2014 H2 Mathematics Prelim P1 Worked Solutions

Qns	Solution	Notes
1	Let the amount of money for a blue voucher, a yellow	
	voucher and a red voucher be x , y and z respectively.	
	Then	
	3x + 4y + 7z = 27.40 ·····(1)	
	5x + 2y + 4z = 20.80(2)	
	2x + 8y + 5z = 45.00(3)	
	From G.C., $x = 2$, $y = 5$, $z = 0.20$	
	4x + py + 2z = 43.40	
	$p = \frac{43.40 - 4(2) - 2(0.2)}{5} = 7$	

2 (i)	Let P_n be the statement $u_n = \frac{1}{3} [1 + 8(-2)^n]$ for all $n \in \square_0^+$.
	LHS of $P_0 = u_0 = 3$ (Given)
	RHS of $P_0 = \frac{1}{3} [1 + 8(-2)^0] = 3$
	$\therefore P_0$ is true.
	Assume that P_k is true for some $k \in \square_0^+$, ie
	$u_k = \frac{1}{3} [1 + 8(-2)^k].$
	We want to prove P_{k+1} is true, ie $u_{k+1} = \frac{1}{3} [1 + 8(-2)^{k+1}]$.
	LHS of $P_{k+1} = u_{k+1} = 1 - 2u_k$ (Given)
	$=1-\frac{2}{3}[1+8(-2)^k]$
	$=\frac{1}{3}-\frac{16}{3}(-2)^k$
	$=\frac{1}{3}+\frac{8}{3}(-2)(-2)^k$
	$=\frac{1}{3}\Big[1+8(-2)^{k+1}\Big]$
	$\therefore P_{k+1}$ is true
	Since P_0 is true and P_k is true $\Rightarrow P_{k+1}$ is true, by
	Mathematical Induction, P_n is true for all $n \in \square_0^+$.
(ii)	The sequence is divergent as $n \to \infty$, $(-2)^n$ does not converge to a finite number

3	when $r = 0$, $3 = 3b$	
	$r = -1, \ 1 = (4 - a)b$	
	1, 1 (1 6)	
	A 14 42 N/I - 41 J	
	Alternative Method $(r+1)^4 + (r+1)^2 + 1 \equiv (r^2 + ar + 3)(r^2 + r + b)$	
	$(r^4 + 4r^3 + 6r^2 + 4r + 1) + (r^2 + 2r + 1) + 1 \equiv$	
	$(r^2 + ar + 3)(r^2 + r + b)$	
	Comparing coefficients:	
	r^0 : $3 = 3b$	
	r^3 : $4 = 1 + a$	
	a = 3, b = 1	
	1 1 $(r^2+3r+3)-(r^2+r+1)$	
	$\frac{1}{r^2+r+1} - \frac{1}{r^2+3r+3} = \frac{(r^2+3r+3)-(r^2+r+1)}{(r^2+r+1)(r^2+3r+3)}$	
	$=\frac{2(r+1)}{(r+1)^4+(r+1)^2+1}$	
	$\sum_{r=0}^{N} \frac{r+1}{(r+1)^4 + (r+1)^2 + 1}$	
	$= \frac{1}{2} \sum_{r=0}^{N} \left(\frac{1}{r^2 + r + 1} - \frac{1}{r^2 + 3r + 3} \right)$	
	$-\frac{2}{2}\sum_{r=0}^{\infty}\left(\frac{r^2+r+1}{r^2+3r+3}\right)$	
	Γ 1 1,	
	$\frac{1}{1}$	
	$+\frac{1}{2}-\frac{1}{7}$	
	$=\frac{1}{2}$	
	1 1 1	
	$(N-1)^2 + (N-1)+1 (N-1)^2 + 3(N-1)+3$	
	$+\frac{1}{N^2+N+1}-\frac{1}{N^2+3N+3}$	
	$=\frac{1}{2}\left(1-\frac{1}{N^2+3N+3}\right)$	
	,	
	$\sum_{r=2}^{N} \frac{r}{r^4 + r^2 + 1} = \sum_{r=1}^{N-1} \frac{r+1}{(r+1)^4 + (r+1)^2 + 1}$	
	$\sum_{r=2}^{2} \frac{1}{r^4 + r^2 + 1} - \sum_{r=1}^{4} (r+1)^4 + (r+1)^2 + 1$	
	1(1 1)	
	$= \frac{1}{2} \left(\frac{1}{3} - \frac{1}{(N-1)^2 + 3(N-1) + 3} \right)$	
	1(1 1)	
	$=\frac{1}{2}\left(\frac{1}{3} - \frac{1}{N^2 + N + 1}\right)$	
-		

4	Area of region R	
(i)	$= 5 \times \sqrt{3} - \int_0^{\sqrt{3}} \left(\frac{2}{\sqrt{4 - x^2}} + 3 \right) dx$ = 1.37 (to 3 s.f.)	
	=1.57 (to 5 s.f.)	
(ii)	Equation of new curve	
	$y = \frac{2}{\sqrt{4 - x^2}} + 3 - 5$	
	$y = \frac{2}{\sqrt{4 - x^2}} - 2$	
	Volume of revolution	
	$=\pi \int_0^{\sqrt{3}} \left(\frac{2}{\sqrt{4-x^2}} - 2\right)^2 dx$	
	$= \pi \int_0^{\sqrt{3}} \left(\frac{4}{4 - x^2} - \frac{8}{\sqrt{4 - x^2}} + 4 \right) dx$	
	$= 4\pi \int_0^{\sqrt{3}} \left(\frac{1}{4 - x^2} - \frac{2}{\sqrt{4 - x^2}} + 1 \right) dx $ (Shown)	
	$= 4\pi \left[\frac{1}{2(2)} \ln \left \frac{2+x}{2-x} \right - 2\sin^{-1} \frac{x}{2} + x \right]_0^{\sqrt{3}}$	
	$=4\pi \left[\frac{1}{4} \ln \left \frac{2+\sqrt{3}}{2-\sqrt{3}} \right - \frac{2\pi}{3} + \sqrt{3} \right]$	

5
$$\pi r l = k\pi$$

$$l = \frac{k}{r}$$

$$l^{2} = r^{2} + h^{2}$$

$$h = \sqrt{\frac{k^{2}}{r^{2}} - r^{2}} = \frac{\sqrt{k^{2} - r^{4}}}{r}$$

$$V = \frac{1}{3}\pi r^{2} \left(\frac{\sqrt{k^{2} - r^{4}}}{r}\right)$$

$$V = \frac{\pi r \sqrt{k^{2} - r^{4}}}{3}$$

$$\frac{dV}{dr} = \frac{\pi \sqrt{k^{2} - r^{4}}}{3} - \frac{2\pi r^{4}}{3\sqrt{k^{2} - r^{4}}}$$

At stationary point, $\frac{dV}{dr} = 0$	
$\frac{\pi\sqrt{k^2-r^4}}{3} = \frac{2\pi r^4}{3\sqrt{k^2-r^4}}$	
$\frac{x\sqrt{k^2 - r^4}}{3} = \frac{2xr}{3\sqrt{k^2 - r^4}}$ $k^2 - r^4 = 2r^4$ $3r^4 = k^2$	
$3r^4 = k^2$ $\sqrt{k^2}$	
$r = \sqrt[4]{\frac{1}{3}}$	

6 (a) (i)	$u = \ln x$ $\frac{dv}{dx} = \frac{1}{x^2}$ $\frac{du}{dx} = \frac{1}{x}$ $v = -\frac{1}{x}$	
	$\int_{1}^{n} \frac{1}{x^{2}} \ln x dx$	
	$= \left[-\frac{1}{x} \ln x \right]_1^n - \int_1^n -\frac{1}{x} \left(\frac{1}{x} \right) dx$	
	$= -\frac{\ln n}{n} - \left[\frac{1}{x}\right]_{1}^{n}$	
	$= -\frac{\ln n}{n} - \left[\frac{1}{n} - 1\right]$	
	$=-\frac{\ln n}{n} - \frac{1}{n} + 1$	
(a) (ii)	$\int_{1}^{\infty} \frac{1}{x^{2}} \ln x dx = \lim_{n \to \infty} \left[-\frac{\ln n}{n} - \frac{1}{n} + 1 \right]$ $= 1$	
(b)	$x = a \sec \theta \implies \frac{\mathrm{d}x}{\mathrm{d}\theta} = a \sec \theta \tan \theta$	
	When $x = a$, $\sec \theta = 1 \implies \cos \theta = 1 \implies \theta = 0$.	
	When $x = 2a$, $\sec \theta = 2 \implies \cos \theta = \frac{1}{2} \implies \theta = \frac{\pi}{3}$.	

$\int_{a}^{2a} \frac{\sqrt{x^2 - a^2}}{x} \mathrm{d}x$	
$= \int_0^{\frac{\pi}{3}} \frac{\sqrt{a^2 \sec^2 \theta - a^2}}{a \sec \theta} \ a \sec \theta \tan \theta \ d\theta$	
$= a \int_0^{\frac{\pi}{3}} \tan^2 \theta d\theta$	
$= a \int_0^{\frac{\pi}{3}} \left(\sec^2 \theta - 1 \right) d\theta$	
$= a \left[\tan \theta - \theta \right]_0^{\frac{\pi}{3}}$	
$= a\left(\sqrt{3} - \frac{\pi}{3}\right)$	

7	Let A_n denote the distance ran on the <i>n</i> th training session and S_n denote the total distance ran for the <i>n</i> training sessions.	
(i)	$A_n = 7.5 + 0.8(n-1)$	
	=6.7+0.8n	
(ii)	$S_n \ge 475$	
	$\frac{n}{2} [2(7.5) + 0.8(n-1)] \ge 475$	
	$7.1n + 0.4n^2 \ge 475$	
	From GC, $n = 26.7$	
	Least $n = 27$	
(iii)	For the modified training session, let	
	B_n denote the distance ran on the <i>n</i> th training session	
	and and G_n denote the total distance ran for the n	
	training sessions.	
	$B_6 = 14.93$	
	$x(1.2)^5 = 14.93$	
	x = 6 (nearest integer)	

(iv)
$$G_{n} = \frac{6\left[\frac{6}{5}^{n} - 1\right]}{\frac{6}{5} - 1}$$

$$= 30\left[\frac{6}{5}^{n} - 1\right]$$

$$\sum_{n=1}^{N} G_{n} = \sum_{n=1}^{N} 30\left[\frac{6}{5}^{n} - 1\right]$$

$$= 30\sum_{n=1}^{N} \left(\frac{6}{5}^{n}\right)^{n} - \sum_{n=1}^{N} 30$$

$$= 30\sum_{n=1}^{N} \left(\frac{6}{5}^{n}\right)^{n} - \sum_{n=1}^{N} 30$$

$$= \frac{30 \cdot \frac{6}{5}\left[\frac{6}{5}^{n} - 1\right]}{\frac{6}{5} - 1} - 30N$$

$$= 6\left\{30\left[\frac{6}{5}^{n} - 1\right]\right\} - 30N$$

$$= 6G_{N} - 30N$$

8
(i)
$$y = \frac{-x^2 + 4x - 5}{x - 2}$$

$$\Rightarrow y(x - 2) = -x^2 + 4x - 5$$

$$\Rightarrow x^2 + (y - 4)x + (5 - 2y) = 0$$
For real values of x , discriminant ≥ 0 .
$$\Rightarrow (y - 4)^2 - 4(5 - 2y) \geq 0$$

$$\Rightarrow y^2 \geq 4$$

$$\Rightarrow y \leq -2 \text{ or } y \geq 2$$
(ii)
$$\frac{-x^2 + 4x - 5}{x - 2} = A(x - 2) + \frac{B}{x - 2}$$

$$\Rightarrow -x^2 + 4x - 5 = A(x - 2)^2 + B$$
Comparing coefficients of x^2 , $A = -1$
Comparing constants, $-5 = 4A + B \Rightarrow B = -1$

$$y = \frac{-x^2 + 4x - 5}{x - 2} = -(x - 2) - \frac{1}{x - 2}$$

$$y = x + \frac{1}{x} \frac{T_1}{x} \Rightarrow y = x - 2 + \frac{1}{x - 2} \frac{T_2}{x - 2} \Rightarrow y = -\left(x - 2 + \frac{1}{x - 2}\right)$$
The graph of $y = x + \frac{1}{x}$ can be transformed to the graph of $y = \frac{-x^2 + 4x - 5}{x - 2}$ using the following transformations in succession.
$$T_1: \text{ Translation of 2 units in the positive } x \text{ direction.}$$

$$T_2: \text{ Reflection in the } x - 2x = x$$

9(i)	least $a = 4$
(ii)	when $x > 4$, $f(x) = y = \frac{2x - 8}{x - 2}$ xy - 2y = 2x - 8 x(y - 2) = 2y - 8 $x = \frac{2y - 8}{y - 2}$
	$f^{-1}: x \mapsto \frac{2x-8}{x-2}, 0 < x < 2$
(iii)	$g(x) = x^2 - 6x + 7 = (x - 3)^2 - 2, \ x < 3$
	$D_g = (-\infty, 3) \qquad D_f = (4, \infty)$ $R_g = (-2, \infty) \qquad R_f = (0, 2)$
	fg does not exist since $R_g = (-2, -\infty) \not\subset (4, \infty) = D_f$
	gf exists since $R_f = (0, 2) \subseteq (-\infty, 3) = D_g$

$gf(x) = g\left(\frac{2x-8}{x-2}\right)$	
$= \left(\frac{2x-8}{x-2}\right)^2 - 6\left(\frac{2x-8}{x-2}\right) + 7, \ x > 4$	
From GC: $R_{gf} = (-1,7)$	
Alternative method (Mapping method):	
$(4,\infty)$ \xrightarrow{f} $(0,2)$ \xrightarrow{g} $(-1,7)$	
$R_{gf} = (-1,7)$	

	$\mathbf{R}_{\mathbf{p}_{\mathbf{l}}} = (1, 1)$	
10	Given A , B and C are collinear,	
(i)		
(1)	$\overrightarrow{AC} = k \overrightarrow{AB}$	
	$\mathbf{c} - \mathbf{a} = k \left(\mathbf{b} - \mathbf{a} \right)$	
	$\mathbf{c} = k\mathbf{b} + (1 - k)\mathbf{a} \text{ (shown)}$	
(ii)	$ \mathbf{a} \times \mathbf{c} = \mathbf{a} \times [k\mathbf{b} + (1-k)\mathbf{a}] $	
	$= \left k(\mathbf{a} \times \mathbf{b}) + (1 - k)(\mathbf{a} \times \mathbf{a}) \right $	
	$= k \mathbf{a} \mathbf{b} \sin 90^{\circ}\hat{\mathbf{n}} + (1-k)0 $	
	=9 k	
	It is the area of a parallelogram with sides <i>OA</i> and <i>OC</i> .	
(iii)		
	$\left \frac{1}{2} \mathbf{a} \times \mathbf{c} = \frac{3}{2} \mathbf{a} \times \mathbf{b} \right $	
	$9 k = 3 \mathbf{a} \mathbf{b} \sin 90^{\circ}$	
	= 27	
	k =3	
	$k = \pm 3$	
(iv)	Length of projection of OC onto $OA = 12$	
	$ \mathbf{c} \bullet \mathbf{a} $	
	$\left \frac{ \mathbf{c} \bullet \mathbf{a} }{ \mathbf{a} } = 12 \right $	
	$\left \mathbf{c} \bullet \mathbf{a}\right = 12\left \mathbf{a}\right $	
	$= 36$ When $k = 3$, $\mathbf{c} = 3\mathbf{b} - 2\mathbf{a}$	
	$ \mathbf{c} \bullet \mathbf{a} = (3\mathbf{b} - 2\mathbf{a})\mathbf{a} $	
	$= 3(\mathbf{b}\Box \mathbf{a}) - 2\mathbf{a}\Box \mathbf{a} $	
	$= 3(0)-2(3)^2 $	
	=18	
	When $k = -3$, $\mathbf{c} = -3\mathbf{b} + 4\mathbf{a}$	
	$\left \mathbf{c} \bullet \mathbf{a} \right = \left \left(-3\mathbf{b} + 4\mathbf{a} \right) \mathbf{a} \right $	
	$= \left -3(\mathbf{b} \mathbf{a}) + 4\mathbf{a} \mathbf{a} \right $	
	$= \left -3(0) + 4(3)^2 \right $	
	= 36	
	$\therefore \mathbf{c} = -3\mathbf{b} + 4\mathbf{a}$	

11 (a)	$z = (1+i)t + \frac{1-i}{t}$ $= \left(t + \frac{1}{t}\right) + \left(t - \frac{1}{t}\right)i$ Let $x = t + \frac{1}{t}$ (2) $(1) + (2): x + y = 2t$ $(1) - (2): x - y = \frac{2}{t}$ $\therefore x - y = \frac{2}{\frac{x + y}{2}}$ $\Rightarrow x^2 - y^2 = 4$
(b)	If $arg(p) > arg(q)$,
	If $\arg(p) > \arg(q)$, $\arg\left(\frac{p}{q}\right) = \arg p - \arg q = \square POQ$ $= 2\tan^{-1}\frac{2 a }{3 a }$ $= 2\tan^{-1}\frac{2}{3} \text{ or } 1.18rad$
	p+q = 2 3a = 6 a

12 (i)	$x = t^{2}, y = t^{3} - 4$ $\frac{dx}{dt} = 2t, \frac{dy}{dt} = 3t^{2}$ $\frac{dy}{dx} = \frac{3t}{2}$ Tangent at P $(y - p^{3} + 4) = \frac{3p}{2}(x - p^{2})$ $2y = 3px - p^{3} - 8$
(ii)	Since the tangent passes through the origin, subst. $x = 0$ and $y = 0$ into the equation of tangent in part (i). $-p^3 - 8 = 0$ $p = -2$ $x = 4, y = -12$ $P(4,-12)$
(iii)	x = 0, y = -4, t = 0 y O -4 x
(iv)	Area = $\frac{1}{2}(4)(12) - \int_{-12}^{-4} x dy$ = $24 - \int_{-2}^{0} (t^2)(3t^2) dt$ = $24 - \left[\frac{3t^5}{5}\right]_{-2}^{0}$ = $\frac{24}{5}$