

Branch Hall

NFORMATIK

EBEEGEEEEE

Die moderne Informationsgesellschaft ist ohne Informatik nicht zu denken.

Informationen mittels Computerprogrammen zu verarbeiten ist die Grundlage für Internet und Mobilfunk, für Fluglinien und finanzielle Transaktionen, für Medizintechnik und Automobile – kurz: für eine funktionierende Welt

Von Maschinenbau über Betriebswirtschaft, Medizin, Biologie und Psychologie bis hin zur Soziologie und Archäologie – alle Wissenschaften brauchen heute die Informatik. Sie ist die treibende Kraft für den technischen Fortschritt in allen Bereichen des wirtschaftlichen und gesellschaftlichen Lebens.

Und so ist es heute vielleicht genauso wie früher im "Wilden Westen". Pioniere hatten sich auf den Weg gemacht, um unbekanntes Land zu erforschen. Auch heute sind die Pioniere noch unterwegs – Sie sind solche Pioniere! Sie stellen sich den Weiten und Herausforderungen der Informatik, erkunden unbekanntes Land. Sie nehmen knifflige Aufgaben in Angriff, suchen und finden Lösungen, die unsere Gesellschaft voranbringen.

Die Informatik ist deshalb viel mehr als nur ein exotisches Hobby. Sie ist die Zukunft. Sich also beim Informatik-Wettbewerb mit anderen zu messen, Gleichgesinnte zu treffen und sich mit Ihnen auszutauschen, ist (folge)richtig und wichtig. Sie können hier sowohl Ihrer Freude am Tüfteln und Knobeln nachgehen als auch Ihr Wissen ausweiten und vertiefen.

Ich wünsche den Teilnehmerinnen und Teilnehmern des 34. Bundeswettbewerbs Informatik viele gute Ideen und viel Freude beim Meistern der vor Ihnen liegenden Aufgaben.

Herzlich grüße ich Sie getreu dem Wettbewerbsmotto mit "GO BEST!"

Bruwick Charles
Brunhild Kurth
Sächsische Staatsministerin für Kultus
Präsidentin der Kultusministerkonferenz

Die Träger

Gesellschaft für Informatik e.V. (GI)

Die Gesellschaft für Informatik e.V. (GI) ist mit rund 20.000 Mitgliedern die größte Fachgesellschaft der Informatik im deutschsprachigen Raum. Ihre Mitglieder kommen aus allen Sparten der Wissenschaft, aus der Informatikindustrie, aus dem Kreis der Anwender sowie aus Lehre, Forschung, Studium und Ausbildung. In der GI wirken Männer und Frauen am Fortschritt der Informatik mit, im wissenschaftlich-fachlich-praktischen Austausch in etwa 120 verschiedenen Fachgruppen und mehr als 30 Regionalgruppen. Ihr gemeinsames Ziel ist die Förderung der Informatik in Forschung, Lehre und Anwendung, die gegenseitige Unterstützung bei der Arbeit sowie die Weiterbildung. Die GI vertritt hierbei die Interessen der Informatik in Politik und Wirtschaft.

www.gi.de

Fraunhofer-Verbund IuK-Technologie

Als größter europäischer Forschungsverbund für Informations- und Kommunikationstechnik (IuK) versteht sich der Fraunhofer-Verbund luK-Technologie als Anlaufstelle für Industriekunden auf der Suche nach dem richtigen Ansprechpartner in der anwendungsorientierten IT-Forschung. Die Vernetzung der 5000 Mitarbeiter in bundesweit 18 Instituten ermöglicht die Entwicklung übergreifender branchenspezifischer IT-Lösungen, oft zusammen mit Partnern aus der Industrie, sowie anbieterunabhängige Technologieberatung. Entwickelt werden luK-Lösungen für die Geschäftsfelder Medizin, Automotive, Produktion, Digitale Medien, E-Business, E-Government, Finanzdienstleister, Sicherheit sowie IT und Kommunikationssysteme. InnoVisions - Das Zukunftsmagazin des Fraunhofer Verbundes IuK-Technologie informiert Sie über aktuelle Forschungsprojekte auf www.innovisions.de. Weitere Informationen über den Fraunhofer luK-Verbund gibt es auf www.iuk.fraunhofer.de

Max-Planck-Institut für Informatik

Eine der größten Herausforderungen der Informatik ist die robuste und intelligente Suche nach Information, die grundlegendes Verständnis und automatische Organisation der gewünschten Inhalte voraussetzt. Das Max-Planck-Institut für Informatik widmet sich seit seiner Gründung 1990 diesen Fragestellungen. Das Spektrum der Forschung reicht von allgemeinen Grundlagen der Informatik bis hin zu konkreten Anwendungsszenarien und umfasst Algorithmen und Komplexität, Automatisierung der Logik, Bioinformatik und Angewandte Algorithmik, Computergrafik, Bildverarbeitung und multimodale Sensorverarbeitung sowie Datenbanken und Informationssysteme.

Das Max-Planck-Institut für Informatik unterstützt nachhaltig junge Forscher, die am Institut die Möglichkeit bekommen, ihr eigenes Forschungsgebiet und ihre eigene Gruppe zu entwickeln. Das Institut wirkt seit 25 Jahren auf Weltklasseniveau durch Publikationen und Software und durch seine jetzigen und ehemaligen Forscher, die Führungsrollen in Wissenschaft und Industrie übernommen haben.

www.mpi-inf.mpg.de

Unter der Schirmherrschaft des Bundespräsidenten

Von der Kultusministerkonferenz empfohlener Schülerwettbewerb

Die Partner

Zusätzlich zur Förderung durch das Bundesministerium für Bildung und Forschung und seine Träger erfahren die Bundesweiten Informatikwettbewerbe (BWINF) und insbesondere der Bundeswettbewerb Informatik weitere Unterstützung durch viele Partner. Sie stiften Preise und bieten vor allem spannende Informatik-Workshops für Wettbewerbsteilnehmer an.

O'REILLY

Die BWINF-Partner wünschen allen Teilnehmerinnen und Teilnehmern des 34. Bundeswettbewerbs Informatik viel Erfolg!

Bundeswettbewerb Informatik

Der Bundeswettbewerb Informatik (BwInf) wurde 1980 von der Gesellschaft für Informatik e.V. (GI) auf Initiative von Prof. Dr. Volker Claus ins Leben gerufen. Ziel des Wettbewerbs ist, Interesse an der Informatik zu wecken und zu intensiver Beschäftigung mit ihren Inhalten und Methoden sowie den Perspektiven ihrer Anwendung anzuregen. Der Bundeswettbewerb Informatik ist der traditionsreichste unter den Bundesweiten Informatikwettbewerben (BWINF), zu denen auch Informatik-Biber und das deutsche Auswahlverfahren zur Internationalen Informatik-Olympiade gehören. BWINF wird vom Bundesministerium für Bildung und Forschung gefördert; die Träger sind GI, Fraunhofer-Verbund luK-Technologie und Max-Planck-Institut für Informatik. Die Bundesweiten Informatikwettbewerbe gehören zu den bundesweiten Schülerwettbewerben, die von den Kultusministerien der Länder empfohlen werden. Der Bundeswettbewerb Informatik steht unter der Schirmherrschaft des Bundespräsidenten.

Die Gestaltung des Wettbewerbs und die Auswahl der Sieger obliegen dem Beirat; Vorsitzender: Prof. Dr. Till Tantau, Universität Lübeck. Die Auswahl und Entwicklung von Aufgaben und die Festlegung von Bewertungsverfahren übernimmt der Aufgabenausschuss; Vorsitzender: Prof. Dr. Peter Rossmanith, RWTH Aachen. Die BWINF-Geschäftsstelle mit Sitz in Bonn ist für die fachliche und organisatorische Durchführung zuständig; Geschäftsführer: Dr. Wolfgang Pohl.

Drei Runden

Der Wettbewerb beginnt jedes Jahr im September, dauert etwa ein Jahr und besteht aus drei Runden. In der ersten und zweiten Runde sind die Wettbewerbsaufgaben zu Hause selbstständig zu bearbeiten. Dabei können die Aufgaben der ersten Runde mit guten grundlegenden Informatikkenntnissen gelöst werden; die Aufgaben der zweiten Runde sind deutlich schwieriger. In der ersten Runde ist Gruppenarbeit zugelassen und erwünscht. In der zweiten Runde ist dann eigenständige Einzelarbeit gefordert; die Bewertung erfolgt durch eine relative Platzierung der Arbeiten. Die bis zu dreißig bundesweit Besten der zweiten Runde werden zur dritten Runde, einem Kolloquium, eingeladen. Darin führt jeder Gespräche mit Informatikern aus Schule und Hochschule und bearbeitet im Team zwei Informatik-Probleme.

Juniorliga

Für Jüngere werden zwei leichtere Aufgaben gestellt, die Junioraufgaben. **Achtung:** Ausgeschlossen von der Bearbeitung der Junioraufgaben sind Schülerinnen und Schüler aus der Qualifikationsphase der gymnasialen Oberstufe sowie aus der Berufsschule. Stammt eine Einsendung von Personen, die alle die Bedingung für Junioraufgaben erfüllen, nehmen die darin bearbeiteten Junioraufgaben in der Juniorliga teil; wenn auch andere Aufgaben bearbeitet sind, nimmt die vollständige Einsendung zusätzlich in der Hauptliga teil. Die Juniorliga wird getrennt bewertet, Preise werden separat vergeben.

Biber goes Bwinf

Teilnehmerinnen und Teilnehmer am Informatik-Biber sollen dazu angeregt.

Werden, auch beim 34. Bundeswettbewerb Informatik mindestens.

Werden, auch beim 34. Bundeswettbewerb Informatik mindestens.

Weiter einem Besonderen "Biber-goes-Bwinf".

Biber-goes-Bwinf".

B

Die Chancen

Preise

In allen Runden des Wettbewerbs wird die Teilnahme durch eine Urkunde bestätigt. In der ersten Runde werden auf den Urkunden erste und zweite Preise sowie Anerkennungen unterschieden; mit einem Preis ist die Qualifikation für die zweite Runde verbunden. In der zweiten Runde gibt es erste, zweite und dritte Preise; jüngere Teilnehmer haben die Chance auf eine Einladung zu einer Schülerakademie. Ausgewählte Gewinner eines zweiten Preises erhalten einen Buchpreis des Verlags O'Reilly; erste Preisträger werden zur dritten Runde eingeladen, die im Herbst 2016 ausgerichtet wird.

Die dort ermittelten Bundessieger werden in der Regel ohne weiteres Aufnahmeverfahren in die Studienstiftung des deutschen Volkes aufgenommen. Zusätzlich sind für den Bundessieg, aber auch für andere besondere Leistungen Geld- und Sachpreise vorgesehen.

Informatik-Olympiade

Ausgewählte Teilnehmerinnen und Teilnehmer können sich in mehreren Trainingsrunden für das vierköpfige deutsche Team qualifizieren, das an der Internationalen Informatik-Olympiade 2017 im Iran teilnimmt.

Informatik-Workshops etc.

Informatik-Workshops exklusiv für TeilnehmerInnen werden in Baden-Württemberg, vom Hasso-Plattner-Institut, von Hochschulen wie der RWTH Aachen, der TU Dortmund, der TU Braunschweig und der LMU München (gemeinsam mit der QAware GmbH), von der Firma INFORM sowie vom Max-Planck-Institut für Informatik (2. Runde) veranstaltet. Die Firma Google lädt ausgewählte Teilnehmerinnen zum "Girls@Google Day" ein.

Ausgewählte Endrundenteilnehmer werden im September 2016 vom Bundesministerium für Bildung und Forschung zum "Tag der Talente" eingeladen.

Eine Einsendung zur zweiten Runde kann in vielen Bundesländern als besondere Lernleistung in die Abiturwertung eingebracht werden.

Preise für BwInf-Schulen

Für eine substanzielle Beteiligung am Wettbewerb werden Schulpreise vergeben: An mindestens 3 vollwertigen Einsendungen (also mit je mindestens 3 bearbeiteten Aufgaben) zur 1. Runde – oder an 2 vollwertigen Einsendungen und 2 weiteren Einsendungen in der Juniorliga – müssen mindestens 10 Schülerinnen und Schüler einer Schule, darunter bei gemischten Schulen mindestens 2 Jungen und mindestens 2 Mädchen, beteiligt sein. **Wichtig:** Mindestens eine der gewerteten Einsendungen muss in Hauptliga oder Juniorliga mit einem ersten oder zweiten Preis ausgezeichnet werden.

Schulen, die diese Bedingungen erfüllen, werden als "BwInf-Schule 2015/2016" ausgezeichnet: sie erhalten ein entsprechendes Zertifikat, ein Label zur Nutzung auf der Schul-Website und einen Gutschein im Wert von **300 Euro** für Bücher oder andere für den Informatikunterricht benötigte Dinge.

Die Regeln

Teilnahmeberechtigt

... sind Jugendliche, die nach dem 30.11.1993 geboren wurden. Sie dürfen jedoch zum 1.9.2015 noch nicht ihre (informatikbezogene) Ausbildung abgeschlossen oder eine Berufstätigkeit begonnen haben. Personen, die im Wintersemester 2015/16 an einer Hochschule studieren, sind ausgeschlossen, falls sie nicht gleichzeitig noch die Schule besuchen. Jugendliche, die nicht deutsche Staatsangehörige sind, müssen wenigstens vom 1.9. bis 30.11.2015 ihren Wohnsitz in Deutschland haben oder eine staatlich anerkannte deutsche Schule im Ausland besuchen.

Junioraufgaben dürfen von Teilnahmeberechtigten bearbeitet werden, die weder in der Qualifikationsphase der Sekundarstufe 2 sind noch die Berufsschule besuchen. Ein Team darf Junioraufgaben bearbeiten, wenn mindestens ein Mitglied des Teams die genannten Bedingungen erfüllt.

Weiterkommen

An der zweiten Runde dürfen jene teilnehmen, die allein oder mit ihrem Team wenigstens drei Aufgaben der ersten Runde weitgehend richtig gelöst haben. Für die dritte Runde qualifizieren sich die besten ca. 30 Teilnehmer der zweiten Runde. In der Juniorliga gibt es voraussichtlich noch keine zweite Runde.

Einsendungen

... enthalten Bearbeitungen zu mindestens einer Aufgabe und werden von Einzelpersonen oder Teams abgegeben. Eine Einsendung besteht für jede bearbeitete Aufgabe aus **Dokumentation** und (bei Aufgaben mit Programmierauftrag) Implementierung. Die Dokumentation enthält eine Beschreibung der Lösungsidee und Beispiele, welche die Korrektheit der Lösung belegen. Ist ein Programm gefordert, sollen außerdem die Umsetzung der Lösungsidee in das Programm erläutert und die wichtigsten Teile des Quelltextes hinzugefügt werden. Achtung: eine gute Dokumentation muss nicht lang sein! Die **Implementierung** umfasst das (möglichst eigenständig lauffähige) Programm selbst und den kompletten Quelltext des Programms.

Die **Einsendung** wird über das Online-Anmeldesystem als Dateiarchiv im ZIP-Format abgegeben. Dieses Archiv muss zu jeder bearbeiteten Aufgabe auf oberster Ebene enthalten:

- > die Dokumentation: ein PDF-Dokument;
- > die Implementierung: einen Ordner mit Programmund Quelltextdateien.

Anmeldung

Die Anmeldung ist bis zum Einsendeschluss möglich, und zwar online über:

pms.bwinf.de

Wettbewerbsteilnehmer können sich dort eigenständig registrieren, zum Wettbewerb anmelden und ggf. Teams bilden. Die Anmeldung zum Wettbewerb und das Bilden von Teams kann auch von Lehrkräften vorgenommen werden.

Einsendeschluss: 30.11.2015

Verspätete Einsendungen können nicht berücksichtigt werden. Der Rechtsweg ist ausgeschlossen. Die Einsendungen werden nicht zurückgegeben. Der Veranstalter erhält das Recht, die Beiträge in geeigneter Form zu veröffentlichen.

Beispiellösung: Buffet-Lotterie

Hinweis:

Der Aufgabentext wird hier nur der Vollständigkeit halber abgedruckt. Die Dokumentation zu einer Aufgabenbearbeitung muss und soll den Aufgabentext nicht enthalten.

Bei der Endrunde des Bundeswettbewerbs Informatik haben die Teilnehmer es satt, Warteschlangenfutter vor dem großen Buffet im engen Korridor und Opfer der Last-Come-Longest-Hungry-Mentalität zu sein. Stattdessen soll ganz elegant und zivilisiert ausgelost werden, wer als Nächster das Buffet aufsuchen darf.

Die 28 Teilnehmer stellen sich dazu in einem großen Kreis auf und sagen den Satz

In-for-ma-tik kann uns wei-sen, wer als Nächs-ter kommt zum Spei-sen

wiederholt laut auf. Wie beim Ene-Mene-Muh spricht jeder Teilnehmer nur eine Silbe, dann ist sein rechter Nachbar an der Reihe. Und wer die letzte Silbe des Satzes sagt, ist der Glückliche, der den Kreis verlassen und als Nächster seinen Hunger stillen darf.

Eine Teilnehmerin hat aber Geburtstag. Sie spricht natürlich die allererste Silbe, und als besondere Gunst darf sie, wann immer sie an der Reihe ist, statt einer auch zwei Silben sprechen – wenn sie das denn will. Da ihr Magen knurrt, möchte sie ihren Vorteil dazu nutzen, so schnell wie möglich zum Buffet zu kommen.

Aufgabe

Schreibe ein Programm, das für eine gegebene Anzahl von Teilnehmern berechnet, wann das Geburtstagskind zwei Silben sprechen soll, um sich den bestmöglichen Platz in der Buffetreihenfolge zu verschaffen.

Dokumentiere die Wirkungsweise deines Programms für verschiedene Teilnehmerzahlen, unter anderem für die oben genannten 28 Teilnehmer.

Lösungsidee

Simulation

Das Programm soll die Buffet-Lotterie "nachspielen", also simulieren. Dazu muss genauer beschrieben werden, was bei der Buffet-Lotterie passiert – zunächst einmal ohne den Vorteil für das Geburtstagskind, das zur Vereinfachung im Folgenden Gina heißt:

- Die Anzahl der Teilnehmer nennen wir T. In der Aufgabe ist von 28 Teilnehmern die Rede (T = 28), aber die Lösung soll auch für andere Werte funktionieren.
- Die Teilnehmer, die noch nicht zum Buffet gegangen sind, stehen im Kreis. Zu Beginn sind das alle T Teilnehmer, aber nach jedem Sprechen des Satzes geht ein Teilnehmer zum Buffet, und es bleiben R Teilnehmer (R wie Rest) im Kreis übrig. Diese R Teilnehmer haben die Nummern 0 bis R-1. Verlässt ein Teilnehmer den Kreis, rücken die Teilnehmer mit höherer Nummer auf und bekommen nun neue, um 1 niedrigere Nummern. Für die Lösung ist es am einfachsten, wenn Gina die Nummer 0 hat. Sie kann

dann nämlich garantiert ihre Nummer behalten, bis sie an der Reihe ist.

- Die Anzahl der Silben, die zu sprechen sind, nennen wir S. Der Satz in der Aufgabe hat 16 Silben (S = 16), aber die Lösung soll auch für andere Werte funktionieren.
- Die Nummer des Teilnehmers, der gerade an der Reihe ist, eine Silbe zu sprechen, nennen wir A (für aktuell). Da Gina die allererste Silbe spricht, ist zu Beginn A = 0.

Die Abbildung zeigt, was bei R = 7 Teilnehmern passiert, wenn ein Satz mit S = 4 Silben gesprochen wird (z.B. "In-for-ma-tik") und dies bei Position A = 5 beginnt.

Man sieht, dass die "Silbenposition" um S-1=3 Schritte weiter rückt. Am Ende darf der Teilnehmer auf Position 1 zum Buffet. Es bleiben 6 Teilnehmer übrig (R=6), und die Teilnehmer auf den bisherigen Positionen 2 bis 6 bekommen nun die Positionen 1 bis 5. Die nächste "Sprechrunde" startet dann bei A=1.

Damit wir nicht das Sprechen der einzelnen Silben mitzählen müssen, wollen wir den neuen Wert von A direkt berechnen. Es genügt aber nicht, diesen "Zeiger" auf den aktuellen Sprecher einfach auf A + (S - 1) zu erhöhen. Im Beispiel oben wäre das 5 + 3 = 8. Wir müssen berücksichtigen, dass es beim Sprechen über die letzte Position R - 1 (im Beispiel: 6) hinaus gehen kann. Das gelingt mit einer "Modulo-Rechnung": Diese gibt den Rest an, der beim Teilen einer ganzen Zahl durch eine andere ganze Zahl bleibt. Der neue Wert von A ist also (A + (S - 1)) modulo R; im Beispiel: 8 modulo R = 1 (8 geteilt durch R = 1) ist 1 mit Rest 1).

Gina ist wieder an der Reihe, wenn zum ersten Mal wieder A=0 ist. Wenn danach noch R Teilnehmer übrig sind, konnte Gina Platz (T-R) in der Buffetreihenfolge erreichen.

Zwei Silben

Gina hat ja die Möglichkeit, zwei Silben zu sprechen, wenn sie an der Reihe ist. Wenn sie das tut, verringert sie den anschließenden Wert von A im Vergleich zum Normalfall um 1. Wenn sie G-mal die Chance hat, zwei Silben zu sprechen, kann Sie G-mal die Chance hat, zwei Silben zu sprechen, kann Sie G-mal die Chance hat, zwei Silben zu sprechen, kann Sie G-mal die Chancen. Wenn G-mal der Simulation die Anzahl der Chancen G-richtig berechnen. Sobald G-mal der Chancen G-mal der Simulation die Anzahl der Chancen G-mal der Simulation die Anzahl der Chancen G-mal der Simulation die Anzahl der Chancen sie dazu nutzt, ist egal.

Der Satz "kommt bei Gina vorbei", wenn beim Heraufzählen der Silbenposition (ohne Modulo-Rechnung) die Werte R, $2 \cdot R$, $3 \cdot R$ usw. erreicht werden. Wenn wir die abschließende Silbenposition A + (S - 1) durch R teilen,

wissen wir, wie oft das passiert ist. Genau so viele Chancen hat Gina, zwei Silben zu sprechen. Im Beispiel oben hat Gina 8 geteilt durch 7 = 1 Chance.

Umsetzung

Da die Lösung sehr genau beschrieben wurde, ist die Umsetzung in Python schnell zu erklären. Die Funktion simulation simuliert die Buffet-Lotterie und berechnet dabei Ginas Chancen, zwei Silben zu sprechen. Die Funktion hat zwei Parameter **teilnehmer** und **silben**, die den Werten T und S entsprechen. Die Funktion verwendet die Variablen **rest**, **aktuell** und **chancen** für die Werte R, A und C. Die Simulation wird in einer Schleife solange durchgeführt, bis irgendwann **aktuell** <= **chancen** (also $A \le C$, wie beschrieben).

Beispiele

Die Funktion simulation kann mit den gewünschten Werten in der Python-Shell aufgerufen werden und gibt dann an, wie oft Gina zwei Silben sprechen soll.

>>> simulation(28, 16)

Gina bekommt Platz 8, wenn sie 2-mal zwei Silben sagt. Das Ergebnis für die Werte aus der Aufgabenstellung.

>>> simulation(15, 16)

Gina bekommt Platz 1, wenn sie 0-mal zwei Silben sagt. Immer wenn S = T + 1 ist, ist Gina direkt an der Reihe, ohne etwas zu tun.

>>> simulation(10, 45)

Gina bekommt Platz 1, wenn sie 4-mal zwei Silben sagt. Immer wenn $S = C \cdot (T + 1) + 1$ ist, ist Gina direkt an der Reihe, wenn sie alle C Chancen nutzt; hier ist C = 4.

>>> simulation(280, 19)

Gina bekommt Platz 78, wenn sie 5-mal zwei Silben sagt. Bei diesen Zahlen kommt Gina erst sehr spät zum Buffet.

Quelltext

def simulation(teilnehmer, silben):
 rest = teilnehmer

aktuell = 0 # Gina beginnt und ... chancen = 1 # ... hat damit gleich eine Chance,

zwei Silben zu sprechen

gina_satt = False # Gina will noch zum Buffet.

while (not gina_satt):

- # Ein Satz wird gesprochen,
- # die Werte werden aktualisiert.

aktuell = aktuell + silben - 1

Die Silbenposition rückt weiter.

chancen = chancen + (aktuell // rest)
//: ganzzahlige Division

aktuell = aktuell % rest # %: modulo-Rechnung rest = rest - 1 # Einer durfte zum Buffet.

Nun überprüfen wir, ob Gina gewinnen kann: if (aktuell <= chancen):