Mining time series data

Mining Massive Datasets Carlos Castillo Topic 11

Note (2019)

- Practice PS09 requires:
 - Moving average
 - Binning
 - Simple linear auto-regressive models
- PS09 is before the last theory session

Sources

- Data Mining, The Textbook (2015) by Charu Aggarwal (chapter 14)
- Introduction to Time Series Mining (2006) tutorial by Keogh Eamonn [alt. link]
- Time Series Data Mining (2006) slides by Hung Son Nguyen

Why do we mine time series? Examples

Seismic data

- Observations = earthquakes
- Goal: characterize when peeks occur

Liquid metal droplets

- = length of hot metal droplet
- = droplet release (chaotic, noisy)

Goal: prediction of release

Stock prices

Video data / gestures

- Series of angles of articulations in the body
- Temporal patterns can reveal gestures

Applications

- Clustering
- Classification
- Motif discovery
- Event detection
- •

- 1)All require a reasonable definition of the **similarity** between two time series
- 2)All can be done in **real-time** or **retrospectively**

Context vs Behavior

Contextual attribute(s)

- $-x(i) = t_i = timestamp is the typical one$
- Sometimes other attributes providing context

Behavioral attribute(s)

- $y^{i}(i)$ = temperature, angle, price, sensor reading, ... $j \in 1 \dots d$

What are the difficulties?

- High sampling rate of many series over extended periods of time means ...
 - Tons of data
 - Things are bound to fail at several points (missing data, noisy data)
- Subjectivity Subjectivity

Preparing a time series

Notation: multivariate time series

- Length n, timestamps $t_1, t_2, ..., t_n$
- Values at time t_i : $(y_i^1, y_i^2, ..., y_i^d)$
- If series is univariate we drop the superscript

Missing values: linear interpolation

• Let
$$t_i < t_x < t_j$$

$$y_x = y_i + \left(\frac{t_x - t_i}{t_j - t_i}\right) \cdot (y_j - y_i)$$

• Example: make an irregular series regular

Missing values: splines

Cubic polynomials between y_i , y_{i+1} that have the same slope at those points as the original curve.

Noise removal: binning

 Replace series by average of values in bins (subsequences) of length k

$$y'_{i+1} = \frac{1}{k} \sum_{r=1}^{k} y_{i \cdot k + r}$$

Noise removal: moving average smoothing

 Equivalent to overlapping bins

$$y_i' = \frac{1}{k} \sum_{r=1}^{k} y_{i-r+1}$$

- Larger k leads to smoother series, but losses more information
- Use smaller k for first k-1 items

Noise removal: exponential smoothing

 Combine previously smoothed point with current point

$$y_i' = \alpha \cdot y_i + (1 - \alpha) \cdot y_{i-1}'$$

Recursively substituting

$$y'_{i} = (1 - \alpha)^{i} \cdot y'_{0} + \alpha \sum_{i=1}^{i} y_{j} \cdot (1 - \alpha)^{i-j}$$

Noise removal: exponential smoothing

 Combine previously smoothed point with current point

$$y_i' = \alpha \cdot y_i + (1 - \alpha) \cdot y_{i-1}'$$

Recursively substituting

$$y'_{i} = (1 - \alpha)^{i} \cdot y'_{0} + \alpha \sum_{j=1}^{i} y_{j} \cdot (1 - \alpha)^{i-j}$$

Moving average vs exponential smoothing

Try it!

• Given the following series:

t	1	2	3	4	5	6	7	8	9	10
y _t	2	4	12	2	1	-2	0	15	3	3
y,'										
y ,"										

- y_t': moving average with k=3
- y_t": exponential average with alpha=0.5

Using Euclidean distance on time series

Euclidean distance for time series

Euclidean distance between series y and z

$$d(y,z) = \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

- Sensitive to noise (see previous slides on how to fix this)
- Sensitive to different offsets, amplitudes, and trends

Offset translation: subtract the mean

Series look different

 Series look similar

Amplitude scaling: normalize

- Standardization
- Range-based normalization

$$y_i' = \frac{y_i - \operatorname{avg}(y)}{\operatorname{std}(y)}$$

$$y_i' = \frac{y_i - \min(y)}{\max(y) - \min(y)}$$

Trend removal: remove linear trend

- 1. Find best straight line fitting data
- 2. Subtract that line from the data

Example: clustering of time series after using smoothing, offset translation, amplitude scaling, and trend removal

Clustering using euclidean distance on original series

Clustering using euclidean distance on processed series

Dynamic time warping

Dynamic time warping

Dynamic time warping example

Image credits: Lu et al. 2016

Computing DTW(X,Y)

- 1)Create a matrix M of size |X|×|Y|
- 2)Fill-in the matrix using dynamic programming

Computing DTW(X,Y) (cont.)

- 1)Create a matrix M of size |X|×|Y|
- 2)Fill-in the matrix using dynamic programming
- 3)Find lighter path

[Source]

4)Cell (a,b) in path ⇒ points a,b should be aligned

Sequence X

Try it!

Compute the DTW for these two series

t	1	2	3	4	5	6	
Y _t	2	5	2	5	3		
X_{t}	0	3	6	0	6	1	

Faster DTW through size reduction

- How to avoid having a large matrix?
- Use less points
 - Sub-sample from original series
 - Bin the original series
- If sampling was done, after doing DTW:
 - Interpolate warpings for intermediate points

Example: faster DTW through sub-sampling

How to avoid pathological warpings?

Assume original series cannot be so far apart from each other, using domain knowledge

Forecasting (AR, MA, ARMA, ARIMA, ...)

Stationary vs Non-Stationary processes

Stationary process

- Parameters do not change over time
- E.g., White noise has zero mean, fixed variance, and zero covariance between y_t and y_{t+L} for any lag L

Non-stationary process

- Parameters change over time
- E.g., price of oil, height of a child, glucose level of a patient, ...

Stationary process

Non-stationary process

Strictly stationary time series

A strictly stationary time series is one in which the distribution of values in any time interval [a,b] is identical to that in [a+L,b+L] for any value of time shift (lag) L

• In this case, current parameters (e.g., mean) are good predictors of future parameters

Differencing

First order differencing

$$y_i' = y_i - y_{i-1}$$

In this first example, if the original series is superlinear, the differenced series is stationary or non-stationary?

Differencing (cont.)

First order differencing

$$y_i' = y_i - y_{i-1}$$

In this second example, where the series is linear, the differenced series is stationary or non-stationary?

Other differencing operations

Second-order differencing

$$y_i'' = y_i' - y_{i-1}'$$

= $y_i - 2 \cdot y_{i-1} + y_{i-2}$

• Seasonal differencing (m = 24 hours, 7 days, ...) $y'_i = y_i - y_{i-m}$

If you find a differencing that yields a stationary series, the forecasting problem is basically solved.

Autoregressive model AR(p)

Autocorrelation(L) =
$$\frac{\text{Covariance}_t(y_t, y_{t+L})}{\text{Variance}_t(y_t)}$$

- Autocorrelation lines in [-1,1]
- High absolute values ⇒ predictability
- Autoregressive model of order p, AR(p):

$$y_t^{AR} = \sum_{i=1}^p a_i \cdot y_{t-i} + c + \epsilon_t$$

How to decide p? Autocorrelation plots

Finding coefficients and evaluating

training element

• Each data point is a
$$y_t^{AR} = \sum_{i=1}^{p} a_i \cdot y_{t-i} + c + \epsilon_t$$

- Coefficients found by least-squares regression
- Best models have $R^2 \rightarrow 1$

$$R^{2} = 1 - \frac{\operatorname{Mean}_{t}(\epsilon_{t}^{2})}{\operatorname{Variance}_{t}(y_{t})}$$

Moving average model MA(q)

Focus on the variations (shocks) of the model,
i.e., places where change was unexpected

• AR(p) model:
$$y_t^{AR} = \sum_{i=1}^{r} a_i \cdot y_{t-i} + c + \epsilon_t$$

• MA(q) model:
$$y_t^{\text{MA}} = \sum_{i=1}^q b_i \cdot \epsilon_{t-i} + c + \epsilon_t$$

Autoregressive moving average model ARMA(p,q)

 Combines both the autoregressive and the moving average model

$$y_t^{\text{ARMA}} = \sum_{i=1}^p a_i \cdot y_{t-i} + \sum_{i=1}^q b_i \cdot \epsilon_{t-i} + c + \epsilon_t$$

Select small p, q, to avoid overfitting

Autoregressive integrated moving average model ARIMA(p,q)

 Combines both the autoregressive and the moving average model on differenced series

$$y_t^{\text{ARIMA}} = \sum_{i=1}^p a_i \cdot (y_{t-i} - y_{t-i-1}) + \sum_{i=1}^q b_i \cdot \epsilon_{t-i} + c + \epsilon_t$$

Note: this is an ARIMA(p,1,q) model as we're using first order differencing

See also: ARIMA end-to-end project in Python by Susan Li (2018)

Event detection (a simple framework)

Event: an important occurrence

Earthquake or aftershock

Droplet release

Sudden price change

Example: pipe rupture

(... but what if sensors fail? ...

- "Systems in general work poorly or not at all"
- "In complex systems, malfunction and even total non-function may not be detectable for long periods, if ever"

... can we detect failure? ...)

(c) Temperature (sensor failure scenario)

(d) Pressure (sensor failure scenario)

A general scheme for event detection in multivariate time series

- Let $T_1, T_2, ..., T_r$ be times at which an event has been observed in the past
- (Offline) Learn coefficients α_1 , α_2 , ..., α_d to distinguish between event times and non-event times
- (Online) Observe series and determine deviation of every stream i at timestamp t as z_t^i
- (Online) Compute composite alarm level $Z_t = \sum_{i=1}^{n} \alpha_i \cdot z_t^i$

Learning discrimination coefficients

$$\alpha_1$$
, α_2 , ..., α_d

Average alarm level for events

$$Q^{\mathrm{event}}(\alpha_1, \dots, \alpha_d) = \frac{1}{r} \sum_{i=1}^{r} Z_{T^i}$$

$$Z_t = \sum_{i=1}^d \alpha_i \cdot z_t^i$$

 Average alarm level for non-events (we assume most points are non-events)

$$Q^{\text{normal}}(\alpha_1, \dots, \alpha_d) = \frac{1}{N} \sum_{i=1}^{N} Z_t$$

Learning discrimination coefficients α_1 , α_2 , ..., α_d (cont.)

• For events $Q^{ ext{event}}(lpha_1,\ldots,lpha_d)=rac{1}{r}\sum_{j=1}^r Z_{T^i}$

• For non-events
$$Q^{\text{normal}}(\alpha_1, \dots, \alpha_d) = \frac{1}{N} \sum_{i=1}^{N} Z_i$$

Maximize
$$Q^{\mathrm{event}}(\alpha_1, \dots, \alpha_d) - Q^{\mathrm{normal}}(\alpha_1, \dots, \alpha_d)$$
 subject to $\sum_{i=1}^d \alpha_i^2 = 1$ Use any off-the-shelf iterative optimization solver

Summary

Things to remember

- Series preparation
 - Interpolation
 - Smoothing
- Dynamic time warping
- Time series forecasting
- Event detection

Exercises for this topic

- Data Mining, The Textbook (2015) by Charu Aggarwal
 - Exercises $14.10 \rightarrow 1-6$