Лабораторная работа 2.4.1. Определение теплоты испарения жидкости

Вязовцев Андрей, Б01-005

9.03.21

Цель работы: 1) измерение давления насыщенного пара жидкости при разной температуре; 2) вычисление по полученным данным теплоты испарения с помощью уравнения Клапейрона-Клаузиуса

В работе используются: термостат; герметический сосуд, заполненный исследуемой жидкостью; отсчётный микроскоп.

Теоритическая справка:

Фаза вещества — макроскопическая физическая однородная часть вещества, отделённая от остальных частей системы границами раздела, так что она может быть извлечена из системы механическим путём.

Для рассмотрения состояния равновесия различных фаз удобно ввести термодинамический потенциал Ф. Он является функцией состояния и равен:

$$\Phi = U + PV - TS$$

Пусть система состоит из двух фаз. Из соображений равновесия удельные термодинамические потенциалы φ должны быть равны для них:

$$\varphi_1(P,T) = \varphi_2(P,T)$$

Из этого следует уравнение Клапейрона-Клаузиуса:

$$\frac{dP}{dT} = \frac{q}{T(v_2 - v_1)}$$

Где v_1 и v_2 — удельные объёмы фаз вещества, а q — удельная теплота фазового перехода из состояния 1 в состояние 2.

Для испарения это уравнение можно переписать в виде:

$$\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$$

Где P — давление насыщенного пара при T, T — абсолютная температура жидкости и права, L — теплота испарения жидкости, V_2, V_1 — объёмы пара и жидкости соответственно.

Так же для пара можно записать уравнение Ван-дер-Ваальса для 1 моля газа:

$$\left(P + \frac{a}{V_2^2}\right)(V_2 - b) = RT$$

Значения $V_1,\,V_2,\,a$ и b можно узнать из данной таблицы:

	$T_{\kappa \mu \pi}$	$V_1,$	V_2 ,	b,	a	a/V_2^2
Вещество		10^{-6}	10^{-3}	10^{-6}		
	K	$\frac{_{\rm M}3}{_{ m MOJL}}$	$\frac{_{\rm M}3}{_{ m MOJL}}$	$\frac{_{\rm M}3}{_{ m MOJI}}$	$\frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\mathbf{monb}^2}$	кПа
Вода	373	18	31	26	0,4	0,42
CCl ₄	350	97	29	126	1,95	2,3
Этиловый эфир	307	104	25	137	1,8	2,9
Этиловый спирт	351	58	29	84	1,2	1,4

Как видно отсюда, V_1 , b, и $\frac{a}{V_2^2}$ — малые величины, ими в уравнениях можно пренебречь. Таким образом, уравнение Ван-дер-Ваальса станет уравнением Менделеева-Клапейрона. А конечное выражение для L запишется так:

$$L = -R \cdot \frac{d(\ln P)}{d(1/T)} \tag{1}$$

Экспериментальная установка:

А. Термостат

В. Экспериментальный прибор

- 12. Ёмкость, заполненная водой
- 13. Запаянный прибор
- 14. Исследуемая жидкость
- 15. Манометр

С. Отсчётный микроскоп

- 16. Отсчётный микроскоп
- 17. Шкала для снятия показаний с микроскопа

Ход работы:

1. Включим термостат. Будем увеличивать температуру на один градус, снимать высоты h_1 и h_2 столбцов, а после находить разность высот Δh между ними. Так же вычислим давление насыщенного пара по формуле $P=\rho_{\rm pt}\cdot g\cdot \Delta h$, где $\rho_{\rm pt}=13546~{{\rm Kr}\over {\rm M}^3},~{\rm a}~g=9.81~{{\rm M}\over {\rm c}^2}.$ Результаты занесём в таблицу 1.

h_1 , MM	75,00	77,65	77,50	77,40	78,25	79,06	80,60	81,50
h_2 , MM	58,50	57,40	56,70	55,15	55,45	54,95	53,85	52,45
Δh , mm	16,50	20,25	20,80	22,25	22,80	24,11	26,75	29,05
$t, {}^{o}C$	20	22	23	24	25	26	27	28
Р, Па	2193	2691	2764	2957	3030	3204	3555	3860

h_1 , MM	82,55	82,95	83,05	84,20	85,45	86,20	87,20	88,50
h_2 , MM	52,40	51,90	51,10	50,60	48,40	47,35	46,05	45,45
Δh , mm	30,15	31,05	31,95	33,60	37,05	38,85	41,15	43,05
$t, {}^{o}C$	29	30	31	32	33	34	35	36
Р, Па	4007	4126	4246	4465	4923	5163	5468	5721

Таблица 1. Результаты измерений при увеличении температуры

2. Сделаем те же самые измерения, уменьшая температуру. Для этого откроем кран с холодной водой так, чтобы скорость охлаждение шло примерно тем же темпом, что и нагревание. Результаты занесём в таблицу 2.

h_1 , MM	88,50	88,15	86,90	85,70	85,15	84,85	83,90	81,80
h_2 , MM	45,45	47,80	47,75	49,85	49,85	50,70	50,90	51,20
Δh , mm	43,05	40,35	39,15	35,85	35,30	34,15	33,00	30,60
$t, {}^{o}C$	36	35	34	33	32	31	30	29
Р, Па	5721	5362	5202	4764	4691	4538	4385	4066

h_1 , MM	80,75	80,15	79,45	78,50	77,90	76,15	76,30	76,00
h_2 , MM	52,05	52,80	53,40	54,10	55,55	55,85	56,70	57,20
Δh , mm	28,70	27,35	26,05	24,40	22,35	20,30	19,60	18,80
$t, {}^{o}C$	28	27	26	25	24	23	22	21
Р, Па	3814	3634	3462	3242	2970	2698	2605	2498

Таблица 2. Результаты измерений при уменьшении температуры

3. Теперь построим графики зависимостей P(T) и $lnP\left(\frac{1}{T}\right)$. График при увеличении будет обозначен красным цветом, а при уменьшении — синим.

4. Как понятно из уравнения (1), если k — коэффициент наклона графика $\ln P\left(\frac{1}{T}\right)$, то теплоту испарения L можно вызазить следующим образом:

$$L = -R \cdot k \tag{2}$$

Т. к.
$$k_{\rm yb}=-5194,~k_{\rm ym}=-5063,$$
 то получаем: $L_{\rm yb}=43,2~\frac{\rm кДж}{\rm моль},~L_{\rm ym}=42,1~\frac{\rm кДж}{\rm моль}.$

5. Как видно из уравнения (2), для погрешности ε_L верно следующее: $\varepsilon_L=\varepsilon_k$, а ε_k известно по формуле погрешности для МНК. Таким образом, $\varepsilon_{L_{\rm yb}}=3\%,\ \varepsilon_{L_{\rm ym}}=3\%.$

Табличное же значение L составляет 40.7 $\frac{\kappa Дж}{моль}$. Следовательно, отличие от табличного значения составляет 6% и 3% для увеличения и уменьшения соответственно. Значит, более точным является второй способ.