The Network of Foreign Direct Investment Flows: Theory and Empirical Analysis¹

John Schoeneman² jbs5686@psu.edu PhD Candidate Boliang Zhu² bxz14@psu.edu Assistant Professor

Bruce Desmarais² bdesmarais@psu.edu Associate Professor

April 8, 2017

¹Acknowledgement: This material is based on work supported by the National Science Foundation under IGERT Grant DGE-1144860, Big Data Social Science.

²Pennsylvania State University

Introduction

- FDI as a Network
 - Clustering
 - Reciprocity
- Motivation
 - Violation of Independence Assumptions
 - Theoretical Importance of Dependence Terms
- Simultaneously test exogenous variables as well

FDI Network 2008

Color Scheme: Autocracy to Democracy is scaled as Blue to Red

Theory for Network Terms

Reciprocity

- Standard practice to resolve political opposition from competing firms
- Anti-reciprocal relationship in mixed dyads

Transitivity

- MNC expansion and supply-chain fragmentation
- Risk of Expropriation
- PTA networks

FDI Data and Exogenous Covariates

- Bilateral FDI statistics from UNCTAD, 2001-2012
- Dyad-level Covariates
 - Gravity +
 - Contiguity +
 - Common Language +
 - Four Types of Defense Treaties +
 - Colonial Relationships +
 - PTA depth¹ +

- Node-level Covariates
 - GDP per capita +/-
 - ullet GDP Growth Rate +
 - Polity IV +
 - Political Violence -
 - Trade Openness +

ERGM Count Model

$$\mathsf{Pr}_{\boldsymbol{\theta};h:\boldsymbol{g}}(\boldsymbol{Y}=\boldsymbol{y}) = \frac{h(\boldsymbol{y})\mathsf{exp}(\boldsymbol{\theta} \cdot \boldsymbol{g}(\boldsymbol{y}))}{\kappa_{h,\boldsymbol{g}}(\boldsymbol{\theta})}$$

$$\mathsf{Sum}: \boldsymbol{g}(\boldsymbol{y}) = \sum_{(i,j) \in \mathbb{Y}} \boldsymbol{y}_{i,j}$$

$$\mathsf{Sum}, \ \mathsf{Fractional} \ \mathsf{Moment}: \boldsymbol{g}(\boldsymbol{y}) = \sum_{(i,j) \in \mathbb{Y}} \boldsymbol{y}_{i,j}^{1/2}$$

$$\mathsf{Non-Zero}: \boldsymbol{g}_k = \sum_{(i,j) \in \mathbb{Y}} \mathbb{I}(\boldsymbol{y}_{i,j} \neq 0)$$

$$\mathsf{Reciprocity}: \boldsymbol{g}(\boldsymbol{y}) = \sum_{(i,j) \in \mathbb{Y}} \min(\boldsymbol{y}_{i,j}, \boldsymbol{y}_{j,i})$$

$$\mathsf{Transitive} \ \mathsf{Weights}: \boldsymbol{g}(\boldsymbol{y}) = \sum_{(i,j) \in \mathbb{Y}} \min\left(\boldsymbol{y}_{i,j}, \max_{k \in N} \left(\min(\boldsymbol{y}_{i,k}, \boldsymbol{y}_{k,j})\right)\right),$$

$$\mathsf{Dyadic} \ \mathsf{Covariate}: \boldsymbol{g}(\boldsymbol{y}, \boldsymbol{x}) = \sum_{(i,j)} \boldsymbol{y}_{i,j} x_{i,j}$$

Count Model and Network Dependencies

Covariate Results

Conclusion and Future Research

References

Dür, A., Baccini, L., & Elsig, M. (2014). The design of international trade agreements: Introducing a new dataset. The Review of International Organizations, 9(3), 353-375.