Definition (Vector space). A vector space over \mathbb{F} is an abelian group (V,+) equipped with a function $F \times V \to V : (\lambda, v) \mapsto \lambda v$ such that

- 1. $\lambda(\mu v) = (\lambda \mu)v \quad \forall \lambda, \mu \in \mathbb{F}, v \in V$
- 2. $\lambda(u+v) = \lambda u + \lambda v \quad \forall \lambda \in \mathbb{F}, u,v \in V$
- 3. $(\lambda + \mu)(v) = \lambda v + \mu v \quad \forall \lambda, \mu \in \mathbb{F}, v \in V$
- 4. $1.v = v \quad \forall v \in V$

Definition (Subspace). Let V be a vector space over \mathbb{F} . A subset $U \subset V$ is a (linear) subspace if

- 1. $\forall u_1, u_2 \in U, \quad u_1 + u_2 \in U$
- 2. $\forall u \in U, \forall \lambda \in \mathbb{F}, \quad \lambda u \in U$
- 3. $0 \in U$

Definition (Span). Let V be a vector space over \mathbb{F} and $S \subset V$. Then the *span* of S in V is $\langle S \rangle = \{ \sum_{i=1}^{n} \lambda_i s_i : \lambda_i \in \mathbb{F}, s_i \in S, n \geqslant 0 \}$.

Definition (Sum of subspaces). Let $U,W \subset V$ be subspaces of a vector space V over \mathbb{F} . The sum of U and W is $U+W=\{u+w:u\in U,w\in W\}$.

Definition (Spanning set). Let V be a vector space over \mathbb{F} . Then $S \subset V$ spans V if $\langle S \rangle = V$.

Definition (Linear independence). Let V be a vector space over \mathbb{F} . Then $S \subset V$ is *linearly independent* if whenever we have $\sum_{i=1}^{n} \lambda_i s_i = 0$ with $\lambda_i \in \mathbb{F}$ and $s_i \in S$ distinct then $\lambda_i = 0$ for all i. If S is not linearly independent, we say that S is *linearly dependent*.

Definition (Basis). Let V be a vector space over \mathbb{F} . Then $S \subset V$ is a *basis* if S is linearly independent and spans V.

Definition (Dimension). Let V be a vector space over \mathbb{F} . Then if V has a finite basis S we say that V is *finite dimensional* with *dimension* dimV = |S|. Otherwise, we say V is *infinite dimensional*.

Definition (Internal direct sum). Let U,W be subspaces of a vector space V over \mathbb{F} . Then V is the (internal) direct sum of U and W and we write $V = U \oplus V$ if

- $\bullet V = U + W$
- $U \cap W = 0$

Equivalently, every element $v \in V$ can be written uniquely as v = u + w for $u \in U$, $w \in W$. We say that U and W are *complementary subspaces* on V.

Definition (External direct sum). Given two vector spaces U,W over \mathbb{F} , the (external) direct sum $U \oplus W$ of U and W is given by $U \oplus W = \{(u,v) : u \in U, w \in W\}$ with coordinate-wise addition and multiplication.

Definition (Linear map). Let U,V be vector spaces over \mathbb{F} . A function $\alpha:U\to V$ is a linear map if

- $\alpha(u_1+u_2)=\alpha(u_1)+\alpha(u_2) \quad \forall u_1,u_2\in U$
- $\alpha(\lambda u) = \lambda \alpha(u) \quad \forall u \in U, \lambda \in \mathbb{F}.$

The set of all linear maps $U \to V$ is denoted $\mathcal{L}(U,V)$.

Definition (Isomorphism). Let U,V be vector spaces over \mathbb{F} . Then U and V are isomorphic if there exists $\alpha: U \to V$ linear and $\beta: V \to U$ linear such that $\alpha\beta = id_V$ and $\beta\alpha = id_u$. We say that α and β are isomorphisms.

Definition (Kernel). Let U,V be vector spaces and $\alpha:U\to V$ a linear map. Then the kernel of α is

$$\ker \alpha = \{u \in U : \alpha(u) = 0\}$$

Definition (Image). Let U,V be vector spaces and $\alpha:U\to V$ a linear map. Then the *image* of α is $\operatorname{Im}\alpha=\{\alpha(u):u\in U\}$

Definition (Nullity). The nullity of a linear map α is $n(\alpha) = \dim \ker \alpha$.

Definition (Rank). The rank of a linear map α is $r(\alpha) = \dim \operatorname{Im} \alpha$.

Definition (Inversion). Let $A \in M_{n,n}(\mathbb{F})$. Then if there exists $B \in M_{n,n}(\mathbb{F})$ such that $BA = AB = I_n$, we say that A is *invertible* and write $B = A^{-1}$.

Definition (Equivalence). Let $A, B \in M_{m,n}(\mathbb{F})$. Then A and B are equivalent if there exists $P \in M_{n,n}(\mathbb{F})$ and $Q \in M_{m,m}(\mathbb{F})$ both invertible such that $B = Q^{-1}AP$.

Definition (Rank). Let $A \in M_{m,n}(\mathbb{F})$. Then the *column rank* of A is the dimension of the subspace of \mathbb{F}^n spanned by the columns of A, written r(A). The *row rank* of A is the column rank of A^T , written $r(A^T)$. Note that $r(A) = r(A^T)$ and we refer to their common value as the *rank* of A.

Definition (Elementary matrices). The following three types of matrices are known as *elementary* matrices.

1. (Swapping rows i and j)

2. (Adding λ times row j to row i)

3. (Multiplying row i by λ)

$$T_i^n(\lambda) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & \lambda & & \\ & & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{pmatrix}$$

Definition (Determinant). If $A \in M_n(\mathbb{F})$ the determinant of A is

$$\det A = \sum_{\sigma \in S_n} \epsilon(\sigma) \left(\prod_{i=1}^n A_{i\sigma(i)} \right)$$

Definition (Volume form). A volume form d on \mathbb{F}^n is a function $d: \mathbb{F}^n \times ... \times \mathbb{F}^n \to \mathbb{F}$

$$(v_1,\ldots,v_n)\mapsto d(v_1,\ldots,v_n)$$

such that

- 1. d is multilinear; (i.e. for $1 \le i \le n$, $d(v_1,...,v_i+\mu v_i',...,v_n) = \lambda d(v_1,...,v_i,...,v_n) + \mu d(v_1,...,v_i',...,v_n)$)
- 2. d is alternating. (i.e. if $v_i = v_j$ then $d(v_1,...,v_n) = 0$)

Definition. For $A \in M_n(\mathbb{F})$, define \hat{A}_{ij} to be the element of $M_{n-1}(\mathbb{F})$ obtained by deleting the *i*th row and *j*th column of A.

Definition (Adjugate). The adjugate of $A \in M_n(\mathbb{F})$ is $(\operatorname{adj} A)_{ij} = (-1)^{i+j} \operatorname{det} \hat{A}_{ji}$.

Definition (Endomorphism). Suppose V is a finite dimensional vector space over \mathbb{F} . An endomorphism of V is a linear map $\alpha: V \to V$. We write $\operatorname{End}(V)$ to denote the vector space of endomorphisms of V.

Definition (Similar). We say $A, B \in M_n(\mathbb{F})$ are *similar* (or *conjugate*) if there exists $P \in M_n(\mathbb{F})$ invertible such that $B = P^{-1}AP$. (Equivalently, if they represent the same linear map.)

Definition (Trace). For $A \in M_n(\mathbb{F})$ the trace of A is $\operatorname{tr}(A) = \sum_{i=1}^n A_{ii}$.

Definition (Trace and determinant of endomorphism). For $\alpha \in \text{End}(V)$ and $\langle e_1,...,e_n \rangle$ a basis for V, if A is the matrix representing α then

- the trace of α is $tr\alpha = trA$;
- the determinant of α is $\det \alpha = \det A$.

Definition (Eigenvalues, eigenvectors & eigenspaces). Let $\alpha \in \text{End}(V)$.

- 1. $\lambda \in \mathbb{F}$ is an eigenvalue of α if there exists $v \in V \setminus 0$ such that $\alpha v = \lambda v$
- 2. $v \in V$ is a $(\lambda$ -)eigenvector of α if $\alpha v = \lambda v$ for some $\lambda \in \mathbb{F}$
- 3. For $\lambda \in \mathbb{F}$, the λ -eigenspace of α is $E_{\alpha}(\lambda) = E(\lambda) = \{\lambda$ -eigenvectors for $\alpha\} = \ker(\alpha \lambda \iota)$

Definition (Diagonalisable). We say $\alpha \in \text{End}(V)$ is diagonalisable if there exists a basis of V such that the corresponding matrix is diagonal.

Definition (Polynomial). A polynomial function $f: \mathbb{F} \to \mathbb{F}$ is of the form $f(t) = a_m t^m + ... + a_1 t + a_0$ for some $m \ge 0$ and $a_0,...,a_m \in \mathbb{F}$. The largest n such that $a_n \ne 0$ is the degree of f, written $\deg f$. (By convention, $\deg 0 = -\infty$.)

Definition (Multiplicity). A root $\lambda \in \mathbb{F}$ of $f \in \mathbb{F}[t]$ is a root of multiplicity k if $(t-\lambda)^k$ is a factor of f(t) but $(t-\lambda)^{k+1}$ is not.

Definition (Minimal polynomial). The minimal polynomial of $\alpha \in \text{End}(V)$ is the non-zero monic polynomial $m_{\alpha}(t)$ of least degree such that $m_{\alpha}(\alpha) = 0$.

Definition (Triangulable). The linear map $\alpha \in \text{End}(V)$ is *triangulable* if there is a basis for V such that the corresponding matrix is upper triangular.

Definition (Characteristic polynomial). The *characteristic polynomial* of $\alpha \in \text{End}(V)$ is $\chi_{\alpha}(t) = \det(t\iota - \alpha)$.

Definition (Multiplicities of eigenvalues). Let $\alpha \in \text{End}(V)$ and λ an eigenvalue of α .

- 1. the algebraic multiplicity a_{λ} of λ is the multiplicity of λ as a root of $\chi_{\alpha}(t)$.
- 2. the geometric multiplicity g_{λ} of λ is $\dim E_{\alpha}(\lambda)$.
- 3. the number c_{λ} is the multiplicity of λ as a root of $m_{\alpha}(t)$.

Definition (Jordan Normal Form). A matrix $A \in \operatorname{Mat}_n(\mathbb{C})$ is in *Jordan Normal Form* if it is a block diagonal matrix

$$A = \begin{pmatrix} J_{n_1}(\lambda_1) & 0 & \dots & 0 \\ 0 & J_{n_2}(\lambda_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & J_{n_k}(\lambda_k) \end{pmatrix}$$

where $k \ge 1$, $n_1,...,n_k \in \mathbb{N}$ such that $\sum_{i=1}^k = n$ and $\lambda_1,...,\lambda_k \in \mathbb{C}$ (not necessarily distinct), and the Jordan blocks $J_m(\lambda) \in \operatorname{Mat}_m(\mathbb{C})$ have the form

$$J_m(\lambda) = \begin{pmatrix} \lambda & 1 & \dots & 0 & 0 \\ 0 & \lambda & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \lambda & 1 \\ 0 & 0 & \dots & 0 & \lambda \end{pmatrix}$$

Definition (Nilpotent). The linear map $\alpha \in \text{End}(V)$ is *nilpotent* if there exists some $k \ge 0$ such that $\alpha^k = 0$.

Definition (Dual space). Let V be a vector space over \mathbb{F} . The *dual space* of V is the vector space $V^* = \mathcal{L}(V,\mathbb{F}) = \{\alpha : V \to \mathbb{F} \text{ is linear}\}$

under pointwise addition and scalar multiplication.

Definition (Dual basis). If V is a finite dimensional space over \mathbb{F} with basis $\langle e_1,...e_n \rangle$ then the basis $\langle e_1,...,e_n \rangle$ of V* given by $e_i(e_j) = \delta_{ij}$ is the *dual basis*.

Definition (Annihilator). If $U \subset V$ then the annihilator of U is $U^{\circ} = \{\theta \in V^* | \theta(u) = 0 \forall u \in U\}$. If $W \subset V^*$ then the annihilator of W is $W^{\circ} = \{v \in V | \theta(v) = 0 \forall \theta \in W\}$.

Definition (Dual map). Let V and W be vector spaces of \mathbb{F} and $\alpha: V \to W$ a linear map. The dual map to α is the map $\alpha^*: W^* \to V^*$ given by $\theta \mapsto \theta \alpha$.

Definition (Bilinear form). The map $\psi: V \times W \to \mathbb{F}$ is a *bilinear form* if it is linear in both arguments.

If $\langle e_1,...,e_n \rangle$ is a basis for V and $\langle f_1,...,f_m \rangle$ a basis for W then the matrix A representing ψ with respect to these bases is given by $A_{ij} = \psi(e_i,f_j)$.

Definition (Degenerate). A bilinear form $\psi: V \times W \to \mathbb{F}$ is degenerate if there exists some $v \in V \setminus \{0\}$ such that $\psi(v, -) = 0 \in W^*$ or there exists some $w \in W \setminus \{0\}$ such that $\psi(0, w) = 0 \in V^*$. Otherwise ψ is non-degenerate.

Definition (Symmetric). A bilinear form $\phi: V \times V \to \mathbb{F}$ is symmetric if $\phi(v_1, v_2) = \phi(v_2, v_1)$ for all $v_1, v_2 \in V$.

Definition (Congruent). Square matrices A and B are *congruent* if there exists an invertible matrix P such that $B = P^T A P$. (Equivalently, if they represent the same bilinear form.)

Definition (Quadratic form). If $\phi: V \times V \to \mathbb{F}$ is a bilinear form then the map $V \to \mathbb{F}$ given by $v \mapsto \phi(v,v)$ is a quadratic form on V.

Definition (Positive / negative definite). A symmetric bilinear form ϕ on a real vector space V is

- 1. positive definite if $\phi(v,v) > 0$ for all $v \in V \setminus \{0\}$
- 2. positive semi-definite if $\phi(v,v) \ge 0$ for all $v \in V$
- 3. negative definite if $\phi(v,v) < 0$ for all $v \in V \setminus \{0\}$
- 4. negative semi-definite if $\phi(v,v) \leq 0$ for all $v \in V$

Definition (Sesquilinear form). Let V and W be \mathbb{C} -vector spaces. Then a sesquilinear form is a function $\phi: V \times W \to \mathbb{C}$ such that

$$\phi(\lambda_1 v_1 \!+\! \lambda_2 v_2,\! w) \!=\! \bar{\lambda_1} \phi(v_1,\! w) \!+\! \bar{\lambda_2} \phi(v_2,\! w)$$

$$\phi(v,\mu_1w_1+\mu_2w_2) = \mu_1\phi(v,w_1) + \mu_2\phi(v,w_2)$$

for all $\lambda_1, \lambda_2, \mu_1, \mu_2 \in \mathbb{C}$, $v, v_1, v_2 \in V$ and $w, w_1, w_2 \in W$.

The matrix A representing ϕ with respect to bases $\langle v_1,...,v_m \rangle$ and $\langle w_1,...,w_n \rangle$ is $A_{ij} = \phi(v_i,w_i)$.

Definition (Hermitian form). A sesquilinear form $\phi: V \times V \to \mathbb{C}$ is Hermitian if $\phi(x,y) = \phi(\bar{y},x)$ for all $x,y \in V$.

Definition (Hermitian). A matrix A is Hermitian if $A = \bar{A}^T$.

Definition (Inner product). Let V be a vector space over \mathbb{F} . An *inner product* on V is a positive definite symmetric/Hermitian form ϕ on V.

Definition (Orthogonality). If V be an inner product space then $v, w \in V$ are orthogonal if (v, w) = 0. A set $\{v_i | i \in I\}$ is orthonormal if $(v_i, v_j) = \delta_{ij}$ for $i, j \in I$. An orthonormal basis is a basis that is orthonormal.

Definition (Orthogonal internal direct sum). Let V be an inner product space and V_1, V_2 subspaces of V. Then V is the *orthogonal (internal) direct sum* of V_1 and V_2 , written $V = V_1 \perp V_2$ if

- 1. $V = V_1 + V_2$
- 2. $V_1 \cap V_2 = 0$
- 3. $(v_1,v_w)=0$ for all $v_1 \in V_1$ and $v_2 \in V_2$

Definition (Orthogonal complement). If $W \subset V$ is a subspace of an inner product space V then the *orthogonal complement* of W in V is

$$W^{\perp} = \{ v \in V | (w,v) = 0 \text{ for all } w \in W \}$$

Definition (Orthogonal external direct sum). The *orthogonal (external) direct sum* of two inner product spaces V_1 and V_2 is the vector space direct sum $V_1 \oplus V_2$ with the inner product

$$((v_1,v_2),(w_1,w_2)) = (v_1,w_1) + (v_2,w_2)$$

for $v_1, w_1 \in V_1$ and $v_2, w_2 \in V_2$.

Definition (Projection map). Suppose that $V = U \oplus W$. Then the projection map Π onto W is such that $\Pi(u+w) = w$ for $u \in U$ and $w \in W$. If $U = W^{\perp}$ then it is the orthogonal projection.

Definition (Adjoint). If V and W are finite dimensional inner product spaces and $\alpha: V \to W$ a linear map, then the *adjoint* of α is the linear map $\alpha^*: W \to V$ such that $(\alpha(v), w) = (v, \alpha^*(w))$ for all $v \in V$, $w \in W$.

Definition (Self-adjoint). If V is an inner product space, then $\alpha \in \text{End}(V)$ is self-adjoint if $\alpha = \alpha^*$.

Definition (Orthogonal). If V is a real inner product space, then $\alpha \in \text{End}(V)$ is orthogonal if $(\alpha(v_1), \alpha(v_2)) = (v_1, v_2)$ for all $v_1, v_2 \in V$.

Definition (Unitary). If V is a complex inner product space, then $\alpha \in \text{End}(V)$ is unitary if $(\alpha(v_1), \alpha(v_2)) = (v_1, v_2)$ for all $v_1, v_2 \in V$.