Capítulo V

Integração

Neste capítulo vamos apresentar a noção de integral segundo Riemann, estudar algumas das suas propriedades e referir algumas das suas aplicações. Começamos com uma motivação intuitiva clássica, baseada na noção de área de uma região plana e no chamado "método da exaustão".

1 Introdução e motivação

Classicamente, o conceito de integral aparece associado à noção intuitiva de área de uma região plana. Nós vamos seguir a via clássica para motivar a nossa exposição.

Considere-se uma função limitada $f\colon [a,b] \longrightarrow \mathbb{R}\,$ e sejam

$$m = \inf_{x \in [a,b]} f(x) \qquad e \qquad M = \sup_{x \in [a,b]} f(x). \tag{1}$$

Suponhamos que $f(x) \ge 0, \forall x \in [a, b]$, e consideremos a região plana (cf. a Figura 1)

$$\mathcal{D} = \left\{ (x, y) \in \mathbb{R}^2 \colon a \le x \le b \land 0 \le y \le f(x) \right\}$$
 (2)

Figura 1: Região \mathcal{D} limitada pelo gráfico de f, pelo eixo OX e pelas rectas x = a e x = b.

Admitamos que é possível atribuir uma área ao conjunto \mathcal{D} , que representamos por área \mathcal{D} , e que pretendemos determinar o valor desta área. Em geral, a forma geométrica de \mathcal{D} é pouro "regular", pelo que as fórmulas da geometria elementar não são aplicáveis. Podemos pensar então em recorrer ao chamado "método da exaustão", aproximando sucessivamente a área de \mathcal{D} pela área de figuras simples, quer inscritas em \mathcal{D} , quer circunscritas a \mathcal{D} , e considerar depois as melhores aproximações. Consideraremos apenas regiões rectangulares. Com as regiões inscritas em \mathcal{D} formaremos aproximações por defeito, e com as regiões circunscritas a \mathcal{D} formaremos aproximações por excesso.

É fácil reconhecer que

$$m(b-a) \le \operatorname{área}(\mathcal{D}) \le M(b-a)$$

já que m(b-a) dá a área da região rectangular (cf. a Figura 2, à esquerda) de base b-a e altura m, inscrita em \mathcal{D} , enquanto que M(b-a) dá a área da região rectangular (cf. a Figura 2, à direita) de base b-a e altura M, circunscrita a \mathcal{D} . Então poderíamos encarar os números m(b-a) e M(b-a) como aproximações do valor da área de \mathcal{D} , por defeito e por excesso, respectivamente. É claro que, em geral, o erro cometido nestas aproximações é bastante grande, sendo também possível melhorá-las significativamente.

Figura 2: Primeiras aproximações para a área de \mathcal{D} ; por defeito (esquerda) e por excesso (direita).

Para melhorar estas aproximações, podemos proceder da seguinte forma:

• decompomos o intervalo [a, b] num número finito de subintervalos determinados pelos pontos $x_0, x_1, x_2, \ldots, x_{n-1}, x_n$, tais que

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

a que chamamos partição \mathcal{P} de [a,b] nos subintervalos

$$[x_0, x_1], [x_1, x_2], \ldots, [x_{n-2}, x_{n-1}], [x_{n-1}, x_n];$$

• em cada subintervalo genérico, $J_i = [x_{i-1}, x_i]$, repetimos o procedimento adoptado anteriormente, isto é definimos

$$m_i = \inf_{x \in J_i} f(x), \quad M_i = \sup_{x \in J_i} f(x)$$
(3)

e consideramos as regiões rectangulares de base $x_i - x_{i-1}$ e alturas m_i e M_i , respectivamente;

• com as regiões de alturas m_i , i = 1, ..., n, construimos uma região poligonal inscrita em \mathcal{D} (Figura 3, à esquerda), cuja área é dada por

$$s(\mathcal{P}) = m_1(x_1 - a) + m_2(x_2 - x_1) + \dots + m_n(b - x_{n-1}), \tag{4a}$$

e com as regiões de alturas M_i , i = 1, ..., n, construimos uma região poligonal circunscrita a \mathcal{D} (Figura 3, à direita), cuja área é dada por

$$S(\mathcal{P}) = M_1(x_1 - a) + M_2(x_2 - x_1) + \dots + M_n(b - x_{n-1}); \tag{4b}$$

Figura 3: Aproximações por defeito (esquerda) e por excesso (direita) da área de \mathcal{D} .

• aproximamos a área de \mathcal{D} , por defeito com a quantidade $s(\mathcal{P})$ e por excesso com a quantidade $s(\mathcal{P})$, tendo-se para qualquer partição \mathcal{P} de [a,b],

$$m(b-a) \le s(\mathcal{P}) \le S(\mathcal{P}) \le M(b-a);$$
 (5)

• melhoramos as aproximações $s(\mathcal{P})$ e $S(\mathcal{P})$, aumentando o número de subintervalos em [a,b], ou seja, introduzindo uma partição mais fina do que \mathcal{P} , digamos \mathcal{Q} ; se chamarmos $s(\mathcal{Q})$ e $S(\mathcal{Q})$ às aproximações correspondentes, por defeito e por excesso, respectivamente, não é difícil reconhecer que

$$m(b-a) \le s(\mathcal{P}) \le s(\mathcal{Q}) \le S(\mathcal{Q}) \le S(\mathcal{P}) \le M(b-a),$$
 (6)

uma vez que, aumentando o número de pontos em [a, b], as aproximações por defeito e por excesso não podem piorar e, portanto, a primeira não pode diminuir nem a última pode aumentar;

• pelas condições (5) e (6), resulta que são limitados os conjuntos constituídos por todas as aproximações por defeito e por todas as aproximações por excesso, pelo que podemos considerar, no conjunto Γ de todas as partições de [a,b], as quantidades

$$s = \sup_{\mathcal{P} \in \Gamma} s(\mathcal{P}) \quad e \quad S = \inf_{\mathcal{P} \in \Gamma} S(\mathcal{P})$$
 (7)

que mais não são do que as melhores aproximações, por defeito e por excesso, respectivamente, para o valor da área de \mathcal{D} ;

• no caso em que, de facto, é possível atribuir uma área à região \mathcal{D} , as quantidades s e S definidas em (7) tenderão ambas a "confundir-se" uma com a outra (mostra-se que, naquele caso, existe um único número real α tal que $s(\mathcal{P}) \leq \alpha \leq S(\mathcal{P})$, para toda a partição \mathcal{P} ; cf. a bibliografia recomendada).

Exemplo 1

(a) Seja
$$f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$
, para todo x em certo intervalo $[a, b]$.

Independentemente da partição \mathcal{P} de [a,b] em subintervalos $J_1,\,J_2,\,\ldots,\,J_n$, tem-se, para cada $i=1,2,\ldots,n$,

$$m_i = \inf_{x \in J_i} f(x) = 0$$
, $M_i = \sup_{x \in J_i} f(x) = 1$

pelo que

$$s(\mathcal{P}) = 0$$
, $S(\mathcal{P}) = 1 \times (x_1 - a) + 1 \times (x_2 - x_1) + \dots + 1 \times (b - x_{n-1}) = b - a$.

Então s=0 e S=b-a, não sendo possível, neste caso, atribuir uma área à região $\mathcal D$ associada à função f.

(b) Seja $g(x) = k, x \in \mathbb{R}$, com k uma constante e x em certo intervalo [a, b].

Dada uma partição \mathcal{P} de [a,b], qualquer, em subintervalos J_1, J_2, \ldots, J_n , teremos, para cada $i=1,2,\ldots,n$,

$$m_i = \inf_{x \in J_i} g(x) = k, \qquad M_i = \sup_{x \in J_i} g(x) = k,$$

pelo que

$$s(\mathcal{P}) = S(\mathcal{P}) = k(b-a).$$

Então s=k(b-a) e S=k(b-a), sendo possível, neste caso, atribuir xà região \mathcal{D} a área k(b-a).

Passemos agora à exposição rigorosa deste assunto, formalizando adequadamente as ideias intuitivas que acabamos de expor. A área da região \mathcal{D} vai dar lugar ao integral de f em [a,b], cada quantidade $s(\mathcal{P})$, que aproxima por defeito a área de \mathcal{D} , vai dar lugar a uma soma inferior, cada quantidade $S(\mathcal{P})$, que aproxima por excesso a área de \mathcal{D} , vai dar lugar a uma soma superior, o supremo s dará lugar ao integral inferior de f em [a,b], e o ínfimo S dará lugar ao integral superior de f em [a,b].

2 Definição de integral

Nesta secção apresentaremos a definição de integral segundo Riemann. Adoptando as notações introduzidas na secção anterior, podemos introduzir as seguintes definições.

A - Somas inferior e superior de Darboux

Dada uma partição \mathcal{P} do intervalo [a,b], definimos a soma inferior de Darboux de f relativa a \mathcal{P} por

$$s(f; \mathcal{P}) = m_1(x_1 - a) + m_2(x_2 - x_1) + \dots + m_n(b - x_{n-1})$$
(8a)

e a soma superior de Darboux de f relativa a \mathcal{P} por

$$S(f;\mathcal{P}) = M_1(x_1 - a) + M_2(x_2 - x_1) + \dots + M_n(b - x_{n-1}). \tag{8b}$$

As somas inferior e superior satisfazem o seguinte resultado.

Teorema 1

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada e $\mathcal{P},\ \mathcal{Q}$ duas partições de [a,b] com \mathcal{Q} mais fina do que \mathcal{P} . Então

$$s(f; \mathcal{Q}) \ge s(f; \mathcal{P})$$
 e $S(f; \mathcal{Q}) \le S(f; \mathcal{P})$. (9)

Demonstração

Vamos provar apenas o caso relativo às somas inferiores. O outro é semelhante.

Sejam t_0, t_1, \ldots, t_n os pontos introduzidos em [a, b] pela partição \mathcal{P} .

Consideremos, em primeiro lugar, o caso mais simples em que Q se obtém de P juntando apenas um ponto, digamos $q \in]t_{j-1}, t_j[$, para algum $j \in \{1, 2, ..., n\}$. Sejam

$$m^* = \inf_{x \in [t_{j-1}, q]} f(x), \quad m^{\dagger} = \inf_{x \in [q, t_j]} f(x), \quad e \quad m_j = \inf_{x \in [t_{j-1}, t_j]} f(x).$$

Tem-se

$$m_i \leq m^*$$
 e $m_i \leq m^{\dagger}$,

pelo que

$$s(f; \mathcal{Q}) - s(f; \mathcal{P}) = m^*(q - t_{j-1}) + m^{\dagger}(t_j - q) - m_j(t_j - t_{j-1})$$

$$= m^*(q - t_{j-1}) + m^{\dagger}(t_j - q) - m_j(t_j - q + q - t_{j-1})$$

$$= (m^* - m_j)(q - t_{j-1}) + (m^{\dagger} - m_j)(t_j - q)$$

$$\geq 0$$

e, portanto, $s(f; \mathcal{Q}) \geq s(f; \mathcal{P})$.

No caso em que Q se obtém de P juntando p pontos, este processo deve ser repetido p vezes. \blacksquare Do Teorema 1 extrai-se a seguinte consequência.

Corolario 1

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada e \mathcal{P} , \mathcal{Q} duas partições de [a,b]. Então

$$s(f; \mathcal{Q}) \le S(f; \mathcal{P}). \tag{10}$$

Demonstração

Consideremos a partição \mathcal{R} que se obtém considerando os pontos envolvidos nas partições \mathcal{P} e \mathcal{Q} . Assim, \mathcal{R} é mais fina do que \mathcal{P} e do que \mathcal{Q} . Pelo Teorema 1, resulta que

$$s(f; \mathcal{Q}) \le s(f; \mathcal{R}) \le S(f; \mathcal{R}) \le S(f; \mathcal{P}).$$

Conjugando os resultados do Teorema 1 e do seu Corolário 1, concluimos que, se \mathcal{Q} for uma partição de [a, b] mais fina do que \mathcal{P} , então

$$m(b-a) \le s(f; \mathcal{P}) \le s(f; \mathcal{Q}) \le S(f; \mathcal{Q}) \le S(f; \mathcal{P}) \le M(b-a).$$
 (11)

B – Integrais inferior e superior

Considerando o conjunto Γ constituído pela totalidade das partições do intervalo [a, b], definimos o integral inferior de f em [a, b] por

$$\int_{-a}^{b} f(x) dx = \sup_{\mathcal{P} \in \Gamma} s(f; \mathcal{P}), \tag{12a}$$

e o integral superior de f em [a, b] por

$$\int_{a}^{b} f(x) dx = \inf_{\mathcal{P} \in \Gamma} S(f; \mathcal{P}). \tag{12b}$$

Os integrais inferior e superior satisfazem o seguinte resultado.

Teorema 2

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada e \mathcal{P} uma partição de [a,b]. Então

$$m(b-a) \le s(f;\mathcal{P}) \le \int_a^b f(x) \, dx \le \int_a^b f(x) \, dx \le S(f;\mathcal{P}) \le M(b-a), \tag{13}$$

onde m e M representam o ínfimo e o supremo, respectivamente, de f em [a,b].

$Demonstraç\~ao$

A primeira e a última condições são consequência imediata do resultado estabelecido em (11). Por outro lado, a segunda e a penúltima condições resultam das definições (12a) e (12b), respectivamente. Quanto à terceira condição, ela resulta das definições (12a) e (12b) em termos de ínfimo e supremo e do facto de se ter $s(f; \mathcal{P}) \leq S(f; \mathcal{P}), \forall \mathcal{P} \in \Gamma$.

C – Integrabilidade de f

Segundo Riemann, dizemos que f é integrável no intervalo [a,b] quando

$$\int_{-a}^{b} f(x) \, dx = \int_{a}^{-b} f(x) \, dx. \tag{14}$$

Ao valor comum aos dois integrais chama-se integral de f em [a,b] e representa-se por [a,b]

$$\int_a^b f(x) \, dx,$$

onde f é a função integranda, a é o limite inferior do integral, b é o limite superior do integral, [a,b] é o intervalo de integração e x é a variável de integração. O símbolo dx representa uma partícula formal que fixa a variável de integração.

Teorema 3

Seja $f:[a,b]\longrightarrow \mathbb{R}$ uma função limitada. As seguintes afirmações são equivalentes:

- (a) $f \in integrável \text{ em } [a, b];$
- (b) dado arbitrariamente $\delta > 0$, existem partições \mathcal{Q} e \mathcal{R} de [a, b] tais que

$$S(f; \mathcal{Q}) - s(f; \mathcal{R}) < \delta;$$

(c) dado arbitrariamente $\delta > 0$, existe uma partições \mathcal{P} de [a, b] tal que

$$S(f; \mathcal{P}) - s(f; \mathcal{P}) < \delta;$$

Demonstração

(a) \Rightarrow (b). Sendo f integrável em [a, b], tem-se

$$\sup_{\mathcal{P} \in \Gamma} s(f; \mathcal{P}) = \inf_{\mathcal{P} \in \Gamma} S(f; \mathcal{P}) = \int_a^b f(x) \, dx.$$

Então, dado $\delta > 0$, arbitrário, é possível refinar as partições de [a,b] e encontrar duas, digamos Q e \mathcal{R} , tais que

$$\sup_{\mathcal{P} \in \Gamma} s(f; \mathcal{P}) - s(f; \mathcal{R}) < \frac{\delta}{2} \quad \text{e} \quad S(f; \mathcal{Q}) - \inf_{\mathcal{P} \in \Gamma} S(f; \mathcal{P}) < \frac{\delta}{2}$$

ou seja, tais que

$$s(f; \mathcal{R}) > \int_a^b f(x) dx - \frac{\delta}{2}$$
 e $S(f; \mathcal{Q}) < \int_a^b f(x) dx + \frac{\delta}{2}$

donde se obtém o resultado de (b).

(b) \Rightarrow (c). Basta considerar uma partição \mathcal{P} de [a,b] que envolva, pelo menos, os pontos das partições \mathcal{Q} e \mathcal{R} e usar o resultado de (11) que dá

$$S(f; \mathcal{P}) - s(f; \mathcal{P}) < S(f; \mathcal{Q}) - s(f; \mathcal{R}) < \delta$$

(c) \Rightarrow (a). Se f não fosse intregrável em [a,b], ter-se ia obviamente

$$\int_{a}^{b} f(x) dx > \int_{a}^{b} f(x) dx$$

¹Também se diz *integral definido* de f em [a, b].

e considerando

$$\delta = \int_{a}^{b} f(x) dx - \int_{a}^{b} f(x) dx$$

viria então, para qualquer partição \mathcal{P} de [a, b],

$$S(f; \mathcal{P}) - s(f; \mathcal{P}) \ge \int_a^b f(x) \, dx - \int_a^b f(x) \, dx = \delta,$$

o que contraria a hipótese.

Exemplo 2

Relativamente às funções consideradas no Exemplo 1, podemos concluir que:

(a) a função $f(x) = \begin{cases} 1 & \text{se } x \in \mathbb{Q} \\ 0 & \text{se } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$ não é integrável em intervalo algum [a, b], já que

$$\int_{a}^{b} f(x) dx = 0$$
 e $\int_{a}^{-b} f(x) dx = b - a$.

(b) A função $g(x)=k, x\in\mathbb{R}$, com k uma constante real, é integrável em qualquer intervalo [a,b], porque

$$\int_{a}^{b} g(x) \, dx = \int_{a}^{-b} g(x) \, dx = k(b-a),$$

donde

$$\int_{a}^{b} g(x) dx = k(b-a).$$

D - Significado geométrico atribuído ao integral

No caso de uma função limitada e não negativa, $f:[a,b] \longrightarrow \mathbb{R}$ com $f(x) \ge 0$, $\forall x \in [a,b]$, ser integrável, a existência de integral traduz a possibilidade de medir a região \mathcal{D} definida em (2). Por essa razão, pomos, por definição,

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{b} f(x) \, dx \,. \tag{15}$$

Observação 1

Só se define integral de uma função limitada, mas nem toda a função limitada é integrável (veja-se o Exemplo 2 (a)). Mais adiante, identificaremos algumas classes de funções limitadas que são integráveis.

Observação 2 [Definição alternativa de integral]

Vamos aqui descrever muito brevemente uma definição alternativa para o integral de f em [a,b], recorrendo às chamadas somas de Riemann. Do ponto de vista intuitivo, e apelando novamente à noção de área, se f for uma função não negativa, para cada

partição \mathcal{P} de [a, b], vamos aproximar a área da região \mathcal{D} (cf. a Figura 1) por uma soma do tipo

$$\Sigma(f; \mathcal{P}) = f(c_1)(x_1 - a) + f(c_2)(x_2 - x_1) + \dots + f(c_n)(b - x_{n-1}), \tag{16}$$

onde cada c_i é um ponto escolhido arbitrariamente no intervalo $[x_{i-1}, x_i]$ determinado por \mathcal{P} (cf. a Figura 4).

Figura 4: Representação geométrica de uma soma de Riemann.

Dada uma partição \mathcal{P} de [a,b], chamamos amplitude de \mathcal{P} ao maior dos comprimentos dos subintervalos determinados por \mathcal{P} em [a,b]. Representámo-la por $|\mathcal{P}|$. A qualquer soma do tipo (16) chamamos soma de Riemann de f em [a,b] para a partição \mathcal{P} . O integral de f em [a,b] pode ser definido de forma equivalente à que apresentámos anteriormente, em termos das somas de Riemann. De facto, mostra-se que (cf. a bibliografia recomendada) a função f é integrável em [a,b], tendo-se

$$\int_{a}^{b} f(x) \, dx = \mathcal{I},$$

se e só se

$$\lim_{|\mathcal{P}| \to 0} \Sigma(f; \mathcal{P}) = \mathcal{I},\tag{17a}$$

no sentido de que

$$\forall \delta > 0, \ \exists \varepsilon > 0: \ |\mathcal{P}| < \varepsilon \Longrightarrow |\Sigma(f; \mathcal{P}) - \mathcal{I}| < \delta, \tag{17b}$$

independentemente da escolha dos pontos c_1, c_2, \ldots, c_n .

A definição alternativa apresentada na Observação 2 para o integral de Riemann será usada de maneira crucial na Secção 7, onde analisaremos aplicações do integral ao cálculo de volumes e de comprimentos de curva.

3 Propriedades do integral

Nesta secção vamos apresentar algumas propriedades do integral que se revelarão extremamente úteis. Para a demonstração destas propriedades, consultar a bibliografia recomendada.

Propriedade 1 [Aditividade do integral a respeito do intervalo de integração]

Sejam f limitada em [a,b] e $c \in]a,b[$. Então f é integrável em [a,b] se e só se f integrável separadamente em [a,c] e [c,b], tendo-se

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$
 (18)

No sentido de estender a Propriedade 1 a todos os reais a,b,c, adoptamos as seguintes convenções clássicas

$$\int_{a}^{a} f(x) dx = 0, \quad \text{para todo } a \in \mathbb{R}, \tag{19a}$$

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx, \quad \text{para todos } a, b \in \mathbb{R}.$$
 (19b)

Propriedade 2 [Linearidade do integral]

Sejam f e g funções integráveis em [a, b]. Então:

(a) a soma f + g é integrável em [a, b] e

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx;$$
 (20)

(b) o produto fg é integrável em [a,b]; em particular, se α é uma constante real arbitrária, o produto αf é integrável em [a,b] e

$$\int_{a}^{b} \alpha f(x) dx = \alpha \int_{a}^{b} f(x) dx.$$
 (21)

Propriedade 3

Sejam f e g funções integráveis em [a,b]. Se $|g(x)| \ge k > 0$, $\forall x \in [a,b]$, então a função 1/g é limitada e o quociente f/g é integrável.

Propriedade 4 [Monotonia do integral]

Se f e g são integráveis em [a,b] e $g(x) \le f(x), \forall x \in [a,b]$, então

$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx; \tag{22}$$

em particular, se $f(x) \ge 0$, $\forall x \in [a, b]$, então $\int_a^b f(x) dx \ge 0$.

Propriedade 5

Se f é integrável em [a, b] então a função |f| é integrável em [a, b] e

$$\int_{a}^{b} |f(x)| dx \ge \left| \int_{a}^{b} f(x) dx \right|. \tag{23}$$

Propriedade 6

(a) Se f é limitada em [a, b], anulando-se em todos os pontos de [a, b] excepto, eventualmente, num número finito de pontos de [a, b], então

$$\int_{a}^{b} f(x) dx = 0; \tag{24a}$$

(b) se f é integrável em [a,b] e g é uma função que difere de f apenas num número finito de pontos [a,b], então

$$\int_{a}^{b} g(x) \, dx = \int_{a}^{b} f(x) \, dx. \tag{24b}$$

4 Condições suficientes de integrabilidade

Nesta secção enunciaremos alguns resultados que estabelecem condições suficientes para a integrabilidade de uma função num intervalo, a partir dos quais identificaremos três classes de funções integráveis (Teoremas 4, 5 e 6).

Teorema 4 [Integrabilidade das funções contínuas]

Se $f: [a, b] \longrightarrow \mathbb{R}$ é contínua então f é integrável em [a, b].

Demonstração

Vamos recorrer ao Teorema 3, nomeadamente ao facto de (c) implicar (a). Seja $\delta > 0$, arbitrário. Sendo fcontínua em cada $x \in [a, b]$,

$$\exists \varepsilon > 0 : (y \in [a, b] \land |x - y| < \varepsilon) \Longrightarrow |f(x) - f(y)| < \frac{\delta}{b - a}.$$

Em geral, ε depende do ponto x e de δ mas, por [a,b] ser fechado e limitado, é possível² fixar o mesmo ε para todos os pontos $x \in [a,b]$, tendo-se apenas $\varepsilon = \varepsilon(\delta)$.

Consideremos agora uma partição $\mathcal P$ de [a,b] determinada por pontos

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

tais que $x_i - x_{i-1} < \varepsilon$, $\forall i = 1, 2, ..., n$. Em cada intervalo $[x_{i-1}, x_i]$, o ínfimo e o supremo de f são atingidos porque f é contínua (Teorema de Weierstrass, Capítulo 2), pelo que existem $\alpha_i, \beta_i \in [x_{i-1}, x_i]$

$$m_i = f(\alpha_i)$$
 e $M_i = f(\beta_i)$, com $|\beta_i - \alpha_i| < \varepsilon$,

²Facto que não demonstraremos.

tendo-se, para a partição \mathcal{P} considerada,

$$s(f; \mathcal{P}) = f(\alpha_1)(x_1 - a) + f(\alpha_2)(x_2 - x_1) + \dots + f(\alpha_n)(b - x_{n-1}),$$

$$S(f; \mathcal{P}) = f(\beta_1)(x_1 - a) + f(\beta_2)(x_2 - x_1) + \dots + f(\beta_n)(b - x_{n-1}).$$

Da continuidade de f, sai que $|f(\beta_i) - f(\alpha_i)| = f(\beta_i) - f(\alpha_i) < \frac{\delta}{b-a}$, donde

$$S(f; \mathcal{P}) - s(f; \mathcal{P}) = \left[f(\beta_1) - f(\alpha_1) \right] (x_1 - a) \cdots + \left[f(\beta_n) - f(\alpha_n) \right] (b - x_{n-1})$$

$$< \frac{\delta}{b - a} (x_1 - a) + \frac{\delta}{b - a} (x_2 - x_1) + \cdots + \frac{\delta}{b - a} (b - x_n)$$

$$= \frac{\delta}{b - a} (x_1 - a + x_2 - x_1 + \cdots + b - x_{n-1})$$

$$= \frac{\delta}{b - a} (-a + b) = \delta.$$

Consequentemente, f é integrável em [a, b].

Observação 3

O Teorema 4 estabelece que a continuidade de uma função garante a sua integrabilidade. No entanto, é conveniente reter que existem funções descontínuas que são integráveis.

Teorema 5 [Integrabilidade das funções monótonas]

Se $f: [a, b] \longrightarrow \mathbb{R}$ é monótona então f é integrável em [a, b].

Demonstração

Se f é constante então f é integrável em [a, b], como se viu no Exemplo 2 (b).

Sem perda de generalidade, suponhamos que f é crescente em [a, b].

Vamos recorrer novamente ao Teorema 3, parte $(c) \Rightarrow (a)$.

Seja $\delta > 0$, arbitrário, e consideremos uma partição \mathcal{P} de [a, b] determinada por pontos

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

tais que $x_i - x_{i-1} < \frac{\delta}{f(b) - f(a)}$, $\forall i = 1, 2, ..., n$. Como f é crescente em [a, b], tem-se, em cada intervalo $[x_{i-1}, x_i]$,

$$m_i = f(x_{i-1}) \quad e \quad M_i = f(x_i),$$

donde

$$s(f; \mathcal{P}) = f(a)(x_1 - a) + f(x_1)(x_2 - x_1) + \dots + f(x_{n-1})(b - x_{n-1}),$$

$$S(f; \mathcal{P}) = f(x_1)(x_1 - a) + f(x_2)(x_2 - x_1) + \dots + f(b)(b - x_{n-1}).$$

Consequentemente,

$$S(f; \mathcal{P}) - s(f; \mathcal{P}) = \left[f(x_1) - f(a) \right] (x_1 - a) \cdots + \left[f(b) - f(x_{n-1}) \right] (b - x_{n-1})$$

$$< \frac{\delta}{f(b) - f(a)} \left[f(x_1) - f(a) + \cdots + f(b) - f(x_{n-1}) \right]$$

$$= \frac{\delta}{f(b) - f(a)} \left[-f(a) + f(b) \right] = \delta$$

e f é integrável em [a, b].

Observação 4

Do Teorema 5, podemos concluir que, ainda que uma função não seja contínua, se for monótona, então é também integrável. Mais uma vez, chama-se a atenção para o faco de existirem funções que não são monótonas (nem contínuas) e, mesmo assim, são integráveis.

Teorema 6 [Integrabilidade das funções com um número finito de descontinuidades]

Se $f:[a,b] \longrightarrow \mathbb{R}$ é limitada possuindo um número finito de descontinuidades então f é integrável em [a,b].

Demonstração

Comecemos por considerar o caso em que f possui apenas uma descontinuidade em x=a. Neste caso, f não é constante em [a,b], pelo que M>m.

Fixemos arbitrariamente $\delta > 0$. Consideremos um ponto $c \in]a,b[$ tal que $c-a < \frac{\delta}{2(M-m)}$. Como f é contínua em [c,b], f é integrável em [c,b] e, pelo Teorema 3, existe uma partição $\mathcal Q$ de [c,b] determinada por pontos

$$c = x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

tal que $S(f; \mathcal{Q}) - s(f; \mathcal{Q}) < \frac{\delta}{2}$. Consideremos agora a partição \mathcal{P} de [a, b] determinada pelos pontos de \mathcal{Q} e ainda pelo ponto a,

$$a = x_0 < c = x_1 < x_2 < \dots < x_{n-1} < x_n = b$$

e sejam

$$m_1 = \inf_{x \in [a,c]} f(x)$$
 e $M_1 = \sup_{x \in [a,c]} f(x)$.

Tem-se, obviamente,

$$m_1 \geq m$$
 e $M_1 \leq M$.

Para esta partição \mathcal{P} , vem

$$s(f; \mathcal{P}) = m_1(c-a) + m_2(x_2 - x_1) + \dots + m_n(b - x_{n-1})$$

= $m_1(c-a) + s(f; \mathcal{Q})$

$$S(f; \mathcal{P}) = M_1(c-a) + M_2(x_2 - x_1) + \dots + M_n(b - x_{n-1})$$

= $M_1(c-a) + S(f; \mathcal{Q})$

pelo que

$$S(f; \mathcal{P}) - s(f; \mathcal{P}) = (M_1 - m_1)(c - a) + S(f \mathcal{Q}) - s(f \mathcal{Q})$$

$$< (M - m)(c - a) + \frac{\delta}{2}$$

$$< (M - m)\frac{\delta}{2(M - m)} + \frac{\delta}{2} = \delta.$$

Pelo Teorema 3, a função $\,f\,$ é integrável em $\,[a,b]\,.$

No caso em que f possui apenas uma descontinuidade em b, a demonstração é semelhante.

Finalmente, no caso mais geral em que f possui um número finito de descontinuidades, decompõese [a,b] num número finito de subintervalos de forma a que cada um deles possua, quando muito, uma descontinuidade num dos extremos, e repete-se o raciocínio utilizado anteriormente.

Mostra-se ainda que, se $f:[a,b] \longrightarrow \mathbb{R}$ é limitada possuindo uma quantidade numerável de descontinuidades tentão f é integrável em [a,b].

Exemplo 3

A função $f(x) = \begin{cases} 1 & \text{se } x \in [0,1] \\ 2 & \text{se } x \in [2,4] \end{cases}$ é integrável por ser contínua (Teorema 4 e Propriedade 1).

Exemplo 4

A função
$$g(x) = \begin{cases} 2x & \text{se } x \in [0,1] \\ -x & \text{se } x \in]1,3] \text{ \'e integrável por possuir um número finito de } x^2 & \text{se } x \in]3,5] \end{cases}$$

·— ->

Exemplo 5

A função
$$h(x) = \begin{cases} 0 & \text{se } x = 0 \\ \frac{1}{n} & \text{se } \frac{1}{n+1} < x \le \frac{1}{n}, \ n \in \mathbb{N}, \end{cases}$$
 definida em $[0,1]$, possui um número

infinito de descontinuidades (todos os pontos da forma $\frac{1}{n}$, $n \in \mathbb{N}$, são pontos de descontinuidade de h). No entanto, h é integrável por ser monótona (ou por possuir uma quantidade numerável de descontinuidades).

5 O Teorema fundamental do cálculo

Um dos resultados mais notáveis do Cálculo está patente no teorema que agora iremos apresentar. Nele estabelece-se uma ligação crucial entre os conceitos de derivada e de integral, a partir da qual é possível obter um processo extremamente eficaz para o cálculo do integral, dispensando o recurso à definição apresentada na Secção 1.

Consideremos uma função limitada $f:[a,b] \longrightarrow \mathbb{R}$ que é integrável. Para cada $x \in [a,b]$, f é integrável em [a,x], pelo que podemos definir uma nova função, $F:[a,b] \longrightarrow \mathbb{R}$, a partir da função f, pondo

$$F(x) = \int_{a}^{x} f(t) dt, \quad x \in [a, b].$$
 (25)

Vejamos que a passagem ao integral conduz a uma função que possui, em geral, melhores propriedades do que a função inicial. De facto, valem as seguintes propriedades.

Propriedade 7

A função F definida em (25) é contínua (ainda que f não o seja).

Demonstração

Vamos demonstrar que F é contínua em cada $c \in [a, b]$, verificando primeiro que $\lim_{x \to c^+} F(x) = F(c)$, através da definição de limite lateral. Seja $\delta > 0$, arbitrário. Temos

$$\begin{split} |F(x)-F(c)| &= \left| \int_a^x f(t) \, dt - \int_a^c f(t) \, dt \right| = \left| \int_c^x f(t) \, dt \right| \, \leq \, \int_c^x |f(t)| \, dt \\ &\leq \, \int_c^x L \, dt, \qquad \text{porque } f \text{ \'e limitada e, portanto, } \exists L > 0: \, |f(x)| \leq L, \\ &= \, L(x-c) \qquad \text{cf. o Exemplo 2 (b),} \end{split}$$

pelo que, para cada δ , tomando $\varepsilon = \delta/L$, teremos $0 < x - c < \varepsilon \implies |F(x) - F(c)| < \delta$. De maneira análoga, mostraríamos que $\lim_{x \to c^-} F(x) = F(c)$.

Repare-se que, o facto de f ser limitada em [a,b] foi suficiente para mostrar que F é contínua em [a,b] e, portanto, também limitada (Teorema de Weierstrass). Agora vamos ver que, se f for contínua (além de limitada), então F será derivéel (além de contínua).

Teorema 7 [Teorema Fundamental do Cálculo]

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função contínua. Então a função $F:[a,b] \longrightarrow \mathbb{R}$ definida pela expressão (25) é derivável em [a,b], tendo-se

$$F'(x) = f(x), \quad \forall x \in [a, b].$$

Demonstração

Vamos demontrar apenas que $F'_+(x_0) = f(x_0)$, para cada $x_0 \in [a,b[$, ou seja que

$$\lim_{h \to 0^+} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0) ,$$

mostrando que

$$\forall \delta > 0, \ \exists \varepsilon > 0 \colon \quad 0 < h < \varepsilon \implies \left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| < \delta. \tag{26}$$

Dado $\delta > 0$, como f é contínua em x_0 ,

$$\exists \alpha > 0 \colon |y - x_0| < \alpha \implies |f(y) - f(x_0)| < \delta. \tag{27}$$

Mas

$$\left| \frac{F(x_0 + h) - F(x_0)}{h} - f(x_0) \right| = \frac{1}{h} \left| \int_a^{x_0 + h} f(t) dt - \int_a^{x_0} f(t) dt - h f(x_0) \right|$$

$$= \frac{1}{h} \left| \int_{x_0}^{x_0 + h} f(t) dt - h f(x_0) \right|$$

$$= \frac{1}{h} \left| \int_{x_0}^{x_0 + h} \left[f(t) - f(x_0) \right] dt \right|$$

$$\leq \frac{1}{h} \int_{x_0}^{x_0 + h} \left| f(t) - f(x_0) \right| dt = \frac{1}{h} \int_{x_0}^{x_0 + h} \delta dt = \delta,$$

onde se usou o resultado de (27), por f ser contínua em x_0 , sendo suficiente que $h \leq \alpha$, uma vez que $t \in [x_0, x_0 + h]$. Consequentemente, basta tomar $\varepsilon = \alpha$ para que a condição (26) seja verificada.

De modo perfeitamente análogo, se mostraria que $F'_{-}(x_0) = f(x_0)$, para cada $x_0 \in]a,b]$.

Corolario 1

Toda a função contínua $f:[a,b] \longrightarrow \mathbb{R}$ possui primitiva em [a,b].

$Demonstraç\~ao$

De facto, qualquer função da forma $F(x) = \int_a^x f(t) dt + C$ constitui uma primitiva de f em [a, b].

Observação 5

Quando f não é contínua, mantendo-se integrável, define-se na mesma a função F como em (25). Contudo, F pode não ser derivável, ou então, até ser derivável mas a sua derivada não coincidir com f nos pontos de descontinuidade de f (Exemplos 6, 7, 8 e 9).

Exemplo 6

f é contínua, logo integrável (Teorema 4) e primitivável (Teorema 7). Define-se a função F, que é derivável. Além disso,

$$f(x) = 1 \implies F(x) = \int_0^x 1 \, dt = x, \ \forall x \in [0, 2].$$

Exemplo 7

f possui uma descontinuidade removível em 1, logo é integrável (Teorema 6). No entanto, f não é primitivável (isto é, f não é a derivada de função alguma em [0,2] (Teorema 8 de Darboux, Capítulo 4). Mesmo assim, a integrabilidade de f em [0,2] é suficiente para que se possa definir a função F, como em (25). Como a função f deste Exemplo 7 difere da função f do Exemplo 6 apenas no ponto 1, os integrais das duas são iguais (Propriedade 6), pelo que F(x) = x, $\forall x \in [0,2]$. Além disso, F é obviamente derivável, com F'(x) = 1, $\forall x \in [0,2]$. Acontece, porém, que a derivada de F em 1 difere de f(1).

-

Exemplo 8

f é limitada mas possui uma descontinuidade de salto no ponto 1. Logo f é integrável (Teorema 6) mas não é primitivável. Define-se novamente a função F, como em (25), e vem

$$x \in [0,1[\implies f(x) = 0 \implies F(x) = \int_0^x 0 \, dt = 0,$$

 $x \in [1,2] \implies f(x) = 1 \implies F(x) = \int_1^x 1 \, dt = x - 1,$

atestando a continuidade de F. No entanto F não é derivável em 1.

Exemplo 9

Neste caso, f é contínua, logo é integrável (Teorema 4) e primitivável (Teorema 7), mas não é derivável em 1. Para a função F, que deverá ser derivável, vem

$$x \in [0,1] \implies f(x) = 0 \implies F(x) = \int_0^x 0 \, dt = 0,$$

$$x \in [1,2] \implies f(x) = x - 1 \implies F(x) = \int_1^x (t-1) \, dt \stackrel{(*)}{=} \frac{x^2}{2} - x + \frac{1}{2},$$

(*) aceitemos esta igualdade que, por enquanto, não é clara.

confirmando-se, de facto, que se trata de uma função derivável.

Do ponto de vista do cálculo do integral de uma função, a consequência mais relevante que se extrai do Teorema 7 é a que se apresenta a seguir.

Teorema 8 [Fórmula de Barrow]

Sejam $f:[a,b]\longrightarrow \mathbb{R}$ contínua e G uma primitiva de f em [a,b]. Então

$$\int_{a}^{b} f(t) dt = G(b) - G(a).$$
 (28)

Demonstração

Ponha-se $F(x) = \int_a^b f(x) dx$. Como $F \in G$ são duas primitivas de f em [a, b], então

$$G(x) = F(x) + C$$
, $x \in [a, b]$, C constante.

Em particular, para x = a, vem

$$G(a) = F(a) + \mathcal{C} \implies \mathcal{C} = G(a),$$

pelo que

$$G(x) = F(x) + G(a), \quad x \in [a, b].$$

Para x = b, vem

$$G(b) = F(b) + G(a) \implies F(b) = G(b) - G(a)$$

ficando, assim, justificada a igualdade (28).

Notação

Para traduzir a identidade (28), usamos a notação
$$\int_a^b f(t) dt = \left[G(x) \right]_a^b$$
.

O Teorema 8 fornece um processo extremamaente útil para o cálculo do integral de uma função num intervalo, onde ela possua primitiva. Basta fazer a diferença entre os valores da primitiva nos extremos de integração.

Exemplo 10

(a)
$$\int_0^{\pi} \sin x \, dx = \left[-\cos x \right]_0^{\pi} = -\cos \pi + \cos 0 = 2$$
.

(b) Se
$$f(x) = \begin{cases} 1 & \text{se } x \in [0,1] \\ 3 & \text{se } x \in]1,2] \end{cases}$$
 então $\int_0^2 f(x) \, dx \stackrel{\text{Prop. 6}(b)}{=} \int_0^1 1 \, dx + \int_1^2 3 \, dx$
$$= \left[x \right]_0^1 + \left[3x \right]_1^2 = (1-0) + (6-3) = 4 \, .$$

(c)
$$\int_{-5}^{3} |x| dx = \int_{-5}^{0} (-x) dx + \int_{0}^{3} x dx = -\frac{1}{2} \left[x^{2} \right]_{-5}^{0} + \frac{1}{2} \left[x^{2} \right]_{0}^{3} = \frac{25}{2} + \frac{9}{2} = 7.$$

(d)
$$\int_0^5 \frac{x}{x^2 + 1} dx = \frac{1}{2} \left[\log(x^2 + 1) \right]_0^5 = \frac{1}{2} (\log 26 - \log 1) = \log \sqrt{26}.$$

(e) Se
$$f(x) = \begin{cases} x^2 & \text{se } 0 \le x \le 1 \\ 2 & \text{se } 1 < x \le 3 \\ x - 3 & \text{se } 3 < x \le 6 \end{cases}$$
 então, novamente pela Propriedade 6 (b), vem

$$\int_0^6 f(x) \, dx = \int_0^1 x^2 \, dx + \int_1^3 2 \, dx + \int_3^6 (x - 3) \, dx$$
$$= \left[\frac{x^3}{3} \right]_0^1 + \left[2x \right]_1^3 + \left[\frac{x^2}{2} - 3x \right]_3^6 = \frac{1}{3} + (6 - 2) + \left(0 + \frac{9}{2} \right) = \frac{53}{6} \, .$$

Consequência 1 [Derivação sob o sinal de integral]

Seja $f: [a, b] \longrightarrow \mathbb{R}$ uma função contínua e $\varphi: [c, d] \longrightarrow [a, b]$ uma função derivável. Então f é integrável, em particular, entre a e $\varphi(x)$, tendo-se

$$\int_{a}^{\varphi(x)} f(t) dt = F(\varphi(x)) - F(a).$$

Pelo teorema da derivação de funções compostas, Teorema 4 do Capítulo 4, sai então

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = F'(\varphi(x)) \varphi'(x),$$

Pelo teorema fundamental do cálculo, podemos concluir que

$$\left(\int_{a}^{\varphi(x)} f(t) dt\right)' = f(\varphi(x)) \varphi'(x). \tag{29a}$$

Mais em geral, sendo $\varphi, \psi \colon [c,d] \longrightarrow [a,b]$ funções deriváveis, tem-se

$$\left(\int_{\varphi(x)}^{\psi(x)} f(t) dt\right)' = f(\psi(x)) \psi'(x) - f(\varphi(x)) \varphi'(x). \tag{29b}$$

Basta atender a que

$$\int_{\varphi(x)}^{\psi(x)} f(t) \, dt = \int_{a}^{\psi(x)} f(t) \, dt - \int_{a}^{\varphi(x)} f(t) \, dt = F(\psi(x)) - F(\varphi(x))$$

e conjugar o teorema fundamental do cálculo com o teorema da derivação de funções compostas.

Exemplo 11

Sendo $f\colon \mathbb{R}^+_0 \longrightarrow \mathbb{R}$ uma função contínua tal que

$$\int_0^{x^2} f(t) \ dt = x^3 e^x - x^4, \quad \forall x \in \mathbb{R}_0^+,$$

determinemos f(x), $x \in \mathbb{R}_0^+$. Derivando em ordem a x ambos os membros da igualdade anterior, vem

$$2xf(x^2) = 3x^2e^x + x^3e^x - 4x^3$$

e, para x > 0, sai

$$f(x^2) = \frac{1}{2}x \Big[e^x(3+x) - 4x \Big] \implies f(x) = \frac{1}{2}\sqrt{x} \Big[e^{\sqrt{x}}(3+\sqrt{x}) - 4\sqrt{x} \Big].$$

Como f é contínua,

$$f(0) = \lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{1}{2} \sqrt{x} \left[e^{\sqrt{x}} (3 + \sqrt{x}) - 4\sqrt{x} \right] = 0.$$

Concluindo,

$$f(x) = \frac{1}{2}\sqrt{x} \left[e^{\sqrt{x}} (3 + \sqrt{x}) - 4\sqrt{x} \right], \quad \forall x \in \mathbb{R}_0^+.$$

6 Teoremas clássicos do cálculo do integral

Do teorema fundamental do cálculo, Teorema 7, saem outras consequências que passamos a apresentar.

Consequência 2 [Fórmula do valor médio para integrais]

Se $f: [a, b] \longrightarrow \mathbb{R}$ é contínua então existe $c \in [a, b]$ tal que

$$\int_{a}^{b} f(x) dx = (b - a)f(c).$$

Demonstração

Sendo f contínua em [a,b], possui aí primitiva, digamos $F:[a,b] \longrightarrow \mathbb{R}$ tal que F'(x) = f(x). Então $\int_a^b f(x) \, dx = F(b) - F(a)$. Sendo F derivável, o teorema do valor médio de Lagrange (Teorema 10, Capítulo 4) garante que

$$\frac{F(b) - F(a)}{b - a} = F'(c), \quad \text{para algum } c \in \,]a, b[\,,$$

e como F'(c) = f(c), vem F(b) - F(a) = (b - a)f(c), completando-se a demonstração.

Exemplo 12

Seja $f:[a,b] \longrightarrow \mathbb{R}$ tal que $\int_a^b f(x) dx = 0$. Vejamos que, se f é contínua, então f possui pelo menos um zero em]a,b[.

Pela Fórmula do valor médio, $\int_a^b f(x) dx = f(c)(b-a)$, para algum $c \in]a, b[$. Como este integral é nulo, vem f(c)(b-a) = 0, para algum $c \in]a, b[$, ou seja, f(c) = 0, para algum $c \in]a, b[$.

Exemplo 13

Seja $f: [a,b] \longrightarrow \mathbb{R}$ contínua e considere-se $g: [a,b] \longrightarrow \mathbb{R}$ integrável, tal que $g(x) \ge 0$, $\forall x \in [a,b]$. Vejamos que

$$\exists c \in [a, b] : \int_{a}^{b} f(x)g(x) \, dx = f(c) \int_{a}^{b} g(x) \, dx. \tag{30}$$

A função f é limita e atinge os seus extremos em [a,b], por ser contínua (Teorema de Weierstrass, Capítulo 3), pelo que

$$\exists \alpha, \beta \in [a, b] : f(\alpha) \le f(x) \le f(\beta), \forall x \in [a, b].$$

Então

$$f(\alpha) g(x) \le f(x) g(x) \le f(\beta) g(x), \quad \forall x \in [a, b],$$

uma vez que g é não negativa. Pela monotonia do integral (Propriedade 4)

$$f(\alpha) \int_a^b g(x) \, dx \le \int_a^b f(x) \, g(x) \, dx \le f(\beta) \int_a^b g(x) \, dx.$$

Consequentemente,

$$\int_a^b f(x) g(x) dx = k \int_a^b g(x) dx$$

para algum $k \in [f(\alpha), f(\beta)]$. Pelo teorema do valor intermédio (Capítulo 3), existe c em [a, b] tal que f(c) = k, pelo que a igualdade (30) está justificada.

Exemplo 14

Seja f integrável em [a, b], com $f(x) \ge 0$, $\forall x \in [a, b]$. Vejamos que, se f for contínua em certo ponto $c \in [a, b]$ onde se tem f(c) > 0, então

$$\int_{a}^{b} f(x) dx > 0. \tag{31}$$

De facto, da continuidade de f em c e do Teorema 12 sobre a permanência do sinal das funções contínuas (Capítulo 3, Subsecção 3.4), existe um intervalo $]c - \varepsilon, c + \varepsilon[$ contido em [a,b] tal que f(x) > 0, $\forall x \in]c - \varepsilon, c + \varepsilon[$. Da Propriedade 1, sai então que

$$\int_{a}^{b} f(x)dx = \int_{a}^{c-\varepsilon} f(x)dx + \int_{c-\varepsilon}^{c+\varepsilon} f(x)dx + \int_{c+\varepsilon}^{b} f(x)dx,$$

onde o primeiro e o terceiro integrais são não negativos, em virtude da Propriedade 4, e o segundo integral é estritamente positivo, uma vez que, pela Fórmula do valor médio para integrais, se tem $\int_{c-\varepsilon}^{c+\varepsilon} f(x)dx = 2\varepsilon f(c)$, com f(c) > 0.

Consequência 3 [Integração por partes]

Sejam $f, g: [a, b] \longrightarrow \mathbb{R}$ com f contínua, F uma sua primitiva e g de classe $C^1([a, b])$. Então

$$\int_{a}^{b} f(x)g(x) dx = \left[F(x)g(x) \right]_{a}^{b} - \int_{a}^{b} F(x)g'(x) dx.$$
 (32)

 $Demonstraç\~ao$

A integrabilidade de fg e de Fg' sai da continuidade de f, g, F, g'. Por outro lado, temos

$$[F(x)g(x)]' = f(x)g(x) + F(x)g'(x),$$

pelo que Fg é uma primitiva de fg + Fg'. Então (Fórmula de Barrow)

$$\int_{a}^{b} \left[f(x)g(x) + F(x)g'(x) \right] dx = \left[F(x)g(x) \right]_{a}^{b},$$

que equivale à igualdade da fórmula (32).

Exemplo 15

(a)
$$\int_0^2 x e^x dx = \left[e^x x\right]_0^2 - \int_0^2 e^x dx = 2e^2 - \left[e^x\right]_0^2 = e^2 + 1$$
.

(b)
$$\int_{1}^{e} \log \sqrt{x} \, dx = \left[x \log \sqrt{x} \right]_{1}^{e} - \int_{1}^{e} x \, \frac{\frac{1}{2\sqrt{x}}}{\sqrt{x}} \, dx = \frac{e}{2} - \int_{1}^{e} \frac{1}{2} \, dx = \frac{e}{2} - \frac{1}{2} \left[x \right]_{1}^{e} = \frac{1}{2} \, .$$

Consequência 4 [Integração por substituição]

Sejam $f: [a, b] \longrightarrow \mathbb{R}$ contínua e $g: [c, d] \longrightarrow [a, b]$ de classe $C^1([c, d])$ tal que g(c) = a e g(d) = b. Então

$$\int_{a}^{b} f(x) dx = \int_{c}^{d} f(g(t))g'(t) dt.$$
 (33)

$Demonstraç\~ao$

Por um lado, se F for uma primitiva de f em [a,b], tem-se $\int_a^b f(x) dx = F(b) - F(a)$. Por outro lado, $(F \circ g)'(t) = F'(g(t))g'(t) = f(g(t))g'(t)$, pelo que $F \circ g$ é uma primitiva de $(f \circ g)g'$, donde

$$\int_{c}^{d} (f \circ g)(t)g'(t) dt = (F \circ g)(d) - (F \circ g)(c) = F(b) - F(a).$$

Observação 6

No integral do segundo membro de (33), os limites de integração c e d são quaisquer números reais tais que g(c) = a, g(d) = b. Cf. o Exemplo 16.

Exemplo 16

(a) Calculemos $\int_0^1 \sqrt{1-x^2} \, dx$, efectuando a mudança de variável $x = \sin t$.

Pondo $g(t) = \operatorname{sen} t$, vem $g'(t) = \cos t$. Quanto aos limites de integração, temos

$$\begin{cases} x = \operatorname{sen} t \\ x = 0 \end{cases} \implies \operatorname{sen} t = 0 \implies t = t_1 = k\pi, \ k \in \mathbb{Z},$$

$$\begin{cases} x = \operatorname{sen} t \\ x = 1 \end{cases} \implies \operatorname{sen} t = 1 \implies t = t_2 = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}.$$

A escolha mais simples parece ser $t_1=0$ e $t_2=\frac{\pi}{2}$, resultando

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_0^{\frac{\pi}{2}} \sqrt{1 - \sin^2 t} \cos t \, dt = \int_0^{\frac{\pi}{2}} \cos^2 t \, dt$$
$$= \frac{1}{2} \int_0^{\frac{\pi}{2}} (1 + \cos 2t) \, dt = \frac{1}{2} \left[t + \frac{1}{2} \sin 2t \right]_0^{\frac{\pi}{2}} = \frac{\pi}{4}.$$

A título de ilustração, faça-se outra escolha, por exemplo, $t_1=2\pi$ e $t_2=\frac{\pi}{2}$. Viria

$$\int_0^1 \sqrt{1 - x^2} \, dx = \int_{2\pi}^{\frac{\pi}{2}} \sqrt{\cos^2 t} \, \cos t \, dt = -\int_{\frac{\pi}{2}}^{2\pi} \sqrt{\cos^2 t} \, \cos t \, dt$$

Mas $\sqrt{\cos^2 t} = |\cos t|$ e $\cos t$ não tem sinal constante em $\left[\frac{\pi}{2}, 2\pi\right]$, pelo que

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos^{2} t \, dt - \int_{\frac{3\pi}{2}}^{2\pi} \cos^{2} t \, dt$$

$$= \frac{1}{2} \left[t + \frac{1}{2} \sin 2t \right]_{\frac{\pi}{2}}^{\frac{3\pi}{2}} - \frac{1}{2} \left[t + \frac{1}{2} \sin 2t \right]_{\frac{3\pi}{2}}^{2\pi}$$

$$= \frac{1}{2} \left(\frac{3\pi}{2} - \frac{\pi}{2} \right) - \frac{1}{2} \left(2\pi - \frac{3\pi}{2} \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.$$

(b) Calculemos agora $\int_1^2 x \sqrt{x-1} \ dx$, efectuando a mudança de variável $x-1=t^2$. Pondo $g(t)=t^2+1$, vem g'(t)=2t. Atendendo a que g(0)=1 e g(1)=2, resulta

$$\int_{1}^{2} x\sqrt{x-1} \, dx = \int_{0}^{1} (1+t^{2}) \sqrt{t^{2}} \, 2t \, dt = 2 \int_{0}^{1} \left(t^{2}+t^{4}\right) \, dt$$
$$= \frac{2}{3} \left[t^{3}\right]_{0}^{1} + \frac{2}{5} \left[t^{5}\right]_{0}^{1} = \frac{2}{3} + \frac{2}{5} = \frac{16}{15} .$$

(c) Calculemos $\int_{-1}^{e} f(x) dx$ para

Recorrendo à Propriedade 6 (b), vem

$$\int_{-1}^{e} f(x) dx = \int_{-1}^{0} \sqrt{1 - x^2} dx + \int_{0}^{1} 2 dx + \int_{1}^{e} \log x dx,$$

onde o primeiro integral se calcula por substituição fazendo, por exemplo, $x=\sin t$, o segundo é imediato e o terceiro calcula-se por partes. Resulta $\int_{-1}^{e} f(x) \ dx = \frac{\pi}{4} + 2 + 1$.

Exemplo 17

Sejam $a \in \mathbb{R}^+$ e $f \colon [-a,a] \longrightarrow \mathbb{R}$ uma função contínua. Vejamos que:

(a) se
$$f$$
 é par então $\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$;

(b) se
$$f$$
 é impar então $\int_{-a}^{a} f(x) dx = 0$.

(a) Sendo f par, tem-se $f(x)=f(-x),\;\forall x\!\in\![-a,a],$ e então

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = \underbrace{\int_{-a}^{0} f(-x) dx}_{I} + \int_{0}^{a} f(x) dx.$$

Fazendo a mudança de variável x = -t no integral J, vem

$$\int_{-a}^{a} f(x) \, dx = \int_{a}^{0} f(t)(-1) \, dt + \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(t) \, dt + \int_{0}^{a} f(x) \, dx = 2 \int_{0}^{a} f(x) \, dx.$$

(b) Sendo f impar, tem-se $f(x) = -f(-x), \forall x \in [-a, a], e$ então

$$\int_{-a}^{a} f(x) \, dx = \int_{-a}^{0} f(x) \, dx + \int_{0}^{a} f(x) \, dx = -\underbrace{\int_{-a}^{0} f(-x) \, dx}_{I} + \int_{0}^{a} f(x) \, dx.$$

Fazendo a mudança de variável x = -t no integral J, vem

$$\int_{-a}^{a} f(x) \, dx = -\int_{a}^{0} f(t)(-1) \, dt + \int_{0}^{a} f(x) \, dx = -\int_{0}^{a} f(t) \, dt + \int_{0}^{a} f(x) \, dx = 0.$$

7 Aplicações do integral

Algumas aplicações geométricas do integral estão relacionadas com a área de um domínio plano, o comprimentos de uma curva e o volume de um sólido de revolução.

7.1 Área de um domimio plano

Vamos retomar o problema que, na Secção 1, nos serviu de motivação à definição de integral. Em particular, no caso em que $f: [a, b] \longrightarrow \mathbb{R}$ é uma função contínua tal que $f(x) \ge 0$, $\forall x \in [a, b]$, definimos, na Secção 2D, a área do domínio limitado pelo gráfico de f, pelo eixo OX e pelas rectas verticais x = a e x = b, representado na Figura 1, pela fórmula (15), que aqui reescrevemos

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{b} f(x) \, dx.$$

Daqui extraem-se as seguintes consequências.

(a) Por um lado, se $f(x) \leq 0$, $\forall x \in [a,b]$ então, por simetria em relação a OX, a área da região plana

$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 \colon a \le x \le b \land f(x) \le y \le 0\}$$

coincide com a área de

$$\mathcal{D}^* = \{(x, y) \in \mathbb{R}^2 : \ a \le x \le b \ \land \ 0 \le y \le -f(x)\}$$

e, portanto,

$$\operatorname{área}(\mathcal{D}) = -\int_{a}^{b} f(x) \, dx. \tag{34}$$

Neste caso (a), mas também no caso em que f é não negativa, temos

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{b} |f(x)| dx.$$

(b) Por outro lado, se $f,g:[a,b] \longrightarrow \mathbb{R}$ são contínuas e tais que $0 \le g(x) \le f(x), \forall x \in [a,b],$ então, a área da região plana

$$\mathcal{D} = \left\{ (x, y) \in \mathbb{R}^2 \colon \ a \le x \le b \ \land \ g(x) \le y \le f(x) \right\}$$

pode ser calculada como área (\mathcal{D}) =área (\mathcal{D}_1) -área (\mathcal{D}_2) , onde \mathcal{D}_1 é a região plana sob o gráfico de f e \mathcal{D}_2 é a região plana sob o gráfico de g. Então

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{b} f(x) \, dx - \int_{a}^{b} g(x) \, dx$$

ou seja

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{b} \left[f(x) - g(x) \right] dx. \tag{35}$$

Repare-se que, também neste caso (b), poderíamos escrever

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{b} \left| f(x) - g(x) \right| dx. \tag{36}$$

(c) Por translacção segundo um vector oportuno orientado no sentido posito de OY, seria fácil concluir que, dadas $f, g: [a, b] \longrightarrow \mathbb{R}$ contínuas e tais que $g(x) \leq f(x), \forall x \in [a, b]$, independentemente do sinal de f ou de g, a área da região plana

$$y = f(x)$$

$$y = g(x)$$

$$\mathcal{D} = \left\{ (x, y) \in \mathbb{R}^2 \colon \ a \le x \le b \ \land \ g(x) \le y \le f(x) \right\}$$

poderia ser dada também pelo integral da equação (35) ou, equivalentemente, pelo da equação (36).

(d) Mais em geral, se $f,g:[a,b]\longrightarrow \mathbb{R}$ são contínuas, a área da região plana \mathcal{D} limitada pelos gráficos de f e de g e pelas rectas verticais x=a e x=b seria dada por

$$\operatorname{área}(\mathcal{D}) = \int_{a}^{c} \left[f(x) - g(x) \right] dx + \int_{c}^{b} \left[g(x) - f(x) \right] dx, \tag{37}$$

onde c é a abcissa do ponto de intersecção das duas curvas. Consequentemente, também neste caso, poderíamos exprimir a área de \mathcal{D} pelo integral da equação (36).

Exemplo 18

(a) A área do domínio plano D limitado pelas curvas de equações $y=x^2$ e $y=2-x^2$, que se intersectam para x=-1 e para x=1, é dada por

área
$$\mathcal{D} = \int_{-1}^{1} (2 - 2x^2) dx = \left[2x - \frac{2}{3}x^3\right]_{-1}^{1} = 2 - \frac{2}{3} + 2 - \frac{2}{3} = \frac{8}{3}.$$

(b) A área do domínio plano D limitado pelas curvas de equações $y=\sin x,\ y=\cos x,\ x=0$ e $x=\pi/2$ é dada por

área
$$\mathcal{D} = \int_0^{\pi/2} \left| \cos x - \sin x \right| dx$$

$$= \int_0^{\pi/4} (\cos x - \sin x) dx + \int_{\pi/4}^{\pi/2} (\sin x - \cos x) dx$$

$$= \left[\sin x + \cos x \right]_0^{\pi/4} + \left[-\cos x - \sin x \right]_{\pi/4}^{\pi/2} = 2\sqrt{2} - 2.$$

7.2 Comprimento de curvas

Seja $f:[a,b] \longrightarrow \mathbb{R}$ uma função de classe $C^1([a,b])$. Designemos por \mathcal{C} o arco de curva y=f(x), com $x\in [a,b]$. Cf. a Figura em baixo à esquerda. Vamos dar uma definição para o comprimento do arco \mathcal{C} , recorrendo à definição alternativa de integral que apresentámos na Observação 2 da Subsecção 2D, em termos das somas de Riemann.

Para tal, consideremos uma partição \mathcal{P} de [a, b] definida por pontos $x_0 = a, x_1, \ldots, x_{n-1}, x_n = b$. Sejam P_0, P_1, \ldots, P_n os pontos correspondentes sobre a curva \mathcal{C} e consideremos a linha poligonal $L_{\mathcal{P}}$, figura em cima à direita, definida pelos segmentos de recta $P_{i-1}P_i$, com $i = 1, 2, \ldots, n$. Quando os pontos P_i são considerados cada vez mais próximos uns dos outro, ou seja, quando o diâmetro $|\mathcal{P}|$ da partição tende para zero, a linha poligonal $L_{\mathcal{P}}$ tende a confundir-se com o arco \mathcal{C} . Então, por definição, pomos

$$\operatorname{comp} \mathcal{C} = \lim_{|\mathcal{P}| \to 0} \operatorname{comp} L_{\mathcal{P}}. \tag{38}$$

Por outro lado,

$$\operatorname{comp} L_{\mathcal{P}} = \overline{P_0 P_1} + \overline{P_1 P_2} + \dots + \overline{P_{n-1} P_n}$$

e, para cada segmento de recta $P_{i-1}P_i$, tem-se

$$\overline{P_i P_{i+1}} = \sqrt{(x_{i+1} - x_i)^2 + (f(x_{i+1}) - f(x_i))^2}$$

No entanto, como f é derivável, o teorema do valor médio de Lagrange dá

$$\frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} = f'(c_{i+1})$$

para algum $c_{i+1} \in]x_i, x_{i+1}[$, resultando

$$\overline{P_i P_{i+1}} = \sqrt{(x_{i+1} - x_i)^2 + (f'(c_{i+1}))^2 (x_{i+1} - x_i)^2} = \sqrt{1 + (f'(c_{i+1}))^2 (x_{i+1} - x_i)}.$$

Consequentemente, o comprimento da linha poligonal $L_{\mathcal{P}}$ é dado por

$$comp(L_{\mathcal{P}}) = \sum_{i=0}^{n-1} \sqrt{1 + (f'(c_{i+1}))^2} (x_{i+1} - x_i),$$
(39)

onde, no segundo membro, mais não temos do que uma soma de Riemann para a função $g:[a,b] \longrightarrow \mathbb{R}$ definida por $g(x) = \sqrt{1 + (f'(x))^2}$, que é integrável. Logo, tomando o limite quando $|\mathcal{P}| \to 0$ na equação (39) vem

$$\lim_{|\mathcal{P}| \to 0} \text{comp}(L_{\mathcal{P}}) = \int_{a}^{b} g(x) \, dx = \int_{a}^{b} \sqrt{1 + (f'(x))^{2}} \, dx. \tag{40}$$

Da definição expressa pela equação (38), sai

$$comp(\mathcal{C}) = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} \, dx \,. \tag{41}$$

Exemplo 19

O comprimento do arco da curva de equação $y = \operatorname{ch} x$, entre os pontos $(-1, \operatorname{ch}(-1))$ e $(2, \operatorname{ch} 2)$ é dado por

$$comp(C) = \int_{-1}^{2} \sqrt{1 + \sinh^{2} x} \, dx = \int_{-1}^{2} \cosh x \, dx = \left[\sinh x \right]_{-1}^{2} = \sinh 2 + \sinh 1.$$

7.3 Volume de um sólido de revolução

Quando uma região plana roda em torno de uma recta r do mesmo plano, obtém-se um sólido dito de revolução. A recta r diz-se o eixo de rotação. Nesta secção, estamos interessados nos sólidos de revolução \mathcal{S} gerados pela rotação em torno do eixo OX de uma região plana \mathcal{D} definida como na equação (2), a partir de uma função contínua $f: [a,b] \longrightarrow \mathbb{R}$, com $f(x) \geq 0$, $x \in [a,b]$. Cf. a Figura 1. Vamos dar uma definição para o volume do sólido \mathcal{S} , recorrendo novamente à definição alternativa de integral em termos das somas de Riemann.

Para tal, consideramos uma partição \mathcal{P} de [a, b] definida pelos pontos x_0, x_1, \ldots, x_n . Em cada subintervalo $[x_{i-1}, x_i]$, fixamos arbitrariamente um ponto c_i . Tomamos a região poligonal $\mathcal{R}_{\mathcal{P}}$ definida pelas n regiões rectangulares de altura $f(c_i)$ que se erguem sobre esses subintervalos.

Observamos que, quando o diâmetro $|\mathcal{P}|$ da partição tende para zero, a região poligonal $\mathcal{R}_{\mathcal{P}}$ tende a confundir-se com o domínio \mathcal{D} e o sólido $\mathcal{S}_{\mathcal{P}}$ gerado por $\mathcal{R}_{\mathcal{P}}$ tende a confundir-se com o sólido \mathcal{S} gerado por \mathcal{D} .

Sólido \mathcal{S} à esquerda e sólido $\mathcal{S}_{\mathcal{P}}$ à direita

Então, por definição, pomos

$$\operatorname{vol} \mathcal{S} = \lim_{|\mathcal{P}| \to 0} \operatorname{vol} \mathcal{S}_{\mathcal{P}}. \tag{42}$$

No entanto, reparando que cada região elementar R_i gera um cilindro "achatado" S_i de volume

$$\operatorname{vol}(S_i) = \pi \Big(f(c_i) \Big)^2 (x_i - x_{i-1})$$

obtemos

$$vol(S_{\mathcal{P}}) = \sum_{i=1}^{n} \pi \Big(f(c_i) \Big)^2 (x_i - x_{i-1}).$$
(43)

No segundo membro da equação (43), temos precisamente uma soma de Riemann para a função $g:[a,b] \longrightarrow \mathbb{R}$ definida por $g(x)=\pi \big(f(x)\big)^2$, que é integrável. Logo, tomando o limite quando $|\mathcal{P}| \to 0$ na equação (43) vem

$$\lim_{|\mathcal{P}| \to 0} \operatorname{vol}(\mathcal{S}_{\mathcal{P}}) = \int_{a}^{b} g(x) \, dx = \int_{a}^{b} \pi \big(f(x) \big)^{2} \, dx. \tag{44}$$

Da definição (42), sai

$$\operatorname{vol}(\mathcal{S}) = \int_{a}^{b} \pi (f(x))^{2} dx. \tag{45}$$

Exemplo 20

O volume do sólido S gerado pela rotação em torno de OX da região

$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : -1 \le x \le 1 \land 0 \le y \le x^2 + 1\}$$

é dado por

$$\operatorname{vol} S = \int_{-1}^{1} \pi (x^2 + 1)^2 \, dx = \pi \left[\frac{x^5}{5} + \frac{2x^3}{3} + x \right]_{-1}^{1} = 2\pi \left(\frac{1}{5} + \frac{2}{3} + 1 \right).$$

Exemplo 21

A fórmula para o volume de uma esfera S de raio r pode ser obtida pensando na esfera como o sólido gerado pela rotação em torno de OX da região plana

$$\mathcal{D} = \{ (x, y) \in \mathbb{R}^2 : x^2 + y^2 \le r^2 \land y \ge 0. \}$$

Atendendo à simetria da esfera, vem

$$\operatorname{vol} \mathcal{S} = 2 \int_0^r \pi \left(\sqrt{r^2 - x^2} \right)^2 dx = 2\pi \int_0^r \left(r^2 - x^2 \right) dx = 2\pi r^2 \left[x \right]_0^r - \frac{2\pi}{3} \left[x^3 \right]_0^r = \frac{4}{3} \pi r^3.$$

À semelhança do que fizemos na Subsecção 7.1 em relação ao conceito de área, podemos obter fórmulas mais gerais para o cálculo do volume de sólidos de revolução.

Por exemplo, no caso em que $f, g: [a, b] \longrightarrow \mathbb{R}$ são contínuas e $0 \le g(x) \le f(x), \forall x \in [a, b]$, então, o volume do sólido S gerado pela rotação em torno de OX da região plana

$$\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : a \le x \le b \land g(x) \le u \le f(x) \}$$

é dado por

$$\operatorname{vol}(\mathcal{S}) = \int_{a}^{b} \pi \left[f^{2}(x) - g^{2}(x) \right]^{2} dx.$$

Exemplo 22

O volume do sólido \mathcal{S} gerado pela rotação em torno de OX da região plana

$$B = \{(x,y) \in \mathbb{R}^2 : |x-2| + 1 \le y \le 3\}$$

é dado por (tendo em conta a simetria)

$$\operatorname{vol} S = 2 \int_0^2 \pi \left(3^2 - (-x+3)^2 \right) dx = 2\pi \int_0^2 \left(-x^2 + 6x \right) dx = \frac{56\pi}{3}.$$

Exemplo 23 [Volume de um toro (sólido com a forma de uma câmara de ar de pneu)] O volume do sólido S gerado pela rotação em torno de OX da região plana

$$C = \{(x,y) \in \mathbb{R}^2 : (x-4)^2 + (y-4)^2 \le 1\}$$

é dado por (tendo em conta a simetria em relação à recta x=4)

$$\operatorname{vol} \mathcal{S} = 2\pi \int_{4}^{5} \left[\left(4 + \sqrt{1 - (x - 4)^{2}} \right)^{2} - \left(4 - \sqrt{1 - (x - 4)^{2}} \right)^{2} \right] dx$$

$$= 32\pi \int_{4}^{5} \sqrt{1 - (x - 4)^{2}} \, dx \qquad [\text{substituição } x - 4 = \sin t]$$

$$= 32\pi \int_{0}^{\pi/2} \sqrt{1 - \sin t^{2}} \, \cos t \, dt = 32\pi \int_{0}^{\pi/2} \cos^{2} t \, dt = 16\pi \int_{0}^{\pi/2} \left(1 + \cos 2t \right) \, dt$$

$$= 16\pi \left(\left[t \right]_{0}^{\pi/2} + \frac{1}{2} \left[\sin 2t \right]_{0}^{\pi/2} \right) = 8\pi^{2}.$$