Week 4 - Simulation and Profiling

Contents

1			Simulation & Profiling	7 11 14 15
			r Function	
	1.2	Simula	ation - Generating Random Numbers	7
		1.2.1	Generating Random Numbers From a Linear Model	
		1.2.2	Random Sampling	14
	1.3	R Pro	filer	15
		1.3.1	Why is My Code So Slow?	15
		1.3.2	On Optimizing Your Code	15
		1.3.3	General Principles of Optimization	15
		1.3.4	Using system.time()	15
		1.3.5	Timing Longer Expressions	15
		1.3.6	Beyond system.time()	16
		1.3.7	The R Profiler	16
		1.3.8	Using summaryRprof()	16
		1.3.9	By Total	16

1 Week 4 - Simulation & Profiling

1.1 The str Function

str: Completly display the internal structyure of an R object

- A diagnostic function and an alternative to 'summary'
- It is especially well suited to compactly display the (abbreviated) contents of (spossibly nester) lists.
- Roughly one line per basic object

```
str(str)
## function (object, ...)
str(lm)
## function (formula, data, subset, weights, na.action, method = "qr", model = TRUE,
##
       x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE, contrasts = NULL,
##
       offset, ...)
x \leftarrow rnorm(100, 2, 4)
##
     [1] -0.312118937 -5.619057850
                                    5.579319236
                                                1.627084514
                                                              3.503555774
     [6] 0.390286977
##
                       6.425381046
                                    3.990880761
                                                 0.465288103
                                                              2.688933420
##
    [11] -3.121574057
                      5.680190520
                                    7.498814183
                                                 3.089195725
                                                              0.468557557
##
    [16] -0.039917516 7.076667654 1.819032763 -1.231957795
##
   [21] 3.421960250 8.486084712 0.190746615 3.981293725
                                                              1.383674291
    [26] 1.771462789 -0.871515172 1.059194519 -2.149355055 4.809957138
```

```
[31] -1.428933559 1.434414787 10.798339162 -0.127084930 1.701156216
##
   [36] -1.822315205 4.164725187 1.412761897 -0.225046458 1.963507251
##
   [41] 3.947241612 0.596202773 2.197630211 -5.234225102 9.746092635
   [46] 6.337932885 -2.524069429 6.948984557 -3.389341942 -4.900351570
##
##
   [51] 2.491328206 -2.834012557 -1.422408791 1.271737992 4.728854357
   [56] 2.864701878 -0.753596993 2.818317098 -1.403465517 2.182883484
##
   [61] -3.033955523 1.175762721 5.551114354 -1.830031679 -2.247787266
   [66] -0.040912799 7.085911228 1.036536831 2.443138750 -1.949937749
##
##
   [71]
        1.830434869 -0.003794044 5.276924444 -0.654973576 3.338336588
##
   [76] 4.894377263 10.881200880 -3.713692907 3.262133305 -1.861118051
   [81] 1.487341024 -5.703888709 2.723227018 0.661802059 4.256379364
   [86] 9.566704891 3.660849535 -8.520101095 -0.307584178 7.085330783
##
   [91] 7.367296356 -2.204555592 1.718733162 -4.276604005 0.683630326
  [96] 3.438309299 6.221416728 2.582234689 1.803482284 2.775281874
summary(x)
     Min. 1st Qu. Median
                           Mean 3rd Qu.
                                          Max.
## -8.5201 -0.6796 1.7099 1.7458 3.9837 10.8812
str(x)
## num [1:100] -0.312 -5.619 5.579 1.627 3.504 ...
x is a numeric vector, has 100 elements in it, and gives first 5 elements.
f \leftarrow gl(40,10)
str(f)
  Factor w/ 40 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
summary(f)
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
## 27 28 29 30 31 32 33 34 35 36 37 38 39 40
library(datasets)
head(airquality)
```

Ozone	$\operatorname{Solar.R}$	Wind	Temp	Month	Day
41	190	7.4	67	5	1
36	118	8.0	72	5	2
12	149	12.6	74	5	3
18	313	11.5	62	5	4
NA	NA	14.3	56	5	5
28	NA	14.9	66	5	6

str(airquality)

```
## 'data.frame': 153 obs. of 6 variables:
## $ Ozone : int 41 36 12 18 NA 28 23 19 8 NA ...
## $ Solar.R: int 190 118 149 313 NA NA 299 99 19 194 ...
## $ Wind : num 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
## $ Temp : int 67 72 74 62 56 66 65 59 61 69 ...
## $ Month : int 5 5 5 5 5 5 5 5 5 ...
```

```
## $ Day
          : int 1 2 3 4 5 6 7 8 9 10 ...
m <- matrix(rnorm(100,10,10))</pre>
str(m)
## num [1:100, 1] -6.83 30.54 13.02 28.58 13.2 ...
m[,1]
##
    [1] -6.82960549 30.54448932 13.02225643 28.58175974 13.20034850
                                              5.28502561 -2.99130548
##
    [6] 12.97357766 21.15839522 11.82066073
   Γ11]
         9.08316115 13.32364707 12.55437859 25.23689638
                                                           8.48852401
##
   [16] 27.83409110 18.73880340 13.37388569 16.19116858
                                                           6.06653675
   [21] 16.86044202 16.16705404 -4.58937204 27.38157852 21.37339698
   [26] 22.13949871 13.28522605 -11.47213296 31.35660943 12.29908547
##
##
   Γ317
        19.38850721
                      1.12412871
                                  1.98442147
                                              8.29462010 27.31445678
## [36] 14.57021409 17.90893256 29.12754369
                                             1.62011188 10.11325888
## [41]
         4.98953924
                     6.93593045 12.48102326 8.74434830
                                                           2.24174967
## [46]
          8.20921439 -19.94311085 15.04918746
                                              4.35813392 17.58128590
##
  [51]
         7.57843765 10.22159509 -10.47220024 18.44986894
                                                           2.33866377
## [56]
         1.61225869 17.48504958 10.03259578
                                              1.82575791 13.56974138
## [61] 19.18940255 -4.37655552
                                  1.40846803
                                              7.36040441
                                                           4.74428322
##
   [66]
        13.59284894 10.19343085
                                  0.08415636 12.56929636 -19.33952803
## [71]
        -0.18713860
                    3.57434460 13.75478358
                                              9.96742926 -10.54888991
## [76]
                      8.47190541
                                  7.07102279
                                               2.27988553
                                                           1.62090934
          2.63642191
## [81] -2.31157752
                    6.75099813 -6.84529039 10.57567174 23.25519801
## [86]
         3.48209372 3.36123761
                                 9.31945279
                                              8.32275083 15.80888430
## [91]
         5.22142479 12.21129691 -11.72670892 -15.43750412 21.95871969
## [96] 27.54797458 9.41561152 25.25529292
                                               0.34890560
                                                          2.72154893
s <- split(airquality, airquality$Month)</pre>
## $`5`
##
     Ozone Solar.R Wind Temp Month Day
## 1
        41
              190 7.4
                         67
                                5
## 2
        36
               118 8.0
                         72
                                5
                                    2
## 3
        12
               149 12.6
                         74
                                5
                                    3
## 4
        18
               313 11.5
                         62
                                5
                                  4
## 5
        NA
              NA 14.3
                         56
                                5 5
## 6
        28
               NA 14.9
                         66
                                5 6
## 7
        23
               299 8.6
                         65
                                5
                                  7
## 8
        19
               99 13.8
                         59
                                5
                                  8
## 9
        8
               19 20.1
                         61
                                5
## 10
                                5 10
        NA
               194 8.6
                         69
## 11
        7
               NA 6.9
                         74
                                5 11
## 12
        16
               256 9.7
                         69
                                5 12
## 13
               290 9.2
                                5 13
        11
                         66
                                5 14
## 14
        14
               274 10.9
                         68
                                5 15
## 15
        18
               65 13.2
                         58
```

16

17

18

19

20

21

14

34

6

30

11

1

334 11.5

307 12.0

78 18.4

322 11.5

44 9.7

8 9.7

64

66

57

68

62

59

5 16

5 17

5 18

5 19

5 20

5 21

```
320 16.6
## 22
         11
                           73
                                  5 22
## 23
         4
                 25 9.7
                           61
                                  5
                                     23
## 24
         32
                 92 12.0
                           61
                                  5
                                    24
## 25
                 66 16.6
                                  5 25
         NA
                           57
## 26
         NA
                266 14.9
                           58
                                  5
                                     26
## 27
         NA
                NA 8.0
                                  5 27
                           57
## 28
         23
                13 12.0
                                  5 28
                           67
## 29
                252 14.9
                                  5 29
         45
                           81
## 30
        115
                223 5.7
                           79
                                  5
                                     30
## 31
         37
                279 7.4
                           76
                                  5 31
##
## $`6`
##
      Ozone Solar.R Wind Temp Month Day
## 32
                286 8.6
         NA
                           78
                                  6
## 33
         NA
                287 9.7
                           74
                                  6
                                      2
## 34
         NA
                242 16.1
                           67
                                  6
                                      3
## 35
         NA
                186 9.2
                           84
                                  6
                                      4
## 36
         NA
                220 8.6
                           85
                                  6
## 37
                264 14.3
                           79
                                  6
                                      6
         NA
## 38
                                      7
         29
                127 9.7
                           82
                                  6
## 39
         NA
                273 6.9
                           87
                                  6
                                      8
## 40
         71
                291 13.8
                           90
                                  6
                                      9
## 41
                323 11.5
                           87
                                  6 10
         39
## 42
         NA
                259 10.9
                           93
                                  6
                                     11
## 43
         NA
                250 9.2
                           92
                                  6 12
## 44
         23
                148 8.0
                           82
                                  6 13
## 45
         NA
                332 13.8
                           80
                                  6 14
## 46
                322 11.5
                           79
                                  6 15
         NA
## 47
         21
                191 14.9
                           77
                                  6 16
## 48
                284 20.7
                                  6 17
         37
                           72
                37 9.2
## 49
         20
                           65
                                  6 18
## 50
         12
                120 11.5
                           73
                                  6 19
## 51
                137 10.3
                                  6 20
         13
                           76
## 52
                150 6.3
                           77
                                  6 21
         NA
                                  6 22
## 53
         NA
                59
                    1.7
                           76
## 54
         NA
                 91 4.6
                           76
                                  6 23
## 55
         NA
                250 6.3
                           76
                                  6 24
## 56
         NA
                135
                    8.0
                           75
                                  6 25
## 57
         NA
                127 8.0
                           78
                                  6
                                    26
                                  6 27
## 58
         NA
                 47 10.3
                           73
## 59
                 98 11.5
                           80
                                  6 28
         NA
                                  6 29
## 60
         NA
                 31 14.9
                           77
## 61
                138 8.0
                           83
                                  6
                                     30
         NA
##
## $`7`
##
      Ozone Solar.R Wind Temp Month Day
## 62
        135
                269 4.1
                           84
                                  7
                                      1
## 63
         49
                248 9.2
                           85
                                  7
                                      2
## 64
         32
                236 9.2
                           81
                                  7
                                      3
                101 10.9
                                  7
## 65
         NA
                           84
                                      4
## 66
         64
                175 4.6
                           83
                                  7
                                      5
## 67
                314 10.9
                                  7
         40
                           83
## 68
         77
                276 5.1
                           88
                                  7
                                      7
## 69
         97
                267 6.3
                           92
                                  7
```

```
## 70
                 272 5.7
                                     7
          97
                             92
                                         9
## 71
         85
                 175
                      7.4
                             89
                                     7
                                        10
                 139 8.6
## 72
         NA
                             82
                                     7
                                        11
                 264 14.3
                                        12
## 73
          10
                             73
                                     7
## 74
          27
                 175 14.9
                             81
                                     7
                                        13
## 75
                 291 14.9
                                     7
                                        14
         NA
                             91
## 76
          7
                  48 14.3
                             80
                                     7
                                        15
                 260 6.9
                                     7
## 77
          48
                             81
                                        16
## 78
          35
                 274 10.3
                             82
                                     7
                                        17
## 79
                 285 6.3
                                     7
         61
                             84
                                        18
## 80
         79
                 187 5.1
                             87
                                     7
                                        19
                                     7
                                        20
## 81
                 220 11.5
                             85
         63
## 82
                   7
                      6.9
                                     7
                                        21
         16
                             74
## 83
                 258 9.7
                                     7
                                        22
         NA
                             81
## 84
                 295 11.5
                             82
                                     7
                                        23
         NA
## 85
         80
                 294 8.6
                             86
                                     7
                                        24
## 86
        108
                 223 8.0
                             85
                                     7
                                        25
## 87
         20
                  81 8.6
                             82
                                     7
                                        26
## 88
                  82 12.0
                             86
                                     7
                                        27
         52
                                     7
                                        28
## 89
         82
                 213
                      7.4
                             88
## 90
         50
                 275
                      7.4
                             86
                                     7
                                        29
## 91
          64
                 253
                      7.4
                             83
                                     7
                                        30
## 92
                      9.2
                                     7
         59
                 254
                                        31
                             81
##
## $`8`
       Ozone Solar.R Wind Temp Month Day
##
## 93
           39
                   83 6.9
                              81
                                      8
                                           1
## 94
           9
                   24 13.8
                                      8
                                           2
                              81
## 95
                   77
                       7.4
                                          3
           16
                              82
                                      8
## 96
                   NA 6.9
                                          4
           78
                              86
                                      8
                        7.4
## 97
           35
                   NA
                              85
                                      8
                                          5
## 98
           66
                   NA
                       4.6
                              87
                                      8
                                          6
## 99
          122
                  255
                                          7
                       4.0
                              89
                                      8
## 100
           89
                  229 10.3
                              90
                                      8
                                          8
## 101
          110
                  207 8.0
                              90
                                      8
                                          9
## 102
                  222 8.6
                              92
                                      8
                                         10
          NA
## 103
           NA
                  137 11.5
                              86
                                      8
                                         11
## 104
           44
                  192 11.5
                              86
                                      8
                                         12
## 105
           28
                  273 11.5
                              82
                                      8
                                         13
## 106
                                      8
           65
                  157 9.7
                              80
                                         14
## 107
                   64 11.5
                              79
                                      8
                                         15
           NA
## 108
           22
                   71 10.3
                              77
                                      8
                                         16
## 109
                   51 6.3
                                      8
                                         17
           59
                              79
## 110
                  115 7.4
                              76
                                      8
           23
                                         18
## 111
           31
                  244 10.9
                              78
                                      8
                                         19
                  190 10.3
## 112
           44
                              78
                                      8
                                         20
## 113
                  259 15.5
                              77
                                      8
                                         21
           21
## 114
           9
                   36 14.3
                              72
                                      8
                                         22
## 115
           NA
                  255 12.6
                              75
                                      8
                                         23
## 116
                  212 9.7
                              79
           45
                                      8
                                         24
## 117
          168
                  238 3.4
                                      8
                                         25
                              81
## 118
                  215 8.0
                                         26
           73
                              86
                                      8
## 119
           NA
                  153 5.7
                              88
                                      8
                                         27
## 120
                  203 9.7
           76
                              97
                                      8
                                         28
```

```
8 29
## 121
         118
                 225 2.3
                             94
## 122
          84
                 237 6.3
                             96
                                       30
                                    8
## 123
          85
                 188 6.3
                             94
                                       31
##
## $`9`
##
       Ozone Solar.R Wind Temp Month Day
## 124
          96
                 167 6.9
                             91
## 125
                 197
                                        2
          78
                      5.1
                             92
                                    9
## 126
          73
                 183
                      2.8
                             93
                                    9
                                        3
## 127
                 189 4.6
                                        4
          91
                             93
                                    9
## 128
          47
                  95 7.4
                             87
                                    9
                                        5
## 129
                  92 15.5
                                        6
          32
                             84
                                    9
                                        7
## 130
          20
                 252 10.9
                             80
                                    9
## 131
                 220 10.3
                             78
          23
                                        8
## 132
                 230 10.9
                             75
                                        9
          21
                                    9
## 133
          24
                 259 9.7
                             73
                                    9
                                       10
## 134
          44
                 236 14.9
                             81
                                    9
                                       11
## 135
          21
                 259 15.5
                             76
                                       12
                                       13
## 136
                 238 6.3
          28
                             77
                                    9
## 137
           9
                  24 10.9
                             71
                                    9
                                       14
## 138
          13
                 112 11.5
                             71
                                    9
                                       15
## 139
                 237 6.9
                             78
                                       16
          46
## 140
                 224 13.8
                                       17
          18
                             67
                                    9
## 141
                  27 10.3
                                    9
                                       18
          13
                             76
## 142
                 238 10.3
                                    9
                                       19
          24
                             68
## 143
          16
                 201 8.0
                             82
                                    9
                                       20
## 144
                 238 12.6
                             64
                                    9
                                       21
          13
## 145
                  14 9.2
          23
                             71
                                    9
                                       22
                                    9
## 146
                 139 10.3
                                       23
          36
                             81
## 147
          7
                  49 10.3
                             69
                                    9
                                       24
## 148
          14
                  20 16.6
                             63
                                    9
                                       25
## 149
          30
                 193 6.9
                             70
                                    9
                                       26
## 150
          NA
                 145 13.2
                             77
                                       27
## 151
                 191 14.3
                                       28
          14
                             75
                                    9
## 152
          18
                 131 8.0
                             76
                                    9
                                       29
## 153
                 223 11.5
                                    9
                                       30
          20
                             68
str(s)
## List of 5
    $ 5:'data.frame':
                         31 obs. of 6 variables:
     ..$ Ozone : int [1:31] 41 36 12 18 NA 28 23 19 8 NA ...
     ..$ Solar.R: int [1:31] 190 118 149 313 NA NA 299 99 19 194 ...
##
               : num [1:31] 7.4 8 12.6 11.5 14.3 14.9 8.6 13.8 20.1 8.6 ...
              : int [1:31] 67 72 74 62 56 66 65 59 61 69 ...
##
     ..$ Temp
##
     ..$ Month : int [1:31] 5 5 5 5 5 5 5 5 5 5 ...
##
     ..$ Day
                : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...
##
    $ 6: 'data.frame':
                         30 obs. of 6 variables:
     ..$ Ozone : int [1:30] NA NA NA NA NA NA 29 NA 71 39 ...
##
##
     ..$ Solar.R: int [1:30] 286 287 242 186 220 264 127 273 291 323 ...
##
               : num [1:30] 8.6 9.7 16.1 9.2 8.6 14.3 9.7 6.9 13.8 11.5 ...
     ..$ Wind
##
               : int [1:30] 78 74 67 84 85 79 82 87 90 87 ...
##
     ..$ Month : int [1:30] 6 6 6 6 6 6 6 6 6 6 ...
##
    ..$ Day
                : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...
```

31 obs. of 6 variables:

\$ 7:'data.frame':

```
##
     ..$ Ozone : int [1:31] 135 49 32 NA 64 40 77 97 97 85 ...
##
     ..$ Solar.R: int [1:31] 269 248 236 101 175 314 276 267 272 175 ...
##
               : num [1:31] 4.1 9.2 9.2 10.9 4.6 10.9 5.1 6.3 5.7 7.4 ...
##
                : int [1:31] 84 85 81 84 83 83 88 92 92 89 ...
     ..$ Temp
##
     ..$ Month : int [1:31] 7 7 7 7 7 7 7 7 7 7 ...
     ..$ Day
                : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...
##
    $ 8:'data.frame':
                        31 obs. of 6 variables:
     ..$ Ozone : int [1:31] 39 9 16 78 35 66 122 89 110 NA ...
##
##
     ..$ Solar.R: int [1:31] 83 24 77 NA NA NA 255 229 207 222 ...
##
               : num [1:31] 6.9 13.8 7.4 6.9 7.4 4.6 4 10.3 8 8.6 ...
     ..$ Temp
                : int [1:31] 81 81 82 86 85 87 89 90 90 92 ...
     ..$ Month : int [1:31] 8 8 8 8 8 8 8 8 8 8 ...
##
##
                : int [1:31] 1 2 3 4 5 6 7 8 9 10 ...
     ..$ Day
   $ 9:'data.frame':
##
                        30 obs. of 6 variables:
##
     ..$ Ozone : int [1:30] 96 78 73 91 47 32 20 23 21 24 ...
##
     ..$ Solar.R: int [1:30] 167 197 183 189 95 92 252 220 230 259 ...
##
               : num [1:30] 6.9 5.1 2.8 4.6 7.4 15.5 10.9 10.3 10.9 9.7 ...
     ..$ Wind
##
     ..$ Temp
                : int [1:30] 91 92 93 93 87 84 80 78 75 73 ...
##
     ..$ Month : int [1:30] 9 9 9 9 9 9 9 9 9 ...
                : int [1:30] 1 2 3 4 5 6 7 8 9 10 ...
##
```

1.2 Simulation - Generating Random Numbers

Functions for probability distributions in R

 \cdot rnorm: generate random Normal variates with a given mean and standard deviation \cdot dnorm: evaluate the Normal probability density (with a given mean/SD) at a point (or vector of points) \cdot pnorm: evaluate the cumulative distribution function for a Normal distribution \cdot rpois: generate random Poisson variates with a given rate

Probability distribution functions usually have four functions associated with them. The functions are prefixed with a \cdot d for density \cdot r for random number generation \cdot p for cumulative distribution \cdot q for quantile function

Working with the Normal distributions requires using these four functions

```
dnorm(x, mean = 0, sd = 1, log = FALSE)
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)
rnorm(n, mean = 0, sd = 1)
```

If Φ is the cumulative distribution function for a standard Normal distribution, then pnorm(q) = Φ (q) and qnorm(p) = Φ -1 (p).

```
x <- rnorm(10)

x

## [1] -0.77718098 -0.43616995 0.62084419 0.32032108 -0.90479986 -0.63977207

## [7] -0.09944947 -0.94166052 -0.68483322 -0.11472052
```

hist(x)

Histogram of x


```
x <- rnorm(10,20,2)
```

[1] 20.61342 21.52248 23.13157 18.95772 21.57169 23.45541 15.85809 19.52111

[9] 21.35115 17.29110

hist(x)

Histogram of x

summary(x)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 15.86 19.10 20.98 20.33 21.56 23.46
```

Setting the random number seed with set.seed ensures reproducibility

```
set.seed(1)
rnorm(5)
```

```
## [1] -0.8204684   0.4874291   0.7383247   0.5757814 -0.3053884
```

set.seed(1)
rnorm(5)

Always set the random number seed when conducting a simulation!

Generating Poisson data

```
rpois(10, 1)
```

```
## [1] 0 0 1 1 2 1 1 4 1 2
```

hist(rpois(10, 1))

Histogram of rpois(10, 1)

rpois(10, 20)

[1] 19 19 24 23 22 24 23 20 11 22

hist(rpois(10, 20))

Histogram of rpois(10, 20)


```
ppois(2, 2) ## Cumulative distribution
## [1] 0.6766764
Pr(x \le 2)
ppois(6, 2)
## [1] 0.9954662
Pr(x \le 6)
ppois(4, 2)
## [1] 0.947347
Pr(x \le 4)
1.2.1 Generating Random Numbers From a Linear Model
Suppose we want to simulate from the following linear model
y = 0 + 1x +
where
       N(0,22). Assume x N(0,12), 0 = 0.5 and 1 = 2.
set.seed(20)
x <- rnorm(100)
e \leftarrow rnorm(100, 0, 2)
y<-0.5+2*x+e
summary(y)
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                              Max.
## -6.4084 -1.5402 0.6789 0.6893 2.9303 6.5052
У
     [1] 3.92145671 -1.12306154 6.50516206 -0.76334657
##
                                                         1.43080733
                                                                      1.85824578
     [7] -5.49942000 -2.10701153 0.67867568 -3.64118829
##
                                                         2.15300374
                                                                      3.64495611
##
    [13] -2.65751679   0.04553572   -3.72883351   -2.23668198   -0.49039654
                                                                     4.38887620
##
   [19] 0.16890419 0.52829153 2.48205656 0.76639727 4.04713057 4.48476280
##
   [25] 1.63952492 -1.71150396 0.67914445 -5.37113780 -5.81140592 -2.71828488
##
    [31] -2.12810590 6.02056165 0.60895238 6.05517659 -4.71161217 -4.39467489
##
   [37] -2.65861895 3.58184381 -1.50917314 3.20076678 -1.76509940 -3.28807288
##
   [43] 2.19238717 2.55958594 -2.08720395 0.70189574 2.69534679 6.09139163
##
   [49] 1.59929020 -1.02936781 4.84828910 -1.27631332 2.51707303 -0.08880639
##
    [55] 4.27076653 1.54675806 2.42362336 -0.60750392 -0.57008476
##
   [61] 2.69160962 1.02230623 2.38639291 -0.58044205 4.83151620 -6.40843800
   [67] 2.11701166 -0.17304283 5.42106533 -1.48483428 2.77113330 0.20767705
##
##
   [73] 3.66166652 -1.98363440 0.28360591 -1.48370020 -2.76032486 0.32931957
##
    [79] 0.47189300 -0.34351008 0.28078066 5.21035478 1.00142931
                                                                     4.20158959
##
   [85] 3.09853964 1.93979202 3.26573037
                                             1.30890176
                                                         3.39689480 0.96975660
   [91]
         6.27609452 -5.76983364 -1.63342938 -2.21466670
                                                         0.51530957 -2.51624067
         3.50519076 4.40940115 -2.85087510 2.87426339
   [97]
plot(x, y)
```


What if x is binary?

Min. 1st Qu. Median

-3.4936 -0.1409 1.5767 1.4322 2.8397 6.9410

```
set.seed(10)
x \leftarrow rbinom(100, 1, 0.5)
e \leftarrow rnorm(100, 0, 2)
y<-0.5+2*x+e
у
        1.698724906 -0.169113130 3.235907906
                                               6.775534207
##
                                                            1.511638529
##
        2.072684768 -1.304423888 1.565793985
                                                            1.081974977
    [6]
                                               1.208211493
##
    [11] 0.024811062 1.587647450 -1.160645309
                                               3.180231287
                                                            2.632752791
    [16] 2.932251676 1.971381315 -0.462417235
##
                                               1.625489526
                                                            0.007360576
##
    [21]
         3.261844425 -0.360854506 0.403108990
                                               0.062992899 -2.479872473
    [26] 4.845412562 -0.459654043 -0.360775632
##
                                               0.396722716
                                                            3.545172688
##
    [31] 3.685656109 0.054676982 1.925788552
                                               3.933201667
                                                            1.380483729
##
    [36] 2.817661243 3.819528277
                                   6.941039326
                                               0.132109852
                                                            2.352088331
    [41] -0.332709350 0.117035312
                                  0.639089563
                                               4.810696636
##
                                                            1.689914694
##
    [46] -2.339290217 -2.713354491 2.285851799
                                               0.796335910
                                                            4.954056780
##
    [51] -1.023608678 3.338750812 -1.579886729
                                               1.923147932 -0.766426030
    [56] 3.626349329 1.821973372 -2.816101715
##
                                               2.556335954
                                                            4.755907228
##
    [61] -2.060309207
                      2.757736455 -0.428269054 -0.131520419
                                                            4.348586294
##
    [66] 2.654289448 4.579847210 1.983772413
                                               3.011089717
                                                            2.401837933
    [71] -0.462731215
                      2.905763556
                                  2.436520512
                                               0.108839399
                                                            1.747362474
    [76] 0.670391033
##
                     0.997516015  0.374754414  -0.227964494  -1.913989707
##
    [81] 5.358425563 1.766871782 -3.493631235
                                               1.136335654 -0.420110959
##
    [86] -1.466138388 3.490663426 1.951635000
                                               1.834597464
                                                           2.409572873
##
    1.244944677
   [96] 4.631758668 1.561299737 2.703966892 5.175564932 0.674469537
##
summary(y)
```

Mean 3rd Qu.

Suppose we want to simulate from a Poisson model where

```
Y \sim Poisson() log = 0 + 1x
```

and 0 = 0.5 and 1 = 0.3. We need to use the rpois function for this

```
set.seed(1)
x <- rnorm(100)
log.mu<-0.5+0.3*x
y <- rpois(100, exp(log.mu))
summary(y)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
      0.00
              1.00
                       1.00
                               1.55
                                       2.00
                                                6.00
plot(x,y)
```


1.2.2 Random Sampling

[1] 3 6 10 10 6 4 4 10 9 7

The sample function draws randomly from a specified set of (scalar) objects allowing you to sample from arbitrary distributions.

```
set.seed(1)
sample(1:10, 4)

## [1] 9 4 7 1
sample(1:10, 4)

## [1] 2 7 3 6
sample(letters, 5)

## [1] "r" "s" "a" "u" "w"
sample(1:10) ## permutation

## [1] 10 6 9 2 1 5 8 4 3 7
sample(1:10)

## [1] 5 10 2 8 6 1 4 3 9 7
sample(1:10, replace = TRUE) ## Sample w/replacement
```

Summary \cdot Drawing samples from specific probability distributions can be done with r* functions \cdot Standard distributions are built in: Normal, Poisson, Binomial, Exponential, Gamma, etc. \cdot The sample function can be used to draw random samples from arbitrary vectors \cdot Setting the random number generator seed via set.seed is critical for reproducibility

1.3 R Profiler

1.3.1 Why is My Code So Slow?

Profiling is a systematic way to examine how much time is spend in different parts of a program · Useful when trying to optimize your code · Often code runs fine once, but what if you have to put it in a loop for 1,000 iterations? Is it still fast enough? · Profiling is better than guessing

1.3.2 On Optimizing Your Code

- · Getting biggest impact on speeding up code depends on knowing where the code spends most of its time · This cannot be done without performance analysis or profiling
- We should forget about small efficiencies, say about 97% of the time: premature optimization is the root of

1.3.3 General Principles of Optimization

· Design first, then optimize · Remember: Premature optimization is the root of all evil · Measure (collect data), don't guess. · If you're going to be scientist, you need to apply the same principles here!

1.3.4 Using system.time()

all evil –Donald Knuth

- \cdot Takes an arbitrary R expression as input (can be wrapped in curly braces) and returns the amount of time taken to evaluate the expression \cdot Computes the time (in seconds) needed to execute an expression Ifthere's an error, gives time until the error occurred \cdot Returns an object of class proc_time user-time: timecharged to the CPU(s) for this expression elapsed time: "wall clock" time
- \cdot Usually, the user time and elapsed time are relatively close, for straight computing tasks \cdot Elapsed time may be greater than user time if the CPU spends a lot of time waiting around \cdot Elapsted time may be smaller than the user time if your machine has multiple cores/processors (and is capable of using them) Multi-threadedBLASlibraries(vecLib/Accelerate,ATLAS,ACML,MKL) Parallelprocessing via the parallel package

```
## Elapsed time > user time
system.time(readLines("http://www.jhsph.edu"))
##
           system elapsed
      user
             0.010
     0.045
## Elapsed time < user time
hilbert <- function(n) {
  i <- 1:n
   / outer(i - 1, i, "+")
}
x <- hilbert(1000)
system.time(svd(x))
##
            system elapsed
      user
```

1.3.5 Timing Longer Expressions

0.013

1.842

##

1.828

```
system.time({
    n <- 1000
    r <- numeric(n)
    for (i in 1:n) {
        x <- rnorm(n)</pre>
```

```
r[i] <- mean(x)
}
})
```

```
## user system elapsed
## 0.040 0.001 0.042
```

user: The CPU time charged for the execution of user instructions of the calling process. This is the time spent by the CPU executing the code.

system: The CPU time charged for execution by the system on behalf of the calling process. This often refers to time spent on system-level tasks such as memory allocation.

elapsed: The total elapsed (wall-clock) time in seconds. This is essentially the real-world time it took for the code to run start-to-finish. It's usually the sum of user and system times, but can be greater due to reasons like if your process is running on a multitasking system and gets paused to allow other tasks to run.

1.3.6 Beyond system.time()

- Using system.time() allows you to test certain functions or code blocks to see if they are taking excessive
 amounts of time
- Assumes you already know where the problem is and can call system.time() on it
- What if you don't know where to start?

1.3.7 The R Profiler

- \cdot The Rprof() function starts the profiler in R Rmustbecompiled with profiler support (but this is usually the case)
- · The summary Rprof() function summarizes the output from Rprof() (otherwise it's not readable) · DO NOT use system. time() and Rprof() together or you will be sad
- \cdot Rprof() keeps track of the function call stack at regularly sampled intervals and tabulates how much time is spend in each function \cdot Default sampling interval is 0.02 seconds \cdot NOTE: If your code runs very quickly, the profiler is not useful, but then you probably don't need it in that case

```
##lm(y~x)
sample.interval=10000
```

1.3.8 Using summaryRprof()

 \cdot The summary Rprof() function tabulates the R profiler output and calculates how much time is spend in which function \cdot There are two methods for normalizing the data \cdot "by.total" divides the time spend in each function by the total run time \cdot "by.self" does the same but first subtracts out time spent in functions above in the call stack

1.3.9 By Total

##

sample.interval

[1] 10000

Summary · Rprof() runs the profiler for performance of analysis of R code · summaryRprof() summarizes the output of Rprof() and gives percent of time spent in each function (with two types of normalization) · Good to break your code into functions so that the profiler can give useful information about where time is being spent · C or Fortran code is not profiled