Yang Song

ysong26@ncsu.edu | +1 (217) 419 9133 | https://github.com/ysong126 | Raleigh, NC 27607

EDUCATION

• North Carolina State University

Raleigh, NC

• Ph.D. in Econometrics/Quantitative Economics (STEM) GPA: 3.695

Aug 2018 - Expected May 2024

· Research: Applied Econometrics, Machine Learning

Boston University

Boston, MA

M.A. in Economics

Jan 2015 - May 2016

University of Illinois at Urbana-Champaign

Urbana, IL

B.S. in Mathematics and Computer Science

Aug 2010 - Dec 2014

EXPERIENCE

• Capital One Financial Corp.

McLean, VA

Data Scientist Intern

June 2023 - Aug 2023

- Developed an end-to-end deep learning pipeline to predict early risks using data from 4 million credit card customers in 140 segments, outperforming the benchmark model in 70% of the segments with a 40% lower overall prediction error
- Queried, preprocessed, and validated 24 million rows of credit history data by writing SQL and Python across Snowflake, AWS S3, and JupyterHub
- Automated a data pipeline by embedding a hyperparameter tuning stage that accomplished model selection using DVC, Python, and Polars
- Collaborated with data scientists and presented a deck detailing business impacts on a \$9B market and potential enhancement to business stakeholders

• Shelf Engine Co. Seattle, WA

Data Scientist Intern

June 2022 - Aug 2022

Shelf Engine is a series B startup (≈\$60M) that provides inventory management solutions to supermarket chains through machine learning

- Developed and optimized a deep learning model to forecast market demand for perishable items, improving two key metrics: RMSSE by 15.3% and bias by 10.0%
- Wrangled 6TB of time series data on Azure Databricks utilizing Python, SQL, and PySpark to evaluate model performance on 15000+ SKU items
- Presented to the data science lead on transitioning the model from the development to the test phase

SKILLS

- Programming Languages and libraries: Python, Keras/TensorFlow, PyTorch, SQL, Shell scripting
- Misc tools: PySpark, Polars, Jupyter Notebook, Git, DVC, A/B testing

PROJECTS

- Forecasting Agricultural Commodity Prices Using a CNN-GRU Neural Network with a Likelihood Loss Function
 - Designed and built a convolutional recurrent neural network in Python using Keras/TensorFlow to improve forecasting accuracy of agricultural commodity prices, reducing RMSE by 3%
 - \circ Published a module for Keras and Sklearn data preprocessing on Python Package Index (PyPI) https://pypi.org/project/lstm-reshaper
- Volatility Modeling Using a Hybrid GARCH GBDT Model
 - Built and fine tuned a gradient boosting decision tree (GBDT) model to forecast market volatility, reducing forecasting error by over 22%
 - Implemented a data pipeline for feature engineering, training, and model evaluation against benchmark models, including stepwise regression, PCA, Lasso, Random Forest, and SVM

PRESENTATIONS

American Economic Association Annual Meeting (AEA 2023), poster session

Jan 2023

https://www.aeaweb.org/conference/2023/program/paper/kGfAes6K

Midwest Econometrics Group Conference (MEG 2022), paper session

Oct 2022

TEACHING

• Independent Graduate Instructor, Principles of Macroeconomics Coursework and Certificates

2020 - 2022

- Neural Networks and Deep Learning (Coursera)
 Machine Learning(Coursera)
 - Spark and Python for Big Data with PySpark(Udemy)