

Course Logistics

Schedule (updated)

Week	Lecture (Tues, 2:30 @ MCB 113)	Lab (Thurs, 2:30 @ MCB 113)	Assignment
7 (Oct 26, 28)	Midterm Review (L01-L06)	MIDTERM 2:30 - 4:30 PM	
8 (Nov 2, 4)		READING WEEK	
9 (Nov 9, 11)	L09: Trees and Random Forest	Code Review 9	A5: released Nov 11, due Nov 21
10 (Nov 16, 18)	L10: Neural Networks, Deep Learning	Code Review 10	A6: released Nov 21, due Dec 01
11 (Nov 23, 25)	L11: Unsupervised Learning, RL	Code Review 11	

Project Presentations

...

. . .

L12: Dimensionality Reduction

Exam Review

12 (Nov 30,

13 (Dec 07)

Dec 02)

Assignment Solutions (for midterm studying)

- A1-A3 Solutions released tonight after the lecture
- A4 Solutions released next Tuesday night

Project Groups (Graduate)

- We have $\sim \frac{1}{2}$ the groups signed up
- I will start to assist here

Rate Me (feedback.uwo.ca)

- Any comments/feedback are appreciated
 - Whether you like the course or think it sucks
- I'll make sure to use feedback to adjust where I can

How to use Reshape

- What does reshape(-1) do?
 - o From 2d array to 1d vector
- What does reshape(-1,1) do?
 - From 1d vector to 2d column array/vector

Feature Construction

Construct Features?

This dataset has 6 features

- Sometimes it may be useful to give *combinations of features* to our models
- Ex: Construct a feature called "LotArea"

$$\widehat{y}_{i} = b_{0} + b_{1}(LotDepth) + b2(LotFrontage)$$

$$\mathbf{vs.}$$

$$\widehat{y}_{i} = b_{0} + b_{1}(LotArea)$$

				_			
	ld	LotDepth	LotFrontage	Street	Utilities	HasPoolTable	SalePrice
0	1	53.0	65.0	Pave	AllPub	True	208500
1	2	76.0	80.0	Pave	AllPub	False	181500
2	3	56.0	68.0	Pave	AllPub	False	223500
3	4	46.0	60.0	Pave	AllPub	False	140000
4	5	72.0	84.0	Pave	AllPub	True	250000
				12.2			110
1455	1456	50.0	62.0	Pave	AllPub	False	175000
1456	1457	81.0	85.0	Pave	AllPub	True	210000
1457	1458	52.0	66.0	Pave	AllPub	False	266500
1458	1459	64.0	68.0	Pave	AllPub	True	142125
1459	1460	71.0	75.0	Pave	AllPub	True	147500

Beyond Linearity

- As seen in previous weeks, we can add nonlinearity to our features
- We can extend this by adding further augmentations to features with **basis functions** (also called "feature functions"). With these we are defining new features.

Ex:

$$h_m(X) = x_m, m = 1, ..., p$$
 Original features

$$h_m(X) = x_m^2, m = 1, ..., p$$
 Square each feature

$$h_m(X) = x_m(x_{m+1}), m = 1, 4, 9$$
 Square particular features

$$h_m(X) = \log(x_m), m = 1, ..., p$$
 Apply other nonlinear transformation

Example: Fourier Basis

Ex:
$$h_0(x) = 1$$
 $h_j(x) = \cos(\omega_j x + \Psi_j)$ for $j > 0$

• This is useful for various temporal/periodic and signal processing tasks (ECG, audio)

• Allows us to extract features from time domain and construct them for frequency domain.

Example: Fourier Features

https://proceedings.neurips.cc/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf

Feature Selection

Select Features?

Communities and Crime Data Set

Download: Data Folder, Data Set Description

Abstract: Communities within the United States. The data combines socio-economic data from the 1990 US Census, law enforcement data from the 1990 US LEMAS survey, and crime data from the 1995 FBI UCR.

Data Set Characteristics:	Multivariate	Number of Instances:	1994	Area:	Social
Attribute Characteristics:	Real	Number of Attributes:	128	Date Donated	2009-07-13
Associated Tasks:	Regression	Missing Values?	Yes	Number of Web Hits:	331742

.00	state	county	community	communityname	fold	population	householdsize	racepctblack	racePctWhite	racePctAsian	LandArea	PopDens
16	36	1	1000	Albanycity	1	0.15	0.31	0.40	0.63	0.M	0.06	0.89
23	19	193	93926	SiouxCitycity	1	0.11	0.43	0:04	0.89	9.09	0.16	0.12
33	51	680	47672	Lynchburgcity	1	0.09	0.43	0.51	0.58	0.04	0.14	0,11
68	34	23	58200	PerthAmboycity	1	0.05	0.59	0.23	0.39	0.09	0.04	0.73
74	9	9	46520	Meridentown	1	0.08	0.39	0.08	0.85	0.04	0.07	
	***		555	***		No.	300	555	(***)	1822 525	1000	***
1880	34	39	40350	Lindencity	10	0.04	0.39	0.39	0.65	0.09	0.03	0.28
1963	36	27	59641	Poughkeepsiecity	10	0.03	0.32	0.61	0.47	0.09	0.01	0.47
1981	9	9	35650	Hamdentown	10	0.07	0.38	0.17	0.84	0.11	0.09	0.13
1991	9	9	80070	Waterburytown	10	0.16	0.37	0.25	0.69	0.04	0.08	0.32
1992	25	17	72600	Walthamcity	10	0.08	0.51	0.06	0.87	0.22	0.03	0.38

This dataset has 128 features

• Can we isolate a subset of these features?

Feature Selection

Why?

- Some of the features are not associated with the target/output variable y
- If we have many irrelevant features → unnecessary complexity in model
- Why is that a problem? (1) Computation costs/time; (2) Variance \rightarrow Overfitting

	ld	LotDepth	LotFrontage	Street	Utilities	HasPoolTable	SalePrice
0	1	53.0	65.0	Pave	AllPub	True	208500
1	2	76.0	80.0	Pave	AllPub	False	181500
2	3	56.0	68.0	Pave	AllPub	False	223500
3	4	46.0	60.0	Pave	AllPub	False	140000
4	5	72.0	84.0	Pave	AllPub	True	250000
•••	Wi			941			Lie

3 Common Approaches

- <u>Subset Selection</u>: Identify a subset of k features (predictors) which we believe are related to the output (response/target).
- Regularization: Keep all k features, but shrink some number of these features towards zero ~ eliminating influence of the features
- <u>Dimensionality reduction</u>: Project the k features into a lower-dimensional subspace

Subset Selection

Approach 1.1: Best Subset Selection

• Search over all features and combinations of features \rightarrow get all model performances

$${n\choose k}=\frac{n!}{k!(n-k)!}$$

Approach 1.1: Best Subset Selection

- For k features and models containing 1 of those features $\rightarrow \binom{k}{1}$ models considered
- For k features and models containing 2 of those features $\rightarrow \binom{k}{2}$ models considered
- For k features and models containing n of those features $\rightarrow \binom{k}{n}$ models considered

The complexity of "Best Subset Selection"
$$\rightarrow 1 + k + \binom{k}{2} + \binom{k}{3} + \ldots + \binom{k}{n} \approx 2^k$$

Approach 1.2: Stepwise Selection

- 1. Forward Stepwise Selection
- 2. Backward Stepwise Selection

At each step, choose the **best model** with the lowest CV error.

At each step, choose the **best model** with the lowest CV error.

At each step, choose the **best model** with the lowest CV error.

At each step, choose the **best model** with the lowest CV error

Backward Stepwise Selection

At each step, keep the **best model** with the lowest CV error. Drop all others.

Regularization

Regularization

- Unlike with subset selection and stepwise selection, here we **keep all features**
- How do we select? The coefficients of particular features shrink towards 0
- Ex: We can consider all features and all quadratic feature combinations at first... then when we regularize certain features and feature combinations will be "removed"

Objective = Measure of fit + Measure of Magnitude of Coefficients

$$\lambda \sum_{j} \beta_{j}^{2}$$
Ridge

$$\lambda \sum_{j} |\beta_{j}|$$
Lasso

Approach 2.1: Ridge Regression

$$J_{ridge} = \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{k} \beta_j x_{ij} \right) \right)^2 + \lambda \sum_{j=1}^{k} \beta_j^2$$

Approach 2.1: Ridge Regression

- In **un-regularized regression**, scaling inputs by constant C results in scaling of corresponding coefficient by 1/C; we can therefore say it's *scale-invariant*.
- In regularized regression, scaling inputs by constant can dramatically affect the objective function
- To ensure that features are scaled uniformly, we can standardize them (i.e. z-standardize)
- Alternatively, we can use different λ for different features (Tikhonov regularization)

Standardize
$$\widetilde{x} = \frac{x - \mu}{\sigma}$$

Approach 2.2: Lasso

$$J_{lasso} = \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{k} \beta_j x_{ij} \right) \right)^2 + \lambda \sum_{j=1}^{k} |\beta_j|$$

- Ridge generates a model including all features
- Lasso forces some coefficients to exactly 0

$$\min_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{k} \beta_j x_{ij} \right) \right)^2 \right\}, \text{ subject to } \sum_{j=1}^{k} \left| \beta_j \right| \le s$$

$$|x| = \left\{egin{array}{l} x & ext{if } x \geq 0 \ -x & ext{if } x < 0 \end{array}
ight.$$

Aside: The graph of |x|+|y|=1

- In Quadrant I only, |x|=x, $|y|=y \rightarrow$ the line plotted is x+y=1
- In Quadrant II only, |x|=-x, $|y|=y \rightarrow$ the line plotted is -x+y=1
- In Quadrant III only, |x|=-x, $|y|=-y \rightarrow$ the line plotted is -x-y=1
- In Quadrant IV only, |x|=x, $|y|=-y \rightarrow$ the line plotted is x-y=1

Ridge vs. Lasso

- Lasso performs feature selection, whereas Ridge doesn't set features to 0
- Lasso works better when few predictors, Ridge better when many predictors
- Lasso lends to better interpretability → selects variables instead of small coefficients

Can we combine these? Yes \rightarrow Elastic Net

$$J_{elastic} = \sum_{i=1}^{n} \left(y_i - \left(\beta_0 + \sum_{j=1}^{k} \beta_j x_{ij} \right) \right)^2 + \lambda \left(\alpha \sum_{j=1}^{k} \left| \beta_j \right| + (1 - \alpha) \sum_{j=1}^{k} \beta_j^2 \right)$$

How to select λ ?

• Cross-validation: Pick a range of values for λ , then get CV error for each

Let'sss try it in Python...

Summary

- Constructing Features
- Selecting Features
 - Best Subset selection
 - Stepwise Selection (Forward)
 - Stepwise Selection (Backward)
- Regularization
 - Ridge regression
 - o Lasso
 - o Elastic Net
 - \circ Selecting λ (Babysitting vs. Caviar)