Fiche TD 2

Année Univ. 2018–2019

Filière: SMIA (S2)

Destribuée mercredi 2019 Responsable: S. NAJIB

I. Applications linéaires, Rang d'une famille de vecteurs

Exercice 1

On considère les applications:

 $f_1:(x,y)\in\mathbb{R}^2\longmapsto (x+y+1,x,y)\in\mathbb{R}^3;$

 $f_2:(x,y,z)\in\mathbb{R}^3\longmapsto(2x-z,y+z)\in\mathbb{R}^2;$

 $f_3:(x,y)\in\mathbb{R}^2\longmapsto (xy,x-y)\in\mathbb{R}^2;$

 $f_4:(x,y,z)\in\mathbb{R}^3\longmapsto x+y+2z\in\mathbb{R};$

 $f_5: P \in \mathbb{R}_2[X] \longmapsto P - (X-2)P' \in \mathbb{R}_2[X];$

 $f_6: P \in \mathbb{R}_3[X] \longmapsto (P(-1), P(0), P(1)) \in \mathbb{R}^3.$

- 1) Parmi les applications f_1, f_2, f_3, f_4 , préciser lesquelles qui sont linéaires.
- 2) Pour celles qui sont linéaires, déterminer une base du noyau et une base de l'image. En déduire leur rang. Ces applications sont elles injectives? surjectives? bijectives?

Exercice 2

Soit E un K-ev et $f \in \mathcal{L}_K(E)$ nilpotent, c'est-à-dire qu'il existe $n \in \mathbb{N}^*$ tel que $f^n = f \circ f \circ \ldots \circ f = 0_{\mathcal{L}_K(E)}$.

Montrer que $Id_E - f$ est un automorphisme de E, et déterminer son automorphisme réciproque.

Exercice 3

Soit E un K-ev et $f, g \in \mathcal{L}_K(E)$.

- 1) Montrer que $g \circ f = 0 \iff Imf \subset Kerg$.
- 2) Comparer $Kerg \cap Kerf$ et Ker(f+g).
- 3) Comparer Imf + Img et Im(f + g).
- 4) Comparer Kerf et $Kerf^2$ puis Imf et Imf^2
- 5) Montrer les équivalences suivantes:
 - (a) $Kerf \cap Imf = \{0_E\} \iff Kerf^2 = Kerf.$
 - (b) $E = Imf + Kerf \iff Imf = Imf^2$.

Exercice 4

1) Déterminer le rang des familles de vecteurs suivantes de \mathbb{R}^4 :

- (a) (u_1, u_2, u_3) avec $u_1 = (1, 1, 1, 1), u_2 = (1, -1, 1, -1), u_3 = (1, 0, 1, 1).$
- **(b)** (v_1, v_2, v_3, v_4) avec $v_1 = (1, 1, 0, 1), v_2 = (1, -1, 1, 0), v_3 = (2, 0, 1, 1), v_4 = (0, 2, -1, 1).$
- 2) Soit $E = \mathbb{R}^{]} 1,1[$: le \mathbb{R} -ev des fonctions définies sur]-1,1[à valeurs dans \mathbb{R} . On considère dans E les fonctions:

$$f_1 = \sqrt{\frac{1+x}{1-x}}, \ f_2 = \sqrt{\frac{1-x}{1+x}}, \ f_3 = \frac{1}{\sqrt{1-x^2}}, \ f_4 = \frac{x}{\sqrt{1-x^2}}.$$

Calculer le rang de la famille (f_1, f_2, f_3, f_4) .

Exercice 5

Soit E un K-ev de dimension $n \in \mathbb{N}^*$ et $f, g \in \mathcal{L}_K(E)$.

1) Montrer l'équivalence:

$$Kerf = Imf \iff f^2 = 0_{\mathcal{L}_K(E)} \text{ et } n = 2rg(f).$$

- 2) Supposons que $rg(f^2) = rg(f)$. Montrer que:
 - (a) $Imf^2 = Imf$ et $Kerf^2 = Kerf$.
 - (b) Imf et Kerf sont supplémentaires dans E.
- 3) Supposons que f + g est bijectif et $g \circ f = 0_{\mathcal{L}_K(E)}$. Montrer que rg(f) + rg(g) = n.
- 4) Supposons que $g^3 = 0_{\mathcal{L}_K(E)}$. Montrer que $rg(g) + rg(g^2) \leq n$.

II. Opérations sur les matrices

Exercice 6

On considère les matrices suivantes:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 3 & -1 \\ 1 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & 4 \\ 1 & 0 & -2 \end{pmatrix}, C = \begin{pmatrix} 1 & -2 \\ 1 & 1 \\ 3 & 1 \end{pmatrix}, D = \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \text{ et } E = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix}.$$

- 1) Calculer lorsque cela est bien définie les produits de matrices suivants: AB, BA, AC, CA, AD, AE, BC, BD, BE, CD, DE et DEA.
- 2) Calculer (A-2B)C, ${}^tC.A$, ${}^tC.B$ et ${}^tC({}^tA-2\ {}^tB)$ avec tM désigne la matrice transposée de M.

Exercice 7

On considère la matrice: $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$ Trouver toutes les matrices à coefficients réels X, X' telles que: AX = A et X'A = A.

Exercice 8

On considère les matrices:
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
 et $B = A - I_3$.

Calculer B^n pour $n \in \mathbb{N}$. En déduire A^n pour $n \in \mathbb{N}$.

Exercice 9

On considère la matrice:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$

- 1) Calculer A^n pour $n \in \mathbb{N}$.
- 2) On considère les suites récurrentes suivantes:

$$u_n = u_{n-1} + 2v_{n-1} + 3w_{n-1}, \ v_n = v_{n-1} + 2w_{n-1}, \ w_n = w_{n-1}.$$

Calculer les termes u_n , v_n et w_n en fonction de u_0 , v_0 , w_0 et n.

Exercice 10

On considère la matrice:
$$A = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

1) Calculer A^2 et vérifier que $A^2 = A + 2I_3$.

- 2) En déduire que A est inversible puis calculer son inverse.
- 3) Retrouver l'inverse de A en utilisant la méthode de Gauss.

Exercice 11

Dans
$$\mathcal{M}_2(\mathbb{R})$$
, on considère la matrice: $J = \begin{pmatrix} 1/2 & 3/4 \\ 1 & -1/2 \end{pmatrix}$ et l'ensemble $F = \{A \in \mathcal{M}_2(\mathbb{R}) / JA = AJ\}$.

- 1) Calculer J^2 et conclure.
- 2) Montrer que $F = Vect\{(I_2, J)\}$. En déduire une base et la dimension $\mathrm{de}\ F.$

II. Application linéaire et Matrice

Exercice 12

On considère les deux applications linéaires: $f:(x,y)\in\mathbb{R}^2\mapsto$ $(x+2y, 2x-y, 2x+3y) \in \mathbb{R}^3$ et

$$g: (x,y,z) \in \mathbb{R}^3 \longmapsto (x-2y+z,2x+y-3z) \in \mathbb{R}^2.$$

Notons $\mathcal{B} = (e_1, e_2)$ et $\mathcal{B}_1 = (f_1, f_2, f_3)$ les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 .

1) Déterminer les matrices de f, g, $f \circ g$, $g \circ f$ dans les bases canoniques de leurs espaces de définition respectifs. En déduire les expressions de $(f \circ g)(x, y, z)$ et $(g \circ f)(x, y, z)$.

- 2) On considère les vecteurs: $e'_1 = e_1$, $e'_2 = e_1 e_2$, $f'_1 = f_1$, $f'_2 = f_1 + f_2$ et $f'_3 = f_1 + f_2 + f_3$. Montrer que $\mathcal{B}' = (e'_1, e'_2)$ et $\mathcal{B}'_1 = (f'_1, f'_2, f'_3)$ sont des bases de \mathbb{R}^2 et \mathbb{R}^3 respectivement.
- 3) Donner la matrice de passage P de la base \mathcal{B} à la base \mathcal{B}' puis la
- matrice de passage Q de la base \mathcal{B}_1 à la base \mathcal{B}'_1 .

 4) Donner la matrice de f dans les \mathcal{B}' et \mathcal{B}_1 puis dans les bases \mathcal{B}' et \mathcal{B}'_1 et enfin celle de g dans les bases \mathcal{B}'_1 et \mathcal{B}' .