# Predicting Wine Quality: Using Machine Learning



#### Satvik Ajmera and Kenneth Tanaka

Berkeley Data Analytics Boot Camp UC Berkeley Extension May 9, 2020

## Motivation

- We were interested in understanding what features are important to making good wine
- Interested in applying to jobs at wineries
- Personal interest in learning more about wine
- How does machine learning play into this?

### About the Data

- Dataset was obtained from UCI Machine Learning Repository
  - https://archive.ics.uci.edu/ml/datasets/wine+quality
- Due to privacy and logistic issues, only the physicochemical inputs are in the dataset.
  - The dataset does not include: price, grape types, wine brand, etc.
- Wines were produced at Vinho Verde, a region north of Portugal
  - Red Wine (1599)
  - White Wine (4898)

### Features of the Wine Dataset

#### Input variables (based on physicochemical tests):

- 1. **Fixed Acidity** a measurement of the total concentration of titratable acids and free hydrogen ions
- 2. Volatile Acidity caused by bacteria in the wine creating acetic acid
- 3. **Citric Acid** acts as a preservative and is added to wines to increase acidity, complement a flavor
- 4. **Residual Sugar** natural grape sugars that are left over after fermentation ceases
- 5. **Chlorides** indicator of "saltiness"
- 6. **Free Sulfur Dioxide** preservative used to protect wine from negative effects of exposure to air
- 7. **Total Sulfur Dioxide** is the portion of SO2 that is free in the wine plus the portion that is bound to other chemicals in the wine such as aldehydes, pigments, or sugars
- 8. **Density** can be used to measure the alcohol concentration in wines
- 9. **pH** values less than 7 are considered acidic, values above 7 are considered alkaline or basic
- 10. Sulphates salts of sulfuric acid
- 11. **Alcohol** the percentage of alcohol content in the wine

#### Output variable (based on sensory data):

1. **Quality** (score between 0 - very bad and 10 - very excellent)

# Exploratory Data Analysis (EDA): White Wine Histogram



## Red Wine Histogram



## Quality and Volatile Acidity



Higher quality is associated with low volatile acidity levels

## **Quality and Alcohol**



Higher quality is associated with higher alcohol levels

#### Red and White Wine: Correlation Heatmap Plot

- Red Wine: 1599 wines
- White Wine: 4898 wines
- Total wines: 6,497 wines



- 0.3

# What Did We Find in Our Initial Analysis?

- Would adding wine color as a feature into our model improve our model?
- We had unbalanced data (more white wines than red wines). How would this affect our model? How do balance this aspect of our data?
- The red wine quality scores actually ranged from 3 to 8, while the white wine quality scores ranged from 3 to 9.
- Because there are such an uneven number of quality scores, how do we feature engineer to improve accuracy?

# Linear Regression: Red and White dataset

**Two Datasets:** White Wine: 4898; Red Wine: 1599

**Train/Test:** 80/20

|             | RED        |           | WHITE  |           |
|-------------|------------|-----------|--------|-----------|
|             | <u>MSE</u> | <u>R2</u> | MSE    | <u>R2</u> |
| LINEAR      | 0.5861     | 0.3722    | 0.7178 | 0.2727    |
| LASSO       | 0.5906     | 0.3673    | 0.7228 | 0.2676    |
| RIDGE       | 0.5861     | 0.3722    | 0.7178 | 0.2727    |
| ELASTIC NET | 0.5891     | 0.3691    | 0.7209 | 0.2696    |

## Selecting a Model

Combined Unbalanced Data: White Wine: 4898; Red Wine: 1599

**Train/Test:** 80/20

## **ACCURACY**

| LOGISTIC      | 0.47 |
|---------------|------|
| DEEP LEARNING | 0.56 |
| RANDOM FOREST | 0.68 |

## Data Manipulation: Random Forest Classifier

#### **Balanced Data:**

- White Wine: Random Samples of 1599
- Red Wine: Used all 1599 wines to balance our data
- Without color

Total: 3,198 wines used

Accuracy score: 63%-64%

Additionally, we added **color**:

Accuracy score: 63% - 64%



- White Wine: Used all 4898
- Red Wine: Used all 1599 wines
- Without color

Total: 6,497 wines used

Accuracy score: 67-68%

Additionally, we added **color**:

Accuracy score: 66-67%

We found that color and balancing the data doesn't improve our accuracy, so how could we further improve our model?

# Feature Engineering: Three Bins

#### **Three Bins:**

- Terrible (1), Mediocre (2), and Great (3)
- The quality scores range from 3 to 4, 5 to 6, and 7 to 9.
- White Wine: 4898 wines
- Red Wine: 1599 wines

Total: 6,497 wines used.

This is the highest accuracy score we tested for, because most of the quality scores are 5 and 6. The model is better at predicting mediocre wines.

#### Number of Wines Per Bin

| bin_quality         |      |  |  |
|---------------------|------|--|--|
| 1                   | 246  |  |  |
| 2                   | 4974 |  |  |
| 3                   | 1277 |  |  |
| Accuracy score: 85% |      |  |  |

# Feature Engineering: Four Bins

#### Four Bins (added one additional bin):

- Terrible (1), Mediocre (2), Good (3) and Great(4)
- The quality scores range from 3 to 4, 5, 6, and 7 to 9.
- White Wine: 4898 wines
- Red Wine: 1599 wines

Total: 6,497 wines used.

This experiment had a lower accuracy than before. We binned the quality scores as they are.
Our model may be getting a more realistic accuracy.

Number of Wines Per Bin

| bin_quality     |      |  |  |  |
|-----------------|------|--|--|--|
| 1               | 246  |  |  |  |
| 2               | 2138 |  |  |  |
| 3               | 2836 |  |  |  |
| 4               | 1277 |  |  |  |
| Accuracy score: |      |  |  |  |

00%

# Feature Engineering: Balanced Bins

#### **Balanced Bins (three):**

- Terrible (1), Mediocre (2), and Great (3)
- The quality scores range from 3 to 4, 5 to 6, and 7 to 9.
- Same number of wines used for each bin
- Indifferent to wine color.

#### Total: 738 wines used.

When compared to unbalance bins, accuracy was lower. When compared to four bins, accuracy was higher. (Accuracy could be easier to achieve when there is a bin with higher quantity of wines and or when there are fewer bins to choose from.)

Number of Wines Per Bin

| bin_quality     |     |  |
|-----------------|-----|--|
| 1               | 246 |  |
| 2               | 246 |  |
| 3               | 246 |  |
| Accuracy score: |     |  |

## Feature Importance: Feature Engineering Challenges

sort\_values(ascending=False)

alcohol
free sulfur dioxide
volatile acidity
total sulfur dioxide
density

.sort\_values(ascending=False)

• Alcohol percentage is determining factor of
wine quality relative to the other 10
features

• For the most part, for our experiments, this

0.084063

0.080621

0.077057

0.071116

0.070698

0.068052

chlorides

sulphates

Hq

citric acid

residual sugar

fixed acidity

dtype: float64

- For the most part, for our experiments, this is how the feature importances were ranked.
- Overall, even distribution of feature importance

## Conclusion

- Random Forest model resulted in the highest accuracy
- Normalize dataset showed no accuracy improvement
- Adding color as an input showed no accuracy improvement
- Feature engineering did impacted accuracy:
  - Number of bins fewer bins increased accuracy
  - Unbalanced bins increased accuracy; bias to "good"
  - Balanced bins lower accuracy
- Quality is subjective and requires a human expert

# Further Exploration

- Improve Dataset
  - More "bad" and "great" quality
  - Other Countries
  - Type of wine
  - Name of winery
  - $\circ$  Price
- Only consider select features in prediction instead of using all
- Challenging to find similar datasets to further test model, because trade secrets?
- Create website for user input
- Explore other machine learning techniques



#### Citations

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.

Available at: [@Elsevier] http://dx.doi.org/10.1016/j.dss.2009.05.016

[Pre-press (pdf)] http://www3.dsi.uminho.pt/pcortez/winequality09.pdf

[bib] http://www3.dsi.uminho.pt/pcortez/dss09.bib