C	5.9	545	100	割れ無し

(注)飽和光出力は、Ag-C系を100とした相対値である。

【0094】本発明のAg-C複合材料からなるヒート シンクでは、高い飽和光出力が得られた。これは、本発 明の複合材料の熱伝導率が高いため熱を逃がしやすいと と、及び熱膨張係数が半導体素子と近く且つ炭素基材で ヤング率が小さいため、半導体素子に熱応力による歪み が生じにくく、レーザー発生効率が高く、且つヒートシ ンクの熱伝導率が高いために、飽和光出力が高くなるも のと考えられる。

【0095】実施例10

実施例6で作製した各Cu-C系複合材料の鍛造体から 30 られた結果を下記表17に示した。 なる試料30~34の表面に、ロウ付けを可能にするた めの金属接合層として、Au-Snを真空蒸着法により※

※厚み3μmに形成した。とのようにして作製した各ヒー トシンク上に、Au-Sn合金ロウ材を用いて、0.3 ×0.3×0.1 mmのGaAsからなる半導体レーザー チップを、温度300℃で接合した。

【0096】得られた各レーザーを出力150mWで連 **続発振させて、半導体レーザーの温度変動を測定した。** また、比較のために、従来のAI-SiC系ヒートシン ク、及びダイヤモンド系ヒートシンクを用い、上記と同 様に半導体レーザーチップを接合して評価を行った。得

[0097]

【表17】

	ド導体素子		ヒートシンク			
	熱膨張係数		熱膨張係数	熱伝導率		
材質	(ppm/°C)	<u>材 質</u>	<u>(ppm/°C)</u>	(W/mK)	<u> 発振状態</u>	割れ発生
GaAs	5.9	A1-SiC	7.2	300	不安定	割れ無し
GaAs	5.9	ダイヤ	2.3	1000	不安定	GaAsに割れ
GaAs	5.9	Cu-C	11.2	489	安定	割れ無し
GaAs	5.9	Cu–C	10.3	509	安定	割れ無し
GaAs	5.9	Cu-C	7.4	539	安定	割れ無し
GaAs	5.9	Cu-C	6.0	560	安定	割れ無し
GaAs	5.9	Cu-C	5.4	572	安定	割れ無し

【0098】本発明のCu-C系ヒートシンクを用いる ことにより、安定したレーザー発振状態が得られた。と れは、本発明品のCu-C系複合材料の熱伝導率が高く 熱を逃がしやすいこと、及び熱膨張係数が半導体素子と 近く且つ炭素基材でヤング率が小さいため、半導体素子 に熱応力による歪みが生じにくくなり、安定したレーザ 一発振状態が得られるためと考えられる。

【0099】実施例11 ・

原料粉末として、平均粒径200μmの天然黒鉛粉末、 平均粒径200μmのSiC(6H型)粉末、平均粒径 50μmのAg粉末(99.9%)、平均粒径65μm のAgロウ粉末(98wt%Ag-2wt%Ti)を用 意した。

【0100】とれらの粉末を、下記表18に示す各組成 となるように混合し、圧力800MPaでプレス成形し 50 た。各成形体を1気圧のH2中にて960℃で1時間加 熱して、直径35mm×厚み12mmの焼結体とした。 尚、下記表18に示す各組成の合金の融点は、全てほぼ 950℃である。得られた各焼結体を、髙周波誘導加熱 装置を用いて、大気中にて970℃まで20秒で加熱 し、970℃に達した瞬間に取り出し、予め500℃に 加熱しておいた金型内に装填して、圧力850MPaで 熱間鍛造した。

[0101] 【表18】

	C 盘	SiC量	Ag 点	Agロウ量
試 料	(vo1%)	(vol%)	(vo1%)	(vol%)
· 50	56.1	0.0	27.4	16. 5
51	27.8	27.8	28.9	15. 5
52	22.4	33.6	29.0	15.0
53	16.9	39.5	29.1	14.5
54	71.7	0.0	24. 2	4.1
55	35.9	35.9	23. 2	5.0
56	28.4	42.7	23.8	5.1
57	21.1	49. 3	24. 4	5. 2

* 1と同様の評価を行った。評価の結果として、非金属部 分中の炭化物量と炭化物被覆層の層厚、並びに面内方向 と厚み方向における熱伝導率と熱膨張係数を、下記表1 9に示した。尚、各試料の鍛造体の相対密度は、全て1 00%であった。表19の結果から分るように、SiC を混合させることによって、炭素のみを用いるよりも、 複合材料の熱膨張係数を低下させることができた。ま た、SiCを混合すると複合材料の強度が高くなり、ヒ ートシンク材として用いた場合に信頼性が増す。

10 [0103] 【表19】

(15)

【0102】得られた各鍛造体の試料について、実施例*20

	炭化物	層厚	熱伝導率	(W/mK)	熱膨張係数	(ppm/°C)	曲げ強度
<u>試 料</u>	(vo]%)	(μm)	面内方向	厚み方向	面内方向	厚み方向	(MPa)
50	2.07	0.70	433	160	8.5	8.7	165
51	1.63	0.55	372	237	7.6	7.7	188
52	1.50	0.50	360	251	7.4	7.4	202
53	1.39	0.46	347	264	7.1	7.1	223
54	0.42	0.14	461	118	5.5	5.6	103
55	0.41	0.14	380	208	6.0	6.1	132
56	0.41	0.14	363	227	6.0	6.0	155
57	0.41	0.14	408	289	5.9	5.9	185

Ж

【0104】実施例12

原料粉末として、平均粒径300μmの天然黒鉛粉末、 平均粒径300μmのSiC粉末(6H型)、平均粒径 100 μ m の C u 粉末 (99.9%)、及び平均粒径 1 00μmのCuロウ粉末(92wt%Cu-5wt%A g-3wt%Ti)を用意した。

【0105】とれらの粉末を、下記表20に示す各組成 となるように混合し、圧力800MPaでプレス成形し た。得られた各成形体を、1気圧のH2中にて1040 結体とした。尚、下記表20に示す各組成の合金の融点 は、全てほぼ1020℃である。各焼結体を、髙周波誘 導加熱装置を用いて、大気中にて1050℃まで20秒 で加熱し、1050℃に達した瞬間に取り出し、予め5 00°Cに加熱しておいた金型内に装填して、圧力850 MPaで熱間鍛造した。

[0106]

【表20】

C 虽 SiC量 Cu 量 Cuロウ量 試 料 (vol%) (vol%) (vol%) (vol%) · 58 60.4 0.0 28. 5 11.1 59 29.6 27.6 29.6 13. 2 60 23.9 35.8 27.8 12.5 61 18.0 42.0 27.9 12.1

【0107】得られた各鍛造体の試料について、実施例 1と同様の評価を行った。評価の結果として、非金属部 分中の炭化物量と炭化物被覆層の層厚、並びに面内方向 *Cで1時間加熱して、直径35mm×厚み12mmの燒 40 と厚み方向における熱伝導率と熱膨張係数を、下記表2 1に示した。尚、各試料の鍛造体の相対密度は、全て1 00%であった。表21の結果から分るように、SiC を混合させることによって、炭素のみを用いるよりも、 複合材料の熱膨張係数を低下させることができた。ま た、SiCを混合すると複合材料の強度が高くなり、ヒ ートシンク材として用いた場合に信頼性が増す。

[0108]

【表21】 Ж

熱伝導率(W/mK) 熱膨張係数(ppm/C) 曲げ強度 炭化物 層厚 <u>試料 (vo1%) (μm) 面内方向 厚み方向 面内方向 厚み方向 (MPa)</u>

8.5

7.3

7.0

6.8

	29			
58	1.95	0.98	503	140
59	1.92	0.97	407	204
60	1.77	0.89	388	215
61	1.63	0.82	367	226

【0109】実施例13

炭素原料としてピッチ系炭素繊維(2次元朱子織り、繊維系15μm、繊維軸方向の熱伝導率1400W/m・K)、金属原料として平均粒径100μmのAgロウ粉末(90wt%Ag-4wt%Cu-6wt%Ti)を用意した。

【0110】上記銀ロウ粉末と炭素繊維を、下記表22 に示す各組成となるように交互に積層し、圧力500MPaでプレス成形した。各成形体を、1気圧のH2中にて880℃で1時間加熱して、直径35mm×厚み12mmの燒結体とした。尚、上記銀ロウの融点は870℃である。

【0111】 【表22】

> C 虽 AXロウ量 (vol%) (vol %) 試 料 20 40.3 59.7 62 52.6 47.4 63 43.9 56.1 33.0 67.0

【0112】得られた各焼結体の試料について、実施例*

	密度	炭化物	層厚	熱伝導率(W/mk)		熱膨張係数	文(ppm/C)
<u>試料</u>	(%)	(vo1%)	(μm)	面内方向	厚み方向	面内方向	厚み方向
62	83.3	9.54	0.33	725	123	5.1	11.4
63	87.2	12.50	0.44	650	142	6.3	12.5
64	90.3	17.21	0.61	568	167	7.8	13.7
65	93.4	25.88	0.95	479	200	10.0	15.0

【0114】実施例14

原料粉末として、平均粒径200~500μmのSiC粉末(6H型)、平均粒径100μmのAg粉末、平均粒径100μmのAg粉末、平均粒径100μmのAg口ウ粉末(99.9%)、及び平均粒径100μmのAg口ウ粉末(98wt%Ag-2wt%Ti)を用意した。上記SiC粉末を直径20mmのカーボンモールド型に装填し、ホットプレス装置を用いて、0.1MPaのArガス雰囲気下に温度2300℃、圧力50MPaで2時間ホットプレス燒結して、相対密度70%のSiC多孔体を作製した。

【0115】次に、上記Ag粉末とAgロウ粉末を下記表24に示す所定の組成に混合し、圧力800MPaでプレス成形した。得られた各成形体を前記SiC多孔体上に乗せ、1×10⁻⁵torrの真空中、1000℃で1時間加熱して成形体を溶融させ、溶融金属を多孔体中に含浸させることにより、それぞれ下記表24に示す複合材料Aの各試料66~68を製造した。

【0116】 Cれらの複合材料Aを、1×10⁻³ to 50

rrの真空中にて1250℃で2時間加熱し、溶融金属成分を揮発せしめて再び多孔体とした。その後、これらの多孔体上に上記Ag粉末又はCu粉末の成形体を乗せ、1×10⁻⁵ torrの真空中にて1000℃で1時間加熱することにより、溶融金属を再度多孔体中に含浸させて、下記表24に示す複合材料Bの各試料69~74を作製した。

40 【0117】 【表24】

*1と同様の評価を行った。評価の結果として、相対密度、非金属部分中の炭化物量と炭化物被覆層の層厚、並びに面内方向と厚み方向における熱伝導率と熱膨張係数を、下記表23に示した。表23の結果から分るように、炭素繊維を用いるととによって、黒鉛粉末を用いる10場合よりも更に高い熱伝導率を得ることができる。

150

170

195

220

【0113】 【表23】

7.6

7.2

7.0

			21		
		SiC粒径	SiC量	Ag虽	Agロウ虽
試	料	(μm)	(vol %)	(vol%)	(vol%)
66(本	/料A)	200. 0	70.4	12.5	17.2
67(本	材A)	300.0	70.7	18.0	11.3
68(本	材A)	500.0	70.9	22.1	7.0
69(本	排8)	試料6	6に純Ag	を溶浸	
70(本	排B)	試料6	7に純Ag	を溶浸	
71(杉	/科B)	試料6	8に純Ag	を溶浸	
72(杉	排(B)	試料6	6に純Cu	を溶浸	
73(核	排B)	試料6	7に純Cu	を溶浸	
74(杉	/料B)	試料6	8に純Çu	を溶浸	

*レーザーフラッシュ法により熱伝導率を測定した。ま た、直径5mm×厚み10mmに切り出し、密度を測定 した後、差動トランス式熱膨張係数測定装置により熱膨 張係数を測定した。尚、とれらの試料の切り出しは、複 合材料の厚み方向と試料の厚み方向が一致する方向、及 び複合材料の厚み方向と試料の厚み方向が垂直になる方 向、それぞれについて行った。また、各試料のSiC粒 子と金属との界面を透過電子顕微鏡により観察して、炭 化物(TiC)層の厚さを測定した。得られた結果を下 10 記表25に示す。

[0119]

【表25】

【0118】得られた複合材料A、Bの各試料を、直径

10mm×厚み2mmに切り出し、密度を測定した後、*

	密度	炭化物	層厚			熱膨張係数(ppm/°C)	
<u>試料</u>	(%)	<u>(vo1%)</u>	(µm)	面内方向	厚み方向	面内方向	厚み方向
66	100.2	1.21	0.41	303	303	5.9	5.9
67	99.7	0.79	0.40	317	317	5.9	5.9
68	99.2	0.49	0.41	328	328	5.9	5.9
69	100.0	1.21	0.41	315	315	5.9	5.9
70	99.8	0.79	0.40	326	326	5.9	5.9
71	100.0	0.49	0.41	340	340	5.9	5.9
72	100.0	1.21	0.41	310	310	5.9	5.9
73	99.8	0.79	0.40	320	320	5.9	5.9
74	100.0	0.49	0.41	332	332	5.9	5.9

ж

【0120】上記の結果から、用いたSiC粉末の平均 粒径が大きくなるほど、複合材料の熱伝導率が増大する ことが分る。また、複合材料Aよりも複合材料Bの方 が、熱伝導率が高いことが分る。

【0121】実施例15

SiC原料粉末として、SiC単結晶ウエハの粉砕粉を 30 用いた以外は、実施例14と同様にして複合材料A及び Bを作製した。即ち、昇華法により作製した直径50m m、厚さ10mmのSiC単結晶ウエハを粉砕し、平均 粒径が200、300、500μmの各SiC粉末を作 製した。粉砕前のウエハの熱伝導率は、490W/mK であった。複合材料Aの各試料75~77及び複合材料 Bの各試料78~83について、それぞれSiC粉末の 平均粒径と共に組成を下記表26に示す。

[0122]

【表26】

		2105年長	21032	WR WF	WARDAR
試	料	(μm)	(vol %)	(vol%)	(vol%)
75(材	料A)	200.0	70.4	12.5	17.2
76(材	料A)	300.0	70.7	18.0	11.3
77(材	料A)	500.0	70.9	22.1	7.0
78(材	料B)	試料7	5に純Ag	を溶浸	
79(材	料B)	試料7	6に純Ag	を溶浸	
80(材	料B)	試料7	7に純Ag	を溶漫	
81(材	料B)	試料7	5に純Cu	を溶浸	
82(材	料B)	試料7	6に純C u	を溶浸	
83(材	料B)	試料7	7に純Cu	を溶浸	

【0123】得られた複合材料A、Bの各試料につい て、実施例14と同様にして、密度、熱伝導率、熱膨張 係数を測定した。また、各試料のSiC粒子と金属との 界面を透過電子顕微鏡により観察して、炭化物(Ti

※40 C)層の厚さを測定した。得られた結果を表27に示 す。この結果から分るように、SiC単結晶ウエハの粉 砕粉を用いることにより、極めて高い熱伝導率が得られ た。また、複合材料Aよりも複合材料Bの熱伝導率が高 いととが分る。

[0124]

【表27】

	密度	炭化物	層厚	熱伝導率(W/mK)		熱膨張係数(ppm/C)	
<u>試料</u>	<u>(%)</u>	(vo1%)	(μm)	面内方向	厚み方向	面内方向	厚み方向
75	100.0	1.21	0.41	378	378	5.9	5.9
76	100.0	0.79	0.40	387	387	5.9	5.9

	33						34
77	100.0	0.49	0.41	395	395	5.9	5.9
78	100.0	1.21	0.41	390	390	5.9	5.9
79	100.0	0.79	0.40	401	401	5.9	5.9
80	100.0	0.49	0.41	412	412	5.9	5.9
81	100.0	1.21	0.41	385	385	5.9	5.9
82	100.0	0.79	0.40	391	391	5.9	5.9
83	100.0	0.49	0.41	399	399	5.9	5.9

【0125】実施例16

原料粉末として、平均粒径20~100μmのSiC粉 末(6H型)、平均粒径100μmのAg粉末(99. 9%)、及び平均粒径100μmのAgロウ粉末(98 wt%Ag-2wt%Ti)を用意した。上記SiC粉 末を直径20mmのカーボンモールド型に装填し、ホッ トプレス装置を用いて、0.1MPaのArガス雰囲気 下に温度2300℃、圧力50MPaで2時間ホットブ レス焼結して、相対密度70%のSiC多孔体を作製し た。下記表28に、用いたSiC粉末の平均粒径と得ら れた各多孔体の平均細孔径を示す。

【0126】次に、上記Ag粉末とAgロウ粉末を下記*

*表28に示す所定の組成に混合し、圧力800MPaで プレス成形した。得られた成形体を前記S i C多孔体上 10 に乗せ、1×10⁻⁵ torrの真空中、1000℃で 1時間加熱して成形体を溶融させ、溶融金属を多孔体中 に含浸させた。また、同様に成形体を乗せた前記SiC 多孔体を1×10⁻⁵ torrの真空中、1000℃に 昇温後、Arガスを導入して下記表28に示す圧力で加 圧した状態で1時間加熱保持し、成形体を溶融させ、溶 融金属を多孔体中に含浸させた。

[0127] 【表28】

	SiC粒径	平均細孔径	SiC重	Ag 重	Agロウ重	溶浸圧力
<u>試料</u>	<u>(μm)</u>	(μm)	(vo1%)	(vo1%)	<u>(vo1%)</u>	<u>(Pa)</u>
84	20.0	5.0	69.7	0.0	30.3	0.0133
85	20.0	5.0	69.7	0.0	30.3	1×10 ⁵
86	20.0	5.0	69.7	0.0	30.3	5×10 ⁵
87	20.0	5.0	69.7	0.0	30.3	10×10 ⁵
88	100.0	20.0	70.0	5.0	25.0	0.0133
89	100.0	20.0	70.0	5.0	25.0	1×10 ⁵
90	100.0	20.0	70.0	5.0	25.0	2×10 ⁵
91	100.0	20.0	70.0	5.0	25.0	10×10 ⁵

【0128】とのようにして作製した複合材料の各試料 30%厚み方向が垂直になる方向、それぞれについて行った。 84918について、直径10mm×厚み2mmに切り 出し、密度を測定した後、レーザーフラッシュ法により 熱伝導率を測定した。また、直径5mm×厚み10mm に切り出し、密度を測定した後、差動トランス式熱膨張 係数測定装置により熱膨張係数を測定した。尚、これら の試料の切り出しは、複合材料の厚み方向と試料の厚み 方向が一致する方向、及び複合材料の厚み方向と試料の※

また、各試料のSiC粒子と金属との界面を透過電子顕 微鏡により観察して、炭化物層の厚さを測定した。得ら れた結果を下記表29に示す。この結果から、ガス圧を 付加するととにより、複合材料の相対密度が向上し、熱 伝導率も高くなった。

[0129]

【表29】

	密度	炭化物	層厚	熱伝導率(W/mK)		熱膨張係数(ppm/°C)	
<u>試料</u>	_(%)	(vo1%)	<u>(μm)</u>	面内方向	厚み方向	面内方向	厚み方向
84	95.9	2.16	0.07	250	250	5.9	5.9
85	97.8	2.16	0.07	2 7 1	271	5.9	5.9
86	100.7	2.16	0.07	288	288	5.9	5.9
87	100.7	2.16	0.07	288	288	5.9	5.9
88	97.9	1.78	0.30	282	282	5.9	5.9
89	98.3	1.78	0.30	296	296	5.9	5.9
90	100.4	1.78	0.30	312	312	5.9	5.9
91	100.4	1.78	0.30	312	312	5.9	5.9

[0130]

【発明の効果】本発明によれば、髙価なダイヤモンドを 使用せずに、熱膨張係数が小さく且つ熱伝導率が比較的 50 熱膨張係数が半導体素子に近いヒートシンク部材を作製

高い複合材料を提供することができる。また、本発明の 複合材料を用いて、熱伝導率がダイヤモンド並に高く、

するととができる。とのヒートシンク部材を用いることによって、半導体レーザーやマイクロ波デバイス、各種 LSIなどの性能を、最大限に発揮させることができる。

【図面の簡単な説明】

【図1】本発明のAg-C系複合材料の代表的な組織の 光学顕微鏡写真(100倍)である。

【図2】本発明の複合材料からなるヒートシンクを用い*

* たパッケージの具体例を模式的に示す断面図である。 【符号の説明】

- 1 パッケージ
- 2 ヒートシンク
- 3 半導体素子
- 4 ボンディングワイヤ
- 5 リードフレーム

【図1】

【図2】

フロントページの続き

(51)Int.Cl.'

識別記号

FΙ

テーマコート'(参考)

C 0 4 B 35/56

101L

101S 101X

35/80

В

F ターム(参考) 4G001 BA22 BA60 BA61 BA69 BA86 BB22 BB24 BB25 BB61 BB69 BB86 BC23 BC52 BC54 BC71 BC73 BD01 BD03 BD05 4G032 AA04 AA32 AA33 AA41 AA44 AA45 AA52 BA00 GA06 GA12

GA19 GA20