CEFET/RJ -- UnED NI - 2a. PROVA DE CÁLCULO NUMÉRICO Prof. Anna Regina Corbo

ALUNO: <u>Gabarite</u>

1ª Questão (2 pontos) — Os painéis laterais para o interior de um avião são formados em uma prensa importada. O custo da unidade de fabricação varia com o tamanho do lote de produção. Os dados mostrados a seguir fornecem o custo médio por unidade (em centenas de reais) para este produto (y) e o tamanho do lote de produção (x).

y	1,81	1,65	1,48	1,40	1,30	1,24	1,20	1,18
x	20	30	40	50	60	70	80	90

Usando um interpolador polinomial quadrático, calcule o custo aproximado para a fabricação de 47 painéis laterais.

2ª Questão (3 pontos) - Considere a função $f(x) = e^x + sen(x)$ e os pontos $x_0 = 0$, $x_1 = \pi/6$, $x_2 = \pi/3$ e $x_3 = \pi/2$. Determine uma aproximação de f(0.8), utilizando o polinômio de Newton, de grau menor ou igual a dois, escolhendo convenientemente pontos consecutivos do conjunto $\{x_i, i=0, 1, 2, 3\}$. Apresente também o erro absoluto obtido nesta aproximação.

3ª Questão (3 pontos) — A tabela abaixo mostra as alturas e pesos de uma amostra de cinco homens com idades entre 25 e 29 anos, extraída entre funcionários de uma empresa:

	Ĵ	✓		V	V
altura(cm)	183	173	188	163	178
peso(kg)	79	69	81	63	73

- a) Esboce o gráfico de dispersão dos dados. Que tipo de relação parecer haver entre as variáveis?
- Ajuste, por mínimos quadrados, uma reta que descreva o comportamento do peso em função da altura.
- c) Estime o peso de um funcionário com 175cm de altura; e estime a altura de um funcionário com 80kg.
- 4ª Questão (2 pontos) Um terreno está limitado por uma cerca reta e um rio. Ao longo da cerca foram marcados pontos (X, em metros) e medida a distância de cada um destes pontos ao rio (Y, em metros). Os dados obtidos são apresentados na tabela abaixo:

X	0	20	40	60	80	100	120
Y	0	22	41	53	38	17	0

Determine a área aproximada do terreno utilizando:

- a) o Método do Trapézio;
- b) o Método de Simpson.

(1) Polimônio quadrotico: 3 pts de suporte

$$\begin{pmatrix} 1 & 40 & 1600 \end{pmatrix} \begin{pmatrix} a_0 & 148 \end{pmatrix} \begin{pmatrix} 1 & 40 & 1600 & 148 \end{pmatrix} \begin{pmatrix} 1 & 40 & 1600 & 148 \end{pmatrix} \begin{pmatrix} 1 & 50 & 2500 & 140 \end{pmatrix} \begin{pmatrix} 1 & 50 & 2500 & 140 \end{pmatrix} \begin{pmatrix} 1 & 50 & 2500 & 140 \end{pmatrix} \begin{pmatrix} 1 & 50 & 2500 & 140 \end{pmatrix} \begin{pmatrix} 1 & 60 & 3600 & 130 \end{pmatrix} \begin{pmatrix} 1 & 60 & 3600 & 130 \end{pmatrix} \begin{pmatrix} 1 & 60 & 3600 & 130 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

$$\begin{cases} 0, +450, +1600 a_2 = 1,48 \\ 10a_1 + 900 a_2 = -0,08 \\ 200 a_2 = -0,02 \end{cases}$$

$$0_2 = \frac{-0.02}{200} = -0.0001$$

•
$$10a_1 + 9a0(-0.0001) = -0.08$$

• $10a_1 = -0.08 + 0.09$
 $a_1 = 0.001 \rightarrow a_1 = 0.001$

$$a_0 + 40a_1 + 1600a_2 = 1.48$$

$$a_0 + 40(0.001) + 1600(-0.0001) = 1.42$$

$$a_0 + 0.04 - 0.16 = 1.48$$

$$a_0 = 1.48 - 0.04 + 0.16$$

$$a_0 = 1.6$$

$$y(x) = 1.6 + 0.001 \times -0.0001 \times^{2}$$
Ly polition interpolation
$$y(47) = 1.6 + 0.001 \times 10^{2} + 0.0001 \times^{2}$$

$$y(47) = 1.6 + 0.001 \times 10^{2} + 0.0001 \times 10^{2}$$

$$y(47) = 1.6 + 0.047 - 0.2209 = 1.4261 \times 10^{2}$$

[Quetao 2]
$$f(x) = e^{x} + sen(x)$$

i
$$3c$$
0 0 = 0
1 $\frac{1}{10}$ 6 = 0,5235988 1,6880918 + 0,5 = 2,1880918
2 $\frac{1}{10}$ 3 = 1,0471976 2,8496539 + 0,8660 254 = 3,7156793
3 $\frac{1}{10}$ 2 = 1,5707963 4,8104774 + 1 = 5,8104774

Determinar una aproximação de f(0,8), utilizando o polirário de Newton C/ gran 2.

- Escolore os prolos xo, x, e x2.

$$2!$$
 0
 1
 $2!870917 - 1$
 0.5235987
 0.5235988
 0.5235988
 $0.6483890 = 1.2383317$
 0.5235988
 0.5235988
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976
 0.0471976

 $Y_{2}(x) = 1 + 2,26908808(x-0) + 1,2383317(x-0)(x-0,5235928)$ $Y(x) = 1 + 2,26908808x + 1,2383317x^{2} - 0,6483889x$ $Y(x) = 1 + 1,62069918x + 1,2383317x^{2}$

$$1021 = 410,8) = 1 + 1,62069918(0,8) + 1,2383317(0,8)$$

$$4(0,8) = 3,0890916_{1}$$

$$E = |4(0,8) - 1(0,8)| = |2,9452970 - 3,0890916| = 0,1461946_{1}$$

$$(0.3)$$
 (0.3)

i

$$C_1$$
 C_2
 C_2

$$\begin{cases} 885 & 3.7 \\ 5 & 885 \end{cases} = \begin{pmatrix} 365 \\ 64.885 \end{pmatrix} \Rightarrow \begin{cases} 5a_0 + 885a_1 = 365 \\ 585a_0 + 157.045a_1 = 64.885 \end{cases}$$

$$-0 \quad a_0 = 365 - 885a_1 - \sqrt{a_0} = 43 - 177a_1 - a_0 = 43 - 177(0,7567)$$

$$a_0 = -60,94$$

$$370a_1 = 280$$

$$a_1 = \frac{280}{340}$$

$$a_1 = 0.7567$$

$$y(x) = 0,7567 \times -60,94$$

c)
$$y(x) = 0.7567 \times -60.94$$

 $y(175) = 0.7567 (175) -60.94$
 $y(175) \approx 71.5 \text{ Kg} *$

80 = 0,7567 x - 60,94
0,7567 x = 140,94

$$x = \frac{140,94}{0,7567}$$
 → x ≈ 186 cm ×

4ª Quetas

$$I = \frac{h}{2} \left[(x_0) + \left((x_0) + 2 \left(\frac{1}{2} (x_1) + \frac{1}{2} (x_2) + \frac{1}{2} (x_2) + \frac{1}{2} (x_2) \right) \right]$$

$$I = \frac{20}{2} \left[0 + 0 + 2 \left(22 + 41 + 53 + 38 + 17 \right) \right]$$

b) Hétado de Sin pron:

$$I = \frac{1}{3} \left[f(x_0) + f(x_0) + 4 \left(f(x_0) + f(x_0) + f(x_0) + f(x_0) \right) + 2 \left(f(x_0) + f(x_0) \right) \right]$$

$$I = \frac{1}{3} \left[f(x_0) + f(x_0) + f(x_0) + f(x_0) + f(x_0) \right]$$

$$I = 20 \left[0 + 0 + 4 \left(22 + 53 + 17 \right) + 2 \left(41 + 38 \right) \right]$$