SWCON253: Machine Learning

Lecture 04 Linear Regression

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Contents

- 1. Linear Regression
- 2. Normal Equation
- 3. Polynomial Regression
- 4. For Better Results

 - Learning Rate Tuning

References

Machine Learning by Andrew Ng, Coursera (https://www.coursera.org/learn/machine-learning)

1. Linear Regression

- 1. Multivariate Linear Regression
- 2. Data Representation
- 3. Linear Model Representation
- 4. Cost Function (& Gradient)
- 5. Parameter Update (by Gradient Descent)

o. Multivariate Linear Regression

- Find the best linear function h_{θ} for the given training dataset \mathbb{D} with multiple(n)-features
 - A feature vector: $\mathbf{x} = [x_1, ..., x_n]^T$
 - Training dataset: $\mathbb{D} = \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)})\}_{i=1}^m = \{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \cdots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}$
 - Linear model:

$$h_{\theta}(\mathbf{x}) = h_{\theta}(x_1, ..., x_n)$$
$$= \theta_0 + \theta_1 x_1 + \dots + \theta_n x_n$$

Ex) Housing Price Prediction

- Multiple features: size, # bedrooms, # floors, age
- Single output: the price of a house : 4

≥y S	ize (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	2104	5	1	45	460 ->Y
->>	1416	3	2	40	232 rm
	1534	3	2	30	315
	852	2	1	36	178
	****			See. 2	700

$$n = n$$
 umber of features $n = 4$ 나자원의당 베터 $x^{(i)} = n$ input (features) of i^{th} training example. 기반대 당 $x^{(i)} = n$ value of feature j in i^{th} training example. $n = n$

1. Data Representation

Data with Multiple Features

- A feature vector: $\mathbf{x} = [x_1, ..., x_n]^T$

2. Linear Model Representation

♦ Representation 1

- Let $\mathbf{x} \triangleq [x_0, x_1, ..., x_n]^T$, $\mathbf{\theta} \triangleq [\theta_0, \theta_1, ..., \theta_n]^T$ * where $x_0 = 1$. It is $\mathbf{x} = \mathbf{x} + \mathbf{x} = \mathbf{x} + \mathbf{x} = \mathbf$
- Then, for a <u>single</u> training example (i.e., $\mathbf{x}^{(i)}$):

$$egin{aligned} h_{ heta}(\underline{x}) &= heta_0 + heta_1 x_1 + heta_2 x_2 + \ldots + heta_n x_n \ &= \left[egin{aligned} heta_0 & heta_1 & \ldots & heta_n
ight] egin{bmatrix} x_0 \ x_1 \ dots \ x_n \ \end{bmatrix} = \underline{ heta}^T \underline{x} \end{aligned}$$

and for a <u>batch</u> of training examples (i.e., X):

$$\mathbf{h}_{\boldsymbol{\theta}}(\mathbf{X}) = \begin{bmatrix} \mathbf{\theta}^{T} \mathbf{X}^{(1)} \\ \mathbf{\theta}^{T} \mathbf{X}^{(2)} \\ \vdots \\ \mathbf{\theta}^{T} \mathbf{X}^{(m)} \end{bmatrix} = \mathbf{X}\mathbf{\theta}$$

Representation 2 (weight & bias)

• Let
$$\mathbf{x} \triangleq [x_1, ..., x_n]^T$$
, $\mathbf{\theta} \triangleq [\theta_1, ..., \theta_n]^T$

• Then, for a single training example

$$(h^{*}(\bar{x}) = \bar{b}_{\bar{x}} + \theta^{*}$$

and, for a batch of training example

$$h_{\mathfrak{g}}(X) = X\mathfrak{g} + \mathfrak{g}_{\mathfrak{g}} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

$$(h_{\mathfrak{g}}(X) = X\mathfrak{g} + \mathfrak{g}_{\mathfrak{g}} \begin{bmatrix} \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

2. Linear Model Representation (cont'd)

Summary of Input, Output, & Model

3. MSE Cost for Linear Model

MSE Cost

Classic form:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \frac{\left(h_{\theta}(\mathbf{x}^{(i)}) - y^{(i)}\right)^{2}}{2 \, \text{linear work}}$$

$$= \frac{1}{2m} \sum_{i=1}^{m} \left(\theta^{T} \mathbf{x}^{(i)} - y^{(i)}\right)^{2} \qquad \frac{\partial}{\partial \theta_{\overline{\mathbf{J}}}}$$

• Vector form
$$J(\boldsymbol{\theta}) = \frac{1}{2m} \|\mathbf{h}_{\boldsymbol{\theta}}(\mathbf{X}) - \mathbf{y}\|_{2}^{2}$$

$$= \frac{1}{2m} \|\mathbf{X}\boldsymbol{\theta} - \mathbf{y}\|_{2}^{2}$$

$$= \frac{1}{2m} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})^{T} (\mathbf{X}\boldsymbol{\theta} - \mathbf{y})$$

$$c+) \|\boldsymbol{\chi}\|_{2}^{2} = \boldsymbol{\chi}^{T}\boldsymbol{\chi}$$

Gradient of the MSE Cost

Classic form:

For
$$j=0,...,n$$
:
$$\frac{\partial J(\boldsymbol{\theta})}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^m (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - y^{(i)}) x_j^{(i)}$$

Vector form

$$\nabla J(\boldsymbol{\theta}) = \frac{1}{m} \sum_{i=1}^{m} (\boldsymbol{\theta}^T \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) \mathbf{x}^{(i)}$$
$$= \frac{1}{m} \mathbf{X}^T (\mathbf{X} \boldsymbol{\theta} - \mathbf{y})$$

3. MSE Cost for Linear Model (cont'd)

[] (16F [] 19-9X] []

$$|| \times \varrho - \underline{q} ||_{\bullet}^{\bullet} = (\times \underline{0} - \underline{q})^{\circ} (\times \underline{0} - \underline{q})^{\circ} = (\underline{0} \overline{X} - \underline{q})^{\circ} (\times \underline{0} - \underline{q})^{\circ} = \underline{a}^{\mathsf{T}} - \underline{b}^{\mathsf{T}}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} X \underline{0} - \underline{0}^{\mathsf{T}} \underline{X} + \underline{q}^{\mathsf{T}} \underline{d}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} X \underline{0} - \underline{0}^{\mathsf{T}} \underline{X} + \underline{q}^{\mathsf{T}} \underline{d}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} X \underline{0} + \underline{q}^{\mathsf{T}} \underline{d}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} X \underline{0} + \underline{q}^{\mathsf{T}} \underline{d}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} X \underline{0} + \underline{q}^{\mathsf{T}} \underline{d}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} X \underline{0} + \underline{q}^{\mathsf{T}} \underline{d}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} \underline{0} + \underline{q}^{\mathsf{T}} \underline{0}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} \underline{0} + \underline{q}^{\mathsf{T}} \underline{0}$$

$$= \underline{0}^{\mathsf{T}} \overline{X} \times \underline{0} - \underline{q}^{\mathsf{T}} \underline{0} + \underline{q}$$

4. Parameter Update by GD (for Linear Model)

Gradient Descent for Linear Regression with MSE Cost

• Classic form: $\theta = \theta + \Delta \theta = \theta - d \nabla \theta$ Repeat until convergence { $Update \forall \theta_j \text{'s simultaneously:} \atop \theta_j := \theta_j - \alpha \frac{\partial f(\theta)}{\partial \theta_j} = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^{m} (\theta^T \mathbf{x}^{(i)} - \mathbf{y}^{(i)}) x_j^{(i)}$ }

Vector form

```
Repeat until convergence {  \theta \coloneqq \theta - \alpha \nabla J(\theta) = \theta - \alpha \frac{1}{m} \mathbf{X}^T (\mathbf{X}\theta - \mathbf{y})  }
```

Learning Modes (Recap.) М a Maj ; enime mule m=M = batch make I CM CM : mini-bajoh mode Shuffle the training example then apply minibatch mode Or randomly select training examples for each minibatch.

2. Normal Equation

THY UFFINE

- 1. Normal Equation
- 2. Gradient Descent vs. Normal Equation

Normal Equations

Analytic Solution to Linear Regression with MSE Loss

Examples: m=4.

		1		bedrooms	floors	(years)		
	3.	x_0	x_1	x_2	x_3	x_4	y	
		1	2104	5	1	45	460	
$X \theta - y = 0$ (즉, $\theta *= X^{-1} y$)로 구하지 않는 \rightarrow 이번	H62	1	1416	3	2	40	232	
이유는! 1 E L	1	1	1534	3	2	30	315	1
Mā	調的影響	1	852	2	1	36	178	7
주어진 문제에서 X는 design matrix이고 차원이 대략 m x n (m은 training example 개수, n은 feature 차원)이 되므로 square 행렬이 아닐 수 있습니다.	orser MVD	>X	$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	2104 5 1 1416 3 2 1534 3 2	45 40 30	n =	460 232 315	
역행렬은 square 행렬의 경우만 존재하므로 일반적인 m x n 행렬은 역행렬을 구할 수 없습니다.		θ		$\begin{array}{cccc} 852 & 2 & 1 \\ & \times & (n+1) \\)^{-1}X^{T}y \end{array}$	36]	l	n-domesal	testur
반면에, XTX나 XXT 형태로 만들면 square가 되어 역행렬을 구할 수 있습니다.			14/21					

Price (\$1000)

Gradient Descent vs. Normal Equation

$$\nabla J(\theta) = \frac{1}{m} X^T (X \theta - y)$$
 $\theta^* = (X^T X)^{-1} X^T y$

Gradient Descent Normal Equation

Need to choose alpha No need to choose alpha

Needs many iterations No need to iterate

O (사 2) 보고 이 (x^3) need to calculate inverse of $X^T X$

Works well when n is large Slow if n is very large 들지 바타가 가지면

×=/				
χ ^τ χ	*	(n x	Ŋ	>
(K Kwi)	-(m	24)		

- With the normal equation, computing the inversion has complexity $O(n^3)$.
 - \star So if we have a very large number of features (i.e., large n), the normal equation will be slow.
 - \star In practice, when n exceeds 10,000 it might be a good time to go to an iterative process.

3. Polynomial Regression

子石

Polynomial Regression

Polynomial Regression can be solved by Linear Regression

- Linear Regression 문제로 환원하여 풀 수 있음: $x_2 = (size)^2$
 - $x_1 = (size)$ $x_3 = (size)^3$
- 이때 feature scaling이 중요해 짐

- $h_{ heta}(x) = heta_0 + heta_1 x_1 + heta_2 x_1^3 + heta_3 x_1^3$
- 비식마다 가실수 处 범위가 상이하게 달라짐

Ex) Housing Price Prediction

- Polynomial이외의 Nonlinear Function의 경우는?
 - 마찬가지 방법(변수 치환)을 통해 선형회귀로 바꾸어 풀 수 있음!

4. For Better Results

- 1. Feature Normalization
- 2. Learning Rate

Feature Normalization

- Feature Scaling (Range Normalization)
 - Make sure features are on a similar scale

E.g.
$$x_1 = \text{size } (0\text{-}2000 \text{ feet}^2)$$
 \leftarrow $\chi_1 \circ \chi_2 = \chi_1 \circ \chi_2 \circ \chi_3 \circ \chi_4 \circ \chi_4 \circ \chi_4 \circ \chi_5 \circ \chi_5$

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$
 $x_2 = \frac{\text{number of bedrooms}}{5}$

0 5 x, 5 1

$$J(\ell) = \theta_1 \eta_1 + \theta_2 \eta_3$$

$$J(\ell) = \frac{1}{2M} \sum_{i} \left(h_0(\hat{\xi}_i) - q^{\alpha_2} \right)^2$$

$$\frac{2 \sum_{i} (q_i)}{2 q_i} = \frac{1}{2M} \sum_{i} \left(h_0(\hat{\xi}_i) - q^{\alpha_2} \right)^2$$

135430

: Converge faster!

Feature Normalization (cont'd)

- Feature Scaling (cont'd)
 - Eg., get every feature into approximately a $-1 \le x_i \le 1$ range.

Feature Normalization (cont'd)

Mean Normalization

• Replace x_j with $x_j - (\mu_j)$ to make features have approximately zero mean.

Caution:

- Do not normalize $x_0 = 1$. How the state of
- There is **no** need to do feature normalization with the **normal equation**.

Learning Rate (α)

lacktriangle How to Choose Learning Rate α ?

Too large α: may not converge μμη

 $J(\theta)$ No. of iterations

▶ Too small æ: slow convergence 오래걸림

Rule of thumb:

* Try ..., 0.001, ..., 0.01, ..., 0.1, ..., 1, ... $|e^{-1} \sim |e^{-5} \circ e^{-6}$ then try the in-betweens if not satisfactory

처음에 크게했다가 접점 술에는 방법

Learning Rate Scheduling

 \star Starts with some large α , and then decrease α according to a schedule