Formula integrală a lui Cauchy

Am demonstrat în cursul precedent că, dacă $D \subset \mathbb{C}$ un domeniu simplu conex şi $f: D \to \mathbb{C}$ o funcție olomorfă cu f' continuă pe D, atunci, pe orice curbă rectificabilă şi închisă $\gamma \subset D$,

$$\int_{\gamma} f(z)dz = 0.$$

Acest rezultat fundamental din analiza complexă este valabil şi în condiții mai puțin restrictive. Se poate renunța la cerința ca f' să fie continuă, iar simpla conexiune a domeniului poate fi înlocuită cu cerința ca γ să fie o curbă omotopă cu un punct, adică să poată fi deformată continuu în D până se reduce la un singur punct. Mai precis, are loc următorul rezultat, pe care îl prezentăm fără demonstrație:

Teorema fundamentală a lui Cauchy. Fie $f: D \to \mathbb{C}$ o funcție olomorfă pe domeniul $D \subset \mathbb{C}$ și γ o curbă închisă omotopă în D cu un punct. Atunci

$$\int_{\gamma} f(z)dz = 0.$$

Există și o variantă cu cerințe chiar mai reduse, utilă în aplicații:

Teorema Fie $D \subset \mathbb{C}$ un domeniu, fie $z_0 \in D$ și fie $f: D \to \mathbb{C}$ o funcție continuă pe D și olomorfă în $D \setminus \{z_0\}$. Atunci, pe orice curbă închisă γ omotopă cu un punct în D, avem

$$\int_{\gamma} f(z)dz = 0.$$

Consecință. Integrala oricărei funcții olomorfe pe un domeniu simplu conex este independentă de drum, iar funcția admite primitive în acel domeniu.

§1. Integrale cu parametru

Fie $\gamma \subset D$ o curbă rectificabilă în domeniul $D \subset \mathbb{C}$ și fie $g: D \times \gamma \to \mathbb{C}$ o funcție de două variabile, presupusă continuă. În acest caz, pentru fiecare valoare fixată a parametrului $z \in D$, funcția $u \mapsto g(z,u)$ este continuă și, prin urmare, există integrala

$$G(z) = \int_{\gamma} g(z, u) du.$$

Teoremă. În ipotezele precizate, integrala G este continuă în raport cu parametrul z.

Pentru demonstrație, avem nevoie de următorul rezultat auxiliar:

Lemă. Pentru orice funcție continuă f și orice curbă rectificabilă γ

$$\left| \int_{\gamma} f(z)dz \right| \le L(\gamma) \sup_{z \in \gamma} |f(z)|,$$

unde $L(\gamma) < +\infty$ reprezintă lungimea curbei γ .

Justificarea lemei este imediată: considerăm un şir de diviziuni $\Delta_n: a=t_0 < t_1 < \cdots < t_n = b$ cu $\nu(\Delta_n) \leq \frac{1}{n}$ şi, pentru o alegere (τ_k) oarecare a punctelor intermediare, majorăm suma Riemann-Stieltjes

$$\sigma_{\Delta_n}(f, \gamma, \tau) = \sum_k f(\gamma(\tau_k)) \Delta \gamma(t_k)$$

astfel

$$\left| \sum_{k} f(\gamma(\tau_k)) \Delta \gamma(t_k) \right| \leq \sum_{k} |f(\gamma(\tau_k))| |\Delta \gamma(t_k)| \leq M \sum_{k} |\Delta \gamma(t_k)| \leq M L(\gamma),$$

unde $M = \sup_{z \in \gamma} |f(z)| < +\infty$. Ştim că integrala

$$I = \int_{\gamma} f(z)dz$$

există, f fiind continuă, deci pentru orice $\varepsilon > 0$ există un $n \ge 1$ astfel încât

$$|I| \le |I - \sigma_{\Delta_n}(f, \gamma, \tau)| + |\sigma_{\Delta_n}(f, \gamma, \tau)| \le \varepsilon + ML(\gamma),$$

de unde urmează concluzia lemei.

Pentru a demonstra teorema, fixăm arbitrar un $z_0 \in D$ şi un r > 0 astfel încât $\overline{D}(z_0, r) \subset D$. Pentru orice $z \in D(z_0, r)$, avem

$$|G(z) - G(z_0)| = \left| \int_{\gamma} (g(z, u) - g(z_0, u)) du \right| \le L(\gamma) M(z, z_0),$$

unde $M(z,z_0) = \sup_{u \in \gamma} |g(z,u) - g(z_0,u)|$. Din uniforma continuitate a funcției g pe compactul $\gamma \times \overline{D}(z_0,r)$ rezultă că $M(z,z_0) \to 0$ pentru $z \to z_0$, și astfel rezultă că $G(z) \to G(z_0)$ pentru $z \to z_0$.

Teoremă. Presupunem, în plus fața de ipotezele precizate, că pentru fiecare $u \in \gamma$, funcția $z \mapsto g(z,u)$ este olomorfă în D și notăm cu $\frac{\partial g}{\partial z}$ derivata acestei funcții. Dacă $\frac{\partial g}{\partial z}: D \times \gamma \to \mathbb{C}$ este continuă, atunci integrala G este olomorfă în raport cu parametrul $z \in D$ și, mai mult, derivarea comută cu integrala:

$$G'(z) = \int_{\gamma} \frac{\partial g}{\partial z}(z, u) du.$$

Demonstrație. Fie $z_0 \in D$ fixat arbitrar și r > 0 astfel încât $\overline{D}(z_0, r) \subset D$. Pentru orice $h \in \mathbb{C}$ cu |h| < r, avem

$$\frac{G(z_0+h)-G(z_0)}{h} - \int_{\gamma} \frac{\partial g}{\partial z}(z_0,u)du =$$

$$=\frac{1}{h}\int_{\gamma}\left[g(z_0+h,u)-g(z_0,u)-h\frac{\partial g}{\partial z}(z_0,u)\right]du.$$

Integrala funcției $\frac{\partial g}{\partial z}(\cdot, u)$ fiind independentă de drum, avem

$$g(z_0 + h, u) - g(z_0, u) = \int_{z_0}^{z_0 + h} \frac{\partial g}{\partial z}(z, u) dz.$$

Utilizăm egalitatea evidentă

$$h\frac{\partial g}{\partial z}(z_0, u) = \int_{z_0}^{z_0+h} \frac{\partial g}{\partial z}(z_0, u) dz$$

și obținem:

$$\begin{split} \frac{G(z_0+h)-G(z_0)}{h}-\int_{\gamma}\frac{\partial g}{\partial z}(z_0,u)du &=\\ &=\left|\frac{1}{h}\int_{\gamma}\left\{\int_{z_0}^{z_0+h}\left[\frac{\partial g}{\partial z}(z,u)-\frac{\partial g}{\partial z}(z_0,u)\right]dz\right\}du\right|\leq\\ &\leq\frac{1}{|h|}L(\gamma)|h|M(z_0,h)\leq L(\gamma)M(z_0,h), \end{split}$$

unde

$$M(z_0, h) = \sup_{(z, u) \in \overline{D}(z_0, h) \times \gamma} \left| \frac{\partial g}{\partial z}(z, u) - \frac{\partial g}{\partial z}(z_0, u) \right|.$$

Deoarece $\frac{\partial g}{\partial z}$ este continuă pe compactul $\overline{D}(z_0,r) \times \gamma$, rezultă că este uniform continuă, prin urmare $M(z_0,h) \to 0$ pentru $h \to 0$, ceea ce încheie demonstrația.

Exemplu. Fie φ o funcție continuă pe γ . Arătați că integrala cu parametru

$$f(z) = \int_{\mathcal{I}} \frac{\varphi(u)}{u - z} du$$

definește o funcție olomorfă pe $\mathbb{C} \setminus \gamma$, care este indefinit derivabilă și

$$f^{(n)}(z) = n! \int_{\gamma} \frac{\varphi(u)}{(u-z)^{n+1}} du.$$

Rezolvare. Notăm

$$g(z,u) = \frac{\varphi(u)}{u-z} = \varphi(u)(u-z)^{-1}$$

și, prin derivări succesive, obținem:

$$\frac{\partial^n g}{\partial z^n}(z, u) = n! \varphi(u) (u - z)^{-(n+1)}.$$

Concluzia o stabilim prin inducție, folosind teorema de derivare a integralelor cu parametru stabilită mai sus.

§2. Formula integrală a lui Cauchy

Ştim, din Teorema lui Jordan, că orice curbă simplă şi închisă, $\gamma = \gamma(t)$, are imaginea $\gamma \subset \mathbb{C}$ homeomorfă cu un cerc şi separă planul în două domenii, unul mărginit şi simplu conex, interiorul lui γ , notat cu D_{γ} , şi celălalt nemărginit, exteriorul lui γ , $\mathbb{C} \setminus \overline{D}_{\gamma}$. Mulţimea suport poate fi parcursă în două sensuri distincte, pentru a face o alegere, vom presupune implicit parcurgerea în sens trigonometric.

Pentru existența integralelor avem nevoie de curbe rectificabile, astfel că, în continuare, prin *curbă Jordan* vom întelege o curbă γ rectificabilă, simplă şi închisă, parcursă în sens trigonometric (adică cu interiorul D_{γ} pe stânga).

Exemplu. Fie γ o curbă Jordan și $z_0 \in \mathbb{C} \setminus \gamma$. Arătați că

$$\frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz = \begin{cases} 1, & dac z_0 \in D_{\gamma}, \\ 0, & dac z_0 \in \mathbb{C} \setminus \overline{D}_{\gamma}. \end{cases}$$

Rezolvare. Pentru a simplifica scrierea, considerăm $z_0 = 0$. Curba $\gamma = \gamma(t)$ are, în coordonate polare, o reprezentare parametrică de forma

$$\gamma(t) = \rho(t)(\cos\theta(t) + i\sin\theta(t))$$

cu $\rho(t) = |\gamma(t)| > 0$ şi $\theta : [a, b] \to \mathbb{R}$ o funcție continuă. Curba fiind închisă, avem $\gamma(b) = \gamma(a)$, de unde rezultă $\rho(b) = \rho(a)$ şi $\theta(b) = \theta(a) + 2k\pi$, cu $k \in \mathbb{Z}$.

Deoarece γ este o curbă Jordan, punctul curent $\gamma(t)$ va parcurge mulţimea suport o singură dată, şi avem două cazuri: dacă 0 este punct în domeniul interior, raza vectoare a punctului curent va ocoli complet originea o singură dată, şi vom avea $\theta(b) = \theta(a) + 2\pi$, altfel, dacă 0 este în exterior, raza vectoare va reveni în poziția inițială cu $\theta(b) = \theta(a)$.

Deoarece $\gamma\subset\mathbb{C}$ este mulțime compactă iar $0\not\in\gamma$, distanța de la 0 la γ este strict pozitivă

$$\delta = \inf_{z \in \gamma} |z| > 0.$$

Considerăm atunci o acoperire finită a lui γ cu discuri D_k cu diametrul strict mai mic decât δ . Aceste discuri nu conțin originea, deci în fiecare dintre ele $g(z)=\frac{1}{z}$ are primitive, date de determinări ale logaritmului obținute prin racordarea prin continuitate a unor ramuri de forma

$$f_k(z) = \ln|z| + i(\arg z + 2h_k\pi), \ h_k \in \mathbb{Z}.$$

Considerăm o diviziune $\Delta: a = t_0 < t_1 < \dots < t_n = b$ cu norma suficient de mică astfel încât fiecare arc să fie inclus cel puţin într-un disc D_{k_j} , şi pentru fiecare j alegem în D_{k_j} determinarea logaritmului pentru care

$$\arg \gamma(t) + 2h_{k_j}\pi = \theta(t)$$

când $t \in [t_{j-1}, t_j]$. Deducem:

$$\int_{\gamma} \frac{dz}{z} = \sum_{j} \int_{\gamma_{j}} \frac{dz}{z} = \sum_{j} \left[\ln \rho(t_{j+1}) + i\theta(t_{j+1}) - \ln \rho(t_{j}) - i\theta(t_{j}) \right] =$$

$$= \ln \rho(b) - \ln \rho(a) + i(\theta(b) - \theta(a)) = \begin{cases} 2\pi i, & \text{dacă } 0 \in D_{\gamma}, \\ 0, & \text{dacă } 0 \in \mathbb{C} \setminus \overline{D}_{\gamma}. \end{cases}$$

Observație. In general, pentru orice curbă rectificabilă închisă γ şi pentru orice $z_0 \notin \gamma$, se poate arăta că numărul

$$I(\gamma, z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{z - z_0} dz$$

este un număr întreg, numit indicele curbei γ în raport cu punctul z_0 și acesta numără câte rotații complete face raza vectoare $\overline{z_0\gamma(t)}$ în jurul punctului z_0 , când t parcurge intervalul de definiție [a,b].

Teoremă (Formula integrală a lui Cauchy). Fie $D \subset \mathbb{C}$ un domeniu, $\gamma \subset D$ o curbă Jordan omotopă cu un punct în D, $f:D \to \mathbb{C}$ o funcție olomorfă în D. Atunci, pentru orice punct din domeniul interior curbei γ , $z_0 \in D_{\gamma}$, avem

$$f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz.$$

Demonstrație. Funcția $g: D \to \mathbb{C}$ definită prin

$$g(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0}, & \text{dacă } z \in D \setminus \{z_0\}, \\ f'(z_0), & \text{dacă } z = z_0, \end{cases}$$

este continuă pe D și olomorfă în $D \setminus \{z_0\}$. Conform unor rezultate anterioare, urmează că

$$0 = \int_{\gamma} g(z)dz = \int_{\gamma} \frac{f(z)}{z - z_0} dz - \int_{\gamma} \frac{f(z_0)}{z - z_0} dz = \int_{\gamma} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0).$$

Consecință. Funcțiile olomorfe admit derivate de orice ordin. Mai precis, cu notațiile din teorema precedentă,

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz.$$

Demonstrație. Pentru orice $z_0 \in D$ există o curbă Jordan $\gamma \subset D$ astfel încât $z_0 \in D_{\gamma}$, de exemplu $\gamma(t) = z_0 + re^{it}$, $t \in [0, 2\pi]$, cu r > 0 suficient de mic. Pentru această curbă γ are loc formula integrală a lui Cauchy şi, mai departe, aplicăm teorema de derivare a integralelor cu parametru.

Vom arăta acum că are loc următoarea reciprocă a teoremei fundamentale a lui Cauchy:

Teoremă (Morera). Fie $f: D \to \mathbb{C}$ o funcție continuă pe domeniul $D \subset \mathbb{C}$ Dacă pentru orice curbă γ închisă, omotopă în D cu un punct, avem

$$\int_{\gamma} f(z)dz = 0,$$

atunci f este olomorfă în D.

Demonstraţie. Fie $z_0 \in D$ şi r > 0 astfel încât $D(z_0, r) \subset D$. Deoarece discul $D(z_0, r)$ este un domeniu simplu conex, orice curbă închisă $\gamma \subset D(z_0, r)$ este omotopă în $D(z_0, r)$ cu un punct, prin urmare $\int_{\gamma} f(z)dz = 0$. Rezultă că f admite primitive pe $D(z_0, r)$, fie F una dintre ele. Funcţia olomorfă F admite derivate de orice ordin, în particular F'', deci f = F' este funcţie olomorfă în z_0 .

O consecință importantă a teoremei lui Morera este următoarea: dacă știm că f este continuă pe $D(z_0, r)$ și olomorfă în $D(z_0, r) \setminus \{z_0\}$, atunci este olomorfă pe întreg discul $D(z_0, r)$, și aceasta deoarece pentru o astfel de funcție integrala este 0 pe orice curbă omotopă cu un punct.

Teoremă (Liouville). Fie $f: \mathbb{C} \to \mathbb{C}$ o funcție olomorfă și mărginită. Atunci f este constantă.

Demonstrație. Arătăm că, $\forall z_0 \in \mathbb{C}, f'(z_0) = 0$. Avem:

$$|f'(z_0)| = \frac{1}{2\pi} \left| \int_{|z-z_0|=R} \frac{f(z)}{(z-z_0)^2} dz \right| \le \frac{1}{2\pi} 2\pi R \frac{M}{R^2} = \frac{M}{R} \to 0,$$

pentru $R \to +\infty$.

Teorema lui Liouville furnizează o demonstrație rapidă pentru

Teorema fundamentală a algebrei. Orice funcție polinomială de grad ≥ 1 are cel puțin o rădăcină în \mathbb{C} .

Demonstrație. Dacă presupunem, prin reducere la absurd, că există un polinom P cu grad $(P) \ge 1$ fără rădăcini în \mathbb{C} , atunci funcția

$$f(z) = \frac{1}{P(z)}$$

este definită pentru orice $z \in \mathbb{C}$ și este olomorfă în \mathbb{C} . Dar

$$\lim_{z \to \infty} P(z) = \infty \implies \lim_{z \to \infty} f(z) = 0,$$

și prin urmare f este mărginită, iar din teorema lui Liouville rezultă că este constantă, în contradicție cu ipoteza grad $(P) \ge 1$.

In final, prezentăm formula integrală a lui Cauchy pentru o coroană circulară.

Teoremă. Fie 0 < r < R, $q \in \mathbb{C}$ şi $K = \{z \in \mathbb{C} : r < |z - q| < R\}$. Dacă $f: D \to \mathbb{C}$ este olomorfă în domeniul D şi $\overline{K} \subset D$, atunci pentru orice $z_0 \in K$,

$$f(z_0) = \frac{1}{2\pi i} \left[\int_{|z-q|=R} \frac{f(z)}{z - z_0} dz - \int_{|z-q|=r} \frac{f(z)}{z - z_0} dz \right].$$

Observație. Dacă domeniul D este simplu conex atunci ambele circumferințe sunt omotope în D cu un punct, și este aplicabilă formula integrală a lui Cauchy: deoarece z_0 este în interiorul discului D(q,R) dar în exteriorul discului D(q,r), prima integrală este $f(z_0)$ iar a doua 0. Teorema aduce ceva nou numai în cazul în care f este olomorfă pe coroana \overline{K} , dar nu și în tot discul interior.

Figura 1. Coroana circulară

Demonstrație. Notăm cu \mathscr{C}_R și \mathscr{C}_r circumferințele celor două discuri și cu Q centrul lor. Fixăm un punct oarecare $A \in \mathscr{C}_R$ și notăm cu B punctul de intersectie al segmentului QA cu \mathscr{C}_r .

Este evident că se poate defini o lege orară $\gamma = \gamma(t)$ pentru care punctul curent $\gamma(t)$ pleacă din $A_1 = A$, parcurge \mathscr{C}_R în sens trigonometric şi ajunge din nou în $A = A_2$, parcurge apoi segmentul AB şi ajunge în $B_2 = B$, continuă pe cercul \mathscr{C}_r în sens antitrigonometric şi ajunge din nou în $B = B_1$ şi, în final, revine în A_1 pe segmentul B_1A_1 .

Observăm că curba γ astfel definită este o curbă rectificabilă, închisă, inclusă în domeniul D și care, mai mult, este omotopă în D cu un punct: putem deforma continuu curba micșorând raza R până la r și păstrînd fix segmentul final B_1A_1 în timp ce rotim în jurul lui Q segmentul de trecere A_2B_2 , până restrîngem interiorul curbei la un singur punct.

Vom aplica pe curba γ teorema fundamentală a lui Cauchy pentru aceeași funcție g ca în demonstrarea formulei integrale:

$$g(z) = \begin{cases} \frac{f(z) - f(z_0)}{z - z_0}, & \text{dacă } z \in D \setminus \{z_0\}, \\ f'(z_0), & \text{dacă } z = z_0. \end{cases}$$

Obţinem

$$0 = \int_{\gamma} g(z)dz = \int_{\mathscr{C}_R} g(z)dz - \int_{\mathscr{C}_r} g(z)dz,$$

deoarece integralele pe AB și BA se reduc. Concluzia rezultă din

$$\int_{\mathcal{C}_R} g(z)dz = \int_{\mathcal{C}_R} \frac{f(z)}{z - z_0} dz - \int_{\mathcal{C}_R} \frac{f(z_0)}{z - z_0} dz = \int_{\mathcal{C}_R} \frac{f(z)}{z - z_0} dz - 2\pi i f(z_0)$$

şi
$$\int_{\mathscr{C}_r} g(z)dz = \int_{\mathscr{C}_r} \frac{f(z)}{z - z_0} dz - \int_{\mathscr{C}_r} \frac{f(z_0)}{z - z_0} dz = \int_{\mathscr{C}_r} \frac{f(z)}{z - z_0} dz - 0.$$