QUESTÕES AULA 1 TEORÍA

Problema 1.1. Faça as seguintes conversões:

- a) Converter 378₍₁₀₎ para hexadecimal e depois binário
- b) Converter 0110₍₂₎ para hexadecimal e decimal
- c) Converter 010110010100001100001111₍₂₎ para hexadecimal

Problema 1.2. Pretende-se converter o número $38_{(10)}$ para outras bases.

- a) Faça a conversão para base 16 diretamente.
- b) Faça a conversão para base 16 através da base 2 (converta primeiro para base 2 e depois para base 16).
- c) Faça a conversão para base 8 (octal) a partir da base 2.

Problema 1.3. Faça a conversão de 010010010110001101010111₍₂₎ para:

- a) Hexadecimal.
- b) Octal.
- c) Quaternário.

Problema 1.4. Faça as seguintes conversões:

- a) $3980_{(10)}$ para BCD e binário.
- b) 98015₍₁₀₎ para BCD.
- c) 10000111000001011001_{BCD} para decimal.

Problema 1.5. A seguinte sequência de bits pode representar um número BCD?

100011110000110110000001_{BCD}

Problema 1.6. Quantos bits são necessários para representar os números decimais de 0 a 999 em binário puro e usando o código BCD?

Problema 1.7. Codifique a mensagem R\$72 para código ASCII usando dígitos hexadecimais.

Problema 1.8. Decodifique a seguinte mensagem que está codificada usando o código ASCII:

$01010011010101000100111101010000_{(ASCII)}$

Problema 1.9. Faça as seguintes conversões:

- a) Converta para base 10 o número 11010101₍₂₎.
- b) Converta 213₍₁₀₎ para código BCD.
- c) Converta 213₍₁₀₎ para base 2.

Problema 1.10 (Prova 2019.1). Represente os valores apresentados a seguir nas formas numéricas indicadas:

- a) $10100000111101010110_{(2)}$ em hexadecimal;
- b) +69₍₁₀₎ em octal;
- c) $CADE8_{(16)}$ em quaternário;
- d) +67₍₁₀₎ na representação BCD.