1. Zbadać, czy schemat $\frac{p \Rightarrow (r \Rightarrow s)}{(r \land \sim s) \Rightarrow \sim p}$ jest regułą wnioskowania.

2. Wykazać, że jeśli A, B i C są zbiorami, to $(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C)$.

3. Formalnie wykazać, że jeśli $\{A_i: i \in I\}$ jest rodziną podzbiorów zbioru X i $A \subseteq X$, to $A \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (A \setminus A_i)$.

 $\overline{4. \text{Wyznaczyć sumy} \bigcup_{n \in \mathbb{N}} A_n \text{ i} \bigcup_{n \in \mathbb{N}} \overline{A_n} \text{ oraz iloczyny} \bigcap_{n \in \mathbb{N}} A_n \text{ i} \bigcap_{n \in \mathbb{N}} \overline{A_n} \text{ rodziny } \{A_n\}_{n \in \mathbb{N}}, \text{ gdzie } A_n = \{x \in \mathbb{R} : n^2 \leqslant x \leqslant (n+1)^2\} \text{ dla } n \in \mathbb{N}. \text{ Każdorazowo przedstawić formalne uzasadnienie swojego stwierdzenia.}$

5. Indukcyjnie wykazać, że liczba $x_n = 11^{n+2} + 12^{2n+1}$ jest podzielna przez 133 dla każdej liczby $n \in \mathbb{N}$.	
6. Podać przykład funkcji $f: \mathbb{N} \to \mathbb{N}$, takiej że:	-
1. f jest różnowartościowa, ale nie jest na:	Ш
, J	
2. f jest na, ale nie jest różnowartościowa:	
3. f nie jest różnowartościowa i nie jest na:	
4. f jest różnowartościowa i jest na:	
Przedstawić uzasadnienia do swoich przykładów.	
7. W zbiorze \mathbb{Z} określona jest relacja \sim , gdzie dla $a,b\in\mathbb{Z}$ jest $a\sim b$ wtedy i tylko wtedy, gdy $7 3a+4b$. (1) Formalnie wykazać, że \sim jest relacją równoważności w zbiorze \mathbb{Z} . (2) Wyznaczyć klasę abstrakcji $[0]_{\sim}$. Uzasadnić swoją propozycję!	
8. Formalnie uzasadnić, że odcinek $(0;1)$ nie jest równoliczny ze zbiorem $\mathbb{N}.$	-