Datenstrukturen und Algorithmen Heimübung 9

Eli Kogan-Wang (7251030) David Noah Stamm (7249709) Daniel Heins (7213874) Tim Wolf (7269381)

10. Juni 2022

Aufgabe 1

a)

Aktueller fortschritt

b) Sei
$$h(x_1i) = h'(x) + \frac{1}{2}i + \frac{1}{2}i^2$$
 mud n
 $h'(x) = x \mod n$

13 mad
$$71 = 2$$

30 mod $71 = 8$

7 mod $71 = 7$

13 $\frac{1}{1}$

14 $\frac{1}{1}$

15 mod $17 = 7$

2 $\frac{1}{1}$

39 mod $17 = 7$

3 $\frac{1}{1}$

39 mod $17 = 6$

4 $\frac{1}{1}$

39 mod $17 = 6$

5 $\frac{1}{1}$

4 $\frac{1}{1}$

5 mod $17 = 7$

6 $\frac{1}{1}$

6 $\frac{1}{1}$

6 $\frac{1}{1}$

6 $\frac{1}{1}$

70 $\frac{1}{1}$

6 $\frac{1}{1}$

70 $\frac{1}{1}$

6 $\frac{1}{1}$

70 $\frac{1}{1}$

Aufgabe 2

Bekannt sind Hashtablellen mit der Backing-Struktur "Liste". Wir ersetzen die Backing-Struktur mit einem AVL-Baum.

Algorithm 1 Insert(T, x)

1: Insert-AVL(T[h(key[x])], x)

Algorithm 2 Delete(T, x)

1: Delete-AVL(T[h(key[x])], x)

Algorithm 3 Search(T, x)

1: Search-AVL(T[h(key[x])], x)

Die Korrektheit ist durch die funktional identische Semantik zu Hashtablellen mit Backing-Liste gegeben.

Durch Ersetzung der Backing-Struktur der "Liste" mit einem AVL-Baum ersetzen wir die zuvor bekannten Operationen mit Worst-Case Laufzeiten O(n) durch $O(\log n)$.

Aufgabe 3

a) Beweis durch vollständige Induktion über die Kreislänge:= n: Wir verwenden die Kreisnotation (x_1, x_2, \dots, x_n) für einen Kreis über einen Graphen G.

I.A.: n = 1: trivial

n=2

Wir betrachten die Möglichen Kreise $K_1 = (x_1, x_2) K_2 = (x_1, x_1)$.

 K_1 ist ein einfacher Kreis.

 K_2 ist ein komplexer Kreis.

 K_2 kann in die einfachen Kreise (x_1) und (x_1) aufgeteilt werden.

Sei $n \in \mathbb{N}$.

 ${\bf I.V.:}$ Jeder komplexe Kreis
e mit bis zun-1 Knoten kann in einfache Kreise aufgeteilt werden.

I.S.: Sei $K_n=(x_1,x_2,\cdots,x_{i-1},x_i,\cdots,x_{j-1},x_j\cdots,x_n)$ ein komplexer Kreis. Existieren kein $1\leq i\neq j\leq n$: $x_i=x_j$ so ist der Kreis einfach.

Also existieren $1 \le i \le n$: $x_i = x_j$.

Nun sind $K_a=(x_1,x_2,\cdots,x_{i-1},x_j,\cdots,x_n)$ und $K_b=(x_i,x_j,\cdots,x_{j-1})$ Kreise

Sind K_a und K_b einfach, so sind wir fertig. Sind sie komplex, so können wir sie nach **I.V.** in einfache Kreise $K_a = K_{a_1} + K_{a_2} + \cdots + K_{a_k}$, $K_b = K_{b_1} + K_{b_2} + \cdots + K_{b_l}$ aufteilen.

Nun sind ist $K_{a_1}, K_{a_2}, \dots, K_{a_k}, K_{b_1}, K_{b_2}, \dots, K_{b_l}$ eine Aufteilung von K_n in einfache Kreise.

b) " \Longrightarrow ":

Sei G ein Graph mit einem Eulerkreis $E=(x_1,x_2,\cdots,x_{i-1},x_i,x_{i+1},\cdots,x_n)$. Sei x ein Knoten in G und $i\in\{i_1,\cdots,i_k\}$ die k-Vorkommnisse von x im Eulerkreis sind.

Da nun (x_{i-1}, x_i) eine Eingangskante von x ist, die maximal 1-mal für ein i vorkommt, ist indeg(x) = k.

Da nun (x_i, x_{i+1}) eine Ausgangskante von x ist, die maximal 1-mal für ein i vorkommt, ist outdeg(x) = k.

Damit indeg(x) = outdeg(x).

" ⇐ ":

Über Induktion über die Kantenanzahl n.

I.A.: n = 1: trivial, da $indeg \neq outdeg$ nicht vorkommt.

Sei $n \in \mathbb{N}$.

I.V.: Jeder Graph mit indeg(v) = outdeg(v) und maximal n-1 Kanten hat einen Eulerkreis.

I.S.: Sei G = (E, V) ein Graph mit indeg(v) = outdeg(v) und n Kanten.

Bekannt ist, dass ein Kreis K in G existiert.

Der Kreis K geht über die Kantenmenge E(K).

Der Induzierte Teilgraph von $E \setminus E(K)$: G_{ind} hat immernoch indeg(v) = outdeg(v), da K im induzierte Teilgraph von E(K) ein Eulerkreis ist.

Nach I.V. hat G_{ind} einen Eulerkreis, wir nennen ihn K_{ind} .

Wir betrachten einen Knoten $v \in V(K)$.

Wir stellen K_{ind} als $K_{\text{ind}} = (v_1, v_2, \dots, v_{i-1}, v_i, v_{i+1}, \dots, v_k)$ dar, wobei $v = v_i$. Wir stellen K als $K = (x_1, x_2, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_l)$ dar, wobei $v_i = v = x = x_i$.

Nun ist $(v, v_{i+1}, \dots, v_k, v_1, \dots, v_{i-1}, v, x_{j+1}, \dots, x_l, x_1, \dots, x_{j-1})$ ein Eulerkreis in G.