概率論與數理統計 期末考

2021秋 胡家信 考題回憶版 by BoxWorld

填空題 (30@1)

- 1. 樣本空間 $\Omega=\{\{1,2\},\{1,3\},\{2,3\}\}$,令 $A_1\in\Omega,A_2\in\Omega$,則事件 $A_1\cap A_2=2$ 發生的概率為 _____ °
- 2. 設事件 A,B,C 兩兩獨立,且 $A,B,C=\varnothing$,若 $\mathbb{P}(A)=\mathbb{P}(B)=\mathbb{P}(C)<0.5$,且 $\mathbb{P}(A\cup B\cup C)=\frac{9}{16}$,則 $\mathbb{P}(A)=$ ______, $\mathbb{P}(B\cup C)=$ _____。
- 3. 考慮不定方程 $x_1+x_2+x_3=6$,則滿足方程的正整數解 (x_1,x_2,x_3) 的個數為 _____,滿足該方程的 非負整數解 (x_1,x_2,x_3) 的個數為 _____。
- 4. 1. 設隨機變量 X 的密度函數為一個連續函數 $f(x), x \in (-\infty, +\infty)$,則 X^2 的密度函數的表示式為
 - 2. 設隨機變量 $Y \sim N(1,\sigma^2)$,且 $\mathbb{P}(0 < Y < 2) = 0.2$,那麽 $\mathbb{P}(Y < 0) =$ _____;
 - 3. 設隨機變量 $Z \sim B(n,p)$, $\mathbb{E}(Z) = 3$,Var(Z) = 1.2,則 p = _____,n = _____;
- 5. 設隨機變量 X 的概率分佈是 $\mathbb{P}(X=k)=rac{C}{k!}(k=0,1,2,\dots)$,則 $\mathbb{E}(X^2)=$;若 $X_j,j=1,2,\dots,n,\dots$ 是一列相互獨立且與 X 同分佈的隨機變量,則 $\lim_{n o\infty} rac{\mathbb{P}(\sum_{i=1}^n X_i \leq 3n)}{\mathbb{P}(\sum_{i=1}^n X_i \leq n)}$ 的值為
- 6. 設隨機變量 Θ 服從區間 $(-\pi,\pi)$ 的均勻分佈, $X=cos\Theta,Y=sin\Theta$,則 X,Y 的協方差 Cov(X,Y)= _____ ;再設 $U=tan\Theta$,則 U 的概率密度函數 f(u)= _____ ,從而 U 服從 _____ 分佈(填名稱)。
- 7. 設總體服從參數為 $\lambda>0$ 的 Poisson 分佈, $\{X_1,X_2,\ldots,X_n\}$ 是簡單抽樣,則 X_1 的生成函數為 g(z)= _____,參數 λ 的極大似然估計為 _____。
- 8. 設黑箱中有 A,B 兩種紙牌,A 紙牌的數量為 a,B 紙牌的數量為 a+1,每次抽一張後不放回, X_n 表示第 $n(1\leq n\leq a)$ 次抽牌中 A 出現的次數,則對任意整數 $k=0,1,\ldots,n$, $\mathbb{P}(X_n=k)=$ _____,且 $\mathbb{E}(X_n)=$ _____, $Var(X_n)=$ _____。
- 9. 設總體由 4 個數 $\{1,2,3,4\}$ 組成,從總體抽出 2 個數,當抽樣重覆時,樣本均值 $ar{X}$ 的方差 $Var(ar{X})$ 的 值為 _____ ;當抽樣不重覆時,樣本均值 $ar{X}$ 的方差 $Var(ar{X})$ 的值為 _____ 。
- 0. 設總體服從正態分佈 $N(\mu,\sigma^2)$, X_1,X_2,\dots,X_n 為簡單隨機抽樣,其中 $\bar{X}=\frac{1}{n}\sum_{i=1}^n X_i$ 為樣本均值, $S^2=\frac{\sum_{i=1}^n (X_i-\bar{X})^2}{n}$ 為樣本方差,則隨機變量 $\sqrt{n-1}\frac{\bar{X}-\mu}{S}$ 服從自由度為 _____ 的 ____分佈;隨機變量 $\sqrt{n}\frac{\bar{X}-\mu}{\sigma}$ 服從 _____分佈;隨機變量 $\frac{nS^2}{\sigma^2}$ 服從自由度為 _____ 的 ____分佈。
- 1. 設隨機變量 X 服從參數為 $\lambda>0$ 的指數分佈,記隨機變量 Y=[X]+1 ([X] 是 X 的下取整,如 [1.2]=1,[-3.8]=-4 等),那麽 Y 的概率分佈 $\mathbb{P}(Y=k)=$ _____ $(k=1,2,\ldots,n)$, $\mathbb{E}(Y)=$ _____ 。
- 2. 設 (X,Y) 的聯合密度函數為 f(x,y)=a(6-x-y), 0 < x < 2 < y < 4,則 a= _____,X 的邊緣密度函數為 $g_x(x)=$ _____。(標明定義域)

計算題

- 1. (1@8)粒子從原點每次獨立向左或向右移動一格,概率均為 $\frac{1}{2}$,設 Y_n 是粒子第 n 步時的位置,是一個隨機變量,求 $\mathbb{P}(Y_n \geq 0, 1 \leq n \leq 4)$ 。
- 2. (103) 兩家電影院競爭 m 名顧客,顧客獨立、且選擇兩家電影院的機會一樣。問每家電影院應該設置多少張椅子,使得顧客因椅子缺乏而離開的概率小於 p? (寫出計算步驟即可)
- 3. (1@5) 設總體服從參數為 $\lambda>0$ 的 Poisson 分佈,但參數 λ 未知,為估計 λ ,從總體抽出 n 個簡單樣本 $\{X_1,X_2,\ldots,X_n\}$ 。已知 λ 的先驗分佈的密度函數為 $\pi(\lambda)=e^{-\lambda},\lambda>0$,計算 λ 的貝葉斯做計值 $\hat{\lambda}_B$ 。(請推導詳細步驟)
- 4. (1@6) 設總體服從區間 $(0,\theta)$ 的均勻分佈, $\{X_1,X_2,\ldots,X_n\}$ 是簡單隨機抽樣,令 $V_n=max(X_1,\ldots,X_n)$,給定 $\alpha\in(0,1)$,計算常數 $c_n>1$,使得區間 (V_n,c_nV_n) 成為一個置信水平為 $1-\alpha$ 的置信區間。

證明題

- 1. (1@2) 設 A_1,A_2,\ldots,A_n 是一列事件,證明: $\mathbb{P}(igcap_{k=1}^nA_k)\geq \sum_{k=1}^n\mathbb{P}(A_k)-n+1$ 。
- 2. (1@3)設隨機變量 X,Y 相互獨立, $\mathbb{P}(X=0)=\mathbb{P}(X=1)=rac{1}{2}$,Y 服從 (0,1) 上的均勻分佈,記 Z=X+Y。證明 Z 服從 (0,2) 上的均勻分佈。
- 3. (1@3) 設總體的均值為 $\mu > 0$ (但 μ 未知)且方差有限, $\{X_1, X_2, \dots, X_n\}$ 是來自總體的簡單樣本。定義集合

$$\Gamma := iggl\{ \sum_{i=1}^n c_i X_i : c_i \in \mathbb{R} iggr\}, \Gamma_U := \{T \in \Gamma : T$$
是 μ 的無偏估計 $\}$

- 1. 證明: $T=\sum_{i=1}^n c_i X_i \in \Gamma_U$ 當且僅當 $\sum_{i=1}^n c_i =1$;
- 2. 證明:在總體均值 μ 的無偏估計中,樣本均值 $ar{X}$ 是 Γ_U 中最有效的無偏估計。

加分題

- 1. (1@4)給定 x>0 ,利用概率論的知識證明:對任意的 $t\in(0,x)$,有 $\lim_{\lambda\to\infty}e^{-\lambda t}\sum_{k\in\mathbb{N},k\leq\lambda x}\frac{(\lambda t)^k}{k!}=1$,其中 \mathbb{N} 表示非負整數集。
- 2. (1@3)設 $X \sim N(0,1)$ 。對任意 x>0 ,證明 $\mathbb{P}(X>x) \leq rac{1}{2}e^{-x^2/2}$ 。