Plan de cette partie du cours

- Induction
- Complexité (non fait, vu en année4)
- Graphes (non fait, vu en ASD au Semestre 6)

Rappel : le raisonnement par récurrence dans IN

 Pour montrer qu'une propriété P(n) est vraie pour tous les entiers n, on peut :

- OMontrer P(0)
- Montrer que pour tout n entier,

$$P(n) \Rightarrow P(n+1)$$

Exercice

Montrez par récurrence que

Opour tout entier n, la somme des n premiers entiers non nuls est égale à n(n+1)/2.

 La somme des cubes des n premiers entiers non nuls est le carré de la somme de ces entiers

Exercice

- oles entiers pairs
- oles entiers relatifs

Exercice : validité de la récurrence

- Montrez par l'absurde que le raisonnement par récurrence est valide, c'est à dire en supposant qu'il existe une propriété P telle que:
 - OP(0) est vraie,
 - OPour tout n, $P(n) \Rightarrow P(n+1)$
 - Oil existe n₀ tel que P(n₀) est faux

Toutes les mêmes

- Que pensez-vous d'une démonstration permettant de montrer que :
 - Opour tout n entier, dans tout paquet de n pièces, s'il y a au moins une pièce de 1€ alors il n'y a que des pièces de 1€.

Cherchez l'erreur

- Base :Cette propriété est bien sûr vraie pour n=1.
- Induction :Supposons donc que la propriété est vraie pour tout paquet de n pièces.
- On va montrer qu'alors elle est vraie pour tout paquet de n+1 pièces.
- Soit donc un paquet de n+1 pièces contenant une pièce de 1€. Retirons l'une des pièces qui ne soit pas cette pièce, on a un paquet de n pièces. Ce paquet contient une pièce de 1€. Par hypothèse de récurrence, ce paquet ne contient donc que des pièces de 1€. Rajoutons la pièce qu'on avait enlevée : si c'est 1€, on a terminé. Sinon, enlevons du paquet une des n autres pièces de 1€ On obtient alors un nouveau paquet de n pièces contenant au moins 1€, et par hypothèse de récurrence il ne contient que des pièces de 1€.

On a donc prouvé qu'il n'y a que des pièces de 1€ ???

Possible?

Nous allons démontrer que lorsque n pièces de monnaies, avec n supérieur à 2, d'apparence identique sont données, avec une plus légère que les autres, alors il suffit d'une pesée sur une balance à 2 plateaux pour identifier la plus légère.

Cherchez l'erreur (bis)

- Lorsque n=2, c'est facile! On place une pièce sur chaque plateau de la balance, l'équilibre ne se fait pas car par hypothèse une des pièces est plus légère, et cette pesée permet de la déterminer.
- On suppose maintenant que l'on connaît une procédure utilisant une pesée pour n pièces, et montrons comment en obtenir une pour n+1 pièces. Donnons-nous (n+1) pièces dont l'une est plus légère que les autres (qui, elles, ont toutes un poids identique). Nous mettons à part l'une des pièces, et appliquons la procédure donnée par l'hypothèse de récurrence pour les n pièces restantes. Si cette procédure fonctionne, on connaît la pièce la plus légère, sinon, c'est celle qu'on a mis à part qui est la plus légère...

Récurrence *forte* : parfois utile

Pour montrer qu'une propriété P(n) est vraie pour tous les entiers n, il suffit de montrer que :

- ○P(0) est vraie,
- OPour tout n entier :

[Pour tout m < n, P(m)] => P(n)

Justification?

Exercice

- Montrer que tout nombre entier positif supérieur ou égal à deux, est le produit de (un ou plusieurs) nombres premiers.
- Rappel : n est premier si il n'a pas d'autres diviseurs que n et 1.

Relation d'ordre

- Une relation d'ordre (au sens large) est une relation binaire antisymétrique, transitive et réflexive.
- Une relation d'ordre au sens strict est une relation binaire antiréflexive, antisymétrique et transitive.

(un ordre strict n'est pas un ordre!)

- A toute relation d'ordre ≤ on peut associer la relation d'ordre strict
 < telle que x<y si et seulement si x ≤ y et x≠y
- Et réciproquement.

Ordre total/ordre partiel

 Une relation d'ordre R sur E est un ordre total, si et seulement si:

 $\forall x,y \in E : x R y ou y R x.$

Sinon l'ordre est partiel.

 Exercice : donner un exemple d'ordre total et un exemple d'ordre partiel.

Ordre sur P(E)

- Soit E un ensemble et P(E)
 l'ensemble des parties de E
- Montrer que l'inclusion (xRy si et seulement si xcy) sur P(E) est une relation d'ordre.
- Est ce un ordre total ou partiel?
- Remarque : On note ⊂ la relation d'ordre au sens large et non la relation au sens strict

Ordres sur les mots

Soit A un alphabet, un mot u=u₁u₂...u_n (avec tous les u_i dans A) est un préfixe d'un mot v= v₁v₂...v_m (avec tous les v_i dans A) si et seulement si n≤m et pour tout i, 1 ≤ i ≤ n, u_i=v_i.

Autrement dit : v = um où m est un mot.

Exercice: Montrer que la relation être préfixe est une relation d'ordre.

Est-ce une relation d'ordre total?

Ordre lexicographique

 On appelle ordre lexicographique et on note infLex la relation d'ordre usuelle des dictionnaires.

 Définir formellement l'ordre lexicographique

 Montrer que infLex est bien un ordre

Est ce un ordre total ou un ordre partiel ?

Ensembles ordonnés

 On appelle ensemble ordonné (E, ≤) un ensemble muni d'une relation d'ordre ≤

 Remarque : (E,R) et (E,R') sont deux ensembles ordonnés différents si R et R' sont deux relations d'ordre différentes

Minorant/majorant

- Soit E' un sous ensemble d'un ensemble ordonné (E, ≤). Un élément m de E est un majorant de E' (resp. minorant) si ∀y∈E', y ≤ m (resp. m ≤y).
- Dans (IN, ≤) quels sont les minorants et les majorants de E'={6,8,23}?
- Dans(P(IN),), quels sont les minorants et les majorants de {6,8,23,42}, {8,23,37}, {6,8,23}}?

- Donnez, si possible, un exemple d'un sous-ensemble E' d'un ensemble ordonné (E,≤) n'ayant aucun majorant
- Donnez, si possible, un exemple d'un sous-ensemble E' d'un ensemble ordonné (E,≤) n'ayant aucun minorant
- Mêmes questions si la relation d'ordre est un ordre total

Si A= {a,b,c,d} est un alphabet muni d'un ordre strict a<b<c<d et si (A+,≤) est l'ensemble des mots sur A muni de l'ordre lexicographique, quels sont les minorants et les majorants de {aab, ab,cd}?

Exercices

- Un élément de E' peut-il être un majorant de E'?
- E' peut-il avoir plusieurs majorants?
- Deux éléments distincts de E' peuvent-il être majorants de E'?
- Est ce que cela change quelque chose si la relation d'ordre est totale?
- ou si l'ensemble E est fini?

Minimum, Maximum

- Le minimum de E'(ou plus petit élément de E') est s'il existe l'unique minorant de E' appartenant à E'.
- Le maximum (ou plus grand élément) de E' est s'il existe l'unique majorant de E' appartenant à E'.

- Donnez un exemple d'ensemble ordonné (E,≤) et de sousensemble E' admettant minimum, (resp.un maximum)
- Donnez un exemple d'ensemble ordonné (E,≤) et de sousensemble E' n'admettant pas de minimum, (resp. de maximum)

Exercice

- Dans (N, ≤) E'={6,8,23} a t-il un minimum, un maximum?
- Dans (R, ≤), E'=[3,7[a-t-il un minimum, un maximum?
- Dans(P(N),⊂)

Elément maximal

Soit E' une partie de E. Un élément m de E' est dit maximal (resp. minimal) dans E' si $\forall y \in E'$, $m \le y \Rightarrow m = y$ (resp. $\forall y \in E'$, $y \le m \Rightarrow m = y$)

■ Dans(P(N),⊂)

Relation maximum, maximal

Proposition: Si E' a un maximum (resp. minimum), alors c'est son unique élément maximal (resp. minimal).

Et la réciproque ?

Relation majorant, maximal

Vous en pensez quoi ?

Ensembles bien fondés

 Une relation d'ordre sur un ensemble E est bien fondée s'il n'y a pas de suite infinie strictement décroissante, d'éléments de E.

 Un bon ordre est un ordre total bien fondé.

Ensembles bien fondés

- Un ensemble ordonné (E,≤) est bien fondé si ≤ est un ordre bien fondé.
- Proposition : Un ensemble ordonné (E,≤) est bien fondé si et seulement si toute partie non vide de E admet au moins un élément minimal.
- Démontrer la proposition par l'absurde.

- (IN,≤) est-il bien fondé (relation d'ordre usuelle) ?
- (Z,≤) est-il bien fondé (relation d'ordre usuelle) ?
- L'ordre préfixe est-il bien fondé ?
- L'ordre lexicographique est-il bien fondé ?
- Donner un bon ordre sur l'ensemble des mots.

Des entiers vers quelque chose de plus général

- Qu'est ce que IN ?
- C'est l'ensemble qui
 - Contient 0 (c'est l'élément minimal de l'ensemble)
 - est muni d'un ordre bien fondé
 (pas de chaîne strictement décroissante)

Induction bien fondée

Les entiers

- IN
- 0 : élément minimal (unique)
- Récurrence forte

Généralisation

- Ensemble E muni d'un ordre bien fondé
- Raisonnement par induction bien fondée sur E

Induction bien fondée

- Un ensemble E muni d'un ordre bien fondé ≤, pour montrer une propriété P sur E, il suffit de montrer :
- 1. P(y) pour tout y élément minimal de E
- 2. Si P(z) pour tout z<x, alors P(x)

Exercice

 Montrer que le programme suivant termine sur les entiers naturels strictement positifs

```
while (m!=n) {
    if (m > n) {
        m = m-n;
    } else {
        n = n-m;
    }
}
```

Des entiers vers quelque chose de plus général (bis)

- Qu'est ce que IN ?
- C'est l'ensemble qui
 - Ocontient 0 (c'est la base de l'ensemble)
 - ○est stable par l'opérateur successeur (ou +1)
 - One contient rien d'autre que ce qui est généré par l'opérateur à partir de la base

Induction structurelle

Les entiers

- Définition inductive de IN
- Raisonnement par récurrence

Généralisation

- Définition inductive de E
- Raisonnement par induction structurelle sur E

 Donnez une définition inductive de l'ensemble des entiers pairs.

 Donnez une définition inductive des entiers relatifs

Le schéma inductif

- Soit B un ensemble et Ω une famille d'opérations partielles
- On appelle fermeture inductive de B par Ω , le plus petit ensemble (au sens de l'inclusion) E tel que
 - B est inclus dans E
 - Oquelle que soit ω dans Ω d'arité p, quelques soient $x_1, x_2,, x_p$ dans E, $\omega(x_1, x_2,, x_p)$ est dans E

On dit aussi que E est défini inductivement par le schéma (B,Ω)

- Définition de IN
- ⇒Base = ensemble des nombres premiers
- →Constructeur = la multiplication de 2 entiers

Analyse constructive

Soit B_i la suite d'ensembles définie par

- $B_0=B$
- \bullet $B_{i+1} = \Omega(B_i) \cup B_i$

On note F=U B_i Soit E défini inductivement par le schéma (B,Ω)

Exercice: Montrez que E=F

 Un ensemble défini par induction structurelle, peut être muni d'un ordre bien fondé :

lequel?

• Quels sont les éléments minimaux pour cet ordre?

Exemple

- Définition de IN
- ⇒Base = ensemble des nombres premiers
- ⇒Constructeur = la multiplication

- ⇒13 est minimal
- ⇒13 < 26

Analyse descendante

Soit E défini par le schéma (B,Ω)

Exercice: Montrez que

- x appartient à E si et seulement si
 - x est dans Bou
 - o il existe ω dans Ω , et un p-uplet $(x_1,x_2,...,x_p)$ d'éléments de E tels que $x=\omega(x_1,x_2,...,x_p)$

Une difficulté est, partant de x, de retrouver un (le ?) ω dans Ω , et un (le ?) p-uplet $(x_1,x_2,...,x_p)$ tels que $x = \omega(x_1,x_2,...,x_p)$

Démontrer une propriété sur un ensemble inductif

Principe d'induction structurelle.

Soit un ensemble E défini inductivement par le schéma (B,Ω), pour montrer une propriété P sur E, il suffit de montrer :

- 1. P(y) pour tout y élément de la base B de E
- 2. Si P(x_i) pour tout x_i , alors P($\omega(x_1, x_2, ..., x_p)$)

Exercice : démontrez la validité de l'induction structurelle.

Schémas libres

- Un élément est uniquement constructible s'il est dans la base ou exclusif obtenu de manière unique à partir d'un unique constructeur
- Un schéma est
 libre ou
 non ambigu
 si tous les éléments sont
 uniquement constructibles

Ecrire formellement ces définitions.

 Les schémas donnés plus tôt pour définir les entiers, les entiers pairs, les entiers relatifs sont-ils libres ?

 Les familles libres (au sens des espaces vectoriels) sontelles des schémas libres ?

Schémas libres

Dans un schéma libre, il est donc possible d'associer de manière unique à tout élément x, le constructeur ω et les éléments $x_1, x_2, ..., x_p$ tels que : $X = \omega(x_1, x_2, ..., x_p)$

En informatique (pour les programmes récursifs (cf. suite), analyse syntaxique en compilation (cf. cours ESSI2), etc.) il faut que cette possibilité d'association soit programmable.

Les mots finis non vides

Soit A un alphabet fini.

 Donnez une définition par induction structurelle de l'ensemble A+ des mots finis non vide sur A.

Les mots finis

 On désigne par A*, l'ensemble des mots de A+ U {ε} οù ε représente le mot vide.

 Donner une définition inductive de A*.

 Le schéma définissant les mots finis non vide est-il libre?

Autre définition des mots finis non vides

Soit A un alphabet fini

L'ensemble A+ des mots finis non vides sur A est défini par le schéma inductif

Base : toute lettre de A est un mot de A+

Règle : Si *m* et *m'* sont des mots de A+, alors *mm'* est un mot de A+

 Le schéma précédent définissant les mots finis non vide est-il libre ?

Attention, un schéma inductif peut ne comporter qu'une règle et cependant ne pas être libre.

Donner un exemple.

Donner un autre exemple.

Autre définition des mots finis

Soit A* l'ensemble défini par le schéma inductif

Base : ε appartient à A*

Règle: Si a appartient à A et m appartient à A*, alors am appartient à A*

Exercice : Ce schéma est-il libre ?

Le langage des parenthèses

- LP ensemble des mots bien parenthèsés sur l'alphabet {(,)} est défini par le schéma inductif
- Base : le mot vide appartient à LP
- Règle : Si u et v appartiennent à LP alors (u)v appartient à LP

- Les mots suivants sont-ils dans LP?
 - \circ (((()))
 - (((((((()))))))
 - \circ (())()
 - \circ ()(())
 - o()()()
 - O(()())(())

Induction structurelle Exercice

Principe d'induction structurelle (rappel) :

Soit E défini par le schéma (Β, Ω) Les deux conditions

- P(b) vrai pour tout b dans B
- Pour tout ω de Ω, pour tout $x_1,x_2,...,x_p$ de E, $P(x_i)$ pour tout i, $1 \le i \le p =>$ $P(ω(x_1,x_2,...,x_p))$

entraînent

P(x) vrai pour tout x dans E

Preuve par induction sur IN²

 Pour montrer qu'une propriété P(n,m) est vraie pour tous les couples d'entier, on peut faire une gymnastique et faire une récurrence dans N

> $\forall k \in N$, $\forall m, n \in N, m+n \leq k, P(m,n) vrai$

 Ou utiliser l'induction structurelle si on connaît une définition inductive de IN².

Définitions inductives IN²

- $(0,0) \in E$
- $(n,m) \in E \Rightarrow (n,m+1) \in E$
- $(n,m) \in E \Rightarrow (n+1,m) \in E$
- $(0,0) \in F$
- $(n,m) \in F \Rightarrow (n,m+1) \in F$
- $(n,0) \in F \Rightarrow (n+1,0) \in F$

- Montrer que ces définitions sont bien correctes pour IN²
- En déduire deux schémas de preuve par induction sur IN²

Soit M le sous ensemble de (0,1)* constitué des mots ayant autant de 0 que de 1.

Soit E l'ensemble défini de manière inductive par

Base : $\varepsilon \in E$

Règles: $m \in E \Rightarrow 0m1 \in E$

 $m \in E \Rightarrow 1m0 \in E$

- a) Le schéma définissant E est–il libre?
- b) A-t-on $M \subset E$?
- c) A-t-on $E \subset M$?

Donnez et prouvez une définition inductive pour l'ensemble des mots binaires palindromes

Donner et prouver une définition inductive pour l'ensemble des mots binaires ne comportant pas deux zéros consécutifs

Donnez et prouvez une définition inductive pour l'ensemble Ecritures Bin Pair des mots binaires représentant des écritures d'entiers pairs (donc sans 0 inutile en tête).

Donnez une définition inductive de l'ordre préfixe.

Donnez une définition inductive de l'ordre lexicographique.

Retour sur le langage des parenthèses

LP ensemble des mots bien parenthèsés sur l'alphabet {(,)} est le plus petit ensemble tel que

- le mot vide appartient à LP
- Si u et v appartiennent à LP alors (u)v appartient à LP

Le langage des parenthèses

 Considérons LBP l'ensemble des mots sur {(,)} tels que dans toute lecture gauche droite d'un début de mot m on lise au moins autant de (que de) et globalement on a autant de (que de)

Deux exercices

Exercice : Montrez que LBP=LP

 Exercice : Montrez que le schéma définissant LP est libre

Langage des parenthèses, définition plus intuitive

LP2 est le plus petit ensemble tel que

- le mot vide appartient à LP2
- Si u et v appartiennent à LP2 alors uv appartient à LP2
- Si u appartient à LP2 alors (u) appartient à LP2

Le schéma définissant LP2 est-il libre ?

- Soit A l'alphabet {(,)}, soit L le sous ensemble de A* formé des mots dont tous les préfixes contiennent au moins autant de (que de)
- a) Donnez une définition inductive de L et la prouver
- b) Montrez que L n'est pas égal à l'ensemble des mots bien parenthèsés. Comment peut-on associer à un mot de L, un mot bien parenthèsé ?
- c) Le schéma donné en a) est-il libre ou ambigu ?

Les expressions arithmétiques

- On se donne un ensemble de variables Var
- EA est le plus petit ensemble tel que

Base = Var

Règles

E1, E2 dans EA \Rightarrow (E1+E2) dans EA

E1, E2 dans EA \Rightarrow (E1-E2) dans EA

E1, E2 dans EA \Rightarrow (E1*E2) dans EA

E1, E2 dans EA \Rightarrow (E1/E2) dans EA

A quoi servent les parenthèses?

Les expressions polonaises

Soient Var et Op deux alphabets disjoints.

On pose A= Var U Op.

On appelle langage des expressions polonaises préfixées le langage L sur A défini par le schéma :

Base Var ⊂ L

Règle Si ω ∈ Op, u,v ∈ L, alors

ωuv ∈ L

En supposant que $Var=\{0,1,2,3,4,5,6,7,8,9\}$ et $Op=\{+,-,/,*\}$, le mot + + * 2 4 - 5 7 - 4 + 3 2 est-il dans L?

- Montrez qu'un mot w de A* appartient à L si et seulement si il vérifie les deux conditions suivantes :
 - i) w contient une variable de plus que d'opérateurs
- ii) tout préfixe propre p de w contient au moins autant d'opérateurs que de variables
- Montrez que le schéma définissant L est libre.

Définition inductive d'une fonction

- Soit E défini par un schéma (B,Ω) libre
- On peut définir (de manière inductive) une fonction de E dans A en :
 - o en donnant f(b) pour tout b dans B
 - o en donnant $f(\omega(x_1,x_2,...,x_p))$ en fonction des x_i et des $f(x_i)$

Exemple de fonctions définies inductivement

- de IN dans IN
 - factorielle
 - o ajouter m
 - multiplier par m
- En choisissant pour IN le schéma inductif (Base={0}, +1)
 - factorielle(0)=1
 - factorielle(n+1)=(n+1)factorielle(n)

De la définition inductive au programme récursif

La définition

- factorielle(0)=1
- factorielle(n+1)=(n+1)factorielle(n)

Est équivalente à la définition

- factorielle(0)=1
- factorielle(n)=(n)*factorielle(n-1)

```
public int factorial (int n) {
    if (n == 0) { return 1;}
        else { return n*factorial(n-1);}
}
```

Toujours de IN dans IN

Exercice:

Comme pour la fonction factorielle, donnez des définitions inductives des fonctions:

Add_m Multiply_by_m

Base: 0 et 1 sont dans E

Règle : Si n est dans E, alors

n+2 est dans E

Base: 0 est dans F

Règle: Si n est dans F,

alors 2*n est dans F

Base: 0 est dans G

Règle: Si n est dans G, alors

2*n+1 est dans G

Base: 0 est dans H

Règles:

Si n est dans H, alors 2*n est dans H

Si n est dans H, alors 2*n+1 est dans H

- A quoi sont égaux ces 4 ensembles ?
- Les schémas sont-ils libres?
- En vous appuyant sur une définition inductive de IN, donnez une définition inductive des fonctions n modulo 2, division entière de n par 2 et écriture de n en base deux.

Exercice : Fonction de INxIN dans IN

- Addition de deux entiers
- Multiplication de deux entiers
- Calcul de mⁿ.
- Par exemple, en utilisant la définition inductive libre de INxIN
 - \bigcirc (0,0) \in INxIN
 - \bigcirc (n,0) \in INxIN \rightarrow (n+1,0) \in INxIN
 - \bigcirc (m,n) \in INxIN \rightarrow (m,n+1) \in INxIN

• Définir inductivement la fonction μ de A^* ----> A^* telle que $\mu(x_1x_2...x_n) = x_n ...x_2x_1$

 Définir inductivement la fonction

$$ω : A*x A ----> IN,$$
 $ω(m,c) = |m|_c$

- Donnez et prouvez une définition inductive pour l'ensemble EcrituresBin des mots binaires représentant des écritures d'entiers (donc sans 0 inutile en tête).
- Définir inductivement la fonction

val: EcrituresBin ----> IN,

val(m) = entier représenté par m

- Définir inductivement la fonction
- σ: EcrituresBin x EcrituresBin
 ----> IN,
 σ(x,y)=val(x)+val(y)

- Définir inductivement la fonction
- Σ : EcrituresBin x EcrituresBin ----> EcrituresBin,
 - $\Sigma(x,y)$ est l'écriture binaire de l'entier val(x)+val(y)

Les listes linéaires

L'ensemble des listes linéaires LISTE(E) d'éléments de E est défini inductivement par

- Base : La liste vide
- Opérateur : Si e est dans E, et L est dans LISTE(E) alors cons(e,L) est dans LISTE(E)

- Définir inductivement les fonctions longueur d'une liste concaténation de deux listes, ajout_en_fin d'un élément à une liste et miroir d'une liste. Donner aussi un code récursif.
- Définir inductivement une fonction appartient qui teste si un élément appartient à une liste

- On suppose que les éléments de la liste sont des entiers.
 Ecrire une fonction inductive qui a une liste associe
 - Ola somme de ses éléments
 - la sous liste de ses éléments pairs
 - Ola liste où tous les éléments ont été augmentés de un

Les sous-ensembles d'un ensemble E

L'ensemble des sous-ensembles P(E) d'un ensemble E est défini inductivement par

- Base : L'ensemble vide
- Opérateur : Si e est dans E, et F est dans P(E) alors ins(e,F) est dans P(E)

- Définir inductivement une fonction appartient qui teste si un élément appartient à un sous-ensemble.
- Définir inductivement les fonctions cardinal d'un sousensemble, union de deux sous-ensembles, intersection de deux sous-ensembles.
- Donner aussi un code récursif.

Les arbres binaires

- E ensemble d'étiquettes
- AB défini inductivement par
 - Base :l'arbre vide appartient à AB
 - Opérateur:

Si T1 et T2 sont dans AB et si e est dans E, alors (e,T1,T2) est dans AB

- Combien y a-t-il d'arbres binaires ayant 5 noeuds?
- Un arbre binaire est saturé si tout noeud à 0 ou 2 fils.
 Donnez une définition inductive des arbres binaires saturés.
- Combien y a-t-il d'arbres binaires saturés ayant 5 noeuds?

Définitions

- L'arbre vide n'a pas de sommets, pas de racine et pas d'arêtes.
- La racine de (e,T1,T2) est e.
- Les sommets de l'arbre (e,T1,T2) sont e ainsi que les sommets de T1 et ceux de T2
- Les arêtes de l'arbre (e,T1,T2) sont celles de T1 et de T2 ainsi que (e,racine(T1)) si T1 est non vide et (e, racine(T2)) si T2 est non vide.

- On définit l'ordre d'un arbre comme étant son nombre de sommets, la taille d'un arbre comme étant son nombre d'arêtes.
- Donner une définition inductive de ces 2 fonctions.
- Prouver que si T est un arbre non vide, alors taille(T) = ordre(T)-1

Courbes récursives

- Courbe initiale : P1: Un segment défini par les coordonnées de ses deux extrémités (en rouge sur le dessin ci dessous) de P1.
- Règle de transformation : On obtient Pk+1à partir de Pk en remplaçant chaque segment s de longueur *l* reliant deux sommets de Pk par une croix formée de l'intersection de deux segments de droites, dont l'un est le segment s, et l'autre un segment perpendiculaire à s de longueur *l*/2 ayant le même milieu que s.

Les points rouges matérialisent les sommets et sont là uniquement pour une meilleure compréhension du texte. Ils ne font pas partie des Pk et ne doivent pas être dessinés.

- Donnez une définition récursive de ces courbes.
- Etablir et résoudre une relation de récurrence permettant de déterminer la longueur d'une telle courbe (la longueur étant la somme des longueurs des segments de droites qui constituent le dessin), en fonction de longueur du segment initial et de k