Deadline: 07/02/2022(11:59PM)

Course Title: Algorithm Design

In this assignment you have to write a C/C++ program that reads an $M \times N$ matrix A[][] as input and computes each of the following. Note that any sub-matrix of a matrix can uniquely be identified by, using a couple of (row, column) index pairs referring to elements at diagonally opposite corners respectively. We would be referring to sum of elements in a matrix X with the term weight of X.

Course No: CS 222

- 1. Compute an $M \times N$ matrix T[[i]] where each T[i][j] is an ordered pair $(row_{ij}, column_{ij})$ such that $row_{ij} \leq i$ and $column_{ij} = n 1$. In other words, T[i][j] identifies a unique non-empty sub-matrix X_{ij} of A[[i]] whose left bottom corner element is A[i][j] and top right corner element is $A[row_{ij}][column_{ij}]$. The task in hand is to compute the value row_{ij} for each T[i][j] such that the sub-matrix X_{ij} is of least weight. Note that every X_{ij} has its last column perfectly aligned with the last column of A[[i]].
- 2. Compute an $M \times N$ matrix $T_s[][]$ where $T_s[i][j]$ is the sum of elements in X_{ij} .
- 3. Compute an $M \times N$ matrix S[[i]] where computation of S[i][j] is very similar to that of T[i][j] with the only difference being $column_{ij} \geq j$ (instead of $column_{ij} = n 1$). In other words, each S[i][j] determines a unique non-empty sub-matrix X_{ij} of least weight (as in Task 1) that need not be perfectly aligned with the last column of A[[i]].
- 4. Output the least possible s such that s is the sum of elements in a sub-matrix of A.

Assuming the following matrix A[4][5], T[2][1] = (0,4) and S[2][1] = (1,2) as witnessed by the red and blue sub-matrices respectively.

6	-5	9	-3	-2
-3	2	-7	-3	-1
-2	7	2	5	4
-1	-9	1	7	-2

Your program should read from an input file input.txt that contains the matrix A in the following format:

- First row contains 2 values M N
- There would be M rows following the first raw, where each row contains N positive integers.

Your program should generate a file output.txt that contains the matrix T[[]], $T_s[[]]$, S[[]] (in the format as in the file input.txt) and s with the solution to each task being separated by a blank line (There shouldn't be any additional text other than the expected output). You may refer Lab 01 to deal with file handling.

Design $\mathcal{O}(n^2)$ algorithms for Tasks 1 & 2 and $\mathcal{O}(n^3)$ algorithms for 3 & 4. You are supposed to submit a pdf file ROLLNO.pdf along with the code ROLLNO.c. Your pdf file should contain your algorithms for tasks 1 and 3 along with respective analyses.