Digital Synesthesia: Using Mobile Technology to Interact with Our World

Ву

Santiago Eloy Alfaro Bernate

Submitted to the Program in Media Arts and Sciences, School of Architecture and Planning, In partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

Massachusetts Institute of Technology

© Massachusetts Institute of Technology 2014 All rights reserved

Author:	
	Santiago Alfaro
	Program in Media Arts and Sciences
Certified By:	
,	V. Michael Bove Jr.
	Principal Research Scientist
	MIT Media Lab
Accepted By:	
	Pattie Maes
	Professor of Media Arts and Science

MIT Media Lab

Thesis Supervisor:	
•	V. Michael Bove Jr.
	Principal Research Scientist
	MIT Media Lab

Thesis Reader:		
	Jose	ph Paradiso
	Professor of Media Arts	and Science

MIT Media Lab

Thesis Reader:	
	Kevin Slavin
	Assistant Professor of Media Arts and Sciences
	MIT Media Lab

ACKNOWLEDGEMENTS

TABLE OF CONTENTS

Acknowledgements	5
Executive Summary	11
Future Projection	13
Abstract	14
Introduction	15
Digital Synesthesia	17
Design Approach	18
The importance of the single affordance	19
Implementations	19
First Study: Proximity Sensing	19
Second Study: Temperature Sensing	20
Third Study: Cellphone Sensors	20
Background and Related Work	22
Thermal Interfacing	22
Vibrotactile Interfacing	23
Mobile Communication	24
Sensory Substitution	24
Assistive Technologies	25
New Senses	26
Situational Awareness	26
Neuroplasticity	27
System Description (Figure 20)	28
Hardware	28
Software	29
Sensitivity Mapping	29
User Studies	31
Testing the Feedback	31
Testing the Signals	31

Changing the Contextual Information	31
Summary of User Studies	32
User Studies (the successful ones)	33
Proximity to Vibration	34
Preparation	34
Test Procedure	36
Phase One	37
Phase Two	40
Phase Three	42
Normalization of the Sensor	44
Temperature to Sound	51
Preparation	51
Hardware	52
Procedure	54
Results	55
Evaluation	55
Cell Sensors to Sound	57
Preparation	57
Test Procedure	58
Results	59
Evaluation	60
Smell Explorations	61
Smell Explorations 1 "The Foodcam"	61
Preparation	61
Evaluation	61
Smell Explorations 2 "The smell-mixer"	62
Preparation	62
Results	63
User Studies (the less successful ones)	64

	Stress to Sound	64
	Preparation	64
	Evaluation	65
	Location to temperature	68
	Preparation	68
	Procedure	68
	Results	68
	Evaluation	69
	User Studies Summary	70
U	ser Studies	70
R	esults and Conclusions	70
R	esearch Questions	72
	Discreet and Continuous Data	72
	Sensory Substitution	72
	Sensory Augmentation	73
	New Senses	73
	The User and the New Stimuli	73
	Escaping the visual user interface	74
D	esign Thinking	75
	What is the main activity?	75
	What type of signal do we want to track?	75
	What kind of sense do we want to create?	75
	Are there any redundancies with other senses?	76
	What type of feedback can we use?	76
	Where are the sensor and feedback located?	76
	Can we set up a learning environment?	76
	The Main activity	77
	Type of signal to be tracked	78
	What kind of sense do we want to create?	79

	Are there any redundancies with other senses?	. 81
	What type of feedback can we use?	. 83
	Where are the sensor and feedback located?	. 85
	Can we set up a natural learning environment?	. 87
Αŗ	oplication to Current designs	. 89
	Feelspace belt (Nagel et al. 2005b)	. 89
	What is the main activity?	. 89
	What type of signal do we want to track?	. 89
	What kind of sense do we want to create?	. 89
	What type of feedback can we use?	. 89
	Where are the sensor and feedback located?	. 89
	Can we set up a learning environment?	. 90
	Vibratory Vest (Eagleman 2014)	. 90
	What is the main activity?	. 90
	What type of signal do we want to track?	. 90
	What kind of sense do we want to create?	. 90
	Are there any redundancies with other senses?	. 91
	What type of feedback can we use?	. 91
	Where are the sensor and feedback located?	. 91
	Can we set up a learning environment?	. 91
	Future Examples	. 92
	Sailing	. 92
	What is the main activity?	. 92
	What type of signal do we want to track?	. 92
	What kind of sense do we want to create?	. 92
	Are there any redundancies with other senses?	. 92
	What type of feedback can we use?	. 92
	Where are the sensor and feedback located?	. 93
	Can we set up a learning environment?	. 93

Contributions	94
Future vision	96
Conclusions	98
References	99
Non-Cited Bibliography	103
Bio	105
Santiago Eloy Alfaro	105
Table of Figures	106
Appendix A - The MaxSonar-EZO Sensor	108
Appendix B – The MLX90614BAA Sensor	109