INTERNATIONAL UNIVERSITY OF AFRICA CIVIL ENGINEERING DEPARTMENT ANALYSIS AND DESIGN OF STEEL WORKS

GRADE 4

7TH SEMESTER

Lecture No 2

BEAMS

PART 2

On beams we always have moment and shear <u>then</u> for the design of beam we have to consider them <u>together</u>

How ??????

Let start with a beam which the section is classified as plastic the ultimate moment Mult from the analysis and the ultimate shear is Qult

EXAMPLE

A beam simply supported with a uniformly distrusted load and Assume the factored moment from analysis M_{ult} = 122.1 kN.m and Assume the factored Shear from analysis Q_{ult} = 77.7 KN Steel S275

And the beam is fully restrained along its length by deck slab

STEP 1 SELECT SECTION

Trick

Plastic modulus $S = \frac{M}{p_y} = \frac{122.1 \times 10^3}{275} = 444 \text{ cm}^3,$

Try use $UB\ 365x127\ x\ 33$ See corus sections table inclosed in the lecture as separate file

Designation		Depth	Width	Thickness		Root	Depth	Area	Second moment		Radius of gyration		Elastic modulus		Plastic modulus		Ratio
Serial size	Mass per unit	of section	of section	Web	Flange	radius	between fillets	of section	of area x-x axis	y-y axis	x-x axis	y-y axis	x-x axis	y-y axis	x-x axis	y-y axis	D T
	length	D	В	t	T	r	d	r									
mm	kg/m	mm	mm	mm	mm	mm	mm	cm²	cm ⁴	cm ⁴	cm	cm	cm³	cm³	cm³	cm³	
56 × 127	39	325.8 348.5	126.0 125.4	6.5 5.9	10.7 8.5	10.2 10.2	311.1 311.1	49.4 41.8	10 087 8 200	357 280	14.29	2.69	571.8 470.6	56.6 44.7	653.6 539.8	88.68	33
	33	348.5	125.4	5.9	8.5	10.2	311.1	41.8	8 200	280	14.00	2,59	470.0	44.7	539.8	70.24	41

$$S_x = \frac{539.8}{539.8}$$
 cm3. $Z_x = \frac{470.6}{470.6}$ cm3 $I_x = 8200$ cm4 $J_x = 8200$ cm4

d/t = 311/5.9 = 527

Then STEP 2

Classify the section use these below simple tables since the section is rolled

Table 9 — Design strength p_y

Steel grade	Thickness ^a less than or equal to	Design strength $p_{\rm y}$		
	mm	N/mm ²		
S 275	16	275		
	40	265		
	63	255		
	80	245		
	100	235		
	150	225		
S 355	16	355		

Compression ele	Typeodistra	Limiting value				
Compression ele	meni	Ratio	Class 1 plastic	Class 2 compact	Class 3 semi-compact	
Outstand element of compression flange	Rolled section	b/T	9ε	10ε	15ε	
Web with neutral axis depth	at mid-	d/t	80ε	100ε	120ε	

The parameter, $\varepsilon = (275/p_y)^{0.5}$

$$\varepsilon = (275/p_y)^{0.5} = 1.0$$

 $b/T = 62.7/8.5 = 7.37 < 9$
 $d/T = 311.1/5.9 = 52.7 < 80$

Section is classified as plastic

STEP 3

Check wither the shear at max moment is low or high shear

- Low shear if the applied shear Fv< 60% than the shear capacityPv
- ➤ High shear if shear capacity > 60% applied shear

Shear capacity Pv

 $P_{\rm V} = 0.6 p_{\rm V} A_{\rm V}$ in which A_v is the shear area, taken as follows: a) rolled I, H and channel sections, load parallel to web: tDb) welded I-sections, load parallel to web: tdc) rectangular hollow sections, load parallel to webs: AD/(D+B)d) welded box sections, load parallel to webs: 2tde) rolled T-sections, load parallel to web: tDf) welded T-sections, load parallel to web: t(D-T)g) circular hollow sections: 0.6A0.9Ah) solid bars and plates:

In the example py=272 N/mm2 Av=tD=5.9x3458=204022 mm2

Pv = 0.6x(275x204022/1000) = 5610.6kN greater than 77kN

Low shear

How to calculate the shear

capacity?

Low shear

Provided that the shear force $F_{\rm v}$ does not exceed 60 % of the shear capacity $P_{\rm v}$:

— for class 1 plastic or class 2 compact cross-sections:

$$M_{\rm c} = p_{\rm y} S$$

— for class 3 semi-compact sections:

 $M_{\rm c}$ = $p_{\rm y}Z$ or alternatively $M_{\rm c}$ = $p_{\rm y}S_{\rm eff}$

Then for this example

This is a plastic section.

The moment capacity is $p_y S \le 1.2 p_y Z$

$$p_y S_x = 275 \times 539.8 \times 10^{-3} = 148.4 \text{ kN m},$$

 $1.2 p_y Z_x = 1.2 \times 275 \times 470.6 \times 10^{-3} = 155.3 \text{ kN m}.$

The section is satisfactory for the moment.