МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра Вычислительной техники

ОТЧЁТ

по лабораторной работе №5

по дисциплине «Элементная база цифровых систем»

Тема: ИССЛЕДОВАНИЕ РЕГИСТРОВ

Вариант 5

Студенты гр. 9308	Соболев М.С.
	Степовик В.С.
	Дубенков С.А.
Преподаватель	 Ельчанинов М.Н

Санкт-Петербург,

Оглавление

1. Введение	3)
1.1. Введение	3	
1.2. Краткие теоретические сведения	3	
1.3. Задание на лабораторную работу	5	
1.4. Последовательность выполнения работы	7	
2. Ход работы	9)
2.1. Разработка 4-разрядного параллельного регистра с использованием триг	геров	
заданного типа	9	
2.1.1. Вариант задания	9	
2.1.2. Функциональная схема	10	
2.1.3. Функциональное и временное моделирование	11	
2.1.4. Макетное моделирование	15	
2.1.5. Оценка максимальной частоты работы регистра	15	
2.2. Разработка многофункционального регистра на базе D-триггеров	18	
2.2.1. Вариант задания	18	
2.2.2. Функциональная схема	19	
2.2.3. Функциональное и временное моделирование	20	
2.2.4. Макетное моделирование	26	
3. Вывод	28)
A. Список использования ву истонников	20	ì

1. Введение

1.1. Введение

Тема работы: Исследование регистров.

Цель работы: исследовать особенности проектирования регистров различного типа, закрепить навыки синтеза и экспериментального исследования узлов в среде Quartus II.

Вариант: 5.

1.2. Краткие теоретические сведения

Регистры — это узлы последовательностного типа, выполняющие операции приёма, выдачи, хранения, сдвига, поразрядные логические операции. Регистры строятся на базе триггеров и логических элементов.

Главным классификационным признаком является способ приёма и выдачи данных. По этому признаку различают:

- параллельные (статические): приём и выдача слов производятся по всем разрядам одновременно);
- последовательные (сдвигающие): слова принимаются и выдаются разряд за разрядом, перемещение слов по разрядной сетке выполняется по тактовому сигналу;
- параллельно-последовательные: имеют входы-выходы последовательного и параллельного типа. Имеются варианты с последовательным входом и параллельным выходом (SIPO, Serial Input Parallel Output), параллельным входом и последовательным выходом (PISO, Parallel Input Serial Output), а также варианты с возможностью любого сочетания способов приёма и выдачи слов.

Общими для разрядов регистров обычно являются цепи тактирования, сброса/установки, разрешения выхода или приема, т. е. цепи управления.

Регистр, реализующий функцию сдвига, может быть нереверсивным (с однонаправленным сдвигом) или реверсивным (с возможностью сдвига в обоих направлениях). Направление сдвига в регистре — не геометрическое понятие и определяется сдвигом в сторону старших или младших разрядов. Варианты реализации функции сдвига приведены на рисунке.

Рисунок 1. Варианты реализации функции сдвига: а – вправо, б – влево, с – реверсивный

В сдвигающих регистрах, не имеющих логических элементов в межразрядных связях, нельзя применять одноступенчатые триггеры, управляемые уровнем, поскольку некоторые триггеры могут за время действия разрешающего уровня синхросигнала переключиться неоднократно, что недопустимо для последовательного соединения: слово или его часть могут

сместиться по разрядной сетке не на один разряд, как это требуется, а на большее неконтролируемое число разрядов.

Появление в межразрядных связях логических элементов упрощает выполнение условий работоспособности регистров, при этом иногда становится возможным и применение простейших триггеров. Триггеры с динамическим управлением или двухступенчатые обеспечивают работоспособность регистра.

1.3. Задание на лабораторную работу

Лабораторная работа состоит из двух частей.

Часть 1. Предполагает разработку 4-разрядного параллельного регистра с использованием триггеров заданного типа. Дополнительно указывается фронт тактового сигнала, по которому происходит срабатывание (↑ – подъём тактового сигнала, ↓ – спад тактового сигнала).

Варианты заданий приведены в таблице.

Номер задания	Тип тригтера	Такт	Асинхронный сброс/ установка	Разрешение выдачи	Номер задания	Тип триггера	Такт	Асинхронный сброс/ установка	Разрешение выдачи
1	D	1	Сброс	L	7	D	1	Установка	Н
2	RS	\downarrow	Сброс	L	8	RS	\downarrow	Установка	Н
3	JK	1	Установка	L	9	JK	↑	Сброс	Н
4	D	↓	Установка	L	10	D	\downarrow	Сброс	Н
5	RS	1	Сброс	L	11	RS	↑	Установка	Н
6	JK		Сброс	L	12	JK	\downarrow	Установка	Н

Рисунок 2. Варианты заданий для части 1

В качестве базовых элементов использовать соответствующие примитивы библиотеки САПР Quartus II.

Часть 2. Предлагается разработать многофункциональный регистр на базе D-триггеров. Условное графическое обозначение (УГО) многофункционального регистра приведено на рисунке.

Рисунок 3. УГО многофункционального регистра

В зависимости от реализуемых операций в регистре должны быть предусмотрены следующие входы:

D0 – D3 – разряды входного параллельного кода;

Q0 – Q3 – разряды выходного параллельного кода;

С – синхросигнал приёма параллельного кода, обеспечивающий срабатывание по переднему фронту;

R – асинхронный вход сброса регистра;

S0, S1 – входы задания микроопераций;

DR, DL – последовательные входы при сдвиге вправо и влево соответственно.

Для реализации асинхронного сброса триггера – сброса, не связанного с тактовым сигналом, следует использовать соответствующие входы CLRN

примитива D-триггера DFF. Синхронный сброс, который переводит триггер в состояние «сброс» только на активном фронте тактового сигнала, может быть реализован как часть комбинационной логики, генерирующей входные данные на входе D-триггера.

Варианты заданий и выполняемые микрооперации приведены в таблице.

Номер задания	Выполняемые микрооперации
1	1, 2, 5, 7
2	1, 3, 6, 8
3	1, 4, 5, 9
4	1, 2, 6, 10
5	1, 3, 5, 11
6	1, 4, 6, 12
7	1, 2, 5, 11
8	1, 3, 6, 10
9	1, 4, 5, 9
10	1, 2, 6, 8
11	1, 3, 5, 7
12	1, 4, 6, 9

Номер	Описание микрооперации
1	Параллельная загрузка
2	Синхронный сброс
3	Инвертирование кода
4	Установка в 1 всех разрядов
5	Сдвиг вправо циклический
6	Сдвиг влево циклический
7	Сдвиг влево, заполнение – D_L
8	Сдвиг вправо, заполнение – D _R
9	Сдвиг влево, заполнение – 1
10	Сдвиг вправо, заполнение – 0
11	Сдвиг влево, заполнение – 0
12	Сдвиг вправо, заполнение – 1

Рисунок 4. Варианты заданий для части 2

В каждом варианте предполагается реализация четырёх микроопераций. Кодирование выполняется самостоятельно, код формируется на входах S0, S1 многофункционального регистра.

1.4. Последовательность выполнения работы

Часть 1:

1. Создать проект, с использованием средств графического редактора подготовить схему регистра в соответствии с заданием.

- 2. Компилировать проект, исправить ошибки, если они есть.
- 3. Выполнить функциональное моделирование проекта, обеспечив полный перебор возможных значений входных сигналов, убедиться в правильности работы схемы.
- 4. Выполнить временное моделирование, проанализировать полученную временную диаграмму, оценить максимальную частоту работы регистра на основании временных параметров комбинационной логики.

Часть 2:

- 1. Разработать схему многофункционального регистра в соответствии с заданием.
- 2. Создать проект с использованием средств графического редактора, ввести в него подготовленную схему многофункционального регистра. Компилировать проект, исправить ошибки, если они есть.
- 3. Выполнить функциональное моделирование проекта, обеспечив полный перебор возможных значений входных управляющих сигналов, убедиться в правильности работы схемы.
- 4. Скорректировать схему проекта, обеспечив понижение частоты входного тактового сигнала с помощью специально добавленного счетчика таким образом, чтобы можно было комфортно наблюдать работу регистра при выполнении сдвигов. Проверить работу схемы на макетной плате. Данные, загружаемые в регистр, и код микрооперации формировать на движковых переключателях. Результаты работы проекта наблюдать на светодиодной линейке.

2. Ход работы

2.1. Разработка 4-разрядного параллельного регистра с использованием триггеров заданного типа

2.1.1. Вариант задания

Вариант задания приведён в таблице.

Таблица 1. Таблица с заданием на разработку 4-разрядного параллельного регистра с использованием триггеров заданного типа

Вариант	Тип триггера	Такт	Асинхронный сброс/установ ка	Разрешение выдачи
5	RS	1	Сброс	L

Таблица 2. Таблица истинности для разработки 4-разрядного параллельного регистра с использованием триггеров заданного типа

С	S	R	Q_n	Q_{n+1}	Состояние
↑	0	0	0	0	Хранение
\downarrow	0	0	0	0	Хранение
↑	0	0	1	1	Хранение
\downarrow	0	0	1	1	Хранение
↑	0	1	0	0	Установка 0
\downarrow	0	1	0	0	Хранение
↑	0	1	1	0	Установка 0
\downarrow	0	1	1	1	Хранение
↑	1	0	0	1	Установка 1
\downarrow	1	0	0	0	Хранение
↑	1	0	1	1	Установка 1
\downarrow	1	0	1	1	Хранение
<u></u>	1	1	0		Запрещённа

				я комбинация
\	1	1	0	 Запрещённа я комбинация
↑	1	1	1	 Запрещённа я комбинация
\	1	1	1	 Запрещённа я комбинация

2.1.2. Функциональная схема

Функциональная схема для 4-разрядного параллельного регистра с использованием триггеров заданного типа.

Рисунок 5. Функциональная схема

Функциональная схема для 4-разрядного параллельного регистра с использованием триггеров заданного типа с разрешением выдачи ОЕ «L» (0, output enabled «Low»).

Рисунок 6. Функциональная схема с разрешением выдачи ОЕ «L» (0, output enabled «Low»)

2.1.3. Функциональное и временное моделирование

Функциональные и временные диаграммы для 4-разрядного параллельного регистра с использованием триггеров заданного типа. При составлении диаграмм учтён полный перебор всех возможных комбинаций.

При C = 1, C = 0, OE = 0 и $CLN_RESET = 0$ запись в триггеры производиться не будет, что и отражено на функциональных и временных диаграммах.

Рисунок 7. Функциональная (сверху) и временная (снизу) диаграмма для C=0, CLN=1, OE=1

Рисунок 8. Функциональная (сверху) и временная (снизу) диаграмма для C=1, CLN=1, OE=1

Запись в триггеры производится только при CLN = 1, OE = 1 и при переднем фронте сигнала C.

Рисунок 9. Функциональная (сверху) и временная (снизу) диаграмма для C = T, CLN = 1, OE = T

Рисунок 10. Функциональная (сверху) и временная (снизу) диаграмма для C = T, CLN = T, OE = 1

2.1.4. Макетное моделирование

Макетное моделирование для 4-разрядного параллельного регистра с использованием триггеров заданного типа.

Рисунок 11. «Распиновка» для макетного моделирования

2.1.5. Оценка максимальной частоты работы регистра

Оценка максимальной частоты работы 4-разрядного параллельного регистра с использованием триггеров заданного типа. Она производилась с

помощью сравнения временного моделирования для различной частоты (периода) входного синхросигнала: 2 нс, 3 нс и 4 нс. Максимальная частота работы регистра – 4 наносекунды.

При построении временной диаграммы для периода, равного 2 нс, на схеме триггеры не работают. Это подтверждается отсутствием реакции на синхросигнал: на выходах Q нули.

Рисунок 12. Временная диаграмма для C = 2 ns

При построении временной диаграммы для периода, равного 3 нс, возникала ошибка, не позволявшая строить временную диаграмму. Возможно, это связано с тем, что при заданном периоде в схеме триггеры также не работают, но при этом порождают критическую ошибку..

```
×
 Simulation Flow - Laboratory_work_5_1_project
                                                                       •
  # Loading work.Laboratory work 5 1 project vlg sample tst
  # Loading work.Laboratory_work_5_1_project_vlg_check_tst
  # SDF 10.1d Compiler 2012.11 Nov 2 2012
  # Loading instances from Laboratory_work_5_1_project_v.sdo
  # Loading cycloneii ver.CYCLONEII PRIM DFFE
  # Loading timing data from Laboratory work 5 1 project v.sdo
  # ** Note: (vsim-3587) SDF Backannotation Successfully Completed.
       Time: 0 ps Iteration: 0 Instance: /Laboratory work 5 1 proj
ect vlg vec tst File: Laboratory work 5 1 project.vt
  # ** Error: a:/altera/13.0sp1/modelsim_ase/win32aloem/../altera/ve
rilog/src/cycloneii_atoms.v(5351): $hold( posedge clk &&& nosloadscl
r:847293 ps, datain:847360 ps, 306 ps);
      Time: 847360 ps Iteration: 0 Instance: /Laboratory_work_5_1
 project vlg vec tst/i1/inst5
  # Simulation passed !
  # ** Note: $finish
                        : Laboratory work 5 1 project.vt(249)
       Time: 960 ns Iteration: 0 Instance: /Laboratory work 5 1 pr
oject vlg vec tst/tb out
Errors occured during modelsim simulation
```

Рисунок 13. Ошибка при построении временной диаграммы для C = 3 ns

При построении временной диаграммы для периода, равного 4 нс, на схеме триггеры работают. Это подтверждается наличием реакции на синхросигнал: на выходах Q присутствуют как нули, так и единицы.

Рисунок 14. Временная диаграмма для C = 4 ns

2.2. Разработка многофункционального регистра на базе D-триггеров

2.2.1. Вариант задания

Вариант задания приведён в таблицах.

Таблица 3. Таблица с заданием на разработку многофункционального регистра на базе D-триггеров 1

Вариант	Выполняемые микрооперации
5	1, 3, 5, 11

Таблица 4. Таблица с заданием на разработку многофункционального регистра на базе D-триггеров 2

Номер МО	Описание микрооперации		
1	Параллельная загрузка		
3	Инвертирование кода		
5	Сдвиг вправо циклический		
11	Сдвиг влево, заполнение – 0		

Таблица 5. Таблица истинности для разработки многофункционального регистра на базе D-триггеров

S_0	S_1	R	С	Q_n	Q_{n+1}	Состояние
S_0	S_1	0	С	d0d1d2d3	0 0 0 0	Асинхрон
						ная
						установка
						в 0
0	0	1	<u> </u>	d0d1d2d3	d0`d1`d2`d	Параллель
					3`	ная
						загрузка
0	1	1	↑	d0d1d2d3	~d0~d1~d	Инвертир
					2~d3	ование

						кода
1	0	1	1	d0d1d2d3	d3d0d1d2	Сдвиг
						вправо
						циклическ
						ий
1	1	1	1	d0d1d2d3	d1d2d3 0	Сдвиг
						влево,
						заполнени
						e-0

2.2.2. Функциональная схема

Функциональная схема для многофункционального регистра на базе D-триггеров.

Рисунок 15. Функциональная схема

2.2.3. Функциональное и временное моделирование

Функциональные и временные диаграммы для многофункционального регистра на базе D-триггеров. При составлении диаграмм учтён полный перебор всех возможных комбинаций. При $C=1,\ C=0$ и R=0 запись в триггеры производиться не будет, что и отражено на функциональных и временных диаграммах.

Рисунок 16. Функциональная (сверху) и временная (снизу) диаграмма для ${\bf C}={\bf 0},$ ${\bf R}={\bf 0}$

Рисунок 17. Функциональная (сверху) и временная (снизу) диаграмма для C=0, R=1

Рисунок 18. Функциональная (сверху) и временная (снизу) диаграмма для C=1, R=0

Рисунок 19. Функциональная (сверху) и временная (снизу) диаграмма для C=1, R=1

Рисунок 20. Функциональная (сверху) и временная (снизу) диаграмма для C=T, R=0

Запись в триггеры производится только при R=1 и при переднем фронте сигнала C.

Рисунок 21. Функциональная (сверху) и временная (снизу) диаграмма для C = T, R = 1

2.2.4. Макетное моделирование

Макетное моделирование для многофункционального регистра на базе Dтриггеров.

Рисунок 22. «Распиновка» для макетного моделирования

3. Вывод

В ходе выполнения лабораторной работы №5 «Исследование регистров» были исследованы особенности проектирования регистров различного типа (в том числе регистр на базе RS-триггеров и многофункциональный регистр на базе D-триггеров, который выполняет параллельную загрузку, инверсию кода, циклический сдвиг вправо и сдвиг влево с заполнением 0), закреплены навыки синтеза и экспериментального исследования узлов в среде Quartus II. В ходе работы построены функциональные временные И диаграммы, отражающие работу регистров, произведена «распиновка» для макетного моделирования регистров и спроектированы указанные в задании регистры. Таким образом и были исследованы особенности проектирования регистров различного типа, закреплены навыки синтеза И экспериментального исследования узлов в среде Quartus II.

4. Список использованных источников

- 1. Онлайн-курс «Элементная база цифровых систем» в LMS Moodle [сайт]. URL: https://vec.etu.ru/moodle/course/view.php?id=8252.
- 2. Бондаренко П. Н., Буренева О. И., Головина Л. К. / Узлы и устройства средств вычислительной техники: учеб.-метод. пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2017. 64 с.
- 3. Компоненты и технологии [сайт]. URL: https://kit-e.ru/circuit/kratkij-kurs-hdl-chast-10/.
 - 4. Русские блоги [сайт]. URL: https://russianblogs.com/article/78291666418/.
 - 5. РадиоКОТ [сайт]. URL: https://radiokot.ru/start/mcu fpga/altera/05/.