Video from last class

https://www.youtube.com/watch? v=0qVOUD76JOg

Neural Networks

Some of these slides based on content from Seyong Kim and Nando de Freitas Nando's youtube lectures are really great! See last slide for link

More fun

https://aiexperiments.withgoogle.com/quick-draw

An Aside

- In this video, the static noise you hear is a representation of the neurons firing in response to the visual stimulus
 - https://www.youtube.com/watch?v=jw6nBWo21Zk

The Autoencoder

NNs learn something similar

Input	Output
$100000000 \rightarrow$	10000000
$010000000 \rightarrow$	01000000
$001000000 \rightarrow$	00100000
$000100000 \rightarrow$	00010000
$00001000 \rightarrow$	00001000
$00000100 \rightarrow$	00000100
$00000010 \rightarrow$	00000010
$00000001 \rightarrow$	00000001

Can this be learned??

When input = output the net is called an autoencoder

Wait, is this even interesting? It is learning the identity function...?

http://deeplearning.stanford.edu/wiki/index.php/Visualizing_a_Trained_Autoencoder

The Autoencoder

Learned hidden layer representation:

Input		H	lidde	en		Output
		1	alue	es		**************************************
10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
01000000	\rightarrow	.01	.11	.88	\rightarrow	01000000
00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
00000100	\rightarrow	.22	.99	.99	\rightarrow	00000100
00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
00000001	+	.60	.94	.01	\rightarrow	00000001

The Autoencoder

The Autoencoder

The error function

be non-zero

The Autoencoder

The Autoencoder

Training

Neural Nets for Face Recognition

90% accurate learning head pose, and recognizing 1-of-20 faces

The Deep Autoencoder

[Hinton & Salakhutdinov, 2006]

Deep Belief Networks

- Problem: training networks with many hidden layers doesn't work very well
 - local minima, very slow training if initialize with zero weights
- Deep belief networks
 - autoencoder networks to learn low dimensional encodings

- but more layers, to learn better encodings

Learned Hidden Unit Weights

Typical input images

 $http://www.cs.cmu.edu/\sim tom/faces.html$

The Deep Autoencoder

[Hinton & Salakhutdinov, 2006]

Deep Belief Networks

versus

Encoding of digit images in two dimensions

[Hinton & Salakhutdinov, 2006]

Resources

- Programming resources for training your own NNs
 - Theano http://deeplearning.net/software/theano/tutorial/ index.html#tutorial
 - Tensorflow https://www.tensorflow.org/
- Short course on deep learning (Nando De Freitas)
 - https://www.youtube.com/playlist?list=PLjK8ddCbDMphIMSXn-w1JjyYpHU3DaUYw
- Commentary on AlphaGo
 - https://www.youtube.com/watch?v=UMm0XaCFTJQ
 - https://www.youtube.com/watch?v=g-dKXOlsf98
- Other fun videos
 - Geoff Hinton is in this one! Neural Net stuff is towards the end
 https://www.youtube.com/watch?v=yxxRAHVtafl
 - Fei Fei Li's Ted Talk
 - https://www.ted.com/talks/ fei_fei_li_how_we_re_teaching_computers_to_understand_pictures? language=en