

Title:					
Reverse Transcription (RT) for First-strand cDNA synthesis					
Date last updated:	Total Pages:	Written by:			
20 th June 2024	2	Jeanie Wu			

Reverse Transcription (RT) for First-strand cDNA synthesis

I. PURPOSE

To reverse transcribe total RNA and synthesize first-strand cDNA for downstream Next-Generation Sequencing library preparation.

II. MATERIALS & EQUIPMENTS

Sample type

Extracted arboviral RNA

Reagents

- SuperScript[®] III First-Strand Synthesis System for RT (Invitrogen Cat# 18080051)
- Nuclease free ultrapure water

Consumables

0.2ml PCR tubes

Equipment

Thermal cycler

III. PROCEDURE

Note: Use 8ul (maximum amount) of extracted RNA and 1ul of random hexamers for this protocol with Dengue and Zika virus.

1. Prepare RNA mixture:

a) Prepare RNA mixture with the following components in a 0.2 ml PCR tube

Component	Amount/ sample
Extracted Sample RNA	8 uL
Primers - 50 ng/μL random hexamers	1 uL
10 mM dNTP mix	1 uL
Nuclease-free water *	0 ul
Total volume	10 ul

^{*} top up to 10 ul water if sample is less than 8 ul

Title:				
Reverse Transcription (RT) for First-strand cDNA synthesis				
Date last updated:	Total Pages:	Written by:		
20 th June 2024	2	Jeanie Wu		

- b) Place tube in thermal cycler at 65°C for 5 mins
- c) Then incubate on ice for 1 min and quick spin down.
- Prepare the <u>cDNA synthesis mix</u>.
 - a) In a separate tube, add each component in the following indicated order:

Component	1 Rxn	10 Rxns
10X RT buffer	2 uL	20 uL
25 mM MgCl2	4 uL	40 uL
0.1 M DTT	2 uL	20 uL
RNaseOUT [™] (40 U/μL)	1 uL	10 uL
SuperScript [®] III RT (200 U/μL)	1 uL	10 uL
Total volume	10 ul	100 ul

- b) Mix well by gently pipetting up and down. Quick spin down.
- Pipette 10ul of <u>cDNA synthesis mix</u> to each tube with sample <u>RNA mixture</u>. Gently pipet to mix and quick spin.
- Place PCR tubes in thermocycler and incubate as follows:
 - a. Random hexamer primed: 25°C for 10 mins, followed by 50°C for 50 mins
- Inactivate the reaction by heating to 85°C for 5 mins. Then chill on ice.

Note: The cDNA can now be used as a template for amplification in PCR. However, amplification of some PCR targets (those > 1 kb) may require the removal of RNA complementary to the cDNA.

- To remove RNA complementary to cDNA, add 1 ul (2units) of E. coli RNase H.
- Incubate at 37°C for 20 mins.
- cDNA synthesis reaction can be stored at -20°C or used for PCR immediately.