Análisis de Correspondencias Multiples (ACM)

Hamdi Raïssi

IES PUCV

hamdi raissi@pucv cl

Objetivos de esta parte

Objetivo:

- a- Resumir información obtenidas en encuestas.
- b- Análizar los hechos sobresalientes de este tipo de datos.

El cuadro de los datos y anotaciones

Queremos estudiar un conjunto de datos con la estructura siguiente :

×	 	$Var\; j$	
1	 	z_{1j}	
:	 		
i	 	z_{ij}	
:	 		
	 	z_{Ij}	

- Tenemos J variables cualitativas con K_j , $j = \{1, \ldots, J\}$, modalidades cada una.
- I individuos.
- Esta tabla es entregada al software para análisis.
- Ejemplos : Variable consumo : z_{ij} =marca de un producto, Salud : z_{im} =hospital/clinica/centro de salud, Ocupación : z_{in} =cesante,trabaja mitad del tiempo, todo el tiempo,....etc

El cuadro de los datos y anotaciones

El software utiliza este tipo de datos :

	 	$Variable\ j$					
×	 	1		k		K_{j}	
1	 	0	0	1		0	
: i	 	0	1	0		0	
i'	 	1		0	0	0	
	 	0		0	0	1	

- ullet Vamos utilizar la variable que tiene 1 si el individuo i tiene una cierta modalidad y 0 sino
- Por una variable y un individuo podemos solo tener un 1 y todo el resto 0.

El cuadro de los datos y objetivos

- Dos individuos que tienen los mismos 1 y 0 son iguales del punto de vista de la encuesta.
- La variabilidad de los individuos viene de su diferencias.

Vamos a trabajar con variables para describir las diferencias :

- ullet El cuadro anterior tiene $\mathbf{K} = \sum_{j=1}^J K_j$ columnas (o modalidades en total).
- Por cada columna k (modalidad), $k = 1, ..., \mathbf{K}$ y fila i (individuo), i = 1, ..., I, tenemos una variable $y_{ik} = 0, 1$.

El cuadro de los datos y anotaciones

El software utiliza este tipo de datos :

		 $Variable\ j$					
×	1	 		k			
1		 0	0	1		0	
: :		 0	1	$y_{ik} = 0$		0	
i'		 1		0	0	0	
		 0		0	0	1	

Objetivos: Construir perfiles por los individuos y variables

Ejemplos de perfiles de individuos :

- Individuos en redes sociales para difundir publicidad en público determinado.
- Perfiles de consumidores.
- Perfiles de opiniones politicas.
-etc....

Ejemplos de perfiles de modalidades :

- Las modalidades "fuma/enfermo" y "no fuma/sano" podrían tener una cercania.
-etc...

Vamos a proyectar los individuos y las variables para visualizar los hechos

Medir distancias entre individuos

- Tenemos variables $y_{ik} = 0, 1$ que describen los I individuos.
- La idea es de destacar los individuos que tienen una modalidad que no es común.
- \Rightarrow $\tilde{x}_{ik}=y_{ik}/p_k$ donde p_k es la frecuencia de individuos que tiene 1 por la columna k.
 - Tenemos :

$$\bar{\tilde{x}}_k = \frac{1}{I} \sum_{i=1}^{I} y_{ik} / p_k = 1.$$

• Vamos a trabajar con variables centradas : $x_{ik} = y_{ik}/p_k - 1$.

Medir distancias entre individuos

Tenemos:

- Un nube de puntos de los individuos en $R^{\mathbf{K}}$.
- Un nube de puntos de las modalidades.

Nube de puntos de los individuos : medir distancias entre individuos

Ditancia entre individuos :

$$d^{2}(i,i') = \sum_{k=1}^{K} \frac{p_{k}}{J} (x_{ik} - x_{i'k})^{2} = \frac{1}{J} \sum_{k=1}^{K} \frac{1}{p_{k}} (y_{ik} - y_{i'k})^{2}.$$

Dar más peso a las modalidades pocas observadas.

- Proyectar este nube maximizando su inercia (distancia a su centro de gravedad).
- Buscar los componentes de manera secuencial.

Interpretación de los componentes a la luz de los individuos

- Estudiar la posición de unos extremos individuos nos da la interpretación de los componentes.
- Ejemplo: A la izquierda individuos sin hobbies, a la derecha con muchos hobbies: Eje horizontal=tendencia a tener hobbies.

Interpretación de los componentes a la luz de los individuos

- Los coordenados de los puntos en los ejes son variables cuantatitativas
- Las variables de partida son categoricas.
- ⇒ Utilizamos herramientas de la ANOVA a un factor ("one-way-ANOVA).
 - En ANOVA de un factor la razón de correlación mide la relación entre una variable cualitativa y cuantitativa.
 - Vamos a medir así la relación entre los ejes (con el cuadrado de la razón de correlación).
 - Obtenemos el cuadro de las razones de correlaciones.

Proyección de las modalidades

- ullet Tenemos un nube de puntos en \mathbb{R}^I .
- Medición de la distancia entre dos modalidades k y k' :

$$d^{2}(k, k') = \sum_{i=1}^{I} \left(\frac{y_{ik}}{p_{k}} - \frac{y_{ik'}}{p_{k'}} \right)^{2}$$

 Proyección con maximización de la inercia (o varianza) de las distancias entre las modalidades y el centro de gravedad (el origen).

Proyección de las modalidades

- A muchas veces tenemos muchas modalidades
- ⇒ La inercias de los ejes de un ACM es bastante baja en comparación de un ACP.
 - Tal como el ACP o el AC podemos tener variables activas y pasivas en la construcción del ACM.
 - Ejemplo : Variables activas : hobbies, trabajo. Variables pasivas : sexo, nivel economico, sueldo (la última es cuantitativa...).