Определитель и обратная матрица

Краткий план:

• Определитель на плоскости;

Краткий план:

- Определитель на плоскости;
- Определитель в пространстве.

Рассмотрим оператор преобразования плоскости, $L:\mathbb{R}^2\to\mathbb{R}^2.$

Пара векторов a, b переходит в пару векторов La, Lb.

Рассмотрим оператор преобразования плоскости, $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Пара векторов a, b переходит в пару векторов La, Lb.

Как меняется площадь параллелограмма образованного двумя векторами?

Рассмотрим оператор преобразования плоскости, $L: \mathbb{R}^2 \to \mathbb{R}^2$.

Пара векторов a, b переходит в пару векторов La, Lb.

Как меняется площадь параллелограмма образованного двумя векторами?

Меняется ли направление поворота от первого вектора ко второму?

Идея определителя на картинке

Ориентированная площадь

Определение

Возьмём площадь параллелограмма со сторонами ${\bf a}$ и ${\bf b}$. Если поворот от первого вектора ко второму идёт по часовой стрелке, то дополнительно домножим площадь на (-1).

Полученное число назовём ориентированной площадью параллелограмма и обозначим $S(\mathbf{a}, \mathbf{b})$.

Ориентированная площадь

Определение

Возьмём площадь параллелограмма со сторонами ${\bf a}$ и ${\bf b}$. Если поворот от первого вектора ко второму идёт по часовой стрелке, то дополнительно домножим площадь на (-1).

Полученное число назовём ориентированной площадью параллелограмма и обозначим $S(\mathbf{a}, \mathbf{b})$.

Важен порядок векторов:

$$S(\mathbf{a}, \mathbf{b}) = -S(\mathbf{b}, \mathbf{a}).$$

Определение

Возьмём любые два вектора ${\bf a}$ и ${\bf b}$, для которых $S({\bf a},{\bf b}) \neq 0$.

Определитель оператора L : $\mathbb{R}^2 \to \mathbb{R}^2$ показывает во сколько раз изменяется ориентированная площадь

$$\det L = \frac{S(La, La)}{S(a, b)}$$

Рассмотрим оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, отражение относительно $x_1=x_2$.

Рассмотрим оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, отражение относительно $x_1 = x_2$. картинка

Рассмотрим оператор L : $\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$, отражение относительно $x_1=x_2$.

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
, отражение относительно $x_1 = x_2$.

Площадь параллелограмма не изменяется.

Меняется направление поворота от первого вектора ко второму.

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} o \begin{pmatrix} a_2 \\ a_1 \end{pmatrix}$$
, отражение относительно $x_1 = x_2$.

Площадь параллелограмма не изменяется.

Меняется направление поворота от первого вектора ко второму.

$$\det L = \frac{S(La, Lb)}{S(a, b)} = -1$$

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Одна сторона растягивается в два раза, вторая — в три раза.

Меняется направление поворота от первого вектора ко второму.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ -3a_2 \end{pmatrix}$$
.

Одна сторона растягивается в два раза, вторая — в три раза.

Меняется направление поворота от первого вектора ко второму.

$$\det \mathbf{L} = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})} = (-1) \cdot 2 \cdot 3 = -6$$

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

картинка

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

При вращении не изменяется площадь параллелограмма.

При вращении не изменяется направление поворота от первого вектора ко второму.

Оператор $\mathsf{R}:\mathbb{R}^2\to\mathbb{R}^2$ вращает плоскость на 30° против часовой стрелки.

При вращении не изменяется площадь параллелограмма.

При вращении не изменяется направление поворота от первого вектора ко второму.

$$\det R = \frac{R(La, Lb)}{R(a, b)} = 1$$

Определитель проекции

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую $\ell.$

Определитель проекции

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую ℓ . картинка

При проекции любой параллелограмм «складывается» в отрезок нулевой площади.

Определитель проекции

Оператор $\mathsf{H}:\mathbb{R}^2\to\mathbb{R}^2$ проецирует векторы на прямую ℓ . картинка

При проекции любой параллелограмм «складывается» в отрезок нулевой площади.

$$\det \mathbf{H} = \frac{S(\mathbf{Ha}, \mathbf{Hb})}{S(\mathbf{a}, \mathbf{b})} = 0$$

Чем прекрасна ориентированная площадь?

Утверждение

Ориентированная площадь $S(\mathbf{a}, \mathbf{b})$ линейна по каждому аргументу:

$$S(\lambda \mathbf{a}, \mathbf{b}) = \lambda S(\mathbf{a}, \mathbf{b}), \quad S(\mathbf{a} + \mathbf{b}, \mathbf{c}) = S(\mathbf{a}, \mathbf{c}) + S(\mathbf{b}, \mathbf{c})$$

Чем прекрасна ориентированная площадь?

Утверждение

Ориентированная площадь $S(\mathbf{a}, \mathbf{b})$ линейна по каждому аргументу:

$$S(\lambda \mathbf{a}, \mathbf{b}) = \lambda S(\mathbf{a}, \mathbf{b}), \quad S(\mathbf{a} + \mathbf{b}, \mathbf{c}) = S(\mathbf{a}, \mathbf{c}) + S(\mathbf{b}, \mathbf{c})$$

здесь картинка.

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\,\mathbf{a}, \mathsf{L}\,\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и $\mathbf{b}!$

Величина $\det L = \frac{S(\mathbf{L}\mathbf{a}, \mathbf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{b})}{S(\mathbf{a},\mathbf{b})}$ не зависит от выбора \mathbf{a} и $\mathbf{b}!$

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\mathbf{a}, \mathsf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём $\mathbf{a}=5\mathbf{e}_1+7\mathbf{e}_2$. Найдём $S(\mathsf{L}\,\mathbf{a},\mathsf{L}\,\mathbf{e}_2)/S(\mathbf{a},\mathbf{e}_2)$:

$$\frac{S(\mathsf{L}(5\mathbf{e}_1 + 7\mathbf{e}_2), \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1 + 7\mathbf{e}_2, \mathbf{e}_2)} = \frac{S(\mathsf{L}\,5\mathbf{e}_1, \mathsf{L}\,\mathbf{e}_2) + S(\mathsf{L}\,7\mathbf{e}_2, \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1, \mathbf{e}_2) + S(7\mathbf{e}_2, \mathbf{e}_2)} =$$

Величина $\det \mathsf{L} = \frac{S(\mathsf{L}\mathbf{a}, \mathsf{L}\mathbf{b})}{S(\mathbf{a}, \mathbf{b})}$ не зависит от выбора \mathbf{a} и \mathbf{b} !

Идея доказательства

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
, $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Возьмём ${f a}=5{f e}_1+7{f e}_2$. Найдём $S({\sf L\,a},{\sf L\,e}_2)/S({f a},{f e}_2)$:

$$\frac{S(\mathsf{L}(5\mathbf{e}_1 + 7\mathbf{e}_2), \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1 + 7\mathbf{e}_2, \mathbf{e}_2)} = \frac{S(\mathsf{L}\,5\mathbf{e}_1, \mathsf{L}\,\mathbf{e}_2) + S(\mathsf{L}\,7\mathbf{e}_2, \mathsf{L}\,\mathbf{e}_2)}{S(5\mathbf{e}_1, \mathbf{e}_2) + S(7\mathbf{e}_2, \mathbf{e}_2)} =$$

$$=\frac{5S(\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2)+0}{5S(\mathbf{e}_1,\mathbf{e}_2)+0}=\frac{S(\operatorname{L}\mathbf{e}_1,\operatorname{L}\mathbf{e}_2)}{S(\mathbf{e}_1,\mathbf{e}_2)}$$

Ещё один взгляд на определитель

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Ещё один взгляд на определитель

Обозначим
$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 , $\mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

Определение

Преобразуем параллелограмм, образованный векторами ${f e}_1$ и ${f e}_2$, с помощью оператора L.

Определитель линейного оператора L : $\mathbb{R}^2 \to \mathbb{R}^2$ равен ориентированной площади полученного параллелограмма.

$$\det \mathbf{L} = S(\mathbf{L}\,\mathbf{e}_1, \mathbf{L}\,\mathbf{e}_2)$$

Определитель в пространстве

Идея: заменим ориентированную площадь параллелограмма $S(\mathbf{a},\mathbf{b})$ на ориентированный объём параллелепипеда $S(\mathbf{a},\mathbf{b},\mathbf{c})$.

Определитель в пространстве

Идея: заменим ориентированную площадь параллелограмма $S(\mathbf{a},\mathbf{b})$ на ориентированный объём параллелепипеда $S(\mathbf{a},\mathbf{b},\mathbf{c})$.

Определение

Возьмём любые три вектора ${\bf a}, {\bf b}$ и ${\bf c}$, для которых $S({\bf a}, {\bf b}, {\bf c}) \neq 0$.

Определитель оператора L : $\mathbb{R}^3 \to \mathbb{R}^3$ показывает во сколько раз изменяется ориентированный объём

$$\det L = \frac{S(La, La, Lc)}{S(a, b, c)}$$

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

С помощью поворота:

Совместим вектор e_1 с вектором a;

Затем вектор e_2 «положим» в плоскость a, b.

Обозначим
$$\mathbf{e}_1=\begin{pmatrix}1\\0\\0\end{pmatrix}$$
 , $\mathbf{e}_2=\begin{pmatrix}0\\1\\0\end{pmatrix}$, $\mathbf{e}_3=\begin{pmatrix}0\\0\\1\end{pmatrix}$.

Определение

Рассмотрим параллелепипед, образованный а, b и с.

С помощью поворота:

Совместим вектор e_1 с вектором a;

Затем вектор e_2 «положим» в плоскость a, b.

Ориентированный объём $S(\mathbf{a},\mathbf{b},\mathbf{c})$ объявим отрицательным, если векторы \mathbf{e}_3 и \mathbf{c} смотрят в разные полупространства.

Определитель в пространстве

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \rightarrow \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
 .

Одна сторона растягивается в два раза, вторая — в три раза, третья — в пять.

Первые два вектора не изменяют направления при преобразовании.

Третий вектор меняет полупространство, в котором он лежит относительно первых двух.

Определитель растягивания компонент

Рассмотрим оператор L :
$$\begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \to \begin{pmatrix} 2a_1 \\ 3a_2 \\ -5a_3 \end{pmatrix}$$
.

Одна сторона растягивается в два раза, вторая — в три раза, третья — в пять.

Первые два вектора не изменяют направления при преобразовании.

Третий вектор меняет полупространство, в котором он лежит относительно первых двух.

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{a}, \mathbf{L}\,\mathbf{b}, \mathbf{L}\,\mathbf{c})}{S(\mathbf{a}, \mathbf{b}, \mathbf{c})} = (-1) \cdot 2 \cdot 3 \cdot 5 = -30$$

Определитель проекции

Оператор $H:\mathbb{R}^3\to\mathbb{R}^3$ проецирует векторы на плоскость α .

Определитель проекции

Оператор $H: \mathbb{R}^3 \to \mathbb{R}^3$ проецирует векторы на плоскость α . Любой параллелепипед «схлопывается» в плоскую фигуру нулевого объёма.

Определитель проекции

Оператор $H: \mathbb{R}^3 \to \mathbb{R}^3$ проецирует векторы на плоскость α . Любой параллелепипед «схлопывается» в плоскую фигуру нулевого объёма.

$$\det \mathbf{H} = \frac{S(\mathbf{Ha}, \mathbf{Hb}, \mathbf{Hc})}{S(\mathbf{a}, \mathbf{b}, \mathbf{c})} = 0$$

Свойства определителя

Краткий план:

• Ориентированный объём в \mathbb{R}^n ;

Краткий план:

- Ориентированный объём в \mathbb{R}^n ;
- Свойства определителя;

Краткий план:

- Ориентированный объём в \mathbb{R}^n ;
- Свойства определителя;
- Явная формула для определителя.

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

1. Верный гипер-объём базового гипер-кубика:

$$S(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$$

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

1. Верный гипер-объём базового гипер-кубика:

$$S(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$$

2. Линейность по каждому аргументу:

$$\begin{split} S(\mathbf{a}+\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= S(\mathbf{a},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) + \\ &+ S(\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \\ S(\pmb{\lambda}\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= \pmb{\lambda} S(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \end{split}$$

Вектор \mathbf{e}_i содержит на i-м месте единицу, а на остальных — нули.

1. Верный гипер-объём базового гипер-кубика:

$$S(\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n) = 1$$

2. Линейность по каждому аргументу:

$$\begin{split} S(\mathbf{a}+\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= S(\mathbf{a},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) + \\ &+ S(\mathbf{b},\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \\ S({\color{blue}\lambda}\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) &= {\color{blue}\lambda} S(\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3,\ldots,\mathbf{v}_n) \end{split}$$

3. Антисимметричность:

$$S(\mathbf{v_1},\mathbf{v_2},\mathbf{v_3},\ldots,\mathbf{v}_n) = -S(\mathbf{v_2},\mathbf{v_1},\mathbf{v_3},\ldots,\mathbf{v}_n)$$

Определитель во всей n-мерности

Определение

Возьмём векторы \mathbf{v}_1 , ..., \mathbf{v}_n , для которых $S(\mathbf{v}_1,\dots,\mathbf{v}_n) \neq 0$.

Определитель оператора $L: \mathbb{R}^n \to \mathbb{R}^n$ показывает во сколько раз изменяется ориентированный гипер-объём произвольного параллелепипеда:

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{v}_1, \dots, \mathbf{L}\,\mathbf{v}_n)}{S(\mathbf{v}_1, \dots, \mathbf{v}_n)}$$

Определитель во всей n-мерности

Определение

Возьмём векторы $\mathbf{v}_1,...,\mathbf{v}_n$, для которых $S(\mathbf{v}_1,...,\mathbf{v}_n) \neq 0$.

Определитель оператора $L: \mathbb{R}^n \to \mathbb{R}^n$ показывает во сколько раз изменяется ориентированный гипер-объём произвольного параллелепипеда:

$$\det \mathbf{L} = \frac{S(\mathbf{L}\,\mathbf{v}_1, \dots, \mathbf{L}\,\mathbf{v}_n)}{S(\mathbf{v}_1, \dots, \mathbf{v}_n)}$$

Определение

Определитель оператора $L: \mathbb{R}^n \to \mathbb{R}^n$ показывает во сколько раз изменяется ориентированный гипер-объём базового гипер-кубика:

$$\det \mathbf{L} = S(\mathbf{L}\,\mathbf{e}_1, \dots, \mathbf{L}\,\mathbf{e}_n)$$

Определитель матрицы

Определение

Определителем матрицы называется определитель соответствующего линейного оператора.

Определитель матрицы

Определение

Определителем матрицы называется определитель соответствующего линейного оператора.

В матрице L i-й столбец равен L \mathbf{e}_i , поэтому

$$\det \mathsf{L} = S(\mathsf{col}_1 \, \mathsf{L}, \mathsf{col}_2 \, \mathsf{L}, \dots, \mathsf{col}_n \, \mathsf{L})$$

Определитель матрицы

Определение

Определителем матрицы называется определитель соответствующего линейного оператора.

В матрице L i-й столбец равен L \mathbf{e}_i , поэтому

$$\det \mathbf{L} = S(\operatorname{col}_1 \mathbf{L}, \operatorname{col}_2 \mathbf{L}, \dots, \operatorname{col}_n \mathbf{L})$$

Утверждение

Определитель матрицы можно считать по строкам:

$$\det \mathbf{L} = S(\mathsf{row}_1 \, \mathsf{L}, \mathsf{row}_2 \, \mathsf{L}, \dots, \mathsf{row}_n \, \mathsf{L})$$

Быстрые признаки равенства нулю

1. Если среди векторов есть два одинаковых, то гипер-объём параллелепипеда равен нулю.

$$S(\mathbf{a}, \mathbf{a}, \mathbf{v}_3, \dots, \mathbf{v}_n) = 0$$

Быстрые признаки равенства нулю

1. Если среди векторов есть два одинаковых, то гипер-объём параллелепипеда равен нулю.

$$S(\mathbf{a}, \mathbf{a}, \mathbf{v}_3, \dots, \mathbf{v}_n) = 0$$

2. Если среди векторов есть один нулевой, то гипер-объём параллелепипеда равен нулю.

$$S(\mathbf{0}, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n) = 0$$

Принцип Кавальери

«Скашивание» параллелепипеда вбок не изменяет гипер-объём:

$$S(\mathbf{a},\mathbf{b},\mathbf{v}_3,\ldots,\mathbf{v}_n) = S(\mathbf{a}+\mathbf{b},\mathbf{b},\mathbf{v}_3,\ldots,\mathbf{v}_n)$$

картинка

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{pmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow$$

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{pmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow$$

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{pmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix}$$

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{pmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix}$$

Единственным ненулевым элементом строки можно «скосить» весь столбец:

$$\begin{pmatrix} 3 & 3 & -2 \\ \mathbf{4} & 0 & 0 \\ 2 & 1 & -5 \end{pmatrix} \rightarrow$$

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{pmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix}$$

Единственным ненулевым элементом строки можно «скосить» весь столбец:

$$\begin{pmatrix} 3 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{pmatrix} \rightarrow$$

Единственным ненулевым элементом столбца можно «скосить» всю строку:

$$\begin{pmatrix} 0 & 3 & -2 \\ 4 & 2 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 7 \\ 0 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix}$$

Единственным ненулевым элементом строки можно «скосить» весь столбец:

$$\begin{pmatrix} 3 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 2 & 1 & -5 \end{pmatrix} \rightarrow \begin{pmatrix} 0 & 3 & -2 \\ 4 & 0 & 0 \\ 0 & 1 & -5 \end{pmatrix}$$

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

1. Определитель равен нулю, $\det L = 0$.

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

- 1. Определитель равен нулю, $\det L = 0$.
- 2. Столбцы матрицы линейно зависимы.

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

- 1. Определитель равен нулю, $\det L = 0$.
- 2. Столбцы матрицы линейно зависимы.
- 3. Строки матрицы линейно зависимы.

Утверждение

Для матрицы L размера $n \times n$ четыре свойства эквиваленты:

- 1. Определитель равен нулю, $\det L = 0$.
- 2. Столбцы матрицы линейно зависимы.
- 3. Строки матрицы линейно зависимы.
- 4. Ранг матрицы меньше числа столбцов, ${\rm rank}\,{\rm L} < n$.

Определитель композиции

Утверждение

Определитель композиции A и B равен произведению определителей:

$$\det(AB) = \det A \det B$$

Определитель композиции

Утверждение

Определитель композиции A и B равен произведению определителей:

$$\det(AB) = \det A \det B$$

Следствие

$$\det A \det A^{-1} = \det(A \cdot A^{-1}) = \det \mathbf{I} = 1$$

Спокойствие, только спокойствие!

Утверждение

Свойства нормировки, линейности по аргументам и антисимметричности однозначно определяют функцию гипер-объёма $S(\mathbf{v}_1, \dots, \mathbf{v}_n)$.

Спокойствие, только спокойствие!

Утверждение

Свойства нормировки, линейности по аргументам и антисимметричности однозначно определяют функцию гипер-объёма $S(\mathbf{v}_1,\dots,\mathbf{v}_n)$.

Утверждение

Отношение гипер-объёмов $\det \mathsf{L} = \frac{S(\mathsf{L}\mathbf{v}_1,...,\mathsf{L}\mathbf{v}_n)}{S(\mathbf{v}_1,...,\mathbf{v}_n)}$ не зависит от выбора $\mathbf{v}_1,\ldots,\mathbf{v}_n$.

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Примеры: (12345), (32145), (21354).

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Примеры: (12345), (32145), (21354).

Определение

Перестановку называют чётной, если требуется чётное число смен местами двух чисел, чтобы привести перестановку к $(1234\dots n)$.

Если σ — чётная перестановка, то пишут sign $\sigma=1$, для нечётной пишут sign $\sigma=-1$.

Определение

Перестановкой называют последовательность из n чисел, в которой каждое число от 1 до n встречается ровно один раз.

Примеры: (12345), (32145), (21354).

Определение

Перестановку называют чётной, если требуется чётное число смен местами двух чисел, чтобы привести перестановку к $(1234\dots n)$.

Если σ — чётная перестановка, то пишут sign $\sigma=1$, для нечётной пишут sign $\sigma=-1$.

Примеры:

 $\operatorname{sign}(12345) = 1$, $\operatorname{sign}(32145) = -1$, $\operatorname{sign}(21354) = 1$.

Расстановка ладей!

Рассмотрим квадратную матрицу.

Перестановку σ будем трактовать как инструкцию, какой элемент взять из очередной строки матрицы.

$$(3124) \sim \begin{pmatrix} \cdot & \cdot & * & \cdot \\ * & \cdot & \cdot \\ \cdot & * & \cdot \\ \cdot & \cdot & * \end{pmatrix}$$

Расстановка ладей!

Рассмотрим квадратную матрицу.

Перестановку σ будем трактовать как инструкцию, какой элемент взять из очередной строки матрицы.

$$(3124) \sim \begin{pmatrix} \cdot & \cdot & * & \cdot \\ * & \cdot & \cdot & \cdot \\ \cdot & * & \cdot & \cdot \\ \cdot & \cdot & \cdot & * \end{pmatrix}$$

С помощью $p(\sigma)$ обозначим произведение этих элементов.

Например, $p(3124) = a_{13} \cdot a_{21} \cdot a_{32} \cdot a_{44}$.

Явная формула

Утверждение

Трём свойствам определителя (нормировке, линейности, антисимметричности) удовлетворяет единственная функция

$$\det \mathbf{L} = \sum_{\sigma} \operatorname{sign}(\sigma) \cdot p(\sigma).$$

Перестановку σ трактуем как инструкцию, какой элемент взять из очередной строки матрицы.

C помощью $p(\sigma)$ обозначено произведение этих элементов.

Иллюстрация для 2×2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} =$$

Иллюстрация для 2×2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \\ d \end{pmatrix} - \begin{pmatrix} b \\ c \end{pmatrix} = \frac{\operatorname{sign}(12)=1}{\operatorname{sign}(21)=-1}$$

Иллюстрация для 2×2

$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \\ d \end{pmatrix} - \begin{pmatrix} b \\ c \end{pmatrix} = ad - bc$$

$$\underset{\text{sign}(12)=1}{\text{sign}(21)=-1}$$

Иллюстрация для 3×3

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} =$$

Иллюстрация для 3×3

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \\ = + \begin{pmatrix} a \\ e \\ i \end{pmatrix} + \begin{pmatrix} c \\ d \\ h \end{pmatrix} + \begin{pmatrix} b \\ f \\ g \end{pmatrix} \\ \text{sign}(123) = 1 \quad \text{sign}(312) = 1 \\ - \begin{pmatrix} c \\ e \\ g \end{pmatrix} - \begin{pmatrix} b \\ d \\ i \end{pmatrix} - \begin{pmatrix} a \\ f \\ h \end{pmatrix} = \\ \text{sign}(321) = -1 \quad \text{sign}(213) = -1 \quad \text{sign}(132) = -1$$

Иллюстрация для 3×3

$$\det \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = \\ = + \begin{pmatrix} a \\ e \\ i \end{pmatrix} + \begin{pmatrix} c \\ d \\ h \end{pmatrix} + \begin{pmatrix} b \\ f \\ g \end{pmatrix} \\ \frac{\text{sign}(123) = 1}{\text{sign}(312) = 1} \frac{\text{sign}(231) = 1}{\text{sign}(231) = 1} \\ - \begin{pmatrix} c \\ e \\ g \end{pmatrix} - \begin{pmatrix} b \\ d \\ i \end{pmatrix} - \begin{pmatrix} a \\ f \\ h \end{pmatrix} = \\ \frac{\text{sign}(321) = -1}{\text{sign}(213) = -1} \frac{\text{sign}(132) = -1}{\text{sign}(132) = -1} \\ = aei + cdh + bfg - ceg - bdi - afh$$

Вычисление определителя

Метод Гаусса

Метод Крамера

Метод Крамера и нахождение обратной матрицы

Комплексные числа

бонусное видео! Это видеофрагмент с доской, слайдов здесь нет:)