Durée 1h. Sans calculatrice et sans documents. La qualité et la précision de la rédaction seront prises en compte dans l'évaluation.

Exercice 1 (6 points)

Soit $\Sigma = \{a, b\}$. Vrai ou faux ? Justifier.

- 1. Pour tous langages $L, M \subset \Sigma^*, (LM)^* \subset (L \cup M)^*$.
- 2. Pour tous langages $L, M \subset \Sigma^*, (LM)^* = (L \cup M)^*.$
- 3. Pour tous languages $L, M \subset \Sigma^*, (L^*M^*)^* = (L \cup M)^*.$

Exercice 2 (4 points)

Construire un AFN reconnaissant le langage de l'expression régulière $(ab + ba)^*$, puis le déterminiser.

Exercice 3 (4 points)

Le langage $L = \{ww, w \in \{a, b\}^*\}$ des mots composés de deux mots identiques sur l'alphabet $\{a, b\}$ est-il régulier ? Justifier.

Exercice 4 (6 points)

Soit
$$L_1 = \{a^{3n}, n \in \mathbb{N}\}$$
 et $L_2 = \{a^{2n}, n \in \mathbb{N}\}.$

- 1. Montrer que L_1 et L_2 sont réguliers.
- 2. Donner un automate fini qui reconnaît $L=L_1-L_2=L_1\cap \overline{L_2}$.
- 3. Donner une expression régulière dont le langage est L.

Exercice 5 (6 points)

Soit
$$L = \{a^i b^j, (i, j) \in \mathbb{N}^2 \text{ avec } i \neq j\}.$$

- 1. Montrer que L est un langage hors-contexte.
- 2. Soit M le langage de l'expression régulière a^*b^* . Expliciter le langage $M-L=M\cap\overline{L}$.
- 3. Montrer que L n'est pas un langage régulier.