Rochester Institute of Technology

Chester F. for Imaging **Science**

Golisano College of Chester F. Computing and Carlson Center Information **Sciences**

Semi-Supervised Learning for Eye Image Segmentation

Aayush K.Chaudhary* (akc5959@rit.edu), Prashnna K. Gyawali* (pkg2182@rit.edu), Linwei Wang, Jeff B. Pelz

Rochester Institute of Technology, NY, USA

Overview

- Labeling large dataset is tedious,
 - requires expertise [leads to] bias and inconsistency
- Semi-supervised learning (SSL): Exploit hidden relationships within data to predict labels for unlabeled images
- Network Consistency : Same label prediction to image even after perturbation (mostly used in classification task)
- For semantic segmentation assumption of network consistency is violated

Proposed Method

- SSL with domain-specific augmentation (SSLD)
 - Vary **contrast & luminance** of eye images
 - CLAHE & Gamma correction

For each unlabeled image, labels are guessed for A separate copies generated via proposed SSL with domain-specific augmentation

- SSL with self-supervised Learning (SSL_{SS})
 - Pretext learning task -> predicting image from inversion of the transformed image
 - Account for translation / rotation of images

For each unlabeled image, labels are guessed for A separate copies generated via proposed SSL with a self-supervised approach

Objective function

Total loss = Supervised loss +

 $\lambda u \times \text{unsupervised loss} +$

 $\lambda ss \times$ self-supervised loss

Fig: Supervised loss and unsupervised loss are computed separately for labeled and a combination of labeled and unlabeled data set in both types of SSL methods.

Results

- Training with multiple subjects
 - fixed unlabeled images (8916 images)
 - for X_l = 8916 images, S_L achieved 94.80% whereas we obtained 94.73% with SSLSS for $X_l = 940$ images only.

Fig: IoU score for three cases (SL: blue, SSLD: green, and SSLss: red) are shown with varying numbers of X_l and fixed X_u . The number alongside arrows indicate respective improvement (in %) over S_L.

Our Presence at ETRA 2021

- Enhancing the precision of remote eye-tracking using iris velocity estimation (Short Paper)
- Privacy-Preserving Eye Videos using Rubber Sheet Model (Short Paper)
- o RIT-Eyes, realistically rendered eye images for eye tracking applications (Video)

Training with single subject

Fig: Demonstration of improvement (in %) for cases S_L to SSL_D (left) and SSL_D to SSL_{SS} (right) when models are trained on two subjects (red and green). For P2 (green), we further test the change in model performance for various subsets of X_l .

Eye part Segmentation

XI	4	12	24	48	4 (P1)	12 (P1)	61 (P1)
% change	4.08 (4.48)	0.85 (1.37)	0.54 (0.99)	0.44 (0.78)	4.40 (7.32)	4.50 (6.12)	2.13 (4.09)

Fig: Comparison of % change of pupil and iris (inside parenthesis) class IoU scores for cases from S_L to SSLss for varying number of X_l and fixed number of X_u . P1 indicates samples from a single subject.

Qualitative Results

- As the number of images increases, the confidence in prediction and unwanted spurious patches are reduced when models are trained on S_L .
- For SSL approaches, the confidence in prediction is more even when a small number of Xi are used.
- No significant difference is visible for the two SSL approaches, which vary mostly in finer details.

Fig: Two samples of the test set with its corresponding ground-truth and network predictions for the number of cases are shown in adjacent blocks.

Conclusion

- Frameworks to leverage domain specific augmentations and novel spatially varying image transformations
- Trained on just 4 and 48 labeled images, improvement by at least 4.7% and 0.4% respectively, in segmentation performance
- Future Work Investigate the effect of curating labeled datasets (e.g., considering eye position and blinks) instead of random selection