1. Show that $3|n^3 + 5n$ for every $n \ge 1$.

Solution # 1: By induction. $f(n) = n^3 + 5n$; then $f(0) = 0^3 + 5 \cdot 0 = 0 = 3 \cdot 0$. If f(n) = 3K, then $f(n+1) = (n+1)^3 + 5(n+1) = n^3 + 3n^2 + 3n + 1 + 5n + 5 = (n^3 + 5n) + 3n^2 + 3n + 6 = f(n) + 3(n^2 + n + 2) = 3(K + n^2 + n + 2)$ is also a multiple of 3. So by induction, 3|f(n) for all $n \ge 0$.

Solution # 2: For every $n, n \equiv 0$ or $n \equiv 1$ or $n \equiv 2$, mod 3. But $n \equiv 0$ implies $n^3 \equiv 0^3 \equiv 0$, so $n^3 + 5n \equiv 0 + 5 \cdot 0 = 0$, so $3|n^3 + 5n$. $n \equiv 1$ implies $n^3 \equiv 1^3 \equiv 1$, so $n^3 + 5n \equiv 1 + 5 \cdot 1 = 6 \equiv 0$, so $3|n^3 + 5n$. $n \equiv 2$ implies $n^3 \equiv 2^3 = 8 \equiv 2$, so $n^3 + 5n \equiv 2 + 5 \cdot 2 = 12 \equiv 0$, so $3|n^3 + 5n$. So in all cases, $3|n^3 + 5n$.

Solution # 3: By Fermat's Little Theorem, since 3 is prime, for every $n, n^3 \equiv n \pmod{3}$. So $n^3 + 5n \equiv n + 5n = 6n \equiv 0$, since $6 \equiv 0 \pmod{3}$.

...and I saw at least two more essentially different solutions in your exams.

2. Use the facts that $\operatorname{ord}_{23}(2) = 11$ and $\operatorname{ord}_{23}(5) = 22$ to find the period of the repeating decimal expansion of $\frac{1}{22}$.

We wish to compute ${\rm ord}_{23}(10)$. Since 23 is prime $10^{22} \equiv 1 \pmod{23}$ by Fermat's little theorem. So ${\rm ord}_{23}(10)|22=2\cdot 11$, so ${\rm ord}_{23}(10)=1,2,11$, or 22. But $10\not\equiv 1\pmod{22}$, and $10^2=100=23\cdot 4+8\equiv 8\not\equiv 1\pmod{23}$, so it must be 11 or 22. But since ${\rm ord}_{23}(5)=22,\, 5^{11}\not\equiv 1\pmod{23}$, so $10^{11}=(2\cdot 5)^{11}=2^{11}5^{11}\equiv 1\cdot 5^{11}\equiv 5^{11}\not\equiv 1\pmod{23}$, so ${\rm ord}_{23}(10)\not\equiv 11$. So the only remaining possibility must be true; ${\rm ord}_{23}(10)=22$. So the period of the repeating decimal expansion of $\frac{1}{23}$ is 22.

3. Show that if p is prime, (a, p) = (b, p) = 1, and neither of the equations $x^2 \equiv a \pmod{p}$ or $x^2 \equiv b \pmod{p}$

have a solution, then the equation $x^2 \equiv ab \pmod{p}$ does have a solution.

Since $x^2 \equiv a \pmod p$ and $x^2 \equiv b \pmod p$ each have no solution, by Euler's criterion $y = a^{\frac{p-1}{2}} \not\equiv 1 \pmod p$ and $z = b^{\frac{p-1}{2}} \not\equiv 1 \pmod p$. But since $y^2 = a^{p-1} \equiv 1$ and $z^2 = b^{p-1} \equiv 1$ and p is prime, we must have $y, z \equiv \pm 1$, so $y \equiv -1 \equiv z$, mod p. So $1 \equiv yz = a^{\frac{p-1}{2}}b^{\frac{p-1}{2}} = (ab)^{\frac{p-1}{2}}$, mod p, so by Euler's criterion, $x^2 \equiv ab \pmod p$ does have a solution.

- 4. For each of the following equations, determine if it has a solution, and if so, how many solutions (modulo 49):
 - (a): $x^5 \equiv 10 \pmod{49}$

 $\Phi(49)=\Phi(7^2)=7^1(7-1)=42$, and (5,42)=1, so by our result from class, $x^5\equiv 10\pmod{49}$ has a solution $\Leftrightarrow 10^{\frac{\Phi(49)}{(5,\Phi(49))}}=10^{\frac{42}{1}}=10^{42}\equiv 1\pmod{49}$. But since $(10,49)=(2\cdot 5,7^2)=1$, $10^{42}\equiv 1\pmod{49}$ by Euler's Theorem. So $x^5\equiv 10\pmod{49}$ has $(5,\Phi(49)=1$ solution.

(b): $x^7 \equiv 10 \pmod{49}$

As above, since (7,42)=7, $x^7\equiv 10\ (\text{mod }49)$ has a solution $\Leftrightarrow 10^{\frac{\Phi(49)}{(7,\Phi(49)}}=10^{\frac{42}{7}}=10^6\equiv 1\ (\text{mod }49)$. But $10^2=100=49\cdot 2+2\equiv 2\ (\text{mod }49)$, so $10^6=(10^2)^3\equiv 2^3=8\not\equiv 1\ (\text{mod }49)$. So $x^7\equiv 10\ (\text{mod }49)$ has no solutions.