SENSOR DE VELOCIDADE

Universidade Federal do Pará Instituto de Tecnologia Faculdade de Engenharia da Computação Projeto de Hardware e Interfaceamento Prof^o Bruno Lira

Danilo Souza - 10080000801

Hugo Leonardo - 10080000701

Welton Araújo - 10080000501

Agenda

- Introdução
- Descrição do projeto
- Descrição do sensor utilizado
- Descrição da simulação
- Resultados e considerações finais

Introdução

- Medição de grandezas através de sensores
- Sensores são muito utilizados na indústria
- Utilizar um sensor de luminosidade para criar um sensor de velocidade

Descrição do projeto

- Colocar um led em uma roda girante.
- Posicionar o sensor de luminosidade para que seja possível a leitura da iluminação do led.
- Em cada volta da roda o sensor irá aumentar a sua luminância e gerará uma tensão alta.
- A tensão de saída do sensor é baixa e precisa ser amplificada.

Descrição do projeto

- A tensão de saída do amplificador passa por um comparador para verificar se o sinal é baixo ou alto
- Quando é encontrado dois sinais altos, separados por sinais baixos, o intervalo de tempo entre eles é usado para o cálculo da velocidade.
- Velocidade = (2*π*raio)/tempo

Circuito

Descrição do sensor utilizado

- O sensor utilizado foi LLS05-A fabricado por Senba Optical Eletronics
- Comportamento linear
- Cálculo da tensão de saída Vout = Rss*i
- Utilizado Rss = 10k
- Tempo de resposta de 8,5ms

Descrição do sensor utilizado

Corrente e Luminância

180 150 120 90 60 30 0 20 40 60 80 100 120 140 160 Illuminance (lux)

Tempo de resposta

Descrição do sensor utilizado

Resposta espectral do sensor

- Projeto realizado totalmente no matlab.
- Principais variáveis:
 - A tensão real de saída do sensor: "v_sinal".
 - A luminância real capturada pelo sensor: "lux_sinal".
 - O resistor que limita a potencia dissipada no sensor: "rss".
 - O raio da roda "r".

- Foi utilizado o tempo de resposta de 9ms para facilitar a simulação, não perdendo a confiabilidade
- Foram criados três sinais(vetores):
 - Sinal de tensão (real e ideal) gerado pelo sensor, que simula o giro da roda(tensão X tempo).
 - Sinal de luminância (real e ideal) gerado pelo sensor, que simula o giro da roda(lux X tempo).
 - Sinal de tensão do sensor (real e ideal) amplificado.

Descrição da simulação <u>Sinais Gerados com velocidade constante</u>

- O preenchimento desses vetores ocorre em cinco situações diferentes, detalhadas abaixo:
 - 1ª Etapa: O sistema esta em repouso, com o led à frente do sensor
 - 2ª Etapa: Determinar os valores para a subida do tempo de resposta do sensor
 - 3ª Etapa: Determinar os valores para o período em que o led esta passando pelo sensor (leitura do sensor está perto do valor máximo).
 - 4^a Etapa: Determinar os valores para a descida do tempo de resposta do sensor
 - 5ª Etapa: Preencher os vetores com os valores mínimos de leitura (o led não está mais à frente do sensor)

- Simulação de um sistema real
- Utilizado um sinal randômico para simular a variação de velocidade
- O sensor trata o sinal gerado e gera a velocidade associada.

Descrição da simulação Velocidade randômica

Descrição da simulação Velocidade randômica

Velocidade real	Velocidade calculada	Erro
0,2277	0,2291	0,62%
0,9861	1,0167	3,10%
0,5356	0,5454	1,82%
0,8020	0,8224	2,53%