Tópicos Especiais em Matemática Aplicada - 2025-1 IME - UERJ

01 - Conceitos Fundamentais - Espaços Funcionais

Rodrigo Madureira rodrigo.madureira@ime.uerj.br

Github: https://github.com/rodrigolrmadureira/ElementosFinitos

Sumário

Alguns espaços funcionais

2 Derivada fraca (Conceito de Distribuições)

Bibliografia

Seja Ω um conjunto aberto no \mathbb{R}^n .

Obs. 1: Se n = 1, o conjunto aberto fica na reta $\mathbb{R}^1 = \mathbb{R}$.

Exemplo 1: (0,1) é um conjunto aberto em \mathbb{R} .

Obs. 2: Se n = 2, o conjunto aberto fica no plano \mathbb{R}^2 .

Exemplo 2: Se $A_1=(0,1)$ e $A_2=(0,2)$ são dois conjuntos abertos de \mathbb{R} , o produto cartesiano $A_1\times A_2=\{(\alpha_1,\alpha_2)\in\mathbb{R}^2: \alpha_1\in A_1 \text{ e } \alpha_2\in A_2\}$ é um conjunto aberto em \mathbb{R}^2 .

1. Espaço $C^{\infty}(\Omega)$: é o conjunto de todas as funções reais contínuas com infinitas derivadas também contínuas sobre Ω .

Suporte compacto: Dada uma função ϕ definida em Ω , denomina-se suporte de ϕ ao menor subconjunto fechado do domínio Ω onde a função não é nula.

Obs. 3: Se $\Omega = (a, b)$ é um conjunto aberto em \mathbb{R} , o fecho de (a, b) é o conjunto fechado [a, b]. Ou seja, $\overline{(a, b)} = [a, b]$.

Obs. 4: O suporte compacto de uma função $\varphi \in C_0^\infty(\mathfrak{a},\mathfrak{b})$ é o fecho em Ω do conjunto dos pontos de Ω onde a função \mathfrak{u} é diferente de zero. Portanto, é denotado por supp $(\varphi) = \overline{\{x \in (\mathfrak{a},\mathfrak{b}) : \varphi(x) \neq 0\}}$

2. Espaço das Funções Testes (ou Admissíveis) $C_0^\infty(\Omega)$: é o subespaço de $C^\infty(\Omega)$ que contém funções φ com suporte compacto contido em Ω . Ou seja, se anulam na fronteira (ou contorno). Quando $\Omega=(\mathfrak{a},\mathfrak{b})$, é definido por:

$$C_0^\infty(\mathfrak{a},\mathfrak{b}) = \{ \varphi \in C^\infty(\Omega) \; ; \; \varphi(\mathfrak{a}) = \varphi(\mathfrak{b}) = 0 \}.$$

Exemplo 3: Na figura à esquerda, são mostrados alguns exemplos de funções $\varphi_{\varepsilon}(x) \in C_0^{\infty}(-\varepsilon, \varepsilon)$ com seus respectivos suportes compactos para cada valor de ε .

3. Espaço $L^p(\Omega)$: é o espaço das funções reais $\mathfrak{u}(x)$ que são p-integráveis para $p\geq 1$. Ou seja, é definido por:

$$L^{p}(\Omega) = \left\{ u : \Omega \to \mathbb{R} ; \int_{\Omega} |u(x)|^{p} dx < \infty \right\}$$

Em particular:

4. Espaço $L^1(\Omega)$: é o espaço das funções integráveis. Ou seja,

$$L^{1}(\Omega) = \left\{ u : \Omega \to \mathbb{R} ; \int_{\Omega} |u(x)| dx < \infty \right\}$$

5. Espaço $L^1_{loc}(\Omega)$: uma função $\mathfrak{u}(x)$ é localmente integrável, isto é, $\mathfrak{u}(x)\in L^1_{loc}(\Omega)$, quando $\mathfrak{u}(x)\in L^1(\Omega)$ em cada subconjunto do suporte compacto de Ω .

Obs. 5: $u(x) \in L^p(\Omega) \Rightarrow |u(x)|^p \in L^1(\Omega)$ para $p \ge 1$.

- **6. Espaço de Hilbert** \mathcal{H} : é um espaço vetorial completo que possui um produto interno. **Exemplo:** Espaço $L^2(\Omega)$.
- **6.1. Espaço** $L^2(\Omega)$: Se Ω é um aberto de \mathbb{R}^n , $L^2(\Omega)$ é o espaço das funções $\mathfrak u$ com quadrado integrável,

$$L^2(\Omega) = \Big\{ u : \Omega \to \mathbb{R} \; ; \; \int_{\Omega} |u(x)|^2 dx < \infty \Big\},$$

que é um espaço de Hilbert munido de:

• **Produto interno**: Se $u, v \in L^2(\Omega)$, é definido por

$$< u, v>_{L^2(\Omega)} = \int_{\Omega} u(x)v(x)dx$$

Obs. 6: Outras notações recebidas por $< u, v>_{L^2(\Omega)}$ são $(u, v)_0$ e (u, v).

• Norma: Se $\mathfrak{u} \in L^2(\Omega)$, é definida por

$$\|u\|_{L^{2}(\Omega)}^{2} = \int_{\Omega} |u(x)|^{2} dx$$

Obs. 7: Outras notações recebidas por $\|\mathbf{u}\|_{L^2(\Omega)}^2$ são $\|\mathbf{u}\|_0^2$ e $\|\mathbf{u}\|_{L^2(\Omega)}^2$

6.2. Espaços de Sobolev $H^{\mathfrak{m}}(\Omega)$, $\mathfrak{m} \in \mathbb{N}$, $\mathfrak{m} \geq 1$:

Se Ω é um aberto de \mathbb{R}^n , a definição geral é:

$$\mathsf{H}^{\mathfrak{m}}(\Omega) = \Big\{\mathfrak{u}: \Omega \to \mathbb{R} \ ; \ \mathfrak{u} \in \mathsf{L}^{2}(\Omega), \ \frac{\vartheta^{\alpha}\mathfrak{u}}{\vartheta x_{1}^{\alpha_{1}}\vartheta x_{2}^{\alpha_{2}}\cdots\vartheta x_{n}^{\alpha_{n}}} \Big\},$$

onde $\alpha=\alpha_1+\alpha_2+\cdots \alpha_n$, $0\leq \alpha\leq m$, $\alpha_i\in \mathbb{N}.$

Exemplos de espaços de Sobolev para $\mathfrak{m}=1$ e $\Omega=(\mathfrak{a},\mathfrak{b})\in\mathbb{R}$:

6.2.1. Espaço $H^1(\mathfrak{a},\mathfrak{b})$: é o espaço onde as funções \mathfrak{u} e sua derivada em relação a x, $u_x=\frac{du}{dx}$, estão em $L^2(\mathfrak{a},\mathfrak{b})$. Ou seja,

$$H^1(\mathfrak{a},\mathfrak{b}) = \{\mathfrak{u} : (\mathfrak{a},\mathfrak{b}) \to \mathbb{R} \text{ ; } \mathfrak{u} \in L^2(\mathfrak{a},\mathfrak{b}), \mathfrak{u}_{x} \in L^2(\mathfrak{a},\mathfrak{b})\},$$

que é um espaço de Hilbert munido de:

• Produto interno: $< u, v>_{H^1(a,b)} = \int_a^b u(x)v(x) + u_x v_x dx$;

• Norma:
$$\|u\|_{H^1(a,b)}^2 = \int_a^b |u(x)|^2 + |u_x|^2 dx$$

Exemplo 4: A função $\mathfrak{u}(\mathfrak{x})=\frac{1}{\mathfrak{x}}$, definida em $\Omega=[1,\infty)\subset\mathbb{R}$, pertence ao espaço $L^2([1,\infty))$, pois

$$\int_{1}^{\infty} \left(\frac{1}{x}\right)^{2} dx = \int_{1}^{\infty} x^{-2} dx = -x^{-1} \Big|_{1}^{\infty} = -\frac{1}{x} \Big|_{1}^{\infty} = -\frac{1}{x} \Big|_{1}^{\infty} = 1 < \infty.$$

Exemplo 5: A função $u(x)=\frac{1}{x^n}$, $n\in\mathbb{N}$, definida em $\Omega=(0,1)\subset\mathbb{R}$, pertence ao espaço $L^2(0,1)$ somente para $n\neq\frac{1}{2}$, pois

$$\int_{0}^{1} \left(\frac{1}{x^{n}}\right)^{2} dx = \int_{0}^{1} x^{-2n} dx = -\frac{x^{-2n+1}}{-2n+1} \Big|_{0}^{1} = -\frac{1}{-2n+1} = \frac{1}{2n-1}.$$

$$\Rightarrow 2n - 1 \neq 0 \Rightarrow n \neq \frac{1}{2}.$$

Obs. 8: Outra notações recebidas por $< u, v>_{H^1(\Omega)} e \|u\|_{H^1(\Omega)}^2$ são, respectivamente, $(u,v)_1$ e $\|u\|_1^2$.

6.2.2. Espaço $H^1_0(\alpha,b)$: subespaço importante de $H^1(\alpha,b)$ definido pelas funções $u \in H^1(\alpha,b)$ que se anulam na fronteira Γ de $\Omega=(\alpha,b)\subset \mathbb{R}$, ou seja, se anulam nos contornos $x=\alpha$ e x=b. Ou seja,

$$H_0^1(a,b) = \{u \in H^1(a,b) ; u(a) = u(b) = 0\},\$$

que é um espaço de Hilbert munido de (demonstração a posteriori):

- Produto interno: $< u, v>_{H_0^1(a,b)} = \int_a^b u_x v_x dx$;
 - Norma: $\|u\|_{H_0^1(\alpha,b)}^2 = \int_a^b |u_x|^2 dx$

Obs. 9: Outra notações recebidas por $< \mathfrak{u}, \mathfrak{v}>_{\mathsf{H}^1_{\mathfrak{d}}(\Omega)}$ e $\|\mathfrak{u}\|^2_{\mathsf{H}^1_{\mathfrak{d}}(\Omega)}$ são, respectivamente, $((\mathfrak{u},\mathfrak{v}))$ e $\|\mathfrak{u}\|^2$.

Utilizamos o conceito de derivada fraca ou derivada no sentido das distribuições na passagem da formulação forte para a formulação fraca dos problemas que veremos neste curso.

7. Distribuição: Uma distribuição T é um funcional linear e contínuo (limitado) sobre $\mathcal{D}(\Omega)$ que associa a todo elemento elemento $\varphi \in \mathcal{D}(\Omega)$ um número real, ou seja,

$$T: \mathcal{D}(\Omega) \longrightarrow \mathbb{R}$$

 $\phi(x) \mapsto \mathsf{T}(\phi),$

de tal modo que as seguintes condições estejam satisfeitas:

- **D1.** O funcional T é **linear**. Isto é, são satisfeitas as propriedades:
- Associativa: $T(\phi_1 + \phi_2) = T(\phi_1) + T(\phi_2)$, para todo ϕ_1 , $\phi_2 \in \mathcal{D}(\Omega)$;
- Multiplicação por escalar: $T(c\phi) = cT(\phi)$, onde $c \in \mathbb{R}$, para todo $\phi \in \mathcal{D}(\Omega)$.
- **D2.** O funcional T é **contínuo**. Ou seja, se uma sequência de funções (ϕ_{ν}) converge para zero em $\mathcal{D}(\Omega)$, então $T(\phi_{\nu})$ converge para zero em \mathbb{R} .
- Obs. 10: O espaço das distribuições é denotado por $\mathcal{D}'(\Omega)$.

Obs. 11: Também escrevemos $T(\phi)$ como o produto interno $< T, \phi >$.

Exemplo de distribuição: Uma função $\mathfrak{u}(x)\in L^1_{loc}(\Omega)$, dita localmente integrável, define univocamente uma distribuição $T_\mathfrak{u}$. Assim, podemos reescrever o produto interno substituindo $T_\mathfrak{u}$ por \mathfrak{u} quando não houver ambiguidade. Assim,

$$T_{u}(\varphi)==< u, \varphi>=\int_{\Omega}u(x)\varphi(x)\ dx, \ \forall \varphi\in \mathcal{D}(\Omega).$$

Exercício: Verifique se T_u é um funcional linear.

- 7.1. Derivada fraca (ou no sentido das distribuições):
- Primeira derivada de T_u (ou u) no sentido das distribuições:

$$(T_{u})_{x} = \frac{dT_{u}}{dx} = \left\langle \frac{dT_{u}}{dx}, \phi \right\rangle = \left\langle \frac{du}{dx}, \phi \right\rangle = \int_{\Omega} \frac{du}{dx} \phi(x) dx$$

Usando integração por partes, obtemos:

$$\int_{\Omega} \frac{du}{dx} \phi(x) dx = u \phi \Big|_{\Omega} - \int_{\Omega} u \frac{d\phi}{dx} dx$$

Supondo que Ω é um aberto em $\mathbb R$ e $\Omega=(\mathfrak a,\mathfrak b)$, obtemos:

$$\int_{a}^{b} \frac{du}{dx} \phi(x) dx = u \phi \Big|_{a}^{b} - \int_{a}^{b} u \frac{d\phi}{dx} dx = u(b) \phi(b) - u(a) \phi(a) - \int_{a}^{b} u \frac{d\phi}{dx} dx$$

$$= - \left\langle u, \frac{d\phi}{dx} \right\rangle,$$

pois se $\phi \in \mathcal{D}(a,b)$, então $\phi(a) = \phi(b) = 0$.

Portanto, se $u(x) \in L^1_{loc}(a,b)$, denominamos a **primeira derivada de** u(x) **no sentido fraco (das distribuições)** como o produto interno:

$$\left\langle \frac{du}{dx}, \varphi \right\rangle = -\left\langle u, \frac{d\varphi}{dx} \right\rangle, \ \forall \varphi \in \mathcal{D}(a,b).$$

Segunda derivada de T_u (ou u) no sentido das distribuições:

$$(\mathsf{T}_{\mathsf{u}})_{\mathsf{x}\mathsf{x}} = \frac{\mathsf{d}^2\mathsf{T}_{\mathsf{u}}}{\mathsf{d}x^2} = \left\langle \frac{\mathsf{d}^2\mathsf{T}_{\mathsf{u}}}{\mathsf{d}x^2}, \varphi \right\rangle = \left\langle \frac{\mathsf{d}^2\mathsf{u}}{\mathsf{d}x^2}, \varphi \right\rangle = \left\langle \frac{\mathsf{d}}{\mathsf{d}x} \left(\frac{\mathsf{d}\mathsf{u}}{\mathsf{d}x} \right), \varphi \right\rangle$$

Portanto, se $\frac{du}{dx} \in L^1_{loc}(a,b)$, denominamos a **segunda derivada de** u(x) **no sentido fraco (das distribuições)** como o produto interno:

$$\left\langle \frac{d^2u}{dx^2}, \varphi \right\rangle = \left\langle \frac{d}{dx} \left(\frac{du}{dx} \right), \varphi \right\rangle = -\left\langle \frac{du}{dx}, \frac{d\varphi}{dx} \right\rangle, \ \forall \varphi \in \mathcal{D}(\alpha, b).$$

Referências I

Liu, I.S.; Rincon, M.A.. Introdução ao Método de Elementos Finitos, Análise e Aplicação. IM/UFRJ, 2003.