Math 561 Homework 9

Zachary Gelber

December 10, 2021

Let $A \in M_n(k)$ be a nilpotent matrix for some field k. This means that $A^b = 0$ for some $b \ge 1$. We wish to list the possible Jordan canonical forms of A. First, since $A^b = 0$, it follows that $m_A(x) \mid x^b$. Thus, $m_A(x) = x^j$ for some $1 \le j \le \min(b, n)$ (since $m_A(x)$ can be at most degree n). Since the invariant factors must divide $m_A(x)$, for each i we have $d_i(x) = x^\ell$ for some $1 \le \ell \le j$. Thus, the Jordan blocks for each invariant factor will look like

$$J_i(0) = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{bmatrix}$$

Thus, the Jordan canonical form for A will look like

$$JCF(A) = \begin{bmatrix} [J_1(0)] & 0 & \dots & 0 \\ 0 & [J_2(0)] & \dots & 0 \\ \vdots & & \ddots & 0 \\ 0 & \dots & \dots & [J_r(0)] \end{bmatrix}$$

In other words, the main diagonal will be all zeros, the upper diagonal may have some ones, and everything else will be zero. \Box

1 (b) Let us suppose that A is nilpotent. This means that $A^i = 0$ for some $i \ge 1$. We wish to prove that $A^j = 0$ for some $j \le n$. If $i \le n$, then we are done. So let us suppose that i > n. First, from part (a) above, we know that all the invariant factors are of the form x^ℓ for some integer ℓ . Since the product of all the invariant factors is $p_A(x)$ and $\deg(p_A(x)) = n$, then we can conclude that $p_A(x) = x^n$. Thus, since $p_A(A) = 0$, we have that

$$0 = p_A(A) = A^n$$

Since $n \leq n$, we have found $j \leq n$ such that $A^j = 0$, as desired. \square

 $\boxed{\mathbf{1}\ (\mathrm{c})}$ We wish to show that if A is nilpotent, then $\mathrm{tr}(A)=0$. By Example 5.11.3 in Handout 9, we know that $p_A(x)=x^n-c_{n-1}x^{n-1}+\cdots+(-1)^nc_0$, where c_{n-1} is $\mathrm{tr}(A)$. Of course, since $p_A(x)=x^n$, the coefficient of $x^{n-1}=0$, meaning that $0=c_{n-1}=\mathrm{tr}(A)$, as desired. \square

2 We wish to diagonalize $A = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$ over \mathbb{C} . By Corollary 5.7 of Handout 9, the characteristic polynomial of A is

$$\begin{aligned} p_A(x) &= \det(xI - A) \\ &= \det\left(\begin{bmatrix} x & 0 \\ 0 & x \end{bmatrix} - \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}\right) \\ &= \det\left(\begin{bmatrix} x - \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & x - \cos(\theta) \end{bmatrix}\right) \\ &= x^2 - 2x\cos(\theta) + \cos^2(\theta) + \sin^2(\theta) \\ &= x^2 - 2x\cos(\theta) + 1 \\ &= (x - e^{i\theta})(x - e^{-i\theta}) \end{aligned}$$

Since our characteristic polynomial split into distinct linear factors, then it must be the case that our minimum polynomial is equal to the characteristic polynomial. In other words,

$$m_A(x) = p_A(x) = (x - e^{i\theta})(x - e^{-i\theta})$$

Since the minimum polynomial splits into distinct linear factors, then we know A is diagonalizable and that

$$A \sim \operatorname{diag}\{e^{i\theta}, e^{-i\theta}\} = \begin{bmatrix} e^{i\theta} & 0\\ 0 & e^{-i\theta} \end{bmatrix}$$

Recall that $SO_3 = \{A \in GL_3(\mathbb{R}) : A^tA = I \text{ and } det(A) = 1\}$. For an arbitrary $A \in SO_3$, we wish to show that A is diagonalizable. First, by these definitions, we know that A preserves the dot product and thus fixes lengths and angles of vectors. Because of this, for any arbitrary vector $v \in \mathbb{R}^3$, we can say that

$$|v| = |Av|$$

Let us consider an arbitrary eigenvalue λ of A. By definition,

$$Av = \lambda v$$

for some eigenvector v. Using our result from above, we have that

|v| = |Av| Using fact that A preserves lengths. $|v| = |\lambda v|$ Using fact that $Av = \lambda v$. $|v| = |\lambda||v|$ Factor out $|\lambda|$.

From this, it follows that $|\lambda| = 1$, meaning that $\lambda = 1$ or $\lambda = -1$. Let us first assume that $\lambda = 1$. This means that A fixes a line through the origin in \mathbb{R}^3 , which means that it must also fix the plane perpendicular to this line that goes through the origin, which we will denote P.

Let us consider the restriction of A to this plane. We need our columns to still be mutually perpendicular with length 1. For the (1,1) entry of $A|_P$, if set it to $\cos(\theta)$, then our (2,1) entry must be $\pm\sqrt{1-\cos^2(\theta)}=\pm\sin(\theta)$. To make sure our columns our mutually perpendicular, we possible choices for the second column are

$$\begin{bmatrix} \mp \sin(\theta) \\ \cos(\theta) \end{bmatrix} \qquad \text{or} \qquad \begin{bmatrix} \pm \sin(\theta) \\ -\cos(\theta) \end{bmatrix}$$

If it is the first case, then our restricted matrix looks like

$$A \mid_{P} = \begin{bmatrix} \cos(\theta) & \mp \sin(\theta) \\ \pm \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Regardless of the signs on $\sin(\theta)$, we can simply apply our work from Problem 2 above and conclude that the other eigenvalues are $e^{i\theta}$ and $e^{-i\theta}$. If $\theta \neq 0, \pi$, then our eigenvalues (including the $\lambda = 1$ from earlier) are all distinct, which forces the minimum polynomial to have distinct factors. Thus, by Theorem 6.4 of Handout 9, it will be diagonalizable.

Now, still assuming that $\lambda = 1$, we know that

$$A \sim \begin{bmatrix} 1 & 0 \\ 0 & [A\mid_P] \end{bmatrix}$$

If $\theta = 0$, then $A \mid_{P} = I_{2}$, which means that A would be similar to I_{3} , a diagonal matrix. Thus A is diagonalizable. However, if $\theta = \pi$, then $A \mid_{P} = -I$, which means that

$$A \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

another diagonal matrix. So again, A is diagonalizable. Now, let us consider the second possibility for the second column of $A|_{P}$. In this case, we have

$$\det(A|_P) = -\cos^2(\theta) - \sin^2(\theta) = -1$$

However, recall that det(A) = 1. If we assume this second possibility for the second column of $A|_P$, then we would have that det(A) = -1, a contradiction. So only the first possibility for the second column is possible. Therefore in any valid case from assuming $\lambda = 1$, we have that A is diagonalizable.

Let us now assume that $\lambda = -1$. Now, A reflects vectors on a line across the origin. Still, A will preserve the plane perpendicular to this line that goes through the origin, which we will again denote P. Similar to before, we have that

 $A \sim \begin{bmatrix} -1 & 0 \\ 0 & [A \mid_P] \end{bmatrix}$

Again recall that $\det(A) = 1$. Thus, for this to be true, we must have $\det(A|_P) = -1$. This forces

$$A\mid_{P} = \begin{bmatrix} \cos(\theta) & \pm \sin(\theta) \\ \pm \sin(\theta) & -\cos(\theta) \end{bmatrix},$$

which has eigenvalues 1 and -1. Thus, we have that

$$A\mid_{P}\sim\begin{bmatrix}1&0\\0&-1\end{bmatrix},$$

which of course implies that

$$A \sim \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix},$$

a diagonal matrix. So A is diagonalizable. Therefore, in any case, we have shown that A is diagonalizable over \mathbb{C} , as required.

4 (\Longrightarrow) Suppose V is an n-dimensional k-vector space and $T \in \operatorname{End}_k(V)$. Furthermore, suppose that λ is an eigenvalue of T. We wish to show that $x - \lambda \mid m_T(x)$. First, since λ is an eigenvalue of T, then there exists non-zero $v \in V$ such that

$$T(v) = \lambda v$$

By Theorem 3.4 of Handout 9, we know that

$$V \simeq \coprod_{i=1}^{r} \frac{k[x]}{(d_i(x))}$$

Thus, there exists non-zero $\bigoplus_{i=1}^{r} (f_i(x) + (d_i(x)))$ such that

$$x\left(\bigoplus_{i=1}^{r} \left(f_i(x) + \left(d_i(x)\right)\right)\right) = \lambda\left(\bigoplus_{i=1}^{r} \left(f_i(x) + \left(d_i(x)\right)\right)\right)$$

This of course implies that

$$(x - \lambda) \left(\bigoplus_{i=1}^{r} \left(f_i(x) + (d_i(x)) \right) \right) = 0$$

While $\bigoplus_{i=1}^r (f_i(x) + (d_i(x)))$ is non-zero, each component may not necessarily be non-zero. However, we do know that at least one of them will be non-zero. Without loss of generality, suppose that $f_i(x)$ is non-zero (meaning $f_i(x) + (d_i(x)) \neq (d_i(x))$). Once we multiply by $(x - \lambda)$, we have for that component that $(x - \lambda)f_i(x) + (d_i(x)) = (d_i(x))$. Using the argument from Problem 5 of HW 8, we can conclude that $(x - \lambda) \mid d_i(x)$.

Now, recalling that $d_i(x) \mid d_j(x)$ if i < j and that $m_T(x) = d_r(x)$, we have that $d_i(x) \mid m_T(x)$. Therefore, since $(x - \lambda) \mid d_i(x)$, it follows that $(x - \lambda) \mid m_T(x)$ as well. Thus we have proven our desired result.

(\Leftarrow) Now, let us suppose that $(x - \lambda) \mid m_T(x)$. We wish to show that λ is an eigenvalue for T. Since $(x - \lambda) \mid m_T(x)$, this means that $(x - \lambda)f(x) = m_T(x)$ for some $f(x) \in k[x]$. Noting that $m_T(x) = d_T(x)$, we can write

$$(x - \lambda)(f(x) + (d_r(x))) = (d_r(x))$$

This means that

$$x(f(x) + (d_r(x))) = \lambda(f(x) + (d_r(x)))$$

Since $(f(x) + d_r(x)) = 0 \oplus \dots 0 \oplus (f(x) + (d_r(x))) \in \coprod_{i=1}^r \frac{k[x]}{(d_i(x))}$ and $V \simeq \coprod_{i=1}^r \frac{k[x]}{(d_i(x))}$, it follows that there exists $v \in V$ such that $xv = \lambda v$, which of course implies

$$T(v) = \lambda v$$

By definition, λ is an eigenvalue for T, as desired. \Diamond

Now, suppose the invariants of T are $d_1(x), \ldots, d_r(x)$ and $d_s(x)$ is the smallest one divisible by $x - \lambda$. We wish to compute $\dim_k E_\lambda$. First, since $(x - \lambda)$ divides $d_s(x)$, then since $d_s(x)$ divides all of the larger invariant factors, then $(x - \lambda)$ will divide those larger invariant factors as well. In particular, $(x - \lambda) \mid d_i(x)$ for $s \le i \le r$. Thus, for each of these $d_i(x)$'s, we will acquire a Jordan block with λ . Knowing that $\dim_k E_\lambda$ is equal to the number of Jordan blocks with λ , we can say that

$$\dim_k E_{\lambda} = (r - s + 1),$$

which is equal to the number of Jordan blocks involving λ in the Jordan canonical form for T.

5 We wish to determine the number of similarity classes in $M_6(\mathbb{C})$ with characteristic polynomial $(x^4-1)(x^2-1)$. First, by Theorem 5.11, similar matrices have the same invariant factors. Thus, to find the number of similarity classes in $M_6(\mathbb{C})$ with characteristic polynomial $(x^4-1)(x^2-1)$, it is sufficient to find the number of possible minimum polynomials (which determines the invariant factors).

Note that $(x^4 - 1)(x^2 - 1) = (x - 1)^2(x + 1)^2(x - i)(x + i)$. For a matrix A with this characteristic polynomial, there are four possibilities for $m_A(x)$. They are:

- 1. $m_A(x) = (x-1)^2(x+1)^2(x-i)(x+i) = p_A(x)$ (the only invariant factor)
- 2. $m_A(x) = (x-1)^2(x+1)(x-i)(x+i)$ (with invariant factor $d_1(x) = (x+1)$)
- 3. $m_A(x) = (x-1)(x+1)^2(x-i)(x+i)$ (with invariant factor $d_1(x) = (x-1)$)
- 4. $m_A(x) = (x-1)(x+1)(x-i)(x+i)$ (with invariant factor $d_1(x) = (x-1)(x+1)$)

Thus, since there are 4 possible minimum polynomials, there are 4 similarity classes in $M_6(\mathbb{C})$ with characteristic polynomial $(x^4-1)(x^2-1)$. \square

$$A = \sum_{\substack{1 \le i \le n \\ 1 \le j \le n}} e_{ij} \in \mathcal{M}_n(\mathbb{Q}),$$

the matrix of all 1's. We wish to find JCF(A). First, we will find the characteristic polynomial of A, $p_A(x)$. Using the trick from Example 5.11.3 in Handout 9, we know that the coefficient of x^{n-1} will be $-\operatorname{tr}(A) = -(1 + \cdots + 1) = -n$.

Furthermore, the coefficients c_i of x^i for $0 \le i \le n-2$ are found by adding together particular diagonal minors of A. However, since all of our entries in A are identical, then these minor computations will simply yield 0. This is because repeated cofactor expansions of these minor computations will eventually to some expression of the following form:

$$(a_1) \det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix} + \dots + (a_\ell) \det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix}$$

for some coefficients a_1, \ldots, a_ℓ . However, $\det \begin{pmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \end{pmatrix} = 1 - 1 = 0$. Thus, it follows that $c_0 = \cdots = c_{n-2} = 0$. Hence, our characteristic polynomial for A is

$$p_A(x) = x^n - nx^{n-1} = x^{n-1}(x-n)$$

Now, let us consider x(x-n) for x=A. This gives us

$$A(A-nI) = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \dots & \dots & 1 \end{bmatrix} \begin{pmatrix} \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \dots & \dots & 1 \end{bmatrix} - \begin{bmatrix} n & 0 & \dots & 0 \\ 0 & n & & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & n \end{bmatrix} \end{pmatrix} = \begin{bmatrix} 1 & 1 & \dots & 1 \\ 1 & 1 & & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \dots & \dots & 1 \end{bmatrix} \begin{bmatrix} 1-n & 1 & \dots & 1 \\ 1 & 1-n & & & 1 \\ \vdots & & \ddots & \vdots \\ 1 & \dots & \dots & 1-n \end{bmatrix}$$

To calculate the (i, j) entry of this matrix multiplication, we multiply the i-th row of the left matrix by the j-th column of the right matrix component-wise, then sum the result. In this particular case, every entry will be of the form

$$\left(\sum_{i=1}^{n-1} 1 * 1\right) + 1 * (1-n) = n - 1 + (1-n) = 0$$

Thus, since A(A - nI) = 0, we can conclude that the minimum polynomial of A, $m_A(x)$, must divide x(x - n). Furthermore, since $A \neq 0$ and $(A - nI) \neq 0$, this means that $m_A(x) = x(x - n)$. Lastly, since our invariant factors must divide each other sequentially and $m_A(x)$ is the "largest" invariant factor, then the only possibility that our invariant factors could be is

$$d_1(x) = x,$$
 $d_2(x) = x,$... $d_{n-2}(x) = x,$ $d_{n-1} = m_A(x) = x(x-n)$

Therefore, with our invariant factors found, we can easily construct the Jordan canonical form for A. We have that

$$JCF(A) = \begin{bmatrix} n & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & 0 \end{bmatrix}$$

7 We wish to compute the characteristic polynomial and the Jordan canonical form for the matrix

$$A = \begin{bmatrix} -8 & -10 & -1 \\ 7 & 9 & 1 \\ 3 & 2 & 0 \end{bmatrix}$$

Using Corollary 5.7 from Handout 9, the characteristic polynomial $p_A(x)$ is given by

$$\begin{aligned} p_A(x) &= \det(xI - A) \\ &= \det\left(\begin{bmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{bmatrix} - \begin{bmatrix} -8 & -10 & -1 \\ 7 & 9 & 1 \\ 3 & 2 & 0 \end{bmatrix}\right) \\ &= \det\left(\begin{bmatrix} x + 8 & 10 & 1 \\ -7 & x - 9 & -1 \\ -3 & -2 & x \end{bmatrix}\right) \\ &= (1) \det\left(\begin{bmatrix} -7 & x - 9 \\ -3 & -2 \end{bmatrix}\right) - (-1) \det\left(\begin{bmatrix} x + 8 & 10 \\ -3 & -2 \end{bmatrix}\right) + (x) \det\left(\begin{bmatrix} x + 8 & 10 \\ -7 & x - 9 \end{bmatrix}\right) \\ &= (3x - 13) - (2x - 14) + (x^3 - x^2 - 2x) \\ &= \begin{bmatrix} x^3 - x^2 - x + 1 = (x - 1)^2(x + 1) \end{bmatrix}\end{aligned}$$

To determine the Jordan canonical form, we must first determine the invariant factors. Noting that (A-1), (A+1), $(A-1)^2$, and (A-1)(A+1) are all non-zero, we can conclude that the minimum polynomial $m_A(x)$ is equal to $(x-1)^2(x+1) = p_A(x)$. Thus, it follows that the Jordan canonical form for A is

$$JCF(A) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

We also wish to compute the characteristic polynomial and the Jordan canonical form for the matrix

$$B = \begin{bmatrix} -3 & 2 & -4 \\ 4 & -1 & 4 \\ 4 & -2 & 5 \end{bmatrix}$$

Using Corollary 5.7 from Handout 9, the characteristic polynomial $p_B(x)$ is given by

$$p_{B}(x) = \det(xI - B)$$

$$= \det\left(\begin{bmatrix} x & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & x \end{bmatrix} - \begin{bmatrix} -3 & 2 & -4 \\ 4 & -1 & 4 \\ 4 & -2 & 5 \end{bmatrix}\right)$$

$$= \det\left(\begin{bmatrix} x+3 & -2 & 4 \\ -4 & x+1 & -4 \\ -4 & 2 & x-5 \end{bmatrix}\right)$$

$$= (x+3)\det\left(\begin{bmatrix} x+1 & -4 \\ 2 & x-5 \end{bmatrix}\right) - (-2)\det\left(\begin{bmatrix} -4 & -4 \\ -4 & x-5 \end{bmatrix}\right) + (4)\det\left(\begin{bmatrix} -4 & x+1 \\ -4 & 2 \end{bmatrix}\right)$$

$$= (x^{3} - x^{2} - 9x + 9) - (8x - 8) + (16x - 16)$$

$$= \begin{bmatrix} x^{3} - x^{2} - x + 1 = (x-1)^{2}(x+1) \end{bmatrix}$$

To determine the Jordan canonical form, we must first determine the invariant factors. Noting that (B-1), (B+1) are non-zero but (B-1)(B+1) = 0, we can conclude that the minimum polynomial $m_B(x)$ is equal to (x-1)(x+1). Therefore, our invariant factors are $d_1(x) = (x-1)$ and $d_2(x) = m_B(x) = (x-1)(x+1)$. Thus, it follows that the Jordan canonical form for B is

$$| JCF(B) = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} |$$

8 We wish to determine all Jordan canonical forms for the matrices that have characteristic polynomial $(x-2)^3(x-3)^2$. For a matrix A with this characteristic polynomial, there are six possibilities for $m_A(x)$. They are:

1.
$$m_A(x) = (x-2)^3(x-3)^2 = p_A(x)$$
 (the only invariant factor)

2.
$$m_A(x) = (x-2)^3(x-3)$$
 (with invariant factor $d_1(x) = (x-3)$)

3.
$$m_A(x) = (x-2)^2(x-3)^2$$
 (with invariant factor $d_1(x) = (x-2)$)

4.
$$m_A(x) = (x-2)^2(x-3)$$
 (with invariant factor $d_1(x) = (x-2)(x-3)$)

5.
$$m_A(x) = (x-2)(x-3)^2$$
 (with invariant factor $d_1(x) = (x-2)$ and $d_2(x) = (x-2)$)

6.
$$m_A(x) = (x-2)(x-3)$$
 (with invariant factors $d_1(x) = (x-2)$ and $d_2(x) = (x-2)(x-3)$)

These possible minimum polynomials correspond to the following Jordan canonical forms:

$$1: \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \qquad 2: \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \qquad 3: \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

$$4: \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \qquad 5: \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix} \qquad 6: \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$$

9 Suppose $A \in M_2(\mathbb{Q})$, $A^3 = I$, and $A \neq I$. Since $A^3 = I$ (meaning $A^3 - I = 0$), then it follows that $m_A(x) \mid x^3 - 1 = (x - 1)(x^2 + x + 1)$. Additionally, since $A \neq I$ by assumption, then $m_A(x) \neq x - 1$. Furthermore, since $A \in M_2(\mathbb{Q})$, then it follows that $\deg(p_A(x)) = 2$. Thus, since $m_A(x) \mid p_A(x)$, then $\deg(m_A(x)) \leq \deg(p_A(x)) = 2$.

Combining these results, since $m_A(x) \mid (x-1)(x^2+x+1)$, $\deg(m_A(x)) \leq 2$, and $m_A(x) \neq x-1$, then it follows that $m_A(x) = x^2 + x + 1$. Since $m_A(x)$ and $p_A(x)$ have the same degree, they must be equal, meaning there is only one invariant factor. Over \mathbb{C} , $m_A(x)$ factors into

$$m_A(x) = x^2 + x + 1 = \left(x - \left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right)\right) \left(x - \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right)\right)$$

Thus, we can say that the Jordan canonical form of A over $\mathbb C$ is

$$JCF(A) = \begin{bmatrix} \left(-\frac{1}{2} - \frac{i\sqrt{3}}{2}\right) & 0\\ 0 & \left(-\frac{1}{2} + \frac{i\sqrt{3}}{2}\right) \end{bmatrix}$$