Math 104A Homework 1

Rad Mallari

March 21, 2022

1 Problem 1

Review and state the following theorems of Calculus:

- (a) The Intermediate Value Theorem
- (b) The Mean Value Theorem
- (c) Rolle's Theorem
- (d) The Mean Value Theorem for Integrals
- (e) The Weighted Mean Value Theorem for Integrals
- (f) The Taylor's theorem with Lagrange remainder (Alternative for of Taylor's theorem)

Proof.

- (a) If f is a continuous real-valued function on an interval I, then f has the intermediate value property on I: Whenever $a, b \in I$, a < b and y lies between f(a) and f(b) [i.e., f(a) < y < f(b) or f(b) < y < f(a)], there exists at least one x in (a, b) such that f(x) = y.
- (b) Let f be continuous function on [a, b] that is differentiable on (a, b) and satisfies f(a) = f(b). There exists at least one x in (a, b) such that

$$f'(x) = \frac{f(b) - f(a)}{b - a}$$

- (c) Let f be continuous function on [a, b] that is differentiable on (a, b) and satisfies f(a) = f(b). There exists at least one x in (a, b) such that f'(x) = 0.
- (d) Let f be continuous function on [a, b] that is differentiable on (a, b) and satisfies f(a) = f(b). There exists at least one x in (a, b) such that

$$f(x) = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

(e) Suppose $f(x), g(x) \in [a, b]$, is integrable, does not change sign, and f(x) is continuous. Then there exists $\eta \in (a, b)$ such that

$$\int_{a}^{b} f(x)g(x) = f(\eta) \int_{a}^{b} g(x)dx$$

(f) If f(x) is n+1 times continuously differentiable $f \in C^{n+1}$ on an interval containing a, then

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^{k} + R_{n+1}(x)$$

where the remainder is

$$R_{n+1}(x) = \int_{a}^{x} \int_{a}^{x_1} \dots \int_{a} x_n f^{n+1}(x_{n+1}) dx_{n+1} \dots dx_2 dx_1$$

2 Problem 2

For the function $f(x) = x^4 - 4x^3 - 1$ and the interval [a, b] = [0, 2], find the number ξ that occurs in the mean value theorem.

Proof. Since our function is clearly continuous and f' exists, i.e. $f'(x) = 4x^3 - 12x^2$, we can use $f(x) - f(c) = f'(\xi)(x-c)$ where in this case, x = 2 and c = 0. Therefore, using this formula we have that $f(2) - f(0) = f'(\xi)(2-0)$ which is equal to $f'(\xi) = -9$.

3 Problem 3

Prove that if $f \in \mathbb{C}^n(\mathbb{R})$ and $f(x_0) = f(x_1) = \dots = f(x_n)$ for $x_0 < x_1 < \dots < x_n$, then $f^{(n)}(\xi) = 0$ for some $\xi \in (x_0, x_n)$.

Proof. Using induction, we have the proposition that P(n): "if $f \in \mathbb{C}^n(\mathbb{R})$ and $f(x_0) = f(x_1) = \dots = f(x_n)$ for $x_0 < x_1 < \dots < x_n$, then $f^{(n)}(\xi) = 0$ ". So beginning with the base case where n = 1, we have that $f(x_0) = f(x_1) = 0$ where f is continuous. Then by Rolle's theorem, there exists $\xi_1 \in (0,1)$ where $f'(\xi_1) = 0$. Now assuming our proposition P(n) is true for all n, we check that P(n+1) holds. So now our proposition is

4 Problem 4

Derive the Taylor series with remainder term for $\ln(1+x)$ about 1. Derive an inequality that gives the number of terms that must be taken to yield $\ln 4$ with error terms less than 2^{-10} .

Proof. Letting $f(x) = \ln(1+x)$, we find the first few derivatives f which are $f'(x) = \frac{1}{1+x}$, $f''(x) = \frac{-1}{(1+x)^2}$, $f'''(x) = \frac{2}{(1+x)^3}$. For this problem we are given that a = 1 so $f'(1) = \frac{1}{2}$, $f''(1) = -\frac{1}{2^2}$, $f'''(1) = \frac{2}{2^3}$. So our Taylor series is

$$f(x) = \ln(2) + \frac{1}{2}(x-1) + \frac{-1}{2^2 * 2!}(x-1)^2 + \frac{2}{2^3 * 3!}(x-1)^3 + \dots$$