Copyright Notice

These slides are distributed under the Creative Commons License.

<u>DeepLearning.AI</u> makes these slides available for educational purposes. You may not use or distribute these slides for commercial purposes. You may make copies of these slides and use or distribute them for educational purposes as long as you cite <u>DeepLearning.AI</u> as the source of the slides.

For the rest of the details of the license, see https://creativecommons.org/licenses/by-sa/2.0/legalcode

deeplearning.ai

Supervised ML and Sentiment Analysis

Outline

- Review Supervised ML
- Build your own tweet classifier!

Supervised ML (training)

Sentiment analysis

Tweet I am happy because I am learning NLP

Negative: 0

Logistic regression

Sentiment analysis

Summary

Features, Labels → Train → Predict

Extract features → Train LR → Predict sentiment

deeplearning.ai

Vocabulary and Feature Extraction

Outline

- Vocabulary
- Feature extraction
- Sparse representations and some of their issues

Vocabulary

Tweets:

[tweet_1, tweet_2, ..., tweet_m]

Lam happy because I am learning
NLP
...

I hated the movie

$$V =$$

[I, am, happy, because, learning, NLP, ... hated, the, movie]

I am happy because I am learning NLP

A lot of zeros! That's a sparse representation.

Problems with sparse representations

Summary

Vocabulary: set of unique words

• Vocabulary, Text——— [1 0 1 .. 0 .. 1 .. 0]

 Sparse representations are problematic for training and prediction times

deeplearning.ai

Negative and Positive Frequencies

Outline

Populate your vocabulary with a frequency count for each class

Corpus

I am happy because I am learning

NLP I am happy

I am sad, I am not learning NLP

I am sad

Vocabulary I am happy because learning NLP

sad

not

Positive tweets

Negative tweets

I am happy because I am learning

NLP Lam happy I am sad, I am not learning NLP
I am sad

Positive tweets

I am <u>happy</u> because I am learning

NLP
I am <u>happy</u>

Negative tweets
I am_sad, I am_not learning NLP
I am_sad

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
<u> </u>	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	2
not	0	1

freqs: dictionary mapping from (word, class) to frequency

Summary

- Divide tweet corpus into two classes: positive and negative
- Count each time each word appears in either class

→ Feature extraction for training and prediction!

deeplearning.ai

Feature extraction with frequencies

Outline

 Extract features from your frequencies dictionary to create a features vector

Word frequency in classes

Vocabulary	PosFreq (1)	NegFreq (0)
I	3	3
am	3	3
happy	2	0
because	1	0
learning	1	1
NLP	1	1
sad	0	2
not	0	1

freqs: dictionary mapping from (word, class) to frequency

freqs: dictionary mapping from (word, class) to frequency

Vocabulary	PosFreq (1)
I	3
am	3
happy	2
because	1
learning	_1_
NLP	-1 -
sad	-0-
not	-0-

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

Vocabulary	NegFreq (0)
I	3
am	3
happy	0
because	0
learning	_1_
NLP	-1 -
sad	-2-
not	-1

I am sad, I am not learning NLP

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

I am sad, I am not learning NLP

$$X_{m} = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

$$X_{m} = [1, 8, 11]$$

Summary

Dictionary mapping (word, class) to frequencies

$$X_m = [1, \sum_{w} freqs(w, 1), \sum_{w} freqs(w, 0)]$$

→ Cleaning unimportant information from your tweets

Preprocessing

Outline

- Removing stopwords, punctuation, handles and URLs
- Stemming
- Lowercasing

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are tuning a GREAT AI model at https://deeplearning.ai!!!

Stop words
and
is
are
at
has
for
a

Punctuation	
,	
•	
:	
!	
«	
· ·	

Preprocessing: stop words and punctuation

@YMourri and @AndrewYNg are tuning a GREAT AI modeLat https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

Stop words
and
is
<u>are</u>
<u>at</u>
has
for
<u>a</u>

Preprocessing: stop words and punctuation

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai!!!

@YMourri @AndrewYNg tuning GREAT AI model https://deeplearning.ai

Stop words
and
is
а
at
has
for
of

Preprocessing: Handles and URLs

@YMourri @AndrewYNg tuning GREAT Al model https://deeplearning.ai tuning GREAT Al model

Preprocessing: Stemming and lowercasing

Preprocessed tweet: [tun, great, ai, model]

Summary

- Stop words, punctuation, handles and URLs
- Stemming
- Lowercasing
- Less unnecessary info
 Better times

deeplearning.ai

Putting it all together

Outline

- Generalize the process
- How to code it!

General overview

I am Happy Because i am learning NLP @deeplearning [happy, learn, nlp] Feature Extraction Bias ← [1, 4, → Sum negative 2] frequencies Sum positive frequencies

General overview

General Implementation

Summary

- Implement the feature extraction algorithm for your entire set of tweets
- Almost ready to train!

deeplearning.ai

Logistic Regression Overview

Outline

- Supervised learning and logistic regression
- Sigmoid function

Overview of logistic regression

Overview of logistic regression

$$h(x^{(i)}, \theta) = \frac{1}{1 + e^{-\theta^T x^{(i)}}} \underbrace{\frac{\widehat{\Theta}_{0.6}^{0.7}}{\widehat{\Theta}_{0.4}^{0.5}}}_{0.4}$$

Overview of logistic regression

Summary

- Sigmoid function
- $\bullet \quad \theta^T x^{(i)} \ge 0 \longrightarrow h(x^{(i)}, \theta) \ge 0.5$
- $\bullet \quad \theta^T x^{(i)} < 0 \longrightarrow h(x^{(i)}, \theta) < 0.5$

, positive

, negative

deeplearning.ai

Logistic Regression: Training

Outline

- Review the steps in the training process
- Overview of gradient descent

Training LR

Training LR Initialize parameters $h = h(X, \theta)$ Classify/predict $\nabla = \frac{1}{m} X^T (h - y)$ Get gradient Until good enough $\theta = \theta - \alpha \nabla$ Update $J(\theta)$ Get Loss

Summary

- Visualize how gradient descent works
- Use gradient descent to train your logistic regression classifier
- → Compute the accuracy of your model

deeplearning.ai

Logistic Regression: Testing

Outline

- Using your validation set to compute model accuracy
- What the accuracy metric means

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$pred = h(X_{val}, \theta)$$

$$\begin{bmatrix} 0.3 \\ 0.8 \\ 0.5 \\ \vdots \\ h_m \end{bmatrix} \ge 0.5 = \begin{bmatrix} 0.3 \ge 0.5 \\ \hline 0.8 \ge 0.5 \\ \hline 0.5 \ge 0.5 \\ \vdots \\ pred_m \ge 0.5 \end{bmatrix} = \begin{bmatrix} 0 \\ \hline 1 \\ \vdots \\ pred_m \end{bmatrix}$$

•
$$X_{val} Y_{val} \theta$$

$$h(X_{val}, \theta)$$

$$pred = h(X_{val}, \theta) \ge 0.5$$

$$\sum_{m}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$$

$$\begin{bmatrix} \underline{0} \\ \underline{1} \\ 1 \\ \vdots \\ pred_m \end{bmatrix} == \begin{bmatrix} \underline{0} \\ \underline{0} \\ 1 \\ \vdots \\ Y_{val_m} \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} \\ 1 \\ \vdots \\ pred_m == Y_{val_m} \end{bmatrix}$$

$$Y_{val} = egin{bmatrix} 0 \ 1 \ 1 \ pred = egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}$$

$$(Y_{val} == pred) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$accuracy = \frac{4}{5} = 0.8$$

Summary

 $\bullet X_{val} Y_{val} \longrightarrow$

Performance on unseen data

• Accuracy $\longrightarrow \sum_{i=1}^{m} \frac{(pred^{(i)} == y_{val}^{(i)})}{m}$

To improve model: step size, number of iterations, regularization, new features, etc.

deeplearning.ai

Logistic Regression: Cost Function

Outline

 Overview of the logistic cost function, AKA the binary cross-entropy function

$$J(\theta) = \left(-\frac{1}{m} \sum_{i=1}^{m} [y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta))]\right)$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$0 \quad \text{any} \quad 0$$

$$1 \quad 0.99 \quad \text{-o}$$

$$1 \quad \text{-o} \quad \text{-inf}$$

$$J(\theta) = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + (1 - y^{(i)}) \log(1 - h(x^{(i)}, \theta)) \right]$$

$$\frac{y^{(i)} h(x^{(i)}, \theta)}{1 \text{ any } 0}$$

$$0 \quad 0.01 \quad \text{-0}$$

$$0 \quad \text{-1 -inf}$$

$$J(\theta) = \bigcap_{m=1}^{\infty} \sum_{i=1}^{m} \left[y^{(i)} \log h(x^{(i)}, \theta) + \left[1 - y^{(i)} \right) \log \left(1 - h(x^{(i)}, \theta) \right) \right]$$

Summary

- Strong disagreement = high cost
- Strong agreement = low cost
- Aim for the lowest cost!