Devoir facultatif n° 3

Quelque définitions

On appelle fonction polynomiale complexe toute fonction P de $\mathbb C$ dans $\mathbb C$ de la forme

$$P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$$

où n est un entier naturel appelé le degré de P, et les a_0, a_1, \ldots, a_n sont des complexes.

On dit qu'un complexe z_0 est une racine de P si $P(z_0) = 0$.

* * *

Le théorème de Eneström-Kakeya

Soient n+1 réels strictement positifs rangés dans cet ordre :

$$a_0 \geqslant a_1 \geqslant \ldots \geqslant a_n > 0$$
,

et la fonction polynomiale P définie par $P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$. Le but de cette partie est de démontrer le théorème de Eneström-Kakeya :

Théorème : Les racines du polynôme P sont toutes à l'extérieur du disque ouvert $D = \{z \in \mathbb{C}, |z| < 1\}$

Nous allons le démontrer par l'absurde. Soit donc t une racine de P, telle que |t| < 1.

Introduisons le polynôme Q(z) = (1-z)P(z).

- 1) Que vaut Q(t)?
- 2) Montrer que

$$Q(z) = a_0 - a_n z^{n+1} - (a_0 - a_1)z - (a_1 - a_2)z^2 - \dots - (a_{n-1} - a_n)z^n$$

3) En déduire que $|a_nt^{n+1}| \ge a_0 + (a_1 - a_0)|t| + (a_2 - a_1)|t|^2 + \ldots + (a_n - a_{n-1})|t|^n$. On fera attention au signe des termes de la forme $a_i - a_{i-1}$.

4) Remarquer que pour tout $i \in [1, n]$, $|t|^i \le 1$ et, grâce à la question précédente, aboutir à $a_n |t|^{n+1} \ge a_n$ et conclure.

* * *

Une vérification de ce théorème sur un exemple

5) Vérifier ce résultat sur la fonction polynomiale $P(z) = 1 + z + z^2 + \ldots + z^n = \sum_{k=0}^{n} z^k$; en particulier, on précisera les racines de P.

* * *

Un corollaire intéressant du théorème

6) Soit la fonction polynomiale Q définie par :

$$Q(z) = b_n z^n + \ldots + b_0$$

où les b_0, b_1, \ldots, b_n représentent des réels **strictement positifs**. On définit alors les réels r et R comme suit :

$$r = \min_{0 \le k \le n-1} \left(\frac{b_k}{b_{k+1}} \right) \text{ et } R = \max_{0 \le k \le n-1} \left(\frac{b_k}{b_{k+1}} \right).$$

Autrement dit r et R sont, respectivement, la plus petite et la plus grande des fractions suivantes :

$$\frac{b_0}{b_1}, \frac{b_1}{b_2}, \dots, \frac{b_{n-2}}{b_{n-1}}, \frac{b_{n-1}}{b_n}.$$

- a) Montrer que pour tout $i \in [1, n]$, $b_i r^i \leq b_{i-1} r^{i-1}$.
- b) On désigne par P_1 la fonction polynomiale définie par

$$\forall z \in \mathbb{C}, \ P_1(z) = Q(r \times z).$$

Montrer que la fonction polynomiale P_1 vérifie les hypothèses du théorème de Eneström-Kakeya.

c) On désigne par P_2 la fonction définie par

$$\forall z \in \mathbb{C}^*, \ P_2(z) = z^n Q\left(\frac{R}{z}\right) \text{ et } P_2(0) = b_n R^n.$$

Montrer que la fonction P_2 est une fonction polynomiale et que de plus elle vérifie les hypothèses du théorème de Eneström-Kakeya.

- d) Représenter graphiquement l'ensemble des points du plan dont les affixes sont dans l'ensemble $A = \{z \in \mathbb{C}, r \leq |z| \leq R\}$. Pourquoi a-t-on choisi la lettre A pour désigner cet ensemble?
- e) Déduire, de ce qui précède, que les racines de la fonction polynomiale Q sont situées dans A. On dit qu'on a "localisé" les racines de la fonction polynomiale Q.

* * *

Une application

- 7) Soit Q la fonction polynomiale définie par $Q(z)=2z^3+3z^2+2z+1$.
 - a) Que valent ici r et R?
 - b) Parmi les nombres suivants se cache une racine de Q: laquelle?

$$\alpha = 1 - 2i, \ \beta = -\frac{1}{4} + i\frac{1}{4}\sqrt{7}, \ \gamma = -\frac{1}{4} + i4\sqrt{2}, \ \delta = \frac{1}{4} + i\frac{1}{8}.$$

c) En déduire toutes les racines de Q.

- FIN -