

DICE GROUP

KNOWLEDGE GRAPH FUSION

ADVISOR: DR. RER. NAT. MOHAMED SHERIF

What is KG Fusion?

Overview

- ☐ KG Matching
- Ontology Matching
- Instance Matching
- Data Consolidation
- Summary

Overview

- - KG Matching
 - > CHAITALI SUHAS BAGWE, RAVITEJA KANAGARLA
 - Ontology Matching
 - Instance Matching
 - Data Consolidation
 - Summary

Goals

- ☐ Find out the similar Knowledge Bases
 - Using LIMES for Linked Open Data Metadata for link matching
 - Using various document matching techniques for datasets in Hobbit
- ☐ Create a KG Matching operator using DEER
- ☐ Give output to the next group i.e., Ontology Matching

Steps to match KGs using LIMES

- ☐ Collect the metadata from Linked Open Data
- ☐ Identify the metadata to be used for KG matching

```
"wiktionary-dbpedia-org": {
    "_id": "wiktionary-dbpedia-org",
    "identifier": "wiktionary-dbpedia-org",
    "doi": "",
    "image": "",
    "links": [
        {
            "target": "dbpedia",
            "value": "25155"
        }
    ],
    "keywords": [
        "crossdomain",
        "linguistics",
        "loucloud-diag, am-2014-08-30"
    ],
    ],
    ]
```

```
"babelnet": {
    "_id": "babelnet",
    "identifier": "babelnet",
    "doi": "",
    "image": "",
    "keywords": [
        "access-web",
        "format-rdf",
        "ldl-2014",
        "lemon",
        "lexical-resources",
        "linguistics",
        "linguistics",
        "lind ,
        "void-sparql-endpoint"
    ],
    "links": [
        {
            "target": "dbpedia",
            "value": "27585374"
        },
        }
}
```


Steps to match KGs using LIMES

Create a DEER Operator

KBInfo src = new KBInfo(); src.setId("sourceId");

// adding prefix

src.setVar("?o"); src.setPageSize(1000); src.setType("TURTLE");

☐ Pass the collected metadata to LIMES framework via DEER Operator

src.setRestrictions(new ArrayList<String>(Arrays.asList(new string)] :5 is1:dataset ?0"})));

```
Link Discovery Framework
                                                                                           for Metric Spaces
public Configuration createLimeConfigurationFile(List<Model> models) throws IllegalArgumentException {
 // Creating Limes configuration Object
 Configuration conf = new Configuration();
 conf.addPrefix("ns1", "https://example.com/test#");
conf.addPrefix("owl", "http://www.w3.org/2002/07/owl#");
  conf.addPrefix("rdfs", "http://www.w3.org/2000/01/rdf-schema#");
  src.setEndpoint("jsontordfoutput.ttl");
  //src.setEndpoint(String.valueOf(models.get(0)));
```

Store the matched KGs in a RDF model

//src.setProperties(Arrays.asList(new String[1

Limes Output

Steps to match KGs using Document Similarity

■Pre-processing hobbit datasets

- ☐ Find and split all literals in the dataset into 1-gram token
- □ Remove all stopwords, spaces, numbers and special characters
- Count the frequency of each token
- □ Sort the tokens according to their frequency and store them in a list

■ Apply Document Similarities

- Matching each datasets against all datasets present
- Creating RDF model to store the matched similarities

Document Similarities Algorithms

- **□** Jaccard Similarity
- **☐** Weighted Jaccard Similarity
- **□**Dice Similarity
- □TF-IDF with Cosine Similarity
- **□**Bert Similarity

Output – Bert Similarity

```
<agrovoc uniroma2 it.nt>
        <BertSimilarityOutput=0.3667376935482025>
                <data nobelprize org.nt> ;
        <BertSimilarityOutput=0.3763076663017273>
                <dbtune_org_bbc_peel_sparql.nt> ;
        <BertSimilarityOutput=0.5186800360679626>
                <dbtune org magnatune sparql.nt> ;
        <BertSimilarityOutput=0.5870665907859802>
                <www imagesnippets com sparql.nt> ;
        <BertSimilarityOutput=0.596704363822937>
                <data ox ac uk sparql.nt> ;
        <BertSimilarityOutput=0.5990902185440063>
                <dbtune org jamendo sparql.nt> ;
        <BertSimilarityOutput=0.59983229637146>
                <www orpha net.nt> ;
        <BertSimilarityOutput=0.6346958875656128>
                <ldf fi ww1lod.nt> ;
        <BertSimilarityOutput=0.6368116140365601>
                <cdrewu eagle-i net sparqler.nt> ;
        <BertSimilarityOutput=0.6752213835716248>
                <semanticweb_cs_vu_ni_verrijktkoninkrijk sparql.nt> ;
        <BertSimilarityOutput=0.6857293844223022>
                <dbmi-icode-01 dbmi pitt edu.nt>
        (Dei Commidai icyoucpuc-0.030410010010010)1/
                <onto fel cvut cz rdf4j-server repositories.nt> ;
        <BertSimilarityOutput=0.6978609561920166>
```


Benchmarking

Dataset Pairs	A 1	A2	A3	A4	A5	Mutual Agreement
(dbtune_org_jamendo, data_nobel)	/	/	/	X	~	~
(dbtune_org_jamendo, data_ox_ac)	~	/	/	/	/	
(cdrewu_eagle, imagesnippets)	~	X	~	~	/	~
(cdrewu_eagle, dbtune_org_magna)	/	/	X	X	/	~

A1, A5 – Software Engineers

A2 – Mechanical Engineer

A3 – Civil Engineer

A4 – Electrical Engineer

Benchmarking

Algorithms	Precision Score	Recall Score	F1 Score
Tf-idf with Cosine Similarity	0.94	0.85	0.892
Jaccard Similarity	0.94	0.80	0.863
Weighted Jaccard Similarity	0.97	0.87	0.884
Dice Similarity	0.97	0.69	0.804
Bert Similarity	0.97	0.80	0.874
LIMES Framework	1	0.73	0.843

Future works

- More Document Similarities can be added
- ☐ Trying the approaches on bigger datasets (> 1GB)
- Using dedicated Knowledge Graph matching approach like Tapioca

Overview

- KG Matching
- Ontology Matching
 - SOWMYA KAMARTH RAMESH, KRISHNA MADHAV
 - Instance Matching
 - Data Consolidation
 - Summary

Goals

- Integrating with DEER framework
- **☐** Implementation of another matching system (FCA)
- Benchmarking our Operator

Technologies

- JAVA
- DEER

Configuration File

```
1 :ontologyMatcher
2    a deer:OntologyMatchingOperator ;
3    deer:typeOfMap "Classes ";
4    deer:matching_Library "FCA";
5    fcage:hasInput :kgmatcher ;
6    .
```

```
:ontologyMatcher
a deer:OntologyMatchingOperator;
deer:typeOfMap "Classes and ObjectProperty";
deer:matching_Library "LOGMAP";
fcage:hasInput :kgmatcher;
.
```


Overview of our Operator

Ontology Matching Operator

- Dynamically fetching RDF datasets
- Accessing SPARQL endpoints
- Storing Ontologies in local file
- Generating Matched Mappings
- Reificated Output

Output

Benchmarking

Dataset Pairs	A1	A2	A 3	Mutual Agreement
NCI_overlapping_fma.owl, FMA_overlapping_nci.owl	✓	~	/	✓
SNOMED_overlapping_fma.owl, FMA_overlapping_snomed.owl	/	/	/	✓
Conference.owl, Ekaw.owl	V	/	X	~

A1, A2 – Software Engineers A3 – Mechanical Engineer

Benchmarking

Dataset Pairs	Matcher	Precision	Recall	F1
NCI_overlapping_fma.owl,	LogMap Matcher	0.94	0.92	0.93
FMA_overlapping_nci.owl	FCA Matcher	0.91	0.93	0.92
SNOMED_overlapping_fma.owl,	LogMap Matcher	0.92	0.91	0.91
FMA_overlapping_snomed.owl	FCA Matcher	0.93	0.86	0.89
Conference.owl,	LogMap Matcher	0.94	0.87	0.90
Ekaw.owl	FCA Matcher	0.92	0.87	0.89

Future Work

- Improving timeout for SPARQL query execution
- Working with dataset having triples pointing to invalid OWL files
- Handling bigger dataset

Overview

- KG Matching
- Ontology Matching
- Instance Matching
 - > KHALID KHAN, KHALID BIN HUDA
 - Data Consolidation
 - Summary

GOAL

- Implement a technique for Instance Matching
- □ Creating a DEER Operator

Technologies

- JAVA
- DEER
- LIMES

Instance Matching Operator

- Named: InstanceMatchingOperator
- ☐ Highlights:
 - Creating prefixes dynamically
 - □ Calculate coverage of the properties
 - Dynamically creating LIMES configuration
 - ☐ Use Wombat simple algorithm
 - □ Introducing Type-driven wombat simple

Configuration File

```
imatcher #add source and target and restriction(read from output of ontology matching group)
a deer:InstanceMatchingOperator;
deer:coverage "0.70"; #Coverage of a Property #propteryCount/TotalInstanceCount #Default=90%
deer:maxLimit "10"; #Maximum number of Properties #Default=3
deer:type "file"; #It can be "file" or "endpoint"
deer:source "data_nobelprize_org.nt";
deer:target "eu_dbpedia_org.nt";
deer:target "eu_dbpedia_org.nt";
deer:targetRestriction [ deer:restrictionURI owl:class ;];
deer:targetRestriction [ deer:restrictionURI foaf:Person ;];
deer:tabuSourceProperty [ deer:propertyURI foaf:id ;];
fcage:hasInput :reader ;
```


Example

Data File source: dbmi-icode-01_dbmi_pitt_edu.nt

Source Restrictions: "?s rdf:type owl:Class"

Properties matched:

puob156:IAO_0000115

gefor191:hasOBONamespace

gefor335:id

w3200488:label

Data File target: agrovoc_uniroma2_it.nt

Target Restrictions: "?t rdf:type skos:Concept"

Properties matched:

w3200541:prefLabel

pudc237:created

pudc20:modified

w3200302:altLabel

wombat simple

OUTPUT:

http://purl.obolibrary.org/obo/CHEBI 75958>

http://aims.fao.org/aos/agrovoc/c 28563

0.6153846153846154

Benchmarking

- ☐ For benchmarking we slightly modified simple wombat
- Added a step to classify properties based on data type
- Use this classification while matching
- For example:

Vector Measure = [euclidean, manhattan]

String Measures = [jaccard, qgrams]

Temporal Measure = [tmp_predecessor, tmp_successor]

Product N	ame	Price		Manufacturing Date	
Floppy disk	(223		11-02-1997	
Mouse		250		10-05-1998	
String	,	Vector		Temporal	
Label		Retail Price		Production Date	
Disk		250		12-05-2000	
Screen		500		19-01-2020	

Benchmarking Result

Dataset	Execution Time Wombat Simple (ms)	Execution Time Type- Driven Wombat Simple (ms)	F-Measure Wombat Simple	F-Measure Type-Driven Wombat Simple	Accuracy Wombat Simple	Accuracy Type-Driven Wombat Simple
Amazon and Google	27821	16006	0.415	0.423	0.999	0.999
Abt-Buy	3969	2693	0.104	0.028	0.987	0.986
DBLP-ACM	64038	53567	0.889	0.900	0.999	0.999
Person 1	6985	6181	0.803	0.805	0.997	0.997
Restaurants	8944	8053	0.447	0.467	0.999	0.999

Future Work

- Implementing a more sophisticated Data type classifier. Use this classification while matching
- □ For a better performance use parallel programming

Overview

- KG Matching
- Ontology Matching
- Instance Matching
- Data Consolidation
 - > PHILIP COUTINHO DE SOUSA
 - Summary

Goal

- Merge Data
- **☐** Flexible Usage

Technologies

- JAVA
- DEER

Consolidation Operator

- Name: ConsolidationOperator
- ☐ Idea:
 - Source sameAs Target
 - MatchableProperties
 - Use FusionStrategies on Properties
- ☐ Highlights
 - Easily expandable

Consolidation Strategies

Strategy	String	Integer	Date	Boolean	Fallback
Standard	Max	Avg	1	And	Take Source
Precise	Min	1	1	And	Take Source
Expertise Source	1	1	1	1	Take Source
Expertise Target	1	1	1	1	Take Target
Min/Max/Average /Union	Min/Max/Avg /Union	Min/Max/Avg / -	Min/Max/Avg / -	And	Take Source
Voting	Max Voting	Max Voting	Max Voting	Max Voting	Take Source

Configuration File

Example

```
Source:
<http://data.nobelprize.org/resource/laureate/448> <http://dbpedia.org/property/dateOfBirth> "1943-09-06"^^<http://www.w3.org/2001/XMLSchema#date> .
<a href="http://data.nobelprize.org/resource/laureate/448">http://dbpedia.org/ontology/birthPlace</a> <a href="http://data.nobelprize.org/resource/city/Derby">http://data.nobelprize.org/resource/city/Derby</a>.
<a href="http://data.nobelprize.org/resource/laureate/448">http://xmlns.com/foaf/0.1/givenName> "Richard J."^^<a href="http://www.w3.org/2001/XMLSchema#string">http://xmlns.com/foaf/0.1/givenName> "Richard J."^^<a href="http://www.w3.org/2001/XMLSchema#string">http://xmlns.com/foaf/0.1/givenName> "Richard J."^^<a href="http://www.w3.org/2001/XMLSchema#string">http://xmlns.com/foaf/0.1/givenName</a>
<http://data.nobelprize.org/resource/laureate/448> <http://www.w3.org/2002/07/owl#sameAs> <http://yago-knowledge.org/resource/Richard J. Roberts>.
<a href="http://data.nobelprize.org/resource/laureate/448">http://xmlns.com/foaf/0.1/name</a> "Richard J. Roberts"^^<a href="http://www.w3.org/2001/XMLSchema#string">http://www.w3.org/2001/XMLSchema#string</a>.
Target:
<a href="http://sparq1.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8fbc-d6be9ccbbdf6-partof-327d5213ef">http://sparq1.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8fbc-d6be9ccbbdf6-partof-327d5213ef</a>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <http://xmlns.com/foaf/0.1/Person> .
<a href="http://sparq1.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8fbc-d6be9ccbbdf6-partof-327d5213ef">http://sparq1.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8fbc-d6be9ccbbdf6-partof-327d5213ef</a>
<a href="http://xmlns.com/foaf/0.1/name">" Richard J Lane"^^<a href="http://www.w3.org/2001/XMLSchema#string">http://xmlns.com/foaf/0.1/name</a> " Richard J Lane"^^<a href="http://www.w3.org/2001/XMLSchema#string">http://xmlns.com/foaf/0.1/name</a> " Richard J Lane"^^<a href="http://www.w3.org/2001/XMLSchema#string">http://www.w3.org/2001/XMLSchema#string</a> .
<a href="http://sparql.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8ffc-d6be9ccbbdf6-partof-327d5213ef">http://sparql.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8ffc-d6be9ccbbdf6-partof-327d5213ef</a>
<http://purl.org/dc/terms/lastName> "Richard J Lane"^^<http://www.w3.org/2001/XMLSchema#string> .
MatchableProperties:
<http://xmlns.com/foaf/0.1/name> - <http://www.w3.org/2001/XMLSchema#string> .
```


Example

http://xmlns.com/foaf/0.1/name "Richard J. Roberts"^^http://www.w3.org/2001/XMLSchema#string.

http://sparql.cwrc.ca/ontologies/cwrc#26ad3610-a0bb-4e62-8fbc-d6be9ccbbdf6-partof-327d5213ef

 "Richard J Lane" \^ . "Richard J Lane" \^ . <a href="http:

Strategy	Result
Standard	Roberts
Precise	Lane
ExpertiseSource	Roberts
ExpertiseTarget	Lane
Min/Max/Average/Union	Lane/Roberts/ - / RJ Roberts RJ Lane
Voting	Not Applicable -> Source -> Roberts

Future Work

- Matchable Properties from Previous Groups
- More Advance Fusion Strategies
- Different Output Formats
- New Output format
- Reification Configuration

Overview

- ☐ KG Matching
- Ontology Matching
- Instance Matching
- Data Consolidation
- Summary

Summary

THANK YOU FOR LISTENING

QUESTIONS?