

Last class review

- 1 K-NN learning (sklearn module in **scikit-learn** package)
 - k-NN classification
 - ② K-NN regression
- 2 Three steps: 1

 - ② Learning machine training: learn knowledge from known information→fit fit(training_data, training_data_label)
 - ③ Predict: using the learning machine to predict test data (new data) → predict test_data_label=predict(test_data)

from sklearn import neighbors

1. training and test data training_data = [[10], [11], [12], [30], [40], [88]] training_label = [0, 0, 0, 1, 1, 1]

test_data =[[15.8], [98.38]]

what to find labels of test data

#2. training

kNN = neighbors.KNeighborsClassifier(n_neighbors=3) kNN.fit(training_data, training_label)

3. test/predict

test_data_label=kNN.predict(test_data)

print("The pedicted labels for test data is:\n")

print(test_data_label)

Ciassi	fication:		o do data		ization?	
		KIN	IN classification K	= 3		
5.0						
4.5						
4.0						
3.5			• 4.	. •		
3.0					:	
2.5		•		5	•	
2.0		•	• •			
1.5						
1.0						

Last class review: data visualization in classification: How to do data visualization?

- Create two related color maps (e.g. light, bold) for decision regions and training points
- 2. Sampling test data in a rectangle region generated by training data x_{min} , x_{max} , y_{min} , y_{max}
- 3. Do classification and label test data with different colors according to their predicted types
- 4. Plot training data in different color according to its types.

Note: Projects on two PCs are used for general data visualization

Last class review: support vector machines (SVM). We did not finish it completely

- Main idea: seek to construct an optimal hyperplane in a highdimensional space with kernel trick learning tricks.
- > It has a more intuitive geometric interpretation.

It classify data into three cases

- linear separable case → a hard margin hyperplane (no misclassification)
 min ½ w w y (w'x y + b) ≥ 1
- linear non-separable → a soft margin hyperplane → slack variables in optimization. (we allow some misclassification cases)
- Nonlinear case → no hyperplane available at all because of nature of data nonlinearity: the relationship between data and its label is nonlinear
 - 1. Kernel tricks are used to handle nonlinear cases

It classify data into three cases

1. linear separable case a hard margin hyperplane (no misclassification). The hyperplane equation is $w^ix+b=0$ $\min_{y,(w^ix_i+b)\geq 1}$

w is the norm vector of the hyperplane and b is an offset scalar y_i is the label information for the i^{th} point (vector) x_i : it only has two values usually $\{-1,1\}$

Note: The plane in 3+ dimensional space is called a hyperplane

What's the norm of a plane?

A unit vector that is perpendicular to the plane

The equation of a plane can be determined by a normal vector $\mathbf{n} = (a,b,c)$ through the point $\mathbf{x}_n = (x_n,y_n,z_n)$ is

 $n{\cdot}(x{-}x_0){=}0$ ('.' means inner product) It can also write as

 $n^{t}(x-x_{0})=0$ $n^{t}x+(-n^{t}x_{0})=0$ \rightarrow **w**^t**x+b=0**

Using Lagrange multipliers α for each constraint in training data)

 $\begin{array}{ll} Find \ \alpha_1...\alpha_N such \ that \quad \mathbf{Max} \ \Sigma \alpha_i - \frac{1}{2} \Sigma \Sigma \alpha_i \alpha_j y_i y_j \mathbf{x_i}^T \mathbf{x_j} \\ \text{Under the following conditions} \end{array}$

(1)
$$\Sigma \alpha_i y_i = 0$$

(2) $\alpha_i \geq 0$

N means we have n training points

Solution:

Each non-zero $\, \pmb{\alpha}_i \, \mathrm{indicates} \, \mathrm{that} \, \mathrm{corresponding} \, \mathbf{x_i} \, \mathrm{is} \, \mathrm{a} \, \mathrm{support} \, \mathrm{vector} \,$

 $\mathbf{w} = \sum \alpha_{ij} \mathbf{x_i} \qquad b = y_{k} \mathbf{w}^{\mathsf{T}} \mathbf{x_k} \text{ for any } \mathbf{x_k} \text{ such that } \alpha_{k} \neq 0$

Decision function for a new point x

 $f(\mathbf{x}) = \mathbf{W}^{\mathsf{T}} \mathbf{x} + \mathbf{b} = \sum \alpha_{ij} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{x} + \mathbf{b}$

2. linear non-separable: soft Margin

Slack variables $\not\in_i$ can be added to allow misclassification of difficult or noisy examples. The corresponding optimization problem (L¹—norm SVM) is specified as

Find **w** and *b* such that **min** Φ (**w**) = $\frac{1}{2}$ **w** T **w** + $C\Sigma \xi_{i}$

such that for all *i*

$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x_i} + b) \ge 1 - \xi_i$$

$$\xi_i \ge 0$$

The penalty parameter C is the weight for slack variables The larger the C value, the a stricter separation between classes that the optimization attempts to make.

How to select the penalty parameter C?		
How to select the penalty parameter C?		
The default is 1		
The input data will be normalized to zero mean		
and 1 standard deviation data		
How about nonlinear data?		
How about nonlinear data?		
We can't just see we can separate or not→their		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input space.		
How about nonlinear data? We can't just see we can separate or not their nonlinear property prevents the "separable" in input space. The best contribution of SVM to machine learning is to solve this problem using kernel tricks		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input space.		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input space. The best contribution of SVM to machine learning is to		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input space. The best contribution of SVM to machine learning is to		
We can't just see we can separate or not→their nonlinear property prevents the "separable" in input space. The best contribution of SVM to machine learning is to		

SVM maps nonlinear data to a high-dimensional feature space to conduct classification

We don't need to know the mapping function $\,\Phi\,$ but we can still do classification in the high-dimensional space.

SVM maps nonlinear data to a high-dimensional feature space to conduct classification

We don't need to know the mapping function $\,\Phi\,$ but we can still do classification in the high-dimensional space.

The high-dimensional space does not bring high complexity. All computing can be done in input space via using kernel tricks.

Kernel tricks

We can use a kernel function to evaluate computing in the feature space by assume all computing can be written in inner-product forms.

$$K(x_i,x_i) = \phi(x_i)^T \phi(x_i)$$

The correctness of such an approach can be guaranteed by Mercer's theorem in functional analysis.

A kernel matrix must be a semi-positive definite matrix. Positive definite matrix: a symmetric matrix whose eigenvalues are positive Semi-positive definite matrix: symmetric matrix whose eigenvalues are >=0

Ganara	Karnal	Functions

Linear: $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_j$

Polynomial of power p: $K(\mathbf{x_i}, \mathbf{x_i}) = (1 + \mathbf{x_i}^T \mathbf{x_i})^p$ ('poly' kernel)

Gaussian ('rbf' kernel):

$$K(\mathbf{x}_{i}, \mathbf{x}_{j}) = \exp(-\frac{\|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{2}}{2\sigma^{2}})$$

Sigmoid: $K(\mathbf{x}_i, \mathbf{x}_i) = \tanh(\beta_0 \mathbf{x}_i^T \mathbf{x}_i + \beta_1)$ ('sigmoid' kernel)

Note: you can build you own kernels if the corresponding kernel matrices are positive definite or Semi positive definite.

Which kernel should Luse?

Which kernel should I use?

It may rely on your data and your 'experience'. Linear kernel assumes that data is linear separable or linear non-separable. Nonlinear kernels: 'rbf', 'poly', ''sigmoid'

For nonlinear data (e.g. image/financial data), nonlinear kernels are recommended.

Nonlinear SVM

Dual problem formulation:

Find $\alpha_1...\alpha_N$ such that $Q(\alpha) = \sum \alpha_i - \frac{1}{2} \sum \alpha_i \alpha_j y_i y_j K(x_i, x_j) \text{ is maximized and}$ (1) $\Sigma \alpha_i y_i = 0$ (2) $\alpha_i \ge 0$ for all α_i

Decision function of nonlinear SVM for a new data point x:

$$f(x) = \sum \alpha_{ij',i}K(x_i,x) + b$$

from sklearn import svm import time

training X = [[0, 0], [-2,0], [1, 1], [10,1]] ## training data label

training oata label
y = [0,0,1,1]
training by using default parameter setting
clf = svm.SVC()
clf.fit(X, y)

prediction for test data predicted_label=clf.predict([[2.5, 8.]])

print("In Checking parameter setting")
print(clf)
time.sleep(2)

from sklearn import svm import time

training

X = [[0, 0], [-2,0], [1, 1], [10,1]]
training data label
y = [0,0,1]
training by using default parameter setting
clf = sym.SVC()

*#fff(Y v)

clf.fit(X, y)

prediction for test data predicted_label=clf.predict([[2.5, 8.]])

 $\label{limits} print(\begin{tabular}{ll} \$

print("n Checking parameter setting:")
print(clf)
time.sleep(2)

The predicted label is--->[1]

Checking parameter setting:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, decision_function_shape=None, degree=3, gamma='auto',

gariinia- auto, kernel="rbf", max_iter=-1, probability=False, random_state=None, shrinking=True, tol=0.001, verbose=False)

Kernels in SVC: 'linear', 'poly', 'rbf', 'sigmoid', 'precomputed' 'linear': $(\mathbf{x}, \mathbf{x}') \rightarrow$ inner product between \mathbf{x} and $\mathbf{x}' \rightarrow \mathbf{x}'\mathbf{x}'$ 'poly' $(\gamma(x, x') + r)^d$. d is specified by parameter: 'degree' (default is 3) r is specified by parameter: 'coef0' (default is 0) 'rbf': $\exp(-\gamma|x-x'|^2)$. γ is specified by parameter gamma (>0) (e.g. ½) 'sigmoid': $(\tanh(\gamma(x,x')+r))$, where r is specified by coef0. Note: If gamma is 'auto' then it is set as 1/N, where N is number of training points.

Modify the previous codes such that

- Try all four kernels and find their corresponding predicted labels and corresponding support vectors (clf.support_vector_)
- 2. Set gamma=1/2
- 3. Set: Tol=0.0001

 $\label{limit} print(" \nCheck the predicted labels under different kernels \n") print(str(predicted_label))$ time.sleep(2) $\label{print("\nCheck the support vectors under different kernels...\n")} print("\nCheck the support vectors under different kernels...\n")$ print(str(support_vectors)) time.sleep(2) print("\nCheck the predicted labels under different kernels\n") print(str(predicted_label)) time.sleep(2) print(" \nCheck the support vectors under different kernels...\n") print(str(support_vectors)) time.sleep(2) {'sigmoid': '[1]', 'poly': '[1]', 'linear': '[1]', 'rbf': '[1]'} Check the support vectors under different kernels... $\begin{cases} \text{'sigmoid': array([[\ 0,\ 0.],\\ [-2,\ 0.],\\ [\ 1,\ 1.],\\ [\ 10,\ 1.]], \text{'poly': array([[\ 0,\ 0.],\\ [\ 1,\ 1.]]), 'linear': array([[\ 0,\ 0.],\\ [\ 1,\ 1.]]), 'bb': array([[\ 0,\ 0.],\\ [-2,\ 0.],\\ [\ 1,\ 1.],\\ [\ 10,\ 1.]]) \end{cases}$ Different kernels: same label But different support vectors! Given a dataset, how can I split it into training and test data? This is related to our project 1 problem. You need to partition the sample data and pick your training and test data such that 80% training; 20% test

	,
Given a dataset, how can I split it into training and test data?	
Use train_test_split module from sklearn.model_selection import train_test_split	
It has some reported issue for this input in PyCharm	
(interpreter: Anaconda 3.4) : it can't find this module!	
To fix this, you need, install scikit-learn 'again' fro console conda install scikit-learn	
Or pip install scikit-learn	
Given a dataset, how can I split it into training and test data?	
Suppose your dataset is (data, label) → response variables/labels You want to have 80% training and 20% test	
Set: test_size: 0.20 random_state marks the 'random process' in selecting training	
and test training_data, test_data, training_data_label, test_data_label = train_test_split(data, label, test_size=0.20, random_state=42)	
test_state=0.E0, tailuoiii_state=42)	
import numpy as np import time	
from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn import sym	
iris = datasets.load_iris() data = iris.data	
label = iris.target print(" data dimension:" + str((data.shape)))	
test_percent = 0.3	
training_data, test_data, training_data_label, test_data_label = train_test_split(data, label, test_size=test_percent, random_state=42)	
print("\n training_data size:{:d}".format(len(training_data))) time.sleep(1)	

N=7 print("In The first ** {:d} ***".format(N) + " training samples and its labels\n")	
print(str(training_data[0:N])+ "\n") print(str(training_data_label[0:N]))	
## build SVM learning machine	
svm_learning_machine = svm.SVC(kernel=' rbf , tol=0.0001, gamma=0.5, C=1) svm_learning_machine.fit(training_data, training_data_label)	
## prediction predicted_test_data_label = svm_learning_machine.predict(test_data)	
predicted_test_data_label = svin_earining_inactinie.predict(test_data) print("\n Predicted test data label vs. true test data label\n")	
print(predicted_test_data_label) print(predicted_test_data_label) print(test_data_label)	
N=7	
print("In The first ** {:d} ***.format(N) + " training samples and its labels\n") print(str(training_data[0:N])+"\n")	
print(str(training_data_label[0:N]))	
## build SVM learning machine	
svm_learning_machine = svm.SVC(kernel=' rbf ', tol=0.0001, gamma=0.5, C=1) svm_learning_machine.fit(training_data, training_data_label)	
## prediction predicted_test_data_label = svm_learning_machine.predict(test_data)	
print("In Predicted test data label vs. true test data label\n")	
print(predicted_test_data_label) print(test_data_label) Predicted tada label vs. true test data label	
[102110121120000121120202222200001002100021100]	
[102110121120000121120202222200001002100021100]	
	1
Check learning accuracy	
learning_accuracy = svm_learning_machine.score(test_data, test_data_label)	
print("SVM learning_accuracy is {:3.2f}".format(learning_accuracy)+"\n")	
time.sleep(1)	
]

ecificity, negative pr	measures: accuracy, sensitivity, redictive ratios (NPR), and positive predicative	
tios (PPR). (we assum	ne a binary classification case)	
	<i>[</i>	
Classification		7
specificity, negative pr	measures: accuracy, sensitivity, redictive ratios (NPR), and positive predicative ne a binary classification case)	
	of positive (negative) samples correctly diagnosed, and	
FN (FP) is the number of	of positive (negative) samples incorrectly diagnosed.	
Classification	measures: accuracy, sensitivity,	
specificity, negative pr	redictive ratios (NPR), and positive predicative ne a binary classification case)	
(The second secon	
TP (TN) is the number of	of positive (negative) samples correctly diagnosed, and of positive (negative) samples incorrectly diagnosed.	
TP (TN) is the number of FN (FP) is the number of		
TP (TN) is the number of FN (FP) is the number of	of positive (negative) samples incorrectly diagnosed.	
TP (TN) is the number of FN (FP) is the number of accuracy = $\frac{TP+TN}{TP+FP+TN+E}$	of positive (negative) samples incorrectly diagnosed. The percentage of correctly predicted subjects among all.	
TP (TN) is the number of FN (FP) is the number of accuracy = $\frac{TP+TN}{TP+FN+N+F}$ sensitivity = $\frac{TP}{TP+FN}$	of positive (negative) samples incorrectly diagnosed. The percentage of correctly predicted subjects among all. the percentage of positive subjects correctly predicted	

These measures are essential for checking overfitting and underfitting	
undernang	
	•
These measures are essential for checking overfitting and	
underfitting	
Overfitting: models are only too good for few data. ① Kernel matrix will be an identity matrix or near-identity-matrix	
② Imbalanced sensitivity and specificity though accuracy may look fine.	
Underfiting: models are too bad for this data	
 Kernel matrix will be a matrix with all '1' entries Less than 50% accuracy	
·	
Es	
Overfitting can happen to any kernels, but mostly for nonlinear	
kernels instead of linear kernels Under-fitting can happen to nonlinear kernel	
generally	

Code these measures by yourselves

Write a package called compute_measure.py that has a function called compute_measure to compute these Classification measures

import numpy as np
import compute_measure

$$\begin{split} predicted_label &= np.array(\;[-1,\,1,\;1,\;-1,\;1,\;-1,\;1,\;-1,\;-1,\;-1]) \\ true_label &= np.array(\;[\;1,\,1,\;1,\;-1,\;1,\;1,\;1,\;1,\;1,\;1,\;1]) \end{split}$$

ans = compute_measure.compute_measure(predicted_label, true_label)

 $\label{lem:print("\n check the following classiciation measures: accuracy, sen, spec, ppr, npr\n") print("\{\}".format(ans))$

import numpy as np import math

def compute_measure(predicted_label, true_label):

t_idv = (predicted_label == true_label) # truely predicted_label.

t_idx = (predicted_label == true_label) # truely predicted f_idx = np.logical_not(t_idx) # falsely predicted

 $\begin{array}{ll} p_idx = (true_label > 0) & \textit{\# positive targets} \\ n_idx = np.logical_not(p_idx) & \textit{\# negative targets} \end{array}$

$$\begin{split} tp &= np.sum(\ np.logical_and(t_idx, \ p_idx)) \\ tn &= np.sum(\ np.logical_and(t_idx, \ n_idx)) \\ \end{split} \label{eq:tp} \begin{array}{ll} \textit{\# TP} \\ \textit{TN} \\ \end{split}$$

false positive: original negative but classified as positive # false negative: original positive but classified as negative

$$\begin{split} \text{fp} &= \text{np.sum}(\text{n_idx}) \text{ - tn} \\ \text{fn} &= \text{np.sum}(\text{p_idx}) \text{ - tp} \end{split}$$

This is an almost pure python coding. You can use other packages to make this concise

tp_fp_tn_fn_list=[]
tp_fp_tn_fn_listappend(tp)
tp_fp_tn_fn_listappend(fp)
tp_fp_tn_fn_listappend(fn)
tp_fp_tn_fn_listappend(fn)
tp_fp_tn_fn_list=npanray(tp_fp_tn_fn_list)
tp=tp_fp_tn_fn_list[0]
fp=tp_fp_tn_fn_list[1]
tn=tp_fp_tn_fn_list[2]
fn=tp_fp_tn_fn_list[3]

with nperrstate(divide="gnore"):
 sen = (1.0"tp)/(tp+fn)

with nperrstate(divide="gnore"):
 spc = (1.0"tn)/(tn+fp)

with nperrstate(divide="gnore"):
 pp = (1.0"tn)/(tp+fp)

]	
acc = (tp+tn)*1.0/(tp+fp+tn+fn)	-	
ans=[] ans.append(acc) ans.append(sen)		
ans.append(spc) ans.append(pr) ans.append(npr)		
return ans		
	-	
(
	•	
	1	
	-	
0 11 11 11 11		
Cross-validation methods		
 hold-out cross-validation K-fold cross-validation 		
3. Leave-one-out cross-validation (LOOCV)		
	1	
]	
We need do regression in our implied volatility prediction,		
though classification methods can be used to predict stock future movement		
The important measure we use is MSE		
$MSE = \frac{1}{n} \sum_{i=1}^{n} (IV_i - predictedIV_i)^2$		

Demo: how to use k-NN to predict implied volatility

Input_train, Input_test, Response_train, Response_test = \
train_test_split(Data_input, Data_response, test_size=0.2, random_state=42)

Mean square error: MSE

def get_MSE(Error):
 mse=np.sum(np.power(Error,2))
 mse=mse/len(Error)
 return mse

Train the model via KNN regression
k=5 for training
kNN = KNeighborsRegressor(n_neighbors=5, weights='distance')
kNN.fit(Input_train, Response_train)

performance analysis parameters

Error_KNN = [**None**] * len(Input_test) predictedIV = Error_KNN

##predicted implied votatility
predictedIV = kNN.predict(Input_test)
Error_KNN = abs(Response_test - predictedIV)

Model Evaluation

print('\n\nThe KNN Model Peformance Summary as follows:')
print('The MSE is {:20.16f}'.format(get_MSE(Error_KNN)))
print('The mean error is {:20.16f}'.format(np.mean(Error_KNN)))
print('The maximum error is {:20.16f}'.format(min(Error_KNN)))
print('The minimum error is {:20.16f}'.format(min(Error_KNN)))

SVR is the corresponding regression method for SVM. It has the same parameter setting as SVC

 $sklearn.svm.SVR(kernel='rbf', degree=3, gamma='auto', coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)$

Use SVM to predict implied performance with kNN	volatility and compare its