Knot Theory Seminar 20/02/2020

Oscar Koster

March 16, 2020

These notes are based on the book Introduction to Vassiliev Knot Invariants and the notes https://web.northeastern.edu/beasley/MATH7375/schedule.html (Lectures 1 and 2).

1 Definition of a knot

Intuitively a knot is a knotted loop of string in space. There are several ways to define a knot, the simplest definition is given as follows:

Definition 1.1. A parametrised knot is an embedding of the circle S^1 into \mathbb{R}^3 .

Recall that for smooth manifolds M and N an *embedding* $f: M \to N$ is a smooth injective map, such that the differential never vanishes (i.e. injective immersion).

In some cases it is more useful to consider one of the following definitions of a knot:

Definition 1.2. Three ways to define a knot:

- 1. A topological knot K^{top} is a subset of \mathbb{R}^3 which is homeomorphic to S^1 .
- 2. A smooth knot K^{smooth} is a subset of \mathbb{R}^3 which is diffeomorphic to S^1 .
- 3. A piecewise linear knot $K^{\rm pl}$ is a closed non-selfintersecting polygonal line in \mathbb{R}^3 .

Remark 1.3. Knots are denoted by capital letters, while the 'corresponding' embedding is given by a lower case letter.

A circle S^1 has two choices of an orientation. If we pick one, we give an orientation to all knots. A way to state this more formally,

Definition 1.4. An *oriented knot* is an equivalence class of parametrised knots under orientation preserving diffeomorphisms of the parametrised circle. An *unoriented knot knot* is an equivalence class of parametrised knots under all diffeomorphism.

Remark 1.5. We will assume a knot is oriented unless stated otherwise. Moreover, we choose the orientation to be counter-clockwise.

It is usually quite hard to draw knots in three dimensions. Therefore we use Knot diagrams. A knot diagram is a plane curve whose only singularities are transversal double points, which we will call crossings, together with a choice of one branch, which we will call an overcrossing and the other one will be called an undercrossing. In other words, a knot diagram is a projection of a knot on the plane. An orientation of a knot will be denoted by arrows.

Example 1.6. A few examples of knots (and their knot diagrams) are:

Another useful definition is the one of a link.

Definition 1.7. A link L is a finite disjoint union of knots.

Example 1.8. Some examples of links:

In many cases, a result proven for knots will also hold for links.

2 Isotopy

We want to consider knots only up to a suitable notion of equivalence. Intuitively, we want to say two knots are equal when we can deform the first knot into the second knot and vice versa by a continuous deformation. This is made formal by a so called isotopy.

Definition 2.1. two parametrised (smooth) knots $f_0, f_1 : S^1 \to \mathbb{R}^3$ are isotopic if there is a smooth map $F : S^1 \times I \to \mathbb{R}^3$ such that F(-,t) is an embedding for all t and $F(-,0) = f_0$ and $F(-,1) = f_1$

Remark 2.2. A knot isotopic to S^1 is called the trivial knot or unknot.

Definition 2.3. Two parametrised knots, f and g are **ambient isotopic** if there is a smooth map $\Psi : \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3$ with the property that $\Psi(-,t)$ is a diffeomorphism for all t with $\Psi(\theta,t) = \psi_t(\theta)$ such that $\psi_0 = \operatorname{id}$ and $\psi_1 \circ f = g$.

Remark 2.4. In the mentioned book is is shown that ambient isotopy is equivalent to the definition of isotopy given in (2.1).

3 Reidemeister theorem

Theorem 3.1 (Reidemeister). Two unoriented knots K_1 and K_2 are isotopic if and only if a diagram of K_1 can be transformed into a diagram of K_2 by a sequence of ambient isotopies of the plane and one of the local moves Ω_1, Ω_2 and Ω_3 given in the following diagram

$$\Omega_1$$
 Ω_2 Ω_3 Ω_4 Ω_5 Ω_6

in other words,

$$\frac{\{\text{knots}\}}{\{\text{isotopy}\}} \cong \frac{\{\text{knotdiagrams}\}}{\{\text{planarisotopyandReidmeistermoves}\}}$$

Remark 3.2. In the case of oriented knots, we have to equip the Reidemeister moves with all possible orientations.

4 Connected sum of knots

We can fuse two knots into one new knot by the so called connected sum of knots. This is done as follows.

Consider two oriented knots K_1 and K_2 such that K_1 and K_2 can be separated by some sphere $S^2 \subset \mathbb{R}^3$. We then construct the connected sum of K_1 and K_2 by the following steps:

- 1. Take two intervals $U_1 \subset K_1$ and $U_2 \subset K_2$.
- 2. Cut out these intervals from the knot, this leaves a pair of tangles T_1 and T_2 .
- 3. Joint the loose ends along the boundary of a rectangular strip that intersects the spheres separating K_1 and K_2 in a single arc. The orientation must stay the same between the two tangles.

The connected sum of knots K_1 and K_2 is denoted by $K_1 \# K_2$.

Figure 1: Connected sum of two knots

Definition 4.1. A knot K is prime if $K = K_1 \# K_2$ implies that either K_1 or K_2 is trivial.

5 Exercises

- Show connected sum of two knots is well defined and commutative and that K#O=K. Also show that the connected sum of two knots is associative.
- Show that the connected sum of knots is not well defined for non-oriented knots.