

Chapter 10

Other Public-Key Cryptosystems

Diffie-Hellman Key Exchange

- First published public-key algorithm, 1976
- Purpose: enable two users to securely exchange a secret key over a public channel
- Operations are on group Z_q^* , where q is prime

DH key exchange protocol

Alice

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Alice generates a private key X_A such that $X_A < q$

Alice calculates a public key $Y_A = \alpha^{X_A} \mod q$

Alice receives Bob's public key Y_B in plaintext

Alice calculates shared secret key $K = (Y_B)^{X_A} \mod q$

Bob

Alice and Bob share a prime number q and an integer α , such that $\alpha < q$ and α is a primitive root of q

Bob generates a private key X_B such that $X_B < q$

Bob calculates a public key $Y_B = \alpha^{X_B} \mod q$

Bob receives Alice's public key Y_A in plaintext

Bob calculates shared secret key $K = (Y_A)^{X_B} \mod q$

DH key exchange: example

- Global parameters: q=353, $\alpha=3$
- Alice
 - choose $X_A = 97$
 - compute $Y_A = 3^{97} \mod 353 = 40$
 - send Y_A to Bob
- Bob
 - choose X_B =233
 - compute $Y_B = 3^{233} \mod 353 = 248$
 - send Y_B to Alice
- Alice: compute $K = Y_B^{X_A} = 248^{97} \mod 353 = 160$
- Bob: compute $K = Y_A^{X_B} = 40^{233} \mod 353 = 160$

DH key exchange: security

- The DH problem
 - given (q, α, Y_A, Y_B) , compute $K = \alpha^{X_A X_B} \mod q$, where $Y_A = \alpha^{X_A} \mod q$ and $Y_B = \alpha^{X_B} \mod q$
- DH problem is no harder than dlog problem
 - Solving DL problem → solving DH problem
 - However the vice versa is not known yet
- Attack: man-in-the-middle attack

Man-in-the-middle attack

ElGamal cryptography

- Taher ElGamal, 1984
 - Public-key encryption
 - Digital signature (introduced later)
- ullet Operations are on group Z_q^* , where q is prime

ElGamal encryption

Global Public Elements

q prime number

 $\alpha < q$ and α a primitive root of q

Key Generation by Alice

Select private $X_A < q - 1$

Calculate $Y_A = \alpha^{X_A} \mod q$

Public key $\{q, \alpha, Y_A\}$

Private key X_A

Encryption by Bob with Alice's Public Key

Plaintext: M < q

Select random integer k k < q

Calculate $K = (Y_A)^k \mod q$

Calculate $C_1 = \alpha^k \mod q$

Calculate $C_2 = KM \mod q$

Ciphertext: (C_1, C_2)

Decryption by Alice with Alice's Private Key

Ciphertext: (C_1, C_2)

Calculate $K = (C_1)^{X_A} \mod q$

Plaintext: $M = (C_2K^{-1}) \mod q$

ElGamal encryption: example

- Global parameter: q=19, $\alpha=10$
- Alice's key generation:
 - Choose X_A =5, compute Y_A =10⁵ mod 19=3
 - $PU_A = (q, \alpha, Y_A) = (19, 10, 3), PR_A = (q, \alpha, X_A) = (19, 10, 5)$
- Encryption: M=17, $PU_A=(19, 10, 3)$
 - Pick k=6, compute C= $(10^6 \text{ mod } 19, 17x3^6 \text{ mod } 19)$ =(11, 5)
- Decryption: $C=(11, 5), PR_A=(19, 10, 5)$
 - Compute $M = 5/(11^5 \mod 19) \mod 19$ = 5/7 mod 19 = 5x11 mod 19 = 17

ElGamal encryption: security

- compute private key → solve dlog problem
 - Given (q, α, Y_A) , compute $X_A = dlog_{\alpha,q} Y_A$
- compute plaintext → solve the DH problem
 - Given $(q, \alpha, Y_A, C_1, C_2)$, compute $M = C_2/\alpha^{kX_A} \mod q$, where $Y_A = \alpha^{X_A} \mod q$, $C_1 = \alpha^k \mod q$ and $C_2 = M\alpha^{kX_A} \mod q$
 - When M is solved, $K = \alpha^{kX_A} \mod q = C_2/M \mod q$
- k is used only once. Otherwise,
 - Two ciphertexts
 - $\bullet (C_{1,1}, C_{2,1}) = (\alpha^k \bmod q, M_1 \alpha^{kX_A} \bmod q)$
 - $(C_{1,2}, C_{2,2}) = (\alpha^k \mod q, M_2 \alpha^{kX_A} \mod q)$
 - $C_{2,2}/C_{2,1} \mod q = M_2/M_1 \mod q$
 - If M_1 is known, M_2 is compromised

2024 Spring

11

ElGamal encryption: computation

- Two modular exponentiations for an encryption
- Ciphertext expansion

•
$$|C| = |C_1| + |C_2| = 2|M|$$

Key length problem

- RSA and ElGamal encryption
 - The key length has increased over years because of security concern
 - RSA modulus n
 - 1024 bits, 2002
 - 2048 bits, 2015
 - ElGamal cryptosystem
 - modulus q: 2048 bits, 2017
 - private key X_A : 160-240 bits
- Elliptic curve cryptography (ECC)
 - IEEE P1363 Standard for Public-Key Cryptography
 - Shorter key length: 256 bits
 - fast encryption/decryption
 - Suitable for mobile devices, such as, IoT

Elliptic Curve over reals

- Weierstrass equation: $E: y^2 = x^3 + ax + b$
 - $4a^3 + 27b^2 \neq 0$: non-singular
- Examples

Additive group on elliptic curves

- Two ingredients
 - The infinity point: *0*
 - The sum of three points on a line is O
- group elements: all points in the curve and identity O
- addition and inverse: illustrated on graphs

Elliptic curve: operations

• P =
$$(x_P, y_P)$$
, $Q = (x_Q, y_Q)$

• inverse

$$\bullet -P = P' = (x_P, -y_P)$$

Addition of two different points

• Case:
$$Q = -P (x_P = x_Q, y_P = -y_Q)$$

•
$$P + Q = 0$$

• Case:
$$Q \neq -P (x_P \neq x_Q)$$

•
$$\Delta = (y_Q - y_P)/(x_Q - x_P)$$

•
$$P + Q = R = (x_R, y_R) = (\Delta^2 - x_P - x_Q, \Delta(x_P - x_R) - y_P)$$

• Consider line
$$L: y = y_P + \Delta(x - x_P)$$

• Intersect E:
$$(y_P + \Delta(x - x_P))^2 = x^3 + ax + b$$

•
$$x^3 - \Delta^2 x^2 + (a - 2\Delta(y_P - \Delta x_P))x + (b - (y_P - \Delta x_P)^2) = 0$$

• (x_P, y_P) , (x_0, y_0) are two roots and third root -R = (x', y')

•
$$x_P + x_Q + x' = \Delta^2 \Longrightarrow x' = \Delta^2 - x_P - x_Q$$

•
$$y' = y_P + \Delta(x' - x_P)$$

•
$$R = (x_R, y_R) = (\Delta^2 - x_P - x_Q, y' = \Delta(x_p - x_R) - y_P)$$

• Double

- Case: $y_P = 0 \Longrightarrow P + P = 2P = 0$
- Case $y_P \neq 0$

 - P+P = 2P = R = $(x_R, y_R) = (\Delta^2 2x_P, \Delta(x_P x_R) y_P)$

Elliptic curve over Z_p

- Two types of curves
 - prime curves: over Z_p
 - binary curves: over $GF(2^m)$
- $E_p(a,b)$: $y^2 = x^3 + ax + b \pmod{p}$, where $4a^3 + 27b^2 \neq 0$
- Group points : identity O and all integer points over $E_p(a,b)$
- Addition: $P = (x_P, y_P), Q = (x_Q, y_Q)$
 - If P = -Q, P + Q = 0
 - If $P \neq -Q$

•
$$\lambda = \begin{cases} \frac{y_Q - y_P}{x_Q - x_P} & \text{if } P \neq Q\\ \frac{3x_P^2 + a}{2y_P} & \text{if } P = Q \end{cases}$$

•
$$P + Q = (x_R, y_R) = (\lambda^2 - x_P - x_Q, \lambda(x_P - x_R) - y_P)$$

Example: $E_{23}(1,1)$

- $y^2 = x^3 + x + 1 \pmod{23}$
- Group points
 - O -- identity
 - Points on the right

(0, 1)	6, 4)	(12, 19)
(0, 22)	(6, 19)	(13, 7)
(1, 7)	(7, 11)	(13, 16)
(1, 16)	(7, 12)	(17, 3)
(3, 10)	(9,7)	(17, 20)
(3, 13)	(9, 16)	(18, 3)
(4, 0)	(11, 3)	(18, 20)
(5, 4)	(11, 20)	(19, 5)
(5, 19)	(12, 4)	(19, 18)

$$\bullet$$
 P = (3, 10), *Q* = (9, 7)

$$\bullet P + Q = (x_R, y_R)$$

•
$$\lambda = \frac{7-10}{9-3} \mod 23 = 11$$

•
$$x_R = 11^2 - 3 - 9 \mod 23 = 17$$

•
$$P + Q = (17, 11(3 - 17) - 10) = (17, 20)$$

•
$$2P = (x_R, y_R)$$

•
$$\lambda = \frac{3 \times 3^2 + 1}{2 \times 10} \mod 23 = 6$$

•
$$x_R = 6^2 - 3 - 9 \mod 23 = 7$$

•
$$2P = (7, 6(3-7)-10) = (7,12)$$

ECC: hard problem

- EC discrete logarithm problem
 - Given Q and P, compute k for the equation Q = kP
- No efficient algorithms for solving the EC discrete logarithm problem are known yet

EC-DH key exchange

Global Public Elements

 $E_a(a,b)$ elliptic curve with parameters a, b, and q, where q is a

prime or an integer of the form 2^m

point on elliptic curve whose order is large value nG

User A Key Generation

Select private n_A

 $n_A < n$

Calculate public P_A

 $P_A = n_A \times G$

User B Key Generation

Select private n_R

 $n_B \leq n$

Calculate public P_R

 $P_R = n_R \times G$

Calculation of Secret Key by User A

$$K = n_A \times P_B$$

Calculation of Secret Key by User B

$$K = n_R \times P_A$$

EC-ElGamal encryption

- Global parameters: (*E*, *G*)
 - E is a suitable curve E, e.g. NIST P-256, P-384
 - *G* is a base point with large order *n*
- User Alice
 - private key: $PR_A = n_A$, $n_A < n$
 - public key: $PU_A = n_A G$
- Encryption: *m*
 - encode m as a point P_m in E
 - choose a random positive integer k < n
 - compute $C = (kG, P_m + kPU_A) = (C_1, C_2)$
- Decryption
 - compute $P_m = C_2 PR_AC_1 = C_2 n_AC_1$
 - decode P_m to m

EC-ElGamal encryption

- $q = 257, E_q(a, b) = E_{257}(0, -4)$
- G = (2, 2)
- Alice
 - $PR_A = n_A = 101$
 - $PU_A = n_A G = (197,167)$
- $P_m = (116, 26)$
- Encryption
 - Choose k = 41, kG = (136, 128), $kPU_A = (68, 84)$
 - $(C_1, C_2) = (kG, P_m + kPU_A) = ((136, 128), (246, 174))$
- Decryption
 - $P_m = C_2 n_A C_1 = (246, 174) 101(136, 128) = (116, 26)$

P-256

- p: the underlined group Z_p
- h: always 1
- used in EC-DSA

Name	Value	
р	0xfffffff000000100000000000000000000000	
а	0xfffffff000000100000000000000000000000	
b	0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b	
G	(0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296, 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5)	
n	0xfffffff00000000ffffffffffffffbce6faada7179e84f3b9cac2fc632551	
h	0x1	

Key size comparison

- L: length of public key
- N: length of private key

Symmetric Key Algorithms	Diffie-Hellman, Digital Signature Algorithm	RSA (size of n in bits)	ECC (modulus size in bits)
80	L = 1024 N = 160	1024	160-223
112	L = 2048 N = 224	2048	224-255
128	L = 3072 N = 256	3072	256–383
192	L = 7680 N = 384	7680	384–511
256	L = 15,360 N = 512	15,360	512 +