AMENDMENTS TO THE CLAIMS:

Please change the heading at page 256, line 1, from "Patent claims" to --WHAT IS CLAIMED IS:--

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-35 (canceled)

-- Claim 36 (new): A compound of formula (I)

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups, and

CKE represents one of the groups

in which

- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- D represents hydrogen; represents optionally substituted alkyl, alkenyl, alkynyl, or alkoxyalkyl; represents saturated or unsaturated cycloalkyl, in which one or more ring atoms are optionally replaced by a heteroatom; or represents arylalkyl, aryl, hetarylalkyl, or hetaryl, or
- A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle that optionally contains one or more heteroatoms (with the proviso that two or more heteroatoms are present when CKE is group (8)) and that is unsubstituted or substituted in the A,D moiety,

CS8689

Q1 represents hydrogen or alkyl, or

A and Q¹ together represent optionally halogen- or hydroxy-substituted alkanediyl; or represent alkanediyl or alkenediyl substituted by optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy, or aryl,

Q², Q⁴, Q⁵, and Q⁶ independently of one another represent hydrogen or alkyl,

Q³ represents hydrogen; represents optionally substituted alkyl, alkoxyalkyl, or alkylthioalkyl; represents optionally substituted cycloalkyl in which one ring methylene group is optionally replaced by oxygen or sulphur; or represents optionally substituted phenyl, or

Q³ and Q⁴ together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains a heteroatom, and

G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur,

M represents oxygen or sulphur,

R1 represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, or polyalkoxyalkyl; represents optionally halogen-, alkyl-, or alkoxy-substituted cycloalkyl that is optionally interrupted by one or more heteroatoms; or represents optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl, or hetaryl-oxyalkyl,

- R2 represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or polyalkoxyalkyl; or represents optionally substituted cycloalkyl, phenyl, or benzyl,
- R³, R⁴, and R⁵ independently of one another represent optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, or cycloalkylthio; or represent optionally substituted phenyl, benzyl, phenoxy, or phenylthio, and
- R⁶ and R⁷ independently of one another represent hydrogen; represent optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, or alkoxyalkyl; represent optionally substituted phenyl; or represent optionally substituted benzyl; or R⁶ and R⁷ together with the N atom to which they are attached represent a cycle that is optionally interrupted by oxygen or sulphur.

Claim 37 (new): A compound of formula (I) according to Claim 36 in which

- represents halogen, C₁-C₆-alkyl, C₁-C₆-alkenyl, C₁-C₆-alkynyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyloxy, C₁-C₆-alkylthio, C₁-C₆-alkylsulphinyl, C₁-C₆-alkylsulphonyl, C₁-C₆-haloalkoxy, C₃-C₆-haloalkenyloxy, nitro, or cyano; or represents phenyl, phenoxy, phenylthio, benzyloxy, or benzylthio, each of which is optionally mono- or disubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro, or cyano,
- W and Y independently of one another represent hydrogen, halogen, C₁-C₆-alkyl, C₁-C₆-alkenyl, C₁-C₆-alkynyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, nitro, or cyano,
- z represents optionally substituted pyrazolyl, triazolyl, tetrazolyl, pyrrolyl, indolyl, benzimidazolyl, benzpyrazolyl, benztriazolyl, pyrrolidinyl, piperidinyl, piperazidinyl, morpholinyl, or thiomorpholinyl that is attached via a nitrogen atom to the phenyl ring, and

CS8689

CKE represents one of the groups

in which

A represents hydrogen; represents C₁-C₁₂-alkyl, C₃-C₈-alkenyl, C₁-C₁₀-alkoxy-C₁-C₈-alkyl, or C₁-C₁₀-alkylthio-C₁-C₆-alkyl, each of which is optionally mono- to pentasubstituted by halogen; represents C₃-C₈-cycloalkyl that is optionally mono- to trisubstituted by halogen, C₁-C₆-alkyl, C₁-C₂-haloalkyl, or C₁-C₆-alkoxy and in which one or two ring members that are not directly adjacent are optionally replaced by oxygen and/or sulphur; or represents phenyl, naphthyl, hetaryl having 5 or 6 ring atoms, phenyl-C₁-C₆-alkyl, or naphthyl-C₁-C₆-alkyl, each of which is optionally mono- to trisubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, cyano, or nitro, represents hydrogen, C₁-C₁₂-alkyl, or C₁-C₈-alkoxy-C₁-C₆-alkyl, or

CS8689 - 7 -

- A, B and the carbon atom to which they are attached represent saturated C₃-C₁₀-cycloalkyl or unsaturated C₅-C₁₀-cycloalkyl in which one ring member is optionally replaced by oxygen or sulphur and that are optionally mono- or disubstituted by C₁-C₈-alkyl, C₃-C₁₀-cycloalkyl, C₁-C₈-haloalkyl, C₁-C₈-alkoxy, C₁-C₈-alkylthio, halogen, or phenyl, or
- A, B and the carbon atom to which they are attached represent C₃-C₆-cycloalkyl that is substituted by an alkylenediyl group that optionally contains one or two oxygen and/or sulphur atoms that are not directly adjacent and that is optionally mono- to tetrasubstituted by C₁-C₄-alkyl or by an alkylenedioxyl or an alkylenedithioyl group that, together with the carbon atom to which it is attached, forms a further five- to eightmember ring; or represent C₃-C₈-cycloalkyl or C₅-C₈-cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent C₂-C₆-alkanediyl, C₂-C₆-alkenediyl, or C₄-C₆-alkanediendiyl, each of which is optionally mono- to disubstituted by C₁-C₆-alkyl, C₁-C₆-alkoxy, or halogen and in which one methylene group is optionally replaced by oxygen or sulphur,
- represents hydrogen; represents C₁-C₁₂-alkyl, C₃-C₈-alkenyl, C₃-C₈-alkynyl, or C₁-C₁₀-alkoxy-C₁-C₈-alkyl, each of which is optionally mono- to pentasubstituted by halogen; represents C₃-C₈-cycloalkyl that is optionally mono- to trisubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkyl and in which one ring member is optionally replaced by oxygen or sulphur; or represents phenyl, hetaryl having 5 or 6 ring atoms, phenyl-C₁-C₆-alkyl, or hetaryl-C₁-C₆-alkyl having 5 or 6 ring atoms, each of which radicals is optionally mono- to trisubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkoxy, cyano, or nitro, or
- A and D together represent C₃-C₆-alkanediyl or C₃-C₆-alkenediyl in which one methylene group is optionally replaced by a carbonyl group, oxygen, or sulphur and that is optionally mono- or disubstituted by

CS8689 - 8 -

halogen, hydroxyl, or mercapto, by C₁-C₁₀-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₃-C₇-cycloalkyl, phenyl, or benzyloxy, each of which is optionally mono- to trisubstituted by halogen, or by a further C₃-C₆-alkanediyl group, C₃-C₆-alkenediyl group, or butadienyl group that is optionally substituted by C₁-C₆-alkyl or in which two adjacent substituents together with the carbon atoms to which they are attached optionally form a further saturated or unsaturated cycle having 5 or 6 ring atoms that optionally contains oxygen or sulphur or that optionally contains one of the groups

Q¹ represents hydrogen or C₁-C₄-alkyl, or

A and Q¹ together represent C₃-C₆-alkanediyl or C₄-C₆-alkenediyl, each of which is optionally mono- or disubstituted by identical or different substituents selected from the group consisting of halogen, hydroxyl, C₁-C₁₀-alkyl that is optionally mono- to trisubstituted by identical or different halogen, C₁-C₆-alkoxy that is optionally mono- to trisubstituted by identical or different halogen, C₁-C₆-alkylthio that is optionally mono- to trisubstituted by identical or different halogen, C₃-C₇-cyclo-

CS8689

alkyl that is optionally mono- to trisubstituted by identical or different halogen, benzyloxy that is optionally mono- to trisubstituted by identical or different substituents selected from the group consisting of halogen, C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy, and phenyl that is optionally mono- to trisubstituted by identical or different substituents selected from the group consisting of halogen, C_1 - C_6 -alkyl and C_1 - C_6 -alkoxy, and wherein the C_3 - C_6 -alkanediyl or C_4 - C_6 -alkenediyl optionally contains one of the groups

or is bridged by a C₁-C₂-alkanediyl group or by an oxygen atom,

- ${\sf Q}^2,\,{\sf Q}^4,\,{\sf Q}^5$ and ${\sf Q}^6$ independently of one another represent hydrogen or ${\sf C}_1\text{-}{\sf C}_4\text{-}{\sf alkyl},$
- q3 represents hydrogen; represents C₁-C₆-alkyl, C₁-C₆-alkoxy-C₁-C₂-alkyl, or C₁-C₆-alkylthio-C₁-C₂-alkyl, each of which is optionally monoto pentasubstituted by halogen; represents C₃-C₈-cycloalkyl that is optionally substituted by C₁-C₄-alkyl or C₁-C₄-alkoxy and in which one methylene group is optionally replaced by oxygen or sulphur; or represents phenyl that is optionally mono- or disubstituted by halogen, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, cyano, or nitro, or

- Q³ and Q⁴ together with the carbon atom to which they are attached represent a C₃-C₇-ring that is optionally mono- to trisubstituted by C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₂-haloalkyl and in which one ring member is optionally replaced by oxygen or sulphur,
- G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur, and

M represents oxygen or sulphur,

 R^1 represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₈-alkylthio-C₁-C₈-alkyl, or poly-C₁-C₈-alkoxy-C₁-C₈-alkyl, each of which is optionally mono- to pentasubstituted by halogen; represents C₃-C₈-cycloalkyl that is optionally mono- to trisubstituted by halogen, C₁-C₆-alkyl, or C₁-C₆-alkoxy and in which one or more ring members that are not directly adjacent are optionally replaced by oxygen and/or sulphur; represents phenyl that is optionally mono- to trisubstituted by halogen, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl, C₁-C₆-haloalkoxy, C₁-C₆-alkylthio, or C₁-C₆-alkylsulphonyl; represents phenyl-C₁-C₆-alkyl that is optionally mono- to trisubstituted by halogen, nitro, cyano, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl, or C₁-C₆-haloalkoxy; represents 5- or 6-membered hetaryl that is optionally mono- or disubstituted by halogen or C₁-C₆-alkyl; represents phenoxy C₁-C₆-alkyl that is optionally mono- or disubstituted by halogen or C₁-C₆-alkyl; or represents 5- or 6-membered hetaryloxy

- C_1 - C_6 -alkyl that is optionally mono- or disubstituted by halogen, amino, or C_1 - C_6 -alkyl,
- represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₂-C₈-alkyl, or poly-C₁-C₈-alkoxy-C₂-C₈-alkyl, each of which is optionally mono- to pentasubstituted by halogen; represents C₃-C₈-cycloalkyl that is optionally mono- or disubstituted by halogen, C₁-C₆-alkyl, or C₁-C₆-alkoxy; or represents phenyl or benzyl, each of which is optionally mono- to trisubstituted by halogen, cyano, nitro, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl, or C₁-C₆-haloalkoxy,
- represents C₁-C₈-alkyl that is optionally mono- to nonasubstituted by halogen; or represents phenyl or benzyl, each of which is optionally mono- to trisubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, cyano, or nitro,
- R⁴ and R⁵ independently of one another represent C₁-C₈-alkyl, C₁-C₈-alkyl, C₁-C₈-alkylamino, di(C₁-C₈-alkyl)amino, C₁-C₈-alkylthio, C₂-C₈-alkenylthio, or C₃-C₇-cycloalkylthio, each of which is optionally mono- to pentasubstituted by halogen; or represent phenyl, phenoxy, or phenylthio, each of which is optionally mono- to trisubstituted by halogen, nitro, cyano, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-haloalkylthio, C₁-C₄-alkyl, or C₁-C₄-haloalkyl,
- R⁶ and R⁷ independently of one another represent hydrogen; represent C₁-C₈-alkyl, C₃-C₈-cycloalkyl, C₁-C₈-alkoxy, C₃-C₈-alkenyl, or C₁-C₈-alkoxy-C₁-C₈-alkyl, each of which is optionally monoto pentasubstituted by halogen; represent phenyl that is optionally monoto trisubstituted by halogen, C₁-C₈-haloalkyl, C₁-C₈-alkyl, or C₁-C₈-alkoxy; or represent benzyl that is optionally monoto trisubstituted by halogen, C₁-C₈-alkyl, C₁-C₈-haloalkyl, or C₁-C₈-alkoxy; or R⁶ and R⁷ together represent a C₃-C₆-alkylene radical that is optionally mono- or

CS8689 - 12 -

- disubstituted by C₁-C₄-alkyl and in which one carbon atom is optionally replaced by oxygen or sulphur,
- R13 represents hydrogen; represents C₁-C₈-alkyl or C₁-C₈-alkoxy, each of which is optionally mono- to trisubstituted by halogen; represents C₃-C₈-cycloalkyl that is optionally mono- to trisubstituted by halogen, C₁-C₄-alkyl, or C₁-C₄-alkoxy and in which one methylene group is optionally replaced by oxygen or sulphur; or represents phenyl, phenyl-C₁-C₄-alkyl, or phenyl-C₁-C₄-alkoxy, each of which is optionally mono-or disubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro, or cyano,
- R¹⁴ represents hydrogen or C₁-C₈-alkyl, or
- R¹³ and R¹⁴ together represent C₄-C₆-alkanediyl,
- R^{15} and R^{16} are identical or different and represent $\mathsf{C}_1\text{-}\mathsf{C}_6\text{-alkyl}$, or
- R¹⁵ and R¹⁶ together represent a C₂-C₄-alkanediyl radical that is optionally mono- or disubstituted by C₁-C₆-alkyl or C₁-C₆-haloalkyl, or by phenyl that is optionally mono- or disubstituted by halogen, C₁-C₆-alkyl, C₁-C₄-haloalkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkoxy, nitro, or cyano,
- R¹⁷ and R¹⁸ independently of one another represent hydrogen; represent optionally halogen-substituted C₁-C₈-alkyl; or represent phenyl that is optionally mono- or disubstituted by halogen, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, nitro, or cyano, or
- R¹⁷ and R¹⁸ together with the carbon atom to which they are attached represent a carbonyl group or represent C₅-C₇-cycloalkyl that is optionally mono- or disubstituted by halogen, C₁-C₄-alkyl, or C₁-C₄-alkoxy and in which one methylene group is optionally replaced by oxygen or sulphur, and

CS8689 - 13 -

 R^{19} and R^{20} independently of one another represent C_1 - C_{10} -alkyl, C_2 - C_{10} -alkenyl, C_1 - C_{10} -alkoxy, C_1 - C_{10} -alkylamino, C_3 - C_{10} -alkenylamino, di(C_1 - C_{10} -alkyl)amino, or di(C_3 - C_{10} -alkenyl)amino.

Claim 38 (new): A compound of formula (I) according to Claim 36 in which

X represents fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, nitro, or cyano,

W and Y independently of one another represent hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkoxy,

Z represents one of the groups

in which

- V¹ represents hydrogen, fluorine, chlorine, bromine, iodine, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, cyano, or nitro, and
- V² represents hydrogen, fluorine, chlorine, bromine, C₁-C₄-alkyl, or C₁-C₂-haloalkyl, or
- V¹ and V² together represent C₃-C₄-alkanediyl that is optionally mono- to tetrasubstituted by fluorine and that is optionally interrupted once or twice by oxygen; or represent butadienyl that is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, cyano, or nitro, and

CKE represents one of the groups

in which

A represents hydrogen, represents C₁-C₆-alkyl, or C₁-C₄-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine; represents C₃-C₆-cycloalkyl that is optionally mono- or disubstituted by fluorine, chlorine, C₁-C₂-alkyl, trifluoromethyl, or C₁-C₂-alkoxy; or, except for compounds in which CKE is (3), (4), (6), or (7), represents phenyl or benzyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkoxy, cyano, or nitro,

B represents hydrogen, C₁-C₄-alkyl, or C₁-C₂-alkoxyl-C₁-C₂-alkyl or

A, B, and the carbon atom to which they are attached represent saturated C₃-C₇-cycloalkyl or unsaturated C₅-C₇-cycloalkyl in which one ring

member is optionally replaced by oxygen or sulphur and that is optionally mono- or disubstituted by C_1 - C_6 -alkyl, trifluoromethyl or C_1 - C_6 -alkoxy, with the proviso that Q^3 represents hydrogen or methyl; represent C_5 - C_6 -cycloalkyl that is substituted by an alkylenediyl group that optionally contains one or two oxygen or sulphur atoms that are not directly adjacent and that is optionally mono- or disubstituted by methyl or ethyl, or by an alkylenedioxyl or an alkylenedithiol group that, together with the carbon atom to which it is attached, forms a further five- or six-membered ring, with the proviso that Q^3 represents hydrogen or methyl; or represent C_3 - C_6 -cycloalkyl or C_5 - C_6 -cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent C_2 - C_4 -alkanediyl, C_2 - C_4 -alkenediyl, or butadienediyl, each of which is optionally substituted by C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy, with the proviso that Q^3 represents hydrogen or methyl,

D represents hydrogen; represents C₁-C₆-alkyl, C₃-C₆-alkenyl, or C₁-C₄-alkoxy-C₂-C₃-alkyl, each of which is optionally mono- to trisubstituted by fluorine; represents C₃-C₆-cycloalkyl that is optionally mono- or disubstituted by C₁-C₄-alkyl, C₁-C₄-alkoxy, or C₁-C₂-haloalkyl and in which one methylene group is optionally replaced by oxygen; or, except for compounds in which CKE is (1), represents phenyl or pyridyl, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkoxy, or

A and D together represent C₃-C₅-alkanediyl in which one methylene group is optionally replaced by a carbonyl group, oxygen, or sulphur and that is optionally mono- or disubstituted by C₁-C₂-alkyl or C₁-C₂-alkoxy; or when CKE is (I), together represent one of the groups AD-1 to AD-10

CS8689 - 16 -

AD-10

Q1 represents hydrogen, or

A and Q¹ together represent C_3 - C_4 -alkanediyl or C_4 -alkenediyl, each of which is optionally mono- or disubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, hydroxyl, C_1 - C_8 -alkyl, that is optionally mono- to trisubstituted by fluorine, and C_1 - C_4 -alkoxy that is optionally mono- to trisubstituted by fluorine,

- Q² represents hydrogen,
- ${\sf Q}^4,\,{\sf Q}^5$ and ${\sf Q}^6$ independently of one another represent hydrogen or C₁-C₃-alkyl,
- Q³ represents hydrogen, C₁-C₄-alkyl, or trifluoromethyl; or represents C₃-C₆-cycloalkyl that is optionally mono- or disubstituted by methyl or methoxy, or

CS8689

- ${\sf Q}^3$ and ${\sf Q}^4$ together with the carbon to which they are attached represent a saturated C₅-C₆-ring that is optionally mono- or disubstituted by C₁-C₂-alkyl or C₁-C₂-alkoxy and in which one ring member is optionally replaced by oxygen or sulphur, with the proviso that A represents hydrogen or methyl, and
- G represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur

M represents oxygen or sulphur,

- R¹ represents C₁-C₈-alkyl, C₂-C₈-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, or C₁-C₄-alkylthio-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine; represents C₃-C₆-cycloalkyl that is optionally mono- or disubstituted by fluorine, chlorine, C₁-C₂-alkyl, or C₁-C₂-alkoxy and in which optionally one or two ring members that are not directly adjacent are replaced by oxygen; or represents phenyl that is optionally mono- or disubstituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, or C₁-C₂-haloalkoxy,
- R² represents C₁-C₈-alkyl, C₂-C₈-alkenyl, or C₁-C₄-alkoxy-C₂-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine; represents C₃-C₆-cycloalkyl that is optionally mono-substituted by C₁-C₂-alkyl or C₁-C₂-alkoxy; or represents phenyl or benzyl, each of which is optionally mono- or disub-

- stituted by fluorine, chlorine, bromine, cyano, nitro, C₁-C₄-alkyl, C₁-C₃-alkoxy, trifluoromethyl, or trifluoromethoxy,
- represents C₁-C₆-alkyl that is optionally mono- to trisubstituted by fluorine; or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, trifluoromethyl, trifluoromethoxy, cyano, or nitro,
- represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylamino, di(C₁-C₆-alkyl)amino, C₁-C₆-alkylthio, C₃-C₄-alkenylthio, or C₃-C₆-cycloalkylthio, each of which is optionally mono- to trisubstituted by fluorine; or represents phenyl, phenoxy, or phenylthio, each of which is optionally mono- or disubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₃-alkoxy, C₁-C₃-haloalkoxy, C₁-C₃-alkylthio, C₁-C₃-haloalkylthio, C₁-C₃-alkyl, or trifluoromethyl,
- R⁵ represents C₁-C₆-alkoxy or C₁-C₆-alkylthio,
- represents hydrogen; represents C₁-C₆-alkyl, C₃-C₆-cycloalkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl, or C₁-C₆-alkoxy-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine; represents phenyl that is optionally mono- or disubstituted by fluorine, chlorine, bromine, trifluoromethyl, C₁-C₄-alkyl, or C₁-C₄-alkoxy; represents benzyl that is optionally monosubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, trifluoromethyl, or C₁-C₄-alkoxy, and
- R⁷ represents C₁-C₆-alkyl, C₃-C₆-alkenyl, or C₁-C₆-alkoxy-C₁-C₄-alkyl, or R⁶ and R⁷ together represent a C₄-C₅-alkylene radical that is optionally mono- or disubstituted by methyl or ethyl and in which a methylene group is optionally replaced by oxygen or sulphur.

Claim 39 (new): A compound of formula (I) according to Claim 36 in which

- W represents hydrogen, methyl, ethyl, or chlorine,
- X represents chlorine, methyl, ethyl, propyl, methoxy, ethoxy, propoxy, trifluoromethyl, difluoromethoxy, or trifluoromethoxy,
- Y represents hydrogen or methyl,
- Z represents one of the groups

$$V^1$$
 or V^1 N N

in which V¹ represents hydrogen, fluorine, chlorine, bromine, methyl, ethyl, methoxy, ethoxy, trifluoromethyl, or cyano, and

CKE represents one of the groups

in which

A represents hydrogen; represents C₁-C₄-alkyl or C₁-C₂-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine;

CS8689

represents cyclopropyl, cyclopentyl, or cyclohexyl; or, when CKE is (5), represents phenyl that is optionally mono- or disubstituted by fluorine, chlorine, bromine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, trifluoromethyl, trifluoromethoxy, cyano, or nitro,

- B represents hydrogen, methyl, or ethyl, or
- A, B, and the carbon atom to which they are attached represent saturated C_5 - C_6 -cycloalkyl in which one ring member is optionally replaced by oxygen or sulphur and that is optionally monosubstituted by methyl, ethyl, propyl, isopropyl, trifluoromethyl, methoxy, ethoxy, propoxy, butoxy, or isobutoxy, with the proviso that Q^3 represents hydrogen; represent C_6 -cycloalkyl that is substituted by an alkylenedioxyl group containing two not directly adjacent oxygen atoms, with the proviso that Q^3 represents hydrogen; or represent C_5 - C_6 -cycloalkyl or C_5 - C_6 -cycloalkenyl in which two substituents together with the carbon atoms to which they are attached represent C_2 - C_4 -alkanediyl, C_2 - C_4 -alkenediyl, or butadienediyl, with the proviso that Q^3 represents hydrogen,
- D represents hydrogen; represents C₁-C₄-alkyl, C₃-C₄-alkenyl, or C₁-C₄-alkoxy-C₁-C₃-alkyl, each of which is optionally mono- to trisubstituted by fluorine; represents cyclopropyl, cyclopentyl, or cyclohexyl; or, except when CKE is (1), represents pyridyl or phenyl that is optionally monosubstituted by fluorine, chlorine, methyl, ethyl, n-propyl, isopropyl, methoxy, ethoxy, or trifluoromethyl, or
- A and D together represent C₃-C₅-alkanediyl that is optionally mono- or disubstituted by methyl or methoxy and in which one carbon atom is optionally replaced by oxygen or sulphur; or represent the group AD-1

Q¹ represents hydrogen, or

A and Q¹ together represent C₃-C₄-alkanediyl that is optionally mono- or disubstituted by methyl or methoxy,

CS8689

- Q² represents hydrogen,
- Q⁴, Q⁵ and Q⁶ independently of one another represent hydrogen or methyl,
- Q3 represents hydrogen, methyl, ethyl, propyl, or isopropyl, or
- Q³ and Q⁴ together with the carbon to which they are attached represent a saturated C₅-C₆-ring that is optionally monosubstituted by methyl or methoxy, with the proviso that A represents hydrogen, and represents hydrogen (a) or represents one of the groups

in which

E represents a metal ion equivalent or an ammonium ion,

L represents oxygen or sulphur

M represents oxygen or sulphur,

represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₂-alkoxy-C₁-alkyl, or C₁-C₂-alkylthio-C₁-alkyl, each of which is optionally mono- to trisubstituted by fluorine; represents cyclopropyl or cyclohexyl, each of which is optionally monosubstituted by fluorine, chlorine, methyl, or methoxy; represents phenyl that is optionally monosubstituted by fluorine, chlorine, bromine, cyano, nitro, methyl, methoxy, trifluoromethyl, or trifluoromethoxy,

R² represents C₁-C₈-alkyl, C₂-C₆-alkenyl, or C₁-C₄-alkoxy-C₂-C₃-alkyl, each of which is optionally monosubstituted by fluorine; or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, cyano, nitro, methyl, ethyl, n-propyl, i-propyl, methoxy, ethoxy, trifluoromethyl, or trifluoromethoxy,

- R³ represents methyl, ethyl, n-propyl, or isopropyl, each of which is optionally mono- to trisubstituted by fluorine; or represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, tert-butyl, methoxy, trifluoromethyl, trifluoromethoxy, cyano, or nitro,
- R⁴ represents C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, di(C₁-C₄-alkyl)amino, or C₁-C₄-alkylthio, each of which is optionally mono- to trisubstituted by fluorine; or represents phenyl, phenoxy, or phenylthio, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, cyano, C₁-C₂-alkoxy, C₁-C₂-fluoroalkoxy, C₁-C₂-alkylthio, or C₁-C₃-alkyl,
- R⁵ represents methoxy, ethoxy, propoxy, butoxy, methylthio, ethylthio, propylthio, or butylthio,
- R6 represents hydrogen; represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₃-C₄-alkenyl, or C₁-C₄-alkoxy-C₁-C₄-alkyl, each of which is optionally mono- to trisubstituted by fluorine; represents phenyl that is optionally monosubstituted by fluorine, chlorine, bromine, trifluoromethyl, methyl, or methoxy; or represents benzyl that is optionally monosubstituted by fluorine, chlorine, bromine, methyl, trifluoromethyl, or methoxy, and
- R⁷ represents methyl, ethyl, propyl, isopropyl, butyl, isobutyl, or allyl, or
- R⁶ and R⁷ represent a C₄-C₅-alkylene radical in which one methylene group is optionally replaced by oxygen or sulphur.

Claim 40 (new): A compound of formula (I) according to Claim 36 in which

- W represents hydrogen, methyl, or ethyl,
- X represents chlorine, methyl, or ethyl,
- Y represents hydrogen,

CS8689 - 23 -

Z represents, in the 4- or 5-position, the group

in which V1 represents chlorine or methoxy, and

CKE represents one of the groups

in which

A represents hydrogen, C₁-C₄-alkyl, or cyclopropyl,

B represents hydrogen or methyl, or

A, B, and the carbon atom to which they are attached represent saturated $C_5\text{-}C_6\text{-}\text{cycloalkyl in which one ring member is optionally replaced by } \\ \text{oxygen and that is optionally monosubstituted by methyl or methoxy,} \\ \text{with the proviso that } Q^3 \text{ represents hydrogen,}$

D represents hydrogen, or

A and D together represent C₃-C₅-alkanediyl in which one carbon atom is optionally replaced by oxygen,

- Q1 represents hydrogen,
- Q² represents hydrogen,
- Q³ represents methyl,
- Q4 represents methyl, or
- ${\sf Q}^3$ and ${\sf Q}^4$ together with the carbon to which they are attached represent a saturated C5-C6-ring, with the proviso that A represents hydrogen,

Q⁵ represents hydrogen,

Q6 represents hydrogen, and

G represents hydrogen (a) or represents one of the groups

in which

L represents oxygen,

M represents oxygen or sulphur,

R¹ represents C₁-C₆-alkyl or C₁-C₂-alkoxy-C₁-alkyl, and

R2 represents C₁-C₈-alkyl or benzyl.

Claim 41 (new): A process for preparing compounds of formula (I) according to Claim 36 comprising

(A) for compounds of formula (I-1-a)

in which A, B, D, W, X, Y, and Z are as defined for formula (I) in Claim 36,

intramolecularly condensing a compound of formula (II)

$$A \xrightarrow{CO_2R^8} A \xrightarrow{B} X$$

$$D \xrightarrow{N} Q \qquad X$$

$$Z \qquad (II)$$

in which

A, B, D, W, X, Y, and Z are as defined for formula (I) in Claim 36, and

R8 represents alkyl,

in the presence of a diluent and in the presence of a base,

(B) for compounds of formula (I-2-a)

in which A, B, W, X, Y, and Z are as defined for formula (I) in Claim 36, intramolecularly condensing a compound of formula (III)

$$\begin{array}{c}
A \\
B \\
O \\
O \\
W
\end{array}$$

$$\begin{array}{c}
X \\
Y \\
Z
\end{array}$$
(III)

in which A, B, W, X, Y, Z and R^8 are as defined for formula (I) in Claim 36,

in the presence of a diluent and in the presence of a base,

(C) for compounds of formula (I-3-a)

$$\begin{array}{c|c}
A & HO & X \\
\hline
S & & & & \\
\hline
O & W & Z
\end{array}$$
(I-3-a)

in which A, B, W, X, Y, and Z are as defined for formula (I) in Claim 36, intramolecularly cyclizing a compound of formula (IV)

in which

A, B, W, X, Y, and Z are as defined for formula (I) in Claim 36,

R8 represents alkyl, and

V represents hydrogen, halogen, or alkoxy, optionally in the presence of a diluent and in the presence of an acid,

(D) compounds of the formula (I-4-a)

$$D \xrightarrow{O} X Y$$

$$A OH W$$

$$(I-4-a)$$

in which A, D, W, X, Y, and Z are as defined for formula (I) in Claim 36, reacting a compound of formula (V)

in which A and D are as defined for formula (I) in Claim 36, or a silyl enol ether thereof of formula (Va)

CHA
$$\begin{array}{c|c}
| \\
D - C - OSi(R^8)_3
\end{array}$$
(Va)

in which

A and D are as defined for formula (I) in Claim 36, and

R⁸ represents alkyl,

with a compound of formula (VI)

in which

W, X, Y, and Z are as defined for formula (I) in Claim 36, and

Hal represents halogen,

optionally in the presence of a diluent and optionally in the presence of an acid acceptor,

(E) for compounds of formula (I-5-a)

$$A \longrightarrow S \longrightarrow V$$
 (I-5-a)

in which A, W, X, Y, and Z are as defined for formula (I) in Claim 36, reacting a compound of formula (VII)

in which A is as defined for formula (I) in Claim 36, with a compound of formula (VI)

in which

W, X, Y, and Z are as defined for formula (I) in Claim 36, and Hal represents halogen,

optionally in the presence of a diluent and optionally in the presence of an acid acceptor,

(F) for compounds of formula (I-6-a)

in which A, B, Q^1 , Q^2 , W, X, Y, and Z are as defined for formula (I) in Claim 36,

intramolecularly cyclizing a compound of formula (VIII)

$$R^8O_2C$$
 A
 B
 O
 X
 Y
 Z
 $(VIII)$

in which

A, B, Q¹, Q², W, X, Y, and Z are as defined for formula (I) in Claim 36, and

R⁸ represents alkyl,

optionally in the presence of a diluent and in the presence of a base,

(G) for compounds of formula (I-7-a)

$$Q^4$$
 Q^3
 A
 B
 Q^5
 Q^6
 W
 X
 $(I-7-a)$

in which A, B, Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y, and Z are as defined for formula (I) in Claim 36,

intramolecularly condensing a compound of formula (IX)

$$R^8O_2C$$
 Q^3
 Q^4
 Q^6
 X
 Z
(IX)

in which

A, B, Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y and Z are as defined for formula (I) in Claim 36, and

R8 represents alkyl,

in the presence of a diluent and in the presence of a base,

(H) for compounds of formula (I-8-a)

$$\begin{array}{c|c}
A & OH & X \\
\hline
D & N & Z
\end{array}$$

$$\begin{array}{c|c}
Y & (I-8-a)
\end{array}$$

in which A, D, W, X, Y, and Z are as defined for formula (I) in Claim 36, reacting a compound of formula (X)

in which A and D are as defined for formula (I) in Claim 36,

(α) with a compound of formula (VI)

in which

W, X, Y, and Z are as defined for formula (I) in Claim 36, and Hal represents halogen, optionally in the presence of a diluent and optionally in the presence of an acid acceptor, or

(ß) with a compound of formula (XI)

in which

W, X, Y, and Z are as defined for formula (I) in Claim 36,

U represents NH₂ or O-R⁸, and

R⁸ represents alkyl,

optionally in the presence of a diluent and optionally in the presence of a base, or

(γ) with a compound of formula (XII)

$$\begin{array}{c|c}
X & A \\
N & CO_2R^8
\end{array}$$

$$Z & W & O$$

$$X & Y & CO_2R^8$$

$$Y & Y & CO_2R^8$$

in which

A, D, W, X, Y, and Z are as defined for formula (I) in Claim 36, and R8 represents alkyl,

optionally in the presence of a diluent and optionally in the presence of a base,

(I) for compounds of formulas (I-1-b) to (I-8-b)

$$R^1$$
 A
 O
 X
 Z
 Y
 Z

(I-3-b):

$$R^1$$
 A
 O
 X
 Z
 Z
 X
 Z

(I-6-b):

$$R^1$$
 A O X Y Z Q^1 Q^2 O W Z

(I-7-b):

in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , R^1 , W, X, Y, and Z are as defined for formula (I) in Claim 36,

reacting a compound of formulas (I-1-a) to (I-8-a)

(I-1-a):

(I-2-a):

(I-3-a):

(I-4-a):

(I-6-a):

(I-7-a):

(I-8-a):

in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y and Z are as defined for formula (I) in Claim 36,

(α) with an acid halide of formula (XIII)

Hal
$$\nearrow$$
 R¹

(XIII)

in which

R¹ is as defined for formula (I) in Claim 36, and

Hal represents halogen,

or

(ß) a carboxylic anhydride of formula (XIV)

R1-C0-0-C0-R1

(XIV)

in which R¹ is as defined for formula (I) in Claim 36, optionally in the presence of a diluent and optionally in the presence of an acid binder,

(J) for compounds of formulas (I-1-c) to (I-8-c)

(I-1-c):

(I-2-c):

(I-3-c):

(I-4-c):

$$\begin{array}{c|c}
 & L \\
 & II \\
 & C-C-M-R^2 \\
 & X \\
 & X$$

(I-5-c):

(I-6-c):

(I-7-c): Q^4 Q^3 A B Q^5 Q^5

in which

A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R², M, W, X, Y, and Z are as defined for formula (I) in Claim 36, and

L represents oxygen,

reacting a compound of formulas (I-1-a) to (I-8-a) shown above in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y, and Z are as defined for formula (I) in Claim 36, with a chloroformic ester or chloroformic thioester of formula (XV)

$$R^2$$
-M-CO-CI (XV)

in which R² and M are as defined for formula (I) in Claim 36, optionally in the presence of a diluent and optionally in the presence of an acid binder,

(K) for compounds of formulas (I-1-c) to (I-8-c)

(1-2-c):

(1-3-c):

(I-4-c):

$$\begin{array}{c|c}
 & & \downarrow \\
 & \downarrow$$

$$R^2-M$$
 A
 X
 Y
 Y

(I-7-c): (I-8-c):
$$Q^4 Q^3 A B D X Y$$

$$R^2 - M Q^6 X A N Z$$

$$W Y M-R^2$$

in which

A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R², M, W, X, Y, and Z are as defined for formula (I) in Claim 36, and

L represents sulphur,

reacting a compound of formulas (I-1-a) to (I-8-a) shown above in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y, and Z are as defined for formula (I) in Claim 36, with a chloromonothioformic ester or chlorodithioformic ester of formula (XVI)

$$CI \longrightarrow M-R^2$$
 (XVI)

in which M and R^2 are as defined for formula (I) in Claim 36, optionally in the presence of a diluent and optionally in the presence of an acid binder,

CS8689 - 36 -

(L) for compounds of formulas (I-1-d) to (I-8-d)

(I-1-d):

(I-2-d):

$$\begin{array}{c|c} A & O-SO_2-R^3 \\ \hline A & X \\ \hline O & W \\ \end{array}$$

(I-3-d):

(I-4-d):

$$\begin{array}{c|c}
 & O-SO_2-R^3 \\
 & X \\
 & X$$

(I-5-d):

(I-6-d):

$$R^3$$
-SO₂-O X

(I-7-d):

(I-8-d):

$$Q^{4}$$
 Q^{3}
 Q^{5}
 Q^{6}
 Q^{6

in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , R^3 , W, X, Y and Z are as defined for formula (I) in Claim 36,

reacting a compound of formulas (I-1-a) to (I-8-a) shown above in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y, and Z are as defined for formula (I) in Claim 36, with a sulphonyl chloride of formula (XVII)

$$R^3$$
-SO₂-Cl (XVII)

in which R^3 is as defined for formula (I) in Claim 36, optionally in the presence of a diluent and optionally in the presence of an acid binder,

(M) for compounds of formulas (I-1-e) to (I-8-e)

in which A, B, D, L, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , R^4 , R^5 , W, X, Y, and Z are as defined for formula (I) in Claim 36,

reacting a compound of formulas (I-1-a) to (I-8-a) shown above in which A, B, D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X, Y, and Z are as defined for formula (I) in Claim 36, with a phosphorus compound of formula (XVIII)

in which

L, \mathbb{R}^4 , and \mathbb{R}^5 are as defined for formula (I) in Claim 36, and Hal represents halogen,

optionally in the presence of a diluent and optionally in the presence of an acid binder,

(N) for compounds of formulas (I-1-f) to (I-8-f)

I-3-f):

(I-4-f):

$$\begin{array}{c|c}
 & O-E \\
 & X \\
 & X \\
 & X
\end{array}$$

(I-5-f):

(I-6-f):

(I-7-f):

(I-8-f):

$$Q^4$$
 Q^3
 A
 B
 Q^5
 Q^6
 X
 $E-O$
 Y
, or

in which A, B, D, E, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y, and Z are as defined for formula (I) in Claim 36,

reacting a compound of formulas (I-1-a) to (I-8-a) shown above in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y, and Z are as defined for formula (I) in Claim 36, with a metal compound of formula (XIX)

 $Me(OR^{10})_t$ (XIX)

in which

Me represents a mono- or divalent metal, and

t represents the number 1 or 2,

or with an amine of formula (XX)

$$R^{10} \sim R^{11}$$

in which R^{10} , R^{11} , and R^{12} independently of one another represent hydrogen or alkyl,

optionally in the presence of a diluent,

(O) for compounds of formulas (I-1-g) to (I-8-g)

(I-2-g):

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(I-3-g):

(I-4-g):

$$\begin{array}{c|c}
 & L \\
 & R^6 \\
 & Q - C - N \\
 & R^7 \\
 & X \\
 & X \\
 & Z
\end{array}$$

$$R^7 - N$$
 R^6
 W
 Z

(I-5-g):

(i-6-g):

$$\begin{array}{c}
A \\
S \\
N \\
S \\
O \\
X \\
X \\
Y \\
Z
\end{array}$$

in which A, B, D, L, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, R⁶, R⁷, W, X, Y, and Z are as defined for formula (I) in Claim 36, reacting a compound of formulas (I-1-a) to (I-8-a) shown above in which A, B,

D, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X, Y, and Z are as defined for formula (I) in Claim 36,

(α) with an isocyanate or isothiocyanate of formula (XXI)

$$R^6-N=C=L$$
 (XXI)

in which R^6 and L are as defined for formula (I) in Claim 36, optionally in the presence of a diluent and optionally in the presence of a catalyst, or

(ß) with a carbamoyl chloride or thiocarbamoyl chloride of formula (XXII)

$$\begin{array}{c|c}
R^6 & \downarrow & \\
R^7 & N & CI
\end{array}$$
(XXII)

in which L, R^6 , and R^7 are as defined for formula (I) in Claim 36, optionally in the presence of a diluent and optionally in the presence of an acid binder,

and

(P) for compounds of formulas (I-1) to (I-8) shown above

in which A, B, D, Q^1 , Q^2 , Q^3 , Q^4 , Q^5 , Q^6 , W, X, Y and Z are as defined for formula (I) in Claim 36,

reacting a compound of formulas (I-1') to (I-8')

(I-2'):

(I-3'):

(I-4'):

(I-6'):

(I-7'):

$$Q^4$$
 Q^3
 A
 B
 Q^5
 Q^6
 Q^6
 Q^7
 Q^8
 $Q^$

(1-8'):

$$G-O$$
 X
 Y
 Z'

in which

A, B, D, G, Q¹, Q², Q³, Q⁴, Q⁵, Q⁶, W, X, and Y are as defined for formula (I) in Claim 36, and

Z' represents chlorine, bromine, or iodine, with an NH heterocycle of formula (XXIII)

(XXIII)

in which

Z is as defined for formula (I) in Claim 36, in the presence of a solvent, a base, and a catalyst.

Claim 42 (new): A compound of formula (II)

$$A \xrightarrow{CO_2R^8} B$$

$$D \xrightarrow{N} X$$

$$O_W \xrightarrow{Z} Y$$

$$(II)$$

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,

W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or

A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,

D represents hydrogen; represents optionally substituted alkyl, alkenyl, alkynyl, or alkoxyalkyl; represents saturated or unsaturated cycloalkyl, in which one or more ring atoms are optionally replaced by a heteroatom; or represents arylalkyl, aryl, hetarylalkyl, or hetaryl, or

A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle that optionally contains one or more heteroatoms and that is unsubstituted or substituted in the A,D moiety, and

R⁸ represents alkyl.

Claim 43 (new): A compound of formula (III)

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,

W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl, and represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms, and

R8 represents alkyl.

Claim 44 (new): A compound of formula (IV)

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,

W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl, and represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- V represents hydrogen, halogen, or alkoxy, and
- R8 represents alkyl.

Claim 45 (new): A compound of formula (VI)

in which

- represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-Χ sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenylalkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Ζ represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups, and

Hal represents halogen.

Claim 46 (new): A compound of formula (VIII)

in which

- X represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkylsulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenylalkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- Q¹ represents hydrogen or alkyl, or
- A and Q¹ together represent optionally halogen- or hydroxy-substituted alkanediyl; or represent alkanediyl or alkenediyl substituted by optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy, or aryl,
- Q² represents hydrogen or alkyl, and
- R⁸ represents alkyl.

Claim 47 (new): A compound of formula (IX)

in which

- X represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- Q⁴, Q⁵, and Q⁶ independently of one another represent hydrogen or alkyl,
- Q3 represents hydrogen; represents optionally substituted alkyl, alkoxyalkyl, or alkylthioalkyl; represents optionally substituted cycloalkyl in which one ring methylene group is optionally replaced by oxygen or sulphur; or represents optionally substituted phenyl, or
- Q³ and Q⁴ together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains a heteroatom, and
- R8 represents alkyl.

Claim 48 (new): A compound of formula (XI)

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano;

or represents optionally substituted phenyl, phenoxy, phenylthio, phenylalkoxy, or phenylalkylthio,

- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups, and
- U represents NH_2 or $O-R^8$.

Claim 49 (new): A compound of formula (XII)

$$\begin{array}{c|c} X & A \\ \hline N & CO_2R^8 \\ \hline Z & W & D \end{array} \tag{XIII)}$$

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,

- D represents hydrogen; represents optionally substituted alkyl, alkenyl, alkynyl, or alkoxyalkyl; represents saturated or unsaturated cycloalkyl, in which one or more ring atoms are optionally replaced by a heteroatom; or represents arylalkyl, aryl, hetarylalkyl, or hetaryl, or
- A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle that optionally contains two or more heteroatoms and that is unsubstituted or substituted in the A,D moiety, and

R⁸ represents alkyl.

Claim 50 (new): A compound of formula (XXV)

$$Z$$
 X
 COT
 (XXV)

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups, and
- T represents a leaving group introduced by a reagent that activates carboxylic acids.

Claim 51 (new): A compound according to Claim 50 wherein T represents a leaving group introduced by carbonyldiimidazole, a carbodiimide, a phosphorylating reagent, or a halogenating agent.

Claim 52 (new): A compound of formula (XXVI)

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms, and
- D represents hydrogen; represents optionally substituted alkyl, alkenyl, alkynyl, or alkoxyalkyl; represents saturated or unsaturated cycloalkyl, in which one or more ring atoms are optionally replaced by a heteroatom; or represents arylalkyl, aryl, hetarylalkyl, or hetaryl, or
- A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle that optionally contains one or more heteroatoms and that is unsubstituted or substituted in the A,D moiety.

CS8689 - 53 -

Claim 53 (new): A compound of formula (XXX)

$$Z \xrightarrow{X} D \qquad C \equiv N \qquad (XXX)$$

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms, and
- D represents hydrogen; represents optionally substituted alkyl, alkenyl, alkynyl, or alkoxyalkyl; represents saturated or unsaturated cycloalkyl, in which one or more ring atoms are optionally replaced by a heteroatom; or represents arylalkyl, aryl, hetarylalkyl, or hetaryl, or
- A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle that optionally contains one or more heteroatoms and that is unsubstituted or substituted in the A,D moiety.

Claim 54 (new): A compound of formula (XXVIII)

$$\begin{array}{c} X \\ Z \\ \hline \\ X \\ CO_2H \end{array} \tag{XXVIII)}$$

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano, and
- z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups.

Claim 55 (new): A compound of formula (XXXII)

$$\begin{array}{c}
X \\
Z
\end{array}$$

$$CO_2R^8$$
(XXXII)

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups, and

R⁸ represents alkyl.

Claim 56 (new): A compound of formula (XXXIV)

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,

W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano, and

Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups.

Claim 57 (new): A compound of formula (XXXV)

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,

W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- Q¹ represents hydrogen or alkyl, or
- A and Q¹ together represent optionally halogen- or hydroxy-substituted alkanediyl; or represent alkanediyl or alkenediyl substituted by optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy, or aryl, and
- Q² represents hydrogen or alkyl.

Claim 58 (new): A compound of formula (XXXVI)

$$\begin{array}{c|c}
X & CO_2R^{8'} \\
\hline
Q^1 & Q^2 \\
\hline
Q & A & B & CO_2R^8
\end{array} (XXXVI)$$

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,

- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- Q1 represents hydrogen or alkyl, or
- A and Q¹ together represent optionally halogen- or hydroxy-substituted alkanediyl; or represent alkanediyl or alkenediyl substituted by optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy, or aryl,
- Q² represents hydrogen or alkyl, and R⁸ and R^{8'} represent alkyl.

Claim 59 (new): A compound of formula (XXXIX)

in which

x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,

- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- Q⁴, Q⁵, and Q⁶ independently of one another represent hydrogen or alkyl, and represents hydrogen; represents optionally substituted alkyl, alkoxyalkyl, or alkylthioalkyl; represents optionally substituted cycloalkyl in which one ring methylene group is optionally replaced by oxygen or sulphur; or represents optionally substituted phenyl, or
- Q³ and Q⁴ together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains a heteroatom.

Claim 60 (new): A compound of formula (XL)

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkyl-sulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenyl-alkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen atom and that is optionally interrupted by one or two carbonyl groups,
- A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,
- B represents hydrogen, alkyl, or alkoxyalkyl, or
- A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,
- Q⁴, Q⁵, and Q⁶ independently of one another represent hydrogen or alkyl,
- Q3 represents hydrogen; represents optionally substituted alkyl, alkoxyalkyl, or alkylthioalkyl; represents optionally substituted cycloalkyl in which one ring methylene group is optionally replaced by oxygen or sulphur; or represents optionally substituted phenyl, or
- Q³ and Q⁴ together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains a heteroatom, and

R⁸ and R⁸ represent alkyl.

Claim 61 (new): A pesticide and/or herbicide and/or fungicide comprising one or more compounds of formula (I) according to Claim 36 and one or more extenders and/or surfactants.

Claim 62 (new): A method for controlling animal pests comprising allowing an effective amount of a compound of formula (I) according to Claim 36 to act on pests and/or their habitat.

Claim 63 (new): A method for controlling unwanted vegetation comprising allowing an effective amount of a compound of formula (I) according to Claim 36 to act on unwanted vegetation and/or its habitat.

Claim 64 (new): A method for controlling fungi comprising allowing an effective amount of a compound of formula (I) according to Claim 36 to act on fungi and/or their habitat.

Claim 65 (new): A process for preparing a pesticide and/or herbicide and/or fungicide comprising mixing one or more compounds of formula (I) according to Claim 36 with one or more extenders and/or surfactants.

Claim 66 (new): A compositions comprising an effective amount of an active compound combination comprising

(a') one or more substituted cyclic ketoenols of formula (I)

in which

- x represents halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, alkylthio, alkylsulphinyl, alkylsulphonyl, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, cyano; or represents optionally substituted phenyl, phenoxy, phenylthio, phenylalkoxy, or phenylalkylthio,
- W and Y independently of one another represent hydrogen, halogen, alkyl, alkenyl, alkynyl, alkoxy, alkenyloxy, haloalkyl, haloalkoxy, haloalkenyloxy, nitro, or cyano,
- Z represents an optionally saturated or unsaturated, optionally substituted heterocycle that is attached to the phenyl ring via a nitrogen

atom and that is optionally interrupted by one or two carbonyl groups, and

CKE represents one of the groups

in which

A represents hydrogen; represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or alkylthioalkyl; represents saturated or unsaturated, optionally substituted cycloalkyl in which one or more ring atoms are optionally replaced by a heteroatom; or represents optionally halogen-, alkyl-, haloalkyl-, alkoxy-, haloalkoxy-, cyano-, or nitro-substituted aryl, arylalkyl, or hetaryl,

B represents hydrogen, alkyl, or alkoxyalkyl, or

A and B together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains one or more heteroatoms,

- D represents hydrogen; represents optionally substituted alkyl, alkenyl, alkynyl, or alkoxyalkyl; represents saturated or unsaturated cycloalkyl, in which one or more ring atoms are optionally replaced by a heteroatom; or represents arylalkyl, aryl, hetarylalkyl, or hetaryl, or
- A and D together with the atoms to which they are attached represent a saturated or unsaturated cycle that optionally contains one or more heteroatoms (with the proviso that two or more heteroatoms are present when CKE is group (8)) and that is unsubstituted or substituted in the A,D moiety,
- Q¹ represents hydrogen or alkyl, or
- A and Q¹ together represent optionally halogen- or hydroxy-substituted alkanediyl; or represent alkanediyl or alkenediyl substituted by optionally substituted alkyl, alkoxy, alkylthio, cycloalkyl, benzyloxy, or aryl,
- Q², Q⁴, Q⁵, and Q⁶ independently of one another represent hydrogen or alkyl,
- Q3 represents hydrogen; represents optionally substituted alkyl, alkoxyalkyl, or alkylthioalkyl; represents optionally substituted cycloalkyl in which one ring methylene group is optionally replaced by oxygen or sulphur; or represents optionally substituted phenyl, or
- Q³ and Q⁴ together with the carbon atom to which they are attached represent a saturated or unsaturated, unsubstituted or substituted cycle that optionally contains a heteroatom, and represents hydrogen (a) or represents one of the groups

in which

- E represents a metal ion equivalent or an ammonium ion,
- L represents oxygen or sulphur,
- M represents oxygen or sulphur,
- R1 represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, or polyalkoxyalkyl; represents optionally halogen-, alkyl-, or alkoxy-substituted cycloalkyl that is optionally interrupted by one or more heteroatoms; or represents optionally substituted phenyl, phenylalkyl, hetaryl, phenoxyalkyl, or hetaryloxyalkyl,
- R2 represents optionally halogen-substituted alkyl, alkenyl, alkoxyalkyl, or polyalkoxyalkyl; or represents optionally substituted cycloalkyl, phenyl, or benzyl,
- R³, R⁴, and R⁵ independently of one another represent optionally halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, or cycloalkylthio; or represent optionally substituted phenyl, benzyl, phenoxy, or phenylthio, and
- R⁶ and R⁷ independently of one another represent hydrogen; represent optionally halogen-substituted alkyl, cycloalkyl, alkenyl, alkoxy, or alkoxyalkyl; represent optionally substituted phenyl; or represent optionally substituted benzyl; or R⁶ and R⁷ together with the N atom to which they are attached represent a cycle that is optionally interrupted by oxygen or sulphur,

and

(b') one or more compounds that improve crop plant tolerance selected from the group consisting of 4-dichloroacetyl-1-oxa-4-aza-spiro[4.5]-decane (AD-67, MON-4660), 1-dichloroacetyl-hexahydro-3,3,8a-trimethylpyrrolo[1,2-a]-pyrimidin-6(2H)-one (dicyclonon, BAS-145138), 4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine (benoxacor), 1-methyl-hexyl 5-chloro-quinolin-8-oxy-acetate (cloquintocet-mexyl), 3-(2-chloro-benzyl)-1-(1-methyl-1-phenyl-

ethyl)-urea (cumyluron), α -(cyanomethoximino)-phenylacetonitrile (cyometrinil), 2,4-dichloro-phenoxyacetic acid (2,4-D), 4-(2,4-dichlorophenoxy)-butyric acid (2,4-DB), 1-(1-methyl-1-phenyl-ethyl)-3-(4-methylphenyl)-urea (daimuron, dymron), 3,6-dichloro-2-methoxy-benzoic acid (dicamba), S-1-methyl-1-phenyl-ethyl piperidine-1-thiocarboxylate (dimepiperate), 2,2-dichloro-N-(2-oxo-2-(2-propenylamino)-ethyl)-N-(2propenyl)-acetamide (DKA-24), 2,2-dichloro-N,N-di-2-propenyl-acetamide (dichlormid), 4,6-dichloro-2-phenyl-pyrimidine (fenclorim), ethyl 1-(2,4dichloro-phenyl)-5-trichloromethyl-1H-1,2,4-triazole-3-carboxylate (fenchlorazole-ethyl), phenylmethyl 2-chloro-4-trifluoromethyl-thiazole-5carboxylate (flurazole), 4-chloro-N-(1,3-dioxolan-2-yl-methoxy)-α-trifluoroacetophenone oxime (fluxofenim), 3-dichloroacetyl-5-(2-furanyl)-2,2-dimethyloxazolidine (furilazole, MON-13900), ethyl 4,5-dihydro-5,5-diphenyl-3isoxazolecarboxylate (isoxadifen-ethyl), 1-(ethoxycarbonyl)-ethyl-3,6-dichloro-2-methoxybenzoate (lactidichlor), (4-chloro-o-tolyloxy)-acetic acid (MCPA), 2-(4-chloro-o-tolyloxy)-propionic acid (mecoprop), diethyl 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylate (mefenpyrdiethyl), 2-dichloromethyl-2-methyl-1,3-dioxolane (MG-191), 2-propenyl-1oxa-4-azaspiro[4.5]decane 4-carbodithioate (MG-838), 1,8-naphthalic anhydride, α -(1,3-dioxolan-2-yl-methoximino)-phenylacetonitrile (oxabetrinil), 2,2-dichloro-N-(1,3-dioxolan-2-yl-methyl)-N-(2-propenyl)-acetamide (PPG-1292), 3-dichloroacetyl-2,2-dimethyl-oxazolidine (R-28725), 3-dichloroacetyl-2,2,5-trimethyl-oxazolidine (R-29148), 4-(4-chloro-o-tolyl)-butyric acid, 4-(4chloro-phenoxy)-butyric acid, diphenylmethoxyacetic acid, methyl diphenylmethoxyacetate, ethyl diphenylmethoxyacetate, methyl 1-(2-chloro-phenyl)-5phenyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-methyl-1Hpyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-isopropyl-1H-pyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-(1,1-dimethyl-ethyl)-1'Hpyrazole-3-carboxylate, ethyl 1-(2,4-dichloro-phenyl)-5-phenyl-1H-pyrazole-3carboxylate, ethyl 5-(2,4-dichloro-benzyl)-2-isoxazoline-3-carboxylate, ethyl 5-phenyl-2-isoxazoline-3-carboxylate, ethyl 5-(4-fluoro-phenyl)-5-phenyl-2isoxazoline-3-carboxylate, 1,3-dimethyl-but-1-yl 5-chloro-quinolin-8-oxy-

CS8689 - 65 -

acetate, 4-allyloxy-butyl 5-chloro-quinolin-8-oxy-acetate, 1-allyloxy-prop-2-yl 5-chloro-quinolin-8-oxy-acetate, methyl 5-chloro-quinoxalin-8-oxy-acetate, ethyl 5-chloro-quinolin-8-oxy-acetate, allyl 5-chloro-quinoxalin-8-oxy-acetate, 2-oxo-prop-1-yl 5-chloro-quinolin-8-oxy-acetate, diethyl 5-chloro-quinolin-8-oxy-malonate, diallyl 5-chloro-quinoxalin-8-oxy-malonate, diethyl 5-chloro-quinolin-8-oxy-malonate, 4-carboxy-chroman-4-yl-acetic acid (AC-304415), 4-chloro-phenoxy-acetic acid, 3,3'-dimethyl-4-methoxy-benzophenone, 1-bromo-4-chloromethylsulphonyl-benzene, 1-[4-(N-2-methoxy-benzoyl-sulphamoyl)-phenyl]-3-methyl-urea (alias N-(2-methoxy-benzoyl)-4-[(methyl-amino-carbonyl)-amino]-benzenesulphonamide), 1-[4-(N-2-methoxybenzoyl-sulphamoyl)-phenyl]-3,3-dimethyl-urea, 1-[4-(N-4,5-dimethylbenzoyl-sulphamoyl)-phenyl]-3-methyl-urea, 1-[4-(N-naphthylsulphamoyl)-phenyl]-3,3-dimethyl-urea, N-(2-methoxy-5-methyl-benzoyl)-4-(cyclopropylamino-carbonyl)-benzenesulphonamide,

compounds of the formula (IIa)

$$(X^1)_n$$
 A^1 R^{21} (IIa),

in which

 X^1 represents nitro, cyano, halogen, C_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, or C_1 - C_4 -haloalkoxy,

A¹ represents a divalent heterocyclic group having the formulas

represents hydroxyl, mercapto, amino, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino, or di-(C₁-C₄-alkyl)amino,

represents hydrogen, cyano, or halogen; or represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl, or phenyl, each of which is optionally substituted by fluorine, chlorine, and/or bromine,

- represents hydrogen; or represents C_1 - C_6 -alkyl, C_3 - C_6 -cycloalkyl, or tri(C_1 - C_4 -alkyl)silyl, each of which is optionally substituted by hydroxyl, cyano, halogen, or C_1 - C_4 -alkoxy,
- R28 represents hydrogen, cyano, or halogen; or represents C₁-C₄-alkyl, C₃-C₆-cycloalkyl, or phenyl, each of which is optionally substituted by fluorine, chlorine, and/or bromine, and represents a number of between 0 and 5,

compounds of the formula (IIb)

$$X^3$$
 X^2
 A^2
 A^2

in which

- x² represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkoxy,
- x³ represents hydrogen, cyano, nitro, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkoxy, or C₁-C₄-haloalkoxy,
- A² represents alkanediyl having 1 or 2 carbon atoms that is optionally substituted by C₁-C₄-alkyl and/or C₁-C₄-alkoxy-carbonyl, and
- R22 represents hydroxyl, mercapto, amino, C_1 - C_6 -alkoxy, C_1 - C_6 -alkylamino, or di- $(C_1$ - C_4 -alkyl)amino,

compounds of the formula (IIc)

$$R^{23}$$
 N
 R^{24}
 R^{25}
(IIc),

in which

- R23 represents C₁-C₄-alkyl that is optionally substituted by fluorine, chlorine, and/or bromine,
- R²⁴ represents hydrogen; represents C_1 - C_6 -alkyl, C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_1 - C_4 -alkoxy- C_1 - C_4 -alkyl, dioxolanyl- C_1 - C_4 -alkyl,

CS8689 - 67 -

furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, or piperidinyl, each of which is optionally substituted by fluorine, chlorine, and/or bromine; or represents phenyl that is optionally substituted by fluorine, chlorine, and/or bromine or C₁-C₄-alkyl, and

represents hydrogen; represents C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, dioxolanyl-C₁-C₄-alkyl, furyl, furyl-C₁-C₄-alkyl, thienyl, thiazolyl, or piperidinyl, each of which is optionally substituted by fluorine, chlorine, and/or bromine; or represents phenyl that is optionally substituted by fluorine, chlorine, and/or bromine or C₁-C₄-alkyl; or R²⁵ together with R²⁴ represents C₃-C₆-alkanediyl or C₂-C₅-oxaalkanediyl, each of which is optionally substituted by C₁-C₄-alkyl, phenyl, furyl, a fused benzene ring, or by two substituents which, together with the C atom to which they are bonded, form a 5- or 6-membered carbocycle,

compounds of the formula (IId)

$$O = \begin{pmatrix} R^{30} \\ N \\ N \\ SO_{2} \\ N \\ O \end{pmatrix} (IId)$$

in which

X⁴ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄haloalkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkoxy,

X⁵ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkoxy.

R²⁹ represents hydrogen or C₁-C₄-alkyl,

R³⁰ represents hydrogen or C₁-C₄-alkyl,

represents hydrogen; represents C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, C₁-C₆-alkylamino, or di(C₁-C₄-alkyl)amino, each

of which is optionally substituted by cyano, halogen, or C_1 - C_4 -alkoxy; or represents C_3 - C_6 -cycloalkyl, C_3 - C_6 -cycloalkylthio, or C_3 - C_6 -cycloalkylamino, each of which is optionally substituted by cyano, halogen, or C_1 - C_4 -alkyl, and represents a number of between 0 and 5, and

compounds of the formula (IIe)

$$R^{32} \xrightarrow{N} (X^5)_n$$

$$R^{29} \xrightarrow{N} (X^4)_n$$

$$SO_2 \xrightarrow{N} (IIe)$$

in which

n

- X⁴ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy, or C₁-C₄-haloalkoxy,
- X⁵ represents nitro, cyano, carboxyl, carbamoyl, formyl, sulphamoyl, hydroxyl, amino, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkoxy.
- R²⁹ represents hydrogen or C₁-C₄-alkyl,
- R³² represents hydrogen; represents C₁-C₆-alkyl that is optionally substituted by cyano, hydroxyl, halogen, or C₁-C₄-alkoxy; represents C₃-C₆-alkenyl or C₃-C₆-alkynyl, each of which is optionally substituted by cyano or halogen; or represents C₃-C₆-cycloalkyl that is optionally substituted by cyano, halogen, or C₁-C₄-alkyl,
- represents hydrogen; represents C₁-C₆-alkyl that is optionally substituted by cyano, hydroxyl, halogen, or C₁-C₄-alkoxy; represents C₃-C₆-alkenyl or C₃-C₆-alkynyl, each of which is optionally substituted by cyano or halogen; represents C₃-C₆-cycloalkyl that is optionally substituted by cyano, halogen, or C₁-C₄-alkyl, or represents phenyl that is optionally substituted by nitro, cyano, halogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy,

or C_1 - C_4 -haloalkoxy; or R^{33} together with R^{32} represents C_2 - C_6 -alkanediyl or C_2 - C_5 -oxaalkanediyl, each of which is optionally substituted by C_1 - C_4 -alkyl, and

n represents a number of between 0 and 5.

Claim 67 (new): A composition according to Claim 66 in which the compound that improves crop plant tolerance is selected from the group consisting of cloquintocet-mexyl, fenchlorazole-ethyl, isoxadifen-ethyl, mefenpyr-diethyl, furilazole, fenclorim, cumyluron, dymron, the compound

and the compound

Claim 68 (new): A composition according to Claim 66 in which the compound that improves crop plant tolerance is cloquintocet-mexyl or mefenpyr-diethyl.

Claim 69 (new): A method for controlling unwanted vegetation comprising allowing an effective amount of a composition according to Claim 66 to act on the plants or their habitat.

Claim 70 (new): A method for controlling unwanted vegetation comprising allowing a compound of formula (I) and the compound that improves crop plant tolerance according to Claim 66 to act separately within a short interval on the plants or their habitat. --

CS8689 - 70 -