

3.7 灵敏度分析

灵敏度分析的定义

 $\mathbf{Max} \ \mathbf{Z} = \mathbf{CX}$ $s.t. \quad AX \leq b$ $X \geq 0$

- · 当LP问题中的某些参数发生变化时,对最优解的变化情况进行分析。
- 灵敏度分析常用的两个公式
 - 1.最优性: $\sigma_j = c_j C_B B^{-1} P_j \leq 0$ (Max)
 - 2.可行性: $X_B^* = B^{-1}b \ge 0$
- 灵敏度分析的几种可能结果
 - 最优解保持不变
 - 最优基不变,但最优解改变
 - 最优基改变

右端项 b 的变化分析——求 B^{-1}

1.直接用单纯形表求B-1

由
$$AX \leq b \rightarrow AX + IX_S = b$$
 (初始表)

两边左乘 B^{-1} 得

$$B^{-1}AX + B^{-1}X_S = B^{-1}b$$
 (最优表)

例1 LP问题的初始单纯形表和最优单纯形表如下

Max
$$Z = 2x_1 + 3x_2$$

s.t.
$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

中山大學智能工程学院

SUN YAT-SEN UNIVERSITY SCHOOL OF INTELLIGENT SYSTEMS ENGINEERING

初始表:

	c_{j}		2	3	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
0	x_3	8	1	2	1	0	0
0	x_4	16	4	0	0	1	0
0	x_5	12	0	4	0	0	1
σ	j		2	3	0	0	0

$B^{-1}I=B^{-1}$

$$\mathbf{B^{-1}A} = \begin{array}{cccc} \mathbf{1} & \mathbf{0} & \mathbf{2} \\ \mathbf{4} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{4} \end{array} \begin{array}{c} \mathbf{1} & \mathbf{2} \\ \mathbf{4} & \mathbf{0} \\ \mathbf{0} & \mathbf{4} \end{array} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{B}^{-1}\mathbf{b} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{2} \\ \mathbf{4} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{4} \end{bmatrix} \begin{bmatrix} \mathbf{8} \\ \mathbf{16} \\ \mathbf{12} \end{bmatrix} = \begin{bmatrix} \mathbf{4} \\ \mathbf{4} \\ \mathbf{2} \end{bmatrix}$$

最优表:

C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	-1/8	0 °
σ	j	-14	0	0	-3/2	-1/8	0

右端项 b 的变化分析——公式推导

假设b只有一个分量 b_r 发生变化, b_r '= b_r + Δb_r ,则 $B^{-1}(b+\Delta b)=B^{-1}b+B^{-1}\Delta b$

$$= B^{-1}b + B^{-1}\begin{bmatrix} 0 \\ \vdots \\ \Delta b_r \\ \vdots \\ 0 \end{bmatrix} = B^{-1}b + (\beta_1, \dots, \beta_r, \dots, \beta_m)\begin{bmatrix} 0 \\ \vdots \\ \Delta b_r \\ \vdots \\ 0 \end{bmatrix} = B^{-1}b + \beta_r \Delta b_r = \begin{bmatrix} \overline{b_1} + \beta_{1r} \Delta b_r \\ \vdots \\ \overline{b_i} + \beta_{ir} \Delta b_r \\ \vdots \\ \overline{b_m} + \beta_{mr} \Delta b_r \end{bmatrix} \ge 0$$

即
$$\overline{b_i} + \beta_{ir} \Delta b_r \ge 0$$
 则 $\beta_{ir} \Delta b_r \ge -\overline{b_i}$ $(i = 1, 2, \dots, m)$

右端项 b 的变化分析——公式推导

解不等式组得 △b, 的变化范围:

$$Max(\frac{-\overline{b_i}}{\beta_{ir}}|\beta_{ir}>0) \leq \Delta b_r \leq Min(\frac{-\overline{b_i}}{\beta_{ir}}|\beta_{ir}<0)$$

- 注: (1) 此时最优基不变,但最优解发生改变。
 - (2) 此变化范围仅适用于b的一个分量发生变化的情形。

右端项 b 的变化分析——例题

例2 下面是求解一LP问题的初始单纯形表和最优单纯形表,求 b_1 , b_2 , b_3 的变

化范围, 使原最优基不变。

初始表

最优表

			_		-			`	
-		c_{j}	4	5	1	7	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7
0	x_5	120	8	4	6	1	1	0	0
0	x_6	30	1	3	2	2	0	1	0
0	x_7	150	3	8	5	2	0	0	1
-	σ		4	5	1	7	0	0	0
	The second secon								

	c_{j}		4	5	1	7	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5	x_6	x_7
4	x_1	14	1	1/3	2/3	0	2/15	-1/15	0
7	x_4	8	0	4/3	2/3	1	-1/15	8/15	0
0	x_7	92	0	13/3	5/3	0	-4/15	-13/15	1
	σ		0	-17/3	-19/3	0	-1/15	-52/15	0

解:
$$B^{-1} = \begin{bmatrix} \frac{2}{15} & -\frac{1}{15} & 0\\ -\frac{1}{15} & \frac{8}{15} & 0\\ -\frac{4}{15} & -\frac{13}{15} & 1 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} \frac{2}{15} & -\frac{1}{15} & 0 \\ -\frac{1}{15} & \frac{8}{15} & 0 \\ -\frac{4}{15} & -\frac{13}{15} & 1 \end{bmatrix} \qquad \begin{array}{c} \beta_1 = (\frac{2}{15}, -\frac{1}{15}, -\frac{4}{15})^T \\ \beta_2 = (-\frac{1}{15}, \frac{8}{15}, -\frac{13}{15})^T \\ \beta_3 = (0, 0, 1)^T \\ \overline{b} = (14, 8, 92)^T \end{array}$$

解:
$$B^{-1} = \begin{bmatrix} \frac{2}{15} & -\frac{1}{15} & 0 \\ -\frac{1}{15} & \frac{8}{15} & 0 \\ 4 & 13 \end{bmatrix}$$

$$B^{-1} = \begin{bmatrix} \frac{2}{15} & -\frac{1}{15} & 0 \\ -\frac{1}{15} & \frac{8}{15} & 0 \\ -\frac{4}{15} & -\frac{13}{15} & 1 \end{bmatrix} \qquad \begin{array}{c} \beta_1 = (\frac{2}{15}, -\frac{1}{15}, -\frac{4}{15})^T \\ \beta_2 = (-\frac{1}{15}, \frac{8}{15}, -\frac{13}{15})^T \\ \beta_3 = (0, 0, 1)^T \\ \overline{b} = (14, 8, 92)^T \end{array}$$

$$Max(\frac{-14}{2}) \le \Delta b_1 \le Min(\frac{-8}{-\frac{1}{15}}, \frac{-92}{-\frac{4}{15}}) \quad \text{PP}, -105 \le \Delta b_1 \le 120$$

$$Max(\frac{-8}{8}) \le \Delta b_2 \le Min(\frac{-14}{15}, \frac{-92}{15})$$
 艮戶, $-15 \le \Delta b_2 \le \frac{1380}{13}$

$$\triangle b_3 \ge -92$$

例4		I	II	
	设 备	1	2	8台时
	原材料A	4	0	16公斤
	原材料B	0	4	12公斤

工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元。

- (1) 应如何安排生产使该厂获利最多?
- (2) 工厂新增24公斤原材料A, 问如何安排新的生产计划以使获利最多?

$$OBJ : \max Z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 16 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

用单纯形法求得最优单纯形表如下:

c_{j}		2	3	0	0	0	
$C_B X_B$	b	x_1	x_2	x_3	x_4	x_5	
$2 x_1$	4	1	0	0	1/4	0	B-1
$0 x_5$	4	0	0	-2	1/2	1	
$3 x_2$	2	0	1	1/2	-1/8	0	
σ_{j}	-14	0	0	-3/2	-1/8	0	

最优生产计划为:生产4件产品Ⅰ,2件产品Ⅱ;最大利润为14。

(2) 工厂新增24公斤原材料A,则
$$B^{-1}b' = \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix} \cdot \begin{bmatrix} 8 \\ 40 \\ 12 \end{bmatrix} = \begin{bmatrix} 10 \\ 16 \\ -1 \end{bmatrix}$$

将其代入原最优表,并利用对偶单纯形法迭代:

		c_{j}		2	3	0	0	0
	C_B	X_{B}	b	x_1	x_2	x_3	x_4	x_5
X_4	2	x_1	10	1	0	0	1/4	0
	0	x_5	16	0	0	-2	1/2	1
	3 ((x_2)	-1	0	1	1/2	-1/8	0
		σ_{j}	-17	0	0	-3/2	-1/8	0
	2	x_1	8	1	2	1	0	0
	0	$x_1 \\ x_5$	8 12	1 0	2 4	1 0	0 0	0 1
		-	_	_				

$$OBJ: \max Z = 2x_1 + 3x_2$$

$$\begin{cases} x_1 + 2x_2 \le 8 \\ 4x_1 \le 40 \\ 4x_2 \le 12 \\ x_1, x_2 \ge 0 \end{cases}$$

新的最优生产计划为:生产8件产品I,0件产品II;最大利润为16。

价值系数 C 的变化分析

例 下面是一张LP问题的最优单纯形表,观察其目标函数系数的改变对检验数的影响

	c_{j}		2	3	1	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	1	1	0	-1	3	-1
3	x_2	2	0	1	2	-1	1
	σ		0	0	-3	-3	-1

 c_j 的变化会引起检验数 $\sigma_j = c_j - C_B B^{-1} P_j$ 的变化,有两种情况:

- \triangleright 非基变量的价值系数 c_j 变化,不影响其它检验数.
- \triangleright 基变量的价值系数 C_B 变化,影响所有非基变量检验数.

(1)非基变量价值系数的改变

若非基变量 x_j 的价值系数由 c_j 变为 c_j '= $c_j+\Delta c_j$,则 x_j 的检验数由 $\sigma_j=c_j-C_BB^{-1}P_j$ 变为 $\sigma_j'=c_j'-C_BB^{-1}P_j = (c_j-C_BB^{-1}P_j)+\Delta c_j = c_j+\Delta c_j-C_BB^{-1}P_j = (c_j-C_BB^{-1}P_j)+\Delta c_j$

讨论:

- (1) 当 σ_j ' ≤ 0 , 即 $\Delta c_j \leq -\sigma_j$ 时,原最优解不变;
- (2) 当 σ_j ' > 0,即 Δc_j > σ_j 时,原最优解改变。

Max
$$Z = -2x_1 - 3x_2 - 4x_3$$

s.t. $-x_1-2x_2-x_3+x_4 = -3$
 $-2x_1+x_2-3x_3+x_5 = -4$
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

最优单纯形表为

	c_{j}^{-}		-2	-3	-4	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
-3	x_2	2/5	0	1	-1/5	-2/5	1/5
-2	x_1	11/5	1	0	7/5	-1/5	-2/5
	σ_{i}		0	0	-9/5	-8/5	-1/5

为使原最优解不变,求 c_3 的变化范围。

解: 最优单纯形表为

	c_{j}			-3	-4	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
-3	x_2	2/5	0	1	-1/5	-2/5	1/5
-2	x_1	11/5	1	0	7/5	-1/5	-2/5
	σ_{i}		0	0	-9/5	-8/5	-1/5

	c_{j}^{-}		-2	-3	$-4+\Delta c_3$	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
-3	x_2	2/5	0	1	-1/5	-2/5	1/5
-2	x_1	11/5	1	0	7/5	-1/5	-2/5
	σ_{i}		0	0	$-9/5+\Delta c_3$	-8/5	-1/5

从表中看到 σ_3 =-9/5+ Δc_3 ,可见,当 $\Delta c_3 \le 9/5$,即 $c_3 \le -4 + 9/5$ =-11/5时,原最优解不变。

(2)基变量价值系数的改变

若基变量 x_{B_k} 的价值系数 c_{B_k} 变为 c_{B_k} '= c_{B_k} + Δc_{B_k} ,则 非基变量 x_i 的检验数由 $\sigma_i = c_i - C_B B^{-1} P_i$ 变为 $\sigma_i' = c_i - C_B' B^{-1} P_i$ $= c_{i} - (c_{B_{1}}, \dots, c_{B_{L}} + \Delta c_{B_{L}}, \dots, c_{B_{L}}) B^{-1} P_{i}$ = c_{i} -{ $(c_{B_{1}},\dots,c_{B_{k}},\dots,c_{B_{m}})$ + $(0,\dots,\Delta c_{B_{k}},\dots,0)$ } $B^{-1}P_{i}$ $= c_{j} - C_{B}B^{-1}P_{j} - \Delta c_{B_{k}}a_{kj} \qquad B^{-1}P_{j} = (a_{1j}, \dots, a_{kj}, \dots, a_{mj})^{T}$ $= \boldsymbol{\sigma}_{i} - \Delta \boldsymbol{c}_{B_{k}} \boldsymbol{a}_{kj} \leq 0 \qquad \text{ or } \Delta \boldsymbol{c}_{B_{k}} \boldsymbol{a}_{kj} \geq \boldsymbol{\sigma}_{j}$

$$Max\{\frac{\sigma_{j}}{a_{kj}} | a_{kj} > 0\} \le \Delta c_{B_{k}} \le Min\{\frac{\sigma_{j}}{a_{kj}} | a_{kj} < 0\}$$

例 下表为最优单纯形表, 计算 c_2 变化的范围,使得原最优解不变。

	c_{j}		2	3	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	-1/8	0
	σ_{i}		0	0	-3/2	-1/8	0

	c_{j}		2	3	0	0	0
C_B	X_{B}	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
3	x_2	2	0	1	1/2	-1/8	0
	σ_{i}		0	0	-3/2	-1/8	0

	c_{j}		2	$3+\Delta c_2$	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
2	x_1	4	1	0	0	1/4	0
0	x_5	4	0	0	-2	1/2	1
$3+\Delta c_2$	x_2	2	0	1	1/2	-1/8	0
	σ_{j}		0	0	$\boxed{-3/2 - \Delta c_2/2}$	$-1/8 + \Delta c_2/8$	0

 σ_3 '=0-[2×0+0×(-2)+(3+ Δc_2)×1/2]=-3/2 - Δc_2 /2 ≤0 当-3≤ Δc_2 ≤1,即 0≤ c_2 ≤4 时, σ_4 '=0-[2×1/4+0×1/2+(3+ Δc_2)×(-1/8)]=-1/8+ Δc_2 /8 ≤0 原最优解不变。

技术矩阵 A 的变化分析

- (1)增加变量
 - 若所增加变量的检验数≤0,则原最优解不变;
 - 否则,用单纯形法迭代求最优解。
- (2)Pj的变化
 - Pj为非基变量的技术系数时,对检验数有影响,只需保证对应非基变量的检验数非负。
 - Pj为基变量的技术系数时,需继续进行初等行变换,将对应基变量技术系数列变为单位列向量。

例3.9(P80) 在例2.1的基础上,企业要增加一个新产品 \parallel ,每件产品需设备2台时,原材料A为 6kg,原材料B为3kg,每件可获利 5元,问该企业是否应该增加生产新产品?

解: 设x3为新产品生产的产量,

$$\max z = 2x_1 + 3x_2 + 5x_3'$$

$$\begin{cases} x_1 + 2x_2 + 2x_3' \le 8 \\ 4x_1 + 6x_3' \le 16 \\ 4x_2 + 3x_3' \le 12 \end{cases}$$

$$x_1, x_2, x_3' \ge 0$$

	I	П	Ш	b
设备	1	2	2	8
料A	4	0	6	16
料B	0	4	3	12
利润	2	3	5	

1) 计算 σ_3'

$$\sigma_3' = c_3' - C_B B^{-1} p_3' = 5 - \left[\frac{3}{2}, \frac{1}{8}, 0\right] \begin{vmatrix} 2 \\ 6 \\ 3 \end{vmatrix} = \frac{5}{4} > 0$$

表明生产新品有利。

2) 计算B-1p'3

$$B^{-1}p_{3}' = \begin{bmatrix} 0 & 1/4 & 0 \\ -2 & 1/2 & 1 \\ 1/2 & -1/8 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \\ 3 \end{bmatrix} = \begin{bmatrix} 3/2 \\ 2 \\ 1/4 \end{bmatrix}$$

3) $B^{-1}p_3', \sigma_3'$ 加入原最优表.

	c_{j}			3	0	0	0	5	
c_B	X_B	b	x_1	x_2	x_3	<i>x</i> ₄	<i>x</i> ₅	x_3	
2	x_1	4	1	0	0	1/4	0	3/2	8/3
0	x_5	4	0	0	-2	1/2	7	2	4/2
3	x_2	2	0	1	1/2	-1/8	0	1/4	8
			0	0	-3/2	-1/8	0	5/4	
2	x_1	1	~	0	3/2	-1/8	-3/4	0	
5	x_3	2	0	0	-1	1/4	1/2	1	
3	x_2	3/2	0	1	3/4	-3/16	-1/8	0	
			0	0	-1/4	-7/16	-5/8	0	

 $\therefore x_1^* = 1$, $x_2^* = 3 / 2$, $x_3^{'*} = 2.z^* = 16.5$ 元,增加2.5元.

例3.10(P81) 在例2-1中若产品 I 的工艺结构有了改进,它的技术系数向量变 $P_1'=(2,5,2)^{\mathrm{T}}$,每件利润为4元,试分析对原最优计划的影响?

解:把改进的产品I看作产品I',设 x_I '为其产量。

$$B^{-1}P_1' = \begin{pmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 5/4 \\ 1/2 \\ 3/8 \end{pmatrix}$$

$$\sigma_1' = c_1' - C_B B^{-1} p_1' = 4 - \left[\frac{3}{2}, \frac{1}{8}, 0\right] \begin{bmatrix} 2\\5\\2 \end{bmatrix} = \frac{3}{8}$$

将以上计算结果填入最终表 x_1 的列向量位置,得下表。

	c_{j}		4	3	0	0	0	۵
c_B	X_{B}	b	x_1'	x_2	x_3	x_4	<i>x</i> ₅	θ_i
2	x_1	4	5/4	0	0	1/4	0	
0	x_5	4	1/2	0	-2	1/2	1	
3	x_2	2	3/8	~	1/2	-1/8	0	
			3/8	0	-3/2	-1/8	0	
4	x_1'	3.2	1	0	0	1/5	0	
0	<i>x</i> ₅	2.4	0	0	-2	2/5	1	
3	x_2	0.8	0	1	1/2	-1/5	0	
			0	0	-3/2	-1/5	0	

即应当生产产品 1'和产品 1 分别是3.2和0.8单位,可获利15.2元。

例3.11 假设上例的产品I'的技术系数向量变为(4,5,2)^T,而每件获利仍为4元,试问该厂应如何安排最优生产方案?

解:与上例相同,以x1′代替x1,并计算列向量

$$B^{-1}P_1' = \begin{pmatrix} 0 & 0.25 & 0 \\ -2 & 0.5 & 1 \\ 0.5 & -0.125 & 0 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \\ 2 \end{pmatrix} = \begin{pmatrix} 1.25 \\ -3.5 \\ 1.375 \end{pmatrix}$$

$$\sigma_1' = c_1' - C_B B^{-1} p_1' = 4 - \left[\frac{3}{2}, \frac{1}{8}, 0\right] \begin{bmatrix} 4 \\ 5 \\ 2 \end{bmatrix} = -2.625$$

将以上计算结果填入最终表 x_1 的列向量位置,得下表。

	c_{j}		4	3	0	0	0	0
c_B	X_{B}	b	x_1'	x_2	x_3	x_4	x_5	$ heta_i$
2	x_1	4	1.25	0	0	1/4	0	
0	x_5	4	-3.5	0	-2	1/2	1	
3	x_2	2	1.375	1	1/2	-1/8	0	
			-2.625	0	-3/2	-1/8	0	
4	x_1'	3.2	. 1	0	0	1/5	0	
0	x_5	15.2	0	0	-2	6/5	1	
3	x_2	-2.4	0	1	1/2	-2/5	0	
			0	0	-3/2	2/5	0	

可见原问题和对偶问题都是非可行解。故引入人工变量 x_6 。因在上表中 x_2 所在行用方程表示时为

$$0x_1' + x_2 + 0.5x_3 - 0.4x_4 + 0x_5 = -2.4$$

引入人工变量x6后,便为-x2-0.5x3+0.4x4+x6=2.4

将x6作为基变量代替x2,填入上表,得到下表2-18。

	c_{j}			3	0	0	0	
c_B	X_B	b	x_1'	x_2	x_3	x_4	x_5	
4	x_1'	3.2	1	0	0	1/5	0	0
0	<i>x</i> ₅	15.2	0	0	-2	6/5	1	0
-M	<i>x</i> ₆	2.4	0	1	1/2	-2/5	0	1
			0	3-M	-M/2	2M/5-0.8	0	0

	c_{j}		4	3	0	0	0	-M	
C_B	X_B	b	x_1	x_2	x_3	<i>x</i> ₄	x_5	x_6	
4	x_1'	2	1	1/2	1/4	0	0	1/2	
0	x_5	8	0	3	-1/2	0	1	-3	
0	<i>x</i> ₄	6	0	1	-5/4	1	0	5/2	
				1	-1	0	0	2-M	
4	x_1'	0.667	1	0	0	0	-0.33	0	
3	x_2	12.667	0	0	-2	0	0.33	-1	
0	<i>x</i> ₄	12.667	0	1	1/2	1	0.83	0	
				3-M	-M/2	0	-0.33	3-M	

此表的所有检验数都为非正,已得最优解。最优生产方案为生产产品 I', 0.667单位;产品 II, 2.667单位,可得最大利润10.67元。

- (新单纯形表用对偶单纯形法解)例:某企业利用三种资源生产两种产品的最优计划问题归结为下列线性规划
- 第一种产品的消耗系数改变为 $\tilde{P_1} = \begin{pmatrix} 3/2 \\ 3/2 \\ 1/2 \end{pmatrix}$,价值系数不变,求新的最优解。

 $\max Z = 5x_1 + 4x_2$

$$\begin{cases} x_1 + 3x_2 \le 90 \\ 2x_1 + x_2 \le 80 \\ x_1 + x_2 \le 45 \end{cases}$$

$$B^{-1} = \begin{pmatrix} 1 & 2 & -5 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix}$$

$$B^{-1} \tilde{P}_1 = \begin{pmatrix} 1 & 2 & -5 \\ 0 & 1 & -1 \\ 0 & -1 & 2 \end{pmatrix} \begin{pmatrix} 3/2 \\ 3/2 \\ 1/2 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \\ -1/2 \end{pmatrix}$$

$$x_1, x_2 \ge 0$$

	c_{j}			4	0	0	0
C_B	X_{B}	b	x_1	x_2	x_3	x_4	x_5
0	x_3	25	0	0	1	2	-5
5	x_1	35	1	0	0	1	-1
4	x_2	10	0	1	0	-1	2
σ_{j}			0	0	0	-1	-3

C_{j}			5	4	0	0	0
C_B	X_B	b	x_1	x_2	x_3	x_4	x_5
0	x_3	25	2	0	1	2	-5
5	x_1	35	1	0	0	1	-1
4	x_2	10	-1/2	1	0	-1	2
	σ_{j}		0	0	0	-1	-3

	C_{j}		5	4	0	0	0
$-C_B$	X_B	b	x_1	x_2	x_3	x_4	x_5
0	x_3	25	2	0	1	2	-5
5	x_1	35	[1]	0	0	1	-1
4	x_2	10	-1/2	1	0	-1	2
	σ_{j}		0	0	0	-1	-3
0	x_3	-45	0	0	1	0	[-3]
5	x_1	35	1	0	0	1	-1
4	x_2	27.5	0	1	0	-1/2	3/2
	σ_{j}		0	0	0	-3	-1
0	x5	15	0	0	-1/3	0	1
5	x1	50	1	0	-1/3	1	0
4	x2	5	0	1	1/2	-1/2	0
	$\sigma_{ m j}$		0	0	-1/3	-3	0