AE4301 Automatic Flight Control System Design Part I: Control Theory

Anahita Jamshidnejad Aerospace Engineering September 14, 2022 - Lecture 4

What we learned so far

- From differential equations to transfer function
- Characteristics of systems based on poles and zeros
- Root locus method
- State space representation, controllability, observability

Main objectives

- Being able to use initial & final value theorems
- Being able to determine steady-state error/response of various systems
- Being able to design standard controllers (e.g., P, PI, PD, PID) for given performance specifications

Design specifications

- Make steady state error $(e(t) \text{ for } t \to \infty)$ small (e.g., 0)
- Reduce negative effects of noise and disturbances on output
- Make system stable
- Design desired transient behavior

Initial and final value theorems

$$\lim_{t \to 0^+} f(t) = \lim_{s \to \infty} \left\{ sF(s) \right\}$$

Initial value theorem is calculated for 0+ (right after time 0)

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} \left\{ sF(s) \right\}$$

Final value theorem is valid if $\lim_{t\to\infty} f(t)$ exists (not valid for unstable system)

Control system C(s)

We will consider three types of control systems in this lecture:

- Proportional control
- Integral control
- Derivative control

We also consider combinations of these control systems

Uncontrolled system: Unit-step response

Determine the steady-state error of the closed-loop system to a unit-step input.

$$e_{\rm ss} = \lim_{t \to \infty} e(t) = 0.5$$

Proportional control: Unit-step response

Determine the steady-state error of the closed-loop system with a proportional controller in the feedforward path to a unit-step input.

$$e_{\rm ss} = \lim_{t \to \infty} e(t) = \frac{1}{1 + K_{\rm p}}$$

Integral control: Unit-step response

Determine the steady-state error of the closed-loop system with an integral controller in the feedforward path to a unit-step input.

$$e_{\rm ss} = \lim_{t \to \infty} e(t) = 0$$

Summary: Unit-step steady-state error for 1st-order system

- 1st-order system $G(s) = \frac{1}{\tau s + 1}$ has a steady-state error of 0.5.
- Adding only a proportional controller $C(s)=K_{\rm p}$ does not eliminate steady-state error $\frac{1}{K_{\rm p}+1}$.
- Adding an integral controller $C(s) = \frac{K_{\rm i}}{s}$ eliminates steady-state error.

Disturbance input

What is the transfer function between Y(s) and D(s)?

$$\frac{Y(s)}{D(s)} = \frac{G(s)}{1 + C(s)G(s)}$$

What is the transfer function between E(s) and D(s)?

$$\frac{E(s)}{D(s)} = -\frac{G(s)}{1 + C(s)G(s)}$$

Introduction

SS error

SS response

PID tuning

Summary

2nd-order system: Proportional control

Determine the steady-state error due to a step disturbance of magnitude $M_{\rm d}$.

$$e_{\rm ss} = \lim_{t \to \infty} e(t) = -\frac{M_{\rm d}}{K_{\rm p}}$$

Steady-state error can be reduced via increasing K_p . Increasing K_p makes system's response more oscillatory.

TUDelft

2nd-order system: Integral control

Determine the characteristic equation of
$$\frac{Y(s)}{D(s)}$$
.
$$\frac{Y(s)}{D(s)} = \frac{s}{Js^3 + bs^2 + K_{\rm i}} \Rightarrow \boxed{Js^3 + bs^2 + K_{\rm i} = 0}$$

What can be said about the stability of the system? There are roots with positive real parts. Therefore, the system becomes unstable.

Introduction

SS error

SS response

PID tuning

Summary

2nd-order system: Proportional + Integral control

Determine the steady-state error due to a step disturbance of magnitude $M_{\rm d}$.

$$e_{\rm ss} = \lim_{t \to \infty} e(t) = 0$$

Steady-state error to step disturbance can be eliminated with proportional-plus-integral controller.

TUDelft

Oscillatory response

Determine the closed-loop transfer function.

$$\frac{Y(s)}{U(s)} = \frac{K_{\rm p}}{Js^2 + K_{\rm p}}$$

What can you deduce about the system's response to unit-step input from closed-loop poles?

Closed-loop poles are imaginary \rightarrow response to unit-step input will oscillate infinitely.

Stabilization: Proportional +

Derivative control

Determine the closed-loop transfer function.

$$\frac{Y(s)}{U(s)} = \frac{K_{\rm p} + K_{\rm d}s}{Js^2 + K_{\rm d}s + K_{\rm p}}$$

What can you deduce about the system's response to unit-step input from closed-loop poles?

Closed-loop poles have negative real parts \rightarrow Derivative control introduces a damping effect.

General case: PID control

• Type N system has a pole of multiplicity N at origin:

$$G(s) = \frac{1}{s^N} \left(\frac{b_0 + b_1 s + b_2 s^2 + \dots}{a_0 + a_1 s + a_2 s^2 + \dots} \right)$$

- Adding an integral controller can remove steady-state error
- Adding a differential controller can remove oscillations
- A PID controller combines proportional, integral, and derivative controllers (three parameters $K_{\rm p}$, $K_{\rm i}$, $K_{\rm d}$ to be tuned
- Process of selecting parameters to meet given performance specifications is tuning

PID tuning: Ziegler-Nichols method

Transfer function corresponding to PID controller:

$$G_{\text{PID}}(s) = K_{\text{p}} + \frac{K_{\text{i}}}{s} + K_{\text{d}}s = K_{\text{p}} \left(1 + \frac{1}{T_{i}s} + T_{d}s \right)$$

- Ziegler and Nichols suggested rules to tune K_p , T_i and T_d based on transient response characteristics of system
- Ziegler-Nichols tuning includes 2 methods:
 - First method: Based on experimental unit-step response
 - Second method: Critical gain method

First method

- Obtain experimentally response of system to unit-step input.
- If response is S-shaped:
 - Graphically determine delay time L and time constant T.
 - Tangent line is drawn at inflection point to intersect with y(t) = 0 and y(t) = k.

First method

Parameters are tuned for various controllers using the following table:

controller	K_{p}	T_i	T_d
Р	T/L	NA	NA
PI	0.9T/L	L/0.3	NA
PID	1.2T/L	2L	0.5L

Second method

- First consider only a proportional controller.
- Increase $K_{\rm p}$ from 0 until the output exhibit sustained oscillations.
- The corresponding $K_{\rm p}$ is called critical gain $K_{\rm cr}$.
- Corresponding period of oscillations is called critical period $P_{\rm cr}$.

Second method

Parameters are tuned for various controllers using the following table:

controller	K_{p}	T_{i}	T_d
Р	$0.5K_{ m cr}$	NA	NA
PI	$0.45K_{ m cr}$	$P_{\rm cr} / 1.2$	NA
PID	$0.6K_{ m cr}$	$0.5P_{ m cr}$	$0.125P_{\rm cr}$

Summary

- System type determines whether the system will suffer from steady-state error in response to various inputs
- Adding an integral controller can eliminate the steady-state error
- Adding a derivative controller can introduce influence of damping
- PID controllers combine proportional, integral, and derivative controllers to get desired behavior

AE4301 Automatic Flight Control System Design Part I: Control Theory

Anahita Jamshidnejad Aerospace Engineering September 14, 2022 - Lecture 4

