Rebuttal for ICML'25 Submission #3922

Submission #3922 Authors

March 30, 2025

1 Response to Reviewer HcSt

$M \to \infty$	N=8	N = 10	N = 12	N = 16	N = 25	N = 31
Ridge	0.00367	0.00444	0.00566	0.00636	0.00599	0.00579
ResMLP-128x4	0.03961	0.03677	0.03460	0.03129	0.02769	0.02625
ResCNN-32-64-128x2	0.02056	0.03710	0.03432	0.03050	0.02582	0.02381
LLM4QPE	0.04916	0.04385	0.03969	0.03728	0.03083	0.02951

$M \to \infty$	# Params	$n = 10^2$	$n = 10^{3}$	$n = 10^4$	$n = 10^5$
Ridge	< 0.01M	0.00780	0.00528	0.00367	0.00660
ResMLP-128x4	0.09M	0.04219	0.04172	0.03961	0.03956
ResCNN-32-64-128x2	1.14M	0.01987	0.02078	0.02056	0.02054
LLM4QPE	9.89M	0.03966	0.04304	0.04916	_

Table 1: The RMSE result on correlation prediction of $|\psi_{\rm HB}\rangle$ with varied N and $n_{\rm sft}$. M is fixed to 64. ResXXX-a-b-cxd-e represents neural network MLP (CNN) that composed of d+3 in the order a-,b-, d layers of c-, and e-width fully connected (convolutional) layers with residual connection. The best results are highlighted in **boldface** while the second-best results are distinguished in <u>underlined</u>.

Methods		N = 48		N = 63			N = 100			N = 127		
Methods	$n_{ m sft}=20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{ m sft}=60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{ m sft} = 100$	$n_{\rm sft} = 20$	$n_{ m sft}=60$	$n_{\rm sft}=100$
CS	0.21113			0.21257			0.21399			0.21447		
ResMLP-128x2	0.08282	0.07752	0.06616	0.12055	0.08776	0.07086	0.10848	0.08158	0.07405	0.10091	0.10083	0.08245
ResMLP-128x3	0.06214	0.04853	0.04494	0.07256	0.05506	0.04467	0.07740	0.06496	0.07098	0.08535	0.08280	0.08691
ResMLP-128x4	0.05428	0.03825	0.03524	0.06463	0.04435	0.03833	0.07532	0.05952	0.06010	0.07971	0.09173	0.08608
ResMLP-128x5	0.07228	0.04721	0.03764	0.07308	0.05957	0.05091	0.08046	0.07146	0.07174	0.08408	0.08650	0.08458
ResCNN-32-64	0.07160	0.04723	0.03795	0.07176	0.04066	0.03042	0.06549	0.04566	0.03464	0.06468	0.03189	0.07404
ResCNN-32-64-128	0.08089	0.03422	0.03435	0.09003	0.03401	0.03159	0.07603	0.03245	0.03295	0.08420	0.03179	0.03025
ResCNN-32-64-128x2	0.06484	0.04899	0.03456	0.06621	0.03608	0.03100	0.06436	0.03425	0.02808	0.07441	0.03196	0.05221
ResCNN-32-64-128x2-64	0.17049	0.15600	0.16109	0.18302	0.13459	0.14636	0.13584	0.14809	0.11732	0.17961	0.09261	0.12525
LLM4QPE-T	0.05189	0.03368	0.03197	0.06111	0.03364	0.02863	0.05050	0.03227	0.02726	0.05079	0.03184	0.02634
RBFK	0.05452	0.04176	0.04101	0.04726	0.03829	0.03922	0.04096	0.03299	0.03282	0.03850	0.03115	0.03086
Lasso	0.04221	0.02636	0.02489	0.04856	0.02791	0.02326	0.04219	0.02602	0.02646	0.04137	0.03292	0.02083
Ridge	0.04247	0.02884	0.02475	0.04216	0.02816	0.02402	0.04191	0.02711	0.02251	0.04110	0.02620	0.02161

2 Response to Reviewer 3fBm

A1:

Table 2: The RMSE result on correlation prediction of $|\psi_{\text{TFIM}}\rangle$ with varied N and n_{sft} . M is fixed to 64. The best results are highlighted in **boldface** while the second-best results are distinguished in <u>underlined</u>.

		M. 40		I	M co		ı	N7 100		ı	M 107		
Methods		N = 48			N = 63			N = 100	i	N = 127			
	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\text{sft}} = 60$	$n_{\rm sft} = 100$	$n_{sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	
CS	0.20924				0.20990			0.21092			0.21180		
ResMLP-128x2	0.07899	0.06371	0.05524	0.07986	0.05279	0.04283	0.08293	0.05303	0.04630	0.07908	0.05006	0.04333	
ResMLP-128x3	0.06080	0.05664	0.06074	0.06514	0.06928	0.06914	0.06301	0.06358	0.07317	0.06324	0.06510	0.07327	
ResMLP-128x4	0.05912	0.05794	0.05980	0.05899	0.05705	0.06163	0.05678	0.05628	0.06977	0.05535	0.06496	0.07197	
ResMLP-128x5	0.07422	0.06545	0.05739	0.07341	0.06921	0.069215	0.06648	0.06556	0.07044	0.06941	0.07222	0.06867	
ResCNN-32-64	0.12845	0.15039	0.08935	0.12227	0.16686	0.10315	0.10084	0.08879	0.05177	0.10495	0.08535	0.04647	
ResCNN-32-64-128	0.13545	0.17135	0.12004	0.12545	0.17026	0.11778	0.11433	0.11267	0.05027	0.13312	0.03562	0.05347	
ResCNN-32-64-128x2	0.13624	0.17178	0.12015	0.12608	0.17103	0.13809	0.12221	0.11046	0.06586	0.13757	0.10498	0.05556	
ResCNN-32-64-128x2-64	0.13719	0.16750	0.14122	0.13184	0.16034	0.14158	0.12356	0.14996	0.11282	0.11823	0.03601	0.03785	
LLM4QPE-T	0.05088	0.03493	0.03006	0.05252	0.03566	0.03082	0.05217	0.03476	0.03012	0.05259	0.03641	0.03084	
Lasso	0.04624	0.03219	0.02812	0.04633	0.03930	0.02859	0.04073	0.03256	0.02899	0.04583	0.03283	0.02932	
Ridge	0.04473	0.03173	0.02807	0.04561	0.03226	0.02839	0.04598	0.03277	0.02883	0.04570	0.03285	0.02911	

	N=8	N = 10	N = 12	N = 16	N = 25	N = 31
M = 1 $M = 8$ $M = 64$	0.04666	0.04385	0.04126	0.03728	0.03083	0.03125
M = 8	0.04746	0.04926	0.03969	0.03984	0.03408	0.02951
M = 64	0.04795	0.04791	0.04785	0.04043	0.03637	0.03524
M = 512	0.04913	0.04521	0.04506	0.03905	0.03406	0.03268

		N = 63			N = 100		N = 127			
	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	$n_{\rm sft} = 20$	$n_{\rm sft} = 60$	$n_{\rm sft} = 100$	
M = 1	0.02555	0.02104	0.02019	0.02307	0.01872	0.01760	0.02239	0.01739	0.01635	
M = 8	0.02556	0.02106	0.02019	0.02309	0.01873	0.01760	0.02242	0.01739	0.01635	
M = 64	0.02556	0.02104	0.02019	0.02309	0.01872	0.01759	0.02239	0.01739	0.01636	
M = 512	0.02560	0.02104	0.02019	0.02309	0.01872	0.01759	0.02240	0.01740	0.01635	

Dataset			N = 63			1		N = 100			l		N = 127		
Dataset	n = 20	n = 40	n = 60	n = 80	n = 100	n = 20	n = 40	n = 60	n = 80	n = 100	n = 20	n = 40	n = 60	n = 80	n = 100
HB	0.09998	0.10555	0.09941	0.09322	0.08782	0.10015	0.10395	0.09867	0.09278	0.08692	0.09964	0.10491	0.09898	0.09241	0.08680
TFIM	0.10185	0.10333	0.09845	0.09189	0.08565	0.10093	0.10436	0.09847	0.09193	0.08824	0.10148	0.10372	0.10106	0.09426	0.08716