INTRO TO QUANTUM COMPUTING

Eric Bond Spring 2018

Outline

- Why quantum?
- Theme and variation
 - Intuitive introduction
 - Mathematical representation
 - Programming a quantum computer!

Why?

- In Industry...
 - D-Wave annealer
 - **2011**, 128 qubits
 - **2013**, 512 qubits
 - 2015, 1000 qubits
 - **2017**, 2000 qubits
 - Universal Gate Model
 - 2016, IBM, 5 qubits
 - 2017, IBM, 17 qubits
 - 2017, Intel. 17 qubits
 - **2017**, IBM, 50 qubits
 - 2018, Intel, 50 qubits
 - **3**-5-2018, Google, 72 qubits
 - Topological('noise-free')
 - 2017-2018, Microsoft Station Q, Experimental realizations

Why?

A race between Classical simulation and Quantum chips Classical

0.5 Petabyte Simulation of a 45-Qubit Quantum Circuit

Thomas Häner, Damian S. Steiger

(Submitted on 4 Apr 2017 (v1), last revised 18 Sep 2017 (this version, v2))

later that year (down to 3 terrabytes of memory)..

30 Oct 2017 L18:00 GM

IBM Simulates a 56-Qubit Machine

A supercomputer surpasses the proposed limit of using conventional machines to simulate quantum computers

Quantum

15 Nov 2017 | 20:00 GMT

IBM Edges Closer to Quantum Supremacy with 50-Qubit Processor

IBM QC

Intel 50 qubit chip – CES 2018

Bit vs Qubit

■ Bit

- State space {0,1}
- Can clone
- Deterministic measurement
- Measurement does not destroy state

Qubit

- State space {unit vectors of \mathbb{C}^2 }
- Can't clone
- Probabilistic measurement
- Measurement destroys state

By Smite-Meister - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=5829358

Mathematically..

Now in code..

Application: Superdense coding

Quantum Information Software Kit

Jupyter notebooks

IBM Quantum Experience

Resources

- Active research
 - https://arxiv.org/archive/quant-ph
- List of famous quantum algorithms
 - https://math.nist.gov/quantum/zoo/
- Books
 - Quantum Computing and Quantum Information
 - Quantum Computer Science
- Quantum programming languages
 - QASM, Q#, Quipper
- Interactive learning
 - IBM quantum experience, Qskit
- Purdue groups
 - Theory group https://www.chem.purdue.edu/kais/index.html
 - Station Q http://manfragroup.org/

