Iterative 3

王胤雅

25114020018

yinyawang25@m.fudan.edu.cn

2025年10月21日

ROBEM I In the Householder implementation of the Arnoldi algorithm, show the following points of detail:

- (a) Q_{j+1} is unitary and its inverse is Q_{j+1}^T .
- (b) $Q_{i+1}^T = P_1 P_2 \cdots P_{j+1}$.
- (c) $Q_{i+1}^T e_i = v_i \text{ for } i < j.$
- (d) $Q_{j+1}AV_m = V_{m+1}[e_1, e_2, \dots, e_{j+1}]\bar{H}_m$, where e_i is the *i*-th column of the $n \times n$ identity matrix.
- (e) The vectors v_1, v_2, \ldots, v_j are orthonormal.
- (f) The vectors v_1, \ldots, v_j are equal to the Arnoldi vectors produced by the Gram-Schmidt version, except possibly for a scaling factor.

SOUTION. 1. 因为每个 P_k 都是 Householder 反射矩阵,满足

$$P_k^T P_k = I,$$

即 P_k 是正交矩阵。正交矩阵的乘积仍为正交矩阵,因此

$$Q_{j+1} = P_{j+1}P_j \cdots P_1$$

也是正交矩阵。对于实矩阵而言, $\overline{H} = H$,故

$$Q_{j+1}^{-1} = Q_{j+1}^T.$$

2. 每个 P_k 都满足 $P_k^T = P_k$, 因此

$$Q_{j+1}^T = (P_{j+1} \cdots P_1)^T = P_1 P_2 \cdots P_{j+1}.$$

1

3. 对 i < j, 证明 $Q_{j+1}^T e_i = v_i$ 。

这里的 e_i 是标准基向量。首先说明 v_i 的意义:在 Householder 版本的 Arnoldi 过程中,逐 步构造出向量序列 $\{v_i\}$,第 i 步时通过前 i 个反射矩阵将相应的向量对齐到第 i 个标准方向。

第一步中,构造 P_1 使得 $P_1x = \alpha e_1$,于是 $v_1 = P_1e_1 = Q_{j+1}^T e_1$ (当 $j+1 \ge 1$ 时一致)。 假设对所有 $i \le t$,都有 $Q_{t+1}^T e_i = v_i$,则在第 t+1 步, P_{t+1} 只作用于第 t+1 及之后的分量,不改变前 t 个标准基向量,因此有

$$Q_{i+1}^T e_i = P_1 P_2 \cdots P_{i+1} e_i = P_1 \cdots P_i e_i = v_i.$$

因此命题对所有 i < j 成立。

4. 证明关系式

$$Q_{j+1}AV_m = [e_1, e_2, \dots, e_{m+1}]\bar{H}_m.$$

标准 Arnoldi 关系为

$$AV_m = V_{m+1}\bar{H}_m$$

其中 $V_m \in \mathbb{R}^{n \times m}$ 为 Arnoldi 正交基, $V_{m+1} \in \mathbb{R}^{n \times (m+1)}$, 而 \bar{H}_m 为 $(m+1) \times m$ 上 Hessenberg 矩阵。由于在 (c) 中已知 $v_i = Q_{i+1}^T e_i$, 可得

$$V_{m+1} = Q_{j+1}^T[e_1, e_2, \dots, e_{m+1}].$$

两边左乘 Q_{j+1} ,得到

$$Q_{j+1}AV_m = [e_1, e_2, \dots, e_{m+1}]\bar{H}_m.$$

这就是所需的结果。

5. 证明向量 v_1, v_2, \ldots, v_j 正交归一。由 (c) 有 $v_i = Q_{j+1}^T e_i$ 。由于 Q_{j+1}^T 是正交矩阵,它保持内积不变,因此

$$\langle v_i, v_\ell \rangle = \langle Q_{j+1}^T e_i, Q_{j+1}^T e_\ell \rangle = \langle e_i, e_\ell \rangle = \delta_{i\ell}.$$

于是 $\{v_1,\ldots,v_j\}$ 构成一组正交归一向量。

6. 证明 $\{v_1, \ldots, v_j\}$ 与 Gram-Schmidt 版本的 Arnoldi 向量一致,至多相差一个常数因子。 Gram-Schmidt 版和 Householder 版 Arnoldi 都在同一 Krylov 子空间

$$\mathcal{K}_m(A,b) = \operatorname{span}\{b, Ab, \dots, A^{m-1}b\}$$

中构造正交基,且都满足 Arnoldi 关系 $AV_m = V_{m+1}\bar{H}_m$ 。因此两种方法得到的每一步新向量方向相同,仅可能因反射方向不同而相差一个符号(或归一化常数)。由于在 (e) 中已证明 Householder 构造的 $\{v_i\}$ 也是单位正交的,所以两者在数值上最多相差 ± 1 的符号因子。故结论成立。

POBLEM II To derive the basic version of GMRES, we use the standard formula

$$\tilde{x} = x_0 + V \left(W^T A V \right)^{-1} W^T r_0, \tag{1}$$

where $V = V_m$ and $W = AV_m$.

SOUTION. GMRES 要求选择 y 使得残差的二范数最小,即求解

$$y = \arg_{z \in \mathbb{R}^m} \min |0r_0 - AVz|0_2,$$

其中 $W \equiv AV$ 。

$$\min_{z \in \mathbb{R}^m} |0r_0 - Wz| 0_2.$$

对平方范数对 z 求导并令梯度为零,

$$W^T W y = W^T r_0$$

即

$$(AV)^T (AV) y = (AV)^T r_0.$$

由于 A 为非奇异矩阵,则 W^TW 可逆,则正规方程的解为

$$y = (W^T W)^{-1} W^T r_0 = ((AV)^T (AV))^{-1} (AV)^T r_0.$$

将 y 代回近似解的表达式 $\tilde{x} = x_0 + Vy$, 得到

$$\tilde{x} = x_0 + V(W^T W)^{-1} W^T r_0 = x_0 + V((AV)^T (AV))^{-1} (AV)^T r_0$$

 \mathbb{R}^{OBEM} III Let a matrix A have the form

$$A = \begin{pmatrix} I & Y \\ 0 & I \end{pmatrix}.$$

Assume that (full) GMRES is used to solve a linear system with the coefficient matrix A. What is the maximum number of steps that GMRES would require to converge?

ROBEM IV Consider a matrix of the form

$$A = I + \alpha B \tag{2}$$

where B is skew-symmetric (real), i.e., such that $B^T = -B$.

- 1. Show that $\frac{(Ax,x)}{(x,x)} = 1$ for all nonzero x.
- 2. Consider the Arnoldi process for A. Show that the resulting Hessenberg matrix will have the following tridiagonal form

$$H_{m} = \begin{pmatrix} 1 & -\eta_{2} & & & \\ \eta_{2} & 1 & -\eta_{3} & & & \\ & \eta_{3} & 1 & \ddots & & \\ & & \ddots & \ddots & -\eta_{m} \\ & & & \eta_{m} & 1 \end{pmatrix}.$$

3.	Using the result of the previous question, explain why the CG algorithm applied as is to a
	linear system with the matrix A , which is nonsymmetric, will still yield residual vectors that
	are orthogonal to each other.

SOUTHON.