Classes de Equivalência na Congruência módulo m

José Antônio O. Freitas

MAT-UnB

$$R = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x = y \text{ (and m)}\}$$

$$\overline{b} = \{x \in \mathbb{Z} \mid x = b \text{ (and m)}\}$$

$$\overline{0} = \{x \in \mathbb{Z} \mid x = 0 \text{ (and m)}\} = m$$

$$m | (x - 0) (=) m | x$$

$$(=) x = Km | K \in \mathbb{Z}$$

 $\overline{n} =$

$$\overline{n} = C(n) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n)

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} .

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão.

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{\underline{x} \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{ x \in \mathbb{Z} \mid x \equiv 0 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{m} \}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + \underbrace{km}_{1}, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m>1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(\underline{n}) =$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = \underline{n} + \underline{km}, k \in \mathbb{Z}\}$$

$$\overline{n} = C(n) = \{x \in \mathbb{Z} \mid x \equiv n \pmod{m}\}.$$

Vamos dentoar C(n) por $R_m(n)$ ou \overline{n} , quando não houver possibilidade de confusão. Assim fixando m > 1 vamos escrever

$$R_m(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = mk, k \in \mathbb{Z}\} = m\mathbb{Z}$$

$$R_m(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{m}\} = \{x \in \mathbb{Z} \mid x = 1 + km, k \in \mathbb{Z}\}$$

$$R_m(n) = \{x \in \mathbb{Z} \mid x = n + km, k \in \mathbb{Z}\}$$

As classes de equivalência definidas pela congruência módulo m

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

$$R_m(\underline{k}) = R_m(\underline{l})$$

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

$$\rightarrow R_m(\underline{k}) = R_m(\underline{l})$$
 se, e somente se, $\underline{k} \equiv l \pmod{m}$.

As classes de equivalência definidas pela congruência módulo m são determinadas pelos restos da divisão inteira por m. Em outras palavras, $R_m(n)$ é o conjunto dos números inteiros cujo resto na divisão inteira por m é n.

Corolário

 $R_m(k) = R_m(l)$ se, e somente se, $k \equiv l \pmod{m}$.

Exemplos

i) Se m = 2,

Exemplos

i) Se m=2, então os possíveis restos na divisão inteira por 2 são 0 e 1.

$$R_{2}(0) = \begin{cases} \chi \in \mathcal{I} & | \chi \in \mathcal{I} \\ \chi \in \mathcal{I} & | \chi \in \mathcal{I} \end{cases}$$

$$\chi \in \mathcal{I} \quad | \chi \in \mathcal$$

$$R_2(0) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} =$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$R_2(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 2k, k \in \mathbb{Z}\}\$$

$$R_2(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{2}\} = \{x \in \mathbb{Z} \mid x = 1 + 2k, k \in \mathbb{Z}\}.$$

$$J = \{ \pm 5, \pm 3, \pm 5, \dots \}$$

 $S = \{ (x, y) \in 7 \mid x - y = 2K, K \in 21 \}$

ii) Se m = 3,

$$N = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid x \ge y \pmod{3}\}$$

 $0 \le N < 3 = 0 \le N \le 2$
 $0, 1, 2$

$$R_3(0) = \langle \chi \in \mathcal{I} \mid \chi \in \mathcal{I} \rangle$$

$$R_3(0) = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x \in \mathbb{$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid \underline{x = 3k}, k \in \mathbb{Z}\}$$

$$\begin{cases} \begin{pmatrix} 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 5 \\ 3 \end{pmatrix}, \qquad \begin{pmatrix} 1 \\ 3 \end{pmatrix},$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid \underline{x \equiv 1 \pmod{3}}\} =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = \underbrace{3k+1}, k \in \mathbb{Z}\}$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) =$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_{3}(2) = \{x \in \mathbb{Z} \mid \underline{x} \equiv 2 \pmod{3}\} = 3 \mid (\chi - \chi) \mid (\Rightarrow) \mid \chi - \chi = 3 \mid (+2) \mid (\Rightarrow) \mid \chi = 3 \mid (+2) \mid (\Rightarrow) \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$\begin{cases} x = 3k, k \in \mathbb{Z} \\ x = 3k, k \in \mathbb{Z} \end{cases}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}$$

$$A_{3}(2)=\{...,-4,-5,2,5,8,...\}$$

$$R_3(0) = \{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k, k \in \mathbb{Z}\}$$

$$R_3(1) = \{x \in \mathbb{Z} \mid x \equiv 1 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 1, k \in \mathbb{Z}\}$$

$$R_3(2) = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\} = \{x \in \mathbb{Z} \mid x = 3k + 2, k \in \mathbb{Z}\}$$

Na relação de equivalência módulo m existem m classes de equivalência.

$$0 \le h < m$$

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por *m*

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1).

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente,

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.

Proposição

Na relação de equivalência módulo m existem m classes de equivalência.

Prova: Os possíveis restos na divisão inteira por m são 0, 1, ..., (m-1). Como cada possível resto define uma classe de equivalência diferente, existem exatamente m classes de equivalência.

 $\Omega_{m}(n) = \overline{n}$

Fixado m inteiro positivo,

Fixado m inteiro positivo, denotaremos

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = (\overline{1})$$

$$R_m(m-1) = m-1$$

O conjunto quociente desta relação será denotado por $\frac{\mathbb{Z}}{m\mathbb{Z}}$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m =$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

:

$$R_m(m-1) = \overline{m-1}$$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} =$$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$

$$R_m(1) = \overline{1}$$

$$R_m(m-1) = \overline{m-1}$$

O conjunto quociente desta relação será denotado por $\frac{\mathbb{Z}}{m\mathbb{Z}}$ ou \mathbb{Z}_m . Assim

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

 $\mathbb{Z}_{m} = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$ $\mathbb{Z}_{2} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$

Fixado m inteiro positivo, denotaremos

$$R_m(0) = \overline{0}$$
 $R_m(1) = \overline{1}$
 \vdots
 $R_m(m-1) = \overline{m-1}$

$$\mathbb{Z}_m = \frac{\mathbb{Z}}{m\mathbb{Z}} = \{\overline{0}, \overline{1}, ..., \overline{m-1}\}.$$

Vamos definir um meio de somar

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m .

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em \mathbb{Z}_2 =

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$

Vamos definir um meio de somar e multiplicar os elementos de \mathbb{Z}_m . Por exemplo, em $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ temos:

\oplus	Q	· (1)
Q	Ō	Ī
①	Ī	101

$$\frac{1}{2N-2l} = \frac{1}{2(N-l)} + \frac{1}{2}$$

Para multiplicação, temos

\otimes	Q	<u>1</u>
Q	10	ō
1	10	1

$$(1 - 1)(2 + 1) = 4 + 2 + 2 + 1$$

$$= 2(2 + 1 + 1) + 1$$

$$= 2(2 + 1 + 1) + 1$$

Dados $\overline{\underline{a}}$, $\overline{\underline{b}} \in \mathbb{Z}_m$ definimos

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \wedge + b$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overbrace{a.b}$$

Dados $\bar{\underline{a}}$, $\bar{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}.$$

$$|0| + |0|$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}.$$

Proposição

As operações de soma e a multiplicação

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima <u>sã</u>o independentes dos representantes das classes.

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova:

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1=\overline{a}_2$ e $\overline{b}_1=\overline{b}_2$,

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1=\overline{a}_2$ e $\overline{b}_1=\overline{b}_2$, com $a_1\neq a_2$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}$$
.

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$

$$\overline{b_1} = \overline{b_2}$$
, com $a_1 \neq a_2$ e $b_1 \neq b_2$,

$$\begin{array}{cccc}
\alpha_1 \oplus \overline{b}_1 & = & \overline{\alpha}_2 \oplus \overline{b}_2 \\
\overline{\alpha}_1 \otimes \overline{b}_1 & = & \overline{\alpha}_2 \otimes \overline{b}_2
\end{array}$$

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a}\otimes \overline{b}=\overline{ab}.$$

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$ e $\overline{b}_1 = \overline{b}_2$, com $a_1 \neq a_2$ e $b_1 \neq b_2$, temos:

$$a_1 \equiv a_2 \pmod{m}$$

Definição

Dados \overline{a} , $\overline{b} \in \mathbb{Z}_m$ definimos

$$\overline{a} \oplus \overline{b} = \overline{a+b}$$

$$\overline{a} \otimes \overline{b} = \overline{ab}$$
.

Proposição

As operações de soma e a multiplicação definidas acima são independentes dos representantes das classes.

Prova: Dadas duas classes em \mathbb{Z}_m com representantes diferentes, $\overline{a}_1 = \overline{a}_2$

e $\overline{b}_1 = \overline{b}_2$, com $\underline{a_1} \neq a_2$ e $b_1 \neq b_2$, temos:

$$\underline{a_1 + b_1} \equiv \underline{a_2 + b_2} \pmod{m}$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $\underline{a_1b_1} \equiv \underline{a_2b_2} \pmod{m}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de
$$b_1 = b_1 \equiv a_2 + b_2 \pmod{m}$$

$$\overline{a_1 \oplus b_2} = \overline{a_1 + b_1} = \overline{a_2 + b_2} \pmod{m}$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de
$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} =$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \underline{a_2 + b_2}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1+b_1\equiv a_2+b_2\pmod m$ segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de
$$a_1+b_1\equiv a_2+b_2\pmod m$$
 segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1b_1 \equiv a_2b_2 \pmod{m}$.

Mas de
$$\underline{a_1} + b_1 \equiv \underline{a_2} + b_2 \pmod{m}$$
 segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a_1} \oplus \overline{b_1} = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{\underline{a}_2} \oplus \overline{\underline{b}_2}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$.

Agora de
$$\underline{a_1b_1} \equiv \underline{a_2b_2} \pmod{m}$$

$$\underline{\alpha_1 \otimes b_1} = \underline{\alpha_1 b_1} = \underline{\alpha_2 b_2} = \underline{\alpha_2 \otimes b_2}$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1+b_1\equiv a_2+b_2\pmod m$ segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de
$$a_1b_1 \equiv a_2b_2 \pmod{m}$$
 segue que $\overline{a_1b_2} =$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1+b_1\equiv a_2+b_2\pmod m$ segue que $\overline{a_1+b_1}=\overline{a_2+b_2}$. Assim $\overline{a}_1\oplus \overline{b}_1=\overline{a_1+b_1}=\overline{a_2+b_2}=\overline{a}_2\oplus \overline{b}_2$.

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $\overline{a_1b_2} = \overline{a_2b_2}$.

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

$$\overline{a}_1 \otimes \overline{b}_1 =$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1 b_1} =$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim $\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2$.

$$a_1 \oplus b_1 = a_1 + b_1 = a_2 + b_2 = a_2 \oplus b_2$$

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} =$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{\underline{a}_2} \otimes \overline{\underline{b}_2}.$$

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $a_1b_2 = a_2b_2$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $a_1b_2 = a_2b_2$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação não dependem dos representantes que escolhemos para as classes de equivalência,

$$a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$$

 $a_1 b_1 \equiv a_2 b_2 \pmod{m}$.

Mas de $a_1 + b_1 \equiv a_2 + b_2 \pmod{m}$ segue que $\overline{a_1 + b_1} = \overline{a_2 + b_2}$. Assim

$$\overline{a}_1 \oplus \overline{b}_1 = \overline{a_1 + b_1} = \overline{a_2 + b_2} = \overline{a}_2 \oplus \overline{b}_2.$$

Agora de $a_1b_1 \equiv a_2b_2 \pmod{m}$ segue que $a_1b_2 = a_2b_2$. Assim

$$\overline{a}_1 \otimes \overline{b}_1 = \overline{a_1b_1} = \overline{a_2b_2} = \overline{a}_2 \otimes \overline{b}_2.$$

Portanto a soma e a multiplicação não dependem dos representantes que escolhemos para as classes de equivalência, como queríamos.

A soma e a multiplicação em $\mathbb{Z}_4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$

A soma e a multiplicação em $\mathbb{Z}_{\underline{4}}=\{\overline{0},\overline{1},\overline{2},\overline{3}\}$ são dadas nas tabelas abaixo:

A soma e a multiplicação em $\mathbb{Z}_{\overline{2}} = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}\}$ são dadas nas tabelas abaixo:

\oplus	ō	1	$\overline{2}$	3
<u>o</u>	0 (1	Ī	3
Ī	I	19	13	0(
2	Ī	اس	10	Ī
3	13	10	1	1

Tabela: Multiplicação em Z₄

\otimes	<u>0</u> <u>~</u>	$\overline{1}^{\checkmark}$	<u>2</u> ✓	3 ℃
ō	0) 0	10	0
Ī	0	1	2	3
2	10	- 2	10	-9
3	-0	13	7	1

$$00b = 0b = 0$$
 $10b = 0$
 $10b = 0$

As operações de soma ⊕

As operações de soma \oplus e multiplicação \otimes

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$:

As operações de soma \oplus e multiplicação \otimes em \mathbb{Z}_m satisfazem as seguintes propriedades:

i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$:

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} =$

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{\textbf{x}}, \ \bar{\textbf{y}} \ e \ \bar{\textbf{z}} \in \mathbb{Z}_{\textit{m}} \text{:} \ (\bar{\textbf{x}} \oplus \bar{\textbf{y}}) \oplus \bar{\textbf{z}} = \bar{\textbf{x}} \oplus (\bar{\textbf{y}} \oplus \bar{\textbf{z}}).$
- iii) Para todo $\bar{\chi} \in \mathbb{Z}_m$,

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \boxed{0} \neq \underline{\bar{x}}$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{x} \textit{,} \ \bar{y} \ e \ \bar{z} \in \mathbb{Z}_{\textit{m}} \text{:} \ \big(\bar{x} \oplus \bar{y} \big) \oplus \bar{z} = \bar{x} \oplus \big(\bar{y} \oplus \bar{z} \big).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$,

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{x} \textit{,} \ \bar{y} \ e \ \bar{z} \in \mathbb{Z}_{\textit{m}} \text{:} \ \big(\bar{x} \oplus \bar{y} \big) \oplus \bar{z} = \bar{x} \oplus \big(\bar{y} \oplus \bar{z} \big).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\overline{x} \in \mathbb{Z}_m$, existe $\overline{y} \in \mathbb{Z}_m$

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\overline{x} \in \mathbb{Z}_m$, $\overline{x} \oplus \overline{0} = \overline{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = 0$.

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$:

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\overline{x} \in \mathbb{Z}_m$, existe $\overline{y} \in \mathbb{Z}_m$ tal que $\overline{x} \oplus \overline{y} = \overline{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{\textbf{x}}, \ \bar{\textbf{y}} \ e \ \bar{\textbf{z}} \in \mathbb{Z}_{\textit{m}} \text{:} \ (\bar{\textbf{x}} \oplus \bar{\textbf{y}}) \oplus \bar{\textbf{z}} = \bar{\textbf{x}} \oplus (\bar{\textbf{y}} \oplus \bar{\textbf{z}}).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e \bar{z} $\in \mathbb{Z}_m$:

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \otimes \overline{y} = \overline{y} \otimes \overline{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} =$

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \oplus \bar{y} = \bar{y} \oplus \bar{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{\underline{x}} \in \mathbb{Z}_m$:

- i) Para todos \overline{x} , $\overline{y} \in \mathbb{Z}_m$: $\overline{x} \oplus \overline{y} = \overline{y} \oplus \overline{x}$.
- ii) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \oplus \bar{y}) \oplus \bar{z} = \bar{x} \oplus (\bar{y} \oplus \bar{z})$.
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_{m}$ existe $\bar{y} \in \mathbb{Z}_{m}$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

- i) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\underline{\bar{x}} \oplus \bar{y} = \underline{\bar{y}} \oplus \bar{x}$.
- $\textit{ii)} \ \ \textit{Para todos} \ \bar{\textbf{x}}, \ \bar{\textbf{y}} \ e \ \bar{\textbf{z}} \in \mathbb{Z}_{\textit{m}} \text{:} \ (\bar{\textbf{x}} \oplus \bar{\textbf{y}}) \oplus \bar{\textbf{z}} = \bar{\textbf{x}} \oplus (\bar{\textbf{y}} \oplus \bar{\textbf{z}}).$
- iii) Para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \oplus \bar{0} = \bar{x}$.
- iv) Para todo $\bar{x} \in \mathbb{Z}_m$, existe $\bar{y} \in \mathbb{Z}_m$ tal que $\bar{x} \oplus \bar{y} = \bar{0}$.
- v) Para todos \bar{x} , $\bar{y} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{y} = \bar{y} \otimes \bar{x}$.
- vi) Para todos \bar{x} , \bar{y} e $\bar{z} \in \mathbb{Z}_m$: $(\bar{x} \otimes \bar{y}) \otimes \bar{z} = \bar{x} \otimes (\bar{y} \otimes \bar{z})$.
- vii) Para todo $\bar{x} \in \mathbb{Z}_m$: $\bar{x} \otimes \bar{1} = \bar{x}$.

$$\frac{\chi_{\Delta}}{\chi_{\Delta}} = \frac{\chi_{+}}{\chi_{-}} = \frac{\chi_{+}}{\chi$$

Um elemento $\overline{a} \in \mathbb{Z}_m$ *é inversível*

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a}

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é **inversível** se, e somente se, existe $\overline{b} \in \mathbb{Z}_m$ tal que $\overline{a} \otimes \overline{b} = \overline{1}$. Neste caso, \overline{b} é chamado **inverso** de \overline{a} e denotaremos $\overline{b} = (\overline{a})^{-1}$.

Proposição

Se o inverso existe, então ele é único.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é

Um elemento $\overline{a} \in \mathbb{Z}_m$ *é inversível*

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$,

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$,

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso $(\overline{1}, e \circ \overline{3}, \overline{3})$

1/~

Um elemento $\overline{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.

Um elemento $\bar{a} \in \mathbb{Z}_m$ é inversível se, e somente se, mdc(a, m) = 1.

Corolário

Se m é um número primo, então para todo $\bar{x} \in \mathbb{Z}_m$, $\bar{x} \neq \bar{0}$, existe inverso.

Exemplos

i) Em \mathbb{Z}_4 existem dois elementos inversíveis que são $\overline{1}$, cujo inverso é $\overline{1}$, e o $\overline{3}$, cujo inverso é $\overline{3}$.

Exemplos

ii) Em \mathbb{Z}_{11} ,

Exemplos

ii) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$,

()

Exemplos

ii) Em \mathbb{Z}_{11} , todos elementos, exceto $\overline{0}$, possuem inverso:

Tabela: Inversos em \mathbb{Z}_{11}

Elemento	$\overline{1}$	2	3	4	5	<u>6</u>	7	8	9	10
Inverso										
W. (m x) = n = 7										

$$\chi_{+}(w-\lambda)=w=0$$

$$\overline{x}.y = y.x = \overline{y} \otimes \overline{x}$$

$$\frac{x \cdot y \cdot z}{x \cdot y \cdot z} = \frac{x \cdot (yz)}{(x \cdot y) \cdot z} = \frac{x \cdot (yz)}{(x \cdot y)} = \frac{x \cdot (yz)}{(x \cdot y)} = \frac$$

= \(\frac{1}{\pi} \operatorname{\pi} \) = \(\frac{1}{\pi} \operatorname{\pi} \operatornam

マンシュス

md((1,4) = mde(3,4) = 1

24, ade(2,4)=2

