

FCC Test Report

for IEEE 802.15.4 wireless controller module JN5148-001-M04

Report Number 07-362a/4011/1/09 Report Produced by: -

R.N. Electronics Ltd.

1 Arnolds Court Arnolds Farm Lane Mountnessing ESSEX CM13 1UT

www.RNelectronics.com

Telephone 01277 352219 Facsimile 01277 352968

File name JENNIC.362a PAGE 1 OF 77

1. Contents

1.	Co	ONTENTS	2
2.		UMMARY OF TEST RESULTS	
3.	In	IFORMATION ABOUT EQUIPMENT UNDER TEST	4
	3.1	Equipment Specification	4
	3.2	Emissions configuration	
4.	SF	PECIFICATIONS	7
	4.1	Deviations	7
5.	TI	ESTS, METHODS AND RESULTS	8
	5.1	Conducted Emissions	8
	5.2	Radiated Emissions	9
	5.3	Intentional Radiator Field Strength	10
	5.4	Maximum Spectral Power Density	12
	5.5	6dB Bandwidth	13
6.	PI	LOTS AND RESULTS	14
	6.1	Conducted Emissions	
	6.2	Radiated Emissions 30MHz – 1GHz	
	6.3	Radiated emissions 1GHz – 10 th harmonic	23
	6.4	6dB Bandwidth	65
7	E	XPLANATORY NOTES	
	7.1	Explanation of FAIL LIMIT 1 Statement	67
	7.2	Explanation of limit line calculations for radiated measurements	67
8.	PF	HOTOGRAPHS	68
9.	Sı	GNAL LEADS	73
10		TEST EQUIPMENT CALIBRATION LIST	
11	l .	AUXILIARY EQUIPMENT	
	11.1		
	11.2	Auxiliary equipment supplied by RN Electronics Limited	75
12	2.	MODIFICATIONS	76
13	3.	COMPLIANCE INFORMATION	77

2. Summary of Test Results

The IEEE 802.15.4 wireless controller module JN5148-001-M04 was tested to the following standards:

FCC Part 15C (effective date October, 2008); Class DTS Intentional Radiator

Any compliance statements are made reliant on the modes of operation as instructed to us by the Manufacturer based on their specific knowledge of the application and functionality of the equipment tested. Whilst every effort is made to assure quality of testing, type tests are not exhaustive and although no non-conformances may be found, this doesn't exclude the possibility of equipment not meeting the intentions of the standard, particularly under different conditions to those during testing.

Title		Reference	Results	
1.	Conducted Emissions	FCC Part 15C §15.207	NOT APPLICABLE ¹	
2.	Radiated Emissions	FCC Part 15C §15.205, §15.209 & §15.247(d)	PASSED	
3.	Modulation Bandwidth	FCC Part 15C §15.215(c), §15.247(a)(2)	PASSED	
4.	Intentional Radiator Field	FCC Part 15C §15.247(b)	PASSED	
	Strength			
5.	Power Spectral Density	FCC Part 15C §15.247(e)	PASSED	

This report relates to the equipment tested as identified by a unique serial number and at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed.

Date of Test:	1st July to 22nd July 2009
	P.E.S.
Test Engineer:	
Approved By: Technical Director	
Customer Representative:	

File name JENNIC.362a PAGE 3 OF 77

¹ The digital device tested is intended to be powered from 3V dc supply (battery) and intended for modular approval. Any third party device it is incorporated into with a connection to the AC power line will require demonstration of compliance with the limits. Refer to §15.207(c) "Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to AC power lines".

ALL RIGHTS RESERVED

3. Information about Equipment Under Test

3.1 Equipment Specification

Applicant Jennic Ltd

Furnival Street Sheffield S1 4QT

Manufacturer/Brand Name Jennic Ltd

Full name of EUT IEEE 802.15.4 wireless controller module

Model Number of EUT JN5148-001-M04

Serial Number of EUT #9

FCC ID (if applicable): not stated

Date when equipment was received

by RN Electronics Limited 1st July 2009

Date of test: 1st July to 22nd July 2009

Customer order number: PO005383/CF

A visual description of EUT is as follows: A small metal canned enclosure mounted on a

PCB with an UFL connector for connecting a dedicated antenna. For the purpose of test the PCB was mounted onto a battery powered motherboard with an RS232 communications

flying lead for programming purposes.

The main function of the EUT is:

module.

A 2.4GHz(IEE802.15.4) wireless microcontroller

Antenna: Dedicated Antenna connected to antenna port.

18dBi Aveslink Outdoor High Gain Directional Patch Antenna (Model #E-0360-AK) or 15dBi Aveslink Vertical Collinear Antenna

(Model #E-1050-AK)

Equipment Under Test Information specification:

Equipment ender rest information specification.				
Height	6.9mm			
Width	20mm			
Depth	41mm			
Weight	3g			
Voltage	3V DC			
Current required from above voltage source	130mA			
Highest Frequencies used / generated	2.405 – 2.475GHz			

Purpose of Test: To demonstrate compliance with FCC OET

regulations for intentional radiators.

File name JENNIC.362a PAGE 4 OF 77

Modes of operation:

Mode	Description of mode	Used for Testing
Continuous TX 2.405GHz	Unit continuously transmitting on Bottom channel	YES
Continuous TX 2.440GHz	Unit continuously transmitting on Middle channel	YES
Continuous TX 2.475GHz	Unit continuously transmitting on Top channel	YES

Any modifications made to the **EUT**, whilst under test, can be found in Section 12.

This report was printed on: 27 July 2009

3.2 Emissions configuration

The equipment under test was supplied by 3V DC from two new Batteries situated on the provided host PCB board. The battery levels were monitored throughout tests to ensure the levels did not drop below the +/- 10% required. The unit was provided with a UFL to SMA connector to allow the supplied High Gain and Co-Linear antennae to be connected and tested. To change channels and select the correct modes for test a programming lead was connected and the unit programmed. The programming lead was removed for tests. Application programming software was provided by Jennic Ltd. and would not normally be available to the user.

Top, Middle & Bottom channels were checked/ tested in both Transmit and Receive modes using the 16MHz clock option. All power levels were left at maximum (default setting).

Bottom channel = 2.405GHz Middle channel = 2.440GHz Top channel = 2.475GHz

Description of ancillary equipment connected to the equipment under test, for the purpose of tests, can be found in Section 11.

File name JENNIC.362a PAGE 6 OF 77

©2004 RN ELECTRONICS LIMITED ALL RIGHTS RESERVED

REPORT NUMBER 07-362a/4011/1/09

4. Specifications

The tests were performed by RN Electronics Engineer Peter Finley who set up the tests, the test equipment, and operated it in accordance with the *R.N. Electronics Ltd* procedures manual, FCC Part 15 and those specifications incorporated by reference into 47CFR15 (e.g. ANSI C63.4-2003).

R.N. Electronics Ltd sites M and OATS are listed with the FCC. Registration Number 293246

4.1 Deviations

None.

File name JENNIC.362a PAGE 7 OF 77

5. Tests, Methods and Results

5.1 Conducted Emissions

NOT APPLICABLE.

The digital device tested is intended to be powered from 3V DC supply (battery) and intended for modular approval. Any third party device it is incorporated into with a connection to the AC power line will require demonstration of compliance with the limits. Refer to §15.207(c) "Measurements to demonstrate compliance with the conducted limits are not required for devices which only employ battery power for operation and which do not operate from the AC power lines or contain provisions for operation while connected to AC power lines"

File name JENNIC.362a PAGE 8 OF 77

5.2 Radiated Emissions

5.2.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.209)

Test Method: FCC Part 15C, Reference (15.209)

5.2.1.1 Configuration of EUT

The EUT was placed on a 0.8 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT was measured at a distance of 3 metres. The transmitter was operated continuously to measure the emissions which would normally have a duty cycle <= 1%. Radiated Emissions testing was performed with a new battery. The EUT and antennae were rotated in all three orthogonal planes.

5.2.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

30 MHz - 1 GHz, measurements were made on a site listed with the FCC. The equipment was rotated 360° and the antenna scanned 1-4 metres in both horizontal and vertical polarisations to record the worst case emissions.

Above 1GHz, measurements were made in a semi-anechoic chamber with appropriate absorbing material for use in this range. The antenna was placed 1.5m above the ground in line with the EUT, which was rotated through 360° to record the worst case emissions.

Above 6.5GHz, the measurement antenna was moved to a distance of 1 metre.

At least 6 signals within 20dB and all signals within 10dB of the limit were investigated.

5.2.2 Test results

Tests were performed using Test Site M &B

Test Environment:

M & B

Temperature: 20°C Humidity: 49-63%

Analyser plots for the Quasi-Peak / Average values as applicable and any table of signals within 20dB of the limit line can be found in Section 6.2 of this report.

These show that the EUT has PASSED this test.

5.2.2.1 Test Equipment used

E001,TMS933,E268,E342,TMS79,TMS82,E429,E250,E251,E252,E235

See Section 10 for more details

File name JENNIC.362a PAGE 9 OF 77

5.3 Intentional Radiator Field Strength

5.3.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.)

Test Method: FCC Part 15C, Reference (15.)

5.3.1.1 Configuration of EUT

The EUT was placed on a 1.5 metres high turntable. The front edge of the EUT was initially positioned facing the antenna. The EUT and antennae were rotated in all three orthogonal planes. The EUT was measured at a distance of 3 metres.

5.3.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below.

Measurements were made in a semi-anechoic chamber.

Both the equipment and the antenna were rotated 360° to record the maximised emission.

5.3.2 Test results

Tests were performed using Test Site B.

Test Environment:

Temperature: 20°C Humidity:63 %

The maximised field strength measured was

Patch Antenna results

Frequency (MHz)	Power (1MHz RBW) (dBuV/m @ 3 metres)	Power (100kHz RBW) (dBuV/m @ 3 metres)
2405	122.34	118.84
2440	122.67	118.50
2475	121.50	117.17

Collinear Antenna results

Frequency (MHz)	Power (1MHz RBW) (dBuV/m @ 3 metres)	Power (100kHz RBW) (dBuV/m @ 3 metres)
2405	111.84	108.34
2440	114.84	111.67
2475	109.50	106.34

Conducted results

Frequency (MHz)	Power (dBm)
2405	17.12
2440	16.87
2475	16.49

Limits: 1Watt (+30dBm)

@3m 1Watt from an isotropic radiator would produce 125dBuV.

These results show that the EUT has **PASSED** this test.

5.3.2.1 Test Equipment used

File name JENNIC.362a PAGE 10 OF 77

©2004 RN ELECTRONICS LIMITED ALL RIGHTS RESERVED

REPORT NUMBER 07-362a/4011/1/09

E342, E268, E82, E250,E251,E252,E397,E290

See Section 10 for more details

File name JENNIC.362a PAGE 11 OF 77

5.4 Maximum Spectral Power Density

5.4.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.247(e))

Test Method: FCC Part 15C, Reference (15.247)

5.4.1.1 Configuration of EUT

A test jig was provided with an SMA 50ohm coaxial connector which was checked for maximum conducted power at the antenna port.

5.4.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below and taking due consideration of the loss of the antenna port adaptor.

5.4.2 Test results

Tests were performed using Test Site A.

Temperature of test Environment: 21°C

Frequency (MHz)	Peak Power (dBm/3kHz)
2405	-3.1
2440	-4.2
2475	-1.2

Limit: +8dBm/3kHz

These results show that the EUT has PASSED this test.

5.4.2.1 Test Equipment used

E003, E005, E290, E397

See Section 10 for more details.

File name JENNIC.362a PAGE 12 OF 77

5.5 6dB Bandwidth

5.5.1 Test Methods

Test Requirements FCC Part 15C, Reference (15.215),(15.247(a))

Test Method: FCC Part 15C, Reference (15.215)

5.5.1.1 Configuration of EUT

A test jig was provided with an SMA 50ohm coaxial connector which was used to measure the 6dB Bandwidth.

5.5.1.2 Test Procedure

Tests were made in accordance with FCC Part 15 using the measuring equipment noted below and taking due consideration of the loss of the antenna port adaptor.

5.5.2 Test results

Tests were performed using Test Site A.

Temperature of test Environment: 24°C

Analyser plots for the 6dB bandwidth can be found in Section 6.4 of this report.

Frequency (MHz)	6dB Bandwidth (MHz)	Plot Reference
2405	1.5875	001
2440	1.6000	002
2475	1.6375	003

Limits: Must be >500kHz.

These results show that the EUT has PASSED this test.

5.5.2.1 Test Equipment used

E003

See Section 10 for more details.

File name JENNIC.362a PAGE 13 OF 77

©2004 RN ELECTRONICS LIMITED ALL RIGHTS RESERVED

REPORT NUMBER 07-362a/4011/1/09

6. Plots and Results6.1 Conducted Emissions

NONE - TEST NOT APPLICABLE

File name JENNIC.362a PAGE 14 OF 77

6.2 Radiated Emissions 30MHz – 1GHz

Collinear Antenna

Quasi-Peak Values of 30 MHz. to 300 MHz. Horizontal Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.362a PAGE 15 OF 77

Collinear Antenna Quasi-Peak Values of 30 MHz. to 300 MHz. Vertical Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.362a PAGE 16 OF 77

Collinear Antenna Quasi-Peak Values of 300 MHz. to 1 GHz. Horizontal Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.362a PAGE 17 OF 77

Collinear Antenna Quasi-Peak Values of 300 MHz. to 1 GHz. Vertical Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

Signal	Freq (MHz)	Peak Amp (dBuV/m)	Peak - Lim1 (dB)	QP Amp (dBuV/m)	QP - Lim1 (dB)
1	127.999988	27.29	-16.21	25.77	-17.73

Tables of signals within 20dB of the limit line for Quasi-peak Top, Middle & Bottom Channels

File name JENNIC.362a PAGE 18 OF 77

Patch Antenna Quasi-Peak Values of 30 MHz. to 300 MHz. Horizontal Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.362a PAGE 19 OF 77

Patch Antenna

Quasi-Peak Values of 30 MHz. to 300 MHz. Vertical Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.362a PAGE 20 OF 77

Patch Antenna Quasi-Peak Values of 300 MHz. to 1 GHz. Horizontal Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

File name JENNIC.362a PAGE 21 OF 77

Patch Antenna Quasi-Peak Values of 300 MHz. to 1 GHz. Vertical Polarisation

The plot shows a swept response of peak values using the quasi-peak limit line

(Any peaks within 20dB of the limit line have been calculated and appear in the table on following page of this report)

Tables of signals within 20dB of the limit line for Quasi-peak

Top, Middle & Bottom Channels

NONE

Measurement Uncertainty of ± 5.2dB Applies

File name JENNIC.362a PAGE 22 OF 77

6.3 Radiated emissions 1GHz – 10th harmonic

6.3.1 Patch antenna plots

File name JENNIC.362a PAGE 23 OF 77

J4011-1 2-2.7GHz Horiz Mid Chan Patch Ant

PAGE 24 OF 77 File name JENNIC.362a

PAGE 25 OF 77

File name JENNIC.362a

J4011-1 2-2.7GHz Vert Top Chan Patch Ant

File name JENNIC.362a PAGE 26 OF 77

J4011-1 2.7-4GHz Vert Mid Chan Patch Ant

File name JENNIC.362a PAGE 27 OF 77

20/07/2009 14:03:42 VId BW: 5 WH2 GWeep: 50:00 His

File name JENNIC.362a PAGE 28 OF 77

File name JENNIC.362a PAGE 30 OF 77

File name JENNIC.362a PAGE 31 OF 77

ALL RIGHTS RESERVED

Res BW: 1 MHz Vid BW: 3 MHz 20/07/2009 11:33:42

Stop: 9.500000 GHz Sweep: 50.00 ms

HP8563E

J4011-1 7.5-9.5GHz Vert Mid Chan Patch Ant

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

Start: 9.500000 GHz

20/07/2009 15:00:37

Res BW: 1 MHz

ALL RIGHTS RESERVED

Atten: 10 dB

Vid BW: 3 MHz

Stop: 11.500000 GHz

Sweep: 50.00 ms

HP8563E

1 Trace A∇ 9.616667 GHz55.6700 dBuV

J4011-1 9.5-11.5GHz Horiz Mid Chan Patch Ant

1 Trace A
√ 9.756667 GHz
55.6700 dBuV

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

1 Trace A∇ 9.896667 GHz47.3400 dBuV

Start: 9.500000 GHz Res BW: 1 MHz 20/07/2009 15:15:18

0

Atten: 10 dB Vid BW: 3 MHz Stop: 11.500000 GHz Sweep: 50.00 ms

HP8563E

J4011-1 9.5-11.5GHz Vert Bot Chan Patch Ant

1 Trace A
√ 9.616667 GHz
60.3400 dBuV

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

1 Trace A∇ 9.756667 GHz57.3400 dBuV

J4011-1 9.5-11.5GHz Vert Top Chan Patch Ant

1 Trace A
√ 9.903333 GHz
51.0000 dBuV

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

J4011-1 11.5-12.5GHz Horiz Bot Chan Patch Ant Trace A

Trace A ∇ 12.025000 GHz 36.6700 dBuV

J4011-1 11.5-12.5GHz Horiz Mid Chan Patch Ant

Trace A 12.205000 GHz 35.0000 dBuV

Trace A 12.025000 GHz 39.8400 dBuV

dBuV

Trace A

J4011-1 11.5-12.5GHz Vert Bot Chan Patch Ant

20 10 0 -10

Start: 11.500000 GHz Atten: 0 dB Stop: 12.500000 GHz Res BW: 1 MHz Vid BW: 3 MHz Sweep: 50.00 ms 21/07/2009 12:11:00 HP8563E

PAGE 40 OF 77 File name JENNIC.362a

HP8563E

Trace A 12.375000 GHz 36.5000 dBuV

ALL RIGHTS RESERVED

J4011-1 11.5-12.5GHz Vert Mid Chan Patch Ant dBuV Trace A 90 Trace A ∇ 12.205000 GHz 37.8400 dBuV 80 70 60 50 40 30 20 10 0 -10 Start: 11.500000 GHz Atten: 0 dB Stop: 12.500000 GHz Res BW: 1 MHz Vid BW: 3 MHz Sweep: 50.00 ms

21/07/2009 12:08:50

File name JENNIC.362a PAGE 41 OF 77

J4011-1 12.5-14GHz Vert Mid Chan Patch Ant

J4011-1 14-16GHz Vert Mid Chan Patch Ant

File name JENNIC.362a PAGE 43 OF 77

J4011-1 20-22GHz Horiz Mid Chan Patch Ant

Trace A

80

70

60

50

40

30

20

10

0

Atten: 10 dB

Vid BW: 3 MHz

Stop: 22.000000 GHz

Sweep: 50.00 ms

HP8563E

1 Trace A∇ 21.960000 GHz37.0000 dBuV

J4011-1 20-22GHz Vert Mid Chan Patch Ant

Start: 20.000000 GHz

21/07/2009 14:10:25

Res BW: 1 MHz

File name JENNIC.362a PAGE 46 OF 77 QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

J4011-1 22-24GHz Vert Mid Chan Patch Ant

File name JENNIC.362a PAGE 47 OF 77

J4011-1 24-26GHz Vert Mid Chan Patch Ant

File name JENNIC.362a PAGE 48 OF 77

6.3.2 Additional colinear antenna plots

Vid BW: 3 MHz

Sweep: 50.00 ms

HP8563E

Res BW: 1 MHz

20/07/2009 16:24:00

J4011-1 2-2.7GHz Vert Bot Chan Pole Ant

File name JENNIC.362a PAGE 50 OF 77

File name JENNIC.362a PAGE 51 OF 77

J4011-1 4-5GHz Horiz Mid Chan Pole Ant

Start: 4.000000 GHz Res BW: 1 MHz 21/07/2009 09:32:21

Atten: 10 dB Vid BW: 3 MHz Stop: 5.000000 GHz Sweep: 50.00 ms

HP8563E

PAGE 54 OF 77

J4011-1 4-5GHz Vert Top Chan Pole Ant

File name JENNIC.362a

J4011-1 9.5-11.5GHz Horiz Bot Chan Pole Ant

Trace A
 9.616667 GHz
 53.3400 dBuV

J4011-1 9.5-11.5GHz Horiz Mid Chan Pole Ant

1 Trace A
√ 9.760000 GHz50.6700 dBuV

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

Trace A ∇ 9.903333 GHz 49.6700 dBuV

J4011-1 9.5-11.5GHz Vert Bot Chan Pole Ant

Trace A 9.616667 GHz 57.1700 dBuV

Trace A 9.903333 GHz 55.6700 dBuV

ALL RIGHTS RESERVED

File name JENNIC.362a PAGE 60 OF 77

6.3.3 Band-edge

1 Trace A∇ 2.475333 GHz106.3400 dBuV

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

J4011-1 Bot Chan Patch Ant Vert Peak

Stop: 2.455000 GHz

Sweep: 50.00 ms

HP8563E

ALL RIGHTS RESERVED

42

32

dBuV Trace A

132

122

112

102

92

82

72

62

52

Atten: 10 dB

Vid BW: 300 kHz

1 Trace A∇ 2.405167 GHz118.8400 dBuV

Start: 2.355000 GHz

17/07/2009 13:48:38

Res BW: 100 kHz

1 Trace A∇ 2.475500 GHz117.1700 dBuV

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

6.3.4 Tables of signals within 20dB of the limit line for 1GHz - 25GHz

All peak emissions were less than 3dB above average before duty cycle corrections.

Patch Antenna

EUT Transmitting on Low Channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ² (dBuV/m)	Comments
1	2374.5	Н	50.17	-3.83	
2	2374.5	V	62.00	8.003	Before duty cycle correction
3	4810	Н	45.34	-9.66	
4	4810	V	45.34	-9.66	
5	12025	V	39.84	-14.16	

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ⁴ (dBuV/m)	Comments
1	7215	Н	52.17	-46.7	In-band peak was
2	7215	V	52.47	-46.4	118.84dBuV/m at 3m
3	9620	Н	63.00	-	
4	9620	V	64.50	-	

EUT Transmitting on Middle Channel

Signal	Freq	Polaris-	Avg Amp	Avg -Limit ²	Comments
	(MHz)	ation	(dBuV/m)	(dBuV/m)	
1	4880	Н	44.00	-10.00	
2	4880	V	43.84	-10.16	
3	7320	Н	48.00	-6.00	
4	7320	V	48.50	-5.50	
5	12200	V	37.84	-16.16	

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ⁴ (dBuV/m)	Comments
1	9760	Н	61.67	-36.8	In-band peak was
2	9760	V	64.17	-34.3	118.50dBuV/m at 3m

File name JENNIC.362a PAGE 63 OF 77

 $^{^{2}}$ Limit for emissions within the restricted bands of 15.205 comes from 15.209 = 54dBuV/m at 3m.

³ The values measured and tabulated are with the EUT operating in continuous transmit and are directly a result of the modulated signal (harmonics and products). According to 15.35(c) the duty cycle should be taken into consideration when calculating the average value of the emission. Therefore these values will actually be reduced in practice. Refer to the manufacturer's statement regarding actual duty cycle.

⁴ Limit for emissions outside the restricted bands of 15.205 comes from 15.247(d) = -20dB from highest in-band emission measured in 100kHz.

EUT Transmitting on High channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ² (dBuV/m)	Comments
1	4950	Н	45.00	-9.00	
2	4950	V	48.17	-5.83	
3	7425	Н	47.34	-6.66	
4	7425	V	48.17	-5.83	

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ⁴ (dBuV/m)	Comments
1	2508.7	Н	52.67	-44.5	In-band peak was
2	2508.7	V	61.84	-35.3	117.17dBuV/m at 3m
3	9900	Н	47.34	-49.8	
4	9900	V	51.00	-46.2	

Collinear Antenna

EUT Transmitting on Low Channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ² (dBuV/m)	Comments
1	2374.5	V	51.67	-2.33	
2	4810	Н	41.34	-12.66	
3	4810	V	44.67	-9.33	

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ⁴ (dBuV/m)	Comments
1	7215	Н	50.17	-38.2	In-band peak was
2	7215	V	50.00	-38.3	108.34dBuV/m at 3m
3	9620	Н	53.34	-35.0	
4	9620	V	57.17	-31.2	

EUT Transmitting on Middle Channel

Signal	Freq	Polaris-	Avg Amp	Avg -Limit ²	Comments		
	(MHz)	ation	(dBuV/m)	(dBuV/m)			
1	4880	Н	39.67	-14.33			
2	4880	V	40.67	-13.33			
3	7320	Н	50.00	-4.00			
4	7320	V	49.50	-4.50			

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ⁴ (dBuV/m)	Comments
1	9760	Н	50.67	-41.0	In-band peak was
2	9760	V	59.00	-32.7	111.67dBuV/m at 3m

EUT Transmitting on High channel

Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ² (dBuV/m)	Comments
1	4950	Н	46.17	-7.83	
2	4950	V	45.17	-8.83	
3	7425	Н	47.67	-6.33	
4	7425	V	46.67	-7.33	

	Signal	Freq (MHz)	Polaris- ation	Avg Amp (dBuV/m)	Avg -Limit ⁴ (dBuV/m)	Comments
	1	2508.7	V	49.67	-36.67	In-band peak was
	2	9900	H	49.67	-36.67	106.34dBuV/m at 3m
Γ	3	9900	V	55.67	-30.67	

File name JENNIC.362a PAGE 64 OF 77

Duty Cycle Statements

In normal operation the equipment employs pulsing at a variable rate, depending on the application. The manufacturer has declared a duty cycle of 1% and quotes IEEE 802.15.4: "The specifications of IEEE Std 802.15.4-2003 are tailored for applications with low power and low data rates (a maximum of 250kb/s and down to 20kb/s). Typical applications for IEEE 802.15.4 devices are anticipated to run with low duty cycle rates (under 1%). This will make IEEE 802.15.4 devices less likely to cause interference to other standards".

IEEE 802.15.4 also quotes a nominal packet of 0.01472ms (40 data bytes) and for <10% duty cycle restrictions up to 6 packets per 100ms.

According to 15.35(c): when the radiated emission limits are expressed in terms of the average value of the emission, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds.

For purposes of test the equipment was operated with the transmitter continuously on. For a 1% duty cycle, the power measured would be reduced by $20 \log (0.01) = 40 dB$. For a 10% duty cycle, the power measured would be reduced by $20 \log (0.10) = 20 dB$. According to the declared duty cycle, therefore, the emissions observed are below the limit after averaging for pulse rate.

6.4 6dB Bandwidth

1 Trace A √ 2.404706 GHz 11.2800 dBm

2-1 Trace A

√ -525.000000 kHz -6.0100 dB

3-2 Trace A

7 1.587500 MHz 0.0800 dB

File name JENNIC.362a PAGE 65 OF 77

- 1 Trace A∇ 2.439713 GHz10.7300 dBm
- 2-1 Trace A
- 7 -537.500000 kHz -6.1500 dB
- 3-2 Trace A
- ↑ 1.600000 MHz 0.3800 dB

- 1 Trace A 7 2.474688 GHz 11.1700 dBm
- 2-1 Trace A
- √ -537.500000 kHz -6.0000 dB
- 3-2 Trace A
- ↑ 1.637500 MHz 0.0800 dB

File name JENNIC.362a

QMF21 – 8: FCC PART 15C: RNE ISSUE 04: - MAY 08

7 Explanatory Notes

7.1 Explanation of FAIL LIMIT 1 Statement

The **FAIL MARGIN 1** statement(s) may appear on the graphical plots when the receiver used to measure your equipment detects a signal that exceeds the dashed line. This does not mean that the **EUT**, has failed the test only that the 10 dB calculation margin set, has been exceeded on a peak measurement.

Following the indication that the margin has been exceeded, measurements are made at the frequency (ies) of the peaks. These peaks have been calculated to either Quasi Peak or Average Peak dependant on the test. A table of results has been printed on the reverse of the page. This table looks similar to the one illustrated below: -

Signal	Frequency	Peak	PK Delta	Avg	Av Delta
Number	(MHz)	$(dB\mu V)$	L1 (dB)	$(dB\mu V)$	L1 (dB)
1	12345.0000	12.9	-2.5	10.2	-5.2

The First column, labelled Signal Number, is a number that the receiver has given to each signal, which has been calculated.

Column Two, labelled Frequency (MHz), is the frequency of the signal received.

Column Three, labelled Peak ($dB\mu V$), (can also be labelled, in the case of Quasi Peak, Peak $dB\mu V/m$) is the Level that was received at peak amount in dB above $1\mu V$.

Column Four, labelled PK Delta L1 (dB), is the same level as Column three but is given in a level relative to the limit line required.

Column Five, labelled AVG (dB μ V), (can also be labelled, in the case of Quasi Peak, QP dB μ V/m) when undertaking a Quasi peak test, This is the Average or Quasi peak calculation results given in dB μ V or dB μ V/m above 1 μ V.

Column Six, labelled AV Delta L 1 (dB), (can also be labelled, in the case of Quasi Peak, QP Delta L 1 (dB)) is the Average or Quasi Peak calculation relevant to the limit line. The results entered in this column indicate the signal level relative to the compliance limit required. Negative numbers indicate that the product is compliant.

7.2 Explanation of limit line calculations for radiated measurements

The limits given in the test standard are normally expressed as absolute values (e.g. in $\mu V/m$ at a specified distance), whereas the measured values are expressed as peak, quasi peak or average values in dB $\mu V/m$ referenced to the measuring instrument inputs. RN Electronics calibrate the test set-up to account for any path losses, antenna gains, etc. so that the value read at the receiver relates directly to the absolute value required, except that it is expressed in dB relative to one microVolt and may need to take account of any alternative measuring distance used. Examples:

- (a) limit of 500 μ V/m equates to 20.log (500) = 54 dB μ V/m.
- (b) limit of 300 μ V/m at 10m equates to 20.log (300 . 10/3) = 60 dB μ V/m at 3m

N.b. the limit lines drawn on the plots are the general limits of 15.209, not the specific limits of 15.247 which are less stringent outside of the restricted bands of 15.205.

File name JENNIC.362a PAGE 67 OF 77

8. Photographs

Photograph of the EUT with Colinear antenna as viewed from in front of the antenna, site M.

File name JENNIC.362a PAGE 68 OF 77

Photograph of the EUT with Patch antenna as viewed from in front of the antenna, site M.

PAGE 69 OF 77 File name JENNIC.362a

Photograph of the EUT mounted on motherboard with antenna port adaptor.

File name JENNIC.362a PAGE 70 OF 77

Photographs of the EUT:

Diagram of the radiated emissions test setup.

9. Signal Leads

Port Name	Cable Type
Antenna	uFL connection to test jig / SMA adaptor with further coaxial lead to the antenna.

The EUT plugged directly into the test board.

File name JENNIC.362a PAGE 73 OF 77

10. Test Equipment Calibration list

The following table lists the test equipment used, last calibration date and calibration interval. All test equipment used has been maintained within the calibration requirements of **R.N. Electronics Ltd.** test facility quality system. Calibration intervals are regularly reviewed dependent on equipment manufacturer's recommendations and actual usage of the equipment.

				Date	
RNNo	Model	Description	Manufacturer	Calibrated	Period
E001	HP8542E	EMI Receiver & RF Filter	Hewlett Packard	19-Jan-09	6
E003	HP8593E	Spectrum Analyser	Hewlett Packard	10-Oct-08	24
E005	HP8447F	Pre-Amplifier	Hewlett Packard	09-Oct-08	12
E235	J2 7FV-15000/X6000	12-18 GHz BPF	K&L Microwave Inc.	N/A	N/A
E250	6806.19.A	6dB Attenuator	Hewlett Packard	16-Oct-08	12
E251	6806.19.A	6dB Attenuator	Suhner	16-Oct-08	12
E252	6810.19.A	10 dB Attenuator	Suhner	16-Oct-08	12
E256	44	10 dB Attenuator	Weinschel Engineering	08-Oct-08	12
E268	BHA 9118	1-18 GHz Horn Antenna	Schaffner	26-May-06	60
E290	6914	Power Sensor	Marconi Instruments	01-Jun-09	24
E342	8563E	Spectrum Analyser 26.5 GHz	HP	23-Feb-09	24
E351	54616C	500 MHz 2GSa/S Oscilloscope	HP (Agilent)	25-Jul-08	12
E397	6960B	RF Power Meter	Marconi Instruments	21-Nov-08	12
E429	-	5 Switch Filter Box 0.91 GHz - 16.3 GHz	RN Electronics	N/A	N/A
TMS73	0.083333333	Off Air Standard	Quartzlock	N/A	N/A
TMS82	8449B	Pre Amplifier 1 - 26 GHz	Agilent	28-Oct-08	12
TMS933	CBL6141A	Bilog Antenna 30MHz - 2GHz	York EMC	10-Sep-07	36

File name JENNIC.362a PAGE 74 OF 77

11. Auxiliary equipment

11.1 Auxiliary equipment supplied by Jennic Ltd

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

Manufacturer	Description	Model Number	Serial Number
Jennic	USB to RS232 Programming Lead	Not Available	Not Available
launia	DOD Mathankaand	DD4040	Nat Assailable
Jennic	PCB Motherboard	DR1048	Not Available
Jennic	PCB Carrier/Adaptor	DR1049	Not Available

11.2 Auxiliary equipment supplied by RN Electronics Limited

Auxiliary equipment used for the purpose of test supplied by the above has been listed below

RN	Manufacturer	Description	Model Number	Serial Number
Number				
1017	DELL	Laptop PC	Inspiron 5150	CN-0W0940-12961-44J-2047

File name JENNIC.362a PAGE 75 OF 77

12. Modifications

In order for the EUT to produce the results shown within this report the following modifications, if any, were implemented.

NONE.

N.B. The settings of the device - continuous transmit, power level, frequency were set by test software not normally available to the user. The manufacturer should ensure that any OEM programming does not allow for alternative modes inconsistent with those tested.

File name JENNIC.362a PAGE 76 OF 77

13. Compliance information

Products subject to the Declaration of Conformity procedure are required to be supplied with a compliance information statement. A copy of this statement may be included here:

Not applicable. Device to be certified.

File name JENNIC.362a PAGE 77 OF 77

Certificate of Test

The equipment noted below has been tested by **R.N. Electronics Limited** and conforms with the relevant subpart of FCC part 15, subject to deviations as detailed in this report.

This certificate relates to the equipment, as identified by unique serial number(s) and further detailed in the referenced report, in the condition(s) at the time it was tested. It does not relate to any other similar equipment and performance of the product before or after the test cannot be guaranteed. Furthermore, this is a certificate of test only and should not be confused with an equipment authorisation.

JN5148-001-M04
#9
Jennic Ltd
PO005383/CF
07-362a/4011/1/09
FCC Part 15C: effective date October 2008 Class DTS Intentional Radiator
1st July to 22nd July 2009