Section 4 Groups, p45 #2,3,5,10,11-16 all

In Ex	cercises	1 throu	gh 6,	determi	ne whet!	her the	binary	operation	* gives a	group	structure o	n the g	given :	set.
If no	group	results,	give t	he first	axiom in	a order	$\mathfrak{G}_1,\mathfrak{G}_2$	$,\mathfrak{G}_3$ from	Definition	a 4.1 th	at does not	hold.		

2.	Let $*$ be defined on \mathbb{Z} by letting $a*b=ab$.								
	answer								
3.	Let $*$ be defined on $2\mathbb{Z} = \{2n : n \in \mathbb{Z}\}$ by letting $a * b = ab$.								
	answer								
5.	Let $*$ be defined on the set \mathbb{R}^* of nonzero real numbers by letting $a*b=a/b$.								
	answer								
10.	Let n be a positive integer and let $n\mathbb{Z} = \{nm m \in \mathbb{Z}\}.$								
	Show the following:								
	a. $\langle n\mathbb{Z}, + \rangle$ is a group.								
	answer								
	b. $\langle n\mathbb{Z}, + \rangle \simeq \langle \mathbb{Z}, + \rangle$.								
	answer								
_									
	ercises 11 through 18, determine whether the given set of matrices under the specified operation, matrix ion or multiplication, is a group.								
11.	All $n \times n$ diagonal matrices under matrix addition.								
	answer								
12.	All $n \times n$ diagonal matrices under matrix multiplication.								
	answer								
13.	All $n \times n$ diagonal matrices with no zero diagonal entry under matrix multiplication.								
	answer								
14.	All $n \times n$ diagonal matrices with all diagonal entries 1 or -1 under matrix multiplication								
	answer								

15 .	All $n \times n$ upper-triangular matricies under matrix multiplication.
	answer
16.	All $n \times n$ upper-triangular matricies under matrix addition.
	answer