第一章 环、模

1.1 环的定义

1.1.1 环的定义

定义 1.1.1

R 是一个集合,如果存在两个运算 $+: R \times R \to R$ 和 $\cdot: R \times R \to R$

分别称为加法和乘法,满足下列条件:

① (加法单位元存在)存在一个元素 $0_R \in R$,称为加法单位元,使得对于任意 $x \in R$,

有 $x+0_R=0_R+x=x$ 。

- ② (加法交換律) $\forall x, y \in R, x + y = y + x$
- ③ (加法结合律) $\forall x,y,z \in R, (x+y)+z=x+(y+z)$
- ④ (加法逆存在) $\forall x \in R, \exists -x \in R,$ 称为加法逆,使得 $x + (-x) = 0_R$
- ⑤ (乘法结合律) $\forall x,y,z \in R, (x \cdot y) \cdot z = x \cdot (y \cdot z)$
- ⑥ (左分配律) $\forall x, y, z \in R, x \cdot (y+z) = x \cdot y + x \cdot z$

(右分配律) $\forall x, y, z \in R, (y+z) \cdot x = y \cdot x + z \cdot x$

那么我们称 $(R,+,\cdot)$ 是一个环,简称为环 R。

相比域的定义,环的定义仅涉及6条性质,去除了单位元存在、可交换、可逆三条性质。在研究环时,我们有时也会考虑存在单位元和可交换的环,因此有以下定义:

定义 1.1.2: 交换环、幺环

如果环 R 满足: $\forall x, y \in R, x \cdot y = y \cdot x$, 那么我们称 R 是一个交换环;

如果环 R 满足: $\exists 1_R \in R, \forall x \in R, 1_R \cdot x = x \cdot 1_R = x$,称为乘法单位元,

1.1 环的定义 2

1.1.2 环的性质

1.1.3 整环

定义 1.1.3: 零因子

设 R 是一个环,如果 $\exists x,y \in R, x,y \neq 0_R$,使得 $x \cdot y = 0_R$,那么我们称 x,y 是 R 的零因子。

定义 1.1.4: 整环

如果环 R 是一个交换幺环,并且不包含零因子,那么我们称 R 是一个整环。

定理 1.1.1: 循环的整环必有素零因子

设 R 是一个整环,

我们定义: $N: \mathbb{Z} \ni n \mapsto n_R \in R$,满足 $(n+1)_F = n_F + 1_F$

如果 $\exists a \in R, a \neq 0, \exists n \in \mathbb{N}_+, n_F a = 0_R$

那么存在素数 p, $\forall b \in R, p_B b = 0_B$

证明: 取 $\forall b \in R$,

 $0_R = 0_R \cdot b = (n_R a)b = a(n_R b)$

因为 $a \neq 0$,而 R 是整环,所以一定有 $n_R b = 0$,因此, $\{k \in \mathbb{N}_+ | k_R b = 0\}$ 不是空集。

取 p 为使 $p_B b = 0$ 的最小正整数。如果 p 是素数, 命题成立;

如果 p 不是素数,那么只需要对 p 作唯一分解,那么有 $\left(\prod_{i=1}^q p_{iR}\right)b=0$ 那么,一定存在一个 $p_{iR}b=0$,此时命题也是成立的。

1.1.4 子环

我们也类似地提出后续我们会提及的子环的概念。

定义 1.1.5: 子环

设 R 是一个环, 集合 $S \subseteq R$,

如果 S 对 R 上的加法和乘法也构成一个环,那么我们称 S 是 R 的子环。

1.2 环的同态 3

1.2 环的同态

我们类似于域的同态, 定义出环的同态。

1.2.1 定义

定义 1.2.1: 环同态

设 R, S 是两个环, 如果映射 $\varphi: R \to S$ 满足:

 $\forall a,b \in R, \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b)$

并且如果 R, S 均是幺环, $\varphi(1_R) = 1_S$

那么我们称 φ 是一个 R 到 S 的环同态。

定义 1.2.2: 单同态、满同态、同构

假设有环同态 $\psi: R \to S$

如果 ψ 是单射,那么称它是一个单同态;

如果 ψ 是满射,那么称它是一个满同态;

如果 ψ 是双射, 称它是一个同构, 记作 $R \cong S$;

同构是最严格的同态,表示两个环在结构上是完全相同的,有以下显而易见的事实:

命题 1.2.1. 如果 $\psi: R \to S$ 是一个环同构, 那么 $\psi^{-1}: S \to R$ 也是一个环同构

证明: $\psi(\psi^{-1}(a) + \psi^{-1}(b)) = \psi(\psi(a)) + \psi(\psi(b)) = a + b$

因为 ψ 是双射,所以有 $\psi^{-1}(a) + \psi^{-1}(b) = \psi(a+b)$

同理, $\psi(\psi^{-1}(a)\psi^{-1}(b)) = \psi(\psi(a))\psi(\psi(b)) = ab$

 $\Rightarrow \psi^{-1}(a)\psi^{-1}(b) = \psi(ab)$, 于是命题得证

1.2.2 同态的性质

1. 同态一定将零元映射到零元

命题 1.2.2. 设 $\varphi: R \to S$ 是一个环同态, 那么 $\varphi(0_R) = 0_S$

证明:
$$\varphi(0_R) = \varphi(0_R + 0_R) = \varphi(0_R) + \varphi(0_R)$$

$$\Rightarrow -\varphi(0_R) + \varphi(0_R) = -\varphi(0_R) + \varphi(0_R) + \varphi(0_R)$$

$$\Rightarrow \varphi(0_R) = 0_S$$

1.2 环的同态 4

2. 同态把逆元映射到逆元

命题 1.2.3. 设
$$\varphi: R \to S$$
 是一个环同态, 那么 $\varphi(-a) = -\varphi(a)$

证明: 注意到,
$$0_S = \varphi(0_R) = \varphi(a + (-a)) = \varphi(a) + \varphi(-a) \Rightarrow \varphi(-a) = -\varphi(a)$$

1.2.3 同态的核、像

定义 1.2.3: 环同态的核、像

设 $\psi: R \to S$ 是一个环同态,我们定义:

 $\ker \psi = \{a \in R | \psi(a) = 0_S \}$,称为 ψ 的核

Im $\psi = \{\psi(a) | a \in R\}$, 称为 ψ 的像

与域的同态不同,环的同态的核并不是平凡的,因为域同态未必是单射。因此,我们需要研究环同态的核与像。

但是,受限于目前的知识,我们暂时无法证明核与像的一些进阶性质,我们仅仅证明一 些简单的性质。

命题 1.2.4. 设 $\psi: R \to S$ 是一个环同态, 那么 $\ker \psi$ 是一个 R 的子环

证明: 取 $\forall a, b \in \ker \psi$, 那么有 $\psi(a) = \psi(b) = 0$

我们注意到: $\psi(0_R) = 0_S \Rightarrow 0_R \in \ker \psi, a + 0_R = a$

$$\psi\left(a+(-a)\right)=0_{S}\Rightarrow\psi(a)+\psi(-a)=0_{S}\Rightarrow\psi(-a)=0_{S}\Rightarrow-a\in\ker\psi,a+(-a)=0_{R}$$
加法的交换律、结合律,乘法的结合律,左、右分配律是显然成立的。

命题 1.2.5. 设 $\psi: R \to S$ 是一个环同态, 那么 $Im \psi$ 是一个 S 的子环

证明: 取 $\forall a, b \in \text{Im } \psi$, 那么有 $\exists x, y \in R, \psi(x) = a, \psi(y) = b$

我们注意到: $\psi(0_R) = 0_S \Rightarrow 0_S \in \text{Im } \psi, \psi(x) + \psi(0_R) = \psi(x)$

$$\psi(x)+\psi(-x)=\psi(x+(-x))=\psi(0_R)=0_S \Rightarrow \psi(-x)=-\psi(x)=-a \in \mathrm{Im}\ \psi, a+(-a)=-a \in \mathrm{Im}\ \psi, a+($$

 0_S

加法的交换律、结合律,乘法的结合律,左、右分配律是显然成立的。

1.2 环的同态 5

定理 1.2.1: 满同态把子环映射到子环

设 R, S 是两个环, $\varphi: R \to S$ 是一个满同态, $I = \ker \varphi$ 是一个子环, 那么:

任意一个 R 的子环 $R' \subseteq R$,其在 φ 下的像 $S' = \varphi(R')$ 是 S 的一个子环;

同时,任意一个 S 的子环 S', $R' = \{r \in R | \varphi(r) \in S'\}$ 也是一个包含了 I 的 R 的子环

证明: 首先先证明第一条结论。

$$\forall a, b \in R' = \varphi(a) + \varphi(b) = \varphi(a+b) \in S'$$

$$\varphi(a) \cdot \varphi(b) = \varphi(ab) \in S'$$

$$\varphi(a) + \varphi(0_R) = \varphi(a) \in S', \varphi(a) + \varphi(-a) = \varphi(0_R) = 0_S$$

然后证明第二条结论

首先,因为 $\forall r \in \ker \varphi, \varphi(r) = 0$,所以一定有 $\ker \varphi \in R'$

$$\forall a, b \in R', \ \neg \text{cef} \ \varphi(a), \varphi(b) \in S', \ \text{fill} \ \varphi(a+b) = \varphi(a) + \varphi(b) \in S' \Rightarrow a+b \in R'$$

$$\varphi(a) \cdot \varphi(b) = \varphi(ab) \in S' \Rightarrow ab \in R'$$

$$\varphi(a)+\varphi(0_R)=\varphi(a)\in S'\Rightarrow a+0_R=a\in R', \\ \varphi(a)+(-\varphi(a))=0_S\in S'\Rightarrow \varphi(-a)\in S'\Rightarrow -a\in R'$$

值得注意的是,这个引理中,第一个结论中我们没有要求子环包含同态的核,但是我们随后又提出,从 S 反向映射回来后必须包含同态的核。这并不是矛盾的,因为我们没有限定同态是双射。

上述定理可以用下图表示:

1.3 环的理想 6

1.3 环的理想

1.3.1 理想的定义

定义 1.3.1: 理想

设 R 是一个环, R 是 R 的一个子环。

如果 $\forall a \in S, b \in R, ab \in S$, 那么我们称 $S \neq R$ 的一个左理想;

如果 $\forall a \in S, b \in R, ba \in S$, 那么我们称 $S \in R$ 的一个右理想;

如果 S 既是 R 的左理想,又是 R 的右理想,那么我们称 S 是 R 的一个双理想。

显然, $\{0_R\}$, R 都是 R 的理想,我们称之为平凡理想。

我们观察到:一些环,比如说 \mathbb{Z} ,他们有一种特殊的理想,比如说 $\forall m \in \mathbb{Z}, m\mathbb{Z}$ 是 \mathbb{Z} 的一个理想。我们把这种直接由一个元素"生成"的理想叫主理想。

定义 1.3.2: 主理想

设 R 是一个环,如果 R 的一个理想 S 满足:

 $\exists a \in R, S = aR := \{ab | b \in R\}$,那么我们称 S 是由 a 生成的主理想,记作 (a)

1.3.2 理想的性质

1.

命题 1.3.1. 设 $\psi: R \to S$ 是一个环同态, 那么 $\ker \psi$ 是 S 的一个理想

证明: 取 $\forall a \in \ker \psi$, 依核的定义, $\psi(a) = 0_S$

那么, $\forall b \in R, \psi(ab) = \psi(a)\psi(b) = 0_S, \psi(ba) = \psi(b)\psi(a) = 0_S$

因此, $ab, ba \in \ker \psi$, 于是命题得证。

2.

命题 1.3.2. 设 R 是一个幺环,S 是 R 的一个双理想,如果 $1_R \in S$,那么 S = R 证明: 依理想的定义, $\forall b \in R, 1_R b = b1_R = b \in S$,所以 $R \subseteq S$,所以必须有 R = S 口 我们可以立即得出,最特殊的幺环——域,也可以应用上述性质

推论 1.3.1: 域没有非平凡理想

域只有平凡理想

1.4 商环 7

证明: 设 F 是一个域, S 是 F 的一个理想

因为域中任意元素都有逆元素, 所以 $\forall a \in S, a^{-1} \in F$

而按照理想的概念, $a \cdot a^{-1} = 1_F \in S$

而按照前面的命题, $1_F \in S$,那么一定有 S = F,它是一个平凡理想;

1.4 商环

1.4.1 商环的定义

我们首先定义等价类,随后定义商环

定义 1.4.1: 关于环的理想的等价类

设 R 是一个环, S 是 R 的一个理想

我们定义 $R \times R$ 上的一个等价关系: \sim : $\{(x,y)|x-y \in I\} \subseteq R \times R$

并定义 $a \in R$ 关于 \sim 的等价类为: $a + I := \overline{a} := \{x \in R | x \sim a\}$

我们其实还需要验证以上关系的确是一个等价关系:

首先, $\forall a \in R, a \sim a$, 因为 $a - a = 0_R \in I$, 这说明自反性成立;

其次,如果 $a \sim b$,那么有 $a - b \in I$,而 I 是一个理想,所以一定有 $b - a \in I$,所以 $b \sim a$,这说明对称性成立;

最后,如果 $a \sim b, b \sim c$,那么有 $a - b \in I, b - c \in I$,而 I 是一个理想,所以一定有 $(a - b) + (b - c) = (a - c) \in I$,所以 $a \sim c$,这说明传递性成立;

定义 1.4.2: 商环

设 R 是一个环, I 是 R 的一个理想, 那么我们定义:

 $R/I = \{a + I | a \in R\}$, 称为 R 关于 I 的商环

并定义其中的环加法和环乘法为:

 $(a+I) + (b+I) = (a+b) + I, (a+I) \cdot (b+I) = (a \cdot b) + I$

事实上,由于 a+I 是一个等价类,我们还需要验证,如果 $a_1+I=a_2+I$,即同一等价类选取不同单位元下,运算结果是一致的。

命题 1.4.1. 商环的加法和乘法是良定义的 设 R 是一个环, I 是 R 的一个理想, 那么如

$$\mathbb{R} \ a_1 + I = a_2 + I, b_1 + I = b_2 + I$$

证明: 对于第一条,只需证明 $(a_1 + b_1) - (a_2 + b_2) \in I$ 。

因为 $(a_1+b_1)-(a_2+b_2)=(a_1-a_2)+(b_1-b_2)$,而 $a_1-a_2\in I,b_1-b_2\in I$,所以 $(a_1+b_1)-(a_2+b_2)\in I$

对于第二条,只需证明 $(a_1 \cdot b_1) - (a_2 \cdot b_2) \in I$ 。

因为
$$(a_1 \cdot b_1) - (a_2 \cdot b_2) = (a_1 \cdot b_1 - a_1 \cdot b_2) + (a_1 \cdot b_2 - a_2 \cdot b_2)$$

= $a_1(b_1 - b_2) + (a_1 - a_2)b_2 \in I$,因为 I 是一个理想。

1.5 同态基本定理

1.5.1 同态基本定理

定理 1.5.1: 同态基本定理

设 R, S 是两个环, $\varphi: R \to S$ 是一个环同态, 那么:

$$R/\ker\varphi\cong\operatorname{Im}\,\varphi\tag{1.1}$$

并且同构映射 ψ 唯一,即 $\psi: R/\ker \varphi \ni a + \ker \varphi \mapsto \varphi(a) \in \operatorname{Im} \varphi$

证明: 我们考虑以下映射:

 $\psi: R/\ker \varphi \ni a + \ker \varphi \mapsto \varphi(a) \in \operatorname{Im} \varphi$

因为 $a + \ker \varphi = b + \ker \varphi \Rightarrow a - b \in \ker \varphi \Rightarrow \varphi(a) - \varphi(b) = 0$,所以它的确是映射。

首先, $\psi((a + \ker \varphi) + (b + \ker \varphi)) = \psi((a + b) + \ker \varphi) = \varphi(a + b) = \varphi(a) + \varphi(b) = \psi(a + \ker \varphi) + \psi(b + \ker \varphi)$

 $\psi\left((a+\ker\varphi)\cdot(b+\ker\varphi)\right)=\psi(ab+\ker\varphi)=\varphi(ab)=\varphi(a)\varphi(b)=\psi(a+\ker\varphi)\cdot\psi(b+\ker\varphi)$ ker φ)

这说明 ψ 是一个同态,我们接下来证明双射性。

首先证明单射性,如果 $\psi(a+\ker\varphi)=\psi(b+\ker\varphi)$,即 $\varphi(a)=\varphi(b)$,那么 $\varphi(a)-\varphi(b)=\varphi(a-b)=0_R$,所以 $a-b\in\ker\varphi$,于是 $a+\ker\varphi=b+\ker\varphi$,单射性成立。

满射性是显然的,因为显然 $\forall b \in \text{Im } \varphi, \exists a \in R, \varphi(a) = b, \psi(a + \ker \varphi) = \varphi(a) = b$ 我们最后证明同构映射唯一性

我们设 $\chi: R/\ker \varphi \to \operatorname{Im} \varphi$ 是一个同构映射。

那么,一定有
$$\varphi = \chi \circ \pi_{\ker \varphi}$$
,其中 $\pi_{\ker \varphi} : R \ni a \mapsto a + \ker \varphi \in R / \ker \varphi$ 我们注意到, $\psi(a + \ker \varphi) = \varphi(a) = \chi \left(\pi_{\ker \varphi}(a) \right) = \chi(a + \ker \varphi)$ 所以一定有 $\psi = \chi$,于是命题得证。

1.5.2 同构基本定理

1. 第一同构定理

定理 1.5.2: 同构第一定理

设 R, S 是两个环, $\varphi: R \to S$ 是一个满同态, 那么:

$$R/\ker\varphi\cong S\tag{1.2}$$

并且同构映射唯一。

证明: 这个定理事实上是同态基本定理的一个特例,因为如果 φ 满,那么一定有 $\operatorname{Im} \varphi = S$

2. 第二同构定理

定理 1.5.3: 第二同构定理

设 R 是一个环, S 是 R 的一个子环, I 是 R 的一个理想, 那么:

$$S/(S \cap I) \cong (S+I)/I \tag{1.3}$$

其中 $S + I = \{a + b | a \in S, b \in I\}$

证明: 我们首先验证 S+I 是一个子环

$$\forall z = x + y \in S + I, x \in S, y \in I, c = a + b \in S + I, a \in S, b \in I \\ z + c = (x + y) + (a + b) = (x + a) + (y + b) \in S + I \\ z \cdot c = (x + y) \cdot (a + b) = (x + y) \cdot a + (x + y) \cdot b \in I \\ x + y + (0_R + 0_R) = x + y, x + y + (-x + (-y)) = 0_R, \text{ 因此 } S + I \text{ 是一个子环,于是 } I \\ 也是 $S + I$ 的理想$$

随后我们验证 $S \cap I$ 是一个理想

先验证 $S\cap I$ 是一个子环: $\forall x,y\in S\cap I, x+y\in S, x\cdot y\in I$,而 $0_R\in S, 0_R\in I\Rightarrow 0_R\in S\cap I, \forall a\in S\cap I, -a\in S, -a\in I\Rightarrow S\cap I$

再验证 $S \cap I$ 是一个理想: $\forall a \in S \cap I, b \in R, a \in S \Rightarrow ab \in S, a \in I \Rightarrow ab \in S \cap I$ 我们考虑映射 $\varphi : S/(S \cap I) \ni a + S \cap I \mapsto a + I \in (S + I)/I$

它显然是一个映射, 因为 $a+S\cap I=b+S\cap I\Rightarrow a-b\in S\Rightarrow a-b\in S+I\Rightarrow a+I=b+I$ 我们接下来证明它是一个同态:

$$\forall a+S\cap I, b+S\cap I \in S/(S\cap I), \varphi\left((a+S\cap I)+(b+S\cap I)\right) = \varphi\left((a+b)+(S\cap I)\right) = \\ (a+b)+I = (a+I)+(b+I) = \varphi\left(a+(S\cap I)\right)+\varphi\left(b+(S\cap I)\right) \\ \varphi\left((a+S\cap I)\cdot(b+S\cap I)\right) = \varphi\left(a\cdot b+(S\cap I)\right) = a\cdot b+I = (a+I)\cdot(b+I) = \\ \varphi\left(a+(S\cap I))\cdot\varphi\left(b+(S\cap I)\right)$$

再验证它是一个双射:

单射性: $\forall a+(S\cap I), b+(S\cap I) \in S/(S\cap I), \varphi (a+(S\cap I)) = \varphi (b+(S\cap I)) \Rightarrow a+I=b+I \Rightarrow a-b \in I \Rightarrow a-b \in S\cap I \Rightarrow a+(S\cap I) = b+(S\cap I)$ (注意隐含的条件 $a,b \in S$) 满射性: $\forall (x+y)+I \in (S+I)/I, x \in S, y \in I, \varphi (x+(S\cap I)) = x+I=x+y=I$,因为 $(x+y)-y=y \in I$

于是命题得证。

3. 第三同构定理

在考虑第三同构定理前, 我们先讨论一个引理

引理 1.5.4

设 R,S 是两个环, $\varphi:R\to S$ 是一个满同态, $I=\ker\varphi$ 是一个理想 那么对于包含于 I 的任意一个 R 的理想 J,存在唯一的环同态 $\chi:R/J\to S$,使得 $\varphi=\chi\circ\pi_J$,其中 $\pi_J:R\ni a\mapsto a+J\in R/I$ 并且此时 $\ker\chi=I/J$

证明: 我们考虑我们之前曾经构造的映射: $\chi:R/J\ni a+J\mapsto \varphi(a)\in S$ 我们之前已经证明了它是一个同构映射,我们接下来证明 $\ker\chi=I/J$ 因为 $\ker\chi=\{a+J|\chi(a+J)=0_S\}$ 而 $\chi(a+J)=\varphi(a)$,所以 $a+J\in\ker\chi\Rightarrow\varphi(a)=0\Rightarrow a\in I$ 所以 $\ker\chi=I/J$,我们接下来证明 χ 是唯一的,并且 $\varphi=\chi\circ\pi_J$ 我们设 $\psi:R/J\to S$ 是一个同构映射。他显然也满足 $\varphi=\psi\circ\pi_I$

我们注意到, $\chi(a+J)=\varphi(a)=\psi(\pi_J(a))=\psi(a+J)$ 所以一定有 $\psi=\chi$,于是命题得证。

定理 1.5.5: 第三同构定理

设 R 是一个环, I,J 是 R 的两个理想, 并且 $I \subseteq J$ 。

那么 J/I 是 R/I 的理想,并且

$$(R/I)/(J/I) \cong R/J \tag{1.4}$$

证明: 我们考虑满同态 $\varphi: R \ni a \mapsto a + J \in R/J$

注意到: $\ker \varphi = \{a|a+J=0_{R/J}\} = \{a|a+J=J\} = \{a|a-0_R \in J\} = J$ 运用前面的引理,那么一定有一个同态 $\chi: R/I \to R/J$,并且 $\ker \chi = J/I$ 接下来运用同构第一基本定理,于是有 $(R/I)/(J/I) \cong R/J$,命题得证。

1.5.3 推论

定理 1.5.6: 中国剩余定理

如果 R 是一个交换幺环, I_1, \dots, I_n 是 R 的 n 个理想, 并且 $\forall i, j, I_i + I_j = R$, 那么有:

$$R/(I_1\cap \cdots \cap I_n) \cong R/I_1\times R/I_2\times \cdots \times R/I_n \tag{1.5}$$

证明: 先证明 n=2 的情形:

设 R 是一个交换幺环, I_1, I_2 是 R 的两个理想, 并且 $I_1 + I_2 = R$

考虑映射 $\phi:R\ni r\mapsto (r+I_1,r+I_2)\in R/I_1\times R/I_2$

我们先验证它是一个同态:

$$\phi(r_1+r_2)=(r_1+r_2+I_1,r_1+r_2+I_2)=(r_1+I_1)+(r_2)+(I_2)=\varphi(r_1)+\varphi(r_2)$$

$$\phi(r_1\cdot r_2)=(r_1\cdot r_2+I_1,r_1\cdot r_2+I_2)=(r_1+I_1,r_1+I_2)\cdot (r_2+I_1,r_2+I_2)=\phi(r_1)\cdot \phi(r_2)$$
 它其实还是个满同态,因为 $\forall a=x_1+y_1,b=x_2+y_2,x_1,x_2\in I_1,y_1,y_2\in I_2$
$$(a+I_1,b+I_2)=(x_1+y_1+I_1,x_2+y_2+I_2)=(y_1+I_1,x_2+I_2),\ \ \text{从而}\ \phi(y_1+x_2)=(y_1+x_2+I_1,y_1+x_2+I_2)=(y_1+I_1,x_2+I_2)$$

注意到: $\ker \phi = \{r | (r+I_1,r+I_2) = (I_1,I_2)\} = \{r | r \in I_1, r \in I_2\} = I_1 \cap I_2$ 利用第一同构定理得: $R/\ker \phi = R/(I_1 \cap I_2) \cong R/I_1 \times R/I_2$

接下来证明 n 的情形:

对 n 作数学归纳法,首先,我们已经证明当 n=2 时命题成立。

现在假设 $R/(I_1 \cap \cdots \cap I_n) \cong R/I_1 \times R/I_2 \times \cdots \times R/I_n$ 成立,

我们欲证,对于 R 的理想 I_{n+1} ,如果 $\forall i \neq n+1, I_i+I_{n+1}=R$,那么 $R/(I_1\cap \cdots \cap I_{n+1})\cong R/I_1\times \cdots \times R/I_{n+1}$

记 $J=I_1\cap\cdots\cap I_n$,我们在第二同构定理的证明过程中已经证明了 J 是一个理想 而因为 $\forall i\neq n+1, I_i+I_{n+1}=R$,所以显然有 $J+I_{n+1}=R$ 所以只需要证 $R/(J\cap I_{n+1})=R/J\times R/I_{n+1}$,但这正是我们已经证明的结果。于是命题得证。

1.6 模

本节我们研究一种"环上的线性空间",也就是模

1.6.1 模的定义

定义 1.6.1: 左模

设 R 是一个环,M 是一个集合,如果存在两个运算 $+: M \times M \to M$, $\cdot_R: R \times M \to M$ 分别称为称为加法和纯量乘法,满足下列条件:

- ① $\exists 0_M \in M$,称为加法单位元, $\forall \alpha \in M, 0_M + \alpha = \alpha + 0_M = \alpha$
- ② $\forall \alpha, \beta \in M, \alpha + \beta = \beta + \alpha$
- ④ $\forall \alpha \in M, \exists -\alpha \in M$,称为加法逆,使得 $\alpha + (-\alpha) = 0_M$
- **6** $\forall a \in R, \alpha, \beta \in M, a(\alpha + \beta) = a\alpha + a\beta$

那么我们称 M 是一个左 R-模

类似地,我们也有右模的定义:

1.6 模 13

定义 1.6.2: 右模

设 R 是一个环,M 是一个集合,如果存在两个运算 $+: M \times M \to M, \cdot_R: M \times R \to M$ 分别称为称为加法和纯量乘法,满足下列条件:

- ① $\exists 0_M \in M$,称为加法单位元, $\forall \alpha \in M, 0_M + \alpha = \alpha + 0_M = \alpha$
- $2 \forall \alpha, \beta \in M, \alpha + \beta = \beta + \alpha$
- ④ $\forall \alpha \in M, \exists -\alpha \in M$,称为加法逆,使得 $\alpha + (-\alpha) = 0_M$
- $<math> \forall a,b \in R, \alpha \in M, (\alpha a)b = \alpha(ab)$
- **6** $\forall a \in R, \alpha, \beta \in M, (\alpha + \beta)a = \alpha a + \beta b$

那么我们称 M 是一个右 R-模

如果 M 兼具左模和右模的特征, 我们称 M 是一个双模:

定义 1.6.3: 双模

如果 M 既是左 R- 模,又是右 S- 模,并且满足:

 $(a\alpha)b = a(\alpha b)$

那么我们称 M 是一个 (R,S)— 双模

我们也知道,环不一定有乘法单位元,因此有以下定义:

定义 1.6.4: 幺模

设 R 是幺环, M 是一个 R— 模

如果 $\forall \alpha \in M, 1_R \cdot \alpha = \alpha$, 那么我们称 M 是一个幺模。

在后续中,除非特别做区分,我们都假定我们说的模指的是左模。

1.6 模 14

1.6.2 模的同态

定义 1.6.5: 模同态

设 M, N 是两个 R— 模, 如果映射 $\psi: M \to N$ 满足:

 $\forall \alpha, \beta \in M, \psi(\alpha + \beta) = \psi(\alpha) + \psi(\beta)$

 $\forall a \in R, \alpha \in M, \psi(a\alpha) = a\psi(\alpha)$

那么称 ψ 是一个从 M 到 N 的模同态。

1.6.3 商模

定义 1.6.6: 商模

设M是一个模,N是M的一个子模