What problem is the paper addressing?

- o There is a need to "... represent and reason about spatial uncertainty."
- There is always inherent uncertainty in the size/shape of objects detected by sensors, the actual measurements provided by sensors, as well as many other sources of uncertainty.

What is the proposed solution?

 Use multiple, overlapping, lower resolution (cheaper) sensors and perform a sort of sensor fusion to get the best spatial estimate.

What are the assumptions the solution depends on (both explicit and implicit)?

- Angular errors are "small" meaning within 5 degrees as that had a negligible effect on the means and variances.
- Estimating only two moments of the PDF of the uncertain spatial relationships is adequate for decision making.

What is novel about the paper?

- The paper departs from graph transformations to provide a solution that can be used independent of the sensor frame and the destination frame.
- Introduces an estimation framework based on probabilities (dependent on sensor measurements)
- Their method allows different paths to be explored before actually taking any actions in the real world.

What are the claims the paper makes?

- Their methods can be used to calculate in advance of making any actions whether or not the action sequence is possible using a certain tolerance of uncertainty.
- Their method can determine to (or by it's nature) ignore a sensor reading if it is far off of the expected value or prior readings.

Does the evaluation included in the paper validate/verify the claims?

- There are sufficient mathematical proofs, but the paper lacks experimental evidence that their method is successful.
- The drawings are helpful to visualize, but do not serve to substantiate their claims about the effectiveness of their method.