CPE301 - SPRING 2019

Design Assignment 5

Student Name: Brian West Student #: 5003032874

Student Email: westb2@unlv.nevada.edu

Primary Github address: https://github.com/westbrian2/Spring2019

Directory: https://github.com/westbrian2/Spring2019/tree/master/DesignAssignments

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/DA, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

Xplained Mini Nrf24L01 LM35

2. INITIAL/MODIFIED/DEVELOPED CODE OF TASK 1/A

#define F_CPU 16000000UL

 $\#define\ UBRR_9600\ 103\ //Baud\ rate\ for\ 16MHz$

#include <avr/io.h>
#include <util/delay.h>
#include <avr/interrupt.h>
#include <stdbool.h>

#include <stdio.h>

```
#include <string.h>
#include "nrf24101.h"
#include "nrf24101-mnemonics.h"
#include "spi.h"
//void print config(void);
volatile bool message_received = false;
volatile bool status = false;
void read adc(void);
void adc_init(void);
void USART_init( unsigned int ubrr ); //Sets up usart for use
void USART tx string( char *data ); //function that outputs data (usart)
volatile unsigned int adc_temp; //holds temp value
char output[32];
int main() {
       char tx_message[32];
       USART_init(UBRR 9600);
       adc init();
       nrf24_init();
       nrf24_start_listening();
       while(1) {
               read_adc();
               snprintf(output, sizeof(output), "%3d\r\n", adc_temp);
               strcpy(tx message, output);
               nrf24 send message(tx message);
               _delay_ms(1000);
               sei();
                       if (message received) {
                               message_received=false;
                               snprintf(output, sizeof(output), "Recieved Temperature:
%s\n", nrf24 read message());
                               USART_tx_string(output);
                               delay ms(500);
                               status=nrf24 send message(tx message);
                               if(status==true)
                                       USART_tx_string("Temperature Transmitted\n");
void USART_init(unsigned int ubrr) {
       UBRROH=(unsigned char) (ubrr>>8); //Setting up
       UBRROL=(unsigned char) (ubrr);
       UCSROB=(1<<TXENO) | (1<<RXENO);//Enabling reciever, transmitter, and rx interrupt</pre>
       UCSROC=(1<<UCSZ01) | (1<<UCSZ00); //async 8 n 1
```

```
void USART_tx_string(char *data) { //sends string
       while((*data!= '\0')){
               while(!(UCSROA&(1<<UDREO)));</pre>
               UDRO=*data;
               data++; //gets next part of data
void adc_init(void)
       /** Setup and enable ADC **/
       ADMUX = (0<<REFS1) | // Reference Selection Bits
        (1 \le REFSO) \mid // AVcc - external cap at AREF
        (O<<ADLAR) | // ADC Left Adjust Result
        (0<<MUX2) // setting input to PCO
        (0<<MUX1)
        (0 << MUXO);
       ADCSRA = (1 << ADEN) | // ADC enable
        (0<<ADSC) // ADC Start Conversion
        (O<<ADATE) | // ADC Auto Trigger Enable
        (0<<ADIF) // ADC Interrupt Flag
        (O<<ADIE) | // ADC Interrupt Enable
        (1<<ADPS2) | // ADC Prescaler Select Bits
        (0<<ADPS1)
        (1<<ADPS0); // Select Channel
void read adc(void) {
       unsigned char i =4; //to get 4 samples
       adc\_temp = 0;
       while (i--) {
               ADCSRA |= (1<<ADSC); //start conversion
               while(ADCSRA & (1<<ADSC)); //waiting for coversion to finish
               adc_temp+= ADC;
               delay ms(50);
       adc temp = (adc temp / 4)-20; // Average a few samples and adjusts for slight offset
//Interrupt on IRQ pin
ISR(INTO_vect)
{
       message_received = true;
```

3. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

4. SCREENSHOT OF EACH DEMO (BOARD SETUP)

5. GITHUB LINK OF THIS DA

https://github.com/westbrian2/Spring2019/tree/master/DesignAssignments/DA5_submission

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Brian West