An Energy Case for Hybrid Datacenter

Byung-Gon Chun¹, Gianluca lannaccone¹, Giuseppe lannaccone³, Randy Katz², Gunho Lee², Luca Niccolini³ Intel Research Berkeley¹, UC Berkeley², Univ. of Pisa³

Goal

☐ Building energy efficient datacenters without sacrificing performance level

Hybrid Approach

- □ Low-power systems
 - + High performance systems
- "Accelerators"

Evaluation

Name	Xeon L5420	Atom 330	Atom N270
Frequency	2.5GHz	1.6GHz	1.6GHz
Cache	2x6MB	2x512KB	512KB
CPU	2	1	1
Cores/CPU	4	2	1
Threads	1	2	2
RAM	16GB	2GB	1GB
Storage	15k SAS	5.4k SATA	SSD

Platforms under Test

Hybrid datacenters have the potential to achieve the goal

Future work

- Explore design options
 - Discrete systems
 - Add-ons
 - Heterogeneous cores
- Planning and Scheduling

1. Performance per Watt

 Single solution cannot satisfy the wide range of applications

2. Energy Proportionality

- Poor scaling of power-consumption
- Set of low-power platforms can mimic energy proportional system

Throughput vs. power under SPECpower (Results from Atom platforms are extrapolated)

3. Temporal characteristics of workload

Hybrid solutions can

- Keep low latency
- Be energy proportional

Power consumption and 99.9th percentile of execution time with various task arrival distribution

- Atom/Xeon single platform
- H₀ task migration w/o cost
- H₄ task migration w/ cost
- H₂ no task migration
 - ikes up at heavy-load)

Example of H₂ operation