Información General

Curso : Cómputo Evolutivo

Semestre : 2025 - 2

Profesores : Katya Rodríguez Vázquez

: Augusto César Poot Hernández

Entrega : Febrero 23 de 2025

Alumno : Pablo Uriel Benítez Ramírez, 418003561

1. Algoritmo genético simple

Figura 1: Diagrama de algoritmo para cómputo evolutivo [1]

Implementa el algoritmo genético simple con las siguientes características:

- 1. Codificación binaria, representación de los cromosomas mediante una estructura de símbolos. Obtener la longitud entre el rango mínimo y máximo de cada variable..
- 2. Selección, hacer una selección proporcional a la aptitud de los individuos. Los mejor evaluados tendrán mayores probabilidades de sobrevivir.

Definición 1.1. [2] La evaluación de los individuos se genera a partir de la decodificación del genotipo dada la siguiente fórmula:

 $x = a + decimal(g) \left(\frac{b-a}{2^m - 1}\right)$

donde g es la cadena de 0's y 1's que representa a cada individuo, a y b son los valores que acotan a x ($a \le x \le b$), y m es la longitud del genotipo.

Definición 1.2. [2] La selección de individuos x's de una población es de acuerdo al valor de fitness (adaptabilidad, aptitud, desempeño) f(x). Hacer una selección proporcional a la aptitud de los individuos. Los mejor evaluados tendrán mayores probabilidades de sobrevivir.

Definición 1.3. La aptitud a_n se obtiene a partir de la evaluación de $f(x_1, \ldots, x_n)$ para cada individuo

$$a_n = f_n$$
 o bien $a_n = \frac{1}{f_n + \epsilon}, \epsilon > 0$ para otros casos

La aptitud total de la población es la suma de total de aptitudes,

$$S = \sum_{i=1}^{n} a_n$$

Definición 1.4. La probabilidad de selección para cada individuo está dada por

$$p_n = \frac{a_n}{S}$$

Definición 1.5. La aptitud acumulada es un vector acumulativo donde cada n posición representa la suma acumulada de las probabilidades hasta el individuo n

$$acc_n = \sum_{j=1}^n p_j$$

Se consideraron dos funciones para la evaluación:

$$a_n = f(x) \quad x = (x_1, \dots, x_n) \tag{1}$$

$$a_n = \frac{1}{f(x) + \epsilon} \quad x = (x_1, \dots, x_n), \epsilon = 1e^{-6}$$
 (2)

Definición 1.6. [2] El método de ruleta (Goldberg 1989), simple pero ineficiente: $O(n^2)$ [3]. cada individuo de la población recibe una probabilidad de ser seleccionado que es proporcional a su aptitud. Para seleccionar a un individuo,

- a) Genera un número aleatorio $t \in [0,1]$
- b) Recorre el vector acumulado hasta encontrar el primer índice n donde:

$$acc_n \ge t$$

3. Cruza en un punto

Definición 1.7. [2] El operador de cruzamiento permite explotar el espacio de búsqueda al combinar nociones (subcadenas) para formar nuevas ideas (nuevas soluciones).

4. Mutación aleatoria

Definición 1.8. [2] La mutación es un proceso en el cual el alelo de un gen es aleatoriamente reemplazando por otro para producir una nueva estructura. La probabilidad de mutación Pm en cada gen es pequeña. La mutación de cada posición es independiente de la acción en otra posición.

- 5. La probabilidad de cruza, probabilidad de mutación, tamaño de la población y número de generación quedan a su elección.
- 6. Precisión de 3 dígitos decimales.

1.1. Esfera

$$(n=2 \& n=5) -10 \le x \le 10$$

$$f(\boldsymbol{x}) = \sum_{i=1}^{n} x_i^2$$

1.1.1. n=2

Para n=2 la función es

$$f(\mathbf{x}) = \sum_{i=1}^{2} x_i^2 = x_1^2 + x_2^2, \quad f(x,y) = x^2 + y^2$$

la cual es un paraboloide de 3 dimensiones, que se ve así

Con un máximo f(x,y) = 200 y un mínimo de f(x,y) = 0.

1.1.2. n=5

Para n=5 la función es

$$f(\mathbf{x}) = \sum_{i=1}^{5} x_i^5 = x_1^2 + x_2^2 + x_3^2 + x_4^2 + x_5^2$$

la cual es es un hiperparaboloide en 5 dimensiones, que se ve como la anterior si dejamos fijas 3 variables. Con un máximo f(x,y) = 500 y un mínimo de f(x,y) = 0.

1.1.3. Codificación binaria

El total de valores a representar se obtiene multiplicando la longitud por el requerimiento de precisión.

$$Longitud = 10 - (-10) = 20$$

 $L_valores = 20 \cdot 1000 = 20,000$

Por lo tanto, la cantidad de bits necesarios para representar el total de valores es

$$2^{14} < 20,000 < 2^{15} \Longrightarrow 2^{15} = 32,768$$

1.1.4. Evaluación n=2

Parámetros

m = 15# longitud del genotipo # tamaño de la población $pob_size = 50$ a = -10# valor mínimo de x b = 10# valor máximo de x decimales=3 # número de decimales n = 2# variables a considerar # total de bits t = m * n# cota de selección epsilon = 1e-6proba_cruza = 0.8 # probabilidad de cruza proba_muta = 0.02 # probabilidad de mutación generaciones = 100 # número de generaciones target = -10000# objetivo de minimización

Función 1. Resultado:

Generaciones: 100

Mejor genotipo: [0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1]

Mejor fenotipo : 0.168

Mejor evaluación f(x): 0.168

Figura 2: Representación de función 1

Función 2. Resultado:

Generaciones: 6

Mejor fenotipo (x): 0.0 Mejor evaluación f(x): 0.0

Figura 3: Representación de función 2

1.1.5. Evaluación n=5

Parámetros

```
m = 15
                   # longitud del genotipo
pob\_size = 50
                   # tamaño de la población
                   # valor mínimo de x
a = -10
b = 10
                   # valor máximo de x
decimales=3
                   # número de decimales
                   # variables a considerar
n = 5
                   # total de bits
t = m * n
                   # cota de selección
epsilon = 1e-6
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 0.02 # probabilidad de mutación
generaciones = 100 # número de generaciones
                   # objetivo de minimización
target = 0
```

Función 1. Resultado:

Generaciones: 100

Mejor fenotipo (x): 19.578Mejor evaluación f(x): 19.578

Figura 4: Representación de función 1

Función 2. Resultado:

Generaciones: 42

1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0]

Mejor fenotipo (x): 0.0Mejor evaluación f(x): 0.0

Figura 5: Representación de función 2

1.2. Rosenbrock

$$(n=2 \& n=5) -10 \le x \le 10$$

$$f(x) = \sum_{i=1}^{n-1} \left[100 \left(x_{i+1} - x_i^2 \right)^2 + (1 - x_i)^2 \right]$$

1.2.1. Codificación binaria

El total de valores a representar se obtiene multiplicando la longitud por el requerimiento de precisión.

$$Longitud = 10 - (-10) = 20$$

 $L_valores = 20 \cdot 1000 = 20,000$

Por lo tanto, la cantidad de bits necesarios para representar el total de valores es

$$2^{14} \le 20,000 \le 2^{15} \Longrightarrow 2^{15} = 32,768$$

A ojo se puede ver que el mínimo es cuando x=0.

1.2.2. Evaluación n=2

Parámetros

m = 15# longitud del genotipo # tamaño de la población $pob_size = 50$ a = -10# valor mínimo de x b = 10# valor máximo de x decimales=3 # número de decimales n = 2# variables a considerar # total de bits t = m * n# cota de selección epsilon = 1e-6proba_cruza = 0.8 # probabilidad de cruza proba_muta = 0.02 # probabilidad de mutación generaciones = 100 # número de generaciones target = 0# objetivo de minimización

Función 1. Resultado:

Generaciones: 100

Mejor fenotipo (x): 2.384 Mejor evaluación f(x): 2.384

Figura 6: Representación de función 1

Función 2. Resultado:

Generaciones: 100

Mejor fenotipo (x): 0.063Mejor evaluación f(x): 0.063

Figura 7: Representación de función $2\,$

1.2.3. Evaluación n=5

Parámetros

m = 15 # longitud del genotipo pob_size = 50 # tamaño de la población a = -10 # valor mínimo de x b = 10 # valor máximo de x decimales=3 # número de decimales n = 5 # variables a considerar

t = m * n # total de bits
epsilon = 1e-6 # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 0.02 # probabilidad de mutación
generaciones = 100 # número de generaciones
target = 0 # objetivo de minimización

Función 1. Resultado:

Generaciones: 100

Mejor genotipo: [0 1 0 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 0 0 0 1 1 0

Mejor fenotipo (x): 39219.962Mejor evaluación f(x): 39219.962

Figura 8: Representación de función 1

Función 2. Resultado:

Generaciones: 100

Mejor genotipo: [1 0 0 0 1 1 1 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1

Mejor fenotipo (x): 3.175Mejor evaluación f(x): 3.175

Figura 9: Representación de función 2

1.3. Himmenblau

$$-5 \le x \le 5$$

$$f(x,y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2.$$

1.3.1. Codificación binaria

El total de valores a representar se obtiene multiplicando la longitud por el requerimiento de precisión.

$$\begin{aligned} Longitud &= 5 - (-5) = 10 \\ L_valores &= 10 \cdot 1000 = 10,000 \end{aligned}$$

Por lo tanto, la cantidad de bits necesarios para representar el total de valores es

$$2^{13} \le 10,000 \le 2^{14} \Longrightarrow 2^{14} = 16,384$$

Parámetros

m = 14 # longitud del genotipo
pob_size = 50 # tamaño de la población

valor mínimo de x b = 5# valor máximo de x decimales=3 # número de decimales n = 2# variables a considerar t = m * n# total de bits epsilon = 1e-6# cota de selección proba_cruza = 0.8 # probabilidad de cruza proba_muta = 0.02 # probabilidad de mutación generaciones = 100 # número de generaciones target = 0 # objetivo de minimización

Función 1. Resultado:

Generaciones: 100

Mejor fenotipo (x1, x2): 1.11 Mejor evaluación f(x1,x2): 1.11

Figura 10: Representación de función 1

Función 2. Resultado:

Generaciones: 100

Mejor genotipo: [1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1 1 0 1 0 1 0]

Mejor fenotipo (x1, x2): 0.03 Mejor evaluación f(x1,x2): 0.03

Figura 11: Representación de función 2

1.4. Eggholder

$$-512 < x < 512$$

$$f(x,y) = -(y+47)\sin\sqrt{\left|\frac{x}{2} + (y+47)\right|} - x\sin\sqrt{|x - (y+47)|}$$

1.4.1. Codificación binaria

El total de valores a representar se obtiene multiplicando la longitud por el requerimiento de precisión.

$$Longitud = 512 - (-512) = 1024$$

 $L_valores = 1024 \cdot 1000 = 1,024,000$

Por lo tanto, la cantidad de bits necesarios para representar el total de valores es

$$2^{19} \le 1,024,000 \le 2^{20} \Longrightarrow 2^{20} = 1,048,576$$

Parámetros

```
m = 20
                   # longitud del genotipo
                   # tamaño de la población
pob_size = 50
a = -512
                   # valor mínimo de x
b = 512
                   # valor máximo de x
decimales=3
                   # número de decimales
n = 2
                   # variables a considerar
t = m * n
                   # total de bits
epsilon = 1e-6
                   # cota de selección
proba_cruza = 0.8 # probabilidad de cruza
proba_muta = 0.02 # probabilidad de mutación
generaciones = 100 # número de generaciones
target = 0
                   # objetivo de minimización
```

Función 1. Resultado:

Generaciones: 100

0 0 0]

Mejor fenotipo (x1, x2): -954.663Mejor evaluación f(x1,x2): -954.663

Figura 12: Representación de función 1

Referencias

- [1] Othon Colorado Arellano. Algoritmo genético aplicado a la sintonización de un controlador pid para un sistema acoplado de tanques. https://portal.amelica.org/ameli/journal/595/5952866012/html/. [Acceso el 23/02/2025].
- [2] Katya Rodríguez Vázquez Augusto C. Poot. Computación evolutiva. Curso Cómputo Evolutivo.
- [3] Carlos A. Coello Coello. Introducción a la computación evolutiva. http://delta.cs.cinvestav.mx/~ccoello/compevol/clase5-2013.pdf. [Acceso el 23/02/2025].