

1 Allgemeines

1.1 Konstanten

$$g = 9.81 \, \frac{\text{m}}{\text{s}^2} \tag{1.1}$$

$$c = 3 \cdot 10^8 \, \frac{\mathsf{m}}{\mathsf{s}} \tag{1.2}$$

$$e = 1,602\,177\,3\cdot10^{-19}\,\text{C}$$
 (1.3)

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \frac{\text{C}}{\text{V m}}$$
 (1.4)

$$\mu_0 = 1.257 \cdot 10^{-6} \, \frac{\text{V s}}{\text{A m}}$$
 (1.5)

$$h = 6,626 \cdot 10^{-34} \, \text{Js} \tag{1.6}$$

$$u = 1,660 \, 54 \cdot 10^{-27} \, \mathrm{kg} \tag{1.7}$$

$$N_{A} = 6,022 \cdot 10^{23} \, \frac{1}{\text{mol}} \tag{1.8}$$

$$m_e = 9.1 \cdot 10^{-31} \,\mathrm{kg} \tag{1.9}$$

$$m_n = 1,675 \cdot 10^{-27} \,\mathrm{kg}$$
 (1.10)

$$m_p = 1,673 \cdot 10^{-27} \,\mathrm{kg}$$
 (1.11)

$$R = 8.31 \frac{J}{\text{mol K}}$$
 (1.12)

1.2 Einheiten

$$[W] = 1 J = 1 N m = 1 V A s$$
 (1.13)

$$[F] = 1 \text{ N} = 1 \frac{\text{kg m}}{\text{s}^2}$$
 (1.14)

$$[Q] = 1 C = 1 A s$$
 (1.15)

$$[C] = 1 F = 1 \frac{C}{V}$$
 (1.16)

$$[B] = 1 T = 1 \frac{N}{A m}$$
 (1.17)

$$[L] = 1 H = 1 \frac{Vs}{A}$$
 (1.18)

$$[E] = 1 \frac{V}{m} = 1 \frac{N}{C}$$
 (1.19)

$$[\Phi] = 1 \text{ T m}^2 = 1 \text{ V s}$$
 (1.20)

$$[\sigma] = 1 \frac{\mathsf{C}}{\mathsf{m}^2} \tag{1.21}$$

$$[f] = 1\frac{1}{s} = 1 \text{ Hz}$$
 (1.22)

1.3 Einheitenpräfixe

Т	G	М	k	h	da	
10 ¹²	10 ⁹	10 ⁶	10 ³	10 ²	10^1	10 ⁰
	d	С	m	μ	n	р
10 ⁰	10^{-1}	10^{-2}	10^{-3}	10^{-6}	10^{-9}	10^{-12}

1.4 Griechische Buchstaben

α, Α	Alpha	β, Β	Beta	γ , Γ	Gamma
δ, Δ	Delta	ε, Ε	Epsilon	ζ, Ζ	Zeta
η, Η	Eta	ϑ, ⊖	Theta	ι, Ι	lota
κ, Κ	Kappa	λ, <i>L</i>	Lambda	μ , M	My
ν, Ν	Ny	ξ , \equiv	Xi	o, O	Omikron
π, П	Pi	ρ, R	Rho	σ, Σ	Sigma
au, T	Tau	υ, Υ	Ypsilon	φ, Φ	Phi
χ , X	Chi	ψ , Ψ	Psi	ω , Ω	Omega

1.5 Mathematik

1.5.1 Kreisfläche

$$A = 4 \cdot \pi \cdot r^2 \tag{1.23}$$

1.5.2 Kugelvolumen

$$V = \frac{4}{3} \cdot \pi \cdot r^3 \tag{1.24}$$

1.5.3 pq-Formel

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$
 (1.25)

$$mit 0 = x^2 + p \cdot x + q$$

1.5.4 Trigonometrische Beziehungen

$$\sin \alpha = \frac{a}{c} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 (1.26)

$$\sin \alpha = \frac{a}{c} = \frac{\text{Gegenkathete}}{\text{Hypotenuse}}$$
 (1.26)

$$\cos \alpha = \frac{b}{c} = \frac{\text{Ankathete}}{\text{Hypotenuse}}$$
 (1.27)

$$\tan \alpha = \frac{a}{b} = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$
 (1.28)

$$\tan \alpha = \frac{a}{b} = \frac{\text{Gegenkathete}}{\text{Ankathete}}$$
 (1.28)

2 Mechanik

2.1 Geradlinige, gleichförmige Bewegung

$$v = \frac{\Delta s}{\Delta t} \tag{2.1}$$

2.2 Geradlinige, gleichmäßig beschleunigte Bewegung

$a = \frac{\Delta v}{\Delta t} \tag{2.2}$

$$\Delta s = \frac{(v_2 + v_1) \cdot \Delta t}{2} \tag{2.3}$$

$$s(t) = \frac{1}{2} \cdot a \cdot t^2 + v_0 \cdot t + s_0 \tag{2.4}$$

2.3 Grundgleichung der Mechanik (Newtons Grundgesetz)

$$F = m \cdot a \tag{2.5}$$

2.4 Gewichtskraft

$$F_G = m \cdot g \tag{2.6}$$

2.5 Hookesches Gesetz

$$F = D \cdot s \tag{2.7}$$

2.6 Schiefe Ebene

$$F_H = F_G \cdot \sin \alpha \tag{2.8}$$

$$F_N = F_G \cdot \cos \alpha \tag{2.9}$$

2.7 Reibung

$$F_h > F_{ql} > F_{roll} \tag{2.10}$$

$$F_{al} = f_{al} \cdot F_N \tag{2.11}$$

$$F_{h,max} = f_h \cdot F_N \tag{2.12}$$

2.8 Bremsverzögerung

$$|a| = f_{ql} \cdot g \tag{2.13}$$

$$|a| = f_h \cdot g \tag{2.14}$$

2.9 Zentripetalkraft

$$F_z = \frac{m \cdot v^2}{r} \tag{2.15}$$

2.10 Energieerhaltung

$$W_L + W_B + W_{Sp} = \text{konst.} \tag{2.16}$$

$$W_L = m \cdot g \cdot h \tag{2.17}$$

$$W_B = \frac{1}{2} \cdot m \cdot v^2 \tag{2.18}$$

$$W_{Sp} = \frac{1}{2} \cdot D \cdot s^2 \tag{2.19}$$

2.11 Energie / Arbeit

$$W = F_s \cdot s \tag{2.20}$$

2.12 Leistung

$$P = \frac{\Delta W}{\Delta t} \tag{2.21}$$

2.13 Impuls

$$p = m \cdot v \tag{2.22}$$

2.14 Impulserhaltung

$$m_1 \cdot u_1 + m_2 \cdot u_2 = m_1 \cdot v_1 + m_2 \cdot v_2$$
 (2.23)

3 Elektrische und magnetische Felder

3.1 Stromstärke

$$I = \frac{\Delta Q}{\Delta t} \tag{3.1}$$

$$I = \frac{n \cdot e \cdot v}{\Lambda s} \tag{3.2}$$

3.2 Elektrische Feldstärke

$$E = \frac{F}{a} \tag{3.3}$$

3.3 Bifilares Plättchen im elektrischen Feld

$$F = F_G \cdot \frac{s}{h} \tag{3.4}$$

$$F \approx F_G \cdot \frac{s}{\ell} \tag{3.5}$$

3.4 Elektrische Spannung

$$U = \frac{W}{q} \tag{3.6}$$

$$U = E \cdot d \tag{3.7}$$

3.5 Ohmsches Gesetz

$$U = R \cdot I \tag{3.8}$$

3.6 Spezifischer Widerstand

$$R = \varrho \cdot \frac{\ell}{A} \tag{3.9}$$

3.7 Elektrische Energie

$$W = U \cdot I \cdot t \tag{3.10}$$

3.8 Elektrische Leistung

$$P = \frac{W}{t} = U \cdot I \tag{3.11}$$

3.9 Reihenschaltung von Widerständen

$$U = U_1 + U_2 \tag{3.12}$$

$$I = I_1 = I_2 \tag{3.13}$$

$$R = R_1 + R_2 (3.14)$$

3.10 Parallelschaltung von Widerständen

$$U = U_1 = U_2 \tag{3.15}$$

$$I = I_1 + I_2 \tag{3.16}$$

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \tag{3.17}$$

3.11 Elektrisches Potential

$$\Delta \varphi = \varphi_2 - \varphi_1 \tag{3.18}$$

3.12 Flächenladungsdichte

$$\sigma = \frac{Q}{A} \tag{3.19}$$

$$\sigma = \varepsilon_0 \cdot \varepsilon_r \cdot E \tag{3.20}$$

3.13 Coulomb-Gesetz

$$F = q \cdot E = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Q \cdot q}{r^2}$$
 (3.21)

3.14 Coulomb-Potential

$$\varphi = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Q}{r} \tag{3.22}$$

$$W_{12} = \frac{Q \cdot q}{4 \cdot \pi \cdot \varepsilon_0} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \tag{3.23}$$

$$U_{12} = \frac{Q}{4 \cdot \pi \cdot \varepsilon_0} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) \tag{3.24}$$

3.15 Kondensatoren

$$C = \frac{Q}{U} \tag{3.25}$$

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d} \tag{3.26}$$

3.16 Kugelkondensator

$$C = \frac{4 \cdot \pi \cdot \varepsilon_0}{\frac{1}{r_1} - \frac{1}{r_2}} \tag{3.27}$$

3.17 Reihenschaltung von Kondensatoren

$$Q = Q_1 = Q_2 (3.28)$$

$$U = U_1 + U_2 \tag{3.29}$$

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} \tag{3.30}$$

3.18 Parallelschaltung von Kondensatoren

$$Q = Q_1 + Q_2 (3.31)$$

$$U = U_1 = U_2 \tag{3.32}$$

$$C = C_1 + C_2 \tag{3.33}$$

3.19 Kondensatorentladung

$$T_H = 0.69 \cdot R \cdot C \tag{3.34}$$

$$U(t) = U_0 \cdot 2^{-\frac{t}{T_H}} \tag{3.35}$$

$$Q(t) = Q_0 \cdot 2^{-\frac{t}{T_H}} \tag{3.36}$$

$$I(t) = I_0 \cdot 2^{-\frac{t}{T_H}} \tag{3.37}$$

3.20 Energie eines geladenen Kondensators

$$W = \frac{1}{2} \cdot C \cdot U^2 \tag{3.38}$$

$$W = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \cdot V \tag{3.39}$$

3.21 Räumliche Dichte der elektrischen Energie

$$\varrho_{el} = \frac{W}{V} = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \tag{3.40}$$

3.22 Anziehungskraft zwischen zwei Kondensatorplatten

$$F = \frac{\Delta W}{\Delta s} \tag{3.41}$$

$$F = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot E^2 \cdot A \tag{3.42}$$

$$F = \frac{1}{2} \cdot \varepsilon_0 \cdot \varepsilon_r \cdot \frac{U^2}{d^2} \cdot A \tag{3.43}$$

3.23 Magnetische Flussdichte

$$B = \frac{F}{I \cdot s} \tag{3.44}$$

$$B = \mu_0 \cdot \mu_r \cdot \frac{n}{\ell} \cdot I \tag{3.45}$$

$$\mu_r = \frac{B_m}{B_0} \tag{3.46}$$

3.24 Lorentzkraft

$$F_L = Q \cdot v_s \cdot B \tag{3.47}$$

3.25 Hall-Spannung

$$U_H = B \cdot v_s \cdot h \tag{3.48}$$

3.26 Magnetfeld der Erde

B_V Inklinationswinkel: i
 Horizontalkomponente des
 Erdmagnetfelds: B_h
 Vertikalkomponente des
 Erdmagnetfelds: B_V

3.27 Ladungen im Magnetfeld

$$r = \frac{v_s \cdot m}{B \cdot a} \tag{3.49}$$

3.28 Magnetische Induktion

Anzahl der Leiterschleifen: n

 A_s ist die senkrecht von den Feldlinien durchsetzte Fläche. Sie ist mit Hilfe der trigonometrischen Funktionen aus A berechenbar.

3.28.1 durch Leiterbewegung

$$U_{ind} = n \cdot B \cdot d \cdot v_s \tag{3.50}$$

3.28.2 durch Flächenänderung

$$U_{ind} = n \cdot B \cdot d \cdot v_s = n \cdot B \cdot \frac{\Delta A_s}{\Delta t}$$
 (3.51)

3.28.3 durch Drehung

$$U_{ind} = n \cdot B \cdot \frac{\Delta A_s}{\Delta t} \tag{3.52}$$

3.28.4 durch Flussdichteänderung

$$U_{ind} = n \cdot A_s \cdot \frac{\Delta B}{\Delta t} \tag{3.53}$$

3.28.5 durch Änderung des magnetischen Flusses

$$U_{ind}(t) = n \cdot \frac{\Delta \Phi}{\Delta t} \tag{3.54}$$

Seite 4

3.28.6 Momentanspannung für $\Delta t \rightarrow 0$

$$U_{ind}(t) = n \cdot \dot{\Phi}(t) \tag{3.55}$$

3.29 Magnetischer Fluss

$$\Phi = B \cdot A_s \tag{3.56}$$

3.30 Selbstinduktion einer Spule

$$U_{ind}(t) = -n \cdot \dot{\Phi}(t) = -L \cdot \dot{I}(t) \tag{3.57}$$

$$L = \mu_0 \cdot \mu_r \cdot n^2 \cdot \frac{A}{\ell} \tag{3.58}$$

4 Schwingungen und Wellen

$$f = \frac{n}{t} = \frac{1}{T} \tag{4.1}$$

4.1 Harmonische Schwingung

 $\varphi = \text{Phasenwinkel}, 360^{\circ} = 2\pi$

4.1.1 Winkelgeschwindigkeit ω

$$\omega = \frac{\varphi}{t} = \frac{2\pi}{T} = 2\pi f \tag{4.2}$$

4.1.2 Elongation s

$$s = r \cdot \sin \varphi \quad \hat{s} = r \tag{4.3}$$

4.1.3 Zeit-Weg-Gesetz

$$s(t) = \hat{s} \cdot \sin(\omega \cdot t) \tag{4.4}$$

4.1.4 Zeit-Geschwindigkeits-Gesetz

$$v(t) = \omega \cdot \hat{s} \cdot \cos(\omega \cdot t) \tag{4.5}$$

4.1.5 Zeit-Beschleunigungs-Gesetz

$$a(t) = -\omega^2 \cdot \hat{s} \cdot \sin(\omega \cdot t) \tag{4.6}$$

$$a(t) = \dot{v}(t) = \ddot{s}(t) \tag{4.7}$$

4.1.6 Elongations-Kraft-Gesetz

(Bedingung für harmonische Schwingung)

$$F = -D \cdot s \tag{4.8}$$

mit Richtgröße D

$$D = m \cdot \omega^2 \tag{4.9}$$

liefert die Periodendauer

$$T = 2\pi \sqrt{\frac{m}{D}} \tag{4.10}$$

4.1.7 Energie einer ungedämpften harmonischen Schwingung

$$W = W_{Elong} + W_B$$

= $\frac{1}{2}D \cdot s^2 + \frac{1}{2}m \cdot v^2 = \text{konst.}$ (4.11)

4.1.8 Schwingung des Fadenpendels

$$D = \frac{m \cdot g}{\ell} \tag{4.16}$$

$$T = 2\pi \sqrt{\frac{\ell}{g}} \tag{4.17}$$

4.1.9 Elektromagnetischer Schwingkreis

$$Q = \hat{Q}\cos(\omega \cdot t) \tag{4.18}$$

$$U = \hat{U}\cos(\omega \cdot t) \tag{4.19}$$

$$I = -\hat{I}\sin(\omega \cdot t) \tag{4.20}$$

$$\omega = \frac{1}{\sqrt{L \cdot C}} \tag{4.21}$$

$$\hat{I} = \frac{\hat{U} \cdot C}{\sqrt{I \cdot C}} \tag{4.22}$$

$$T = 2\pi\sqrt{L \cdot C} \tag{4.23}$$

4.1.10 Resonanzbedingung

$$f = f_0 \quad \text{mit} \quad \varphi = \frac{\pi}{2} \tag{4.24}$$

4.1.11 Eigenschwingungen zwischen zwei festen Enden

$$\ell = k \cdot \frac{\lambda_k}{2}$$
 $k = 1, 2, 3, \dots$ (4.25)

$$f_k = k \cdot \frac{c}{2 \cdot \ell} = k \cdot f_1 \quad k = 1, 2, 3, \dots$$
 (4.26)

4.2 Ausbreitungsgeschwindigkeit

$$c = \frac{\lambda}{T} = \frac{\Delta x}{\Delta t} = \lambda \cdot f \tag{4.27}$$

4.3 Wellengleichung

$$s(t,x) = \hat{s} \cdot \sin \left[\omega \left(t - \frac{x}{c}\right)\right]$$
 (4.28)

$$s(t,x) = \hat{s} \cdot \sin \left[2\pi \left(\frac{t}{T} - \frac{x}{\lambda} \right) \right]$$
 (4.29)

4.4 Überlagerung von Schwingungen

$$s(t) = s_1(t) + s_2(t)$$

= $\hat{s}_1 \cdot \sin(\omega \cdot t) + \hat{s}_2 \cdot \sin(\omega \cdot t + \varphi_0)$ (4.30)

4.5 Konstruktive Interferenz

$$\Delta \varphi = 0, 2\pi, 4\pi, \dots$$

 $\delta = k \cdot \lambda, \quad k = 0, 1, 2, \dots$ (4.31)

4.6 Destruktive Interferenz

$$\Delta \varphi = \pi, 3\pi, 5\pi, \dots$$

$$\delta = (2 \cdot k - 1) \cdot \frac{\lambda}{2}, \quad k = 1, 2, 3, \dots$$
(4.32)

4.7 Verhältnis Gangunterschied zu Phasendifferenz

$$\frac{\Delta\varphi}{2\pi} = \frac{\delta}{\lambda} \tag{4.33}$$

4.8 Doppler-Effekt

4.8.1 Bewegter Beobachter, ruhender Sender

Annähern

$$f' = f \cdot \left(1 + \frac{v}{c}\right) \tag{4.34}$$

Entfernen

$$f' = f \cdot \left(1 - \frac{V}{c}\right) \tag{4.35}$$

4.8.2 Bewegter Sender, ruhender Beobachter

Annähern

$$\lambda' = \lambda \cdot \left(1 - \frac{v_s}{c}\right) \quad f' = \frac{f}{1 - \frac{v_s}{c}} \tag{4.36}$$

Entfernen

$$f' = \frac{f}{1 + \frac{v_s}{c}} \tag{4.37}$$

4.8.3 Machsche Zahl

$$M = \frac{V_s}{c} \tag{4.38}$$

4.9 Brechungsgesetz

$$\frac{\sin \alpha}{\sin \beta} = \frac{c_1}{c_2} \tag{4.39}$$

4.10 Beugung und Interferenz am Doppelspalt

$$\sin \alpha = \frac{a}{\ell} = \frac{a}{\sqrt{e^2 + a^2}} \tag{4.40}$$

4.10.1 Maxima

$$n \cdot \lambda = d \cdot \sin \alpha_n \tag{4.41}$$

4.10.2 Minima

$$(2 \cdot n - 1) \cdot \frac{\lambda}{2} = d \cdot \sin \alpha_n \tag{4.42}$$

4.11 Beugung und Interferenz am Gitter

$$n \cdot \lambda = g \cdot \sin \alpha_n = \frac{g \cdot a_n}{\ell} = \frac{g \cdot a_n}{\sqrt{e^2 + a_n^2}}$$
 (4.43)

5 Quantenphysik

5.1 Photoeffekt

5.1.1 Maximale Energie der Photoelektronen

$$W_{max} = e \cdot U_{max} \quad W_{max} = h \cdot f - W_A \tag{5.1}$$

5.1.2 Grenzfrequenz der Elektronenablösung

$$f_{gr} = \frac{W_A}{h} \tag{5.2}$$

5.1.3 Photostrom

$$I_{Ph} = Z \cdot \frac{e}{t} \tag{5.3}$$

5.2 Umkehrung des Photoeffekts

$$W_{EI} = e \cdot U = h \cdot f \tag{5.4}$$

$$f_{max} = \frac{c}{\lambda_{min}} \tag{5.5}$$

$$h \cdot f_{max} = e \cdot U \tag{5.6}$$

5.3 Masse-Energie-Äquivalent

$$W_0 = m_0 \cdot c^2 \tag{5.7}$$

5.4 Masse der Photonen

$$m = \frac{W}{c^2} = \frac{h \cdot f}{c^2} \tag{5.8}$$

5.5 Impuls der Photonen

$$p = m \cdot v = \frac{h \cdot f}{c} = \frac{h}{\lambda} \tag{5.9}$$

5.6 Paarbildung

Photon → Elektron + Positron

5.6.1 Energieerhaltung

$$h \cdot f = 2 \cdot m_e \cdot c^2 + 2 \cdot W_{kin} \ge 1,02 \,\text{MeV}$$
 (5.10)

5.6.2 Massenerhaltung

$$\frac{h \cdot f}{C^2} = \frac{2 \cdot W_{kin}}{C^2} + 2 \cdot m_e \tag{5.11}$$

5.6.3 Impulserhaltung

$$\frac{h \cdot f}{c} = 2 \cdot m_e \cdot v < 2 \cdot m_e \cdot c \le \frac{h \cdot f}{c} \tag{5.12}$$

5.7 Zerstrahlung

Elektron + Positron \rightarrow 2 Photonen

5.7.1 Energieerhaltung

$$2 \cdot m_e \cdot c^2 = 2 \cdot h \cdot f = 1,02 \,\text{MeV}$$
 (5.13)

5.7.2 Massenerhaltung

$$2 \cdot m_{\rm e} = \frac{2 \cdot h \cdot f}{c^2} \tag{5.14}$$

5.7.3 Impulserhaltung

$$0 = \frac{h \cdot f}{c} + \left(-\frac{h \cdot f}{c}\right) \tag{5.15}$$

5.8 Compton-Effekt

$$\Delta \lambda = \lambda' - \lambda = \lambda_C \cdot (1 - \cos \beta) \tag{5.16}$$

$$\lambda_C = \frac{h}{m_e \cdot c} = 2.4 \,\mathrm{pm} \tag{5.17}$$

5.9 Photon als Quantenobjekt

$$\Psi_{Res} = \Psi_1 + \Psi_2 \quad |\Psi_{Res}|^2 = |\Psi_1 + \Psi_2| \quad (5.18)$$

Antreffwahrscheinlichkeit: $|\Psi|^2$

5.10 De-Broglie-Wellenlänge

$$\lambda_B = \frac{h}{p} \tag{5.19}$$

6 Kernphysik

6.1 Abschätunzung der Kerngröße (Rutherford)

$$\frac{1}{2} \cdot m \cdot v^2 = \frac{1}{4 \cdot \pi \cdot \varepsilon_0} \cdot \frac{Z \cdot e \cdot 2 \cdot e}{b} \tag{6.1}$$

6.2 Energie der Elektronen in der Atomhülle

$$W_{p} = -\frac{1}{4 \cdot \pi \cdot \varepsilon_{0}} \cdot \frac{(Z \cdot e) \cdot e}{r}$$
 (6.2)

$$W_{k} = \frac{1}{8 \cdot \pi \cdot \varepsilon_{0}} \cdot \frac{(Z \cdot e) \cdot e}{r}$$
 (6.3)

$$W_{ges} = -\frac{1}{8 \cdot \pi \cdot \varepsilon_0} \cdot \frac{(Z \cdot e) \cdot e}{r}$$
 (6.4)

6.3 Erstes Bohr-Postulat (Bahndrehimpuls)

$$L = r \cdot m \cdot v = n \cdot \frac{h}{2 \cdot \pi}$$
 $n = 1, 2, 3, ...$ (6.5)

6.4 Zweites Bohr-Postulat (Frequenzbedingung)

$$h \cdot f = E_m - E_n = \Delta E \tag{6.6}$$

6.5 Frequenz des Photons

$$f = R\left(\frac{1}{n^2} - \frac{1}{m^2}\right) \tag{6.7}$$

6.5.1 Rydberg-Frequenz

$$R = \frac{m_e \cdot e^4}{8 \cdot \varepsilon_0^2 \cdot h^3} = 3,2898 \cdot 10^{15} \,\text{Hz} \tag{6.8}$$

6.6 Zerfallsgesetz

$$N(t) = N_0 \cdot e^{-\lambda \cdot t} \tag{6.9}$$

$$N(t) = N_0 \cdot 2^{-\frac{t}{T_{1/2}}} \tag{6.10}$$

6.7 Zerfallskonstante

$$\lambda = \frac{\ln 2}{T_{1/2}} \tag{6.11}$$

6.8 Aktivität

$$A = \frac{\Delta N}{\Delta t} \tag{6.12}$$

$$A(t) = \lambda \cdot N(t) = A_0 \cdot e^{-\lambda \cdot t}$$
 (6.13)

7 Chemie

7.1 Stoffmengenberechnung

$$n = \frac{m}{M} \tag{7.1}$$

$$n = \frac{m}{M}$$
 (7.1)
$$n = \frac{V}{V_m}$$
 (7.2)

$$n = c \cdot V \tag{7.3}$$

$$\frac{n_1}{n_2} = \frac{N_1}{N_2} \tag{7.4}$$

7.2 Teilchenzahl

$$N = n \cdot N_A \tag{7.5}$$

7.3 Massenanteil

$$w = \frac{m}{m_L} \tag{7.6}$$

7.4 Massenwirkungsgesetz

Für die Reaktion $\nu_{\rm A} {\rm A} + \nu_{\rm B} {\rm B} \Longrightarrow \nu_{\rm c} {\rm C} + \nu_{\rm D} {\rm D}$

$$K_C = \frac{c^{\nu_C}(C) \cdot c^{\nu_D}(D)}{c^{\nu_A}(A) \cdot c^{\nu_B}(B)}$$
(7.7)

$$K_P = \frac{p^{\nu_C}(C) \cdot p^{\nu_D}(D)}{p^{\nu_A}(A) \cdot p^{\nu_B}(B)}$$
(7.8)

$$K_P = K_C \cdot (R \cdot T)^{\Delta \nu}$$

mit $\Delta v = (\nu_C + \nu_D) - (\nu_A + \nu_B)$ (7.9)

7.5 Allgemeines Gasgesetz

$$n \cdot R \cdot T = p \cdot V \tag{7.10}$$

7.6 Gleichgewichtskonstante

$$\ln K(T) = -\frac{1}{R \cdot T} \cdot \Delta_R G_m^0 \qquad (7.11)$$

7.7 Säuren und Basen

$$K_W = c \left(H_3 O^+ \right) \cdot c \left(O H^- \right) = 10^{-14} \frac{\text{mol}^2}{\text{l}^2}$$
 (7.12)

$$pK_w = -\lg \frac{k_w}{\frac{\text{mol}^2}{l^2}} = 14 = pH + pOH$$
 (7.13)

$$pH = -\lg \frac{c(H_3O^+)}{\frac{mol}{I}} \quad (7.14)$$

$$c(H_3O^+) = 10^{-pH}$$
 (7.15)

$$pOH = -\lg \frac{c\left(\mathsf{OH}^{-}\right)}{\frac{\mathsf{mol}}{l}} \quad (7.16)$$

7.8 Säurekonstante

Für die Reaktion $HA + H_2O \Longrightarrow H_3O^+ + A^-$

$$K_{S} = \frac{c \left(\mathsf{H}_{3} \mathsf{O}^{+} \right) \cdot c \left(\mathsf{A}^{-} \right)}{c \left(\mathsf{H} \mathsf{A} \right)} \tag{7.17}$$

$$pK_{S} = -\lg \frac{K_{S}}{\frac{\mathsf{mol}}{\mathsf{I}}} \tag{7.18}$$

$$pK_S = -\lg \frac{K_S}{\frac{mol}{I}}$$
 (7.18)

7.9 Basenkonstante

Für die Reaktion $B + H_2O \Longrightarrow OH^- + BH^+$

$$K_{B} = \frac{c \left(\mathsf{OH}^{-} \right) \cdot c \left(\mathsf{BH}^{+} \right)}{c \left(\mathsf{B} \right)}$$

$$pK_{B} = -\lg \frac{K_{B}}{\frac{\mathsf{mol}}{1}}$$

$$(7.19)$$

$$pK_B = -\lg \frac{K_B}{\underline{\text{mol}}} \tag{7.20}$$

$$pK_B = 14 - pK_S$$
 (7.21)

7.10 Puffergleichung

$$pH = pK_S + \lg \frac{c \text{ (Base)}}{c \text{ (S\"{a}ure)}}$$
 (7.22)

7.11 Löslichkeitsprodukt

$$K_L(A_m B_n) = c^m(A) \cdot c^n(B) \tag{7.23}$$

7.12 Nernstsche Gleichung

$$U_{H}\left(Me^{z+}/Me\right) = U_{H}^{0}\left(Me^{z+}/Me\right) + \frac{0,059 \,\mathrm{V}}{z} \cdot \lg \frac{c\left(Me^{z+}\right)}{\frac{\mathrm{mol}}{l}}$$
(7.24)

7.13 Reaktionsenthalpie

$$\Delta_R H = -Q = -c_p \cdot m \cdot \Delta T$$

$$\Delta_R H_m^0 = \sum \Delta_f H_m^0 \text{ (Produkte)} - \sum \Delta_f H_m^0 \text{ (Edukte)}$$
(7.26)

7.14 Entropie

$$\Delta_R S_m^0 = \sum S_m^0 (\text{Produkte}) + \sum S_m^0 (\text{Edukte})$$
(7.27)

7.15 Freie Enthalpie und Gibbs-Helmholtzgleichung

$$\Delta_{R}G_{m} = \Delta_{R}H_{m} - T \cdot \Delta_{R}S_{m}$$

$$\Delta_{R}G_{m}^{0} = \sum \Delta_{f}G_{m}^{0} (Produkte) - \sum \Delta_{f}G_{m}^{0} (Edukte)$$
(7.29)

Seite 9

G 8 7 8	Vla VIIIa	Relative Atommasse Aggres atzustand bei Normalbedingungen Elektronegativitat (Pauling) Oxdatatorisstufen	Cr Mn Fe S200 25 54 94 26 26 55 55 57 57 57 57 57 57 57 57 57 57 57	97.91 44 101.07 45 C RU RU February Febr 150 4150 220 30 1.00 4150 1.00 4150 3.4.6 11.00 4150 1	Tarcal W 18364 79 Re OS 190.23 ff 187 187 187 187 187 187 187 187 187 187	Nd Pm Sm Eu 150 36 G3 151 Nd Pm Sm Sm Eu 150 36 G3 151 Nedom Promethium Samarum Europium Smarrum Smarrum Europium Smarrum Sm
		Judanden	Eisen Fest 148 22 2.3 8	Ru Ruthenium Est 19 34 2.20 36 50 3.4.6 12 [Kr]55 ¹ 4d ⁷	OS 190.23 OS mium 0	Sm 150.36 63 Sm Samerium [64, 107, 107, 107, 107, 107, 107, 107, 107
G			27 1495 2927 8.90	45 1964 3695 12.41	7, 2446 4428 22.42 109 ∨ ∨	63 826 1526 95 1176 1176 2607 113.661
Gruppe 9	VIIIa		Cobalt fest 14 1.88 2.9 8 8.1948-3a7	Rh hodium fest 15 2.28 22 2.28 22 3,4 12 1]55 ¹ 4d ⁸	19.2.2 1. 19.2.2 1. 19.2.2 1. 1. 1. 1. 1. 1. 1.	Europium Gate Europium Gate Europium Gate 1312 11 2596 64 11 2559 11 2596 64
10	∧IIIa		Nickel 191 21 21 21 21 21 21 21 21 21 21 21 21 21	106.42 4 Palladium Fest 9 33 2.20 2 30 2.20 2 10 22 1 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Platin Figure 1 195.08 / Platin Figure 1 1 195.08 / Platin Figure 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	64
11	<u>e</u>		29 63.55 30 Cu Cu Ziv	Ag Silber fest 32 1.93 76 155 ¹⁴ d ¹⁰	Au Gold Fest 2.40 2 2.40 2 2.80 1 2 80 1 2 80 1 2 80 1 3 3 3 3 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4	Tb 158.33 66 Tb 10
12	<u>e</u>	5 BB 2075 BB 2927 1 13 (He 2) 2 (He 2)	65.41 3 hr fest 2 1.65 2	Cd Incomium fest 1.69 1.69 1.69 1.69	Hg Hg Hg 1.09 1.09 2.46445410 2.86 Ch ernicium	Dy 102.30 67 Dy H Dy H H Dy H H H H H H H H H H H H H
13 1	=	10.81 6 or feet 35; 2.04 48; 2.04 48; 2.05 14; or nium feet 14; 161 322	69.72 5.a silium fest 1.81 3 23d ¹⁰ 4p ¹	114.82 dium fest 1.78 1.78 24d ¹⁰ 5p ¹	The state of the s	HO E Holmum 1643 68 E Holmum 165 1586 E E E E E E E E E E E E E E E E E E E
14 15	>	C N N N N N N N N N N N N N N N N N N N	72.64 3	Sn Sb 121.76 5 Sn Sb 50 231.33 fest 630.63 fest 4 260.2 1.96 1587 2.077 9 [Kr] 55°440°5p² [Kr] 55°440°5p³ 5	82	167.26 69 108.
5 16	>	stoff stoff stoff stoff stoff stoff 3.04 2.3.4,5 11 30.97 11 bloor stoff 2.34,5 11 2.34,5 11 2.33,5 2.33,5 2.33,5	S Se no Selen (est 221 685 3.3.5 4.81 4.81 4.81 4.84 4.84 4.84 4.84 4.84	121.76 52 b Te non fest 449.51 2.07 988 -3.3.6 .25 d ¹⁰ 5p ³ (Kr)5s ² 44 ¹⁰	80:17.6	Tm Yterbum 173. Thulum Yterbum 173. Thulum Yterbum 126. Sport 126.
17	\$	D 16.00 9 F 19.00 10 Saucestoff F 19.00 10 Saucestoff F 19.00 10 Holga-ga, 21.06 10 Saucestoff F 19.00 10 Sau	3.55.	F2 127.60 53 126.97 Te I I I I I I I I I	Po	173.04 71 174.5 Lutetum Lutetum 13.842 11.9.84
18	VIII 2 Helium -272 -286.93 0.1785 0.1785	Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	5555 <	Xe Xeon Section Xeon Xeon Xeon Xeon Xeon Xeon Xeon Xe	Range Rang	150.36 63 151.36 64 157.25 65 158.93 66 162.50 67 164.93 68 167.26 69 168.93 70 173.04 71 174.97

Seite 10