Esercizi per il Corso di ALGEBRA LINEARE

Applicazioni lineari

1. Si dica se sono lineari le seguenti funzioni:

(a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 dove $f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x - 4z \\ x + y + z \end{pmatrix}$ per ogni $x, y, z \in \mathbb{R}$.

(b)
$$g: \mathbb{C}^2 \to \mathbb{C}^2$$
 dove $g\left(\binom{w}{z}\right) = \binom{\bar{w}}{0}$ per ogni $w, z \in \mathbb{C}$.

(c)
$$g: \mathbb{C}^2 \to \mathbb{C}^2$$
 dove $g\left(\binom{w}{z}\right) = \binom{w}{0}$ per ogni $w, z \in \mathbb{C}$.

(d)
$$g: \mathbb{C}^2 \to \mathbb{C}$$
 dove $g\left(\binom{w}{z}\right) = |w|$ per ogni $w, z \in \mathbb{C}$.

- 2.² Sia $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'applicazione lineare definita da $f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x+2y \\ y+z \\ 2z-x \end{pmatrix}$. Si determinino delle basi dello spazio nullo N(f) e dell'immagine Im(f) di f.
- 3.² Si determinino le dimensioni dello spazio nullo $N(A) \subseteq \mathbb{R}^4$ e del sottospazio $C(A) \subseteq \mathbb{R}^3$ e delle basi di tali sottospazi per le seguenti matrici:

(a)
$$A = \begin{pmatrix} 2 & 1 & 4 & 8 \\ 0 & 6 & -2 & 1 \\ 2 & 7 & 2 & 9 \end{pmatrix}$$

(b)
$$A = \begin{pmatrix} -2 & 0 & 0 & 1 \\ 1 & 0 & 7 & 1 \\ 0 & 1 & 4 & 1 \end{pmatrix}$$

4. Sia
$$f \colon \mathbb{R}^3 \to \mathbb{R}^2$$
 l'applicazione lineare definita da $f\left(\begin{pmatrix} x \\ y \\ z \end{pmatrix}\right) = \begin{pmatrix} x + 2y + 3z \\ -x + y + 6z \end{pmatrix}$.

- (a) Si determini la matrice A associata a f rispetto alla base canonica.
- (b) Si determini la matrice B associata a f rispetto alla base

$$\mathcal{B} = \left\{ \begin{pmatrix} 2\\1\\2 \end{pmatrix}, \begin{pmatrix} 0\\-1\\0 \end{pmatrix}, \begin{pmatrix} 1\\1\\2 \end{pmatrix} \right\}$$

di \mathbb{R}^3 e la base canonica in \mathbb{R}^2 .

(c) Si determini la matrice D associata a f rispetto alla base canonica di \mathbb{R}^3 e la base

$$\mathcal{D} = \left\{ \begin{pmatrix} -2 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$$

 $di \ \mathbb{R}^2.$

(d) Si determini la matrice C associata a f rispetto alla base \mathcal{B} di \mathbb{R}^3 e la base \mathcal{D} di \mathbb{R}^2 .

5.² Siano V e W due spazi vettoriali di basi rispettivamente $\{v_1, v_2, v_3\}$ e $\{w_1, w_2\}$, e sia $f: V \to W$ l'applicazione lineare associata alla seguente matrice (rispetto alle basi date):

$$A = \begin{pmatrix} 2 & -1 & 1 \\ 3 & 2 & -3 \end{pmatrix}$$

- (a) Si prenda per V la nuova base $v_1' = v_2 + v_3$, $v_2' = v_1 + v_3$, $v_3' = v_1 + v_2$. Qual è la nuova matrice A' rispetto alle basi $\{v_1', v_2', v_3'\}$ e $\{w_1, w_2\}$?
- (b) Si prenda per W la nuova base $w_1' = \frac{1}{2}(w_1 + w_2)$ e $w_2' = \frac{1}{2}(w_1 w_2)$. Qual è la matrice A'' di f rispetto alle basi $\{v_1', v_2', v_3'\}$ e $\{w_1', w_2'\}$?
- 6. Sia $f: \mathbb{C}^2 \to \mathbb{C}^2$ l'applicazione lineare definita da $f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+iy \\ y+ix \end{pmatrix}$.
 - (a) Si determini la matrice A associata a f rispetto alla base canonica.
 - (b) Si determini la matrice B associata a f rispetto alla base

$$\mathcal{B} = \left\{ \begin{pmatrix} 6 \\ 1 \end{pmatrix}, \begin{pmatrix} i \\ -2i \end{pmatrix} \right\}$$

del dominio e la base canonica del codominio.

(c) Si determini la matrice D associata a f rispetto alla base canonica del dominio e la base

$$\mathcal{D} = \left\{ \begin{pmatrix} 0 \\ 3+i \end{pmatrix}, \begin{pmatrix} 1 \\ 3 \end{pmatrix} \right\}$$

del codominio.

(d) Si determini la matrice C associata a f rispetto alla base $\mathcal B$ del dominio e la base $\mathcal D$ del codominio.