

# Practical Assignment № 2

**Optimal Control** 



variant number: 6

Student Name: Xu Miao, Zhou Haojie

HDU Number: 19322103, 19322233

ITMO number : 293687, 293806

# Optimal control design for LTI plant (LQR)

- 1. Symbol description and experimental values (Group 6)
- Symbol description

| Symbol | Definition                |  |  |
|--------|---------------------------|--|--|
| K      | feedback controller       |  |  |
| Q, R   | parameter matrices        |  |  |
| x(0)   | initial condition         |  |  |
| P      | auxiliary matrix          |  |  |
| J      | secondary target function |  |  |

experimental values

| No | A                                               | b                                      | Q                                              | r |
|----|-------------------------------------------------|----------------------------------------|------------------------------------------------|---|
| 6  | $\begin{bmatrix} 0 & 1 \\ 9 & -1 \end{bmatrix}$ | $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ | $\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ | 1 |

2. Simulate the closed-loop system with the initial conditions

 $x(0) = [1,0]^T$ . Plot separately the variables  $x_1, x_2, u$  and J. Calculate steady-state value J

#### calculation MATLAB codes:

```
% LQR
clear all
A = [0 1;9 -1];
b = [1;0];
Q = [1 0;0 2];
r = 1;
[K,P] = lqr(A,b,Q,r);
J = [1 0]*P*[1;0];
```

# Calculation result(steady-state value $\emph{J}$ )

Jpprox 6.1583

# Simulink models



# **Simulink Results**

# State variables x(t)



Control variables u(t)



ullet steady-state valueJpprox 6.15589lt's very close to what we calculated



3. Negligibly change K so that the system preserves the stability, and repeat the experiment No 2 with the same simulation time. Compare with results obtained in No 2 and make a conclusion.

Let's change K as follows:

$$K = K - [0.1 \quad 0.1]$$

#### **Simulation Results**

# • steady-state value



#### Conclusion:

From the experimental results, it can be seen that:

1. the steady-state value J changes after a small change in the value of K, and the growth rate of J before it reaches the steady state also changes

4. Simulate the closed-loop system for three different coefficients r and three different matrices Q if  $r>0, Q=kQ^*, k$  is positive gain, matrix  $Q^*$  is equal to Q according the task variant. Plot the variables  $x_1, x_2, u$  and J.

In order to test the influence of the change of R and Q on the control results, we controlled one variable and changed the other variable using the following experimental conditions:

#### • Group 1

$$r = 0.1, Q = Q^*$$
  
 $r = 1, Q = Q^*$   
 $r = 10, Q = Q^*$ 

#### • Group 2

$$r = 1, Q = 0.1 * Q^*$$
  
 $r = 1, Q = 1 * Q^*$   
 $r = 1, Q = 10 * Q^*$ 

The experimental results are as follows:

### • Group 1



# • Group 2



## conclusion:

From the experimental results, it can be seen that J increases with the increase of |Q|, r