\vdash

Simulation data summary

(Mar 30, 2022)

Today I receive the first batch of simulation data from Cristian. Here, I convert the simulation parameters to experimental ones, and use plots to provide an overview of the results. Simulation details, namely v_{bath} , τ and boundary conditions, I have to confirm with Cristian.

Dimensionless parameters Π_1 and Π_2

$$\Pi_1 = rac{v_{bath}}{ ilde{v}}$$

$$\Pi_2 = rac{v_{bath} au}{r}$$

where $ilde v=rac{2\Delta
ho g r_i^2}{9\eta}$ is the sedimentation velocity, $r=r_o-r_i$ is the free space radius of the double emulsion.

$$rac{\Pi_1}{\Pi_2} = rac{r}{ ilde{v} au} = rac{9\eta}{\Delta
ho g au}rac{D-d}{d^2}$$

For constant au, $\Pi_1/\Pi_2 \propto (D-d)/d^2$. Therefore, we can plot R_∞ and au^* simulation data (as "saturation" and "t2" from Cristian) against Π_1/Π_2 to get similar plots as the experimental ones.

Plots

saturation vs. Π_1/Π_2

 t_2 vs. Π_1/Π_2

Questions

1. Is τ a constant throughout all the cases? I understand that Π_1 and Π_2 are the

only variable that affects the simulation result, but using the information to deduce geometrical parameter requires the knowledge of au.

2.