Atomic Physics

Xiping Hu

 $\rm https://hxp.plus/$

April 7, 2020

Chapter 1

Rutherford's Alpha Particle Scattering Experiment

According to Columb's Law:

$$F = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Z_1 Z_2 e^2}{r^2} = \frac{C}{r^2}$$

$$C = \frac{Z_1 Z_2 e^2}{4\pi\varepsilon_0}$$

$$F_y = F \sin \phi = \frac{C}{r^2} \sin \phi$$

Law of momentum and angular momentum

$$mv_y = \int F_y \, \mathrm{d}t$$
$$mr^2 \dot{\phi} = mv_\infty b$$

Then we integrate

$$v_y = \frac{1}{m} \int \frac{C}{r^2} \sin \phi \, dt = \frac{1}{m} \int \frac{C}{r^2} \sin \phi \frac{dt}{d\phi} \, d\phi = \frac{1}{m} \int \frac{C}{r^2} \sin \phi \frac{r^2}{v_{\infty} b} \, d\phi = \frac{C}{m v_{\infty} b} \int_0^{\pi - \theta} \sin \phi \, d\phi$$
$$= \frac{C}{m v_{\infty} b} (1 + \cos \theta)$$

Now we need to relate θ with b, Since

$$v_y = v_\infty \sin \theta$$

We have

$$\frac{C}{mv_{\infty}b}\left(1+\cos\theta\right) = v_{\infty}\sin\theta$$

So that

$$\cot\frac{\theta}{2} = \frac{1+\cos\theta}{\sin\theta} = \frac{mv_{\infty}^2b}{C} = \frac{2E_0b}{C}$$

Note that this trigonometry transform is used

$$\frac{1+\cos\theta}{\sin\theta} = \frac{2\cos^2\frac{\theta}{2}}{2\sin\frac{\theta}{2}\cos\frac{\theta}{2}} = \cot\frac{\theta}{2}$$

Finally

$$b = \frac{C}{2E_0} \cdot \cot \frac{\theta}{2} = \frac{1}{4\pi\varepsilon_0} \frac{Z_1 Z_2 e^2}{2E_0} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{Z_1 Z_2 e^2}{mv_\infty^2} \cdot \cot \frac{\theta}{2}$$

Now we begin to find the relation between db and $d\Omega$

$$d\sigma = 2\pi b \,db = \pi \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left(\frac{Z_1 Z_2 e^2}{m v_\infty^2}\right)^2 \frac{\cos\frac{\theta}{2}}{\sin^3\frac{\theta}{2}} \,d\theta$$
$$\Omega = 2\pi \left(1 - \cos\theta\right)$$
$$d\Omega = 2\pi \sin\theta \,d\theta = 4\pi \sin\frac{\theta}{2}\cos\frac{\theta}{2} \,d\theta$$

Then we found $\frac{d\sigma}{d\Omega}$ is only related with θ

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} = \left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left(\frac{Z_1 Z_2 e^2}{2mv_\infty^2}\right)^2 \sin^{-4}\frac{\theta}{2}$$

As for a thin gold leaf, we assume there's only one layer of atoms, the density of atoms is N, the area and thickness of gold leaf are A and t

When n particles passed through the gold leaf, dn of them ended up in $d\Omega$

$$\frac{\mathrm{d}n}{n} = \frac{NAt\,\mathrm{d}\sigma}{A} = Nt\,\mathrm{d}\sigma = Nt\,\left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left(\frac{Z_1Z_2e^2}{2mv_\infty^2}\right)^2 \sin^{-4}\frac{\theta}{2}\,\mathrm{d}\Omega$$
$$\frac{\mathrm{d}n}{\mathrm{d}\Omega}\sin^4\frac{\theta}{2} = nNt\left(\frac{1}{4\pi\varepsilon_0}\right)^2 \left(\frac{Z_1Z_2e^2}{2mv_\infty^2}\right)^2 = \mathrm{const}$$

For alpha particles, $Z_1 = 2$. We can also take the closest distance between the 2 particles as the radius of a particle.

What we have already known are:

$$\frac{1}{2}MV^2 = \frac{1}{2}MV'^2 + \frac{2Ze^2}{4\pi\varepsilon_0 r_m}$$
$$MVb = MV'r_m$$
$$b = \frac{1}{4\pi\varepsilon_0} \cdot \frac{2Ze^2}{MV} \cdot \cot\frac{\theta}{2}$$

We solve r_m with the equation we known.

$$\frac{1}{4\pi\varepsilon_0} \cdot \frac{2Ze^2}{M} \cdot \cot \frac{\theta}{2} = V'r_m$$

$$\frac{1}{2}MV^2 = \frac{1}{2}M\left(\frac{1}{4\pi\varepsilon_0} \cdot \frac{2Ze^2}{Mr_m} \cdot \cot \frac{\theta}{2}\right)^2 + \frac{2Ze^2}{4\pi\varepsilon_0 r_m}$$

$$\frac{1}{2}MV^2r_m^2 - \frac{2Ze^2}{4\pi\varepsilon_0}r_m - \frac{1}{2}M\left(\frac{1}{4\pi\varepsilon_0} \cdot \frac{2Ze^2}{M} \cdot \cot \frac{\theta}{2}\right)^2 = 0$$

Finally

$$r_m = \frac{1}{4\pi\varepsilon_0} \frac{2ze^2}{MV^2} \left(1 + \frac{1}{\sin\frac{\theta}{2}} \right)$$

Chapter 2

The Energy and Radiation of Atoms

2.1 Rydberg Constant and Wavelength of Radiation

Balmer Formula for Hydrogen Atoms:

$$\frac{1}{\lambda} = R_H \left[\frac{1}{m^2} - \frac{1}{n^2} \right]$$

Let

$$T(m) = \frac{R_H}{m^2}$$
$$T(n) = \frac{R_H}{n^2}$$

Then

$$\frac{hc}{\lambda} = hc \left[T(m) - T(n) \right] = \frac{R_H hc}{m^2} - \frac{R_H hc}{n^2}$$

2.2 Bohr's Theory of Hydrogen Atoms

Energy of steady states:

$$E_n = -\frac{1}{2} \frac{Ze^2}{4\pi\varepsilon_0 r_n}$$

Transition

$$h\nu = E_n - E_m$$

Angular Momentum

$$L = n \cdot \frac{h}{2\pi} = n\hbar = m_e v_n r_n$$
$$m_e \frac{v_n^2}{r_n} = \frac{Ze^2}{4\pi\varepsilon_0 r_n^2}$$

From which we can indicate that the radius is qumntumized

$$\frac{n^2\hbar^2}{m_e r_n^3} = \frac{Ze^2}{4\pi\varepsilon_0 r_n^2}$$

$$r_n = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} \cdot \frac{n^2}{Z} = a_0 \cdot \frac{n^2}{Z}$$

For hydrogen atoms, Z = 1. The energy is also quantumized.

$$E_{n} = -\frac{1}{2} \frac{Ze^{2}}{4\pi\varepsilon_{0}} \frac{m_{e}e^{2}}{4\pi\varepsilon_{0}\hbar^{2}} \cdot \frac{Z}{n^{2}} = -\frac{m_{e}e^{4}}{2(4\pi\varepsilon_{0}\hbar)^{2}} \cdot \frac{Z^{2}}{n^{2}}$$

The velocity is also quantumized

$$v_n = \frac{n\hbar}{m_e r_n} = \frac{n\hbar}{m_e} \frac{m_e e^2}{4\pi\varepsilon_0 \hbar^2} \cdot \frac{Z}{n^2} = \frac{e^2}{4\pi\varepsilon_0 \hbar} \cdot \frac{Z}{n} = \frac{Z\alpha c}{n}$$
$$\alpha = \frac{e^2}{4\pi\varepsilon_0 \hbar c} = \frac{1}{137}$$

Calculate the value of Rydberg Constant

$$\begin{split} E &= -\frac{m_e e^4}{2 \left(4\pi \varepsilon_0 \hbar \right)^2} \cdot \frac{Z^2}{n^2} = -\frac{2\pi^2 m_e e^4}{\left(4\pi \varepsilon_0 h \right)^2} \cdot \frac{Z^2}{n^2} \\ &\frac{hc}{\lambda} = E_2 - E_1 = \frac{2\pi^2 m_e e^4 Z^2}{\left(4\pi \varepsilon_0 h \right)^2} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \\ &\frac{1}{\lambda} = \frac{2\pi^2 m_e e^4 Z^2}{\left(4\pi \varepsilon_0 \right)^2 h^3 c} \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] \\ &R = \frac{2\pi^2 m_e e^4 Z^2}{\left(4\pi \varepsilon_0 \right)^2 h^3 c} \end{split}$$

For hydrogen atoms

$$R_H = \frac{2\pi^2 m_e e^4}{\left(4\pi\varepsilon_0\right)^2 h^3 c}$$

2.3 Rydburg Constant of Different Atoms

In previous sections, we assumed that the nucleus is fixed at a point, with the electron surrounded. But in fact, the nucleus's mass is not infinity, and it moves as well. So that for different atoms, the Rydburg Constants varies. In a two-body system, we define the Reduced Mass of a system as

$$\mu = \frac{Mm}{M+m}$$

And we replace the Reduced Mass with m_e

$$R_{\infty} = \frac{2\pi^2 m e^4}{\left(4\pi\varepsilon_0\right)^2 h^3 c}$$

$$R_A = R_{\infty} \cdot \frac{1}{1 + \frac{m}{M}}$$

2.4 Sommerfeld's Quantize Condition

For any coordinate q and its momentum p

$$\oint p \, \mathrm{d}q = nh$$

holds

2.5 Quantized Magneton

$$\mu = iA$$

$$i = \frac{e}{\tau}$$

$$A = \int_0^{2\pi} \frac{1}{2} r \cdot r \, d\phi$$

$$= \frac{1}{2} \int_0^{\tau} r^2 \omega \, dt$$

$$= \frac{1}{2m} \int_o^{\tau} mr^2 \omega \, dt$$

$$= \frac{p_{\phi}}{2m} \tau$$

Consider that

$$\int_0^{2\pi} p_\phi \,\mathrm{d}\phi = 2\pi p_\phi = nh$$

We have

$$\mu = \frac{e}{2m} p_{\phi} = \frac{eh}{4\pi m} \cdot n$$

Let

$$\mu_B = \frac{eh}{4\pi m}$$

Then μ_B is the minimum unit of magneton.

Chapter 3

Basics of Quantum Mechanics

De Broglie Wave 3.1

$$\lambda = \frac{h}{p}$$

Uncertianty Principle 3.2

$$\Delta p \Delta q \ge \frac{\hbar}{2}$$

$$\Delta E \Delta t \geq \frac{\hbar}{2}$$

Wave Function 3.3

$$\psi = \psi_0 \exp \left[\frac{i}{\hbar} \left(\vec{p} \cdot \vec{r} - Et \right) \right]$$

$$\frac{\partial \psi}{\partial x} = -\frac{i}{\hbar} p_x \psi$$
$$\frac{\partial \psi}{\partial t} = -\frac{i}{\hbar} E \psi$$

$$\frac{\partial \psi}{\partial t} = -\frac{i}{\hbar} E \psi$$

Three properties

- limited
- Normalized
- Continuous

Schrodinger Equation

$$-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi=i\hbar\frac{\partial\psi}{\partial t}$$