이론통계학2-project #3 생명표를 이용한 생명보험/연금 계산

강아미, 고유정, 윤보인, 이혜린, 홍지원

<part1> 생명표 만들기

a) 자료를 이용해 아래 방법으로 2010년 남녀 각세별 경험생명표를 각각 작성하고 이를 통계청에서 작성한 2010년 생명표와 서로 비교 검토해보시오.

Appendix [표 1], [표 2] 참조

경험생명표는 각 세별 인구와 사망자수를 기준으로 작성한 생명표이다. 세별 인구와 사망자수를 통해 사망확률, 생존자수, 정지인구, 기대여명에 대한 정보를 계산할 수 있다. 계산을 통해 구한 경험생명표는 통계청에서 제공하는 2010년 생명표의 값과 비슷하다는 것을 알 수 있다.

 $P_x: (x,x+1)$ 세 사이의 인구 $D_x: (x,x+1)$ 세 사이의 사망자수

사망률 : $q_x = m_x/(1 + \frac{m_x}{2})$ 사망확률 : $q_x = m_x/(1 + \frac{m_x}{2})$

생존자수 : $l_x=l_0\prod_{t=0}^{x-1}(1-q_t), l_0=100,\!000$

정지인구 : $L_0 = (l_x + l_{x+1})/2$ 기대여명 : $\overline{e_x} = \sum_{t=0}^{\infty} L_{x+t}/l_x$

b) 2010년 6월 남녀 연령별 인구수를 서로 마주보게 인구피라미드 그래프를 그려보고 그래프의 의미를 설명하시오.

여성 남성

2010년의 인구 피라미드는 40세~50세의 인구가 많은 항아리 모양을 띄고 있다.

<part2> 생명표 의미 분석

a) 2010년 생명표에서 $l_x, d_x, q_x, \overline{e_x}$ 의 시계열도표를 성별로 같은 도표에 겹쳐서 그려보고 남녀간 차이를 비교분석해 보시오. x=0,1,...,100

생존자수 (l_x) 그래프에서 각 연령별로 여성 생존자 수가 남성 생존자 수보다 많은 것을 보면, 전반적으로 여성이 남성보다 오래 산다는 사실을 확인할 수 있다. 사망자수 (d_x) 그래프를 보면, 여성의 그래프 패턴이 오른쪽으로 치우쳐져 있고 더 분포 모양이 좁은 것을 알 수 있다. 전반적으로 남성이 더 이른 나이에 사망하는 것을 확인할 수 있다. 또한 0세에 사망자수가 높게 솟아 있는 것을 확인할 수 있는데, 면역력이 낮은 영아들이 출생 직후 사망하기 때문이다.

사망확률 (q_x) 그래프를 살펴보면 0세에 살짝 높고, 나이가 많아질수록 높아지는 것을 확인할 수 있다. 기대여명 $(\bar{e_x})$ 을 살펴보면 전반적으로 감소하는 패턴의 보이고, 여성과 남성의 기대여명 차이도 감소하는 패턴이 발견된다.

b) 남녀 간 사망확률의 비의 시계열 도표를 그려보고 그 의미를 설명하시오.

 q_x 는 1년 이내 사망할 확률을 의미한다. 여성 사망확률 대비 남성의 사망확률을 그래프로 나타낸 것이므로 해당 값이 1보다 크면 남성의 사망확률이 높다는 것을 의미한다. 전 구간에서 남녀의 사망확률의비가 1보다 크기 때문에 1년 이내에 사망할 확률은 남성이 여성보다 높다. 특히 60대에 남녀의 사망확률의비가 크고 해당 연령대를 지나면서 비율 값이 줄어드는 경향이 발견된다.

c) 남녀 별 log-사망확률 및 log-사망률의 시계열 도표를 성별로 겹쳐서 그려보고 의미를 설명하시오.

사망확률은 1년 안에 사망할 확률이고, 사망률은 해당 나이의 사망자/인구수 를 의미한다. log사망확률과 log사망률은 비슷한 패턴을 보이고, 남성이 여성보다 높은 경향을 보인다. 10대를 넘어서고 나서는 log 사망률이 선형으로 증가하는 패턴을 확인할 수 있다.

d) 2001년 및 2010년의 생명표에서 남녀 별 log-사망확률 lnq_x 의 시계열 도표를 겹쳐서 그려보고 10년 간 남녀별 사망률의 변화추이를 설명하시오.

여성과 남성의 log사망확률은 10년 사이에 감소한 것을 확인할 수 있다. 여성의 경우에는 log사망확률의 기울기가 달라졌고, 남성의 경우 log사망확률의 절편이 달라졌음을 알 수 있다. 2001년에 비해 평균수명이 늘어났기 때문인 것으로 예상된다. 원자료를 살펴보면, 2010년의 경우 100세 이상의 생존자수가 4500명, 2001년의 경우 100세 이상의 생존자수가 1200명 안팎으로 전반적으로 수명이 늘어났음을 알 수 있다.

e) 사망률에 대한 Gompertz의 법칙이 성립하는지 남녀별로 살펴보고, 각 경우 회귀모형을 이용해 (a, b) 값을 추정하고 그 의미를 설명하시오.

여성	남성
(-10.722, 0.093)	(-9.818, 0.089)

사망률에 대해 Gompertz 법칙을 적용했을 때, 남성의 경우가 더 적합한 것을 확인할 수 있었다. 하지만 두 성별의 경우 모두 R^2 값이 크기 때문에 사망률이 Gompertz 법칙을 잘 따른다고 설명할 수 있다.

f) 남녀 별 Gompertz Q-Q plot 을 겹쳐서 그려보고 직선에 가까운 부분에 대해 선형회귀분석으로 해당 모수를 각각 추정해보시오. $(x>40,\ b=rac{1}{\sigma}; a=lnb-\mu/\sigma)$

	여성	남성
(μ, σ)	(90.623, 10.670)	(83.607, 11.268)
(a, b)	(-10.841, 0.093)	(-9.842, 0.089)
e) (a, b)	(-10.701, 0.092)	(-9.816, 0.089)

g) 최대수명 계산

i. $lnq_{\bar{x}} = a + b\bar{x} = 0$ 을 이용해 남녀의 한계수명을 각각 구해보시오.

	(a, b)	\overline{x}
여성	(-10.716, 0.093)	116 세
남성	(-9.794, 0.088)	111 세

ii. f) 결과를 이용해 남녀 최대수명을 각각 구하고 위에서 구한 한계수명과 현재까지 확인된 최대 수명값과 비교해 그 타당성을 검토하시오.

n	여자 $\overline{x_{(n)}}$	남자 $\overline{x_{(n)}}$
100,000	117 세	111 세
500,000	118 세	113 세
1,000,000	119 세	113 세
100,000,000	122 세	116 세
6,000,000,000	124 세	119 세

사망자 수를 다르게 했을 때 성별 별로 최대 수명을 추정해본 결과는 위의 표와 같다. Gompertz 분포가 극값 분포인 것을 고려했을 때, 사망자(n)의 수를 크게 할수록 극값의 크기도 커지기 때문일 것으로 예상된다. 현재까지 확인된 가장 장수한 여성은 122 세에 사망한 프랑스 여성, 장수할 남성은 올해 131 세가 되는 브라질 남성이다.

<part 3> 이자율에 따른 적정 생명보험료 계산

a) 보험금의 현재가의 기댓값을 계산하시오.

연령	여자 보험금의 현재가의 기댓값	남자 보험금의 현재가의 기댓값
20	15,717,939 원	19,808,212 원
25	18,069,006 원	22,721,867 원
30	20,742,683 원	26,034,,961 원
35	23,819,163 원	29,826,188 원
40	27,328,564 원	34,110,806 원
45	31,329,922 원	38,805,314 원
50	35,843,969 원	43,900,575 원
55	40,942,669 원	49,398,585 원
60	46,702,261 원	55,318,554 원
65	53,067,525 원	61,663,636 원

남자의 경우, 연령대가 높을수록 보험금의 기댓값이 더 크다. 여성의 수명이 더 길기 때문에 보험금을 받게 되는 시기가 더 늦으므로 현재가의 기댓값이 작게 나온 것으로 것으로 예상된다.

b) 사망 시점까지 매월 초 일정보험료를 총 $(T_{(m)}+1)$ 회 연속 납부할 경우 누적 보험료의 현재가는 $p_x^{(m)}*Y$ 라 주어지고 그 기대값을 $p_x^{(m)}*E(Y)$ 로 쓴다. $E(Y)=a_x^{(m)}$ 를 계산하시오.

х	20	25	30	35	40	45	50	55	60	65
여	28.555	27.760	26.855	25.814	24.627	23.273	21.746	20.021	18.073	15.919
남	27.171	26.186	25.065	23.782	22.333	20.744	19.021	17.161	15.158	13.011

보험료에서 몇 배를 했을 때, <u>누적보험료의 현재가의 기댓값</u>이 되는지에 해당하는 값이다. 연령이 높을수록, 남자인 경우 더 높은 보험료를 내는 경향이 있기 때문에, $a_x^{(m)}$ 계산 결과는 앞선 경향과 반대인 결과가 나왔다.

c) x=20, 25, ..., 60, 65 일 때 보험사의 순수입 = 누적보험료수입 — 사망시 지출보험금(\triangle) 의 기댓값 $E[\triangle]=0$ 조건을 만족하는 월초납 적정보험료: $p_x^{(m)}/m$ 을 계산하시오.(단위 원)

x	20	25	30	35	40	45	50	55	60	65
여	45,870	54,242	64,366	76,893	92,475	112,181	137,357	170,413	215,343	277,793
남	60,751	72,310	86,559	104,512	127,283	155,887	192,338	239,884	304,126	394,939

보험자가 지급하는 <u>보험료의 현재가</u>와 사망 후 지급받게 될 <u>보험금의 현재가</u>가 동일하도록 월초납 적정보험료를 계산한 결과이다. 연령이 높을수록 보험료가 높게 책정되었고, 남자의 경우 더 높은 값이 책정되었다.

<part 4> 생명보험료 자동계산 Application 개발

a) 생명보험료 계산

b) 연금보험료 계산

<Appendix>

[표 1] 세별 인구, 사망자수를 통해 작성한 경험생명표

성별	여성			남성				
Age	q_x	l	L_x	e_x^0	q_x	l	L_x	e_x^0
0	0.00293	100000	99854	82.66	0.00394	100000	99803	75.88
1	0.00032	99707	99691	81.90	0.00035	99606	99589	75.18
2	0.00019	99675	99666	80.93	0.00021	99572	99562	74.21
3	0.00014	99656	99649	79.94	0.00020	99551	99541	73.22
4	0.00012	99642	99636	78.95	0.00014	99532	99524	72.24
5	0.00007	99630	99626	77.96	0.00012	99517	99511	71.25
6	0.00008	99623	99619	76.97	0.00013	99505	99498	70.26
7	0.00010	99615	99610	75.97	0.00016	99492	99484	69.27
8	0.00006	99605	99602	74.98	0.00009	99476	99471	68.28
9	0.00010	99599	99594	73.99	0.00015	99467	99459	67.28
10	0.00008	99589	99585	72.99	0.00012	99452	99446	66.29
11	0.00007	99581	99577	72.00	0.00010	99440	99435	65.30
12	0.00011	99574	99569	71.00	0.00012	99430	99424	64.31
13	0.00013	99563	99557	70.01	0.00018	99418	99409	63.32
14	0.00013	99550	99544	69.02	0.00021	99400	99390	62.33
15	0.00015	99537	99530	68.03	0.00021	99380	99369	61.34
16	0.00018	99523	99514	67.04	0.00035	99359	99341	60.35
17	0.00016	99505	99497	66.05	0.00041	99324	99304	59.38
18	0.00023	99489	99478	65.06	0.00044	99283	99261	58.40
19	0.00029	99467	99452	64.08	0.00048	99240	99216	57.43
20	0.00026	99438	99425	63.10	0.00046	99192	99169	56.45
21	0.00030	99412	99397	62.11	0.00051	99146	99121	55.48
22	0.00035	99382	99365	61.13	0.00062	99096	99065	54.51
23	0.00035	99347	99330	60.15	0.00060	99034	99005	53.54
24	0.00040	99312	99292	59.18	0.00060	98975	98945	52.58
25	0.00045	99272	99250	58.20	0.00072	98915	98880	51.61
26	0.00044	99228	99206	57.23	0.00070	98844	98810	50.64
27	0.00045	99184	99161	56.25	0.00080	98775	98736	49.68
28	0.00047	99139	99116	55.28	0.00077	98696	98658	48.72
29	0.00056	99093	99065	54.30	0.00077	98620	98582	47.76
30	0.00051	99038	99012	53.33	0.00083	98545	98504	46.80
31	0.00054	98987	98961	52.36	0.00091	98463	98418	45.83
32	0.00054	98934	98907	51.39	0.00095	98373	98327	44.88
33	0.00048	98881	98857	50.42	0.00089	98280	98236	43.92
34	0.00062	98833	98803	49.44	0.00092	98192	98147	42.96
35	0.00061	98772	98742	48.47	0.00113	98102	98046	42.00
36	0.00067	98712	98679	47.50	0.00124	97991	97930	41.05
37	0.00070	98646	98611	46.53	0.00125	97870	97808	40.10
38	0.00074	98577	98540	45.57	0.00127	97747	97685	39.15
39	0.00084	98504	98462	44.60	0.00153	97624	97549	38.20
40	0.00078	98421	98382	43.64	0.00168	97474	97392	37.26
41	0.00089	98344	98300	42.67	0.00204	97310	97211	36.32

성별	여성			남성				
Age	q_x	l	L_x	e_x^0	q_x	l	L_x	e_x^0
42	0.00088	98256	98213	41.71	0.00219	97112	97006	35.40
13	0.00098	98170	98122	40.75	0.00237	96900	96785	34.48
14	0.00108	98074	98021	39.79	0.00272	96670	96539	33.56
45	0.00116	97968	97911	38.83	0.00295	96407	96265	32.65
16	0.00127	97854	97792	37.88	0.00308	96123	95974	31.75
47	0.00138	97730	97663	36.93	0.00348	95826	95659	30.85
48	0.00141	97595	97526	35.98	0.00376	95492	95313	29.96
49	0.00158	97457	97380	35.03	0.00434	95133	94927	29.08
50	0.00160	97303	97226	34.09	0.00455	94720	94505	28.21
51	0.00179	97148	97061	33.14	0.00476	94289	94065	27.34
52	0.00187	96974	96883	32.20	0.00535	93841	93590	26.47
53	0.00198	96792	96697	31.27	0.00568	93339	93074	25.62
54	0.00209	96601	96500	30.33	0.00621	92809	92520	24.77
55	0.00225	96399	96291	29.39	0.00686	92232	91916	23.92
56	0.00230	96182	96072	28.46	0.00671	91599	91292	23.09
57	0.00239	95961	95847	27.53	0.00766	90985	90636	22.25
58	0.00292	95732	95592	26.60	0.00882	90288	89889	21.43
59	0.00297	95453	95311	25.67	0.00884	89491	89096	20.62
60	0.00328	95169	95013	24.75	0.00993	88700	88259	19.81
61	0.00369	94857	94682	23.84	0.01060	87819	87353	19.02
62	0.00398	94507	94319	22.93	0.01057	86888	86429	18.23
63	0.00481	94131	93904	22.02	0.01253	85970	85431	17.43
64	0.00451	93678	93467	21.13	0.01205	84893	84381	16.65
65	0.00557	93256	92996	20.23	0.01500	83870	83241	15.86
66	0.00595	92737	92461	19.34	0.01508	82611	81989	15.11
67	0.00724	92185	91851	18.46	0.01795	81366	80636	14.35
68	0.00825	91517	91139	17.60	0.02023	79905	79097	13.63
69	0.00887	90762	90359	16.75	0.02150	78289	77447	12.92
70	0.01035	89957	89492	15.91	0.02509	76606	75645	12.22
71	0.01144	89026	88517	15.08	0.02803	74684	73637	11.54
72	0.01324	88008	87425	14.26	0.03078	72591	71474	10.89
73	0.01541	86843	86174	13.46	0.03507	70357	69123	10.26
74	0.01761	85505	84752	12.68	0.03821	67889	66593	9.65
75	0.02095	83999	83119	11.92	0.04274	65296	63900	9.05
76	0.02341	82239	81276	11.18	0.04728	62505	61027	8.48
77	0.02660	80314	79246	10.47	0.05259	59550	57984	7.93
78	0.03205	78178	76925	9.77	0.05996	56418	54726	7.40
79	0.03560	75672	74325	9.11	0.06702	53035	51257	6.90
80	0.04298	72978	71410	8.47	0.07252	49480	47686	6.43
81	0.04634	69841	68223	7.87	0.08129	45892	44027	5.98
82	0.05363	66605	64819	7.28	0.08858	42162	40294	5.55
83	0.06274	63033	61056	6.72	0.09814	38427	36541	5.14
84	0.06995	59078	57012	6.21	0.10794	34656	32785	4.75
85	0.08146	54946	52708	5.72	0.12393	30915	28999	4.39
86	0.08153	50470	48412	5.26	0.12672	27084	25368	4.07
87	0.10277	46355	43973	4.78	0.14620	23652	21923	3.74

성별	여성				남성			
Age	q_x	l	L_x	e_x^0	q_x	l	L_x	e_x^0
88	0.11098	41591	39283	4.38	0.15450	20194	18634	3.45
89	0.12062	36975	34745	3.99	0.16823	17074	15638	3.17
90	0.14073	32515	30227	3.61	0.18080	14202	12918	2.90
91	0.14995	27939	25845	3.28	0.19753	11634	10485	2.64
92	0.16587	23750	21780	2.94	0.22318	9336	8294	2.40
93	0.18059	19811	18022	2.61	0.22434	7252	6439	2.21
94	0.20040	16233	14607	2.29	0.24308	5625	4942	1.96
95	0.20539	12980	11647	1.96	0.27230	4258	3678	1.73
96	0.22068	10314	9176	1.58	0.25935	3098	2697	1.51
97	0.24307	8038	7061	1.15	0.24570	2295	2013	1.16
98	0.25272	6084	5315	0.65	0.23741	1731	1526	0.66
99	0.27372	4547	3924	0.00	0.27656	1320	1138	0.00

[표 2] 통계청 기반 생명표

성별	여성				남성			
Age	q_x	l	L_x	e_x^0	q_x	l	L_x	e_x^0
)	0.00273	100000	99770	84.07	0.00369	100000	99683	77.2
1	0.0003	99727	99712	83.3	0.00032	99631	99614	76.48
2	0.00022	99697	99686	82.32	0.00025	99598	99586	75.51
3	0.00015	99675	99667	81.34	0.00018	99574	99565	74.53
4	0.00011	99660	99655	80.35	0.00015	99556	99548	73.54
5	0.00009	99649	99645	79.36	0.00013	99541	99534	72.55
6	0.00008	99640	99636	78.37	0.00013	99527	99521	71.56
7	0.00008	99632	99628	77.37	0.00013	99514	99508	70.57
8	0.00008	99624	99620	76.38	0.00013	99501	99495	69.58
9	0.00008	99616	99612	75.38	0.00012	99488	99482	68.59
10	0.00008	99608	99604	74.39	0.00012	99476	99470	67.6
11	0.00009	99600	99595	73.4	0.00012	99465	99459	66.61
12	0.0001	99591	99586	72.4	0.00013	99453	99446	65.61
13	0.00012	99581	99575	71.41	0.00016	99440	99432	64.62
14	0.00014	99569	99562	70.42	0.0002	99424	99414	63.63
15	0.00015	99555	99548	69.43	0.00026	99404	99391	62.64
16	0.00016	99541	99532	68.44	0.00033	99378	99362	61.66
17	0.00019	99524	99515	67.45	0.0004	99345	99326	60.68
18	0.00023	99505	99494	66.46	0.00044	99306	99284	59.7
19	0.00026	99483	99470	65.48	0.00047	99262	99239	58.73
20	0.00029	99457	99443	64.49	0.0005	99216	99191	57.76
21	0.00031	99428	99413	63.51	0.00053	99167	99140	56.79
22	0.00034	99397	99381	62.53	0.00057	99114	99086	55.82
23	0.00037	99364	99346	61.55	0.00061	99057	99027	54.85
24	0.00041	99327	99307	60.58	0.00065	98997	98965	53.88
25	0.00043	99287	99265	59.6	0.00069	98933	98899	52.92
26	0.00045	99244	99222	58.63	0.00073	98865	98829	51.95
27	0.00047	99200	99176	57.65	0.00076	98793	98755	50.99
28	0.00049	99153	99129	56.68	0.00078	98718	98679	50.03
29	0.00052	99104	99079	55.71	0.00081	98641	98601	49.07
30	0.00053	99053	99027	54.74	0.00085	98561	98520	48.11
31	0.00053	99000	98974	53.76	0.00088	98478	98435	47.15
32	0.00053	98948	98922	52.79	0.00091	98391	98347	46.19
33	0.00055	98895	98868	51.82	0.00094	98302	98256	45.23
34	0.00058	98842	98813	50.85	0.001	98209	98160	44.27
35	0.00062	98784	98754	49.88	0.00109	98111	98057	43.31
36	0.00067	98723	98690	48.91	0.00118	98004	97946	42.36
37	0.00071	98657	98622	47.94	0.00126	97888	97826	41.41
38	0.00076	98586	98549	46.97	0.00135	97765	97699	40.46
39	0.0008	98512	98473	46.01	0.0015	97632	97559	39.52
40	0.00083	98434	98393	45.05	0.0013	97485	97402	38.58
41	0.00086	98352	98309	44.08	0.00194	97319	97224	37.64
42	0.00091	98267	98222	43.12	0.00218	97129	97024	36.71

성별	여성				남성	남성				
Age	q_x	l	L_x	e_x^0	q_x	l	L_x	e_x^0		
43	0.00097	98177	98130	42.16	0.0024	96918	96802	35.79		
14	0.00105	98082	98030	41.2	0.00262	96685	96559	34.88		
45	0.00115	97978	97922	40.24	0.00285	96432	96295	33.97		
46	0.00124	97866	97805	39.29	0.00311	96157	96008	33.06		
47	0.00133	97745	97679	38.34	0.00342	95858	95694	32.16		
48	0.00143	97614	97545	37.39	0.00376	95530	95350	31.27		
49	0.00152	97475	97401	36.44	0.00412	95171	94975	30.39		
50	0.00163	97327	97247	35.49	0.00446	94779	94567	29.51		
51	0.00173	97168	97084	34.55	0.00479	94356	94130	28.64		
52	0.00185	97000	96910	33.61	0.00518	93904	93661	27.78		
53	0.00196	96821	96726	32.67	0.00561	93417	93156	26.92		
54	0.00206	96631	96532	31.74	0.00604	92894	92613	26.07		
55	0.00217	96432	96328	30.8	0.00648	92332	92033	25.23		
56	0.00217	96223	96112	29.87	0.00696	91734	91414	24.39		
57	0.00231	96001	95882	28.93	0.00030	91095	90752	23.55		
58	0.00248	95763	95633	28.93	0.00732	90410	90732	22.73		
59	0.00271	95504	95362	27.08	0.00818	89670	89272	21.91		
60	0.00230	95221	95065	26.16	0.00058	88874	88448	21.1		
61	0.00327	94909	94738	25.24	0.00938	88023	87573	20.3		
62	0.0030	94567	94379	24.33	0.01023	87122	86646	19.51		
63	0.00397	94192	93987	23.43	0.01093	86170	85665	18.72		
64	0.00430	93781	93557	22.53	0.01172	85160	84621	17.93		
65		93761	93082	21.63	0.01207	84081	83497	17.95		
66	0.00536	92831	92549	20.75	0.01591	82912	82271	16.39		
		92051	91945	19.87		81631				
67	0.00696			19.07	0.01723	80224	80928 79453	15.64		
68	0.0079	91625	91263 90498					14.91		
69 70	0.00887	90901	89648	18.15	0.02136 0.02376	78682	77841 76086	14.19		
70 71	0.00992			17.31		77001		13.49		
71 72	0.01118	89201	88702	16.48	0.02644	75171	74177	12.8		
72 72	0.01273	88204	87642	15.66	0.02958	73183	72101	12.14		
73	0.01465	87081	86443	14.86	0.03305	71019	69845	11.49		
74	0.01691	85806	85080	14.07	0.03671	68672	67411	10.87		
75 	0.01959	84355	83529	13.3	0.04067	66151	64806	10.26		
76 	0.02258	82702	81769	12.56	0.0452	63460	62026	9.68		
77	0.02604	80835	79783	11.84	0.05048	60592	59063	9.11		
78 	0.03006	78730	77547	11.14	0.05661	57533	55905	8.57		
79	0.03457	76363	75043	10.47	0.06333	54276	52558	8.06		
80	0.03951	73724	72267	9.83	0.07048	50839	49048	7.57		
81	0.04511	70811	69213	9.21	0.07798	47256	45413	7.1		
82	0.05166	67616	65870	8.62	0.0865	43571	41686	6.66		
83	0.05887	64123	62236	8.07	0.0959	39802	37893	6.24		
84	0.06675	60348	58334	7.54	0.10621	35985	34074	5.85		
85	0.07533	56320	54199	7.04	0.1168	32163	30285	5.49		
86	0.08468	52078	49873	6.57	0.12803	28406	26588	5.15		
87	0.0948	47668	45408	6.14	0.13989	24770	23037	4.83		

성별	여성				남성	남성			
Age	q_x	l	L_x	e_x^0	q_x	l	L_x	e_x^0	
88	0.10572	43149	40868	5.73	0.15234	21305	19682	4.54	
89	0.11742	38587	36322	5.34	0.16537	18059	16566	4.26	
90	0.12989	34056	31844	4.99	0.17893	15073	13724	4.01	
91	0.14312	29632	27512	4.66	0.19297	12376	11182	3.77	
92	0.15706	25392	23398	4.35	0.20744	9988	8952	3.55	
93	0.17167	21403	19566	4.07	0.22226	7916	7036	3.35	
94	0.1869	17729	16072	3.81	0.23738	6156	5426	3.17	
95	0.20265	14416	12955	3.57	0.25269	4695	4102	3	
96	0.21886	11494	10236	3.36	0.26812	3509	3038	2.84	
97	0.23543	8979	7922	3.16	0.28357	2568	2204	2.7	
98	0.25223	6865	5999	2.97	0.29894	1840	1565	2.57	
99	0.26916	5133	4442	2.81	0.31412	1290	1087	2.45	
100+	1	3752	9967	2.66	1	885	2072	2.34	