16. Applications of derivatives

EE24BTECH11065 - spoorthi

1) A spherical iron ball 10cm in radius is coated with a layer of ice of uniform thickness that melts at

Section-B JEE Main/AIEEE

a rate of 50 cm ³ /m decreases is	nin. When the thickness o	f ice is $5cm$, then the rate	at which the thickne	ess of ice [2005]
a) $\frac{1}{36\pi}$ cm/min.	b) $\frac{1}{18\pi} \ cm/min$.	c) $\frac{1}{54\pi}$ cm/min.	d) $\frac{5}{6\pi}$ cm/min.	
	$a + a_{n-1}x^{n-1} + \dots + a_1$ $(n-1)a_{n-1}x^{n-2} + \dots + a_n$ qual to α			, then the [2005]
3) The function $f(x) =$	$=\frac{x}{2}+\frac{2}{x}$ has a local mining	num at		[2006]
a) $x = 2$	b) $x = -2$	c) $x = 0$	d) $x = 1$	
	enclosed on two sides by ence are of same length x .		•	oank. The [2006]
a) $\frac{3}{2}x^2$	b) $\sqrt{\frac{x^3}{8}}$	c) $\frac{1}{2}x^2$	d) πx^2	
5) A value of <i>c</i> for whethe interval [1, 3] is	nich conclusion of Mean	Value Theorem holds for	the function $f(x) = 1$	log _e x on [2007]
a) $\log_3 e$	b) $\log_e 3$	c) 2log ₃ <i>e</i>	d) $\frac{1}{2}\log_3 e$	
6) The function $f(x) =$	$= \tan^{-1} (\sin x + \cos x) $ is an	increasing function in		[2007]
a) $\left(0,\frac{\pi}{2}\right)$	b) $\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$	c) $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	d) $\left(\frac{-\pi}{2}, \frac{\pi}{4}\right)$	
7) If <i>p</i> and <i>q</i> are posi [2007]	tive real numbers such th	at $p^2 + q^2 = 1$, then the	maximum value of ((p+q) is
a) $\frac{1}{2}$	b) $\frac{1}{\sqrt{2}}$	c) $\sqrt{2}$	d) 2	
8) Suppose the cubic of the following ho	$x^3 - px + q$ has three distilled ?	inct real roots where $p >$	0 and $q > 0$. Then w	which one [2008]
	inima at $\sqrt{\frac{p}{3}}$ and maxima	·		
	inima at - $\sqrt{\frac{p}{3}}$ and maxim	'		
	inima at both $\sqrt{\frac{p}{3}}$ and - $\sqrt{\frac{p}{3}}$	•		
	xima at both $\sqrt{\frac{p}{3}}$ and $-\sqrt{\frac{p}{3}}$		760 01 3	F 2 0003
9) How many real solu	utions does the equation a	$x' + 14x^3 + 16x^3 + 30x - 3$	360 = 0 have?	[2008]

[2009]

d) 5

	a) Statement-1 is true,b) Statement-1 is true,c) Statement-1 is false,	Statement-2 is false.	ment-2 is not a correct ex	xplanation for statem	ent-1.			
	d) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1							
11)		$cx^2 + cx + d$ such that $x =$	0 is the only real root of	P'(x) = 0. If $P(-1) < 0$				
	b) $P(-1)$ is the minimum c) Neither $P(-1)$ is the	turn but $P(1)$ is the maximum but $P(1)$ is not the me minimum nor $P(1)$ is the maximum and $P(1)$ is the maximum	aximum of P . ne maximum of P .					
12)	12) The equation of the tangent to the curve $y = x + \frac{4}{x^2}$, that is parallel to the x-axis, is [2010]							
	a) $y = 1$	b) $y = 2$	c) $y = 3$	d) $y = 0$				
13) Let $f: R \to R$ be defined by $f(x) = \begin{cases} k-2x & \text{if } x \le -1 \\ 2x+3 & \text{if } x > -1 \end{cases}$ If f has a local minimum at $x = -1$, then a possible value of k is								
	a) 0	b) $-\frac{1}{2}$	c) -1	d) 1				
14)		ontinuous function defined = $\frac{1}{3}$, for some $c \in R$. $x \ge \frac{1}{2\sqrt{2}}$, for all $x \in R$	d by $f(x) = \frac{1}{e^x + 2e^{-x}}$		[2010]			
	 a) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for statement-1. b) Statement-1 is true, Statement-2 is false. c) Statement-1 is false, Statement-2 is true. d) Statement-1 is true, Statement 2 is true; Statement-2 is a correct explanation for statement-1. 							
15)		between line $y - x = 1$ and	•		[2011]			
10)	a) $\frac{3\sqrt{2}}{8}$	b) $\frac{8}{3\sqrt{2}}$	c) $\frac{4}{\sqrt{3}}$	d) $\frac{\sqrt{3}}{4}$	[2011]			

c) 3

statement-1: $g \circ f$ is differentiable at x = 0 and its derivative is continuous at that point.

a) 7

10) Let f(x)=x|x| and $g(x)=\sin x$.

b) 1

statement-2: $g \circ f$ is twice differential at x = 0.