Tiered Bit Vectors

- Formally, let s be a parameter.
- The array A is partitioned into A/s pieces and the array T is of size s.

- Find(x) Two steps
 - Otherwise, check for x in array $A_{x/s}$.
- Each Find(x) is therefore translated to one isempty() query and one find on a small array.

- Min() should return the value of the smallest present element.
- Find the minimum value in the smaller vector, say j.
 - Suggests that T[j] is 1 and all other T[i] if i < j are 0.
- Find minimum in A
- In essence, Min() translates to two IVIIn() operations on smaller vectors.

- Prev(x) Again multiple steps on smaller vectors.
 - Find Min() in the vector $A_{x/s}$.
 - If the answer is different from x, return.
 - Otherwise, find j = Prev(x/s) in the smaller vector.
 - Find Max() i ^{244:02} [✓] [✓] [✓] [✓] [№] [№] [©] Request control
- Each Prev(x) is translated to two Prev() queries. Same with Next(x).

- Delete(x) Again two steps
 - Mark A[x] in $A_{x/s}$ as 0.
 - If all entries in $A_{x/s}$ are 0, then set T[x/s] to 0.

- Each operation turns into operations on smaller arrays as follows. Time taken is:
 - insert: 2x insert O(1)

- min: 2x min O(s + m/s)
- find : 1x lookup O(1)
- next: 1x next, 1x max, 1x min O(s+m/s)
- is-empty: 1x ≥ 45:54 💆 🗗 … 🕑 🖺 👸 Request control 🔭 x is-empty O(s+m/s)

- Each operation turns into operations on smaller arrays as follows.
 Time taken is:
 - The run time of O(s+m/s) is seen to be minimized when s = sqrt{m}.
 - In other words, all operations finish in time O(sqrt{m}).
 - Some operations are much faster.
 - Not a good solution BST much better.

Extending Tiered Bit Vectors

Extending Tiered Bit Vectors

 A helpful view is to see the two levels of the hierarchy as forming 1+m^{1/2ⁱ} smaller vectors at level i.

- Consider the set of operations again.
 - Insert: 2x insert, at each recursive level.
 - Find: 1x lookup but can say lookup in a smaller bit vector.
 - is-empty: 1x is-empty, but can say on a smaller bit vector
 - min: 2x min, one each at a smaller level
 - next: 1x next, 1x max, 1x min, at a smaller level
 - delete: 2x delete at a smaller level, 1x is-empty,

Consider the set of operations again.

Find: 1x lookup – but can say lookup in a smaller bit vector.

Time: $T(m) = T(sqrt\{m\}) + O(1)$

Solution: T(m) = O(loglog m).

Extending Tiered Bit Vectors

Proposition 1. $T(U) = T(\sqrt{U}) + O(1) = O(\log \log U)$.

Proof. Let $m = \log U \Rightarrow U = 2^m$. Our recurrence relation is now: $T(2^m) = T(2^{\frac{m}{2}}) + O(1)$. Let $S(m) = T(2^m)$, then we have that: $S(m) = S(\frac{m}{2}) + O(1)$. By case 2 of the master method, $S(m) = O(\log m)$. Therefore, $T(U) = T(2^m) = S(m) = O(\log m) = O(\log \log U)$. [?]

Request control

- Consider the set of operations again.
 - Insert: 2x insert, at each recursive level.
 - Find: 1x lookup but can say lookup in a smaller bit vector.
 - is-empty: 1x is-empty, but can say on a smaller bit vector
 - min: 2x min, one each at a smaller level
 - next: 1x next, 1x max, 1x min, at a smaller level
 - delete: 2x delete at a smaller level, 1x
 is-empty,

- Consider the set of operations again.
 - next: 1x next, 1x max, 1x min, at a smaller level
 - delete: 2x delete at a smaller level, 1x isempty,

- Consider the set of operations again.
 - is-empty: 1x is-empty, but can say on a smaller bit vector

Time: $T(m) = T(sqrt\{m\}) + O(1)$.

min: 2x min, one each at a smaller level

Time: $T(m) = 2T(sqrt\{m\}) + O(1)$

Solution: From earlier, T(m) = log(m)

Our Solution So Far

- We have a data structure, the tiered bit vector, where some operations are O(loglog m).
 - These are exponentially faster than using BSTs.
- Other operations are in O(log m).
 - These are worse than BST.
- Can we make all operations faster?
 - Let us identify some potential places for optimization.

