北京理工大学《数值分析》

20	10-2011	学年第一	学期期末	试卷(A)卷(20	09 级计算	.机学院)
班	级	学号_		_姓名		斌绩	
注意	注意: ① 答题方式为闭卷。 ② 可以使用计算器。 ③ 请将填空题和选择题的答案直接填在试卷上,计算题答在答题纸上。						
<u> </u>	填空题						(20×2′)
1.	设 x=0.231	是精确值 x*	=0.229 的近位	以值,则 <i>x</i> 有	ī	位有效	数字。
2.	设 $A = \begin{bmatrix} 3 \\ - \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}, X$	$= \begin{bmatrix} 2 \\ -3 \end{bmatrix}$	∥ A ∥ ∞=	,	X ∞= <u></u>	,
	$ AX _{\infty} \leq$		(注意:不计	·算 AX ∞f	的值)。		
3.	非线性方程	! f(x)=0 的迭	代函数 x= q (x)在有解区间]满足	,则使	用该迭代函
	数的迭代解	法一定是局	部收敛的。				
4.	若 $f(x)=x^7$	$-x^3+1$	则 f[2 ⁰ ,2	$^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2^{6}$	⁶ ,2 ⁷]=		,
	$f[2^0,2^1,2^2,2^3]$	$,2^4,2^5,2^6,2^7,2^8$	³]=	•			
5.	区间[a,b]上	的三次样条	插值函数 S(x	()在[a,b]上具	有直到	阶的连续	导数。
6.	当插值节点	为等距分布	时,若所求	节点靠近首节	5点,应该选	用等距节点	下牛顿差商
	公式的		(填写前插公	式、后插公式	式或中心差分	分公式), 若
	所求节点	靠近尾	节点,应	该选用等	距节点下	牛顿差	商公式的
	(填写前插	i公式、后插	公式或中心差	差分公式) ; 女	口果要估计结	某的舍入误	差,应该选
	用插值公式	中的			o		
7.	拉格朗日插	值公式中 f(x _i)的系数 a _i (x)的特点是:	$\sum_{i=0}^{n} a_{i}(x) = \underline{}$; 所以当
	系数 a _i (x)满	足		, it	算时不会放力	大 $f(x_i)$ 的误差	
8.	要使√20 白	的近似值的相	目对误差小于	0.1%,至少	要取	位有效数号	字。
9.	对任意初始	的量 <i>X</i> ⁽⁰⁾ 及{	千意向量 g,	线性方程组的	的迭代公式 x	$e^{(k+1)} = Bx^{(k)} + \varrho($	k=0.1)收
				条件是 <u></u>			0
10.				次数最高是_			•
	x	0	0.5		1.5	2	2.5

	y=f(x)	-2	-1.75	-1	0.25	2	4.25	
11.	牛顿下山法	的下山条件	为		_0			
12.	线性方程组	的松弛迭代	法是通过逐渐	新减少残差 r	$(i=0,1,\dots,n)$	来实现的,	其中的残差	皇
	$r_i = \underline{\hspace{1cm}}$, (i	=0,1,,n).			
13.	在非线性方	程 f(x)=0 使	用各种切线流	去迭代求解时	力, 若在迭代[区间存在唯-	一解,且 <i>f</i> (ɔ	c)
	的二阶导数	不变号,则	初始点 x ₀ 的	选取依据为_			。	
14.	使用迭代计算的步骤为建立迭代函数、、迭代计算。							
二、	判断题(在	题目后的()中填上"√	"或"×"。)		(10×1′)
1,	若A是n阶	非奇异矩阵	则线性方程	组 AX=b-5	定可以使用高	5斯消元法求	解。()
2、	解非线性方	程f(x)=0的	牛顿迭代法在	E单根x*附近	是平方收敛	的。	()
3、	若 4 为 n 阶	方阵,且其	元素满足不	等式				
	$\left a_{ii}\right \geq \sum_{\substack{j=1\\j\neq i}}^{n}$	$\left a_{ij}\right $ ($i=$	1,2,, n)					
	则解线性方	程组 AX=b	的高斯——第	医德尔迭代法	一定收敛。		()
4、	样条插值一	·种分段插值	•				()
5、	如果插值结	i点相同,在注	满足相同插值	i 条件下所有	的插值多项	式是等价的。	()
6、	从实际问题	的精确解到	实际的计算约	吉果间的误差	差有模型误差	、观测误差	、截断误差	皇
	及舍入误差	•					()
7、	解线性方程	组的的平方	根直接解法证	适用于任何组	战性方程组 A	$X=b_{\circ}$	()
8、	迭代解法的	J舍入误差估	计要从第一	步迭代计算	的舍入误差别	开始估计,直	到最后一步	Þ
	迭代计算的	舍入误差。					()
9、	数值计算中	的总误差如	果只考虑截断	断误差和舍 <i>)</i>	、误差,则误	差的最佳分	配原则是都	鈛
	断误差=舍	入误差。					()
10、	插值计算中	避免外插是	为了减少舍力	入误差。			()
三、	计算题					(5×	<8' +10')
1	田列士元喜	斯消元注解	坐性方积 组	(计算时小类	五古后保密 5	位)		

1、用列王兀局斯涓兀法解线性万程组。(计算时小数点后保留5位)。

$$\begin{cases} x_1 - x_2 + x_3 = -4 \\ 5x_1 - 4x_2 + 3x_3 = -12 \\ 2x_1 + x_2 + x_3 = 11 \end{cases}$$

2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式 $P_4(x)$, 并写出其截断误差的表达式(设 f(x)在插值区间上具有直到五阶连续导数)。

x_i	0	1	2
$f(x_i)$	1	-1	3
$f'(x_i)$		1	5

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯—— 赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代 法的迭代公式,并简单说明收敛的理由。

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ x_1 - x_3 + 5x_4 = 6 \\ x_2 + 4x_3 - x_4 = 8 \\ -x_1 + 3x_2 - x_3 = 3 \end{cases}$$

4、设 y=sinx, 当取 $x_0=1.74$, $x_1=1.76$, $x_2=1.78$ 建立拉格朗日插值公式计算 x=1.75 的函数值时,函数值 y_0, y_1, y_2 应取几位小数?

5、已知单调连续函数 v=f(x)的如下数据:

x_i	-0.11	0.00	1.50	1.80
$f(x_i)$	-1.23	-0.10	1.17	1.58

若用插值法计算,x 约为多少时 f(x)=1。(计算时小数点后保留 5 位)。

6、应用牛顿法于方程 $f(x) = 1 - \frac{a}{x^2} = 0$,导出求 \sqrt{a} 的迭代公式,并用此公式求 $\sqrt{115}$ 的值。(计算时小数点后保留 4 位)。

课程编号: 12000044 北京理工大学 2009-2010 学年第二学期

2009 级计算机学院《数值分析》期末试卷 A 卷

功	E级	学号		姓名		成绩	
注意	① 答题方② 可以使③ 请将填	用计算器。	的答案直接填	在试卷上,计算	算题答在答题组	纸上。	
四、	填空题(2	0×2′)					
15.	设 x=0.231	是精确值 x*:	=0.229 的近位	以值,则 x 有	<u> </u>	位有效数	字。
16.	$\mathcal{A} = \begin{bmatrix} 3 \\ - \end{bmatrix}$	$\begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix}, X$	$= \begin{bmatrix} 2 \\ -3 \end{bmatrix},$	∥ A ∥ ∞=	5 ,	X ∞=	3,
	$ AX _{\infty} \leq$	<u>_15</u> 。					
17.	非线性方程	! f(x)=0 的迭	代函数 x= φ (x	()在有解区间]满足 <u> φ'(x) </u>	<u><1</u> ,则	使用该迭代
	函数的迭代	解法一定是	局部收敛的。				
18.	若 $f(x)=x^7$	$-x^3+1$	则 f[2 ⁰ ,2	$^{1}, 2^{2}, 2^{3}, 2^{4}, 2^{5}, 2$	⁶ ,2 ⁷]= <u>1</u>		,
	$f[2^0,2^1,2^2,2^3,$	$2^4, 2^5, 2^6, 2^7, 2^8$]=	0	0		
19.	区间[a,b]上	的三次样条	插值函数 S(x)在[<i>a,b</i>]上具	有直到 <u>2</u>	_阶的连续导	数。
20.	当插值节点	为等距分布	时,若所求 ⁼	卢点靠近首 节	方点,应该选	用等距节点	下牛顿差商
	公式的	前插公式	,若所求节,	点靠近尾节点	京,应该选用	等距节点下	牛顿差商公
	式的	后插公式		要估计结果的	含入误差,	应该选用插	值公式中的
	拉格朗日插	值公式	•				
21.	拉格朗日插	值公式中分	c _i)的系数 a _i (x	的特点是:	$\sum_{i=0}^{n} a_i(x) = \underline{\hspace{1cm}}$	1	; 所以当
	系数 a _i (x)满	i足	$a_i(x) > 1$,计算时	才不会放大 f	(x_i) 的误差。
22.	要使√20 白	的近似值的相]对误差小于	0.1%,至少	要取4	位有效数	字。
23.	对任意初始	i向量 X ⁽⁰⁾ 及f	£意向量 g,	线性方程组的	的迭代公式 x	$e^{(k+1)} = Bx^{(k)} + g($	<i>k</i> =0,1,···)收
	敛于方程组	的精确解 x*	的充分必要	条件是	ρ(B)<1		
24.	由下列数据	所确定的插	值多项式的	欠数最高是_	5	_•	
	x	0	0.5	1	1.5	2	2.5

	y=f(x)	-2	-1.75	-1	0.25	2	4.25	
25.	牛顿下山法	的下山条件	为 <u> f(xn+1)</u>	< f(xn)				
26.	6. 线性方程组的松弛迭代法是通过逐渐减少残差 r_i (i =0,1, \cdots , n)来实现的,其中的残差							
	$r_i = (b_i - a_{i1}x)$	1-a _{i2} x ₂ a _{in}	x _n)/a _{ii}		, (i	=0,1,,n).		
27.	在非线性方	ī程f(x)=0 使	用各种切线流	去迭代求解时	↑,若在迭代[区间存在唯-	一解,且 <i>f</i> (x)	
	的二阶导数	(不变号,则初	J始点x ₀ 的选	取依据为	f(x0)f''(x0) > 0)	0	
28.	使用迭代计	算的步骤为	建立迭代函数	数、选取	初值	、迭代	计算。	
五、	判断题(1	0×1′)						
10	若 A 是	n 阶非奇异?	矩阵,则线性	生方程组 <i>AX</i> =	=b 一定可以	使用高斯消	元法求解。	
	(×)							
11,	解非约	线性方程 f((x)=0 的牛草	顿 迭 代 法 在	E 单根 x* M	付近 是 平 方	收敛的。	
	(√)							
12	若 4 为	n 阶方阵,	且其元素满足	已不等式				
	$\left a_{ii}\right \geq \sum_{\substack{j=1\\j\neq i}}^{n}$	$\left a_{ij}\right $ ($i=1$)	1,2,, n)					
	则解线性方	程组 AX=b	的高斯——塞	医德尔迭代法	一定收敛。		(×)	
13	样	条 插	值 -	一 种	分 段	插	值。	
	(√)							
14	如果插	i值结点相同	,在满足相	同插值条件	丰下所有的描	盾值多项式是	是等价的。	
	(√)							
15	从实际	问题的精确的	解到实际的计	十算结果间的	」误差有模型	误差、观测	误差、截断	
	误	差	及 包)	、误	差	٥	
	(√)							
16	解线性	上方程组的	的平方根直	1接解法适	用于任何约	浅性方程组	AX = b.	
	(×)							
17	迭代解	法的舍入误差	差估计要从第	的一步迭代计	算的舍入误	差开始估计,	直到最后一	
	步 迭	代	计 算	的	舍 入	误	差。	
	(×)							
18、	数值计	算中的总误	差如果只考虑	忌截断误差和]舍入误差,	则误差的最	佳分配原则	
	是 截	断	误 差	=	舍 入	误	差。	

 $(\sqrt{1})$

10、插值计算中避免外插是为了减少舍入误差。

(X)

六、计算题(5×10')

1、用列主元高斯消元法解线性方程组。

$$\begin{cases} x_1 - x_2 + x_3 = -4 \\ 5x_1 - 4x_2 + 3x_3 = -12 \\ 2x_1 + x_2 + x_3 = 11 \end{cases}$$

解答:

(1,5,2) 最大元5在第二行,交换第一与第二行:

$$\begin{cases} 5 x_1 - 4 x_2 + 3 x_3 = -12 \\ x_1 - x_2 + x_3 = -4 \\ 2 x_1 + x_2 + x_3 = 11 \end{cases}$$

L21=1/5=0.2,l31=2/5=0.4 方程化为:

$$\begin{cases} 5x_1 - 4x_2 + 3x_3 = -12 \\ -0.2x_2 + 0.4x_3 = -1.6 \\ 2.6x_2 - 0.2x_3 = 15.8 \end{cases}$$

(-0.2,2.6) 最大元在第三行,交换第二与第三行:

$$\begin{cases} 5x_1 - 4x_2 + 3x_3 = -12 \\ 2.6x_2 - 0.2x_3 = 15.8 \\ -0.2x_1 + 0.4x_3 = -1.6 \end{cases}$$

L32=-0.2/2.6=-0.076923,方程化为:

$$\begin{cases} 5x_1 - 4x_2 + 3x_3 = -12 \\ 2.6x_2 - 0.2x_3 = 15.8 \\ 0.38462 \quad x_3 = -0.38466 \end{cases}$$

回代得:
$$\begin{cases} x_1 = 3.00005 \\ x_2 = 5.99999 \\ x_3 = -1.00010 \end{cases}$$

2、用牛顿——埃尔米特插值法求满足下列表中插值条件的四次插值多项式 $P_4(x)$, 并写出其截断误差的表达式(设 f(x)在插值区间上具有直到五阶连续导数)。

x_i	0	1	2
$f(x_i)$	1	-1	3
$f'(x_i)$		1	5

解答:

做差商表

xi	F(xi)	F[xi,xi+1]	F[xi.xi+1.xi+2]	F[xi,xi+1,xi+2,xi+3]	F[xi,xi+1,xi+2,xi+3,xi+4]
0	1				
1	-1	-2			
1	-1	1	3		
2	3	4	3	0	
2	3	5	1	-2	-1

$$P4(x)=1-2x-3x(x-1)-x(x-1)(x-1)(x-2)$$

 $R4(x)=f(5)(\xi)/5!x(x-1)(x-1)(x-2)(x-2)$

3、对下面的线性方程组变化为等价的线性方程组,使之应用雅克比迭代法和高斯——赛德尔迭代法均收敛,写出变化后的线性方程组及雅克比迭代法和高斯——赛德尔迭代法的迭代公式,并简单说明收敛的理由。

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ x_1 - x_3 + 5x_4 = 6 \\ x_2 + 4x_3 - x_4 = 8 \\ -x_1 + 3x_2 - x_3 = 3 \end{cases}$$

解答:

交换第二和第四个方程, 使系数矩阵为严格对角占优:

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ -x_1 + 3x_2 - x_3 = 3 \\ x_2 + 4x_3 - x_4 = 8 \end{cases}$$

$$\begin{cases} x_1 - x_3 + 5x_4 = 6 \end{cases}$$

雅克比迭代公式:

$$\begin{cases} 2x_1 - x_2 + x_4 = 1 \\ -x_1 + 3x_2 - x_3 = 3 \\ x_2 + 4x_3 - x_4 = 8 \\ x_1 - x_3 + 5x_4 = 6 \end{cases}$$

4、设 y=sinx,当取 $x_0=1.74$, $x_1=1.76$, $x_2=1.78$ 建立拉格朗日插值公式计算 x=1.75 的函数值时,函数值 y_0, y_1, y_2 应取几位小数?

5、已知单调连续函数 y=f(x)的如下数据:

x_i	-0.11	0.00	1.50	1.80
$f(x_i)$	-1.23	-0.10	1.17	1.58

若用插值法计算,x约为多少时f(x)=1。(计算时小数点后保留 5 位)。

6、应用牛顿法于方程 $f(x) = 1 - \frac{a}{x^2} = 0$,导出求 \sqrt{a} 的迭代公式,并用此公式求 $\sqrt{115}$ 的值。(计算时小数点后保留 4 位)。