Design and Analysis of Algorithms KEY TO QUIZ #2 [6 points]

- 1. [3 points] Assuming that f(n) > 0 and g(n) > 0, fill in the blanks in each definition:
- f(n) is O(g(n)) if there exist constants C and n_0 such that f(n) < Cg(n) for all $n > n_0$.
- f(n) is $\Omega(g(n))$ if there exist constants \underline{C} and $\underline{n_0}$ such that $\underline{f(n)} > \underline{Cg(n)}$ for all $\underline{n > n_0}$.
- f(n) is $\Theta(g(n))$ if there exist constants C_1 , C_2 and C_3 such that $C_1g(n)f(n) < C_2g(n)$ for all $C_3g(n)$ for all $C_3g(n$
- f(n) is O(g(n)) if for every constant C there exists a constant n_0 such that f(n) < Cg(n) for all $n > n_0$.
- f(n) is $\omega(g(n))$ if for every constant C there exists a constant n_0 such that f(n) > Cg(n) for all $n > n_0$.

 - 2. [4 points] No proof is required. Given the function $f(n) = n^2 + 2n 3$, indicate if each of the following statements is true or false:

$f(n)$ is $O(n^2)$	True	$f(n)$ is $\Omega(n^2)$	True	$f(n)$ is $\Theta(n^2)$	True
$f(n)$ is $O(n^3)$	True	$f(n)$ is $\Omega(n^3)$	False	$f(n)$ is $\Theta(n^3)$	False
f(n) is $O(n)$	False	$f(n)$ is $\Omega(n)$	True	$f(n)$ is $\Theta(n)$	False

3. [1 point] Determine, which function grows faster: $\log_7(n^5)$ or $\log_5(n^7)$. Show your work! *Solution*.

Since
$$\lim_{n\to\infty} \frac{\log_5(n^7)}{\log_7(n^5)} = \lim_{n\to\infty} \frac{7\log_5 n}{5\log_7 n} = \frac{7}{5}\lim_{n\to\infty} \frac{\frac{\log_7 n}{\log_7 5}}{\log_7 n} = \frac{7}{5\log_7 5} = const \neq 0$$
, these two functions have the same order of growth.