Real Variables: Problem Set X

Youngduck Choi

Courant Institute of Mathematical Sciences New York University yc1104@nyu.edu

Abstract

This work contains solutions to the problem set X of Real Variables 2015 at NYU.

1 Solutions

Question 1. Royden 13-41.

41. Let X be the linear space of all polynomials defined on **R**. For $p \in X$, define ||p|| to be the sum of the absolute values of the coefficients of p. Show that this is a norm on X. For each n, define $\psi_n \colon X \to \mathbf{R}$ by $\psi_n(p) = p^{(n)}(0)$. Use the properties of the sequence $\{\psi_n\}$ in $\mathcal{L}(X, \mathbf{R})$ to show that X is not a Banach space.

Solution. We first show that $\| \| : X \to \mathbb{R}$ given is a norm on X. First of all,

Question 2. Royden 14-18.

18. Let X be a normed linear space, ψ belong to X^* , and $\{\psi_n\}$ be in X^* . Show that if $\{\psi_n\}$ converges weak-* to ψ , then

 $\|\psi\| \leq \limsup \|\psi_n\|.$

Solution. As $\{\psi_n\}$ is weak-* convergent to ψ , we have

$$\psi_n(x) \rightarrow \psi(x),$$

for all $x \in X$. Let $x \in X$. As $|\cdot|$ is continuous on \mathbb{R} , it follows that

$$\lim_{n \to \infty} |\psi_n(x)| = |\psi(x)|.$$

As $|\psi_n(x)| \le ||\psi_n|| \cdot ||x||$,

$$\begin{split} |\psi(x)| &= & \lim_{n \to \infty} |\psi_n(x)| \\ &= & \limsup_{n \to \infty} |\psi_n(x)| \\ &\leq & \limsup_{n \to \infty} ||\psi_n|| \cdot ||x|| \\ &= & ||x|| \limsup_{n \to \infty} ||\psi_n||. \end{split}$$

Since $x \in X$ was arbitrary, it follows that

$$||\psi|| \leq \limsup_{n \to \infty} ||\psi_n||,$$

as desired.

Question 3. Royden 14-23.

23. Let Y be a linear subspace of a normed linear space X and z be a vector in X. Show that

$$dist(z, Y) = \sup \{ \psi(z) \mid ||\psi|| = 1, \psi = 0 \text{ on } Y \}.$$

Solution. Consider a functional $p: X \to [0, \infty)$ be defined by

$$p = \begin{cases} 0, & \text{if } x \in Y \\ ||x||, & \text{otherwise.} \end{cases}$$

We first show that p is positively homogeneous. Let $\lambda > 0$. Let $x \in Y$, then as Y is a linear subspace of X, $\lambda x \in Y$. It follows that

$$p(\lambda x) = 0$$
$$= \lambda p(x).$$

Let $x \notin Y$. It follows that $\lambda x \notin Y$, as otherwise we get a contradiction that $x \in Y$ from the linear subspace property of Y. It follows that

$$p(\lambda x) = ||\lambda x||$$

$$= |\lambda|||x||$$

$$= \lambda||x||$$

$$= \lambda p(x).$$

Hence, we have shown that p is positively homogeneous. Now, we show that p is sub-additive. Let $x, y \in Y$. Then, it follows that

$$p(x+y) = 0$$

= $p(x) + p(y)$.

Hence, $p(x+y) \le p(x) + p(y)$ holds. Let $x,y \notin Y$. Then, by the triangle inequality of norm, it follows that

$$p(x+y) = ||x+y||$$

 $\leq ||x|+||y||$
 $= p(x) + p(y).$

Let $x \in Y$ and $y \notin Y$. It follows that

$$p(x+y) = ||x+y||$$

 $\leq ||x|| + ||y||$
 $= 0$

3

Question 4. Royden 15-12.

- 12. If Y is a linear subspace of a Banach space X, we define the annihilator Y^{\perp} to be the subspace of X^* consisting of those $\psi \in X^*$ for which $\psi = 0$ on Y. If Y is a subspace of X^* , we define Y^0 to be the subspace of vectors in X for which $\psi(x) = 0$ for all $\psi \in Y$.
 - (i) Show that Y^{\perp} is a closed linear subspace of X^* .
 - (ii) Show that $(Y^{\perp})^0 = \overline{Y}$.

Solution. Let A be an algebra of continuous real-valued functions on a compact Hausdorf space X that separates points. Show that either $\bar{A} = C(X)$ or there is a point $x_0 \in X$ for which $\bar{A} = \{f \in C(X) | f(x_0) = 0\}.$

To solve this problem, it suffices to prove that $\bar{A}=C(X)$ assuming $\bar{\mathcal{A}}\neq\{f\in C(X)|f(x_0)=0\}$, i.e., $\forall x\in X, \exists f_x\in C(X)$, s.t. $f_x(x)=y_x\neq 0$. Then, the open interval $I_x=(y_x-\delta,y_x+\delta)$ where $0<\delta<|y_x|$, is mapped to an open interval $O_x=f_x^{-1}(I_x)\subset X$ where $x\in O_x$. Therefore, $X\subseteq \cup_{x\in X}O_x$. Since the foregoing is an open cover of a compact space X, it contains a finite subcover $\cup_{i=1}^n O_{x_i}$. By construction, $0\notin f_{x_i}(O_{x_i})$. Thus $g=\sum_{i=1}^n f_{x_i}^2$ is in A and takes strictly positive values on X.

Define $h: K \cup \{0\} \to R_+$ as follows

$$h(x) = \begin{cases} 1/x & \text{if } x \in K \\ 0 & \text{if } x = 0 \end{cases}$$

By Proposition 20, since X is compact and g is a continuous mapping, the range of g, K = g(X), is compact, which in the case of a real-valued range means that it is closed and bounded. Furthermore, since K is closed and $0 \notin K$, it is not possible to have a sequence in K converging to K. Therefore, K = K, which implies that K = K is continuous on K = K.

Now, since $h \in C(K)$, by Stone-Weierstrass, given $\epsilon > 0$, there exists p_n , a polynomial, s.t.

$$|h(x) - p_n(x)| < \epsilon/2$$

for all $x \in K$. Since the above implies that $|p_n(0)| < \epsilon/2$

$$|h(x) - (p_n(x) - p_n(0))| \le |h(x) - p_n(x)| + |p_n(0)| < \epsilon$$

where $p_n^*(x) = p_n(x) - p_n(0)$ (and thus $p_n^*(0) = 0$, which trivially guarantees the uniform convergence on $K \cup \{0\}$). Therefore, p_n^* is continuous on D, and $p_n^* \circ g \in A$. Since p_n^* converges uniformly to h and g is continuous and bounded (and consequently uniformly continuous on a compact set, $p_n^* \circ g \to 1/g$ uniformly. Therefore, $1/g \in \bar{A}$, which together with the fact that $g \in A$, implies that $1 \in \bar{A}$. This generates the family of constant functions in A. By the Stone-Weierstrass Approximation, \bar{A} is dense in C(X). Since \bar{A} is closed, this implies that $\bar{A} = C(X)$.