Model description (3%)

Describe your seq2seq model

在這次作業中使用了幾個不同套件實做seq2seq model,有s2vt和其他幾種不同的架構。基本架構使用lstm做為encoder和decoder,將encoder最後輸出的context vector和state傳入decoder,幾種不同的變型是加入了attention、使用teacher forcing、把每個timestep output取argmax或masking、加入不同regularizer等,以下對於每種會有更詳細的說明。

- How to improve your performance (3%)
 - (e.g. Attention, Schedule Sampling, Beamsearch...)
 - Write down the method that makes you outstanding (1%)
 - O Why do you use it (1%)
 - Analysis and compare your model without the method. (1%)

以下將列出我嘗試的幾種方法並分析,然而根據實驗結果觀察,bleu無法有效呈現出文法的優劣,當bleu很高時文法也可能很糟,因此以下在test set上的實驗結果將文法和bleu分開做討論(train set都表現很好),就這個的現象而言,我認為很可能是overfitting所造成的結果。

1. 使用 pretrained embedding

在這個實驗中使用了word2vec(GoogleNews-vectors-negative300.bin),然而結果和使用one-hot差不多。

2. Spelling correction

為了使用pretrained embedding發現了文本中有不少錯字和非英文字母,因此過慮了一些字並將錯字使用edit distance 1從word2vec model中選取最有可能的字做修改,這個方法可以明顯改善錯字的情形但對seq2seq model準確率沒有明顯進步。

3. Attention

參考自effective approaches to attention-based neural machine translation中的global attention,將encoder每個timestep output經過attention layer後得到alignment score。實做結果沒有發現特別的進步。

4. Teacher forcing

使用teacher forcing是我觀察到最能夠有效提升文法,並且loss也會很快收斂到很小,若沒有teacher forcing,雖然可以達到很高的bleu(0.81),但會有輸出的結果文法非常糟糕的情況。

5. Schedule sampling

Schedule sampling比起只使用teacher forcing取得的bleu更好一些,並同時維持良好的文法,是實驗中看起來效果最好的(0.699)。

6. Beam search

根據實驗結果,使用beam search會讓bleu稍微下降,但仍然會產生通順的句子。將search path提高到3條或以上的時候,bleu下降更多(0.6以下)並出現詭異文法的句子。

7. Masking

在decoder做sampling的時候將上一步timestep sample到的結果的機率變0可以有效提升文法(可讀性)和bleu,比起postprocess把輸出句子連續相同字拿掉來的效果更好。

8. Noise layer, Dropout

model在train set上表現很好,幾乎可以達到100正確率,然而test set上卻越來越差,因此使用這些方法防止overfitting,雖然收斂會比較慢,但最終結果都有明顯提升。

9. char-based model

我嘗試使用char-based model發現其實是不錯的,雖然bleu偏低(~0.56),但句子非常通順,猜測因為char-based會拼錯字,因此計算bleu會偏低,

於是加入了修改錯字之後上升到了(\sim 0.59),ex. a merson is riding a micycle \rightarrow a person is riding a bicycle \circ

10. 篩選caption

根據打聽,移除太長太複雜的句子有助於模型準確率上升,然而就自身實驗結果來看準確率反而下降,猜測可能是因為原先模型為防止 overfitting中加入很多dropout和nosiy layer有關,資料數量減少影響較大,但並未做實驗證實。

Experimental results and settings (1%)

o parameter tuning, schedual sampling ... etc

parameters setting	
LSTM hidden size	256
batch size	64
rmsprop learning rate	0.001
dropout	0.5
vocab size	6060

一開始使用64做為hidden size就可以通baseline,增加到256有稍為進步,再繼續增加hidden size就沒有觀察到進步了。

results	bleu
base model	~0.66
teacher forcing	~0.68
schedule sampling	~0.7
beam search	~0.63
char-based model	~0.59

這裡大約列出bleu score,特別注意到若不使用teacher forcing 不停的train , bleu 可以達到0.81的,但是文法很糟糕。

分工表:

2-1: 蔡昀達