Experiment 1 – Data Augmentation

Data augmentation pipeline is included in Jupyter Notebook titled '4_Data_Augmentation.ipynb'. To increase samples of classes 3 and 23 both during training and validation (and testing in this case), clipping and brightening of images was applied.

• For each image containing classes 3 and 10 or 23 and 30 respectively, 4 images with increased or decreased brightness and different x,y of labelled class is generated – like below:

- 72 and 16 additional images containing classes 3 and 10 were respectively added to training set and validation set.
- 108 and 28 additional images containing classes 23 and 30 were respectively added to training set and validation set.

Unfortunately it did not improve performance of the model, although considering shapes of training charts (val Objectness – it started to fall near epoch 100 and classification – it is possible it starts to fall in next few epochs), new model might be underfitted. I think that this experiment needs another 100 epochs.

Epoch	gpu mem	box	obj cls	total	labels	img_size	
99/99	9.49G		.009371 0.0009104	0.0176			100%
	Class	Images	Labels	Р	R	mAP@.5	mAP@.5:.95: 100%
	all	796	6696	0.956	0.972	0.979	0.876
	1	796	218	0.988	0.972	0.982	0.931
	2	796	368	0.997	0.997	0.996	0.948
	3	796	20	0.872	0.685	0.843	0.684
	4	796	109	0.967	0.991	0.982	0.911
	5	796	202	0.986	0.975	0.982	0.898
	6	796	266	0.978	0.977	0.992	0.945
	7	796	246	0.977	0.98	0.992	0.929
	8	796	203	0.984	0.99	0.993	0.913
	9	796	127	0.961	0.982	0.993	0.931
	10	796	47	0.958	0.977	0.976	0.804
	11	796	164	0.987	0.976	0.976	0.886
	12	796	193	1	0.984	0.995	0.908
	13	796	112	0.982	0.972	0.994	0.922
	14	796	80	0.987	0.943	0.99	0.93
	15	796	187	0.949	0.973	0.981	0.909
	16	796	380	0.996	0.997	0.994	0.937
	17	796	382	0.996	0.997	0.998	0.934
	18	796	372	0.993	0.997	0.995	0.956
	19	796	251	0.971	0.976	0.99	0.603
	20	796	372	0.965	0.995	0.995	0.866
	21	796	363	0.989	0.981	0.997	0.866
	22	796	184	0.962	0.989	0.985	0.935
	23	796	35	0.784	0.971	0.854	0.668
	25	796	164	0.963	0.982	0.991	0.904
	26	796	232	0.973	0.974	0.994	0.942
	27	796	215	0.977	0.985	0.994	0.937
	28	796	175	0.946	0.994	0.997	0.904
	29	796	112	0.929	1	0.993	0.95
	30	796	48	0.8	0.896	0.889	0.652
	31	796	145	0.986	1	0.996	0.899
	32	796	166	0.971	1	0.996	0.919
	33	796	106	0.951	0.981	0.993	0.906
	34	796	72	0.857	0.986	0.98	0.901
	35	796	161	0.924	0.988	0.982	0.919
	39	796	219	0.954	0.958	0.987	0.616
epochs (completed	in 11.250 ho	urs.				

Experiment 2 – Bigger bounding box for some classes

Data augmentation pipeline is included in Jupyter Notebook titled '4_Data_Augmentation.ipynb'. This experiment featured bigger bounding boxes (by 60 %) for classes: 3, 23, 10, 30, 39, 19, 20, 21.

9677b5248c7d2a391bb331263538c8

This model might be underfitted too and perhaps more epochs would help, but the results are a bit better and definitaly better balanced (based on mAP@.5:.95). On the other hand average precision for classification is slightly lower — I think it is underfitted especially since precision is still increasing.

Epoch	gpu_mem	box	obj	cls tota	l labels	img_size	
99/99	7.44G	0.01024 0.	009215 0.	00185 0.021	3 12		100%
	Class	Images	Labels	P	R	mAP@.5	mAP@.5:.95:
	all	765	6608	0.974	0.982	0.989	0.925
	1	765	218	0.958	0.968	0.989	0.96
	2	765	368	0.981	0.997	0.996	0.983
	3	765	4	0.999	1	0.995	0.995
	4	765	109	0.954	0.991	0.992	0.96
	5	765	202	0.99	0.968	0.977	0.924
	6	765	266	0.99	0.974	0.994	0.962
	7	765	246	0.987	0.988	0.989	0.944
	8	765	203	0.995	0.983	0.99	0.924
	9	765	127	0.992	0.972	0.995	0.961
	10	765	31	0.954	0.968	0.982	0.96
	11	765	164	0.992	0.957	0.983	0.926
	12	765	193	0.994	0.984	0.995	0.946
	13	765	112	0.991	0.963	0.995	0.95
	14	765	80	0.987	0.979	0.991	0.958
	15	765	187	0.983	0.95	0.978	0.915
	16	765	380	0.994	0.997	0.995	0.974
	17	765	382	0.997	0.997	0.997	0.959
	18	765	372	0.995	0.997	0.995	0.984
	19	765	251	0.992	0.985	0.996	0.744
	20	765	372	0.955	0.981	0.993	0.915
	21	765	363	0.978	0.964	0.995	0.914
	22	765	184	0.973	0.978	0.985	0.956
	23	765	7	0.958	1	0.995	0.936
	25	765	164	0.97	0.971	0.987	0.925
	26	765	232	0.982	0.983	0.994	0.963
	27	765	215	0.98	0.991	0.995	0.956
	28	765	175	0.994	0.989	0.996	0.927
	29	765	112	0.956	1	0.992	0.951
	30	765	20	0.867	0.98	0.943	0.681
	31	765	145	0.96	0.985	0.995	0.919
	32	765	166	0.986	1	0.99	0.929
	33	765	106	0.928	0.991	0.99	0.905
	34	765	72	0.945	0.986	0.978	0.915
	35	765	161	0.963	0.966	0.983	0.927
	. 39	765	219	0.964	0.979	0.988	0.733
100 epochs	completed	in 11.602 hou	rs.				

After testing with my metrics we can see that the results are much worse for particular classes. Model is probably underfitted. Note that if any problem with precision of bounday box attachment occurs, MSE increases drastically.

