Исправление опечаток и грамматических ошибок в русскоязычных текстах

Бунин Дмитрий, группа 792

Научный руководитель: Сорокин А. А.

Датасет

Был взят датасет с соревнования SpellRuEval: [Sorokin, Baytin и др. (2016)].

Что исправляется:

- lacktriangle опечатки (*мнея* ightarrow *меня*),
- lacktriangle орфографические ошибки (*митель* ightarrow *метель*),
- lacktriangle употребление неверного слова (компания o кампания),
- lacktriangle намеренно неправильное написание (ваще o вообще),
- lacktriangleright грамматические ошибки (согласование) (он видят o он видит),
- lacktriangle ошибки с пробелами/дефисами (*както* o *как-то*),
- смешанное использование чисел и букв в числительных $(2 ext{-}yx o ext{$ extit{μ}}),$
- $lue{}$ использование цифр вместо букв ($\emph{в4ера}
 ightarrow \emph{вчера}$).

Датасет

Что не исправляется:

- иностранные слова,
- lacktriangle неформальные сокращения (прога ightarrow программа),
- пунктуационные ошибки,
- ошибки, связанные с заглавным/строчным написанием,
- неразличение букв «е» и «ё».

Датасет I Статистика, Обучающее множество

- Количество предложений: 2000;
- Всего исправлений: 1727;
- Распределение количеств ошибок в предложениях:

Датасет II Статистика, Обучающее множество

Распределение ошибок по выравниваниям:

Один к одному: 80.0%;Один ко многим: 15.6%;Много к одному: 4.1%;

■ Много ко многим: 0.2%.

Датасет III Статистика, Обучающее множество

 Распределение ошибок по расстоянию Дамерау-Левенштейна:

• Количество исправлений, неизвестных словарю: 105.

Датасет Статистика, Тестовое множество

- Количество предложений: 2000;
- Всего исправлений: 1976.

Архитектура модели ^{Алгоритм}

Предварительные действия:

- Токенизация, оформление «черного списка».
- Генерации кандидатов и объединения токенов в группы.

Итерации исправления:

- Поиск лучшей позиции для исправления и проверка критерия останова.
- Исправление в выбранной позиции.
- Внесение позиций без исправлений в «черный список».

Архитектура модели Candidate Generator

Модель для генерации кандидатов с их признаками. Для каждого токена генерируется список кандидатов при помощи моделей:

- LevenshteinSearcher поиск слов из словаря на заданном расстоянии Дамерау-Левенштейна.
- PhoneticSearcher поиск слов из словаря с тем же фонетическим кодом.
- HandcodeSearcher собранная вручную таблица.

Используется словарь:

https://github.com/danakt/russian-words/.

Существует также механизм объединения токенов.

Candidate Generator, LevenshteinSearcher

- Реализация модели взята из библиотеки DeepPavlov: https:
 - //github.com/deepmipt/DeepPavlov/tree/master/
 deeppavlov/models/spelling_correction/levenshtein
- Словарь хранится в виде префиксного бора.
- Для поиска используется алгоритм A^* с h_2 -эвристикой из статьи [Oflazer (1996)].
- Позволяет находить ошибки ненужного слияния слов $(вобщем \to в \ oбщем).$

Candidate Generator, PhoneticSearcher

- Модель фонетического кодирования слов.
- Реализация по статье [Sorokin и Shavrina (2016)].
- Позволяет находить словарные слова похожие по звучанию: (пользовацца \rightarrow пользоваться).
- Позволяет исправлять ошибки с повторением гласных $(дооолго \to долго)$.

Candidate Generator, HandcodeSearcher

Вручную созданная таблица для предложения кандидатов.

Построение:

- Были взяты тексты из социальных сетей, которые попали в корпус «Тайга»:
 https://tatianaghayrina.github.io/taiga.gita/
 - https://tatianashavrina.github.io/taiga_site/
- 2 Был взят словарь, являющийся объединением словарей Хагена и wiktionary.
- 3 Несловарные слова были упорядочены по частоте встречаемости.
- Было проанализировано около 5000 слов, среди которых найдено около 140 исправлений.
- 5 Добавлено два словарных исправления по обучающему множеству и несколько исправлений, исходя из собственного опыта.

Candidate Generator, Генерация признаков

Помимо нахождения самих кандидатов для них также вычисляются признаки:

- Признаки позиции.
- Признаки источника.
- Индикатор текущего кандидата.
- Индикатор оригинального кандидата.
- Содержание пробелов/дефисов.
- Индикатор словарности (актуально только для оригинального токена).
- Индикатор объединения.

Candidate Generator, Объединение токенов

В модели генерации кандидатов есть механизм для объединения двух последовательно идущих токенов в один для их совместного рассмотрения.

Это нужно для того, чтобы уметь исправлять вставки лишних пробелов: (u так \rightarrow uтак), (κ ак то \rightarrow κ ак-то).

Алгоритм заключается в последовательном просмотре токенов слева направо и их жадном объединении если получаем словарное слово убрав пробел или заменив его на дефис.

Архитектура модели Position Selector

Модель для нахождения позиции исправления на текущей итерации и проверки критерия останова. В ее основе лежит использование языковых моделей слева-направо и справа-налево.

Алгоритм работы:

- Для каждой позиции и каждого кандидата находится логарифм вероятности от этих моделей.
- Считается агрегирующая метрика среднее гармоническое логарифмов вероятностей от левой и правой моделей. Для каждой позиции находится разница этой метрики между лучшим кандидатом и текущим.
- В качестве позиции для исправления позиция берется позиция, которая
 - не находится в «черном списке»,
 - разница метрик в которой максимальна и превышает некий порог.
- Вычисленные вероятности и метрика записываются в признаки кандидатов.

Архитектура модели

Position Selector, Языковые модели

Для построения языковых моделей была взята библиотека KenLM.

- В качестве обучающих данных была взята часть корпуса «Тайга».
- Текст был переведен в нижний регистр, из него была удалена пунктуация.
- Были обучены 3-граммные модели, использующие модифицированное сглаживание Кнезера-Нея: [Chen и Goodman (1996)].

Position Selector, Supervised модель

Была предпринята попытка обучить supervised модель на основе признаков кандидатов.

Хоть модель и имела большую полноту при нахождении позиций с ошибками это не привело к улучшению результата.

По всей видимости, модель хоть и находила новые позиции с ошибками, но подходящих кандидатов для их исправления не было.

Архитектура модели Candidate Scorer

Модель ранжирования кандидатов на основе BERT [Devlin и др. (2019)] и других признаков.

Архитектура модели Candidate Scorer, BertScorer

Ранжирование на основе предсказания замаскированных токенов при помощи модели. Используется Conversational RuBERT.

Алгоритм:

- Токенизация предложений при помощи
 WordPiece-токенизатора, использующегося в BERT.
- Токенизация кандидатов.
- Для каждого подтокена в кандидате измерить логарифм его вероятности, отключив механизм внимания для других подтокенов.
- Все полученные логарифмы вероятностей для одного кандидата усреднить.

Candidate Scorer, Supervised модель

- Было выяснено, что ранжирование только при помощи BERT имеет весьма низкое качество, ему не хватает модели ошибок.
- Протестировав модель на обучающем множестве, удалось собрать выборку, где было известно какие кандидаты и с какими признаками попадают в Candidate Scorer.
- В качестве supervised моделей были испытаны модели: ranking SVM, CatBoost.
- Признаки:
 - признаки из candidate generator,
 - признаки из position selector,
 - признаки BERT:
 - среднее логарифов вероятностей подтокенов,
 - сумма логарифмов вероятностей подтокенов,
 - количество подтокенов.

Пусть имеется текст из n предложений, тогда обозначим g_i – множество корректных исправлений предложения i, а e_i – множество наших исправлений.

$$R = \frac{\sum_{i=1}^{n} |g_{i} \cap e_{i}|}{\sum_{i=1}^{n} |g_{i}|},$$

$$P = \frac{\sum_{i=1}^{n} |g_{i} \cap e_{i}|}{\sum_{i=1}^{n} |e_{i}|}.$$

Целевая метрика:

$$F_1 = \frac{2PR}{P+R}.$$

Результаты Сравнение с другими моделями

Spell Checker	Precision	Recall	F ₁
Yandex.Speller	83.09	59.86	69.59
JamSpell	44.57	35.69	39.64
SpellRuEval Baseline	55.91	46.41	50.72
SpellRuEval Winner	81.98	69.25	75.07
Лучшая модель	86.56	72.37	78.83
Быстрая модель	85.30	70.80	77.38

Таблица: Сравнение результатов различных моделей.

Результаты

Сравнение различных вариантов модели

Spell Checker	Precision	Recall	F_1
BERT	47.16	55.82	51.12
SVM	84.86	66.95	74.85
SVM+comb.	84.67	69.59	76.39
SVM+BERT	86.35	69.48	77.01
SVM+BERT+comb.	86.35	72.37	78.74
CatBoost	85.42	67.61	75.48
CatBoost+comb.	85.30	70.80	77.38
CatBoost+BERT	87.08	69.59	77.36
CatBoost+BERT+comb.	86.56	72.37	78.83

Таблица: Сравнение результатов вариаций модели.

Результаты Скорость работы

Лучшая модель: ≈ 0.6 предл./с.

Candidate Generator: 5.3%;

Position Selector: 9.7%;

Candidate Scorer: 84.9%.

Быстрая модель: \approx 4.8 предл./с.

Candidate Generator: 43.8%;

Position Selector: 50.4%;

■ Candidate Scorer: 5.4%.

Планы работ

- Провести испытания с новым словарем.
- Поэкспериментировать над некоторыми гиперпараметрами:
 - вариация BERT;
 - вариация языковых моделей;
 - размер вручную заданной таблицы.
- Писать текст диплома.

Заключение

Спасибо за внимание!

Исходники доступны по ссылке:

 $\verb|https://github.com/Mr-Geekman/bd-research|.$

Литература I

Chen, Stanley F. u Joshua Goodman (1996). «An empirical study of smoothing techniques for language modeling». B: Proceedings of the 34th annual meeting on Association for Computational Linguistics -. T. 213. Morristown, NJ, USA: Association for Computational Linguistics, c. 310—318. ISBN: 9781626239777. DOI: 10.3115/981863.981904. URL: http://portal.acm.org/citation.cfm?doid=981863.981904.

Devlin, Jacob и др. (2019). «BERT: Pre-training of deep bidirectional transformers for language understanding». B: NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference 1.Mlm, c. 4171—4186. arXiv: 1810.04805.

Oflazer, Kemal (1996). «Error-tolerant Finite-state Recognition with Applications to Morphological Analysis and Spelling Correction». B: Computational Linguistics 22.1, c. 69—89. ISSN: 08912017. DOI: 10.1184/r1/6287645.v1. arXiv: 9504031 [cmp-lg].

Sorokin, A. A., A. V. Baytin и др. (2016). «SPELLRUEVAL: The first competition on automatic spelling correction for Russian». В: *Komp'juternaja Lingvistika i Intellektual'nye Tehnologii*, с. 660—673. ISSN: 20757182.

Sorokin, A. A. и T. O. Shavrina (2016). «Automatic spelling correction for Russian social media texts». В: Komp'juternaja Lingvistika i Intellektual'nye Tehnologii, c. 688—701. ISSN: 20757182.