CMPT 379 Compilers

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Converting Regular Expressions into Non-deterministic Automata

NFAs

- NFA: like a DFA, except
 - A transition can lead to more than one state, that is, δ : S x $\Sigma \Rightarrow 2^S$
 - One state is chosen non-deterministically
 - Transitions can be labeled with ϵ , meaning states can be reached without reading any input, that is,

$$\delta: S \times \Sigma \cup \{ \epsilon \} \Rightarrow 2^{S}$$

Thompson's construction

Converts regexps to NFA

Build NFA recursively from regexp tree

Build NFA with left-to-right parse of postfix string using a stack

2013-09-24

Input = $aabl \cdot c \cdot$

- read a, push n1 = nfa(a)
- read a, push n2 = nfa(a)
- read b, push n3 = nfa(b)
- read |, n3=pop(); n2=pop(); push n4 = nfa(or, n2, n3)
- read ·, n4 = pop(); n1 = pop(); push n5 = nfa(cat, n1, n4)
- read c, push n6 = nfa(c)
- read ·, n6 = pop(); n5 = pop(); push n7 = nfa(cat, n5, n6)

Thompson's construction

- Converts regexps to NFA
- Six simple rules
 - Empty language
 - Symbols
 - Empty String
 - Alternation $(r_1 \text{ or } r_2)$
 - Concatenation $(r_1 \text{ followed by } r_2)$
 - Repetition (r_1^*)

Used by Ken
Thompson for
pattern-based
search in text editor
QED (1968)
To keep things
simple our version
is more verbose

For the empty language φ (optionally include a sinkhole state)

For each symbol x of the alphabet, there is a NFA that accepts it (include a sinkhole state)

• There is an NFA that accepts only ε

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts $r_1 | r_2$

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

• Given two NFAs for r_1 , r_2 , there is a NFA that accepts r_1r_2

• Given a NFA for r_1 , there is an NFA that accepts r_1 *

• Given a NFA for r_1 , there is an NFA that accepts r_1 *

Example

- Set of all binary strings that are divisible by four (include o in this set)
- Defined by the regexp: ((0|1)*00) | 0
- Apply Thompson's Rules to create an NFA

Basic Blocks o and 1

(this version does not report errors: no *sinkholes*)

0|1

(0|1)*

(0|1)*00

((0|1)*00)|0