Problem R-5B. Let $\{p_n\}_{n=1}^{\infty}$ be a sequence of polynomials that converges uniformly to some $f \in C([a,b])$, which is **not** a polynomial. Prove that

 $\sup_{n} \operatorname{degree} (p_n) = +\infty.$

Let W_K be the space of polynomials with degree $\leq K$. Then W_K is a finite dimensional normed vector space. Since any two such spaces of the same dimension are isomorphic, W_K is isomorphic to \mathbb{R}^K , which is a Bonach space. Thus W_K is Banach, E any conversent sequence here converses to another polynomial in W_K . We conclude that if $p_n \to f$ not a polynomial, then we must escape W_K A so sup deg $p_n = \infty$.