Universidade Federal de São Carlos Departamento de Computação Aspectos Formais da Computação Prova 1 – 17/abril/2017

1) Considere o alfabeto $\Sigma = \{0, 1, 2\}$ para a linguagem regular L_1 formada por todas as cadeias $w \in \Sigma^*$ onde após cada dois zeros consecutivos sempre ocorrem pelo menos dois uns. Note que: os uns não precisam ser consecutivos, nem precisam ocorrer imediatamente após os zeros, mas não podem aparecer dois zeros novamente antes de satisfazer a condição.

- a) enumere as primeiras dez cadeias dessa linguagem L₁
- b) descreva a linguagem Li por :
 - b-1) um autômato finito determinístico;
 - b-2) uma expressão regular;

c) prove que o autômato finito descrito em (b-1) descreve a linguagem L₁ solicitada no enunciado — Use prova por indução

2 - Considere os autômatos finitos M1 e M2

- a) Considere os afd M1 e M2 e construa o autômato finito deterministico que reconhece L(M1) ∩ L(M2)
- b) Determine a expressão regular que denota a linguagem aceita pelo autômato finito resultante (L(M1) ∩ L(M2)), usando a técnica de eliminação de estados.

3) Considere a linguagem:

 $L_3 = \{a^nb^{n+m}c^m \mid n,m \ge 0\}$ sobre o alfabeto $\{a,b,c\}$

Pede-se:

- a) Enumere as cadeias do conjunto L₃ (as primeiras dez cadeias)
- b) Use a propriedade de bombeamento das linguagens regulares para provar que a linguagens.

4) Considere o autômato finito M₄ descrito a seguir.

	0	1	2
a	8	а	С
*) b	d	а	b
C.	b	C	а
d	b	С	е
e	а	е	d

Encontre o autômato finito equivalente (M_4) com um número mínimo de estados. Dê a expressão regular que denota L(M4) usando a técnica de eliminação de estados.

- 5) Considere as afirmações 5.1 e 5.2 a seguir:
- 5.1) Se L é uma linguagem e a é um símbolo, então L/a, o quociente de L e a, é o conjunto de strings w tais que wa está em L. Por exemplo, se L={a,aab,baa}, então L/a = { ϵ ,ba}.
- 5.2) Se L é uma linguagem e a é um símbolo, então a\L é o conjunto de strings w tais que aw está em L. Por exemplo, se L= $\{a, aab, baa\}$ então a\L= $\{\epsilon, ab\}$.

Pede-se:

Responda quais das identidades é verdadeira.

- a) (L/a)a = L
- b) a(a L) = L
- c) (La)/a = L
- d) a (aL) = L

Prove que, se L é regular, então L/a também o é. (sugestão: comece com um AFD para L e considere o conjunto de estados de aceitação).